Optimization of deep networks

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Data

- Input: $\{\mathbf{x}_0, ..., \mathbf{x}_{N-1}\}$
- Label: $\{y_0, ..., y_{N-1}\}$
- Dataset: $D = \{(\mathbf{x}_0, \mathbf{y}_0), ..., (\mathbf{x}_{N-1}, \mathbf{y}_{N-1})\}$

•

Model

- Deep network $f:(\mathbf{x},\theta)\to\mathbf{0}$
 - Layers of computation
 - Parameters θ
 - Differentiable computation graph

Loss

- Differentiable $\ell(\mathbf{0},\mathbf{y})$
- Regression
 - Distance norm

$$\mathscr{E}(\mathbf{o}, \mathbf{y}) = \|\mathbf{o} - \mathbf{y}\|$$

- Classification
 - Cross Entropy

$$\mathscr{E}(\mathbf{o}, y) = -\log p(y)$$

- Over training dataset
 - $L(\theta) = \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim D}[\ell(f(\mathbf{x}, \theta), \mathbf{y})]$

Optimization

• Minimize $L(\theta)$

Gradient Descent

 Repeat until convergence:

$$\bullet \quad \theta := \theta - \epsilon \frac{dL(\theta)}{d\theta}$$

Issue with Gradient Descent

Slow to compute gradient

•
$$\frac{dL(\theta)}{d\theta} = \mathbb{E}_{\mathbf{x}, \mathbf{y} \in D} \left[\frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta} \right]$$