Review of Unit 2: Freefalls, Forces and Accceleration

Acceleration: the rate of change of velocity.

Instantaneous vs average acceleration:

<u>Instantaneous acceleration</u> is the acceleration at a particular time.

Mathematically,
$$a = \frac{dv}{dt}$$
 Or in terms of the position,
$$a = \frac{d^2x}{dt^2}$$

<u>Average acceleration</u> is the average value of acceleration over a certain period.

Mathematically,
$$a_{ave} = \frac{\Delta v}{\Delta t}$$

Consider the position-time graph shown below. Which one best describes a motion with a constant positive acceleration?

Consider the position-time graph shown below. Which one best describes a motion with a constant positive acceleration?

Review of Unit 2: Freefalls, Forces and Accceleration

 Freefall: motion of an object under the action of gravity alone is a motion with a constant acceleration with

$$a = -g$$
 where $g = 9.8 \ m/s^2 \approx 10 \ m/s^2$

Note: Here, we assume the downward direction to be negative. If we assume the downward direction to be positive, then a = +g.

Suppose you throw a bean bag directly upward (in the positive direction).

What can you conclude about its velocity and acceleration when it reaches the maximum height?

A.
$$v = 0, a = 0$$

B.
$$v = 0, a > 0$$

C.
$$v = 0, a < 0$$

D.
$$v > 0$$
, $a = 0$

E.
$$v < 0, a = 0$$

Suppose you throw a bean bag directly upward (in the positive direction).

What can you conclude about its velocity and acceleration when it reaches the maximum height?

A.
$$v = 0, a = 0$$

B.
$$v = 0, a > 0$$

✓ C.
$$v = 0, a < 0$$

D.
$$v > 0$$
, $a = 0$

E.
$$v < 0, a = 0$$

 Newton's Second Law: the net force acting on an object equals the product of its mass times its acceleration:

$$F = ma$$
Alternatively,
$$\sum_{A} F = ma$$

Emphasizing that the left-hand side of the equation means the sum of all forces acting on the object

- Different types of forces result in different types of motion.
- We can determine the motion by using Newton's second law and examining how the force depends (or does not depend) on position and velocity.

Force law 1: force is zero.

$$F=0$$
 \Longrightarrow $a=0$
$$v=v_0$$
 Motion with a constant velocity.
$$x=v_0t+x_0$$
 Position-time graph is linear.

 Newton's First Law: If no net force acts on an object, then its velocity is constant.

• Force law 2: force is constant.

$$F = \text{constant} \qquad \qquad a = \text{constant}$$

$$v = at + v_0 \qquad \text{Velocity-time graph is linear.}$$

$$x = \frac{1}{2}at^2 + v_0t + x_0$$

Position-time graph is parabolic.

• **Example 1:** force of gravity

$$F = -mg$$
 \Rightarrow $a = -g$

• Example 2: force of sliding (kinetic) friction

Important: For friction, position-time graph is not completely parabolic.

• Force law 3: spring force law (Hooke's law), force is proportional to position with a negative proportionality constant.

$$F = -kx$$
 \longrightarrow x, v, a are all sinusoidal in time. $k = x$ spring constant

Note: x, v, a cannot all be the same sinusoidal function. For example, if x is sin, v is cos, and a is $-\sin$.

• Force law 4: drag force, force is proportional to velocity.

$$F = -\alpha v$$
 \longrightarrow v decreases exponentially with time.

 These four are just some of the simplest force laws. There are other more complicated laws. Suppose $F = -\alpha v$

Sketch a possible position-time graph with a negative initial position and a negative initial velocity.

Suppose $F = -\alpha v$

Sketch a possible position-time graph with a negative initial position and a negative initial velocity.

Suppose $F = -kx - \alpha v$

Sketch a possible position-time graph.

Suppose $F = -kx - \alpha v$

Sketch a possible position-time graph.

