Devoir maison 12.

À rendre le lundi 30 mai 2022

Exercice

Si (Ω, P) est un espace probabilisé fini et X une variable aléatoire sur Ω telle que $X(\Omega) \subset \{0, \dots, n\}$ avec $n \geq 2$, on définit la fonction f_X sur $\mathbb R$ par :

$$\forall t \in \mathbb{R}, \quad f_X(t) = \sum_{k=0}^n P(X=k)t^k$$

On verra f_X comme un polynôme réel en t.

Partie 1 : Généralités

On utilise les notations introduites ci-dessus.

- $\mathbf{1}^{\circ}$) Que valent $f_X(0)$? $f_X(1)$?
- 2°) Calculer $f'_X(1)$ et $f''_X(1)$. En déduire une expression de E(X) et de V(X) en fonction de ces nombres.

Partie 2: Une première application

On lance une infinité de fois une pièce équilibrée. On gagne des points à partir du second lancer, de la façon suivante : lorsque le côté obtenu est différent de celui obtenu juste avant, on gagne un point, et sinon on ne gagne aucun point.

Pour $n \geq 2$, on note X_n la variable aléatoire égale au nombre de points obtenus à l'issue de n lancers. Pour tout $k \in \mathbb{N}^*$, on utilisera les notations suivantes :

- P_k pour l'événement "On obtient pile au kième lancer"
- F_k pour l'événement "On obtient face au kième lancer"
- 3°) Déterminer la loi, l'espérance et la variance de X_2 .
- 4°) Déterminer la loi de X_3 .
- 5°) Soit $n \geq 2$. Donner $X_n(\Omega)$. Montrer que $P(X_n = 0) = \frac{1}{2^{n-1}}$.
- **6°)** Soit $n \geq 2$. Montrer que pour tout $k \in \{1, \ldots, n\}$,

$$P(X_{n+1} = k) = \frac{1}{2}P(X_n = k) + \frac{1}{2}P(X_n = k - 1).$$

Que devient le terme lorsque k vaut n?

7°) On note, pour tout $n \geq 2$, $Q_n = f_{X_n}$. Ainsi, pour tout $n \geq 2$ et tout réel t,

$$Q_n(t) = \sum_{k=0}^{n-1} P(X_n = k) t^k.$$

Montrer que pour tout $n \geq 2$ et tout $t \in \mathbb{R}$,

$$Q_{n+1}(t) = \frac{1+t}{2}Q_n(t).$$

En déduire l'expression de $Q_n(t)$ en fonction de n et de t.

8°) Calculer alors l'espérance et la variance de X_n , pour tout $n \geq 3$.

Partie 3: Une deuxième application

Cette partie est facultative.

Soit X_1 et X_2 des variables aléatoires de même loi, indépendantes, telles que $X_1(\Omega) = X_2(\Omega) = \{1, \dots, 6\}$. On note $S = X_1 + X_2$ et on suppose que S suit la loi uniforme sur $\{2, \dots, 12\}$.

On notera, pour tout $k \in \{1, ..., 6\}$, $p_k = P(X_1 = k) = P(X_2 = k)$, de sorte que, pour tout $t \in \mathbb{R}$,

$$f_{X_1}(t) = \sum_{k=1}^{6} p_k t^k = f_{X_2}(t).$$

On notera plus simplement f_X ce polynôme en t.

- 9°) Simplifier l'expression de $f_S(t)$ pour tout $t \in \mathbb{R}$. Déterminer ses racines dans \mathbb{C} ; justifier que 0 est racine double et que c'est la seule racine réelle de f_S .
- 10°) a) Expliquer pourquoi $p_6 > 0$ et $p_1 > 0$.
 - b) Justifier que f_X est un polynôme de degré 6 et que 0 est racine de f_X .
 - c) Que vaut $f'_X(0)$? En raisonnant par l'absurde, montrer alors qu'il existe un réel h < 0 tel que $f_X(h) \le 0$.
 - d) Montrer alors qu'il existe un réel $t_0 < 0$ tel que $f_X(t_0) = 0$.
- 11°) Aboutir à une contradiction.

On admettra le résultat suivant : Si X et Y sont des variables aléatoires indépendantes à valeurs dans $\{0,\ldots,n\}$, alors $f_{X+Y}=f_Xf_Y$.

Ainsi, on prouve dans cette partie qu'il n'est pas possible de fabriquer un dé à 6 faces de façon à ce que, lancé deux fois, la somme des résultats obtenus suive la loi uniforme sur $\{2, \ldots, 12\}$.