

IM Release # LLNL-AR-741177 Revision: 2.1 Nanosecond Gated CMOS Camera (NSGCC) ICD LLNL v1 Camera Board Jack Dean hCMOS Project Manager Signature Date Matthew Dayton Diagnostic Project Manager Signature Date **Brad Funsten** Project FPGA Engineer Date Signature Jeremy Martin Hill Project Software Engineer Signature Date

Rev.	Date	Section Edits	Eng.	Description of Change	
2.1	7/6/2021	-	JMH	nsCamera software releases 2.1.1	
2.02	1/8/2021	11.1	BTF	Added five more bits to MISC_SENSOR_CTL register for accumulation mode control and reordered the register.	
2.01	11/3/2020	11.1	BTF	Added MISC_SENSOR_CTL register to control miscellaneous Icarus sensor pins.	
2.0	10/16/2020	6.3, 11.1, 13, 14, 15, 17	ВТБ	Added Section 15 mentioning the RS422 USB driver location that is used and primarily tested with the hardware. Added Section 17 to discuss ELM-U references to the board. Rewrote Daedalus sections for bypass Phi Clock and RSL programming in Section 14. Updated temperature data in STAT_REG as 12-bits instead of 11 bits and confirmed Daedalus RSL left and right signals as always '0' in Section 11.1. Updated Dual Edge Trigger in Section 6.3. Moved Power Save Mode Section to Icarus Implementation.	
1.22	9/22/2020	2, 11.1, 14	BTF	Added the sensor readoff time for Daedalus. Fixed up register map with respect to Daedalus implementation. Updated Daedalus Implementation section.	
1.21	8/13/2020	6.3, 12.7, 13, 14	BTF	Will test Section 6.3 comment as well as Section 11 register map in lab. Revised Section 12.7 file names. Revised Sections 13 and 14 for Tables 17 and 19 by removing parenthesis and associated number of ADC5 monitor sub channel.	
1.20	5/26/20	5,7,11 13,14	JMH	Sensor-specific details moved to sensor sections and restructured. Removed unused quad_enable registers. Updated Daedalus POT & monitor assignments	

Previous change notes may be found in Section 18

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

Contents

С	onte	ents	2
1	В	Background	3
2		Design Summary	4
3	В	Block Diagram	5
4	H	Host Communications Interfaces	7
	4.1	Communications Port Selection	7
5	S	Sensor Interface	7
	5.1	ADC Interface and Control	7
	5.2	SRAM Interface and Control	9
	5.3	Automatic Sensor Detection	9
	5.4	Sensor Power Control	9
6	Т	Trigger Control	10
	6.1	Hardware Triggers	10
	6.2	Software Triggers	10
	6.3	B Hardware Dual-Edge Trigger	10
7		Digital Potentiometers	11
8	Т	Temperature Sensor	11
9	Р	Packet Formats	12
	9.1	Command Packet	12
	9.2	Response Packet	12
	9.3	Burst Response Packet	13
1) li	Instructions	14
1	1 R	Registers	14
	11.	.1 Register Map	15
1	2 E	Error Recovery and Diagnostics	41
	12.	.1 Software Reset	41
	12.	.2 Automatic Resets on RS422 Transmit and Receive	41

:	12.3	ADC to SRAM module Timeout	41
	12.4	FPA Interface Module Timeout	42
:	12.5	SRAM Readoff Module Timeout	42
:	12.6	Read Burst Processing Module Timeouts	42
	12.7	Resets	43
13	lcar	us implementation	44
:	13.1	ADC Interface and Control	44
:	13.2	ADC-Potentiometer Mapping	45
:	13.3	Anti-Bloom Circuit Control	46
:	13.4	Sensor Power Control	46
	13.5	High-Speed Timing (HST) Control	46
	13.6	Manual Shutter Control	47
	13.7	Power Save Mode	47
14	Dae	dalus Implementation	48
	14.1	ADC Interface and Control	48
i	14.2	ADC-Potentiometer Mapping	49
:	14.3	Anti-Bloom Circuit Control	
	14.4	High-Speed Timing (HST) Control	49
	14.5	Trigger Delay	49
	14.6	Phi Clock Programming	49
	14.7	External Phi Clock Bypass	50
	14.8	Row Shutter Logic (RSL) Programming	50
	14.9	High Full Well (HFW) Programming	50
	14.10	Zero Dead Timing (ZDT) Programming	50
15	RS4	22 USB Cable	51
16	Soft	ware Support	51
17	ELIV	I-U References	51
18	Cha	nge note history	51
19	Refe	erences	52

1 Background

The Ultra-Fast X-ray Imager (UXI) program is an ongoing effort at Sandia National Laboratories to create high speed, multi-frame, time-gated Read Out Integrated Circuits (ROICs), and a corresponding suite of photodetectors to image a wide variety of High Energy Density (HED) physics experiments on both Sandia's Z-Machine and LLNL's National Ignition Facility (NIF). Several cameras have been designed over the length of the program; one of the most recent is the Icarus, which is an improvement on past imagers (Furi and Hippogriff). The Icarus is a 1024×512 -pixel array with 25 μ m spatial resolution containing four frames of storage per pixel and has improved timing generation and distribution components while achieving 2 ns time gating. The Daedalus sensor is also a 1024×512 -pixel array with 25 μ m special resolution containing three frames of storage per pixel and has an expanded set of features for a wider

variety of applications from interlacing of rows in each frame to configurability of all shutters. ¹ See section Ofor details regarding the Icarus implementation of the firmware and section 14 for details regarding the Daedalus implementation.

Due to the unique test environments UXI sensors are targeted for, full custom hardware was required to physically mount the Icarus, manage its various functions, and read out pixel data for transfer to a host computer. Beyond experimental functionality, the hardware also needed to accommodate sensor characterization requirements. Lawrence Livermore National Laboratory's 'Version 1.0 Board' was the result of these efforts. It mounts all the components required to fully utilize the Icarus including analog to digital converters to convert pixel data and various system voltages to digital form for readout and analysis, digital potentiometers for remote configuration of critical bias voltages, static random-access memories to buffer pixel data, RS422 and Gigabit Ethernet communications for remote access, and an FPGA to tie these components together. This document describes the FPGA electrical interfaces in detail to allow the reader a greater understanding of the device, and to facilitate implementation of custom software to control and manage it.

2 Design Summary

The Nanosecond Gated CMOS Camera (NSGCC) FPGA is a design targeted for the Microsemi A3PE3000-FG484 device residing on the LLNL Version 1.0 Board. It controls interaction between a host computer and the functions on the board, whose major components include an image sensor mounted on a daughter board, SRAM, analog to digital converters (ADCs), digital potentiometers (POTs), temperature sensors, and power circuitry.

	Readoff Time				
Port	ICARUS 2-Frame Readout	ICARUS 4-Frame Readout	Daedalus 3-Frame		
			Readout		
RS-422	~ 27 seconds	~ 54 seconds	~38 seconds		
Gigabit Ethernet	< 1 second	< 1 second	< 1 second		

Table 1: Readoff time - Start of sensor readoff to images downloaded by host (approximate, does not include software overhead)

A summary of the feature set of the FPGA:

- RS422 and Gigabit Ethernet Ports for complete control of FPGA and sensor
- ARM/Disarm function which aggregates critical system status into one status bit
- Controls four NoBL (QDR) 72 Mbits SRAMs and four 8-channel ADCs for digitizing, buffering, and read out of pixel data to a host computer
- Utilizes thirteen digital POTs and one 8-channel ADC for calibration, monitoring, and tuning of critical bias voltages
- 10 kHz Heartbeat clock on Trigger3 BNC
- Timer/Counter which increments at 1 second intervals while FPGA is running
- Temperature sensor to monitor the system temperature

¹ This paragraph was sourced from References 2, 4, 5, and 6.

- Radiation-tolerant logic
- Supports the board's sensor voltage protection circuitry and enables image sensor power only when the correct sensor is installed, and the connected power supply provides the proper voltage.
- Power Supply requirement is 8 Volts at 2 Amps. The maximum current limit is 2.5 A.

A preliminary block diagram of the Version 1.0 Board, including the FPGA, is shown in Figure 1. The image sensor attaches to the Version 1.0 Board via a SamTec SEAF connector.

3 Block Diagram

A block diagram of the FPGA internal architecture is shown in Figure 2.

Figure 1: Version 1.0 Board, System Block Diagram

Figure 2: FPGA Block Diagram

4 Host Communications Interfaces

The NSGCC FPGA contains support for two serial interfaces for connectivity to a remote host computer—RS422 via a DB-9 connector, and Gigabit Ethernet via an RJ-45 connector. Only one port can be active at a time.

The RS422 port has a fixed configuration of 921.6 kbaud, 8 data bits, 0 parity bits, 1 stop bit; these settings cannot be modified by the user. The Gigabit Ethernet port can be accessed by connecting a standard Gigabit Ethernet adapter via a Cat 5a or better cable.

4.1 Communications Port Selection

Selection of the active communications port is performed through configuration pins on the FPGA (called *comm_port_sel_i*[1:0]). Table 2 illustrates communications port selection.

com_port_sel_i (i	Port Selected		
comm_port_sel_i[1:0] logic level	JMP1 position	JMP2 position	
00	2-3	2-3	RS422
01	2-3	1-2	N/A
10	1-2	2-3	Gigabit Ethernet
11	1-2	1-2	Reserved

Table 2: Communications Port Selection through FPGA Input Pins

5 Sensor Interface

The NSGCC FPGA controls the configuration and readout of the sensor in timing coordination with ADC conversion and SRAM storage. These functions are implemented with state machines, control logic, and command/status registers that respond to commands received from the host computer. ADC and SRAM functions will be discussed in the following sections: consult the associated sensor-specific ICD for relevant details

5.1 ADC Interface and Control

The FPGA controls the five analog-to-digital converters (ADCs) on the board. All five ADCs are Texas Instruments ADS8568SPM, which are eight-channel 16-bit devices. Four of the ADCs are used to convert the image sensor's analog pixel information into 16-bit digital data. The fifth ADC (ADC5) is used to monitor a subset of the board's potentiometers (POTs). See Sections 0 and 14 for the mapping of ADC5 inputs for the Icarus and Daedalus sensors, respectively.

The FPGA reads the ADC5 periodically and writes the voltage data into the ADC5_DATA_1 through ADC5_DATA_4 registers; these can be read by the user at any time. The time between updates of these registers is controlled by the ADC5_PPER register.

By populating and de-populating surface-mount selection resistors, the user can change the connectivity of three of ADC5's channels, numbers 3, 5, and 7. Channels 3 and 5 can be connected to external signals via J32, and channel 7 can be connected to VRST. The schematic snippet in Figure 3 illustrates the resistors that need to be populated/de-populated, and the connectivity to J32.

Prior to use, the host software must configure the ADCs properly using the ADC_CTL and ADCX_CONFIG_DATA registers (see Section 11.1). First, the appropriate ADCX_CONFIG_DATA register(s) must be configured (see the ADS8568SPM data sheet for configuration information). Then the ADC_CTL register must be written to force the FPGA to write the configuration data to the targeted ADC(s).

Figure 3: ADC5 – Illustration of Channel 3, 5, and 7 Connectivity Options

5.2 SRAM Interface and Control

Each of the image sensor ADCs presents its output to the SRAM one channel at a time such that 4×16-bits, or 64 bits of data must be buffered simultaneously and continuously until all requested data is read from the sensor and stored in the SRAM. To handle storage of this data, the Version 1.0 Board contains two Cypress CY7C1470BV33-167AXI 2Mbit×36 SRAMs. When all pixel data has been stored, the FPGA asserts a status bit (STAT_REG_SRC bit 0, or SRAM_READY). Software waits for this bit to go high to commence readout of pixel data from SRAM to the host for storage and processing.

5.3 Automatic Sensor Detection

POT11 assists in the automatic sensor detection process, where the attached sensor type is detected upon power on or reset, and the appropriate FPGA functions are configured to support the detected sensor. At system power on or reset, the FPGA will automatically program POT11 to 3.3 V for 2 seconds, then program it back to its default voltage. While at 3.3 V, the sensor_det_i signals from the sensor are biased such that they can be sampled by the FPGA to determine the sensor type that is attached. The FPGA will then assert bits in the SENSOR_VOLT_STAT status register indicating which sensor has been detected (see Table 3).

Sensor Detect (FPGA input pins)	FPGA Control Bits (in SENSOR_VOLT_STAT register)			
sensor_det(1)	sensor_det(0)	icarus_det	daedalus_det	reserved	
1	1	1	0	0	
0	1	0	0	1	
0	0	0	1	0	
1	0	N/A	N/A	N/A	

Table 3: Sensor Detect (sensor_det) Truth Table

5.4 Sensor Power Control

Sensor power can be enabled by either the FPGA under software control, or by PCB-installed hardware circuitry. In Table 4, <code>bypass_sensor_det</code> is a bit in the <code>SENSOR_VOLT_CTL</code> register, <code>icarus_det</code> is a bit in the <code>SENSOR_VOLT_STAT</code> register that is generated by the state of the sensor_det[1:0] pins, and <code>pos_n</code>, and <code>neg_p</code> are signals from PCB circuitry. The last column, <code>Sensor_power_on</code>, is an output signal of the FPGA; when asserted, power to the sensor is turned on.

When bypass_sensor_det is low (logic 0), sensor power is dependent only on the state of icarus_det, pos_n, and neg_n. When it is high (logic 1), sensor power is enabled independent of any other signal.

bypass_ sensor_ det	lcarus_det	Pos_not	Neg_p	Sensor_ power_ on
0	1	0	0	1
0	0	1	1	1
1	Х	Х	Х	1

Table 4: Sensor Power Enable Truth Table

6 Trigger Control

Two triggers are required to initiate image capture and retrieve images from the board—a Coarse Trigger followed by a Fine Trigger. These triggers can be provided to the board through three different methods: hardware triggers, software triggers, and a single dual-edged hardware trigger.

6.1 Hardware Triggers

The default trigger mode requires the use of external equipment to provide hardware triggers. The hardware trigger requirements are:

- Hardware triggers are enabled by asserting the HW_TRIG_EN subregister while deasserting
 DUAL_EDGE_TRIG_EN and SW_TRIG_EN (i.e., setting bit 0 of TRIGGER_CTL while clearing bits 1
 and 2.)
- Both triggers must adhere to TTL logic levels as measured on the board
- Both triggers must have a minimum 200 ns pulse width as measured on the board
- For Icarus sensor operation, a minimum of 11.5 μs is needed between the rising edge of the Coarse Trigger and the rising edge of the Fine Trigger to obtain a successful edge detect (w0_top_l_edge1) assertion after the assertion of the Fine Trigger. Please see the 'UXI_Icarus_FPA' document for more details regarding the edge detect signal from the Icarus sensor.⁵
 - For Daedalus sensor operation, the Fine Trigger must be held low at least 16 μ s for a successful edge detect (SH2_fall_UR). Please see the 'UXI_Daedalus_HDD' document for more details regarding the edge detect signal from the Daedalus sensor.⁶
- The signal source must be able to drive a 50 Ω load since both triggers are terminated on the board.

6.2 Software Triggers

The Software Triggers are generated internally to the FPGA and exceed the requirements for the Hardware Triggers— the pulse width of both triggers is 10 μ s; and the rising edges occur 20 μ s apart.

The software trigger is enabled by asserting the **SW_TRIG_EN** subregister while deasserting **HW_TRIG_EN** and **DUAL_EDGE_TRIG_EN** (clearing bits 0 and 1 of **TRIGGER_CTL** while setting bit 2.) When subregister **SW_TRIG_START** is asserted, the software control logic will activate and assert first the Coarse Trigger then the Fine Trigger as described in the previous paragraph. **SW_TRIG_START** is self-clearing, so software does not need to clear it to disable this function.

Note that inside the FPGA, the hardware and software triggers are logically ORed together. Therefore, when the Software Trigger function is used, the user must not assert the Hardware Triggers.

6.3 Hardware Dual-Edge Trigger

When using the Hardware Dual-Edged Trigger, external equipment must drive only the Fine Trigger; the Coarse Trigger is not used. Dual-edge triggers are enabled by asserting subregisters **HW_TRIG_EN** and **DUAL_EDGE_TRIG_EN** and deasserting **SW_TRIG_EN** (setting bits 0 and 1 of **TRIGGER_CTL** while clearing bit 2.) When the dual-edge trigger is enabled, trigger signals will be handled in the following manner:

- External Coarse Triggers are ignored
- To initiate the trigger sequence, the external Fine Trigger shall be driven low for a minimum of $11.5 \,\mu s$, and then returned to the high state. For Daedalus sensor operation, the Fine Trigger must be held low at least $16 \,\mu s$.
- The FPGA shall detect the falling edge of the external Fine Trigger and treat this event internally as the Coarse Trigger
- The FPGA shall detect the rising edge of the external Fine Trigger and treat this event internally as the Fine Trigger.

Note that a successful edge detect (w0_top_l_edge1) assertion after the assertion of the Fine Trigger is not possible on the Icarus. Please see the 'UXI_Icarus_FPA' document for more details regarding the edge detect signal from the Icarus sensor. For Daedalus operation, a successful edge detect of SH2_fall_UR (the diagnostic one-shot falling edge of shutter two) is asserted when dual edge trigger is performed twice. The first trigger is used to generate the coarse trigger and the second execution of the same trigger is used to generate the fine trigger. The first trigger pulse must be asserted high for at most 16 μ s. The second can be asserted for an arbitrary pulse.

7 Digital Potentiometers

There are thirteen digital potentiometers (POTs) on the board available to bias miscellaneous image sensor functions. Each of these devices is an Analog Devices AD5161; configuration is performed via the POT data registers (POT_REG4_TO_1, POT_REG8TO_5, POT_REG12_TO_9, and POT_REG13), and the POT control register (POT_CTL). To ensure that the POTs are programmed to valid values immediately upon turning on system power, the FPGA will detect the de-assertion of the system reset signal, and after a 1 ms delay will automatically program all POTs to the default values contained in their respective POT data registers. See sections 0 and 14 for the Icarus and Daedalus POT assignments, respectively.

When the user writes to the **POT_CTL** register, a POT write command is initiated. It takes some time for the command to be generated, serialized, sent to the POT, and for the POT interface module to then terminate the process. If a POT write is initiated whilst a previous POT write is in progress, the second POT write will neither be executed nor buffered; it will be lost. This is not an issue when using the RS422 interface due to the slow communications rate but is potentially a problem when using the Gigabit Ethernet interface. Interface software must not execute a DAC write command for at least 50 µs following a previous DAC write command when the Gigabit Ethernet interface is used.

There is a similar delay required due to the special Anti-Bloom function associated with **POT11**. Since it takes some time for the Anti-Bloom function to execute (see Section 5.3), the interface software must not execute a POT write command for at least $50 \mu s$ following a power cycle or a board reset.

8 Temperature Sensor

A TI275 temperature sensor is used to monitor sensor temperature; it is placed on the board adjacent to the sensor connector and provides ±0.5 °C accuracy. After the system is powered on, the FPGA will continually read the TI275 at an interval determined by the **TEMP_SENSE_PPER** register; the temperature is stored in the **TEMP_SENS_DATA** register, where it can be read by software using the Read Single command.

The value programmed into the **TEMP_SENSE_PPER** register represents the number of system clock cycles between the end of one TI275 temperature read cycle and the beginning of the next. Therefore, the TI275 read frequency is a function of **TEMP_SENSE_PPER** and the time it takes to read off the TI275. The frequency at which the TI275 is read (and the **TEMP_SENS_DATA** register is updated), use the following formula:

$$f_{\text{read}} = \frac{f_{\text{system_clock}}}{(n_{\text{read}} + TSP)}$$

where $n_{\rm read}$ is the number of clock cycles to read the Ti275 = 2917, $f_{\rm system_clock} = 40,000,000$, and TSP is the contents of the **TEMP_SENSE_PPER** register.

9 Packet Formats

The NSGCC FPGA supports three packet types: Command, Response, and Burst Response (i.e., pixel) Packets. Their formats and usage are described in this section.

9.1 Command Packet

A Command Packet is sent by the host to the FPGA; it may not be sent by the FPGA. A Command Packet is used to send an instruction to the FPGA for execution. All Command Packets shall have the format shown in Table 5.

16 bits	4 bits	12 bits	32 bits	16 bits
Preamble	Command	Address	Data	CRC16

Table 5: Command Packet Format

Preamble	Bit pattern that precedes actual packet data to assist the receiver in determining the start of the packet. The preamble is fixed to 0xAAAA
Command	0x0: Write Single 0x1: Read Single 0x2: Read Burst (i.e., Read Pixels) All other values not supported
Address	Bit[11:0]: Defines the address of the target register of a Write Single or Read Single command. For a Read Burst command, this field is not used, but is recommended that it be filled with zeros.
Data	Bit[31:0]: Contains write data for a Write Single command. This field is not used for Read Single or Read Burst commands, but it is recommended that it be filled with zeros.
CRC16	Bit[15:0]: CRC-16 field, calculated over the entire packet, excluding the preamble and CRC field itself. The CRC16 field exists for RS422 packets only; for Ethernet packets, the CRC16 field does not exist.

Table 6: Command Packet Fields

9.2 Response Packet

A response packet is sent by the FPGA to the host; it may not be sent by the host. Response Packets are sent either (1) in response to a Write Single packet where the response packets are not disabled, or (2) in response to a Read Single packet.

The Response Packet format is similar to the Command Packet format; this enables host software to easily correlate a Response Packet to the Command Packet that was the cause of its generation. However, there

are a couple of minor differences, such as asserting the MSB of the Command field, and the content of the Data field.

16 bits	4 bits	12 bits	32 bits	16 bits
Preamble	Command	Address	Status	CRC16

Table 7: Response Packet Format

Preamble	Bit pattern that precedes actual packet data to assist the receiver in determining the start of the packet. The preamble is fixed to 0xAAAA
Command	Contains the contents of the command field of the corresponding Command Packet, except that the MSB is asserted. 0x8: Write Single 0x9: Read Single 0xA: Read Burst (i.e., Read Pixels)
Address	Same as the source Command Packet
Status	For Read Single Commands: This field contains the data read from the target register. For Write Single Commands: This field contains status information, particularly errors, contained in the transmitted command packet. This status information does NOT refer to the response packet. Bit[0]: CRC error Bit[1]: Invalid Command – command not executed Bit[2]: Invalid Sub-Command – command not executed
CRC16	Bit[15:0]: CRC-16 field, calculated over the entire packet, excluding the preamble and CRC field itself. The CRC16 field exists for RS422 packets only; for Ethernet packets, the CRC16 field does not exist.

Table 8: Response Packet Fields

9.3 Burst Response Packet

Burst Response (or Pixel) Packets are sent in response to a Read Burst (or Read Pixels) command.

16 bits	4 bits	12 bits	32 bits	Variable	16 bits
Preamble	Command	Reserved	Payload Length	Payload	CRC16

Table 9: Burst Response Packet Format

Preamble	Bit pattern that precedes actual packet data to assist the receiver in determining the start of the packet. The preamble is fixed to 0xAAAA
Command	Contains the Command field of the Command Packet, except that the MSB is asserted. OxA: Read Burst (i.e. Read Pixels)
Reserved	Field is not used, should be set to 0x000
Payload Length	Length of the Payload field, in bytes. This is the total number of bytes transmitted for a particular SRAM readout.
Lengin	
Payload	Payload. This field contains pixel data. Each pixel occupies 16-bits of payload; if the actual pixel data is less than 16 bits, the pixel data shall be zero-justified
CRC16	CRC-16 field, calculated over the entire packet, excluding the preamble and CRC field itself. The CRC16 field exists for RS422 packets only; for Ethernet packets, the CRC16 field does not exist.

Table 10: Burst Response Fields

10 Instructions

Three instructions are currently supported: Write Single, Read Single, and Read Burst.

The Write Single instruction is used by the host to update and modify the NSGCC FPGA's control registers. By writing to the appropriate control registers in the correct sequence, the host can control all NSGCC FPGA and Version 1.0 Board functions. When the FPGA receives a command packet with a Write Single instruction with response packets enabled, it will return a response packet indicating reception of the packet and whether it was received error-free.

The Read Single instruction is used to read the content of a single NSGCC control or status register. This instruction enables the host to determine the status of all FPGA functions that are supported. When a command packet with a Read Single instruction is received by the FPGA, it *must* return a response packet, which contains the FPGA target register contents. Again, it is up to the host to determine a suitable timeout period while awaiting the response packet and to re-send the packet if required.

The Read Burst instruction is used to read sensor data from the Version 1.0 Board's SRAM; it should be sent by the host only after pixel data is read from the ADC and stored in SRAM. When this instruction is received by the FPGA via a command packet, it will return a single of Burst Response packets with the format described in the previous section.

11 Registers

This section lists all NSGCC FPGA registers accessible by software. All registers are 32 bits wide, although not all bits are used in every register. The different register types are defined as follows:

- Read Only: Software can read the register but cannot modify its contents. The register's contents are updated/modified only by internal FPGA hardware.
- Read/Write: Software can read or write the register; hardware cannot update/modify the register contents, unless stated.
- Read Clear: Software can read the register; the register's contents are cleared (i.e., reset to zeros) when read by software. However, if software has not resolved the underlying cause of asserted status bits, reading this type of register may not result in all zeros being read from it. A typical example is an interrupt register, where the underlying source of the interrupt has not been cleared.

11.1 Register Map

A pale green background indicates an Icarus-specific setting; pale gold indicates a Daedalus-specific setting. Unless 'Icarus2' is specified in an entry, 'Icarus' refers to both Icarus and Icarus2.

Address	Register Name			Board	Access	Default value				
Register description B			Details	Details of bit range (may include SUBREGISTER_NAME)						
0x000	FPGA_NUM				V1, V4		0x8100_0301			
			Board c	leveloper						
		31	0	SNL						
			1	LLNL						
		30:28	Unused							
Droduct N	umber of the FPGA design			najor revision number	•					
	racter sequence:	27:24	0001	LLNLv1						
-	acter sequence. ard developer		0100	0100 LLNLv4						
	2: Board revision number			Unused						
	inused	9		'1' indicates Gigabit Ethernet interface implemented						
	mmunication interfaces	8	'1' indicates RS422 interface implemented							
7: Rad	diation tolerance	7:5	Unused							
8: Ser	nsor build	4			ates optim	ized radiation-tolerant implementation				
			-	implementation						
			0000	Undefined						
		3:0	0001	Icarus / Icarus 2						
			0010	Daedalus						
	-		0011	Reserved						
0x001	FPGA_REV				V1, V4	Read-only				
,		7:0	Day of I	PGA code release (e.	g., 0x29 fo	r the 29 th day of the month)				
Davidata	f FDCA design	15:8	Month	of FPGA code release	(e.g., 0x12	2 for the month of December)				
kevision o	of FPGA design.	23:16		FPGA code release (e						
		27:24	Unused							

		31:28	Board version (e.g., 0x1 for	v1 board)		
0x010	HS_TIMING_CTL			V1, V4	Read/Write	0×0000_0000
Control of	HS Timing Function	0	HST_MODE - Configure timi respect to the FPA interface.	_	s self-clearing. When '1', HST configur	ation is initiated with
0x013	HS_TIMING_DATA_ALO			V1, V4	Read/Write	0×0000_0000
Custom hi	igh-speed timing A side, LSBs	31:0	Timing pattern bits [31:0] fo	r A side		
0x014	HS_TIMING_DATA_AHI			V1, V4	Read/Write	0x0000_0000
Custom hi	igh-speed timing A side, MSBs	7:0	Timing pattern bits [39:32] for	or A side		
0x015	HS_TIMING_DATA_BLO			V1, V4	Read/Write	0x0000_0000
Custom hi	igh-speed timing B side, LSBs	31:0	Timing pattern bits [31:0] fo	r B side		
0x016	HS_TIMING_DATA_BHI			V1, V4	Read/Write	0x0000_0000
Custom hi	igh-speed timing B side, MSBs	7:0	Timing pattern bits [39:32] for	or B side		
0x017	SW_TRIGGER_CONTROL			V1, V4	Write-only	
Initiates g triggers	generation of internal coarse and fine	0			1', initiates coarse and fine triggers i 5 μs after the coarse trigger goes high	
0x018	HST_READBACK_A_LO			V1, V4	Read-only	
HST config	guration readback	31:0	HST configuration readback	with respect	to RSL state machine (bits [31:0] for A	side)
0x019	HST_READBACK_A_HI			V1, V4	Read-only	
HST config	guration readback	7:0	HST configuration readback	with respect	to RSL state machine (bits [39:32] for A	A side)
0x01A	HST_READBACK_B_LO			V1, V4	Read-only	
HST config	guration readback	31:0	HST configuration readback	with respect	to RSL state machine (bits [31:0] for B	side)
0x01B	HST_READBACK_B_HI			V1, V4	Read-only	
HST config	guration readback	7:0	HST configuration readback	with respect	to RSL state machine (bits [39:32] for E	3 side)
0x024	STAT_REG			V1, V4	Read-only	
Status Reg	gister. y duplicate of STAT_REG_SRC)	31:0	-		C (0x02F). Reading this register has r REG_ SRC must be read. See 0x02F for	
(Read-only	,			, -		or bit assignments

	0	Unused					
	1	LED_EN – Enable user-man	aged LEDs				
	2	COLQUENCHEN - Column C	uench Enabl	e. When '1', enables column quench fur	nction		
				ols the assertion of HST_osc_bias_en to	save power.		
	3	0 HST_osc_bias_en					
	J		-	oon the rising edge of the Coarse Trigge	r; HST_osc_bias_en is		
Control Register		deasserted when					
	4	REVREAD - When '1', rever					
		_	_	r for slowing down image readoff. Bit 4			
	4			then readoff is slowed by a factor of 2.	If bits 4 and 5 are set		
		as "10", then readoff is slow	•				
	_	_	_	r for slowing down image readoff. Bit 4			
	5	as "10", then readoff is slow	· ·	then readoff is slowed by a factor of 2.	if bits 4 and 5 are set		
		as 10 , then readon is slow					
0x026 POT_CTL	I		V1	Read/Write	0×0000_0000		
	0	POT_CONFIG. When written with a '1', the POT selected by POT_SEL will be configured with the value					
Pot configuration control for specific channels		in its corresponding registe					
	4:1	POT_SEL[3:0]. Selects the potentiometer to configure. Selection is literal, i.e.: "0001" = select POT1, "0010" = select POT2 "1101" = select POT13					
0x027 POT_REG4_TO_1	L	,	V1	Read/Write			
	7:0	POT1 / COL_BOT_IBIAS_IN bias. ⁵	l – Control v	oltage to bottom side of sensor's colu	mn 0 V		
		POT2 / HST_A_PDELAY- se	e register 0x	096. Control voltage to respective sen	sor 0 V		
	15:8	pin for the A side p transisto	r delay buffe	r voltage. Decrease in this voltage increa	ses		
POT 1 through POT 4 configuration data.		delay of side n transistor. ⁵					
See Section 7 for each pot description.			_	096. Control voltage to respective sen			
see section 7 for each pot description.	23:16	· ·	r delay buffe	r voltage. Decrease in this voltage increa	ses		
		delay of side n transistor.5					
			_	0x097. Control voltage to the ring w			
	31:24		ed by registe	r 0x047). Decrease in this voltage increa	ses		
		the speed of oscillator. ⁵					

	31:24		_	0x097. Control voltage to the 500 MH: Decrease in voltage increases the speed o				
0x028 POT_REG8_TO_5			V1	Read/Write				
	7:0	POT5 / HST_OSC_VREF_IN – oscillator. ⁵	see registe	r 0x097. Reference voltage for relaxation	2.9 V			
POT 5 through POT 8 configuration data. See Section 7 for each pot description.	7:0		r (selected	ter 0x097. Control voltage to the ring by register 0x047). Decrease in voltage				
	15:8		_	098. Control voltage to respective sensor iffer voltage. Decrease in voltage increases				
	15:8	POT6 / HST_OSC_VREF_IN – oscillator. ⁶	see registe	er 0x098. Reference voltage for 500 MH:	2 1.0 V			
	23:16		POT7 / HST_OSC_CTL – see register 0x098. Control voltage to the relaxation oscillator (selected by register 0x047). Decrease in voltage increases the speed of oscillator. ⁵					
	31:24		POT8 / HST_A_NDELAY – see register 0x099. Control voltage to respective sensor pin. It is the A side n transistor delay buffer voltage. Decrease in voltage increases delay of side n transistor. ⁵					
0x029 POT_REG12_TO_9			V1	Read/Write	0xF527_0000			
	7:0	POT9 / COL_TOP_IBIAS_IN -	Control vo	Itage to top side of sensor's column bias. ⁵	0.025 V			
POT 9 through POT 12 configuration data.	15:8	POT10 / HST_OSC_R_BIAS – and without capacitors. ⁵	Control vo	Itage to current sink of ring oscillators with	0.0135 V			
See Section 7 for each pot description.	23:16	POT11 / VAB – Controls the	oixel anti-bl	loom transistor voltage. ^{5, 6}	0.5 V			
	31:24			I voltage to the ring without capacitors Decrease in voltage increases the speed o				
0x02A POT_REG13			V1	Read/Write	0x0000_003A			
POT 13 configuration data. See Section 7 for each pot description.	7:0	POT13 / VRST – see register	0x099. Cor	ntrols the pixel reset voltage. ⁵	0 V			

0x02B	LED_GP			V1, V4	Read/Write	0x0000_0000
General pu	urpose LED control.	7:0	LED7 LED0 - Bits [7:0] will I	ight up LED	_IO-8 through LED_IO-1 when written v	with a '1', respectively.
0x02D	SW_RESET			V1, V4	Write-only	0×0000_0000
Software r	reset	0	RESET - <i>sw_rst</i> . When assert bit will be automatically clea		t the entire FPGA, including control an ritten.	d status registers. This
0x02E	HST_SETTINGS			V1, V4	Read-only	
		0		-	IllWEn pin to the sensor will be dirently and the sensor will be controlled by FPGA logic.	ctly controlled by the
High Speed	d timing control	1	_	and SW_H	e hstAllWEn pin to the sensor when HS ISTALLWEN are '1', then the hstAllWEr	
0x02F	STAT_REG_SRC			V1, V4	Read-clear	
		0 1 2 3	SRAM_READY- sensor reado STAT_COARSE - Coarse Trigg STAT_FINE - Fine Trigger det STAT_W3TOPLEDGE1 - w3_t	er detected ected	l	
Status Reg	gister, Source.	3	STAT_RSLROWOUTL - Row i	nterlacing o	putput with respect to sensor and inpu , the FPGA ties this to '0' since the cu	•
Contains th	he source logic for clearable status bits,	4	STAT_W3TOPREDGE1 - w3_t	:op_R_edge	1 (GPIO35) detected	
bits in ST	TAT_REG contains read-only copies. All AT_REG_SRC register will be cleared e register is read, except for the	4	_	e). Currently	output with respect to sensor and inpu y, the FPGA ties this to '0' since the cu	
•	ure Sensor and the Pressure Sensor egister 0x02F to read these bits	5	STAT_SENSREADIP - Sensor pixels will be read from the s		Progress; Indicates the start of an ADC annels x 4 ADCs)	read cycle in which 32
		6	STAT_SENSREADDONE - Ser sensor readout is complete	ısor Readoı	ut Complete – Asserted by ADC contro	ol logic; indicates that
		7	_		ut Started - Indicates that SRAM reado which is controlled by software	out has started. This is
		8	STAT_SRAMREADDONE - SR pixels have been read out of		ut Complete – Indicates that SRAM re	adout is complete (all

		9	STAT_HSTCONFIGURED - HST Configured					
		10	STAT_ADCSCONFIGURED - ADC's Configured – Asserted when all five ADCs have been configured					
•		11	STAT_POTSCONFIGURED – all POTs have been configured					
		12	STAT_HST_ALL_W_EN_DETECTED - hst_all_w_en detected					
		12	STAT_RSLNALLWENR - AllWEn enables all shutter signals to initialize storage caps (right side)					
		13	STAT_TIMERCOUNTERRESET – indicates that the timer (see 0x03C and 0x03D) has been reset					
			STAT_ARMED - 'ADCs configured' AND 'pots configured' AND TRIGGER_CTL[0] AND 'HST_Configured'					
		14	AND NOT 'coarse trigger detected' AND NOT 'fine trigger detected'. Note that all these conditions					
			must be met for ARMED to be asserted.					
		15	STAT_RSLNALLWENL - AllWEn enables all shutter signals to initialize storage caps (left side)					
		27:16	STAT_TEMP - Temperature Sensor [11:0]					
		31:28	STAT_PRESS - Pressure Sensor (future use)					
0x030	STAT_REG2		V1, V4 Read-only					
Status Re	gister 2. (Read-only duplicate of	31:0	Read-only shadow bits of STAT_REG2_SRC (0x031) . Reading this register has no effect on these bit					
STAT_REG	2_SRC)	31.0	values. To clear the applicable bits, STAT_REG2_ SRC must be read. See 0x031 for bit assignments					
0x031	STAT_REG2_SRC		V1, V4 Read- clear					
		0	FPA_IF_TO - When this bit is asserted high, a timeout error has occurred during the sensor-to-SRAM readout process					
		1	SRAM_RO_TO - When asserted high, this bit indicates that a timeout has occurred while reading an SRAM row.					
Contains the whereas S All bits in	ister 2, Source. The source logic for clearable status bits, TAT_REG2 contains read-only copies. TAT_REG2_SRC register will be the register is read. See Section 12	2	PIXELRD_TOUT_ERR - When asserted high, this bit indicates that the overall sensor readout process has timed out. It also indicates that the internal transmit data pipeline has reverted from selecting Burst Response (i.e., pixel) data back to Response (i.e., status) data to re-establish communications with the host.					
for additional details. Use register 0x030 to read these bits			UART_TX_TO_RST - When asserted high and the RS422 port is enabled, this bit indicates that a timeout has occurred within the RS422 transmit logic, and the UART TX module has reset itself to recover from the condition.					
UART_RX_TO_RST - When asserted high and the RS422 port is enabled, this bit timeout has occurred within the RS422 receive logic, and the UART RX module h recover from the condition.								
0x032	ADC_BYTECOUNTER		V1, V4 Read-only					

ADC Byte Counter	25:0	pixels (in bytes) that have been is read after a system "hang" the error occurred during se module has likely operated no caused by a failure in the AI	en read from has been of nsor reador ormally. If it OC/SRAM m on. Since the	er output of the ADC/SRAM readout modern the image sensor and written into the detected (and prior to a reset), it can be ff. If it contains a value of zero, then that is a non-zero value, then this may indicated the series where the value contained is the counter is an integral part of the FPG with a system reset.	SRAM. If this register was determine if e ADC/SRAM readout ate that the error was ne pixel/byte number
0x033 RBP_PIXEL_CNTR			V1, V4	Read-only	
Read Burst Processing Pixel Counter	23:0	bytes) that have been read for read after a system "hang" have error occurred at the TX FIFO of zero, then the ADC/SRAM If it is a non-zero value, the steering/read_burst_process	rom the tra as been det output in the module has en this ma ing module e this count	ng/read_burst_processing module which insmit FIFO after being read from the SF tected (and prior to a reset), it can be used he readout pipeline during SRAM readoff likely operated normally, and the error ay indicate that the error was caused where the value contained is the pixel/er is an integral part of the FPGA logic (restem reset.	RAM. If this register is sed to determine if an f. If it contains a value originated elsewhere. If by a failure in the byte number that the
0x034 DIAG_MAX_CNT_0			V1, V4	Read/Write	
,	7:0	MAXERR_SRT - Maximum nu freezes. Maximum value allo		rors indicated by <i>sram_ro_to</i> (see 0x03 F.	1) before the counter
Diagnostic Max Count Register 0	15:8	Unused			
	31:16	MAXERR_FIT - Maximum no counter freezes. Maximum vo		errors indicated by <i>uart_tx_to_rst</i> (see d is 0xFFFF.	e 0x031) before the
0x035 DIAG_MAX_CNT_1			V1, V4	Read/Write	
Diagnostic Max Count Register 1	15:0 31:16	counter freezes. Maximum v	alue allowe	errors indicated by fpa_if_to (see 0x03)	,
0x036 DIAG_CNTR_VAL_0		meezes. Iviaximum value allo	V1, V4	Read-only	

		7:0	_	_	_to counter, which increments when <i>sr</i> aximum value is $0 \times FF$; when this value is	_ _				
Diagnostic	Counter Value 0	15:8	Unused							
		31:16	_		counter, which increments when fpa_if im value is 0xFFFF; when this value is					
0x037	DIAG_CNTR_VAL_1			V1, V4	Read-only					
Diagnostic	Counter Value 1	15:0	_	h a system	rx_to_rst counter, which increments wire reset. Maximum value is 0xFFFF; when					
Diagnostic Counter Value 1		31:16	_	h a system	tx_to_rst counter, which increments wireset. Maximum value is 0xFFFF; when					
0x03A	TRIGGER_CTL			V1, V4	Read/Write	0x0000_0000				
		0	'HW_TRIG_EN' - When '1', coarse and fine triggers are passed to internal logic; when '0', triggers are ignored.							
Trigger cor	ntrol	1	proper operation. However, Trigger section. The trigger a initiates an internal coarse tr	the timing of ccepts the igger of 10	e HW_TRIG_EN is also '1'), only the fine of the fine trigger must adhere to the tile first edge whether rising or falling edge. μs. The second rising edge initiates an internal coarse trigger rising edge and internal	ming described in the The first falling edge nternal fine trigger 10				
		2	SW_TRIG_EN - When '1' with the FPGA to generate a coars		GGER_CTL bits cleared, asserting SW_TI trigger.	RIG_START will cause				
0x03B	SRAM_CTL			V1, V4	Write; self-clearing					
Request SF	RAM Readoff	0	READ_SRAM - Request SRAM When using RS422, software all expected burst response of	should sen	d no additional command packets after	setting this until after				
0x03C	TIMER_CTL			V1, V4	Write; self-clearing					
Timer cont	trol register	0	RESET_TIMER - Resets count	er when se	t to '1'. This bit is self-clearing.	1				

0x03D	TIMER_VALUE					Read-only	
Current va	Current value of timer 23:0 Current timer counter val					s every second	1
0x03E	VRESET_WAIT_TIME				V1, V4	Read/Write	0x0000_0000
Time to wa	ait for VRESET to ramp high.	30:0		<i>1 only</i> . Time to wait for age in a 2-frame ICARL		ramp high, in 25 ns increments. This regi	ster is used to recover
0x03F	HSTALLWEN_WAIT_TIME				V1, V4	Read/Write	0x0000_0190
hstAllWEn	active time	30:0	Time f	or <i>hstAllWEn</i> to be act	ive during p	pixel initialization, in 25 ns increments	
0x041	ICARUS_VER_SEL				V1, V4	Read/Write	0×0000_0000
Selects ICA	ARUS type, either 4 or 2 frame version	0	0	4-frame 'Icarus2' 2-frame 'Icarus'			
0x042	FPA_ROW_INITIAL				V1, V4	Read/Write	0x0000_0000
The initial	pixel row to read off the SRAM	9:0	Initial	row, between 0 and 10	023 (0x000	– 0x3FF) for Icarus and Daedalus	1
0x043	FPA_ROW_FINAL				V1, V4	Read/Write	0x0000_03FF
The final p	ixel row to read off the SRAM	9:0		ow, between 0 and 10 to FPA_ROW_INITIAL	023 (0x000	– 0x3FF) for Icarus and Daedalus. Mu	ust be greater than or
0x044	FPA_FRAME_INITIAL				V1, V4	Read/Write	0x0000_0000
The initial	pixel frame to read off the SRAM	1:0	Initial	frame, between 0 and	3 for Icarus	2, between 1 and 2 for Icarus, <mark>between</mark>	0 and 2 for Daedalus
0x045	FPA_FRAME_FINAL				V1, V4	Read/Write	0x0000_0003
The final p	ixel frame to read off the SRAM	1:0		rame, between 0 and 3 be greater than or equa		2, between 1 and 2 for Icarus, <mark>between</mark> RAME_INITIAL	0 and 2 for Daedalus.
0x046	FPA_DIVCLK_EN_ADDR				V1, V4	Read/Write	0x0000_0000
Enable the	HST <i>divClk</i> output	0	0	Disable HST divClk Enable HST divClk			
0x047	FPA_OSCILLATOR_SEL_ADDR				V1, V4	Read/Write	0x0000_0000
Select the	oscillator for the ROIC.	1:0	00 01 10 11	Relaxation/500 MHz Ring/100 MHz oscilla Ring oscillator (witho	tor		

0x04A VRESET_HIGH_VALUE				V1, V4	Read/Write	0x0000_0000	
Frame 0 and 3 VRESET value	7:0	are open during the	imag nd ICA	e recovery .RUS_VER_S	nes programmed VRESET value when Fra v period for a 2-frame Icarus. Used SEL. POT13 programmed value during 2- d is minimum voltage.	in conjunction with	
0x04B FRAME_ORDER_SEL				V1, V4	Read/Write	0x0000_0000	
Reorders the frame readout	2:0	000 Readout frame 001 Readout frame 010 Readout frame 011 Readout frame 100 Readout frame 101 Readout frame	order order order order	:: [2, 0, 1] :: [1, 2, 0] :: [0, 2, 1] :: [1, 0, 2]			
0x04C MISC_SENSOR_CTL		·		V1, V4	Read/Write	0x0000_01BE	
	0	1-4 of this register. If 'C HST_TST_ANRST_EN —	ACCUMULATION_CTL – If '1', invoke accumulation mode; relevant sensor pins are controlled by bits 1-4 of this register. If '0', those sensor pins are managed by manual shutter control. ⁵ HST_TST_ANRST_EN – Must have bit 0 enabled of this register. If '1', assert the High-Speed Timing				
	2	HST_TST_BNRST_EN -	manual pixel reset enable pin on the A hemisphere of the sensor. If '0', disable this pin. ⁵ HST_TST_BNRST_EN – Must have bit 0 enabled of this register. If '1', assert the High-Speed Timing manual pixel reset enable pin on the B hemisphere of the sensor. If '0', disable this pin. ⁵				
Miscellaneous sensor control for Icarus	3				enabled of this register. If '1', assert the here of the sensor. If '0', disable this pin		
	4	HST_TST_BNRST_IN – Must have bit 0 enabled of this register. If '1', assert the High-Speed Timing manual w1 shutter pin on the B hemisphere of the sensor. If '0', disable this pin. ⁵					
	5	pin. ⁵			el reset transistor enable pin on the sen		
	6	HST_CONT_MODE – If is enabled. ⁵	'1', en	able contin	nuous mode. Shutter timing generation re	epeats if the oscillator	
	7	COL_DCD_EN – If '1', e					
	8	COL_READOUT_EN – If	f '1', e	nable the p	oad drivers for the analog image channel	s. ⁵	
0x050 MANUAL_SHUTTERS_MODE				V1, V4	Read/Write	0x0000_0000	
	0	MANSHUT_MODE					

Manual Sh	nutters Mode select. When bit 0 is set,		0	Normal 'High Speed'	Mode		
	the FPGA will generate manual shutters signals						
for the ROIC when the fine trigger is detected. Otherwise the on ship High Speed Timing will be 1 Manual Shutters Mod			ada				
Otherwise, used.	, the on-chip High Speed Timing will be		-	Wandar Shatters Woo	uc		
	WO INTEGRATION				\/1 \/4	Dood (M/wito	0,0000 0000
0x051	W0_INTEGRATION		1		V1, V4	Read/Write	0×0000_0000
	outters image integration time register O of ICARUS A-side.	29:0	Amoui	nt of integration time i	n 25 ns steps.		
0x052	W0_INTERFRAME				V1, V4	Read/Write	0×0000_0000
	hutters image interframe time-time acquisitions for frames 0 and 1 of side.	29:0	Amoui	nt of interframe time in	n 25 ns steps.		
0x053	W1_INTEGRATION				V1, V4	Read/Write	0x0000_0000
	nutters image integration time register 1 of ICARUS A-side.	29:0	Amoui	nt of integration time i	n 25 ns steps.		
0x054	W1_INTERFRAME				V1, V4	Read/Write	0x0000_0000
	hutters image interframe time- time acquisitions for frames 1 and 2 of side.	29:0	Amoui	nt of interframe time in	n 25 ns steps.		
0x055	W2_INTEGRATION				V1, V4	Read/Write	0x0000_0000
	nutters image integration time register 2 of ICARUS A-side.	29:0	Amoui	nt of integration time i	n 25 ns steps.		
0x056	W2_INTERFRAME				V1, V4	Read/Write	0x0000_0000
	hutters image interframe time- time acquisitions for frames 2 and 3 of side.	29:0	Amoui	nt of interframe time in	n 25 ns steps.		
0x057	W3_INTEGRATION				V1, V4	Read/Write	0x0000_0000
	utters image integration time register 3 of ICARUS A-side.	29:0	Amoui	nt of integration time i	n 25 ns steps.		,
0x058	W0_INTEGRATION_B				V1, V4	Read/Write	0x0000_0000

	nutters image integration time register 0 of ICARUS B-side.	29:0	Amount of integration time i	n 25 ns step	os.	
0x059	W0_INTERFRAME_B			V1, V4	Read/Write	0×0000_0000
	hutters image interframe time- time acquisitions for frames 0 and 1 of side.	29:0	Amount of interframe time in	n 25 ns step	os.	
0x05A	W1_INTEGRATION_B			V1, V4	Read/Write	0x0000_0000
	nutters image integration time register 1 of ICARUS B-side.	29:0	Amount of integration time i	n 25 ns step	os.	
0x05B	W1_INTERFRAME_B			V1, V4	Read/Write	0x0000_0000
	hutters image interframe time- time acquisitions for frames 1 and 2 of side.	29:0	Amount of interframe time in	n 25 ns step	os.	
0x05C	W2_INTEGRATION_B			V1, V4	Read/Write	0×0000_0000
	nutters image integration time register 2 of ICARUS B-side.	29:0	Amount of integration time i	n 25 ns step	os.	
0x05D	W2_INTERFRAME_B			V1, V4	Read/Write	0×0000_0000
	hutters image interframe time- time acquisitions for frames 2 and 3 of side.	29:0	Amount of interframe time in	n 25 ns step	os.	
0x05E	W3_INTEGRATION_B			V1, V4	Read/Write	0x0000_0000
	nutters image integration time register 3 of ICARUS B-side.	29:0	Amount of integration time i	n 25 ns ster	os.	
0x082	SENSOR_VOLT_STAT			V1	Read-only	
		0	SENSOR_POSN - pos_n			
		1	SENSOR_NEGP - neg_p			
Status of s	ensor voltage-related signals	2	ICARUS_DET - Derived from			
		3	DAEDALUS_DET - Derived fr	om the sen	sor_det[1:0] bits from the PCB	
		4	HORUS_DET - Derived from	the sensor	_det[1:0] bits from the PCB	
		5	SENSOR_POWER - Asserted	according to	o the truth table in Table 4	

0x083	SENSOR_VOLT_CTL			V1	Read/Write	0x0000_0000		
Control of	Sensor Voltage Supply	0	the truth table in Table 4. V		ower_on is enabled when pos_n, neg_p, ensor_power_on is enabled regardless of	 -		
0x090	ADC_CTL		neg_p, and icarus_det	V1, V4	Write; Self-clearing			
	1130_0.1	0	Configure ADC 1	,	Tritte, cent creating			
		1	Configure ADC 2					
Control of	TI8548 ADCs	2	Configure ADC 3					
Control of	1103-10 / 10-03	3	Configure ADC 4					
			Configure ADC 5					
0x091	ADC1_CONFIG_DATA	4		V1, V4	Read/Write	0x81A8_83FF		
		9:0	Internal reference DAC settir	ng (1 LSB = i	internal Vref / 1024)			
	Configuration data to be manage ADC 1		Internal reference voltage ('0' = 2.5 V, '1' = 3 V)					
Configura			Internal reference enable	-	·			
		24:19	Voltage multiplier controls					
0x092	ADC2_CONFIG_DATA			V1, V4	Read/Write	0x81A8_83FF		
		9:0	Internal reference DAC settir	ng (1 LSB = i	internal Vref / 1024)			
C	tion data to be managed ADC 2	13	Internal reference voltage ('C)' = 2.5 V, 'i	1′ = 3 V)			
Configura	tion data to be manage ADC 2	15	Internal reference enable					
		24:19	Voltage multiplier controls					
0x093	ADC3_CONFIG_DATA			V1, V4	Read/Write	0x81A8_83FF		
		9:0	Internal reference DAC settir	ng (1 LSB = i	internal Vref / 1024)			
Configura	tion data to be manage ADC 2	13	Internal reference voltage ('C)' = 2.5 V, ':	1' = 3 V)			
Configura	tion data to be manage ADC 3	15	Internal reference enable					
		24:19	Voltage multiplier controls					
0x094	ADC4_CONFIG_DATA			V1, V4	Read/Write	0x81A8_83FF		
		9:0	Internal reference DAC settir	ng (1 LSB = i	internal Vref / 1024)			
Configura	tion data to be manage ADC 4	13	Internal reference voltage ('C)' = 2.5 V, ''	1' = 3 V)			
		15	Internal reference enable					

		24:19	Voltage multiplier controls				
0x095 AI	DC5_CONFIG_DATA			V1, V4	Read/Write	0x81A8_83FF	
0 6		9:0	ADC5_VREF – Internal refere	nce DAC se	tting (1 LSB = internal Vref / 1024)	1111111111	
•	Configuration data to be written to ADC 5 (see Frexas instruments document SBAS543A for Frexas	13	ADC5_VREF3 – Internal refer	ence voltag	ge ('0' = 2.5 V, '1' = 3 V)	1	
details)	ments document SBASS43A for	15	ADC5_INT – Internal referen	ce enable		1	
uctaiis)		24:19	ADC5_MULT – Voltage multi	plier contro	ols	110101	
0x096 AI	DC5_DATA_1			V1, V4	Read-only		
		15:0	MON_CH2 / MON_HST_A_P	DELAY – se	e register 0x027		
POT 2 and 3 d Full scale is 0-		15:0	MON_CH2 / MON_TSENSEO	UT			
	See Section 7 for each pot description.	31:16	MON_CH3 / MON_HST_B_N	I DELAY – se	e register 0x027		
See Section 7	Tor each pot description.	31:16	MON_CH3 / MON_BGREF				
0x097 AI	DC5_DATA_2			V1, V4	Read-only		
		15:0	MON_CH4 / MON_HST_RO_IBIAS – see register 0x027				
	POT 4 and 5 data. Full scale is 0-5 V.	15:0	MON_CH4 / MON_HST_OSC_CTL – see register 0x027				
	for each pot description.	31:16	MON_CH5 / MON_HST_OSC	_VREF_IN -	- see register 0x028		
See Section 7	Tor each pot description.	31:16	MON_CH5 / MON_HST_RO_NC_IBIAS— see register 0x028				
0x098 AI	DC5_DATA_3			V1, V4	Read-only		
DOT 6 1.7 -1		15:0	MON_CH6 / MON_HST_B_P	DELAY – se	e register 0x028		
POT 6 and 7 d Full scale is 0-		15:0	MON_CH6 / MON_HST_OSC	_VREF_IN -	- see register 0x028		
	for each pot description.	31:16	MON_CH7 / MON_HST_OSC	_CTL – see	register 0x028		
See Section 7	Tor each pot description.	31:16	MON_CH7 / MON_COL_TST	_IN			
0x099 AI	DC5_DATA_4			V1, V4	Read-only		
POT 8 and VRS	CT data	15:0	MON_CH8 / MON_HST_A_N	IDELAY – se	e register 0x028		
Full scale is 0-		15:0	MON_CH8 / MON_HST_OSC	_PBIAS_PA	D		
See Section 7 for each pot description.		31:16	MON_VRST - Note this is the output of the POT 13 conditioning circuit (TP19) that is connected to the sensor. The direct output of POT 13 (TP24) is not connected to ADC5. See register 0x02A				
0x09A AI	DC5_PPER			V1, V4	Read/Write	0x001E_8480	
Polling period	for ADC5, in 20MHz clock cycles.	27:0	ADC5 polling period. Default	is 100ms =	2,000,000 = 0x1E_8480	•	
0x09B AI	DC_STANDBY (version < rev AD)			V1, V4	Read/Write	0x0000_001F	

	ADC_RESET (versions rev AD to presen	t)					
		0	ADC1 standby / reset				
	tandby pins to ADC 1 through 5 (boards	1	ADC2 standby / reset				
	before rev AD) Controls reset pins to ADC 1 through 5 (for		ADC3 standby / reset				
	f AD to present)	3	ADC4 standby / reset				
VC1310113 O	TAD to present,	4	ADC5 standby / reset				
0x0A0	TEMP_SENSE_PPER			V1, V4	Read/Write	0x001E_8480	
	eriod for TI TMP275 temperature 40MHz clock cycles.	27:0	Temperature sensor polling p	period. Defa	ault is 50ms = 2,000,000 = 0x1E_8480		
0x0A1	TEMP_SENSE_DATA			V1, V4	Read-only		
Data read	from TI TMP275 temperature sensor	11:0	Temperature sensor data rea	ad out durir	ng most recent poll		
0x120	HST_TRIGGER_DELAY_DATA_LO			V1, V4	Read/Write	0x0000_0000	
High-speed	ed timing trigger delay, LSBs 31:0 Delay timing pattern bits		Delay timing pattern bits [31	[31:0]			
0x121	HST_TRIGGER_DELAY_DATA_HI			V1, V4	Read/Write	0x0000_0000	
High-speed	d timing trigger delay, MSBs	7:0	Delay timing pattern bits [39	:32]			
0x122	HST_PHI_DELAY_DATA_LO			V1, V4	Read/Write	0x0000_0000	
Phi clock p	programming, LSBs	31:0	Delay timing pattern bits for	programmi	ing Phi clock [31:0]		
0x123	HST_PHI_DELAY_DATA_HI			V1, V4	Read/Write	0x0000_0000	
Phi clock p	programming, MSBs	7:0	Delay timing pattern bits for	programmi	ing Phi clock [39:32]		
0x125	HST_TRIG_DELAY_READBACK_LO			V1, V4	Read Only		
High-speed	d timing trigger delay, LSBs	31:0	Delay timing pattern bits [31	:0]			
0x126	HST_TRIG_DELAY_READBACK_HI			V1, V4	Read Only		
High-speed	d timing trigger delay, MSBs	7:0	Delay timing pattern bits [39	:32]			
0x127	HST_PHI_DELAY_READBACK_LO			V1, V4	Read Only		
Phi clock p	programming, LSBs	31:0	Delay timing pattern bits for	programmi	ing Phi clock [31:0]		
0x128	HST_PHI_DELAY_READBACK_HI			V1, V4	Read Only		
Phi clock p	programming, MSBs	7:0	Delay timing pattern bits for	programmi	ing Phi clock [39:32]		

0x130	HST_COUNT_TRIG			V1, V4	Read/Write	0×0000_0000
Initiates H	ST generator	0	Initiates HST generator ⁶			
0x131	HST_DELAY_EN	HST_DELAY_EN				0x0000_0000
Enables tri	igger delay cell for HST generator	0	Enables trigger delay cell for	HST genera	tor ⁶	
0x132	HST_TEST_PHI_EN			V1, V4	Read/Write	0x0000_0000
	he external Phi input to bypass the generator.	0	Enables the external Phi inpu	ıt to bypass	the entire HST generator ⁶	
0x133	RSL_HFW_MODE_EN			V1, V4	Read/Write	0x0000_0000
Enable Hig	gh Full Well mode	0	HFW – '1' enables HFW mod	е		
0x135	RSL_ZDT_MODE_R_EN			V1, V4	Read/Write	0x0000_0000
Enable Z hemispher	· ·	0	ZDT_R — '1' enables ZDT mod	le for right l	hemisphere	
0x136	0x136 RSL_ZDT_MODE_L_EN			V1, V4	Read/Write	0x0000_0000
Enable Zer	ro Dead Time mode for left hemisphere	0	ZDT_L – '1' enables ZDT mod	e for left he	emisphere	
0x137	BGTRIMA			V1, V4	Read/Write	0x0000_0000
Drives the sensor	BGTRIMA input pins to the Daedalus	2:0	BGTRIMA (Bandgap digital tr	im bit A) pir	ns to the sensor	
0x138	всткімв			V1, V4	Read/Write	0x0000_0000
Drives the sensor	BGTRIMB input pins to the Daedalus	3:0	BGTRIMB (Bandgap digital tr	im bit B) pir	ns to the sensor	-
0x139	COLUMN_TEST_EN			V1, V4	Read/Write	0x0000_0000
Column Te	est Enable bit	0	column current source test n When '1', the following occu 1. The sensor's test so 2. The sensor's RDcdE disable it	node. rs: urce followe n pin (nam	amed col_test_en_o in the FPGA), we see a column curred and RowDcdEn_o in the FPGA) is drivened quench_en_n_o in the FPGA) is	ent source. ven low by the FPGA to

			4. The user can then user can then user can then user is jumpered to ColTs When '0', the sensor and FPO	stln.	Irive an analog voltage to the sensor's ColTst	In pin, since VRST
0x140	RSL_CONFIG_DATA_R0			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[31:0] for the RSL interla	acing shift re	egister input (right side) to the sensor	
0x141	RSL_CONFIG_DATA_R1			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[63:32] for the RSL inter	lacing shift	register input (right side) to the sensor	
0x142	RSL_CONFIG_DATA_R2			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[95:64] for the RSL inter	lacing shift	register input (right side) to the sensor	
0x143	RSL_CONFIG_DATA_R3			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[127:96] for the RSL inte	erlacing shif	t register input (right side) to the sensor	
0x144	RSL_CONFIG_DATA_R4			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[159:128] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x145	RSL_CONFIG_DATA_R5			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[191:160] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x146	RSL_CONFIG_DATA_R6			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[223:192] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x147	RSL_CONFIG_DATA_R7			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[255:224] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x148	RSL_CONFIG_DATA_R8			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[287:256] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x149	RSL_CONFIG_DATA_R9			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[319:288] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x14A	RSL_CONFIG_DATA_R10			V1, V4	Read/Write	0×00000000
RSLScanInI	R input to the sensor	31:0	Data[351:320] for the RSL int	terlacing shi	ift register input (right side) to the sensor	
0x14B	RSL_CONFIG_DATA_R11			V1, V4	Read/Write	0×00000000
RSLScanInf	R input to the sensor	31:0	Data[383:352] for the RSL int	terlacing shi	ift register input (right side) to the sensor	

0x14C	RSL_CONFIG_DATA_R12			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[415:384] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x14D	RSL_CONFIG_DATA_R13			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[447:416] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x14E	RSL_CONFIG_DATA_R14			V1, V4	Read/Write	0×00000000
RSLScanIn	R input to the sensor	31:0	Data[479:448] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x14F	RSL_CONFIG_DATA_R15			V1, V4	Read/Write	0×00000000
RSLScanIn	R input to the sensor	31:0	Data[511:480] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x150	RSL_CONFIG_DATA_R16			V1, V4	Read/Write	0×00000000
RSLScanIn	R input to the sensor	31:0	Data[543:512] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x151	RSL_CONFIG_DATA_R17			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[575:544] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x152	RSL_CONFIG_DATA_R18			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[607:576] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x153	RSL_CONFIG_DATA_R19			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[639:608] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x154	RSL_CONFIG_DATA_R20			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[671:640] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x155	RSL_CONFIG_DATA_R21			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[703:672] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x156	RSL_CONFIG_DATA_R22			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[735:704] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x157	RSL_CONFIG_DATA_R23			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[767:736] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x158	RSL_CONFIG_DATA_R24			V1, V4	Read/Write	0x00000000
RSLScanIn	R input to the sensor	31:0	Data[799:768] for the RSL int	terlacing shift	register input (right side) to the senso	r
0x159	RSL_CONFIG_DATA_R25			V1, V4	Read/Write	0x00000000

RSLScanInf	R input to the sensor	31:0	Data[831:800] for the RSL int	terlacing shift	register input (right side) to the sensor	
0x15A	RSL_CONFIG_DATA_R26			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[863:832] for the RSL int	terlacing shift	register input (right side) to the sensor	
0x15B	RSL_CONFIG_DATA_R27			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[895:864] for the RSL int	erlacing shift	register input (right side) to the sensor	
0x15C	RSL_CONFIG_DATA_R28			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[927:896] for the RSL int	erlacing shift	register input (right side) to the sensor	
0x15D	RSL_CONFIG_DATA_R29			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[959:928] for the RSL int	erlacing shift	register input (right side) to the sensor	
0x15E	RSL_CONFIG_DATA_R30			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[991:960] for the RSL int	erlacing shift	register input (right side) to the sensor	
0x15F	RSL_CONFIG_DATA_R31			V1, V4	Read/Write	0x00000000
RSLScanInf	R input to the sensor	31:0	Data[1023:992] for the RSL ir	nterlacing shif	t register input (right side) to the sensor	
0x160	RSL_CONFIG_DATA_L0			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[31:0] for the RSL interla	cing shift regi	ister input (left side) to the sensor	
0x161	RSL_CONFIG_DATA_L1			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[63:32] for the RSL inter	lacing shift re	gister input (left side) to the sensor	
0x162	RSL_CONFIG_DATA_L2			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[95:64] for the RSL inter	lacing shift re	gister input (left side) to the sensor	
0x163	RSL_CONFIG_DATA_L3			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[127:96] for the RSL inte	rlacing shift re	egister input (left side) to the sensor	
0x164	RSL_CONFIG_DATA_L4			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[159:128] for the RSL int	erlacing shift	register input (left side) to the sensor	
0x165	RSL_CONFIG_DATA_L5			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[191:160] for the RSL int	erlacing shift	register input (left side) to the sensor	
0x166	RSL_CONFIG_DATA_L6			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[223:192] for the RSL int	erlacing shift	register input (left side) to the sensor	

0x167	RSL_CONFIG_DATA_L7			V1, V4	Read/Write	0×00000000
RSLScanInl	L input to the sensor	31:0	Data[255:224] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x168	RSL_CONFIG_DATA_L8			V1, V4	Read/Write	0x00000000
RSLScanInl	L input to the sensor	31:0	Data[287:256] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x169	RSL_CONFIG_DATA_L9			V1, V4	Read/Write	0x00000000
RSLScanInl	L input to the sensor	31:0	Data[319:288] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x16A	RSL_CONFIG_DATA_L10			V1, V4	Read/Write	0x00000000
RSLScanInl	L input to the sensor	31:0	Data[351:320] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x16B	RSL_CONFIG_DATA_L11			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[383:352] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x16C	RSL_CONFIG_DATA_L12			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[415:384] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x16D	RSL_CONFIG_DATA_L13			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[447:416] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x16E	RSL_CONFIG_DATA_L14			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[479:448] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x16F	RSL_CONFIG_DATA_L15			V1, V4	Read/Write	0x00000000
RSLScanInl	linput to the sensor	31:0	Data[511:480] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x170	RSL_CONFIG_DATA_L16			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[543:512] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x171	RSL_CONFIG_DATA_L17			V1, V4	Read/Write	0×00000000
RSLScanInl	input to the sensor	31:0	Data[575:544] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x172	RSL_CONFIG_DATA_L18			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[607:576] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x173	RSL_CONFIG_DATA_L19			V1, V4	Read/Write	0x00000000
RSLScanInl	input to the sensor	31:0	Data[639:608] for the RSL int	terlacing shi	ft register input (left side) to the sensor	
0x174	RSL_CONFIG_DATA_L20			V1, V4	Read/Write	0x00000000

RSLScanInL	input to the sensor	31:0	Data[671:640] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x175	RSL_CONFIG_DATA_L21			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[703:672] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x176	RSL_CONFIG_DATA_L22			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[735:704] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x177	RSL_CONFIG_DATA_L23			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[767:736] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x178	RSL_CONFIG_DATA_L24			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[799:768] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x179	RSL_CONFIG_DATA_L25			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[831:800] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x17A	RSL_CONFIG_DATA_L26			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[863:832] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x17B	RSL_CONFIG_DATA_L27			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[895:864] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x17C	RSL_CONFIG_DATA_L28			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[927:896] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x17D	RSL_CONFIG_DATA_L29			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[959:928] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x17E	RSL_CONFIG_DATA_L30			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[991:960] for the RSL int	terlacing shif	ft register input (left side) to the sensor	
0x17F	RSL_CONFIG_DATA_L31			V1, V4	Read/Write	0x00000000
RSLScanInL	input to the sensor	31:0	Data[1023:992] for the RSL in	nterlacing sh	ift register input (left side) to the sensor	
0x180	RSL_READ_BACK_R0			V1, V4	Read Only	0x00000000
RSLSanOut	R output from the sensor	31:0	Data[31:0] for the RSL interla	cing shift re	gister output (right side) from the sensor	
0x181	RSL_READ_BACK_R1			V1, V4	Read Only	0x00000000
RSLScanOu	itR output from the sensor	31:0	Data[63:32] for the RSL inter	lacing shift r	egister output (right side) from the sensor	

0x182	RSL_READ_BACK_R2			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[95:64] for the RSL inter	lacing shift re	gister output (right side) from the	sensor
0x183	RSL_READ_BACK_R3			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[127:96] for the RSL inte	rlacing shift r	egister output (right side) from the	esensor
0x184	RSL_READ_BACK_R4			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[159:128] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x185	RSL_READ_BACK_R5			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[191:160] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x186	RSL_READ_BACK_R6			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[223:192] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x187	RSL_READ_BACK_R7			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[255:224] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x188	RSL_READ_BACK_R8			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[287:256] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x189	RSL_READ_BACK_R9			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[319:288] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x18A	RSL_READ_BACK_R10			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[351:320] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x18B	RSL_READ_BACK_R11			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[383:352] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x18C	RSL_READ_BACK_R12			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[415:384] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x18D	RSL_READ_BACK_R13			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[447:416] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x18E	RSL_READ_BACK_R14			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[479:448] for the RSL int	terlacing shift	register output (right side) from th	ne sensor
0x18F	RSL_READ_BACK_R15			V1, V4	Read Only	0x00000000

RSLScanOu	utR output from the sensor	31:0	Data[511:480] for the RSL int	terlacing shift	register output (right side) from the se	ensor
0x190	RSL_READ_BACK_R16			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[543:512] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x191	RSL_READ_BACK_R17			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[575:544] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x192	RSL_READ_BACK_R18			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[607:576] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x193	RSL_READ_BACK_R19			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[639:608] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x194	RSL_READ_BACK_R20			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[671:640] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x195	RSL_READ_BACK_R21			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[703:672] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x196	RSL_READ_BACK_R22			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[735:704] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x197	RSL_READ_BACK_R23			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[767:736] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x198	RSL_READ_BACK_R24			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[799:768] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x199	RSL_READ_BACK_R25			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[831:800] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x19A	RSL_READ_BACK_R26			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[863:832] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x19B	RSL_READ_BACK_R27			V1, V4	Read Only	0x00000000
RSLScanOu	utR output from the sensor	31:0	Data[895:864] for the RSL int	erlacing shift	register output (right side) from the se	ensor
0x19C	RSL_READ_BACK_R28			V1, V4	Read Only	0×00000000
RSLScanOu	utR output from the sensor	31:0	Data[927:896] for the RSL int	erlacing shift	register output (right side) from the se	ensor

0x19D	RSL_READ_BACK_R29			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[959:928] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x19E	RSL_READ_BACK_R30			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[991:960] for the RSL int	erlacing shift	register output (right side) from th	ne sensor
0x19F	RSL_READ_BACK_R31			V1, V4	Read Only	0x00000000
RSLScanO	utR output from the sensor	31:0	Data[1023:992] for the RSL in	nterlacing shif	ft register output (right side) from	the sensor
0x1A0	RSL_READ_BACK_L0			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[31:0] for the RSL interla	cing shift reg	ister output (left side) from the se	nsor
0x1A1	RSL_READ_BACK_L1			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[63:32] for the RSL inter	lacing shift re	gister output (left side) from the se	ensor
0x1A2	RSL_READ_BACK_L2			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[95:64] for the RSL inter	lacing shift re	gister output (left side) from the se	ensor
0x1A3	RSL_READ_BACK_L3			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[127:96] for the RSL inte	rlacing shift r	egister output (left side) from the	sensor
0x1A4	RSL_READ_BACK_L4			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[159:128] for the RSL int	erlacing shift	register output (left side) from the	e sensor
0x1A5	RSL_READ_BACK_L5			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[191:160] for the RSL int	erlacing shift	register output (left side) from the	e sensor
0x1A6	RSL_READ_BACK_L6			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[223:192] for the RSL int	erlacing shift	register output (left side) from the	esensor
0x1A7	RSL_READ_BACK_L7			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[255:224] for the RSL int	erlacing shift	register output (left side) from the	e sensor
0x1A8	RSL_READ_BACK_L8			V1, V4	Read Only	0x00000000
RSLScanOu	utL output from the sensor	31:0	Data[287:256] for the RSL int	erlacing shift	register output (left side) from the	e sensor
0x1A9	RSL_READ_BACK_L9			V1, V4	Read Only	0x00000000
RSLScanOu	utL output from the sensor	31:0	Data[319:288] for the RSL int	erlacing shift	register output (left side) from the	e sensor
0x1AA	RSL_READ_BACK_L10			V1, V4	Read Only	0x00000000

RSLScanOu	utL output from the sensor	31:0	Data[351:320] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1AB	RSL_READ_BACK_L11			V1, V4	Read Only	0x00000000
RSLScanOu	utL output from the sensor	31:0	Data[383:352] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1AC	RSL_READ_BACK_L12			V1, V4	Read Only	0x00000000
RSLScanOu	utL output from the sensor	31:0	Data[415:384] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1AD	RSL_READ_BACK_L13			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[447:416] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1AE	RSL_READ_BACK_L14			V1, V4	Read Only	0x00000000
RSLScanOu	utL output from the sensor	31:0	Data[479:448] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1AF	RSL_READ_BACK_L15			V1, V4	Read Only	0x00000000
RSLScanOu	utL output from the sensor	31:0	Data[511:480] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B0	RSL_READ_BACK_L16			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[543:512] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B1	RSL_READ_BACK_L17			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[575:544] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B2	RSL_READ_BACK_L18			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[607:576] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B3	RSL_READ_BACK_L19			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[639:608] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B4	RSL_READ_BACK_L20			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[671:640] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B5	RSL_READ_BACK_L21			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[703:672] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B6	RSL_READ_BACK_L22			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[735:704] for the RSL int	terlacing shif	ft register output (left side) from the sens	or
0x1B7	RSL_READ_BACK_L23			V1, V4	Read Only	0×00000000
RSLScanOu	utL output from the sensor	31:0	Data[767:736] for the RSL int	terlacing shif	ft register output (left side) from the sens	or

0x1B8	RSL_READ_BACK_L24			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[799:768] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
0x1B9	RSL_READ_BACK_L25			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[831:800] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
0x1BA	RSL_READ_BACK_L26			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[863:832] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
0x1BB	RSL_READ_BACK_L27			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[895:864] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
0x1BC	RSL_READ_BACK_L28			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[927:896] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
0x1BD	RSL_READ_BACK_L29			V1, V4	Read Only	0x00000000
RSLScanO	utL output from the sensor	31:0	Data[959:928] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
0x1BE	RSL_READ_BACK_L30			V1, V4	Read Only	0x00000000
DCI CaanO	utL output from the sensor	31:0	Data[991:960] for the RSL int	terlacing shift reg	ister output (left side) from th	ne sensor
KSLSCano						
0x1BF	RSL_READ_BACK_L31			V1, V4	Read Only	0x00000000

12 Error Recovery and Diagnostics

Numerous design and development techniques have been utilized in the NSGCC FPGA to ensure that it operates as reliably as possible; however, due to the harsh operational environment that the system is targeted for, logic failures are unavoidable and will occur. In this case, the FPGA's error recovery and diagnostic features are critical, enabling the FPGA to recover from an error and allowing the user to diagnose the root cause so that corrections can be made. These features include

- Status registers, counters and timers in various parts of the sensor and SRAM readout pipelines to detect when logic modules and state machines have "hung" and to assist in determining the root causes
- Automatic resets in the RS422 logic section, which ensure that communications can be reestablished in case of an error in the RS422 modules
- A software reset to enable the user to return the board to its default configuration when desired.

The following sub-sections describe the implemented error recovery and diagnostic features.

12.1 Software Reset

A software reset has been implemented which resets all logic within the FPGA. To initiate a software reset, write a '1' to the **RESET** subregister. This bit will self-clear after being written. Note that all internal FPGA logic will be reset to their default values, including the control registers.

12.2 Automatic Resets on RS422 Transmit and Receive

To ensure that serial communications are maintained in the event of Single Event Upsets in the RS422 logic, automatic resets in both the RS422 transmit and receive sections have been implemented. In the event of a detected "hang" in the RS422 logic, all modules related to reception of command packets and transmission of response packets are reset automatically. The modules which are reset are the RS422, Steering, and Packet Encode/Decode modules. Note that a "hang" condition is determined when an operation takes much longer than under normal operation.

The transmit RS422 section (which generates response packets to the host) is determined to be hung when a byte transfer takes 1 ms, which is much longer than is expected under normal conditions. The receive RS422 section (where the FPGA receives a command packet) is determined to be hung when a byte transfer takes longer than 100 ms (to account for host system performance).

When a "hang" in either the transmit or receive RS422 sections is detected, the appropriate bits in the STAT_REG2_SRC and STAT_REG2 registers are asserted.

12.3 ADC to SRAM module Timeout

A counter exists in the ADC to SRAM module which can be useful in determining the root cause of errors which occur during image sensor read off. This will count the number of pixels (in bytes) that have been read out from the sensor and written into the SRAMs. During normal operation, this counter will count to the final pixel/byte and reset itself to zero. In the event of an FPGA hang, the value held by this counter could be helpful in diagnosing a fault. If an error or FPGA hang occurs, and RS422 communications have been maintained, a non-zero value in this counter indicates that the error occurred during image sensor

readout, while the value indicates the last pixel that was read out successfully. If the counter contains a value of zero, then the root cause of the error likely resides elsewhere.

To enable the host to read the counter value, it has been connected to read-only status register **ADC_BYTECOUNTER**. Note that this register cannot be cleared by software; to clear the register, the counter itself must be cleared by returning the ADC-to-SRAM module to its default state (which may require resetting the FPGA).

12.4 FPA Interface Module Timeout

Additional indicators of an error occurring during image sensor readoff reside in the FPA Interface Module, which controls image sensor timing during image readoff.

To control sensor readoff, the FPA Interface module sends control signals to the ADC to SRAM module. Two of the more useful ones for error detection are adcReadWriteStart (which initiates an 8-channel ADC read) and readOffDone (which indicates that all desired frames/pixels have been read out from the sensor). To determine if the state machine in this module has hung, the time between these signals is monitored. Since the time between adcReadWriteStart pulses is normally 2.875 μ s, and the time between the last adcReadWriteStart pulse and readOffDone is 925 ns, a counter has been implemented that will assert an error bit if the time for either of these events exceeds 2 × 2.875 μ s, or 5.75 μ s. This error bit is called fpa_if_i to, and it resides in the **STAT_REG2** and **STAT_REG2_SRC** registers.

12.5 SRAM Readoff Module Timeout

To assist in detecting the root cause of errors occurring during SRAM readoff, a diagnostic counter has been implemented to monitor timing in the SRAM Readoff Row module which controls SRAM readoff on a per-row basis.

To determine an error in this module, the signal *dataOutEn_n* is monitored. This signal is low during the time when row data is being read from the SRAM; in between rows, it goes high for a small number of clock cycles. If *dataOutEn_n* has been monitored as low for an abnormally long period of time, an error bit is asserted (this is the *sram_ro_to* bit in the **STAT_REG2** and **STAT_REG2_SRC** registers).

During normal operation, $dataOutEn_n$ is low for 12.8 μ s; the error bit is not asserted unless the signal has been low for 25.6 μ s.

12.6 Read Burst Processing Module Timeouts

A timeout counter has been implemented to determine the overall length of time that it takes for the entire image sensor readoff and SRAM readout processes to occur. If the length of time has been found to be much longer than normal, then the logic decides that an error has occurred, and two operations occur: (1) control of the transmit data pipeline within the FPGA reverts from Burst Response (i.e., pixel) data back to Response (i.e., status) data to re-enable communications with the host, and (2) the pixelrd_timeout_err bit in the STAT_REG2 and STAT_REG2_SRC registers is asserted.

12.7 Resets

Due to the complexity of the radiation tolerant version of the FPGA, numerous resets are generated and used for different purposes. Table 11 lists all the resets used within the device, their modules of origin, purpose, and the logic they affect.

Reset signal	Driver (origin) module	Purpose	Connected modules
sys_rst_n_i	N/A - PCB reset	System reset	clocks_and_resets.vhd (used as input to other reset signals, then distributed to appropriate logic)
sw_rst	ctl_and_status _regs.vhd	Software-controlled system reset	clocks_and_resets.vhd (used as input to other reset signals, then distributed to appropriate logic)
cns_reg_rst	clocks_and_ resets	Reset signal dedicated to resetting the control and status module. Is not asserted under any condition except by sys_rst_n_i. Preserves register state in case any other reset occurs.	ctl_and_status_regs.vhd
sys_rst / sysRst	clocks_and_ resets	Asserted when sys_rst_n_i or sw_rst are asserted	timer_counter.vhd Rs422.vhd dummy_adc_rd.vhd
seu_rec_rst	seu_recovery. vhd	Asserted if fpa interface times out due to SEU occur	Connected to seu_sys_rst_bl, shot_sys_rst, and shot_sys_rst_bl signals
seu_sys_rst_bl	nsgcc_top.vhd	OR function of sys_rst and seu_rec_rst. Used specifically to reset logic in fpa_interface.vhd that does NOT need to be held in a particular state during the shot.	fpa_interface.vhd – used to reset all logic (and sub-modules) except for the state machine and related logic.
rt_shot_hold	clocks_and_ resets.vhd	Hold rad-susceptible logic in reset for 20us following fine trigger	fpa_interface.vhd – holds state machine in WAIT_FOR_FINE_ TRIG state for 20us following fine trigger. If an SEU occurs that corrupts the state machine, it will transition back to WAIT_FOR_ FINE_TRIG
shot_sys_rst	nsgcc_top.vhd	OR function of sys_rst, rt_shot_hold, and seu_rec_rst	sw_trigger_ctl.vhd
shot_sys_rst_bl	nsgcc_top.vhd	Boolean version of shot_sys_rst	sram_readoff_top.vhd adc_to_sram_read_control
timeout_rec_rst	rs422_top.vhd	Asserted when timeouts occur during an rs422 RX or TX transaction.	Connected to shot_comms_rst signal
shot_comms_rst	nsgcc_top.vhd	OR function of timeout_rec_rst and shot_sys_rst. Resets affected modules if an rs422 timeout occurs	steering.vhd packet_enc_dec.vhd

Table 11: Device Resets

13 Icarus implementation

Information regarding the Icarus sensor interface can be found in the UXI ICARUS – Focal Plane Array Interface Document.

13.1 ADC Interface and Control

The FPGA controls the five analog-to-digital converters (ADCs) on the board. Four of the ADCs are used to convert the image sensor's analog pixel information into 16-bit digital data, while the fifth is used to monitor potentiometer voltages. All five ADCs are Texas Instruments ADS8568SPM, which are eight-channel 16-bit devices. Since the Icarus sensor is a 32-channel device, four of these 8channel devices (numbered ADC1 through ADC4) are required to read out all sensor channels simultaneously. The sensor quadrant and column number connectivity to ADC device number/channel number is shown in Table 12.

Sensor	Sensor	ADC	ADC
Quadrant	Column	Device	Channel
Top Left	0-31	4	2
Top Left	32-63	4	3
Top Left	64-95	3	6
Top Left	96-127	3	5
Top Left	128-159	4	0
Top Left	160-191	4	1
Top Left	192-223	4	5
Top Left	224-255	3	1
Top Right	256-287	3	4
Top Right	288-319	3	7
Top Right	320-351	4	4
Top Right	352-383	4	6
Top Right	384-415	4	7
Top Right	416-447	3	0
Top Right	448-479	3	2
Top Right	480-511	3	3
Bottom Left	0-31	2	6
Bottom Left	32-63	2	0
Bottom Left	64-95	2	2
Bottom Left	96-127	2	1
Bottom Left	128-159	2	3
Bottom Left	160-191	2	7
Bottom Left	192-223	2	4
Bottom Left	224-255	1	4
Bottom Right	256-287	1	6
Bottom Right	288-319	1	5
Bottom Right	320-351	1	7
Bottom Right	352-383	1	3
Bottom Right	384-415	1	2
Bottom Right	416-447	1	1
Bottom Right	448-479	1	0
Bottom Right	480-511	2	5

Table 12: Sensor Channel to ADC Device Channel Connectivity

13.2 ADC-Potentiometer Mapping

The Icarus-configured board POT and monitor assignments are shown in Table 13. The A0-D1 designation for channel numbers is that used in the manufacturer's data sheet.

Pot	Monitor Channel	ADC5 Channel : Pin	Function	Description	Sensor Pin	Nominal Voltages (V)
POT1			COL_BOT_IBIAS_IN	Column bias for bottom hemisphere of ICARUS sensor.	153	0
РОТ2	MON_HST_A_ PDELAY	A0: 42	HST_A_PDELAY	Delay voltage for A side pixel array. Increase to add delay.	78	0
РОТ3	MON_HST_B_ NDELAY	A1: 47	HST_B_NDELAY	Delay voltage for B side pixel array. Decrease to add delay.	86	3.3
РОТ4	MON_HST_RO_ IBIAS	B0: 49	HST_RO_IBIAS/ HST_RO_NC_IBIAS	Ring oscillator with capacitors bias voltage.	46	2.5
РОТ5	MON_HST_OSC_ VREF_IN	B1: 54	HST_OSC_VREF	Oscillator voltage reference.	87	2.9
РОТ6	MON_HST_B_ PDELAY	C0: 64	HST_B_PDELAY	Delay voltage for B side pixel array. Increase to add delay.	94	0
РОТ7	MON_HST_OSC_ CTL	C1: 59	HST_OSC_CTL	Relaxation oscillator bias control voltage.	48	1.45
РОТ8	MON_HST_A_ NDELAY	D0: 7	HST_A_NDELAY	Delay voltage for A side pixel array. Decrease to add delay.	70	3.3
РОТ9			COL_TOP_IBIAS_IN	Column bias for top hemisphere of ICARUS sensor.	8	0.025
POT10		D1: 2	HST_OSC_R_BIAS	Current sink set for ring oscillator with capacitors.	16	0.0135
POT11			VAB	Gate voltage of all antibloom transistors in the ICARUS pixel array.	28	0.5
POT12			HST_RO_NC_IBIAS	Ring oscillator without capacitors bias voltage.	53	2.5
POT13	MON_VRST	D1: 2	VRST	Resets the voltage for all pixels.	61, 69, 77	0.3

Table 13: ICARUS Pot and Monitor Assignments. See the 'UXI_Icarus_FPA' document for more details⁵

*Assignment determined by resistors (see section 5.1)

13.3 Anti-Bloom Circuit Control

Each Icarus pixel contains an anti-bloom transistor that is designed to shunt photocurrents greater than full-well, which protects the pixel circuitry from large photo diode signal fluctuations. The gate voltage of the transistor controls the V_{DS} at which the transistor starts conducting current; the VAB pin on the ICARUS sensor is connected to the gate of the anti-bloom transistors and enables the user to apply a voltage to it. On the Version 1.0 Board, VAB is controlled by the **VAB** subregister (aka **POT11**), which can be set using the setPotV command.

13.4 Sensor Power Control

Sensor power can be enabled by either the FPGA under software control, or by PCB-installed hardware circuitry. In Table 14, bypass_sensor_det is a bit in the SENSOR_VOLT_CTL register, icarus_det is a bit in the SENSOR_VOLT_STAT register that is generated by the state of the

bypass_ sensor_ det	lcarus_det	Pos_not	Neg_p	Sensor_ power_ on
0	1	0	0	1
0	0	1	1	1
1	X	Χ	Х	1

Table 14: Sensor Power Enable Truth Table

sensor_det[1:0] pins, and *pos_n*, and *neg_p* are signals from PCB circuitry. The last column, *Sensor_power_on*, is an output signal of the FPGA; when asserted, power to the sensor is turned on.

When bypass_sensor_det is low (logic 0), sensor power is dependent only on the state of icarus_det, pos_n, and neg_n. When it is high (logic 1), sensor power is enabled independent of any other signal. Currently the state of sensor_det[1:0] is only applicable to Icarus in the firmware.

13.5 High-Speed Timing (HST) Control

The High-Speed Timing Control function is discussed in detail in *UXI ICARUS – Focal Plane Array Interface Document*, so this document will not repeat the information contained in that interface document. However, some important things to note regarding this FPGA's implementation of the HST programming sequences are:

- High Speed Timing must be configured prior to initiating the programming sequence using the
 HS_TIMING_DATA_ALO, HS_TIMING_DATA_AHI, HS_TIMING_DATA_BLO, and HS_TIMING_
 DATA_BHI registers. These four registers define the 80 bits of A and B side timing described in
 Figure 6 through 12 of the UXI ICARUS Focal Plane Array Interface Document.
- 2. The HST programming sequence is initiated when the FPGA detects the rising edge of the Coarse Trigger.

13.6 Manual Shutter Control

The user can override the HST function of the Icarus sensor and utilize a Manual Shutter Control function instead. Although the timing resolution of the manual shutter is coarse when compared with that of the HST mechanism (25 ns vs 1 ns), the user can set integration times between 25 ns and 26.8 seconds for each of the frames, as shown in Figure 4. Manual Shutter Control is discussed in detail in *UXI ICARUS – Focal Plane Array Interface Document*, so this document will not repeat the information contained there.

Figure 4. Manual Shutter Timing, Icarus Sensor (A and B sides are here set to the same timing)

Some things to note when using the Manual Shutter Control function of the Icarus sensor:

- To configure the FPGA and sensor for Manual Shutter control, write a '1' to the MANSHUT_MODE subregister.
- 2. The **WX_INTEGRATION** and **WY_INTERFRAME** ($X \in \{0,1,2,3\}$, $Y \in \{0,1,2\}$) registers must be programmed to define the timing in 25 ns steps.
- 3. After the registers are set up properly, the timing sequence in Figure 4 is initiated when the FPGA detects the rising edge of the Fine Trigger.

13.7 Power Save Mode

Power Save Mode is enabled by asserting bit 3 of the **CTRL_REG** register. When asserted, sensor power saving is achieved by controlling the Icarus sensor's *hst_osc_bias_en* signal. During power save mode, *hst_osc_bias_en* is asserted when the coarse trigger is detected; it is de-asserted once the sensor readout is complete. Power consumed by the sensor's digital power supply is reduced by 3.3% with Power Save Mode enabled; the sensor's analog power requirements are reduced by 0.6%. The average current and power consumption are listed in Table 15.

Sensor +3.3 VDD	Sensor +3.3 VA

	Power Save OFF	Power Save ON	Power Save OFF	Power Save ON
Average Current (mA)	37	35.7	5.02	5.05
Average Power (mW)	122	118	16.56	16.66

Table 15: Power Save Mode Results

14 Daedalus Implementation

Currently, there are various Daedalus features that are not functional. Daedalus features that have been tested and functionally perform as per the ICD are⁶:

- High Full Well (HFW)
- Zero-Dead Timing (ZDT)
- Frame order extraction of six different frame orders
- Slow image readoff by a factor of two and three options

Features that currently do not either operate correctly or have not been tested are:

- On-board sensor temperature sensor (TSenseOut)
- Phi clock programming
- Row Shutter Logic (RSL) programming
- External Phi Clock bypass option
- Interlacing
- Trigger delay

14.1 ADC Interface and Control

The reader should look to Section 13.1 for details of the image readoff ADC. Table 16 shows the Daedalus sensor channel to ADC connectivity. Note, two of the image readoff ADCs are used for the sensor.

Sensor Quadrant	Sensor Column	ADC Device	ADC Channel
Top Left	0-31	4	2
Top Left	32-63	4	3
Top Left	64-95	3	6
Top Left	96-127	3	5
Top Left	128-159	4	0
Top Left	160-191	4	1
Top Left	192-223	4	5
Top Left	224-255	3	1
Top Right	256-287	3	4
Top Right	288-319	3	7
Top Right	320-351	4	4
Top Right	352-383	4	6
Top Right	384-415	4	7
Top Right	416-447	3	0
Top Right	448-479	3	2
Top Right	480-511	3	3

Table 16: Daedalus Sensor Channel to ADC Device/Channel Connectivity

14.2 ADC-Potentiometer Mapping

The Daedalus-configured board POT and monitor assignments are shown in Table 17. The A0-D1 designation for channel numbers is that used in the manufacturer's data sheet.

Pot	Monitor Channel	ADC5 Channel: Pin	Function	Description	Nominal Voltages (V)
4	MON_HST_ OSC_CTL	B0: 49	HST_OSC_CTL	Relaxation oscillator bias control voltage.	FPGA dependent
5	MON_HST_RO_ NC_IBIAS	B1: 54	HST_RO_ NC_IBIAS	Ring oscillator without capacitors bias control voltage.	FPGA dependent
6	MON_HST_OSC_ VREF_IN	C0: 64	HST_OSC_ VREF_IN	Oscillator voltage reference.	FPGA- dependent
	MON_TSENSEOUT	A0: 42	TSenseOut	Temperature sense analog output with respect to sensor.	Temp. dependent
	MON_BGREF	A1: 47	BGREF	Bandgap voltage reference output with respect to sensor.	1.0
	MON_COL_ TST_IN	C1: 59	colTstIn	Global column current source test pin.	0
	MON_HST_OSC_ PBIAS_PAD	D0: 7	HST_OSC_ PBIAS_PAD	Current mirror node for oscillator bias.	2.0

Table 17 Daedalus Potentiometer and Monitor Assignments. See the 'UXI_DAEDALUS_HDD' Document for more details⁶

14.3 Anti-Bloom Circuit Control

See Section 13.3 (Daedalus and Icarus behaviors are identical).

14.4 High-Speed Timing (HST) Control

See Section 13.4 (Daedalus and Icarus behaviors are identical).

14.5 Trigger Delay

Note: Currently, the behavior of this feature is uncertain with respect to the FPGA. Trigger Delay is implemented as described in the UXI Daedalus — HDD document. The registers HST_TRIGGER_DELAY_DATA_LO and HST_TRIGGER_DELAY_DATA_HI are used to program the 40-bit shift register with a fixed delay of ~150 ps for each bit. A maximum of 38 delay blocks can be implemented allowing a trigger delay up to 5.7 ns. The register HST_DELAY_EN then can be used to delay the signal HST_OSC_EN when the Fine Trigger is asserted based on the programmed delay. The HST_TRIG_DELAY_READBACK_LO and HST_TRIG_DELAY_READBACK_HI registers can be used to read back the requested delay written to the sensor.⁶

14.6 Phi Clock Programming

Note: Currently, the behavior of this feature is uncertain with respect to the FPGA. The internal Phi clock can be programmed to set the shutter timing registers for both left and right hemispheres of the sensor.

The programming is described in the *UXI Daedalus – HDD* document. The registers **HST_PHI_DELAY_DATA_LO** and **HST_PHI_DELAY_DATA_HI** are used to program the left and right hemisphere 40-bit shift registers. The **HST_PHI_DELAY_READBACK_LO** and **HST_PHI_DELAY_READBACK_LO** and **HST_PHI_DELAY_READBACK_HI** registers can be used to read back the requested delay written to the sensor.⁶

14.7 External Phi Clock Bypass

Note: Currently, the behavior of this feature is uncertain with respect to the FPGA. An external phi clock sensor pin (HstExtPhi), can be bypassed by the FPGA. To bypass the internal phi clock, enable the HstTestPhiEn sensor pin and set the OSC_SELECT subregister to "11". This allows the sensor to substitute the on-chip generation of the bit stream with an off-chip shutter and inter-frame time. The off-chip phi clock can be observed on the sensor pin, HstPhiOutPad.⁶

14.8 Row Shutter Logic (RSL) Programming

Note: Currently, the behavior of this feature is uncertain with respect to the FPGA. The programming is described in more depth in the *UXI Daedalus – HDD* document. RSL is programmed using 1024 bits for both left and right hemispheres. The bits are used to descrialize the shutter and inter-frame timing information from the phi clock signal. The extraction of each frame's shutter timing and inter-frame time can be set to happen simultaneously for all rows of the pixel array (the default state) or to happen sequentially for interlaced subsets of rows (e.g., even rows first, then odd rows). Interlacing rows of pixels multiplies the number of frames of image data that the Daedalus FPA can capture. The trade-off of interlacing comes at the expense of vertical resolution. For example, six frames of data can be captured at half the vertical resolution (i.e., six 512×512-pixel frames rather than the original three 1024×512-pixel frames).⁶

14.9 High Full Well (HFW) Programming

This feature allows a single frame to be captured that exhibits a full-well capability that is three times that of a normal readout. This mode allows for use of the sensor in experiments with massive fluences or for detection of high energy X-rays. The mode is described in the *UXI Daedalus – HDD* document. Setting the subregister **HFW** to '1' asserts both sensor pins, RSLHFWModeL and RSLHFWModeR, in addition to HSTSingleShotMode after programming the RSL Interlacing shift registers as described in Section 14.8 ⁶

14.10 Zero Dead Timing (ZDT) Programming

This feature interlaces pixel rows both spatially and temporally allowing continuous data collection. The mode is described in *UXI Daedalus – HDD* document. The mode can be set for both left and right hemispheres independently through subregisters **ZDT_L** and **ZDT_R**, respectively. Six 512×512-pixel frames are generated if ZDT is implemented. Even row shutters are 'open' according to the conventional HST scheme. Odd rows have inverted timing ('open' while the even rows are 'closed' and vice-versa).⁶

15 RS422 USB Cable

The RS422 USB cable that has been tested for the camera board is the ACCESS I/O Products, Inc. USB-422-IND cable. The datasheet and drivers for this product can be accessed at https://accesio.com/?p=/usb/usb-232-422485-IND.html.

16 Software Support

The 'nsCamera' python package provides a software driver and user interface for operating the NSG camera. The software runs under Windows, MacOS and Linux. Python 3 is recommended; Python 2 is supported but deprecated.

The software is distributed as a compressed archive or is available as part of a complete pre-packaged python environment. Instructions for installation and use are given in the project's README.md file. The software is also available as a MicroManager plugin for use in imageJ.

A Jupyter notebook tutorial *nsCameraTutorial.ipynb* that introduces the software and demonstrates many of the board's features can be found in the *nsCamera/docs* directory. This directory also contains detailed code documentation, as well as the sample script *nsCameraExample.py* which demonstrates the operation of the camera and may be used as a skeleton for the development of user applications. The test script *testSuite.py* is also included which performs an extensive sequence of tests to verify the proper operation of the hardware and software.

17 ELM-U References

LLNL's Enterprise Lifecycle Management – Unclassified (ELM-U) stores various references for the LLNL V1.0 board. Specifically, the revisions of the board are documented. The references include schematic, Gerber files, CAD drawings, etc. The ELM number for the board is 1000189775.

18 Change note history

See the first page of this document for more recent changes.

Rev.	Date	Section Edits	Eng.	Description of Change
1.0	10/19/17	N/A	CCM	Initial Release
1.01	12/27/17	13	CCM	Fix dual_edge_Trig_en description – s.b. in trigger_ctl register
1.02	1/22/18	13	CCM	Fix typos in register table entries for register 0x99 ADC5_DATA_4.
1.03	2/8/18	14.7	CCM	Add table listing all FPGA resets for rad hard version
1.04	3/7/18	11-14, 16	JMH	Divergence of Icarus & Daedalus ICD versions Change to 12-bit register addresses Removed specifications for Sandia Rev C board
1.05	3/20/18	13	JMH	Removed obsolete registers
1.06	4/10/18	-	JMH	Divergence of LLNLv1 and LLNLv4 versions Expanded FPGA_NUM definitions

1.07	6/26/18	-	JMH	Spinoff of sensor-specific implementation into separate document. Added subregister names to register list
1.08	7/31/18	All	JMH	Register and subregister definitions added Reintegration of sensor-specific details
1.09	9/26/18	-	JMH	Miscellaneous; synced to nsCamera software release 2.0.5
1.10	12/5/18		JMH	Enter details for all RSLScan in and out registers, and BGTRIMA/B registers. Enter updated description for the FPGA_REV register
1.11	6/4/19	13	JMH	Added SW_TRIG_EN, Daedalus mode details
1.12	6/24/19	All	BTF	Edited the description of each pot for ICARUS and DAEDALUS configured boards. Pointed the register map descriptions to the appropriate section to describe the pots. Minor edits to all sections. Synced to nsCamera 2.0.8
1.13	9/30/19	5, 7, 13.1	BTF	More detailed information on the Daedalus-configured board for pot values. Added TRIGGER_CTL register info for previous firmware version vs. after of 9/19.
1.14	10/25/19	7	BTF	VAB on v1 board Daedalus was not listed on the Pot voltage control. VAB cannot be monitored, but can be set.
1.15	11/13/19	6, 7, 11.1, 13, 16	BTF	Resolved comments made by Jeremy. Updated default pot voltages in Register Map section. Need input on if we want to describe pot voltage values in the register map as it is redundant from Section 6 and 7. Need update on CTL_REG in Section 13 for reverse readoff and slow readoff.
1.16	1/3/20	11	BTF	Resolved definitions of ADC monitor of pots between Icarus and Daedalus. Changed FPA_FRAME_ORDER_SEL to FRAME_ORDER_SEL register.
1.17	2/14/20	5, 7, 11	BTF	Converted SENSOR_VOLT_STAT and SENSOR_VOLT_CTL registers as Icarus firmware specific registers. Removed September 2019 TRIGGER_CTL setting for the trigger modes.
1.18	3/3/20	6	JMH	Trigger controls finalized. Synced to nsCamera 2.0.9
1.19	5/4/20	3, 6, 11, 14	BTF	Attempted to resolve comments: resolved figure with Daedalus timing block, explained more details on dual edge trigger, described details for Daedalus registers, and added what features work for Daedalus and what features do not. Synchronized to nsCamera 2.1

19 References

- 1) Sandia National Laboratories, et al. "UXI ICARUS Focal Plane Array Interface Document." Revision 6, 8/23/16
- 2) Claus, L., et al. "An overview of the Ultra-Fast X-ray Imager (UXI) program at Sandia Labs." Proceedings Volume 9591, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion IV; 95910P (2015); doi: 10.1117/12.2188336
- 3) Claus, Liam D., et al. "The Ultrafast X-ray Imager (UXI) Program." No. SAND2016-7045PE. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2016.
- 4) Claus, L., et al. "Design and characterization of an improved 2 ns multi-frame imager for the ultra-fast x-ray imager (UXI) program at Sandia National Laboratories." Proc. SPIE 10390, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion VI, 103900A (24 August 2017); doi: 10.1117/12.2275293
- 5) Sanchez, Marcos. "UXI_Icarus_FPA-2." Version 6. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), August 23, 2016.
- 6) Sanchez, Marcos. "UXI_Daedalus_HDD." Version 9. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), July 15, 2019.