

What can you do?

- Good shimming (first & second order)
 Thinner slices (Drawback: Takes more to cover the brain)
- Shorter TE (Drawback: BOLD contrast is optimized for TE = T2*local)
 "Z-shimming" Repeat measurement several times with an applied z gradients that rewind the dephasing, Pick the right gradient afterward on a pixel by pixel basis. (Drawback: multi shot or longer encode). Yang et al. MPM 35 vi.02 1008
- Use special RF pulse with built-in prephasing in just the right places. (Drawback: long RF pulse, pre-phasing differs from person to person) Glover et al. Proceed. ISMRM p298, 1998.
- The "mouth shim" paramagnetic material in roof of mouth. Wilson,
- Distortion correction based on a measured field map (drawback: cannot recover signal dropout or fully correct "overlapping" intensities)
- Multi-shot imaging methods (drawback: more motion sensitive)
- Fancy pulse sequences (best to have local physicist): 180 degree refocusing pulses to reverse distortion (GRASE)/Multiple refocusing pulses... single-shot FSE, U-Flare

Single-shot Gradient Echo EPI

- Parameters you can choose

 - Slice thickness/gap
 - · Number of slices/slice acquisition order

 - Bandwidth
 - · Matrix size
 - · Field of view
 - Flip angle
- · All of these parameters can be appropriately applied over a wide range of values

TR (repetition time)

- Determines how much magnetization is allowed to recover before it is knocked over again by the next rf
- From a pure signal strength perspective, waiting for very long TR's (5 seconds +) allows for maximal signal-to-noise (SNR)
- Noise is MR dominated by physiologic noise (not thermal noise)
- Requires many images in both conditions to reliably distinguish activation (which requires shorter TR's)
- fMRI can be performed as fast as TR=100ms
- Bottom line: use as short a TR as you can

Flip Angle

- A given flip angle will maximize the SNR (Ernst Angle)...at long TR's (> 3s) this is 90 degrees
- This angle is dependent upon the TR
- Incorrect angles may sensitize your BOLD scans to inflow artifacts (bad) [Lu et al, NeuroImage 17, 943-955 (2002)]
- Bottom line: For TR of 1-2s, a flip angle of around 60-70 degrees is optimal

	Comparison of Ernst Angles (Maximize SNR) and Optimal Angles (Maximize CNR) at Different TR Values Based on Numerical Simulations of the Pure Parenchyma Voxel			
	TR (ms)	Ernst angle (deg)	Optimal angle (deg)	Difference (deg)
$\theta = \cos^{-1}\left(\exp\left(TR/T_1\right)\right)$	500	52	40	12
	1000	68	5-4	14
	1500		64	
	2000	82		11
	2500	85		
	3000	87	80	9 7

Number of slices

- Separate slices in EPI are typically squeezed into a TR interval
- Many factors influence # of slices that fit in a TR
 - Length of TR
 - TE (determines center of blue box)
 - Matrix size (determines length of blue box)
 - Bandwidth (determines length of blue box)
- Bottom line: collect as many slices as you can

So far Long TR maximized SNR • Short TR maximizes fMRI stats • Long TR provides many slices • Short TR provides few slices · The above suggests imaging only brain regions of interest (to minimize slices) • But processing decisions also play a role Whole brain data is much easier to spatially normalize • Motion correction works best with thin slices • In general TR's between 1s and 2s are not too bad

Slice Thickness • SNR in MRI is proportional to voxel volume (thinner slices -> less SNR) • Thinner slices reduces partial volume effects • Thinner slices reduces through-plan dephasing • What is the size of the structure of interest? • Isotropic voxel size is preferred

Bandwidth

Field of View (FOV) • Voxel size determined by field of view and matrix size				
$\Delta x = \frac{FOV_x}{N_x} \qquad \Delta y = \frac{FOV_y}{N_y}$				
 FOV=200mm/64 matrix = 3.125mm voxel dimension Recall SNR proportional to voxel volume 				
Spring 2007 PABI Analysis Course 48				