Gemeenschappelijke basisschakeling

Gemeenschappelijke emitterschakeling			
	U_{BE} I_{B} I_{E} U_{CE}		
ingangsstroom	emitterstroom = basisstroom + collectorstroom	$I_e = I_B + I_c$	
Uitgangsstroom	verplaatsende emitterstoom + lekstroom	$I_c = \alpha I_e + I_{cbo}$ $I_b = (1 - \alpha)I_e - I_{cbo}$	
Basisstroom	emitterstoom — verplaatsende emitterstroom — lekstroom	$I_b = (1 - \alpha)I_e - I_{cbo}$	
stroomversterking	$rac{uitgangstroom}{ingangsstroom} = rac{versterkingsfactor}{1-versteringsfactor}$	$A_i = \frac{I_c}{I_b}$ $A_i = \frac{\alpha}{1 - \alpha}$	
spanningsversterking	$\frac{basis\ collectorspanning}{basis\ emitterspanning} = -\frac{I_{c}*\ r'_{ce}}{I_{E}*\ r'_{e}}$ (spanning wordt 180° geïnverteerd!)	$A_u = \frac{U_{bc}}{U_{be}}$	
ingangsimpedantie	$ingangsimpedantie = \frac{basis\ emitterspanning}{basisstroom}$	$Z_{in(basis)} = \frac{U_{be}}{I_b}$	
Uitgangsimpedantie	$uitgangsimpedantie = rac{collector\ emitterspanning}{collectorstroom}$	$Z_{uit(basis)} = \frac{U_{ce}}{I_c}$	
Toepassingen:	Bij versterkingenschakelingen, schakelingen waar een grote ve nodig is.	rmogensoverdracht	

Gemeenschappelijke collectorschakeling

ingangsstroom	emitterstroom = basisstroom + collectorstroom	$I_e = I_B + I_c$	
Uitgangsstroom	collectorstroom	$I_c = \alpha I_e + I_{cbo}$	
	= verplaatsende emitterstoom + lekstroom		
Basisstroom	Basisstroom =	I_b	
	$emitterstoom-verplaatsende\ emitterstroom-lekstroom$	$= (1 - \alpha)I_e$ $-I_{abo}$	
stroomversterking	uitgangstroom	I_e	
	$stroomversterking = \frac{avgavgeveen}{ingangsstroom}$	$A_i = \overline{I_b}$	
	$stroomversterking = \frac{versterkingsfactor}{1 - versteringsfactor}$	$A_i = \frac{\alpha}{1}$	
	1 - versteringsfactor	$1-\alpha$	
spanningsversterking		$A_u = \frac{U_{ec}}{U_{bc}}$	
	emitter collectorspanning	U_{bc}	
	basis emitterspanning + emitter collectrospanning		
ingangsimpedantie		U_{bc}	
	basis collectorspanning	$Z_{in(basis)} = \frac{I_{bc}}{I_{b}}$	
	$ingangsimpedantie = \frac{basis concerns partitly}{basisstroom}$	2	
Uitgangsimpedantie		U_{ce}	
	$uitgangsimpedantie = \frac{collector\ emitterspanning}{collectorstroom}$	$Z_{uit(basis)} = \frac{cc}{I_e}$	
	$uitgangsimpedantie = {collectorstroom}$	$\approx laag$	
Toepassingen:	Als buffer , vanwege hoge ingangsweerstand, lage uitgangsweerstand en ook de		
	grootste stroomversterking.		