7.2

Théorème des valeurs intermédiaires

Maths Spé terminale - JB Duthoit

7.2.1 Définition

Propriété - Théorème des valeurs intermédiaires

Si f est continue sur [a; b] alors, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution dans [a; b].

Autrement dit, tout réel k compris entre f(a) et f(b) admet au moins un antécédent par f dans [a;b].

7.2.2 Cas des fonctions monotones

Propriété - Corolaire

Si f est continue et strictement monotone sur [a;b] alors, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans [a;b].

Remarque

On peut aussi étendre ce corollaire aux intervalles ouverts en utilisant les limites.

Savoir-Faire 7.28

SAVOIR UTILISER LE THÉORÈME DES VALEURS INTERMÉDIAIRES Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x^3 - 3x + 1.$

1. Justifier que l'équation f(x) = 0 admet au moins une solution dans l'intervalle [0; 1]

- 2. a) Montrer que la fonction f est strictement croissante sur $[1; +\infty]$
 - b) Démontrer que l'équation f(x) = 0 a une unique solution dans l'intervalle $[1; +\infty[$.

Exercice 7.6

Soit la fonction $f: x \mapsto x^3 - 3x^2 - 1$ définie sur \mathbb{R} . Quel est le nombre de solutions de l'équation f(x) = 4 sur \mathbb{R} ?

Exercice 7.7

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 6x + 1$.

- 1. Justifier que l'équation f(x) = 0 admet au moins une solution dans l'intervalle [-2; 2]
- 2. a) Montrer que f est strictement croissante sur $[2; +\infty[$
 - b) Montrer que l'équation f(x) = 0 admet une unique solution dans $[2; +\infty[$

7.2.3 Méthode d'encadrement

Il existe deux méthodes pour déterminer un encadrement de la solution de l'équation f(x) = k:

- La méthode par "balayage"
- La méthode par "dichotomie". Le principe est ici de diviser par 2 l'amplitude de l'intervalle à chaque étape. Pour cela, on calcule le milieu m de l'intervalle [a;b] et on détermine si α se trouve dans [a;m] ou bien [m;b].

Savoir-Faire 7.29

SAVOIR DONNER UN ENCADREMENT DE LA SOLUTION DE L'ÉQUATION

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x^3 - 3x + 1.$

On a démontré précédemment que l'équation f(x) = 0 admettait une solution unique dans l'intervalle $[1; +\infty[$. Notons α cette solution.

Donner un encadrement de α d'amplitude 0.0001 par "balayage" avec la calculatrice.

Savoir-Faire 7.30

SAVOIR CONSTRUIRE UN ALGORITHME DE DICHOTOMIE

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - 3x + 1$.

- 1. Montrer que l'équation $x^3 3x + 1 = 0$ admet une unique solution α dans l'intervalle [-1; 1].
 - Le but de l'exercice est de déterminer une valeur approchée de α en utilisant la méthode de la dichotomie.
- 2. Cliquez ici pour afficher l'activité Géogébra. Dans cette activité, vous verrez la courbe de la fonction f sur [-1;1]. Vous pouvez cliquer sur "suivant" afin de visualiser les différentes étapes. Vous pouvez ainsi compléter le tableau suivant qui permet de trouver une solution de α à 10^{-1} près.

	Étape 1	Étape 2	Étape 3	Étape 4	Étape 5	Étape 6
a	-1					
b	1					
$b - a > 10^{-1}$	Vrai					
m	0					
$f(a) \times f(m) < 0$	Faux					

3. L'algorithme ci-contre permet d'obtenir une valeur approchée de α à 10^{-n} près, avec $n \in \mathbb{N}$

Vérifier que cet algorithme correspond bien au principe de la dichotomie décrit dans l'activité Géogébra.

4. Coder cet algorithme en langage python. Saisir et exécuter le programme avec n=4 et interpréter le résultat renvoyé.

Exercice 7.8

Soit la fonction f définie sur \mathbb{R} par $f(x) = 4x^5 + 2x - 2$.

- 1. Montrer que f est strictement croissante sur $\mathbb R$
- 2. Montrer que l'équation f(x) = 8 admet une unique solution α dans \mathbb{R} .
- 3. Déterminer un encadrement de α à 10^{-2} près en utilisant la méthode du balayage.
- 4. Déterminer un encadrement de α à 10^{-2} près en utilisant la méthode de dichotomie (programme python sur la calculatrice).

Exercice 7.9

Soit la fonction f définie sur \mathbb{R} par $f(x) = e^{4x+7} + x^3 - 10$.

- 1. Étudier le sens de variation de f sur \mathbb{R}
- 2. Montrer que l'équation f(x) = 0 admet une unique solution α dans \mathbb{R} .
- 3. Déterminer un encadrement de α à 10^{-2} près en utilisant la méthode du balayage.

Exercice 7.10

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 2x^2 + 10x$.

- 1. Étudier le sens de variation de f sur \mathbb{R}
- 2. Montrer que l'équation f(x) = 20 admet une unique solution α dans \mathbb{R} .
- 3. Déterminer un encadrement de α à 10^{-2} près.