

Expectation-Maximization Attention Networks for Semantic Segmentation

ICCV 2019

Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, Hong Liu

汇报人: 张灵西

学号: 19210240022

总览

- 研究背景与主要贡献
- 理论基础
 - □ 期望最大化算法
 - □ 非局部网络
- EMANet介绍
- 实验
- ■总结

研究背景与主要贡献

研究背景

- 语义分割:
 - □ 为每个像素预测类别标签
 - □ 自注意力机制在自然语言处理领域取得卓越成果,被一系列文章证明了在语义分割中的有效性(Nonlocal)
- 当前障碍:
 - □ 全卷积网络无法充分捕获长距离信息
 - □ 自注意力机制需要生成一个巨大的注意力图,其空间复杂度和时间复杂度巨大
 - □ 每一个像素的注意力图都需要对全图计算

本文主要贡献

- □ 本文第一次把EM算法加入到注意力机制中,能够得到一个更紧致的参数集合并且大幅减少计算复杂度;
- □ 将期望最大化注意作为神经网络的轻量级模块进行构建;
- □ 实验证明EMA算法的优越性高于经典算法

理论基础

理论基础

■ 期望最大化算法

- □ 期望最大化(EM)算法旨在为隐变量模型寻找最大似然解。对于观测数据 $X = \{x_1, x_2, ..., x_N\}$,每一个数据点 x_i 都对应隐变量 z_i 。我们把 $\{X, Z\}$ 称为完整数据,其似然函数为 $\ln p(X, Z|\theta)$, θ 是模型的参数。
- \square E步根据当前参数 θ^{old} 计算隐变量Z的后验分布,并寻找完整数据的似然 $Q(\theta, \theta^{old})$

$$Q(\boldsymbol{\theta} \cdot \boldsymbol{\theta^{old}}) = \sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X}, \boldsymbol{\theta^{old}}) \ln p(\boldsymbol{X}, \boldsymbol{z}|\boldsymbol{\theta})$$

□ M步通过最大化似然函数来更新参数得到θnew

$$\boldsymbol{\theta^{new}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta} \cdot \boldsymbol{\theta^{old}})$$

- □ EM算法被证明会收敛到局部最大值处,且迭代过程完整数据似然值单调递增
- \square 高斯混合模型是EM算法的一个范例,它把数据用多个高斯分布拟合。其 θ_k 为第k个高斯分布的参数 μ_k , Σ_k ,隐变量 Z_{nk} 为第k个高斯分布对第n数据点的"责任"。E步更新"责任",M步更新高斯参数

理论基础

- 非局部网络 (nonlocal)
 - □ 核心算子:

$$\mathbf{y_i} = \frac{1}{C(\mathbf{X})} \sum_{\forall j} f(\mathbf{x_i}, \mathbf{x_j}) g(\mathbf{x_j})$$

□ 其中, $f(\cdot,\cdot)$ 表示广义的核函数,C(X)是归一化系数,它将第i个像素的特征 x_i 更新为其他所有像素特征经过g变换之后的加权平均 y_i ,权重通过归一化后的核函数计算,表征两个像素之间的相关度。

EMANet介绍

期望最大化注意力机制

- 本文提出的EMA算法包含三个操作:
 - \square responsibility estimation (A_E)
 - \square likelihood maximization (A_M)
 - \square data re-estimation (A_R)
- 输入的特征图为 $X \in R^{N*C}$,基初始值 $\mu \in R^{K*C}$, A_E 估计隐变量 $Z \in R^{N*K}$,即每个基对像素的权责。第k个基对第n个像素的权责可以计算为:

$$z_{nk} = \frac{K(x_n, \mu_k)}{\sum_{j=1}^K K(x_n, \mu_j)}$$

期望最大化注意力机制

■ responsibility estimation (A_E) 的功能和EM算法中的E部分一样。

$$Z = softmax(\lambda X(\mu^{\top}))$$

■ likelihood maximization (A_M) 的功能和EM算法中的M部分一样。

$$\mu_{k} = \frac{\sum_{n=1}^{N} z_{nk} x_{n}}{\sum_{n=1}^{N} z_{nk}}$$

■ data re-estimation $(A_R)A_E$, A_M 运行T次。重新计算X,记作 \tilde{X} 。

$$\tilde{X} = Z\mu$$

■ EMA将复杂度从Nonlocal的 $O(N^2)$ 降低至O(NKT)。T作为一个常数,可以被省去。因此,EMA复杂度仅为O(NK)。K<<N,复杂度得到显著降低

期望最大化注意力模块

- 放置两个1*1卷积于EMA前后。前者将输入的值域从 R^+ 映射到R,后者将 \tilde{X} 映射到X的残差空间
- 迭代初值µ⁽⁰⁾的维护采用滑动平均更新方式

$$\boldsymbol{\mu}^{(0)} \leftarrow \alpha \boldsymbol{\mu}^{(0)} + (1 - \alpha) \overline{\boldsymbol{\mu}}^{(T)}$$

 $\square \alpha \in [0,1]$ 表示动量; $\overline{\mu}^{(T)}$ 表示 $\mu^{(T)}$ 在一个mini-batch上的平均

■ 在PASCOL VOC上的实验,对比不同的 μ 更新方法和归一化方法的影响。可见, EMA使用滑动均值和L2Norm最为有效。

■ 不同迭代次数T的对比实验,可以发现,EMA仅需三步即可近似收敛。随着训练时迭代次数的继续增长,精度有所下降。

		Evaluation Iterations (mIoU %)							
"		1	2	3	4	5	6	7	8
ũ	1	77.34	77.52	77.60	77.59	77.59	77.59	77.59	77.59
Ĕ	2		77.75	78.04	78.15	78.15	78.12	78.12	78.17
erë	3			78.52	78.80	78.86	78.88	78.89	78.88
=	4				78.14	78.25	78.27	78.28	78.27
uĝ	5					77.70	77.76	77.82	77.86
Training Iterations	6						77.85	77.91	77.92
Гa	7							77.11	77.14
•	8								77.24

■ EMANet和DeeplabV3、DeeplabV3+和PSANet的对比。

Table 1: Detailed comparisons on PASCAL VOC with DeeplabV3/V3+ and PSANet in mIoU (%). All results are achieved with the backbone ResNet-101 and output stride 8. The FLOPs and memory are computed with the input size 513 × 513. **SS**: Single scale input during test. **MS**: Multi-scale input. **Flip**: Adding left-right flipped input. EMANet (256) and EMANet (512) represent EMANet with the number of input channels as 256 and 512, respectively.

Method	SS	MS+Flip	FLOPs	Memory	Params
ResNet-101	**	-	190.6G	2.603G	42.6M
DeeplabV3 [4]	78.51	79.77	+63.4G	+66.0M	+15.5M
DeeplabV3+ [5]	79.35	80.57	+84.1G	+99.3M	+16.3M
PSANet [38]	78.51	79.77	+56.3G	+59.4M	+18.5M
EMANet (256)	79.73	80.94	+21.1G	+12.3M	+4.87M
EMANet (512)	80.05	81.32	+43.1G	+22.1M	+10.0M

Table 2: Comparisons on the PASCAL VOC test set.

Method	Backbone	mIoU (%)	
Wide ResNet [32]	WideResNet-38	84.9	
PSPNet [37]	ResNet-101	85.4	
DeeplabV3 [4]	ResNet-101	85.7	
PSANet [38]	ResNet-101	85.7	
EncNet [35]	ResNet-101	85.9	
DFN [34]	ResNet-101	86.2	
Exfuse [36]	ResNet-101	86.2	
IDW-CNN [30]	ResNet-101	86.3	
SDN [12]	DenseNet-161	86.6	
DIS [23]	ResNet-101	86.8	
EMANet	ResNet-101	87.7	
GCN [25]	ResNet-152	83.6	
RefineNet [21]	ResNet-152	84.2	
DeeplabV3+ [5]	Xception-71	87.8	
Exfuse [36]	ResNeXt-131	87.9	
MSCI [20]	ResNet-152	88.0	
EMANet	ResNet-152	88.2	

Table 3: Comparisons with state-of-the-art on the PASCAL Context test set. '+' means pretrained on COCO Stuff.

Method	Backbone	mIoU (%)	
PSPNet [37]	ResNet-101	47.8	
DANet [11]	ResNet-50	50.1	
MSCI [20]	ResNet-152	50.3	
EMANet	ResNet-50	50.5	
SGR [18]	ResNet-101	50.8	
CCL [8]	ResNet-101	51.6	
EncNet [35]	ResNet-101	51.7	
SGR+ [18]	ResNet-101	52.5	
DANet [11]	ResNet-101	52.6	
EMANet	ResNet-101	53.1	

Table 4: Comparisons on the COCO Stuff test set.

Method	Backbone	mIoU (%)
RefineNet [21]	ResNet-101	33.6
CCL [8]	ResNet-101	35.7
DANet [11]	ResNet-50	37.2
DSSPN [19]	ResNet-101	37.3
EMANet	ResNet-50	<u>37.6</u>
SGR [18]	ResNet-101	39.1
DANet [11]	ResNet-101	39.7
EMANet	ResNet-101	39.9

■注意力图的可视化。

总结

总结

- Nonlocal方法都不能避免庞大的计算量,有很大的矩阵相乘。
- EMANet解决Nonlocal带来的计算量过于庞大。
- E步学习一组注意力图, M步更新一组基, 经过迭代, 用基和注意力图重构特征。
- 通过基和注意力图重构出高维的、带有全局性的信息的特征,用这个特征再去做分割

