

Typically PV Cell Modelling

Where,

 I_{Ph} = Photon Current

 $I_D = Diode Current$

 R_p = Shunt Resistance

 I_p = Current Across the Shunt

Resistor

 R_S = Series Resistance

 I_{PV} = Current Generated by PV

Cell

 V_{PV} = Voltage Across a PV Cell

Proposed PV Cell Modelling

Using Kirchhoff's Current Law

$$I = I_D + I_{PV} \tag{1}$$

Rearrange this equation gives

$$V_D = V_{Ph} - I R_P$$

$$V_D = I_{Ph} R_P - (I_D + I_{PV}) R_P$$
 (2)

$$V_D = V_{PV} + R_S I_{PV} \tag{3}$$

Equating (2) and (3) gives

$$V_{PV} + R_S I_{PV} = I_{Ph} R_P - I_D R_P - I_{PV} R_P$$

Presence of I_D is cause of non-linearity in the I_{PV} mathematical modelling.

Where,

 I_{M} = Current across the NMOS

 $K_N =$ Process Transconductance

W= Width of NMOS

L= Length of NMOS

 V_{GS} = Voltage between gate and source terminal

 V_{DS} = Voltage between gate and source terminal

 V_{tn} = Threshold voltage of NMOS transistor

 λ = Channel Length Modulation

$$I_D = I_S (e^{\frac{V_D}{nV_t}} - 1)$$
 (5)

Hence, the diode can be replaced with an NMOS based diode by shorting the gate and drain terminal.

A voltage source, VNM is connected between the body and source terminal of the NMOS for lowering the threshold voltage.

$$I_D = I_M = \frac{K_n}{2} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 (1 + \lambda V_{DS})$$
Since $V_G = V_D$, the V_{GS} will be equal to V_{DS}

$$I_{M} = \frac{K_{n}}{2} \left(\frac{W}{L}\right) \left(V_{D} - V_{tn}\right)^{2} \left(1 + \lambda V_{D}\right) \quad ---- (6)$$

For computing the W/L Ratio, eq (5) and eq (6) are equated for the data point when $I_{PV} = 0A$

$$\frac{W}{L} = \frac{2I_S\left(e^{\frac{V_{PV}}{AV_t}}\right)}{K_n(V_D - V_{tn})^2(1 + \lambda V_D)} \quad ---- (6)$$

Note V_{PV} is the open load voltage of the PV cell as shown in figure on left.

Generally, it's a constant provided in datasheet.

For computing the V_{NM} , the threshold voltage equation of NMOS is used which is shown below: $\mathbf{v}_{tn} = \mathbf{v}_{tno} + \mathbf{v} \mathbf{v}_{mo} = \mathbf{v}_{mo}$

For computing V_{NM} , first V_{tn} is computed.

The datapoint when I_{PV} starts decreasing from I_{ph} . This means the NMOS just turned-on and current flowing through it.

Substituting I_m from eq (6) and V_D from eq (3) into equation no (4). Note: λ is ignored in eq(6). Since it too small compared to V_D

$$I_{PV} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Where,
$$a = \frac{K_n R_s^2 \left(\frac{W}{L}\right)}{2}$$

$$b = R_P + R_S + K_n R_S \left(\frac{W}{L}\right) (V_{PV} - V_{tn})$$

$$c = \frac{K_n}{2} \left(\frac{W}{L}\right) V_{PV}^2 - \frac{K_n}{2} \left(\frac{W}{L}\right) V_{PV} V_{tn} + V_{PV} + \frac{K_n}{2} \left(\frac{W}{L}\right) V_{tn}^2 - I_{ph} R_P$$

Results

Type of PV Cells (AMO Sunlight (135.3mW/cm²) GaAs/Ge Single Junction Solar Cells.

✓ J_{SC} = 30.5 mA/cm², V_{OC} = 1.025V, Area of PV Cell = 7 cm x 7 cm.

Significance of this work

- Parameter extraction from PV Cells and Modules is very challenging task. The proposed technique will simply the process.
- Same is the case with multi-junction PV cells and Module. The proposed technique will make the modeling them much easier.
- The large-scale PV farm are getting popular over the years. Due to simplicity of the proposed technique will make the solar farm simulation less resource intensive.