§2-3 正弦定理與餘弦定理

(甲)三角形面積

(1)邊角關係

①在 \triangle ABC中,通常以 a,b,c 分別表 \angle A, \angle B, \angle C 的對邊長。

②邊的關係:a>0,b>0,c>0,且|b-c|<a<b+c

③角的關係:0°<A,B,C<180°,且 A+B+C=180°

(2)三角形的面積公式:

國中 \triangle ABC 面積= $\frac{1}{2}$ ×底×高,以底與高的長度表示面積但是當 \overline{BC} 邊上的『高』不容易求出來的時候(如有障礙物),我們可以利用三角函數邊角的關係

式間接求出高,於是 \triangle ABC的面積= $\frac{1}{2}$ ×a×bsinC

事實上圖中,∠C是銳角,當∠C是直角或是鈍角時 △ABC,

BC 邊上的高仍然是 b×sinC

∴ △ABC 面積= $\frac{1}{2}$ ×a×bsinC

同理由對稱性得 \triangle ABC 的面積 \triangle 式= $\frac{1}{2}$ ×a×b×sinC= $\frac{1}{2}$ ×b×c×sinA= $\frac{1}{2}$ ×c×a×sinB 例子:已知正 \triangle ABC 每邊的長是 a,求其面積。

結論:

△面積記憶法⇒利用三角函數定義,由 $\triangle = \frac{1}{2} \times \mathbf{E} \times \mathbf{a}$,導出兩邊夾角求面積,即 $\triangle = \frac{1}{2} \times a \times b \times \sin \mathbf{C} = \frac{1}{2} \times b \times c \times \sin \mathbf{A} = \frac{1}{2} \times c \times a \times \sin \mathbf{B}$ (兩邊夾一角)

[**例題**1] 四邊形 ABCD, 設 θ 爲對角線 \overline{AC} 與 \overline{BD} 的一個交角,

求證:此四邊形的面積爲 $\frac{1}{2}$ $\overline{AC \cdot BD \sin \theta}$ 。

[例題2] 設 $\triangle ABC$ 為直角三角形,ACEF 是以 \overline{AC} 為一邊向外作出的正方形,

BCDG是以BC為一邊向外作出的正方形,若AC=5、AB=4、BC=3,

試求(a)cos(∠DCE) (b)△DCE的面積。

Ans : $(a)^{\frac{-3}{5}}$ (b)6

(練習1) 四邊形兩對角線為 12 與 5,若兩對角線的夾角為 θ_1,θ_2 ,且 $\theta_1=2\theta_2$ 則其面積為_____。Ans: $15\sqrt{3}$

(練習2) 已知一三角形 ABC 的二邊 AC=5,AB=8, $\cos A = \frac{4}{5}$,則 ΔABC 的面積 爲_____。 Ans: 12

(乙)正弦定理

國中幾何曾經學過「大邊對大角」這個性質,但這個性質只說角大則邊大,邊 大則角大,這種說法似乎只是一種對於邊角關係的「**定性描述**」,那麼邊角之 間有沒有「**定量的描述**」呢?我們用以下的定理來回答這個問題:

則 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,其中 R 爲 ΔABC 外接圓的半徑。

證明:

由前面三角形的面積公式: $S_{\Delta ABC} = \frac{1}{2} \times a \times b \times sinC = \frac{1}{2} \times b \times c \times sinA = \frac{1}{2} \times c \times a \times sinB$ 等號兩邊同除abc,可得 $\frac{\sin C}{c} = \frac{\sin B}{b} = \frac{\sin A}{a} \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 。

但是 $\frac{a}{\sin \Delta} = \frac{b}{\sin B} = \frac{c}{\sin C} = ?$ 我們由以下的證明來說明:

我們將ΔABC分成直角、銳角、鈍角三種情形來討論,如下圖所示:

(2) ∠A 爲銳角:

過B做圓O的直徑 \overline{BD} ,因爲 $\angle A$ 與 $\angle D$ 對同弧(\overline{BC}),因此 $\angle A = \angle D$ 。 考慮直角三角形BCD,由銳角三角形的定義可知BC sinD=sinA $\Rightarrow \frac{a}{\sin A} = BD = 外接圓直徑 = 2R \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ 。

(3) ZA 為鎮角:

過B做圓O的直徑BD,因爲∠A+∠D=180°,所以sin∠D=sin(180°-∠A)=sinA 考慮直角三角形BCD,由銳角三角形的定義可知 $\frac{BC}{BD}$ =sinD=sinA

⇒
$$\frac{a}{\sin A} = BD = \%$$
接圓直徑= $2R \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ ∘

結論:正弦定理的用法

正弦定理 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ 的轉換(以 R 爲媒介)

(a)比例型:_____

(b)邊化角:a=_____, b=____, c=_____, c=_____

(c)角化邊:sinA=____, sinB=___, sinC=

[**例題4**] 設圓內接四邊形 ABCD 中∠CAD=30°, ∠ACB=45°, CD=2,則AB=___。 Ans: 2

- (練習3) 利用三角形的面積公式與正弦定理,證明:ΔABC 的面積為 $\frac{abc}{4R}$ 。 (R 爲外接圓半徑)
- (練習4) 在下列各條件下,求 \triangle ABC 的外接圓半徑 R。 $(1) \angle B = 70^\circ, \ \angle C = 80^\circ, \ a = 3 \cdot (2) b = 2, \ \cos B = \frac{\sqrt{3}}{2} \ Ans : (1) R = 3(2) R = 2$
- (練習5) $\triangle ABC$ 中, $\angle A=60^{\circ}$, $\angle B=75^{\circ}$, $\overline{AC}=\sqrt{3}+1$,求(1) \overline{BC} 之長(2) \overline{AB} 之長 Ans:(1) $\overline{BC}=\sqrt{6}(2)\overline{AB}=2$ (sin75°= $\frac{\sqrt{2}+\sqrt{6}}{4}$)
- (練習6) 以 a,b,c 分別表示 \triangle ABC 之三邊 $\overline{BC},\overline{CA},\overline{AB}$ 的長,試在下列各條件下,求 $\sin A : \sin B : \sin C \circ ($ 已知 $\sin 75$ ° $= \frac{\sqrt{6}+\sqrt{2}}{4})$
 - $(1)\angle A=30^{\circ},\angle B=45^{\circ}$
- $(2)\angle A: \angle B: \angle C=3:4:5$
- (3)-a+2b-c=0 \coprod 3a+b-2c=0
- (4)(a+b) : (b+c) : (c+a)=5 : 6 : 7

Ans:

 $(1)2 : 2\sqrt{2} : \sqrt{6} + \sqrt{2} \quad (2)2\sqrt{2} : 2\sqrt{3} : \sqrt{6} + \sqrt{2} \quad (3)3 : 5 : 7 \quad (4)3 : 2 : 4$

(丙)餘弦定理

直角三角形中的寶藏是畢氏定理。即在直角 \triangle ABC中,若夾角 \angle C=90°則知兩鄰邊a,b,可由畢氏定理 $c^2=a^2+b^2$ 求出對邊c;對於一般的三角形,如果夾角給定,但不一定是直角,如何求第三邊的長呢?此時,餘弦定理就代替了直角三角形特有的畢氏定理。

30°

觀察右上圖, ΔABC 爲直角三角形,且AC=AD=AE=b,AB=c,BC=a,根據商高定理可得 $a^2=b^2+c^2$,即 $b^2+c^2-a^2=0$ 。在鈍角 ΔADB 與銳角 ΔAEB 中我們考慮 $b^2+c^2-DB^2$ 與 $b^2+c^2-BE^2$ 的 值, 從 圖 形 中 可 猜 出 $b^2+c^2-DB^2<0$ 而 $b^2+c^2-BE^2>0$,但進一步我們不禁會問這兩個值會不會與邊或角的三角函數有關呢?我們用以下的定理回答這個問題:

例子:設ΔABC中, \angle A=30°, \overline{AB} =6, \overline{AC} =7,請求出 \overline{BC} =?

[解法]:

作高BD,AD=6·cos30°,BD=6·sin30°⇒CD=7-6·cos30° 在ΔBDC中,∠BDC=90°

$$\Rightarrow \overline{BC}^2 = \overline{BD}^2 + \overline{CD}^2$$

上例的解法,對於∠A爲鈍角或直角時都會成立,我們將其寫成底下的定理。

餘弦定理:在 $\triangle ABC$ 中,若a,b,c爲 $\angle A$, $\angle B$, $\angle C$ 之對邊長,則

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos B$$

$$c^2=a^2+b^2-2ab\cdot\cos C$$

證明:在ΔABC中,依∠A爲銳角、直角、鈍角三種情形來說明: 設C點對AB邊或其延長線的垂足點爲D

(1) ZA為銳角

(2) ∠A為直角

(3) ZA為鈍角

 $\therefore BD = AB - AD = c - b \cdot \cos A$

 \therefore BD =AB = $c-b \cdot coA$ \therefore BD =AB +BD = $c+|b \cdot cosA|$ $=c-b\cdot\cos A$

由以上的討論可知:不論 $\angle A$ 爲銳角、直角、鈍角均可得 $\overline{BD} = c - b \cdot \cos A$ 。

又因爲
$$a^2 = \overline{BC}^2 = \overline{BD}^2 + \overline{CD}^2 = (c - b \cdot \cos A)^2 + (b \cdot \sin A)^2$$

$$= c^2 - 2bc \cdot \cos A + b^2 \cdot \cos^2 A + b^2 \cdot \sin^2 A$$

$$= c^2 + b^2 - 2bc \cdot \cos A$$

故 $a^2=b^2+c^2-2bc\cdot\cos A$,同理可證 $b^2=a^2+c^2-2ac\cdot\cos B$, $c^2=a^2+b^2-2ab\cdot\cos C$ 。

[畢氏定理的圖解]

歐幾里得證明了矩形ADGH面積=S₁, 矩形CDGF面積= S_2 ,因此可得 $S_3=S_1+S_2$ 。

據此可證明AC²=AB²+BC²。

S_1 S_2 \mathbf{E} A C D S_3 \mathbf{F} G H

[餘弦定理的圖解]

餘弦定理的面積證法:

 $c^2 = \mathbb{Q} + \mathbb{3} = (\mathbb{Q} + \mathbb{Q}) + (\mathbb{Q} + \mathbb{Q}) - 2 \times \mathbb{Q} = b^2 + a^2 - 2ab \cdot \cos \mathbb{C}$

結論:

(a)由餘弦定理,可知
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

(b)從(a)可知
$$\angle A=90^{\circ} \Leftrightarrow a^2=b^2+c^2$$
 $\angle A<90^{\circ} \Leftrightarrow a^2< b^2+c^2$ $\angle A>90^{\circ} \Leftrightarrow a^2>b^2+c^2$

[**例題5**] 在ΔABC 中已知 sinA:sinB:sinC= 4:5:7, 則求 cosC = ? sinC=?

Ans:
$$\frac{-1}{5} \cdot \frac{2\sqrt{6}}{5}$$

- (練習7) $\triangle ABC$ 中, $\overline{AB}=3$, $\overline{AC}=4$, $\angle A$ 角度如下,試分別求出 \overline{BC} 之長。 (1) ∠A=60° (2) ∠A=90° (3) ∠A=138° 已知 cos42°=0.7431 Ans: $(1)\sqrt{13}(2)5(3)6.54$
- (練習8) 池塘旁有 B,C 兩點,小明想知道 B,C 兩點間的距離,他採用底下兩種

方法,試根據所得資料求出BC距離?(兩者所在地點可能不同)

法一:

他走到遠處A點,並量得∠BAC=60°, AC=7m

AB=10m,請問BC=?

法二:

他走到遠處 A 點,並測得∠ACB=60°,∠ABC=75°

 \overline{AB} =10m,請問 \overline{BC} =? Ans:(1) $\sqrt{79}$ (2) $\frac{10\sqrt{6}}{3}$

10m

A 60°

(練習9) 在 Δ ABC中,若a,b,c分別代表 Δ ABC的三邊長 \overline{BC} 、 \overline{CA} 、 \overline{AB} 之長。 (1)試證: $a=b\cdot\cos C+c\cdot\cos B$, $b=a\cdot\cos C+c\cdot\cos B$, $c=a\cos B+b\cos A$

(2)利用(1)去證明: $a^2=b^2+c^2-2bc\cos A$

- (練習10) $\triangle ABC$ 中,若(a+b+c)(a+b-c)=3bc,則 $\angle C=$ _____。
- (練習11) $\triangle ABC$ 中,若 $\sin A: \sin B: \sin C = \sqrt{2} : 2:(\sqrt{3} 1)$,則 $\angle B = \underline{\hspace{1cm}} \circ Ans: 135^{\circ}$

(練習12) 設a,b,c爲ΔABC的三邊長且滿足 $(a-2b+c)^2+(3a+b-2c)^2=0$,若 θ 爲ΔABC 的最大內角,求 $\cos\theta=$ ____。 Ans: $\frac{-1}{2}$

(丁)正餘弦定理的應用

- (1)解三角形:
- (a)三角形的全等性質有SSS、SAS、AAS、ASA、斜股性質,我們可以利用正 餘弦定理來解出唯一的三角形。
- (b)SSA型的討論: ΔABC 中,若已知a,b及 $\angle A$

[想法]:設 $\overline{AC}=b$,利用尺規在 $\angle A$ 的邊 \overrightarrow{AX} 上做出B點使得 $\overline{BC}=a$ 。想要找出另一個頂點B,則圓規打開的半徑大小a,一定要比頂點C到 \overrightarrow{AX} 的距離大才有交點。

 (1°) \angle A 爲銳角時,頂點C到 \overrightarrow{AX} 的距離 $h=b\cdot\sin A \circ a < h$ 時,找不到B點 \Rightarrow 無解。(如圖一)

a=h時,找到唯一一點B⇒恰有一解 (如圖二)

h<a

h<a

方兩個B點 ⇒有兩解 (如圖三)

b ≤ a時,找到唯一一點 $B \Rightarrow$ 恰有一解 (如圖四)

 $(2^{\circ})\angle A$ 爲鈍角時,頂點C到 \overrightarrow{AX} 的距離=b $a \le b$ 時,找不到B點 \Rightarrow 無解。(如圖五)

a>b時,找到唯一一點B⇒恰有一解 (如圖六)

[**例題**6] 【已知三邊⇒求三角⇒已知SSS解三角形】

 \triangle ABC中, $a=2\sqrt{3}$, $b=2\sqrt{2}$, $c=\sqrt{6}-\sqrt{2}$,試求三個內角。 Ans: \angle A=120°, \angle B=45°, \angle C=15°

[例題7] 【已知兩邊夾角SAS⇒解三角形求全部邊角】

設 \triangle ABC中, \overline{AC} =2, \overline{AB} = $\sqrt{3}$ +1, \angle A=30°,試求 \overline{BC} , \angle B, \angle C。Ans: \overline{BC} = $\sqrt{2}$, \angle B=45°, \angle C=105°

[**例題8**] 【已知二邊一對角⇒即知SSA⇒解三角形】

已知 $\triangle ABC$ 中, \overline{AC} =15, \overline{AB} =15 $\sqrt{3}$, $\angle B$ =30°,

 $4 = 7 \overline{BC} = ?$ Ans : $\angle A = 90^{\circ}$, $\overline{BC} = 30$; $\angle A = 30^{\circ}$, $\overline{BC} = 15$

[**例題9**] 【已知一邊兩角求邊與角⇒ASA】

$$\triangle$$
ABC 中, \angle A=45°, \angle B=60°, \overline{BC} =7,求 \overline{AB} 及 \overline{AC} 之長。(sin75°= $\frac{\sqrt{6+\sqrt{2}}}{4}$)
Ans: \overline{AB} = $\frac{7}{2}$ ($\sqrt{3}$ +1), \overline{AC} = $\frac{7}{2}$ $\sqrt{6}$

(練習13) 在下列各條件中,解三角形 ABC。

(1)
$$a=1,b=2,\angle A=60^\circ$$
 Ans : (1)無解(2) $c=\sqrt{3}$, $B=90^\circ,C=60^\circ$ (2) $a=1,b=2,\angle A=30^\circ$ (3) $c=\sqrt{6}+\sqrt{2}$, $B=45^\circ,C=75^\circ$ (3) $a=2\sqrt{3}$, $b=2\sqrt{2}$, $\angle A=60^\circ$ (4)有兩組解① $c=\sqrt{3}+1$, $B=45^\circ$, $c=105^\circ$ (4) $a=\sqrt{2}$, $b=2$, $\angle A=30^\circ$ ② $c=\sqrt{3}-1$, $B=135^\circ$, $c=15^\circ$

- (練習14) 由下列條件解 $\triangle ABC$,何者恰有一解?(A) $\angle A=40^\circ$, $\angle B=60^\circ$, $\angle C=80^\circ$ (B) a=2,b=4,c=6 (C) a=1,b=2, $\angle A=30^\circ$ (D) a=1,b=3, $\angle A=30^\circ$ (E) a=1,b=4, $\angle C=40^\circ$ Ans:(C)(E)
- (練習15) $\triangle ABC$ 中,AB=1, $AC=\sqrt{3}$, $\angle A=30^{\circ}$,求BC=? , $\angle B=?$ Ans: 1,120 $^{\circ}$
- (練習16) $\triangle ABC$ 中,設c=8, $\angle A=105^{\circ}$, $\angle B=45^{\circ}$,求b=? Ans: $8\sqrt{2}$
 - (2)求三角形的面積:
 - (a)Heron公式

設ΔABC中,
$$a,b,c$$
分別爲 \angle A, \angle B, \angle C之對邊長,令 $s=\frac{a+b+c}{2}$,則 $S_{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$ 。

[證明]:由餘弦定理,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\Rightarrow S_{ABC} = \frac{1}{2}ac \cdot \sin B = \frac{1}{2}ac \cdot \sqrt{1 - \cos^2 B}$$

$$= \frac{1}{2}ac \sqrt{1 - (\frac{a^2 + c^2 - b^2}{2ac})^2}$$

$$= \frac{1}{2}ac \cdot \frac{1}{2ac} \cdot \sqrt{(2ac)^2 - (a^2 + c^2 - b^2)^2}$$

$$= \frac{1}{4}\sqrt{[(a+c)^2 - b^2][b^2 - (a-c)]^2}$$

$$= \frac{1}{4} \sqrt{(a+c+b)(a+c-b)(b+a-c)(b-a+c)}$$

$$= \frac{1}{4} \sqrt{(2s)(2s-2b)(2s-2c)(2s-2a)}$$

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

(b)三角形 ABC 的面積= *r·s* (*r* 爲三角形 ABC 內切圓的半徑) [證明]

三角形 ABC 的面積

$$=\Delta$$
ABI+ Δ BCI+ Δ CAI
 $=\frac{1}{2}c \cdot r + \frac{1}{2}a \cdot r + \frac{1}{2}b \cdot r$
 $=\frac{1}{2}(a+b+c) \cdot r$
 $= r \cdot s$

三角形 ABC 的面積= $\frac{1}{2}$ 底×高 $= \frac{1}{2} bc \sin A(\frac{1}{2} \text{ 兩邊乘積×夾角的正弦値})$ $= \sqrt{s(s-a)(s-b)(s-c)} s=$ 周長之半 $= \frac{abc}{4R} (R 爲三角形 ABC 外接圓的半徑)$ $= r \cdot s \quad (r 爲三角形 ABC 內切圓的半徑)$

(練習17) 已知 $\triangle ABC$ 之三邊長分別為 4,6,8,則 (1) $\triangle ABC$ 的面積=?(2)邊長 6 所對應的高=? (3) $\triangle ABC$ 的內切圓半徑=?(4) $\triangle ABC$ 的外接圓半徑=?

Ans:
$$(1)3\sqrt{15}$$
 $(2)\sqrt{15}$ $(3)\frac{\sqrt{15}}{3}$ $(4)\frac{16\sqrt{15}}{15}$

(練習18) 有一凸多邊形ABCD,若 \overline{AB} =2, \overline{BC} =6, \overline{CD} =4, \overline{BD} =6, \angle ABD=30°,則 此四邊形的面積=? Ans:3+8 $\sqrt{2}$

(3)三角形或多邊形的邊角計算:

[例題10] 三角形的中線定理

三角形 ABC 中,設 AB=c,BC=a,CA=b,D 爲 BC 之中點,

試證:
$$\overline{AB}^2 + \overline{AC}^2 = 2\overline{AD}^2 + \frac{1}{2}\overline{BC}^2$$
。

[**例題**11] 已知圓內接四邊形 ABCD 的各邊長爲AB =1, BC =2, CD =3, AD =4,

則(1)AC=? (2)sin ∠ABC=? (3)ABCD的面積

Ans:
$$(1)\sqrt{\frac{55}{7}}$$
 $(2)\frac{2\sqrt{6}}{7}$ $(3)2\sqrt{6}$

[**例題**12] ΔABC 中, $\angle A$ 之內角平分線交BC 於D,AB=3,AC=6, $\angle A=120^\circ$, 則AD=____;CD=____。 Ans:2; $2\sqrt{7}$

[**例題13**] 圓內接四邊形ABCD中,AB=5,BC=12,AC=13,∠A=120°,

則 \overline{BD} =? Ans: $\frac{13\sqrt{3}}{2}$

[例題14] AABC 中若滿足以下條件則其形狀爲何?

(1)2cosBsinA=sinC (2) $a \cdot \cos A - b \cdot \cos B + c \cdot \cos C = 0$

Ans:(1)等腰三角形(2)直角三角形

(練習19) 設ΔABC中, AB=15, BC=20, CA=10, AD 爲∠A 的分角線, 試求 BD=?

AD= ? Ans:BD=12 , $AD=3\sqrt{6}$ (提示:可以利用內分比性質)

(練習20) 設 \overline{AM} 爲 ΔABC 上 \overline{BC} 的中線,請證明:

$$\overline{AM}^2 = \frac{1}{4}(b^2 + c^2 + 2bc\cos A) \circ$$

(練習21) 如右圖,試求 \overline{AD} =? Ans: $\frac{\sqrt{79}}{2}$

(練習22) $\triangle ABC$ 中, $\angle A=75^{\circ}$, $\overline{AB}=2\sqrt{6}$, $\overline{AC}=2$,D在 \overline{BC} 上且 $\angle BAD=30^{\circ}$, 求 $\overline{AD}=$? Ans: $\sqrt{6}$

(練習23) 證明:平行四邊形 ABCD中,對角線平方和=四個邊的平方和。

(練習24) 圓內接四邊形ABCD, $\overline{AB} = \overline{AD} = a$, $\angle C = 90^{\circ}$, $\angle D = 105^{\circ}$,求對角線 $\overline{AC} = ?$ Ans: $\frac{(\sqrt{3}+1)a}{2}$ (sin $105^{\circ} = \frac{\sqrt{6}+\sqrt{2}}{4}$)

(練習25) 如右圖, $\triangle ABC$ 中, $\overline{AB} = 6,\overline{AC} = 10,\angle BAC = 120^{\circ}$,

(練習26) 設ΔABC滿足下列條件,試分別決定其形狀:

 $(1)\sin^2 A + \sin^2 B < \sin^2 C$ $(2)\cos B \cdot \sin C = \sin B \cdot \cos C$

Ans:(1)鈍角三角形 (2)等腰三角形

綜合練習

- (1) 一汽船在湖上沿直線前進,有人儀器在岸上先測得汽艇在正前方偏左 50°, 距離 200 公尺, 一分鐘後, 於原地再測, 知汽艇到正前方偏右 70°, 距離 300 公尺, 那麼汽艇再這一分鐘內行駛了 公尺。
- (2) 在 Δ ABC中,已知 \overline{BC} =1, \sin A $<\sin$ B,且 \sin A與 \sin B爲 $8x^2$ - $4\sqrt{3}$ x+1=0的兩根,則 Δ ABC的外接圓半徑=?
- (3) 如圖,設每一小格皆爲正方形,求 $\cos\theta$ =?

(4) $\triangle ABC$ 中, $a=2\sqrt{3}$, $b=2\sqrt{2}$, $c=\sqrt{6}-\sqrt{2}$,試求 $\angle A$ 。

- (5) 已知 $\triangle ABC$ 中, \overline{AC} =2, \overline{BC} = $\sqrt{6}$ + $\sqrt{2}$, $\angle A$ =105°,則 \overline{AB} =?
- (6) $\triangle ABC$ 中,設 a=3,b=4, $\tan A=\frac{3}{4}$,求 c=?
- (7) 設 \triangle ABC之三高為 h_a =6, h_b =4, h_c =3,則求最小內角之餘弦為____;最小邊長=____。
- (8) 圓內接四邊形ABCD,ĀB=5,∠ADC=105°,∠DCB=90°,∠ABD=60°, 求對角線BD、ĀC的長度。
- (9) 在ΔABC中,∠ABC=75°,∠ABD=30°, \overline{AB} =1, \overline{BC} = $\sqrt{2}$,則 \overline{BD} =?
- (10) $\triangle ABC$ 中, $\angle A=60^{\circ}$, $\overline{AB}=15$, $\overline{AC}=24$,則 $\angle A$ 的外角平分線 \overline{AD} 長爲多少?
- (11) 如圖, $\overline{OA}=a$, $\overline{OB}=b$, $\overline{OC}=c$, $\angle AOC=\angle BOC=30^{\circ}$, 試證 $\frac{1}{a}+\frac{1}{b}=\frac{\sqrt{3}}{c}$ 。

- (12) 圓內接四邊形ABCD,已知AD=5,BC=5,CD=3,∠BCD=120°, 則AB=?
- (13) 如右圖, \overline{AD} = 4 ,B,C 爲以 \overline{AD} 爲直徑的半圓上的二點,且 \overline{AB} = \overline{BC} = 1 ,則 \overline{CD} =?

- (15) 已知四邊形 ABCD中, \overline{AB} = 8, \overline{CD} = 8, \overline{AD} = 3 且 $\angle ABC$ = $\angle ADC$ = 60° 試求 \overline{BC} 之長。
- (16) 已知 $\triangle ABC$ 三邊長分別為 \overline{AB} =7, \overline{BC} =5, \overline{AC} =3,延長 \overline{BC} 至 D,如右圖所示,使得 \overline{CD} =2,則 \overline{AD} =?

(17) 如圖,三角形 \overline{ABC} 之三邊長為 \overline{AB} = 7, \overline{BC} = 8, \overline{CA} = 9,若 \overline{ABDE} , \overline{ACFG} 皆為正方形,

則**EG** =____。

- (18) 在ΔABC 中之三邊長分別為 11,13,20,則此三角形內切圓半徑為____;外接圓 半徑為。。
- (20) \triangle ABC 中滿足 $a \cos A = b \cos B$,請問此三角形之形狀爲何?
- (21) $\triangle ABC$ 中,設AB=c,BC=a,CA=b,試證下列等式:

(a) $a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0$

(b)
$$\frac{\sin^2 B - \sin^2 C}{b^2 - c^2} = \frac{\sin^2 A}{a^2}$$

- $(c)(b-c)\sin A+(c-a)\sin B+(a-b)\sin C=0$
- $(d)a(b \cdot \cos C b \cdot \cos B) = b^2 c^2$
- (22) $\frac{1}{2}a = 3 + t^2$, $b = 3 2t t^2$, c = 4t
 - (a)若a,b,c均爲下數,求t的範圍。
 - (b)若a,b,c爲 Δ ABC的三邊長,求t的範圍。
 - (c) 若a,b,c爲 Δ ABC的三邊長,求最大角的度量。
- (23) 若 15-x、19-x、23-x 爲一個鈍角三角形的三邊長, 求 x 的範圍。
- (24) 設∠BAC=60°, P為其內部一點且AP =10, 又P對於AB、AC的對稱點分別為Q、R,則QR=?

進階問題

- (25) $\triangle ABC$ 中,周長爲 20, $\angle A=60^{\circ}$,外接圓的半徑爲 $R=\frac{7\sqrt{3}}{3}$ 則求各邊的邊長a,b,c,又三角形的內切圓半徑爲何?
- (26) 設 \triangle ABC之三邊長爲 $\sqrt{3}$ x, y ,且邊長 $\sqrt{3}$ 之對角爲 60° ,試求x+y的範圍。
- (27) 設凸四邊形 ABCD 之對角線 AC=p,BD=q,兩對角線之交角爲 θ 。
 - (a)試證:凸四邊形 ABCD 之面積= $\frac{1}{2} pq \sin\theta$
 - (b)若 AC+BD=10,則凸四邊形 ABCD 面積之最大值爲何?

(28) \triangle ABC 中,設 a=2,b=1 (a)當 \triangle ABC 面積最大時,求 c。(b)當 \angle B 最大時,求 c。

(29) 設ABCD為半圓內接四邊形, \overline{AD} 為直徑長為d,若 $\overline{AB}=a$, $\overline{BC}=b$, $\overline{CD}=c$,試證明:d為方程式 $x^3-(a^2+b^2+c^2)x-2abc=0$ 的一根。

(31) 如圖,設 Δ ABC 之內切圓半徑爲 r,外接圓半徑爲 R, 內切圓切三邊於 P,Q,R,則

 ΔPQR 的面積 ΔABC 的面積 之值爲何? $\Delta Ans: \frac{r}{2R}$

- (32) 設圓內接四邊形ABCD四邊之長分別為 $\overline{AB}=a$, $\overline{BC}=b$, $\overline{CD}=c$, $\overline{AD}=d$,試證: $(a)\overline{AC}^2 = \frac{(ac+bd)(ad+bc)}{ab+cd} \circ (b)\overline{BD}^2 = \frac{(ac+bd)(ab+cd)}{ad+bc} (c)\overline{AC} \cdot \overline{BD} = ac+bd \circ$
- (33) 已知三角形 ABC 的邊AB=9,AC=8,∠A=40°,在AB上取一點 D,在AC上取一點 E而DE把△ABC 的面積等分爲二,試問:若要求DE之長度最短,AD及AE之值應爲何?

綜合練習解答

- **(1)** $100\sqrt{19}$
- (2) $\sqrt{3} + 1$
- (3) $\frac{-\sqrt{2}}{2}$
- **(4)** $\angle A = 120^{\circ}$
- $(5) \quad \overline{AB} = 2\sqrt{2}$
- (6) $5 \vec{x}_{5}^{7}$
- (7) $\frac{7}{8}$; $\frac{16 \cdot \sqrt{15}}{15}$
- (8) $\overline{BD} = 10 \cdot \overline{AC} = \frac{5(\sqrt{6} + \sqrt{2})}{2}$
- **(9)** $\frac{\sqrt{3}+1}{3}$
- **(10)** 40
- (11) [提示:考慮 $\triangle AOB = \triangle AOC + \triangle BOC$,再利用三角形的面積公式,即可得證] ~2-3-17~

- **(12)** 8
- (13) $\frac{7}{2}$
- (14) (B)
- (15) 3或5
- **(16)** $\sqrt{7}$
- **(17)** 14
- (18) $3, \frac{65}{6}$
- **(19)** $21\sqrt{5}$
- (20) 等腰或直角三角形[提示:利用 $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, $\cos B = \frac{a^2 + c^2 b^2}{2ac}$ 代入 $a \cos A = b \cos B$,化簡可得 $(a^2 b^2)(c^2 a^2 b^2) = 0$]
- (21) (a)(b)(c)利用正弦定理將 $\sin A \cdot \sin B \cdot \sin C$ 化成 $\frac{a}{2R} \cdot \frac{b}{2R} \cdot \frac{c}{2R}$ 。代入式子中運算。(d)利用餘弦定理。
- (22) (a)0 < t < 1 (b)0 < t < 1 (c) 120°
- **(23)** 3<*x*<11
- **(24)** 10√3 [提示∠QAR=120°]
- (26) $\sqrt{3} < x + y \le 2\sqrt{3}$ [提示:根據餘弦定理= $x^2 + y^2 - xy = (x + y)^2 - 3xy$ $\Rightarrow (x + y)^2 = 3(xy + 1)$,因爲 $xy = x^2 + y^2 - 3 \ge 2xy - 3 \Rightarrow xy \le 3 \Rightarrow (x + y)^2 = 3(xy + 1) \le 12$]
- (27) (b) $\frac{50}{4}$ [提示:利用 $pq \le \frac{1}{4} (p+q)^2$]
- (28) $(a)\sqrt{5}$ $(b)\sqrt{3}$
- (29) [提示:如下圖, $\overline{AC}^2=a^2+b^2-2ab\cos B=c^2+d^2-2cd\cos D$,因爲 $\angle ACD=90^\circ$, $\cos D=\frac{c}{d}$,代入前面的式子化簡即可得證]
- (**30**) [提示:如(31)題圖,只需證明AR=s-a即可]
- (31) [提示:如圖, $\Delta PQR = \Delta RQI + \Delta RPI + \Delta PQI = \frac{1}{2}r^2\sin(180^\circ A) + \frac{1}{2}r^2\sin(180^\circ B) + \frac{1}{2}r^2\sin(180^\circ C) = \frac{1}{2}r^2(\sin A + \sin B + \sin C) = \frac{1}{4R}r^2(a + b + c) = \frac{r^2s}{2R}, \Delta ABC = rs$
- (32) [提示:利用 $\overline{AC}^2 = a^2 + b^2 2ab\cos B = c^2 + d^2 2cd\cos D$,而且 $\angle B + \angle D = 180^\circ$]
- (33) $\overline{AD} = \overline{AE} = 6$ [提示: 設 $\overline{AD} = x$, $\overline{AE} = y$, $\Delta ADE = \frac{1}{2}xy\sin 40^\circ = \frac{1}{2}$ $\Delta ABC = \frac{1}{2}(\frac{1}{2})$

×9×8×sin40°) ⇒xy=36。又因為

 $\overline{\mathrm{DE}}^2 = x^2 + y^2 - 2xy \cos 40^\circ \ge 2xy - 2xy \cos 40^\circ = 72(1 - \cos 40^\circ)$ 等號成立時, $x = y = 6 \circ]$