RAPPORT DE SEANCE 1 :

Durant la première j'ai fait le cahier des charges et la liste du matériel avec Valentin :

Fonctions	Énoncé de la fonction	Critères d'appréciation	Niveaux d'exigence
FP	Transporter des charges de manière sécurisée et autonome afin d'aider l'utilisateur	Vitesse, Autonomie, Charge, Sécurité	Vitesse max 12km/h, temps de charge minimal
FC1	Transporter une charge	Masse, Volume utile	10kg et 35x25x(8cm+4cm de rebord)
FC2	Se déplacer dans toutes les directions	Méthode de déplacement	Roues mecanum omnidirectionnelles
FC3	Contrôler le robot à distance	Contrôle à distance	Bluetooth (~15m)
-C4	Proposer une interface utilisateur adaptée et ergonomique	Application, Design	Visibilité des boutons
FC5	Eviter les gens et des obstacles statiques (murs, boites,) et de taille >= à la plateforme	Détection obstacles	Capteurs Ultrasons (5 à 10cm)
-C6	Suivre une ligne noire sur le sol	Détection ligne noire	Capteurs IR
-C7	Avoir une autonomie suffisante	Autonomie	~5h batterie
-C8	Se déplacer sur un terrain plat et avec une pente légère	Pente, ralentisseurs	6% max (platforme légérement surélevée?)
-C9	Prevenir en cas d'obstacles	Prévention	Emission sonore/lumineuse en cas d'obstacle rapproché ?
C10	Résister aux chocs	Matériaux	Plastique ou Aluminium

Il nous faudrait des moteurs avec du couple (ici la vitesse n'est pas le plus important). Nous avions aussi hésiter entre des moteurs pas à pas ou à *CC* mais les *CC* sont une meilleure option car les pas à pas sont plus compliqués à alimenter. Nous avons estimé que ça ne valait donc pas le

Bien que c'était Valentin qui se chargeait de la modélisation OneShape, nous nous penchions tout les deux sur le problème : mesure des composants pour pouvoir reporter leur taille dans le logiciel, comment organiser l'espace et agencer les composants de manière à pouvoir avoir un produit fini compact (plus petit volume -> moins de matière -> masse du système réduite -> la masse de la charge transportée peut être plus élevée) également nous avons pensé a aménager la boite de manière a pouvoir positionner les roues plus bas.

Enfin, étant donné que nous n'avions pas encore les moteurs, j'ai rassemblé des fils de même couleurs et les ait cablé sur les composants, de manière à ce que lors des prochaines séances, assembler les composants ensemble devienne une tâche plus simple

En somme, dans cette séance nous avons, à deux, pensé et imaginé notre projet pour le retranscrire en 3D de manière virtuelle.