Feuille d'exercices 4

Exercice 1. (Sous-groupes finis du groupe multiplicatif d'un corps)

(i) Soient G un groupe et x, y deux éléments d'ordre fini de G. On suppose que xy = yx et que les ordres respectifs n et m de x et y sont premiers entre eux. Montrer que xy est d'ordre fini nm.

On fixe dorénavant un corps k et $G \subseteq k^*$ un sous-groupe fini (multiplicatif).

- (ii) Si n = |G|, montrer que $X^n 1$ est scindé dans k[X], ses racines étant exactement les éléments de G. En déduire que, pour tout d divisant n, le polynôme $X^d 1$ est scindé à racines distinctes dans G.
 - (iii) Conclure que G est un groupe cyclique d'ordre n.
- (On pourra commencer par montrer que, si p^r divise n avec p premier, alors G admet un élément d'ordre p^r , puis on construira un élément d'ordre n dans G.)
 - (iv) En déduire que, si k est un corps fini, alors k^* est cyclique (Théorème de Gauss).

Exercice 2. Soient P un polynôme irréductible dans k[X] de degré d et L son corps de décomposition dans une clôture algébrique fixée de k.

- (i) Montrer que $[L:k] \leq d!$. À quelle condition a-t-on égalité?
- (ii) Donner un exemple du cas d'égalité avec d = 3.

Exercice 3. Posons $\rho = e^{2i\pi/3}$ et considérons les extensions $K = \mathbb{Q}[\sqrt[3]{2}]$ et $L = K[\rho]$.

- (i) Calculer $[K: \mathbf{Q}]$ et déterminer $\operatorname{Hom}_{\mathbf{Q}-\operatorname{alg}}(K, K)$.
- (ii) Déterminer $\operatorname{Hom}_{\mathbf{Q}[\rho]-\operatorname{alg}}(L,L)$.
- (iii) Montrer que $\operatorname{Hom}_{\mathbf{Q}\text{-alg}}(L,L)$ est isomorphe au groupe \mathfrak{S}_3 .

Exercise 4. Soit $P(X) = X^3 - X - 1 \in \mathbb{Q}[X]$.

- (i) Montrer que P est irréductible sur \mathbf{Q} .
- (ii) Soit $L = \mathbf{Q}[X]/(P)$ l'extension de degré 3 de \mathbf{Q} correspondante. Montrer que, si x désigne la classe de X dans L, on a l'égalité $\mathbf{Q}[x] = \mathbf{Q}[x^2]$ dans L et exprimer x comme un polynôme en x^2 .
- (iii) Montrer que P possède une unique racine réelle, qui est un $nombre\ de\ Pisot\text{-}\ Vijayaraghavan}^{\ 1}$.

$$\sqrt[3]{\frac{1}{2} + \frac{1}{6}\sqrt{\frac{23}{3}}} + \sqrt[3]{\frac{1}{2} - \frac{1}{6}\sqrt{\frac{23}{3}}} \simeq 1,324717957244746025960$$

de P est le plus petit tel nombre.

^{1.} On appelle nombre de Pisot-Vijayaraghavan toute racine réelle positive d'un polynôme unitaire à coefficients entiers dont les autres racines sont des nombres complexes de module strictement inférieur à un. On peut montrer que la racine réelle

Exercice 5. Soient k un corps de caractéristique p et $a \in k$.

- (i) Soit $P(X) = X^p X a \in k[X]$. Montrer P est irréductible si et seulement s'il ne possède pas de racine.
- (ii) Si P est irréductible et K est un corps de rupture de P, que dire du groupe $\operatorname{Hom}_{k\text{-alg}}(K,K)$?

Exercice 6. Soient k un corps et $f = T^d - a_1 T^{d-1} + a_2 T^{d-2} + \cdots + (-1)^d a_d \in k[T]$ un polynôme unitaire de degré d. Soit

$$A = k[X_1, \dots, X_d] / ((\sum_i X_i) - a_1, (\sum_{i < j} X_i X_j) - a_2, \dots, \prod_i X_i - a_n).$$

le quotient de l'anneau de polynômes $k[X_1,\ldots,X_d]$ par l'idéal engendré par les

$$\sum_{i_1 < \dots < i_r} X_{i_1} \cdots X_{i_r} - a_r$$

pour $1 \le r \le d$.

(i) Montrer que, par construction, l'image de f dans A[T] est scind'ee sur A : on a l'égalité

$$f = \prod_{i=1}^{d} (T - x_i)$$

dans A[T], où les x_i , $1 \le i \le d$, désignent les images des X_i dans A par la surjection canonique $k[X_1,\ldots,X_d] \twoheadrightarrow A$.

(ii) Soit \mathfrak{m} un idéal maximal de A. Montrer que A/\mathfrak{m} est un corps de décomposition de f sur k.