

Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ)

Μηχανές Εναλλασσομένου Ρεύματος

Σταύρος Αθ. Παπαθανασίου Καθ. ΕΜΠ

Βασική Δομή

• Στάτης:

- Ακίνητος
- Σχήμα «κούφιου» κυλίνδρου από σιδηρομαγνητικό υλικό
- Συνήθως περιλαμβάνει το τύλιγμα τυμπάνου: Κύριο τύλιγμα μέσω του οποίου πραγματοποιείται η ανταλλαγή ενέργειας

• Δρομέας:

- Κινητό μέρος (άξονας προσαρτημένος σε αυτόν)
- Συχνά κυλινδρικός (αλλά και έκτυπων πόλων)
- Διαθέτει τύλιγμα όπου επιβάλλεται εξωτερική διέγερση (τύλιγμα διέγερσης) ή βραχυκυκλώνεται

Βασική Δομή

• Διάκενο:

- Αέρας
- Μικρού μήκους απόσταση στάτη-δρομέα λίγων mm
- Εκεί λαμβάνει χώρα η αλληλεπίδραση μαγνητικών πεδίων στάτηδρομέα για παραγωγή ροπής. Στον πυρήνα πεδίο αμελητέο.

Τύλιγμα τυμπάνου:

- Αρχή: πηνίο σε «απέναντι» αύλακες → ροή ακτινική
- Τύλιγμα διανέμεται σε περισσότερες αύλακες
- Σχηματίζονται ομάδες πηνίων/φάση: σύνδεση σε σειρά ή/και παράλληλα
- 1Φ ή 3Φ τύλιγμα (Δ ή Y)
- Τύλιγμα διπλού στρώματος

Τύλιγμα τυμπάνου

Figure 35.8: Single turn & Multi turn coil

Είδη δρομέων

Κυλινδρικός δρομέας: Μηχανές λίγων πόλων -> υψηλής ταχύτητας (π.χ. στροβιλογεννήτριες)

Είδη δρομέων

Δρομέας έκτυπων πόλων: Πολύ-πολικές μηχανές → χαμηλές ταχύτητες περιστροφής (π.χ. υδροστρόβιλοι)

1Φ Διπολική Μηχανή

- Πολικό βήμα: 180° = 360°/P
- Μαγνητική επαγωγή στο διάκενο: ημιτονοειδής χωρική κατανομή (κατά προσέγγιση)
- Av $\omega_m = \sigma \tau \alpha \theta \rightarrow \epsilon \pi \alpha \gamma \omega \gamma \dot{\eta}$ τάσεως στον στάτη συχνότητας $f_e = f_m$

1Φ Τετραπολική Μηχανή

- Τύλιγμα δρομέα τέτοιο ώστε αντίθετοι διαδοχικοί πόλοι (N-S)
 - Πολικό βήμα: 360°/P = 90° μηχανική γωνία
- Τύλιγμα στάτη: 2 πηνία, βήματος 90° το καθένα, έστω σε σειρά
- B διακένου: 2 πλήρεις κύκλοι για $\theta_m = 0 \rightarrow 2\pi$
- Κίνηση δρομέα κατά 180° (1/2 περιστροφή) → 1 πλήρης εναλλαγή ροής σε κάθε πηνίο →1 κύκλος επαγόμενης τάσεως

$$\theta_e=2\theta_m$$
 (αφού για $\theta_m=2\pi o heta_e=4\pi$)

$$- f_e = 2f_m$$

• Σύνδεση πηνίων σε σειρά: Εμφάνιση διπλάσιας ολικής τάσεως

Γενικά περί πόλων και ταχυτήτων

Μηχανή Ρ πόλων (Ρ άρτιος):

$$\theta = \frac{P}{2}\theta_m$$

θ: φάση ηλεκτρικών μεγεθών

 θ_m : γωνία περιστροφής δρομέα

$$\omega=rac{P}{2}\,\omega_m\Rightarrow 2\pi f=rac{P}{2}\,2\pirac{n}{60}\Rightarrow n=rac{120f}{P}\,$$
 ΣΑΛ
$$2\pi \rm{olik}\dot{\eta}\rightarrow 3000\,\, \Sigma A\Lambda \ 4\pi \rm{olik}\dot{\eta}\rightarrow 1500\,\, \Sigma A\Lambda$$

$$6πολική \rightarrow 1000 ΣΑΛ$$

Π.χ. Σ/Γ 50
$$Hz$$
, 125 ΣΑΛ, $P = \frac{120 \cdot 50}{125} = 48$ πόλοι ή 24 ζεύγη πόλων.

 $\downarrow P$ στις στροβιλογεννήτριες \rightarrow κυλινδρικός δρομέας $\uparrow P$ στους υδροστροβίλους (και Α/Γ) \rightarrow έκτυποι πόλοι

3Φ μηχανές

- Στη διπολική: 3 πηνία μετατοπισμένα κατά 120° μεταξύ τους
- Στην τετραπολική: ό,τι υπάρχει στη διπολική μηχανή σε 360° μηχανική γωνία (πλήρης περιφέρεια διακένου), εδώ υπάρχει σε 180° μηχανικές μοίρες (1/2 περιφέρειας διακένου):
 - Κάθε φάση έχει 2 ομάδες πηνίων (βήματος 90°)
 - Τα πηνία διαδοχικών φάσεων απέχουν 60 μηχανικές μοίρες

Ανάπτυξη τάσεων στο τύλιγμα στάτη

Generation of voltages in a two-pole, three-phase synchronous machine

The arrows with red color show the space distribution of the fundamental component of the air-gap density of the flux, produced by the rotor

Ενδεικνύμενη τιμή ανά φάση: $E = \frac{1}{\sqrt{2}} \omega N \Phi$

ΜΕΔ 1Φ τυλίγματος: Παλλόμενο πεδίο στο διάκενο

ΜΕΔ 1Φ κατανεμημένου τυλίγματος (σε 5 αύλακες)

Developed form

ΜΕΔ 3Φ τυλίγματος: Στρεφόμενο πεδίο στο διάκενο

Πεδίο στρεφόμενο με τη σύγχρονη ταχύτητα $\omega_{\scriptscriptstyle S}=\frac{\omega_e}{P/2}$

Ανάπτυξη ροπής

- \tilde{F}_s , \tilde{F}_r : διανύσματα χώρου των πεδίων (ΜΕΔ) στάτη και δρομέα
- Σε μόνιμη κατάσταση \tilde{F}_s , \tilde{F}_r , δ_{sr} σταθερά $\to T = \sigma \tau \alpha \theta$.
 - Λειτουργία κινητήρα-γεννήτριας:
 - \circ \tilde{F}_s προηγείται της \tilde{F}_r : Κινητήρας
 - \circ \tilde{F}_s έπεται της \tilde{F}_r : Γεννήτρια

$$T = -\frac{P}{2} \cdot \frac{\mu_0 \pi r l}{g} F_s F_r sin \delta_{sr} \qquad \xrightarrow{F_s sin \delta_{sr} = F_{sr} sin \delta_r} \qquad T = -\frac{P}{2} \cdot \frac{\mu_0 \pi r l}{g} F_{sr} F_r sin \delta_r$$

$$T = -\frac{\pi}{2} \cdot \left(\frac{P}{2}\right)^2 \cdot \Phi_{sr} \cdot F_r sin\delta_r$$

 Φ_{sr} : Ολική ροή ανά πόλο

 $\frac{P}{2}$: Ζεύγη πόλων

Λειτουργία κινητήρα-γεννήτριας

• $ilde{F}_r$ έπεται της $ilde{F}_s o \delta_{sr} < 0 o$ T>0 (επιταχύνουσα) o κινητήρας

• \tilde{F}_r προηγείται της $\tilde{F}_s \rightarrow \delta_{sr} > 0 \rightarrow T < 0$ $(επιβραδύνουσα) \rightarrow$ γεννήτρια

Λειτουργία Κινητήρα

- Ροπή πεδίου T_e ίδιας φοράς με ω (επιταχύνουσα)
- Ροπή φορτίου T_m αντίθετη της φοράς περιστροφής (επιβραδύνουσα)
- Απορρόφηση ηλεκτρικής ενέργειας
 παραγωγή μηχανικού έργου

Εξίσωση κίνησης:

$$J rac{d \omega_m}{dt} = T_e - T_m \left(-T_{\alpha \pi}
ight)$$
επιταχύνουσα επιβραδύνουσα

• Μόνιμη κατάσταση: $ω_m = σταθ → T_e = T_m + T_{απ}$

Λειτουργία Γεννήτριας

- Ροπή T_m κινητήριας μηχανής: προς φορά κίνησης (επιταχύνουσα)
- Ροπή πεδίου T_e : αντίρροπη της ω_m (επιβραδύνουσα)
- Απορρόφηση μηχανικής ενέργειας
 παραγωγή ηλεκτρικής

Εξίσωση κίνησης:

$$J\frac{d\omega_m}{dt} = T_m - T_e \left(-T_{\alpha\pi}\right)$$

- Συμβάσεις αναφοράς για ροπή:
 - Σύμβαση κινητήρα για T_m : θετική όταν επιταχύνει
 - Σύμβαση γεννήτριας για T_e : θετική όταν επιβραδύνει

Ροή ισχύος και απώλειες

Κινητήρας

Βαθμός απόδοσης:

$$n = \frac{P_m}{P_e}$$

Γεννήτρια

Βαθμός απόδοσης:

$$n = \frac{P_e}{P_m}$$