

## **Algebraic fractions**

- Finding and identifying equivalent algebraic fractions
- Adding and subtracting algebraic fractions

**Keywords** 

You should know

explanation 1a

explanation 1b

1 Find three fractions that are equivalent to each of these fractions.

$$\frac{1}{3}$$

**b** 
$$\frac{2}{5}$$

$$\frac{4}{5}$$

**d** 
$$\frac{7}{8}$$

$$e \frac{9}{10}$$

**2** In each group of fractions, find the odd one out.

$$\frac{1}{2}, \frac{9}{16}, \frac{19}{38}, \frac{7}{14}, \frac{56}{112}$$

**a** 
$$\frac{1}{2}$$
,  $\frac{9}{16}$ ,  $\frac{19}{38}$ ,  $\frac{7}{14}$ ,  $\frac{56}{112}$  **b**  $\frac{3}{5}$ ,  $\frac{9}{15}$ ,  $\frac{42}{75}$ ,  $\frac{21}{35}$ ,  $\frac{180}{300}$  **c**  $\frac{4}{7}$ ,  $\frac{46}{84}$ ,  $\frac{36}{63}$ ,  $\frac{12}{21}$ ,  $\frac{28}{49}$ 

**c** 
$$\frac{4}{7}$$
,  $\frac{46}{84}$ ,  $\frac{36}{63}$ ,  $\frac{12}{21}$ ,  $\frac{28}{49}$ 

**3** Find a pair of equivalent fractions in each group.

**a** 
$$\frac{a}{3}, \frac{4a}{3}, \frac{4a}{12}$$

**b** 
$$\frac{x}{8}, \frac{xy}{8}, \frac{3x}{24}$$

$$\frac{2b}{3}, \frac{6b}{12}, \frac{2b}{4}$$

**a** 
$$\frac{a}{3}, \frac{4a}{3}, \frac{4a}{12}$$
 **b**  $\frac{x}{8}, \frac{xy}{8}, \frac{3x}{24}$  **c**  $\frac{2b}{3}, \frac{6b}{12}, \frac{2b}{4}$  **d**  $\frac{ab}{4}, \frac{a+b}{4}, \frac{2(a+b)}{8}$ 

4 Match each fraction in the left-hand column with its equivalent fraction in the right-hand column.

| $\frac{3a}{4}$   | $\frac{10(a+1)}{20}$ |
|------------------|----------------------|
| $\frac{a+1}{2}$  | $\frac{2(a+3)}{4}$   |
| <u>5a</u><br>8   | $\frac{15a}{20}$     |
| $\frac{2a+3}{2}$ | $\frac{10a}{20}$     |
| $\frac{a}{2}$    | $\frac{2(2a+3)}{4}$  |
| $\frac{a+3}{2}$  | $\frac{10a}{16}$     |

## explanation 2

5 Simplify these where possible by cancelling common factors.

a 
$$\frac{6y}{3}$$

**b** 
$$\frac{4c}{2}$$

$$c \frac{2b}{8}$$

**b** 
$$\frac{4c}{2}$$
 **c**  $\frac{2b}{8}$  **d**  $\frac{10f}{25}$ 

$$\frac{16m^2}{4}$$

$$f = \frac{7x^3}{56}$$

$$\frac{3ab}{12}$$

e 
$$\frac{16m^2}{4}$$
 f  $\frac{7x^3}{56}$  g  $\frac{3ab}{12}$  h  $\frac{24xy}{16}$ 

**6** Simplify these where possible by cancelling common factors.

a 
$$\frac{8p}{p}$$

**b** 
$$\frac{5x^2}{x}$$

$$c \frac{8ab}{b}$$

**b** 
$$\frac{5x^2}{x}$$
 **c**  $\frac{8ab}{b}$  **d**  $\frac{4xy}{x}$ 

e 
$$\frac{3y}{yz}$$

e 
$$\frac{3y}{yz}$$
 f  $\frac{5ef}{f}$  g  $\frac{gh}{g^2}$  h  $\frac{c}{cd}$ 

$$\mathbf{g} \quad \frac{gh}{g^2}$$

$$h \frac{c}{cd}$$

**7** Copy and complete the algebraic fractions.

**a** 
$$\frac{6m}{12} = \frac{\Box}{4}$$

**a** 
$$\frac{6m}{12} = \frac{\square}{4}$$
 **b**  $\frac{2(3a+1)}{8} = \frac{\square}{4}$  **c**  $\frac{20p-16}{20} = \frac{\square}{5}$  **d**  $\frac{9x+3y}{18} = \frac{\square}{6}$ 

$$c \frac{20p-16}{20} = \frac{\boxed{}}{5}$$

**d** 
$$\frac{9x + 3y}{18} = \frac{\boxed{}}{6}$$

**8** These rectangles are in proportion. The length and width of rectangle A are shown. Using the information given in the diagram, find the width of all the other rectangles.



explanation 3a

explanation 3b

**9** Add each pair of fractions.

$$\frac{3}{8} + \frac{8}{9}$$

**b** 
$$\frac{4}{7} + \frac{3}{11}$$
 **c**  $\frac{5}{6} + \frac{2}{9}$  **d**  $\frac{2}{5} + \frac{7}{8}$ 

$$\frac{5}{6} + \frac{2}{9}$$

**d** 
$$\frac{2}{5} + \frac{7}{8}$$

**10** Work out these subtractions.

**a** 
$$\frac{4}{7} - \frac{2}{9}$$
 **b**  $\frac{7}{8} - \frac{5}{6}$ 

**b** 
$$\frac{7}{8} - \frac{5}{6}$$

c 
$$\frac{11}{12} - \frac{2}{3}$$
 d  $\frac{7}{10} - \frac{3}{7}$ 

$$\frac{7}{10} - \frac{3}{7}$$

- 11 Copy these and fill in the gaps.
  - **a**  $\frac{a}{2} + \frac{a}{3} = \frac{3a}{6} + \frac{\Box}{6} = \frac{\Box}{6}$

- **b**  $\frac{y}{4} + \frac{2y}{8} = \frac{\Box}{8} + \frac{\Box}{8} = \frac{\Box}{8} = \frac{\Box}{8}$
- $\frac{2c}{5} + \frac{3d}{4} = \frac{\Box}{20} + \frac{\Box}{20} = \frac{\Box}{20}$
- **d**  $\frac{5t}{3} + \frac{2t}{4} = \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$
- **12** Add these fractions together.

[Hint: First find the lowest common multiple of the denominators.]

a  $\frac{b}{2} + \frac{b}{4}$ 

**b**  $\frac{d}{5} + \frac{d}{5}$ 

c  $\frac{x}{3} + \frac{x}{4}$ 

- **d**  $\frac{2m}{5} + \frac{m}{2}$
- e  $\frac{5s}{4} + \frac{3t}{3}$

**f**  $\frac{4x}{7} + \frac{3y}{14}$ 

- $\frac{5r}{4} + \frac{4s}{5}$
- **h**  $\frac{x+1}{2} + \frac{3y}{4}$
- $\frac{2a+1}{5} + \frac{a}{3}$

- $\frac{x-2}{10} + \frac{3x}{5}$
- $\frac{x-y}{4} + \frac{x+y}{3}$
- $\frac{n+2m}{12} + \frac{n+3m}{4}$

- $\frac{a^2}{3} + \frac{3a^2}{4}$
- $\frac{3b^2}{5} + \frac{b^2}{4}$

 $o \frac{3n^2}{7} + \frac{4n^2}{2}$ 

- $\frac{5a^2}{6} + \frac{3a^2}{4}$
- $p^2 + 2 + \frac{p^2}{5}$
- $\frac{x^2-1}{2}+\frac{2x^2}{4}$
- 13 Try to spot the errors in these students' calculations. Write out each calculation correctly.

$$\frac{q}{9} + \frac{3q}{5} = \frac{4q}{14}$$

$$\frac{r}{3} + \frac{r}{4} = \frac{2r}{4}$$

$$\frac{r}{3} + \frac{r}{4} = \frac{2r}{4}$$
 
$$\frac{x+2}{3} + \frac{2x}{4} = \frac{3x+2}{12}$$

- \*14 Work out these subtractions.
  - a  $\frac{g}{3} \frac{g}{5}$

- **b**  $\frac{h}{2} \frac{h}{4}$
- $\frac{3x}{2} \frac{3x}{5}$

- **d**  $\frac{5m}{2} \frac{3m}{8}$
- e  $\frac{5y}{2} \frac{3y}{4}$
- $\frac{3b+2}{5} \frac{3b}{10}$
- 15 For each of the answers below, write a possible question using addition or subtraction of algebraic fractions.

**b**  $\frac{3b}{2}$ 

c  $\frac{a^2}{4}$