C 1	
Jim Matrice	1000000
Dimulation	E) EGINA!

We now increase our time to Ons Proc-a gets executed first (though remember, the order doesn't really matter). One column = one action taken (mode change (signal change)

Time 0-0

procaRES

aproj U 0

actual U

Now, we have proc_b: since it's resumed, it must be executed, copying aactual's 'U' value into itself. Same with proc_c.

Time	0-	0
proc_b	R	ES
proc_c	R	E S
bproj U	U	but I Wall of
bachal	U	
cpn;	U	U
Cactual	V	

Now, all processes are suspended, which means we can go to the next delta cycle. First, the only changed value is a, so we copy over the projected to add-al. This then prompts a change in proc-b, which relies on a's value

Proc b sees the change, gets set to resume, begins executing to calculate loproj, then suspends

Time 0 ... 0 RE proc.b 5 aactual U 0 porsi bactrallU a start of delta cycle At this point, all processes are suspended, so we begin another delta cycle, copying born; to b actual. This prompts proc_c to resume, and calculate copying Time 0... 0 RE bactual U Cpro; 1U 0 Cactual U Again, all of our processes are now suspended We begin the next delta cycle, with cproj getting capied. Time O ... Cpro; Cachel U

Now, all processes are suspended, AND there are no more projected values to copy, so we increase the time Proc-a is done waiting, and it resumes, changing aproj to 1.

Time 0 1		
praas RES		
apra 0 1		
a actual O		
And now, this whole process 1) All suspended, so aach 2) Proc-b resumes, calculat 3) All suspended, so bach 4) Proc-c resumes, calculat	al <= ' aproj ing bopoj val <= bopoj	
5) All suspended, so Cact 6) No more projected vol 7) All processes suspended	valc= cproj lues to copy, incre	ment time to 2 ns in values

Let's tak	e a look of	the simulation	on (a) (b)	(7)	
Time 0/1			2		
proca			S. A.		
proc-b	SRE	5	S 2		
proc_c	5	RE	5 5		
aproj	1				
actual	0 1				
pbus?	0				
bachal	0				
Cpro;	0	1			
Cactual					

And that's it! Hopefully this explanation has been useful.