Deadline: May, 2

Problems

Problem 1.1. (2 points)

Decide if the following identities are correct or not and give the reason. Work in 3-dimensional space. Here, f is a scalar function and u, v are 3-d vector functions.

(" ∇ ·" is the same as "div", while " ∇ ×" is the same as "rot")

- (A) $\nabla \cdot (f \boldsymbol{v}) = f \nabla \cdot \boldsymbol{v} + \boldsymbol{v} \cdot \nabla f$
- (B) $\nabla \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot (\nabla \times \boldsymbol{u}) \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v})$
- (C) $\nabla \times (f\boldsymbol{u}) = \nabla f \times \boldsymbol{u} + f \nabla \times \boldsymbol{u}$
- (D) $\nabla \cdot (\nabla \times \boldsymbol{u}) = 0$
- (E) $\nabla \times (\nabla \times \boldsymbol{u}) = \nabla(\nabla \cdot \boldsymbol{u}) \Delta \boldsymbol{u}$

Nonlinear partial differential equations • April, 18

Deadline: May, 2

Problems

Problem 1.1. (2 points)

Decide if the following identities are correct or not and give the reason. Work in 3-dimensional space. Here, f is a scalar function and u, v are 3-d vector functions.

(" ∇ ·" is the same as "div", while " ∇ ×" is the same as "rot")

(A)
$$\nabla \cdot (f \boldsymbol{v}) = f \nabla \cdot \boldsymbol{v} + \boldsymbol{v} \cdot \nabla f$$

(B)
$$\nabla \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot (\nabla \times \boldsymbol{u}) - \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v})$$

(C)
$$\nabla \times (f\boldsymbol{u}) = \nabla f \times \boldsymbol{u} + f \nabla \times \boldsymbol{u}$$

(D)
$$\nabla \cdot (\nabla \times \boldsymbol{u}) = 0$$

(E)
$$\nabla \times (\nabla \times \boldsymbol{u}) = \nabla(\nabla \cdot \boldsymbol{u}) - \Delta \boldsymbol{u}$$