

Hi1131S V100 WLAN Wireless Communication Chip

用户指南

文档版本 01

发布日期 2017-02-08

版权所有 © 深圳市海思半导体有限公司 2016。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HISILICON 、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用建议,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.hisilicon.com/cn/

客户服务电话: 4008302118

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍 Hi1131S 芯片各项基本功能、内部结构、接口时序、性能参数、功耗参数、电气特性和封装等信息。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi1131S 芯片	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 系统设计工程师
- 单板硬件开发工程师
- 技术支持工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
危险	用于警示紧急的危险情形,若不避免,将会导致人员死亡 或严重的人身伤害。
全 警告	用于警示潜在的危险情形,若不避免,可能会导致人员死 亡或严重的人身伤害。

符号	说明
▲ 小心	用于警示潜在的危险情形,若不避免,可能会导致中度或 轻微的人身伤害。
注意	用于传递设备或环境安全警示信息,若不避免,可能会导致设备损坏、数据丢失、设备性能降低或其它不可预知的结果。 "注意"不涉及人身伤害。
□ 说明	用于突出重要/关键信息、最佳实践和小窍门等。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害 信息。

数值单位约定

数据容量、频率、数据速率等的表达方式说明如下。

类别	符号	对应的数值
数据容量(如 RAM 容量)	1K	1024
	1M	1, 048, 576
	1 G	1, 073, 741, 824
频率、数据速率等	1k	1000
• 0	1M	1, 000, 000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1G	1, 000, 000, 000

修改记录

修改记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

日期	修订版 本	修改问题电子流单 号 (DTS或 JIRA)	修改描述	修改作者
2017-02-08	01	-	草稿版本	

日期	修订版 本	修改问题电子流单 号 (DTS 或 JIRA)	修改描述	修改作者

目录

前	〕	ii
1	芯片简介	1
	1 功能描述	
1.2	2 特性描述	1
1.3	3 功能模块框图	2
1.4	4 电气特性	2
1.5	5 应用领域	2
1.6	6 相关资料	3
1.7	7 订购信息	3
2	电源管理	4
	1 电源拓扑	
2.2	2 极限工作电压和负载电流	4
2.3	3 上下电顺序	5
3	时钟	7
	1 参考时钟	
	- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
	1.2 外部高精度时钟输入模式	
	2 32KHz RTC 时钟	
4 1	WLAN 性能	10
	1 WLAN 2.4GHz 接收性能	
	2 WLAN 2.4GHz 发射性能	
	管脚描述	
	1 管脚分布图	
	2 管脚类型说明	
	3 管脚数量统计	
	4 管脚详细描述	
	4.1 CMU 接口	
	4.2 RTC 时钟接口	
	4.3 全局控制信号	

5.4.4 相互唤醒信号	1
5.4.5 SDIO 接口	17
5.4.6 UART 接口	
5.4.7 BT 共存接口	
5.4.8 GPIO 接口	
5.4.9 PMU 管脚	
5.4.10 RF 接口	20
5.4.11 RF 电源管脚	20
5.4.12 GND 管脚	
5.4.13 NC 管脚	21
6 功耗	22
6.1 PowerOff 功耗	
6.2 WLAN 功耗	* * * * * * * * * * * * * * * * * * * *
7 传输接口	
7.1 SDIO 接口	
7.1.1 SDIO 接口	
7.1.T SDR 模式	
8 电气特性	27
8.1 电气参数	
8.2 可靠性参数	
8.2.1 通用参数	27
9 封装	29
9.1 概述	29
9.2 封装视图	29
9.3 封装参数	30
9.3 封装参数 9.3.1 物理参数	30
9.3.2 工艺参数	33
10 热设计参考	
10.1 极限工作环境	27
10.2 芯片结温要求	2′
10.3 封装热阻	
A 缩略语	

插图目录

图 1-1 Hi1131S 的功能模块框图	2
图 2-1 Hi1131S 电源拓扑结构	
图 2-2 Hi1131S 上电顺序图	
图 3-1 使用 Crystal 输入参考时钟的电路结构图	
图 3-2 使用外部高精度时钟做为参考时钟的电路结构图	
图 5-1 管脚分布图	
图 7-1 SDR12 和 SDR25 模式时钟时序	
图 7-2 SDR12 和 SDR25 模式输入时序	
图 7-2 SDR12 和 SDR25 模式输出时序	
图 9-1 Hi1131S 封装图	30

表格目录

表 1-1 模块列表	2
表 1-2 Hi1131S 芯片硬件设计资料清单	3
表 1-3 Part Number 说明	3
表 2-1 极限工作电压参数	
表 3-1 Crystal 电气特性要求	7
表 3-2 外部时钟选择真值表	8
表 3-3 RTC 时钟电气特性要求	
表 4-1 WLAN 2.4GHz 接收性能	10
表 4-2 WLAN 2.4GHz 发射功率	12
表 5-1 管脚 I/O 类型和电平类型说明	
表 5-2 管脚数量统计	15
表 5-3 CMU 接口管脚列表	16
表 5-4 RTC 时钟接口管脚列表	16
表 5-5 全局控制信号管脚列表	16
表 5-6 相互唤醒信号管脚列表	17
表 5-7 SDIO 接口管脚列表	17
表 5-8 UART 接口管脚列表	18
表 5-9 BT 共存接口管脚列表	18
表 5-10 GPIO 接口管脚列表	19
表 5-11 PMU 管脚列表	19
表 5-12 RF 接口管脚列表	20
表 5-13 RF 电源管脚列表	20
表 5-14 GND 管脚列表	
表 5-15 NC 管脚列表	21
表 6-1 PowerOff 功耗	22

表 6-2 WLAN 功耗		23
表 7-1 SDR12 和 SDR25 模式时钟约束		24
表 7-2 SDR12 和 SDR25 模式时序		26
表 8-1 1.8V LVCMOS I/O 直流参数		27
表 8-2 可靠性参数		28
表 8-3 芯片潮湿敏感等级定义		
表 9-1 Hi1131S 封装参数		30
表 9-2 芯片装配条件		31
表 10-1 极限工作环境参数		32
表 10-2 Hi1131S 结温要求		33
表 10-3 Hi1131S 的封装执阳	AXI	33

1 芯片简介

1.1 功能描述

Hi1131S 芯片高度集成了 2.4GHz WLAN IEEE 802.11b/g/n MAC/Baseband/Radio, 提供应用在 IPC(IP Camera)、智能门铃、无人机、机顶盒等智能终端上的无线通信解决方案。

WLAN 基带可实现正交频分复用(OFDM),并向下兼容直接序列扩频(DSSS),补码键控(CCK),支持 IEEE 802.11b/g/n 的数据速率。功能包括:支持单空间流传输、短保护间隔(GI)400ns、20MHz 和 40MHz 带宽。

Hi1131S 芯片支持 SDIO2.0 接口,时钟最高支持 50MHz。UART 子系统支持两线协议 (RXD、TXD),波特率 115200bps。

1.2 特性描述

Main Features

- QFN48 6mmx6mm 封装;
- 芯片支持 VBAT 电压范围: 3.3V~4.8V, VDDIO 电压 1.8V;
- WLAN (PHY 支持 IEEE802.11b/g/n, MAC 支持 IEEE802.11 d/e/h/i/k/v/w);
- 支持的 WLAN 频段: Channel 1~13 2412MHz-2472MHz:
- 2.4GHz 支持 20/40MHz 带宽;
- 内置 PA 和 LNA,集成 TX/RX Switch, Balun;
- 支持 STA 和 AP 形态,作为 AP 时最大 支持 4 个 STA;

- 支持 SDIO2.0,接口时钟支持 25MHz,50MHz;
- 支持 IEEE 802.11h TPC;
- 支持 WIFI Direct, 用于高速 P2P 连接;
- 支持 WIFI Display;
- 支持与 BT/BLE Standalone 芯片共存的 2/3/4 线 PTA 方案:
- 支持 RF 自校准方案。

WLAN MAC Features

MAC 层由 MAC 硬件和 MAC 软件两部分组成。MAC 硬件、软件相互配合,

共同完成网络管理、信道接入、信息安全控制(加解密)、数据完整性控制及功率控制等功能。

- 支持 A-MPDU:
- 支持 Blk-ACK。

WLAN PHY Features

PHY 层实现 IEEE802.11b/g/n PHY 子层协议规范,完成对基带信号的发送和接收。

- 支持 IEEE802.11b/g/n 单天线所有数据 速率:
- 支持 IEEE802.11n20MHz/40MHz, 吞吐率 72.2Mbps@HT20 MCS7, 150Mbps@HT40 MCS7;
- 支持 Short GI (400ns);

- 支持 Auto Rate;
- 支持 STBC (Rx);
- 支持 RIFS (Rx):
- 支持 TPC。

1.3 功能模块框图

Hi1131S 芯片主要包括 4 个模块: PMU、CMU、Always On system、WLAN SoC system。 Hi1131S 芯片的功能模块框图如图 1-1 所示。

图1-1 Hi1131S 的功能模块框图

Hi1131S 各模块如表 1-1 所示。

表1-1 模块列表

模块	描述
PMU	电源管理单元,给内部各个子系统提供电源,同时包括上电检测、上电复位、过流过压保护等功能。
CMU	时钟管理单元,给内部各个子系统提供时钟。
Always On System	低功耗管理,SDIO,GPIO 管脚
WLAN SoC System	完成 WLAN Firmware 软件和硬件处理。

1.4 电气特性

Hi1131S 芯片具有以下电气特性:

- 芯片支持电压范围: 3.3V~4.8V;
- 芯片支持数字 I/O 电压 1.8V;
- 封装 QFN, 尺寸 6mm×6mm×0.85mm;
- 环境温度: -30℃~+70℃;
- 工作结温: 105℃。

1.5 应用领域

Hi1131S 芯片适用于以下领域:

- IPC(IP Camera)
- 智能可视门铃
- 运动 DV
- 无人机
- 机顶盒

1.6 相关资料

表1-2 Hi1131S 芯片硬件设计资料清单

资料名称	主要内容
Hi1131S 用户指南	整体功能、架构
	电源管理
	接口时序
	性能
	功耗
	电气特性
	管脚描述
	封装
	焊接工艺要求
	热设计
Hi1131S 硬件设计指导	硬件设计指导、参考设计电路图

1.7 订购信息

下订单时请使用完整的 Part Number,如表 1-3 所示。

表1-3 Part Number 说明

Part Number	含义
Hi1131SGNCV101	S:接口类型,S表示SDIO接口
	G: 环保标识, G表示无铅。
A Y	N: 封装类型,N表示QFN封装。
	C: 温度等级, C表示商业级。
. 5	V101: 芯片版本信息。

2 电源管理

2.1 电源拓扑

Hi1131S 需要的外部电源包括电池电源 VBAT 和 IO 电源 VDDIO。Hi1131S 电源拓扑如下图图 2-1 所示,主要集成了 BUCK 和多个低压差线性稳压器(LDO),BUCK 作为一个中间的电源平面给多个 LDO 提供电源; LDO 分为给数字提供电源的 LDO、以及高压 LDO 和低噪声 LDO 等。

图2-1 Hi1131S 电源拓扑结构

Hi1131S PMU 内部有一个 BUCK 提供 1.35V 电源,该 1.35V 电源也可以由外部电源模块提供。

2.2 极限工作电压和负载电流

警告

极限工作电压参数如 2-1 所示,超过这些数值,可能导致芯片损坏。

表2-1 极限工作电压参数

参数	符号	负载电流 最小值 (mA)	负载电流 最大值 (mA)	极限电压 最小值 (V)	极限电压 最大值 (V)
电池电源	VBAT [1]	1000	-	-0.7	5
IO 电源	VDDIO [2]	200	-	-0.7	3.63
1.35V 电源 【4】	1P4 [3]	800	-	-0.7	2.0

□ 说明

【1】: VBAT 对应管脚: VDD_PMU_VBAT1、VDD_PMU_VBAT2;

【2】: VDDIO 对应管脚: VDDIO、VDDIO1;

【3】: 1P4 对应管脚: VDD_BUCK_1P4、VDD_PMU_1P4;

【4】: 指采用外部 Buck 提供 1.35V 电源。

藝生

针对 VBAT 的浪涌测试,警告如下:

- 1) 6V 以上的电压不做任何保证,即使短时间加载,也有可能造成芯片的永久性损伤;
- 2) 性能保证工作电压范围: 3.6V ~ 4.8V;
- 3) 上电时间: >40uS;
- 4)整个生命周期内, 5. 6V 电压持续时间最大允许 250s, 6V 电压持续时间最大允许 10s;
- 5) 产品应用: Hi1131S VBAT 管脚采用稳压管保护或直接 buck 供电;

2.3 上下电顺序

Hi1131S 芯片硬件上电以后,通过 SDIO 接口下发上电命令。

图 2-2 提供了 Hill31S 的上电时间关系。

图2-2 Hill31S 上电顺序图

- 步骤 1 外部电池电源 VBAT [1]、IO 电源 VDDIO [2] 处于下电状态, PWRON 无效, 芯片处于下电状态;
- 步骤 2 外部电源给 VBAT、VDDIO 上电,对上电顺序无要求;
- 步骤 3 外部控制 PMU PWRON 为低电平;
- 步骤 4 外部提供稳定的 RTC_CLK (32.768KHz), 可选;
- 步骤 5 外部控制 PMU_PWRON 信号为高电平;
- 步骤 6 Hi1131S 内部 PMU 检测到 PMU_PWRON 信号为高电平 1ms 后,芯片内部开始解复位流程,有序的开启各电源,芯片正常工作。
- 步骤7 在上电过程中,参考时钟频率需要通过 HOST2DEV_WAKEUP 和 GPIO0 这两个数字管脚的逻辑电平进行选择:

REFCLK_FREQ_SEL[1:0]: 00:40M; 01/11:24M。

----结束

3 时钟

3.1 参考时钟

Hi1131S 需要外部参考时钟。芯片内部有 PLL,由外部参考时钟产生内部电路工作需要的时钟。典型的,Hi1131S 支持 24MHz、40MHz 参考时钟频点。

Hi1131S 支持 Crystal 和外部高精度时钟两种参考时钟输入模式。

3.1.1 Crystal 输入模式

在使用外部 Crystal 时, 电路结构如图 3-1 所示:

图3-1 使用 Crystal 输入参考时钟的电路结构图

对外部 Crystal 电气特性的要求如表 3-1 所示:

表3-1 Crystal 电气特性要求

Parameter	symbol	min	typ	max	units	Information
Nominal frequency	f		24/40		MHz	-
frequency tolerance	L _m	-20	-	+20	ppm	典型范围
Series Resistance	R	-	25	80	Ohm	影响噪声性能

Hi1131S 支持 40MHz、24MHz 参考时钟频点,外部时钟的选择通过 HOST2DEV_WAKEUP 和 GPIO0 这两个数字管脚的逻辑电平在初始上电时进行判断。

外部时钟选择真值表如表 3-2 所示:

表3-2 外部时钟选择真值表

时钟频率	HOST2DEV_WAKEUP	GPIO0
40MHz	0	0
24MHz	1	-/-,

3.1.2 外部高精度时钟输入模式

在使用外部高精度时钟时, 电路结构如图 3-2 所示:

图3-2 使用外部高精度时钟做为参考时钟的电路结构图

3.2 32KHz RTC 时钟

Hi1131S 芯片需要外部提供 32KHz RTC 时钟,用于低功耗处理,非低功耗时 RTC 时钟可选。

对 32KHzRTC 时钟的电气特性要求如表 3-3 所示。

表3-3 RTC 时钟电气特性要求

参数	RTC 时钟	单位
时钟波形	方波	-
时钟频率	推荐值: 32.768	KHz
时钟精度	推荐值: ±200	ppm

参数	RTC 时钟	单位
占空比	30~70	%
输入信号幅度(Peak-Peak)	900~1800	mV
信号类型	方波	-
输入阻抗	>100	ΚΩ
	<5	pF
时钟 Jitter	<10000	ppm

4 WLAN性能

□ 说明

- a. 除非特别说明, Hi1131S WIFI TX/RX 性能是基于芯片口的结果;
- b. 以下性能指标,是在满足 Hi1131S 提供的参考设计(见文档《Hi1131SV100 硬件指导文档》,四层板,RF 口阻抗匹配 50 Ω下的测试结果;) WIFI TX/RX 性能是基于 I/Q xel 非信令方式测试。
- c. 不同单板的叠层、PCB 加工工艺约束、单板匹配不同,测试结果可能会有差异。
- d. 测试环境:典型测试值对应 VBAT 工作电压 3.6V,环境温度+25℃。

4.1 WLAN 2.4GHz 接收性能

表4-1 WLAN 2.4GHz 接收性能

ITEM	SUB ITEM	参数			单位
		最小值	典型值	最大值	
工作频段	- •	2400	-	2480	MHz
灵敏度【1】【2】	1 Mbps DSSS	-98	-100	-	dBm
[3] [4]	2 Mbps DSSS	-94	-96	-	dBm
411	5.5 Mbps CCK	-93	-95	-	dBm
	11 Mbps CCK	-90	-92	-	dBm
y	6 Mbps OFDM	-94	-96	-	dBm
	9 Mbps OFDM	-92	-94	-	dBm
	12 Mbps OFDM	-91	-93	-	dBm

ITEM	SUB ITEM	参数			单位
		最小值	典型值	最大值	
	18 Mbps OFDM	-89	-91	-	dBm
	24 Mbps OFDM	-86	-88	-	dBm
	36 Mbps OFDM	-82	-84	-	dBm
	48 Mbps OFDM	-78	-80	- ,	dBm
	54 Mbps OFDM	-77	-79	- /	dBm
	HT20 MCS0	-93	-95	- \>\	dBm
	HT20 MCS1	-90	-92	-	dBm
	HT20 MCS2	-88	-90		dBm
	HT20 MCS3	-85	-87	-	dBm
	HT20 MCS4	-82	-84	r -	dBm
	HT20 MCS5	-78	-80	-	dBm
	HT20 MCS6	-76	-78	-	dBm
	HT20 MCS7	-75	-77	-	dBm
	HT40 MCS0	-90	-92	-	dBm
	HT40 MCS1	-87	-89	-	dBm
	HT40 MCS2	-85	-87	-	dBm
	HT40 MCS3	-82	-84	-	dBm
	HT40 MCS4	-79	-81	-	dBm
	HT40 MCS5	-75	-77	-	dBm
	HT40 MCS6	-73	-75	-	dBm
4 ^	HT40 MCS7	-71	-73	-	dBm
最大输入功率	1M/2M(11b) <8% PER	-	-4	-	dBm
Y	CCK <8% PER	-	-4	-	dBm
	OFDM(11g) <10% PER	-	-9	-	dBm
	OFDM(11n) <10% PER	-	-10	-	dBm

ITEM	SUB ITEM	参数			单位
		最小值	典型值	最大值	
LO Leakage	-	-	<-35	-	-

□ 说明

[1]: Sensitivity degradation by 1.5dB for 70° C;

【2】: IEEE 802.11b(8% PER for 1024 octet PSDU);

【3】: IEEE 802.11g(10% PER for 1024 octet PSDU);

【4】: IEEE 802.11n(10% PER for 4096 octet PSDU), 默认参数设置: HT-MF 800ns GI、Non-STBC。

4.2 WLAN 2.4GHz 发射性能

表4-2 WLAN 2.4GHz 发射功率

ITEM	SUB ITEM	参数	参数			备注
		最小值	典型值	最大值		
最大 RMS 发送功率【1】	1 Mbps DSSS	21.5	23	-	dBm	-
[2]	2 Mbps DSSS	21.5	23	-	dBm	-
	5.5 Mbps CCK	21.5	23	-	dBm	-
	11 Mbps CCK	21.5	23	-	dBm	-
	6 Mbps OFDM	20.5	22	-	dBm	-
٠ ٨	9 Mbps OFDM	20.5	22	-	dBm	-
	12 Mbps OFDM	20.5	22	-	dBm	-
	18 Mbps OFDM	20.5	22	-	dBm	-
	24 Mbps OFDM	20.5	22	-	dBm	-
	36 Mbps OFDM	20.5	22	-	dBm	-

ITEM	SUB ITEM	参数			单位	备注
		最小值	典型值	最大值		
	48 Mbps OFDM	20.5	22	-	dBm	-
	54 Mbps OFDM	19.5	21	-	dBm	-
	HT20 MCS0	18.5	20	-	dBm	
	HT20 MCS1	18.5	20	-	dBm	
	HT20 MCS2	18.5	20	-	dBm	-
	HT20 MCS3	18.5	20	-	dBm	-
	HT20 MCS4	18.5	20	- X	dBm	-
	HT20 MCS5	18.5	20		dBm	-
	HT20 MCS6	18.5	20		dBm	-
	HT20 MCS7	18.5	20	\-	dBm	-
	HT40 MCS0	17.5	19	-	dBm	-
	HT40 MCS1	17.5	19	-	dBm	-
	HT40 MCS2	17.5	19	-	dBm	-
	HT40 MCS3	17.5	19	-	dBm	-
	HT40 MCS4	17.5	19	-	dBm	-
•	HT40 MCS5	17.5	19	-	dBm	-
	HT40 MCS6	17.5	19	-	dBm	-
	HT40 MCS7	17.5	19	-	dBm	-

□ 说明

- 【1】 满足 IEEE 802.11 规定的 EVM 和频谱模板,I/Q xel 仪器测试 OFDM 信号时,channell estimation 设为 LTF 模式 (默认)。
- 【2】 VBAT 3.3V 供电下, RF TX Power 在相同 EVM 下约有 1dB 左右的下降。

5 管脚描述

5.1 管脚分布图

Hi1131S 芯片管脚分布 TOP VIEW 如下图 5-1 所示,

图5-1 管脚分布图

		A48	A47	A46	A45	A44	A43	A42	A41	A40	A39	A38	A37		
		SDIO_D1	spio_po	SDIO_CLK	SDIO_CMD	salo_b3	SDIO_D2	VDD_PMU_CLDO	VDD_BUCK_1P4	VDD_PMU_VBAT2	PMU_BUCK_LX	VSS_PMU_PGND	PMU_PWRON		
A1	VDDIO1							_	_				_	VDD_PMU_SYSLDO	A36
A2	NC	1												VDDIO	A35
А3	UART_RX	1												RTC_CLK	A34
Α4	UART_TX	1												HOST2DEV_WAKEUP	A33
A5	WL_RST_N	1												BT_COEX3	A32
A6	GPI00	1		L	п	4	4		,	1 (C			BT_COEX2	A31
Α7	GPI01	1		Г	Ш			•)	1	J			BT_COEX1	A30
A8	GND]												BT_COEX0	A29
A9	NC	1												DEV2HOST_WAKEUP	A28
A10	VDD_WL_RF_LNA_1P2]												VDD_CMU_LDO_TCXO	A27
A11	GND													XOUT	A26
A12	RF_WL_RFO_2G													XIN	A25
		A13 VDD_WL_RF_PA2G_3P3	A14 VDD_WL_RF_TRX_1P2	A15 VDD_WL_RF_VCO_LOGEN_1P2	A16 GND	A17 GND	A18 GND	A19 VDD_PMU_RFLDO1	A20 VDD_PMU_RFLDO2	A21 VDD_PMU_PALDO	A22 VDD_PMU_1P4	A23 VDD_PMU_VBAT1	A24 PMU_REFBP		

5.2 管脚类型说明

管脚 I/O 类型和电平类型如表 5-1 所示。

表5-1 管脚 I/O 类型和电平类型说明

类型	说明
I	数字管脚, 普通输入端口
0	数字管脚,普通输出端口
$I_{ m PU}$	数字管脚,带有内部上拉的输入端口
I_{PD}	数字管脚,带有内部下拉的输入端口
Iana	模拟管脚,输入端口
Oana	模拟管脚,输出端口
IOrf	RF管脚,输入输出端口
Ірми	电源管脚,输入端口
Орми	电源管脚,输出端口

5.3 管脚数量统计

各功能管脚数量信息如表 5-2 所示。

表5-2 管脚数量统计

管脚类别	数量
CMU	3
PMU/BUCK(包括 PMU_PWRON)	14
RF接口	1
RF 电源	4
数字 IO	17
数字电源	2
GND	5
NC	2
总计	48

5.4 管脚详细描述

5.4.1 CMU 接口

CMU 接口表 5-3 所示。

表5-3 CMU 接口管脚列表

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	描述
XIN	A25	Iana	24/40	-	Vpp>800mV	TCXO 时钟输入管脚/ Crystal 输入管脚
XOUT	A26	Oana	24/40	-	-	TCXO 模式下悬空 /Crystal 输出管脚
VDD_CMU_ LDO_TCXO	A27	Орми	-	-	1.8	外部接 1uF 滤波电容

5.4.2 RTC 时钟接口

RTC 时钟接口如表 5-4 所示。

表5-4 RTC 时钟接口管脚列表

名称	位置	类型	频率 (KHz)	驱动 (mA)	电平(V)	描述
RTC_CLK	A34	I	32.768	-	1.8	RTC 时钟输入管脚

5.4.3 全局控制信号

全局控制信号如表 5-5 所示。

表5-5 全局控制信号管脚列表

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	描述
PMU_PWRO N	A37	Iana	<1	-	1.8	PMU 上电使能管脚 0: 下电 1: 上电

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	描述
WL_RST_N	A5	I_{PU}	<1	-	1.8	WIFI 复位管脚 0: 复位使能
						1: 复位撤销

5.4.4 相互唤醒信号

相互唤醒信号如表 5-6 所示。

表5-6 相互唤醒信号管脚列表

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	描述
HOST2DEV _WAKEUP	A33	I_{PD}	<1	2/4	1.8	Host 唤醒 Device 信号, 上 升沿触发。复用参考输入 时钟 REFCLK_FREQ_SEL[0]
DEV2HOST _WAKEUP	A28	0	<1	2/4	1.8	Device 唤醒 HOST 信号

□ 说明

【1】: DEV2HOST_WAKEUP 管脚触发方式和对接芯片相关:若接 Host 芯片,为上升沿触发,若接 MCU(Microcontroller Unit)芯片,为高电平触发。

5.4.5 SDIO 接口

SDIO 接口如表 5-7 所示。

表5-7 SDIO 接口管脚列表

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	描述
SDIO_D2	A43	I/O	-	1/2/3/4 /5/6/7/ 8	1.8	SDIO Data Bit 2
SDIO_D3	A44	I/O	-	1/2/3/4 /5/6/7/ 8	1.8	SDIO Data Bit 3
SDIO_CMD	A45	I/O	-	1/2/3/4 /5/6/7/ 8	1.8	SDIO Command

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	描述
SDIO_CLK	A46	I	25/50	-	1.8	SDIO 时钟
SDIO_D0	A47	I/O	-	1/2/3/4 /5/6/7/ 8	1.8	SDIO Data Bit 0
SDIO_D1	A48	I/O	-	1/2/3/4 /5/6/7/ 8	1.8	SDIO Data Bit 1

5.4.6 UART 接口

UART接口如表 5-8 所示。

表5-8 UART 接口管脚列表

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平 (V)	描述
UART_TX	A4	О	<10	2/4	1.8	UART 发送数据管脚。
UART_RX	A3	Ι	<10	2/4	1.8	UART 接收数据管脚。

5.4.7 BT 共存接口

BT 共存接口如表 5-9 所示。

表5-9 BT 共存接口管脚列表

名和	尔	位置	类型	频率 (MHz)	驱动 (mA)	电平 (V)	描述
BT ₂	_COEX3	A32	I/O	<1	2/4	1.8	蓝牙共存信号管脚
BT	_COEX2	A31	I/O	<1	2/4	1.8	蓝牙共存信号管脚
BT.	_COEX1	A30	I/O	<1	2/4	1.8	蓝牙共存信号管脚
BT	_COEX0	A29	I/O	<1	2/4	1.8	蓝牙共存信号管脚

5.4.8 GPIO 接口

GPIO 接口如表 5-10 所示。

表5-10 GPIO 接口管脚列表

名称	位置	类型	频率 (MHz)	驱动 (mA)	电平 (V)	描述
GPIO0	A6	Ю	<10	2/4	1.8	用作参考输入时钟 REFCLK_FREQ_SEL[1]
GPIO1	A7	Ю	<10	2/4	1.8	SDIO 数据中断

5.4.9 PMU 管脚

PMU 管脚如表 5-11 所示。

表5-11 PMU 管脚列表

名称	位置	类型	电压(V)	描述
VDD_PMU_CLDO	A42	Орми	-	CLDO 输出,外接滤波电容
VDD_BUCK_1P4	A41	IPMU	1.35/1.4	给 CLDO 供电
VDD_PMU_VBAT2	A40	IPMU	3.3~4.8	VBAT 电源输入
PMU_BUCK_LX	A39	Орми	-	BUCK LX 输出,接电感电容用于 BUCK 滤波
VDD_PMU_SYSLDO	A36	Орми	-	SYSLDO 输出,外接滤波 电容
VDDIO	A35	Ірми	1.8	系统常驻 IO 电源,给最小 上电系统 REF 和 SYSLDO 输入电源
VDDIO1	A1	Ірми	1.8	系统常驻 IO 电源,给最小 上电系统 REF 和 SYSLDO 输入电源
PMU_REFBP	A24	Орми	-	基准电源输出,外接Bypass 电容
VDD_PMU_VBAT1	A23	Ірми	3.3~4.8	VBAT 电源输入

名称	位置	类型	电压(V)	描述
VDD_PMU_1P4	A22	Ірми	1.35/1.4	给 RFLDO1、RFLDO2、 RFLDO3、RFLDO4 供电
VDD_PMU_PALDO	A21	Орми	3.3	PALDO 输出,外接滤波电容
VDD_PMU_RFLDO2	A20	Орми	1.2	RFLDO2 输出,外接滤波 电容
VDD_PMU_RFLDO1	A19	Орми	1.2	RFLDO1 输出,外接滤波 电容
VSS_PMU_PGND	A38	-	-	PMU 功率地管脚

5.4.10 RF 接口

RF接口如 5-12 所示。

表5-12 RF接口管脚列表

名称	位置	类型	电平(V)	描述
RF_WL_RFO_2G	A12	IOrf	-	WLAN RF 输入输出

5.4.11 RF 电源管脚

RF 电源管脚如表 5-13 所示。

表5-13 RF 电源管脚列表

名称	位置	类型	电压(V)	描述
VDD_WL_RF_LNA_1P2	A10	Ірми	1.2	RFLDO1 供电
VDD_WL_RF_PA2G_3P3	A13	Ірми	3.3	PALDO 供电
VDD_WL_RF_TRX_1P2	A14	Ірми	1.2	RFLDO1 供电
VDD_WL_RF_VCO_LOG EN_1P2	A15	Ірми	1.2	RFLDO2 供电

5.4.12 GND 管脚

GND 管脚如表 5-14 所示。

表5-14 GND 管脚列表

名称	位置	电压(V)	描述
GND	A8	-	GND 管脚
	A11		VA
	A16		$\langle \chi \rangle$
	A17		
	A18		

5.4.13 NC 管脚

NC 管脚如表 5-15 所示。

表5-15 NC 管脚列表

名称	位置	电压(V)	描述
NC	A2	-	NC 管脚,悬空处理
A	A9		

6 功耗

Hi1131S 功耗数据的测试环境为:

- 环境温度 25℃;
- 电池电压 VBAT=3.6V, IO 电压 VDDIO=1.8V。

其中,在 VDDIO 电源下的消耗的电流已折算到 VBAT 电源,折算公式是:

$$I_{V\!B\!AT} = \frac{I_{V\!D\!D\!I\!O}}{85\%} * \frac{1.8}{3.6}$$

□ 说明

以下提供的"电流消耗@VBAT"是包括 VBAT 和从 VDDIO 上换算过来的总电流。

6.1 PowerOff 功耗

PowerOff 状态指电池电源 VBAT 和 IO 电源 VDDIO 均有电,但 Hi1131S 芯片没有上电,即 PMU_PWRON (管脚编号 A37) 为低电平。

表6-1 PowerOff 功耗

功耗场景	电流消耗@VBAT(uA)
PowerOff	2.9

6.2 WLAN 功耗

表6-2 WLAN 功耗

功耗场景	电流消耗@VBAT(mA)
Deep Sleep	0.04
PowerSave DTIM=1, BEACON LENGTH=1.0ms, BEACON INTERVAL=100ms	0.98
PowerSave DTIM=3, BEACON LENGTH=1.0mS BEACON INTERVAL=100ms	0.38
TX DSSS 1Mbps,11b Tx Power 22dBm	352
TX 54Mbps, 11g Tx Power 18dBm	267
TX HT20 MCS7, 11n Tx Power 18dbm	274
TX HT40 MCS7, 11n Tx Power 18dbm	270
RX 11b, LISTEN, All Rates	33.0
RX HT20, LISTEN, All Rates	33.0
RX HT40, LISTEN, All Rates	33.0
RX DSSS, 1Mbps, 11b	40.5
RX OFDM, 54Mbps, 11g	45.3
RX HT20 OFDM, MCS7, 11n	45.4
RX HT40 OFDM, MCS7, 11n	47.6

7 传输接□

7.1 SDIO 接口

Hi1131S SDIO 支持两种 SDIO 工作模式:

- SDR12 模式 接口时钟最高频率 25MHz, 传输速率 12.5MB/Sec。
- SDR25 模式 接口时钟最高频率 50MHz, 传输速率 25MB/Sec。

7.1.1 SDR 模式

目前 SDR 模式仅支持 SDR12 和 SDR25,对时钟约束的时序图如图 7-1 所示,对时钟的约束见表 7-1。

图7-1 SDR12 和 SDR25 模式时钟时序

表7-1 SDR12 和 SDR25 模式时钟约束

Parameter	Symbol	Min.	Max.	Unit	Remark		
Clock CLK(All values are referred to $min(V_{IH})$ and $max(V_{IL})$)							
Clock period Date Transfer Mode t_{CLK} $40(SDR12)$ $ullet$							

Parameter	Symbol	Min.	Max.	Unit	Remark
Clock rise time	t_{TLH}	-	8(SDR12) 4(SDR25)	ns	C _{CARD} ≤10pF V _{CT} =0.975V
Clock fall time	t_{THL}	-	8(SDR12) 4(SDR25)	ns	C _{CARD} ≤10pF V _{CT} =0.975V

SDR12 和 SDR25 模式输入数据时序如图 7-2 所示。其中,tIS 为建立时间,即此模式下 SDIO 接口要求的数据在时钟采样前的稳定时间,tIH 为保持时间,即此模式下 SDIO 接口要求的数据在时钟采样后的保持原电平的时间。

图7-2 SDR12 和 SDR25 模式输入时序

SDR12 和 SDR25 模式输出数据时序如图 7-3 所示。其中,tODLY 为输出数据相对于时钟上升沿到出现在 SDIO 接口上的时延,tOHLD 为输出数据相对于采样时钟上升沿到出现在 SDIO 接口上的时延。

图7-3 SDR12 和 SDR25 模式输出时序

SDR12 和 SDR25 模式的时序约束如表 7-2 所示。

表7-2 SDR12 和 SDR25 模式时序

Parameter	Symbol	Min.	Max.	Unit	Remark		
Inputs CMD, DAT(referenced to CLK)							
Input set-up time	$t_{ m IS}$	3	-	ns	C _{CARD} ≤10pF V _{CT} =0.975V		
Input hold time	t_{IH}	0.8	-	ns	$C_{CARD} \ge 5pF$ $V_{CT} = 0.975V$		
Outputs CMD, DA	Γ(referenced t	to CLK)					
Output Delay time during Data Transfer Mode	t _{ODLY}	-	14	ns	C _L ≤40pF V _{CT} =0.975V		
Output Hold time	t _{OH}	1.5	-	ns	$C_L \geqslant 15 pF$ $V_{CT} = 0.975 V$		
Total System Capacitance for each line	C_L	-	40	pF	1 card		

7.2 UART 接口

UART 子系统用于Hi1131S 侧维测打印,支持两线协议(RXD、TXD),波特率115200bps。

8 电气特性

8.1 电气参数

表 8-1 给出了 1.8V LVCMOS I/O 直流参数。

表8-1 1.8V LVCMOS I/O 直流参数

参数	标识	测试条件	最小值	典型 值	最大值	単位
I/O 电压	VDDIO	-	-	1.8	-	V
输入高电平	V_{IH}	-	0.65VDDIO	-	1.95	V
输入低电平	$V_{\rm IL}$		0.0	-	0.35VDDIO	V
输出高电平	V_{OH}	- ()	0.75VDDIO	-	1.6	V
输出低电平	V _{OL}	-	0.0	-	0.25VDDIO	V
高电平驱动 电流	I_{OH}		ı	1	1	mA
低电平驱动 电流	I_{OL}	-	-	-	-	mA
输入电容	C _{IN}	-	-	-	10	pF
三态输出漏电流	I_{OZ}	-	1	1	-	μА

8.2 可靠性参数

8.2.1 通用参数

可靠性参数如表 8-2 所示。

表8-2 可靠性参数

参数	符号	参数值
ESD 参数	ESD level/volt	非 RF 管脚: HBM +/-2000V, CDM+/-200V
		RF 管脚: HBM +/-500V, CDM +/-200V
LatchUp 电流	ILU	I trigger: +/- 100mA@25°C
		+/- 100mA@85℃
		V trigger: 1.5VDDmax@25℃
		1.5VDDmax@85℃
潮湿敏感等级	-	Level 3
可靠性等级	-	满足 TCT、PC、HAST、UHAST、HTSL
上下电次数	-	-
可重复焊接次数	-	3
工作时间	Machine Life (kPOH)	5年

芯片潮湿敏感等级定义如表 8-3 所示。

表8-3 芯片潮湿敏感等级定义

潮湿敏感等级(MSL)	含义(拆封后存放条件及最长时间)
1	无限制,85% RH(Relative Humidity)。
2	1年,30℃/60% RH。
2a	4周,30℃/60% RH。
3	1周,30℃/60% RH。
4	72 小时,30℃/60% RH。
5	48 小时,30℃/60% RH。
5a	24 小时,30℃/60% RH。
6	Time on Label, 30°C/60% RH₀

9 封装

9.1 概述

Hi1131S 采用 QFN 封装,PIN 个数为 48, pin 间距 0.4mm。芯片尺寸为 6mm×6mm,器件高度为 0.85mm。封装无铅,遵从 Green 标准。

9.2 封装视图

封装图如图 9-1 所示。

图9-1 Hill31S 封装图

9.3 封装参数

9.3.1 物理参数

封装物理参数如表 9-1 所示。

表9-1 Hill31S 封装参数

参数	数值
封装尺寸	6mm×6mm
pin 间距	0.4mm
Pin 个数	48

参数	数值
器件高度(max)	0.85mm
芯片重量(max)	97 毫克

9.3.2 工艺参数

装配条件

Hi1131S 芯片的装配条件如表 9-2 所示。

表9-2 芯片装配条件

Condition	Process
PCB assembly	- X-Y-
Maximum PCB assembly temperature	7
PCB clean process	
PCB rework	
Maximum placement force	-
Bakeout	125℃@40hours
Module reuse	3
Maximum PCB assembly reflows	Reflow
PCB configuration	-

元器件包装及存储

元器件包装及存储如下:

- 表贴元器件包装类型:盘式。
- 插装元器件包装类型: Ceramic White 9211。
- 可存储期限(针对保证正常可焊性的存储期限): 1000Hrs@150c/12moths@0C。
- 包装材料: 防静电材料。

PCB 表面处理

PCB 表面处理无特殊要求。

10 热设计参考

10.1 极限工作环境

极限工作环境参数如表 10-1 所示。

□ 说明

极限工作环境参数仅用于评估, 不用于实际应用。

警告

超过极限工作环境参数数值, 可能导致芯片物理损伤。

表10-1 极限工作环境参数

参数	符号	最小值	最大值	单位
环境温度	T_A	-30	70	${\mathbb C}$
焊接温度	T_{P}	-	245	${\mathbb C}$
极限结温	T_{JMAX}	-20	125	$^{\circ}$

10.2 芯片结温要求

注意

- Hi1131S 的极限结温的最大值为 125℃,任何条件下芯片的结温都不能大于该数值。
- Hi1131S 的长期工作结温的最大值为 105℃,正常工作条件下芯片的结温应该小于该数值。
- 在短期工作条件下,Hi1131S 可以容忍超过 105℃(长期工作结温的最大值)而小于 125℃(极限结温的最大值)的高温,但长时间工作在超过 105℃(长期工作结温的最大值)结温下会导致芯片寿命缩减。
- 根据 GR-63-CORE 标准,短期工作条件定义为每次持续时间不超过 96 小时,并且每年累计时间不超过 15 天。

Hi1131S 结温要求如表 10-2 所示。

表10-2 Hi1131S 结温要求

封装形式	最大功耗 (W)	正常工作 结温下限 (°C)	长期工作 最大结温 (°C)	短期工作 上限结温 (°C)	破坏性最 大结温 (°C)	生命周期定义
QFN	1	-30	105	125	125	5年

10.3 封装热阻

注意

热阻基于 JEDEC JESD51-2 标准给出,应用时的系统设计及环境可能与 JEDEC JESD51-2 标准不同,需要根据应用条件作出分析。

表10-3 Hi1131S 的封装热阻

参数	符号	数值	单位
Junction-to-ambient thermal resistance	θ ја	-	°C/W
Junction-to-case thermal resistance	θ _{ЈС}	35.2	°C/W
Junction-to-top center of case thermal resistance	$\Psi_{ m JT}$	-	°C/W
Junction-to-board thermal resistance	θ _{ЈВ}	19.7	°C/W

上述封装热阻参数仿真环境是 JEDEC 标准的 4 层 PCB,如图 10-1 所示。

图10-1 JEDEC 标准的 4 层 PCB 参数

A 缩略语

Numerics

B

BB Baseband

基带

蓝牙

 \mathbf{C}

BT

CMU Clock Management Unit

Bluetooth

时钟管理单元

P

PMU Power Management Unit

电源管理单元

R

RF Radio Frequency

射频

 \mathbf{S}

SOC System On Chip

片上系统

 \mathbf{W}

WLAN Wireless Local Area Networks

无线局域网络