

Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine

Bailiang Jian^{1,2}, Mohammad Farid Azampour^{1,8}, Francesca De Benetti^{1,2}, Johannes Oberreuter^{1,2}, Christina Bukas^{2,4}, Alexandera S. Gersing^{5,6}, Sarah C. Foreman^{5,6}, Anna-Sophia Dietrich^{5,6}, Jon Rischewski^{5,6}, Jan S. Kirschke^{5,6}, Nassir Navab^{1,7} and Thomas Wendler^{1,2}

¹Chair for Computer Aided Medical Procedures and Augmented Reality, Technische Universität München, Garching, Germany,

² ScintHealth GmbH, Munich, Germany, ³Reply SpA, Munich, Germany, ⁴Helmholtz AI, Helmholtz Zentrum München, Munich, Germany,⁵Department of Radiology, Technische Universität München, Munich, Germany, ⁶Department of Neuroradiology, Technische Universität München, Munich, Germany, ⁷Computer Aided Medical Procedures Lab, Laboratory for Computational Sensing+Robotics, Johns Hopkins University, Baltimore, MD, USA, ⁸Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Motivation and Contribution

Clinical motivations:

- spinal CT has higher contrast in bony structures
- spinal MRI can detect lesions and tumors of the spinal cord, the intervertebral discs and the inner anatomy of the vertebral bodies

Problems in registering articulated rigid structures:

- rigid registration cannot address the varying curvature of patients' spine during different imaging sessions
- global deformable registration ignores difference between soft tissues and bony structures

Our contributions:

- a) Proposal of a framework for rigidity-preserving MRI/CT deformable registration of the spine
- b) Introduction of the rigid dice (RD) loss and rigid field (RF) loss for rigidity-preservation
- c) Adaptation of rigidity penalties used in conventional registration (orthonormal condition (OC), properness condition (PC)) to deep learning image registration
- d) Extensive evaluation and ablation study of different losses on an in-house dataset with 167 patients

Proposed Method

Framework workflow:

- Inputs: a CT (moving image) and its label map, an MRI (fixed image)
- Output: a dense displacement field ϕ

Training losses:

- intensity-based image similarity loss \mathcal{L}_{sim}
- smoothness regularizer on the output DDF \mathcal{L}_{smooth}
- rigidity penalties \mathcal{L}_{rigid} between the moving label and the warped label, or on the deformation vectors inside the rigid bodies

Rigidity penalties:

Rigid dice loss:

- Step 1: Compute the closest rigidly transformed label of each vertebra through rigid registration between moving label and warped label
- ✓ Step 2: Calculate the dice loss between the closest rigidly transformed label and warped label

Rigid field loss:

- ✓ Step 1: Sample a set of random points from the moving label of each vertebra
- ✓ Step 2: Compute the corresponding points in the warped label through DDF ϕ
- Step 3: Compute the average rigid motion for the set of pairing points with SVD (Procruste problem)

rigid DSC

✓ Step 4: Calculate the MSE loss between the DDF vectors and the average rigid motion vectors inside each vertebra

Fig 1. An overview of the architecture.

PC & OC:

- Step 1: Compute the Jacobian of the DDF inside each vertebra
- Step 2:

Properness condition: Calculate the 12-distance between the Jacobian determinant and constant one Orthonormal condition: Calculate the Frobenius distance between the inner product of the Jacobian and identity matrix

Results

DSC

Fig 3. Quiver plots of DDF on a sagittal slice of MRI from (a) OC (left) and (b) baseline (right).

Fig 4. Visual examples of different loss settings

Fig 2. Boxplots of different loss settings

- PC loss contributes significantly to volume preservation, which is beneficial in bone estimation in vertebroplasty or kyphoplasty.
- RD loss achieves the highest level of rigidity (5.7% improvement over baseline), and maintains the details in the process area. It is useful when the image shape should match perfectly, e.g., surgical planning.
- more important, e.g., in differential diagnostics.
- RF loss is a suitable choice when the feasibility of the transformation is
- OC loss has more consistent displacements inside vertebra area than baseline method. Training with OC loss also decreases PC loss.

(a) \mathcal{M}

(l) \mathcal{F}

