解析几何

October 20, 2018

第22页习题:

3-(2). 证明:
$$(\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2 \sin^2 \angle (\vec{a}, \vec{b}) \le \vec{a}^2 \vec{b}^2$$
. $(\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2$ 当且仅当 $\vec{a} \cdot \vec{b} = 0$.

3-(3).证明: 由矢量积对加法的分配律直接计算得

$$\vec{b} \times \vec{c} = \vec{b} \times \left(-\vec{b} - \vec{a} \right) = -\vec{b} \times \vec{a} = \vec{a} \times \vec{b},$$

$$\vec{c} \times \vec{a} = \left(-\vec{b} - \vec{a} \right) \times \vec{a} = -\vec{b} \times \vec{a} = \vec{a} \times \vec{b}.$$

3-(5). 证明: 因为 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$, 所以由上题的结论知 $\overrightarrow{PA} \times \overrightarrow{PB} = \overrightarrow{PB} \times \overrightarrow{PC} = \overrightarrow{PC} \times \overrightarrow{PA}.$

又因为

$$S_{\triangle APB} = \frac{1}{2} \left| \overrightarrow{PA} \times \overrightarrow{PB} \right|, S_{\triangle APC} = \frac{1}{2} \left| \overrightarrow{PA} \times \overrightarrow{PC} \right|,$$
$$S_{\triangle BPC} = \frac{1}{2} \left| \overrightarrow{PB} \times \overrightarrow{PC} \right|,$$

所以知

$$S_{\triangle APB} = S_{\triangle APC} = S_{\triangle BPC}.$$

3-(6). 证明:将向量平移到共同的起点 O. 首先注意到他们的夹角和为 2π , 因此若三向量共线,那么 $\sin \alpha = \sin \beta = \sin \gamma = 0$,则要证明的式子显然成立.

现在设向量 \vec{a} , \vec{b} , \vec{c} 不共线. 记 $\vec{v} := \sin \alpha \vec{a} + \sin \beta \vec{b} + \sin \gamma \vec{c}$. 方法一: 利用向量的点积. 因为 $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$, $\alpha + \beta + \gamma = 2\pi$, 所以

$$\vec{v} \cdot \vec{a} = \sin \alpha + \sin \beta \cos \gamma + \sin \gamma \cos \beta$$
$$= \sin \alpha + \sin(\beta + \gamma) = \sin \alpha + \sin(2\pi - \alpha)$$
$$= \sin \alpha - \sin \alpha = 0.$$

因此知 $\vec{v} \perp \vec{a}$.

同样的计算可知 $\vec{v}\perp\vec{b}, \vec{v}\perp\vec{c}$. 因为 \vec{v} 与 $\vec{a}, \vec{b}, \vec{c}$ 共面,但 $\vec{a}, \vec{b}, \vec{c}$ 不共线,所以只 能有 $\vec{v} = \vec{0}$.

方法二: 利用向量的模长.

$$\begin{split} |\vec{v}|^2 &= \sin^2 \alpha |\vec{a}|^2 + \sin^2 \beta |\vec{b}|^2 + \sin^2 \gamma |\vec{c}|^2 + 2 \sin \alpha \sin \beta \vec{a} \cdot \vec{b} \\ &+ 2 \sin \beta \sin \gamma \vec{b} \cdot \vec{c} + 2 \sin \alpha \sin \gamma \vec{a} \cdot \vec{c} \\ &= \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta \cos \gamma \\ &+ 2 \sin \alpha \sin \gamma \cos \beta + 2 \sin \gamma \sin \beta \cos \alpha. \end{split}$$

由积化和差公式知

$$\sin \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \cos \beta = \sin \alpha \sin(\beta + \gamma) = -\sin^2 \alpha,$$

$$\sin \alpha \sin \gamma \cos \beta + \sin \gamma \sin \beta \cos \alpha = \sin \gamma \sin(\alpha + \beta) = -\sin^2 \gamma,$$

$$\sin \alpha \sin \beta \cos \gamma + \sin \gamma \sin \beta \cos \alpha = \sin \beta \sin(\alpha + \gamma) = -\sin^2 \beta.$$

结合上面的计算式知 $|\vec{v}|^2 = 0$. 所以 $\vec{v} = \vec{0}$.

4-(1). 解: 因为
$$\overrightarrow{AB} = (-1,0,2)$$
 , $\overrightarrow{AC} = (0,1,-3)$, 所以

$$Area_{\triangle ABC} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \frac{1}{2} \left| \det \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & 2 \\ 0 & 1 & -3 \end{pmatrix} \right| = \frac{\sqrt{14}}{2}.$$

4-(2). 解: 因为
$$|\overrightarrow{AB}| = \sqrt{5}$$
, 所以 AB 边上的高为

$$h_{AB} = \frac{2S}{|\overrightarrow{AB}|} = \sqrt{\frac{14}{5}}.$$

同理可得另外两边上的高分别为 $\sqrt{\frac{7}{5}}$, $\sqrt{\frac{14}{27}}$. **5.** 证明: 由题知 $\overrightarrow{AC} = \vec{r}_3 - \vec{r}_1$, $\overrightarrow{AB} = \vec{r}_2 - \vec{r}_1$. 设 $\vec{n} = \vec{r}_1 \times \vec{r}_2 + \vec{r}_2 \times \vec{r}_3 + \vec{r}_3 \times \vec{r}_1$, 那么有

$$\vec{n} \cdot \overrightarrow{AC} = \vec{r}_1 \times \vec{r}_2 \cdot (\vec{r}_3 - \vec{r}_1) + \vec{r}_2 \times \vec{r}_3 \cdot (\vec{r}_3 - \vec{r}_1) + \vec{r}_3 \times \vec{r}_1 \cdot (\vec{r}_3 - \vec{r}_1)$$

$$= \vec{r}_1 \times \vec{r}_2 \cdot \vec{r}_3 - \vec{r}_2 \times \vec{r}_3 \cdot \vec{r}_1$$

$$= \vec{0}.$$

类似可得

$$\vec{n} \cdot \overrightarrow{AB} = \vec{r}_1 \times \vec{r}_2 \cdot (\vec{r}_2 - \vec{r}_1) + \vec{r}_2 \times \vec{r}_3 \cdot (\vec{r}_2 - \vec{r}_1) + \vec{r}_3 \times \vec{r}_1 \cdot (\vec{r}_2 - \vec{r}_1)$$

$$= -\vec{r}_2 \times \vec{r}_3 \cdot \vec{r}_1 + \vec{r}_3 \times \vec{r}_1 \cdot \vec{r}_2$$

$$= \vec{0}.$$

因此 $\vec{n} \perp \overrightarrow{AC}$, 且 $\vec{n} \perp \overrightarrow{AB}$, 所以 $\vec{n} \perp \triangle ABC$.

6. 证明: 此题有多种有趣的证明,几何法和代数法均有. 感兴趣的同学可在 Internet 上查询到. 这里写出利用余弦定理的证法. 因为

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}.$$

那么

$$\sin^2 A = 1 - \cos^2 A = \frac{-a^4 - b^4 - c^4 + 2b^2c^2 + 2c^2a^2 + 2a^2b^2}{4b^2c^2}.$$

所以

$$\Delta^{2} = \frac{1}{4}b^{2}c^{2}\sin^{2}A$$

$$= \frac{-a^{4} - b^{4} - c^{4} + 2b^{2}c^{2} + 2c^{2}a^{2} + 2a^{2}b^{2}}{16}$$

$$= \frac{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{16}$$

$$= p(p-a)(p-b)(p-c).$$

下面用向量法证明:

令
$$\overrightarrow{AB} = \overrightarrow{c}$$
, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{BC} = \overrightarrow{a}$
则 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, $\Rightarrow (\overrightarrow{a} + \overrightarrow{b})^2 = (\overrightarrow{c})^2$
 $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2}(\overrightarrow{c}^2 - \overrightarrow{a}^2 - \overrightarrow{b}^2)$
($\overrightarrow{a} \times \overrightarrow{b}$)² + ($\overrightarrow{a} \cdot \overrightarrow{b}$)² = (\overrightarrow{a})²(\overrightarrow{b})², 记 a , b , c 分别为 BC , AC , AB 的边长 $4S^2 + \frac{1}{4}(c^2 - a^2 - b^2)^2 = a^2b^2$, 这里三角形的面积用 S 表示 $\Rightarrow 4s^2 = a^2b^2 - [\frac{1}{2}(c^2 - a^2 - b^2)]^2$
 $= [ab + \frac{1}{2}(c^2 - a^2 - b^2)][ab - \frac{1}{2}(c^2 - a^2 - b^2)]$
 $= \frac{1}{2}[c^2 - (a - b)^2]frac12[(a + b)^2 - c^2]$
 $= \frac{1}{4}(c + a - b)(c - a + b)(a + b + c)(a + b - c)$
利用 $p = \frac{1}{2}(a + b + c)$, 即得结论

7. 过B做BH垂直于OA, 垂足为H. 以 $\frac{\vec{OA}}{|\vec{OA}|}$, $\frac{\vec{HB}}{|\vec{HB}|}$, $\frac{\vec{OA} \times \vec{HB}}{|\vec{OA} \times \vec{HB}|}$ 为幺正标架,易得

$$\vec{OC} = |\vec{OH}| \frac{\vec{OA}}{|\vec{OA}|} + |\vec{HC}| \cos \theta \frac{\vec{HB}}{|\vec{HB}|} + |\vec{HC}| \sin \theta \frac{\vec{OA} \times \vec{HB}}{|\vec{OA} \times \vec{HB}|}$$

又

$$|\vec{OH}| = |\vec{OB}|\cos \langle \vec{OB}, \vec{OA} \rangle = \frac{\vec{OB} \cdot \vec{OA}}{|\vec{OA}|}.$$

$$\begin{split} |\vec{HC}| &= \frac{|\vec{OB} \times \vec{OA}|}{|\vec{OA}|}. \\ \vec{HB} &= \vec{OB} - \vec{OH} = \vec{OB} - \frac{\vec{OA}}{|\vec{OA}|} \cdot \frac{\vec{OB} \cdot \vec{OA}}{|\vec{OA}|}. \end{split}$$

整理得

$$\vec{OC} = (1 - \cos \theta)\vec{OB} \cdot \vec{OA} \frac{\vec{OA}}{|\vec{OA}|} + \cos \theta \vec{OB} + \frac{\sin \theta}{|\vec{OA}|} \vec{OA} \times \vec{OB}.$$

第26页习题:

1. (1), (2), (3) 的证明显然.

1-(4). 证明: 设 S 是1,2,3 的所有排列的集合. 直接由定义计算得

(注意:课本P.23的定理1.5.3 只适用于直角坐标系,而这里的 $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ 不一定要求是两两垂直且单位长,任意三个不共线的向量均可,相当于斜角坐标系.标准的证明应该是这样.)

3. 证明: 举两例证明此题

方法一: 利用混合积的性质, 只需证明

$$\overrightarrow{OA} \times \overrightarrow{OD} + \overrightarrow{OB} \times \overrightarrow{OE} + \overrightarrow{OC} \times \overrightarrow{OF} = \vec{0}$$

由

$$\overrightarrow{OD} = \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2}, \ \overrightarrow{OE} = \frac{\overrightarrow{OA} + \overrightarrow{OC}}{2}, \ \overrightarrow{OF} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$$

代入上式,即得

$$\overrightarrow{OA} \times \overrightarrow{OD} + \overrightarrow{OB} \times \overrightarrow{OE} + \overrightarrow{OC} \times \overrightarrow{OF} = \frac{1}{2} [\overrightarrow{OA} \times (\overrightarrow{OB} + \overrightarrow{OC}) + \overrightarrow{OB} \times (\overrightarrow{OA} + \overrightarrow{OC}) + \overrightarrow{OC} \times (\overrightarrow{OA} + \overrightarrow{OC})]$$

$$= \overrightarrow{O}$$

方法二:因为 \overrightarrow{OA} , \overrightarrow{OD} 共线,所以

$$(\overrightarrow{OP}, \overrightarrow{OA}, \overrightarrow{OD}) = (\overrightarrow{OA}, \overrightarrow{OD}, \overrightarrow{OP}) = (\overrightarrow{OA} \times \overrightarrow{OD}) \cdot \overrightarrow{OP} = 0$$
 同理可得 $(\overrightarrow{OP}, \overrightarrow{OB}, \overrightarrow{OE}) = (\overrightarrow{OP}, \overrightarrow{OC}, \overrightarrow{OF}) = 0$. 所以
$$(\overrightarrow{OP}, \overrightarrow{OA}, \overrightarrow{OD}) + (\overrightarrow{OP}, \overrightarrow{OB}, \overrightarrow{OE}) + (\overrightarrow{OP}, \overrightarrow{OC}, \overrightarrow{OF}) = 0.$$

P26页习题:

第4题: 略.

5-(1). 证明:运用第25页公式(1.5.6)得

$$\begin{split} \vec{b} \cdot \left[(\vec{a} \times \vec{b}) \times \vec{a} \right] &= \vec{b} \cdot \left[(\vec{a} \cdot \vec{a}) \vec{b} - (\vec{b} \cdot \vec{a}) \vec{a} \right] = \vec{b} \cdot \left[|\vec{a}|^2 \vec{b} - |\vec{a}| |\vec{b}| \cos \angle (\vec{a}, \vec{b}) \vec{a} \right] \\ &= |\vec{a}|^2 |\vec{b}|^2 - |\vec{a}|^2 |\vec{b}|^2 \cos^2 \angle (\vec{a}, \vec{b}) = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \angle (\vec{a}, \vec{b}). \end{split}$$

5-(5). 证明: 不失一般性,设 $\vec{a} \times \vec{b} \neq \vec{0}$, $\vec{b} \times \vec{c} \neq \vec{0}$, $\vec{c} \times \vec{a} \neq \vec{0}$. 由于

$$\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \left(\vec{a} \cdot \vec{c}\right) \vec{b} - \left(\vec{b} \cdot \vec{c}\right) \vec{a},$$

所以

$$\begin{split} \left(\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b} \right) &= \left(\left(\vec{b} \times \vec{c} \right) \times \left(\vec{c} \times \vec{a} \right) \right) \cdot \left(\vec{a} \times \vec{b} \right) \\ &= \left(\left(\vec{b} \cdot \left(\vec{c} \times \vec{a} \right) \right) \vec{c} - \left(\vec{c} \cdot \left(\vec{c} \times \vec{a} \right) \right) \vec{b} \right) \cdot \left(\vec{a} \times \vec{b} \right) \\ &= \left(\vec{a}, \vec{b}, \vec{c} \right)^2. \end{split}$$

因此 $\left(\vec{a}, \vec{b}, \vec{c}\right) = 0$ 当且仅当 $\left(\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}\right) = 0$, 即 $\vec{a}, \vec{b}, \vec{c}$ 共面当且仅当 $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ 共面.

P26页习题:

第4题: 略.

5-(1). 证明:运用第25页公式(1.5.6)得

$$\begin{split} \vec{b} \cdot \left[(\vec{a} \times \vec{b}) \times \vec{a} \right] &= \vec{b} \cdot \left[(\vec{a} \cdot \vec{a}) \vec{b} - (\vec{b} \cdot \vec{a}) \vec{a} \right] = \vec{b} \cdot \left[|\vec{a}|^2 \vec{b} - |\vec{a}| |\vec{b}| \cos \angle (\vec{a}, \vec{b}) \vec{a} \right] \\ &= |\vec{a}|^2 |\vec{b}|^2 - |\vec{a}|^2 |\vec{b}|^2 \cos^2 \angle (\vec{a}, \vec{b}) = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \angle (\vec{a}, \vec{b}). \end{split}$$

5-(5). 证明: 不失一般性,设 $\vec{a} \times \vec{b} \neq \vec{0}$, $\vec{b} \times \vec{c} \neq \vec{0}$, $\vec{c} \times \vec{a} \neq \vec{0}$. 由于

$$\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \left(\vec{a} \cdot \vec{c}\right) \vec{b} - \left(\vec{b} \cdot \vec{c}\right) \vec{a},$$

所以

因此 $(\vec{a}, \vec{b}, \vec{c}) = 0$ 当且仅当 $(\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}) = 0$, 即 $\vec{a}, \vec{b}, \vec{c}$ 共面当且仅当 $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ 共面.

第32页习题:

1-(3),(5).

解: (3): 如上左图所示,以大圆心为圆坐标原点O, 初始时两圆圆心的连线为 x 轴建立直角坐标系. 不妨设小圆沿大圆逆时针方向滚动. 记初始时小圆圆心为 Q_0 , 滚动一段时间后到达 Q_θ , 其中 θ 为此时 x 轴到两圆心连线的旋转角. 那么 Q_θ 的坐标为 (a-b) $(\cos\theta,\sin\theta)$, 也即

$$\overrightarrow{OQ_{\theta}} = (a - b)(\cos \theta, \sin \theta)$$
.

记初始的切点为 P_0 . 设此时 P_0 滚动到 P_{θ} , 而现在的切点记为 R, 显然 P_0R 的弧长等于 $P_{\theta}R$ 的弧长. 记 $\overrightarrow{Q_{\theta}P_{\theta}}$ 旋转到 $\overrightarrow{Q_{\theta}R}$ 的角为 φ_{θ} , 则有

$$\varphi_{\theta} = \frac{a}{b}\theta.$$

注意到向量

$$\overrightarrow{Q_{\theta}R} = b\left(\cos\theta, \sin\theta\right),$$

而向量 $\overrightarrow{Q_{\theta}P_{\theta}}$ 相当于向量 $\overrightarrow{Q_{\theta}R}$ 旋转 $-\varphi_{\theta}$ 角度而来, 所以有

$$\overrightarrow{Q_{\theta}P_{\theta}} = e^{-i\varphi_{\theta}} \overrightarrow{Q_{\theta}R} = e^{-i\varphi_{\theta}} b (\cos \theta, \sin \theta)$$

$$= b (\cos (\theta - \varphi_{\theta}), \sin (\theta - \varphi_{\theta}))$$

$$= b \left(\cos \left(\frac{a - b}{b}\right) \theta, -\sin \left(\frac{a - b}{b}\right) \theta\right).$$

因此

$$\overrightarrow{OP_{\theta}} = \overrightarrow{OQ_{\theta}} + \overrightarrow{Q_{\theta}P_{\theta}}$$

$$= \left((a-b)\cos\theta + b\cos\left(\frac{a-b}{b}\right)\theta, (a-b)\sin\theta - b\sin\left(\frac{a-b}{b}\right)\theta \right).$$

所以 P_{θ} , 即动点所满足的参数方程为

$$\begin{cases} x = (a-b)\cos\theta + b\cos\left(\frac{a-b}{b}\right)\theta, \\ y = (a-b)\sin\theta - b\sin\left(\frac{a-b}{b}\right)\theta, \end{cases} - \infty < \theta < +\infty.$$

此曲线的参数方程为左图,右图为下题曲线的图:

(5): 与(3)的方法相同, 注意到此时

$$\overrightarrow{OQ_{\theta}} = (a+b)(\cos\theta, \sin\theta), \ \overrightarrow{Q_{\theta}R} = b(\cos(-\theta), \sin(-\theta)) = -b(\cos\theta, \sin\theta),$$

且向量 $\overrightarrow{Q_{\theta}P_{\theta}}$ 相当于向量 $\overrightarrow{Q_{\theta}R}$ 旋转 φ_{θ} 角度, 所以

$$\overrightarrow{Q_{\theta}P_{\theta}} = e^{i\varphi_{\theta}} \overrightarrow{Q_{\theta}R} = -e^{i\varphi_{\theta}} b \left(\cos\theta, \sin\theta\right)$$

$$= -b \left(\cos\left(\theta + \varphi_{\theta}\right), \sin\left(\theta + \varphi_{\theta}\right)\right)$$

$$= -b \left(\cos\left(\frac{a+b}{b}\right)\theta, \sin\left(\frac{a+b}{b}\right)\theta\right).$$

那么,

$$\overrightarrow{OP_{\theta}} = \left((a+b)\cos\theta - b\cos\left(\frac{a+b}{b}\right)\theta, (a+b)\sin\theta - b\sin\left(\frac{a+b}{b}\right)\theta \right).$$

因此所求的参数方程为

$$\begin{cases} x = (a+b)\cos\theta - b\cos\left(\frac{a+b}{b}\right)\theta, \\ y = (a+b)\sin\theta - b\sin\left(\frac{a+b}{b}\right)\theta, \end{cases} - \infty < \theta < +\infty.$$

2-(3) 解:由方程知,此平面的法向量为 $\vec{n} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$. 设P = (x, y, z) 是所求曲面上一点. 注意到 Q = (1, 0, z) 在原平面中,所以 P 满足下面的方程

$$\left|\overrightarrow{QP}\cdot\mathbf{n}\right| = \sqrt{x^2 + y^2}.$$

即所求的方程为

$$(x - y)^{2} + 2(x + y) - 1 = 0.$$

2-(5) 解: 设 P = (x, y, z) 为目标曲面上的点, 那么有

$$\begin{cases} |x| = |y| \\ |y| = |z| \end{cases}$$

2-(6) 解: 设 P = (x, y, z) 为目标曲面上的点, 那么有

$$\begin{cases} \sqrt{y^2 + z^2} = \sqrt{x^2 + z^2} \\ \sqrt{x^2 + y^2} = \sqrt{x^2 + z^2} \end{cases}$$

即

$$\begin{cases} |x| = |y| \\ |y| = |z| \end{cases}.$$