



# PLANEJAMENTO DE CAPACIDADE, MODELAGEM E AVALIAÇÃO DE DESEMPENHO DE SISTEMAS COMPUTACIONAIS

ETAPA 7: PREVISÃO DA CARGA DE TRABALHO FUTURA

**Equipe MAD** 

A partir da Etapa 7 da Metodologia para o Planejamento de Capacidade inicia-se as ações preventivas.

Uma etapa essencial para avaliar o desempenho futuro de um sistema é preveer a carga de trabalho futura. Para isso normalmente é aplicado modelos de Regressao Linear.

Modelo de Regressão Linear



Problemas e erros de previsão:



# ANÁLISE DE CORRELAÇÃO DE PEARSON

Até qual situação o modelo de regressão linear pode ser utilizado?

| Х   | У     | Х   | У     | Х   | у     |
|-----|-------|-----|-------|-----|-------|
| 8,6 | 0,889 | 8,4 | 0,894 | 8,7 | 0,896 |
| 8,9 | 0,884 | 8,2 | 0,864 | 9,3 | 0,928 |
| 8,8 | 0,874 | 9,2 | 0,922 | 8,9 | 0,886 |
| 8,8 | 0,891 | 8,7 | 0,909 | 8,9 | 0,908 |
| 8,4 | 0,874 | 9,4 | 0,905 | 8,3 | 0,881 |
| 8,7 | 0,886 | 8,7 | 0,892 | 8,7 | 0,882 |
| 9,2 | 0,911 | 8,5 | 0,877 | 8,9 | 0,904 |
| 8,6 | 0,912 | 9,2 | 0,885 | 8,7 | 0,912 |
| 9,2 | 0,895 | 8,5 | 0,866 | 9,1 | 0,925 |
| 8,7 | 0,896 | 8,3 | 0,896 | 8,7 | 0,872 |

$$r = \frac{S_{xy}}{\sqrt{S_{xx}.S_{yy}}} \qquad -1 \le r \le +1$$

$$Sxx = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$

$$Syy = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n}$$

$$Sxy = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n}$$

Sxx = 2.88 Syy = 0.00840 Sxy = 0.59 r = 0.59

0.9 correlação muito forte.

0.7 a 0.9 correlação forte.

0.5 a 0.7 correlação moderada.

0.3 a 0.5 correlação fraca.

0 a 0.3 correlação desprezível.

Comportamentos não-lineares:



Modelo de Regressão Linear



■ Modelo de Regressão Linear

Modelo: L= a + b \* t

$$a = \frac{(\sum L)(\sum T^2) - (\sum T)(\sum T * L)}{m(\sum T^2) - (\sum T)^2}$$

$$b = \frac{m(\sum T * L) - (\sum T)(\sum L)}{m(\sum T^2) - (\sum T)^2}$$

| Mês | Carga<br>média<br>Req/min |
|-----|---------------------------|
| Jan | 2                         |
| Fev | 4                         |
| Mar | 3                         |
| Abr | 6                         |

$$a = \frac{(\sum L) (\sum T^2) - (\sum T)(\sum T * L)}{m (\sum T^2) - (\sum T)^2}$$

$$a = \frac{(15) (30) - (10)(43)}{4 (30) - (10)^2} \quad a=1$$

$$b = \frac{m(\sum T * L) - (\sum T)(\sum L)}{m(\sum T^2) - (\sum T)^2}$$
$$b = \frac{4(43) - (10)(15)}{4(30) - (10)^2} b = 1.1$$

| Mês | Carga<br>média<br>Req/min | Carga média<br>Req/min | erro                   |
|-----|---------------------------|------------------------|------------------------|
| Jan | 2                         | 2,1                    | 0,1                    |
| Fev | 4                         | 3,2                    | 0,8                    |
| Mar | 3                         | 4,3                    | 1,3                    |
| Abr | 6                         | 5,4                    | 0,6                    |
| Mai | -                         | 6,6                    | = 2.8/4<br>= $\pm 0.7$ |

*Modelo:* L= 1,0 + 1,1 \* t

Maio:

$$L= 1,0 + 1,1 * 5$$

$$L=6.6 \pm 0.7$$

#### Exemplo:

| Mês | Carga<br>média<br>Req/min | Carga média<br>Req/min | erro                    | <i>Modelo:</i> L= 1,8 + 1,2 * t |
|-----|---------------------------|------------------------|-------------------------|---------------------------------|
| Jan | 3                         | 3                      | 0,0                     |                                 |
| Fev | 5                         | 4,2                    | 0,8                     | Junho:                          |
| Mar | 4                         | 5,4                    | 1,4                     | L= 1,8 + 1,2 * 6                |
| Abr | 7                         | 6,6                    | 0,4                     |                                 |
| Mai | 8                         | 7,8                    | 0,2                     | $L=9 \pm 0,56$                  |
| Jun | ?                         | 9                      | = 2.8/5<br>= $\pm 0.56$ | L=9,56 (pior caso)              |

#### Distribuição de Poisson

É uma distribuição discreta de probabilidades utilizada para eventos periódicos ou intervalares, tais como:

- a) Número de chamadas telefônicas durante um dia;
- b) Número de acidentes de transito, numa cidade, durante um período do dia;
- c) Número de consultas a uma página Web durante uma semana; etc.

# DISTRIBUIÇÃO DE POISSON

|             | Freq.   | Freq.    |         |         |
|-------------|---------|----------|---------|---------|
|             | Simples | Relativa |         | Dist.   |
| evento (xi) | (fi)    | (hi)     | xi * fi | Poisson |
| 0,000       | 13,000  | 0,210    | 0,000   | 0,187   |
| 1,000       | 20,000  | 0,323    | 20,000  | 0,313   |
| 2,000       | 15,000  | 0,242    | 30,000  | 0,263   |
| 3,000       | 6,000   | 0,097    | 18,000  | 0,147   |
| 4,000       | 6,000   | 0,097    | 24,000  | 0,062   |
| 5,000       | 1,000   | 0,016    | 5,000   | 0,021   |
| 6,000       | 0,000   | 0,000    | 0,000   | 0,006   |
| 7,000       | 1,000   | 0,016    | 7,000   | 0,001   |
| 8,000       | 0,000   | 0,000    | 0,000   | 0,000   |
|             | 62,000  | 1,000    | 104,000 |         |
|             |         | Média=   | 1,677   |         |

$$f(x) = \frac{\alpha^x}{x!} \exp(-\alpha)$$
  $\alpha = \frac{\sum x_i f_i}{n}$ 

