Terran Viper

Semi Autonomous Terrain Reconnaissance and Surveillance Security Robot

01

Identification

- What is the problem?
 - Traditional surveillance devices struggle with navigating narrow tunnels, debris-filled areas, or confined spaces, lacking the flexibility needed for effective reconnaissance in variable environments.
- Who is Affected?
 - Security forces, rescue teams, and military personnel requiring enhanced surveillance and reconnaissance in hazardous or hard-to-reach areas.

02

Justification

- Why it is important and What are its benefits?
 - Flexible robots excel in risky areas, accessing challenging sites like collapsed buildings. Realtime video, audio, and depth mapping enhance situational awareness and decision-making.

03

Novelty

- Unlike most traditional robots with limited movement mechanisms, this robot integrates three distinct modes of motion: serpentine, sidewinding, and rectilinear.
- These motion types are inspired by biological snakes, enabling unparalleled adaptability to diverse terrains such as narrow spaces, loose sand, or steep inclines.

A snake-inspired robot with three motion modes for versatile terrain adaptability. Equipped with a camera, it's ideal for surveillance, search and rescue and can move in confined spaces.

04

Functionality

- Yaw and pitch motion with two servo motors per segment for precise flexibility.
- Supports serpentine, rectilinear, and sidewinding motions for varied terrains.
- Operates in wireless and wired modes for versatile functionality.
- Controlled via precoded equations with a user-friendly interface.
- Equipped with a camera for real-time video and depth detection on a remote PC.

DFP - 81

Aditya Narayan
Tushar Sharma
Kritansh Singh
Harsh Mishra
Sanyam Sneh
Ayush Kushwaha
22BME002
22BSM062
22BME034
22BEC048
22BSM053
22BCS057

Mentor: Associate Professor Dr. M.Z. Ansari Course Name: Engineering Design- DFP

Motion Mechanism of Links

Yaw and Pitch Motion:

Two high torque MG995 Servo Motors mounted orthogonally, responsible for Yaw and Pitch motion of the links.

Camera Integration and Live Video Transmission

 A monocular camera is utilized to capture video, which is transmitted wirelessly via a dedicated transmitter. The received video feed is processed to generate a depth map and perform voxel-based mapping for enhanced spatial analysis.

Design Detailing

Microcontroller (Arduino Atmega 2560)

- More I/O Pins: Offers a larger number of digital and analog I/O pins, ideal for connecting multiple servos and sensors.
- Higher Processing Power: Equipped with more memory (256 KB flash, 8 KB SRAM) and faster processing capabilities, making it suitable for handling complex tasks.
- Better for Complex Projects: Ideal for applications requiring simultaneous control of multiple components, like our snake robot.

Bill of Materials

Name	Price	Quantity	Total Cost
Arduino Mega R3 (Atmega 2560) Model: - Atmega2560	₹4,000	1	₹4,000
Servo Motor Model:- Pro-Range OT5325M	₹1,314	10	₹13,140
LoRa module (For wireless Communication)	₹649	1	₹ 649
RS485 series (For wired Communication)	₹485	5	₹ 245
Ronshin Caddx Turbo Micro F2 1/3in CMOS 2.1mm 1200TVL 16:9/4:3 NTSC/PAL Low Latency FPV Camera W/ Microphone (Camera)	₹4200	1	₹4200
Eachine TX805 5.8G 40CH 25/200/600/800mW VTX (Video Transmitter)	₹1720	1	₹1720
Eachine ROTG02 UVC OTG 5.8G 150CH Dual Antenna Audio FPV Receiver	₹4500	1	₹4500
Orange A Grade ISR 18650 22000 mAh (Power Supply)	₹ 200	10	₹2000
RS485 Module (MAX485)	₹115	2	₹230
Arduino Uno	₹523	1	₹523
USB TO UART TTL 5V 3.3V FT232RL	₹300	1	₹300
Miscellaneous	₹4000	-	₹ 4000
Total	_	_	₹ 35.507

DFP - 81

 Aditya Narayan 	22BME002	
 Tushar Sharma 	22BSM062	
 Kritansh Singh 	22BME034	
 Harsh Mishra 	22BEC048	
 Sanyam Sneh 	22BSM053	
 Ayush Kushwaha 	22BCS057	

Mentor: Associate Professor Dr. M.Z. Ansari Course Name: Engineering Design- DFP

Motion Visualization

1. Serpentine

2. Rectilinear

3. Side Winding

4. Circuit Diagram

DFP - 81

Aditya Narayan
Tushar Sharma
Kritansh Singh
Harsh Mishra
Sanyam Sneh
Ayush Kushwaha
22BME002
22BSM062
22BME034
22BEC048
22BSM053
22BCS057

Mentor: Associate Professor Dr. M.Z. Ansari Course Name: Engineering Design- DFP

