Loan Approval Prediction using Random Forests

Fidelis Prasetyo, Sheldin Lau, Yao Lin, Andrew Lau, Arze Lu

Introduction

- Analyze loan dataset
- Simulate loan approval
- Build machine learning model for prediction
- Evaluation methods such as precision, F1-score, confusion matrix, etc.

Dataset

- Loan approval, synthetic data
- 45000 records and 14 features
- Extended by SMOTENC
- Class distribution loan declined 78%, loan being approved 22%

son_age person_gender	person_education	person_income	person_emp_exp person_home_ownership	loan_amnt	loan_intent	loan_int_rate	loan_percent_income	cb_person c	redit_sco previous_laloan_st
22 female	Master	71948	0 RENT	35000	PERSONAL	16.02	0.49	3	561 No
21 female	High School	12282	0 OWN	1000	EDUCATION	11.14	0.08	2	504 Yes
25 female	High School	12438	3 MORTGAGE	5500	MEDICAL	12.87	0.44	3	635 No
23 female	Bachelor	79753	0 RENT	35000	MEDICAL	15.23	0.44	2	675 No
24 male	Master	66135	1 RENT	35000	MEDICAL	14.27	0.53	4	586 No
21 female	High School	12951	0 OWN	2500	VENTURE	7.14	0.19	2	532 No
26 female	Bachelor	93471	1 RENT	35000	EDUCATION	12.42	0.37	3	701 No
24 female	High School	95550	5 RENT	35000	MEDICAL	11.11	0.37	4	585 No
24 female	Associate	100684	3 RENT	35000	PERSONAL	8.9	0.35	2	544 No
21 female	High School	12739	0 OWN	1600	VENTURE	14.74	0.13	3	640 No
22 female	High School	102985	0 RENT	35000	VENTURE	10.37	0.34	4	621 No
21 female	Associate	13113	0 OWN	4500	HOMEIMPROVEMENT	8.63	0.34	2	651 No
23 male	Bachelor	114860	3 RENT	35000	VENTURE	7.9	0.3	2	573 No
26 male	Master	130713	0 RENT	35000	EDUCATION	18.39	0.27	4	708 No
23 female	Associate	138998	0 RENT	35000	EDUCATION	7.9	0.25	4	583 No
23 female	Master	600891	5 MORTGAGE	30000	DEBTCONSOLIDATION	10.65	0.05	3	670 Yes
23 male	Bachelor	144943	0 RENT	35000	EDUCATION	7.9	0.24	4	663 No

Methodology

- Datasets heavily imbalanced.
- Random Forest chosen to reduce overfitting.
- 70-15-15 split.
- Fine tune by adjusting depth of tree

Fig. 1. Proposed model development pipeline

Why Random Forest

- It's an ensemble learning method (set of classifiers) as it's made up of multiple decision trees.
 - Bagging (boostrap aggregation): random sample of data is training set with replacement.
 - Feature randomness: random subset of features.
- Prediction is made by aggregating individual tree's predictions.
- **Hyperparameters:** node size, number of trees, number of features.
- Benefit:
 - Reduced risk of overfitting
 - Flexibility
 - Feature importance
- Challenges:
 - Time consuming
 - Needs larger data sets
 - Harder to interpret

Results—fine tune

- Shows f1-scores of training and validation datasets
- Overfit when max tree depth around 10 to 15
- Selected 10 as max_depth final value

Results—sampling

- Use different sampling strategies original, weighted, and SMOTE
- Original model performs the best based on accuracy and F1-Score
- Significantly worse recall in the original then SMOTE, matches the dataset
- Prioritize precision over recall to fit real world scenario better

TABLE I
PERFORMANCE OF THE MODEL USING DIFFERENT SAMPLING METHODS

	Origin	nal	Weigl	ited	With SMOTE		
Class	0	1	0	1	0	1	
Precision	0.92	0.91	0.97	0.7	0.96	0.71	
Recall	0.98	0.72	0.89	0.89	0.9	0.85	
F1-Score	0.95	0.8	0.93	0.78	0.93	0.78	
Accuracy	0.92		0.89		0.89		

^{*0 =} Rejected, 1 = Approved

Results—evaluation

- Performs well in predicting true positives
- Slightly better at predicting true negatives
- 28% actual approvals missed
- 9% predicted approvals incorrect

	Original			
Class	0	1		
Precision	0.92	0.91		
Recall	0.98	0.72		
F1-Score	0.95	0.8		
Accuracy	0.92			

Results

- Applicant's loan default history the most determining factor
- Demographics of applicant (gender, age, education) barely
 affect decision

Conclusion

- Most important features previous loans being defaulted, loan to income percentage and loan interest rate
- Can overfit very easily if max depth is too high
- Weighted random forest does not perform well