Monday, January 29, 2018 14:17

Pf of Lancret's Theorem (continued).

- (⇒) done last time
- Suppose $\exists ceRsit. \ T \equiv cK$. Then $\exists ! \theta \in (0)T)$, $cot \theta = c$.

 Let $u = T \cos \theta + B \sin \theta$. Then $u' = T' \cos \theta + B' \sin \theta$ $= KN \cos \theta \gamma' N \sin \theta$ $\leq N \cos \theta \alpha' N \sin \theta$ $\leq N \cos \theta \alpha \cos \theta + \beta \sin \theta$ $\leq N \cos \theta \alpha \cos \theta + \beta \sin \theta$ $\leq N \cos \theta \alpha \cos \theta + \beta \sin \theta$ $\leq N \cos \theta \alpha \cos \theta + \beta \sin \theta$ $\leq N \cos \theta \alpha \cos \theta + \beta \cos \theta + \beta \cos \theta$ $\leq N \cos \theta \alpha \cos \theta + \beta \cos \theta$

Finally, $\langle T, u \rangle = \cos \theta$, constant. Thus a is a helix, with axis u and pitch θ .

Keminder (The cononical rep. of a eurus).

Let a be - C3 unit-speed curve whose domain Heludes o.

Locally Comparing 2 arres (with 12's www 0):

Let α and β be C^3 unit-speed curves in \mathbb{R}^3 , defined on the same interval I. Let $S_0 \in I$ and let's compare α (5), β (5) for S near S_0 . To simplify notation, suppose $S_0 = 0$.

from the Canonical representations of α and β , we see that $\alpha(s) - \beta(s) = [\alpha(s) - \beta(s)] + s[T_{\alpha}(s) - T_{\beta}(s)] + \frac{S^2}{2} [K_{\alpha}(s) N_{\alpha}(s) - K_{\beta}(s) N_{\beta}(s)] + \frac{s^3}{6} [K_{\beta}(s)^2 T_{\beta}(s) - K_{\alpha}(s)^2 T_{\alpha}(s)] + [K_{\alpha}'(s) N_{\alpha}(s) - K_{\beta}'(s) N_{\beta}(s)]$

$$+ \frac{6^{3}}{6} \left\{ \left[K_{\rho}(0)^{2} T_{\rho}(0) - K_{\rho}(0)^{2} T_{\alpha}(0) \right] + \left[K_{\alpha}^{'}(0) N_{\alpha}(0) - K_{\rho}^{'}(0) N_{\rho}(0) \right] + \left[K_{\alpha}(0) \Upsilon_{\alpha}(0) \beta_{\alpha}(0) - K_{\rho}(0) \Upsilon_{\rho}(0) \beta_{\rho}(0) \right] \right\}$$

$$+ O\left(S^{3}\right) \qquad \text{as} \qquad S \longrightarrow O.$$

Consider The following conditions:

(0)
$$\alpha(0) = \beta(0)$$

(2)
$$K_{\alpha}(0) = K_{\beta}(0)$$
 and $N_{\alpha}(0) = N_{\beta}(0)$

(3)
$$K_{\bullet}(0) = K_{\rho}(0)$$
, $T_{\bullet}(0) = T_{\rho}(0)$, and $B_{\infty}(0) = B_{\rho}(0)$.

Then:

(a): if (a) holds then
$$d(s) - \beta(s) = o(1)$$
 as $s \longrightarrow o$.

(b): if (d) and (1) hold then
$$d(s) - \beta(s) = o(s)$$
 is $s \longrightarrow 0$.

(L): If (0), (1),
$$aw(z)$$
 hold then $\alpha(s) - \beta(s) = \alpha(s^2)$ as $s \longrightarrow 0$

(d): if all 4 wholitions hold then
$$\alpha(s) - \beta(s) = o(s^3)$$
 as $s \rightarrow 0$

Conversely:

(d) Suppose
$$\chi(S) - \beta(S) = o(1)$$
 as $s \to o$. then $\int_{\mathbb{N}} \left[\alpha(S) - \beta(S) \right] = 0$
then (1) hold S . $\alpha(O) - \beta(O)$

SO Q(5) - p(3) must -> 0. so (0) holds. And then the limit

is of
$$5\frac{T_{\alpha}(9)-T_{\beta}(0)}{5}+o(1)$$
 so $T_{\alpha}(5)-T_{\beta}(5)=0$ so (1) hold s.

(c') suppose
$$d(s) - \beta(s) = o(s^2)$$
 as $s \to o$. Then
$$\left(\frac{\alpha(s) - \beta(s)}{s^2}\right) = 0$$

$$+ \text{then } \alpha(s) - \beta(s) \to 0 \text{ and } \frac{\alpha(s) - \beta(s)}{s} \to 0 \text{ so (o) and (1) hold.}$$
so the limit is of $s^2 \frac{K_0(s) N_0(s) + K_0(s) N_0(s)}{s} \to 0$ (1) $s \in K_0(s) N_0(s) = K_0(s) N_0(s)$

so the limit is of <2 kd(0) Na(0) + Kp(0) Np(0) + O(1) so Ka(0) Na(0) = Kp Np(0).

since Na, Np we unit vectors we must have Note ± No(0) and so K(0) = ± Kp(0) (same ± in both). Let K is positive so both me (3) Suppose $\alpha(5) = 673$, holds. $\alpha(5) = 6$, $\alpha(5) = 6$, $\alpha(5) = 6$, $\alpha(5) = 6$.

Hence $B_{\kappa}(\delta) = T_{\kappa}(0) \times N_{\kappa}(\delta) = T_{\delta}(0) \times N_{\rho}(0) = B_{\rho}(\omega)$ And the limit is of [{ [Kx(0) - 1x(0)] Na(0) + Kx(0) [7x(0) - 7p(0)] Bx(0) } 30 (3) holds.

thus all conditions are iff.

The Osculating Circle:

C3 let Unit-speed a R3 be a curve, with K mour O.

the behavior of a near s. with to compare we wish

that of a unit-speed circle in R3. Assume S. = 0 to simplify natation

Let B be a Unit-speed paremetric circle in R3.

Then $p(s) = (+ pu \cos \frac{3}{p} + pv \sin \frac{5}{p}) \forall s$, where c is the center of the circle, p is the radius, and u and v are orthonormal Vectors. We have $\beta'(s) = -N sin \frac{s}{p} + V cos \frac{s}{p} = T_{\beta}(s)$ Tp(s) = - 1 cos = - V sin = 50 K(s) = - 1 cos = - V sin = .

Consider the following conditions:

$$(1) \qquad Y = \mathcal{T}_{\kappa}(0)$$

(2)
$$\frac{1}{\rho} = K_{\alpha}(0)$$
 and $u = -N_{\alpha}(0)$

Now B(0) = C+pu and home

(a)
$$\alpha(s) - \beta(s) = o(1)$$
 as $s \longrightarrow res$ (b) hold s

Next, Tp(0) = V are home

Next,
$$T_{\beta}(6) = V$$
 and with (6) and (1) hold.

Frally, i = Kp(0) and Np(0) = - u aver nemed

$$(1) \propto |s| - \beta(s) = o(s^2)$$
 iff $(0) - (2) = o(s^2)$

parameter 1220

So the osculating circle to x at a point So is

$$\beta(s) = \chi(s_{\bullet}) + \frac{N_{\alpha}(s_{\bullet})}{K_{\alpha}(s_{\bullet})} - \frac{N_{\alpha}(s_{\bullet})}{k_{\alpha}(s_{\bullet})} (os(K_{\alpha}(s_{\bullet})s) + \frac{T_{\alpha}(s_{\bullet})}{K_{\alpha}(s_{\bullet})} sin(K_{\alpha}(s_{\bullet})s)$$

Note that the osculating circle lies in the osculating plane.

Propo let & be a C3 unit-speed curve in R3 which lives on a spure with center make and radius r & (0,00). Then: (a) K is were O, m-x=pN+cB and r2=p2+c2 where

$$P = \frac{1}{K}$$
 and $c = \langle m - \alpha, B \rangle$.

- (b) If γ is vever 0, here $m = \alpha + pN + p'\sigma B$ and $r^2 = p^2 + (p'\sigma)^2$ where $\sigma = \frac{1}{\gamma}$.
- (c) If K is constant, d is a circle (aplane η the space). $T \equiv 0$.

If (a) m-a = aT + bN+CB for suitable furtions a, b, c.

Now
$$\langle m-\alpha, m-\alpha \rangle = \Gamma_1^2$$
 so $\frac{1}{ds} \langle m-\alpha, m-\alpha \rangle = 0$
but $\frac{d}{ds} \langle m-\alpha, m-\alpha \rangle = -2 \langle m-\alpha, T \rangle = -2 \langle \alpha T, T \rangle = -2\alpha = 0$ so $\alpha = 0$.

So
$$N-\alpha = bN + cB$$
 So $-T = bN + bN' + c'B + c'B - bN - bKT + bCB + c'B - bN$

So $-T = -bkT + (b' - cr)N + (c' + br)B$ (*)

So
$$b = \frac{1}{K}$$
, $0 = b' - c\tau$, $0 = c' + b\tau$. So K i's rever 0 .

Not used for ω

so
$$m - \alpha = \rho N + c B$$
 and $r^2 = |m - \alpha|^2 = \rho^2 + c^2$.

(b) from (4),
$$b'-c\tau=0$$
 50 if τ is hence of then $c=\frac{b'}{\tau}=\rho'\sigma$.

(c) Suppose K constant. Then
$$f$$
 constant so $r = \frac{b'}{c} = \frac{b'}{c} = 0$