Beam Propagation

BPM, Gauss Modes, Transfer Matrix Method

Paraxial Approximation

Motivation: In several applications, one has to simulate light propagating in one direction (z-direction):

- laser simulation
- light in fibers

Ansatz: E-field behaves like

$$E(x, y, z) = \exp(-ik_0 z)\Psi(x, y, z)$$

Here,

- $\Psi(x, y, z)$ is the amplitude of the wave and
- k_0 an average value of the wave number.

Paraxial Approximation

Inserting
$$E(x, y, z) = \exp(-ik_0 z)\Psi(x, y, z)$$

in the scalar Helmholtz equation

$$(\Delta + k^2)E(x, y, z) = 0$$

yields
$$-\Delta \Psi + 2ik_0 \frac{\partial \Psi}{\partial z} + (k_0^2 - k^2)\Psi = 0$$

In paraxial approximation one neglects $\frac{\partial^2 \Psi}{\partial z^2}$ This leads to:

$$2ik_0 \frac{\partial \Psi}{\partial z} = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} - (k_0^2 - k^2)\Psi$$

Beam Propagation Method

Discretization of

$$2ik_0 \frac{\partial \Psi}{\partial z} = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} - (k_0^2 - k^2)\Psi = 0$$

leads to

$$2ik_{0} \frac{\Psi^{l+1} - \Psi^{l}}{\Delta z} = \frac{1}{2} \left(L_{h} \Psi^{l+1} + L_{h} \Psi^{l} \right)$$

where $L_{h}\Psi$ is a spatial discretization of:

$$L(\Psi) := \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} - (k_0^2 - k^2)\Psi$$

Beam Propagation Method

The BPM methods performs the iteration:

$$\Psi^{l+1} = \left(E - \frac{\Delta z}{4ik_0} L_h\right)^{-1} \left(E + \frac{\Delta z}{4ik_0} L_h\right) \Psi^l$$

$$beam$$

$$propagation$$

$$\Psi^0, \Psi^1, \Psi^2, \dots$$

$$\Psi^{n-1}, \Psi^n$$

Gauss Modes

Assume $k=k_0$. Then, paraxial approximation leads to:

$$2ik_0 \frac{\partial \Psi}{\partial z} = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2}$$

One solution of this equation is the TEM00 Gauss mode:

$$E(x, y, z) = \frac{1}{q_0 + z} \exp\left(-ik\left(z + \frac{x^2 + y^2}{2(q_0 + z)}\right)\right)$$

where q_0 is a complex parameter.

Gauss Modes

The spot size at point z is defined to be the radius r such that E-field decreases by e⁻¹:

$$e^{-1} = \frac{|E(r,z)|}{|E(0,z)|},$$
 where $r = \sqrt{x^2 + y^2}$

A Gauss mode with parameter q has beam radius

$$w(z)^{2} = \frac{\lambda}{\pi} \left[\operatorname{Im}(q_{0}) + \frac{\left(\operatorname{Re}(q_{0}) + z \right)^{2}}{\operatorname{Im}(q_{0})} \right]$$

Gaussian Modes

Gaussian mode TEM00:

$$E(x, y, z) = A \frac{1}{q_0 + z} \exp \left(-ik \left(z + \frac{x^2 + y^2}{2(q_0 + z)}\right)\right)$$

Gaussian Modes

High order Gaussian modes

ABCD Matrix Calculation

Propagation of ray through a lens:

ABCD Matrix Calculation

Lenses, mirrors, and other optical elements are described by ABCD matrices.

$$\begin{pmatrix} r_{out} \\ m_{out} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} r_{in} \\ m_{in} \end{pmatrix}$$

- Ray matrices: Propagation of diode pump light.
- Wave optics: Gaussian mode analysis of resonator.

ABCD Matrix Calculation

Propagation of Gaussian modes through lenses, mirrors, and other optical elements, described by ABCD matrices:

Gaussian mode TEM00:

$$E(x, y, z) = A \frac{1}{q+z} \exp \left(-ik\left(z + \frac{x^2 + y^2}{2(q+z)}\right)\right)$$

Consider the 1D scalar Helmholtz equation

$$\frac{\partial^2 E}{\partial x^2} + k(x)^2 E = 0$$

on a layers with piecewise constant wave number k_i . Example: Periodic change of refraction index k_1 , k_2 :

On each layer the solution of scalar Helmholtz equation is:

$$E(x) = c_r \exp(-ikx) + c_l \exp(ikx)$$

On each layer this leads to the solutions:

$$E(x) = c_r^i \exp(-ik_i(x - l_{i-1})) + c_l^i \exp(ik_i(x - l_{i-1}))$$

where I_{i-1} is the location of the i-th layer

The transmission matrix of the i-th layer is:

$$\begin{pmatrix} c_r^{i+1} \\ c_l^{i+1} \end{pmatrix} = M_i \begin{pmatrix} c_r^i \\ c_l^i \end{pmatrix}$$

$$c_r^i \longleftrightarrow c_l^{i+1}$$

The total transmission matrix is:

$$M = \prod_{i=1}^{n} M_{i}$$

$$\begin{pmatrix} c_r^{n+1} \\ c_l^{n+1} \end{pmatrix} = M \begin{pmatrix} c_r^1 \\ c_l^1 \end{pmatrix}$$

transmission matrix

scattering matrix

$$c_r^1$$
 c_l^1
 c_l^{n+1}

$$\begin{pmatrix} c_r^{n+1} \\ c_l^{n+1} \end{pmatrix} = M \begin{pmatrix} c_r^1 \\ c_l^1 \end{pmatrix}$$

$$\begin{pmatrix} c_r^{n+1} \\ c_l^1 \end{pmatrix} = S \begin{pmatrix} c_r^1 \\ c_l^{n+1} \end{pmatrix}$$

transmission matrix

scattering matrix

Using the continuity of E(x) and E'(x) one obtains:

$$\begin{pmatrix} 1 & 1 \\ -k_{i+1} & k_{i+1} \end{pmatrix} \begin{pmatrix} c_r^{i+1} \\ c_l^{i+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -k_i & k_i \end{pmatrix} \begin{pmatrix} \exp(-ik_ih_i) & 0 \\ 0 & \exp(ik_ih_i) \end{pmatrix} \begin{pmatrix} c_r^i \\ c_l^i \end{pmatrix}$$

Example: Periodic change of

refraction index k₁, k₂ on

layers of size $\lambda/4$:

Transmission:

$$n_1 = 3.275$$

$$n_1 = 3.220$$

$$n_0 = 3.277$$