

مدار منطقی و سیستم های دیجیتال (۲۵۷۴۳۲) (نیمسال ۲۰۰۰۰۱)

دكتر محمود تابنده

آخرین مهلت ارسال تا ۱۲/۱۶/۱۴۰۰

يروژه يايانترم (ثريا چرکس)

رفع مشکل کم آبی

برای حل این مشکل ،یک FSM با ۴ حالت طراحی کردیم که حالت های آن و نحوه طراحی هرکدام را در ادامه شرح خواهیم داد . همانطور که با خواندن صورت سوا مشخص می شود ، به طور کلی ۴ حالت داریم :

- حالتی که تانکر در حال پر شدن است
- حالتی که تانکر پر شده و باید تخلیه شود
- حالت اولیه که با زدن دکمه استارت ، سیستم شروع به کار میکند
- حالتی که با زدن دکمه ، سیستم توقف میکند (فرقی نمیکند که در حال پر شدن باشد یا خالی شدن)
- حال باید دید که هرکدام از حالت ها در چه شرایطی رخ میدهند تا بتوان به وسیله گیت های منطقی آن ها را اجرا کرد.

حالت صفر(∘S)

این حالت باید هنگامی رخ دهد که ما در \circ S هستیم و در توقف نیستیم یا در \circ S و کمینه مقدار آب هستیم. از طرفی برای آن کلیدی در نظر گرفتیم تا با زدن آن به حالت \circ C که همان توقف است برویم.

شكل ١: حالت اوليه

حالت پر کردن (S۱)

این حالت در دو صورت رخ میدهد: اگر ما در حالت ∘S باشیم و دکمه P زده شود ، تانکر باید شروع به پر شدن بکند . همچنین مادامی که ما در حالت S۱ هستیم و به بیشینه مقدار آب نرسیده ایم ، تانکر همچنان باید پر شود . پس در هرکدام از این ۲ صورت ، باید در حالت S۱ باقی بمانیم.

شکل ۲: پر شدن تانکر

حالت خالی شدن (S۲)

در صورتی که ما در حالت S۱ باشیم و به بیشینه مقدار برسیم یا در حالت S۲ باشیم و همجنان به کمینه مقدار ظرفیت تانکر نرسیده ایم ، باید حالت ۶۲ برقرار باشد و آب مخزن در حال کم شدن باشد . پس به طور کلی حالت ما به صورت زیر در می آید:

شکل ۳: خالی شدن تانکر

دكمه استارت(P)

برای جلوگیری از به مشکل برخوردن مدار در حالت آغاز ، باید حالتی را طراحی میکردیم تا مدار متوجه شود که الان شروع به کار کند یا از مقدار آن کاسته شده ، به کمینه رسیده و حالا مقدار آن صفر است.پس این بخش در حالی کار میکند که در ∘S هستیم و دکمه زده نشده یا در S۱ هستيم.

🛞 دانشگاه صنعتی شریف صفحه ۲ از ۵

شکل ۴: دکمه استارت

طراحی کلاک ها

برای بخش خالی و پر شدن تانکر ، طبق گفته سوال ، نیاز به دو کلاک با نسبت سرعت ۱ به ۲ داریم .برای مرتب تر بودن مدار ، در حالت کلی کلاکی را به صورت زیر طراحی کردیم:

شکل ۵: کلاک اصلی مدار

با توجه به شکل ، کلاک C۱ مخصوص حالات S۱ و S۰ و کلاک C۲ برای حالت S۲ است. با توجه به شکل زیر دوره تناوب C۲ نصف C۱ در نظر گرفته شده تا سرعت آن دو برابر باشد.

شکل ۶: دوره تناوب کلاک پر شدن

🍩 دانشگاه صنعتی شریف

شکل ۷: دوره تناوب کلاک خالی شدن

ورودی های شمارنده

تنها نکته مهم در به کار گیری از شمارنده تعیین مناسب کلاک است.کلاک باید در صورتی زده شود که کلاک مدار زده شده و در حالت ۵۰ نیستیم و همچنین در حالتی که در S۲ و کمینه ظرفیت تانکر نباشیم ، چون در غیر این صورت ، هنگامی که به کمینه ظرفیت رسیده ایم ، شمارنده قبل از توقف بار دیگر کار میکند و ظرفیت مخزن را ۱ واحد بیشتر از چیزی که خواستیم نشان میدهد.

شکل ۸: شمارنده

بیشینه و کمینه

برای طراحی مقدار بیشینه و کمینه مدار به صورتی که بتوان آن ها را توسط کاربر تعیین کرد ، منطق مشابهی به کار برده ایم. به این صورت که * گیت xnor را به * state logic و * خروجی شمارنده وصل کرده ایم، در این صورت تنها در صورتی که مقدار شمارنده با مقدار تعیین شده توسط کاربر برابر باشد ، خروجی دلخواه بیشینه یا کمینه را به ما می دهد.

🍩 دانشگاه صنعتی شریف

شكل ٩: مشخص كردن بيشينه ظرفيت تانكر

شکل ۱۰: مشخص کردن کمینه ظرفیت تانکر

مشكل مدار

با توجه به نحوه طراحی مدار ، مشکل هنگامی پیش می آید که مقدار کمینه و بیشینه برابر باشند . برای حل آن ساده ترین روش این است که به کلاک شمارنده حالتی اضافه کنیم تا در صورت برابر نبودن کمینه و بیشینه شروع به کار کند.

🔐 دانشگاه صنعتی شریف صفحه ۵ از ۵

