

Single View 3D Object Reconstruction

(Guided Research)

Parika Goel

Advisor : Dr. Angela Dai

Supervisor: Prof. Dr. Matthias Nießner

Goal: 3D Reconstruction from Images

Motivation

Motivation: 3D Printing

Motivation: Interior Design

5

https://sketchfab.com/

Motivation: Augmented Reality

Related Work

Learning a Predictable and Generative Vector Representation for Objects. Girdhar et al. 2016

Related Work

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al. 2019

Related Work

Hierarchical Surface Prediction for 3D Object Reconstruction. Hane et al. 2017

Contribution

- Comparison of Occupancy Grid and Distance Field Representation for the task of 3D Reconstruction
- Comparison of two network architectures (Net3D vs UNet3D) for the task of 3D Reconstruction

Ground Truth: Voxelize shapenet table from .obj

3D Input: Generate Visual Cones from input 2D images

3D Input: Generate Visual Cones from input 2D images

3D Input: Generate Visual Cones from input 2D images

3D Input: Generate Visual Cones from input 2D images

System Pipeline

Network Architecture: Net3D

- All layers have Instance normalization and ReLU
 - Except the last layer

Network Architecture: UNet3D

- All layers have Instance normalization and ReLU
 - Except the last layer

Evaluation Metrics

• Intersection Over Union (IoU)

$$IoU = \frac{p \cap t}{p \cup t} = \frac{\sum_{0 \le i < n} (p_i \ge 0.5) \cdot t_i}{\sum_{0 \le i < n} [(p_i \ge 0.5) + t_i]} \quad \substack{p_i \in [0, 1] \\ t_i \in \{0, 1\}}$$

The Red Area is Union

The Blue Area is Intersection

• L1 Error Metric

$$L_1 = \frac{1}{n} \sum_{0 \le i \le n} |p_i - t_i|$$

	IoU ↑	L1-Error ↓
Occupancy	0.592	0.118
TDF	0.583	0.114
TDF(log)	0.597	0.111

Evaluation: Occupancy Grid vs Distance Field

- Distance Field with log weighting performs better than other two versions.
 - o more weightage to the voxels near the surface.
- Occupancy representation performs better than Distance Field representation
 - Lesser to learn
 - Input is in the form of occupancy
- In terms of speed, Occupancy representation performs better than other two versions
 - Occupancy: 26 epochs
 - Distance Field with log weighting: 43 epochs

Evaluation: Occupancy Grid vs Distance Field

Input Image	Input Volume	Ground Truth	Occupancy	TDF	TDF(log)

Evaluation: Net3D vs UNet3D

- → Net3D
 - ◆ No Skip Connections
 - ◆ Approx. 2.3 million parameters
- → UNet3D
 - ◆ Skip Connections
 - ◆ Approx. 1.3 million parameters

Evaluation: Net3D vs UNet3D

	Occupancy		TDF	
	IoU ↑	L1-Error ↓	IoU ↑	L1-Error ↓
Net3D (2.3M params)	0.592	0.118	0.597	0.111
UNet3D (1.3M params)	0.596	0.118	0.584	0.110

• UNet3D gives comparable performance with lesser parameters

Skip Connections

• In terms of speed, UNet3D performs better

UNet3D: 12 epochsNet3D: 26 epochs

Evaluation: Net3D vs UNet3D

Input Image	Input Volume	Ground Truth	Net3D	UNet3D

Conclusion

- Occupancy Grid vs Distance Field (DF) Representation
 - o DF(log) Better reconstructions
 - Occupancy Faster convergence
- Net3D vs UNet3D Skipp connections improve performance
 - Faster convergence
 - Lesser parameters
 - Better reconstructions

Future Work

Appendix: Occupancy Grid vs Distance Field

Appendix: Occupancy Grid vs Distance Field

Appendix : Net3D vs UNet3D

Appendix: Net3D vs UNet3D

