試験問題		試験日	曜日	時限	担当者
科目名	物理数学 1	2005年7月15日	金	3	田崎

答えだけではなく、考え方や計算の筋道を簡潔に書くこと (6 o (a) とかはいいけど)。 試験日から一年たったら答案を予告なく処分する。

- **0.** レポートの提出状況を書け。レポートは、返却済みのものも新規のものも、今日の答案にはさんで提出すること。
- **1.** γ , N_1 を正の定数とする。 $t \ge 0$ の範囲で、微分方程式

$$\frac{d}{dt}N(t) = \begin{cases} -\gamma & N(t) \ge N_1\\ -\frac{\gamma}{N_1}N(t) & N(t) \le N_1 \end{cases}$$
 (1)

を解け。ただし、初期条件は $N(0) > N_1$ を満たすとし、解はN(0)を用いて表せ。

2. m, k, α, γ を正の定数とする。常微分方程式

$$m\frac{d^2}{dt^2}x(t) = -kx(t) + \alpha e^{\gamma t}$$
(2)

の一般解を以下の手順にしたがって求めよ。

- (a) 対応する斉次の常微分方程式 $m \frac{d^2}{dt^2} x(t) = -k \, x(t)$ の一般解を求めよ。
- (b) (2) の特解で $x_p(t) = Ae^{\gamma t}$ と書けるものを求めよ (Aは求めるべき定数)。
- (c) (a) と (b) での解を足したものが (2) の解になっていることを確かめよ。
- **3.** $a = (a_x, a_y, a_z), b = (b_x, b_y, b_z)$ を三次元空間のベクトルとする。
 - (a) 内積 $\mathbf{a} \cdot \mathbf{b}$ と外積 $\mathbf{a} \times \mathbf{b}$ をそれぞれ成分で表せ。
 - (b) 上の成分表示を用いて、スカラー三重積についての等式 $(a \times b) \cdot c = (c \times a) \cdot b$ を証明せよ。
- **4.** $A = (a_{i,j})_{i,j=1,\dots,d}, B = (b_{i,j})_{i,j=1,\dots,d}, C = (c_{i,j})_{i,j=1,\dots,d}$ を d 次の正方行列とするとき、(AB)C = A(BC) が成り立つことを証明せよ。

5. 任意のd個の実数 a_1, \ldots, a_d が与えられたとき、

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_1 \\ 0 & 0 & \cdots & a_2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{d-1} & \cdots & 0 & 0 \\ a_d & 0 & \cdots & 0 & 0 \end{pmatrix}$$
 (3)

という d次の正方行列をつくる。右上から左下にむかう対角線上のみに 0 でない要素が並んでいる(念のために成分を式で書けば、j=d-i+1 のとき $(A)_{i,j}=a_i$ であり、それ以外については $(A)_{i,j}=0$ ということ)。この行列のディターミナントが

$$\det[\mathsf{A}] = \begin{cases} (-1)^{d/2} \, a_1 \, a_2 \cdots a_d & d \, \text{ が偶数} \\ (-1)^{(d-1)/2} \, a_1 \, a_2 \cdots a_d & d \, \text{ が奇数} \end{cases} \tag{4}$$

であることを示せ。

6. 計算せよ。

(a)
$$(x \ y \ z) \begin{pmatrix} y - z \\ z - x \\ x - y \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 \ -2 \ 3 \\ 1 \ 1 \ 1 \\ 2 \ 3 \ 1 \end{pmatrix} \begin{pmatrix} 2 \ -11 \ 5 \\ -1 \ 5 \ -2 \\ -1 \ 7 \ -3 \end{pmatrix}$
(c) $\begin{pmatrix} 2 \ 3 \ 2 \\ 1 \ 1 \ 1 \\ 4 \ 2 \ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ (d) $\begin{pmatrix} a \\ b \\ c \end{pmatrix} (x \ y \ z)$

7. ディターミナントを求めよ。

(a)
$$\begin{pmatrix} 2 & 3 & 1 \\ 4 & 5 & 3 \\ 3 & 4 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 3 & 2 & 1 \\ 1 & 4 & 3 & 2 \\ 2 & 3 & 1 & 2 \\ 3 & 2 & 2 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 0 & 0 & 2 & 0 \\ 0 & 5 & 2 & 0 & 6 \\ 0 & 1 & 2 & 2 & 1 \\ 3 & 4 & 2 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$