Sinusoidal amplitude grating

MIT 2.71/2.710 04/06/09 wk9-a- 5

Example: binary phase grating

$$g_0(x) = \begin{cases} 1, & 0 \le |x| \le \Lambda/4 \\ -1, & \Lambda/4 < |x| \le \Lambda/2 \end{cases}$$

$$c_q = \frac{1}{\Lambda} \int_{-\Lambda/2}^{\Lambda/2} g_0(x) \exp\left\{i2\pi q \frac{x}{\Lambda}\right\} dx.$$

$$c_q = \operatorname{sinc}\left(\frac{q}{2}\right) \text{ where } \operatorname{sinc}\left(\xi\right) \equiv \frac{\sin(\pi\xi)}{(\pi\xi)}.$$

$$\eta_{\pm q} = \left(\frac{2}{\pi a}\right)^2 \quad \text{for} \quad q \text{ odd.}$$

$$\eta_{\pm 1} = \left(\frac{2}{\pi}\right)^2 \approx 40.53\%.$$

Grating dispersion

blue light is *diffracted* at *smaller* angle than red:

anomalous dispersion

<u>Prism:</u> e light is *refracte*

blue light is *refracted* at *larger* angle than red:

normal dispersion

Today

- Fraunhofer diffraction
- Fourier transforms: maths
- Fraunhofer patterns of typical apertures
- Fresnel propagation: Fourier systems description
 - impulse response and transfer function
 - example: Talbot effect

Next week

- Fourier transforming properties of lenses
- Spatial frequencies and their interpretation
- Spatial filtering

Fraunhofer diffraction

$$g_{\text{out}}(x', y'; z) = \frac{1}{i\lambda z} \exp\left\{i2\pi \frac{z}{\lambda}\right\} \iint g_{\text{in}}(x, y) \exp\left\{i\pi \frac{(x' - x)^2 + (y' - y)^2}{\lambda z}\right\} dxdy$$

If the propagation distance becomes very large $z \to \infty$, we can approximate the free–space (Fresnel) propagation integral as

$$g_{\text{out}}(x', y'; z) = \frac{1}{i\lambda z} \exp\left\{i2\pi \frac{z}{\lambda}\right\} \iint g_{\text{in}}(x, y) \exp\left\{i\pi \frac{x'^2 + x^2 - 2xx' + y'^2 + y^2 - 2yy'}{\lambda z}\right\} dxdy$$

$$\approx \exp\left\{i2\pi \frac{z}{\lambda} + i\pi \frac{x'^2 + y'^2}{\lambda z}\right\} \iint g_{\text{in}}(x, y) \exp\left\{-i2\pi \frac{xx' + 2yy'}{\lambda z}\right\} dxdy$$
We set $u \equiv \frac{x'}{\lambda z}$ $v \equiv \frac{y'}{\lambda z}$

and rewrite the approximated Fresnel integral as

$$g_{\text{out}}(x', y'; z) \approx \exp\left\{i2\pi \frac{z}{\lambda} + i\pi \frac{x'^2 + y'^2}{\lambda z}\right\} \iint g_{\text{in}}(x, y) \exp\left\{-i2\pi \left(ux + vy\right)\right\} dxdy,$$

National University of Singapore

Example: rectangular aperture

$$g_{\rm in}(x,y) = \operatorname{rect}\left(\frac{x}{x_0}\right)\operatorname{rect}\left(\frac{y}{y_0}\right)$$

$$G_{\rm in}(u,v) = x_0 y_0 \operatorname{sinc}(x_0 u) \operatorname{sinc}(y_0 v)$$

$$g_{\mathrm{out}}(x',y';z\to\infty) \propto \mathrm{sinc}\left(\frac{x_0x'}{\lambda z}\right)\mathrm{sinc}\left(\frac{y_0y'}{\lambda z}\right).$$

sinc pattern

free space propagation by

far field NUS

input field

Example: circular aperture

$$g_{\text{in}}(x,y) = \operatorname{circ}\left(\frac{\sqrt{x^2 + y^2}}{r_0}\right)$$

$$G_{\text{in}}(u,v) = r_0^2 \operatorname{jinc}\left(r_0\sqrt{u^2 + v^2}\right)$$

$$\equiv r_0 \frac{\operatorname{J}_1\left(2\pi\sqrt{u^2 + v^2}\right)}{\sqrt{u^2 + v^2}}$$

$$g_{\mathrm{out}}(x',y';z\to\infty) \propto \mathrm{jinc}\left(\frac{2\pi r_0\sqrt{x'^2+y'^2}}{\lambda z}\right).$$

Airy pattern

free space propagation by

$$l\rightarrow\infty$$

How far along z does the Fraunhofer pattern appear?

Fresnel (free space) propagation

may be expressed as a convolution integral
$$g_{\text{out}}(x',y') = g_{\text{in}}(x,y) \star \left(\frac{\mathrm{e}^{i2\pi\frac{z}{\lambda}}}{i\lambda z} \mathrm{exp}\left\{i\pi\frac{x^2+y^2}{\lambda z}\right\}\right)$$

$$g_{\text{out}}(x', y'; z) = \frac{1}{i\lambda z} \exp\left\{i2\pi \frac{z}{\lambda}\right\} \iint g_{\text{in}}(x, y) \exp\left\{i\pi \frac{(x' - x)^2 + (y' - y)^2}{\lambda z}\right\} dxdy$$

$$g_{\text{out}}(x', y'; z) = \frac{1}{i\lambda z} \exp\left\{i2\pi \frac{z}{\lambda} + i\pi \frac{x'^2 + y'^2}{\lambda z}\right\} \iint g_{\text{in}}(x, y) \exp\left\{-i2\pi \frac{xx' + 2yy'}{\lambda z}\right\} \exp\left\{i\pi \frac{x^2 + y^2}{\lambda z}\right\} dxdy$$

$$\exp\left\{i\pi\frac{x^{2}+y^{2}}{\lambda z}\right\} = \cos\left\{\pi\frac{x^{2}+y^{2}}{\lambda z}\right\} + i\sin\left\{\pi\frac{x^{2}+y^{2}}{\lambda z}\right\} \qquad |\alpha|_{\max} = \frac{(x^{2}+y^{2})_{\max}}{\lambda z}$$

$$\approx 1 \quad \text{if } \frac{(x^{2}+y^{2})_{\max}}{\lambda z} \ll 1$$

$$\Leftrightarrow z \gg \frac{(x^{2}+y^{2})_{\max}}{\lambda z}$$

For example, if $(x^2+y^2)_{max}=(4\lambda)^2$, then $z>>16\lambda$ to enter the Fraunhofer regime; if $(x^2+y^2)_{max}=(1000\lambda)^2$, then $z>>10^6\lambda$;

in practice, the Fraunhofer intensity pattern is recognizable at smaller z than these predictions (but the correct Fraunhofer phase takes longer to form)

Fourier transforms

- One dimensional
 - Fourier transform
 - Fourier integral

$$G(\nu) = \int_{-\infty}^{+\infty} g(t) \exp\left\{-i2\pi\nu t\right\} dt.$$

$$g(t) = \int_{-\infty}^{+\infty} G(\nu) \exp\{i2\pi\nu t\} d\nu.$$

Two dimensional

04/08/09 wk9-b- 6

Fourier transform

$$G(u,v) = \iint_{-\infty}^{+\infty} g(x,y) \exp\left\{-i2\pi(ux+vy)\right\} dxdy.$$

Fourier integral

$$g(x,y) = \iint_{-\infty}^{+\infty} G(u,v) \exp\left\{i2\pi(ux+vy)\right\} dudv.$$

Frequency representation

$$G(u)=\frac{1}{2}\delta(u+u_0)+\frac{1}{2}\delta(u-u_0)$$

The negative frequency is physically meaningless, but necessary for mathematical rigor; it is the price to pay for the convenience of using complex exponentials in the phasor representation

Commonly used functions in wave Optics

1.0

Text removed due to copyright restrictions. Please see p. 12 in Goodman, Joseph W. *Introduction to Fourier Optics*. Englewood, CO: Roberts & Co., 2004. ISBN: 9780974707723.

Images from Wikimedia Commons, http://commons.wikimedia.org

Fourier transform pairs

Functions with radial symmetry

Table removed due to copyright restrictions. Please see Table 2.1 in Goodman, Joseph W. *Introduction to Fourier Optics*. Englewood, CO: Roberts & Co., 2004. ISBN: 9780974707723.

jinc(ρ)≡

Images from Wikimedia Commons, http://commons.wikimedia.org

$$r = \sqrt{x^2 + y^2}$$

$$\rho = \sqrt{f_X^2 + f_Y^2}$$

Fourier transform properties

Text removed due to copyright restrictions. Please see pp. 8-9 in Goodman, Joseph W. *Introduction to Fourier Optics*. Englewood, CO: Roberts & Co., 2004. ISBN: 9780974707723.

A general discussion of the properties of Fourier transforms may also be found here http://en.wikipedia.org/wiki/Fourier_transform#Properties_of_the_Fourier_transform.

IMPORTANT! A note on notation: Goodman uses (f_X, f_Y) to denote spatial frequencies along the (x,y) dimensions, respectively. In these notes, we will sometimes use (u,v) instead.

The spatial frequency domain: vertical grating

MIT 2.71/2.710 04/08/09 wk9-b-11

The spatial frequency domain: tilted grating

Superposition: two gratings

$$a_1 \cos\left(2\pi \frac{x}{\Lambda_1}\right) + a_2 \cos\left(2\pi \frac{x}{\Lambda_2}\right)$$

Frequency (Fourier) domain

Space domain

MIT 2.71/2.710 04/08/09 wk9-b-13

Superposition: multiple gratings

discrete (Fourier series)

continuous (Fourier integral)

Frequency (Fourier) domain

Space domain

Spatial frequency representation of arbitrary scenes

Space domain

Spatial frequency domain

$$G(u, v) = \mathcal{F}\{g(x, y)\}$$

Fourier transform

The scaling (or similarity) theorem

Space domain

 $\mathcal{F}\left\{g\left(\frac{x}{a}, \frac{y}{b}\right)\right\} = |ab| G(au, bv)$

Frequency (Fourier) domain

The shift theorem

Space domain

 $\mathcal{F}\left\{g\left(x-a,y-b\right)\right\} = \exp\left\{2\pi\left(au+bv\right)\right\}G(u,v)$

Frequency (Fourier) domain

The convolution theorem

multiplication

convolution

MIT OpenCourseWare http://ocw.mit.edu

2.71 / 2.710 Optics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.