1 Project 2 : Regression Analysis for House Price

1.1 Overview

The Project is to provide business insigts about housing price in the King County to the business stakeholder

The project has utilized public data to analyze the housing price market. Based upon the findings about Housing price and the factors of house price, recommendatios are given to the stakerholder

1.2 Business Understanding

A real estate consulting and services company helps homeowners and other customers to buy and sell properties. They provide services to customers to evaluate house prices and check what factors are affecting house values.

We work on this project to provide insights to this real estate company

Business insights to investigate:

- 1. Estimate house values
- 2. What factors are affecting house price? By how much?

1.3 Data Understanding

Source of the data is the King County Housing Price dataset. The Dataset contains the house price, with other aspects of the house such as living room area, lot size, number of bedrooms, number of bathrooms etc. we will use the dataset to develop models for regression analysis

1.4 Data Preparation

1.4.1 Loading the Data

We load in the dataset. We use some data as the training data for our model, and some other data as the testing data to check model performance

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error

from sklearn.linear_model import LinearRegression

pd.set_option('max_columns', None)
import warnings
warnings.filterwarnings('ignore')
In [57]: df = pd.read_csv('data\\kc_house_data.csv')
```

In [56]: import pandas as pd

In [58]: df

Out[58]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_i
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN	NONE	Average	7 Average	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Average	7 Average	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	Average	6 Low Average	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	Very Good	7 Average	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Average	8 Good	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	NO	NONE	Average	8 Good	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	NO	NONE	Average	8 Good	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	NO	NONE	Average	7 Average	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	NaN	NONE	Average	8 Good	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	NO	NONE	Average	7 Average	

21597 rows × 21 columns

Some more information about the features of this dataset:

▼ 1.4.2 Display and Explore the Datasets

In [59]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(6),	int64(9), object	t(6)
memor	ry usage: 3.5+ N	1 Β	

In [60]: df.describe()

Out[60]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_above	yr_built)
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	21597.000000	21597.000000	21597.000000	1
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	1.494096	1788.596842	1970.999676	
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	0.539683	827.759761	29.375234	
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.000000	370.000000	1900.000000	
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	1.000000	1190.000000	1951.000000	
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	1560.000000	1975.000000	
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	2.000000	2210.000000	1997.000000	
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	9410.000000	2015.000000	
4										•

Average house Price \$540,000

1.4.3 Check Missing Data

```
In [61]: | df.isnull().sum()
Out[61]: id
                              0
         date
                              0
         price
                              0
         bedrooms
                              0
         bathrooms
         sqft_living
                              0
         sqft_lot
                              0
         floors
                              0
         waterfront
                          2376
         view
                            63
         condition
                              0
         grade
         sqft_above
                              0
         sqft_basement
                              0
         yr_built
                              0
         yr_renovated
                          3842
         zipcode
                              0
         lat
                              0
         long
                              0
         sqft_living15
                              0
         sqft_lot15
         dtype: int64
```

1.4.4 Check House Price Distribution

House Price distribution shows some outlier values

▼ House Price Distribution, Box Plot

```
In [63]: sns.boxplot(x='price', data=df ).set( xlabel='House Price, in million')
```

Out[63]: [Text(0.5, 0, 'House Price, in million')]

Check sqft_living variable distribution

```
In [64]: fig, ax = plt.subplots(figsize=(8, 5))
    ax = sns.distplot(df['sqft_living'])
    ax.set_title("Distribution of sqft_living");
```


Scatter Plot of condition

```
In [65]: fig, ax = plt.subplots(figsize=(10, 5))
    sns.scatterplot(data=df, x='condition', y='price')
    ax.set_title("Scatter Plot of condition");
```


▼ 1.4.5 Other Categorical Variables

```
In [66]: import matplotlib.pyplot as plt
         %matplotlib inline
         # Create bar plots
         fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(12,8), sharey=True)
         categoricals = ['floors', 'waterfront', 'grade']
         for col, ax in zip(categoricals, axes.flatten()):
             (df.groupby(col)
                                           # group values together by column of interest
                  .mean()['price'] # take the mean of the saleprice for each group
                  .sort_values()
                                             # sort the groups in ascending order
                  .plot
                  .bar(ax=ax))
                                            # create a bar graph on the ax
             ax.set_title(col)
                                            # Make the title the name of the column
         fig.tight_layout()
```


▼ 1.4.6 Relevant Features

Our Team has identified the most relevant features for house price

```
In [67]: | features = df.columns
          features
Out[67]: Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft living',
                 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',
                 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                 'lat', 'long', 'sqft living15', 'sqft lot15'],
                dtvpe='object')
In [68]: |columns drop = ['id', 'date', 'view', 'sqft above', 'sqft basement', 'yr renovated',
                          'zipcode', 'lat', 'long', 'sqft living15', 'sqft lot15']
In [69]: df.drop(columns=columns drop, inplace=True)
          df.head()
Out[69]:
                price bedrooms bathrooms sqft_living sqft_lot floors waterfront condition
                                                                                           grade yr_built
          0 221900.0
                             3
                                                             1.0
                                     1.00
                                              1180
                                                      5650
                                                                      NaN
                                                                             Average
                                                                                        7 Average
                                                                                                   1955
```

2.0

1.0

1.0

1.0

NO

NO

NO

Average

Average

NO Very Good

7 Average

7 Average

8 Good

Average 6 Low Average

1951

1933

1965

1987

1.4.7 Correlation Heatmap

3

2

3

2.25

1.00

3.00

2.00

2570

770

1960

1680

7242

10000

5000

8080

1 538000.0

2 180000.0

3 604000.0

4 510000.0

```
In [70]: # compute the correlation matrix
         heatmap data = df
         corr = heatmap_data.corr()
         fig, ax = plt.subplots(figsize=(5, 8))
         # Plot a heatmap of the correlation matrix, with both
         # numbers and colors indicating the correlations
         sns.heatmap(
             data=corr,
             # The mask means we only show half the values,
             mask=np.triu(np.ones like(corr, dtype=bool)),
             # Specifies that we should use the existing axes
             ax=ax,
             # Specifies that we want labels, not just colors
             annot=True,
             # Customizes colorbar appearance
             cbar kws={"label": "Correlation", "orientation": "horizontal", "pad": .2, "extend": "both"}
         ax.set title("Heatmap of Correlation Between Variables")
```

Out[70]: Text(0.5, 1.0, 'Heatmap of Correlation Between Variables')

Heatmap of Correlation Between Variables

From the Heatmap, the most correlated featrue with price is sqft_living

1.4.8 Data Preprocessing

Missing Values - Drop

```
In [72]: df.shape
```

Out[72]: (21597, 10)

```
In [73]: df.dropna(inplace=True)
In [74]: df.shape
Out[74]: (19221, 10)
```

Remove Outliers

```
In [75]: df=df[df['price']<1750000]
df.head()</pre>
```

Out[75]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	condition	grade	yr_built
1	538000.0	3	2.25	2570	7242	2.0	NO	Average	7 Average	1951
2	180000.0	2	1.00	770	10000	1.0	NO	Average	6 Low Average	1933
3	604000.0	4	3.00	1960	5000	1.0	NO	Very Good	7 Average	1965
4	510000.0	3	2.00	1680	8080	1.0	NO	Average	8 Good	1987
5	1230000.0	4	4.50	5420	101930	1.0	NO	Average	11 Excellent	2001

▼ Categorical Variables Encoding

▼ Encode 'condition' Variable

```
In [76]: LE_condition = LabelEncoder()
In [77]: condition_encoded = LE_condition.fit_transform(df['condition'])
In [78]: df['condition_encoded'] = condition_encoded
```

▼ Encode 'grade' Variable

Extract the numerical values

```
In [79]: def grade_encode(string):
    return int(string[0])

In [80]: df['grade_encoded']= df['grade'].apply(grade_encode)
```

▼ Encode 'waterfront' Variable

```
In [81]: LE_waterfront = LabelEncoder()
df['waterfront_encoded'] = LE_waterfront.fit_transform(df['waterfront'])
```

▼ Encode Year_built Variable

Assign each decade to a label. i.e 1950-1959 : label 5 1980-1989 : label 8

```
In [82]: def year_encode(year):
    if year<1930:
        return 0
    elif year>=2000 and year<2011:
        return 10
    elif year>=2011:
        return 11
    else:
        return int(str(year)[2])
```

```
In [83]: df['yr_built_encoded']=df['yr_built'].apply(year_encode)
```

In [84]:	uT.	head(5)											
Out[84]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	condition	grade	yr_built	condition_encode	ed grade_enco
	1	538000.0	3	2.25	2570	7242	2.0	NO	Average	7 Average	1951		0
	2	180000.0	2	1.00	770	10000	1.0	NO	Average	6 Low Average	1933		0
	3	604000.0	4	3.00	1960	5000	1.0	NO	Very Good	7 Average	1965		4
	4	510000.0	3	2.00	1680	8080	1.0	NO	Average	8 Good	1987		0
	5	1230000.0	4	4.50	5420	101930	1.0	NO	Average	11 Excellent	2001		0
	4												>
Tm [OF].	1	umne dnar	[lunto	nfnont!	lanada!!!			البالثينا من	1				
In [85]: In [86]:	df.		-	erfront', umns_drop,	•		on', '	yr_built']				
	df.	drop(colu	umns= colu	umns_drop,	inplace=T	rue)							
In [86]:	df.	head()	umns= colu	umns_drop,	inplace=T	rue) sqft_lot	floors		encoded (grade_enco		erfront_encoded	/r_built_encode
In [86]:	df.	head() price 538000.0	bedrooms	bathrooms 2.25	inplace=T sqft_living 2570	sqft_lot 7242	floors		encoded (grade_enco	7	0	/r_built_encode
In [86]:	df. df. 1 2	drop(column) head() price 538000.0 180000.0	bedrooms 3 2	bathrooms 2.25 1.00	sqft_living 2570 770	sqft_lot 7242 10000	floors 2.0 1.0		encoded (grade_enco	7	0	/r_built_encode
In [86]:	df.	head() price 538000.0	bedrooms	bathrooms 2.25	inplace=T sqft_living 2570	sqft_lot 7242	floors		encoded (grade_enco	7	0	/r_built_encode
In [86]:	df. df. 1 2 3	drop(column) head() price 538000.0 180000.0 604000.0	bedrooms 3 2 4	bathrooms 2.25 1.00 3.00	sqft_living 2570 770 1960	sqft_lot 7242 10000 5000	floors 2.0 1.0 1.0		encoded 9	grade_enco	7 6 7	0 0 0	/r_built_encode
In [86]:	df. df. 1 2 3 4	head() price 538000.0 180000.0 604000.0 510000.0	bedrooms 3 2 4 3	bathrooms 2.25 1.00 3.00 2.00	sqft_living 2570 770 1960 1680	rue) sqft_lot 7242 10000 5000 8080	2.0 1.0 1.0		encoded 9 0 0 4 0	grade_enco	7 6 7 8	0 0 0 0	/r_built_encode
In [86]: Out[86]:	df. df. 1 2 3 4 5	head() price 538000.0 180000.0 604000.0 510000.0	bedrooms 3 2 4 3	bathrooms 2.25 1.00 3.00 2.00	sqft_living 2570 770 1960 1680	rue) sqft_lot 7242 10000 5000 8080	2.0 1.0 1.0		encoded 9 0 0 4 0	grade_enco	7 6 7 8	0 0 0 0	/r_built_encode

1.4.9 Training Data and Testing Data

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition_encoded	grade_encoded	waterfront_encoded	yr
count	18926.000000	18926.000000	18926.000000	1.892600e+04	18926.000000	18926.000000	18926.000000	18926.000000	
mean	3.360404	2.092730	2040.603825	1.490190e+04	1.489142	0.850893	7.015059	0.004703	
std	0.920992	0.739256	846.167014	4.037491e+04	0.539118	1.263683	1.804013	0.068415	
min	1.000000	0.500000	370.000000	5.200000e+02	1.000000	0.000000	1.000000	0.000000	
25%	3.000000	1.500000	1420.000000	5.014250e+03	1.000000	0.000000	7.000000	0.000000	
50%	3.000000	2.250000	1900.000000	7.560000e+03	1.500000	0.000000	7.000000	0.000000	
75%	4.000000	2.500000	2510.000000	1.050400e+04	2.000000	2.000000	8.000000	0.000000	
max	33.000000	7.500000	7620.000000	1.651359e+06	3.500000	4.000000	9.000000	1.000000	
4									•

Type *Markdown* and LaTeX: α^2

```
In [91]: ### std of the encoded Variables

lst_std=[]
for column in X.describe().columns:
    std=X.describe()[column]['std']
    lst_std.append(std)
```

1.4.10 Dataset Train Test Split

```
In [92]: X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=40)
```

1.4.11 Feature Scaling

```
In [93]: scaler= StandardScaler()
In [94]: X train scaled = scaler.fit transform(X train)
In [95]: X train scaled
Out[95]: array([[-1.45864228, -1.47266711, -1.27280381, ..., -0.56548928,
                 -0.06569733, 0.48244049],
                [-0.38650886, 0.55685248, 1.05628415, ..., 1.10069287,
                 -0.06569733, 1.10780672],
                [0.68562457, 2.2481188, -0.06688009, ..., 1.10069287,
                 -0.06569733, 1.10780672],
                [0.68562457, 0.21859921, -0.19693069, ..., -0.01009523,
                 -0.06569733, 1.10780672],
                [-0.38650886, -1.47266711, -0.68166473, ..., -0.01009523,
                 -0.06569733, -0.45560887],
                [-1.45864228, -0.79616058, -1.22551268, ..., -0.01009523,
                 -0.06569733, -0.76829198]])
In [96]: X test scaled = scaler.transform(X test)
```

1.5 Modeling

1.5.1 Building a Baseline Model

Now, we'll build a linear regression model using just the most correlated feature, which will serve as our baseline model:

```
In [97]: from sklearn.linear_model import LinearRegression
    baseline_model = LinearRegression()
```

Then we evaluate the model using <code>cross_validate</code>, we perform 3 separate train-test splits within our <code>X_train</code> and <code>y_train</code>, then we find both the train and the test scores for each.

Train score: 0.44901908790995093 Validation score: 0.4485073282167599

The coefficient of determination scores on both the training set and validation sets for the baseline model are about 0.44

1.5.2 2. Build a Model with Relevant Features

Build and Evaluate second Model , with the trasfromed featrues

```
In [99]: | second model = LinearRegression()
          second model scores = cross validate(
              estimator=second model,
              X=X train scaled,
              y=y train,
              return train score=True,
              cv=splitter
In [100]: print("Current second Model")
          print("Train score:
                                   ", second model scores["train score"].mean())
          print("Validation score:", second model scores["test score"].mean())
          print()
          print("Baseline Model")
          print("Train score:
                                   ", baseline_scores["train_score"].mean())
          print("Validation score:", baseline scores["test score"].mean())
          Current second Model
          Train score:
                             0.5322276193151804
          Validation score: 0.5287335014527756
          Baseline Model
          Train score:
                             0.44901908790995093
          Validation score: 0.4485073282167599
```

Our second model got slightly better scores on both the training data and the validation data. It seems that adding additional features will help the model to capture the relationships between the independent variables and the target

▼ 1.5.3 Build and Evaluate a Final Predictive Model

We use the second model features to train our final predictive Model. We will then evaluate the model performance on the test set

```
In [101]: final_model = LinearRegression()
    final_model.fit(X_train_scaled, y_train)

# Score the model on X_test_final and y_test
score=final_model.score(X_test_scaled, y_test)
print('Coefficient of Determination score', score)
```

Coefficient of Determination score 0.5285701284093244

▼ 1.6 Model Prediction

```
In [102]: predictions=final_model.predict(X_test_scaled)
In [103]: d={'Price':y_test, 'Predicted Price':predictions}
data_frame=pd.DataFrame(data=d)
```

In [104]: data_frame

Out[104]:

	Price	Predicted Price
20422	530000.0	706963.963583
5784	415000.0	990927.482799
11293	1050000.0	739515.499954
9982	655000.0	650575.759705
14776	670000.0	411108.828087
12342	450000.0	402462.437803
15264	765000.0	691685.389436
18820	355000.0	308993.187359
17043	530000.0	462702.700391
3508	749950.0	737145.600616

4732 rows × 2 columns

1.7 Model Evaluation and Interpretation

1.7.1 Metrics RMSE

The previous score above is an r-squared score. Let's compute the RMSE as well, since this would be more applicable to the business audience.

```
In [105]: from sklearn.metrics import mean_squared_error
    print('Estimation Error')
    mean_squared_error(y_test,predictions, squared=False)
```

Estimation Error

Out[105]: 183580.36088270726

This means that for an average House Price, this algorithm prediction will be off by about 183580. Given that the averge house price is \$540296, this prediction is not the best

1.7.2 Interpret the Final Model

Below, we display the coefficients and intercept for the final model with sacled features:

```
In [106]: print('Variable Coeffeicinets, scaling features\n')
    print(pd.Series(final_model.coef_, index=X_train.columns, name="Coefficients"))
    print()
    print("Intercept:", final_model.intercept_)
```

Variable Coeffeicinets, scaling features

bedrooms -34418.593619 bathrooms 35303.901476 sqft_living 182907.321046 sqft lot -5892.706855 floors 35577.751546 condition_encoded 12649.665516 -19775.275562 grade encoded waterfront encoded 26478.812761 yr built encoded -70036.884498 Name: Coefficients, dtype: float64

Intercept: 511735.0945469917

Any features and variables will have the effects of chaning the housing price. Since the features are scaled, it shows that if the sqft_living, the living room areas, increases by one stardard deviation, 915 sqft, the house price will go up by 182907.

Since the Features are scaled in the data preparation process. The coefficients are also scaled. we could perform the convertion to check unit change

Conversion and Check the effect of unit change of feature on the target variable

Variable Coeffeicinets

```
bedrooms
                     -37371.213679
bathrooms
                      47755.971065
sqft living
                        216.159834
sqft lot
                         -0.145950
                      65992.506014
floors
condition_encoded
                     10010.159340
grade_encoded
                     -10961.825614
waterfront encoded
                     387030.328313
yr_built_encoded
                     -21906.701728
Name: Coefficients, dtype: float64
```

```
In [108]: s=(pd.Series(coef_lst, index=X_train.columns, name="Coefficients"))
```

```
In [109]: fig, ax = plt.subplots()
    ax=s.sort_values(ascending=False).plot.bar()
    ax.set_title("Feature Coefficients");
    ax.set_xlabel('Features')
    ax.set_ylabel('Coefficients')
```

Out[109]: Text(0, 0.5, 'Coefficients')

Model with No Scaling Features

```
In [110]: final_model_no_scale = LinearRegression()
    final_model_no_scale.fit(X_train, y_train)

print('final model no scaling feature\n')
    print(pd.Series(final_model_no_scale.coef_, index=X_train.columns, name="Coefficients"))
    print()
    print("Intercept:", final_model_no_scale.intercept_)
```

final model no scaling feature

bedrooms -36901.324650 bathrooms 47766.639735 216.247329 sqft living -0.140204 sqft lot floors 66225.946635 condition encoded 10004.068172 grade encoded -10983.070375 waterfront encoded 404782.019225 yr built encoded -21899.351372 Name: Coefficients, dtype: float64

Intercept: 207385.94403028378

■ We can see from the coefficients that the features are related to the house price, such as sqft_living, floors, waterfront, condition etc. These features has the positive effects on house price, and The waterfront variable has the largest positive effect on price

If sqrt living the area of the living room increases, the house price would increases as well.

If there is waterfront, the house price will increase

if the condition of house improves, its price will increase as well

Therefore, for modeling with no scaled features, base price 207385. For a unit chage of sqft in living room, the house price will change by \$216

1.7.3 Recommendations

The Business Stakeholders can focus on one or more areas to improve the housing price. They could focus on condition. House

condition is positively related to the house price. With other factors the same, improving the house condition will increase the house value. Increasing the house condition by one level may increase the house price by 10010

The business stakeholders can also focus on living room area as well. It shows a positive relationship between living room area and the house price

Limitations

The final model shows a coefficient of determination socre of 0.5 on the unseen dataset. It is not the greatest score. And therefore, the model still needs a lot of improvement to capture all the relationshps between variables.

The model also shows a large RMSE error of 183580. Given that the average house price is at 540296, the prediction of the house price is not the best with this large error. Therefore, it also shows that the model needs improvement.

The coefficients may show the effects. But the effect quantity needs to be investigated more based upon the model performance

1.7.4 Next Steps for Modeling

- 1. Use advanced non-linear models
- 2. Improve model performance or develop a better model. With a good model, Check if bringing in more data would help

	I .
Tm [].	I .
TH	I .
L 3 1	I .