Data Privacy in the Digital World

Tianen "Benjamin" Liu Dr. Nicole Dalzell

11/2/2019

What's Wrong with Our Data?

- 2 pieces of information for example: 1) there is only 1 person in a distant town A who has a certain disease; 2) Bob is from town A and checked in to the hospital
- Oftentimes, just removing sensitive information is not enough to protect the privacy of the data
- ► The sensitive information is identifiable when linked with another data set.
- ▶ 87% of individuals living in the US can be uniquely identified by using 3 data features: birth date, zip code, and gender

Differential Privacy - Definition in Practice

- I'm doing a survey about mental health that requires my sensitive information
- My college will release the data set for research but remove the sensitive information
- Still not private enough. My college will modify the data set
 - Captures the characteristics of the original data set while also making my information unidentifiable
 - Utility vs. privacy trade off
- ➤ To ensure unidentifiability: let the existence of one single answer make no difference on the probability of getting the released data set

Differential Privacy - Mathematical Definition

- ▶ Let I be the population whose data are collected
- $ightharpoonup d_i$ be the information given by person i
- ▶ $D_I = d_i | i \in I$ be the data set collected from all people in I
- ▶ Q be the privatized query run on a data set, and $R = Q(D_I)$ be the resultant modified data set released to the public.
- ▶ Ideally, since whether one person is in the data set does not impact the answers or data set released, we have

$$Q(D_{I-me}) = Q(D_I)$$

This should hold whenever, meaning the probability of $Q(D_{I-me})$ being equal to $Q(D_{I})$ should be similar. Thus ϵ -differential privacy is defined as:

$$rac{Prob(Q(D_I)=R)}{Prob(Q(D_{I\pm i})=R)} \leq e^{\epsilon}$$
, for small $\epsilon \geq 0$

Method 1: Laplacian Noise

- ► Add to the true answers noises drawn from the Laplace distribution: *TrueValue* ± *Noise*
- Parameters: Noise $\sim Lap(\mu=0,b=\frac{\Delta F}{\epsilon})$
- ► Tune the parameters to be differentially private
- ▶ Global sensitivity: $\Delta F = \max_{(D_1, D_2)} |F(D_1) F(D_2)|$, which means max difference in answers that adding or removing any individual from the data set can cause
- The released answers will have a Laplace distribution $Prob(R = x|D) = \frac{\epsilon}{2\Delta F} e^{-\frac{|x-F(D)|\epsilon}{\Delta F}}$ with ϵ -differential privacy

Method 1: Laplacian Noise - Binary Data & A Statistic

- Useful when releasing the count, mean, median,...
- Example: Query = Median Age in a data set. True median = 21.

Method 1: Laplacian Noise - Numeric Data

▶ add noise to each age and round to a whole number

Method 2: Randomized Response

- Useful when releasing the count in a binary data set
- ▶ Flip a biased coin with probability of heads α . If heads, then answer truthfully with d. If tails, flip a coin with probability of heads β and then answer with one response if heads and the other response if tails.
- We control the parameters α and β that satisfy differential privacy using an extreme case of definition: $\frac{P[Q(d_{yes},\alpha,\beta)=Yes]}{P[Q(d_{no},\alpha,\beta)=Yes]} \leq e^{\epsilon} \text{ from which we can get } In(\frac{\alpha+(1-\alpha)\beta}{1-(\alpha+(1-\alpha)\beta)}) \leq \epsilon.$
- For numeric data, we can also flip one coin with probability α , and report with a Laplacian noise if tail.

Method 2: Randomized Response

Evaluation: Utility vs. Privacy

- ► Take differentially private output of the mean for example
- Utility: $\frac{|output-real|}{\epsilon\sqrt{n}}$, the percentage of the outputs that are useful
- Exponential Mechanism: $Pr[M_q^{\epsilon}(D) = o] = \frac{\exp(\frac{\epsilon q(D,o)}{2\Delta q})}{\sum_{o' \in O} \exp(\frac{\epsilon q(D,o')}{2\Delta q})}$, the probability of an output

Synthesizing Open Sourcing Mental Illness Dataset

- Using synthpop, we can create a synthetic data set
- Control: order, method, restrictions...
- **b** does not ensure ϵ -differential privacy

Synthesizing Open Sourcing Mental Illness Dataset

The probability one currently has a mental heath disorder vs. how much the company values mental health

Synthesizing Open Sourcing Mental Illness Dataset

 Confidence intervals of parameters of Logistic Regressions using original (Model 1) and synthetic (Model 2) data set

Wake Forest University Healthy Minds Dataset

- Mostly categorical variables that are not necessarily correlated, thus synthpop does not work well
- Synthesize a subset of variables and move on to the whole data set.

Reference

- ▶ [1] Open Sourcing Mental Illness Ltd. OSMI Mental Health in Tech Survey. 2017, 2018. url: https://osmihelp.org/research.
- ▶ [2] David McClure and Jerome P. Reiter. Differential Privacy and Statistical Disclosure Risk Measures: An Investigation with Binary Synthetic Data". In: Trans. Data Privacy 5.3 (Dec. 2012), pp. 535-552. issn: 1888-5063. url: http://dl.acm.org/citation.cfm?id=2423656.2423658.
- ▶ [3] Christine Task. Privacy-preserving Datamining: Differential Privacy And Applications. June 2014.
- ▶ [4] Roberto Agostino Vitillo. Differential Privacy for Dummies. July 2016. url: https://robertovitillo.com/2016/07/29/differential-privacy-for-dummies/.