ClassBench-ng: Recasting ClassBench After a Decade of Network Evolution

Jiri Matousek¹, Gianni Antichi², Adam Lucansky³ Jan Korenek¹, Andrew W. Moore²

¹Brno University of Technology

²University of Cambridge

³CESNET

Agenda

Introduction

Analysis of Real Classification Rules

P Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

Summary

Packet Classification

- matching incoming packets against a set of rules and performing the corresponding action
- the basic operation of each networking device
- examples
 - packet forwarding
 - application of security policies
 - application-specific processing
 - application of quality-of-service guarantees
- packet classification according to IPv4 5-tuple
 - src/dst IPv4 prefix
 - src/dst port
 - protocol

Internet Evolution

- many trends that influence packet classification
 - growing deployment of IPv6 (longer IP prefixes)
 - adoption of SDN with OpenFlow protocol (more header fields)
 - increasing transfer rates (faster classification)
 - increasing number of classification rules (larger data structures)
- Internet evolution stimulates development of new packet classification algorithms
- new algorithms need to be benchmarked

Packet Classification Benchmarking

- lack of publicly available benchmarking data
- benchmarking using synthetically generated rule sets

ClassBench

Taylor, D. E., and Turner, J. S., "ClassBench: A Packet Classification Benchmark," IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 499–511, June 2007

Recasting ClassBench

- today's Internet is no more the one of a decade ago
- questions with respect to ClassBench
 - Are the ideas behind the ClassBench still valid?
 - What are the characteristics of real rule sets with IPv6 prefixes and OpenFlow-specific fields?
 - How to extend the ClassBench with respect to IPv6 and OpenFlow?

Agenda

Introduction

Analysis of Real Classification Rules

IP Prefixes
Ports and Protocol
OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

Summary

Analyzed Real Data Sets

	Prefixes						
Name	or Rules	Source	Date				
IPv4 Prefix Sets							
eqix_2015	550511	http://archive.routeviews.org/	2015-07-02				
eqix_2005	164 455	nctp://archive.fouteviews.org/	2005-07-02				
rrc00_2015	571 351	h///	2015-07-02				
rrc00_2005	168 525	http://data.ris.ripe.net/	2005-07-02				
	IPv6 Prefix Sets						
eqix_2015	23 866		2015-07-02				
eqix_2013	13 444	http://archive.routeviews.org/	2013-07-02				
eqix_2005	658		2005-07-02				
rrc00_2015	24 162		2015-07-02				
rrc00_2013	14374	http://data.ris.ripe.net/	2013-07-02				
rrc00_2005	499		2005-07-02				
Rule Sets From University Network							
uni_2010	96	university ACL	2010-08-30				
uni_2015	122	university ACL	2015-01-14				
OpenFlow Rule Sets							
of1	16 889	Open vSwitch in a cloud	2015-05-29				
of2	20 250	Open vSwitch in a cloud	2015-05-29				
	1 757		2015-06-18				
of3	to	Open vSwitch in a cloud	to				
	7 456		2015-07-14				

IP Prefix Set Representation

- representation using trie (binary prefix tree)
- desired properties of trie description
 - anonymity
 - completeness
 - scalability
- the same trie description as in the original ClassBench
 - prefix length distribution
 - branching probability distributions
 - average skew distribution

$$skew = 1 - \frac{weight(lighter)}{weight(heavier)}$$

prefix nesting threshold

Example of IP Prefix Set Representation

- prefix length distribution
- branching probability distribution
 - probability of 1-child node
 - probability od 2-children node
- average skew distribution
- prefix nesting threshold

IPv4 Prefix Sets (2005-2015)

Prefix Length Distribution

3-times more prefixes after 10 years of evolution

IPv4 Prefix Sets (2005-2015)

Branching Probability Distributions

• 3-times more prefixes after 10 years of evolution

IPv4 Prefix Sets (2005-2015)

Average Skew Distribution

3-times more prefixes after 10 years of evolution

IPv6 Prefix Sets (2005-2015)

- 36-times more prefixes after 10 years of evolution
- the most common prefix length shifted from 32 (RIRs/ISPs) to 48 (end users/organization)

Prefix Length Distribution

IPv6 Prefix Sets (2005-2015)

Branching Probability Distributions

Average Skew Distribution

IPv6 Prefix Sets (2013-2015)

- 2-times more prefixes after 2 years of evolution
- only minor changes in prefix length distribution

Prefix Length Distribution

IPv6 Prefix Sets (2013-2015)

Branching Probability Distributions

Average Skew Distribution

Ports Representation

- 5 port classes are distinguished within analysis
 - WC wildcard
 - **HI** user port range (1024 : 65535)
 - LO well-known system port range (0 : 1023)
 - AR arbitrary range
 - EM exact match

Ports and Protocol

Transport Layer Protocol

- increasing number of rules specifying UDP protocol
- increasing number of rules with wildcarded protocol

Data Set	Protocol Specification					
Dala sei	wildcard	TCP	UDP			
uni_2010	26.04%	71.88%	2.08%			
uni_2015	38.52%	54.92%	6.56%			

Source and Destination TCP/UDP Port

 increasing number of rules with AR or WC destination port specification

Port	WC	HI	HI LO		EM		
uni_2010							
Source	100.00	0.00	0.00	0.00	0.00		
Destination	26.04	0.00	0.00	5.21	68.75		
uni_2015							
Source	100.00	0.00	0.00	0.00	0.00		
Destination	38.52	0.00	0.00	8.20	53.28		

Source-Destination Port Pair Class

- port pair class (PPC) helps to understand interdependencies between source and destination port classes
- analysis of PPC for TCP and UDP protocols in uni_2015

OpenFlow 1.0 Rules

- OpenFlow 1.0 extends the standard 5-tuple with 7 header fields
 - ingress port
 - src/destinaiton MAC address
 - EtherType
 - VLAN ID
 - VLAN priority
 - DSCP (former IP ToS)

OpenFlow Header Fields Values

Header Fields

Rule Set	in_port	mac_src	mac_dst	eth_type	ip₋proto	ip_src	ip_dst	I4_src	I4_dst
ofl	123	27	593	1	3	478	109	4	48
	(0.866)	(0.032)	(0.047)	(<0.001)	(0.003)	(0.046)	(0.009)	(0.029)	(0.022)
of2	140	19	791	1	3	390	97	4	8227
	(0.864)	(0.081)	(0.050)	(<0.001)	(0.001)	(0.028)	(0.007)	(<0.001)	(0.927)
of1+of2	182	45	1176	1	3	498	119	6	8237
	(0.599)	(0.042)	(0.041)	(<0.001)	(<0.001)	(0.020)	(0.004)	(0.001)	(0.742)

OpenFlow Rule Types

- OpenFlow rule type describes which header fields are wildcarded/specified in rules of this type
- rule type can be represented as 12-bit binary number
 - theoretically 4096 different rule types
 - practically only 18 utilized rule types

OpenFlow Rule Set Dynamics

 dynamics of OpenFlow rule set expressed with the help of symmetric difference

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Agenda

Introduction

Analysis of Real Classification Rules

P Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

Summary

ClassBench Generation Accuracy

comparison of 10 runs against original values

Branching Probability Distribution

ClassBench Generation Accuracy

comparison of 10 runs against original values

Average Skew Distribution

ClassBench-ng

- built upon the original ClassBench
- improves IPv4 prefixes generation accuracy
- supports IPv6 prefixes generation and OpenFlow

Improved ClassBench

- IPv4 prefixes generation is improved using trie pruning algorithm
 - starts from 100-times bigger src/dst prefix sets
 - removes individual prefixes to adjust prefix set parameters to given values
- three steps of trie pruning algorithm
 - 1 branching probability adjustment (\psi)
 - 2 skew distribution adjustment (↑)
 - g prefixes length distribution adjustment (1)
- first two steps try to remove as less prefixes as possible
- each step aims to not alter the already ajusted characteristics

OpenFlow Analysis

- generates OpenFlow seed from OpenFlow rule set (in ovs-ofctl format)
- 3 parts of OpenFlow seed
 - rule type distribution
 - 5-tuple seed
 - OpenFlow-specific seed
- 4 types of representation within OpenFlow-specific seed
 - Values (in_port, eth_type)
 - parts (mac_src, mac_dst)
 - size (vlan_id)
 - null (vlan_prio, ip_tos)

OpenFlow Generation

- consists of 3 steps
 - uses Improved ClassBench to generate given number of IPv4
 tuples
 - 2 removes IPv4 5-tuple fields that are not part of the given OpenFlow rule type
 - 3 adds OpenFlow-specific header fields that are part of the given OpenFlow rule type
- does not allow to generate inconsistent rules (e.g., rule specifying VLAN ID and EtherType 0x0800)

Agenda

Introduction

Analysis of Real Classification Rules

P Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

Summary

Improved ClassBench Evaluation

 comparison of IPv4 prefixes generation accuracy of ClassBench and ClassBench-ng using RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\bar{y} - y_i)^2}$$

Branching Probability Distribution

Improved ClassBench Evaluation

Skew Distribution

OpenFlow Generation Evaluation

comparison of 10 runs against original values

OpenFlow Rule Types

OpenFlow Generation Evaluation

comparison of 10 runs against original values

Destination MAC address (vendor part)

Agenda

Introduction

Analysis of Real Classification Rules

P Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

Summary

Summary

- detailed analysis of real classification rule sets
 - IPv4/IPv6 prefixes from core routers
 - ACL rules from university network
 - OpenFlow rules from datacenter
- ClassBench-ng tool that is able to
 - accurately generate IPv4/IPv6 5-tuples
 - analyze real OpenFlow rule sets
 - accurately generate OpenFlow rules
- ClassBench-ng is planned to be released in January 2017

Thank you for your attention