Sommario

Proprietà della ℙ	2
Probabilità condizionata	2
Regola della moltiplicazione:	2
Formula delle 🏿 totali	2
Teorema di Bayes	2
Indipendenza	3
Variabile aleatoria: funzione a valori reali dell'esito dell'esperimento	4
PMF - probability mass function	4
V.A. Bernoulli	4
V.A. binomiale	4
V.A. geometrica	5
V.A. di Poisson	5
V.A. ipergeometrica	6
Media, varianza e momenti di v.a. discrete	6
PMF congiunta	7
Indipendenza di v.a. discrete	7
Variabili Aleatorie continue	8
PDF – probability density function	8
X ~ Uniforme su a, b	8
$X \sim Esponenziale(\lambda)$	9
$X \sim Normale(u, \sigma^2)$	10

$$\mathbb{P}(A) = \frac{casi\ favorevoli}{casi\ possibili}$$

Proprietà della P

- Se $A \subseteq B \rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- $\mathbb{P}(A \cup B) < P(A) + \mathbb{P}(B)$

Probabilità condizionata

$$\forall A \subseteq \Omega \quad \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad \rightarrow \quad \mathbb{P}(A \cap B) = \mathbb{P}(A|B) * \mathbb{P}(B)$$

$$\mathbb{P}(\Omega|B)=1$$

$$\mathbb{P}(A \cup C \mid B) = \mathbb{P}(A \mid B) + \mathbb{P}(C \mid B) \quad con A \cap C = \emptyset$$

Regola della moltiplicazione:

$$\mathbb{P}(A_1 \cap A_2 \cap ... \cap A_n) = \mathbb{P}(A_n \mid A_1 \cap ... \cap A_{n-1}) * ... * \mathbb{P}(A_2 \mid A_1) * \mathbb{P}(A_1)$$

Formula delle P totali

Data
$$(A_i)_{i=1}^n$$
 partizione di Ω
$$\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}(B|A_i) * \mathbb{P}(A_i)$$

Teorema di Bayes

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B|A) * \mathbb{P}(A)}{\mathbb{P}(B)}$$

Indipendenza

A e B indipendenti se:

- $\mathbb{P}(A|B) = \mathbb{P}(A)$
- $\mathbb{P}(A \cap B) = \mathbb{P}(A) * \mathbb{P}(B)$
- $\mathbb{P}(B|A) = \mathbb{P}(B)$

Indipendenza di collezioni di eventi

 $(A_i)_{i=1}^n$ indipendenti a due a due se ogni coppia è indipendente

$$(A_i)_{i=1}^n$$
 indipendenti (mutuamente) se $\mathbb{P}\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\mathbb{P}(A_i)$

 $indipendenza \Rightarrow indipendenza a due a due$ indipendenza a due a due
indipendenza

Variabile aleatoria: funzione a valori reali dell'esito dell'esperimento.

A seconda della natura dell'immagine, la variabile è discreta o continua.

PMF - probability mass function

$$p_X : Im(X) \to \mathbb{R} \quad t.c. \ k \to \mathbb{P}(X = k) = p_X(k) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = k\})$$

Le controimmagini di X partizionano \varOmega

V.A. Bernoulli

Considero un esito probabilistico con esito dicotomico (successo/fallimento).

$$X \sim Bernoulli(p)$$

PMF:
$$p_X(0) = 1 - p$$

$$p_X(1) = p$$

V.A. binomiale

Ripeto n volte delle prove bernoulliane in maniera indipendente e identica e conto quanti successi ottengo.

$$X \sim Binomiale(n, p)$$

PMF:
$$\mathbb{P}(X = k) = p_X(k) = \binom{n}{k} * p^k * (1 - p)^{n-k}$$

R:

- probabilità di avere esattamente x successi su n prove con probabilità del singolo evento p: **dbinom(x,n,p)**
- probabilità di fare $\leq x$ successi su n prove: pbinom(x,n,p)
- probabilità di fare > x successi su n prove: 1 pbinom(x,n,p)

V.A. geometrica

Ripeto n prove bernoulliane fino a che ottengo il primo successo e conto quante prove ho fatto.

$$X \sim Geometrica(p)$$

PMF:
$$\mathbb{P}(X = k) = p_X(k) = (1 - p)^{k-1} * p$$

R:

- probabilità che l'x-esimo tentativo sia il primo successo: dgeom(x-1,p)
- probabilità di ottenere un successo in \leq x tentativi: pgeom(x-1,p)
- probabilità di ottenere un successo in > x tentativi: 1 pgeom(x-1,p)

V.A. di Poisson

Conta il numero di eventi di interesse che occorrono in una certa/fissata finestra di osservazione.

Si tratta di eventi rari, che non mi aspetto accadano di frequente.

$$X \sim Poisson(\lambda)$$
 $\lambda > 0$

PMF:
$$\mathbb{P}(X = k) = p_X(k) = \frac{\lambda^k}{k!} * e^{-\lambda}$$

R: sapendo che il tasso medio di successi è λ

- probabilità di avere esattamente x successi: dpois(x, λ)
- probabilità di avere \leq x successi: ppois(x, λ)
- probabilità di avere > x successi: 1 ppois $(x-1, \lambda)$

V.A. ipergeometrica

Effettuiamo estrazioni senza reimbussolamento da una scatola composta da C elementi dotati di una caratteristica di interesse e N-C elementi senza tale caratteristica.

X conta il numero di successi per n estrazioni.

PMF:
$$\mathbb{P}(X=k) = p_X(k) = \frac{\binom{C}{k}\binom{N-C}{N-k}}{\binom{N}{n}}$$

R: su n estrazioni da una scatola di c palline bianche e m nere

- probabilità di estrarre esattamente x palline bianche: dhyper(x,c,m,n)
- probabilità di estrarre \leq x palline bianche: phyper(x,c,m,n)
- probabilità di estrarre > x palline bianche: 1 phyper(x,c,m,n)

Media, varianza e momenti di v.a. discrete

Media / valor medio / valore atteso / attesa:

$$\mathbb{E}(X) = \sum_{k \in Im(X)} k * p_X(k)$$

Varianza:
$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$$

Deviazione Standard:
$$StDev(X) = \sqrt{Var(X)}$$

Momento di ordine k:
$$m_k(X) = \mathbb{E}(X^k)$$

Proprietà:

- $\mathbb{E}(aX + bY) = a * \mathbb{E}(X) + b * \mathbb{E}(Y)$
- $Var(X) = \mathbb{E}(X^2) [\mathbb{E}(X)]^2$
- $Var(aX + b) = a^2 * Var(X)$

Media e varianza di v.a. discrete note:

$$X \sim Bernoulli(p)$$

$$\mathbb{E}(X) = p$$

$$Var(X) = p * (1 - p)$$

$$X \sim Binomiale(n, p)$$

$$\mathbb{E}(X) = n * p$$

$$Var(X) = n * p * (1 - p)$$

$$X \sim Geometrica(p)$$

$$\mathbb{E}(X) = \frac{1}{p}$$

$$Var(X) = \frac{(1-p)}{p^2}$$

$$X \sim Poisson(p)$$

$$\mathbb{E}(X) = \lambda$$

$$Var(X) = \lambda$$

PMF congiunta

La PMF congiunta delle v.a. X e Y è la seguente funzione:

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

Se ho la PMF congiunta posso calcolare le marginali.

Indipendenza di v.a. discrete

X e Y sono indioendenti se $\forall x \in Im(X)$ $e \forall y \in Im(Y)$

gli eventi $\{X = x\}$ e $\{Y = y\}$ sono indipendenti

Deve valere che, $\forall x \in Im(X)$ $e \ \forall y \in Im(Y)$

$$p_{X,Y}(x,y) = p_X(x) * p_Y(y)$$

Ovvero: se X e Y sono indipendenti, la PMF congiunta è il prodotto delle marginali.

Se X e Y sono indipendenti:

$$\mathbb{E}(X*Y) = \mathbb{E}(X)*\mathbb{E}(Y)$$

$$Var(X+Y) = Var(X) + Var(Y)$$

Variabili Aleatorie continue

Hanno Immagine infinita e non numerabile.

PDF – probability density function

Data X v.a. continua

$$f_X: \mathbb{R} \to \mathbb{R}$$
 $t.c. \mathbb{P}(X \in A) = \int f_X(t) dt$

La densità non indica direttamente la probabilità.

Nelle v.a. continue, $< e \le$ si equivalgono.

 $X \sim Uniforme\ su\ [a,b]$

PDF:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & altrove \end{cases}$$

I valori tra a e b sono equipossibili.

R:

- probabilità di trovare x nell'intervallo [a,b]: dunif(x,a,b)
- probabilità di trovare valori ≤ x in [a,b]: punif(x,a,b)
- probabilità di trovare > x in [a,b]: 1 punif(x,c,m,n)

 $X \sim Esponenziale(\lambda)$

PDF:
$$f_X(x) = \begin{cases} \lambda * e^{-\lambda x} & x > 0\\ 0 & altrove \end{cases}$$

X assume solo valori ≥ 0 con $\mathbb P$ non nulla. È usata per rappresentare tempi di vita.

R: avendo
$$\lambda = \frac{1}{media}$$

- percentuale di elementi $\leq x$: $pexp(x, \lambda)$
- percentuale di elementi > x: 1 pexp(x, λ)
- percentuale di elementi tra $x \in y$: $pexp(y, \lambda) pexp(x, \lambda)$

$$X \sim Normale(\mu, \sigma^2)$$

PDF:
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Rappresenta la gaussiana.

R: avendo media mean e deviazione standard sd

- valore della distribuzione normale in x: dnorm(x, mean, sd)
- percentuale di elementi $\leq x$: pnorm(x, mean, sd)
- percentuale di elementi > x: 1 pnorm(x, mean, sd)
- percentuale di elementi tra x e y: pnorm(y, mean, sd) pnorm(x, mean, sd)

