Digitalna vezja UL, FRI

Vaja 8, Registri, Števci (protoboard)

MSI integracija

Protoboard

MSI (Medium Scale Integration) – nekaj 100 transistorjev v integriranem vezju

Integrirana vezja v TTL logiki, serija 7400 Vrata:

- 7404 NOT
- 7408 AND
- 7432 OR
- 7486 XOR

Multiplekserji:

- 74157 2/1 MUX
- 74155 4/1 MUX

Pomnilne celice

- 7474 – D pomnilna celica

Semafor: https://www.youtube.com/watch?v=rrFDg97YI7s

MSI integracija

Protoboard

- MSI (Medium Scale Integration) nekaj 100 transistorjev v integriranem vezju
- Integrirana vezja v TTL logiki, serija 7400

Logična vrata:

- 7400 NAND, http://pdf1.alldatasheet.com/datasheet-pdf/view/12608/ONSEMI/7400.html
- 7408 AND, http://www.ti.com/lit/ds/symlink/sn54s08.pdf
- 7432 OR, http://www.ti.com/lit/ds/symlink/sn54s32.pdf
- 7486 XOR, http://www.ti.com/lit/ds/symlink/sn54s86.pdf

Multiplekserji:

- 74157 2/I MUX, http://www.ti.com/lit/ds/symlink/sn54s157.pdf
- 74155 4/I MUX, http://www.ti.com/lit/ds/symlink/sn54s153.pdf

Pomnilne celice:

7474 – D pomnilna celica, http://www.ti.com/lit/ds/symlink/sn54s74.pdf

Vaja 7 (DN1) Register

- ▶ Definirajte 2-bitni register $Y=(y_1, y_0)$ v tabeli stanj. Krmilni vhod a določa:
 - a=0: Vpis:Y(t+1)=X, kjer je X=(x₁, x₀)
 - ▶ a=1: ciklični pomik desno
- Naloge:
 - Zapišite tabelo stanj delovanja registra
 - Zapišite krmilni funkciji za D pomnilni celici z uporabo:
 - NAND operatorjev
 - 2/I MUXov
 - Realizirajte register v logisimu za obe rešitvi
 - Realizirajte register na protoboardu:

R1 – D pomnilna celica, NAND, 2/1MUX

а	y ₁	y ₀	y ₁ =D ₁	$y_0 = D_0$
	(t)	(t)	(t+1)	(t+1)
0	0	0	X ₁	x_0
0	0	1	X ₁ X ₁ X ₁ X ₁	x ₀ x ₀ x ₀ x ₀
0	1	0	X ₁	\mathbf{x}_0
0	1	1	X ₁	\mathbf{x}_0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	1

 $D_1 = \overline{a}.x_1 \vee a.y_0 = (\overline{a} \uparrow x_1) \uparrow (a \uparrow y_0)$

$$D_0 = \overline{a}.x_0 \vee a.y_1 = (\overline{a} \uparrow x_0) \uparrow (a \uparrow y_1)$$

Vaja 7 (DN2) Števec

- ▶ Definirajte 2-bitni števec $Q=(Q_1, Q_0)v$ tabeli stanj. Krmilni vhod a določa:
 - \rightarrow a=0: M=4, Dekrement, k=1
 - ▶ a=1: M=4 Inkrement, k=1
- Naloge:
 - Zapišite tabelo stanj delovanja registra
 - Zapišite krmilni funkciji za D pomnilni celici z uporabo
 - XOR operatorjev
 - 4/I MUXov
 - Realizirajte števec v logisimu
 - Realizirajte register na protoboardu

R2 – D pomnilna celica, XOR, 4/1MUX

а	Q_1	Q_0	Q_1	Q_0
	(t)	(t)	(t+1)	(t+1)
0	0	0	1	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

CLK

Ιu

R' Q'

 $D_1 = 1 \oplus a \oplus Q_1 \oplus Q_0$ XOR v logisim
nastaviti liho št 1 -> izhod =1 $D_0 = \overline{Q}_0$

