

Mathematical Foundations for Data Science (Probability)

Conditional Expectations – Examples, Law of Iterated Expectation, Gaussian Random Vectors

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

28 September 2024

Conditional Expectation – Examples

X and Y Jointly Continuous

• Let X and Y have the joint PDF

$$f_{X,Y}(x,y) = egin{cases} cx(y-x)e^{-y}, & 0 \leq x \leq y < +\infty, \ 0, & ext{otherwise}. \end{cases}$$

What is $\mathbb{E}[Y|X]$?

Y Continuous, **X** Discrete

• Let $Y \sim \mathcal{N}(0, 1)$. Suppose that the conditional PMF of X, conditioned on the event $\{Y = y\}$, is

$$p_{X|Y=y}(x)=\frac{1}{2}\mathbf{1}_{|x-\operatorname{sgn}(y)|=1},$$

where sgn(y) denotes the sign of y, and is defined as

$$\operatorname{sgn}(\gamma) = \begin{cases} 1, & \gamma > 0, \\ 0, & \gamma = 0, \\ -1, & \gamma < 0. \end{cases}$$

Compute $\mathbb{E}[X|Y]$?

Law of Iterated Expectations

Law of Iterated Expectations - 1

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables w.r.t. \mathscr{F} .

Theorem (Law of Iterated Expectations)

Suppose that $\mathbb{E}[X]$ is well defined, i.e., not of the form $\infty - \infty$. Then,

$$\mathbb{E}[X] = \mathbb{E}\big[\mathbb{E}[X|Y]\big].$$

More generally, if $g:\mathbb{R} o \mathbb{R}$ is a function such that $\mathbb{E}[g(X)]$ is well defined, then

$$\mathbb{E}[g(X)] = \mathbb{E}\big[\mathbb{E}[g(X)|Y]\big].$$

Law of Iterated Expectations - 2

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables w.r.t. \mathscr{F} .

Theorem (Law of Iterated Expectations)

If Y is a discrete random variable with PMF p_Y , then

$$\mathbb{E}[X] = \sum_{y} \mathbb{E}[X|Y=y] \cdot p_{Y}(y), \qquad \mathbb{E}[g(X)] = \sum_{y} \mathbb{E}[g(X)|Y=y] \cdot p_{Y}(y)$$

and Y is a continuous random variable with PDF f_Y , then

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X|Y=y] \cdot f_Y(y) \, dy, \qquad \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} \mathbb{E}[g(X)|Y=y] \cdot f_Y(y) \, dy$$

Examples

• Let $X \sim \operatorname{Geometric}(p)$ for some $p \in (0, 1)$. Determine $\mathbb{E}[X]$ using the law of iterated expectations.

Miscellaneous Examples on Conditional Expectations

• Let $X \sim \text{Exponential}(1)$. Compute $\mathbb{E}[X|\{X > 1\}]$.

Miscellaneous Examples on Conditional Expectations

• Let X, Y be jointly distributed uniformly over the triangle with vertices at (0,0), (1,0), and (0,2). Compute $\mathbb{E}[X|\{Y>1\}]$.

Miscellaneous Examples on Conditional Expectations

- Suppose that *X* and *Y* are independent random variables. What is $\mathbb{E}[X|Y]$?
- Given a random variable Y and a function g, what is $\mathbb{E}[g(Y)|Y]$?
- Given $X \perp Y$, what is $\mathbb{E}[X g(Y)|Y]$?

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Fix $n \in \mathbb{N}$. Let X_1, X_2, \dots, X_n be random variables defined w.r.t. \mathscr{F} .

Definition

We say the vector $X = (X_1, \dots, X_n)^{\top}$ is a Gaussian random vector if

1. X_1, \ldots, X_n are jointly continuous, and

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Fix $n \in \mathbb{N}$. Let X_1, X_2, \dots, X_n be random variables defined w.r.t. \mathscr{F} .

Definition

We say the vector $X = (X_1, \dots, X_n)^{\top}$ is a Gaussian random vector if

- 1. X_1, \ldots, X_n are jointly continuous, and
- 2. The joint PDF of X_1,\ldots,X_n at any point $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ may be expressed as

$$f_{X_1,...,X_n}(\mathbf{x}) = \frac{1}{\sqrt{2\pi \det(K)}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\top K^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

for some $\mu \in \mathbb{R}^n$ and positive definite matrix K.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Fix $n \in \mathbb{N}$. Let X_1, X_2, \dots, X_n be random variables defined w.r.t. \mathscr{F} .

Definition

We say the vector $X = (X_1, \dots, X_n)^{\top}$ is a Gaussian random vector if

- 1. X_1, \ldots, X_n are jointly continuous, and
- 2. The joint PDF of X_1,\ldots,X_n at any point $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ may be expressed as

$$f_{X_1,...,X_n}(\mathbf{x}) = \frac{1}{\sqrt{2\pi \det(K)}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\top K^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

for some $\mu \in \mathbb{R}^n$ and positive definite matrix K.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Fix $n \in \mathbb{N}$. Let X_1, X_2, \dots, X_n be random variables defined w.r.t. \mathscr{F} .

Definition

We say the vector $X = (X_1, \dots, X_n)^{\top}$ is a Gaussian random vector if

- 1. X_1, \ldots, X_n are jointly continuous, and
- 2. The joint PDF of X_1,\ldots,X_n at any point $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ may be expressed as

$$f_{X_1,...,X_n}(\mathbf{x}) = \frac{1}{\sqrt{2\pi \det(K)}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} K^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

for some $\mu \in \mathbb{R}^n$ and positive definite matrix K.

 μ - mean vector,

K – covariance matrix

Remarks

• If $X=(X_1,\ldots,X_n)^{\top}$ is a Gaussian random vector, we say that X_1,\ldots,X_n are jointly Gaussian

Remarks

- If $X = (X_1, \dots, X_n)^{\top}$ is a Gaussian random vector, we say that X_1, \dots, X_n are jointly Gaussian
- If X and Y are individually Gaussian, and $X \perp Y$, then X and Y are jointly Gaussian

Important Results

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables defined w.r.t. \mathscr{F} .

Important Results

1. X_1, \ldots, X_n are jointly Gaussian if and only if

$$a_1X_1+\cdots+a_nX_n$$
 is Gaussian $\forall a_1,\ldots,a_n\in\mathbb{R}\setminus\{0\}.$

is a Gaussian random variable

2. If X and Y are jointly Gaussian, and Cov(X, Y) = 0, then

$$X \perp \!\!\! \perp Y$$
.

The Case det(K) = 0

Proposition (The Case det(K) = 0)

If det(K) = 0, then X_1, \ldots, X_n are not jointly continuous.

In other words, there exist constants $a_1,\ldots,a_n\in\mathbb{R}^n\setminus\{0\}$ such that the random variable

$$a_1X_1+\cdots+a_nX_n$$

is not Gaussian.