Import biblioteki **TensorFlow** (https://www.tensorflow.org/) z której będziemy korzystali w uczeniu maszynowym:

```
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.read_csv('Boston.csv')
print(df)
```

	Unna	med: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	\
0		1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	
1		2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	
2		3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	
3		4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	
4		5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	
501		502	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	
502		503	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	
503		504	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	
504		505	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	
505		506	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	
	tax	ptrati	o black	lsta	t medv							
0	296	15.	3 396.90	4.9	8 24.0							
1	242	17.	8 396.90	9.1	4 21.6							
2	242	17.	8 392.83	4.0	3 34.7							
3	222	18.	7 394.63	2.9	4 33.4							
4	222	18.	7 396.90	5.3	3 36.2							
501	273	21.	0 391.99	9.6	7 22.4							
502	273	21.	0 396.90	9.0	8 20.6							
503	273	21.	0 396.90	5.6	4 23.9							
504	273	21.	0 393.45	6.4	8 22.0							
505	273	21.	0 396.90	7.8	8 11.9							

[506 rows x 15 columns]

df.head()

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	;
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	;
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	;
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	;
4												•	

rm=df.iloc[:,6]

```
rm
```

```
6.575
     0
     1
            6.421
     2
            7.185
     3
            6.998
     4
            7.147
             . . .
     501
            6.593
     502
            6.120
     503
            6.976
     504
            6.794
     505
            6.030
     Name: rm, Length: 506, dtype: float64
medv=df.iloc[:,14]
medv
     0
            24.0
     1
            21.6
     2
            34.7
     3
            33.4
     4
            36.2
             . . .
     501
            22.4
     502
            20.6
            23.9
     503
     504
            22.0
            11.9
     505
     Name: medv, Length: 506, dtype: float64
plt.figure(figsize=(20, 5))
features = ['rm']
target = df['medv']
for i, col in enumerate(features):
    plt.subplot(1, len(features) , i+1)
    x = df[col]
    y = target
    plt.scatter(x, y, marker='o')
    plt.title(col)
    plt.xlabel(col)
    plt.ylabel('medv')
plt.show()
```


rm

```
6.575
0
1
       6.421
2
       7.185
3
       6.998
4
       7.147
501
       6.593
502
       6.120
503
       6.976
       6.794
504
505
       6.030
Name: rm, Length: 506, dtype: float64
```

df.corr()

			1 to 15 of 15 entries	Filter
index	Unnamed: 0	crim	zn	indus
Unnamed: 0	1.0	0.40740717162338774	-0.10339335708758705	0.399438850
crim	0.40740717162338774	1.0	-0.20046921966254744	0.4065834114
zn	-0.10339335708758705	-0.20046921966254744	1.0	-0.5338281863
indus	0.399438850244673	0.4065834114062594	-0.5338281863044696	
chas	-0.003759114857722059	-0.05589158222224156	-0.04269671929612169	0.06293802748
nox	0.3987361743972525	0.4209717113924554	-0.5166037078279843	0.7636514469
rm	-0.07997115016976254	-0.21924670286251308	0.31199058737409047	-0.3916758526
age	0.20378350994197128	0.3527342509013634	-0.5695373420992109	0.6447785113
dis	-0.3022109586216179	-0.37967008695102467	0.6644082227621105	-0.7080269887
rad	0.6860019757441409	0.6255051452626024	-0.3119478260185367	0.5951292746
tax	0.6666259236420675	0.5827643120325854	-0.3145633246775997	0.7207601799
ptratio	0.29107422728529214	0.2899455792795226	-0.3916785479362161	0.38324755642
black	-0.2950412323642518	-0.3850639419942239	0.1755203173828273	-0.356976535
Istat	0.25846477045160304	0.4556214794479463	-0.41299457452700283	0.603799716
medv	-0.22660364293533913	-0.38830460858681154	0.3604453424505433	-0.48372516002
4)

Show 25 ➤ per page

Like what you see? Visit the <u>data table notebook</u> to learn more about interactive tables.

Distributions

df.corr()

```
Unnamed:
                                                  indus
                               crim
                                           zn
                                                             chas
                                                                        nox
                                                                                   rm
      Unnamed:
                                     ^ 4^^^^
                                                          0 000750
real_x = np.array(rm)
real_y = np.array(medv)
real_x
     array([6.575, 6.421, 7.185, 6.998, 7.147, 6.43, 6.012, 6.172, 5.631,
            6.004, 6.377, 6.009, 5.889, 5.949, 6.096, 5.834, 5.935, 5.99
            5.456, 5.727, 5.57, 5.965, 6.142, 5.813, 5.924, 5.599, 5.813,
            6.047, 6.495, 6.674, 5.713, 6.072, 5.95, 5.701, 6.096, 5.933,
            5.841, 5.85 , 5.966, 6.595, 7.024, 6.77 , 6.169, 6.211, 6.069,
            5.682, 5.786, 6.03, 5.399, 5.602, 5.963, 6.115, 6.511, 5.998,
            5.888, 7.249, 6.383, 6.816, 6.145, 5.927, 5.741, 5.966, 6.456,
            6.762, 7.104, 6.29, 5.787, 5.878, 5.594, 5.885, 6.417, 5.961,
            6.065, 6.245, 6.273, 6.286, 6.279, 6.14, 6.232, 5.874, 6.727,
            6.619, 6.302, 6.167, 6.389, 6.63, 6.015, 6.121, 7.007, 7.079,
            6.417, 6.405, 6.442, 6.211, 6.249, 6.625, 6.163, 8.069, 7.82,
            7.416, 6.727, 6.781, 6.405, 6.137, 6.167, 5.851, 5.836, 6.127,
            6.474, 6.229, 6.195, 6.715, 5.913, 6.092, 6.254, 5.928, 6.176,
            6.021, 5.872, 5.731, 5.87, 6.004, 5.961, 5.856, 5.879, 5.986,
            5.613, 5.693, 6.431, 5.637, 6.458, 6.326, 6.372, 5.822, 5.757,
            6.335, 5.942, 6.454, 5.857, 6.151, 6.174, 5.019, 5.403, 5.468,
            4.903, 6.13, 5.628, 4.926, 5.186, 5.597, 6.122, 5.404, 5.012,
            5.709, 6.129, 6.152, 5.272, 6.943, 6.066, 6.51, 6.25, 7.489,
            7.802, 8.375, 5.854, 6.101, 7.929, 5.877, 6.319, 6.402, 5.875,
            5.88 , 5.572, 6.416, 5.859, 6.546, 6.02 , 6.315, 6.86 , 6.98 ,
            7.765, 6.144, 7.155, 6.563, 5.604, 6.153, 7.831, 6.782, 6.556,
            7.185, 6.951, 6.739, 7.178, 6.8 , 6.604, 7.875, 7.287, 7.107,
            7.274, 6.975, 7.135, 6.162, 7.61, 7.853, 8.034, 5.891, 6.326,
            5.783, 6.064, 5.344, 5.96 , 5.404, 5.807, 6.375, 5.412, 6.182,
            5.888, 6.642, 5.951, 6.373, 6.951, 6.164, 6.879, 6.618, 8.266,
            8.725, 8.04, 7.163, 7.686, 6.552, 5.981, 7.412, 8.337, 8.247,
            6.726, 6.086, 6.631, 7.358, 6.481, 6.606, 6.897, 6.095, 6.358,
            6.393, 5.593, 5.605, 6.108, 6.226, 6.433, 6.718, 6.487, 6.438,
            6.957, 8.259, 6.108, 5.876, 7.454, 8.704, 7.333, 6.842, 7.203,
            7.52 , 8.398, 7.327, 7.206, 5.56 , 7.014, 8.297, 7.47 , 5.92 ,
            5.856, 6.24, 6.538, 7.691, 6.758, 6.854, 7.267, 6.826, 6.482,
            6.812, 7.82, 6.968, 7.645, 7.923, 7.088, 6.453, 6.23, 6.209,
            6.315, 6.565, 6.861, 7.148, 6.63, 6.127, 6.009, 6.678, 6.549,
            5.79, 6.345, 7.041, 6.871, 6.59, 6.495, 6.982, 7.236, 6.616,
            7.42 , 6.849, 6.635, 5.972, 4.973, 6.122, 6.023, 6.266, 6.567,
            5.705, 5.914, 5.782, 6.382, 6.113, 6.426, 6.376, 6.041, 5.708,
            6.415, 6.431, 6.312, 6.083, 5.868, 6.333, 6.144, 5.706, 6.031,
            6.316, 6.31, 6.037, 5.869, 5.895, 6.059, 5.985, 5.968, 7.241,
            6.54 , 6.696, 6.874, 6.014, 5.898, 6.516, 6.635, 6.939, 6.49 ,
            6.579, 5.884, 6.728, 5.663, 5.936, 6.212, 6.395, 6.127, 6.112,
            6.398, 6.251, 5.362, 5.803, 8.78 , 3.561, 4.963, 3.863, 4.97 ,
            6.683, 7.016, 6.216, 5.875, 4.906, 4.138, 7.313, 6.649, 6.794,
            6.38, 6.223, 6.968, 6.545, 5.536, 5.52, 4.368, 5.277, 4.652,
                 , 4.88 , 5.39 , 5.713, 6.051, 5.036, 6.193, 5.887, 6.471,
            6.405, 5.747, 5.453, 5.852, 5.987, 6.343, 6.404, 5.349, 5.531,
            5.683, 4.138, 5.608, 5.617, 6.852, 5.757, 6.657, 4.628, 5.155,
            4.519, 6.434, 6.782, 5.304, 5.957, 6.824, 6.411, 6.006, 5.648,
            6.103, 5.565, 5.896, 5.837, 6.202, 6.193, 6.38, 6.348, 6.833,
            6.425, 6.436, 6.208, 6.629, 6.461, 6.152, 5.935, 5.627, 5.818,
```

```
6.406, 6.219, 6.485, 5.854, 6.459, 6.341, 6.251, 6.185, 6.417, 6.749, 6.655, 6.297, 7.393, 6.728, 6.525, 5.976, 5.936, 6.301, 6.081, 6.701, 6.376, 6.317, 6.513, 6.209, 5.759, 5.952, 6.003, 5.926, 5.713, 6.167, 6.229, 6.437, 6.98, 5.427, 6.162, 6.484, 5.304, 6.185, 6.229, 6.242, 6.75, 7.061, 5.762, 5.871, 6.312, 6.114, 5.905, 5.454, 5.414, 5.093, 5.983, 5.983, 5.707, 5.926, 5.67, 5.39, 5.794, 6.019, 5.569, 6.027, 6.593, 6.12, 6.976, 6.794, 6.03])
```

real_y

```
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
      18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
      15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
      13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
      21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
      35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
      19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
      20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
      23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
      33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
      21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
      20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
      23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
      15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
      17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
      25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
      23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
      32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
      34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
      20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
      26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
      31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
      22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
      42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
      36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
      32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
      20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
      20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
      22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
      21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
      19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
      32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
      18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
      16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
      13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                  7.4, 10.2, 11.5, 15.1, 23.2,
       7.2, 10.5,
                                                9.7, 13.8, 12.7, 13.1,
      12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1,
                                                 8.3, 8.5,
                                                             5., 11.9,
      27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,
                                                 7.,
                                                       7.2,
                                                             7.5, 10.4,
             8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                 8.3, 10.2, 10.9, 11.
       9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
      10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
      15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
      19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
      29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
      20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
      23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])
```

Batch Stochastic Gradient Descent - wykorzystujemy cały zbiór danych

Definicja błędu: def loss_fn(real_y, pred_y): return tf.reduce_mean((real_y - pred_y)**2) import random Loss = []epochs = 2000learning_rate = 0.02 a = tf.Variable(random.random()) b = tf.Variable(random.random()) for _ in range(epochs): with tf.GradientTape() as tape: $pred_y = a * real_x + b$ #print(pred_y) loss = loss_fn(real_y, pred_y) Loss.append(loss.numpy()) grad_a, grad_b = tape.gradient(loss,(a, b)) a.assign_sub(learning_rate*grad_a) b.assign_sub(learning_rate*grad_b) np.max(Loss),np.min(Loss) (497.1375, 45.838394) print(a.numpy()) print(b.numpy()) 6.984463 -21.200027 plt.scatter(np.arange(epochs),Loss) plt.show()

Mini-batch Stochastic Gradient Descent - wykorzystujemy część zbióru danych

6

7

8

5

Definiujemy tablicę:

10

```
arr = np.arange(10)
arr

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

Mieszamy zawartość tablicy:

```
np.random.shuffle(arr)
arr
array([9, 0, 6, 1, 3, 5, 7, 2, 4, 8])
```

Funkcja do przetestowania:

```
def subset_dataset(x_dataset, y_dataset, subset_size):
    arr = np.arange(len(x_dataset))
    np.random.shuffle(arr)
    x_train = x_dataset[arr[0:subset_size]]
    y_train = y_dataset[arr[0:subset_size]]
    return x_train,y_train
```

Uzupełnik poniższy kod, tak aby możliwe było testowanie różnych wielkości próbki treningowwej.

```
def mini_batch_stochastic_gradient_descent(batch_size):
  Loss = []
  epochs = 2000
  learning_rate = 0.02
  batch_size = batch_size
                              #wielkość zbioru wykorzystanego do treningu
  a = tf.Variable(random.random())
  b = tf.Variable(random.random())
  for i in range(epochs):
    real_x_batch, real_y_batch = subset_dataset(real_x,real_y,batch_size)
    with tf.GradientTape() as tape:
      pred_y = a * real_x_batch + b
      loss = loss_fn(real_y_batch, pred_y)
      Loss.append(loss.numpy())
    dloss da, dloss db = tape.gradient(loss,(a, b))
    a.assign_sub(learning_rate*dloss_da) #a = a - alpha*dloss_da
    b.assign_sub(learning_rate*dloss_db) #b = b - alpha*dloss_db
  print("last one loss", str(loss))
  plt.scatter(np.arange(epochs),Loss)
  plt.show()
  max = np.max(rm)
  min = np.min(rm)
  X = np.linspace(min, max, num=10)
  plt.plot(X,a.numpy()*X+b.numpy(),c='r')
  plt.scatter(rm, medv, c="b")
  plt.show()
mini_batch_stochastic_gradient_descent(1)
```

last one loss tf.Tensor(3.2077029, shape=(), dtype=float32)

mini_batch_stochastic_gradient_descent(10)

last one loss tf.Tensor(63.168556, shape=(), dtype=float32)

mini_batch_stochastic_gradient_descent(100)

last one loss tf.Tensor(61.794693, shape=(), dtype=float32)

```
350
      300
      250
      200
Wykres zmian błędu:
#do uzupełnienia
def subset_dataset(x_dataset, y_dataset, subset_size):
    arr = np.arange(len(x_dataset))
    np.random.shuffle(arr)
    x_train = x_dataset[arr[0:subset_size]]
    y_train = y_dataset[arr[0:subset_size]]
    return x_train,y_train
def loss_fn(real_y, pred_y):
    return tf.reduce_mean((real_y - pred_y)**2)
Loss = []
epochs = 2000
learning_rate = 0.01
batch size = 50
a = tf.Variable(random.random())
b = tf.Variable(random.random())
for in range(epochs):
  real rm batch,real medv batch = subset dataset(real x,real y,batch size)
  with tf.GradientTape() as tape:
    pred_medv = a * real_rm_batch + b
    loss = loss_fn(real_medv_batch, pred_medv)
    Loss.append(loss.numpy())
  dloss da, dloss db = tape.gradient(loss,(a, b))
  a.assign_sub(learning_rate*dloss_da) #a = a - alpha*dloss_da
  b.assign sub(learning rate*dloss db) #b = b - alpha*dloss db
  plt.scatter(np.arange(epochs),Loss)
  plt.show()
```



```
max = np.max(rm)
min = np.min(rm)
X = np.linspace(min, max, num=10)
plt.plot(X,a.numpy()*X+b.numpy(),c='r')
plt.scatter(rm,medv,c="b")
plt.show()
```


▼ Podsumowanie

Na uczenie modelu ma najwiekszy wpływ użycie batcha (bez batcha jest podawany cały zbiór uczący), małe batche mogą przyspieszyć proces uczenia, ponieważ aktualizacje wag modelu są wykonywane częściej. Dzięki temu wprowadza to pewną losowość w procesie uczenia, pomoga uniknąć utknięcia w minimach lokalnych. Model uczony z minibatchem osiąga lepsze rezultaty jeżeli chodzi o wyniki uczenia(lepiej znaleziona prosta) oraz mniejszy błąd. Model lepiej i szybciej się uczy gdy mini-batch jest większy niż gdy jest on mniejszy. Ponadto na proces uczenia modelu ma wpływ ilość epok. Za mała ilość epok skutkuje niedouczeniem modelu (model nie nauczył się wystarczająco dobrze dostosowywać się do danych treningowych), zaś gdy ilość epok jest zbyt duża następuje przeuczenie modelu (model nieuogulnia zgromadzonej wiedzy tylko "uczy się na pamięć" zbioru treningowego co sprawia, że jest nieskuteczny lub mało skuteczny dla nowych danych). Ostatnim sprawdzonym przeze mnie parametrem jest współczynnik uczenia. Jego zbyt duża wartość rowadzi do skakania wokół minimum globalnego przy czym model go nie osiągnie. W przypadku zastosowania zbyt małej wartości współczynnika uczenia proces uczenia jest bardzo wolny, a model "utyka" w minimach lokalnych.

Na uczenie modelu ma najwiekszy wpływ użycie batcha (bez batcha jest podawany cały zbiór uczący), małe batche mogą przyspieszyć proces uczenia, ponieważ aktualizacje wag modelu są wykonywane częściej. Dzięki temu wprowadza to pewną losowość w procesie uczenia, pomoga uniknąć utknięcia w minimach lokalnych. Model uczony z minibatchem osiąga lepsze rezultaty jeżeli chodzi o wyniki uczenia(lepiej znaleziona prosta) oraz mniejszy błąd. Model lepiej i szybciej się uczy gdy mini-batch jest większy niż gdy jest on mniejszy. Ponadto na proces uczenia modelu ma wpływ ilość epok. Za mała ilość epok skutkuje niedouczeniem modelu (model nie nauczył się wystarczająco dobrze dostosowywać się do danych treningowych), zaś gdy ilość epok jest zbyt duża następuje przeuczenie modelu (model nieuogulnia zgromadzonej wiedzy tylko "uczy się na pamięć" zbioru treningowego co sprawia, że jest nieskuteczny lub mało skuteczny dla nowych danych). Ostatnim sprawdzonym przeze mnie parametrem jest współczynnik uczenia. Jego zbyt duża wartość rowadzi do skakania wokół minimum globalnego przy czym model go nie osiągnie. W przypadku zastosowania zbyt małej wartości

Nie można połączyć się z usługą reCAPTCHA. Sprawdź połączenie z internetem i załaduj ponownie zadanie reCAPTCHA.