ÁLGEBRA (Grado en Ingeniería Informática)

CURSO 2021/22. Convocatoria Ordinaria 2.

Apellidos v	Nombre:	DNI:	Gr. Teoría:

- 1. [0.75 puntos] Calcular la factorización en <u>irreducibles</u> en $\mathbb{Z}[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{C}[x]$ del polinomio, $p(x) = 12x^4 12x$.
- **2.** [0.75 puntos] Encontrar una operación que dote de estructura de grupo $\mathbb{Z} \times \mathbb{Z}_4 \times A_3$ y justificarlo. Calcular, si es posible, tres <u>subgrupos propios</u> finitos y dos subgrupos propios no finitos de dicho grupo.
- 3. [0.5 puntos] Consideremos el grafo cuyo conjunto de vértices es W= $\{1, 2, 3, 4, 5, 6, 7\}$ y conjunto de aristas es F= $\{\{x, y\}: x+y \equiv 1 \mod 2\}$.
 - a) Determinar la matriz de adyacencia y representarlo gráficamente.
 - b) Enunciar el teorema del número de caminos y utilizarlo, para calcular el número de ciclos de longitud 3 que pasan por el vértice 2.
- **4.** [1 punto] Sea $V=M_{2x3}(R)$ y consideremos el subconjunto

$$U = \left\{ \begin{pmatrix} a & a & a \\ a+b & b & c \end{pmatrix} : b+c = 0 \right\}$$

- a) Demostrar que U es subespacio vectorial de V.
- **b)** Calcular, de forma razonada, <u>dimensión</u>, <u>base</u>, ecuaciones paramétricas e implícitas de U.
- 5. [1.5 puntos] Sea V el espacio vectorial euclídeo cuya matriz de Gram respecto de una base, $B = \{e_1, e_2\}$, es

$$G = \begin{pmatrix} 2 & 2 \\ 2 & 8 \end{pmatrix}$$

- a. Calcular la expresión general del producto escalar.
- b. Calcular el <u>ángulo</u> que forman los vectores e₁ y e₂
- c. Calcular la matriz de Gram, G', respecto de una base ortonormal, si existe.
- d. Demostrar, explícitamente, la relación existente entre G y G'.
- **6.** [1.5 puntos] Sea $f: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ la aplicación definida por $f(A) = 2A + A^t$ donde A^t es la traspuesta de A.
 - a. Estudiar si f es <u>linea</u>l.
 - b. Calcular la matriz asociada a f respecto de la base canónica.
 - c. Clasificar f.
 - d. Estudiar si f es <u>diagonalizable por semejanza</u>. En caso afirmativo, calcular la matriz diagonal y la base de vectores propios.