Praktikum zur Einführung in die Physikalische Chemie,

Universität Göttingen

V4: Molmassenbestimmung nach Viktor Meyer

Durchführende: Alea Tokita, Julia Stachowiak

Assistentin: Annemarie Kehl

Versuchsdatum: 21.12.2015 Datum der ersten Abgabe: 11.01.2016

Werte für Campher:

$$M_A = (13 \cdot 10 \pm 3 \cdot 10) \text{ g mol}^{-1}$$

 $M_B = (12 \cdot 10 \pm 2 \cdot 10) \text{ g mol}^{-1}$

Werte für Kaliumchlorid:

$$M_A = (6 \cdot 10 \pm 3 \cdot 10) \text{ g mol}^{-1}$$

$$M_B = (5 \cdot 10 \pm 3 \cdot 10) \text{ g mol}^{-1}$$

Inhaltsverzeichnis

1 Theorie				
2	Auswertung Fehlerrechnung			
3				
	3.1	absolute Fehler	3	
	3.2	Fehlerfortpflanzung	3	
	3.3	Fehlerdiskussion	4	
	3.4	Diskussion systematischer Fehler	4	

1 Theorie

In der Bestimmung der Molmasse nach Viktor Meyer wird die Molmasse einer leicht verdampfbaren Substanz mithilfe des von ihr verdrängten Gasvolumens beim Verdampfen bestimmt.

2 Auswertung

3 Fehlerrechnung

3.1 absolute Fehler

Die absoluten Fehler der Messgrößen ergeben sich aus der letzten Dezimalstelle. Der absolute Fehler des Athmosphärendrucks $p_{\rm B}$ errechnet sich aus dem Fehler der Kuppenhöhe und dem der Temperatur bei der Umrechnung in Torr. Die Fehler werden unten dargestellt.

Δm	= 0,001 g
$\Delta p_{ m B}$	= 0,07 Torr = 9,3325 Pa
$\Delta \delta_{ m H_2O}$	$= 0.01\mathrm{kg\cdot m^{-3}}$
Δr	= 0,01
ΔV	$= 0, 1 \cdot 10^{-6} $ m ³
$\Delta p_{\mathrm{H_2O}}(T_{\mathrm{Z}})$	= 0, 1 Pa
Δh	= 0.005 m

3.2 Fehlerfortpflanzung

Nach der Gauß'schen Fehlerfortpflanzung

$$\Delta f = \sqrt{\sum_{i} \left(\frac{d}{dx_{i}}\right)^{2} \cdot \Delta x_{i}^{2}} \tag{1}$$

ergibt sich für den hydrostatischen Druck Δp_{hyd} folgender Fehler:

$$\Delta p_{\text{hyd}} = \sqrt{(g \cdot h)^2 \cdot \Delta \delta_{\text{H}_2\text{O}}^2 + (\delta_{\text{H}_2\text{O}} \cdot g)^2 \cdot \Delta h^2}$$
 (2)

Anschließend ergibt sich für den Fehler des Luftdruckes $\Delta p_{\rm L}$:

$$\Delta p_{\rm L} = \sqrt{\Delta p_{\rm B}^2 + \Delta p_{\rm hyd}^2 + p_{\rm H_2O}(T_{\rm Z})^2 \cdot \Delta r^2 + (1 - r)^2 \cdot \Delta p_{\rm H_2O}(T_{\rm Z})}$$
(3)

Und anschließend für den Fehler der Molaren Masse:

$$\Delta M = \sqrt{\left(\frac{R \cdot T}{p \cdot V}\right)^2 \cdot \Delta m^2 + \left(\frac{m \cdot R}{p \cdot V}\right) \cdot \Delta T^2 + \left(-\frac{m \cdot R \cdot T}{p^2 \cdot V}\right)^2 \cdot \Delta p^2 + \left(-\frac{m \cdot R \cdot T}{p \cdot V^2}\right)^2 \cdot \Delta V^2}$$

$$\tag{4}$$

Mit $p=p_{\rm L}$ ergeben sich damit folgende Fehler:

Fehler	Messung 1	Messung 2
Δp_{hyd} in Pa	48,95	48,95
$\Delta p_{\rm L}$ in Pa	1344	1344
$\Delta M \text{ in g mol}^{-1}$	1,72	1,74

3.3 Vergleich mit Literaturwerten

3.4 Diskussion systematischer Fehler