Training loss Lemin = L(f, Xtrain, Ytrain).

Test loss Ltest = L (f. Xtest, Ytest).

Validation Loss Ludid = L (f. Xvalid, Yvalid).

These pairs of (X.Y). are sampled from population loss Dx. Dr.

ultimate goal: minimize $L_{population} = \mathbb{E}_{x,Y \sim D_x,D_Y} L(f, x, Y)$.

Overfit vs. Underfit.

Underfitting - your function may not have enough representation power

Overfitting -your function has too much representation power. -gives Ltrain $\simeq 0$; but generalizes bad.

- Regularization .

Modern View:

For some neural network, there are implicit regularizations

explicit regularization not neccessary.

(perhaps because of SGD algo.).

Unsupervised Learning

- Clustering --> Data mining / recommendation system.
- Principal component Analysis (Find the most important components (directions)
- Generative Model => Describe distribution of data Sminimize MSE.

by mapping Gaussian to target distribution

- Anomaly Detection.
- Dimensional Reduction

Semi-Superviced Learning
Semi-Superviced Learning data unlabeled unlabeled
unlabeled
Can we use unlabeled data to improve prediction?
·
Assumptions: points with small distances are more likely to share soune labels.