URI Online Judge | 1918

Viagem para Acapulco

Por Jadson José Monteiro Oliveira, Faculdade de Balsas 🔯 Brazil

Timelimit: 2

Após terem realizado uma grande viagem para Acapulco há algum tempo atrás, o moradores da vila fizeram uma grande reunião e decidiram se unir para viajar novamente para aquela linda cidade. Apesar de Seu Madruga ter tido uma grande sorte e ganhado a viagem passada com todas as despesas pagas, o gasto geral entre todos os moradores da vila foi gigantesco e dessa vez eles estão querendo economizar o máximo possível, ainda mais porque ninguém da vila ganhou a viagem paga novamente.

Acontece que eles foram informados por um desconhecido, que o melhor hotel da cidade (o mesmo que eles se hospedaram na viagem passada) estará com uma promoção por um tempo limitado, então como eles desejam economizar, estão querendo chegar a tempo de pegar a promoção.

Seu Barriga responsável por administrar o dinheiro gasto é um homem que entende bem de números e agora quer utilizar o poder da tecnologia para conseguir algumas informações úteis antes de realizar a viagem. Como ele já conhece suas habilidades como matemático e programador, ele contratou você para desenvolver um programa que dado todas as informações sobre as cidades e rotas disponíveis, a data e o horário que eles pretendem sair da vila e a data e o horário limite da promoção do hotel em Acapulco, informe se é possível chegar a Acapulco antes que a promoção termine, e qual a menor data e horário possível, ou se não é possível chegar a tempo de pegar a promoção.

Entrada

A primeira linha de entrada contém um único inteiro \mathbf{QT} ($1 \leq \mathbf{QT} \leq 100$), indicando a quantidade de casos de teste que vem a seguir. A primeira linha de cada caso de teste é composta por 2 inteiros \mathbf{N} ($2 \leq \mathbf{N} \leq 10^5$) e \mathbf{M} ($1 \leq \mathbf{M} \leq 3 \times 10^5$), representando respectivamente a quantidade de cidades e a quantidade de rotas que ligam essas cidades. A segunda linha de cada caso de teste é composta pela data e o horário que os moradores da vila pretendem sair e a terceira linha de cada caso é composta pela data e o horário limite que o hotel de Acapulco estará em promoção. As datas e os horários estão descritos na seguinte notação: "DD/MM/AAAA - hh:mm:ss", onde \mathbf{DD} ($1 \leq \mathbf{DD} \leq 31$) representa o dias do mês, \mathbf{MM} ($1 \leq \mathbf{MM} \leq 12$) representa o mês do ano, \mathbf{AAAA} (1970 $\leq \mathbf{AAAA} \leq 2100$) representa o ano, \mathbf{hh} ($0 \leq \mathbf{hh} \leq 23$) representa as horas, \mathbf{mm} ($0 \leq \mathbf{mm} \leq 59$) representa os minutos, \mathbf{ss} ($0 \leq \mathbf{ss} \leq 59$) representa os segundos. Seguem \mathbf{M} linhas, cada linha contêm 2 inteiros \mathbf{a} e \mathbf{b} e uma data, indicando que existe uma rota bidirecional entre a cidade \mathbf{a} ($0 \leq \mathbf{a} \leq \mathbf{N}$ -1) e \mathbf{b} ($0 \leq \mathbf{b} \leq \mathbf{N}$ -1), e a data no formato "DD-hh-mm-ss", representando o tempo necessário para ir de \mathbf{a} para \mathbf{b} e vice-versa. Considere que a vila fica na cidade de número $\mathbf{0}$ e a cidade de Acapulco é a cidade de número \mathbf{N} -1.

Saída

Para cada caso de teste, se for possível chegar a Acapulco antes que a promoção finalize, imprima duas linhas. Na primeira linha a palavra "POSSIBLE" (sem aspas) e na segunda linha a menor data possível no seguinte formato: "DD/MM/AAAA – hh:mm:ss". Caso não seja possível chegar até a data limite, imprima apenas uma linha com a palavra "IMPOSSIBLE" (sem aspas).

Exemplo de Entrada	Exemplo de Saída
4	POSSIBLE
4 3	31/12/2015 - 20:00:00
29/12/2015 - 20:00:00	POSSIBLE

31/12/2015 Exemplo de Entrada	06/09/2015 - Exemplo de Saída
0 1 01-00-00	IMPOSSIBLE
0 3 05-00-00	POSSIBLE
1 3 01-00-00-00	29/02/2016 - 00:30:00
3 3	
05/09/2015 - 16:30:00	
06/09/2015 - 00:00:00	
0 1 00-07-00-00	
0 2 10-00-00-00	
2 1 00-00-30-00	
3 3	
05/09/2015 - 16:30:00	
06/09/2015 - 00:00:00	
0 1 00-07-00-00	
0 2 10-00-00-00	
2 1 00-00-30-01	
3 3	
27/02/2016 - 00:00:00	
01/03/2016 - 00:00:00	
0 1 02-00-00	
0 2 10-00-00-00	
2 1 00-00-30-00	

Lembre-se que existem meses com 28, 29, 30 e 31 dias e que um ano é bissexto quando ele for divisível por 4 e não for divisível por 100, com ressalva de que se o ano for divisível por 400 ele é bissexto.

Codando na Vila - 2015