卷一甲部

題號	答案	題號	答案
1.	A (59)	26.	D (33)
2.	B (39)	27.	B (48)
3.	C (45)	28.	A (77)
4.	A (78)	29.	*
5.	D (18)	30.	A (33)
6.	D (57)	31.	D (53)
7.	C (80)	32.	A (77)
8.	C (48)	33.	C (66)
9.	A (25)		
10.	C (51)		
11.	A (49)		
12.	A (54)		
13.	B (45)		
14.	B (58)		
15.	B (79)		
16.	C (74)		
17.	B (48)		
18.	D (49)		
19.	D (62)		
20.	D (59)		
21.	A (45)		
22.	C (41)		
23.	C (71)		
24.	D (30)		
25.	B (75)		

*本試題被刪去。

註: 括號內數字為答對百分率。

關於「刪除試題」的説明

每年考試,香港考試及評核局如果認為多項選擇題試卷中某些試題欠理想,通常都會把這類試題酌量刪去。根據過往經驗,上述決定基於不同的理由;最常見的是由於試題的甄別力弱,未能把不同程度的考生分辨出來,換言之,大多數考生答題都只憑臆度。保留這類試題,恐會降低測試的效能,所以不得不把它刪去。這類試題雖經決定在考試中刪去不用,但仍刊登在試題專輯內,並予以標明,而當年的考試報告或會提出討論。

卷一乙部

		答案	分數	說明
1.	(a)	- 把球放進水槽內數分鐘 - 把球放進 / 移送到聚苯乙烯杯內 (的水中) - 以溫度計量度水的最後/最高溫度 T _f	1A 1A 1A	
		$0.80 \times c_b \times (80 - T_f) = 0.50 \times 4200 \times (T_f - T_0)$ $c_b = 2625 \times \frac{T_f - T_0}{80 - T_f} \text{ (J kg}^{-1} {}^{\circ}\text{C}^{-1}\text{)}$	1A	
		預防措施: - 用毛巾把球快速抹乾才放進杯內 - 確保球完全浸沒於水中 - 把水徹底攪勻	1A 1A 1A	
	(b)	移送/抹乾球時有熱能/熱散失 或 溫度計、攪棒或杯吸收了熱能/熱 或 當量度這最終溫度時,球的溫度高於T _f (即 T _f 還未 達至其最大值) 因而杯內水的溫度上升低於其應達到的值。	1A 1A 1A 1A	
			2	

答案	分數	說明
pV = nRT (1.0×10 ⁵)(6.0×10 ⁻⁵) = n (8.31)(273+25) $n = 2.422891 \times 10^{-3}$ 摩爾 $\approx 2.42 \times 10^{-3}$ 摩爾	1M 1M	
分子數目 = $n N_A$ = $n \times 6.02 \times 10^{23}$ = $1.458581 \times 10^{21} \approx 1.46 \times 10^{21}$	1A	
另解: $pV = nRT = \left(\frac{N}{N_{A}}\right)RT \Rightarrow N = \left(\frac{pV}{RT}\right)N_{A}$	1M	
$N = \frac{(1.0 \times 10^5)(6.0 \times 10^{-5})}{(8.31)(273 + 25)} \times (6.02 \times 10^{23})$ $= 1.458581 \times 10^{21} \approx 1.46 \times 10^{21}$	1M 1A	
(i) - 應緩慢推入或拉出活塞 - 移動活塞後避免立即量度數據 - (當推入或拉出活塞)不應手握針筒太長時 間。	3 1A 1A 1A	
(ii) V_0 - 困於膠喉內的氣體體積 / 連接壓強感應器及針筒的空間。	1 1A	
(iii)	1 1A 1A	曲線 <u>不</u> 給分
	$pV = nRT$ $(1.0 \times 10^5)(6.0 \times 10^{-5}) = n (8.31)(273 + 25)$ $n = 2.422891 \times 10^{-3}$ 摩爾 $\approx 2.42 \times 10^{-3}$ 摩爾 $\rightarrow 2.422891 \times 10^{-3}$ 摩爾 $\rightarrow 2.42 \times 10^{-3}$ 摩爾 $\rightarrow 2.422891 \times 10^{-3}$ $\rightarrow 2.422891 $	$pV = nRT$ $(1.0 \times 10^5)(6.0 \times 10^{-5}) = n (8.31)(273 + 25)$ $n = 2.422891 \times 10^{-3}$ 摩爾 $\approx 2.42 \times 10^{-3}$ 摩爾 $\rightarrow 2.422891 \times 10^{-3}$ 摩爾 $\approx 2.42 \times 10^{-3}$ 摩爾 $\rightarrow 2.422891 \times 10^{-21}$ 1A $\rightarrow 2.422891 \times 10^{-2}$ 1A $\rightarrow 2.422891 \times 10^{-2}$ 1A $\rightarrow 2.422891 \times 10^{-3}$ 1A $\rightarrow 2$

		答案	分數	說明
3.	(a)	$a = \frac{6-0}{2-0}$ = 3 m s ⁻² (戶下)	1M 1A	
	(b)	A: 395 N B: 569 N C: 685 N	1A 2	
		階段 B ,秤的讀數 = 重量 (牛頓運動第一定律) $mg = m \times 9.81 \text{ m s}^{-2} = 569 \text{ N}$ $m = 58.0 \text{ kg}$	1M 1A	如 $g = 10 \text{ m s}^{-2}$, $m = 56.9 \text{ kg}$
		<u>或</u> 階段 A,根據牛頓運動第二定律 (569-395) N = ma = m(3 m s ⁻²) m = 58.0 kg	1M 1A	
			3	
	(c)	(i) 在階段 C ,根據牛頓運動第二定律, F = ma (569 - 685) N = (58.0 kg) a $a = -2 \text{ m s}^{-2}$	1M	如 $g = 10 \text{ m s}^{-2}$, $m = 56.9 \text{ kg}$,
4		因此 $a = \frac{0-6}{T-12} = -2 \text{ m s}^{-2}$ T = 15 s	1M	$a = -2.04 \text{ m s}^{-2}$
		(ii) 高度 ≈ 升降機的位移 = 線圖下的面積 = $\frac{(12-2)+15}{2} \times 6$	1M	
		= 75 m	1A 2	

	答案	分數	說明
(a)	根據牛頓運動第二定律, (淨)力作用於水使其動量改變。 (或 力的量值等於水的動量改變率)。	1A	
	根據牛頓運動第三定律, (背包對)所噴出的水施力向下,同時水施加反作用力 (相等但向上/相反方向)於背包/人。	1A 1A	
<i>a</i> >		3	
(b)	反作用力 /上托力 背包	1A	
	里里(人和貞也)▼	1	
(c)	(i) $F = \frac{\Delta p}{\Delta t} = \frac{\Delta m}{\Delta t} \times (\vec{v} - \vec{u})$	1M	
	$\frac{\Delta m}{\Delta t} \times (10 - (-10)) \text{ m s}^{-1} = 1000 \text{ N}$		t e e e e e e e e e e e e e e e e e e e
	$\frac{\Delta m}{\Delta t} = 50 \text{ (kg s}^{-1}\text{)}$	1A	接受以 kg 為單位
	(ii) $(\frac{\Delta m}{\Delta t})gh + \frac{1}{2}(\frac{\Delta m}{\Delta t}) \times v^2$	1M	接受以 m 作為 ($\frac{\Delta m}{\Delta t}$)
	= $(50 \text{ kg s}^{-1})(9.81 \text{ m s}^{-2})(7.5 \text{ m}) + \frac{1}{2}(50 \text{ kg s}^{-1}) \times (10 \text{ m s}^{-1})^2$	1M	
	= 6178.75 W 或 6.17875 kW	1A	如 $g = 10 \text{ m s}^{-2} \cdot 3750 \text{ W} + 2500 \text{ W}$ = 6250 W
(d)	相同 因所需為相同的上托力 / (水)噴射速率。	1A 1A	
•	(b)	(a) 根據牛頓運動第二定律, (淨)力作用於水使其動量改變。 (或 力的量值等於水的動量改變率)。 根據牛頓運動第三定律, (背包對)所噴出的水施力向下,同時水施加反作用力 (相等但向上/相反方向)於背包/人。 (b)	(a) 根據牛頓運動第二定律, ((淨)力作用於水使其動量改變。 (或)力的量值等於水的動量改變率)。 根據牛頓運動第三定律, (背包對)所噴出的水施力向下,同時水施加反作用力 (相等但向上/相反方向)於背包/人。 (b) 反作用力/上托力 背包 1A 1A 1A 1A 1A (ii) (益m/\Delta t) (10 - (-10)) m s ⁻¹ = 1000 N \ \text{\Delta m} \text{\Delta t} = 50 (kg s ⁻¹) (iii) (\text{\Delta m} \text{\Delta t} \text{\Delta m} \text{\Delta t} \text{\Delta m} \text{\Delta t} = 6178.75 W 或 6.17875 kW

		答案	分數	說明
(a)	i) (i)	$\Delta y = \frac{\lambda D}{a}$		
		$\frac{(4.0-0)\times10^{-2}}{10} = \frac{\lambda(1.8)}{0.3\times10^{-3}}$	1M+1M	
		$\lambda = 6.666667 \times 10^{-7} \text{ m}$ ≈ 6.67 × 10 ⁻⁷ m 或 667 nm	1A	
	(ii)	確保光線穿越雙縫時的繞射足以	3 1A	<i>a</i>
		產生干涉/重叠。	1 1	\underline{K} 接受以方程 $\lambda = \Delta y \frac{a}{D}$ 作解釋, 其中的縫距 α 已知,且為固定。
(b)) (i)	$d\sin\theta = m\lambda$	2	
		$\frac{10^{-3}}{500} \sin \theta = 6.67 \times 10^{-7} \mathrm{m}$ $\theta = 19.471221^{\circ} \approx 19.47^{\circ}$	1M	
		中央亮點和第一級亮點的間距 = 1.8 tan 19.47°	1M	
		$= 0.636396 \text{ m} \approx 0.636 \text{ m}$	1A	
	(ii)	同举处本点	3	
		圖樣的中央		
		0 0	0	
		沿中央亮點對稱 (有顯示第二級) 第二級與第一級亮點的間距較大	1A 1A	

			答案	分數	說明
7.	(a)	(i)	R=10kΩ(電路 I)		
			$V = \frac{\left(\frac{1}{10 \text{ k}\Omega} + \frac{1}{10 \text{ k}\Omega}\right)^{-1}}{10 \text{ k}\Omega + \left(\frac{1}{10 \text{ k}\Omega} + \frac{1}{10 \text{ k}\Omega}\right)^{-1}} \times 6 \text{ V}$	1 M	1M 給予計算電壓的正確方法
			= 2 V	1A	
			R=100Ω(電路 II)	,	
			$V = \frac{\left(\frac{1}{100\Omega} + \frac{1}{10k\Omega}\right)^{-1}}{100\Omega + \left(\frac{1}{100\Omega} + \frac{1}{10k\Omega}\right)^{-1}} \times 6 \text{ V}$ $= 2.985 \text{ V}$	1A	註: 100 Ω 與 10 kΩ 並聯≈ 99.0099 Ω 接受指出 V稍為 <3 V
		(ii)	著降低/改變(即負載效應)。	1A	
			或 伏特計的電阻跟電阻器 R 的電阻相近。 伏特計的電阻應比該部分所探究電路的電阻高很多。	1A 1A	
and the state of t	(b)	(i)	$V_{\rm m}$ 不能給出電阻器兩端的電壓真值。 $R_{\rm m}=R_{\rm A}+R$	2 1A 1A	
open special control and the state of the st		(ii)	對電路 III $R_{\rm m} = R + R_{\rm A} = 10 + 1 = 11 \Omega$ 百分誤差 $= \frac{1\Omega}{10\Omega} \times 100 \%$	2 1M	
			= 10%	1A 2	

			答案	分數	說明
8.	(a)	(i)	- 空氣失去其絕緣性質 或 電子或離子可穿越 (雲和地面之間或雲和雲之 間的) 空氣	1A 1A	
		(ii)	$E = \frac{V}{d}$ $V = E \ d = (3 \times 10^{5}) \times 2000$ $= 6 \times 10^{8} \ V$	1 1M	
	(b)	(i)	磁場(的方向)指入紙面(由於向上的閃電電流) $B = \frac{\mu_0 I}{2\pi r}$	2 1A 1M	
			$= \frac{4\pi \times 10^{-7} \times 30000}{2\pi \times 1500}$ $= 4 \times 10^{-6} \text{ T}$	1A	
		(ii)	當閃電電流增加,感生電流便以逆時針方向流動來對抗增長中的磁場 (指入紙面)。當閃電電流達至最高後,它會衰減而感生電流以順時針方向流動/相反方向。	1A 1A	
		(iii)	(大氣中的) 電場 在閃電發生前電場增加/建立(至臨閾值)。 或 只有正當閃電發生時,閃電電流和磁場才會 存在/產生。	3 1A 1A 1A	
				2	

	答案	分數	說明
9. (a)	$(4)n_{\alpha} = 238 - 206 \Rightarrow n_{\alpha} = 8$ $(2)n_{\alpha} + (-1)n_{\beta} = 92 - 82 \Rightarrow n_{\beta} = 6$	1A 1A	
(b)	(i) $N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$	2 1M	
	$\frac{3}{5} = \left(\frac{1}{2}\right)^{t/4.5 \times 10^9} $		
	或 $N = N_0 e^{-\lambda t}$ 和 $\lambda = \frac{\ln 2}{T_{1/2}}$	1M	
	$\therefore t = 3.316 \times 10^9 $	1A 2	
	(ii) (i) 部的答案是低估了 (石塊的年齡), 原來的 U-238 原子數目應較大。	1A	
	\therefore 比率 $\frac{現時 U - 238 原子的數目}{原本 U - 238 原子的數目} = \frac{N_t}{N_0}$ 事實上較 小	 接 	受「有較多的U衰變了」
	(少於 $\frac{3}{5}$), 因此所經歷了的時間應更長。	lA	
	原子數目 原子數目	2	
	U-238	2A	
		2	

甲部:天文學和航天科學

1. B (71%)	2.C (49%)	3.A (54%)	4.C (57%)
5. D (69%)	6.B (53%)	7.A (38%)	8.D (38%)

		答案	分數	說明
1.	(a)	視星等 是亮度的量度,其取決於 (恆星的) 光度 和離開地球的距離。	1A	亮度 = 於觀察者處每單位面積的功率 = 光度 / $(4\pi D^2)$
		倘距離 D 固定 (於 10 pc) ,這稱為 絕對星等 ,而其只取決於 光度 。	1A	プロ文 / (4nD)
			2	
	(b)	(i) $L = 4\pi R^2 \sigma T^4$ $L_S = 4\pi R_S^2 \sigma T_S^4$	1M	
		假設太陽和恆星為黑體。	1A	
			2	
		(ii) $\frac{R}{R_S} = \left(\frac{L}{L_S}\right)^{1/2} \left(\frac{T_S}{T}\right)^2$		
		$\frac{R}{R_{\rm S}} = (126000)^{1/2} \times (\frac{5840}{6100})^2$	1M	
		$R = 325.350364 R_{\rm S} \approx 325 R_{\rm S}$	1A	
		恆星 X-(超) 巨星	1A	
			3	
	(c)	(i) $\log\left(\frac{L}{L_S}\right) = 4\log T + 2\log\left(\frac{R}{R_S}\right) - 4\log T_S$		
		(i) $\log\left(\frac{L}{L_S}\right) = 4\log T + 2\log\left(\frac{R}{R_S}\right) - 4\log T_S$ $y = \log\frac{L}{L_S}$ 接受 $x = \log(\frac{T}{T_S})$		
		它呈現為一條直線 $y = mx + c$ (而 $m = 4$)	1A	
		y-截距 c 則從恆星半徑 R 判定 [註: $c=+2\log\left(\frac{R}{R_S}\right)-4\log T_S$, R_S 和 T_S 為常數]	1A	
			2	
		(ii) B(最大的)	1A	
			1	

乙部:原子世界

1. C (34%)	2. D (50%)	3. C (57%)	4. B (56%)
5. B (46%)	6. D (52%)	7. A (49%)	8. A (32%)

	· · · · · · · · · · · · · · · · · · ·			T	
			答案	分數	說明
2.	(a)	(i)	所有 $(由 X)$ 發射出的光電子都能到達 Y 。	1A	
			或所發射出光電子的最大數目受光強度所限。	1A	
			<u>或</u> 每秒鐘產生的光電子數目是有限的。	1A	
				1	
		(ii)	到達陽極 Y的最大動能 = (0.8 +1.0) eV = 1.8 (eV)	1M 1A	
			- 1.6 (ev)	121	
	(b)	(i)	$24 - \sigma + 0.9 \rightarrow \sigma - 26(sV)$	1A 2	
	(0)	(1)	$3.4 = \Phi + 0.8 \Rightarrow \Phi = 2.6 \text{ (eV)}$	IA	
		* :	$\frac{hc}{\lambda} = \Phi \Rightarrow \lambda = \frac{(6.63 \times 10^{-34})(3.0 \times 10^8)}{(2.6)(1.60 \times 10^{-19})}$	1M	
				1A	
			$\lambda = 4.78125 \times 10^{-7} \mathrm{m} \approx 478 \mathrm{nm}$		
		<i>(</i> ''')		3	
		(11)	不能,因 λ _{vdow} = 576 nm (≈2.16 eV)>478 nm (≈2.6 eV) <u>或</u> 臨閾値。		
				1	
			$ \underline{y}_{\text{Jyellow}} = 3.20833 \times 10^{-19} \text{ J} < E = 4.16000 \times 10^{-19} \text{ J} $	1M	
			<u> </u>	1M	
				2	
	(c)		表的強度更強,但 [表表表]	1A 1A	
		具原	(本光束的相同頻率。		
				2	

丙部:能量及能源的使用

1. B (59%)	2. A (26%)	3. C (76%)	4. B (48%)
5. A (41%)	6. D (53%)	7. C (61%)	8. C (46%)

			·		
			答案	分數	說明
3.	(a)	(i)	(I) 此風速的風未能克服接觸面之間過大的摩擦力。	1A	
			(II) 渦輪機會被自動鎖定和停止,否則強風會損 毀扇葉。	1A	
		(ii)	$P = \frac{1}{2}\rho A v^{3} \times \eta$ $1600 \times 10^{3} \text{ W} = \frac{1}{2} \times 1.23 \text{ kg m}^{-3} \times \pi (30 \text{ m})^{2} \times (15 \text{ m s}^{-1})^{3} \times \eta$	1M	
			$\eta = 27.3 \%$	1A	
	(b)	(i)	單一渦輪機需提供的功率		註:基於風向和風力渦輪機的擺
			$=\frac{40\times10^6}{50}=0.8 \text{ MW } \odot 800 \text{ kW}$	1M/1A	放,在實際情況中每一渦輪 機的功率輸出會有所不同。
			根據線圖,所需風速為 10 m s ⁻¹ 。	1A	
		(ii)	(I) 1600 kW×50 = 80000 kW 或 80 MW	2 1M/1A	
			根據線圖(>80 MW), 15:00-21:00 (即 6 小時)	1A	6
			(II) $(80-40) \times 10^6 \text{ W} \times 80 \% = m \times 9.81 \text{ m s}^{-2} \times 120 \text{ m}$ $m = 2.7183 \times 10^4 \text{ (kg s}^{-1})$	1M 1A	
-				2	$\mathfrak{D} g = 10 \text{ m s}^{-2}, m = 26667 \text{ (kg s}^{-1)}$

丁部:醫學物理學

1. A (48%)	2. A (46%)	3. D (55%)	4. C (66%)
5. B (49%)	6. B (45%)	7. D (49%)	8. D (53%)

			答案	分數	說明
4.	(a)	(i)	В	1A	
			一放射性物質 / 放射性藥物 被注射進 / 吸入至 病人,	1A	
			並經血液輸送至身體各部分,這(放射性)物質 會在特定的器官積聚。	1A	
			放射性同位素發射出的伽瑪射線可由伽瑪照相機(伽瑪攝影儀/伽瑪攝影機)檢測。	1A	
				4	
		(ii)	優點: 從熱點 / 熱灶 (高於正常攝取) 或冷點 / 冷灶 (低於正常攝取) 可推斷所涉器官的問題,即功	1A	
			能性診斷。		
				1	
	(b)	(i)	$T_{\rm phy} = 4 \boxminus$	1A	
				1	
		(11)	在身體 / 器官內的「示踪物」透過生物過程 (如消去 / 自然排泄 / 新陳代謝) 減少至其初始 值的一半所需的時間。	1A	
				1	
		(iii)	$\frac{1}{T_{\rm eff}} = \frac{1}{T_{\rm phy}} + \frac{1}{T_{\rm bio}}$	1M	
			$=\frac{1}{2}+\frac{1}{4}$		
			$T_{\rm eff} = 1.33 \Box$		
			$N = N_0 e^{-kt} \qquad \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$		
			$k = \frac{\ln 2}{T_{\text{eff}}} \qquad \qquad t = nT_{\text{eff}} $	1M	
			$t = \frac{-T_{\text{eff}}}{\ln 2} \ln(\frac{10}{50}) \implies 10 = 50 \left(\frac{1}{2}\right)^{t/T_{\text{eff}}}$:	
			$t = \frac{-1.33}{\ln 2} \ln(\frac{10}{50}) \implies 10 = 50 \left(\frac{1}{2}\right)^{t/1.33}$	1.4	+ g42 dut 0 cg 105 td
			≈ 3.096 ⊟	1A 3	或 74.3 小時, 2.67 × 10 ⁵ 秒