Interaktive Systeme

1. Einleitung

Prof. Dr. Eckhard Kruse

DHBW Mannheim

Organisation – TINF21AI

- Interaktive Systeme: SS 2024, TINF21AI
- Termine: s. Stundenplan
- Vorlesung + Übungen (teilweise Entwurf/Programmierung)
- Fragen: Am besten direkt in der VL
 - Eckhard Kruse, Raum 344 B, Tel. (0621) 4105 1262, kruse@dhbw-mannheim.de
- Verteilung der Folien

- nach jeder Vorlesung per E-Mail-Verteiler
- Leistungsnachweis (1 benotete Prüfungsleistung)
 - Klausur: Ende des SS

Mensch-Umwelt-Interaktion

Wie interagiert der Mensch mit seiner Umwelt?

... Bit/s?

Mensch-Computer-Interaktion

Interaktion zwischen zwei verschiedenen Welten...

Variante 1
Mensch-Computer-Interaktion:

Variante 2

Mensch-Computer-Interaktion:

Mensch-Computer-Interaktion

Übung

Mensch-Computer-Interaktion

Betrachten Sie die Interaktion zwischen dem Menschen und heutigen Computer-/IT-Anwendungen.

- a) Nennen Sie Bereiche und Anwendungsbeispiele, in denen die Interaktion
 - eher am Computer orientiert ist,
 - eher am Menschen orientiert ist.
- b) Welche Wahrnehmungskanäle und motorischen Funktionen des Menschen werden heute in welchem Umfang unterstützt?
- c) Wo sehen Sie heutige Einschränkungen / ungenutztes Potenzial? Nennen Sie mögliche Gründe für diese Einschränkungen (Technik, Kosten, Akzeptanz...).

Mensch-Maschine-Schnittelle

Die **Mensch-Maschine-Schnittstelle*** ist die Komponente in einem Mensch-Maschine-System, über das der Mensch mit dem technischen System kommuniziert/interagiert.

Verwandte Begriffe:

- Mensch-Maschine-Schnittstelle (MMS)
- Benutzerschnittstelle
- User interface (UI)
- Human-Machine-Interface (HMI)
- Human-System-Interface (HSI)
- Man-Machine-Interface (MMI)
- Man-Machine-Communication
- Mensch-Computer-Interaktion (MCI)
- Human Computer Interaction (HCI)
- · ...

Interaktion

Definition

(Mensch-Computer-)Interaktion bezeichnet das Wechselspiel / den Regelkreis zwischen Mensch und Computer, bei dem der Mensch durch Eingaben das Verhalten des Computers steuert und der Computer durch Ausgaben Rückmeldungen gibt. (lat. inter agere - "zwischen-handeln")

Vergleich mit zwischenmenschlicher Interaktion?

- Asymmetrische Beziehung: Mensch agiert, Computer reagiert.
- Verschiedene Grade der Interaktivität: 'Frequenz des Regelkreises'

Betrachten Sie Computer-Anwendungen und kategorisieren Sie sie gemäß dem Grad der Interaktivität und der Frequenz der Regelkreise. Unterscheiden Sie hinsichtlich

- a) Anwendungen / Anwendungsfällen
- b) Interaktionsmechanismen / Ein-/Ausgabegeräten

Mensch-Maschine-Schnittstelle

Mensch-Maschine-Schnittstellen außerhalb der Computerwelt:

- Auto(lenkrad)
- Türklinke
- Lichtschalter
- Fernseher
- Fahrkartenautomat
- Telefon
- Küchen-/Haushaltsgeräte
- Smart Home
- **...**

Wie beurteilen Sie diese Schnittstellen in Bezug auf Grad der Rückkopplung, Intuitivität, Nutzung menschlicher Wahrnehmung, Motorik usw.?

Türklinke vs. Computer

Türklinke, Features:

- Intuitive Bedienung
- Haptische Eingabe, haptisches Feedback
- Auditives Feedback
- Visuelles Feedback
- Keine Latenzzeiten, direkte Rückkopplung
- Fehlertoleranz, einfache Fehlerkorrektur

Computeranwendungen können von bewährten technischen Systemen viel lernen.

Gute Benutzerschnittstellen?

Übung

Gute Benutzerschnittstellen

Was sind gute Benutzerschnittstellen? Orientieren Sie sich dazu zunächst an technischen Systemen und Alltagsgegenständen.

- a) Nennen Sie Beispiele für gute und weniger gute Benutzerschnittstellen aus Ihrer Alltagsumgebung.
- b) Überlegen Sie sich allgemeine Merkmale, die eine gute Benutzerschnittstelle auszeichnen.
- c) Welche Rolle spielt die Art des Anwenders (Vorwissen, Vorerfahrung, Spezialist vs. Normalanwender)?

Gute Benutzerschnittstellen

10 Usability Heuristics for User Interface Design

[Jakob Nielsen, 1990,1994] ,updated '2020

- Visibility of system status
- Match between system and the real world
- User control and freedom
- Consistency and standards
- Error prevention
- Recognition rather than recall
- Flexibility and efficiency of use
- 8. Aesthetic and minimalist design
- Help users recognize, diagnose, and recover from errors
- 10. Help and documentation

s.a.: https://www.nngroup.com/ Nielsen Norman Group, "World Leaders in Research-Based User Experience"

Softwareergonomie

Softwareergonomie (Usability engineering) beschäftigt sich mit der Entwicklung leicht verständlicher und einfach benutzbarer Software. Im Mittelpunkt steht das Software-Qualitätsmerkmal der Bedienbarkeit bzw. Usability.

Kriterien:

- Anforderungen aus Sicht des Anwenders
- Usability-Metriken
- Technische Möglichkeiten
- Etablierte Standards und Normen
- Kosten/Nutzen-Relation

Beispiele?
Usability-Metriken?

weiterer Begriff:
User Experience (UX)

Unterschied zur Usability?

s.a. **Ergonomie** = Wissenschaft von der Gesetzmäßigkeit menschlicher Arbeit mit dem Ziel, die Arbeitsumgebung und Bedingungen menschgerecht und somit effizient zu gestalten.

User Experience

User Experience (UX) bezeichnet die "Gesamtheit der Erfahrungen des Anwenders während der Nutzung eines Produkts oder Systems." (und über die Nutzung hinaus...)

Marc Hassenzahl (2003):

Interaktive Systeme: 1.Einleitung

"The Thing and I: Understanding the relationship between User and a product."

"hedonische Qualität"

"pragmatische Qualität"

Beispiele?

User-centered design

User Centered Design / benutzerorientiertes Design stellt den Anwender in den Mittelpunkt des Entwurfs interaktiver Systeme. Basierend auf seinen Erwartungen und Verhaltensweisen wird ein geeigneter Entwurf erstellt.

- Wer sind die Anwender?
- Was sind die Ziele des Anwenders?
- Welches Wissen / welche Vorerfahrungen hat der Anwender?
- Welche Funktionen möchte/muss der Anwender ausführen?
- Welche Information benötigt der Anwender? Wann? In welcher Form?
- Wie sollte das System aus Sicht des Anwenders funktionieren?

Vorlesungsinhalte

Sinneswahrnehmung

Die fünf* Sinne *(5 = traditionelle Zählweise)

Menschliche Sinne

- Visuell → Sehen, Auge Licht → Helligkeit, Farbe, Kontrast, Linien, Form, Gestalt, Bewegung, Räumlichkeit...
- Akustisch/auditiv → Hören, Ohr (+ Körper, Tastsinn).
 Schall → Geräusche, Töne, Kläng, Sprache, Musik, räumliche Richtung+Entfernung
- Haptisch (taktil) Tastsinn → fühlen, Haut Druck, Berührung, Vibrationen, Temperatur
- Olfaktorisch → riechen, Nase Riech- und Duftstoffe
- Gustatorisch → schmecken, Zunge (und Nase) Geschmack/chemische Eigenschaften
- Vestibulär, → Gleichgewichtssinn: Gleichgewichtsorgan (im Innenohr)
 Gleichgewicht, Lage+Veränderungen, Beschleunigung
- Kinästhetisch → Rezeptoren in Muskeln, Gelenken, Sehnen Eigenwahrnehmung der Körper/Gelenkestellung
- Propriozeptiv → Rezeptoren in Organen
 Eigenwahrnehmung der Körperorgane

Sinneswahrnehmung

Übung

Sinneswahrnehmung

Betrachten Sie die Interaktion zwischen dem Menschen und heutigen Computer(basierten)-Anwendungen aus Sicht der menschlichen Wahrnehmung:

- a) Welche Wahrnehmungskanäle spricht der Computer an? Mit welchen technischen Mechanismen?
- b) Wie beurteilen Sie die Wichtigkeit und Bandbreite der Kanäle?
- c) Auf welche Weise werden die Sinne im Einzelnen genutzt?
- d) Was sind verbreitete Standardmethoden, wo gibt es fortschrittlichere Ansätze / wo Potenzial für die Zukunft?