Ensemble

Un ensemble est une collection d'objets distincts. Ceci est loin d'être une définition rigoureuse, mais reflet bien l'intuition que tout le monde a des ensembles.

Toute la théorie des ensembles est basée sur la notion d'appartenance: on écrit $a \in A$ lorsque l'élément a appartient à l'ensemble A. Toute propriété ou construction ensembliste peut être définie à partir de l'appartenance et de connecteurs logiques.

Définitions et notation

L'accolade est le symbole de prédilection pour écrire un ensemble en notation mathématique. Par exemple, l'ensemble des voyelles de l'alphabet latin s'écrit $\{a,e,i,o,u,y\}$. On parle de **définition extensionnelle** lorsque on écrit un ensemble en donnant la liste de ses éléments; bien évidemment ceci n'est possible que pour les **ensembles finis**.

Des ensembles infinis peuvent être construits par définition inductive. Ceci s'applique, par exemple, aux nombres naturels.

De nouveaux ensembles peuvent être définis à partir d'ensembles $plus\ grands$ en utilisant des propositions logiques. Si A est un ensemble et P une proposition logique portant sur les éléments de A, on **définit par compréhension** l'ensemble B des éléments de A qui satisfont P. On note cela

$$B = \{x \in A \mid P(x)\}.$$

Par exemple, on peut définir les nombres paires de la façon suivante:

$$\{x \in \mathbb{N} \mid x = 0 \mod 2\}.$$

Diagrammes de Venn

Les diagrammes de Venn permettent de représenter graphiquement des propriétés logiques des ensembles. Un ensemble est représenté par un contour fermé contenant les éléments de l'ensemble à son intérieur. Un dessin explique mieux que cent mots, voici les diagrammes de Venn de trois ensembles: les alphabets latin, grec et cyrillique.

On ne dessine pas nécessairement tous les élément d'un ensemble, par exemple quand il est infini.

Sous-ensembles

On dit qu'un ensemble A est **contenu** dans un ensemble B, et on écrit $A \subset B$, lorsque pour tout $a \in A$ on a aussi $a \in B$. En utilisant un prédicat du premier ordre on peut ré-écrire cela comme $x \in A \Rightarrow x \in B$. Avec les diagrammes de Venn, l'inclusion ensembliste est naturellement exprimée par le dessin suivant.

Opérations ensemblistes

Union

L'union de deux ensembles A et B, notée $A \cup B$, est l'ensemble constitué de tous les éléments qui appartiennent soit à A, soit à B. En logique du premier ordre

$$x \in (A \cup B) \Leftrightarrow (x \in A \lor x \in B).$$

En diagrammes de Venn

Intersection

L'intersection de deux ensembles A et B, notée $A \cap B$, est l'ensemble constitué de tous les éléments qui appartiennent à la fois à A et à B. En logique du premier ordre

$$x \in (A \cap B) \Leftrightarrow (x \in A \land x \in B).$$

En diagrammes de Venn

Complément

Il est souvent sous-entendu que tous les ensembles (A, B, etc.) dont on parle sont contenus dans un ensemble plus grand, parfois appelé un **univers** et souvent noté U. Dans ce cas, on définit le **complément** d'un ensemble A comme étant l'ensemble des $x \in U$ qui ne sont pas dans A, et on note \bar{A} . En logique du premier ordre

$$x \in \bar{A} \Leftrightarrow \neg x \in A.$$

En diagrammes de Venn (complément de l'ensemble de gauche)

Produit Cartésien

Le produit Cartésien de deux ensembles A et B, noté $A \times B$, est l'ensemble formé de tous les couples (a,b) avec $a \in A$ et $b \in B$. Le produit Cartésien n'est pas aisément exprimé en termes d'appartenance, par conséquent on est obligés d'introduire la notation de couple (\cdot, \cdot) dans notre langage:

$$(a,b)\in (A imes B)\Leftrightarrow a\in A\wedge b\in B.$$

On peut démontrer que le produit Cartésien est associatif, i.e. que

$$A \times (B \times C) = (A \times B) \times C$$

par conséquent on note simplement $A \times B \times C$ ce produit. Le produit Cartesien $A \times A$ est aussi noté A^2 , et A^n représente le produit $A \times \cdots \times A$ de n copies de A.

Exercice: Prouvez l'associativité du produit Cartésien.

Le produit Cartésien ne se prête pas bien à la représentation par diagrammes de Venn. On peut quand même le représenter dans un plan (ou en espace à plusieurs dimensions, dans le cas d'un produit de plusieurs ensembles) en identifiant les axes des abscisses et des ordonnées aux éléments de A et de B et en identifiant les points du plan aux couples (a,b). Voici la représentation du produit Cartésien de deux copies des nombres réels \mathbb{R}^2 (il s'agit du plan Cartésien bien connu en analyse).

Voir aussi le graphe d'une fonction.

Autres opérations

Différences

La **différence ensembliste** de A par B, notéé $A \setminus B$, est définie par la formule

$$x \in (A \backslash B) \Leftrightarrow (x \in A \land \neg x \in B).$$

La différence symétrique de A et B, notéé $A \Delta B$, est définie par la formule

$$x \in (A \Delta B) \Leftrightarrow (x \in A \backslash B \lor x \in B \backslash A).$$

Exercice: Dessinez les diagrammes de Venn des différences ensembliste et symétrique.

Ensemble des parties

Étant donné un ensemble A, on note $\mathcal{P}(A)$ son ensemble des parties, c'est à dire l'ensemble contenant tous les sous-ensembles de A. Les diagrammes de Venn ne peuvent pas représenter l'ensemble des parties de façon convenable.

Exercice: Donnez une formule logique du premier ordre exprimant "B est l'ensemble des parties de A". Donnez-en une version qui n'utilise que le symbole d'appartenance et des connecteurs logiques du premier ordre.

Fonctions

Voir Fonction.

Une fonction d'un ensemble A vers un ensemble B est une loi qui associe à chaque élément de A un unique élément de B.

Cardinalité

Voir Cardinalité

La cardinalité d'un ensemble A, notée |A| ou #A, est le nombre d'éléments de A. Si A est infini, sa cardinalité est infinie, il existent cependant plusieurs sortes d'infini.

Exercice: Montrer par induction que deux ensembles finis A et B peuvent être mis en bijection si et seulement si |A| = |B|.

Ensembles remarquables

Voici une liste de quelques ensembles bien connus.

- L'ensemble vide, noté Ø, qui ne contient aucun élément et qui a cardinalité 0.
- L'alphabet latin est un ensemble fini de cardinalité 26;
- Les nombres naturels \mathbb{N} , $\{0, 1, 2, \ldots\}$;
- Les entiers $\mathbb{Z}, \{\ldots, -2, -1, 0, 1, 2, \ldots\}$;
- Les rationnels \mathbb{Q} , c'est à dire les nombres qui peuvent être écrits sous forme de fraction $\frac{a}{h}$ avec $a,b\in\mathbb{Z}$;
- Les réels \mathbb{R} , c'est à dire les nombres qui peuvent être écrit comme la limite d'une suite de rationnels;
- Les complexes \mathbb{C} , c'est à dire les nombres de la forme a+ib avec $a,b\in\mathbb{R}$ et $i=\sqrt{-1}$;
- Pour tout alphabet Σ (non nécessairement fini), on note Σ^* l'ensemble de toutes less *chaînes de caractères* sur l'alphabet.

Pour approfondir

Paradoxe de Russel

Il n'existe pas de chose tel l'ensemble de tous les ensembles. Russel a montré que supposer son existence entraîne une contraddiction. Voir cette page Wikipedia.

2011-2020 Mélanie Boudard http://christina-boura.info/en/content/home, Luca De Feo http://creativecommons.org/licenses/by-sa/4.0/.