Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 4 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.	Mark:						
Determine if $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ below	ngs to th	e span of the set	$\left\{ \left[\right] \right.$	$\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$	$, \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}$,	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $.

	Mark:
Standard S1.	

Determine if the set of polynomials $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Mark:

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Find a basis of W .

Standard S4.

Mark:

Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

 ${\bf Additional\ Notes/Marks}$