Feinstruktur von Atomen

Eigenenergien:
$$E_{n} = -\frac{1}{2} \frac{x^{2} \mu c^{2}}{n^{2}}$$
 unabhängig von σ

Ly
$$(\hat{Z} + \hat{S})^2 = \hat{Z}^2 + \hat{Z} + \hat{Z}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

Hyperfeinstruktur

Magnetisches Moment des Protons

~ me blemer als Feinstraktur

 $\tilde{M}_{\rho} \propto \tilde{S}_{\rho}$ $\tilde{H}_{HFS} \sim \tilde{J} \cdot \tilde{S}_{\rho}$

Quantamechanisch sind zwei identische Tei(chen (gleiche Ladang, Masse, Spin) unanterscheidbar

Vernachlässige Wechselwitzung.

Eigenenagien von $H_{1/2}$: $trw (u_{1/2} + \frac{1}{2})$ $u_i = C_i I_i 2_r ...$ Eigenfulctionen von $H_{1/2} = Y_{1/2}(x)$

(1) Selze beide Teilchen in dan grundzustand $\begin{cases}
\psi_o(x_1, x_2) = \psi_o(x_1) \cdot \psi_o(x_2)
\end{cases}$

(2) Erster angeregter Zustand

 $\lambda \varphi_0(x_n)\varphi_1(x_2) \leftarrow \mu \varphi_1(x_n) \varphi_0(x_2) = \psi(x_1, x_2)$

Positions messung von Teilchen 1 und Z

(x, & x,) = to Re (2* n)

Lo Observable hangt von dan Westen von 2 und mab.

Postulat: Physikalische Zastände nur mit 2== p existieren.

· Bosanen: Symmetrische Kombination

Ferminon: anti-symmetrische Kombination

Systeme von 2 Teilchen

Zwei identische Tellchen 1,?

Hillatraum Hr, He -> X=H, & Hz

Basiskultionen: {16>} {11>}

Allgemeiner Zastand: $|4\rangle = \sum_{k,n} C_{k,n} |k\rangle \otimes |n\rangle$ $|1|: |k| |2:n\rangle$

Def: Permutations or paroker \hat{P}_{n2} \hat{P}_{n2} (1:k, 2:n > = |1:n, 2:k >

varanscht Zuständle der beiden Teilchen $\hat{P}_{n2}^2 = 11$; \hat{P}_{n2} harnitesch

Beispiele: Zwei Teilden ohne Spin,

Prz 4(r, rz) = 7(rz, rz)

Zwé Tei(den mit Spin/2 14>=Z $Y(\tilde{r}_1,\tilde{r}_2)$ $1.1:\sigma_1,2:\sigma_2> \sigma_i=\{N\}$

Pro (4) = = = = 7 4(1, 1) (1:0, 1:02)

Anwerdung ant Singlet and Triplet Zastinde

 $|S=0|_{1}m_{S}=0>=\frac{1}{12}(|1:1,2:1>-|1:1,2:1>)$

 $f_{12}(S=0) = -(S=0) = -(S=0) = 0$

(5=1, ms=1)= (1:1,2:1)

 $\hat{P}_{12} | S:1, m_S=1 > = | S:1, m_S=1 > : Symmetrisch$

Da k	peide T	ei(chen	identi	sch Ano	l, ve pròsen	hieren
(4 >	and	P 12	> den	selben	Zastand.	
	P1, 147			7	$e^{i\delta} = \pm 1$ Postulat prishe geha	

Postulat: Es gibt zwei Manson um Teilchen

O Bosonen: ganzzahliger Spin: (Photon, Georen H, Zasammengesetzte Stone Z:) Sesantzustand ist mna symmetrish

2) Famsonen: halbodhliger Spin: (Elelbonen, Puotoren, Nenhoren ! Gesantzastad ist immer anti-symnehisch

