Review of Probability Theory & Stochastic Process

Lecturer: Vijay G. Subramanian Scribes: Xupeng Wei

1 Probability Theory

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Definition 1 (Random variable). X is a random variable, $X: \Omega \to \mathbb{R}$ that is measurable.

Borel σ -algebra $\mathcal{B}(\mathbb{R})$

 $\forall B \in \mathcal{B}(\mathbb{R}), \text{ find } X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \text{ (Inverse map)}.$

 $\tilde{\mathcal{G}} = \{X^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\}\$ - Collection of subsets of Ω .

 $\tilde{\mathcal{G}} \subset \mathcal{F} \ or \ not?$

If yes, then X is measurable and a random variable.

In simpler terms, $\forall B \in \mathcal{B}(\mathbb{R}), X^{-1}(B) \in \mathcal{F}$.

 $\sigma(\tilde{\mathcal{G}})$ - Smallest σ -algebra that contains \mathcal{G} .

X is a random variable if and only if $\sigma(\tilde{\mathcal{G}}) \subseteq \mathcal{F}$.

Induced distribution for a random variable is defined on each $B \in \mathcal{B}(\mathbb{R})$ by

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B)$$

= $\mathbb{P}(X^{-1}(B))$, since $X^{-1}(B) \in \mathcal{F}$.

We have already defined a random variable X as

$$X: \Omega \mapsto \mathbb{R}.$$
 $(\mathcal{F}, \mathbb{P})$ $(\mathbb{B}(R))$

Now we generalize to random variables taking values in other probability spaces. For example,

$$X: \Omega_1 \mapsto \Omega_2$$
 (Examples are \mathbb{R}^2 or \mathbb{R}^3).
 $(\mathcal{F}, \mathbb{P})$ (F_2)

 $X: \Omega_1 \mapsto \Omega_2$ is a random variable.

If it is a measurable map,

 $\forall B \in \mathcal{F}_2, X^{-1}(B) \in \mathcal{F}_1 \text{ needs to hold.}$

Example 2 (Uniform distribution). $\Omega = [0,1], \ \mathcal{F} = \mathcal{B}([0,1]), \ \mathbb{P}$: uniform distribution in [0,1], i.e., if $[a,b] \subseteq [0,1], \ \mathbb{P}([a,b]) = b-a$.

Then for $B \in \mathcal{B}([0,1])$, $\mathbb{P}(B) = \int_0^1 \mathbb{1}_B(x) dx$. **Example 3** (Binary expansion). $\omega \in \Omega$, $\omega_i \in \{0,1\}$.

Binary expansion: $0.\omega_1\omega_2\omega_3...$

Suppose 0.1000... with probability $\frac{1}{2}$, or 0.011111... with probability $\frac{1}{2}$.

Define a random variable $X: \Omega \mapsto \{0,1\}, X(\omega) = \omega_1, 2^{\{0,1\}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}.$

Induced measure $\mathbb{P}_X(X=0) = \frac{1}{2} = \mathbb{P}_X(X=1)$.

X is a Bernoulli random variable.

Example 4 (Decimal expansion). $\Omega = [0, 1], \mathcal{F} = \mathcal{B}([0, 1]), \mathbb{P}$ uniform distribution.

 $X: \Omega \mapsto \{0, 1, \dots, 9\}, \ \omega \to 0.\omega_1\omega_2\omega_3 \dots$ $X(\omega) = \omega_1, \ 2^{\{0, \dots, 9\}}$ contains all subsets.

 $\mathbb{P}_X(X=0) = \mathbb{P}_X(X=1) = \ldots = \mathbb{P}_X(X=9) = \frac{1}{10}$ is the induced distribution.

Typically, for discrete random variables, power set (the set of all subsets) is a σ -algebra.

Example 5 (Exponential distribution). $X(\omega) = -\log(\omega), \Omega = [0, 1].$

Space of $X(\omega)$ is \mathbb{R}_+ , $\mathcal{B}(\mathbb{R}_+)$ is the σ -algebra.

The cumulative distribution function is

$$F_X(x) = \mathbb{P}_X(X \in [0, x])$$

$$= \mathbb{P}(X^{-1}([0, x])) \qquad (X(\omega) = -\log(\omega))$$

$$= \mathbb{P}([e^{-x}, 1]) \qquad (\omega = e^{-X(\omega)})$$

$$= 1 - e^{-x},$$

which is the exponential distribution of parameter 1.

Example 6. $\Omega = \{0,1\}^2$. Elements are (0,0), (0,1), (1,0) & (1,1). (2-bit numbers uniformly chosen.)

 $\mathcal{F} = 2^{\Omega}$ (Power set).

 $\mathbb P$ uniform on $\Omega.$

 $X \to \text{First bit}; Y \to \text{Second bit}; Z = X \oplus Y \text{ (XOR)}, \text{ all take values in } \{0,1\} = \Omega_2, \text{ and } \mathcal{F}_2 = 2^{\Omega_2} = 1$ $\{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$

$$\begin{split} X^{-1}(\{0\}) &= \{(0,0),(0,1)\}, \ X^{-1}(\{1\}) = \{(1,0),(1,1)\} \\ Y^{-1}(\{0\}) &= \{(0,0),(1,0)\}, \ Y^{-1}(\{1\}) = \{(0,1),(1,1)\} \\ Z^{-1}(\{0\}) &= \{(0,0),(1,1)\}, \ Z^{-1}(\{1\}) = \{(0,1),(1,0)\}. \end{split}$$

Let $\sigma(X)$ denote the smallest σ -algebra under which X is measurable.

 $\forall B \in \mathcal{F}_2$, find $X^{-1}(B)$, collect as \mathcal{G} . Find $\sigma(\mathcal{G})$.

 $\sigma(X) = \{\emptyset, \{(0,0), (0,1)\}, \{(1,0), (1,1)\}, \Omega\}, \text{ which is strictly smaller than } 2^{\Omega}. \text{ (e.g. } \{(0,0)\} \in 2^{\Omega})\}$

Example 7. $\Omega = [0, 1], \mathcal{F} = \mathcal{B}([0, 1]).$

$$Z(\omega) = \begin{cases} 0 & \text{if } \omega \in [0, 0.5) \\ 1 & \text{if } \omega \in [0.5, 1] \end{cases}$$

 $\sigma(Z) \text{ is a subset of } \mathcal{B}\left([0,1]\right). \ \ \sigma(Z) = \{\emptyset, [0,0.5), [0.5,1], [0,1]\}, \text{ where } [0,1] = \Omega.$

Example 8. $\Omega \subseteq \mathbb{R}^2$. $\Omega = \{(x, y) : x^2 + y^2 \le 1\}$.

A, B, C, D are disjoint and union is Ω - partition

 $\mathcal{F} = \{\emptyset, A, B, C \cup D, A \cup B, A \cup C \cup D, B \cup C \cup D, \Omega\}.$

 $X: \Omega \mapsto \{1, 2, 3, 4\} = \Omega_2$, and $\mathcal{F}_2 = 2^{\Omega_2}$.

We define X as:

$$X(\omega) = \begin{cases} 1, & \omega \in A, \\ 2, & \omega \in B, \\ 3, & \omega \in C, \\ 4, & \omega \in D. \end{cases}$$

Is X a random variable?

$$\forall E \in \mathcal{F}_2$$
, check if $X^{-1}(E) \in \mathcal{F}$.
Choose $E = \{3\}$. What is $X^{-1}(E)$? - $X^{-1}(E) = C$.
Does C belong to \mathcal{F} ? No!
Therefore, X is not a random variable.

Please review:

- Collection of random variables,
- Moments,
- Convergence,
- Independence.

2 Stochastic Processes

Definition 9 (Random process/Stochastic process). Given a fully ordered index set \mathcal{I} (usually $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}, \mathbb{R}, \mathbb{R}_+$) and a probability space (E, \mathcal{E}) , a stochastic process is a function $X : \mathcal{I} \times \Omega \mapsto E$, such that for each $i \in \mathcal{I}$ we have $X(i, \cdot) : \Omega \mapsto E$ is an E-valued random variable, i.e. $X(i, \omega) \in E$.

```
Example 10 (Binary expansion). \Omega = [0,1], \mathcal{F} = \mathcal{B}([0,1]).
\omega = 0.\omega_1\omega_2\omega_3\omega_4...
Now suppose \omega above is a binary expansion.
X_1(\omega) = \omega_1, X_2(\omega) = \omega_2, ...
If \{X_i(\omega)\}_{i=1}^{\infty}, \mathcal{I} = \mathbb{N}, X : \mathcal{I} \times \Omega \mapsto \{0,1\} \text{ (as } E)
X_1, X_2, ... are random variables. \{X_i(\omega)\}_{i=1}^{\infty} is a stochastic process, which takes values in \{0,1\}. Independent and identically distributed (i.i.d.)
Bernoulli(\frac{1}{2}) random variables

Example 11. \{X_i\}_{i=1}^{\infty}, X_i \sim \text{i.i.d. exp}(1) random variables.

Example 12. \{X_i\}_{i=1}^{\infty}, X_i \sim \text{i.i.d. } \mathcal{N}(0, \sigma^2)
S_0 = 0, S_1 = X_1, S_2 = X_1 + X_2, S_3 = X_1 + X_2 + X_3, ...
S_n = \sum_{i=1}^n X_i \ (n = 0, \text{ then value} = 0 \text{ by definition}).
```

$$\mathbb{E}[S_1 S_2] = \mathbb{E}[X_1^2 + X_1 X_2] = \mathbb{E}[X_1^2] + \mathbb{E}[X_1 X_2]$$

= $\sigma^2 + \mathbb{E}[X_1] \mathbb{E}[X_2] = \sigma^2 \neq \mathbb{E}[S_1] \mathbb{E}[S_2] = 0.$

$$\{S_j\}_{j=0}^{\infty} = \{S_j\}_{j \in \mathbb{Z}_+}, \, S_i \sim \mathcal{N}(0, i\sigma^2)$$

$$\begin{split} \{S_j\}_{j=0}^{\infty} &= \{S_j\}_{j \in \mathbb{Z}_+}, \, S_i \sim \mathcal{N}(0, i\sigma^2) \\ \textbf{Example 13 (Poisson process).} \quad \{N(t)\}_{t \in \mathbb{R}_+}, \, N(0) = 0, \, N(t) \in \mathbb{Z}_+ \text{(non-negative integers)}. \end{split}$$
Counting process

$$N(t) \sim \text{Poisson}(t), \ \mathbb{P}(N(t) = k) = e^{-t} \frac{k^t}{k!}, k \in \mathbb{Z}_+.$$

$$N(s,t) = N(t) - N(s)$$
 - increment.

Independent increments. Jump process.

 $t_1, t_2, t_3, (N(t_1) = N(t_1) - N(0), N(t_1, t_2), N(t_2, t_3))$ are all independent,

and $N(s,t) \sim \text{Poisson}((t-s)), t \geq s$.

Example 14 (Brownian motion). - Wiener process

 $\{W(t)\}_{t\in\mathbb{R}_+}, W(0)=0, W(t)\sim\mathcal{N}(0,t)$ (~: distributed as). Independent increments t_1,t_2,t_3 .

 $(W(t_1), W(t_1, t_2), W(t_2, t_3))$ independent, and

 $W(s,t) = W(t) - W(s) \sim \mathcal{N}(0,t-s), t \ge s.$

Continuous sample-paths

$$X: \mathcal{I} \times \Omega \mapsto E$$
,

 $X(i,\cdot)$ is a random variable for every i.

 $X(\cdot,\omega)$ - Sample path.