Prediction Of Falcon 9 Landing Successfully

By: Keshav Subramaniyam

Executive Summary

The goal of the capstone is to use exploratory data analysis and machine learning prediction analysis after data pre-processing and data wrangling to predict whether the Falcon 9 Spaceship will land successfully. Our goal is to utilize your data analysis tools to load a dataset, clean it, and find out interesting insights from it.

The following steps are being taken in order for us to analyze the given data:

- 1. Data Collection
- 2. Data Collection With Webscraping
- 3. Data Wrangling
- 4. Exploratory Data Analysis With SQL
- 5. Exploratory Data Analysis With Visualization
- 6. Interactive Visual Analytics With Folium
- 7. Interactive Visual Analytics With Plotly Dash
- 8. Machine Learning Prediction Lab

Introduction

SpaceX, an aerospace company that manufactures Spacecraft, is advertising Falcon 9 rocket launches on its website for 62 million dollars, while it cost 165 million for other providers. Considering that SpaceX can reuse its first stage, we can risk to analyze the first stage of the Falcon 9 launch. If we can determine whether the first stage will land or not, we can also determine the cost of the launch as well. We can use this to see if an alternative company wants to bid against SpaceX for a rocket launch. There are a series of tasks we will follow delineated in the bullets below that explains how data science plays a role in Falcon 9's efficacy:

- 1. Data Collection with REST API's and Web Scraping will be done. We will also convert the data into a dataframe and perform some data wrangling.
- 2. Building a dashboard in order to analyze launch records interactively with Plotly Dash. We will then build an interactive map to analyze launch site proximity with Folium.
- 3. Use machine learning training and testing data in order to find the best hyperparameter between SVM, Classification Trees, and Logistic Regression.

Data Collection And Data Wrangling

Data Collection

data.head(5)													
	static_fire_date_utc	static_fire_date_unix	net	window	rocket	success	failures	details	crew	ships	capsules	payloads	launc
۰	2006-03- 17700:00:00:002	1.142554e+09	False	0.0	Se0d0d05eda609557709d1eb	False	[(time: 33, 'altitude: None, 'reason: 'merlin engine failure')]	Engine failure at 33 seconds and loss of vehicle	п	0	0	[Seb0e4b5b6c3bb0006eeb1e1]	Se/9e450215090905de5
1	None	Nan	False	0.0	Selidod9Seda699557709d1eb	False		Successful first stage burn and transition to second stage, maximum aintude 200 km, Premature engine shutdown at T+7 min 30 s. Failed to recover first stage	0	0	0	[SebGe4B6B6Clbb0006eeb1e2]	Se0#450215000995dwS
2	None	Nan	False	0.0	5e9d0d95eda69955f709d1eb	False	(ftime: 140, 'altitude: 35, 'reason: 'residual stage-1	Residual stage 1 thrust led to collision between	0	0	0	[5eb0e4b6b6c3bb0006eeb1e3, 5eb0e4b6b6c3bb0006eeb1e4]	\$69e4502f5090995de5

Layout of the Dataframe

Combining All Of The Columns Into The Dictionary

#W_AFTSW_-IR.o.whercE(W_AFTSW_-NOR._B_M_W_AFTSW)
#WA_AFTSW_-IR.o.whercE(W_AFTSW_-NOR._BW_AFTSW)
#WA_AFTSW_-IR.o.whercE(W_AFTSW_-NOR._BW_AFTSW)
#WA_AFTSW_-IR.o.whercE(W_AFTSW_-NOR._BW_AFTSW)
#WA_AFTSW_-IR.o.whercE(W_AFTSW_-NOR._BW_AFTSW)
#WA_AFTSW_-IR.o.whercE(W_AFTSW_-NOR._BW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_AFTSW_-NOR._BW_-NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_AFTSW_NOR._BW_

my_array = np.array(df.iloc[3]["Array"])

15600, 15600, 9525, 15600, 15600, 3880, 5783.35055555556, 15600, 1600, 15600, 15600, 15600, 15600, 15600, 36811, dtype=object)

Replacing NaNs in Payload with Payload Mean Of Known Values

Web Scraping

List Of Columns In DataFrame

Count Of Each Landing Outcome

Count Of Each Orbit

Exploratory Data Analysis

EDA With SQL

Booster Versions

Distinct Site From SpaceTable

Launch Sites With Beginning Title CCA

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Customer = "NASA (CRS)";

* sqlite://my_datal.db
Done.

SUM(PAYLOAD_MASS__KG_)

45596
```

EDA With SQL

```
%sql SELECT MIN(Date) FROM SPACEXTABLE WHERE Landing_Outcome = "Success (ground pad)";

* sqlite:///my_data1.db
Done.
MIN(Date)
2015-12-22
```

Earliest Date with Successful Landing At Ground Pad

```
[46]: %sql SELECT Booster_Version FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (drone ship)' AND PAYLOAD_MASS__KG__BETWEEN 4000 AND 6000;
    * sqlite://my_datal.db
Done.
[46]: Booster_Version
    F9 FT B1022
    F9 FT B1021.2
    F9 FT B1031.2
```

Earliest Date with Successful Landing At Ground Pad And Payload Mass Between 4000 and 6000.

```
[51]: %sql SELECT COUNT(*) FROM SPACEXTABLE GROUP BY("Mission_Outcome");

* sqlite://my_data1.db
Done.

[51]: COUNT(*)

1

98

1

1
```

EDA With SQL

Find Booster Version With Maximum Payload Mass

Landing Outcomes Between 03/20/2017 to 06/04/2020

```
[61]: %sql SELECT SUBSTR(Date, 6, 2), Booster_Version, Launch_Site FROM SPACEXTABLE WHERE Landing_Outcome = "Failure (drone ship)" AND SUBSTR(Date, 0, 5) = "2015";

* sqlite://my_datal.db
Done.

[61]: SUBSTR(Date, 6, 2) Booster_Version Launch_Site

O1 F9 v1.1 B1012 CCAFS LC-40

O4 F9 v1.1 B1015 CCAFS LC-40
```

EDA With Visualization

Catplot Between FlightNumber and LaunchSite

Catplot Between Payload And Flight Number

Scatterplot Between Payload Mass And Launch Site

EDA With Visualization

HINT use groupby method on Orbit column and get the mean of Class column
new_df = pd.DataFrame(df.groupby("Orbit")["Class"].mean())
sns.barplot(new df, x="Orbit", y="Class")

<AxesSubplot:xlabel='Orbit', ylabel='Class'>

Plot a line chart with x axis to be the extracted year and y axis to be the success rate
sns.lineplot(x="Date", y="Class", data=df)

<AxesSubplot:xlabel='Date', ylabel='Class'>

Barplot between new_df and Orbit

LinePlot between Date And Class

Folium And Plotly Dash

Interactive Map With Folium

Plotly Dash Dashboard

SpaceX Launch Records Dashboard patible and the courts licit kscilc-sh courts sic-si

Predictive Analysis Classification

Predictive Analysis Classification

Decision Tree: Score And Confusion Matrix

KNN: Score And Confusion Matrix

Logistic Regression: Score And Confusion

Conclusion

We came up with a lot of interesting data and information from this experiment:

- The logistic regression has the best score, with the support vector machine maxing out.
- The locations of SPACEX are very close to the equator.
- The average success rate of the SSO object is the highest.
- There are three unique booster versions.