Multidimensional Visualization II

Sungahn Ko

HAiV

O

Disclaimer

- The slides MUST NOT be distributed, posted, or used outside of this class
- Slides in this course courtesy of
 - Dr. Abish Malik (Purdue)
 - Dr. Yun Jang (Sejong Univ.)
 - Dr. Ross Maciejewski (ASU)
 - Dr. Niklas Elmqvist (UMD)
 - Dr. David Ebert (Purdue)

Data Dimensions

Common dimensions: 1, 2, 3

- ■1 dimension univariate
 - Temperature readings
- 2 dimensions bivariate
 - Positions on map (lat/long)
- 3 dimensions trivariate
 - Positions in space (3D)

For more than 3 dimensions

Hypervariate

2

Visual Representations: Low Dimension Data

Hypervariate Data?

- For data with >2 variables, we must project down to
 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D → 2D projections

4

Table View

- Projecting hypervariate data on a spreadsheet
 - ■Variable → Column
 - Data cases in rows
- Other techniques?

Multiple Views

Display for each variable

[John Stasko]

6

Visual Variables

IVSTAOAZNULI → VISUALIZATION

8

Bertin's Visual Variables

Bertin's Original Visual Variables						
Position changes in the x, y location						
Size change in length, area or repetition	hi. •■■ • # ##					
Shape infinite number of shapes	+ • A # • • + T					
Value changes from light to dark						
Colour changes in hue at a given value						
Orientation changes in alignment						
Texture variation in 'grain'						

Which is more effective?

[Mackinlay, 1986]

10

Which is more effective?

[Mackinlay, 1986]

11

_

Visual Variables (Jock Mackinlay)

12

Cleveland and McGill (1984)

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods

William S. Cleveland; Robert McGill

Journal of the American Statistical Association, Vol. 79, No. 387. (Sep., 1984), pp. 531-554.

Stable URL:

http://links.jstor.org/sici?sici=0162-1459%28198409%2979%3A387%3C531%3AGPTEAA%3E2.0.CO%3B2-Y

Journal of the American Statistical Association is currently published by American Statistical Association.

Cleveland and McGill (1984)

14

Summary: Visual Variables

- Position
- Length
- Area
- Volume
- Texture
- Color
- Orientation
- Shape
- ~10 dimensions?

Small Multiples

Give each variable a graph of its own!

19

Small Multiples

Chernoff Faces (1973)

- Utilize human face recognition
- Visualize n-D data (glyphs)

21

Chernoff Faces (1973)

Scatterplot Matrices (SPLOM)

- 2D scatterplots for all combinations of dimensions
- Car data set

23

ScatterDice (Elmqvist 2008)

- SPLOMs explored by others, but Elmqvist et al. add a twist:
 - Use matrix as a space for navigation
 - ■Visual exploration becomes a navigation problem
- Result: Visualize complex data through sequence of simple visualizations

Example: Scatterplot Matrix

https://www.youtube.com/watch?v=E1birsp9iYk#t=24

26

Pixel-based Matrix Views

2D scatterplots for visualizing data

[Ko, 2012]

Petals Visualization for Multivariate Data III

30

Threads Visualization

Dynamic Queries

- Ben Shneiderman in 1990s:
 - SQL queries are cumbersome
 - Difficult syntax
 - Conversation, not direct
- Start with sliders, extend them

32

Film Finder, (CHI 1994)

Home Finder (1992 MS-DOS app.)

https://www.youtube.com/watch?time_continue=213&v= 5X8XY9430fM

34

Home Finder Revisited!

Parallel Coordinates

Designed by Alfred Inselberg in 1985

	V1	V2	V3	V4	V5
D1	7	3	4	8	1
D2	2	7	6	3	4
D3	9	8	1	4	2

37

Parallel Coordinates: Idea

D1 7 3 4 8 1

Parallel Coordinates: Idea

39

Parallel Coordinates: Idea

Parallel Coordinates

41

Questions?