18.06 Recitation April 28

Kai Huang

Symmetric Matrices

Consider an $n \times n$ (real) symmetric matrix A.

- 1. All eigenvalues of A are real numbers.
- 2. All eigenvectors of A are orthogonal to each other (except for colinear ones belong to the same eigenvalue).
- 3. A is diagonalizable.
- 4. So we have a decomposition $A = X\Lambda X^T = X^{-1}\Lambda X$, where X is orthogonal and Λ is symmetric.

Positive Definite Matrices

Still consider an $n \times n$ (real) symmetric matrix A.

- 1. We call A positive definite if for any vector $0 \neq v \in \mathbb{R}^n$, we have $x^T A x > 0$.
- 2. We call A positive semidefinite if for any vector $v \in \mathbb{R}^n$, we have $x^T A x \geq 0$.
- 3. We call A negative definite if for any vector $0 \neq v \in \mathbb{R}^n$, we have $x^TAx < 0$.
- 4. A is positive definite if and only if all the eigenvalues are positive.
- 5. A simple example: For any invertible matrix $B,\ B^TB$ is always positive definite. (Why?)

Problems

- 1. Is the set of positive definite $n \times n$ matrices a vector space? What about positive semidefinite?
- 2. Let A be an $n \times n$ anti-symmetric matrix $(A^T = -A)$. Show that
 - (a) $x^T A x = 0$ for any vector $x \in \mathbb{R}^n$.
 - (b) The eigenvalues of A are pure imaginary.
 - (c) The determinant of A is non-negative.

- 3. True or false? Explain why or why not.
 - (a) Every positive definite matrix is invertible.
 - (b) The only positive definite projection matrix is I.
 - (c) A diagonal symmetric matrix with positive diagonal entries is positive definite.
 - (d) A symmetric matrix with positive determinant might not be positive
 - (e) If C is positive definite and A has linearly independent columns, then A^TCA is positive definite.