BIGTREE TECH

Eddy V1.0

用户手册

修订历史

版本	日期	修改说明
v1.00	2024/4/19	初稿
v1.01	2024/4/25	 新增 BOOT 按键标识 增加重启 Klipper 的说明
v1. 02	2024/4/26	增加了电脑更新固件的方法
v1. 03	2024/4/30	重新整理配置、校准部分的说明
v1. 04	2024/5/15	添加中心点位置尺寸
v1. 05	2024/6/06	在 5.1 重要提示添加了 z_virtual_enstop 说明
v1.06	2024/8/19	合并了Klipper分支并调整了Z-offset配置

目录

修订历史	2
目录	3
一、产品信息	5
二、产品优点	6
三、产品尺寸及接口	7
3.1尺寸图	7
3.2 BOOT 按键位置	8
四、安装指南	9
4.1 安装高度	9
4.2 以 Voron2.4 为例	9
4.3 在其他机器上的安装	10
4.4 Eddy + Manta M5P	10
4.5 Eddy + Manta M8P V2.0	11
4.6 Eddy Coil + EBB36 V1.2	11
4.7 Eddy Coil + EBB42 V1.2	12
五、固件	13
5.1编译固件	13
5.2 更新固件	14
5.2.1. 通过电脑更新固件	14
5.2.2 通过 DFU 更新固件	15
6.1 打印机配置文件模板	16
6.2 Z 轴限位开关配置	16
七、校准	18
7.1 驱动电流校准	18
7.2 将 Eddy 读数映射到喷嘴高度	18
7.3 床面网格校准	19
7.4 温度补偿校准(coil 版本无温度补偿,忽略此步骤即可)	19
八、附加信息	21

BIGTREETECH Eddy V1.0 用户手册

	8.1 Z 轴偏移	21
	8. 2. 打印床网格校准参数	21
	8.3. 网格扫描高度	21
	8.4. 快速(连续)扫描	22
九	、FAQ 常见问题解答	23

一、产品信息

产品名称 Eddy

产品重量 6g

电压 5V

静态电流 30mA

工作电流 30mA

电缆长度 2.5 m (USB 版), 15cm (coil 版)

接线 USB: 4pin, 间距 1.5mm

Coil: 4-2.54mm 杜邦母头,一头 ZH1 5mm 4P 连接器

使用温度 ≤60℃ 环境温度

标准误差 0.5 μ m

适配机型 所有使用 Klipper 的 FDM 打印机

二、产品优点

- · 整体体积小,重量轻;
- · 具备温度补偿功能;
- · 高效率调平;
- · 应用广泛,兼容性强;
- · 精度高,稳定性强;
- · 非接触式;

三、产品尺寸及接口

3.1尺寸图

用于计算 XY 偏移的线圈中心点如下:

3.2 BOOT 按键位置

BOOT 按钮在首次对 Eddy 烧录 Klipper 固件时使用;之后 Klipper 可以自动进入 BOOT 模式并重新烧录固件。

注意: 仅仅 Eddy V1.0 拥有 BOOT 功能, Eddy Coil V1.0 上的按键无功能。

四、安装指南

4.1 安装高度

确保 Eddy 的安装位置高于喷嘴 2 至 3 毫米,以确保最佳性能。如果在校准过程中遇到错误,这些可能与 Eddy 的安装高度有关。有关解决方案,请参阅本手册的故障排除部分。

重要提示: 需要注意的是,用户可能会将电流校准高度 20 毫米与 Eddy 的安装高度 2 至 3 毫米混淆。20 毫米的高度仅在本手册后续部分进行线圈电流校准时使用。

4.2 以 Voron2.4 为例

安装位置,完全替代原有 PL-08N 安装位

使用两颗 M3*25 螺丝(包装内附)将模块固定再 X Carriage 打印件上,如视图

4.3 在其他机器上的安装

用户可在我们的 GitHub 仓库以及其他常见模型分享平台中找到适用于多种常见机型的支架。在安装 Eddy 的过程中,请确保 PCB 侧(背面)与热端保持尽可能大的距离。此类布局有助于最小化从热端到 Eddy 的热传导。

4.4 Eddy + Manta M5P

4.5 Eddy + Manta M8P V2.0

4.6 Eddy Coil + EBB36 V1.2

4.7 Eddy Coil + EBB42 V1.2

五、固件

重要提示: Eddy 和 Eddy Coil 只支持基于 Python 3 的 Klipper 虚拟环境。即使系统已安装 Python 3, 也不代表 klippy 虚拟环境是用 Python 3 建立的。若出现'Internal error during connect: split() takes no keyword arguments'等错误信息,说明您的 klippy 主机可能还在使用基于 Python 2 的虚拟环境,需要进行升级。推荐使用 KIAUH 工具,这是在不覆盖现有配置的情况下,更新 klippy 主机至 Python 3 环境的最简便方法。

5.1 编译固件

此编译教程仅适用于 Eddy USB。如果您使用的是 Eddy Coi1,则需将其连接到工具板上的 I^2C 端口。首先在 Klipper 的 master 分支上为该工具板编译固件,编译完成后,将新固件上传并更新到工具板上。在 Klipper 中配置 Eddy 时,只需设置其通过该工具板的 I^2C 端口进行通信,具体通信配置取决于工具板的引脚设置。

如果您是从 Klipper 的旧 BIGTREETECH 分支转来,建议使用 KIAUH 迁移到主线分支,并推荐更新所有 Klipper 设备的固件,确保它们也运行在从主线编译的二进制文件上。

编译步骤如下:

- 1. 确保您使用的是主线 Klipper, 在 ssh 终端中运行以下命令
 - cd ~/klipper/
 git checkout master
- 2. 接下来,输入: make menuconfig
- 3. 使用下面的配置编译固件

```
(Top)

#Ispper Fireward Configuration

[*] Enable extra low-level configuration options
   Micro-controller Architecture (Raspberry Pi RP2040) --->
   Bootloader offset (No bootloader) --->
   Flash chip (W25Q080 with CLKDIV 2) --->
   Communication interface (USB) --->
   USB ids --->
() GPIO pins to set at micro-controller startup
```

[*] Enable extra low-level configuration optionsMicro-controller
Micro-controller Architecture (Raspberry Pi RP2040) --->
Bootloader offset (No bootloader) --->
Flash chip (W25Q080 with CLKDIV 2) --->
Communication interface (USB) --->
USB ids --->

- () GPIO pins to set at micro-controller startup
- 4. 配置选择完成后,输入 'q' 退出配置界面,当询问是否保存配置时选择 "Yes";
- 5. 输入 make 编译固件,当 make 执行完成后会在 home/pi/klipper/out 文件夹中生成我们所需要的'klipper.uf2'固件,在 SSH 软件左侧可以直接下载到电脑中。

5.2 更新固件

5.2.1. 通过电脑更新固件

1. 按住 Boot 按钮,用 USB 线将 Eddy 接到电脑的 USB 端口。(无需拆开 Eddy, Boot 按钮位于如图所示的位置,可直接操作。)

2. 电脑会识别出一个存储设备,将上面步骤下载下来的 klipper. uf2 文件拷贝 到这个存储设备,设备会自动更新固件并重启,重启后即完成了更新固件。

5.2.2 通过 DFU 更新固件

1. 按住 Boot 按钮,用 USB 线将 Eddy 接到树莓派/BIGTREETECH Pi 的 USB 端口。 (无需拆开 Eddy, Boot 按钮位于如图所示的位置,可直接操作。)

2. 在 SSH 终端命令行中运行 1susb 查询 DFU 设备 ID

```
pi@fluiddpi:~$ | susb |
Bus 001 Device 005: ID | 2e0a:0003 | Raspberry Pi RP2 Boot |
Bus 001 Device 004: ID | 1d50:6061 OpenMoko, Inc. Geschwister Schneider CAN adapter |
Bus 001 Device 003: ID | 0424:0000 Microchip Technology, Inc. (formerly SMSC) SMC9512/9514 | Fast Ethernet Adapter |
Bus 001 Device 002: ID | 0424:9514 | Microchip Technology, Inc. (formerly SMSC) | SMC9514 | Hub |
Bus 001 Device 001: |D | 1d6b:0002 Linux Foundation 2.0 root hub |
pi@fluiddpi :~$
```

3. 运行

cd ~/klipper make flash FLASH DEVICE=2e8a:0003 开始烧录固件(注意: 将 2e8a:0003 更换为上一步中查询到的实际的设备的 ID)

4. 输入 ls /dev/serial/by-id/*到命令行。找到的设备将被输入到您的klipper 配置中,作为[mcu eddy]下的Serial 变量。

六、Klipper 和 Eddy 配置

6.1 打印机配置文件模板

现在您已经成功安装了正确的固件到您的 Eddy 设备上,接下来是完成 Klipper 配置的步骤。BIGTREETECH 提供了三种不同的示例配置文件,帮助您开始设置。您需要根据下面的标准选择最适合您需求的文件。仔细阅读选定配置文件中的注释,它们将帮助您了解如何修改安装中的特定参数。每个配置文件的链接如下所示,您也可以通过访问 https://github.com/bigtreetech/Eddy 找到它们:

- 如果您希望使用 Eddy 作为自动调平传感器,但使用另一设备作为 Z 轴限位开关,使用该无归零功能的配置。
- 如果您希望 Eddy 同时作为自动调平传感器和 Z 轴限位开关,<u>使用该包含</u> <u>归零功能的配置</u>。
- 如果您希望 Eddy 同时作为自动调平传感器和 Z 轴限位开关,并希望使用beta Z 轴偏移功能,使用该包含归零和 Z 轴偏移的配置。

选择任何配置后,将其全部内容复制到您的 printer. cfg 文件中。如果出现 gcode 宏冲突,请查看 FAQ 中的 "Error: gcode command < ANY GCODE COMMAND > already registered"部分。

6.2 Z轴限位开关配置

您可以将 Eddy 配置为 Z 轴限位开关,或者选择使用其他设备作为限位开关。如果您选择使用其他设备作为 Z 轴限位开关,请根据该设备调整您的归零(homing)和限位开关设置。

如果您希望为 Eddv 启用 Z 轴归零/限位开关功能,请按照以下步骤操作:

a. 在 printer.cfg 文件中的[stepper_z]部分,将 endstop_pin: PA5 修改为 endstop_pin: probe:z_virtual_endstop ,并注释或删除 position_endstop: 0。 请注意,您当前使用的限位开关可能不是 PA5,因此请查找与您的限位开关相匹

配的行并进行更改。

- b. 确保您选择了正确的示例配置文件,并将该文件的全部内容复制到您的printer.cfg 文件中。如果您使用着 KNOMI,可能会有一些宏与 KNOMI.cfg 文件中的宏存在冲突。解决这些冲突的方法是注释掉 KNOMI.cfg 文件中的宏,并取消注释 Eddy 宏中处理 KNOMI 功能的行。
- c. 根据您的设备特定需求编辑配置文件的相关部分。可能需要调整的设置包括
- · MCU serial
- · X offset 和 Y offset
- · Mesh_min 和 mesh_max
- Home xy position

重要提示: 示例配置要求您调整 x_0 offset 和 y_0 offset 以匹配您的 Eddy 位置相对于您的喷嘴的位置。所有示例配置文件中均包含标准 Voron X 滑车的设置。

七、校准

7.1 驱动电流校准

完成固件和配置后, 您现在可以开始对 Eddy 的驱动电流进行校准。

- 1. 将 Eddy 置于热床上方约 20mm 处。如果您计划将 Eddy 用作限位开关,则尚不能使用其进行归零操作,您需要手动移动龙门或床,使 Eddy 位于床面上方 20mm。
- 2. 在 Mainsail 或 Fluidd 中运行以下命令: LDC_CALIBRATE_DRIVE_CURRENT CHIP=btt_eddy
- 3. 输入 SAVE CONFIG 以将驱动电流设置保存到配置中。

7.2 将 Eddy 读数映射到喷嘴高度

驱动电流校准完成后, Eddy 将能够从打印床获取读数。Klipper 需要知道这些读数与喷嘴的高度如何对应。以下校准程序将喷嘴定位在床面上,使 Z 高度等于 0。然后,它从 Eddy 获取读数,随着喷嘴高度逐渐增加,将这些读数映射到已知的高度。

- · 如果您使用了推荐的配置模板,可以简单按照以下步骤执行映射程序。
 - 1. 发送命令 PROBE EDDY CURRENT CALIBRATE AUTO CHIP=btt eddy
 - 2. 按照 klipper UI 的提示,逐步降低喷嘴,直至其接触到放在打印床上的纸张。确保纸张在适当的压力下可以平滑移动,同时感受到轻微的摩擦力。注意,在此过程中要避免喷嘴对打印床造成过大的压力或损坏。
 - 3. 点击 "ACCEPT(接受)",并观察 Eddy 执行映射过程。完成后确保发送 SAVE_CONFIG。
 - 4. 执行网格校准 Bed Mesh Calibration。
- · 如果您没有使用配置模板,按以下步骤执行映射程序:
 - 1. 使用命令 G28 X Y 归零 X 轴和 Y 轴。
 - 2. 确保没有加载床面高度图。从控制台发送 BED MESH CLEAR 以清除高度图。
 - 3. 使用命令 G0 X150 Y150 F6000 将喷嘴移动到平台中心。此命令基于 300x300mm 的打印机设置,但您可能需要根据您的打印床尺寸进行相应调整。

4. 开始手动 Z 轴偏移校准 (Paper Test):

输入 PROBE_EDDY_CURRENT_CALIBRATE CHIP=btt_eddy。您将看到一个调整框,允许您降低喷嘴。降低喷嘴直至其接触到放在打印床上的纸张。确保纸张在适当的压力下可以平滑移动,同时感受到轻微的摩擦力。

5. 完成后使用 SAVE CONFIG 保存配置。

09:23 SAVE_CONFIG

09:23 probe_eddy_current: stddev=144.727 in 3998 queries
 The SAVE_CONFIG command will update the printer config file and restart the printer.

09:22 ACCEPT

7.3 床面网格校准

- 1. Home 所有轴。
- 2. 带有 z_tilt 或者 quad_gantry_level(QGL)功能的打印机,先运行一次 Z TILT ADJUST 或者 QUAD GANTRY LEVEL,防止网格扫描时喷嘴撞到热床
- 3. 执行以下命令进行快速的网格扫描 BED_MESH_CALIBRATE METHOD=scan SCAN_MODE=rapid
- 4. 完成后使用 SAVE CONFIG 保存配置。

7.4 温度补偿校准(coil 版本无温度补偿, 忽略此步骤即可)

重要提示: 以下步骤仅适用于 Eddy USB。Eddy Coil 没有温度补偿功能,因此可忽略下面的步骤。 **当 Eddy 执行温度补偿时,热床极限温度很高,谨防烫伤。**

- 1. Home 所有轴并通过输入 GO Z5 或通过操作界面上的控制按钮,将 Z 轴调整至床面上方 5毫米。
- 2. 执行 SET_IDLE_TIMEOUT TIMEOUT=36000 将机器的 idle timeout 设置长一点,避免我们升温过程的时候 timeout
- 3. 运行 TEMPERATURE_PROBE_CALIBRATE PROBE=btt_eddy TARGET=56 STEP=4 提示: 在上述命令中,目标温度设置为 56℃,适用于多数设备。如果您

的 3D 打印机腔体的实际温度更高,您可以适当提高目标温度。请注意,目标温度越高,校准所需时间将相应延长,因为 Eddy 需要更长时间来达到温度平衡。

- 4. 执行此操作后,UI 将显示 Z 轴调整框。请使用上述提到的<u>手动 Z 轴偏移</u> 校准 (Paper Test) 方法,将纸张夹在喷嘴和床面之间,然后确认该值。
- 5. 接受值后,将热床温度调至最高,喷嘴温度调至220℃。
- 6. 如果您在有空调或开窗的房间中,为了确保 Eddy 的温度上升,建议关闭 空调或窗户,因为风会影响温度的升高。
- 7. 随着 Eddy 温度的上升,系统会自动提示您每隔 4℃执行一次手动 Z 偏移校准。**热床温度很高,谨防烫伤。**
- 8. 重复手动 Z 偏移校准(Paper Test)直到校准完成。如果发现 Eddy 的温度不再上升,可以使用下面的相关命令提前结束校准。

在漂移校准期间可用的额外 gcode 命令包括:

- TEMPERATURE PROBE NEXT 可用于在达到步进增量前强制采样新数据。
- TEMPERATURE PROBE COMPLETE 可用于在达到目标前完成校准。
- ABORT 可用于终止校准并忽略结果。

提示: Eddy 的热校准过程不仅考虑了 Eddy 的漂移,还考虑了机器内部机械部件的热膨胀。这种膨胀可能非常显著,使用其他传感器时可能导致第一层打印质量不佳。请记住,如果您在喷嘴和热床均开启的情况下进行热校准,则热端和热床会同时发生热膨胀。因此,如果您稍后尝试进行手动 Z 偏移校准 (Paper Test),只开启喷嘴或热床中的一个,您可能会发现有大约 0.05mm 的间隙 (不足以引起第一层问题,但足以感觉到纸张的夹持力减小)。如果这听起来有些复杂,不用担心。您只需要知道,应在热床和喷嘴均加热的情况下进行校准,然后在热床和喷嘴均加热的情况下进行打印,这样可以获得极佳的首层效果。

完成这些步骤后, Eddy 将能够在广泛的温度范围内提供出色的首层打印效果!

八、附加信息

8.1 Z轴偏移

此部分仅适用于将 Eddy 用于 Homing 的用户。

由于 Eddy 经过校准,可以准确识别 z=0 的位置,因此通常不需要使用 Z 轴偏移。然而,如果您希望使用 Z 轴偏移,请使用包含 Z 轴偏移功能的示例配置文件。

要确定正确的 Z 轴偏移,请按照以下步骤操作:

- 1. Home 所有轴。
- 2. 在喷嘴下方放置一张纸。
- 3. 使用 Mainsail 或 Fluidd 设置 Z 轴高度为 z=0。请勿使用微调 (babystep)来将喷嘴调整到 z=0! 应将其设置为 Z 轴的实际高度。
- 4. 设置 Z 轴高度为 z=0 后,检查纸张夹紧的松紧是否合适。如果不合适,则使用微调功能进行调整。
- 5. 调整到合适的高度后,使用 Mainsail 或 Fluidd UI 上的按钮保存调整结果。

8.2. 打印床网格校准参数

Eddy 允许您在每次打印前进行非常快速的床面网格扫描,以确保获得最佳的首层效果。为此,我们建议将标准的 BED_MESH_CALIBRATE 宏替换为示例配置文件中的修改版本,并在打印开始宏中包含 BED MESH CALIBRATE 调用。

8.3. 网格扫描高度

扫描高度由 [bed_mesh] 配置中的 horizontal_move_z 选项设置。此外,还可以通过 BED MESH CALIBRATE G-code 命令中的 HORIZONTAL MOVE Z 参数指定。

扫描高度必须足够低,以避免扫描误差。通常情况下,设置为 2mm (即: HORIZONTAL MOVE Z=2)会比较合适,前提是 Eddy 正确安装。

需要注意的是,如果 Eddy 距离床面超过 4mm,则扫描结果将无效。因此,在床

面有严重表面偏差或极端倾斜未被校正的情况下,将无法进行有效的扫描。

8.4. 快速(连续)扫描

在执行快速床面网格扫描时,由于每个点的样本采集时间较短,可能无法积累足够的样本进行平均和去噪。因此,快速扫描的准确性可能不如标准床面网格扫描。 但通常情况下,它仍能提供满意的首层效果。

可以通过允许 travel planner 略微超出扫描的床面网格并平滑移动来改善快速扫描。您可以在 bed_mesh 配置部分使用 scan_overshoot: parameter。请注意,您需要确保轴可以移动到网格边界加上此超出值的区域,因此请小心不要指定过高的值。通常情况下,8mm 足够。

九、FAQ 常见问题解答

- 1. 有时我收到 "Error during homing probe: Eddy current sensor error"报错
 - 这通常表示 Eddy 中的传感器在探测/归零尝试开始前没有达到有效值。我们建议尝试以下步骤:
 - 1) 仔细检查 Eddy 高度。 可能 Eddy 离床面太近或太高。我们建议当喷嘴刚触及床面时, Eddy 高度应为 2mm-3mm。大多数情况下, 2.5mm 是最优的,但如果您发现 Eddy 在高温下出现错误,可以尝试将其略微降低到 2mm 以下。然而,如果 Eddy 在 QGL 尝试过程中出现报错,您可能需要稍微提高 Eddy 高度。
 - 2) 调整 Eddy 高度后, 从配置文件中删除所有校准设置,并重新校准 Eddy。
 - 3) 如果仍然收到此报错,如果 reg_drive_current 值设置为 15,请 将其增加到 16。
- 2. 有时我收到 "Probe Triggered Before Movement" 报错
 - 这是因为您尝试执行两个连续的 PROBE 命令。请在两个 PROBE 命令之间将 龙门架抬起几毫米,以避免此问题。
- 3. Eddy 在运行床网格校准时执行 Z Hops
 - 确保您使用了正确的宏调用: BED MESH CALIBRATE METHOD=rapid scan
 - 删除或修改 KAMP Adaptive Bed Mesh 以及任何自定义的 BED_MESH_CALIBRATE 宏。请使用 Klipper 自适应网格,或者不要在 KAMP_Settings.cfg中包含 KAMP/Adaptive_Meshing.cfg。
- 4. Eddy USB 还是 Eddy Coil, 如何选择?
 - 这取决于您的需求。Eddy USB 和 Eddy Coil 几乎相同,但 Eddy Coil 更适用于工具头板,通过 I²C 连接。

• Eddy Coil 没有温度补偿,因此在密封腔体内使用时可能不如 Eddy USB 稳定。

5. 错误: gcode command < ANY GCODE COMMAND > already

registered 这通常是因为存在冲突的 G-code 宏。检查所有 G-code 宏,确保没有重复的名称,并解决这些冲突。通常情况下,如果出现冲突且不确定如何处理,请优先选择 Eddy 宏中的功能。

6. 我的 z-offset 似乎无法保存并会重置?

- 对于常见调平传感器,这可能看起来像一个 bug。然而,如果您正确校准了 Eddy 并使用了特殊的归零宏,那么 z-offset 是没有必要的。解释起来有些复杂,但本质上,当使用 Eddy 时,z-offset 参数不会调整喷嘴的打印高度,只会调整归零或探测触发的高度。
- 我们强烈建议通过 Eddy 进行校准以获得准确的喷嘴高度,但您也可以使用 Z-offset beta 示例配置文件来模拟标准的 z-offset。只需取消注释与 beta z-offset 功能相关的宏,您就可以使用标准的 Mainsail 按钮来调整喷嘴高度,并将其保存为 z-offset。

7. 我的 Eddy 宏与 KNOMI 宏冲突

- Eddy 和 KNOMI 使用了类似的宏。Eddy 宏中已经包含了 KNOMI 所需的所有功能。如果有冲突,请注释掉有冲突的 KNOMI 宏,并使用 Eddy 宏中的功能。
- 请注意,您可能需要取消注释 Eddy 宏中的某些行,这些行是专门为 KNOMI 用户设置的。检查宏文件,查看哪些行已被注释,并在需要使用 KNOMI 时取消注释这些行。

8. KAMP 与 Eddy

- <u>KAMP aka Klipper-Adaptive-Meshing-Purging</u> 在使用 Eddy 之前需要从 Klipper 中移除。请在 KAMP_SETTINGS.cfg 文件中注释掉相关的包含行,例如 #[include ./KAMP/adaptive_meshing.cfg]。
- 自 2024 年 1 月起,KAMP 已被合并到 Klipper 中,您应在 BED_MESH_CALIBRATION 调用中使用 ADAPTIVE=1 选项。有关<u>自适应网格的</u>更多信息,请查看相关文档。

如果您还需要此产品的其他资源,可以到 https://github.com/bigtreetech/ 上自行查找,如果无法找到您所需的资源,可以联系我们的售后支持(service005@biqu3d.com)。

若您使用中还遇到别的问题,欢迎您联系我们,我们定会细心为您解答;若您对我们的产品有什么好的意见或建议,也欢迎您回馈给我们,我们也会仔细斟酌您的意见或建议,感谢您选择BIGTREETECH制品,谢谢!