10주: 영상분할(3)

10주: 영상분할(3)

1 군집화(Clustering)

군집화 알고리즘

• 유사 표현 정보(예, 색상, 텍스처 등)) 그룹으로 구분

원영상

색상기준

텍스쳐 기준

K-means 알고리즘

• K 개의 군집을 만들 때, 유사 정도의 차이를 최소화 하는 위치/특성을 찾음

$$rg \min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2.$$

• 오류 가능성 존재: 이상치 및 오목한 모양

Mean Shift 알고리즘

- K-means 알고리즘의 문제: 평균의 위치가 고정되어 있음
- 윈도우 내에서 최빈값(mode)나 지역 최대치(local maxima)로 기준 평균을 이동

• 적정한 윈도우 크기의 문제

Mean shift 알고리즘 활용

- 최빈값을 기준으로 한 Quickshift 알고리즘 활용
 - 노이즈 감소를 위한 가우시안 커널 크기 설정: 클수록 적은 군집 크기
 - 컬러 값과 거리 값의 가중치 비율: 큰 값이면 컬러 치중 (0~1)
 - 찿고자 하는 범주의 거리 최대치: 클 수록 적은 군집 크기
- Mean Shift: Opency 객체 추적에 활용
 - CamShift 알고리즘과 연관

10주: 영상분할(3)

2 영역기반(Region-based)

영역 확장(Region Growing) 알고리즘

- 통계적 테스트를 통해 영역에 포함시킬지 결정
 - 유사 통계량을 하나의 영역으로 정의
 - t-분포를 가정: P(T (Th) 확률 계산
 - 임계값과 신뢰수준 정의하여 영역을 확정

$$T = \left(\frac{(N-1)N}{(N+1)}(p-\overline{X})^{2}/S^{2}\right)^{1/2}$$

분할-합병(Split and Merge)알고리즘

- 분산이 너무 높으면 사분면으로 나눔
- 충분히 유사한 인접 영역을 병합
- 더 이상 분할 또는 병합이 발생하지 않을 때까지 두단계를 반복
- 알고리즘은 좋지만 영상이 블록화

R_1	R_2					
R_3	R_{41}	R ₄₂				
Λ3	R ₄₃	R_{44}				

분수계(Watershed) 알고리즘

- 분수계: 물이 흐를 수 있는 경계
- 유역: 물이 모여 있는 영역
- 영상분할 = 워터세드를 찾는 과정 = 댐(basin) 건설 과정

- 과정
 - 물을 주입하면 수위1에 물이 고인다 → 유역 1, 2, 4에 호수 생성
 - 물을 더 넣어 수위2까지 채우면 → 유역 3에 호수 생성
 - 수위가 3이 되면 → 유역3과 4가 범람해 합쳐짐. → 댐이 필요! ···
 - 수위가 5가 되면 → 유역 1과 2, 유역 2와 3, 유역 3과 4가 범람 → 각각 댐이 필요!
 - 그리고 최고 수위가 되므로 알고리즘 멈춤
- 힙(heap) 자료구조를 이용하여 구현

10주: 영상분할(3)

3 그래프기반(Graph-based)

그래프 정의

- G=(V,E),
- /={v₁, v₂, ···, vₙ}: 화소 또는 유사 화소의 모임(superpixel)
- E, 이웃 노드 간에 에지 설정, 두 노드 V_{ρ} 와 V_{q} 를 연결하는 에지는 가중치 $W_{\rho q}$ 를 가짐
 - 가중치는 유사도(같은 정도) 또는 거리(다른 정도)로 측정

	0	1	2	3	4		<i>V</i> ₀	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄	<i>V</i> ₅	<i>V</i> ₆	V ₇	<i>V</i> 8	V 9	<i>V</i> ₁₀	<i>V</i> ₁₁	V ₁₂		V ₂₃	V_2
0	ν ₀	v ₁	v ₂	v ₃	-0- 2	<i>V</i> ₀	0	4	-	-	-	0	-	-	-	-	-	-	-	-	-	-
U	3		-3- 2		-0- 2	<i>V</i> ₁	4	0	5	-	-	-	1	-	-	-	-	-	-	-	-	-
4	ν ₅ ,	v ₆	2 0	1 8	v ₉ 1	<i>V</i> ₂	-	5	0	0	-	-	-	7	-	-	-	-	-	-	-	-
	1	-3- 0	-3- 9		-/- 1	<i>V</i> ₃	-	-	0	0	0	-	-	-	6	-	-	-	-	-	-	-
0		-2-	1 7	2 4	2 1	<i>V</i> ₄	-	-	-	0	0	-	-	-	-	1	-	-	-	-	-	-
2	1	-0- 0	-1- /		-3- 1	<i>V</i> ₅	0	-	-	-	-	0	3	-	-	-	1	-	-	-	-	-
3	1		2 4	1 5	1 4	<i>V</i> ₆	-	1	-	-	-	3	0	3	-	-	-	2	-	-	-	-
3	1	-0- 1	-3- 4	-1- 3	-1- 4	V ₇	-	-	7	-	-	-	3	0	1	-	-	-	2	-	-	-
1	1-	1 1	1 1	v ₂₃ 1	v ₂₄ 1	:																
4	2	-0- 2	-1- I	-0- 1	-0- 1	<i>V</i> ₂₄	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0

거리
$$d_{pq} = \begin{cases} |f(v_p) - f(v_q)|, & v_q \in Neigh(v_p) \\ \infty, & \exists \forall z \in \mathbb{R} \end{cases}$$
 않으면
$$\text{유사도 } s_{pq} = \begin{cases} e^{-d_{pq}}, & v_q \in Neigh(v_p) \\ 0, & \exists \forall z \in \mathbb{R} \end{cases}$$
 이때, $\|\mathbf{x}(v_q) - \mathbf{x}(v_p)\| \leq r$ 이면 $v_q \in Neigh(v_p)$

최소 신장 트리 (Minimum Spanning Tree)

- 신장트리를 이용한 최적 분할 찾아냄, Felzenszwalb, 2004
 - 새로운 노드를 추가한다면 어떤 노드(화소) 고르는 것이 가장 유리할까?
 - V₁₃ 추가하면 3이 됨. V₈ 추가하면 2가 됨 → V₈을 선호
- 세밀함 조절하는 매개변수

$$intra(C) = \max_{e \in MST(C)} w_e$$

$$mult_intra(C_i, C_j) = \min(intra(C_i) + \tau(C_i), intra(C_j) + \tau(C_j))$$

$$\circ | \mathfrak{M} | \tau(C) = \frac{k}{|C|}$$

$$diff(C_i, C_j) = \min_{v_p \in C_i, v_q \in C_j} w_{pq}$$

수퍼픽셀(Superpixel)과 SLIC

- 초기 클러스터에서 시작하여 일부 수렴 기준이 충족될 때까지 반복적으로 수정
- 단순 선형 반복 클러스터링(SLIC, Simple linear iterative clustering)
 - 1. 픽셀 그리드에서 클러스터 중심을 초기화. 정보) 색상, x-y 위치
 - 2. 가장 작은 그래디언트가 있는 3x3 의 위치로 중심을 이동
 - 3. 거리 내의 클러스터 중심과 비교하고 가장 가까운 픽셀에 할당
 - 4. 클러스터 중심을 각 클러스터에 속하는 픽셀의 평균 색상/위치로 다시 계산
 - 5. 잔류 오차가 작을 때 정지

10주차 : 끝

본 강의 자료의 내용 및 그림은 아래 책으로부터 발췌 되었음

- 파이썬으로 배우는 영상처리, Sandipan Dey 지음, 정성환, 조보호, 배종욱 옮김, 도서출판 홍릉, 2020년
- Digital Image Processing, 4th Ed., Rafael C. Gonzalez, Richard E. Woods 지음, Pearson, 2018년
- 컴퓨터 비전(Computer Vision) 기본 개념부터 최신 모바일 응용 예까지 IT CookBook, 오일석 지음, 한빛아카데미, 2014년