1)Introduzione alla Probabilità

Un fenomeno è detto **Fenomeno Aleatorio** se il suo esito è incerto e l'insieme dei possibili esiti viene indicato con Ω .

Un fenomeno aleatorio può essere:

- **Discreto**: Se Ω è finito o numerabile (Esempio il lancio di un dado, dove gli esiti possibili sono $\{1, 2, 3, 4, 5, 6\}$).
- Continuo: Se Ω è più che numerabile. (Esempio, la scelta casuale di un numero reale compreso tra $(0, \infty)$.

Una **famiglia di eventi**, A, può essere individuata da una **famiglia di sottoinsiemi** di Ω .

Esempio:

 Ω sono gli esiti possibili da un lancio di un dado, quindi {1, 2, 3, 4, 5, 6}. A è il sottoinsieme dei numeri pari.

Esempio;

 Ω sono gli esiti possibili da una scelta casuale in $(0, \infty)$. A è il sottoinsieme dei numeri compresi tra $(1, \infty)$.

Di conseguenza ci sta una corrispondenza tra Operazioni logiche tra eventi e Operazioni insiemistiche.

- Somma Logica: $A \vee B \iff$ Unione: $A \cup B$.
- Prodotto Logica: $A \wedge B \iff$ Intersezione: $A \cap B$.
- Negazione: $\neg A \iff$ Complementazione: $A^c = \Omega * A$.

Ricorda: Noi facciamo riferimento a famiglie di eventi con buone proprietà, cioè che facendo operazioni insiemistiche in elementi di A ottengo un elemento di A.

Definizione di ς-Algebra:

Sia Ω un insieme non vuoto e sia $A\subset P(\Omega)$, cioè <mark>l'insieme delle parti</mark>, allora A è una ς -Algebra di eventi se:

- 1. $\Omega \in A$.
- 2. $\forall a \in A \rightarrow a^c \in A$.
- 3. se $a_n \subset A$ e una qualunque successione di insiemi appartenenti a A, allora anche l'unione $\bigcup_{n=1}^{\infty} a_n \in A$.

Osservazioni:

- $\emptyset \in A$ e $\bigcap_{n=1}^{\infty} a_n \in A$;
- La richiesta delle numerabilità viene fatta per semplificare alcune cose successivamente.
- Se prendiamo $A=P(\Omega)$ abbiamo dei problemi se Ω è più che numerabile.

Definizione di Misura di Probabilità:

Sia Ω un insieme non vuoto e A una ς -Algebra di eventi, allora una funzione $P:A\to [0,\infty)$ è una misura di probabilità se:

- 1. $P(\Omega) = 1$.
- 2. $orall a_n \subset A: a_m \cap a_n = 0$ con m! = n si ha che $P(igcup_{n=1}^\infty a_n) = \sum_{n>=1} P(a_n).$

La terna (Ω, A, P) è detta spazio di probabilità.

Commenti:

- La misura di probabilità, nonostante sia definita su $[0,\infty)$ assume solo valori compresi tra [0,1].
- Dire che 3 insiemi A,B,C sono disgiunti due a due (2 punto della definizione) significa che: $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$, $B \cap C \neq \emptyset$, ma $A \cap B \cap C = \emptyset$.

Conseguenze della definizione di misura di probabilità:

1.
$$P(\emptyset) = 0$$
.

Infatti se consideriamo $a_n=\emptyset \ \ \forall n>=1$ si ha che $a_m\cap a_n=\emptyset$ da cui segue che:

$$P(igcup_{n>=1} a_n) = P(igcup_{n>=1} \emptyset) = \emptyset$$
 e che $\sum_{n>=1} P(a_n) = \sum_{n>=1} P(\emptyset).$

Di conseguenza $P(\emptyset)=\sum_{n>=1}P(\emptyset)$ e queste condizioni non possono essere vere se $P(\emptyset)>0$, quindi $P(\emptyset)=0$.

2. Sia h>=1 intero e $B_1,\ldots,B_n\in A$ con $B_m\cap B_m=\emptyset$ per $m\neq n$, allora $P(\bigcup_{n=1}^h B_n)=\sum_{n>=1}^h P(B_n).$

Infatti basta fare riferimento alla condizione 2) nella definizione con:

$$A_1 = B_1, A_2 = B_3, \dots A_n = B_n$$
 e $A_{h+1} = A_{h+2} = \dots = \emptyset$

Con queste scelte si ha: $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n>=1}^{\infty} P(A_n)$ da cui segue:

•
$$\bigcup_{n=1} A_n = B_1 \cup \ldots \cup B_h \cup \emptyset \cup \emptyset \ldots = \bigcup_{n=1} B_n \rightarrow P(\bigcup_{n=1} A_n) = P(\bigcup_{n=1} B_n)$$

•
$$\sum_{n>=1} P(A_n) = P(B_1) + \dots + P(B_n) + P(\emptyset) + P(\emptyset) = \sum_{n>=1}^h P(B_n)$$

Quindi si ottiene: $P(\bigcup_{n=1}^h B_n) = \sum_{n>=1}^h P(B_n)$.

3. Specifichiamo l'uguaglianza appena verificata ponendo $E, F \in A$.

Sia $h=2, B_1=E\cap F, B_2=E\cap F^c$ allora:

$$P((E \cap F) \cup (E \cap F^c)) = P(E)$$

- 3.1) Con $E=\Omega$ abbiamo che $1=P(F)+P(F^c)$
- 3.2) Con $F \subset E$ abbiamo che P(E) >= P(F).

Da questo segue che $P(A) <= P(\Omega) = 1 \quad \forall a \in A$.

3.3) Sia $h = 3, B_1 = E \cap F^c, B_2 = E \cap F, B_3 = F \cap E^c$, allora:

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

La dimostrazione dietro questo punti non ci sta, ma essenzialmente il principio è quello dell'Identità di Bonferroni, cioè il Principio di Inclusione-Esclusione.

La misura di probabilità dipende dall'informazione/ stato di conoscenza dell'osservatore, quindi sono svincolate dal contesto del modello.

Spazio di probabilità uniforme discreto

Questa terminologia si usa nel caso in cui abbiamo la seguente situazione:

- Ω è un insieme finito;
- $A = P(\Omega)$;
- $\forall a \in A$ $P(A) = \frac{card(A)}{card(\Omega)} = \frac{card(A)}{n}$

Dimostrazione Omessa

Commenti:

- 1. P(A) = 0 se e solo se $A = \emptyset$.
- Questa situazione esce fuori quando si compiono estrazioni a caso da un insieme di noggetti.
- 3. Questa costruzione non può uscire se Ω fosse infinito, poiché avremmo un infinito al denominatore.
- 4. Si può usare nel caso di un lancio di un dado equo.

Definizione:

Sia (Ω, A, P) uno spazio di probabilità, Siano $a, b \in A$ con $P(B) \neq 0$, allora si definisce probabilità condizionata di a dato b la seguente quantità:

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

Dimostrazione e commenti Omessi