Olimpiada Naţională de Matematică Etapa finală, 8 Aprilie 2014

CLASA a X-a

Problema 1. Fie n un număr natural nenul. Pentru fiecare număr natural k notăm cu a(k, n) numărul divizorilor naturali d ai lui k astfel încât

$$k \le d^2 \le n^2$$
. Să se calculeze $\sum_{k=1}^{n^2} a(k,n)$.

Soluţie. ¹Pentru $1 \le k \le n^2$, fie A(k,n) mulţimea divizorilor naturali d ai lui k astfel încât $k \le d^2 \le n^2$. Un număr natural $d \in \{1, 2, ..., n\}$ aparţine mulţimilor

$$A(d,n), A(2d,n), \ldots, A(d^2,n)$$

și numai acestora.

este $\underbrace{1+1+\cdots+1}_{d \text{ ori}} = d.$

......2 puncte

Aşadar
$$\sum_{k=1}^{n^2} a(k,n) = \sum_{d=1}^{n} d = n(n+1)/2.$$

Problema 2. Considerăm funcția $f: \mathbb{N}^* \to \mathbb{N}^*$ cu proprietățile:

- a) f(1) = 1,
- **b)** f(p) = 1 + f(p-1) pentru orice număr prim p,
- c) $f(p_1p_2\cdots p_n) = f(p_1) + f(p_2) + \cdots + f(p_n)$ pentru orice numere prime, nu neapărat distincte.

Să se arate că $2^{f(n)} \le n^3 \le 3^{f(n)}$ pentru orice număr natural $n, n \ge 2$.

Soluție. Cum 2 este număr prim, avem f(2) = 1 + f(1) = 2, de unde $2^2 \le 2^3 \le 3^2$. Vom demonstra dubla inegalitate $3\log_3 n \le f(n) \le 3\log_2 n$ prin inducție după n.

......1 punct

 $^{^1}$ Cerința este echivalentă cu dubla numărare a cardinalului mulțimii $S(n)=\{(k,d)\mid d\mid k,k\leq d^2\leq n^2,1\leq k\leq n^2\}.$

factori primi, nu neapărat distincți. Dacă n nu este prim, i.e. $k \ge 2$, din ipoteza de inducție avem $\hat{f}(n) = f(p_1) + f(p_2) + \cdots + f(p_k) \ge 3 \sum_{i=1}^k \log_3 p_i = 3 \log_3 n$ și $f(n) \le 3 \sum_{i=1}^{k} \log_2 p_i = 3 \log_2 n.$ Dacă n este prim, i.e. k = 1, atunci n - 1 este număr par și f(n) = $1 + f(n-1) = 1 + f(2\frac{n-1}{2}) = 1 + f(2) + f(\frac{n-1}{2}) = 3 + f(\frac{n-1}{2}).$ **Problema 3.** Fie n un număr natural nenul și $A = \{1, 2, ..., n\}$. Să se determine numărul funcțiilor crescătoare $f:A\to A$ cu proprietatea că $|f(x)-f(y)| \leq |x-y|$ pentru orice $x, y \in A$. Soluţie. Observăm că $f(k+1) - f(k) \stackrel{\text{not}}{=} a_k \in \{0,1\}, k = 1, 2, \dots, n-1.$ Mai mult, dacă $a_k \in \{0, 1\}$, atunci $|f(x) - f(y)| \le |x - y|$ pentru orice x, $y \in A$. 2 Fixând f(0) = a și f(n) = b, avem $b - a = a_1 + \cdots + a_{n-1}$, deci numărul funcțiilor f cu proprietatea cerută este egal cu numărul de alegeri a b-atermeni egali cu 1 în suma $a_1 + \cdots + a_{n-1}$, adică $n(a,b) = C_{n-1}^{b-a}$.

Fie n un număr natural, $n \geq 3$, și fie $n = p_1 p_2 \cdots p_k$ descompunerea sa în

$$\sum_{k=0}^{n-1} (n-k)C_{n-1}^k.$$

$$\vdots$$
In total cunt $\sum_{k=0}^{n-1} nC_k^k$ $\sum_{k=0}^{n-1} kC_k^k$ = a

Problema 4. Fie n un număr întreg, $n \ge 2$, și fie numerele complexe a_0 , a_1, a_2, \ldots, a_n cu $a_n \ne 0$. Să se arate că sunt echivalente afirmațiile:

²Prin urmare, o funcție f cu proprietăție cerute este complet determinată de n-uplul $(f(0), a_1, a_2, \ldots, a_{n-1}) \in A \times \{0, 1\} \times \cdots \times \{0, 1\}$ ce respectă condiția $f(0) + a_1 + \cdots + a_{n-1} \le n$.

- P. $|a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0| \le |a_n + a_0|$ pentru orice număr complex z de modul 1, **Q.** $a_1 = a_2 = \cdots = a_{n-1} = 0$ și $a_0/a_n \in [0, \infty)$. Soluţie. Q. \Longrightarrow P. Dacă $a_1 = a_2 = \cdots = a_{n-1} = 0$ şi $a_0/a_n \in [0, \infty)$, atunci $|a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0| = |a_n z^n + a_0| \le |a_n z^n| + |a_0| =$ $|a_n| + |a_0| = |a_n + a_0|$, pentru orice număr complex z de modul 1. fiecare $\varepsilon \in U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ avem $|a_n + g(\varepsilon) + a_0| \le |a_n + a_0|$, adică $|w + g(\varepsilon)| \le |w|$ sau $|g(\varepsilon)|^2 + w\overline{g(\varepsilon)} + \overline{w}g(\varepsilon) \le 0.$

 $\frac{1}{n} \sum_{\varepsilon \in U_n} g(\varepsilon) / \varepsilon^k = 0, \ k = 1, 2, \dots, n - 1.$

.....1 punct Obținem $|a_n z^n + a_0| \le |a_n + a_0|$ pentru orice număr complex z de modul 1. Notând $c = a_0/a_n$ și $t = z^n$, avem $|t + c| \le |1 + c|$ pentru orice număr complex t de modul 1. Fie P, M, A punctele din planul complex de afixe t, -c, respectiv 1. At unci $PM \leq MA$, oricare ar fi P pe cercul unitate, prin urmare cercul de centru M și raza MA conține cercul unitate. Cum cele două cercuri au punctul comun A, deducem că sunt tangente în A, deci M și O sunt coliniare cu A și $MA \geq OA = 1$. Deducem că $-c \leq 0$, deci $c \in [0, \infty)$.