Analízis 6. vizsgakérdések Programtervező matematikus szak

2005-2006. tanév 2. félév

1. Adja meg az $f(z) := e^{z^2}$ $(z \in \mathbb{C})$ függvény valós, illetve képzetes részét. Válasz: $e^{z^2} = e^{(x+iy)^2} = e^{(x^2-y^2)+2ixy} = e^{x^2-y^2} \cdot e^{2ixy} = e^{x^2-y^2} \cdot (\cos(2xy) + i \cdot \sin(2xy))$.

Azaz: Re $f(z) = e^{x^2 - y^2} \cos(2xy)$, Im $f(z) = e^{x^2 - y^2} \sin(2xy)$.

2. Írja fel az Euler-féle összefüggéseket.

Válasz: Minden $z \in \mathbb{C}$ komplex számra

$$e^{iz} = \cos z + i \sin z,$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2},$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

3. Definiálja a komplex négyzetgyökfüggvényt.

Válasz: A $T_0 \to \mathbb{C}$, $z \mapsto z^2$ függvény inverze, ahol

$$T_0 := \left\{ re^{i\varphi} \in \mathbb{C} \mid r \ge 0, -\frac{\pi}{2} < \varphi \le \frac{\pi}{2} \right\}.$$

4. Hol folytonos a komplex négyzetgyökfüggvény?

Válasz: Pontosan azokban a $z_0 \in \mathbb{C}$ pontokban, amelyekre

$$z_0 \in \mathbb{C} \setminus \{z \in \mathbb{C} \mid \operatorname{Im} z = 0 \text{ és } \operatorname{Re} z < 0\}.$$

5. Mutassa meg, hogy a komplex exponenciális függvény periodikus és adja meg az összes periódusát.

Válasz: Az $e^{z+p}=e^z$ minden $z\in\mathbb{C}$ esetén akkor és csak akkor teljesül egy $p\in\mathbb{C}$ számmal,

$$e^p = e^{p_1 + ip_2} = e^{p_1} (\cos p_2 + i \sin p_2) = 1.$$

Ez azzal ekvivalens, hogy $p_1 = 0$ és $p_2 = 2k\pi$ $(k \in \mathbb{Z})$, ezért ip_2 az összes periódus.

6. Definiálja a komplex logaritmusfüggvényt.

 $\mathbf{V\'alasz:} \ \, \mathrm{Az} \ \, \exp_{|T_0} \mathrm{ f\"{u}ggv\'eny inverze, ahol} \ \, T_0 := \big\{z \in \mathbb{C} \ \, | \ \, \mathrm{Re} \, z \in \mathbb{R}, \ \, -\pi < \mathrm{Im} \, z \leq \pi \, \, \big\}.$

7. Mivel egyenlő egy $z \in \mathbb{C} \setminus \{0\}$ szám logaritmusa?

Válasz: Log $z = \ln|z| + i \arg z$.

8. Milyen pontokban van értelmezve a komplex logaritmusfüggvény és hol folytonos? **Válasz:** A $\mathbb{C} \setminus \{0\}$ halmazon van értelmezve és a $\mathbb{C} \setminus \{z \in \mathbb{C} \mid \operatorname{Im} z = 0 \text{ és } \operatorname{Re} z < 0 \}$ halmazon folytonos.

9. Definiálja az $f \in \mathbb{C} \to \mathbb{C}$ függvény pontbeli deriválhatóságát.

Válasz: Az $f \in \mathbb{C} \to \mathbb{C}$ függvény deriválható az $a \in \operatorname{int} \mathcal{D}_f$ pontban, ha létezik a következő határérték:

$$\lim_{z \to a} \frac{f(z) - f(a)}{z - a}.$$

10. Komplex függvény pontbeli deriválhatóságát hogyan lehet a lineáris közelítéssel jellemezni?

Válasz: Legyen $f \in \mathbb{C} \to \mathbb{C}$ és $a \in \text{int } \mathcal{D}_f$. Ekkor $f \in D\{a\}$ pontosan akkor, ha

$$\exists\,A\in\mathbb{C}\quad\text{\'es}\quad\exists\,\varepsilon\in\mathbb{C}\rightarrow\mathbb{C},\ \lim_{\alpha}\varepsilon=0\ \text{f\"{u}ggv\'eny},\ \text{hogy}$$

$$f(z) - f(a) = A(z - a) + \varepsilon(z)(z - a) \qquad (\forall z \in \mathcal{D}_f).$$

11. Adjon szükséges és elégséges feltételt $\mathbb{C} \to \mathbb{C}$ függvények deriválhatóságára a Cauchy-Riemann-egyenletekkel.

Válasz: Tfh. $f \in \widetilde{\mathbb{C}} \to \mathbb{C}$, $a \in \text{int } D_f$, $(a = a_1 + ia_2)$, $f = f_1 + if_2$ és $\widehat{f} = (f_1, f_2) \in \mathbb{R}^2 \to \mathbb{R}^2$. $f \in D\{a\} \iff \widehat{f} \text{ deriv\'alhat\'o } (a_1, a_2) \text{-ben, \'es}$

$$(\partial_1 f_1)(a_1, a_2) = (\partial_2 f_2)(a_1, a_2) (\partial_2 f_1)(a_1, a_2) = -(\partial_1 f_2)(a_1, a_2)$$

12. Fejezze ki az $f \in \mathbb{C} \to \mathbb{C}$ függvény pontbeli deriváltját f valós és képzetes részével.

Válasz: Legyen $a \in \text{int } D_f$, $(a = a_1 + ia_2)$, $f = f_1 + if_2$ és $\widehat{f} = (f_1, f_2) \in \mathbb{R}^2 \to \mathbb{R}^2$. Ekkor (például)

$$f'(a) = (\partial_1 f_1)(a_1, a_2) + i(\partial_1 f_2)(a_1, a_2).$$

- 13. Mikor mondunk regulárisnak egy $f \in \mathbb{C} \to \mathbb{C}$ függvényt a $T \subset \mathcal{D}_f$ tartományon? **Válasz:** Az $f \in \mathbb{C} \to \mathbb{C}$ függvény a $T \subset \mathcal{D}_f$ tartományon reguláris (vagy analitikus vagy holomorf), ha f deriválható $\forall a \in T$ -ben.
- 14. Adjon példát nem deriválható $\mathbb{C} \to \mathbb{C}$ függvényre. Válaszát indoklja.

Válasz: Például az $f(z) := \text{Re } z \ (z \in \mathbb{C})$ függvény egyetlen $a \in \mathbb{C}$ pontban sem deriválható. Ui. legyen $a \in \mathbb{C}$ rögzített pont. Ekkor

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\operatorname{Re}(a+h) - \operatorname{Re}(a)}{h}$$

és ez a határérték egyenlő 1-el, ha $h \in \mathbb{R}$, viszont ha h tiszta képzetes, akkor 0, és ez azt jelenti, hogy a fenti határérték nem létezik.

15. Mikor harmonikus egy $\mathbb{R}^2 \to \mathbb{R}$ függvény?

Válasz: A $g: D \to \mathbb{R}$ $(D \subset \mathbb{R}^2 \text{ tartomány})$ kétszer folytonosan deriválható függvény a Dtartományon harmonikus, ha

$$\frac{\partial^2 g}{\partial x^2}(x,y) + \frac{\partial^2 g}{\partial y^2}(x,y) = 0 \qquad (\forall (x,y) \in D).$$

16. Adja meg a C-beli egyszerű zárt út, illetve az egyszerű zárt görbe definícióját.

Válasz: Legyen $-\infty < \alpha < \beta < +\infty$. A $\varphi : [\alpha, \beta] \to \mathbb{C}$ leképezés *egyszerű zárt út*, ha

- (i) φ folytonos,
- (ii) $\varphi(\alpha) = \varphi(\beta)$,
- (iii) $\varphi_{| [\alpha, \beta)}$ injektív.

A $\Gamma \subset \mathbb{C}$ halmaz egyszerű zárt görbe, ha van olyan φ egyszerű zárt út, aminek Γ az értékkészlete.

17. Mit jelent az, hogy az $A \subset \mathbb{C}$ halmaz $tartom\acute{a}ny$?

Válasz: Az A egy nyílt és összefüggő halmaz.

18. Mit jelent az, hogy az $A \subset \mathbb{C}$ tartomány összefüggő, illetve egyszeresen öszszefüggő?

Válasz: Összefüggő: ha A bármely két pontja összeköthető az A-ban haladó szakaszonként

Eqyszeresen összefüggő: ha bármely benne haladó egyszerű zárt görbe belseje is teljesen a tartományban fekszik.

19. Fogalmazza meg az egyszerű zárt utakra vonatkozó Jordan-tételt.

Válasz: ha φ egy tetszőleges egyszerű zárt út, akkor léteznek olyan $A, B \subset \mathbb{C}$ tartományok, amelyekre a következők teljesülnek:

- (i) $A \cap B = \emptyset$, $A \cup B = \mathbb{C} \setminus R_{\varphi}$; (ii) fr $A = \text{fr } B = R_{\varphi}$ (fr A az A határpontjainak a halmaza);
- (iii) az A korlátos, és B nem korlátos.

20. Definiálja a komplex vonalintegrál fogalmát.

Válasz: Legyen az $f \in \mathbb{C} \to \mathbb{C}$ függvény folytonos és $\varphi = \varphi_1 + i\varphi_2 : [\alpha, \beta] \to \mathbb{C}$ olyan szakaszonként sima út, amelyre $R_\varphi\subset D_f$ teljesül. Ekkor az

$$\int_{\Omega} f := \int_{\Omega}^{\beta} f \circ \varphi \cdot \varphi' \ (\in \mathbb{C})$$

komplex számot az f függvény φ útra vett (vonal)integráljának nevezzük.

21. Számítsa ki az $\int f$ vonalintegrált, ahol $\varphi_{a,R}$ az a középpontú, R sugarú, pozítív körüljárással tekintett kör és

$$f(z) := \frac{1}{z - a}$$
 $(z \in \mathbb{C} \setminus \{a\}, R \in \mathbb{R}^+).$

Válasz: Mivel $\varphi_{a,R}(t)=a+Re^{it}$ $(t\in[0,2\pi]),$ ezért a definíció alapján

$$\int\limits_{\varphi_{a,R}} f = \int\limits_{0}^{2\pi} f(\varphi_{a,R}(t)) \cdot \varphi'_{a,R}(t) \, dt = \int_{0}^{2\pi} \frac{1}{Re^{it}} \cdot Rie^{it} \, dt = 2\pi i.$$

22. Milyen kapcsolat van $\mathbb{R}^2 \to \mathbb{R}^2$ és $\mathbb{C} \to \mathbb{C}$ függvények vonalintegrálja között?

Válasz: Legyen $f \in \mathbb{C} \to \mathbb{C}$ egy folytonos függvény, $f = f_1 + if_2 \ (f_k \in \mathbb{R}^2 \to \mathbb{R}, \ k = 1, 2);$ $\varphi = \varphi_1 + i\varphi_2 : [\alpha, \beta] \to \mathbb{C}$ egy szakaszonként sima út;

 $\widehat{f} := (f_1, f_2) \in \mathbb{R}^2 \to \mathbb{R}^2 \text{ és } \widehat{\varphi} := (\varphi_1, \varphi_2) : [\alpha, \beta] \to \mathbb{R}^2.$ Ekkor:

$$\int\limits_{\boldsymbol{\omega}} f = \int\limits_{\boldsymbol{\widehat{\boldsymbol{\omega}}}} \left[\begin{matrix} f_1 \\ -f_2 \end{matrix} \right] + i \int\limits_{\boldsymbol{\widehat{\boldsymbol{\omega}}}} \left[\begin{matrix} f_2 \\ f_1 \end{matrix} \right].$$

23. Mondja ki a Cauchy-féle alaptételt.

Válasz: Legyen $f \in \mathbb{C} \to \mathbb{C}$, $f \in D$ és D_f egyszeresen összefüggő tartomány. Ekkor minden D_f -beli szakaszonként sima zárt φ útra

$$\int\limits_{\varphi} f(z)dz = 0.$$

24. Igaz-e az, hogy ha egy komplex függvény egy tartományban reguláris, akkor bármely abban a tartományban haladó szakaszonként sima zárt úton vett integrálja nulla?

Válasz: Nem igaz; pl. az $f(z) := \frac{1}{z} (z \in \mathbb{C} \setminus \{0\})$ reguláris függvény integrálja az origó körüli körökön $2\pi i$.

25. Igaz-e az, hogy ha egy komplex függvény egy összefüggő tartományban reguláris, akkor bármely abban a tartományban haladó szakaszonként sima zárt úton vett integrálja nulla?

Válasz: Nem igaz; pl. az $f(z) := \frac{1}{z} \ (z \in \mathbb{C} \setminus \{0\})$ reguláris függvény integrálja az origó körüli körökön $2\pi i$.

26. Mondjon elégséges feltételt $f \in \mathbb{C} \to \mathbb{C}$ függvény primitív függvényének a léte-

Válasz: Ha $f \in D$ és D_f egyszeresen összefüggő tartomány, akkor f-nek létezik primitív

27. Mondjon példát olyan $f \in \mathbb{C} \to \mathbb{C}$ függvényre, mely deriválható, de nem létezik primitív függvénye.

Válasz: $f(z) := \frac{1}{z}, (z \in T) := \mathbb{C} \setminus \{0\}$; ekkor f-nek T-n nincs primitív függvénye.

28. Mondja ki a komplex vonalintegrálokra vonatkozó Newton–Leibniz-tételt.

Válasz: Legyen $f \in \mathbb{C} \to \mathbb{C}$ és tegyük fel, hogy (i) D_f egy tetszőleges tartomány és $f \in D$; (ii) f-nek \exists primitív függvénye.

Ekkor $\forall D_f$ -beli szakaszonként sima φ útra:

$$\int_{a} f = \Phi(b) - \Phi(a),$$

ahol Φ az f függvény egy primitív függvénye; a a φ kezdőpontja b pedig a végpontja.

29. Mondja ki a Riemann-lemmát.

Válasz: Legyen $T \subset \mathbb{C}$ tetszőleges tartomány és $a \in T$. Tegyük fel, hogy az $f \in \mathbb{C} \to \mathbb{C}$ függvény deriválható a $T \setminus \{a\}$ halmaz pontjaiban és

$$\exists M > 0: |f(z)| \leq M \quad \forall z \in T \setminus \{a\}$$
 esetén.

Ekkor $\int\limits_{\varphi}f=0$ minden olyan φ egyszerű zárt útra, ami belsejével együtt T-ben halad, akár megkerüli ez az a pontot, akár nem.

30. Fogalmazza meg a Cauchy-féle integrálformulát.

Válasz: Tegyük fel, hogy az $f \in \mathbb{C} \to \mathbb{C}$ függvény holomorf a $T \subset \mathcal{D}_f \subset \mathbb{C}$ tartományon és $z_0 \in T$. Ekkor az

$$f(z_0) = \frac{1}{2\pi i} \int \frac{f(t)}{t - z_0} dt,$$

összefüggés érvényes minden olyan, pozitív értelemben befutott egyszerű zárt φ útra, ami belsejével együtt benne van T-ben, és amely a z_0 pontot belsejében tartalmazza.

31. Fogalmaza meg holomorf függvények Taylor-sorba fejthetőségére vonatkozó tételt.

Válasz: Ha az $f \in \mathbb{C} \to \mathbb{C}$ függvény holomorf a $T \subset \mathcal{D}_f \subset \mathbb{C}$ tartományban, akkor ott akárhányszor is deriválható és T-nek tetszés szerinti a pontja körül Taylor-sorba fejthető:

$$f(z) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (z-a)^k = f(a) + \frac{f'(a)}{1!} (z-a) + \dots + \frac{f^{(k)}(a)}{k!} (z-a)^k + \dots$$

Ez a sorfejtés érvényes az a pontnak abban a maximális sugarú környezetében, amely T-ben fekszik.

32. Írja le a deriváltakra vonatkozó Cauchy-féle integrálformulákat.

Válasz: Ha a az $f \in \mathbb{C} \to \mathbb{C}$ függvény T holomorfitási tartományának tetszés szerinti pontja, φ pedig az a pontot pozitív forgásirányban megkerülő egyszer zárt út, akkor

$$f^{(k)}(a) = \frac{k!}{2\pi i} \int_{\omega} \frac{f(t)}{(t-a)^{k+1}} dt$$
 $(k = 0, 1, 2...).$

33. Mit állítanak a Cauchy-féle egyenlőtlenségek?

Válasz: Legyen $f \in \mathbb{C} \to \mathbb{C}$, $f \in D$ és $a \in D_f$. Tegyük fel, hogy r olyan pozitív szám, amelyre

$$\overline{k_r(a)} := \{ z \in \mathbb{C} \mid |z - a| \le r \} \subset D_f.$$

Ekkor

$$\left| f^{(k)}(a) \right| \le \frac{k!}{r^k} M_a(r) \qquad (k = 0, 1, 2, ...),$$

ahol $M_a(r) := \max\{ |f(z)| \mid |z - a| = r \}.$

34. Mondja ki a Liouville-tételt.

Váľasz: Ha az $f \in \mathbb{C} \to \mathbb{C}$ függvény az egész komplex síkon holomorf és korlátos, akkor állandó.

35. Van-e olyan $f \in \mathbb{C} \to \mathbb{C}$ függvény, amelyik az egész komplex síkon értelmezve van, ott korlátos és reguláris, továbbá f(0) = 0 és f(1) = i? Ha van ilyen akkor adjon is meg egyet.

f V 'alasz: Liouville tételéből következik, hogy a tett feltételek mellett f szükségképpen állan-

dó, ezért nincs ilyen függvény.

36. Mondja ki az algebra alaptételét.

Váľasz: Minden komplex együtthatós legalább elsőfokú polinomnak van (legalább egy) zérushelye.

37. Mit mond ki a maximum-tétel?

Válasz: Ha az $f \in \mathbb{C} \to \mathbb{C}$ függvény a T tartományon holomorf és nem állandó, akkor a (T-ben folytonos, valós értékű) |f| függvény T belső pontjában nem érheti el maximumát.

38. Van-e olyan $f \in \mathbb{C} \to \mathbb{C}$ függvény, amelyik a zárt egységkörlemezen folytonos, a nyílt körlapon analitikus, f(0) = 1 és a körvonal minden pontjában pedig 0? Ha van ilyen, akkor adjon is meg egyet.

Váľasz: Ha van ilyen, akkor |f| maximumát (ez létezik!) a zárt egységkörlemez belső pontjában veszi fel. A maximum-tételből következik, hogy ekkor f szükségképpen állandó,

ezért nincs ilyen függvény.

39. A maximum-tételnek milyen következményét fogalmaztuk meg?

Válasz: Ha $f: T \to \mathbb{C}, T \subset C$ korlátos tartomány, $f \in D(T)$ és $f \in C(\overline{T})$, akkor |f| a maximumát T határán veszi fel, és ha $f \neq$ áll., akkor a maximumot csakis a határon veheti fel.

40. Mit mond ki a Morera-tétel?

Válasz: Legynen $f \in \mathbb{C} \to \mathbb{C}$. Tegyük fel, hogy D_f tetszőleges tartomány, $f \in C(D_f)$ és $\int_{\varphi} f = 0$ minden olyan φ egszerű zárt útra, amelyik belsejével együtt \mathcal{D}_f -ben halad. Ekkor f holomorf a D_f -en.

41. Fogalmazza meg a függvénysorozatok deriválhatóságára vonatkozó Weierstrasstételt.

Válasz: Legyen $T \subset \mathbb{C}$ testszőleges tartomány. Tegyük fel, hogy az $f_n : T \to \mathbb{C}$ $(n \in \mathbb{N})$ függvények mindegyike analitikus T-n és az (f_n) függvénysorozat a T tartományon egyenletesen tart az f függvényhez. Ekkor f is analitikus T-n és minden $k = 1, 2, \ldots$ esetén a k-adik deriváltakból képzett

$$f_1^{(k)}(z), f_2^{(k)}(z), \dots, f_n^{(k)}(z), \dots$$

függvénysorozat T-n szintén egyenletesen tart az $f^{(k)}(z)$ függvényhez.

42. Fogalmazza meg a függvénysor deriválhatóságára vonatkozó Weierstrass-tételt. **Válasz:** Legyen $T \subset \mathbb{C}$ testszőleges tartomány. Tegyük fel, hogy az $f_n : T \to \mathbb{C}$ $(n \in \mathbb{N})$ függvények mindegyike analitikus T-n és a $\sum f_n$ függvénysor a T tartományon egyenletesen konvergens. Jelölje f az összegfüggvényt:

$$f := \sum_{n=1}^{+\infty} f_n.$$

Ekkor f is analitikus T-n és minden $k=1,2,\ldots$ esetén a k-adik deriváltakból képzett

$$\sum_{n=1} f_n^{(k)}$$

függvénysor T-n szintén egyenletesen konvergens és az összegfüggvénye $f^{(k)}$:

$$\sum_{n=1}^{+\infty} f_n^{(k)}.$$

43. Fogalmaza meg holomorf függvények Laurent-sorba fejthetőségére vonatkozó té-

Válasz: Ha az $f \in \mathbb{C} \to \mathbb{C}$ függvény holomorf az a pont körüli (r, R)-körgyűrűben, akkor e körgyűrű tetszőleges z pontjában érvényes az

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k (z-a)^k$$

sorfejtés. Itt az együtthatókat a

$$c_k = \frac{1}{2\pi i} \int_{\varphi} \frac{f(t)}{(t-a)^{k+1}} dt$$

integrálképletek szolgáltatják, ahol φ a körgyűrűben haladó tetszőleges egyszerű zárt út, amely az a pontot pozitív irányban megkerüli.

44. Fejtse a 0 pont körül Laurent-sorba az $f(z) := \frac{\operatorname{ch} z}{z^4}$ $(z \in \mathbb{C} \setminus \{0\})$ függvényt. Válasz:

$$f(z) = \frac{1}{z^4} \sum_{k=0}^{+\infty} \frac{z^{2k}}{(2k)!} = \sum_{k=0}^{+\infty} \frac{z^{2(k-2)}}{(2k)!}.$$

45. Az f függvénynek milyen szinguláris helye a $z_0 := 0$ pont, ha $f(z) := \frac{1-\cos z}{z^2}$ $(z \in \mathbb{C} \setminus \{0\})$

Válasz: Mivel

$$f(z) := \frac{1 - \cos z}{z^2} = \frac{1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \ldots\right)}{z^2} = \frac{1}{2!} - \frac{z^2}{4!} + \frac{z^4}{6!} - \frac{z^6}{8!} + \ldots$$

ezért a z_0 az f függvénynek megszüntethető szingularitása.

46. Definiálja az izolált szingularitás fogalmát.

Válasz: Az $f \in \mathbb{C} \to \mathbb{C}$ függvénynek az $a \in \mathbb{C}$ pont egy izolált szingularitása, ha $\exists R > 0$, hogy f analitikus a $k_R(a) \setminus \{a\}$ halmazon.

47. Definiálja a megszüntethető izolált szingularitás fogalmát.

Válasz: Legyen az f függvény a pont körüli Laurent-féle sorfejtése: $\sum_{k=-\infty}^{+\infty} c_k(z-a)^k$. Ekkor $a \in \mathbb{C}$ az f megszüntethető izolált szingularitása, ha $\forall c_k = 0, \ k = -1, -2, \ldots$ vagyis: $f(z) = \sum_{k=0}^{+\infty} c_k (z-a)^k$.

48. Milyen szükséges és elégséges feltételt ismer a megszüntethető izolált szingularitásra?

Válasz: f-nek a-ban megszüntethető izolált szingularitása van $\Leftrightarrow \exists k_r(a): f$ korlátos

49. Definiálja az *n*-edrendű pólus fogalmát.

Válasz: Legyen az f függvény a pont körüli Laurent-féle sorfejtése: $\sum_{k=-\infty}^{+\infty} c_k (z-a)^k$. Ekkor $a \in \mathbb{C}$ az f függvény n-edrendű pólusa, ha $\exists n = 1, 2, \ldots$, hogy $c_{-n} \neq 0$, és

 $c_{-(n+1)} = c_{-(n+2)} = \dots = 0$, azaz

$$f(z) = \frac{c_{-n}}{(z-a)^n} + \dots + \frac{c_{-1}}{z-a} + c_0 + c_1(z-a) + \dots$$

50. Milyen szükséges és elégséges feltételt ismer az n-edrendű pólusra?

Válasz: Az $f \in \mathbb{C} \to \mathbb{C}$ függvénynek az $a \in \mathbb{C}$ izolált szingularitása akkor és csak akkor n-edrendű pólus, ha létezik olyan g, az a egy környezetében analitikus és a $g(a) \neq 0$ feltételnek eleget tevő függvény, hogy f a egy környezetében előállítható a következő alakban:

$$f(z) = \frac{g(z)}{(z-a)^n}.$$

51. Az 1 pont milyen szingularitása az $f(z) := \frac{1}{z^2-1}$ $(z \in \mathbb{C} \setminus \{-1, 1\})$ függvénynek? **Válasz:** Mivel

$$f(z) = \frac{1}{z^2 - 1} = \frac{\frac{1}{z+1}}{z-1} =: \frac{g(z)}{z-1},$$

g az 1 pont egy környezetében analitikus, $g(1) \neq 0$, ezért a elsőrendű pólusa f-nek.

52. Az a = 0 pont milyen szingularitása az

$$f(z) := \frac{1}{z^2 \sin z} \qquad (z \in \mathbb{C} \setminus \{w \mid \sin w = 0\})$$

függvénynek?

Válasz: Mivel

$$f(z) = \frac{1}{z^2 \sin z} = \frac{1}{z^2 \left(z - \frac{z^3}{3!} + \cdots\right)} = \frac{1}{1 - \frac{z^2}{3!} + \cdots} \cdot \frac{1}{z^3} =: \frac{g(z)}{z^3},$$

ga 0 pont egy környezetében analitikus, $g(0) \neq 0,$ ezért a 0 pont harmadrendű pólusaf-nek.

53. Definiálja a lényeges szingularitás fogalmát.

Válasz: Legyen $a \in \mathbb{C}$ az f függvény egy izolált szinguláris helye, és tegyük fel, hogy az f függvény a pont körüli Laurent-sora: $\sum_{k=-\infty}^{+\infty} c_k(z-a)^k$. Ekkor $a \in \mathbb{C}$ az f lényeges szingularitása, ha a Laurent-sorban végtelen sok 0-tól különböző negatív indexű együttható van.

54. Adjon meg egy olyan függvényt, amelyiknek a a=1 pontban lényeges szingularitása van.

Válasz: Az $f(z) := \sin \frac{1}{z-1} \ (z \in \mathbb{C} \setminus \{1\})$ függvény ilyen, mert

$$f(z) = \sin \frac{1}{z-1} = \frac{1}{z-1} - \frac{1}{3!} \cdot \frac{1}{(z-1)^3} + \frac{1}{5!} \cdot \frac{1}{(z-1)^5} + \cdots$$

55. Mikor mondjuk azt, hogy \mathbb{C} egy részhalmaza $minden \ddot{u}tt \ s \H{u}r \H{u}$ \mathbb{C} -ben?

Válasz: A $H \in \mathbb{C}$ halmaz mindenütt sűrű \mathbb{C} -ben, ha $\overline{H} = \mathbb{C}$, azaz:

$$\forall w \in \mathbb{C} \text{ és } \forall \varepsilon > 0\text{-hoz} \quad \exists z_0 \in H: \ |w - z_0| < \varepsilon.$$

56. Mit mond ki a Casorati-Weierstrass tétel?

Válasz: Ha az $a \in \mathbb{C}$ pont az f függvénynek lényeges szingularitása, akkor a függvénynek az a pont bármely kis környezetében felvett értékei a számsíkon mindenütt sűrűn fekszenek.

57. Mondja ki a lényeges szingularitásokra vonatkozó Picard-féle tételt.

Váľasz: Ha az $a \in \mathbb{C}$ az f függvénynek lényeges szingularitása, akkor az $a \in \mathbb{C}$ pont minden kis környezetében f minden komplex számértéket felvesz, legfeljebb egy érték kivételével.

58. Definiálja az $f \in \mathbb{C} \to \mathbb{C}$ függvény reziduumát.

Válasz: Legyen $a \in \mathbb{C}$ az f függvény izolált szinguláris helye. Ekkor az

$$f(z) = \ldots + \frac{c_{-2}}{(z-a)^2} + \frac{c_{-1}}{z-a} + c_0 + c_1(z-a) + \ldots$$

Laurent-sorfejtésben fellépő c_{-1} együtthatót az f függvény a-hoz tarozó reziduumának nevezzük.

59. Írja fel a reziduumot vonalintegrállal.

Válasz: Legyen $a \in \mathbb{C}$ az f függvény izolált szinguláris helye. Ekkor az f függvény a-hoz tarozó reziduuma:

$$\operatorname{Res}_{a} f = \frac{1}{2\pi i} \int_{\alpha} f(z) \, dz,$$

ahol φ tetszés szerinti olyan, pozitív értelemben befutott egyszerű zárt görbe, amely fholomorfitási tartományában halad és a belseje is, az egyetlen a pontot kivéve, f holomorfitási tartományához tartozik.

60. Mondja ki a reziduum-tételt.

Válasz: Legyen $f \in \mathbb{C} \to \mathbb{C}$ és tegyük fel, hogy az a_1, \ldots, a_p pontok az f függvénynek izolált szingularitásai. Vegyünk egy tetszőleges olyan φ egyszerű zárt utat, amelyik belsejében f holomorf, kivéve a véges sok a_1, \ldots, a_p szinguláris pontokat. Ekkor

$$\int_{\varphi} f = 2\pi i \sum_{k=1}^{p} \operatorname{Res}_{a_k} f.$$

61. Mikor nevezünk egy függvény meromorfnak? **Válasz:** Az $f \in \mathbb{C} \to \mathbb{C}$ függvény a $T \subset \mathbb{C}$ tartományban meromorf, ha f-nek T-ben legfeljebb pólus-szingularitásai vannak.

62. Mi a logaritmikus derivált definíciója?

Válasz: A deriválható $f \in \mathbb{C} \to \mathbb{C}$ függvény logaritmikus deriváltjának nevezzük az $\frac{f'}{f}$ függvényt.

63. Hol lehetnek szingularitásai az $f \in \mathbb{C} \to \mathbb{C}$ függvény logaritmikus deriváltjának?

Válasz: Az $f \in \mathbb{C} \to \mathbb{C}$ függvény $\frac{f'}{f}$ logaritmikus deriváltjának az $a \in \mathbb{C}$ szingularitása, ha az a pont f-nek

- a.) zérushelye, vagy
- b.) n-edrendű pólusa.
- **64.** Adja meg az f meromorf függvény logaritmikus deriváltjának a reziduumát fzérushelyeiben.

Válasz: Ha $a \in \mathbb{C}$ az f meromorf függvény s-szeres zérushelye $s \geq 1$, akkor

$$\operatorname{Res}_{a} \frac{f'}{f} = s \left(= \int_{a} \frac{f'}{f} \right).$$

65. Adja meg az f meromorf függvény logaritmikus deriváltjának a reziduumát fegy n-edrendű pólusában.

Válasz: Ha $a \in \mathbb{C}$ az f meromorf függvény n-edrendű pólusa $n \geq 1$, akkor

$$\operatorname{Res}_{a} \frac{f'}{f} = -n.$$

66. Milyen tételt ismer meromorf függvény logaritmikus deriváltjának vonalintegráljával kapcsolatosan?

Válasz: Tekintsünk egy $T \subset \mathbb{C}$ tarományban holomorf $f \in \mathbb{C} \to \mathbb{C}$ függvényt. Tegyük fel, hogy φ egy olyan egyszerű zárt út, amely belsejével együtt a T tartományban van és amely f egyetlen zérushelyén vagy pólusán sem halad keresztül. Ekkor

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f'(z)}{f(z)} dz = Z - P.$$

Itt Z jelöli az f függvény φ belsejébe eső zérushelyek számának az összegét, mindegyiket a multiplicitásával számolva. P jelentése pedig: az f függvény φ belsejébe eső pólusok rendjének az összege.

67. Adja meg az \mathbb{R}^n -beli egyszerű sima görbe definícióját.

Válasz: A $\Gamma \subset \mathbb{R}^n$ halmazt egyszerű sima görbének nevezzük, ha $\exists \varphi \in C^1([\alpha, \beta], \mathbb{R}^n)$:

- (i) $\varphi \in [\alpha, \beta] \to \Gamma$ bijekció (azaz $\Gamma = \mathcal{R}_{\varphi}$) és
- (ii) $\varphi'(t) \neq 0 \ (\forall t \in [\alpha, \beta]\text{-ra}).$

Ekkor φ a Γ görbe egy paraméterezése.

68. Definiálja egyszerű sima görbe érintőjét.

Válasz: Tegyük fel, hogy $\varphi : [\alpha, \beta] \to \Gamma$ a $\Gamma \subset \mathbb{R}^n$ egyszerű sima görbe egy paraméterezése és legyen $\mathbf{r}_0 = \varphi(t_0) \in \Gamma$ a görbe egy pontja $(t_0 \in [\alpha, \beta])$. Ekkora a

$$\Gamma_{\mathbf{r}_0} := \left\{ \varphi(t_0) + \varphi'(t_0) \cdot t \in \mathbb{R}^n \mid t \in \mathbb{R} \right\} \left(\subset \mathbb{R}^n \right)$$

halmazt a Γ görbe \mathbf{r}_0 pontbeli érintőjének nevezzük.

(A $\Gamma_{\mathbf{r}_0}$ halmaz egy elnevezése: az \mathbf{r}_0 ponton átmenő, $\varphi'(t_0)$ irányvektorú egyenes.)

- **69.** Mit jelent az, hogy egy $\Gamma \subset \mathbb{R}^n$ beli görge *rektifikálható*? **Válasz:**
- **70.** Milyen állításokat ismer egyszerű sima \mathbb{R}^n -beli görbe rektifikálhatóságával kapcsolatban?

Válasz:

1º Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe és $\varphi = (\varphi_1, \dots, \varphi_n) \in C^1([\alpha, \beta], \mathbb{R}^n)$ ennek egy paraméterezése. Ekkor Γ rektifikálható (azaz van ívhossza) és az ívhossza az

$$L_{\Gamma} = \int_{0}^{\beta} |\varphi'(t)| dt = \int_{0}^{\beta} \sqrt{[\varphi'_{1}(t)]^{2} + \ldots + [\varphi'_{n}(t)]^{2}} dt$$

képlettel számolható ki.

 2° Az L_{Γ} szám független a Γ görbe paraméterezésének a megválasztásától.

71. Mit értünk egy egyszerű sima \mathbb{R}^n -beli görbe ívhossz szerinti paraméterezésén?

Válasz: Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe, L a Γ ívhossza, P_1 a Γ kezdőpontja, P_2 pedig a végpontja. Γ *görbe ívhossz szerinti paraméterezésenek* (vagy természetes paraméterezésének) nevezzük azt a $\Phi: [0, L] \to \Gamma$ függvényt, amelyet így értelmezünk: $\Phi(0) := P_1$, $\Phi(L) = P_2$ és $\Phi(s)$ ($s \in (0, L)$) a görbének azt a pontját adja meg, ami az íven a P_1 ponttól s távolságra van. (Azaz a $(P_1, \Phi(s))$ görbe ívhossza s.)

72. Mi a kapcsolat egy egyszerű sima \mathbb{R}^n -beli görbe tetszőleges φ és természetes Φ paraméterezése között?

Válasz: Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe. Tegyük fel, hogy $\varphi : [\alpha, \beta] \to \Gamma$ ennek egy tetszőleges, $\Phi : [0, L] \to \Gamma$ pedig a természetes paraméterezése (L a Γ ívhossza.) Jelölje $S(t) := L_{\Gamma_t}$ ($t \in [\alpha, \beta]$) a $\Gamma_t := \{\varphi(u) \mid \alpha \leq u \leq t\}$ görbe ívhosszát és T ennek a függvénynek az inverzét: $T := S^{-1}$. Ekkor $\Phi = \varphi \circ T$.

73. Milyen alapvető tulajdonságokkal rendelkezik egy görbe ívhossz szerinti paraméterezése?

Válasz: Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe. Tegyük fel, hogy $\Phi : [0, L] \to \Gamma$ ennek az ívhossz szerinti kétszer folytonosan deriválható paraméterezése (L a Γ ívhossza.) Ekkor $1^o |\Phi'(s)| \equiv 1 \ (\forall s \in [0, 1]);$

$$2^{o} < \Phi'(s), \Phi''(s) >= 0 \ (\forall s \in [0, L]) \text{ azaz: } \Phi'(s) \perp \Phi''(s).$$

74. Definiálja \mathbb{R}^n -beli görbe görbületét.

Válasz: Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe. Tegyük fel, hogy $\Phi : [0, L] \to \Gamma$ ennek az ívhossz szerinti kétszer folytonosan deriválható paraméterezése (L a Γ ívhossza.) Az $s \in [0, L]$ -ben (azaz a $\Phi(s)$ pontban) a Γ görbe görbületén a $\kappa(s) := |\Phi''(s)|$ számot értjük.

75. Egy tetszőleges paraméterezéssel adott görbe görbületét hogyan lehet kiszámolni? **Válasz:** Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe, $\varphi : [\alpha, \beta] \to \Gamma$ egy tetszőleges, de C^2 -beli paraméterezése. Ekkor a görbe $t_0 \in [\alpha, \beta]$ paraméterű $\varphi(t_0)$ pontjában a görbület:

$$\kappa = \frac{\left|\varphi'(t_0) \times \varphi''(t_0)\right|}{\left|\varphi'(t_0)\right|^3}.$$

76. Írja le a simulósík definícióját. **Válasz:** Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi \in C^2$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$. A Γ görbe $\Phi(s)$ pontbeli simulósíkja az a $\Phi(s)$ ponton átmenő sík, amelyiket a $\Phi'(s)$ és $\Phi''(s)$ vektorok feszítenek ki.

77. Írja fel egy tetszőleges paraméteres alakban megadott görbe simulósíkjának az egyenletét.

 \mathbf{V} álasz: Legyen $\Gamma\subset\mathbb{R}^3$ egy egyszerű sima görbe. Tegyük fel, hogy ennek $\varphi:[lpha,eta]$ \mathbb{R}^3 , $\varphi \in C^2$ egy paraméterezése. Ha a $t_0 \in [\alpha, \beta]$ paraméter esetén $\varphi'(t_0) \not\parallel \varphi''(t_0)$, akkor a görbének a $\varphi(t_0) = P_0$ pontban van simulósíkja, és ennek egyenlete:

$$\langle \mathbf{r} - \varphi(t_0), \varphi'(t_0) \times \varphi''(t_0) \rangle = 0.$$

78. Mit jelentenek egy görbe esetén a következő fogalmak: görbület, görbületi sugár és görbületi középpont alatt?

 $\widecheck{\mathbf{V}}$ álasz: Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi:[0,L] \to \mathbb{R}^3, \ \Phi \in C^2$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$. A görbének a $\Phi(s)$ $(s \in [0, L])$ pontban a

- (a) görbülete: $\kappa(s) := |\Phi''(s)|$,
- (b) görbületi sugara: $\varrho(s) := \frac{1}{\kappa(s)}$,
- (c) görbületi középpontj: $\Psi(s) := \Phi(s) + \frac{\Phi''(s)}{|\Phi''(s)|^2}$.
- 79. Mit értünk kísérő triéder alatt?

Válasz: Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi : [0, L] \to \mathbb{R}^3$, $\Phi \in \mathbb{C}^2$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$ (L a Γ ívhossza). Legyen $s \in [0, L]$ esetén

$$\begin{aligned} \mathbf{e}(s) &:= \Phi'(s), \\ \mathbf{n}(s) &:= \frac{\Phi''(s)}{|\Phi''(s)|}, \end{aligned}$$

 $\mathbf{b}(s) := \mathbf{e}(s) \times \mathbf{n}(s)$ (ez az ún. binomiális egységvektor).

A páronként egymásra merőleges $\mathbf{e}(s)$, $\mathbf{n}(s)$, $\mathbf{b}(s)$ egységvektorokból álló rendszert a görbe kisérő triéderének nevezzük.

80. Írja le a torzió definícióját.

Válasz: Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi:[0,L] \to \mathbb{R}^3, \ \Phi \in C^3$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$ (L a Γ ívhossza). A Γ görbe $\Phi(s)$ ($s \in [0, L]$) pontbeli torzióját így értelmezzük:

$$\tau(s) := <\mathbf{n}'(s), \mathbf{b}(s) > .$$

81. Írja fel a Frenel-formulákat.

Válasz: Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, L az ívhossza, $\kappa(s)$ a görbülete és $\tau(s)$ a torziója $(s \in [0, L])$. Tegyük fel, hogy Γ -nak van háromszor folytonosan deriválható paraméterezése. Ekkor a kísérő triédert megadó $\mathbf{e}, \mathbf{n}, \mathbf{b} : [0, L] \to \mathbb{R}^3$ folytonosan deriválható függyények az alábbi lineáris differenciálegyenlet-rendszernek tesznek eleget:

$$\begin{aligned} \mathbf{e}'(s) &= \kappa(s) \cdot \mathbf{n}(s), \\ \mathbf{n}'(s) &= -\kappa(s) \cdot \mathbf{e}(s) + \tau(s) \cdot \mathbf{b}(s), \\ \mathbf{b}'(s) &= -\tau(s) \cdot \mathbf{n}(s). \end{aligned}$$