

<110> Laus, Reiner
Gold, Mitchell H.
Madhusudan, Peshwa
Pickering, Grant
Kylstra, Jelle

<120> Immunotherapeutic Compositions and Methods for the Treatment of Moderately to Well-differentiated Cancers

<130> 20642/1203635-US2

<140> US 10/666,122
<141> 2003-09-19

<150> US 60/412,271
<151> 2002-09-20

<150> US 60/475,335
<151> 2003-06-02

<160> 6

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 386
<212> PRT
<213> Homo sapiens

<400> 1
Met Arg Ala Ala Pro Leu Leu Leu Ala Arg Ala Ala Ser Leu Ser Leu
1 5 10 15
Gly Phe Leu Phe Leu Leu Phe Phe Trp Leu Asp Arg Ser Val Leu Ala
20 25 30
Lys Glu Leu Lys Phe Val Thr Leu Val Phe Arg His Gly Asp Arg Ser
35 40 45
Pro Ile Asp Thr Phe Pro Thr Asp Pro Ile Lys Glu Ser Ser Trp Pro
50 55 60
Gln Gly Phe Gly Gln Leu Thr Gln Leu Gly Met Glu Gln His Tyr Glu
65 70 75 80
Leu Gly Glu Tyr Ile Arg Lys Arg Tyr Arg Lys Phe Leu Asn Glu Ser
85 90 95
Tyr Lys His Glu Gln Val Tyr Ile Arg Ser Thr Asp Val Asp Arg Thr
100 105 110
Leu Met Ser Ala Met Thr Asn Leu Ala Ala Leu Phe Pro Pro Glu Gly
115 120 125
Val Ser Ile Trp Asn Pro Ile Leu Leu Trp Gln Pro Ile Pro Val His
130 135 140
Thr Val Pro Leu Ser Glu Asp Gln Leu Leu Tyr Leu Pro Phe Arg Asn
145 150 155 160
Cys Pro Arg Phe Gln Glu Leu Glu Ser Glu Thr Leu Lys Ser Glu Glu
165 170 175
Phe Gln Lys Arg Leu His Pro Tyr Lys Asp Phe Ile Ala Thr Leu Gly
180 185 190
Lys Leu Ser Gly Leu His Gly Gln Asp Leu Phe Gly Ile Trp Ser Lys
195 200 205
Val Tyr Asp Pro Leu Tyr Cys Glu Ser Val His Asn Phe Thr Leu Pro

210	215	220
Ser Trp Ala Thr Glu Asp	Thr Met Thr Lys Leu Arg Glu	Leu Ser Glu
225	230	235
Leu Ser Leu Leu Ser Leu Tyr Gly Ile His Lys Gln Lys Glu	Lys Ser	240
245	250	255
Arg Leu Gln Gly Gly Val	Leu Val Asn Glu Ile Leu Asn His	Met Lys
260	265	270
Arg Ala Thr Gln Ile Pro Ser Tyr Lys	Lys Leu Ile Met Tyr	Ser Ala
275	280	285
His Asp Thr Thr Val Ser Gly	Leu Gln Met Ala Leu Asp Val	Tyr Asn
290	295	300
Gly Leu Leu Pro Pro Tyr Ala Ser Cys His	Leu Thr Glu Leu Tyr	Phe
305	310	315
Glu Lys Gly Glu Tyr Phe Val Glu Met Tyr Tyr Arg Asn Glu	Thr Gln	320
325	330	335
His Glu Pro Tyr Pro Leu Met Leu Pro Gly Cys Ser Pro	Ser Cys Pro	
340	345	350
Leu Glu Arg Phe Ala Glu Leu Val Gly Pro Val Ile Pro	Gln Asp Trp	
355	360	365
Ser Thr Glu Cys Met Thr Thr Asn Ser His Gln Gly Thr	Glu Asp Ser	
370	375	380
Thr Asp		
385		

<210> 2
<211> 3089
<212> DNA
<213> Homo sapiens

<400> 2	
agcagttcct cctaactcct gccagaaaaca gcttcctca acatgagagc tgcacccctc	60
ctcctggcca gggcagcaag ccttagcctt ggcttcttgt ttctgccttt tttctggcta	120
gaccgaagtgt tactagccaa ggagttgaag ttttgactt tggtgtttcg gcatggagac	180
cgaagtccta ttgacacctt tcccactgac cccataaagg aatcctcatg gccacaagga	240
tttggccaac tcaccagct gggcatggag cagcattatg aacttggaga gtatataaga	300
aagagatata gaaaattctt gaatgagttc tataaacatg aacaggttta tattcgaagc	360
acagacgttg accggacttt gatgagtgtc atgacaaacc tggcagccct gtttccccca	420
gaaggtgtca gcatctggaa tcctatccca ctctggcagc ccatacccggt gcacacagtt	480
cctctttctg aagatcagtt gctataccctg ccttcagga actgccctcg ttttcaagaa	540
cttgagagtg agacttggaa atcagagggaa ttccagaaga ggctgcaccc ttataaggat	600
tttatagcta ccttggaaa actttcaga ttacatggcc aggaccttt tggaaatttgg	660
agtaaaagtct acgacccttt atattgttag agtggtcaca atttcacttt accctcctgg	720
gccactgagg acaccatgac taagttgaga gaattgtcag aattgtccct cctgtccctc	780
tatggaattc acaaggcagaa agagaaatct aggctccaag ggggtgtcct ggtcaatgaa	840
atcctcaatc acatgaagag agcaactcag ataccaagct aaaaaaaact tatcatgtat	900
tctgcgcatg acactactgt gagtggcccta cagatggcgc tagatgttta caacggactc	960
cttcctccct atgcttcttgc ccaacttgcacg gaattgtact ttgagaaggg ggagtacttt	1020
gtggagatgt actaccggaa tgagacgcacg cacgagccgt atccctctat gctacctggc	1080
tgcagcccca gctgtccctt ggagaggtt gctgagctgg ttggccctgt gatccctcaa	1140
gactggtcca cggaggtgtat gaccacaaac agccatcaag gtactgagga cagtagat	1200
tagtgtgcac agagatctct gtagaaagag tagtgcctt ttctcaggc agatgtatgt	1260
ttgagaacat actttggcca ttacccccc gctttgagga aaatggctt tggatgatta	1320
tttatatgttt tagggacccc caacctcagg caattcctac ctcttcaccc gaccctgccc	1380
ccacttgcca taaaacttag ctaagtttg ttttgtttt cagcgttaat gtaaaggggc	1440
agcagtggcca aaatataatc agagataaag cttaggtcaa agttcataga gttccatga	1500
actatatgac tggccacaca gatctttt tattaaagga ttctgagatt ttgcttgagc	1560
aggatttagat aagtctgttc ttaaaatttc tgaaatggaa cagatttcaa aaaaaattcc	1620

cacaatctag	ggtgggaaca	aggaaggaaa	gatgtgaata	ggctgatggg	aaaaaaacca	1680
atttacccat	cagttccagc	cttctctcaa	ggagaggcaa	agaaaggaga	tacagtggag	1740
acatctggaa	agtttctcc	actggaaaac	tgctactatc	tgtttttata	tttctgttaa	1800
aatatatgag	gctacagaac	taaaaattaa	aaccttttg	tgtcccttgg	tcctggaca	1860
tttatgtcc	ttttaaagaa	acaaaaatca	aacttacag	aaagatttaa	tgtatgtaat	1920
acatatagca	gctctgaag	tatataatc	atagcaaata	agtcatctga	tgagaacaag	1980
ctatttgggc	acaacacatc	aggaaagaga	gcaccacgtg	atggagttc	tccagaagct	2040
ccagtataa	gagatgtga	ctctaaagtt	gatttaaggc	cagggatgtt	ggtttacgcc	2100
tataatccca	gcattttggg	actccgaggt	gggcagatca	tttgagctca	ggagctcaag	2160
atcagcctgg	gcaacatgtt	gaaaccttgc	ctctacataa	aatacaaaaa	cttagatggg	2220
catgggtctg	tgtgcctata	gtccactact	tgtggggcta	aggcaggagg	atcacttgag	2280
ccccggaggt	cgaggctaca	gtgacccaag	agtgcactac	tgtactccag	ccagggcaag	2340
agagcgagac	cctgtctcaa	taaataaata	aataaataaa	taaataaata	aataaaaaca	2400
aagttgatta	agaaaggaag	tataggccag	gcacagtggc	tcacacctgt	aatccttgca	2460
ttttgaagg	ctgaggcagg	aggatcaatt	taggccttgt	gtgttcaaga	ccagcctgg	2520
caacatagt	agacactgtc	tctaccaaaa	aaaggaagga	agggacacat	atcaaactga	2580
aacaaaatta	gaaatgtaat	tatgttatgt	tctaagtgcc	tccaagttca	aaacttattg	2640
gaatgtttag	agtgtggta	cgaaatacgt	taggaggaca	aaaggaatgt	gtaagtctt	2700
aatgccata	tcttcagaaa	acctaagcaa	acttacaggt	cctgctgaaa	ctgcccactc	2760
tgcaagaaga	aatcatgata	tagtttcca	tgtggcagat	ctacatgtct	agagaacact	2820
gtgctctatt	accattatgg	ataaagatga	gatggttct	agagatggtt	tctactggct	2880
gccagaatct	agagcaaagc	catccccctt	cctggtttgt	cacagaatga	ctgacaaaaga	2940
catcgattga	tatgcttctt	tgtgttattt	ccctcccaag	taaatgtttg	tccttgggtc	3000
cattttctat	gcttgaact	gtcttctagc	agtgagccaa	atgtaaaata	gtgaataaaag	3060
tcattattag	gaagttcaaa	aaaaaaaaaa				3089

<210> 3
 <211> 144
 <212> PRT
 <213> Homo sapiens

<400> 3
 Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile
 1 5 10 15
 Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His
 20 25 30
 Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp
 35 40 45
 Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe
 50 55 60
 Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys
 65 70 75 80
 Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met
 85 90 95
 Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser
 100 105 110
 Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys
 115 120 125
 Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu
 130 135 140

<210> 4
 <211> 767
 <212> DNA
 <213> Homo sapiens

<400> 4

cgaggatgt ggctgcagag cctgctgctc ttggcactg tggcctgcag catctctgca	60
cccccggct cccccagccc cagcacgcag ccctgggagc atgtaatgc catccaggag	120
gcccggcgtc tcctgaacct gagtagagac actgctgctg agatgaatga aacagtagaa	180
gtcatctcag aaatgttga cctccaggag ccgacctgcc tacagaccgc cctggagctg	240
tacaaggcagg gcctgcgggg cagcctcacc aagctcaagg gccccttgac catgatagcc	300
agccactaca agcagcactg ccctccaacc ccggaaaactt cctgtgcaac ccagattatc	360
acctttgaaa gtttcaaaga gaacctgaag gactttctgc ttgtcatccc ctttactgc	420
tgggagccag tccaggagtg agaccggcca gatgaggctg gccaagccgg ggagctgctc	480
tctcatgaaa caagagctag aaactcagga tggtcatctt ggagggacca aggggtggc	540
cacagccatg gtgggagtgg cctggacctg ccctgggcca cactgaccct gatacaggca	600
tggcagaaga atggaaatat ttatactga cagaatcag taatatttat atatttat	660
ttttaaaaata ttattttatt tatttattta agttcatatt ccatatttat tcaagatgtt	720
ttaccgtaat aattattatt aaaaatatgc ttctaaaaaa aaaaaaaa	767

<210> 5
<211> 144
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab from human amino acids

<400> 5	
Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile	
1 5 10 15	
Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His	
20 25 30	
Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp	
35 40 45	
Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe	
50 55 60	
Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys	
65 70 75 80	
Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met	
85 90 95	
Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser	
100 105 110	
Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys	
115 120 125	
Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu	
130 135 140	

<210> 6
<211> 767
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in a lab from human nucleic acids

<400> 6	
cgaggatgt ggctgcagag cctgctgctc ttggcactg tggcctgcag catctctgca	60
cccccggct cccccagccc cagcacgcag ccctgggagc atgtaatgc catccaggag	120
gcccggcgtc tcctgaacct gagtagagac actgctgctg agatgaatga aacagtagaa	180
gtcatctcag aaatgttga cctccaggag ccgacctgcc tacagaccgc cctggagctg	240
tacaaggcagg gcctgcgggg cagcctcacc aagctcaagg gccccttgac catgatagcc	300
agccactaca agcagcactg ccctccaacc ccggaaaactt cctgtgcaac ccagattatc	360

accttgaaa gtttcaaaga gaacctgaag gactttctgc ttgtcatccc ctttgactgc	420
tgggagccag tccaggagtg agaccggcca gatgaggctg gccaagccgg ggagctgctc	480
tctcatgaaa caagagctag aaactcagga tggtcatctt ggagggacca aggggtgggc	540
cacagccatg gtgggagtgg cctggacctg ccctgggcca cactgaccct gatacaggca	600
tggcagaaga atggaaatat ttatactga cagaaatcag taatatttat atatttatat	660
tttaaaata ttatattatt tatttattta agttcatatt ccatatttat tcaagatgtt	720
ttaccgtaat aattattatt aaaaatatgc ttctaaaaaa aaaaaaaa	767