INF-BIOx121 2017

RNA-seq differential expression analysis

Arvind Sundaram Sep 18-20, 2017

RNA-seq analysis

Design, library prep, sequencing and analysis

Arvind Sundaram Sep 19, 2017

Pipeline(s) - too many

Design of the experiment and sequencing plan are very important!!

Experimental design

- Biological question
- * Species-specific information
 - * Is there a genome sequence available??
 - * Is it well annotated??
- Sample variation
- Replicates

- Platform choice
 - * Technology-specific variation
 - * Technical bias
- Library prep
- Sequencing depth
- Data analysis

Replicates and Depth

- Sound experimental design
- Number of replicates
 - Biological variation
 - Technical replicates not so important
- * Sequencing depth

Table 1 Statistical power to detect differential expression varies with effect size, sequencing depth and number of replicates

	Replicates pe	Replicates per group							
	3	5	10						
Effect size (fold change)									
1.25	17 %	25 %	44 %						
1.5	43 %	64 %	91 %						
2	87 %	98 %	100 %						
Sequencing depth (millions of reads)									
3	19 %	29 %	52 %						
10	33 %	51 %	80 %						
15	38 %	57 %	85 %						

Replicates vs Depth

Table 1. Cost efficiency for power to detect DE genes (cost per 1% power given each experimental design where the variables are). Assumptions made during calculations are described in Methods. * indicates lowest cost per 1% power in each replication level. Units are in dollars.

Relative	2.5M	5M	10M	15M	20M	25M	30M
Cost							
2 replicates	24.2	17.2	14.4*	15.8	16.7	17.0	17.8
3 replicates	23.4	17.2	15.3*	16.3	17.1	18.5	19.4
4 replicates	23.1	17.7	16.5*	17.5	18.6	19.8	21.2
5 replicates	23.8	19.0	18.1*	19.4	21.0	22.8	24.9
6 replicates	25.0	20.7	20.6*	22.4	24.6	27.0	29.4
7 replicates	26.8	23.0*	23.5	26.0	28.7	31.5	34.3

Depth

More

depth

- * RNA sequencing
 - Highly expressed known transcripts
 - Novel isoforms
 - Low expressed/rare transcripts

Sequencing technology

Short-read (Illumina) or Long-read (PacBio)??

Deep sequencing?

Model or nonmodel species

What type and amount of genome resource is available?

Read length, paired end?

Are you interested in gene-level, transcript-level expression?

Interested in finding new genes, novel transcripts?

Technical bias

- Lane/flowcell bias
- Index/barcode bias
- * Batch effect

* Randomisation is key

Design prior to sequencing

- Sources of variation
 - * Dynamic range Not all samples get sequenced the same way (Normalisation)
 - * Technical variation Bias inherent to the technology
 - * Biological variation

- Controlling for variation
 - * Randomisation
 - * Blocking
 - Pool and sequence across several lanes
 - * Replication

Library prep (Illumina)

Library prep (Illumina)

- * RNA sequencing
 - Total RNA
 - * mRNA
 - * small RNA
 - Ribosome profiling

- TruSeq Stranded Total RNA kit
- * TruSeq Stranded mRNA kit
- * TruSeq small RNA kit

- High quality and quantity of RNA
- * Do you want to sequence rRNA??

Sequence data analysis

- Is genome available?
- * Well annotated?

- * De novo approach
- Reference based approach
- * Transcriptome
- Genome+Transcriptome
- * Mixed approach??

Short reads (Illumina) + Long reads (PacBio)

Pipeline choice

Reference choice

Pre-processing

- * Remove sequencing adapters
- * Trim/remove low quality reads
- * Remove sequencing spike-ins (PhiX for Illumina), if any

→ Make sure paired end data is always paired and in correct order!

Simple truth

To consult the statistician after an experiment is finished is often merely to ask him(her) to conduct a post mortem examination. He(she) can perhaps say what the experiment died of.

- Ronald Fischer