

本科实验报告

戴维南定理的实验研究

课程名称: 电子电路设计实验

姓 名:

学院: 信息与电子工程学院

专业: 信息工程

学号:

指导老师: 李锡华、施红军、叶险峰

2021年7月5日

浙江大学实验报告

 专业:
 信息工程

 姓名:

 学号:

 日期:
 2021 年 7 月 5 日

 地点:
 东 4-216

一、 实验目的

- (1) 实验研究戴维南定理;
- (2) 掌握有源二端口网络等效电路参数的测量方法。

二、 实验任务和要求

- (1) 按电路图连接好待测电路。
- (2) 测量戴维南等效电压和等效电阻。
- (3) 用等效电路进行戴维南定理的验证。

三、 实验方案设计与实验参数计算

1. 完整的实验电路

图 1: 戴维南定理实验电路

图 2: 戴维南定理等效电路

2. 实验方案总体设计

- (1) 接入稳压电源 $U_S=6V$ 和恒流源 $I_s=8mA$,接入负载 R_L 。测出 U_{OC} 和 I_{SC} ,并计算出 R_O ,填表。
- (2) 负载实验:接入负载 R_L ,改变 R_L 阻值,测量有源二端口网络的外特性,将实验数据填入表中。对 U-I 进行作图。
- (3) 验证戴维南定理: 用一只 $1k\Omega$ 的电位器作为 R_O ,将其阻值调整到等于步骤 (1) 所得的等效电阻 R_O 的值,然后令其与直流稳压电源 U_{OC} (即步骤 (1) 所测得的开路电压值) 相串联,按图 2 进行实验,将实验数据填入表中,作图对戴维南定理进行验证。

四、 主要仪器设备

万用表, 电压源, 恒定电流源, 电阻若干, 电位器, 电流表。

五、 实验步骤、实验调试过程、实验数据记录

1. 实验步骤以及实验调试过程

- (1) 按电路图 1 连接好电路。接入稳压电源 $U_S=6V$ 和恒流源 $I_s=8mA$,接入负载 R_L 。测出 U_{OC} 和 I_{SC} ,并计算出 R_O ,填表 1。
- (2) 负载实验:接入负载 R_L ,改变 R_L 阻值,测量有源二端口网络的外特性,将实验数据填入表中。对 U-I 进行作图。
- (3) U_1 处不接电源,将节点 F,E 之间短路,在节点 B,C 之间接入电压源 U_2 ,再次测量各点电压与各支路电流,记入表 2 中。
- (4) 验证戴维南定理: 用一只 1kΩ 的电位器作为 R_O ,将其阻值调整到等于步骤 (1) 所得的等效电阻 R_O 的值,然后令其与直流稳压电源 U_{OC} (即步骤 (1) 所测得的开路电压值) 相串联,按图 2 进行 实验,将实验数据填入表中,作图对戴维南定理进行验证。

2. 实验数据记录

表 1: 实验数据

VV =: 21422904H									
$U_{OC}(V)$	$I_{SC}(mA)$	$R_O = U_{OC}/I_{SC}(\Omega)$							
10.02	19.71	508.37							

表 2: 实验数据记录

$R_L(\Omega)$	16.8	86.7	205	284	480	662	1127	1771	3470
$U_{AB}(V)$	0.285	1.418	2.84	3.55	4.81	5.64	6.88	7.78	8.76
I(mA)	18.89	16.86	14.14	12.76	10.24	8.70	6.24	4.49	2.56

表 3: 实验数据记录

$R_L(\Omega)$	17.3	95.1	196	310	449	635	1059	1763	3060
$U_{AB}(V)$	0.313	1.552	2.76	3.69	4.58	5.46	6.70	7.78	8.61
I(mA)	19.10	16.70	14.30	12.09	10.47	8.78	6.45	4.48	2.86

六、 实验结果和分析处理

1. 数据分析

将表 2 和表 3 的数据进行线性拟合后,对比两图像可知,再误差允许范围内,原电路可以等效为 戴维南等效电路。

图 3: 原电路

图 4: 戴维南等效电路

2. 实验结果

戴维南定理成立。

七、 讨论、心得

通过本次实验,我更加直观的认识了戴维南定理的正确性,明白了戴维南定理在电路分析方法的重要性。

八、 思考题

(1) 在求戴维南或诺顿等效电路时,做短路实验,则测 I_{SC} 的条件是什么? 在本实验中可否直接做负载短路实验? 实验前对线路图 1 预先做好计算,以便调整实验线路及测量时可准确地选取电表的量程。

条件:有源二端口网络的内阻不能太小,否则会产生很大的电流。本实验有源二端网络的内阻较大,可以直接做负载短路实验。

- (2) 简述测量有源二端口网络开路电压及等效内阻的几种方法,并比较其优缺点。
 - a. 开路电压、短路电流法测 R_o 。在有源二端口网络输出端开路时,用电压表直接测出其输出端的开路电压 U_{OC} ,然后再将其输出端短路,用电流表测其短路电流 I_{SC} ,其等效内阻为 $R_o = \frac{U_{OC}}{I_{SC}}$ 。如果二端口网络的内阻很小,若将其输出端短路则易损坏其内部元件,因此不宜用此法。
 - b. 伏安法。用电压表、电流表测出有源二端口网络的外特性曲线如下图。根据外特性曲线输出 斜率,则内阻为 $R_o = \frac{Uoc-U_N}{I_N}$ 其中,额定值 I_N 时的输出端电压值为 U_N 。此法与法 a 相比,不容易破坏电路元器件,但是操作更加复杂。

c. 半电压法测 R_o 。如图所示,当负载 R_L 的电压为被测网络开路电压的一半时,负载电阻即为被测有源二端口网络的等效内阻值。此法相对法 b 较简单,但是需要额外电阻箱或电位器,成本较高。

