E2-212 MATRIX THEORY: ASSIGNMENT 8

Question 1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be given. Define $K_{\lambda} \triangleq \{\mathbf{x} \in \mathbb{C}^n \mid (\mathbf{A} - \lambda \mathbf{I}_n)^p \mathbf{x} = 0 \text{ for some } p \in \mathbb{Z}^+\}$. If λ is an eigenvalue of \mathbf{A} with algebraic multiplicity a_{λ} , then prove: (5 points)

- (a) K_{λ} is an \mathbf{A} -invariant subspace of \mathbb{C}^n .
- (b) $dim(K_{\lambda}) \leq a_{\lambda}$.

Question 2. Let $\mathbf{B} \in \mathbb{C}^{n \times n}$. Prove or disprove:

(5 points)

- (a) If **B** is normal, then $\mathcal{R}(\mathbf{B}) \perp \mathcal{N}(\mathbf{B})$.
- (b) If $\mathcal{R}(\mathbf{B}) \perp \mathcal{N}(\mathbf{B})$, then \mathbf{B} is normal.