Introduction to Experimental Design

Prof. Daniel A. Menascé Dept. of Computer Science George Mason University

© 2004. D. A. Menascé. All Rights Reserved.

Basic Notions in Design of Experiments

- Response: what you want to measure.
- Factor: what affects the response.
- Level: value of a factor.

Factors		Response	
CPU Clock Frequency (MHz)	Number of CPUs	Main Memory (MB)	Benchmark Execution Time (sec)
550 750	1 1	128 128	25 32
1000 550 750	1 2 2	128 128 128	48 19 14
1000	2	128	10
550	1	256	23
750 1000	1	256 256	29 45

© 2004. D. A. Menascé. All Rights Reserved.

2

Basic Notions in Design of Experiments

- Primary Factors: those whose effects need to be quantified.
- Secondary factors: not interested in quantifying effects.
- Replication: repetition of some or all of the experiments.
- Design: (no. of experiments, factor level combination, no. of replications per experiments).

© 2004. D. A. Menascé. All Rights Reserved.

3

Basic Notions in Design of Experiments

- Experimental unit: entity used for an experiment.
- Interaction: Factors A and B interact if the effect of one depends upon the level of the other.

1

© 2004. D. A. Menascé. All Rights Reserved

Common Errors in Experimentation

- Variation due to experimental error is ignored.
- Important parameters are not controlled.
- Effects of different factors not isolated.
- Simple one-factor-at-a-time designs.
- Interactions are ignored.
- Too many experiments are conducted.

© 2004. D. A. Menascé. All Rights Reserved.

Types of Experimental Designs

• Simple Designs:

 Start with base combination of factor levels and vary one factor at a time.

	Factors		Response	
	CPU Clock Frequency (MHz)	Number of CPUs	Main Memory (MB)	Benchmark Execution Time (sec)
	550	1	128	25.0
	750	1	128	32.0
	1000	1	128	48.0
	550	2	128	19.0
	750	2	128	13.5
8	1000	2	128	10.0
Levels	550	1	256	23.0
_	750	1	256	29.0
	1000	1	256	45.0
	550	2	256	16.5
	750	2	256	11.8
	1000	2	256	8.8

factors
$$n = 1 + \sum_{i=1}^{k} (n_i - 1)$$
exp. # levels
of factor i.
$$n = 1 + (3-1) + (2-1) + (2-1) = 5$$
Not good if factors interact.

Types of Experimental Designs

- Full Factorial Design:
 - Uses all possible combinations of all levels of all factors.

		Factors		Response	
		CPU Clock Frequency (MHz)	Number of CPUs	Main Memory (MB)	Benchmark Execution Time (sec)
ſ		550	1	128	25.0
١		750	1	128	32.0
١		1000	1	128	48.0
		550	2	128	19.0
		750	2	128	13.5
١	Levels	1000	2	128	10.0
١	[e	550	1	256	23.0
١	_	750	1	256	29.0
١		1000	1	256	45.0
		550	2	256	16.5
		750	2	256	11.8
Į		1000	2	256	8.8

$$n = \prod_{i=1}^{k} n_i$$

© 2004. D. A. Menascé. All Rights Reserved.

9

Types of Experimental Designs

- Reducing Cost of Full Factorial Design:
 - Reduce the no. of levels of each factor. If all factor have 2 levels, we have a 2^k factorial design.
 - Reduce the number of factors.
 - Use fractional factorial designs.

10

© 2004. D. A. Menascé. All Rights Reserved.

Types of Experimental Designs

- Fractional Factorial Design:
 - Use a fraction of the full factorial design.

	F	Response		
	CPU Clock		Benchmark	
	Frequency		Execution	
	(MHz)	Number of CPUs	Time (sec)	
	550	1	25.0	
ro.	750	1	32.0	
Levels	1000	1	48.0	
Le,	550	2	19.0	
_	750	2	13.5	
	1000	2	10.0	
/				

$$n = \prod_{i=1}^{\kappa} n_i$$

n=3*2=6

Some interactions among factors may be lost!

The factor memory size was eliminated.

© 2004. D. A. Menascé. All Rights Reserved.

Types of Factors

- Discrete: only a finite number of levels.
 - e.g., number of CPUsHTTP Keep-Alive (enabled or disabled)
- Continuous: the factor can take on values from a continuous range.
 - e.g., TCP connection timeout working set size

12

© 2004. D. A. Menascé. All Rights Reserved.

Dealing with Continuous Factors

- Discretize: pick a set of values in the range of possible values.
- Which values to pick?
 - Run experiments and do a binary search on the range guided by a variation threshold

13

14

© 2004. D. A. Menascé. All Rights Reserved.

© 2004. D. A. Menascé. All Rights Reserved.

