Math 51 Spring 2022 - Final Exam - some review problems

2022-04-27

- Differential equations via integration (§ 1.1)
- Separation of variables (§ 1.2)
- Linear Differential Equations (§ 1.3)
- Existence & Uniqueness; Linear ODEs (§ 1.6, 2.2)
- Cramer's Rule and the Wronskian (§ 2.3 & App. A)
- Linear Independence (§ 2.4)
- Const coeff linear ODEs (real roots) (§ 2.5)
- Const coeff linear ODEs (complex roots) (§ 2.6)
- Non-homog linear ODEs via undetermined coeffs (§ 2.7)
- Non-homog linear ODEs via variation of parameters (§ 2.8)
- Linear Systems (§ 3.2, 3.3)
- Linear systems and independence (§ 3.4)
- Eigenvalues, Eigenvectors (§ 3.5)
- Row Reduction (§ 3.6)
- Homogeneous linear systems (real roots) (§ 3.7)
- Homogeneous linear systems (complex roots) (§ 3.8)
- Homogeneous linear systems (double roots) (§ 3.9)
- Homogeneous linear systems (higher multiplicity roots) (§ 3.10)
- Non-homogeneous Systems (§ 3.11)
- The Laplace transform \mathcal{L} and initial value problems (§ 5.2, 5.3)
- Properties of \mathcal{L} and \mathcal{L}^{-1} (§ 5.4)
- Piecewise functions (§ 5.5)
- Convolution (§ 5.6)
- 1. Indicate which of the following best represents a *simplified guess* for a particular solution p(t) to the non-homogeneous linear ODE:

$$(D-3)(D-1)x=te^{3t}+\cos(2t)$$

- a. $p(t) = k_1 t e^{3t} + k_2 \cos(2t) + k_3 \sin(2t)$
- b. $p(t) = k_1 t e^{3t} + k_2 \cos(2t)$
- c. $p(t) = k_1 t e^{3t} + k_2 t^2 e^{3t} + k_3 \cos(2t)$
- d. $p(t) = k_1 t e^{3t} + k_2 t^2 e^{3t} + k_3 \cos(2t) + k_4 \sin(2t)$
- 2. Indicate which of the following represents the general solution to the homogeneous linear ODE $(D^2 2D + 2)^2 x = 0$.

a.
$$h(t) = c_1 e^{-t} \cos(t) + c_2 e^{-t} \sin(t) + c_3 t e^{-t} \cos(t) + c_4 t e^{-t} \sin(t)$$

b.
$$h(t) = c_1 e^t \cos(t) + c_2 e^t \sin(t)$$

c.
$$h(t) = c_1 e^t \cos(t) + c_2 e^t \sin(t) + c_3 t e^t \cos(t) + c_4 t e^t \sin(t)$$

d.
$$h(t) = c_1 t e^t \cos(t) + c_2 t e^t \sin(t) + c_3 t^2 e^t \cos(t) + c_4 t^2 e^t \sin(t)$$

3. The matrix $A = \begin{bmatrix} -2 & 5 \\ -2 & 4 \end{bmatrix}$ has characteristic polynomial $\lambda^2 - 2\lambda + 2$ and thus its eigenvalues are $\lambda = 1 + i$ and $\lambda = 1 - i$.

Which of the following is an eigenvector for A?

a. A has no eigenvectors.

b.
$$\begin{bmatrix} 3-i \\ 2 \end{bmatrix}$$

c.
$$\begin{bmatrix} 2 \\ -3+i \end{bmatrix}$$

d.
$$\begin{bmatrix} 3+i \\ 2 \end{bmatrix}$$

4. Consider the linear system of ODEs

$$(\diamondsuit) \quad D\mathbf{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ e^t \end{bmatrix}.$$

A third order linear ODE is equivalent to this system if for each of its solutions x(t), the vector-valued function $\mathbf{x}(t) = \begin{bmatrix} x(t) \\ x'(t) \\ x''(t) \end{bmatrix}$ is a solution to (\diamondsuit) . Which of the following linear

ODEs is equivalent to (\diamondsuit) ?

a.
$$(D^3 - 2D^2 - D - 5)x = e^t$$

b.
$$(D^3 - 5D^2 - D - 2)x = e^t$$

c.
$$(D^3 + 2D^2 + D + 5)x = -e^t$$

d.
$$(D^3 + 5D^2 + D + 2)x = -e^t$$

5. Let $A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. $\lambda = 2$ is an eigenvalue of A with multiplicity two. The matrix $A - 2\mathbf{I}_3$

satisfies
$$(A - 2\mathbf{I}_3)^2 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & -3 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 3 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Thus the generalized

eigenvectors of
$$A$$
 for $\lambda = 2$ are generated by $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$.

Which of the following represents a solution $\mathbf{h}(t)$ to the system $D\mathbf{x} = A\mathbf{x}$ with the property

2

that
$$\mathbf{h}(0) = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$$
?

a.
$$\mathbf{h}(t) = e^{2t} \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$$

b.
$$\mathbf{h}(t) = e^{2t} \begin{bmatrix} 1 + 12t \\ 2 \\ 6 \end{bmatrix}$$

c.
$$\mathbf{h}(t) = e^{2t} \begin{bmatrix} 1+t \\ 2 \\ 6 \end{bmatrix}$$

d. No solution
$$\mathbf{h}(t)$$
 has the property that $\mathbf{h}(0) = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$.

- 6. Consider the homogeneous system (\diamondsuit) $D\mathbf{x} = A\mathbf{x}$ where A is a 3×3 matrix, and let $\mathbf{h}_1(t), \mathbf{h}_2(t)$ be solutions to (\diamondsuit) . Which of the following statements is correct?
 - a. $\mathbf{h}_1(0)$ and $\mathbf{h}_2(0)$ are eigenvectors for A.
 - b. The system (\diamondsuit) has exactly two solutions
 - c. If the vectors $\mathbf{h}_1(0)$, $\mathbf{h}_2(0)$ are linearly independent, then the general solution to (\diamondsuit) is given by $\mathbf{x}(t) = c_1 \mathbf{h}_1(t) + c_2 \mathbf{h}_2(t)$.
 - d. None of the above statements is correct.
- 7. The matrix $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ has characteristic polynomial $\lambda(\lambda 3)$ and hence has eigenvalues $\lambda = 0$ and $\lambda = 3$. An eigenvector for $\lambda = 0$ is given by $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and an eigenvector for $\lambda = 3$ is given by $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Find a particular solution $\mathbf{p}(t)$ for the system of linear ODEs

$$D\mathbf{x} = A\mathbf{x} + \begin{bmatrix} 0 \\ t \end{bmatrix}.$$

8. Let
$$A = \begin{bmatrix} 0 & 1 \\ -5 & 4 \end{bmatrix}$$
.

The characteristic polynomial of A is $r^2 - 4r + 5$ so the eigenvalues of A are $\lambda = 2 \pm i$.

3

Moreover, $\mathbf{v} = \begin{bmatrix} 2-i \\ 5 \end{bmatrix}$ is an eigenvector for $\lambda = 2+i$.

- a. Find the general solution to $D\mathbf{x} = A\mathbf{x}$.
- b. Solve the initial value problem $D\mathbf{x} = A\mathbf{x}$, $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- 9. Solve the initial value problem $(4D^2 4D + 1)x = 0$, x(2) = x'(2) = e.

10. Consider the matrix
$$B = \begin{bmatrix} 5 & -3 & -6 \\ 0 & 2 & 0 \\ 3 & -3 & -4 \end{bmatrix}$$
.

a. The vector $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is an eigenvector for B. What is the corresponding eigenvalue?

Hint: Compute the vector $B\mathbf{v}$ and compare with \mathbf{v} .

- b. Find an eigenvector for B for the eigenvalue $\lambda = -1$.
- 11. Laplace Transforms:
 - a. Compute the inverse Laplace tranform $\mathcal{L}^{-1}[F(s)]$ of the function $F(s)=\frac{3s^2+s+1}{(s+1)(s^2+2)}$.
 - b. If x is a solution to $(D^2 + D + 1)x = 1$ with x(0) = 0 and x'(0) = 1, find an expression for $\mathcal{L}[x]$ as a function of s.
- 12. Let $W = W(h_1(t), h_2(t))$ denote the Wronskian matrix of the functions $h_1(t) = e^{2t}$ and $h_2(t) = te^{2t}$. Which of the following represents the determinant of W?
 - a. e^{4t}
 - b. $(1+4t)e^{4t}$
 - c. e^{2t}
 - d. $(1+4t)e^{2t}$
- 13. Consider the vectors $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$ in \mathbf{R}^4 , and let $A = \mathbf{r}^4$
 - $\begin{bmatrix} -1 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix} \text{ be the } 4 \times 3 \text{ matrix whose columns are the } \mathbf{v}_i. \text{ Which of the following state-}$
 - a. The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent.
 - b. Since $A \sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$, the only solution to the equation $A\mathbf{w} = \mathbf{0}$ is $\mathbf{w} = \mathbf{0}$ so the

vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

- c. The equation $A\mathbf{w} = \mathbf{x}$ has a solution for every vector \mathbf{x} in \mathbf{R}^4 .
- d. The determinant of A is $\neq 0$.
- 14. Let A be an $n \times n$ matrix with constant coefficients a_{ij} , and let $\mathbf{E}(t)$ be a vector with n components. If \mathbf{v} is any vector in \mathbf{R}^n , must there be a solution $\mathbf{x}(t)$ to the system of equations $D\mathbf{x} = A\mathbf{x} + \mathbf{E}(t)$ for which $\mathbf{x}(0) = \mathbf{v}$?

4

- a. No, this conclusion is only guaranteed when the system is homogeneous.
- b. No, this conclusion is only guaranteed when the entries of the vector $\mathbf{E}(t)$ are constant functions of t.

- c. Yes, this conclusion is the content of the Existence and Uniqueness Theorem for Solutions of Linear Systems.
- d. No, this conclusion is only guaranteed when det $A \neq 0$.
- 15. Consider the homogeneous system (\Diamond) $D\mathbf{x} = A\mathbf{x}$ where A is a 3 × 3 matrix.
 - a. If $\mathbf{h}(t)$ is a solution, must $\mathbf{h}(0)$ be an eigenvector for A? Why or why not?
 - b. Show that the vectors $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\2\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ are linearly dependent.
 - c. Let $\mathbf{h}_1(t), \mathbf{h}_2(t), \mathbf{h}_3(t)$ be solutions to (\diamondsuit) . Suppose that $\mathbf{h}_1(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{h}_2(0) = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix},$

and $\mathbf{h}_3(0) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ are the vectors from b. Do the solutions $\mathbf{h}_1(t), \mathbf{h}_2(t), \mathbf{h}_3(t)$ generate the general solution to (\diamondsuit) ? Why or why not?