Mathematica Cours 6

Q1 On dit qu'un entier naturel n est premier ssi il est >1 et si ses seuls diviseurs positifs sont 1 et lui même, ce qui s'écrit en mathématica : PrimeQ[n]==True

On veut ajouter les nombres premiers compris entre 2 et 100. Pour cela :

- * partir d'une somme S initialisée à 0
- * faire varier k de 2 à 100
- * à la k°étape, S vaut la somme des nombres premiers compris entre 2 et k-1: si k est premier , faire S=S+k (le nouveau S écrase l'ancien) : il faudra donc imbriquer un "If" dans un "Do"

A la fin, S est bien la réponse voulue

- **Q2** Construire la liste des nombres premiers compris entre 2 et 100; pour cela, initialiser une liste au vide (de la même façon qu'on a initialisé S à 0) et faire comme Q1
- **Q** 3 Soit à calculer le nombre de façons de payer 100F à l'aide de pièces de 1,2 et 5 F uniquement (pour les plus jeunes d'entre vous, F signifie Franc), c'est à dire S = nombre de triplets (i,j,k) d'entiers naturels vérifiant i+2j+5k=100.

On remarque que si (i,j,k) est un triplet solution alors $i \le 100, j \le 50$ et $k \le 20$.

Pour calculer S:

- * initialiser S à 0
- * faire varier (i, j, k) à l'aide de trois boucles imbriquées
- * rajouter 1 à S à chaque fois que i + 2j + 5k = 100

S est un compteur, valant 0 au début, il vaudra donc bien le nombre de triplets solutions à la fin

While

Tant que la condition est réalisée, faire la suite d'instructions s'écrit : While[condition, suite d'instructions]

Quand on a le choix entre une boucle Do et une boucle While, on préferera une boucle Do qui est plus simple d'utilisation

Exemple

On cherche le plus grand entier naturel n tel que $1^2 + 2^2 + ... + n^2 < 1000000$

- **Q 4** Première façon, par tâtonnement : donner différentes valeurs à n dans $\sum_{k=1}^{n} k^2$
- **Q5** Deuxième façon : calculer $\sum_{k=1}^{p} k^2$ à l'aide d'une boucle Do portant sur p variant de 1 à 1000.

A chaque fois que la somme est < 1000000, faire n = p. Vérifier que ça marche. Noter que cette solution n'est pas très satisfaisante car d'une part, pourquoi p varie-t-il de 1 à 1000 et pas de 1 à 2000 ?

D'autre part, le calcul de $\sum_{k=1}^{p} k^2$ est effectué inutilement dès que p dépasse la bonne réponse

Q6 Troisième façon : utiliser un While en initialisant la somme S à 0 et l'entier k à 0. A la k° étape, si $S + k^2$ est < 1000000, changer S en $S + k^2$ et k en k + 1.

Comparer le résultat avec la bonne réponse et identifier le problème