Pretrained Transformers for Text Ranking: BERT and Beyond

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin

@andrewyates

@rodrigfnogueira

@lintool

Outline

- Part 1: Background (text ranking, IR, ML)
- Part 2: Ranking with relevance classification
- Part 3: Ranking with dense representations
- Part 4: Conclusion & future directions

monoBERT: BERT reranker

We want:

 $s_i = P(Relevant = 1|q, d_i)$

Once monoBERT is trained...

BERT's Limitations

Cannot input entire documents

- what do we input?
- & how do we label it?

need separate embedding for every possible position

→ restricted to indices 0-511

BERT's Limitations

computationally expensive layers

→ e.g., 110+ million learned weights

(later: Beyond BERT & Dense Representations)

Multi-stage ranking pipeline

- Identify candidate documents
- Rerank

From Single to Multiple Rerankers

Why Multi-stage?

 Trade-off between effectiveness (quality of the ranked lists) and efficiency (retrieval latency)

Multi-stage with duoBERT

Training duoBERT

Is doc d_i more relevant than doc d_i to the query q?

$$p_{i,j} = p(d_i > d_j | q)$$

Loss:

$$L_{\text{duo}} = -\sum_{i \in J_{\text{pos}}, j \in J_{\text{neg}}} \log(p_{i,j}) - \sum_{i \in J_{\text{neg}}, j \in J_{\text{pos}}} \log(1 - p_{i,j})$$

CLS

Query q

SEP

text d_i

SEP

text d_i

Inference with duoBERT

Outline

- Part 1: Background (text ranking, IR, ML)
- Part 2: Ranking with relevance classification
- Part 3: Ranking with dense representations
- Part 4: Conclusion & future directions

Sparse Representations

Task: Estimate the relevance of text d to a query q:

q = "fix my air conditioner"

d ="... AC repair ..."

$$\mathbf{BM25}(q,d) = \sum_{t \in q \cap d} \log \frac{N - \mathrm{df}(t) + 0.5}{\mathrm{df}(t) + 0.5} \cdot \frac{\mathrm{tf}(t,d) \cdot (k_1 + 1)}{\mathrm{tf}(t,d) + k_1 \cdot \left(1 - b + b \cdot \frac{l_d}{L}\right)}$$

Advantages: 1) Fast to retrieve candidates from a inverted index because q is usually short. 2) Fast to compute because $q \cap d$ is usually small Disadvantage: Terms need to match exactly

Dense Representations

Continuous dense vectors \mathbb{R}^D

 ϕ is a similarity function (e.g., inner product or cosine similarity) $\phi(\eta(q), \eta(d)) \rightarrow \text{ideally measures how relevant } q \text{ and } d \text{ are to each other}$

Types of Encoders: Cross-encoder

Types of Encoders: Bi-encoder

Nearest Neighbor Search

Task: find the top k most relevant texts to a query

Brute-force search:

We often need to search many (e.g.: billions) of texts

- Brute-force won't scale

Approximate Nearest Neighbor Search

- Exchange accuracy for speed
- E.g.: k-means:

- In practice, ANN implementations are more complicated
- We assume a fast dense retrieval library is available (e.g.: Faiss, Annoy, ScaNN)

Distance-based Transformer Representations

Distance-based Representations

Key characteristic

Simple similarity function \rightarrow inner (dot) product, cosine similarity, ...

$$\phi(u,v) = \eta(u) \cdot \eta(v)$$

Compatible with ANN search

Johnson, Douze, Jégou. Billion-scale similarity search with GPUs. arXiv 2017.

Distance-based: SentenceBERT

Classification

Regression

Comparison-based Transformer Representations

25

MaxSim:
Sim-mat max pooling
(along query dimension)

$$s_{q,d} = \sum_{i \in \eta(q)} \max_{j \in \eta(d)} \eta(q)_i \cdot \eta(d)_j^{\mathrm{T}}$$

Compatible with ANN?

- Unclear
- Data-dependent
- 70x faster than BERTlarge

		MS MARCO Passage		
Method		Develoment	opment Recall@1k	Latency (ms)
(1a) (1b) (2)	BM25 (Anserini, top 1000) + monoBERT _{Large} FastText + ConvKNRM	0.187 0.374 0.290	0.861 0.861 -	62 32,900 90
(3)	doc2query-T5	0.277	0.947	87
(4)	ColBERT (over BERT _{Base})	0.360	0.968	458

Document Preprocessing Techniques

Query vs document expansion doc2query
DeepCT
DeepImpact

Query reformulation as a translation task

Hard: Input has little information

Easier: Input has a lot of information

doc2query

Supervised training: pairs of <query, relevant document>

doc2query

In practice: 5-40 queries are sampled with top-k or nucleus sampling

Results

	MARCO Passage (MRR@10)	TREC-DL 19 (nDCG@10)	TREC-COVID (nDCG@20)	Robust04 (nDCG@20)
BM25	0.184	0.506	0.659	0.428
+ doc2query	0.277	0.642	0.6375	0.446

zero-shot: doc2query was trained only on MS MARCO

DeepCT

$$\mathrm{loss} = \sum_t (\hat{y}_{t,d} - y_{t,d})^2$$

Text d: The Geocentric Theory was proposed by the greeks under the guidance...

Relevant query q: "who proposed the geocentric theory"

Once DeepCT is trained...

Results on MS MARCO Passage Dev Set

Model	MRR@10	R@1000	BERT Inferences per doc
BM25	0.184	0.853	-
+ doc2query	0.229	0.907	1
+ doc2query	0.277	0.944	40
DeepCT	0.243	0.913	1

DeepImpact: combining doc2query with DeepCT

Results on MS MARCO Passage Dev Set

Model	MRR@10	R@1000	Latency (ms/query)
BM25	0.184	0.853	13
DeepCT	0.243	0.913	11
doc2query	0.278	0.947	12
DeepImpact	0.326	0.948	58
BM25 + monoBERT	0.355	0.853	(GPU) 10,700

Takeaways of Document Expansion

Advantages:

- Documents have more context than queries →easy prediction task
- Documents can be processed offline and in parallel
- Run on CPU at query time

Disadvantages:

- Have to iterate over the entire collection
- Not as effective as rerankers (yet)

Conclusions and Future Directions

Conclusions

- Pretrained Transformers showed significant improvements in various IR benchmarks
- Reproduced and adopted by many in academia and industry
- No doubt we are in the age of BERT and Transformers

Learn more in survey (& upcoming book):

Pretrained Transformers for Text Ranking: BERT and Beyond

by Jimmy Lin, Rodrigo Nogueira, and Andrew Yates https://arxiv.org/abs/2010.06467

Thanks!