Открытая студенческая олимпиада по математике

Казахстанского филиала МГУ $10 \ de\kappa a \delta ps \ 2011$

1. Ответ: 144. Так как минимальный элемент множества равен мощности множества, то указанное количество равно:

$$\sum_{k=0}^{5} C_{11-k}^{k} = 144.$$

2. Ответ: $(2; 1+\sqrt{2}]$. Пусть α — один из острых углов треугольника. Тогда:

$$\frac{h}{r} = \sin \alpha + \cos \alpha + 1 = \sqrt{2} \sin \left(\alpha + \frac{\pi}{4}\right) + 1.$$

3. (Абдикалыков А.К.) Ответ: $x_{2012} = \frac{1+3^{2012}}{2}, y_{2012} = \frac{1-3^{2012}}{2\alpha}$.

Заметим, что из условия следует $x_{n+1}+\alpha y_{n+1}=x_n+\alpha y_n$. Таким образом, $x_n+\alpha y_n=x_0+\alpha y_0=1$ для всех n. Исключив y_n из первого рекуррентного соотношения, получим $x_{n+1}=3x_n-1$. Решив полученное с помощью замены $t_n=x_n-\frac{1}{2}$, найдём

$$\begin{cases} x_{2012} = \frac{1+3^{2012}}{2}, \\ y_{2012} = \frac{1-x_{2012}}{\alpha} = \frac{1-3^{2012}}{2\alpha}. \end{cases}$$

- 4. Ответ: нет. Достаточно рассмотреть подпоследовательность $\{x_{60k}\}$.
- 5. Ответ: $\frac{\pi}{2}$. Обозначим искомый интеграл как I. Сделаем подстановку $x = \frac{\pi}{2} t$:

$$I = \int_{0}^{\pi/2} (\sin^{2}(\cos^{2}t) + \cos^{2}(\sin^{2}t)) dx =$$

$$= \int_{0}^{\pi/2} (1 - \cos^{2}(\cos^{2}t) + 1 - \sin^{2}(\sin^{2}t)) dx = \pi - I.$$

6. Ответ: 1.

$$\frac{n+2}{n! + (n+1)! + (n+2)!} =$$

$$= \frac{n+2}{n!(1+n+1+(n+1)(n+2))} =$$

$$= \frac{1}{n!(n+2)} = \frac{n+1}{(n+2)!} = \frac{1}{(n+1)!} - \frac{1}{(n+2)!}.$$

7. Ответ: x+C и -x+C, где C — постоянная. Заметим, что |f(1)-f(0)|=1 (из условия). Для $t\in (0;1)$ имеем:

$$1 = |f(1) - f(0)| \le |f(1) - f(t)| + |f(t) - f(0)| \le$$

$$\le (1 - t) + t = 1.$$

Следовательно, либо f(t)=t+f(1)-1 для всех t, либо f(t)=-t+f(1)+1 для всех t (в зависимости от знака f(1)-f(0)).

8. (Абдикалыков А.К.) Нетрудно доказать, что уравнение $\operatorname{tg} x = x$ имеет ровно один корень на любом из отрезков вида $\left[\pi l - \frac{\pi}{2}, \pi l + \frac{\pi}{2}\right], \ l \in \mathbb{Z}$. Таким образом, $x_n \in \left[\pi n - \frac{\pi}{2}, \pi n + \frac{\pi}{2}\right]$ и поэтому при $k \to \infty$

$$|\cos x_{n_k}| = \frac{1}{\sqrt{1 + \lg^2 x_{n_k}}} = \frac{1}{\sqrt{1 + x_{n_k}^2}} =$$

$$= O^* \left(\frac{1}{x_{n_k}}\right) = O^* \left(\frac{1}{n_k}\right),$$

откуда и следует, что два данных ряда сходятся или расходятся одновременно.

- 9. (Абдикалыков А.К.) Ответ: $(n-2) \cdot 2^{n-1}$. Переставим строки матрицы A так, чтобы все минус единицы стали на главную диагональ; при этом модуль определителя не изменится. Определитель изменённой матрицы находится с помощью элементарных преобразований и равен $(n-2) \cdot (-2)^{n-1}$.
- 10. Пусть $a_1, ..., a_n$ все обратимые элементы S. Тогда $\{a_1, a_2, ..., a_n\} = \{a_i a_1, a_i a_2, ..., a_i a_n\}$ для всех $i \in \{1, ..., n\}$. Следовательно, $a_i S = S$ для всех i для всех $i \in \{1, ..., n\}$. Отсюда $S^2 = nS$. Если $1 \neq -1$, то все обратимые элементы разбиваются на пары противоположных, т.е. S = 0. Если 1 = -1, то n = 0 или 1.