

รายงานวิชา Pre-Project รหัสวิชา 01216747

นางสาวพัชรินทร์	แย้มเดช	รหัสนักศึกษา 60010684
นางสาวภูริพิชญ์	ธรรมโม	รหัสนักศึกษา 60010811
นางสาวสิริวิมล	มีทอง	รหัสนักศึกษา 60011075

เสนอ

ผศ.ดร.อุดม จันทร์จรัสสุข

ภาคเรียนที่ 2 ปีการศึกษา 2562

คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมอุตสาหการ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง เรื่อง หน้า

บทนำ

ปัญหาหรือโจทย์ที่ต้องการแก้ไข ขอบเขตของโครงงาน

ทฤษฎีที่เกี่ยวข้อง

วิธีการดำเนินงาน

แผนการดำเนินงาน

งบประมาณ

สิ่งที่คาดว่าจะได้รับ

สรุป

เอกสารที่เกี่ยวข้อง

1. บทน้ำ

ความหมายของ "หุ่นยนต์" โดยสถาบันหุ่นยนต์อเมริกา (The Robotics Institute of America) ได้ให้ ความหมายไว้ ดังนี้ "หุ่นยนต์ถูกออกแบบมาเพื่อความสามารถหลากหลายโดยสามารถใช้ในการเคลื่อนย้ายวัสดุ อุปกรณ์ ผ่านโปรแกรมที่ถูกตั้งไว้เพื่อประสิทธิภาพการทำงานที่หลากหลาย" (A robot reprogrammable, multifunctional manipulator designed to move materials, parts, tools or specialized devices through various programmed motions for the performance of a variety of tasks.)[1] โดยหุ่นยนต์ ถูกแบ่งออกเป็น 2 ประเภทตามลักษณะการใช้งาน คือ 1) หุ่นยนต์ชนิดที่ติดตั้งอยู่กับที่ (fixed robot) เป็น หุ่นยนต์ที่ไม่สามารถเคลื่อนที่ไปใหนได้ด้วยตัวเอง มีลักษณะเป็นแขนกล (Robotic arms) ที่สามารถขยับและ เคลื่อนไหวได้เฉพาะแต่ละข้อต่อมักใช้ในโรงงานอุตสาหกรรม เช่น โรงงานประกอบรถยนต์ 2) หุ่นยนต์ชนิดที่ เคลื่อนที่ได้ (mobile robot) เป็นหุ่นยนต์ที่สามารถเคลื่อนที่ไปใหนมาไหนได้ด้วยตัวเองโดยการใช้ล้อหรือขาซึ่ง ปัจจุบันยังมีการทำวิจัยและพัฒนาเพื่อใช้งานในรูปแบบต่าง การใช้งานหุ่นยนต์ในภาคอุตสาหกรรมส่วนใหญ่ เป็นงานที่ไม่ซับซ้อนมากนัก โดยใช้ระบบอัตโนมัติ (Automation) ควบคุมให้หุ่นยนต์สามารถทำงานได้เองผ่าน การเขียนโปรแกรมโดยหากเป็นงานที่มีความซับซ้อนมากขึ้นจะใช้ปัญญาประดิษฐ์ (Artificial Intelligence) เข้าช่วยควบคุมเพื่อให้หุ่นยนต์มีความสามารถสูงขึ้นหรือฉลาดขึ้นนั่นเอง [2]

ประเทศไทยจึงมีการวางแผนสร้างฐานการผลิตหุ่นยนต์เพื่อตอบสนองความต้องการในประเทศและ ภูมิภาคอาเซียนโดยตรง ได้แก่ หุ่นยนต์ที่ใช้ในอุตสาหกรรมการผลิตยานยนต์ โดยเฉพาะหุ่นยนต์ที่ใช้ในการ เชื่อมโลหะ ซึ่งมีจำนวนมากเป็นอันดับหนึ่งของจำนวนหุ่นยนต์ที่นำเข้ามาในภูมิภาคอาเซียน หรือนับเป็นร้อย ละ 38 ของจำนวนหุ่นยนต์ที่นำเข้าทั้งหมด โดยหุ่นยนต์เหล่านี้ มักจะมาในรูปแบบแขนหุ่นยนต์ที่มีแกน เคลื่อนที่แบบหมุน (Articulated Robot) รองลงมาคือ หุ่นยนต์ที่ใช้ในกระบวนการผลิตอัดฉีดพลาสติก ที่มี การนำเข้ามากเป็นอันดับสองในภูมิภาค หรือร้อยละ 19 ของจำนวนหุ่นยนต์ที่นำเข้าทั้งหมด โดยหุ่นยนต์ เหล่านี้เป็นแขนหุ่นยนต์ที่มีทั้งรูปแบบแกนเคลื่อนแบบหมุน และรูปแบบแกนเคลื่อนที่แบบเชิงเส้น (Linear Gantry Robot) และหุ่นยนต์ที่มีความเชี่ยวชาญเฉพาะด้าน เช่น หุ่นยนต์ดำน้ำ และหุ่นยนต์ที่ใช้ในปฏิบัติการ ทางการแพทย์ โดยมุ่งเน้นรูปแบบที่ผลิตมาเพื่อสรีระของผู้ป่วยชาวเอเชีย ซึ่งการผลิตหุ่นยนต์ประเภทหลังนี้ จะเป็นการพัฒนาหลังจากที่ประเทศไทยมีประสบการณ์จากการผลิตหุ่นยนต์แบบแขนกลแล้ว[3]

จากข้อมูลดังกล่าวทางคณะผู้จัดทำได้ตระหนักถึงความสำคัญในการการสร้างหุ่นยนต์เพื่อการศึกษา ที่ เป็นพื้นฐานและสามารถนำไปต่อยอดได้ในอนาคตและได้ทำการรวบรวมข้อมูลที่เกี่ยวข้องกับการสร้างหุ่นยนต์ จึงนำไปสู่การสร้างหุ่นยนต์จริงที่มีชื่อว่า "Bumblebee" เพื่อใช้ในการแข่งขันการแข่งขันหุ่นยนต์โดยมี ลักษณะคล้ายกับการเล่นบอลลูนด่านแบ่งเป็นทีมรุกและทีมรับสลับกันในการแข่งแต่ละรอบ แต่ละทีมจะ ประกอบด้วยหุ่นยนต์ 7 ตัว ฝ่ายทีมรุกจะต้องวิ่งไปหาทีมรับ จนผ่านเส้นแดงแล้วกลับมาอย่างปลอดภัย(ผ่าน เส้นสีเหลือง) โดยที่ไม่ถูกทีมรับจับได้และจะเป็นฝ่ายชนะในการแข่งขัน หากหุ่นยนต์ตัวไหนถูกทีมรับจับได้จะ หมดสิทธิ์จากการแข่งขันในรอบนั้น ส่วนทีมรับจะสามารถวิ่งสกัดกั้นฝ่ายตรงข้ามในพื้นที่ป้องกันเท่านั้น หากวิ่ง

ออกนอกพื้นที่ก็จะหมดสิทธิ์จากการแข่งขันในรอบนั้นเช่นกัน ถ้าไม่มีหุ่นยนต์ตัวไหนสามารถผ่านด่านได้ทีมรับ จะเป็นฝ่ายชนะ การแข่งขันของแต่ละรอบจะยุติเมื่อทีมรุกสามารถผ่านด่านได้สำเร็จ หรือเมื่อทีมใดทีมหนึ่งไม่ เหลือผู้เล่น

2. ปัญหาหรือโจทย์ที่ต้องการแก้ไข

การแข่งขันหุ่นยนต์มีลักษณะคล้ายกับการเล่น บอลลูนด่าน หรือเล่นเตยโดยแบ่งเป็นทีมรุกแสลับกัน ในแต่ละทีมรับ ในการแข่งแต่ละรอบ โดยทีมหนึ่งจะประกอบด้วยหุ่นยนต์ 7 ตัว ผ่ายทีมรุกจะต้องวิ่งไปหาฝั่ง ตรงข้าม จนผ่านเส้นแดง แล้วกลับมาอย่างปลอดภัย(ผ่านเส้นสีเหลือง)โดยที่ไม่ถูกทีมรับจับได้ก็จะเป็นฝ่ายชนะ ในการแข่งขันรอบนั้นหุ่นยนต์ที่ถูกจับได้จะถูกตัดออกจากการแข่งขันในรอบนั้นส่วนทีมรับ จะสามารถวิ่งสกัด กั้นฝ่ายตรงข้ามในพื้นที่ป้องกันเท่านั้น ถ้าวิ่งออกนอกพื้นที่ก็จะถูกตัดออกจากการแข่งขัน ในรอบนั้น เช่นกัน ถ้าไม่มีหุ่นยนต์ตัวไหนสามารถผ่านด่านได้ทีมรับจะเป็นฝ่ายชนะการแข่งขันของแต่ละรอบจะยุติเมื่อทีมรุก สามารถผ่านด่านได้สำเร็จ หรือเมื่อทีมใดทีมหนึ่งไม่เหลือผู้เล่น

แนวคิดในการแก้ปัญหาหรือในการสร้างหุ่นยนต์ กลยุทธ์เกมรุก

สำหรับเกมส์รุก ทีมเรามีความเห็นว่าตัวรถควรมีเซ็นเซอร์ ทั้ง 4 ด้าน คือ ด้านซ้าย ด้านขวา ด้านหน้า และด้านหลัง หากกำลังเดินหน้า และเซ็นเซอร์ด้านหน้าสามารถจับตัวรถอีกคันได้ ให้ทำการเคลื่อนที่ไป ทางซ้ายหรือขวา และหากเซ็นเซอร์ทางด้านซ้ายและขวา จับได้ว่ามีรถคันอื่น จะทำการถอยหลังแทน และจะมี การเพิ่มความเร็วของตัวรถ หากพบว่าเซ็นเซอร์ทั้ง 4 ด้าน ไม่พบสัญญาณของรถคันอื่น

รวมไปถึงเราจะมีระบบเซ็นเซอร์ตรวจจับเส้นทางว่าหากเซ็นเซอร์โดนเส้นสีแดงหมายความว่าได้ผ่าน ทีมรับมาได้แล้ว และเตรียมถอยหลังหรือกลับรถเพื่อเคลื่อนตัวกลับไปยังที่เดิม ถ้าเซ็นเซอร์โดนเส้นสีเหลือง หมายความว่า ทีมรุกสามารถกลับมายังฝั่งของตัวเองได้สำเร็จ ให้ทำการหยุดเครื่องได้

กลยุทธ์เกมรับ

สำหรับเกมส์รับ ทางทีมเราเห็นว่า อาจให้รถของสมาชิกในทีมอยู่ติดกัน โดยแถวแรก 3 คัน แถวที่ 2 มี 4 คัน แล้วเคลื่อนที่สลับฟันปลากัน เช่นแถวแรกเคลื่อนที่ไปทางซ้าย แถวที่สองจะเคลื่อนที่ไปทางขวา เพื่อ ลดช่องโหว่ที่จะให้อีกทีมผ่านเข้ามาได้ หรือหากมีการเคลื่อนที่ของฝ่ายตรงข้ามแบบ 1:1 แล้วนั้นจะมีเพื่อนคัน ข้างๆ เข้ามาช่วยป้องกันอีกทีม ทั้งนี้จะต้องมีระบบเซ็นเซอร์ที่ตรวจจับเส้นสีดำ เพื่อป้องกันไม่ให้ฝ่ายรับนั้น เคลื่อนรถออกจากโซนป้องกัน หากพบรถจะทำการเดินไปข้างซ้ายหรือขวา ขึ้นอยู่กับขอบของสนามว่าฝั่งไหน

3. ขอบเขตของโครงงาน

ขนาด น้ำหนัก ความเร็ว

ขนาดกว้าง \times ยาว : 10×10 เซนติเมตร ความสูงไม่เกิน 13 เซนติเมตร ใช้ล้อ 4 ล้อในการขับเคลื่อน

เครื่องมือ อุปกรณ์ที่จำเป็นในการทำโครงงาน

ล้อ 4 ล้อ Sensor DC Geared-Motors 2 ตัว ถ่านชาร์จ Li-ion 18650

ขนาด 3400 mAh 3.7 V ที่ชาร์จถ่าน สายไฟ โครงรถ

4. ทฤษฎีที่เกี่ยวข้อง

4.1 ภาษา c

4.1.1 ฟังก์ชัน

 ฟังก์ชัน setup() เป็นฟังก์ชันการกำหนดค่าต่าง ๆ ในส่วนนี้มีการกำหนดค่าเพียงครั้งเดียว เท่านั้น เช่น กำหนดขาในการใช้งานให้เป็นขาอินพุตหรือขาเอาต์พุต การกำหนดค่าของการ 	•
เรียกใช้ไลบรารี	
void setup()	
{	
//เป็นส่วนของคำสั่ง สำหรับกำหนดการทำงานในโปรแกรม และทำเพียงครั้งเดียว }	
☐ ฟังก์ชัน loop() เป็นส่วนในการเขียนโปรแกรมและสั่งให้โปรแกรมทำงาน ซึ่งมีการทำงาน เป็นแบบวนลูปไปเรื่อย ๆ ตามการเขียนโปรแกรมของผู้พัฒนาโปรแกรมเพื่อรับค่าจากอินพุ นำค่าที่ได้มาประมวลผล แล้วทำการส่งข้อมูลออกเอาต์พุตเพื่อควบคุมการทำงานตาม โปรแกรม	গ
void loop()	
{ // เป็นโปรแกรมหลักของคำสั่ง ซึ่งในส่วนนี้โปรแกรมมีการทำงานตลอดเวลา	
} 4.1.2 คำสั่งควบคุม	
4.1.2 ทางหาวบทุม คำสั่ง if คือการตรวจสอบเงื่อนไขการทำงานของโปรแกรมถ้าเงื่อนไขเป็นจริง ให้ทำงานตา คำสั่งที่กำหนดนั้น	าม
 คำสั่ง ifelse คือคำสั่งกำหนดเงื่อนไขการทำงานของโปรแกรม โดยมี 2 เงื่อนไข ถ้าเงื่อน่ เป็นจริงทำงานตามคำสั่งที่กำหนดแบบหนึ่ง ถ้าเงื่อนไขเป็นเท็จทำงานตามคำสั่งที่กำหนดถึ แบบหนึ่ง 	
🗌 คำสั่ง for คือคำสั่งให้โปรแกรมทำงานซ้ำตามจำนวนรอบที่ต้องการมีรูปแบบคำสั่ง	
🗌 คำสั่ง Switch case คือคำสั่งเพื่อกำหนดการทำงานของโปรแกรมหลาย ๆ เงื่อนไข ถ้าต	์ กัว
แปรที่กำหนดตรงกับเงื่อนไขนั้น ๆ ทำให้โปรแกรมทำงานตามที่กำหนดไว้แต่ละเงื่อนไข	

🗌 คำสั่ง while คือคำสั่งทำซ้ำแบบวนรอบ ถ้าเงื่อนไขเป็นจริงโปรแกรมทำงานตามคำสั่งที่เขียน
ไว้ในวงเล็บปีกกา แต่ถ้าเงื่อนไขเป็นเท็จโปรแกรมจบการทำงานในคำสั่ง while
🗌 คำสั่ง dowhile คือคำสั่งทำซ้ำแบบวนรอบ โดยมีการทำงานตรงกันข้ามกับคำสั่ง
🗌 while คือทำงานตามคำสั่งที่เขียนไว้ในวงเล็บปีกกา แล้วจึงมาตรวจสอบเงื่อนไข แต่ถ้า
เงื่อนไขเป็นเท็จ โปรแกรมจบการทำงานในคำสั่ง do
🗌 คำสั่ง break คือคำสั่งใช้ร่วมกับคำสั่งการทำงานแบบวนรอบ ได้แก่ คำสั่ง do, for white
หรือ Switch เพื่อให้โปรแกรมหยุดการทำงานจากการวนรอบโดยไม่มีเงื่อนไข
🗌 คำสั่ง continue คือคำสั่งใช้สำหรับข้ามการทำงานของคำสั่งถัดไป คำสั่งนี้เขียนอยู่ใน คำสั่ง
การทำงานแบบวนรอบ ได้แก่ คำสั่ง do, for หรือ while
4.1.3 การดำเนินการเปรียบเทียบ
เป็นเครื่องหมายที่ใช้ในการเปรียบเทียบทางคณิตศาสตร์ มีเครื่องหมายดังต่อไปนี้
โครื่องหมาย == เป็นการเปรียบเทียบเท่ากับ
🗌 เครื่องหมาย != เป็นการเปรียบเทียบไม่เท่ากับ
🗌 เครื่องหมาย < เป็นการเปรียบเทียบน้อยกว่า
🗌 เครื่องหมาย > เป็นการเปรียบเทียบมากกว่า
เครื่องหมาย <= เป็นการเปรียบเทียบน้อยกว่าหรือเท่ากับ
🗌 เครื่องหมาย >= เป็นการเปรียบเทียบมากกว่าหรือเท่ากับ
4.1.4 ชุดคำสั่ง
เป็นชุดคำสั่งในการเขียนโปรแกรมเพื่อให้ไมโครคอนโทรลเลอร์ทำงานตามโปรแกรมที่ออกแบบไว้ [4]
1.คำสั่งดิจิตอล อินพุต/เอาต์พุต
🗌 คำสั่ง pinMode() เป็นการกำหนดพอร์ตเป็นอินพุตหรือเอาต์พุต
🗌 คำสั่ง digitalWrite() เป็นการเขียนข้อมูลออกพอร์ตที่กำหนด
🗌 คำสั่ง digitalRead() เป็นการอ่านข้อมูลเข้าพอร์ตที่กำหนด
2.คำสั่งอนาล็อก อินพุต/เอาต์พุต
🗌 คำสั่ง analogReference() เป็นการกำหนดค่าแรงดันอ้างอิงที่ใช้สำหรับอนาล็อกอินพุต
🗌 คำสั่ง analogRead() เป็นการอ่านแรงดันไฟฟ้าแบบอนาล็อกและแปลงเป็นจำนวนเต็ม มีค่า
ระหว่าง 0 ถึง 1023
🗌 คำสั่ง analogWrite() เป็นการใช้ PWM เขียนค่าออกทางพอร์ตที่กำหนด

3.คำสัง	แวลา
	คำสั่ง millis() เป็นการหน่วงเวลามีหน่วยเป็นมิลลิวินาทีของ Arduino ทันทีที่มีไฟเลี้ยงเข้า
	Arduino
	คำสั่ง micros() เป็นการหน่วงเวลามีหน่วยเป็นไมโครวินาทีของ Arduino ทันทีที่มีไฟเลี้ยง
	เข้า Arduino
	คำสั่ง delay() เป็นการหน่วงเวลาตามค่าที่กำหนด มีหน่วยเป็นมิลลิวินาที
	คำสั่ง delayMicroseconds() เป็นการหน่วงเวลาตามค่าที่กำหนด
4.คำสั่งเ	คณิตศาสตร์
	คำสั่ง min() เป็นการหาค่าต่ำสุด
	คำสั่ง max() เป็นการหาค่ามากสุด
5.คำสั่ง	บิตและไบต์
	คำสั่ง LowByte() เป็นตัวแปรของไบต์ต่ำสุด
	คำสั่ง highByte() เป็นตัวแปรของไบต์สูงสุด
	คำสั่ง bitRead() เป็นการอ่านบิตของตัวแปร
	คำสั่ง bitWrite() เป็นการเขียนบิตของตัวแปร
	คำสั่ง bitSet() เป็นการตั้งบิตของตัวแปรเท่ากับ 1
	คำสั่ง bitClear() เป็นการตั้งบิตของตัวแปรเท่ากับ 0
	คำสั่ง bit() เป็นการตั้งค่าบิตตามค่าที่กำหนด
6. คำสั่ง	เการติดต่อสื่อสาร
	คำสั่ง Serial.begin() เป็นการกำหนดอัตราการส่งข้อมูล
	คำสั่ง Serial.end() เป็นการปิดใช้งานการสื่อสารแบบอนุกรม
	คำสั่ง Serial.available() เป็นการตรวจสอบการรับข้อมูลจากการสื่อสารแบบอนุกรม
	คำสั่ง Serial.read() เป็นการอ่านข้อมูลจากการสื่อสารแบบอนุกรมที่เข้ามา
	คำสั่ง Serial.peek() เป็นการส่งกลับไบต์ต่อไปของข้อมูลการสื่อสารแบบอนุกรม
	คำสั่ง Serial.print() เป็นการพิมพ์ข้อมูลไปยังพอร์ตอนุกรม
	คำสั่ง Serial.println() เป็นการพิมพ์ข้อมูลไปยังพอร์ตอนุกรม และขึ้นบรรทัดใหม่
	คำสั่ง Serial.write() เป็นการส่งข้อมูลไบต์ไปยังพอร์ตอนุกรม

4.2 ไมโครคอนโทรลเลอร์

ไมโครคอนโทรลเลอร์ (อังกฤษ: Microcontroller) คืออุปกรณ์ควบคุมขนาดเล็กซึ่งบรรจุ ความสามารถที่คล้ายคลึงกับระบบคอมพิวเตอร์ โดยในไมโครคอนโทรลเลอร์ได้รวมเอาซีพียูหน่วยความจำและ พอร์ต โดยทำการบรรจุเข้าไว้ในตัวถังเดียวกันสามารถนำมาประยุกต์ใช้งานได้หลากหลายผ่านการออกแบบ วงจรให้เหมาะกับงานต่างๆและสามารถโปรแกรมคำสั่งเพื่อควบคุมขา Input / Output เพื่อสั่งงานให้ไป ควบคุมอุปกรณ์ต่างๆ เป็นระบบที่สามารถนำมาประยุกต์ใช้งานได้หลากหลาย ทั้งทางด้าน Digital และ Analog ยกตัวอย่างเช่น ระบบสัญญาณตอบระบบอัตโนมัติ, ระบบบัตรคิว, ระบบตอกบัตรพนักงานและอื่นๆ

หน้าที่ส่วนต่างๆของไมโครคอนโทรลเลอร์

- 1. หน่วยประมวลผลกลางหรือซีพียู (CPU : Central Processing Unit)
- 2. หน่วยความจำ (Memory) สามารถแบ่งออกเป็น 2 ส่วน คือหน่วยความจ าที่มีไว้สำหรับเก็บ โปรแกรมหลัก (Program Memory) เช่น Flash Memory ลักษณะการทำงานของหน่วยความจำนี้เป็น หน่วยความจำที่อ่าน-เขียนได้ด้วยไฟฟ้าเปรียบเสมือนฮาร์ดดิสก์ของเครื่องคอมพิวเตอร์ตั้งโต๊ะ คือข้อมูลใดๆที่ ถูกเก็บไว้ในนี้จะไม่สูญหายไปแม้ไม่มีไฟเลี้ยง อีกส่วนหนึ่งคือหน่วยความจำข้อมูล (Data Memory) ใช้เป็น เหมือนกับกระดาษทดในการคำนวณของซีพียู และเป็นที่พักข้อมูลชั่วคราวขณะทำงาน แต่หากไม่มีไฟเลี้ยงใน การทำงานข้อมูลจะหายไปคล้ายกับหน่วยความแรม (RAM) ในเครื่องคอมพิวเตอร์ทั่วๆไป แต่สำหรับ ไมโครคอนโทรลเลอร์สมัยใหม่หน่วยความจำข้อมูลมีทั้งที่เป็นหน่วยความจำแรม ซึ่งข้อมูลจะหายไปเมื่อไม่มี ไฟเลี้ยง และเป็นอีอีพรอม (EEPROM: Erasable Electrically Read-Only Memory) ซึ่งสามารถเก็บข้อมูล ได้แม้ไม่มีไฟเลี้ยง

3.ส่วนติดต่อกับอุปกรณ์ภายนอก หรือพอร์ต (Port) มี 2 ลักษณะคือ พอร์ตอินพุต (Input Port) และ พอร์ตส่งสัญญาณหรือพอร์ตเอาต์พุต (Output Port) ส่วนนี้จะใช้ในการเชื่อมต่อกับอุปกรณ์ภายนอกถือว่าเป็น ส่วนที่สำคัญมากพอร์ตอินพุตรับสัญญาณเพื่อนำไปประมวลผลและส่งไปแสดงผลที่พอร์ตเอาต์พุต เช่น การติด สว่างของหลอดไฟ เป็นต้น

- 4. ช่องทางเดินของสัญญาณหรือบัส (BUS) คือเส้นทางการแลกเปลี่ยนสัญญาณข้อมูลระหว่าง ซีพียู หน่วยความจำและพอร์ต เป็นลักษณะของสายสัญญาณจำนวนมากอยู่ภายในตัวไมโครคอนโทรลเลอร์ โดย แบ่งเป็นบัสข้อมูล (Data Bus) บัสแอดเดรส (Address Bus) และบัสควบคุม (Control Bus)
- 5. วงจรกำเนิดสัญญาณนาฬิกา เป็นส่วนประกอบที่สำคัญมากอีกส่วนหนึ่ง เนื่องจากการทำงานที่ เกิดขึ้นในตัวไมโครคอนโทรลเลอร์จะขึ้นอยู่กับการกำหนดจังหวะ หากสัญญาณนาฬิกามีความถี่สูงจังหวะการ ทำงานก็จะสามารถทำได้ถี่ขึ้นส่งผลให้ไมโครคอนโทรลเลอร์ตัวนั้นมีความเร็วในการประมวลผลสูงขึ้น การเขียน โปรแกรมไมโครคอนโทรลเลอร์ภาษาซีถือว่าเป็นภาษาระดับกลาง [5]

Arduino เป็นไมโครคอนโทรลเลอร์บอร์ดแบบสำเร็จรูปในยุคปัจจุบัน ซึ่งถูกสร้างมาจาก Controller ตระกูล ARM ของ ATMEL ข้อดีของไมโครคอนโทรลเลอร์บอร์ดคือเรื่องของ Open Source ที่สามารถนำไป พัฒนาต่อเป็นอุปกรณ์ต่างๆได้และความสามารถในการเพิ่ม Boot Loader เข้าไปที่ตัว ARM จึงท าให้การ

Upload Code เข้าตัวบอร์ดสามารถทำได้ง่ายขึ้น และยังมีการพัฒนา Software ที่ใช้ในการควบคุมตัวบอร์ด ของ Arduino มีลักษณะเป็นภาษา C++ ที่โปรแกรมเมอร์มีความคุ้นเคยในการใช้งาน ตัวบอร์ดสามารถนำ โมดูลมาต่อเพิ่มซึ่งทาง Arduino เรียกว่าเป็น shield เพื่อเพิ่มความสามารถเพิ่มขึ้น โดยกลุ่มของผู้จัดทำใช้ บอร์ดรุ่น LGT8F328P

ตารางที่ 1 : รายละเอียดของ IR Infrared Obstacle Avoidance Sensor Module [6]

ชิปไอซีไมโครคอนโทรลเลอร์	LGT8F328P
ใช้แรงดันไฟฟ้า	5V
รองรับการจ่ายแรงดันไฟฟ้า (ที่แนะนำ)	7 – 12V
รองรับการจ่ายแรงดันไฟฟ้า (ที่จำกัด)	6 – 20V
พอร์ต Digital I/O	14 พอร์ต (มี 6 พอร์ต PWM output)
พอร์ต Analog Input	6 พอร์ต
กระแสไฟที่จ่ายได้ในแต่ละพอร์ต	40mA
กระแสไปที่จ่ายได้ในพอร์ต 3.3V	50mA
พื้นที่โปรแกรมภายใน	16KB หรือ 32KB พื้นที่โปรแกรม, 500B ใช้โดย Booloader
พื้นที่แรม	1 หรือ 2KB
พื้นที่หน่วยความจำถาวร (EEPROM)	512B หรือ 1KB
ความถี่คริสตัล	16MHz
ขนาด	45x18 mm

4.3 โมดูลเซ็นเซอร์แสงสำหรับตรวจจับวัตถุกีดขวาง

IR Infrared Obstacle Avoidance Sensor Module โดยโมดูลนี้มีตัวรับและตัวส่ง infrared ในตัว ตัวสัญญาณ(สีขาว) infrared จะส่งสัญญาณออกมา และเมื่อมีวัตถุมาบังคลื่นสัญญาณ infrared ที่ถูกส่งออก มาจะสะท้องกลับไปเข้าตัวรับสัญญาณ(สีดำ) สามารถนำมาใช้ตรวจจับวัตถุที่อยู่ตรงหน้าได้และสามารถปรับ ความไว ระยะการตรวจจับ ใกล้หรือไกลได้ ภายตัวเซ็นเซอร์แบบนี้จะมีตัวส่ง Emitter และ ตัวรับ Receiver ติดตั้งภายในตัวเดียวกัน ทำให้ไม่จำเป็นต้องเดินสายไฟทั้งสองฝั่งเหมือนแบบ Opposed Mode ทำให้การ ติดตั้งใช้งานได้ง่ายกว่า แต่อย่างไรก็ตามจำเป็นต้องติดตั้งตัวแผ่นสะท้อนหรือ Reflector ไว้ตรงข้ามกับตัว เซ็นเซอร์เองโดยโฟโต้เซ็นเซอร์แบบที่ใช้แผ่นสะท้อนแบบนี้จะเหมาะสำหรับชิ้นงานที่มีลักษณะทึบแสงไม่เป็น มันวาว เนื่องจากอาจทำให้ตัวเซ็นเซอร์เข้าใจผิดว่าเป็นตัวแผ่นสะท้อน และ ทำให้ทำงานผิดพลาดได้

เซ็นเซอร์แบบนี้จะมีช่วงในการทำงาน หรือ ระยะในการตรวจจับจะได้ใกล้กว่าแบบ Opposed mode ซึ่งในสภาวะการทำงานปกติตัวรับ Receiver จะสามารถรับสัญญาณแสงจากตัวส่ง Emitter ได้ ตลอดเวลา เนื่องจากลำแสงจะสะท้อนกับแผ่นสะท้อน Reflector อยู่ตลอดเวลาจะแสดงค่าเป็น **0**

รูปที่ 1 : หลักการทำงานของเซนเซอร์

หน้าที่หลักของเซ็นเซอร์ชนิดนี้ จะคอยตรวจจับวัตถุที่เคลื่อนที่ตัดผ่านหน้าเซ็นเซอร์ เมื่อวัตถุ หรือ ชิ้นงานผ่านเข้ามาที่หน้าเซ็นเซอร์ แล้วจะการขวางลำแสงที่ส่งจากตัวส่ง Emitter ที่ส่งไปยังแผ่นสะท้อน จึงทำ ให้ตัวรับ Receiver ไม่สามารถรับลำแสงที่จะสะท้อนกลับมาได้จะแสดงค่าเป็น **1**

รูปที่ 2 : ลักษณะการทำงานแบบ Dark On หรือ Dark Operate ซึ่งจะทำให้วงจรภายในรับรู้ได้ว่า มีวัตถุหรือชิ้นงานขวางอยู่ ทำให้สถานะของเอาท์พุตของตัวรับ เปลี่ยนแปลงไป โดยเราเรียกลักษณะการทำงานแบบนี้ว่า Dark On หรือ Dark Operate

ตารางที่ 2 : รายละเอียดของ IR Infrared Obstacle Avoidance Sensor Module [7]

ไฟเลี้ยง VCC	3.3-5Vdc
ดิจิตอลเอาต์พุต	0 หรือ 1
ระยะตรวจจับ สามารถปรับได้ตั้งแต่	สามารถปรับได้ตั้งแต่ 2-30 cm
มุมในการตรวจจับ	35 องศา
ขนาดบอร์ด	3.1 x 1.5 cm

4.4 เซนเซอร์วัดระยะทาง

เซนเซอร์วัดระยะทางด้วย Ultrasonic ใช้หลักการ ส่งคลื่นเสียงความถี่ต่ำ Ultrasonic ไปเมื่อคลื่น เสียงกระทบกับวัตถุจะมีการสะท้อนกลับมาเซนเซอร์จะจับเวลาที่ส่งคลื่นเสียงออกไปจนถึงคลื่นเสียงสะท้อน กลับมา เมื่อนำมาคำนวณกับเวลาที่เสียงเดินทางในอากาศแล้วจะได้ระยะทางออกมาโมดูล Ultrasonic ตรวจจับวัตถุ คำนวนระยะทางโดยใช้คลื่น มีลักษณะเป็นกรวยและไม่ใช่เส้นตรง จึงเหมาะสำหรับใช้ตรวจจับ สิ่งกีดขวางด้วย[8]

รูปที่ 3 : ตัวอย่างเซนเซอร์ US-205

Operating Voltage	DC 3V-5.5V
Working current	5.3 mA
Operating temperature	-40 °C-85°C
output method	GPIO
Induction angle	Less than 15 degrees
Detection distance	2cm-600cm
Detection accuracy	0.1cm+1%

ตารางที่ 3 : คุณสมบัติของ US-025 [9]

4.5 DC Motor Speed Control

ประกอบด้วย 2 ส่วนใหญ่ ๆ คือ 1) H-bridge Driver และ 2) Pulse-width modulation (PWM) สิ่งที่เป็นพลังขับเคลื่อนหลักให้กับหุ่นยนต์นั้นคือ มอเตอร์ ซึ่งต้องการการควบคุม จาก Motor Driver ที่จะมา ควบคุม ทั้ง ทิศทาง และ ความเร็ว ของมอเตอร์ซึ่งทางผู้จัดทำได้เลือกใช้ L298N Dual H-Bridge Motor Controllerคุณสมบัติของ L298N Dual H-Bridge Motor Controller ดังตารางที่ 4 โดยหลักการทำงาน วงจร H-Bridge ของ L298N จะขับกระแสเข้ามอเตอร์ ตามขั้วที่กำหนดด้วยลอจิกเพื่อควบคุมทิศทาง ส่วน ความเร็วของมอเตอร์นั้นจะถูกควบคุมด้วย สัญญาณ PWM (Pulse Width Modulation) เป็นวิธีการควบคุม การจ่ายกำลังโดยการปรับความกว้างของสัญญาณ Pulse ด้วยความถี่สูงเพื่อให้ได้กำลังเฉลี่ยเป็นไปตามส่วนที่ ต้องการ ซึ่งต้องมีการปรับความถี่ให้เหมาะสมกับเป็นพารามิเตอร์ที่ใช้กำหนดสัดส่วนการทำงาน (ON) ของ Load (มอเตอร์)

รูปที่ 4 : ส่วนประกอบของ L298N Dual H-Bridge Motor Controller

Supply voltage :	2-10V
Signal input voltage: :	1.8-7V
Max output current :	3A (1.5A*2)
Control signal:	PWM

ตารางที่ 4 : คุณสมบัติ L298N Dual H-Bridge Motor Controller

4.6 TCRT5000 Infrared Reflective sensor

เป็นโมดูลตรวจจับวัตถุระยะใกล้ มีราคาถูก ขนาดเล็กสะดวกในการนำไปใช้ติดตั้งกับงานจำพวก หุ่นยนต์, Smart car, หุ่นยนต์หลบสิ่งกีดขวาง เป็นต้น ซึ่งสามารถแสดงได้ดังรูปที่ 8 และคุณสมบัติดังตารางที่ 5 โดยการทำงานของตัวโมดูลนี้ เริ่มต้นโดยให้ หลอด Infrared LED ทำการส่งสัญญาณเป็นแสงอินฟราเรด ออกไปตกกระทบกับวัตถุที่ตรวจพบในระยะ และทำการสะท้อนกลับมายังตัวหลอดโฟโต้ไดโอดที่ทำหน้าที่รับ

แสงอินฟราเรด โดยส่วนมาก ตัวโมดูลจะให้ค่า output ออกมาเป็น Digital signal แต่สำหรับบางโมดูอาจจะ รองรับ output แบบ Analog signal ด้วย ส่วนตัว R ปรับค่านั้นใช้ในการปรับความไวต่อการตรวจจับแสง อินฟราเรด ซึ่งจะส่งผลต่อระยะในการตรวจพบวัตถุของตัวเซนเซอร์

รูปที่ 5 : แสดงส่วนประกอบของ TCRT5000 Infrared Reflective sensor

ไฟเลี้ยง vcc	3.3 – 5 V.
ดิจิติลเอาท์พุต	0 หรือ 1

ตารางที่ 5 : คุณสมบัติเซ็นเซอร์วัดระยะทาง TCRT5000 Infrared Reflective sensor

4.7 วงจร DC/DC Step-up (แรงดันปรับค่าได้)

เป็นวงจรที่ทำหน้าที่เพิ่มแรงดันไฟฟ้า โดยที่ทางผู้จัดทำเลือกใช้เป็นรุ่น MT3608 สามารถแสดง ส่วนประกอบได้ดังภาพที่ 9 และสามารถและคุณสมบัติดังตารางที่ 6 [10]

รูปที่ 6 : ส่วนประกอบของ DC/DC Step-up รุ่น MT3608

กระแสไฟขาออกสูงสุด(I max) :	2 A
แรงดันไฟฟ้าเข้า (V in):	2 V ~ 24 V
แรงดันขาออกสูงสุด(V 0ut max)	28 V
ประสิทธิภาพ (%Eff)	> 93%

ตารางที่ 6 : คุณสมบัติของ DC/DC Step-up รุ่น MT3608

โดยกฎของโอห์มกระแสไฟฟ้านั่นวงจรไฟฟ้านั้น จะแปรผัน ตรงกับ แรงดันของแหล่งจ่ายไฟฟ้าแต่จะแปรผกผัน กับค่า ความต้านทานในวงจรไฟฟ้า" ดังสมการ [11]

$$I=rac{V}{R}$$
 เมื่อ $I=$ กระแสไฟฟ้ามีหน่วยเป็น แอมป์แปร์ (A) $V=$ แรงดันไฟฟ้ามีหน่วยเป็นโวลต์ (V) $R=$ ความต้านทานมีหน่วยเป็น โอห์ม (Ω)

ข้อควรระวังเมื่อแรงดันเพิ่ม กระแสไฟไฟฟ้าจะต้องลดลงดังตัวอย่างที่แสดงในรูปที่ 7

ถ้าประสิทธิภาพอยู่ที่ 80% กระแส output จะเหลือ 0.4A

รูปที่ 7 : ตัวอย่างความสัมพันธ์ระหว่างแรงดันเพิ่มกับกระแสไฟลดลง

5. วิธีการดำเนินงาน

5.1ส่วนประกอบหุ่นยนต์

. 6		
โกรกเ	circi	ıi+
шары	CIIC	ハし
	lกรณ์	lกรณ์ circเ

1. Arduino board รุ่น LGT8F328P	จำนวน 1 ชิ้น
2. 18650 Li-ion battery, Battery case, Li-ion Charging module	จำนวน 1 ชิ้น
3. DC Geared-Motors	จำนวน 2 ก้อน
4. H-bridge Driver	จำนวน 1 ชิ้น
5. Breadboard	จำนวน 1 ชิ้น
6. DC/DC Step-up Converter	จำนวน 1 ชิ้น
7. TCRT5000 Infrared Reflective sensor	จำนวน 1 ชิ้น
8. IR Infrared Obstacle Avoidance Sensor	จำนวน 3 ชิ้น
9. Ultrasonic Sensor	จำนวน 1 ชิ้น
10. LED	จำนวน 1 ชิ้น
11. ตัวต้านทาน	จำนวน 2 ชิ้น
12. Switch	จำนวน 1 ชิ้น

5.2 แบบจำลองหุ่นยนต์

รูปที่ 8 : ภาพ dimetric ของแบบจำลองหุ่นยนต์รถ

รูปที่ 9 : ภาพ isometric ของแบบจำลองหุ่นยนต์รถ

<u>อธิบายส่วนประกอบต่างๆตามหมายเลข</u>

หมายเลข 1 : ที่ใส่บอร์ด 2 ชิ้นก็คือ Arduino board รุ่น LGT8F328P และ Breadboard

หมายเลข 2: 18650 Li-ion battery พร้อมรางถ่าน

หมายเลข 3 : IR Infrared Obstacle Avoidance Sensor

จะเห็นได้ว่ามี 3 ชิ้น โดยติดข้างรถบริเวณด้านขวา ด้านซ้าย และด้านหลัง โดย sensor ที่ติดฝั่งขวา เมื่อจับวัตถุฝั่งขวาในระยะ 10 ซม เมื่อพบวัตถุจะชะลอ 2 วิแล้วเลี้ยวรถไปฝั่งซ้ายหรือขวา ตามกลยุทธ์ sensor ที่ติดฝั่งซ้าย เมื่อจับวัตถุฝั่งซ้ายในระยะ 10 ซม เมื่อพบวัตถุจะชะลอ 2 วิแล้วเลี้ยวรถไปฝั่งขวาหรือซ้าย ตาม กลยุทธ์ และ sensor ที่ติดหลังรถ หากจับเส้นสีแดง เมื่อพบแล้วไปชะลอ 3 วิ เพื่อเตรียมถอยหลังกลับหรือ กลับรถ

หมายเลข 4 : Ultrasonic Sensor

ใช้ Ultrasonic Sensor มาเป็น เซนเซอร์วัดระยะทาง

หมายเลข 5 : TCRT5000 Infrared Reflective sensor IR Infrared Obstacle Avoidance Sensor จะติดบริเวณด้านหน้ารถใต้ท้องรถ sensor ตัวนี้จะทำหน้าที่ : จับวัตถุข้างหน้าในระยะ 10 ซม เมื่อ พบวัตถุจะชะลอ 3 วิแล้วหยุดหรืออาจจะไปต่อตามคำสั่ง

รูป drawing อัตราส่วน 5:1 เพื่อระบุขนาดของแบบจำลองรถ

รูปที่ 11 : รูปด้าน TOP

รูปที่ 12 : รูปด้าน FRONT

รูปที่ 13 : รูปด้าน SIDE

รูปที่ 14 : การต่อวงจรภายในหุ่นยนต์

6.แผนการดำเนินงาน

ทีมงาน ความรับผิดชอบของสมาชิกในทีมงาน

นางสาวพัชรินทร์ แย้มเดช รหัสนักศึกษา 60010684 : ออกแบบตัวรถ
 นางสาวภูริพิชญ์ ธรรมโม รหัสนักศึกษา 60010811 : ต่อวงจร

3. นางสาวสิริวิมล มีทอง รหัสนักศึกษา 60011075 : เขียนโค้ด

(เนื่องจากสถานการณ์ Covid 19 ทำให้แผนการดำเนินงานที่ได้วางแผนไว้ไม่เป็นไปตามแผน)

รายการ	W 1-2	W 3-4	W 5-6	W 7-8	W 9- 10	W 11-	W 13-	W 15
เรียนรู้เนื้อหา	\longleftrightarrow							
เรียนรู้การสร้างหุ่นยนต์								
-3D Printing		\longleftrightarrow						
-การขับเคลื่อน								
-Arduino								
-Program Technique								
-Sensor interface								
ทดสอบ		—						\rightarrow
แข่งขัน								\longleftrightarrow

7. งบประมาณ

ล้อ 4 ล้อ ราคา คู่ละ 65 บาท	ราคา	130	บาท
Sensor	ราคา	85	บาท
DC Geared-Motors 2 ตัว	ราคา	100	บาท
ถ่านชาร์จ Li-ion 18650 ขนาด 3400 mAh 3.7 V	ราคา	55	บาท
ที่ชาร์จถ่าน	ราคา	25	บาท
สายไฟ จำนวน 40 เส้น	ราคา	40	บาท
โครงรถ	ราคา	50	บาท

รวมทั้งสิ้น เป็นเงิน 485 บาท

- 8. สิ่งที่คาดว่าจะได้รับ
- 9. สรุป

เอกสารอ้างอิง

- [1] Robotics Online, Industirail Robotics Book ข้อมูลจาก www.robotics.org/robotics/robotics-online-free-resources (วันที่สืบค้น 24 มีนาคม 2563)
- [2] จับตาเอเชียตะวันออก, หุ่นยนต์สำหรับการผลิตอัจฉริยะ (Smart Manufacturing) ตามนโยบาย Industry 4.0 ข้อมูลจาก http://www.eastasiawatch.in.th/th/articles/politics-and-economy/642/ (วันที่สืบค้น 24 มีนาคม 2563)
- [4] บทเรียนคอมพิวเตอร์ออนไลน์, ไมโครคอนโทรลเลอร์ ข้อมูลจาก https://sites.google.com/site/mikhorkhxnthorllexr1/chud-kha-sang (วันที่สืบค้น 24 มีนาคม 2563)
- [5] เอกสารประกอบการสอนวิชาไมโครคอนโทรลเลอร์เบื้องต้น ข้อมูลจาก http://www.sbt.ac.th/new/sites/default/files/TNP_Unit_1.pdf (วันที่สืบค้น 24 มีนาคม 2563)
- [6] สื่อการสอนออนไลน์วิชาเทคนิคการอินเตอร์เฟส, บทที่ 1 บอร์ด Arduino คืออะไร ข้อมูลจาก https://sites.google.com/site/karanwinatktech/unit1 (วันที่สืบค้น 24 มีนาคม 2563)
- [7] Robot Siam เรียนรู้การสร้างหุ่นยนตร์, IR Infrared obstacle avoidance sensor ข้อมูลจาก https://robotsiam.blogspot.com/2016/10/ir-infrared-obstacle-avoidance-sensor.html (วันที่ สืบค้น 24 มีนาคม 2563)
- [8] Arduino all, เซ็นเซอร์วัดระยะทาง Ultrasonic Module HC-SR04 ข้อมูลจาก https://www.arduinoall.com/article/233/33-arduino%E0%B8%AA%E0%B8%AD%E0%B8%99%E0%B9%83%E0%B8%8A%E0%B9%89%E0%B8%87
 %E0%B8%B2%E0%B8%99arduino%E0%B8%A7%E0%B8%B1%E0%B8%94%E0%B8%A3%E0%B8%B0%E0%B8%A2%E0%B8%B0%E0%B8%B2%E0%B8%B2%E0%B8%B7%E0%B8%B2%E0%B8%B7%E0%B8%B2%E0%B8%B7%E0%B8%B7%E0%B8%B7%E0%B8%B7%E0%B8%B7%E0%B8%B99%E0%B9%80%E0%B8%B8%B7%E0%B8%B7%E0%B8%B99%E0%B9%B9%B0%E0%B8%B7%E0%B8%B7%E0%B8%B1%E0%B8

<u>%94%E0%B8%A3%E0%B8%B0%E0%B8%A2%E0%B8%B0%E0%B8%97%E0%B8%B2%E0%B8</u> <u>%87-ultrasonic-module-hc-sr04</u> (วันที่สืบค้น 24 มีนาคม 2563)

[9] Arduino all, โมดูลวัดระยะทาง Ultrasonic US-025/US-026 ultrasonic ranging module ข้อมูลจาก

www.arduinoall.com/product/3245/%E0%B9%82%E0%B8%A1%E0%B8%94%E0%B8%B9%E0
%B8%A5%E0%B8%A7%E0%B8%B1%E0%B8%94%E0%B8%A3%E0%B8%B0%E0%B8%A2%E0
%B8%B0%E0%B8%97%E0%B8%B2%E0%B8%87-ultrasonic-us-025-us-026-ultrasonic-ranging-module (วันที่สืบค้น 24 มีนาคม 2563)

- [10] วงจร DC/DC Step-up (แรงดันปรับค่าได้) ข้อมูลจาก https://www.thaiconverter.com/category/3/dc-step-up (วันที่สืบค้น 25 มีนาคม 2563)
- [11] ความต้านทานไฟฟ้า ข้อมูลจาก http://www.g-tech.ac.th/vdo/moterdoc/%E0%B8%A7%E0%B8%87%E0%B8%88%E0%B8%A3%E0%B9%84 %E0%B8%9F%E0%B8%9F%E0%B9%89%E0%B8%B2%201/%E0%B8%9A%E0%B8%97%E0%B8%B2%E0%B8%A7%E0%B8%87%E0%B8%88%E0%B8%A3%E0%B8%A3%E0%B8%B2%E0%B8%A1%E0%B8%87%E0%B8%B2%E0%B8%B2%E0%B8%B2%E0%B8%95%E0%B9%89%E0%B8%B2%E0%B8%B2%E0%B8%95%E0%B9%89%E0%B8%B2%E0%B8%99.pdf (วันที่สืบค้น 25 มีนาคม 2563)