Social Media Analytics

Alberto Filosa

30/9/2020

Indice				1 Scenario	
1	Sce	nario	1	1 Huge amount of data are exchanged on social medi	
	1.1	Internet	2	through various devices. Information process is fully integrated within object and activities.	
2	Social Media		2	Information is provided in real time on various social	
	2.1	Social Media Analytics	3	platform:	
3	Network and Graph Theory		4	Entities: books, records, etc.;Events: launch of a new product, concert, etc.;	
	3.1	Undirected Graph	4	• Relationships: between entities events etc	
	3.2	Directed Graph	4		
	3.3	Subgraph	5		
	3.4	$Connected \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	5		
	3.5	Clustering	5		
	3.6	Tree	6	6 Social Media Analytics (SMA) has a complex proces of identifying relevant, valid, new and potentially use	
	3.7	Graph Representation	6	ful information which can be transformed into know-	
	3.8	Complex Network	6		
4	4 Metrics for Social Media Analytics		7	7	
	4.1	Connection Metrics	0	 Life quality, for transaction; Brand reputation (awareness of the brand, sent 	
	4.2	Distribution Metrics	8		
	4.3	Segmentation Metrics	9	• Forecasting the performance of finance markets.	
5	6 Community Detection		9	The aim of the course is to provide the skills to start a Social Media specialist path to learn how to extract	
	5.1	Node-centric Community	10		
	5.2	Group-centric Community	10		
	5.3	Network-centric Community	10	and tools.	
	5.4	Hierarchy-centric Community	11	JUL 2020 SOCIAL MEDIA BEHAVIOURS RESIGNISCO NICON PETRATE SISTE AND SULTO AL RIGACE MINE SOCIAL MICH.	
	5.5	Evaluation	11	VEITE OF UEEA SOOIA. ACTIVITY INCARES WITH. ARTEACH AND MT. MITCHES OF MERSON-OF OF CONTRIBUTED DO SOOIA. OF INFIRE DE SENS. SOOIA MENA ACCOUNTS. ISSES WOULD SOOIA. MITCHES OF MERSON-OF OF CONTRIBUTED DO SOOIA. OF METERS OF METERS OF THE SENS. WILLIAM OF THE SOOIA MENA ACCOUNTS. ISSES WOULD SOOIA.	
6	Ass	ortativity and Dynamics	11		

12

Sentiment Analysis

Semantic Ambiguity

1.1 Internet

Internet is the global system to connect computers around the world. TCP/IP protocols allow devices connected through internet to communicate with each other. The World Wide Web (WWW) is one of the major service of Internet. The proposal was designed to provide more effective communication system within CERN. It allows to browse through web pages and services accessible to all or a selected part of users.

Uniform Resource Identifier (URI) is a sequence of characters that uniquely identifies a generic resource, such as web address (URL), documents, images, etc.

There are different type of data:

- Structured: data are stored in databases and organized in a rigid schemes and tables (Relational Scheme);
- Semi-Structured: data aren't stored in a tabular structure, but it contains tags to separate semantic elements (E.g. HTML, XML, JSON);
- *Unstructured*: data are stored without any scheme (Narrative Text).

HTML is a computer language that uses tags to define elements in a document. It is human readable, so it also contains standard words. Other semi-structured data formats are XML, designed to store and transport data, and JSON, a syntax to store and exchanging data.

2 Social Media

The social aspect of communication was to facilitate interaction between people who shared strong relationships, the same interests or find themselves working together in specific geographical contexts. The availability of information is made possible also by the presence and diffusion of Web Browser, Search Engines and Social Media.

There are three main distinction between data collected through the Web:

- Virtual Data (or Provoked Data), obtained through conventional research methods, such as queries online, and these answers are provided by users following specific questions;
- Digitized Data, analog data transformed in another digital formats (e.g. e-books, music, etc.);

• Digital Data, traces left by users, such as page visits or interactions with Social Media. In this case they are generated spontaneously by the users visiting a web page.

Social Media has specific characteristics:

- Interactive web 2.0 applications;
- Contents are generated by the users (posts, comments, etc.);
- Users create service-specific profiles;
- Social Media facilitates the development of online social networks.

One of the most important theory about Social Media is the *Theory of Social Presence*. It states that media differ in degree of social presence between the influence of the degree of intimacy and immediacy of the means of communication.

The higher the social presence, the larger the social influence that the communication partners have on each other's behavior.

The Media Richness Theory is based on the assumption that the goal of any communication is the resolution of ambiguity and the reduction of uncertainty. The media differs in the degree of information richness (quantity and quality information transmitted in a given time period) they have. The concept of Self Presentation states that in any type of social interaction people have a desire to control the impressions of other people. This concept is related to self-disclosure.

Social Media are interactive computermediated technologies that facilitate the creation and sharing of information, ideas, career interests and other forms of expression via virtual communities and networks.

A User-Generated Content (UGC) is any form of content created by users in an online system made available on social media. The reason for creating UGC are:

• Implicit Incentives, not based on anything tangible, not directly monetizable. Social Incentives are the most common form. A user feels as active user of the community, also through the interaction of friends. It also improves the customer experience when purchasing a product; • Explicit Incentives, referred to tangible rewards. They are easily understood by most people and have immediate value regardless of the size of the community (E.g. contest or voucher). The main disadvantage is they can make believe the user that the only reason of participating is explicit incentive, reducing the influence of other type of interactions.

A Virtual Community is made up of Social Network of individuals who interact through means of communication, crossing any kind of boundaries in order to pursue mutual interests.

A Social Network is a social structure made up of a set of individuals, a series of dyadic links and other social interactions. There are many methods to analyze the structure of social entities, called Social Network Analysis (SNA), to identify local and global patterns and examine network dynamics.

There are many type of Social Media:

- *Blog*, a website containing one or more chronological posts that interactively discuss a certain topic;
- *Microblog*, publicational textual or multimedial content on Internet;
- News Sites, the paper edition of main newspapers. In these sites is possible to interact with other people;
- Forums, discussion sections in an IT platform or single sections;
- Social Networking Sites;
- Virtual Game Worlds:
- Virtual Social Worlds:
- Content Communities.

These sites produce different types of data:

- Articles, mainly form news sites;
- Posts, generally blog and Social Networking Sites;
- Tweets, Twitter's content
- *Threads*, a conversation developed between multiple users;
- Reviews, ratings left by users;
- Images and Videos.

2.1 Social Media Analytics

Web Analytics is the measurement, collection, analysis and reporting of Web data for the purposes of understanding and optimizing Web usage.

Social Media Analytics is monitoring, analyzing, measuring and interpreting digital interactions and relationships of people, topics, ideas and content. Interaction takes place in workplace and external-facing communities.

It is possible to divide the analyzes into two main categories:

- Social Network Analysis;
- Social Content Analysis.

SMA in the *business* context is the process of measuring, analyzing and interpreting interactions and conversations in Social Media regarding a brand, product, service or a topic of interest. The analysis is based on elements that influences the customer behavior, the perception and feelings of the customer respect to a brand end their level of engagement. There are many business objectives:

- Brand Advocacy, an indicator that expresses the highest degree of brand loyalty, so a customer can recommend the brand to other people;
- Business Reputation Management, constantly monitoring and managing the company's online presence and how the brand is perceived in a positive light and allowing to gain new customers;
- Community Management, the process of building an authentic community through various interactions;
- Demand Generation, the strategy of various marketing programs aimed at certain interest in the products/services of a company.

To plan an analysis activity is necessary to answer at these questions:

- Why: the reasons that should lead to online analysis:
- What: what does the analytic activity consist of and what are the phases that make it up;
- How: what are the tools and resources to equip to create a structured and effective monitoring process;
- Who: who are the actors involved in the monitoring and analysis process of the web and Social Media;
- Where: what are the sources tha must be taken into consideration for an effective analysis;
- When: when and with what timing it is necessary to activate the listening and analysis strategy.

The phases of Social Media Analysis are:

- 1. Planning of the analysis activity;
- 2. Data identification:
- 3. Data Analysis, models and techniques that allows to answer to the objectives developed, selected or integrated among those available;
- 4. Information interpretation and visualization, better interpreting information obtained from data analysis.

3 Network and Graph Theory

Network Theory is the study of structures representing symmetrical or asymmetrical relationships between objects. It is also a part of Graph Theory: a graph is composed by nodes (also known as vertices) connected through links (edges). Examples of networks are:

- Technological networks, designed for distribution of goods, resources and services (e.g. Internet);
- Information networks, made up of data and information linked together in some way (e.g. World Wide Web);
- Biological networks, representing the interaction patterns between biological elements (e.g. Neural Network);
- Social networks, where vertices represent people of groups connected by some form of social interaction, such as friendship.

In particular, Social Network Analysis (SNA) is the process of investigating social structures through the use of networks and Graph Theory. These networks are usually visualized in sociograms (also known as Social Network Graph) where vertices are represented as points and edges as lines.

A Graph is a pair of vertices (V) and edges (E), G = (V, E), such that $E \subseteq [V]^2$. The set of vertices of a graph is denoted as $V(G) = v_1, v_2, \dots, v_n$, while the set of Edges is denoted as $E(G) = e_1, e_2, \dots, e_n$. The representation is to draw a point for each vertex and join these points with lines if there's a connection:

3.1 Undirected Graph

A graph is Undirected if edges are directed from one vertex to another (e.g. Twitter). Given the edge e = (a,b), a and b are called Extreme and Adjacent vertices of e, called the incident edge. a is called Neighbor of b in G and vice versa. Two edges e, f are Adjacent if they have a common vertex. The Neighborhood of a, N(a), is the set of vertices adjacent to a. The Star of a, s(a), is the set of edges incident in a.

The *Degree* of a vertex, d(v) is the number of edge incident to a node, equivalent to the number of neighbors of v; each loop is counted twice, while a vertex with degree 0 is an isolated vertex. The value $\delta(G) = \min\{d(v) \mid v \in V\}$ is the minimum degree, while the value $\Delta(G) = \max\{d(v) \mid v \in V\}$ is the maximum degree:

$$d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = 2|E(G)| = m$$

There are many different type of graphs:

- Null graph, made up of only isolated graphs;
- Regular graph, if all vertices of G have the same degree k;
- Complete graph, in which each pair of distinct vertices are adjacent;

3.2 Directed Graph

A Directed graph is a graph with all bidirectional edges (e.g. Facebook). Given the edge e = (a, b), e is called Outgoing edge from a, denoted as direct Predecessor, and Ingoing edge in b, known as direct Successor. Given a vertex a of a directed graph G, $E^+(a)$ is the set of outgoing edges from a and $E^-(a)$ the set of incoming edges in a. A Sink vertex is a vertex with only incoming edges, while with only outgoing edges is called Source vertex.

The *In-Degree* of a vertex v is the number of edges arriving at the v vertex, while the *Out-Degree* is the number of edges starting from the vertex v.

The Degree d(v) of a vertex v is the sum of the number of its incoming and outgoing edges.

3.3 Subgraph

A Subgraph of a graph G = (V, E) is a graph included within the main graph that contains all vertices and edges in G. It is possible to obtain subgraphs by removing some vertices and/or edges from G.

Given a graph G=(V,E) with $V=\{v_1,\ldots,v_n\}$ and $E=\{e_1,\ldots,e_n\}$, a Walk is a finite (or infinite) alternating sequence of vertices and edges. A walk is called Simple if edges and vertices of the walk are all distinct, otherwise it is Not Simple. In particular, there are many different types of walks:

- Trail, in which all edges are distinct;
- Path, in which all vertices are distinct;
- *Directed*, for each edge in the walk the initial vertex is the head and final is the tail of the walk;
- Closed, where the extreme vertices coincide (also known as cycle). A circuit allows repetition of vertices, but not edges.

3.4 Connected

Connectivity k(G) is the basic concept of graph theory. It measures the minimum number of elements that must be removed to disconnect the graph. In particular, an Articular point is a vertex whose removal disconnects a component of the graph, while a Bridge is an edge whose removal disconnect a component of the graph.

When k(G) = 2, we talk about *Biconnectivity* no single edge or vertex removal disconnects the graph and no network failure points compromise the network itself.

3.5 Clustering

A Clique is a set of vertices C totally connected in a graph G. It usually ignores single vertices and vertex connected by an edge. In particular, a $Maximal\ Clique$ is a clique not extended adding a new adjacent vertex, while a $Maximum\ Clique$ is the largest clique in a graph.

The *Clustering Coefficient* is the measure of the degree in which nodes tend to be connected to each other. There are 3 different ways to calculate this:

• Local Clustering Coefficient: given a set of neighbors N(v), it is the number of edges between the members of neighbors divided by the number of potential edges between them (k = d(v)):

$$cc(v) = \frac{||N(v)||}{k(k-1)}$$
 $cc(v) = \frac{2||N(v)||}{k(k-1)}$

• Average Clustering Coefficient, which is the average of the clustering coefficient for each single node of the graph G:

$$cc(G) = \frac{1}{|V|} \sum_{i=1}^{n} cc(v_i)$$

• Global Clustering Coefficient, based on triples of vertices (Open if 3 nodes are connected by 2 edges and Closed if connected by 3 edges). It is the number of the closed triplet divided by the total number of triplets:

$$cc_{\triangle} = \frac{3n_{\triangle}(G)}{n_{\wedge}(G)} = \frac{\sum_{i=1}^{n} cc(v_i)w_i}{\sum_{i=1}^{n} w_i}$$

3.6 Tree

An *Undirected Tree* is an undirected, connected and acyclic graph in which a node is designated as the root, while a *Directed Tree* is a directed graph that has a root node and there are no arcs entering the root, each node has exactly one incoming edge and for each node there is a path from the root to the node.

The *Depth* of a tree is the length of the path from the root to the node, a *Level* the set of nodes at the same depth and *Tree Height* the maximum depth reached by leaves

3.7 Graph Representation

Let G be a graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and $E(G) = \{e_1, e_2, \dots, e_m\}$. The Adjacency Matrix $A(G) = [a_{ij}]$ is an $n \times n$ matrix where a_{ij} are the number of edges between two vertices v_i and v_j .

The Incidence Matrix $I(G) = [m_{ij}]$ where:

- $m_{ij} = 1$ if v_i is incident to e_j , otherwise $m_{ij} = 0$;
- $m_{ij} = -1$ if e_j leaves v_i , $m_{ij} = 1$ if e_j enters v_i , otherwise $m_{ij} = 0$;

The $Adjacent\ List\ Adj(G)$ is an array of n lists. To each vertex of G corresponds a list containing its neighbors:

The weight of the edge (u, v) is store with the vertex v in the list of u.

3.8 Complex Network

Interaction networks are complex systems composed of several parts connected to each other and intertwined with each other so that the result is different from the sum of the parts. The structure (Topology) of the contact network is crucial in determining collective behavior.

In Regular Networks each node is connected to a fixed number of nodes. They have regular patterns within the structure, in which they may or not be k-regular graphs and the Entropy ≈ 0 , the degree of randomness. There are many examples of regular networks:

• Linear Network, a linear sequence L of connected vertices: $L=v_1,e_{12},v_2,e_{23},v_3,\ldots,v_{k-1},e_{(k-1)k},v_k;$

- Ring Network, in which each node is connected to exactly two other nodes, forming a ring: $A = v_1, e_{12}, v_2, e_{23}, v_3, \dots, v_k, e_{k1}, v_1;$
- Star Network, a tree with a single vertex of maximum degree: $S = v_1, e_{12}, v_2, v_1, e_{13}, v_3, \dots, v_1, e_{1k}, v_k$.

Summary Linear Ring Order ||L|| = kDegree $1 \le d(L) \le 2$ d(A)2Clustering Coefficient cc(L) = 0cc(A) = 0||A|| = kSize ||L|| = k - 1diam(L) = k - 1Diameter Degree of Connectivity Not Biconnected Biconnected Adjacency Matrix Diagonals

In Random Networks pairs of nodes are randomly connected by a given number of connections. Two nodes are connected by a certain probability. All nodes have ap-

proximately the same number of neighbors, which differs

slightly from the average value.

Complex Networks of interactions have substantially different characteristics from both classes. The Complex Network Theory shows non intuitive characteristics and can be made up of millions of units communicating with each other. Mathematical methods are used to extract information from complex networks in a synthetic way. For example, online social networks are complex networks: the personal network of contact is usually composed of a first order area, with an ego-centric network, with direct relationship, a second order and so on, with a socio-centric network. There are several phenomena related to the Theory of Complex Networks:

- 1. Small Word, an experiment remained famous and repeated in various social networks. Milligram randomly chose a sample fo American and asked them to deliver a message to a stranger knowing only few information. The results show how short paths exist between individuals in large social networks and how can be f**Stard** by ordinary people;
- $\|A\|=k$ 2. Clustering, Stendency in social network where are d(A)2 created cod(Si) inities in relation with each other, cc(A)=0 measured do(Si) usities coefficient (cc). Random $\|A\|=k$ networks coefficient below interaction networks with refediam(A) = k/2 rence to diam(Si) world property, but they differ Biconnected in the column and coefficient because in a typical in-Diagonals + Angloral Exist Rotwood Columnum up which larger than a cc of a random network;
 - 3. Strength of Weak Ties, a strength of a tie is given by the probably linear combination of the amount of time, emotional intensity, intimacy and exchange of services characterizing the tie. Strong Ties are people united in primary networks (eg family, organization), while Weak Ties those who characterize the informal networks of people, more important than the strong one. The Tie Strength is measured by identifying Shortcut Bridges, loosing the bridge and check if the distance between two nodes increases when the arc is removed;
 - 4. Scale Invariance, a negative exponential relationship between the number of nodes and the number of their connection. When a node need to establish a new connection, it prefers to do it with a node (tipically called Hubs) with many connections, leading to exponential growth. The role of hubs is connecting areas of the graph that would otherwise be separate.

4 Metrics for Social Media Analytics

There are three main families of metrics:

• Connection, in which social network entities are connected;

- Distribution, in which information can flow within 4.2 a social network;
- Segmentation, clustering the components of the social network.

4.1 Connection Metrics

Homophily is the tendency of individuals to associate and tie with each other similar one, sharing common characteristics (E.g. gender or age) that facilitate communication and relationship formation. Social Media favors homophilic relationships because it shows similar posts of your interest by your user profile examined with likes and interactions personalizing your content. The perception of interpersonal similarity improves coordination and the expected payoff of interaction and helps people access information forming opinions and threads, but can translate in a limited social worlds forming closed communities or filter bubbles on Social Network sites where people with similar ideologies interact only with each other (Echo Chambers).

Multiplexity is the number of relationship levels contained in a link, associated with the strength of the bond.

Mutuality/Reciprocity is the extent to which two actors mutually exchange friendship or other interaction.

Network Closure measures the completeness of relational triads, using various clustering coefficient cc to measure this closure. It refers to the concept of triadic closure, a property in which 3 nodes A, B and C have strong tie A-B and A-C, then there is a strong or weak tie B-C. Another theory based on Network Closure is the Cognitive Balance, the propensity of two individuals to want to try the same things toward an entities that unites them. If the triad is not closed, then the people connected want to close thi triad to achieve closure in the relationship. In a social network a strong triadic closure occurs with a high probability because they have many things in common and they can create a link. It can predict the development of ties in a network and show the progression of connectivity.

Proximity/Propinquity is the tendency for actors to have more links with others who are geographically close, measured with geolocation information. For example, two people living on the same floor have a higher propensity to establish relationships than those living on different floors.

4.2 Distribution Metrics

Centrality is a group of metrics that aim to quantify the importance or influence of a particular node in a network. In Graph Theory it identifies the most important vertices, in a Social Network the most influential people. The general case is called Degree Centrality, the risk of a node to catch whatever is flowing through the network (in the graph theory is the degree of a vertex): $c_D(v) = d(v)$. In a directed graph is necessary to explicit the in-degree and out-degree. It is possible to normalize the degree centrality, computed as:

$$\overline{c_D} = \frac{c_D(v)}{n-1}$$

In a connected graph the Closeness Centrality $c_C(v)$ is the reciprocal of the sum of the distances from v to all other nodes:

$$c_C(v) = \frac{1}{\sum_u d(v, u)}$$

The Normalized version is expressed as $\overline{c_C}(v) = (n-1)c_C(v)$.

The Betweennes Centrality $c_B(v)$ is the sum of the number of the shortest path between each pair that cross the vertex $(\sigma_{st}(v))$ divided by the number of shortest paths between each pair of vertices in a graph (σ_{st}) :

$$c_B(v) = \sum_{s \neq t \neq v} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

It is possible to compute the Normalized Betweennes Centrality as the $c_B(v)$ divided by the maximum possible number of geodesics crossing node v ($2c_B(v)$ for undirected graphs):

$$\overline{c_B}(v) = \frac{c_B(v)}{(n-1)(n-2)}$$

Delta Centrality is the importance of a node in the entire network, calculated by comparing the performance P(G) (as the number of edges) to the performance P(G') obtained deactivating the node v:

$$C_{\Delta} = \frac{P(G) - P(G')}{P(G)}$$

It is possible to calculate the Delta Centrality using Efficiency, measured as the inverse of their distance $d(v_i,v_j)$. The efficiency of a graph is:

$$E(G) = \frac{1}{n(n-1)} \sum_{i,j=1}^n \frac{1}{d(v_i,v_j)}$$

Density is the percentage of effective links in a network out of the total possible number. A dense graph is a graph in which the number of effective edges approaches the number of potential edges, while a sparse graph the number with few edges than the potential ones. The degree is measured as follow (2|E(G)| if undirected graph):

$$D(G)\frac{|E(G)|}{n(n-1)}$$

Other Distribution Metrics are:

- *Distance* is the minimum number of ties necessary to connect two people;
- Structural Holes is the absence of links between two parts of a network;
- Strength of a Tie is the linear combination of time, emotional intensity, intimacy, reciprocity, ect.

4.3 Segmentation Metrics

There are two different type of Counting:

- Counting of Cliques, if each individual is directly related to each other individual;
- Counting of Social Circles, groups of individuals less closely linked than in a clique.

The *Cohesion* is the degree of actors directly related connected to each other cohesive bonds. An important metric is the *Structural Cohesion*, defined as the minimum number of people or ties of a Social Network that must be removed to disconnect the group (identical to Connectivity).

5 Community Detection

Preferential Attachment is a property of some network where the great majority of new edges are connected to nodes with an already high degree, compared to others. The result is a network with very few nodes with an high degree of connection.

It can happen because people want to be associated with popular people, ideas, etc, increasing their *popularity*; *quality*, evaluating people based on objective quality criteria, so higher nodes will attract more attention; *mixed model*, among nodes of similar attribute.

A Community is a subset of nodes among which there are relatively strong, direct and frequente ties (e.g. group, cluster). One of the most important task studying network is identifying communities, which allows to discover groups of interacting people, studying interaction between them, inferring missing node values or predicting unobserved connections. In Social Network communities represent groups of nodes (users) that show similar characteristic and interaction among them (link prediction). The definition can be subjective, because it can be densely-knit or each component can be a community. Communities can be overlap, in which some users belong to 2 communities, or disjoint, in which each node belongs exclusively to 1 community.

The Link Prediction is the prediction of which nodes are likely get connected given a Social Network; the output is a list of ranked pairs of nodes.

The Community Detection is confused for clustering, but in the first data is linked in a graph and network data tends to be discrete, leading algorithm using the graph property directly.

Community Detection methods can be divided into 4 main categories:

5.1 Node-centric Community

The *Node-centric Community* is a community in which each node in a group satisfies certain properties:

- Complete Mutuality, where nodes belong to just one clique. A clique is a maximal complete subgraph of 3 or more nodes all adjacent to each other. It is possible to find communities for the maximum cliques or all maximal cliques. The brute-force is not recommended, it is necessary to prune nodes with degree equal or less than k-1;
- Reachability of Members, in which communities where all nodes in the group should be reachable in k-jumps. The k-clique approach aims to find a maximal subgraph in which the largest distance between any nodes less than k (shortest path given a subgraph). The k-club approach aims to find a substructure of diameter $\leq k$;
- Nodal Degrees ().

5.2 Group-centric Community

The *Group-centric Community* is a community which requires the whole group to satisfy a certain condition. The main concept is the network density, defined as the number of edges in the network over the total number of possible edges between all pairs of nodes. It measures how well connected a network is (perfectly connected network is a clique). A subgraph is a quasi-clique if

$$\frac{2|E_s|}{|V_s|(|V_s|-1)} \geq \gamma$$

A greedy algorithm can be adopted to find a maximal quasi-clique, starting from the node with the largest degree and expanding it with nodes likely contribute to a larger quasi-clique. This method continues until no mode node can be added.

5.3 Network-centric Community

Network-centric Community aims to find communities considering global connection of nodes and divide network into disjoint set. The main approaches are:

Node Similarity measures how similar their interaction patterns are. Two nodes are structurally equivalent if they connect to the same set of nodes (they share the same set of neighbors). This definition is too strict because rarely occur in a large scale and is difficult to compute.

To resolve this it is possible to use vector similarity, creating a matrix of connections and calculate the Cosine Similarity or Jaccard Similarity:

$$cos(\theta) = \frac{AB}{\|A\|\|B\|} J(A,B) \quad = \frac{|A \cap B|}{|A \cup B|}$$

It is useful for huge network for computing the vertex similarity and applying k-means clustering algorithm: each cluster is associated with a centroid and each node is assigned to the cluster with the closest centroid (recompute the centroid of each cluster).

Another possible approach is the *Spectral Clustering*, representing a similarity graph as a matrix and analyse the spectrum (= eigenvalues λ) of the matrix:

$$\begin{bmatrix} w_{11} & \dots & w_{1n} \\ \vdots & \dots & \vdots \\ w_{n1} & \dots & w_{nn} \end{bmatrix} \times \begin{bmatrix} w_{11} \\ \vdots \\ w_{n1} \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

The goal is embed points in a low-dimensional space, in which cluster denoting communities are more easy to find. It is necessary to compute the Adjacency matrix and compute the Laplacian matrix:

$$A_{ij} = \begin{cases} w_{ij} \text{ weight of edge } (i, j) \\ \text{0otherwise} \end{cases}$$

So the basic stages of spectral clustering are:

- 1. Pre-processing: Construct a matrix representation of the dataset;
- 2. Decomposition: compute eigenvalues and eigenvectors of the matrix and map each point to a lower dimension based on 1 or more eigenvectors.
- 3. Grouping: assign points to 2 or more clusters based non the new representation.

Modularity Maximization tries to maximize the distance of a network from a random network. Modularity measures the group interaction compared with the expected random connection. In a network with E edges, for two nodes d_i and d_j the expected random connection between them is $\frac{d_i d_j}{2E}$. The modularity of a group is

$$\sum (A_{ij} - \frac{d_i d_j}{2E})$$

and is necessary to maximize:

$$\frac{1}{2E}\sum_{C}\sum_{i,j\in C}(A_{ij}-\frac{d_{i}d_{j}}{2E})z_{ij}$$

where z_{ij} defines if two edges are in the same group (0 otherwise). If A_ij is very close to the expected random network, the relationship between two nodes is weak (A_ij matrix considered as random). Finally it is possible to compute the spectral clustering and using k-means approach to select the communities.

5.4 Hierarchy-centric Community

Hierarchy-centric Community aims to build a hierarchical structure of communities based on network topology. It facilitates the analysis of different resolutions. There are two approaches:

The Divisive Hierarchical Clustering divides the nodes into several set, where each set is further partitioned into a smaller set. To determine these partition it is possible to use Network-centric Methods. One particular example is based on edge-betweenness, called Girvan-Newman Algorithm (repeat until all edges are removed):

- 1. Compute the edge-betweenness for all edges in the graph;
- 2. Remove the edge with the highest betweenness;
- Re-compute betweenness for all edges affected by the edge removal;

Agglomerative Hierarchical Clustering initializes each node as a community. It chooses two communities satisfying certain criteria and merges into larger one. It is possible to use Maximum Node Similarity or Maximum Modularity Increase.

5.5 Evaluation

The perfect communities would be objects of the same type in the same community, but this is simply impossible. There are two types of evaluation:

- With Ground Truth, partial knowledge of what communities look like and it is given the correct community assignments. Measures are:
 - Precision;
 - Recall:
- Without Ground Truth, in a matter of analyzing attributes, such as posts, profile information, of community members to see if there is a coherency among them. It is possibile to use word frequency and wordclouds to find the top topics discussed by communities. Measures are:

- SSE;
- Community Detection algorithms.

Communities also expand, shirk or dissolve in dynamic networks:

6 Assortativity and Dynamics

In some cases hubs connect to hubs and sometimes they avoid each other, it depends on the structural properties. This pattern is a general property of real networks: it is a phenomenon known as $Degree\ Correlation\ e$, defined as the probability to find a node with degree i and j at the two ends of a randomly selected link (E is the number of edges between two elements).

$$e = \frac{E}{\|E\|}$$

The probability q_k that there is a degree-k node at the end of the randomly selected link is the following (p_k is the degree probability):

$$q_k = \frac{kp_k}{\overline{k}}$$

Hubs are expected to link to each other on how many links they have. They can be:

- Assortative, hubs show a tendency to link to each other. e_{ij} is high along the main diagonal so nodes of comparable degree tend to link to each other;
- Neutral, nodes connected to each other with the expected random probabilities. The density of links is symmetric around the average degree, so nodes link to each other randomly;
- Disarsortative, hubs tend to avoid linking to each other. e_{ij} is high along the secondary diagonal, so hubs tend to connect to small degree nodes.

If the networks has no degree correlations, $e_{jk} = q_j q_k$, structured data, displayed in rows-columns and requires otherwise the magnitude of the correlation is captured less storage. by $\sum_{i,k} jk(e_{jk} - q_j q_k)$. This is expected to be:

- > 0 for assortative networks;
- = 0 for neutral networks;
- < 0 for dissasortative networks.

To compare different network, it is possible to normalize the degree correlation coefficient:

$$r = \frac{\sum_{j,k} jk(e_{jk} - q_j q_k)}{\sum_k [k^2 - q_k - (\sum_k kq_k)^2]} \in [-1, +1]$$

An important property of a random network is the emergence of a phase transition at $\langle k \rangle = 1$, marking the appearance of the Giant Component. For Assortative networks, the transition happens to a lower value of $\langle k \rangle$, hence a giant component emerges for $\langle k \rangle \langle 1$ because it easer to start it if the high-degree nodes seek out each other. Otherwise, for Disassortative networks the transition is delayed since the hubs tend to connect to small degree nodes and have difficulty to form the giant component.

Alteration of the giant component have implications for network robustness. The Network Resilience is the effects of node and edge removal. In Assortative networks hub removal makes less damage because the hubs form a core group, while in disassortative networks is more damaging because hubs are connected to many small degree nodes. It is related to *Percolation*, when a giant component is formed.

Sentiment Analysis

From Social Network is possible to extract information about a given argument and analyzed them to make decisions (e.g. predicting market data, better quality of life). This is not so simple because it is necessary to transform data from unstructured (cannot be displayed in rows, requires more storage and are more difficult to manage) to

The transformation is necessary to extract some important information like emotion, polarity, topic and the language of the user.

In order to extract some useful information, it is necessary to set some basic components for SMA:

- Identify the Opinion Holder (User) that holds a specific opinion;
- Identify the *Object* on which an opinion is expressed:
- Identify the Aspect of the object;
- Identify the *Opinion* on an object from a user.

Social Media Analytics should be able to interpret natural language to discover if an information is subjective and determine the corresponding polarity. A text is *objective* if a post presents factual information about the world, while *subjective* if expresses feeling, emotions or beliefs. An *explicit* opinion is a subjective statement giving an opinion, while *implicit* implies an opinion. An *ironic* post is a communicative way expressing the opposite what is literally said. Emotions are complex reaction pattern involving experiential and physiological elements in which a person attempt to deal with.

The process of SMA is constituted by:

- 1. Collect real time expressions or opinion on-line or off-line:
- 2. Represent text from qualitative to quantitative data to measure compare and learn. The pre-processing techniques are remove stopwords, numbers and punctuation and apply the stemmatization. Furthermore, it is possible to represent in a vector space model the text. It is possible also to use the Word2vec model; .

- It is possible to classify in different ways:
- Lexicon-based Approach, for each sentence the process identifies term belonging to the list containing positive and negative terms with different weights. This lists is contained in a lexicon and one of the most important is the Liu lexicon opinion. The polarity of a text is given by the number of the positive and negative terms. For example, if Word_{positive} > Word_{negative} the word is positive;
- Supervised Learning, an approach in which some text are labeled and it is possible to learn a model in order to predict new texts with the corresponding polarity. To deal with negation is possible to add $NOT_{\underline{}}$ to every word between negation.
- Semi-Supervised Learning uses a small amount of information (e.g. few labeled examples and hand-built patterns) to enrich the lexicon predefined. It is possible to label a seed set of words and expand it to conjoined adjectives and cluster into two partition (positive and negative). Another possible approach is extract a phrasal lexicon from reviews using Part of Speech Tagging, identify and quantify the polarity and rate a reviews by the average polarity of phrases using Mutual and Point-wise Mutual Information;
- Unsupervised Learning, suitable for aspect-based sentiment analysis.
- 4. Predict;
- 5. Decide.

Semantic Ambiguity

The Named Entity Recognition (NER) is the task to find and classify text fragments into predefined labels. The most important model is the conditional random fields, an undirected discriminative graphical model trained to maximize the conditional probability to identify the name entity given tokens in a phrase.

$$\mathbb{P}(y|x) = \frac{e^{\sum_{t=1}^T (\sum_i \lambda_i f_i(y_t, x) + \sum_j u_j g_j(y_t, t_{t-1}, x))}}{Z(x)}$$

where:

- Feature Function: $f_i(y_t, x)$
- Transition Feature Function: $g_i(y_t, t_{t-1}, x)$

The main goal is to estimate the values of the weight vectors. λ_i and u_i are parameters to be estimated maximizing the log-likelihood of a given training set (Quasi Newton Method).

3. Classify measuring, compare and learn sentiments. Once trained the model, it is necessary to find the most probable sequence of hidden states: $y^* = \max_{y} \mathbb{P}(y|x)$. It is possible to use the Viterbi algorithm, a dynamic programming, or the Shortest Path, an integer linear programming formulation.

> Once recognized entity mentions, it is necessary to disambiguate them, using the Named Entity Linking. To cho