```
# Jack Kwok -- Math 448 -- Project 1B -- Black-Scholes vs Binomial-tree
import math
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
# The cumulative distribution function (CDF) of the standard normal distribution is used in the
Black-Scholes formula
# to calculate the probabilities of certain events occurring. In the code I provided, the CDF
is calculated using the
# norm.cdf() function from the SciPy library. This function takes the value of d1 and d2 as
inputs and returns the
# probability of those values occurring in a standard normal distribution. The norm.cdf()
function calculates the
# probability that a random variable from a standard normal distribution is less than or equal
to a given value. In
# the Black-Scholes formula, d1 and d2 are the arguments passed to norm.cdf(), and the
resulting probabilities are
# used to calculate the call and put option prices.
# European call option on a non-dividend-paying stock
def black scholes call(S0, K, r, sigma, T):
   d1 = (math.log(S0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * math.sqrt(T))
   d2 = d1 - sigma * math.sqrt(T)
   Nd1 = norm.cdf(d1)
   Nd2 = norm.cdf(d2)
   call price = S0 * Nd1 - K * math.exp(-r * T) * Nd2
   return call price
# European put option on a non-dividend-paying stock
def black scholes put(S0, K, r, sigma, T):
    call price = black scholes call(S0, K, r, sigma, T)
    put price = call price - S0 + math.exp(-r * T) * K
    return put_price
def binomial tree call(S0, K, r, sigma, T, N):
    delta t = T / N
   u = math.exp(sigma * math.sqrt(delta t))
    d = 1 / u
    p = (math.exp(r * delta t) - d) / (u - d)
    # initialize stock price array
    stock price = [0] * (N + 1)
    stock price[0] = S0 * d ** N
    # calculate stock prices at each node of the tree
    for i in range (1, N + 1):
        stock price[i] = stock price[i - 1] * u / d
    # initialize option value array at expiration
    option value = [0] * (N + 1)
    for i in range (N + 1):
        option value[i] = max(stock price[i] - K, 0)
    # calculate option value at each node of the tree
    for j in range (N - 1, -1, -1):
        for i in range(j + 1):
            option value[i] = math.exp(-r * delta t) * (p * option value[i + 1] + (1 - p) *
option value[i])
    return option value[0]
def binomial tree_put(S0, K, r, sigma, T, N):
   dt = T / N
    u = math.exp(sigma * math.sqrt(dt))
```

```
d = 1 / u
       p = (math.exp(r * dt) - d) / (u - d)
       stock price = [[0 for j in range(i+1)] for i in range(N+1)]
       option_price = [[0 for j in range(i+1)] for i in range(N+1)]
       for j in range (N+1):
              stock price[N][j] = S0 * (u ** (N-j)) * (d ** j)
              option price[N][j] = max(K - stock price[N][j], 0)
       for i in range (N-1, -1, -1):
              for j in range(i+1):
                      stock_price[i][j] = S0 * (u ** (i-j)) * (d ** j)
                      option\_price[i][j] = math.exp(-r*dt) * (p * option\_price[i+1][j] + (1-p) * (
option_price[i+1][j+1])
       return option price[0][0]
def main():
       # define option parameters for the question
       K = 10
       r = 0.02
       sigma = 0.25
       T = 0.25
       S0 = 10
       print("Test results:")
       # b. calculate Black-Scholes price
       bs price = black scholes call(S0, K, r, sigma, T)
       print(f"Black-Scholes price: {bs_price}")
       # a. calculate binomial tree prices for varying numbers of nodes
       n list = [10, 100, 1000, 10000]
       bt_prices = []
       errors = []
       for n in n list:
              bt price = binomial tree call(S0, K, r, sigma, T, n)
              bt prices.append(bt price)
              # c. calculate error
              error = abs(bt_price - bs_price)
              errors.append(error)
              print(f"Binomial tree price with {n} nodes: {bt price}, error: {error}")
       # Test results:
       # Black-Scholes price: 0.5224453276436325
       # Binomial tree price with 10 nodes: 0.5101818737713509, error: 0.01226345387228156
       # Binomial tree price with 100 nodes: 0.5212031399064168, error: 0.0012421877372157386
       # Binomial tree price with 1000 nodes: 0.5223209670289733, error: 0.00012436061465914694
       # Binomial tree price with 10000 nodes: 0.5224328901856781, error: 1.243745795442841e-05
       # The results show that the error decreases as the number of nodes increases.
       # d. calculate ln |E| and ln N
       ln E = np.log(errors)
       ln_N = np.log(n_list)
       # perform linear regression
       A, B = np.polyfit(ln N, ln E, 1)
       # plot ln /E/ vs ln N
       plt.scatter(ln N, ln E)
       plt.plot(ln N, A * ln N + B, color='r')
       plt.xlabel('ln N')
       plt.ylabel('ln |E|')
       plt.title('Convergence of Binomial Tree Method')
       plt.show()
       # e. Using the regression formula found in part (d), |E| = eB(N^-A), we can see that the
       # apparent convergence rate of the Binomial Tree method is determined by the regression
coefficient A.
       # Specifically, the convergence rate is -A. We obtain a regression equation of \ln |E| = -
1.0057 ln N + 1.0637.
       # By fitting the least squares line to the ln |E| vs ln N data points, we can obtain the
```

values of A and B. # Based on these values, we can see that A is approximately -0.5. # Therefore, the convergence rate of the Binomial Tree method is approximately 0.5, or one

This means that doubling the number of timesteps should roughly halve the error of the method.

if name == " main ": main()

Output:

Number of Timesteps	Binomial Tree Solution	E
N=10	0.5101818737713509	0.0122634538722815
N=100	0.5212031399064168	0.0012421877372157
N=1.000	0.5223209670289733	386 0.0001243606146591
N=10.000	0.5224328901856781	4694 1.243745795442841 *
		10^-05