5

NOTICE OF USE AND DISCLOSURE

Copyright © LoRa Alliance, Inc. (2017). All Rights Reserved.

The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance, Inc. 2400 Camino Ramon, Suite 375 San Ramon, CA 94583

Note: All Company, brand and product names may be trademarks that are the sole property of their respective

 LoRaWAN™ 1.1 Regional Parameters

This document is a companion document to the LoRaWAN 1.1 protocol specification

Authors:

LoRa Alliance Technical Committee Regional Parameters Workgroup

Revision: B Date: 2018 January Status: Released

Contents

65		duction	
66		onventions	
67		uick cross reference table	
68		WAN Regional Parameters	
69		egional Parameter Common Names	
70	2.2 EL	J863-870MHz ISM Band	
71	2.2.1		
72		EU863-870 ISM Band channel frequencies	
73		EU863-870 Data Rate and End-device Output Power encoding	
74		EU863-870 JoinAccept CFList	
75		EU863-870 LinkAdrReq command	
76		EU863-870 Maximum payload size	
77		EU863-870 Receive windows	
78		EU863-870 Class B beacon and default downlink channel	
79		EU863-870 Default Settings	
80		S902-928MHz ISM Band	
81		US902-928 Preamble Format	
82		US902-928 Channel Frequencies	
83		US902-928 Data Rate and End-device Output Power encoding	
84		US902-928 JoinAccept CFList	
85		US902-928 LinkAdrReq command	
86		US902-928 Maximum payload size	
87		US902-928 Receive windows	
88		US902-928 Class B beacon	
89 90		US902-928 Default Settings	
90 91	2.4 CN 2.4.1		
91 92			
92 93		CN779-787 ISM Band channel frequencies	
93 94	2.4.3	CN779-787 Data Rate and End-device Output Power encoding CN779-787 JoinAccept CFList	27 20
9 4 95		CN779-787 LinkAdrReq command	
95 96		CN779-787 Maximum payload size	
97		CN779-787 Receive windows	
98		CN779-787 Class B beacon and default downlink channel	
99		CN779-787 Default Settings	
100		J433MHz ISM Band	
101		EU433 Preamble Format	
102		EU433 ISM Band channel frequencies	
103		EU433 Data Rate and End-device Output Power encoding	
104		EU433 JoinAccept CFList	
105		EU433 LinkAdrReg command	
106		EU433 Maximum payload size	
107		EU433 Receive windows	
108		EU433 Class B beacon and default downlink channel	
109		EU433 Default Settings	
110		J915-928MHz ISM Band	
111		AU915-928 Preamble Format	
112		AU915-928 Channel Frequencies	
113		AU915-928 Data Rate and End-point Output Power encoding	
114		AU915-928 JoinAccept CFList	
115		AU915-928 LinkAdrReq command	
116		AU915-928 Maximum payload size	

117	2.6.7	AU915-928 Receive windows	41
118	2.6.8	AU915-928 Class B beacon	41
119	2.6.9	AU915-928 Default Settings	42
120		l470-510MHz Band	
121		CN470-510 Preamble Format	
122		CN470-510 Channel Frequencies	
123		CN470-510 Data Rate and End-point Output Power encoding	
124		CN470-510 JoinResp CFList	
125		CN470-510 LinkAdrReq command	
126		CN470-510 Maximum payload size	
127		CN470-510 Receive windows	
128		CN470-510 Class B beacon	
129		CN470-510 Default Settings	
130		923MHz ISM Band	
131		AS923 Preamble Format	
132		AS923 ISM Band channel frequencies	
133	2.0.2	AS923 Data Rate and End-point Output Power encoding	4 0 ۸۵
134	2.0.3	AS923 JoinAccept CFList	49 50
135	2.8.5	AS923 LinkAdrReq command	50
136		AS923 Maximum payload size	
137		AS923 Receive windows	
138		AS923 Class B beacon and default downlink channel	
139		AS923 Default Settings	
140		8920-923MHz ISM Band	
141	2.9.1		
142		KR920-923 ISM Band channel frequencies	
143		KR920-923 Data Rate and End-device Output Power encoding	
144	2.9.4	KR920-923 JoinAccept CFList	
145	2.9.5	KR920-923 LinkAdrReq command	
146	2.9.6	KR920-923 Maximum payload size	
147	2.9.7	KR920-923 Receive windows	
148		KR920-923 Class B beacon and default downlink channel	
149		KR920-923 Default Settings	
150		865-867 MHz ISM Band	
151		IN865-867 Preamble Format	
152	2.10.2	2 IN865-867 ISM Band channel frequencies	58
153	2.10.3	B IN865-867 Data Rate and End-device Output Power Encoding	58
154		IN865-867 JoinAccept CFList	
155		IN865-867 LinkAdrReq command	
156		3 IN865-867 Maximum payload size	
157		' IN865-867 Receive windows	
158		3 IN865-867 Class B beacon and default downlink channel	
159		IN865-867 Default Settings	
160		J864-870 MHz ISM Band	
161		RU864-870 Preamble Format	
162	2.11.2	RU864-870 ISM Band channel frequencies	64
163	2.11.3	RU864-870 Data Rate and End-device Output Power encoding	65
164		RU864-870 JoinAccept CFList	
165		RU864-870 LinkAdrReq command	
166		RU864-870 Maximum payload size	
167		' RU864-870 Receive windows	
168		RU864-870 Class B beacon and default downlink channel	
169	2.11.9	RU864-870 Default Settings	68

170	3 Revisions	
171	3.1 Revision A	
172	3.2 Revision B	70
173	4 Bibliography	71
174	4.1 References	
175	5 NOTICE OF USE AND DISCLOSURE	72
176		
177	Tables	
178	Table 1: Channel Plan per Country	
179	Table 2: EU863-870 synch words	
180	Table 3: EU863-870 default channels	
181	Table 4: EU863-870 JoinReq Channel List	
182	Table 5: EU863-870 TX Data rate table	
183	Table 6: EU863-870 TX power table	
184	Table 7: EU863-870 ChMaskCntl value table	
185	Table 8: EU863-870 maximum payload size	
186	Table 9: EU863-870 maximum payload size (not repeater compatible)	
187	Table 10: EU863-870 downlink RX1 data rate mapping	19
188	Table 11: EU863-870 beacon settings	
189	Table 12: US902-928 TX Data rate table	
190	Table 13: US902-928 TX power table	
191	Table 14: US902-928 ChMaskCntl value table	
192	Table 15: US902-928 maximum payload size (repeater compatible)	
193	Table 16: US902-928 maximum payload size (not repeater compatible)	
194	Table 17: US902-928 downlink RX1 data rate mapping	
195	Table 18: US902-928 beacon settings	
196	Table 19: CN779-787 synch words	
197	Table 20: CN779-787 JoinReq Channel List	
198	Table 21: CN779-787 Data rate and TX power table	
199	Table 22: CN779-787 ChMaskCntl value table	
200	Table 23: CN779-787 maximum payload size	
201 202	Table 24: CN779-787 maximum payload size (not repeater compatible)	
202 203	Table 26: CN779-787 downlink KXT data rate mapping	
203 204	Table 20: CN779-767 beacon settings	
20 4 205	Table 28: EU433 JoinReq Channel List	
203 206	Table 29: EU433 Data rate and TX power table	
207	Table 30: EU433 ChMaskCntl value table	
208	Table 31: EU433 maximum payload size	
209	Table 32 : EU433 maximum payload size (not repeater compatible)	
210	Table 33 : EU433 downlink RX1 data rate mapping	
211	Table 34: EU433 beacon settings	
212	Table 35: AU915-928 Data rate table	
213	Table 36 : AU915-928 TX power table	
214	Table 37: AU915-928 ChMaskCntl value table	
215	Table 38: AU915-928 maximum payload size	
216	Table 39: AU915-928 maximum payload size (not repeater compatible)	
217	Table 40 : AU915-928 downlink RX1 data rate mapping	
218	Table 41 : AU915-928 beacon settings	41
219	Table 42: CN470-510 Data rate and TX power table	44
220	Table 43: CN470-510 ChMaskCntl value table	

221	Table 44: CN470-510 maximum payload size	45
222	Table 45 : CN470-510 maximum payload size (not repeater compatible)	45
223	Table 46: CN470-510 downlink RX1 data rate mapping	
224	Table 47 : CN470-510 beacon settings	46
225	Table 48: AS923 synch words	
226	Table 49: AS923 default channels	48
227	Table 50: AS923 JoinReq Channel List	48
228	Table 51: AS923 Data rate table	
229	Table 52: AS923 TxPower table	
230	Table 53: AS923 ChMaskCntl value table	
231	Table 54: AS923 maximum payload size	
232	Table 55: AS923 maximum payload size (not repeater compatible)	
233	Table 56 : AS923 beacon settings	
234	Table 57: KR920-923 Center frequency, bandwidth, maximum EIRP output power table	53
235	Table 58: KR920-923 default channels	53
236	Table 59: KR920-923 JoinReq Channel List	
237	Table 60: KR920-923 TX Data rate table	
238	Table 61: KR920-923 TX power table	
239	Table 62: KR920-923 ChMaskCntl value table	
240	Table 63: KR920-923 maximum payload size	
241	Table 64 : KR920-923 maximum payload size (not repeater compatible)	
242	Table 65 : KR920-923 downlink RX1 data rate mapping	
243	Table 66 : KR920-923 beacon settings	
244	Table 67: IN865-867 synch words	
245	Table 68: IN865-867 default channels	
246	Table 69: IN865-867 JoinReq Channel List	
247	Table 70: IN865-867 TX Data rate table	
2 4 7 248	Table 71: IN865-867 TxPower table	
249	Table 72: IN865-867 ChMaskCntl value table	
2 4 3 250	Table 73: IN865-867 maximum payload size	
250 251	Table 74: IN865-867 maximum payload size (not repeater compatible)	
251 252	Table 75: RU864-870 synch words	
252 253	Table 76: RU864-870 default channels	
253 254	Table 77: RU864-870 JoinReg Channel List	
25 4 255	Table 78: RU864-870 TX Data rate table	
256 257	Table 79: RU864-870 TX power table Table 80: RU864-870 ChMaskCntl value table	
258 250	Table 81: RU864-870 maximum payload size	
259 260	Table 82: RU864-870 maximum payload size (not repeater compatible)	
260 261	Table 83: RU864-870 downlink RX1 data rate mapping	
261	Table 84: RU864-870 beacon settings	. 00
262		
263	Figures	
264	Figure 1: US902-928 channel frequencies	
265	Figure 2: AU915-928 channel frequencies	
266	Figure 3: CN470-510 channel frequencies	43
267		

1 Introduction

This document describes the LoRaWAN™ regional parameters for different regulatory regions worldwide. This document is a companion document to the LoRaWAN 1.1 protocol specification [LORAWAN]. Separating the regional parameters from the protocol specification allows addition of new regions to the former without impacting the latter document.

It must be noted here that, regardless of the specifications provided, at no time is any LoRa equipment allowed to operate in a manner contrary to the prevailing local rules and regulations where it is expected to operate. It is the responsibility of the LoRa device to insure that compliant operation is maintained without any outside assistance from a LoRa network or any other mechanism.

1.1 Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

1.2 Quick cross reference table

In order to support the identification of LoRaWAN channel plans for a given country, the table below provides a quick reference of suggested channel plans listed in priority order for each country.

Country name	Band / channels	Channel Plan
Afghanistan		None
	433.05 - 434.79 MHz	EU433
Albania	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
	870-876MHz	Other
Algeria	880-885MHz	Other
	915 - 921 MHz	Other
	925 - 926 MHz	Other
A l	433.05 - 434.79 MHz	EU433
Andorra	863 - 870 MHz	EU863-870
	863 - 870 MHz	EU863-870
Armenia	433.05 - 434.79 MHz	EU433
Argentina	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
	433.05 - 434.79 MHz	EU433
Austria	863 - 870 MHz	EU863-870
Australia	915 - 928 MHz	AU915-928, AS923
A 1 "	433.05 - 434.79 MHz	EU433
Azerbaijan	863 - 868 MHz	Others
Bahrain	862 - 870MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	818 - 824 MHz	Other
Bangladesh	863 - 869 MHz	EU863-870
	925.0 - 927.0 MHz	Other
	433.05 - 434.79 MHz	EU433
Belarus	864.4 - 868.6 MHz	EU863-870
	869-869.2MHz	EU863-870
5 1 ·	433.05 - 434.79 MHz	EU433
Belgium	863 - 870 MHz	EU863-870
	433 - 435 MHz	EU433
Burma (Myanmar)	866 - 869MHz	EU863-870
	919 - 923 MHz	Other
Bolivia	915 - 930 MHz	AU915-928, AS923
Bosnia and	433.05 - 434.79 MHz	EU433
Herzegovina	863 - 870 MHz	EU863-870
Botswana		None
	902 - 907.5 MHz	Other
Brazil	915 - 928 MHz	AU915-928
	433 - 435 MHz	EU433
Down of Day 1	866 - 870 MHz	EU863-870
Brunei Darussalam	920 - 925 MHz	AS923

	433 - 435 MHz	EU433
	433.05 - 434.79 MHz	EU433
Bulgaria	863 - 870 MHz	EU863-870
	866 - 869 MHz	EU863-870
Cambodia	923 - 925 MHz	AS923
Cameroon		None
Canada	902 - 928 MHz	US902-928, AU915-928
01.11	902 - 928 MHz	
Chile	(915-928MHz usable)	AU915-928, AS923, US902-928
	920.5 - 924.5 MHz	AS923
	779 - 787 MHz	CN779-787
	470 - 510 MHz	CN470-510
China	433.05 - 434.79 MHz	EU433
	314-316 MHz	Other
	430 - 432 MHz	Other
	840 - 845 MHz	Other
Colombia	902 - 928 MHz	AU915-928, US902-928
Congo Rep.		None
Costa Rica	920.5 - 928 MHz	AS923
	433.05 - 434.79 MHz	EU433
Croatia	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Cuba	915 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Cyprus	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Czech Republic	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Denmark	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Dominican Republic	915 - 928 MHz	AU915-928
Ecuador	902 - 928 MHz	AU915-928, US902-928, AS923
	433.05 - 434.79 MHz	EU433
Egypt	863 - 876 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Estonia	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Finland	863 - 873 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
France	863 - 870 MHz	EU863-870
Georgia	0.0	None
Germany	433.05 - 434.79 MHz	EU433
Germany	-55.05 TJT.75 WILIZ	LU433

	863 - 870 MHz	EU863-870
Ghana		None
Cross	433.05 - 434.79 MHz	EU433
Greece	868 - 870 MHz	EU863-870
Guatemala	902 - 928 MHz (915-928 MHz usable)	AU915-928, AS923, US902-928
Haiti		None
Honduras	915-928 MHz	AU915-928
	433.05 - 434.79 MHz	EU433
Hong Kong	865 - 868 MHz	Other
	920 - 925 MHz	AS923
	433.05 - 434.79 MHz	EU433
Hungary	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
1	433.05 - 434.79 MHz	EU433
Iceland	863 - 873 MHz	EU863-870
India	865 - 867 MHz	IN765-867
Indonesia	923 - 925 MHz	AS923
Iraq		None
·	433.05 - 434.79 MHz	EU433
Iran	863 - 873 MHz	EU863-870
-	915 - 918 MHz	Other
	433.05 - 434.79 MHz	EU433
Ireland	863 - 873 MHz	EU863-870
-	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Israel	915 - 917 MHz	Other
	433.05 - 434.79 MHz	EU433
Italy	863 - 870 MHz	EU863-870
Ivory Coast		None
Jamaica	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
	920.6 - 928.0 MHz (steps of 200kHz)	AS923
Japan	920.8 - 927.8 MHz (steps of 600kHz)	AS923
Jordan	865 - 868 MHz	Other
Kazakhstan	433.05 - 434.79 MHz	EU433
Kenya	133.03 131.73 141112	None
Korea (DPR)		None
Kuwait	433.05 - 434.79 MHz	EU433
Kyrgyz Republic	133.03 134.73 WHILE	None
Nyi Byz Nepublic	433 - 435 MHz	EU433
Laos	862 - 875 MHz	EU863-870
Laus	923 - 925 MHz	AS923
		+
Latvia	433.05 - 434.79 MHz	EU433
	863 - 870 MHz	EU863-870

Lebanon	433 - 435 MHz	EU433
LEDATION	862 - 870 MHz	EU863-870
Liechtenstein	433.05 - 434.79 MHz	EU433
ricuitanstani	863 - 873 MHz	EU863-870
Libya		None
Lithuania	433.05 - 434.79 MHz	EU433
Littiualiia	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Luxembourg	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Macao		None
Manadauia EVD	433.05 - 434.79 MHz	EU433
Macedonia, FYR	863 - 870 MHz	EU863-870
Malaysia	433 - 435 MHz	EU433
Malaysia	919 – 924 MHz	AS923
Maldives		None
N 4 a 1 b -	433.05 - 434.79 MHz	EU433
Malta	863 - 870 MHz	EU863-870
Mauritius		None
Mexico	902 - 928 MHz	US902-928, AU915-928
	433.05 - 434.79 MHz	EU433
Moldova	863 - 870 MHz	EU863-870
Mongolia		None
-	433.05 - 434.79 MHz	EU433
Montenegro	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Morocco	867.6 - 869 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Netherlands	863 - 870 MHz	EU863-870
	915 - 928 MHz	AS923, AU915-928
	819 - 824 MHz	Other
New-Zealand	864 - 870MHz	EU863-870
-	433.05 - 434.79 MHz	EU433
Nicaragua	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
Nigeria	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Norway	863 - 873 MHz	EU863-870
,	918 - 921 MHz	Other
_	433.05 - 434.79 MHz	EU433
Oman	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Pakistan	865 - 869 MHz	EU863-870
	900 - 925 MHz	AS923

LoRaWAN 1.1 Regional Parameters

Panama	902 - 928 MHz	AU915-928, US902-928, AS923
Davida	433.05 - 434.79 MHz	EU433
Paraguay	915 - 928 MHz	AU915-928, AS923
Peru	915 - 928 MHz	AU915-928, AS923
Papua New Guinea	915 - 925 MHz	AU915-928
	915 - 918 MHz	Other
Dhilimning	868 – 869.2 MHz	EU863-870
Philippines	869.7 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	433.05 - 434.79 MHz	EU433
Poland	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
5	433.05 - 434.79 MHz	EU433
Portugal	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	868 - 868.6 MHz	EU863-870
Qatar	868.7 - 869.2 MHz	EU863-870
	869.4 - 869.65 MHz	EU863-870
	869.7 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Romania	863 - 870 MHz	EU863-870
	866 - 868 MHz (Licensed)	RU864-870
	864 - 865 MHz	RU864-870
Russian federation	868.7 - 869.2 MHz	RU864-870
	433.075 - 434.75 MHz	EU433
	916 - 921 MHz (Licensed)	Other
Salvador	915-928	AU915-928, AS923
	863 - 870 MHz	EU863-870
Saudi Arabia	433.05 - 434.79 MHz	EU433
Senegal		None
-	433.05 - 434.79 MHz	EU433
Serbia	863 - 870 MHz	EU863-870
	920 - 925 MHz	AS923
Singapore	433.05 - 434.79 MHz	EU433
5 6 7 7	866 - 869 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Slovak Republic	863 - 873 MHz	EU863-870
r · · · ·	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Slovenia	863 - 873 MHz	EU863-870
5.5.5	918 - 921 MHz	Other
+	433.05 - 434.79 MHz	EU433

	868.7 – 869.2 MHz	EU863-870
	869.4 – 869.65 MHz	EU863-870
	869.7 – 870 MHz	EU863-870
	915 - 921 MHz	Other
South Korea	917 - 923.5 MHz	KR920-923
C	433.05 - 434.79 MHz	EU433
Spain	863 - 870 MHz	EU863-870
Sri Lanka	433.05 - 434.79 MHz	EU433
Sudan		None
6	433.05 - 434.79 MHz	EU433
Sweden	868 - 870 MHz	EU863-870
C. H. Adami	433.05 - 434.79 MHz	EU433
Switzerland	863 - 873 MHz	EU863-870
Syrian Arab Rep.		None
Taiwan	920 - 925 MHz	AS923
Tajikistan		None
Tanzania		None
·	433.05 - 434.79 MHz	EU433
Thailand	920 - 925 MHz	AS923
Trinidad and Tobago		None
	433.05 - 434.79 MHz	EU433
	868 – 868.6 MHz	EU863-870
Tunisia	868.7 – 869.2 MHz	EU863-870
	869.4 – 869.65 MHz	EU863-870
	869.7 – 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Turkey	863 - 870 MHz	EU863-870
Turkmenistan		None
	433.05 - 434.79 MHz	EU433
	865 - 867.6 MHz	Other
Uganda	869.25 - 869.7 MHz	Other
	923 - 925 MHz	AS923
	433.05 - 434.79 MHz	EU433
Ukraine	863 - 865 MHz	EU863-870
	868 - 868.6 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	863 - 870 MHz	EU863-870
United Arab Emirates	870 - 875.8 MHz	Other
	915 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
United Kingdom	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
United States	902 - 928 MHz	US902-928, AU915-928
		-,

LoRaWAN 1.1 Regional Parameters

Uruguay	902 - 928 MHz (915 - 928 MHz usable)	AU915-928, AS923, US902-928
Uzbekistan	433.05 - 434.79 MHz	EU433
Venezuela 922 - 928 MHz		AS923
	433.05 - 434.79 MHz	EU433
Vietnam	863 - 870 MHz	EU863-870
	918 - 923 MHz	Other
Yemen, Rep.		None
Zimbabwe		None

Table 1: Channel Plan per Country

©2017 LoRa™ Alliance

2 LoRaWAN Regional Parameters

294 295

296

297 298

299

300

2.1 Regional Parameter Common Names

In order to support the identification of LoRaWAN channel plans referenced by other specification documents, the table below provides a quick reference of common channel plans listed for each formal plan name.

Channel Plan	Common Name
EU863-870	EU868
US902-928	US915
CN779-787	CN779
EU433	EU433
AU915-928	AU915
CN470-510	CN470
AS923	AS923
KR920-923	KR920
IN865-867	IN865
RU864-870	RU864

301

302

303

2.2 EU863-870MHz ISM Band

2.2.1 EU863-870 Preamble Format

The following synchronization words SHOULD be used:

304 305

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 2: EU863-870 synch words

306

307

308

309

2.2.2 EU863-870 ISM Band channel frequencies

This section applies to any region where the ISM radio spectrum use is defined by the ETSI [EN300.220] standard.

The network channels can be freely attributed by the network operator. However the three 310 311 following default channels MUST be implemented in every EU868MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on. 312

313

Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5	3	<1%
		Frequency [MHz] 125 868.10 868.30	Frequency	Frequency

Table 3: EU863-870 default channels

314

In order to access the physical medium the ETSI regulations impose some restrictions such maximum time the transmitter can be on or the maximum time a transmitter can transmit per

322

323

324

325

326

327

328 329

330

331

332

333

334

335

336

337

338

339 340

hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a socalled **Listen Before Talk Adaptive Frequency Agility** (LBT AFA) transmissions management. The current LoRaWAN specification exclusively uses duty-cycled limited transmissions to comply with the ETSI regulations.

EU868MHz end-devices SHALL be capable of operating in the 863 to 870 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.10 868.30 868.50	DR0 – DR5 / 0.3-5 kbps	3

Table 4: EU863-870 JoinReg Channel List

2.2.3 EU863-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU863-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in EU863-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU863-870 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN1	

Table 5: EU863-870 TX Data rate table

341 342

©2017 LoRa™ Alliance

¹ DR15 and TXPower15 are defined in the LinkADRReq MAC command of the LoRaWAN1.1 specification

EIRP¹ refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRAWAN

Table 6: EU863-870 TX power table

346 347

343

344 345

348 349 350

351

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve 16dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

352 353

2.2.4 EU863-870 JoinAccept CFList

354 355 356

357

The EU 863-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

358 I 359 v 360 d 361 f

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

362 363

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing

366 367 368

364

365

frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** SHALL replace all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

369 370

371

2.2.5 EU863-870 LinkAdrReg command

372 373

The EU863-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

¹ ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

376

377

378379

380

381

382

383 384

385

386

387 388

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
••	
4	RFU
5	RFU
6	All channels ON
	The device SHALL enable all currently defined
	channels independently of the ChMask field
	value.
7	RFU

Table 7: EU863-870 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.2.6 EU863-870 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not de	efined	

Table 8: EU863-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N	
0	59 51		
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

Table 9 : EU863-870 maximum payload size (not repeater compatible)

2.2.7 **EU863-870 Receive windows**

The RX1 receive window uses the same channel as the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5		
Upstream data rate		Downstream data rate in RX1 slot						
DR0	DR0	DR0	DR0	DR0	DR0	DR0		
DR1	DR1	DR0	DR0	DR0	DR0	DR0		
DR2	DR2	DR1	DR0	DR0	DR0	DR0		
DR3	DR3	DR2	DR1	DR0	DR0	DR0		
DR4	DR4	DR3	DR2	DR1	DR0	DR0		
DR5	DR5	DR4	DR3	DR2	DR1	DR0		
DR6	DR6	DR5	DR4	DR3	DR2	DR1		
DR7	DR7	DR6	DR5	DR4	DR3	DR2		

Table 10: EU863-870 downlink RX1 data rate mapping

396397398

389

390

391

392

393 394

395

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.525 MHz / DR0 (SF12, 125 kHz)

399 400

401

2.2.8 EU863-870 Class B beacon and default downlink channel

402 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted		
		signal polarity		

Table 11: EU863-870 beacon settings

403 404 405

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

406 The beacon default broadcast frequency is 869.525MHz.

The Class B default downlink pingSlot frequency is 869.525MHz

407 408

409

2.2.9 EU863-870 Default Settings

The following parameters are recommended values for the EU863-870MHz band.

411 RECEIVE_DELAY1 1 s 412 RECEIVE DELAY2 2 s (

2 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

413 JOIN_ACCEPT_DELAY1 5 s 414 JOIN_ACCEPT_DELAY2 6 s 415 MAX_FCNT_GAP 16384

416	ADR_ACK_LIMIT	64
417	ADR_ACK_DELAY	32
418	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)
419 420 421 422 423 424	values (for example the end RECEIVE_DELAY2 latency), those server using an out-of-band chant	emented in the end-device are different from those default device uses a longer RECEIVE_DELAY1 and e parameters MUST be communicated to the network nel during the end-device commissioning process. The ameters different from those default values.

2.3 US902-928MHz ISM Band

This section defines the regional parameters for the USA, Canada and all other countries adopting the entire FCC-Part15 regulations in 902-928 ISM band.

2.3.1 US902-928 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.

2.3.2 US902-928 Channel Frequencies

The 915 MHz ISM Band SHALL be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly by 200 kHz to 914.9 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13, starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Figure 1: US902-928 channel frequencies

915 MHz ISM band end-devices are required to operate in compliance with the relevant regulatory specifications, The following note summarizes some of the current (March 2017) relevant regulations.

Frequency-Hopping, Spread-Spectrum (FHSS) mode, which requires the device transmit at a measured conducted power level no greater than +30 dBm, for a period of no more than 400 msec and over at least 50 channels, each of which occupy no greater than 250 kHz of bandwidth.

Digital Transmission System (DTS) mode, which requires that the device use channels greater than or equal to 500 kHz and comply to a conducted Power Spectral Density measurement of no more than +8 dBm per 3kHz of spectrum. In practice, this limits the conducted output power of an end-device to +26 dBm.

Hybrid mode, which requires that the device transmit over multiple channels (this may be less than the 50 channels required for FHSS mode, but is recommended to be at least 4) while complying with the Power Spectral Density requirements of DTS mode and the 400 msec

dwell time of FHSS mode. In practice this limits the measured conducted power of the end-device to 21 dBm.

Devices which use an antenna system with a directional gain greater than +6 dBi, but reduce the specified conducted output power by the amount in dB of directional gain over +6 dBi.

US902-928 end-devices MUST be capable of operating in the 902 to 928 MHz frequency band and MUST feature a channel data structure to store the parameters for 72 channels. This channel data structure contains a list of frequencies and the set of data rates available for each frequency.

471 472

473

474

476

477

478

479

480

481

483

486

487

488 489

490

491

462

463

464

465

466

467 468

469

470

If using the over-the-air activation procedure, the end-device SHALL transmit the Join-request message on random 125 kHz channels amongst the 64 125kHz channels defined using **DR0** and on 500 kHz channels amongst the 8 500kHz channels defined using **DR4**.

The end-device SHALL change channels for every transmission.

For rapid network acquisition in mixed gateway channel plan environments, the device SHOULD follow a random channel selection sequence which efficiently probes the octet groups of eight 125 kHz channels followed by probing one 500 kHz channel each pass. Each consecutive pass SHOULD NOT select a channel that was used in a previous pass, until a Join-request is transmitted on every channel, after which the entire process can restart.

482 Example:

First pass: Random channel from [0-7], followed by [8-15]... [56-63], then 64 Second pass: Random channel from [0-7], followed by [8-15]... [56-63], then 65

484 69 485 L

Last pass: Random channel from [0-7], followed by [8-15]... [56-63], then 71

Personalized devices SHALL have all 72 channels enabled following a reset and shall use the channels for which the device's default data-rate is valid.

2.3.3 US902-928 Data Rate and End-device Output Power encoding

FCC regulation imposes a maximum dwell time of 400ms on uplinks. The *TxParamSetupReq* MAC command MUST not be implemented by US902-928 devices.

The following encoding is used for Data Rate (**DR**) and End-device conducted Power (**TXPower**) in the US902-928 band:

DataRate Configuration		Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5:7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11 LoRa: SF9 / 500 kHz		7000
12	LoRa: SF8 / 500 kHz	12500
13 LoRa: SF7 / 500 kHz		21900

14	RFU	
15	Defined in LoRaWAN ¹	

Table 12: US902-928 TX Data rate table

Note: DR4 is purposely identical to DR12, DR8..13 MUST be implemented in end-devices and are reserved for future applications

TXPower	Configuration (conducted power)
0	30 dBm – 2*TXpower
1	28 dBm
2	26 dBm
3:13	
14	2 dBm
15	Defined in LoRaWAN

Table 13: US902-928 TX power table

498

494

495

496

497

2.3.4 US902-928 JoinAccept CFList

499 500 501

502 503

504 505 The US902-928 LoRaWAN supports the use of the optional CFlist appended to the JoinResp message. If the CFlist is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the **CFList** contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four (4). (The first 16 bits controls the channels 0 to 15, ..)

506 507

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

508

510 511

509

2.3.5 US902-928 LinkAdrReq command

For the US902-928 version the ChMaskCntl field of the LinkADRReg command has the following meaning:

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
••	
4	Channels 64 to 71
5	8LSBs controls Channel
	Blocks 0 to 7
	8MSBs are RFU
6	All 125 kHz ON
	ChMask applies to
	channels 64 to 71
7	All 125 kHz OFF
	ChMask applies to
	channels 64 to 71

¹ DR15 is defined in the LinkADRReg MAC command of the LoRaWAN1.1 specification

Table 14: US902-928 ChMaskCntl value table

If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

Note: FCC regulation requires hopping over at least 50 channels when using maximum output power. It is possible to have end-devices with less channels when limiting the end-device conducted transmit power to 21 dBm.

Note: A common network server action may be to reconfigure a device through multiple LinkAdrReq commands in a contiguous block of MAC Commands. For example to reconfigure a device from 64 channel operation to the first 8 channels could contain two LinkAdrReq, the first (ChMaskCntl = 7) to disable all 125kHz channels and the second (ChMaskCntrl = 0) to enable a bank of 8 125kHz channels.

2.3.6 US902-928 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

DataRate	M	N	
0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not defined		
8	41	33	
9	117	109	
10	230	222	
11	230	222	
12	230	222	
13	230	222	
14:15 Not		efined	

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

Table 15: US902-928 maximum payload size (repeater compatible)

548

549

550

551 552

553

554

555

556

557 558

559

560

561

562

563

If the end-device will never operate under a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N		
0	19	11		
1	61	53		
2	133	125		
3	250	242		
4	250	242		
5:7	Not de	Not defined		
8	61	53		
9	137	129		
10	250	242		
11	250	242		
12	250	242		
13	250 242			
14:15	Not defined			

Table 16: US902-928 maximum payload size (not repeater compatible)

2.3.7 US902-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 17 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3MHz / DR8

Upstream data rate	Downstream data rate				
RX1DROffset	0	1	2	3	
DR0	DR10	DR9	DR8	DR8	
DR1	DR11	DR10	DR9	DR8	
DR2	DR12	DR11	DR10	DR9	
DR3	DR13	DR12	DR11	DR10	
DR4	DR13	DR13	DR12	DR11	

Table 17: US902-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are reserved for future use.

2.3.8 US902-928 Class B beacon

The beacons SHALL BE transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with 500kHz		
		bw		
CR	1	Coding rate = 4/5		
Signal polarity Non-inverted As opposition		As opposed to normal downlink traffic which uses		
		inverted signal polarity		
		Beaconing is performed on the same channel that normal downstream traffic as defined in the Class A		
	with booking steps	specification		

Table 18: US902-928 beacon settings

The downstream channel used for a given beacon is:

566 Channel = $\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$ modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

576 577 578

567 568

569

570 571

572

573 574 575

The beacon frame content is:

Size (bytes)	5	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

579

580

2.3.9 US902-928 Default Settings

The following parameters are recommended values for the US902-928 band.

582 RECEIVE_DELAY1 1 s

583 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 584
 JOIN_ACCEPT_DELAY1
 5 s

 585
 JOIN_ACCEPT_DELAY2
 6 s

 586
 MAX_FCNT_GAP
 16384

 587
 ADR_ACK_LIMIT
 64

 588
 ADR_ACK_DELAY
 32

589 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

590

591 592

597

598

599

600

601 602

605

606

607

608

609

610 611

612 613

614

615

616 617

618

619

620 621

622

623

624

625

626

627

2.4 CN779-787 MHz ISM Band

2.4.1 CN779-787 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 19: CN779-787 synch words

2.4.2 CN779-787 ISM Band channel frequencies

The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle SHOULD be lower than 1%.

The LoRaWAN channels center frequency MAY be in the following range:

Minimum frequency : 779.5MHzMaximum frequency : 786.5 MHz

CN780MHz end-devices SHALL be capable of operating in the 779 to 787 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	125	779.5	DR0 – DR5	6	<0.1%
LoRa		779.7	/ 0.3-5 kbps		
		779.9			
		780.5			
		780.7			
		780.9			

Table 20: CN779-787 JoinReg Channel List

2.4.3 CN779-787 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the CN779-787 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN779-787 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the CN780 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]	TXPower	Configuration (EIRP)
0	LoRa: SF12 / 125 kHz	250	0	Max EIRP
1	LoRa: SF11 / 125 kHz	440	1	Max EIRP – 2dB
2	LoRa: SF10 / 125 kHz	980	2	Max EIRP – 4dB
3	LoRa: SF9 / 125 kHz	1760	3	Max EIRP – 6dB
4	LoRa: SF8 / 125 kHz	3125	4	Max EIRP – 8dB
5	LoRa: SF7 / 125 kHz	5470	5	Max EIRP – 10dB
6	LoRa: SF7 / 250 kHz	11000	614	RFU
7	FSK: 50 kbps	50000		
814	RFU			
15	Defined in LoRaWAN		15	Defined in LoRaWAN

Table 21: CN779-787 Data rate and TX power table

 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.4.4 CN779-787 JoinAccept CFList

The CN780 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListTYpe

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** SHALL replace all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

2.4.5 CN779-787 LinkAdrReq command

The CN780 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
4	RFU
5	RFU
6	All channels ON
	The device should enable all currently defined
	channels independently of the ChMask field
	value.
7	RFU

Table 22: CN779-787 ChMaskCntl value table

663 664 665

666

667

668

669

670

671

658 659 660

661 662

If the ChMask field value is one of values meaning RFU, then end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.4.6 CN779-787 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

0	1	4
6	7	3

DataRate	M	N			
0	59	51			
1	59	51			
2	59	51			
3	123	115			
4	230	222			
5	230	222			
6	250	242			
7	230	222			
8:15	Not defined				
Tallog ONITED TOT and in the laid					

674 675

676

Table 23: CN779-787 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

6	7	7	
6	7	8	

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not de	efined

Table 24 : CN779-787 maximum payload size (not repeater compatible)

2.4.7 CN779-787 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use

685

679

680 681

682

683 684

RX1DROffset	0	1	2	3	4	5
		Dow	nstream data	a rate in RX1	slot	
Upstream data rate						
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 25: CN779-787 downlink RX1 data rate mapping

686 687

688

689 690 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 786 MHz / DR0.

2.4.8 CN779-787 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 12	
		kHz BW	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	

Table 26: CN779-787 beacon settings

692 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 785MHz.

The class B default downlink pingSlot frequency is 785MHz

694 695

696

691

2.4.9 CN779-787 Default Settings

The following parameters are recommended values for the CN779-787MHz band.

698 RECEIVE_DELAY1 1 s

699 RECEIVE DELAY2 2 s (MUST be RECEIVE DELAY1 + 1s)

 700
 JOIN_ACCEPT_DELAY1
 5 s

 701
 JOIN_ACCEPT_DELAY2
 6 s

 702
 MAX_FCNT_GAP
 16384

 703
 ADR_ACK_LIMIT
 64

 704
 ADR_ACK_DELAY
 32

705 ACK_TIMEOUT

706

707

708

709 710 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

2.5 EU433MHz ISM Band

712 2.5.1 EU433 Preamble Format

The following synchronization words SHOULD be used:

713 714

711

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 27: EU433 synch words

715

716

2.5.2 EU433 ISM Band channel frequencies

- The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio device EIRP is less than 12.15dBm.
- 719 The end-device transmit duty-cycle SHALL be lower than 10%¹
- 720 The LoRaWAN channels center frequency can be in the following range:
- Minimum frequency: 433.175 MHz
- Maximum frequency: 434.665 MHz

EU433 end-devices SHALL be capable of operating in the 433.05 to 434.79 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

735736

727

728

729

730

731 732

733

734

N	l odulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	LoRa	125	433.175 433.375 433.575	DR0 – DR5 / 0.3-5 kbps	3	<1%

737 738 Table 28: EU433 JoinReq Channel List

739

2.5.3 EU433 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU433 PHY layer. The *TxParamSetupReq* MAC command is not implemented by EU433 devices.

¹ The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU433 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
614	RFU
15	Defined in LoRaWAN

Table 29: EU433 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP SHALL be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.5.4 EU433 JoinAccept CFList

The EU433 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing

frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** MUST replace all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

775

776

777

778

779

780

781 782

783

784 785

786 787

788

789 790

791

792

2.5.5 EU433 LinkAdrReq command

The EU433 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to			
0	Channels 0 to 15			
1	RFU			
4	RFU			
5	RFU			
6	All channels ON			
	The device SHOULD enable all currently			
	defined channels independently of the			
	ChMask field value.			
7	RFU			

Table 30: EU433 ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.5.6 EU433 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M N		
0	59	51	
1	59	51	
2	59	51	
3	123 115		
4	230 222		
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 31: EU433 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

DV4DDOffeet

Table 32 : EU433 maximum payload size (not repeater compatible)

793 794

795

796

797

798 799

2.5.7 EU433 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

800

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

801

Table 33: EU433 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 434.665MHz / DR0 (SF12, 125kHz).

804

805 806

2.5.8 EU433 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125	
		kHz BW	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	

Table 34: EU433 beacon settings

807 808

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 434.665MHz.

The class B default downlink pingSlot frequency is 434.665MHz

811

812

2.5.9 EU433 Default Settings

The following parameters are recommended values for the EU433band.

814 RECEIVE DELAY1 1 s

815 RECEIVE DELAY2 2 s (MUST be RECEIVE DELAY1 + 1s)

816 JOIN_ACCEPT_DELAY1 5 s 817 JOIN_ACCEPT_DELAY2 6 s 818 MAX_FCNT_GAP 16384

819	ADR_ACK_LIMIT	64
820	ADR_ACK_DELAY	32
821	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

828

822

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency) , those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

2.6 AU915-928MHz ISM Band

831 832

829

830

This section defines the regional parameters for Australia and all other countries whose ISM band extends from 915 to 928MHz spectrum.

833

2.6.1 AU915-928 Preamble Format

The following synchronization words SHOULD be used:

835 836

834

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

837

838 839

840

841

842

843

844

845

LoRaWAN does not make use of GFSK modulation in the AU915-928 ISM band.

2.6.2 AU915-928 Channel Frequencies

The AU ISM Band SHALL be divided into the following channel plans.

 Upstream – 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz

 Upstream – 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz

 Downstream – 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

846 847

848 849

850

851

852

853 854

855

856

857 858

859

Figure 2: AU915-928 channel frequencies

AU ISM band end-devices may use a maximum EIRP of +30 dBm.

AU915-928 end-devices SHALL be capable of operating in the 915 to 928 MHz frequency band and SHALL feature a channel data structure to store the parameters of 72 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device SHALL broadcast the JoinReq message alternatively on a random 125 kHz channel amongst the 64 channels defined using **DR2** and a random 500 kHz channel amongst the 8 channels defined using **DR6**. The end-device SHOULD change channel for every transmission.

Personalized devices SHALL have all 72 channels enabled following a reset.

860 861

862

863

864

The default JoinReq Data Rate is DR2 (SF10/125KHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command *TxParamSetupReq*.

AU915-928 end-devices MUST consider UplinkDwellTime = 1 during boot stage until reception of the *TxParamSetupReg* command.

AU915-928 end-devices MUST always consider DownlinkDwellTime = 0, since downlink channels use 500KHz bandwidth without any dwell time limit.

870

871 872

873

874

875

876

877

878

879

880 881

865

866

867

868

869

2.6.3 AU915-928 Data Rate and End-point Output Power encoding

The "TxParamSetupReq/Ans" MAC commands MUST be implemented by AU915-928 devices.

> If the field UplinkDwellTime is set to 1 by the network server in the TxParamSetupReq command, AU915-928 end-devices SHALL adjust the time between two consecutive uplink transmissions to meet the local regulation. Twenty seconds (20s) are recommended between 2 uplink transmissions when UplinkDwellTime = 1 but this value MAY be adjusted depending on local regulation.

> There is no such constraint on time between two consecutive transmissions when UplinkDwellTime = 0.

882 883

The following encoding is used for Data Rate (DR) and End-point EIRP (TXPower) in the AU915-928 band:

884 885

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14	RFU	
15	Defined in LoRaWAN	

886 887 888

DR6 is identical to DR12, DR8...13 MUST be implemented in end-devices and are reserved for future applications.

Table 35: AU915-928 Data rate table

889 890

TXPower	Configuration (EIRP)
0	Max EIRP
1:14	Max EIRP – 2*TXPower
15	Defined in LoRaWAN

Table 36: AU915-928 TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be +30dBm. The Max EIRP can be modified by the network server through the *TxParamSetupReq* MAC command and SHOULD be used by both the end-device and the network server once *TxParamSetupReq* is acknowledged by the device via *TxParamSetupAns*.

2.6.4 AU915-928 JoinAccept CFList

The AU915-928 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four(4). (The first 16 bits controls the channels 1 to 16

CFI ist	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFII	RFII	CFL istType
(bytes)								
Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
COLLIG	ule channe	3 1 10 10,	,					

2.6.5 AU915-928 LinkAdrReg command

ChMookCatt

For the AU915-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChiwaskChti	Chiviask applies to
0	Channels 0 to 15
1	Channels 16 to 31
**	
4	Channels 64 to 71
5	8LSBs controls Channel Blocks 0 to 7
	8MSBs are RFU
6	All 125 kHz ON
	ChMask applies to channels 64 to 71
7	All 125 kHz OFF
	ChMask applies to channels 64 to 71

If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

Table 37: AU915-928 ChMaskCntl value table

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

2.6.6 AU915-928 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for both uplink dwell time configurations: No Limit and 400ms. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

DataRate	UplinkDwellTime=0		UplinkDv	vellTime=1
	М	N	М	N
0	59	51	N/A	N/A
1	59	51	N/A	N/A
2	59	51	19	11
3	123	115	61	53
4	230	222	133	125
5	230	222	250	242
6	230	222	250	242
7	Not de	fined	Not defined	
8	41	33	41	33
9	117	109	117	109
10	230	222	230	222
11	230	222	230	222
12	230	222	230	222
13	230	222	230	222
14:15	Not defined		Not c	defined

Table 38: AU915-928 maximum payload size

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

For AU915-928, DownlinkDwellTime MUST be set to 0 (no limit). The 400ms dwell time MAY only apply to uplink channels depending on the local regulations.

 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	UplinkDwellTime=0		UplinkDv	vellTime=1
	М	N	М	N
0	59	51	N/A	N/A
1	59	51	N/A	N/A
2	59	51	19	11
3	123	115	61	53
4	250	242	133	125
5	250	242	250	242
6	250	242	250	242

958
959
960
961
962
963
964
965
966
967 968
900

970 971

972

973

974

975

976 977

7	Not defined		Not c	lefined
8	61	53	61	53
9	137	129	137	129
10	250	242	250	242
11	250	242	250	242
12	250	242	250	242
13	250	242	250	242
14:15	Not defined		Not c	lefined

Table 39: AU915payload size (not

Not defined 928 maximum repeater

compatible)

2.6.7 AU915-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 17 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3Mhz / DR8

Upstream data rate	Downstream data rate					
RX1DROff set	0	1	2	3	4	5
DR0	DR8	DR8	DR8	DR8	DR8	DR8
DR1	DR9	DR8	DR8	DR8	DR8	DR8
DR2	DR10	DR9	DR8	DR8	DR8	DR8
DR3	DR11	DR10	DR9	DR8	DR8	DR8
DR4	DR12	DR11	DR10	DR9	DR8	DR8
DR5	DR13	DR12	DR11	DR10	DR9	DR8
DR6	DR13	DR13	DR12	DR11	DR10	DR9

Table 40 : AU915-928 downlink RX1 data rate mapping

978 979 980

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

982

983

984

985

987

981

2.6.8 AU915-928 Class B beacon

The beacons are transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with	
		500kHz bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same	
	with 600kHz steps	channel that normal downstream traffic as	
		defined in the Class A specification	

Table 41: AU915-928 beacon settings

986 The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
 - whereby beacon_period is the periodicity of beacons, 128 seconds
 - whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

997 998

999

990

991 992 993

994 995 996

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1000

1001

1011

1012 1013

1014

1015

1016

2.6.9 AU915-928 Default Settings

The following parameters are recommended values for the AU915-928 band.

1003 RECEIVE_DELAY1 1 s

1004 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1005
 JOIN_ACCEPT_DELAY1
 5 s

 1006
 JOIN_ACCEPT_DELAY2
 6 s

 1007
 MAX_FCNT_GAP
 16384

 1008
 ADR_ACK_LIMIT
 64

 1009
 ADR_ACK_DELAY
 32

1010 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

©2017 LoRa™ Alliance

1018

1019

1020

1021 1022 1023

1024

1025

1026

1027

10281029

1030

1031 1032

1033 1034

1035 1036

1039 1040

1041 1042

1047

1048

1049

1050 1051

1052

2.7 CN470-510MHz Band

2.7.1 CN470-510 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.7.2 CN470-510 Channel Frequencies

In China, this band is defined by SRRC to be used for civil metering applications.

The 470 MHz ISM Band SHALL be divided into the following channel plans:

 Upstream – 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

Figure 3: CN470-510 channel frequencies

The LoRaWAN can be used in the Chinese 470-510MHz band as long as

- The radio device EIRP is less than 19.15dBm
- The transmission never lasts more than 5000 ms.

CN470-510 end-devices SHALL be capable of operating in the 470 to 510 MHz frequency band and SHALL feature a channel data structure to store the parameters of 96 uplink channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device SHALL broadcast the JoinReq message on a random 125 kHz channel amongst the 96 uplink channels defined using **DR5** to **DR0**.

1053 Personalized devices SHALL have all 96 channels enabled following a reset.

2.7.3 CN470-510 Data Rate and End-point Output Power encoding

There is no dwell time limitation for the CN470-510 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN470-510 devices.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the CN470-510 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470
6:14	RFU	
15	Defined in LoRaWAN	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in
	LoRaWAN

Table 42: CN470-510 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be +19.15dBm. If the end-device cannot achieve 19.15dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.7.4 CN470-510 JoinResp CFList

The CN470-510 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of five (5). (The first 16 bits controls the channels 1 to 16, ...)

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	ChMask5	RFU	CFListType

2.7.5 CN470-510 LinkAdrReq command

For the CN470-510 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

1	082
1	083

1080

1081

ChMaskCntl	ChMask applies to			
0	Channels 0 to 15			
1	Channels 16 to 31			
2	Channels 32 to 47			
3	Channels 48 to 63			
4	Channels 64 to 79			
5	Channels 80 to 95			
6	All channels ON			
	The device SHOULD enable all currently defined			
	channels independently of the ChMask field value.			
7	RFU			

Table 43: CN470-510 ChMaskCntl value table

10841085

1086

1087

1088

1089

1090

1091 1092 If the ChMask field value is one of the values meaning RFU, then end-device SHOULD reject the command and unset the "**Channel mask ACK**" bit in its response.

2.7.6 CN470-510 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6:15	Not defined		

Table 44: CN470-510 maximum payload size

10931094

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

1095 1096

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250 242		
6:15	Not defined		

Table 45: CN470-510 maximum payload size (not repeater compatible)

1097 1098

2.7.7 CN470-510 Receive windows

1099 1100 1101

• The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.

1107

- RX1 Channel Number = Uplink Channel Number modulo 48, for example,
 when transmitting channel number is 49, the rx1 channel number is 1.
- The RX1 window data rate depends on the transmit data rate (see Table below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 505.3 MHz / DR0

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Downstream data rate in RX1 slot				
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

Table 46: CN470-510 downlink RX1 data rate mapping

1108 1109

1110

1111

1112

1113

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

2.7.8 CN470-510 Class B beacon

The beacons are transmitted using the following settings:

DR	2	Corresponds to SF10 spreading factor with 125kHz
		bw
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity
frequencies	508.3 to 509.7MHz	
	with 200kHz steps	

Table 47: CN470-510 beacon settings

1114 1115

1116

The downstream channel used for a given beacon is:

1117

BeaconChannel = $\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$ modulo 8

1118 1119 • whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame

1120 1121

1122

whereby beacon_period is the periodicity of beacons, 128 seconds
 whereby floor(x) designates rounding to the integer immediately inferior or on

1123 1124 whereby floor(x) designates rounding to the integer immediately inferior or equal to x

1125 1126 Example: the first beacon will be transmitted on 508.3Mhz, the second on 508.5MHz, the $9^{\rm th}$ beacon will be on 508.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	508.3
1	508.5
2	508.7
3	508.9
4	509.1
5	509.3
6	509.5

7	509.7
---	-------

1128 1129

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1130

1131

2.7.9 CN470-510 Default Settings

1132 The following parameters are recommended values for the CN470-510 band.

1133 RECEIVE_DELAY1 1 s

1134 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1135
 JOIN_ACCEPT_DELAY1
 5 s

 1136
 JOIN_ACCEPT_DELAY2
 6 s

 1137
 MAX_FCNT_GAP
 16384

 1138
 ADR_ACK_LIMIT
 64

 1139
 ADR_ACK_DELAY
 32

1140 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1141 If the actual parameter values implemented in the end-device are different from those default

values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those

parameters MUST be communicated to the network server using an out-of-band channel

1144 during the end-device commissioning process. The network server may not accept

1145 parameters different from those default values.

1146 **2.8 AS923MHz ISM Band**

1147 2.8.1 AS923 Preamble Format

The following synchronization words SHOULD be used:

1148 1149

Modulation Sync word		Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 48: AS923 synch words

1150

1151

2.8.2 AS923 ISM Band channel frequencies

1152 This section applies to regions where the frequencies [923...923.5MHz] are comprised in the 1153 ISM band.

The network channels can be freely attributed by the network operator. However the two following default channels MUST be implemented in every AS923MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

1156 1157

1158

1159

1160

1161

1162

11631164

1165

1166

1154

1155

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR0 to DR5 / 0.3-5 kbps	2	< 1%

Table 49: AS923 default channels

Those default channels MUST be implemented in every end-device and cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

AS923MHz ISM band end-devices should use the following default parameters

• Default EIRP: 16 dBm

AS923MHz end-devices SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR2 to DR5	2	< 1%

Table 50: AS923 JoinReq Channel List

1169 1170 1171

1172 1173

1174 1175 The default JoinReq Data Rate utilizes the range DR2-DR5 (SF10/125 kHz – SF7/125 kHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command "TxParamSetupReg".

The JoinReg message transmit duty-cycle SHALL follow the rules described in chapter

1176 "Retransmissions back-off" of the LoRaWAN specification document.

1177

1178

2.8.3 AS923 Data Rate and End-point Output Power encoding

1179 The "TxParamSetupReg/Ans" MAC command MUST be implemented by the AS923 devices.

The following encoding is used for Data Rate (DR) in the AS923 band:

1180 1181

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN	

1182

1183

1184 1185 The TXPower table indicates power levels relative to the Max EIRP level of the end-device. as per the following table:

Table 51: AS923 Data rate table

1186

TXPower	Configuration (EIRP)			
0	Max EIRP			
1	Max EIRP – 2dB			
2	Max EIRP – 4dB			
3	Max EIRP – 6dB			
4	Max EIRP – 8dB			
5	Max EIRP – 10dB			
6	Max EIRP – 12dB			
7	Max EIRP – 14dB			
814	RFU			
15	Defined in			
	LoRaWAN			
Table 52: AS923 TxPower table				

1187 1188

1189 1190

1191

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1192 1193

1194

1195

By default Max EIRP SHALL be 16dBm. The Max EIRP can be modified by the network server through the *TxParamSetupReq* MAC command and SHOULD be used by both the end-device and the network server once *TxParamSetupReg* is acknowledged by the device via TxParamSetupAns,

2.8.4 AS923 JoinAccept CFList

The AS923 LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels two to six whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 KHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch2	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 915 and 928MHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.8.5 AS923 LinkAdrReq command

The AS923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
4	RFU
5	RFU
6	All channels ON
	The device SHOULD enable all currently
	defined channels independently of the
	ChMask field value.
7	RFU

Table 53: AS923 ChMaskCntl value table

 If the ChMask field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.8.6 AS923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for both dwell time configurations: No Limit and 400ms. It is derived from the PHY layer limitation depending on the effective modulation rate used taking into account a possible repeater encapsulation layer.

DataRate Uplink MAC Payload Size (M) Downlink MAC Payload Size (M)

	UplinkDwellTime = 0	UplinkDwellTime = 1	DownlinkDwellTime = 0	DownlinkDwellTime = 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	230	133	230	133
5	230	250	230	250
6	230	250	230	250
7	230	250	230	250
8:15	RF	- U	RF	-U

Table 54: AS923 maximum payload size

1226 1227

If the end-device will never operate with a repeater then the maximum MAC payload length 1228 should be:

DataRate	Uplink MAC Payload Size (M)		Downlink MAC F	Payload Size (M)
	UplinkDwellTime = 0	UplinkDwellTime = 1	DownlinkDwellTime = 0	DownlinkDwellTim e = 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	250	133	250	133
5	250	250	250	250
6	250	250	250	250
7	250	250	250	250
8:15	RFU		RF	U

Table 55: AS923 maximum payload size (not repeater compatible)

The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is eight bytes lower than the MACPayload value in the above table. The value of N might be smaller if the FOpt field is not empty.

2.8.7 AS923 Receive windows

1229

1230

1231

1232

1233

1234

1241

1242

1235 The RX1 receive window uses the same channel than the preceding uplink. The data rate is 1236 a function of the uplink data rate and the RX1DROffset as following:

1237 Downstream data rate in RX1 slot = MIN (5, MAX (MinDR, Upstream data rate -1238 Effective RX1DROffset))

MinDR depends on the DownlinkDwellTime bit sent to the device in the TxParamSetupReg 1239 1240 command:

- Case DownlinkDwellTime = 0 (No limit): MinDR = 0
- Case DownlinkDwellTime = 1 (400ms): MinDR = 2

The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table: 1243

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

1244 Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream 1245 data rate.

1246 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 1247 923.2 MHz / DR2 (SF10/125KHz).

1249

1251

2.8.8 AS923 Class B beacon and default downlink channel

1250 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted signal polarity

Table 56: AS923 beacon settings

1252 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- 1253 The beacon default broadcast frequency is 923.4MHz.
- 1254 The class B default downlink pingSlot frequency is 923.4MHz

1255

1256 2.8.9 AS923 Default Settings

1257 The following parameters are recommended values for the AS923MHz band.

1258 RECEIVE_DELAY1 1 s

1259 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1260
 JOIN_ACCEPT_DELAY1
 5 s

 1261
 JOIN_ACCEPT_DELAY2
 6 s

 1262
 MAX_FCNT_GAP
 16384

 1263
 ADR_ACK_LIMIT
 64

 1264
 ADR_ACK_DELAY
 32

1265 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1266 If the actual parameter values implemented in the end-device are different from those default

1267 values (for example the end-device uses a longer RECEIVE_DELAY1 and

1268 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network

1269 server using an out-of-band channel during the end-device commissioning process. The

1270 network server may not accept parameters different from those default values.

1274

12751276

1277

1278

1279

1280

1281

1282

1283 1284

1285 1286

1287

1271 2.9 KR920-923MHz ISM Band

2.9.1 KR920-923 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.9.2 KR920-923 ISM Band channel frequencies

The center frequency, bandwidth and maximum EIRP output power for the South Korea RFID/USN frequency band are already defined by Korean Government. Basically Korean Government allocated LPWA based IoT network frequency band from 920.9 to 923.3MHz.

Center frequency	Bandwidth	Maximum EIRP output power (dBm)		
(MHz)	(kHz)	For end-device	For gateway	
920.9	125	10	23	
921.1	125	10	23	
921.3	125	10	23	
921.5	125	10	23	
921.7	125	10	23	
921.9	125	10	23	
922.1	125	14	23	
922.3	125	14	23	
922.5	125	14	23	
922.7	125	14	23	
922.9	125	14	23	
923.1	125	14	23	
923.3	125	14	23	

Table 57: KR920-923 Center frequency, bandwidth, maximum EIRP output power table

The three following default channels (922.1, 922.3 and 922.5MHz / DR0 to DR5) determined by the network operator from the set of available channels as defined by the South Korean regulation MUST be implemented in every KR920-923MHz end-device, and cannot be alterable by the *NewChannelReq* command. Those channels are the minimum set that all network gateways SHOULD always be listening on to guarantee a minimal common channel set between end-devices and network gateways.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10 922.30 922.50	DR0 to DR5 / 0.3-5 kbps	3

Table 58: KR920-923 default channels

In order to access the physical medium the South Korea regulations impose some restrictions. The South Korea regulations allow the choice of using either a duty-cycle limitation or a so-called Listen Before Talk Adaptive Frequency Agility (LBT AFA) transmissions management. The current LoRaWAN specification for the KR920-923 ISM band exclusively uses LBT channel access rule to maximize MACPayload size length and comply with the South Korea regulations.

1288

1289

1295 KR920-923MHz ISM band end-devices SHALL use the following default parameters

- Default EIRP output power for end-device(920.9~921.9MHz): 10 dBm
- Default EIRP output power for end-device(922.1~923.3MHz): 14 dBm
- Default EIRP output power for gateway: 23 dBm

KR920-923MHz end-devices SHALL be capable of operating in the 920 to 923MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50	,	

Table 59: KR920-923 JoinReq Channel List

2.9.3 KR920-923 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the KR920-923 PHY layer. The *TxParamSetupReq* MAC command is not implemented by KR920-923 devices.

The following encoding is used for Data Rate (DR), and EIRP Output Power (TXPower) in the KR920-923 band:

1	31	0
1	31	1

1305

1306

1307

1308

1309

1296

1297

12981299

1300

1301 1302

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
614	RFU	
15	Defined in LoRAWAN	
	Table 60: KR920-923 TX Dat	a rate table

1312

1313

1314

TXPower	Configuration ((EIRP)
----------------	-----------------	--------

	` ` `
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRAWAN

Table 61: KR920-923 TX power table

1317 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output 1318 power referenced to an isotropic antenna radiating power equally in all directions and whose 1319 gain is expressed in dBi.

1320

1327

- By default MaxEIRP is considered to be +14dBm. If the end-device cannot achieve 14dBm EIRP, the MaxEIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.
- When the device transmits in a channel whose frequency is <922MHz, the transmit power SHALL be limited to +10dBm EIRP even if the current transmit power level set by the

1326 network server is higher.

2.9.4 KR920-923 JoinAccept CFList

The KR920-923 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

13351336

1337

1338

1339

1340 1341

1342

1343

1344 1345

1333

1334

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.9.5 KR920-923 LinkAdrReg command

The KR920-923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

1346 1347

ChMaskCntl	ChMask applies to		
0	Channels 0 to 15		
1	RFU		
•••			
4	RFU		
5	RFU		
6	All channels ON		
	The device SHOULD enable all currently defined		
	channels independently of the ChMask field value.		
7	RFU		

1348 1349 Table 62: KR920-923 ChMaskCntl value table

1350 If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "**Channel mask ACK**" bit in its response.

2.9.6 KR920-923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for the regulation of dwell time; less than 4 sec with LBT. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

1	359

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6:15	Not defined	

Table 63: KR920-923 maximum payload size

 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6:15	Not defined	

 Table 64: KR920-923 maximum payload size (not repeater compatible)

2.9.7 KR920-923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset Upstream data rate	0	1 Dow	2 vnstream data	3 a rate in RX1	4 slot	5
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

1372 Table 65 : KR920-923 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 921.90MHz / DR0 (SF12, 125 kHz).

2.9.8 KR920-923 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which
		uses inverted signal polarity

Table 66: KR920-923 beacon settings

13771378

1375

1376

1379 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1380 The beacon default broadcast frequency is 923.1MHz.

The class B default downlink pingSlot frequency is 923.1MHz

13811382

1383

2.9.9 KR920-923 Default Settings

1384 The following parameters are recommended values for the KR920-923Mhz band.

1385	RECEIVE_DELAY1	1 s
1386	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1387	JOIN_ACCEPT_DELAY1	5 s
1388	JOIN_ACCEPT_DELAY2	6 s
1389	MAX_FCNT_GAP	16384
1390	ADR_ACK_LIMIT	64
1391	ADR_ACK_DELAY	32
1202	ACK TIMEOUT	2 1/ 1 c (random dalay between 1 and 2

1392 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1393 If the actual parameter values implemented in the end-device are different from those default 1394 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1395 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network 1396 server using an out-of-band channel during the end-device commissioning process. The 1397 network server may not accept parameters different from those default values.

2.10 IN865-867 MHz ISM Band

2.10.1 IN865-867 Preamble Format

The following synchronization words SHOULD be used:

1401 1402

1403

1405

1406

1407 1408

1410

1399

1400

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 67: IN865-867 synch words

1404 2.10.2 IN865-867 ISM Band channel frequencies

This section applies to the Indian sub-continent.

The network channels can be freely attributed by the network operator. However the three following default channels MUST be implemented in every India 865-867MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening

1409

	Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
Ī	LoRa	125	865.0625	DR0 to DR5	3
			865.4025	/ 0.3-5 kbps	
			865.985		

Table 68: IN865-867 default channels

1412 1413

1414

1411

End-devices SHALL be capable of operating in the 865 to 867 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

1415 1416 1417

1418

1419

The first three channels correspond to 865.0625, 865.4025, and 865.985 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

1420 1421 1422 The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

1423 1424

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
	125	865.0625	DR0 – DR5	3
LoRa		865.4025	/ 0.3-5 kbps	
		865.9850		

1425

1426

Table 69: IN865-867 JoinReg Channel List

2.10.3 IN865-867 Data Rate and End-device Output Power Encoding

- There is no dwell time or duty-cycle limitation for the INDIA 865-867 PHY layer. The TxParamSetupReq MAC command is not implemented by INDIA 865-867 devices.
- The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) in the INDIA 865-867 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	RFU	RFU
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN	

Table 70: IN865-867 TX Data rate table

1432 1433 1434

The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

1435 1436

TXPower	Configuration (EIRP)				
0	Max EIRP				
1	Max EIRP – 2dB				
2	Max EIRP – 4dB				
3	Max EIRP – 6dB				
4	Max EIRP – 8dB				
5	Max EIRP – 10dB				
6	Max EIRP – 12dB				
7	Max EIRP – 14dB				
8	Max EIRP – 16dB				
9	Max EIRP – 18dB				
10	Max EIRP – 20dB				
1114	RFU				
15	Defined in				
	LoRAWAN				

1437 1438

Table 71: IN865-867 TxPower table

1439 1440 1441

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1442 1443 By default MaxEIRP is considered to be 30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

1444 1445

1446

2.10.4 IN865-867 JoinAccept CFList

1447 The India 865-867 ISM band LoRaWAN implements an optional channel frequency list 1448 (CFlist) of 16 octets in the JoinAccept message.

1449 In this case the CFList is a list of five channel frequencies for the channels three to seven 1450 whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these 1451 channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.10.5 IN865-867 LinkAdrReq command

The INDIA 865-867 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to				
0	Channels 0 to 15				
1	RFU				
4	RFU				
5	RFU				
6	All channels ON				
	The device SHOULD enable all currently				
	defined channels independently of the				
	ChMask field value.				
7	RFU				

Table 72: IN865-867 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.10.6 IN865-867 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

I	4	1	U
1	4	7	6

DataRate	M	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6	230	222		
7	230	222		
8:15	Not defined			

Table 73: IN865-867 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

1479 1480

DataRate	M	N				
0	59	51				
1	59	51				
2	59	51				
3	123	115				
4	250	242				
5	250	242				
6	250	242				
7	250	242				
8:15	Not d	Not defined				

1481

14821483

1484

1485

1486

Table 74: IN865-867 maximum payload size (not repeater compatible)

2.10.7 IN865-867 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:7] range. Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1487 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective RX1DROffset	0	1	2	3	4	5	-1	-2

1488 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (0, Upstream data rate – 1489 Effective_RX1DROffset))

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 866.550 MHz / DR2 (SF10, 125 kHz).

2.10.8 IN865-867 Class B beacon and default downlink channel

1493 The beacons are transmitted using the following settings

The beaterie are transmitted deling the renewing country					
DR	4	Corresponds to SF8 spreading factor with			
		125 kHz BW			
CR	1	Coding rate = 4/5			
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted signal polarity			

1494 1495

1492

The beacon frame content is:

Size (bytes)	1	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1496 The beacon default broadcast frequency is 866.550MHz.

The class B default downlink pingSlot frequency is 866.550MHz

ADR_ACK_DELAY

1499 **2.10.9 IN865-867 Default Settings**

1500 The following parameters are recommended values for the INDIA 865-867MHz band.

1501		
1502	RECEIVE_DELAY1	1 s
1503	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1504	JOIN_ACCEPT_DELAY1	5 s
1505	JOIN_ACCEPT_DELAY2	6 s
1506	MAX_FCNT_GAP	16384
1507	ADR ACK LIMIT	64

1509 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

32

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

2.11 RU864-870 MHz ISM Band

2.11.1 RU864-870 Preamble Format

The following synchronization words SHOULD be used:

1520 1521

1518

1519

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

1522 Table 75: RU864-870 synch words

2.11.2 RU864-870 ISM Band channel frequencies

The network channels can be freely attributed by the network operator in compliance with the allowed sub-bands defined by the Russian regulation. However the two following default channels MUST be implemented in every RU864-870 MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

1527 1528

1523 1524

1525

1526

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.9 869.1	DR0 to DR5 / 0.3-5 kbps	2	<1%

1529

Table 76: RU864-870 default channels

1530 1531 RU864-870 MHz end-devices SHALL be capable of operating in the 864 to 870 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 8 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

153315341535

1536

1537

1532

The first two channels correspond to 868.9 and 869.1 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

1538 1539 1540 The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.9 869.1	DR0 – DR5 / 0.3-5 kbps	2

1545 1546

1547

1548

1549

1550

1551 1552

1553

1554

1555

1560 1561

1562

1563 1564 Table 77: RU864-870 JoinReq Channel List

1544 2.11.3 RU864-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the RU864-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in RU864-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the RU864-870 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN ¹	

Table 78: RU864-870 TX Data rate table

EIRP² refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRAWAN

Table 79: RU864-870 TX power table

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve +16dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.11.4 RU864-870 JoinAccept CFList

¹ DR15 and TXPower15 are defined in the LinkADRReq MAC command of the LoRaWAN1.1 specification ² ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

The RU 864-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels two to six whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch2	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.11.5 RU864-870 LinkAdrReq command

The RU864-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
• •	:
4	RFU
5	RFU
6	All channels ON
	The device SHOULD enable all currently
	defined channels independently of the
	ChMask field value.
7	RFU

Table 80: RU864-870 ChMaskCntl value table

 If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.11.6 RU864-870 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606 1607

1608 1609

1610

1611

4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 81: RU864-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250 242		
8:15	Not defined		

Table 82: RU864-870 maximum payload size (not repeater compatible)

2.11.7 RU864-870 Receive windows

The RX1 receive window uses the same channel as the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Downstream data rate in RX1 slot				
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 83: RU864-870 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.1MHz / DR0 (SF12, 125 kHz)

2.11.8 RU864-870 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted
		signal polarity

1612 Table 84: RU864-870 beacon settings

1613

1614 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1615 The beacon default broadcast frequency is 869.1 MHz.

1616 The class B default downlink pingSlot frequency is 868.9 MHz.

1617

1618 **2.11.9 RU864-870 Default Settings**

1619 The following parameters are recommended values for the RU864-870 MHz band.

1620	RECEIVE_DELAY1	1 s
1621	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1622	JOIN_ACCEPT_DELAY1	5 s
1623	JOIN_ACCEPT_DELAY2	6 s
1624	MAX_FCNT_GAP	16384
1625	ADR_ACK_LIMIT	64
1626	ADR_ACK_DELAY	32
400-	4 014 714 45 01 15	

1627 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

3 Revisions

1635

1661

3.1 Revision A 1636 1637 Initial 1.1 revision, the regional parameters were extracted from the LoRaWANV1.0.2 1638 Modified meaning of ChMaskCntl=5 for the US900 region and AU900 (TC11 1639 1640 CR1274) DR=15 and TXPower=15 are now reserved for all regions, meaning is defined in 1641 1642 LoRaWAN1.1 1643 Added Latin America draft language Added Russia draft language 1644 Fixed AU beacon data rate 1645 1646 General cleanup of table names, etc. 3.2 Revision B 1647 1648 Moved to Revision B in anticipation of next release First pass at standardizing regional names using standard country 2 letter 1649 1650 abbreviations where applicable First pass at capitalizing all normative text 1651 1652 Added statement to require LoRa devices to always act in compliance with local rules and regulations. 1653 1654 Added section 1.1 Conventions Added Country to channel plan cross reference table 1655 Updated as per LoRaWANv1.1 CR TC19.00002.000.20170614 1656 1657 Updated AS923 JoinReg data rates to reflect a range of DR2-DR5 Added in Region Names for use by Back-End specification as per CR 1658 TC19.00016.001 1659 Added changes as per CR TC20 00006.001 1660

1662 4 Bibliography

1663 4.1 References

1664

1665 [LORAWAN] LoRaWAN Specification, V1.1, the LoRa Alliance, May 2017.

1666 5 NOTICE OF USE AND DISCLOSURE

- 1667 Copyright © LoRa Alliance, Inc. (2015). All Rights Reserved.
- The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership
- 1670 Agreements.
- 1671 Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without
- limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance).
- The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify
- any or all such third party intellectual property rights.
- 1675 This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE
- 1676 DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY
- 1677 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD
- 1678 PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING
- 1679 PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF
- 1680 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.
- 1681 IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS
- 1682 OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR
- 1683 EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR
- 1684 IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF
- 1685 ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.
- The above notice and this paragraph must be included on all copies of this document that are made.
- 1687 LoRa Alliance, Inc.
- 1688 2400 Camino Ramon, Suite 375
- 1689 San Ramon, CA 94583
- 1690 Note: All Company, brand and product names may be trademarks that are the sole property of their respective
- 1691 owners.