Associating People Dropping off and Picking up Objects

Dima Damen, David Hogg

Computer Vision Group – University of Leeds BMVC07

The Task

BMVC 07 2/25

Tracking people and detecting objects

The video is a sequence of periods of activity

BMVC 07 3/25

Tracking people and detecting objects

The video is a sequence of periods of activity

BMVC 07 4/25

Associating drops with picks

BMVC 07 5/25

Discriminating drops from picks - people

BMVC 07 6/25

Discriminating drops from picks - people

BMVC 07 7/25

Discriminating drops from picks - objects

'before' reference image

'after' reference image

BMVC 07 8/25

Possible assignments for a period of activity

$$d(p_i, o_j) = \begin{cases} 1 - \max\left(\frac{Box(p_i) \cap Box(o_j)}{\min(Box(p_i), Box(o_j))}\right) & \text{if } (interval(p_i) \subset interval(o_j)) \\ \infty & otherwise \end{cases}$$

Person

Assignments set 1: drop(Person1, Bike1) none(Person2) drop(Person3, Bike1) drop(Person4, Bike1) none(Person5) drop(Person6, Bike2)

BMVC 07

Possible assignments for a period of activity

$$d(p_i, o_j) = \begin{cases} 1 - \max\left(\frac{Box(p_i) \cap Box(o_j)}{\min(Box(p_i), Box(o_j))}\right) & \text{if } (interval(p_i) \subset interval(o_j)) \\ \infty & otherwise \end{cases}$$

Person

BMVC 07 11/25

Period of activity 1 2

BMVC 07 12/25

Period of activity

BMVC 07 13/25

Period of activity

BMVC 07 14/25

Period of activity

K-best – k-min-cost

BMVC 07 15/25

K-best – k-min-cost

BMVC 07 16/25

K-best – k-min-cost

BMVC 07 17/25

BMVC 07 18/25

BMVC 07 19/25

Constrained optimisation

$$f_{pkdp}(p_i, o_j, p_k, o_l) = d(p_i, o_j) + d(o_j, o_l) + d(p_k, o_l \mid o_j)$$

 $f_{dp}(p_i, o_j) = f_{pk}(p_i, o_j) = d(p_i, o_j) + \alpha$
 $f_{none}(p_i) = \beta$

$$f(e) = \sum_{C_{pkdp}} f_{pkdp}(p_i, o_j, p_k, o_l) + \sum_{C_{dp}} f_{dp}(p_i, o_j) + \sum_{C_{pk}} f_{pk}(p_i, o_j) + \sum_{C_{none}} f_{none}(p_i)$$

each person should be involved in exactly one event

BMVC 07 20/25

Post-segmentation

$$d(o_i, o_j) = \begin{cases} 1 - \frac{\sum\limits_{x,y} (o_i(x,y) \land o_j(x,y))}{\min(\sum\limits_{x,y} o_i(x,y), \sum\limits_{x,y} o_j(x,y))} \\ \infty \end{cases}$$

$$ext{if } o_i \in ext{picked} \land o_j \in ext{dropped} \land I(o_i) > I(o_j)$$
 $otherwise$

$$d(p_k, o_l \mid o_j)$$

Experiments & Results

- 3 experiments
 - 1 hour (45 events)
 - 50 minutes (22 events)
 - Full day (9 hours and 30mins) (40 events)

	% of correct connections		
Exp#	Unconstrained	Constrained	
1	75.86	93.10	
2	70.37	92.59	
3	83.59	96.09	

BMVC 07 22/25

Application to bicycle theft detection

- 8×8×8 scale-normalized equal-bin-size colour histogram
- Scale-by-max
- Median histogram

ROC Curve for the three experiments

1				·	
0.8		X: 0.08 Y: 0.76	Threshold	= 0.7	-
8 sensitivity					
seus 0.4]			
0.2					
0-	0	.05	0.1 1-specificity	0.15	0.2

	Predicted		
Actual	Thief	Non-Thief	
Thief	10	3	
Non-Thief	17	183	

BMVC 07 23/25

Summary

- Deal with ambiguity in the visual data through the use of global constraints on what is possible.
- Comparison with unconstrained and partiallyconstrained solutions (in the paper).
- Ambiguities in the observations are expressed as multiple hypotheses.
- Hypotheses can then be verified or invalidated by future observations.

BMVC 07 24/25

Thank you for listening

Contact Info: Dima Damen Computer Vision Group – University of Leeds

dima@comp.leeds.ac.uk

BMVC 07 25/25