Spojitosť a limita funkcie - 2. časť

Zuzana Minarechová

Katedra matematiky a deskriptívnej geometrie Slovenská technická univerzita, Stavebná fakulta

26 September 2024

Obsah prednášky

- Limita funkcie (riešené príklady)
- **Asymptoty funkcie** (asymptoty so smernicou, asymptoty bez smernice, riešené príklady, neriešené príklady)
- Spojitosť funkcie (neriešené príklady)

Obsah prednášky

- Limita funkcie (riešené príklady)
- Asymptoty funkcie (asymptoty so smernicou, asymptoty bez smernice, riešené príklady, neriešené príklady)
- Spojitosť funkcie (neriešené príklady)

Vypočítajte
$$\lim_{x\to\infty} \frac{x^2-3x+5}{5x^2+x}$$
.

Príklad 1

Vypočítajte
$$\lim_{x\to\infty} \frac{x^2-3x+5}{5x^2+x}$$
.

Riešenie: Z čitateľa aj menovateľa vyberieme výraz x^n , resp. x^m pred zátvorku, kde n je najväčší exponent z čitateľa a m je najväčší exponent z menovateľa:

$$\lim_{x \to \infty} \frac{x^2 - 3x + 5}{5x^2 + x} = \lim_{x \to \infty} \frac{x^2 \left(1 - 3\frac{x}{x^2} + \frac{5}{x^2}\right)}{x^2 \left(5 + \frac{x}{x^2}\right)} = \frac{1 - 0 + 0}{5 + 0} = \frac{1}{5}$$

.

Obr.: Riešené príklady: $\lim_{x \to \infty} \frac{x^2 - 3x + 5}{5x^2 + x} = \frac{1}{5}$.

Vypočítajte
$$\lim_{x\to\infty} \left(1+\frac{5}{x}\right)^x$$
.

Príklad 2

Vypočítajte
$$\lim_{x\to\infty} \left(1+\frac{5}{x}\right)^x$$
.

Riešenie: Označíme $t=\frac{x}{5}$, z toho x=5t a keď že $x\to\infty$ potom aj $t\to\infty$. Dostaneme

$$\lim_{x \to \infty} \left(1 + \frac{5}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{5}} \right)^x = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{5t}$$

čo môžeme zapísať ako

$$\lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^{t \cdot 5} = \left(\lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^t \right)^5 = e^5.$$

Obr.: Riešené príklady: $\lim_{x\to\infty} \left(1+\frac{5}{x}\right)^x = e^5$.

Vypočítajte
$$\lim_{x \to -\infty} \left(1 + \frac{5}{x}\right)^{\frac{x}{4}}$$
.

Príklad 3

Vypočítajte
$$\lim_{x \to -\infty} \left(1 + \frac{5}{x}\right)^{\frac{x}{4}}$$
.

Riešenie: Nech $t=\frac{5}{x}$, z toho $x=\frac{5}{t}$ a keďže $x\to -\infty$, potom $t\to 0^-$.

Po dosadení dostaneme

$$\lim_{x \to -\infty} \left(1 + \frac{5}{x}\right)^{\frac{x}{4}} = \lim_{t \to 0^{-}} (1 + t)^{\frac{5}{4t}} = \left(\lim_{t \to 0^{-}} (1 + t)^{\frac{1}{t}}\right)^{\frac{3}{4}} = e^{\frac{5}{4}}.$$

Obr.: Riešené príklady: $\lim_{x \to -\infty} \left(1 + \frac{5}{x}\right)^{\frac{x}{4}} = e^{\frac{5}{4}}.$

Vypočítajte
$$\lim_{x\to\infty} \left(\frac{3x-5}{3x+4}\right)^{\frac{x}{2}}$$
.

Príklad 4

Vypočítajte
$$\lim_{x \to \infty} \left(\frac{3x-5}{3x+4} \right)^{\frac{x}{2}}$$
.

Riešenie:

$$\lim_{x \to \infty} \left(\frac{3x - 5}{3x + 4} \right)^{\frac{x}{2}} = \lim_{x \to \infty} \left(\frac{3x + 4}{3x + 4} - \frac{9}{3x + 4} \right)^{\frac{x}{2}}.$$

Označíme $t=-\frac{3x+4}{9}.$ Potom $x=-3t-\frac{4}{3}$ a z toho dostávame

$$\lim_{x \to \infty} \left(\frac{3x+4}{3x+4} - \frac{9}{3x+4} \right)^{\frac{x}{2}} = \lim_{t \to -\infty} \left(1 + \frac{1}{t} \right)^{t - \frac{3t - \frac{2}{3}}{2t}}.$$

Keďže
$$\lim_{t\to -\infty} \frac{-3t-\frac{4}{3}}{2t} = -\frac{3}{2}$$
 po dosadení dostávame

$$\lim_{t \to -\infty} \left(1 + \frac{1}{t} \right)^{t - \frac{3t - \frac{4}{3}}{2t}} = e^{-\frac{3}{2}}.$$

Obr.: Riešené príklady: $\lim_{x \to \infty} \left(\frac{3x-5}{3x+4} \right)^{\frac{x}{2}} = e^{-\frac{3}{2}}.$

Vypočítajte
$$\lim_{x\to 0} \left(\frac{\sqrt{x+9}-3}{\sin(3x)}\right)$$
.

Príklad 5

Vypočítajte
$$\lim_{x\to 0} \left(\frac{\sqrt{x+9}-3}{\sin(3x)} \right)$$
.

Riešenie:

$$\lim_{x \to 0} \left(\frac{\sqrt{x+9} - 3}{\sin(3x)} \right) = \lim_{x \to 0} \left(\frac{1}{\sin(3x)} \cdot \frac{\sqrt{x+9} - 3}{1} \right) =$$

$$= \lim_{x \to 0} \left(\frac{1}{\frac{\sin(3x)}{3x} 3x} \cdot \frac{\sqrt{x+9} - 3}{1} \cdot \frac{\sqrt{x+9} + 3}{\sqrt{x+9} + 3} \right) =$$

$$= \lim_{x \to 0} \left(\frac{1}{\frac{\sin(3x)}{3x} 3x} \cdot \frac{x+9-9}{\sqrt{x+9} + 3} \right) = \lim_{x \to 0} \left(\frac{1}{\frac{\sin(3x)}{3x} 3} \cdot \frac{1}{\sqrt{x+9} + 3} \right) =$$

$$= \frac{1}{3} \cdot \frac{1}{6} = \frac{1}{18}$$

Vypočítajte
$$\lim_{x\to 2} \sqrt{\frac{x^3-8}{x-2}}$$
.

Príklad 6

Vypočítajte
$$\lim_{x\to 2} \sqrt{\frac{x^3-8}{x-2}}$$
.

Riešenie: Funkcia $f(z)=\sqrt{z}$ je spojitá na D(f). To znamená, že dostaneme

$$\lim_{x \to 2} \sqrt{\frac{x^3 - 8}{x - 2}} = \sqrt{\lim_{x \to 2} \frac{x^3 - 8}{x - 2}}.$$

Po vykrátení dostaneme funkciu, ktorá je definovaná a spojitá v 2, t.j.

$$\sqrt{\lim_{x \to 2} \frac{x^3 - 8}{x - 2}} = \sqrt{\lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2}} = \sqrt{12}.$$

Vypočítajte
$$\lim_{x\to\infty} \frac{\sqrt{x^2-8}}{x-1}$$
.

Príklad 7

Vypočítajte
$$\lim_{x\to\infty} \frac{\sqrt{x^2-8}}{x-1}$$
.

Riešenie: Všimnime si, že menovateľ je pre dostatočne veľké x (presnejšie pre x>1) kladný, teda môžeme ho prepísať do tvaru

$$x - 1 = \sqrt{(x - 1)^2}$$

a potom postupujeme ako v predchádzajúcom príklade:

$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 8}}{x - 1} = \sqrt{\lim_{x \to \infty} \frac{x^2 - 8}{(x - 1)^2}} = \sqrt{\lim_{x \to \infty} \frac{x^2 \left(1 - \frac{8}{x^2}\right)}{x^2 \left(1 - 2\frac{x}{x^2} + \frac{1}{x^2}\right)}} = 1.$$

Vypočítajte
$$\lim_{x \to -\infty} \frac{\sqrt{x^2-8}}{x-1}$$
.

Príklad 8

Vypočítajte
$$\lim_{x \to -\infty} \frac{\sqrt{x^2-8}}{x-1}$$
.

Riešenie: Menovateľ je záporný pre všetky x < 0. Preto ho musíme upraviť nasledujúco:

$$-(x-1) = \sqrt{(x-1)^2} \quad \Rightarrow \quad x-1 = -\sqrt{(x-1)^2}.$$

Teraz môžeme postupovať podobne ako predtým

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 8}}{x - 1} = -\sqrt{\lim_{x \to \infty} \frac{x^2 - 8}{(x - 1)^2}} = -\sqrt{\lim_{x \to \infty} \frac{x^2 \left(1 - \frac{8}{x^2}\right)}{x^2 \left(1 - 2\frac{x}{x^2} + \frac{1}{x^2}\right)}} = -\sqrt{\frac{1 - 0}{1 - 0 + 0}} = -1.$$

Obr.: Riešené príklady: $\lim_{x\to\infty} \frac{\sqrt{x^2-8}}{x-1} = 1$ a $\lim_{x\to-\infty} \frac{\sqrt{x^2-8}}{x-1} = -1$.

Príklad 9

Vypočítajte $\lim_{x \to \pi} \frac{\cos x}{|x-\pi|}$.

Príklad 9

Vypočítajte
$$\lim_{x\to\pi} \frac{\cos x}{|x-\pi|}$$
.

Riešenie: Upravíme si samostatne čitateľa aj menovateľa:

- $\bullet \lim_{x \to \pi} \cos x = -1$
- $\bullet \ \lim_{x \to \pi} |x \pi| = 0 \ \text{a} \ |x \pi| > 0 \ \text{pre} \ x \neq \pi$

Po dosadení dostávame

$$\lim_{x \to \pi} \frac{\cos x}{|x - \pi|} = \frac{-1}{0^+} = -\infty.$$

Obr.: Riešené príklady: $\lim_{x \to \pi} \frac{\cos x}{|x-\pi|} = -\infty$

$$\text{Vypočítajte} \lim_{x \to \frac{\pi}{2}^+} \frac{\sin x}{\cos x} \text{ a } \lim_{x \to \frac{\pi}{2}^-} \frac{\sin x}{\cos x}.$$

Príklad 10

Vypočítajte
$$\lim_{x \to \frac{\pi}{2}^+} \frac{\sin x}{\cos x}$$
 a $\lim_{x \to \frac{\pi}{2}^-} \frac{\sin x}{\cos x}$.

Riešenie: Platí $\lim_{x \to \frac{\pi}{2}} \sin x = 1$, $\lim_{x \to \frac{\pi}{2}} \cos x = 0$, a

pre $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ je $\cos x < 0$

$$\lim_{x \to \frac{\pi}{2}^+} \frac{\sin x}{\cos x} = \frac{1}{0^-} = -\infty.$$

pre $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ je $\cos x > 0$

$$\lim_{x \to \frac{\pi}{2}^-} \frac{\sin x}{\cos x} = \frac{1}{0^+} = \infty.$$

Obr.: Riešené príklady: $\lim_{x \to \frac{\pi}{2}^+} \frac{\sin x}{\cos x} = -\infty$, $\lim_{x \to \frac{\pi}{2}^-} \frac{\sin x}{\cos x} = \infty$

Obsah prednášky

- Limita funkcie (riešené príklady)
- Asymptoty funkcie (asymptoty so smernicou, asymptoty bez smernice, riešené príklady, neriešené príklady)
- Spojitosť funkcie (neriešené príklady)

Asymptoty

Asymptoty funkcie

 Asymptota je priamka, ktorá opisuje správanie sa krivky. S narastajúcimi hodnotami súradníc sa vzdialenosť asymptoty a krivky zmenšuje.

Asymptoty

Asymptoty funkcie

- Asymptota je priamka, ktorá opisuje správanie sa krivky. S narastajúcimi hodnotami súradníc sa vzdialenosť asymptoty a krivky zmenšuje.
- Asymptoty rozdeľujeme na:
 - Asymptoty bez smernice
 - Asymptoty so smernicou

Asymptoty - Asymptoty bez smernice

Asymptoty bez smernice:

Asymptoty - Asymptoty bez smernice

Asymptoty bez smernice:

• Funkcia f má v bode x_0 asymptotu bez smernice, ak aspoň jedna z jednostranných limít funkcie f v x_0 je nevlastná.

Asymptoty - Asymptoty bez smernice

Asymptoty bez smernice:

- Funkcia f má v bode x_0 asymptotu bez smernice, ak aspoň jedna z jednostranných limít funkcie f v x_0 je nevlastná.
- Asymptota bez smernice má v tomto prípade rovnicu

$$x = x_0$$
.

Asymptoty - Asymptoty so smernicou

Asymptoty so smernicou:

• Hovoríme, že priamka

$$p: y = kx + q$$

je **asymptotou so smernicou** funkcie f v ∞ (resp. v $-\infty$), ak platí $\lim_{x\to\infty}(f(x)-kx-q)=0$ (resp. $\lim_{x\to-\infty}(f(x)-kx-q)=0$), kde

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$

$$q = \lim_{x \to \infty} (f(x) - kx).$$

Asymptota so smernicou existuje, ak **obe limity existujú a sú konečné**.

Asymptoty

Obr.: Asymptota so smernicou a asymptoty bez smernice

Príklady - asymptoty

Príklad 11

Nájdite všetky asymptoty grafov funkcií:

2
$$f(x) = \ln(x)$$
,

3
$$f(x) = x \cdot 2^x$$
.

Príklady - asymptoty

Príklad 12

Nájdite všetky asymptoty grafov funkcií:

1
$$f(x) = \frac{2x^2 - 5x - 1}{2 - x}, \quad x = 2, y = -2x + 1$$

2
$$f(x) = \ln(x), \quad x = 0$$

3
$$f(x) = x \cdot 2^x$$
, $y = 0$

Príklady - asymptoty

Obr.: Grafy funkcií: a) $f(x) = \frac{2x^2 - 5x - 1}{2 - x}$ a b) $f(x) = x \cdot 2^x.$

Príklad 13

Nájdite asymptoty bez smernice funkcie $f(x) = \frac{x+3}{x-5}$.

Príklad 13

Nájdite asymptoty bez smernice funkcie $f(x) = \frac{x+3}{x-5}$.

Riešenie: $D(f) = \mathbf{R} \setminus \{5\}$. Jediný bod, v ktorom funkcia f môže mať asymptotu bez smernice, je $x_0 = 5$. Zistíme limitu sprava a zľava v tomto bode. Dostaneme

$$\lim_{x \to 5^{+}} \frac{x+3}{x-5} = \frac{8}{0^{+}} = \infty$$

$$\lim_{x \to 5^{-}} \frac{x+3}{x-5} = \frac{8}{0^{-}} = -\infty$$

Teda asymptota bez smernice má rovnicu x = 5.

Obr.: Graf funkcie $f(x) = \frac{x+3}{x-5}$.

Príklad 14

Nájdite asymptoty so smernicou funkcie $f(x) = \frac{x^2 - 3x}{x+1}$.

Príklad 14

Nájdite asymptoty so smernicou funkcie $f(x) = \frac{x^2 - 3x}{x+1}$.

Riešenie: $D(f) = \mathbf{R} \setminus \{-1\}$. Zistíme asymptotu so smernicou v $+\infty$. Pre jej smernicu dostaneme

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\frac{x^2 - 3x}{x+1}}{x} = \lim_{x \to \infty} \frac{x^2 - 3x}{x^2 + x} = \lim_{x \to \infty} \frac{x^2 \left(1 - 3\frac{1}{x}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = 1.$$

Pre úsek asymptoty $q = \lim_{x \to \infty} (f(x) - kx)$ platí

$$q = \lim_{x \to \infty} \left(\frac{x^2 - 3x}{x+1} - x \right) = \lim_{x \to \infty} \frac{x^2 - 3x - x^2 - x}{x+1} = \lim_{x \to \infty} \frac{-4x}{x+1} = \lim_{x \to \infty} \frac{-4}{1 + \frac{1}{x}} = -4.$$

Asymptota so smernicou v $+\infty$ má rovnicu p: y = x - 4.

Podobne môžeme vypočítať asymptotu so smernicou v $-\infty$.

$$k = \lim_{x \to -\infty} \frac{\frac{x^2 - 3x}{x+1}}{x} = \lim_{x \to -\infty} \frac{x^2 - 3x}{x^2 + x} = \lim_{x \to -\infty} \frac{x^2 \left(1 - 3\frac{1}{x}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = 1.$$

$$q = \lim_{x \to -\infty} \left(\frac{x^2 - 3x}{x+1} - x\right) = \lim_{x \to -\infty} \frac{x^2 - 3x - x^2 - x}{x+1} =$$

$$= \lim_{x \to -\infty} \frac{-4x}{x+1} = \lim_{x \to -\infty} \frac{-4}{1 + \frac{1}{x}} = -4.$$

Asymptota so smernicou v $-\infty$ má rovnicu p: y = x - 4.

Obr.: Graf funkcie $f(x) = \frac{x^2 - 3x}{x+1}$.

Príklad 15

Nájdite všetky asymptoty funkcie $f(x) = \frac{\sqrt{4x^2+4}}{x-2}$.

Príklad 15

Nájdite všetky asymptoty funkcie $f(x) = \frac{\sqrt{4x^2+4}}{x-2}$.

Riešenie: Pre definičný obor funkcie f platí $D(f) = \mathbf{R} \setminus \{2\}$.

Najprv zistíme asymptoty so smernicou. Pre smernicu asymptoty v $+\infty$ dostaneme

$$k_1 = \lim_{x \to \infty} \frac{\frac{\sqrt{4x^2 + 4}}{x^2}}{x} = \lim_{x \to \infty} \frac{\sqrt{4x^2 + 4}}{x^2 - 2x} = \sqrt{\lim_{x \to \infty} \frac{4x^2 + 4}{(x^2 - 2x)^2}} =$$

$$= \sqrt{\lim_{x \to \infty} \frac{4x^2 + 4}{x^4 - 4x^3 + 4x^2}} = \sqrt{\lim_{x \to \infty} \frac{x^2 \left(4 + \frac{4}{x^2}\right)}{x^4 \left(1 - \frac{4}{x} + \frac{4}{x^2}\right)}} = 0.$$

Pre úsek asymptoty v $+\infty$ dostaneme

$$q_{1} = \lim_{x \to \infty} \frac{\sqrt{4x^{2} + 4}}{x - 2} = \sqrt{\lim_{x \to \infty} \frac{4x^{2} + 4}{(x - 2)^{2}}}$$
$$= \sqrt{\lim_{x \to \infty} \frac{4x^{2} + 4}{x^{2} - 4x + 4}} = \sqrt{\lim_{x \to \infty} \frac{x^{2} \left(4 + \frac{4}{x^{2}}\right)}{x^{2} \left(1 - \frac{4}{x} + \frac{4}{x^{2}}\right)}} = \sqrt{4} = 2.$$

Asymptota so smernicou v ∞ má rovnicu $p_1: y_1 = 2$.

Pre smernicu asymptoty v $-\infty$ dostaneme

$$k_2 = \lim_{x \to -\infty} \frac{\frac{\sqrt{4x^2 + 4}}{x}}{x} = \lim_{x \to -\infty} \frac{\sqrt{4x^2 + 4}}{x^2 - 2x} = \sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{(x^2 - 2x)^2}} = \sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^4 - 4x^3 + 4x^2}} = \sqrt{\lim_{x \to -\infty} \frac{x^2 \left(4 + \frac{4}{x^2}\right)}{x^4 \left(1 - \frac{4}{x} + \frac{4}{x^2}\right)}} = 0.$$

Pre úsek asymptoty v $-\infty$ dostaneme

$$q_2 = \lim_{x \to -\infty} \frac{\sqrt{4x^2 + 4}}{x - 2} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{(x - 2)^2}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}} = -\sqrt{\lim_{x \to -\infty} \frac{4x^2 + 4}{x^2 - 4x + 4}}}$$

$$= -\sqrt{\lim_{x \to -\infty} \frac{x^2 \left(4 + \frac{4}{x^2}\right)}{x^2 \left(1 - \frac{4}{x} + \frac{4}{x^2}\right)}} = -\sqrt{4} = -2$$

Asymptota so smernicou v $-\infty$ má rovnicu $p_2: y_2 = -2$.

Určíme asymptoty bez smernice. Funkcia f je spojitá v každom bode D(f), teda 2 je jediný bod, v ktorom môže existovať asymptota bez smernice danej funkcie f. Vypočítame limitu sprava a zľava pre $x_0=2$:

$$\lim_{x \to 2^{+}} \frac{\sqrt{4x^{2} + 4}}{x - 2} = \sqrt{\lim_{x \to 2^{+}} \frac{4x^{2} + 4}{(x - 2)^{2}}} = \infty,$$

$$\lim_{x \to 2^{-}} \frac{\sqrt{4x^{2} + 4}}{x - 2} = -\sqrt{\lim_{x \to 2^{-}} \frac{4x^{2} + 4}{(x - 2)^{2}}} = -\infty.$$

Obr.: Graf funkcie $f(x) = \frac{\sqrt{4x^2+4}}{x-2}$.

Obsah prednášky

- Limita funkcie (riešené príklady)
- Asymptoty funkcie (asymptoty so smernicou, asymptoty bez smernice, riešené príklady, neriešené príklady)
- Spojitosť funkcie (neriešené príklady)

Spojitosť

• Funkcia f je spojitá v čísle (bode) a zo svojho definičného oboru, ak pre každé $\varepsilon>0$ existuje také $\delta>0$, že pre všetky $x\in(a-\delta,a+\delta)\cap D(f)$ platí $f(x)\in(f(a)-\varepsilon,f(a)+\varepsilon)$.

Obr.: Spojitosť funkcií - definícia

Spojitosť - príklady

Príklad 16

Je funkcia f(x) v bode a spojitá?

a)
$$a=2$$

$$f(x)=\frac{2x^2+6x-20}{x^3-3x^2+2x} \quad \text{pre} \quad x \neq 2, x \neq 0, x \neq 1$$

$$f(x)=7 \quad \text{pre} \quad x=2$$

b)
$$a=4$$

$$f(x)=\frac{2x-8}{\sqrt{x-1}-\sqrt{3}} \quad \text{pre} \quad x \neq 4$$

$$f(x)=2 \quad \text{pre} \quad x=4$$

c)
$$a=\pi$$

$$f(x)=\frac{(2x)^2-4\pi x}{\pi-x} \quad \text{pre} \quad x<\pi$$

$$f(x)=4x\sin\left(x-\frac{3\pi}{2}\right) \quad \text{pre} \quad x\geq\pi$$

Spojitosť - príklady

Príklad 17

Je funkcia f(x) v bode a spojitá?

- a) a=2 $f(x)=\frac{2x^2+6x-20}{x^3-3x^2+2x} \quad \text{pre} \quad x\neq 2, x\neq 0, x\neq 1$ $f(x)=7 \quad \text{pre} \quad x=2 \quad \text{Funkcia je spojitá v } a=2.$
- b) a=4 $f(x)=\frac{2x-8}{\sqrt{x-1}-\sqrt{3}} \quad \text{pre} \quad x \neq 4$ $f(x)=2 \quad \text{pre} \quad x=4 \quad \text{Funkcia nie je spojitá v } a=4.$
- c) $a=\pi$ $f(x)=\frac{(2x)^2-4\pi x}{\pi-x} \quad \text{pre} \quad x<\pi$ $f(x)=4x\sin\left(x-\frac{3\pi}{2}\right) \quad \text{pre} \quad x\geq\pi \quad \text{Funkcia je spojitá v } a=\pi.$

Riešené príklady - spojitosť

Spojitosť - príklady

Príklad 18

Nájdite parameter p tak, aby funkcia f(x) bola v bode a spojitá

a)
$$a=0$$

$$f(x)=\frac{\sin(5x)}{2x} \quad \text{pre} \quad x \neq 0$$

$$f(x)=p \quad \text{pre} \quad x=0$$

- b) a=0 $f(x)=e^{\frac{1}{x}} \quad \text{pre} \quad x \neq 0$ $f(x)=p \quad \text{pre} \quad x=0$
- c) a=1 $f(x)=p^2x \quad \text{pre} \quad x<1$ $f(x)=p\tan\frac{\pi x}{4} \quad \text{pre} \quad x\geq 1$
- d) a=4 $f(x)=\frac{x}{4p}-1 \quad \text{pre} \quad x<4$ $f(x)=\frac{2x^2-8x}{x-4} \quad \text{pre} \quad x\geq 4$

Spojitosť - príklady

Príklad 19

Nájdite parameter p tak, aby funkcia f(x) bola v bode a spojitá

- a) a=0 $f(x)=\frac{\sin(5x)}{2x} \quad \text{pre} \quad x \neq 0$ $f(x)=p \quad \text{pre} \quad x=0 \quad p=\frac{5}{2}$
- b) a=0 $f(x)=e^{\frac{1}{x}} \quad \text{pre} \quad x \neq 0$ $f(x)=p \quad \text{pre} \quad x=0 \quad \text{parameter } p \text{ neexistuje}$
- c) a=1 $f(x)=p^2x \quad \text{pre} \quad x<1$ $f(x)=p\tan\frac{\pi x}{4} \quad \text{pre} \quad x\geq 1 \qquad p=0, \ p=1$
- d) a=4 $f(x)=\frac{x}{4p}-1 \quad \text{pre} \quad x<4$ $f(x)=\frac{2x^2-8x}{x-4} \quad \text{pre} \quad x\geq 4 \quad \frac{p=\frac{1}{9}}{9}$

Riešené príklady - spojitosť

Ďakujem za pozornosť.