Universidad de Concepción

FACULTAD DE CIENCIAS FISÍCAS Y MATEMÁTICAS

Laboratorio 1

Proyecto laboratorio termodinámica

Autores: Martina Contreras, Noemí De la peña, Benjamín Opazo.

> Profesor: Claudio Alonso Faúndez Araya

> > Carrera: Ciencias fisícas

Ayudantes: Arelly Nunez y Anahis Verana

Octubre 2022

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introdución					
2.	Marco Teórico					
3.	3. Materiales					
	Procedimiento y Resultados					
	4.1. Determinación puntos de fusión y de ebullición					
	4.2. Masa de una sustancia					
	4.3. Potencia de la estufa					
	4.4 La naturaleza de la sustancia					

1. Introdución

2. Marco Teórico

3. Materiales

- Termómetro digital
- Vaso precipitado
- Estufa eléctrica agua
- Alcohol etílico
- Benceno

4. Procedimiento y Resultados

4.1. Determinación puntos de fusión y de ebullición

- Primero, seleccionaremos una potencia de 250 [W], una masa de 150[g] de agua y una temperatura inicial de -10°C.
- Segundo, anotamos la temperatura, hasta llegar al punto de ebullición.
- Tercero, realizamos lo mismo para el alcohol y el benceno.
- Finalmente, hacemos un gráfico de temperatura vs tiempo para los datos obtenidos.

Sustancia [g]	Tiempo [s]	Temperatura [°C]
	0	0
	1.7	-8.6
	30.9	0
	60.1	0
	93.7	0
	99.1	0
	120.1	0
	149.8	0
agua	180.2	0
	209.9	0
	240.3	10.9
	269.7	22.6
	300.2	34.7
	329.9	46.6
	360.0	58.5
	389.9	70.5
	419.9	82.4
	450.5	94.6
	480.1	100
	0.0	-10.0
	30.3	10.5
alcohol	60.1	30.7
	89.9	50.9
	120.1	71.3
	150.3	78.3
	0.0	-10
	18.0	5.5
	30.1	5.5
benceno	60.3	5.5
	90.1	5.5
	121.1	31.5
	149.8	58.9
	172.8	80.2

Cuadro 1: Datos de experimento: ebullición - fusión.

	agua	alcohol	benceno
Punto de fusión (°C)	0	N/A	5.5
Punto de ebullición (°C)	100	78.3	80.2

Cuadro 2: Puntos de fusión y de ebullición.

4.2. Masa de una sustancia

- \blacksquare Primero, seleccionaremos una potencia de 500[W], una masa de 100[g] de alcochol y una temperatura inicial de 10°C.
- Segundo, anotaremos la temperatura, al menos 8 valores espaciados. El punto de ebullición no será considerado.
- Tercero, repetiremos el experimento para 150[g] y 200[g] de alcohol.

Según los datos obtenidos 4.2 mientras menor sea la masa de la sustancia, más rápido se calentará.

Masa [g]	Tiempo [s]	Temperatura [°C]
	0.0	10.0
	5.1	20.3
	9.8	29.9
100	14.3	39.0
	18.4	47.3
	22.9	56.5
	27.3	65.4
	31.7	74.4
	0.0	10.0
	4.1	15.5
	7.9	20.7
	11.0	24.9
	14.7	29.9
150	18.5	35.0
	22.0	39.8
	25.2	44.1
	29.1	49.4
	32.7	54.3
	36.7	59.7
	40.5	64.8
	44.5	70.2
	48.1	75.1
	0.0	10.0
	4.9	14.9
	8.3	18.4
	11.2	21.3
	14.9	25.1
	18.4	28.6
	21.7	32.0
	25.2	35.6
	29.1	39.5
200	33.1	43.6
	36.9	47.5
	41.3	51.9
	44.9	55.6
	50.3	61.1
	53.3	64.1
	57.3	68.2
	61.1	72.0
	64.9	75.9

Cuadro 3: Datos del experimento: Masa de una sustancia.

4.3. Potencia de la estufa

- Primero, seleccionaremos una potencia de 250[W], una masa de 100[g] de benceno y una temperatura inicial de 10°C.
- Segundo, anotaremos la temperatura, al menos 8 valores espaciados. El punto de ebullición no será considerado.
- Tercero, repetiremos el experimento para 500[W] y 1000[W].

Segun los datos obtenidos 4.3 a mayor potencia, la sustancia alcanza más rápido su punto de ebullición.

Potencia [W]	Tiempo [s]	Temperatura [°C]
	0.0	10.0
	3.7	15.2
	8.1	21.5
	11.5	26.4
	15.7	32.4
250	19.4	37.7
	22.9	42.7
	26.7	48.1
	31.1	54.4
	35.1	60.1
	39.5	66.4
	43.7	72.4
	48.1	78.7
	0.0	10.0
	3.1	18.8
500	6.5	28.5
	10.0	38.5
	13.1	47.4
	16.9	58.2
	19.9	66.8
	23.0	75.7
	0.0	10.0
	1.7	19.7
1000	3.3	28.8
	4.9	38.0
	6.5	47.1
	7.9	55.1
	9.2	62.5
	10.3	68.8
	11.5	75.7

Cuadro 4: Datos del experimento: Potencia de la estufa.

4.4. La naturaleza de la sustancia

- Primero, seleccionaremos una potencia de 250[W], una masa de 150[g] de agua a una temperatura inicial de 0°C.
- Segundo, anotaremos la temperatura, al menos 8 valores espaciados. El punto de ebullición, no será considerado.
- Tercero, repetiremos el experimento para la sustancia de alcohol y benceno.

Según los datos obtenidos 4.4 el alcohol, a mismas condiciones iniciales, se demora menos en alcanzar su punto de ebullición.

Sustancia [W]	Tiempo [s]	Temperatura [°C]
	0.0	0.0
	29.9	0.0
	59.7	0.0
	90.1	0.0
	119.9	0.0
	149.7	0.0
	179.8	0.0
agua	210.3	3.9
	239.9	15.6
	269.9	27.6
	300.0	39.6
	330.0	51.5
	359.9	63.4
	389.9	75.4
	419.5	87.2
	450.3	99.5
	0.0	0.0
	14.7	9.9
	29.9	20.2
alcohol	45.1	30.5
	59.9	40.5
	74.7	50.6
	89.9	60.9
	104.7	70.9
	0.0	0.0
	19.5	5.5
	39.7	5.5
benceno	60.1	5.5
	79.9	5.5
	99.7	21.8
	120.1	41.3
	139.8	60.0
	159.7	79.0

Cuadro 5: Datos del experimento: La naturaleza de la sustancia.

