

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

WHAT IS CLAIMED IS:

1. A dye-forming coupler represented by formula (I):

formula (I)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an -(R₁)_r-(R₄)_m group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent:

wherein,

when R_A represents an -(R₁)_r-(R₄)_m group, R₁ represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R₄ represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R₄s may be the same or different independently, or R₄s may be combined together to form a multiple bond, or alternatively R₄s may bond with each other to form a ring, when m is 2 or more; and the -(R₁)_r-(R₄)_m group does not represent a straight-chain alkyl group.

2. The dye-forming coupler as claimed in claim 1, wherein the dye-forming coupler represented by formula (I) is represented by formula (IA):

formula (IA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁₁ represents an aryl group or a heterocyclic group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

3. The dye-forming coupler as claimed in claim 2, wherein, in the dye-forming coupler represented by formula (IA), Q is a residue that forms, together with the -N-C=N- moiety, a 4-pyrimidone ring.

4. The dye-forming coupler as claimed in claim 1, wherein the dye-forming coupler represented by formula (I) is represented by formula (IB):

formula (IB)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁ represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R₄ represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R₄s may be the same or different independently, or R₄s may be combined together to form a multiple bond, or alternatively R₄s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent; and the -(R₁)_r-(R₄)_m group does not represent a straight-chain alkyl group.

5. The dye-forming coupler as claimed in claim 4, wherein, in the dye-forming coupler represented by formula (IB), Q is a residue that forms, together with the -N-C=N- moiety, a 4-pyrimidone ring; and R₄ is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or arylsulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxy carbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, a cyano group, an alkoxy group and an aryloxy group.

6. The dye-forming coupler as claimed in claim 4, wherein, in the dye-forming coupler represented by formula (IB), at least one R₄ bonds with a carbon atom at at least one α - to δ -positions in the (R₁)_r.

7. An azomethine dye compound represented by formula (II):

formula (II)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an -(R₁)_r-(R₄)_m group; X represents an aryl group; wherein,

when R_A represents an -(R₁)_r-(R₄)_m group, R₁ represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R₄ represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R₄s may be the same or different independently, or R₄s may be combine together to form a multiple bond, or alternatively R₄s may bond with each other to form a ring, when m is 2 or more; and the -(R₁)_r-(R₄)_m group does not represent a straight-chain alkyl group; R₅ and R₆ each represent a hydrogen atom or a substituent, or R₅ and R₆ may bond with each other to form a ring; R₇ represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R₇s may be the same or different independently, or R₇s may bond with each other to form a

condensed ring, n is 2 or more; or R₇ may bond with R₅ or R₆ to form a condensed ring, n is 1 or more.

8. The azomethine dye compound as claimed in claim 7, wherein the azomethine dye compound represented by formula (II) is represented by formula (IIA):

formula (IIA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁₁ represents an aryl group or a heterocyclic group; X represents an aryl group; R₅ and R₆ each represent a hydrogen atom or a substituent, or R₅ and R₆ may bond with each other to form a ring; R₇ represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R₇s may be the same or different independently, or R₇s may bond with each other to form a condensed ring, when n is 2 or more; or R₇ may bond with R₅ or R₆ to form a condensed ring, when n is 1 or more.

9. The azomethine dye compound as claimed in claim 8, wherein, in the azomethine dye compound represented by formula (IIA), Q is a residue that forms, together with the -N-C=N-moiety, a 4-pyrimidone ring.

10. The azomethine dye compound as claimed in claim 7, wherein the azomethine dye compound represented by formula (II) is represented by formula (IIB) :

formula (IIB)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁ represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R₄ represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R₄s may be the same or different independently, or R₄s may be combined together to form a multiple bond, or alternatively R₄s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; and the -(R₁)_r-(R₄)_m group does not represent a straight-chain alkyl group; R₅ and R₆ each represent a hydrogen atom or a substituent, or R₅ and R₆ may bond with each other to form a ring; R₇ represents a hydrogen atom or a substituent; n

represents 0 (zero) or an integer of 1 to 4, with the proviso that R₇s may be the same or different independently, or R₇s may bond with each other to form a condensed ring, when n is 2 or more; or R₇ may bond with R₅ or R₆ to form a condensed ring, when n is 1 or more.

11. The azomethine dye compound as claimed in claim 10, wherein, in the azomethine dye compound represented by formula (IIB), Q is a residue that forms, together with the -N-C=N-moiety, a 4-pyrimidone ring; and R₄ is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or aryl-sulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxy carbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, a cyano group, an alkoxy group and an aryloxy group.

12. The azomethine dye compound as claimed in claim 10, wherein, in the azomethine dye compound represented by formula (IIB), at least one R₄ bonds with a carbon atom at at least one α - to δ -positions in the (R₁)_r.

13. The dye-forming coupler as claimed in claim 1, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.

14. The azomethine dye compound as claimed in claim 7, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.

15. A compound represented by formula (I):

formula (I)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an -(R₁)_r-(R₄)_m group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent:

wherein,

when R_A represents an -(R₁)_r-(R₄)_m group, R₁ represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R₄ represents a substituent except for a hydrogen atom; m

represents an integer of 1 to 30, and R₄s may be the same or different independently, or R₄s may be combined together to form a multiple bond, or alternatively R₄s may bond with each other to form a ring, when m is 2 or more; and the -(R₁)_r-(R₄)_m group does not represent a straight-chain alkyl group.

16. The compound as claimed in claim 15, wherein the compound represented by formula (I) is represented by formula (IA) :

formula (IA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁₁ represents an aryl group or a heterocyclic group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

17. The compound as claimed in claim 16, wherein, in the compound represented by formula (IA), Q is a residue that forms, together with the -N-C=N moiety, a 4-pyrimidone ring.

18. The compound as claimed in claim 15, wherein the compound represented by formula (I) is represented by formula (IB):

formula (IB)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁ represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R₁s may be the same or different independently, when r is 2 or more; R₄ represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R₄s may be the same or different independently, or R₄s may be combined together to form a multiple bond, or alternatively R₄s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent; and the -(R₁)_r-(R₄)_m group does not represent a straight-chain alkyl group.

19. The compound as claimed in claim 18, wherein, in the compound represented by formula (IB), Q is a residue that forms, together with the -N-C=N moiety, a 4-pyrimidone ring; and R₄ is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or arylsulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxy carbonyl group, an aryloxycarbonyl group, an alkylthio group, an

arylthio group, a cyano group, an alkoxy group and an aryloxy group.

20. The compound as claimed in claim 18, wherein, in the compound represented by formula (IB), at least one R₄ bonds with a carbon atom at at least one α - to δ -positions in the (R₁)_r.

21. The compound as claimed in claim 15, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.

CLAIM CHART

	<u>Independent</u>	<u>Dependent On</u>
1.	Independent	
2.		Claim 1
3.		Claim 2
4.		Claim 1
5.		Claim 4
6.		Claim 4
7.	Independent	
8.		Claim 7
9.		Claim 8
10.		Claim 7
11.		Claim 10
12.		Claim 10
13.		Claim 1
14.		Claim 7
15.	Independent	
16.		Claim 15
17.		Claim 16
18.		Claim 15
19.		Claim 18
20.		Claim 18
21.		Claim 15

Total Claims 21 Total Independent 3 Total Dependent 18

A fee of \$18.00 paid for one additional claim over 20.