PROBLEM SOLVING 8

Prim and Dijkstra, Shortest Paths CS340

Prim's Algorithm

- Builds one tree, so A is always a tree.
- Starts from an arbitrary "root" r.
- At each step, find a light edge crossing cut (V_A, V_A) , where $V_A = V_A$ vertices that A is incident on. Add this edge to A.

Prim's Algorithm

- How to find the lightest edge quickly?
 Use a priority queue:
 - Each object is a vertex in V V_A.
 - Key is minimum weight of any edge (u,v) where u ∈ V_A.
 - Then the vertex returned by EXTRACT-MIN is v such that there exists u ∈ VA and (u,v) is light edge crossing (V_A, V-V_A/.
- Key of v is ∞ if v is not adjacent to any vertices in V_A.

Prim's Algorithm

```
PRIM(G, w, r)
  O = \emptyset
 for each u \in G, V
      u.kev = \infty
      u.\pi = NIL
      INSERT(Q, u)
 DECREASE-KEY(Q, r, 0)
                                  // r.kev = 0
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      for each v \in G.Adj[u]
           if v \in Q and w(u, v) < v. kev
                \nu.\pi = u
                DECREASE-KEY(Q, v, w(u, v))
```

Notice that u is not changed. U is added to the MST. V is changed.

We don't know where v is in the priority queue, so use the location table.

Prim Efficiency

- Suppose Q is a binary heap.
- Initialize Q and first for loop: O(V Ig V)
- Decrease key of r: O(Ig V)
- while loop: |V| EXTRACT-MIN calls = O(V lg V) ≥
 |E| DECREASE-KEY calls = O(E lg V)
- Total: O(E Ig V)

parent	nil					
step	1	2	3	4	5	6
init						
1						
2						
3						
4 5						
5						
6						

 Can Prim and/or Kruskal be used to find a maximum spanning tree?

SHORTEST PATHS

Optimal substructure of a shortest path

 A shortest path between two vertices contains other shortest paths within it.

Initialization

 All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in G. V

2 v.d = \infty Called "key"

3 v.\pi = \text{NIL} in Prim's algorithm
```

Relaxing an edge

 Can we improve the shortest-path estimate for v by going through u and taking (u,v)?

Relaxing an edge

```
RELAX(u, v, w) This is a decreaseKey() Or for us, changeKey() v.d > u.d + w(u, v) v.d = u.d + w(u, v) v.\pi = u
```

Properties of shortest paths and relaxation

- Path-relaxation property
 - If $p = \langle v_0, v_1, ..., v_k \rangle$ i is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), ... (v_{k-1}, v_k)$. then v_k .d = $\delta(s, v_k)$. This property holds **regardless** of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

What is the result of relaxing the following edges?

$$(ii)$$
 12 $\xrightarrow{4}$ 17

- No negative-weight edges.
- Essentially a weighted version of breadth-first search.
- Instead of a FIFO queue, uses a priority queue.
- Keys are shortest-path weights (v.d).
- Have two sets of vertices:
 - S = vertices whose final shortest-path weights are determined
 - Q = priority queue = V-S.

```
DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
S = \emptyset
  Q = G.V
   while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(Q)
        S = S \cup \{u\}
                                                     Note that u,v are
        for each vertex v \in G.Adj[u]
                                                     the IDs of the
             RELAX(u, v, w) \leftarrow
                                                     nodes!
```

- Looks a lot like Prim's algorithm, but computing v.d, and using shortest-path weights as keys.
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" ("closest") vertex in V-S to add to S.

parent	NIL				
step init	S	t	X	у	Z
init					
1					
2					
3					
4					
5					

Parent							
vertex	A	В	С	D	E	F	G
Init							
Step 1							
Step 2							
Step 3							
Step 4							
Step 5							
Step 6							
Step 7							

Time Complexity of Dijkstra

- Time complexity depends on how it is implemented
- Matrix:
 - Each EXTRACT-MIN takes O(V) time to look through the array
 - There are V EXTRACT-MIN instructions for O(V²)
- Priority Queue
 - The algorithm is only 1 line different from Prim
 - O(E Ig V)

 Suppose we change Dijkstra's algorithm such that the last vertex is not removed from the priority queue, and the while loop to executes |V|-1 times instead of |V| times. Is this proposed algorithm correct?

- To implement Dijkstra's shortest paths algorithm on unweighted graphs so that it runs in linear time, what data structure can be used?
- 1. Stack
- 2. Queue
- 3. Priority Queue
- 4. All of the above
- 5. None of the above

 In a weighted graph, assume that the shortest path from a source s to a destination t is correctly calculated using Dijkstra's algorithm. Is the following statement true? If we increase weight of every edge by 1, the shortest path always remains the same.

- Given a graph, suppose we have calculated shortest path from a source to all other vertices. If we modify the graph such that the weights of all edges are doubled, does the shortest path remain the same?
- Given a weighted graph where weights of all edges are unique (no two edges have same weights), is there always a unique shortest path from a source to destination in such a graph?
- Each edge in a connected, unweighted graph G is colored either red or blue. Present an algorithm to compute a path between s and t that traverses the fewest number of red edges. Analyze its running time.