WEEK 8 CLAIMED PROBLEM SOLUTIONS

KENAN INCE

- (1) 2.4.4
 - (a) Show that MCT implies the Archimedean Property: Let $x \in \mathbb{R}$ be arbitrary. We want to show that there exists $n \in \mathbb{N}$ so that $x \leq n$. Suppose for contradiction that n < x for all $n \in \mathbb{N}$. In that case, the sequence $(n)_{n \in \mathbb{N}}$ of natural numbers is increasing and bounded above by x, so by MCT, it converges to some number m. Moreover, by the Algebraic Limit Theorem, the sequence (n+1) converges to m+1. However, by your exam problem, "lopping off" the first term of a sequence doesn't change the limit, so m = m+1, a contradiction.
 - (b) Show that MCT implies the Nested Interval Property: For all $n \in \mathbb{N}$, let I_n be a closed interval such that $I_n = [a_n, b_n]$. Assume that, for all n, $I_{n+1} \subseteq I_n$. Consider the sequence (a_n) of left endpoints of these intervals. Since the intervals are nested, (a_n) is monotone increasing, and it is bounded above by all the b_n (and in particular by b_1). Therefore, by MCT, (a_n) converges to some number, call it a. We claim $a \in \bigcap I_n$. To prove this, we must show that $a_n \leq a \leq b_n$ for all n. But $a \leq b_n$ follows from the Order Limit Theorem since $a_m \leq b_n$ for all m. Suppose for contradiction that $a < a_k$ for some k. But by the definition of convergence, there exists $N \in \mathbb{N}$ such that whenever $n \geq N$,

$$|a - a_n| < a_k - a.$$

Let $M = \max\{N, k\}$. Then $|a - a_M| < a_k - a$ (in particular, $a_M - a < |a - a_M| < a_k - a$), implying that $a_M < a_k$. However, $a_M \ge a_k$ by virtue of being "more nested". This contradiction implies that $a \ge a_n$ for all n, and hence $a \in \cap I_n$.

- (2) 2.4.6 (arithmetic-geometric mean)
 - (a) Explain why $\sqrt{xy} \le (x+y)/2$ for all $x,y \in \mathbb{R}$: Note that $(x+y)^2 = x^2 + 2xy + y^2$. Therefore, $xy = \frac{(x+y)^2 x^2 y^2}{2} \le \frac{(x+y)^2}{2}$. Take the square root of both sides to obtain the desired inequality.
 - (b) Let $0 \le x_1 \le y_1$ and define

$$x_{n+1} = \sqrt{x_n y_n}$$
 and $y_{n+1} = \frac{x_n + y_n}{2}$.

Show $\lim x_n = \lim y_n$ **exist**: We must show that (x_n) and (y_n) are both monotone and bounded. First, we must show that $x_n \leq y_n$ for all n. Note that $x_1 \leq y_1$ and assume for induction that $x_n \leq y_n$. Then

$$x_{n+1} = \sqrt{x_n y_n} \le \frac{x_n + y_n}{2} = y_{n+1}$$

where the inequality is by part (a). Thus, $x_n \leq y_n$ for all n. Now note that, for all n,

$$x_{n+1} = \sqrt{x_n y_n} \ge \frac{x_n + y_n}{2} \ge \frac{x_n + x_n}{2} = x_n.$$

Moreover,

$$y_{n+1} = \frac{x_n + y_n}{2} \le \frac{y_n + y_n}{2} = y_n$$

Therefore,

$$x_1 \le x_n = \sqrt{x_{n-1}y_{n-1}} \le \frac{x_{n-1} + y_{n-1}}{2} = y_n \le y_1.$$

Hence, (x_n) is bounded above by y_1 , and (y_n) is bounded below by x_1 . Combining these facts with the above reasoning, we have that $x = \lim(x_n)$ and $y = \lim(y_n)$ exist by the MCT. Now, taking the limit of both sides of the equation $y_{n+1} = \frac{x_n + y_n}{2}$, we get

$$y = \frac{x+y}{2} \implies \frac{y}{2} = \frac{x}{2} \implies x = y,$$

as desired.

- (3) 2.4.7 (Limit Superior) Let (a_n) be a bounded sequence.
 - (a) Prove that the sequence defined by $y_n = \sup\{a_k : k \ge n\}$ converges.
 - (b) The *limit superior* of (a_n) , or $\limsup a_n$, is defined by

$$\limsup a_n = \lim y_n$$

where y_n is the sequence from (a). Provide a reasonable definition of $\liminf a_n$ and briefly explain why it exists for any bounded sequence.

- (c) Prove that $\liminf a_n \leq \limsup a_n$ for every bounded sequence, and give an example of a sequence for which the inequality is strict.
- (d) Show that $\liminf a_n = \limsup a_n$ if and only if $\lim a_n$ exists. In this case, all three share the same value.

Exercise 2.4.7. (a) For each $n \in \mathbb{N}$, set $A_n = \{a_k : k \geq n\}$ so that $y_n = \sup A_n$. Because $A_{n+1} \subseteq A_n$ it follows that $y_{n+1} \leq y_n$ and so (y_n) is decreasing. If L is a lower bound for (a_n) , then for all $n \in \mathbb{N}$ it must be that $y_n \geq a_n \geq L$. Thus (y_n) is both decreasing and bounded, and it follows from the Monotone Convergence Theorem that (y_n) converges.

(b) Define the limit inferior of (a_n) as

$$\lim\inf a_n = \lim z_n,$$

where $z_n = \inf\{a_k : k \ge n\}$. The sequence (z_n) is increasing (because we are taking the greatest lower bound of a smaller set each time) and bounded above (because (a_n) is bounded.) Thus (z_n) converges by MCT.

(c) For each $n \in \mathbb{N}$ we have $y_n \geq z_n$, so by the Order Limit Theorem (Theorem 2.3.4) $\lim y_n \geq \lim z_n$. This shows $\limsup a_n \geq \liminf a_n$ for every bounded sequence.

The sequence $(a_n) = (1, 0, 1, 0, 1, 0, \cdots)$ has $\limsup a_n = 1$ and $\liminf a_n = 0$. Notice that this sequence is not convergent.

(d) First let's prove that if $\lim y_n = \lim z_n = l$, then $\lim a_n = l$ as well. Let $\epsilon > 0$. There exists an $N \in \mathbb{N}$ such that $y_n \in V_{\epsilon}(l)$ and $z_n \in V_{\epsilon}(l)$ for all $n \geq N$. Because $z_n \leq a_n \leq y_n$, it must also be the case that $a_n \in V_{\epsilon}(l)$ for all $n \geq N$. Therefore $\lim a_n$ exists and is equal to l.

Next, let's show that if $\lim a_n = l$, then $\lim y_n = l$. (The proof that $\lim z_n = l$ is similar.) Let $\epsilon > 0$ be arbitrary. Because $\lim a_n = l$, there exists an $N \in \mathbb{N}$ such that $n \geq N$ implies $a_n \in V_{\epsilon}(l)$. This means that $l - \epsilon$ and $l + \epsilon$ are lower and upper bounds for the set $\{a_n, a_{n+1}, a_{n+2}, \cdots\}$. It follows that $l - \epsilon \leq y_n \leq l + \epsilon$ for all $n \geq N$. Keeping in mind that we already know $y = \lim y_n$ exists, we can use the Order Limit Theorem to assert that $l - \epsilon \leq y \leq l + \epsilon$, and because ϵ is arbitrary we must have y = l. (Theorem 1.2.6 could be referenced in this last step.)

Exercise 2.4.9. We will show that if $\sum_{n=0}^{\infty} 2^n b_{2n}$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges by again exploiting a relationship between the partial sums

$$s_m = b_1 + b_2 + \dots + b_m$$
, and $t_k = b_1 + 2b_2 + \dots + 2^k b_{2^k}$.

Because $\sum_{n=0}^{\infty} 2^n b_{2n}$ diverges, its monotone sequence of partial sums (t_k) must be unbounded. To show that (s_m) is unbounded it is enough to show that for all $k \in \mathbb{N}$, there is a term s_m satisfying $s_m \geq t_k/2$. This argument is similar to the one for the forward direction, only to get the inequality to go the other way we group the terms in s_m so that the *last* (and hence smallest) term in each group is of the form b_{2^k} .

Given an arbitrary k, we focus our attention on s_{2k} and observe that

$$\begin{array}{lll} s_{2^k} & = & b_1 + b_2 + (b_3 + b_4) + (b_5 + b_6 + b_7 + b_8) + \dots + (b_{2^{k-1}+1} + \dots + b_{2^k}) \\ & \geq & b_1 + b_2 + (b_4 + b_4) + (b_8 + b_8 + b_8) + \dots + (b_{2^k} + \dots + b_{2^k}) \\ & = & b_1 + b_2 + 2b_4 + 4b_8 + \dots + 2^{k-1}b_{2^k} \\ & = & \frac{1}{2} \left(2b_1 + 2b_2 + 4b_4 + 8b_8 + \dots + 2^k b_{2^k} \right) \\ & = & b_1/2 + t_k/2. \end{array}$$

Because (t_k) is unbounded, the sequence (s_m) must also be unbounded and cannot converge. Therefore, $\sum_{n=1}^{\infty} b_n$ diverges.