A Fast and Scalable Framework for Large-scale and Ultrahigh-dimensional Sparse Regression with Application to the UK Biobank

https://www.biorxiv.org/content/10.1101/630079v2.full.pdf

PREMISE FOR PAPER

Biobanks = huge data sources. Massive potential. BUT... ultra-high dimensional

Shape of data drives modelling decision...

"BIG"

Machine Learning Samp_1 Samp_2 Samp_3 Samp_4 Samp_5 Samp_6 Samp_5000000

"BIG"

e.g. Lasso

PREMISE FOR PAPER

Machine Learning

REGULARIZATION

- Constraints applied to shrink regression coefficients
 - ↑ Model stability ↓ Overfitting

LASSO

- L1 penalty
- Shrinks to 0
- Variable selection
- Sum of coefficients = penalty

RIDGE

- L2 penalty
- Shrinks towards 0
- Multicollinearity → grouping
- SS coef = forms penalty

$$\lambda \sum_{j=1}^{m} \hat{\beta_j^2}$$

ELASTIC NET

- Alpha parameter
- a=0: Ridge
- a=1: Lasso
- 0<a<1: Combination

REGULARIZATION

- Constraints applied to shrink regression coefficients
 - ↑ Model stability ↓ Overfitting

LASSO

- L1 penalty
- Shrinks to 0
- Variable selection
- Sum of coefficients = penalty

RIDGE

- L2 penalty
- Shrinks towards 0
- Multicollinearity → grouping
- SS coef = forms penalty

$$\lambda \sum_{j=1}^{m} \hat{\beta_j^2}$$

ELASTIC NET

- Alpha parameter
- a=0: Ridge
- a=1: Lasso
- 0<a<1: Combination

GLMNET

Existing package in R, developed by Hastie and co.

► Computes Lasso coefficient paths.

(optimal lambda unknown → compute over a grid of lambda values)

Cross validation to select optimal lambda.

So this is not a new idea...

BUT... scaling remains an issue

RELEVANCE TO GENOMIC PREDICTION

Genetic variance currently explained by GWAS

RELEVANCE TO GENOMIC PREDICTION

► 500,000 samples → more predictive power

Limitations of univariate approaches

RELEVANCE TO GENOMIC PREDICTION

Full-scale multivariable methods

RISK OF
EXPLOSION

SNPNET

Extension of GLMNET

BAtch **S**creening Iterative Lasso → BASIL

▶ R package → easy acquisition

Full-scale multivariable methods

BASIL

Screen → solve → check

- Screen: Strong set

 Inner product at $\lambda l > \lambda l_{+1}$ - $(\lambda l \lambda l_{+1})$
- Solve: Computed strong set

 Compute lambda solution only on these subset
- ► Check: Entire variable matrix Evaluate against KTT condition (*)

Not new – all done in GLMNET

Specific to SNPNET

Figure 1: The lasso coefficient profile that shows the progression of the BASIL algorithm. The previously finished part of the path is colored grey, the newly completed and verified is in green, and the part that is newly computed but failed the verification is colored red.

BASIL

Linear

Logistic

Survival

Elastic net

TESTING ON UKBB DATA

337,199 unrelated individuals (of the 500,000 in UKBB)

Training | Validation | Test

▶ 805,426 measured variants

Covariates = age, sex, principal components (40? 10?)

TESTING ON UKBB DATA

Continuous phenotypes → R2

1.

2.

TESTING ON UKBB DATA

▶ Binary phenotypes → AUC

1.

2.

COMPARATIVE MODELS

Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10
Baseline	Covariate only	Single SNP	Relaxed threshold 10k	Relaxed threshold 100k	Sequential	PRS-CS	SBayesR	Elastic net	Relaxed LASSO
Sex Age	Sex Age 10 PCs	Strongest univariate +model 2	Single var from linear combinations using univariate coefficients +model 2		Multiple regression - sequential increase SNP N	Default settings		$\alpha = 0.1$ $\alpha = 0.5$ $\alpha = 0.9$	OLS variables selected for the LASSO

Most similar to PRSice ——

EXTRACT FROM PAPER

Results on test-sample set

DISCUSSION

STRENGTHS

Thorough methodological overview

▶ Builds on existing method → package readily available

Examples using real, accessible, relevant data

Comparisons with potential alternatives

Continuous and binary outcomes demonstrated

DISCUSSION

POTENTIAL LIMITATIONS

- Not fully clear whether individual level data required
- Examples based on split datasets...

 Cross validation?

Model fit unusually large? Covariate effect?

Linkage disequilibrium?

Cherry picking traits?

YOUR THOUGHTS?