

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL

Korszerű fűtési rendszerek szabályzása munkapéldány

SZAKMAI GYAKORLAT

Készítette Gyulai László Belső konzulens dr. Kiss Bálint Külső konzulens Kurbucz Máté

Tartalomjegyzék

1.	Modellalkotás, irodalomkutatás			
	1.1.	Radiát	or modelljének felírása	3
		1.1.1.	Hőleadás	3
		1.1.2.	Hőfelvétel	4
		1.1.3.	Energiamérleg állandósult állapotban	4
		1.1.4.	Modellparaméterek	5
2.	Fűtő	ítestek	modellezése	6

1. Modellalkotás, irodalomkutatás

Munkámban elsősorban a különböző fűtési típusok közti különbségeket szeretném megvizsgálni. A ház modelljét először adottnak venném, az eltérést pedig a különböző fűtési módok jelentenék. Azaz megpróbálom felírni a környezet belső hőmérsékletre való ráhatását, eztán pedig modellezem többféle fűtőtest viselkedését.

Ehhez először áttekintettem a hőátadás lehetséges formáit és forrásait. Arra jutottam, hogy ha a levegő hőmérsékletére szabályzok, akkor az abba beleszóló tényezőket veszem sorra:

- konvektív hőátadás: a felszín közelében felmelegedett levegő áramlani kezd
- radiatív hőátadás: sugárzással kibocsátott energia a környezetbe

1. ábra. Alacsony hőmérsékletű fűtés és magas hőmérsékletű hűtés c. könyv ábrája

A levegő hőmérsékletére ezek a következőképp hatnak a leginkább:

- a fűtőtestek konvektív és radiatív hőátadással is melegítik a környezetet
- a radiatív energiát a tárgyak, falak nyelik el, amik ezáltal felmelegszenek (mintegy kapacitásként lesz egy hőtároló tömeg, ami a fűtés kikapcsolásával fenntartja a hőmérsékletet / lassítja a hűlést)
- a fűtetlen falfelületek hűtik a szobát (külső hőmérséklet befolyása)

Így a kezdeti modellben azzal a feltételezéssel élek, hogy ezen kívül más hatás nem lép fel.

A modellben feltételezem, hogy a fűtőtest felületi hőmérsékletével tudunk beavatkozni. A modellben paraméter a fűtőtestek hőátadási tényezője és felülete. Zavarásként (?) hat a külső hőmérséklet értéke, amit mérni is tudunk. Kimenet a belső hőmérséklet (térben konstansnak véve azt / átlagolva a szoba levegőjére)

A modell felírásához a fűtőtest tulajdonságain kívül szükség van a szobában található levegő mennyiségére is. A zavarás hatását is fel kell írni, azaz hogy egy külső hőmérsékletváltozás hogyan jelenik meg a kimeneten. (Célszerű itt egy átviteli függvényt felírni először, szuperpozíciószerűen. A zavarás viszont nem a modell bemenetén és nem is a kimenetén hat.)

A felírandó átviteli függvények:

- levegő felmelegedése konstans külső hőmérsékletet feltételezve, fűtőtest egységugrással
- levegő felmelegedése fűtés kikapcsolt állapota mellett, környezeti hőmérséklet ugrásával

1.1. Radiátor modelljének felírása

Mivel a Matlab szimulációban a legbefúvásos fűtés modelljének teljesítmény kimenete van, fel akartam állítani egy olyan modellt, ami beillesztehető az eredeti légbefúvó rendszer helyére. A ház hőveszteségeit a Matlab számolja¹, ebből pedig adódik a szoba levegőjének hőmérséklete. A rendszer szabályozását így visszavezettem a leadott teljesítmény szabályzására. A levezetett egyenletnek köszönhetően egy teljesítményigényhez meg tudom majd mondani hogy mennyire kell a szabályzószelepeket kinyitni.

Az Épületgépészet a gyakorlatban² c. könyvben szó esik fűtési rendszerek méretezéséről. Itt adatként szerepel egy épületre a szobák hőigénye³ és névleges hőmérséklete. Ehhez választanak megfelelő méretű radiátort, hogy azokban a kiszámolt sebességgel vizet keringetve a hőleadás elég legyen az adott helyiségbe. (Ehhez figyelembe kell venni minden radiátorra a keringő víz hőmérsékletét is, különösen ha azok sorba vannak kötve és a hőmérsékletesések is jelentősek.)

Hasonlóan méretezési feladatot mutat be a [1, 4.2.7.3] is. Ezek alapján vezettem le a leadott hő mennyiségét állandósult állapotra. Természetesen a felmelegedés és lehűlés idejét is figyelembe kell majd venni, de ezzel érthető módon a méretezésnél sem számolnak.

1.1.1. Hőleadás

A fűtőtestek hőleadását befolyásolja a fűtőtestek közepes hőmérsékletkülönbsége (ld. a 2. egyenletet), a felülete és a hőleadási tényezője. Ezek közötti kapcsolatot adja az 1. egyenlet ([1, 358. o.]-ből):

$$\dot{Q}_{le} = k_e \ A_e \ \Delta t_m \tag{1}$$

ahol

 \dot{Q}_{le} [W] a leadott hő

 $k_e \left[\frac{\mathsf{W}}{\mathsf{m}^2 \, \mathsf{K}} \right]$ hőleadási tényező - ezt hőmérsékletfüggetlennek tekintem.

 A_e [m²] a radiátor felülete

 Δt_m [K] a közepes hőmérsékletkülönbség:

$$\Delta t_m = \frac{t_s + t_r}{2} - t_i \tag{2}$$

ahol

 t_s a radiátorba befolyó, t_r az onnan kifolyó víz hőmérséklete °C-ban

 t_i a szoba hőmérséklete

A hőátadási tényező is hőmérsékletfüggő, de ezzel egyelőre nem foglalkozom, állandónak tekintem.

¹Pontosításra szorul ez a modell is, mert valószínűleg csak a konvektív hővezetéssel számol (a sugárzásival pedig nem). A légbefúvás a ház levegőjét melegíti. Ám a modellben a ház hőtároló tömege nem jelenik meg, csak egy hőellenállás a veszteségek modellezéséhez.

²Könyvtári könyv, Verlag. 5.11.6, 2. o.

³Pontosan nem tudom még, hogyan definiálják a hőigényt: mekkora kültéri hőmérsékletet vesznek pl. figyelembe, illetve hogy radiátor méretezésénél ezt nyilván felül kell becsülni.

1.1.2. Hőfelvétel

A vízből felvett hő felírható:

$$\dot{Q}_{fel} = c \ \dot{m} \ \Delta t \tag{3}$$

ahol

 \dot{Q}_{fel} [W] a vízből felvett hő, ami annak lehűléséből adódik

 $c \; [\frac{\rm J}{\rm kg \, K}]$ a víz fajhője

 \dot{m} $\left[\frac{\mathrm{kg}}{\mathrm{s}}\right]$ a víz tömegárama

 $\Delta t = t_s - t_r$ [K] a víz lehűlésének mértéke

1.1.3. Energiamérleg állandósult állapotban

Állandósult állapot esetén a leadott hő egyenlő a felvettel, mivel akkor nem történik hőfelhalmozás, hőtárolás. Azaz ekkor a radiátor hőkapacitását nem kell figyelembe vennem.

Beírva a (2)-ba (1)-t:

$$\dot{Q}_{le} = k_e \ A_e \ \left(\frac{t_s + t_r}{2} - t_i\right) = k_e \ A_e \ \left(\frac{t_s + (t_s - \Delta t)}{2} - t_i\right)$$
 (4)

Ahol felhasználtuk azt is, hogy $t_r=t_s-\Delta t$, majd Δt helyére beírhatjuk a (3) átrendezett alakját:

$$\Delta t = \frac{\dot{Q}_{fel}}{c \ \dot{m}} \tag{5}$$

Beírva (4)-ba (5)-t:

$$\dot{Q}_{le} = k_e A_e \left(t_s - t_i - \frac{\dot{Q}_{fel}}{c \ \dot{m}} \right)$$

$$\dot{Q}_{le} + \frac{k_e \ A_e \ \dot{Q}_{fel}}{2 \ c \ \dot{m}} = k_e \ A_e \ (t_s - t_i) \tag{6}$$

$$2 c \dot{m} \dot{Q}_{le} + k_e A_e \dot{Q}_{fel} = k_e A_e 2 c \dot{m} (t_s - t_i)$$

Csak abban az esetben, ha $\dot{Q}_{le}=\dot{Q}_{fel}$:

$$\dot{Q}(2 c \dot{m} + k_e A_e) = 2 k_e A_e c \dot{m} (t_s - t_i)$$

$$\dot{Q} = \frac{2 c \dot{m} k_e A_e}{2 c \dot{m} + k_e A_e} (t_s - t_i)$$
(7)

1.1.4. Modellparaméterek

2. Fűtőtestek modellezése

A MATLAB egyik demójában egy ház fűtési modelljét valósították meg. Ebben a fűtőtest kimenete teljesítmény dimenziójú. A ház veszteségeit a méretei és az ablakai alapján kiszámítja.

A modellezendő objektum a fűtési rendszer, itt kell számba venni hogy egy jól méretezett rendszernek mennyi a felfutási illetve a beállási ideje. Ezt számolni a kazán, a fűtővíz illetve a fűtőtest teljesítményeiből, illetve kapacitásaiból lehetne.

A fűtőtestek hőátadását számos tényező befolyásolja, ezekre az előzóekben egyenletet is felírtam. Az egyenletet Simulinkben valósítottam meg, a fűtési rendszer így beilleszthető a Matlab példájába.

Hivatkozások

[1] Csoknyai István. Több, mint hidraulika. Herz Armatúra Hungária Kft, 2013.