量子化学模拟赛道 决赛答辩

QwQ 小队

2023年9月2日

内容目录

- 背景介绍
 - 化学分子的哈密顿量
 - 基态能量求解
- 解题思路
 - 最优化分子结构求解
 - 激发态能量求解的浅层线路设计

化学分子的哈密顿量

- 分子结构 geo → 哈密顿量 H
 - Hartree-Fock 方法
 - H 是一个费米算符, 子项的加和
 - JW 转换为泡利形式后是一个矩阵

$$\hat{H}_{el} = \sum_{pq} h_{pq} a_p^\dagger a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} a_p^\dagger a_q^\dagger a_s a_r$$

二次量子化后电子的哈密顿量形式

- 问题的转化
 - 系统的态与能量 ⇔ 哈密顿量 H 各本征向量及其本征值
 - 系统状态求解 (物理/化学) ⇔ 矩阵的特征求解 (数学)

基态能量求解

• 现有方法

- QPE: $QPE(U, |\psi\rangle) = |\lambda\rangle$, where $U|\psi\rangle = \lambda|\psi\rangle$
 - 虚时演化: $U_H = e^{-iHt}$
 - 深线路, 纯量子
- VQE: min. $\langle \psi | H | \psi \rangle$
 - 求解 H 的最小本征值和本征向量
 - 浅线路, 经典-量子混合
- 理论拟设
 - UCCSD
 - UCC/qUCC
 - HEA

Rayleigh quotient

ChemiQ – vqe introduction

内容目录

- 背景介绍
 - 化学分子的哈密顿量
 - VQE求解基态能量
- 解题思路
 - 最优化分子结构求解
 - 激发态能量求解的浅层线路设计

Q1: 最优化分子结构求解

- 定性: 函数最小化问题
 - E_0 = solver(geo)
- 基态求解器
 - solver := geo \rightarrow H \rightarrow { λ_i } \rightarrow min({ λ_i })
 - 经典求解器 HF/FCI/CCSD (PySCF)
 - 量子求解器 VQE (QuPack-uccsd)
- 难点
 - 求解器的精度
 - 参数初猜、局部优化方法

H4: QuPack-uccsd_COBYLA_linear

超参网格搜索

- 参数初猜
- 局部优化方法

目标函数

- PySCF-fci
- QuPack-uccsd

两阶段优化

- 优化方法 FBGS 泛用性好,但刚开始的几步收敛不稳
 - 先用更稳定的 COBYLA 从初猜收敛到最优解附近

- Simple
 - FBGS (1000)
- Compound
 - COBYLA (200)
 - FBGS (800)

A1

- 初始点选择
 - linear/randu/randn/eq-2d/eq-3d
- 两阶段优化
 - COBYLA is stable, FBGS is accurate
- 最终得分 ★
 - 11.297 (stage1) / 11.2956 (stage2)
 - H4 E1: -2.2746177087120563
- 全局优化方案? 粒子群/差分演化

Q2: 激发态能量求解的浅层线路设计

- 分子结构 geo → 哈密顿量 H
 - 求解 H 的第二小的本征值(和本征向量)
- 已知方法
 - FSM: min. $\langle \psi_1 | (H \lambda_0)^2 | \psi_1 \rangle$
 - OC-VQE: min. $\langle \psi_k | \mathbf{H} | \psi_k \rangle + \sum_{i=0}^{k-1} \beta_k \langle \psi_k | \psi_i \rangle$, iter by k
 - SS-VQE: $\max_{\varphi} \min_{\theta} \sum_{k} \langle k | V_{\varphi}^{\dagger} U_{\theta}^{\dagger} H U_{\theta} V_{\varphi} | k \rangle$, $st.\{|k\rangle\}$ is orthogonal
 - wSS-VQE: $\min_{A} \sum_{k} w_{k} \langle \psi_{k} | H | \psi_{k} \rangle$, st. $\{|k\rangle\}$ is orthogonal, w_{k} is well-ordered
 - SS-Expansion
 - solve eq. HV = SVE to get all eigvecs V and correspond eigvals E
 - where $H_{ij} = \langle \psi_0 | O_i H O_j | \psi_0 \rangle$, $S_{ij} = \langle \psi_0 | O_i O_j | \psi_0 \rangle$, and $\{O_i\}$ is a proper exp-op set
 - MC-VQE := SS-VQE + SS-Expansion

One-pass OC-VQE

- VQE
 - min. $\langle \psi_0 | H | \psi_0 \rangle$
- OC-VQE
 - min. $\langle \psi_0 | H | \psi_0 \rangle$
 - min. $\langle \psi_1 | H | \psi_1 \rangle + \beta * \langle \psi_1 | \psi_0 \rangle$, where β is sufficient large
- weighted-SS-VQE
 - min. $\langle \psi_0 | \mathbf{H} | \psi_0 \rangle + w * \langle \psi_1 | \mathbf{H} | \psi_1 \rangle$, $st. \langle 0 | 1 \rangle = 0$ and $w \in (0, 1)$
- One-pass OC-VQE
 - min. $\langle \psi_0 | \mathbf{H} | \psi_0 \rangle + w * \langle \psi_1 | \mathbf{H} | \psi_1 \rangle + \beta * \langle \psi_1 | \psi_0 \rangle$

H2O_1.0	OC-VQE	OPOC-VQE
Error	0.0002296516	0.0004105919
Time	203.97	422.87
Config	QUCC-BFGS- 100/400	QUCC-BFGS-500

Alter uccsd with trotter step

- 有没有一种可能……
 - Mindquantum-uccsd/qucc: 精度ok, 慢
 - QuPack-uccsd: 精度不ok, 可能会快很多(?

TimeEvolution
↓
ExpmPQRSFermionGate

- QuPack 精度不够是因为线路复杂度/表达力不行
 - •像 qUCC 一样重复线路结构

H2O_1.0	trotter=1	trotter=2	trotter=3	trotter=4	trotter=5
Error	0.03445652	0.00669982	0.00440058	0.00025004	0.001702912
Time	35.79	87.59	109.61	132.79	152.89

注: OC-VQE-BGFS-100/1000, 求基态都用 trotter = 1 的线路

Alter uccsd with weight sparsify

- QuPack 速度不行是因为线路复杂度冗余了
 - •像 dropout 一样权重稀疏化

H2O_1.0	thresh=1e-5	thresh=1e-4	thresh=2e-4	thresh=4e-4	thresh=1e-3
Error	0.0002574548	0.0003663432	0.0004848678	0.0019612535	0.0025420695
Time	121.20	89.10	78.07	60.76	56.77

注: OC-VQE-BGFS-100/1000, 求基态都用 trotter = 1 的线路

A2

- One-pass OC-VQE
 - combine OC-VQE & wSS-VQE
 - just works but temporally slower
- Alter uccsd in QuPack
 - repeat circuit for higher precision
 - weight sparsify for better performance
- Ham term trimming
 - remove trivial terms & truncate precision

H2O_1.0

- 最终得分 ★
 - stage1: [MQ-qucc] 275.5122
 - stage2: [MQ-qucc] 89.0062 / [QP-uccsd] 71.1257

总结与展望

- 我们探索了
 - 两阶段优化
 - 粒子群
 - 复现多种 VQE
 - One-pass OC-VQE
 - 更深而稀疏的 uccsd 改进
 - 忽略哈密顿量小项

作品名称	阶段	提交时间	得分
hackathon_vqe_01	初赛	2023-07-19 21:13:09	11.297
hackathon_vqe_02	初賽	2023-07-17 18:00:12	275.5122
hackathon_vqe_01	决赛	2023-07-31 20:32:16	11.2956
hackathon_vqe_02	决赛	2023-08-04 15:10:13	89.0062
hackathon_vqe_02	决賽	2023-08-06 19:56:22	71.1257

- 接下来做什么
 - hard dropout
 - 让我摸摸量子真机

参考资料

- A variational eigenvalue solver on a quantum processor
- Variational Quantum Computation of Excited States
- Subspace-search variational quantum eigensolver for excited states
- Qubit coupled-cluster method: A systematic approach to quantum chemistry on a quantum computer
- Noisy intermediate-scale quantum (NISQ) algorithms
- ChemiQ: A Chemistry Simulator for Quantum Computer
- https://pychemiq-tutorial.readthedocs.io/en/latest/index.html
- https://www.mindspore.cn/mindquantum/docs/zh-CN/r0.8/vqe_for_quantum_chemistry.html

谢谢观看

请各位专家老师指正

QwQ 小队