(Lecture 5) September 11th, 2019 ~ Multin(n, ?) > x, ~ Bin(n, g) TO THE X EXPRESSION C = CHAMPING [Mar (x) Colon) - Called ven l'to tomose its whole Let $\vec{x} := \vec{E}(\vec{x}) = \vec{E}(\vec{x})$ XINT ME IN STATE OF DISTORDED IN Let M = [X11 ... X1m] Em = [E(X11) ... E(Xm) Xn1 · · · Xnm] E(Xm) · V E(nm) 0= = Var (x) = E(x) - m2 0= = (ov [x, x] := E[x, x] - m, m2 = ... = E(x, m)(x, - m)] If x, x2 hel > 0,2 = 0 If x, x, x, x, > 0, = 0 Var [x, +x,] = 0, +0, 2+20, Roles for Covaviance i) Cov [x,x] = Vas (x) = 0 2 1 1 1 2 1 2 1 2 1 2) Cov (x, x) - Cov (x, x,) 3) (DV [X,+X, Xs] = COV [X,Xs] + COV [X,X. 4) Cor [a, X, , a= 12] = a, a, o,

5) Var [x,+...+ x,] = 2 2 cov [x; x;] Example: Var(x+x2) = \(\sum_{i=1} \sum_{j=1} \) \(\sum_{i=1} \sum_{j=1} \) \(\sum_{i} \sum_{i} \sum_{j} \sum_{j} \) \(\sum_{i} \sum_{j} \sum_{j} \) \(\sum_{i} \sum_{j} \sum_{j} \) \(\sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \) \(\sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \) \(\sum_{i} \sum_{j} \ [[Var (x,) Cov[x,x,] ... (ov[x,x,]] [(ov[x,x,] Var (x,) Cou (xe, X.) -x - - Var (xe 2 is Symmethic, kxk mathix diagonal is non-negative >= E [ZZT] - MMT IF X, --- X to the Z= 0, 0, 0 - 1 x 1 2 x 1 5 is called a Variance Covariance Variance - Covariance

Familie (they algebra expession (546,662) :) Vor(S) = VS(1-S) Vor(S) = VS(1-S)We recal to compe Jig where it is we know og < O Viti Uij:= E [XiXj] - MiMj was () structured $= \underbrace{\sum_{X_i \in S_{inp} \in \mathcal{N}} \underbrace{\sum_{X_i \in S_{inp$ Recent to the American vision of the 29/10 $X_i \sim B_{in}(n_i P_i)$ $(X_j \sim B_{in}(n_i P_j))$ Xi = Xii + Xzi+... + Xni where Xii, ... Xni No Bern (Pi) >Xj= Xij + Xzj + ... + Xnj where Xij, ..., Xnj ~ Bem(E) Z= X, + ... + Xn. Such that X, X, ... , x, ~ Multi(1, 3)

So
$$\left(\frac{2}{2} \in (X_{k_1}, X_{k_2})\right) - nP_i P_i = -nP_i P_i$$

So $Var(\vec{X}) = \left(\frac{nP_i(i-P)}{nP_i(i-P)} + \frac{nP_i P_i}{nP_i(i-P)}\right)$
 $\left(\frac{nP_i P_i}{nP_i} + \frac{nP_i P_i}{nP_i(i-P)}\right)$
What if $\vec{P} = \frac{1}{2}\vec{P}$

(Sde note) Let Mi,..., Mx be the expected returns Let $\vec{W} = \begin{bmatrix} \vec{w}_1 \\ \vdots \\ \vec{A} \end{bmatrix} = 1$. Your portolio is F=W, X, + ... + Wk Xk = WX "Markowite Oztinal Theory" XX Growl: Mr. M. and find in Soh theref Var(F) is minimal Roles for vever expectation and Variance E[2+2] = M + 2 (50) 18 18 E 2+2 = E [a, X, +... + a, X, E] a. M. + ... + a. M. = a. M. Var [ax] - Var [a, K, t-+ax Xx] = \frac{1}{2} \frac{1}{2} \left(\text{ov} \left(\arta_{i} \text{X}_{i}, \arta_{j} \text{X}_{k} \right) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \text{aca}_{j} \text{ac}_{j} ?

= Nice likear algebra explession.
n n i iiv in ii c = =
EAR Such that ACREX conserves
[[a, X, + a, X, + + o, X]] [[a, X, + a, X, + + a, X, X]
= ElanXI + Obe X2 + + Obe Xk
[E[O _L , X ₁ + a _L , X ₂ + ··· + a _L , X _k].]
[E[OII XI + OI I X + + OFF XF].]
- 13.37
$= \begin{bmatrix} \vec{a}_1 \cdot \vec{M} \\ \vec{a}_2 \cdot \vec{M} \end{bmatrix} = A \vec{M}$
az M - X M NO (X X NO) = 10
X to the X to X
[a, · n]
A MANUEL E SE KILL
Consider a Va where UER KIE
1 CKXI ZCRK
quadratic
4244
ar Va = [a, ax] [av 11 + + ax Vive]
a Va = [a1 ak] aivit + + ak Vik
Ul Vai + + Qu Vai
199-Lex. 217 = -
00n (F. 3-0)
SAA- (II) [a,Vki + ···+, ak Vkk]
CHARLE TO THE VEK
= a, a, V, + a, a, V, x = 5, 1 (a, a, V, V, V)
= a, a, V, + a, a, V, + + a, a, c, V, + + a, a, V, + + a, a, V, + + a, a, v, V, +
ax a, Vx, + ax az Vx, + + axaxVx,

- Mice liken whereben