Análise Multivariada Análise de Correspondências

Prof. George von Borries

Departamento de Estatística Universidade de Brasília

2023

Notas de aula baseadas em

Greenacre, M. (2008) La práctica del análisis de correspondências. Fundación BBVA. Disponível em http://www.carme-n.org Inzeman, A.J. (2008) *Modern Multivariate Statistical Techniques*, Springer. Pavan, J. (2017) Análise de Correspondência. Slides de notas de aula. IME-USP.

Kassambara, A. Practical Guide to Principal Component Methds in R (Mutivariate Analysis II). sthda.com

Introdução

Definição '

Análise de Correspondências (CA): técnica exploratória que descreve graficamente os dados dispostos em tabelas de contingência para representar o padrão de associação entre linhas e colunas.

 Tabela de Contingência é uma tabela que apresenta o número de observações para múltiplas variáveis categóricas, dispostas em linhas e colunas desta tabela.

Tabela: Relação entre a Cor dos Olhos e Cor do Cabelo entre Crianças Escocesas*.

			Cabelos		
Olhos	CA	СВ	CC	CD	CE
OA	621	204	1894	44	70
OB	1002	290	3148	92	139
OC	2827	655	5032	314	150
OD	909	235	4176	226	106

^{*} Exemplo de Izenman (2008). A \longrightarrow E indica claro \longrightarrow escuro.

- CA Simples: estuda tabelas de contingência de dupla entrada, i.e., com duas variáveis dispostas em várias categorias.
- CA Múltipla: estudas tabelas de contingência de ordem ≥ 3 .

Prof. George von Borries Análise Multivariada: CA (3/29)

Perfis e Espaço de Perfis

Tabela: Tabela de Contingência

	Var	r. Coli	una	3 (7/
1		j		c	Total
$n_{_{11}}$		$n_{_{1j}}$		n_{1c}	$n_{\scriptscriptstyle 1.}$
:					:
n.		n		n.	n _{i.}
	V.	IJ		IC	
>;		• • •			
n_{r1}		n _{rj}		n _{rc}	$n_{r.}$
n _{.1}		n.j		n _{.c}	n
	n_{11} \vdots n_{i1} \vdots n_{r1}	$ \begin{array}{cccc} 1 & \dots \\ n_{11} & \vdots & \dots \\ n_{n_1} & \vdots & \dots \\ \vdots & \dots & \vdots & \dots \end{array} $	$\begin{array}{cccc} 1 & \dots & \mathbf{j} \\ n_{11} & & n_{1j} \\ \vdots & \dots & \ddots \\ n_{i1} & & n_{ij} \\ \vdots & \dots & \dots \\ n_{r1} & & n_{rj} \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Os perfis de linha e coluna serão, respectivamente,

$$\mathrm{p}_{ij}^r = \frac{n_{ij}}{n_{i.}} \ i = 1, \ldots, r \ \mathrm{e} \ \mathrm{p}_{ij}^c = \frac{n_{ij}}{n_{.j}} \ j = 1, \ldots, c.$$

Perfis Linha e Coluna

Tabela: Perfis Linha

		Var.	Coluna	
Var. Linha	1		С	Total
1	$p_{11}^1 = n_{11}/n_{1.}$		$p_{1c}^1 = n_{1c}/n_{1.}$	1
: :	i i		120	:
r	$\mathbf{p}_{r1}^r = n_{r1}/n_{r.}$		$p_{rc}^n = n_{rc}/n_{r.}$	1

Tabela: Perfis Coluna

VO	Var. Coluna					
Var. Linha	1		С			
1	$p_{_{11}}^1 = n_{_{11}}/n_{_{.1}}$		$p_{1c}^c = n_{1k}/n_{.c}$			
• i	<u>:</u>					
r	$p_{r1}^1 = n_{r1}/n_{.1}$		$p_{rc}^J = n_{rc}/n_{.c}$			
Total	1		1			

Massas e Centróides

- ullet $n=\sum_i n_{_{i.}}=\sum_j n_{_{.j}}=\sum_i \sum_j n_{_{ij}}={
 m total}$ de observações,
- Massas de Linhas e Colunas (perfis linha/coluna médio):

$$\frac{n_{i.}}{n}$$
 $i=1,\ldots,r$ $\frac{n_{.j}}{n}$ $j=1,\ldots,c$.

Indica o peso de cada perfil (linha/coluna).

Centróides:

$$\bar{p}^r = \left(\frac{n_{1.}}{n}, \frac{n_{2.}}{n}, \dots, \frac{n_{r.}}{n}\right)$$

е

$$\bar{p}^c = \left(\frac{n_{.1}}{n}, \frac{n_{.2}}{n}, \dots, \frac{n_{.c}}{n}\right)$$

representam os perfis médios de Linhas e Colunas.

Exemplo Viagens (Greenacre, 2008)

Programa ACGreenacre08.R - EV.Dados

Tabela: Número de viagens em relação a atividade e localidade.

		Trabalho	Trabalho	
País	Descanso	Parcial	Integral	Total
Noruega	6	1	11	18
Canadá	1	3	11	15
Grécia	4	25	0	29
França/Alemanha	2	2	20	24
Total	13	31	42	86

(7/29)

Exemplo Viagens (Greenacre, 2008) - Perfis e Espaço de Perfis

Programa ACGreenacre08.R - EV.Perfis e Epaço Perfis

Tabela: Perfis de Linhas.

		Trabalho	Trabalho	1
País	Descanso	Parcial	Integral	Total
Noruega	0.33	0.06	0.61	1.00
Canadá	0.07	0.20	0.73	1.00
Grécia	0.14	0.86	0.00	1.00
França/Alemanha	0.08	0.08	0.83	1.00
Média	0.15	0.36	0.49	1.00

Tabela: Perfis de Colunas.

Ī	País	Descanso	TbParcial	TbIntegral	Média
-	Noruega	0.46	0.03	0.26	0.21
	Canadá	0.08	0.10	0.26	0.17
	Grécia	0.31	0.81	0.00	0.34
	França/Alemanha	0.15	0.06	0.48	0.28
Ī	Total	1.00	1.00	1.00	1.00

Exemplo Viagens (Greenacre, 2008) Perfis e Espaço de Perfis

Programa ACGreenacre08.R - EV.Gráfico (r = 3)

Perfis de Linha (Países) no Triângulo de Colunas (Atividade)

Greenacre, 2008

Código R

• Mas como representar perfis de uma tabela com mais de três elementos nas linhas e colunas? Esta é a situação da Tabela de Izenman (Slide 3), que tem 4 linhas (cores dos olhos) e 5 colunas (cores dos cabelos).

Exemplo Leitura (Greenacre, 2008)

Programa ACGreenacre08.R - EL.Dados e EL.Massas e Centroides

Massas e Centróides

Tabela: Tipo de Leitor e Nível Educacinal (Greenacre, 2008)

		TIPO DE LEC	TOR		
Nivel de educación	Rápidos C1	Minuciosos C2	Muy minuciosos C3	Total	Masas de las filas
Educación primaria incompleta	5	7	2	14	0,045
E1	(0,357)	(0,500)	(0,143)		
Educación primaria	18	46	20	84	0,269
E2	(0,214)	(0,548)	(0,238)		
Educación secundaria incompleta	19	29	39	87	0,279
E3	(0,218)	(0,333)	(0,448)		
Educación secundaria	12	40	49	101	0,324
E4	(0,119)	(0,396)	(0,485)		
Educación universitaria incompleta	3	7	16	26	0,083
E5	(0,115)	(0,269)	(0,615)		
Total	57	129	126	312	
Perfil fila medio	(0,183)	(0,413)	(0,404)		

Prof. George von Borries Análise Multivariada: CA (10/29)

Exemplo Leitura (Greenacre, 2008)

Programa ACGreenacre08.R - EL.Gráfico (r = 3)

Massas e Centróides - Representação Gráfica

Prof. George von Borries Análise Multivariada: CA (11/29)

Exemplo Leitura (Greenacre, 2008)

Programa ACGreenacre08.R - EL.Freq Esperadas

Tabela: Frequências Observadas e Esperadas* (entre parênteses)

		Tipo de Lec	ГOR		
Nivel de educación	Rápidos C1	Minuciosos C2	Muy minuciosos C3	Total	Masas de las filas
Educación primaria incompleta	5	7	2	14	0,045
E1	(2,56)	(5,78)	(5,66)		
Educación primaria	18	46	20	84	0,269
E2	(15,37)	(34,69)	(33,94)		
Educación secundaria incompleta	19	29	39	87	0,279
E3	(15,92)	(35,93)	(35,15)		
Educación secundaria	12	40	49	101	0,324
E4	(18,48)	(41,71)	(40,80)		
Educación universitaria incompleta	3	7	16	26	0,083
E5	(4,76)	(10,74)	(10,50)		
Total	57	129	126	312	
Perfil fila medio	(0, 183)	(0,413)	(0,404)		

^{*} Sob suposição de homogeneidade/independência. Exemplo: $2,56 = 14 \times 57/312$.

Distância Qui-Quadrado e Inércia

Programa ACGreenacre08.R - EL.Qui-Quadrado

- A estatística χ^2 permite testar as hipóteses
 - $\left\{ \begin{array}{l} H_0: \mbox{Dados Homogêneos} \\ H_1: \mbox{Dados Não Homogêneos} \end{array} \right.$
- Estatística

$$\chi_0^2 = \sum \frac{(\mathsf{observado} - \mathsf{esperado})^2}{\mathsf{esperado}} = \sum_{j=1}^c \sum_{i=1}^r \frac{(\mathrm{O}_{ij} - \mathrm{E}_{ij})^2}{\mathrm{E}_{ij}}$$

tem distribuição $\chi^2_{(r-1)(c-1)}$.

• Para a tabela em questão (leitor) teremos $\chi^2_0=25.98$ e $P(\chi^2_8>25.98)=0.00106$. Logo, rejeitamos a hipótese de homogeneidade nos dados, i.e., existe uma associação entre o nível de educação e tipo de leitor observados.

Distância Qui-Quadrado e Inércia

Programa ACGreenacre08.R - EL.Qui-Quadrado

- A Inércia (in) total é igual a χ^2/n e mede a variação dos perfis individuais \mathbf{p}_i (ou \mathbf{p}_j) em torno do centróide $\bar{\mathbf{p}}$.
- Para os dados em questão temos in = 0.08326. Significado?

Análise de Correspondências Abordagem Matricial

Notação Básica

Programa ACMatricial.R - NBasica

• Considere uma tabela $M_{(2\times3)}$ de contingência artificial:

	B_1	B_2	B_3	Total
A_1	1	3	2	$n_{1.} = 6$
A_2	2	2	3	$n_{2.} = 7$
Total	$n_{.1} = 3$	$n_{.2} = 5$	$n_{.3} = 5$	n = 13

Defina,

$$\mathbf{X}_{ij} = \left\{egin{array}{ll} 1 & ext{se indivíduo } j ext{ pertence a } \mathrm{A}_i, \ j=1,\ldots,c \ 0 & ext{caso contrário.} \end{array}
ight.$$

Então,

Programa ACMatricial.R - NBasicaR

Seguindo esta notação,

$$\bullet \ \mathbf{XY}^{\mathsf{T}} = \mathbf{M};$$

$$\bullet \mathbf{XX}^{\mathsf{T}} = \operatorname{diag}(n_{1.}, \ldots, n_{r.});$$

$$\bullet \mathbf{YY}^{\mathsf{T}} = \operatorname{diag}(n_{.1}, \ldots, n_{.c});$$

•
$$\mathbf{D}_r = \mathbf{XX}^{\mathsf{T}}/n = \mathrm{diag}(n_{1.}/n, ..., n_{r.}/n);$$

•
$$\mathbf{D}_c = \mathbf{YY}^{\mathsf{T}}/n = \mathrm{diag}(n_{.1}/n, \dots, n_{.c}/n)$$
 e

Matriz de Burt,

$$\mathbf{B} = \left[\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array} \right] \left[\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array} \right]^{\mathsf{T}} = \left[\begin{array}{cc} n \, \mathbf{D}_r & \mathbf{M} \\ \mathbf{M}^{\mathsf{T}} & n \, \mathbf{D}_c \end{array} \right]$$

positiva semi-definida e simétrica.

Perfis, Massa e Centróides

- A matriz de correspondências **P** é obtida por $\mathbf{XY}^{\mathsf{T}}/n = \mathbf{M}/n$;
- ullet Os totais das linhas e colunas de ullet são as diagonais de ullet , e ullet ullet
- Os Perfis das linhas de \mathbf{M} são obtidos por $\mathbf{P}_r = \mathbf{D}_r^{-1} \mathbf{P} = (\mathbf{XX}^{\mathsf{T}})^{-1} \mathbf{XY}^{\mathsf{T}}$, i.e., corresponde aos coeficientes da regressão de \mathbf{Y} em \mathbf{X} ;
- Os Perfis das colunas de **M** são obtidos por $\mathbf{P}_c = \mathbf{D}_c^{-1} \mathbf{P}^{\mathsf{T}} = (\mathbf{Y} \mathbf{Y}^{\mathsf{T}})^{-1} \mathbf{Y} \mathbf{X}^{\mathsf{T}}$, i.e., corresponde aos coeficientes da regressão de **X** em **Y**;
- Seja ${\bf r}$ o vetor formado pelos elementos da diagonal de ${\bf D}_r$. Então ${\bf r}={\bf P}{\bf 1}_c$ representa as proporções dos totais de linhas em relação ao total. Também conhecido como centróide (média de perfis) de colunas.
- Seja \mathbf{c} o vetor formado pelos elementos da diagonal de \mathbf{D}_c . Então $\mathbf{c} = \mathbf{P}^\mathsf{T} \mathbf{1}_r$ representa as proporções dos totais de colunas em relação ao total. Também conhecido como centróide de perfis de linhas.

Distâncias Qui-Quadrado

- Seja \mathbf{a}_i o i-ésimo perfil de linha, $i=1,\ldots,r$, i.e., \mathbf{a}_i corresponde a i-ésima linha de \mathbf{P}_r .
- Seja \mathbf{b}_j o j-ésimo perfil de coluna, $j=1,\ldots,c$. \mathbf{b}_j corresponde a j-ésima linha de \mathbf{P}_c .
- A distância χ^2 entre \mathbf{a}_i e $\mathbf{a}_{i'}$ é definida pela forma Quadrática:

$$\mathbf{d}^{2} = (\mathbf{a}_{i} - \mathbf{a}_{i'})^{\mathsf{T}} \mathbf{D}_{c}^{-1} (\mathbf{a}_{i} - \mathbf{a}_{i'}) = \sum_{j=1}^{c} \frac{n}{n_{.j}} \left(\frac{n_{ij}}{n_{i.}} - \frac{n_{i'j}}{n_{i'.}} \right)^{2}.$$

 $n/n_{.j}$ indica que as colunas com menos elementos contribuem mais para as distâncias entre perfis de linhas.

• c é o centróide de colunas. A matrix $(r \times c)$ de perfis centralizados, $\mathbf{P}_r - \mathbf{1}_r \mathbf{c}^\mathsf{T}$ tem i-ésima linha igual a $(\mathbf{a}_i - \mathbf{c})^\mathsf{T}$, com j-ésimo elemento

$$\frac{1}{n_i}\left(n_{ij}-\frac{n_{i.}n_{.j}}{n}\right) \quad i=1,\ldots,r; \quad j=1,\ldots,c.$$

Distâncias Qui-Quadrado - continuação

• Assim, a distância χ^2 entre \mathbf{a}_i e \mathbf{c} é

$$d^{2}(\mathbf{a}_{i},\mathbf{c}) = (\mathbf{a}_{i} - \mathbf{c})^{\mathsf{T}} \mathbf{D}_{c}^{-1}(\mathbf{a}_{i} - \mathbf{c}) = \frac{1}{n_{i.}} \sum_{j=1}^{c} \frac{n}{n_{i.} n_{.j}} \left(n_{ij} - \frac{n_{i.} n_{.j}}{n} \right)^{2}$$
(1)

• Somando a Equação 1 para todo perfil de linha fornece

$$n \sum_{i=1}^{r} p_{i.} d^{2}(\mathbf{a}_{i}, \mathbf{c}) = \sum_{i=1}^{r} \sum_{j=1}^{c} \left(n_{ij} - \frac{n_{i.} n_{.j}}{n} \right)^{2} / \left(\frac{n_{i.} n_{.j}}{n} \right),$$

que é a estatística χ^2 , uma vez que $O_{ij} = n_{ij}$ e $E_{ij} = \frac{n_{i.}n_{.j.}}{n}$. Já vimos que para amostragem aleatória $\chi^2 \sim \chi^2_{(r-1)(c-1)}$.

- Então $\chi_0^2=1240.04$ e $P(\chi_{12}^2>1240.04)\approx 0$, e concluimos que existe associação significativa entre linhas e colunas.
- O mesmo raciocínio pode ser feito utilizando \mathbf{b}_i .

Programa ACMatricial.R - Inercia

Inércia Total e Decomposição - Resultados

• Sejam $\mathbf{x} = (x_{ij})$, em que $x_{ij} = (X_{ij} - \bar{X}_i)$ e $\mathbf{y} = (y_{ij})$, em que $y_{ij} = (Y_{ij} - \bar{Y}_j)$. As matrizes de covariância são

$$n^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}} = \mathbf{D}_r - rr^{\mathsf{T}} \quad \text{e} \quad n^{-1}\mathbf{y}\mathbf{y}^{\mathsf{T}} = \mathbf{D}_c - cc^{\mathsf{T}}.$$

Estas matrizes são singulares e portanto não tem inversa.

• A matriz de resíduos pode ser obtida por

$$\tilde{\mathbf{P}} = \mathbf{P} - \mathbf{rc}^{\mathsf{T}}$$

por que seus elementos são iguais a $ilde{n}_{ij} = \mathrm{O}_{ij} - \mathrm{E}_{ij}.$

Inércia Total e Decomposição - continuação

ullet A distância χ^2 pode ser obtida também por

$$\boldsymbol{R}_0 = \boldsymbol{D}_c^{-1/2} \tilde{\boldsymbol{P}}^\mathsf{T} \boldsymbol{D}_r^{-1} \tilde{\boldsymbol{P}} \boldsymbol{D}_c^{-1/2},$$

uma vez que pode-se mostrar que ${\rm tr}({\bf R}_0)=\frac{\chi^2}{n}=$ Inércia Total (in) da Tabela de Contingência.

- A Inércia Total para os dados em questão é igual a 0.23, indicando uma relação razoável em cor dos olhos e cor dos cabelos.
- Assim como em PCA, os autovalores de \mathbf{R}_0 indicam a contribuição das $t = \max(i,j)$ inércias principais na inércia total. No caso em questão, as duas primeiras inércias principais contribuem para cerca de 99.63% da inérica total. Isto indica que a matriz de dados pode ser bem representada no plano.

Coordenadas Principais para Perfis de Linhas e Colunas

• \mathbf{R}_0 pode ser representada por $\mathbf{L} = \mathbf{D}_r^{-1/2} \tilde{\mathbf{P}} \mathbf{D}_c^{-1/2}$ que tem como ℓ_{ii} o resíduo de Pearson, i.e.,

$$\ell_{ij} = (n_{i.}n_{.j})^{-1/2} \left(n_{ij} - \frac{n_{i.}n_{.j}}{n}\right)$$
 $i = 1, ..., r;$ $j = 1, ..., c.$

- Assim, a inércia também pode ser obtida por $\sum_{i} \sum_{i} \ell_{ii}^{2}$.
- Resultados:

 - $\mathbf{R}_0 = \mathbf{L}^T \mathbf{L}$. Seja $\mathbf{R}_1 = \mathbf{L} \mathbf{L}^T$.
 - A matriz L pode ser escrita pela decomposição em valores singulares $\mathbf{UD}_{\lambda}\mathbf{V}^{\mathsf{T}}$. Os autovetores de \mathbf{R}_1 são iguais a \mathbf{U} e os autovetores de \mathbf{R}_0 são iguais as colunas de \mathbf{V} .
 - Note que

$$\tilde{\mathbf{P}} = \mathbf{D}_r^{1/2} \mathbf{L} \mathbf{D}_c^{1/2} = (\mathbf{D}_r^{1/2} \mathbf{U}) \mathbf{D}_{\lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{D}_c^{1/2}) = \mathbf{A} \mathbf{D}_{\lambda} \mathbf{B}^{\mathsf{T}}$$

Coordenadas Principais para Perfis de Linhas e Colunas - continuação

- Ainda, $\mathbf{A}^{\mathsf{T}} \mathbf{D}_r^{-1} \mathbf{A} = \mathbf{I}_c \ \mathbf{e} \ \mathbf{B}^{\mathsf{T}} \mathbf{D}_c^{-1} \mathbf{B} = \mathbf{I}_c$.
- A expressão $\tilde{\mathbf{P}} = \mathbf{D}_r^{1/2} \mathbf{L} \mathbf{D}_c^{1/2} = (\mathbf{D}_r^{1/2} \mathbf{U}) \mathbf{D}_{\lambda} (\mathbf{V}^\mathsf{T} \mathbf{D}_c^{1/2}) = \mathbf{A} \mathbf{D}_{\lambda} \mathbf{B}^\mathsf{T}$ é a decomposição em valores singulares de $\tilde{\mathbf{P}}$ nas métricas \mathbf{D}_r^{-1} e \mathbf{D}_c^{-1} .
- As colunas de A são chamadas de eixos principais de linhas.
- As colunas de B são chadadas de eixos principais de colunas.
- As coordenadas principais dos perfis de linhas $(\mathbf{G}_P^\mathsf{T})$ é a distância χ^2 entre a matriz de perfis centralizados de linhas $(\mathbf{P}_r \mathbf{1}_r \mathbf{c}^\mathsf{T})$ e a matriz \mathbf{B} , na métrica \mathbf{D}_c^{-1} , i.e.,

$$\mathbf{G}_{P}^{\mathsf{T}} = (\mathbf{P}_{r} - \mathbf{1}_{r}\mathbf{c}^{\mathsf{T}})\mathbf{D}_{c}^{-1}\mathbf{B} = \mathbf{D}_{r}^{-1}\mathbf{A}\mathbf{D}_{\lambda}.$$

• As coordenadas principais dos perfis de colunas $(\mathbf{H}_P^\mathsf{T})$ é a distância χ^2 entre a matriz de perfis centralizados de colunas $(\mathbf{P}_c - \mathbf{1}_c \mathbf{r}^\mathsf{T})$ e a matriz \mathbf{A} , na métrica \mathbf{D}_c^{-1} , i.e.,

$$\mathbf{H}_{P}^{\mathsf{T}} = (\mathbf{P}_{c} - \mathbf{1}_{c}\mathbf{r}^{\mathsf{T}})\mathbf{D}_{r}^{-1}\mathbf{A} = \mathbf{D}_{c}^{-1}\mathbf{B}\mathbf{D}_{\lambda}.$$

Lembre que D_c é uma matriz diagonal com os pesos dos totais de colunas da tabela em análise.

Lembre que D_r é uma matriz diagonal com os pesos dos totais de linhas da tabela em análise.

Mapas de Correspondências

- Mapa Simétrico: as coordenadas de linhas e colunas podem ser expressas como coordenadas principais.
- Mapa Assimétrico: As coordenadas de linhas (ou colunas) são expressas como coordenadas principais e a outra coordenada como coordenadas padrão.
- ullet A coordenada padrão de linhas é $oldsymbol{G}_s = oldsymbol{U}^T oldsymbol{D}_r^{-1/2}$
- A coordenada padrão de colunas é $\mathbf{H}_s = \mathbf{V}^\mathsf{T} \mathbf{D}_c^{-1/2}$

Prof. George von Borries Análise Multivariada: CA (25/29)

Biplot com Pacote FactoMiner

Programa ACMatricial.R - Graficos

Biplot com Pacote FactoMiner

Grafico com gplots

Rel. Cor dos Olhos e Cabelos

CA em Tabelas Multidimensionais

Figura: Unindo três carecterísticas numa tabela bidimensional. Fonte: Friendly e Meyer (2016).

