Q1(1):

The graph of $y=x^2-a(x+1)+3$ touches the x-axis if and only if the equation $x^2-a(x+1)+3=0$, i.e. $x^2-ax+(3-a)=0$ has only one solution. Then,

$$\Delta = a^2 - 4(3 - a) = 0$$

$$a^2 + 4a - 12 = 0$$

$$(a+6)(a-2) = 0$$

$$a = \boxed{-6}$$
 or $a = \boxed{2}$

Q1(2):

$$\log_2(x+1) \le 3$$

$$x + 1 > 0$$
 and $x + 1 \le 2^3$

$$x > -1$$
 and $x \le 7$

$$-1 < x \le 7$$

Q1(3):

Denote the center of the inscribed circle as O. Then the heights of $\triangle AOB$, $\triangle BOC$ and $\triangle COA$ will be equal to the radius of the inscribed circle, r, as the inscribed circle is tangent to their bases.

On the other hand, consider the area of $\triangle ABC$,

$$\triangle ABC = \triangle AOB + \triangle BOC + \triangle COA$$

$$\frac{1}{2}(4)\sqrt{3^2 - (\frac{4}{2})^2} = \frac{1}{2}(3)(r) + \frac{1}{2}(4)(r) + \frac{1}{2}(3)(r)$$
$$2\sqrt{5} = 5r$$
$$r = \boxed{\frac{2\sqrt{5}}{5}}$$

Alternative As $\triangle ABC$ is an isosceles triangle, O lies on the perpendicular bisector of BC. Denote M as the mid-point of BC, we have $BM = \frac{1}{2}BC = 2$, OM = r and $\angle OBM = \frac{1}{2}\angle ABM$ (as OB is the angle bisector of $\angle ABC$). On the other hand, consider the cosine ratio of $\triangle ABM$, we have $\cos \angle ABM = \frac{BM}{AB} = \frac{2}{3}$.

Note that $\cos \angle ABM = \cos^2 \angle \frac{1}{2}ABM - \sin^2 \angle \frac{1}{2}ABM = \cos^2 \angle OBM - \sin^2 \angle OBM$ $= \frac{\cos^2 \angle OBM - \sin^2 \angle OBM}{\cos^2 \angle OBM + \sin^2 \angle OBM} = \frac{1 - \tan^2 \angle OBM}{1 + \tan^2 \angle OBM}.$

Therefore, we have the equation

$$\frac{1 - \tan^2 \angle OBM}{1 + \tan^2 \angle OBM} = \frac{2}{3}$$
$$\tan^2 \angle OBM = \frac{1}{5}$$
$$\tan \angle OBM = \frac{1}{\sqrt{5}} \text{ (as } \tan \angle OBM > 0)$$

Now, consider the tangent ratio of $\triangle OBM$, we have $\tan \angle OBM = \frac{OM}{BM} = \frac{r}{2}$. Therefore, we have $r = \frac{2}{\sqrt{5}}$.

Q1(4):

Note that $\sin\theta - \sqrt{3}\cos\theta = 2(\frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \sin 60^{\circ}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\sin\theta - \cos 60^{\circ}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\sin\theta - \cos 60^{\circ}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\sin\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\sin\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\cos\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\sin\theta) = 2(\cos 60^{\circ}\sin\theta) = 2(\cos 60^{\circ}\sin\theta - \cos 60^{\circ}\sin\theta) = 2(\cos 60^$

 $2\sin(\theta-60^\circ)$.

For $0 \le \theta < 360^{\circ}$, $-2 \le 2\sin(\theta - 60^{\circ}) \le 2$. Therefore, the required maximum value is $\boxed{2}$.

(Note: For the general methodology, search for how to express $a \sin \theta + b \cos \theta$ in the form $R \sin(\theta - \alpha)$.)

Alternative $f'(\theta) = \cos \theta + \sqrt{3} \sin \theta$.

To find the extremum of $f(\theta)$, set $f'(\theta) = 0$, we have $\tan \theta = -\frac{1}{\sqrt{3}}$.

For $0 \le \theta < 2\pi$, we have the solutions $\theta = \frac{5\pi}{6}$ or $\theta = \frac{11\pi}{6}$.

 $f''(\theta) = -\sin\theta + \sqrt{3}\cos\theta$. Conduct the second derivative test:

$$f''(\frac{5\pi}{6}) = -\frac{1}{2} - \sqrt{3} \cdot \frac{\sqrt{3}}{2} < 0$$

$$f''(\frac{11\pi}{6}) = \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} > 0$$

Therefore, $f(\theta)$ attains to its maximum when $\theta = \frac{5\pi}{6}$. By that time, the maximum value= $f(\frac{5\pi}{6}) = \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \boxed{2}$.

Q1(5):

If x + y = 3 and $x^2 + y^2 = 5$, then $(x + y)^2 = (x^2 + y^2) + 2xy = 5 + 2xy = 3^2 = 9$.

Therefore, $xy = \frac{9-5}{2} = 2$.

Then, $x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 3^3 - 3(2)(3) = \boxed{9}$.

Q2:

(1) By the cosine formula,

$$AC^2 = BA^2 + BC^2 - 2(BA)(BC)\cos \angle B$$

$$AC = \sqrt{5^2 + 3^2 - 2(5)(3)\cos 60^\circ} = \boxed{\sqrt{19}}$$

(2) As ABCD is a cyclic quadrilateral, $\angle D = 180^{\circ} - \angle B = 120^{\circ}$.

By the cosine formula,

$$AC^{2} = DA^{2} + DC^{2} - 2(DA)(DC)\cos \angle D$$

$$DA^{2} - 2(2)\cos 120^{\circ}DA + 2^{2} - 19 = 0$$

$$DA^{2} + 2DA - 15 = 0$$

$$(DA + 5)(DA - 3) = 0$$

$$DA = \boxed{3} \text{ or } DA = -5 \text{ (rejected)}$$

Q3:

(1):

 $xy = 8 \iff \log_2(xy) = \log_2 8 \iff \log_2 x + \log_2 y = 3 \iff \log_2 y = 3 - X.$

Therefore,

$$P = 2(\log_2 x)^2 + (\log_2 y)^2$$
$$= 2X^2 + (3 - X)^2$$
$$= 3X^2 - 6X + 9$$

(2) By completing the square, $P = 3(X - 1)^2 + 6$.

As $(X-1)^2 \ge 0$, we have $P \ge 0+6=6$. Therefore, the minimum value of P is $\boxed{6}$.