EX-FAKE FAKE NEWS EXPLAINED

Interim Presentation

Presented by Lihi Nofar, Tomer Portal, Aviv Elbaz

DESCRIPTION

Input: News article consisting of title, body text, author, subject, and date

Output: Binary label – Fake or Real

NLP Task: Text classification with an

explainability component - identifying what

contributed to the decision

Data and evaluation

<u>Source:</u> Fake and Real News Dataset - Kaggle

 \approx 40,000 news articles with

Option to analyze title vs. body separately

Identifying "evidence" in the text that suggests

forgery (dramatic language, manipulative wording).

PRIOR ART

Source / Title	Approach / Model	Data	Metrics	Results
CSI: A Hybrid Deep Model for Fake News Detection. Ruchansky et al. (CIKM 2017)	Hybrid deep architecture with three modules: Capture: RNN to model temporal patterns in article text & user responses Score: Feed-forward NN learning user/source credibility Integrate: Final classification	Two real-world social-media datasets (Twitter & Weibo)	Accuracy (vs. seven SOTA detectors)	Outperforms seven state-of-the-art fake-news detectors
EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. Wang et al. (KDD 2018)	Feature Extractor: Multi-modal embeddings (textual, visual, social) Fake News Detector: Classifier on extracted features Event Discriminator: Learns event-invariant representations	Multimedia datasets from Weibo & Twitter	Accuracy (benchmark comparison)	Achieves best overall accuracy across two benchmark datasets
Early Detection of Fake News on Social Media Through Propagation Path Classification. Liu & Wu (AAAI 2018)	Propagation-path time-series classification: Construction: Transform spread into multivariate series of user features RNN Branch: Captures temporal dynamics CNN Branch: Captures local variations Classifier: Combines RNN & CNN outputs	Twitter15, Twitter16, and Sina Weibo datasets	Accuracy 5 min after spread begins	85% accuracy on Twitter; 92% on Weibo within five minutes

STEPS

- **1. Raw Data**: the original data is collected from the Fake and Real News Dataset on Kaggle and stored in the data/raw/directory.
- **2. Preprocessing:** in this stage, the text is cleaned, stopwords are removed, and the text is lemmatized.
- **3. Feature Extraction:** the processed text is converted into numerical representations using methods like TF-IDF or word embeddings.
- **4. Model Training:** the model is built and trained on the processed data to learn how to distinguish between real and fake news.
- **5. Performance Evaluation:** the model is evaluated using metrics such as Accuracy, Precision, Recall, and F1-score.
- **6. Explainability:** tools like SHAP or LIME are used to explain the model's decisions, such as which words contributed most to the classification.
- **7. Synthetic Data Generation:** generative models are used to create fake news samples, which can help expand the dataset and improve model training.

EXPLORATION & BASELINE

Data:

- From Kaggle: Fake and Real News Dataset
- ≈ 40,000 articles
- Columns: title, text, author, date, subject
- Difference in average length between real and fake articles

Preliminary analysis:

- 1. Text Length Analysis: fake articles are shorter (mean = 450 words) ,real articles are longer (mean = 780 words)
- 2. Subject Distribution: fake News: dominant in "politics" (45%) and "health" (30%), real News: spread across "technology" (25%), "world news" (35%), "business" (20%)
- 3. Temporal Trends: fake news peaks during election months (October-November)

INSIGHTS

- **Key Observations:** fake articles use shorter, emotional language (exclamation marks, clickbait titles). Real articles contain more named entities (organizations, locations)
- **Baseline Limitations:** struggles with sophisticated fake news mimicking journalistic style

Next Steps: implement RoBERTa fine-tuning for contextual understanding

THANKS FOR LISTENING