import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.cluster.hierarchy as sch from sklearn.cluster import AgglomerativeClustering

-----read dataset-----data = pd.read\_csv('Downloads/crime\_data.csv') data

|    | Unnamed: 0  | Murder | Assault | UrbanPop | Rape |
|----|-------------|--------|---------|----------|------|
| 0  | Alabama     | 13.2   | 236     | 58       | 21.2 |
| 1  | Alaska      | 10.0   | 263     | 48       | 44.5 |
| 2  | Arizona     | 8.1    | 294     | 80       | 31.0 |
| 3  | Arkansas    | 8.8    | 190     | 50       | 19.5 |
| 4  | California  | 9.0    | 276     | 91       | 40.6 |
| 5  | Colorado    | 7.9    | 204     | 78       | 38.7 |
| 6  | Connecticut | 3.3    | 110     | 77       | 11.1 |
| 7  | Delaware    | 5.9    | 238     | 72       | 15.8 |
| 8  | Florida     | 15.4   | 335     | 80       | 31.9 |
| 9  | Georgia     | 17.4   | 211     | 60       | 25.8 |
| 10 | Hawaii      | 5.3    | 46      | 83       | 20.2 |
| 11 | Idaho       | 2.6    | 120     | 54       | 14.2 |
| 12 | Illinois    | 10.4   | 249     | 83       | 24.0 |
| 13 | Indiana     | 7.2    | 113     | 65       | 21.0 |
|    |             |        |         |          |      |

-----normalize-----

def norm\_func(i):

x = (i-i.min())/(i.max()-i.min())return (x)

-----divide-----

divide = norm\_func(data.iloc[:,1:])
divide

|   | Murder   | Assault  | UrbanPop | Rape     |
|---|----------|----------|----------|----------|
| 0 | 0.746988 | 0.654110 | 0.440678 | 0.359173 |
| 1 | 0.554217 | 0.746575 | 0.271186 | 0.961240 |
| 2 | 0.439759 | 0.852740 | 0.813559 | 0.612403 |
| 3 | 0.481928 | 0.496575 | 0.305085 | 0.315245 |
| 4 | 0.493976 | 0.791096 | 1.000000 | 0.860465 |
| 5 | 0.427711 | 0.544521 | 0.779661 | 0.811370 |
| 6 | 0.150602 | 0.222603 | 0.762712 | 0.098191 |
| 7 | 0.307229 | 0.660959 | 0.677966 | 0.219638 |
| 8 | 0.879518 | 0.993151 | 0.813559 | 0.635659 |
| 9 | 1.000000 | 0.568493 | 0.474576 | 0.478036 |

Fext(0.5, 1.0, 'Dendrogram')



a = AgglomerativeClustering (n\_clusters=4, affinity='euclidean', linkage='single')
a

AgglomerativeClustering(linkage='single', n\_clusters=4)

------prediction-----predict = a.fit\_predict(divide)
clusters = pd.DataFrame(predict,columns=['clusters'])
clusters

|    | clusters |
|----|----------|
| 0  | 0        |
| 1  | 3        |
| 2  | 0        |
| 3  | 0        |
| 4  | 0        |
| 5  | 0        |
| 6  | 0        |
| 7  | 1        |
| 8  | 2        |
| 9  | 0        |
| 10 | 0        |
| 11 | 0        |
| 12 | 0        |
| 13 | 0        |
| 14 | 0        |
| 15 | 0        |
|    |          |

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

data = pd read\_csv('Downloads/crime\_data

data = pd.read\_csv('Downloads/crime\_data.csv')
data

|    | Unnamed: 0  | Murder | Assault | UrbanPop | Rape |
|----|-------------|--------|---------|----------|------|
| 0  | Alabama     | 13.2   | 236     | 58       | 21.2 |
| 1  | Alaska      | 10.0   | 263     | 48       | 44.5 |
| 2  | Arizona     | 8.1    | 294     | 80       | 31.0 |
| 3  | Arkansas    | 8.8    | 190     | 50       | 19.5 |
| 4  | California  | 9.0    | 276     | 91       | 40.6 |
| 5  | Colorado    | 7.9    | 204     | 78       | 38.7 |
| 6  | Connecticut | 3.3    | 110     | 77       | 11.1 |
| 7  | Delaware    | 5.9    | 238     | 72       | 15.8 |
| 8  | Florida     | 15.4   | 335     | 80       | 31.9 |
| 9  | Georgia     | 17.4   | 211     | 60       | 25.8 |
| 10 | Hawaii      | 5.3    | 46      | 83       | 20.2 |
| 11 | Idaho       | 2.6    | 120     | 54       | 14.2 |
| 12 | Illinois    | 10.4   | 249     | 83       | 24.0 |
| 13 | Indiana     | 7.2    | 113     | 65       | 21.0 |

------scale------

scaler = StandardScaler()

scaled = scaler.fit\_transform(data.iloc[:,1:])

scaled

```
------function------
wss = []
for i in range (1,11):
  kmeans = KMeans (n_clusters=i)
  kmeans.fit(scaled)
  wss.append(kmeans.inertia_)
  -----plot-----
plt.plot(range(1,11),wss)
plt.title('Elbow Curve')
                           Elbow Curve
    200
    175
    150
    125
    100
     75
     50
     25
      ----clusters-
clusters = KMeans (n clusters=3)
clusters.fit(scaled)
KMeans(n clusters=3)
 clusters.labels
 array([1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1,
        2, 1, 1, 2, 2, 1, 2, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0,
        2, 0, 0, 2, 2, 0])
data['New Clusters'] = clusters.labels
clusters.cluster_centers_
array([[-0.49440658, -0.3864845, 0.58167593, -0.26431024],
         [ 1.01513667, 1.02412028, 0.19959126, 0.85556386],
        [-0.88515915, -1.0213324, -0.94990286, -0.92016524]])
```

-----grouping-----

data.groupby('New Clusters').agg(['mean']).reset\_index(drop=True)

|   | Murder    | Assault | UrbanPop  | Rape     |
|---|-----------|---------|-----------|----------|
|   | mean      | mean    | mean      | mean     |
| 0 | 5.656250  | 138.875 | 73.875000 | 18.78125 |
| 1 | 12.165000 | 255.250 | 68.400000 | 29.16500 |
| 2 | 3.971429  | 86.500  | 51.928571 | 12.70000 |

-----data-----

data

|   | Unnamed: 0  | Murder | Assault | UrbanPop | Rape | New Clusters |
|---|-------------|--------|---------|----------|------|--------------|
| 0 | Alabama     | 13.2   | 236     | 58       | 21.2 | 1            |
| 1 | Alaska      | 10.0   | 263     | 48       | 44.5 | 1            |
| 2 | Arizona     | 8.1    | 294     | 80       | 31.0 | 1            |
| 3 | Arkansas    | 8.8    | 190     | 50       | 19.5 | 2            |
| 4 | California  | 9.0    | 276     | 91       | 40.6 | 1            |
| 5 | Colorado    | 7.9    | 204     | 78       | 38.7 | 1            |
| 6 | Connecticut | 3.3    | 110     | 77       | 11.1 | 0            |
| 7 | Delaware    | 5.9    | 238     | 72       | 15.8 | 0            |

-----plot-----

sns.Implot('Assault','Rape',data=data,hue='New Clusters',fit\_reg=False,size=6) plt.title('Assault-Rape plot')



-----dbscan-----

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

from sklearn.cluster import DBSCAN

from sklearn.preprocessing import StandardScaler

-----read data-----

data = pd.read\_csv('Downloads/crime\_data.csv')
data

|    | Unnamed: 0  | Murder | Assault | UrbanPop | Rape |
|----|-------------|--------|---------|----------|------|
| 0  | Alabama     | 13.2   | 236     | 58       | 21.2 |
| 1  | Alaska      | 10.0   | 263     | 48       | 44.5 |
| 2  | Arizona     | 8.1    | 294     | 80       | 31.0 |
| 3  | Arkansas    | 8.8    | 190     | 50       | 19.5 |
| 4  | California  | 9.0    | 276     | 91       | 40.6 |
| 5  | Colorado    | 7.9    | 204     | 78       | 38.7 |
| 6  | Connecticut | 3.3    | 110     | 77       | 11.1 |
| 7  | Delaware    | 5.9    | 238     | 72       | 15.8 |
| 8  | Florida     | 15.4   | 335     | 80       | 31.9 |
| 9  | Georgia     | 17.4   | 211     | 60       | 25.8 |
| 10 | Hawaii      | 5.3    | 46      | 83       | 20.2 |
| 11 | Idaho       | 2.6    | 120     | 54       | 14.2 |
| 12 | Illinois    | 10.4   | 249     | 83       | 24.0 |
| 13 | Indiana     | 7.2    | 113     | 65       | 21.0 |

\_\_\_\_\_divide\_\_\_\_\_

divide = data.iloc[:,1:]

divide

|    | Murder | Assault | UrbanPop | Rape |
|----|--------|---------|----------|------|
| 0  | 13.2   | 236     | 58       | 21.2 |
| 1  | 10.0   | 263     | 48       | 44.5 |
| 2  | 8.1    | 294     | 80       | 31.0 |
| 3  | 8.8    | 190     | 50       | 19.5 |
| 4  | 9.0    | 276     | 91       | 40.6 |
| 5  | 7.9    | 204     | 78       | 38.7 |
| 6  | 3.3    | 110     | 77       | 11.1 |
| 7  | 5.9    | 238     | 72       | 15.8 |
| 8  | 15.4   | 335     | 80       | 31.9 |
| 9  | 17.4   | 211     | 60       | 25.8 |
| 10 | 5.3    | 46      | 83       | 20.2 |
| 11 | 2.6    | 120     | 54       | 14.2 |
| 12 | 10.4   | 249     | 83       | 24.0 |

```
-----array-----
array = divide.values
array
array([[ 13.2, 236.,
                                         58.,
                                                      21.2],
                                         48.,
                                                      44.5],
                10., 263.
                                         80.,
                  8.1, 294.
                                                      31.],
                                         50.,
                  8.8, 190.
                                                      19.5],
                                          91.,
                           276.
                                                      40.6],
                                         78.,
                                                      38.7],
                  7.9, 204.
                                         77.,
                  3.3, 110.
                                                      11.1],
                                         72.,
                  5.9, 238.
                                                      15.8],
                                         80.,
                 15.4, 335.
                                                      31.9],
                 17.4, 211.
                                         60.,
                                                      25.8],
                                         83.,
                                                      20.2],
                  5.3,
                            46.
                  2.6, 120.
                                         54.
                                                      14.2],
                                         83.,
                                                      24. ],
21. ],
                10.4, 249.
                                          65.,
                   7.2, 113.
                                         57.,
                                                      11.3],
                  2.2,
                            56.
                  6. , 115.
                                         66.,
                                                      18.],
                                         52.,
                  9.7, 109.
                                                      16.3],
                                          66.,
                                                      22.2],
                 15.4, 249.
                                                       7.81.
                             83.
                                         51. .
   -----scaler-
scaler = StandardScaler()
scaled = scaler.fit transform(array)
scaled
array([[ 1.25517927,
                                       0.79078716, -0.52619514, -0.00345116],
                                       1.11805959, -1.22406668,
                0.51301858,
                                                                                     2.50942392],
                                      1.49381682,
                                                             1.00912225,
                                                                                    1.05346626],
               0.07236067,
             [ 0.23470832,
                                      0.23321191, -1.08449238, -0.18679398],
                0.28109336,
                                       1.2756352 , 1.77678094,
                                                                                     2.08881393],
                0.02597562,
                                      0.40290872,
                                                              0.86954794,
                                                                                     1.88390137],
             [-1.04088037, -0.73648418,
                                                             0.79976079, -1.09272319],
             [-0.43787481,
                                      0.81502956,
                                                             0.45082502, -0.58583422],
             [ 1.76541475,
                                       1.99078607,
                                                             1.00912225,
                                                                                    1.1505301 ]
                                                                                    0.49265293],
                2.22926518,
                                      0.48775713, -0.38662083,
             [-0.57702994, -1.51224105,
                                                              1.21848371, -0.11129987],
             [-1.20322802, -0.61527217, -0.80534376, -0.75839217],
             [ 0.60578867,
                                      0.94836277,
                                                             1.21848371,
                                                                                    0.29852525],
             [-0.13637203,
                                     -0.70012057, -0.03768506,
                                                                                    -0.0250209
             [-1.29599811, -1.39102904, -0.5959823 , -1.07115345],
             [-0.41468229, -0.67587817,
                                                             0.03210209, -0.34856705],
             [ 0.44344101, -0.74860538, -0.94491807, -0.53190987],
                                      0.94836277, 0.03210209,
             1.76541475,
                                                                                    0.10439756],
  -----dbscan–
dbscan = DBSCAN (eps=0.6,min samples=16)
dbscan.fit(scaled)
  DBSCAN(eps=0.6, min samples=16)
   ----labels-
dbscan.labels
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
           -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
          dtype=int64)
```

------dataframe------clusters = pd.DataFrame(dbscan.labels\_,columns=['clusters']) clusters

## clusters

|    | Clusters |
|----|----------|
| 0  | -1       |
| 1  | -1       |
| 2  | -1       |
| 3  | -1       |
| 4  | -1       |
| 5  | -1       |
| 6  | -1       |
| 7  | -1       |
| 8  | -1       |
| 9  | -1       |
| 10 | -1       |
| 44 | 4        |