МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Домашняя работа № <u>2</u> по дисциплине «Разработка нейросетевых систем»

Тема: «SPA приложение для object detection для классов "Хрущёвка", "Таунхаус", "Коттедж"»

ИСПОЛНИТЕЛЬ:	<u>_Журавлев Н.В</u>						
	— ФИО						
группа ИУ5-24М	подпись						
	"18" <u>05</u> _2024 г.						
ПРЕПОДАВАТЕЛЬ:	<u>Канев А.И.</u>						
	подпись						
	" " 202 г.						

Москва - 2024

Здание

Сохраняется тема ДЗ-1. Требуется разработать SPA приложение для object detection ваших классов. Разметить изображения набора данных и обучить модель Yolo.

1. Разметка в cvat.ai

Разметим выделенные в дз1 картинки с 3 классам: хрущёвка, таунхаус, коттедж. Для этого необходимо использовать кнопки для выбора инструмента разметки располагаются на боковой панели. Для разметки прямоугольниками надо нажать следующую кнопку, далее – Shape.

Примеры фотографий для каждого класса представлены на рис. 1-3.

Рисунок 1 - Изображение хрущёвки

Рисунок 2 – Изображение таунхауса

Рисунок 3 – Изображение коттеджа

2. Обучение YOLOv7

Для базового варианта точность для всех классов представлена на табл.

1. Матрица ошибок, F1 и precision Recall представлены на рис. 4-6.

Рисунок 4 – F1 кривая

Рисунок 5 – Метрика PR

Рисунок 6 - Матрица ошибок по классам

Таблица 1 – Метрики по всем классам

Class	Images	Labels	P	R	mAP@.5	mAP@.5:.95	
all	29	32	0.338	0.88	0.403	0.258	
Хрущёвка	29	11	0.394	1	0.517	0.322	
Таунхаус	29	12	0.3	0.75	0.293	0.143	
Коттедж	29	8	0.321	0.889	0.401	0.308	

После увеличения количества эпох точность для всех классов представлена на табл. 2. Матрица ошибок, F1 и precision Recall представлены на рис. 7-9.

Рисунок 7 – F1 кривая

Рисунок 8 – Метрика PR

Рисунок 9 - Матрица ошибок по классам

Таблица 2 – Метрики по всем классам

Class	Images	Labels	P	R	mAP@.5	mAP@.5:.95
all	29	32	0.615	0.731	0.664	0.394
Хрущёвка	29	11	0.72	1	0.943	0.594
Таунхаус	29	12	0.499	0.417	0.349	0.168
Коттедж	29	8	0.626	0.778	0.7	0.421

После уменьшение размера батча точность для всех классов представлена на табл. 3. Матрица ошибок, F1 и precision Recall представлены на рис. 10-12.

Рисунок 10 – F1 кривая

Рисунок 11 – Метрика PR

Рисунок 12 - Матрица ошибок по классам

Таблица 3 – Метрики по всем классам

Class	Images	Labels	P	R mAP@.5		mAP@.5:.95
all	29	32	0.69	0.833	0.685	0.475
Хрущёвка	29	11	0.973	1	0.995	0.678
Таунхаус	29	12	0.595	0.5	0.38	0.187
Коттедж	29	8	0.502	1	0.68	0.56

После уменьшение скорости обучения точность для всех классов представлена на табл. 4. Матрица ошибок, F1 и precision Recall представлены на рис. 13-15.

Рисунок 13 – F1 кривая

Рисунок 14 – Метрика PR

Рисунок 15 - Матрица ошибок по классам

Таблица 4 – Метрики по всем классам

Class	Images	Labels	P	R	mAP@.5	mAP@.5:.95
all	29	32	0.826	0.861	0.849	0.566
Хрущёвка	29	11	0.953	1	0.996	0.659
Таунхаус	29	12	0.875	0.583	0.595	0.328
Коттедж	29	8	0.65	1	0.956	0.71

Лучше всего определяется хрущёвка (имеет наибольшее значение f1-score), т.к. она значительно отличается от остальных зданий по строению и одинаковые по форме окон и часто по цвету. Пример выделенной хрущёвки представлен на рис. 16.

Рисунок 16 - Изборажение хрущёвки

Хуже всего определяется таунхаус (имеет наименьшее значение f1-score относительно остальных), т.к. имеет повторяющиеся элементы, но не всегда сильно идентичные. Пример выделенного таунхауса представлен на рис. 17.

Рисунок 17 – Изображение таунхауса

Средне определяется коттедж (имеет среднее значение f1-score), т.к. имеет разнообразные формы здания и не имеет повторяющихся элементов в пределах одной фотографии. Пример выделенного коттеджа представлен на рис. 18.

Рисунок 18 – Изображение коттеджа

3. Приложение на React для onnx YOLO

Был создан стандартный проект react. Его содержание представлено на рис. 19.

Рисунок 19 – Структура проекта

Для экспорта модели в формат onnx использовать: https://github.com/augmentedstartups/yolov7.

Полученный файл model.onnx помещаем в папку src. В данной работе используется модель YOLOv7 для распознавания объектов на изображении.

Для того чтобы запустить анализ, необходимо подготовить входные данные, т.е. преобразовать изображение в тензор. Для этого нужно запустить функцию предобработки для загруженного изображения и преобразовать ее в тензор. Для отображения изображения на странице добавим элемент canvas.

На странице загрузить файл, нажав на кнопку "Выберите файл", а затем на кнопку "Анализ". На странице должна отобразиться загруженная картинка с нарисованной рамкой (если output не пустой).

После запуска было получено следующее приложение, представленное на рис. 20.

Рисунок 20 – Интерфейс приложения

Итоговая таблица с результатами для всех вариантов обучения

На табл. 5 представлены результаты обучения.

Таблица 5 - Итоговая таблица с результатами для всех вариантов обучения

Конфиг	Гиперпара	Точность						Комментар
урация нейросе ти	метры	Название	P	R	F1	mAP @.5	mAP@. 5:.95	ий
YOLOv7	lr=0.01,	Общее	0.338	0.88	0.539	0.403	0.258	Базовый
	batch = 16, $epoch = 55$	Хрущёвка Таунхаус	0.394	0.75	0.159	0.517	0.322	вариант
		Коттедж	0.321	0.889	0.472	0.401	0.308	
YOLOv7	lr=0.01, batch = 16,	Общее Хрущёвка	0.615	0.731	0.668	0.664	0.394	Увеличение эпох
	epoch = 110	Таунхаус	0.72	0.417	0.837	0.349	0.394	
		Коттедж	0.626	0.778	0.694	0.7	0.421	-
YOLOv7	lr=0.01,	Общее	0.69	0.833	0.755	0.685	0.475	Уменьшение
	batch = 8 , epoch = 220	Хрущёвка Таунхаус	0.973	0.5	0.986	0.995	0.678	размера батча
		Коттедж	0.502	1	0.668	0.58	0.56	
YOLOv7	lr=0.007,	Общее	0.826	0.861	0.843	0.849	0.566	Уменьшение
	batch = 8,	Хрущёвка	0.953	1	0.976	0.996	0.659	скорости
	epoch = 300	Таунхаус	0.875	0.583	0.699	0.595	0.328	обучения
		Коттедж	0.65	1	0.788	0.956	0.71	

Вывод

В результате домашней работы было получено веб-приложение способное выделять три класса домов, а именно: "Хрущёвка", "Таунхаус", "Коттедж". Для этого была использована сеть YOLOv7, а для веб-приложения React. Сохранение сети было в формате onnx. Точность результирующей нейронной сети после изменения всех гиперпараметров составляет 0.826, что является удовлетворительным результатом.

Если учитывать только задачу классификации, то в среднем классы из ДЗ1 определяются лучше, однако хрущёвки определяются лучше именно в ДЗ2.

Лучше всего определяется хрущёвка, т.к. она значительно отличается от остальных зданий по строению и одинаковые по форме окон и часто по цвету. Средне определяется коттедж, т.к. имеет разнообразные формы здания и не имеет повторяющихся элементов в пределах одной фотографии. Хуже всего определяется таунхаус, т.к. имеет повторяющиеся элементы, но не всегда сильно идентичные.

Данные места классов по классификации объектов аналогично местам из Д31.