#### **Contents**

| Constraint Profiles                      | 1 |
|------------------------------------------|---|
| Permutation Constraints                  |   |
| EC Operations                            |   |
| Variable-base Scalar Multiplication      |   |
| Variable-base Endo-scalar Multiplication |   |
| EC Point Addition                        |   |
|                                          |   |
| EC Point Doubling-Tripling               |   |
| Poseidon Hash                            | 7 |

## **Constraint Profiles**

| Constraint Type             | Rows per   | Arithmetic | Description                                       |
|-----------------------------|------------|------------|---------------------------------------------------|
|                             | constraint | Degree     |                                                   |
| Poseidon                    | 12         | 8*N        | Poseidon Permutation Rounds: 53, width: 3,        |
|                             |            |            | sbox alpha: 7                                     |
| EC Addition                 | 1          | 4*N        | Addition of (non-special constrained) EC points   |
| EC Doubling                 | 1          | 8*N        | Doubling of (non-special constrained) EC points   |
| Scalar Multiplication, With | 103        | 8*N        | Scalar multiplication of EC point by 256-bit      |
| Packing                     |            |            | integer                                           |
| Endo-Scalar Multiplication, | 64         | 8*N        | Endo-scalar multiplication of EC point by 256-bit |
| With Packing                |            |            | integer                                           |

## **Permutation Constraints**

Wire permutation argument is executed/checked only on 7 (out of total 15) left gate wires of the circuit designated by green background color in the tables below. The other 8 advice (local memory) right-most gate wires do not participate in the permutation argument and designated by red background color in the tables below.

## **EC Operations**

### **Variable-base Scalar Multiplication**

| Row   | 0                | 1              | 2              | 3          | 4              | 5  | 6   | 7              | 8  | 9              | 10             | 11 | 12 | 13 | 14 | Туре |
|-------|------------------|----------------|----------------|------------|----------------|----|-----|----------------|----|----------------|----------------|----|----|----|----|------|
| :     |                  | :              | :              | :          | :              | :  | :   | 1              | :  |                | :              | :  | 1  | 1  |    | ÷    |
| i     | X <sub>T</sub>   | ут             | X <sub>S</sub> | <b>y</b> s | X <sub>P</sub> | УP | n=0 | Xr             | Уr | s1             | s2             | b1 | s3 | s4 | b2 | VBSM |
| i+1   | s5               | b3             | X <sub>S</sub> | Уs         | X <sub>P</sub> | УP | n   | X <sub>r</sub> | Уr | X <sub>v</sub> | y <sub>v</sub> | s1 | b1 | s3 | b2 | ZERO |
|       | 1                |                |                |            | 1              |    |     | ł              | i  | i              | :              | :  | :  | :  | 1  | - 1  |
| i+100 | $\mathbf{x}_{T}$ | У <sub>Т</sub> | X <sub>S</sub> | Уs         | X <sub>P</sub> | УP | n   | X <sub>r</sub> | Уr | s1             | s2             | b1 | s3 | s4 | b2 | VBSM |
| i+101 | s5               | b3             | X <sub>S</sub> | <b>y</b> s | X <sub>P</sub> | УP | n   | Xr             | Уr | X <sub>v</sub> | y <sub>v</sub> | s1 | b1 | s3 | b2 | ZERO |
| :     | i i              | :              | :              | :          | ÷              |    | :   | i              | i  | i              | 1              | 1  | 1  | i  | 1  | :    |

VBSM gate constraints for THIS witness row

```
• b1*(b1-1) = 0
```

• 
$$b2*(b2-1) = 0$$

• 
$$(xp - xt) * s1 = yp - (2b1-1)*yt$$

• 
$$s1^2 - s2^2 = xt - xr$$

• 
$$(2*xp + xt - s1^2) * (s1 + s2) = 2*yp$$

• 
$$(xp - xr) * s2 = yr + yp$$

• 
$$(xr - xt) * s3 = yr - (2b2-1)*yt$$

• 
$$S3^2 - s4^2 = xt - xs$$

• 
$$(2*xr + xt - s3^2) * (s3 + s4) = 2*yr$$

$$\bullet \quad (xr - xs) * s4 = ys + yr$$

• 
$$n = 32*n_next + 16*b1 + 8*b2 + 4*b1_next + 2*b2_next + b3_next$$

The constraints above are derived from the following EC Affine arithmetic equations:

$$(xq1 - xp) * s1 = yq1 - yp$$
  
 $s1^2 - s2^2 = xq1 - xr$   
 $(2*xp + xq1 - s1^2) * (s1 + s2) = 2*yp$   
 $(xp - xr) * s2 = yr + yp$   
 $(xq2 - xr) * s3 = yq2 - yr$   
 $s3^2 - s4^2 = xq2 - xs$   
 $(2*xr + xq2 - s3^2) * (s3 + s4) = 2*yr$   
 $(xr - xs) * s4 = ys + yr$ 

VBSM gate constraints for NEXT witness row

```
b1*(b1-1) = 0
b2*(b2-1) = 0
b3*(b3-1) = 0
(xt - xp) * s1 = (2b1-1)*yt - yp
(2*xp - s1^2 + xt) * ((xp - xr) * s1 + yr + yp) = (xp - xr) * 2*yp
(yr + yp)^2 = (xp - xr)^2 * (s1^2 - xt + xr)
(xt - xr) * s3 = (2b2-1)*yt - yr
(2*xr - s3^2 + xt) * ((xr - xv) * s3 + yv + yr) = (xr - xv) * 2*yr
(yv + yr)^2 = (xr - xv)^2 * (s3^2 - xt + xv)
(xt - xv) * s5 = (2b3-1)*yt - yv
(2*xv - s5^2 + xt) * ((xv - xs) * s5 + ys + yv) = (xv - xs) * 2*yv
(ys + yv)^2 = (xv - xs)^2 * (s5^2 - xt + xs)
```

The constraints above are derived from the following EC Affine arithmetic equations:

```
(xq1 - xp) * s1 = yq1 - yp
s1^2 - s2^2 = xq1 - xr
(2*xp + xq1 - s1^2) * (s1 + s2) = 2*yp
(xp - xr) * s2 = yr + yp
(xq2 - xr) * s3 = yq2 - yr
s3^2 - s4^2 = xq^2 - xv
(2*xr + xq2 - s3^2) * (s3 + s4) = 2*yr
(xr - xv) * s4 = yv + yr
(xq3 - xv) * s5 = yq3 - yv
s5^2 - s6^2 = xq3 - xs
(2*xv + xq3 - s5^2) * (s5 + s6) = 2*yv
(xv - xs) * s6 = ys + yv
(xq1 - xp) * s1 = yq1 - yp
(2*xp - s1^2 + xq1) * ((xp - xr) * s1 + yr + yp) = (xp - xr) * 2*yp
(yr + yp)^2 = (xp - xr)^2 * (s1^2 - xq1 + xr)
(xq2 - xr) * s3 = yq2 - yr
(2*xr - s3^2 + xq^2) * ((xr - xv) * s^3 + yv + yr) = (xr - xv) * 2*yr
(yv + yr)^2 = (xr - xv)^2 * (s3^2 - xq^2 + xv)
(xq3 - xv) * s5 = yq3 - yv
(2*xv - s5^2 + xq3) * ((xv - xs) * s5 + ys + yv) = (xv - xs) * 2*yv
(ys + yv)^2 = (xv - xs)^2 * (s5^2 - xq3 + xs)
```

Variable-base Endo-scalar Multiplication

| Row  | 0              | 1              | 2              | 3          | 4              | 5          | 6   | 7              | 8  | 9  | 10  | 11 | 12 | 13 | 14 | Туре  |
|------|----------------|----------------|----------------|------------|----------------|------------|-----|----------------|----|----|-----|----|----|----|----|-------|
| ÷    | 1              |                | 1              | 1          |                | :          | 1   | ŧ              | 1  | 1  | 1   | 1  | 1  | 1  | 1  | :     |
| i    | X <sub>T</sub> | y⊤             | X <sub>S</sub> | Уs         | X <sub>P</sub> | УP         | n   | Xr             | Уr | s1 | s3  | b1 | b2 | b3 | b4 | EVBSM |
| i+1  | X <sub>T</sub> | y⊤             | X <sub>S</sub> | <b>y</b> s | Χ <sub>P</sub> | УP         | n   | Xr             | Уr | s1 | s3  | b1 | b2 | b3 | b4 | EVBSM |
| :    | X <sub>T</sub> | y⊤             | X <sub>S</sub> | <b>y</b> s | X <sub>P</sub> | УP         | n   | Xr             | Уr | s1 | s3  | b1 | b2 | b3 | b4 | :     |
| i+62 | X <sub>T</sub> | yτ             | X <sub>S</sub> | <b>y</b> s | X <sub>P</sub> | <b>У</b> Р | n   | Xr             | Уr | s1 | s3  | b1 | b2 | b3 | b4 | EVBSM |
| i+63 | X <sub>T</sub> | y <sub>T</sub> | X <sub>S</sub> | Уs         | X <sub>P</sub> | УP         | n   | X <sub>r</sub> | Уr | s1 | s3  | b1 | b2 | b3 | b4 | EVBSM |
| ÷    | Z              | i i            |                | 1          | :              | :          | i i | :              | i  | i  | - 1 | 1  | 1  | 1  | 1  | i     |

#### EVBSM gate constraints

```
b1*(b1-1) = 0
b2*(b2-1) = 0
b3*(b3-1) = 0
b4*(b4-1) = 0
((1 + (endo - 1) * b2) * xt - xp) * s1 = (2*b1-1)*yt - yp
(2*xp - s1^2 + (1 + (endo - 1) * b2) * xt) * ((xp - xr) * s1 + yr + yp) = (xp - xr) * 2*yp
(yr + yp)^2 = (xp - xr)^2 * (s1^2 - (1 + (endo - 1) * b2) * xt + xr)
((1 + (endo - 1) * b2) * xt - xr) * s3 = (2*b3-1)*yt - yr
(2*xr - s3^2 + (1 + (endo - 1) * b4) * xt) * ((xr - xs) * s3 + ys + yr) = (xr - xs) * 2*yr
(ys + yr)^2 = (xr - xs)^2 * (s3^2 - (1 + (endo - 1) * b4) * xt + xs)
n = 16*n_next + 8*b1 + 4*b2 + 2*b3 + b4
```

The constraints above are derived from the following EC Affine arithmetic equations:

```
(xq1 - xp) * s1 = yq1 - yp

(2*xp - s1^2 + xq1) * ((xp - xr) * s1 + yr + yp) = (xp - xr) * 2*yp

(yr + yp)^2 = (xp - xr)^2 * (s1^2 - xq1 + xr)

(xq2 - xr) * s3 = yq2 - yr

(2*xr - s3^2 + xq2) * ((xr - xs) * s3 + ys + yr) = (xr - xs) * 2*yr

(ys + yr)^2 = (xr - xs)^2 * (s3^2 - xq2 + xs)
```

#### **EC Point Addition**

| Row      | 0              | 1                     | 2                     | 3                     | 4                     | 5                     | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|----------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|---|---|---|----|----|----|----|----|
| Row<br>: | X <sub>1</sub> | <b>y</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>y</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>y</b> <sub>3</sub> | r | i | 1 | 1 | :  | 1  | :  | 1  | 1  |

ADD gate constraints

• (x2 - x1) \* (y3 + y1) - (y1 - y2) \* (x1 - x3)• (x1 + x2 + x3) \* (x1 - x3) \* (x1 - x3) - (y3 + y1) \* (y3 + y1)• (x2 - x1) \* r = 1

The constraints above are derived from the following EC Affine arithmetic equations:

$$(x2 - x1) * s = y2 - y1$$
  
 $s * s = x1 + x2 + x3$   
 $(x1 - x3) * s = y3 + y1$   
=>
$$(x2 - x1) * (y3 + y1) - (y1 - y2) * (x1 - x3)$$
  
 $(x1 + x2 + x3) * (x1 - x3) * (x1 - x3) - (y3 + y1) * (y3 + y1)$ 

•

# **EC Point Doubling-Tripling**

This constrains the computation of the following multiples of EC point: [2]P, [3]P. This, in particular, can be used to efficiently augment (with only one of these constraints) the scalar multiplication computation where double and triple operations are needed.

| Row | 0                     | 1                     | 2                     | 3                     | 4                     | 5                     | 6              | 7              | 8 | 9 | 10 | 11 | 12 | 13  | 14 |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|---|---|----|----|----|-----|----|
|     | <b>X</b> <sub>1</sub> | <b>y</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>y</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>y</b> <sub>3</sub> | r <sub>1</sub> | $\mathbf{r}_2$ | : | : | i  | :  | :  | - 1 | 1  |

#### DOUBLE gate constraints

```
4 * y1^2 * (x2 + 2*x1) = 9 * x1^4
2 * y1 * (y2 + y1) = (3 * x1^2) * (x1 - x2)
y1 * r1 = 1
(x2 - x1) * (y3 + y1) - (y1 - y2) * (x1 - x3)
(x1 + x2 + x3) * (x1 - x3) * (x1 - x3) - (y3 + y1) * (y3 + y1)
(x2 - x1) * r2 = 1
```

The constraints above are derived from the following EC Affine arithmetic equations:

Doubling

Addition

$$(x2 - x1) * s = y2 - y1$$
  
 $s * s = x1 + x2 + x3$   
 $(x1 - x3) * s = y3 + y1$   
=>  
 $(x2 - x1) * (y3 + y1) - (y1 - y2) * (x1 - x3)$   
 $(x1 + x2 + x3) * (x1 - x3) * (x1 - x3) - (y3 + y1) * (y3 + y1)$ 

### **Poseidon Hash**



53-round Poseidon permutation state starts with  $T0_0$   $T0_1$   $T0_2$  and ends up with  $T55_0$   $55_1$   $T55_2$ . Notice that the last row, being the zero-constraint, intentionally does not constraint its row.

POSEIDON gate constraints

• STATE(i+1) = STATE(i)^alpha \* MDS + RC