1	a re	sisto	voltmeter with a three-digit display is used to measure the potential difference across or. The manufacturers of the meter state that its accuracy is $\pm 1\%$ and ± 1 digit. ding on the voltmeter is 2.05 V.
	(a)		this reading, calculate, to the nearest digit,
		(i)	a change of 1% in the voltmeter reading,
		(ii)	change =V [1] the maximum possible value of the potential difference across the resistor.
			maximum value =V [1]
	(b)		e reading on the voltmeter has high precision. State and explain why the reading may be accurate.
			[2]

(a)	Sta	ate the two conditions that must be satisfied for a body to be in equilibrium.	
			[2
(b)	Thr	ree co-planar forces act on a body that is in equilibrium.	
	(i)	Describe how to draw a vector triangle to represent these forces.	
	(ii)	State how the triangle confirms that the forces are in equilibrium.	
			[1

(c) A weight of 7.0 N hangs vertically by two strings AB and AC, as shown in Fig. 2.1.

Fig. 2.1

the weight to be in equilibrium, the tension in string AB is T_1 and in string AC it is T_2 .

On Fig. 2.1, draw a vector triangle to determine the magnitudes of T_1 and T_2 .

$T_1 = \dots$	N
<i>T</i> ₂ =	N
_	[3]

(d)	By reference to Fig. 2.1, suggest why the weight could not be supported with the strings AB and AC both horizontal.

3 A cyclist is moving up a slope that has a constant gradient. The cyclist takes 8.0s to climb the slope.

The variation with time t of the speed v of the cyclist is shown in Fig. 3.1.

Fig. 3.1

(a) Fig. 3.1 to determine the total distance moved up the slope.

distance = m [3]

(b)			ycle and cyclist have a combined mass of 92kg. tical height through which the cyclist moves is 1.3m.
	(i)		the movement of the bicycle and cyclist between $t = 0$ and $t = 8.0$ s,
		1.	use Fig. 3.1 to calculate the change in kinetic energy,
			change = J [2]
		2.	calculate the change in gravitational potential energy.
			change = J [2]
	(ii)		e cyclist pedals continuously so that the useful power delivered to the bicycle 75W.
			culate the useful work done by the cyclist climbing up the slope.
			work done = J [2]

(c)	Sor	ne energy is used in overcoming frictional forces.
	(i)	your answers in (b) to show that the total energy converted in overcoming frictional forces is approximately 670 J.
		[1]
	(ii)	Determine the average magnitude of the frictional forces.
/ - 1\	0	average force =
(a)		gest why the magnitude of the total resistive force would not be constant.
		[2]

4	(a)	Stat	te the evidence for the assumption that
		(i)	there are significant forces of attraction between molecules in the solid state,
			[1]
		(ii)	the forces of attraction between molecules in a gas are negligible.
			[1]
	(b)	Ехр	lain, on the basis of the kinetic model of gases, the pressure exerted by a gas.
			[4]
	(c)	tem Sug	uid nitrogen has a density of 810 kg m ⁻³ . The density of nitrogen gas at room perature and pressure is approximately 1.2 kg m ⁻³ . Igest how these densities relate to the spacing of nitrogen molecules in the liquid in the gaseous states.
			[2]
			(<u> </u>

- 5 (a) A source of sound has frequency f. Sound of wavelength λ is produced by the source. (i) State
 - 1. what is meant by the *frequency* of the source,
 [1]
 - **2.** the distance moved, in terms of λ , by a wavefront during n oscillations of the source.
 - distance =[1]
 - (ii) your answers in (i) to deduce an expression for the speed v of the wave in terms of f and λ .

[2]

(b) The waveform of a sound wave produced on the screen of a cathode-ray oscilloscope (c.r.o.) is shown in Fig. 5.1.

Fig. 5.1

The	e time-base setting of the c.r.o. is 2.0 ms cm ⁻¹ .
(i)	Determine the frequency of the sound wave.
	frequency =Hz [2]
(ii)	
(,	amplitude of the two waves is the same but the phase difference between them is 90° .
	On Fig. 5.1, draw the waveform of this second wave. [1]

6	(a)	(i)	State what is meant by an <i>electric current</i> .
			[1]
	((ii)	Define electric potential difference.

(b) The variation with potential difference V of the current I in a component Y and in a resistor R are shown in Fig. 6.1.

Fig. 6.1

combination. data from Fig. 6.1 to determine (i) the current in the battery for an e.m.f. <i>E</i> of 6.0V,		e component Y and the resistor R in (b) are connected in parallel as shown in 6.2.
A battery of e.m.f. <i>E</i> and negligible internal resistance is connected across the parallel combination. data from Fig. 6.1 to determine (i) the current in the battery for an e.m.f. <i>E</i> of 6.0V, current =		E Y R 20Ω
combination. data from Fig. 6.1 to determine (i) the current in the battery for an e.m.f. <i>E</i> of 6.0V, current =		Fig. 6.2
(i) the current in the battery for an e.m.f. <i>E</i> of 6.0V, current =		
current =A [1]		data from Fig. 6.1 to determine
	(i)	the current in the battery for an e.m.f. <i>E</i> of 6.0V,
		current =A [1]
	(ii)	the total resistance of the circuit for an e.m.f. of 8.0 V.
		resistance = Ω [2]

(d) The circuit of Fig. 6.2 is now re-arranged as shown in Fig. 6.3.

Fig. 6.3

The current in the circuit is 0.20 A.

(i) Fig. 6.1 to determine the e.m.f. *E* of the battery.

(ii) Calculate the total power dissipated in component Y and resistor R.

power =W [2]

7	atm	iosph	perty of α -particles is that they produce a high density of ionisation of air at eric pressure. In this ionisation process, a neutral atom becomes an ion pair. The s a positively-charged particle and an electron.
	(a)	Stat	re
		(i)	what is meant by an α -particle,
			[1]
		(ii)	an approximate value for the range of $\alpha\mbox{-particles}$ in air at atmospheric pressure.
			range =cm [1]
	(b)		energy required to produce an ion pair in air at atmospheric pressure is 31 eV. α -particle has an initial kinetic energy of 8.5×10^{-13} J.
		(i)	Show that 8.5×10^{-13} J is equivalent to 5.3 MeV.
			[1]
		(ii)	Calculate, to two significant figures, the number of ion pairs produced as the $\alpha\text{-particle}$ is stopped in air at atmospheric pressure.
			number =[2]

(iii)	Using your answer in (a)(ii) , estimate the average number of ion pairs produced per unit length of the track of the α -particle as it is brought to rest in air.
	number per unit length =[2]