

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast

comparisons Final model

decision, forecast analysis

US Unemployment Trends Initial Model Selection

Joseph Blubaugh Sean Roberson Akarshan Puri Alison Shelton Travis Lilley Bo Pang

> Texas A&M College Station, Texas

STAT 626: Time Series Analysis

Outline

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Final model decision, forecast analysis

1 Description of data

2 Models Considered

3 Forecast comparisons

Timplot of National Unemployment

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Final model decision, forecast analysis

Monthly unemployment, seasonally adjusted

Smoothed unemployment for the study time period

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Scatterplot matrix of unemployment and potential predictors

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Decomposition of Data

Unemployment Trends

Group 4

Outline

Description of

Models Considered

Forecast comparisons

```
decom.unem = decompose(ts(data = econ$unem_rate,
             start = c(1993,1), frequency = 12), type = "additive")
decom.ind = decompose(ts(data = econ$industrial production index.
                         start = c(1993.1), frequency = 12), type = "additive")
decom.mno = decompose(ts(data = econ$manufacturers_new_orders,
                         start = c(1993.1), frequency = 12), type = "additive")
decom.hpi = decompose(ts(data = econ$purchase house price index.
                         start = c(1993,1), frequency = 12), type = "additive")
decom.con = decompose(ts(data = econ$construction_spending,
                         start = c(1993.1), frequency = 12), type = "additive")
decom.rts = decompose(ts(data = econ$retail_sales,
                         start = c(1993,1), frequency = 12), type = "additive")
## Seasonally Adjust 2016 unemployment
unem.16 = unem.16 - decom.unem$seasonal[1:5]
## Add seasonally adjusted rate
econ.sa = data.frame(
 row.names = row.names(econ),
  unem_rate_sa = econ$unem_rate - decom.unem$sea,
  industrial production sa = econ$industrial production index - decom.ind$sea,
 manufacturers_new_orders_sa = econ$manufacturers_new_orders - decom.mno$sea,
 house price sa = econ$purchase house price index - decom.hpi$sea.
  construction spend sa = econ$construction spending - decom.con$sea.
 retail_sales_sa = econ$retail_sales - decom.rts$sea,
  recession ind = econ$recession ind
```


Autocorrelation of unemployment data

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Timeplots with and without differencing

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

ADF Test Results for unemployment

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Model	Statistic	Lag order	p-value
1 st difference	-9.3595	6	< 0.01
2 nd difference	-9.3595	6	< 0.01
3 rd difference	-13.02	6	< 0.01

Timeplots of differenced predictors

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

ADF Test Results for Predictors, d = 2

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast

comparisons Final model

decision, forecast analysis

Variable	Statistic	p-value
Industrial Production	-9.2333	< 0.01
New Orders	-8.391	< 0.01
House Prices	-9.104	< 0.01
Construction Spending	-10.447	< 0.01
Retail Sales	-10.72	< 0.01

ACF & PACF Plots

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

ACF & PACF Plots of Second Differences

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Final model decision, forecast analysis

ACF of Second difference

ARIMA Models Considered

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Model	Order	Reg	AIC	BIC	Best
1	1,2,1	NA	-212.30	-201.46	BIC
2	2,2,2	NA	-211.81	-193.74	
3	3,2,3	NA	-215.48	-190.19	
4	1,2,1	Χ	-211.56	-182.65	
5	2,2,2	Χ	-209.83	-177.32	
6	3,2,3	Χ	-215.10	-171.74	
7	1,2,1	LagX	-222.45	-193.69	AIC
8	2,2,2	LagX	-220.70	-188.35	
9	3,2,3	LagX	-217.89	-174.76	

VAR Models Considered

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Considered

Forecast comparisons

Model	Р	Type	AIC	BIC	Best
1	1	NA	-223.67	-201.97	
2	2	NA	-217.83	-185.31	
3	1	Ind	-256.77	-231.45	BIC/AIC
4	1	LagX	-216.65	-195.06	
5	2	LagX	-212.53	-180.17	
6	1	Both	-245.72	-220.53	

Comparison of best ARIMA and VAR models

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Model	Туре	AIC	BIC
ARIMA #1	Univariate ARIMA $(1,2,1)$	-212.29	-201.45
ARIMA #7	Multivariate ARIMA(1,2,1)	-222.45	-193.69
VAR #3	VAR(1)	-256.76	-231.45

Multivariate ARIMA(1,2,1)

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

VAR(1)

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Comparison of ARIMA(1,2,1) and VAR(1)

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Final Model: VAR(1)

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

Final model decision, forecast analysis

The final model chose was the VAR(1) with construction spending, retail sales, and the recession indicator as predictors:

$$\begin{split} \textit{Unemployment} &= .935 + .0041(t) + .975 \mathsf{Unemployment}_{t-1} \\ &+ .004 \mathsf{ConstructionSpend}_{t-1} - .005 \textit{RetailSales}_{t-1} \\ &+ .19 \mathsf{RecessionIndicator}_{t-1} + \textit{w}_{t} \end{split}$$

Final Model: VAR(1): Predictions

Unemployment Trends

Group 4

Outline

Description of data

Models Considered

Forecast comparisons

