

152

-D&F

NATIONAL BUREAU OF STANDARDS REPORT

7152

INFILTRATION MEASUREMENTS IN TEN ELECTRICALLY HEATED HOUSES

by

Carl W. Coblenz
Paul R. Achenbach
and
Richard S. Gray

Report to

Rural Electrification Administration
U.S. Department of Agriculture
Washington 25, D. C.

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

FOR OFFICIAL USE ONLY

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

Information on the Bureau's publications can be found in NBS Circular 160, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$1.50), available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

1003-30-10630

May 18, 1961

7152

INFILTRATION MEASUREMENTS IN TEN ELECTRICALLY HEATED HOUSES

by

Carl W. Coblenz, Paul R. Achenbach
and Richard S. Gray
Mechanical Systems Section
Building Research Division

to
Rural Electrification Administration
U.S. Department of Agriculture
Washington 25, D. C.

IMPORTANT NOTICE

NATIONAL BUREAU OF STA
intended for use within the G
to additional evaluation and re
listing of this Report, either in
the Office of the Director, Nati
however, by the Government a
to reproduce additional copies

Approved for public release by the
Director of the National Institute of
Standards and Technology (NIST)
on October 9, 2015.

gress accounting documents
ally published it is subjected
production, or open-literature
n is obtained in writing from
uch permission is not needed,
epared if that agency wishes

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
FOR OFFICIAL USE ONLY

INFILTRATION MEASUREMENTS IN TEN ELECTRICALLY HEATED HOUSES

Carl W. Coblenz, Paul R. Achenbach
and Richard S. Gray

1. INTRODUCTION

The National Bureau of Standards, in cooperation with the Rural Electrification Administration, made a field study of the air infiltration in ten electrically heated houses in the region of the Indiana Statewide Rural Electric Cooperative, Inc., to obtain information that could be used to better evaluate the heating load of similar houses. All houses were occupied at the time of the tests, which caused certain inconveniences to the occupants as well as to the investigating team, and also affected, somewhat, the control that could be maintained over the test conditions. Selection of about a dozen houses had been planned for the study of air infiltration, comprising various combinations of one- and two-story brick and frame construction built over basements, crawl spaces, or on concrete slabs-on-grade. Not all of these twelve different constructions were available for investigation in the Indiana Statewide Rural Electric Cooperative region, so ten residences which comprised a good variety of the desired features were selected.

2. DESCRIPTION OF HOUSES

The size, shape, and type of each of the ten houses investigated are illustrated by the floor plans of the living areas in Figures 1 through 10 at the end of the report. Pertinent data on the materials used in the walls, floors, and ceilings, the size of windows and doors, as well as the age of the houses, and type of heating system are shown in Tables 1 through 10 at the end of the report.

A summary of the more significant data on the materials and dimensions for all the houses is shown in Table 11. This table indicates that there were four brick, five frame, and one stone building, of which six were one-story high and four were two stories in height. Five buildings had a basement, four had a crawl space, and one building was built on a concrete slab-on-grade. There were four practically new houses, and the ages of the others ranged from 6 to 46 years, averaging 27 years. The heated floor area of the buildings ranged from 598 square feet to 2,490 square feet, with an average of 1,427 square feet.

The total lengths of cracks around doors and windows are shown in this table. These measurements were taken from the respective floor plans according to methods described in the ASHRAE "Guide" and were used in calculating the air infiltration values based on the crack length.

Table 11
Summary of Pertinent Data on Houses

House Occupant	Material in Walls	No. of Stories	Foundation	Age years	Heated Floor Area sq ft	Crack Length, ft Windows		
						Door	Single	Double
Hardy	Brick	1	Crawl sp.	20	1220	57		219
Hufford	Frame	1	Basement	30	1229	38	46	234
Craig	Brick	1	Crawl sp.	New	1510	38		162
Metzger	Frame	2	Basement	20	1230	38	90	189
Wrigley	Frame	2	Basement	40	1510	76	126	126
Spann	Stone	1	Basement	New	1658	80		226
Yeiter	Frame	1	Crawl sp.	New	1130	40		162
Dieckman	Frame	2	Crawl sp.	46	1696	56	8	252
Farnsley	Brick	2	Basement	New	2490	39		224
Lunsford	Brick Apt.	1	Slab	6	598	46		68

3. TEST METHOD AND PROCEDURE

Infiltration is defined as the air leakage of a building through cracks and interstices around doors and windows and through floors and walls that cannot be directly controlled by the occupants. Ventilation includes the controlled displacement of air in a building through openings, such as windows, doors, ventilators, and combustion heating devices using either natural or mechanical motivation. The magnitude of infiltration depends on the wind and temperature forces, and the structural design, workmanship, and condition of the building.

The air change rate of an enclosure is defined as the ratio of the hourly rate at which the air enters (or leaves) the enclosure to the volume of the enclosure.

The infiltration of air in each of the ten electrically heated houses was determined by the tracer gas method.^{1/} The apparatus used was the portable infiltration meter developed at the National Bureau of Standards.^{2/} Approximately 1/2 percent of helium in relation to the total volume of the house was introduced after the test apparatus had been brought to a temperature equilibrium in the house. The helium was mixed with the room air by using several desk fans. The outside doors and windows were closed, whereas closets and cupboards, and all inside doors were kept open, so the concentration of tracer gas would decay in these spaces at the same rate as in the living space. The ten sensing probes were placed near the centers of the rooms about 3 feet above floor level, and readings were taken at each probe station at 5-minute intervals for a period of 1 hour or more. During the test, the indoor and outdoor temperatures were measured as well as the wind velocity and direction in the vicinity of the house about 10 feet above ground. Two to four infiltration tests were made in each dwelling at prevailing conditions over a period of about 2 days.

^{1/} Marley, W. G., "The Measurement of the Rate of Air Change," Journal of the Institution of Heating and Ventilating Engineers, Vol. 2, 1935.

^{2/} Coblenz, C. W., and Achenbach, P. R., "Design and Performance of a Portable Infiltration Meter," Transactions, American Society of Heating and Air Conditioning Engineers, Vol. 63, 1957.

4. TEST RESULTS

A total of thirty infiltration tests were made. Two of these had to be omitted, however, because of significant changes in the infiltration rates during the test period, caused by opening of outside doors.

It was found that the most practical way of evaluating the readings of the infiltration meter was to plot them on semi-logarithmic graph paper. It can be shown that the air change rate in an enclosed space during a selected interval is directly proportional to the natural logarithm of the ratio of the concentration of the tracer gas at the beginning and end of the time interval, if the conditions remain constant. Thus, a constant infiltration rate would be represented by a straight line on semi-logarithmic graph paper.

The decay rate of the tracer gas at each station of observation during the twenty-eight tests made in the ten sample houses was plotted on semi-logarithmic graph paper to obtain an average air change rate, and to reveal the steadiness of the infiltration process. These data are shown in Figures 11 to 38 at the end of the report. Each figure shows the house identification, the location of each sensing element, and the computations used to determine the air change rate at each station and for the house as a whole.

In most instances, a straight line was a good representation of the decay curve. In the few cases where a straight line was not a good approximation of the decay curve, the data for these stations were not used in determining the average value for the house. The air change rate for the entire house was computed as the sum of the products of the infiltration rates in the individual rooms, and the corresponding percentage of the total house volume represented by each room. In cases where the infiltration data for a particular room was not usable, the volume of that room was not included in the total house volume. This procedure is tantamount to assuming that the infiltration rate of a room for which the data was not available or could not be used was equal to the average infiltration rate for the rest of the house.

Table 12 is a summary of the average infiltration rate for each test and shows the average wind velocity and prevailing direction, the inside-outside temperature difference, the observed air change rate, and an air change rate

converted to a 10 mph wind velocity and an indoor-outdoor temperature difference of 40°F. The method of converting the observed values to a constant wind velocity and temperature difference will be discussed later in this report.

Table 12

Summary of Average Infiltration Rates
in Sample Houses

House Occupant	Test Number	Approx.			Observed	Air Changes per Hour	
		Avg. Wind Velocity mph	Prevailing Wind Direction	Indoor-Outdoor Temp. Diff. °F		Converted to 10 mph	Average Converted
Hardy	1	15	SW	45	0.84	0.67	
	2	15	W	45	0.77	0.62	
	3	15	WNW	48	0.77	0.60	0.63
	4	15	W	46	0.58	0.46	0.46*
Hufford	5	6	N	42	0.71	0.81	
	6	6	N	43	0.56	0.63	
	7	11	S	43	0.91	0.85	0.76
Craig	8	11	SW	27	0.51	0.58	
	9	15	SW	23	0.42	0.43	
	10	10	SSW	23	0.35	0.44	0.48
Metzger	11	13	SSW	24.5	1.13	1.22	
	12	12	SSW	20	0.85	1.03	
	13	12	SW	29	0.67	0.71	0.99
Wrigley	14	11	W	41	0.94	0.87	
	15	10	W	41.5	0.80	0.78	
	16	6	NW	44	0.79	0.85	
	17	11	N	45.5	0.96	0.86	0.84
Spann	18	6	WSW	54.5	0.55	0.53	
	19	12	WSW	49.5	0.39	0.33	
	20	8	WSW	46	0.23	0.23	0.36
Yeiter	21	6	NW	48	0.59	0.62	
	22	6	SW	50	0.42	0.43	0.53
Dieckman	23	6	NE - SW	38	0.59	0.71	
	24	6	SW	42.5	0.63	0.71	
	25	8	NW	53	0.67	0.62	0.68
Farnsley	27	11	W	46	0.50	0.51	0.51
Lunsford	28	6	NE	42.5	0.58	0.65	
	30	8	W	63.5	0.81	0.66	0.66

* Closed exhaust vents in kitchen and bathroom.

The average wind velocities that prevailed during the air infiltration tests ranged from 6 to 15 mph, and the inside-outside temperature differences were between 21° and 53°F. This variation in conditions made it difficult to correlate the air change rate with the actual air tightness of the houses. Not enough tests were made with any one house to evaluate directly the effects of wind velocity and temperature difference on the infiltration rate so a direct comparison could be made between houses at a selected climatic condition.

An empirical formula was used, therefore, to convert the observed infiltration rates to a uniform condition of wind velocity and temperature difference that was near to the average of the observed test conditions. Published information³/₄ on infiltration measurements in two test houses at the University of Illinois indicated that the air change rate in each was directly proportional to the indoor-outdoor temperature difference and to the wind velocity, and that the infiltration rate with no wind and no indoor-outdoor temperature difference ranged from 0.12 to 0.18 air change. The University of Illinois data further showed that an increase in wind velocity of 1 mph was equivalent to an increase of two or four degrees F in temperature difference in its effect on the infiltration rate. Thus, an equation of the form of equation (1) can be used to approximate the effect of wind and temperature difference on the air change rate.

$$A.C. = K (0.1 + 0.03W + 0.01T) \quad (1)$$

where A.C. = hourly air change rate

W = wind velocity, mph

T = inside-outside temperature
difference, °F

K = a constant depending on the air
tightness and height of the
building.

³/ Bahnfleth, D. R., et al, "Measurement of Infiltration into Residences," Part I, Transactions, American Society of Heating and Air Conditioning Engineers, Vol. 63, 1957.

⁴/ Same as above, Part II.

A wind velocity of 10 mph and a temperature difference of 40°F were used as a basis for comparing the infiltration rate of the several houses since it approximated the mean of the observed conditions. Thus, the computed air change rate (A.C.') at this selected condition could be determined by equation (2).

$$A.C.' = \frac{0.1 + (0.03 \times 10) + (0.01 \times 40)}{0.1 + 0.03W + 0.01T} \times A.C. \quad (2)$$

where, A.C., W, and T were the observed values in any given test.

Table 12 shows the air change rate for each test converted by equation (2) to a wind velocity of 10 mph and a temperature difference of 40°F. The table also shows the average converted value for all tests in each house. These converted values should be considered as approximate values because the absolute and relative values of the constants in equation (1) probably vary from house to house.

Table 13 summarizes the converted air change rates in relation to the type of building construction and foundation, and building height. It shows that the infiltration rate ranged from 0.36 to 0.99 air change under the same conditions. Since only one house in each category was tested, conclusions should not be drawn about categorical differences in air tightness of the different types of houses. The measured air infiltration rates of the two test houses 3/4 at the University of Illinois for these same wind and temperature conditions was 0.40 for a two-story brick veneer house over a basement and 0.58 for a single-story frame house over a basement.

Table 13 shows two values for the converted air change rate of the Hardy house. The first value, 0.63, was the average of three tests made with the exhaust vents in the kitchen and bathroom open, whereas the second value, 0.46, was obtained with these vents closed. Since the volume of the Hardy house was 9,760 cubic feet, it appears that these two vents produced a combined ventilation of about 1,660 cubic feet per hour.

Table 13

Air Change Rates of Residences, Converted to
10 mph Wind Velocity and 40°F Temperature Gradient

<u>Type of Foundation</u>	<u>Wall Material</u>	<u>Number of Stories</u>	
		<u>One</u>	<u>Two</u>
Basement	Stone	0.36	
	Brick	0.48	0.51
	Frame	0.76	0.99
Crawl space	Brick	(0.63)(0.46)*	
	Frame	0.53	0.68
Slab-on-grade	Brick	0.66	

* Closed exhaust vents in kitchen and bathroom.

The air infiltration of the buildings was also calculated using the crack method as outlined in the ASHRAE "Guide," 38th edition, 1960. For the purpose of this computation, it was assumed that all windows were weatherstripped, and a wind velocity of 15 mph was selected. According to the "Guide," the infiltration rate of 24 cubic feet per hour per foot of crack length for single double-hung wood sash windows was halved for double windows, and the air flow rate for doors was selected at 55 cubic feet per hour per foot perimeter. The value computed by this method for each of the houses is shown in the third column of Table 14. The last two columns in the table show the average values of observed infiltration rates and of these rates converted to a wind velocity of 10 mph and an inside-outside temperature difference of 40°F.

It will be noted that there is a better than ± 10 percent agreement between the infiltration rates calculated by the crack method and the converted values on seven of the ten houses studied even though the infiltration computation by the crack method was based on a 15 mph wind and does not take temperature difference into account as a variable. The Spann residence shows a computed crack length infiltration rate 50 percent higher than that converted from the test results, and the infiltration of the Dieckman residence as calculated by the crack method was approximately 30 percent lower than the corresponding converted value.

Table 14

Comparison of Air Change Rates Computed
by the Crack Method and Average Observed Values

<u>House Occupant</u>	<u>Description of Building</u>	<u>Computed by Crack Method for 15 mph Wind</u>	<u>Observed, Actual</u>	<u>Converted from Observed Data to 10 mph 40°F</u>
Hardy	1-story Brick, crawl space	0.59	0.74	0.59
Hufford	1-story Frame, basement	0.70	0.73	0.76
Craig	1-story Brick, basement	0.53	0.43	0.48
Metzger	2-story Frame, basement	0.94	0.88	0.99
Wrigley	2-story Frame, basement	0.75	0.87	0.84
Spann	1-story Stone, basement	0.54	0.39	0.36
Yeiter	1-story Frame, crawl space	0.49	0.51	0.53
Dieckman	2-story Frame, crawl space	0.47	0.68	0.68
Farnsley	2-story Brick, basement	0.55	0.50	0.51
Lunsford	1-story Brick, on slab	0.70	0.70	0.66

Table 1

E. Hardy Residence, Rt. 3, Greenfield

1-Story Brick House over Crawl Space
20 years old, Heated Floor Area 1220 ft²

Walls:

4" Brick
3 5/8" Studs
1/2" Plaster and Rock Lath
.002" Vapor Barrier

Ceiling (open):

1/2" Plaster and Rock Lath
2" x 6" Joists

Floor:

1" x 6" and 8" Subflooring
3/8" Plywood, with Vinyl Tile over
.002" Vapor Barrier

Insulation:

Walls - Double-Blown Cellulose Fiber
Ceiling - Loose Cellulose Fiber
Floor - 3 1/2" Cellulose Fiber Batts

Roof:

Pitch - 5'-2"/16'-6"
Height - 8'-0"
Overhang - 18"
Louvers - Twelve, 4" x 12"

Basement:

None (crawl space)

Windows:

Double-hung, wood sash, with aluminum storm, caulked,
sealed double glass in living room

Doors:

Side (to garage) - Solid wood
Rear - Wood with 1/2 glass, with storm
Front - Wood, with storm

Heating:

Electric baseboard

Table 2

T. E. Hufford Residence, Rt. 1, Charlottesville

1-Story Frame House over Basement
30 years old, Heated Floor Area 1229 ft²

Walls:

1/2" Wood Lap Siding
Building Paper
1" Sheathing
2" x 4" Studs
1" Plaster and Wood Lath

Ceiling:

1" Plaster and Wood Lath
2" x 6" Joists
1" Wood Flooring (except over living room)

Floor:

1" Pine Finish (no subflooring)
2" x 6" Joists

Insulation:

Walls - 4" Rock Wool
Ceiling - 4" Rock Wool, 2" Cellulose Fiber
Floor - None

Roof:

Pitch - 4/12
Louvers - One, 4" x 12", two, 4" x 8"

Basement:

Full, except under porch, no insulation or vapor barrier;
walls are cement block to ground level with brick above
to house frame; unheated

Windows:

Wood sash, storm windows in bedroom 2 and center sash of
bedroom 1 only, in attic there are 3 windows (front,
rear, north)

Doors:

Wood with 1/2 glass and storm to front and carport

Heating:

Electric baseboard

Table 3

J. S. Craig Residence, RR. 1, Wabash

1-Story Brick with Basement and Crawl Space
New House, Heated Floor Area 1510 ft²

Walls:

4" Brick Veneer
1" Sheathing
2" x 4" Studs
1/2" Plaster and Rock Lath
Vapor Barrier

Ceiling:

1/2" Plaster and Rock Lath
2" x 6" Joists
Vapor Barrier

Floor:

5/8" Finish Flooring
3/4" Subflooring
2" x 10" Joists
1/2" Plaster and Rock Lath

Insulation:

Walls - 4" Cellulose Fiber
Ceiling - 6" Cellulose Fiber
Floor - 2" Batts (Alfol)

Roof:

Pitch - 4/12
Overhang - 24"
Eave Vents - Twelve, 8" x 12"
Exhaust Fans

Basement:

Under kitchen, living room, dining room; plastered ceiling, cement block walls, concrete floor; rest is crawl space open to basement

Windows:

Casement with storm in bedroom 1, dining room, kitchen, casement with storm in baths, bedroom 2, sealed double glass in living room, four 12" x 15" single pane in basement

Doors:

Combination aluminum in front; all others solid wood

Heating:

Electric ceiling cable

Glass doors in fireplace

Table 4

D. A. Metzger Residence, RR. 3, N. Manchester, Ind.

2-Story Frame with Cinder Block Basement
20 years old, Heated Floor Area 1230 ft²

Walls:

1/4" Asbestos Shingles
Building Paper
1" Wood Sheathing
2" x 4" Studs
1/2" Plaster and Lath

Ceiling (open):

1st Floor (8')
1/2" Plaster and Lath
2" x 6" Joists
1" Subflooring

2nd Floor (7 1/2')
1/2" Plaster and Lath
2" x 6" Joists

Floor:

1/2" Finish (Pine)
1/2" Subflooring (Pine)
2" x 8" Joists

Insulation:

Walls - 3 5/8" Blown Cellulose Fiber
Ceiling - 6" Blown Cellulose Fiber
Floor - 2" Batts (Alfol), "U" is .04

Roof:

Pitch - 4/12
Overhang - 24"
Louvers - Four, 4" x 12"

Basement:

Under kitchen and bedroom 1, other area is crawl space,
walls are concrete block with two 18" x 24" casement
windows; crawl space opens into basement; unheated

Windows:

Wood sash, no storm in living room towards porch; wood
sash with storm on all other rooms

Doors:

Wood with 1/2 glass

Heating:

Electric baseboard

Exhaust fans in bathroom and kitchen

Table 5

R. Wrigley Residence, Rt. 3, Warsaw, Ind.

2-Story Frame House over Basement
40 years old, Heated Floor Area, 1510 ft²

Walls:

1/4" Asbestos Siding
5/8" Wood Sheathing
2" x 4" Studs
1" Plaster and Lath

Ceiling (open):

1st Floor (9')
1" Plaster and Lath
2" x 6" Joists
1" Flooring

2nd Floor (8')
1" Plaster and Lath
2" x 6" Joists

Floor:

1" Flooring
1/2" Subflooring
2" x 8" Joists

Insulation:

Walls - 3 5/8" Blown Cellulose Fiber
Ceiling - 6" Blown Cellulose Fiber, and 4" Rock Wool,
 10 years old
Floor - 3 5/8" Cellulose Fiber Batts

Roof (Asbestos Shingles):

Pitch - 1/2
Overhang - 18"
Louvers - Six, 10" x 10"
Exhaust Fans - 1 in kitchen

Basement:

Full, except for crawl space under porches and office;
poured cement walls, five 12" x 18" casement windows;
unheated

Windows:

Wood, single pane, with storm windows on first floor only

Doors:

Wood, with storm door on west entrance

Heating:

Electric baseboard

Table 6

M. Spann Residence, RR. 1, Pierceton

1-Story Stone Veneer over Basement
New House, Heated Floor Area 1658 ft²

Walls:

4" Stone Veneer
1" Sheathing
2" x 4" Studs
1/2" Plaster and Rock Lath

Ceiling:

1/2" Plaster and Rock Lath
2" x 8" Joists

Floor:

1/2" Pine Finish
1/2" Subflooring (Pine)
2" x 10" Joists

Insulation:

Walls - 3 1/2" Foil Backed Fiber Glass
Ceiling - 6" Fiber Glass, 4" Cellulose Fiber
Floor - 3 1/2" Foil Backed Fiber Glass

Roof (Wood Shingles):

Pitch - 4 1/2 /12
Overhang - 2'-6"
Louvers - Two, 12" x 24"

Basement:

12" Cement Block Walls
8" Poured Cement Floor
Height - 7 1/2'

Windows:

Sealed double glass throughout

Doors:

Solid wood with storm on east side, sliding double
glass door on west side, 2 wood with 1/2 glass
and storm on south side

Heating:

Electric cable (ceiling panel)

Exhaust fans in kitchen and bathroom

Table 7

B. Yeiter Residence, RR. 4, Warsaw

1-Story Frame House over Crawl Space
New House, Heated Floor Area 1130 ft²

Walls:

1/2" Redwood Cap Siding
Aluminum Foil
1" Ship Lap Siding (Pine)
2" x 4" Studs
Vapor Barrier
1/2" Plaster and Rock Lath

Ceiling:

1/2" Plaster and Rock Lath
2" x 6" Joists
Height - 7'-6"

Floor:

Tile
1/4" Building Board Underlayment
1" Ship Lap (Pine)
2" x 10" Joists
Vapor Barrier

Insulation:

Walls - 3 5/8" Cellulose Fiber
Ceiling - 6" Cellulose Fiber
Floor - 3" Rock Wool

Roof (Asphalt Shingles):

Pitch - 4/12
Overhang - 2¹/₂"
Louvers - Two, 270 sq in.

Basement:

None; crawl space, 2' high open crawl space with vapor barrier on ground

Windows:

Sealed double glass throughout

Doors:

Solid wood with storm

Heating:

Electric baseboard

Table 8

W. Dieckman Residence, RR., Greenburg, Ind.

2-Story Frame House over Crawl Space
46 years old, Heated Floor Area 1696 ft²

Walls:

1/2" Wood Lap Siding
3/4" Wood Sheathing
2" x 4" Studs
1" Plaster and Wood Lath

Ceiling:

1st Floor (9'4")
1" Plaster and Wood Lath
2" x 6" Joists
1" Flooring

2nd Floor (7'-6")
1" Plaster and Wood Lath
2" x 6" Joists

Floor:

1/2" Oak Finish
1/2" Subflooring
2" x 10" Joists

Insulation:

Walls - 3 5/8" Blown Cellulose Fiber
Ceiling - 6" Blown Cellulose Fiber
Floor - None, and none between 1st and 2nd floors

Roof:

Pitch - 1/2
Louvers - Two, 6" x 6", and three, 12" x 12"

Basement:

None (crawl space), 18" clearance; two, 12" x 24"
openings

Windows:

Wood sash with storm in heated spaces, except there
is no storm on first floor closet window

Doors:

Wood with 1/2 glass, with aluminum storm on all except
door to unheated porch which is an aluminum storm door

Heating:

Baseboard

No vapor barrier; exhaust fan in kitchen

Table 9

C. Farnsley Residence, Georgetown, Ind.

2-Story Brick House over Basement
New House, Heated Floor Area 2490 ft²

Walls:

4" Brick Veneer
Building Paper
3/4" Storm Sheathing
2" x 4" Studs
Vapor Barrier
3/4" Plaster and Rock Lath

Ceiling:

1st Floor (8')
1/2" Plaster and Rock Lath
2" x 8" Joists
3/4" Subflooring
1/4" Masonite

2nd Floor (6 1/2')
1/2" Plaster and Rock Lath
2" x 6" Joists

Floor:

1/4" Masonite
3/4" Subflooring (Fir)
2" x 4" Joists

Insulation:

Walls - 3 5/8" Blown Cellulose Fiber
Ceiling - 1st Floor (8'); 7 5/8" Blown Cellulose Fiber
 2nd Floor (6 1/2'); 6" Blown Cellulose Fiber
 and 3 5/8" between rafters
Floor - None

Roof:

Pitch - 8/12
Overhang - None
Louvers - Four, 72-sq-in. triangles

Windows:

Aluminum with storm

Doors:

Front - Solid wood with storm
Side - Wood with 1/2 glass, no storm

Vapor Barrier:

Placed in floor, wall and ceiling

Exhaust fan in kitchen

Table 10

R. E. Lunsford Residence, W. Campbell St., Indianapolis, Ind.

1-Story Brick Apartment over Concrete Slab
6 years old, Heated Floor Area 598 ft²

Walls:

4" Brick Veneer
1" Sheathing
2" x 4" Studs
Vapor Barrier
1/2" Plaster and Rock Lath

Ceiling:

1/2" Plaster and Rock Lath
2" x 6" Joists
Height - 8'

Floor:

5" Thick Concrete Slab

Insulation:

Floor - 1" Fiber Glass Board Perimeter Insulation
(2' down and 2' in)
Ceiling - 6" Blown Glass Fiber
Walls - 3 5/8" Fiber Glass Batts

Roof (Asphalt Shingles):

Pitch - 2/12
Overhang - 12"

Windows:

Sealed double glass

Doors:

North - Wood with 1/2 glass and storm
South - Sliding, double glass

EUGENE HARDY
RT3, GREENFIELD, IND.
1 STORY BRICK OVER
CRAWL SPACE, 20 YRS. OLD

FRONT

FRONT

T.E. HUFFORD
RR 1, CHARLOTTESVILLE, IND.
1 STORY FRAME OVER BASEMENT,
30 YEARS OLD

JAMES S. CRAIG
RR. WARBASH, IND.
1 STORY BRICK VENEER
WITH BASEMENT AND
CRAWL SPACE , NEW

DONALD A. METZGER
RR #3, N. MANCHESTER, IND.
2 STORY FRAME OVER
BASEMENT, 20 YEARS OLD

FRONT

1 ST FLOOR

RALPH WRIGLEY
RT # 3, WARSAW IND.
2 STORY FRAME OVER
BASEMENT, 40 YEARS OLD

MAYNARD SPANN
PIERCETON, IND.
1 STORY STONE VENEER
OVER BASEMENT, NEW

FRONT

BERYL YEITER
RR 4, WARSAW, IND.
1 STORY FRAME OVER
CRAWL SPACE , NEW

WILBUR DIECKMAN
RR, GREENBURG, IND.
2 STORY FRAME OVER
CRAWL SPACE, 46 YRS. OLD

2 ND FLOOR

Figure 6

CHARLES FARNSLEY
RR2, GEORGETOWN, IND.
2 STORY BRICK OVER BASEMENT, NEW

R.E. LUNSFORD
W. CAMPBELL ST.
INDIANAPOLIS, IND.
1 STORY BRICK VENEER
APT. ON SLAB, 6 YRS. OLD

E. HARDY RESIDENCE, RT. 3, GREENFIELD
BRICK HOUSE OVER CRAWL SPACE

TEST NO. 1
NOV. 29, 1960

$$1 \quad B_2 \text{ LN}(93/52) = .58$$

$$2 \quad LR \text{ LN}(87/39) = .80$$

$$3 \quad B_3 \text{ LN}(83/43) = .66$$

$$4 \quad B_1 \text{ LN}(95/48) = .63$$

$$5 \quad B_1 \text{ LN}(86/35) = .90$$

$$6 \quad LR \text{ LN}(90/51) = 1.04$$

$$7 \quad UTIELN(100/58) = .54$$

	SPACE FT ²	% TOTAL	
LR	365	34.0	.31
B ₁	225	20.2	.16
B ₂	142	12.5	.07
B ₃	112	9.9	.06
BATH G ₁	5.9	.06	
UTI	18	1.6	.04
KIT	120	10.6	.14
			.84

WEIGHTED AIR
CHANGE PER HOUR

$$8 \quad BATH \text{ LN}(85/30) = 1.04$$

$$9 \quad KIT \text{ LN}(73/20) = 1.30$$

$$10 \quad LR \text{ CANIT}$$

TIME, MINUTES

Figure 11

E. HARDY RESIDENCE, RT3, GREENFIELD
BRICK HOUSE OVER CRAWL SPACE

TEST NO. 3
NOV. 29, 1960

$$1 B_1 \text{ LN} (95/58) = .49$$

$$2 LR \text{ LN} (99/46) = .77$$

$$3 E_3 \text{ LN} (89/63) = .35$$

$$4 B_1 \text{ LN} (93/51) = .60$$

5 B_1 OMIT

$$6 LR \text{ LN} (90/29) = 1.16$$

$$7 UTIC LN (87/36) = .89$$

$$8 BATH \text{ LN} (82/29) = 1.04$$

$$9 KIT LN (83/25) = 1.24$$

$$10 LR \text{ LN} (92/35) = .97$$

SPACE	FT. ²	% TOTAL
LR	385	.32
B1	229	.12
B2	142	.12
B3	112	.03
BATH	67	.06
UTIC	78	.06
KIT	120	.12
	1133	.77

WEIGHTED AIR
CHANGE PER
 HOUR

0 10 20 30 40 50 60

TIME, MINUTES

Figure 12

E. HARDY RESIDENCE , RT.3 GREENFIELD
BRICK HOUSE OVER CRAWL SPACE

TEST NO 3
NOV. 29, 1960

Figure 13

E. HARDY RESIDENCE, RT. 3, GREENFIELD
BRICK HOUSE OVER CRAWL SPACE

TEST NO. 4
NOV 30, 1960

$$1 B_2 \text{ LN} (79/45) = .56$$

$$4 B_1 \text{ LN} (93/54) = .54$$

$$5 B_1 \text{ LN} (89/57) = .45$$

$$2 LR \text{ LN} (105/68) = .44$$

$$3 B_3 \text{ LN} (96/49) = .67$$

$$6 LR \text{ LN} (106/60) = .57$$

$$7 UTIL \text{ LN} (82/42) = .67$$

	SPACE FT. ²	CH TOTAL	
LR	385	36.1	.20
B ₁	229	21.5	.11
B ₂	142	13.5	.08
B ₃	112	10.5	.07
UTIL	78	7.3	.05
KIT	120	11.3	.07
TOTAL			.58

WEIGHTED
AIR CHANGE PER
HOUR

8 PATH OUT

$$9 KIT \text{ LN} (77/41) = .63$$

$$10 LR \text{ LN} (102/59) = .55$$

TIME, MINUTES

Figure 14

T.E. HUFFORD RESIDENCE, RT. 1, CHARLOTTESVILLE
FRAME HOUSE OVER BASEMENT

TEST NO. 5
DEC. 1, 1960

1 KIT OMIT

$$2 B_2 LN(82/44) = .62$$

$$3 KIT LN(87/47) = .62$$

$$4 LR LN(80/40) = .69$$

$$8 OFFICE LN(82/46) = .58$$

$$9 B_1 LN(73/44) = .58$$

$$10 LR LN(68/26) = .96$$

Figure 15

T.E. HUFFORD RESIDENCE, RT. 1, CHARLOTTSVILLE
FRAME HOUSE OVER BASEMENT

TE 37 NO 6
DEC. 1, 1960

$$1 \text{ KIT } LN(90/56) = .42$$

$$2 \text{ B}_2 \text{ LN}(79/56) = .79$$

$$3 \text{ KIT } LN(91/56) = .49$$

$$4 \text{ LR } LN(90/56) = .48$$

$$5 \text{ B}_1 \text{ LN}(99/56) = .51$$

$$6 \text{ B}_2 \text{ LN}(107/45) = .87$$

SPACE FT² % OF TOTAL

LR	454	38.5	.22
KIT	264	22.4	.10
B1	200	17.1	.09
B2	147	12.5	.06
BATH	35	3.0	.02
OFFICE	76	6.5	.03
	1178		.56

WEIGHTED AVE
CHANGE PER
HOUR

$$7 \text{ BATH } LN(108/63) = .54$$

$$8 \text{ OFF } LN(93/58) = .47$$

$$9 \text{ B}_1 \text{ LN}(99/60) = .50$$

$$10 \text{ LR } LN(85/43) = .68$$

0 10 20 30 40 50 60
TIME MINUTES

Figure 16

T.E. HUFFORD RESIDENCE, RT 1, CHARLOTTESVILLE
FRAME HOUSE OVER BASEMENT

TEST NO. A
DEC 2, 1963

ROOM	FT ²	% OF TOTAL
LR	454	.385
KIT	264	.224
B1	202	.171
B2	147	.125
BATH	35	.030
OFF	76	.065
	1178	.77

WEIGHTED AIR
CHANGE PER HOUR

J. S. CRAIG RESIDENCE, RR. 1, WABASH
BRICK HOUSE WITH BASEMENT AND CLOTHED SPACE

TEST NO. 8

DATE 3, 1960

$$5 \text{ BATH, LN } (95/64) = .40$$

$$9 \text{ KIT LN } (95/47) = .71$$

10 KIT OMIT

1 B, OMIT

$$2 B_3 LN (110/70) = .45$$

$$3 \text{ BATH, LN } (101/67) = .41$$

$$4 \text{ B}_2 LN (125/87) = .36$$

SPACE	FT. ²	Q.TD/Hr.	L
LR	338	29.9	.14
KIT	300	27	.19
CLOUND	35	3.1	.02
B2	153	13.6	.05
B3	127	11.2	.05
BATH	106	9.4	.04
BATH	64	5.7	.02
	1129		.51

WEIGHTED AIR
CHANGE PER HOUR

(6.7)

$$6 \text{ LR LN } (100/62) = .48$$

$$7 \text{ LR LN } (100/62) = .48$$

$$8 \text{ CLOUD LN } (94/57) = .50$$

0 10 20 30 40 50 60

TIME, MINUTES

J.S. CRAIG RESIDENCE, RR.1, WABASH
BRICK HOUSE WITH BASEMENT AND CRAWL SPACE

TEST NO 9
DEC. 12, 1960

Figure 19

J.S. CRAIG RESIDENCE, RR. 1, WABASH
BRICK HOUSE WITH BASEMENT AND CRAWL SPACE

TEST NO 10
DEC 4, 1960

Figure 20

D.A. METZGER RESIDENCE, RR.3, N. MANCHESTER
FRAME HOUSE WITH BASEMENT AND CRAWL SPACE

TEST NO. 11
DEC 5, 1960

D. A. METZGER RESIDENCE, RR. 3, N. MANCHESTER
FRAME HOUSE WITH BASEMENT AND CRAWL SPACE

TEST NO. 12
DEC 5, 1960

SPACE PT. IN. % TOTAL

LR	342	28.0	.34
KIT	165	13.5	.09
B1	137	10.4	.08
B2	130	10.7	.07
B3	163	13.4	.10
B4	153	12.6	.09
HALL	94	7.7	.05
BATH	45	3.7	.04
	1219		.85

WEIGHTED HWD CHANGE
PER HOUR

Figure 22

D.A. METZGER RESIDENCE, RR3, N. MANCHESTER
FRAME HOUSE WITH BASEMENT AND CRAWL SPACE

TEST NO. 13
DEC. 6, 1966

1 BATH LN(87/40) = .78
2 LR LN(83/48) = .55
3 LR BMT
4 KIT LN(74/35) = .69

5 B2 LN(84/43) = .67
6 B3 LN(97/45) = .70
7 B4 LN(93/49) = .64

8 B1 LN(85/37) = .83
9 HALL (28/40) = .79
10 B1 LN(94/43) = .78

SPACE	FT ²	No.	TOTAL
LR	34.2	38.0	.154
KIT	16.5	13.6	.093
B1	12.7	10.4	.057
B2	13.0	10.7	.072
B3	16.5	13.4	.094
B4	15.3	12.6	.081
HALL	9.4	7.7	.061
BATH	4.6	3.7	.030
	121.9		.672

UNWEIGHTED AIR CHANGE
PER HOUR

TIME, MINUTES

Figure 23

R. WRIGLEY RESIDENCE, RR. 3, WARSAW
FRAME HOUSE OVER BASEMENT

TEST NO 14
DEC 7, 1960

Figure 24

R. WRIGLEY RESIDENCE, RR.3, WARSAW
FRAME HOUSE OVER BASEMENT

TEST NO. 15
DEC 7, 1960

R. WRIGLEY RESIDENCE, RR.3, WARSAW
FRAME HOUSE OVER BASEMENT

TEST NO 16
DEC 8, 1960

Figure 26

R. WRIGLEY RESIDENCE, RR. 3, WARSAW
FRAME HOUSE OVER BASEMENT

TEST NO. 17
DEC. 8, 1960

Figure 27

M. SPANN RESIDENCE

TEST NO. 18
DEC. 7, 1960

Figure 28

M. SPANN RESIDENCE

TEST NO. 19
DEC. 9, 1960

Figure 29

M. SPANN RESIDENCE

TEST NO. 20
DEC. 10, 1960

Figure 30

B. YEITER RESIDENCE

TEST NO. 1
DEC 12 1960

Figure 31

B. YEITER RESIDENCE

TEST NO 22
DEC. 13, 1960

Figure 32

W. DIECKMAN RESIDENCE

TEST NO. 23
DEC 15, 1966

$$1 \text{ BR } LN(EG/38) = .81$$

$$2 \text{ LR } LN(67/38) = .78$$

$$3 \text{ BR } LN(73/30) = .89$$

$$5 \times 17 LN(67/72) = 1.05$$

$$4 \text{ BATH } LN(76/42) = .60$$

$$6 \text{ BY } LN(100/92) = .65$$

SPACE	FT ²	% TO TOTL	AIR CHG/HR
GR	234	16.8	.12
DR	234	16.4	.11
B.	198	14.3	.12
R.	239	17.2	.09
B4	223	16.1	.10
KIT	261	19.8	.11
	1357	100.0	.11

UNWEIGHTED AIR
CHARGE PER HOUR

$$8 \text{ BR } LN(30/49) = .49$$

$$9 \text{ DR } LN(73/37) = .68$$

$$10 \text{ LR } LN(67/37) = .59$$

0 10 20 30 40 50

TIME. MINUTES

Figure 33

W. L. ELKHORN

DEC 15 1960

5KIT, $\ln(13/50) = .75$

6#4, $\ln(100/50) = .69$

7B, $\ln(103/57) = .56$

STATION	FT.	9/27 1960	WATER LEVEL
CR	234	15.3	.07
DR	224	15.8	.08
P1	198	11.8	.10
P2	239	14.1	.07
P3	245	14.4	.08
P4	223	13.1	.09
KIT	261	16.4	.12
BATH	62	8.6	.02
		16.6	.65

WEIGHTED FMR
CHANGE FOR
1 HOUR
(1,12)

8B, $\ln(84/40) = .47$

9DZ, $\ln(74/42) = .57$

10LR, $\ln(74/42) = .57$

TIME, MINUTES

Figure 34

DEC 16, 1960

W. J. CHECKMAN

$$1 \text{ BR } \ln(97/84) = .110$$

$$2 \text{ LR } \ln(83/40) = .73$$

$$3 \text{ BI } \ln(55/42) = .69$$

$$4 \text{ BATH } \ln(87/57) = .52$$

$$5 \text{ KIT } \ln(128/14) = .92$$

$$6 \text{ BY } \ln(100/54) = .62$$

$$7 \text{ B3 } \ln(115/82) = .33$$

SPACE FT² Q/H TOTAL

LR	234	13.8	.13
DR	234	13.8	.12
B1	178	11.7	.08
B1	239	14.1	.06
B3	245	14.4	.05
B4	223	13.1	.08
KIT	241	15.4	.13
BATH	62	3.6	.02
	1674		.67

WEIGHTED
AIR CHANGE PER
HOUR

$$8 \text{ B1 } \ln(74/57) = .45$$

$$9 \text{ DR } \ln(80/52) = .89$$

$$10 \text{ LR } \ln(77/25) = 1.13$$

10

20

30

40

50

60

TIME, MINUTES

Figure 35

DEC. 17, 196-

C. FANNING TEST

Figure 36

R.E. LUDWIG

TEST NO. 20
DEC. 20, 1962

Figure 37

1 BR ON UNIT

2 BR LN (19/29) = 1.00

3 FR LN (83/83) = .95

4 LR LN (29/49) = .59

5 LR LN (91/39) = .73

6 LR LN (84/44) = .67

7 BATH LN (83/49) = .59

SPACE FT² / 0.6 TOTAL

LR	22.9	39.9	27
BR	14.2	24.7	23
KIT	16.8	29.3	27
BATH	3.5	6.1	4
	57.4		81

WEIGHTED AIR

CHANGE PER HOUR

8 DR LN (86/47) = 1.60

9 KIT LN (81/31) = .96

10 KIT LN (74/23) = 1.17

10

20

30

40

50

60

TIME, MINUTES

Figure 38

U. S. DEPARTMENT OF COMMERCE

Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics.

Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Analytical Chemistry. Inorganic Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enamelled Metals. Crystal Growth.

Physical Properties. Constitution and Microstructure.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Applications Engineering.

Atomic Physics. Spectroscopy. Radiometry. Solid State Physics. Electron Physics. Atomic Physics.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Molecular Kinetics. Mass Spectrometry. Molecular Structure and Radiation Chemistry.

* Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time Interval Standards. Electronic Calibration Center. Millimeter-Wave Research. Microwave Circuit Standards.

Radio Systems. High Frequency and Very High Frequency Research. Modulation Research. Antenna Research. Navigation Systems. Space Telecommunications.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

