

Aula 10 – Segmentação de imagens III Regiões

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Roteiro

- Crescimento de regiões
- Divisão e fusão de regiões

CRESCIMENTO DE REGIÕES

- f(x, y) é a imagem de entrada;
- S(x, y) é uma imagem contendo sementes:
 - \boldsymbol{S} é uma imagem binária com o mesmo tamanho da imagem \boldsymbol{f} .
 - Os pixels com valor 1 indicam as sementes e os 0s as demais localizações;
- **Q** denota **alguma propriedade** a ser aplicada em cada posição **(x, y)**.

- f(x, y) é a imagem de entrada;
- S(x, y) é uma imagem contendo sementes:
 - **S** é uma imagem binária com o mesmo tamanho da imagem f.
 - Os pixels com valor 1 indicam as sementes e os 0s as demais localizações;
- **Q** denota **alguma propriedade** a ser aplicada em cada posição (x, y).

- Algoritmo básico de crescimento da regiões (baseado em conectividade-8):
 - Reduzir cada componente conectado em S(x, y) a um único pixel (erosão morfológica).
 - Rotular todos os pixels, r = [1, 2, 3, ... N].
 - Para cada semente r, gerar uma imagem f_r em que:
 - $f_r(x, y) = r$, se o pixel da imagem de entrada satisfaz Q;
 - $f_r(x, y) = 0$, caso contrário.
 - A imagem de saída g é formada anexando a cada semente em S todos os pixels rotulados com o número r em f_r que estão 8-conectados a essa semente.
 - Em caso de conflito atribuir ao menor rótulo. "O primeiro leva tudo".

• (A) Imagem original f(x, y) com tamanho 5 x 5, profundidade de 3 bits (L = 8) e duas sementes.

(_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	З	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
	7			f(x	(, y)	
	•					

• (B) Imagem com as sementes S(x, y). As sementes já foram reduzidas a um único pixel e rotuladas.

- (C) Imagem com as diferenças absolutas entre o pixel sob a semente com rótulo 1 e os demais pixels.
 - Propriedade Q: diferença absoluta entre os pixels (T).

						_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	3	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
	7			f(>	(, y)	•
,	•					

(0)						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T ₁	=	f(x,	y) -	- 1	1

- (D) Imagem com as diferenças absolutas entre o pixel sob a semente com rótulo 2 e os demais pixels.
 - Propriedade Q: diferença absoluta entre os pixels (T).

(0)						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T_1	=	f(x,	y) -	- 1	•

/ - \						_
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	y) -	- 7	

- (E) Segmentação da imagem f considerando Q = T < 3.
 - Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

						_
(A)	7	0	5	6	5	
	5	1	5	7	7	
	0	3	6	5	6	
	2	1	7	7	6	
	0	1	5	6	1	
	7			f(>	(, y)	

/ ()						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
•	T ₁	=	f(x,	y) -	-1	,

(5)						_
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S()	(, y)	
	_	0	_	0	0	

/ -\						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	y) -	- 7	
	•					

					_
0	1	0	0	0	
0	1	0	2	0	
1	1	0	0	0	
1	1	0	0	0	
1	1	0	0	0	
7			T ₁	< 3	•
		0 4	0 1 0 1 1 0 1 1 0	0 1 0 2 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 2 0 1 1 0 0 0 1 1 0 0 0

- (E) Segmentação da imagem f considerando Q = T < 3.
 - Pixels em T₂ que satisfazem Q e possuem um caminho 8-conectado à semente.

/- \				_		 /- >					
(B)	0	0	0	0	0	(D)	0	7	2	1	•
	0	0	0	2	0		2	6	2	0	(
	0	0	0	0	0		7	4	1	2	
	0	1	0	0	0		5	6	0	0	<i>:</i>
	0	0	0	0	0		7	6	2	1	(
•				S()	(, y)		T_2	=	f(x,	y) -	- ;
,	▼					1	7				

101						_
(D)	0	1	0	0	0	
	0	1	0	2	0	
	1	1	0	0	0	
	1	1	0	0	0	
	1	1	0	0	0	
	7			T ₁	< 3	,

• (F) Segmentação da imagem f considerando Q = T < 3.

0 0

(B)

0

(D)						_
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	y) -	- 7	ļ

/- \						
(D)	0	1	0	0	0	
	0	1	0	2	0	
	1	1	0	0	0	
	1	1	0	0	0	
	1	1	0	0	0	
	7			T ₁	< 3	•
,	,					

/ -\						
(F)	0	1	2	2	2	
	0	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	0	
_				Т	< 3	

S(x, y)

- (G) Segmentação da imagem f considerando Q = T < 5.
 - Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

(0)						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
_	T ₁	=	f(x,	y) -	-1	

(5)						
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	

(D)		_	_	4		-
(0)	0	/	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
1	T_2	=	f(x,	y) -	- 7	

(0)						_
(G)	0	1	1	0	0	
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
	7			T ₁	< 5	•
`						

- (H) Segmentação da imagem f considerando Q = T < 5.
 - Pixels em T₂ que satisfazem Q e possuem um caminho 8-conectado à semente.

/ ->						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	у) -	- 7	

<i>(</i> ~)						_
(G)	0	1	1	0	0	
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
•	7			T ₁	< 5	•

- (I) Segmentação da imagem f considerando Q = T < 5.
 - Em caso de conflito, o pixel é atribuído a região com o menor rótulo de forma arbitrária.

(B)

0

(D)	0	7	2	1	2	-
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
_	T_2	=	f(x,	у) -	- 7	

101						_
(G)	0	1	1	0	0	•
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
	7			T ₁	< 5	•
•	•					

						_
(1)	0	1	1	2	2	
	1	1	1	2	2	
	1	1	2	1	2	
	1	1	2	2	2	
	1	1	1	2	0	
•				Т	< 5	

S(x, y)

• (J) Segmentação da imagem f considerando Q = T < 5.

0 0

(B)

0

I)	0	1	1	2	2	
	1	1	1	2	2	
	1	1	2	1	2	
	1	1	2	2	2	
	1	1	1	2	0	
•	7			Т	< 5	•
,	7					

S(x, y)

- (K) Segmentação da imagem f considerando Q = T < 8.
 - − Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

(0)						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T_1	=	f(x,	y) -	- 1	

(5)						_
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	

/ D\						_
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T ₂	=	f(x,	у) -	- 7	•

(K)	1	1	1	1	1	-
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
	7			T ₁	< 8	
`						

- (L) Segmentação da imagem f considerando Q = T < 8.
 - Pixels em T₂ que satisfazem Q e possuem um caminho 8-conectado à semente.

(0)						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
_	T ₁	=	f(x,	y) -	-1	•

/ ->						
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S()	(, y)	
,	7					

(D)						_
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T ₂	=	f(x,	у) -	- 7	•

(14)						_
(K)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
	7			T ₁	< 8	•

- (M) Segmentação da imagem f considerando Q = T < 8.
 - Em caso de conflito, o pixel é atribuído a região com o menor rótulo de forma arbitrária.

(B)

/ ()						_
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
1	T ₁	=	f(x,	y) -	- 1	•

(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	у) -	- 7	

•
•

(M)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
_	7			Т	< 8	

S(x, y)

- (N) Segmentação da imagem f considerando Q = T < 8.
 - Com T < 8, todos os pixels atribuídos à semente 1.

(D)	0	7	2	1	2	→
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
•	T_2	=	f(x,	y) -	- 7	

(K)	1	1	1	1	1	-	(M	l)	1	1	1	1	1	
	1	1	1	2	1				1	1	1	2	1	
	1	1	1	1	1				1	1	1	1	1	
	1	1	1	1	1				1	1	1	1	1	
	1	1	1	1	1				1	1	1	1	1	
				T₁	< 8							Т	< 8	•
	7			. Т				1						
				- 1										
(L)	2	2	2	2	2	→	(N)	1	1	1	1	1	→
(L)	2 2	2	2	_		→	(N)	1	1	1	1 2	1	-
(L)				2	2	→	(N)	_					-
(L)	2	2	2	2	2	→	(N)	1	1	1	2	1	-
(L)	2	2	2	2 2 2	2 2 2	→	(N)	1	1	1	2	1	

Segmentações da imagem f considerando (G) Q = T < 3; (J) Q = T < 5; (N) Q = T < 8.

/ ->						
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
	7			S(x	(, y)	•
	,					

/- >						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T ₂	=	f(x,	у) -	- 7	

(0)						
(G)	0	1	2	2	2	
	0	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	0	
				Т	< 3	ı
•						

/NI\						
(N)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
				Т	< 8	1

DIVISÃO E FUSÃO DE REGIÕES

- Algoritmo de divisão e fusão de regiões.
 - 1. Dividir em quatro quadrantes qualquer região R_i em que Q(R_i)=Falso.
 - 2. Quando não for possível dividir um região, fundir as regiões adjacentes R_j e R_k em que $Q(R_j \cup R_k)$ = Verdade.
 - 3. Parar quando a fusão não for mais possível.

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 $\mu = 1.88$ $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

0	0	2	
0	0	4	
7	7	1	
0	0	0	

0	0	2
0	0	4
7	7	1
0	0	0

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =2.81 σ =2.48

 $\mu = 1.44$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

μ=1.88 σ=2.69

 $\mu = 1.38$

 $\sigma = 0.99$

0

0

0

0

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =2.81 σ =2.48

 $\mu = 1.44$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

μ=1.88 σ=2.69

3

3

 $\mu = 1.38$

 σ =0.99

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=2.8	1
$\sigma=2.4$	8

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 μ =1.38 σ =0.99

 $\mu = 1.88$

σ=	σ=2.69				
0	C) 2	0		
0	C) 4	. 0		
7	7	' 1	. 7		
0	C) 0	2		

0	0	0	0
0	5	5	5

0	5	5	5
0	5	5	5

	0	0
	0	0
·		

0

0	6	4
0	3	6

0	2	
0	4	

0 0	

 μ =1.50

 $\sigma = 1.66$

4

 $\mu = 2.50$

 $\sigma = 2.69$

0

0

2

 μ =1.88 $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

u=2.81	
5=2.48	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 $\mu = 1.88$

 $\mu = 1.38$ $\sigma = 0.99$

0

0

	μ=1 σ=2	.2
	0	
	0	
'	μ=2 σ=2	.5
	0	
	0	
, and the second	μ=0 σ=0	.0
	0	
	0	
'	μ=0 σ=0	.2
	0	
	0	

								_
μ=1.25 σ=2.17		μ=2.50 σ=2.50						
0	0		0	0				
0	5		5	5				
μ=2.50 σ=2.50			μ=5. σ=0.		•			
0	5		5	5				
0	5		5	5				
μ=0.00 σ=0.00			μ=4.75 σ=1.30			μ=0 σ=0		
0	0		6	4		0	0	
0	0		3	6		0	0	
μ=0.25 σ=0.43		μ=0.75 σ=0.83			μ=3 σ=3		_	
0	1		2	1		7	7	
0	0		0	0		0	0	

 μ =1.88 $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

μ=2.81	
$\sigma = 2.48$	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 μ =1.38 σ =0.99

 $\mu = 1.88$

 $\mu = 1.44$ $\sigma = 2.09$

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

σ=2.69				
0	0	2	0	
0	0	4	0	
7	7	1	7	
0	0	0	2	

0
5

0	5	5	5
		μ=5. σ=0.	
0	5	5	5
0	5	5	5

μ=0	.00
σ=0	.00

0	0
0	0
μ=0	.25
σ=0	.43
	4

0=0.43			
0	1		
0	0		

μ=0.00
σ=0.00

0

6	4	0	
3	6	0	
μ=0.	.75		

0	2	C
0	4	C

σ=0.83				
2	1			
0	0			

7	7
0	0

1	7
0	2

 μ =1.88 $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 e \sigma > 1.0$

u=2.81	
$\tau = 2.48$	

 $\mu = 1.44$

 $\sigma = 2.09$

0

0

0

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

6

2

0

0

9)
μ=1	L.88
σ=2	2.69
0	0
	T_{a}

3

μ=1 σ=0					0
0	0	0	0		0
1	1	2	2	<u>'</u>	
1	1	2	2		

U	5	
0	5	l
0	5	
μ=0		
σ=0.	.00	
0	0	
μ=0. σ=0.		
0	1	
0	0	

0	0		0	0	
0	5		5	5	
			μ=5. σ=0.		l
0	5		5	5	
0	5		5	5	
	.00				
0	0		6	4	
0	0		3	6	
	.25 .43		μ=0. σ=0.		-
0	1		2	1	
0	0		0	0	
		•			•

 $\mu = 1.88$ $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

ມ=2.81	
$\sigma = 2.48$	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

U	U	U	U
1	1	2	2
1	1	2	2
3	3	2	2

 $\mu = 1.38$ σ =0.99

 μ =1.88

 $\mu = 1.44$ $\sigma = 2.09$ 6

0

0

σ=2.69			
0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

l		
	0	
	0	
	0	
	0	
	μ=0 σ=0	
	0	
	0	
	μ=0 σ=0	
	0	

	0	0 0		
	5	5 5		
		μ=5.00 σ=0.00		
	5	5 5		
	5	5 5		
0. 0.			μ=0.00 σ=0.00	
	0	6 4	0 0	2 0
	0	3 6	0 0	4 0
0. 0.		μ=0.75 σ=0.83		
	1	2 1	7 7	1 7
	0	0 0	0 0	0 2

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial PDI.pdf

FIM