FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2020. május 19. 8:00

Időtartam: 240 perc

Pótlapok száma		
Tisztázati		
Piszkozati		

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

2011 írásbeli vizsga 2 / 16 2020. május 19.

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

1. A képen látható piskóta alakú "körforgalomban" egy biciklis az úttest közepén, állandó nagyságú sebességgel egy teljes "kört" ír le. Mit állíthatunk a gyorsulásáról?

- A) A biciklis gyorsulásának iránya és nagysága is állandó a mozgás során.
- **B)** A biciklis gyorsulásának iránya állandó, de nagysága változó a mozgás során.
- C) A biciklis gyorsulásának iránya változó, de nagysága állandó a mozgás során.
- **D)** A biciklis gyorsulásának iránya és nagysága is változó a mozgás során.

2 pont	

2. A képen egy Van de Graaff-generátor fémgömbje és egy töltetlen, könnyű, fémből készült kis gömbhéj látható, amit fonálon a generátor mellé függesztünk. Mi történik, ha feltöltjük a generátor fémgömbjét?

- A) A generátor először eltaszítja a kis gömbhéjat, aztán magához vonzza.
- **B)** A generátor először magához vonzza a kis gömbhéjat, majd érintkezés után eltaszítja.
- C) Mivel a gömbhéj semleges, ezért nem történik semmi.

2 pont	

- 3. Milyen radioaktív bomlásfolyamat során keletkezhet 94-es rendszámú plutónium atommag 92-es rendszámú urán atommagból?
 - A) Alfa-bomlással.
 - B) Béta-bomlásokkal.
 - C) Gamma-sugárzás kibocsátásával.
 - **D)** Egyikkel sem, hiszen a plutónium rendszáma nagyobb.

2 pont	
--------	--

- 4. Újabban az időjárási előrejelzésekben nemcsak a várható hőmérsékletet adják meg, hanem azt is, hogy "milyennek érezzük" a levegő hőmérsékletet. Milyen adatok befolyásolhatják a hőérzetünket a hőmérsékleten kívül?
 - A) Csak a szélsebesség.
 - B) Csak a relatív páratartalom.
 - C) Mind a szélsebesség, mind pedig a páratartalom befolyásolhatja a hőérzetünket.

5. A grafikon a hagyományos íj (szaggatott vonal) és a visszacsapó íj feszítéséhez szükséges erőt mutatja annak függvényében, hogy mennyire van kihúzva az íj húrja. Melyik íjjal lehet nagyobb sebességgel kilőni ugyanazt a nyílvesszőt, ha mindkét íjat ugyanannyira húzzuk ki?

- A) A hagyományos íjjal.
- B) A visszacsapó íjjal.
- C) Azonos lesz a sebesség a két íj esetén.

2 pont	

2011 írásbeli vizsga 4 / 16 2020. május 19.

6. Egy jól hőszigetelt dobozba vizet teszünk, ebbe pedig egy zárt, rugalmas falú gumiedényben jeget merítünk. (A víz és a jég esetleges olvadéka így nem keveredik össze.) Külön-külön mérjük a hőmérsékletük alakulását normál légköri nyomáson, amíg beáll a hőmérsékleti egyensúly. A három grafikon közül melyik tartozhat a méréshez?

- **A)** Csak az 1. grafikon.
- **B)** Csak a 2. grafikon
- C) Csak a 3. grafikon
- **D)** Mindhárom grafikon.

- 7. Ha egy testet 20 méterről leejtünk egy vákuumkamrában, akkor az esési idejének első felében 5 métert, a második felében 15 métert esik. Mennyit esik a test az esési idejének első felében, ha a légellenállás nem elhanyagolható?
 - A) Kevesebb, mint 5 métert.
 - B) Éppen 5 métert.
 - C) Több, mint 5 métert.

- 8. A víz levegőre vonatkoztatott törésmutatója 4/3, az üvegé 3/2. Mennyi az üveg vízre vonatkoztatott törésmutatója?
 - **A)** 9/8.
 - **B)** 12/6.
 - **C)** 6/12.
 - **D)** 8/9.

2 pont

- 9. Lehetséges-e, hogy két pontszerűnek tekinthető test ütközése során minden kezdeti mozgási energia "elvész", azaz nullává válik?
 - A) Nem lehetséges, mert a nagyobb tömegű test biztosan nem áll meg.
 - B) Nem lehetséges, mert ez sértené az energiamegmaradás elvét.
 - C) Lehetséges, de csak akkor, ha a két test azonos tömegű.
 - D) Lehetséges különböző tömegű testek esetében is.

- 10. Egy vasmagos tekercsből és egy kondenzátorból rezgőkört építünk. Hogyan változik a rezgőkör sajátfrekvenciája miközben a vasmagot lassan kihúzzuk a tekercsből?
 - **A)** Nő.
 - B) Csökken.
 - C) Nem változik.

- 11. Legfeljebb hány elektron lehet a neonatom 2p elektronhéján?
 - **A)** 2.
 - **B**) 6.
 - **C**) 8.
 - **D)** 10.

2 pont

12. Egy súrlódásmentes asztalon fekvő homogén tömegeloszlású korongra három vízszintes erő hat: $F_1 = F_2 = 5$ N, valamint $F_3 = 10$ N. A mellékelt ábrán felülnézetben látható három eset közül melyikben marad nyugalomban a korong?

- B) Csak a B esetben.
- C) Csak a C esetben.

2 pont

13. Egy műhold nagy magasságban, körpályán kering a Föld körül. Melyik állítás igaz?

- A) A Föld gravitációs vonzóereje folyamatosan munkát végez a műholdon, ezért az nem lassul.
- B) A Föld gravitációs vonzóereje folyamatosan munkát végez a műholdon, ezért az nem esik le.
- C) A Föld gravitációs vonzóereje nem végez munkát a műholdon.

2 pont

14. Az ábrán látható fémgyűrű felső, homogén félgyűrűjének ellenállása az "A" és "B" pont között 2 Ω, az alsó, szintén homogén félgyűrű ellenállása ugyanezen pontok között 4 Ω. Az "A" és "B" pontok között vagy a "C" és "D" pontok között nagyobb az eredő ellenállás?

- A) Az "A" és "B" pontok között nagyobb az eredő ellenállás.
- **B)** A "C" és "D" pontok között nagyobb az eredő ellenállás.
- C) Az eredő ellenállás a két esetben azonos.

- 15. Az augusztus egyik jellemző csillagászati eseménye a hullócsillagok megjelenése. Miért figyelhetünk meg ilyenkor hullócsillagokat?
 - **A)** A Föld a Nap körüli pályájának olyan részéhez ér augusztusban, ami egy meteorrajt keresztez, a hullócsillagok a Föld légkörében felizzó meteorok.
 - **B)** A naptevékenység ciklusai minden év augusztusában érnek a tetőpontjukra, ilyenkor nagyon sok anyagot lövell ki magából a Nap. Az így kilökött anyag okozza az éjszakai égbolton a felvillanásokat.
 - C) A hullócsillagok a Tejútrendszer egyes csillagainak szupernóvarobbanásai, melyeket akkor észlelünk tisztán, amikor a Föld a pályája egy bizonyos szakaszához ér, augusztusban.

2 pont	

2011 írásbeli vizsga 7 / 16 2020. május 19.

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. Kondenzátormikrofon

A kondenzátormikrofon egy elektroakusztikus jelátalakító, amely a hangot megfelelő elektromos jellé alakítja. A kondenzátormikrofon lényegében egy néhány mikron vastag, elektromosan vezető membránból és egy szorosan a membrán mögé helyezett, attól elektromosan – levegővel – elszigetelt fémlemezből (ellenelektróda) áll. Technikailag ez az elrendezés egy levegővel "töltött" lemezkon-

denzátor, amelynek C kapacitása körülbelül 20-100 pF. A kondenzátormikrofon kapacitása a lemez A területétől és a kondenzátorlemezek d távolságától függ. A beérkező hanghullámok nyomásingadozása miatt a membrán rezegni kezd, ami megváltoztatja a membrán és a fémlemez közötti d távolságot és ezáltal a kondenzátor kapacitását. Mivel a kondenzátorlemezek állandó feszültségre vannak kötve, a kapacitás változása miatt töltések indulnak az áramkörben. Az áramlökések a nagy értékű (több 10 k Ω -os) ellenálláson feszültségingadozást hoznak létre. Ezt a jelet az erősítő, majd a hangfalak felé továbbítják.

- a) Ismertesse, hogy egy síkkondenzátor mely tulajdonságai hogyan határozzák meg annak kapacitását!
- b) Mutassa be, milyen elektromos mező jön létre a töltött síkkondenzátor lemezei között! A kondenzátor mely geometriai tulajdonságai hogyan befolyásolják a kialakult elektromos mező térerősségének nagyságát?
- c) Indokolja meg, hogy nagyobb felületű membránok esetén miért lehet érzékenyebb a mikrofon ugyanolyan hangerő (azaz ugyanakkora hanghullám által keltett légnyomásváltozás) esetén!
- d) Egy f = 1 kHz frekvenciájú hang esetében egy félperiódusnyi idő alatt kb. 25 pC töltés áramlik át a 10 kΩ-os ellenálláson. Körülbelül mekkora feszültségű jelet mérhetünk ennek következtében?

2011 írásbeli vizsga 8 / 16 2020. május 19.

2. Tengervíz sótalanítása napenergiával

A Földön számos helyen gondot okoz az ivóvízhiány. Amennyiben rendelkezésre áll tengervíz, ennek sótalanításával megoldható a probléma, például desztilláció révén. Ez a folyamat, melyben a tengervizet elpárologtatják, majd a keletkezett párát lecsapatják és így tiszta (sótalan) vizet nyernek belőle, rendkívül energiaigényes. Nagyüzemi méretben sokszor csak valamilyen olcsó, bőségesen rendelkezésre álló energiahordozó felhasználásával valósítható meg. Kisebb mennyiségű tiszta vizet azonban közvetlenül a napenergia felhasználásával is elő lehet állítani. A desztillációs eljárás előnye, hogy a biológiai szennyezésektől (algák, baktériumok) is megtisztítja a vizet. A sótalanításra váró tengervizet egy átlátszó tetővel fedett edénybe/tartályba helyezik, melynek alja sötét színűre van festve. A napsugárzás hatására keletkezett vízpárát egy csövön elvezetik egy hűtött tartályba (például a föld alá, ahol a talaj hőmérséklete alacsonyabb), ahol a pára lecsapódik, iható vizet szolgáltatva.

- a) Milyen halmazállapot-változásokat ismer?
- b) Jellemezze a párolgást! Mi a párolgáshő?
- c) Magyarázza el a sematikus ábrán látható napenergiás sótalanító működését! Honnan és hol vesz fel energiát a berendezés? Hol történik a folyamatban energialeadás és hogyan? Mi a szerepe a sósvizes tartály sötét színének?
- d) Egy 2 m^2 felületű készülék óránként 3 dl édesvizet szolgáltat, amikor a napsugárzás teljesítménye vízszintes felületen 800 W/ m^2 . Mekkora a készülék hatásfoka? (A víz párolgáshője L=2400~kJ/kg, sűrűsége 1 kg/l.)
- e) Hogyan befolyásolja a készülék hatásfokát, ha a második tartály környezetében a talaj felmelegszik? Válaszát indokolja!

2011 írásbeli vizsga 9 / 16 2020. május 19.

3. A homorú tükör képalkotása

Azon törvényen, mely szerint a tűzpontból jövő széttartó sugárok a hajtalék, vagy tekeszeletű vájtükrök által egyközű irányba hajtatnak vissza, és mint ilyenek a világerősségnek távulnégyzet szerinti fogyásától mentek, alapul a visszaverő lámpák szerkezete. Továbbá, minthogy a legtöbb esetben a tárgykép a vájtükrök előtt tűnik föl, ha a kerülékes vájtükör egyik tűzpontjába valamely tárgy megfordítva tétetik, ennek képe egyenes állásban, a levegőben függve látható.

- a) Mutassa be a fény visszaverődésének törvényét!
- b) Ismertesse a homorú gömbtükör legfontosabb jellemzőit, nevezetes sugármeneteit!
- c) Mutassa be a képalkotását szerkesztéssel egy a tükörhöz nagyon közel, illetve egy nagyon távol elhelyezett tárgy esetén!
- d) Ismertesse a c) pontban megszerkesztett két kép jellemzőit!
- e) Értelmezze a valódi kép és látszólagos kép, a képtávolság és tárgytávolság, kép- és tárgynagyság, valamint a nagyítás fogalmát!
- f) Ismertesse a leképezési törvényt!
- g) Adjon meg két gyakorlati példát a homorú tükör felhasználására!

Tartalom Kifejtés		Összesen
18 pont	5 pont	23 pont

2011 írásbeli vizsga 11 / 16 2020. május 19.

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy m = 75 kg tömegű ember egy szakadék felé fut vízszintes terepen 6 m/s sebességgel. Pont a szakadék szélén egy faágról hosszú lián lóg le függőlegesen, amit megragad és belekapaszkodik. A lián kilendül az emberrel, és amikor az ember a hintamozgás során átlendülve eléri a holtpontot, elengedi a liánt. Így épp a szakadék túlsó partján pottyan le. A lendülés során az ember tömegközéppontja 10 m sugarú körön mozog.

b) Mekkora erővel kell az embernek a kötélbe belekapaszkodnia (azaz mekkora függőleges erővel kell tartania magát a kötélen) a lendülés első pillanatában?

(
$$g = 9.8 \frac{\text{m}}{\text{s}^2}$$
, a lián súlytalannak tekinthető.)

a)	b)	Összesen
8 pont	5 pont	13 pont

- 2. Egy végtelen hosszúnak tekinthető egyenes vezetőben 2 A erősségű áram folyik.
 - a) A vezető mellett, attól $r_1 = 2$ m távolságra, egy $q_1 = 10 \mu C$ nagyságú töltéssel rendelkező test halad el éppen, a vezetővel párhuzamos irányú sebességgel. A töltésre ekkor ható erő $F_1 = 2,4\cdot 10^{-9}$ N. Mekkora ekkor a töltött test sebessége?

b) Egy következő esetben egy másik, pontszerű töltött test halad el a vezetőtől éppen $r_2 = 10$ cm-re, a vezető irányába, $v_2 = 800$ m/s sebességgel. Ebben a pillanatban a töltött testre $F_2 = 3 \cdot 10^{-8}$ N erő hat. Mekkora a test töltése?

(A gravitáció elhanyagolható,
$$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{T} \cdot \text{m}}{\text{A}}$$
.)

a)	b)	Összesen
6 pont	4 pont	10 pont

- 3. A Merkúr, Naprendszerünk legbelső bolygója ellipszispályán kering a Nap körül, távolsága a Naptól napközelben körülbelül 46 millió kilométer, míg naptávolban 69,8 millió kilométer.
 - a) Számítsa ki, hogy mekkora nehézségi erővel vonzza a Merkúr a felszínén lévő 1 kg tömegű testet!
 - b) Mekkora erővel vonzza a Nap ugyanezt a testet, amikor a Merkúr napközelben, illetve naptávolban van?
 - c) A Merkúr napközelben van. A Naphoz legközelebbi pontjában és a Naptól legtávolabb eső pontjában is van egy 1 kg tömegű test. Mekkora a két testre ható eredő gravitációs erők nagyságának különbsége?

(A Merkúr tömege $M_{\rm M} = 3.3 \cdot 10^{23} \text{ kg}$, sugara R = 2440 km.

A Nap tömege $M_N = 1.99 \cdot 10^{30} \text{ kg}$, a gravitációs állandó értéke $\gamma = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$.)

a)	b)	c)	Összesen
3 pont	4 pont	4 pont	11 pont

2011 írásbeli vizsga 14 / 16 2020. május 19.

- 4. A Szegeden létrejött ELI-ALPS (Attosecond Light Pulse Source), azaz ELI Attoszekundumos Fényimpulzus Forrás elnevezésű kutatóközpont elsődleges célja, hogy egyedülálló berendezéseivel a lehető legnagyobb ismétlési frekvenciával biztosítson fényimpulzusokat. Ezen rendkívül rövid ideig tartó elektromágneses hullámok frekvenciája a 10¹² Hz tartománytól a röntgensugárzás frekvenciatartartományáig (10¹⁸-10¹⁹ Hz) terjedhet. A Szegedi Lézerközpont lézereinek impulzusai mindössze néhány attoszekundumtól (1 as = 10⁻¹⁸ s) néhány femtoszekundumig (1 fs = 10⁻¹⁵ s) terjedő időtartamúak lesznek majd. Az egyik, már működő lézerének csúcsteljesítménye a 2 PW-ot (azaz 2·10¹⁵ W-ot) is eléri. (Ez egy rendkívül rövid ideig tartó fényimpulzus alatt kibocsátott teljesítmény).
 - a) Körülbelül mekkora a 10¹² Hz frekvenciájú fotonok, illetve a röntgensugárzás fotonjainak energiája?
 - b) Mekkora egy 10¹⁶ W teljesítményű, 10 as hosszú lézerimpulzus energiája?
 Hány 1,5·10¹⁸ Hz frekvenciájú röntgenfoton alkot egy ilyen lézerimpulzust?
 - c) Mekkora egy 2 PW teljesítményű, 20 J energiát tartalmazó lézerimpulzus időtartama? Milyen gyakorisággal érkeznek ezek az impulzusok, ha a kibocsájtó lézer átlagos teljesítménye 200 W?

 $(h = 6.63 \cdot 10^{-34} \text{ Js.})$

a)	b)	c)	Összesen
3 pont	5 pont	5 pont	13 pont

2011 írásbeli vizsga 15 / 16 2020. május 19.

Fizika				
emelt szint				

Azonosító								
jel:								

	pontszám		
	maximális	elért	
I. Feleletválasztós kérdéssor	30		
II. Témakifejtés: tartalom	18		
II. Témakifejtés: kifejtés módja	5		
III. Összetett feladatok	47		
Az írásbeli vizsgarész pontszáma	100		

dátum	javító tanár

	pontszáma egész számra kerekítve		
	elért	programba beírt	
I. Feleletválasztós kérdéssor			
II. Témakifejtés: tartalom			
II. Témakifejtés: kifejtés módja			
III. Összetett feladatok			

dátum	dátum		
javító tanár	jegyző		