Due Friday, January 20

1. (Ax 2.A.1) Suppose v_1, v_2, v_3, v_4 spans V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also spans V.

2. Find a number t such that

is not linearly independent in \mathbb{R}^3 . Explain why the set is not linearly independent.

- 3. (Ax 2.A.5)
 - (a) Show that if we consider \mathbb{C} as a vector space over \mathbb{R} , then (1+i,1-i) is linearly independent.
 - (b) Show that if we consider \mathbb{C} as a vector space over \mathbb{C} , then (1+i,1-i) is not linearly independent.
- 4. (Ax 2.A.6) Suppose v_1, v_2, v_3, v_4 is linearly independent in V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

is also linearly independent in V.

- 5. (Ax 2.A.8) Prove or give a counterexample: If v_1, v_2, \ldots, v_m is a linearly independent set of vectors in V and $\lambda \in \mathbb{F}$ with $\lambda \neq 0$, then $\lambda v_1, \lambda v_2, \ldots, \lambda v_m$ is linearly independent.
- 6. (Ax 2.A.13) Explain why no list of four polynomials spans $\mathcal{P}_4(\mathbb{F}) = \{a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 \mid a_i \in \mathbb{F}\}.$
- 7. (Ax 2.B.3) Let U be the subspace of \mathbb{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 = 3x_2 \text{ and } x_3 = 7x_4\}.$$

- (a) Find a basis for U.
- (b) Extend the basis in part (a) to a basis for \mathbb{R}^5 .
- (c) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \oplus W$.