Equipamentos de Imagiologia Médica

2021/2022

Teresa Sousa

Aula 6

Imagiologia de emissão

Princípios físicos da medicina nuclear

SPECT (Single Photon Emission Computed Tomography)

PET (Positron Emission Tomography)

Medicina Nuclear

Técnicas de imagem

- Cintigrafia
- Tomografia computorizada por emissão de fotão único (SPECT)
- Tomografia por emissão de positrão (PET)

Imagiologia por emissão de fotão único

Cintigrafia e SPECT

Cintigrafia

Regista a distribuição de material radioativo numa única imagem bidimensional, análoga ao raio-X. Muito usada para a triagem de tumores ósseos.

SPECT (Single Photon Emission Computed Tomography)

 Produz uma série de imagens bidimensionais da distribuição do radiofármaco, fornecendo informação 3D num processo análogo à TAC. Muito usado para estudos de perfusão do miocárdio, perfusão cerebral e tumores metastáticos.

Os radiofármacos mais comuns são complexos químicos de tecnécio (99mTc), um radioisótopo que emite raios gama a 140 keV.

Imagiologia por emissão de fotão único

Cintigrafia e SPECT

Deteção dos raios gama

Equipamento inicial - Rectilinear scanner

- Baseado num cristal detetor de radiação/cintilador e numa fonte de luz sob um filme ou ecrã ou uma impressora.
- Para cada posição do detetor eram feitas N contagens que eram traduzidas por um ponto no display (mais ou menos intenso consoante o número de contagens).
- O detetor funcionava por impulsos raios gama detetados um a um.
- > Imagem 2D obtida cintigrama.
- Sistema obsoleto substituído pelas câmaras gama.

γ-camera, scintillation camera, Anger camera

- Deteta e localiza a origem espacial de raios gama emitidos pelos marcadores radioativos administrados no paciente.
- Produz uma imagem dos órgãos do paciente com zonas frias que emitem poucos raios gama e zonas quentes que emitem muitos (comparativamente).

Componentes principais

- Colimador usado (principalmente) para eliminar raios gama difusos.
- Cintilador transforma a energia dos raios gama em fotões (cristal de cintilação - detetor).
- Fotomultiplicador converte os fotões incidentes em energia elétrica.
- Computador reconstrói e exibe uma imagem da densidade relativa da contagem espacial baseada na lógica de Anger.

Colimador

Colimador

Colimador: desempenho

> O seu design influencia o tradd-off entre resolução espacial, ruído e campo de visão (FOV).

- > M = ampliação = tamanho da imagem/ tamanho do objeto
- > Paralelo é o mais usado. Aceita feixes de radiação que viagem paralelemente.
- > Divergente usado quando o objeto/órgão a estudar é pequeno. Permite maior FOV que o paralelo.
- > Convergente usado quando a câmara é pequena (ex. equipamentos móveis).
- > Pinhole usado quando o objeto/órgão a estudar é muito pequeno. Inverte a imagem.

Colimador paralelo

Resolução (separação entre pontos)

$$R = \frac{d(L+z)}{L} \underset{(z\gg L)}{\simeq} \frac{d}{L}z$$

Parâmetero que aumenta	Resolução	Sensibilidade
Tamanho do orifício	Piora	Melhora
Número de orifícios	Sem alteração	Melhora
Comprimento do orifício	Melhora	Piora
Espessura septal	Sem alteração	Piora
Distância do objecto ao colimador	Piora	Sem alteração

Cintilador

- Normalmente, iodeto de sódio dopado com tálio NaI(TI): Z = 54, $\rho = 3.67$ g/cm3.
- 84% da radiação gama incidente interage através do efeito fotoelétrico.
- > Alta luminosidade ≈ 5600 fotões para 140 keV.

Eficácia do cristal cintilador em função da energia da radiação incidente e da espessura do cristal

- A eficácia do cristal cintilador é equivalente à percentagem de radiação gama incidente que é detetada.
- Há um compromisso entre espessura do cristal cintilador e resolução da imagem. Se for muito espesso, a capacidade de deteção é máxima, mas a possibilidade de difusão também é grande.
- > O cristal Nal não é utilizado em PET.

Gamma ray energy (keV)	0.25 in thick	0.375 in thick	0.5 in thick	1.0 inch thick
100	96%	99%	100%	100%
140.5	75%	90%	96%	100%
511	3.5%	5%	7%	14%

Fotomultiplicador

Princípio de funcionamento – Algoritmo de Anger para reconstrução das coordenadas

- A partir da quantidade de luz que chega a cada tubo fotomultiplicador é possível estimar onde ocorreu a emissão do raio incidente na câmara gama.
- A coordenada X da cintilação pode ser encontrada através da ponderação da posição de cada tubo fotomultiplicador pela força do seu sinal (peso) e calculando uma posição média a partir das posições ponderadas.

$$X = \frac{\sum_{i=1}^{N} U_{i} x_{i}}{\sum_{i=1}^{N} U_{i}}$$

Para além da posição, regista o tempo e a energia de cada raio detetado.

Princípio de funcionamento – Algoritmo de Anger para reconstrução das coordenadas

- A partir da quantidade de luz que chega a cada tubo fotomultiplicador é possível estimar onde ocorreu a emissão do raio incidente na câmara gama.
- A coordenada X da cintilação pode ser encontrada através da ponderação da posição de cada tubo fotomultiplicador pela força do seu sinal (peso) e calculando uma posição média a partir das posições ponderadas.

$$X = \frac{\sum_{i=1}^{N} U_i x_i}{\sum_{i=1}^{N} U_i}$$

 Para além da posição, regista o tempo e a energia de cada raio detetado.

Princípio de funcionamento – Algoritmo de Anger para reconstrução das coordenadas

- A partir da quantidade de luz que chega a cada tubo fotomultiplicador é possível estimar onde ocorreu a emissão do raio incidente na câmara gama.
- A coordenada X da cintilação pode ser encontrada através da ponderação da posição de cada tubo fotomultiplicador pela força do seu sinal (peso) e calculando uma posição média a partir das posições ponderadas.

$$X = \frac{\sum_{i=1}^{N} U_i x_i}{\sum_{i=1}^{N} U_i}$$

 Para além da posição, regista o tempo e a energia de cada raio detetado.

Princípio de funcionamento – Analisador da altura de pulso

- > Pulse-height analyzer PHA
- Tem como função básica, descartar radiação difusa ou radiação de energia distinta da do fotão γ de interesse.
- Apenas produz sinal quando a tensão do fotomultiplicador excede um nível pré-definido.
- > Vão apenas ser considerados na contagem final, da qual resultará a imagem, os pulsos correspondentes aos eventos ocorridos com uma energia contida dentro de uma janela considerada (no mínimo = FWHM, determina a resolução energética do sistema).

Princípio de funcionamento – Analisador da altura de pulso

Pulse-height analyzer – **PHA**

Princípio de funcionamento – Analisador da altura de pulso

- > Pulse-height analyzer **PHA**
- A absorção total do raio gama pelo cintilador
- > **B** raio X emitido pelo cintilador
- > **C** raio X emitido pelo colimador
- Janela larga → mais fotões → menor ruído / mais sinal
 → maior dispersão → menor contraste

Tipos de eventos

Patient with γ -emitting radionuclide concentrated in liver

- A. Evento ótimo para a deteção de raios gama.
- B. Difusão no detetor a radiação gama interage com o cintilador levando
 à distorção da informação sobre a localização da fonte emissora.
- C. Difusão no paciente o raio gama interage com o paciente e pode seguir com energia suficiente para chegar à camara gama.
- D. Radiação gama difusa atravessa as paredes do colimador.

Reconstrução da Imagem

Tal como acontece na tomografia computorizada a imagem pode ser reconstruída por retroprojeção filtrada.

A partir dos múltiplos tubos fotomultiplicadores os dados podem ser reconstruídos como múltiplos cortes adjacentes.

A aplicação de métodos iterativos é ainda residual, mas tem havido alguma aposta com o crescente poder computacional.

Passos principais: *correção para a dispersão e atenuação → filtragem → retroprojeção*

Reconstrução da Imagem

Passos principais: correção para a dispersão e atenuação → filtragem → retroprojeção

Correção da dispersão (dual-energy or multiple-energy window)

- > A contribuição de raios gama dispersos é tipicamente da mesma ordem que aqueles que não foram espalhados, mesmo usando o colimador.
- É definida uma (ou mais) janelas para além da janela de interesse centrada no fotopico, na qual se sabe existir apenas radiação dispersa. A contagem de radiação dispersa é então subtraída à contagem total da janela de interesse.

Reconstrução da Imagem

Passos principais: correção para a dispersão e atenuação → filtragem → retroprojeção

Correção da atenuação (Chang's multiplicative method or "transmission scan")

> Como a radiação emitida no centro do paciente precisa de passar por mais tecido para alcançar o detetor do que aquela que é emitida pelos órgãos mais próximos da superfície, os raios gama emitidos por um órgão mais interno são mais atenuados.

Reconstrução da Imagem

Passos principais: correção para a dispersão e atenuação → filtragem → retroprojeção

Correção da atenuação (Chang's multiplicative method or "transmission scan")

Como a radiação emitida no centro do paciente precisa de passar por mais tecido para alcançar o detetor do que aquela que é emitida pelos órgãos mais próximos da superfície, os raios gama emitidos por um órgão mais interno são mais atenuados.

Comparação com outros métodos de imagem

- › Baixa relação sinal-ruído (SNR)
- › Baixa resolução espacial
- > Relação contraste-ruído muito elevada (CNR)
- > Existem várias formas para tentar aumentar o SNR mas quase sempre prejudiciais para a resolução espacial

Relação sinal-ruído (SNR)

- ightarrow SNR = \sqrt{N} , N corresponde ao número total de contagens.
- > O número de desintegrações nucleares por unidade de tempo varia à volta de um valor médio descrito pela distribuição de Poisson.
- > Quanto maior o número de raios gama detetados, maior será o SNR.

Fatores que afetam o SNR:

- Dose administrada;
- Especificidade do radiofármaco;
- Tempo total de aquisição;
- > Atenuação no tecido (proximidade do paciente ao detetor e energia de radiação);
- > Energia de radiação;
- > Sensibilidade da câmara gama (espessura do cristal, parâmetros e geometria do colimador);
- > Filtragem (pós-processamento filtro passa-baixo reduz o nível de ruído).

Resolução espacial

Depende essencialmente de 4 fatores:

- > Resolução espacial da câmara gama (depende p.ex. do número de PMT e arranjo);
- Geometria do colimador;
- Dispersão da radiação no paciente e no detetor por efeito de Compton;
- > Filtragem da imagem (pós-processamento).

$$\delta r_{tot} = \sqrt{\delta r_{coll}^2 + \delta r_{int}^2 + \delta r_{Compton}^2}$$

 $\delta r_{coll} =$ collimator spatial resolution $\delta r_{int} =$ gamma camera intrinsic resolution $\delta r_{Compton} =$ Compton scattering contribution

Resolução espacial

Depende essencialmente de 4 fatores:

- > Resolução espacial da câmara gama (depende p.ex. do número de PMT e arranjo);
- Geometria do colimador;
- Dispersão da radiação no paciente e no detetor por efeito de Compton;
- > Filtragem da imagem (pós-processamento).

Relação contraste-ruído (CNR)

- > Extremamente elevado.
- > Não existe sinal emitido pelos órgãos que não são de interesse no exame.
- > Limitado apenas pelo efeito de Compton no paciente e pela pobre resolução da imagem.

Até sexta!