

# A NOTE ON THE TOTAL NUMBER OF CYCLES OF EVEN AND ODD PERMUTATIONS

JANG SOO KIM

**ABSTRACT.** We prove bijectively that the total number of cycles of all even permutations of  $[n] = \{1, 2, \dots, n\}$  and the total number of cycles of all odd permutations of  $[n]$  differ by  $(-1)^n(n - 2)!$ , which was stated as an open problem by Miklós Bóna. We also prove bijectively the following more general identity:

$$(1) \quad \sum_{i=1}^n c(n, i) \cdot i \cdot (-k)^{i-1} = (-1)^k k!(n - k - 1)!,$$

where  $c(n, i)$  denotes the number of permutations of  $[n]$  with  $i$  cycles.

## 1. INTRODUCTION

Let  $c(n, i)$  denote the number of permutations of  $[n] = \{1, 2, \dots, n\}$  with  $i$  cycles. The following equation is well known; for example see [1, 3]:

$$(1) \quad \sum_{i=1}^n c(n, i) x^i = x(x + 1) \cdots (x + n - 1).$$

Let  $n$  and  $k$  be positive integers with  $k < n$ . By differentiating (1) with respect to  $x$  and substituting  $x = -k$ , we get the following:

$$(2) \quad \sum_{i=1}^n c(n, i) \cdot i \cdot (-k)^{i-1} = (-1)^k k!(n - k - 1)!.$$

In particular, if  $k = 1$ , then (2) implies the following theorem.

**Theorem 1.** *The total number of cycles of all even permutations of  $[n]$  and the total number of cycles of all odd permutations of  $[n]$  differ by  $(-1)^n(n - 2)!$ .*

The problem of finding a bijective proof of Theorem 1 was proposed by Miklós Bóna and it has been added to [2] as an exercise (private communication with Richard Stanley and Miklós Bóna). In this note, we prove Theorem 1 bijectively by finding a sign-reversing involution. We also prove (2) bijectively.

## 2. BIJECTIVE PROOFS

Recall the lexicographic order on the pairs of integers, that is,  $(i_1, j_1) \leq (i_2, j_2)$  if and only if  $i_1 < i_2$ , or  $i_1 = i_2$  and  $j_1 \leq j_2$ . Note that this is a linear order.

Let  $T(n)$  denote the set of pairs  $(\pi, C)$  where  $\pi$  is a permutation of  $[n]$  and  $C$  is a cycle of  $\pi$ . Then Theorem 1 is equivalent to the following:

$$(3) \quad \sum_{(\pi, C) \in T(n)} \text{sign}(\pi) = (-1)^n(n - 2)!.$$

---

The author is supported by the grant ANR08-JCJC-0011.

*Proof of Theorem 1.* We define a map  $\phi : T(n) \rightarrow T(n)$  as follows. Let  $(\pi, C) \in T(n)$ .

**Case 1:**  $C$  contains at most  $n - 2$  integers. Let  $(i, j)$  be the smallest pair in lexicographic order for distinct integers  $i$  and  $j$  which are not contained in  $C$ . Then we define  $\phi(\pi, C) = (\tau_{ij}\pi, C)$ , where  $\tau_{ij}$  is the transposition exchanging  $i$  and  $j$ .

**Case 2:**  $C$  contains at least  $n - 1$  integers. If  $C$  does not contain 1, then we define  $\phi(\pi, C) = (\pi, C)$ . If  $C$  contains 1, then we have either  $\pi = (a_0)(1, a_1, a_2, \dots, a_{n-2})$  or  $\pi = (1, a_0, a_1, \dots, a_{n-2})$  in cycle notation for some integers  $a_i$ . Let  $\pi' = (1, a_0, a_1, \dots, a_{n-2})$  if  $\pi = (a_0)(1, a_1, a_2, \dots, a_{n-2})$ , and  $\pi' = (a_0)(1, a_1, a_2, \dots, a_{n-2})$  if  $\pi = (1, a_0, a_1, \dots, a_{n-2})$ . We define  $\phi(\pi, C) = (\pi', C')$ , where  $C'$  is the cycle of  $\pi'$  containing 1.

Let us define the *sign* of  $(\pi, C) \in T(n)$  to be  $\text{sign}(\pi)$ . It is easy to see that  $\phi$  is a sign-reversing involution on  $T(n)$  whose fixed points are precisely those  $(\pi, C) \in T(n)$  such that 1 forms a 1-cycle and the rest of the integers form an  $(n - 1)$ -cycle, which is  $C$ . Since there are  $(n - 2)!$  such fixed points of  $\phi$  which all have sign  $(-1)^n$ , we get (3), and thus Theorem 1.  $\square$

Now we will generalize this argument to prove (2).

Let  $P(n, k)$  denote the set of triples  $(\pi, C, f)$  where  $\pi$  is a permutation of  $[n]$ ,  $C$  is a cycle of  $\pi$  and  $f$  is a function from the set of cycles of  $\pi$  except  $C$  to  $[k]$ . The left-hand side of (2) is equal to

$$\begin{aligned} \sum_{(\pi, C) \in T(n)} (-k)^{\text{cyc}(\pi)-1} &= \sum_{(\pi, C) \in T(n)} (-1)^{\text{cyc}(\pi)-1} k^{\text{cyc}(\pi)-1} \\ &= (-1)^{n-1} \sum_{(\pi, C, f) \in P(n, k)} \text{sign}(\pi), \end{aligned}$$

because  $\text{sign}(\pi) = (-1)^{n-\text{cyc}(\pi)}$  and for given  $(\pi, C) \in T(n)$ , there are  $k^{\text{cyc}(\pi)-1}$  choices of  $f$  with  $(\pi, C, f) \in P(n, k)$ . Thus we get that (2) is equivalent to the following:

$$(4) \quad \sum_{(\pi, C, f) \in P(n, k)} \text{sign}(\pi) = (-1)^{n-k-1} k!(n-k-1)!.$$

Let us define the *sign* of  $(\pi, C, f) \in P(n, k)$  to be  $\text{sign}(\pi)$ . Let  $\text{Fix}(n, k)$  denote the set of elements  $(\pi, C, f) \in P(n, k)$  such that (1) each integer  $i \in [k]$  forms a 1-cycle of  $\pi$  and the integers  $k+1, k+2, \dots, n$  form an  $(n-k)$ -cycle of  $\pi$ , which is  $C$  and (2) the  $f$  values of the cycles of  $\pi$  except  $C$  are all distinct. Then, to prove (4), it is sufficient to find a sign-reversing involution on  $P(n, k)$  whose fixed point set is  $\text{Fix}(n, k)$ .

We will define a map  $\psi : P(n, k) \rightarrow P(n, k)$  as follows. Let  $(\pi, C, f) \in P(n, k)$ .

**Case 1:** There is a pair  $(i, j)$  of integers  $i < j$  such that  $i \in C_1 \neq C$  and  $j \in C_2 \neq C$  with  $f(C_1) = f(C_2)$ . Here we may have  $C_1 = C_2$ . Let  $(i, j)$  be the smallest such pair in lexicographic order. Then we define  $\psi(\pi, C, f) = (\tau_{ij}\pi, C, f')$ , where  $f'(C') = f(C')$  if  $i, j \notin C'$ , and  $f'(C') = f(C_1)$  otherwise. As before,  $\tau_{ij}$  is the transposition exchanging  $i$  and  $j$ .

**Case 2:** Case 1 does not hold. Then the cycles of  $\pi$  except  $C$  are all 1-cycles whose  $f$  values are all distinct. Thus there are at most  $k$  1-cycles of  $\pi$  except  $C$ .

We can represent  $(\pi, C, f)$  as a digraph  $D$  with vertex set  $[n]$  as follows. For each integer  $i$  contained in  $C$ , add an edge  $i \rightarrow \pi(i)$ . For each integer  $i$  of  $[n]$  which is not contained in  $C$ , add an edge  $i \rightarrow f(i)$ , where  $f(i)$  is the  $f$  value of the 1-cycle



FIGURE 1. The digraph representing  $(\pi, C, f) \in P(11, 8)$ , where  $\pi = (2, 3, 5, 10, 8)(1)(4)(6)(7)(9)(11)$ ,  $C = (2, 3, 5, 10, 8)$ ,  $f(1) = 2$ ,  $f(4) = 6$ ,  $f(6) = 4$ ,  $f(7) = 7$ ,  $f(9) = 8$  and  $f(11) = 1$ .



FIGURE 2. The digraph representing  $(\pi, C, f) \in P(11, 8)$ , where  $\pi = (1, 2, 3, 5, 10, 8)(4)(6)(7)(9)(11)$ ,  $C = (1, 2, 3, 5, 10, 8)$ ,  $f(4) = 6$ ,  $f(6) = 4$ ,  $f(7) = 7$ ,  $f(9) = 8$  and  $f(11) = 1$ .

(i) consisting of  $i$ . For example, see Figures 1 and 2. Note that we can recover  $(\pi, C, f)$  from  $D$  even when  $D$  consists of cycles only because in this case  $C$  is the only cycle containing integers greater than  $k$ .

Now we consider the two sub-cases where  $C$  contains an integer in  $[k]$  or not.

**Sub-Case 2-a:**  $C$  does not contain any integer in  $[k]$ . It is easy to see that we have this sub-case if and only if  $(\pi, C, f) \in \text{Fix}(n, k)$ . We define  $\psi(\pi, C, f) = (\pi, C, f)$ .

**Sub-Case 2-b:**  $C$  contains an integer in  $[k]$ . Let  $m$  be the smallest such integer.

For an integer  $i \in C$ , we say that  $i$  is *free* if  $i \in [k]$  and the in-degree of  $i$  in  $D$  is 1, i.e. there is no integer outside of  $C$  pointing to  $i$ . A sequence  $(m_1, m_2, \dots, m_\ell)$  of integers in  $C$  is called a *free chain* if it satisfies (1) for each  $i \in [\ell] \setminus \{1\}$ ,  $m_i$  is free and  $m_i = \pi(m_{i-1})$ , and (2) for each  $i \in [\ell]$ ,  $m_i$  is the  $i$ th-smallest integer in  $C$ . Note that we always have a free chain, for example the sequence consisting of  $m$  alone. Moreover, there is a unique maximal free chain.

Let  $(m_1, m_2, \dots, m_\ell)$  be the maximal free chain. Let  $\bar{m} = m_1$  if  $\ell$  is odd, and  $\bar{m} = m_2$  if  $\ell$  is even.

**Example 1.** The maximal free chains of the digraphs in Figures 1 and 2 are  $(2, 3, 5)$  and  $(1, 2, 3, 5)$  respectively. Thus  $\bar{m} = 2$  in both Figures 1 and 2.

Let  $D'$  be the digraph obtained from  $D$  by doing the following. If  $\bar{m}$  is free, then let  $u, v$  be the integers in  $C$  such that  $D$  has the edges  $v \rightarrow u$  and  $u \rightarrow \bar{m}$ . It is not difficult to see that in this case  $C$  has at least two integers, which implies  $u \neq \bar{m}$ . Then we remove the edge  $v \rightarrow u$  and add an edge  $v \rightarrow \bar{m}$ . If  $\bar{m}$  is not free, then let  $u$  and  $v$  be the integers with  $u \notin C$  and  $v \in C$  such that  $D$  has the edges  $u \rightarrow \bar{m}$  and  $v \rightarrow \bar{m}$ . Then we remove the edge  $v \rightarrow \bar{m}$  and add an edge  $v \rightarrow u$ .

We define  $\psi(\pi, C, f)$  to be the element in  $P(n, k)$  represented by  $D'$ .

**Example 2.** Let  $(\pi, C, f)$  be represented by the digraph in Figure 1. Since  $\overline{m} = 2$ ,  $\psi(\pi, C, f)$  is represented by the digraph in Figure 2. Note that  $\psi(\psi(\pi, C, f)) = (\pi, C, f)$ .

It is easy to see that  $\psi$  is a sign-reversing involution on  $P(n, k)$  with fixed point set  $\text{Fix}(n, k)$ . Thus we have proved (2) bijectively.

#### ACKNOWLEDGEMENT

The author would like to thank the anonymous referee for reading the manuscript carefully and making helpful comments. He would also like to thank Vincent Beck for pointing out a mathematical typo.

#### REFERENCES

- [1] Miklós Bóna. *Combinatorics of permutations*, volume 39. ACM, New York, NY, USA, 2008.
- [2] Richard P. Stanley. *Enumerative Combinatorics. Vol. 1. second edition.* in preparation, see <http://math.mit.edu/~rstan/ec/ch1.pdf>.
- [3] Richard P. Stanley. *Enumerative Combinatorics. Vol. 1*, volume 49 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1997.

E-mail address: jskim@kaist.ac.kr