Thereom List for Math 123 (ODE) w/ Di Fang. Up to Midterm.

Parth Nobel

Basic Defs

ODE:

$$\begin{cases} f: D \subset \mathbb{R}^{n+1} \mapsto \mathbb{R} \\ y^{(n)} = f(t, y(t), y'(t), \cdots, y^{(n-1)}(t)) \end{cases}$$

Solution of a Diff Eq:

 $\phi(t)$ solves an ODE on $I=(t_1,t_2)$ if

- 1. $\phi(t), \phi'(t), \cdots, \phi^{(n-1)}(t), \phi^{(n)}(t)$ exists for $t \in I$ 2. $(\phi(t), \phi'(t), \cdots, \phi^{(n-1)}(t)) \in D$ for $t \in I$ 3. $\phi^{(n)}(t) = f(t, \phi(t), \phi'(t), \cdots, \phi^{(n-1)}(t))$

Solution Techniques

Integrating Factors

$$\dot{y}(t) + a(t)y(t) = b(t)$$

Giving $m(t) \triangleq e^{\int a(t) dt}$

$$y(t) = \frac{1}{m(t)} \left[\int m(t)b(t) dt + C \right]$$

Bernoulli Eq.

$$\frac{dy}{dt} + a(t)y = b(t)y^n \qquad n \ge 0$$

Substitute
$$z = y^{1-n} \implies \frac{1}{1-n}z' = y^{-n}\frac{dy}{dt}$$

2nd Order ORDE (linear homo)

$$\ddot{y} + a(t)\dot{y} + b(t)y = 0$$

If y_1 and y_2 are solns, then so is any linear combination.

Theorem: Two solns $y_1(t)$ and $y_2(t)$ are linearly dependent iff $W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} = 0$.

Existence

Thm: Picard's Existence Theorem

Suppose f defined on a rectangle R of size $2a \times 2b$ is bounded, i.e. $|f(t,y)| \le M \quad \forall (t,y) \in R. \quad M > 0$. and is a cts function satisfying Lipschitz condition

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

for some constant L > 0.

Then the IVP has a soln on the interval $\{t: |t-t_0| \leq \alpha\}$ for some constant $\alpha > 0$, $\alpha = \min\{a, \frac{b}{M}\}$.

Picard's Iteration:

$$y_0(s) \triangleq y_0$$

$$y_n(t) \triangleq y_0 + \int_{t_0}^t f(s, y_{n-1}(s)) \,\mathrm{d}s$$

 $y(t) = \lim_{n \to \infty} y_n(t)$ exists and solves IVP.

Uniform Convergence (allows interchange of limits and integrals) (Note N before t in the qualifiers)

$$\forall \epsilon > 0, \exists N : \forall n > N, \forall t \in I : |f_n(t) - f(t)| < \epsilon$$

If $|f_n(t)| \leq M_n$ for all $t \in I$ and $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n(t)$ converges uniformly.

Peano's Existence Theorem

Suppose f is CTS on rectangle R. Then there exists a soln of IVP on the interval $|t-t_0|<\alpha$ for some $\alpha>0$

Uniqueness

Thm (Gronwall's Ineq.)

Let $K \geq 0$ constant, f and g are cts non-negative functions defined on $t \in [a,b]$ satisfying

$$\forall t \in [a, b] : f(t) \le k + \int_a^t f(s)g(s) \, \mathrm{d}s$$

$$f(t) \le k \exp\left(\int_a^t g(s) \, \mathrm{d}s\right)$$

Uniqueness Theorem

Suppose f is CTS satisfying Lip. condition, i.e.

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

such that L>0 constant, on the "box" $R=\{(t,y):|t-t_0|\leq a,|y-y_0|\leq b\}$ then the soln (defined by local existence thm) is unique.

Sufficient condition for Lip

$$\left| \frac{\partial f}{\partial y} \right| \le L.$$

Global Existence

Lemma

Suppose f is CTS in a domain D, $|f| \leq M$ in D. Let ϕ be a soln of $\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) \\ y(t_0) = y_0 \end{cases}$ that exists a finite interval (a,b). Then $\lim_{t \to a^+} \phi(t)$ and $\lim_{t \to b^-} \phi(t)$ exists.

Suppose f is CTS in a given region D satisfying Lip condition.

f is bounded in D. Let $(t_0, y_0) \in D$. Then the unique soln of $\frac{dy}{dt} = f(t, y)$, passing through the point (t_0, y_0) can be extended until its graph meets the boundary of D.

Corrollary: If D is (t, y) space, and if f is CTS and Lip on D, then the soln of IVP can be extended uniquely in both directions as long as $|\phi(t)|$ remain finite.

Def: Apriori estimate: $|\phi(t)| \leq M$

Corollary: Consider autonomous system $\begin{cases} y' = f(y) \\ y(t_0) = y \end{cases}$ with $f: \mathbb{R} \to \mathbb{R}$ CTS.

If the solution $\phi(t)$ satisfies $|\phi(t)| \leq M$ wherever $\phi(t)$ exists then $I = (-\infty, \infty)$ which gives global existence of solution.

Thm: f CTS in (t, y), bdd, lip in y. in D Lip. const: L.

Let ϕ be the soln of the IVP with $y(t_0) = y_0$, and ψ be the soln of IVP with $y(t_0) = \tilde{y}_0$

Suppose ϕ , ψ exist on some interval a < t < b.

Then $\forall \epsilon > 0, \exists \delta > 0 : |y_0 - \tilde{y}_0| < \delta \implies (\forall t \in (a, b) : |\phi(t) - \psi(t)| < \epsilon)$

Thm: Let f and g def on D. CTS in (t, y), bdd $\begin{cases} |f| \leq M \\ |g| \leq M \end{cases}$

Lip cts y. w/ same Lip constant L.

Let ϕ be $\begin{cases} y' = f(t,y) \\ y(t_0) = y_0 \end{cases}$ and ψ be $\begin{cases} y' = g(t,y) \\ y(t_0) = y_0 \end{cases}$ exists a common interval a < t < b. Suppose $|f(t,y) - g(t,y)| \le \epsilon \quad \forall (t,y) \in D$. Then solns ϕ and ψ satisfy the estimate $|\phi(t) - \psi(t)| \le \epsilon (b-a) \exp(L|t-t_0|)$.

Linear Systems

Thm: $\frac{dy}{dt} = A(t)y + g(t)$ with $y(t_0) = y_0$. If A(t), g(t) are CTS on some interval [a, b] and $t_0 \in [a, b], y_0 < \infty$ then the system has a unique soln $\phi(t)$ satisfying $\phi(t_0) = y_0$ and existing on [a, b].

Thm $\frac{\mathrm{d}y}{\mathrm{d}t} = A(t)y$ with $y \in \mathbb{R}^n$ (W5B)

If $n \times n$ complex A(t) is CTS on an interval I, then the soln of the system on I form a vector space of dimension n over complex numbers.

Def. Linearly indep. solns ϕ_1, \dots, ϕ_n are called fundamental set of solns.

$$\Phi = \begin{bmatrix} \phi_1 & \cdots & \phi_n \end{bmatrix}$$

- 1. Satisfies $\frac{d\Phi}{dt} = A(t)\Phi$
- 2. $\forall \vec{c} \in \mathbb{C}^n : \Phi(t)\vec{c} \text{ solves IVP.}$
- 3. $\forall \psi(t) \in S : \exists \vec{c} : \psi(t) = \Phi(t)\vec{c}$
- 4. $\forall t : \det(\Phi(t)) \neq 0$

Lemma: $\Phi(t)$ satisfies IVP on an interval I, it is a fund. matrix of IVP on I iff $\forall t \in I : \det(\Phi(t)) \neq 0$

Thm: Abel's Formula

If Φ is a fund. matrix of IVP on I, and $t_0 \in I$, then

$$\det \Phi(t) = \det \Phi(t_0) \exp \left(\int_{t_0}^t \sum_{k=1}^n A_{kk}(s) \, \mathrm{d}s \right)$$

A soln. matrix $\Phi(t)$ of IVP is a fund. matrix iff $\det(\Phi(t)) \neq 0$ for some $t = t_0$.

Cor: $\Phi(t)$ is a fund. matrix of IVP on I and C is a non-singular const matrix, then $\Phi(t)$ C is a fund. matrix of IVP on I.

Variation of const formula

$$y(t) = \Phi(t)\Phi^{-1}(t_0)y_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)g(s)ds$$

Matrix exponential:

$$e^M \triangleq \sum_{n=0}^{\infty} \frac{M^n}{n!}$$

Properties:

- 1. $e^{\mathbf{0}} = I$
- 2. If AB = BA then $e^{A+B} = e^A e^B$ and $Ae^B = e^B A$
- 3. e^A is always invertible.
- 4. If T is nonsingular $n \times n$ mmatrix, then $e^{TAT^{-1}} = Te^{A}T^{-1}$

The Matrix $\Phi(t)=e^{At}$ is a fund. matrix of $\frac{\mathrm{d}\Phi}{\mathrm{d}t}=A\Phi(t)$ w/ $\Phi(0)=I$

Thm: λ is a complex e-val of real matrix A w/ e-vec v then $\bar{\lambda}$ is also an e-val w/ e-vec $\bar{\vec{v}}$

See Lecture 7A for the construction of the existence of V for all A with distinct e-vals such that AV = VD where D is not quite diagonal, but still easy to compute a fundamental matrix of.

Def: For a given e-val λ , vector v is called a **generalized eigenvector** of rank (or index) r if

$$(A - \lambda I)^r v = 0 \wedge (A - \lambda I)^{r-1} v \neq 0$$

Def: Chain of generalized eigenvectors given a generalized eigenvector v of rank r, is given by $v_r = v$, and

$$v_{r-i} = (A - \lambda I)^i v = (A - \lambda I) v_{r-i+1}.$$

Lemma: gen e-vecs in a chain are linearly independent.

Theorem: Given a chain of gen e-vecs of length r w/ e-vals λ we define for $k \in 1, 2, \ldots, r$,

$$y_k(t) = e^{\lambda t} \sum_{i=1}^k \frac{t^{r-i}}{(r-i)!} v_i$$

which forms r independent solutions of $\frac{dy}{dt} = Ay$

Lemma

If $\lambda_1, \dots, \lambda_k$ are the distinct e-vals of A, where λ_j has multiplicity n_j and $n_1 + \dots + n_k = n$. Then $\forall \rho > \max_{i \leq j \leq k} \operatorname{Re}\{\lambda_j\} \exists K > 0 : |e^{tA}| \leq Ke^{\rho t}$.

Remark $\forall \rho \geq \max_{i \leq j \leq k} \operatorname{Re}\{\lambda_j\} \exists K > 0 : |e^{tA}| \leq Ke^{\rho t}$ iff all e-vals with $\max_j \operatorname{Re}\{\lambda_j\}$ are simple, in the geometric multiplicity = algebraic multiplicity.

Cor: If all e-vals of A have real parts negative, then every solution $\phi(t)$ of $\frac{dy}{dt}=Ay$ approaches 0 as $t\to\infty$

Suppose that in the non-homo linear system $\frac{dy}{dt} = Ay + g(t)$ the function g(t) grow no faster than an exponential function, that is $\exists a \in \mathbb{R}, M > 0, T > 0 : t \geq T \implies |g(t)| \leq e^{at}$. Then every solution ϕ of the system grows no faster than an exponential function, that is,

$$\exists K > 0, T > 0, b \in \mathbb{R} : t \ge T \implies |\phi(t)| \le Ke^{bt}$$

Remarks:

- 1. $\phi'(t) \leq \tilde{C}e^{\max\{a,b\}t}$.
- 2. b can be picked as $\max\{a, \rho\}$, where $\rho > \max_{j} \{\operatorname{Re}\{\lambda_{j}\}\}\$

Cor:

If $Re\{\lambda_i\} < 0$ for all j and a < 0, then

$$\begin{cases} \lim_{t \to \infty} y(t) = 0 \\ \lim_{t \to \infty} y'(t) = 0 \end{cases}$$

See Lecture 10A and 10B for phase portraits.

Linear Periodic Time-Varying ODEs (LPTV ODE)

Floquet Theorem Let $A(t) \in \mathbb{R}^{n \times n}$ CTS periodic matrix with period T. Let $\Phi(t)$ be a fundamental matrix of

$$\dot{y} = A(t)y$$
 (LPTV)

Then there exists a periodic nonsingular matrix P(t) with period T and a constant matrix R s.t.

$$\Phi(t) = P(t)e^{tR}$$

Remarks:

1. There exists Q(t) real and periodic and S a real constant such that $\Phi(t) = Q(t)e^{tS}$

2. For all y(t) that solves (LPTV), y(t) = P(t)u(t) such that $\frac{du}{dt} = Ru$.

Cor 1.

There exists a non-zero solution of (LPTV) y(t) such that $y(t+T) = \lambda y(t)$ iff λ is an eval of e^{TR} .

Def. The evals of $C = e^{TR}$ are called **Floquet Multiplier** and denoted λ_i .

Def. The evals of R are called **Floquet Exponents** or **Characteristic exponent** and denoted ρ_i .

Note that there is not a one-to-one correspondence of λ to ρ .

Cor 2.

If Floquet Exponents of (LPTV) have negative real parts (or equivalently if multipliers have magnitude strictly less than 1), then all solutions of (LPTV) approach zero as $t \to \infty$.

Thm

Let A(t) be a matrix with period T and g(t) be periodic with same period T. Consider the perturbed system

$$\dot{y} = A(t)y + g(t)$$
 (PLPTV)

.

A solution y(t) of (PLPTV) is periodic of period T in t iff the soln satisfies y(T) = y(0).

Thm

(PPTV) has periodic solution of period T for **any** periodic forcing vector g of period T iff y' = A(t)y has no periodic solution of period T except trivial solutions.

Lyapunov Stability

Def

- 1. $\frac{dy}{dt} = f(t,y)$ denote $\phi(t)$ as a solution w/ IC $\phi(t_0) = \phi_0$. $\phi(t)$ is said to be **stable** if $\forall \epsilon > 0, \exists \delta > 0 : \|\phi(t_0) y_0\|_2 < \delta$, the solution y(t) of the solution passing through (t_0, y_0) satisfies $\|\phi(t) y(t)\| < \epsilon$ for $t \geq t_0$.
- 2. **Asymptotic stable** if it is stable and $\exists \delta_0 > 0$ such that whenever $\|(t_0) y_0\|_2 < \delta_0$, $\lim_{t \to \infty} \|y(t) \phi(t)\|_2 = 0$.
- 3. **unstable** if it is not stable.

Lemma.

The stability of a solution to $\frac{dy}{dt} = Ay$ is equivalent to the stability of the zero solution $y(t) \equiv 0$.

Thm.

$$\frac{dy}{dt} = Ay$$

- a) If all e-vals have negative real part, $y \equiv 0$ is asymptotically stable.
- b) If all e-vals have non-positive real part, and e-vals with zzero real part are simple, then $y \equiv 0$ is stable.
- c) If exists an e-val with positive real part or a non-simple e-vals with zero real part, then $y \equiv 0$ is unstable.

Theorem (periodic)

y' = A(t)y with A(t) is periodic with period T

- a) If modulus of multiplier all < 1, zero soln is asymptotically stable.
- b) If modulus of multiplier all < 1 or = 1, zero soln is stable.
- c) If exists a multplier with modulus > 1, zero soln is unstable.

Theorem

For
$$y' = (A(t) + B(t))y$$

Let all evals of A have real part negative and B(t) CTS for $0 \le t < \infty$ w/ $\lim_{t\to\infty} B(t) = 0$.

Then the zero solution is globally asymptotically stable.

Cor.

 $|e^{At}| \leq Ke^{-\rho t}$ for some $K > 0, \rho > 0$ for all $t \geq 0$. Let B(t) be CTS for $t \geq 0$ and $\exists T > 0$ s.t. $t \geq T \implies |B(t)| \leq \frac{\sigma}{K}$. Then zero solution is globally asymptotically stable.

Linearization

$$y' = F(y)$$
 (ANLE)

. $y=y^*$ is an equilibrium solution if $F(y^*)=0$. The function $z(t)\triangleq y(t)-y^*$ satisfies $\frac{dz}{dt}=F(y^*)+D_yF(y^*)z+g(z)=Az+g(z)$ with $A=D_yF(y^*)$ is the Jacobian of F with respect to y^* and with g(z) CTS, having a fixed point at 0 i.e. g(0)=0, and satisfying $\lim_{z\to 0}\frac{|g(z)|}{|z|}=0$. This is the linearization of F at y^* .

Thm

Consider "almost linear" system. y' = Ay + f(t,y). Suppose all e-vals of A have negative real parts. f(t,y) CTS in (t,y) for $0 < t < \infty$, $|y| < \tilde{K}$ where $\tilde{K} > 0$ is a constant, and f is small in the sense that $\lim_{y\to 0} \frac{|f(t,y)|}{|y|} = 0$ uniformly in t on $0 \le t < \infty$. Then the solution $y \equiv 0$ is asymptotically stable.

For Bootstrapping arguments, see HW9 Q3 for an example proof or Lecture 12B.

Def

If $A = Df(y^*)$ has no e-val w/ zero real part, we call y^* a **hyperbolic** equil. solution.

Notation

 $\phi_t(y)$ is the solution to a given diff eq with initial condition y evaluated at time t.

Theorem (Hartman-Groan Theorem)

Informally: "In hypperbolic cases, the behaviour of solutions near equilibria of a nonlinear system is qualitatively the same as its linearization."

Formally:

Let y^* be an equilibrium solution of y' = f(y), f is CTS and CTSly differentiable.

Assume that the linearization matrix at y^* ($A = Df(y^*)$ has no -e-val with zero real part (it is hyperbolic).

There there exists a neighborhood U of y^* such that "the behaviour of solutions of y' = f(y) in U is qualitatively the same as its linearization." Formally, there exists a CTS bijection H w/ continuous inverse (homeomorphism), w/ domain U such that for any $y_0 \in U$, $H \circ \phi_t(y_0) = e^{tA}H(y_0)$.

Lyapunov Second Method

Consider $\frac{d}{dt}\vec{y} = \vec{f}(\vec{y})$ with $\vec{y} \in \mathbb{R}^n$.

If there exists a function $V: \mathbb{R}^n - > \mathbb{R}$ ctsly diff on some neighborhood Ω containing the origin and 1. V is pos. def. i.e. V(0) = 0 and $\forall \vec{y} \in \Omega \setminus \{0\}$: $V(\vec{y}) > 0$. 1. $V^*(\vec{y}) = V(\vec{y}) \cdot \vec{f}(\vec{y}) \le 0$ on Ω .

Then zero solution of $\dot{\vec{y}} = \vec{f}(\vec{y})$ is stable.

Consider $\frac{d}{dt}\vec{y} = \vec{f}(\vec{y})$ with $\vec{y} \in \mathbb{R}^n$.

If there exists a function $V: \mathbb{R}^n - > \mathbb{R}$ ctsly diff on some neighborhood Ω containing the origin and 1. V is pos. def. i.e. V(0) = 0 and $\forall \vec{y} \in \Omega \setminus \{0\} : V(\vec{y}) > 0$. 1. V^* is neg.def i.e. $V(0) = 0 \ \forall \vec{y} \in \Omega \setminus \{0\} : V^*(\vec{y}) < 0$

Then zero solution of $\dot{\vec{y}} = \vec{f}(\vec{y})$ is asymptotically stable.

If $|y| \to \infty$, $V(y) \to \infty$, then the zero solution is globally asymptotically stable.

Notation

 $\psi(t;t_0,y_0)$ the flow of an autonomous system, solves y'=f(y) with $y(t_0)=y_0$ by definition. If $t_0=0$ it can be denoted as $\psi_t(y_0)=\psi(t;y_0)=\psi(t;0,y_0)$ For an autonomous system it satisfies,

- 1. $\psi(t; t_0, y_0) = \psi(t t_0; 0, y_0)$
- 2. $\psi_{t+s} = \psi_t \circ \psi_s$ i.e. $\psi_{t+s}(y_0) = \psi_t(\psi_s(y_0))$

Def

P is an **invariant set** of an auto. system if $\forall y_0 \in P, \forall t \geq 0 : \phi_t(y_0) \in P$.

Def

The Positive semi-orbital/Negative semi-orbital of a solution is its behaviour on $t \ge 0/t \le 0$

Thm (La Salle's Invariance Principle)

If V is a Lyapunov function on Ω and ctsly diffable $E = \{y \in \Omega : V^*(y) = 0\}$ with M the largest invariant set in E.

Consider a solution $\phi_t(y_0)$ that is bounded whose positive semi-orbital lies in Ω for $t \geq 0$, then $\operatorname{dis}(\psi_t(y_0, M) \to 0 \text{ as } t \to \infty$

Cor

If $V(y) \to \infty$ as $|y| \to \infty$ and $V^* \le 0$ on \mathbb{R}^n , then every solution y' = f(y) is bounded and approaches M.

In particular if $M = \{0\}$ then the system is globally asymptotically stable.

 Thm

U(x) is a potential function, consider x'' + U'(x) = 0 then

- 1) equilibrium points are the critical points of U(x)
- 2) strict local maximum of U(x) is a saddle
- 3) strict local minimum of U(x) is a center