

Lecture 2

Analog-to-Digital Converters

March 7, 2005

Prof. SeongHwan Cho

2005-03-08 EE301 1

Outline

- ADC Necessity
- FLASH ADC
- Pipeline ADC
- Op-amp necessity
- Amplifier necessity

ADC Application

■ Image Processing (Scanner, Camcorder, Digital Camera, etc)

2005-03-08 EE301

Hard-disk

AC COUPLING VGA SEQUENCE DETECTOR

READ CHANNEL ANALOG FRONT END

VIP

VIN

FROM

PREAMP

ADC Basics

What is the digital value of 5?

2005-03-08

To answer this question, additional information must be given.

minimum and maximum voltage levels (range/FS) the number of bits (resolution)

Range	The number of bits	Digital value
0~100[V]	2bits	
0~7[V]	3bits	
	EE301	7

Time-Varying Signals

Sample & Hold

Basic Parameters

Code Analog value

FS (Ref), Resolution, MSB, LSB, Sampling Rate

2005-03-08

EE301

Data Converter Background

FLASH Architecture

Consider the simplest case: range[0V, 8V] with 3bits

$$Vin = 6.5V$$

Digital Output = ?

2005-03-08 EE301 11

FLASH Example

EE301

12

FLASH ADCs

Complexity increases exponentially with resolution!

2005-03-08 EE301 13

Division Method

Consider the simplest case: range[0V, 8V] with 3bits In this case, reference voltage should be 4V.

$$\begin{array}{c|c}
1 \\
4 \overline{)} & 6.5 \\
 & 4 \\
\hline
 & 2.5
\end{array}$$

First stage

Second stage

$$\begin{array}{c|c}
0\\
4 \overline{\smash{)} 2.0}\\
\hline
0\\
2.0
\end{array}$$

third stage

Therefore 6.5V is converted into the digital value of

2005-03-08

EE301

14

How to Realize Pipelined ADC

To realize precise pipelined ADCs, we have to realize three operations precisely.

- 1. Comparator
- 2. Multiplier by two
- 3. Subtractor

Necessity of Gain Elements

Pipelined ADC requires x2 Circuit.

Audio and RF signals must be amplified.

Comparator needs amplifier.

2005-03-08 EE301 17

How to design multiply-by-2

Inverting amplifier with Op-amp

Why not just x2?

Either way, we need a gain element.

A/D 변환기 (ADC) 의 응용 분야 및 사양

■ 응용 분야:

- 개인 휴대용 통신 기기, 고속 디지털 통신망, HDTV, 디지털 캠코더, DVD, LCD 모니터, 컬러 스캐너 등 제반 시스템 I.C. 분야
- 최근 상용 전자 제품들의 성능이 크게 향상됨에 따라 고속도, 고해상도 및 특히 저전력 A/D 변환기에 대한 요구가 급속히 증가

■ 응용 분야에 따른 A/D 변환기 사양 (예):

응용 분야	해 상 도 (bits)	속 도 (Sampling Frequency)
Modem	8 – 10	64 KHz
Digital Audio	16	44.1 KHz
HDTV, 통신	10 – 16	1 – 100 MHz
DVD	8 - 9	104 MHz
LCD	8	205 MHz

A/D 변환기 (ADC) Applications

