Упражнение 1. Вычислить

$$\begin{pmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 2 & -2 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 5 & 2 \\ 0 & 3 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

Упражнение 2. Решить матричное уравнение $\begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Упражнение 3. Решить систему матричных уравнений

$$\begin{cases} X + Y = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \\ 2X + 3Y = E. \end{cases}$$

Упражнение 4. Решить матричное уравнение $\begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Упражнение 5. Пусть $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$. Найти A^{-1} .

Упражнение 6. Доказать, что у матрицы $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ нет обратной по умножению.

Упражнение 7. Найти все подстановки B такие, что AB = BA, где

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$