Amendment Pursuant to 37 C.F.R. § 1.121

IN THE CLAIMS:

The claims set forth below with amendments as indicated will replace all prior versions and listing of claims in the application.

1. (Currently amended) A compound of the formula I,

in which

A)

R1 to R4 are H;

X is S;

Y is $(CH_2)_p$, where p is 0, 1, 2 or 3;

is CF₃; (C₂-C₁₈)-alkyl; (C₃-C₄)-cycloalkyl, (C₆-C₈)-cycloalkyl, wherein the alkyl or cycloalkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

(CH₂)_r-COR6, where r is 1-6 and R6 is OH, O-(C₁-C₆)-alkyl or NH₂;

 CH_2 -CH(NHR7)-COR8, where R7 is H, C(O)- $(C_1$ - $C_4)$ -alkyl or C(O)O- $(C_1$ - $C_4)$ -alkyl and R8 is OH, O- $(C_1$ - $C_6)$ -alkyl or NH_2 ;

DEAV2001/0045-US-NP2

-2 of 12-

phenyl, 1- or 2-naphthyl, or biphenyl radical, where the rings or ring systems are unsubstituted or substituted one or two times by F, Cl, Br, I, CN, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₃-C₈)-cycloalkyl, S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₃-C₈)-cycloalkyl, NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)-cycloalkyl, N[(C₁-C₈)-alkyl, NH-CO-(C₂-C₈)-alkyl, NH-CO-(C₃-C₈)-cycloalkyl; SO₃H; SO₂-NH₂, SO₂-NH-(C₁-C₈)-alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl; NH-SO₂-NH₂; NH-SO₂-(C₁-C₈)-alkyl, NH-SO₂-(C₃-C₈)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-alkyl, COOH, CO-O(C₁-C₈)-alkyl, CO-O(C₃-C₈)-cycloalkyl, CO-NH₂, CO-NH(C₁-C₈)-alkyl, CO-N[(C₁-C₈)-alkyl]₂; (C₁-C₈)-alkyl, (C₃-C₈)-cycloalkyl, wherein the alkyl or cycloalkyl groups in each case have zero to seven hydrogen atoms independently replaced by fluorine;

with the proviso that R5 is not unsubstituted phenyl, 4-fluorophenyl, 4-bromophenyl, 4-chlorophenyl, 3-methylphenyl, 4-methylphenyl, 4-methylphenyl, 4-methoxyphenyl, 4-n-butylphenyl, 4-t-butylphenyl, 2-aminophenyl or C₁₂-alkyl; and wherein at least one of the radicals R1, R2, R3 and R4 is different from hydrogen;

or

B)

R1, R4

independently of one another are

H; F, Cl, Br, I; CN; N₃, NO₂, OH, O(C₁-C₈)-alkyl, O(C₃-C₄ and C₆-C₈)-cycloalkyl, O-CH₂-phenyl, O-phenyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₃-C₈)-cycloalkyl, S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₃-C₈)-cycloalkyl, NH₋(C₁-C₈)-alkyl, NH₋(C

N[(C_3 - C_8)-cycloalkyl]₂, NH-CO-(C_1 - C_8)-alkyl, NH-CO-(C_3 - C_8)-cycloalkyl; SO₃H; SO₂-NH₂, SO₂-NH-(C_1 - C_8)-alkyl, SO₂-NH-(C_3 - C_8)-cycloalkyl; NH-SO₂-NH₂; NH-SO₂-(C_1 - C_8)-alkyl, NH-SO₂-(C_3 - C_8)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C_1 - C_8)-alkyl, COOH, CO-O(C_1 - C_8)-alkyl, CO-O-(C_3 - C_8)-cycloalkyl, CO-NH₂, CO-NH(C_1 - C_8)-alkyl, CO-N[(C_1 - C_8)-alkyl]₂, (C_1 - C_8)-alkyl, (C_3 - C_8)-cycloalkyl, (C_2 - C_8)-alkenyl, (C_2 - C_8)-alkynyl, where in the alkyl, cycloalkyl, alkenyl and alkynyl groups in each case have zero to seven hydrogen atoms replaced by fluorine, or one hydrogen replaced by OH, OC(O)CH₃, O-CH₂-Ph, NH₂, NH-CO-CH₈ or N(COOCH₂Ph)₂; or phenyl₇ or 1- or 2-naphthyl,

where in each case the aryl radical is unsubstituted or substituted one or two times by

F, Cl, Br, CN, OH, (C₁-C₄)-alkyl, CF₃, O-(C₁-C₄)-alkyl, S(O)₀₋₂(C₁-C₆)-alkyl, NH₂, NH-SO₂-(C₁-C₄)-alkyl, COOH, CO-O-(C₁-C₄)-alkyl or CO-NH₂ and wherein the alkyl groups in each case have zeroene to seven hydrogen atoms may be replaced by fluorine;

R2, R3 independently of one another are

H, F, CI, Br, I, CN, N₃, NO₂, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₃-C₈)-cycloalkyl, S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₁-C₈)-alkyl, NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)-cycloalkyl, NI((C₁-C₈)-alkyl), NI((C₃-C₈)-cycloalkyl), NI((C₁-C₈)-alkyl), NI-CO-(C₁-C₈)-alkyl, NH-CO-(C₃-C₈)-cycloalkyl, SO₂-NH₂, SO₂-NH-(C₅-C₈)-alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl, NH-SO₂-NH₂, NH-SO₂-(C₁-C₈)-alkyl, NH-SO₂-(C₅-C₈)-cycloalkyl, O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-alkyl, COOH, CO-O(C₁-C₈)-alkyl, CO-O-(C₃-C₈)-cycloalkyl, CO-NI₂-CO-NH(C₁-C₈)-alkyl, CO-NI₂-CO-NH(C₁-C₈)-alkyl, CO-NI₃-C₈)-alkyl, (C₃-C₈)-cycloalkyl, (C₂-C₈)-alkenyl, (C₂-C₈)-alkynyl, where in the alkyl,

cycloalkyl, alkenyl and alkynyl groups in each case have zero to seven hydrogen atoms replaced by fluorine; or one hydrogen replaced by OH, OC(O)CH₃, O-CH₂-Ph, NH₂, NH-CO-CH₃ or N(COOCH₂Ph)₂; or phenyl₁ or 1- or 2-naphthyl, and wherein the alkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

or R2 and R3 together form the group -O-CH₂-O-; where in each case at least one of the radicals R1, R2, R3 and R4 is different from hydrogen;

X is \$;

Y is $(CH_2)_p$, where p is 0, 1, 2 or 3;

R5 is (C₁-C₁₈)-alkyl; (C₃-C₄- and C₆-C₈)-cycloalkyl, wherein the alkyl and cycloalkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

(CH₂)_r-COR6, where r is 1-6 and R6 is OH, O-(C₁-C₆)-alkyl or NH₂;

 CH_2 -CH(NHR7)-COR8, where R7 is H, C(O)- $(C_1$ - $C_6)$ -alkyl or C(O)O- $(C_1$ - $C_6)$ -alkyl and R8 is OH, O- $(C_1$ - $C_6)$ -alkyl or NH_2 ;

phenyl, 1- or 2-naphthyl, or biphenyl, where the rings or ring systems are unsubstituted or substituted one or two times by F, Cl, Br, I, CN, O(C_1 - C_8)-alkyl, O(C_3 - C_8)-cycloalkyl, O-CO-(C_1 - C_8)-alkyl, O-CO-(C_3 - C_8)-cycloalkyl, S(O)₀₋₂(C_1 - C_8)-alkyl, S(O)₀₋₂(C_3 - C_8)-cycloalkyl, NH₂, NH-(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-

alkyl]₂, N[(C_3 - C_8)-cycloalkyl]₂, NH-CO-(C_2 - C_8)-alkyl, NH-CO-(C_3 - C_8)-cycloalkyl; SO₃H; SO₂-NH₂, SO₂-NH-(C_1 - C_8)-alkyl, SO₂-NH-(C_3 - C_8)-cycloalkyl; NH-SO₂-(C_1 - C_8)-alkyl, NH-SO₂-(C_3 - C_8)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C_1 - C_8)-alkyl, COOH, CO-O(C_1 - C_8)-alkyl, CO-NH(C_1 - C_8)-alkyl, CO-N[(C_1 - C_8)-alkyl, or (C_3 - C_8)-cycloalkyl, or (C_3 - C_8)-cycloalkyl, where in the alkyl or cycloalkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

or a physiologically tolerable salt thereof, in any stereoisomeric form, or a mixture of any such compounds in any ratio.

- 2. (Currently amended) The compound as claimed in claim 1, in which
- R1, R4 independently of one another are H, F, Cl, Br, I, CN, N₃, NO₂, OH, O(C_1 - C_8)-alkyl, O(C_3 - C_4 and C_6 -C₈)-cycloalkyl, O-CH₂-phenyl, O-phenyl, O-CO-(C₁-C₈)-alkyl, O-CO- (C_3-C_8) -cycloalkyl, $S(O)_{0-2}(C_1-C_8)$ -alkyl, $S(O)_{0-2}(C_3-C_8)$ -cycloalkyl, NH₂, NH-(C_1 - C_8)-alkyl, NH-(C_3 - C_8)-cycloalkyl, N[(C_1 - C_8)-alkyl]₂, $N[(C_3-C_8)-cycloalkyl]_2$, NH-CO- (C_1-C_8) -alkyl, NH-CO- (C_3-C_8) cycloalkyl, SO₃H, SO₂-NH₂, SO₂-NH-(C₁-C₈)-alkyl, SO₂-NH-(C₃-C₈)cycloalkyl, NH-SO₂-NH₂, NH-SO₂-(C₁-C₈)-alkyl, NH-SO₂-(C₃-C₈)cycloalkyl, O-CH2-COOH, O-CH2-CO-O(C1-C8)-alkyl, COOH, CO- $O(C_1-C_8)$ -alkyl, $CO-O-(C_3-C_8)$ -cycloalkyl, $CO-NH_2$, $CO-NH(C_1-C_8)$ alkyl, CO-N[(C_1 - C_8)-alkyl]₂, (C_1 - C_8)-alkyl, (C_3 - C_8)-cycloalkyl, (C_2 - C_8)alkenyl, or (C2-C8)-alkynyl, wherein the alkyl, cycloalkyl, alkenyl and alkynyl groups in each case have zero to seven hydrogen atoms replaced by fluorine, or one hydrogen replaced by OH, OC(O)CH₃, O-CH2-Ph, NH2, NH-CO-CH3 or N(COOCH2Ph)2; or phenyl, or 1- or 2-naphthyl,

DEAV2001/0045-US-NP2

-б of 12-

where in each case the aryl radical is unsubstituted or substituted one or two times by

F. Cl. Br. CN.

OH, (C₁-C₄)-alkyl, CF₃, O-(C₁-C₄)-alkyl, S(O)₀₋₂(C₁-C₆)-alkyl, NH₂, NH-SO₂-(C₁-C₄)-alkyl; COOH, CO-O-(C₁-C₄)-alkyl, CO-NH₂ and wherein in the alkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine:

R2, R3 independently of one another are

H, F, Cl, Br, I, CN, N₃, NO₂, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O- $CO-(C_1-C_8)$ -alkyl, $O-CO-(C_3-C_8)$ -cycloalkyl, $S(O)_{0-2}(C_1-C_8)$ -alkyl, $S(O)_{0-2}(C_3-C_8)$ -cycloalkyl, NH₂, NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)cycloalkyl, $N[(C_1-C_8)-alkyl]_2$, $N[(C_8-C_8)-cycloalkyl]_2$, $NH-CO-(C_1-C_8)-cycloalkyl]_2$ alkyl, NH-CO-(C₃-C₈)-cycloalkyl, SO₃H, SO₂-NH₂, SO₂-NH-(C₅-C₈)alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl, NH-SO₂-NH₂, NH-SO₂-(C₁-C₈)alkyi, NH-SO₂-(C₅-C₈)-cycloalkyi, O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-alkyl, COOH, CO-O(C₁-C₈)-alkyl, CO-O-(C₃-C₈)-cycloalkyl, CO- NH_2 , $CO-NH(C_1-C_8)$ -alkyl, $CO-N[(C_1-C_8)$ -alkyl]₂, (C_1-C_8) -alkyl, (C_3-C_8) -cycloalkyl, (C_2-C_8) -alkenyl, (C_2-C_8) -alkynyl, where in the alkyl, alkenyl, cycloalkyl and alkynyl groups in each case have zero to seven hydrogen atoms replaced by fluorine; or one hydrogen replaced by OH, OG(O)CH₃, O-CH₂-Ph, NH₂, NH-CO-CH₃ or N(COOCH₂Ph)₂; or phenyl, or 1- or 2-naphthyl, wherein the alkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

or R2 and R3 together form the group -O-CH₂-O-;

where in each case at least one of the radicals R1, R2, R3 and R4 is different from hydrogen;

X is S;

Y is $(CH_2)_p$, where p is 0, 1, 2 or 3;

R5 is (C₁-C₁₈)-alkyl; (C₂-C₄- and C₆-C₈)-cycloalkyl, wherein the alkyl or cycloalkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

(CH₂),-COR6, where r is 1-6 and R6 is OH, O-(C₁-C₆)-alkyl or NH₂;

CH₂-CH(NHR7)-COR8, where R7 is H, C(O)-(C₁-C₆)-alkyl or C(O)O-(C₁-C₆)-alkyl and R8 is OH, O-(C₁-C₆)-alkyl or NH₂:

phenyl, 1- or 2-naphthyl, or biphenyl, where the rings or ring systems ean-be-are unsubstituted or substituted up-to-one or two times by F, Cl, Br, I, CN,

 $O(C_1-C_8)$ -alkyl, $O(C_3-C_8)$ -cycloalkyl, $O-CO-(C_1-C_8)$ -alkyl, $O-CO-(C_3-C_8)$ -cycloalkyl, $S(O)_{0-2}(C_1-C_8)$ -alkyl, $S(O)_{0-2}(C_3-C_8)$ -cycloalkyl, NH_2 , $NH-(C_1-C_8)$ -alkyl, $NH-(C_3-C_8)$ -cycloalkyl, $N[(C_1-C_8)$ -alkyl]_2, $N[(C_3-C_8)$ -cycloalkyl]_2, $NH-CO-(C_2-C_8)$ -alkyl, $NH-CO-(C_3-C_8)$ -cycloalkyl; SO_3H ; SO_2-NH_2 , $SO_2-NH-(C_1-C_8)$ -alkyl, $SO_2-NH-(C_3-C_8)$ -cycloalkyl; $NH-SO_2-NH_2$; $NH-SO_2-(C_1-C_8)$ -alkyl, $NH-SO_2-(C_3-C_8)$ -cycloalkyl; $NH-SO_2-NH_2$; $NH-SO_2-(C_1-C_8)$ -alkyl, $NH-SO_2-(C_3-C_8)$ -cycloalkyl; $NH-SO_2-(C_3-C_8)$ -cycloalkyl, $NH-SO_2-(C_3-C_8)$ -cycloalkyl, $NH-SO_2-(C_3-C_8)$ -cycloalkyl, $NH-SO_2-(C_3-C_8)$ -alkyl, $NH-SO_2-(C_3-C$

or a physiologically tolerable salt thereof, in any stereoisomeric form, or a mixture of any such compounds in any ratio.

- 3. (Currently amended) The compound as claimed in claim 1, in which
- R1, R4 independently of one another are H, F, Cl, or Br;
- H2, R3 independently of one another are
 H, F, Cl, Br, CN, CONH₂, NH-SO₂-(C₁-C₈)-alkyl, O-(C₁-C₈)-alkyl,
 COOH, (C₁-C₈)-alkyl, (C₁-C₈)-alkenyl, (C₁-C₈)-alkynyl, wherein the
 alkyl, alkenyl and alkynyl groups in each case have zero to seven
 hydrogen atoms replaced by fluorine; or

phenyl; where the rings may be phenyl is unsubstituted or substituted up to one or two times by F, Cl, Br, CN, OH, (C₁-C₄)-alkyl, CF₃, O-(C₁-C₄)-alkyl, wherein the alkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

where in each case at least one of the radicals R1, R2, R3 and R4 is different from hydrogen;

- X is S;
- Y is $(CH_2)_p$, where p is 0 or 1;
- R5 is (C_1-C_{18}) -alkyl; $(C_3-C_4-$ and $C_8-C_8)$ -cycloalkyl, where in the alkyl and cycloalkyl groups in each case have zero to seven hydrogen atoms replaced by fluorine;

DEAV2001/0045-US-NP2

-9 of 12-

 $(CH_2)_r$ -CO-O- $(C_1$ -C₆)-alkyl, where r is 1-6;

CH₂-CH(NHR7)-COR8, where R7 is H, C(O)-(C₁-C₄)-alkyl or C(O)O-(C₁-C₄)-alkyl and R8 is OH, O-(C₁-C₆)-alkyl or NH₂; or

phenyl;

or a physiologically tolerable salt thereof, in any stereoisomeric form, or a mixture of any such compounds in any ratio.

- 4. (Cancelled)
- 5. (Currently amended) The compound as claimed in claim 1, in which

R1 is H,

R2 is Cl.

R3 is H,

R4 is H,

R5 is CH₃,

X is S, and

Y is (CH2)p where p is 0

or a physiologically tolerable salt thereof, in any stereoisomeric form, or a mixture of any such compounds in any ratio.

6. - 29. (Cancelled)