这一节课讲解了被称为独立系统的一类问题,以及用贪心解决独立系统问题的近似比。

独立系统

考虑一个有限元素集合 E,给 E 中的每个元素 e 定义一个非负的费用 c(e)。再考虑 $\mathcal{F}\in 2^E$,那么对于 $F\in \mathcal{F}$,我们定义 F 的费用 $c(F)=\sum_{e\in F}c(e)$ 。现在我们要找出一个 F,使得 c(F) 最大(或最小)。这就是这节课我们需要考虑的一类问题。

独立系统

从这类问题中,我们引入独立系统的概念。对于一个二元组 (E,\mathcal{F}) ,若 $\forall Y \in \mathcal{F}$, $X \subseteq Y \to X \in \mathcal{F}$,那么我们称 (E,\mathcal{F}) 为独立系统。由这个定义我们马上推出, $\emptyset \in \mathcal{F}$ 。

独立集与相关集

在独立系统 (E,\mathcal{F}) 中, \mathcal{F} 中的元素称为独立集, $E-\mathcal{F}$ 中的元素称为相关集。

基与圈

我们将 \mathcal{F} 中的极大独立集称为基,将 $E - \mathcal{F}$ 中的极小相关集称为圈。

对于 $X \subseteq E$,定义 X 上的基为 X 中的极大独立集。

秩商

对于 $X \subseteq E$, X 中的基大小可能不同。我们定义 X 的秩 r(X) 为 X 中最大的基的大小,类似地定义 X 的下秩 $\rho(X)$ 为 X 中最小的基的大小。

由此定义独立系统的秩商 $q(E,\mathcal{F})=\min_{x\subseteq E}\quad \frac{\rho(X)}{r(X)}$ 。 秩商是一类问题中贪心解法近似比的下界,下面会进行说明。

一类最大(小)化问题

根据独立系统的定义,我们引出一类最大(小)化问题。

最大化问题: 给出一个独立系统 (E, \mathcal{F}) , 找出一个 $F \in \mathcal{F}$, 使得 c(F) 最大。

很显然,由于每个元素的费用都是非负的,所以 |F| 越大,c(F) 也越大。所以最优的 F 一定是基。

最小化问题: 给出一个独立系统 (E, \mathcal{F}) , 找出一个 $F \in \mathcal{F}$, 使得 F 是基,且 c(F) 最小。

(如果不要求 F 是基,那么取 $F=\emptyset$ 就会让代价最小,没什么意义...)

最大化问题的实例有很多。

0-1 背包问题: E 中的元素是每个物品,F 中的元素是所有可以放进背包的物品集合,费用就是物品的价值。

最大权独立集: E 中的元素是点,F 中的元素是独立集,费用就是每个点的权值。

最长简单路径:E 中的元素是边,F 中的元素是所有从起点到终点的简单路径以及其子集,费用就是每条边的距离。

最大权森林:E中的元素是边, \mathcal{F} 中的元素是所有不含圈的边集,费用就是每条边的权值。

最小化问题也有很多实例。

最小生成树:E 中的元素是边,F 中的元素是所有不含圈的边集,费用就是每条边的权值。

最短路:E中的元素是边,F中的元素是所有从起点到终点的简单路径以及其子集,费用就是每条边的距离。

旅行商问题(TSP): E 中的元素是边, \mathcal{F} 中的元素是哈密尔顿回路及其子集,费用就是每条边的距离。

拟阵

拟阵(matroid)是一个特殊的独立系统。一个独立系统需要满足以下三个条件中的一个才被称为是拟阵(事实上以下三个条件等价):

- (1) 若 $X,Y \in \mathcal{F}$,且 |X| > |Y|,则 $\exists e \in X Y$, $Y \cup \{e\} \in \mathcal{F}$;
- (2) 若 $X, Y \in \mathcal{F}$, 且 |X| = |Y| + 1, 则 $\exists e \in X Y, Y \cup \{e\} \in \mathcal{F}$;
- (3) $\forall X \subseteq E$, X 的所有基大小相同。

接下来说明这三个条件等价。

- (1) 推出(2) 是显然的, (2) 推出(1) 使用归纳法即可。
- $(1) \rightarrow (3)$: 假设存在 $X, Y \in \mathcal{F}$, $X \supset Y$ 都是基,且 |X| > |Y|。那么 $\exists e \in X Y$, $Y \cup \{e\} \in \mathcal{F}$,说明 Y 不是基。矛盾。
- $(3) \to (1)$: 假设存在 $X,Y \in \mathcal{F}$, |X| > |Y|, 且 $\forall e \in X Y$, $Y \cup \{e\} \notin \mathcal{F}$, 那么说明 Y 是基。由于 X 是独立集,存在一个基 Z 使得 $|Z| \ge |X| > |Y|$,那么有两个基 Y 与 Z 大小不同。矛盾。

我们另外定义 $\mathcal{F}^* = \{ F \subseteq E \mid \exists (E, \mathcal{F}) \text{ 的基 } B, F \cap B = \emptyset \}$ 。

很容易发现, (E,\mathcal{F}^*) 也是独立系统。我们称 (E,\mathcal{F}) 与 (E,\mathcal{F}^*) 互为对偶。

下面证明 $F \in \mathcal{F}^{**} \to F \in \mathcal{F}$:

首先,由 $F \in \mathcal{F}^{**}$ 可以推出 $\exists (E, \mathcal{F}^*)$ 的基 $B_1, F \cap B_1 = \emptyset$ 。

又可以推出 $\exists (E, \mathcal{F})$ 的基 $B_2, B_1 \cap B_2 = \emptyset$ 。

注意到 $B_1 \cup B_2 = E$,否则我们可以从 $E - (B_1 \cup B_2)$ 中选出一个元素加入 B_1 ,仍有 $B_1 \cap B_2 = \emptyset$,那 B_1 就不是基了。

既然 $B_1 \cup B_2 = E$,且 $F \cap B_1 = \emptyset$,那么只能有 $F \subseteq B_2$ 。根据独立系统的定义,有 $F \in \mathcal{F}$ 。

反过来也是成立的,证明类似就略去。

两类贪心算法

下面介绍两类贪心算法,分别用于独立系统的最大化和最小化问题。

Best in: 将 E 中所有元素按费用从大到小排序,使得 $c(e_1) \geq c(e_2) \geq \ldots \geq c(e_n)$ 。一开始令 $F = \emptyset$,按 $e_1, e_2 \ldots, e_n$ 的顺序考虑,若 e_i 加入 F 后 F 仍是独立集那就加入。这个贪心算法用于解决最大化问题。

Worst out: 将 E 中所有元素按费用从大到小排序,使得 $c(e_1) \geq c(e_2) \geq \ldots \geq c(e_n)$ 。一开始令 F = E,按 $e_1, e_2 \ldots, e_n$ 的顺序考虑,若把 e_i 从 F 中去掉后 F 还含有至少一个基那就去掉。这个贪心算法用于解决最小化问题。

接下来介绍重要的 Best in 定理: 设 $G(E,\mathcal{F})$ 表示 best in 贪心得到的解, $OPT(E,\mathcal{F})$ 表示最优解,则 $q(E,\mathcal{F}) \leq \frac{G(E,\mathcal{F})}{OPT(E,\mathcal{F})} \leq 1$ 从这个定理可以看出,如果一个独立系统是拟阵,那么用 best in 得到的最大化问题的解一定是最优解。

下面证明 Best in 定理:

首先定义 $E_j=\{e_1,e_2,\ldots,e_n\}$, G_n 是 best in 贪心选中元素的集合, O_n 是最优解选中元素的集合。令 $G_j=E_j\cap G_n$ 表示 best in 贪心在考虑 e_j 之后选择了哪些元素, $O_j=E_j\cap O_n$ 表示最优解在考虑 e_j 之后选择了哪些元素。记 $d_j=c(e_j)-c(e_{j+1})$ 以及 $d_n=c(e_n)$,那么

$$c(G_n) = \sum_{j=1}^n (|G_j| - |G_{j-1}|)c(e_j)$$
 $= \sum_{j=1}^n |G_j|d_j$
 $\geq \sum_{j=1}^n
ho(E_j)d_j$ (因为容易证明 G_j 是 E_j 的一个极大独立集) 这就证明了
 $\geq q(E,\mathcal{F})\sum_{j=1}^n r(E_j)d_j$ (根据秩商的定义)
 $\geq q(E,\mathcal{F})\sum_{j=1}^n |O_j|d_j$
 $= q(E,\mathcal{F})c(O_n)$

Best in 定理。

可以举一个例子说明 Best in 定理的下界是紧的:根据秩商的定义, $\exists X \subset E, \ X$ 的基 B_1 和 B_2 满足 $\frac{|B_1|}{|B_2|} = q(E,\mathcal{F})$ 。我们定义 $c(e) = \begin{cases} 1 & e \in X \\ 0 & e \notin X \end{cases}$ 然后把 B_1 中的元素排在前面形成 $e_1,e_2,\ldots,e_{|B_1|}$,后面随便排。如果使用 best in 贪心,就会把前面 $|B_1|$ 个元素选走,然而最优解可以选 $|B_2|$ 个元素。

另外还有两个奇怪的定理,上课提了一下...

Worst out 定理: 使用 worst out 贪心得到的解满足 $1 \le \frac{G(E,\mathcal{F})}{\mathrm{OPT}(E,\mathcal{F})} \le \max_{F \subseteq E} \frac{|F| - \rho^*(F)}{|F| - r^*(F)}$ 其中 $\rho^*(F)$ 表示对偶独立系统中的下秩, $r^*(F)$ 表示对偶独立系统中的秩。

n 个拟阵的交: n 个拟阵的交, 用贪心得到的解近似比为 $\frac{1}{n}$ 。