Feuille 1

Nombres réels, bornes supérieures

Questions de cours.

- 1. Qu'est-ce qu'une relation d'ordre (totale) \leq sur un ensemble E?
- 2. Donner les définitions d'un majorant et d'un minorant d'une partie A d'un ensemble totalement ordonné (E, \leq) .
- 3. Donner la définition de la borne supérieure d'une partie A d'un ensemble totalement ordonné (E, \leq) .

Exercice 1 (Relation d'ordre).

- 1. Soit a un réel tel que pour tout $\varepsilon > 0$, $|a| < \varepsilon$. Montrer que a = 0.
- 2. Soit a et b deux réels tels que $\forall x \in \mathbb{R}$, $b < x \Longrightarrow a < x$. Montrer que $a \le b$.

Exercice 2. Soit $r \in \mathbb{Q}$ un nombre rationnel et $x \in \mathbb{R} \setminus \mathbb{Q}$ un nombre irrationnel. Montrer que r + x est irrationnel et si $r \neq 0$, alors $r \cdot x$ est irrationnel.

Exercice 3. Soit $\alpha = 6 + 4\sqrt{2}$ et $\beta = 6 - 4\sqrt{2}$.

- 1. Montrer que les nombres $\sqrt{2}$, α et β sont irrationnels.
- 2. Calculer le produit $\alpha \beta$. Que peut-on dire du produit de deux nombres irrationnels?
- 3. Calculer $\sqrt{\alpha} + \sqrt{\beta}$. Que peut-on dire de la somme de deux nombres irrationnels?

Exercice 4. Montrer que le nombre d'Euler *e* n'est pas rationnel.

$$e = \sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

 $\mathit{Indication}:$ Supposer que $\,e=\frac{a}{b}\;\mathrm{pour}\;a,b\in\mathbb{N}^*$ et étudier le nombre

$$b! \left(\frac{a}{b} - 1 - \frac{1}{1!} - \frac{1}{2!} - \dots - \frac{1}{b!} \right).$$

Exercice 5. Soient a et b des réels positifs ou nuls. Montrer que

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b} \le \sqrt{2}\sqrt{a+b}$$
.

Exercice 6 (Inégalité triangulaire). Soient a et b deux nombres réels.

1. Montrer que $|a+b| \le |a| + |b|$. Préciser dans quel cas on a l'égalité.

- 2. Montrer que $||a|-|b|| \leq |a-b|$. Préciser dans quel cas on a l'égalité.
- 3. Montrer que si $a \le b$ et $-a \le b$, alors $|a| \le b$.

Exercice 7 (Inégalités de Cauchy-Schwarz).

- 1. Soit $a,\,b\in\mathbb{R}.$ Montrer que $(a+b)^2\leq 2(a^2+b^2)$; préciser dans quel cas on a l'égalité.
- 2. Soient $a_1,\,a_2,\ldots,\,a_n,\,b_1,\,b_2,\ldots,\,b_n$ des nombres réels. Montrer que

$$(a_1 b_1 + a_2 b_2 + \ldots + a_n b_n)^2 \le (a_1^2 + a_2^2 + \ldots + a_n^2) (b_1^2 + b_2^2 + \ldots + b_n^2)$$
.

Préciser les cas d'égalité.

3. En déduire que $(a_1+a_2+\ldots+a_n)^2 \le n \left(a_1^2+a_2^2+\ldots+a_n^2\right)$; préciser le cas d'égalité.

Exercice 8. Soit x et y deux nombres réels. Montrer que

$$\max(x, y) = \frac{x + y + |x - y|}{2}$$
 et $\min(x, y) = \frac{x + y - |x - y|}{2}$.

Exercice 9 (Caractérisation de la borne supérieure). Soit A une partie non-vide majorée de $\mathbb R$ et M un majorant de A. Montrer que $M=\sup A$ si et seulement si

$$\forall \varepsilon \in \mathbb{R}_+^*,]M - \varepsilon; M] \cap A \neq \emptyset$$
.

Exercice 10 (Bornes supérieures et inférieures). Trouver la borne supérieure et la borne inférieure des ensembles suivants, dire si elles sont atteintes ou non.

1.
$$A = \{x \in \mathbb{Z} : x^2 < 3\}$$

5.
$$E = \{\frac{1}{n} : n \in \mathbb{N}^* \}$$

2.
$$B = \{x \in \mathbb{Q} : x^2 < 3\}$$

6.
$$F = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N}^* \right\}$$

3.
$$C = \{x \in \mathbb{Q} : x^2 \le 4\}$$

7.
$$G = \left\{ (-1)^n + \frac{1}{n^2} : n \in \mathbb{N}^* \right\}$$

4.
$$D = \{(-1)^n : n \in \mathbb{N}\}$$

8.
$$H = \{2^{(-1)^n n} : n \in \mathbb{N}\}$$

Exercice 11. Soient A et B deux parties majorées de \mathbb{R} . On définit

$$A + B = \{a + b : (a, b) \in A \times B\}$$
 et $-A = \{-a : a \in A\}$.

2

Montrer les propositions suivantes.

1. Si
$$A \subseteq B$$
, alors $\sup A \le \sup B$.

4.
$$\inf(-A) = -\sup(A)$$
.

2.
$$\sup(A \cup B) = \max(\sup A, \sup B)$$
.

5.
$$\sup(A \cap B) \leq \min(\sup A, \sup B)$$
.

3.
$$\sup(A+B) = \sup A + \sup B$$
.