初等数论讲义

Lectures on Elementary Number Theory

King 整理

目 录

1	数论简	介与	数自	り进	制														1
	1.1	整数	•																1
	1.2	数的	进制	制															1
2	数的整	除性																	5
	2.1	数的	整图	涂性															5
	2.2	整数	的音	奇偶	性														7
3	带余数	除法																	9
4	最大公	因数																	14
	4.1	最大	公园	因数	的	既介	念												14
	4.2	最大	公园	因数	的	生质	质												15
	4.3	最大	公园	因数	的	求》	去												20
5	最小公	倍数																	26
	5.1	最小	公仆	音数	的	既活	念												26
	5.2	最小	公仆	音数	的	生质	质												27
	5.3	最小	公仆	音数	的	求》	去												30
6	素数与	合数																	32
	6.1	素数	与行	合数	的	既活	念												32
	6.2	素数	的判	判定															33
7	算术基	本定	理																36
8	函数 [a	x] 与	$\{x\}$	及	n!	的	标	催	分	角	ア 牛 ラ	式							39
9	同余的	-																	43
	9.1	同余																	43
	9.2	同余																	43
10	一元一	次不	定す	7程															47

	1		

第一讲 数论简介与数的进制

教学目标:	了解数论及历史、掌握数的进制
教学重点:	数的进制与不同进制数的转化
教学难点:	不同进制数的转化
教学方法和手段:	讲授
教学时数:	2 课时

▶1.1 数论这门学科最初就是从研究整数开始的, 所以叫做整数论. 后来整数论又进一步拓展, 就叫数论了. 确切地说, 数论就是一门研究整数性质的学科.

一、整数

- **▶1.2** 把 $0,1,2,3,\dots,n,\dots$ 叫做自然数,也叫做非负整数. 所有自然数构成的集合, 叫做**自然数集**, 记作 \mathbb{N} .
- **▶1.3** 把 $1,2,3,\dots,n,\dots$ 叫做正整数. 所有正整数构成的集合, 叫做正整数集. 记作 \mathbb{N}^* .
- **▶1.4** 把 $-1, -2, -3, \dots, -n, \dots$ 叫做负整数. 所有负整数构成的集合, 叫做**负整数集**, 记作 \mathbb{Z}^- .
- ▶1.5 正整数、零、负整数统称为整数. 所有整数构成的集合, 叫做整数集, 记作 \mathbb{Z} .

二、数的进制

1.2.1 十进制及其计数法

▶1.6 一个
$$n+1$$
 位自然数
$$m = \overline{a_n a_{n-1} \cdots a_1 a_0}$$

$$= a_n \times 10^n + a_{n-1} \times 10^{n-1} + \cdots + a_1 \times 10 + a_0$$

$$= \sum_{i=0}^n a_i 10^i (a_i \in \mathbb{N}, 0 \leqslant a_i \leqslant 9, a_n \neq 0).$$

这里的 10 也叫**基**.

- ▶1.7 定理 1 如果 n 是自然数, 则 n 表示成十进制的形式是唯一的.
- ▶1.8 例 1 已知: $a_3 > a_1, b_3 \neq 0$,且 $\overline{a_3 a_2 a_1} \overline{a_1 a_2 a_2} = \overline{b_3 b_2 b_1}$,求证: $\overline{b_3 b_2 b_1} + \overline{b_1 b_2 b_3} = 1089.$

1.2.2 k 进制数

▶1.9 定义 1 如果 k 是大于或等于 2 的整数, 而任一自然数

$$n = b_n k^n + b_{n-1} k^{n-1} + \dots + b_1 k + b_0 = \sum_{i=0}^n b_i k^i$$
$$(b_n \neq 0, b_i \in \mathbf{N}, 0 \leqslant b_i < k, i = 0, 1, 2, \dots, n)$$

就称 n 是由 k 的幂的和表示的,n 也可以写成

$$n = (b_n b_{n-1} \cdots b_1 b_0)_k$$

我们称 n 是用 k 进制表示的.

▶1.10 定义 2 k 进制小数

$$(0.b_1b_2 \cdots b_n)_k = \frac{b_1}{k} + \frac{b_2}{k^2} + \cdots + \frac{b_n}{k^n}$$
$$= \sum_{i=1}^n \frac{b_i}{k^i} \quad (0 \le b_i < k, b_i \in \mathbb{N})$$

▶1.11 定理 2 设 $k \ge 2$ 且是整数,则任一自然数 n 仅有一种 k 进制的形式:

$$n = b_n k^n + b_{n-1} k^{n-1} + \dots + b_1 k + b_0$$
$$= \sum_{i=0}^n b_i k^i \quad (b_i \in \mathbb{N}, 0 \le b_i < k, b_n \ne 0)$$

1.2.3 不同进制数的互化

>1.12 例 2
$$2866 = ()_5 = ()_7 = ()_8 = ()_2$$

解: 因为 $2866 = 5 \times 573 + 1$ $= 5 \times (5 \times 114 + 3) + 1$ $= 114 \times 5^2 + 3 \times 5 + 1$

$$= (5 \times 22 + 4) \times 5^2 + 3 \times 5 + 1$$

$$= 5^3 \times 22 + 4 \times 5^2 + 3 \times 5 + 1$$

$$= 5^3 \times (5 \times 4 + 2) + 4 \times 5^2 + 3 \times 5 + 1$$

$$= 4 \times 5^4 + 2 \times 5^3 + 4 \times 5^2 + 3 \times 5 + 1$$

所以 $2866 = (42431)_5$

以后称这种化十进制数为 k 进制数的方法为**除** k **取余法**, 并采用下面的除法算式:

所以
$$2866 = (42431)_5$$
.

同理
$$2866 = (112331)_7$$
.

$$2866 = (5462)_8$$
.

$$2866 = (101100110010)_2.$$

▶1.13 例 3 计算

$$(1) (1234)_5 + (2341)_5;$$

$$(2) (2341)_5 - (1234)_5;$$

$$(3) (2341)_5 \times (1234)_5;$$

$$(4) (3023)_5 \div (1234)_5;$$

解: 上述四题均可先将五进制数改成十进制后按要求算出结果后, 再 将十进制的结果转换成五进制; 但也可以直接计算.

(1):
$$(1234)_5 = 1 \times 5^3 + 2 \times 5^2 + 3 \times 5 + 4 = 194$$

 $(2341)_5 = 2 \times 5^3 + 3 \times 5^2 + 4 \times 5 + 1 = 346$
 $194 + 346 = 540$

$$540 = (4130)_5,$$

$$\therefore (1234)_5 + (2341)_5 = (4130)_5.$$

$$(2)$$
: $346 - 194 = 152$,

$$\therefore (2341)_5 - (1234)_5 = (1102)_5$$

$$(3)$$
: $194 \times 346 = 67124$

$$\therefore (2341)_5 \times (1234)_5 = (4121444)_5.$$

$$(4)$$
: $(3023)_5 = 3 \times 5^3 + 2 \times 5 + 3 = 388$

$$388 \div 194 = 2$$
,

$$\therefore (3023)_5 \div (1234)_5 = (2)_5$$

练习2计算

$$(1) (110)2 + (1011)2, (10101)2 - (111)2,
(10101)2 × (101)2, (1101001)2 ÷ (1010)2,
(2) (2517)8 + (3124)8, (15721)8 - (452)8
(301)8 × (125)8, (212)8 ÷ (27)8$$

作业:	练习 1、2
教学后记:	

第二讲 数的整除性

教学目标:	掌握数的整除性的概念与性质
教学重点:	数的整除性的概念与性质
教学难点:	整除的性质
教学方法和手段:	讲授
教学时数:	4 课时

一、数的整除性

- ▶2.1 定义 1 设 a,b 为两个整数, $b \neq 0$. 如果存在整数 c, 使得 a = bc, 则称 a 被 b 整除或 b 整除 a, 记作 $b \mid a$, 并称 $a \neq b$ 的倍数, $b \neq a$ 的因数 (或约数), 如果不存在整数 c, 使得 a = bc 成立, 则称 a 不被 b 整除或 b 不整除 a, 记作 $b \nmid a$.
- ▶2.2 每个非零整数至少有 ± 1 和 $\pm a$ 作为它的因数, 称它们为 a 的 平凡因数;a 的异于 ± 1 和 $\pm a$ 的因数, 称为 a 的非平凡因数, 或 a 的真因数.
- **▶2.3** e.g.3 | 8; 5 | 125; 5 | (-25); 13 | 1001; 2018 | 0; 1 | a; a | a($a \neq 0$); 5 ∤ 12.
 - **▶2.4** 性质 1 (传递性) 若 $b \mid c$, 且 $c \mid a$, 则 $b \mid a$.

证明: 因为 $b \mid c$, 所以存在整数 q, 满足 c = bq. 因为 $c \mid a$, 所以存在整数 p, 满足 a = cp. 于是

$$a = cp = (bq)p = (pq)b$$

因为 $p,q \in \mathbb{Z}$, 所以 $pq \in \mathbb{Z}$, 故 $b \mid a$.

▶2.5 例 1 求证:13 | $\overline{abcabc}(a \neq 0)$.

证明: 因为 $\overline{abcabc} = \overline{abc} \times 1000 + \overline{abc} = \overline{abc} \times 1001$, 所以 $1001 \mid \overline{abcabc}$. 因为 $13 \mid 1001$, 所以 $13 \mid \overline{abcabc}$.

- ▶2.6 性质 2 (可加性) 若 $b \mid a$, 且 $b \mid c$, 则对任意整数 k, l, 有 $b \mid (ka + lc)$;
- 一般, 若 $b \mid a_i (i = 1, 2, \dots, n)$, 则 $b \mid (a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$, 其中 $x_i (i = 1, 2, \dots, n)$ 是任意整数.
 - **▶2.7 例 2** 求证:37 | (333⁷⁷⁷ + 777³³³).

证明: 因为 111 | 333^{777} , 111 | 777^{333} , 所以 111 | $(333^{777} + 777^{333})$. 因为 $37 \times 3 = 111$, 所以 $37 \mid (333^{777} + 777^{333})$.

- **▶2.8** 性质 **3** (可乘性) 若 b | a.d | c, 则 bd | ac.
- ▶2.9 性质 4 $b \mid a \Leftrightarrow |b| \mid |a|$.(若 $b \mid a, a \neq 0$, 则 $|b| \leqslant |a|$; 若 $b \mid a$, 且 |a| < |b|, 则 a = 0; 若 $b \mid a$, 且 $a \mid b, a > 0$, b > 0, 则 a = b.)
- ▶2.10 (I) 若 n 是正整数, 则 $a^n b^n = (a b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1})$;
 - (II) 若 n 是正奇数,则在上式中以 (-b) 代换 b,得

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + \dots - ab^{n-2} + b^{n-1}).$$

►2.11 例 3 证明 $\underbrace{10\cdots01}_{50$ 能被 1001 整除.

证明: 由分解公式 (II), 有

$$\underbrace{\frac{10\cdots01}{50\uparrow0}}_{50\uparrow0} = 10^{51} + 1 = (10^3)^{17} + 1$$
$$= (10^3 + 1) \left[(10^3)^{16} - (10^3)^{15} + \dots - 10^3 + 1 \right]$$

所以, $10^3 + 1 = 1001$ 整除 $\frac{10 \cdots 01}{50 \uparrow 0}$.

▶2.12 例 4 若 n 是奇数, 证明 $8 \mid (n^2 - 1)$.

证明: 设 $n = 2k + 1(k \in \mathbf{Z})$, 则 $n^2 - 1 = (2k + 1)^2 - 1 = 4k(k + 1)$. 由于 k 和 k + 1 中必有一个是偶数, 所以 $8 \mid (n^2 - 1)$.

- ▶2.13 注 ①任何奇数的平方于 1 的差都能被 8 整数.
- ②任何整数的平方被 4 除的余数为 0 或 1, 被 3 除的余数为 0 或 1;
- ③任何整数的立方除 9 的余数为 0,1 或 8 等等.
- **▶2.14** 例 5 设 $m > n \ge 0$, 证明: $(2^{2^n} + 1) \mid (2^{2^m} 1)$.

证明: 由于 $m > n \ge 0$, 故 $m - n - 1 \ge 0$. 在分解公式 (I) 中, 令 $a = 2^{2^{n+1}}, b = 1$, 则

$$2^{2^{m}} - 1 = \left(2^{2^{n+1}}\right)^{2^{m-n-1}} - 1$$
$$= \left(2^{2^{n+1}} - 1\right) \left[\left(2^{2^{n+1}}\right)^{2^{m-n-1} - 1} + \dots + 2^{2^{n+1}} + 1\right]$$

所以 $(2^{2^{n+1}}-1) \mid (2^{2^m}-1)$. 又 $2^{2^{n+1}}-1 = (2^{2^n}+1)(2^{2^n}-1)$, 因此 $(2^{2^n}+1) \mid (2^{2^{n+1}}-1)$.

由性质 1 知 $(2^{2^{n'}}+1) | (2^{2^m}-1)$.

▶2.15 注 $F_n | (F_m - 2)$, 即存在整数 t, 使得 $F_m - 2 = t \cdot F_n$.

- ▶2.16 注 在例 5 中, 直接证明 $(2^{2^n} + 1) \mid (2^{2^m} 1)$ 不易入手, 因此尝试选择适当的中间量 $(2^{2^{n+1}} 1)$, 使之满足定理 1.1.1 之 (I) 的条件, 再利用整除的传递性导出所证结论.
- ▶2.17 例 6 设正数 n 的十进制表示为 $n = a_k \cdots a_1 a_0 (0 \le a_i \le 9, 0 \le i \le k, a_k \ne 0)$, 且

$$S(n) = a_k + a_{k-1} + \dots + a_1 + a_0$$

证明: $9 \mid n$ 的充分必要条件是 $9 \mid S(n)$.

证明:由于

$$n = a_k \times 10^k + \dots + a_1 \times 10 + a_0, \quad S(n) = a_k + a_{k-1} + \dots + a_1 + a_0$$

所以
$$n - S(n) = a_k (10^k - 1) + \dots + a_1 (10 - 1)$$

对于所有的 $0 \le i \le k$, 有 $9 \mid (10^i - 1)$, 故上式右端 k 个加项中的每一项都是 9 的倍数, 由定理 1.1 .1 之 (I) 知, 它们的和也被 9 整除, 即 $9 \mid [n - S(n)]$, 从而 $9 \mid n \Leftrightarrow 9 \mid S(n)$.

▶2.18 注 一个十进制整数被另一个正整数整除的条件 (如例 4 及 习题 1.1 的第 2 题), 称为整除的数字特征. 例 4 得出十进制正整数 n 被 9 整除的数字特征是:9 整除 n 的各位数字之和.

二、整数的奇偶性

- ▶2.19 定义 2 能被 2 整除的整数叫做偶数; 不能被 2 整除的整数 叫做奇数.
- ▶2.20 性质 5 偶数 ± 偶数 = 偶数; 偶数 ± 奇数 = 奇数; 奇数 ± 奇数 = 偶数.

只证明: 一个偶数与一个奇数之和为奇数.

证明: 设任一偶数 $a = 2n(n \in \mathbb{Z})$; 任一奇数 $b = 2m + 1(m \in \mathbb{Z})$, 则

$$a + b = 2n + (2m + 1) = 2(n + m) + 1$$

可见,a+b是奇数.

- ▶2.21 推论 1 若干个偶数之和为偶数; 正偶数个奇数之和为偶数; 正奇数个奇数之和为奇数.
- ▶2.22 例 7 有 7 个茶杯, 杯口全朝上, 每次同时翻转 4 个称为一次远动, 可否经若干次远动使杯口全朝下?

解:一个茶杯由口朝上翻转为口朝下,须经奇数次翻转.

设经 k 次运动可使杯口全朝下, 此时每个茶杯翻转的次数分别记作

$$a_1, a_2, a_3, a_4, a_5, a_6, a_7$$

因为杯口全朝下, 所以 $a_1, a_2, a_3, a_4, a_5, a_6, a_7$ 均为奇数.

故 7 个茶杯翻转的总次数 $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = s$ 必是 奇数.

另一方面, 每次同时翻转 4 个为一次远动, 若经 k 次运动使 7 个茶杯的杯口全朝下, 此时翻转的总次数为 4k, 这是一个偶数. 这与 s 为奇数矛盾. 故不可能经过若干次运动使杯口全朝下.

- ▶2.23 性质 6 奇数 × 奇数 = 奇数; 偶数 × 整数 = 偶数.
- ▶2.24 推论 2 若干个奇数之积为奇数.
- **>2.25 例 8** 设 a_1, a_2, \dots, a_n 是 $1, 2, \dots, n$ 的任一新排列,n 为奇数, 求证: $(a_1 1)(a_2 2) \dots (a_n n)$ 为偶数.

证明: 因为

$$(a_1 - 1) + (a_2 - 2) + \dots + (a_n - n)$$

$$= (a_1 + a_2 + \dots + a_n) - (1 + 2 + \dots + n)$$

$$= 0$$

这说明奇数个整数 $(a_1-1), (a_2-2), \cdots, (a_n-n)$ 之和为偶数.

所以 $(a_1-1), (a_2-2), \cdots, (a_n-n)$ 至少有一个为偶数. 故 $(a_1-1)(a_2-2)\cdots(a_n-n)$ 为偶数.

- ▶2.26 性质 7 设 a 为整数,n 为正整数, 则 a^n 与 a 奇偶性相同.
- **▶2.27 例 9** 对正整数 a, 若存在正整数 b, 使得 $b^2 = a$ 成立, 则称 a 为完全平方数. 类似地可定义完全立方数等.

求证: 任意两个奇数的平方和不是完全平方数.

证明: 设两个奇数分别为 $a = 2n + 1 (n \in \mathbb{Z}), b = 2m + 1 (m \in \mathbb{Z}), k = a^2 + b^2$, 则 a^2, b^2 均为奇数, 故 $k = a^2 + b^2$ 为偶数.

若 k 为完全平方数,则只能是一个正偶数的平方 (否则 k 不是偶数). 设 $k = (2q)^2(q$ 为正整数),则 $k = 4q^2$,故 $4 \mid k$.

另一方面, $k = a^2 + b^2 = 4(n^2 + m^2 + n + m) + 2$, 可见 $4 \nmid k$, 自相矛盾. 故任意两个奇数的平方和不是完全平方数.

作业:	P3 习题 1.1、1;2;3;4
教学后记:	

第三讲 带余数除法

教学目标:	理解带余数除法
教学重点:	带余数除法
教学难点:	带余数除法的证明
教学方法和手段:	讲授
教学时数:	4 课时

▶3.1 定理 1 (带余数除法) 设 a 与 b 是两个整数, $b \neq 0$, 则存在唯一的一对整数 q 和 r, 使得

$$a = bq + r(0 \leqslant r < |b|) \tag{3.1}$$

此外, $b \mid a$ 的充分必要条件是 r = 0.

- ▶3.2 定理 2 (Peano 公理) 设 N 是一个非空集合, 满足以下条件:
 - (i) 对每一个元素 $n \in \mathbb{N}$, 一定有唯一的一个 \mathbb{N} 中的元素与之对应, 这个元素记做 n^+ , 称为 n 的后继元素 (或后继);
 - (ii) 有元素 $e \in \mathbb{N}$, 它不是 \mathbb{N} 中任一元素的后继;
 - (iii) N 中的任意一个元素至少是一个元素的后继, 即从 $a^+ = b^+$, 一定可推出 a = b;
- (iv) (归纳公理) 设 $S \in \mathbb{N}$ 的一个子集合, $e \in S$, 如果 $n \in S$, 必有 $n^+ \in S$, 那么 $S = \mathbb{N}$.

这样的集合 № 称为自然数集合, 它的元素称为自然数.

- **▶3.3 定理 3 (最小自然数原理)** 设 T 是 \mathbb{N} 的一个非空子集, 那么, 必有 $t_0 \in T$, 使对任意的 $t \in T$ 有 $t_0 \leq t$, 即 t_0 是 T 中的最小自然数.
- ▶3.4 定理 4 (最大自然数原理) 设 M 是 \mathbb{N} 的一个非空子集, 若 M 有上界, 即存在 $a \in \mathbb{N}$, 使对任意的 $m \in M$ 有 $m \leq a$, 那么, 必有 $m_0 \in M$, 使对任意的 $m \in M$ 有 $m \leq m_0$, 即 m_0 是 M 中的最大自然数.

证明: (定理 1 的证明) **存在性** 若 $b \mid a$, 则存在 $q \in \mathbb{Z}$, 使得 a = bq, 此时取 r = 0, 即式(3.1)成立.

若 $b \mid a$, 考虑集合 $A = \{a + kb \mid k \in \mathbb{Z}\}$. 在集合 A 中有无限多个正整数, 由自然数的最小数原理知,A 中必有最小的正整数. 设这个最小的正整数为 $r = a + k_0 b$, 则必有结论:

$$0 < r < |b| \tag{3.2}$$

事实上, 若不然, 就有 $r \ge |b|$. 因为 $b \mid a$, 所以 $r \ne |b|$, 从而 r > |b|, 故

$$r_1 = r - |b| = a + k_0 b - |b| > 0$$

这样就有 $r_1 \in A$ 且 $0 < r_1 < r$, 这与 r 的最小性矛盾. 所以, 式(3.2)成立. 取 $q = -k_0$, 知式(3.1)成立. 存在性得证.

唯一性 假设存在两对整数 q', r' 与 q'', r'' 都使得式(3.1)成立, 即

$$a = q''b + r'' = q'b + r' \quad (0 \leqslant r', r'' < |b|)$$

于是

$$(q'' - q') b = r' - r''$$
(3.3)

由此推出 $b \mid (r'-r'')$. 但 $0 \leq |r'-r''| < |b|$, 故必须使 r'-r'' = 0, 即 r'=r'', 代入式(3.3)得 q'=q''. 唯一性得证.

当 a = bq + r 时, $b|a \Leftrightarrow b|r$; 而当 $0 \leqslant r < |b|$ 时, $b \mid r \Leftrightarrow r = 0$. 故 $b \mid a \Leftrightarrow r = 0$. 证毕.

证法二:(1) 当 b > 0 时, 作整数序列

$$\cdots, -3b, -2b, -b, 0, b, 2b, 3b, \cdots$$

若 a 与序列中某一项相等, 则 a = bq, 即 a = bq + r, r = 0.

若 a 与序列序列中任一项不相等,则必在此序列的某相邻两项之间,即有确定的整数 q,使得 bq < a < b(q+1) = bq + b,所以

$$0 < a - bq < b = |b|$$
.

$$a = bq + r, 0 < r < |b|.$$

(2) 当 b < 0 时, 作整数序列

$$\cdots, 3b, 2b, b, 0, -b, -2b, -3b, \cdots$$

若 a 与序列中某一项相等, 则 a = bq, 即 a = bq + r, r = 0.

若 a 与序列序列中任一项不相等, 则必在此序列的某相邻两项之间, 即有确定的整数 g, 使得 bg < a < b(g-1) = bg - b, 所以

$$0 < a - bq < -b = |b|$$
.

令 a-bq=r, 则有

$$a = bq + r, 0 < r < |b|.$$

综上所述, 对给定的整数 $a, b(b \neq 0)$, 有确定的一对整数 q 和 r, 满足

$$a = bq + r, 0 \leqslant r < |b|$$

对于给定的整数 $a, b(b \neq 0)$, 如果有两对整数 q_1, r_1, q_2, r_2 满足

$$a = bq_1 + r_1, 0 \leqslant r_1 < |b|$$
 ①
$$a = bq_2 + r_2, 0 \leqslant r_2 < |b|$$
 ②

2-11得

$$r_1 - r_2 = (q_2 - q_1)b, 0 \le |r_1 - r_2| < |b|$$

即 $b \mid (r_1 - r_2)$, 且 $|r_1 - r_2| < |b|$, 于是 $r_1 - r_2 = 0$, 则 $r_1 = r_2$, 从而 $q_1 = q_2$.

- ▶3.5 定义 1 式(3.1)中的 q 称为 a 被 b 除的不完全商,r 称为 a 被 b 除的余数, 也称为最小非负剩余.
- ▶3.6 注 对于给定的正整数 b, 可以按照被 b 除的余数将整数集分成 b 类, 使得在同一类中的整数被 b 除的余数 r 相同. 这就使得关于全体整数的问题可以化归为对有限个整数类的研究. 此时,r 共有 b 种可能的取值, 即 $0,1,\dots,b-1$. 当 r=0 时, 即为 "a 被 b 整除"的情形. 由此,整除问题往往可以化归为带余数除法问题来解决.
- **▶3.7 推论 1** 设 a, b, d 是给定的整数, $b \neq 0$, 则存在唯一的一对整数 q 和 r, 满足 $a = bq + r(d \leq r < |b| + d)$.

证明: 考虑整数 (a-d) 及 b, 由带余数除法知, 存在唯一的整数对 q 和 r_0 , 使得 $a-d=bq+r_0$ $(0 \le r_0 < |b|)$, 所以 a=bq+r, 其中 $r=r_0+d(d \le r < |b|+d)$. 由 q 和 r_0 的唯一性得知 q 和 r 唯一存在. 证毕.

▶3.8 e.g.
$$\stackrel{.}{=}$$
 2 | *b* 时, 取 $d = -\frac{|b|}{2}$; $\stackrel{.}{=}$ 2 ∤ *b* 时, 取 $d = -\frac{|b|-1}{2}$, 则

$$a = bq + r$$
, 其中
$$\begin{cases} -\frac{|b|}{2} \leqslant r < \frac{|b|}{2}, & 2 \mid b \\ -\frac{|b|-1}{2} \leqslant r < \frac{|b|+1}{2}, & 2 \nmid b \end{cases}$$

这种带余数除法中的余数 r 叫做**绝对最小余数**.

>3.9 例 1 若 $N = 2^{2000} - 2^{1998} + 2^{1996} - 2^{1994} + 2^{1992} - 2^{1990}$,则 $9 \mid N$.

- ▶3.10 例 2 当 $n \in \mathbb{N}_+$ 时,求证:23 | $(5^{2n+1} + 2^{n+4} + 2^{n+1})$.
- **▶3.11 例 3** 设 a_1, a_2, \dots, a_n 为不全为零的整数, 以 y_0 表示集合

$$A = \{ y \mid y = a_1 x_1 + \dots + a_n x_n, x_i \in \mathbb{Z}, 1 \le i \le n \}$$

中的最小正数, 则对于任何 $y \in A$, 有 $y_0 \mid y$; 特别地, 有 $y_0 \mid a_i (1 \le i \le n)$.

证明: 设 $y_0 = a_1 x_1' + \dots + a_n x_n' \in A$, 对任意的 $y = a_1 x_1 + \dots + a_n x_n \in A$, 由定理 1 知, 存在 $q, r \in \mathbb{Z}$, 使得 $y = q y_0 + r (0 \leqslant r < y_0)$. 因此

$$r = y - qy_0 = a_1(x_1 - qx'_1) + \dots + a_n(x_n - qx'_n) \in A$$

如果 $r \neq 0$, 那么, 因为 $0 < r < y_0$, 所以 $r \neq A$ 中比 y_0 还小的正整数, 这与 y_0 的定义矛盾所以 r = 0, 即 $y_0 \mid y$.

显然 $a_i \in A(1 \le i \le n)$, 所以由上述结论得 $y_0 \mid a_i (1 \le i \le n)$. 证毕.

▶3.12 例 4 证明: 任意给出的五个整数中, 必有三个数之和能被 3 整除.

证明: 设这五个整数是 a_i , 令 $a_i = 3q_i + r_i$ ($0 \le r_i < 3, i = 1, 2, 3, 4, 5$). 分别考虑以下两种情形:

(i) 若在 r_1, r_2, \dots, r_5 中数 0, 1, 2 都出现, 不妨设 $r_1 = 0, r_2 = 1, r_3 = 2$, 此时

$$a_1 + a_2 + a_3 = 3(q_1 + q_2 + q_3) + 3$$

能被3整除;

(ii) 若在 r_1, r_2, \dots, r_5 中数 0, 1, 2 至少有一个不出现,则根据抽民原理至少有三个 r_i 要取相同的值,不妨设 $r_1 = r_2 = r_3 = r(r$ 是 0, 1, 2 中的某一个), 此时

$$a_1 + a_2 + a_3 = 3(q_1 + q_2 + q_3) + 3r$$

能被 3 整除. 综合情形 (i) 和 (ii) 可知, 所证结论成立. 证毕.

- ▶3.13 注 例 2 涉及的抽屉原理也称为 P.G. Dirichlet 原理, 即把 n+1 个元素或者更多的元素放入 n 个抽屉中, 则在其中一个抽屉里至少要放入 2 个元素. 一般, 将 m 个元素放人 n(m>n) 个抽屉中, 则在其中一个抽屉里至少含有 $\left[\frac{m-1}{n}\right] + 1$ (中括号表示不超过 $\frac{(m-1)}{n}$ 的最大整数) 个元素. 值得注意的是, 利用带余数除法得到的余数进行分类来构造抽屉是数论解 (证) 题中常用的方法.
- ▶3.14 例 5 设 r 是正奇数, 证明: 对任意的正整数 n, 有 (n+2) ∤ $(1^r + 2^r + \cdots + n^r)$.

证明: 当 n = 1 时, 结论显然成立. 现设 $n \ge 2$, 令 $S = 1^r + 2^r + \cdots + n^r$, 则

$$2S = 2 + (2^r + n^r) + [3^r + (n-1)^r] + \dots + (n^r + 2^r)$$

因为 r 为奇数, 由 1.1 节的分解公式 (II) 可得上式右边中除第一项外, 每一加项 $i^r + (n+2-i)^r$ 都能被 $i + (n+2-i) = n + 2(2 \le i \le n)$ 整除, 因此 $2S = 2 + (n+2)Q_1$, 其中 Q_1 是整数. 显然,2S 被 n+2 除得的余数是 2, 由于 n+2>2, 所以 (n+2)|2S, 故 (n+2)|S. 证毕.

▶3.15 例 6 对 m 和 n 为正整数,m > 2, 证明: $(2^m - 1) \nmid (2^n + 1)$. **证明:** 对正整数 m 和 n 分以下三种情形讨论:

(i) 当 n = m 时, $2^n + 1 = (2^n - 1) + 2$, 由于 n = m, m > 2, 所以 $2^n - 1 > 2$, 因而

$$(2^n-1) \nmid (2^n+1)$$

- (ii) 当 n < m 时, 有 $n \le m-1$, 注意到 m > 2, 有 $2^{n}+1 \le 2^{m-1}+1 < 2^{m}-1$, 由定理 1.1.1 之 (IV) 知 $(2^{m}-1)$ $X(2^{n}+1)$.
 - (iii) 当 n > m 时,设 $n = mq + r(0 \leqslant r < m, q \in \mathbf{N})$,由于

$$2^{n} + 1 = (2^{mq} - 1) \cdot 2^{r} + (2^{r} + 1)$$

由 1.1 节的分解公式 (I) 得 $(2^m - 1) \mid (2^{mq} - 1)$. 当 r = 0 时,

$$2^{n} + 1 = (2^{mq} - 1) + 2 = (2^{m} - 1) \cdot M + 2 \quad (M \in \mathbf{Z})$$

由于 m > 2, 故 $2^m - 1 > 2$, 因此 $(2^m - 1) \nmid 2$, 从而 $(2^m - 1) \nmid (2^n + 1)$. 当 0 < r < m 时, 由 (i) 知 $(2^m - 1) \nmid (2^r + 1)$.

综上可知, 对一切正整数 m 和 n(m > 2), 有 $(2^m - 1)$ } $(2^n + 1)$. 证 毕.

▶3.16 例 7 证明: 若 a 被 9 除的余数是 3,4,5 或 6, 则方程 $x^3 + y^3 = a$ 没有整数解.

证明: 对任意整数 x, y, 记 $x = 3q_1 + r_1, y = 3q_2 + r_2$, 其中 $0 \le r_1, r_2 < 3, q_1, q_2 \in \mathbf{Z}$. 于是有 $x^3 = 9Q_1 + r_1^3, y^3 = 9Q_2 + r_2^3$, 其中 $Q_1, Q_2 \in \mathbf{Z}$. 所以 $x^3 + y^3 = 9(Q_1 + Q_2) + r_1^3 + r_2^3$.

显然, $x^3 + y^3$ 被 9 除的余数与 $r_1^3 + r_2^3$ 被 9 除的余数相同. 由于 r_1^3 , r_2^3 被 9 除的余数为 0,1 或 8, 因此, $r_1^3 + r_2^3$ 被 9 除的余数只可能是 0,1,2,7 或 8; 而已知 a 被 9 除的余数是 3,4,5 或 6, 所以, $x^3 + y^3$ 不可能等于 a, 即方程 $x^3 + y^3 = a$ 没有整数解. 证毕.

▶3.17 注 若一个整系数方程有整数解,则用任何非零数同时除此方程两边所得的最小非负余数都相同.基于这个性质可知,若一个方程两边用同一个非零整数去除所得的余数不相同,则此方程必无整数解.例 5 正是运用了此种基本思想.

作业:	P6 习题 1.2、1;3
教学后记:	

第四讲 最大公因数

教学目标:	掌握最大公因数的概念、性质及其求法
教学重点:	最大公因数的性质及其求法
教学难点:	最大公因数的性质
教学方法和手段:	讲授
教学时数:	10 课时

一、最大公因数的概念

▶**4.1 定义 1** 若 $b \mid a_1, b \mid a_2, \dots, b \mid a_n$, 则 b 叫作 a_1, a_2, \dots, a_n 的公因数.

- ▶4.2 e.g. -3, 6 都是 12 与 18 的公因数, 其中 6 是 12 与 18 的所有公因数中最大的一个, 叫作 12 与 18 的最大公因数, 记作 (12,18) = 6.
- ▶4.3 定义 2 整数 a_1, a_2, \dots, a_n 共有的因数中最大的一个叫作 a_1, a_2, \dots, a_n 的最大公因数, 记作 (a_1, a_2, \dots, a_n) , 读作 a_1, a_2, \dots, a_n 的最大公因数.

显然 (a_1, a_2, \cdots, a_n) 是正整数.

- ▶4.4 定理 1 整数 a_1, a_2, \dots, a_n 的最大公因数唯一存在.
- ▶4.5 定义 3 若 $(a_1, a_2, \dots, a_n) = 1$, 则称 a_1, a_2, \dots, a_n 互质; 若 a_1, a_2, \dots, a_n 中任意两个互质, 则称 a_1, a_2, \dots, a_n 两丙互质 $((a_i, a_j) = 1(1 \leq i, j \leq n, i \neq j))$.

若几个数两两互质,则这几个数一定互质.反之未必成立.

- ▶4.6 e.g.2, 3, 5 两两互质, 它们也互质; 3, 4, 6 互质但不两两互质.
- ▶4.7 定理 2 若 a_1, a_2, \dots, a_n 是不全为零的整数,则

$$a_1, a_2, \cdots, a_n = |a_1|, |a_2|, \cdots, |a_n|$$

有相同的公因数,且

$$(a_1, a_2, \cdots, a_n) = (|a_1|, |a_2|, \cdots, |a_n|)$$

证明: 设 $p \mid a_k(k=1,2,3,\cdots,n)$, 则存在 n 个整数 q_k , 使得 $a_k=pq_k$. 所以 $a_k \mid = \mid pq_k \mid = p(\pm \mid q_k \mid)$, 所以

$$p||a_k||(k=1,2,3,\cdots,n)$$

即 a_1, a_2, \dots, a_n 的任意公因数是 $|a_1|, |a_2|, \dots, |a_n|$ 的公因数.

反之,同理可证 $|a_1|, |a_2|, \dots, |a_n|$ 的任意公因数也是 a_1, a_2, \dots, a_n 的公因数.

故 a_1, a_2, \dots, a_n 与 $|a_1|, |a_2|, \dots, |a_n|$ 有相同的公因数. 当然, 其中最大者也相同, 即

$$(a_1, a_2, \cdots, a_n) = (|a_1|, |a_2|, \cdots, |a_n|)$$

▶4.8 注 该定理告诉我们, 讨论任意几个不全为零的整数的最大公因数问题, 可以转化为讨论几个非负整数的最大公因数问题, 因此本节下面的讨论将在非负整数范围内进行.

▶4.9 定理 3 (i)
$$(a,b) = (b,a)$$

(ii)
$$\stackrel{.}{\text{Z}} a \neq 0$$
, $\stackrel{.}{\text{M}} (a, 0) = |a|, (a, a) = |a|$.

二、最大公因数的性质

▶4.10 定理 4 若 $a = bq + r(0 \le r < b)$, 则 (a,b) = (b,r).[定理 1.3.1(ii)]

证明: 设 (a,b) = d, (b,r) = e, 则 d|a,d|b, 故 $d \mid (a-bq) = r,d$ 是 b,r 的一个公因数, 而 (b,r) = e, 故 $d \leq e.$ 同理可得 $e \leq d.$ 故 d = e, 即 (a,b) = (b,r).

- ▶4.11 e.g. 由 $377 = 319 \times 1 + 58$, 可得 (319, 377) = (319, 58).
- ▶4.12 注 定理的证法也是证明两个最大公因数相等的常用方法,同时,还是展转相除法求最大公因数的理论基础.
- ▶4.13 定理 5 设 $a_1, a_2, \dots, a_n \in \mathbf{Z}$, 记 $A = \begin{cases} y \mid y = \sum_{i=1}^n a_i x_i, x_i \in \mathbf{Z}, \\ 1 \leq i \leq n \end{cases}$. 如果 y_0 是集合 A 中最小的正数, 则 $y_0 = (a_1, a_2, \dots, a_n)$.[定理 1.3.2]

证明: 由于 y_0 是集合 A 中最小的正数, 故 $y_0 = \sum_{i=1}^n a_i x_i^0 \left(x_i^0 \in \mathbf{Z}, 1 \leqslant i \leqslant \mathbf{Z} \right)$

n). 设 d 是 a_1, a_2, \dots, a_n 的任意一个公因数,则 $d \mid y_0 = \sum_{i=1}^n a_i x_i^0$,所以 $d \leq y_0$.

又由 1.2 节例 1 的结论知 $y_0 \mid a_i (1 \leq i \leq n)$, 故 y_0 也是 a_1, a_2, \dots, a_n 的公因数. 因此, y_0 是 a_1, a_2, \dots, a_n 所有公因数中的最大正数, 由此即得 $y_0 = (a_1, a_2, \dots, a_n)$. 证毕.

▶4.14 注 由于
$$(a_1, a_2, \dots, a_n)$$
 是集合 $A = \begin{cases} y \mid y = \sum_{i=1}^n a_i x_i, x_i \in \mathbf{Z}, \end{cases}$

 $1 \le i \le n$ } 的最小正数, 由定理 1.3.2 的证明过程直接得到如下推论.

▶4.15 推论 1 设不全为零整数 a_1, a_2, \dots, a_n 的最大公因数是 (a_1, a_2, \dots, a_n) ,则存在整数 x'_1, x'_2, \dots, x'_n ,使得 $a_1x'_1 + a_2x'_2 + \dots + a_nx'_n = (a_1, a_2, \dots, a_n)$.[推论 1.3.1]

▶4.16 定理 6 若 d > 0, $d \mid a, d \mid b$, 则 $(a, b) = d \Leftrightarrow$ 存在整数 s, t, 使 得 d = as + bt.(贝祖 (Bézout) 等式).

▶4.17 推论 1 设 d 是 a_1, a_2, \dots, a_n 的任意一个公因数,则 d | (a_1, a_2, \dots, a_n) . [设 q 是 a, b 的任意一个公因数,d 是 a, b 的一个公因数,则 $d = (a, b) \Leftrightarrow q \mid d$][推论 1.3.2]

证明: 由推论 1.3.1 知, 存在整数 x'_1, \dots, x'_n 使得

$$a_1x_1' + \dots + a_nx_n' = (a_1, \dots, a_n)$$

所以由 $d \mid a_i (1 \leq i \leq n)$,有 $d \mid (a_1 x_1' + \dots + a_n x_n')$,即 $d \mid (a_1, a_2, \dots, a_n)$. 证毕.

▶4.18 注 推论 1.3.2 对最大公因数的本质属性做了非常深刻的刻画: 最大公因数不但是公因数中最大的, 而且是 a_1, a_2, \dots, a_n 所有公因数的倍数.

▶**4.19 定理 7** [定理 1.3.3](a_1, a_2, \dots, a_n) = 1 的充分必要条件是存在整数 x_1, x_2, \dots, x_n , 使得

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 1 \tag{4.1}$$

证明: 必要性由推论 1.3.1 即可得到式(4.1).

充分性若式(4.1)成立, 令 $(a_1, a_2, \cdots, a_n) = d$, 由 $d \mid a_i (1 \le i \le n)$ 推出:

$$d \mid (a_1x_1 + a_2x_2 + \dots + a_nx_n) = 1$$

故 d = 1, 即 $(a_1, a_2, \dots, a_n) = 1$. 证毕.

▶4.20 定理 8 设 d|a,d|b, 则 $d=(a,b)\Leftrightarrow \left(\frac{a}{d},\frac{b}{d}\right)=1.$

证明: 必要性.

设 $\left(\frac{a}{d}, \frac{b}{d}\right) = p > 1$, 则 $p \left| \frac{a}{d}, p \right| \frac{b}{d}$, $\therefore dp | a, dp | b$, 这说明 dp 是 a 与 b 的

一个公因数, 而 dp > d, 这与 d = (a, b) 矛盾, 故 $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$. 充分性.

若 (a,b) = q > d, 则因为 d|a,d|b, 由推论 2 可知 d|q.

设 q = dp(p > 1), 因为 (a, b) = q, 所以 q|a, q|b

因为 dp|a, dp|b, 所以 $p\left|\frac{a}{d}, p\right| \frac{b}{d}$

即 p 是 $\frac{a}{d}$, $\frac{b}{d}$ 的一个大于 1 的公因数, 这与 $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ 矛盾. 故 (a, b) = d.

▶4.21 推论 1 设 $d \mid a_k(k=1,2,\cdots,n),$ 则

$$(a_1, a_2, \cdots, a_n) = d \Leftrightarrow \left(\frac{a_1}{d}, \frac{a_2}{d}, \cdots, \frac{a_n}{d}\right) = 1$$

▶4.22 定理 9 (ac, bc) = c(a, b)

证明: 设
$$(a,b)=d$$
, 则 $\left(\frac{a}{d},\frac{b}{d}\right)=1$

因为
$$\left(\frac{ac}{dc}, \frac{bc}{dc}\right) = 1$$
, 所以 $(ac, bc) = dc = c(a, b)$.

▶4.23 推论 1 $(ma_1, ma_2, \dots, ma_n) = |m| (a_1, a_2, \dots, a_n),$ 其中 $m \neq m$

例如, $(12, 28, 64) = 4(3, 7, 16) = 4 \times 1 = 4$.

►4.24 例 1 若 (a,b) = 1, 求 (a-b,a+b).

解: 设 (a-b,a+b)=d, 则 d|a-b,d|a+b, 所以 $d|2a,d|2b,d\mid (2a,2b)=2(a,b)=2$

于是 d = 1 或 d = 2.

0.

- ▶4.25 注 定理 8 给出了一个证明数论问题的常用方法: 由两个不全为零且不互素的整数, 可自然地产生一对互素的整数. 利用这一结论, 数论中不全为零且不互素的整数可以化归为互素的整数, 从而达到简化问题证明过程的目的.
- ▶4.26 定理 10 由 $b \mid ac$ 及 (a,b) = 1 可以推出 $b \mid c$.[定理 1.3.5(i)] 证明: 证法一: 若 (a,b) = 1, 由定理 1.3.3 知, 存在整数 x 与 y, 使得 ax + by = 1. 因此,

$$acx + bcy = c (4.2)$$

|由式(4.2)及 $b \mid ac$ 得到 $b \mid c$. 结论得证.

证法二: 因为 (a,b) = 1, 所以 c = c(a,b) = (ac,bc), 因为 $b \mid bc, b \mid ac$, 于是 $b \mid (ac,bc) = c$.

- ▶4.27 推论 1 设 p 为质数, 若 $p \mid ab$, 则 $p \mid a$ 或 $p \mid b$.
- ▶4.28 定理 11 由 b|c,a|c 及 (a,b) = 1 可以推出 $ab \mid c$.[定理 1.3.5(ii)] 证明: 证法一: 因为 (a,b) = 1, 由定理 1.3.3 知, 存在整数 x,y 使得式(4.2)成立. 又由 $b \mid c$ 与 $a \mid c$, 得 ab|ac,ab|bc, 再由式(4.2)得 $ab \mid c$. 故结论得证. 证毕.

证法二:

e.g. 因为 $2 \mid 12, 3 \mid 12, (2, 3) = 1$, 所以 $2 \times 3 = 12$.

▶4.29 推论 1 若 (a,b) = 1, 则 (a,bc) = (a,c).[推论 1.3.3]

证明: 证法一: 由于 (a,b) = 1, 由定理 1.3.3 知, 存在整数 x,y 使得式(4.2)成立.

设 $d = (a, bc), d' = (a, c), 则 d|a, d|bc, 由式(4.2)得 <math>d \mid c$, 即 $d \not\in a$ 与 c 的公因数, 故 $d \leqslant d'$; 又 $d' \not\in a$ 与 c 的公因数, 则它也是 a 与 bc 的公因数. 因此 $d' \leqslant d$, 故 (a, bc) = (a, c). 证毕.

证法二: 设 (a,bc) = d, (a,c) = h, 则 d|a,d|bc.

因为 (a,b) = 1, d|a, (d,b) = 1, 所以 d|c,d|h.

反之, 同理可得 $h \mid d$, 所以 d = h, 即 (a, bc) = (a, c).

例如,(9,1350)=(9,135)=(9,27)=9.

▶4.30 推论 2 若 $(a_i, b_j) = 1(1 \le i \le n, 1 \le j \le m)$, 则 $(a_1 a_2 \cdots a_n, b_1 b_2 \cdots b_m) = 1.$ [推论 1.3.4]

特别地, 若 (a,b) = 1, 则对任意正整数 m 和 n 有 $(a^n,b^m) = 1$.

证明: 由于 $(a_i, b_j) = 1(1 \le i \le n, 1 \le j \le m)$, 由推论 1.3.1 得

$$(a_i, b_1 b_2 \cdots b_m) = (a_i, b_2 \cdots b_m) = \cdots = (a_i, b_m) = 1 \quad (1 \le i \le n)$$

故 $(a_1 a_2 \cdots a_n, b_1 b_2 \cdots b_m) = (a_2 \cdots a_n, b_1 b_2 \cdots b_m) = \cdots = (a_n, b_1 b_2 \cdots b_m) = 1$. 证毕.

▶**4.31 推论 3** 设 a,b 是不全为零的整数,n 为正整数, 则 $(a^n,b^n) = (a,b)^n$.

提示:
$$(a,b) = d(d \ge 1) \Rightarrow \left(\frac{a}{d}, \frac{b}{d}\right) = 1 \Rightarrow \left(\frac{a^n}{d^n}, \frac{b^n}{d^n}\right) = 1.$$

▶4.32 定理 12 对于任意 n 个不全为零的整数 a_1, a_2, \dots, a_n , 记

$$(a_1, a_2) = d_2, (d_2, a_3) = d_3, \dots, (d_{n-2}, a_{n-1}) = d_{n-1}, (d_{n-1}, a_n) = d_n$$

则 $d_n = (a_1, a_2, \cdots, a_n)$ [定理 1.3.6]

证明:由己知条件及整除的传递性,有

$$d_n = (d_{n-1}, a_n) \Rightarrow d_n |a_n, d_n| d_{n-1}$$

$$d_{n-1} = (d_{n-2}, a_{n-1}) \Rightarrow d_{n-1} | a_{n-1}, d_{n-1} | d_{n-2}, \not \boxtimes d_n | a_n, d_n | a_{n-1}, d_n | d_{n-2}$$

• • •

$$d_2 = (a_1, a_2) \Rightarrow d_n | a_n, d_n | a_{n-1}, \cdots, d_n | a_2, d_n | a_1$$

即 d_n 是 a_1, a_2, \dots, a_n 的一个公因数.

又对于 a_1, a_2, \dots, a_n 的任何公因数 d, 由推论 1.3.2 及 d_2, \dots, d_n 的定义, 依次得出

$$d | a_1, d | a_2 \Rightarrow d | d_2$$
$$d | d_2, d | a_3 \Rightarrow d | d_3$$
$$\cdots$$

$$d | d_{n-1}, d | a_n \Rightarrow d | d_n$$

故 d_n 是 a_1, a_2, \dots, a_n 公因数中的最大者. 因此, $d_n = (a_1, a_2, \dots, a_n)$. 证毕.

- ▶**4.33 注** 定理 1.3.6 指出了求 n(n > 2) 个不全为零整数最大公因数的方法, 其实质是先化归为 n 1 个整数的最大公因数问题, 最终化归为两个整数的最大公因数问题来解决.
- ▶4.34 定理 13 [定理 1.3.7]设 a, b, c, n 是正整数, $ab = c^n, (a, b) = 1$,则存在正整数 u, v,使得

$$a = u^n$$
, $b = v^n$, $c = uv$, $(u, v) = 1$

证明: 因为 (a,b) = 1,所以 $(b,a^{n-1}) = 1$,故 $a = a(b,a^{n-1}) = (ab,a^n) = (c^n,a^n) = (c,a)^n$;

同理得 $b=(c,b)^n$. 令 u=(a,c), v=(b,c), 则 $a=u^n, b=v^n, c=uv$, 且

$$(u, v) = ((a, c), (b, c)) = (a, b, c) = ((a, b), c) = (1, c) = 1$$

故定理结论成立. 证毕.

- ▶4.35 注 定理 1.3.7 说明, 如果互素的两个正整数之积是一个整数的 n 次幂, 则这两个正整数都是整数的 n 次幂. 此结论还可推广为: 如果正整数 a,b,\cdots,c 之积是一个整数的 n 次幂, 若 a,b,\cdots,c 两两互素, 则 a,b,\cdots,c 都是整数的 n 次幂. 这个性质表现了整数互素的重要性, 其应用较广泛.
 - **▶4.36 例 2** 设 n 是正整数,证明:(n! + 1, (n + 1)! + 1) = 1.

证明: 设 d = (n!+1, (n+1)!+1), 由于 (n!+1)(n+1)-[(n+1)!+1] = n, 于是有 $d \mid n$. 进一步有 $d \mid n!$, 结合 $d \mid (n!+1)$ 可知 $d \mid 1$, 故 d = 1. 证毕.

▶4.37 例 3 证明: 任意两个费马数 $(F_m, F_n) = 1 (m \neq n)$.

证明: 不妨设 m > n. 由 1.1 节例 3 知, 当 $m > n \ge 0$ 时, 费马数满足 $F_n \mid (F_m - 2)$, 即存在整数 t, 使得 $F_m = 2 + tF_n$. 设 $d = (F_m, F_n)$, 则 $d = (2 + tF_n, F_n) = (2, F_n) = 2$, 故 d = 1 或 d = 2. 但 F_n 显然是奇数, 故必有 d = 1, 即费马数是两两互素的. 证毕.

▶4.38 例 4 设 $m, n > 0, mn \mid (m^2 + n^2),$ 证明:m = n.

证明: 设 (m,n) = d, 则 $m = m_1 d$, $n = n_1 d$, 其中 $(m_1,n_1) = 1$. 于是, 已知条件化为 $m_1 n_1 \mid (m_1^2 + n_1^2)$, 由此得 $m_1 \mid (m_1^2 + n_1^2)$, 故 $m_1 \mid n_1^2$. 但是 $(m_1,n_1) = 1$, 结合 $m_1 \mid n_1^2$, 可知必须 $m_1 = 1$. 同理 $n_1 = 1$. 因此 m = n. 证毕.

- ▶4.39 注 由例 4 知, 对于给定的两个不全为零的整数, 常借助于它们的最大公因数来产生两个互素的整数, 以便能利用互素的性质作进一步讨论, 这实质上是将原问题化归为互素的特殊情形.
- ▶4.40 例 5 设 k 为正奇数, 证明: $1+2+\cdots+n$ 整除 $1^k+2^k+\cdots+n^k$. 证明: 因为 $1+2+\cdots+n=\frac{n(n+1)}{2}$, 且 (n,n+1)=1, 所以结论等价于证明

$$n | 2 (1^k + 2^k + \dots + n^k), \quad (n+1) | 2 (1^k + 2^k + \dots + n^k)$$

事实上, 由于 k 是奇数, 利用配对法可得

$$2(1^{k} + 2^{k} + \dots + n^{k})$$

$$= [1^{k} + (n-1)^{k}] + [2^{k} + (n-2)^{k}] + \dots + [(n-1)^{k} + 1^{k}] + 2n^{k}$$

上式的每个加项显然都是 n 的倍数, 故其和也是 n 的倍数. 同理得

$$2(1^{k} + 2^{k} + \dots + n^{k}) = (1^{k} + n^{k}) + [2^{k} + (n-1)^{k}] + \dots + (n^{k} + 1^{k})$$

上式是 n+1 的倍数, 故 $n(n+1) \mid 2(1^k+2^k+\cdots+n^k)$. 证毕.

三、最大公因数的求法

根据最大公因数的定义和性质, 我们可以得到多种求最大公因数的方法, 在此只介绍常用的、重要的基本方法.

4.3.1 分解质因数法

根据推论 1.3.2 可知, 几个数的公因数是这几个数最大公因数的因数, 由此和最大公因数的定义, 我们可以得到求最大公因数的分解质因数法, 其过程如下:

- (1) 写出各数的标准分解式:
- (2) 写出各分解式共同的质因数及其最小次方数, 并把如此得到的幂写成连乘的形式.

▶4.41 例 6 求 (60, 108, 24).

解: 因为
$$60 = 2^2 \times 3 \times 5$$
, $108 = 2^2 \times 3^3$, $24 = 2^3 \times 3$, 所以 $(60, 108, 24) = 2^2 \times 3 = 12$

4.3.2 提取公因数法 (短除法)

根据定理 1.3.4, 可用逐步提取公因数的方法求几个数的最大公因数.

▶4.42 例 7 求 (162, 216, 378, 108).

解:

$$(162, 216, 378, 108) = 2 \times (81, 108, 189, 54) = 2 \times 9 \times (9, 12, 21, 6)$$

= $18 \times 3 \times (3, 4, 7, 2) = 54 \times 1 = 54$

这一过程通常写成下面的短除形式:

因为 (3,4,7,2) = 1, 所以 $(162,216,378,108) = 2 \times 9 \times 3 = 54$.

4.3.3 辗转相除法

▶4.43 定义 4 下面的一组带余数除法, 称为辗转相除法. 设 a 和 b 是整数. $b \neq 0$, 依次作带余数除法:

$$a = bq_{1} + r_{1}, 0 < r_{1} < |b|$$

$$b = r_{1}q_{2} + r_{2}, 0 < r_{2} < r_{1}$$

$$...$$

$$r_{k-1} = r_{k}q_{k+1} + r_{k+1}, 0 < r_{k+1} < r_{k}$$

$$...$$

$$r_{n-2} = r_{n-1}q_{n} + r_{n}, 0 < r_{n} < r_{n-1}$$

$$r_{n-1} = r_{n}q_{n+1} r_{n+1} = 0$$

$$(4.3)$$

由于 b 是固定的, 且 $|b| > r_1 > r_2 > \cdots$, 所以式(4.3)中仅包含有限个等式.

▶4.44 定理 **14** 使用式(4.3)中的记号, 记

$$P_0 = 1$$
, $P_1 = q_1$, $P_k = q_k P_{k-1} + P_{k-2}$ $(k \ge 2)$
 $Q_0 = 0$, $Q_1 = 1$, $Q_k = q_k Q_{k-1} + Q_{k-2}$ $(k \ge 2)$

则

$$aQ_k - bP_k = (-1)^{k-1}r_k \quad (k = 1, 2, \dots, n)$$
 (4.4)

证明: 当 k = 1 时,式(4.4)成立. 当 k = 2 时,有

$$Q_2 = q_2Q_1 + Q_0 = q_2, \quad P_2 = q_2P_1 + P_0 = q_2q_1 + 1$$

此时由式(4.3)得

$$aQ_2 - bP_2 = aq_2 - b(q_2q_1 + 1) = (a - bq_1)q_2 - b = r_1q_2 - b = -r_2$$

即式(4.4)成立.

假设对于 $k < m(1 \le m \le n)$ 式(4.4)成立, 由此假设及式(4.3)得到

$$aQ_m - bP_m = a (q_m Q_{m-1} + Q_{m-2}) - b (q_m P_{m-1} + P_{m-2})$$

$$= (aQ_{m-1} - bP_{m-1}) q_m + (aQ_{m-2} - bP_{m-2})$$

$$= (-1)^{m-2} r_{m-1} q_m + (-1)^{m-3} r_{m-2}$$

$$= (-1)^{m-1} (r_{m-2} - r_{m-1} q_m) = (-1)^{m-1} r_m$$

即当 k=m 时式(4.4)也成立.

由归纳原理, 式(4.4)对一切正整数 k 都成立.

▶4.45 定理14的结论可利用表 1.1 来记忆与实现: 按箭头所指方向, 依照斜线相乘、横线相加的原则, 可依次求出 P_k 和 $Q_k(k \ge 2)$.

k	0	1	2	3	• • •	k	• • •	n
q_k		q_1	q_2	q_3	• • •	q_k	• • •	q_n
P_k	P_0	P_1	P_2	P_3	• • •	$P_k = q_k P_{k-1} + P_{k-2}$	• • •	P_n
Q_k	Q_0	Q_1	Q_2	Q_3		$Q_k = q_k Q_{k-1} + Q_{k-2}$		Q_n

▶4.46 定理 15 使用式(4.3)中的记号, 有 $r_n = (a, b)$.

证明:由(4.3)式得

$$r_n = (r_{n-1}, r_n) = (r_{n-2}, r_{n-1}) = \cdots = (r_1, r_2) = (b, r_1) = (a, b)$$

▶4.47 由此知, 利用辗转相除法可以求出不全为零的整数 x, y, 使得

$$ax + by = (a, b) \tag{4.5}$$

成立.

事实上, 在式(4.4)中, 令 k = n, 则 $aQ_n - bP_n = (-1)^{n-1}r_n$, 于是有

$$(-1)^{n-1}Q_n a + (-1)^n P_n b = r_n = (a, b)$$
(4.6)

比较式(4.5)和式(4.6)得

$$x = (-1)^{n-1}Q_n, \quad y = (-1)^n P_n$$

▶4.48 注 若 $x = x_0, y = y_0$ 是适合式(4.5)的一对整数,则等式 $a(x_0 + bs) + b(y_0 - as) = (a, b)$ (其中 s 为任意整数) 说明,满足此式的 x, y 有无穷多组,并且在 ab > 0 时,可人为地选择 x 为正 (负)数,y 相应 地为负 (正)数. 此结论常用于证明最大公因数相关问题.

▶4.49 例 8 求 (5767, 4453).

解: $:: 5767 = 4453 \times 1 + 1314, :: (5767, 4453) = (4453, 1314);$

 $\therefore 4453 = 1314 \times 3 + 511, \therefore (4453, 1314) = (1314, 511);$

 $\therefore 1314 = 511 \times 2 + 292, \therefore (1314, 511) = (511, 292);$

 $\therefore 511 = 292 \times 1 + 219, \therefore (511, 292) = (292, 219)$

 $\therefore 292 = 219 \times 1 + 73, \therefore (292, 219) = (219, 73)$

 $\therefore 219 = 73 \times 3 + 0, \therefore (219, 73) = 73$

 $\therefore (5767, 4453) = 73$

上述过程数据、符号书写重复太多, 可以简化为下面的竖式:

所以 $(5767, 4453) = 73; (a, b) = (b, r_1) = (r_1, r_2) = \cdots$

▶4.50 例 9 求 (1008, 1260, 882, 1134).

分析: 可改求 (((1008, 1260), 882), 1134) 或 ((1008, 1260), (882, 1134)). **解:** 由辗转相除法可得

$$(1008, 1260) = 252, (882, 1134) = 126$$

而 (252, 126) = 126,故 (1008, 1260, 882, 1134) = 126.

▶**4.51 例 10** 用辗转相除法求 (125, 17), 并求整数 x, y, 使得 125x + 17y = (125, 17).

证明: 作辗转相除法, 有

$$125 = 7 \times 17 + 6$$
, $q_1 = 7$, $r_1 = 6$
 $17 = 2 \times 6 + 5$, $q_2 = 2$, $r_2 = 5$
 $6 = 1 \times 5 + 1$, $q_3 = 1$, $r_3 = 1$
 $5 = 5 \times 1$, $q_4 = 5$

由定理15得 $(125, 17) = r_3 = 1$.

下面利用定理15的结论来计算满足条件的整数 x 和 y. 根据上面的计算及定理14. 有

$$P_0 = 1$$
, $P_1 = 7$, $P_2 = 2 \times 7 + 1 = 15$, $P_3 = 1 \times 15 + 7 = 22$
 $Q_0 = 0$, $Q_1 = 1$, $Q_2 = 2 \times 1 + 0 = 2$, $Q_3 = 1 \times 2 + 1 = 3$

上述计算过程如表 1.2 所列, 依照斜线相乘、横线相加原则, 依次求出 P_k 和 $Q_k(2 \le k \le 3)$.

k	0	1	2	3
q_k		7	2	1
P_k	1	7	$P_2 = 2 \times 7 + 1 = 15$	$P_3 = 1 \times 15 + 7 = 22$
Q_k	0	1	$Q_2 = 2 \times 1 + 0 = 2$	$Q_3 = 1 \times 2 + 1 = 3$

取 $x = (-1)^{3-1}Q_3 = 3$, $y = (-1)^3P_3 = -22$, 则 $125 \times 3 + 17 \times (-22) = (125, 17) = 1$.

▶4.52 例 11 设 m, n 是正整数, 证明: $(2^m - 1, 2^n - 1) = 2^{(m,n)} - 1$. 证明: 不妨设 $m \ge n$. 由带余数除法得 $m = q_1 n + r_1, 0 \le r_1 < n$. 于是有

$$2^{m} - 1 = 2^{nq_1 + r_1} - 2^{r_1} + 2^{r_1} - 1 = 2^{r_1} (2^{nq_1} - 1) + 2^{r_1} - 1$$

由上式及 $(2^n-1) \mid (2^{nq_1}-1)$ 得

$$(2^m - 1, 2^n - 1) = (2^n - 1, 2^{r_1} - 1)$$

注意到 $(m,n)=(n,r_1)$, 若 $r_1=0$, 则 (m,n)=n, 结论成立. 若 $r_1>0$, 则继续对 $(2^n-1,2^{r_1}-1)$ 进行类似讨论. 利用辗转相除法得

$$n = q_2 r_1 + r_2 \left(0 < r_2 < r_1 \right)$$
:

$$r_{k-2} = q_k r_{k-1} + r_k (0 < r_k < r_{k-1})$$

$$r_{k-1} = q_{k+1} r_k (r_{k+1} = 0)$$

则 $(2^n - 1, 2^{r_1} - 1) = (2^{r_1} - 1, 2^{r_2} - 1) = \cdots = (2^{r_k} - 1, 2^{r_{k+1}} - 1) = (2^{r_k} - 1, 0) = 2^{r_k} - 1 = 2^{(m,n)} - 1$. 证毕.

▶4.53 例 12 设 a > 1, m, n > 0, 证明: $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$. 证明: 令 $d = (a^m - 1, a^n - 1)$,考虑证明 $(a^{(m,n)} - 1)$ | d 且 d | $(a^{(m,n)} - 1)$ 来导出所证结论.

事实上, 因为

$$(a^{(m,n)}-1)|(a^m-1), (a^{(m,n)}-1)|(a^n-1)$$

由推论 1.3.2 知

$$(a^{(m,n)}-1) \mid ((a^m-1), (a^n-1))$$

即

$$(a^{(m,n)} - 1) \mid d$$
 (4.7)

又设 $d_1 = (m, n)$, 因为 m, n > 0, 故可选择正整数 x, y 使得

$$mx - ny = d_1 (4.8)$$

由 $d \mid (a^m - 1)$ 得 $d \mid (a^{mx} - 1)$; 同理, 由 $d \mid (a^n - 1)$, 得 $d \mid (a^{ny} - 1)$. 故 $d \mid (a^{mx} - a^{ny})$.

由式(4.7)得

$$a^{mx} - a^{ny} = a^{ny+d_1} - a^{ny} = a^{ny} (a^{d_1} - 1)$$

即

$$d \mid a^{ny} \left(a^{d_1} - 1 \right) \tag{4.9}$$

又因为 a > 1 及 $d \mid (a^m - 1)$, 故 (d, a) = 1, 进而

$$(d, a^{ny}) = 1$$

由上式及式(4.9)得 $d \mid (a^{d_1} - 1)$, 即

$$d \mid \left(a^{(m,n)} - 1\right) \tag{4.10}$$

结合式(4.7)和式(4.10)知 $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$. 证毕.

作业:	P11 习题 1.3、2;3;4	P17 习题 1.5、1;2
教学后记:		

第五讲 最小公倍数

教学目标:	掌握最小公倍数的概念、性质及其求法	
教学重点:	最小公倍数的性质及其求法	
教学难点:	最小公倍数的性质	
教学方法和手段:	讲授	
教学时数:	4 课时	

一、最小公倍数的概念

 $3 \mid 48,6 \mid 48$,可见,48 是 3,6 公有的倍数, 我们称之为 3,6 的一个公倍数.

▶5.1 定义 1 设 $a_k(k=1,2,\cdots,n),m$ 都是整数, 若 $a_k \mid m$, 则 m 叫 作 a_1,a_2,\cdots,a_n 的公倍数.

e.g.±6,±12,±24,±48,··· 都是 2,3,6 三个数的公倍数,其中,6 是这些公倍数中最小的正整数,叫作 2,3,6 的最小公倍数,记作 [2,3,6] = <math>6.

可见, 几个数的公倍数有无穷多个, 几个数的最小公倍数有且只有一个.

▶5.2 定义 2 几个非零整数 a_1, a_2, \dots, a_n 公有的倍数中最小的正整数, 叫作 a_1, a_2, \dots, a_n 的最小公倍数, 记作 $[a_1, a_2, \dots, a_n]$.

>5.3 定理 1 几个非零整数 a_1, a_2, \dots, a_n 的最小公倍数唯一存在. 证明: 存在性

显然, $a_1a_2\cdots a_n$ 是 a_1,a_2,\cdots,a_n 的一个公倍数,这说明 a_1,a_2,\cdots,a_n 的公倍数存在. 根据最小数原理, 其正的公倍数中必存在最小正整数,即存在最小公倍数.

唯一性

设 $[a_1, a_2, \dots, a_n] = m, [a_1, a_2, \dots, a_n] = q.$ 若 m < q, 则与 $[a_1, a_2, \dots, a_n] = q$ 矛盾; 若 q > m, 则与 $[a_1, a_2, \dots, a_n] = m$ 矛盾. 故 m = q. 即 a_1, a_2, \dots, a_n 的最小公倍数唯一.

▶5.4 定理 2 若 a_1, a_2, \dots, a_n 均为非零整数,则

$$[a_1, a_2, \cdots, a_n] = [|a_1|, |a_2|, \cdots, |a_n|].$$

该定理说明, 求几个非零整数的最小公倍数可化为求几个正整数的最小公倍数.

▶5.5 定理 3 (i)[a, 1] = |a|, [a, a] = |a|, 其中 $a \neq 0$;

- (ii)[a, b] = [b, a];
- (iii) 若 $a \mid b$, 则 [a, b] = |b|.

二、最小公倍数的性质

▶5.6 定理 4 [推论 1.4.3] 设 m 是 a_1, a_2, \dots, a_n 的一个公倍数,q 是 a_1, a_2, \dots, a_n 的任意一个公倍数, 则 $m = [a_1, a_2, \dots, a_n] \Leftrightarrow m \mid q$.

证明: 必要性. 若 $m \nmid q$, 因为 $m = [a_1, a_2, \dots, a_n]$, 所以 m < q. 设 $q = mx + r (\leqslant r < m)$. 因为 $a_k \mid m, a_k \mid q$, 所以 $a_k \mid (q - mx) = r(k = 1, 2, \dots, n)$. 于是 r 也是 a_1, a_2, \dots, a_n 的一公倍数, 而 r < m, 这与 $m = [a_1, a_2, \dots, a_n]$ 矛盾. 故 $m \mid q$

充分性. 设 $[a_1, a_2, \cdots, a_n] = p \neq m$. 因为 $m \mid q, p \in a_1, a_2, \cdots, a_n$ 的公倍数, 所以 $m \mid p, m < p$, 这与 $[a_1, a_2, \cdots, a_n] = p$ 矛盾. 故 p = m.

▶5.7 定理 5 设 $a_p \mid m(p = 1, 2, \dots, n),$ 则

$$m = [a_1, a_2, \cdots, a_n] \Leftrightarrow \left(\frac{m}{a_1}, \frac{m}{a_2}, \cdots, \frac{m}{a_2}\right) = 1$$

证明: 必要性. 设 $\left(\frac{m}{a_1}, \frac{m}{a_2}, \cdots, \frac{m}{a_2}\right) = q > 1$, 则 $q \mid \frac{m}{a_k}$. 所以 $qa_k \mid m$. 于是 $a_k \mid \frac{m}{q}$, 这说明 $\frac{m}{q}$ 是 a_k 的公倍数 $(p = 1, 2, \cdots, n)$. 而 $\frac{m}{q} < m$, 与 $m = [a_1, a_2, \cdots, a_n]$ 矛盾, 故

$$\left(\frac{m}{a_1}, \frac{m}{a_2}, \cdots, \frac{m}{a_2}\right) = 1$$

充分性. 设 $[a_1, a_2, \cdots, a_n] = k < m$, 则由定理4可知, $k \mid m$. 设 m = kq(q > 1),则由 $a_p \mid k(p = 1, 2, \cdots, n)$,得 $a_p \mid \frac{m}{q}$,于是 $q \mid \frac{m}{a_p}$,则 q 是 $\frac{m}{a_k}(p = 1, 2, \cdots, n)$ 的大于 1 的公因数, 这与 $\left(\frac{m}{a_1}, \frac{m}{a_2}, \cdots, \frac{m}{a_2}\right) = 1$ 矛盾. 故 $m = [a_1, a_2, \cdots, a_n]$.

▶5.8 定理 6 [推论 1.4.2][ka_1, ka_2, \cdots, ka_n] = $k[a_1, a_2, \cdots, a_n]$

▶5.9 定理 7 [定理 1.4.2] 对任意正整数 a, b, f [a, b] = $\frac{ab}{(a, b)}$.

证明: 设 [a,b]=m, 由定理5得 $\left(\frac{m}{a},\frac{m}{b}\right)=1$, 故

$$\left(\frac{mb}{ab}, \frac{ma}{ab}\right) = 1, \left(\frac{b}{\frac{ab}{m}}, \frac{a}{\frac{ab}{m}}\right) = 1$$

由定理 1.3.4 得 $(a,b) = \frac{ab}{m}$, 从而 $m = \frac{ab}{(a,b)}$, 即

$$[a,b] = \frac{ab}{(a,b)}.$$

- ▶5.10 注: 两个非零整数的最小公倍数的问题实质上可化归为它们 的最大公因数问题.
 - **▶5.11 推论 1** [推论 1.4.1] 若 a | m, b | m, 则 [a, b] | m.
- ▶5.12 推论1刻画了最小公倍数的一个重要属性: 两个非零整数的 最小公倍数不但是最小的公倍数,而且是这两个整数的任意公倍数的因 数.
 - ▶5.13 推论 2 [推论 1.4.2] 设 m, a, b 是正整数, 则 [ma.mb] = m[a, b]. 证明: 由定理 1.4.2 及定理 1.3.4 得到

$$[ma, mb] = \frac{m^2ab}{(ma, mb)} = \frac{m^2ab}{m(a, b)} = \frac{mab}{(a, b)} = m[a, b].$$

- **▶5.14** 推论 3 若 (a,b) = 1, 则 [a,b] = (a,b).

>5.15 推论 4
$$[a^n, b^n] = [a, b]^n$$
.
证明: $[a^n, b^n] = \frac{a^n b^n}{(a^n, b^n)} = \frac{a^n b^n}{(a, b)^n} = \left(\frac{ab}{(a, b)}\right)^n = [a, b]^n$.

- **▶5.16** 推论 5 若 (a,b) = 1, 则 [a,bc] = b[a,c].
- ▶5.17 定理 8 [定理 1.4.3] 对于任意 n 个非负整数 a_1, a_2, \dots, a_n , 记

$$[a_1, a_2] = m_2, [m_2, a_3] = m_3, \dots, [m_{n-2}, a_{n-1}] = m_{n-1}, [m_{n-1}, a_n] = m_n$$

则 $[a_1, a_2, \cdots, a_n] = m_n$.

证明:由于

$$m_{n} = [m_{n-1}, a_{n}] \Rightarrow m_{n-1} | m_{n}, a_{n} | m_{n}$$

$$m_{n-1} = [m_{n-2}, a_{n-1}] \Rightarrow m_{n-2} | m_{n-1} | m_{n}, a_{n} | m_{n}, a_{n-1} | m_{n-1} | m_{n}$$

$$m_{n-2} = [m_{n-3}, a_{n-2}] \Rightarrow m_{n-3} | m_{n-2} | m_{n}, a_{n} | m_{n}, a_{n-1} | m_{n}, a_{n-2} | m_{n}$$

$$\dots$$

$$m_2 = [a_1, a_2] \Rightarrow a_n \mid m_n, \cdots, a_2 \mid m_n, a_1 \mid m_n$$

因此, m_n 是 a_1, a_2, \cdots, a_n 的一个公倍数.

又对于 a_1, a_2, \cdots, a_n 的任何公倍数 m, 反复利用推论 1.4.1 及 m_2, \cdots , m_n 的定义, 得

$$m_2 | m, m_3 | m, \cdots, m_n | m$$

所以 $m_n \leq m$, 即 m_n 是 a_1, a_2, \dots, a_n 最小的正的公倍数.

▶5.18 定理 9 [定理 1.4.4] 对于任意非零整数 a_1, a_2, \dots, a_n 及整数 $k(1 \le k \le n)$. 证明:

$$[a_1, a_2, \cdots, a_n] = [[a_1, \cdots, a_k], [a_{k+1}, \cdots, a_n]].$$

证明: 因为 $[a_1, a_2, \cdots, a_n]$ 是 a_1, \cdots, a_k 和 a_{k+1}, \cdots, a_n 的公倍数, 所以

$$[a_1,\cdots,a_k] \mid [a_1,a_2,\cdots,a_n]$$

且 $[a_{k+1}, \cdots, a_n] \mid [a_1, a_2, \cdots, a_n]$ 因此, 由推论 1. 4.3 得

$$[[a_1, \cdots, a_k], [a_{k+1}, \cdots, a_n]] \mid [a_1, a_2, \cdots, a_n]$$
 (5.1)

又对于任意的 $a_i(1 \le i \le n)$, 显然

$$a_i \mid [[a_1, \cdots, a_k], [a_{k+1}, \cdots, a_n]]$$

所以, 由推论 1.4 .3 可知

$$[a_1, a_2, \cdots, a_n] \mid [[a_1, \cdots, a_k], [a_{k+1}, \cdots, a_n]]$$

综合上式及式(5.1), 定理得证.

e.g.
$$[4, 8, 12] = [[4, 8], 12] = [8, 12] = 24.$$

 $[2, 4, 9, 8, 27] = [[2, 4, 8], [9, 27]] = [8, 27] = 216.$

▶5.19 定理 10 若 $(h, a_m = 1)(m = k + 1, k + 2, \dots, n)$, 则

$$[ha_1, ha_2, \cdots, ha_k, a_{k+1}, \cdots, a_n] = h[a_1, a_2, \cdots, a_k, a_{k+1}, \cdots, a_n]$$

证明: 因为 $(h, a_m = 1)(m = k+1, k+2, \dots, n)$, 所以 $(h, a_{k+1} \dots a_n) = 1$. 于是 $a_{k+1} \dots a_n$ 是 a_{k+1}, \dots, a_n 的公倍数, 所以 $[a_{k+1}, \dots, a_n] \mid a_{k+1} \dots a_n$ 故 $(h, [a_{k+1}, \dots, a_n]) = 1$. 又由 5.8 定理和 5.18 定理可知,

$$[ha_1, ha_2, \cdots, ha_k, a_{k+1}, \cdots, a_n]$$

$$= [[ha_1, ha_2, \cdots, ha_k], [a_{k+1}, \cdots, a_n]]$$

$$= [h[a_1, a_2, \cdots, a_k], [a_{k+1}, \cdots, a_n]]$$

$$= h[[a_1, a_2, \cdots, a_k], [a_{k+1}, \cdots, a_n]]$$

$$= h[a_1, a_2, \cdots, a_k, a_{k+1}, \cdots, a_n].$$

e.g.
$$[2, 4, 12, 9, 17, 18]$$

 $=2 \times [1, 2, 6, 9, 17, 9]$
 $=2 \times 2 \times [1, 1, 3, 9, 17, 9]$
 $=4 \times 3 \times [1, 1, 1, 3, 17, 3]$
 $=12 \times 3 \times [1, 1, 1, 1, 17, 1]$
 $=36 \times 17 = 612.$

▶5.20 例 1 设 *a*, *b*, *c* 是正整数, 证明: [*a*, *b*, *c*](*ab*, *bc*, *ca*) = *abc*. 证明: 由定理 1.4 .3 和定理 1.4 .2, 有

$$[a, b, c] = [[a, b], c] = \frac{[a, b]c}{([a, b], c)}$$
(5.2)

由推论 1.4.2 及定理 1.3. 4, 有

$$(ab, bc, ca) = (ab, (bc, ca)) = (ab, c(a, b)) =$$

$$\left(ab, \frac{abc}{[a, b]}\right) = \frac{(ab[a, b], abc)}{[a, b]} = \frac{ab([a, b], c)}{[a, b]}$$
(5.3)

综合式(5.2)与式(5.3)得到所证结论.

>5.21 例 2 设 a, b, c 是正整数,证明:[a, b, c][ab, bc, ca] = [a, b][b, c][c, a] 证明:由推论 1.4.2, 有

$$\begin{split} [a,b,c][ab,bc,ca] = & [[a,b,c]ab,[a,b,c]bc,[a,b,c]ca] = \\ & \left[\left[a^2b,ab^2,abc \right], \left[abc,b^2c,bc^2 \right], \left[a^2c,abc,ac^2 \right] \right] = \\ & \left[a^2b,ab^2,abc,abc,b^2c,bc^2,a^2c,abc,ac^2 \right] = \\ & \left[abc,a^2b,a^2c,b^2c,b^2a,c^2a,c^2b \right] \end{split}$$

以及

$$\begin{split} [a,b][b,c][c,a] = & \big[[a,b]b, [a,b]c][c,a] = \big[ab,b^2,ac,bc \big] \, [c,a] = \\ & \big[ab[c,a],b^2[c,a],ac[c,a],bc[c,a] \big] = \\ & \big[abc,a^2b,b^2c,b^2a,ac^2,a^2c,bc^2,bca \big] = \\ & \big[abc,a^2b,a^2c,b^2c,b^2a,c^2a,c^2b \big] \end{split}$$

综上即得结论.

三、最小公倍数的求法

根据最小公倍数的定义和性质, 对照最大公因数的求法, 可以得到几个求最小公倍数的方法.

(1) 分解质因数法.

根据定义和定理 3 可知, 几个数的最小公倍数首先是这几个数的一个公倍数, 其次, 它又是这几个数的任意公倍数的因数. 由此可以得到求几个数最小公倍数的分解质因数法, 其步骤如下:

- 1. 写出各数的标准分解式;
- 2. 写出各分解式中所有的质因数及其最高次数, 并把得到的幕连乘起来.

▶5.22 例 3 求 [735, 108, 24].

解: 因为
$$735 = 3 \times 5 \times 7^2$$
, $108 = 2^2 \times 3^3$, $24 = 2^3 \times 3$, 所以

$$[735, 108, 24] = 2^3 \times 3^3 \times 5 \times 7^2 = 52920$$

(2) 提取公因数法.

根据定理 5、定理 6 推论和定理 8, 求几个数的最小公倍数可以用提取公因数法, 其步骤如下:

- 1. 先提取这几个数的最大公因数 (各商数互质但不一定两两互质);
- 2. 在不互质的商数中提取公因数, 其他商数照写下来, 直到各商数两两互质为止;
- 3. 把提取的各数及各商数连乘起来.

▶5.23 例 4 求 [62, 48, 378].

解:

$$[62, 48, 378] = 2 \times [31, 24, 189] = 2 \times 3 \times [31, 8, 63]$$
$$= 6 \times 31 \times 8 \times 63 = 93744$$

这一过程通常简写成下面的形式, 叫作短除式:

因为 31, 8, 63 两两互质, 所以 $[62, 48, 378] = 2 \times 3 \times 31 \times 8 \times 63 = 93744$.

(3) 先求最大公因数法.

根据定理 6, 通过 a,b = ab, 先求 (a,b).

此法一般用于求公因数不明显的几个数的最小公倍数.

▶5.24 例 5 求 [24871, 3468].

解: 由辗转相除法求得 (24871,3468) = 17, 从而

$$[24871, 3468] = 24871 \times 3468 \div 17 = 5073684.$$

作业:	P11 习题 1.3、2;3;4	P17 习题 1.5、1;2
教学后记:		

第六讲 素数与合数

教学目标:	掌握素数与合数的概念及素数的判定	
教学重点:	素数与合数的概念	
教学难点:	素数的判定质	
教学方法和手段:	讲授	
教学时数:	2 课时	

一、素数与合数的概念

▶6.1 定义 1 若 a 为大于 1 的整数, 如果 a 的正因数只有 1 和 a 自身, 则称 a 为素数 (或质数). 若 a 有正的真因数, 则称 a 为合数.

▶6.2 e.g.2, 3, 5, 7, 11, · · · 都是质数; 4, 6, 8, 9, 10, · · · 都是合数.

▶6.3 注 全体正整数被分成三类:数 1(单独作一类)、素数和合数.

▶6.4 定理 1 *a* 是合数的充要条件是 a = bc, 其中 $b, c \in \mathbb{N}_+, 1 < b < a, 1 < c < a$.

证明: (充分性证明) 因为 $a = bc, b, c \in \mathbb{N}_+, 1 < b < a, 1 < c < a$ 所以 a > 1, 则 a 的合数.

(必要性证明) 因为 a 是合数, 所以一定有一个 $b \in \mathbb{N}_+$ 且 1 < b < a, 使 $b \mid a$, 即 a = bc. 又由于 $a, b \in \mathbb{N}_+$, 故 $c \in \mathbb{N}_+$. 因为 a > b, 所以 bc > b, 又因为 b > 1, 所以 c > 1.

由于 $c \mid a, c, a \in \mathbb{N}_+$, 故 c < a, 则 1 < c < a. 结论成立.

▶6.5 例 1 求证:173¹² + 4 是合数.

证明: 只要找到一个不是 1 也不是它本身的正因数即可, 可考虑试用配方法把它分解因式.

∴ 17312 + 4 是合数.

▶6.6 定理 2 如果素数 p 是整数 a 的因数,则称 p 是 a 的素因数. 素数在正整数中特别重要,一般常用字母 p 表示素数.

二、素数的判定

▶6.7 定理 3 任何大于 1 的正整数必有一个素因数.

证明: 设 a 是大于 1 的正整数,由于 a 就是自身的因数,所以 a 必有大于 1 的因数. 若 a 是素数,则定理 1.6.1 成立是显然的. 若 a 不是素数,则它有正的真因数,设它们是 d_1,d_2,\cdots,d_k ($d_i>1; i=1,2,\cdots,k$),令 d 是其中最小的,若 d 不是素数,则存在 $1<e_1,e_2<d$ 使得 $d=e_1\cdot e_2$,因此 e_1 和 e_2 也是 a 的正的真因数,这与 d 的最小性矛盾.所以 d 是素数,因而 a 必有一个素因数.证毕.

- ▶6.8 推论 1 [推论 1.6.1]如果 a 是大于 1 的整数,则 a 的大于 1 的最小因数必为素数.
 - **▶6.9 推论 2** [推论 1.6.2]合数 *a* 的最小素因数 *p* 满足 $p \leq \sqrt{a}$.

证明: 由于 a 是合数,于是有 $a = p \cdot q$,其中 p 是 a 的最小素因数, $q \in \mathbb{N}$,由于 $1 ,从而 <math>p^2 \le a$,即 $p \le \sqrt{a}$.证毕.

▶6.10 推论 3 [推论 1.6.3]若大于 1 的整数 a 不能被任何适合 $p \leq \sqrt{a}$ 的素数 p 整除, 则 a 必为素数.

证明: 反证法. 若不然, 由于 a > 1, 则 a 必为合数, 由推论 1.6.2 知,a 的最小素因数 p 满足 $p \leqslant \sqrt{a}$, 这与 a 不能被任何适合 $p \leqslant \sqrt{a}$ 的素数 p 整除矛盾, 故 a 必为素数. 证毕.

- **▶6.11 注** 根据推论 1.6.3 可得出求"不超过某个正整数 *a* 的所有素数"的方法
- **▶6.12 定理 4** [定理 1.6.2]设 p 为素数,a 是任意一个整数, 则或者 p 整除 a, 或者 p 与 a 互素.

证明: 事实上,p = a 的最大公约数 (p, a) 必整除 p. 由于 p 为素数, 故 (p, a) = 1 或者 (p, a) = p, 即 p = a 互素或者 p 整除 a. 证毕.

▶**6.13** 定理 **5** [定理 1.6.3]设 p 为素数,a,b 为整数, 若 $p \mid ab$, 则 a,b 中至少有一个数被 p 整除.

证明: 反证法. 若 a,b 均不能被 p 整除,则由定理 1.6.2 知,p 与 a,b 都 互素,从而 p 与 ab 互素. 这与 $p \mid ab$ 矛盾. 故 a,b 中至少有一个数被 p 整除. 证毕.

特别地, 若 p 为素数, 且 $p \mid a^n (n \ge 1)$, 则 $p \mid a$.

▶6.14 例 2 求出不超过 30 的所有素数.

解: 先将不超过 30 的正整数排列如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

再按以下步骤进行:

- ① 删去 1. 剩下的后面的第一个数是 2.2 是素数:
- ② 删去 2 后面的被 2 整除的数, 剩下的 2 后面的第一个数是 3,3 是素数;
- ③ 再删去 3 后面的被 3 整除的数, 剩下的 3 后面的第一个数是 5,5 是素数:
- ④ 再删去 5 后面的被 5 整除的数, 剩下的 5 后面的第一个数是 7,7 是 素数;

按照以上步骤依次得到不超过 30 的素数:2,3,5,7,11,13,17,19,23,29.

▶6.15 注 上述方法的理论依据是: 由推论 1.6.3 可知, 不超过 30 的合数必有一个不超过 $\sqrt{30} \le 6$ 的素因数, 而不超过 6 的素数只有 2,3,5, 因此在删除了所有能被 2,3,5 整除的数之后剩下的数必为素数, 这样就得到了不超过 30 的全部素数.

此种寻找素数的方法称为 Eratosthenes 筛法.

- **▶6.16 例 3** 判定 173 和 1957 是质数还是合数.
- **解:** (1) 因为 $13 < \sqrt{173} < 14$, 所以用不超过 13 的质数 2,3,5,7,11,13 依次去除 173, 发现都不能整除, 所以 173 是质数.
- (2) 因为 $44 < \sqrt{1957} < 45$, 所以用不超过 13 的质数从小到大依次去除 1957, 发现都不能整除, 所以 1957 是质数.
 - **▶6.17 例 4** 判定 359 是质数还是合数.

解: 因为 $18 < \sqrt{359} < 19$, 所以用不超过 $\sqrt{359}$ 的质数 2, 3, 5, 7, 11, 13, 17 依次去除 359, 发现都不能整除, 所以 359 是质数.

▶6.18 例 5 证明: 素数有无穷多个.

证明: 证法一反证法. 假设素数只有有限多个, 设这有限个素数为 p_1, p_2, \dots, p_k . 考虑数 $a = p_1 p_2 \dots p_k + 1$, 显然 a > 1, 故 a 有素因数p. 因为 p_1, p_2, \dots, p_k 包含了全部的素数, 故 p 必等于某个 $p_i(1 \le i \le k)$, 从而 $p \mid p_1 p_2 \dots p_k$, 于是由 $p \mid a$ 推得 $p \mid 1$, 从而 p = 1 或 p = -1, 这与 p 是素数矛盾. 因此, 素数有无穷多个.

证法二由于每个费马数 $F_n = 2^{2^n} + 1(n = 0, 1, 2, \cdots)$ 都大于 1, 故它至少有一个素因数. 由 1.3 节例 2 知, 任意两个费马数 $(F_m, F_n) = 1(m \neq n)$, 因此, 这些素因数必定是互不相同的. 由于两两互素的费马数有无限多个, 故素数有无穷多个. 证毕.

▶6.19 例 6 证明: 存在无穷多个正整数 a, 使得 $n^4+a(n=1,2,3,\cdots)$ 都是合数.

证明: 令 $a = 4k^4 (k = 2, 3, \dots)$, 则对任意的 $n \in \mathbb{N}$, 有

$$n^4 + 4k^4 = (n^2 + 2k^2)^2 - 4n^2k^2 = (n^2 + 2k^2 + 2nk) \cdot (n^2 + 2k^2 - 2nk)$$

因为 $n^2 + 2k^2 - 2nk = (n-k)^2 + k^2 \ge k^2 > 1$

所以, 对于任意的 $k = 2, 3, \cdots$ 以及任意的 $n \in \mathbb{N}, n^4 + a$ 都是合数.

▶6.20 例 7 若 $a > 1, a^n - 1$ 是素数, 证明:a = 2, 并且 n 是素数.

证明: 若 a > 2, 则由

$$a^{n} - 1 = (a - 1) (a^{n-1} + a^{n-2} + \dots + 1)$$

可知 $a^n - 1$ 是合数. 所以 a = 2.

若 n 是合数,则 n = xy(x > 1, y > 1),于是由

$$2^{xy} - 1 = (2^x - 1) \left(2^{x(y-1)} + 2^{x(y-2)} + \dots + 1 \right)$$

以及 $2^{x}-1>1$ 可知 $2^{n}-1$ 是合数. 所以当 $2^{n}-1$ 是素数时,n 必是素数.

作业:	P20 习题 1.6、1;2
教学后记:	

第七讲 算术基本定理

教学目标:	了解算术基本定理
教学重点:	算术基本定理
教学难点:	算术基本定理
教学方法和手段:	讲授
教学时数:	2 课时

▶7.1 引理 1 任何大于 1 的正整数 n 都可表示成素数之积, 即

$$n = p_1 p_2 \cdots p_m \tag{7.1}$$

其中 $p_i(1 \le i \le m)$ 是素数.

证明: 对正整数 n 进行归纳. 当 n=2 时, 式(7.1)显然成立.

假设式(7.1)对任意小于 n 的正整数都成立, 现在考虑 n, 如果 n 是素数, 则式(7.1)显然成立.

如果 n 是合数,则 n 有正的真因数 a,b 使得 $n = a \cdot b(1 < a,b < n)$,根据归纳假设知,a,b 均可以分解为有限个素数之积,从而 n 也可以分解为有限个素数之积.

由归纳法原理, 对一切大于 1 的正整数 n 都能分解成式(7.1)的形式. 证毕.

▶7.2 定理 1 (算术基本定理) 任何大于 1 的正整数 n 都可唯一表示成

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{a_k} \tag{7.2}$$

其中, p_1 , p_2 ,···, p_k 是素数, $p_1 < p_2 < \cdots < p_k$, 且 α_1 , α_2 ,···, α_k 是正整数. **证明: 存在性** 由上述引理可知, 任何大于 1 的正整数 n 都可分解成式(7.1)的形式, 即

$$n = p_1 p_2 \cdots p_m$$

其中 $p_i(1 \le i \le m)$ 是素数. 适当调整分解式(7.1)中素数的顺序, 并将式(7.1)中相同素因数的乘积写成该素数的方幂的乘积, 则 n 可表示成

$$n = p_1^{a_1} p_2^{a_2} \cdots p_k^{\alpha_k}$$

其中 $p_1 < p_2 < \cdots < p_k$, 且 $\alpha_1, \alpha_2, \cdots, \alpha_k$ 是正整数.

唯一性 假设 $p_i(1 \le i \le k)$ 与 $q_i(1 \le j \le l)$ 都是素数, 且

$$p_1 \leqslant p_2 \leqslant \dots \leqslant p_k, \quad q_1 \leqslant q_2 \leqslant \dots \leqslant q_l$$
 (7.3)

并且

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_l \tag{7.4}$$

则由定理 1.6.3 知, 必有某个 $q_j(1 \le j \le l)$, 使得 $p_1 \mid q_j$, 由于 p_1 和 q_j 都是素数, 所以 $p_1 = q_j$; 同理, 必有某个 $p_i(1 \le i \le k)$, 使得 $q_1 \mid p_i$, 所以 $q_1 = p_i$. 于是, 结合式 (7.3)可知

$$q_j = p_1 \leqslant p_i = q_1 \leqslant q_j = p_1$$

故 $p_1 = q_1$, 从而由式(7.4)得到

$$p_2 \cdots p_k = q_2 \cdots q_l$$

反复进行上述操作, 最后必有 $k = l, p_i = q_i (1 \le i \le k)$, 即唯一性得证. 证毕.

- **>7.3** 定义 1 正整数 n 的分解式 $n = p_1^{a_1} p_2^{a_2} \cdots p_{k^k}^{a_k}$ 称为 n 的标准分解式, 其中 p_1, p_2, \cdots, p_k 是素数, $p_1 < p_2 < \cdots < p_k$,且 $\alpha_1, \alpha_2, \cdots, \alpha_k$ 是正整数.
 - ▶7.4 注 算术基本定理又称为唯一分解定理.
 - ▶7.5 推论 1 [推论 1.7.1]设 n 的标准分解式为 $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, 则:
 - (i) n 的任一正约数 d 具有形式 $d = p_1^{\gamma_1} p_2^{\gamma_2} \cdots p_k^{\gamma_k}$ $(\gamma_i \in \mathbf{Z}, 0 \leqslant \gamma_i \leqslant \alpha_i, 1 \leqslant i \leqslant k)$;
 - (ii) n 的正倍数 m 具有形式 $m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} M$ $(M \in \mathbf{N}, \beta_i \in \mathbf{N}, \beta_i \geqslant \alpha_i, 1 \leqslant i \leqslant k)$.
- ▶7.6 推论 2 [推论 1.7.2]若正整数 a 与 b 的分解式分别为 $a = p_1^{a_1} p_2^{\alpha_2} \cdots p_k^{a_k}, b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k},$ 其中 p_1, p_2, \cdots, p_k 是互不相同的素数, $\alpha_i, \beta_i (1 \leq i \leq k)$ 是非负整数, 则

$$(a,b) = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_k^{\lambda_k}, \quad \lambda_i = \min \{\alpha_i, \beta_i\} (1 \leqslant i \leqslant k)$$
$$[a,b] = p_1^{\mu_1} p_2^{\mu_2} \cdots p_k^{\mu_k}, \quad \mu_i = \max \{\alpha_i, \beta_i\} (1 \leqslant i \leqslant k)$$

▶7.7 例 1 若 n 的标准分解式为 $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, 设 d(n) 为 n 的正因数的个数, $\sigma(n)$ 为 n 的所有正因数之和,则有

$$d(n) = (\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_k + 1) \tag{7.5}$$

$$\sigma(n) = \frac{p_1^{a_1+1} - 1}{p_1 - 1} \cdot \frac{p_2^{a_2+1} - 1}{p_2 - 1} \cdot \dots \cdot \frac{p_k^{a_k+1} - 1}{p_k - 1}$$
(7.6)

若 (a,b)=1, 则有

$$d(ab) = d(a)d(b) (7.7)$$

$$\sigma(ab) = \sigma(a)\sigma(b) \tag{7.8}$$

证明: 当 n > 1 时,利用推论 1.7.1 容易推出式(7.5)成立. 当 n = 1 时,由于 d(1) = 1,则式(7.5)也成立,此即为 $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ 的情形.为了证明式(7.6),仍然利用推论 1.7.1,有

$$\alpha(n) = \sum_{\substack{0 \leqslant \beta_i \leqslant a_i \\ 1 \leqslant i \leqslant k}} p_1^{\beta_1} \cdots p_{k^k}^{\beta_k} = \sum_{\beta_1 = 0}^{a_1} p_1^{\beta_1} \cdot \left(\sum_{0 \leqslant \beta_i \leqslant a_i} p_2^{\beta_2} \cdots p_k^{\beta_k} \right) = \cdots = \left(\sum_{\beta_1 = 0}^{a_1} p_1^{\beta_1} \right) \cdots \left(\sum_{\beta_k = 0}^{a_k} p_k^{\beta_k} \right) = \frac{p_1^{a_1 + 1} - 1}{p_1 - 1} \cdot \frac{p_2^{a_2 + 1} - 1}{p_2 - 1} \cdots \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1}$$

由于两整数互素, 这就意味着它们的标准分解式中没有相同的素因子; 反之亦然. 因此, 当 (a,b) = 1 时, 式(7.7)和式(7.8)分别是式(7.5)和式(7.6)的直接推论. 证毕.

作业:	
教学后记:	

第八讲 函数 [x] 与 $\{x\}$ 及 n! 的标准分解式

教学目标:	了解算术基本定理
教学重点:	算术基本定理
教学难点:	算术基本定理
教学方法和手段:	讲授
教学时数:	2 课时

▶8.1 定义 1 设 x 是实数, 以 [x] 表示不超过 x 的最大整数, 称 [x] 为 x 的整数部分, 称 {x} = x – [x] 为 x 的小数部分.

►8.2
$$mu: [\pi] = 3, [-\pi] = -4, \left[\frac{1}{3}\right] = 0, \left\{-\frac{1}{5}\right\} = \frac{4}{5}.$$

▶8.3 定理 1 设 x 与 y 是实数,则:

(i)
$$0 \le \{x\} < 1, x - 1 < [x] \le x < [x] + 1$$

- (ii) $x \leqslant y \Rightarrow [x] \leqslant [y];$
- (iii) 若 m 是整数, 则 $[m+x] = m + [x], \{m+x\} = \{x\};$

(iv)
$$[x+y] = \begin{cases} [x] + [y], & \text{ if } \{x\} + \{y\} < 1 \\ [x] + [y] + 1, & \text{ if } \{x\} + \{y\} \geqslant 1 \end{cases}$$
, $\mathbb{P}[x] + [y] \leqslant [x + y]$

 $|y| \leq |x| + |y| + 1$, 其中等号不能同时成立.

(v)
$$\begin{cases} -[x], & \exists x \in \mathbb{Z}, \\ -[x] - 1, & \exists x \notin \mathbb{Z}, \end{cases}$$

证明: (i),(ii),(iii) 可由定义直接推出.

(iv) 由于 $[x+y] = [[x] + \{x\} + [y] + \{y\}] = [x] + [y] + [\{x\} + \{y\}],$ 若 $\{x\} + \{y\} < 1$, 则 $[\{x\} + \{y\}] = 0$, 故 [x+y] = [x] + [y]; 若 $\{x\} + \{y\} \ge 1$, 则 $[\{x\} + \{y\}] = 1$, 故 [x+y] = [x] + [y] + 1. 由此 (iv) 成立.

(v) 因为 $[-x] = [-([x] + \{x\})] = -[x] + [-\{x\}]$,由于 $0 \le \{x\} < 1$,因而 $-1 < -\{x\} \le 0$.若 $x \in \mathbb{Z}$,则 $[-\{x\}] = 0$;若 $x \notin \mathbb{Z}$,则 $[-\{x\}] = -1$. 证毕.

▶8.4 定理 2 设 a 与 b 是正整数,则在 $1,2,\dots,a$ 中能被 b 整除的整数有 $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$ 个.

证明: 能被 b 整除的正整数是 $b, 2b, 3b, \cdots$, 因此, 若数 $1, 2, \cdots, a$ 中能被 b 整除的整数 k 个, 则 $kb \le a < (k+1)b \Rightarrow k \le \frac{a}{b} < k+1 \Rightarrow k = \left[\frac{a}{b}\right]$. 证毕.

▶8.5 由定理 1.8.2 可知, 若 b 是正整数, 那么对于任意整数 a, 有

$$a = b \cdot \left\lceil \frac{a}{b} \right\rceil + b \cdot \left\{ \frac{a}{b} \right\}$$

即在带余数除法 $a = bq + r(0 \le r < b)$ 中有 $q = \left[\frac{a}{b}\right], r = b\left\{\frac{a}{b}\right\}$.

▶8.6 定理 3 设 n 是正整数,n! 的标准分解式为 n! = $p_1^{\alpha_1}p_1^{\alpha_2}\cdots p_k^{\alpha_k}$, 则素因数 p_i 的指数为

$$\alpha_i = \sum_{r=1}^{\infty} \left[\frac{n}{p_i^r} \right] \tag{8.1}$$

证明: 对于任意固定的素数 p, 以 p(k) 表示在 k 的标准分解式中 p 的指数, 则

$$p(n!) = p(1) + p(2) + \cdots + p(n)$$

以 n_i 表示 $p(1), p(2), \dots, p(n)$ 中素数 p 的指数等于 j 的数的个数, 则

$$p(n!) = 1 \cdot n_1 + 2 \cdot n_2 + 3 \cdot n_3 + \cdots \tag{8.2}$$

显然, n_3 就是在 $1,2,\dots,n$ 中满足 $p^j \mid a$ 且 $p^{j+1} \rangle a$ 的整数 a 的个数, 所以, 由定理 1.8.2 有

$$n_j = \left[\frac{n}{p^j}\right] - \left[\frac{n}{p^{j+1}}\right]$$

将上式代入式(8.2), 得到

$$p(n!) = 1 \cdot \left(\left[\frac{n}{p} \right] - \left[\frac{n}{p^2} \right] \right) + 2 \cdot \left(\left[\frac{n}{p^2} \right] - \left[\frac{n}{p^3} \right] \right) + 3 \cdot \left(\left[\frac{n}{p^3} \right] - \left[\frac{n}{p^4} \right] \right) + \cdots$$
$$= \sum_{r=1}^{\infty} \left[\frac{n}{p^r} \right]$$

证毕.

▶8.7 推论 1 设 n 是正整数, 则 $n! = \prod_{p \leq n} p^{\sum_{r=1}^{\infty} \left[\frac{n}{p^r}\right]}$, 其中 $\prod_{p \leq n}$ 表示对不超过 n 的所有素数 p 求积.

▶8.8 定理 4 [定理 1.8.4]设 n 是正整数,1 $\leq k \leq n-1$, 则

$$C_n^k = \frac{n!}{k!(n-k)!} \in \mathbf{N} \tag{8.3}$$

若 n 是素数, 则 $n \mid C_n^k (1 \le k \le n-1)$.

证明: 由定理 1.8.3, 对于任意素数 p, 整数 n!, k! 与 (n-k)! 的标准分解式中所含的素因数 p 的指数分别是

$$\sum_{r=1}^{\infty} \left[\frac{n}{p^r} \right], \quad \sum_{r=1}^{\infty} \left[\frac{k}{p^r} \right], \quad \sum_{r=1}^{\infty} \left[\frac{n-k}{p^r} \right]$$

利用定理 1.8.1 的性质 (iv) 可知

$$\left[\frac{k + (n - k)}{p^r}\right] = \left[\frac{n}{p^r}\right] \geqslant \left[\frac{k}{p^r}\right] + \left[\frac{n - k}{p^r}\right]$$

故
$$\sum_{r=1}^{\infty} \left[\frac{n}{p^r} \right] \geqslant \sum_{r=1}^{\infty} \left[\frac{k}{p^r} \right] + \sum_{r=1}^{\infty} \left[\frac{n-k}{p^r} \right]$$

因此, C_n^k 是整数.

若 n 是素数, 则对于 $1 \le k \le n-1$, 有 $(n,k!) = 1, (n,(n-k)!) = 1 \Rightarrow (n,k!(n-k)!) = 1$, 由此及

$$C_n^k = \frac{n \cdot (n-1)!}{k!(n-k)!} \in \mathbb{N}$$

推出 $k!(n-k)! \mid (n-1)!$, 从而 $n \mid C_n^k$. 证毕.

▶8.9 例 1 设 x 与 y 是实数, 证明:

$$[2x] + [2y] \geqslant [x] + [x+y] + [y]$$
 (8.4)

解: 设 $x = [x] + \alpha(0 \le \alpha < 1), y = [y] + \beta(0 \le \beta < 1),$ 则

$$[x] + [x + y] + [y] = 2[x] + 2[y] + [\alpha + \beta]$$
(8.5)

及

$$[2x] + [2y] = 2[x] + 2[y] + [2\alpha] + [2\beta]$$
(8.6)

如果 $[\alpha + \beta] = 0$, 那么显然有 $[\alpha + \beta] \leq [2\alpha] + [2\beta]$. 如果 $[\alpha + \beta] = 1$, 那么 α 与 β 中至少有一个不小于 $\frac{1}{2}$, 于是

$$[2\alpha] + [2\beta] \geqslant 1 = [\alpha + \beta]$$

因此, 无论 $[\alpha + \beta] = 0$ 或 1, 都有 $[\alpha + \beta] \leq [2\alpha] + [2\beta]$, 由此及式(8.5)和式(8.6)可推出式(8.4).

▶8.10 例 2 设 n 是正整数,x 是任一实数, 证明:

$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = [nx]$$
 (8.7)

解: 设 $x = [x] + \alpha(0 \le \alpha < 1)$, 则有

$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right]$$

$$= [[x] + \alpha] + \left[[x] + \alpha + \frac{1}{n}\right] + \dots + \left[[x] + \alpha + \frac{n-1}{n}\right]$$

$$= n[x] + [\alpha] + \left[a + \frac{1}{n}\right] + \dots + \left[\alpha + \frac{n-1}{n}\right]$$

又 $[nx] = [n([x] + \alpha)] = n[x] + [n\alpha]$ 故只须证明

$$\left[\alpha\right] + \left[\alpha + \frac{1}{n}\right] + \dots + \left[\alpha + \frac{n-1}{n}\right] = \left[n\alpha\right] \quad (0 \leqslant \alpha < 1) \tag{8.8}$$

事实上, 若 $0 \le \alpha < \frac{1}{n}$, 则 $[\alpha] + \left[\alpha + \frac{1}{n}\right] + \dots + \left[\alpha + \frac{n-1}{n}\right] = 0 = [n\alpha]$.

若 $\frac{i}{n} \le \alpha < \frac{i+1}{n} (1 \le i \le n-1)$, 则
① 当 $1 \le i \le n-i-1$ 时, 恒有 $[\alpha + \frac{i}{n}] = 0$;
② 当 $n-i \le i \le n-1$ 时, 恒有 $[\alpha + \frac{i}{n}] = 1$.
故 $[\alpha] + \left[\alpha + \frac{1}{n}\right] + \dots + \left[\alpha + \frac{n-1}{n}\right] = i = [n\alpha]$. 因而, 恒有式(8.8)成

\mathcal{L} .
由式(8.8)可知式(8.7)成立. 证毕.
作业:
教学后记:

第九讲 同余的基本性质

教学目标:	掌握同余的概念与基本性质
教学重点:	同余的基本性质
教学难点:	同余的基本性质
教学方法和手段:	讲授
教学时数:	4 课时

一、同余的概念

▶9.1 e.g. 今天星期六, 从今天起第 36 天和第 43 天分别是星期几? 36 和 43 除以 7 的余数即可, 余数都是 1, 所以答案都是星期日.

▶9.2 定义 1 设 m 是给定的正整数,a,b 是任意整数, 如果整数 m | (a-b), 则称 a 与 b 关于模 m 同余, 记为

$$a \equiv b \pmod{m}$$

如果整数 $m \nmid (a - b)$, 则称 $a = b \nmid b$ 关于模 $m \mid a \mid b \mid b$ 不同余, 记为 $a \not\equiv b \pmod{m}$. 显然 $a \equiv 0 \pmod{m} \Leftrightarrow m \mid a$.

▶9.3 定理 1 a 与 b 关于模 m 同余的充分必要条件是,a 和 b 被 m 除后所得的最小非负余数相等,即若 $a = q_1 m + r_1 (0 \le r_1 < m), b = q_2 m + r_2 (0 \le r_2 < m), 则 <math>a \equiv b \pmod{m} \Leftrightarrow r_1 = r_2.$

证明: 由题设有 $a-b=(q_1-q_2)m+(r_1-r_2)$, 因此 $m\mid (a-b)$ 的充分必要条件是 $m\mid (r_1-r_2)$, 由此及 $0\leqslant |r_1-r_2|< m$ 即得 $r_1=r_2$, 亦即 $a\equiv b \pmod{m} \Leftrightarrow r_1=r_2$.

▶9.4 推论 1 $a \equiv b \pmod{m} \Leftrightarrow a = b + mt (t \in \mathbb{Z}).$ e.g. $n = 8t + 7(t \in \mathbb{Z}) \Leftrightarrow 8 \mid (n - 7) \Leftrightarrow n \equiv 7 \pmod{8}.$

二、同余的性质

▶9.5 定理 2 同余是一种等价关系,即同余具有下面性质:

- (i) 反身性: $a \equiv a \pmod{m}$;
- (ii) 对称性: $a \equiv b \pmod{m} \Leftrightarrow b \equiv a \pmod{m}$;
- (iii) 传递性: $a \equiv b, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$.

证明: 由 $m|(a-a) = 0, m|(a-b) \Leftrightarrow m \mid (b-a)$ 以及 $m|(a-b), m|(b-c) \Rightarrow m \mid (a-b) + (b-c) = a-c$, 即可推出上述三条性质.

▶9.6 定理 3 (可加性) 若 $a \equiv b \pmod{m}, c \equiv d \pmod{m}$, 则 $a + c \equiv b + d \pmod{m}$.

证明: 由 $m \mid (a-b)$ 及 $m \mid (c-d) \Rightarrow m \mid (a-b) + (c-d)$, 即得 $m \mid (a+c) - (b+d)$; 对于减法同理可证. 故结论成立.

- ▶9.7 推论 1 若 $a + c \equiv b(\text{mod } m), c \in \mathbb{Z}$, 则 $a \equiv b c(\text{mod } m)$.
- ▶9.8 定理 4 (可乘性)
 - (1) 若 $a \equiv b \pmod{m}, c \in \mathbb{Z}$, 则 $ac \equiv bc \pmod{m}$.
 - (2) 若 $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, 则 $ac \equiv bd \pmod{m}$.
 - (3) 若 $a \equiv b \pmod{m}, n \in \mathbb{N}^*$, 则 $a^n \equiv b^n \pmod{m}$.
- (4) 若 $a \equiv b \pmod{m_1}, a \equiv b \pmod{m_2}, (m_1, m_2) = 1$, 则 $a \equiv b \pmod{m_1 m_2}$;

若 $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$, 则 $a \equiv b \pmod{[m_1, m_2]}$.

证明: (1): $a \equiv b \pmod{m}$, $\therefore m \mid (a - b)$;

- $\therefore m \mid (a-b)c = ac bc.$
- $\therefore ac \equiv bc \pmod{m}$.
- (2): $a \equiv b \pmod{m}$, $ac \equiv bc \pmod{m}$;
- $\therefore c \equiv d \pmod{m}, \therefore bc \equiv bd \pmod{m}.$
- $\therefore ac \equiv bd \pmod{m}$.
- (3): $a \equiv b \pmod{m}$, $n \mid (a-b)$
- $\therefore m \mid (a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}) = a^n b^n$
- $\therefore a^n \equiv b^n \pmod{m}$.
- (4): $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,
- $\therefore m_1 | (a-b), m_2 | (a-b), \therefore [m_1, m_2] | (a-b)$
- $\therefore a \equiv b \pmod{[m_1, m_2]}$.
- ▶9.9 推论 1 (1) 若 $a \equiv b \pmod{m_1}, a \equiv b \pmod{m_2}, \dots, a \equiv b \pmod{m_n}$, 且 m_1, m_2, \dots, m_n 一两互质,则

$$a \equiv b \pmod{m_1 m_2 \cdots m_n};$$

(2) 若 $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$, \dots , $a \equiv b \pmod{m_n}$, 则

$$a \equiv b \pmod{[m_1, m_2, \cdots, m_n]}$$
.

▶9.10 推论 2 (1) 若 $a_i \equiv b_i \pmod{m} (i = 1, \dots, n)$, 则

$$\sum_{i=1}^{n} a_i \equiv \sum_{i=0}^{n} b_i \pmod{m}; \prod_{i=1}^{n} a_i \equiv \prod_{i=0}^{n} b_i \pmod{m}$$

(2) 设整系数多项式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, 若 $x_1 \equiv x_2 \pmod{m}$, 则

$$f(x_1) \equiv f(x_2) \pmod{m}$$

▶9.11 定理 5 [(可约性)]

 $(1) \ a \equiv b \pmod{m}, d \mid m, d > 0 \Rightarrow a \equiv b \pmod{d}$ $a \equiv b \pmod{m}, d \mid (a, b, m), d > 0 \Rightarrow \frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}};$

- (2) $a \equiv b \pmod{m} \Rightarrow (a, m) = (b, m);$
- (3) $a \equiv b \pmod{m} \Rightarrow ak \equiv bk \pmod{mk} (k > 0, k \in \mathbb{N});$
- (4) $ac \equiv bc \pmod{m}, (c, m) = 1 \Rightarrow a \equiv b \pmod{m}.$

证明: (1) 显然成立.

- (2) 由于 $m \mid (a b)$, 存在 $t \in \mathbb{Z}$, 使得 a = b + mt, 于是 (a, m) = (b + mt, m) = (b, m).
- $(3)a \equiv b \pmod{m} \Rightarrow m | (a b) \Rightarrow km | (ka kb) \Rightarrow ka \equiv kb \pmod{km}$

证毕.

▶9.12 例 1 设整数 a 的十进制表示为 $a = \overline{a_{n-1}a_{n-2}\cdots a_0}$ $(0 \le a_i \le 9)$ $0 \le i \le n-1, a_{n-1} \ne 0)$, 即 $a = a_{n-1} \times 10^{n-1} + \cdots + a_1 \times 10 + a_0$, 证明:

(i)
$$3|a \Leftrightarrow 3|\sum_{i=0}^{n-1} a_i$$

(ii)
$$9|a \Leftrightarrow 9|\sum_{i=0}^{n-1} a_i;$$

(iii)
$$11|a \Leftrightarrow 11|\sum_{i=0}^{n-1} (-1)^i a_i;$$

(iv) $13|a \Leftrightarrow 13|\overline{a_2a_1a_0} - \overline{a_5a_4a_3} + \cdots$

证明: 由 $10^{\circ} \equiv 1, 10^{1} \equiv 1, \cdots, 10^{i} \equiv 1 \pmod{3} (i \in \mathbb{N})$ 及推论 2.1.1

$$a = \sum_{i=0}^{n-1} a_i \times 10^i \equiv \sum_{i=0}^{n-1} a_i \pmod{3}$$

由此可得结论 (i). 类似可证结论 (ii)、(iii) 和 (iv). 证毕.

▶9.13 注 一般, 当求十进制数 $a = \overline{a_{n-1}a_{n-2}\cdots a_1a_0}$ $(0 \le a_i \le 9)$ 被 m 除的数字特征时, 首先求出正整数 k, 使得 $10^k \equiv -1$ 或 $1 \pmod m$.

其次,将 $a = \overline{a_{n-1}a_{n-2}\cdots a_1a_0}$ 写成 $a = \overline{a_{k-1}a_{k-2}\cdots a_1a_0} \times 10^0 + \overline{a_{2k-1}a_{2k-2}\cdots a_k} \times 10^k + \cdots$ 的形式,最后利用推论 2.1.1 可证得结论.

▶9.14 例 2 求 $2^{2^5} + 1$ 被 641 除的余数.

解: 依次计算同余式 $2^2 \equiv 4, 2^4 \equiv 16, 2^8 \equiv 256, 2^{16} \equiv 154, 2^{32} \equiv -1 \pmod{641}$. 因此 $2^{2^5} + 1 \equiv 0 \pmod{641}$, 即 $641 \mid \left(2^{2^5} + 1\right)$. 这个结论说明费马数 $F_5 = 2^{2^5} + 1$ 是合数.

▶9.15 注 一个整数模 m 的余数有 m 种可能值, 但对于幂次方整数, 模 m 的余数的个数则可能大大减少, 如, 一个完全平方数模 4 同余于 0 或 1, 模 8 同余于 0,1 和 4, 模 3 同余于 0 或 1, 模 5 同余于 0 或 ±1, 一个完全立方数模 9 同余于 0 或 ±1, 一个整数的四次方模 16 同余于 0 或 1. 这些事实构成利用同余知识解 (证) 问题的一个基本点.

▶9.16 例 3 求 $n = 7^{7^7}$ 的个位数字.

解: 由于 $7^1 \equiv -3, 7^2 \equiv -1, 7^4 \equiv 1 \pmod{10}$, 因此, 若 $7^7 \equiv r \pmod{4}$, 则

$$n = 7^{7^7} \equiv 7^r \pmod{10} \tag{9.1}$$

由于 $7^7 \equiv (-1)^7 \equiv -1 \equiv 3 \pmod{4}$, 所以, 由式(9.1)得

$$n = 7^{7^7} \equiv 7^3 \equiv (-3)^3 \equiv -7 \equiv 3 \pmod{10}$$

即 n 的个位数字是 3.

- ▶9.17 一般的, 求 a^{b^c} 关于模 m 的余数, 可按以下步骤进行:
 - ① 求出整数 k, 使得 $a^k \equiv 1 \pmod{m}$;(求 k 的目的是为了简化同余式的计算)
 - ② 求出正整数 r(r < k), 使得 $b^c \equiv r \pmod{k}$;
 - ③ 再计算 $a^{b^c} \equiv a^r \pmod{m}$.

作业: 教学后记:	
教学后记:	
-	

第十讲 二元一次不定方程

教学目标:	掌握二元一次不定方程的解法
教学重点:	二元一次不定方程的解法
教学难点:	二元一次不定方程的解法
教学方法和手段:	讲授
教学时数:	4 课时

▶10.1 一只箱子中有若干只蜜蜂和蜘蛛,它们共有 46 只脚,问其中 蜜蜂和蜘蛛各多少只?

如果设箱子中蜜蜂、蜘蛛数分别为 x,y 只,则依题意得

$$6x + 8y = 46\tag{10.1}$$

这一方程有无限多组解, 但是, 符合题意的 x 和 y 只能是取正整数的解.

在介绍一般不定方程的求解之前,先尝试解决如上给出的蜜蜂和蜘蛛的只数问题.

由式(10.1)可得 $x = \frac{23-4y}{3}$, 由于 x,y 必须是正整数, 故 y 只能取 1,2,3,4,5(否则, 若 y 大于 5, 则 x 必为负数). 下面通过直接计算得到相应的 x 值为

|由此可知, 蜜蜂和咖蛛的只数分别为 x = 5, y = 2 或 x = 1, y = 5.

▶10.2 定义 1 设 a,b 是非零整数,c 是整数,关于未知数 x,y 的方程

$$ax + by = c (10.2)$$

称为二元一次不定方程.

讨论二元一次方程是否有整数解的判别条件.

约定: 将整数 a_1, \dots, a_k 的最大公因数记作 $\gcd(a_1, \dots, a_k)$.

▶**10.3 定理 1** 设 $d = \gcd(a, b)$,则式(10.2)有整数解的充分必要条件是 $d \mid c$.

证明: 必要性 若式(10.2)有一组整数解, 设为 $x = x_0, y = y_0$, 则 $ax_0 + by_0 = c$. 因 d 整除 a 及 b, 因而也整除 c. 必要性得证.

充分性 若 $d \mid c$, 则存在整数 c_1 , 使得 $c = dc_1$. 又由于 $d = \gcd(a, b)$, 由推论 1.3.1 知, 存在整数 s, t 满足

$$as + bt = d$$

于是有

$$a\left(sc_{1}\right) + b\left(tc_{1}\right) = dc_{1}$$

令 $x_0 = sc_1, y_0 = tc_1$, 即得 $ax_0 + by_0 = c$, 故式(10.2)有整数解 $(x_0, y_0) = (sc_1, tc_1)$. 充分性得证.

证毕.

下面讨论当式(10.2)有解时,如何求得其全部整数解.

▶10.4 定理 2 若方程(10.2)有整数解 (x_0, y_0) , 则其全部整数解为

$$\begin{cases} x = x_0 - b_1 t \\ y = y_0 + a_1 t \end{cases}$$
 $(t = 0, \pm 1, \pm 2, \cdots)$ (10.3)

其中, $d = \gcd(a, b), a = a_1 d, b = b_1 d.$

证明: 首先证明, 式(10.3)给出的任一组整数 (x,y) 都适合式(10.2).

事实上, 由于 $x = x_0, y = y_0$ 是式(10.2)的解, 所以 $ax_0 + by_0 = c$. 因此, 将式(10.3)代人式(10.2)得

$$a(x_0 - b_1 t) + b(y_0 + a_1 t) = (ax_0 + by_0) + (ba_1 - ab_1) t$$
$$= c + (db_1 a_1 - da_1 b_1) t = c$$

这就表明对任意整数 t, 式(10.3)给出的任一组整数 (x,y) 是式(10.2)的解. 其次证明, 式(10.2)的任一组解 (x',y') 都具有式(10.3)的形式.

设 (x', y') 是式(10.2)的任一组解, 则 ax' + by' = c; 又因为 $ax_0 + by_0 = c$, 两式相减得

$$a(x' - x_0) + b(y' - y_0) = 0$$

但 $a = a_1d, b = b_1d,$ 于是

$$a_1(x'-x_0) = -b_1(y'-y_0)$$
(10.4)

由于 $d = \gcd(a, b)$,故 $\gcd(a_1, b_1) = 1$,因此,由式(10.4)知 $a_1 \mid (y' - y_0)$.故存在整数 t,使得 $y' - y_0 = a_1 t$,亦即 $y' = y_0 + a_1 t$,代入式 (10.4)得 $x' = x_0 - b_1 t$,因此,(x', y') 可以表示成式(10.3)的形式,故式(10.3)给出了式(10.2)的一切整数解. 证毕.

▶10.5 注 定理 3.1.2 中的式(10.3)也可写成

$$\begin{cases} x = x_0 + b_1 t \\ y = y_0 - a_1 t \end{cases}$$
 $(t = 0, \pm 1, \pm 2, \cdots)$

的形式.

▶10.6 从定理 3.1.1 的证明过程可以发现, 关键是证明方程

$$ax + by = \gcd(a, b) = d$$

有整数解. 因此, 若要找出一般二元一次不定方程求特解的方法, 应该从此方程人手.

首先, 方程 $ax + by = \gcd(a, b)$ 等价于

$$\frac{a}{\gcd(a,b)}x + \frac{b}{\gcd(a,b)}y = 1$$

而在此方程里, 未知数 x,y 的系数是互素的, 所以, 不失一般性, 只要讨论如何求出形如

$$ax + by = 1$$
, $gcd(a, b) = 1$ (10.5)

的方程的一个整数解即可.

容易知道,由式(10.5)的一个特殊解可以得出方程 |a|x + |b|y = 1的一个特殊解,反之亦然.于是,可以假定 a > 0, b > 0.为了求出满足式(10.5)的 x, y,运用辗转相除法,有

$$a = bq_1 + r_1, 0 < r_1 < b$$

$$b = r_1q_2 + r_2, 0 < r_2 < r_1$$

$$...$$

$$r_{n-2} = r_{n-1}q_n + r_n, 0 < r_n < r_{n-1}$$

$$r_{n-1} = r_nq_{n+1}, r_{n+1} = 0$$

因为 gcd(a,b) = 1, 故 $r_n = 1$. 由定理 1.5.1 知, 利用辗转相除及列表方法可计算出

$$Q_n a - P_n b = (-1)^{n+1} r_n$$

$$\mathbb{EP} \ a [(-1)^{n-1}Q_n] + b [(-1)^n P_n] = 1$$

因此,式(10.5)有一组特解

$$x_0 = (-1)^{n-1}Q_n, \quad y_0 = (-1)^n P_n$$

▶10.7 注 求解二元一次不定方程步骤:

- ① 首先利用定理 3.1.1 判断不定方程是否有解;
- ② 在有解的情况下, 关键在于求出其特解;
- ③ 当不定方程有解且其系数绝对值不大时,可用观察法求出其特解;当方程系数较大时,可考虑用辗转相除法求特解.
- ▶10.8 例 1 求不定方程 18x + 24y = 9 的整数解.

解: 由于 $gcd(18, 24) = 6 \nmid 9$, 所以原方程无整数解.

▶10.9 例 2 求 10x - 7y = 17 的全部整数解.

解: 由于 $gcd(10,7) = 1 \mid 17$, 所以原方程有整数解. 由观察可得原方程的一组特解为 $x_0 = 1, y_0 = -1$. 因此, 原方程的全部整数解是

$$x = 1 - 7t$$
, $y = -1 - 10t$ $(t = 0, \pm 1, \pm 2, \cdots)$

▶10.10 例 3 求方程 $907x_1 + 731x_2 = 2107$ 的整数解.

解:解法一先用展转相除法得

故 gcd(907,731) = 1. 再用列表方法计算相应的特解如下表.

n	0	1	2	3	4	5
q_n		1	4	6	1	1
P_n	1	1	5	31	36	67
Q_n	0	1	4	25	29	54

所以 $907 \times 54 - 731 \times 67 = \gcd(907, 731) = 1$ 因而, 原方程有一组特解

$$x_1' = 54 \times 2107, \quad x_2' = -67 \times 2107$$

故, 原方程组的一切整数解为

$$\begin{cases} x_1 = 54 \times 2107 + 731t \\ x_2 = -67 \times 2107 - 907t \end{cases}$$
 $(t = 0, \pm 1, \cdots)$

解法二因为 gcd(907,731) = 1, 故方程有整数解. 对系数绝对值较小的 x_2 进行如下变形:

$$x_2 = \frac{1}{731} \left(-907x_1 + 2107 \right) = -x_1 + 3 + \frac{1}{731} \left(-176x_1 - 86 \right) \in \mathbb{Z}$$

$$\Leftrightarrow x_3 = \frac{1}{731} \left(-176x_1 - 86 \right) \in \mathbb{Z}, \mathbb{M}$$

$$x_1 = -4x_3 + \frac{1}{176} \left(-27x_3 - 86 \right)$$

令
$$x_4 = \frac{1}{176} (-27x_3 - 86) \in \mathbb{Z}$$
,则
$$x_3 = -7x_4 - 3 + \frac{1}{27} (13x_4 - 5)$$
令 $x_5 = \frac{1}{27} (13x_4 - 5) \in \mathbb{Z}$,则
$$x_4 = 2x_5 + \frac{1}{13} (x_5 + 5)$$
令 $x_6 = \frac{1}{13} (x_5 + 5) \in \mathbb{Z}$,则
$$x_5 = 13x_6 - 5$$

此处 x_5 的系数为 1, 辗转相除到此为止, 将 x_6 视为参数, 按上述过程 逆向依次代入, 直至得出 x_1, x_2 的表达式为止. 具体操作过程是

$$x_4 = 2x_5 + x_6 = 2(-5 + 13x_6) + x_6 = -10 + 27x_6$$

$$x_3 = -7x_4 - 3 + x_5 = -7(-10 + 27x_6) - 3 + (-5 + 13x_6) = 62 - 176x_6$$

$$x_1 = -258 + 731x_6$$

$$x_2 = 323 - 907x_6$$

令 $x_6 = t$, 则方程的解为

$$\begin{cases} x_1 = -258 + 731t \\ x_2 = 323 - 907t \end{cases}$$
 $(t = 0, \pm 1, \pm 2, \cdots)$

▶10.11 例 4 求不定方程
$$117x_1 + 21x_2 = 38$$
 的整数解.
解: $x_2 = \frac{1}{21} (-117x_1 + 38) = -6x_1 + 2 + \frac{1}{21} (9x_1 - 4)$
令 $x_3 = \frac{1}{21} (9x_1 - 4) \in \mathbb{Z}$, 则

$$x_1 = \frac{1}{9}(21x_3 + 4) = 2x_3 + \frac{1}{9}(3x_3 + 4)$$

 $\Leftrightarrow x_4 = \frac{1}{9} (3x_3 + 4) \in \mathbb{Z}, \ \mathbb{M}$

$$x_3 = 3x_4 - 1 - \frac{1}{3}$$

此式表示 x_3, x_4 不可能同时为整数, 所以原不定方程无整数解.

▶10.12 例 5 甲种书每本 5 元, 乙种书每本 3 元, 丙种书 1 元三本, 现用 100 元买这三种书籍共 100 本, 问甲、乙、丙三种书各买多少本?

解:设甲、乙、丙三种书籍分别买 x,y,z 本,依题意得方程组

$$\begin{cases} 5x + 3y + \frac{1}{3}z = 100\\ x + y + z = 100 \end{cases}$$

消去 z, 得

$$7x + 4y = 100 (10.6)$$

显然 x = 0, y = 25 是方程(10.6)的特解, 因此, 方程(10.6)的所有整数解是

$$\begin{cases} x = 4t \\ y = 25 - 7t \end{cases}$$
 $(t = 0, \pm 1, \pm 2, \cdots)$

令 $x \ge 0, y \ge 0$,所以 $0 \le t \le 3$,即 t 可以取整数值 $t_1 = 0, t_2 = 1, t_3 = 2, t_4 = 3$. 相应地求得 x, y, z 的值是 (x, y, z) = (0, 25, 75), (4, 18, 78), (8, 11, 81), (12, 4, 84).

作业:	
教学后记:	