

NTE987/NTE987SM Integrated Circuit Quad, Low Power OP Amp

Description:

The NTE987 and NTE987SM are low cost quad operational amplifiers with true differential inputs. These have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3V or as high as 32V with quiescent currents about one fifth of those associated with the NTE941 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

Features:

- Available in 14-Lead DIP (NTE987) and Surface Mount, SOIC-14 (NTE987SM)
- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3V to 32V
- Four Amplifiers per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pin-Outs

Absolute Maximum Ratings: (T_A = +25°C unless otherwise specified)

Power Supply Voltages	
Single Supply, V _{CC}	32V
Split Supplies, V _{CC} V _{EE}	±16V
Input Differential Voltage Range (Split Power Supplies), V _{IDR}	±32V
Input Common Mode Voltage range, V _{ICR}	–0.3 to 32V
Input Forward Current (V _I < 0.3V, Note 1), I _{IF}	50mA
Output Short Circuit Duration, t _S	Continuous
Operating Junction Temperature, T _J	+150°C
Operating Ambient Temperature Range, T _A	0° to +70°C
Storage Temperature Range, T _{stq}	–55° to +125°C

Note 1. This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than -0.3V.

<u>Electrical Characteristics:</u> $(V_{CC} = 5V, V_{EE} = GND, T_A = +25^{\circ}C \text{ unles otherwise specified})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$V_{CC} = 5V \text{ to } 30V, \\ V_{ICR} = 0 \text{ to } V_{CC} - 1.7V, \\ V_{O} = 1.4V, R_{S} = 0\Omega$ $T_{A} = 0 \text{ to } +70^{\circ}C$		-	2	7	mV
			$T_A = 0 \text{ to } +70^{\circ}\text{C}$	-	-	9	mV
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{IO}/\Delta T$	$T_A = 0 \text{ to } +70^{\circ}\text{C}$		_	7	-	μV/°C
Input Offset Current	I _{IO}	T _A = 0 to +70°C		_	5	50	nA
				_	-	150	nA
Average Temperature Coefficient of Input Offset Current	$\Delta I_{IO}/\Delta T$	$T_A = 0 \text{ to } +70^{\circ}\text{C}$		_	10	-	pA/°C
Input Bias Current	I _{IB}	T _A = 0 to +70°C		_	-90	-250	nA
				_	-	-500	nA
Input Common-Mode Voltage	V _{ICR}	V _{CC} = 30V		0	-	28.3	V
Range			$T_A = 0 \text{ to } +70^{\circ}\text{C}$	0	-	28.0	V
Differential Input Voltage Range	V_{IDR}	'		_	-	V_{CC}	V
Large Signal Open-Loop Voltage Gain	A _{VOL}	$R_L = 2k\Omega$, $V_{CC} = 15V$, For Large V_O Swing		25	100	-	V/mV
			$T_A = 0 \text{ to } +70^{\circ}\text{C}$	15	_	_	V/mV
Channel Separation		1kHz ≤ f ≤ 20kHz, Input Referenced		_	-120	-	dB
Common-Mode Rejection Ratio	CMRR	$R_S \le 10k\Omega$		65	70	-	dB
Power Supply Rejection Ratio	PSRR			65	100	-	dB
Output Voltage Range	V _{OR}	$R_L = 2k\Omega$		0	-	3.3	V
Output Voltage – High Limit	V _{OH}	V _{CC} = 30V, T _A = 0 to +70°C	$R_L = 2k\Omega$	26	-	-	V
			$R_L = 10k\Omega$	27	28	-	V
Output Voltage - Low Limit	V _{OL}	V_{CC} = 5V, R_L = 10k Ω , T	A = 0 to +70°C	_	5	20	mV
Output Source Current	I _{Source}	$V_{ID} = 1V, V_{CC} = 15V$		20	40	-	mA
			$T_A = 0 \text{ to } +70^{\circ}\text{C}$	10	20	_	mA
Output Sink Current	I _{Sink}	$V_{ID} = -1V, V_{CC} = 15V$		10	20	_	mA
			$T_A = 0 \text{ to } +70^{\circ}\text{C}$	5	8	-	mA
		$V_{ID} = -1V, V_{O} = 200mV$	/	12	50	_	μΑ
Output Short Circuit to GND	I _{os}	Note 3		-	40	60	mA
Power Supply Current	I _{CC}	$V_{O} = 0, R_{L} = \infty,$ $T_{A} = 0 \text{ to } +70^{\circ}\text{C}$	V _{CC} = 30V	-	_	3.0	mA
			$V_{CC} = 5V$	_	_	1.2	mA

Note 2. The input common–mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common–mode voltage range is $V_{\rm CC}$ –1.7V, but either or both inputs can go to +32V without damage.

Note 3. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

