

Teorema Dual

En muchas ocasiones se puede simplificar un P.P.L. haciendo uso de este teorema. Lo que permite es encontrar un modelo de P.L. equivalente que nos facilite la resolución de un problema.

Lo hace encontrando un modelo matemático que pueda involucrar menos variables, así un problema de Maximizar puede ser expresado como uno de Minimizar y viceversa.

La forma original de nuestro P.P.L, se le denomina Primal, la forma equivalente Dual. La siguiente tabla se puede leer de la 1ª columna a la 3ª, o al revés. Dependiendo si es Maximizar o Minimizar.

Maximizar		Minimizar		
Restricciones del tipo ≤		Restricciones del tipo ≥		
Menor igual		Mayor igual		
Número de variables		Número de restricciones		
Número de restricciones	≪== <i>></i> >	Número de variables		
Coeficientes de F.O.		Coeficientes de Vector		
		solución		
Coeficientes de Vector		Coeficientes de F.O.		
solución				

Cuando se pasa de primal a dual, los coeficientes de las restricciones del dual, se obtienen mediante la matriz traspuesta de los coeficientes de las restricciones del primal. Las de no negatividad no se consideran al momento de encontrar la equivalencia, aunque si son necesarias para el primal y dual. La solución de las variables del primal, se lee en la última tabla simplex, en la intersección de la fila de Z_i con las variables de holgura, en orden de aparición de cada variable, y el valor de Z_i .

Veamos un ejemplo:

$$M$$
á x $Z = a + b$

s.a.

r1:
$$a + 2b \le 10$$

r2: $3a + b \ge 5$
r3: $a \ge 0$
r4: $b \ge 0$

Ésta forma original de nuestro P.P.L. se le denomina primal.

Vamos a calcular su equivalente, es decir, la forma dual.

Primero tenemos que unificar el sentido de las restricciones.

$M \land x \ Z = a + b$	Má x $Z = a + b$
s.a.	s.a.
r1: $a + 2b \le 10$	r1: $a + 2b \le 10$
r2: $3a + b ≥ 5$	$r2: -3a - b \le -5$
r3: $a \ge 0$	r3: $a \ge 0$
r4: $b \ge 0$	r4: $b \ge 0$

NOTA: Recordar que las de no negatividad no se consideran al momento del análisis, por eso quedan ≥, *mayor igual*. Cuando se obtiene el dual se agregan nuevamente.

Ahora se procede a realizar los cambios.

Primal	Dual
$M \acute{a} x Z = a + b$	Min Z = 10x - 5y
s.a.	s.a.
r1: $a + 2b \le 10$	r1: $x - 3y \ge 1$
$r2: -3a - b \le -5$	r2: 2x - y ≥ 1
r3: $a \ge 0$	r3: $x \ge 0$
r4: $b \ge 0$	r4: $y \ge 0$

NOTA: No se pueden emplear las mismas variables en el primal y dual, porque no es el mismo planteamiento de P.L.

Resolviendo ambos casos por Simplex Analítico, para comprobar la equivalencia tenemos:

Primal:

$$M$$
á x $Z = a + b$

s.a.

r1:
$$a + 2b \le 10$$

$$r2: -3a - b \le -5$$

r3:
$$a \ge 0$$

r4:
$$b \ge 0$$

Replanteando nuestro sistema, queda de la siguiente forma.

$$M$$
áx $Z = a + b + 0h_1 + 0h_2 - MA_1$

s.a.

r1:
$$a + 2b + h_1 + 0h_2 + 0A_1 = 10$$

r2: $3a + b + 0h_1 - h_2 + A_1 = 5$

	C_j	1	1	0	0	-M	
Coef. en F.O.		а	b	h_1	h_2	A_1	
0	h_1	1	2	1	0	0	10
-M	A_1	3	1	0	-1	1	5
	Z_j	-3M	-M	0	М	-M	-5M
	$C_j - Z_j$	1+3M	1+M	0	-M	0	

Se determina la intersección. Se elige columna más (+) y menor cociente (+).

C_j	1	1	0	0	-M		
	а	b	h_1	h_2	A_1		Cocientes
h_1	1	2	1	0	0	10	10/1=10
A_1	3	1	0	-1	1	5	5/3
Z_j	-3M	-M	0	М	-M	-5M	
$C_i - Z_i$	1+3M	1+M	0	-M	0		

Se hace el cambio de variable y se calcula la siguiente tabla

		C_j	1	1	0	0	-M	
Coef. en F.O.	Operación		а	b	h_1	h_2	A_1	
0	$-a+h_1$	h_1	0	5/3	1	1/3	-1/3	25/3
1	1/3 A ₁	а	1	1/3	0	-1/3	1/3	5/3
		Z_j	1	1/3	0	-1/3	1/3	5/3
		$C_j - Z_j$	0	2/3	0	1/3	-M-1/3	

Se determina la intersección. Se elige columna más (+) y menor cociente (+).

C_{j}	1	1	0	0	-M		
	а	b	h_1	h_2	A_1		Cocientes
h_1	0	5/3	1	1/3	-1/3	25/3	25/3/5/3=5
а	1	1/3	0	-1/3	1/3	5/3	5/3/1/3=5
Z_j	1	1/3	0	-1/3	1/3	5/3	
$C_i - Z_i$	0	2/3	0	1/3	-M-1/3		

Se tienen 2 opciones para elegir fila. Puede ser cualquiera. Tomaremos la 1ª fila.

Se hace el cambio de variable y se calcula la siguiente tabla.

		C_{j}	1	1	0	0	-M	
Coef. en F.O.	Operación		а	b	h_1	h_2	A_1	
1	$3/5h_1$	b	0	1	3/5	1/5	-1/5	5
1	-1/3 b + a	а	1	0	-1/5	-2/5	2/5	0
		Z_j	1	1	2/5	-1/5	1/5	5
		$C_i - Z_i$	0	0	-2/5	1/5	-M-1/5	

Se determina la intersección. Se elige columna más (+) y menor cociente (+).

C_{j}	1	1	0	0	-M		
	а	b	h_1	h_2	A_1		Cocientes
b	0	1	3/5	1/5	-1/5	5	5/1/5=25
а	1	0	-1/5	-2/5	2/5	0	0/-2/5=-∞
Z_{j}	1	1	2/5	-1/5	1/5	5	
$C_j - Z_j$	0	0	-2/5	1/5	-M-1/5		-

Se hace el cambio de variable y se calcula la siguiente tabla.

		C_{j}	1	1	0	0	-M	
Coef. en F.O.	Operación		а	b	h_1	h_2	A_1	
1	5 <i>b</i>	h_2	0	5	3	1	-1	25
1	$2/5 h_2 + a$	а	1	2	1	0	0	10
		Z_j	1	1	2/5	-1/5	1/5	5
		$C_j - Z_j$	0	0	-2/5	1/5	-M-1/5	

Dado que no existen (+) en $C_j - Z_j$ se considera concluida la tabla.

Se lee.

						_
C_j	1	1	0	0	-M	
	а	b	h_1	h_2	A_1	
h_2	0	5	3	1	-1	25
а	1	2	1	0	0	10
Z_j	1	2	1	0	0	10
$C_i - Z_i$	0	-1	-1	0	-M	

$$a = 10$$

$$b = 0$$

$$h_1 = 0$$

$$h_2 = 25$$

$$A_1 = 0$$

$$Z_{i} = 10$$

Dual:

$$Min Z = 10x - 5y$$

s.a.

r1:
$$x - 3y \ge 1$$

r2:
$$2x - y \ge 1$$

r3:
$$x \ge 0$$

r4:
$$y \ge 0$$

Replanteando nuestro sistema, queda de la siguiente forma.

$$M$$
in $Z = 10x - 5y + 0h_1 + 0h_2 + MA_1 + MA_2$

s.a.

r1:
$$x - 3y - h_1 + 0h_2 + A_1 + 0A_2 = 1$$

r2:
$$2x - y + 0h_1 - h_2 + 0A_1 + A_2 = 1$$

	C_j	10	-5	0	0	+M	+M	
Coef. en F.O.		x	y	h_1	h_2	A_1	A_2	
+M	A_1	1	-3	-1	0	1	0	1
+M	A_2	2	-1	0	-1	0	1	1
	Z_j	3M	-4M	-M	-M	М	М	2M
	$C_j - Z_j$	10-3M	-5+4M	М	М	0	0	

Se determina la intersección. Se elige columna más (-) y menor cociente (+).

C_j	10	-5	0	0	+M	+M		
	x	у	h_1	h_2	A_1	A_2		Cocientes
A_1	1	-3	-1	0	1	0	1	1/1=1
A_2	2	-1	0	-1	0	1	1	½=0.5
Z_j	3M	-4M	-M	-M	М	М	2M	
$C_i - Z_i$	10-3M	-5+4M	М	М	0	0		-

Se hace el cambio de variable y se calcula la siguiente tabla

		C_j	10	-5	0	0	+M	+M	
Coef. en F.O.	Operación		x	у	h_1	h_2	A_1	A_2	
1	$-x + A_1$	A_1	0	-5/2	-1	1/2	1	-1/2	1/2
+M	1/2 A ₂	x	1	-1/2	0	-1/2	0	1/2	1/2
		Z_j	9	-9/2	0	1/2	М	M-1/2	1/2 +M/2
		$C_i - Z_i$	1	-1/2	0	-1/2	0	1/2	

Se elige columna más (-) y menor cociente (+).

Se tienen 2 opciones para columna, con el mismo valor. Se elige cualquiera de ellos. En este caso, elegiremos a la variable h_2 . Se determina la intersección.

C_j		10	-5	0	0	+M	+M		
		х	у	h_1	h_2	A_1	A_2		Cocientes
A_1		0	-5/2	-1	1/2	1	-1/2	1/2	1/2/1/2=1
x		1	-1/2	0	-1/2	0	1/2	1/2	1/2/-1/2=-1
Z_j		9	-9/2	0	1/2	М	M-1/2	1/2 +M/2	
$C_j - C_j$	Z_j	1	-1/2	0	-1/2	0	1/2		•

Se hace el cambio de variable y se calcula la siguiente tabla.

		C_{j}	10	-5	0	0	+M	+M	
Coef. en F.O.	Operación		x	у	h_1	h_2	A_1	A_2	
0	2 A ₁	h_2	0	-5	-2	1	2	-1	1
10	$1/2 h_{2+x}$	х	1	-3	-1	0	1	0	1
		Z_j	10	-30	-10	0	10	0	10
		$C_i - Z_i$	0	25	0	0	М	М	

INSTITUTO POLITECNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO METODOS CUANTITATIVOS PARA LA TOMA DE DECISIONES

Dado que no existen (+) en $C_j - Z_j$ se considera concluida la tabla.

Se lee.

C_j	10	-5	0	0	+M	+M	
	х	у	h_1	h_2	A_1	A_2	
h_2	0	-5	-2	1	2	-1	1
x	1	-3	-1	0	1	0	1
Z_j	10	-30	-10	0	10	0	10
$C_i - Z_i$	0	25	0	0	М	М	

$$x = 1$$

 $y = 0$
 $h_1 = 0$
 $h_2 = 1$
 $A_1 = 0$
 $A_2 = 0$

$$Z_j = 10$$

Vamos a comparar la forma primal y dual.

La Z obtenida en la última tabla es el mismo valor. Para comprobar el valor de las variables, tomaremos la última tabla de cada forma, primal y dual.

	PRIMAL											
	Má x $Z = a + b$											
s.a.												
	r1: $a + 2b \le 10$											
	$r2: -3a - b \le -5$											
				$: a \ge 0$								
			r4	$: b \ge 0$								
	C_j	1	1	0	0	-M						
		a	ь	h_1	h_2	A ₁						
	h_2	0	5	3	1	-1	25					
	а	1	2	1	0	0	10					
	Z_j	1	2	1	0	0	10					
	$C_i - Z_i$ 0 -1 -1 0 -M											
	a = 10 $b = 0$											

$h_1 = 0$ $h_2 = 25$ $A_1 = 0$											
$Z_j = 10$											
DUAL											
		M	Iín $Z =$	10x - 5	\dot{y}						
		S.									
			r1: x -	-							
			r2: 2 <i>x</i> - r3: <i>x</i>	-							
			15. X	. ≥ 0							
							1				
C_j	10	-5	0	0	+M	+M]				
	х	у	h_1	h_2	A_1	A_2		1			
h_2	0	-5	-2	1	2	-1	1				
<u>x</u>	1	-3	-1	0	1	0	1				
Z_j	10	-30	-10	0	10	0	10				
$C_i - Z_i$	0	25	0	0	М	M]				
			$x = y = h_1 = h_2 = A_1 = A_2 = A_$	= 0 = 0 = 1 = 0							

La solución del primal en el dual está en la intersección de la fila de \mathbb{Z}_j con las variables de holgura.

 $Z_{i} = 10$

Los coeficientes son 10 y 0 corresponden a las variables a y b. Z_j es el mismo valor para el dual y el primal. Existe un cambio de signo porque se pasó de $M\acute{a}x$ a $M\acute{i}n$.

La propiedad del teorema dual se mantiene, si se cambian las referencias, es decir, si ahora consideráramos el dual como planteamiento primal, obtenemos la siguiente información.

PRIMAL

$$Min Z = 10x - 5y$$

s.a.

r1:
$$x - 3y \ge 1$$

r2:
$$2x - y \ge 1$$

r3:
$$x \ge 0$$

C_j	10	-5	0	0	+M	+M	
	x	y	h_1	h_2	A_1	A_2	
h_2	0	-5	-2	1	2	-1	1
x	1	-3	-1	0	1	0	1
Z_j	10	-30	-10	0	10	0	10
$C_i - Z_i$	0	25	0	0	М	М	

$$x = 1$$

$$y = 0$$

$$h_1 = 0$$

$$h_2 = 1$$
$$A_1 = 0$$

$$A_2 = 0$$

$$Z_i = 10$$

DUAL

$$M$$
á x $Z = a + b$

s.a.

r1:
$$a + 2b \le 10$$

$$r2: -3a - b \le -5$$

r3:
$$a \ge 0$$

r4:
$$b \ge 0$$

C_j	1	1	0	0	-M	
	a	ь	h_1	h_2	A_1	
h_2	0	5	3	1	-1	25
а	1	2	1	0	0	10
Z_j	1	2	1	0	0	10
$C_s - Z_s$	0	-1	-1	0	-M	

$$a = 10$$

$$b = 0$$

$$h_1 = 0$$

$$h_2 = 25$$

$$A_1 = 0$$

$$Z_j = 10$$

La solución del primal en el dual está en la intersección de la fila de \mathbb{Z}_j con las variables de holgura.

Los coeficientes son 1 y 0 corresponden a las variables x y y. Z_j , es el mismo valor para el dual y el primal. No existe un cambio de signo porque se pasó de Mín a Máx .

EJERCICIO

Resolver en equipos de 3 integrantes los siguientes P.P.L. empleando el método Simplex analítico de 2 fases gran M o v2.0, en hoja de cálculo y entregar su hoja de respuestas. Para todos los casos hay que encontrar el mínimo de la F.O. empleando el teorema dual (resolver mediante maximización). Primero hay que plantear el dual de cada ejercicio y posteriormente resolverlo.

1.
$$Z = 4a + b$$

s.a.

r1:
$$a + b \le 150$$

r2:
$$2a + b \le 80$$

r3:
$$a \ge 0$$

r4:
$$b \ge 0$$

2.
$$Z = x + 3y$$

s.a.

r1:
$$x + y \ge 10$$

r2:
$$2x + 2y \le 25$$

r3:
$$x \le 8$$

r4:
$$x \ge 0$$

r5:
$$y \ge 0$$

3.
$$Z = 0.1x + 0.5y$$

s.a.

r1:
$$4x + 3y \le 30$$

r2:
$$6x + y \le 36$$

r3:
$$x - y \le 20$$

r4:
$$x \ge 0$$

r5:
$$y \ge 0$$

4.
$$Z = m + 2n$$

s.a.

r1:
$$3m + n \le 14$$

r2:
$$m + 5n \le 20$$

r3:
$$m \le n - 10$$

r4:
$$m \ge 0$$

r5:
$$n \ge 0$$

5.
$$Z = 4x + 3y$$

s.a.

r1:
$$3x + 2y \le 25$$

r2:
$$x \le 5$$

r3:
$$8x \le 21 - 6y$$

r4:
$$x \ge -2$$

r5:
$$y$$
 ≥ 1