Beykoz University

Department of "Computer Engineering"

"Image Processing - 7061MEEOS-CME0162"

Project 1 - Fall Semester

- Final Report -

Lecturer: ENVER AKBACAK

Leyla Abdullayeva - 1904010038

Question 1.

a) Reduce the number of intensity levels in an image from 256 to 2, in integer powers of2. Apply your program to Figure "Im_1".

b) Use at least four thresholding values in the interval [0, L-1], and produce the corresponding binary images.

c) Reversing the intensity levels of Figure "Im_2" to produce the equivalent of a photographic negative.

Question 2

Enhance Figure "Im_3" using the log transformation (s=clog(1+r)). Obtain the best visual enhancement according to your judgment.

Question 3

Enhance Figure "Im_4" using the power-law transformation (s=cr^ γ). Obtain the best visual enhancement according to your judgment.

Question 4

Enhance Figure "Im_5" using both the log and the power-law transformation. Obtain the best visual enhancement according to your judgment. Explain the reasons for the differences between the output of the two methods.

Output:

Question 5

The contribution to the total image appearance by specific bits can be highlighted.

Decompose Figure "Im_2" into its bit planes. Then reconstruct the same image by using its upper three planes.

Output:

