Практикум №1 Регулярные выражения

В каждой задаче нужно реализовать на языке C++ или Python некоторый алгоритм обработки регулярных выражений. В каждой задаче аргументами являются строка в алфавите $\{a,b,c,1,.,+,*\}$, а также некоторые дополнительные параметры. Если задача предполагает ответ "да/нет", то необходимо вывести YES в случае положительного ответа и NO — в случае отрицательного. В случае, если ответ является целым числом или словом, необходимо вывести это число или слово. В случае, если таких числа или слова не существует, необходимо вывести INF. В случае, если входная строка не является корректным регулярным выражением в обратной польской записи, необходимо выдать сообщение ERROR об ошибке. Дополнительные случаи оговорены непосредственно при формулировке задачи.

В дальнейшем предполагается, что первым компонентом входа является регулярное выражение α в обратной польской записи, задающее язык L. Условия задач:

- 1. Даны α и натуральные числа k, l, такие что $0 \le l < k$. Проверить, содержит ли язык L слова, чья длина равна l по модулю k.
- 2. Даны α и натуральные числа k, l, такие что $0 \le l < k$. Вывести минимальное число n, равное l по модулю k, такое что L содержит слова длины n.
- 3. Даны α , буква x и натуральное число k. Вывести, есть ли в языке L слова, содержащие префикс x^k .
- 4. Даны α , буква x и натуральное число k. Вывести, есть ли в языке L слова, содержащие подслово x^k .
- 5. Даны α , буква x и натуральное число k. Вывести, есть ли в языке L слова, содержащие суффикс x^k .
- 6. Даны α , буква x и натуральное число k. Вывести, есть ли в языке L слова, содержащие ровно k букв x.
- 7. Даны α , буква x и натуральное число k. Вывести, есть ли в языке L слова, содержащие кратное k число букв x.
- 8. Даны α , буква x и натуральное число k. Вывести длину кратчайшего слова из языка L, содержащего префикс x^k .
- 9. Даны α , буква x и натуральное число k. Вывести длину кратчайшего слова из языка L, содержащего подслово x^k .
- 10. Даны α , буква x и натуральное число k. Вывести длину кратчайшего слова из языка L, содержащего суффикс x^k .
- 11. Даны α , буква x и натуральное число k. Вывести длину кратчайшего слова из языка L, содержащего ровно k букв x.
- 12. Даны α и слово $u \in \{a,b,c\}^*$. Найти длину самого длинного префикса u, принадлежащего L.
- 13. Даны α и слово $u \in \{a,b,c\}^*$. Найти длину самого длинного подслова u, принадлежащего L.
- 14. Даны α и слово $u \in \{a,b,c\}^*$. Найти длину самого длинного суффикса u, принадлежащего L.

- 15. Даны α и слово $u \in \{a, b, c\}^*$. Найти длину самого длинного префикса u, являющегося также префиксом некоторого слова в L.
- 16. Даны α и слово $u \in \{a, b, c\}^*$. Найти длину самого длинного подслова u, являющегося также подсловом некоторого слова в L.
- 17. Даны α и слово $u \in \{a, b, c\}^*$. Найти длину самого длинного суффикса u, являющегося также суффиксом некоторого слова в L.
- 18. Даны α и буква x. Найти максимальное k, такое что в L есть слова, начинающиеся с x^k .
- 19. Даны α и буква x. Найти максимальное k, такое что в L есть слова, заканчивающиеся на x^k .
- 20. Даны α и буква x. Найти максимальное k, такое что в L есть слова, содержащие подслово x^k .

Входные данные получаются из stdin и выводятся в stdout. Программа должна компилироваться под gnu g++ 9.3.0 или clang++ 10.0.0 в случае языка C++(C) или интерпретироваться стандартным интерпретатором Python 3.8.5. Код должен удовлетворять разумным требованиям к стилю написания и вычислительной эффективности. Использование библиотек для работы с регулярными выражениями запрещено! Код программы должен быть размещён в виде приватного репозитория на GitHub с открытым доступом на редактирование для преподавателя. Желательно, чтобы репозиторий назывался mipt-flat-2020-practice1. Помимо файлов с решением задачи, в репозитории должен присутствовать README-файл в формате .md с описанием идеи алгоритма и оценкой сложности его работы. Если программа использует makefile или его аналоги, команда, которой производится сборка, должна также быть указана в README.

Сдача будет проводиться очно в два этапа — сначала будет производиться изначальная «защита» кода с доказательством его корректности и сложности работы, после чего будут выданы комментарии по самому коду (как по организации кода в целом, так и по кодстайлу). Чем меньше будет комментариев, тем меньше итераций будет дальше!

Срок, до которого должна быть предоставлен изначальный код — 06.11.2020, 23:59 МСК. Финальная защита кода должна быть произведена до 18.11.2020, 23:59.

Тесты

Номер	Вход	Выход
задачи		
1	ab + c.aba. * .bac. + . + * 3 2	YES
	acbbab.c. * .ab.ba. + . + *a. 3 0	NO
2	ab + c.aba. * .bac. + . + * 3 1	4
	acbbab.c. * .ab.ba. + . + *a. 3 0	INF
3	ab + c.aba. * .bac. + . + * a 2	YES
	acbbab.c. * .ab.ba. + . + *a. b 3	NO
4	ab + c.aba. * .bac. + . + * a 4	NO
	acbbab.c. $*$.ab.ba. $+$. $+$ $*$ a. b 2	YES
5	ab + c.aba. * .bac. + . + * a 2	NO
	acbbab.c. * .ab.ba. + . + *a.	YES
6	ab + c.aba. * .bac. + . + * a 2	YES
	acbbab.c. * .ab.ba. + . + *a. a 0	NO
7	ab + c.aba. * .bac. + . + * a 2	YES
	aba. * .a. * ab1 + a 2	NO
8	ab + c.aba. * .bac. + . + * c 4	INF
	acbbab.c. $*$.ab.ba. $+$. $+$ $*$ a. b 2	4
9	ab + c.aba. * .bac. + . + * b 2	4
	acbbab.c. $*$.ab.ba. $+$. $+$ $*$ a. b 3	7
10	ab + c.aba. * .bac. + . + * b 2	INF
	acbbab.c. $*$.ab.ba. $+$. $+$ $*$ a. a 2	4
11	ab + c.aba. * .bac. + . + * b 2	4
	acbbab.c. * .ab.ba. + . + *a. b 3	7
12	ab + c.aba. * .bac. + . + * abacb	4
	acbbab.c. * .ab.ba. + . + *a. cb	0
13	ab + c.aba. * .bac. + . + * babc	2
	acbbab.c. * .ab.ba. + . + *a. abbaa	4
14	ab + c.aba. * .bac. + . + * babc	2
	acbbab.c. * .ab.ba. + . + *a. cbaa	1
15	ab + c.aba. * .bac. + . + * abacb	4
	acbbab.c. * .ab.ba. + . + *a. $acbac$	4
16	ab + c.aba. * .bac. + . + * babc	3
	acbbab.c. * .ab.ba. + . + *a. abbaa	5
17	ab + c.aba. * .bac. + . + * babc	2
	acbbab.c. * .ab.ba. + . + *a. cbaa	4
18	ab + c.aba. * .bac. + . + * a	2
	acbbab.c. * .ab.ba. + . + *a. c	0
19	ab + c.aba. * .bac. + . + * b	1
	acbbab.c. * .ab.ba. + . + *a. b	0
20	ab + c.aba. * .bac. + . + * a	2
	acbbab.c. * .ab.ba. + . + *a. a	2