CH 8 - Modular Arithmetics

Luke Lu • 2025-10-27

≥ Info – Congruence and Modular Expression

Let m be a fixed positive integer. For integers a and b, we say that a is **congruent** to b **modulo** m, and write

$$a \equiv b \, \, (\operatorname{mod} m)$$

if and only if $m \mid (a-b)$. For integers a and b such that $m \nmid (a-b)$, we write $a \not\equiv b \pmod{m}$. We refer to \equiv as **congruence**, and m as its **modulus**.

$$a \equiv b \pmod{m} \Longleftrightarrow m \mid (a-b) \Longleftrightarrow \exists k \in \mathbb{Z}, a-b = km \Longleftrightarrow \exists k \in \mathbb{Z}, a = km + b$$

Examples:

- 1. $6 \equiv 18 \pmod{12}$: $6 18 = -12, 12 \mid -12$
- 2. $73 \equiv 1 \pmod{2} : 13 1 = 72, 2 \mid 72$
- 3. $5 \equiv 1 \pmod{4} : 5 1 = 4, 4 \mid 4$
- 4. $24 \equiv 0 \pmod{24}$: $24 0 = 24, 24 \mid 24$
- 5. $-5 \equiv 7 \pmod{12}$: $-5 7 = -12, 12 \mid -12$

≥ Info – Equality Properties

- 1. Reflexivity: $\forall a \in \mathbb{Z}, a = a$
- 2. Symmetry: $\forall a, b \in \mathbb{Z}, a = b \Longrightarrow b = a$
- 3. Transitivity: $\forall a, b, c \in \mathbb{Z}, a = b \land b = c \Longrightarrow a = c$

≥ Info − Congruence Relations

 $\forall a, b, c \in \mathbb{Z}$

- 1. $a \equiv a \pmod{m}$
- 2. $a \equiv b \pmod{m} \implies b \equiv a \pmod{m}$
- 3. $a \equiv b \pmod{m} \land b \equiv c \pmod{m} \Longrightarrow a \equiv c \pmod{m}$

🔪 Info — Modular Arithmetics

 $\forall a_1, a_2, b_1, b_2 \in \mathbb{Z}$ and $\forall n \in \mathbb{N}$, if $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$ then

- 1. $a_1+a_2\equiv b_1+b_2\ (\mathrm{mod}\, m)$
- 2. $a_1 a_2 \equiv b_1 b_2 \pmod{m}$
- 3. $a_1 a_2 \equiv b_1 b_2 \pmod{m}$
- 4. $a_1 + a_2 + ... + a_n \equiv b_1 + b_2 + ... + b_n \pmod{m}$
- 5. $a_i \equiv b_i \Longrightarrow a_1 a_2 ... a_n \equiv b_1 b_2 ... b_n \pmod{m}$
- 6. $\forall a, b \in \mathbb{Z} \text{ if } a \equiv b \pmod{m} \text{ then } a^n \equiv b^n \pmod{m}$

Proof

 $\forall a_1, a_2, b_1, b_2 \in \mathbb{Z}$ where $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$

1. $a_1 + a_2 - b_1 - b_2 = a_1 - b_1 + a_2 - b_2 \pmod{m}$.

Since $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2$, therefore $m \mid (a_1 - b_1)$ and $m \mid (a_2 - b_2)$.

By DIC
$$m \mid (a_1 - b_1 + a_2 - b_2) \equiv m \mid (a_1 + a_2 - (b_1 + b_2)).$$

By definition of Congruence, $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$

2. $a_1 - a_2 - b_1 + b_2 = a_1 - b_1 + a_2 - b_2 \pmod{m}$.

Since $a_1 \equiv b_1 \pmod m$ and $a_2 \equiv b_2 \pmod m$, therefore $m \mid (a_1 - b_1)$ and $m \mid (a_2 - b_2)$.

By DIC
$$m \mid (a_1 - b_1 - a_2 + b_2) \equiv m \mid (a_1 - a_2 - (b_1 - b_2)).$$

By definition of Congruence, $a_1-a_2\equiv b_1-b_2\pmod m$

3. Since $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$,

therefore $\exists k, l \in \mathbb{Z}$ s.t. $a_1 = km + b_1$; $a_2 = lm + b_2$.

$$a_1b_1 - b_1b_2 = (km + b_1)(lm + b^2) - b_1b_2 = klm^2 + kmb_2 + b_1lm + b_1lm + b_1b_2$$

 $(klm + kb_2 + b_1l) \cdot m \Longrightarrow m \mid (klm + kb_2 + b_1l).$

Hence, $a_1 a_2 \equiv b_1 b_2 \pmod{m}$