1		Attempt use of quotient rule to find derivative	e M1	allow for numerator 'wrong way round'; or attempt use of product rule				
		Obtain $\frac{2(3x+1)-3(2x+1)}{(3x+1)^2}$	Αl	or equiv				
		Obtain $-\frac{4}{4}$ for gradient	Αl	or equiv				
		Attempt eqn of straight line with numerical g	radient	M1 obtained from their $\frac{ds}{dk}$: tangent not normal				
		Obtain $5x + 4y - 11 = 0$		or similar equiv				
2	(i)	Attempt complete method for finding cot θ Obtain $\frac{\epsilon}{12}$	and the second	M1 rt-angled triangle, identities, calculator				
	(ii)	Attempt relevant identity for $\cos 2\theta$		M1 $\pm 2\cos^2\theta \pm 1$ or $\pm 1 \pm 2\sin^2\theta$ or $\pm (\cos^2\theta - \sin^2\theta)$				
		State correct identity with correct value(s) su	hetituted	A1				
		Obtain $-\frac{119}{169}$	osmatcu	A1 3 correct answer only earns 3/3				
3	(a)	Sketch reasonable attempt at $y = x^s$ Sketch straight line with negative gradient		*B1 accept non-zero gradient at O but curvature to be correct in first and third quadrants *B1 existing at least in (part of) first quadrant				
		Indicate in some way single point of intersect	dep *B1 *B1					
	(b)	Obtain correct first iterate Carry out process to find at least 3 iterates in all M1		B1 allow if not part of subsequent iteration				
		Obtain at least 1 correct iterate after the first	Al	allow for recovery after error; showing at least 3 d.p. in iterates				
		Conclude 2 175	A1 4	answer required to precisely 3 d p				
		$[0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow$						
		$1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow$						
		$2 \to 2.17791 \to 2.17473 \to 3 \to 2.15983 \to 2.17506 \to$						
		5 7 2.13703 77 2.17370 7 2.17371						
4	(i)	Obtain derivative of form $k(4t+9)^{-\frac{1}{2}}$	MI	any constant k				
		Obtain correct 2(4r + 9)	Al	or (unsimplified) equiv				
		Obtain derivative of form $k e^{\frac{1}{2}t+1}$	MI	any constant k different from 6				
		Obtain correct 3e ^{4x+1}	A1 4	or equiv				
	(ii)	Either: Form product of two derivatives M1	numer	ical or algebraic				
	` ′	Substitute for t and x in product M1		t = 4 and calculated value of x				
		Obtain 39.7	A1 3	allow ±0.1; allow greater accuracy				
		Or: Obtain $k(4t+9)^n e^{\frac{1}{2}(4t+9)^{\frac{n}{2}+1}}$	MI	differentiating $y = 6e^{\frac{1}{5}(4t - 9)^{\frac{3}{4}} + 1}$				
		Obtain correct $6(4\ell+9)^{-\frac{1}{2}}e^{\frac{1}{2}(4\ell+9)^{\frac{1}{2}}+1}$	Αl	or equiv				
		Substitute $t = 4$ to obtain 39.7 A1	(3) allow:	±0.1; allow greater accuracy				
5	(i)	Obtain $R = \sqrt{17}$ or 4.12 or 4.1	BI	or greater accuracy				
		Attempt recognisable process for finding α	MI	allow for sin/cos confusion				
		Obtain $\alpha = 14$	A 1 2	i or greater accuracy: L1 (136)				

A1 3 or greater accuracy 14.036...

Obtain $\alpha = 14$

(ii)	Attempt to find at least one value of θ + α Obtain or imply value 61 Obtain 46.9 Show correct process for obtaining second angle Obtain -75	MI AIN AI MI AI	5	following R value; or value rounding to 61 allow ±0.1; allow greater accuracy allow ±0.1, allow greater accuracy; max of 4/5 if extra angles between -180 and 180
6 (i)	Obtain integral of form $k(3x+2)^{\frac{1}{2}}$	MI		any constant k
	Obtain correct $\frac{2}{3}(3x+2)^{\frac{1}{3}}$	Αl		or equiv
	Substitute limits 0 and 2 and attempt evaluation	MI		for integral of form $k(3x + 2)^n$
	Obtain $\frac{2}{3}(8^{\frac{1}{4}}-2^{\frac{3}{4}})$	Al	4	or exact equiv suitably simplified
(ii)	State or imply $\pi \int \frac{1}{3x+2} dx$ or unsimplified version			B1 allow if dx absent or wrong
	Obtain integral of form $k \ln(3x + 2)$	M1		any constant k involving π or not
	Obtain $\frac{1}{3}\pi \ln(3x+2)$ or $\frac{1}{3}\ln(3x+2)$	Al		
	Show correct use of $\ln a - \ln b$ property M1 Obtain $-\frac{1}{3}\pi \ln 4$	Al	5	or (similarly simplified) equiv
7 (i)	State a in x-direction State factor 2 in x-direction	B1 B1	2	or clear equiv
(ii)	Show (largely) increasing function crossing x-a: Show curve in first and fourth quadrants only	cis A I	2	M1 with correct curvature not touching y-axis and with no maximum point; ignore intercept
(iii)	Show attempt at reflecting negative part in x-ax: Show (more or less) correct graph	is		M1 A1 √ 2 following their graph in (ii) and showing correct curvatures
(iv)	Identify $2a$ as asymptote or $2a + 2$ as intercept State $2a - x \le 2a + 2$	BI BI	2	allow anywhere in question allow \sim or \leq for each inequality
8 (i)	Obtain $-2xe^{-3x}$ as derivative of e^{-3x}	B1		allow if sign errors or no chain rule
	Attempt product rule	*MI	ı	allow if sign errors or no chain rule
	Obtain $8x^7e^{-x^2} - 2x^9e^{-x^2}$ Either Equate first derivative to zero and	AI		or (unsimplified) equiv
	attempt solution	MI		dep *M, taking at least one step of solution
	Confirm 2 Substitute 2 into derivative and show attempt at evaluation M1	A1	5	AG
	Obtain 0	A1	(5)AG: necessary correct detail required

4753	Mark Sci	neme Jan 2007
(ii)	Attempt calculation involving attempts at y val	ues M1 with each of 1, 4, 2 present at least once as coefficients
	Attempt $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$	M1 with attempts at five y values corresponding to correct x values
	Obtain $\frac{1}{6}(0 + 4 \times 0.00304 + 2 \times 0.36788)$	
	+4×2.70127 +4.68880)	A1 or equiv with at least 3 d.p. or exact values
	Obtain 2.707	A1 4 or greater accuracy; allow ±0.001
(iii)	Attempt 4(y value) - 2(part (ii))	M1 or equiv
• /	Obtain 13.3	A1 2 or greater accuracy; allow ±0 1
9 (i)	State $-2 \le y \le 2$	B1 allow ; any notation
	State $y \le 4$	B1 2 allow : any notation
(ii)	Show correct process for composition M1 Obtain or imply 0.959 and hence 2.16 A1	right way round AG: necessary detail required
	Obtain $g(0.5) = 3.5$	B1 or (unsimplified) equiv
	Observe that 3.5 not in domain of f	B1 4 or equiv
(iii)	Relate quadratic expression to at least one end of range of f M1	or equiv
	Obtain both of $4 - 2x^2 < -2$ and $4 - 2x^2 > 2$	A1 or equiv: allow any sign in each (< or ≤ or >

Obtain at least two of the x values $-\sqrt{3}$, -1, 1, $\sqrt{3}$ A1

Attempt solution involving four x values M1 Obtain $x < -\sqrt{3}$, -1 < x < 1, $x > \sqrt{3}$

Obtain all four of the x values

or ≥ or =)

to produce at least two sets of values

A1 6 allow ≤ instead of < and/or ≥ instead of >