Spring 2022, Homework 2 (20 points in total)

Q1. (4 pts) Application Program Status Register (APSR)'s flags

After the following piece of instructions is executed, what value will be maintained in each of NZCV flags in APSR?

	MOV MOV SUBS	R0, #0x80000000 R1, #0x1 R2, R1, R0
Flag	Value	
N		
Z		
С		
V		

Q2. (6 pts) Memory Endianness and Alignment

1) As you see the following example with #1234 at memory address 0x20000000, allocate #9876543210 to memory address 0x20001000. (2pts)

An example: Big endian	0,402
Address	Data Contents (in hex)
0x20000000	04
0x20000001	D2
0x20000002	
0x20000003	

Little endian

Address	Data Contents (in hex)
0x20001000	D2
0x20001001	04
0x20001002	
0x20001003	

 $\frac{\textbf{A question you must solve:}}{\#9876543210}$

Big endian

Address	Data Contents (in hex)
0x20000000	02
0x20000001	4.0
0x20000002	Bo
0x20000003	16
T. 1	EA

Little 6	endian
----------	--------

Address	Data Contents (in hex)
0x20001000	EA
0x20001001	16
0x20001002	BO
0x20001003	46

24 (BO 16EA

2) As you see the following example with exampleData, allocate myData to the memory and fill out the spaces to indicate how each data element is mapped. Assume that the memory is based on a 32 -bit addressing system. (2pts)

```
A question you should solve: struct myData {
    char a; |
long long int b; |
double c; |

    short d; char *e; 4 float f; 4
                         + 0th
                                          +1st
                                                            + 2nd
                                                                              + 3rd
 0th byte
  4th byte
 8<sup>th</sup> byte
                                               b
                                                                                  Ь
  12th byte
  16th byte
 20th byte
 24<sup>th</sup> byte
 28<sup>th</sup> byte
 32<sup>nd</sup> byte
```

Q3. (10 pts) Introduction to VisUAL

Complete the following assembly program that 1) read characters (i.e., 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L') given at address "src", 2) change them to the corresponding lower-cased characters, and 3) store them at address "dst".

Submission: You need to submit two files.

File 1 (5pts): Your HW2-Q3.s. File 2 (5pts): A pdf file with:

- 1. (1pts) A screenshot of your code.
 - 2. (4pts) A screenshot of VisUAL's "View Memory Contents" window.

