day2_testing_rmarkdown

Marina

9/15/2020

Figures in rmarkdown

```
library(tidyverse)
library(pander)
library(knitr)
library(kableExtra)
```

Adjusting figure size

```
ggplot(data =cars, aes(x = speed,
    y = dist)
    + geom_point()
```


Rescaling the figure

```
ggplot(data =cars, aes(x = speed,
    y = dist)
    + geom_point()
```

As we see in fig 1

$$y_i = \sum_{i=1}^{n} (X_i)$$

Check out also the tikz package for Latex.

Tables in rmarkdown

Pander

```
model <- lm(speed ~ dist, data = cars)
pander(summary(model)$coefficients, digits = 3)</pre>
```


Figure 1: This is a scatterplot

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	8.28	0.874	9.47	1.44e-12
dist	0.166	0.0175	9.46	1.49e-12

 $p \ll 0.001$

Kable

Coefficients

kable(summary(model)\$coefficients)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	8.2839056	0.8743845	9.473985	0
dist	0.1655676	0.0174945	9.463990	0

DT::datatable(summary(model)\$coefficients)

```
kable(summary(model)$coefficients,
    format = "latex",
    digits = 2,
    booktabs = T) %>%
kable_styling(position = "center")
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	8.28	0.87	9.47	0
dist	0.17	0.02	9.46	0

Using bibliopgraphy

As was shown by (Levy 1994), chaos theory

Levy, David. 1994. "Chaos Theory and Strategy: Theory, Application, and Managerial Implications." Strategic Management Journal 15 (S2): 167–78.