AP Calculus AB

Chapter 4 More Derivatives Review

1. Given $y = \frac{1}{2}(2x+5)^3$. Determine $\frac{dy}{dx}$.

(A)
$$\frac{3}{2}(2x+5)^3$$

(B)
$$3(2x+5)^2$$

(C)
$$3(2x + 5)$$

(D)
$$\frac{3}{2}(2x+5)$$

(E)
$$6(2x + 5)$$

2. If $v(t) = \ln(t^2 + t + 1)$, then v'(1) =

(A)
$$\frac{1}{3}$$

(A)
$$\frac{1}{3}$$
 (B) $-\frac{2}{3}$ (C) 1 (D) $\frac{4}{3}$

(D)
$$\frac{4}{3}$$

3. Selected function and derivative values for the differentiable functions f(x) and g(x) are given in the table below.

x	f(x)	g(x)	f'(x)	g'(x)
0	1/2	-2	$^{3}/_{2}$	-1
1	$^{1}/_{3}$	1	$^{5}/_{3}$	$^{2}/_{3}$
2	1	$-\frac{1}{2}$	$^{1}/_{4}$	-4
3	-1	2	0	-3
4	3	$-\frac{1}{3}$	$-\frac{4}{5}$	$-\frac{1}{3}$

If
$$p(x) = g(x) \cdot f(x) - g(2x - 3)$$
, then $p'(3) =$

4. Find the **second** derivative of f(x) if $f(x) = (2x^2 + 5)^3$

Use the given information about differentiable functions f(x) and g(x) at x = 1 and x = 2 for problem 5.

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	12	-8
2	$\sqrt{7}$	π	- 9	10

5. Find $\frac{d}{dx} \{ f(g(x)) \}$ at x = 1

For problems 6-11, find the derivative. Do not leave negative or rational exponents in your answer.

$$6. \quad s(x) = \sqrt{\frac{4+x}{5-x}}$$

 $7. \quad y = \cos\left(\frac{1}{2}x\right) - \tan^2(2x)$

8.
$$y = e^{5x-3} \cdot x^4$$

9.
$$y = \sin^{-1}(2 - x)$$

10.
$$y = 13^{-2x}$$

11.
$$y = \log_4(3x + 2)$$

12. Let g be the function defined by $g(x) = x^5 + x$. If $f(x) = g^{-1}(x)$ and g(1) = 2, what is the value of f'(2)?

13. If
$$tan(x^2y) = 2x$$
, then $\frac{dy}{dx} =$

14. If
$$x^2 + xy = 10$$
, then when $x = 2$, $\frac{dy}{dx} =$

15. What is the slope of the line tangent to the curve defined by $x^4 - 3x^2y^2 + 4y^2 = 5$ at the point (1,2)?

16. Given the circle: $x^2 + y^2 = 100$

a) Find where the graph has horizontal tangents.

b) Find $\frac{d^2y}{dx^2}$ evaluated at (-6,8).