

Introdução à Engenharia Química e Bioquímica

Aula 13
MIEQB
ano lectivo de 2020/2021

Na produção de amoníaco segundo a reacção em fase gasosa,

$$N_2 + 3H_2 \rightarrow 2NH_3$$

a alimentação ao processo contém, sistematicamente, uma pequena porção de matéria não reactiva, árgon ou metano, genericamente designada por inertes (I). O processo está representado na figura.

Sabendo que a conversão por passe do azoto é de 25% e que todo o amoníaco produzido no reactor é retirado do sistema via corrente 4, calcule:

- a) A conversão global
- b) A razão de purga
- c) A razão de reciclo

<u>Dados</u>: (composições molares) Alimentação ao processo: 24.75% N₂; 74.25% H₂ e 1% I; Inertes na corrente de recirculado: 12.5%

- Ler bem o enunciado e colocar no diagrama e na tabela tudo o que sabemos.
- Atenção que neste caso o N2 não é o inerte!
- Tão importante como sabermos as moles das espécies em cada corrente, é sabermos onde não as temos. Preencher os "zeros" na tabela!
- Conversão por passe é no reactor!
- Conversão é do reagente limitante, neste caso N2.
- Na conversão global temos de olhar para as correntes que entram e saem na fronteira do processo, neste caso correntes 1, 4 e 6.
 Atenção que no enunciado dizem que em 4 só sai amoníaco logo não tem reagente limitante.
- A purga está num nó de divisão logo composição de 6= composição de 5= composição de 7 (Atenção composição, NÃO moles!)

	1	2	3	4	5	6	7
N2				0			
H2				0			
inertes				0			
NH3	0	0			0	0	0
total							

A conversão por passe de N_2 é 25% (no reactor) por isso devemos tomar como Base Cálculo 100 moles de N_2 na corrente 2. **25 mol de N_2 reagem e vão converter-se no produto NH_3 (1:2).**

Assim, na corrente 3 haverá 75 moles de N_2 (que não reagiram). Para verificar a conversão de H_2 :

$(n_{H_2})_{convertidas}$	= 3 * 25 = 75 moles
$(n_{NH_3})_{formadas}$	= 2 * 25 = 50 <i>moles</i>

s		1	2	3	4	5	6	7
5	N2		100	75	0	7 5		
	H2				0			
	inertes				0			
	NH3	0	0	50	50	0	0	0
	total				50			

Balanço global aos inertes no sistema:

$$(n_{inertes})_1 = (n_{inertes})_4 + (n_{inertes})_6$$

$$(n_{inertes})_1 = (n_{inertes})_6$$

$$(x_{inertes})_1 * n_1 = (x_{inertes})_6 * n_6$$

Balanço global ao N2 no sistema:

$$(n_{N_2})_1 = (n_{N_2})_4 + (n_{N_2})_6 + (n_{N_2})_{convertidas}$$

Balanço global ao H2 no sistema:

$$(n_{H_2})_1 = (n_{H_2})_4 + (n_{H_2})_6 + (n_{H_2})_{convertidas}$$

Balanço global ao NH3 no sistema:

$$(n_{NH_3})_1 + (n_{NH_3})_{formados} = (n_{NH_3})_4 + (n_{NH_3})_6$$

NOTA: Atenção que neste caso não podem fazer simplesmente o balanço global n1=n6 + n4 porque como é um sistema reativo tinham de ter em conta o que foi globalmente produzido e consumido. Ver slides Aula 10.

Balanço global aos inertes no sistema: $0.01n_1 = 0.125n_6$

Balanço global ao N2 no sistema: $0.2475n_1 = x_6^{N_2}n_6 + 25$

4 equações

4 incógnitas

Balanço global ao H2 no sistema:

$$0.7425n_{1} = x_{6}^{H_{2}}n_{6} + 75$$

$$x_6^{N_2} + x_6^{H_2} + 0.125 = 1$$

$$n_1 = 108.8 mol$$

 $n_6 = 8.7 mol$
 $(x_{N_2})_6 = 0.22$
 $(x_{H_2})_6 = 0.655$

	1	2	3	4	5	6	7
N2	26.9	100	75	0	75	1.9	
H2	80.8			0		5.7	
inertes	1.1			0		1.1	
NH3	0	0	50	50	0	0	0
total	108.8			50		8.7	

Balanço ao N2 no nó de divisão:

$$n5 = n6 + n7 = 8.7 + n7$$

$$(x_{N_2})_5 = (x_{N_2})_6 = (x_{N_2})_7 = 0.22$$

Balanço ao N₂ $(x_{N_2})_5 n5 = (x_{N_2})_6 n6 + (x_{N_2})_7 n7$

$$n7 = 332.2$$

$$n5 = 340.9$$

Como sabemos as composições das correntes 5 e 7 sabemos as moles de cada espécie.

	Z		· - · Z · ·				
	1	2	3	4	5	6	7
N2	26.9	100	75	0	75	1.9	73.1
H2	80.8			0	223.3	5.7	217.6
inertes	1.1			0	42.6	1.1	41.5
NH3	0	0	50	50	0	0	0
total	108.8			50	340.9	8.7	332.2

Balanço ao nó de adição: n2 = n1 + n7

$$nH_2_2 = 80.8 + 217.6 = 298.4$$

$$n_{\text{inertes}} = 1.1 + 41.5 = 42.6 = n_{\text{inertes}} = n_{\text{inertes}} = 5$$

$$n_{\text{Total}} = 100 + 298.4 + 42.6 = 441$$

$$n_{\rm H_2} = iniciais (2)-consumidos=298.4 - (3 \times 25) = 223.4$$

_		<u> </u>	<u> </u>		<u>, </u>			
		1	2	3	4	5	6	7
	N2	26.9	100	75	0	75	1.9	73.1
	H2	80.8	298.4	223.4	0	223.3	5.7	217.6
	inertes	1.1	42.6	42.6	0	42.6	1.1	41.5
	NH3	0	0	50	50	0	0	0
	total	108.8	441	391	50	340.9	8.7	332.2

	1	2	3	4	5	6	7
N2	26.9	100	75	0	75	1.9	73.1
H2	80.8	298.4	223.4	0	223.3	5.7	217.6
inertes	1.1	42.6	42.6	0	42.6	1.1	41.5
NH3	0	0	50	50	0	0	0
total	108.8	441	391	50	340.9	8.7	332.2

$$(Conversão_global)_{N_2} = \frac{26,9-1,9}{26,9} * 100 = 92,9\%$$

$$(razão_purga) = \frac{n_6}{n_5} = 0,026$$

$$(razão_reciclo) = \frac{n_7}{n_1} = 3,1$$