

Readings and deadlines

- Lab 2 assignment due at the start of class
- Readings for this lab:
 - Chapter 6- Linear Models
- Fall break next week

Two ways to write a linear model:

$$y = mx + b$$

$$\gamma = \beta_1 x + \beta_0$$

Response (dependent) variable

$$y = mx + b$$

$$y = \beta_1 x + \beta_0$$

Predictor (independent) variable

Slope
$$y = mx + b$$

$$\gamma = \beta_1 x + \beta_0$$
Y-intercept

What's the advantage of using the beta structure?

One predictor variable: $\gamma = \beta_0 + \beta_1 x$

Two predictor variables: $\gamma = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

How do we use regression to solve the exponential model?

$$N_t = N_0 + e^{rt}$$

rewritten as

$$\ln(N_t) = \ln(N_0) + rt$$

$$y = mx + b$$

$$\gamma = \beta_1 x + \beta_0$$

$$\ln(N_t) = rt + \ln(N_0)$$

Slope
$$y = mx + b$$

$$\gamma = \beta_1 x + \beta_0$$

$$\ln(N_t) = rt + \ln(N_0)$$
Y-intercept

How do we estimate the slope of regression lines?

Observed data points

Lab 3 - Analysis of Count Data to Derive Trend Estimates

Erik Blomberg (edited by Matt Mensinger & Liam Berigan)

07/12/2023

Contents

1	Lab	Overview	
	1.1	Learning objectives	
	1.2	A regression refresher	
2	Get	ting Started	
3	Lab Part 1 - Long-term growth of an introduced small mouth bass population.		
	3.1	Model system - Everyone's favorite bass	
	3.2	Part 1 instructions	
4	4 Lab Part 2 - Evaluating population trends in the presence of high annua variation		1
	4.1	Model system - the coolest bird in the west	1
	4.2	Part 2 instructions	1
	4.3	Part 3 exercise - try it in R \hdots	1