Exercise 1.2.3

Let G be a topological group.	(1
Prove that for each $g \in G$, the closure $H(g)$ of the set $\{g^n\}_{n=-\infty}^{\infty}$ is a commutative subgroup of G .	(2
Thus, if G has a minimal left translation, then G is abelian.	(3
Proof $+$ reasoning:	
First, let's show the closure of $\{g^n\}_{n=-\infty}^{\infty}$ is a subgroup of G , starting with showing closure under the group operation.	(4
Define $\langle g \rangle := \{g^n\}_{n=-\infty}^{\infty}$.	(5
Let $g \in G$. Let $a, b \in \operatorname{cl}(\langle g \rangle)$.	(6
What do I know about closures? The closure of A is the set X of points such that any neighborhood of $x \in X$ contains a point in A .	(7
My intuition is that the required proof will resemble the one I would follow if G were a metric space. In a metric space, if a and b are limits of g^{k_n} and g^{l_n} we should have $g^{k_n}g^{l_n}\to ab$. Here we do not have a metric, so there is no notion of convergent sequences, but instead of neighborhoods: x is a limit point of A if every neighborhood of x contains a point in A	
other than x itself.	(8
Intuitively, since a and b are in $\langle g \rangle$ or limit points of $\langle g \rangle$, the product of the two points that 'witness' this property should be the point that witnesses ab being a limit point.	(9
Let C be a neighborhood of ab , and $U \subseteq C$ an open set containing ab .	(10
$a^{-1}U$ and Ub^{-1} are open.	(11
$b \in a^{-1}U$ and $a \in Ub^{-1}$. Since a and b are limit points of $\langle g \rangle$, $\exists k, m \in \mathbb{Z}$ such that $g^m \in a^{-1}U$ and $g^k \in Ub^{-1}$.	(12
g^kg^m should be in U , but I can't show why. What tools can I give myself to help prove $g^kg^m\in U$?	(13
Well, g^m and g^k are homeomorphisms, so $g^kg^m\in g^ka^{-1}U,\ g^kg^m\in Ub^{-1}g^m$, and $(g^ka^{-1}U)\cup (Ub^{-1}g^m)$ is open.	(14
Now I am stuck.	(15
What given assumptions have I not used?	(16
I have not used the fact that the group operation $G \times G \to G$ is continuous. I only used that, $\forall g \in G$, left and right multiplication by g is a continuous function $G \to G$, which seems to be a weaker statement. Using the 'joint' continuity should work.	(17
Since the group multiplication $\alpha: G \times G \to G$ is continuous, $\alpha^{-1}(U)$ is open in $G \times G$. Since $(a,b) \in \alpha^{-1}(U)$, and since sets of the form $A \times B$, where A and B are open, form a basis for the topology on $G \times G$, there exist open V and W such that $a \in V$, $b \in W$, and such that	
$V \times W \subset \alpha^{-1}(U)$	(18

Since $a, b \in \operatorname{cl}(\langle g \rangle)$ there exist $g^{\ell} \in V$ and $g^{p} \in W$. By (18), $g^{\ell}g^{p} \in U$, hence $g^{\ell+p} \in U$, so $ab \in \operatorname{cl}(\langle g \rangle) = H(g)$.	(19)
By (19), $H(g)$ is closed under taking products.	(20)
Now we need to show that $H(g)$ has inverses, by showing $a^{-1} \in H(g)$. Let C be a neighborhood of a^{-1} and $U \subseteq C$ an open set such that $a^{-1} \in U$. Since the inverse is continuous, $U' := \{x \in G : x^{-1} \in U\}$ is	(21)
open, and it contains a .	(22)
Since $a \in H(g)$, there exists $g^q \in U'$, where $q \in \mathbb{Z}$.	(23)
By (23), $g^{-q} = (g^q)^{-1} \in U$, so $a^{-1} \in H(g)$.	(24)
By (24) , $H(g)$ is closed under taking inverses.	(25)
Now to prove that $H(g)$ is commutative.	(26)
We need to show that $ab = ba$. If G were a metric space, the proof would follow from the fact that the limits of convergent sequences are unique. Is there something like uniqueness of limit points in a general topological space? The answer seems to be no, only when adding separation properties.	(27)
Let's take a few steps back and try again. Note, the product in $H(g)$ is just the restriction of the one in G , so if $ab \neq ba$ in G , $ab \neq ba$ in $H(g)$. So, the only way in which $H(g)$ can be commutative is if it excludes at least all non-commutative elements in G .	(28)
So, $H(g)$ must be a proper subgroup if G is not abelian. Considering (28), I think we should try to prove the contrapositive instead, i.e. prove if two elements of G are not commutative, then at least one of them is not in $H(g)$.	(29)
Let $c, d \in G$ with $cd \neq dc$.	(30)
Why is $(c,d) \notin H(g) \times H(g)$? I am stuck here.	(31)
Why has my best attempt not worked? To show (31), we need to show that there exists a neighborhood of (c,d) containing no element of $\langle g \rangle$, but I can't find any obvious neighborhood. There is no given neighborhood from the definitions. I think the exercise is not correct without adding a separation property, so let's add it ourselves.	(32)
Suppose that G is Hausdorff.	(33)
By (33) and (30), there exist open neighborhoods U of cd and U' of dc such that $U \cap U' = \emptyset$.	(34)
Suppose $c, d \in H(g)$.	(35)
Similarly to (18), $(c,d) \in \alpha^{-1}(U)$ and $(d,c) \in \alpha^{-1}(U')$.	(36)
So there are open sets V, V', W, W' such that $(c, d) \in V \times W \subseteq \alpha^{-1}(U)$ and $(d, c) \in V' \times W' \subseteq \alpha^{-1}(U')$.	(37)
From (37), $c \in V \cap V'$ and $d \in W \cap W'$, and $V \cap V'$ and $W \cap W'$ are open.	(38)
So, by (35), there exist $s, t \in \mathbb{Z}$ such that $g^s \in V \cap V'$ and $g^t \in W \cap W'$.	(39)

By (39), $(g^s, g^t) \in V \times W$ and $(g^t, g^s) \in W' \times V'$.	(40)
By (40) and (37), $g^s g^t \in U$ and $g^t g^s \in U'$, so $g^{t+s} \in U \cap U'$.	(41)
(41) contradicts (33), so (35) is false, hence $c \notin H(g)$ or $d \notin H(g)$, so	
H(g) is commutative.	(42)
By (42) , (20) and (25) , $H(g)$ is a commutative subgroup of G .	(43)
We still need to prove that if G has a minimal left translation, then G is	
Abelian.	(44)
Suppose that G has a minimal left translation $L_h: G \to G$ where $h \in G$.	(45)
By (43), $H(h)$ is a commutative subgroup of G .	(46)
By definition, L_h has no proper closed non-empty invariant subsets.	(47)
H(h) is a closed non-empty subset of G .	(48)
Is $H(h)$ invariant with respect to L_h ?	(49)
Let $a \in H(h)$. Let C be a neighborhood of ha and U open with $ha \in$	
$U \subseteq C$. $a \in h^{-1}U$, and $h^{-1}U$ is open, so $\exists q \in \mathbb{Z}$ such that $h^q \in h^{-1}U$.	(50)
By (50), $h^{q+1} \in U$, so $H(h)$ is invariant.	(51)
By (51), (48) and (47), $H(h) = G$, so G is abelian.	(52)