0-1 Knapsack

- n objects 1, 2, ..., n. Object i has weight w_i and value v_i
- The knapsack can carry a weight not exceeding W.
- Cannot split an object
- Maximize the total value
 - Maximize $\sum_{i=1}^{n} x_i v_i$ subject to $\sum_{i=1}^{n} x_i w_i \leq W$,

where v_i , $w_i > 0$ and $x_i \in \{0,1\}$ for $1 \le i \le n$

The greedy algorithm is no longer optimal

object	1	2	3
\mathbf{w}_{i}	6	5	5
v _i	8	5	5

W = 10

By dynamic programming

- Set up a table C[0..n, 0..W] with one row for each available object and one column for each weight from 0 to W. Specifically, C[0, j] = 0 for all j.
- C[i,j] is the maximum value if the weight limit is j and only objects 1 to i are available
 - $-C[i,j] = max(C[i-1,j], C[i-1,j-w_i]+v_i);$
- C[n,W] will be the solution

Example

Weight limit	0	1	2	3	4	5	6	7	8	9	10	11
$\mathbf{w}_1 = 1$ $\mathbf{v}_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2$ $v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5$ $v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
w ₄ =6 v ₄ =22	0	1	6	7	7	18	22	24	28	29	29	40
$w_5 = 7$ $v_5 = 28$	0	1	6	7	7	18	22	28	29	34	25	40

Algorithm

```
 \begin{cases} Knapsack0\text{-}1(v, w, n, W) \\ \{ \\ for (w = 0; w <= W; w ++) \} \\ c[0,w] = 0; \\ \} \\ for (i=1; i <= n; i ++) \} \\ c[i,0] = 0 \\ for (w=1; w <= W; w ++) \} \\ if (w[i] < w) \} \\ if (c[i-1,w-w[i]] + v[i] > c[i-1,w]) \\ c[i,w] = c[i-1,w-w[i]] + v[i]; \\ else c[i,w] = c[i-1,w] \\ \} \# ses c[i,w] = c[i-1,w] \\ \} \# for i \\ \} \end{cases}
```

The run time performance of this algorithm is $\Theta(nW)$

Example

Weight limit	0	1	2	3	4	5	6	7	8	9	10	11
$\mathbf{w}_1 = 1$ $\mathbf{v}_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2$ $v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5$ $v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
w ₄ =6 v ₄ =22	0	1	6	7	7	18	22	24	28	29	29	40
$w_5 = 7$ $v_5 = 28$	0	1	6	7	7	18	22	28	29	34	25	40

Finding the objects

```
 i=n; \\ k=W; \\ while (i>0 \&\& k>0) \{ \\ if (C[i,k] <> C[i-1,k]) \{ \\ mark the i-th object as in knapsack; \\ i=i-1; \\ k=k-w[i]; \\ \} else \\ i=i-1; \\ \}
```

Cost: O(n+W)

Example

Weight limit	0	1	2	3	4	5	6	7	8	9	10	11	
$\mathbf{w}_1 = 1$ $\mathbf{v}_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1	
$w_1 = 2$ $v_1 = 6$	0	1	6	7	7	7	7	7	7	7	7	7	
$w_1 = 5$ $v_1 = 18$	0	1	6	7	7	18	19	24	25	25	25	25	 ≠
$w_1 = 6$ $v_1 = 22$	0	1	6	7	7	18	22	24	28	29	29	40	
$w_1 = 7$ $v_1 = 28$	0	1	6	7	7	18	22	28	29	34	25	40	

Example

Weight limit	0	1	2	3	4	5	6	7	8	9	10	11
$\mathbf{w}_1 = 1$ $\mathbf{v}_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2$ $v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5$ $v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
$w_4 = 6$ $v_4 = 22$	0	1	6	7	7	18	22	24	28	29	29	40
$w_5 = 7$ $v_5 = 28$	0	1	6	7	7	18	22	28	29	34	25	40