1.Loading Dataset into tool

```
from google.colab import files uploaded
= files.upload()
```

Choose Files No file chosen

import pandas as pd import numpy
 as np import matplotlib.pyplot
 as plt import seaborn as sns
 import warnings
 warnings.filterwarnings('ignore'
)

```
data = pd.read_csv("abalone.csv")
```

2. Performing Visualization Univariate

Analysis

data.head()

	Sex Length Diameter		Whole		lhole	Shu	cked	Viscera	Shell	Rings		
	3	Sex Length Diameter			weight			we	ight	weight	weight	KTIIR2
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15			
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7			
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9			
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10			
4	10.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7				
sns.	boxplot((data['	Diamet	er'])								
	<matpl< th=""><th>otlib.a</th><th>ixess</th><th>ubplots</th><th>s.AxesS</th><th>ubplot</th><th>at 0x</th><th>7fc6fb</th><th>14bf10></th><th></th><th></th><th></th></matpl<>	otlib.a	ixess	ubplots	s.AxesS	ubplot	at 0x	7fc6fb	14bf10>			

plt.hist(data['Diameter'])

plt.plot(data['Diameter'].head(10))

[<matplotlib.lines.Line2D at 0x7fc6fac11c10>]

plt.pie(data['Diameter'].head(),autopct='%.3f')

sns.distplot(data['Diameter'].head(300))

plt.scatter(data['Diameter'].head(400),data['Length'].head(400))
<matplotlib.collections.PathCollection at 0x7fc6fa9c7750>

Text(0, 0.5, 'Rings')

sns.barplot(data['Sex'], data['Rings'])

sns.jointplot(data['Diameter'].head(50),data['Rings'].head(100))
<seaborn.axisgrid.JointGrid at 0x7fc6fa886b90>

Diameter sns.barplot('Diameter','Rings',hue='Sex',data=data.head())

sns.lineplot(data['Diameter'].head(),data['Rings'].head())
<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f7e5a150>

sns.pairplot(data.head(),hue='Height') <seaborn.axisgrid.PairGrid at 0x7fc6f7b0fd10>

sns.pairplot(data.head()) <seaborn.axisgrid.PairGrid at 0x7fc6f653ef10>

3. Perform Descriptive Statistics on the dataset

data.head()

	Sex Length Dia	meter Hei	ght	Whole Rings wei	Shucked ght weight	Viscera weightweigh	Shell t	
0	M 0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M 0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F 0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M 0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

data.tail()

	Whole	Shucked	Viscera	Shell	
Sex Length	Diameter Height weight	weight	weight	weight	Rings

```
4172
   F
      4173
    M
      4174
    M
      0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080 9
4175
    F
      4176
   M
      0.710
           0.555
               0.195
                   1.9485
                        0.9455
                              0.3765
                                  0.4950
                                        12
```

data.info()

```
<class 'pandas.core.frame.DataFrame'> RangeIndex:
4177 entries, 0 to 4176
```

Data columns (total 9 columns):

#	Column	Non-Null Count Dtype
0	Sex	4177 non-null object
1	Length	4177 non-null float64
2	Diameter	4177 non-null float64
3	Height	4177 non-null float64
4	Whole weight	4177 non-null float64
5	Shucked weight	4177 non-null float64
6	Viscera weight	4177 non-null float64
7	Shell weight	4177 non-null float64 8 Rings 4177 non-
	null int64	<pre>dtypes: float64(7), int64(1), object(1) memory usage:</pre>
	293.8+ KB	

data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
4							•

data.mode().T

	0	1
Sex	М	NaN
Length	0.55	0.625
Diameter	0.45	NaN
Height	0.15	NaN
Whole weight	0.2225	NaN
Shucked weight	0.175	NaN
Viscera weight	0.1715	NaN
Shell weight	0.275	NaN
Rings	9.0	NaN

data.shape

(4177, 9)

data.kurt()

Length	0.064621
Diameter	-0.045476
Height	76.025509
Whole weight	-0.023644
Shucked weight	0.595124
Viscera weight	0.084012
Shell weight	0.531926
Rings	2.330687

dtype: float64

data.skew()

Length -0.639873

Diameter -0.609198 Height 3.128817 Whole weight 0.530959 Shucked weight 0.719098 Viscera weight 0.591852 Shell weight 0.620927

Rings

1.114102 dtype:

float64 data.var()

Length 0.014422 Diameter 0.009849 Height 0.001750 Whole weight 0.240481 Shucked weight 0.049268 Viscera weight 0.012015

Shell weight 0.019377 Rings

10.395266 dtype: float64

data.nunique()

Sex	3	
Length	134	
Diameter	111	
Height	51	
Whole weight	2429	
Shucked weight	1515	
Viscera weight	880	
Shell weight	926	Rings

Shell weight

28 dtype: int64

4. Check for missing values and deal with them

data.isna()

	Sov	Length D	iomoton U	oi <i>a</i> ht	Whole	Shucked	Viscera	Shell	Rings
	Sex	Length D	Talleter H	eight	weight	weight	weight	weight	
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False

2False False False data.isna().any()

3False False False						
Sex False Length False 4 False	False	False	False	False	False	False
False False Diameter False	False	False	False	False	False	False
Height False	False	False	False	False	False	False
Whole weight False						
Shucked weight False 4172 False False	False	False	False	False	False	False
Viscera weight False 4173 False	False	False	False	False	False	False
False False Shell weight False	False	False	False	False	False	False
Rings False 4174 False	False	False	False	False	False	False
False False dtype: bool	False	False	False	False	False	False
1175 Falca Falca Falca						

4175 False False False

4176 False False False

data.isna().sum()

4177 rows × 9 columns

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Shell weight 0 Rings

0 dtype: int64

data.isna().any().sum()

0

5. Find the outliers and replace them outliers

quant

iqr

Length	0.1650
Diameter	0.1300
Height	0.0500
Whole weight	0.7115
Shucked weight	0.3160
Viscera weight	0.1595
Shell weight	0.1990 Rings
1. 67	

3.0000 dtype: float64

low=quant.loc[0.25]-(1.5*iqr)low

> Length 0.20250 Diameter 0.15500 Height 0.04000 Whole weight -0.62575 Shucked weight -0.28800 Viscera weight -0.14575 Shell weight -0.16850 Rings

3.50000 dtype: float64

up=quant.loc[0.75]+(1.5*iqr)up

> Length 0.86250 Diameter 0.67500 Height 0.24000 Whole weight 2.22025 Shucked weight 0.97600 Viscera weight 0.49225 Shell weight 0.62750 Rings

15.50000 dtype: float64

```
data['Diameter']=np.where(data['Diameter']<0.155,0.4078,data['Diameter'])</pre>
sns.boxplot(data['Diameter'])
     <matplotlib.axes._subplots.AxesSubplot at 0x7fc6f32fb0d0>
```


sns.boxplot(data['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f32f9b10>

data['Length']=np.where(data['Length']<0.23,0.52, data['Length'])
sns.boxplot(data['Length'])</pre>

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f323e710>

sns.boxplot(data['Height']) <matplotlib.axes._subplots.AxesSubplot at 0x7fc6f320f310>

data['Height']=np.where(data['Height']<0.04,0.139, data['Height'])
data['Height']=np.where(data['Height']>0.23,0.139, data['Height'])
sns.boxplot(data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f31a1090>

sns.boxplot(data['Whole weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f31a1050>

data['Whole weight']=np.where(data['Whole weight']>0.9,0.82, data['Whole weight'])
sns.boxplot(data['Whole weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f30ea050>

sns.boxplot(data['Shucked weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f304f110>

data['Shucked weight']=np.where(data['Shucked weight']>0.93,0.35, data['Shucked weight'])
sns.boxplot(data['Shucked weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f30d3e10>

data['Viscera weight']=np.where(data['Viscera weight']>0.46,0.18, data['Viscera weight'])
sns.boxplot(data['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc6f2f1a310>

6. Check for Categorical columns and perform encoding.

data

	Sex L	ength D	iamete	r Heigl	nt	Whol Rings	e Sh weigh	nucked t	Viscera weightweight	Shell weight	
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15		
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7		
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9		
3	1 0.	440 0.36	65 0.125	0.5160	0.2155	0.1140 (0.1550 ′	10 4 2 0	.330 0.255 0.08	0 0.2050 0.0895	5
	0.03	395 0.05	50 7								
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11		
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605	10		
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080	9		
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960	10		
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950	12		
4177	row	s × 9 col	umns								

7. Split the data into dependent and independent variables.

```
x=data.drop(columns= ['Rings'])
y=data['Rings'] x
```

Sex Le	ength D	iamete	r Heig	ht weig			Viscera	Shell
1	0.455	0.365	0.095	0.5140	0.2245 0.1010	0.1500		
1	0.350	0.265	0.090	0.2255	0.0995 0.0485	0.0700		
0	0.530	0.4	420	0.135	0.6770	0.2565	0.1415	0.2100
1	0.440	0.365		0.125	0.5160	0.2155	0.1140	0.1550
2	0.330	0.2	255	0.080	0.2050	0.0895	0.0395	0.0550
0	0.565	0.4	450	0.165	0.8870	0.3700	0.2390	0.2490
4173	1	0.590	0.440	0.135	0.8200 0.4390	0.2145 0.2605		
4174	1	0.600	0.475	0.205	0.8200 0.5255	0.2875 0.3080		
4175	0	0.625	0.485	0.150	0.8200 0.5310	0.2610 0.2960		
4176	1	0.710	0.555	0.195	0.8200 0.3500	0.3765 0.4950		
4177	rows × 8 columnsy							
15 7 9 10 7 11 10 9 10 12 Rings,	Length		, dtyp	e: int6	4			
	1 1 0 1 2 0 4173 4174 4175 4176 4177 15 7 9 10 7 11 10 9 10 12	1 0.455 1 0.350 0 0.530 1 0.440 2 0.330 0 0.565 4173 1 4174 1 4175 0 4176 1 4177 rows × 15 7 9 10 7 11 10 9 10 12	1 0.455 0.365 1 0.350 0.265 0 0.530 0.4 1 0.440 0.3 2 0.330 0.4 0 0.565 0.4 4173 1 0.590 4174 1 0.600 4175 0 0.625 4176 1 0.710 4177 rows × 8 column 15 7 9 10 7 11 10 9 10 12	1 0.455 0.365 0.095 1 0.350 0.265 0.090 0 0.530 0.420 1 0.440 0.365 2 0.330 0.255 0 0.565 0.450 4173 1 0.590 0.440 4174 1 0.600 0.475 4175 0 0.625 0.485 4176 1 0.710 0.555 4177 rows × 8 columnsy 15 7 9 10 7 11 10 9 10 12	1 0.455 0.365 0.095 0.5140 1 0.350 0.265 0.090 0.2255 0 0.530 0.420 0.135 1 0.440 0.365 0.125 2 0.330 0.255 0.080 0 0.565 0.450 0.165 4173 1 0.600 0.475 0.205 4175 0 0.625 0.485 0.150 4176 1 0.710 0.555 0.195 4177 rows × 8 columnsy 15 7 9 10 7 11 10 9 10 12	Sex Length Diameter Height weight weight 1 0.455 0.365 0.095 0.5140 0.2245 0.1010 1 0.350 0.265 0.090 0.2255 0.0995 0.0485 0 0.530 0.420 0.135 0.6770 1 0.440 0.365 0.125 0.5160 2 0.330 0.255 0.080 0.2050 0 0.565 0.450 0.165 0.8870 4173 1 0.590 0.440 0.135 0.8200 0.4390 4174 1 0.600 0.475 0.205 0.8200 0.5310 4175 0 0.625 0.485 0.150 0.8200 0.3500 4176 1 0.710 0.555 0.195 0.8200 0.3500 4177 rows × 8 columnsy	1 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500 1 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.0700 0 0.530 0.420 0.135 0.6770 0.2565 1 0.440 0.365 0.125 0.5160 0.2155 2 0.330 0.255 0.080 0.2050 0.0895 0 0.565 0.450 0.165 0.8870 0.3700 4173 1 0.600 0.475 0.205 0.8200 0.4390 0.2145 0.2605 4174 1 0.600 0.475 0.205 0.8200 0.5255 0.2875 0.3080 4175 0 0.625 0.485 0.150 0.8200 0.5310 0.2610 0.2960 4176 1 0.710 0.555 0.195 0.8200 0.3500 0.3765 0.4950 4177 rows × 8 columnsy	Sex Length Diameter Height weight weight weight weight weight weight weight weight weight weight weight weightweight 1 0.455 0.365 0.090 0.2245 0.0905 0.0700 1 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.0700 0 0.530 0.420 0.135 0.6770 0.2565 0.1415 1 0.440 0.365 0.125 0.5160 0.2155 0.1140 2 0.330 0.255 0.080 0.2050 0.0895 0.0395 0 0.565 0.450 0.1655 0.8870 0.3700 0.2390 4173 1 0.690 0.475 0.205 0.8200 0.5255 0.2875 0.3080 4175 0 0.625 0.485 0.150 0.8200 0.5310 0.2610 0.2960 4176 1 0.710 0.555

8. Scale the independent variables

```
[-1.26630752, 0.85566483, 0.78370057, ..., 0.89699645, 0.82336724, 0.47666033], [-0.0105225, 1.61894185, 1.53357412, ..., 0.00683308, 1.94673739, 2.00357336]])
```

9. Split the data into training and testing

```
from sklearn.model_selection import train_test_split x_train, x_test,
y_train, y_test = train_test_split(x,y, test_size = 0.2)
print(x_train.shape, x_test.shape)
```

(3341, 8) (836, 8) 10.Build

the Model

from sklearn.linear_model import LinearRegression
MLR=LinearRegression()

11.Train the model

MLR.fit(x_train,y_train)

LinearRegression()

12.Test the model

y_pred=MLR.predict(x_test) y_pred

```
array([10.91653685, 12.55744321, 14.1783292 , 9.35563082,
                                                                 7.43211414,
10.7774108
          , 13.38144253,
                                 6.66911369, 11.76080726,
                                                                 7.53439641,
7.24781575, 13.77037419, 4.91015581, 10.01260524, 8.7898418,
                                                                 6.28146017,
12.2936104 , 11.06755699, 10.4933959 , 7.17898304,
                                                                 9.95242944,
6.51892481, 9.82454574, 7.7532194, 10.08484009,
                                                   7.37144014, 3.97011024,
9.32347883, 6.51173485, 9.78511259,
                                     10.48817652, 7.02717025, 12.23620869,
11.92733123, 11.9889763 ,
                                      9.48480236, 9.03522977,
                                                                 9.37259489,
                                                 5.67381233, 12.6814806 ,
15.81723261, 10.96336071,
                                    11.21773345,
13.28242539,
             9.59962488,
                                    11.22923672,
                                                  7.68329353,
                                                                8.9789218
9.12587129, 9.91327472,
                           9.27332845, 11.40691421, 7.44863498, 9.70226101,
               11.0386109 , 7.08784785 , 8.6607063 , 9.63829063 , 8.34731917 ,
10.25461244,
9.9980484 , 11.37837552 , 7.13776877 , 13.3970746 , 6.6005046 ,
                                                                13.80133122,
14.00433854, 12.55379762, 12.71515009,
                                      8.76783583,
                                                                9.67712105,
11.74556463,
             7.0481293 , 13.49328878, 14.86989189,
                                                               11.62352645,
5.85855574, 12.90002072, 7.11057015, 10.23755979,
                                                11.63716039, 7.47199396,
7.73538948, 6.60751726, 10.71168715, 12.94158748, 9.31771432, 10.73992843,
12.24071745,
              9.25418102,
                                      6.62257397, 7.68153848, 14.49979284,
10.00129705, 14.10599593,
       8.50606455, 12.43504595, 13.34149143, 6.26697755, 12.89253409,
```

```
8.68848384,
                           8.54572413, 11.99055703,
                                                         7.85121139,
                                                                         9.56163179,
    13.36290365,
                   10.78403953,
                                      9.30937974,
                                                   11.4594138
                                                                         4.16215923,
     12.59767471, 6.35526601, 8.4916346, 6.19986428, 8.54794644,
                                                                         7.58145793,
    9.94107683, 10.87611465, 7.44113331, 10.61185092,
                                                              8.71409967, 10.1066312
                                                          11.56939474, 10.7563318 ,
     , 12.86689392,
                      8.20778755, 10.18096541,
     11.12633881, 10.96626657,
                                 7.64746453,
                                                          13.41757501, 11.51575829,
                                 9.85267727,
                                                         10.45124876,
    11.98897165,
                   9.18701964,
                                                                         6.64057572,
     12.04431206, 10.11158134,
                                 5.82165217,
                                                         12.18607365,
                                                                         8.60423064,
     12.18718685, 11.16390278,
                                 8.72233716,
                                                           8.49650453,
                                                                         7.86996467,
                                              9.82792655, 9.6680999, 10.72665502,
    8.84657686, 9.66808405, 8.73615923,
    4.2663484 , 11.37121585,
                                  11.8368494 , 10.91344912 , 8.22206639 , 9.40991284 ,
                               10.79331777, 12.12182431, 10.48082557, 11.13014672,
    10.35826288,
                      10.85040523, 11.94158594, 7.53904291, 16.32969502, 10.0599576
    9.60915214,
                 10.55489637, 12.97231242,
                                              9.82115735, 11.54038743, 10.06498328,
    13.98278119,
                                     12.16565027,
                                                     13.25618319,
                    11.2312891
                                                                         6.84026022,
                                    13.36212886,
                                                    11.37696088,
     7.98855866,
                    11.33819098,
                                                                         9.75802861,
    12.49069465,
                       6.61857583,
                                        9.63995432,
                                                      10.89865051,
                                                                        6.39186652,
    11.38711198,
                      7.26224245,
                                       9.62199106,
                                                       8.9485977
                                                                        11.94126235,
    9.90815329,
                       8.29264567,
                                       13.05631009,
                                                       11.15914804,
                                                                        11.48347318,
    11.69346289.
                      8.3393152
                                      11.07612004,
                                                        9.27797441.
                                                                        8.57070474,
                                       10.79726608,
                                                       13.61959519,
                                                                        11.58284241,
    9.26448714,
                        9.68189512,
                                                       8.4483055 ,
    12.55935344,
                      9.63744335,
                                       6.75192207,
                                                                        10.16571898,
    9.74165129,
                    11.19062134,
                                    10.10241387,
                                                    12.51229664,
                                                                        6.06419923,
     11.43234574,
                         6.91497992,
                                       10.01392441,
                                                        10.12005954,
                                                                        11.70438295,
    10.22112735, 7.6260467, 8.3323689, 7.68556049, 14.06249379,
                                                                        6.52822499,
                              , 11.96287382,
                                                7.29195347,
                                                                        10.51326401,
     12.86749644,
                   9.4623157
    11.49069921,
                    6.50913087, 11.00058015,
                                              9.76280581,
                                                                        10.97974981,
     10.04155794, 11.02494154, 14.1809637 , 11.40345707,
                                                                        11.96717269,
                   7.48584774, 10.27747979,
                                               9.75011268,
    11.06662751,
                                                                        12.59168959,
     6.71190392, 7.33721287, 13.85825682, 10.19252804,
                                                             6.89308223, 10.7374843
     , 11.10384361,
                      8.56803225, 11.13275726,
                                                          8.33529863, 11.49423452,
    15.07212069,
                    9.39948746, 10.84711907,
                                                          11.50568861, 11.57638575,
                                                          10.73585786, 10.44817603,
     17.16819123, 12.31621799,
                                9.19030825,
    8.11579752, 11.76465115, 10.5625014,
                                              7.66488272, 10.71086045, 11.67141199,
    8.76119503, 8.58315673, 7.21100131, 10.02118595, 10.17595407, 9.07289132,
    7.07286171,
                     7.85996632, 8.6740366, 8.5630248, 7.85467058, 8.15100189,
pred=MLR.predict(x_train) pred
    array([10.95753403, 12.51075719, 12.40779919, ..., 9.07933866,
    11.56316712, 13.05582865])
```

from sklearn.metrics import r2 score accuracy=r2 score(y test,y pred) accuracy

0.41382564717781056

```
MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
     array([9.91859626])
```

13. Measure the performance using Metrics

```
from sklearn import metrics
```

```
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test,y_pred))
     2.5137607628127996
```

LASSO

```
from sklearn.linear_model import Lasso, Ridge
#intialising model lso=Lasso(alpha=0.01,normalize=True)
#fit the model lso.fit(x_train,y_train)
Lasso(alpha=0.01, normalize=True) #prediction
on test data lso pred=lso.predict(x test)
#coef
coef=lso.coef
coef
    array([-0. , 0. ]
                                             , 0.39518116, 0.14092063,
                     , 0.91967498])
from sklearn import metrics
from sklearn.metrics import mean squared error
metrics.r2_score(y_test,lso_pred)
    0.32329491047485237
np.sqrt(mean_squared_error(y_test,lso_pred))
```

2.7009109039758865

RIDGE

```
#initialising model rg=Ridge(alpha=0.01, normalize=True)
#fit the model rg.fit(x train,y train)
Ridge(alpha=0.01, normalize=True)
#prediction
rg_pred=rg.predict(x_test) rg_pred
```

```
array([10.94284897, 12.55766909, 14.10332643,
                                                9.46590794,
                                                                  7.46924252,
10.84374888.
              13.31875055,
                                 6.65332469,
                                              11.69140963.
                                                                  7.50414008.
7.24475396, 13.60946869, 5.0169634, 10.02178785, 8.74951312,
                                                                  6.37222921,
12.31857953, 11.03870168, 10.49466108,
                                        7.57409317,
                                                                  9.98428586,
6.49266759, 9.84030265, 7.78278199, 10.19140983,
       7.39626063, 4.1188049, 9.31722402, 6.4991906, 9.87481467,
```

```
10.45452133, 7.05292159, 12.19226412, 11.88058887, 11.94176185,
9.45558448, 9.06859106, 9.4380396, 15.54387597, 10.87360643,
                                                               11.20175072,
5.63482434, 12.59657969, 13.11927611, 9.55165419, 11.2562201, 7.64193974,
9.03206614, 9.15363186, 9.94026085,
                                    9.25301756, 11.41125447, 7.42301827,
9.70191307, 10.26573426,
                           11.08877416, 7.07965658, 8.69369519, 9.63125155,
               9.93919976, 11.31014253, 7.12871125, 13.27672043, 6.63861343,
8.35676932,
13.67994264,
              13.90203172, 12.44586244, 12.76817899,
                                                             8.8034988
9.71751121,
              11.82803549,
                                 7.03886776,
                                               13.40189233,
                                                                14.74059217,
                 5.83139586,
                              12.79745889,
                                                7.1515056
                                                                10.34467008,
11.61507368,
                 7.47023681,
11.63301292,
                                 7.71387173,
                                                  6.57316872,
                                                                10.73587515,
12.87928907,
                 9.34315194,
                               10.78785181,
                                              12.26796854,
                                                                9.37745276,
6.78922748, 7.68734781, 14.34194069, 9.98310639, 13.96447937,
                                                                8.53787527,
12.42359455, 13.34447633, 6.26339643, 12.58179517,
                                                                 8.69409607,
8.54383129, 11.94010954, 8.1946398, 9.68244419,
                                                  13.26318783, 10.82008989,
9.36552525, 11.4907786, 4.30726312, 12.44922397, 6.35701734, 8.68860271,
6.20646585, 8.59848595,
                            7.63009379, 9.94773274, 10.98012079, 7.46937269,
                        8.88228329, 10.19672373, 12.86160653, 8.19526719,
10.62344088,
                        11.60327133, 10.79218988, 11.02069875, 11.00699291,
10.23768626,
7.60610003,
              13.36361692, 11.5001681, 11.8862438, 9.3112327, 9.80266528,
                6.61208891, 12.0188032 , _
8.58950503, 12.21901876, 11.14230194,
71954025, 8.80133574,
10.4561747
                                                                 5.83817825.
12.10925296,
                                                               8.80164233,
8.47970329, 7.868846 , 8.84692525, 9.71954025, 8.80133574,
                                                                9.94539604,
9.66443074, 10.67620234, 4.41311216, 11.38000599,
                                                                11.82690585,
11.01848448, 8.25251755, 9.4282695, 10.30600249,
                                                                10.83507059,
                                       9.64946864,
12.09765308, 10.50555409, 11.1258249 ,
                                                               10.86249846,
             7.56481939, 16.09047806, 10.12645866,
11.87144177,
                                                                10.55382485,
             9.76527987, 11.50905489, 10.09195624,
12.90061432,
                                                                13.84575226,
11.24850011, 12.16689801, 13.17750628, 6.82202086, 7.98381948, 11.3172104
, 13.20797834, 11.33163535, 9.72350255,
                                                 12.43979567,
                                                                6.62481266,
9.59872613, 10.82060265, 6.3839089, 11.51849218, 7.27601802, 9.59291787,
                            9.93000685, 8.369916 , 12.94527836, 11.17246295,
8.93509554, 11.78079094,
                       11.78751614, 8.32318974, 11.1001638 ,
11.52651747,
                9.30284616, 9.84731307, 10.90224953, 13.54597748, 11.51809613,
8.59486775,
                               6.73559313, 8.43671541, 10.13183962,
12.6077395 ,
                 9.61396008,
9.71644509, 11.13047849, 10.11506636, 12.5431072, 6.02801715,
7.29787387, 9.95811538, 10.14655093, 11.68566229,
                                                      10.23824892, 7.66218
                                                   6.50124904, 12.78422455,
   8.35979732, 7.72654777, 13.94137525,
9.41120031, 11.99078295, 7.5690498, 10.59963443, 11.45096506, 6.55795791,
            9.90628875,
                                    11.05943396, 10.12296683, 11.06098623,
11.08043936,
14.00848616, 11.37825823,
                                    11.87240228, 11.06310896,
                                                                7.47483432,
                                    12.48134598, 6.68424648,
                                                                7.33411183,
10.31308671,
             9.7785197 ,
                           6.91382568, 10.74358733, 11.0538112 , 8.6157287
13.75537421, 10.16269344,
, 11.13847756,
                         8.31586114, 11.42146266, 14.91667617, 9.36837014,
                        11.5305361 , 11.54418845, 16.93766664, 12.18356495,
10.81938363,
9.31738089, 10.7555976, 10.50502172, 8.09538677, 11.73799171, 10.77361763,
7.67458578, 10.66594777, 11.67663851, 9.05482079, 8.583721 ,
                                                                7.24914069,
9.98945701, 10.25967048, 9.15198791, 7.04613797,
       7.8642291 , 8.67148719, 8.61567912, 7.85428151, 8.13317584,
```

```
rg.coef_
```

array([-0.27998868, -0.781349 , 0.23517567, 0.93481937, 0.97644297, -1.41006666, -0.09708902, 1.9317592])

```
metrics.r2_score(y_test,rg_pred)
     0.41685467364102824
```

np.sqrt(mean_squared_error(y_test,rg_pred))

2.5072574844843873

Colab paid products - Cancel contracts here

Os completed at 12:00 PM

×