Data Structures in Java - Homework 7

Problem 1

- 5.1 Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function $h(x) = x \mod 10$, show the resulting:
 - a. Separate chaining hash table.
 - b. Hash table using linear probing.
 - c. Hash table using quadratic probing.

Answer:

(a) Index	(b) Index		(c) Index		
0		0	9679	0	9679
1	4371	1	4371	1	4371
2		2	1989	2	
3	1323 → 6173	3	1323	3	1323
4	4344	4	6173	4	6173
5		5	4344	5	4344
6		6		6	
7		7		7	
8		8		8	1989
٩	4199 - 9679 - 1989	વ	4199	9	4 199

Problem 2

5.2 Show the result of rehashing the hash tables in Exercise 5.1. Use Table size of 23

Answer:

Same for all (a), (b) and (c):

Index									
0		8		16					
1	4371	વ	6173	(7					
2		10		18					
3		11	1989	19	9679				
4		12	1323	20	4344				
5		13	4 199	21					
6		14		22					
7		(5							

- 6.2 a. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and 2, one at a time, into an initially empty binary heap.
 - b. Show the result of using the linear-time algorithm to build a binary heap using the same input.

a) Answer:

b) Answer:

6.16 Suppose that binary heaps are represented using explicit links. Give a simple algorithm to find the tree node that is at implicit position i.

Answer:

Breadth-first traversal method and incrementing counter.

```
public BinaryNode get(int i)
    if (root == null || i < 1) return null;</pre>
    ArrayList<BinaryNode> queue = new ArrayList<BinaryNode>();
    queue.add(root); // access to root through class
    int currPos = 0;
    while (!queue.isEmpty()) {
        currPos++;
        BinaryNode currNode = queue.remove(0);
        if (currPos == i) {
            return currNode;
        }
        if (currNode.left != null) {
            queue.add(currNode.left);
        }
        if (currNode.right != null) {
            queue.add(currNode.right);
        }
    }
    return null;
}
```

- 6.18 A min-max heap is a data structure that supports both deleteMin and deleteMax in $O(\log N)$ per operation. The structure is identical to a binary heap, but the heap-order property is that for any node, X, at even depth, the element stored at X is smaller than the parent but larger than the grandparent (where this makes sense), and for any node X at odd depth, the element stored at X is larger than the parent but smaller than the grandparent. See Figure 6.57.
 - a. How do we find the minimum and maximum elements?
 - *b. Give an algorithm to insert a new node into the min-max heap.

a) Answer:

Minimum is the root. Maximum is the larger child of the root.

b) Answer:

Assuming heap is implemented in an array with extra space and the variable size is accessible through the class:

```
public void insert(Comparable item) {
    heap[size+1] = item; // assuming there is extra space
    size++;
    int idx = size - 1;
    if (idx == 1) return;
    int parentIdx = idx/2;
    int depth = (int) (Math.log(idx) / Math.log(2));
    if (isEvenLevel(idx)) {
        if (item.compareTo(heap[parentIdx]) > 0)
        { // if item (even) is larger than parent (odd)
            swap(idx, parentIdx); // swap them
            percolateUpEven(parentIdx); // percolate the item up through odd levels
        } else { // otherwise
            percolateUpOdd(idx); // percolate up through even levels
    } else { // if item is at odd level
        if (item.compareTo(heap[parentIdx]) < 0)</pre>
        { // if item (odd) is smaller than parent
            swap(idx, parentIdx); // swap them
            percolateUpEven(parentIdx); // percolate item up through even levels
        } else { // otherwise
            percolateUpOdd(idx); // percolate up through odd levels
    }
}
```

7.1 Sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using insertion sort.

```
Original: [3, 1, 4, 1, 5, 9, 2, 6, 5]
Swap 1: [1, 3 | 4, 1, 5, 9, 2, 6, 5]
Swap 2: [1, 3, 4 | 1, 5, 9, 2, 6, 5]
Swap 3: [1, 1, 3, 4 | 5, 9, 2, 6, 5]
Swap 4: [1, 1, 3, 4, 5 | 9, 2, 6, 5]
Swap 5: [1, 1, 3, 4, 5, 9 | 2, 6, 5]
Swap 6: [1, 1, 2, 3, 4, 5, 9 | 6, 5]
Swap 7: [1, 1, 2, 3, 4, 5, 6, 9 | 5]
Swap 8: [1, 1, 2, 3, 4, 5, 5, 6, 9]
```