Spaces of Discrete Time Trees

Lena Collienne

Matsen Group

July 18th, 2023

Tree Inference

Bayesian Inference

Treespace

BHV-space

[after Billera, Holmes, and Vogtmann, 2001]

Tree rearrangements

Tree rearrangements

▶ tree rearrangements: NNI, SPR, TBR

Tree rearrangements

 \blacktriangleright tree rearrangements: NNI, $\mathrm{SPR},\,\mathrm{TBR}\to\mathcal{NP}\text{-hard}$

Ranked trees

Ranked trees

Ranked trees

NNI moves

NNI moves

NNI moves

NNI moves

NNI moves

Rank move

Theorem Shortest paths in RNNI can be computed in $O(n^2)$.

Probability Distributions

Probability Distributions

Lars Berling

- ► Simulate tree + alignment
- \blacktriangleright Run BEAST2 and log every tree \rightarrow 1,000 trees

Probability Distributions

- ► Simulate tree + alignment
- ightharpoonup Run BEAST2 and log every tree ightarrow 1,000 trees

Mean trees

Mean trees

$$\operatorname{Cen}(\mathcal{T}) = \mathop{\mathsf{arg\,min}}_{\mathcal{T}^*} \sum_{\mathcal{T} \in \mathcal{T}} d(\mathcal{T}, \mathcal{T}^*)^2$$

Mean trees

${\sf Simulation\ study} + {\sf BEAST2}$

$\hbox{Generalising $RNNI$}$

Generalising RNNI

Generalising RNNI

Generalising RNNI

Discrete Coalescent Trees

Subtree Prune and Regraft

Subtree Prune and Regraft

SPR on Ranked Trees

SPR on Ranked Trees

 ${\sf Horizontal\ SPR}$

$\ensuremath{\mathrm{SPR}}$ on Ranked Trees $\ensuremath{^{\text{Clusters}}}$

$\ensuremath{\mathrm{SPR}}$ on Ranked Trees $\ensuremath{^{\text{Clusters}}}$

$\ensuremath{\mathrm{SPR}}$ on Ranked Trees $\ensuremath{^{\text{Clusters}}}$

Open Question: What is the complexity of computing distances?

Adding leaves

Theorem Adding a leaf to a tree can decrease the distance by O(n).

Thank you

- ► Alex Gavryushkin
- ► Lars Berling

David Bryant

Chris Whidden

Supplement

Probability distributions in BHV-space

