Data Visualization and Distances

Alipio Jorge - FCUP

October 2020

- Communicate data clearly and effectively through graphical representation
 - Many dimensions?
 - how many dimensions can we show in a chart?
 - Visual accuity

- Overloading human ability to read compicated charts
 - We can see many dimensions
 - But communication may not be very effective

- Effectiveness depends on what we want to show
 - Compare two lines in this chart: how does CA compare with TX?
 - Could we overlay all the lines for each variable?

- But plain paneling is very useful
 - For data understanding
 - We are not comparing variables but looking at distributions

- Aesthetics is also important
 - but communication comes first
 - make your plot beautiful AND make sure it conveys the message

- Radar charts are strong at summarizing many descriptive dimensions
 - good for comparisons
 - can be arranged in a panel (to represent time for example)

- Worth also looking at
 - pie chart vs. bar chart (https://www.geckoboard.com/blog/pie-charts/)
 - animations
 - infographics
 - heatmaps

- How similar are two data points?
 - Data vectors are points in a space
 - Similarity based approaches
 - Applications: Clustering customers, semantics of words with word embeddings, recommender systems
 - Techniques: Hierarchical clustering, k-means, k-nn, case based reasoning, collaborative filtering

- Iris data set: data points are 4d vectors + Species
 - 4 measures of flower size are dependent variables
 - Species is the independent variable

```
Sepal.Width
                                            Petal.Width
Sepal.Length
                             Petal.Length
                                                               Species
Min.
      :4.300
              Min.
                     :2.000
                            Min.
                                   :1.000
                                           Min. :0.100
                                                                   :50
                                                         setosa
1st Qu.:5.100
             1st Qu.:2.800
                            1st Qu.:1.600
                                           1st Qu.:0.300
                                                         versicolor:50
             Median :3.000
                           Median :4.350
Median :5.800
                                           Median :1.300
                                                         virginica:50
      :5.843 Mean :3.057 Mean :3.758
                                                 :1.199
Mean
                                           Mean
3rd Qu.:6.400
              3rd Qu.:3.300
                            3rd Qu.:5.100
                                           3rd Qu.:1.800
Max. :7.900
             Max. :4.400
                            Max. :6.900
                                           Max. :2.500
```

- Closer points tend to belong to the same species
 - plot two of the variables coloured by species
 - How close are they?

Measuring distance

- Given two data points X_1 and X_2
 - measure the distance $d(X_1, X_2)$
 - Examples: think of two
 - iris flowers from the data set
 - movies according to length, genre, director, year, cast

Measuring distance

- Given two data points X_1 and X_2
 - measure the distance $d(X_1, X_2)$
 - many different measures
 - depending on the data types
 - Similarity can be computed from distance
 - if $0 \ge d(.,.) \le 1$
 - sim(.,.) = 1 d(.,.)

Numeric data

- Numeric data
 - Manhattan distance
 - Euclidean distance
 - Minkowski distance
 - Supremum or Chebyshev distance

Most comon measures for numeric data

- Numeric data
 - Manhattan distance

$$d(X,Y) = \sum_{i} |X_i - Y_i|$$

Euclidean distance

$$d(X,Y) = \sqrt{\sum_{i} (X_i - Y_i)^2}$$

Generalizing Manhattan and Euclidean

- Numeric data
 - Minkowski distance is a generalization of Manhattan and Euclidean
 - if p = 1 we have manhattan, with p = 2 we have Euclidean

$$d(X,Y) = \sqrt[p]{\sum_{i} (X_i - Y_i)^p}, \quad h \geq 1$$

Norms

- Some notation
 - Euclidean distance is L_2 **norm** also $||X||_2$
 - Manhattan's is L_1 norm also $||X||_1$
 - Minkowski's is L_p norm, or $||X||_p$

Supremum distance

- What is L_{∞} ?
 - Chebyshev or Supremum distance
 - corresponds to the **maximum coordinate distance**, $\max_i |X_i Y_i|$

What is a distance measure?

- Not all measures d(.,.) are distances, though...
 - A distance must have the following properties
 - Non-negative: $d(.,.) \ge 0$
 - Identity: d(X, X) = 0
 - Symmetry: d(X, Y) = d(Y, X)
 - Triangle inequality: $d(X, Z) \le d(X, Y) + d(Y, Z)$

Nominal attributes

- Nominal or binary attribute
 - match (distance 0) or no match (distance 1)
 - Example: same director
- Nominal vector
 - $X_1 = < Comedy$, TerryJones, Color, UK >
 - $X_2 = \langle Scifi, TerryGilliam, Color, UK \rangle$
 - $d(X_1, X_2) = 2/4 = 0.5$

$$d_{symetric}(X, Y) = \frac{\#features - \#matches}{\#features}$$

Jaccard similarity

- Binary vectors
 - Compare two movies M and N and by cast
 - We can use binary vectors
 - the dimensions Actor; describe actor participation
 - $M_i = 1$ if actor $Actor_i$ participated in the film
 - These vectors have mostly zeros (think of all the actors)
 - Symetric distance does not work (very small values)
 - Binary or Jaccard **similarity** (distance is 1 sim)

$$sim_{Jacc} = \frac{\#(Actors_M \cap Actors_N)}{\#(Actors_M \cup Actors_N)}$$

The distance / similarity matrix

- From the data matrix $[D_{i,j}]$
 - we obtain the **distance matrix** $[d(D_{i,.},D_{j,.})]$
 - or the similarity matrix $[sim(D_{i..}, D_{j..})]$

$$S = \begin{bmatrix} 1 & 0.2 & 0.7 \\ 0.2 & 1 & 0 \\ 0.7 & 0 & 1 \end{bmatrix}$$

- This is quite handy for
 - e.g., clustering, similariry based classification

- More things to consider
 - Hybrid descriptors (of varied types)
 - Cosine similarity
 - Pearson correlation
 - Ordinal attributes
 - Weighted distances / similarities

When objects are described with different types

- Describe movies with < Year, Diretor, Genre, Length, Cast >
- M =< 1979, TerryJones, Comedy, 94, <
 JohnCleese, MichaelPalin, ... >>
- N =< 1983, TerryJones, Comedy, 107, <
 JohnCleese, TerryGilliam, ... >>

When objects are described with different types

- How to compute similarity between M and N?
 - All attributes should have the same scale
 - ullet We find attribute-wise similarities in the [0,1] interval
 - $sim_{year}(y_1, y_2) = 1 |y_1 y_2|/150$ (the bug of the year 2042?)
 - $sim_{dir} = 1$ if the director is the same and 0 otherwise
 - $sim_{cast} = sim_{Jacc}$

$$sim(M, N) = \frac{1}{5} \sum_{i} sim(M_i, N_i)$$

When objects are described with different types

• We can give different weight to different attributes

$$sim_w(M, N) = \frac{1}{5} \sum_i w_i \ sim(M_i, N_i)$$

Cosine Similarity

- Cosine similarity is used when all the variables are in the same scale and are numerical
 - e.g. finding amazon users who are similar to me and get good recommendations
 - $U = \langle r_1, r_2, ..., r_n \rangle$, where r_i are product ratings (5 stars)
 - e.g., U = <3, 2.5, 0, 0, 0, 5, 0, 1>

$$sim(U,V) = cos(U,V) = \frac{U.V}{\|U\|.\|V\|}$$

• Exercise: if U and V are binary cos can be calculated using set operations (intersection and length). How?

References and sources

- Data Mining Concepts and Techniques, Han, Kamber & Pei, Morgan Kaufmann
- Some charts obtained from https://www.inetsoft.com/blog/multidimensional-charting-manydimensions-many/
- Good examples in pandas: https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57