Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (mgabrie@nyu.edu) or to stop at the office hours.

Problem 11.1 (2 points). Compute critical points of f, g and h and determine if they are global/local maximizers/minimizers or saddle points. To determine the signs of eigenvalues it might useful to remember that for $M \in \mathbb{R}^{n \times n}$ symmetric, $\operatorname{tr}(M) = \sum_{i=1}^{n} M_{i,i} = \sum_{i=1}^{n} \lambda_{i}$.

- (a) $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = (x^2 1)^2$.
- **(b)** $g: \mathbb{R}^3 \to \mathbb{R}$ with $g(x, y, z) = (x^2 z^2)y + 2$
- (c) $h: \mathbb{R}^3 \to \mathbb{R}$ with $h(x, y, z) = x^2 + y^2 + z^2 6x + 10y 2z + 35$

Problem 11.2 (2 points). We consider the following constrained optimization problem in \mathbb{R}^2 :

minimize
$$x^2 + y^2$$
 subject to $2x + y = 4$. (1)

We admit that this minimization problem has (at least) one solution (this comes from the fact that a continuous function on a compact set attains its minimum).

- (a) Using Lagrange multipliers, show that (1) has a unique solution and compute its coordinates.
- (b) Can you draw a picture in \mathbb{R}^2 representing the problem?

Problem 11.3 (2 points). Let $u \in \mathbb{R}^n$ be a vector such that for all $i \neq j$, $|u_i| \neq |u_j|$. We consider the constrained optimization problem

maximize
$$\langle u, x \rangle$$
 subject to $||x||_1 \leq 1$.

- (a) Calling i_* the index at which $|u_i|$ is maximum, give a solution for the optimization problem (no Lagrange multiplier needed).
- (b) By contradiction, show that this solution is unique.
- (c) Give a graphical interpretation in the case n = 2. You should consider the orthogonal projector onto $\operatorname{Span}(u)$.

Problem 11.4 (3 points). We will prove the spectral theorem in this problem: you are therefore not allowed to use the spectral theorem and its consequences to solve this exercise.

Let A be an $n \times n$ symmetric matrix. We consider the following optimization problem

$$maximize \quad x^{\mathsf{T}} A x \quad subject \ to \quad ||x|| = 1. \tag{2}$$

This optimization problem admits a solution (this comes from the fact that a continuous function on a compact set achieved its maximum) that we denote by v_1 .

- (a) Using Lagrange multipliers, show that v_1 is an eigenvector of A.
- (b) We now consider the optimization problem

maximize
$$x^{\mathsf{T}}Ax$$
 subject to $||x|| = 1$ and $\langle x, v_1 \rangle = 0$. (3)

For the same reason as above, this problem admits a solution that we denote by v_2 . Show that v_2 is an eigenvector of A that is orthogonal to v_1 .

(c) We now consider the optimization problem

maximize
$$x^{\mathsf{T}}Ax$$
 subject to $||x|| = 1$ and $\langle x, v_1 \rangle = 0$ and $\langle x, v_2 \rangle = 0$. (4)

Again, this problem admits a solution that we denote by v_3 . Show that v_3 is an eigenvector of A that is orthogonal to v_1 and v_2 .

Conclusion: by repeating this procedure, we obtain an orthonormal family v_1, \ldots, v_n of eigenvectors of A. This proves the spectral theorem (without using any linear algebra result!).

Problem 11.5 (\star) . We consider the problem with physics motivation of finding the maximal entropy distribution of a random variable (see last slides of Lecture 09) constraining values of some moments.

To keep things simple, we consider X that can take n different values x_1, \dots, x_n in \mathbb{R} . We wish to infer the probabilities p_1, \dots, p_n such that the entropy is maximal and the expected value of X is equal to a previously known scalar $\mu \in \mathbb{R}$. This corresponds to solving the contrained optimization problem

maximize
$$-\sum_{i} p_{i} \ln p_{i}$$
 subject to $p_{i} \leq 1$ for all i and $\sum_{i=1}^{n} p_{i} = 1$ and $\sum_{i=1}^{n} p_{i}x_{i} = \mu$. (5)

- (a) Rewrite the problem as a convex minimization problem (justify).
- (b) Using KKT theorem, give the expression of the probability vector solution $p \in \mathbb{R}^n$ as a function of Lagrange multipliers and values x_i . Give also the relations between the Lagrange multipliers, μ and values x_i .
- (c) In the case where n=2 and $x_1=0$ and $x_2=1$, solve for the values of the Lagrange multipliers and $p \in \mathbb{R}^2$. Could you have used an easier way to solve the problem in this simple case?