Power analysis via simulations

Readings for today

• Beaujean, A. A. (2014). Sample size determination for regression models using Monte Carlo methods in R. Practical Assessment, Research, and Evaluation, 19(1), 12.

Topics

1. Power

2. Monte Carlo methods

Power

Estimating data sufficiency

Q: Is my data sufficient to address my hypothesis?

Statistical Power: The ability to correctly reject a false H_0

n: sample size

 α : Type-I error (false positive) rate

 β : Type-II error (false negative) rate Power = $1-\beta$

effect size

p threshold

Statistical power

Goals of power analysis

Null Hypothesis Do you have sufficient power to detect whether a <u>Test Statistics (NHTS):</u> test statistic is "statistically significant"?

$$\rightarrow P(\hat{H}_0 \text{ rejected} | H_0 = \text{false})$$

Accuracy in Parameter Estimation (AIPE)

Do you have sufficient power to accurately recover the value of a statistical parameter (regardless of

 $\longrightarrow MSE(\hat{\beta}_j - \beta_j)$

"statistical significance")?

Traditional approaches to estimating power

Goal: Sample size (n) determination.

Step 1: Search the literature for estimates of effect size (s).

Step 2: Determine best expectation of effective E[s].

Step 3: Determine your ideal Type-I (α) and Type-II (β) error rates.

Step 4: Use parametric methods to calculate the sample size needed to achieve your α and β , assuming specific distributions of your data.

Traditional approaches to estimating accuracy

Goal: Parameter estimation accuracy (\hat{s}) determination.

Step 1: Determine the distributions of your X and Y.

Step 2: Review the literature to find the best estimates of \hat{s} (i.e., $\hat{f}(X)$).

Step 3: Determine your best expected model $E[\hat{f}(X)]$.

Step 4: Set desired confidence interval range for a given Type-I error rate (α)

Step 5: Use parametric methods to determine the sample size needed to achieve your target $(1-\alpha)\%$ confidence intervals.

Monte Carlo methods

Monte Carlo (MC) method

Goal: Generate *empirical* distributions of your expected effects, instead of estimated distributions, to determine sufficiency of your data set.

Monte Carlo method: Use random sampling to simple data for numerical analyses.

MC power analysis

- Step 1: Determine model of interest (e.g., regression, t-test)
- Step 2: Decide on values for all parameters.
 - Sample distributions: $X_p \sim N(\mu_p, \sigma_p), \ Y \sim N(\mu_y, \sigma_y)$
 - Effect sizes: e.g., β_i
- Step 3: Identify data "quirks" (e.g., missing value rate)
- Step 4: Decide on aspects of MC simulations.
 - $\alpha \rightarrow$ Type-I error rate
 - $(1 \beta) \rightarrow \text{power}$
 - $m \rightarrow$ number of iterations/simulations
 - $n \rightarrow \text{sample size}$
 - $c \rightarrow$ number of different random seeds (at least 2)

MC power analysis

Step 5: Run *m* simulations using the parameters in Step 2.

Step 6: Evaluate performance of each simulation using quality metrics.

• If poor, $\uparrow n$ and repeat Step 5.

Step 7: Repeat Steps 5-6 using different random seeds. Check to see if results converge across seeds.

MC power analysis algorithm

MC simulation quality metrics

Relative parameter estimate bias:

$$\theta_{bias} = \frac{\hat{\theta} - \theta_H}{\theta_H} \qquad \cdot \quad \theta_H : \text{pre-set (real) effect size} \\ \cdot \quad \hat{\theta} : \text{average fit parameter across simulations.}$$

Relative standard error bias:

$$\sigma_{bias} = \frac{\hat{\sigma}_{\theta} - \sigma_{\hat{\theta}}}{\sigma_{\hat{\theta}}} \qquad \begin{array}{c} \cdot \quad \sigma_{\theta} \text{ . average of its parameter SE across} \\ \text{simulations.} \\ \cdot \quad \sigma_{\hat{\theta}} \text{ : standard deviation of } \hat{\theta} \text{ across} \end{array}$$

- $\hat{\sigma}_{\theta}$: average of fit parameter SE across
- simulations.

$$c = \frac{1}{m}I(\theta \neq 0)$$

Coverage:
$$c = \frac{1}{m}I(\theta \neq 0)$$
 $I(\theta \neq 0) = \begin{cases} 1, & \text{if } H_0 = \text{rejected} \\ 0, & \text{otherwise} \end{cases}$

Example: Regression

Model:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

$$Y^* \sim N(\beta_0, \sigma_y)$$

Parameters:

$$\alpha = 0.05$$
 $m = 1000$
 $X \sim N(3,2)$ $n = 30$
 $\beta_0 = 9$ $\beta_1 = 0.1$
 $\epsilon \sim N(0,1) = N(0,\sigma_v)$

Example: Regression

Relative parameter estimate bias:

$$\theta_{bias} = \frac{\hat{\theta} - \theta_H}{\theta_H} = -0.045$$

Relative standard error bias:

$$\sigma_{bias} = \frac{\hat{\sigma}_{\theta} - \sigma_{\hat{\theta}}}{\sigma_{\hat{\theta}}} = -0.010$$

Coverage:

$$c = \frac{1}{m}I(\theta \neq 0) = 0.173$$

Example: power & accuracy

Goal: Determine the sample size (n) needed in order to:

- 1. Detect a significant effect of β_1 95% of the time.
- 2. Have a parameter bias < |0.01|

Approach: Repeat model sims from before, across a range of sample sizes (n).

$$n = 10 - 500$$

$$range$$

Take home message

 Because they rely on relatively few assumptions, Monte Carlo methods provide a robust and flexible way of estimating the statistical power of your model.