Assignment 2

- Title: Vector and Matrix operations using CUDA.
- · Problem Statement:

Design a parellel algo to

2. Multiply vector 4 matrix

2. Multiply 2 NXH arrays = Nº processos

· Objectives:

- To learn abt CUDA architecture

- To learn CUDA programming concepts

Quicomes:

cupa architecture à programming

Requirements:

- OS: Fedora 20/ Ubuntu (64-bit)

- CUDA API

- nuce compiler

- Nridia GPU (GeForce 920M)

- Nsight Eclipse IDE

-RAM :44B

- HDD: 500 9B

Theory: CUPA Architecture: The Architecture consists of several components as (1.) Parellel compute engines in NVIDIA 4PU (2) Os- kernel level support (3) user-mode driver providing derice-level-API (4) PTX instruction set architecture for parelles computing kernel & functions. Applications Applications Applications Application using CUDĂ Driver API Open GL c nuntime DirectX for CUDA compute priver CUDA Driver PTX (ISA) CUDA support for 05 kernel CUDA parellel compute engines unside NVIDIA GEU

- Advantages of CUDA:

1. Unified Memory

2 scattered reads-code can be read from & arbitrary addresses in memory

3. faster computational to 2 from GPU 4 full support for integer a bitwise

operations

5. Shaled memory between threads.

1. Newer versions of CUDA are new processed acc. to (++ syntax rules instead c

2. Copying bet host & device memory may inclu a performance hit due to system bandwidth & latency.

3. CUBA enabled GPUS are avalaible from HVIDIA only.

4. Threads should be running in groups of atleast 32 for best performance.

- CUDA programming:

Let M & N be the input vectors (or matrices) & P be the result obtained such that

P = M+N (rector addition)

P = M*N (vector-matrix multiplication) P = M*N (matrix multiplication)

- With CUDA programming, each element in P can be obtained from one thread

- As a result, the problem is decomposed unto n (or nxn) threads for parellel reduction.

- Thread 10's are used to differentiate the data with execution & storing the (result.

· Test cases and Analysis:-

			_	
Operation	J/p size	Sequential	Parellel	Efficiency
		time	time	
	N = 256	0.01	0.02	0.5
Vector	N = 1024	0.01	0.62	0.5
Addition	n = 2048	0.02	0.01	2.0
				()_
Vector	n = 256	0.000	0.082	0.037
Matoix	u = 1024	D.83	0 135	0.689
Mdultip-	u = 2048	0.367	0.183	2.759
- lication				
Matrix	N= 286	0.480	0.02	24.0
Multipl-	N= 1024	0.620	0.133	4.66
- ication	n= 2048	0.754	0.136	5.544
	Vector Addition Vector Matrix Multip- Lication Matrix Multipl-	N = 256 Vector N = 1024 Addition N = 2048 Vector N = 256 Matrix N = 1024 Multip- N = 2048 Matrix N = 266 Multipl- N = 1024	N = 256 0.01 Vector $N = 1024$ 0.01 Addition $N = 2048$ 0.02 Vector $N = 256$ 0.005 Matrix $N = 1024$ 0.83 Adultip- $N = 2048$ 0.367 - lication Matrix $N = 2048$ 0.367 Multipl- $N = 2048$ 0.480 Multipl- $N = 1024$ 0.620	Time time $N = 256$ 0.01 0.02 Vector $N = 1024$ 0.01 0.02 Addition $N = 2048$ 0.02 0.01 Vector $N = 256$ 0.003 0.082 Matrix $N = 1024$ 0.83 0.135 Multip- $N = 2048$ 0.367 0.183 Matrix $N = 2048$ 0.480 0.02 Multipl- $N = 2048$ 0.620 0.133

Esticiency = HCSA WCPA

Here, we observe that parelled algorithm is a major improvement for matrix-matrix multiplication while it is sufficiently significant for increasingly input size for vector-matrix multiplication. No significant improvement gained for vector addition of similar sizes but better for large values.

Input:

Vectors → S, 7, 9, 11, 4, 7, 6, 2, 0,1

Vector 2 -> 6,2,7,1,0,4,13,17,12,5

output:

8 um et vectors -> 11, 9, 16, 12, 4, 11, 19, 19, 12, 6

· Conclusion:

Thus, we successfully implemented various vector & matrix operations parellely using CUDA