Duration-Aware Pause Insertion Using Pre-Trained Language Model for Multi-Speaker Text-to-Speech

Dong Yang¹, Tomoki Koriyama², Yuki Saito¹, Takaaki Saeki¹, Detai Xin¹, Hiroshi Saruwatari¹ (¹The University of Tokyo, Japan, ²CyberAgent, Inc., Japan.)

* We propose two multi-speaker pause insertion models: the respiratory pause insertion (RPI) model and the categorized pause insertion (CPI) model. * The RPI model is a phrasing model that performs speaker-conditioned position prediction of respiratory pauses.

Position prediction of RPs

* The CPI model is further designed for more natural multi-speaker TTS and predicts the duration-aware pause marks.

Proposed methods

(BCE)

Probability

Background * Pause insertion (a.k.a. phrase break prediction or phrasing) Inserting proper silent pauses in TTS

- Crucial for enhancing the rhythm of synthetic speech
- Phrasing: position prediction of RPs
- Pause insertion → Phrased text Phonemes → TTS model
- Types of silent pauses
 - Respiratory pauses (RPs)
 - Inserted at word transitions without punctuation mark
 - Punctuation-indicated pauses (PIPs)
 - Inserted at punctuation marks

Lucy said: "(PIP) An Edgerunner will take me (RP) to the moon." (PIP)

- Conventional methods [1, 2, 3]
- Ignoring speaker's different styles of inserting silent pauses in phrasing
- ⇒ Performance declines when trained on a multi-speaker speech corpus
- Treating all silent pauses as one mark during speech synthesis
- ⇒ Duration of silent pauses in synthetic speech are not well differentiated
- Proposed methods
 - Injecting speaker embeddings
 - ⇒ Capturing various speaker characteristics in phrasing
 - ⇒ The phrasing model's predictive accuracy is improved significantly
 - Categorizing silent pauses by duration
 - Representing them with several marks
 - Inputting the categorized pause marks to the TTS model
 - ⇒ The synthetic speech has better rhythm
 - ⇒ More consistent with the speaker's feature

Dataset

- Corpus: LibriTTS
- Speech alignment & pause recognition
- Aligner module of Montreal Forced Aligner
- Thresholds of categorization
 - Gaussian mixture model-based method [4]

Raw text	Lucy said: "An Edgerunner will take me to the moon."												
Pre-processing	lucy	sai	d :	an	edge	##runner	will	take	me	to	the	moor	7.
Label (Position-RPs)	0	0	0	0	0	1	0	0	1	0	0	0	0
Label (Category-RPs)	0	0	0	0	0	2	0	0	1	0	0	0	0
Label (Position-PIPs)	0	0	1	0	0	0	0	0	0	0	0	0	1
Label (Category-PIPs)	0	0	2	0	0	0	0	0	0	0	0	0	3
* An example of text are proceeding and label cotting													

- An example of text pre-processing and label setting
 - Category 0: no pause (placeholder)
 - Category 1: brief pause (< 300 ms)</p>
 - Category 2: medium pause (300 700 ms)
 - Category 3: long pause (> 700 ms)

- Position and category prediction of both pauses
- Multi-task learning framework
- Two decoders: different distributions of the two pauses
- Category 0: placeholder
- The CPI model first predicts Probability that represents the occurrence of pauses and then outputs Category with the highest probability among categories 1–3.

Objective evaluations (Predictive accuracy) BERT-BiLSTM (FT+spk) BERT-BiLSTM (spk) BERT (FT) BERT-BILSTM (FT) **BERT-BILSTM** Baseline (spk) Baseline Recall

Results of **RPI** model on RP position prediction

	•	-	
	Precision	Recall	F _{0.5}
BERT-BiLSTM (FT+spk)	0.569	0.272	0.467
BERT-BiLSTM (spk)	0.490	0.253	0.413
BERT (FT)	0.487	0.233	0.400
BERT-BiLSTM (FT)	0.467	0.246	0.396
BERT-BiLSTM	0.475	0.213	0.381
Baseline (spk)	0.446	0.209	0.364
Baseline [1]	0.393	0.187	0.322

- Different speakers have different styles for inserting RPs
- BERT fine-tuning + speaker embeddings ► A large boost in predictive accuracy
- Using speaker embeddings in phrasing
- Validity & generalizability
- Results of CPI model on position prediction

	Precision	Recall	F_{eta}
RPs	0.575	0.261	$F_{0.5} = 0.463$
PIPs	0.848	0.996	$F_2 = 0.962$

Results of **CPI** model on category prediction

_		Prediction	on of R	Ps	Prediction of PIPs				
	Label	1	2	3	1	2	3		
	1	2,565	885	0	6,155	1,766	2,058		
	2	300	513	0	2,258	3,186	2,509		
	3	14	20	0	335	352	2,735		

- The CPI model retains the ability to predict the position of RPs
- The predictive accuracy of category 2 is lower than that of the others
- ▶ There is still some works to be done in threshold choice of categorization

Subjective evaluations (Rhythm)

TTS model: FastSpeech 2

Vocoder: HiFi-GAN

The number of speakers: 16

Text-speaker pairs: 277

Test: AB preference test

The number of listeners: 30 per test Platform: Amazon Mechanical Turk

Inserting normal pause marks at punctuation:

FastSpeech2

Inserting predictive normal pause marks:

Baseline, RPI, CPI (Position)

Inserting predictive categorized pause marks:

Method A	Score	Method B		
RPI	0.560 vs. 0.440	FastSpeech 2		
RPI	0.537 vs. 0.463	Baseline		
CPI	0.557 vs. 0.443	Baseline		
RPI	0.448 vs. 0.512	CPI (Position)		
RPI	0.460 vs. 0.540	CPI		
RPI	0.561 vs. 0.490	RPI*		
CPI	0.550 vs. 0.450	CPI*		

- Subjective performance of the models
 - (Position): only predicting pause position
 - *: inputting with unmatched speaker embedding
 - Underlined scores: p-values below 0.05
- ❖ RPI ≈ Baseline, RPI ≈ RPI* RPI > FastSpeech2
- ► Listeners are insensitive to the position of RPs
- Listeners only become aware when listening to a long sentence without a pause
- ❖ CPI performed the best, RPI ≈ CPI(Position)
 - Inputting categorized pause phonemes to phoneme-based TTS models makes the rhythm of synthetic speech better
- **♦** CPI > CPI*
 - ► Listeners are sensitive to the difference arising from inserting different categories of pauses

References

[1] V. Klimkov et al., Proc. INTERSPEECH, 2017. [2] K. Futamata et al., Proc. INTERSPEECH, 2021.

- [3] A. Abbas et al., Proc. INTERSPEECH, 2022.
- [4] E. Campione et al., Proc. Speech Prosody, 2002.