图论作业 第二次

BY 18340087 李晨曦

1

证明. 我们找到一条极长路径 $v_0e_0v_1e_1...v_k$, 它的长度比图中所有的路径都大。由路径顶点不重复, 进而可知路径长度有界, 且路径长度是离散的, 可知这路径是存在的。

 v_0 的邻接点一定都在这条路径上, 因为如果存在 v_i 不在这个路径上, 则我们可以构造新路 径 $v_ie_iv_0...v_k$ 使得该路径的长度大于原来路径的长度。

由于 v_0 至少有 δ 个邻接点, 它们都在这条路径上, 记路径中距离 v_0 最远的邻接点为 v_j , 那么路径 $v_0...v_j$ 至少有 δ 条边, 且 v_j 与 v_0 之间有一条不在路径中的边($\delta \geq 2$ 保证了 v_j 一定不和 v_0 直接相连), 这样一来, $v_0...v_i$ e $_i$ v $_0$ 就形成了一条长度至少为l+1的回路。

2

证明. 假设图不连通,则它可以被分割为t个联通的图,每个图的顶点数为 v_i ,我们有:

$$\sum_{i=1}^{t} v_i \leqslant n$$

且

$$v_i \leqslant n-1$$

假设每个图都是完全图, 总的边数为:

$$\sum_{i=1}^{t} {v_i \choose 2} = \sum_{i=1}^{t} \frac{v_i(v_i-1)}{2}$$

因为 $v_i \leq n-1$, 我们有:

$$\sum_{i=1}^{t} \frac{v_i(v_i-1)}{2} \leqslant \sum_{i=1}^{t} \frac{(n-1)(v_i-1)}{2} \leqslant \frac{(n-1)(n-t)}{2} \leqslant \binom{n-1}{2}$$

这也就是说, 这t个子图的边数之和, 即图的边数 ε , 有

$$\varepsilon \leqslant \binom{n-1}{2}$$

那么, 当

$$\varepsilon > \left(\begin{array}{c} n-1 \\ 2 \end{array} \right)$$

这个图必定是一个连通图。

3

观察矩阵, 发现这是一个无向图, 用Dijkstra算法计算如下:

Round	Α	В	С	D	E	F
1	0, -	∞, -	∞, -	∞, -	∞, -	∞, -
2		50, A	∞, -	40, A	25, A	10, A
3		50, A	35, F	35, F	25, A	
4	4	50, A	35, F	35, F		
5		50, A		35, F		
6		50, A				

表格 1. Dijkstra算法的过程

得到结果:

	路径	花费
C_1	C_1	0
C_2	$C_1 \rightarrow C_2$	50
C_3	$C_1 \rightarrow C_6 \rightarrow C_3$	35
C_4	$C_1 \rightarrow C_6 \rightarrow C_4$	35
C_5	$C_1 \rightarrow C_5$	25
C_6	$C_1 \rightarrow C_6$	10

表格 2. 结果