Numerical Analysis: Practice Midterm (30 marks)

Urbain Vaes

October 22, 2022

Question 1 (8 marks). True or false?

- 1. Let $(\bullet)_2$ denote binary representation. It holds that $(0.1011)_2 + (0.0101)_2 = 1$.
- 2. It holds that $(1000)_3 \times (0.002)_3 = 2$.
- 3. A natural number with binary representation $(b_4b_3b_2b_1b_0)_2$ is even if and only if $b_0 = 0$.
- 4. In Julia, Float64(.4) == Float32(.4) evaluates to true.
- 5. Let $(\bullet)_3$ denote base 3 representation. It holds that $(0.\overline{2200})_3 = (0.9)_{10}$.
- 6. Machine addition $\widehat{+}$ is a commutative operation. More precisely, given any two double-precision floating point numbers $x \in \mathbf{F}_{64}$ and $y \in \mathbf{F}_{64}$, it holds that x + y = y + x.
- 7. Let \mathbf{F}_{32} and \mathbf{F}_{64} denote respectively the sets of single and double precision floating point numbers. It holds that $\mathbf{F}_{32} \subset \mathbf{F}_{64}$.
- 8. The machine epsilon of a floating point format is the smallest strictly positive number that (i) is a power of 2 and (ii) can be represented exactly in the format.
- 9. Let \mathbf{F}_{64} denote the set of double precision floating point numbers. For any $x \in \mathbf{R}$ such that $x \in \mathbf{F}_{64}$, it holds that $x + 1 \in \mathbf{F}_{64}$.
- 10. Let $f: \mathbf{R} \to \mathbf{R}$ denote the function that maps $x \in \mathbf{R}$ to the number of double precision floating point numbers contained in the interval [x-1,x+1]. Then f is a decreasing function of x.
- 11. Let $n \in \mathbb{N}$. The number of bits in the binary representation of n is less than or equal to 4 times the number of digits in the decimal representation of n.

A correct (resp. incorrect) answer leads to +1 mark (resp. -1 mark).

Question 2 (Interpolation and approximation, 10 marks). Throughout this exercise, we assume that $x_0 < \ldots < x_n$ are distinct values and that $u: \mathbf{R} \to \mathbf{R}$ is a smooth function.

- 1. (3 marks) Are the following statements true or false?
 - \bullet There exists a unique polynomial p of degree less than or equal n such that

$$\forall i \in \{0, \dots, n\}, \qquad p(x_i) = u(x_i). \tag{1}$$

• Assume that $p \in \mathbf{P}(n)$ is such that (1) is satisfied. Then there is a constant $K \in \mathbf{R}$ independent of x such that

$$\forall x \in \mathbf{R}, \quad u(x) - p(x) = K(x - x_0) \dots (x - x_n).$$

- Assume that $p \in \mathbf{P}(n)$ is such that (1) is satisfied. Then p is necessarily of degree n.
- 2. For $i \in \{0, ..., n\}$, let $u_i = u(x_i)$, and let $m \leq n$ be a given natural number. We wish to fit the data $(x_0, u_0), ..., (x_n, u_n)$ with a function $\widehat{u} : \mathbf{R} \to \mathbf{R}$ of the form

$$\widehat{u}(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_m x^m$$

Specifically, we wish to find the coefficients $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_m)^T$ such that the error

$$J(\alpha) := \frac{1}{2} \sum_{i=0}^{n} |u_i - \widehat{u}(x_i)|^2$$

is minimized. Throughout this exercise, we use the notations

$$A \begin{pmatrix} 1 & x_0 & \dots & x_0^m \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^m \end{pmatrix}, \qquad \boldsymbol{b} := \begin{pmatrix} u_0 \\ \vdots \\ u_n \end{pmatrix}$$

• (3 marks) Show that $J(\alpha)$ may be rewritten as

$$J(\boldsymbol{\alpha}) = \frac{1}{2} (\mathsf{A}\boldsymbol{\alpha} - \boldsymbol{b})^T (\mathsf{A}\boldsymbol{\alpha} - \boldsymbol{b}).$$

• (4 marks) Prove that if $\alpha_* \in \mathbf{R}^{m+1}$ is a minimizer of J, then

$$A^T A \alpha_* = A^T b.$$

• (1 mark) Show that the matrix A^TA is positive definite. You can take for granted that the columns of A are linearly independent.

Question 3 (Numerical integration).

Question 4 (Vector and matrix norms, 6 marks). The 1-norm and the ∞ -norm of a vector $x \in \mathbb{R}^n$ are defined as follows:

$$\|x\|_1 = |x_1| + \dots + |x_n|$$
 and $\|x\|_{\infty} = \max\{|x_1, \dots, |x_n|\}.$

These norms both induce a matrix norm through the formula

$$\|A\|_p := \sup \{ \|Ax\|_p : \|x\|_p = 1 \}.$$

Prove that, for $A \in \mathbf{R}^{n \times n}$,

• (6 marks) $\|A\|_1$ is given by the maximum absolute column sum:

$$\|\mathsf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|. \tag{2}$$

• (1 mark) $\|A\|_{\infty}$ is given by the maximum absolute row sum:

$$\|\mathsf{A}\|_{\infty} = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{ij}|.$$

Hint: In order to prove (2), you may find it useful to proceed as follows:

• Introduce j_* as the index of the column with maximum absolute sum:

$$j_* = \underset{1 \le j \le n}{\arg\max} \sum_{i=1}^n |a_{ij}|.$$

• Prove the direction \geqslant in (2) by finding a vector \boldsymbol{x} with $\|\boldsymbol{x}\|_1 = 1$ such that

$$\|Ax\|_1 = \sum_{i=1}^n |a_{ij_*}|.$$

• Prove the direction \leq in (2) by showing that, for a general $\boldsymbol{x} \in \mathbf{R}^n$ with $\|\boldsymbol{x}\|_1 = 1$,

$$\|\mathsf{A}\boldsymbol{x}\|\leqslant \sum_{i=1}^n |a_{ij_*}|.$$