Techniques d'indexation et recherche multimédia

Chap1-Introduction

Amira BELHEDI Fadoua MHIRI Wafa ABID amira.belhedi@istic.ucar.tn fadoua.mhiri@istic.ucar.tn wafa.abid@istic.ucar.tn

ISTIC 2021-2022

Objectif du cours

- Comprendre:
 - Les techniques d'indexation des documents multimédia (texte, image, vidéo, son)
 - Les modèles de Recherche Multimédia
 - Les méthodes d'évaluation des performances d'un système de recherche multimédia
 - Fonctionnement des moteurs de recherche
- Le Système de recherche devra retourner le moins possible de résultats non pertinents.

Plan du cours

Chapitre 1: Introduction

- Problématique et difficulté de la Recherche Multimedia (RM)
- Système de Recherche Multimédia (SRM)
 - définition, concepts de base et architecture
- Un peu d'histoire

• Chapitre 2: Indexation des documents texte

- Modes d'indexation
 - manuelle, automatique et semi-automatique
- Etapes de l'indexation textuelle
 - Extraction, étalage, normalisation et pondération
- Construction du fichier indexe (fichier inversé)
- Indexation textuelle sémantique

• Chapitre 3: Indexation des images

- Indexation textuelle des images
- Indexation des images par le contenu
 - Types de requêtes visuelles
 - Descripteurs visuels
 - Descripteurs globaux: Histogramme, texture
 - Descripteurs locaux: régions de l'image, points d'intérêt

Plan du cours

• Chapitre 4: Modèles de recherche Multimédia

- Modèles classiques de recherche textuelle
 - modèle booléen
 - modèle vectoriel
 - Modèle probabiliste
- Recherche d'images par le contenu visuel
- Systèmes de recherche d'images combinant texte et images

Chapitre 5: Evaluation des performances des SRM

- Notions de rappel et précision
- Mesures de similarité utilisées dans la recherche d'images par le contenu
- Méthodes de comparaison

• Chapitre 6: Recherche d'information sur le web

- Principes de fonctionnement d'un moteur de recherche
- Crawler: robot d'indexation
- Page RANK: système de classement des pages web

Introduction

• La recherche d'information (RI) dans les documents multimédias est un problème crucial

Abondance des archives multimédia

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

L'information est partout: origine

L'information est partout: origine

Les documents multimédia sont disponibles partout

L'information est partout: gros volume

- Nombre moyen de Tweets envoyés par jour:500 millions
 - 2 billions (2000 millions) de requêtes twitter par jour
- Chaque minute, 510,000 commentaires FaceBook postés
- 45 milliards (Google), 25 milliards (Bing)
- 672 Exabytes 672,000,000,000 Gigabytes (GB) de données accessibles

Le problème

- n'est pas tant la disponibilité de l'information
- MAIS
- sa sélection, son identification \rightarrow arriver à trouver au bon moment l'information utile

Le problème

- Rechercher une information a un coût
 - «On» passe (en moyenne) 35% de son temps à rechercher des informations
 - Les managers y consacrent 17% de leur temps
 - Les 1000 grandes entreprises (US) perdent jusqu'à \$2.5 milliards par an en raison de leur incapacité à récupérer les bonnes informations
- Nécessité de développer des systèmes automatisés efficaces permettant de
 - Collecter, Organiser, Rechercher l'information pertinente

Exemple de SRI: les moteurs de recherche

Autres exemples de SRI

- Plusieurs domaines d'application
 - Internet (Web, Forum/Blog search, news)
 - Entreprises (entreprise search)
 - Bibliothèques numériques «digital library»
 - Domaine spécialisé (médecine, droit, littérature, chimie, mathématique, brevets, software, ...)
 - Nos propres PC (Yahoo! Desktop search)

- Sélectionner dans une collection (corpus)
 - -les informations (items, documents, ..)
 - -... pertinentes répondant aux
 - ... besoins en information des utilisateurs

- Hétérogénéité
 - Formes: Texte, images, sons, vidéo, graphiques, etc.
 - Exemples texte : web pages, email, livres, journaux, publications, blog, WordTM, powerpoint, PDF, forums, brevets, etc.
 - Langues: Français, Angalais, Espagnel, etc.

Question

- Comprendre le contenu vs. l'interptérer → Ambiguïté du langage naturel (polysémie, synonymie, ...)
- Information, document, unité/granule/passage

- L'expression du besoin d'information par l'utilisateur est parfois vague et toujours subjective
 - → L'humain est subjectif et il utilise un langage "naturel"!
- Requête
 - Ensemble de mots-clés
 - → Une représentation possible du besoin en information

Question

• Comment capturer le besoin de l'utilisateur

Langage de la requête

- Le langage "naturel" est implicite, redondant et ambigu
- 1. Implicite: tout n'est pas dit dans les textes
 - Donner des exemples ?
- 2. Redondant: nombreuses façons de formuler le même contenu
 - Donner des exemples ?
- 3. Ambigu : un même énoncé peut souvent être interprété de différentes façons
 - Donner des exemples ?

Langage de la requête

- Le langage "naturel" est :
- 1. Implicite: tout n'est pas dit dans les textes
 - Question : Le voisin est-il chez lui ?
 - Réponse : Sa voiture est devant le portail → implique que: Le voisin est chez lui
 - Il a assassiné Henri IV en 1610 → Henri IV est mort en 1610.
- 2. Redondant: nombreuses façons de formuler le même contenu
 - vélo / bicyclette
 - véhicule / vélo / VTT
 - pédale / pédalier / vélo
 - lave-vaisselle / machine à laver la vaisselle
- 3. Ambigu : un même énoncé peut souvent être interprété de différentes façons
 - Il vend une tarte aux pommes
 - Il vend une tarte aux clients.

Intention de la requête?

• Exemple: mot clé recherche « apple »

- La pertinence d'un document pour une requête est une notion variable et très complexe à définir.
 - pas de SRI parfait
 - Méthodes d'évaluation d'un SRI différentes de celles utilisées dans l'évaluation des systèmes informatiques

• Comment retrouver une information qui intéresse un utilisateur ?

• Besoin: organiser, accéder et retrouver des informations qui satisfont un besoin utilisateur en terme d'information

- A votre avis, pourquoi on n'utilise un SGBD?
- Quels sont les limites des SGBD?

Problématique Limite des SGBD pour la RI

- Structure des informations
 - SGBD traite des informations structurées
 - exigence d'un schéma de la base
 - RI recherche d'information non structurée
- Appariement des données
 - SGBD appariement exacte: le mapping entre les valeurs des attributs d'une requête et celle de la BD sont exactes (=, like,etc.)
 - RI appariement approximatif: liste des documents triés selon leurs pertinences

Problématique Limite des SGBD pour la RI

Langage

- SGBD langage de requête dédié à des spécialistes
 - Exemple: langage SQL
- RI langage libre (« langage naturel »): mots clés
- RI prise en compte des variations
 - Morphologiques: étudiant/étudiante/étudiants/étudiantes
 prétraitement/traitement/traiter
 - Syntaxiques: m'entends-tu? / Tu m'entends?
 - Lexicales: auto, voiture, char, automobile

Définition

- La recherche d'information ou RI (ou encore SRI) prend plusieurs terminologies:
 - recherche d'information,
 - -informatique documentaire,
 - -information retrieval,
 - -document retrieval.

Définition

• La RI dans les documents multimédias est une discipline qui s'intéresse à la proposition de méthodes et de techniques pour l'acquisition, l'organisation, le stockage, la recherche et la sélection pertinente des documents multimédia pour un utilisateur

Définition

• Un SRI est un ensemble logiciel qui permet de retrouver une information pertinente par rapport à une requête dans une grande collection de documents

- La RI est un domaine vaste qui se situe dans plusieurs disciplines:
 - 1. Recherche adhoc
 - 2. Classification /catégorisation (clustering),
 - 3. Question-réponse (query-answering)
 - 4. Filtrage d'information (filtering, recommandation)
 - 5. Méta-moteur (data-fusion, meta-search)
 - 6. Résumé automatique (summurization)
 - 7. Croisement de langues (cross langage)
 - 8. Fouille de textes (texte mining)

- 1. Recherche adhoc: recherche dans une collection de documents fixée
 - Je cherche des infos (pages web) sur un sujet donné
 - Je soumets une requête → retour liste de résultats
 - Requête "recherche d'info" → SRI → renvoie une liste de documents traitant de la "recherche d'information"
 - Plusieurs types de RI adhoc
 - Recherche adhoc (tâches spécifiques)
 - Domaine spécifique (médical, légal, chimie, ...)
 - Recherche d'opinions(Opinion retrieval) (sentiment analysis)
 - Recherche d'événements
 - Recherche de personnes (expert)

- 2. Classification / Catégorisation
 - Regrouper les informations (documents) selon un ou plusieurs critères
- 3. Question-réponses (Query answering)
 - Chercher des réponses à des questions
 - par exemple: « Quelle est la hauteur du Mont Blanc ? »
 - Exemple d'outil: WolframAlpha = service internet qui répond directement à la saisie de questions par le calcul de la réponse à partir d'une collection de données, au lieu de procurer une liste de documents ou de pages web pouvant contenir la réponse

- 4. Filtrage d'information/ recommandation (filtering/ recommendation)
 - Recommandation
 - Dissémination sélective d'information
 - Système d'alerte
 - Push
 - Profilage (profiling)

- 5. Résumé automatique (document summarization)
- 6. Recherche agrégée (Aggregated search)
 - Agréger des moteurs : interroger les résultats de plusieurs moteurs (méta-moteurs)
 - Agréger des résultats : interroger plusieurs sources (vertical search)
 - Agréger des contenus : former un résultat à partir de plusieurs contenus

Vertical search

Page D'accueil

Le Cop

Musée

Stade Toulousain - Page d'accueil Translate this page

www.stadetoulousain.fr/index2.php =

Saracens / Stade Toulousain - Interview de Maxime MÉDARD Election du stadiste de la saison. Le Stade dans les Médias . Suivre ...

Videos of stade Toulousain

bing.com/videos

Compilation des essais du Stade ... YouTube

Stade Toulousain -RC Toulon [Final... YouTube

Stade Toulousain - stade toulousain

Montpellier [Final... compilation

YouTube YouTube

Stade toulousain - Wikipédia Translate this page

fr.wikipedia.org/wiki/Stade_toulousain =

Histoire · Palmarès · Les finales du Stade ... · Personnalités ...

Stade toulousain Généralités Fondation 1907 Statut professionnel depuis le 1 er février 1998 Couleurs rouge et noir Stade Stade Ernest-Wallon (19 500 places ...

Rugbyrama Stade Toulouse Transferts Stade Français

Système de recherche d'information SRI

Les différents acteurs de la RI

Collection:

un ensemble de documents

+

Un ensemble d'images, vidéos et fichiers sons

Utilisateur:

un besoin d'information et/ou une tâche à accomplir

Système de RI : l'outil qui doit retrouver les documents pertinents pour le besoin de l'utilisateur

SRI

• Résultats de la recherche d'information relatives à

une requête utilisateur

• Notion de pertinence

- Pertinence utilisateur

Pertinence système

Pertinence

- Au cœur de tout système de RI
 - Relation entre le document et ... la requête ou le besoin de l'utilisateur ?

- Pertinence: « degré de corrélation entre la requête et le document apporté », la pertinence est un conceptclé de la RI
 - Pertinence utilisateur
 - Pertinence système

Pertinence

- Pertinence utilisateur (plusieurs pertinences)
 - Thématique (topical): relation entre le sujet exprimé dans la requête et le sujet couvert dans le document.
 - Contextuelle (Situation) : relation entre la tâche, le problème posé par l'utilisateur, la situation de l'utilisateur et l'information retrouvée.
 - Cognitive : relation entre l'état de la connaissance de l'utilisateur et l'information sélectionnée

Type of relevance(survey) (Saracevic 2007)

Question

 Processus subjectif (humain), dépend de plusieurs facteurs → difficile à automatiser

Pertinence

• Pertinence système: c'est la pertinence calculée par le système en comparant la représentation des documents et celle des requêtes

• L'enjeu de la RI est de rapprocher la pertinence système de la pertinence utilisateur

• C'est sur cette notion que les SRI sont jugés

Architecture d'un SRI

Indexation

- Le terme «indexation» est parfois ambigu, car il est utilisé pour deux problèmes distincts :
 - le processus d'extraction des descripteurs à partir des documents,
 - descripteur représente le contenu d'un document ou d'une requête
 - doit refléter au mieux le contenu
 - la représentation de cette information.

Indexation textuelle

- Utiliser des mots-clés (texte)
 - termes significatifs se trouvant dans le document / requête

Indexation textuelle structure d'un fichier inverse

• Un fichier inversé associe des index aux documents qui

→ Sera présenté en détail dans le chapitre 2

Indexation par mot-clé?

Recherche d'images

"Avocat"?

Requête textuelle « Port du voile »

Indexation multimédia

- Utiliser des descripteurs multimédias
- L'image: exemples de descripteurs
 - Descripteurs visuels pour les base d'images génériques
 - couleur, texture, forme, position et relations spatiales
 - Segmentation et points d'intérêt pour les base d'images spécifiques
 - Détection et signatures de visages,
 - Signatures d'empreintes digitales
- → Sera présenté en détail dans le chapitre 3
- Le son ne sera pas traité dans ce cours

Intérêt de l'indexation multimédia

- Indépendante de la langue de recherche
- Description moins subjective que le texte
- Parfois plus riche que le texte
- Souvent plus efficace (ambiguïté)

Architecture d'un système de recherche d'images par le contenu

Application de recherche d'images par le contenu

- Internet (images et vidéos),
- Audiovisuel (personnage dans les JT, documentaires, sport, ...)
- Médecine (recherche à but diagnostic ou pédagogique)
- Art et Design (archives archéologiques, peintures, tissus, ...)
- Authentification (visages, empreintes digitales, logos)
- Sécurité (surveillance vidéo, objets d'arts volés ...)
- Education (recherche encyclopédique)

Appariement

- L'appariement (ou la correspondance) consiste à comparer la représentation de chaque document à celle de la requête
 - basé sur une fonction de similarité (ou de correspondance)

Fonction de similarité

- Facteurs utilisés par la majorité des modèles
 - Fréquence du terme dans le doument (tf), sa fréquence dans la collection (idf), sa position dans le texte(p), taille du document (dl) ...

$$Score(D) = fonction(tf, idf, dl)$$

- Plusieurs modèles théoriques pour formaliser cette fonction
- Elle peut être apprise (apprentissage automatique, approche utilisée par la majorité des moteurs de recherche)
- → Seront présentés en détail dans le chapitre 5

Fonctions de similarité

- Fonctions de similarité utilisées dans la recherche d'images par le contenu visuel
 - Distance euclidienne
 - Distances entre histogrammes
 - Distances quadratiques
 - Distances entre distributions
 - **—** ...
- → Seront présentées en détail dans le chapitre 5

Modèle de RI

• Le modèle de la représentation + la fonction de similarité = Modèle de RI

- Modèle classiques de recherche textuelle
 - Modèle booléen
 - Modèle vectoriel
 - -Modèle probabiliste
- → Seront présentés en détail dans le chapitre 4

Reformulation

- Consiste à réécrire la requête initiale jusqu'à la satisfaction de l'utilisateur
 - Il est rare que la réponse à une question retournée par le SRI satisfait l'utilisateur dès le 1er essai
- Techniques de reformulation: la réinjection de pertinence (« relevance feedback » en anglais):
 - Réinjection positive: ajouter à sa requête des termes auxquels il n'aurait pas pensé et qui apparaissent dans des documents retournées qui sont pertinents
 - Réinjection négative: enlever de sa requête des termes qui apparaissent dans des documents retournées qui ne sont pas pertinents

Un peu d'histoire

- 1940 : arrivé des ordinateurs: la RI se concentrait sur les applications dans des bibliothèques.
- 1950 : Début de petites expérimentations en utilisant des petites collections de documents (références bibliographiques) + utilisation du modèle booléen.
- 1960-1970 : développement de méthodologie d'évaluation du SRI + conception de corpus pour évaluer les différents SRI.
- 1970 : Développement du système SMART (G. Salton): implantation et test pour la première fois du modèle vectoriel et la technique de relevance feedback + beaucoup de développements sur le modèle probabiliste.

Un peu d'histoire

- 1980 : intégration des techniques de l'IA en RI, par exemple, système expert pour la RI, etc.
- 1990 : la problématique est élargie, par exemple, on traite maintenant plus souvent des documents multimédia qu'avant. Cependant, les techniques de base utilisées dans les moteurs de recherche sur le web restent identiques.
- De nos jours, beaucoup de travaux sur la recherche des documents multimédias: développement de nouveaux systèmes de recherche d'images par le contenu

Références

- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.Introduction to Information Retrieval. 2008
- Baeza-Yates R. and Ribeiro-Neto B. Modern Information Retrieval the concepts and technology behind search, 2011
- Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. AddisonWesley, 1999.
- Butterworths Frakes and Baeza-Yates. Information Retrieval:
 Data Structures & Algorithms, 1992
- Prentice Hall Witten, Moffat and Bell Managing Gigabytes plus software, 1994
- Salton Gerard and Mcgill, Michael J. Introduction to modern information retrieval. New York: Mcgraw-Hill Book Company.