CdL Fisica - Meccanica - (prof. Spurio) 25/01/2021

Esercizio A

Una pallina sferica piena di raggio R= $1.0 \, \text{cm}$ e massa M= $2.0 \, \text{g}$ rotola, senza strisciare, su di un piano orizzontale con velocità del centro di massa pari a v_0 = $0.80 \, \text{m/s}$. Alla fine del piano la pallina cade da un'altezza h= $0.60 \, \text{m}$ giungendo sulla superficie di una vasca molto ampia riempita di acqua e profonda $2.0 \, \text{metri}$. Si determini:

- 1. il punto d'impatto con l'acqua rispetto alla fine del piano;
- 2. la velocità d'impatto della pallina quando entra in acqua;
- 3. il modulo della forza chiamata *spinta di Archimede*, che è pari al peso del volume di acqua spostata dalla pallina, quando la pallina è completamente immersa (la direzione di tale forza è quella in cui agisce la forza peso);
- 4. l'accelerazione in acqua della pallina e
- 5. la profondità massima che essa raggiunge nella vasca;
- 6. (Difficile) la sua energia cinetica totale in quell'istante.

La densità dell'acqua è pari a 1.00 g/cm³. Oltre ai fenomeni transienti d'ingresso e uscita della pallina dall'acqua, si trascurino anche l'attrito dell'aria, la viscosità/attrito della pallina con l'acqua e l'interazione della pallina col bordo.

Esercizio B

Si consideri il sistema in figura. Un dispositivo a simmetria cilindrica, che rotola senza strisciare su un piano orizzontale, ha massa $M=10.0~{\rm kg}$ e raggio $R=8.0~{\rm cm}$. Il suo momento d'inerzia è $1/2MR^2$. Il dispositivo è fatto ruotare tramite un filo inestensibile con massa trascurabile connesso a un oggetto sospeso di massa $m=5.7~{\rm kg}$. La carrucola e tutti i giunti (non mostrati in figura) che servono per trasmettere il moto hanno massa trascurabile e non producono attriti. Inizialmente il sistema è fermo con la massa m posizionata ad un'altezza $h=50~{\rm cm}$ dal pavimento. Si calcoli:

- il modulo della velocità di m quando arriverà a impattare con il pavimento e quello della velocità angolare del cilindro nello stesso istante;
- 2) l'accelerazione con cui cade la massa *m* e
- 3) la forza d'attrito tra il piano e il cilindro durante la caduta.
- 4) Il lavoro compito dalla forza d'attrito tra il piano e il cilindro durante la caduta.

A1) 0.28 m	B1) v=1.64 m/s, ω=20.5 rad/s
A2) v_Ax = 0.80 m/s ; v_Ay=-3.43 m/s	B2) 2.7 m/s^2
A3) 0.041 N	B3) 13.5 N
A4) 10.7 m/s^2	B4) lavoro nullo
A5) -0.55 dal pelo dell'acqua	
A6) 9.0 10^-4 J	