Deep Learning: An Introduction for Applied Mathematicians (Part 1)

Gobind Puniani MATH 190: Fall 2019 08/29/19

Artificial Neural Networks

- Purpose: Introduce deep learning, which has become popular in recent years
- In artificial neural networks (ANNs), each "neuron" delivers binary output by applying a nonlinear function to input data
 - Sigmoid function is commonly used
 - The function is scaled and translated through "weights" and "biases"
 - Each neuron uses its own weights and biases on real numbers outputted from each neuron in the previous layer
- Many "hidden layers" lie between the input layer and the output layer
 - Characteristic of deep learning

Stochastic Gradient and Back Propagation

- "Steepest descent" / "gradient descent": iterative process that attempts to converge at vector that minimizes cost function
 - Each layer is represented by a vector
 - Cost function determines the category based on components of final vector
 - Goal: minimize cost function
- "Gradient": the vector of partial derivatives
- "Learning rate": the step-size with each iteration
- "Stochastic Gradient": To save computational time, the gradient of random training point is used in lieu of the mean of all gradients
 - A small sample mean could also be used to preserve accuracy
- "Back propagation": Computing output layers in a forward pass and then computing the errors in a backward pass

Important Equations

- Sigmoid function: $\frac{1}{1 + e^{-x}}$
- Vector of Outputs: $\sigma(Wa+b)$, where W is the matrix with the weights and b is the vector of biases
 - Column: previous layer neurons
 - Row: current layer neurons
- General cost function: Cost = $\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} ||y(x^{(i)}) a^{[L]}(x^{(i)})||_{2}^{2}$
- Updating a vector in gradient descent: $p \to p \eta \nabla \text{Cost}(p)$

Questions

- What is a "neuron" in the context of computing?
- How many neurons should be in a given layer, and how many layers should there be?