NEKA, 2020/21

3. DN/ 3rd HW : 20.11.2020

Rok za oddajo/ Due date: 23:59, 4. 12. 2020

(1) Naj boAcentralna enostavna k-algebra. Naj vse $x,y,z,w\in A$ velja

$$[x, y][z, w] + [z, w][x, y] \in k.$$

Pokaži, da je deg A = 1 ali deg A = 2.

- (2) Naj bo A enostavna \mathbb{R} -algebra lihe dimenzije. Pokaži, da je $A \cong M_n(\mathbb{R})$ za nek lih n.
- (3) Naj bodo A,B in C končno dimenzionalne centralno enostavne k algebre, za katere velja

$$A \otimes B \cong A \otimes C$$
.

Pokaži, da je $B \cong C$.

- (4) Naj bo A centralno enostavna k-algebra stopnje n. Pokaži, da je A razcepljena natanko tedaj, ko vsebuje podalgebro izomorfno $k^n = k \times k \times \cdots \times k$.
- (5) Naj bo S podalgebra algebre A. Pokaži:
 - (a) Če je S komutativna, potem je tudi $C_A(C_A(S))$ komutativna.
 - (b) Če je $S = C_A(U)$ za neko množico $U \subset A$, potem je $C_A(C_A(S)) = S$.
- (1) Let A be a central simple k-algebra. Assume that for any $x, y, z, w \in A$ we have

$$[x, y][z, w] + [z, w][x, y] \in k.$$

Show that $\deg A = 1$ or $\deg A = 2$.

- (2) Let A be a simple \mathbb{R} -algebra of odd dimension. Show that $A \cong M_n(\mathbb{R})$ for some odd n.
- (3) Let A,B and C be finitely central simple k algebras such that

$$A\otimes B\cong A\otimes C$$

Show that $B \cong C$.

- (4) Let A be a central simple k-algebra of degree n. Show that A is split, if and only if it contains a subalgebra isomprphic $k^n = k \times k \times \cdots \times k$.
- (5) Let S be a subalgebra of algebra A. Show:
 - (a) If S is commutative, then $C_A(C_A(S))$ is commutative and
 - (b) If $S = C_A(U)$ for some subset $U \subset A$, then $C_A(C_A(S)) = S$.