Ricardo Filipe Alves Martins

Development of techniques for haptic exploration and recognition of objects

- a contribution to autonomous robotic hands -

Tese de doutoramento em Engenharia Electrotécnica e de Computadores, ramo de especialização em automação e robótica, orientada pelo Professor Doutor Jorge Manuel Miranda Dias e co-orientada pelo Professor Doutor Miguel de Sá e Sousa Castelo-Branco, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Universidade de Coimbra.

Agosto de 2016

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF COIMBRA

Development of techniques for haptic exploration and recognition of objects

- a contribution to autonomous robotic hands -

Thesis submitted to the Department of Electrical and Computer Engineering of the Faculty of Science and Technology of the University of Coimbra in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Ricardo Filipe Alves Martins

Coimbra, August 2016

Research work developed under the coordination of:

supervision

professor Jorge Manuel Miranda Dias

Associate Professor at the Department of Electrical and Computer Engineering University of Coimbra, Portugal.

Professor at the Department of Electronical and Computer Engineering Khalifa University, United Arab Emirates.

 $co\mbox{-}supervision$

professor Miguel de Sá e Sousa Castelo-Branco Associate Professor at the Faculty of Medicine University of Coimbra, Portugal.

This research work was financially supported by Ricardo Filipe Alves Martins and by an individual Ph D. scholarship (SFRH/BD/65990/2009) funded by the Portuguese science agency FCT - Fundação para a Ciência e a Tecnologia (Foundation for Science and Technology).

Acknowledgment

I would like to express my deepest gratitude to my supervisor, Prof. Jorge Dias, for the opportunity of developing my PhD studies at the *Institute of Systems and Robotics* (ISR), *University of Coimbra* (UC). His encouragement, guidance, and proposals and assistance in exploring new ideas were fundamental to making me a better researcher and improving the quality of my PhD work. The opportunity to participate in European projects, and the integration of meetings and teams presenting proposals of new national and international projects also broadened my perspectives regarding international research and academia. They also prepared me for the challenges I may encounter after the PhD studies.

I would like to thank my co-supervisor, Prof. Miguel Castelo-Branco, for providing theoretical support concerning the human perception and cognition mechanisms. His optimistic words of encouragement were of great help and inspiration during the final stages of my PhD studies.

My sincere appreciation is extended to the Artificial Perception for Intelligent Systems and Robotics laboratory (AP4ISR) of the Institute of Systems and Robotics (ISR) at the University of Coimbra (UC) by providing me administrative support and experimental conditions to develop the work presented in this thesis. This research work was financially supported by an individual PhD scholarship (SFRH/BD/65990/2009) funded by the Portuguese science agency FCT - Fundação para a Ciência e a Tecnologia (Foundation for Science and Technology).

My acknowledgements also go to other senior members of the AP4ISR laboratory. I would like to thank Prof. João Filipe Ferreira for introducing me to the theoretical background and formalism of probabilistic modelling applied to artificial perception, and for his persistence and continuous support during the implementation and reviewing of several research papers submitted during my PhD studies. My sincere appreciation goes out to Prof. Jorge Lobo for his kindness during all these years, and for the diversity of scientific challenges he presented during the activities of the FP7-HANDLE project, which greatly improved my professional skills (technical documentation, integration of data acquisition devices, signal processing, and programming).

I would like to extend my sincerest thanks and appreciation to several of my laboratory colleagues at AP4ISR for their scientific and personal support, friendship, and discussions: Nuno Semedo, Rita Catarino, Amilcar Ferreira, Luís Santos, Diego Faria, Pedro Trindade, Pedro Machado, David Bina, Luís Almeida, José Marinho, João Monteiro, Kamrad Khoshhal, Hadi Aliakbarpour, Jafar Hosseini, Alexandre Malhão, João Quintas, Pablo Lanillos, João Santos, João Martins, Paula Lopes, Paulo Drews Jr, Carlos Simplício, Gonçalo Augusto, José Sousa, André Araújo, Rosana Herrera, Hussam Al-Hussein, José Prado, and Diana Guardado. I would like to make a much deserved special mention to four colleagues. Diego Faria gave me the opportunity to collaborate in several scientific papers when I arrived at AP4ISR. Diego introduced me to the scientific field of robotic learning of dexterous manipulation skills from human demonstrations. Thank you to Luís Santos for the fruitful technical and scientific discussions, and sharing his expertise in probabilistic modelling and technical writing, which contributed to an increased quality of the work presented in this thesis. I am also grateful to Rita Catarino, Luís Santos, and Pedro Trindade for the encouragement and support during difficult moments of my family life.

Since January 2014, I also worked with the *IBILI-UC Visual Neuroscience Laboratory* team headed by Prof. Miguel Castelo-Branco. I am thankful for the opportunity of working in a new and challenging research field (clinical investigation and neuroscience), which established the bridge between medical and engineering sciences. This job also helped me to fund the last two years of my PhD studies by providing an after-work activity. I would like to show my appreciation to my colleagues at *IBILI/ICNAS-UC* for helping me to become more confident and for improving my teamwork and communication skills. Thanks for the extensive discussions about science as well as other funny and non-serious subjects.

I am greatly thankful to João Duarte, Joana Crisóstomo, Tiago Marçal, Lúcia Batata, Paulo Barbeiro, Sofia Pinto, Emília Neto, Joana Caldas, and Catarina Pereira for being amazing friends through all these years. Whenever I needed your support and advice, you were there, ready to help me.

I would like to thank all my family members for supporting me throughout the past years. A special mention to my father, mother, and brother, who have continued to encourage me to pursue my PhD studies and finish this thesis, despite all the unforeseen circumstances in our lives.

That's Life

That's life (that's life), that's what all the people say You're ridin' high in April, shot down in May But I know I'm gonna change that tune When I'm back on top, back on top in June

I said that's life (that's life), and as funny as it may seem Some people get their kicks stompin' on a dream But I don't let it, let it get me down 'cause this fine old world, it keeps spinnin' around

I've been a puppet, a pauper, a pirate, a poet, a pawn and a king I've been up and down and over and out and I know one thing Each time I find myself flat on my face I pick myself up and get back in the race

That's life (that's life), I tell you I can't deny it I thought of quitting, baby, but my heart just ain't gonna buy it And if I didn't think it was worth one single try I'd jump right on a big bird and then I'd fly

I've been a puppet, a pauper, a pirate, a poet, a pawn and a king I've been up and down and over and out and I know one thing Each time I find myself layin' flat on my face I just pick myself up and get back in the race

That's life (that's life), that's life and I can't deny it
Many times I thought of cuttin' out but my heart won't buy it
But if there's nothin' shakin' come this here July
I'm gonna roll myself up in a big ball a-and die

From: That's Life, Frank Sinatra, 1966. Writers: Dean Kay and Kelly Gordon.

Abstract

During the past few years, a new generation of robotic platforms has begun being integrated in distinct environments (e.g. domestic, healthcare, and entertainment). The robotic platforms must execute autonomously a great variety of tasks (to and in cooperation with humans) in uncertain and dynamic environments. To overcome these challenges, the robotic platforms are equipped with a high diversity of sensory (e.g. monocular and stereo cameras; microphones; and force, torque, and tactile sensing arrays) and actuation apparatus (e.g. dexterous robotic arms and hands, touch screens, humanoid heads, and audio speakers). The research works presented in this thesis are related to the subject of robotic dexterous manipulation and haptic exploration of objects (rigid and soft).

This thesis contributes to the development of robotic platforms with autonomous dexterous manipulation capabilities by studying the human manipulation and haptic exploration skills, presenting several approaches to translate and transfer them to a robotic platform. The study of the human visual and somatosensory systems, the neuronal and functional units supporting the sensory processing pipeline, as well as the behavioural patterns participating in the action-perception loop were used as guidelines and benchmarks throughout the thesis during the formulation and evaluation of three artificial perception applications.

Toward the first application, this thesis presents an approach to model the human strategies executed during a dexterous manipulation task. The human hand is instrumented with a tactile sensing array. The thesis proposes a symbolic description of the tasks using grasping primitives. Each grasping primitive is described by the hand-object contact interaction signature. During the human demonstration of two different dexterous manipulation tasks, the sequence of grasping primitives is recognized by a Bayesian model. The statistical relations emerging from the analysis of the sequence of grasping primitives are used to define the model of the task.

The research works presented in this manuscript contribute to a second application consisting of an artificial perception system to discriminate in-hand explored objects with different hardness properties. The human hand is instrumented with a tactile sensing array and a motion tracking sensor. A Bayesian model integrates features (contact intensity, contact area, and contact indentation) extracted from the sensory data acquired

during the press-and-release exploration of the objects. The cutaneous and kinesthetic cues are integrated by a Bayesian model so the system can learn to discriminate between three distinct materials (haptic memory). The learned parameters are used to infer the perceived hardness properties of unknown objects based on the haptic memory of the system.

The final contribution of this thesis is concerning the implementation of a probabilistic approach to perform active haptic exploration of surfaces using dexterous robotic hands (simulation environment). The proposed approach represents the structure of an unknown surface as a probabilistic grid. As long as the haptic exploration of the surface progresses, haptic cues regarding texture and compliance are integrated by a Bayesian model and used to infer the category of material of that region of the workspace. The approach showed an excellent capability to discriminate between ten different types of materials (haptic stimulus). Based on this perceptual representation of the workspace, the robotic system infers the next region of the unknown workspace that should be explored. This decision is made by integrating bottom-up and top-down cues related to the haptic saliency of the stimulus, uncertainty of the current perceptual representation of the workspace, inhibition-of-return mechanisms, objectives of the task, and the current structure of the exploration path. The Bayesian models involved in this approach were tested on a planar surface, during the detection and following haptic discontinuities between three different materials. The following of haptic discontinuity was performed with good structural accuracy. The tactile attention mechanisms of the system demonstrated a high specificity, following the discontinuities of interest and ignoring the others. The role and impact of the different cues (haptic saliency, inhibition-of-return, uncertainty, and structure of exploration path) was also studied by removing each of these components from the Bayesian models.

Resumo

Nos últimos anos, uma nova geração de plataformas robóticas tem sido integrada em novos tipos de cenários (ex: ambiente doméstico, unidades de saúde, locais de entretenimento). Neste tipo de cenários as plataformas robóticas necessitam de executar autonomamente uma grande variedade de tarefas (para e em cooperação com Humanos), sendo confrontadas com ambientes dinâmicos e imprevisíveis. De forma a ultrapassar estes desafios, as plataformas robóticas são equipadas com uma grande variedade de sensores (ex: câmaras monocular e estéreo, microfones, sensores de força, torque e de tacto) e interfaces/actuadores (mãos e braços robóticos, ecrãs tácteis, cabeças humanóides, sintetizadores de áudio). Os trabalhos de investigação apresentados nesta tese estão relacionados com a manipulação e exploração háptica de objectos (rígidos e moles).

Com esta tese pretende-se contribuir para o desenvolvimento de plataforms robóticas com capacidade autónoma de manipulação, através do estudo da perícia Humana em tarefas de manipulação e exploração háptica. So propostas diferentes abordagens para replicar estas habilidades Humanas em platformas robóticas. O estudo do sistema visual e somatosensorial Humano, das unidades neuronais e funcionais envolvidas no processamento sensorial, assim como dos padrões comportamentais intervenientes nos mecanismos do ciclo acção-percepção, foram considerados como referências durante a formulação, desenvolvimento e avaliação do desempenho de três aplicações de percepção artificial.

Numa primeira aplicação, propõe-se uma metodologia para modelizar as estratégias utilizadas por Humanos durante uma tarefa de manipulação. A mão Humana é instrumentada com uma série de sensores de tacto. Nesta tese propõe-se uma descrição simbólica das tarefas, utilizando diferentes primitivas para efectuar essa modelização. Cada primitiva é descrita pelo perfil de contacto (região e intensidade do contacto) entre a mão e o objecto. Durante a demonstração de dois tipos de tarefas de manipulação, a sequência temporal de primitivas é reconhecida por um modelo Bayesiano. O modelo de cada um dos tipos de tarefa é extraído a partir das relações de estatísticas de causalidade que se estabelecem entre tipos de primitivas consecutivas que tenham sido inferidas pelo modelo Bayesiano proposto.

Esta tese apresenta ainda um segundo sistema de percepção artificial que discrimina objectos com diferentes características de rigidez, durante tarefas de exploração háptica. A

mão Humana é instrumentada com uma série de sensores de tacto e um sensor de rastreamento de movimento. Desenvolveu-se um modelo Bayesiano que integra simultaneamente descritores (intensidade de contacto, área de contacto, nível de indentação do contacto) extraídas dos dados sensoriais adquiridos durante a exploração dos objectos através de movimentos de palpação. As componentes cutaneas e quinestésica da interacção dedo-objecto são integradas pelo modelo Bayesiano de forma a que este estime os parâmetros do modelo e aprenda a discriminar três materials diferentes (memória háptica do sistema) As características de rigidez de objectos desconhecidos ao sistema são inferidas pelo modelo Bayesiano, baseando-se na memória háptica do sistema desenvolvida anteriormente.

Por fim, esta tese apresenta um sistema de percepção artificial e acção relacionado com a implementação de uma abordagem probabilística para executar a exploração háptica activa de superfícies usando mãos robóticas (ambiente de simulação). Na abordagem proposta a estrutura espacial das superfícies desconhecidas pelo sistema é representada por uma grelha probabilística. À medida que a exploração háptica progride, descritores relacionados com características de textura e complacência são integrados por um modelo Bayesiano e usados para inferir a categoria de material existente naquela região da superfície explorada. Esta abordagem foi testada experimentalmente, sendo capaz de discriminar com um elevado desempenho 10 materials diferentes. A partir da representação perceptual do espaço de trabalho inferida pelo modelo Bayesiano referido anteriormente, o sistema robótico estima qual será a próxima região da superfície a ser explorada. Esta decisão é tomada integrando simultaneamente informação relacionada com a saliência háptica e incerteza associada às diferentes regiões da representação perceptual actual da superfície, mecanismos de inibição-de-retorno, objectivos da tarefa de exploração e estrutura do percurso de exploração efectuado pelo sistema robótico até ao momento. O sistema proposto foi testado numa superfície plana, durante a execução de tarefas de exploração háptica relacionadas com o seguimento de discontinuidades entre três materiais diferentes. As discontinuidades entre os três materiais, correspondentes aos objectivos das diferentes tarefas, foram seguidas com uma boa precisão estrutural. Os mecanismos de atenção táctil demonstraram uma grande especificidade, fazendo com que o sistema seguisse as discontinuidades de interesse para a tarefa, ignorando as restantes descontinuidades existentes no espaço de tabalho. O impacto da contribuição de cada uma das componentes (saliência háptica, inibição-de-retorno, incerteza, estrutura do percurso explorado) foi estudado através da análise do desempenho do sistema quando o efeito de cada uma dessas componente era neutralizado na formulação dos modelos Bayesianos.

Contents

1	Intr	oducti	ion	1
	1.1	Motiv	ation	1
	1.2	Thesis	soutline	4
	1.3	List of	f deliverables	6
		1.3.1	Peer-reviewed international journals	6
		1.3.2	Peer-reviewed proceedings of international conferences	6
		1.3.3	Peer-reviewed poster in international conferences	7
		1.3.4	Research collaborations as co-author	7
		1.3.5	Technical report	8
		1.3.6	Software tools and documentation	8
		1.3.7	Datasets	9
2	Fun	damer	ntals	11
	2.1	Proba	bilistic modelling	12
		2.1.1	Bayes rule	13
		2.1.2	Bayesian inference	14
		2.1.3	Representing the Bayesian models	14
	2.2	Proba	bilistic grids	16
	2.3	Inform	nation theory and entropy	18
3	Dex	cterous	s manipulation and exploration: from humans to robots	19
	3.1	The h	uman hand	19
		3.1.1	Anatomical structure	19
		3.1.2	Sensing apparatus	22
	3.2	Plann	ing and control of dexterous manipulation tasks	24
		3.2.1	Reach-to-grasp and transport movements	25
		3.2.2	In-hand manipulation and haptic exploration movements	26
	3.3	Attent	tion mechanisms in somatosensory system	29
	3.4	Catego	orization of manipulation movements	32
		3.4.1	Grasping patterns	32

		3.4.2	In-hand manipulation patterns	34
		3.4.3	Haptic exploration patterns	35
	3.5	Bench	marking robotic manipulation and exploration skills	36
4	Rec	ording	g human manipulation and exploration movements	41
	4.1	Exper	imental area and data acquisition architecture	42
	4.2	Data	acquisition devices	43
		4.2.1	Cybersystems Cyberglove II	43
		4.2.2	Polhemus Liberty	45
		4.2.3	Tekscan Grip	45
		4.2.4	Instrumented objects	46
		4.2.5	Microsoft Kinect	48
		4.2.6	Videre camera	49
		4.2.7	$Unibrain \text{ camera} \dots \dots \dots \dots \dots \dots \dots$	49
	4.3	Datas	${ m ets}$	50
		4.3.1	Dexterous manipulation of a laboratory pipette	50
		4.3.2	Thumb movement during manipulation tasks	52
		4.3.3	Screwdriver in-hand rotation	53
		4.3.4	In-hand manipulation of toys	54
		4.3.5	Grasp the Wii remote and press a button	54
		4.3.6	Fill a toy sorting box with objects	55
		4.3.7	Pick up a pen and write	56
		4.3.8	Pick an object and slide	56
	4.4	Softwa	are tools	58
		4.4.1	Software clients for data acquisition devices	58
		4.4.2	importDatasetTB: toolbox for integrating data in MATLAB	58
		4.4.3	Annotation tool for multi-modal human grasping datasets	60
		4.4.4	Instrumented Rubik cube: touch data visualization tool	60
5	Rec	ogniti	on of grasping primitives using tactile sensory data	63
	5.1	Introd	luction	63
	5.2	Relate	ed work	64
	5.3	Appro	oach overview	66
	5.4	Haptio	c sensory data	68
	5.5	Encod	ling of the grasping interaction	69
	5.6	Recog	enition of the grasping primitive	71
		5.6.1	Random variables of the model	71
		5.6.2	Inference of the category of grasping primitive	72

		5.6.3 Determination of $P(\mathbf{S}_k G_k, \pi_{grasp})$
	5.7	Experimental results
		5.7.1 Experimental setup
		5.7.2 Learning of the grasping primitives $P(\mathbf{S}_k G_k, \pi_{grasp})$
		5.7.3 Detection of grasp primitives in manipulation tasks 76
	5.8	Conclusions
6	Cat	segorization of soft objects during haptic exploration tasks 81
	6.1	Introduction
	6.2	Related works
	6.3	Approach overview
	6.4	Haptic sensory data
	6.5	Pre-processing of the haptic sensory data
		6.5.1 Determination of the contact sensing features c_P , c_D , c_A 88
		6.5.2 Estimation of the cutaneous and kinesthetic interaction parameters 89
	6.6	Perception of the haptic stimulus map
		6.6.1 Random variables of the model
		6.6.2 Inference of the haptic stimulus category
		6.6.3 Determination of $P(N_{(v,k)} M_{(v,k)}, \pi_{haptic})$ and $P(A_{(v,k)} M_{(v,k)}, \pi_{haptic})$ 93
	6.7	Post-processing of haptic stimulus map
	6.8	Experimental results
		6.8.1 Experimental setup
		6.8.2 Learning of the contact interaction parameters of the reference ma-
		terials
		6.8.3 Haptic exploration of unknown objects
	6.9	Conclusions
7	Act	ive haptic exploration of surfaces using robotic hands 111
	7.1	Introduction
	7.2	Related works
	7.3	Approach overview
		7.3.1 Path planning of the global haptic exploration strategy 118
	7.4	Local perception of haptic stimulus
		7.4.1 Random variables of the model
		7.4.2 Inference of the haptic stimulus category
		7.4.3 Determination of $P(E_{(v,k)} M_{(v,k)},\pi_{per})$ and $P(C_{(v,k)} M_{(v,k)},\pi_{per})$ 122
	7.5	Recognition of the shape of the exploration path
		7.5.1 Random variables of the model

	7.5.2	Inference of the category of structure
	7.5.3	Determination of $P(l_k^i R_k, \pi_{obj})$
7.6	Integr	ation of attention mechanisms in the inference of the exploration path 126
	7.6.1	Random variables of the model
	7.6.2	Inference of the next exploration target
	7.6.3	Determination of $P(S_{(v,k)} O_k, T, \pi_{tar}), P(I_{(v,k)} O_k, \pi_{tar}),$
		$P(U_{(v,k)} O_k,\pi_{tar}), P(R_k O_k,\pi_{tar})$
7.7	Exper	imental results
	7.7.1	Computational simulation environment
	7.7.2	Evaluation of the haptic stimulus perception model
	7.7.3	Autonomous exploration of the workspace
7.8	Concl	usions and future work

APPENDIX

