Vowel Harmony is local over multi-tiered ARs

Eileen Blum

Rutgers University

NecPhon MIT Nov. 4, 2018

 Vowel harmony as a phonotactic constraint rather than a transformation from an underlying form into the surface form (Goldsmith, 1976; Clements, 1976; a.o.)

- Vowel harmony as a phonotactic constraint rather than a transformation from an underlying form into the surface form (Goldsmith, 1976; Clements, 1976; a.o.)
- A unified theory of forbidden substructure constraints over multi-tiered autosegmental representations captures a variety of vowel harmony patterns

- Vowel harmony as a phonotactic constraint rather than a transformation from an underlying form into the surface form (Goldsmith, 1976; Clements, 1976; a.o.)
- A unified theory of phonotactic constraints as forbidden substructure constraints over multi-tiered autosegmental representations captures a variety of vowel harmony patterns
 - ▶ neutral vowels: blocking in Akan, transparent vowels in Finnish

- Vowel harmony as a phonotactic constraint rather than a transformation from an underlying form into the surface form (Goldsmith, 1976; Clements, 1976; a.o.)
- A unified theory of phonotactic constraints as forbidden substructure constraints over multi-tiered autosegmental representations captures a variety of vowel harmony patterns
 - ▶ neutral vowels: blocking in Akan, transparent vowels in Finnish
- Transparent vowels don't rely on underspecification

Why do we care?

Autosegmental representations (ARs) make vowel harmony strictly local

Why do we care?

Autosegmental representations (ARs) make vowel harmony strictly local

 Patterns that are complex with one representation can be simpler with a different representation

Why do we care?

Autosegmental representations (ARs) make vowel harmony strictly local

- Patterns that are complex with one representation can be simpler with a different representation
- ARs provide explanatory power
 - allow for strictly local descriptions with single representation as opposed to multiple distinct representations (Heinz, 2010; Heinz et al, 2011; Aksënova & Deshmukh, 2018)

Locality

 Attested vowel harmony patterns captured by static surface well-formedness constraints: forbidden substructure constraints (FSCs) (Jardine 2016, 2017)

Locality

- Attested vowel harmony patterns captured by static surface well-formedness constraints: forbidden substructure constraints (FSCs) (Jardine 2016, 2017)
- ullet FSCs over ARs use two relations: association (|) and successor (
 ightarrow)

Akan: [pɪrɜko] 'pig'

Autosegmental Representations (ARs)

• Tone patterns have been represented with two autosegmental tiers (Goldsmith, 1976; Jardine, 2016, 2017, etc.)

Autosegmental Representations (ARs)

- Tone patterns have been represented with two autosegmental tiers (Goldsmith, 1976; Jardine, 2016, 2017, etc.)
- Vowel harmony can be represented with multiple featural tiers

Full Specification (FS):

• each featural element must be associated to at least one vowel

Full Specification (FS):

- each featural element must be associated to at least one vowel
- each vowel must be associated to at least one element on each feature tier

Full Specification (FS):

- each featural element must be associated to at least one vowel
- each vowel must be associated to at least one element on each feature tier
- consonants are not associated to vowel features

No Crossing Constraint (NCC):

 association lines between the segmental tier and a feature tier never cross

No Crossing Constraint (NCC):

- association lines between the segmental tier and a feature tier never cross
- FS and NCC prevent gapped structures (Archangeli & Pulleyblank, 1994; Ringen & Vago, 1998)

Obligatory Contour Principle (OCP):

• adjacent featural elements must be distinct

• A well-formed AR obeys FS, the NCC, and the OCP

Terminology

Assimilation: vowels have the same feature

Terminology

Spreading: multiple association

Terminology

Spreading: multiple association

Agreement: different vowels associated to different iterations of the same feature

$$\begin{array}{cccc} \textbf{+back} & \longrightarrow \text{-back} & \longrightarrow \textbf{+back} \\ & | & | & | \\ r & \longrightarrow u & \longrightarrow v & \longrightarrow e & \longrightarrow t & \longrightarrow a \end{array}$$

Forbidden Substructure Grammar

 Previous work applied logical descriptions of formal languages to phonological well formedness constraints (Heinz et al., 2011; Rogers et al., 2013)

Forbidden Substructure Grammar

- Previous work applied logical descriptions of formal languages to phonological well formedness constraints (Heinz et al., 2011; Rogers et al., 2013)
- Forbidden substructure grammar is a conjunction of negative literals
 - literals = substructures
 - describes a set of well-formed structures by ruling out ill formed substructures

$$\neg r_1 \wedge \neg r_2 \wedge \neg r_3 \wedge \ldots \wedge \neg r_n$$

Forbidden Substructure Grammar

- Previous work applied logical descriptions of formal languages to phonological well formedness constraints (Heinz et al., 2011; Rogers et al., 2013)
- Forbidden substructure grammar is a conjunction of negative literals
 - literals = substructures
 - describes a set of well-formed structures by ruling out ill formed substructures, r₁ through r_n

$$\neg r_1 \wedge \neg r_2 \wedge \neg r_3 \wedge \ldots \wedge \neg r_n$$

• FSCs define locality because they refer to elements in a structure connected by successor or association

Neutral Vowels

Akan ATR harmony:

• If a word contains a sequence of -low vowels they will be associated to a single ATR feature (Clements, 1976)

Akan ATR harmony:

- If a word contains a sequence of -low vowels they will be associated to a single ATR feature (Clements, 1976)
- The vowels on either side of a +low vowel can be associated to different ATR features

Table 1: Akan Vowels

	+ATR	-ATR
-low	i	I
	u	υ
	е	3
	0	Э
+low	3	a

• -low vowels in sequence are associated to a single ATR feature: [obejii] 'he came and removed it'

Table 1: Akan Vowels

	+ATR	-ATR
-low	i	I
	u	υ
	е	3
	0	Э
+low	3	a

- -low vowels in sequence are associated to a single ATR feature: [obejii]
 'he came and removed it'
- -low vowels on either side of a +low vowel can be associated to different ATR features: [pɪrɜko] 'pig'

- Akan ATR harmony pattern captured by a single FSC
 - ▶ forbids two -low vowels from being associated to different ATR features

• Akan FSC in (1) allows grammatical spreading AR

[obejii] 'he came and removed it'

Akan FSC

 and (1) rules out an ungrammatical disharmonic AR because it contains the forbidden substructure

• The same FSC in (1) also allows a grammatical disharmonic AR with a +low vowel

Spreading is local

Spreading ARs consist of...

• an unbounded span of contiguous vowels associated to a single feature

Spreading is local

Spreading ARs consist of...

- an unbounded span of contiguous vowels associated to a single feature
- successor relation between two different features on the same tier

Spreading is local

 OCP makes ARs local because different features on a tier are in successor relation regardless of how many vowels are associated to each.

[pɪrɜko] 'pig'

Finnish Back harmony:

• Harmonizing vowels in a root are associated to a single back feature

Finnish Back harmony:

- Harmonizing vowels in a root are associated to a single back feature
- Harmonizing suffix vowels are associated to the same back feature as the harmonizing root-final vowel (Nevins, 2010; Ringen & Heinamaki, 1999; van der Hulst, 2017; Välimaa-Blum, 1986)

Finnish Back harmony:

- Harmonizing vowels in a root are associated to a single back feature
- Harmonizing suffix vowels are associated to the same back feature as the harmonizing root-final vowel (Nevins, 2010; Ringen & Heinamaki, 1999; van der Hulst, 2017; Välimaa-Blum, 1986)
- Back harmony appears to skip over [-back, -round, -low] vowels

Table 2: Finnish Vowels

	-round	+round		
-low	i, i:	y, y:	u, uː	
	e, er	ø, ø:	o, or	
+low		æ, æ:	a, a:	-round
	-back		+back	

ullet Two harmonizing vowels in sequence are associated to a single back feature: [pouta] 'fine weather'

Table 2: Finnish Vowels

	-round	+round	d	
-low	i, iː	y, y:	u, uː	
	e, er	ø, øi	o, or	
+low		æ, æ:	a, ar	-round
	-back		+back	

- Two harmonizing vowels in sequence are associated to a single back feature: [poutα] 'fine weather'
- Harmonizing vowels on either side of a transparent vowel are associated to the same back feature: [ruveta] 'start'

Table 2: Finnish Vowels

	-round	+round	d	
-low	i, iː	y, y:	u, uː	
	e, er	ø, øi	o, or	
+low		æ, æ:	a, ar	-round
	-back		+back	

- Two harmonizing vowels in sequence are associated to a single back feature: [poutα] 'fine weather'
- Harmonizing vowels on either side of a transparent vowel are associated to the same back feature: [ruveta] 'start'
- The transparent vowel is associated to a different back feature on the same tier

 Set of Finnish FSCs forbid +round vowels from being associated to a -back feature that succeeds a +back feature

(2) Finnish FSCs

 and forbid +low vowels from being associated to a -back feature that precedes a +back feature

(3) Finnish FSCs

A fully harmonic word does not violate any Finnish FSCs

 A disharmonic word is ungrammatical because it contains the forbidden substructure of (3a)

Ungrammatical disharmonic word Finnish FSC +back — → -back * +back → -back $p\longrightarrow o\longrightarrow u\longrightarrow t\longrightarrow {\color{red}\boldsymbol{z}}$ +round — → -round

• Transparent vowels [i, ix, e, ex] are associated to a feature on each feature tier

Ungrammatical disharmonic word

• A disharmonic word with a transparent vowel is ungrammatical because it contains the forbidden substructure of (3a)

+back - \longrightarrow -back * +back \rightarrow -back $r \longrightarrow u \longrightarrow v \longrightarrow e \longrightarrow t \longrightarrow ae$ -low +round — -round

Finnish FSC

Agreement is local

Agreement ARs consist of...

• multiple iterations of the same feature, with a different intervening feature on the same tier

Agreement is local

• Transparent vowels associated to a feature on each feature tier

[maisemia] 'scenery.plural.partitive'

Agreement is local

- Transparent vowels associated to a feature on each feature tier
- ARs make patterns local because of multiple association and the successor relations on distinct tiers

[maisemia] 'scenery.plural.partitive'

Well-formed multi-tiered surface ARs make vowel harmony strictly local

Well-formed multi-tiered surface ARs make vowel harmony strictly local

• ARs of vowel harmony utilize successor and association relations

Well-formed multi-tiered surface ARs make vowel harmony strictly local

- ARs of vowel harmony utilize successor and association relations
- FSCs capture attested vowel harmony patterns that use neutral vowels: Akan, Finnish

Well-formed multi-tiered surface ARs make vowel harmony strictly local

- ARs of vowel harmony utilize successor and association relations
- FSCs capture attested vowel harmony patterns that use neutral vowels: Akan, Finnish
- Transparent vowels do not require underspecification on the surface

Multi-tiered ARs can also represent boundaries

• FSCs can capture morphologically-conditioned harmony: morpheme boundaries on feature tiers in Turkish

Multi-tiered ARs can also represent boundaries

- FSCs can capture morphologically-conditioned harmony: morpheme boundaries on feature tiers in Turkish
- FSCs over multi-tiered ARs can also capture an unattested pattern: sour grapes

Future Work

• Are multi-tiered ARs too powerful?

Future Work

- Are multi-tiered ARs too powerful?
- Can multi-tiered ARs be restricted further to exclude unattested patterns?

Thank You

- QP committee: chair- Adam Jardine, Bruce Tesar, Simon Charlow
- Attendees of PhonX reading group and the 2nd Rutgers Computational Phonology Workshop

email: eileen.blum@rutgers.edu

References

- Aksënova, A. and Deshmukh, S. (2018). Formal restrictions on multiple tiers. Proceedings of the Society for Computation in Linguistics, 1(8).
- Archangeli, D., & Pulleyblank, D. (1994). Grounded phonology (Vol. 25). MIT Press.
- Clements, G. (1976). Vowel harmony in non-linear generative phonology: An autosegmental model.
- Goldsmith, J. (1976). Autosegmental phonology (PhD thesis).
 Massachusetts Institute of Technology.
- Heinz, J. (2010). Learning long-distance phonotactics. Linguistic Inquiry, 4(4), 623-661.
- Heinz, J., Rawal, C., & Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies: Short papers (Vol. 2). Association for Computational Linguistics.

References

- Jardine, A., & Heinz, J. (2015a). A concatenation operation to derive autosegmental graphs. In Proceedings of the 14th annual meeting on the mathematics of language (mol 2015) (pp. 139–151). Chicago, USA: Association for Computational Linguistics.
- Jardine, A. (2016). Locality and non-linear representations in tonal phonology (PhD thesis). University of Delaware.
- Jardine, A. (2017). The local nature of tone association patterns. Phonology, 34(2), 385–405.
- Nevins, A. (2010). Locality in vowel harmony. Linguistic Inquiry Monographs (Vol. 55). MIT Press.
- Prince, A., & Smolensky, P. (1993). Optimality theory: Constraint interaction in generative grammar (No. 2). Rutgers University Center for Cognitive Science.
- Ringen, C., & Heinamaki, O. (1999). Variation in finnish vowel harmony: An ot account. Natural Language and Linguistic Theory, 17, 303–337.

References

- Ringen, C., & Vago, R. (1998). Hungarian vowel harmony in optimality. Phonology, 15, 393–416.
- Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-regular complexity. Formal Grammar, 90–108.
- Välimaa-Blum, R. (1986). Finnish vowel harmony as a prescriptive and descriptive rule: An autosegmental account. In F. Marshall (Ed.), Proceedings of the third eastern states conference on linguistics. University of Pittsburgh.
- van der Hulst, H. (2017). A representational account of vowel harmony in terms of variable elements and licensing. In Approaches to hungarian (Vol. 15). John Benjamins Publishing Company.

Appendix

Concatenation

- NCC and OCP derived by concatenation operation (○) (Jardine & Heinz, 2015)
 - Concatenation merges autosegmental graph primitives
- (4) Concatenation of adjacent autosegmental graph primitives

• This disharmonic word with a transparent vowel is ungrammatical because it contains the forbidden structure of (2a)

Ungrammatical disharmonic word

$$\begin{array}{c|c} \textbf{+back} & \rightarrow \textbf{-back} & \rightarrow \textbf{+back} \\ & & | & | & | \\ r & \rightarrow \textbf{u} & \rightarrow \textbf{v} & \rightarrow \textbf{y} & \rightarrow \textbf{t} & \rightarrow \textbf{a} \\ \hline \textbf{-low} & & \rightarrow \textbf{-low} & & \rightarrow \textbf{-round} \\ \\ \textbf{+round} & & \rightarrow \textbf{-round} \end{array}$$

Finnish FSC

Turkish back harmony:

- Suffix vowels are associated to the same back feature as the root-final vowel
- Multiple suffix vowels are associated to the same back feature
- Disharmonic roots

Table 3: Turkish Vowels

	-back		+back	
+high	i	ü	i	u
-high	е	ö	а	0
	-round	+round	-round	+round

- Suffix vowels are associated to the same back feature as the root-final vowel: [ip+ler] 'rope (Nom.pl)'
- All suffix vowels are associated to the same back feature: [kiz+lar+in] 'girls (gen.)'
- Disharmonic roots are also grammatical: [tatil] 'vacation'

 Turkish FSCs forbid two back features in a successor relation with a morpheme boundary from having different values

(5)
(a) * +back
$$\rightarrow$$
 + \rightarrow -back
(b) * -back \rightarrow + \rightarrow +back

• FSC in (5b) allows a grammatical Turkish word

[ip+ler] 'rope (Nom.pl)

Turkish FSC

• and (5b) rules out an ungrammatical word that contains the forbidden substructure

