全ての実数の集合を Lebesgue 可測にする ~ Solovay モデル入門~

@mr konn

2024-0xAC alg-d チャンネル

本日の話題

本日の話題

任意の実数の集合 东 Lebesgue 可測 にします!

???

非可測集合あるやろがい

Lebesgue非可測集合 の構成方法

- ① [0,1] を割ります
- ② 選択します
- 3 完成!

カンタンだねぇ

3/14

◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って
 - 2. 平行移動不変性:可測なら測度零となる筈の X を平行移動して

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って
 - 2. 平行移動不変性:可測なら測度零となる筈の X を平行移動して
 - 3. 可算加法性:可算個の X で \mathbb{R} が覆えて $\mu(\mathbb{R}) = 0$ となり矛盾!
 - ▶ (他の非可測集合の例は alg_d の動画がいっぱいあるね)

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って
 - 2. 平行移動不変性:可測なら測度零となる筈の X を平行移動して
 - 3. 可算加法性:可算個の X で \mathbb{R} が覆えて $\mu(\mathbb{R}) = 0$ となり矛盾!
 - ▶ (他の非可測集合の例は alg_d の動画がいっぱいあるね)
- ◆ どれかを諦めれば「全ての実数の集合を Lebesgue 可測」にできるのでは?

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って
 - 2. 平行移動不変性:可測なら測度零となる筈の X を平行移動して
 - 3. 可算加法性:可算個の X で \mathbb{R} が覆えて $\mu(\mathbb{R}) = 0$ となり矛盾!
 - ▶ (他の非可測集合の例は alg_d の動画がいっぱいあるね)
- ◆ どれかを諦めれば「全ての実数の集合を Lebesgue 可測」にできるのでは?
 - ▶ 可算加法性は Lebesgue 測度の一番偉いところだったので諦めたくない

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って
 - 2. 平行移動不変性:可測なら測度零となる筈の X を平行移動して
 - 3. 可算加法性:可算個の X で \mathbb{R} が覆えて $\mu(\mathbb{R}) = 0$ となり矛盾!
 - ▶ (他の非可測集合の例は alg_d の動画がいっぱいあるね)
- ◆ どれかを諦めれば「全ての実数の集合を Lebesgue 可測」にできるのでは?
 - ▶ 可算加法性は Lebesgue 測度の一番偉いところだったので諦めたくない
 - ▶ 平行移動不変性の成り立たない測度を測度と呼びたくない
 - Banach の Measure Problem; こっち諦めると、今回扱うより更に巨大な「可測基数」が出て来ます

- ◆ 典型的な非可測集合 Vitali 集合の「構成」は次のようだった:
 - 1. 選択公理: [0,1]/ℚ の完全代表系 X を取って
 - 2. 平行移動不変性:可測なら測度零となる筈の X を平行移動して
 - 3. 可算加法性:可算個の X で \mathbb{R} が覆えて $\mu(\mathbb{R}) = 0$ となり矛盾!
 - ▶ (他の非可測集合の例は alg_d の動画がいっぱいあるね)
- ◆ どれかを諦めれば「全ての実数の集合を Lebesgue 可測」にできるのでは?
 - ▶ 可算加法性は Lebesgue 測度の一番偉いところだったので諦めたくない
 - ▶ 平行移動不変性の成り立たない測度を測度と呼びたくない
 - Banach の Measure Problem; こっち諦めると、今回扱うより更に巨大な「可測基数」が出て来ます
 - ▶ 今回は選択公理を諦めます (Solovay)。

選択公理を諦めます

本日の話題

でも

でも 「外側」の宇宙 では 選択公理を認めます

選択公理を認めます

※ プライバシー保護のため画像・音声を一部加工しています

(1) まず普通に選択公理を仮定します

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)
- (2) まず、「今ある宇宙 V」をぶっ壊して「大きな宇宙 V[G]」を創ります

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)
- (2) まず、「今ある宇宙 V」をぶっ壊して「大きな宇宙 V[G]」を創ります
- (3) 「大きな宇宙 V[G]」は選択公理を満たし非可測集合がありますが

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)
- (2) まず、「今ある宇宙 V」をぶっ壊して「大きな宇宙 V[G]」を創ります
- (3) 「大きな宇宙 V[G]」は選択公理を満たし非可測集合がありますが
- (4) V[G] の内側の「小宇宙 $L(\mathbb{R}^{V[G]})$ 」を見ると

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)
- (2) まず、「今ある宇宙 V」をぶっ壊して「大きな宇宙 V[G]」を創ります
- (3) 「大きな宇宙 V[G]」は選択公理を満たし非可測集合がありますが
- (4) V[G] の内側の「小宇宙 $L(\mathbb{R}^{V[G]})$ 」を見ると
 - ▶ そこには可測集合しかありません!
 - 必然的に選択公理も破れている

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)
- (2) まず、「今ある宇宙 V」をぶっ壊して「大きな宇宙 V[G]」を創ります
- (3) 「大きな宇宙 V[G]」は選択公理を満たし非可測集合がありますが
- (4) V[G] の内側の「小宇宙 $L(\mathbb{R}^{V[G]})$ 」を見ると
 - ▶ そこには可測集合しかありません!
 - 必然的に選択公理も破れている
 - ▶ 従属選択公理はなりたっているので、ある程度マトモな解析学はできます

- (1) まず普通に選択公理を仮定します
 - ▶ そうしないと通らない議論が沢山ある(選択公理ちゃんマジ公理)
- (2) まず、「今ある宇宙 V」をぶっ壊して「大きな宇宙 V[G]」を創ります
- (3) 「大きな宇宙 V[G]」は選択公理を満たし非可測集合がありますが
- (4) V[G] の内側の「小宇宙 $L(\mathbb{R}^{V[G]})$ 」を見ると
 - ▶ そこには可測集合しかありません!
 - 必然的に選択公理も破れている
 - ▶ 従属選択公理はなりたっているので、ある程度マトモな解析学はできます
 - うれしい 器 ('w'器) 三器 ('w')器 三(器'w')器

集合の宇宙と強制法

ところで

皆さんは宇宙の本当の姿

ご存知ですか?

こちらです

集合の宇宙

- ◆ 集合の宇宙 V:集合全体の成すクラスのこと
 - ► ZFC などの集合論公理系は個別の集合よりも V の性質を定めている
- ◆ V は順序数全体のクラス On に沿って空集合から繰り返し冪集合を取って得られる:

$$V_0 := \emptyset, \quad V_{\alpha+1} := \mathbb{P}(V_\alpha), \quad V_\gamma := \bigcup_{\alpha < \gamma} V_\alpha \ (\gamma : \mathrm{limit}),$$

$$V := \bigcup_{\alpha \in \mathsf{On}} V_\alpha$$

強制法

- ◆ 強制法:宇宙 V に新たな元 G を付加した最小 の外側の宇宙・強制拡大 V[G] を創る技術
 - ightharpoonup G \notin V であっても、G の「近似」全体が成す擬順序 \mathbb{P} は V にあるので、それを使って議論する
 - ▶ P の元は自由度によって順序づけられており、 G は P の超フィルターになる
- V[G] は、ℙ- 値集合の宇宙 V^P を G で割った物:

$$V_0^{\mathbb{P}} \coloneqq \emptyset, \quad V_{\alpha+1}^{\mathbb{P}} \coloneqq \mathbb{P}(V_{\alpha}^{\mathbb{P}} \times \mathbb{P}), \quad V_{\gamma}^{\mathbb{P}} \coloneqq \bigcup_{\alpha < \gamma} V_{\alpha}^{\mathbb{P}},$$

$$V^{\mathbb{P}} \coloneqq \bigcup_{lpha \in \mathsf{On}} V^{\mathbb{P}}_{lpha}, \qquad V[\mathsf{G}] \cong V^{\mathbb{P}} ig/\mathsf{G}$$
集合の宇宙と強制法

巨大基数

Levy 崩壊

Solovay モデルでの解析学

Solovay モデルでの解析学

本当に到達不能基数は必要?