This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IMAGE EVALUATION TEST TARGET (MT-3)

150mm

PHOTOGRAPHIC SCIENCES CORPORATION
770 BASKET ROAD
P.O. BOX 338
WEBSTER, NEW YORK 14580
(716) 265-1600

CINCLE RILLING

microunity

Zeus System Architecture

COPYRIGHT 1996 MICROUNITY SYSTEMS ENGINEERING, INC. ALL RIGHTS RESERVED.

Craig Hansen Cnief Architect

MicroUnity Systems Engineering, Inc. 475 Potrero Avenue Sunnyvale, CA 94086.4118 Phone: 408.734.8100 Fax: 408.734.8136

email: craig@n.icrounity.com http://www.microunity.com

Contents

Consens
Tables and Figures
Introduction 6
Conformance 7
Mandatory and Optional Areas
Upward companile Modefications
Promotion of Optional Features
Unrestricted Physical Inspiementation
Draft Version
Common Elements 9
Notation
Het ordering 10
Memory 10
Byte10
Byte ordering
Memory read/load semantics
Memory write/store semantics11
Data11
Fred point Data12
Address14
Floating-prient Data14
Zeus Processor
Architectural Framework
Interfaces and Block Diagram
Instruction 17
Assembler Syntax
Instruction Structure
Gateway
User State
General Registers
Program Counter
Privilege Level
Progress Counter and Privilege Level
System, state
Fixed-point21
Load and Store21
Branch21
Addressing Operations22
Execution Operations
Floeting point
Branch Conditionally
Compare set
Anthmetic Operations
Rounding and exceptions24
NaN handling25
Floating point functions 26
Dental Signal Processing
Data handling Operations
Anthmetic Operations
Galos Field Operations
Software Conventions
Parata Maria
Register Usage
Procedure Calling Conventions40

Instruction Scheduling	47
Separate Addressing from Execution	47
Software Pipeline	47
Multiple Issue	47
Functional Unit parallelism	47
Latency	
Pipeline Organization	76
Classical Papeline Structures	4 7
Superstring Pipeline	4 9
Superstring Pipesine	XV
Superspring Pipeline Supershread Pipeline Simultaneous Multithreading	51
Superinread Inpeline	52
2 minuscone vimporterquis	33
Branch/fetch Prediction	54
Additional Load and Execute Resource	n 55
Result Forwarding	55
Instruction Set	57
Major Operation Codes	 4
Minor Operation Codes	5
General Forms	هـــ
Instruction Fetch	64
Perform Exception	65
Instruction Decode	_45
Always Reserved	72
Address	73
Address Compare	76
Address Copy Immediate	79
Address Immediate	80
Address Immediate Address Immediate Reversed	_8
Address Reversed	86
Address Shift Left Imme here Add	86 89
Address Reversed	Qr.
Address Shift Left Immediate Subtract Address Shift Immediate	90 91
Address Shift Left Immediate Subtract Address Shift Immediate	90 91
Address Shift Left Immediate Subtract Address Shift Immediate	90 91 93
Address Shift Left Immediate Subtract	90 91 93
Address Shift Left Immediate Subtract	90 91 93 94
Address Shift Left Immediate Subtract	90 91 93 94 95
Address Shift Left Immediate Subtract	90 91 93 94 95
Address Shift Left Immediate Subtract	90 91 93 94 95
Address Shift Left Immediate Subtract	90 91 94 95 97 98 101
Address Shift Left Immediate Subtract	90 91 93 95 97 98 101 int103
Address Shift Left Immediate Subtract	90 91 94 95 97 98 101 int103
Address Shift Left Immediate Subtract	909194959798101 int103105
Address Shift Left Immediate Subtract	90919394959798101105106
Address Shift Left Immediate Subtract	90919394959798101105106111
Address Shift Left Immediate Subtract	90919394959798101105106111
Address Shift Left Immediate Subtract Address Shift Immediate	909193949596101105106111112113
Address Shift Left Immediate Subtract Address Shift Immediate	909193949598101105106110111112113
Address Shift Left Immediate Subtract Address Shift Immediate	909193949598101105106110111112113114
Address Shift Left Immediate Subtract Address Shift Immediate	90919394959798105106110111112113114115117
Address Shift Left Immediate Subtract Address Shift Immediate	909194959798101103104111112113114115110
Address Shift Left Immediate Subtract Address Shift Immediate	
Address Shift Left Immediate Subtract Address Shift Immediate	
Address Shift Left Immediate Subtract Address Shift Immediate	9091949596105105111112113114115117

Group Add	135	Level One Cache	332
Group Add Halve	138	Level One Cache Stress Control	342
Group Hoolean	141	Level One Cache Redundancy	342
Group Compare	148	Memory Attributes	343
Group Compare Floating-point	154	Cache Control	
Group Copy Immediate	157	Cache Coherence	347
Group Immediate	159	Strong Ordering	348
Group Immediate Reversed		Victori Selection	
Group Implace	168	Petal Access	352
Group Reversed		Micro Translation Buffer	
Group Reversed Floating-point		Block Transletion Buffer	
Group Shift Left Immediate Add		Program Translation Buffer	
Group Shift Left Immediate Subtract		Global Virtual Cache	
Group Subtract Halve		Memory Interface	
Group Temary		Microarchitecture	
Crossbar		Sacop	
Crossbar Extract		Load	
Crossbar Field		Store	
Crossbar field Implace		Numory	
Crossber Implace		Bus interface	
Crossbar Short Immediate		Motherboard Chipsets	
Crossber Short Immediate Inplace		Pinout	
Crossbar Shuffle		Pin summary	
Crossbar Swazzle			
Crossbar Ternary		Electrical Specifications	
Ensemble		Bus Control Register	
Ensemble Convolve Extract Immediate		Emulator signals	
		A20N#	
Ensemble Convolve Floating point		INIT	
Fasemble Extract		INTR	
Ensemble hauset Immediate Ensemble Extract Immediate Japhre		NMI	
•		SNI#	
Ensemble Floating-point		STPCLK#	
•		IGNNE#	
Ensemble Inplace Floating-point		Emulator output signals	
Ensemble Reversed Floating-point Ensemble Ternary		Bus snooping	
		Locked cycles	
Ensemble Ternary Ploeting point		Locked synchronization instruction	
•		Locked sequences of bus transactions	
Ensemble Unary Floating-point		Sampled at Reset	
Wide Multiply Matrix Extract		• •	
and the second s		Bus Access	
Wide Multiply Matrix Entract Immediate Wide Multiply Matrix Floating point		Other bus cycles	
Wide Multiply Maerix Galon		· · · · · · · · · · · · · · · · · · ·	
Wide Switch		1/O cycles	
Wide Translate		Events and Threads	
Memory Management		Ephemeral Program State	
		•••	
Local Translation Buffer		Event Mask	
Clobal Translation Buffer		Fixcephons	392
		GlobalTBMss Handler	
GTB Reporter		Exceptions in detail	
Address Generation		Reserved Instruction	
Nemory Banks		Access Disallowed by virtual address	
Program Microcache		Access disallowed by tag	
Wide Microcache		ccess detail required by tag	
Lavel Zero Cache		Access disallowed by global TH	
Structure	331	Access detail required by global Th	396

Zeus System Architecture Tue, Aug 17, 1999 Global TB miss Access duallowed by local TB.... 397 Access detail required by local TB. 397 Local TB miss 398 Floating-point arithmetic 398 Power-on Reset.......399 Hus Reset..... Control Register Reset400 Melidown Detected Reset..... ---400 Double Check Reset..... Machine Check400 Panty or Uncorrectable Error in Cache...401 Parity or Communications Error in Bus., 401 Watchdog imeout Error.......402

Event Thread Exception

Reset state	402
Start Address	A(12)
Internal ROM Code	403
Memory and Devices	404
Physical Memory Map	404
Architecture Description Register	407
Status Register	
Control Register	409
Clock	412
Clock Cycle	412
Clock Event	
Clock Watchdog	
Tally	
Tally Counter	414
Tally Control	415
Thread Register	417
index	

Contents

•

Tables and Figures

precubitive notation	9
compare-branch relations2	3
compare-set relations	3
32 bst 2 way deal	6
16-bit 4-way deal	-
16-bit 2-way shuffle	•
16 bit 4 way shuffle	_
10 CH - 027 SHELE	7
16-bit reverse	8
Compress 32 bits to 16, with 4-bit right shift 3	8
Expand 16 bits to 32, with 4 bit left shift	9
remoter usage	1)
Alignment within do remon	3
Calcus) with a inters to code and data spaces 4	ζ.
canonical pipeli se	.• D
canuscal pape ane	,
superscalar p peline	,
water the former to the second	U
superpendent and pupeline	U
Supervious pipeline	1
Super-pring pipeline	2
Superspring pipeline	2
Superthread pupeline	•
Superthread papeline 5 major operation code Felia values 5	•
menor operation code feli values	•
manor operation code field values for A.MIN()R	
menor operation code field values for P \IINOR	,
many observant come near awars for 1 .11'4OK	,77
mana anamana anda field militar final 1 i i 1450	
musor operation code field values for I.Mi. 'OR	59
menor operation code field values for S.MINOR	50
menor operation code field values for S.MINOR(menor operation code field values for G. mar	50) D
minor operation code field values for S.AIINORI minor operation code field values for G.aue	50 D
minor operation code field values for S.AIINORG minor operation code field values for G.mie6 minor operation code field values for SSI IIFT 6 minor operation code field values for SSI IIFT 6	50 0 0
minor operation code field values for S.AIINORG manor operation code field values for G.aue	50 0 0
minor operation code field values for S.AIINORG minor operation code field values for C.aue	50 0 4) 1)
minor operation code field values for SAIINORI minor operation code field values for Gauss	50 0 4) 1)
minor operation code field values for S.AIINORG minor operation code field values for C.aue	50 0 4) 1)
minor operation code field values for S.MINORi minor operation code field values for G. nue	50 0 4) 1)
minor operation code field values for S.MINORi minor operation code field values for G. nue	50 0 4) 1)
manor operation code field values for S.MINORimmor operation code field values for G.nue	50 0 0 0 1
minor operation code field values for S.MINORI minor operation code field values for G.nue	50 0 0 0 1
minor operation code field values for S.MINORiminor operation code field values for G. mine	50 0 0 0 1
minor operation code field values for S.MINORI minor operation code field values for G. mine	50 0 0 0 1
minor operation code field values for S.MINORI minor operation code field values for G. nine	50 0 0 0 1
minor operation code field values for S.MINORI minor operation code field values for G. nine	50 0 0 0 1
minor operation code field values for S.MINORI minor operation code field values for G. nine	50 0 0 0 0
minor operation code field values for S.MINORI minor operation code field values for G. nine	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORiminor operation code field values for G. mino	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORiminor operation code field values for G. minominor operation code field values for ISS (1971)6 minor operation code field values for XSI (1971)6 minor operation code field values for E-minor operation code field values for E-minor operation code field values for E-minor operation code field values for E-million (1971)6 minor operation code field values for E-million (1971)7 minor operation (1971)7 minor of (1971)7 minor operation (1971)	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORiminor operation code field values for G. dise	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORiminor operation code field values for G. minor	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORiminor operation code field values for G. minor	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORI minor operation code field values for G. mine	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORI minor operation code field values for G. mine	50 00 00 00 00 00 00 00 00 00 00 00 00 0
minor operation code field values for S.MINORiminor operation code field values for G. minor	50 00 00 00 00 00 00 00 00 00 00 00 00 0

A.COM op and G.COM op sure	61
Branch gateway	107
Crossbar extract	.193
Crossbar merge extract	. 191
4-way shuffle bytes within hexlet	214
4-way shuffle bytes within tricle!	214
Ensemble convolve extract immediate doubt	ets 2 29
Ensemble convolve extract immediate comp	le e
doublets	230
doublets	mdun21
Ensemble convolve complex floating point t	المد
little endian	234
Ensemble complex multiply extract doublets	219
Ensemble scale add extract doublets.	239
Ensemble complex scale add extract doublet	240
Ensemble extract	. 240
Ensemble merge extract	241
Ensemble multiply extract immediate double	11247
Ensemble multiply extract immediate double	m24*
Ensemble multiply extract immediate comple	1
doublets	.248
Ensemble multiply extract immediate comple	•
doublets	248
Ensemble multiply add extract immediate do	ubbro.253
Ensemble multiply add extract ammediate do	ubbee-254
Ensemble multiply add extract immediate co-	moles.
doublets	255
Ensemble multiply add extract anenedate co.	moles
doublets	. 2%
doublets	270
Ensemble multiply Galvas field bytes	.2°0 .285
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex.	. 270 . 285 . 285
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix doublets.	.210 .285 .285 .290
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix doublets. Wide multiply extract matrix complex double.	.250 .285 .285 .290 6291
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix doublets. Wide multiply extract matrix complex double water multiply matrix extract immediate double.	.270 .285 .285 .290 re291
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix doublets. Wide multiply extract matrix complex double water multiply matrix extract immediate double.	.270 .285 .285 .290 re291
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex Wide multiply extract matrix doublets. Wide multiply extract matrix complex double multiply matrix extract immediate doublets. Vide multiply matrix extract immediate complex.	.270 .285 .285 .290 re291 Jens .249
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix complex doublets Wide multiply extract matrix complex double Wide multiply matrix extract immediate double Vide multiply matrix extract immediate complex doublets.	.270 .285 .285 .290 .290 .291 .4ere .299 .4ere .500
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex Wide multiply extract matrix doublets. Wide multiply extract matrix complex doublet multiply matrix extract immediate doublet multiply matrix extract immediate comploublets. Wide multiply matrix floatic is print half.	.270 .285 .285 .290 .290 .400 .299 .500 .500
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix complex doublets. Wide multiply extract matrix complex double multiply matrix extract immediate doublets. Vide multiply matrix extract immediate complex. Wide multiply matrix floatic, print half. Wide multiply matrix floatic, print half.	.270 .285 .285 .290 .290 .400 .299 .500 .500
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix complex doublets. Wide multiply extract matrix complex double multiply matrix extract immediate double multiply matrix extract immediate complex. Wide multiply matrix floatic, point half. Wide multiply matrix complex floating point	.270 .285 .285 .290 .290 .400 .299 .500 .500
Ensemble multiply Galva field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix complex doublets. Wide multiply extract matrix complex double wale multiply matrix extract immediate double multiply matrix extract immediate complex. Wide multiply matrix floatic, point half. Wide multiply matrix complex floating point. Wide multiply matrix Calons.	.270 .285 .285 .290 re291 dere .299 des .500 500 hold
Ensemble multiply Galvia field bytes. Wide multiply matrix Wide multiply matrix complex. Wide multiply extract matrix doublets. Wide multiply extract matrix complex doublets. Wide multiply matrix extract immediate doublets. Wide multiply matrix extract immediate complositels. Wide multiply matrix floatic point half. Wide multiply matrix complex floating point. Wide multiply matrix Catons. memory manageme in regarization.	.270 .285 .285 .290 re291 dere .299 sles .300 304 half
Ensemble multiply Galvia field bytes. Wide multiply matrix. Wide multiply matrix complex. Wide multiply extract metrix doublets. Wide multiply extract metrix complex doublets. Wale multiply matrix extract immediate complex doublets. Wide multiply matrix floatic.; print half. Wide multiply matrix complex floating point. Wide multiply matrix Galois. memory manageme : irganization. lical virtual address.	,270 ,285 ,295 ,290 re291 dets ,299 rdes ,500 ,500 ,505 ,605
Ensemble multiply Galva field bytes. Wide multiply matrix. Wide multiply matrix complex. Wide multiply extract metrix doublets. Wide multiply extract matrix complex doublets. Wide multiply matrix extract immediate complex doublets. Wide multiply matrix floatic.; print half. Wide multiply matrix complex floating point. Wide multiply matrix Galois. memory manageme inganization lineal virtual address are specifiers machine check errors.	270 285 285 290 (C20) dets 209 dets 500 500 500 500 500 500 500 500 500 50
Ensemble multiply Galvia field bytes. Wide multiply matrix. Wide multiply matrix complex. Wide multiply extract metrix doublets. Wide multiply extract metrix complex doublets. Wale multiply matrix extract immediate complex doublets. Wide multiply matrix floatic.; print half. Wide multiply matrix complex floating point. Wide multiply matrix Galois. memory manageme : irganization. lical virtual address.	270 285 285 290 6291 des 209 des 500 half 505 509 716 716

Tuc, Aug 17, 1999

Introduction

Introduction

MicroUnity's Zeus Architecture describes general-purpose processor, memory, and interface subsystems, organized to operate at the enormously high bandwicth rates required for broadband applications.

The Zeus processor performs integer, floating point, signal processing and non-linear operations such as Galois field, table lookup and bit switching on data sizes from 1 bit to 128 bits. Group or SIMD (single instruction multiple data) operations sustain external operand handwidth rates up to 512 bits (i.e., up to four 128-bit operand groups) per instruction even on data items of small size. The processor performs ensemble operations such as convolution that maintain full intermediate precision with aggregate internal operand bandwidth rates up to 20,000 bits per instruction. The processor performs wide operations such as crossbar switch, matrix multiply and table lookup that use caches embedded in the execution units themselves to extend operands to as much as 32768 bits. All instructions produce at most a single 128-bit register result, source at most three 128-bit registers and are five of side effects such as the setting of condition codes and flags. The instruction set design carries the concept of streamlining beyond Reduced Instructions per machine cycle.

The Zeus memory subsystem provides 64-bit virtual and physical addressing for UNIX, Mach, and other advanced OS environments. Separate address instructions enable the division of the processor into decoupled access and execution units, to reduce the effective latency of memory to the pipeline. The Zeus cache supplies the high data and instruction issue rates of the processor, and supports coherency primitives for scaleable inultiprocessors. The memory subsystem includes mechanisms for sustaining high data rates not only in b'ock anafer modes, but also in non-unit stride and scatterred access partierns.

The Zeus interface subsystem is designed to match industry-standard "Socket 7" protocols and pin-outs. In this way, Zeus can make use of the anmense infrastructure of the PC for building low-cost systems. The interface subsystem is modular, and can be replaced with appropriate protocols and pin-outs for lower-cost and higher-performance systems.

The goal of the Zeus architecture is to integrate these processor, memory, and interface capabilities with optimal simplicity and generality. From the software perspective, the entire machine state commute of a program counter, a single bank of 64 general-purpose 128-bit registers, and a linear byte-addressed shared memory space with mapped interface registers. All interrupts and exceptions are precise, and occur with low overhead.

This document is intended for Zeus software and hardware developers alike, and defines the interface at which their designs must meet. Zeus pursues the most efficient tradeoffs between hardware and software complexity by making all processor, memory, and interface resources directly accessible to high-level language programs.

Conformance

To ensure that Zeus systems may freely interchange data, user-level programs, system-level programs and interface devices, the Zeus system architecture reaches above the processor level as historium.

Manciatory and Optional Areas

A computer system conforms to the requirements of the Zeus System Architecture if and only if it implements all the specifications described in this document and other specification included by reference. Conformance to the specification is mandatory in all areas, including the instruction set, memory management system, interface devices and external interfaces, and bootstrap ROM functional requirements, except where explicit options are stated.

Optional areas include:

Number of processor threads
Size of first-level cache memories
Existence of a second-level cache
Size of second-level cache memory
Size of system level memory
Existence of certain optional interface device interfaces

Upward-compatible Modifications

From time to time, MicroUnity may modify the architecture in an upward-compatible manner, such as by the addition of new instructions, definition of reserved bits in system state, or addition of new standard interfaces. Such modifications will be added as options, so that designs that conform to this version of the architecture will conform to future, modified versions.

Additional devices and interfaces, not covered by this standard may be added in specified regions of the physical memory space, provided that system reset places these devices and interfaces in an inactive state that does not interfere with the operation of software that runs in any conformant system. The software interface requirements of any such additional devices and interfaces must be made as widely available as this architecture specification.

Promotion of Optional Features

It is most strongly recommended that such optional instructions, state or interfaces be implemented in all conforming designs. Such implementations enhance the value of the features in particular and the architecture as a whole by broadening the set of implementations over which software may depend upon the presence of these features.

Implementations that fail to implement these features may encounter unacceptable levels of overhead when attempting to emulate the features by exception handlers or use of virtual

中的人 建多大大大

J. 4.

Zeus System Architecture

Tue, Aug 17, 1999

Conformance

memory. This is a particular concern when involved in code that has real-time performance constraints.

In order that upward-compatible optional extensions of the original Zeus system architecture may be relied upon by system and application software, MicroUnity may upon occasion promote optional features to mandatory conformance for implementations designed or produced after a suitable delay upon such notification by publication of future version of the specification.

Unrestricted Physical Implementation

Nothing in this specification should be construed to limit the implementation choices of the conforming system beyond the specific requirements stated herein. In particular, a computer system may conform to the Zeus System Architecture while employing any number of components, dissipate any amount of heat, require any special environmental facilities, or be of any physical size.

Draft Version

This document is a draft version of the architectural specification. In this form, conformance to this document may not be claimed or implied. MicroUnity may change this specification at any time, in any manner, until it has been declared final. When this document has been declared final, the only changes will be to correct bugs, defects or deficiencies, and to add upward-compatible optional extensions.

Common Elements

Notation

The descriptive notation used in this document is summarized in the table below:

x + y	two's complement addition of x and y. Result is the same size
	as the operands, and operands must be of equal size.
x - y	two's complement subtraction of y from x. Result is the same
	size as the operands, and operands must be of equal size.
x * y	two's complement multiplication of x and y. Result is the same
	size as the operands, and operands must be of equal size.
x/y	two's complement division of x by y. Result is the same size
	as the operands, and operands must be of equal size.
x & y	bitwise and of x and y. Result is same size as the operands,
L	and operands must be of equal size.
XIY	bitwise or of x and y. Result is same size as the operands,
1	and operands must be of equal size.
x y	bitwise exclusive-of of x and y. Result is same size as the
1	operands, and operands must be of equal size.
·x	bitwise inversion of x. Result is same size as the operand.
x = y	two's complement equality comparison between x and y.
" '	Result is a single bit, and operands must be of equal size.
x ≠ y	two's complement inequality comparison between x and y.
1 "'	Result is a single bit, and operands must be of equal size.
x < y	two's complement less than comparison between x and y.
1	Result is a single bit, and operands must be of equal size.
x≥y	two's complement greater than or equal comparison between
1	x and y. Result is a single bit, and operands must be of equal
L	size.
√×	floating-point square root of x
xlly	concatenation of bit field x to left of bit field y
xV	binary digit x repeated, concatenated y times. Size of result is
	ly.
×y	extraction of bit y (using little-endian bit numbering) from
_ ′	value x. Result is a single bit.
Xyz	extraction of bit field formed from bits y through z of value
,	x. Size of result is y-z+1; if z>y, result is an empty string,
x?y:2	value of y, if x is true, otherwise value of z. Value of x is a
1	single bit.
x ← y	bitwise assignment of x to value of y
Sn	signed, two's complement, binary data format of n bytes
Un	unsigned binary data format of n bytes
Fn	floating-point data format of n bytes
	Trooping board delta format of 11 bytes

descriptive notation

Tue, Aug 17, 1999

Common Elements

Bit ordering

The ordering of bits in this document is always little-endian, regardless of the ordering of bytes within larger data structures. Thus, the least-significant bit of a data structure is always labeled 0 (zero), and the most-significant bit is labeled as the data structure size (in bits) minus one.

Memory

Neus memory is an array of 264 bytes, without a specified byte ordering, which is physically distributed among various components.

Byte

A byte is a single element of the memory array, consisting of 8 bits:

Byte ordering

Larger data structures are constructed from the concatenation of bytes in either little-endian or big-endian byte ordering. A memory access of a data structure of size s at address i is formed from memory bytes at addresses i through 1+s-1. Unless otherwise specified, there is no specific requirement of alignment it is not generally required that i be a multiple of s. Aligned accesses are preferred whenever possible, however, as they will often require one fewer processor or memory clock cycle than unaligned accesses.

With little-endian byte ordering, the bytes are arranged as:

With big-endian byte ordering, the bytes are arranged as:

s*8-1	5*8-8	9"2 9-8"2	-16	7	0
	yte i	byte +1		byte	l+s-1
	i	8			8

Zeus memory is byte-addressed, using either little-endian or big-endian byte ordering. For consistency with the bit ordering, and for compatibility with x86 processors, Zeus uses little-endian byte ordering when an ordering must be selected. Zeus kind and store instructions are available for both little-endian and big-endian byte ordering. The selection of byte ordering is dynamic, so that little-endian and big-endian processes, and even data structures within a process, can be intermixed on the processor.

Memory read/load semantics

Zeus memory, includic g memory-mapped registers, must conform to the following requirements regarding side-effects of read or load operations:

A memory read must have no side-effects on the contents of the addressed memory nor on the contents of any other memory.

Memory write/store semantics

Xeus memory, including memory-mapped registers, must conform to the following requirements regarding side-effects of read or load operations:

A memory write must affect the contents of the addressed memory so that a memory read of the addressed memory returns the value written, and so that a memory read of a portion of the addressed memory returns the appropriate portion of the value written.

A memory write may affect or cause side-effects on the conteats of memory not addressed by the write operation, however, a second memory write of the same value to the same address must have no side-effects on any memory; memory write operations must be idempotent.

Zeus sure instructions that are weakly ordered may have side-effects on the contents of memory not addressed by the store itself; subsequent load instructions which are also weakly ordered may or may not return values which reflect the side-effects.

<u>Data</u>

Zeus provides eight-byte (64-bit) virtual and physical address sizes, and eight-byte (64-bit) and sixteen-byte (128-bit) data path sizes, and uses fixed-length four-byte (32-bit) instructions. Arithmetic is performed on two's-complement or unsigned binary and ANSI/IEEE standard 754-1985 conforming binary floating-point number representations.

Tue, Aug 17, 1999

Common Elements

Fixed-point Data

Bit

A bit is a primitive data element:

Peck

A peck is the catenation of two bits:

Pocts

Nibble

A nibble is the catenation of four bits:

nibble

2148

A byte is the catenation of eight bits, and is a single element of the memory array:

Doublet

A doublet is the catenation of 16 bits, and is the catenation of two bytes:

Quadlet

A quadlet is the extension of 32 bits, and is the extension of four bytes:

Z.cus	Size	tem /	\n:t	uteci	nure

Tue, Aug 17, 1999

Common Elements

Octics

An octlet is the eatenstion of 64 bits, and is the extenation of eight bytes:

Hexiet

A healet is the catenation of 128 hits, and is the catenation of sixteen bytes:

Tue, Aug 17, 1999

Common Elemena

Iriclet

A triclet is the catenation of 256 bits, and is the catenation of thirty-two bytes:

	224
triclet255,,224	
32	<i></i>
triciotana con	:92
r. iciar553" 145	
¥	
	160
triclet 191160	
32	
	128
triclet 150 178	
22	
	- 96
32	
	64
triclet9564	
32	
	,,
tricietas as	
32	
32	
	triclet223_192 32 triclet191160 32 triclet159128 32 triclet12796 32

Address

Zeus addresses, both virtual addresses and physical addresses, at coeffet quantities.

Floating-point Data

Zous's floating-point formats are designed to satisfy ANSI/IEEE standard 754-1985: Binary Floating-point Arithmetic. Standard 754 leaves certain aspects to the discretion of implementers: additional precision formats, enoughing of quiet and signaling NaN values, details of production and propagation of quiet NaN values. These aspects are detailed below.

Zeus adds additional half-precision and quid-precision formats to standard 754's single-precision and double-precision formats. Zeus's double-precision satisfies standard 754's

precision requirements for a single extended format, and Zeus's quad precision satisfies standard 754's precision requirements for a double extended format.

Each precision format employs fields labeled a (sign), e (exponent), and f (fraction) to encode values that are (1) NaN: quiet and signaling, (2) infinites: (-1) ^8ao, (3) normalized numbers: (-1) ^82^1 bias(0.0), and (5) zero: (-1) ^80.

Quiet NaN values are denoted by any sign bit value, an exponent field of all one bits, and a non-zero fraction with the most rignificant bit set. Quiet NaN values generated by default exception handling of standard operations have a zero sign bit, an exponent field of all one bits, a fraction field with the most significant bit set, and all other bits cleared.

Signaling NaN values are denoted by any sign bit value, an exponent field of all one bits, and a non-zero fraction with the most significant bit cleared.

Infinite values are denoted by any sign bit value, an exponent field of all one bits, and a zero fraction field.

Normalized number values are denoted by any sign bit value, an exponent field that is not all one bits or all zero bits, and any fraction field value. The nur-eric value encoded is (-1)^82^8-1-28(1.0). The bias is equal the value resulting from setting all but the most significant bit of the exponent field, half: 15, single: 127, double: 1023, and quad: 16383.

Denormalized number values are denoted by any sign bit value, an exponent field that is all zero bits, and a non-zero fraction field value. The numeric value encoded is $(-1)^{AB} \ge 1 - bias(0,f)$,

Zero values are denoted by any sign bit value, and exponent field that is all zero bits, and a fraction field that is all zero bits. The numeric value encoded is (-1)^40. The distinction between +0 and -0 is significant in some operations.

Half-precision Floating-coint

Zeus h. If precision uses a format similar to standard 754's requirements, reduced to a 16 bit overall format. The format contains sufficient precision and exponent range to hold a 12 bit signed integer.

g

Zeus System Architecture

Tuc, Aug 17, 1999

Common Elements

Single-precision Floating-point

Zeus single precision vatishes stati- ard "54's requirements for "single."

Couble precision Floating point

Zeus double precision satisfies standard 754's requirements for "double."

Quad-precision Floating-point

Zeus quad precision sanstica standard "54's requirements for "double extended." but has additional fraction precision to use 128 bits.

12 126		112 111		96
3	•		f11196	
1	15		16	
95				64
		19564		
		32	·	
63			<u> </u>	32
		f6332		
		32		
31				0
		f310		
	<u> </u>	33		

Zeus Processor

Microl 'nity's Zeus processor provides the general purpose, high-handwidth computation rapability of the Zeus system. Zeus includes high-handwidth data paths, register files, and a memory hierarchy. Zeus's memory hierarchy includes on chip instruction and data memories, instruction and data caches, a virtual memory facility, and interfaces to external devices. Zeus's interfaces in the initial implementation are solely the "Super Socket 7" bus, but other implementations may have different or additional interfaces.

Architectural Framework

The Zeus architecture defines a compatible framework for a family of implementations with a range of capabilities. The following implementation-defined parameters are used in the rest of the document in boldface. The value indicated is for MicroUnity's first Zeus implementation.

Parame ter	Interpretation	Value	Range of legal values
7	number of execution threads	4	1 S T S 31
CE	log2 cache blocks in first-level cache		0 ≤ CE ≤ 31
CS	log ₂ cache blocks in first-level cache set	2	0 ≤ CS ≤ 4
CT	existence of dedicated taos in first-level cache	1	0 ≤ CT ≤ 1
LE	logz entries in local /B	0	0 ≤ LE ≤ 3
LB	Local TB based on base register	1	0 ≤ LB ≤ 1
GE	log2 entries in global TB	7	0 ≤ GE ≤ 15
GT	log2 threads which share a global TB		0 ≤ GT ≤ 3

Interfaces and Block Diagram

The first implementation of Zeus uses "socket ?" protocols and pinouts.

Instruction

Assembler Syntax

Instructions are specified to Zeus assemblers and other code tools (assemblers) in the syntax of an instruction mnemonic (operation code), then optionally white space (blanks or tabs) followed by a list of operands.

The instruction mnemonics listed in this specification are in upper case (capital) letters, assemblers accept either upper case or lower case letters in the instruction mnemonics. In

this specification, instruction mnemonics contain periods (".") to separate elements to make them easier to understand; assemblers ignore periods within instruction mnemonics. The instruction mnemonics are designed to be parsed uniquely without the separating periods.

If the instruction produces a register result, this operand is listed first. Following this operand, if there are one or more source operands, is a separator which may be a comma (","), equal ("="), or at sign ("@"). The equal separates the result operand from the source operands, and may optionally be expressed as a comma in assembler code. The at sign indicates that the result operand is also a source operand, and may optionally be expressed as a comma in assembler code. If the instruction specification has an equal-sign, an at-sign in assembler code indicates that the result operand should be repeated as the first source operand (for example, "A.ADD.I r4@5" is equivalent to "A.ADD.I r4=r4,5"). Commas always separate the remaining source operands.

The result and source operands are case-sensitive; upper case and lower case letters are distinct. Register operands are specified by the names r0 (or r00) through r63 (a lower case "r" immediately followed by a one or two digit number from 0 to 63), or by the special designations of "lp" for "r0," "dp" for "r1," "fp" for "r62," and "sp" for "r63." Integer-valued operands are specified by an optional sign (-) or (+) followed by a number, and assemblers generally accept a variety of integer-valued expressions.

Instruction Structure

A Zeus instruction is specifically defined as a four-byte structure with the little-endian ordering shown below. It is different from the quadlet defined above because the placement of instructions into memory must be independent of the byte ordering used for data structures. Instructions must be aligned on four-byte boundaries; in the diagram below, i must be a multiple of 4.

31	24 2	2316	15	8	7 0
byte	l+3	byte i+	2	byte H1	byte I
8		8		R	

<u>Gateway</u>

A Zeus gateway is specifically defined as an 8-byte structure with the little-endian ordering shown below. A gateway contains a code address used to securely invoke a system call or procedure at a higher privilege level. Gateways are marked by protection information specified in the TB. Gateways must be aligned on 8-byte boundaries; in the diagram below, i must be a multiple of 8.

63	56	55		48	47		40 3	19	32
	byte I+7		byte H6		Π	byte i+5	\Box	byte	1+4
	8		8			8		8	
31		23		16	15		8 7	ı	9
	byte I+3		byte +2		Т	byte I+1		byte	. 1
	8		8			8		8	

The gateway contains two data items within its structure, a code address and a new privilege level:

63		21 0
	code address	pi
	6.7	

The virtual memory system can be used to designate a region of memory as containing gateways. Other data may be placed within the gateway region, provided that if an attempt is made to use the additional data as a gateway, that security cannot be violated. For example, 64-bit data or stack pointers which are aligned to at least 4 bytes and are in little-endian byte order have pl=0, so that the privilege level cannot be raised by attempting to use the additional data as a gateway.

User State

The user state consists of hardware data structures that are accessible to all conventional compiled code. The Zeus user state is designed to be as regular as possible, and consists only of the general registers, the program counter, and virtual memory. There are no specialized registers for condition codes, operating modes, rounding modes, integer multiply/divide, or floating-point values.

General Registers

Zeus user state includes 64 general registers. All are identical; there is no dedicated zero-valued register, and there are no dedicated floating-point registers.

127		0
	REG[0]	
	REG[1]	
	REG[2]	
	•	
ì	•	
	•	
	REG[62]	
	REG[63]	
	128	

Some Zeus instructions have 64 bit register operands. These operands are sign-extended to 128 bits when written to the register file, and the low-order 64 bits are chosen when read from the register file.

Definition

Tuc, Aug 17, 1999

Zeus Processor

val ← REG|m|
endcase
enddel

in leg://me|m. sue, val|
case suc of
64:
REG|m| ← val|63⁶⁴ | 1 | val|63 | 0

128
REG|m| ← val|27.0
endcase
enddel

Program Counter

The program counter contains the address of the currently executing instruction. This register is implicitly manipulated by branch instructions, and read by branch instructions that save a return address in a general register.

63	2 10
ProgramCounter	ान
65	7

Privilege Level

The privilege level register contains the privilege level of the currently executing instruction. This register is implicitly manipulated by branch gateway and branch down instructions, and read by branch gateway instructions that save a return address in a general register.

Program Counter and Privilege Level

The program counter and privilege level may be packed into a single octlet. This combined data structure is saved by the Branch Gateway instruction and restored by the Branch Down instruction.

System state

The system state consists of the facilities not normally used by conventional compiled code. These facilities provide mechanisms to execute such code in a fully virtual environment. All system state is memory mapped, so that it can be manipulated by compiled code.

Fixed-point

Zeus provides load and store instructions to move data between memory and the registers, branch instructions to compare the contents of registers and to transfer control from one code address to another, and arithmetic operations to perform computation on the contents of registers, returning the result to registers.

Load and Store

The load and store instructions move data between memory and the registers. When loading data from memory into a register, values are zero-extended or sign-extended to fill the register. When storing data from a register into memory, values are truncated on the left to fit the specified memory region.

Lead and store instruction: that specify a memory region of more than one byte may use either little-endian or big-endian byte ordering; the size and ordering are explicitly specified in the instruction. Regions larger than one byte may be either aligned to addresses that are an even multiple of the size of the region or of unspecified alignment: alignment checking is also explicitly specified in the instruction.

Load and store instructions specify memory addresses as the sum of a base general register and the product of the size of the memory region and either an immediate value or another general register. Scaling maximizes the memory space which can be reached by immediate offsets from a single base general register, and assists in generating memory addresses within iterative loops. Alignment of the address can be reduced to checking the alignment of the first general register.

The load and store instructions are used for fixed-point data as well as floating-point and digital signal processing data; Zeus has a single bank of registers for all data types.

Swap instructions provide multithrerd and multiprocessor synchronization, using indivisible operations: add-swap, compare-swap, multiplex-swap, and double-compare-swap. A store-multiplex operation provides the ability to indivisibly write to a portion of an octlet. These instructions always operate on aligned octlet data, using either little-endian or big-endian byte ordering.

Branch

The fixed-point compare-and-branch instructions provide all arithmetic tests for equality and inequality of signed and unsigned fixed-point values. Tests are performed either between two operands contained in general registers, or on the bitwise and of two operands. Depending on the result of the compare, either a branch is taken, or not taken. A taken branch causes an immediate transfer of the program counter to the target of the branch, specified by a 12-bit signed offset from the location of the branch instruction. A non-taken branch causes no transfer, execution continues with the following instruction.

Other branch instructions provide for unconditional transfer of control to addresses too distant to be reached by a 12-bit offset, and to transfer to a target while placing the location

Tuc, Aug 17, 1999

Zeus Processor

following the branch into a register. The branch through gateway instruction provides a secure means to access code at a higher privilege level, in a form similar to a normal procedure call.

Acidressing Operations

A subset of general fixed-point arithmetic operations is available as addressing operations. These include add, subtract, Boolean, and simple shift operations. These addressing operations may be performed at a point in the Zeus processor pipeline so that they may be completed prior to or in conjunction with the execution of load and store operations in a "superspring" pipeline in which other arithmetic operations are deferred until the completion of load and store operations.

Execution Operations

Many of the operations used for Digital Signal Processing (DSP), which are described in greater detail below, are also used for performing simple scalar operations. These operations perform arithmetic operations on values of 8-, 16-, 32-, 64-, or 128- bit sizes, which are right-aligned in registers. These execution operations include the add, subcract, boolean and simple shift operations which are also available as addressing operations, but further extend the available set to include three-operand add/subtract, three-operand boolean, dynamic shifts, and bit-field operations.

Floating-point

Neus provides all the facilities mandated and recommended by ANSI/IEEE standard 754-1985: Binary Floating-point Arithmetic, with the use of supporting software.

Branch Conditionally

The floating-point compare-and-branch instructions provide all the comparison types required and suggested by the IEEE floating-point standard. These floating-point comparisons augment the usual types of numeric value comparisons with special handling for NaN (not-a-number) values. A NaN value compares as "unortiered" with respect to any other value, even that of an identical NaN value.

Zeus floating-point compare-branch instructions do not generate an exception on comparisons involving quiet or signaling NaN values. If such exceptions are desired, they can be obtained by combining the use of a floating-point compare-set instruction, with either a floating-point compare-branch instruction on the floating-point operands or a fixed-point compare-branch on the set result.

Because the less and greater relations are anti-commutative, one of each relation that differs from another only by the replacement of an L with a G in the code can be removed by reversing the order of the operands and using the other code. Thus, an L relation can be used in place of a G relation by swapping the operands to the compare-branch or compareset instruction.

No instructions are provided that branch when the values are unordered. To accomplish such an operation, use the reverse condition to branch over an immediately following unconditional branch, or in the case of an if-then-else clause, reverse the clauses and use the reverse condition.

The E relation can be used to determine the unordered condition of a single operand by comparing the operand with itself.

The following floating point compare-branch relations are provided as instructions:

Mnemonic		Branch	taken if va	Exception if			
code	C-like	Unord- ered	Greater	Less	Equal	unord- ered	invalid
E	22	F	F	F	T	no	no
LG	0	F	T	Ţ	F	no	no
L	<	F	F	Ť	F	no	no
GE	>=	F	7	F	T	no	ກວ

compare-branch relations

Compare-set

The compare-set floating-point instructions provide all the comparison types supported as branch instructions. Zeus compare-set floating-point instructions may optionally generate an exception on comparisons involving quiet or signaling NaNs.

The following floating-point compare-set relations are provided as instructions:

Mnemonic		Res	ult if values	Exception if			
code	C-like	Unord- ered	Greater	Less	Equal	unord- ered	invalid
E	==	F	F	۶	T	no	no
LG	0	F	T	Ţ	F	no	no
L	<	F	F	7	F	no	no
GE	>	F	7	F	T	no	no
EX	22	F	F	F	 	no	Ves
LGX	0	F	Ŧ	Ţ	F	no	ves
LX	<	F	F	Ţ	F	ves	ves
GEX	(=	F	T	F		ves	AG2

compare-set relations

Arithmetic Operations

The basic operations supported in hardware are floating-point add, subtract, multiply, divide, square root and conversions among floating-point formats and between floating-point and binary integer formats.

Software libraries provide other operations required by the λ NSI/IEEE floating-point standard.

Tuc, Aug 17, 1999

Zeus Processor

The operations explicitly specify the precision of the operation, and round the result (or chech that the result is exact) to the specified precision at the conclusion of each operation. Each of the basic operations splits operand registers into symbols of the specified precision and performs the same operation on corresponding symbols.

In addition to the basic operations, Zeus performs a variety of operations in which one or more products are sommed to each other and/or to an additional operand. The instructions include a fused multiply-add (E.MULADD.P), convolve (E.CON.P), matrix multiply (E.MULMAT.P), and scale-add (E.SCALADD.P).

The results of these operations are computed as if the multiplies are performed to infinite precision, added as if in infinite precision, then rounded only once. Consequently, these operations perform these operations with no rounding of intermediate results that would have limited the accuracy of the result

Rounding and exceptions

Rounding is specified within the instructions explicitly, to avoid explicit state registers for a munding mode. Similarly, the instructions explicitly specify how standard exceptions (invalid operation, division by zero, overflow, underflow and inexact) are to be handled.

When no rounding is explicitly named by the instruction (defruit), round to nearest rounding is performed, and all floating-point exception signals cause the standard-specified default result, rather than a trap. When rounding is explicity named by the instruction (N: nearest, Z. zero, F: those, C: ceiling), the specified rounding is performed, and floating-point exception signals other than inexact cause a floating-point exception trap. When X (exact, or exception) is specified, all floating-point exception signals cause a floating-point exception trap, including inexact.

This technique assists the Zeus processor in executing floating-point operations with greater parallelism. When default rounding and exception handling control is specified in floating-point instructions, Zeus may safely retire instructions following them, as they are guaranteed not to cause data-dependent exceptions. Similarly, floating-point instructions with N, Z, F, or C control can be guaranteed not to cause data-dependent exceptions once the operands have been examined to rule out invalid operations, division by zero, overflow or underflow exceptions. Only floating-point instructions with X control or when exceptions cannot be ruled out with N, Z, F, or C control need to avoid retiring following instructions until the final result is generated.

ANSI/IEEE standard 754-1985 specifies information to be given to trap handlers for the five floating-point exceptions. The Zeus architecture produces a precise exception, (The program counter points to the instruction that caused the exception and all register state is present) from which all the required information can be produced in software, as all source operand values and the specified operation are available.

 $^{^{1}{\}rm U\,S}$. Parent 5,812,439 describes this "Technique of incorporating floating point information into processor instructions."

ANSI/IEEE standard "54-1985 specifies a set of five "stocky exception" bits, for recording the occurrence of exceptions that are handled by default. The Zeus architecture produces a precise exception for instructions with N, Z, F, or C control for invalid operation, division by zero, overflow or underflow exceptions and with X control for all floating-point exceptions, from which corresponding stocky-exception bits can be set. Execution of the same instruction with default control will compute the default result with mund-to-nearest munding. Most compound operations not specified by the standard are not available with munding and exception controls.

NaN handling

ANSI/IEEE standard 754-1985 specifies that operations involving a signaling NaN or invalid operation shall, if no trap occurs and if a floating-point result is to be delivered, deliver a quiet NaN as its result. However, it fails to specify what quiet NaN value to deliver.

Zeus operations that produce a floating-point result and do not trap on invalid operations propagate signaling NaN values from operands to results, changing the signaling NaN values to quiet NaN values by setting the most significant fraction bit and leaving the remaining bits unchanged. Other causes of invalid operations produce the default quiet NaN value, where the sign bit is zero, the exponent field is all one bits, the most significant fraction bit is set and the remaing fraction bits are zero bits. For Zeus operations that produce multiple results catenated together, signaling NaN propagation or quiet NaN production is handled separately and independently for each result symbol.

ANSI/IEEE standard 754-1985 specifies that quiet NaN values should be propagated from operand to result by the basic operations. However, it fails to specify which of several quiet NaN values to propagate when more than one operand is a quiet NaN. In addition, the standard does not clearly specify how quiet NaN should be propagated for the multiple-operation instructions provided in Zeus. The standard does not specify the quiet NaN produced as a result of an operand being a signaling NaN when invalid operation exceptions are handled by default. The standard leaves unspecified how quiet and signaling NaN values are propagated though format conversions and the absolute-value, negate and copy operations. This section specifies these aspects left unspecified by the standard.

First of all, for Zeus operations that produce multiple results catenated together, quiet and signaling NaN propagation is handled separately and independently for each result symbol. A quiet or signaling NaN value in a single symbol of an operand causes only those result symbols that are dependent on that operand symbol's value to be propagated as that quiet NaN. Multiple quiet or signaling NaN values in symbols of an operand which influence separate symbols of the result are propagated independently of each other. Any signaling NaN that is propagated has the high-order fraction bit set to convert it to a quiet NaN.

For Zeus operations in which multiple symbols among operands upon which a result symbol is dependent are quiet or signaling NaNa, a priority rule will determine which NaN is propagated. Priority shall be given to the operand that is specified by a register definition at a lower-numbered (little-endian) bit position within the instruction (rb has priority over rc, which has priority over rd). In the case of operands which are catenated from two registers, priority shall be assigned based on the register which has highest priority (lower-numbered

Tue, Aug 17, 1999

Zeus Processor

bit position within the instruction). In the case of tie (as when the E.SC./L.ADD scaling operand has two corresponding NaN values, or when a E.MUL.CP operand has NaN values for both real and imaginary components of a value), the value which is located at a lower-numbered (little-endian) bit position within the operand is to receive priority. The identification of a NaN as quiet or signaling shall not confer any priority for selection – only the operand position, though a signaling NaN will cause an invalid operand exception.

The sign bit of NaN values propagated shall be consplemented if the instruction subtracts or negates the corresponding operand or (but not and) multiplies it by or divides it by or divides it into an operand which has the sign bit set, even if that operand is another NaN. If a NaN is both subtracted and multiplied by a negative value, the sign bit shall be propagated unchanged.

For Zeus operations that convert between two floating-point formats (INFLATE and DEFLATE), NaN values are propagated by preserving the sign and the most-significant fraction bits, except that the most-significant bit of a signalling NaN is set and (for DEFLATE) the least-significant fraction bit preserved is combined, via a logical-or of all fraction bits not preserved. All additional fraction bits (for INFLATE) are set to zero.

For Zeus operations that convert from a floating-point format to a fixed-point format (SINK), NaN values produce zero values (maximum-likelihood estimate). Infinity values produce the largest representable positive or negative fixed-point value that fits in the destination field. When exception traps are enabled, NaN or Infinity values produce a floating-point exception. Underflows do not occur in the SINK operation, they produce -1, 0 or +1, depending on rounding controls.

For absolute value, negate, or copy operations, NaN values are propagated with the sign bit cleared, complemented, or copied, respectively. Signalling NaN values cause the Invalid operation exception, propagating a quieted NaN in corresponding symbol locations (default) or an exception, as specified by the instruction.

Floating-point functions

The following functions are defined for use within the detailed instruction definitions in the following section. In these functions an internal format represents infinite-precision floating-point values as a four-element structure consisting of (1) s (sign bit): 0 for positive, 1 for negative, (2) t (type): NORM, ZERO, SNAN, QNAN, INFINITY, (3) e (exponent), and (4) f: (fraction). The mathematical interpretation of a normal value places the binary point at the units of the fraction, adjusted by the exponent: (-1)^s*(2^e)*f. The function F converts a packed IEEE floating-point value into internal format. The function PackF converts an internal format back into IEEE floating-point format, with rounding and exception control.

Definition

def eb ← ebris(prec) as case pref of 16:

€0 ← 5

32

```
eb - 8
               cb - 11
          128:
               € + 15
     endcase
enddef
def eb - ebiasprec) as
    cb + 0 11 lebits(prec)-1
def to - forsipreci as
     fb ← prec - 1 - eb
enddel
def a -- Fiprec, at as
    a.s \leftarrow ai_{prec-1}
     ac - alprec-2..forsipreci
     af ← airotatorecj-1.0
     if ae a lebistored then
          If al = 0 then
               AL - INFINITY
          elself alfologorech I then
               at - SNaN
               a.e -- -fbitsfpred
              af ← 1 11 affolisiprec-2.0
          etse
               MENO - 1.5
              a.e - foitspred
              a \leftarrow a
         endif
     elseif ae = 0 then
         f af = 0 then
              at ← ZERO
         cise
              AL - NORM
              a.e - 1-eblas(prec)-forts(prec)
              M 110 - 14
         endi
    else
         at - NORM
         a.e - ae-ebias[prec]-fors[prec]
         M | | | | |
    endil
enddef
def a - DEFAULTONAN as
    as - 0
    AL - ONW
    Ae -- -1
    1 \rightarrow Ls
enddef
```

```
Zeus System Architecture
                                      Tue, Aug 17, 1999
                                                                                 Zous Processus
def a - DEFAULTSNAN as
     as - 0
     ALL - SNAN
     a.e ← -1
     al \leftarrow 1
enddef
del faddja,bj as faddrja,b,Nj enddef
def c - laddria.b.round) as
     # a.b-NORM and b.b-NORM then
          // d.e are a.b with exponent aligned and fraction adjusted if a.e > b.e then
                d -- a
               e.t \leftarrow b.t
               es - bs
                e.e - a.e
                ef - bi ii oae-be
          else fale < ble then
               ts \rightarrow tb
               cs \rightarrow cb
               de - be
               df - af II Obe-ae
               e - b
          endif
          c.t \leftarrow d.t
          c.e ← d.e
          f d.s = e.s then
               cs ← ds
               to + tb - to
          elseif d.f.> e.f. then
               cs + ds
               c1 + d1 - e1
          elseif d.f c e.f then
               c.s ← e.s
               cl - el - dl
          eise
               CS ← ref
               c.t ← ZERO
          endif
     // priority is given to b operand for NaN propagation elself (b.t=SNAN) or (b.t=GNAN) then
          C - b
     elsed Ja.b-SNAM or Ja.b-ONAM then
     elsed a.t=ZERO and b.t=ZERO then
          c.t ← ZERO
          cs ← (as and bs) or fround=f and (as or bs)
     // NULL values are like zero, but do not combine with ZCRO to alter sign
     elseif a.b=ZERO or a.b=NULL then
          < ← b
     elseif b.b=ZERO or b.t=NULL then
     elseif a.b-INFINITY and b.b-INFINITY then
```

մ ա. տ. աններ

```
fas a bs then
               c - DEFAULTSNAN // Invalid
          endif
     elseif a.b-INFINITY then
          c \leftarrow a
     elself b.b-INFINITY when
          c \leftarrow b
     eke
          assert FALSE // should have covered at the cases above
     endil
enddef
def b -- fneglat as
     bs -- as
     bt \leftarrow at
     be - ae
     M \leftarrow M
enddel
def fsubjably as fsubrjab.NJ enddef
def fsubrja.b.roundj as faddrja.fnegibi.roundj enddef
def frsub(a,b) as frsubrja,b,N) enddef
def frsubrja.b.roundj as faddrifnegjaj.b.roundj enddef
def c \leftarrow fcom(a,b) as
     If fate-SNAME or fate-ONAME or followsname or followoname then
          c - U
     elseif a.t-INFINITY and b.t-INFINITY then
          If as # bs then
               c - ps-0 7 G: L
               C ← E
          enail
     etself a.b-INFINITY then
          C+ 12507 GL
     elsed b.b=INFINITY then
          c ← pos=0] 7 G: L
     etself a.b-NORM and b.b-NORM then
          if as # bs then
               c ← Jas=0 ? G: L
               # ae > b.e then
                    ls -- ls
                    M + M II Oze-pe
                     af - af 11 Obe-ac
                     M ← M
               endil
               # af = bf then
                    c ← E
```

3 () 3 ()

```
c ← (|a.5=0) * (af > bf) 7 G : L
          endif
     elsed a.b-NORM then
     c ← (a.s=0) 7 G: L
elself b.t=NORM then
          c +- (b.s=0) 7 G. L
     elsed a.t=ZERO and b.t=ZERO then
          C ← E
          assert FALSE // should have covered at the cases above
     endif
enddel
del c ← fmulia.b) as
if a.b=NORM and b.b=NORM then
          cs - as * bs
          CI - NORM
          ce - ae . be
          c.l \leftarrow al \cdot bl
     // priority is given to b operand for NaN propagation
     etself (D.1=SNVM) or (D.1=ONVM) then
          cs - as bs
          1.d - 1.3
          c.e ← b.e
          td \rightarrow t.
     etsed (a.t=SNVM) or (a.t=ONVM) then
          cs - as " bs
          1.6 \rightarrow 1.7
          C.e +- a.e
          c1 - e1
     elself a.t=ZERO and b.t=INFINITY then
          c - DEFAULTSNAN // Invalid
     elself a.t=INFINITY and b.t=ZERO then
          c - DEFAULTSNAN // Invalid
     elself a.b-ZERO or b.b-ZERO then
          C.5 ← a.5 * b t
          ct - ZERO
     else
          assert FALSE // should have covered at the cases above
     endil
enddef
def c - fdwrfa.bj as
if a.t=NORM and b.t=NORM then
          cs - as - bs
          C.I - NORM
          c.e ← ae - b.e + 256
          c1 - fal 11 0254 / bl
     // priority is given to b operand for NaN propagation
     elsed (b.t=SNAN) or (b.t=ONAN) then
          cs - as bs
          td \rightarrow t.
          c.e - b.e
```

```
c.t \leftarrow b.t
     etself fate SNAME or fate-ONAME there
         cs - as . ps
         14 - 13
         C.E - a.e
          Ls \rightarrow Ls
     etself a.l=ZERO and b.l=ZERO then
         C - DEFAULTSNAN // Inwalled
     ebed abinfinity and bathfinity then
         < - DEFAULTSNAN // Invalid
     rised a.b-ZERO then
         cs - as - bs
         CI - ZERO
     cised a. InINFINITY then
         cs - as . ps
         CI - INFINITY
          assert FALSE // should have covered at the cases above
cnddel
del msb - findmsblat as
     MAXF - 218 // Largest possible f value after matrix multiply
     for j - 0 to MANE
          # AMAG-1.1 = 10MAG-1-1 | | | | | | | | |
               mst - j
          endif
     endlor
endde!
def ai - Pacifiprec, around as
     case at of
          NORVE
               msb - findmsb(a.f)
               m - msb-1-foits(prec) // isb for normal
              rdn ← -ebias[prec]-a.e-1-fbits[prec] // isb if a denormal
               rb - (m > rdn) ? m : rdn
               f rb ≤ 0 then
                    afr - a.fmsb-1.0 11 0-rb
                    e⊌dy ← 0
               etse
                    case round of
                         C:
                              s -- Omsb-rb | | |-a.strb
                              s - OMSD-10 | | JASPO
                         N. NONE:
                              1 - 0msb-rb 11 - 1/10 11 a/18-1
                         ×
                              # alm-1.0 = 0 then
                                   raise FloatingPointArthmetic // Inexact
                              endif
                              s - 0
```

deldel

```
endcase
                 pilo . lo. contalio - v
                 If Virial = 1 then
                      ath - Vmsb-1.rb
                      adt +- Ofonsipred
                      eads - 1
                ende
           endif
           aven - a.e · msb - 1 · eady · roussipred
           # aven $ 0 then
                if round = NONE then
                     M -- AS 11 OPDISSPREC | | ANT
                     raise FloatingPointArithmetic ,"/Underflow
           elself aren 2 | ebitsiprec) then
                f round . NONE then
                     //default: round-to-nearest overflow handling
                     at -- as 11 lepustated 11 Operatored
                     raise FloatingPointAnthmetic //Underflow
           etre
                a \leftarrow as 11 are r_{obstprec-1,2} 11 are
           if round # NONE then
               raise FloatingPointAnthmetic //Invalid
           if - a.e < fbits(prec) then
               as - as || | eb tripred || af-ae-1.0 || Ofbittpred-ae
               isb - a.f.a.e-1-forsipreci-1.0 = 0
                 - as 11 lepusbreci 11 al-ae-1--ae-1--bustpreci-2 11 pp
          endif
          # -a.e < fbitstpred then
               Isb -- a.f.a.e-1-fbesignec+1..0 = 0
               as -- as || | |ebits(prec) || | af-ae-1.-ae-1-forts(prec)-2 || || || || ||
          endé
     ZERO
          at - a.s | | Qebits[prec] | | O/bits[prec]
          at - as 11 lebis(prec) 11 Ofbis(prec)
endcase
```

```
def as -- fsinkriprec, a, round) as
     case alt of
          NORM:
               msb ← findmsb(a.f)
               rb ← -a.e
               if rb \leq 0 then
                    afr - a fmso o 11 0-rb
                    aims - msb - rb
               else
                    case round of
                          C, C.D.
                               s - Omsb-rb | | (-ai.sprb
                          F, F.D.
                               s - Omsb-rb | | fai.sprb
                          N. NONE:
                               s - 0msb-rb 11 -ai.frb 11 ai.frb-1
                          X:
                               if aul_{rb-1..0} \neq 0 then
                                    raise FloatingFointAnthmetic // Inexact
                               endif
                               s ← 0
                          Z, Z.D:
                               s ← 2
                     endcase
                     v - (Olla.fmsb.o) + (Olls)
                     # v_{msb} = 1 then
                          aims ← msb + 1 - rb
                          aims ← msb · rb
                     endif
                     aifr ← Vanns rb
                endif
                if aims > prec then
                     case round of
                          C.D. F.D. NONE, Z.D.
                               at - a.s | | |-asprec-1
                          C, F, N, X, Z:
                               raise FloatingPointArithmetic // Overflow
                     endcase
                elseif a.s = 0 then
                     as - afr
                else
                     a ← ·aifr
                endil
           ZERO:
                as - Oprec
           SNAN, ONAN:
                case round of
                     C.D. F.D. NONE, Z.D.
                     at 4-- 00Pec
C, F, N, X, Z
                         raise FloatingPointArithmetic // Invalid
                endcase
           INFINITY:
```

```
case round of
                    C.D. F.D. NONE, Z.D.
                         at -- as 11 (-asprec-)
                    C. F. N. X Z:
                         raise FloatingPointArithmetic // Invalid
               endcase
      endcase
 endsel
 del c - frecrestial as
      0.1 - 0
      DI - NORM
      De - 0
     DI -- 1
     c - festitompail
enddef
def c - fragressjaj as
     D.5 ← 0
     bt - NORM
     be - 0
     1 - 14
     c - lesufsqrfdmib.all
enddel
def c - festial as
     # 14 1-NORM then
          msb - Anomsbla A
          4.e ← ae + msb - 13
          af - afmcb msb-12 11 1
     che
          ( - )
     endil
enddel
def c - fsorial as
     of Jath-NORM and JashOJ then
         c.s ← 0
         CI - NORM
          # (2.00 = 1) then
              ce + |a e-127) / 2
              c. + sqr[a. 1 1 0127]
          che
              Ce ← [ac128] / 2
              c1 - sortal 11 0126
         endif
    etical ja bi-SNAM) or ja bi-ONAM) or a bi-ZERO or (ja bi-INFINITY) and (a si-O)) then
    elsed (is to NORM) or (a.to INFINITY)) and (a.to I) then
         C - DEFAULTSNAN / Irwald
         assert FALSE // should have covered at the cases above
enddel
```

Digital Signal Processing

The Zeus processor provides a set of operations that maintain the fullest possible use of 128-bit data paths when operating on lower-precision fixed-point or floating-point vector values. These operations are useful for several application areas, including digital signal processing, image processing and synthetic graphics. The basic goal of these operations is to accelerate the performance of algorithms that exhibit the following characteristics:

Low-precision arithmetic

The operands and intermediate results are fixed-point values represented in no greater than 64 bit precision. For floating-point arithmetic, operands and intermediate results are of 16, 32, or 64 bit precision.

The fixed-point arithmetic operations include add, subtract, multiply, divide, shifts, and set on compare.

The use of fixed-point arithmetic permits various forms of operation reordering that are not permitted in floating-point arithmetic. Specifically, commutativity and associativity, and distribution identities can be used to reorder operations. Compilers can evaluate operations to determine what intermediate precision is required to get the specified arithmetic result.

Zeus supports several levels of precision, as well as operations to convert between these different levels. These precision levels are always powers of two, and are explicitly specified in the operation code.

When specified, add, subtract, and shift operations may cause a fixed-point arithmetic exception to occur on resulting conditions such as signed or unsigned overflow. The fixed-point arithmetic exception may also be invoked upon a signed or unsigned comparison.

Sequential access to data

The algorithms are or can be expressed as operations on sequentially ordered items in memory. Scatter-gather memory access or sparse-matrix techniques are not required.

Where an index variable is used with a multiplier, such multipliers must be powers of two. When the index is of the form: nx+k, the value of n must be a power of two, and the values referenced should have k include the majority of values in the range 0..n-1. A negative multiplier may also be used.

Vectorizable operations

The operations performed on these sequentially ordered items are identical and independent. Conditional operations are either rewritten to use Boolean variables or masking, or the compiler is permitted to convert the code into such a form.

Ė

Zeus System Architecture

Tue, Aug 17, 1979

Zeus Processor

Data-handling Operations

The characteristics of these algorithms include sequential access to data, which permit the use of the normal load and store operations to reference the data. Octler and hexlet loads and stores reference several sequential items of data, the number depending on the operand precision.

The discussion of these operations is independent of byte ordering, though the ordering of bit fields within octlets and hexlets must be consistent with the ordering used for bytes. Specifically, if big-endian byte ordering is used for the loads and stores, the figures below should assume that index values increase from left to right, and for little-endian byte ordering, the index values increase from right to left. For this reason, the figures indicate different index values with different shades, rather than numbering.

When an index of the nx+k form is used in array operands, where n is a power of 2, data memory sequentially haded contains elements useful for separate operands. The "shuffle" instruction divides a triclet of data up into two healets, with alternate bit fields of the source triclet grouped together into the two results. An immediate field, h, in the instruction specifies which of the two regrouped healets to select for the result. For example, two X.SHUFFLE.256 rd=rc,rb,32,128,h operations rearrange the source triclet (c,b) into two healets as follows:

In the shuffle operation, two hexlet registers specify the source triclet, and one of the two result hexlets are specified as hexlet register.

The example above directly applies to the case where n is 2. When n is larger, shuffle operations can be used to further subdivide the sequential stream. For example, when n is 4, we need to deal out 4 sets of doublet operands, as shown in the figure below:²

When an array result of computation is accessed with an index of the form nx+k, for n a power of 2, the reverse of the "deal" operation needs to be performed on vectors of results to interleave them for storage in sequential order. The "shuffle" operation interleaves the bit fields of two octlets of results into a single hexlet. For example a X.SHUFFLE.16 operation combines two octlets of doublet fields into a hexlet as follows:

For larger values of n, a series of shuffle operations can be used to combine additional sets of fields, similarly to the mechanism used for the deal operations. For example, when n is 4, we need to shuffle up 4 sets of doublet operands, as shown in the figure below:

When the index of a source array operand or a destination array result is negated, or in other words, if of the form nx+k where n is negative, the elements of the array must be arranged

²An example of the use of a four-way deal can be found in the appendix: Digital Signal Processing Applications: Conversion of Color to Monochrome

An example of the use of a four-way shuffle can be found in the appendix: Digital Signal Processing Applications: Conversion of Monochrome to Color

in reverse order. The "swizzle" operation can reverse the order of the bit fields in a hexlet. For example, a X.SWIZZLE rd=rc,127,112 operation reverses the doublets within a hexlet.

In some cases, it is desirable to use a group instruction in which one or more operands is a single value, not an array. The "swizzle" operation can also copy operands to multiple locations within a hexlet. For example, a X.SWTZZLE 15,0 operation copies the low-order 16 bits to each double within a hexlet.

Variations of the deal and shuffle operations are also useful for converting from one precision to another. This may be required if one operand is represented in a different precision than another operand or the result, or if computation must be performed with intermediate precision greater than that of the operands, such as when using an integer multiply.

When converting from a higher precision to a lower precision, specifically when halving the precision of a hexlet of bit fields, half of the data must be discarded, and the bit fields packed together. The "compress" operation is a variant of the "deal" operation, in which the operand is a hexlet, and the result is an octlet. An arbitrary half-sized sub-field of each bit field can be selected to appear in the result. For example, a selection of bits 19.4 of each quadlet in a hexlet is performed by the X.COMPRESS rd=rc,16,4 operation:

When converting from lower precision to higher-precision, specifically when doubling the precision of an octlet of hit fields, one of several techniques can be used, either multiply, expand, or shuffle. Each has certain useful properties. In the discussion below, m is the precision of the source operand.

The multiply operation, described in detail below, automati, ally doubles the precision of the result, so multiplication by a constant vector will simultaneously double the precision of the operand and multiply by a constant that can be represented in m bits.

An operand can be doubled in precision and shifted left with the 'expand' operation, which is essentially the reverse of the "compress" operation. For example the X.T.XPAND rd=rc,16,4 expands from 16 bits to 32, and shifts 4 bits left:

Transport

The "shuffle" operation can double the precision of an operand and multiply it by 1 (unsigned only), 2^m or 2^{m+1}, by specifying the sources of the shuffle operation to be a zeroed register and the source operand, the source operand and zero, or both to be the source operand. When multiplying by 2m, a constant can be freely added to the source operand by specifying the constant as the right operand to the shuffle.

Arithmetic Operations

The characteristics of the algorithms that affect the arithmetic operations most directly are low-precision arithmetic, and vectorizable operations. The fixed-point arithmetic operations provided are most of the functions provided in the standard integer unit, except for those that check conditions. These functions include add, subtract, bitwise Boolean operations, shift, set on condition, and multiply, in forms that take packed sets of bit fields of a specified size as operands. The floating-point arithmetic operations provided are as complete as the scalar floating-point arithmetic set. The result is generally a packed set of bit fields of the same size as the operands, except that the fixed-point multiply function intrinsically doubles the precision of the bit field.

Conditional operations are provided only in the sense that the set on condition operations can be used to construct bit masks that can select between alternate vector expressions, using the bitwise Boolean operations. All instructions operate over the entire octlet or healet operands, and produce a healet result. The sizes of the bit fields supported are always powers of two.

Galois Field Operations

Zeus provides a general software solorion to the most common operations required for Galois Field arithmetic. The instructions trovided include a polynomial multiply, with the polynomial specified as one register operand. This instruction can be used to perform CRC generation and checking, Reed-Solomon code generation and checking, and spread-spectrum encoding and decoding.

Software Conventions

The following section describes software conventions that are to be employed at software module boundaries, in order to permit the combination of separately compiled code and to provide standard interfaces between application, literary and system software. Register usage and procedure call conventions may be modified, simplified or optimized when a single compilation encloses procedures within a compilation unit to that the procedures have no external interfaces. For example, internal procedures may permit a greater number of register-passed parameters, or have registers allocated to avoid the need to save registers at procedure boundaries, or may use a single stack or data pointer allocation to suffice for more than one level of procedure call.

Register Usage

All Zeus registers are identical and general-purpose; there is no dedicated zero-valued register, and no dedicated floating-point registers. However, some procedure-call-oriented instructions imply usage of registers zero (0) and one (1) in a manner consistent with the conventions described below. By software convention, the non-specific general registers are used in more specific ways.

register number	assembler names	usage	how saved
0	lip, rO	link pointer	caller
1	dp, 11	data pointer	caller
2-9	r2-r9	paramiters	caller
10-31	[r10-r31	temporary	catter
32-61	r32-r61	saved	callee
62	fp. 162	frame pointer	callee
63	sp. r63	stack pointer	callee

register usage

At a procedure call boundary, registers are saved either by the caller or callee procedure, which provides a mechanism for leaf procedures to avoid needing to save registers. Compilers may choose to allocate variables into caller or callee saved registers depending on how their lifetimes overlap with procedure calls.

Procedure Calling Conventions

Procedure parameters are normally allocated in registers, starting from register 2 up to register 9. These registers hold up to 8 parameters, which may each be of any size from one byte to sixteen bytes (hexlet), including floating-point and small structure parameters. Additional parameters are passed in memory, allocated on the stack. For C procedures which use varangs, h or stdarg, h and pass parameters to further procedures, the compilers must leave room in the stack memory allocation to save registers 2 through 9 into memory contiguously with the additional stack memory parameters, so that procedures such as adopted can refer to the parameters as an array.

Procedure return values are also allocated in registers, starting from register 2 up to register 9. Larger values are passed in memory, allocated on the stack.

There are several pointers maintained in registers for the procedure calling conventions: lp, sp, dp, fp.

The lp register contains the address to which the callec should return to at the conclusion of the procedure. If the procedure is also a caller, the lp register will need to be saved on the stack, once, before any procedure call, and restored, once, after all procedure calls. The procedure returns with a branch instruction, specifying the lp register.

The sp register is used to form addresses to save parameter and other registers, maintain local variables, i.e., data that is allocated as a LIFO stack. For procedures that require a stack, normally a single allocation is performed, which allocates space for input parameters, local variables, saved registers, and output parameters all at once. The sp register is always hexlet aligned.

The dp register is used to address pointers, literals and static variables for the procedure. The dp register points to a small (approximately 40%-entry) array of pointers, literals, and statically-allocated variables, which is used locally to the procedure. The uses of the dp register are similar to the use of the gp register on a Mips R-series processor, except that each procedure may have a different value, which expands the space addressable by small offsets from this pointer. This is an important distinction, as the offset field of Zeus load and store instructions are only 12 bits. The compiler may use additional registers and/or indirect pointers to address larger regions for a single procedure. The compiler may also share a single dp register value between procedures which are compiled as a single unit (including procedures which are externally callable), eliminating the need to save, modify and restore the dp register for calls between procedures which share the same dp register value.

Load- and store- immediate-aligned instructions, specifying the dp register as the base register, are generally used to obtain values from the dp region. These instructions shift the immediate value by the logarithm of the size of the operand, so loads and stores of large operands may reach farther from the dp register than of small operands. The size of the addressable region is maximized if the elements to be placed in the dp region are sorted according to size, with the smallest elements placed closest to the dp base. At points where the size changes, appropriate padding is added to keep elements aligned to memory boundaries matching the size of the elements. Using this technique, the maximum size of the dp region is always at least 40% items, and may be larger when the dp area is composed of a mixture of data sizes.

The dp register mechanism also permits code to be shared, with each static instance of the dp region assigned to a different address in memory. In conjunction with position-independent or pe-relative branches, this allows library code to be dynamically relocated and shared between processes.

To implement an inter-module (separately compiled) procedure call, the lp register is loaded with the entry point of the procedure, and the dp register is loaded with the value of the dp register required for the procedure. These two values are located adjacent to each other as a pair of octler quantities in the dp region for the calling procedure. For a statically-linked inter-module procedure call, the linker fills in the values at link time. However, this mechanism also provides for dynamic linking, by initially filling in the lp and dp fields in the data structure to invoke the dynamic linker. The dynamic linker can use the contents of the lp and/or dp registers to determine the identity of the caller and callee, to find the location to fill in the pointers and resume execution. Specifically, the lp value is initially set to point to an entry point in the dynamic linker, and the dp value is set to poin, α itself: the location of the lp and dp values in the dp region of the calling procedure. The identity of the procedure

can be discovered from a string following the dp pointer, or a separate table, indexed by the dp pointer.

The fp register is used to address the stack frame when the stack size varies during execution of a procedure, such as when using the GNU C alloca function. When the stack size can be determined at compile time, the ap register is used to address the stack frame and the fp register may be used for any other general purpose as a callee-saved register.

Typical static-linked, intra-module calling sequence:

```
caller (non-leaf).
caller:
          AADDI
                                 spe-size
                                                 // allocate caller stack frame
           SI.64A
                                 ip.sp.off
                                                 // save original Ip register
            (callee using same dp as caller)
           BLINKI
                                callee
             (callee using same dp as caller)
          BLINKI
                                callee
           L164.A
                                 10.qz=ql
                                                 // restore original lp register
           AADDI
                                 stie Oct
                                                 // deallocate caller stack frame
                                                 // return
callee (leaf):
             kode using app
```

Procedures that are compiled together may share a common data region, in which case there is no need to save, kind, and restore the dp region in the callee, assuming that the callee does not modify the dp register. The pe-relative addressing of the B.LINK.I instruction permits the code region to be position-independent.

// return

Minimum static-linked, intra-module calling sequence:

```
caller (non-leaf):
caller:
           ACOPY
                                r31=Ip
                                                // save original lp register
            (callee using same dp as caller)
           BLINKI
                                callee
             (callee using same dp as raller)
          B.UNKJ
                                callee
                                131
                                                // return
callee (leaf):
          ... (code using dp. r31 unused)
                                ю
                                                // return
```

When all the callee procedures are intra-module, the stack frame may also be eliminated from the caller procedure by using "temporary" caller save registers not utilized by the callee leaf procedures. In addition to the lp value indicated above, this usage may include other values and variables that live in the caller procedure across callee procedure calls.

Typical dynamic-linked, inter-module calling sequence:

```
Zeus System Architecture
```

```
Tue, Aug 17, 1999
```

Zeus Processor

```
caller (non-leaf):
caller:
          AADDI
                                 200-512e
                                                  // allocate caller stack frame
          S.I.64.A
                                 Ip.sp.off
                                                  // save original ip reguter
          S.I.64.A
                                 dp.sp.off
                                                 // save original dp register
             (code using dp)
           L.1.64.A
                                 tp=dp.off
                                                 // load to
                                 dp=dp.off
          L.1.64.A
                                                 // load dp
           BLINK
                                 lo-lo
                                                 // invoke callee procedure
                                 dp=sp.off
           L.1.64.A
                                                  // restore dp register from stack
           ... |code using dp|
                                 lo-so off
                                                  // restore original to register
           L.I.64.A
           AADDI
                                 $D=$120
                                                  // deallocate caller stack frame
                                                  // return
callee (leaf):
callee:
             kode using dpl
                                                  // return
```

The load instruction is required in the caller following the procedure call to restore the dp register. A second load instruction also restores the lp register, which may be located at any point between the last procedure call and the branch instruction which returns from the procedure.

System and Privileged Library Calls

It is an objective to make calls to system facilities and privileged libraries as similar as possible to normal procedure calls as described above. Rather than invoke system calls as an exception, which involves significant latency and complication, we prefer to use a modified procedure call in which the process privilege level is quietly raised to the required level. To provide this mechanism safely, interaction with the virtual memory system is required.

Such a procedure must not be entered from anywhere other than its legiamate entry point, to prohibit entering a procedure after the point at which security checks are performed or with invalid register contents, otherwise the access to a higher privilege level can lead to a security violation. In addition, the procedure generally must have access to memory data, for which addresses must be produced by the privileged code. To facilitate generating there addresses, the branch-gateway instruction allows the privileged code procedure to rely the fact that a single register has been verified to contain a pointer to a valid memory region.

The branch-gateway instruction ensures both that the procedure is invoked at a proper entry point, and that other registers such as the date pointer and stack pointer can be properly set. To ensure this, the branch-gateway instruction retrieves a "gateway" directly from the protected virtual memory space. The gateway contains the virtual address of the entry point of the procedure and the target privilege level. A gateway can only exist in regions of the virtual address space designated to contain them, and can only be used to access privilege levels at or below the privilege level at which the memory region can be written to ensure that a gateway cannot be forged.

The branch-gateway instruction ensures that register 1 (dp) contains a valid pointer to the gateway for this target code address by comparing the contents of register 0 (lp) against the

gateway retrieved from memory and causing an exception trap if they do not match. By ensuring that register I points to the gateway, auxiliary information, such as the data pointer and stack pointer can be set by loading values located by the contents of register I. For example, the eight bytes following the gateway may be used as a pointer to a data region for the procedure.

No. 14. 15. 1881

Before executing the branch-gateway instruction, register 1 must be set to point at the gateway, and register 0 must be set to the address of the target code address plus the desired privilege level. A "L1.64.LA r0=r1,0" instruction is one way to set register 0, if register 1 has already been set, but any means of getting the correct value into register 0 is permissible.

Similarly, a return from a system or privileged routine involves a reduction of privilege. This need not be carefully controlled by architectural facilities, so a procedure may freely branch to a less-privileged code address. Normally, such a procedure restores the stack frame, then uses the branch-down instruction to return.

1

Zeus System Architecture

Tue, Aug 17, 1999

Zeus Processos

Typical dynamic-linked, inter-gateway calling sequence:

```
caller:
caller:
          AADDI
                                sp@-size
                                                 // allocate caller stack frame
          A.PA.LZ
                                Inspect
          SJ.64.A
                                dp.sp.off
          LIMA
                                b-dp.0ff
                                                 // load to
          LI.64A
                                dp-dp.off
                                                 // load dp
          B.GATE
          LJ.64 A
                                dp.sp.of
           .. kode using dpl
          LI.64A
                                ip-sp.off
                                                 // restore original lp register
          AADDI
                                90=9i2e
                                                 // deallocate caller stack frame
                                                // return
callee (non-leaf);
calce.
          LI.64A
                                dp-dp.off
                                                // load dp with data pointer
          SL64A
                                SD. OP. Off
          LI.64 A
                                SD-OP.Off
                                                // new stack pointer
          A. PALLZ
                                bsodi
          S.L64.A
                                dp.sp.off
           . Justing dpj
          LI.64.A
                                dp.sp.off
           ... Kode using dal
          LI.64A
                                lp=sp.of7
                                                // restore original lp register
          LI64A
                                SD-SD Off
                                                // restore original sp register
          B.DOWN
callee (leaf, no stack):
callee:
            . Jusing appl
          BOOWN
```

It can be observed that the calling sequence is identical to that of the inter-module calling sequence shown above, except for the use of the B.GATE instruction instead of a B.LINK instruction. Indeed, if a B.GATE instruction is used when the privilege level in the lp register is not higher than the current privilege level, the B.GATE instruction performs an identical function to a B.LINK.

The callee, if it uses a stack for local variable allocation, cannot necessarily trust the value of the sp passed to it, as it can be forged. Similarly, any pointers which the callee provides should not be used directly unless it they are verified to point to regions which the callee should be permitted to address. This can be avoided by defining application programming interfaces (APIs) in which all values are passed and returned in registers, or by using a trusted, intermediate privilege wrapper routine to pass and return parameters. The method described below can also be used.

It can be useful to have highly privileged code call less-privileged routines. For example, a user may request that errors in a privileged routine be reported by invoking a user-supplied error-logging routine. To invoke the procedure, the privilege can be reduced via the branch-down instruction. The return from the procedure actually requires an increase in privilege, which must be carefully controlled. This is dealt with by placing the procedure call within a lower-privilege procedure wrapper, which uses the branch-gateway instruction to return to

the higher privilege region after the call through a secure .e-entry point. Special care must be taken to ensure that the less-privileged routine is not permitted to gain unauthorized access by corruption of the stack or saved registers, such as by saving all registers and setting up a new stack frame (or restoring the original lower-privilege stack) that may be manipulated by the less-privileged routine. Finally, such a technique is vulnerable to an unprivileged routine attempting to use the re-entry point directly, so it may be appropriate to keep a privileged state variable which controls permission to enter at the re-entry point.

Instruction Scheduling

The next section describes detailed pipeline organization for Zeus, which has a significant influence on instruction scheduling. Here we will elaborate some general rules for effective scheduling by a compiler. Specific information on numbers of functional units, functional unit parallelism and latency is quite implementation-dependent, values indicated her are valid for Zeus's first implementation.

Separate Addressing from Execution

Zeus has separate function units to perform addressing operations (A, L, S, B instructions) from execution operations (G, X, E, W instructions). When possible, Zeus will execute all the addressing operations of an instruction stream, deferring execution of the execution operations until dependent load instructions are completed. Thus, the latency of the memory system is hidden, so long as addressing operations themselves do not need to wait for memory.

Software Pipeline

Instructions should generally be scheduled so that previous operations can be completed at the time of issue. When this is not possible, the processor inserts sufficient empty cycles to perform the instructions precisely - explicit no-operation instructions are not required.

Multiple Issue

Zeus can issue up to two addressing operations and up to two execution operations per cycle per thread. Considering functional unit parallelism, described below, as many of four instruction issues per cycle are possible per thread.

Functional Unit parallelism

Zeus has separate function units for several classes of execution operations. An A unit performs scalar add, subtract, biolean, and shift-add operations for addressing and branch calculations. The remaining functional units are execution resources, which perform operations subsequent to memory loads and which operate on values in a parallel, partitioned form. A G unit performs add, subtract, biolean, and shift-add operations. An X unit performs general shift operations. An E unit performs multiply and floating-point operations. A T unit performs table-kook-up operations.

Tue, Aug 17, 1999

Zus Processor

Each instruction uses one or more of these units, according to the table below.

Instruction	Λ	G	X	Ε	T
٨					
В	Х				
L	Х				
S	X				
G		Х			
X			Х		
E			X	×	
W.TRANSLATE	X				×
WJMULMAT	Х		X	×	
W.SWITCH	X		X		

Latency

The latency of each functional unit depends on what operation is performed in the unit, and where the result is used. The aggressive nature of the pipeline makes it difficult to characterize the latency of each operation with a single number. Because the addressing unit is decoupled from the execution unit, the latency of load operations is generally hidden, unles the result of a load instruction must be returned to the addressing unit. Store instructions must be able to compute the address to which the data is to be stored in the addressing unit, but the data will not be irrevocably stored until the data is available and it is valid to retire the store instruction. However, under certain conditions, data may be forwarded from a store instruction to subsequent load instructions, once the data is available.

The latency of each of these units, for the initial Zeus implementation is indicated below:

Unit	instruction	Latency rules
^	A	1 cycle
	L	Address operands must be ready to issue, 4 cycles to A unit, 0 to G, X, E, T units
	S	Address operands must be ready to issue, Store occurs when data is ready and instruction may be retired.
	8	Conditional branch operands may be provided from the A unit (64-bit values), or the G unit (128-bit values). 4 cycles for mispredicted branch
	W	Address operand must be ready to issue,
G	G	1 cycle
Х	X W.SWITCH	1 cycle for data operands, 2 cycles for shift amount or control operand
Ε	E, W.MULMAT	4 cycles
T	W.TRANSLATE	1 cycles

7.

ln

<u>St</u>

7x

ins

រល

F.

Р¥

th:

Pipeline Organization

News performs all instructions are if executed one-by-one, in-order, with precise exceptions always available. Consequently, code that ignores the subsequent discussion of Zeus pipeline implementations will still perform correctly. However, the highest performance of the Zeus processor is achieved only by matching the ordering of instructions to the characteristics of the pipeline. In the following discussion, the general characteristics of all Zeus implementations precede discussion of specific choices for specific implementations.

Classical Pipeline Structures

Pipelining in general refers to hardware structures that overlap various stages of execution of a series of instructions so that the time required to perform the series of instructions is less than the sum of the times required to perform each of the instructions separately. Additionally, pipelines carry to connotation of a collection of hardware structures which have a simple ordering and where each structure performs a specialized function.

The diagram below shows the timing of what has become a canonical pipeline structure for a simple RISC processor, with time on the horizontal axis increasing to the right, and successive instructions on the vertical axis going downward. The stages I, R, E, M, and W refer to units which perform instruction fetch, register file fetch, execution, data memory fetch, and register file write. The stages are aligned so that the result of the execution of an instruction may be used as the source of the execution of an immediately following instruction, as seen by the fact that the end of an E stage (bold in line 1) lines up with the beginning of the E stage (bold in line 2) immediately below. Also, it can be seen that the result of a load operation executing in stages E and M (bold in line 3) is not available in the immediately following instruction (line 4), but may be used two cycles later (line 5); this is the cause of the load delay slot seen on some RISC processors.

	 K	<u> </u>	M	ı W				
,		R	E	M	W	1		
i			R	E	M	W	Ì	
				R	Ε	М	W	}
			·		R	E	M	W
					I R E	I P E M		I R E M W I R E M W I R E M W

In the diagrams below, we simplify the diagrams somewhat by eliminating the pipe stages for instruction fetch, register file fetch, and register file write, which can be understood to precede and follow the portions of the pipelines diagrammed. The diagram above is shown again in this new format, showing that the canonical pipeline has very little overlap of the actual execution of instructions.

Tuc, Aug 17, 1999

Your Pricessia

uperscalar pipeline is one capable of simultaneously issuing two or more instructions which are independent, in that they can be executed in either order and separately, producing the same result as if they were executed serially. The diagram below shows a two-way superscalar processor, where one instruction may be a register-tri-register operation (using stage E) and the other may be a register-to-register operation (using stage A) or a memory load or store (using stages A and M).

A superpipelined pipeline is one capable is issuing simple instructions frequently enough that the result of a simple instruction must be independent of the immediately following one or more instructions. The diagram below shows a two-cycle superpipelined insplementation:

In the diagrams below, pipeline stages are labelled with the type of instruction that may be performed by that stage. The position of the stage further identifies the function of that stage, as for example a load operation may require several L stages to complete the instruction.

Superstring Pipeline

Zeus architecture provides for implementations designed to fetch and execute several instructions in each clock cycle. For a particular ordering of instruction types, one instruction of each type may be issued in a single clock cycle. The ordering required is A, L, F, S, B; in other words, a register-to-register address calculation, a memory load, a register-to-register data calculation, a memory store, and a branch. Because of the organization of the pipeline, each of these instructions may be serially dependent. Instructions of type B include the fixed-point execute-phase instructions as well as floating-point and digital signal processing instructions. We call this form of pipeline organization "superstring." because of the ability to issue a string of dependent instructions in a single clock cycle, as distinguished

⁴Keaders with a background in theoretical physics may have seen this term in an other, unrelated, context.

from superscalar or superpipelined organizations, which can only issue sets of independent instructions.

These instructions take from one to tour excles of latency to execute, and a branch prediction mechanism is used to keep the pipeline filled. The diagram below shows a box for the interval between issue of each instruction and the completion. Bold letters mark the extincal latency paths of the instructions, that is, the periods between the required availability of the source registers and the earliest availability of the result registers. The Λ -L entical latency path is a special case, in which the result of the Λ instruction may be used as the base register of the L instruction without penalty. E instructions may require additional cycles of latency for certain operations, such as fixed-point multiply and divide, floating-point and digital signal processing operations.

Superspring Pipeline

Leus architecture provides an additional refinement to the organization defined above, in which the time permitted by the pipeline to service load operations may be flexibly extended. Thus, the front of the pipeline, in which A, L and B type instructions are handled, is decoupled from the back of the pipeline, in which E, and S type instructions are handled. This decoupling occurs at the point at which the data cache and its backing memory is referenced; similarly, a FIFO that is filled by the instruction fetch unit decouples instruction cache references from the front of the pipeline shown above. The depth of the FIFO structures is implementation-dependent, i.e. not fixed by the architecture.

Tuc, Aug 17, 1999

Zeus Processor

The diagram below indicates why we call this pipeline organization feature "superspring," an extension of our superstring organization.

With the super-spring organization, the latency of load instructions can be hidden, as execute instructions are deferred until the results of the load are available. Nevertheless, the execution unit still processes instructions in normal order, and provides precise exceptions.

Superthread Pipeline

This technique is not employed in the initial Zeus implementation, though it was present in an earlier prototype implementation.

A difficulty of superpipelining is that dependent operations must be separated by the latency of the pipeline, and for highly pipelined machines, the latency of simple operations can be quite significant. The Zeus "superthread" pipeline provides for very highly pipelined implementations by alternating execution of two or more independent threads. In this context, a thread is the state required to maintain an independent execution; the architectural state required is that of the register file contents, program counter, privilege level, local TB, and when required, exception status. Ensuring that only one thread may handle an exception at one time may minimize the latter state, exception status. In order to ensure that all threads make reasonable forward progress, several of the machine resources must be scheduled fairly.

An example of a resource that is entical that it be fairly shared is the data memory/cache subsystem. In a prototype implementation, Zeus is able to perform a load operation only on every second cycle, and a store operation only on every fourth cycle. Zeus schedules these fixed timing resources fairly by using a round-robin schedule for a number of threads that is relatively prime to the resource reuse rates. For this implementation, five simultaneous threads of execution ensure that resources which may be used every two or four cycles are fairly shared by allowing the instructions which use those resources to be issued only on every second or fourth issue slot for that thread.

In the diagram below, the thread number which issues an instruction is indicated on each cluck cycle, and below it, a list of which functional units may be used by that instruction. The diagram repeats every 20 cycles, 30 cycle 20 is similar to cycle 0, cycle 21 is similar to cycle 1, etc. This schedule ensures that no resource conflict occur between threads for these resources. Thread 0 may issue an E, L, S or B on cycle 0, but on its next opportunity, cycle 5, may only issue E or B, and on cycle 10 may issue E, L or B, and on cycle 15, may issue E or B.

1	_	_	_		_				_							_				
Out	9	<u> </u>		1.	•	<u> </u>	•		1	9	10	\Box	112	\Box	14	13	1.6	ת	18	ाका
BAMAG	0	1	2	3	4	0		2	3	4	0	1	2	3	4	0	1	2	3	4
	ш	Ε	Ε	Ε	Ε	E	E	E	Ε	Ε	E	Ε	Ε	Ε	E	E	ш	E	Ε	E
	L		L		L		١		L		L		L		ч		L			Н
	S				S				S				S				5			П
	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
						Su	per	thr	ead	Pil	pelii	ne								

When seen from the perspective of an individual thread, the resource use diagram looks similar to that of the collection. Thus an individual thread may use the load unit every two instructions, and the store unit every four instructions.

_						•														
Othe	9	3	10	15	20	75	30	35	40	45	50	33	60	65	70	75	100	185	90	95
treed	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļo	0	0	0	0	0
	E	ш	Е	ш	E	Ε	Ε	Ε	E	Ε	Ε	Ε	E	E	E	Ε	E	Ε	E	E
	7		4		_		L		L		L		L		_		1		T	H
	S				S				S				S				S			М
	В	ø	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
						Su	per	thr	ead	pip	oclir	ne								

A Zeus Superthread pipeline, with 5 simultaneous threads of execution, permits simple operations, such as register-to-register add (G.ADD), to take 5 cycles to complete, allowing for an extremely deeply pipelined implementation.

Simultaneous Multithreading

The intial Zeus implementation performs simultaneous multithreading among 4 threads. Each of the 4 threads share a common memory system, a common T unit. Pairs of threads share two G units, one X unit, and one E unit. Each thread individually has two Λ units. Λ fair allocation scheme balances access to the shared resources by the four threads.

Tue, Aug 17, 1999

Zous Processor

Branch/fetch Prediction

Zeus does not have delayed branch instructions, and so relies upon branch or fetch prediction to keep the pipeline full around unconditional and conditional branch instructions. In the simplest form of branch prediction, as in Zeus's first implementation, a taken conditional backward (toward a lower address) branch predicts that a future execution of the same branch will be taken. More elaborate prediction may eache the source and target addresses of multiple branches, both conditional and unconditional, and both forward and reverse.

The hardware prediction mechanism is tuned for optimizing conditional branches that close loops or express frequent alternatives, and will generally require substantially more cycles when executing conditional branches whose outcome is not predominately taken or not-taken. For such cases of unpredictable conditional results, the use of code that avoids conditional branches in favor of the use of compare-set and multiplex instructions may result in greater performance.

Under some conditions, the above technique may not be applicable, for example if the conditional branch "guards" code which cannot be performed when the branch is taken. This may occur, for example, when a conditional branch tests for a valid (non-zero) pointer and the conditional code performs a load or store using the pointer. In these cases, the conditional branch has a small positive offset, but is unpredictable. A Zeus pipeline may handle this case as if the branch is always predicted to be not taken, with the recovery of a misprediction causing cancellation of the instructions which have already been issued but not completed which would be skipped over by the taken conditional branch. This "conditional-skip" optimization is performed by the initial Zeus implementation and requires no specific architectural feature to access or implement.

A Zeus pipeline may also perform "branch-return" optimization, in which a branch-link instruction saves a branch target address that is used to predict the target of the next returning branch instruction. This optimization may be implemented with a depth of one (only one return address kept), or as a stack of finite depth, where a branch and link pushes onto the stack, and a branch-register pops from the stack. This optimization can eliminate the misprediction cost of simple procedure calls, as the calling branch is susceptible to hardware prediction, and the returning branch is predictable by the branch-return optimization. Like the conditional-skip optimization described above, this feature is performed by the initial Zeus implementation and requires no specific architectural feature to access or implement.

Zeus implements two related instructions that can eliminate or reduce branch delays for conditional loops, conditional branches, and computed branches. The "branch-hint" instruction has no effect on architectural state, but informs the instruction fetch unit of a potential future branch instruction, giving the addresses of both the branch instruction and of the branch target. The two forms of the instruction specify the branch instruction address relative to the current address as an immediate field, and one form (branch-hint-immediate) specifies the branch target address relative to the current address as an immediate field, and the other (branch-hint) specifies the branch target address from a general register. The branch-hint-immediate instruction is generally used to give advance notice to the instruction

fetch unit of a branch-conditional instruction, so that instructions at the target of the branch can be fetched in advance of the branch-conditional instruction reaching the execution pipeline. Placing the branch hint as early as possible, and at a point where the extra instruction will not reduce the execution rate optimizes performance. In other words, an optimizing compiler should insert the branch-hint instruction as early as possible in the basic block where the parcel will contain at most one other "front-end" instruction.

Additional Load and Execute Resources

Studies of the dynamic distribution of Zeus instructions on various benchmark suites indicate that the most frequently issued instruction classes are load instructions and execute instructions. In a high-performance Zeus implementation, it is advantageous to consider execution pipelines in which the ability to target the machine resources toward issuing load and execute instructions is increased.

One of the means to increase the ability to issue execute-class instructions is to provide the means to issue two execute instructions in a single-issue string. The execution unit actually tequires several distinct resources, so by partitioning these resources, the issue capability can be increased without increasing the number of functional units, other than the increased register file read and write ports. The partitioning favored for the initial implementation places all instructions that involve shifting and shuffling in one execution unit, and all instructions that involve multiplication, including fixed-point and floating-point multiply and add in another unit. Resources used for implementing add, subtract, and bitwise logical operations may be duplicated, being modest in size compared to the shift and multiply units, or shared between the two units, as the operations have low-enough latency that two operations might be pipelined within a single issue cycle. These instructions must generally be independent, except perhaps that two simple add, subtract, or bitwise logical instructions may be performed dependently, if the resources for executing simple instructions are shared between the execution units.

One of the means to increase the ability to issue load-class instructions is to provide the means to issue two load instructions in a single-issue string. This would generally increase the resources required of the data fetch unit and the data cache, but a compensating solution is to steal the resources for the store instruction to execute the second load instruction. Thus, a single-issue string can then contain either two load instructions, or one load instruction and one store instruction, which uses the same register read ports and address computation resources as the basic 5-instruction string. This capability also may be employed to provide support for unaligned load and store instructions, where a single-issue string may contain as an alternative a single unaligned load or store instruction which uses the resources of the two load-class units in concert to accomplish the unaligned memory operation.

Result Forwarding

When temporally adjacent instructions are executed by separate recources, the results of the first instruction must generally be forwarded directly to the resource used to execute the second instruction, where the result replaces a value which may have been fetched from a register file. Such forwarding paths use significant resources. A Zeus implementation must

Tue, Aug 17, 1999

Zeus Processor

generally provide forwarding resources so that dependencies from earlier instructions within a string are immediately forwarded to later instructions, except between a first and second execution instruction as described above. In addition, when forwarding results from the execution units back to the data fetch unit, additional delay may be incurred.

Instruction Set

This section describes the instruction set in complete architectural detail. Operation codes are numerically defined by their position in the following operation code tables, and are referred to symbolically in the detailed instruction definitions. Entries that span more than one location in the table define the operation code identifier as the smallest value of all the locations spanned. The value of the symbol can be calculated from the sum of the legend values to the left and above the identifier.

Instructions that have great similarity and identical formats are grouped together. Starting on a new page, each category of instructions is named and introduced.

The Operation codes section lists each instruction by mnemonic that is defined on that page. A textual interpretation of each instruction is shown beside each mnemonic.

The Equivalences section lists additional instructions known to assemblers that are equivalent or special cases of base instructions, again with a textual interpretation of each instruction beside each mnemonic. Below the list, each equivalent instruction is defined, either in terms of a base instruction or another equivalent instruction. The symbol between the instruction and the definition has a particular meaning. If it is an arrow (\leftarrow or \rightarrow), it connects two mathematicaly equivalent operations, and the arrow direction indicates which form is preferred and produced in a reverse assembly. If the symbol is a (\Leftarrow), the form on the left is assembled into the form on the right solely for encoding purposes, and the form on the right is otherwise illegal in the assembler. The parameters in these definitions are formal; the names are solely for pattern-matching purposes, even though they may be suggestive of a particular meaning.

The Redundancies section lists instructions and operand values that may also be performed by other instructions in the instruction set. The symbol connecting the two forms is a (\rightleftharpoons) , which indicates that the two forms are mathematically equivalent, both are legal, but the assembler does not transform one into the other.

The Selection section lists instructions and equivalences together in a tabular form that highlights the structure of the instruction ninemonics.

The Format section lists (1) the assembler format, (2) the C intrinsics format, (3) the bit-level instruction format, and (4) a definition of bit-level instruction format fields that are not a one-for-one match with named fields in the assembler format.

The Definition section gives a precise definition of each basic instruction.

The Exceptions section lists exceptions that may be caused by the execution of the instructions in this category.

Tue, Aug 17, 1999

Instruction Set Major Operation Codes

Major Operation Codes

All instructions are 32 bits in size, and use the high order 8 bits to specify a major operation code.

31	24 23	0
m	Jor	other
	8	24

The major field is filled with a value specified by the following table:5

MAJOR	0	33	- 44	1 %	126	160	192	224
0	ARES	MF16	UIAL	914		VOL/OSI	EMAX ID	WARRANTER
	MOD	H717	धास	प्राथ	800	1	MALKE	WANTED T
	WOOD	HILL	UILL	प्राध्य	60000	ſ	EMULICIA	TALL LEGISLE
	WOOMS	MITTH	UILA	धार्ख	<u>80000</u> 8	1	EMALOR	MARA MATERIA
•		4016	LIJA	DIA		JOEFOSTU	EMALADON	WALLY MATIONAL
- 5	RUA	EØ17	U128	2).38	CEL S	1	EMULACOOL	
	ACCES	KOM	UTZA	90270	GEUERO	1	EMUCOOLS	WALLEST TO SEE
7	AGUSTUO	E COTT NO	UIZA	9374	GUNUS	l	ENLLADOR	WALL WATER
	ALTE	- AU 16	LISAL	SHA	3416	HARTH CHAN	ECONOD.	
	ALTHE	AJ 17	LULAS	3448	CETNE		KOKO	
10	ALTANOE	EU4	IMAG	SELVE	GEWICE		KONOU	
	METARENES	BUT 26	UMM	THE REAL PROPERTY.	GENADIA		KOKKU	
12	ALPIU	BOH 14	U126,	9126	deni	AND COMMU	ECONOMA.	
13	AUTOS	KZI N	LITZES	9126	CENTRE		ECONDONA.	
14	AUTLU	ECEPLA	UIZMAL	SING	OFFICE		COMOCI	
15	AUTOIN	BCEF 138	UITEG	91364	GENGEN		KONGS	
16	W 6		MIM	- Second	6/43	XCEPOS/TM	ESCALADOFIA	WALKANDE
17	AWAGE		UU144	SACHAR	CHINO		ESCALADOF 12	
18	AOM	awor .	LUIM	SCSHAR	606		ESCALADOF NA	
19	MOR	BANONS	WIN	SCENARO	CACA			WALMVIGE
30	MON	A	KEUU	SUBSILIA	GION	ICANO.	EMALGO	
21	MARI	eC.	LU129	SWELLEN	COLUM		EMAGA	
22		AU	LAURZAL	MARKEN	CACCULAN		ENALX	
23		BCEU	LIVIZAS	SALOSAN			EDTEACT	
- 24	_KOP1	Der 32	LANAL		OCOM	MEXTRACT	EEXTRACTI	
25		BW433	LILIMA			BELCO	EEXTRACTIVE	
76		De 37	LEMAN					WTABLEL
27		P#17	LEULAN		- 6			WINE
78			£.16	540	016	BANK	616	WSWITCHE
29		RIPEL	LAA		GAS .	IS-#TI	E32	WSWITCH
30		p-er/fi			044	प्रधन	100	WMMOR
	AAAA CH	BONNO!	TYNON.	SANCE	8178		£176	WANOH

major operation code field values

⁵Hlank table entries cause the Reserved Instruction exception to occur.

Minor Operation Codes

For the major operation field values A.MINOR, B.MINOR, L.MINOR, S.MINOR, G.8, G.16, G.32, G.64, G.128, XSHIFTI, XSHIFT, E.8, E.16, E.32, E.64, E.128, W.MINOR.I. and W.MINOR.B, the lowest-order six bits in the instruction specify a minor operation code:

The minor field is filled with a value from one of the following tables:

AMINOR	0	8	16	24	32	40	48	56
0		ANO.	ASETE	ASETEF		ASHEI	ASHEMOD	1
1		AROR	ASETNE	ASETLGE		1	1	
2	WOOD	AOR	ASETANDE	ASETLE		ALHEIO	1	
3	MODUO	ANDN	ASSTANDAS	ASETGEF		ASHLIUO	1	
1		AORN	ASETULZ.	ALETEF X			ASHLEUM	
5	ASUB	AUNOR	ASETGE/GEZ	ASETE GF X		 	1	
•	ASUMO	ANOR	ASETLUAGE	ASETURX		ASHIBI	1	
7	ASUBUO	ANAND	ASETGEU LEZ	ASETGEF X		ASHERU	1	KOU

minor operation code field values for AMINOR

BANNOR	0	8	16	24	32	40	48	£4
0						- 10		
. 1	B.MK							
7	B-04/T							
3	MOOVIN							
4	AGATE							
	MACE							
	PWT							
	THAT I							

minor operation code field values for B.MINOR

LMINOR	0		16	24	32	40	48	56
_ 0	LIM	1641	IU:N	10441				
	LIAA	1648	LUIS	LULAB				
_7_7	Here	LOUAL	LUILL	LUMAL				
3	LIM	IMM	LUILL	LUSAAB				
4	137	11701	wix	LO				
_ 5 1	1339	L1268	10378	LUI				
6	TISAL	LIZBAL	LUTZAL	/				
\neg	L32A6	LIZAM	LU12A					

minor operation code field values for L.MINOR

Tue, Aug 17, 1999

Instruction Set
Minor Operation Codes

SMINOR	0		16	24	32	40	48	54
0	STAL	5641	SASSAN					
	3148	44	WWW	1				<u> </u>
7	3164	5444	SCHOOL STATE	W.				
- 1	3124	3448	SCHAR	SOCSAAA	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
-	\$321	\$126L	SARAGE	99		·		
3	5378	31766	SUBJECTIVE	1	· ····			
6	\$32A	\$126AL	SMOOM	!			· · · · · ·	
	\$12AP	3176/40	SALVANA	† —— <u> </u>				

minor operation code field values for S.MINOR

C ave	0	16	24	32	40	48	56
0		 ONTIL	GLUB	CADDON	CALAD M	CE COCO	GA00T
	6665	 GETHE	04:10	C000-0	COLDE		CHOOL
2	64000	 GETWICE	GATIU	6000	GSUM F		- GUU
3	GGGGG	 arware	GUNGE	टळ्टर	GSUS-C		
4		 OUT CLE	GUTTE X	COOL	CALANI	GS LIPA	COLAL
5	GAJO	aura/au	CLING X	COO UZ	CALADO		COLUMN
6	GAUSO	 GUTTUYGZ	GUTUT	6000	GIUS UF	i	- 282
7	09UBUO	 arawa.	GENCE X	8480-02	CUEUR		OCOM

minor operation code field values for G.size

XSHIFTI	0		16	24	32	40	48	56
0	KV-U	TS-4LID		X)+W		NEXT CO		PCOMPRESSI
	Krane	404 DU	itiraha	X9-day	XXXVIU	SEMMON	MACYA	ICOMPRESSA.

minor operation code field values for XSHIFTI

XSP#FT	0		16	24	32	40	48	56
)	XV-L	rve O		NC)-48		XEXPANIÖ		AC OMPRESS
	ers.	KHOU	JCs-elbs	XV III U	ifo _m	XEXPANDU	KROTE	AC CAPRESSA

minor operation code field values for XSHIFT

l we	0		16	24	32	40	48	56
0	EMAIN	EMALADOFN	LADOFN	ESLIEN	EMAL	EMALADO	EDINHN	ECON
	THALTT	THALLOOT	1/00/2	FSL#F2	FMALLU	PMULADOU	EDME	KONU
7	THATT	IMALADOI	COOL	15U8H	EMAM	EMALADOM	EDAFF	ECONM.
,	IMAR	PHALACOPE	WOOK	PLUE	PMUC	MULADOX	EDIVEC	KONC
4	TMA/X	EMALADOFX	T-COOF X	ESLAN X	FMALLIAM	EMALSAM	EDMIX	EDW
5	FMULF	IMALADO	TADDI	ESUM	EMULSUMU	EMULSUM)	£DIV!	FOMU
6	EMACE	MALADOT	KONI	RONCH	FAULSHAM	EMILE SUMM	FMAX SUMP	(ML)
	THESTANT	FMALLECT	RON	KONCH	PARTIAL	EMUSUR	EMULSUM	EUNWAY

minor operation code field values for Essize

A PROPERTY.	0		16	74	1)	40	7.1	- 17
0	ACTOR A	THE REAL PROPERTY.						74
	AND THE LABOUR	STATEMENTS.	TATE DESIGNATION OF THE PERSON					
7	MATERIA	WALE STREET	WILLIAM					
	ULIMBU	WOLLDOWN.	WILL WINE					
-	WWW.WOOD	AND THACK		WILL LAW				
5	MACIONADOLE	WOLLDOCK.	WELLWATE	WHITE MATERIAL				
		WELLOW D					<i></i>	
	WALLEAMER	WATERLY	WHI WHYST	THEMPHI				

minor operation code field values for W.MINOR.L or W.MINOR.B

For the major operation field values E.MUILX.I., E.MUILX.I.U., P.MUILX.I.M., E.MUILX.I.C., E.MUILADD.X.I., E.MUILADD.X.I.U., E.MUILADD.X.I.M., E.MUILADD.X.I.U., E.MUILADD.X.I.M., E.CON.X.I.U.I., E.CON.X.I.U.I., E.CON.X.I.U.I., E.CON.X.I.U.I., E.CON.X.I.U.I., E.CON.X.I.U.I., E.CON.X.I.C.I., E.CON.X.I.C.I., E.CON.X.I.C.I., E.CON.X.I.C.I., W.MUILMAT.X.I.U.I., W.MUILMAT.X.I.U.I., W.MUILMAT.X.I.U.I., W.MUILMAT.X.I.C.I., and W.MUILMAT.X.I.C.I., another six bits in the instruction specify a minor operation code, which indicates operand size, rounding, and shift amount.

31	24 23	65)
major	other	minor	7
8	18	6	_2

The minor field is filled with a value from the following table: Note that the shift amount field value shown below is the "sh" value, which is encoded in an instruction-dependent manner from the immediate field in the assembler format.

XI	0		14	74	37	40	44	54
0	WA	a ALB	167.0	ILANO	127.6	32140	6478	MANO
	W.I	ax()	167,1	IGNIT	177.1	ואנו	447	SANT
7	47.2	17.7	167.7	TERT	177,7	TIRI	477	64 1/2
	17,3	17(1	167.3	18.43	1777	33.03	277	BANT
_ {	82.6	86,5	162.6	166,0	17.2.0	37 5.0	24 7 7	64 C.0
5	82,1	85,1	162.1	1241	1771	1761	- in	4427
6	127	82.3	1627	1157	1227	1767	- Cyy-	467
7	1 327	163	162.1	146.1	1271	1777	777	442

minor operation code field values for EMULXI, EMULXIU, EMULXIM, EMULXIC, EMULADDXI, EMULADDXIU, EMULADDXIM, EMULADDXIC, ECONXIL, ECONXIB, ECONXIUL, ECONXIUB, ECONXIMB, ECONXICL, ECONXICB, EEXTRACTI, EEXTRACTIU, WMULMATXIUL, WMULMATXIUB, WMULMATXIML, '//MULMATXIMB, WMULMATXICL, and WMULMATXICB,

For the major operation field values GCOPYI, two bits in the instruction specify an operand size:

Tuc, Aug 17, 1999

Instruction Set Mino Operation Codes

For the major operation field values G.AND.I, G.NAND.I, G.NOR.I, G.OR.I, G.XOR.I, G.ADD.I., G.ADD.I.O, G.ADD.I.UO, G.SET.AND.E.I, G.SET.AND.NE.I, G.SET.E.I., G.SET.GE.I., G.SET.L.I., G.SET.L.I.U, G.SUB.I.O, G.SUB.I.UO, two bits in the instruction specify an operand size:

31	24 23	18 17		2 11	9
ОР		đ	rc	SZ	lmm
8	6)	6	2	10

The sz field is filled with a value from the following table:

٧	MY
•	16
	72
	124

operand size field values for G.COPY.I, GAND.I, G.NAND.I, G.NOR.I, G.OR.I, G.XOR.I, GADD.I.O, GADD.I.O, G.SETAND.E.I, G.SETAND.NE.I, G.SET.E.I, G.SET.GE.I, G.SET.L.I.U, G.SUB.I, G.SUB.I.O, G.SUB.I.UO

For the major operation field values E.8, E.16, E.32, E.64, E.128, with minor operation field value E.UNARY, another six bits in the instruction specify a unary operation code:

31 24	23 1	<u>8 17 12</u>	11 6	5 0
major	rd	rc	unary	minor
8	6	6	6	6

The unary field is filled with a value from the following table:

UNWIY	0		16		32	40	4.5	
	LOWN	ESTIMEN	ESINGH	LILOAIFN	EDELLAHIN	ESUM		
	TOW?	- BOWES	150017	HIONY	EXIVER		\$50AU70	
	דעטעו	LEWIST	ESP401	EFLOATH	TOTALER		TUNUTO	
	TOPE	Lange C	PSANO?			TLOOMOSTU		
4	MONT	LEUKON	ESHEFY		EDETUNITE		15114	
_{	LON	ESCHA	PSINK	EFLOXIF	EDEFLATEF			
	THOUSAND.	EMCESIAN	EAST'X	ENEGEN	ENGLATER		KOPIN	
,	THOMST	THEEST	TAIS .	ENEGE	ENVIOLE		ROM	

unary operation code field values for E.UNARY.size

For the major operation field values A.MINOR and G.MINOR, with minor operation field values A.COM and G.COM, another six bits in the instruction specify a comparison operation code:

Tue, Aug 17, 1999

Instruction Set General Forms

The compare field is filled with a value from the following table:

TCCM.	1 0		16	. 34	33	48 1		Ta -
_ 6	14 2M	ICOM#					<u>```</u>	
	KUM	KOMO				 +		
_1	SCOMMO	KOM			-			
3	KAMO	KOMOSI						
-	L KOM	RCOME) X						
	NCONO!	ROMO XI						
	I KOMU	KOMUX						
	ACOUNTY	KONGELX						

compare operation code i...ld values for ACOM.op and G.COM.op.size

General Forms

The general forms of the instructions coded by a major operation code are one of the following:

The general forms of the instructions coded by major and minor operation codes are one of the following:

The general form of the instructions coded by major, minor, and unary operation codes is the following:

Tuc, Aug 17, 1999

Instruction Set Instruction Fetch

Register rd is either a source register or destination register, or both. Registers re and rb are always source registers. Register ra is always a destination register.

Instruction Fetch

```
Definition
del Threadithi as
     forever do
          catch exception
               if (EventRegister & EventMask(th)) # () then
                     If ExceptionState=0 then
                          raise Eventinterrupt
               ende
               inst ← LoadMemoryXIProgramCounter,ProgramCounter,32,LJ
               Instruction(Inst)
          case exception of
               Evendnterrupt,
                Reservedinstruction,
                AccessDisallowedBy/Vrtual/Address,
               AccessDisaflowedByTag.
                AccessDisallowedByGlobalTB,
               AccessDisalloweoByLocalTB, AccessDetailRequiredByTag,
               AccessDetailRequiredByGlobalTB,
                AccessDetailRequiredByLocalTB,
                MissinGlobalTB,
                MissinLocalTB.
                FixedPointAritivnetic,
                Floating/roint/v thmetic,
                GatewayDirailowed:
                     case ExceptionState of
                          œ
                                PerformException|exception|
                           1:
                                PerformException(SecondException)
                          2:
                                PerformMacrimeCheck[ThirdException]
                     endcase
                TakenBranch:
                     ContinuationState + (ExceptionState=0) 7 0 : ContinuationState
                TakenBranchContinue:
                     /" nothing "/
                none, others:
                     ProgramCounter ← ProgramCounter + 4
                     ContinuationState - [ExceptionState=0] 7 0 : ContinuationState
           endrase
     endforever
enddef
```

Perform Exception

```
Definition
del Performexcepului Hexception) as
     v ← (exception > 7) ? ; exception
     t - LoadMemory(Exceptic nBase, ExceptionBase+Thread*128+64+8*v,64,L)
     # ExceptionState = 0 then
          u ← RegRead(3,128) 1: RegRead(2,128) 11 RegRead(1,128) 11 RegRead(0,128)
          StoreMemory(ExceptionBist, ExceptionBase+Thread*128,512,Lul
          RegWrite[0,64,ProgramCcunter63,2 11 PrivilegeLevel
          RegWrite(1.64,Exception8 ise-Thread* 128)
          RegWrite(2,64,exception)
          RegWrite(3,64,FailingAdd: ess)
     endif
     PrivilegeLevel \leftarrow t_{1.0}
     ProgramCounter ← t<sub>63..2</sub> 11 0<sup>2</sup>
     case exception of
          AccessDetailRequiredByTag.
          AccessDetailRequiredByGlobalTB.
          AccessDetailRequiredByLocalT&
               ContinuationState + ContinuationState + 1
          others:
               /" nothing "/
     entcase
     ExceptionState - ExceptionState + 1
enddef
Instruction Decode
def instructionanst as
     major - inst31_24
     rd ← inst23_18
     rc ← Inst17..12
     simm + rb + inst<sub>11.6</sub>
     rmnor +- ra +- insts.o
     case minjor of
         ARES:
              AwaysReserved
          AMNOR
              minor ← insts. o
              case minor of
                    AADD, AADD.O, AADD.OU, AAND, AANDN, ANAND, ANOR
                    AOR AORN, AXNOR AXOR
                         Address(minor,rd,rc,rb)
```

raise ReservedInstruction

ACOM.E, ACOM.NE, ACOM.AND.E, ACOM.AND.NE, ACOM.L. ACOM.GE, ACOM.LU, ACOM.GE.U:
AddressCompare(compare,rd,rc)

ACOM:

compare ← inst_{11.6} case compare of

others:

endcase

Instruction Set Instruction Decode

ASUB ASUBO, ASUBU.O. ASET AND E ASET AND ME, ASET E, ASET ME ASETL ASET.GE, ASETLU, ASET.GE.U. AddressReversed(minor,rd,rc,rb) ASHLIADOLASHLIADO+3: AddressShirtLeftImmediateAddlinst | ..o.rd,rc,rb| ASHLISUB. ASHLISUB+3: AddressShiftLeftImmediateSubtract(inst 1..0.rd,rc,rb) ASHLI ASHLI.Q. ASHLI.U.O, ASHRIL ASHRI.U, AROTRI: AudressShiftImmediate(minor,rd,rc,simm) others. raise ReservedInstruction endcase ACOPY.I AddressCopylmmediate(major,rd,inst_{17_0}) AADDI AADDIO, AADDIUO, AANDI, AORI ANANDI, ANORI AXORE Address/mmediate/major,rd,rc,inst | 1.0 ASETANDEL ASETANDINEL ASETIEL ASETINEL ASETILL ESET.GEL ASETILUL ASET.GE.UL ASUBL ASUBLIO, ASUBLUICE AddressimmediateReversed[major,rd,rc,inst]1_di AddressTernary(major,rd,rc,rb,ral B.MINOR: case minor of R. Branchfrd.rc.rbi B.BACK BranchBackfrd.rc.rbl B.BARRIER: BranchBarrier[rd,rc,rb] B.DOWN: BranchDownfrd,rc,rbl B.GATE: BranchGateway(rd,rc,rb) B.HALT: BranchHaltfrd,rc,rbj B.HINT: BranchHintfrd,inst 17, 12, simm B.UNK: BranchLinkfrd,rc,rbf others: raise ReservedInstruction BE, BNE, BL, BGE, BLU, BGE,U, BAND.NE: BranchConditional[major,rd,rc,inst11_0] BHINT: BranchHintlmmediate(inst_{23_18}-inst_{17_12}-inst_{11_0}) Bt: Branchimmediatelinst23..0 **BLINKI:** BranchimmediateLinklinst23...0 BEF16, BLGF16, BLF16, BGEF16.

BEF32, BLGF32, BLF32, BGEF32, BEF64, BLGF64, BLF64, BGEF64, BEF128, BLGF128, BLF128, BGEF128: BranchConditionalFloatingPoint(major,rd,rc,inst | 1 ol. BIF32, BNF32, BNVF32, BVF32: BranchConditionalVisibilityFloatingPoint(major,rd,rc,inst | 1 ol. LMINOR case minor of

MINOR OF L16L LU16L L32L LU32L L64L LU64L L128L L8, LUR L16AL LU16AL L32AL LU32AL L64AL LU64AL L128AL L16AL LU16AL L32AL LU32AL L64AR LU64AR L128AR L16AR LU16AR L32AR LU32AR L64AR LU64AR L128AR L03d(minor,rd,rc,rb) others:

raise Reservedinstruction

en:kase LITEL L:UTEL LI32L, LIU32L, LIE4L, LIU64L, LIT28L, LIB, LIUB, LITEAL, LIUTEAL, LI32AL, LIU32AL, LIE4AL, LIUE4AL, LIT28AL, LITER I:UTEAR, LIU32A, LIU32AR, LIUE4AR, LILIE4AR, LIT28AR, LITEAR, LIUTEAR, LIU32AR, LIU32AR, LIUE4AR, LILIE4AR, LIT28AR, LC adimmediate(major,rd,rc,inst; 1), o)

S.MINCR

Case minor of

S16L, S32L, S64L, S12BL, SB,

S16AL, S32AL, S64AL, S12BAL,

SAS64AL, SCS64AL, SMS64AL, SM64AL,

S16B, S32B, S64B, S12BB,

S16AB, S32AB, S64AB, S12BAB,

SAS64AB, SCS64AB, SMS64AB, SM64AB:

Store[minor,rd,rc,rb]

SDCS64AB, SDCS64AL:

StoreDoubleCompareSwap[minor,rd,rc,rb]

others:
raise Reservedinstruction

endcase SI : 6L, SI32L, SI64L, SI128L, SI8, SI16AL, SI32AL, SI64AL, SI128AL, SASI64AL, SCSI64AL, SMSI64AL, SMUXI64AL, SI16B, SI32B, SI64B, SI128B, SI16AB, SI32AB, SI64AB, SI128AB SASI64AB, SCSI64AB, SMSI64AB, SMUXI64AB: StoreImmediate(major,rd,rc,inst11...o)

GADD, GADD, GADD, GADD, GADD, OUGroup[minor,size,rd,rc,rb]
GADDHC, GADDHF, GADDHN, GADDHZ,
GADDHUC, GADDHUF, GADDHUN, GADDHUZ:
GroupAddHalve[minor,inst]_____size,rd,rc,rb]
GAM, GASA:

Groupinplaceiminor, size, rd, rc, rh;
G.SET.AND.E, G.SET.AND.NE, G.SET.E, G.SET.NE,
G.SET.L, G.SET.GE, G.SET.LU, G.SET.GE.U;
G.SUB, G.SUB.L, G.SUB.LU, G.SUB.O, G.SUB.U.O.
GroupReversediminor, size, ra, rb, rc;
G.SET.E.F., G.SET.LG.F., G.SET.GE.F., G.SET.L.F.,
G.SET.E.F.X., G.SET.LG.F.X., G.SET.GE.F.X., G.SET.L.F.X.
GroupReversedfloatingPoint(minor.op., size,

```
minor round, rd, rc, rb)
          G.SHLIADD.G.SHLIADD+3,
                GroupShiftLeftImmediateAddfinst | Gsize.rd.rc.rbf
          G.SHLJ.SUB..G.SHLJ.SUB+3,
                GroupShiftLeftImmediateSubtractfinst 1...o.size,rd,/c,rbj
          G.SUBHC, G.SUBHF, G.SUBHN, G.SUBHZ,
          G SU'DHUC, G.SUBHUF, G.SUBHUN, G.SUBHUZ:
                GroupSubtrar*Halve(minor,inst | o.size,rd,rc,rb)
          G COM.
                compare - institué
                Case compare of G.COM.NE, G.COM.AND.E, G.COM.AND.NE,
                     G.COML G.COM.GE. G.COM.LU, G.COM.GE.U.
                          GroupCompare(compare,size,ra,rb)
                     others:
                          raise ReservedInstruction
                endcase
          others:
                raise ReservedInstruction
     endcase
G.BOOLE/N.G.&OOLEAN+1:
     GroupBoolean(major,rd,rc,rb,minor)
G COPY.I...G.COPY.H 1:
     size ← 0 11 1 11 04+inst17.16
     GroupCopyImmediate(major,size,rd,inst<sub>15.0</sub>)
GANDI, GNANDI, GNORI, GORI, GXORI,
GNODI, GADDIO, GADDIUO.
     size - 0 | | 1 | 1 | 04+inst | 1,10
     Group/mmediate/ najor,size,rd,rc,instq_di
G.SET.AND.E.L. G.SET.AND.NE.L. G.SET.E.L. G.SET.GE.L. G.SET.L.L.
G.SET.NE.L. G.SET.GE.I.U., G.SET.L.I.U., G.SUB.L. G.SUB.I.O., G.SUB.I.U.O:
     size ← 0 11 1 11 04+inst11 10
     Group/mmediateReversed/major,size,rd,rc,instq_gl
G.MUX
     GroupTernary(major,rd,rc,rb,ra)
X SHIFT:
     minor \leftarrow inst<sub>5...2</sub> 11 0^2
     size - 0 | | 1 | | 0|inst24 | 1 inst1...0|
     case minor of
          X.EXPAND, X.UEXPAND, X.SPL, X.SHL.O, X.SHL.U.O,
          X.ROTR, X.SHR, X.SHR.U.
                Crossbar/minor, size, rd ~.rb/
          X.SHL.M. X.SHR.M:
               Crossbarinplace(minor, size, rd, rc, rb)
          others:
               raise ReservedInstruction
     endcase
X.EXTRACT:
     CrossbarExtract(major.rd,rc,rb,ra)
X.DEPOSIT, X.DEPOSIT.U X.WITHDRAW X.WITHDRAW U
     CrossbarField(major,rd,rc,inst 11.6-inst5.0)
X.DEPOSIT.M:
     CrossbarFieldInplace(major,rd,rc,inst) 1.6.inst5...01
X.SHIFT.I;
```

minor ← insts.o

```
case minors 2 11 02 of
         X.COMPRESS E X.EXPANDE X.ROTRE X.SHEE X.SHEEO, X.SHEEU.O.
         Y SHRIL > CO'.:PRESS.I.U, X.EXPAND.I.U, X.SHR UI:
              CrossbarShortimmediate(nwnor,rd,rc,simm)
         X.SHL.M.L. X SHR.M.L.
              CrossbarShortimmediateInplaceIminor,rd,rc,simmj
         others
              raise ReservedInstruction
    endcase
X.SHUFFLE.X.SIAUFFLE+1
    CrossbarShufflelmajor.rd.rc.rb.simml
XSW1ZZLE.XSW1ZZLE+3
    CrossbarSwezielmajor,rd,rc, inst<sub>11.6</sub> inst<sub>5.0</sub>i
X.SELE T.B:
    C: ossbarTernary(major,rd,rc,rb,ra)
E.B. E.16, E.32, E.64, E.128:
    minor - insts o
    520 ← 0 11 1 11 03+may~ E8
    case minor of
         E.CON. E.CON.U. E.CON.M. E.CON.C.
         EMUL, EMULU, EMULM, EMULC,
         EMULSUM EMULSUMU, EMULSUMM, EMULSUMC,
         E.DIV. E.DIV.U. E.MULP.
              Ensemblehminor, size, ra, rb, rc)
         E.CONFIL E.CONFIR E.CONC.F.L E.CONC.F.B.
              EnsembleConvolveFloatingPoint(minor.size,rd,rc,rb)
         EADOFN EMULCEN EMULEN EDIVEN
         EADDEZ, EMULCEZ, EMULSZ, EDIVEZ,
         EADDEF, EMULCEF, EMULEE, EDIVEE,
         EADDEC, EMULCEC, EMULEC, EDIVEC.
         EADDF. EMULCE, EMULE, EDIVE
         EADDEX EMULCEX EMULEX EDIVEX
              EnsembleFloatingPoint(minor.op, major.size, minor.round, rd, rc, rb)
         EMULADO, CMULADO, U, EMULADO, M. EMULADO C:
              EnsembleInplace(minor, size, rd, rc, rb)
         E.MULSUR, E.MULSURU, E.MULSURM, E.MULSUB.C:
```

E.LINARY

EMULSUBF. EMILSUBCE

EASE UNARY OF

E.SUM, E.SUMU, E.LOG.MOST, E. LOG.MOST.U:
EnsembleUnary(unary,rd,rc)

E.ABS.F., E.ABS.F.X., E.COPY.F., COPY.F.X.
E.DEFLATE.F., E.DEFLATE.F.N., E.DEFLATE.F.Z.
E.DEFLATE.F.F., E.DEFLATE.F.C., E.DEFLATE.F.X.
E.FLOAT.F., E.FLOAT.F.N., E.FLOAT.F.Z.
E.FLOAT.F.F., E.FLOAT.F.C., E.FLOAT.F.X.
F.INFLATE.F., E.INFLATE.F.X., E.NEG.F., E.NEG.F.X.,
E.RECEST.F., E.RECEST.F.X., E.RSOREST.F., E.RSOREST.F.X.
E.SOR.F., E.SOR.F.N., E.SOR.F.Z., E.SOR.F.F., E.SOR.F.C., E.SOR.F.X.
E.SUM.F., E.SUM.F.N., E.SUM.F.Z.,
E.SUM.F.F., E.SUM.F.C., E.SUM.F.X.
E.SUM.F., E.SUM.F.C., E.SUM.F.X.
E.SUM.F.N., E.SUM.F.Z., E.SINK.F.C.D., E.SINK.F.X.D.,
E.SINK.F.N., E.SINK.F.Z., E.SINK.F.F., E.SINK.F.X.

EnsembleinplaceReversed/minor,size,rd,rc,rbj

minor.round, rd, rc, rbi

EnsembleinplaceReversedFloatingPoint(minor,size,rd,rc,rb)
E.SUB.F.N., F.SUB.F.Z., E.SUB.F.F., E.SUB.F.C., E.SUR.F., E.SUB.F.X.
EnsembleReversedFloatingPoint(minor.op., major.size,

Tu , Aug 17, 1999

Instruction Set Instruction Decode

EnsembleUnaryFloatingPointfunary.op. major.size, unary round, rd. rcl

Others:

raise Reservedinstruction

endcase

others:

raise Reservedinstruction

endrase

ECONXIL, ECONXIB, ECONXIUL, ECONXIUB E.CONXIME, E.CONXIMB, E.CONXICE, E.CONXICE

276 -- 1 11 03-may 4

 $Ensemble Convolve \textbf{Extractimmediate} imajor, inst \underline{\texttt{3...2}}, size_rd_rc_rb, inst \underline{\texttt{1...0}}$

E.MULX E.EXTRACT, ESCALAPON.

EnsembleExtract(major,r., ...ro,ra)

E.EXTRACTI, E.EXTRACTIÚ E.MULIO, E.MULIOU, E.MULIOU;

MSE - 1 11 03-4-47 4

 $Ensemble \verb§Extractimmed tate imajor, inst \verb§3_2, size_rd, rc, rb, inst \verb§1_0]$

EMULADOXI EMULADOXIU EMULADOXIM EMULADOXIC:

Transfil I - Str

Ensemblet.stractine.nediateinplaceimajor,inst3_2_size_rd.rc.rb.inst1_0|

EMULGALB, EMULGIL 64:

52e - 1 | 1 | 0 3-078274 24

EnsembleTernary/major,size,rd,rc,rb,ra/

EMULADOFIA, EMULADOF32, EMULADOF64, EMULADOF128

E.MULSUB.F16, E.MULSUB.F12, E.MULSUB.F64, E.MULSUB.F128, ESCALADDIFIA, ESCALACUIF32, ESCALADDIFA4:

EnsembleTernaryFloatingPoint(major,rd,rc,rb,ra)

W.MINORB, W.MINORL

case minor of

W.TRANSLATE.B. W.TRANSLATE.16, W.TRANSLATE.32, W.TRANSLATE.64:

size ← 1 11 03+msts.4

WideTranslate(major,size,rd,rc,rb)

W.MULMAT.R. W.MULMAT.16, W.MULMAT.32, W.MULMAT.64, W.MULMAT.U.B. W.MULMAT.U.16, W.MULMAT.U.32, W.MULMAT.U.64, W.MULMATM.R. W.MULMATM.16. W.MULMATM.32, W.M.Y.MATM.64, W.MULMAT C.B. W.MULMAT.C. 16. W.MULMAT.C.32, W.MULMAT.C.64,

W.MULMAT.P.B. W.MULMAT.P.16, W.MULMAT.P.32, W.MULMAT.P.64:

* e ← 1 11 03+msts.4

WideMultiply(major,minor,size,i J,rc,rb)

W.MULMAT.F16, W.MULMAT.F.32, W.MULMAT.F64,

W.MUL.MAT.C.F16, W.MUL.MAT.C.F32, W.MUL.MAT.C.F64: sise -- 1 11 03-mais 4

WideFloatingPointMultiply[major,minor,size,rd,rc,rb]

others:

endcase

W.MUL.MATXB, W.MUL.MATXL:

WideExtract/major,rarb,rc,rd)

W.MULMATXIB W.MULMATXIL W.MULMATXIU.B. W.MULMATXIU.L. W.MUL.MATXIM.B. W.MUL.MATXIM.L. W.MUL.MATXI.C.B, W.MUL.MATXI.C.L:

sise ← 1 11 03+msts 4

WideExtract/mmediate/major,inst3_2.size_ra,rb,rc,inst1_0/

W.MUL.MAT.G.B. W.MU'LMAT.G.L.

Wid-MulbplyGalois[major,rd rc,rb,ra]

W.SWITCH.B. W.SWITCH.L:

WideSwitch[major,rd,rc,rb,ra]

others.

Tue, Aug 17, 1999

Instruction Set Instruction Decode

raise ReservedInstruction

endcase enddel

- 71 -

MicroUnity

Tue, Aug 17, 1999

Instruction Set
Always Reserved

Always Reserved

This operation generates a reserved instruction exception.

Operation code

ARES Always reserved

Format

ARES imm

ares(imm)

Description

The reserved instruction exception is raised. Software may depend upon this major operation code raising the reserved instruction exception in all implementations. The choice of operation code intentionally ensures that a branch to a zeroed memory area will raise an exception.

Definition

def AwaysReserved as raise ReservedInstruction enddef

Exceptions

Reserved Instruction

Address

These operations perform calculations with two general register values, placing the result in a general register.

Operation codes

AADD	Address add
AADD.O	Address add signed check overflow
AADD.U.O	Address add unsigned check overflow
AAND	Address and
ANDN	Address and not
ANAND	Address not and
ANOR	Address not or
AOR	Address or
AGRN	Address or not
AXNOR	Address exclusive nor
AXOR	Address xor

Redundancies

 ACOPY rd=rc	
	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	⇒ ASET rd ⇔ AZERO rd ⇔ ASHL1 rd=rc,1

Selection

class	operat	ion			check		
arithmetic	ADD				NONE	0	U.O
bitwise	OR NOR	AND NAND	XOR XNOR	ANDN ORN	1		

Tuc, Aug 17, 1999

Instruction Set

Format

op rd=rcrb

rd=op(rc,rb)

Description

The contents of registers re and rb are fetched and the specified operation is performed on these operands. The result is placed into register rd.

Definition

```
def Addressjop.rd.rc.rbj as
    c - RegReadire, 64)
    b - RegReadirb. 64)
    case op of
        AADD:
             a ← c + b
         AADD.O:
             1 - K63 11 c) + 1063 11 b)
             if 64 ≠ 63 then
                  raise FixedPointAnthimetic
             enad
             a - 463 0
        AADD.UO
             1 - 101 11 d + 101 11 pl
             # 64 = 0 then
                 raise FixedPointAnthmetic
             endif
             ه. دی ← د
        AAND
             a - c and b
        AOR:
        AXOR
             a ← c xor b:
        AANDN:
             a ← c and not b
        ANAND:
            a - not (c and b)
        ANOR:
            a ← not (c or b)
        AXNOR:
            a ← not (c xor b)
        AORN:
            a ← c or not b
   endcase
```

Tue, Aug 17, 1999

Instruction Set

Regulateird, 64, aj enddef

Exceptions

Frank pour andmeter

Tue, Aug 17, 1999

Instruction Set Address Compare

Address Compare

These operations perform calculations with two general register values and generale a fixed-point arithmetic exception if the condition specified is met.

Operation codes

ACOMAND.E	Address compare and equal zero
A COMANDINE	Address compare and not equal zero
ACOME	Address compare equal
ACOM.GE	Address compare greater equal signed
ACOMGE.U	Address compare greater equal unsigned
ACOML	Address compare less signed
ACOMLU	Address compare less unsigned
ACOMNE	Address compare not equal

Equivalencies

ACOMEZ	Address compare equal zero
ACOMGZ	Address compare greater zero signed
A COM GEZ	Address compare greater equal zero signed
ACOMLZ	Address compare less zero signed
ACOMLE.Z	Address compare less equal zero signed
ACOMNEZ	Address compare not equal zero
ACOMG	Address compare greater signed
ACOMG.U	Address compare greater unsigned
ACOMLE	Address compare less equal signed
ACOMLE.U	Address compare less equal unsigned
AFIX	Address fixed point arithmetic exception
ANOP	Address no operation

ACOMEZ rc	← ACOMAND.E rc,rc
ACOMGZ rc	← ACOMLU rc.rc
ACOMGEZ IC	← ACOM.GE rc,rc
ACOMLZ IC	← ACOM.L rc.rc
ACOMLEZ rc	← ACOM.GE.U rc,rc
ACOMNEZ rc	← ACOMAND.NE rc,rc
ACOMG raid	→ ACOM.L rd,rc
ACOM.G.U rc.rd	→ ACOM.LU rd,rc
ACOMLE rard	→ ACOM.GE rd,rc
ACOMLE.U rc.rd	→ ACOM.GE.U rd,rc
AFIX	← ACOM.E 0,0
ANOP	← ACOM.NE 0,0

Redundancies

ACOM.E rd,rd	⇔	AFIX
ACOM.NE rd,rd	⇔	ANOP

Selection

class	operation	cond	operand
boolean	COMAND COM	E NE	
arithmetic	COM	I. GE G LE	NONE U
	COM	L GE G LE E NE	Z

Format

ACOM.op rd.rc

acomop(rd,rc)
acomopz(rcd)

Description

The contents of registers rd and rc are fetched and the specified condition is calculated on these operands. If the specified condition is true, a fixed-point arithmetic exception is generated. This instruction generates no general register results.

Definition

```
def AddressCompare(op,rd,rc) as
     d ← RegRead(rd, 128)
     c ← RegRead(rc, 128)
     case op of
          ACOM.E:
                2 - d = c
          ACOM.NE:
                2 ← d ≠ c
          ACOMAND.E:
          a \leftarrow \{d \text{ and } c\} = 0
ACOMAND.NE:
                a \leftarrow |d \text{ and } c| = 0
          ACOM.L:
                a \leftarrow (rd = rc) ? (c < 0) : (d < c)
          ACOM.GE:
                a ← [rd = rc] ? [c ≥ 0] : [d ≥ c]
           ACOM.LU.
                a ← |rd = rc| 7 |c > 0| : (10 11 a) < 10 11 c)
           ACOM.GE.U:
                a ← [rd = rc] ? k ≤ 0] : [[0 11 d] ≥ [0 11 d]
     endcase
```

Tuc, Aug 17, 1999

Instruction Set Address Compare

if a then raise FixedPointArithmetic endif enddef

Exceptions

Fixed-point anthmetic

Address Copy Immediate

This operation produces one immediate value, placing the result in a general register.

Operation codes

ACOPY.I	Address copy immediate

Equivalencies

ASET	Address set
AZERO	Address zero

ASET rd	←	ACOPY.I rd=-I
AZERO rd	—	ACOPY.I rd=0

Format

ACOPY.I rd=imm

rd=acopyi(imm)

Description

An immediate value is sign-extended f.om the 18-bit imm field. The result is placed into register rd.

Definition

del AddressCopylmmediate(op,rd,imm) as

a ← [imm] 30 11 imm RegWrite(rd, 128, a)

enddef

Exceptions

none

Tue, Aug 17, 1999

Instruction Set
Address Immediate

Address Immediate

These operations perform calculations with one general register value and one immediate value, placing the result in a general register.

Operation codes

AADD.I	Address add immediate
AADD.I.O	Address add immediate signed check overflow
AADD.I.U.O	Address add immediate unsigned check overflow
AAND.I	Address and immediate
ANAND.I	Address not and immediate
ANOR.I	Address not or immediate
AOR.I	Address or immediate
AXOR.I	Address xor immediate

Equivalencies

AANDN.I	Address and not immediate	
ACOPY	Address copy	
ANOT	Address not	
A.ORN.I	Address or not immediate	
AXNOR.I	Address xnor immediate	

AANDN.I rd=rc.imm		AAND.I rd=rc,-imm	
ACOPY rd=rc		AOR.I rd=rc,0	
ANOT rd=rc	←	ANORI rd=rc0	
AORN.I rd=rc.imm		AOR.I rd=rc-imm	
AXNOR.I rd=rc.imm		AXOR.I rd=rc,-imm	

Redundancies

	 _	
AADD.1 rd=rc,0	ACOPY Id=IC	
AADD.I.O rd=rc,0	ACOPY rd=rc	
AADD.I.U.O rd=rc,0	ACOPY rd=rc	
AAND.I rd=rc,0	AZERO rd	
AAND.I rd=rc,-1	ACOPY rd=rc	
ANAND.I rd=rc,0	⇔ ASET rd	
ANND.I rd=rc,-1	ANOT rd=rc	
AORI rd=rc-1	ASET rd	
ANORI rd=rc-1	AZERO rd	
AXOR.I rd=rc,0	ACOPY rd=rc	
AXOR.I rd=rc,-1	ANOT rd=rc	
,		

Tue, Aug 17, 1999

Instruction Set Address Immediate

7.1

E) Fe

Selection

class	operation	check
arithmetic	ADD	NONE O UO
bitwise	AND OR NAND NOR	

Format

op rd=rc,imm

rd=op(rc.imm)

31	24 2	3 18	17 12	2110
	p	rd	rc	lmm
	8	6	6	12

Description

The contents of register re is fetched, and a 64-bit immediate value is sign-extended from the 12-bit imm field. The specified operation is performed on these operands. The result is placed into register rd.

Definition

```
del Addressimmediate(op,rd,rc,imm) as
    i ← imm§? II imm
    c - RegRead(rc. 64)
    case op of
         AANDJ:
              a ← c and i
         AORJ:
              a - c or i
         ANAND.I:
              a ← c nand i
         ANORI:
              a ← c nor i
         AXORJ:
              a - c xor k
         AADDJ:
              a ← c + i
         VVOOTO:
              t ← K63 11 c) + fi63 11 4
              # 164 # 163 then
                   raise FixedPointArithmetic
              endil
              a ← 163.0
         AADDJ.U.O:
              t ← |c63 | | c| + |i63 | | 4
              # 164 # 0 then
                   raise FixedPointArithmetic
              endil
              a ← 63.0
```

Tue, Aug 17, 1999

Instruction Set Address Immediate

endcase RegWnte(rd, 64, a) enddef

Exceptions

Fixed-point arithmetic

Address Immediate Reversed

These operations perform calculations with one general register value and one immediate value, placing the result in a general register.

Operation codes

ASET AND E.I	Address set and equal immediate
ASET AND NE.I	Address set and not equal immediate
ASET.E.I	Address set equal immediate
ASET.GE.I	Address set greater equal immediate signed
ASET.LI	Address set less immediate signed
ASET.NE.I	Address set not equal immediate
ASET.GE.I.U	Address set greater equal immediate unsigned
ASET.LI.U	Address set less immediate unsigned
ASUB.I	Address subtract immediate
ASUB.I.O	Address subtract immediate signed check overflow
ASUB.I.U.O	Address subtract immediate unsigned check overflow

Equivalencies

ANEG	Address negate
A.YEG.O	Address negate signed check overflow
ASET.G.I.U	Address set greater immediate unsigned
ASET.LE.I	Address set less equal immediate signed
ASET.LE.I.U	Address set less equal immediate unsigned

ANEG rd=rc	→ ASUB.I rd=0,rc
ANEG.O rd=rc	→ ASUB.I.O rd=0,rc
ASET.G.I rd=Imm,rc	→ ASET.GE.I rd=imm+1,rc
ASET.G.I.U rd=imm,rc	→ ASET.GE.I.U rd=Imm+1,rc
ASET.LE.I rd=imm,rc	→ ASET.L.I rd=imm-1,rc
ASET.LE.I.U rd=imm.rc	→ ASET.L.I.U rd=imm-1,rc

Tue, Aug 17, 1999

Instruction Set
Address Immediate Reversed

Redundancies

ASETAND.E.I rd=rc,0	ASET rd
ASETAND.NE.I rd=rc.0	AZERO Id
ASETAND.E.I rd=rc,-1	ASET.E.Z rd=rc
ASETAND.NE.I rd=rc,-1	ASET.NEZ rd=rc
ASET.E.I rd=rc,0	ASET.EZ rd=rc
ASET.GE.I rd=rc,0	ASET.GE.Z rd=rc
ASET.L.I rd=rc,0	ASET.LZ rd=rc
ASET.NE.I rd=rc,0	ASET.NE.Z rd=rc
ASET.GE.I.U rd=rc,0	ASET.GE.U.Z rd=rc
ASET.L.I.U rd=rc,0	ASET.L.U.Z rd=rc

Selection

class	operation	cond	form	type	check
arithmetic	SUB		1	1353	- CIICCA
		<u>1</u>	· I	NONE L	1 0
boolean	SETAND SET	E NE	1		
	SET	L GE G LE	1	NONE L	

Format

op rd=imm,rc

rd=op(imm,rc)

Description

The contents of register re is fetched, and a 64-bit immediate value is sign-extended from the 12-bit imm field. The specified operation is performed on these operands. The result is placed into register rd.

Definition

```
del Addressimmediate(op.rd.rc.imm) as

i ← imm { 1 | imm

c ← RegRead(rc. 64)

case op of

ASUB.I:

a ← i · c

ASUB.IO:

t ← [i63 | 1 | i] · [c63 | 1 | c]

if t64 ≠ t63 then

raise FixedPointArithmetic
endif
```

```
a + t6:0
          ASUBILU.O:
                1 - 163 11 4 - 1663 11 c)
                if t<sub>64</sub> ≠ 0 then
                     raise FixedPointArithmetic
                endif
                a ← 63.0
          ASET, AND.E.I:
                a - (1) and c) = 0164
          ASET.AND.NE.I:
                a \leftarrow 111 and c1 = 0164
          ASET.E.I:
                a - 11 = c|64
          ASET.NE.I:
                a - 11 = c|64
          ASET.LI:
                a - 11 < c|64
          ASET.GE.I:
                a - 11 2 c164
          ASET.LI.U:
          a \leftarrow ([0\ 11\ 4] < [0\ 11\ c])^{64}
ASET.GE.I.U:
                a ← 110 11 i) ≥ 10 11 c)|64
     ondcase
     RegWrite/rd, 64, a)
eriddef
```

Exceptions

fixed-point anthmenc

Your System Architecture

Tuc, Aug 17, 1999

Instruction Set Address Revened

Address Reversed

These operations perform calculations with two general register values, placing the result in a general register.

Operation codes

A SET AND.E	Address set and equal zero	
ASETANDINE	Address set and not equal zero	
ASET.E	Address set equal	
ASET.GE	Address set greater equal signed	
ASET.GE.U	Address set greater equal unsigned	
ASET.L	Address set less signed	
ASET.LU	Address set less unsigned	
ASET.NE	Address set not equal	
ASUB	Address subtract	
ASUB.O	Address subtract signed check overflow	_
ASUB.U.O	Address subtract unsigned check overflow	_

Equivalencies

ASET.E.Z	Address set equal zero
ASET.G.Z	Address set greater zero signed
A SET.GE.Z	Address set greater equal zero signed
ASET.LZ	Address set less zero signed
ASET.LE.Z.	Address set less equal zero signed
ASET.NE.Z	Address set not equal zero
ASET.G	Address set greater signed
ASET.G.U	Address set greater unsigned
ASET.LE	Address set less equal signed
ASET.LE.U	Address set less equal unsigned

ASET.E.Z rd=rc	← ASETAND.E rd=rc,rc	
ASET.G.Z rd=rc	← ASET.LU rd=rc,rc	
ASET.GE.Z rd=rc	← ASET.GE rd=rc,rc	_
ASET.LZ rd=rc	← ASET.L rd=rc,rc	-
ASET.LE.Z rd=rc	← ASET.GE.U rd=rc,rc	
ASET.NE.Z rd=rc	← ASET,AND.NE rd=rc,rc	
ASFT.G rd=rb,rc	→ ASET.L rd=rc,rb	
ASET.G.U rd=rb,rc	→ ASET.LU rd=rc,rb	
ASET.LE rd=rb,rc	→ ASET.GE rd=rc,rb	
ASET.LE.U rd=rb,rc	→ ASET.GE.U rd=rc,rb	

Redundancies[®]

ASET.E rd=rc,rc	⇔	ASET rd
ASET.NE rd=rc,rc	⇔	AZERO rd

Selection

class	operation	cond	operand	check
arithmetic	SU3	,		- Circen
		<u> </u>	NONE U	0
boolean	SET AND SET	ENE		
	SET	L GE G LE	NONE U	
	SET	L GE G LE E NE	Z	

Format

op rd=rb,rc

rd=op(rb,rc)
rd=opz(rcb)

31	24	23	18	17	12	11	6	5	0
A.M	INOR		ď		rc		rb	0.0	
	8		6		6		4		

rc ← rb ← rcb

Description

The contents of registers re and rb are fetched and the specified operation is performed on these operands. The result is placed into register rd.

Definition

del AddressReversed(c : rd,rc,rh) as c ← RegRead(rc. 128) t - RegRead(rb, 128) case op of ASET.E: a ← (b = c)64 ASET.NE: a - 10 + c|64 ASET/ND.E $a \leftarrow \{|b| \text{ and } c\} = 0\}^{64}$ ASET AND NE: $a \leftarrow (|b| \text{ and } c) \neq 0)64$ ASET!. 3 ← ((rc = rb) 7 (5 < 0) · (6 < c))64 ASET.GE: a ← ((rc = rb) ? (b ≥ 0) : (b ≥ c))64 ASET.LU:

\$

Zeus System Architecture

Tue, Aug 17, 1999

Instruction Set

```
a \leftarrow |||rc = rb|| ? ||b > o|| : ||o|| ||b|| < ||o|| ||c|||^{64} ASET.GE.U.
                a ← Hrc = rh ? (b ≤ 0) : (10 11 b) ≥ 10 11 c)164
           ASUB:
                a \leftarrow b \cdot c
           ASUB.O:
                t ← (b63 11 b) - (c63 11 c)
                if t64 ≠ t63 then
                     raise FixedPointAnthmetic
                a ← 163.0
           ASUB.U.O:
                t - 101 11 bl - 101 11 cl
                # 164 # 0 then
                     raise FixedPointAnthmetic
                a - 43 0
     endcase
     RegWritefrd, 64, at
enddel
```

Exceptions

I used point anthmetic

Address Shift Left Immediate Add

These operations perform calculations with two general register values, placing the result in a general register.

Operation codes

I	٨	S	HL	.IA	Ø	,	

Address shift left immediate add

Format

ASHLIADD rd=rcrb.i

rc=op(ra,rb,i)

assert ≤i≤4

 $sn \leftarrow .$

Description

The contents of register rb are shifted left by the immediate amount and added to the contents of register rc. The result is placed into register rd.

Definition

def AddressShiftLeftImmediateAdd[sh,rd,rc,rb] as

c ← RegRead(rc, 64)

b ← RegRead(rb. 64)

a - c + (062-sn 0 11 01+sh)

RegWritefrd, 64, al

enddel

Exceptions

none

Tuc, Aug 17, 1999

Instruction Set Address Shift Left Immediate Subtract

Address Shift Left Immediate Subtract

These operations perform calculations with two general register values, placing the result in a general register.

Operation codes

ASHLI.SUB

Address shift left immediate subtract

Format

ASHLISUB rd=rb,i,rc

rd=op(rb,i,rc)

assert 15i54

 $sh \leftarrow i-1$

Description

The contents of register re is subtracted from the contents of register rb shifted left by the immediate amount. The result is placed into register rd.

Definition

del AddressShiftLeftImmediateSubtract[op,rd,rc,rb] as

c ← RegRead(rc, 128)

b ← RegRead(rb. 128)

a - (062-sh.0 11 01+57) - c

RegWritefrd, 64, a)

enddef

Exceptions

none

Address Shift Immediate

These operations perform calculations with one general register value and one immediate value, placing the result in a general register.

Operation codes

ASHLI	Address shift left immediate
ASHLLO	Address shift left immediate signed check overflow
ASHLIU.O	Address shift left immediate unsigned check overflow
ASHR.I	Address signed shift right immediate
ASHR.I.U	Address shift right immediate unsigned

Redundancies

ASHLI rd=rc,1	⇔ AADD rd=rc.rc	
ASHLLO rd=rc,1	AADD.O rd=rcrc	
ASHLLU.O rd=rc,1	AADD.U.O rd=rcrc	
ASHLI rd=rc,0	ACOPY rd=rc	
ASHLLO rd=rc0	ACOPY rd=rc	_
ASHLLU.O rd=rc,0	ACOPY rd=rc	
ASHRI rd=rc,0	ACOPY rd=rc	
ASHRILU rd=rc.0	ACOPY rd=rc	

Selection

class	operation	form	operand	check
shift	SHL	1		
			NONE U	0
	SHR	1	NONEU	

Format

op rd=rc.simm

rd=op(rc.simm)

Description

The contents of register re is fetched, and a 6-bit immediate value is taken from the 6-bit simm field. The specified operation is performed on these operands. The result is placed into register rd.

Tuc, Aug 17, 1999

Instruction Set

Definition

```
def AddressShiftImmediate(op,rd,rc,simm) as
     c - RegRead(rc. 64)
     case op of
         ASHLE
               a ← C63-simm.0 11 Osimm
          ASHLI.O:
               if C63..63-simm ≠ C63mm+1 then
                 raise FixedPointAnthmetic
              a ← C63-simm.0 11 Osimm
         ASHLI.U.O:
              if C63.64-simm # 0 then
                   raise FixedPointArithmetic
              endil
              a ← c63-simm.o 11 Osimm
         ASHRI:
              a ← asymm | 1 c63.simm
         ASHRILU:
              a ← O<sup>simm</sup> II C63..simm
    endcase
    RegWritefrd, 64, aj
enddef
```

Exceptions

l'ixed-point anthmetic

Address Ternary

These operations perform calculations with three general register values, placing the result in a fourth general register.

Operation codes

AMUX Address multiplex

Format

op ra=rd,rc,rb

ra=amux(rd,rc,rb)

Description

The contents of registers rd, rc, and rb are fetched. The specified operation is performed on these operands. The result is placed into register ra.

Definition

```
def AddressTernary(op.rd.rc.rb.ra) as

d ← RegRead(rd. 64)

c ← RegRead(rc. 64)

b ← RegRead(rb. 64)

endcase

case op of

AMUX:

a ← (c and d) or (b and not d)

endcase

RegWrite(ra. 64, a)

enddef

Exceptions
```

. 93 .

Tue, Aug 17, 1999

Instruction Set

Branch

This operation branches to a location specified by a register.

Operation codes

B Branch

Format

B rd

31	24 23	18 17	12 1	11 6	5 0
B.MINOR	70	1	0	0	B
8	6		6	6	

Description

Execution branches to the address specified by the contents of register rd.

Access disallowed exception occurs if the contents of register rd is not aligned on a quadlet boundary.

Definition

```
def Branch|rd,rc,rb| as

if {rc ≠ 0} or {rb ≠ 0} then
raise Reservedinstruction
endif

d ← RegRead|rd, 64}

if {d<sub>1</sub>_0} ≠ 0 then
raise AccessDisallowedByVirtualAddress
endif

ProgramCounter ← d<sub>63_2</sub> 11 0<sup>2</sup>
raise TakenBranch
```

Exceptions

Reserved Instruction
Access disallowed by virtual address

Branch Back

This operation branches to a location specified by the previous contents of register 0, reduces the current privilege level, loads a value from memory, and restores register 0 to the value saved on a previous exception.

Operation codes

B.BACK	, [1	Branch	back					
Format								
B.BACK								
bback()								
31	24 23		18 17		12 11		65	o
B.	MINOR	0		0		0	B.B.	ACK
	8	6		6		6		

Description

Processor context, including program counter and privilege level is restored from register 0, where it was saved at the last exception. Exception state, if set, is cleared, re-enabling normal exception handling. The contents of register 0 saved at the last exception is restored from memory. The privilege level is only lowered, so that this instruction need not be privileged.

If the previous exception was an Access Detail exception, Continuation State set at the time of the exception affects the operation of the next instruction after this Branch Back, causing the previous Access Detail exception to be inhibited. If software is performing this instruction to abort a sequence ending in an Access Detail exception, it should abort by branching to an instruction that is not affected by Continuation State.

Defaition

```
del BranchBackfrd_rc_rbj as

c ← RegReadfrc, 128j

if frd ≠ 0j orfrc ≠ 0j or frb ≠ 0j then

raise Reservedinstruction

endif

a ← LoadMemory(ExceptionBase,ExceptionBase+Thread*128,128,Lj

if Privile_re_Level > c1_0 then

PrivilegeLevel ← c1_0

endif

ProgramCounter ← c63_2 11 0²

ExceptionState ← 0

RegWritefrd,128_aj

raise TakenBranchContinue

enddel
```

Tue, Aug 17, 1999

Instruction Set Branch Back

Exceptions

Reserved Instruction
Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TB
Access disallowed by local TB
Access detail required by tag
Access detail required by local TB
Access detail required by global TB
Local TB miss
Global TB miss

Branch Barrier

This operation stops the current thread until all pending stores are completed, then branches to a location specified by a register.

Operation codes

B.BARRIER	Branch barrier	

Format

B.BARRIER

rd

bbarrier(rd)

Description

The instruction fetch unit is directed to cease execution until all pending stores are completed. Following the barrier, any previously pre-fetched instructions are discarded and execution branches to the stadress specified by the contents of register rd.

Access disallowed exerption occurs if the contents of register rd is not aligned on a quadlet boundary.

Self-modifying, dynamically-generated, or loaded code may require use of this instruction between storing the code into memory and executing the code.

Definition

```
del BranchBarrier(rd,rc,rb) as

if (rc ≠ 0) or (rb ≠ 0) then

raise ReservedInstruction

endif

d ← RegRead(rd, 64)

if (d<sub>1,0</sub>) ≠ 0 then

raise AccessDisallowedByVirtualAddress
endif

ProgramCounter ← d<sub>63,2</sub> 11 0<sup>2</sup>

Fetr nBarner()

raise TakenBranch
enddef
```

Reserved Instruction

Exceptions

Tuc, Aug 17, 1999

Instruction Set Branch Conditional

Branch Conditional

These operations compare two operands, and depending on the result of that comparison, conditionally branches to a nearby code location.

Operation codes

BAND.E	Branch and equal zero	
BAND.NE	Branch and not equal zero	
B.E	Branch equal	
B.GE	Branch greater equal signed	
B.L	Branch signed less	
B.NE	Branch not equal	
B.GE.U	Branch greater equal unsigned	
B.L.U	Branch less unsigned	

Equivalencies

B.E.Z	Branch equal zero	
B.G.Z*	Branch greater zero signed	
B.GE.Z'	Branch greater equal zero signed	
B.L.Z	Branch less zero signed	
BLE.Z	Branch less equal zero signed	
B.NE.Z	Branch not equal zero	
B.LE	Branch less equal signed	
B.G	Branch greater signed	
B.LE.U	Branch less equal unsigned	
B.G.U	Branch greater unsigned	
B.NOP	Branch no operation	

^{48.}G.Z is encoded as B.L.U with both instruction fields rd and rc equal.

⁷B GEZ is encoded as B.GE with both instruction fields rd and rc equal.

^{*}B L-Z is encoded as B.L. with both instruction fields rd and rc equal.

[&]quot;BLILLZ is encoded as B.GEU with both instruction fields rd and rc equal.

B.E.Z rc,target	-	BAND.E rc,rc,target	
B.G.Z rc,target	=	B.L.U rc,rc,target	
B.GE.Z rc,target	=	B.GE rc,rc,target	
BLZ rc,target	=	B.L rc.rc.target	
BLEZ rc,target	=	B.GE.U rc,rc,target	
B.NE.Z rc, target	-	BAND.NE rc.rc.target	
BLE rc.rd.target	→	B.GE rd,rc,target	
B.G rc.rd,target	→	B.L. rd,rc,target	
B.LE.U rc,rd,target	→	B.GE.U rd,rc,target	
B.G.U rc,rd,target	→	B.L.U rd,rc,target	
BNOP		B.NE ro,ro,\$	

Redundancies

B.E rc,rc,target	⇔	B.I target
B.NE rc.rc.target	⇔	BNOP

Selection

class	ОР		compare			-	type	
arithmetic			L	GE	G	LE		NONEU
vs. zero			1	GE NE	G	LE	E	Z
bitwise	none	AND	E	NE				

Format

op rd,rc,target

If (op(rd,rc)) goto target;

Description

The contents of registers rd and re are compared, as specified by the op field. If the result of the comparison is true, execution branches to the address specified by the offset field. Otherwise, execution continues at the next sequential instruction.

Definition

def BranchConditionally(op,rd,rc,offset) as

d ← RegRead(rd, 128)

c ← RegRead(rc, 128)

case op of B.E:

```
Zeus System Architecture
```

Tuc, Aug 17, 1999

Instruction Set Branch Conditional

سعميت

Branch Conditional Floating-Point

These operations compare two floating-point operands, and depending on the result of that comparison, conditionally branches to a nearby code location.

Operation codes

B.E.F. 16	Branch equal floating-point half	
B.E.F.32	Branch equal floating-point single	
B.E.F.64	Branch equal floating-point double	
B.E.F. 128	Branch equal floating-point quad	
B.GE.F. 16	Branch greater equal floating-point half	
B.GE.F.32	Branch greater equal floating-point single	
B.GE.F.64	Branch greater equal floating-point double	
B.GE.F. 128	Branch greater equal floating-point quad	
BLF.16	Branch less floating-point half	
B.LF.32	Branch less floating-point single	·
B.L.F.64	Branch less floating-point double	
B.L.F.128	Branch less floating-point quad	
BLG.F.16	Branch less greater floating-point haif	
BLG.F.32	Branch less greater floating-point single	
BLG.F.64	Branch less greater floating-point double	
B.LG.F.128	Branch less greater floating-point quad	

Equivalencies

B.LE.F. 16	Branch less equal floating-point half	
B.LE.F.32	Branch less equal floating-point single	
BLE.F.64	Branch less equal floating-point double	
B.LE.F. 128	Branch less equal floating-point quad	
RG.F.16	Branch greater floating-point half	
B.G.F.32	Branch greater floating-point single	
B.G.F.64	Branch greater floating-point double	
B.G.F.128	Branch greater floating-point quad	

B.LE.F.size rc,rd,target	→	B.GE.F.size rd,rc,target
B.G.F.size rc,rd,target	→	B.L.F.size rd,rc,target

Selection

number format	type	CO	mpare				size
rloating-point	F	Ε	LG L	GE	G	LE	16 32 64 128

Tuc, Aug 17, 1999

Instruction Set Branch Condensal Houses Point

Format

op rd,rc,target

if (op!rd.rc)) goto target;

Description

The contents of registers re and rd are compared, as specified by the op field. If the result of the comparison is true, execution branches to the address specified by the offset field. Otherwise, execution continues at the next sequential instruction.

Definition

```
def BranchConditional(f-autingPointop,rd,rc,offset) as
    case op of
         BEF.16, BLG.F.16, BLF.16, B.GE.F.16;
               sze ← 16
         B.E.F.32, B.LG.F.32, B.LF.32, B.GE.F.32:
              sate ← 32
         BEF.64, BLGF.64, BLF.64, BGEF.64:
               size ← 64
         B.E.F.128, B.LG.F.128, B.L.F.128, B.GE.F.128;
              size ← 128
    endcase
    d ← Fisice,RegReadird, 12P#
    c ← F(size,RegRead)rc, 128¥
    v \leftarrow kom/d, c/d
    case op of
         BEF16, BEF32, BEF64, BEF128:
         a ← (V = E)
BLGF16, BLGF32, BLGF64, BLGF128:
               2 - N = U a N = Q
         BLF16, BLF32, BLF64, BLF128:
               à - N - 4
         BGEF16, BGEF32, BGEF64, BGEF128:
              - N = G| Or N = E|
     endcay.
     d a then
         ProgramCounter ← ProgramCounter + (offset §§ 11 offset 11 0²)
         raise TakenBranch
     endif
enddel
Exceptions
```

Branch Conditional Visibility Floating Point

Branch Conditional Visibility Floating-Point

These operations compare two group-floating-point operands, and depending on the result of that comparison, conditionally branches to a nearby code location.

Operation codes

B.I.F.32	Branch invisible floating-point single
B.NI.F.32	Branch not invisible floating-point single
B.NV.F.32	Branch not visible floating-point single
B.V.F.32	Branch visible floating point single

Selection

number format	type	compare	size
floating-point	F	I NI NV V	32

Format

op rc,rd,target

if (op(rc.rd)) goto target;

31	24 23	18	17	12 11	0
ОР		ď	rc		oi'fset
8		6	6		12

Description

The contents of registers re and rd are compared, as specified by the op field. If the result of the comparison is true, execution branches to the address specified by the offset field. Otherwise execution continues at the next sequential instruction.

Each operand is assumed to represent a vertex of the form: [w | x | y | x] packed into a single register. The comparisons check for visibility of a line connecting the vertices against a standard viewing volume, defined by the planes: $x=w_1x=-w_2y=w_2y=-w_2z=0$, z=1. A line is visible (V) if the vertices are both within the volume. A line is not visible (NV) is either vertex is outside the volume - in such a case, the line may be partially visible. A line is invisible (I) if the vertices are both outside any face of the volume. A line is not invisible (NI) if the vertices are not both outside - ny face of the volume.

Definition

del nial as ja.t=QNVN) or ja.t=SNVN) enddel

def lessja,b) as fcom(a,b)=L enddef

del traya,b,c,d) as [fcomfabs[a],b]=G] and [fcomfabs[c],c]=G] and [a.s=c.s] enddel

```
Zeus System Architecture
                                                                                                                        Tuc, Aug 17, 1999
                                                                                                                                                                                                                                                          Instruction Set
                                                                                                                                                                                                                                                          by Floating Point
  del BranchConditional/IsibilityFloatingPoint(op.rd,rc,offset) as
                  d ← RegRead(rd, 128)
                  c - RegReadirc, 128)
                  dx - F(32,d31,d)
                 cx \leftarrow F(32,c_{31},c)
                  dy - F(32,d63_32)
                 cy - F(32,c63 32)
                 dz - F(32,d95,64)
                 cz - F[32,c95.64]
                 OW - F(32,0127,44)
                 cw - F(32,c127.96)
                 f1 ← F(32,0x7f000000) // floating-point 1.0
                 if initial or vitally or nitial or nitially or nitial or
                                 a - false
                 else
                                 dv ← lessfabs(dx).dz) and lessfabs(dy).dz) and less(dz,f1) and (dz.~?
                                 cv - less(labs(cx).cz) and less(labs(cy).cz) and less(cz,f1) and (cz,s-):
                                 trz - pessfil.dzj and lessfil.czjj or (idz.s=1 and cz.s=1)
                                 tr - trayidu.dz.cu.czi or trayidy.dz.cy.czi or trz
                                 case op of
                                                 B.I.F.32:
                                                  B.NI.F.32:
                                                                  a 4- not W
                                                 B.NV.F.32:
                                                                 > - not job and cvj
                                                 B.V.F.32:
                                endcase
                 endif
                                 ProgramCounter - ProgramCounter + (offset $9.11 offset 11.02)
                                raise TakenBranch
                 endil
enddef
Exceptions
Lone
```

Branch Down

This operation branches to a location specified by a register, reducing the current printage level.

Operation codes

İ	BDOWN	Branch do	wn	
				 السيمين والمستحدد والمستحدد

Eormat

B.DOWN rd

bdown(rd)

Description

Execution branches to the address specified by the contents of register rd. The current privilege level is reduced to the level specified by the low order two bits of the contents of register rd.

Definition

```
del BranchDownfrd,rc,rbj as

if |rc = 0| or |rb = 0| then
raisc Reservadinstruction
endif

d ← RegRead(rd, 64)
if PrivilegeLevel → d<sub>1 0</sub> then
PrivilegeLevel ← d<sub>1 0</sub>
endif
FrogramCounter ← d<sub>63 2 11 0<sup>2</sup>
raise TakenBranch
enddel</sub>
```

Reserved Instruction

Excer

Tue, Aug 17, 1999

Instruction Set Branch Gateway

Branch Gateway

This operation provides a secure means to call a procedure, including those at a higher privilege level.

Operation codes

1		
- 1	B.GATE	0
	I K (SPIP	Branch gateway
	D	Profitcit Officasta

Equivalencies

B.GATE - B.G.ATE 0

Eormat

B.GATE- rb

bgate(rb)

31	24 23	18 17	12	11 6	5 0
B.MINOR	2	0	1	rb	B.GATE
8		6	6		6

Description

The contents of register rh is a branch address in the high-order 6? hits and a new privilege level in the low-order 2 bits. A branch and link occurs to the branch address, and the privilege level is raised to the new privilege level. The high-order 62 bits of the successor to the current program counter is catenated with the 2-bit current execution privilege and placed in register 0.

If the new privilege level is greater than the current privilege level, an octlet of memory data is fetched from the address specified by register 1, using the hitle-endian byte order and a gateway access type. A GatewayDisallowed exception oc urs if the original contents of register 0 do not equal the memory data.

If the new privilege level is the same as the current privilege level, no checking of register I is performed.

An AccessDisallowed exception occurs if the new privilege level is greater than the privilege level required to write the memory data, or if the old privilege level is lower than the privilege required to access the memory data as a gateway, or if the access is not aligned on an 8-byte boundary.

A ReservedInstruction exception occurs if the re field is not one or the rd field is not zero.

In the example below, a gateway from level 0 to level 2 is illustrated. The gateway pointer, located by the contents of register re (1), is fetched from memory and compared against the

contents of register rb (0). The instruction may only complete if these values are equal. Concurrently, the contents of register rb (0) is placed in the program counter and privilege level, and the address of the next sequential address and privilege level is placed into register rd (0). Code at the ranget of the gateway locates the data pointer at an offset from the gateway pointer (register 1), and fetches it into register 1, making a data region available. A stack pointer may be saved and fetched using the data region, another region located from the data region, or a data region located as an offset from the original gateway pointer.

For additional information on the branch-gateway instruction, see the <u>System and Privileged Library Calls</u> section on page 44.

This instruction gives the target procedure the assurances that register 0 contains a valid return address and privilege level, that register 1 points to the gateway location, and that the gateway location is octiet aligned. Register 1 can then be used to

Tue, Aug 17, 1999

Instruction Set
Pranch Gateway

securely reach values in memory. If no sharing of literal pools is desired, register 1 may be used as a literal pool pointer directly. If sharing of literal pools is desired, register 1 may be used with an appropriate offset to load a new literal pool pointer; for example, with a one cache line offset from the register 1. Note that because the virtual memory system operates with cache line granularity, that several gateway locations must be created together.

Software must ensure that an attempt to use any oction within the region designated by virtual memory as gateway either functions properly or causes a legitimate exception. For example, if the adjacent octions contain politiers to literal pool locations, software should ensure that these literal pools are not executable, or that by virtue of being aligned addresses, cannot raise the execution privilege level. If register 1 is used directly as a literal pool location, software must ensure that the literal pool locations that are accessible as a gateway do not lead to a security violation.

Register 0 contains a valid return address and privilegy level, the value is suitable for use directly in the Branch-down (B.DOWN) instruction to return to the gateway callee.

Definition

```
def BranchGateway(rd.rc.rtl) as
     c - RegReadirc, 64)
     b - RegRead(rb. 64)
     if frd = 0) or frc = 1) there
          raise ReservedInstruction
     endif
     # c2.0 # 0 then
          raise AccessDisallowedByV/rtualAddress
     endif
     d ← ProgramCounter<sub>63,2</sub>+1,11 PrivilegeLevel
     if PrivilegeLevel < b1 a then
          m ← LoadMemoryG(c.c.64.L)
          d b = m then
               raise GatewayDisallowed
          Privilegelevel - Di o
     ProgramCounter \leftarrow b_{63.2} \cdot 11^{-0.2}
     RegWritefrd, 64, di
     raise TakenBranch
enddel
Exceptions
Reserved Instruction
Gateway desallowed
```

Access disallowed by vertual address

Access disallowed by tag Access disallowed by global TB Access disallowed by local TB Access detail required by tag

MicroUnity

Tue, Aug 17, 1999

Instruction Set Branch Gateway

Access detail required by local TB Access detail required by global TB Local TB mass Global TB mass

Tue, Aug 17, 1999

Instruction Set Branch Fiale

Branch Halt

This operation stops the current thread until an exception occurs.

Operation codes

B.HALT	Branch halt

Format

B.HALT

bhalt()

Description

This instruction directs the instruction fetch unit to cease execution until an exception occurs.

Definition

```
def BranchHaltfrd,rc,rbj as

if frd = 0j or frc - -, or frb = 0j then
raise Reservedinstruction
endif
FetchHaltfj
enddef
```

Exceptions

Reserved Instruction

Branch Hint

This operation indicates a future branch location specified by a register

Operation codes

BHINT	Description	
D.MIN1	Branch Hint	

Format

B.HINT badd, countrd

bhint(badd,count.rd)

31	24 23	18 17	12	11 6	5 0
B.MINOR	r	d	count	slmm	B.HINT
8			6	6	6

simm ← badd-pc-4

Description

Trus instruction directs the instruction fetch unit of the processor that a branch is likely to occur count times at simm instructions following the current successor instruction to the address specified by the contents of register rd.

After branching count times, the instruction fetch unit should presume that the branch at sirrum instructions following the current successor instruction is not likely to occur. If count is zero, this hint directs the instruction fetch unit that the branch is likely to occur more than 63 times.

Access disallowed exception occurs if the contents of register rd is not aligned on a quadlet boundary

Octinition

def BranchHintfrd,count,simm) as

d - RegReadtrd, 64)

(d) of # 0 then

raise AccessDisallowedByVirtualAddress

mod

FetchHant[ProgramCounter +4 + (0 11 smm 11 0^2), $d_{63...2}$ 11 0^2 , count] enddef

Exceptions

Access deallowed by virtual address

Tue, Aur 17, 1999

Instruction Set Branch Him Immediate

Branch Hint Immediate

This operation indicates a future branch location specified as an offset from the program counter.

Operation codes

B.HINT.I

Branch Hint Immediate

Format

B.HINT.I badd,count,target

bhinti/badd,count,target)

simm ← badd-pc-4

Description

This instruction directs the instruction fetch unit of the processor that a branch is likely to occur count times at simm instructions following the current successor instruction to the address specified by the offset field.

After branching count times, the instruction fetch unit should presume that the branch at simm instructions following the current successor instruction is not likely to occur. If count is zero, this hint directs the instruction fetch unit that the branch is likely to occur more than 63 times.

Definition

del BranchHintlmmediate(simm.councoffset) as

BranchHint[ProgramCounter + 4 + $\{0.11.$ simm $11.0^2\}$, count. ProgramCounter + $\{offset\}_{11.}^4 11.$ offset $\{1.0^2\}_{11.}^4$

enddef

Exceptions

none

Branch Immediate

This operation branches to a location that is specified as an offset from the program counter.

Operation codes

|--|

Redundancies

B.I target	and RE reserved
Dir tar get	⇔ B.E rc.rc.target

Format

B.I target

bi(target)

Description

Execution branches to the address specified by the offset field.

Definition

del Branchimmediate|offset| as

ProgramCounter ← ProgramCounter + |offset| | | | |offset| | | |offset| | |off

Exceptions

non

Tuc, Aug 17, 1999

Instruction Set Branch Immeriate Lank

Branch Immediate Link

This operation branches to a location that is specified as an offset from the program counter, saving the value of the program counter into register 0.

Operation codes

b.LINKI Branch immediate link

Format

B.LINKI target

blinki(target)

Description

The address of the instruction following this one is placed into register 0. Execution branches to the address specified by the offset field.

Definition

def BranchimmediateLinkjoffsetj as
RegWrite(0, 64, ProgramCounter + 4)
ProgramCounter -- ProgramCounter + (offset) 11 offset 11 02)
raise TakenBranch
enddei

Exceptions

none

Branch Link

This operation branches to a location specified by a register, saving the value of the program counter into a register.

Operation codes

B.LINK	Branch link
	

Equivalencies

BLINK		BLINK 0=0
B.LINK rc	+	B.LINK O=rc

Format

B.LINK rd=rc

rb ← 0

Description

The address of the instruction following this one is placed into register rd. Execution branches to the address specified by the contents of register re.

Access disallowed exception occurs if the contents of register re is not aligned on a quadlet boundary.

Reserved instruction exception occurs if rb is not zero.

Definition

```
del BranchLink(rd,rc,rb) as

if rb ≠ 0 then

raise ReservedInstruction
endif

c ← RegRead(rc, 64)

if [c and 3] ≠ 0 then

raise AccessDisallowedByVirtualAddress
endif

RegWrite(rd, 64, ProgramCounter + 4)

ProgramCounter ← c<sub>63 2</sub> 11 0<sup>2</sup>

raise TakenBranch
enddef
```

Tuc, Aug 17, 1999

Instruction Set Branch Link

Exceptions

Reserved Instruction
Access disallowed by virtual address

Load

These operations compute a virtual address from the contents of two registers, load data from memory, sign- or zero-extending the data to fill the destination register.

Operation codes

L810	Load signed byte
L16.B	Load signed doublet big-endian
L.16AB	Load signed doublet aligned big-endian
L. 16.L	Load signed doublet little-endian
L.16AL	Load signed doublet aligned little-endian
L.32.B	Load signed quadlet big-endian
L32AB	Load signed quadlet aligned big-endian
L.32.L	Load signed quadlet little-endian
L32AL	Load signed quadlet aligned little-endian
L.64.B	Load signed octlet big-endian
L64AB	Load signed octlet aligned big-endian
L.64.L	Load signed octlet little-endian
L64AL	Load signed octlet aligned little-endlan
L.128.B11	Load hexlet big-endian
L128AB12	Load hexlet aligned big-endian
L128.L13	Load hexlet little-endian
L128AL14	Load hexlet aligned little-endlan
LU.8 ¹⁵	Load unsigned byte
LU.16.B	Load unsigned doublet big-endian
LU.16AB	Load unsigned dot het aligned big-endian
LU.16T	Load unsigned doublet little-endian
LU.16AL	Load unsigned doublet aligned little-endian
LU.32.B	Load unsigned quadlet big-endian
LU.32AB	Load unsigned quadlet aligned big-endian
LU.32.L	Load unsigned quadlet little-endian
LU.32AL	Load unsigned quadlet aligned little-endian
LU.64.B	Load unsigned octlet big-endian
LU.64AB	Load unsigned octlet aligned big-endian
LU.64.L	Load unsigned octlet little-endian
L.U.64AL	Load unsigned octlet aligned little-endian

¹⁴I.-8 need not distinguish between little endian and big endian ordering, nor between aligned and unaligned, as only a single byte is loaded.

^{111,128.}B need not distinguish between signed and unsigned, as the hexlet fills the destination register.

¹²L-128.AB need not distinguish between signed and unsigned, as the hexlet fills the destination register.

^{131,128.}L need not distinguish between signed and unsigned, as the healet fills the destination register.

¹⁴¹_128.A1, need not distinguish between signed and unsigned, as the healet fills the destination register.

¹⁵LUB need not distinguish between little endian and big-endian ordering, nor between aligned and unaligned, as only a single byte is loaded.

Tuc, Aug 17, 1999

Instruction Set

Sciection

number format	type	size	alignment	ordering
signed byte	<u> </u>	8		
unsigned byte	U	8		
signed integer		16 32 64]	L B
signed integer aligned		116 32 64	Λ	L B
unsigned integer	U	16 32 64		L B
unsigned integer aligned	U	16 32 64	٨	L B
register		128		L B
register aligned		128	Λ	L B

Format

op rd=rc,rb

rd=op(rc,rb)

Description

An operand size, expressed in bytes, is specified by the instruction. A virtual address is computed from the sum of the contents of register re and the contents of register rb multiplied by operand size. The contents of memory using the specified byte order are read, treated as the size specified, zero-extended or sign-extended as specified, and placed into register rd.

If alignment is specified, the computed virtual address must be aligned, that is, it must be an exact multiple of the size expressed in bytes. If the address is not aligned an "access disallowed by virtual address" exception occurs.

Definition

```
size ← 16
         L32L LU32L L32AL LU32AL L32B, LU32B, L32AB, LU32AB.
               size ← 32
         L64L LU64L L64AL LU64AL L64B LU64B L64AB LU64AB
               size ← 64
         L128L L128AL L128B, L128AB:
               size ← 128
    endcase
    isize ← log(size)
    case op of
         LIGH LUIGH L321 LU321 L641 LU641 L1281
         L16AL, LU16AL, L32AL, LU32AL, L64AL, LU64AL, L128AL:
          L168, LU168, L328, LU328, L648, LU648, L1288,
         LIBAR, LUIBAR, L32AR, LU32AR, L64AR, LU64AR, L128AR:
               order ← B
          LA. LUS:
               order - undefined
    endcase
    c - RegRead(rc, 64)
    b - RegRead(rb, 64)
    VirtAddr ← c + (b60-lsize.0 11 0lsize-3)
     case op of
         L16AL LU16AL L32AL LU32AL L64AL LU64AL L128AL
L16AB LU16AB L32AB LU32AB L64AB LU64AB L128AB:
               if Kisse-4_0 = 0 then
                   raise AccessDisallowedByVIrtualAddress
               endif
          L16L LU16L L32L LU32L L64L LU64L L128L
          L168, LU168, L328, LU328, L648, LU648, L1288:
          LB. LUB:
     endcase
     m 		LoadMemory(c,VirtAddr,size,order)
     a ← (m<sub>size-1</sub> and signed)<sup>128-size</sup> | | m
     RegWritefrd, 128, aj
enddel
```

Exceptions

Accr as disallowed by virtual address Access disallowed by tag Access disallowed by global TB Access disallowed by local TB Access detail required by tag Access detail required by local TB Access detail required by global TB Local TB mass Global TB miss

Tuc, Aug 17, 1999

Instruction Set Load Immediate

Load Immediate

These operations compute a virtual address from the contents of a register and a sign-extended immediate value, load data from memory, sign- or zero-extending the data to fill the destination register.

Operation codes

1.04	
L.1.8 ¹⁶	Load immediate signed byte
L.I.16AB	Load immediate signed doublet aligned big-endian
L.I. 16.B	Load immediate signed doublet big-endian
LI.16AL	Load immediate signed doublet aligned little-endian
L.I. 16.L	Load immediate signed doublet little-endian
L.I.32AB	Load immediate signed quadlet aligned big-endian
L.I.32.8	Load immediate signed quadlet big-endian
L.I.32AL	Load immediate signed quadlet aligned little-endian
L.I.32.L	Load immediate signed quadlet lime-endian
LI.64AB	Load immediate signed octlet aligned big-endia.)
L.I.64.B	Load immediate signed octlet big-endian
L.1.64AL	Load immediate signed octlet aligned little-endian
L.I.64.L	Load immediate signed octlet little-endian
L.I. 128AB''	Load immediate hexlet aligned big-endian
L.I. 128.B ¹⁸	Load immediate hexlet pig-endian
L.I. 128 AL19	Load immediate hexlet aligned little-endian
L.I. 128.L ²⁰	Load immediate hexlet little-endian
LI.U.8 ²¹	Load immediate unsigned byte
LI.U.16AB	Load immediate unsigned doublet aligned big-endian
L.I.U.16.B	Load immediate unsigned doublet big-endian
LI.U.16AL	Load immediate unsigned doublet aligned little-endian
L.I.U.16.L	Load immediate unsigned doublet little-endian
LI.U.32AB	Load immediate unsigned quadlet aligned big-endian
L.I.U.32.B	Load immediate unsigned quadlet big-endian
LI.U.32AL	Load immediate unsigned quadlet aligned little-endian
L.I.U.32.L	Load immed te unsigned quadlet little-endian
LI.U.64AB	Load immediate unsigned octlet aligned big-endian
L.I.U.64.B	Load immediate unsigned octlet big-endian
LI.U.64AL	Load immediate unsigned octlet aligned little-endian
L.I.U.64.L	Load immediate unsigned octlet little-endian

¹⁶LL8 need not distinguish between little-endian and big-endian ordering, nor between aligned and unaligned, as only a single byte is loaded.

^{171.1 128.}AB need not distinguish between signed and unsigned, as the hexlet fills the destination register.

¹⁸I.I.128.B need not distinguish between signed and unsigned, as the hexlet fills the destination register.

¹⁹I.I.128.AL need not distinguish between signed and unsigned, as the healet fills the destination register.

^{3/1.1.128} L need not distinguish between signed and unsigned, as the hexlet fills the destination register.

²¹LLUB need not distinguish between little-endian and big-endian ordering, nor between aligned and unaligned, as only a suigle byte is loaded.

Sciection

number format	type	size	alignment	ordering
signed byte		8		
unsigned byte	U	8	†	†
signed integer		16 32 64		L B
signed integer aligned		16 32 64	A	L B
unsigned integer	U	16 32 64		L B
unsigned integer aligned	U	16 32 64	1	L B
register		128	 	L B
register aligned	1	128	1	L B

Eormat

op rd=rc,offset

rd=op(rc,offset)

Description

An operand size, expressed in bytes, is specified by the instruction. A virtual address is computed from the sum of the contents of register re and the sign-extended value of the offset field, multiplied by the operand size. The contents of memory using the specified byte order are read, treated as the size specified, zero-extended or sign-extended as specified, and placed into register rd.

If alignment is specified, the computed virtual address must be aligned, that is, it must be an exact multiple of the size expressed in bytes. If the address is not aligned an "access disallowed by virtual address" exception occurs.

Definition

```
del Loadimmediatejop,rd,rc,offsetj as
    case op of
         U16L U32L U8, U16AL U32AL U168, U328, U16AB, U32AB:
         U64L U64AL U64B, U64AB
             signed - true
         DU16L LIU32L LIU8, LIU16AL LIU32AL
         LIU16B, LIU32B, LIU16AB, LIU32AB:
         UU64L, LIU64AL, LIU64B, LIU64AB:
              signed - laise
         U128L U128AL, U128B, U128AB:
             signed - undefined
    endcase
    case op of
         UB, LIUB:
             uze ← 8
         LITAL LILIAL LILIAN, LILIAB, LILIAB, LILIAB, LILIAAB.
             sic ← 16
```

Tue, Aug 17, 1999

Instruction Set

```
LI32L, LIU32L, LI32AL, LIU32AL, LI32B, LIU32B, LI32AB, LIU32AB.
         LI64L, LIU64L, LI64AL, LIU64AL, LI64B, LI64B, LI64AB, LIU64AB.
              size ← 64
         L1128L, L1128AL, L1128B, L1128AB:
              size ← 128
    endcase
    Isize ← log(size)
    cuse op of
         LITEL LIUTEL, LIBEL, LIUBEL, LIGHL LIUGEL LITERL
         LITEAL LIUTEAL LIBZAL LIUBZAL, LIEBAL, LIUEBAL, LITZBAL;
              order ← U
         LI16B, UU16B, LI32B, UU32B, LI64B, LIU64B, LI12BB,
         LI16AB, LIU16AB, LI32AB, LIU32AB, LI64AB, LIU64AB, LI128AR
              crder ← B
         U8, UU8:
              order - undefined
    endcase
    c ← RegRead(rc, 64)
    VirtAddr ← c + ffset $5 -1512e 11 offset 11 01512e-3)
    case op of
         LITEAL LIUTEAL LIBRAL LIUSZAL LIEGAL LIUEGAI, LITZBAL
         LI16AB, LIU16AB, LI32AB, LIU32AB, LI64AB, LIU64AB, LI128AB;
              if K_{Bize=4..0} \neq 0 then
                   raise AccessDisallowedByVirtualAddress
          LITEL LIUTEL LIJZE LIU3ZE LIETE LIUETE LITZBE
          LI16B, LIU16B, LI32B, LIU32B, LI64B, LIU64B, LI128B-
         LIB, LIUS
     endcase
    m - LoadMemory(c,VirtAddr,size,order)
     a ← (m<sub>size-1</sub> and signed)<sup>128-size</sup> || m
    RegWritefrd, 128, a)
enddel
```

Exceptions

Access disallowed by virtual address Access disallowed by tag Access disallowed by global TB Access disallowed by local TB Access detail required by tag Access detail required by local TB Access detail required by global Tb Local TB miss Global TB miss