Lecture 12 - Limit Theorems II

Standardization of a random variable

- A random variable X for which EX=0 and $D^2(X)=1$ is called standardized
- For any random variable X a variable:

$$U = \frac{X - EX}{D(X)}$$

Is standardized

Bernoulli scheme

· We have:

$$S_n = \sum_{i=1}^n X_i, \quad \overline{X}_n = rac{S_n}{n}$$

• If we standardize S_n (or \overline{X}_n):

$$U_n = rac{S_n - np}{\sqrt{np(1-p)}} = rac{\overline{X}_n - p}{\sqrt{p(1-p)}} \sqrt{n}$$

• We can see that the standardized version of S_n (or \overline{X}_n) cannot converge to a number, because all its elements have unit standard deviation.

De Moivre-Laplace theorem

• Take a sequence of independent random variables X_1, X_2, X_3, \ldots where $X_n \sim B(p)$ for all n

$$S_n = \sum_{i=1}^n X_n \sim B(n,p), \quad U_n = rac{S_n - np}{\sqrt{np(1-p)}}$$

• The c.d.f. of U_n converges to a c.d.f. of a standard normal distribution:

$$orall x \ \lim_{n o\infty} F_{U_n}(x) = \phi(x)$$

• Conclusion: for large n, the distribution of U_n can be approximated by N(0,1) :

$$U_n = rac{S_n - np}{\sqrt{np(1-p)}} \simeq Z, \quad ext{where } Z \sim N(0,1)$$

ullet Equivalently, the distribution of $S_n \sim B(n,p)$ can be approximated by:

$$S_n \simeq \left(\sqrt{np(1-p)}Z + np
ight) \sim N(np, np(1-p))$$

• Conclusion: for large n, binomial distribution B(n,p) can be approximated by a normal distribution N(np,np(1-p))

Central Limit Theorem

Lindeberg-Levy theorem

- X_1,X_2,X_3,\ldots sequence of independent and identically distributed random variables, $EX_i=\mu$, $D^2(X_i)=\sigma^2$.
- · According to the law of large numbers:

$$\overline{X}_n = rac{1}{n} \sum_{i=1}^n X_i \overset{ ext{w. pr. 1}}{
ightarrow} \mu$$

• We can, however, standardize the sequence of arithmetic means:

$$U_n = rac{\overline{X}_n - E\overline{X}_n}{D(\overline{X}_n)} = rac{\overline{X}_n - \mu}{\sigma} \sqrt{n}$$

• Then:

$$orall x \ \lim_{n o\infty} F_{U_n}(x) = \phi(x)$$

- Where ϕ is the c.d.f. of N(0,1)
- It can be written as (with notation introduced in the next section):

$$U_n \stackrel{D}{
ightarrow} Z, \ ext{ where } Z \sim N(0,1)$$

 Conclusion: the convergence of the standardized arithmetic mean of independent random variables to the normal distribution is universal.

Convergence in distribution

- We say that a sequence of random variables X_1, X_2, \ldots converges to a random variable X:
 - $\circ \;\;$ With probability one (denoted $X_n \stackrel{\mathrm{w.\;pr.\;1}}{\to} X$) if:

$$P(\lim_{n o\infty}X_n=X)=1$$

 $\circ \:\:$ In probability (denoted $X_n \overset{P}{ o} X$) if:

$$orall \epsilon > 0 \quad \lim_{n o \infty} P(|X_n - X| > \epsilon) = 0$$

 \circ In distribution (denoted $X_n \overset{D}{
ightarrow} X$) if:

$$\lim_{n o \infty} F_{X_n}(x) = F_X(x) ext{ for each } x ext{ at which } F_x ext{ is continuous}$$

· It holds that:

$$X_n \stackrel{\text{w. pr. 1}}{\to} X \implies X_n \stackrel{P}{\to} X \implies X_n \stackrel{D}{\to} X$$

• So convergence in distribution is the weakest type of convergence.