

Inference

Message Passing

Belief Propagation Algorithm

Passing Messages

Passing Messages

Cluster Graphs

- · Undirected graph such that:
 - nodes are clusters $C_i \subseteq \{X_1,...,X_n\}$
- edge between C_i and C_j associated with sepset $S_{i,j} \subseteq C_i \cap C_j$ and C_j associated with
- Given set of factors Φ , we assign each ϕ_k to a cluster $C_{\alpha(k)}$ s.t. Scope $[\phi_k] \subseteq C_{\alpha(k)}$
- Define $\psi_i(C_i) =$ $k:\alpha(k)=i$ all fadors accions to it

Daphne Koller

Example Cluster Graph

Different Cluster Graph

 $\phi_1(A, B, C), \phi_2(B, C), \phi_3(B, D), \phi_4(D, E), \phi_5(B, E), \phi_6(B, D), \phi_7(B, D, F)$

Message Passing
$$\delta_{1 o 4}(B) = \sum_{A,C} \psi_1(A,B,C) \delta_{2 o 1}(C)$$
 $\delta_{4 o 1}(B) = \sum_{A,C} \psi_4(B,E) \times \delta_{2 o 4}(B) \times \delta_{5 o 4}(E) \times \delta_{3 o 4}(B)$ 1: A, B, C B 4: B, E B 3: B,D,F $\delta_{i o j}(S_{i,j}) = \sum_{C_i - S_{i,j}} \psi_i \times \prod_{k \in (\mathcal{N}_i - \{j\})} \delta_{k o i}$ Dophne Koller ななまないま.

Belief Propagation Algorithm

- Assign each factor $\phi_k \in \Phi$ to a cluster $C_{\alpha(k)}$
- Construct initial potentials $\psi_i(C_i) = \prod_i \psi_i(C_i)$ $k:\alpha(k)=i$
- Initialize all messages to be 1
- · Repeat will when?

- Select edge (i,j) and pass message
$$\delta_{i\to j}(S_{i,j}) = \sum_{C_i-S_{i,j}} \psi_i \times \prod_{k\in (\mathcal{N}_i-\{j\})} \delta_{k\to i}$$
 • Compute
$$\beta_i(C_i) = \psi_i \times \prod_{k\in \mathcal{N}_i} \delta_{k\to i}$$
 all regulars

• Compute
$$\beta_i(C_i) = \psi_i imes \prod_{k \in \mathcal{N}_i} \delta_{k o i}$$
 all regulation

Belief Propagation Run

Summary

- · Graph of clusters connected by sepsets
- Adjacent clusters pass information to each other about variables in sepset
 - Message from i to j summarizes everything i knows, except information obtained from j
- · Algorithm may not converge not marsing & ?
- The resulting beliefs are pseudo-marginals
- · Nevertheless, very useful in practice