Repercusión de los desarrollos de Alan Turing y Kurt Gödel

Francisco Vázquez Escobar

7 de Septiembre, 2022

Índice

- Bases de la matemática formal
 - Bases del conocimiento científico
 - Salto a la formalidad
 - Hilbert vs Poincaré
- Resolución a los Problemas de Hilbert
 - Problemas de incompletitud y consistencia
 - Consecuencias de los TI.
 - Problema de la computabilidad
 - Máquina Universal de Turing
- Desarrollos posteriores
 - Teoría algorítmica de la Información.
 - Shannon y la teoría cibernética.
- Conclusiones

Contents

1 Las bases de la matemática formal

2 Problemas de Hilbert

3 Desarrollos posteriores

 El conocimiento es un resultado obtenido directamente de la observación y el razonamiento inductivo.

- El conocimiento es un resultado obtenido directamente de la observación y el razonamiento inductivo.
- No va más allá del apunte más o menos abreviado de las distintas observaciones.

- Salto a método hipótetico deductivo.
- Axiomática primaria.
 Ligada a lo natural.

- Nuevos conceptos matemáticos
 - Transfinitos
 - Axioma de Selección

- Nuevos conceptos matemáticos
 - Transfinitos
 - Axioma de Selección
- Ningún nexo que las ligue necesariamente con las ciencias naturales. Conexión únicamente con las leyes de la lógica.

Axioma conmutativo

Axioma del Continuo Axioma de Selección

- Matemática simbólica. Por tanto computable.
- Problema II de Hilbert.
 - Problema sobre la incompletitud de las matemáticas.
 - Problema sobre la computabilidad de las matemáticas.

Contents

1 Las bases de la matemática forma

2 Problemas de Hilbert

3 Desarrollos posteriores

En este caso sí. 1789 es primo.

¿Dónde está entonces la paradoja?

¿Dónde está entonces la paradoja?

■ Pensar en repetir el proceso pero con la propiedad de ser Richardiano.

¿Dónde está entonces la paradoja?

- Pensar en repetir el proceso pero con la propiedad de ser Richardiano.
- El número asociado es richardiano y no a la vez.

Retos a superar

 Separar las herramientas matemáticas, puestas ahora a prueba, de sus respectivas representaciones.

Retos a superar

- Separar las herramientas matemáticas, puestas ahora a prueba, de sus respectivas representaciones.
- Aritmetizar las estructuras lógicas tras cualquier sistema axiomático.

Retos a superar

- Separar las herramientas matemáticas, puestas ahora a prueba, de sus respectivas representaciones.
- Aritmetizar las estructuras lógicas tras cualquier sistema axiomático.
- Separar los conceptos de decibilidad y demostrabilidad.

Numeración de Gödel

Codificación de Gödel

Símbolos	Predicados	Variables	Proposiciones
1.	13. <i>P</i>	14. <i>n</i>	15. <i>E</i>
2. ∀	16. Q	17. <i>m</i>	18. <i>F</i>
2. ∀ 3. ⇒	19. <i>R</i>	20. x	21. G
4. ∨	22. T	23. y	
5. ^	Número de Gödel		
6. (
7.)	$\forall n \neg (\mathbf{S}n = 1)$		
8. S	$2^23^{14}5^17^611^813^{14}17^{10}19^923^7$		
9. 1	Decodificación:		
10. =	3280500000000000000000000000000000000000		
	32805	$5000000000 = 2^{\circ}$	5°5′
11.			004 / 2
12. +	que o	corresponde a	551 0 3

Claves de la Demostración

- La asignación de sentencias formales a números naturales es inyectiva
 - Incluso sentencias semánticamente iguales o equivalentes pueden venir de distintos axiomas.
 - La sentencia "P es indecidible" tiene un número asignado, (que depende de P)
- En este punto se consigue separar veracidad de demostrabilidad.

Consecuencias de los TI de Gödel

Ningún modelo matemático es completo.

Consecuencias de los TI de Gödel

- Ningún modelo matemático es completo.
- La consistencia no se puede probar a sí misma.

Consecuencias de los TI de Gödel

- Ningún modelo matemático es completo.
- La consistencia no se puede probar a sí misma
- Las matemáticas pueden no ser decidibles.

Problema de la Computabilidad.

■ Ya que puedo pensar en funciones y definirlas, ¿Puedo calcularlas?

Problema de la Computabilidad.

- Ya que puedo pensar en funciones y definirlas, ¿Puedo calcularlas?
- Para mi conjunto X y mi funcion f, una máquina en la que entre una representación de $x \in X$ y me devuelva una representación de f(x)

Motivación de Máquina de Turing

Generalizar y teorizar el concepto de máquina de computación.

Motivación de Máquina de Turing

- Resolver el problema de la computabilidad de Hilbert.
- Generalizar y teorizar el concepto de máquina de computación.

Idea de la Máquina de Turing

Idea de la Máquina de Turing

Idea de la Máquina de Turing

Contents

1 Las bases de la matemática forma

2 Problemas de Hilbert

3 Desarrollos posteriores

Teoría Algorítmica de la Información

 Las verdades matemáticas comprobables no siempre están sujetas a estructuras de orden más simplificables.

Teoría Algorítmica de la Información

- Las verdades matemáticas comprobables no siempre están sujetas a estructuras de orden más simplificables.
- Existen problemas del puro terreno matemático que son indecidibles.

Teoría Algorítmica de la Información

- Las verdades matemáticas comprobables no siempre están sujetas a estructuras de orden más simplificables.
- Existen problemas del puro terreno matemático que son indecidibles.
- La eficiencia es un límite siempre superior.

El Juego de la Vida de Conway

Normas:

- 1. Dos vecinos vivos exactos te hacen nacer o renacer.
- 2. Menos de 2 o más de 3 vecinos vivos te matan

El Juego de la Vida de Conway

Normas:

- 1. Dos vecinos vivos exactos te hacen nacer o renacer.
- 2. Menos de 2 o más de 3 vecinos vivos te matan
- No se puede saber por adelantado el resultado del juego.

El Juego de la Vida de Conway

		1	
2	3		4
	5		

Normas:

- 1. Dos vecinos vivos exactos te hacen nacer o renacer.
- 2. Menos de 2 o más de 3 vecinos vivos te matan
- No se puede saber por adelantado el resultado del juego.
- El resultado del juego sólo se encuentra en su propio desarrollo.

Shannon y la teoría de la Información

- Entropía como sinónimo de desorden, de incertidumbre.
- La información es una fuerza de cohesión.
- Definición de potencia informativa.

Conclusiones

Los TI son un hito en la epistemología matemática.

Conclusiones

- Los TI son un hito en la epistemología matemática.
- El desarrollo de estos problemas supusieron el nacimiento de la computación.

Conclusiones

- Los TI son un hito en la epistemología matemática.
- El desarrollo de estos problemas supusieron el nacimiento de la computación.
- La objetivización pura no existe. Sólo puede existir considerando lo objetivo como abstracción que englobe a todas las distintas subjetividades.

Bibliografía

- Roberto Torretti. El paraiso de Cantor. 1998.
- Henri Poincaré. Ciencia e Hipótesis. Edición Austral. 2002
- Antonio Mosterín. Gödel. Obras Completas. Alianza Editorial. 1981
- G.J. Chaitin. Un Siglo de Controversia sobre los Fundamentos de la Matemáatica.

Preguntas?