What is Software Engineering and its Evolution in Hindi with examples

* It is systematic, disciplined, Cost-effective techniques for softwage development.

* Engineering approach to develop a softwage.

Evolution

1945-65 > Onigin 1965-85 > Crisis 100

1990 - 2000 > Internet

2000 - 2010 → Light weight 2010 - Till → AI, M

V-Shaped Model

- · Also known as Verification & Validation Model
- Extension of Waterfall model.
- Testing is associated with every phase of lifecycle.
- Verification Phase(Requirement analysis, System design, Architecture design, Module design)
- Validation Phase(Unit testing, Integration, System, Acceptance Testing)

A CENTRAL COSC

Advantages

- Time saving
- Good understanding of project in the beginning.
- Every component must be testable.
- Progress can be tracked easily.
- Proactive defect tracking

Disadvantages

- No feedback so less scope of changes
- · Risk analysis not done
- Not good for big or object-oriented projects

Evolutionary Wodel with real life examples | Software Engineering

Evolutionary model

- Evolutionary model is a combination of Iterative and Incremental model of software development life cycle.
- Incremental model first implement a few basic features and deliver to the customer. Then build the next part and deliver it again and repeat this step until the desired system is fully realized. No long-term plans are made.
- Iterative model main advantage is its feedback process in every phase.
- Also known as "Design a little, build a little, test a little, deploy a little model".

Evolutionary Model with real life examples | Software Engineering Advantages

- Customer requirements are clearly specified.
- Risk analysis is better.
- It supports changing environment.
- Initial operating time is less.
- Better suited for large mission-critical projects.

Disadvantages

- Not suitable for smaller projects.
- Cost
- Highly skilled resources are required.

Advantages: 1) Forequent Delivery

- 2) Face to face Communication with client
- 3) Changes
- 4) Time

Disadvantage: 1) Less documentation

- 2) Maintanance Paroblem

SCRUM Model in Software Engineering | Agile Technology

SCRUM

- One of the most popular agile methodology.
- Scrum is a lightweight, iterative and incremental framework.
- Scrum breaks down the development phases into stages or cycles called "sprints".
- The development time for each sprint is maximized and dedicated, thereby managing only one sprint at a time.
- Scrum Team has scrum master and product owner with constant communications on the daily basis.
- Keywor
 Cklog, Sprint, Daily Scrum, Scrum master, Product owner,

00 4

- Freedom & Adaption
- High-quality, low-risk product.
- Reduce the development time up to 40%
- Scrum customer satisfaction is very important.
- Reviewing the current sprint before moving to new one.

 sadvantages:
- More efficient for small team size.
- No changes in the sprint.

Classical Itomatire Waterfall	Priototype	Incremental	Evolutionary	RAD	Spinal	Agile
	Model	Model	Model	Model	Model	Mdel
Basic, Rigid, Problem is Inflexible, Not for Real Boject	User Requirements Not clear, od Costly, No Early lock on Requirements > High User Involvement > Reusability	Module Delivery,	Lange Projects	Cost Constraint, User at all levels Rausability	Risk, Not for Small Projects, No Early lock On Requirements OLESS Experience Can works	Flexitale, Advanced, Possallel, Process divided into 8 Prints

Software Requirements

- · It is the description of features and functionalities of the target system.
- . It is the description of what the system should do.
- Requirements engineering (RE) refers to the process of defining, documenting, and maintaining requirements in the engineering design process.
- · It is a four step process, which includes -
 - 1. Feasibility Study
 - 2. Requirement Gathering/Elicitation
 - Stware Requirement Specification oftware Requirement Validation

Tool support for Requirements Engineering

- Observation reports (user observation)
- · Questionnaires (interviews, surveys and polls),
 - Use cases
 - User stories
- Requirement workshops
- Mind mapping
- · Role-playing
- Prototyping

Functional vs Non-functional Requirements | Requirement Engineering | Software Engineering

Functional vs Non-Functional Requirements

• Requirements, which are related to functional/Working aspect of software fall into this category.

• Non-Functional Requirements are expected characteristics of target software. (Security, Storage, Configuration, Performance, Cost, Interoperability, Flexibility, Disaster covery, Accessibility)

Software Requirements Specification(SRS)

- SRS is a description of a software system to be developed.
- It lays out functional and non-functional requirements of the software to be developed.
- It may include a set of use cases that describe user interactions that the software must provide to the user for perfect interaction.

SRS Structure

- 1. Introduction
 - 1.1 Purpose
 - 1.2 Intended Audience
 - 1.3 Scope
 - 1.4 Definitions
 - 1.5 References
- 2. Overall Description
 - 2.1 User Interfaces
 - 2.2 System Interfaces
 - 2.3 Constraints, assumptions and dependencies
 - 2.4 User Characteristics

- 3.4 Logical database requirement
- 3.5 Nonfunctional Requirements
- 4. Deliver for Approval