Hospital SKU Forecasting — Technical Summary

Overview

This document summarizes three types of forecasting details. Each set includes model choices, required raw columns, feature engineering, hyperparameters, target/output variables, and performance (MAPE/other metrics).

Set 1 — All SKUs stock prediction (XGBoost best)

1) Why these models (and not others)?

- Tabular snapshot (no per-SKU time sequence) favors tree ensembles (RandomForest, XGBoost) for non-linear effects and mixed dtypes.
- Linear Regression serves as a baseline; its high MAPE indicates non-linearity.
- No time-series models here because the design predicts a single snapshot value using engineered features from two dates.

2) Required raw columns

- inventory_id
- hospital_id
- sku_id
- vendor_id
- current_stock
- reorder_level
- max_stock_level
- last_order_date
- expiry_date
- batch_number

3) Feature engineering performed

- Date parts from last_order_date & expiry_date: day, month, year, dayofweek
- days_to_expiry = expiry_date last_order_date (in days)
- Ratios/flags: stock_utilization, reorder_ratio, stock_above_reorder
- Label encodings: sku_id, vendor_id, batch_number, hospital_id (→ *_encoded)
- Dropped identifier/date columns for modeling

4) Hyperparameters / tuning

Field	Value
RandomForest	n_estimators=100, max_depth=10, min_samples_split=5, min_samples_leaf=2
XGBoost	n_estimators=100, max_depth=6,
	learning_rate=0.1
LinearRegression	defaults; no tuning
Search	None (fixed reasonable settings)

5) Output variable & performance

Field	Value
Target (output)	current_stock
Best model (validation)	xgboost (MAPE 6.12%)
Test MAPE	5.73
Test MAE	2.77
Test RMSE	4.09

Top features (XGBoost importance):

Feature	Importance
stock_utilization	0.5626
max_stock_level	0.3335
reorder_level	0.0263
stock_above_reorder	0.0173
reorder_ratio	0.0123
expiry_year	0.0104
sku_id_encoded	0.0078
last_order_dayofweek	0.0061
batch_number_encoded	0.006
last_order_day	0.0053

Set 2 — Clustered SKUs dataset, 16 models compared (LightGBM best)

1) Why these models?

- Same tabular framing as Set 1 but with a movement_cluster feature; gradient-boosting family (LightGBM/XGBoost/GBR/ExtraTrees) excels on mixed engineered features.
- Linear, KNN, and simple MLP underperformed due to bias/variance and sensitivity to scaling/sparsity.
- Scaling applied where appropriate (SVR, KNN, MLP, Ridge/Lasso/ElasticNet).

2) Required raw columns

- inventory_id
- hospital_id
- sku_id
- vendor_id
- current_stock
- reorder_level
- max_stock_level
- last_order_date
- expiry_date
- batch_number
- movement cluster

3) Feature engineering performed

- Date parts from last_order_date & expiry_date: day, month, year, dayofweek
- days_to_expiry = expiry_date last_order_date (in days)
- Ratios/flags: stock_utilization, reorder_ratio, stock_above_reorder
- Label encodings: sku_id, vendor_id, batch_number, hospital_id (→ *_encoded)
- Dropped identifier/date columns for modeling
- movement_cluster (label-encoded)
- Kept original IDs and dates to build an Actual_vs_Predicted sheet

4) Hyperparameters / tuning

- Fixed, sensible defaults per model; no grid search in the shared code
- Scaled features for SVR, KNN, MLP, and linear-regularized models

Validation MAPE across models

Model	Validation MAPE (%)
lightgbm	5.81
gradient_boosting	5.84
xgboost	6.00
extra_trees	6.64
bagging	7.90
random_forest	7.97
catboost	8.64
decision_tree	11.60
svr	18.66
ada_boost	29.27
ridge	50.08
linear_regression	50.08
lasso	52.90
neural_network	54.48
knn	57.17
elastic_net	57.40

5) Output variable & performance

Field	Value
Target (output)	current_stock
Best model (validation)	lightgbm (MAPE 5.81%)
Test MAPE	5.7117
Test MAE	2.7931
Test RMSE	4.0518
Test R ²	0.9748

Top features (LightGBM importance counts):

Feature	Importance	
stock_utilization	525	
max_stock_level	516	
reorder_level	127	
reorder_ratio	58	
sku_id_encoded	53	
days_to_expiry	46	
batch_number_encoded	46	
expiry_day	40	
last_order_day	30	
vendor_id_encoded	27	
expiry_month	20	
last_order_dayofweek	16	
last_order_month	0	
expiry_year	0	
last_order_year	0	

Set 3 — Time-series consumption by SKU (Prophet / ES / XGB / LGBM)

1) Why these models?

- This set leverages daily transaction history per SKU, so time-series models (Prophet, Exponential Smoothing) are appropriate for trend/seasonality.
- Tree models (XGBoost/LightGBM) on lag/rolling/time features capture non-linearities and zero-inflation with good speed and scale.
- Category-specific settings (fast/medium/slow moving) balance bias/variance without heavy grid search.

2) Required raw columns

- sku_id
- transaction_date
- quantity_consumed
- total_cost
- patient_id

3) Feature engineering performed

- Daily aggregation: daily_consumption, total_cost, patient_count
- Movement scoring & category per SKU (fast/medium/slow) via consumption rate/frequency/mean percentiles
- Time parts & cyclic encodings: month, day_of_week, day_of_year, quarter, is_weekend, is_month_end, month_sin/cos, dow_sin/cos
- ML features: lags (1,2,3,7,14,28), rolling means/std (7/14/28), trend_1d, trend_7d, consumption_binary, movement_score
- Date-based train/val/test split; horizons: 1, 7, 30, 90 days; category-specific post-processing to reduce MAPE spikes

4) Hyperparameters / tuning

- Prophet: changepoint/seasonality priors, daily/weekly/yearly seasonality toggles, mode and range vary by category
- XGBoost/LightGBM: estimators, depth, learning_rate, subsample/colsample, regularization, min_child_* / num_leaves tuned per category with early stopping
- Exponential Smoothing: trend/seasonal/damped settings vary by category
- Improved MAPE computation (sMAPE, adjusted MAPE, weighted MAPE) lowest reasonable value selected

5) Output variable & performance

- Target (output): daily_consumption per SKU
- Forecast horizons: 1, 7, 30, 90 days
- MAPE is computed per-SKU & per-horizon; the code exports CSVs (performance summary and best models)

What the accompanying sheet contains (inputs, outputs, MAPE)

A companion Excel workbook aggregates the essentials. For each set with engineered input variables used, the target (output) variable, validation MAPE per model and test metrics for the best model.

Field	Value
Set 1 — Inputs	last_order_day, last_order_month, last_order_year, last_order_dayofweek, expiry_day, expiry_month, expiry_year, days_to_expiry, stock_utilization, reorder_ratio, stock_above_reorder, sku_id_encoded, vendor_id_encoded, batch_number_encoded, hospital_id_encoded
Set 1 — Output	current_stock
Set 1 — Best MAPE (Val.)	6.12%
Set 2 — Inputs	last_order_day, last_order_month, last_order_year, last_order_dayofweek, expiry_day, expiry_month, expiry_year, days_to_expiry, stock_utilization, reorder_ratio, stock_above_reorder, sku_id_encoded, vendor_id_encoded, batch_number_encoded, hospital_id_encoded, movement_cluster_encoded
Set 2 — Output	current_stock
Set 2 — Best MAPE (Val.)	5.81%
Set 3 — Inputs	month, day_of_week, day_of_year, quarter, is_weekend, is_month_end, month_sin, month_cos, dow_sin, dow_cos, lag_1, lag_2, lag_3, lag_7, lag_14, lag_28, mean_7d, mean_14d, mean_28d, std_7d, std_14d, std_28d, trend_1d, trend_7d, movement_score, sku_category, consumption_binary
Set 3 — Output	daily_consumption
Set 3 — MAPE	Per-SKU & horizon; excel sheet