MATH 611 (DUE 11/6)

HIDENORI SHINOHARA

1. SIMPLICIAL AND SINGULAR HOMOLOGY

Exercise. (Problem 14) Determine whether there exists a short exact sequence $0 \to \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4 \to 0$. More generally, determine which abelian groups A fit into a short exact sequence $0 \to \mathbb{Z}_{p^m} \to A \to \mathbb{Z}_{p^n} \to 0$ with p prime. What about the case of short exact sequences $0 \to A \to \mathbb{Z}_n \to 0$?

Proof. Let $\phi_1: \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2, \phi_2: \mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4$ be defined such that $\phi_1(a) = (2a, a)$ and $\phi_2(a, b) = 2b - a$. Then $\ker(\phi_1) = 0, \operatorname{Im}(\phi_1) = \ker(\phi_2) = \{(2k, k) \mid 0 \leq k \leq 3\}$ and $\operatorname{Im}(\phi_2) = \mathbb{Z}_4$. Thus this is indeed an exact sequence.

Finish this!

Exercise. (Problem 15) For an exact sequence $A \to B \to C \to D \to E$ show that C = 0 if and only if the map $A \to B$ is surjective and $D \to E$ is injective. Hence, for a pair of spaces (X,A), the inclusion $A \to X$ induces isomorphisms on all homology groups if and only if $H_n(X,A) = 0$ for all n.

Proof. Suppose C = 0. Im $(\phi_{AB}) = \ker(\phi_{BC}) = B$, so ϕ_{AB} is surjective. $\ker(\phi_{DE}) = \operatorname{Im}(\phi_{CD}) = \{0\}$, so ϕ_{DE} is injective.

On the other hand, suppose ϕ_{AB} is surjective and ϕ_{DE} is injective. $\operatorname{Im}(\phi_{CD}) = \ker(\phi_{DE}) = \{0\}$, so ϕ_{CD} is the zero map. Therefore, $\ker(\phi_{CD}) = C$. $\ker(\phi_{BC}) = \operatorname{Im}(\phi_{AB}) = B$, so ϕ_{BC} is the zero map. Therefore, $\operatorname{Im}(\phi_{BC}) = 0$. Hence, $C = \ker(\phi_{CD}) = \operatorname{Im}(\phi_{BC}) = 0$.

For each n, we have an exact sequence $0 \to C_n(A) \xrightarrow{i} C_n(X) \xrightarrow{j} C_n(X)/C_n(A) \to 0$ where i is induced by the inclusion map $A \to X$ and j is the canonical quotient map. Moreover, the diagram formed by the exact sequence for each n joined by ∂ is commutative by the definition of ∂ .

Apply Theorem 2.16!

Exercise. (Problem 16)

- Show that $H_0(X, A) = 0$ if and only if A meets each path-component of X.
- Do Part (b).

Proof.

• Let $\gamma_x + C_0(A) \in C_0(X)/C_0(A)$. Since A meets each path-component of X, there exists a path $\gamma: I \to X$ that joins a point $a \in A$ and the image of γ_x . Then γ can be seen as an element of $C_1(X)$ since γ maps a 1-simplex into X. Moreover, $\partial \gamma = \gamma_x - \gamma_a$ where $\gamma_a \in C_0(A)$ with $\text{Im}(\gamma_a) = a$. Therefore, $\partial(\gamma + C_1(A)) = \gamma_x + C_0(A)$, so $\gamma_x + C_0(A) = c$

 $C_0(A) \in \text{Im}(\partial)$. Hence, $H_0(X, A) = \ker(\partial_0) / \text{Im}(\partial_1) = (C_0(X) / C_0(A)) / (C_0(X) / C_1(A)) = 0$

On other hand, suppose that A does not meet each path component of X. Let $x \in X$ be a point in a path component that A does not intersect. Let $\gamma_x : \Delta^0 \to X$ such that $\operatorname{Im}(\gamma_x) = \{x\}$. Then $\gamma_x \in \ker(\partial_0) = C_0(X, A)$. Let $\gamma + C_1(A) \in C_1(X, A)$. Then $\partial_1(\gamma + C_1(A)) = \partial_1(\gamma) + C_0(A)$. Let $\gamma_{x_1}, \gamma_{x_2} \in C_0(X)$ such that $\partial_1(\gamma) = \gamma_{x_1} - \gamma_{x_2}$. $\gamma_{x_1} - \gamma_{x_2} + C_0(A) \neq \gamma_x + C_0(A)$ if and only if $\gamma_{x_1} - \gamma_{x_2} - \gamma_x \in C_0(A)$.

- If γ lies in the same path component as x, then so do x_1 and x_2 . Suppose $x = x_1$. Since $-\gamma_{x_2} \notin C_0(A)$, $\gamma_{x_1} \gamma_{x_2} + C_0(A) \neq \gamma_x + C_0(A)$. The case when $x \neq x_1$ and $x = x_2$ and the case when $x \neq x_1$ and $x \neq x_2$ can be proven in a similar way.
- If γ lies in a different path component, then $\gamma_x \neq \gamma_{x_1}$ and $\gamma_x \neq \gamma_{x_2}$. Therefore, $\gamma_{x_1} \gamma_{x_2} + C_0(A) \neq \gamma_x + C_0(A)$.

Therefore, $\gamma_x \notin \operatorname{Im}(\partial_1)$. Thus $H_0(X, A) = C_0(X, A) / \operatorname{Im}(\partial_1)$ is not 0.

Do part (b).

Exercise. (Problem 17)

- Compute the homology groups $H_n(X, A)$ when X is S^2 or $S^1 \times S^1$ and A is a finite set of points in X.
- Compute the groups $H_n(X, A)$ and $H_n(X, B)$ for X a closed orientable surface of genus two with A and B the circles shown.

Proof.

• Since a finite set of points in S^2 is a nonempty closed subspace that is a deformation retract of some neighborhood in S^2 , we can apply Theorem 2.13. Thus $\tilde{H}_2(A) \to \tilde{H}_2(S^2) \xrightarrow{\phi} \tilde{H}_2(S^2, A) \xrightarrow{\psi} \tilde{H}_1A \to \tilde{H}_1(S^2)$ is an exact sequence. Then $\tilde{H}_2(A) = \tilde{H}_1(A) = \tilde{H}_1(S^2) = 0$ and $\tilde{H}_2(S^2) = \mathbb{Z}$. Then $\tilde{H}_2(S^2, A) = \tilde{H}_2(S^2)/\ker(\phi) = \tilde{H}_2(S^2) = \mathbb{Z}$.

 $\tilde{H}_0(A) \to \tilde{H}_0(S^2) \to \tilde{H}_0(S^2, A) \to 0$ is an exact sequence. Since $\tilde{H}_0(A) = \tilde{H}_0(S^2) = 0$, $\tilde{H}_0(S^2, A) = 0$.

For any n = 1 or $n \neq 3$, $\tilde{H}_n(A) \to \tilde{H}_n(S^2) \to \tilde{H}_n(S^2, A) \to \tilde{H}_{n-1}(A)$ is an exact sequence. Since $\tilde{H}_n(A) = \tilde{H}_n(S^2) = \tilde{H}_{n-1}(A) = 0$, $\tilde{H}_n(S^2, A) = 0$.

 $S^1 \times S^1$

Finish this!