Contents

1	Single and multiple integrals			2
	1.1	Riemann Integral		
		1.1.1	Subdivisions	2
		1.1.2	Darboux Sums	3
		1.1.3	Riemann Sums	3
	1.2	Antide	erivative of a Continuous Function	5
	1.3	Doubl	e Integrals	6
		1.3.1	Properties of Double Integrals	6
		1.3.2	Double Integral Calculations	6
		1.3.3	Applications of Double Integrals	11
	1.4	Triple	Integrals	15
		1.4.1	Triple Integral Calculations	15
		1.4.2	Applications of Integration	20
2	Improper integrals 2			22
	2.1	Integrals of functions defined over an unbounded interval		22
		2.1.1	Improper Integrals of Functions Defined on an Unbounded Interval .	23
	2.2	Impro	per integrals of functions defined on a bounded interval:	24
		2.2.1	Positivity of the Improper Integral:	25
		2.2.2	Convergence Criteria	26

Chapter 1

Single and multiple integrals

1.1 Riemann Integral

The Riemann integral of a function is a method of assigning a number to the area under the curve of a function over a certain interval.

1.1.1 Subdivisions

Definition 1.1 A subdivision (or partition) P of the interval [a,b] is a finite sequence of points:

$$P = \{x_0, x_1, \dots, x_n\}$$
 where $a = x_0 < x_1 < \dots < x_n = b, n \in \mathbb{N}$.

Definition 1.2 A subdivision P', is said to be finer than another subdivision P if P means that every point of P' is also a point of P.

Definition 1.3 A uniform subdivision of [a,b] is a subdivision where each subinterval Δx_i has the same length:

$$\Delta x = \frac{b-a}{n}$$
 for all $i = 1, 2, \dots, n$

1.1.2 Darboux Sums

Definition 1.4 A function $f:[a,b] \to \mathbb{R}$ is said to be bounded if there exists a constant M > 0 such that for all $x \in [a,b]$, we have:

$$\sup |f(x)| \le +\infty$$

Given a bounded function f on [a, b] and a partition $P = \{x_0, x_1, \dots, x_n\}$, we define the Darboux sums (upper and lower) as follows:

Definition 1.5 The lower Darboux sum L(f, P) is given by:

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

where $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$ is the infimum of f on the subinterval $[x_{i-1}, x_i]$.

Definition 1.6 The upper Darboux sum U(f, P) is defined as:

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ is the supremum of f in the subinterval $[x_{i-1}, x_i]$.

1.1.3 Riemann Sums

we consider the Riemann sum, defined as:

$$s_n = \sum_{i=1}^n (x_i - x_{i-1}) f(x_{i-1})$$

and

$$S_n = \sum_{i=1}^n (x_i - x_{i-1}) f(x_i)$$

More generally, if $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ satisfies $\varepsilon_i \in [x_{i-1}, x_i]$. The associated Riemann sum is given by:

$$S(f, P, \varepsilon) = \sum_{i=1}^{n} (x_i - x_{i-1}) f(\varepsilon_i)$$

Definition 1.7 We say that f is Riemann integrable on [a,b] if and only if:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} s_n$$

exists and is finite. In that case, we write:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_n = \lim_{n \to \infty} s_n$$

Theorem 1.1 If f is a continuous function on the interval [a,b], then the Riemann sums (S_n) and (s_n) converge to the Riemann integral $\int_a^b f(x) dx$.

Remark 1.1 If P is a uniform subdivision, we have:

$$s_n = \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a + \frac{b-a}{n}i\right)$$

and

$$S_n = \frac{b-a}{n} \sum_{i=1}^n f\left(a + \frac{b-a}{n}i\right)$$

Example 1.1 Compute the following sum:

$$S = \sum_{k=1}^{\infty} \frac{k}{n^2 + k}$$

First, rewrite the terms to resemble a Riemann sum form:

$$S_n = \sum_{k=1}^n \frac{k}{n^2 + k^2} = \sum_{k=1}^n \frac{k}{n^2 \left(1 + \frac{k^2}{n^2}\right)} = \frac{1}{n} \sum_{k=1}^n \frac{k/n}{1 + \left(\frac{k}{n}\right)^2}$$

Next, express this sum as a Riemann sum:

$$S_n = \left(\frac{b-a}{n}\right) \sum_{k=1}^n f\left(a + \frac{b-a}{n}k\right) = \frac{b-a}{n} \sum_{k=1}^n f\left(a + \frac{k}{n}\right)$$

Now, let's choose a = 0, b = 1, and $f(x) = \frac{x}{1+x^2}$. Therefore:

$$S_n = \frac{1}{n} \sum_{k=1}^{n} \frac{k/n}{1 + (k/n)^2}$$

Since the function $f(x) = \frac{x}{1+x^2}$ is continuous on the interval [0,1], the Riemann sum S_n converges as $n \to \infty$, and we have the following limit:

$$\lim_{n \to \infty} S_n = \int_0^1 \frac{x}{1 + x^2} \, dx$$

Now, compute the integral:

$$\int_0^1 \frac{x}{1+x^2} dx = \frac{1}{2} \left(\ln(1+x^2) \right) \Big|_0^1 = \frac{1}{2} \ln(2)$$

Thus, the sum converges to:

$$\lim_{n \to \infty} S_n = \frac{\ln(2)}{2}$$

1.2 Antiderivative of a Continuous Function

Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a continuous function.

Definition 1.8 A function $F: D \to \mathbb{R}$ is called an antiderivative of f in D if and only if:

- F is differentiable on D,
- F' = f on D.

Theorem 1.2 Any continuous function $f:[a,b] \to \mathbb{R}$ possesses an antiderivative. We write:

$$F(x) = \int_{a}^{x} f(t) dt$$

and

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Example 1.2 Find the antiderivative of $f(x) = 3x^2$.

$$F(x) = \int (3x^2 + e^{-x} - \cos 2x) \, dx = x^3 - e^{-x} + 2\sin 2x + C.$$

Thus, $F'(x) = 3x^2 + e^{-x} - \cos 2x$, and the function $F(x) = x^3 - e^{-x} + 2\sin 2x$ is an antiderivative of f(x).

1.3 Double Integrals

Definition 1.9 The double integral of the function f(x,y) over the domain D is defined as the limit of the sequence $(v_{n_t})_{n_t \in \mathbb{R}}$, as the largest subregion $\Delta s_k \to 0$ and $n \to \infty$. We denote this limit as:

$$\lim_{\substack{\max \Delta s_k \to 0 \\ n \to \infty}} \sum_{k=1}^n f(p_k) \Delta s_k = \iint_D f(x, y) \, dx \, dy$$

1.3.1 Properties of Double Integrals

Double integrals have several important properties, which are similar to those of single integrals:

Let f(x,y) be a continuous function, and $D=D_1\cup D_2\subset \mathbb{R}^2$ such that $D_1\cap D_2=\emptyset$

1. **Linearity:** If f(x,y) and g(x,y) are integrable over the region D, and $\alpha, \beta \in \mathbb{R}$, then:

$$\int \int_{D} [\alpha f(x,y) + \beta g(x,y)] dA = \alpha \int \int_{D} f(x,y) dA + \beta \int \int_{D} g(x,y) dA$$

2. **Additivity:** If D_1 and D_2 are two non-overlapping regions within D, then:

$$\int \int_{D} f(x, y) \, dA = \int \int_{D_1} f(x, y) \, dA + \int \int_{D_2} f(x, y) \, dA$$

3. **Positivity:** If $f(x,y) \ge 0$ for all $(x,y) \in D$, then:

$$\int \int_D f(x, y) \, dA \ge 0$$

4. Comparison Property: If $f(x,y) \leq g(x,y)$ for all $(x,y) \in D$, then:

$$\int \int_D f(x,y) \, dA \le \int \int_D f(x,y) \, dA$$

1.3.2 Double Integral Calculations

Let us consider a domain D in the xy-plane, which is bounded by two curves $y = \varphi(x)$ and $y = \psi(x)$, where $\varphi(x) \ge \psi(x)$, as well as the vertical lines x = a and x = b.

Definition 1.10 The domain D is said to be regular with respect to the x axis (or the y axis) if any line parallel to the x-axis (or the y-axis) passing through a point in D intersects its boundary at exactly two points, M_1 and M_2 (or N_1 and N_2).

Remark 1.2 If the domain D is regular with respect to both the x-axis and the y-axis, it is simply called a regular domain.

Theorem 1.3 Let $D \subset \mathbb{R}^2$ be a regular domain and $f: D \to \mathbb{R}$ a continuous function on D. Then:

$$\iint_D f(x,y) \, dx \, dy = \int_a^b \left(\int_{\psi(x)}^{\varphi(x)} f(x,y) \, dy \right) \, dx$$

where:

- [a,b] is the orthogonal projection of D onto the x-axis.
- $[\psi(x), \varphi(x)]$ is the intersection of D with the line where x is constant.

Example 1.3 Calculate the following integral

$$I = \iint_D x \, dy \, dx$$

where D is the region defined by $0 \le x \le 1$ and $0 \le y \le 2x$.

The region D is bounded by $0 \le x \le 1$ and $0 \le y \le 2x$. The area is shown in the figure below.

We calculate the double integral as follows:

$$I = \int_0^1 \int_0^{2x} x \, dy \, dx$$

Step 1: Integrating with respect to y:

$$\int_0^{2x} x \, dy = 2x^2$$

Step 2: Integrating with respect to x:

$$I = \int_0^1 2x^2 \, dx = \frac{2}{3}$$

Thus, the value of the integral is:

$$I = \frac{2}{3}$$

Theorem 1.4 Let f be a continuous function over a rectangle $D = [a, b] \times [c, d]$. Then we have:

$$\iint_D f(x,y) \, dx \, dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) dy$$

Example 1.4 Consider the domain $D = [1,2] \times [0,2] \subset \mathbb{R}^2$ and the function $f: D \to \mathbb{R}$ defined as $f(x,y) = ye^{xy}$. We want to compute:

$$I = \iint_D f(x, y) \, dx \, dy$$

Using Fubini's theorem, we proceed as follows:

$$I = \int_0^2 \left(\int_1^2 y e^{xy} \, dx \right) dy$$

First, compute the inner integral:

$$\int_{1}^{2} e^{xy} \, dx = \frac{1}{y} \left(e^{2y} - e^{y} \right)$$

Now, substitute this into the outer integral:

$$I = \int_0^2 \frac{1}{y} (e^{2y} - e^y) y \, dy = \int_0^2 (e^{2y} - e^y) \, dy$$

Next, compute the final integral:

$$I = \left[\frac{1}{2}e^{2y} - e^y\right]_0^2 = \frac{1}{2}e^4 - e^2 + 1 - \left(\frac{1}{2}e^0 - e^0\right) = \frac{1}{2}e^4 - e^2 + \frac{1}{2}$$

Corollary 1.1 Let $f_1(x)$ and $f_2(y)$ be two functions, then:

$$\iint_D f_1(x)f_2(y) dx dy = \left(\int_a^b f_1(x) dx\right) \left(\int_c^d f_2(y) dy\right)$$

Double Integration with a Change of Variables

Consider a continuous function on a domain $D \subset \mathbb{R}^2$. Using a change of variables, the double integral can be transformed accordingly. The method depends on the transformation used, such as polar, cylindrical, or spherical coordinates.

General Case: Change of Variables

Suppose we perform the following change of variables:

$$\begin{cases} x = \varphi(u, v) \\ y = \psi(u, v) \end{cases}$$

When (x, y) varies over the domain D, (u, v) varies over the domain D_1 . The double integral can be rewritten as:

$$\iint_D f(x,y) \, dx \, dy = \iint_{D_1} f(\varphi(u,v), \psi(u,v)) \, |\det(J)| \, du \, dv$$

where $|\det(J)|$ is the absolute value of the Jacobian determinant:

$$\det(J) = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \psi}{\partial u} & \frac{\partial \psi}{\partial v} \end{vmatrix} \neq 0$$

Example 1.5 Consider the integral:

$$I = \iint_D (x+y) \, dx \, dy$$

where $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \cdot y \le 2, -1 \le x + 3y \le 1\}.$

We make a change of variables to the domain $D_1 = \{(u, v) \in \mathbb{R}^2 : 1 \leq u \leq 2, -1 \leq v \leq 1\}$. Applying the transformation, we get:

$$I = \frac{1}{16} \iint_{D_1} (2u + 2v) \, du \, dv$$

Now, compute the integral:

$$I = \frac{1}{8} \int_{-1}^{1} \int_{1}^{2} (u+v) \, du \, dv$$

First, compute the inner integral:

$$\int_{1}^{2} (u+v) \, du = \left[\frac{1}{2}u^{2} + vu \right]_{1}^{2} = \frac{1}{2}(2^{2} - 1^{2}) + v(2 - 1) = \frac{3}{2} + v$$

Substituting into the outer integral:

$$I = \frac{1}{8} \int_{-1}^{1} \left(\frac{3}{2} + v \right) \, dv$$

Now, compute the final integral:

$$I = \frac{1}{8} \left[\frac{3}{2}v + \frac{1}{2}v^2 \right]_{-1}^{1} = \frac{1}{8} \left[\frac{3}{2}(1 - (-1)) + \frac{1}{2}(1^2 - (-1)^2) \right]$$

Thus, the value of the integral is:

$$I = \frac{3}{8}$$

Change to Polar Coordinates

In this case, let $u = \theta$ and v = r. The change of variables is given by:

$$\begin{cases} x = r \cos \theta = \varphi(r, \theta) \\ y = r \sin \theta = \psi(r, \theta) \end{cases}$$

where (u, v) varies in the domain D_1 , the double integral over D can be expressed as:

$$\iint_D f(x,y) \, dx \, dy = \iint_{D_1} f(\varphi(u,v), \psi(u,v)) \, |J| \, du \, dv,$$

where J is the Jacobian determinant of the transformation.

Example 1.6 Calculate the integral

$$I = \iint_D \frac{1}{1 + x^2 + y^2} \, dx \, dy,$$

where

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$$

To solve this, we use polar coordinates (r, θ) where:

$$x = r \cos \theta$$
, $y = r \sin \theta$.

The domain D in polar coordinates is:

$$D_1 = \{(r, \theta) \mid 0 \le r \le 1, \ 0 \le \theta \le 2\pi\}.$$

The Jacobian determinant of the transformation from Cartesian to polar coordinates is:

$$|J| = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r.$$

Thus, the integral becomes:

$$\iint_D \frac{1}{1 + x^2 + y^2} \, dx \, dy = \iint_{D_1} \frac{r \, dr \, d\theta}{1 + r^2}.$$

Compute the integral:

$$\iint_{D_1} \frac{r \, dr \, d\theta}{1 + r^2} = \int_0^{2\pi} \left(\int_0^1 \frac{r \, dr}{1 + r^2} \right) d\theta = \int_0^{2\pi} \left[\frac{1}{2} \ln(1 + r^2) \right]_0^1 d\theta$$
$$= \int_0^{2\pi} \frac{1}{2} \ln\left(\frac{1 + 1^2}{1 + 0^2} \right) d\theta = \int_0^{2\pi} \frac{1}{2} \ln 2 \, d\theta = \frac{1}{2} \ln 2 \cdot [\theta]_0^{2\pi} = \frac{1}{2} \ln 2 \cdot 2\pi$$
$$= \pi \ln 2.$$

1.3.3 Applications of Double Integrals

1. Area calculation

The area of the domain D is given by the formula:

$$A(D) = \iint_D dx \, dy.$$

Example 1.7 Calculate the area of D where:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < 1 \text{ and } 0 < x < e^y\}.$$

Calculate the area as follows:

$$A(D) = \iint_D dx \, dy$$
$$= \int_0^1 \int_0^{e^y} dx \, dy$$
$$= \int_0^1 e^y \, dy$$
$$= e^1 - e^0$$
$$= e - 1.$$

2. Mass calculation

Let $\rho(x,y)$ be the density of the material within the domain D. The total quantity of the material in the domain is given by:

$$m = \iint_D \rho(x, y) \, dx \, dy.$$

3. Surface area calculation

The area of the surface z = f(x, y) is given by the formula:

$$A = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx \, dy.$$

4. Center of Gravity

The coordinates of the center of gravity of a planar figure are given by the formulas:

$$x_C = \frac{\iint_D x \rho(x, y) \, dx \, dy}{\iint_D \rho(x, y) \, dx \, dy},$$
$$y_C = \frac{\iint_D y \rho(x, y) \, dx \, dy}{\iint_D \rho(x, y) \, dx \, dy}.$$

Example 1.8 Calculate the mass m and the coordinates of the center of gravity (x_c, y_c) of the plate bounded by the lines y = -x + 3, $y = \frac{x}{2}$, and x = 0, with the given density function:

$$\rho(x,y) = 3(x+y).$$

Consider the domain

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid y = -x + 3, \ y = \frac{x}{2}, \ x = 0 \right\}.$$

The mass m is calculated as follows:

$$m = \iint_D \rho(x, y) \, dx \, dy,$$

where $\rho(x,y) = 3(x+y)$. Thus,

$$m = \int_{0}^{2} \int_{x/2}^{-x+3} (3x+3y) \, dy \, dx$$

$$= \int_{0}^{2} \left[3x \left(y \Big|_{x/2}^{-x+3} \right) + 3 \left(\frac{y^{2}}{2} \Big|_{x/2}^{-x+3} \right) \right] \, dx$$

$$= \int_{0}^{2} \left[3x \left((-x+3) - \frac{x}{2} \right) + 3 \left(\frac{(-x+3)^{2} - \left(\frac{x}{2} \right)^{2}}{2} \right) \right] \, dx$$

$$= \int_{0}^{2} \left[3x \left(-x+3 - \frac{x}{2} \right) + \frac{3}{2} \left((-x+3)^{2} - \frac{x^{2}}{4} \right) \right] \, dx$$

$$= \int_{0}^{2} \left[3x \left(-\frac{3x}{2} + 3 \right) + \frac{3}{2} \left(x^{2} - 6x + 9 - \frac{x^{2}}{4} \right) \right] \, dx$$

$$= \int_{0}^{2} \left[-\frac{9x^{2}}{2} + 9x + \frac{3}{2} \left(\frac{3x^{2}}{4} - 6x + 9 \right) \right] \, dx$$

$$= \int_{0}^{2} \left[-\frac{9x^{2}}{2} + 9x + \frac{9x^{2}}{8} - 9x + \frac{27}{2} \right] \, dx$$

$$= \int_{0}^{2} \left[-\frac{27x^{2}}{8} + \frac{27}{2} \right] \, dx$$

$$= \left[-\frac{27}{8} \cdot \frac{x^{3}}{3} + \frac{27}{2} \cdot 2 \right]$$

$$= -\frac{27}{8} \cdot \frac{8}{3} + \frac{27}{2} \cdot 2$$

$$= -\frac{27}{3} + 27$$

$$= 18.$$

The center of gravity coordinates are given by:

$$x_C = \iint_D x \rho(x, y) dx dy \iint_D \rho(x, y) dx dy.$$

To find x_C :

$$x_{C} = \frac{\int_{0}^{2} \int_{x/2}^{-x+3} x(3x+3y) \, dy \, dx}{18}$$

$$= \frac{\int_{0}^{2} \left[x \left(3x \left(y \Big|_{x/2}^{-x+3} \right) + 3 \left(\frac{y^{2}}{2} \Big|_{x/2}^{-x+3} \right) \right) \right] \, dx}{18}$$

$$= \frac{\int_{0}^{2} \left[x \left(3x \left(-x + 3 - \frac{x}{2} \right) + \frac{3}{2} \left((-x+3)^{2} - \frac{x^{2}}{4} \right) \right) \right] \, dx}{18}$$

$$* \iint_{0} x \rho(x,y) dx dy$$

$$= \int_{0}^{2} \int_{0}^{x} x(3x+3y) dx dy$$

$$= \int_{0}^{1} \int_{x/2}^{-x+3} (3x^{2} + 3xy) \, dx dy = \frac{27}{2} = 13.5$$

$$x_{c} = \frac{13.5}{18} = 0.75$$

$$* y_{C} = \frac{\iint_{0} y \rho(x, y) dx dy}{\iint_{D} f(x, y) dx dy}$$

$$* \iint_{0} y \rho(x, y) dx dy =$$

$$= \iint_{0} y (3x + 3y) dx dy$$

$$= \int_{0}^{0} \int_{x_{2}}^{-x+3} 3x + 3y + 3y^{2} dx dy = 27.$$

So:
$$y_c = \frac{27}{18} = 1.5$$
.

$$(x_c, y_c) = (0, 75, 1.5)$$

1.4 Triple Integrals

Definition 1.11 Let $f: D \to \mathbb{R}$ be a function defined on a domain $D \subset \mathbb{R}^3$. The integral of f over D is called a triple integral and is denoted by:

$$\iiint_D f = \iiint_D f(x, y, z) \, dx \, dy \, dz.$$

Remark 1.3 Triple integrals share many of the algebraic properties of double integrals. In particular, the computation of triple integrals involves using the Fubini's theorem.

1.4.1 Triple Integral Calculations

Theorem 1.5 (Fubini's Theorem) states that if f is a continuous function on the rectangular domain $D = [a, b] \times [c, d] \times [e, f] \subset \mathbb{R}^3$, then the triple integral of f over D can be computed as:

$$\iiint_D f(x, y, z) dx dy dz = \int_e^f \left[\int_c^d \left(\int_a^b f(x, y, z) dx \right) dy \right] dz.$$

Example 1.9 Calculate the integral:

$$I = \iiint_{\Omega} (x + 3yz) \, dx \, dy \, dz,$$

Consider the integral over the domain D:

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 1, \ 1 \le y \le 2, \ 1 \le z \le 3\}.$$

Calculate the integral:

$$I = \int_{1}^{3} \int_{1}^{2} \int_{0}^{1} (x + 3yz) \, dx \, dy \, dz$$

$$= \int_{1}^{3} \int_{1}^{2} \left[\frac{1}{2} + 3xyz \right]_{0}^{2} \, dy \, dz$$

$$= \int_{1}^{2} \int_{1}^{3} \left[\frac{1}{2}y + \frac{3}{2}zy^{2} \right]_{1}^{2} \, dy \, dz$$

$$= \int_{1}^{2} \int_{1}^{3} \left(\frac{1}{2} + 6z - \frac{3}{2}z \right) \, dy \, dz$$

$$= \int_{1}^{2} \left[\frac{1}{2}z + 3z^{2} - \frac{3}{4}z^{2} \right]_{1}^{3} \, dz$$

$$= 19.$$

Remark 1.4 For a domain D defined as:

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \Delta, \ u(x, y) \le z \le v(x, y)\},\$$

where u and v are continuous functions and Δ is a bounded subset of \mathbb{R}^2 , the triple integral is given by:

$$\iiint_D f(x, y, z) dx dy dz = \int_{\Delta} \int_{u(x,y)}^{v(x,y)} f(x, y, z) dz dy dx.$$

Example 1.10 Calculate the integral:

$$I = \iiint_D dx \, dy \, dz$$

where D is given by:

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \Delta^2 = [0, 1]^2, 0 \le z \le x\}.$$

To compute this integral:

$$I = \iiint_D z \, dx \, dy \, dz$$
$$= \iint_{\Delta} \left(\int_0^x z \right) dx \, dy \, dz = 1/2.$$

Remark 1.5 In the case where:

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x_1 \le x \le x_2, y_1(x) \le y \le y_2(x), z_1(x, y) \le z \le z_2(x, y)\}$$

the triple integral of the function f(x, y, z) over D is given by:

$$\iiint_D f(x,y,z) \, dx \, dy \, dz = \int_{x_1}^{x_2} \int_{y_1(x)}^{y_2(x)} \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \, dz \, dy \, dx.$$

Example 1.11 Calculate the integral:

$$I = \iiint_D z \, dx \, dy \, dz$$

where D is given by:

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le \frac{1}{2}, \ x \le y \le 2x, \ 0 \le z \le \sqrt{1 - x^2 - y^2} \right\}.$$

Change of Variables

A. General Case

Consider the change of variables given by

$$\begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \\ z = z(u, v, w) \end{cases}$$

where x(u, v, w), y(u, v, w), and z(u, v, w) and their partial derivatives are continuous functions, and the Jacobian determinant J is non-zero:

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \neq 0.$$

Then, the triple integral of f(x, y, z) over D can be expressed as:

$$\iiint_D f(x,y,z)\,dx\,dy\,dz = \iiint_\Delta f(x(u,v,w),y(u,v,w),z(u,v,w))\,|J|\,\,du\,dv\,dw.$$

B. Cylindrical Coordinates

In cylindrical coordinates, the transformations are given by:

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

In this coordinate system, the Jacobian determinant J for the transformation is r, which accounts for the change in volume element when integrating. Hence, the integral in cylindrical coordinates becomes:

$$\iiint_D f(x, y, z) dx dy dz = \iiint_{\Delta} f(r \cos \theta, r \sin \theta, z) r dr d\theta dz.$$

The triple integral of a function f(x, y, z) can be calculated using the following formula:

$$\iiint_D f(x, y, z) dx dy dz = \iiint_{\Delta} f(r \cos \theta, r \sin \theta, z) |J| dr d\theta dz$$

where J is the Jacobian determinant of the coordinate transformation.

Example 1.12 Calculate the integral:

$$I = \iiint_D z\sqrt{x^2 + y^2} \, dx \, dy \, dz$$

where the domain D is bounded by the cylinder $x^2 + y^2 = 2z$, the plane y = 0, and the planes z = 0 and z = a.

Using cylindrical coordinates, we have:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

Thus, the integrand $z\sqrt{x^2+y^2}$ simplifies to:

$$z\sqrt{x^2 + y^2} = z\sqrt{r^2} = 3r$$

The volume element in cylindrical coordinates is:

$$dx dy dz = r dr d\theta dz$$

n cylindrical coordinates:

$$x^2 + y^2 = 2z$$

$$r^2 = 2z$$

so
$$r = 2z$$

Thus,
$$0 \le r \le 2\cos\theta$$

$$0 \le \theta \le \frac{\pi}{2}$$

$$0 \le z \le a$$

We obtain:

$$\iiint_{D} z \sqrt{x^{2} + y^{2}} \, dx \, dy \, dz$$

$$= \iiint_{D} zr \, r \, dr \, d\theta \, dz$$

$$= \int_{0}^{a} \int_{0}^{2\pi} \int_{0}^{\sqrt{2z}} zr^{2} \, dr \, d\theta \, dz$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} r^{2} \int_{0}^{a} z \, dz \, dr \, d\theta$$

$$= \frac{1}{2} a^{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos \theta} r^{2} \, dr \, d\theta$$

$$= \frac{4}{3} a^{2} \int_{0}^{\pi/2} \cos^{2} \theta \, d\theta$$

$$= \frac{4}{3} a^{2} \int_{0}^{\pi/2} (1 - \sin^{2} \theta) \cos \theta \, d\theta$$

$$= \frac{4}{3} a^{2} \left[\sin \theta - \frac{1}{3} \sin^{3} \theta \right]_{0}^{\pi/2}$$

$$= \frac{8}{9} a^{2}.$$

C. Spherical Coordinates

The spherical coordinates are given by:

$$\begin{cases} x = r \cos \theta \cos \varphi \\ y = r \sin \theta \cos \varphi \\ z = r \sin \varphi \end{cases}$$

where

$$\begin{cases} 0 \le r < \infty \\ 0 \le \theta < 2\pi \\ -\frac{\pi}{2} \le \varphi < \frac{\pi}{2} \end{cases}$$

The Jacobian of the transformation is $J = r^2 \cos \varphi$.

Example 1.13 Calculate:

$$I = \iiint_D dx \, dy \, dz$$

$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}.$$

The region Δ in spherical coordinates is defined as:

$$\Delta = \left\{ (r, \theta, \varphi) \in \mathbb{R}^3 \mid 0 \le r \le 1, 0 \le \theta \le 2\pi, -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2} \right\}$$

The integral is:

$$I = \iiint r^2 |\cos \varphi| \, dr \, d\varphi \, d\theta$$
$$= \left(\int_0^1 r^2 \, dr \right) \left(\int_0^{2\pi} d\theta \right) \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \varphi \, d\varphi \right)$$
$$= \frac{1}{3} \times 2\pi \times 2 = \frac{4}{3}\pi$$

1.4.2 Applications of Integration

1. Volume Calculation

To calculate the volume of a domain D, we use:

$$V = \iiint dx \, dy \, dz$$

2. Calculation of Mass and Centroid

Let $\rho(x, y, z)$ be the density of the material in a certain domain D. The mass M is calculated using the formula:

$$M = \iiint_D \rho(x, y, z) \, dx \, dy \, dz$$

The coordinates of the centroid are determined using the formulas:

$$\bar{x} = \frac{1}{M} \iiint_D x \rho(x, y, z) \, dx \, dy \, dz$$

$$\bar{y} = \frac{1}{M} \iiint_D y \rho(x, y, z) \, dx \, dy \, dz$$

$$\bar{z} = \frac{1}{M} \iiint_D z \rho(x, y, z) \, dx \, dy \, dz$$

Example 1.14 Calculate the coordinates of the centroid of a prismatic solid bounded by the planes x = 0, z = 0, y = 1, y = 3, and x + 2z = 3.

The volume V is calculated as follows:

$$V = \iiint_D dx \, dy \, dz$$

Chapter 1. Single and multiple integrals

The domain D is bounded by the planes x = 0, z = 0, y = 1, y = 3, and x + 2z = 3. To set up the integral, solve for the bounds:

$$V = \int_0^3 \int_1^3 \int_0^{\frac{3-x}{2}} dz \, dy \, dx$$

Here, $\rho(x,y,z)=1$ as the density is uniform.

Chapter 2

Improper integrals

2.1 Integrals of functions defined over an unbounded interval

Our goal in this chapter is to compute integrals over unbounded intervals (ranging up to $-\infty$, 0, or $+\infty$), or integrals on a bounded interval of functions having an infinite limit at some point of the integration interval, a type of integral called an improper integral. Example: $\int_{-1}^{1} \frac{1}{x} dx = ?$

Why is the answer unclear?

Definition 2.1 The integral defined by $\int_a^b f(x)dx$ is called an improper or generalized integral if:

- 1. f(x) tends toward infinity at one or more points in [a,b] (point of infinite discontinuity).
- 2. At least one of the integration bounds is infinite $(\pm \infty)$.

Example 2.1 (a) $\int_1^{+\infty} \frac{dt}{t^2+1}$ is improper at $+\infty$.

- (b) $\int_0^1 \frac{dt}{\sqrt{1-t}}$ is improper at 1.
- (c) $\int_0^2 \frac{1}{x} dx$ is improper at 0.
- (d) $\int_{7}^{\infty} \frac{1}{x-5} dx$ has an infinite bound.

Definition 2.2 (Singular Point) A point x_0 is called a singular point for a function f if it is not bounded at that point, i.e., $\lim_{x\to x_0} f(x) = \pm \infty$.

Definition 2.3 Two integrals are said to be of the same nature if they are either both convergent or both divergent.

2.1.1 Improper Integrals of Functions Defined on an Unbounded Interval

Let $f:[a,b] \to \mathbb{R}$ be a Riemann-integrable function on [a,b], where at least one of the bounds of the interval [a,b] is infinite.

Definition 2.4 Let f be a Riemann-integrable function on $[a, +\infty[$. We say that the improper integral $\int_0^{+\infty} f(t)dt$ converges if the limit $\lim_{x\to+\infty} \int_0^x f(t)dt$ is finite. In this case, we define:

$$\int_0^{+\infty} f(t)dt = \lim_{x \to +\infty} \int_0^x f(t)dt$$

In the contrary case, if:

$$\lim_{x \to +\infty} \int_0^x f(t)dt = \pm \infty$$

we say that the integral diverges.

Remark 2.1 For $\int_{-\infty}^{b} f(t)dt$, the definition can be adapted in an obvious way.

Example 2.2 1. Let $f(t) = \frac{1}{t}$. It is defined and continuous on $[1, +\infty[$. Indeed:

$$\lim_{x \to \infty} \int_{1}^{x} \frac{1}{t} dt = \lim_{x \to \infty} (\ln x - \ln 1) = +\infty$$

Thus, the generalized or improper integral $\int_1^{+\infty} \frac{1}{t} dt$ diverges.

2. Let $f(t) = \frac{1}{(t-1)^2}$. It is defined and continuous on $[2, +\infty[$.

$$\lim_{x \to \infty} \int_{2}^{x} \frac{1}{(t-1)^{2}} dt = \lim_{x \to \infty} \left(\frac{-1}{x-1} + 1 \right) = 1$$

Thus, the generalized integral $\int_2^{+\infty} \frac{1}{(t-1)^2} dt$ converges.

3. The integral $\int_0^{+\infty} \frac{1}{1+t} dt$ diverges:

$$\int_0^n \frac{1}{1+t} dt = \lim_{n \to \infty} \ln(1+n) = +\infty$$

Let $f(t) = \frac{1}{(t-1)^2}$. It is defined and continuous on $]-\infty,0]$.

$$\lim_{x \to \infty} \int_x^0 \frac{1}{(t-1)^2} dt = \lim_{x \to \infty} \left[\frac{-1}{t-1} \right]_x^0 = \lim_{x \to \infty} \left(1 + \frac{1}{t-1} \right) = 1.$$

Thus, the integral converges.

2.2 Improper integrals of functions defined on a bounded interval:

Let f be a function defined on [a, b].

Definition: Let $f:[a,b] \to \mathbb{R}$ be integrable on [a,b]. We say that the improper integral converges if

$$\lim_{x \to b} \int_{a}^{x} f(t) dt$$

is finite. In this case, we write:

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt.$$

In the contrary case, we say that the improper integral $\int_a^b f(t) dt$ diverges.

Remark 2.2 For a function f defined and integrable on [a, b], the definition adapts accordingly.

Example 2.3 1. Let $f(t) = \frac{1}{t}$, defined and continuous on [0,1]. Indeed,

$$\lim_{x \to 0} \int_{x}^{1} \frac{1}{t} dt = \lim_{x \to 0} (-\ln x) = +\infty.$$

Thus, $\int_0^1 \frac{1}{t} dt$ diverges.

2. Let $f(t) = \frac{1}{\sqrt{-t}}$, a function defined on [-1,0[and integrable in the sense of Riemann on [-1,0[. Indeed,

$$\lim_{x \to 0} \int_{-1}^{x} \frac{1}{\sqrt{-t}} dt = \lim_{x \to 0} (-2\sqrt{-x} + 2) = 2.$$

Thus, the improper integral converges on [-1, 0[.

Proposition 2.1 Let f be a function defined and integrable on [a, b]

Let $c \in]a, b[$ be a singular point, i.e., the function f is defined on $[a, b] \setminus \{c\}$. We say that:

$$\int_{a}^{b} f(t) dt$$

converges if both improper integrals,

$$\lim_{x \to c^{-}} \int_{a}^{x} f(t) dt \quad and \quad \lim_{x \to c^{+}} \int_{r}^{b} f(t) dt,$$

are finite. In this case, we define:

$$\int_{a}^{b} f(t) dt = \lim_{x \to c^{-}} \int_{a}^{x} f(t) dt + \lim_{x \to c^{+}} \int_{x}^{b} f(t) dt.$$

Otherwise, we say the integral diverges.

[Chasles' Relation]

Let $-\infty \le a < b \text{ (resp. } a < b \le +\infty) \text{ and let } f:[a,b[\to \mathbb{R} \text{ be continuous on } [a,b[\text{ (resp. }]a,b]). Suppose the improper integral } \int_a^b f(t) \, dt \text{ converges. Let } c \in]a,b[.$ Then:

- 1. $\int_a^c f(t) dt$ converges.
- 2. Moreover, we have:

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt.$$

2.2.1 Positivity of the Improper Integral:

Proposition 2.2 Let $f, g : [0, +\infty[\to \mathbb{R} \text{ be continuous functions. If both functions have convergent improper integrals and <math>f \leq g$, then:

$$\int_{a}^{+\infty} f(x) \, dx \le \int_{a}^{+\infty} g(x) \, dx.$$

In particular, for a non-negative function f, if $f \ge 0$, then:

$$\int_0^{+\infty} f(x) \, dx \ge 0.$$

Corollary 2.1 (Symmetry of the Improper Integral) Let $a \in \mathbb{R} \cup \{+\infty\}$, and let $f : [-a, a] \to \mathbb{R}$ be continuous on]-a, a[.

1.

If f is even, then:

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

If f is odd, then:

$$\int_{a}^{a} f(x) \, dx = 0.$$

2.2.2 Convergence Criteria

1. Improper Bounded Integral

Theorem 2.1 Let $a \in \mathbb{R}$ and $b \in \mathbb{R}$ with a < b. Let $f : [a, b] \to \mathbb{R}$ be a piecewise continuous function with $f \geq 0$. The improper integral $\int_a^b f(t)dt$ is convergent if and only if:

$$\exists M \in \mathbb{R}_+, \quad \forall x \in [a, b[, \quad F(x) = \int_a^x f(t)dt \leqslant M.$$

Example 2.4 Let's study the behavior of the integral I with:

$$I = \int_0^2 \cos^2\left(\frac{1}{t}\right) dt.$$

Thus, the integral $\int_0^2 \cos^2\left(\frac{1}{t}\right) dt$ converges.

2. Riemann Integrals

A Riemann integral is:

$$\int_{1}^{+\infty} \frac{1}{t^2} dt.$$

In this case, the antiderivative is explicit:

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt = \begin{cases} \lim_{x \to \infty} \left[\frac{1}{-\alpha + 1} t^{-\alpha + 1} \right]_{1}^{x}, & \text{if } \alpha \neq 1, \\ \lim_{x \to +\infty} [\ln t]_{1}^{x}, & \text{if } \alpha = 1. \end{cases}$$

We can immediately deduce the nature of Riemann integrals: if $\alpha > 1$, then $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ converges; if $\alpha \leq 1$, then $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ diverges.

Theorem 2.2 (Comparison Criterion) Let $a < b \le +\infty$ (or $-\infty < a < b$). Let f and $g: [a, b[\to \mathbb{R}$ be two continuous functions on [a, b[(or]a, b]). Suppose:

$$\forall x \in [a, b[, 0 \le f(x) \le g(x).$$

Then:

- If $\int_a^b g(x)dx$ converges, then $\int_a^b f(x)dx$ converges.
- If $\int_a^b f(x)dx$ diverges, then $\int_a^b g(x)dx$ also diverges.

Furthermore, in the case where both converge, we have:

$$0 \leqslant \int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

Remark 2.3 The comparison criterion is not applicable to functions that change sign.

Example 2.5 We aim to determine the convergence of:

$$I = \int_0^{+\infty} \frac{\sin^2(t)}{1 + t^2} dt.$$

The function $f(t) = \frac{\sin^2(t)}{1+t^2}$ is continuous, hence integrable in the Riemann sense over $[0, +\infty[$.

We have a potential issue with convergence at $t \to +\infty$. However, since the function is positive, we can apply the comparison criterion.

We know that:

$$0 \le \frac{\sin^2(t)}{1 + t^2} \le \frac{1}{1 + t^2} \quad \forall t \in [0, +\infty[.$$

Since the integral $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converges, due to the fact that its antiderivative is $\arctan(t)$ and $\arctan(t) \to \frac{\pi}{2}$ as $t \to +\infty$, we conclude that:

$$\int_0^{+\infty} \frac{\sin^2(t)}{1+t^2} dt$$

also converges by the comparison test.

3. Absolutely Convergent Integral

Let $f:[a,b[\to \mathbb{R}$ be a function that is integrable on [a,b[. We say that the improper integral $\int_a^b f(t)dt$ converges absolutely if and only if:

$$\int_{a}^{b} |f(t)|dt$$
 converges.

Proposition 2.3 If $\int_a^b |f(t)| dt$ converges, then $\int_a^b f(t) dt$ also converges and we have the inequality:

$$\left| \int_{a}^{b} f(t)dt \right| \leq \int_{a}^{b} |f(t)|dt.$$

Example 2.6 Consider the integral:

$$I = \int_{1}^{+\infty} \frac{\sin(t)}{t^2} dt.$$

We define the function $f(t) = \frac{\sin(t)}{t^2}$. This function is continuous on $[1, +\infty[$, and for all $t \in [1, +\infty[$, we have:

$$|f(t)| = \left|\frac{\sin(t)}{t^2}\right| \le \frac{1}{t^2}.$$

Since the integral $\int_1^{+\infty} \frac{1}{t^2} dt$ converges (this is a standard Riemann integral), we conclude that:

$$\int_{1}^{+\infty} \frac{\sin(t)}{t^2} dt$$

also converges.