Dynamic Neural Networks in Control Problems

(Redes Neuronales Dinámicas en Problemas de Control)

Dr. Alexander Poznyak

(Alexander Pozniak Gorbatch)

Content of the 60-hours optional course

(contenido de 60 horas curso opcional)

September 12, 2023 – December 12, 2023

Each Tuesday (Martes) and Friday (Viernes) 13:00-15:00.

Presentation in English

1.	Intro	oduction	
2.	ANN	l as computational artificial intelligence (AI) modeling	
	instrument		
	2.1.	General concept of ANNs	
		Static (Feedforward) ANNs	
	2.3.	Dynamic Neural Networks (DNNs)	
	2.4.	Some limitations of ANN	
3.	Par	ticularities of DNNs	
	3.1.	Design of the learning procedures	
	3.2.	The justification of the DifNNs structure	
4.	Neural observer as a universal software sensor		
	4.1.	Uncertain system and the observer structures	
	4.2	Main assumptions	
	4.3	Quasi-linear format of models	
	4.4	Neuro-observer (software-sensor) structure	
	4.5	Learning law for weights adaptation	
5.	Estimation quality of a DNN non-parametric modeling		
	5.1.	Definition of an ellipsoid	
	5.2.	Zone convergence of state estimation error by DNNO	
		based on the ellipsoid technique	
6	Λda	ntive controllers based on DNN estimates	

	6.1	Separation principle
	6.2	Average cost functions and locally-optimal control
	6.3	Projectional Observers of Nonlinear Systems
	6.4	Sliding Mode Control (SMC)
	6.5	Backstepping control
7.	DNN	control of mechanical systems
	7.1	DNN control for Lagrange systems given in the general
	7.0	format
	7.2 7.3	2-link robot-manipulator with DNN controller
	7.3	ASG-DNN controller of the robotic arm with a pilot's cabin on the end-effector (motion cueing control)
	7.4	Dynamic Motion Backstepping DNN Control of Underwater
	7.4	Autonomous Vehicle
8.	Diffe	erential Neural Networks Prediction Using Slow and Fast
		orid Learning
		Causal Approximation of prediction in dynamic models
		DNN Predictor with Slow and Fast Components Application to Prognosis of Infections and Deaths of
	0.0	COVID-19 Dynamics
9.	laaA	ication of Dynamic Neural Networks to Environment-
		ited biotechnological systems (a short excurse)
	9.1. C	Different types of bioreactors and fermentation regimes
	9.1.	1. Batch regimen
	9.1.	2. Semi-batch regimen
	8.1.	3. Continuous regimen
	9.2. N	/licroorganisms metabolism
	9.2.	1 Types of metabolic activities
	9.4.	Adaptive ANN control for biotechnological processes
10	. Арр	lication of neural networks to environment-oriented
	chem	nical processes (a short excurse)
		- ,

10.1. Photolosys	
10.2. Catalysis	
10.3. Ozonation	
10.4. Catalytic ozonation	

Recommended bibliography

- 1. Poznyak A, Sanchez E, Yu W (2001), Differential neural networks for robust nonlinear control: identification, state estimation, and trajectory tracking. World Scientific, Singapore.
- 2. Poznyak T, Chairez I, Poznyak A (2019), Ozonation and biodegradation in environmental engineering: dynamic neural network approach. Elsevier. Amsterdam NY.
- 3. Poznyak A, Chairez I, Poznyak T (2019), A survey on artificial neural networks application for identification and control in environmental engineering: biological and chemical systems with uncertain models. Annu Rev Control 48:250–272.
- Alejandra Hernandez-Sanchez, Isaac Chairez, Alexander Poznyak, Olga Andrianova. Dynamic Motion Backstepping Control of Underwater Autonomous Vehicle Based on Averaged Sub-gradient Integral Sliding Mode Method, Journal of Intelligent & Robotic Systems, (2021) 103:48, https://doi.org/10.1007/s10846-021-01466-3.
- A. Poznyak, I. Chairez, A. Anyutin. Differential Neural Networks Prediction Using Slow and Fast Hybrid Learning: Application to Prognosis of Infections and Deaths of COVID-19 Dynamics. Neural Processing Letters, March 2023, https://doi.org/10.1007/s11063-023-11216-1