UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

EXAMEN DE ECONOMETRÍA II 25 de julio de 2014

Ejercicio 1 (35 puntos)

Se cuenta con la siguiente serie de datos sobre las ventas trimestrales entre 1968.1 y 2012.4 (180 observaciones) de una empresa que se quiere modelizar utilizando la metodología Box-Jenkins vista en clase.

Parte I

- 1.1 Defina que entiende por estacionariedad en sentido débil. Comente la gráfica en niveles de las ventas y el correlograma correspondiente. ¿Qué puede mencionar respecto a la estacionariedad de la serie? ¿El gráfico le sugiere alguna estructura posible para el proceso generador de datos?
- 1.2 Se realiza el contraste de Dickey-Fuller aumentado utilizando modelos alternativos, a continuación se presenta la información correspondiente a dichas salidas.
 - a) Plantee la regresión utilizada en el contraste para la especificación correspondiente al Modelo A, especifique hipótesis nula y alternativa y estadístico de prueba.
 - b) Concluya respecto al contraste de Dickey-Fuller al 5% de significación, indicando qué modelo A, B o C considera apropiado para describir el proceso generador de datos (en cada etapa especifique las hipótesis contraste, estadístico de prueba, región crítica, conclusión).

Modelo A

Augmented Dickey-Fuller regression

OLS, using observations 1968:3-2012:4 (T = 178)

Dependent variable: d_ventas

	coefficient	std. error	t-ratio	p-value	
ventas_1	0.00401408	0.00106054	3.785	1.0000	
d ventas 1	0.590770	0.0606297	9.744	3.26e-018 *	* *

AIC: 759.862 BIC: 766.225 HQC: 762.442

Modelo B

Augmented Dickey-Fuller regression OLS, using observations 1968:3-2012:4 (T = 178) Dependent variable: d_ventas

	coefficient	std. error	t-ratio	p-value	
const ventas 1	0.740203 0.00103335	0.271779 0.00151094	2.724	0.0071	***
d_ventas_1	0.544801	0.0618992	8.801	1.27e-015	***

AIC: 754.472 BIC: 764.018 HQC: 758.343

Modelo C

Augmented Dickey-Fuller regression OLS, using observations 1969:3-2012:4 (T = 174) Dependent variable: d_ventas

	coefficient	std. error	t-ratio	p-value	
const ventas 1	-7.77316 -0.0288045	3.41834 0.0123667	-2.274 -2.329	0.0242 0.4174	**
d_ventas_1	0.563960	0.0758618	7.434	5.32e-012	***
<pre>d_ventas_2 d_ventas_3</pre>	0.0172816 -0.0853823	0.0876317 0.0871592	0.1972 -0.9796	0.8439 0.3287	
d_ventas_4	0.0826365	0.0864334	0.9561	0.3404	
d_ventas_5 time	-0.0619098 0.0606703	0.0749614 0.0242267	-0.8259 2.504	0.4101 0.0132	**

AIC: 734.671 BIC: 759.943 HQC: 744.923

Modelo	Hipótesis nula		Valores T=	críticos 50	Valores T=1		Valores asintó	
Modelo	i inpotesis itala		95%	99%	95%	99%	95%	99%
$\Delta y_t = \gamma_a y_{t-1} + \varepsilon_t$	$\gamma_a = 0$	τ	-1,95	-2.62	-1,95	-2.6	-1,95	-2.58
	$\gamma_b = 0$	$ au_{\mu}$	-2,93	-3,58	-2,89	-3,51	-2,86	-3,43
$\Delta y_t = \alpha_b + \gamma_b y_{t-1} + \varepsilon_t$	$\alpha_b = \gamma_b = 0$	ϕ_1	4,86	7,06	4,71	6,7	4,59	6,43
	$\alpha_b = 0$ dado $\gamma_b = 0$	$ au_{lpha\mu}$	2,56	3,28	2,54	3,22	2,52	3,18
	$\gamma_c = 0$	$ au_{ au}$	-3,5	-4,15	-3,45	-4,04	-3,41	-3,96
	$\alpha_c = \beta_c = \gamma_c = 0$	ϕ_2	5,13	7,02	4,88	6,5	4,68	6,09
$\Delta y_t = \alpha_c + \beta_c t + \gamma_c y_{t-1} + \varepsilon_t$	$\beta_c = \gamma_c = 0$	ϕ_3	6,73	9,31	6,49	8,73	6,25	8,27
	$\beta_c = 0$ dado $\gamma_c = 0$	$\tau_{\beta\tau}$	2,81	3,60	2,79	3,53	2,78	3,46
	$\alpha_c = 0$ dado $\gamma_c = 0$	$\tau_{\alpha\tau}$	3,14	3,87	3,11	3,78	3,08	3,71

Parte II

Se realiza la primer diferencia de la serie ventas y se presentan a continuación el gráfico correspondiente, su correlograma y un test ADF.

15

20

```
Augmented Dickey-Fuller test for d_ventas including 5 lags of (1-L)d_ventas (max was 3, criterion modified AIC) sample size 175 unit-root null hypothesis: a = 1

test without constant model: (1-L)y = (a-1)*y(-1) + ... + e 1st-order autocorrelation coeff. for e: -0.009 lagged differences: F(3, 171) = 1.246 [0.2946] estimated value of (a - 1): -0.214586 test statistic: tau_nc(1) = -3.5042 asymptotic p-value 0.000451
```

2.1 ¿Qué puede concluir respecto a la primer diferencia de la serie ventas? ¿Y sobre la serie en nivel?

-0.5

2.2 En función de lo observado en el correlograma de la primer diferencia de ventas se proponen tres modelos. A continuación se reporta las respectivas estimaciones e información seleccionada sobre el estadístico Q del contraste de Ljung-Box de sus residuos. De considerar la información sobre los residuos relevante, especifique hipótesis nula y alternativa, estadístico de prueba concluya al respecto. Con toda esta información disponible, ¿qué modelo ARIMA(p,d,q) sugeriría para la serie ventas?

Model 1: ARMA(1,2), using observations 1968:3-2012:4 (T = 178) Dependent variable: d_ventas

	Coefficient	Std. E.	rror	Z	p-value	
Const	1.02925	0.275	281	3.7389	0.00018	***
phi_1	0.46875	0.119	583	3.9199	0.00009	***
theta_1	0.0988948	0.141	.32	0.6998	0.48406	
theta_2	0.0810543	0.0982	2401	0.8251	0.40934	
Mean dependent var	1.89	98430	S.D. d	ependent var	2	.412073
Mean of innovations	0.0	02345	S.D. o	f innovations	1	.979705
Log-likelihood	-374	.1358	Akaik	e criterion	7	58.2716
Schwarz criterion	774	.1805	Hanna	n-Quinn	7	64.7231

Model 2: ARMA(1,1), using observations 1968:3-2012:4 (T = 178) Dependent variable: d_ventas

	Coefficient	Std. Er	ror	z	p-value	
Const	0.899745	0.2361	.05	3.8108	0.00014	***
phi_1	0.539041	0.1009	95	5.3397	< 0.00001	***
theta_1	0.0223417	0.1372	255	0.1628	0.87070	
Mean dependent var	1.89	8430	S.D. depe	ndent var		2.412073
Mean of innovations	0.00	0391	S.D. of in	novations		1.983211
Log-likelihood	-374.	4508	Akaike cr	riterion		756.9015
Schwarz criterion	769.	6286	Hannan-Q	Quinn		762.0627

Model 3: ARMA(1,0), using observations 1968:3-2012:4 (T = 178)

Dependent variable: d_ventas

	Coefficient	Std. E	rror	z	p-value	
Const	0.874838	0.187	094	4.6759	< 0.00001	***
phi_1	0.552667	0.060	7293	9.1005	< 0.00001	***
Mean dependent var	1.89	8430	S.D. de	pendent var	2.	412073
Mean of innovations	-1.03	5e-16	S.D. of	innovations	1.	994706
Log-likelihood	-374	4738	Akaike	criterion	75	52.9476
Schwarz criterion	759	.3112	Hannaı	n-Quinn	75	55.5282

		Q-stat. [p-value]							
	Modelo 1		Modelo 2		Modelo 3				
1	0.0046	[0.946]	0.0002	[0.989]	0.0240	[0.877]			
6	2.3658	[0.883]	3.3844	[0.759]	3.3398	[0.765]			
12	6.3359	[0.898]	7.2734	[0.839]	7.1315	[0.849]			
18	12.2627	[0.833]	13.0568	[0.788]	13.0059	[0.791]			
24	13.2625	[0.926]	14.0355	[0.900]	13.9638	[0.903]			

Ejercicio 2 (35 puntos)

Tomando datos de una encuesta realizada por la revista *Psychology Today* a 610 personas, se busca encontrar cómo afectan diferentes factores a la infidelidad dentro de un matrimonio. Para ello se cuenta con las siguientes variables:

nrelac: cantidad de relaciones extramatrimoniales en el año anterior

• hombre: vale 1 si la persona encuestada es hombre

• edad: edad en años

• anioscdo: años de matrimonio

• hijos: vale 1 si la persona encuestada tiene hijos

rankmat: valoración subjetiva de la calidad del matrimonio que hace la persona

encuestada, varía entre 1 y 5, siendo 5 la mejor

relig: refleja la religiosidad de la persona encuestada, varía entre 1 y 5

siendo 5 el mayor grado de práctica religiosa

• educ: años de educación formal

Estadísticas Descriptivas

Número de relaciones en el año	Freq.	Percent	Cum.
0 1 2 3 7 12	451 34 17 19 42 38	75.04 5.66 2.83 3.16 6.99 6.32	75.04 80.70 83.53 86.69 93.68 100.00
Total	601	100 00	

. sum hombre edad anioscdo hijos rankmat relig educ

Variable	Obs	Mean	Std. Dev.	Min	Max
hombre edad anioscdo hijos rankmat	601 601 601 601	.4758735 32.48752 8.177696 .7154742 3.93178	.4998336 9.288762 5.571303 .4515641 1.103179	0 17.5 .125 0 1	1 57 15 1 5
relig educ	601 601	3.116473 16.16639	1.167509 2.402555	1 9	5 20

Parte I

- 1. Analice brevemente las estadísticas descriptivas.
- 2. ¿Entiende que la variable "nrelac" puede presentar algún tipo de censura o truncamiento? Explique
- 3. Si entiende que se presenta un problema de censura o truncamiento, define qué tipo de censura o truncamiento se observa.

Parte II

Se estima un modelo Tobit para la variable dependiente nrelac

- . *Modelos 3
- . tobit nrelac hombre edad anioscdo hijos rankmat relig educ, r 11(0)

nrelac	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
hombre edad anioscdo hijos rankmat relig educ _cons	1.1831 1904162 .537995 .8984287 -2.289961 -1.709846 .092386 7.365336	.9802659 .0887664 .1469876 1.330698 .3923566 .4069273 .2025922 4.26185	1.21 -2.15 3.66 0.68 -5.84 -4.20 0.46 1.73	0.228 0.032 0.000 0.500 0.000 0.000 0.649 0.084	7421091 3647503 .2493164 -1.715017 -3.060536 -2.509038 3054982 -1.004792	3.108308 0160822 .8266736 3.511875 -1.519386 9106551 .4902701 15.73546
/sigma	8.270711	.4558289			7.375479	9.165943

Obs. summary:

- 451 left-censored observations at nrelac<=0
- 150 uncensored observations
- O right-censored observations
- 1. Derive la función de verosimilitud del modelo.
- 2. Comente los resultados del modelo
- 3. En la página siguiente se presentan los efectos marginales asociados al modelo Tobit
 - a. Explique cuáles son los diferentes tipos de efectos marginales que se pueden obtener en modelos y relaciónelos con las salidas presentadas debajo
 - b. Señale las diferencias en las interpretaciones de cada efecto marginal (ilustre con fórmulas donde le parezca más relevante).
 - c. Explique cuál efecto marginal le parece más interesante en este problema en particular.
 - d. Comente los resultados obtenidos en los efectos marginales que a usted le resulten más relevantes para el problema bajo análisis.

Parte III

Luego de estimados los modelos anteriores, se plantea la posibilidad de que exista un problema de sesgo de selección que esté afectando los resultados.

- 1. Explique qué se entiende por sesgo de selección en el marco de modelos con variable dependiente limitada y cuál sería la interpretación de un sesgo de este tipo en este ejercicio.
- 2. Proponga una estrategia de estimación alternativa que permita corregir este sesgo, detallando los pasos a realizar.
- 3. Explique qué se entiende por restricción de exclusión y proponga una variable que podría utilizarse en este caso para cubrir esa restricción. ¿Necesita información extra para asegurar que la variable propuesta es correcta?

Pregunta 1 (10 puntos)

Considere el siguiente modelo de regresión:

$$y_i = \alpha + \beta x_i^* + u_i$$
 donde se cumple que $cov(x_i^*, u_i) = 0$

Se tiene una muestra $\left\{ y_{i},x_{i},w_{i}\right\} _{i=1,\dots,N}$ siendo

$$x_i = x_i^* + \varepsilon_i \qquad \qquad w_i = x_i^* + v_i$$

Se supone $cov(\varepsilon_i, u_i) = 0$ $cov(v_i, u_i) = 0$ y $cov(\varepsilon_i, v_i) = 0$ $cov(\varepsilon_i, x_i^*) = 0$ $cov(v_i, x_i^*) = 0$

- 1) Encuentre el sesgo que existe al estimar Beta en una regresión de y utilizando como regresor x. ¿En general, será dicho sesgo de igual magnitud al que se producirá cuando se utiliza w como regresor en lugar de x? Justifique
- 2) Explique rigurosamente si es posible obtener a partir de los datos disponibles una estimación consistente del parámetro Beta. En caso afirmativo explique brevemente como procedería para obtener dicha estimación.

Pregunta 2 (10 puntos)

Considere el siguiente modelo con variable dependiente binaria

$$y_i^* = \beta_0 + \beta_1 x_i + \beta_2 D_i + \beta_3 D_i x_i + u_i$$

$$y_i = 1(y_i^* > 0)$$

- 1) Siendo x una variable continua y D una variable binaria. Obtenga la formula de los efectos parciales asociados a la variable x:
 - a) para los individuos para los cuales D=1
 - b) el individuo "promedio" de la muestra

Suponga alternativamente que el modelo es: a) el modelo de probabilidad lineal; b) el modelo logit.

2) Explique las diferencias y señale en qué condiciones los dos efectos son similares.

Pregunta 3 (10 puntos)

Sean:

$$y_t = y_{t-1} + e_t \operatorname{con} e_t \sim iid(0, \sigma_e^2) \operatorname{y} \operatorname{cov}(e_t, e_s) = 0 \forall t \neq s$$

$$x_t = x_{t-1} + u_t \operatorname{con} u_t \sim iid(0, \sigma_u^2) \operatorname{y} \operatorname{cov}(u_t, u_s) = 0 \forall t \neq s$$

- 1) ¿Qué tipo de procesos son y_t y x_t . ¿Son estacionarios? Justifique su respuesta.
- 2) Se estima la regresión $y_t = \alpha + \beta x_t + \varepsilon_t$, t = 1, 2, ..., T La estimación resulta en que el valor del estadístico t de la prueba de significación individual del parámetro Beta es 2.8.
 - a) ¿Qué es lo que cabe esperar de la hipótesis β =0?
 - b) En base a la información disponible ¿podemos concluir que estamos frente a una regresión espúrea? ¿y a una relación de cointegración? Justifique rigurosa y detalladamente.