An Introduction to Computational Macroeconomics

Dynamic Programming: Chapter 3

John Stachurski

June - July 2022

Introduction

Summary of this lecture:

- Introduction to partial orders
- Pointwise orders
- Order-preserving maps
- Fixed points and order
- Monotone Markov chains

Order

The next few slides give a quick introduction to order theory

One of the foundational subjects of maths, on par with

- algebra
- geometry
- topology
- number theory
- set theory

But not commonly taught in foundational math courses

Why?

Rarely used in

- physics
- chemistry
- biology, etc.

Math courses are biased toward these subjects!

But not commonly taught in foundational math courses

Why?

Rarely used in

- physics
- chemistry
- biology, etc.

Math courses are biased toward these subjects!

But very important for econ and related fields Examples.

- Does consumer X prefer good A or good B?
- Is welfare greater under policy A or policy B?
- Does R & D increase profits?
- How can firm Y minimize costs?

For these lectures, we need order for

- studying optimality
- fixed point results

Partial orders

Let P be a nonempty set

A **partial order** on a P is a binary relation \leq on $P \times P$ satisfying, for any p,q,r in P,

$$p \leq p$$
,

$$p \leq q$$
 and $q \leq p$ implies $p = q$ and

$$p \leq q$$
 and $q \leq r$ implies $p \leq r$

(Reflexivity, antisymmetry, transitivity)

We call (P, \preceq) (or just P) a partially ordered set

Ex.

- 1. Show that the usual order \leqslant on $\mathbb R$ is a partial order on $\mathbb R$
- 2. Given set M, show that \subset is a partial order on $\wp(M)$

Proof for 2: Clearly, for all $A, B, C \subset M$,

- $A \subset A$ holds
- $A \subset B$ and $B \subset A$ implies A = B
- $A \subset B$ and $B \subset C$ implies $A \subset C$

Ex.

- 1. Show that the usual order \leqslant on $\mathbb R$ is a partial order on $\mathbb R$
- 2. Given set M, show that \subset is a partial order on $\wp(M)$

Proof for 2: Clearly, for all $A, B, C \subset M$,

- $A \subset A$ holds
- $A \subset B$ and $B \subset A$ implies A = B
- $A \subset B$ and $B \subset C$ implies $A \subset C$

A partial order \leq on P is called a **total order** if

either
$$p \leq q$$
 or $q \leq p$ for all $p, q \in P$

Example. \leqslant is a total order on $\mathbb R$

Ex. Prove: \subset is not a total order on $\wp(M)$ when |M|>1

<u>Proof</u>: If M has more than two elements, then we can take nonempty $A,B\subset M$ with $A\cup B=\emptyset$

But then $A \subset B$ and $B \subset A$ both fail

A partial order \leq on P is called a **total order** if

either
$$p \leq q$$
 or $q \leq p$ for all $p, q \in P$

Example. \leqslant is a total order on $\mathbb R$

Ex. Prove: \subset is not a total order on $\wp(M)$ when |M|>1

<u>Proof</u>: If M has more than two elements, then we can take nonempty $A,B\subset M$ with $A\cup B=\emptyset$

But then $A \subset B$ and $B \subset A$ both fail

Pointwise Partial Orders

Let

- M be any set and
- let \mathbb{R}^M be all $f \colon M \to \mathbb{R}$

The **pointwise partial order** over \mathbb{R}^M is writen as \leqslant and defined as follows:

• Given f,g in \mathbb{R}^M , we set

$$f \leqslant g \iff f(x) \leqslant g(x) \text{ for all } x \in M$$

Ex. Show \leqslant is a partial order on \mathbb{R}^M

Proof:

Let's just check antisymmetry

Fix $f,g \in \mathbb{R}^M$ and suppose $f \leqslant g$ and $g \leqslant f$

Pick any $x \in M$

By definition, $f(x) \leqslant g(x)$ and $g(x) \leqslant f(x)$

Therefore, f(x) = g(x)

Since x was arbitrary, we have f = g

Ex. Show \leqslant is a partial order on \mathbb{R}^M

Proof:

Let's just check antisymmetry

Fix $f,g \in \mathbb{R}^M$ and suppose $f \leqslant g$ and $g \leqslant f$

Pick any $x \in M$

By definition, $f(x) \leqslant g(x)$ and $g(x) \leqslant f(x)$

Therefore, f(x) = g(x)

Since x was arbitrary, we have f = g

Let's define the pointwise partial order for matrices

Let $\mathbb{M}^{n \times k} := \mathsf{all} \ n \times k \mathsf{matrices}$

For
$$A=(a_{ij})$$
 and $B=(b_{ij})$ in $\mathbb{M}^{n\times k}$, we set

$$A \leqslant B \iff a_{ij} \leqslant b_{ij} \text{ for all } i,j$$

Example.

$$\begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix} \leqslant \begin{pmatrix} 10 & 20 \\ 0 & 10 \end{pmatrix}$$

Ex. Show that \leq is a partial order on $\mathbb{M}^{n \times k}$

Special case: pointwise order for vectors

Recall
$$[n] := \{1, ..., n\}$$

For
$$x=(x_1,\ldots,x_n)$$
 and $y=(y_1,\ldots,y_n)$ in \mathbb{R}^n , we write

$$x \leqslant y$$
 if $x_i \leqslant y_i$ for all $i \in [n]$

Pointwise partial order \leq on \mathbb{R}^2 :

Figure: Pointwise we have $x \le y$ but not $z \le y$

Ex. Prove: for $a, b \in \mathbb{R}^n$ and sequence (x_k) in \mathbb{R}^n , we have

$$a \leqslant x_k \leqslant b$$
 for all $k \in \mathbb{N}$ and $x_k \to x$ implies $a \leqslant x \leqslant b$

Proof: Fix $i \in [n]$

Let a_i be the *i*-th element of a, etc.

It suffices to show that

$$a_i \leqslant x_i \leqslant b_i \tag{1}$$

Note $x_k \to x$ implies $x_{i,k} \to x_i$

Moreover, $a_i \leqslant x_{i,k} \leqslant b_i$ for all k

Weak inequalities in \mathbb{R} are preserved under limits, so (1) holds

Ex. Prove: for $a,b \in \mathbb{R}^n$ and sequence (x_k) in \mathbb{R}^n , we have

 $a \leqslant x_k \leqslant b$ for all $k \in \mathbb{N}$ and $x_k \to x$ implies $a \leqslant x \leqslant b$

Proof: Fix $i \in [n]$

Let a_i be the *i*-th element of a, etc.

It suffices to show that

$$a_i \leqslant x_i \leqslant b_i \tag{1}$$

Note $x_k \to x$ implies $x_{i,k} \to x_i$

Moreover, $a_i \leqslant x_{i,k} \leqslant b_i$ for all k

Weak inequalities in $\mathbb R$ are preserved under limits, so (1) holds

In other words, the pointwise partial order \leqslant is preserved under limits

As a result, these sets are closed

- $\bullet \ \mathbb{R}^n_+ := \{ x \in \mathbb{R}^n : 0 \leqslant x \}$
- $[a,b] := \{x \in \mathbb{R}^n : a \leqslant x \leqslant b\}$
- etc.

A key connection between order and topology!

Ex. Prove: If B is $m \times k$ and $B \geqslant 0$, then

$$|Bx| \leq B|x|$$
 for all $k \times 1$ column vectors x

<u>Proof</u>: Fix $B \in \mathbb{M}^{m \times k}$ with $b_{ij} \geqslant 0$ for all i, j

Fix $i \in [m]$ and $x \in \mathbb{R}^k$

By the triangle inequality, we have $|\sum_j b_{ij} x_j| \leqslant \sum_j b_{ij} |x_j|$

Stacking these inequalities yields

$$|Bx| \leqslant B|x|$$

Ex. Prove: If B is $m \times k$ and $B \geqslant 0$, then

$$|Bx| \leq B|x|$$
 for all $k \times 1$ column vectors x

<u>Proof</u>: Fix $B \in \mathbb{M}^{m \times k}$ with $b_{ij} \geqslant 0$ for all i, j

Fix $i \in [m]$ and $x \in \mathbb{R}^k$

By the triangle inequality, we have $|\sum_j b_{ij} x_j| \leqslant \sum_j b_{ij} |x_j|$

Stacking these inequalities yields

$$|Bx| \leqslant B|x|$$

Lemma. Given a finite set M and f,g in \mathbb{R}^M , we have

$$|\max_{x \in M} f(x) - \max_{x \in M} g(x)| \leqslant \max_{x \in M} |f(x) - g(x)|$$

Proof: Fixing $f,g \in \mathbb{R}^M$, we have

$$f = f - g + g \le |f - g| + g$$
 (pointwise)

$$\therefore \max f \leqslant \max(|f - g| + g) \leqslant \max|f - g| + \max g$$

$$\therefore \max f - \max g \leqslant \max |f - g|$$

Reversing the roles of f and g proves the claim

Order-preserving maps

Let

- (P, \preceq) and (Q, \preceq) be partially ordered sets
- $T: P \to Q$

T is called **order-preserving** if, for all $x, y \in P$,

$$x \leq y \implies Tx \leq Ty$$

- Meaning: If x goes up then Tx goes up
- Very important concept for dynamic programming

Example. Let $(P, \preceq) = (\mathcal{C}, \leqslant)$ where

- $\mathcal C$ is all continuous functions from [a,b] to $\mathbb R$
- ullet \leqslant is the pointwise partial order

If $I \colon \mathcal{C} \to \mathbb{R}$ is defined by

$$Ig := \int_{a}^{b} g(x)dx \qquad (g \in \mathcal{C})$$

then I is order-preserving on ${\mathcal C}$

(Larger functions have larger integrals)

Example. Let \leqslant denote the pointwise partial order on \mathbb{R}^n

Let $T \colon \mathbb{R}^n \to \mathbb{R}^n$ be defined by Tx = Ax + b

If $A \geqslant 0$, then T is order preserving on \mathbb{R}^n

Proof: Fix $x \leq y$

Then $0 \leqslant y - x$

$$\therefore \quad 0 \leqslant A(y-x) \leqslant Ay - Ax$$

$$\therefore Ax \leqslant Ay$$

$$\therefore Tx \leqslant Ty$$

Example. Let \leqslant denote the pointwise partial order on \mathbb{R}^n

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined by Tx = Ax + b

If $A \geqslant 0$, then T is order preserving on \mathbb{R}^n

Proof: Fix $x \leq y$

Then $0 \leqslant y - x$

$$0 \le A(y-x) \le Ay - Ax$$

$$\therefore Ax \leqslant Ay$$

$$\therefore Tx \leqslant Ty$$

Special Case: Real-Valued Functions

Special case: maps from (P, \preceq) into (\mathbb{R}, \leqslant)

Then "order-preserving" = "increasing"

In particular, we also call $h \in \mathbb{R}^P$

- increasing if $x \leq y$ implies $h(x) \leqslant h(y)$ and
- **decreasing** if $x \leq y$ implies $h(x) \geqslant h(y)$

Let P be partially ordered by \leq

We write $i\mathbb{R}^P$ for the increasing functions in \mathbb{R}^P

Thus,

$$h \in i\mathbb{R}^P \quad \iff \quad x,y \in P \text{ and } x \leq y \text{ implies } h(x) \leqslant h(y)$$

Example. Let $P = \{1, \dots, n\}$ and let \leq be the usual order \leq on $\mathbb R$

Then

- $x \mapsto 2x$ and $x \mapsto \mathbb{1}\{2 \leqslant x\}$ are in $i\mathbb{R}^P$
- $x \mapsto -x$ and $x \mapsto \mathbb{1}\{x \leqslant 2\}$ are not

Ex. Prove the following:

If $f,g \in i\mathbb{R}^P$, then

- $\alpha f + \beta g \in i\mathbb{R}^P$ when $\alpha, \beta \geqslant 0$
- $f \lor g \in i\mathbb{R}^P$
- $f \wedge g \in i\mathbb{R}^P$

Ex. Suppose P is finite

Show that $i\mathbb{R}^P$ is closed in \mathbb{R}^P

Strict inequalities

We write

- $f \ll g$ if f(x) < g(x) for all $x \in M$
- $x \ll y$ if $x_i < y_i$ for all $i \in [n]$
- $A \ll B$ if $a_{ij} < b_{ij}$ for all i, j

These are <u>not</u> partial orders

Ex. Why is $f \ll g$ not a partial order on \mathbb{R}^M ?

Parametric Monotonicity

Let (P, \preceq) be a partially ordered set

Given two self-maps S and T on P, we set

$$S \leq T \iff Sx \leq Tx \text{ for every } x \in P$$

We say that T dominates S on P

Ex. Show that \leq is a partial order on

$$S_P := P^P := \text{ set of all self-maps on } P$$

Proof of antisymmetry of \leq on S_P :

Let (P, \preceq) and $S, T \in S_P$ be as defined above

Suppose $S \leq T$ and $T \leq S$

Fix any $x \in P$

We have $Sx \leq Tx$ and $Tx \leq Sx$

Since \leq is antisymmetric on P, we have Sx = Tx

Since p was arbitrary, S = T

Hence \leq is antisymmetric on S_P

Example. If $(\preceq, P) = (\leqslant, \mathbb{R})$, then \leqslant is the pointwise partial order over functions

Example. Consider \mathbb{R}^n_+ with the pointwise partial order \leqslant

• Called the **positive cone** in \mathbb{R}^n

Let

- Sx = Ax + b
- Tx = Bx + b

Ex. Show that $A \leq B \implies T$ dominates S on \mathbb{R}^n_+

<u>Proof</u>: Fixing $x \in \mathbb{R}^n_+$, suffices to show that $Sx \leqslant Tx$

Since $A \leq B$ and $x \geq 0$, we have $Ax \leq Bx$

Hence $Sx \leq Tx$

Example. Consider \mathbb{R}^n_+ with the pointwise partial order \leqslant

• Called the **positive cone** in \mathbb{R}^n

Let

- Sx = Ax + b
- Tx = Bx + b

Ex. Show that $A \leq B \implies T$ dominates S on \mathbb{R}^n_+

<u>Proof</u>: Fixing $x \in \mathbb{R}^n_+$, suffices to show that $Sx \leqslant Tx$

Since $A \leq B$ and $x \geq 0$, we have $Ax \leq Bx$

Hence $Sx \leq Tx$

Conjecture: If $S \leq T$, then the fixed points of T will be larger

This is <u>not</u> true in general...

Conjecture: If $S \leq T$, then the fixed points of T will be larger

This is <u>not</u> true in general...

Sometimes true:

And sometimes false:

One difference: in the first case, T is globally stable

This leads us to our next result

Proposition. Let

- ullet S and T be self-maps on $M\subset \mathbb{R}^n$
- ullet \leqslant be the pointwise partial order on M

lf

- 1. T dominates S on M and
- 2. T is order-preserving and globally stable on M,

then the unique fixed point of T dominates any fixed point of S

Proof: Assume the conditions

Let

- ullet u_T be the unique fixed point of T and
- u_S be any fixed point of S

Since $S \leqslant T$, we have $u_S = Su_S \leqslant Tu_S$

Applying T to both sides of $u_S \leqslant Tu_S$ gives

$$u_S \leqslant Tu_S \leqslant T^2u_S$$

Continuing in this fashion yields $u_S \leqslant T^k u_S$ for all $k \in \mathbb{N}$ Since \leqslant is preserved under limits and T is globally stable,

$$u_S \leqslant \lim_k T^k u_S = u_T$$

Example. Recall that, in the job search model,

$$h^* = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h^* \right\} \varphi(w')$$

We found h^* as the fixed point of $g\colon \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$g(h) = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(w')$$

In the exercise, you showed that g is a contraction map on \mathbb{R}_+

Ex. Prove that the optimal continuation value h^* is increasing in β

Proof: Fix $\beta_1 \leqslant \beta_2$ and let

- $h_i^* :=$ fixed point corresponding to β_i
- $g_i := \text{fixed point map corresponding to } \beta_i$

Since $\beta_1 \leqslant \beta_2$, we have $g_1(h) \leqslant g_2(h)$ for all $h \in \mathbb{R}_+$

In addition,

- 1. g_2 is a contraction (so globally stable) and
- 2. g₂ is increasing

Hence $h_1^* \leqslant h_2^*$

Ex. Prove that the optimal continuation value h^* is increasing in β

<u>Proof</u>: Fix $\beta_1 \leqslant \beta_2$ and let

- $h_i^* := \mathsf{fixed}$ point corresponding to β_i
- $g_i :=$ fixed point map corresponding to β_i

Since $\beta_1 \leqslant \beta_2$, we have $g_1(h) \leqslant g_2(h)$ for all $h \in \mathbb{R}_+$

In addition,

- 1. g_2 is a contraction (so globally stable) and
- 2. g_2 is increasing

Hence $h_1^* \leqslant h_2^*$

Ex. Replicate this figure

(First Order) Stochastic Dominance

Partial order over distributions!

Example. Equivalent:

- $X \sim B(n, 0.5)$
- X counts the # of heads in n flips of a fair coin

Suppose
$$\varphi \stackrel{d}{=} X \sim B(10, 0.5)$$
 and $\psi \stackrel{d}{=} Y \sim B(18, 0.5)$

• Y counts over more flips, so "larger on average"

Hence we expect that ψ is "larger than" φ in some sense

Distribution ψ seems "larger than" ϕ — usually produces higher draws

But how can we make this idea precise?

Let X be a finite set partially ordered by \leq

Fix
$$\varphi, \psi \in \mathfrak{D}(X)$$

Write $\langle u, \varphi \rangle$ for $\sum_{x} u(x) \varphi(x)$, etc.

We say that ψ stochastically dominates φ and write $\varphi \preceq_F \psi$ if

$$u \in i\mathbb{R}^{\mathsf{X}} \implies \langle u, \varphi \rangle \leqslant \langle u, \psi \rangle$$

Example. If

- $\varphi \stackrel{d}{=} X \sim B(10, 0.5)$ and
- $\psi \stackrel{d}{=} Y \sim B(18, 0.5),$

then $\phi \preceq_F \psi$

Proof: Fix $u \in i\mathbb{R}^X$ and let

- $X = \{0, ..., 18\}$ and
- W_1,\ldots,W_{18} be IID Bernoulli with $\mathbb{P}\{W_i=1\}=0.5$ for all i

Then
$$X:=\sum_{i=1}^{10}W_i\stackrel{d}{=}\varphi$$
 and $Y:=\sum_{i=1}^{18}W_i\stackrel{d}{=}\psi$

Clearly $X \leqslant Y$

Hence
$$u(X) \leqslant u(Y)$$

Hence
$$\mathbb{E}u(X) \leqslant \mathbb{E}u(Y)$$

In other words,

$$\langle u, \varphi \rangle \leq \langle u, \psi \rangle$$

Example. An agent has preferences over outcomes in X

Preferences are determined by a utility function $u \in \mathbb{R}^{X}$

The agent prefers more to less, so $u \in i\mathbb{R}^X$

Suppose that the agent ranks lotteries over \boldsymbol{X} according to expected utility

• evaluates $\varphi \in \mathcal{D}(\mathsf{X})$ according to $\sum_{x} u(x) \varphi(x)$

Then the agent (weakly) prefers ψ to φ whenever $\varphi \preceq_F \psi$

Alternative definition

Given $\varphi \in \mathfrak{D}(X)$, let

$$G^{\varphi}(y) := \sum_{x \in X} \mathbb{1}\{y \le x\} \varphi(x) \qquad (y \in X)$$

This is the counter CDF of ϕ

Lemma. For each $\varphi, \psi \in \mathfrak{D}(X)$, the following statements hold:

- 1. $\varphi \leq_{\mathbf{F}} \psi \implies G^{\varphi} \leqslant G^{\psi}$
- 2. If X is totally ordered by \leq , then $G^{\varphi} \leqslant G^{\psi} \implies \varphi \leq_F \psi$

Lemma. \leq_F is a partial order on $\mathfrak{D}(X)$

Proof:

Let's just prove transitivity

Suppose $f,g,h\in \mathcal{D}(\mathsf{X})$ with $f\preceq_{\mathsf{F}} g$ and $g\preceq_{\mathsf{F}} h$

Fixing $u \in i\mathbb{R}^X$, we have

$$\langle u, f \rangle \leqslant \langle u, g \rangle$$
 and $\langle u, g \rangle \leqslant \langle u, h \rangle$

Hence $\langle u, f \rangle \leqslant \langle u, h \rangle$

Since u was arbitrary in $i\mathbb{R}^X$, we are done

Monotone Markov Chains

A stochastic matrix P on $X \times X$ is called **monotone increasing** if

$$x,y \in X$$
 and $x \leq y \implies P(x,\cdot) \leq_F P(y,\cdot)$

Example. Consider the AR(1) model $X_{t+1} = \rho X_t + \sigma \varepsilon_{t+1}$

Apply Tauchen discretization, mapping to

- $n \times n$ stochastic matrix P on
- state space $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}$

Lemma. If $\rho \geqslant 0$ (+ve autocorrelation), then P is monotone increasing

Ex. Prove that P is monotone increasing if and only if P is invariant on $i\mathbb{R}^{X}$

Proof of \Longrightarrow

Suppose P is monotone increasing and fix $u \in i\mathbb{R}^X$

We claim that $Pu \in i\mathbb{R}^X$

To see this, pick any $x, y \in X$ with $x \leq y$

Since $P(x, \cdot) \leq_{\mathbf{F}} P(y, \cdot)$, we have

$$(Pu)(x) := \sum_{x'} u(x')P(x,x') \leqslant \sum_{x'} u(x')P(y,x') =: (Pu)(y)$$

Hence $Pu \in i\mathbb{R}^X$, as was to be shown

Ex. Prove: If P is monotone increasing then so is P^t for all $t \in \mathbb{N}$

Proof by induction: Clearly true for t=1

Suppose also true for arbitrary t

Then, for any $u \in i\mathbb{R}^X$, we have $P^t u \in i\mathbb{R}^X$

But P is monotone increasing, so this yields

$$P^{t+1}u = PP^tu \in i\mathbb{R}^X$$

Hence P^{t+1} is invariant on $i\mathbb{R}^X$

Hence monotone increasing

Ex. Prove: If P is monotone increasing then so is P^t for all $t \in \mathbb{N}$

<u>Proof</u> by induction: Clearly true for t = 1

Suppose also true for arbitrary t

Then, for any $u \in i\mathbb{R}^X$, we have $P^t u \in i\mathbb{R}^X$

But P is monotone increasing, so this yields

$$P^{t+1}u = PP^tu \in i\mathbb{R}^X$$

Hence P^{t+1} is invariant on $i\mathbb{R}^X$

Hence monotone increasing

Job Search Revisited

Now we return to the job search problem

Aims:

- 1. drop some of the restrictive assumptions we made earlier
- 2. analyze optimality

First extension: change wage draws are to be correlated

- More realistic than the IID setting
- Closer to standard research environments

Assume (W_t) is P-Markov on finite set $W \subset \mathbb{R}_+$

The value function is denoted v^*

 $ullet v^*(w)$ is maximum lifetime value given current wage offer is w

The value function satisfies the Bellman equation

$$v^*(w) = \max\left\{\frac{w}{1-\beta}, c+\beta \sum_{w' \in W} v^*(w') P(w, w')\right\} \qquad (w \in W)$$

The corresponding Bellman operator is

$$(Tv)(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta \sum_{w' \in W} v(w') P(w, w') \right\}$$

Ex. Prove that T is an order-preserving self-map on $\mathcal{V}:=\mathbb{R}_+^{\mathsf{W}}$

Proof of the order-preserving property

Given $f,g\in\mathcal{V}$ with $f\leqslant g$, we claim that $Tf\leqslant Tg$

Indeed, if $w \in W$, then

$$\sum_{w' \in W} f(w') P(w, w') \leqslant \sum_{w' \in W} g(w') P(w, w')$$

Hence
$$(Tf)(w) \leq (Tg)(w)$$

Since w was arbitrary, we have $Tf \leqslant Tg$

Ex. Prove that T is an order-preserving self-map on $\mathcal{V}:=\mathbb{R}_+^{\mathsf{W}}$

Proof of the order-preserving property

Given $f,g\in\mathcal{V}$ with $f\leqslant g$, we claim that $Tf\leqslant Tg$

Indeed, if $w \in W$, then

$$\sum_{w' \in \mathsf{W}} f(w') P(w, w') \leqslant \sum_{w' \in \mathsf{W}} g(w') P(w, w')$$

Hence
$$(Tf)(w) \leq (Tg)(w)$$

Since w was arbitrary, we have $Tf \leqslant Tg$

Set

$$\|f - g\|_{\infty} = \max_{w \in \mathsf{W}} |f(w) - g(w)|$$

Ex. Prove that T is a contraction of modulus β on $\mathcal V$ with respect to the norm $\|\cdot\|_{\infty}$

Proof:

- Similar to the IID case
- Please complete as an exercise

Lemma. v^* is increasing on W whenever P is monotone increasing

<u>Proof</u>: Let $i\mathcal{V}:=$ increasing functions in \mathcal{V}

Since iV is closed, suffices to show that T is invariant on iV

Fix $v \in i\mathcal{V}$

Then

- $h(w) := c + \beta(Pv)(w)$ is in $i\mathcal{V}$ and
- $e(w) := w/(1-\beta)$ is in $i\mathcal{V}$

It follows that $Tv = e \vee h$ is in $i\mathcal{V}$

We use value function iteration to solve for the value function

- Iterate from arbitrary guess v to get $v_k = T^k v$
- ullet Compute the v_k -greedy policy

```
using QuantEcon, LinearAlgebra
include("s_approx.jl")
"Creates an instance of the job search model with Markov wages."
function create markov js model(;
       n=200. # wage grid size
       ρ=0.9, # wage persistence
       v=0.2, # wage volatility
       β=0.98, # discount factor
       c=1.0 # unemployment compensation
   mc = tauchen(n, \rho, v)
   w vals, P = exp.(mc.state values), mc.p
   return (; n, w vals, P, β, c)
end
```

```
"The Bellman operator Tv = max\{e, c + \beta P v\} with e(w) = w / (1-\beta)."
function T(v. model)
    (; n, w \text{ vals}, P, \beta, c) = model
    h = c + \beta * P * v
    e = w \ vals \ (1 - \beta)
    return max.(e. h)
end
" Get a v-greedy policy."
function get greedy(v, model)
    (; n, w \text{ vals}, P, \beta, c) = model
    \sigma = w \text{ vals } / (1 - \beta) .>= c .+ \beta * P * v
    return o
end
"Solve the infinite-horizon Markov job search model by VFI."
function vfi(model)
    v init = zero(model.w vals)
    v_star = successive_approx(v -> T(v, model), v_init)
    \sigma star = get greedy(v star, model)
    return v star, σ star
end
```

The a continuation value function is given by

$$h^*(w) := c + \beta \sum_{w' \in W} v^*(w') P(w, w') \qquad (w \in W).$$

ullet depends on w due to correlated wages

Ex. Explain why h^* is increasing in the last figure

Answer Since $\rho > 0$, P is monotone increasing

Hence $v^* \in i\mathcal{V}$

Since $h^* = c + \beta P v^*$, it follows that $h^* \in i\mathcal{V}$

Positive autocorrelation in wages means that

- high current wages predict high future wages
- value of waiting rises with current wages

Ex. Explain why h^* is increasing in the last figure

Answer Since $\rho > 0$, P is monotone increasing

Hence $v^* \in i\mathcal{V}$

Since $h^* = c + \beta P v^*$, it follows that $h^* \in i\mathcal{V}$

Positive autocorrelation in wages means that

- high current wages predict high future wages
- value of waiting rises with current wages

Job Search with Separation

Let's now allow for separation

• matches between workers and firms terminate with probability α every period

Other aspects of the problem are unchanged

Conditional on current offer w, let

- $\quad \bullet \ v_u^*(w) = \max \text{ lifetime value for unemployed worker}$
- $ullet v_e^*(w) = \max$ lifetime value for employed worker

We have

$$v_u^*(w) = \max \left\{ v_e^*(w), c + \beta \sum_{w' \in W} v_u^*(w') P(w, w') \right\}$$

and

$$v_e^*(w) = w + \beta \left[\alpha \sum_{w'} v_u^*(w') P(w, w') + (1 - \alpha) v_e^*(w) \right]$$

Proposition When $0 < \alpha, \beta < 1$, these equations both have unique solutions in $\mathcal V$

Step one: solve for v_e^* as

$$v_e^*(w) = \frac{1}{1 - \beta(1 - \alpha)} (w + \alpha \beta(Pv_u^*)(w))$$

Substitute to get

$$v_u^*(w) = \max \left\{ \frac{1}{1 - \beta(1 - \alpha)} \left(w + \alpha \beta(Pv_u^*)(w) \right), c + \beta \left(Pv_u^* \right)(w) \right\}$$

Ex.

- Prove that \exists a unique $v_u^* \in \mathcal{V}$ that solves this equation
- Propose a convergent method for solving for both v_u^* and v_e^*

The stopping and continuation values are given by

$$s^*(w) := \frac{1}{1 - \beta(1 - \alpha)} \left(w + \alpha \beta(Pv_u^*)(w) \right)$$

and

$$h_e^*(w) := c + \beta \left(P v_u^* \right)(w)$$

Note $v_u^* = s^* \vee h^*$

Unemployed agent's optimal policy:

$$\sigma^*(w) := \mathbb{1}\{s^*(w) \geqslant h^*(w)\}$$

Reservation wage $w^* := \min\{w \in W : s^*(w) \geqslant h^*(w)\}$


```
include("markov_js_with_sep.jl") # Code to solve model
using Distributions

# Create and solve model
model = create_js_with_sep_model()
(; n, w_vals, P, \( \beta\), c, \( \alpha\)) = model
v_star, \( \sigma\)_star = vfi(model)

# Create Markov distributions to draw from
P_dists = [DiscreteRV(P[i, :]) for i in 1:n]

function update_wages_idx(w_idx)
    return rand(P_dists[w_idx])
end
```

```
function sim_wages(ts_length=100)
  w_idx = rand(DiscreteUniform(1, n))
  W = zeros(ts_length)
  for t in 1:ts_length
       W[t] = w_vals[w_idx]
       w_idx = update_wages_idx(w_idx)
  end
  return W
end
```

```
function sim_outcomes(; ts_length=100)
    status = 0
    E. W = []. []
    w idx = rand(DiscreteUniform(1, n))
    ts length = 100
    for t in 1:ts_length
        if status == 0
            status = \sigma star[w idx] ? 1 : 0
        else
            status = rand() < \alpha ? 0 : 1
        end
        push!(W, w_vals[w_idx])
        push!(E, status)
        w_idx = update_wages_idx(w_idx)
    end
    return W. E
end
```


Ex. Here's an open-ended optional exercise

Let $E_t = \text{employment status}$

- Show $X_t = (W_t, E_t)$ is a Markov chain
- Write down the state space and prove irreducibility

Let ψ^* be the unique stationary distribution

Ergodicity: fraction of time a worker spends unemployed should be equal to prob of unemployment under ψ^*

Check it

Prob of unemployment under ψ^* equals unemployment rate

Adjust model parameters to match current umemployment rate