The $3n+3^k$ problem

The Gypsy Cossack

Abstract

The Collatz conjecture is the $3n+3^k$ problem when k=0. The full statement is: Every $3n+3^k$ sequence, $\forall k \in \mathbb{N}_0$ contains the term 3^k . In Claim 1, there is a simple formula to construct every 3n+1 sequence from its corresponding 3n+3 sequence. In Claim 2, another formula can construct every $3n+3^r$ sequence from any other corresponding $3n+3^k$ sequence where $0 \le k < r$, $\forall k, r \in \mathbb{N}_0$. We prove all 3n+d cases.

Preliminaries and Definitions

Definition 0.1. A $3n+3^k$ sequence, $\forall k \in \mathbb{N}_0$ can be defined as $f : \mathbb{N} \longrightarrow \mathbb{N}$

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ 3n + 3^k & \text{if } n \text{ is odd} \end{cases}$$

Then, given any positive integer m, define a sequence such that $a_1 = m$ and for $i \ge 1$, $a(i+1) = f(a_i)$.

Similarly,

Definition 0.2. A 3n+d sequence, $\forall d \in \mathbb{N}_{odd}$ can be defined as $f : \mathbb{N} \longrightarrow \mathbb{N}$

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ 3n+d & \text{if } n \text{ is odd} \end{cases}$$

We call any sequence constructed as defined above, a c-sequence. We shall denote three terms for a c-sequence. For simplicity, we'll choose the first odd term to be the initial term of a sequence, denoted $\mathbf{m} \in \mathbb{N}_{odd}$. A term that is not the first term and is odd by N_i . And an even term that is of the form: $3(N_i)+d$ (where d could be 3^k), by M_i . Note well that the indexing is not meant to track steps in a c-sequence, but rather for association only. It will be seen that roughly two thirds of the numbers generated in a sequence, are not relevant. That is, we are only interested in the numbers defined as M_i .

Definition 0.3. A C-sequence is the sequence of all the even numbers from a c-sequence of the form: $3(N_i)+d=M_i \ \forall i \in \mathbb{N}_{>0}$ where $N_i \in \mathbb{N}_{odd}$.

Given a C-sequence, its c-sequence from M_1 , may be constructed with just divisions by 2.

Claim 1: Let $M_i = 3(N_i) + 3$ and $M'_i = 3(N'_i) + 1$ be for 3n+3 and 3n+1, respectively. Further, let \mathbf{m} and $\mathbf{m'}$ be the first odd terms for the respective sequences where $\mathbf{m} = 2(\mathbf{m'}) - 1$. Then $3(M'_{i-1}) = M_i \ \forall \ \mathbf{m}, \mathbf{m'} \in \mathbb{N}_{odd}$.

Proof: Given a pair, \mathbf{m} , \mathbf{m}' we have $\mathbf{m} = 2(\mathbf{m}') - 1$. Let $M_1' = 3(\mathbf{m}') + 1$. Then by the claim, $M_2 = 9(\mathbf{m}') + 3$.

We also have that: $M_1 = 3(\mathbf{m}) + 3 = 3(2\mathbf{m}' - 1) + 3 = 6(\mathbf{m}') - 3 + 3 = 6(\mathbf{m}')$. So, $N_2 = \frac{6(\mathbf{m}')}{2} = 3(\mathbf{m}')$ where $3(N_2) + 3 = M_2 = 9(\mathbf{m}') + 3$. It follows that $3(M'_{i-1}) = M_i \ \forall i \in \mathbb{N}_{>0}$. This is equivalent to $\frac{M_i}{2^k} + 1 = N_{i+1} + 1 = M'_i$ where k is the number of 2 multiples of M'_{i-1} and of M_i .

In Appendix 1, we show the 3n+1 c-sequence for $\mathbf{m}' = 27$. Below that, we show its associated \mathcal{C} -sequence $(M'_i = 3(N'_i)+1)$, where the terms are coloured wrt. their $desig^{-1}$. Followed by the conversion of the \mathcal{C} -sequence for the 3n+3 sequence with $\mathbf{m} = 53$ to the \mathcal{C} -sequence for the 3n+1 sequence with $\mathbf{m}' = 27$.

¹a desig is one of three possible assignments for any even number, see Law 1.

Claim 2: Let $M_i = 3(N_i) + 3^r$ and $M_i' = 3(N_i') + 3^k$ be for $3n+3^r$ and $3n+3^k$ respectively, where $0 \le k < r$. Further, let \mathbf{m} and \mathbf{m}' be the first odd terms for the respective sequences where $\mathbf{m} = 3^{r-k}(\mathbf{m}')$. Then $3^{r-k}(M_i' = 2^a 3^b R) = M_i = 2^a 3^{b+r-k} R \quad \forall \mathbf{m}, \mathbf{m}', R \in \mathbb{N}_{odd} \text{ and } a, b \ge 1$.

Proof: Given a pair, \mathbf{m} , \mathbf{m}' we have $\mathbf{m} = 3^{r-k}(\mathbf{m}')$. Let $M_1' = 3(\mathbf{m}') + 3^k$ and $M_1 = 3(\mathbf{m}) + 3^r$. It follows that $M_1 = 3(3^{r-k}\mathbf{m}') + 3^r$. Then by dividing by 3^{r-k} , we have $\frac{M_1}{3^{r-k}} = 3\mathbf{m}' + \frac{3^r}{3^{r-k}}$. This reduces to, $\frac{M_1}{3^{r-k}} = 3\mathbf{m}' + \frac{1}{3^{-k}}$ giving, $\frac{M_1}{3^{r-k}} = 3\mathbf{m}' + 3^k = M_1'$. And so, $M_1 = 3^{r-k}(M_1')$. It follows that $M_1 = 3^{r-k}(2^a 3^b R) = 2^a 3^{b+r-k} R$. The argument is the same for every pair N_i and N_i' .

Observe that the correspondence between sequences in Claim 1 is just wrt. 3n+1 and 3n+3. Whereas the correspondence between sequences in Claim 2 is for all $3n+3^k$ sequences, $\forall k \in \mathbb{N}_0$. What Claims 1 and 2 establish is that the Collatz conjecture is true if and only if the $3n+3^k$ conjecture is true.

Definition 0.4. A \mathcal{D} -sequence is constructed from a \mathcal{C} -sequence for a 3n+d sequence by $M_i+2(d)$ $\forall i \in \mathbb{N}_{>0}$. The terms of a \mathcal{D} -sequence are denoted by t_i .

1 Law 1: M_i terms of 3n+d sequence generation

For any 3n+d sequence, an M_i can have only one of three designations with respect to +2(d) and -2(d), as follows:

- i) If M_i is divisible by 2, two or more times, then it's M_i . It will always be such that $M_i+2(d)$ and $M_i-2(d)$ will be divisible by 2 exactly once, in this case.
- ii) If M_i is divisible by 2 exactly once and $M_i-2(d)$ is divisible by 2, three or more times, then it's M_i . It will always be such that $M_i+2(d)$ will be divisible by 2 exactly twice, in this case.
- iii) If M_i is divisible by 2 exactly once and $M_i+2(d)$ is divisible by 2, three or more times, then it's M_i . It will always be such that $M_i-2(d)$ will be divisible by 2 exactly twice, in this case.

Every M_i must be one of the three designations or desig, listed above. The desig cases are proved in Appendix 2 (the law applies to all even \mathbb{N}). Note well that we use the desig coloured circle, square and triangle with the terms, t_i of the \mathcal{D} -sequence and to the left of down pointing arrows between an M_i and its associated t_i in our example for $\mathbf{m} = 53$, in Appendix 4. It's to be understood that the desig is always for M_i and that it's just an association with $t_i = M_i + 2(d)$.

Definition 1.1. An R-subsequence or R-sub begins with a t_i if we have t_{i-1} or i = 1, and ends with the last term t_k preceding t_{k+1} or the C-sequence terminated at M_k . An R-sub has two parts, called the head and the tail. The head contains only t_i terms and the tail contains only t_j and t_k terms.

R-subs are always contiguous and we index as: R-sub₁, R-sub₂, R-sub₃, ... For example, a \mathcal{D} -sequence could have initially, terms: t_1 , t_2 , t_3 , t_4 , t_5 . Its associated \mathcal{C} -sequence is of course: M_1 , M_2 , M_3 , M_4 , M_5 . In which case the first R-sub begins with t_5 . Some \mathcal{C} -sequences may have no M_i terms and would simply be a tail only sequence.

Specifically, if the i^{th} term is t_i then the $i+1^{th}$ term can only be another t_{i+1} or t_{i+1} . And the $i-1^{th}$ term can only be another t_{i-1} or t_{i-1} . If the i^{th} term is t_i then the $i+1^{th}$ term can only be t_{i+1} . And the $i-1^{th}$ term can only be t_{i-1} or t_{i-1} . Lastly, if the i^{th} term is t_i then the $i+1^{th}$ term can be another t_{i+1} or t_{i+1} or t_i . The $i-1^{th}$ term can only be another t_{i-1} or t_{i-1} . (proofs in Appendix 2)

2 Law 2: $2^a 3^b R$ structure for 3n+d sequences

All 3n+d sequences are such that every t_i from their associated \mathcal{D} -sequences, are divisible by at least one 2 and one 3. The \mathcal{D} -sequences reveal distinct structure. More precisely, every t_i can be written as: $2^a 3^b R$, where $a, b, R \in \mathbb{N}_{>0}$. R is the remainder, always odd, not divisible by 3 and not necessarily prime. Moreover, if $t_i = 2^a 3^b R$, where a > 1, then t_{i+1} must be

 $2^{a-1}3^{b+1}R$. That is, if $M_i+2(d)=t_i=2^a3^bR$ then $M_{i+1}+2(d)=t_{i+1}=2^{a-1}3^{b+1}R$, if a>1. We will distinguish a different R with R'.

In general, we have: $2^a 3^b R \longrightarrow 2^{a-1} 3^{b+1} R$ where $a, b, a-1, b+1 \in \mathbb{N}_{>0}$. In fact, every $2^a 3^b R$ where $a \geq 2$ must continue until we have: $2^1 3^{b+a-1} R = t_k$ where M_k is always M_k . If t_i is $t_i = M_i + 2(d)$, where $t_i = 2^3 3^b R$, then t_{i+1} is $t_{i+1} = M_{i+1} + 2(d) = 2^2 3^{b+1} R$. It must follow that t_{i+2} is $t_{i+2} = M_{i+2} + 2(d) = 2^1 3^{b+2} R$. This implies that there are no consecutive terms as: t_i, t_{i+1} . A tail can be at best, an alternating sequence as: $t_i, t_{i+1}, t_{i+2}, t_{i+3}, \ldots$ (proofs in Appendix 2). Since 3n+d sequence generation can be associated to $2^a 3^b R$ representations for every M_i , we are able to plainly see that sequences have a particular structure. In Appendix 4, we have an example showing the \mathcal{C} -sequence and its associated \mathcal{D} -sequence for $\mathbf{m} = 53$ where $M_1 = 3(53) + 3 = 162$. Observe that the sequence begins with an R-sub and in fact there are eight contiguous, in all. They are explicitly itemized in Appendix 3.

Every C-sequence for a 3n+d sequence has an associated D-sequence. It will be shown in this section that no 3n+d sequence is divergent. Thus, all 3n+d sequences will have a cycle, meaning that terms would be repeated.

Definition 2.1. A 3n+d sequence starting with m has a trivial cycle if d is one of the terms. Otherwise, the sequence has a non-trivial cycle.

We will refer to the number of terms in a c-sequence, as the number of steps.

Definition 2.2. Given an R-sub, there exists a first (f), term M_f and a last (l), term M_l . Then let $X \in \mathbb{N}_{odd}$ be M_f divided by 2 (there is only one multiple of 2 by Law 1). And let $Y \in \mathbb{N}_{odd}$ be M_l divided by 2^r , where $r \geq 2$ (by Law 1). Then an R^X -sub is an R-sub such that $\frac{2X-d}{3} < Y$. And an R^Y -sub is an R-sub such that $Y < \frac{2X-d}{3}$. We denote an R^X -sub; as: $(h,t \mid t_f = 2^a 3^b R \mid t_l = 2^c 3^d R' or R)$ is the i^{th} R-sub such that $\frac{2X-d}{3} < Y$, where h (head), is the number of t terms and t (tail), is the number of t and t terms for

this R-sub. Similarly, we denote an R^Y -sub_i as: $(h, t \mid t_f = 2^a 3^b R \mid t_l = 2^c 3^d R' or R)$ is the i^{th} R-sub such that $Y < \frac{2X-d}{3}$. If $Y = \frac{2X-d}{3}$ then it's just an R-sub.

Example i) Below, is the C-sequence and its associated D-sequence for 3n+5 with $\mathbf{m} = 11$. It has one R^X -sub, since $Y = 19 > 11 = \frac{2X-d}{3}$. It has a non-trivial cycle which is required for such a special case. ie. a lone R^X -sub.

Example ii) Below, is the C-sequence and its associated D-sequence for 3n+5 with $\mathbf{m} = 19$. It has one R-sub which is neither X or Y, since $Y = \frac{2X-d}{3} = 19$. It has a non-trivial cycle which would never occur for any $3n+3^k$ sequence.

Law 2: R-sub tails' associated M_i terms

Every consecutive pair of $M \to M$ terms have a property that distinguishes such pairs from one another. If N_{i+1} of $M_i = X$ and N_{i+2} of $M_{i+1} = Y$ and |X - Y| is divisible by 2, exactly once, the term M_{i+2} must be M_{i+2} or $M_{i+2} \to M_i$. Or, if |X - Y| is divisible by 4 or more, the term M_{i+2} must be M_{i+2} . If N_{i+1} of $M_i = X$ and N_{i+2} of $M_{i+1} = Y$ and |X - Y| is divisible by 2, exactly once, the term M_{i+2} must be M_{i+2} or M_{i+2} . Or, if |X - Y| is divisible by 4 or more, the term M_{i+2} must be M_{i+2} .

If N_{i+1} of $M_i = X$ and N_{j+1} of $M_j = Y$, j > i+1, and |X - Y| is divisible by 2, exactly once, the term M_{j+1} must be M_{j+1} or M_{j+1} . If |X - Y| is divisible by 4 or more, the term M_{j+1} must be M_{j+1} .

If N_{i+1} of $M_i = X$ and N_{j+1} of $M_j = Y$, j > i+1, and |X - Y| is divisible by 2, exactly once, the term M_{j+1} must be M_{j+1} or M_{j+1} . If |X - Y| is divisible by 4 or more, the term M_{j+1} must be M_{j+1} or M_{j+1} or M_{j+1} . Wrt. 3n+d sequences with trivial cycles, any $M_i \cdots M_j \cdots M_k$ the limit for an alternating portion is N_{t+1} of $M_t < N_{i+1} \ \forall t, i+1 \le t \le k+1$. Now, if we let the first associated term of a tail be M_i where $N_{i+1} = X$ and let M_j where $N_{j+1} = Y$, be another associated term of the tail, it's always the case that X > Y. Thus, X > Y, is a general result for 3n+d sequences with trivial cycles.

Definition 2.3. An H-form R-sub is denoted by $(h, 2 \mid 2^a 3^b R \mid 2^1 3^{a+b-1} R)$, a tail of length 2, and an L-form R-sub is denoted by $(1, t \mid 2^3 3^b R \mid 2^1 3^d R')$, a head of length 1. A maximum H-form is denoted by $(h, 2 \mid 2^a 3^1 R \mid 2^1 3^a R)$. ie. 3^b where b=1.

The *L*-form and the *H*-form could be viewed as the two extremes of *R*-subs since *L*-forms have the shortest *head*, of length one with $t_f = 2^3 3^b R$ and $t_l = 2^1 3^d R'$ and *H*-forms have the shortest *tail*, of length two. In other words, they can play a role with respect to the bounds for 3n+d generation.

Next, the R-subs are partitioned or grouped in similar fashion as the t, t and t terms for the R-subs were wrt. the distinction between head and tail.

Definition 2.4. An **S**-string is a collection of contiguous R-subs: R-sub_i $\rightarrow R$ -sub_{i+1} $\rightarrow R$ -sub_{i+2} $\rightarrow \cdots \rightarrow R$ -sub_j $\rightarrow R$ -sub_{j+1} $\rightarrow R$ -sub_{j+2} $\rightarrow \cdots \rightarrow R$ -sub_k where the R-sub_i, R-sub_{i+1}, R-sub_{i+2}, ..., R-subs must be R^X -subs and the R-sub_j, R-sub_{j+1}, R-sub_{j+2}, ... R-sub_k, R-subs must be R^Y -subs.

The R^X -subs followed by the R^Y -subs of an **S**-string shall be the *head* and tail, respectively. **S**-strings are contiguous and are indexed as: **S**-string₁, **S**-string₂, **S**-string₃, See Appendix 3 for examples.

Definition 2.5. Given an **S**-string there exists a first term M_f and a last term M_l . Then let $X \in \mathbb{N}_{odd}$ be M_f divided by 2. And let $Y \in \mathbb{N}_{odd}$ be M_l divided by 2^r , where $r \geq 2$. Then an S^X -string is an **S**-string such that $\frac{2X-d}{3} < Y$. And an S^Y -string is an **S**-string such that $Y < \frac{2X-d}{3}$. We denote an S^X -string_i as the i^{th} **S**-string such that $Y < \frac{2X-d}{3} < Y$. Similarly, we denote an S^Y -string_i as the i^{th} **S**-string such that $Y < \frac{2X-d}{3} < Y$. If $Y = \frac{2X-d}{3}$ then it's just an **S**-string.

Definition 2.6. For 3n+d, if N_i (odd), is such that $2(N_i) - d$ is not divisible by 3 and $4(N_i) - d$ is not divisible by 3, then N_i is a dead-ender.

A dead-ender cannot appear in a c-sequence as any N_i , i > 1, because it cannot be generated, by which we mean no N_{i-1} exists. It follows that the M_f term for any H-form is derived from a dead-ender. That is, a dead-ender can only be N_1 where $3(N_1)+d=M_f$, of an R-sub₁. This implies that such an M_f , cannot be an M_i of a cycle.

Definition 2.7. A dead-ender's cap O, is an even number of the form: 2^kN_i where $k \ge 1$ and N_i is a dead-ender.

Note that an O is not of the form $3(N_i)+d$, so it's not part of a C-sequence.

Even number distribution of \mathbb{N}

Define the set \mathbb{N}_{even} with the standard <, so the set is ordered. Further, let every even number be of the form: 2^aS_i where $a \in \mathbb{N}_1$ and $S_i \in \mathbb{N}_{odd}$.

We shall establish that every 3n+d sequence is due solely to the distribution of the even numbers wrt. the form 2^aS_i . Moreover, the distribution guarantees that every 3n+d sequence converges.

Let $e_i \in \mathbb{N}_{even}$ where $e_1 = 2$. Then wrt. a chosen desig convention (the other would simply be reversing \blacksquare and \blacktriangle , with each other), we have: $\stackrel{\bullet}{e_1}$, $\stackrel{\bullet}{e_2}$, $\stackrel{\bullet}{e_3}$, e_4 , e_5 , e_6 , e_7 , e_8 , e_9 , e_{10} , e_{11} , e_{12} , Each 3n+d sequence is distinguished by whether their d is divisible by 3 or not. If a 3n+d sequence is such that d is divisible by 3 then every N_i for the sequence must also be divisible by 3. If not, it's a dead-ender and can only be N_1 , the only exception. If a 3n+dsequence is such that d is not divisible by 3 then every N_i for the sequence must also not be divisible by 3. Otherwise, it's a dead-ender and can only be N_1 . What this means is that 3n+d sequences whose d is divisible by 3 use different numbers from \mathbb{N}_{even} than the 3n+d sequences whose d is not divisible by 3. Our interest is that we need to know if the distribution of the even numbers wrt. their design are similar. We are also interested in the particular desig outcome from any M_i not derived from a dead-ender. ie. N_i not to be a dead-ender. Above, we have an alternating pattern wrt. e_i and e_i or e_k . It follows that half the numbers are e_i numbers for any given non-trivial range of consecutive even numbers with a consistent alternating distribution throughout \mathbb{N}_{even} .

An M_i for a 3n+d sequence whose $d \in \mathbb{N}_{odd \geq 3}$ is divisible by 3 and is not derived from a dead-ender could be: e_i , e_{i+9} , $e_{i+2(9)}$, $e_{i+3(9)}$, $e_{i+4(9)}$, $e_{i+5(9)}$, $e_{i+6(9)}$, $e_{i+7(9)}$, $e_{i+8(9)}$, $e_{i+9(9)}$, $e_{i+10(9)}$, $e_{i+11(9)}$, ie. every ninth number of \mathbb{N}_{even} starting at 3(d)+d. Observe that they have the same alternating distribution as \mathbb{N}_{even} . This implies that half the numbers are e_i numbers in any given non-trivial range and that the alternating distribution remains consistent throughout this subset of \mathbb{N}_{even} . Note that the even numbers between e_j and e_{j+9} , namely, e_{j+3} and e_{j+6} are derived from dead-enders for a particular value of d wrt. 3(n)+d. And the even numbers e_{j+1} , e_{j+2} , e_{j+4} , e_{j+5} , e_{j+7} and e_{j+8} cannot be produced for a particular value of d wrt. 3(n)+d.

An M_i for a 3n+d sequence whose $d \in \mathbb{N}_{odd}$ is not divisible by 3 and is not derived from a dead-ender, starting at 3(d)+d as in the cases of 3n+5 or

3n+11, could be: e_i , e_{i+3} , e_{i+9} , e_{i+12} , e_{i+18} , e_{i+21} , e_{i+27} , e_{i+30} , e_{i+36} , e_{i+39} , e_{i+45} , e_{i+48} , Or again, starting at 3(d)+d as in the cases of 3n+1 or 3n+7, could be: e_i , e_{i+6} , e_{i+9} , e_{i+15} , e_{i+18} , e_{i+24} , e_{i+27} , e_{i+33} , e_{i+36} , e_{i+42} , e_{i+45} , e_{i+51} , In all cases, there is a consistent alternating pattern wrt. the pairs e_k , e_{k+3} with the pairs e_{k+9} , e_{k+12} , such that for any given non-trivial range, the alternating distribution remains consistent throughout this subset of \mathbb{N}_{even} , where again, half the numbers are e_i numbers. Note that the even number between e_j and e_{j+9} , namely, e_{j+6} is derived from a dead-ender for a particular value of d wrt. 3(n)+d, for $d=5,11,17,\ldots$ And the even number between e_j and e_{j+9} , namely, e_{j+3} is derived from a dead-ender for a particular value of d wrt. 3(n)+d, for $d=1,7,13,\ldots$ Lastly, the even numbers e_{j+1} , e_{j+2} , e_{j+4} , e_{j+5} , e_{j+7} and e_{j+8} cannot be produced for a particular value of d wrt. 3(n)+d.

For \mathbb{N}_{even} , we have that $2^rS_i = e_k$ is st. $e_{k+2^{r-1}} = 2^sS_j \ \forall s > r$. And $2^rS_i = e_k$ is st. $e_{k+2^r} = 2^rS_j$.

For the subset of \mathbb{N}_{even} used by 3n+d sequences whose $d \in \mathbb{N}_{odd \geq 3}$ is divisible by 3 and is not derived from a dead-ender, we have that $2^rS_i = e_k$ is st. $e_{k+36} = 2^sS_j$ where $s \neq r \ \forall t, s \geq 3$. And $2^rS_i = e_k$ is st. $e_{k+9(2^r)} = 2^rS_j$.

For the two subsets of \mathbb{N}_{even} used by 3n+d sequences whose $d \in \mathbb{N}_{odd}$ is not divisible by 3 and is not derived from a dead-ender, we have that $2^rS_i=e_k$ is st. $e_{k+12}=2^sS_j \ \forall s \geq 3$. Or, we have that $2^rS_i=e_k$ is st. $e_{k+24}=2^sS_j \ \forall s \geq 3$, always alternating between +12 and +24. Additionally: $2^1S_i=e_k$ is st. $e_{k+6}=2^1S_j$ and $e_{k+18}=2^1S_u$ and $e_{k+24}=2^1S_v$..., alternating between +6 and +12. Lastly, $2^2S_i=e_k$ is st. $e_{k+12}=2^2S_j$ and $e_{k+36}=2^2S_u$ and $e_{k+48}=2^2S_v$..., alternating between +12 and +24.

Note well: Consider the set \mathbb{N}_{even} and the subsets of \mathbb{N}_{even} used by the 3n+d sequences whose $d \in \mathbb{N}_{odd}$ is and is not divisible by 3, respectively, and is not derived from a dead-ender. Then wrt. a non-trivial range of \mathbb{N}_{even} , the number of 2^1S_i even numbers equals the sum of all the 2^tS_i even numbers $\forall t \geq 2$, that's in the given range. And the number of 2^2S_i even numbers equals the sum of all the 2^tS_i even numbers $\forall t \geq 3$, that's in the given range, and so on, until some value of t is reached, where the summation equality does not hold, for a few remaining values of t. Recall that every \mathcal{C} -sequence for a

3n+d sequence has an associated \mathcal{D} -sequence. This implies that every 3n+d sequence obeys Law 2. Moreover, by the analysis above, 3n+d sequences will be similar regardless of the value for d. Their similarity in more precise terms is outlined in the sections to follow for Laws 3 and 4.

S^X -strings and S^Y -strings

It is significant wrt. the first and last c-sequence numbers of an associated tail that X > Y, for any R-sub, of 3n+d sequences with trivial cycles because it means that the numbers associated to a tail do not produce an overall increase in the size of the numbers for the c-sequence. In other words, if there was an overall increase in the size of the c-sequence numbers as the number of steps increase, it was because of the numbers associated to head terms. For example, the second last R^Y -sub₇ of the 3n+3 sequence, $\mathbf{m}=53$ (Appendix 4), contains the largest number of the entire c-sequence, namely, $M_{34}=27,696$. But overall, it does not contribute to the increase in the size of the numbers to follow in the c-sequence. Moreover, no R^Y -sub associated number contributes to the overall increase in the size of the numbers. That is, only the numbers associated to the head terms of R^X -subs from \mathbf{S}^X -strings (should one or more exist), increase the overall size of the numbers for a c-sequence.

It's worth noting that an R^X -sub having just one *head* term, is very nearly an R^Y -sub because $\frac{2X-d}{3}$ wouldn't be much smaller than Y, so that even if one tail term M had been divisible by 2 once more, it could have been $\frac{2X-d}{3} > Y$.

The determined part of a c-sequence wrt. its \mathcal{C} -sequence that's associated to an R-sub is: $M_{i-1} \to M_i \cdots M_{j-1} \to M_j \to M_{j+1}$, where i to j-1 are all head terms.

The determined part of a c-sequence wrt. its \mathcal{C} -sequence that's associated to an R-sub that may exist more than once is: $M_k \to M_{k+1}$, where k > j+1. Note that M_{i-1} could be M_{i-1} or another head term. What we have left to explain for a 3n+d sequence with first term \mathbf{m} , is which outcome for $M_k \to M_k$

 M_{k+1} , is produced. By Law 2, the first associated head term $t_i = M_i + 2d = 2^a 3^b R$ for any 3n+d sequence is such that $a \ge 3$. Recall that the number of head terms for any R-sub equals a-2, so a of $2^a 3^b R$ must be 3 or greater. It follows that the size of a for the first head term is what determines any possible increase in size of the numbers of the c-sequence, overall.

For notational convenience, let $\bullet \to \bullet$ represent any two consecutive M terms. And let $\bullet \to \blacksquare$ represent $M_t \to M_{t+1}$, where $t \ge j+1$.

Further, let $\bullet \to \blacktriangle$ represent $M_{i-1} \to M_i$.

The counting rules

It is the number distribution of \mathbb{N}_{even} wrt. the form: 2^aS_i , that produces the somewhat limited variations of 3n+d sequences, which is best defined by the count of the scenarios described just above.

Let the number of $\bullet \to \blacksquare$ plus the number of $\bullet \to \bullet = \mathbf{A}$. Note that there is a one to one correspondence between $\bullet \to \blacksquare$ and $\blacksquare \to \bullet$. And let the number of $\bullet \to \blacktriangle = \mathbf{B}$, which is the counting of the first head terms.

There are specific rules to counting the various $M_s \to M_{s+1}$ scenarios whether they belong to an R^X -sub or an R^Y -sub, an S^X -string or an S^Y -string.

They are as follows if at least one S-string exists:

 R^X -subs: The $\bullet \to \blacksquare$ scenarios are counted. But each L-form R^X -sub is counted as 0.5. All $\bullet \to \bullet$ scenarios are counted. All $\bullet \to \blacksquare$ scenarios are counted.

 R^Y -subs: No $\bullet \to \blacktriangle$ scenarios are counted, in all **S**-strings. Additionally, for each H-form R^Y -sub, a +1 is assigned to its **S**-string's **A** value. All $\bullet \to \blacksquare$ scenarios are counted.

S^X-strings: The $\bullet \to \blacktriangle$ scenarios are counted just for R^X -subs, where all contiguous H-form R^X -subs are counted once only and each L-form R^X -sub is counted as 0.5. All $\bullet \to \bullet$ scenarios are counted. All $\bullet \to \blacksquare$ scenarios are counted. (see Appendix 3 regarding how to count R^X -subs of both forms)

S^Y-strings: No $\bullet \to \blacktriangle$ scenarios are counted, for both its R^Y -subs and R^X -subs. ie. **B** = 0. All $\bullet \to \bullet$ scenarios are counted. All $\bullet \to \blacksquare$ scenarios are counted.

The reasoning for counting contiguous H-form R^X -subs in \mathbf{S}^X -strings, just once with wrt. $\bullet \to \blacktriangle$ scenarios is because they can be viewed collectively as one extended head. That is, for this counting, the number of head terms is not relevant. What is relevant is when there exists an alternating pattern of H-form R^X -subs with non H-form R^X -subs in an \mathbf{S}^X -string, where all noncontiguous H-form R^X -subs will be counted. This would be the alternating of the heads for an \mathbf{S}^X -string. And just like the alternating of tail terms in R-subs, which obeys X > Y, there exists a limit wrt. alternating heads, as well. By the same reasoning, not counting $\bullet \to \blacktriangle$ scenarios for all R^Y -subs (which are always contiguous), is because they can be viewed collectively as one extended tail. L-form R^X -subs are very close to being R^Y -subs, so they are assigned a value of just 0.5 each.

Most 3n+d sequences are such that the majority of their M_i terms are divisible by 2, at most twice. This implies that there is no extreme reliance necessarily, on M_i terms to be divisible by 2, three or more times. However, if an H-form R^Y -sub exists, it was necessary that its one M_i term was divisible by 2, at least three times. This is why for each H-form R^Y -sub, a +1 is assigned to its \mathbf{S} -string's \mathbf{A} value. It's an acknowledgement to a special case, namely, an H-form R^Y -sub. With these considerations for the counting of $M_k \to M_{k+1}$ scenarios, we have that for every \mathbf{S}^X -string and \mathbf{S}^Y -string, $\mathbf{A} > \mathbf{B}$. Lastly, for a given 3n+d sequence with first term \mathbf{m} , let the number of \mathbf{S}^Y -strings = \mathbf{C} and let the number of \mathbf{S}^X -strings = \mathbf{D} . Then $\mathbf{C} \ge \mathbf{D}$.

These relationships could only be preserved because Law 2 is obeyed by every 3n+d sequence for every d and \mathbf{m} . More plainly, there can be no divergence if Law 2 is obeyed by a 3n+d sequence, which is the case.

In summary, each \mathbf{S}^X -string and \mathbf{S}^Y -string reflects the distribution of \mathbb{N}_{even} and this precludes any possibility of a 3n+d sequence to diverge. It follows that all 3n+d sequences converge with either a trivial cycle or a non-trivial cycle. What remains to establish is which 3n+d sequences have a trivial cycle and those 3n+d sequences having a non-trivial cycle. This is completely determined by just $d=3^k$ or by d and \mathbf{m} for a given 3n+d sequence.

3 Law 3: Correspondence of 3n+d and 3n+f sequences

Definition 3.1. We say that two sequences 3n+d with first term \mathbf{m} and 3n+f with first term \mathbf{m}' , where $d, f \in \mathbb{N}_{odd}$, correspond if there exists a number x where $x \in \mathbb{N}_{odd>1}$ is such that multiplying d and \mathbf{m} by x produces 3n+f with first term \mathbf{m}' or multiplying f and \mathbf{m}' by x produces 3n+d with first term \mathbf{m} .

Corresponding c-sequences will have the same number of steps, the same type and size of cycle and their respective C-sequence and D-sequence terms will only differ as M_i , $x(M_i)$ and t_i , $x(t_i)$ for each $i \in \mathbb{N}_{>0}$. It is shown in Appendix 5, the plotted graphs for the c-sequences of 3n+1 and 3n+3, starting at $\mathbf{m}' = 27$ and $\mathbf{m} = 81$, respectively. Observe that they are the same graph, ignoring vertical scale.

Law 3 is the generalization of Claim 2 for d in general, where we use d, x(d) = f, $x(\mathbf{m}) = \mathbf{m}'$ or we use f, x(f) = d, $x(\mathbf{m}') = \mathbf{m}$, for any 3n+d sequence and its corresponding 3n+f sequence. (proof in Appendix 2)

Definition 3.2. Given a 3n+d sequence with first term m, we can construct other sequences of the form: $3n+3^kd$ with m, where $k \in \mathbb{N}_1$. We call such constructions the augmentation of d with 3^k for a 3n+d sequence.

A 3n+d sequence with \mathbf{m} , and any augmentation $3n+3^kd$ with \mathbf{m} , is a special case of Law 3. Specifically, two sequences 3n+d and $3n+3^kd$, both with first term \mathbf{m} , where $d, 3^kd \in \mathbb{N}_{odd}$, may have corresponding cycles so that multiplying every cycle term of 3n+d by 3^k , produces every cycle term of $3n+3^kd$. All corresponding sequences and some of the special cases, have corresponding cycles. ie. some special cases may not have corresponding non-trivial cycles.

4 Law 4: 3n+d, m, trivial and non-trivial cycles

Let two positive odd integers, $d < \mathbf{m}$ have prime decompositions: $p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \dots \cdot p_r^{\alpha_r}$ and $p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot p_3^{\beta_3} \dots \cdot p_s^{\beta_s}$, respectively. We'll use the notation $d \subset \mathbf{m}$ and $d \not\in \mathbf{m}$ to mean that \mathbf{m} 's prime decomposition is divisible by the prime decomposition of d, or it's not. We chose this notation instead of \mathbf{m}/d or \mathbf{m} div d.

Lemma 4.1. Let d have no factor of 3^k for any $k \in \mathbb{N}_1$. Then a 3n+d sequence with first term \mathbf{m} has a non-trivial cycle if and only if $d \notin \mathbf{m}$.

Proof. We can induct on the size of \mathbf{m} and d, considering up to $\mathbf{m} \geq d$, to be true. Note that if $\mathbf{m} = d$, then the 3n+d sequence is just three steps and has a trivial cycle. Let the base case be d = 5 and $\mathbf{m} = 7$, since we consider no 3^k for any $k \in \mathbb{N}_1$, and if d = 1, every \mathbf{m} would be divisible by d.

A non-trivial cycle for a 3n+d sequence $\implies d \notin \mathbf{m}$.

Suppose to the contrary that $d \in \mathbf{m}$. Then by Law 3, we have that \mathbf{m} is divisible by d and d/d = 1. This gives the corresponding sequence 3n+1 with first term \mathbf{m}/d . Since $\mathbf{m}/d < \mathbf{m}$ and d = 1, we know that this sequence has a trivial cycle which implies that 3n+d has a trivial cycle as well, by Law 3. Thus, a non-trivial cycle for a 3n+d sequence implies that $d \notin \mathbf{m}$.

If $d \not\in \mathbf{m} \implies$ a non-trivial cycle for a 3n+d sequence.

We know that if it were the case that $d \subset \mathbf{m}$, then every term in the 3n+d sequence would also be divisible by d. Consequently, every 3n+d sequence where $d \subset \mathbf{m}$ has a corresponding sequence 3n+1 with \mathbf{m}/d . And this implies that the cycle for such a sequence must be trivial. However, in this case, none of the terms of the sequence are divisible by d, thereby d does not appear as a term, so by definition, the sequence has a non-trivial cycle.

It follows that a 3n+1 sequence with \mathbf{m} , must have a trivial cycle since $d \subset \mathbf{m}$. Moreover, all values of $d \leq \mathbf{m}$ where $d \subset \mathbf{m}$, will have trivial cycles. Therefore, the inductive step is valid and so, the result follows.

The only exception to lemma 4.1 is the special cases of Law 3. The reason is that it could be the case that $d \in \mathbf{m}$ while $3^k \notin \mathbf{m}$, yet the $3n+3^kd$ sequence will have a trivial cycle. Of course, if $d \notin \mathbf{m}$ and $3^k \notin \mathbf{m}$ or $3^k \in \mathbf{m}$, then the $3n+3^kd$ sequence will have a non-trivial cycle. Since for all special cases of Law 3 where the 3n+d sequence has a trivial cycle implies that its corresponding $3n+3^kd$ sequence will also have a trivial cycle, then it follows that every $3n+3^k$ sequence (d=1), so only trivial cycles), $\forall k \in \mathbb{N}_0$ has a trivial cycle, hence contains the term 3^k .

It should be clear that if $f > \mathbf{m}$, then a 3n+f sequence necessarily has a non-trivial cycle, unless $f = 3^k d$ and $d \subset \mathbf{m}$, in which case, the 3n+f sequence has a trivial cycle. Moreover, all laws are obeyed even if $f > \mathbf{m}$.

Finally, all 3n+d sequences are convergent and if the $gcd(\mathbf{m}, d) = d$, then just copies of d are being produced and reduced, so that the only possible outcome is that d appears in the cycle. If the $gcd(\mathbf{m}, d) \neq d$ (if d has no factor 3^k), for a 3n+d sequence, then it must necessarily have a non-trivial cycle.

5 Final comments

When a 3n+d sequence starting with \mathbf{m} is such that $d \in \mathbf{m}$ then Collatz sequence generation could be described simply as an inefficient scheme to calculate the $gcd(\mathbf{m}, d) = d$. And when $d \notin \mathbf{m}$ (if d has no factor 3^k), we have a number generator of unknown value. However, this is a story about numbers 2 and 3 and their relationship with each other.

One final comment is that number theory appears to be enslaved to all things involving the odd primes. However, the one prime that's even, is a part of every other number in the set \mathbb{N} , seems to be all but ignored. And yet, Collatz sequences are the expression of how the even numbers play a non-trivial role as seen when viewed in their 2^rS_i form. Moreover, all the other primes $\in \mathbb{N}_{odd>3}$, have no relevance wrt. any 3n+d sequence. ie. 2 is a special prime.

```
The 3n+1 sequence for \mathbf{m'} = 27 \rightarrow 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
```

The c-sequence above, contains the C-sequence \rightarrow 82, 124, 94, 142, 214, 322, 484, 364, 274, 412, 310, 466, 700, 526, 790, 1186, 1780, 1336, 502, 754, 1132, 850, 1276, 958, 1438, 2158, 3238, 4858, 7288, 2734, 4102, 6154, 9232, 1732, 1300, 976, 184, 70, 106, 160, 16

From the 3n+3 C-sequence for $\mathbf{m} = 2(27) - 1 = 53$, we obtain the 3n+1 C-sequence for $\mathbf{m}' = 27$ by $\frac{M_i}{2^k} + 1 = N_{i+1} + 1 = M_i'$ as follows:

```
\begin{array}{l} \mathbf{m} = 53 \rightarrow \frac{162}{2^1} + 1 = 82, \, \frac{246}{2^1} + 1 = 124, \, \frac{372}{2^2} + 1 = 94, \, \frac{282}{2^1} + 1 = 142, \\ \frac{426}{2^1} + 1 = 214, \, \frac{642}{2^1} + 1 = 322, \, \frac{966}{2^1} + 1 = 484, \, \frac{1452}{2^2} + 1 = 364, \, \frac{1092}{2^2} + 1 = 274, \\ \frac{822}{2^1} + 1 = 412, \, \frac{1236}{2^2} + 1 = 310, \, \frac{930}{2^1} + 1 = 466, \, \frac{1398}{2^1} + 1 = 700, \, \frac{2100}{2^2} + 1 = 526, \\ \frac{1578}{2^1} + 1 = 790, \, \frac{2370}{2^1} + 1 = 1186, \, \frac{3558}{2^1} + 1 = 1780, \, \frac{5340}{2^2} + 1 = 1336, \\ \frac{4008}{2^3} + 1 = 502, \, \frac{1506}{2^1} + 1 = 754, \, \frac{2262}{2^1} + 1 = 1132, \, \frac{3396}{2^2} + 1 = 850, \\ \frac{2550}{2^1} + 1 = 1276, \, \frac{3828}{2^2} + 1 = 958, \, \frac{2874}{2^1} + 1 = 1438, \, \frac{4314}{2^1} + 1 = 2158, \\ \frac{6474}{2^1} + 1 = 3238, \, \frac{9714}{2^1} + 1 = 4858, \, \frac{14574}{2^1} + 1 = 7288, \, \frac{21864}{2^3} + 1 = 2734, \\ \frac{8202}{2^1} + 1 = 4102, \, \frac{12306}{2^2} + 1 = 6154, \, \frac{18462}{2^1} + 1 = 9232, \, \frac{27696}{2^4} + 1 = 1732, \\ \frac{5196}{2^2} + 1 = 1300, \, \frac{3900}{2^2} + 1 = 976, \, \frac{2928}{2^4} + 1 = 184, \, \frac{552}{2^3} + 1 = 70, \\ \frac{210}{2^1} + 1 = 106, \, \frac{318}{2^1} + 1 = 160, \, \frac{480}{2^5} + 1 = 16 \end{array}
```

Proof for Law 1

Let $M_i = 3(N_i) + d$ where N_i is odd. Suppose M_i is divisible by 2 exactly once. Then, let $3(N_i)+d=2R$ where R, R' and R'' $\in \mathbb{N}_{odd}$. Then, $M_i+2d=2R+1$ 2d = 2(R+d). But R+d must be even, so let it be 2R'. Then, $M_i+2d = 2^2R'$ must be divisible by at least 4. Suppose it's exactly 4. Now, we have that $M_i-2d=2R-2d=2(R-d)$. But R-d must be even, so let it be 2R''. Then, $M_i-2d=2^2R''$ must be divisible by at least 4. Suppose it's exactly 4 as well. Then, $M_i-2d=2^2R''$. But then we have that $2^2R''+4d=2^2R'$. And this is equivalent to $R'' + d = R' \longrightarrow \text{odd} + \text{odd} = \text{odd}$, a contradiction by the assumption that M_i -2d was divisible by exactly 4 (assuming M_i +2d was). Therefore, M_i must be M_i . Observe that if M_i+2d and M_i-2d are swapped in the argument above, then the contradiction would imply that M_i is \overline{M}_i instead. Now suppose M_i is divisible by 4. Then M_i is M_i by definition. Let $M_i = 2^2 R$. It follows that $M_i + 2d = 2^2 R + 2d = 2(2R + d)$. But 2R + d is odd. Let R' = 2R + d, so $M_i + 2d = 2R'$, thus divisible by 2 exactly once. Similarly, $M_i-2d=2^2R-2d=2(2R-d)$. But 2R-d is odd. Let R''=2R-d, so M_i-2d =2R'', thus divisible by 2 exactly once. Since the arguments here, would be unchanged for any 3n+d sequence, $d \in \mathbb{N}_{odd}$ then the law applies to all \mathbb{N}_{even} .

Proof for $2^a 3^b R \longrightarrow 2^{a-1} 3^{b+1} R$ where $a \ge 3$ and for $t_i \longrightarrow t_{i+1}$

Let $M_i+2d=2^a3^bR$ where $a\geq 3$. Then $M_i=2^a3^bR-2d=2(2^{a-1}3^bR-d)$. But M_i is divisible by 2 exactly once (by Law 1). It follows that $N_{i+1}=2^{a-1}3^bR-d$.

So, $3(N_{i+1}) + d = 3(2^{a-1}3^bR - d) + d = 2^{a-1}3^{b+1}R - 3d + d = 2^{a-1}3^{b+1}R - 2d$ = M_{i+1} . Thus, $M_{i+1} + 2d = 2^{a-1}3^{b+1}R = t_{i+1}$. It follows immediately that if $t_i = 2^33^bR$ then $2^23^{b+1}R = t_{i+1}$, where $t_{i+1} = M_{i+1} + 2d = 2^23^{b+1}R$ is divisible by exactly 4, so M_{i+1} is M_{i+1} by Law 1. Moreover, it follows that $t_{i+2} = M_{i+2} + 2d = 2^13^{b+2}R$ is divisible by 2 exactly once. Then M_{i+2} is M_{i+2} by Law 1. Suppose now that some t_i does not follow a t_{i-1} . Then again, $t_i = M_i + 2d = 2^2 3^b R$ is divisible by exactly 4. M_i is divisible by 2 exactly once and it follows that $\frac{M_i}{2} = N_{i+1} = \frac{2^2 3^b R - 2d}{2} = 2^1 3^b R - d$. Then $M_{i+1} = 3(2^1 3^b R - d) + d = 2^1 3^{b+1} R - 3d + d = 2^1 3^{b+1} R - 2d$. So, $M_{i+1} + 2d = 2^1 3^{b+1} R$ and by Law 1, M_{i+1} is M_{i+1}

Proof for $t_i = 2^2 3^b R$.

Suppose t_{i-1} is $t_{i-1} = t_f$ is $2^3 3^1 R$ (the least it could be), then t_{f+1} is $2^2 3^2 R$. If t_{i-1} is t_{i-1} , then $M_{i-1} = 2^r 3^b S$ where $r \ge 2$ and S is odd and not divisible by 3. We have that $N_i = 3^b S$, so $M_i = 3(3^b S) + d$. It follows that $M_i + 2d = 3(3^b S) + 3d = 3(3^b S + d) = 2^a 3^1 S'$ where a = 2 by Law 1, and $S' \in \mathbb{N}_{odd}$ and possibly divisible by 3, one or more times.

Proof for Law 3

Let $M_i = 3(N_i) + d$ and $M'_i = 3(N'_i) + f$ be for 3n+d and 3n+f respectively. Further, let **m** and **m'** be the first odd terms for the respective sequences where $\mathbf{m'} = x(\mathbf{m})$ and f = x(d) with $x \in \mathbb{N}_{odd>1}$.

Proof: We have the relations, $\mathbf{m}' = x(\mathbf{m})$ and f = x(d). Let $M_1' = 3(\mathbf{m}') + f$ and $M_1 = 3(\mathbf{m}) + d$. By substitution $M_1' = 3x(\mathbf{m}) + x(d)$. And so, $M_1' = x(M_1)$. The argument is the same for every pair N_i and N_i' .

For $\mathbf{m} = 2(27) - 1 = 53$ there are 2 S-strings having 4 R-subs each.

$$R^{X}$$
-sub₁ = $(1, 2 \mid 2^{3}3^{1}7 \mid 2^{1}3^{3}7)$ — H -form
$$R^{X}$$
-sub₂ = $(3, 5 \mid 2^{5}3^{2}1 \mid 2^{1}3^{3}23)$

$$R^{X}$$
-sub₃ = $(1, 2 \mid 2^{3}3^{2}13 \mid 2^{1}3^{4}13)$ — H -form
$$R^{Y}$$
-sub₄ = $(2, 3 \mid 2^{4}3^{2}11 \mid 2^{1}3^{2}223)$

 \mathbf{S}^X -string₁.

$$R^{X}$$
-sub₅ = $(1, 4 \mid 2^{3}3^{3}7 \mid 2^{1}3^{3}71)$ — L -form
$$R^{X}$$
-sub₆ = $(4, 2 \mid 2^{6}3^{2}5 \mid 2^{1}3^{7}5)$ — H -form
$$R^{Y}$$
-sub₇ = $(2, 6 \mid 2^{4}3^{3}19 \mid 2^{1}3^{2}31)$ — L -form
$$R^{Y}$$
-sub₈ = $(1, 3 \mid 2^{3}3^{3}1 \mid 2^{1}3^{3}1)$ — L -form

 \mathbf{S}^{Y} -string₂.

Observe that both R^X -sub₁ and R^X -sub₃ above, are also L-forms.

Altogether, we have: \mathbf{S}^X -string₁ $\rightarrow \mathbf{S}^Y$ -string₂.

Note: If there exists contiguous H-form R^X -subs where some or all are also L-form R^X -subs in an \mathbf{S}^X -string, then count the contiguous H-form R^X -subs first and then subtract 0.5 for each of the L-form R^X -subs.

For $\mathbf{m} = 2(63, 728, 127) - 1 = 127, 456, 253$ there are 14 S-strings and 54 R-subs.

Observe that R^X -sub₁₀ is also an L-form.

$$R^{X}\text{-sub}_{15} = (1,3 \mid 2^{3}3^{2}598598953 \mid 2^{1}3^{2}4040542933) \qquad \qquad L\text{-form}$$

$$R^{Y}\text{-sub}_{16} = (4,5 \mid 2^{6}3^{2}94700225 \mid 2^{1}3^{3}809021063)$$

$$R^{Y}\text{-sub}_{17} = (3,2 \mid 2^{5}3^{2}113768587 \mid 2^{1}3^{6}113768587) \qquad \qquad H\text{-form}$$

$$S^{Y}\text{-string}_{4}.$$

$$R^{X}\text{-sub}_{18} = (4,6 \mid 2^{6}3^{3}8999273 \mid 2^{1}3^{2}2075773717)$$

$$R^{X}\text{-sub}_{19} = (3,2 \mid 2^{5}3^{2}97301893 \mid 2^{1}3^{6}97301893) \qquad \qquad H\text{-form}$$

$$R^{X}\text{-sub}_{20} = (3,2 \mid 2^{5}3^{2}369443125 \mid 2^{1}3^{6}369443125) \qquad \qquad H\text{-form}$$

$$R^{X}\text{-sub}_{21} = (1,8 \mid 2^{3}3^{2}5610917461 \mid 2^{1}3^{2}35950419397) \qquad \qquad L\text{-form}$$

$$R^{X}\text{-sub}_{22} = (1,4 \mid 2^{3}3^{2}6740703637 \mid 2^{1}3^{3}22749874775) \qquad \qquad L\text{-form}$$

$$R^{Y}\text{-sub}_{23} = (1,6 \mid 2^{3}3^{2}12796804561 \mid 2^{1}3^{3}6073483415) \qquad \qquad L\text{-form}$$

$$R^{Y}\text{-sub}_{24} = (1,8 \mid 2^{3}3^{2}3416334421 \mid 2^{1}3^{3}3648204775) \qquad \qquad L\text{-form}$$

$$R^{Y}\text{-sub}_{24} = (1,8 \mid 2^{3}3^{2}3416334421 \mid 2^{1}3^{3}3648204775) \qquad \qquad L\text{-form}$$

$$R^{Y}\text{-sub}_{26} = (2,2 \mid 2^{4}3^{2}486976553 \mid 2^{1}3^{5}486976553) \qquad \qquad H\text{-form}$$

$$S^{X}\text{-string}_{5}.$$

$$R^{X}\text{-sub}_{27} = (3,4 \mid 2^{5}3^{2}154082425 \mid 2^{1}3^{3}1170063415)$$

$$R^{Y}\text{-sub}_{28} = (1,7 \mid 2^{3}3^{2}658160671 \mid 2^{1}3^{3}29284615) \qquad \qquad L\text{-form}$$

$$S^{Y}\text{-string}_{6}.$$

$$R^{X}\text{-sub}_{29} = (3,2 \mid 2^{5}3^{2}4118149 \mid 2^{1}3^{6}4118149) \qquad \qquad H\text{-form}$$

$$R^{Y}\text{-sub}_{30} = (3,9 \mid 2^{5}3^{2}15636097 \mid 2^{1}3^{2}338121055)$$

$$R^{Y}$$
-sub₃₁ = (1,3 | 2³3³10⁵66283 | 2¹3²213⁹67231) — *L*-form R^{Y} -sub₃₂ = (3,3 | 2⁵3³1671619 | 2¹3²304652563)

 \mathbf{S}^{Y} -string₇.

$$R^{X}$$
-sub₃₃ = (1,2 | 2³3²14280589 | 2¹3⁴14280589) — *H*-form R^{X} -sub₃₄ = (2,2 | 2⁴3²12049247 | 2¹3⁵12049247) — *H*-form R^{Y} -sub₃₅ = (1,3 | 2³3²60999313 | 2¹3²411745363) — *L*-form S^{X} -string₈.

Observe that R^X -sub₃₃ is also an L-form.

$$R^{X}\text{-sub}_{36} = (3, 2 \mid 2^{5}3^{2}4825141 \mid 2^{1}3^{6}4825141) \qquad \qquad -H\text{-form}$$

$$R^{Y}\text{-sub}_{37} = (1, 13 \mid 2^{3}3^{2}73281829 \mid 2^{1}3^{2}13927807) \qquad \qquad -L\text{-form}$$

$$\mathbf{S}^{Y}\text{-string}_{9}.$$

$$R^{X}\text{-sub}_{38} = (3, 3 \mid 2^{5}3^{3}108811 \mid 2^{1}3^{2}19830805)$$

$$R^{X}\text{-sub}_{39} = (3, 3 \mid 2^{5}3^{2}929569 \mid 2^{1}3^{2}56471317)$$

$$R^{X}\text{-sub}_{40} = (3, 2 \mid 2^{5}3^{2}2647093 \mid 2^{1}3^{6}2647093) \qquad \qquad -H\text{-form}$$

$$R^{Y}\text{-sub}_{41} = (1, 7 \mid 2^{3}3^{2}40202725 \mid 2^{1}3^{2}167701) \qquad \qquad -L\text{-form}$$

$$\mathbf{S}^{Y}\text{-string}_{10}.$$

$$R^{X}$$
-sub₄₂ = $(3, 2 \mid 2^{5}3^{2}7861 \mid 2^{1}3^{6}7861)$ — H -form R^{X} -sub₄₃ = $(1, 2 \mid 2^{3}3^{2}119389 \mid 2^{1}3^{4}119389)$ — H -form

$$R^{X}$$
-sub₄₄ = $(1, 2 \mid 2^{3}3^{2}201469 \mid 2^{1}3^{4}201469)$ — H -form
$$R^{Y}$$
-sub₄₅ = $(1, 3 \mid 2^{3}3^{2}339979 \mid 2^{1}3^{2}573715)$ — L -form

 \mathbf{S}^{Y} -string₁₁.

Observe that both R^X -sub₄₃ and R^X -sub₄₄ above, are also L-forms.

$$R^{X}$$
-sub₄₆ = $(1, 2 \mid 2^{3}3^{2}26893 \mid 2^{1}3^{4}26893)$ — H -form R^{X} -sub₄₇ = $(2, 3 \mid 2^{4}3^{2}22691 \mid 2^{1}3^{2}459493)$ — L -form S^{Y} -string₁₂.

Observe that R^X -sub₄₆ is also an L-form.

$$R^{X}$$
-sub₄₉ = $(3, 2 \mid 2^{5}3^{3}71 \mid 2^{1}3^{7}71)$ — H -form R^{Y} -sub₅₀ = $(1, 4 \mid 2^{3}3^{2}3235 \mid 2^{1}3^{4}455)$ — L -form S^{Y} -string₁₃.

$$R^{X}$$
-sub₅₁ = (8,3 | 2¹⁰3³1 | 2¹3²44287)
 R^{X} -sub₅₂ = (4,2 | 2⁶3³173 | 2¹3⁸173) — *H*-form
 R^{Y} -sub₅₃ = (1,22 | 2³3²2³647 | 2¹3²85) — *L*-form
 R^{Y} -sub₅₄ = (5,10 | 2⁷3²1 | 2¹3³1)

 \mathbf{S}^{Y} -string₁₄.

Altogether, we have: \mathbf{S}^X -string₁ \to \mathbf{S}^Y -string₂ \to \mathbf{S}^X -string₃ \to \mathbf{S}^Y -string₄ \to \mathbf{S}^X -string₅ \to \mathbf{S}^Y -string₆ \to \mathbf{S}^Y -string₇ \to \mathbf{S}^X -string₈ \to \mathbf{S}^Y -string₉ \to \mathbf{S}^Y -string₁₀ \to \mathbf{S}^Y -string₁₁ \to \mathbf{S}^Y -string₁₂ \to \mathbf{S}^Y -string₁₃ \to . \mathbf{S}^Y -string₁₄

Example:
$$\mathbf{m} = 53, M_1 = 3(53) + 3 = 162$$

$$\begin{array}{ccccc} \mathcal{C} \rightarrow 210 & \longrightarrow 318 & \longrightarrow 480 & \longrightarrow 48 \\ & & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ \mathcal{D} \rightarrow & 2^3 3^3 \mathbf{1} & & 2^2 3^4 \mathbf{1} & & 2^1 3^5 \mathbf{1} & & 2^1 3^3 \mathbf{1} \end{array}$$

The 3n+1 sequence for $\mathbf{m}'=27$

The 3n+3 sequence for $\mathbf{m}=81$

11 Resources

The graphs were generated at https://www.dcode.fr/collatz-conjecture