Física II:

Ondas Mecánicas En Medios Elásticos

Docente: Lic. Cesar Vladimir Arancibia

Ondas Mecánicas en Medios Elásticos:

Una onda, es una perturbación que se propaga a través de un medio por lo regular un medio que se deforma y luego se recupera o se sea un medio elástico

Una perturbación es la interacción de un agente externo con el medio

> Onda mecánica en una cuerda

Onda mecánica en una circuito cerrado

> Onda Mecánica de Sonido o Gases

Longitudinal Wave

- Si se perturba el medio se observa un pulso que viaja sin transportar materia pero si transporta energía
- El pulso o un tren de ondas viaja con cierta velocidad que llamaremos velocidad de fase

Por ejemplo:

Gases

$$\gamma = \sqrt{\frac{\gamma RT}{\Lambda \Lambda}}$$

$$\gamma \Rightarrow \begin{array}{c} \text{Coeficiente} & \text{de} \\ \text{dilación adiabática} \end{array}$$

Solidos

$$V = \sqrt{\frac{\gamma}{\rho}}$$

Líquidos

Cuerda

$$v = \sqrt{\frac{k}{\rho}}$$

$$v = \sqrt{\frac{F_T}{\mu}}$$

 $k \Rightarrow \begin{array}{c} \text{Coeficiente} & \text{de} \\ \text{compresibilidad del} \\ \text{agua} \end{array}$

$$F_{\tau} \Rightarrow$$
 Fuerza de tensión

Con estas ecuaciones podemos encontrar las velocidades de propagación de una onda para diferentes medios elásticos

Ondas Mecánicas:

Las ondas mecánicas se consideran en dos tipos de ondas

i) Onda Transversal

Las partículas que forman el medio se mueven perpendicular a la dirección de propagación

ii) Onda Longitudinal

Las partículas que forman el medio se mueven en un vaivén en la misma dirección de propagación

Longitudinal Wave

Ecuación de una Onda:

La expresión matemática de una onda

 $\Delta x = Vt$ Si la onda se mueve con velocidad constante

$$X - X_0 = vt$$
 \Rightarrow $X_0 = X - vt$

Entonces nuestra función de onda en cualquier instante de tiempo t es:

$$f(X_o) = f(X - Vt)$$
 Una función de una onda que viaja a la Derecha

$$f(X_o) = f(X + Vt)$$
 Una función de una onda que viaja a la Izquierda

$$Y = f\left(x - vt\right)$$

Encontremos la ecuación diferencial de una onda

$$Y = f(x - vt)$$

$$U = X - V$$

U = X - Vt Realicemos un cambio de variable

Realizamos las derivadas parciales de Y(función de onda) con respecto de X (posición) y de t(tiempo)

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

A esta ecuación se lo conoce como Ondas Armónicas

- > Ondas Transversales periódicas
- > Ondas Longitudinales periódicas

La solución mas simple de esa ecuación diferencial es la siguiente:

$$Y(x,t) = A sin(kx \pm \omega t + \varphi)$$

Grafica en función de la posición

A Amplitud de la onda

$$\lambda = [m]$$
 Longitud de Onda

$$Y(x,t) = A \sin(kx \pm \omega t + \varphi)$$
$$Y(x,t) = A \cos(kx \pm \omega t + \varphi)$$

$$Y(x,t) = A\cos(kx \pm \omega t + \varphi)$$

$$T = [s]$$
 Periodo de la Onda

$$f = \begin{bmatrix} \frac{1}{S} = Hz \end{bmatrix}$$
 Frecuencia Lineal

$$\omega = \begin{bmatrix} rad \\ S \end{bmatrix}$$
 Frecuencia angular

$$k = \frac{rad}{m}$$
 Número de ondas

$$\varphi = \lceil rad \rceil$$

Angulo de fase

$$f = \frac{1}{T} \qquad k = \frac{2\pi}{\lambda}$$

$$\omega = 2\pi f$$
 $V = \lambda f$

$$Y(x,t) = A sin(kx - \omega t + \varphi)$$
 Onda viajera a la Derecha (+)

$$Y(x,t) = A sin(kx + \omega t + \varphi)$$
 Onda viajera a la Izquierda (-)

Ejemplo:

