# SERIBIRA SERIBIRA

কে.পি.বসু ডি.আর. ভট্টাচার্ম







# উচ্চ गाशामिक जर्क भागिज

[ একাদশ ও বাদশ শ্রেণী ] প্রথম খণ্ড

## কে. পি. বসু, এম, এ.

ঢাকা কলেজের ভৃতপূর্ব গণিতাধ্যাপক,
'এলজেবরা মেড ইজি', 'মডার্ন জিওমেট্রি', 'ইন্টারমিডিয়েট এলজেবরা',
'ইন্টারমিডিয়েট সলিড জিওমেট্রি' প্রভৃতি প্রণেতা

এবং

ধীরেন্দ্রগুন ভট্টাচার্য, এম. এ. প্রধান শিক্ষক, যোধপুর পার্ক বয়েজ স্থল, কলিকাজ

> কে. পি. বসু পাবলিশিং কোং ৪২, বিধান সরণী, কলিকাতা-৭০০ ০০৬

প্রকাশক : শ্রীজয়ন্ত বস্ত্র, ৪২, বিধান সরণী, কলিকাতা-৭০০ ০০৬



Paper used for printing of this book was made available by the Govt. of India at a concessional rate.

প্রথম দংস্করণ: নভেম্বর, ১৯৭৬

मूना: २०'०० छोका

98/8

মুদ্রাকর ঃ প্রীত্তিদিবেশ বস্থ, কে. পি. বস্থ প্রিন্টিং ওয়ার্কস, ১১, মহেল্র গোস্বামী লেন, কলিকাতা-৭০০ ০০৬

## নিবেদন

অধ্যাপক কে. পি. বস্থ-র পুরাতন 'উচ্চ মাধ্যমিক ঐচ্ছিক গণিত', Intermediate Algebra এবং কে. পি. বস্থ ও ডি. আর. ভট্টাচার্য প্রণীত An Introduction to Advanced Mathematics হইতে নির্বাচিত ও পরিমাজিত অংশ লইয়া 'উচ্চ মাধ্যমিক সহজ গণিত'-এর প্রথম খণ্ডটি বিশ্বস্ত হইল।

গত দশ বংসর যাবং অধ্যাপক কে. পি. বস্থ প্রণীত গ্রন্থগুলির তথাবধান, সংযোজন ও পরিমার্জনের ভার ছিল অধ্যক্ষ মনোরঞ্জন দাশগুপ্ত ও শ্রীযুক্ত ধীরেক্সরঞ্জন ভট্টাচার্যের উপর। মাধ্যমিক শুর হইতে উচ্চ-মাধ্যমিক শুর পর্যন্ত অধ্যাপক কে. পি. বস্থ-র গ্রন্থগুলির যাবতীয় আধুনিকীকরণের কৃতিত্ব শ্রীযুক্ত ভট্টাচার্যের; বিশেষতঃ, এই গ্রন্থের দ্বিতীয় খণ্ডে সংযোজিত 'বলবিতা'র অংশটুক্ শ্রীযুক্ত ভট্টাচার্যের (1958—1960 সালে প্রকাশিত) বহু-প্রশংসিত 'বলবিতা প্রবেশ' হইতেই সংকলিত; সেই কারণে এই গ্রন্থের সহযোগী গ্রন্থকার হিদাবে শ্রীযুক্ত ভট্টাচার্যের নাম সংযোজিত হইল।

গ্রন্থটিকে সর্বাঙ্গস্থন্দর করিবার জন্ম যথাসাধ্য চেষ্টা করা হইয়াছে। এই কাজে অধ্যাপক ও শিক্ষক ষে-কয়েকজন বিশিষ্ট গণিতবিদ্ আমাদের সহায়তা করিয়াছেন, তাঁহাদের প্রতি আমরা গভীর ক্বতজ্ঞতা প্রকাশ করিতেছি। ইতি—

৬ নভেম্বর, ১৯৭৬

প্রকাশক

#### SYLLABUS

#### PAPER I (Marks-100)

# Algebra, Trigonometry and Analytical Geometry of Two Dimensions

## Algebra: -30 marks:

Variation, Arithmetical Progression, Geometrical Progression, Surds, Laws of indices. Complex numbers. Theory of quadratic equation. Permutations and Combinations. Binomial theorem for positive integral index; Idea of Infinite series—sum of infinite G. P. series. Use of Binomial theorem for fractional and negative indices. Logarithms—Compound interest and annuities. Use of logarithmic and exponential series.

## Trigonometry: -30 marks:

Measure of an angle—Degrees, Radians. Trigonometrical ratios of compound angles. Multiple and submultiple angles, complementary and supplementary angles. Graphs of trigonometrical functions; Graphical and general solutions of Trigonometrical equations. Inverse circular functions. Properties of triangles. Solution of triangles. Problems relating to heights and distances.

## Analytical Geometry of Two Dimensions: -40 marks:

Rectangular cartesian co-ordinates; Polar co-ordinates; Transformation from one system to another. Analytical representation of reflexion, translation and rotation. Distance between two points. Division of a segment in a given ratio. Area of triangles. Concept of a locus. Equations of straight lines; Angle between two lines—Conditions of perpendicularity and parallelism of two lines. Distance of a point from a given line. Position of a point with respect to a line. Equations of bisectors of angles between two lines. Equations of circles. Idea of conic sections—Focus—Directrix—definition of a conic section. Eccentricity and axes of conic sections. Equations of Parabola, Ellipse, and Hyperbola referred to their principal axes.

Equations of tangents and normals to circles and the different conics (use of Calculus may be indicated).

## সূচীপত্ৰ

## বীজগণিত

## প্রথম অধ্যায় ঃ সূচক নিয়ম

| विषय                                            | 14 8   | পृष्ठी |
|-------------------------------------------------|--------|--------|
| স্টক-নিয়ম                                      | • • •  | 1      |
| অথণ্ড ধনসংখ্যা ভিন্ন অক্ত স্ট্ৰুক               |        | 2      |
| স্চক-স্তুত্তের প্রয়োগ                          |        | 3      |
| विविध উদাহরণমালা                                |        | 5      |
|                                                 |        |        |
| ছিতীয় অধ্যায় ঃ করণী                           |        |        |
| করণী                                            | ***    | 12     |
| সরল ও যৌগিক করণী                                | ***    | 15     |
| क्रवगी-निवर्गन                                  | ***    | 16     |
| মূলদ রাশির বর্গমূল                              | ***    | 19     |
| विभाग करागीय वर्गम्ल                            |        | 20     |
| দ্বিপদ দ্বিঘাত করণীর ঘনমূল                      |        | 23     |
| করণী-সংশ্লিষ্ট সমীকরণ                           | ***    | 29     |
| তৃতীয় অধ্যায় ঃ ভেদ                            | 19.    |        |
|                                                 |        | 33     |
| ভেদ                                             |        | 35     |
| বোথভেদ-সংক্রান্ত প্রতিজ্ঞা                      | 200    |        |
| ভেদ–সম্বন্ধীয় কয়েকটি প্রতিজ্ঞা                |        | 36     |
| চতুর্থ অধ্যায় ঃ সমান্তর প্রগতি                 |        |        |
| সমান্তর শ্রেণী : গু-তম পদ                       | 444    | 48     |
| তুইটি পদ হইতে সমান্তর শ্রেণী নির্ণয়            | 40, 54 | 49     |
| সমান্তর শ্রেণীর সমষ্টি নির্ণয়                  | ***    | 51     |
| স্থুতের প্রয়োগ                                 |        | 54     |
| সমান্তর মধ্যক                                   | 145    | 58     |
| স্বাভাবিক সংখ্যা-সম্বলিত সমান্তর শ্রেণীর সমষ্টি |        | 61     |
|                                                 |        |        |
| বিবিধ কৌশল                                      | ***    | 66     |

| विषद                                                        |         | পৃষ্ঠা |
|-------------------------------------------------------------|---------|--------|
| পঞ্চম অধ্যায় ঃ গুণোত্তর প্রগতি                             |         |        |
| গুণোত্তর শ্রেণী : n-তম পদ                                   |         | 74     |
| হুইটি পদ হইতে গুণোত্তর শ্রেণী নির্ণয়                       | ***     | 75     |
| গুণোত্তর শ্রেণীর সমষ্টি নির্ণয়                             | ***     | 78     |
| গুণোত্তর মধ্যক                                              | ***     | 80     |
| ধনাত্মক সংখ্যাদয়ের সমাস্তর ও গুণোত্তর মধ্যকের সম্পর্ক      |         | 82     |
| ষষ্ঠ অধ্যায় ঃ জটিল রাশি                                    |         |        |
|                                                             |         |        |
| কাল্পনিক রাশি: :-এর ঘাত                                     | ***     | 90     |
| জ্যামিতিক চিত্র দারা জটিল রাশির প্রকাশ                      |         | 92     |
| তুইটি জটিল রাশির যোগফলের জ্যামিতিক প্রকাশ                   | ***     | 93     |
| ছইটি জটিল রাশির বিয়োগফলের জ্যামিতিক প্রকাশ                 | ***     | 94     |
| তুইটি জটিল রাশির গুণফলের জ্যামিতিক প্রকাশ                   | ***     | 95     |
| ছইটি জটিল রাশির ভাগফলের জ্যামিতিক প্রকাশ                    | ***     | 96     |
| জটিল রাশি-সম্বন্ধীয় বিবিধ উপপাত্ত                          | ***     | 97     |
| প্রতিযোগী জটিল রাশি                                         | ***     | 100    |
| মডিউল্যাস-সম্পর্কিত উপপান্ত                                 | ***     | 100    |
| 1-এর খনমূল                                                  | *   1 * | 101    |
| সপ্তম অধ্যায় ঃ দ্বিঘাত-সমীকরণের তত্ত্ব                     |         |        |
| বিঘাত সমীকরণে বীজের সংখ্যা                                  | ***     | 110    |
| দ্বিঘাত সমীকরণের বীজন্বয়ের প্রকৃতি                         |         | 112    |
| দ্বিঘাত সমীকরণের সহগ্য ও বীজ্বয়ের সম্বন্ধ                  |         | 115    |
| श्रिकितांत्री वीष                                           |         | 116    |
| দ্বিঘাত সমীকরণের বীজন্বয়-দম্বলিত প্রতিসম রাশিমালা          |         | 117    |
| প্রদত্ত বীজন্বয় হইতে সমীকরণ গঠন                            |         | 124    |
| ছইটি সমীকরণের সাধারণ বীজ থাকার শর্ভ                         | ***     | 134    |
| ছুইটি ছিঘাত রাশিমালার একটি একঘাত সাধারণ গুণনীয়ক থাকার শর্ত |         | 136    |
| a ও y-দম্বলিত একটি দিঘাত রাশিমালা তুইটি একঘাত রাশিমালায়    |         |        |
| বিশ্লেষণযোগ্য হওয়ার শর্ত                                   |         | 138    |
| দ্বিঘাত রাশিমালার মানের চিহ্ন                               | ***     | 141    |
| ছিঘাত রাশিমালার চরম ও অব্ম মান                              |         | 143    |

| f       | चेस <b>श</b>                                    |       | পৃষ্ঠা |
|---------|-------------------------------------------------|-------|--------|
| •       | অষ্টম অধ্যায়ঃ বিক্যাস ও সমবায়                 |       |        |
| तिम     | াদ ও সমবাহ                                      |       | 151    |
| বিভ     |                                                 |       | 152    |
| সম্ব    |                                                 | q ± 4 | 162    |
|         | ক সমবায়                                        | 0.04  | 165    |
|         | -এর চরম মান                                     | # 0 N | 176    |
|         | ল বিভাগ ও সমবার                                 | 4 * * | 178    |
|         | রাবৃত্তিঘটিত বিশ্রাস                            | ***   | 180    |
| বুত্তা  | কারে সজ্জিত বস্তুর বিস্থাস                      | ***   | 187    |
| 72-3    | ংখ্যক বস্তুর যতগুলি ইচ্ছা লইয়া সমবায়          | • • • | 189    |
| স্ব :   | ওলি বিভিন্ন না হইলে বল্পসমূহের মোট সমবায়       |       | 190    |
|         | ভিন্ন দলে বিভাগ                                 | 4 4 9 | 191    |
|         | নবম অধ্যায় : দ্বিপদ উপপাত্ত                    |       |        |
| ******* | াত্মক ও অথণ্ড স্চকের ক্ষেত্রে দ্বিপদ উপপাত্য    |       | 199    |
|         | + a) শ-এর বিস্তৃতি                              |       | 202    |
| •       | ৮ জ) ত্রু বিস্থাত<br>ছতির সাধারণ পদ             |       | 203    |
|         | ছতির মধ্যপদ                                     | n e e | 205    |
|         | मृतवर्जी <b>भर्</b> य्भ                         | ***   | 206    |
|         | खंभ महर्ग                                       | * + 4 | 212    |
| -       | াদ সহগের ধর্ম                                   | 0.11  | 216    |
|         | ভিন্ন প্রশেষ সমাধান                             | 9.10  | 217    |
| 1 11    | দশ্ম অধ্যায় ঃ অসীম গুণোত্তর-শ্রেণী এবং ঋণাত্মক |       |        |
|         | বা ভগ্নান্ধ সূচকবিশিষ্ট দ্বিপদ উপপাত্য          |       |        |
| 41      | অথওসংখ্যা এবং ৮ প্রকৃত ভংগংশ হইলে ৮%-এর মান     | •••   | 226    |
|         | দীয় গুণোত্তর শ্রেণীর সমষ্টি                    | ***   | 227    |
|         | ভিদারী ও অপুদারী অসীম শ্রেণী                    |       | 230    |
| 웨티      | শিক্ষক অথবা ভগ্নান্ক স্চকবিশিষ্ট দ্বিপদ উপপাত   |       | 231    |
|         | ধারণ পদ                                         | w 4 P | 232    |
|         | তিপয় প্রয়োজনীয় বিস্থৃতি                      |       | 232    |
|         | ভূম পদ                                          | 6+4   | 239    |
|         | বিধ প্রশ্নের সমাধান                             | 0 0 0 | 243    |

## [viii]

| বিষয়                                             |       | পৃষ্ঠা |
|---------------------------------------------------|-------|--------|
| একাদশ অধ্যায় : नगातिन्य, ठळवृद्धि ও वार्षिकी     |       |        |
| লগারিদ্মের ত্রাবলী                                |       | 252    |
| नगात्रिम्त्यत्र भूर्वक ও जरमक                     |       | 255    |
| পূৰ্ণক-নিৰ্ণয়                                    | 0.04  | 256    |
| षरम्क-निर्वद                                      |       | 259    |
| ष्गाचि-नभा तिस्य                                  | 4 0 5 | 261    |
| नगांतित्य-अत्र अरमांग                             |       | 261    |
| চক্রবৃদ্ধি .                                      | 040   | 269    |
| वार्षिकी                                          | ***   | 273    |
| ৰাদশ অধ্যায় ঃ সূচক-শ্ৰেণী                        |       |        |
| e-দারা <del>স্থ</del> চিত শ্রেণী                  |       | 281    |
| ্ল-এর মান                                         | * * * | 282    |
| স্চক-উপপান্ত                                      |       | 283    |
| বিবিধ প্রশ্নের সমাধান                             | ***   | 284    |
| जरग्रामम व्यथायः व नगातिम्य द्यानी                |       |        |
| লগারিদ্ম শ্রেণী                                   |       | 294    |
| কতিপন্ন প্রয়োজনীয় দিহ্বাস্ত                     | 824   | 295    |
| ভিকো <b>ণ</b> মিভি                                |       |        |
| প্রথম অধ্যায় ঃ কোণ পরিমাণ                        |       |        |
| <u> জিকোণমিতির</u> বিচারে কোণ                     |       | 3      |
| বৃত্তের পরিধি ও ব্যাসার্থের অনুপাত                |       | 3      |
| রেডিয়ানের গ্রুবকত্ব ও ষ্টেমৃলক মান               |       | 5      |
| কোণের বৃত্তমূলক মান: বিভিন্ন কোণমানের সম্পর্ক     |       | 6      |
| দ্বিতীয় অধ্যায়ঃ যৌগিক কোণের অনুপাত              |       |        |
| যৌগিক কোণ ও তাহার ত্রৈকোণমিতিক অনুপাত             |       | 11     |
| তৃতীর অধ্যায় ঃ গুণফল, যোগফল ও বিয়োগফলের পরিবর্ত | ल     |        |
| বিৰিখ পরিবর্তন                                    | ***   | 21     |

| विषग्र                                           |       | পৃত্ত |  |
|--------------------------------------------------|-------|-------|--|
| চতুর্থ অধ্যায় : গুণিতক ও আংশিক কোণের অনুপাত     | 5     |       |  |
| গুণিতক ও আংশিক কোণের অনুপাত                      | • • • | 25    |  |
| পঞ্চম অধ্যায় : পূরক ও সম্পূরক কোণের অনুপাত      |       |       |  |
| ঋণাত্মক কোণের অমূপাত                             |       | 33    |  |
| বিভিন্ন পাদে অবস্থিত কোণের অমূপাতের চিহ্ন        | • • • | 34    |  |
| পূরক কোণের অন্থপাত                               |       | 36    |  |
| (90° + θ)-কোণের অমুপাত                           | * * * | 37    |  |
| (180° − θ) ও (180° + θ)-কোণের অনুপাত             |       | 38    |  |
| (270° − θ) ও (270° + θ)-কোণের অমুপতি             | ***   | 41    |  |
| (360° − θ) ও (360° + θ)-কোণের অহপাত              |       | 42    |  |
| চিহ্নের দ্ব্যর্থতা                               |       | 44    |  |
| ক্ষেক্টি বিশেষ কোণের অমূপাত                      | * * * | 45    |  |
| वर्ष्ठ व्यथात्र : दन्य                           |       |       |  |
| কোণের পরিমাণ-বৃদ্ধিব সহিত অনুপাতের পরিবর্তন      |       | 62    |  |
| ত্রৈকোণমিতিক অপেক্ষকের লেখ                       |       | 68    |  |
| হৈকোণমিতিক সমীকরণের লেখিক সমাধান                 | •••   | 75    |  |
| সপ্তম অধ্যায় ঃ ত্রৈকোণমিতিক সমীকরণ ও সাধারণ মান |       |       |  |
| অভূপাতের শূগ্র-মানবিশিষ্ট কোণের শাধারণ রূপ       | • • • | 81    |  |
| একই sine-বিশিষ্ট কোণ                             |       | 82    |  |
| একই cosine-বিশিষ্ট কোণ                           |       | 84    |  |
| একই tan-বিশিষ্ট কোণ                              |       | 85    |  |
| স্ত্রসমূহের জ্যামিতিক প্রমাণ                     |       | 85    |  |
| বিশেষ ত্রৈকোণমিতিক অমুপাত                        | • • • | 89    |  |
| অপ্টম অধ্যায় ঃ বিপরীত রুতীয় অপেক্ষক            |       |       |  |
| অপেক্ষক ও বিপরীত অপেক্ষক                         | • • • | 100   |  |
| বিবিধ প্রয়োজনীয় তত্ত্ব                         |       | 102   |  |
| বিবিধ উদাহরণ                                     |       | 108   |  |

| বিষয়                                                    |       | পৃষ্ঠা |
|----------------------------------------------------------|-------|--------|
| নবম অধ্যায় ঃ ত্রিভুজের গুণাবলী                          |       |        |
| বাহ ও বিপরীত কোণের sine-এর স্থ্র                         | • • • | 118    |
| ত্তিভূজের যে-কোন কোণের cosine-কে বাহু ছারা প্রকাশ        |       | 121    |
| অর্ধকোণসমূহের sine-কে বাহুর দৈর্ঘ্য দারা প্রকাশ          | • • • | 122    |
| অধকোণসমূহের cosine-কে বাহুর দৈখ্য দার প্রকাশ             |       | 123    |
| অধৃকোণসমূহের tangent-কে বাহুর দৈখা দ্বারা প্রকাশ         | ***   | 124    |
| কোণের sine-কে বাহুর দৈর্ঘ্য দারা প্রকাশ                  | ***   | 124    |
| ত্রিভূদের কেত্রফল                                        | * * * | 125    |
| ক্য়েকটি বিশেষ স্ত্ৰ                                     | •     | 126    |
| ত্রিভুজের পরিবৃত্তের ব্যাসার্ধ                           |       | 134    |
| ত্তিভূজের অন্তর্ব্যাসার্ধ                                | ***   | 134    |
| অন্তঃকেন্দ্র হইতে কৌণিক বিন্দৃষ্ট্রে দ্রত্ব              | ***   | 136    |
| বহিব্যাসার্থসমূহের মান                                   |       | 137    |
| বহিঃকেন্দ্র হইতে কৌণিক বিন্দৃশ্হের দ্রহ                  | ***   | 139    |
| দশন অধ্যায় ঃ ত্রিভুজের সমাধান                           |       |        |
| লগারিদ্ম ও ত্রৈকোণমিতিক তালিকা                           | ***   | 146    |
| সমাত্রপাতী অংশ-বিধি                                      |       | 148    |
| প্রদান্ত তিন বাহু হইতে ত্রিভূঞের সমাধান                  |       | 155    |
| প্রদত্ত হুইটি কোণ ও একটি বাহু হুইতে ত্রিভূজের সমাধান     |       | 159    |
| প্রদত্ত তুই বাহু ও অন্ত ভূঁক্ত কোণ হইতে ত্রিভূজের সমাধান |       | 160    |
| তুই বাহু এবং উহাদের একটির বিপরীত কোণ হইতে সমাধান         |       | 163    |
| জামিতিক খালোচনা                                          |       | 164    |
| তিনটি কোণ হইতে ত্রিভূজের সমাধান                          |       | 166    |
| একাদশ অধ্যায় ঃ উচ্চতা ও দূরত্ব                          |       |        |
| দূরস্থ বন্ধর উচ্চতা ও দূরত্ব                             |       | 169    |
| তুইটি অগম্য বন্ধর মধ্যবর্তী দূরত্ব                       |       | 170    |
| বিশ্লেষণমূলক হিমাভিক জ্যামিভি                            |       |        |
| প্রথম অধ্যায় ঃ কার্তেজীয় আয়ত স্থানাম্ব                |       |        |
| বিশ্লেষণমূলক দ্বিমাত্রিক জ্যামিতি                        | ***   | 3      |
| আয়ত অক্ষ ও আয়ত স্থানাক                                 |       | 4      |

## [ xi ]

| विषय                                                                   |       | পৃষ্ঠা |
|------------------------------------------------------------------------|-------|--------|
| পোলার স্থানাম্ব                                                        |       | 5      |
| ভেক্টর কোণের ধনাত্মক ও ঋণাত্মক মান                                     | • • • | 5      |
| রেডিয়াস-ভেক্টরের ধনাত্মক ও ঝণাত্মক মান                                |       | 5      |
| এক পদ্ধতির স্থানাম্ব হইতে অন্ত প্ৰদৃতির স্থানাম্বে রপাস্তর             |       | 6      |
| প্রতিফলন, চলন ও আবর্তন                                                 | •••   | 8      |
| প্রতিফলন                                                               |       | 9      |
| চলন •                                                                  | • • • | 14     |
| আ্বর্তন                                                                | ***   | 17     |
| তুইটি বিন্দুর মধ্যে দূরত্ব                                             |       | 20     |
| একটি খণ্ডৱেখাকে নিৰ্দিষ্ট অন্তপাতে বিভাজন                              |       | 21     |
| কৌণিক বিন্দুত্ররের স্থানাঙ্গ হইতে ত্রিভূজের ক্ষেত্রফল নির্ণয়          |       | 32     |
| বিন্দুর সঞ্চারপথ                                                       |       | 36     |
| দিতীয় অধ্যায় ঃ সরল রেখা                                              |       |        |
|                                                                        |       |        |
| অক্ষের সমান্তরাল সরল বেথার সমীকরণ                                      | ٠,    | 39     |
| অক্ষত্ত্যের পরিবর্তন                                                   |       | 40     |
| সরল রেখার প্রবর্ণতা                                                    |       | 41     |
| X-অক্ষের সহিত নির্দিষ্ট কোণে নত নির্দিষ্ট বিন্দৃগামী সরল রেখা          | * * * | 42     |
| $\chi$ -অক্ষের সহিত $a$ -কোণে নত যে-রেখা $\gamma$ -অক্ষ হইতে           |       |        |
| C-অংশ ছেদ করে, তাহার সমীকরণ                                            | ,     | 43     |
| যে-রেখা $X \otimes Y$ -অক্ষ হইতে যথাক্রমে $a \otimes b$ অংশ ছিন্ন করে, |       |        |
| তাহার স্মীকরণ                                                          |       | 44     |
| X-অক্ষের সহিত a-কোণে নত এবং ম্লবিন্দু ১ইতে                             |       |        |
| গু-একক দ্রবর্তী রেখার সমীকরণ                                           | ***   | 45     |
| (X, Y)-বিশিষ্ট সরল সমীকরণ মাত্রই সরল রেখা স্থাচিত করে                  | • • • | 46     |
| AX + BY + C = 0-এর বিভিন্ন জাকার                                       |       | 47     |
| (æ1, V1)- दिन्न्गाभी नद्रल (द्रथाद नभीकद्रव                            |       | 48     |
| $(x_1, y_1)$ এবং $(x_2, y_2)$ -বিন্দুগামী সরল রেখার সমীকরণ             | ***   | 48     |
| ছুইটি সরল রেখার অন্তর্বর্তী কোণ নির্ণয়                                | ***   | 55     |
| তুইটি সরল রেখার সমান্তরাল হওয়ার শর্ত                                  | • • • | 56     |
| তুইটি সরল রেখার পরস্পর লম্ব হওয়ার শত                                  | * * 1 | 57     |
| তিনটি দরল রেখার একবিন্দুগামী হওয়ার শর্ড                               | ***   | 62     |
| কোন সরল রেখার সম্পর্কে কোন বিন্দুর অবস্থান                             | ***   | 66     |

## [ xii ]

| বিষয়                                                                 |       | পৃষ্ঠা |
|-----------------------------------------------------------------------|-------|--------|
| মিদিষ্ট বিন্দু ছইতে মিদিষ্ট সরল রেখার উপর লম্বের দৈর্ঘ্য              | ***   | 70     |
| তুইটি রেথার অন্তর্গত কোণের সম্বিধণ্ডকদ্বয়ের সমীকরণ                   |       | 72     |
|                                                                       |       |        |
| ভৃতীয় অধ্যায় ঃ রব্তের সমীকরণ                                        |       |        |
| मृलविन्मू किन এवং a-राभार्य विश्विष्ठ वृराहद मधी कद्रव                | ***   | 77     |
| (h. li) कं म अवर a-वर्गमाध-निभिष्ठे वृत्वित मधोकवन                    | ***   | 78     |
| $x^2 + y^2 + 2gx + 2fy + c = 0$ -এর কেন্দ্র ও ব্যাসার্থ               |       | 79     |
| সাধারণ দ্বি-ঘাত সমীকরণের বৃত্ত স্থচিত করিবার শর্ত                     | ** :  | 79     |
| $(x_1,y_1)$ এবং $(x_2,y_2)$ -এর সংঘোজক রেখাকে ন্যাস লইয়া             |       |        |
| অন্ধিত বৃত্তের সমীকরণ                                                 | ,     | 80     |
| <u> বৃত্তের বহিঃস্থ, উপরস্থ ও অন্তঃস্থ</u> বি <del>ন্দু</del>         | ***   | 81     |
| বিবিধ প্রশ্নের সমাধান                                                 | •••   | 82     |
| চতুৰ্থ অধ্যায় ঃ শঙ্কুচ্ছেদ বা কনিক-বিভাগ                             |       |        |
| অধিবৃত্ত, উপবৃত্ত ও প্রাবৃত্ত                                         |       | 91     |
| অধিব্ৰ                                                                | ***   | 93     |
| খণিবুত্তের নাতিলম্ব                                                   |       | 95     |
| নাভি হটতে বিন্দুর দ্বম ঃ বিন্দুর অবস্থান                              |       | 97     |
| y-অক্ষেত্র সমান্তরাল অক্ষ ও (h, k) শীর্ণনিন্দ্রিশিষ্ট অধিরতের স্মীকরণ |       | 98     |
| নিয়ামকের সমীকরণ ও নাভির স্তানাঙ্গ তইতে অধিবৃত্তের সমীকরণ             |       | 100    |
| উপবৃত্ত                                                               |       | 109    |
| উপরত্তের সমীকরণ                                                       |       | 109    |
| উপন্ত হর বিভীয় নাভি ও বিভীয় নিয়ামক                                 | + 6.0 | 110    |
| নাভিদ্য ইউতে উপতৃত্ত বিদ্রু দর্ভ্চয়ের সমষ্টি প্রাক্ষের সমান          | ***   | 112    |
| উপরত্তের নাভিলম্বের দৈর্ঘ্য                                           |       | 113    |
| পরারত্ত                                                               | ***   | 122    |
| পরাবতের সমীকরণ                                                        | «     | 122    |
| প্রাব্তের দিতীয় নাভি ও দিতীয় নিয়ামক                                |       | 125    |
| প্রাব্তের আকার                                                        | * * 8 | 126    |
| পঞ্চম অদ্যায় ঃ স্পর্শক ও অভিলম্ব                                     |       |        |
| ক্রিকের স্পর্শক ও অভিলম্বের সংজ্ঞা                                    | +8+   | 134    |
| ক্মিকের উপবিস্থ একটি নির্দিষ্ট বিন্তুতে অকিত স্পর্শকের সমীকরণ         |       | 134    |

## [ xiii ]

| विषय                                                 |       | পৃষ্ঠ |
|------------------------------------------------------|-------|-------|
| অবকলনাঙ্কের সাহায্যে স্পর্শকের সমীকরণ নির্ণর         | ***   | 138   |
| y=mx+c বেখার কলিকের স্পর্শক হ ওয়ার শর্ত             | * * * | 144   |
| বিভিন্ন কণিকের অভিগন্ধসমূহের সমী করণ                 | ***   | 152   |
| অবকলনাঙ্কের সাহায্যে অভিলম্বের স্থীকরণ               |       | 155   |
| কনিকের উৎর বহিঃস্ত বিন্দু হইতে অহিত স্পর্শকের সংখ্যা | • • • | 158   |
| वाषराष्ट्रकी व्यर्भक-युगरलत (६० दिन्तुत मका तथ       | ***   | 159   |
| উপস্পর্শক ও উপ-অভিলম্ব                               | ***   | 161   |
| স্পর্শ-জ্যা বা বিন্দু-বিশেষের পোলার                  |       | 171   |
| স্পর্শ-জ্যা বা পোলারের সমীকরণ                        |       | 171   |
| জ্যা-বিশেষের মধ্যবিন্দুর স্থানাঙ্কে প্রকাশিত সমীকরণ  | 4 9 7 | 172   |
| <u> छेल</u> ुन्माला                                  |       | 1     |
| লগারিদ্ম-এর তালিকা                                   |       | î     |



# বীজগণিত



#### ভাগম প্রমায়

## হুচক-নিয়ম (Laws of Indices)

মৌলিক স্চৰ-নিষমটি এইকণ ঃ

$$a^{m} \times a^{n} = a^{m+n}$$
.

-111.11111 . い、+1) アンプラ 東マルドルの ~ amin.

ा, १५६६ अछ १७ ४ '१४'(१४ 'जर्राशिश हे अज़रूद १४६७ 'प्रयक्ति लाखरा यार ।

(ii)  $(a^m)^n = a^{mn}$ .

ক'বল,  $e^{im^{-1}} = e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}}e^{im^{-1}$ 

(iii)  $a^m + a^n = a^{m-n}$ , CP4777 m > n.

 $a^m + a^n = a^{m-n}$ .

(iv)  $(ab)^m = a^m b^m$ .

 $\Phi$  (2), (x, m + x + y + y + y) = x,  $x \in \Phi$  (1),  $x \in \Phi$  (2),  $x \in \Phi$  (3),  $x \in \Phi$  (3),  $x \in \Phi$  (4),  $x \in \Phi$  (4),  $x \in \Phi$  (4),  $x \in \Phi$  (5),  $x \in \Phi$  (6),  $x \in \Phi$  (7),  $x \in \Phi$  (7),  $x \in \Phi$  (8),  $x \in$ 

$$\left(\sqrt{-\left(\frac{a}{b}\right)^m}+\frac{a^m}{b^m}\right)$$

েরের, 
$$\binom{a}{b}^m - \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} \cdot ...$$
 - নংখ্যক উৎপাদক  $\frac{a \cdot a}{b \cdot b \cdot b \cdot ...}$  - নংখ্যক উৎপাদক  $\frac{a^m}{b^m}$ 

(XI-XII)-1

টীকা। 1.1 অনুচ্চেদের সূত্রগুলিতে a=0 হটালে  $a^m$ াত  $a^n$ াএর প্রত্যেক্টি  $G^\infty$ হয় এবং তথন উহারা অর্থহানি হটয়া প্রচে। ১০ ইজনা এইদকল সূত্রে  $a\neq 0$  দ্বিতে হয়।

- 1.2. তাহাও প্রমাণ তিতা তাতা স্চলকঃ ক্ষাত্র মাত্র মাত্র ক্ষাত্রক বা থণ্ডদংখা। ইইলে ক্ল-এর অর্থ হ্য না। ক্ল-০ ইইলে ক্ল-কেই এবং দেক্ষেত্রে ক্র হারা ক্র উৎপাদকন্তিক শুকারার ক্র উৎপাদক দিয়া গুল বুরার ; কিছে ইহা অর্থহীন। ক্ল ঝণায়ক ইইলে, ক্ল- । ধর যায়, দেগানে । ধনায়ক। তথ্ত ক্ল- ক্ল- ক্ল- ক্ল- ক্ল-কে ক দিয়া । । নার গুল করার ও কোন অর্থ নাই। অন্তর্মে পু ও ক্লাত্র ক্ল-কে ক দিয়া । । নার গুল করার ও কোন অর্থ নাই। অন্তর্মে পু ও ক্লাত্র করার ও কাল অর্থ নাই। অন্তর্মে পু ও ক্লাত্র করার অর্থ হয় না। তর 1.1 অনুচ্ছেদে বর্ণিত সূচক-নিয়মগুলিং বু পার গুল করার অর্থ হয় না। তর 1.1 অনুচ্ছেদে বর্ণিত সূচক-নিয়মগুলিং বু করিয়া লইয়াই শুলু, ঝণাত্মক ও খণ্ডসংখ্যক সূচকের অর্থ নিম্নরূপে প্রকাশ করা ইয়া থাকে।
- (i) a°-**এর মান**ঃ স্চাকের সকল মানের জন্মই স্চক-নিয়মের ২.৬্যতা ফঁ°কার করিয়া লইলে,

 $a^{\circ} \times a^{m} = a^{\circ + m} = a^{m} ;$ 

- ∴ উভয় পক্ষকে  $a^m$ -ছারা ভাগ করিলে,  $a^o = \frac{a^m}{a^m} = 1$ .
- (ii)  ${f a}^{-m}$ -এর মান ঃ স্চকের সকল মানের জন্মই স্চক-নিরম সভা ধরিয়া,  $a^m \times a^{-m} \times a^n = a^{m-m+n} = a^n.$
- $\therefore$  উভয় পক্ষকে  $a^n$ -খারা ভাগ কবিলে,  $a^m \times a^{-m} = \frac{a^n}{a^n} = 1$  ;
- $\therefore \quad a^{-m} = \frac{1}{a^m}.$
- (iii) p ও q যদি অখণ্ড ধনসংখ্যা হয়, তবে a<sup>p/a</sup>-এর মান ঃ স্চাকের সকল মানের জন্ত স্টক-নিয়ম সর্বদা সভা ধরিয়া,

 $(a^{p-q})^q = a^{p+q}.a^{p,q}.a^{p,q}...q^{-p}$  প্যক উৎপাদক প্যস্ $= a^{\frac{p}{q}} + \frac{p}{q} + \frac{p}{q} + \cdots \cdot q^{-p}$ পদ পদ প্ৰস্ $= a^{\frac{p}{q}} \times q = a^p.$ 

· টভর পাক্ষর γ-তম মূল লটালে, ap'a = ap-এর q-তম মূল = १'aP.

টীকা। q-তম মূল বৃধাউতে q চিক বাবজত হল। q-বের মান 2,3,4,5 ইত্যাদি হউতে, এই চিক মধাক্ষে হল, ্', মূঁ, মূঁ, মূঁ ইত্যাদি।

(iv) p ও q অখণ্ড ধনসংখ্যা হইলে, a-ফাব এর মান:

স্ফাক কিন্তা স্পারণভাবে স্কাকের সকল মানের জন্মই সভা, এইজপ ধরিলে

$$a^{-p/q} = \frac{1}{a^{p/q}} = \frac{1}{\sqrt[q]{ap}}$$

1'3. স্চক-স্তের প্রবোগ (সহজ্জর উদাহরণ):

উদা 1. 
$$8^{\frac{5}{5}}$$
-এর মান নির্ণয় কর।  $8^{\frac{4}{5}} = (\sqrt[8]{8})^5 = 2^5 = 32$ .

উদা. 2. 
$$4^{-\frac{5}{3}}$$
-এর মান নির্ণয় কর। 
$$4^{-\frac{5}{3}} = \frac{1}{4^{\frac{5}{3}}} = \frac{1}{(\frac{5}{3}/4)^3} = \frac{1}{2^5} = \frac{1}{32}.$$

**TY**: 3. 3° 46: 
$$\sqrt{a^5}$$
,  $a^{\frac{5}{6}}$ ,  $\sqrt[6]{a^5}$  and  $a^{\frac{1}{6}}$  and  $a^{\frac{1}$ 

#### প্রামালা 1

ভগ্নাত্ত অথব, ফ্রায়াক অচক্রিশিপ্ত আকার বক্তন করিছ নিয়তি গিও ব্যশিগুলিকে প্রাকাশ কর (Express the fellowing avoiding fractional or negative indices):

1. 
$$a^{\frac{1}{4}}$$
. 2.  $a^{-\frac{1}{2}}$ . 3.  $\frac{3}{a^{-\frac{1}{4}}}$ . 4.  $a^{-\frac{1}{4}} \times 3a^{-\frac{1}{4}}$ .

5. 
$$8m^{-2} \times m^{-\frac{3}{4}}$$
. 6.  $x^{-\frac{4}{8}} + 3a^{-\frac{1}{4}}$ . 7.  $x^{-\frac{3}{8}} + 2x^{-\frac{1}{2}}$ .

8. 
$$\frac{2m}{3}a^{-n} \times \frac{2m}{3}a^{-n} \times \frac{m}{3}a^{n}$$
. 10.  $\frac{4a}{3}/x^{6} + \frac{2a}{3}/x^{-6}$ .

মৃত্যিক অথন স্থান্ত স্চকলিছি আকার বহন করিছ নিমুলিখিও রাখি-কলিক পকা কর (Express the following avoiding radical signs and negative indices):

11. 
$$(\sqrt[8]{x})^{7}$$
. 12.  $(\sqrt[4]{a})^{-6}$ . 13.  $\frac{1}{\sqrt[8]{x}^{-9}}$ . 14.  $(\sqrt[4]{a})^{-3}$ . 15.  $\sqrt[8]{x^{4} + (\sqrt[4]{x})^{-1}}$ . 16.  $\sqrt[4]{a^{-3} + (\sqrt[8]{a})^{-1/2}}$ .

4

নিম্লিথিত রাশিওলির মান নির্ণয় কর (Find the value of):

17. 
$$4^{-\frac{3}{2}}$$
. 18.  $8^{\frac{5}{8}}$ . 19.  $9^{\frac{5}{8}}$ . 20.  $16^{\frac{5}{4}}$ .

21. 
$$81^{-\frac{3}{2}}$$
. 22.  $\frac{1}{6^{-2}}$ . 23.  $(125)^{-\frac{2}{3}}$ . 24.  $(\frac{1}{27})^{-\frac{4}{3}}$ .

24. 
$$\left(\frac{1}{27}\right)^{-\frac{6}{3}}$$

25. 
$$\left(\frac{1}{216}\right)^{-\frac{5}{3}}$$

1'4. সূতক্র-সূত্রের প্রত্যাগ (কঠিনতর উদাহরণ):

উদা. 1. সরল কর: (a° ½ 5) - ই

উদা, 2. সরল কর : \/a-sb x 3/ab-3.

$$\sqrt{a^{-2}b} = (a^{-2}b)^{\frac{1}{2}} = (a^{-2})^{\frac{1}{2}} \times b^{\frac{1}{2}} = a^{-1}b^{\frac{1}{2}}$$
;

$$\mathfrak{A}^{3} = \sqrt[3]{ab^{-8}} = (ab^{-8})^{\frac{1}{4}} = a^{\frac{1}{4}} \times (b^{-8})^{\frac{1}{4}} = a^{\frac{1}{4}}b^{-1}.$$

সভবাং, প্ৰদত্ত বাশি = a<sup>-1</sup>b<sup>-1/2</sup> × a<sup>-1/4</sup>b<sup>-1</sup> = a<sup>-1/2</sup>b<sup>-1/2</sup> = a<sup>-1/2</sup>b<sup>-1/2</sup>

উপা. 3. সরল কর:  $\sqrt{a^3b^{-\frac{7}{3}}c^{-\frac{7}{6}}} + \sqrt[3]{a^4b^{-1}c^{\frac{7}{6}}}$ .

$$\sqrt{a^3 h^{-\frac{2}{3}} c^{-\frac{7}{6}}} = \left(a^3 h^{-\frac{7}{3}} c^{-\frac{7}{6}}\right)^{\frac{1}{2}} = \left(a^3\right)^{\frac{1}{2}} \left(h^{-\frac{2}{3}}\right)^{\frac{1}{2}} \left(c^{-\frac{7}{6}}\right)^{\frac{1}{2}}$$
$$= a^{\frac{8}{3}} b^{-\frac{1}{3}} c^{-\frac{7}{12}};$$

$$\sqrt[3]{a^4b^{-1}c^{\frac{5}{4}}} = \left(a^4b^{-1}c^{\frac{5}{4}}\right)^{\frac{1}{3}} = \left(a^4\right)^{\frac{1}{3}} \left(b^{-1}\right)^{\frac{1}{3}} \left(c^{\frac{75}{4}}\right)^{\frac{1}{3}} \\
= a^{\frac{4}{3}}b^{-\frac{1}{3}}c^{\frac{5}{12}},$$

$$\frac{a^{\frac{3}{2}}b^{-\frac{1}{3}}c^{-\frac{7}{2}} + a^{\frac{4}{3}}b^{-\frac{1}{3}}c^{\frac{1}{2}}}{a^{\frac{3}{2}}b^{-\frac{1}{3}}c^{-\frac{1}{2}}} = a^{\frac{4}{3}}b^{-\frac{1}{3}}c^{-\frac{1}{3}} \times a^{-\frac{4}{3}}b^{\frac{1}{3}}c^{-\frac{6}{13}}$$

$$= a^{\frac{3}{3}-\frac{4}{3}}b^{-\frac{1}{3}+\frac{1}{3}}c^{-\frac{7}{13}-\frac{6}{13}}$$

$$= a^{\frac{1}{3}}b^{0}c^{-1} = a^{\frac{1}{3}}c^{-1}$$

## প্রথমালা 2

সরল কর (Simplify):

1. 
$$\left(a^{-\frac{3}{4}}\right)^{8}$$
. 2.  $\left(a^{-\frac{2}{3}}b^{\frac{5}{6}}\right)^{\frac{3}{4}}$ . 3.  $\left(a^{-\frac{1}{2}}b^{-3}\right)^{-2}$ . 4.  $\left(a^{6}b^{\frac{5}{4}}\right)^{-\frac{4}{3}}$ .

5. 
$$(\sqrt[6]{x^9y^{-8}})^{-8}$$
. 6.  $(\sqrt[6]{x^9y^{-8}})^{-8}$ . 7.  $\sqrt[8]{x^2 \sqrt[4]{x^{-8}}}$ .

8. 
$$\sqrt{a^{-3}b^4} \times \sqrt[4]{a^2b^{-6}}$$
. 9.  $\sqrt[4]{x^2} \sqrt{y^5} \times \sqrt{x}, \sqrt[4]{y^5}$ .

10. 
$$(8x^3 + 27a^{-3})^{\frac{1}{3}}$$
. 11.  $(64x^3 + 27a^{-3})^{-\frac{2}{3}}$ .

12. 
$$\sqrt[3]{a^6b^{-2}c^{-4}} \times \sqrt[4]{a^{-6}b^4c^8}$$
. 13.  $\sqrt{a^{-\frac{2}{3}}b^4c^{-\frac{1}{3}}} \div \sqrt[3]{a^2b^4\overline{c^{-1}}}$ .

**14.** 
$$\sqrt{ab^{-2}c^3} \div \left(\sqrt[3]{a^3}b^2c^{-3}\right)^{-1}$$
. **15.**  $\left(a^{-1}b^3\right)^7 \div \left(a^8b^{-8}\right)^{-5}$ .

## 1'5. বিবিধ উদাহরণমালা:

উদা. 1.  $a+b+c+3a^{\frac{1}{4}}b^{\frac{2}{3}}+3a^{\frac{2}{3}}b^{\frac{1}{3}}$ -কে  $a^{\frac{1}{3}}+b^{\frac{1}{3}}+c^{\frac{1}{4}}$  দ্বারা ভাগ কর। ভাজ্য ও ভাজকের প্রত্যোককে a এর অধ্যক্রমিক শক্তি অন্তস্গারে গাজাইয়া প্রাবস্ত করা যাক:

$$a^{\frac{1}{3}} + \left(b^{\frac{1}{3}} + c^{\frac{1}{3}}\right) \begin{vmatrix} a + 3a^{\frac{2}{3}}b^{\frac{1}{3}} + 3a^{\frac{1}{3}}b^{\frac{2}{3}} + (b + c) \left(a^{\frac{2}{3}} + a^{\frac{1}{3}}\left(2b^{\frac{1}{3}} - c^{\frac{1}{3}}\right) + \left(b^{\frac{2}{3}} - b^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}\right) \\ a^{\frac{2}{3}}\left(2b^{\frac{1}{3}} - c^{\frac{1}{3}}\right) + 3a^{\frac{1}{3}}b^{\frac{2}{3}} + (b + c) \\ a^{\frac{2}{3}}\left(2b^{\frac{1}{3}} - c^{\frac{1}{3}}\right) + a^{\frac{1}{3}}\left(2b^{\frac{2}{3}} + b^{\frac{1}{3}}c^{\frac{1}{3}} - c^{\frac{2}{3}}\right) \\ a^{\frac{1}{3}}\left(b^{\frac{2}{3}} - b^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}\right) + (b + c) \\ a^{\frac{1}{3}}\left(b^{\frac{2}{3}} - b^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}\right) + (b + c)$$

অভ এব, নির্ণেই ভাগফল  $-a^{\frac{5}{4}}+2a^{\frac{1}{4}}b^{\frac{1}{4}}-a^{\frac{1}{3}}c^{\frac{1}{3}}+b^{\frac{2}{3}}-b^{\frac{1}{3}}c^{\frac{1}{3}}+c^{\frac{2}{3}}.$ উদা. 2.  $x+y^{\frac{1}{3}}+z^{\frac{1}{4}}-3x^{\frac{1}{4}}y^{\frac{1}{6}}z^{\frac{1}{6}}$ েক  $x^{\frac{1}{6}}+y^{\frac{1}{6}}+z^{\frac{1}{6}}$  দার ভাগ কর।  $x^{\frac{1}{3}}$ -এর পরিবর্তে a,  $y^{\frac{1}{6}}$ -এর পরিবর্তে c বসাইলে,

$$x + y^{\frac{1}{2}} + z^{\frac{1}{3}} - 3x^{\frac{1}{3}}y^{\frac{1}{3}}z^{\frac{1}{9}}$$

$$= a^{3} + b^{3} + c^{3} - 3abc$$

$$= (a + b + c)(a^{2} + b^{2} + c^{3} - ab - bc - ca)$$

$$= \left(x^{\frac{1}{6}} + y^{\frac{1}{6}} + z^{\frac{1}{9}}\right) \left\{ \left(x^{\frac{1}{3}}\right)^{2} + \left(y^{\frac{1}{6}}\right)^{2} + \left(z^{\frac{1}{9}}\right)^{2} - x^{\frac{1}{3}}y^{\frac{1}{6}} - y^{\frac{1}{6}}z^{\frac{1}{9}} - z^{\frac{1}{9}}x^{\frac{1}{3}} \right\}$$

$$= \left(x^{\frac{1}{3}} + y^{\frac{1}{6}} + z^{\frac{1}{9}}\right) \left(x^{\frac{2}{8}} + y^{\frac{1}{3}} + z^{\frac{2}{9}} - x^{\frac{1}{3}}y^{\frac{1}{6}} - y^{\frac{1}{6}}z^{\frac{1}{9}} - z^{\frac{1}{9}}x^{\frac{1}{9}}\right).$$

মতরাং, নির্পেয় ভাগফল =  $x^{\frac{2}{3}} + y^{\frac{1}{3}} + z^{\frac{2}{6}} - x^{\frac{1}{9}} y^{\frac{1}{6}} - y^{\frac{1}{6}} z^{\frac{1}{6}} - z^{\frac{1}{9}} x^{\frac{1}{3}}$   $= x^{\frac{2}{3}} - x^{\frac{1}{3}} \left( y^{\frac{1}{6}} + z^{\frac{1}{9}} \right) + \left( y^{\frac{1}{4}} - y^{\frac{1}{6}} z^{\frac{1}{6}} + z^{\frac{2}{9}} \right).$ 

উদা. 3.  $x^{2^n} + a^{2^{n-1}}x^{2^{n-1}} + a^{2^n}$  কে  $x^{2^{n-1}} - a^{2^{n-2}}x^{2^{n-2}} + a^{2^{n-1}}$  দাবা ভাগ কর।

$$\begin{array}{lll} \forall \overline{a}, & p = x^{2^{n-2}} & \forall \overline{a} \leqslant q = a^{2^{n-2}}. \\ \forall \overline{b} \leqslant \overline{a}, & p^2 = \left(x^{2^{n-2}}\right)^2 = x^{2 \times 2^{n-2}} = x^{2^{n-2+1}} = x^{2^{n-1}}. \\ \forall \overline{b} \leqslant \overline{a}, & p^4 = \left(p^2\right)^2 = \left(x^{2^{n-1}}\right)^2 = x^{2 \times 2^{n-1}} = x^{2^{n-1+1}} = x^{2^n}. \\ \forall \overline{b} \leqslant \overline{a}, & q^2 = a^{2^{n-1}} & \forall \overline{a} \leqslant q^4 = a^{2^n}. \\ \forall \overline{b} \leqslant \overline{a}, & x^{2^n} + a^{2^{n-1}} + a^{2^n} \\ & x^{2^{n-1}} - a^{2^n} \cdot x^{2^{n-1}} + a^{2^n} \\ & = x^{2^{n-1}} - a^{2^n} \cdot x^{2^{n-1}} + a^{2^{n-1}} \\ & = \frac{p^4 + p^2 q^3 + q^4}{p^2 - p_1 + q^2} = \frac{(p^2 + q^2)^2 - p^2 q^3}{p^2 - p_1 + q^2} \\ & = \frac{(p^3 + q^3 + pq)(p^3 + q^3 - pq)}{p^3 - pq + q^3} \\ & = p^3 + pq + q^2 \\ & = x^{2^{n-1}} + x^{2^{n-2}} a^{2^{n-3}} + a^{2^{n-1}}. \end{array}$$

উদা 4.  $a^2 + 2b^2 + (a + 2b) \sqrt{ab}$  এবং  $a^2 - b^2 + (a - b) \sqrt{ab}$ -এর গ. সা. গ্. নির্ণয় কর।

$$\begin{aligned} \text{ATM} & \text{ ATM} = a^2 + a \sqrt{ab + 2b} \sqrt{ab + 2b^2} = a^2 + a^{\frac{3}{2}}b^{\frac{1}{2}} + 2a^{\frac{1}{2}}b^{\frac{3}{2}} + 2b^2 \\ &= a^{\frac{3}{2}}\left(a^{\frac{1}{2}} + b^{\frac{1}{2}}\right) + 2b^{\frac{3}{2}}\left(a^{\frac{1}{2}} + b^{\frac{1}{2}}\right) \cdot \left(a^{\frac{1}{2}} + b^{\frac{1}{2}}\right)\left(a^{\frac{3}{2}} + 2c^{\frac{3}{2}}\right). \end{aligned}$$

 $=a^{\frac{3}{2}}\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)-b^{\frac{3}{2}}\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)=\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)\left(a^{\frac{3}{2}}-b^{\frac{3}{2}}\right).$ 

অভ্যাত্তৰ, নিৰ্পেয় গ. সা. গু. =  $a^{\frac{1}{3}} + b^{\frac{1}{3}} = \sqrt{a} + \sqrt{b}$ .

উদা. 5. সরল কর: 
$$x + (xy^2)^{\frac{1}{3}} - (x^2y)^{\frac{1}{3}}$$
.

প্ৰসন্ত লব =  $x + x^{\frac{1}{3}}y^{\frac{2}{3}} - x^{\frac{2}{3}}y^{\frac{1}{3}} = x^{\frac{1}{3}}\left(x^{\frac{2}{3}} + y^{\frac{2}{3}} - x^{\frac{1}{3}}y^{\frac{1}{3}}\right)$  :

এবং প্রাম্ভ হর = 
$$(x^{\frac{1}{3}})^5 + (y^{\frac{1}{3}})^3 = (x^{\frac{1}{3}} + y^{\frac{1}{3}})\{(x^{\frac{1}{3}})^2 - (x^{\frac{1}{3}})(y^{\frac{1}{3}}) + (y^{\frac{1}{3}})^2\}$$

$$= (x^{\frac{1}{3}} + y^{\frac{1}{3}})(x^{\frac{3}{3}} - x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{3}{3}}).$$

অভএৰ, প্ৰদন্ত বাশি  $=\frac{x^{\frac{1}{3}}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}$ 

উमा. ६. त्मशा ७ व,

$$\frac{1}{1+x^{m+n}+x^{m+p}} + \frac{1}{1+x^{n-m}+x^{n-p}} + \frac{1}{1+x^{p-m}+x^{p-n}} = 1.$$

$$x = x^{m} \qquad x^{-m}$$

$$x^{m} + x^{m+p} = x^{m} + x^{m+p} = x^{m} + x^{m+p} = x^{m} + x^{m+p} = 1.$$

$$\hat{A} = \frac{x^{n}}{x^{n}(1+x^{n-m}+x^{n-p})} = \frac{x^{-n} + x^{-n}}{x^{n}+x^{-p}};$$

$$\mathcal{A}_{3} = \frac{x^{-p}}{x^{-1}(1+x^{p-m}+x^{p-n})} = \frac{x^{-2}}{x^{-p}+x^{-m}+x^{-n}}$$

অভএব, প্রদন্ত রাশি

छिन्। 7.  $a^x - b$ ,  $b^y = c$ ,  $c^s = a$  श्रदेश, द्रश्यांत द्रग, xyz = 1.  $a = c^x = (b^y)^x = b^{yz} = (a^x)^{yz} = a^{xyz}$ .

বাধবা,  $a^1 = a^{xyz}$ ; ... xyz = 1.

SWI. 8.  $a^{\frac{1}{x}} = b^{\frac{1}{y}} \cdot c^{\frac{1}{x}}$  44° abc = 1 587%, ax1979, ax + y + z = 0.

 $a^x = h^y = e^x = k \times (45\%, \left(a^x\right)^x = k^x.$ 

3.991, a=kx, see "xyary b=kv sy c=k1.

. We say akc-1, ...  $k^{r}k^{y}k^{s}-akc-1$ ; where  $1-k^{0}$ ;  $x^{s+y+s}=1-k^{0}$ ; x+y+s=0.

উলা. 9.  $x = 2 + 2^{\frac{3}{4}} + 2^{\frac{1}{4}}$  হুইপে, প্রথাণ কর খে,  $x^3 - 6x^2 + 6x - 2 - 0$ . [ C. U. 1930, '36, '42, '50 ]

 $(\pi \nabla \nabla x = 2 + 2^{\frac{1}{8}} + 2^{\frac{1}{8}})$ 

অত্থান, 
$$x-2=2^{\frac{2}{3}}+2^{\frac{1}{3}}$$
; [পদাস্থ করিছা]
$$\therefore (x-2)^3=\left(2^{\frac{2}{3}}+2^{\frac{1}{3}}\right)^3, \quad [উভয় পদের যন করিছা]$$
অথবা,  $x^3-6x^2+12x-8$ 

$$=\left(2^{\frac{2}{3}}\right)^3+\left(2^{\frac{1}{3}}\right)^8+3.2^{\frac{2}{3}}.2^{\frac{1}{3}}\left(2^{\frac{2}{3}}+2^{\frac{1}{3}}\right)$$

$$=2^3+2+3.2.(x-2) \qquad [\because x-2=2^{\frac{2}{3}}+2^{\frac{1}{3}}]$$
অথবা,  $x^3-6x^2+12x-8=6+6x-12$ ,

উপা: 10.  $a^b=b^a$  হইলে, দেখাও বে,  $\binom{a}{b}^b=a^{b-1}$ ; অধিকন্ত a=2b হইলে, দেখাও বে, b=2

যেহেতু  $a^b=b^a$ , ...  $a=b^b$  ু উভয় প্রের b-ভূম মূল নিশ্ম করিখে ].

TEST, 
$$\begin{pmatrix} a \\ b \end{pmatrix}^{b} = a^{a \atop b} = a^{b \atop a} = a^{a \atop b} = a^{a \atop b}$$
 [ :  $b^{a} = a$  ].

জাবার, বেছেটু a=2b, সেইছেডু,  $b^b=b^b=b^2$ .

 $x^3 - 6x^2 + 6x - 2 = 0$ 

 $b^2-2b=0$ ,  $\delta(b-2)=0$ .

 $b \neq 0$  ইইলে, b-2=0, অর্থাৎ b=2.

বি. জ.। মনে রাখ, প্রজোজন যে, কোন সমীকরণের উভয় পক্ষে ফচক সমান হইলেই নিধান (base) সমান হইবে, এইরপ নিশ্চিত বিদ্ধান্ত কর চলে না। যথ।:---

$$a^m = 3^2 = 9$$
 এবং  $b^m = (-3)^2 = 9$ .  
 $a^m = b^m$ , কিন্তু  $a = b$  নহে ( : 3  $\neq$  -3).

উপা. 11.  $x=(a+\sqrt{a^2+b^3})^{\frac{1}{3}}+(a-\sqrt{a^2+b^3})^{\frac{1}{3}}$  হইলে, দেখাও খে,  $x^3+3bx-2a=0$ .

$$a+\sqrt{a^2+b^3}$$
-এর পরিবর্ধে  $m$  এবং  $a-\sqrt{a^2+b^3}$ -এর পরিবর্ধে  $n$  বসাইলে, 
$$x^8=\left(m^{\frac{1}{3}}+n^{\frac{1}{3}}\right)^8=\left(m^{\frac{1}{3}}\right)^8+\left(n^{\frac{1}{3}}\right)^3+3m^{\frac{1}{3}},n^{\frac{1}{3}}\left(m^{\frac{1}{3}}+n^{\frac{1}{3}}\right)$$
$$=m+n+3\left(mn\right)^{\frac{1}{3}},\left(m^{\frac{1}{3}}+n^{\frac{1}{3}}\right)=m+n+3(mn)^{\frac{1}{4}},x.$$

$$(mn)^{\frac{1}{2}} = \{a^2 - (a^2 + b^3)\}^{\frac{1}{2}} = (-b^3)^{\frac{1}{3}} = -b;$$

$$\therefore x^3 = 2a - 3bx. \qquad \therefore x^3 + 3bx - 2a = 0.$$

#### প্রানালা 3

1. 
$$x^{\frac{3}{4}} + 2x^{\frac{1}{2}} + 3x^{\frac{1}{4}} + 2x^{\frac{1}{4}} + 1 - 75 \quad x^{\frac{1}{4}} - 2x^{\frac{1}{4}} + 1$$
 \(\text{sist}\) \(\frac{2}{3} \)

3. 
$$a^{\frac{5}{2}} + 8ab + 4a^{\frac{7}{2}}b^{\frac{2}{3}} + 2a^2b^{\frac{1}{3}} + 32b^{\frac{5}{3}} + 16a^{\frac{1}{2}}b^{\frac{4}{3}}$$
়েক  $a^{\frac{1}{2}} - 2b^{\frac{1}{3}}$  দারা ভগ

কর |

4. 
$$x^{\frac{5}{2}} - 4x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + 6x - x^2$$
-কে  $x^{\frac{3}{2}} + 2 - 4x^{\frac{1}{2}}$  ছারা ভাগ কর।

5. 
$$a^{\frac{5}{2}} - a^{\frac{9}{2}}b + ab^{\frac{9}{2}} - 2a^{\frac{1}{2}}b^2 + b^{\frac{5}{2}} - C\Phi a^{\frac{9}{2}} - ab^{\frac{1}{2}} + a^{\frac{1}{2}}b - b^{\frac{9}{2}}$$
. Since the second second contains the second contains the second contains a second con

7. 
$$4919 (7. x^3 + a^3 + x^{\frac{3}{2}}a^{\frac{3}{2}}, x^{\frac{3}{2}} + a^{\frac{3}{4}} + x^{\frac{3}{4}}a^{\frac{3}{4}}$$
 with [4]

10. সরল কর: 
$$\{(a^m)^{m-\frac{1}{m}}\}^{\frac{1}{m-1}}$$
.

11. ভাগ কর: 
$$2x^{-\frac{1}{4}} + 3x^{\frac{3}{4}} - 7x^{\frac{1}{4}} + x - 2x^{\frac{1}{4}}$$
 (ক  $x^{\frac{1}{4}} - 2x^{-\frac{1}{4}}$  সারা।

12. 
$$x^{\frac{3}{4}} - x^{\frac{1}{2}}y^{-\frac{1}{4}} + y^{\frac{1}{2}}$$
-এর বর্গ নির্ণয় কর।

13. ভাগ কর: 
$$x^{\frac{8n}{2}} - a^{\frac{8n}{2}}$$
 কে  $x^{\frac{n}{2}} - a^{\frac{n}{2}}$  বারা :

ি সংকেত: 
$$x + y = (x^{\frac{1}{2}})^{3} + (y^{\frac{1}{2}})^{3}$$
 ধর !

15. ভাগ কর: 
$$ax^{-1} + a^{-1}x + 2$$
-কে  $a^{\frac{1}{3}}x^{-\frac{1}{3}} + a^{-\frac{1}{3}}x^{\frac{1}{3}} - 1$  হারা ,

শরল কর (Simplify):

16. 
$$\left( \frac{a-b}{a^{\frac{1}{2}}-b^{\frac{3}{2}}} - \frac{a^{\frac{3}{2}}-b^{\frac{3}{2}}}{a-b} \right)^{-1} \cdot 17. \quad \frac{x^{\frac{1}{3}}+3y^{\frac{1}{3}}}{x^{\frac{1}{3}}-3y^{\frac{1}{3}}} + \frac{x^{\frac{2}{3}}-3x^{\frac{1}{3}}y^{\frac{1}{3}}+9y^{\frac{2}{3}}}{x^{\frac{2}{3}}+3x^{\frac{1}{3}}y^{\frac{1}{3}}+9y^{\frac{2}{3}}} \cdot$$

18. 
$$\frac{a^{\frac{3}{8}} - ax^{\frac{1}{3}} + a^{\frac{1}{3}}x - x^{\frac{3}{8}}}{a^{\frac{1}{8}} - a^{2}x^{\frac{1}{3}} + 3a^{\frac{3}{8}}x - 3ax^{\frac{3}{8}} + a^{\frac{1}{3}}x^{3} - x^{\frac{5}{3}}}$$

19. 
$$\frac{a^2+b^3-a^{-3}-b^{-3}}{a^3b^3-a^{-3}b^{-2}}+\frac{(a-a^{-1})(b-b^{-1})}{ab+a^{-1}b^{-1}}$$
.

20. 
$$\frac{x-y}{x^{\frac{1}{4}} + x^{\frac{1}{4}}y^{\frac{1}{4}}} + \frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{4}}y^{\frac{1}{4}} + x^{\frac{1}{4}}y^{\frac{1}{4}}}.$$

**21.** 
$$(a+b+c)(a^{-1}+b^{-1}+c^{-1})-a^{-1}b^{-1}c^{-1}(b+c)(c+a)(a+b).$$

22. 
$$a^{-1}(ab^{-1}-1)^{2} \times b^{2}(a^{-2}+b^{-2}) + \frac{1-a^{-1}b}{ab^{-1}+1}.$$

23. 
$$x^{\frac{3}{3}} - a^{\frac{2}{3}} \left( \frac{x^{\frac{2}{3}}}{x^{\frac{1}{3}} + a^{\frac{1}{3}}} + a^{\frac{1}{3}} \right) + \frac{x^{\frac{2}{3}} - a^{\frac{2}{3}}}{x^{\frac{1}{3}} - a^{\frac{1}{3}}} \left( \frac{x^{\frac{2}{3}}}{x^{\frac{1}{3}} - a^{\frac{1}{3}}} - a^{\frac{1}{3}} \right).$$

24. 
$$\frac{x^{3n}}{x^n-1} - \frac{x^{3n}}{x^n+1} - \frac{1}{x^n-1} + \frac{1}{x^n+1}, \quad \forall x \in \mathbb{R} \ x = \sqrt{\frac{a-b}{a+b}}.$$

25. দেখাও যে,

$$\frac{x^{2^n} - y^{2^n}}{x - y} = (x + y)(x^2 + y^2)(x^4 + y^4) - (x^{2^{n-1}} + y^{2^{n-1}}).$$

26. স্বল্কর: 
$$a^{\frac{3}{2}} + ah - \sqrt{a}$$
 [C. U. 1924]

27. 
$$r = \frac{\left(p + \frac{1}{q}\right)^m \left(p - \frac{1}{q}\right)^m}{\left(q + \frac{1}{p}\right)^m \left(q - \frac{1}{p}\right)^m}$$
 [B. U. 1889]

**29.** 
$$x^a = c^b \ \mathbb{Q}^p$$
,  $x^c = c^a \ \mathbb{P}[\pi]$ ,  $[\pi^a] \in \mathbb{Q}[\pi]$ ,  $a^a = bc$ .

30. 
$$p = a^x$$
,  $q = a^y$  বেং  $(p^y q^x)^z = a^2$  কহলে, নেখাও বে,  $xyz = 1$ .

[ C. U. 1929, '30; D. B. 1937]

31. স্বল্ কর: 
$$\binom{x^l}{x^m}^{l^2+lm+m^2} \times \binom{x^m}{x^n}^{m^2+mn+n^2} \times \binom{x^n}{x^l}^{m^2+nl+l^2}$$
.
[ C. U. 1904 ]

32. Pag क्व : 
$$\frac{1}{1+x^{q-p}} + \frac{1}{1+x^{r-p}+x^{r-q}} + \frac{1}{1+x^{p-q}+x^{p-r}}$$
[ P. U. 1903 ]

33. 
$$x = a^{\frac{1}{3}} - a^{-\frac{1}{3}}$$
 হইলে, দেখাও যে,  $x^3 + 3x = a - \frac{1}{a}$ 

34. 
$$a^{m^n} = (a^m)^n$$
 চইতে,  $m$ -এর মান  $n$  দারা প্রকাশ কর। [ P. U. 1918 ]

35. 
$$xy^{p-1} = a, xy^{q-1} = b, xy^{r-1} - c$$
 stan, wats  $(1, a^{q-r}, b^{r-p}, c^{p-q} = 1)$ 

36. 
$$x = a^m$$
,  $y = a^n$  Gr  $x^n y^n = \frac{1}{4}$  a being, (49) 4 (4,  $mnl = \frac{1}{2}$ .

37. 
$$x^p - y^q = z^r$$
 (at  $y^2 \mapsto xz$  EStal, (Halis al.,  $\frac{1}{p} + \frac{1}{r} = \frac{2}{q}$ 

$$38. 2^{x-4} = 4a^{x-6}$$
 হইলে, দেখাও বে,  $x=6$ .

**39.** 
$$\sqrt[n]{n} = (n^m)^n$$
 **b** $\varepsilon$ ,  $0.75$  (halos ( $\sqrt[n]{n}$ ),  $m = n^{n-1}$ .

(i) 
$$x^y - v^x$$
  
(ii)  $a^z = (x + y + z)^y$   
 $a^y = (x + y + z)^z$   
 $a^z = (x + y + z)^z$ 

## দ্বিতীয় অধ্যায় করণী (Surds)

2'1. কাল্লী: ্2, ্6, <sup>3</sup>, 4, <sup>3</sup>, 5-এর মত যে-সংখ্যার নিশিষ্ট মূল নিশ্ব কর। যায় না তাহাকে **অমূল্দ সংখ্যা** বলে। অমূলদ সংখ্যার প্রতীক নাম করবী।

মূলদ সংখ্যাকে (rational number) সকল তুইটি অগন্ত সংখ্যার অন্তপাত হিসাবে প্রকাশ করা চলে, কিন্তু **অম্ভূলন সংখ্যাকি** কগন্ত তুইটি অগন্ত সংখ্যাব অন্তপাতকপে প্রকাশ কর সভ্ব হং ন। উদক্ষেপক্ষপ ্ 7, গু' ও ইত্যাদির প্রত্যেকটির মূল অসীম দশ্যিক বলিব ত্রাদের বাহ বাহ বাহ বাহ তি তুং বাহ বাহ তত্ত্ব প্রকাশ করা যায় না।

্তি,  $\sqrt[3]{y^2}$  ই'লাদি উহাদের চলবাৰি টিব লিশেষ মানের জন্ম মুলদ হইছে পাবে, কিন্তু এরপে মানের উল্লেখ । থাকিলে উহাদিগকে অমূলদ রাশি পলিছে।ই গণ্য করা হয়।

## 2'2. বিভিন্ন প্রাকারের সরল কর্ণী;

- (i) √50, <sup>6</sup>/x⁴-এব মত যে-করণীৰ কোন মূলদ সহগ নাই ভাছাকে পূর্ব (complete) ব শুরু (pure) করণী বলে: এবং
- (ii)  $5\sqrt{2}$ ,  $x^{\frac{n}{4}}$  কৈ ধর মত খে-করণীৰ মূলন সহগ থাকে ভাহাকে মিশ্রো করণী (mixed surd) বলে।

স্তৃত্ব-নিয়মের প্রয়োগে স্কর্জেই মিশ কর্মাকে পূর্ণ কর্মীর আকারে এবং বিপ্রতি ভব্যে পূর্ণ কর্মীকে মিশ্র কর্মীর আকারে প্রক্রণ করা যায়। উদাহ্রণস্করণ :

( খিশ করণী )  $5\sqrt{3} = \left(5^2\right)^{\frac{1}{2}}, 3^{\frac{1}{2}} = \left(5^2,3\right)^{\frac{1}{2}} = 75^{\frac{1}{2}} = \sqrt{75}$  (পূর্ণ করণী )।

(পূর্ণ করণী) ২ 72 = ২ ১.9 = (23.9) = 2.9 = 22/9 ( মিশ্র করণী)।

(iii) একই অনুগদ প্রক্তিবিক কিন্তু চুই ব এতে চিক করণীকে **সদৃশ করণী** কলে। উদাহরণসক্ষ,  $\sqrt{45}$  ৪  $\sqrt{80}$  হ দৃশ কবণী, কারণ,  $\sqrt{45}$  =  $\sqrt{9.5}$  = 3  $\sqrt{5}$  ও 4  $\sqrt{5}$  উভ্যেশ অমূলদ প্রক্তিক  $\sqrt{5}$  বিলয় উহারা সদৃশ।

মতে রাথ, প্রয়েজন শে কেবলমাত্ত সদৃশ করণীরই যোগ-বিয়োগ সম্ভব। ইতিপূর্বে মাধ্যমিক পাঠা তমে এবদনে বিশ্ব আলোচন হইয়াতে।

(iv)্ $^{5}_{5}$ ,  $^{a}_{6}$ ,  $(a+x)^{3}$ -এর মত একই মৃগটিছ ব সূচক-পিটি করণীকে সমমূলীয় করণী বলে।

মৃলচিতের ক্রম অনুসারে করণী বিতীয়, স্থান, চতুর্থ প্রভৃতি বিভিন্ন ক্রমের হইতে পাবে। সেই বিচারে ১ ও, ১ র, ১ র, ১ ও,....। প্র মথাক্রমে, ছিতাম, র হাঁল, চতুর্থ, ০০০তম ক্রমের করণী। কথানভ ক্রমণ দ্বিতীয় ক্রমের করণী ব্যাস্থানীয় বা **দ্বিঘাত করণী** এবং রতীয় ক্রমের করণা ঘ্রম্প্রীয় বা **দ্বিঘাত করণী** 

স্থাক নিয়মের প্রয়োগে তাই বা ততে। ধিক বিভিঃক্রামের করণীকে অনায়াসে সম্মূলীয় করণীতে রূপাত্তি হ কর পরে। উলাহরণ্ড্রপ, ্র ও ্র যথাক্ষে দি গ্রীম ও তৃতীয় ক্রমের করণী।

এপানে  $\sqrt{5}$  বা  $5^{\frac{1}{2}}$  এবং ্রু বা  $3^{\frac{1}{2}}$ -এর স্বচ্চন্দ্র যথা দেমে  $\frac{1}{3}$  ও র । উহাদের হারে ল. না. ও. 6. এই নার স্বচক-তুইটিশ প্রভোকের হারে () সমাইয়া এইভাবে দ্বের প্রয়োজনীর পরিংভিন করা যায় :  $\frac{1}{2} = \frac{1}{3}$  এবং  $\frac{1}{2} = \frac{1}{3}$  এবং  $\frac{1}{2} = \frac{1}{3}$  এবং  $\frac{1}{2}$  । ধারণ

$$\sqrt{5} = 5^{\frac{1}{8}} = 5^{\frac{1}{8}} = \sqrt[6]{5^{\frac{1}{8}}} = \sqrt[6]{125},$$

$$4 = 4^{\frac{1}{8}} = 4^{\frac{1}{8}} = \sqrt[6]{4^4} = \sqrt[6]{16} \text{ Terms of } 1$$

স্পষ্ট ং (125 এবং ং/16 উভারে ষ্ঠ ক্রমের করণী এবং সেই কারণে উহারা সমমূলীয়া

করণীর গুণ না ভাগ করিতে গেলে অথবা উহাদের মানের তুলনা করিতে গেলে সংশ্লিপ্ট করণীগুলিকে সমমূলায় করিয়া লইতে হয়। উদাহরণ্যরুপ,

্ৰাধান, 
$$\sqrt{2} \times \frac{3}{3} = 2^{\frac{1}{2}} \times 3^{\frac{1}{3}} + 2^{\frac{3}{6}} \times 3^{\frac{3}{6}} = (2^{\frac{3}{6}}, 3^{\frac{1}{6}})^{\frac{1}{6}} = (8, 9)^{\frac{1}{6}} = \frac{4}{5} 72.$$
ভাষান,  $\sqrt{2} = 2^{\frac{3}{6}} = 2^{\frac{3}{6}} = \frac{4}{5} \sqrt{2^{\frac{3}{6}}} = \frac{4}{5} \sqrt{8}$ 
এবং  $\frac{3}{3} = 3^{\frac{3}{6}} = 3^{\frac{3}{6}} = \frac{4}{5} \times 3^{\frac$ 

#### উদাহরণমালা

উদা. 1. 4 
$$\sqrt{2}$$
-কে পূৰ্ব করণীর অ,ক:র প্রকাশ কর।  $4\sqrt{2}=4.2^{\frac{1}{2}}=(4^2)^{\frac{1}{2}}2^{\frac{1}{2}}=(16.2)^{\frac{1}{2}}=\sqrt{32}.$ 

উদা. 2. ্র্'40-,ক মিশ্র করণীর আকারে প্রকাশ কর। 
$$\frac{3}{40} = (40)^{\frac{1}{3}} = (8.5)^{\frac{1}{4}} = (2^3.5)^{\frac{1}{4}} = 2.5.^{\frac{1}{3}} = 2\frac{3}{5}.$$

**3**年(. 3. アイア ダイ: 16.55 - 2.15 + 2.10 ストリース 1 1 + 2.10 - 2.1 - 1 - 1 - 2.17 - 4.28.5 = \*/5\*.5 - \*/3\*.5 + \*/2\*.5 = 5\*/5 - 3\*/5 + 2\*/5 = 4\*/5.

**3**W1. 5.  $4 \stackrel{4}{,} 5 - .9 6 \stackrel{7}{,} 5 = 9 \cdot 36 \stackrel{1}{,} 5 = 24 \cdot 5^{\frac{1}{10}} \times 8^{\frac{1}{12}}$   $= 24^{\frac{1}{10}} \frac{9}{8^6} \times 8^6 = 24^{\frac{1}{10}} \frac{125 \times 64}{125 \times 64}$  $= 24^{\frac{1}{10}} \frac{9}{8000}$ .

941. 6. (4.4 (6 414 615) 541 4/4+4/6=4<sup>8</sup>+6<sup>8</sup>=4<sup>8</sup>\*+6<sup>8</sup>\*

$$= {4 \choose 6}^{\frac{1}{10}} = {2 \choose 27}^{\frac{1}{10}} = {10 \choose 27}^{\frac{1}{20}}$$

## প্রামালা 4

- 1. My a firs a sign main so they are an complete with:
  - (1 3 5 11 22 3 15 25 6 (18) 15 5 (5 17 6 8 1 2 3 4 7 (8) 1 4 1 12
- 2. Committe water ware as Reported on positions:
  - $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$   $(1, 1)^{2}$  (1,
  - 117 = 2500 = 0.0 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0

#### 3. भवम क्व :

(i)  $\sqrt{125} + \sqrt{20}$ .

- (ii) 2128 254.
- (iii)  $\frac{1}{2}$ /80 +  $\frac{1}{2}$ /405.
- (iv)  $2\sqrt{27} \sqrt{75} + \sqrt{12}$ .
- 11 1/11-2/10/14/10 10 10 14/11 1 were 1 1 2
- (ix)  $x^{*}/x^{*}a + y^{*}/-8y^{*}a s^{*}/-27z^{*}a$ .
- (x)  $3\frac{4}{32}a^4x + 3\frac{4}{5}\sqrt{512}a^4x 4a\frac{4}{5}\sqrt{162}x$ .
- 4. १३३१ ५ क्वली १ कुलाबाद १ क्वर १
- 15 (36) 3 (36) 3 (36)
- (iv) 1/3 9 1/5.
- (v) 1/4 vo 1/6.
- B. কোনটি বৃহত্তৰ ?
  - (1) 2 mg/ 232 (11) 23 kg/ 242 (11) 26 kg/ 210.
- 6. अशःक्रिक यान अकृतास ताला ।
  - 6 26 3 60 24 11 21 21 210 10 12 35

#### अवन क्रा :

13.

- 7. 35 × 10 8. 327 × 3
- 9. 430 × 45.

- 25 + 2 35.
- 11. Juny 3. Tarr 12. 3.2 36.

- 14. 10× 17 15. 22× 22

- 16. 6 \( \sigma \) \( \sigma \) \( 2 \) \( \sigma \) \( 6 \).
- 17. 4 172 × 5 376.
- 18. 73 m 1 2 x 53 7 1 2 . 19. m 10 1 4 15

- 20. 2/36 + 2/48.
- 21, 1/8+1/6.

. 1-1111, 11-17,0 00 , 5- 1.16 0000, 1em well & The the last to gran, the love got

22. 12+ 16.

- 28. 172+ 140.
- 24.
- 25. 10 16 16 16
- 2'3. Here (simple) & Origina (compound) Teleft: 100 भारत भारत पह करता व अवसी रहा होता नहाता (500) है एक रका एक समाना स्वाह कानीत्क (योशिक करने गता।

se it arange it has added streeting because bridge bridge 5000 09 000 m. 2 292 15 2 408 68 1

উপো. 1. সরল কর: 
$$(\sqrt{27} + \sqrt[3]{16}) + (2\sqrt{3} - \sqrt[3]{2}) - (\sqrt{75} - \sqrt[3]{54})$$
  
 $(\sqrt{27} + \sqrt[3]{16}) + (2\sqrt{3} - \sqrt[3]{2}) - (\sqrt{75} - \sqrt[3]{54})$   
 $= \sqrt{3^2 \cdot 3} + \sqrt[3]{2^3 \cdot 2} + 2\sqrt{3} - \sqrt[3]{2} - \sqrt{5^2 \cdot 3} + \sqrt[3]{3^2} 2$   
 $= 3\sqrt{3} + 2\sqrt[3]{2} + 2\sqrt{3} - \sqrt[3]{2} - 5\sqrt{3} + 3\sqrt[3]{2}$   
 $= 5\sqrt{3} - 5\sqrt{3} + (\sqrt[3]{2} + 3\sqrt[3]{2})$   
 $= 4\sqrt[3]{2}$ .

উপা. 2. (3  $\sqrt{x}+2\sqrt{3}$ )-কে ( $\sqrt{x}-\sqrt{3}$ ) ছারা গুণ কর।
(3  $\sqrt{x}+2\sqrt{3}$ )(  $\sqrt{x}-\sqrt{3}$ ) = 3  $\sqrt{x}$ .  $\sqrt{x}+2\sqrt{3}$ .  $\sqrt{x}-3\sqrt{x}$ .  $\sqrt{3}-2\sqrt{3}$ .  $\sqrt{3}$   $= 3x+2\sqrt{3}\overline{x}-3\sqrt{3}\overline{x}-6$   $= 3x-\sqrt{3}\overline{x}-6.$ 

উদা. 3.  $\sqrt{3a+x} + \sqrt{3a-x}$  এর বর্গ নির্ণয় কর।  $(\sqrt{3a+x} + \sqrt{3a-x})^2 = (\sqrt{3a+x})^2 + (\sqrt{3a-x})^2 + 2\sqrt{3a+x}.\sqrt{3a-x}$  $= 3a+x+3a-x+2\sqrt{(3a+x)(3a-x)}$  $= 6a+2\sqrt{9a^2-x^2}.$ 

উদা. 4. (a+b)-কে  $(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2})$  দারা ভাগ কর।

$$(a+b) + (\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}) = \frac{(\sqrt[3]{a})^8 + (\sqrt[3]{b})^8}{\{(\sqrt[3]{a})^2 - \sqrt[3]{a}, \sqrt[3]{b} + (\sqrt[3]{b})^2\}}$$

$$= \frac{(\sqrt[3]{a} + \sqrt[3]{a}, \sqrt[3]{b} + (\sqrt[3]{b})^2\}}{\{(\sqrt[3]{a})^2 - \sqrt[3]{a}, \sqrt[3]{b} + (\sqrt[3]{b})^2\}}$$

$$= \sqrt[3]{a} + \sqrt[3]{b}.$$

2.4. করনী-নিরস্থ (Rationalisation) । একটি সরল করণীকে এ করণী দিয়াই একবার বা পর পর ক্ষেক্বার গুণ করিলেই করণীটি অথও সংখ্যায় পরিণত হয়। উদাহরণস্বরূপ  $\sqrt{5}$ -এর করণী-নিরস্ন করিতে হইলে  $\sqrt{5}$  দিয়া উহাকে গুণ করিতে হইলে যাহাতে  $\sqrt{5} \times \sqrt{5} = 5$  হয়। অমুরূপে  $\sqrt[3]{x}$ -এর করণী-নিরস্ন করিতে হইলে উহাকে পর পর তুইবার  $\sqrt[3]{x}$  দিয়া গুণ করিতে হইবে যাহাতে  $\sqrt[3]{x} \times \sqrt[3]{x} \times \sqrt[3]{x} = x$  হয়।

যোগিক করণীর বেলায় করণী-নিরসন সহজসাধ্য নহে, কখনও কখনও উহা অসাধ্য। কেবল দিপদ ও দ্বিঘাত করণীর বেলাতেই এই প্রক্রিয়া ( অর্থাৎ করণী-নিরসন ) সহজ এবং প্রয়োগের ক্ষেত্রে স্বপ্রচলিত।

তৃইটি দ্বিপদ দ্বিঘাত করণীর একটির পদ-তৃইটি অপরটির পদ-তৃইটির সহিত যথম এক ও অভিন্ন হয় এবং যথম একটি করণীর পদযুগল যোগ-চিহ্ন দ্বারা এবং অপর করণীটির পদযুগল বিয়োগ-চিহুদার। যুক্ত থাকে তথন করণী-ছুইটির একটিকে আরেকটির **অন্মবন্ধী** (conjugate) বা পূর্বক (complementary) করণী বলে। উদাহরণস্বরূপ  $\sqrt{3}+\sqrt{2}$ -এর অন্মবন্ধী করণী  $\sqrt{3}-\sqrt{2}$ ;  $2\sqrt{5}-\sqrt{7}$ -এর অন্মবন্ধী করণী  $2\sqrt{5}+\sqrt{7}$ .

এখন, যেহেতু ( 
$$\sqrt{3} + \sqrt{2}$$
)(  $\sqrt{3} - \sqrt{2}$ ) = (  $\sqrt{3}$ )<sup>2</sup> - (  $\sqrt{2}$ )<sup>2</sup> = 3 - 2 = 1.  
এবং (2  $\sqrt{5} - \sqrt{7}$ )(2  $\sqrt{5} + \sqrt{7}$ ) = (2  $\sqrt{5}$ )<sup>2</sup> - (  $\sqrt{7}$ )<sup>2</sup> = 20 - 7 = 13,

ইহা স্পষ্ট বুঝা যায় যে একটি দিয়াত দিপদ-করণীকে উহার অম্বন্ধী করণী দিয়া গুণ করিলে করণী-নিরদন হয়। সেইজন্ত অম্বন্ধী করণী হইল করণী-নিরদন উৎপাদক। এইরপেকোন করণীকে অন্ত কোনও একটি উপযুক্ত করণী দিয়া গুণ করিলে যদি করণী-নিরদন হয়, তবে পরবর্তী করণীকে করণী-নিরদক উৎপাদক বলে। পূর্বর্তী উদাহরণে  $\sqrt{5}$  যেমন  $\sqrt{5}$ -এর করণী-নিরদক  $\sqrt{3}$  এমনি  $\sqrt{3}$  ।

উদা. 1.  $\sqrt{2}=1.414$  হইলে, তিন দশমিক স্থান পর্যন্ত  $\frac{1+\sqrt{2}}{3-2\sqrt{2}}$  -এর মান

$$\frac{1+\sqrt{2}}{3-2\sqrt{2}} = \frac{(1+\sqrt{2})(3+2\sqrt{2})}{(3-2\sqrt{2})(3+2\sqrt{3})} = \frac{3+3\sqrt{2+2\sqrt{2+4}}}{3^2-(2\sqrt{2})^2}$$
$$= \frac{7+5\sqrt{2}}{9-8} = 7+5\sqrt{2} = 7+5\times1414$$
$$= 7+7\cdot070 = 14\cdot070.$$

উদা. 2.  $\frac{\sqrt{1+x^{\frac{1}{2}}}-\sqrt{1-x^{\frac{1}{2}}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}$  এর হরভাগের করণী-নির্দন কর।

প্ৰাপত বাশি = 
$$\frac{(\sqrt{1+x^2}-\sqrt{1-x^3})^2}{(\sqrt{1+x^2}+\sqrt{1-x^2})(\sqrt{1+x^2}-\sqrt{1-x^2})}$$
 
$$= \frac{(1+x^3)+(1-x^2)-2\sqrt{1-x^4}}{(1+x^2)-(1-x^2)}$$
 
$$= \frac{2-2\sqrt{1-x^4}}{2x^3} = \frac{1-\sqrt{1-x^4}}{x^2}.$$

উলা. 3. সরল কর:  $\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}} - \frac{4\sqrt{6}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}$ 

প্রদন্ত রাশিমালার প্রথম পদ = 
$$\frac{3\sqrt{2}}{\sqrt{3}(1+\sqrt{2})} = \frac{\sqrt{3}.\sqrt{2}}{1+\sqrt{2}}$$
  
=  $\frac{\sqrt{6}(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = 2\sqrt{3}-\sqrt{6}.$ 

ৰিভীয় পদ = 
$$\frac{4\sqrt{6}}{\sqrt{2}(\sqrt{3}+1)}$$
 =  $\frac{4\sqrt{2}\sqrt{3}}{\sqrt{2}(\sqrt{3}+1)}$  =  $\frac{4\sqrt{3}}{\sqrt{3}+1}$  =  $\frac{4\sqrt{3}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$  =  $\frac{12-4\sqrt{3}}{3-1}$  =  $\frac{2(6-2\sqrt{3})}{2}$  =  $6-2\sqrt{3}$ .

তৃতীয় পদ = 
$$\frac{\sqrt{6}(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} = \frac{3\sqrt{2} - 2\sqrt{3}}{3 - 2} = 3\sqrt{2} - 2\sqrt{3}.$$

:. প্রদত্ত রাশিমালা = 
$$(2\sqrt{3} - \sqrt{6}) - (6 - 2\sqrt{3}) + (3\sqrt{2} - 2\sqrt{3})$$
  
=  $2\sqrt{3} - \sqrt{6} - 6 + 2\sqrt{3} + 3\sqrt{2} - 2\sqrt{3}$   
=  $2\sqrt{3} - \sqrt{6} - 6 + 3\sqrt{2}$ .

#### প্রগ্রমালা 5

- 1. যোগ কর:
  - (i) (5 √3 2 √12)-এর সহিত ( √50 √32)-কে ৷
  - (ii) (<sup>5</sup>/24 <sup>5</sup>/64)-এর সহিত (3<sup>5</sup>/2 2<sup>3</sup>/3)-কে 1
- 2. (2<sup>4</sup>√2 + 3<sup>3</sup>√2) হইতে (<sup>4</sup>√32 + <sup>3</sup>√16)-কে বিয়োগ কর।
- ৪. গুণ কর:
  - (i)  $(a^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{1}{3}} + b^{\frac{2}{3}})$  ( $(a^{\frac{1}{3}} b^{\frac{1}{3}})$   $[a^{\frac{1}{3}}]$
  - (ii) (<sup>8</sup>/4 + <sup>8</sup>/9 + <sup>8</sup>/48)-কে (<sup>8</sup>/2 + <sup>8</sup>/3) দ্বারা।
- 4. ভাগ কর:
  - (i)  $(a \sqrt{b} b \sqrt{a})$ -কে  $(\sqrt{a} \sqrt{b})$  দ্বারা।
  - (ii)  $(\sqrt[4]{x^3} \sqrt[4]{y^3})$  ( $\sqrt[4]{x} + \sqrt{y} + \sqrt[4]{xy}$ ) at  $\sqrt[4]{x}$
- 5. বৰ্গ নিৰ্ণয় কর :

  - (i)  $(2\sqrt{5}+3\sqrt{7})$  and (ii)  $(\sqrt{a^2+2b^2}-\sqrt{a^2-2b^2})$  and
- 6. মুলদ হরবিশিষ্ট তুল্য ভগ্নাংশে পরিবর্তিত কর:
  - (i)  $\frac{5\sqrt{3}+\sqrt{7}}{4\sqrt{3}+2\sqrt{7}}$  (ii)  $\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}$  (iii)  $\frac{1}{1+\sqrt{2}+\sqrt{3}}$
- 7.  $\sqrt{2} = 1.414$ ,  $\sqrt{3} = 1.732$  এবং  $\sqrt{5} = 2.236$  হইলে, নিম্নলিখিত রাশিগুলির তিন দশমিক স্থান পর্যন্ত মান নির্ণয় কর:
  - (i)  $\frac{\sqrt{2+1}}{\sqrt{2-1}}$  (ii)  $-\frac{3}{\sqrt{5-\sqrt{2}}}$  (iii)  $\frac{\sqrt{5+\sqrt{3}}}{4+\sqrt{15}}$

$$\frac{1}{x + \sqrt{x^2 - 1}} + \frac{1}{x - \sqrt{x^2 - 1}}, \quad \mathbf{9}, \quad \frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}}$$

10. 
$$\frac{\sqrt{2}(\sqrt{3}+1)(2-\sqrt{3})}{(\sqrt{2}-1)(3\sqrt{3}-5)(2+\sqrt{2})}$$

11. 
$$(3+2\sqrt{2})^{-8}+(3-2\sqrt{2})^{-8}$$
.

12. 
$$\frac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}} - \frac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}$$

13. 
$$\frac{\sqrt{x^2+1} + \sqrt{x^2-1}}{\sqrt{x^2+1} - \sqrt{x^2-1}} + \frac{\sqrt{x^2+1} - \sqrt{x^2-1}}{\sqrt{x^2+1} + \sqrt{x^2-1}}$$

হরের করণী-নিরসন কর:

14. 
$$\frac{1}{\sqrt[3]{3+\sqrt[3]{2}}}$$
 15.  $\frac{1}{\sqrt[5]{4-\sqrt[3]{3}}}$ 

2'5. কোন মূলদ রাশির বর্গমূল কখনও একটি মূলদ রাশি এবং একটি দ্বিঘাত করণীর সমষ্টি বা অন্তর-ফলের সমান হইতে পারে না।

সম্ভব হইলে, ধরা যাক,  $\sqrt{n}=a+\sqrt{m}$ .

তাহা হইলে, উভয় পক্ষের বর্গ করিয়া,

$$n = a^2 + m + 2a \sqrt{m_a}$$

মত্রাং, 
$$\sqrt{m} = \frac{n-a^2-m}{2a}$$
.

অতএব, একটি অমূলদ রাশি একটি মূলদ রাশির দমান ; কিন্তু তাহা অসন্তব।

2.6. a ও x তুই মূলদ রাশি এবং  $\sqrt{b}$  ও  $\sqrt{y}$  তুই অমূলদ রাশি যদি পরস্পারের সহিত এরপভাবে সম্পর্কিত হয় যে,  $a+\sqrt{b}=x+\sqrt{y}$ , তাহা হইলে a=x এবং b=y হইবে।

धदा याक,  $a \, \Theta \, x$  नमान नरह, धदः a = x + m;

তাহা হইলে, প্রদত্ত শর্তামুদারে,  $x+m+\sqrt{b}=x+\sqrt{y}$ ;

$$\therefore m + \sqrt{b} = \sqrt{y}.$$

অর্থাৎ  $\sqrt{y}$ , এই দিঘাত করণীটি একটি মূলদ ও একটি অমূলদ রাশির সমষ্টির সমান ; কিন্তু ইহা অসম্ভব।

মতরাং, a=x; অতএব,  $\sqrt{b}=\sqrt{y}$ , অর্থাৎ b=y.

টীকা। বিশেষরপে লক্ষ্য করিবার বিষয় এই ষে,  $\sqrt{b}$  ও  $\sqrt{y}$  যথার্থ অমূলদ রাশি হইলেই উপরিউক্ত সিদ্ধান্ত সত্য। উদাহরণস্বরূপ,  $5+\sqrt{9}=3+\sqrt{25}$  একটি অভেদ; কিন্তু ইহা হইতে 5=3 এবং  $\sqrt{9}=\sqrt{25}$ , এইরূপ সিদ্ধান্ত করা উচিত নহে, কারণ  $\sqrt{9}$  ও  $\sqrt{25}$ -এর কোনটিই প্রকৃতপক্ষে অমূলদ রাশি নহে।

## 2.7. দ্বিশদ করনীর বর্গমূলের আকার:

স্ত্রান্থনারে,  $(\sqrt{x} \pm \sqrt{y})^2 = (x+y) \pm 2 \sqrt{xy}$ .

এখন, মৃলদ অংশ x+y=a, এবং অমূলদ অংশ  $2\sqrt{xy}=\sqrt{b}$  ধরিলে,

$$(\sqrt{x} \pm \sqrt{y})^2 = a \pm \sqrt{b}.$$

উভয় পক্ষের বর্গমূল লইলে,  $\sqrt{a\pm\sqrt{b}}=\sqrt{x}\pm\sqrt{y}$ .

ত্তরাং, একটি মূলদ ও একটি অমূলদ রাশির বৈজিক সমষ্টির বর্গমূল সর্বদা প্রইটি করণীর বৈজিক সমষ্টি।

2·8. ৴b একটি করণী হইলে, a+ ৴b-এর বর্গমূল নির্ণয়:

ধরা যাক,  $\sqrt{a+\sqrt{b}} = \sqrt{x} + \sqrt{y}$ .

তাহা হইলে, উভয় পক্ষের বর্গ লইয়া,  $a+\sqrt{b}=x+y+2\sqrt{xy}$ .

অতএব, অস্তচ্ছেদ 2'6-এর নির্মান্থনারে

এবং 
$$\sqrt{b=2\sqrt{xy}}$$
  $\cdots$  (1)

$$\therefore a^2 - b = (x+y)^2 - 4xy = (x-y)^2;$$

$$\therefore \quad \sqrt{a^2 - b} = x - y.$$

মতবাং, x+y=aএবং  $x-y=\sqrt{a^2-b}$ 

অতএব, যোগ ও বিয়োগ করিয়া,

$$2x = a + \sqrt{a^2 - b}$$
,  $44 < 2y = a - \sqrt{a^2 - b}$ ;

$$\therefore x = \frac{1}{2}(a + \sqrt{a^2 - b}), \text{ and } y = \frac{1}{2}(a - \sqrt{a^2 - b}).$$

টীকা।  $x \cdot 9$  y-এর উপরিপ্রাদন্ত মান হইতে দেখা যায় যে,  $\sqrt{a^2-b}$  একটি মূলদ রাশি না হইলে, নিগাঁত বর্গমূলস্চক রাশি প্রদন্ত রাশি অপেক্ষা জটিলতর। কাজেই  $a^2-b$  এক পূর্ণবর্গ না হইলে, উপরিউক্ত নিয়মের বিশেষ কোন কার্যকারিতা নাই।

অনুসিদ্ধান্ত। (1)-চিহ্নিত সমন্ধ-ছইটি হইতে স্পষ্টতঃ দেখা যায় যে,

$$a - \sqrt{b} = x + y - 2\sqrt{xy} = (\sqrt{x} - \sqrt{y})^2;$$
  
$$\therefore \sqrt{a - \sqrt{b}} = \sqrt{x} - \sqrt{y}.$$

অতএব, 
$$\sqrt{a}+\sqrt{b}=\sqrt{x}+\sqrt{y}$$
 হইলে,  $\sqrt{a}-\sqrt{b}=\sqrt{x}-\sqrt{y}$ .

উদা 1. 
$$19-8\sqrt{3}$$
-এর বর্গমূল নির্ণয় কর।  $\sqrt{19-8\sqrt{3}} = \sqrt{x} - \sqrt{y}$  ধরিলে,  $19-8\sqrt{3} = x + y - 2\sqrt{xy}$ .

ে 
$$x+y=19$$
 ... (1) পুৰং  $2\sqrt{xy}=8\sqrt{3}$  ... (2)

মাবার, 
$$x-y = \sqrt{(x+y)^2 - 4xy}$$
  
=  $\sqrt{19^2 - (8\sqrt{3})^2} = \sqrt{361 - 192} = \sqrt{169} = 13$  (3)

∴ (1) ও (3) হইতে, x-16, y-3.

অতএব, নির্ণেয় বর্গমূল =  $\sqrt{16} - \sqrt{3} = 4 - \sqrt{3}$ .

উদা. 2. 16 - 5 √7-এর বর্গমূল নির্ণয় কর।

নির্ণেয় বর্গমূল = 
$$\sqrt{16-5\sqrt{7}} = \sqrt{\frac{1}{2}(32-2.5\sqrt{7})} = \sqrt{\frac{5^3+(\sqrt{7})^2-2.5}{\sqrt{2}}}$$
  
=  $\sqrt{\frac{(5-\sqrt{7})^2}{\sqrt{2}}} = \frac{5-\sqrt{7}}{2} = \frac{5}{2}\sqrt{2} - \sqrt{\frac{7}{2}}$ .

টীকা। এখানে লক্ষণীয় যে, 2'8 অহুচ্ছেদের পদ্ধতিতে না ক্ষিয়া প্রদন্ত রাশিমালাকে একটি পূর্ণবর্গের আকারে রূপান্তরিত ক্রিয়া মূল আকর্ষণ করা হইল। ইহাই বর্গমূল নির্ণয়ের সহজ্ঞতম পদ্ধতি।

$$\sqrt{27} + \sqrt{15} = 3\sqrt{3} + \sqrt{3}$$
.  $\sqrt{5} = \sqrt{3}(3 + \sqrt{5})$ .

$$= \frac{4}{3} \sqrt{\frac{1}{3}(6+2\sqrt{5})}$$

$$= \sqrt[4]{3} \sqrt{\frac{1}{3}(1^2 + (\sqrt{5})^2 + 2.1.\sqrt{5})}$$

$$-\frac{4}{3}\sqrt{\frac{1}{3}(1+\sqrt{5})^2}$$

$$= \frac{4}{3} \frac{(1 + \sqrt{5})}{\sqrt{2}}$$

$$=\frac{4}{3}(\sqrt{\frac{1}{3}}+\sqrt{\frac{3}{3}}).$$

উদা. 4.  $2x + \sqrt{3}x^3 - 2x - 1$ -এর বর্গমূল নির্ণয় কর।

$$2x + \sqrt{3x^2 - 2x - 1} = 2x + \sqrt{3x^2 - 3x + x - 1}$$

$$=2x + \sqrt{3x(x-1)+1(x-1)} = 2x + \sqrt{(3x+1)(x-1)}$$

$$=2x+2.\frac{1}{3}\sqrt{(3x+1)(x-1)}=2x+2\sqrt{\frac{(3x+1)(x-1)}{2}}$$







$$= (3x+1) + (x-1) + 2\sqrt{\left(\frac{3x+1}{2}\right)\left(\frac{x-1}{2}\right)}$$

$$\left[ \because \frac{(3x+1) + (x-1)}{2} = \frac{4x}{2} = 2x \right]$$

$$= \left(\sqrt{\frac{3x+1}{2}}\right)^2 + \left(\sqrt{\frac{x-1}{2}}\right)^2 + 2 \cdot \sqrt{\frac{3x+1}{2}} \cdot \sqrt{\frac{x-1}{2}}$$

$$= \left(\sqrt{\frac{3x+1}{2}} + \sqrt{\frac{x-1}{2}}\right)^3 \cdot$$

$$\therefore \text{ Figs and } = \sqrt{\frac{3x+1}{2}} + \sqrt{\frac{x-1}{2}}$$

$$= \frac{\sqrt{3x+1} + \sqrt{x-1}}{\sqrt{2}}$$

$$= \frac{\sqrt{3x+1} + \sqrt{x-1}}{2}$$

$$= \frac{\sqrt{2}(\sqrt{3x+1} + \sqrt{x-1})}{2}.$$

টীকা। লক্ষণীয় যে, এই পদ্ধতিতে মূল চিহ্নের নীচেকার রাশিমালাকে প্রথমে চুইটি উৎপাদকে বিশ্লেষণ করা হইগাচে। তাহার পর অমূলদ পদটিকে 2ab-এর আকারে রূপান্তরিত করা হইরাছে। ইহা হইতে a ও b-এর মান স্থির করিয়া মূলদ অংশটিকে ভাঙিয়া  $a^2 + b^2$ -এর আকারে লিগা হইল। ফলে সমগ্র রাশিমালা  $a^2 + b^2 + 2ab$  রূপ ধারণ করিল এবং তাহা হইতে অভি সহজে (a+b) আকারের বর্গমূলটি বাহির হইরা পড়িল।

ভেমা. 5. 
$$x = \frac{\sqrt{3}}{2}$$
 হইবে,  $\frac{1+x}{1+\sqrt{1+x}} + \frac{1-x}{1-\sqrt{1-x}}$  এর মান নির্ণয় কর। এখন,  $1+x=1+\frac{\sqrt{3}}{2}=\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\left(\frac{\sqrt{3}+1}{2}\right)^2$ , এবং  $1-x=1-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\left(\frac{\sqrt{3}-1}{2}\right)^2$ . সতবাং, প্রাণ্ড ব্যালিমালা:

$$= \frac{\frac{1}{2}(2+\sqrt{3})}{1+\frac{1}{2}(\sqrt{3}+1)} + \frac{\frac{1}{2}(2-\sqrt{3})}{1-\frac{1}{2}(\sqrt{3}-1)} = \frac{2+\sqrt{3}}{3+\sqrt{3}} + \frac{2-\sqrt{3}}{3-\sqrt{3}}$$

$$= \frac{(2+\sqrt{3})(3-\sqrt{3}) + (2-\sqrt{3})(3+\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}$$

$$= \frac{(6+\sqrt{3}-3) + (6-\sqrt{3}-3)}{9-3} = \frac{6}{6} = 1.$$

### প্রামালা 6

বৰ্গমল নিৰ্ণয় কর (Find the square root of):

1. 
$$4-2\sqrt{3}$$
.

3. 
$$11-6\sqrt{2}$$
.

**4.** 
$$8+2\sqrt{15}$$
. **5.**  $14-6\sqrt{5}$ . **6.**  $28+10\sqrt{3}$ .

6. 
$$28 \pm 10 \sqrt{3}$$
.

7. 
$$21-8\sqrt{5}$$
. 8.  $17+12\sqrt{2}$ . 9.  $41+12\sqrt{5}$ .

10. 
$$37 - 20 \sqrt{3}$$
.

11. 
$$31 + 4 \sqrt{21}$$

**10.** 
$$37 - 20 \sqrt{3}$$
. **11.**  $31 + 4 \sqrt{21}$ . **12.**  $73 - 12 \sqrt{35}$ .

13. 
$$47 + 4\sqrt{33}$$
. 14.  $4 - \sqrt{7}$ . 15.  $6 - \sqrt{35}$ .

**16.** 
$$\sqrt{18} - \sqrt{16}$$
. **17.**  $\sqrt{3}2 - \sqrt{24}$ . **18.**  $\sqrt{27} + \sqrt{24}$ .

19. 
$$5\sqrt{5} + \sqrt{120}$$
.

**20.** স্বল ক্র: 
$$\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}} + \frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}$$

21. 
$$x = \frac{2ah}{b^2 + 1}$$
 হইলে,  $\frac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}}$  এর মান নির্ণয় কর।

বর্গমূল নির্ণয় কর:

22. 
$$a^2 + 2x \sqrt{a^2 - x^4}$$
.

23. 
$$2a+2\sqrt{a^2-b^2}$$
.

24. 
$$a + x + \sqrt{2ax + x^2}$$
.

25. 
$$2x-1+2\sqrt{x^2-x-6}$$
.

26. 
$$x+y+z+2\sqrt{xz+yz}$$
.

# 2'9. দ্বিপদ দ্বিদাত করণীর দনমূল নির্ণয় : যদি $\sqrt[a]{a} + \sqrt{b} = x + \sqrt{y}$ , ভাহা ইইলে $\sqrt[a]{a} - \sqrt{b} = x - \sqrt{y}$ ,

व्यट्ड,  $\sqrt[3]{a+\sqrt{b}}=x+\sqrt{y}$ .

উভয় প্ৰেল্য ঘল করিয়া দেখা যায় যে, a + \'b = x 3 + 3x 2 /y + 3xu + y /v. অ তএব, মৃলদ ও অমুলদ অংশের সমতা রক্ষা করিয়া দেখা যায় যে.

$$a = x^3 + 8xy$$

$$\sqrt{b} = 8x^3 \sqrt{y + y} \sqrt{y}$$

WEST, a- 1/b=x3-3x2 1/y+3xy-y 1/y

$$\therefore \sqrt[3]{a} - \sqrt{b} = x - \sqrt{y}.$$

আনুসিদ্ধান্ত। বিপর তক্ষে, যদি 3/a- b=x- 'y, ভাহ। ইইলে  $\sqrt[8]{a+\sqrt{b}} = x + \sqrt{y}$ 

উদা. 1. 38 + 17 \\ 5-এর ঘনমল নির্ণয় কর।

$$\sqrt[8]{38+17\sqrt{5}} = x + \sqrt{y}$$

তাহা হইলে  $\sqrt[3]{38-17}\sqrt{5}=x-\sqrt{y}$ .

অতএব, গুণন-প্রক্রিয়া দারা,

$$x^2 - y = \sqrt[3]{1444 - 1445} = \sqrt[3]{-1} = -1$$
. [::  $(-1)^3 = -1$ ].

পুনরায়, যেহেতু  $\sqrt[3]{38+17}\sqrt{5}=x+\sqrt{y}$ .

 $38 + 17 \sqrt{5} = x^3 + 3x^2 \sqrt{y} + 3xy + y \sqrt{y}, \quad 38 = x^3 + 3xy.$ 

এইরপে, দেখা যায়,  $x^{s} + 3xy = 38$  এবং  $x^{2} - y = -1$ 

 $|y-x^2+1|$ 

অত্এব,  $x^3 + 3x(x^2 + 1) = 38$ , অথবা,  $4x^3 + 3x = 38$ ,

পরীক্ষা দারা দেখা যায়, x = 2, এবং  $y = x^2 + 1 = 5$ .

অতএব, নির্ণেগ্ন ঘনমূল = 2 +  $\sqrt{5}$ .

টীকা।  $x^2-y$  একটি মূলদ রাশি না হইলে, উপরিউক্ত নিয়মের বিশেষ কোন কাৰ্যকাবিতা নাই।

উদা. 2. 21 √6 - 23 √5-এর ঘনমূল নির্ণয় কর।

$$21\sqrt{6} - 23\sqrt{5} = 6\sqrt{6}\binom{21}{6} - \frac{23\sqrt{5}}{6\sqrt{6}} = (\sqrt{6})^{8}(\frac{7}{8} - \frac{23}{6}\sqrt{\frac{5}{6}}).$$

 $\therefore \ \ \sqrt[8]{21\sqrt{6}-23\sqrt{5}} = \sqrt{6} \ \ \sqrt[8]{\frac{7}{3}-\frac{33}{6}\sqrt{\frac{5}{8}}}.$ 

 $\frac{3}{7} - \frac{23}{5} = x - \sqrt{y}$ धत्र,

তাহা হইলে  $\sqrt{3+\frac{32}{3}}\sqrt{\frac{5}{6}}=x+\sqrt{y}$ .

$$x^{2} - y = \sqrt[3]{\frac{10}{4} - \frac{2645}{218}} = \sqrt[3]{\frac{1}{818}} = \frac{1}{8}, \qquad \cdots \qquad (1)$$

এবং  $\frac{7}{8} - \frac{23}{6} \cdot \sqrt{\frac{5}{8}} = x^3 - 3x^2 \sqrt{y} + 3xy - y \sqrt{y}$ .

$$\therefore \qquad x^3 + 3xy = \frac{\tau}{3}. \qquad \qquad \cdots \qquad (2)$$

অতএব, (1) ও (2) হইতে দেখা যায় বে,  $x^3 + 3x(x^2 - \frac{1}{6}) = \frac{7}{8}$ ;

অথবা,  $8x^3-x=7$ .

পরীক্ষা ছারা দেখা যায় যে, x=1, এবং  $\therefore y=\frac{\pi}{6}$ .

এইরপে, 3/1-23/5=1- / = :

এবং . . নির্ণেয় ঘনমূল =  $\sqrt{6}(1-\sqrt{\frac{5}{8}}) = \sqrt{6}-\sqrt{5}$ .

#### প্রথমালা 7

খনমূল নির্ণর কর (Find the cube root of):

1.  $19+9\sqrt{6}$ . 2.  $26-15\sqrt{3}$ . 3.  $11\sqrt{5}+17\sqrt{2}$ .

4. 99  $\sqrt{2}$  - 59  $\sqrt{5}$ . 5. 264  $\sqrt{3}$  + 150  $\sqrt{6}$ .

2'10. বিবিধ উদাহরণ:

উদা. 1.  $6+\sqrt{12}-\sqrt{24}-\sqrt{8}$ -এর বর্গমূল নির্ণয় কর। মনে কর,  $\sqrt{6+\sqrt{12}-24}-\sqrt{8}=\sqrt{x}+\sqrt{y}-\sqrt{z}$ .

তাহা হইলে দেখা যায় যে,

$$6 + \sqrt{12} - \sqrt{24} - \sqrt{8} = x + y + z + 2\sqrt{xy} - 2\sqrt{yz} - 2\sqrt{zx}.$$

৫, у, হ যদি এরপ হয় বে,

$$2\sqrt{xy}=\sqrt{12}$$
 এবং  $x+y+z=6$ , তাহা হইলে, নির্ণের বর্গমূল  $2\sqrt{yz}=\sqrt{24}$  বাহির হইবে।  $2\sqrt{zx}=\sqrt{8}$ 

প্রথম তিনটি দমীকরণ হইতে দেখা যায় যে,

$$\sqrt{xy} = \sqrt{3}$$
 ... (1)   
 $\sqrt{yz} = \sqrt{2}$  ... (2)   
 $\sqrt{xz} = \sqrt{2}$  ... (3)   
 $\sqrt{xyz} = \sqrt{6}$  ... (4)

(4)-কে (2), (3) এবং (1) দ্বারা যথাক্রমে ভাগ করিয়া,

$$\sqrt{x} = \sqrt{1}$$
,  $\sqrt{y} = \sqrt{3}$ ,  $\sqrt{z} = \sqrt{2}$ ;

এবং x, y ও z-এর এই মান, x+y+z=6, সমীকরণকে সমাধান করে। অতএব, নির্ণেয় বর্গমূল= $1+\sqrt{3}-\sqrt{2}$ .

টীকা। এই উদাহরণ ছইতে সহজেই বহুপদ রাশির বর্গমূল নির্ণয় করিবার পদ্ধতি অনুমান করা যায়।

বিকল্প পদাতিঃ 
$$\sqrt{6+\sqrt{12}-\sqrt{24}-\sqrt{8}} = \sqrt{6+2\sqrt{3}-2}.\sqrt{3}.\sqrt{2-2\sqrt{2}}$$
  
 $=\sqrt{1^2+(\sqrt{3})^2+(-\sqrt{2})^2+2.1}.\sqrt{3+2}.\sqrt{3}.(-\sqrt{2})+2.(-\sqrt{2}).1$   
 $=\sqrt{(1+\sqrt{3}-\sqrt{2})^2}=1+\sqrt{3}-\sqrt{2}.$ 

উদা. 2. মান নির্ণয় কর ঃ  $\sqrt[3]{a}\sqrt{b\sqrt[3]{a}\sqrt{b}\cdots}$  অসীম পর্যন্ত ।  $\sqrt[3]{a}\sqrt{b\sqrt[3]{a}\sqrt{b}\cdots}$  অসীম পর্যন্ত = k ধরিলে,  $k^{3}=a\sqrt{b\sqrt[3]{a}\sqrt{b}\cdots}$  অসীম পর্যন্ত ;  $(k^{3})^{2}=a^{2}b\sqrt[3]{a}\sqrt{b\sqrt[3]{a}\sqrt{b}\cdots}$  অসীম পর্যন্ত ।

:. 
$$k^{e} = a^{g}bk$$
, :.  $k^{g} = a^{g}b$ . :.  $k = \sqrt[6]{a^{g}b}$ .

 $\therefore$  প্রদন্ত রাশির মান =  $\sqrt[6]{a^2b}$ .

উদা. 3.  $x=rac{\sqrt{2+1}}{\sqrt{2-1}}$  এবং  $y=rac{\sqrt{2-1}}{\sqrt{2+1}}$  হইলে,  $x^2+xy+y^2$ -এর মান নির্ণয় কর।

দেখা যায়, 
$$x = \frac{\sqrt{2+1}}{\sqrt{2-1}} = (\sqrt{2+1})^2$$
 এবং  $y = \frac{\sqrt{2-1}}{\sqrt{2+1}} = (\sqrt{2-1})^2$ 

মতিরাং x+y=6এবং xy=1

খতিএব,  $x^2 + xy + y^2 = (x+y)^2 - xy = 6^2 - 1 = 35$ .

উদা. 4.  $X=\sqrt[3]{r+\sqrt{r^2+q^3}}+\sqrt[3]{r-\sqrt{r^2+q^3}}$  ইইলে,  $X^3+3qX-2r-$  এর মান নির্ণয় কর।

 $\sqrt[3]{r+\sqrt{r^2+q^3}}$ -এর পরিবর্তে a এবং  $\sqrt[5]{r-\sqrt{r^2+q^3}}$ -এর পরিবর্তে b ধরিয়া দেখা যায় যে, X=a+b.

$$X^{3} = a^{3} + b^{3} + 3ab(a+b) = a^{3} + b^{3} + 3aa.X$$

$$= (r + \sqrt{r^{2} + q^{3}}) + (r - \sqrt{r^{2} + q^{3}}) + 3\sqrt[3]{r^{2} - (r^{2} + q^{3})}.X$$

$$= 2r + 3\sqrt[3]{-q^{3}}.X = 2r - 3qX.$$

 $X^8 + 3qX - 2r = 0.$ 

উদা. 5.  $(x+\sqrt{x^2-bc})(y+\sqrt{y^2-ca})(z+\sqrt{z^2-ab})$  =  $(x-\sqrt{x^2-bc})(y-\sqrt{y^2-ca})(z-\sqrt{z^2-ab})$  হইলে, দেখাও বে উহাদের প্রত্যেকটি =  $\pm abc$ .

ধর, প্রদত্ত রাশিমালার প্রত্যেকটি রাশি = K, তাহা হইলে

$$K = (x + \sqrt{x^2 - bc})(y + \sqrt{y^2 - ca})(z + \sqrt{z^2 - ab}),$$

$$\mathbf{G}^{2} = (x - \sqrt{x^2 - bc})(y - \sqrt{y^2 - ca})(z - \sqrt{z^2 - ab}).$$

$$K^2 = \{x^2 - (x^2 - bc)\}\{y^2 - (y^3 - ca)\}\{z^3 - (z^2 - ab)\}$$
$$= bc.ca.ab = a^2b^2c^2.$$

 $\therefore \quad K = \pm abc,$ 

অর্থাৎ, প্রত্যেকটি রাশি = ± abc.

উদা. 6. 
$$ax = \frac{2pq}{1+q^2}$$
 হইলে,

$$\frac{\sqrt{\frac{p}{a}+x}+\sqrt{\frac{p}{a}-x}}{\sqrt{\frac{p}{a}+x}-\sqrt{\frac{p}{a}-x}}$$
 এর যান নির্ণয় কর।

প্রাপি বাণি 
$$\frac{\left(\sqrt{\frac{p}{a} + x} + \sqrt{\frac{p}{a} - x}\right)^2}{\left(\frac{p}{a} + x\right) - \left(\frac{p}{a} - x\right)}$$

$$= \frac{\frac{2p}{a} + 2\sqrt{\frac{p}{a^2} - x^2}}{2x} = \frac{p}{ax} + \sqrt{\frac{p^3}{a^2x^2} - 1}.$$

একণে, থেছেডু,  $ax = \frac{2pq}{1+q^2}$ ;  $\therefore \frac{p}{ax} = \frac{1+q^2}{2q}$ .

অতএব, প্রদন্ত রাশি

$$= \frac{1+q^2}{2q} + \sqrt{\frac{(1+q^2)^2}{4q^2} - 1} = \frac{1+q^2}{2q} + \sqrt{\frac{1+q^4-2q^4}{4q^2}} = \frac{1+q^2}{2q} + \frac{1-q^2}{2q} = \frac{2}{2q} = \frac{1}{q}.$$

উদা. 7.  $\sqrt{(x-\sqrt{a^2-b^2})^2+y^2}+\sqrt{(x+\sqrt{a^2-b^2})^2+y^2}=2a$  হইলে, দেখাও যে,  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ .

পক্ষান্তর করিয়া দেখা যায় যে,

$$\sqrt{(x-\sqrt{a^2-b^2})^2+y^2} = 2a-\sqrt{(x+\sqrt{a^2-b^2})^2+y^2}.$$

উভয় পক্ষের বর্গ লইয়া,

$$(x - \sqrt{a^2 - b^2})^2 + y^2 = 4a^2 + (x + \sqrt{a^2 - b^2})^2 + y^2 - 4a\sqrt{(x + \sqrt{a^2 - b^2})^2 + y^2};$$

অথবা,  $-2x\sqrt{a^2-b^2}=4a^2+2x\sqrt{a^2-b^2}-4a\sqrt{(x+\sqrt{a^2-b^2})^2+y^2}$ ; মৃতবাং, পকান্তর করিয়া,

$$4a\sqrt{(x+\sqrt{a^2-b^2})^2+y^2}=4a^2+4x\sqrt{a^2-b^2}$$
.

উভয় পক্ষকে সাধারণ গুণনীয়ক 4 দারা ভাগ করিয়া, ভাগফলের বর্গ করিলে, দেখা যায় যে,  $a^2(x+\sqrt{a^2-b^2})^2+a^2y^2=a^4+x^2(a^2-b^2)+2a^3x\sqrt{a^2-b^2}$ ; অথবা,  $a^2(a^2-b^2)+a^2y^2=a^4-b^2x^2$ ; অথবা,  $b^2x^2+a^2y^2=a^2b^2$ .

অতএব, উভয় পক্ষকে  $a^2b^2$  দারা ভাগ করিয়া,  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .

উদা. 8. সরল কর: 
$$\frac{10\sqrt{2}}{\sqrt{18-\sqrt{3}+\sqrt{5}}} - \frac{\sqrt{10}+\sqrt{18}}{\sqrt{18-\sqrt{3}-\sqrt{5}}}$$
$$\sqrt{3}+\sqrt{5} = \sqrt{\frac{1}{2}(6+2\sqrt{5})}$$

$$= \frac{\sqrt{5} + \frac{1+2\sqrt{5}}{\sqrt{2}}}{\sqrt{2}} = \frac{\sqrt{(\sqrt{5})^2 + 1^2 + 2\sqrt{5}.1}}{\sqrt{2}}$$

$$= \frac{\sqrt{(\sqrt{5}+1)^2}}{\sqrt{2}} = \frac{\sqrt{5}+1}{\sqrt{2}}.$$

$$\therefore \text{ engression} = \frac{10\sqrt{2}}{\sqrt{18} - \frac{\sqrt{5}+1}} - \frac{\sqrt{10} + \sqrt{18}}{\sqrt{18} - \frac{\sqrt{5}-1}}$$

$$= \frac{10\sqrt{2} \cdot \sqrt{2}}{6 - \sqrt{5} - 1} - \frac{(\sqrt{10} + \sqrt{18})\sqrt{2}}{6 - \sqrt{5} + 1}$$

$$= \frac{20}{6 - \sqrt{5}} - \frac{2\sqrt{5}+6}{7 - \sqrt{5}}$$

$$= \frac{20(5 + \sqrt{5}) - (2\sqrt{5}+6)(7 + \sqrt{5})}{20}$$

$$= 5 + \sqrt{5} - \frac{(14\sqrt{5}+42+10+6\sqrt{5})}{44}$$

$$= 5 + \sqrt{5} - \frac{2(10\sqrt{5}+26)}{44} = 110 + 22\sqrt{5} - 10\sqrt{5} - 26$$

$$= \frac{84+12\sqrt{5}}{22} = \frac{12(7 + \sqrt{5})}{22} = \frac{6(7 + \sqrt{5})}{11}.$$

#### প্রগ্রমালা 8

ৰগ্যুল নিৰ্ণয় কর (Find the square root of):

1. 
$$8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}$$
. 2.  $10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}$ .

3. 
$$11+6\sqrt{2}+4\sqrt{3}+2\sqrt{6}$$
. 4.  $21-4\sqrt{5}+8\sqrt{3}-4\sqrt{15}$ .

5. 
$$\sqrt{5} = 2.29607$$
 polar, (i)  $\frac{\sqrt{3} - \sqrt{5}}{\sqrt{2} + \sqrt{7} - 3}\sqrt{5}$  and

(ii) 
$$\frac{2\sqrt{8}\sqrt{3+\sqrt{5}}}{4+\sqrt{10}+\sqrt{2}}$$
-এর মান নির্ণয় কর।

6. 
$$x = \frac{\sqrt{3}}{2}$$
 হুইবে,  $\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$ -এর মান নির্ণয় কর।

7. 
$$x = \frac{1}{2} \left( \sqrt{\frac{a}{b}} - \sqrt{\frac{h}{a}} \right)$$
 হটলে,  $\frac{2a\sqrt{1+x^2}}{x + \sqrt{1+x^2}}$ -এর মান নির্ণয় কর।

8. 
$$\sqrt[4]{3-3}\sqrt[3]{3+1}$$
-কে মৃগদ হরবিশিষ্ট তুল্য ভগ্নাংশে পরিবর্ডিত কর।

10. 
$$x=2+2^{\frac{3}{3}}+2^{\frac{1}{3}}$$
 হুইলে, দেখাও যে,  $x^3-6x^2+6x-2=0$ .

11. 
$$x = \frac{q - \sqrt{p^2 - 4q}}{q + \sqrt{p^2 - 4q}}$$
 ইইলো, দেখাও খে,  $(q^2 - p^2 + 4q)(x^2 + 1) - 2(p^2 + q^3 - 4q)x = 0$ . [ C. U. 1927 ]

12. 
$$x = \frac{\sqrt{a+2b} + \sqrt{a-2b}}{\sqrt{a+2b} - \sqrt{a-2b}}$$
 (Parts (N,  $bx^3 - ax + b = 0$ .

[ C. U. 1985 ]

13. 
$$x = \frac{1}{3 - \sqrt{8}}$$
,  $y = \frac{1}{3 + \sqrt{8}}$  হউলে,  $3x^2 + 23xy + 3y^2$ -এর মান নিপ্র

क्र ।

14. 
$$x = \sqrt{7} - \sqrt{5}$$
,  $y = \sqrt{7} + \sqrt{5}$   $\Rightarrow \ge x^{o}$ ,  $x^{o} + y^{o}$  and Add  $\Rightarrow x = 1$ 

**15.** 
$$x=3^{\frac{1}{3}}+3^{-\frac{1}{3}}$$
 EFCM, CHATE (7,  $3x^3-9x-10=0$ .

**16.** 
$$a^2 + 2 = 3^{\frac{2}{3}} + 3^{-\frac{2}{3}}$$
 **EVALUATE OF**,  $3a^3 + 9a = 8$ .

17. 
$$\sqrt{a^3/b} \sqrt{a^3/b}$$
 অসীম প্ৰস্থ মান নিৰ্ণয় কর।

18. 
$$x = 3 - 2$$
্ও ইটালে,  $\sqrt{x} + \frac{1}{x}$ -এর মান নিগর কর।

20. সরল কর:

$$\frac{7-2\sqrt{10}}{\sqrt{12}-\sqrt{19}-4\sqrt{15}-2\sqrt{10}+4\sqrt{6}} = \frac{7+2\sqrt{10}}{\sqrt{12}-\sqrt{19}-4\sqrt{15}+2\sqrt{10}-4\sqrt{6}}$$

2'11. করনী-সংশ্লিষ্ট সমীকরপঃ

**GF1. 1.** Payment 44:  $\sqrt{x^2 + 11x + 20} = \sqrt{x^2 + 5x - 1} = 3$ .

[ C. U. 1881 ]

পকাত্র করিয়া,  $\sqrt{x^2 + 11x + 20} = 3 + \sqrt{x^2 + 5x - 1}$ .

উভয় পক্ষের বর্গ করিয়া,

$$x^{2} + 11x + 20 = 9 + (x^{2} + 5x - 1) + 6\sqrt{x^{2} + 5x - 1}$$
;

অথবা, 
$$6x+12=6\sqrt{x^2+5x-1}$$
;

অথবা, 
$$x+2=\sqrt{x^2+5x-1}.$$

$$x^2 + 4x + 4 = x^2 + 5x - 1$$
.  $3 - 3 + 5x - 1$ .

উদা. 2. সমাধান কর: 
$$\frac{3x-1}{\sqrt{3x+1}} = 1 + \frac{\sqrt{3x-1}}{2}$$
.

$$\therefore 3x-1=(\sqrt{3x}+1)(\sqrt{3x}-1); \quad \therefore \frac{3x-1}{\sqrt{3x}+1}=\sqrt{3x}-1.$$

অতএব, প্রদন্ত সমীকরণ হইতে,

$$\sqrt{3x} - 1 = 1 + \frac{\sqrt{3x} - 1}{2}$$
;

অথবা,  $(\sqrt{3x}-1)(1-\frac{1}{2})=1$  [ পক্ষান্তর করিয়া ] ;

ज्ञास्त, 
$$\frac{\sqrt{3x}-1}{2}=1$$
; ज्ञास्त,  $\sqrt{3x}-1=2$ ;

অথবা, 
$$\sqrt{3x} = 3$$
;  $\therefore 3x = 9$ ;  $\therefore x = 3$ .

উদা. 3. সমাধান কর: 
$$\sqrt[3]{a+x} + \sqrt[3]{a-x} = b$$
.

$$(\sqrt[3]{a+x} + \sqrt[3]{a-x})^3$$

$$= (a+x) + (a-x) + 3\sqrt[3]{a^2-x^3} \{\sqrt[3]{a+x} + \sqrt[5]{a-x} \}$$

$$= 2a + 3\sqrt[3]{a^2-x^3}.b.$$

অতএব, সমীকরণটির উভর পক্ষের ঘন করিয়া,

$$2a+3\sqrt[8]{a^2-x^2}.b=b^3$$
;

অংখবা, 
$$3b\sqrt[3]{a^2-x^2}=b^3-2a$$
; ∴  $a^2-x^2=\left(\frac{b^3-2a}{3b}\right)^3$ .

$$\therefore x^2 = a^2 - \left(b^{\frac{3}{2}} - 2a\right)^3; \quad \therefore x = \sqrt{a^2 - \left(b^{\frac{3}{2}} - 2a\right)^3}.$$

উদা. 4. সমাধান কর :  $\sqrt{2x^2+9} + \sqrt{2x^2-9} = 9 + 3\sqrt{7}$ .

এখন,  $(2x^2+9)-(2x^2-9)=18$ , একটি অভেদ ( অর্থাৎ, x-এর বে-কোন মানের জন্মই উহার উভয় পক্ষের সমতা রক্ষিত হইবে ), স্থতরাং, প্রদত্ত সমীকরণোল্লিখিত x-এর মান ( অর্থাৎ, সমীকরণের বীজ )-এর জন্মও উহার সমতা বজায় থাকিবে।

স্থতরাং, নির্ণেয় বীজটি অবশ্যই নিম্নলিখিত সম্বন্ধ সিদ্ধ করিবে।

$$\frac{(2x^2+9)-(2x^2-9)}{\sqrt{2x^2+9}+\sqrt{2x^2-9}} = \frac{18}{9+3\sqrt{7}}$$
:

অধবা, 
$$\sqrt{2x^2+9} - \sqrt{2x^2-9} = \frac{18(9-3\sqrt{7})}{81-63} = 9-3\sqrt{7}.$$

প্রদত্ত সমীকরণটিকে ইহার সহিত যোগ করিয়া.

$$2\sqrt{2x^2+9}=18$$
; অধবা,  $\sqrt{2x^2+9}=9$ :

$$\therefore$$
  $2x^2 + 9 = 81$ ;  $\therefore$   $x^2 = 36$ ;  $\therefore$   $x = \pm 6$ .

উদা. 5. সমাধান কর:

$$\frac{x-8}{\sqrt{x+1}-3} + \frac{x-26}{\sqrt{x-1}+5} = \frac{4x-5}{\sqrt{4x-1+2}},$$

$$\frac{x-8}{\sqrt{x+1}-3} = \frac{(x-8)(\sqrt{x+1}+3)}{(x+1)-9} = \sqrt{x+1}+3;$$

$$\frac{x-26}{\sqrt{x-1}+5} = \frac{(x-26)(\sqrt{x-1}-5)}{(x-1)-25} = \sqrt{x-1}-5;$$

$$\frac{4x-5}{\sqrt{4x-1+2}} = \frac{(4x-5)(\sqrt{4x-1}-2)}{(4x-1)-4} = \sqrt{4x-1}-2.$$

:. প্রদত্ত সমীকরণটিকে এইরূপে লেখা যায়,

$$(\sqrt{x+1}+3)+(\sqrt{x-1}-5)=(\sqrt{4x-1}-2)$$
;

$$\sqrt{x+1} + \sqrt{x-1} = \sqrt{4x-1}$$
:

$$\forall 1, 2\sqrt{x^2-1}=2x-1; \forall 1, 4(x^2-1)=4x^2-4x+1;$$

$$\forall 1, 4x=5; x=\frac{5}{2}=1\frac{1}{2}.$$

উদা. 6. সমাধান কর:

$$4x^2 + 6x + \sqrt{2x^2 + 3x + 4} = 13$$
. [ W. B. S. F. 1953 ]  $4x^2 + 6x + \sqrt{2x^2 + 3x + 4} = 13$ :

$$4x^2+6x+8+\sqrt{2x^2+3x+4}=13+8$$
;

$$4$$
,  $2(2x^2+3x+4)+\sqrt{2x^2+3x+4}=21$ :

বা, 
$$2p^2 + p = 21$$
 [  $\sqrt{2x^2 + 3x + 4} = p$  ধ্রিয়া ];

$$\forall 1, \quad 2p^2 + p - 21 = 0 ; \qquad \forall 1, \quad (p-3)(2p+7) = 0 ;$$

.. ঋণাত্মক মান বর্জন করিয়া,

$$p = 3$$
,

অর্থাৎ 
$$\sqrt{2x^2+3x+4}=3$$
; বা,  $2x^2+3x+4=9$ ;

$$\exists 1, \quad 2x^2 + 3x - 5 = 0 ; \quad \exists 1, \quad (x - 1)(2x + 5) = 0 ;$$

$$x = 1, -\frac{5}{2}$$

### বীজগণিত

### প্রগ্রমালা 9

নিম্লিখিত স্মীকরণগুলির স্মাধান কর:

1. 
$$\sqrt{x+7} = 1 + \sqrt{x}$$
.

3. 
$$\sqrt{5x+10} = \sqrt{5x} + 2$$
.

5. 
$$\sqrt{8x+33}-3=2\sqrt{2x}$$
.

7. 
$$x+a+\sqrt{2ax+x^2}=b$$
.

9. 
$$\sqrt{3x+1} - \sqrt{3x-11} = 2$$
.

11. 
$$\frac{x-1}{\sqrt{x+1}} = 4 + \frac{\sqrt{x-1}}{2}$$
.

2. 
$$\sqrt{3x} - 4 = \sqrt{3x + 4}$$
.

4. 
$$\sqrt{2x+9} + \sqrt{2x} = 9$$
.

6. 
$$x + \sqrt{2ax + x^2} = a$$
.

8. 
$$\sqrt{x-4}+3=\sqrt{x+11}$$
.

10. 
$$\sqrt{5x+6} + \sqrt{5x-14} = 10$$
.

12. 
$$\frac{ax-1}{\sqrt{ax}+1} = 4 + \frac{\sqrt{ax}-1}{2}$$
.

13. 
$$\frac{ax-b^3}{\sqrt{ax+b}} = c + \frac{\sqrt{ax-b}}{c}$$
.

14. 
$$\frac{2x-49}{\sqrt{2x+15-8}} + \frac{18x+22}{\sqrt{18x+31+3}} = \frac{8x+191}{2\sqrt{2x+54-5}}$$

15. 
$$x = \sqrt{a^2 + x} \sqrt{b^2 + x^2} - a$$
.

16. 
$$x^9 + 18 = 8x + 6\sqrt{x^9 - 8x + 9}$$
.

### ভূভীয় অধ্যায়

#### ভেদ (Variation)

3.1. (a) সরল ভেদঃ যে-রাশির মান পরিবর্তনশীল তাতাকে চলা (variable) এবং যাহার মান সর্বদ' অপরিবর্তিত থাকে তাতাকে গ্রুকক (constant) বলে। উদাহরণস্করপ r বাাসাধ হুইলে বুরের পরিধি হুইবে  $2\pi r$ ; কাজেই r-এর হাস বুদ্ধির উপর পরিধির হ্রাস-বৃদ্ধি নিভর করে। এক্ষেত্রে r-এর মান পরিবর্তনশীল এবং সেই কারণে r একটি চল, কিন্তু  $2\pi$ -এর মান স্বদ। নির্দিষ্ট ও অপরিবর্তিত বিলয়া উহা একটি গ্রুকব

এখন, তুইটি চলের মধ্যে যদি এমন সম্বন্ধ থাকে যে. একটির মানের পরিবর্তন হইলে অপরটির মানেরও সমাম্পাতে পরিবর্তন হয়, তবে বল' হয় যে, ঐ চল-তুইটির একটি অপরটির সহিত **সর্ল ভেনে** গহিয়াছে।

ভেদ-সম্পর্ক ব্ঝাইতে ' $\propto$ ' প্রতীক চিহ্নটি ব্যবহার করা হয়।  $\Lambda$ -এর সহিত B পরল ভেদে আছে, এই কথা ব্ঝাইতে সাংকেতিক ভাষায় দেখা হয়  $\Lambda \propto B$ .

ইহার অর্থ, A-এর মান যথন a, ওথন যদি B-এর মান b হয় এব° .1-এর মান মধন  $a_1$ , তথন B-এর মান যদি  $b_1$  হয়, তবে a ও  $a_1$ -এর অনুপাতে অবশুই b ও  $b_1$ -এর অনুপাতের সমান হঠবে। অর্থাৎ  $a:a_1-b:b_1$ .

উদাহ্রণ্যরপ, A যদি বইয়ের সাথ্য। এবং B যদি বইয়ের দায় হয় এবং A-এর মান তথন 3, B-এর মান তথন যদি 12 টাকা হয়, তবে A এর মান যথন 10, B-এর মান তথন সবগ্রই 40 টাকা হইবে; কেননা, 3:10=12:40। অর্থাৎ A (বইয়ের সংখ্যা) ও B (বইয়ের দাম) সরগ ভেদে থাক্যে A-এর যে অমুপায়েত রুদ্ধি, B-এর ও সেই অমুপায়েত রুদ্ধি হইবে।

ইছ ছটাতে দেখা যায়  $\frac{1}{10}=\frac{3}{10}$  :  $\frac{12}{10}=\frac{3}{10}$  এবং সামারণভাবে  $\frac{A}{B}=$ একটি

স্তরাং, A-এর মান যথন  $a_1,a_2,a_3$ , ইত্যাদি হয়, তথন যদি B-এর মান বথাক্রমে  $b_1,b_3,b_3$ , ইত্যাদি হয়, তবে, সংজ্ঞায়সাবে,

$$\frac{a_3}{a_2} = \frac{b_1}{b_2}, \frac{a_3}{a_3} = \frac{b_3}{b_3}, \frac{a_3}{a_4} = \frac{b_3}{b_4}, \text{ for } 1$$

$$\therefore \frac{a_1}{b_1} = \frac{a_2}{b_2}, \frac{a_2}{b_2} = \frac{a_3}{b_3}, \frac{a_3}{b_3} = \frac{a_4}{b_4}, \text{ Softing } 1$$

(XI-XII)—3

ইহাদের প্রত্যেকটি – একটি ধ্রুবক m ধরিলে,

 $a_1=mb_1,\ a_2=mb_2,\ a_3=mb_3,\ a_4=mb_4,\$ ইত্যাদি হয় ৷ অতএৰ, সাধারণভাবে বলা যায় A=mB.

(b) ব্যস্ত (ভেদ ঃ একটি চল x যথন অপর একটি চল y-এর অন্থোক্ত  $\frac{1}{y}$ -এর স্বিতি সরল ভেদে থাকে অর্থাং যথন  $x \propto \frac{1}{y}$  ভেখন বলা হয় যে, x ও y ব্যস্ত ভেদে বহিয়াছে।

নেক্ষেত্রে  $x = m \frac{1}{n}$ , যেখানে m একটি ধ্বক। অর্থাৎ. xy = m.

ন্দে ভেদের একটি উদাহরণ এইরপে: একটি কাজ 20 জন মজুরে 4 ঘণ্টার করিলে, সেই কাজ 10 জন মজুরে 8 ঘণ্টার করিবে। এখানে মজুরের সংখ্য যে অনুপাতে 20 হইতে 10এ নামিয়াছে, সময়ের পরিমাণ সেই অনুপাতে 4 হইতে মঘণ্টার বাডিয়াছে। উভর ক্ষেত্রে মজুরের সংখ্যা  $\times$  কার্যকালের ঘণ্টার সংখ্যা=  $20 \times 4 = 10 \times 8$ ; অভএব, x যদি মজুরের সংখ্যা এবং y যদি কার্যকালের ঘণ্টার সংখ্যা হয়, তেনে xy = m বা একটি জনক সংখ্যা। অর্থাৎ,

$$x = m \cdot \frac{1}{y},$$

$$\forall x < \frac{1}{x}.$$

অনুকংগ, একই ক্ষেত্রফলবিশিষ্ট গ্রিভুজের ক্ষেত্রফল A এবং উহাদের ভূমি ও উচ্চত। যদি যথাক্রমে b ও h হয়, তবে  $\frac{1}{2}bh=A$  বা bh=2A; স্পষ্টতঃ এখানে 2A একটি ফ্রকে এবং উহা যেন=k; তাহা হইলে,

$$bh = k$$
 of  $b = k \cdot \frac{1}{h}$ ;

- $h \sim rac{1}{h}$  এবং দেই কারণে b ও h ব্যস্ত ভেদে রহিয়াছে।
- (ে) যৌগিক ভেদ ঃ একটি চলরাশি যথন একাধিক চলরাশির ওণফলের সহিত সরল ভেদে থাকে, তথন প্রথম রাশিটি অপর রাশিগুলির সহিত যৌগিক ভেদে রহিয়াছে—এইরপ বলা হয়।
  - (i) এই সংজ্ঞান্ত্রনারে A যদি B ও C-এর সহিত যৌগিক ভেদে থাকে, তবে  $A \propto BC$  অর্থাৎ A = mBC যেথানে m একটি ধ্রুবক।

দিনমজুরের মাসিক আর তাহার দৈনিক মজুরী ও মাধে তাহার কাজের দিনসংখ্যার উপর নিভর করে। ইহ্ একটি যৌগিক ভেদের উদ।হরণ। স্থতরাং এক্ষেত্রে

মাসিক আয় « (দৈনিক মজুরী × দিনসংখ্যা)।

(ii) আবার, A যদি B-এর সহিত সরল ভেদে এবং C-এর সহিত ব্যস্ত ভেদে থাকে, তবে গরিতে হয় যে, A রাশিটি B এবং  $\frac{1}{C}$ -এর সহিত যৌগিক ভেদে রহিয়াছে, অগাং তথন A=m.B.  $\frac{1}{C}=m$   $\frac{B}{C}$ , যেখানে m একটি ধ্বক।

v বেগে s দ্বন্ধ অভিক্ষণের সময় যদি t হয়, তবে t অবশুই s-এর সহিত সবল ভেদে এবং v-এর সহিত বাজ ভেদে থাকিবে, অর্থাং  $t\times \frac{s}{v}$ ; সভগং t এক্ষেত্রে  $s = \frac{1}{v}$ -এর সহিত যৌগিক ভেদে রহিয়াছে।

### 3'2. একটি অভ্যাবশাক প্রভিত্ত :

 $A,\ B$  ও C যদি গমন তিনটি চলবাশি হয়, যে  $A \times B$  যথন C এর মান স্থির (ব, মপ্রিবর্তিত) এবং  $A \times C$  যথন B-এর মান স্থির, তবে  $A \propto BC$  যথন B-এবং C উভয়ের মান প্রিবর্তনশীস।

ষ্দি  $A \times B$  যথন (' অপরিবর্তিত থাকে এবং  $A \propto$  (' যথন B অপরিবর্তিত থাকে, তবে প্রমাণ করিতে হুইবে যে  $A \propto BC$ .

সরা যাক, যগন B-এর মান  $b_1$  ৭বং C-এর মান  $c_1$ , তথন A-এর মান যেন  $a_1$  এবং যগন B-এর মান  $b_2$  এবং C-এর মান  $c_2$ , তথন A-এর মান যেন  $a_2$  হয়। স্প্রতঃ, A-এর মান  $a_1$  হহতে  $a_2$  ও পরিব্ভিত হহবে তথনই ম্পন  $\{1\}$  B এর মান  $a_1$  হইতে  $b_2$ -তে এবং  $\{2\}$  C- এর মান  $a_1$  হইতে  $a_2$ -তে পরিব্ভিত হর, তথন যদি C-এর মান  $C_1$ ই লাকে তবে A এর মান  $a_1$  হইতে স্বাস্থিত স্বাস্থিত হয়েছে পারে না। উহা যেন তথন  $a_1$  হইতে প্রিব্ভিত হয়। স্বাস্থিত স্বাস্থ স্বাস

সতরাং, ্র-এর মান 
$$-a_1$$
, যথন  $B$  ও  $C$ -এর মান মণ ক্রমে  $h_1$  ও  $e_1$  (1)

$$A$$
-এর মান =  $e'$ , যথন  $B$  ও  $C$ -এর মান যথাক্রেমে  $h_2$  ও  $e_1$  (2)

$$A$$
-এর মান =  $a_2$ , যথন  $B$  ও  $C$  এর মান যথাক্ষে  $b_2$  ও  $c_2$  (3)

 $\therefore$  (1) ও (2) হইতে ইহাই প্রতিপন্ন হব যে C-এর মান যতক্ষণ  $c_1$ -এ অপরিবর্তিত থাকে, ততক্ষণ  $\frac{a_1}{a'}=\frac{b_1}{b_o}$   $\cdots$  (4)

আবার, (2) ও (3) হইতে দেখা যায় ষে, B-এর মান ধর্ষন  $b_2$ -তে অপরিবর্তিত থাকে, তথন  $\frac{a'}{a_3}=\frac{c_1}{c_3}$  ...  $\cdots$  (5)

় (4) ও (5) ছইতে দেখা যায়

$$\frac{a_1}{a'} \times \frac{a'}{a_2} = \frac{b_1}{b_2} \times \frac{c_1}{c_2}, \quad \forall i, \quad \frac{a_1}{a_2} = \frac{b_1 c_1}{b_2 c_2},$$

অর্থাৎ, A-এর মান যে অনুপাতে  $a_1$  হইতে  $a_2$ -তে পরিবর্তিত হয়, দেই অনুপাতে BC-এর মান  $b_1c_1$  হইতে  $b_3c_2$ -তে পরিবর্তিত হয়।

স্থতরাং, A ∝ BC.

জ্বাসিন। B, C, D ইত্যাদির প্রত্যেকে যদি A-এর সহিত সরল জেদে থাকে যথন অপরগুলি অপরিবর্তনশীল, তাহা হইলে B, C, D, ইত্যাদির গুণফলের সহিত A সরল জেদে থাকে।

দৃষ্টান্ত। স্থানের পরিমাণ, স্থানের হার, সময় এবং মূলধনের প্রত্যেকের সহিত সরল ভেদে থাকে, যদি অপর চুইটি পরিবর্তনশীল না হয়; কিন্তু তিনটিই পরিবর্তনশীল হুইলে, স্থানের পরিমাণ ( স্থানের হার × সময় × মূলধন )-এর সহিত সরল ভেদে থাকে।

# 3'3. ভেদ-সম্মনীয় কয়েকটি প্রভিজা:

বিদ A∞B, তাহা হইলে B∝A.

প্রমাণ ঃ বেহেতু  $A \propto B$  ;  $\therefore$  A = mB ( m একটি ধ্রুবক ) ;

- $B = \frac{1}{m} \cdot A$ ,  $B = A ( কেনল! \frac{1}{m}$  একটি ধ্রবক )।
- (2) যদি  $A \propto B$  এবং  $B \propto C$  হয়, তাহ হইলে  $A \propto C$ .

প্রমাণ ঃ ধরা যাক, A=mB এবং B=nC, যেখানে m এবং n প্রবক।

- :. A=mn.C=একটি ঞ্বক × C. ∴ A ∝ C.
- (3) যদি  $A \propto C$  এবং  $B \propto C$ , তাহ' হইলে  $A \pm B \propto C$ , এবং  $\sqrt{AB} \propto C$ .

श्रा शंक, A = mC এवं B = nC, रायाति m दवं n अवक।

 $A\pm B=(m\pm n)C$ . কিন্তু  $m\pm n$  উভাই জবক।  $A\pm B\propto C$ . পুন-6,  $\sqrt{AB}=\sqrt{mCnC}=\sqrt{mnC^2}=C\sqrt{mn}$ .  $A\pm B\propto C$ .

(4) বলি  $A \propto BC$ , তাহা হইলে  $B \propto rac{A}{C}$  এবং  $C \propto rac{A}{B}$ .

প্রমাণ ঃ ধর যাক, A=m.BC, যেখানে m একটি ধ্রবক।

$$B = \frac{1}{m} \cdot \frac{A}{C} =$$
জ্বক  $\times \frac{A}{C}$ ;  $B \propto \frac{A}{C}$  অমুরপে,  $C \propto \frac{A}{B}$ 

(5) যদি  $A \propto B$  এবং  $C \propto D$  হয়, তাহা হইলে  $AC \propto BD$ .

প্রমাণ ং ধরা যাক, A=mB, এবং C=nD, যেখানে m এবং n উভয়ই ধ্রুবক।

- ∴  $AC = mn.BD = \text{\&for} \times BD$ ; ∴  $AC \propto BD$ .
- (6) যদি  $A \propto B$  হয়, তাহা হইলে  $A^n \propto B^n$ .

প্রমাণঃ ধরা যাক, A=mB, ষেখানে m একটি ধ্রুবক।

- $A^n = m^n B^n = \text{GRA} \times B^n$ ;  $A^n \propto B^n$ .
- (7) যদি  $A \propto B$ , তাহা হইলে  $AP \propto BP$ , যেখানে P একটি ধ্রুবক বা চলরাশি। প্রমাণঃ ধরা যাক, A = mB, যেখানে m একটি ধ্রুবক।
- (৪) যদি  $A \propto B$  এবং  $A \propto C$  হয়, তাহা হইলে  $A \propto B C$ .

প্রমাণ ঃ  $A \propto B$ , ∴ A = mB, যেখানে m একটি ধ্বক। প্রমাণ ,  $A \propto C$ , ∴ A = nC, m m m

$$\therefore B-C=\frac{1}{m}A-\frac{1}{n}A=\frac{n-m}{mn}A.$$

$$\therefore \quad A = \min_{n = -m} (B - C) = \operatorname{\$Fd} \times (B - C) \; ; \quad \therefore \quad A \propto B - C.$$

(9) যদি  $A \propto B$  এবং  $C \propto D$  হয়, তাহা হইলে  $\frac{A}{C} \propto \frac{B}{D}$ .

প্রমাণ ঃ  $A \propto B$ ,  $\therefore$  A = mB. অন্তর্গে C = nD, যেখানে m এবং n একটি ধ্রুবন।

$$\therefore \quad \frac{A}{C} = \frac{m}{n} \cdot \frac{B}{D} = \text{sects } \times \frac{B}{D}; \quad \therefore \quad \frac{A}{C} \propto \frac{B}{D}.$$

**দ্রেপ্টব্য।** তুই বা ততোধিক ধ্রবকের যোগফল, বিয়োগফল, গুণফল, ভাগফল প্রত্যেকেই একটি ধ্রুবক।

উদা. 1. যদি  $y \propto x$  ; এবং যদি x=12, যখন y=5 তবে x=18 হইলে, y-এর মান কত হইবে ?

ধরা যাক, y=mx, যেখানে m একটি ধ্রুবক।

.. y = 5 এবং x = 12 বসাইয়া, 5 = m.12; ..  $m = \frac{5}{12}$ ;

ে  $y = \frac{5}{12}x$ ; ে ব্ৰন x = 18,  $y = \frac{5}{12} \times 18 = \frac{15}{2} = 7\frac{1}{2}$ .

উদা. 2. যদি  $A \propto \frac{1}{B}$  প্রমাণ কর যে, যথন A=B, তথনই (A+B)-এর মান ক্ষত্তম।

থেতেতু 
$$A \propto \frac{1}{B}$$
; ...  $A = \frac{m}{B}$ ; ...  $AB = m$  ( একটি প্ৰুবক )।  $(A+B)^2 = (A-B)^3 + 4AB = (A-B)^2 + 4m$ ,

থেছেতু 4m প্রবৃক, অতএব, ইহার মান দ্বদা অপরিবৃতিত থাকিবে এবং  $(A-B)^2$ -এর মান 0 হুইলেই (A+B)-এর মান ল্ঘিষ্ঠ হুইবে।

 $\therefore$  যথন A-B=0 হয়, অর্থাৎ A=B হয়, তথনই A+B-এর মান লখিছ হইবে।

উদা. 3. যদি  $z \propto px + y$ , এবং যদি z=3, যথন x=1, y=2 এবং যদি z=5, যথন x=2, y=3, তাহা হইলে p-এর মান নির্ণয় কর।

ধরা যাক,  $z=m(px+\eta)$ , যেখানে m একটি ধ্রুবক।

ে 
$$z=3, x=1, y=2$$
 বদাইয়া,  $3=m(p+2)$  ... (1)

অমুরপে, 
$$5 = m(2p+3)$$
 ... (2)

:. (1)-কে (2) দিয়া ভাগ করিলে,  $\frac{3}{5} = \frac{p+2}{2p+3}$ ,

অপবা, 6p+9=5p+10; ... p=1.

উদা. 4.  $\eta$  তিনটি পদের যোগফলের সমান, যাহার প্রথম পঁদ  $\propto x^2$ , দিতীয় পদ  $\propto x$  এবং তৃতীয়টি গুবক, যদি  $\eta=6$ , 11, 1৪, যথন x ক্রমান্ত্রে =1, 2, 3; তাহা হইলে x এবং y-এর সম্পর্ক নির্ণয় কর।

ধরা যাক,  $y=mx^2+nx+p$ , যেখানে m, n, p ধ্বক।

কিন্ত, 
$$y = 6$$
, যথন  $x = 1$ ; ...  $6 = m + n + p$ . ... (1)

অমুরূপে, 
$$11 = 4m + 2n + p$$
 ... (2)

$$47. 18 = 9m + 3n + p. ... (3)$$

(3) 
$$n$$
 (2)  $n$   $n$  ,  $5m + n = 7$  ... (5)

(5) হইতে (4) বিয়োগ করিয়া, 2m=2; ∴ m=1. m-এর মান বসাইয়া, (4) হইতে, n=2; ∴ (1) হইতে, p=3. ∴ x এবং y-এর সম্পর্ক  $y=x^2+2x+3$ .

উদ।. 5. যদি  $a+b \propto a-b$ , প্রমাণ কর যে,  $a^2+b^2 \propto ab$ .  $a+b \propto a-b$  বলিয়া, a+b=m(a-b), যেখানে m একটি প্রবক।

$$a(m-1) = b(m+1)$$
.

$$\therefore a = \frac{m+1}{m-1} \cdot b = kh$$
, যেখানে  $k = \frac{m+1}{m-1} =$ একটি ধ্রুবক।

$$\therefore \quad \frac{a^2 + b^2}{ab} = \frac{k^2 b^2 + b^2}{kb^2} = \frac{k^2 + 1}{k} = \text{SFRP} \; ; \; \therefore \quad a^2 + b^2 \propto ab.$$

উলো. 6. 5 জন মজুরের 6 স্থাহের মজুরি 14 পা. 5 শি. হইলে, 4 জন মজুরের কত স্থাহের মজুরি 19 পা. হইবে ?

পরা যাক, y জন মজুরের z সপ্তাহের মজুরি = x পা.;

- .. ত অ y, যখন z জবক, এবং x ∞ z, যখন y জবক।
- $x \propto yz$ , যখন y এবং z উভয়ই পরিবর্তনশীল।
- .. e=m.yz, যেখানে m একটি গ্ৰুবক।

কিন্ত,  $x = 14\frac{1}{4}$ , যথন y = 5 এবং z = 6.

$$\therefore 14\frac{1}{4} = m \times 5 \times 6. \qquad \cdots \qquad \cdots \qquad (1)$$

এখন 🚁 যদি নির্ণেয় সপ্তাহ-সংখ্যা হয়, ভাহা হইলে,

মেতেত 
$$x = 19$$
 এবং  $y = 4$ ,  $19 = m \times 4 \times z_1$  ... (2)

.: (2)-त्क (1) मिया जान कतिया,

$$\frac{19}{14\frac{1}{4}} = \frac{4z_1}{5 \times 6}, \quad \therefore \quad s_1 = \frac{19 \times 4}{57} \times \frac{5 \times 6}{4} = 10.$$

: নির্ণের সমর = 10 সপ্তাহ।

উদা. 7. যদি 5 জন লোক 9 দিনে 10 হেক্টোআর জমি চাষ করিতে পারে, তবে 25 জন লোক 30 তেক্টোআর জমি কঙদিনে চাষ করিবে ?

ধরা যাক, x দিনের সংখ্যা, y জমির মাপ ( হেক্টো মারে ), z লোকের সংখ্যা. । তাহা হইলে,  $x \propto y$ , যখন z গুলক থাকে এবং  $x \propto \frac{1}{x}$  যখন y গুলক থাকে ।

$$x \propto \frac{y}{z}$$
, অর্থাৎ,  $x = k \frac{y}{z}$  যেখানে  $k$  একটি ধ্রুবক।

যথন, x = 9, তখন y = 10 এবং z = 5.

 $9 = k.\frac{10}{8}$ ;  $k = \frac{9}{2}$ 

পুনশ্চ যথন,  $y=30,\ z=25,\$ তথন  $x_1$  নিপের দিন-সংখ্যা হইলে,  $x_1=k,\frac{40}{25}=\frac{49}{9}\times\frac{80}{25}=5\frac{2}{8}$  দিন।

উদা. 8. যদি  $x+y \propto z$ , যথন y প্রবক্ত বেং  $x+z \propto y$ , যথন z প্রবক্ত প্রবিত্ননীল )।

 $x+y \propto z$ , বজিয়া x+y=kz, যেখানে k একটি গ্ৰুক।

 $x + y + z = kz + z = (k+1)z = \$ 4 \Rightarrow xz.$ 

 $x+y+z \propto z$ , যধন y ঞ্চবক।

पूजाक, x+2 (1): : x+2=1111, (गर्श का एकि धनक।

 $x+y+z=my+y=(m+1)y=9999\times y.$ 

.. x+y+z < y, বধন z ঞ্বক।

∴ x+y+z = yz, যখন y এবং z উভয়ই চল।

উলা. 9. যদি কাষের প্রিয়াণ আক্ষিণপ্রার ঘনমূল বিখন সময় একট অগাৎ ধনক থাকে , সময়ের বর্গমূল যথন ক্ষিণিপ্রা একট থাকে , ভাবে যে কাছটি 24 জন লোক এই ঘন্তা করিছে পারে, তাত্তি এক-প্রুমাংশ কাজ 3 জন লোকে কভ সময়ে করিছে ?

धत याक, इ परिया ५-४ त्याक त्याक हा भित्राण का क करते।

তাহা হইলে প্রদন্ত শর্তান্তসারে,

æ ०४ प्र<sup>ते</sup> वथम ड, ऋखताः ड<sup>ते</sup> अवक्

र र र र र विश्व । स्टब्स् । विश्व ।

ত ৩৫০°, মধ্য  $\eta$  ৩০° z উভয়ই, ত ৩৫০°,  $\eta^{\frac{1}{2}}$  এবং  $z^{\frac{1}{2}}$  চলৱাশি,  $x \propto y^{\frac{1}{2}}$   $z^{\frac{1}{2}}$ .

ं. राम्पार्थ के ( मर्यन हे ब्लिप मरक्र राज्या ).

এখন, প্রাদত্ত শর্ত হইতে,

x=1, वधन y=24, धवर s=25.

 $1 = k \sqrt[3]{24} \cdot \sqrt{25}. \qquad ... \qquad (1)$ 

মাদ  $z_1$  নির্দেই ঘণ্টার সংখ্যা কৃষ্ণায়, ভাষা ইইলে  $\frac{1}{2}$  এবং 3 মথাক্রামে কাজের প্রিমাণ x এবং লোকের সংখ্যা, y স্চিত্ত ক্রিবে; ভাষা ইইলে

 $\frac{1}{8} = k \sqrt[8]{3} \sqrt{g_2}, \qquad \dots \qquad (2)$ 

ন্তভরাং, সমীকরণ (1)-কে সমীকরণ 😢 ছাবং ৬পে করিলে,

$$5 = \frac{\sqrt[8]{24} \times 5}{\sqrt[8]{3} \times \sqrt{z_1}} = \frac{\sqrt[8]{8} \times 5}{\sqrt{z_1}};$$

..  $\sqrt{z_1} = \sqrt[5]{8} = 2$ ; ..  $s_1 = 4$ .

উদা 10. একান দোলকেল দৈখা । <u>পুণ্ড ছিলাটোৰে লক্তনাখাৰে বৰ্</u>য়

4'ৰ মিটার দীগ দোলক মিনিয়ে প্ৰদাৰত হতিলে, যে ,দালক মিনিটে প্ৰদাৰ দোলে, তাহার দৈখ্য নিশ্য কর।

পরা ধাক, দোলকের দৈয়া। মিচার,। পরি সিনিটে দোলকের সংখ্যা। তাহা হ**ইলে প্রদত্ত শর্ত হইতে**,

তেতে কু I দেখাও কিডার ইউলো, দেখানের সংগ্রাপুর .

$$\therefore$$
 4'8 =  $\frac{k}{27^3}$ ;  $\therefore$   $k = 4'8 \times 27^3$ ;

উদ্ধান 11. বকটি শ্লাহ ন সাঙ্ব গোড়কেব ছেছত শ্লা জান সাভব গোলকেব সভিত এককেনীয় কবা গোড়কার । শ্লাহান গোড়কাবি একন একেই সাতুর এবা একই বাহ্নাস্থাবিশিষ্ট নিরেও গোসকের ই থান। সান একই সাতুর গোসকর্ত্তাক করেন ২ (বাহান্ত্র), তেবে জি শ্লাহান কেন্দ্রের ছান্ত্রাক স্থাবিশিষ্ট নিরেও লাহান্ত্রাক করেন।

ধরা যাক, গোলকতির বহিবাদেশ R এবা এ দাৰুর R বাদাধনিশিষ্ট নিরেট গোলকের ওজন IV, গোলকতির অন্তব্যাদাধ ( অর্থাং গোলককে ১ শুন্তা ভানের ব্যাদার্থ ৮. এসং এ ধাতুর ৮ ব্যাদাধনিশিষ্ট নিরেট গোলকের ওজন ম.

অভ্রব, প্রদান্ত শ্রেষ্টার্টার্টার,  $W=kR^3$  এবং  $w=kr^3$  ( যথন k ধালক )।

আলোচ্য গোলকটার ওজন (W-w) এবং প্রদন্ত শ্ভ হইতে  $W-w=\frac{7}{8}W$ . তাহা হটলে,  $k(R^3-r^3)=\frac{7}{6}kR^3$ , অথবা  $\frac{1}{8}R^3=r^3$ :

$$R^3 = 8r^3$$
, with  $\frac{r}{R} = \frac{1}{2}$ .

উদা 12. কোন গতিশীল বিদুর গতিবেগ বিভিন্ন কিলোমিটারে বিভিন্ন, কিন্তু একই কিলোমিটারের মধ্যে গতিবেগ একই।

বে-কোন কিলোমিটারে গতিবেগ ∝

া

ত্র কিলোমিটার ভ্রমণ আরম্ভের পূর্বে অতিক্রান্ত কিলোমিটারের সংখ্যা

যদি দ্বিতীয় কিলোমিটার 2 ঘণ্টায় যায়, তবে n-তম কিলোমিটার অতিক্রম
করিতে ইহার কত সময় লাগিবে ?

স্তরাং, যদি n-তম কিলোমিটারে গতিবেগ  $v_n$  এবং n-তম কিলোমিটার অতিক্ষের সময় যদি  $t_n$  হয়, তাহা হইলে,

$$t_n = \frac{m}{v_n}$$
, যখন  $m$  একটি গ্ৰুবক-সংখ্যা।

প্রদারে,  $v_n=\frac{k}{n-1}$ , যথন k প্রবক ; অতথ্য,  $t_n=\frac{m}{k}\,(n-1)$ .

স্পষ্টতঃ,  $\frac{m}{k}$  নির্ণীত হইলে,  $t_n$ -এর মান পাওয়া যাইবে।

যেহেতু দিতীয় কিলোমিটার অতিক্রম করার সময় = 2 ঘণ্টা,

$$\therefore 2 = \frac{m}{k} \cdot 1 \; ; \quad \therefore \quad \frac{m}{k} = 2 \; ;$$

$$\therefore t_n = 2(n-1),$$

অর্থাৎ, n-তম কিলোমিটার অতিক্রম করিতে 2(n-1) ঘটা লাগিবে।

উদা 13. একথানা রেল-ইঞ্জিন ( গাড়ী সংযুক্ত না থাকিলে ) ঘণীয় 24 কিলোমিটার বেগে যাইতে পারে, ইহার গতিবেগ সেই পরিমাণে দ্রাস পায়, যে পরিমাণ ত্র সংযুক্ত গাড়ীর সংখ্যার বর্গমূল। 4 খানা গাড়ীর সহিত ঐ ইঞ্জিনের গতিবেগ ঘণ্টায় 20 কিলোমিটার হইলে, উর্ধ্বসংখ্যায় কতগুলি গাড়ী লইয়া ঐ ইঞ্জিনটি চলিতে পারে ?

ধরা যাক, নির্ণের গাড়ীর সংখ্যা = x. তাহা হইলে x থানা গাড়ী লইয়া ইঞ্জিনটির ঘণ্টায় গতিবেগ = 24-m.  $\sqrt{x}$  কিলোমিটার ( যথন m গ্রুবক )।

যথন x (অর্থাৎ গাড়ীর সংখ্যা )=4, তথন ইঞ্জিনের গতিবেগ ঘণ্টার 20 কিলোমিটার;

:.  $20 = 24 - m \sqrt{4} = 24 - 2m$ ; weight, m = 2.

স্তবাং, x থানা গাড়ীর সহিত ইঞ্জিনের ঘণ্টার গতিবেগ =  $24-2\sqrt{x}$  কিলো-মিটার ;

ইহা স্পষ্ট যে, x-এর মান বৃদ্ধির সহিত ইঞ্জিনের গভিবেগ হাসপ্রাপ্ত হয়। x-এর মান কত হইলে ইঞ্জিনের গভিবেগ শৃহ্য (0) হয়, তাহাই নির্ণয় করিতে 'হুইবে।

ধর যাক, x-এর মান  $x_1$  হুইলে, ইঞ্জিনের গতিবেগ শৃশু হয়। সেক্টেরে,  $0=24-2\sqrt{x_1}:\dots$  ্ $x_1=12:\dots$   $x_1=144$ . কমপক্ষে 144 খানা গাড়ী সংযুক্ত করিলে ইঞ্জিনটির গতিবেগ থাকে না। স্তরাং, 144 অপেক্ষা 1 খানা গাড়ী কম লইয়া ইঞ্জিনটি চলিতে পারে।  $\dots$  নির্ণের গাড়ী-সংখ্যা 143.

উদা. 14. যদি x, y, z তিনটি চলরাশি হয়, কিন্তু y+z-x ধ্বেক হয় এবং যদি  $(x-y+z)(x+y-z) \propto yz$ , প্রমণ কর যে,  $x+y+z \propto yz$ .

প্রা থাক, 
$$y+z-x=k$$
 ··· (1)

এবং 
$$(x+y-z)(x-y+z)=myz$$
 ··· (2)

যেখানে k এবং m ধ্রুবক।

(2) হইতে, 
$$x^2 - (y - z)^2 = myz$$
;

$$x^2 - (y+z)^2 = (m-4)yz$$
, [উভয় পক্ষে  $-4yz$  যোগ করিয়া]

• 
$$\forall i$$
,  $(x+y+z)(x-y-z) = (m-4)yz$ ,

বা. 
$$(x+y+z)(-k)=(m-4)yz$$
 [(1) ইইডে ];

$$\therefore \quad x+y+z=\left(\frac{4-m}{k}\right)yz=\sqrt[4m]{4}\times yz.$$

 $x+y+z \propto yz$ .

#### প্রগ্রমালা 10

- 1. The A ≈ B CR ≈ C, (wats (N, A ≈ B C. [C. U. 1925]
- 2. যদি  $P \propto \frac{1}{Q}$  এবং Q=10, যখন P=2, এচা চইলে যখন Q=8, এখন P কত হইবে ?
- 3.  $\pi^{(p)}P \times QR$ , इन्हें  $\pi^{(p)}P = 6$ , यथन Q = 9 इन्हें R = 10, 'इन्हें Q = 5 धार R = 3 हरेल P कंछ हरेंदर ?
- 4. যদি  $x^2 = y^3$  এবং x-2 যথন y=3, প্রাহারটাল x বেং y-এর মধ্যে করে 1
- 5.  $x = x < y^2 < x < x < \frac{1}{x}$  and y = 4 and x = 2 solved ana
  - মদি x² → y² ∝ x² − y², প্রাণ্কর ম, x × y.

$$a^{9} + b^{9} + c^{9}$$
  $aa' + bb' + cc'$   
 $aa' + bb' + cc'$  [C. U. 1922]

- 8. যদি  $x\eta \propto x^2 + y^2$  এবং  $\eta \sim 4$ , যধন  $x \sim 3$ , তাই ২টালে x এবং  $\eta$ -বের মধ্যে সম্পর্ক নির্ণিয় করে।
  - 9. यमि x+y x x-y, প্রমাণ কর যে,
    - (i)  $x^2 + y^3 \propto xy$ ,
    - (ii) ax + by > px + qu, (四部) a, b, p, q 至 4 [ C. U. 1936]
- 10. (i) যদি  $\eta < \xi$ ইটি পদের মোগফল, মাহার কেট  $\epsilon_{x}$ , এবং জন্ম  $\frac{1}{r}$  এবং মদি  $\eta = 4$ , মধন x = 1 এবং  $\eta = 5$ , যধন x = 2, তাহ হুইলে x এবং  $\eta$  এর মদের সম্পর্ক নির্ণয় করে।
- (ii) যদি y তেওঁটি পদের মোগেফল হয়, যাহ'ব পথম পদ  $\alpha$  x এবং দি ট্যা পদ  $\alpha$   $\frac{1}{x^2}$  এবং যদি y=6, যথন x=1 এবং y=5, যথন x=2, ভাহ' হটলে x এবং y-এর মধ্যে সম্পর্ক নির্ণয় কর।
  - 11. y যদি ভিনটি পদের যোগফল, যাহার প্রপন্ন পদ ক্রবক, দ্বিভীয় পদ 🤕 🛪

এক ভূতীয় পদ  $\propto x^2$ , যদি y=0, -12, -32, যধন x= যধাক্ম 3,5,7, ভাছা ভূতিক x এবং y-এর মধ্যে সম্পেক নির্দ্ধ কর।

- 12. যদি  $\mu^2 = (a^2 x^2)$  ধব'  $\mu = \frac{b^2}{a^2}$ । যথন  $x = -a^2 b^2$ , ভাহা হটলে x এবং y-এর মধ্যে সম্পর্ক নির্ণয় করে।
  - 13. ¥ \* a ∝ h ≤ 4 h ∞ e, MN1° ₹ € (N, (a² + h²) \* ∞ (°.
  - 14. যদি x+y x x-u, প্রমাণ কর মে, x3+u3 x xu(x+y).
- 15. (i) যদি  $x+y>z+\frac{1}{z}$  এবং  $x-y\propto z-\frac{1}{z}$ , এবং z=2, যথন x=3েবং y=1, ভাত হউলে x এবং z এব মধ্যে সম্প্রক নিগন্ধ কর।
- (ii) কোন বশ্বর ভর (m) । ইহার ঘন হ (p), যথন আয়তন (r) গুবক এবং ভর  $\infty$  ইহার আয়তন, যথন ঘনহ গবক। যদি একক আয়তনের এবং একক ঘনত্রের কোন বশ্বর ভবকে ভরের একক বলং যায়, তাহা হছালে দেখা ও যে, m=pv.

[C. U. 1929]

- 16. যদি 13 জন লোক প্রত্যেও ৪ ঘণ্ট কাজ করিয়া 15 দিনে 7 টাকা আয় করে, তব্য 59 জন লোক প্রত্যেও ৪ ঘণ্ট কাজ করিয়া 121 দিনে কও আয় করিবে ৮
- 17. কেট পে ছুলামের ছুলিবার সময় ∝ উভার দেখোর বর্গমূল; যদি 39'2 সে.মি. দীর্ঘ একটি পেডুলাম এক সেকেরেও একবার দোবে, ভাভা হইলে যে পেডুলাম মিনিটে 56 বার দোলে, ভাছার দৈর্ঘ্য কত ?
- 18. গোলকের ঘনফল এ (বাংলার) : প্রমাণ কর যে 3.4 এবং চ সেমি., ব্যাসাধের তিনটি গোলক গলাইয়া একটি গোলকে ক্লাথরিত করিলে, ভহার ব্যাসাধ 6 লে.মি. হইবে ?
- 19. স্থা 10 জন লোক প্রত 12 মণ্টা ক'র্য কাজ করিয়া 3 দিনে 7 টু ্ছক্টো মার জমির ঘাস কাটিতে পারে, ৩বে ৮ জন লোক প্রত্যাহ 16 ঘণ্টা কাজ করিয়া ক্তুদিনে 9 তেক্টোআর জমির ঘাস কাটিতে পারিবে স
- 20. তথাটি স্বৰ্ণগোলকের ব্যালার্য দ এবা দ', উচ্চাদিগকে গলাইয়া একটি গোলক প্রস্তুত করা হইল। যদি মনে করা হয় যে, গোলকের আয়তন এ (ব্যালার্য) তবে এই গোলকটির ব্যালার্য কত ছইবে ?
- 21. শাদি x, y এবা z চলবা নি হয়, কিন্তু x+y+z শাবেক হয় এবা যাদি (x-y+z)  $\times (x+y-z) \propto yz$ , পাখাল কর যে,  $yz \propto (y+z-x)$ .
  - 22. যদি  $s \propto y$  এবং  $y \propto x$ , প্রমাণ কর বে,  $x + y + s \propto (yz)^{\frac{1}{3}} + (sx)^{\frac{1}{3}} + (xy)^{\frac{1}{3}}$ .

- 23. পিরামিডের আরতন ∝ ইহার উচ্চতা × ভূমির ক্ষেত্রফল; যথন কোন পিরামিডের ভূমির ক্ষেত্রফল 60 বর্গমিটার এবং উচ্চতা 14 মিটার, ইহার আয়তন 280 ঘনমিটার। যে পিরামিডের আয়তন 390 ঘনমিটার, উচ্চতা 26 মিটার, উহার ভূমির ক্ষেত্রফল কত ?
- 24. গোলকের আয়তন  $\propto$  (ব্যাসার্ধ) $^3$  এবং গোলকের বক্তল  $\propto$  (ব্যাসার্ধ) $^2$ । প্রমাণ কর যে, (গোলকের আয়তনের ) $^2$   $\propto$  (গোলকের বক্তলের ) $^3$ ।

[ C. U. 1924]

- 25. তরল পদার্থের চাপ (pressure)  $(P) \propto$  গভীরতা (depth) (d), যথন ঘনত্ব (density) (D) প্রথন, আবার চাপ  $(P) \propto$  ঘনত্ব (D), যথন গভীরতা (d) প্রথন (ব তরল পদার্থের গভীরতা 32, ঘনত্ব 1 হইলে, চাপ 1, ঘনত্ব 16 হইলে, কত গভীরতায় চাপ 2 হইবে ?
- 26. বৃত্তের ক্ষেত্রফল 

  (ব্যাদার্ধ)², যে বৃত্তের ব্যাদার্ধ 7 মিটার তাহার ক্ষেত্রফল

  154 বর্গমিটার। 105 মিটার ব্যাদার্ধবিশিষ্ট বৃত্তের ক্ষেত্রফল কত ?
- 27. কোন খেলার মাঠের দৈর্ঘ্য এবং প্রস্তের অফুপাত ৪:7; দর্শকদের বিদিবার জন্ম উক্ত মাঠের శ্ব অংশ সংরক্ষিত। দর্শকদের বিদিবার স্থান তিনগুণ বাডাইতে হইবে, যদি নৃতন মাঠের প্রস্থ পূব্ধপ্রের দ্ব অংশ হয়?

  [C. U. 1932]
- 28. 12 সে.মি. উচ্চ এবং 30 বর্গ-সে.মি. ভূমিবিশিষ্ট কোন শঙ্কুর (cone)৷আয়তন 120 ঘন-সে.মি.। শঙ্কুর আয়তন ∝ ইহার উচ্চত।×ভূমির ক্ষেত্রফল হইলে, 20 সে.মি. উচ্চ এবং 144 বর্গ-সে.মি. ভূমিবিশিষ্ট অপর একটি শঙ্কুর আয়তন কত ?
- 29. লম্ব-বৃত্তাকার চোণ্ডের আয়তন ∝ ( ভূমির ব্যাসার্ধ )², যথন উচ্চতা একই (constant), ∝ উচ্চতা, যথন ভূমি একই। ভূমির ব্যাসার্ধ 2 মিটার এবং উচ্চতা 7 মিটার হইলে, লম্ব-বৃত্তাকার চোণ্ডের আয়তন ৪৪ ঘন-মিটার; যে লম্ব-বৃত্তাকার চোণ্ডের আয়তন ৪৪ ঘন-মিটার; ফে লম্ব-বৃত্তাকার চোণ্ডের আয়তন ৪৪ ঘন-মিটার হইলে, উচ্চতা কত?
- 30. 1 সে.মি. পুঞ্জ, 6 সে.মি. এবং ৪ সে.মি. ব্যাসবিশিষ্ট তুইখানা বৃত্তাকার সোনার পাতকে গলাইয়া 1 সে.মি. পুঞ্জ একখানা বৃত্তাকার পাত করা হইল। যদি বৃত্তের ক্ষেত্রফল ∝ ( বৃত্তের ব্যাসের )³, নৃতন পাতখানির ব্যাস কত?
- 31. আলোর উৎস-কেন্দ্র হইতে আলোর-ভাস্বরত।  $\infty (\frac{1}{648})^2$ ; একটি জ্বলস্ত মোমবাতি হইতে 3 সে.মি. দূরে অবস্থিত একথানি পুস্তককে কতদ্রে স্থানাস্তরিত করিলে, পুস্তকের উপর পূর্ব ভাস্বরত। কমিয়া অর্ধেক হইরা যাইবে ?

- 32. এক সে.মি. ব্যাসবিশিষ্ট একটি কাচের নিরেট গোলককে ফুলাইয়া 3 সে.মি. ব্যাসবিশিষ্ট একটি শৃগুগভ গোলকে পরিণত করা হইল। ইহার অন্তস্থ শৃগু স্থান যদি ঐ শৃগুগভ গোলকের সহিত এককেন্দ্রীয় গোলকাক্ষতি হয়, তবে শৃগুগভ গোলকটির কাচের বেধ কত? [গোলকের আয়তন ∞ (ব্যাসের)³]
- 33. কোন-কিছু স্থির অবস্থান হইতে পতিত হইলে, পতন-স্থান হইতে ইহার দূরত্ব ∝ (পতন-সময় )<sup>2</sup>। যদি 402½ ফুট নিচে আসিতে কোন বস্তার 5 সেকেণ্ড সময় লাগে, তবে 10 সেকেণ্ডে উহা কত নিচে আসিবে এবং দশম সেকেণ্ডে কত নিচে আসিবে ?
- 34. (গ্রহের আবর্তনের সময়) ° ∞ ( সূর্য হইতে ইহার দূর্য ) °। সূয হইতে পৃথিবী ও মঙ্গলের দূর্য যথাক্রমে 9125 কোটি এবং 6.6 কোটি মাইল ধরিয়া লইলে, সূর্যকে একবার প্রদক্ষিণ করিতে মঙ্গলের কত সময় লাগে ?

্মিনে কর, P নির্ণেয় দিনসংখ্যা এবং D 1 কোটি মাইল এককে দূরত্ব ;  $P^2=kD^2$ , যথন k ধ্রুবক ; ইত্যাদি ]

35. त्रोशाम्खाद मान ∞ ( म्लाद त्राप्त )², यथन त्यथ अवक ;
 ∞ ( म्खाद त्यथ ), यथन त्राप्त अवक ।

তুইটি রোপ্য মুদার ব্যাদের অন্পাত 4:3, ইহাদের বেধের অন্পাত কত হইলে, প্রথমটির মান দিতীয়টির 4 গুণ হইবে ? [B. U. P. E. Preper, 1885]

- 36. হীরকের মূল্য  $\infty$  (ইহার ওজন) $^2$ , ( রুবিমূল্য) $^2$   $\infty$  (ইহার ওজন) $^3$ । a ক্যারাট ওজনের হীরকথণ্ডের মূল্য b ক্যারাট ওজনের রুবির মূল্যের m গুণ এবং উহাদের মোট মূল্য c পাউও (£) হইলে, n ক্যারেট ওজনের একথণ্ড হীরক ও n ক্যারেট ওজনের একথণ্ড হবির মূল্য কত ?
- 37. ইঞ্জিনের কয়লা-খরচ ∞ (গতিবেগ)²; যথন ইঞ্জিনের গতিবেগ ঘণ্টায় 16 কিলোমিটার, ঘণ্টায় কয়লা-খরচ 2 টন। প্রতি টন কয়লার মূল্য 10 শি. এবং প্রতি ঘণ্টায় ইঞ্জিন চালাইবার অক্যান্ত খরচ 11 শি. 3 পে. হইলে, ইঞ্জিনখানার 100 কিলোমিটার যাইতে কমপক্ষে কত ব্যর হইবে ?

### চত্ৰ্ অপ্ৰায়

# প্রগতি ( Progression ) ?

# সমান্তর-শ্রেণী (Arithmetical Progression)

41. সংজ্ঞাঃ কোন সংখ্যার সহিত একটি নির্দিষ্ট (ধন বা ঋণ) ধ্রুবক (constant)কে ক্রমশঃ যোগ করিতে থাকিলে যে বিভিন্ন সংখ্যাসমূহ পাওয়া যায়, সেই সংখ্যাসমূহ একটি সমান্তর-শ্রেণী (Arithmetic Progression) উৎপন্ন করে। উক্ত নির্দিষ্ট প্রবকটিকে ঐ শ্রেণীর সাধারণ অন্তর (common difference), এবং বিভিন্ন সংখ্যাসমূহের প্রত্যেকটিকে ঐ শ্রেণীর এক একটি প্রদ (term) বলে। যথা,

নিম্লিখিত শ্রেণীসমূহের প্রত্যেকটিই সমান্তর-শ্রেণী:

- 5, 8, 11, 14, ইত্যাদি; 5, 1, -3, -7, »; (i) 2.
  - 1, (ii) 9,
  - (iii) a, a+b, a+2b, a+3b, a+4b, a+3b
  - (iv) a, a-b, a-2b, a-3b, a-4b, a-4b

প্রথম শ্রেণীতে ৪-এর সহিত ক্রমশঃ 3 যোগ করিয়া, ঐ শ্রেণীর অক্তান্ত সংখ্যাসমূহ ক্রমার্যরে পাওরা গিয়াছে; অতএব, এক্ষেত্রে 3 ঐ শ্রেণীর সাধারণ অন্তর এবং 2. 5. 8. 11. 14. ইত্যাদি দংখ্যাসমূহ নথাক্রমে ঐ শ্রেণীর প্রথম, দিতীয়, তৃতীয়, চতুর্থ ও পঞ্ম পদ। অন্তরপে, দিতীর শ্রেণীতে - 4 দাধারণ অন্তর এবং 9, 5, 1, -3, - 7. ইতাাদি সংখ্যাদম্ভ যথাক্রমে উহার প্রথম, দ্বিতীর ও তৃতীয় পদ, ইত্যাদি। এইরূপ তৃতীয় শ্রেণীতে b সাধারণ অন্তর এবং a, a+b, a+2b, a+3b, ইত্যাদি সংখ্যাসমূহ যথাক্রমে প্রথম, দিতীয়, তৃতীয় ও চতুর্থ পদ। চতুর্থ শ্রেণীতে সাধারণ অস্তর -b এবং a, a-b, a-2b, ইত্যাদি সংখ্যাসমূহ যথাকমে প্রথম, দিতীয় ও তৃতীয় পদ।

উল্লিখিত দৃষ্টান্তগুলি হইতে স্পষ্টই দেখা যায় যে, কোন সমান্তর-শ্রেণীভুক্ত সংখ্যাসমূহের যে-কোন ছুই দরিহিত পদের অন্তর্ফল অপর যে-কোন ছুই স্ত্রিহিত পদের অন্তর্ফলের সমান। সেইজন্ম সেই অন্তর্ফলকে সাধারণ অন্তর বলে।

4'2. কোন সমাস্তর-শ্রেণীর n-তম পদ নির্ণয় (To find the nth term of an A. P. ):

কোন সমান্তর-শ্রেণীর প্রথম পদ a এবং সাধারণ মন্তর যেন b, তাহা হইলে ম্পাষ্টতঃ, উহার

ছিতীয় পদ = a + b = a + (2 - 1)b = a + ( পদসংখ্যা – 1)b; ততীয় পদ = a + 2b = a + (3 - 1)b = a + (পদসংখ্যা - 1)b;

চতুর্থ পদ = 
$$a + 3b = a + (4 - 1)b = a + ($$
পদ শ্বা – 1) $b$ ;

দশম পদ = a + 9b = a + (10 - 1)b = a + (পদসংখ্যা - 1)b;

একবিংশতিতম পদ = a + 20b = a + (21 - 1)b = a + (পদসংখ্যা – 1)b;

.. n-ভম পদ = a+( পদসংখ্যা - 1)b = a+(n-1)b.

উদা. 1. 10, 8, 6, 4, ইত্যাদি সমাস্তর-শ্রেণীটির উনবিংশতিতম পদটি নির্ণয় কর।

এক্ষেত্রে, প্রথম পদ = 10; সাধারণ অন্তর = 8 - 10 = -2.

 $\therefore$  উনবিংশতিতম পদ = 10 + 18(-2) = 10 - 36 = -26.

উদা. 2. 5, 7, 9, 11, ইত্যাদি সমান্তর-শ্রেণীর কোন্ পদটির সাংখ্যমান 25 হইবে ?

n-তম পদের সাংখ্যমান যেন 25.

তাহা হইলে, 25 = 5 + (n-1).2 = 5 + 2n - 2 = 2n + 3; ... n = 11. অভএব, একাদশ পদের সাংখ্যমান 25.

4'3. কোন সমাস্তর-শ্রেণীর যে-কোন হুই পদ দেওয়া থাকিলে প্রেণীতিকে নির্ণয় করিবার প্রণালী (Given any two terms of an A. P., to find it completely):

নিম্লিখিত দৃষ্টাস্কগুলি দারা প্রক্রিয়া-পদ্ধতি পরিদাররূপে ব্ঝানো যাইতেছে।

উদা. 1. কোন সমান্তর-শ্রেণীর সপ্তম ও ত্রোদশ পদ-তৃইটি যথাক্রমে 34 এবং 64 : শ্রেণীটি নির্ণয় কর।

নির্নেয় শ্রেণীর প্রথম পদ ৫ এবং নাধারণ অন্তর যেন b;

তাহা হটলে, দথম পদ = 
$$a + (7-1)b = a + 6b = 34$$
, ... (1)

$$47? \quad 37 = a + (13 - 1)b = a + 12b = 64. \quad \cdots \quad (2)$$

(2) হইতে (1) বিয়োগ করিয়া,

$$6b = 30$$
;  $b = 5$ 

মুতরাং, (1) হইতে, a+30=34; ... a=4.

কাজেই, নির্ণেয় শ্রেণীর প্রথম পদ ও সাধারণ অন্তর যথাক্রমে 4 ও 5.

অতএব, 4, 9, 14, 19, 24, ..... ই নির্ণের শ্রেণী।

(XI-XII)---4

উদা 2. কোন সমান্তর-শ্রেণীর p-তম এবং q-তম পদ-ছুইটি যথাক্রমে c এবং ব : শ্রেণীটি নির্ণয় কর।

निर्दिश (अंगीत क्षथम अम a a a र भाधात्र पास्त्र (यन b;

ভাহা হইলে, 
$$p$$
-ভম পদ =  $a + (p-1)b = c$ ; ... (1)

এবং 
$$q$$
তম পদ =  $a + (q-1)b = d$ .  $\cdots$  (2)

এখন, (1) হইতে (2) বিযোগ করিয়া, 
$$(p-q)b=c-d$$
;  $b=\frac{c-d}{p-q}$ 

জাবার, (1) হইতে, 
$$a = c - (p-1)b = c - (p-1)\frac{c-d}{p-q}$$

$$= \frac{c(p-q) - (p-1)(c-d)}{p-q}$$
$$= \frac{d(p-1) - c(q-1)}{p-q}.$$

স্থাতরাং, a ও b-এর মান নির্ণীত হইল বলিয়া নির্ণেয় শ্রেণীটির পদসমূহ লিখিতে পারা যায়।

#### প্রথমালা 11

- 1. নিম্লিখিত খেণীদম্হের অষ্টম, বিংশতিতম এবং (n-3)-তম পণগুলি নির্ণয় কর (I'ind the 8th, 20th and (n-3)th terms of the series):
- (i) 2, 4, 6, 8, ···ইত্যাদি; (ii) 1, 3, 5, 7, ···ইত্যাদি; (iii) 🛂, 7, 1, 1, -1, ···ইত্যাদি; (iv) २, १, ३, ···ইত্যাদি; (v) 5, 11, 17, ···ইত্যাদি;
- 2. 9, 11, 13, 15, ·····ইত্যাদি শ্রেণীটির কোন্ কোন্ পদ 65, 99 এবং 6n-13?
- 3. কোন সমান্তর-শ্রেণীর প্রথম পদ 3 এবং সপ্তম পদ 39; উহার সাধারণ অস্তর নির্ণয় কর।
- 4. 60 পদসমন্বিত কোন সমান্তর-শ্রেণীর প্রথম পদ ৪ এবং শেষ পদ 185; উহার একজিংশ পদটি নির্ণয় কর।
- 5. কোন সমান্তর-শ্রেণীর তৃতীয় ও ত্রয়োদশ পদন্বর যথাক্রমে 40 এবং 0 ; শ্রেণীটি নির্ণয় কর এবং উহার বিংশভিতম পদটি লিখ।
- 6. কোন সমান্তর-শ্রেণীর পঞ্চম ও একত্রিংশ পদটি যথাক্রমে 1 ও 77; উহার প্রথম ও অষ্টাদশ পদ-তুইটি বাহির কর।
- 7. কোন সমান্তর-শ্রেণীর অষ্টম ও হাধিকশততম পদন্বর যথাক্রমে 23 ও 305 হইলে, উহার প্রথম পদ ও নাধারণ অন্তর নির্ণয় কর।

- 8. কোন সমান্তর-শ্রেণীর p-তম পদ c এবং q-তম পদ d হইলে, উহার r-তম পদ কত হইবে তাহা নির্ণয় কর।
- 9. কোন সমান্তর-শ্রেণীর প্রত্যেকটি পদকে একই সংখ্যা দারা বৃদ্ধি বা হ্রাস করিলে যে নৃতন শ্রেণী উৎপন্ন হয়, তাহাও সমান্তর হইবে।

(If every term of an A. P. be increased or diminished by the same quantity, the resulting terms will also be in A. P.)

10. কোন সমান্তর-শ্রেণীর প্রত্যেকটি পদকে একই সংখ্যা দ্বারা গুণ বা ভাগ করিলে যে নৃতন শ্রেণী উৎপন্ন হয়, তাহাও সমান্তর হইবে।

(If each term of an A. P. he multiplied or divided by the same quantity, the resulting series will also be in A. P.)

- 11. কোন সমান্তর-শ্রেণীর প্রথম পদ a এবং শেব পদ l হইলে, দেখাও যে, প্রথম হইতে গণনায় পঞ্চম পদ + শেষ হইতে গণনায় পঞ্চম পদ = a + l.
  - 12. পূৰ্ববৰ্তী উদাহরণে দেখাও বে, প্রথম হইতে গণনায়  $\gamma$ তম পদ = a + l.
  - 13. 302 দংখ্যাটি কি 3, 8, 13, 18, 

     ই ত্যাদির কোন পদ হইতে পারে ?

্রেকেত্রে সাধারণ অন্তর = 5 এবং প্রণম পদ = 3. মনে কর, উহার r-তম পদ = 302; তাহা হইলে, 302 = 3 + (r - 1)5 = 5r - 2;  $\cdot$ .  $r = \frac{3r}{2}$ , একটি ভগাংশ। যেহেতু r একটি পদসংগা, অভএব, r-এর মান ভগাংশ হইতে পারে না। কাজেই, উপরিঞ্জ শ্রেণীতে 302 কোন পদ হইতে পারে না।

- 14. কোন সমান্তর-শ্রেণার p-তম পদ q এবং q-তম পদ p. দেখাও বে, উহার m-তম পদ = p+q-m.
- 4.4. কোন স্মান্তর-শ্রেণীর প্রথম পদ a, সাধারণ অন্তর b এবং পদসম্ভাগ n; প্রেণীতির পদসমূত্রে সমষ্টি নির্দায় করা (To find the sum of 'n' terms of an Arithmetic series of which the first term is 'a' and the common difference, 'b'.):

নির্ণেয় সমষ্টিকে S দারা এবং শেষ পদ ( অর্থাং গ্র-ভম পদ )-কে । দারা স্থাচিত করা ছবল।

ভাহা হইলে, যেহেতু l=n-ভম পদ = a+(n-1)b,  $S=a+(a+b)+(a+2b)+(a+3b)+\cdots$  ইত্যাদি $\cdots+\{a+(n-1)b\}$ . আবার ভানদিকের রাশিমালাকে বিপরীতক্তমে লিখিয়া,  $S=l+(l-b)+(l-2b)+(l-3b)+\cdots$  ইত্যাদি $\cdots+\{l-(n-1)b\}$ .

অতএব, যোগ করিয়া,  $2S = (a+l) + (a+l) + (a+l) + \cdots n$ -সংখ্যক পদ পর্বস্থ= n(a+l).

$$S = \frac{n}{2} (a+1), \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

অতএব, কোন সমান্তর-শ্রেণীর প্রথম n-সংখ্যক পদের সমষ্টি, উহার প্রথম ও শেষ পদ-ছইটির সমষ্টির অর্ধেকের n গুণ হইবে।

আবার, থেছেতু l=n-তম পদ = a+(n-1)b,

মতবাং, 
$$S = \frac{n}{2}[a + \{a + (n-1)b\}] = \frac{n}{2}\{2a + (n-1)b\}.$$
 ... (2)

উলা. 1. 5, 41, 3%, ···ইত্যাদি সমান্তর-শ্রেণীটির প্রথম বিশটি পদের সমষ্টি নির্ণম কর।

এক্ষেত্রে প্রথম পদ = 5, এবং সাধারণ অন্তর = 18 - 5 = - 8.

.. নির্পেয় সমষ্টি = 
$$\frac{20}{5}$$
{ $2 \times 5 + (20 - 1) \times (-\frac{2}{5})$ }
$$= 10(10 - \frac{10 \times 2}{5}) = 10.(-\frac{8}{5}) = -26\frac{2}{5}.$$

উদা. 2. নিম্নলিথিত রাশিমালার মান নির্ণর কর:

1+2+3+4+···100-সংখ্যক পদ পর্যন্ত।

স্পষ্টতঃ, প্রদত্ত রাশিমালার পদসংখ্যা 100 এবং শেষ পদ = 100.

∴ নির্পের সমষ্টি = 100(1+100) = 50 × 101 = 5050.

উদা 3. কোন স্ত্রের দাহায্য না লইরা, 1+4+7+10+···+37-এর সমষ্টি নির্ণিয় কর। [C. U. 1919]

এক্টেব্র প্রথম পদ = 1, সাধারণ অন্তর = 3 এবং পদসংখ্যা = 13; এখন S, নির্ণেয় সমষ্টি বুঝাইলে, স্পষ্টতঃ,

$$S = 1 + 4 + 7 + \cdots + 31 + 34 + 37$$

আবার, বিপরীতক্রমে দাঞ্চাইয়া,

$$S = 37 + 34 + 31 + \dots + 7 + 4 + 1$$

অতএব, যোগ করিয়া,

$$S = \frac{38 \times 13}{2} = 19 \times 13 = 247.$$

উদা 4. কোন হত্তের দাহাষ্য না লইয়া,  $1+3+5+7+\cdots n$ -সংখ্যক পদ পর্যস্ত রাশিমালার মান নির্ণয় কর। [C. U. 1911]

প্রাষ্ট্রতঃ, প্রদত্ত শ্রেণীর সাধারণ অন্তর <del>=</del> 2,

এবং শেষ পদ = n-তম পদ =  $1 + (n-1) \times 2 = 2n-1$ .

এখন, নির্ণের সমষ্টিকে S দারা স্থচিত করিলে,

$$S=1+3+5+7+\cdots+(2n-3)+(2n-1).$$

আবার, বিপরীতক্রমে লিখিয়া,

$$S = (2n-1) + (2n-3) + (2n-5) + \cdots + 3 + 1$$
;

অতএব, যোগ করিয়া,

$$2S = 2n + 2n + 2n + \cdots n$$
 - শংখ্যক পদ পর্বস্ত  $= n.2n$ .

 $S=n^2$ 

## প্রগ্রমালা 12

নিম্লিখিত শ্রেণীসমূহের সমষ্টি নির্ণয় কর (Find the sum of the following series):

- 1. 1+2+3+4+··· 25-সংখ্যক পদ পর্যন্ত ।
- 2. 1+3+5+7+... 30- " "
- 3. -3, 3, 9, 15,··· 14- n n n 1
- 4. 3+5+5++++ 20- " " 1
- 5.  $\frac{7}{11} + \frac{18}{22} + \frac{6}{11} + \cdots \quad 30$  n n |
- 6. 17+1+8+5+... 16 " " "
- 7. 3+4+8+9+13+14+18+19+···20-সংখ্যক পদ পর্যন্ত ।

[C. U. F. A. 1881]

[ প্রদান ক্রেনী = 
$$(3+4)+(8+9)+(13+14)+(18+19)+\cdots$$
10-সংখ্যক পদ পর্বস্ত =  $7+17+27+37+\cdots$ 10-সংখ্যক পদ পর্বস্ত =  $\frac{\{14+(10-1)\times10\}}{2}\times10=520$ . ]

- 8. 5 + 4½ + 4½ + ··· 21-সংখ্যক পদ পর্যন্ত ।
- 9. 13+12\frac{1}{3}+11\frac{2}{3}+\cdots 40- n n n
- 10. 2+7+12+..... 101- " " |

11. 
$$\frac{n-1}{n} + \frac{n-2}{n} + \frac{n-3}{n} + \cdots n$$
-সংখ্যক পদ পর্যত !

12. 
$$\frac{a-b}{a+b} + \frac{3a-2b}{a+b} + \frac{5a-3b}{a+b} + \cdots n$$
-নংখ্যক পদ পর্যন্ত।

13. 1+5+3+9+5+13+7+17+·····30-সংখ্যক পদ পর্যন্ত।

14. 
$$\left(2-\frac{1}{n}\right) + \left(2-\frac{3}{n}\right) + \left(2-\frac{5}{n}\right) + \cdots _{n}$$
-সংখ্যক পদ পর্যন্ত।

15. 
$$(a+b)^2 + (a^2+b^2) + (a-b)^2 + \cdots n$$
-সংখ্যক পদ পর্যা

কোন স্ত্রের সাহাধ্য না লইয়া নিম্লিখিত শ্রেণীসমূতের দমষ্টি নির্ণয় কর (Find the sum of the following series without applying any formula):

- 16. 3+5+7+·····29-সংখ্যক পদ পর্যন্ত ।
- 17. -10-6-2+2+·····22-সংখ্যক পদ প্ৰ্যন্ত ।
- 18.  $(x-y)+(2x-3y)+(3x-5y)+\cdots$ ্য-সংখ্যক পদ প্রয়
- 19.  $5+8+11+\cdots+155$ .
- 20. 8+3-2-7-12-····

  n-সংখ্যক পদ প্ৰযুদ্

## 4'5. পূর্ববর্তী নিয়মে প্রদত্ত (1) এবং (2) দ্বারা সূচিত সূতাবয়ের প্রয়োগ:

উলিখিত স্ত্রেদ্যের প্রয়োগবিধি বুঝাইবার জন্ম নিম্নলিখিত উদাহরণগুলি দৃষ্টাস্তব্যুপ সন্ধিবেশিত করা হইল।

উদা. 1. কোন সমান্তর-শ্রেণীর প্রথম পদ 17, শেষ পদ -12্রু এবং পদসমূহের সমষ্টি  $25_1$ ে ; উহার সাধারণ অন্তর নির্ণয় কর।

ধরা যাক, প্রদত্ত শ্রেণীর পদসংখ্যা = n; তাহা হইলে, প্রদত্ত শর্তাস্থারে,

$$25\frac{7}{16} = \frac{n}{2} \left\{ 17 + \left( -12\frac{3}{8} \right) \right\} = \frac{n}{2} \left\{ 17 - 12\frac{3}{8} \right\} = \frac{n}{2} \times 4\frac{5}{8};$$

$$\sqrt{407} = \frac{37n}{16} \qquad \therefore \qquad n = \frac{407}{37} = 11.$$

উপরি-উক্ত শ্রেণীর সাধারণ অস্তর ১ হইলে, প্রদত্ত শর্ভাস্কারে,

$$10b = -12\frac{8}{8} - 17 = -29\frac{8}{8} = -2\frac{3}{8}\frac{5}{8}$$

$$b = -\frac{235}{8 \times 10} = -\frac{5 \times 47}{5 \times 2 \times 8} = -\frac{47}{16}$$

উদা 2. কোন সমাস্তর-শ্রেণীর পদসমূহের সমষ্টি 72, প্রথম পদ 17, এবং সাধারণ অন্তর - 2 ; উহার পদসংখ্যা নির্ণয় কর এবং ছুইটি উত্তরের কারণ ব্যাখ্যা কর।

थवा याक, निर्देश अमनः था = n.

তাহা হইলে, 
$$72 = \frac{n}{2} \left\{ 2 \times 17 + \left( n - 1 \right) \left( -2 \right) \right\} = \frac{n}{2} \left\{ 34 - 2 \left( n - 1 \right) \right\}$$
$$= \frac{n}{2} \left( 36 - 2n \right) = 18n - n^2.$$

$$n^2 - 18n + 72 = 0$$
, satal,  $(n-6)(n-12) = 0$ .

. n=6 অথবা 12.

স্তরাং প্রদত্ত শ্রেণীর ছয়টি পদের সমষ্টি এবং বারটি পদের সমষ্টি উভয়ই এক। ইহার কারণ, শ্রেণীটি দম্পূর্নপে লিখিলেই স্পষ্ট বৃঝা যাইবে।

কারণ, শ্রেণীটির প্রথম 6টি পদ যথাক্রমে 17, 15, 13, 11, 9, 7; এবং প্রথম 12টি পদ যথাক্রমে 17, 15, 13, 11, 9, 7, 5, 3, 1, -1, -3, -5; এবং শেষোক্ত পদসমূহের শেষের ছয়টি পদের যোগফল ০ বলিয়া স্পষ্টতঃ উভয় ক্ষেত্রেই পদসমূহের যোগফল একই হইবে।

উলা. 3. -8, -6, -4, ·····ইত্যাদি শ্রেণীর কয়টি পদের সমষ্টি 52 হইবে? উক্ত শ্রেণীর ম-সংখ্যক পদের সমষ্টি যেন 52.

তাহা হইলে, 
$$52 = \frac{n}{2} \left\{ 2 \times \left( -8 \right) + \left( n-1 \right) \times 2 \right\}$$
$$= \frac{n}{2} \left( 2n - 18 \right) = n^3 - 9n.$$

:.  $n^2 - 9n - 52 = 0$ ; ज्ञथ्य।, (n - 13)(n + 4) = 0.

.. n=13 অথবা -4.

থেহেতু পদসংখ্যা অবশ্যই অখণ্ড ধনসংখ্যা হইবে, সেইহেতু, n-এর মান -4 হইতে পারে না; স্বতরাং, n-এর নির্দেষ মান =13.

উদা. 4. কোন সমান্তর-শ্রেণীর সপ্তম পদ পর্যন্ত সমষ্টি 112 এবং দ্বাদশ পদ পর্যন্ত সমষ্টি 282: n-সংখ্যক পদ পর্যন্ত উহার সমষ্টি নির্ণয় কর।

ধরা যাক, প্রথম পদ = a; সাধারণ অন্তর = b.

$$S_7 * = \frac{7}{3} \{2a + (7-1)b\} = 112.$$

$$\therefore \frac{7}{2} \left\{ 2a + 6b \right\} = 112 \; ;$$

<sup>\*</sup> S এর নিচে পদসংখ্যাটি লিখিলে সেই পদ পর্যন্ত যোগফল বুঝায়। যথা, S, = সপ্তম পদ পর্যন্ত যোগফল,  $S_{1,2}$ =দ্বাদশ পদ পর্যন্ত যোগফল;  $S_{n}$ = n-তম পদ পর্যন্ত যোগফল।

\text{ wear, } 
$$7(a+3b) = 112, \cdots (1)$$

$$S_{12} = \frac{12}{2} \{ 2a + (12-1)b \} = 282;$$

$$\therefore \frac{12}{2} \left\{ 2a + 11b \right\} = 282,$$

দমীকরণ (1) এবং (2) হইতে a = 7 এবং b = 3 পাওয়া যায়।

$$\therefore S_n = \frac{n}{2} \left\{ 2.7 + (n-1)3 \right\} = \frac{n}{2} (3n+11).$$

উদ! 5. কোন স্মান্তর-জেণীর 20-তম পদ 61; ঐ শ্রেণীর 39-তম পদ পর্বস্ত সমষ্টি নির্ণয় কর।

ধরা যাক, প্রথম পদ = a এবং সাধারণ অন্তর = b:

$$a+19b=61.$$

39-তম পদ পর্যস্ত যোগফল = 
$$\frac{39}{2} \left\{ 2a + (39 - 1)b \right\}$$
=  $\frac{39}{2} \left\{ 2a + 38b \right\} = 39(a + 19b)$ 
=  $39 \times 61 = 2379$ .

উনা. 6. কোন সমান্তর-শ্রেণীর n-তম পদ  $\frac{2+n}{3}$ ; এ শ্রেণীট এবং 31-সংখ্যক পদ পর্যন্ত উহার সমষ্টি নির্ণয় কর।

भगखनि त्यम ta, ta, ta, ta,...

n-धव मान 1, 2, 3, 4,··· वमारेवा शक्कि भाषवा वाव.

$$t_1 = \frac{2+1}{3} = \frac{3}{3} = 1, \ t_2 = \frac{2+2}{3} = 1\frac{1}{3}, \ t_3 = 1\frac{2}{3}, \ t_4 = 2, \ \text{forms} \ t_4 = 2$$

ं. ट्रांगीए = 1, 1ई, 1ई, 2,···

$$S_{\text{si}} = \frac{31}{2} \left\{ 2.1 + (31 - 1). \frac{1}{3} \right\} = \frac{31}{2} \left\{ 2 + 10 \right\} = \frac{31}{2} \times 12 = 186.$$

উদা . 7. কোন সমান্তর-শ্রেণীর p-সংখ্যক পদের সমষ্টি q, এবং q-সংখ্যক পদের সমষ্টি p; উহার p+q-সংখ্যক পদের সমষ্টি নির্ণয় কর।

প্রদান্ত শ্রেণীর প্রথম পদ a এবং সাধারণ অন্তর যেন b; তাহা হইলে প্রদন্ত শর্তামূলারে,

$$q=rac{p}{2}\Big\{2a+\Big(p-1\Big)b\Big\}$$
; অথবা,  $2q=p.2a+p(p-1).b\cdots(1)$ 
এবং  $p=rac{q}{2}\Big\{2a+\Big(q-1\Big)b\Big\}$ ; অথবা,  $2p=q.2a+q(q-1).b\cdots(2)$ 
 $\therefore$  (1) হইতে (2) বিয়োগ করিয়া, 
$$2(q-p)=(p-q).2a+\{(p^2-q^2)-(p-q)\}b$$

$$=(p-q).2a+(p-q)(p+q-1)b;$$

$$\therefore -2=2a+(p+q-1)b.$$
অতএব,  $p+q$ -মংখ্যক প্রের সমষ্টি  $=rac{p+q}{2}\Big\{2a+\Big(p+q-1\Big)b\Big\}$ 

$$=rac{p+q}{2}\times\Big(-2\Big)=-\Big(p+q\Big).$$

### প্রগ্রমালা 13

- কোন সমান্তর-শ্রেণীর প্রথম পদ 5, পদসংখ্যা 30 এবং উহাদের সমষ্টি
   1455; উহার সাধারণ অস্তর নির্ণয় কর।
- 2. কোন সমান্তর-শ্রেণীর প্রথম পদ 2 এবং পঞ্চম পদ 7 হইলে, ঐ শ্রেণীর কত-সংখ্যক পদের সমষ্টি 63 হইবে ?
- 3. কোন সমান্তর-শ্রেণীর প্রথম পদ 1, শেষ পদ 50 এবং সমষ্টি 204 হইলে, উহার সাধারণ অন্তর কত হইবে ?
- 4. 19, 17, 15,····· ইত্যাদি শ্রেণীটির কত-সংখ্যক পদের সমষ্টি 91 হটবে?
- 5. 21, 19, 17,····· ইত্যাদি শ্রেণীর কতক পদের সমষ্টি 120 হইলে, ঐ শ্রেণীর পদসংখ্যা এবং শেষ পদ নির্ণয় কর।
- 6. 54, 51, 48,······ ইত্যাদি শ্রেণীর কত-সংখ্যক পদের সমষ্টি 513? তুইটি উত্তরের কারণ ব্যাখ্যা কর।
- 7. কোন সমান্তর-শ্রেণীর প্রথম ৪ পদের সমষ্টি 64 এবং প্রথম 19 পদের সমষ্টি 361 ছইলে, উহার n-নংখ্যক পদের সমষ্টি কত ?
- 8. কোন সমান্তর-শ্রেণীর 25-তম পদ 49; উহার 49-সংখ্যক পদ পর্যন্ত সমষ্টি নির্ণয় কর।

- 9. প্রমাণ কর যে, 4, 12, 20, 28,····· শেণীর %-সংখ্যক পদ পর্যন্ত সমষ্টি একটি যুগ্নসংখ্যার বর্গ।
  [C. U. 1939]
  - 10. 750 এবং 1000-এর মধ্যবর্তী 13-এর গুণিতকগুলির সমষ্টি নির্ণয় কর। [ C. U. 1935 ]
- 11. কোন সমান্তর-শ্রেণীর n-তম পদ  $\frac{3+n}{4}$ ; ঐ শ্রেণী নিরপণ কর এবং উহার প্রথম 105-সংখ্যক পদের সমষ্টি নির্গয় কর।
- 12. কোন সমান্তর-শ্রেণীর r-তম পদ 2r-1 হইলে, উক্ত শ্রেণী নির্ণয় কর এবং উহার n-সংখ্যক পদের সমষ্টি নির্ণয় কর।
- 13. কোন সমান্তর-শ্রেণীর n-সংখ্যক পদের সমষ্টি  $3n^2-n$  ; উহার প্রথম পদ নির্ণয় কর।
- 14. কোন সমান্তর-শ্রেণীর n-সংখ্যক পদের সমষ্টি 40, সাধারণ অতর 2 এবং শেষ পদ 13; n-এর সাংখ্যমান নির্ণয় কর।
- 15. প্রমাণ কর যে, কোন সমাস্থর-শ্রেণীর প্রথম 2n পদের শেষার্ধের সমষ্টি, ঐ শ্রেণীর 3n-সংখ্যক পদের সমষ্টির এক-তৃতীরাংশ।
- 16. প্রমাণ কর যে,  $1, 3, 5, 7, 9, \cdots$  ইত্যাদি শ্রেণীর 2n+1 পদের মধ্যে  $1, 5, 9, \cdots$  ইত্যাদি একান্তর পদসমূহের সমষ্টির সহিত অবশিষ্ট পদসমূহ ( যথা,  $3, 7, 11, \cdots$  ইত্যাদি )-এর সমষ্টির অনুপাত n+1: n-এর সমান হইবে।
  - 17. প্রমাণ কর যে, (i)  $b = \frac{l^2 a^2}{2s (l + a)}$ ; এবং (ii)  $s = \frac{l + a}{2b}(l a + b)$ .
- 18. কোন সমান্তর-শ্রেণীর m-সংখ্যক পদের সমষ্টি n এবং n-সংখ্যক পদের সমষ্টি m হইলে, দেখা ও যে, উহার m+n-সংখ্যক পদের সমষ্টি -(m+n). [  $C.\ U.\ 1950$  ]
- 19. কোন সরল রান্তার উপর 5 মিটার অন্তর একখানা করিয়া 100 খানা প্রস্তর্যণ্ড আছে। প্রথম প্রস্তর্যণ্ড হইতে 5 মিটার দ্বে রক্ষিত একটি ঝুডি হইতে রওনা হইয়া, দৌড়াইয়া একটি একটি করিয়া প্রস্তর্যণ্ডগুলিকে কুড়াইয়া ঝুড়িতে রাখিতে কোন লোককে মোট কত কিলোমিটার পথ দৌড়াইতে হইবে ?

## 4'6. সমান্তর-মধ্যক (Arithmetic means)।

- সংজ্ঞা 1. তিনটি রাশি সমান্তর-শ্রেণীভুক্ত হইলে মধ্যমটিকে প্রথম ও তৃতীয়টির সমান্তর-মধ্যক বলে।
- 3, 5, 7, এই সমান্তর-শ্রেণীভুক্ত সংখ্যা-তিনটির মধ্যে 5-কে 3 ও 7-এর সমান্তর-মধ্যক বলা হয়।

সংজ্ঞা 2. তুইটি নির্দিষ্ট সংখ্যা,  $A ext{ } \Theta ext{ } B$ , যদি অপর কতকণ্ডলি সংখ্যা  $x_1, x_2, x_3, \cdots, x_{n-1}, x_n$ -এর সহিত এরপভাবে সম্বন্ধ হয় যে,  $A, x_1, x_2, \cdots, x_{n-1}, x_n$ , B একটি সমান্তর-শ্রেণী, তাহা হইলে  $x_1, x_2, x_3, \cdots, x_{n-1}, x_n$  সংখ্যাগুলিকে  $A ext{ } \Theta$  B-এর মধ্যবর্তী (n-সংখ্যক) সমান্তর-মধ্যক বলে।

উদাহরণম্বরূপ, 3, 4, 5, 6, 7 সংখ্যাগুলি 2 এবং 8-এর সমান্তর-মধ্যক ; কারণ, 2, 3, 4, 5, 6, 7, 8 একটি সমান্তর-শ্রেণী। তদ্রপ,  $3\frac{1}{2}$ , 5,  $6\frac{1}{2}$  সংখ্যাগুলি 2 এবং 8-এর সমান্তর-মধ্যক ; কারণ, 2,  $3\frac{1}{2}$ , 5,  $6\frac{1}{2}$ , 8 একটি সমান্তর-শ্রেণী।

টীকা। উপরিউক্ত সংজ্ঞা হইতে পরিক্ষাররূপে ব্ঝা যায় যে, ছইটি নির্দিষ্ট সংখ্যার মধ্যে অসংখ্য রক্ষের সমাত্র-মধ্যক সরিবেশিত করা যাইতে পারে।

## 4:7. চুইটি নিদিষ্ট সংখ্যার মধ্যে নিদিষ্ট-সংখ্যক সমাস্তর-মধ্যক সন্নিবেশিত করিতে হইবে।

(To insert a given number of arithmetic means between two given numbers,)

a এবং c এই সংখ্যাদ্বরের মধ্যে যেন n-সংখ্যক সমান্তর-মধ্যক সনিবেশিত করিতে হইবে; অর্থাৎ, এরপ n-সংখ্যক রাশি  $x_1, x_2, x_3, x_4, \cdots, x_{n-1}, x_n$  নির্ণয় করিতে হইবে, যেন  $a, x_1, x_2, x_3, \cdots, x_{n-1}, x_n$ , c এক সমান্তর-শ্রেণী হয়। স্পষ্টতঃ,  $a, x_1, x_2, x_3, \cdots, x_n$ , c সমান্তর-শ্রেণীতে n+2-সংখ্যক পদ আছে এবং ইহাদের মধ্যে a প্রথম পদ এবং c শেষ পদ  $\{$  অর্থাৎ,  $\{n+2\}$ -তম পদ  $\}$ ; এখন b উক্ত শ্রেণীর সাধারণ অন্তর হইলে, স্পষ্টতঃ,

$$c = a + (n+1)b$$
; স্বত্যাং,  $b = \frac{c-a}{n+1}$ .

স্কৃত্যাং,  $a = a + b = a + \frac{c-a}{n+1}$ ;

 $a = a + b = a + \frac{2(c-a)}{n+1}$ ;
...

 $a = a + nb = a + \frac{n(c-a)}{n+1}$ .

উদা. 1. a এवः b-এর সমান্তর-মধ্যক নির্ণয় কর।

নির্ণেয় সমান্তর-মধ্যক ধেন x; তাহা হইলে a,x,b সমান্তর-শ্রেণীভূক্ত তিনটি সংখ্যা।

 $\therefore \quad x-a=b-x \; ; \quad \mbox{অতএব, } x=\tfrac{1}{2}(a+b).$ 

উদা. 2. 3 এবং 18-এর মধ্যে চারিটি সমাস্তর-মধ্যক সন্নিবেশিত কর। নির্ণের সমান্তর-মধ্যক চারিটিকে  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$  হার। স্থচিত করা হইল। তাহা হইলে 3,  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ , 18 সমান্তর-শ্রেণী।

অতএব, ১ উহার সাধারণ অস্তর হইলে,

$$18 = 3 + 5b$$
;  $b = 3$ .

$$x_1 = 3 + b = 3 + 3 = 6;$$

$$x_2 = 3 + 2b = 3 + 2.3 = 9$$

$$x_3 = 3 + 3b = 3 + 3.3 = 12;$$

$$x_4 = 3 + 4b = 3 + 4.3 = 15.$$

ं 6, 9, 12, 15 সংখ্যা-চারিটিই নির্ণেয় সমান্তর-মধ্যক।

উদা. 3. 2 এবং 57-এর মধ্যে n-সংখ্যক সমান্তর-মধ্যক সন্নিবেশিত করিয়া দেখা গেল যে, দ্বিতীয় মধ্যক : (n-2)-তম মধ্যক = 2:7; n-এর মান নির্ণয় কর।

2 এবং 57-এর মধ্যে n-নংখ্যক সমান্তর-মধ্যক থাকিলে, মোট পদসংখ্যা (n+2). এ শ্রেণীর প্রথম পদ = 2 এবং (n+2)-তম পদ = 57.

ध्या याक, माधाद्र व्यख्द = 6;

ে 
$$(n+2)$$
-তম পদ =  $2+(n+2-1)b=57$ ,
অথবা,  $(n+1)b=55$ . ... (1)

ষিভীয় মধ্যক = 2 + 2b এবং (n-2)-তম মধ্যক = (n-1)-তম পদ = 57 - 3b. প্রদত্ত শুর্ত হইতে

$$\frac{2+2b}{57-3b} = \frac{2}{7}$$
:

ज्यता, 14+14b=114-6b;

অধবা, 206=100; ∴ 6=5.

b-এর মান স্মীকরণ (1)-এ বসাইরা

$$(n+1)5=55$$
;

चवि । 5n+5=55 ; चवि । 5n=50 ; n=10 .

### প্রথমালা 14

- 1. নিম্নিথিত সংখ্যাহয়ের সমান্তর-মধ্যক নির্ণম্ব কর (Find the Arithmetic means between):
  - (i)  $5 \otimes 8$ ; (ii)  $-5 \otimes 21$ ; (iii)  $m-n \otimes m+n$ ; (iv)  $(a+x)^2 \otimes (a-x)^2$ .

- 2. নিম্লিখিত সংখ্যাছরের মধ্যে তুইটি সমান্তর-মধ্যক নির্ণয় কর:
  - (i) 8 \( 9 \) 12; (ii) -6 \( 9 \) 14.
- 117 ও 477-এর মধ্যে তিনটি সমাস্তর-মধ্যক সন্নিবেশিত কর।
- 4. 2 ও 18-এর মধ্যে চারিটি সমান্তর-মধ্যক সন্নিবেশিত কর।
- 5. 31 ও 411 -এর মধ্যে 17টি সমান্তর-মধ্যক সন্নিবেশিত কর।
- 6. 1 ও 31-এর মধ্যে n-সংখ্যক সমাস্তর-মধ্যক সন্নিবেশিত করিয়া দেখা গেল বে, সপ্তম মধ্যক : (n-1)-তম মধ্যক = 5:9; n-এর মান নির্ণয় কর।
- 4'8. স্বাভাবিক সংখ্যা (Natural Numbers) : 1, 2, 3, 4,... ইত্যাদি সংখ্যাগুলিকে স্বাভাবিক সংখ্যা (Natural Numbers ) বলে।
- (i) প্রথম n-সংখ্যক স্বাভাবিক সংখ্যার সমষ্টি নির্ণয় (To find the sum of the first n natural numbers) :

व्यर्था९, 1+2+3+4+ .....+ ग्र-धत मान निर्वह।

নির্ণেয় সমষ্টিকে যেন S দারা স্থৃচিত করা হইল।

তাহা হইলে, 
$$S = 1 + 2 + 3 + \dots + n = \frac{n}{2}(1+n) = \frac{n(n+1)}{2}$$
 ··· (ক)

(ii) প্রথম n-সংখ্যক অযুগ্ম স্বাভাবিক সংখ্যার সমষ্টি নির্ণয় (To find the sum of the first n odd natural numbers):

নির্ণের সমষ্টিকে ৪ ছারা স্থচিত করিলে,

$$S = 1 + 3 + 5 + 7 + \cdots$$
 সংখ্যক পদ প্ৰস্থ  $= \frac{n}{2} \left\{ 2 + \left( n - 1 \right) \times 2 \right\} = \frac{n}{2} \times 2n = n^2.$   $\cdots$  (খ)

(iii) প্রথম n-সংখ্যক স্বাভাবিক সংখ্যার বর্গসমূহের সমষ্টি নির্ণয় (To find the sum of the squares of the first n natural numbers):

অর্থাৎ, 12+22+32+ ·····+ n2-এর মান নির্ণয়।

मिर्ल्य ममष्टिरक S बाजा एिं ए कवा रहेल। তारा रहेल,

$$S=1^2+2^2+3^2+4^2+\cdots\cdots+n^2$$

স্পাইত: n³ - (n - 1)³ = 3n² - 3n + 1, একটি অভেন।

উক্ত অভেদে, দ-এর পরিবর্তে ক্রমান্বয়ে 1, 2, 3, 4, · · · · দ বনাইয়া,

$$1^8 - 0^8 = 3.1^8 - 3.1 + 1$$
;

$$2^{8}-1^{5}=3.2^{2}-3.2+1$$
;

$$3^{3}-2^{3}=3.3^{2}-3.9+1;$$

$$4^{3}-3^{3}=3.4^{2}-3.4+1;$$
...
$$(n-1)^{3}-(n-2)^{3}=3.(n-1)^{3}-3.(n-1)+1;$$

$$n^{3}-(n-1)^{3}=3.n^{2}-3.n+1.$$

$$3^{3}-3(1^{2}+2^{2}+3^{2}+\cdots+n^{2})-3(1+2+3+\cdots+n)+n$$

$$=3S-3\frac{n(n+1)}{2}+n.$$

$$3S=n^{3}-n+\frac{3n(n+1)}{2}=n(n+1)\left\{(n-1)+\frac{3}{2}\right\};$$

$$S=\frac{n(n+1)(2n+1)}{6}$$
...
$$(7)$$

(iv) প্রথম n-সংখ্যক স্বাভাবিক সংখ্যার ঘনসমূহের সমষ্টি নির্ণয় (To find the sum of the cubes of the first n natural numbers):

নির্ণের সমষ্টিকে S ছারা স্থাচিত করা হইল; অর্থাৎ

$$S = 1^{3} + 2^{3} + 3^{3} + \cdots + n^{3}$$

ত্ৰে । তেওঁ ।

উক্ত অভেদে n-এর পরিবর্তে ক্রমান্বয়ে 1, 2, 3, …, n বসাইলে,

$$1^{4} - 0^{4} = 4.1^{8} - 6.1^{9} + 4.1 - 1;$$

$$2^{4} - 1^{4} = 4.2^{3} - 6.2^{9} + 4.2 - 1;$$

$$3^{4} - 2^{4} = 4.3^{8} - 6.3^{9} + 4.3 - 1;$$

$$(n-1)^4 - (n-2)^4 = 4.(n-1)^3 - 6.(n-1)^2 + 4.(n-1) - 1;$$
  
$$n^4 - (n-1)^4 = 4.n^3 - 6.n^2 + 4.n - 1.$$

ে বোগ করিয়া, 
$$n^4 = 4(1^3 + 2^3 + 3^3 + \dots + n^3) - 6(1^2 + 2^2 + 3^2 + \dots + n^2) + 4(1 + 2 + 3 + \dots + n) - n$$
$$= 4S - 6. \frac{n(n+1)(2n+1)}{6} + 4. \frac{n(n+1)}{2} - n.$$

উপরিলিখিত ফল হইতে দেখা যায় যে,

প্রথম n-দংখ্যক স্বাভাবিক দংখ্যার ঘন-এর দমষ্টি, ঐ দংখ্যাদম্ভের দমষ্টির বর্গের দমান।

উদা. 1.  $1.2+2.3+3.4+\cdots n$ -সংখ্যক পদ পর্যন্ত,—ইহার মান নির্ণয় কর। স্পষ্টত:, উক্ত শ্রেণীর n-তম পদ  $=n(n+1)=n^2+n$ .

অতএব, n-এর পরিবর্তে 1 বসাইয়া প্রথম পদ =  $1^2 + 1$ ;

... ইত্যাদি।

ञ्च छताः, निर्द्य मान S बादा एिठ कदिल,

$$S = (1^2 + 1) + (2^3 + 2) + (3^3 + 3) + (4^2 + 4) + \cdots n$$
-সংখ্যক পদ পর্যস্থ 
$$= (1^2 + 2^3 + 3^3 + 4^3 + \cdots n$$
-সংখ্যক পদ পর্যস্থ ) 
$$+ (1 + 2 + 3 + 4 + \cdots n$$
-সংখ্যক পদ পর্যস্থ ) 
$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \left\{ \frac{2n+1}{3} + 1 \right\}$$

$$= \frac{n(n+1)(n+2)}{3}.$$

উদা. 2. নিম্নিখিত রাশিমালার মান নির্ণয় কর:
1°+3°+5°+7°+ ••••ল-সংখ্যক পদ পর্যন্ত।

স্পষ্টতঃ উপরিউক্ত রাশিমালার প্রত্যেকটি পদ 1, 3, 5, 7,··· শ্রেণীর অমুরূপ পদের বর্গ; কাজেই, প্রদন্ত রাশিমালার n-তম পদ 1, 3, 5, 7,··· শ্রেণীটির n-তম পদের বর্গের সমান। অর্থাৎ,

প্ৰত্য বাণিমালার 
$$n$$
-তম পদ =  $\{1 + (n-1) \times 2\}^2 = (2n-1)^2$   
=  $4n^2 - 4n + 1$ .

কাজেই, নির্ণের মান S দ্বারা স্থচিত করিলে.

$$S=4.(1^2+2^2+3^2+\cdots n-n$$
ংখ্যক পদ প্ৰয়ন্ত ) 
$$-4.(1+2+3+\cdots n-n;$$
খ্যক পদ প্ৰয়ন্ত )+ $n$ 
$$=4.\frac{n(n+1)(2n+1)}{6}-4.\frac{n(n+1)}{2}+n$$
$$=2n(n+1)\binom{2n+1}{3}-1)+n=\frac{2n(n+1)\times 2(n-1)}{3}+n$$
$$=\frac{n}{3}\left\{4(n^2-1)+3\right\}=\frac{n}{3}\left(4n^2-1\right).$$

উদা. 3. নিম্নলিখিত রাশিমালার মান নির্ণয় কর:

$$1.3^2 + 2.4^2 + 3.5^2 + \cdots$$
ন্দ্ৰাক পদ পৰ্যন্ত।

স্পষ্ঠতঃ, প্রদত্ত বাশিমালার n-তম পদ

$$= n(n+2)^2 = n(n^2+4n+4) = n^3+4n^2+4n.$$

এখন, n-এর পরিবর্তে 1, 2, 3, ····, n বসাইয়া,

প্রথম পদ = 1° + 4.1° + 4.1 :

ষিতীয় পদ = 28 + 4.28 + 4.2;

ততীয় পদ = 38 + 4.39 + 4.3 :

\*\*\* 000

n-जम श्रम = n<sup>8</sup> + 4n<sup>2</sup> + 4n.

নির্ণের মান ৪ ছারা স্থচিত করিলে,

$$S = (1^{3} + 2^{3} + 3^{3} + \dots + n^{3}) + 4(1^{2} + 2^{2} + 3^{2} + \dots + n^{2}) + 4(1 + 2 + 3 + \dots + n)$$

$$= \left\{\frac{n(n+1)}{2}\right\}^{2} + 4 \cdot \frac{n(n+1)(2n+1)}{6} + \frac{4n(n+1)}{2}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + \frac{2n(n+1)(2n+1)}{3} + 2n(n+1)$$

$$= n(n+1) \left\{ \frac{n(n+1)}{4} + \frac{2(2n+1)}{3} + 2 \right\}$$

$$= \frac{n}{12}(n+1)(3n^{2} + 19n + 32).$$

উলা. 4. নিম্নলিখিত রাশিমালার মান নির্ণয় কর:

স্পষ্টত:, প্রদত্ত রাশিমালার n-তম পদ

$$= 1^{3} + 2^{3} + 3^{3} + \dots + n^{3}$$

$$= \frac{n(n+1)(2n+1)}{6} = \frac{n(2n^{2} + 3n + 1)}{6}$$

$$= \frac{1}{6}n^{3} + \frac{1}{6}n^{3} + \frac{1}{6}n.$$

∴ প্ৰথম পদ = 
$$\frac{1}{3}$$
.1<sup>8</sup> +  $\frac{1}{2}$ .1<sup>8</sup> +  $\frac{1}{6}$ .1;  
বিভীয় পদ =  $\frac{1}{3}$ .2<sup>8</sup> +  $\frac{1}{2}$ .2<sup>8</sup> +  $\frac{1}{6}$ .2;  
ভূতীয় পদ =  $\frac{1}{3}$ .3<sup>8</sup> +  $\frac{1}{3}$ .3<sup>2</sup> +  $\frac{1}{6}$ .3;

, ইজাণি

স্তুত্রাং, নির্ণেয় মান S দ্বারা স্থচিত করিলে,

$$S = \frac{1}{3}(1^{3} + 2^{3} + 3^{3} + \dots + n^{3}) + \frac{1}{2}(1^{2} + 2^{2} + 3^{2} + \dots + n^{2}) + \frac{1}{6}(1 + 2 + 3 + \dots + n)$$

$$= \frac{1}{3} \cdot \frac{n^{2}(n+1)^{2}}{4} + \frac{1}{2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{1}{6} \cdot \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{12} \{n(n+1) + (2n+1) + 1\} = \frac{n(n+1)}{12}(n^{2} + 3n + 2)$$

$$= \frac{n(n+1)^{2}(n+2)}{12}.$$

#### প্রথমালা 15

নিম্লিখিত রাশিমালাসমূহের মান নির্ণয় কর (Sum the series):

(XI-XII)-5

- 3. 1.3+3.5+5.7+7.9+ ····n-সংখ্যক পদ পর্যন্ত !
- 4. 18+38+58+ ···· n-সংখ্যক পদ পর্যন্ত।
- 5. 1+(1+2)+(1+2+3)+ · · গ্ৰাক পদ প্ৰয়
- 6. 1+(1+3)+(1+3+5)+ ···· n-সংখ্যক পদ পর্যস্ত।
- 7. 1.2.3 + 2.3.4 + 3.4.5 + ····· n- সংখ্যক পদ প্ৰস্ত ৷
- 8. 2.3.1 + 3.4.4 + 4.5.7 + ·····n-সংখ্যক পদ পর্যন্ত ।
- 9. 1-2+3-4+5-6+····n-সংখ্যক পদ পর্যন্ত।
- 10. 1<sup>2</sup> 2<sup>3</sup> + 3<sup>2</sup> 4<sup>3</sup> + 5<sup>2</sup> 6<sup>2</sup> + ···· n-স খাক পদ প্যসূ ।
- 11. 1.1 + 2.3 + 3.5 + 4.7 + ·····n-সংখ্যক পদ প্ৰ্যন্ত ।
- 12. 1 + (2+3) + (4+5+6) + · · · · ৷ দংখাক পদ প্ৰ্যন্ত |

## 4·9. তাজ কহিবার বিবিধ কৌশল ও বিবিধ শ্রেমালা।

উদা. 1. কোন সমান্তর-শ্রেণীর পদসংখ্যা অযুগা হইলে, প্রমাণ করিতে হইবে যে, উহার প্রথম ও শেষ পদহরের সমষ্টি মধ্য-পদ (Middle term)-তর হিছপের সমান।

পদসংখ্যা অষ্থা বলিয়ে উহাকে 2n+1 দারা হুটিত করা যাক। তাহ হইলে মধ্য-পদ হইবে সেইটি, যাহার পূর্বে n-সংখ্যক পদ এবং পরেও n-সংখ্যক পদ থাকিবে n কাজেই, উহা প্রথম হইতে গণনায় বা শেষ হইতে গণনায় (n+1)-তম পদ হইবে। এখন, প্রথম পদকৈ n দারারণ অভ্যক্তি n দারা এবং মদ্য-পদটিকে n দারা স্চিত করিলে স্পাইতঃ,

$$M = a + (n+1-1)b = a + nb.$$
  
আবার,  $M = l + (n+1-1) \times (-b)$   
 $= l - nb.$ 

অতএব, যোগ করিয়া, 2M = a + l.

উদা. 2. প্রমাণ কর যে, কোন সমান্তর-শ্রেণীর অয়্গা-সংখ্যক পদের সমষ্টি পদসংখ্যা ও মধ্য-পদের গুণফলের সমান।

ধরা যাক, পদসংখ্যা = 2n+1, প্রথম পদ = a এবং শেষ পদ = l. ভাহা হইলে, পদসমূহের সমষ্টি

$$= \frac{2n+1}{2}(a+l) = \frac{2n+1}{2} \times 2M \quad [ \ \ \ \ \ \ \ \ \ \ ]$$
$$= (2n+1) \times M.$$

উদা. 3. যে সমান্তর-শেণীর প্রথম n-সংখ্যক পদের সমষ্টি =  $5n^2+3n$ , তাহার প্রথম পাঁচটি পদ নির্ণর কর।

সমান্তর-শ্রেণীর প্রথম, দ্বিভীয়, তৃতীয়, চতুর্থ,  $\cdots$ , n-তম পদগুলিকে যথাক্রমে  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$ ,  $\cdots$ ,  $t_n$  দারা এবং একপদ, তৃইপদ, তি পদ, চারিপদ,  $\cdots$  n-সংখ্যক পদের সমস্ভিলি যথাক্রমে  $s_1$ ,  $s_2$ ,  $s_3$ ,  $\gamma_4$ ,  $\cdots$ ,  $s_n$  হার স্চিত করা ইইল। তাহা হইলে,  $s_1=t_1$ ;  $s_2=t_1+t_2$ ;  $s_3=t_1+t_2+t_3$ ; ইত্যাদি।

এখন প্রদত্ত শর্তামুসারে,  $s_n = 5n^2 + 3n$ .

অত এব. ম-এর পরিবর্তে ক্রমান্বরে 1, 2, 3, 4, 5, · · · · বসাইয়া,

$$s_1 = 5.1^2 + 3.1 = 8 = t_1$$
;  $t_1 = s_1 = 8$ ;

$$s_1 = 5.2^2 + 3.2 = 26 = t_1 + t_2$$
;  $t_2 = s_2 - s_1 = 26 - 8 = 18$ ;

$$s_3 = 5.3^2 + 3.3 = 54 = t_1 + t_2 + t_3$$
;  $t_3 = s_3 - s_2 = 54 - 26 = 28$ ;

$$s_4 = 5.4^2 + 3.4 = 92 = t_1 + t_2 + t_4 + t_4$$
;

$$t_4 = s_4 - s_8 = 92 - 54 = 38$$
;

$$s_x = 5.5^2 + 3.5 = 140 = t_1 + t_2 + t_3 + t_4 + t_5$$
;

$$t_5 = s_5 - s_4 = 140 - 92 = 48.$$

স্ততরাং, নির্পর পদ-পাচটি যথাক্রমে ৪, 18, 28, 38, 48.

উলা. 4. নিম্লিখিত রাশিমালার মান নির্ণয় কর:

1+5+12+22+35+ ···n-সংখ্যক পদ পর্যন্ত ।

প্রদত্ত রাশিমালার বিশেষত্ব এই যে, উহাতে ক্রমান্তরে লব্ধ সন্নিহিত পদ্বরের অন্তর-মূহ এক সমান্তর-শ্রেণী উৎপন্ন করে। এখন, নির্পের মান S দ্বারা এবং n-তম পদ া দ্বারা স্চিত করা হইল। তাহা হইলে,

$$S = 1 + 5 + 12 + 22 + 35 + \dots + t_{n-1} + t_n$$

$$978 \quad S = 0 + 1 + 5 + 12 + 22 + \dots + t_{n-2} + t_{n-1} + t_n.$$

বিয়োগ করিয়া,  $0 = (1+4+7+10+13+\cdots n-7$ ংখ্যক পদ পর্যস্ত  $)-t_n$ .

$$= \frac{n}{2} \{2.1 + (n-1) \times 3\} = \frac{n}{2} (3n-1) = \frac{8}{2} n^2 - \frac{1}{2} n.$$

.. প্রথম পদ = \$.1° - \frac{1}{2}.1;

ষিতীয় পদ = \frac{2}{3}.2° - \frac{1}{2}.2;

তৃতীয় পদ = है.3° - है.3; ··· ইত্যাদি।

(য়াগাকতিয়., S= 3(12+22+32+ ··· ) সংখ্যক ৬৮ প্রস্থ )

$$\begin{split} &-\frac{1}{3}(1+2+3+\cdots n-7) ংখ্যক প্রস্ক প্রস্ক )\\ &=\frac{3}{2}\cdot\frac{n(n+1)(2n+1)}{6}-\frac{1}{2}\cdot\frac{n(n+1)}{2}\\ &=\frac{n(n+1)}{4}\{(2n+1)-1\}=\frac{n(n+1)}{4}\cdot 2n=\frac{n^2(n+1)}{2}. \end{split}$$

উদা. 5. নিয়লিপিত রাশিমালার মান নিলম কর :

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots$$
, সংখ্যক গল প্ৰথম।

নিৰ্বেথ মান S ধারা এবং প্ৰথম, ধি উটিয়, ছাতীয়, তাত ম প্ৰস্থ লিকে যথাক্তম ta, ta, ta, ...., ta মারা ফ'চত করা হইলা ত হা হটলে,

$$t_{1} = \frac{1}{1 \cdot 2} = 1 - \frac{1}{2};$$

$$t_{2} = \frac{1}{2 \cdot 3} = \frac{1}{2} - \frac{1}{3};$$

$$t_{3} = \frac{1}{3 \cdot 4} = \frac{1}{3} - \frac{1}{4};$$

$$\vdots$$

$$t_{n} = \frac{1}{n \cdot n + 1}; \quad \frac{1}{n} - \frac{1}{n + 1};$$

$$\vdots \quad S = t_{1} + t_{2} + t_{3} + \dots + t_{n} = 1 - \frac{1}{n + 1} = \frac{n}{n + 1};$$

উলা. 6. 15 কে একপ তিন সংখ্যার বিভক্ত কর, যেন উভার সমাপর-শ্রেণী ভক্ত হয় এবং উহাদের গুণফল 120 হয়।

बिर्पाय भाषा : डबर्षि एगेक स्वाराह्य u - 3, a रतः a + 3; व्यक्टिंडः डेडावः সমাধ্রন্থ্রীভিজে ৷ তাহ' ইটালৈ পান্য শ্রেষ্টার্সারে,

$$(a-\beta)+a+(a+\beta)=15; \quad \text{with}, \quad 3a=15; \quad \therefore \quad a=5;$$
 
$$44 \cdot (a-\beta)a(a+\beta)=12), \quad \text{such}, \quad (a^2-\beta^2)a=120,$$
 
$$\text{with}, \quad a^2-\beta^2=24.$$
 
$$\therefore \quad \beta^2=a^2-24=25-24=1. \quad \therefore \quad \beta=1 \quad \text{with} \quad -1,$$

9 281. Sert, 527 52 5-1, 5, 5+1, 22, 2, 4, 5, 6; অপবা, 5+1, 5, 5-1, অপাৎ, 6, 5, 4.

বল্ল ৩১, মভর মহাধান বেক্ট প্রার সংগাম্মুহ জাপুন করে।

श्रहत, ४, ५, ६-३ न्युपद्र , छन्छि भरवा ।

উলা, 7. চাতিটি ২ হা ২২/৪৫ , হণাভুক। উহাটের মুখ্য থো, ছুইটির বিজ্ঞ extreme) ২২ টি 10 জে ২৮/৫ (menns) হুইটির গুণফল 24. সংখ্যাপ্তলি নির্ণয় কর। [O. U. 1948]

িব্ৰু সংখ্যা-চার্টি মেন ম্পার্ক্তে  $a=3\beta$ ,  $a=\beta$ ,  $a+\beta$  প্রশ্নি  $a+3\beta$ ; সাধারণ অভ্যা  $2\beta$ .

ভাহা হইলে প্রদত্ত শ্রভায়নারে,

$$a-3\beta+a+3\beta=10,$$

$$(\alpha - \beta)(\alpha + \beta) = 24 ;$$

खबर्ग, 
$$-\beta^2 = 24 - \alpha^2 = 24 - 25 = -1$$
.

$$\beta^2=1; \quad \beta=\pm 1;$$

.. " to to the second of the s

জান্ত বাং । ক্ষেত্রাম পদস্পা অনুস্ম হতকৈ সাধারণ তা মগপদ ব এবা সাধারণ অন্তর ৪ ধরা হয়। আবা আবা আবারা আবার থা ধরা হয়। আবার জাবে আবারা অন্তর ৪৪ ধরা হয়। আবার ও জাবে জাবে ৪ বাং বিশ্বারণ অন্তর ৪৪ ধরা হয়। আবার ও জাবে জাবে ৪ বাং বিশ্বারণ অন্তর ৪৪ ধরা হয়।

উদ। 8.  $a^2$ ,  $b^2$ ,  $c^2$  এই বালি িনটি সমপের শ্রীপুরু হইবে, প্রমাণ কর  $\frac{1}{b+c}$ ,  $\frac{1}{c+a}$ ,  $\frac{1}{a+b}$  বালি িনটি সমাধ্য শ্রীপুরু হইবে।

প্রদান শ্রিফারে,  $b^2 - a^2 = c^2 - b^2$ ;

चर्या, 
$$(b-a)(b+a)=(c-b)(c+b)$$
;

$$b-a=c-b;$$

$$b+c=b+a;$$

$$\frac{(i+c-(c+a)-\frac{(i+c-(i+a)}{(b+a)(c+a)}-\frac{(i+c-(i+a)}{(b+a)(c+a)})}{(b+a)(c+a)}$$

$$\frac{1}{c+a} - \frac{1}{b+c} = \frac{1}{b+a} - \frac{1}{c+a}$$

উলা. 9. কোন সমান্তর-শ্রেণীর p-তম, q-তম এবং r-তম পদ যথাক্রমে a, bও c হইলে, প্রমাণ কর যে,  $a(q-r)+b(r-p)+\epsilon(p-q)=0$ .

যে সমান্তর-শ্রেণীর a, b এবং c যথাক্রমে p-ভম, q-ভম এবং p-ভম পদ, ভাছার প্রথম পদ a এবং সাধারণ অন্তর যেন  $\beta$ ; ভাছা হইলে,

$$a = a + (p-1)\beta \qquad \cdots \qquad (1)$$

$$b = \alpha + (q - 1)\beta \qquad \cdots \qquad (2)$$

$$c = a + (r-1)\beta \qquad \cdots \qquad (3)$$

এখন, এই সমীকরণ-তিনটি হইতে α এবং β-কে অপসারণ করিতে হইবে।

(2)-त्क (1) इनेट्ड धनः (3)-तक (2) इनेट्ड निरम्राण क्रिया

$$a-b=(p-q)\beta,$$

$$b-c=(q-r)\beta.$$

হতরাং, 
$$(a-b)(q-r)=(b-c)(p-q)$$
;

জথবা, 
$$a(q-r) + b(r-p) + c(p-q) = 0$$
.

উদা 10. এক ব্যক্তি তাঁহার বন্ধুকে এই শর্ভে 1000 টাক। ধাব দিতে রাজি হইলোন যে, তিনি বন্ধর নিকট কোন স্থল দাবি করিবেন না এবং আসল টাকাও মাদিক কিন্তিতে জমশঃ 2 টাক কম করিৱা আদায় করিবেন। প্রথম কিন্তির প্রিমাণ 64 টাক। হইলো, কড মানে উক্ত ঋণ শোধ হইয়া যাইবে ? [C. 17. 1920]

निर्लिय मोरमज मः था राम n.

মালিক কিলিওলির পরিমাণ স্পষ্টতঃই সমান্তর-শ্রেণীভুক্ত; এবং উচার প্রথম পদ = 64 ও সাধারণ অন্তর = -2.

যেহেতু n-সংখ্যক কিন্তির সমষ্টি = 1000 চাঁক , অতএন, এই সমান্তর-তেশ্রীর প্রথম n-সংখ্যক পদের সমষ্টি = 1000 ; অর্থাৎ,

$$\frac{n}{2} \{2 \times 64 + (n-1)(-2)\} = 1000$$
;

অথবা,  $(65n - n^2) = 1000$ ; অথবা,  $n^2 - 65n + 1000 = 0$ ;

অথবা, (n-25)(n-40)=0.

মুভরাং, n=25 অথবা 40.

किस n, 40 श्रेट भारत न , कारन, स्मारक्ट

40-তম কিন্তির পরিমাণ = উপরিউক্ত সমান্তর-শ্রেণীর 40-তম পদ = 64 + (-2)(40 - 1) = -14, একটি মণ-রাশি;

স্তরাং, ইহা গ্রহণ্যোগ্য নহে, কারণ, কোন কিন্দ্রির পরিমাণই ঋণায়ক হইতে পারে না। .\*. n=25.

অতএব, 25 মাসে ঋণ শোধ হইবে।

## প্রথমালা 16

- 1. কোন সমাস্ত্র-শ্রেণীর (n+1)-ভম পদটি  $\frac{ma-nb}{a-b}$  হাইলে, শ্রেণীটির প্রথম  $(2\,\imath+1)$ -সংখ্যক পদসমূহের সমষ্টি মির্ণয় কর ।
- 2. কোন শ্রেণীর প্রথম n-সংখ্যক প্রের সমষ্টি  $2n^2+7n$  হইলে, উহার প্রথম পাঁচটি পদ নির্ণম কর।
- 3. কোন সমান্তর-শ্রেণীর প্রথম n-দংখ্যক পদের দমপ্তি  $3n^2+10n$ ; উহার প্রথম পদ ও সাধারণ অন্তর নির্ণয় কর।
- 4. কোন সমাত্র-শ্রণীর প্রথম n-সংখ্যক প্রের সমষ্টি  $n^2+n$  হইলে, উহার 35-তম পদটি নির্ণির কর।

নিম্লিখিত রাশিমালার মান নির্ণয় কর (Sum the following series):

- 5. 1+3+6+10+15+....n-সংখ্যক পদ পর্যন্ত ।
- 6. 2+5+10+17+····

  -সংখ্যক পদ পর্যন্ত।
- 7. 2+7+14+23+34+·····n-দংখ্যক পদ প্ৰস্ত !
- 8. 1+4+8+13+19+····n-সংখ্যক পদ পর্যন্ত।
- 9. (i)  $\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \cdots n$ -সংখ্যক পদ পর্যন্ত।

(ii) 
$$\frac{1}{a(a+b)} + \frac{1}{(a+b)(a+2b)} + \frac{1}{(a+2b)(a+3b)} + \cdots n$$
-  $\pi^*$ 

10. সমান্তর-শ্রেণীভূক্ত এইরূপ চারিটি সংখ্যা নির্ণাং কর, যাহ দের যোগকল 56 এবং যাহাদের বর্গসমূহের যোগকল 864.

[ ধর, সংখ্যাগুলি  $\alpha-3\beta$ ,  $\alpha-\beta$ ,  $\alpha+\beta$  ও  $\alpha+3\beta$ . ]

- 11. সমান্তর-শ্রেণীভূক্ত তিনটি সংখ্যার যোগকন 15, এবং অস্ত্যুবংখ্যা-ছুইটির (two extremes) বর্গের যোগফল 58. সংখ্যাওলি কত ?
- 12. সমান্তর-শ্রেণীভূক চারিটি দংখ্যার মধ্যে অস্তাদংখ্যা-তুইটির যোগকল ৪, এবং মধ্যক-তুইটির গুণফল 15. সংখ্যা-চারিটি কত ?

13. সমাস্থর-শ্রণীভূক্ত একপ চবটি সংখ্যা নির্ণয় কর, যেন উভাদের অন্থাসংখ্যা-ছুইটির যোগফল 16 এবং মধ্যপদ্বদের সংখ্যামা-নুইটির গুণফল 63 হয়।

িধর, সংখ্যাপ্তলি  $a-5\beta$ ,  $a-3\beta$ ,  $a-\beta$ ,  $a+\beta$ ,  $a+3\beta$  এক  $a+5\beta$ .

14. a, b এবং c মথাক্ষে কোন সমাস্তর-শ্রেণীর p, q এবং r-সংখ্যাক পাদের সমস্তি চইলো, প্রমাণ কর যে,  $\frac{a}{p} \left(q-r\right) + \frac{b}{q} \left(r-p\right) + \frac{c}{r} \left(p-q\right) = 0.$  [ D, B. 1943, '45 ]

- 15. (i)  $(b-c)^2$ ,  $(c-a)^2$ ,  $(a-b)^2$  সমান্তর-শ্রেণীভূক হইলে, দেখা ও যে,
  - 1 1 gr. 1 ও সমান্ত-শ্রণীভূক হটাল।

    b-c c-a a-b
  - (ii) a, b, c म्या एत-(ध्री एक इहेरल, प्रथा ५ (स,
    - (1) 1, 1 are 1 म्याएड-(अधी एक इंडेरन)
    - '21 b+c, c+a, a+b न्या एत-(भ्री कुक क्षेट्र ।
    - (3)  $a^2(h+c)$ ,  $h^2(c+a)$ ,  $c^2(a+b)$  সমাস্তর-শ্রেণী ভুক্ত হটবে।
    - (4)  $\frac{1}{a} \left( \frac{1}{b} + \frac{1}{c} \right)$ ,  $\frac{1}{b} \left( \frac{1}{c} + \frac{1}{a} \right)$ ,  $\frac{1}{c} \left( \frac{1}{a} + \frac{1}{b} \right)$  সমাস্তর-শ্রেণীভূক হইতে :
    - (5)  $a\left(\frac{1}{b}+\frac{1}{c}\right)$ ।  $b\left(\frac{1}{c}+\frac{1}{a}\right)$ ।  $\left(\frac{1}{a}+\frac{1}{b}\right)$  महाख्त-(अभिङ्क क्टें(र ।
    - (6) (a+2b-c)(2b+c-a)(c+a-b)=4abc.
- 16. রাশিমালার মান নির্ণর কর:

 $3 \times 7 + 5 \times 10 + 7 \times 13 + 9 \times 16 \cdots n$ -সংখ্যক পদ পর্যন্ত ।

17. কোন সমাস্তর-শেণীর p-ভম পদটি a এবং q-ভম পদটি b. দেখাও যে, প্রথম (p+q)-সংখ্যক পদ ওলির সমষ্টি  $\frac{p+q}{2}\{a+b+\frac{a-b}{p-q}\}$ .

[ मालाब, 1887]

- 18. 3 এবং 54-এর মধ্যে n-সংখ্যক সমান্তরীয় মধ্যক আছে এবং ৪-ভম মধ্যক : (n-2)-ভম মধ্যক = 3:5 ; n-এর মান নির্ণয় কর ।
- 19.  $S_1$ ,  $S_2$ ,  $S_3$  তিনটি সমান্তর-শ্রেণীর n-সংখ্যক পদের সমষ্টি হইলে এবং প্রত্যেকটির প্রথম পদ 1 এবং সাধারণ অন্তরগুলি যথাক্রমে 1, 2, 3 হইলে, প্রমাণ কর যে,  $S_1 + S_3 = 2S_3$ .
  - 20. ৮-দংখ্যক সমান্তর-শ্রেণীর প্রত্যেকটির প্রথম পদ 1 এবং সাধারণ অন্তরগুলি

1, 2, 3,· · · · , r হইলে, লেখাও নে, উহালের n-তম প্রত্তিত সমষ্টি =  $\frac{1}{6}\{(n+1).r^2+(n+1).r\}$ .

21. রাশিমালার মান নির্ণয় কর:

$$n.1 + (n-1).2 + (n-2).3 + (n-3).4 + \cdots 1.n.$$

ি r-তম পদ =  $\{n-(r-1)\}, r=(n+1)r-r^2$ , সুতরাং, নির্ণের দান =  $(n+1)\{1+2+3+\cdots+n\}$  —  $(1^0+2^0+3^0+\cdots+n^2)=\cdots$  ]

- 22. ৮-২ংখ্যক প্রস্তরপত্তকে এরপভাবে সাজানো হইল যে, প্রথম ও দি ই। যিটিব মধ্যব তা দ্ব হ এক মিটার, দিও হৈ ও ৩০০টির মধ্যবতা দ্ব হ কি মিটার, হ ই য় ও চতুপটির মধ্যবতা দ্ব হ পাচ মিটার এবা এইরপ। প্রথম খণ্ডের নিকট স্থাপিত একটি ঝুনিব মধ্যে প্রস্তরপত্ত প্রশাক এক একটি করি: আনিতে ইইবে, এক ব্যক্তির কত প্রতিক্তিত ইইবে?
- 23. কোন ক্লান্দের চারগণের ব্যস্থকটি স্মান্তর স্থা গঠন করে এবং উহ'র সাধারণ অথর চারি মাস। কনিই বালকটির বয়স ঠিক ৪ বংসর এবং বালকগণের ব্যসের সমষ্টি 16৪ বংসর হুইলে, ক্লান্সের ভার্মংগ্যা নির্ধিকর।

[ কলি: প্রবেশিকা, 1872 ]

- 24. কো । কজারথকেরের অভ্যকোণভাল একটি সমান্তর-শোণী কুক ১০লে এবং কুর তম কোনটি ব্র° এবং সাধারণ মন্তর ৪৪° ১০লে, গোরটির বাতগুলির সংখ্যা নির্দিষ্কর।
- 25. একজন লোক 65 টাকাৰ ধৰ কিলিতে লোধ করিবার ৭৯প শার্চ করিল যে, প্রথম মাসে এটাক দিবে এবং পরে মাসে মাসে । টাকা কবিয়া অধিক শোধ করিতে থাকিবে। কর মাজে ভাতার ধণ শোধ হুইয়া ধারতে ৪

#### শ্বঃম ভাৰাগয়

## প্রগতি ( Progression ) ঃ গুণোত্তর-প্রেণী ( Geometrical Progression )

5.1. কোন সংখ্যাকে অপর এক নির্দিষ্ট প্রবক (constant) বংখ্যা দ্বারা ক্রমশং গুণ করিতে পাকিলে ক্রমান্তর-লব্ধ গুণফলসমূহ এক প্রণোত্তর-প্রেণী উৎপন্ন করে। উল্লিখিত প্রবক সংখ্যাটিকে উল্লেখনির সাধার আনুপাত (common ratio), এবং বিভিন্ন গুণফলগুলিকে ঐ শেণীর পদ বলে। যথা,

| 1,  | 2,               | 4,                | 8,                | 16, ≷    | ত্যাদি | À ; |
|-----|------------------|-------------------|-------------------|----------|--------|-----|
| 1,  | 1<br>2,          | 1.                | 1,                | 10,      | 29     | ;   |
| 1,  | − <del>1</del> , | 301               | - 1/8 71          | 1<br>81, | 39     | 5   |
| a · | ar.              | ar <sup>2</sup> , | ar <sup>8</sup> , | ar*,     | 97     | ÿ   |

প্রভৃতি শেণীগুলির প্রত্যেকটিই এক ওপে.ভার-শ্রেণী। প্রথমটিতে সাধারণ অন্তপাত 2, দিভায়িটিতে সাধারণ অন্তপাত ∮, তৃত্যিটিতে সাধারণ অন্তপাত − ⅓, এবং চতুর্থটিতে সাধারণ অন্তপাত ৫.

উনিখিত দুষ্টান্তওলি হইতে স্পষ্টই দেখা যাব যে, তিন বা ততোগিক পদবিশিষ্ট কোন শ্ৰেণীতে যে-কোন পদের সহিত উঠার অব্যবহিত পৃথবর্তী পদের অন্তপাত যদি সকল সময় একট হয়, ভাচা হইলে এ শ্ৰেণীটিকে শুণোগ্তর-শ্রেণী বলে; এবং উক্ত অন্তপাতনিদিষ্ট সংখ্যাটিকে এ শ্রণীর সাধারণ অনুপাতনিদিষ্ট সংখ্যাটিকে এ শ্রণীর সাধারণ অনুপাতনিদিষ্ট সংখ্যাটিকে এ শ্রণীর সাধারণ অনুপাতনিদিষ্ট সংখ্যাটিকে এ

কাজেই, কোন গুণোওর-ভোণীর সাধারণ অনুপাত নির্ণয় করিতে হইলে উহার যে-কোন পদকে তাহার অন্যবহিত পূর্ব পদ দারা ভাগ করিতে হয়।

## 5.2' কোন গ্ৰেণাভৱ-শ্ৰেণাভৱ n-তম পদ নিৰ্ভিষ্য। (To find the nth term of a G. P.)

একটি গুণোত্র-শ্রেণীর প্রথম পদ a এবং সাধারণ অমুপাত যেন r, তাহ, হইলে স্পষ্টতঃ, ঐ শ্রেণীর দ্বিতীয় পদ =ar; তৃতীয় পদ  $=ar.r=ar^2$ ; চতুর্থ পদ  $=ar^2.r=ar^3$ ;  $\cdots$ ; দশম পদ  $=ar^9$ ; একবিংশ পদ  $=ar^{20}$ ; ইত্যাদি।

মুত্রাং, n-তম পদ = ar<sup>n-1</sup>.

উদাহরণ। 2, 6, 18, 54,  $\cdots$  ইত্যাদি শ্রেণীটির ষষ্ঠ পদ নির্ণন্থ কর। এক্ষেত্রে প্রথম পদ a=2, এবং সাধারণ অনুপাত  $=\frac{6}{3}=3$ ,

- .. নির্ণেয় ষষ্ঠ পদ = 2 × 3<sup>6-1</sup> = 2 × 3<sup>5</sup> = 486.
- 5'3. কোন গুণোত্তর-শ্রেণীর যে-কোন চুই শদ দেওয়া আছে ; গুণোত্তর-শ্রেণীটিকে সম্পূর্ণরূপে নির্ণর করিতে হইবে।

( Civen any two cerms of a G. P., to find it completely. )

উদা. 1. .ক.ন ৬ণোভার-শ্রেণার পঞ্চ, পদ ৪1 এবং অইম পদ 2187; শেণীটি নির্ণিয় কর।

নির্ণেয় শ্রেণীর প্রথম পদ a এবং দাধারণ অন্তপতি .খন r.

$$q = 2187, \qquad \cdots \qquad (2)$$

পুনরায়, (1) হসতে,  $a - \frac{81}{r^4} = \frac{81}{3^4} = \frac{81}{81} = 1$ .

স্থতরা, নির্ণেয় হেণী 1, 3, 9, 27, ..... ইত্যাদি।

উদা. 2. 2, -6, 18, -54, $\cdots$  ইত্যাদি শ্রেণীর n-তম পদ নির্ণয় কর। এখানে a=2,  $b=\frac{-6}{2}=-3$ .

.'. n-ত্ৰ প্ৰ = a. $r^{n-1} = 2$ . $(-3)^{n-1}$ .

টীকা। একেন্দ্র পদটি ক্লাছক বা বনাস্থক তাহা বলা যায় না। n-এর মান অধ্যা (odd) হইলে, (n-1)এর মান ধ্যা (even) হইবে, তাহা হইলে  $(-3)^{n-1}$ -এর মান ধনা স্থক হইবে এবং পদটি ধনাস্থক। আবে n-এর মান যুগা হইবে এবং পদটি ক্লাম্মক।

উদা. 3. 1,  $-\frac{1}{2}$ ,  $\frac{1}{1}$ ,  $-\frac{1}{4}$ ,  $\cdots$  ইত্যাদি শ্রেণীর সপ্তম পদ নির্ণয় কর। এখানে  $\alpha=1$ ,  $r=\frac{-\frac{1}{3}}{1}=-\frac{1}{3}$ ,

সপ্তাম পাদ = 
$$a.r^{7-1} = a.r^6 = 1.(-\frac{1}{2})^6 = \frac{1}{2^6} = \frac{1}{64}$$
.

উদা. 4. 2, 6, 18, 54, ..... ইত্যাদি শ্রেণীটির কোন পদ 4374 ?

4374 যেন শ্রেণীটির %-তম পদ।

এখানে a=2,  $r=\frac{5}{3}=3$ .

:. n-তম পদ = a.r<sup>n-1</sup> = 2.3<sup>n-1</sup> :

 $2.3^{n-1} = 4374$ :

n-1=7; n=8.

় নির্বের পদটি অষ্ট্রম পদ।

উদা 5. কোন গুণোন্তর-শেণীর পঞ্চম পদ 48 এবং দাদশ পদ 6144; প্রথম পদ ও সাধারণ অনুপাত নির্ণয় কর। [D. B. 1928]

ধরা যাক, প্রথম পদ = a, সাধারণ অমুপাত = r.

তাহা হইলে, পঞ্ম পদ =  $a.r^4$ :

वामभ शम = a.r11 ;

$$\therefore \frac{a.r^{11}}{a.r^{4}} = \frac{6144}{48};$$

অথবা,  $r^7 = 128 = 2^7$ ;

.'. r = 2.

 $a.2^4 = 48$ ;

$$a = \frac{48}{2^4} = 3.$$

:. নিৰ্ণেয় প্ৰথম পদ = 3, সাধারণ অনুপাত = 2.

উদা. 6. কোন গুণো বর-শ্রেণীর p-তম ও g-তম পদ-ত্ইটি যথাক্রমে c ও d ; শ্রেণীটিকে সম্পূর্ণরূপে নির্ণয় করিতে হইবে।

নির্দের শ্রেণীর প্রথম পদ ও সাধারণ অনুপাত যেন যথাক্রমে a এবং r. তাহা হইলে,  $c=ar^{p-1}$  ··· (1)

$$eqq d = ar^{q-1} \qquad \cdots \qquad \cdots \qquad (2)$$

(1) ও (2) হইতে, ভাগ করিয়া, 
$$r^{q-p} = \frac{d}{c}$$
:  $r = \left(\frac{d}{c}\right)^{\frac{1}{q-p}}$ .

অভ্ৰব, (1) ইটটে, 
$$a = \frac{c}{r^{p-1}} = \frac{c}{\left(\frac{d}{c}\right)^{q-p}} = \frac{\frac{p-1}{q-p}}{\left(\frac{d}{q}^{p-1}\right)^{q-p}} = \left(\frac{c^{q-1}}{d^{p-1}}\right)^{\frac{1}{q-p}}.$$

স্তরাং, প্রথম পদ ও দাধারণ অন্তপাত নির্ণীত হইল বলিয়া নির্ণেয় শ্রেণীর সকল পদই ক্রমশঃ লিথিয়া যাইতে পারা যায়।

## প্রামালা 17

- 4, 12, 36, ···· ইত্যাদি শ্রেণীর অস্তম পদ নির্ণয় কর।
- 2. 3 বু , 2 1 , 1 1 , · · · · ইত্যাদি শ্রেণীর ষষ্ঠ পদ নির্ণয় কর।
- 3. 1, 4, 16, 64, .... ইত্যাদি শ্রেণীর নবম পদ নির্ণয় কর।
- 4. 1, -3, 9, -27,· · · ইত্যাদি শ্রেণীর ষষ্ঠ পদ নির্ণর কর।
- 5. \$. -1. ₹.... ইত্যাদি শ্রেণীর পঞ্চম এবং (n 1)-তম পদ নির্ণয় কর।
- 6. −21, 14, −9⅓,····· ইত্যাদি শ্রেণীর সপ্তম পদ নির্ণয় কর।
- 7. কোন গুণোভর-শ্রেণীর প্রথম হুই পদ যথাক্রমে 125 এবং 25 হুইলে, উহার ষষ্ঠ এবং সপ্তম পদ-ছুইটি কত হুইবে ?
  - 8.  $\sqrt{3} + \frac{1}{\sqrt{3}} + \frac{1}{3\sqrt{3}} + \cdots$  ইভ্যাদি শ্রেণীটির n-ভম পদ নির্ণয় কর।
- 9. কোন গুণোত্তর-শ্রেণীর প্রথম পদ 2, দশম পদ 1; দাধারণ অন্তপাত নির্ণয় কর। [C. U. 1925]
- 10. চয়টি সংখ্যা ওণোত্তর-শ্রেণীভূক্ত হইলে, প্রমাণ কর যে, প্রথম ও শেষ পদের গুণফল তৃতীয় ও চতুর্থ পদের গুণফলের সমান।
  - 11. কোন গুণোত্তর-শ্রেণীর প্রথম পদ-তুইটি 3 এবং 1. দশম পদটি নির্ণয় কর।
    [ C. U. 1913 ]
- 12. কোন ওণোত্তব-শ্রেণীর পঞ্চম পদ 32 এবং হাদশ পদ 4096. প্রথম পদ ও সাধারণ অন্তপাত নির্ণয় কর।
- 13 কোন গুণোন্তর-শ্রেণীর পঞ্চম পদ 81 এবং দ্বিতীয় পদ 24 ; শ্রেণীটি নির্ণয় কর। [W. B. S. E. H. S. 1962]
  - 14. 16, 8, 4, 2, · · ইত্যাদি শ্রেণীর কোন্ পদ 18?
- 15. কোন গুণোত্তর-শ্রেণীর নিম্লিখিত পদছর দেওয়া আছে; শ্রেণীটি নির্ণয় করিতে হইবেঃ (i) যঠ পদ = 192 এবং একাদৃশ পদ = 6144;
  - (ii) দিতীয় পদ = 9 এবং অষ্টম পদ = 1;
  - (jii) পঞ্চম পদ = ৪ এবং অন্তম পদ = 🚉
- 16. কোন গুণোত্তর-শ্রেণীর p-ভম ও q-ভম পদন্বর যথাক্রমে c ও d হইলে, উহার n-ভম পদটি নির্ণয় কর।
- 17. দেখাও যে, কোন গুণোত্তর-শ্রেণীর সকল পদকেই যে-কোন একই সংখ্যা দারা গুণ বা ভাগ করিলে এতম্বর শ্রেণীটিও গুণোত্তরীয় হইবে।

18. কোন গুণো ওর-শেণীর (p+q)-তম পদ m এবং (p-q)-৩ম পদ n ছইলে, উহার p-তম এবং q-তম পদ-দুইটি নির্ণয় কর।  $\qquad \qquad [$  B. U. 1888 ]

19. দেখাও যে, বে-কোন ওনোত্তর শেণীতে প্রথম ও শেষ পদ হইতে সমদ্রবর্তী পদ্ধধের গুণফল এক ফ্রক সংখ্যা হঠাব।

5.4. গুলোভর-ভোনীর নিদিন্ত-সংখ্যান পদসমূহের সমষ্টি নির্ণিয় (To find the sum of a number of terms in Geometrical Progression.)

কোন ওণোত্তব-ছেণীর প্রথম পদ a, সংগারণ অনুপতি যেন r, এবং প্রথম a-সংখ্যক পদের সমষ্টি যেন s.

তাহা ইইলে, 
$$s = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$
.  
∴  $s.r = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n$ .

অতএব, বিয়োগ করিয়া,

$$s.r-s=ar^n-a$$
; অধবা,  $s.(r-1)=a(r^n-1)$ .

•  $s=\frac{a(r^n-1)}{r-1}$  ... (1)

ভাৰুসি.। উপরিউক শ্রেণীর শেষ । ঘর্থাং, n-ভম ) পদ l হইলো, স্পষ্ঠিতঃ,  $l=ar^{n-1}$  ; স্তরাং, (1) হইতে,  $s=\frac{rl-a}{r-1}$   $\cdots$  (3)

টীকা। দ-এর সাংখ্যমান 1 অপেক্ষা বড না হইলে, (2) দ্বারা স্চিত স্ত্রটি ব্যবহার করা স্বিধাজনক।

উদা. 1.  $\frac{1}{2}$   $\frac{6}{7}$   $-\frac{6}{6}$   $+\frac{4}{5}$   $-\cdots$ সপ্তম পদ প্ৰস্থ বাশিমালার মান নির্ণয় কর। দাধারণ অনুপাত =  $-\frac{6}{5}$   $+\frac{1}{2}$   $\frac{6}{7}$  =  $-\frac{6}{5}$   $\times$   $\frac{2}{5}$  =  $-\frac{3}{2}$ .

∴ (2) দ্বারা স্থচিত স্ত্র হইতে,

নিৰ্পেয় সমষ্টি = 
$$\frac{\frac{16}{27}\{1 - (-\frac{3}{2})^7\}}{1 + \frac{3}{2}} = \frac{\frac{16}{37}(1 + \frac{21.87}{128})}{\frac{5}{2}}$$
  
=  $\frac{16}{97} \times \frac{2316}{128} \times \frac{2}{8} = \frac{463}{163} = 4\frac{81}{108}$ .

উলা. 2.  $3+4\frac{1}{2}+6\frac{2}{3}+\cdots$ পঞ্ম পদ প্যস্ত রাশিমালার মান নির্ণয় কর। সাধারণ অনুপাত  $=4\frac{1}{2}+3=\frac{2}{3}\times\frac{1}{3}=\frac{2}{3}$ .

:: (1) দ্বারা স্চিত হুত্র অনুসারে,

নির্ণেশ্ব সমষ্টি = 
$$\frac{3\{(\frac{5}{2})^5 - 1\}}{\frac{5}{2} - 1} = \frac{3\{\frac{243}{32} - 1\}}{\frac{1}{2}}$$
  
=  $3 \times \frac{211}{32} \times 2 = \frac{683}{16} = 39\frac{9}{18}$ .

উদা. 3. কোন স্তের সাহায্যন লেইয়:  $1+\frac{1}{3}+\frac{1}{3^2}+\cdots$ ্তম পদ প্যস্ত্রাশিমালার মান নিশিয় কয়।

ধরা যাক, 
$$t_1 = 1$$
,  $t_2 = \frac{1}{3}$ ,  $t_3 = \frac{1}{3^2}$ ;

$$\therefore \quad t_n = \frac{1}{3^{n-1}}.$$

এখন, নির্ণেগ্ন সমষ্টি = S ধরিলে,

$$S = 1 + \frac{1}{3} + \frac{1}{3^{\frac{1}{3}}} + \dots + \frac{1}{3^{n-1}}$$
 (1)

(1) হইতে (2) বিয়োগ করিয়া,  $\frac{2}{8}$ .  $S = 1 - \frac{1}{3^n}$ ;

$$\therefore S = \frac{3}{2} \left( 1 - \frac{1}{3^n} \right) = \frac{1}{2} \left( 3 - \frac{1}{3^{n-1}} \right).$$

উদা. 4. 1, 3, 9, 27, ··· শ্রেণীর কত পদ লইলে, রাশিমালার সমষ্টি 3080 হইবে ?

গুণোত্তর-শ্রেণীটির গ্র-সংখ্যক পদের সমষ্টি যেন 3280.

এক্ষেত্রে প্রথম পদ = 1 এবং সাধারণ অমুপাত = 🛊 = 3.

$$\frac{a(r^n-1)}{r-1} = S$$
 RE REC.  $\frac{1(3^n-1)}{3-1} = 3280$ ;

অথবা, 3"-1=6560;

$$3^n = 6561 = 3^8$$
;  $n = 8$ .

∴ निर्णिय शाम्याः = 8.

#### প্রগ্রমালা 18

নিম্লিখিত রাশিমালাসমূহের মান নির্ণয় কর (Sum the series):

- 2-4+8- · · · দশম পদ পর্যন্ত ।
- 4. 1/3+1/4- · · প্ৰথম পদ প্ৰতঃ ।
- 5. 2-4+8-···2r-তম পদ পর্যন্ত ৷
- 6. 2½ 1 + ⅔ ···n-তম পদ প্ৰতঃ
- 7. কোন স্থের সাহায্য ব্যতীত,  $1+\frac{1}{2}+\frac{1}{2^2}+\cdots$ শেণীর n-তম পদ পর্যন্ত রাশিমালার মান নির্গত কর । [C.~U.~1938~]
- 8.  $(a-x)+(a^2-x^2)+(a^3-x^3)+\cdots+(a^n-x^n)$  রাশিমালার মান নির্ণন্ন কর। [ O. U. 1930 ]
  - 9. 4, ১, 16, 32, · ক্রেণীর ক্ত প্রের স্কৃষ্টি 1020 ইইবে ?
- 10. দেখাও যে, কোন ওপোত্র-শ্রেণীর p-তম পদ হইতে আরম্ভ করিয়া n-দংখ্যক পদের সমষ্টি ঐ শ্রেণীর q-তম পদ হইতে আরম্ভ করিয়া n-দংখ্যক পদের সমষ্টির ক্লাব্র বা
- 11. কোন ওপোত্তর-শ্রেণীর প্রথম পদ 5, শেষ পদ 320 এবং সমষ্টি 635; চতুর্থ পদটি নির্ণিয় কর।

[ \* कि : एउ S = rl - a প্রাণ কর । ]

## 5'5. শুণোত্ত-মধ্যক (Geometric means) |

সংজ্ঞা 1. তিনটি সংখ্যা ওণো ত্তর-শ্রেণাভূক হইলে, মধ্যমটিকে প্রথম ও ভূতাযের **গুণোত্তর-মধ্যক** বরে।

সংস্তা 2.  $x_1, x_2, x_3, \dots$ ,  $x_n$  সংখ্যা গুলি থদি চুইটি নিৰ্দিষ্ট সংখ্যা a ও i-এর সহিত একপভাবে সহস্ক হয় যে, a,  $x_1$ ,  $x_2$ ,  $x_3$ ,  $\dots$ ,  $x_n$ , b শ্রেণান্ট গুণোন্তরীয়, গহা হুইলে  $x_1$ ,  $x_2$ ,  $x_3$ ,  $\dots$ ,  $x_n$  সংখ্যাগুলিকে a ও b-এর অন্তর্গ **গুণোন্তর-মধ্যক** বলে।

# (i) স্বইটি নিদিষ্ট সংখ্যার গুণোত্তর-মধ্যক নির্ণয় করিতে হইবে।

( To find the Geometric mean between two given quantities.) a ও b ছুইটি নিদিপ্ত সংখ্যা এবং দেখেন উহাদের গুণোন্তর-মধ্যক। ভাষা হউলে a, G, b গুণোন্তর-শ্রেণীভূক্ত বলিয়া,

 $rac{G}{a}=rac{h}{G}$  : [ প্রত্যেকটিই গুণো ভর-শ্রেণীর সাধারণ অতুপাতের সমান । ]

$$\therefore G^3 = ab \; ; \qquad \therefore G = \sqrt{ab}.$$

(ii) দুইটি নির্দিষ্ট সংখ্যার মধ্যে কোন নির্দিষ্ট-সংখ্যক ওণোত্তর-মধ্যক সন্ধিনেশিত করিতে হইবে। (To insert a given number of Geometric means between two given quantities.)

a ও b ভুইটি নিদিষ্ট সংখ্যা এবং  $x_1$ ,  $x_2$ ,  $x_3$ , ....,  $x_n$  সংখ্যাগুলি যেন তে ও b এর এওব ই n-শংখ্যক গুণোন্তর-মধ্যক।

ভাহা হইলে  $\alpha$ ,  $\alpha$ <sub>1</sub>,  $\alpha$ <sub>2</sub>,  $\alpha$ <sub>3</sub>, .....,  $\alpha$ <sub>n</sub>,  $\beta$ , এক স্থাপান্তর-শ্রেণী, ইহার সাধারণ অফুপাতকে  $\gamma$  নার৷ স্চিত করিলে স্পষ্টতঃ,

h = উক্ত শ্ৰেণীৰ (n + 2)-তম পদ = arn+1 ;

$$x_1 = \frac{b}{a}; \qquad \text{we say, } r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}};$$

$$x_2 = a \cdot \left(\frac{b}{a}\right)^{\frac{1}{n+1}}; \qquad x_3 = a \left(\frac{b}{a}\right)^{\frac{3}{n+1}};$$

$$x_3 = a \cdot \left(\frac{b}{a}\right)^{\frac{3}{n+1}}; \dots \dots \text{ Formy}$$

উদা. 1. (i) 16 এবং 256; (ii)  $a^{b}h^{2}$  এবং  $ah^{a}$ -এর মধ্যে গুণোন্তর-মধ্যক সন্ধিবেশিত কর।

(i) বিশেষ প্রশোকর-মধ্যক =  $\sqrt{16 \times 256}$  =  $\sqrt{16 \times 16 \times 4 \times 4}$  = 64.

(11) 
$$n = n = \sqrt{a^6 h^3} \times ah^6 = \sqrt{a^3 \cdot a^3 \cdot h^3 - a^3 h^5}.$$

উদা, 2. 2 এবং 162-বর মধ্যে তিনটি গুলোওর মধ্যক সলিবেশিক কর।

[ C. U. 1949 ]

খ্যা যাক, দাধারণ অমূপাত - r.

পুদ্ধ লাভ হটতে , লাগার সক্ষম প্ল – 162.

$$*t_s = ar^4 = 2.r^4$$
;

$$\therefore 2.r^4 = 162$$
;  $\therefore r^4 = 81$ ;  $\therefore r = \pm 3$ .

:. নির্ণেথ মধ্যক হয় যথা কমে 6, 18, 54 ব - 6, 18, - 51.

<sup>ে</sup> এর নাচে প্রসাধা বিধিবে, সেগসাধাক পদ্টিকে বুকার স্বভরতে প্রকাষ পদ বুকাইছেছে।
(XI-XII)—6

উদা. 3. 🖟 এবং 128-এর মধ্যে তিনটি গুণোত্তর-মধ্যক দরিবেশিত কর।

নির্ণেয় গুণোত্তর-মধ্যক তিনটি  $x_1,\,x_2,\,x_3$  দারা স্থচিত হইল  $\mathfrak t$ 

তাহ হইলে  $\frac{1}{2}$ ,  $x_1$ ,  $x_2$ ,  $x_3$ , 12৪ এক গুণোত্তর-শ্রেণী হইবে। r এই শ্রেণীর সাধারণ অনুপাত হলৈ স্পষ্টতঃ,

128 = উক্ত শ্রেণীর পঞ্চম পদ = 1.74;

 $r^4 = 256$ ; r = 4.

অত্এব,  $x_1 = \frac{1}{2}.4 = 2$ ;  $x_2 = \frac{1}{2}.4^2 = 8$ ;  $x_3 = \frac{1}{2}.4^3 = 32$ .

উদা. 4. জুইটি দংখ্যার সমান্তর-ও ওণোত্তর-মধ্যক ষথাক্রমে 10 ও ৪. সংখ্যা-তুইটি নির্ণয় কর।

সংখ্যা-তুইটি যেন a এবং b.

তাহা হইলে, প্রদত্ত শর্ত হইতে,

সমাস্থর-মধ্যকটি = 
$$\frac{a+b}{2} = 10$$
; ...  $a+b=20$ . ... (i)

গুণোব্র-মধ্যকটি = 
$$\pm \sqrt{ab} = 8$$
;  $\therefore ab = 64$ . ... (ii)

(i) をきてる、a=20-b;

সমীকরণ (ii)-এ (i) হইতে প্রাপ্ত a-এর মান বদাইয়া (20-b)b=64;

অথবা, 20b - b<sup>2</sup> = 64:

অথবা,  $b^2 - 20b + 64 = 0$ ; অথবা (b-4)(b-16) = 0.

∴ b=4 বা 16.

b-এর মান দ্মীকরণ (i) বা (ii)-এ বদাইয়া a = 16, 4.

- ∴ নির্ণেয় শংখ্যাছয় 4, 16 বা 16, 4.
- 5.6. ছইটি নিদিষ্ট ধনাত্মক সংখ্যার সমান্তর-মধ্যক উহাদের গুণোত্তর-মধ্যক অপেকা বৃহত্তর। (The Arithmetic mean of any two given positive quantities is greater than their Geometric mean.)

a 8 b (यन इ रें निर्मिष्ट धन-मःथा।

তাহা হইলে উহাদের সমাস্থ্র-মধ্যক =  $\frac{1}{2}(a+b)$ ; এবং গুণোত্তর-মধ্যক =  $\sqrt{ab}$ .

এখন, 
$$\frac{a+b}{2} - \sqrt{ab} = \frac{1}{2}[a-2\sqrt{a}, \sqrt{b}+b]$$

$$= \frac{1}{2}(\sqrt{a} - \sqrt{b})^2 = \sqrt{a} + \sqrt{a} - \sqrt{a}$$

$$\therefore \quad \frac{a+b}{2} > \sqrt{ab},$$

অর্থাং, সমান্তর-মধ্যক > গুণোত্তর-মধ্যক।

## প্রথমালা 19

- 1. (i) 6 এবং 24 ; (ii) 8 এবং  $\frac{1}{2}$  ; (iii)  $x^2$  এবং  $\frac{1}{x^2}$  ; (iv)  $a^2b^3c$  এবং  $bc^2$ -এর গুণোন্তর-মধ্যক নির্ণয় কর।
  - 2. 3 এবং 24-এর মধ্যে তুইটি গুণো ত্তর-মধ্যক সন্মিনেশিত কর।
  - 3. 2½ এবং 🛊-এর মধ্যে তিনটি গুণোত্তর-মধ্যক সন্নিবেশিত কর।
  - 4. 🖁 এবং  $5\frac{1}{18}$ -এর মধ্যে চারিটি গুণোত্তর-মধ্যক সন্নিবেশিত কর।
  - 3% এবং 40½-এর মধ্যে পাঁচটি গুণোত্তর-মধ্যক সন্মিনেশিত কর।
- 6. তুইটি দংখ্যার মধ্যে সমান্তর-মধ্যক 15 এবং গুণোত্তর-মধ্যক 9; সংখ্যা-তুইটি নির্ণয় কর। [O. U. 1926]
- 7. a, b ও c তিনটি গুণোত্তর-শ্রেণীভূক্ত সংখ্যা, এবং x ও y যথাক্রমে a ও b এবং b ও c-এর সমান্তর-মধ্যক হইলে, প্রমাণ কর যে,

$$\frac{a}{x} + \frac{c}{y} = 2$$
 এবং  $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$  [ P. U. 1892]

8. a ও b-এর সমাস্তর- ও গুণোত্তর-মধ্যকদ্বরের অফুপাত m ও n-এর অফুপাতের সমান হইলে, প্রমাণ কর যে,

$$a:b=m+\sqrt{m^2-n^2}:m-\sqrt{m^2-n^2}.$$
 [ A. U. 1889]

9. তুইটি সংখ্যার সমান্তর- ও গুণোক্তর-মধ্যকদ্য যথাক্রমে A ও B হইলে, প্রমাণ কর যে, সংখ্যা-সুইটি  $A+\sqrt{A^2-B^2}$  এবং  $A-\sqrt{A^2-B^2}$  ইইবে।

[ मध्या-छरोटि a अवर b. धवा याक, a > b;

$$a+b=2A \qquad \cdots \qquad \cdots \qquad (1)$$

এবং  $\sqrt{ab} = B$ .

এখন, 
$$(a-b)^2 = (a+b)^2 - 4ab = 4(A^2 - B^2)$$
,

আখন,  $a-b=2\sqrt{A^2 - B^2}$ , (2)

( धनास्त्रक मूल लहेग्रा, क्वनना a > b, व्यर्थार

a-b ধনাত্মক।)

- (1) ও (2) বোগ করিয়া,  $2a=2A+2\sqrt{A^3-B^2}$ , অথবা,  $a=A+\sqrt{A^2-B^2}$ . পুনরায় (1) ইইতে (2) বিয়োগ করিয়া,  $b=A-\sqrt{A^2-B^2}$ . ]
- 10. তুইটি অসমান ধনাত্মক বান্তব সংখ্যা p এবং q-এর সমান্তর-মধ্যক A এবং গুণোত্তর-মধ্যক G. দেখাও যে,

$$A > G > \frac{G^2}{A}$$
. [ G. U. 1950 ]

11. দেখাও যে, তুইটি ঝণাত্মক সংখ্যার সমান্তর-মধ্যক সর্বদা উহাদের গুণোত্তর-মধ্যক অপেকা ক্ষুত্তর। 5'7. বিবিধ শ্রেণী-ঘটিত রাশিমালা ও উহাদের মান মির্ণয় করিবার কৌশল।

উদ্ধা 1. কোন রাশিমালার ৮-ডম পদ 2'+ ছে। উহার অইম পদ পর্যন্ত মান নির্ণয় কর।

এখানে, 
$$t_r = 2^r + \frac{1}{2}r$$
;

মতএব,  $r = 1, 2, 3, \dots, 8$  বসাইয়া,

 $t_1 = 2^1 + \frac{1}{2}.1$ 
 $t_2 = 2^2 + \frac{1}{2}.2$ 
 $t_3 = 2^3 + \frac{1}{2}.3$ 
...

 $t_8 = 2^8 + \frac{1}{2}.8$ 

S ( সমষ্টি ) = 
$$(2+2^2+2^8+\cdots+2^8)+\frac{1}{2}(1+2+3+\cdots+8)$$
  
=  $\frac{2(2^8-1)}{2-1}+\frac{1}{2}.\frac{4}{2}(1+8)=2\times255+2\times9=510+18=528.$ 

উদা. 2. 5 + 55 + 555 + · · · · · ইত্যাদি <sub>দ</sub>-সংখ্যক পদ পর্যন্ত রাশিমালার মান নির্ণয় কর।

নির্ণেয় মান ১ দারা স্বচিত হইল। তাহা হইলে,

$$S=5+55+555+\cdots n$$
-সংখ্যক পদ পর্যন্ত \\ =  $5(1+11+111+\cdots n$ -সংখ্যক পদ পর্যন্ত \\ =  $\frac{5}{6} \times 9(1+11+111+\cdots n$ -সংখ্যক পদ পর্যন্ত \\ =  $\frac{5}{6}(9+99+999+\cdots n$ -সংখ্যক পদ পর্যন্ত \\ =  $\frac{5}{6}\{(10-1)+(10^3-1)+(10^3-1)+\cdots n$ -সংখ্যক পদ পর্যন্ত \\ =  $\frac{5}{6}\{(10+10^2+10^3+\cdots n$ -সংখ্যক পদ পর্যন্ত \\ =  $\frac{5}{6}\{(10-1)^2+10^3+\cdots n$ -সংখ্যক পদ পর্যন্ত \\ =  $\frac{5}{9}\{\frac{10(10^n-1)}{10-1}-n\} = \frac{50}{81}(10^n-1)-\frac{5n}{9}$ 

উদা 3. 1+5+13+29+ ···· ইত্যাদি রাশিমালার প্রথম %-সংখ্যক পদের সমষ্টি নির্ণয় কর।

1, 5, 13, 29, $\cdots$  ইত্যাদি শ্রেণীটির n-তম পদ  $t_n$  দারা এবং নির্দের সমষ্টি S দারা স্থানিত হইল। তাহা হইলে,

$$S = 1 + 5 + 13 + 29 + \dots + t_n$$
 
$$S = 0 + 1 + 5 + 13 + \dots + t_{n-1} + t_n.$$

অতএব, বিয়োগ করিয়া,

$$0 = (1 + 4 + 8 + 16 + \cdots n^{-7}$$
ংখ্যক প্রতি ) –  $t_n$ .

ে 
$$n=1+\{4+8+16+\cdots(n-1)$$
 সংখ্যক পদ পর্যন্ত  $\}$ 

$$=1+\frac{4(2^{n-1}-1)}{2-1}=1+2^2(2^{n-1}-1)$$

$$=1+2^{n+1}-2^2=2^{n+1}-3.$$

· প্রথম পদ = 
$$t_1 = 2^4 - 3$$
;

ষিতীয় পদ = 
$$t_2 = 2^3 - 3$$
;

$$S = (2^{9} - 3) + (2^{8} - 3) + (2^{4} - 3) + \dots + (2^{n+1} - 3)$$

$$= (2^{8} + 2^{3} + 2^{4} + \dots + 2^{n+1}) - 3n$$

$$= \frac{2^{9} (2^{n} - 1)}{2 - 1} - 3n = 4(2^{n} - 1) - 3n.$$

উদ্ধা. 4.  $(1)+(1+3)+(1+3+3^2)+(1+3+3^2+3^3)+\cdots$  ইত্যাদি রাশিমালার প্রথম n-সংখ্যক পদের সমষ্টি নির্ণয় কর। [C. U. 1981]

প্রদত্ত শ্রেণীর n-তম পদ = (1 + 3 + 3 2 + 3 8 + ····n-সংখ্যক পদ পর্যন্ত )

$$\therefore t_n = \frac{1(3^n - 1)}{3 - 1} = \frac{1}{3}(3^n - 1) = \frac{1}{2}(3^n - \frac{1}{2})$$

এখন, n-এর মান 1, 2, 3,·····, n বসাইয়া

$$t_1 = \frac{1}{2} \cdot 3^1 - \frac{1}{2}$$

$$t_0 = \frac{1}{2} \cdot 3^3 - \frac{1}{2}$$

$$t_a = \frac{1}{2} \cdot 3^3 - \frac{1}{2}$$

... ... ...

$$t_n = \frac{1}{2}.3^n - \frac{1}{3}$$

বোগ করিয়া, 
$$S = \frac{1}{2}(3+3^2+3^3+\cdots+3^n) - \frac{1}{2}n = \frac{1}{2} \cdot \frac{3(3^n-1)}{3-1} - \frac{1}{2}n$$
  
$$= \frac{3}{4}(3^n-1) - \frac{n}{2} = \frac{3^{n+1}}{4} - \frac{3}{4} - \frac{n}{2} = \frac{1}{4}(3^{n+1}-3-2n).$$

উদা 5. 12 এবং 32-এর মধ্যে এরপ তুইটি দংখ্যা বসাও যেন প্রথম তিনটি সমান্তর-শ্রেণীভুক্ত এবং শেষের তিনটি গুণোত্তর-শ্রেণীভুক্ত হয়।

- निर्लिष्ठ नःशांच्य रयन æ এवः y.

(ক) হইডে, 
$$2x = 12 + y$$
; ... গে)

(খ) হইতে, 
$$y^2 = 32x = 16.2x = 16(12 + y)$$
 [  $2x$ -এর মান বসাইয়া ]

অথবা, 
$$y^2 - 16y - 192 = 0$$
;

অথবা, 
$$(y-24)(y+8)=0$$
;

$$y = 24 \, \text{ or } -8$$
.

$$y = 24$$
 ইইলে, (গ) হইতে  $x = 18$ ;

$$y = -8$$
 হইলে, (গ) হইতে  $x = 2$ .

ে নির্ণেয় সংখ্যাদ্বয় 18 এবং 24, অথবা 2, -8.

উদা. 6. a, b, c, d এক গুণো ভার-শ্রেণী ভুক্ত চারিটি সংখ্যা হাইলে, দেখা ও মে,  $(a-d)^2 = (b-c)^2 + (c-a)^3 + (d-b)^2.$ 

প্রদত্ত শর্তাক্তনারে স্পষ্টতঃ,  $\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$ ; কারণ, প্রত্যেকটিই উক্ত গুণোন্তর-শ্রেণীর সাধারণ অমুপাতের সমান।

ে 
$$b^2 = ac$$
;  $c^3 = bd$  এবং  $bc = ad$  ... (a)

অতএব,  $(b-c)^3 + (c-a)^2 + (d-b)^2$ 

$$= (b^2 + c^2 - 2bc) + (c^2 + a^2 - 2ca) + (d^2 + b^2 - 2db)$$

$$= 2(b^3 - ac) + 2(c^3 - bd) + a^2 + d^2 - 2bc$$

$$= 2 \times 0 + 2 \times 0 + a^3 + d^2 - 2ad \quad [(a)-নিদিষ্ট সম্বন্ধ দ্বারা]$$

$$= (a-d)^2.$$

উদা. 7. a, b, c, d এক গুণোভর-শ্রেণীভূজ চারিটি সংখ্যা হইলে, দেখাও যে,  $a^2-b^2, b^2-c^2, o^2-d^2$  রাশি-তিনটিও গুণোভর-শ্রেণীভূজ হইবে।

এখন, a, b, c, d मःशा-চারিটি গুণোতরীয় বলিয়া,

$$\frac{b}{a} = \frac{c}{b} = \frac{d}{c}.$$

 $ac=b^2$ ,  $bd=c^2$  ad=bc.

$$(a^2 - b^2)(c^2 - d^2) = a^2 c^3 - b^2 c^2 - a^2 d^2 + b^2 d^2$$

$$= b^4 - b^2 c^2 - b^2 c^2 + c^4$$

$$= b^{4} - 2b^{2}c^{2} + c^{4}$$

$$= (b^{3} - c^{2})^{2}.$$

$$c^{3} - c^{3} - d^{2}$$

$$\therefore \quad \frac{b^2 - c^2}{a^2 - b^2} = \frac{c^2 - d^2}{b^2 - c^2}.$$

অতএব,  $a^2-b^2$ ,  $b^2-c^2$  ও  $c^2-d^2$  রাশি-তিনটি গ্রণোত্তরীয়।

উদা. ৪. তিনটি গুণোত্তর-শ্রেণীভূক্ত সংখ্যার ধারাবাহিক গুণফল 216 এবং উহাদের তুইটি তুইটি করিয়া লইয়: গুণ করিলে, এতল্পন গুণফলত্ররের সমষ্টি 156; সংখ্যা-তিনটি নির্ণয় কর।

নির্ণেয় গুণোত্তর-শ্রেণীভুক্ত সংখ্যা-তিনটি  $\frac{a}{r}$ , a এবং ar দারা স্থচিত হইল। তাহা হইলে প্রদন্ত শর্তাম্পারে,

$$\frac{a}{r} \cdot a.ar = 216$$
 ; অথবা,  $a^3 = 216 = 6^3$  ; . . .  $a = 6$ .

$$4 = \frac{a}{r} \cdot a + \frac{a}{r} \cdot ar + a \cdot ar = 156 ;$$

অপবা, 
$$a^3 \left(\frac{1}{r} + 1 + r\right) = 156$$
;

$$999, 36\left(\frac{1}{r} + 1 + r\right) = 156;$$

$$\therefore \quad r + \frac{1}{r} + 1 = \frac{1.56}{30} = \frac{1.8}{3};$$

$$\therefore \quad r + \frac{1}{r} = \frac{19}{3} - 1 = \frac{10}{3};$$

$$3(r^2+1)=10r$$
;

অথবা,  $3r^2 - 10r + 3 = 0$ ; অথবা, (3r - 1)(r - 3) = 0.

∴ r=3 অথবা, ⅓.

স্থুতরাং, নির্ণেয় সংখ্যা-তিনটি যথাক্রমে 2, 6, 18.

### প্রগ্রমালা 20

- 1.  $a+2a^2+3a^3+4a^4+\cdots n$ -স্থাক পদ প্র্তু রাশিমালার মান নির্গয় কর।
- 2.  $1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+\cdots$ ্যান্দ্রখ্যক পদ পর্যন্ত রাশিমালার মান নির্ণয় কর।
  - নিয়লিথিত শ্রেণীর n-তম পদ এবং প্রথম n-সংখ্যক পদের সমষ্টি নির্ণয় কর:
     1.1, 2.3, 4.5, 8.7,·····ইত্যাদি।

নিম্লিণিত বাশিমালাসমূতের প্রথম গ্লেখ্যক পদের সমষ্টি নির্ণয় কর:

4. 
$$1 + \frac{2}{5} + \frac{3}{5^2} + \frac{4}{5^3} + \cdots$$
 ইত্যাদি।

10. 
$$1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\cdots$$
 ইত্যাদি।

11. a, b, c, d সংখ্যা-চারিটি ওলোভরীয় হইলে, প্রমাণ কর ্য,  $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$ .

$$\{$$
 এখন,  $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = ($  মনে কর  $)$  ে, তাহা হইলে,

$$a = bk$$
,  $b = ck$ ,  $c = dk$ .

... 
$$a^2+b^2+c^2=k^2(b^2+c^2+d^2)$$
,

জাবার,  $a^2 + b^2 + c^2 = h(ab + bc + cd)$ . অতথ্য, ইত্যাদি, ইত্যাদি ৷ ]

- 12.  $a,\ b,\ c,\ d$  ভংগান্তর-শ্রেণীভূক্ত হইলে, দেখাও যে,  $a^2+b^2,\ b^2+c^2$  এবং  $c^2+d^2$ -ও গুণোন্তর-শ্রেণীভূক্ত হইবে। ! C. U. 1919 !
  - 13. a, b, c धर्गाहत- ध्रेगी इक इंडेरन, श्रेमांग कर (य,

$$\frac{1}{a+\tilde{b}}$$
,  $\frac{1}{2b}$ ,  $\frac{1}{b+c}$  সমাস্তর-শ্রেণীভূক হটবে।

- 14. গুণোন্তর-শ্রেণীভূক ভিনটি সংখ্যার ধারাবাহিক গুণফল 1000 এবং উহাদের ছুইটি ছুইটি করিয়া লইয়া গুণ করিলে, এড্ছন গুণফলত্রের সমষ্টি ৪৭০ : সংখ্যা-ভিনটি নির্ণয় কর।
  - 15. a, b, c, त राया-हातिषि खर्गाख्तीय इटेल, (मथा ६ रम,
    - (i) (b+c)(b+d)=(c+a)(c+d).
    - (ii)  $(a+d)(b+c)-(a+c)(b+d)=(b-c)^2$ .
- 16. তিনটি সমান্তর-শ্রেণীভূক্ত সংখ্যার যোগফল 15; এবং উক্ত সংখ্যা-তিনটির সহিত যথাক্রমে 1, 4 এবং 19 যোগ করিলে, মোগফল-তিনটি গুণোত্তরীয় হয়। সংখ্যা-তিনটি নির্ণয় কর।

[ মনে কর, নির্ণেয় সংখ্যা-ভিনটি  $a-\beta$ , a এবং  $a+\beta$ . ]

- 17. তিনটি গুণোত্তর-শ্রেণীভূক সংখ্যার গুণফল 512: এবং প্রথমটির সহিত ৪ এবং বিতীখটির সহিত 6 যোগ করিলে, এতর্জ সমস্তিদ্য ও তৃত্তীখটি এক সমান্তর-শ্রেণী উৎপন্ন করে। সংখ্যা-তিনটি নির্ণয় করে।
- 18. তিনটি গুণোত্তরীয় সংখ্যার মাগফল এ4% এবং উহাদের গুণফল 64; সংখ্যা-তিনটি নির্ণয় কর।
- 19. a, b, c একটি প্ৰোৱর এগর সংগ্রে p-তম, u-তম এবং p-তম পদ হইলে, প্রমাণ কর বে, a<sup>e-v</sup>b<sup>v-p</sup>c<sup>p-e</sup>=1.
- 20. a, b, c সমাপ্র-শ্রণী গুরু ৭২° ৮, 1, 2 প্রণো ওর-এর্ণা গুরু হউলে, প্রমাণ কর বে, ০০-০৮০-০৮০-১৯-১ = 1. °
- 21. একটি গুণোন্তর—,এণীর n-১°থাক পদসমূহের ১৯8 S, ওণফল P, এবং অন্যোক্তর্কার সমষ্টি R হাইলে, প্রমাণ কর যে,  $P^2 = \left(\frac{S}{R}\right)^n$ .
- 22. কোন গুণোন্তর-শ্রেণীর  $\mu$ তেম পদটি  $(2r+1)2^r$  হঠালে, n-সাথ্যক পদস্মৃতের সমষ্টি নির্ণিয় কর ।
- 23. n-সংখ্যক পদসমূহ গুণোতর-শেণাভূক্ত হইলে, প্রমাণ কর যে, উহাদের গুণফলের n-তম মূল এবং প্রথম ও শেষ পদের গুণফলের বর্গমূল স্থান হইবে।
- 24. জুইটি নির্দিষ্ট সংখ্যা a ও ৫-এর মধ্যে ৪-সংখ্যক গুণোবর-মধ্যক সালবেশিত করিলে, প্রমাণ কর .য, উক্ত মধ্যকসমূতের গুণফল (ac) ই ভইবে।
- 25. a, b, c, d গুণোরের-শেলাকুক ভহলে, দেখাও যে,  $a^2-b^2$ ,  $b^2-c^2$ ;  $c^2-\beta^2$ -এর স্বলোক্তর্গেও গুণোরের শেলাকুক হলবে।
- 26. a, b, c মধাস্থর-শ্রেণী রুক্ত স্থাইলে, প্রমণ কর যে, কোন গুণোতর-শ্রেণীর a-ভ্রম, b-ভ্রম এবং েভ্যা পদ একটি গুণোতর-শ্রেণী গমন করে।

## ষ্ট্র অপ্যায়

# জটিল রাশি

## (Complex Numbers)

6'1. কাল্পনিক রাশি:  $(5)^2 = 25$ ,  $(-5)^2 = 25$ . ∴  $\sqrt{25} = 5$  অথবা -5; অভএব দেখা যাইতেছে যে, ধনাত্মক বা ঋণাত্মক যে-কোন রাশির বর্গ ধনাত্মক। স্করাং ধনাত্মক রাশির বর্গমূল বান্তব রাশি (real number) হইবে। কিন্তু কোন বান্তব রাশির বর্গ ঋণাত্মক হব না, স্কতরাং, কোন ঋণাত্মক রাশির বর্গমূল বান্তব হইতে পারে না। ঋণাত্মক রাশির বর্গমূলকে কাল্পনিক (Imaginary) রাশি বলা হয়। যথা, √-25 = √(-1)×25 = √-1 × √25 = √-1.5. ঋণাত্মক রাশির বর্গমূলকে √-1 × ধনাত্মক রাশির বর্গমূল, এইরপে লেখা যায়। √-1-কে সাধারণতঃ প্রতীক i (Imaginary শক্ষির প্রথম অক্ষর) দ্বারা প্রকাশ করা হয়।

ে এই সংজ্ঞাত্যনারে 
$$i^2=\sqrt{-1}\times\sqrt{-1}=-1$$
. জাবার, যেহেডু  $(\sqrt{a},\sqrt{-1})^2=(\sqrt{a},\sqrt{-1})\times(\sqrt{a},\sqrt{-1})$   $=(\sqrt{-1})^2.(\sqrt{a})^2=-a$  ;

$$\frac{\sqrt{-a} = \sqrt{-1} \cdot \sqrt{a} = i\sqrt{a};}{\sqrt{-a} + \sqrt{-b} = i\sqrt{a} + i\sqrt{b} = i(\sqrt{a} + \sqrt{b});}$$

$$\frac{\sqrt{-a} - \sqrt{-b} = i\sqrt{a} - i\sqrt{b} = i(\sqrt{a} - \sqrt{b});}{\sqrt{-a} \times \sqrt{-b} = i\sqrt{a} \times i\sqrt{b} = i^{2}\sqrt{ab} = -\sqrt{ab};}$$

$$\frac{\sqrt{-a}}{\sqrt{-b}} = \frac{i\sqrt{a}}{i\sqrt{b}} = \frac{\sqrt{a}}{\sqrt{b}}.$$

#### 6'2. *i-*এর খাত।

#### (i) ধনাত্মক ঘাতঃ

$$\begin{split} i &= \sqrt{-1}\;;\\ i^2 &= (\sqrt{-1})^2 = -1\;;\\ i^5 &= i^3 \times i = (-1) \times i = -i\;;\\ i^4 &= i^3 \times i^3 = (-1) \times (-1) = +1\;;\\ i^5 &= i^4 \times i = (+1) \times i = +i\;;\\ &\stackrel{5}{\sim} \text{ Fiff}\; |\; \end{split}$$

অতএব ্যা একটি ধনাত্মক পূর্ণদংখ্যা হইলে,

$$\begin{split} i^{4m} &= (i^4)^m = (+1)^m = +1 \ ; \\ i^{4m+1} &= i^{4m} \ i = +i \ ; \\ i^{4m+2} &= i^{4m} \times i^2 = -1 \ ; \\ i^{4m+8} &= i^{4m} \times i^3 = -i . \end{split}$$

## (ii) ঋণাত্মক ঘাতঃ

$$\begin{split} &i^{-1} = \frac{1}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i \ ; \\ &i^{-2} = \frac{1}{i^3} = \frac{1}{-1} = -1 \ ; \\ &i^{-3} = \frac{1}{i^3} = \frac{1}{-i} = -\frac{i}{-1^2} = -\frac{i}{(-1)} = \frac{i}{+1} = i \ ; \\ &i^{-4} = \frac{1}{i^4} = \frac{1}{+1} = 1 \ ; \\ &i^{-5} = \frac{1}{i^5} = \frac{1}{i} = \frac{i}{i^3} = \frac{i}{(-1)} = -i \ ; \\ &i^{-6} = \frac{1}{i^6} = \frac{1}{i^4 \cdot i^2} = \frac{1}{1 \times (-1)} = -1 \ ; \\ &\text{ESTIFE} \ \end{split}$$

অতএব, m একটি ধনাত্মক পূর্ণসংখ্যা হইলে,

$$\begin{split} &i^{-4m} = \frac{1}{i^{4m}} = \frac{1}{+1} = +1; \\ &i^{-(4m+1)} = \frac{1}{i^{4m+1}} = \frac{1}{i} = \frac{i}{i^2} = -i; \\ &i^{-(4m+2)} = \frac{1}{i^{4m+2}} = \frac{1}{i^3} = \frac{1}{-1} = -1; \\ &i^{-(4m+3)} = \frac{1}{i^{4m+3}} = \frac{1}{i^3} = \frac{1}{i^2i} = \frac{1}{-i} = -\frac{i}{i^2} = \frac{i}{+1} = +i; \\ &\mathbf{Eximilar} \end{split}$$

### প্রথমালা 21

সরল কর (Simplify):

- 2. i<sup>88</sup>. 3. i<sup>77</sup>. 1. 225.

- 5. i<sup>58</sup>.
- 6. 1<sup>15</sup>.
- 7. 2105.
- 8. i<sup>203</sup>.

- 9.  $i^{27}$ . 10.  $i^{84}$ .
- 11.  $i^{-55}$ . 12.  $i^{-19}$ .

13. 
$$i^{-79}$$
. 14.  $i^{-995}$ . 15.  $i^{-999}$ . 16.  $i + \frac{1}{i}$ .

17. 
$$i^2 + \frac{1}{i^2}$$
. 18.  $i^{87} + \frac{1}{i^{97}}$ . 19.  $6 - 1 + 13 \sqrt{-1}$ .

**20.** 
$$\sqrt{-16} + \sqrt{-25}$$
. **21.**  $\sqrt{-72} - \sqrt{-50}$ .

**22.** 
$$\sqrt{-108} - 2\sqrt{-27}$$
. **23.**  $2\sqrt{-245} - 3\sqrt{-45}$ .

25. And 
$$\Phi \in (0, (1+i)^4 \left(1+\frac{1}{i}\right)^{\frac{1}{8}} = 16.$$

# 6'3. জাজিল রান্দি (Complex Number)।

a এবং b মূলদ বা অমূলদ বান্ধব রাশি হইলে, a+ib-কে **জটিল রাশি** (Complex number) বলে। 5+i2,  $5+i\sqrt{2}$ , 5+i.2,  $\sqrt{5}+i\sqrt{2}$  ইহার। প্রত্যেকেই একটি জটিল রাশি।

যদি a=0 হয়, ভাহা হইলে কেবল ih পাকে; তথন ইহা সম্পূর্ণ কাল্পনিক (completely imaginary) রাশি, এবং h=0 হইলে কেবল a থাকিয়া যায়, তথন ইহা সম্পূর্ণ বাস্তব (completely real) রাশি।

# 6'4. জ্যামিতিক চিত্ৰ ভাৰা জটিল ৰাশিব প্ৰকাশ (Geometrical representation of a Complex number) |

(a) কোন বান্তব সংখ্যা ৫-কে নিয়লিখিত প্রকারে জ্যামিতিক বিন্দু ছারা স্ফিত

X'OX ি x-জক্ষ বা বাস্থ্য জক্ষ (x-axis বা real axis) ব্লিয়া অভিহিত ] একটি মন্ত্ৰল রেখা লইয়া উহার উপর O একটি নিদিপ্ত বিন্দু লওয়া হইল। উহাকে বলা হইল মুলবিন্দু এবং এই বিন্দু O ( শৃষ্ঠা ) সংখ্যা প্রকাশ করে।

যদি X'OX-এর উপর A এবং L এইরূপ ভুইটি বিন্দু লওয়া হয়, যে OA ≈ 1,

এবং OI, তাহা হইলে I, বিন্দু দারা x এই বাস্তব সংখ্যা ফুচিঙ হইবে। যদি x ঋণাস্থাক হয়, তবে I, বিন্দুটি OX'-এর উপর লইতে হইবে।

(b) কোন দম্পূর্ণ কাল্লনিক সংখ্যা । y-কে ে যেথানে y বাস্তব ) নিম্লিখিত উপায়ে জ্যামিতিক বিন্দু দারা স্থচিত করা হয়।



উপরি-উক্ত X'OX-এর উপর Y'OY [y-অক্ষ বা অবাস্তব অক্ষ (y-axis বা imaginary axis) বলিয়া অভিহিত] সরল রেখা লম্বভাবে অস্থিত করা হইল। এখন ইহার উপর B ও M ছুইটি বিন্দু লওয়া হুইল, যেন OB = OA = 1 এবং OB = y হয়। তাহা হুইলে M বিন্দৃটি দারা y স্পৃচিত হুইবে।

যদি M', OY'-এর উপর এইরপ লওয়া হয়, যেন OM' = OM, তাহা হইলে M' বিন্দুটি ছারা -iy স্ঠিত হইবে।

(c) পরিশেষে, x + iy এই জটিল রাশিটি নিম্নপ্রকারে জ্যামিতিক বিন্দু দার।
স্থাচিত করা হয়।

উপরি-উক্ত L এবং M বিন্দুর মধ্য দিয়া যথাক্রমে OX এবং OY-এর উপর অন্ধিত লম্ব P বিন্দুতে ছেদ করিলে P বিন্দু ছারা x+iy এই জটিল রাশিটি স্থিতিছেবে। অর্থাং X'OX এবং Y'OY অক্ষন্ধ্যগামী সমন্তলের উপর কোন বিন্দুর স্থানাম্ব (x,y) হুইলে, এ বিন্দু ছারাই x+iy এই জটিল রাশিটি স্থাচিত হুইবে।

অনুসিদ্ধান্ত। মৃশবিন্ 0+10-কে স্চিত করিবে।

সংজ্ঞাঃ উপরিউক্ত সমতলকে জাটিল সমতল (Complex plane) বলা হয়।  $OP = \sqrt{x^2 + y^2} - (ক - x + iy - a - x + b - b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - y - a - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b - x + b$ 

6'5. ভূইটি জাটিল রাশির যোগফলের জ্যামিতিক প্রকাশ (Geometrical representation of the sum of two Complex quantities)।

মনে কর, নিমন্ত চিত্রে  $P \in Q$  বিন্দু ছার। যথাক্রমে  $a+\imath b$  এবং  $c+\imath d$  স্টিত করা হইল।

OP এবং OQ-কে সন্ধিহিত বাচ ধরিয়া সামান্তরিক OPSQ অন্ধিত ইইল। S বি স্বারা a + 1b এবং c + 1d-এর যোগফল স্ফিত ইইবে।



PM, QN, ST সরল রেথাত্রয় OX-এর উপর এবং QU সরল রেখা ST-এর উপর লম্ব টানা হইল।

 $\triangle POM$ ,  $\triangle SQU$  দ্বামা ∴ OM = QU = NT এবং SU = PM;

 $\therefore$  OT = ON + NT = ON + OM = a + c

এবং ST = SU + UT = PM + QN = b + d.

- :. S বিন্দু দারা (a+c)+ i(b+d) স্থাটিত ছইল।
- 6.6. সুইটি জাটিল রাশির বিয়োগফলের জ্যামিতিক প্রকাশ (Geometrical representation of the difference of two complex quantities)∣

মনে কর, নিমুন্থ চিত্রে P ও Q বিন্দু দ্বারা যথাক্রমে a+ib ও c+id স্থাচিত করা হইল।



OQ এবং PQ-কে সন্ধিহিত বাছ ধরিয়া দামান্তরিক OQPS অন্ধিত হইল। S বিন্দু দারা a + ii এবং c + id-এর বিয়োগফল স্থাচিত হইবে।

প্রমাণ ঃ PM, QN, ST সরল রেখাত্রয় OX-এর উপর এবং QU সরল রেখা PM-এর উপর লম্ম টানা হইল।

△SOT এवং △PQU मर्वमय;

- :. ST=PU এবং OT=QU.
- $\therefore OT = QU = NM = OM ON = a c.$

 $\mathfrak{A7}^{\bullet} ST = PU = PM - MU = PM - QN = b - d.$ 

 $\cdot$  . S বিন্দু দারা a-c+i(b-d)=(a+ib)-(c+id) স্চিত হইল।

6'7. নুইটি জটিল ৱাশিৱ গুণফলের জ্যামিতিক প্রকাশ (Geometrical representation of the product of two complex quantities)।

মনে কর, নিচের চিত্রে  $P \subseteq Q$  বিন্দু দারা যথাক্রমে a+ib এবং c+id স্চিত করা হইল।

মনে কর,  $OP=r_1$ ,  $OQ=r_2$ ,  $\angle POX=\theta_1$ ,  $\angle QOX-\theta_2$ . এখন,  $\theta_1$ -এর সমান করিবা  $\angle QOS$  অন্ধিত হইল, যেন  $OS=r_1r_2$  হয় I



S বিন্দু দারা (a+ib)(c+id) স্থচিত হইবে।

প্রমাণঃ P.M., Q.N., ST দরল রেখাত্রয় O.X-এর উপর লম্ব টানা হইল।

$$a = OM = r_1 \cos \theta_1$$
,  $c = ON = r_2 \cos \theta_2$ ,

$$b = PM = r_1 \sin \theta_1$$
,  $d = QN = r_2 \sin \theta_2$ 

$$OT = OS \cos(\theta_1 + \theta_2)$$
 [ :  $\angle SOT = \theta_1 + \theta_2$  ]

$$=r_1r_8\cos\left(\theta_1+\theta_2\right);$$

$$ST = r_1 r_2 \sin (\theta_1 + \theta_2).$$

 $\therefore$  S বিন্দু দারা  $r_1r_2\cos{( heta_1+ heta_2)}+ir_1r_2\sin{( heta_1+ heta_2)}$  জটিল রাশিটি স্টিত হইল।

(a+ib)(c+id)  $= (r_1 \cos \theta_1 + ir_1 \sin \theta_1)(r_2 \cos \theta_2 + ir_2 \sin \theta_2)$   $= r_1 r_2 (\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2)$   $= r_1 r_3 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)]$ 

$$=r_1r_2\cos(\theta_1+\theta_2)+ir_1r_2\sin(\theta_1+\theta_2);$$

:. S বিনু ছারা (a + ib)(c + id) স্থচিত হইল।

6.8. নুইটি জটিল রাশির ভাগফলের জ্যামিতিক প্রকাশ (Geometrical representation of the quotient of two complex quantities)।

মনে কর, নিচের চিত্রে P এবং Q বিন্দু ছারা যথাক্রমে a+ib এবং c+id স্থচিত করা হইল।

মনে কর, 
$$OP = r_1$$
,  $OQ = r_2$ ,  $\angle POX = \theta_1$ ,  $\angle QOX = \theta_2$ .

এখন,  $heta_2$ -এর স্মান করিয়:  $\angle POS$  অঙ্কিত করা হইল, খেন  $OS=rac{r_1}{r_2}$  হয়।



S বিন্দু দ্বারা  ${a+ib \over c+id}$  স্বচিত হইবে।

প্রমাণঃ PM, QN, ST সরল রেখাত্র OX-এর উপর লম্ব টানা হইল।

$$a = OM = r_1 \cos \theta_1$$
,  $c = ON = r_2 \cos \theta_2$ ;

$$b=PM=r_1\sin\theta_1, d=QN=r_2\sin\theta_2$$
;

$$ST = \frac{r_1}{r_1} \sin \left(\theta_1 - \theta_2\right)$$
;

: S বিন্দু দারা  $rac{r_1}{r_2}\cos{( heta_1- heta_2)}+irac{r_1}{r_2}\sin{( heta_1- heta_2)}$  জটিল রাশিটি স্চিত হইল।

$$\widehat{\Phi} = \frac{a+ib}{c+id}$$

$$= \frac{r_1 \cos \theta_1 + i r_1 \sin \theta_1}{r_2 \cos \theta_2 + i r_2 \sin \theta_2}$$

$$= \frac{r_1 \cos \theta_1 + i \sin \theta_1}{r_2 \cos \theta_2 + i \sin \theta_2}$$

$$= \frac{r_1}{r_2} \cdot \frac{(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 - i \sin \theta_2)}{(\cos \theta_2 + i \sin \theta_2)(\cos \theta_2 - i \sin \theta_3)}$$

$$\frac{r_1 \cdot \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 + i (\sin \theta \cos \theta_2 - \cos \theta_1 \sin \theta_2)}{\cos^2 \theta_2 + \sin^2 \theta_2}$$

$$= \frac{r_1}{r_2} \cdot \left[ \cos \left( \theta_1 - \theta_2 \right) + i \sin \left( \theta_1 - \theta_3 \right) \right]$$

$$=\frac{r_1}{r_2}\cdot\cos\left(\theta_1-\theta_3\right)+i\frac{r_1}{r_2}\sin\left(\theta_1-\theta_3\right);$$

$$\therefore$$
  $S$  বিন্দু খারা  $\frac{a+ib}{c+id}$  স্চিত হইল।

# 6'9. জটিল রাশি-সম্বনীর বিবিধ উপপাত।

(i) যদি a+ib=0 হয়, তবে a=0 এবং b=0 হইবে। প্রমাণঃ a+ib=0,

:. 
$$ib = -a$$
; :.  $(ib)^2 = (-a)^2$ ;

$$-b^2 = a^2$$
;  $a^2 + b^2 = 0$ .

কিন্ত a<sup>2</sup> এবং b<sup>2</sup> পূৰ্ণবৰ্গ বলিয়া ইহাদের কোনটিই ঋণাত্মক নয়;

: a এবং b-এর প্রত্যেকটি = 0.

ন হটলে, ভাহাদের যোগফল=0 হটতে পারে না:

অর্থাৎ a=0 এবং b=0.

(ii) যদি a+ib=c+id হয়, ভবে a=c এবং b=d হইবে। প্রমাণ ঃ a+ib=c+id.

$$\therefore \quad a-c+i(b-d)=0.$$

:. (i) হইতে দেখা যায় যে, a-c=0 এবং b-d=0 , জাথাং a=c এবং b=d ইইবে ৷

অতএব, যদি তৃইটি জটিল রাশি পরস্পর সমান হব, তাহা হইলে একটির বাত্তব সংশ অপরটির বাত্তব অংশের সমান হইবে এবং একটির অবাত্তব (বঃ কাল্পনিক) সংশ অপরটির অবাত্তব (বা কাল্পনিক) সংশেষ সমান হইবে .

(XI-XII)-7

(iii) বিভিন্ন জটিল রাশির সংযোগফল (algebraic sum) জটিল রাশি হইবে।

$$(a+ib)-(c+id)+(e-if)+\cdots\cdots$$
  
=  $(a-c+e+\cdots)+i(b-d-f+\cdots)$   
= একটি জটিল রাখি।

(iv) বিভিন্ন জটিল রাশির গুণফলও জটিল রাশি হইবে।

প্ৰমাণ : 
$$(a+ib)(c+id)(e+if)$$
  
 $= (ac+iad+ibc+i^2bd)(e+if)$   
 $= [(ac-bd)+i(ad+bc)](e+if)$   
 $= [(ac-bd)e+i(ac-bd)f+i(ad+bc)e+i^2(ad+bc)f]$   
 $= (ace-bde-adf-bcf)+i(acf-bdf+ade+bce)$   
 $= একটি অটিল রাশি!$ 

(v) জটিল রাশির ভাগফলও জটিল রাশি হইবে।

প্রাপ্ত ত্ব 
$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-ia)}{(c+id)(c-id)}$$

$$= \frac{(ac+bd)+i(bc-ad)}{c^2-i^2d^2}$$

$$= \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} \qquad [\because i^2=-1]$$

$$= \frac{ac+bd}{c^2+d^2}+i\frac{bc-ad}{c^2+d^2}$$

$$= একটি জটিল রাখি।$$

(vi) জটিল রাশির যে-কোন ঘাতও জটিল রাশি হইবে। প্রমাণঃ  $(a+ib)^n = (a+ib)(a+ib) \cdots n$ -ভম উৎপাদক = জটিল রাশি [(iv) অঞ্সারে]

(vii) জটিল রাশির যে-কোন মূলও জটিল রাশি হইবে। প্রমাণঃ

মনে কর,  $(a+ib)^{\frac{1}{n}}=x$ ,  $a+ib=x^n$ .

যদি x বান্ডব হয়, ভবে  $x^n$ ও বান্ডব হইবে। ভাহা হইলে  $a=x^n$ , কারণ

বাস্তব অংশ সমান। অতএব, b=0 হইয়া যায়। কিন্তু ইহা কল্লনাবিক্ছ, কারণ তাহা হইলে প্রদত্ত রাশি জটিল থাকে না, সম্পূর্ণ বাস্তব হইয়া যায়। স্থতরাং,  $\infty$  নিশ্চয়ই জটিল রাশি হইবে।

## 6·10. a+ib এই জ্ঞাতিল রাশির বর্গমূল নির্ণয় কর। মনে কর, $\sqrt{a+ib}=x+iy$ , ( x এবং y বাস্তব )

$$\therefore a+ib=(x+iy)^2=x^2-y^2+2xy.i;$$

: বান্তব এবং কাল্লনিক অংশ সমান করিলে,

$$x^2 - y^2 = a \qquad \cdots \qquad \cdots \qquad \cdots \qquad (1)$$

এবং 
$$2xy = b$$
. ... (2)

$$(x^2+y^2)^2 = (x^2-y^2)^2 + 4x^2y^2 = a^2 + b^2;$$

$$\therefore x^2 + y^2 = + \sqrt{a^2 + b^2}. \qquad \cdots \qquad \cdots \qquad (3)$$

[  $x^2$ ,  $y^2$  উভয়ই ধনাত্মক বলিয়া বাম পক্ষ ধনাত্মক ]

$$\therefore x^2 - \frac{\sqrt{a^2 + b^2} + a}{2}, \ y^2 = \frac{\sqrt{a^2 + b^2} - a}{2}.$$

[ (1) এবং (3) বোগ ও বিয়োগ করিয়া ]

$$\therefore \quad x = \pm \left\{ \frac{\sqrt{a^2 + b^2 + a}}{2} \right\}^{\frac{1}{2}}, \quad y = \pm \left\{ \frac{\sqrt{a^2 + b^2 - a}}{2} \right\}^{\frac{1}{2}}.$$

বিশেষ দেপ্তব্য।  $\therefore$  2xy=b,  $\therefore$  b ধনাত্মক হইলে, x এবং y উভয়ই ধনাত্মক বা উভয়ই ঋণাত্মক হইকে এবং b ঋণাত্মক হইলে, x এবং y-এর একটি ধনাত্মক এবং অপরটি ঋণাত্মক হইবে।

অনুসিদ্ধান্ত। a=0 এবং  $b=\pm 1$  ধরিলে,

$$\sqrt{-i} = \pm \frac{1+i}{\sqrt{2}}, \quad \sqrt{-i} = \pm \frac{1-i}{\sqrt{2}}.$$

## বিকল্প প্রমাণঃ

$$i = \frac{1}{2}(1 + 2i + 1) - \frac{1}{2}(1 + 2i + i^2) = \frac{1}{2}(1 + i)^2$$
.

$$\therefore \ \ \sqrt{i} = \pm \frac{1+i}{\sqrt{2}},$$
where  $= -i = 1/1 = 0$ ;

$$75 = \frac{1}{2}(1 - 2i - 1)$$

$$= \frac{1}{2}(1 - 2i + i^{2})$$

$$= \frac{1}{2}(1 - i)^{2}.$$

$$\therefore \quad \sqrt{-i} - \pm \frac{1-i}{2}.$$

6·11. প্রভিযোগী জার্ডিল রাশি (Conjugate complex quantities)।

তৃইটি জটিল রাশির কেবলমাত্র কাল্পনিক অংশ বিপরীত চিহ্নযুক্ত হইলে তাহা-দিগকে প্রতিযোগী বলা হয়। যথা,  $\alpha + \imath b$  এবং  $\alpha - \imath b$  প্রতিযোগী জটিল রাশিষয়।

ইহাদের যোগফল = 
$$(a + \iota b) + (a - \iota b) = 2a$$
 = বাস্তব।

এবং গুলফল =  $(a + \iota b)(a - \iota b)$ 

=  $a^2 - \iota^2 b^2 = a^2 - (-1)b^2$ 

=  $a^2 + b^2$ 

= বাস্তব।

.. দুইটি প্রতিযোগী জটিল রাশির যোগফল এব- গুণফল সম্পূর্ণ বাংশব।

## 6'12. মডিউল্যাস-সম্পর্কিত উপপাত্ত।

(i) প্রইটি জটিল র†শির মডিউল্যাস-এর গুণফল, উহাদের গুণফলের মডিউল্যাস-এর সমান।

মনে কর, জটিল রাশিছর  $a+\imath b$  এবং c+id, তাহাদের মডিউল্যাস যথাক্রমে  $m_1=\sqrt{a^2+b^2}$  এবং  $m_2=\sqrt{c^2+d^2}$ . রাশিছয়ের গুণফল=(ac-bd)+i(ad+be).

$$\therefore \quad \Re \Re (a + b + b + b) = \sqrt{(a + b + b)^2 + (a + b + b)^2}$$

$$= \sqrt{a^2 c^2 + b^2} d^2 + a^2 d^2 + b^2 c^2$$

$$= \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$= \sqrt{a^2 + b^2} \times \sqrt{c^2 + a^2}$$

$$= m_1 \times m_2.$$

(ii) দুইটি জটিল রাশির ভাগফলের মডিউল্যাস উহাদের মডিউ-ল্যাস-এর ভাগফলের সমান।

মনে কর, জটিল রাশিদ্ধ a+ib এবং c+id, এবং উহাদের মাজিউল্যাস যথাকিমে  $m_1=\sqrt{a^2+b^2}$  এবং  $m_2=\sqrt{c^2+d^2}$ .

রাশিষ্ট্রের ভাগফল = 
$$\frac{ac + hd}{c^2 + d^2} + i \frac{bc - ad}{c^2 + d^2}$$
 [ অপু. 6.9 (v) দুষ্ট্রের | ইহার মডিউল্যাস =  $\sqrt{\frac{(ac + hd)}{(a^2 + d^2)^2}} + \frac{(bc - ad)}{(a^2 + d^2)^2}$ 

$$\begin{split} &= \sqrt{a^2c^2 + b^2d^2 + b^2c^2 + a^2d^2} \\ &= \sqrt{(a^2 + d^2)^3} \\ &= \sqrt{(a^2 + b^2)(c^2 + d^2)} = \sqrt{a^2 + b^2} = \sqrt{a^2 + b^2} \\ &= \sqrt{(c^2 + d^2)^3} = \sqrt{a^2 + b^2} = \sqrt{a^2 + b^2} \\ &= m_1. \end{split}$$

## (iii) দুইটি প্রতিযোগী জটিল রাশির একই মডিউল্যাস।

মনে কর, রাশিষ্য a+ib এবং a-ib. প্রথমটির মডিউল্যাস =  $\sqrt{a^2+b^2}$ , হিভীয়টির মডিউল্যাস =  $\sqrt{a^2+(-b)^2}$  =  $\sqrt{a^2+b^2}$ . ... উপপাছটি প্রমাণিত হইল।

## 6'13. 1 ( এক )-এর ঘনমূল।

মনে কর,  $x = \sqrt[3]{1}$ .  $\therefore$   $x^3 = 1$ , বা  $x^3 - 1 = 0$ .

অধাৎ  $(x - 1)(x^3 + x + 1) = 0$ .

ে হয়, 
$$x-1=0$$
 ··· (1)  
অথবা,  $x^2+x+1=0$  ··· (2)

(1) হইতে, x=1;

(2) RRTO, 
$$x = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1+i\sqrt{3}}{2}$$
.

 $\therefore$  1-এর ঘনমূল যথাক্রমে 1,  $\frac{-1+\sqrt{-3}}{2}$ ,  $\frac{-1-\sqrt{-3}}{2}$ ; শেষোক্ত

## মূলহয় জটিল।

ইহাদের প্রথমটির বর্গ

$$= {\binom{-1+\sqrt{-3}}{2}}^2 = {\frac{1+(-3)-2\sqrt{-3}}{3}} = {\frac{-2-2\sqrt{-3}}{4}}$$
$$= {\frac{-1-\sqrt{-3}}{2}} = {\frac{1+(-3)-2\sqrt{-3}}{3}} = {\frac{-2-2\sqrt{-3}}{4}}$$

এবং দ্বিতীয়টির বর্গ

$$= \left(\frac{-1 - \sqrt{-3}}{2}\right)^2 = \frac{1 + (-3) + 2\sqrt{-3}}{4} = \frac{-2 + 2\sqrt{-3}}{4}$$

$$= \frac{-1 + \sqrt{-3}}{2} =$$

 $\therefore$  জটিল মূলদ্বের একটিকে  $\omega$  বলিলে অন্নটি  $\omega^2$  হইবে। অর্থাৎ 1-এর তিনটি ঘনমূল বথাক্রমে 1,  $\omega$ ,  $\omega^2$ .

অনুসি. 1. 1+ω+ω°

$$=1+\left(\frac{-1}{2}+\frac{i\sqrt{3}}{2}\right)+\left(-\frac{1}{2}-\frac{i\sqrt{3}}{2}\right)=0,$$

অর্থাৎ 1-এর তিনটি ঘনমূলের যোগফল = 0.

**चनूजि. 2.** ङिंगि मृनदरहत अंगरम = 1.

ω, x³ = 1-এর একটি বীষ; ... ω² = 1.

∴ জটিল মূলছারের গুণফল =  $\omega$ . $\omega$ <sup>2</sup> =  $\omega$ <sup>3</sup> = 1.

অনুসি. 3.  $\omega$ -এর যে-কোন ধনাত্মক ঘাত = 1, বা  $\omega$ , বা  $\omega^2$ :

• 
$$\omega^{1} = \omega, (\omega)^{2} = \omega^{2}, \omega^{3} = 1, \omega^{4} = \omega^{3}, \omega = \omega, \omega^{5} = \omega^{3}, \omega^{2} = \omega^{6},$$
  
 $\omega^{6} = \omega^{3}, \omega^{3} = 1; \omega^{7} = (\omega^{3})^{2}, \omega = 1^{2} \omega = \omega;$   $(0.5)^{1}$ 

.. n যদি একটি ধনাত্মক পূর্ণদংখ্যা হয়, তাহ, হইলে

$$\omega^{8n} = (\omega^8)^n = (1)^n = 1,$$
 $\omega^{8n+1} = \omega^{8n} \times \omega = \omega; \quad \omega^{8n+2} = \omega^{8n} \times \omega^9 = \omega^9.$ 

উদা. 1. প্রমাণ কর বে,

 $(4\sqrt{-3}+6\sqrt{-2})(12\sqrt{-3}+15\sqrt{-2})$  একটি বাস্তব সংখ্যা ।

উপরিউক্ত গুণফল =  $(4i \sqrt{3} + 6i \sqrt{2})(12i \sqrt{3} - 15i \sqrt{2})$ 

$$=i(4\sqrt{3}+6\sqrt{2})\times i(12\sqrt{3}-15\sqrt{2})$$

$$=i^{2}(48 \times 3 - 60 \sqrt{6 + 72} \sqrt{6 - 90} \times 2)$$

$$= -(144 - 60 \sqrt{6} + 72 \sqrt{6} - 180)$$

$$= -(-36+12\sqrt{6}) = 36-12\sqrt{6}$$

উলা. 2. (a) মূলদ হরবিশিষ্ট করিয়া প্রকাশ কর:

(i) 
$$\frac{1}{3+\sqrt{-2}}$$
; (ii)  $\frac{c+nd}{c-nd} - \frac{c-id}{c+nd}$ .

(i) 
$$\frac{1}{3+\sqrt{-2}} = \frac{1}{3+i\sqrt{2}} = \frac{3-i\sqrt{2}}{(3+i\sqrt{2})(3-i\sqrt{2})}$$
$$= \frac{3-i\sqrt{2}}{3^2-i^2(\sqrt{2})^2} = \frac{3-i\sqrt{2}}{9+2} = \frac{3}{11} - i\frac{\sqrt{2}}{11}.$$

(ii) 
$$\frac{c+id}{c-id} - \frac{c-id}{c+id} = \frac{(c+id)^2 - (c-id)^2}{c^2+d^2}$$
  
=  $\frac{4 \cdot c \cdot (id)}{c^2+d^2} = \frac{4cd}{c^2+d^2}i$ .

$$(b)$$
  $\frac{3-i5}{2+i3}$ -কে  $A+iB$ -এর আকারে প্রকাশ কর।

$$\frac{3-i5}{2+i3} = \frac{(3-5i)(2-3i)}{(2+3i)(2-3i)} = \frac{6-9i-10i-15}{4+9}$$
$$= -\frac{9}{13} - \frac{19}{13}i = -\frac{9}{13} + i\left(-\frac{19}{13}\right).$$

উদা. 3. (a) 3+41-এর বর্গমূল নির্ণয় কর।

মনে কর,  $\sqrt{3+4i} = x + iy$ ;

$$(3+4i) = (x+iy)^2 = x^2 - y^2 + 2ixy;$$

$$x^2 - y^2 = 3$$
  $44$ ?  $xy = 2$ .

$$\therefore (x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 = 9 + 16 = 25,$$

$$x^2 + y^2 = 5$$
,  $x^2 = 4$ ,  $y^3 = 1$ .

কিন্ত xy ব্ৰাম্মক, ... x=2, y=1, অথবা, x=-2, y=-1.

(b) 
$$\frac{1}{3}(-1+i\sqrt{3})$$
-এর বর্গমূল নির্ণয় কর। 
$$\frac{1}{4}(-1+i\sqrt{3}) = \frac{-2+2i\sqrt{3}}{4} = \frac{-3+1+2i\sqrt{3}}{4}$$
$$= \frac{(i\sqrt{3}+1)^3}{4}.$$

: নির্ণের বর্গমূল = 
$$\pm \frac{1}{2}(i\sqrt{3} + 1)$$
.

(c) 
$$x + i\sqrt{1 - x^2}$$
-এর বর্গমূল নির্ণয় কর।

$$x + i\sqrt{1 - x^2} = \frac{2x + 2i\sqrt{1 - x^2}}{2}$$
$$= \frac{(1 + x) - (1 - x) + 2i\sqrt{(1 + x)(1 - x)}}{2}$$

$$= (\sqrt{1 + x + i} \sqrt{1 - x})^{2}.$$

:. নির্বেয় বর্গমূল = 
$$\pm \frac{1}{\sqrt{2}} (\sqrt{1+x} + i\sqrt{1-x})$$
.

উদা. 4. 
$$x=3+2i$$
 হইলো, প্রমাণ কর যে, 
$$x^4-4x^3+4x^2+8x+39=0.$$
$$x-3=2i.$$

$$(x-3)^2 = 4i^2 = -4$$

$$x^2 - 6x + 13 = 0.$$

$$x^{2} - 4x^{3} + 4x^{3} + 8x + 39$$

$$= x^{2}(x^{2} - 6x + 13) + 2x(x^{2} - 6x + 13) + 3(x^{2} - 6x + 13)$$

$$= x^{2} \times 0 + 2x \times 0 + 3 \times 0 = 0.$$

উদ{. 5. 
$$(a^2 + b^2)(c^2 + d^2)(c^2 + f^2)$$
-্ক সুইটি বর্গের সমষ্টিক্সে প্রকাশ কর  $(a^2 + b^2)(c^2 + d^2) = (a + ib)(a - ib)(c + id)(c - id)$ 

$$= \{(a + ib)(c + id)\}\{(a + ib)(c - id)\}$$

$$= \{(ac - bd) + i(ad + bc)\}\{(ac - bd) - i(ad + bc)\}$$

$$= (ac - bd)^2 + (ad + bc)^2 = A^2 + B^2, (মনে কর)$$

ে প্রদান 
$$= (A^2 + B^2)(e^2 + f^2)$$

$$= (Ac - Bf)^2 + (Af + Be)^2 \quad [ উপরিপ্রদান প্রমাণান্তদারে ]$$

$$= \{(ac - bd)e - (ad + bc)f\}^2$$

$$+ \{(ac - bd)f + (ad + bc)e\}^2.$$

উদা- 6. 
$$\sqrt{a+ib}=x+iy$$
 হইলে, প্রমাণ কর যে,  $\sqrt{a-ib}=x-iy$ .

বর্গ করিয়া,  $a + ib = x^2 - y^3 + 2ixy$ ;

$$\therefore a = x^2 - y^2, ib = 2ixy.$$

$$\therefore a - ib = x^3 - y^3 - 2ixy$$

$$= x^3 + (iy)^3 - 2ixy$$

$$= (x - iy)^3;$$

$$\sqrt{a - ib} = x - iy.$$

উদা. 7. 
$$(1+x)^n - a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$
 হইলে, প্রামাণ কর যে. 
$$(a_0 - a_2 + a_4 - \dots)^2 + (a_1 - a_3 + a_5 - \dots)^2$$
$$= a_0 + a_1 + a_2 + \dots + a_n.$$

$$(1+x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$
.

$$(1+i)^n = (a_0 - a_2 + a_4 - \cdots) + i(a_1 - a_3 + a_5 - \cdots) \qquad \cdots \qquad (1)$$

$$(1-i)^n = (a_0 - a_2 + a_4 - \cdots) - \iota(a_1 - a_3 + a_5 - \cdots) \qquad \cdots \qquad (2)$$

উদা. 8. দেখাও যে, x-এর বাস্তং মান  $\frac{1-ix}{1+ix} = a-ib$ -কে ফিন্ধ করে; যদি a এবং b বাস্তব হয়, এবং  $a^2+b^2=1$ .

$$1 - ix = (1 + ix)(a - ib)$$
$$= a + bx + i(ax - b)$$
$$= a + bx - i(b - ax).$$

$$a + bx = 1 \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (1)$$

(1) EXTER 
$$x = \frac{1-a}{b}$$
 GRE (2) EXTER  $x = \frac{b}{1+a}$ ;  

$$\therefore \frac{1-a}{b} = \frac{b}{1+a}, \qquad \therefore 1-a^2 = b^3$$
;

$$a^2 + b^2 = 1$$
.

উদা. 9.  $\sqrt[3]{a+ih}=x+iy$  হইলে, প্রমাণ কর যে,

$$4(x^2-y^2)=\frac{a}{x}+\frac{b}{y}\cdot$$

$$a + ib = (x + iy)^{3} = x^{3} + 3x^{2} \cdot iy + 3x \cdot (iy)^{3} + (iy)^{3}$$
$$= (x^{3} - 3xy^{2}) + i(3x^{2}y - y^{3});$$

$$\therefore$$
  $a = x^{8} - 3xy^{8}, b = 3x^{2}y - y^{8}.$ 

$$\therefore \quad \frac{a}{x} + \frac{b}{y} = x^2 - 3y^2 + 3x^2 - y^2 = 4(x^2 - y^2).$$

উদা. 10. প্রমাণ কর যে,

(i) 
$$(\omega m + \omega^2 n)(\omega^2 m + \omega n) = m^2 - mn + n^2$$
.

(ii) 
$$(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z) = x^2 + y^2 + z^3 - yz - zx - xy$$
.

(i) 
$$(\omega m + \omega^2 n)(\omega^2 m + \omega n) = \omega^3 m^2 + mn(\omega^4 + \omega^2) + \omega^3 n^2$$
  
 $= m^2 - mn + n^2,$   
[ : :  $\omega^4 + \omega^2 = \omega^3 \omega + \omega^2 = \omega + \omega^2 = -1$  ]

উদা. 12. প্রমাণ কর বে,

$$(1-\omega)(1-\omega^2)\cdot 1-\omega^4)(1-\omega^6) = 0. \qquad [P. U. 1939, '46]$$
প্রাণি =  $(1-\omega)(1-\omega^2)(1-\omega)(1-\omega^2)$ ,
$$= (1-\omega)^2(1-\omega^2)^3 = \{(1-\omega)(1-\omega^2)\}^3$$

$$= (1-\omega-\omega^2+\omega^3)^3$$

$$= \{2-(\omega+\omega^2)\}^2 = (2+1)^2 = 9.$$

উদা. 13. x = a + b,  $y = a + b\omega$ ,  $z = a + b\omega^2$  ইইলে, প্ৰাণ কর যে,  $x^8 + y^8 + z^8 = 3(a^8 + b^8)$ . [P. U. 1943]

$$x + y\omega + z\omega^{2} = a + b + a\omega + b\omega^{2} + a\omega^{2} + b\omega^{4}$$

$$= a(1 + \omega + \omega^{2}) + b(1 + \omega + \omega^{2}) = 0 \quad [\because \omega^{4} = \omega].$$

$$\therefore x^{3} + (y\omega)^{3} + (z\omega^{2})^{3} = 3x(y\omega)(z\omega)^{3},$$

$$\exists 1, \quad x^{3} + y^{3} + z^{3} = 3xyz = 3(a + b)(a + b\omega)(a + b\omega^{2})$$

$$= 3(a + b)(a^{2} + b^{2} + (\omega + \omega^{3})ab)$$

$$= 3(a + b)(a^{2} + b^{2} - ab)$$

$$= 3(a^{3} + b^{3}).$$

উদা. 14.  $(a^3+b^3+c^3-3abc)(x^3+y^3+z^3-3x\eta z)$  কে  $A^3+B^3+C^3-3ABC$ -এর আকারে প্রকাশ কর।

$$2\sqrt{3} = \{(a+b+c)(a^2+b^2+c^2-bc-ca-ab)\}$$

$$\times \{(x+y+z)(x^2+y^2+z^2-yz-zx-xy)\}$$

$$= \{(a+b+c)(x+y+z)\}\{(a+\omega b+\omega^2 c)(x+\omega^2 y+\omega z)\}$$

$$\times \{(a+\omega^2 b+\omega c)(x+\omega y+\omega^2 z)\}.$$

$$ax + by + cz = A$$
,  $az + bx + cy = B$ ,  $ay + oz + cx = C$  and  $(a + b + c)(x + y + z) = A + B + C$ .  

$$(a + cob + co^{2}c)(x + co^{2}y + co^{2}z) = A + cob + co^{2}C$$

এবং 
$$(a + \omega^2 b + \omega c)(x + \omega y + \omega^2 z) = A + \omega^2 B + \omega C$$
;

. : প্রেম্ব ত্রাফ্ল = 
$$A^3 + C^3 + B^3 - 3ABC$$
.

উলা. 15. প্রমাণ কর বে,

$$\sqrt{-1}\sqrt{-1}-1-\sqrt{-1}$$
 ভাগীয় পর্যস্ত  $=\omega$  বা  $\omega^2$ .

মনে কর, বাম পক্ষ=x:

$$\therefore \quad x = \sqrt{-1-x}.$$

#### প্রগ্রমালা 22

সরল কর (Simplify):

1. 
$$(3+7\sqrt{-3})(5-4\sqrt{-3})$$
. 2.  $3\sqrt{-5}\times2\sqrt{-3}$ .

3. 
$$(3\sqrt{-7}+5\sqrt{-3})(2\sqrt{-7}-7\sqrt{-3})$$
.

A+iB-এর আকারে প্রকাশ কর (Express in the form A+iB):

4. 
$$\frac{(2+i)^3}{3+2i}$$
.

5. 
$$\frac{a+ib}{c+id}$$
.

6. 
$$x - \frac{1+\sqrt{-3}}{2}$$
-কে  $x - \frac{1-\sqrt{-3}}{2}$  দ্বারা গুণ কর।

7. প্রমাণ কর খে, 
$$\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i} = -\frac{8}{29}$$
.

বর্গমূল নির্ণয় কর (Find the square root of):

8. 
$$1+4\sqrt{-3}$$
.

8. 
$$1+4\sqrt{-3}$$
. 9.  $7-30\sqrt{-2}$ .

10. 
$$4\sqrt{-5}-1$$
.

11. 
$$-3-4i$$
. 12. 2i.

13. 
$$\sqrt{9+40}i + \sqrt{9-40}i$$
-এর বর্গমূল নির্ণর কর।

14. 
$$(4+3\sqrt{-20})^{\frac{1}{2}} + (4-3\sqrt{-20})^{\frac{1}{2}}$$
-এর মান নির্ণয় কর।

15. 
$$x + i \sqrt{x^4 + x^2 + 1}$$
-এর বর্গমূল নির্ণয় কর।

17. প্রমাণ কর বে, 
$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{26} + \left(\frac{-1-\sqrt{-3}}{2}\right)^{26} = -1$$
.

18. প্রমাণ কর যে, 
$$\left(\frac{-1+\sqrt{-3}}{2}\right)^{21} + \left(\frac{-1-\sqrt{-3}}{2}\right)^{21} = 2$$
.

19. 
$$m = \frac{-1+\sqrt{-3}}{2}$$
 হইলে,  $(1-m)^2(m-m^2)^2.(1-m^2)^2$ -এর মান যম্ভ দুর সম্ভব সরল আকারে নির্ণয় কর।

1-এর ঘনমূল 1, ω, ω² হইলে, প্রমাণ কর :

20. 
$$(1+\omega)^3 - (1+\omega^2)^3 = 0$$
.

21. 
$$\omega^4 + 2\omega^6 + \omega^8 = 1$$
.

22. 
$$(1-\omega+\omega^2)^3=(1+\omega-\omega^2)^2=-8$$
.

23. 
$$x^3 + y^3 = (x + y)(\omega x + \omega^2 y)(\omega^2 x + \omega y)$$

24. 
$$x^3 - y^3 = (x - y)(\omega x - \omega^2 y)(\omega^2 x - \omega y)$$
.

**25.** 
$$(a+b+c)(a+\omega b+\omega^2 c)(a+\omega^2 b+\omega c)=a^2+b^3+c^3-3abc$$

**26.** 
$$(x+y)^2 + (x\omega + y\omega^2)^2 + (x\omega^2 + y\omega)^2 = 6xy$$
.

27. 
$$\triangle$$
মাণ কর যে,  $(x^2 + a^2)^3 = (x^3 - 3xa^2)^2 + (3x^2a - a^3)^2$ .

28. প্ৰমাণ কর যে, 
$$(x^2 + a^2)^4 = (x^4 - 6x^2a^2 + a^4)^2 + (4x^3a - 4xa^3)^2$$
.

29. প্রমাণ কর যে, 
$$(x^2+a^2)^5=(x^5-10x^3a^2+5xa^4)^2+(5x^4a-10x^3a^3+a^5)^2$$
.

30. প্রমাণ কর বে, 
$$(x^2 + a^2)^7 = (x^7 - 21x^5a^2 + 35x^3a^4 - 7xa^6)^2 + (7x^6a - 35x^4a^3 + 21x^2a^6 - a^7)^2$$
.

31. X=ax+cy+bz, Y=cx+by+az, Z=bx+ay+cz হইলে, প্রমাণ কর বে.

(i) 
$$X^2 + Y^2 + Z^2 - YZ - ZX - XY$$
  
=  $(a^2 + b^2 + c^2 - bc - ca - ab)(x^2 + y^2 + z^2 - yz - zx - xy)$ ,

(ii) 
$$X^3 + Y^3 + Z^3 - 3XYZ$$
  
=  $(x^3 + y^3 + z^3 - 3xyz)(a^3 + b^3 + c^3 - 3abc)$ .

32. 
$$x = \sqrt{-2} - 1$$
 হইলে, প্রমাণ কর খে, 
$$x^4 + 4x^3 + 6x^2 + 4x + 9 = 12.$$
 [ C. U. 1886 ]

33. x = 3 + 4i ইইলে, প্রমাণ কর যে,  $x^3 - 9x^2 + 43x - 75 = 0$ 

$$47^{2} \qquad x^{4} - 12x^{3} + 70x^{2} - 204x + 225 = 0.$$

34. নিম্মিথিত জটিল বাশিগুলির মডিউল্যাস নির্ণয় কর:

(1) 
$$(3+5i)(5+3i)$$
.

(2) 
$$(1+2i)(1+3i)(3+4i)$$
.

$$(3) \quad \frac{7-5i}{3+i}.$$

(4) 
$$\frac{(2+3i)(1+i)}{(2-i)(3-2i)}$$

35. প্রমাণ কর যে.

(i) 
$$(x + \omega y + \omega^2 z)^2 + (y + \omega z + \omega^2 x)^2 + (z + \omega x + \omega^2 y)^2 = 0$$
.

(ii)  $(1-\omega+\omega^2)(1-\omega^2+\omega^4)(1-\omega^4+\omega^8)\cdots$  to 2n উৎপাদক পর্যস্ত =  $2^{2n}$ .

#### সপ্তম অধ্যায়

# দ্বিঘাত-সমীকরণের তত্ত্ব

7.1.  $ax^2 + bx + c = 0$  হইল ছিঘাত-সমীকরণের সাধারণ আকার। উৎপাদক-বিশ্লেষণ করিয়া এইরপ সমীকরণের সমাধান-প্রণালী মাধ্যমিক গুরেই আলোচিত হইরাছে। ইহা ছাডা একটি সাধারণ নিয়মে সকল ছিঘাত-সমীকরণেরই সমাধান করা চলে। পরবর্তী অন্তচ্ছেদে সেই নিয়মে দেখান হইতেছে যে, প্রত্যেক ছিঘাত-সমীকরণের তৃইটি বীজ থাকে এবং কথনই উহার ছইরের অনিক বীজ থাকিতে পারে না।

7'2. কোন দ্বিঘাত-সমীকরণের চুইটির বেশী বীজ থাকিতে পারে না :

 $ax^2 + bx + c = 0$ , যেন x-সম্বলিত একটি দ্বিঘাত-সমীকরণ।

প্রমাণ করিতে হইবে যে, এই সমীকরণের ছুইটি মাত্র বীজ থাকিবে এবং কোনজমেই উহার ছুইটির বেশী বীজ থাকিতে পারে না।

$$ax^3 + bx + c = 0 \text{ } \boxed{\text{deg}},$$

$$a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = 0 , \text{ sixt}, \quad x^{2} + \frac{b}{a}x + \frac{c}{a} = 0,$$
with, 
$$x^{2} + 2x \cdot \frac{b}{2a} + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}.$$
with, 
$$\left(x + \frac{b}{2a}\right)^{3} = \frac{b^{2} - 4ac}{4a^{2}},$$
with, 
$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^{2} - 4ac}}{2a};$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}.$$

ইহা হইতে দেখা যায় যে  $ax^2+bx+c=0$  এই আকারের যে-কোন দিঘাত-দমীকরণের তুইটি বীজ হয়,  $\frac{-b+\sqrt{b^2-4ac}}{2a}$  ও  $\frac{-b-\sqrt{b^2-4ac}}{2a}$ , এই আকারের। বীজ-তুইটিকে যথাক্রমে a ও  $\beta$  দারা স্থাচিত করা হইল। এখন, আলোচ্য দাধারণ দ্বিষাত–সমীকরণটির তৃতীয় আরেকটি বীজ থাকা যদি সম্ভব হয়, তবে তাহা যেন  $\gamma$ ; সেক্ষেত্রে সমীকরণটি  $\alpha$ ,  $\beta$  ও  $\gamma$  প্রত্যেকটি দারা সিদ্ধ হইবে। অর্থাৎ

$$aa^2 + ba + c = 0 \qquad \cdots \qquad (1)$$

$$a\beta^2 + b\beta + c = 0 \qquad \cdots \qquad (2)$$

$$a\gamma^2 + b\gamma + c = 0 \qquad \cdots \qquad (3)$$

(1) হইতে (2) বিয়োগ করিলে দেখা যায় যে,

$$a(a^2 - \beta^2) + b(a - \beta) = 0$$
, অথবা  $(a - \beta)\{a(a + \beta) + b\} = 0$ .

এখন, 
$$\alpha$$
 ও  $\beta$  এক ও অভিন্ন নয় বলিয়া  $\alpha-\beta \neq 0$ , এবং সেই কারণে, অবশুই,

 $a(a+\beta)+b=0$ জমুরূপে (1) ও (3) দেখা যায় যে,

$$a(a+y)+b=0 \qquad \cdots \qquad (5)$$

এইবার, (4) হইতে (5) বিয়োগ করিলে দেখা যায় যে,

$$a(\beta - \gamma) = 0 \qquad \cdots \qquad (6)$$

অর্থাৎ হয়, a=0, নয়তো  $\beta-\gamma=0$ .

কিন্তু  $a \neq 0$ , কেননা a শ্বা হইলে  $ax^2 + bx + c = 0$ , সমীকরণটি bx + c = 0-তে পরিণত হয় এবং তাহা আর দিঘাত-সমীকরণ থাকে না। অতএব ধরিতে হয় যে,  $\beta - \gamma = 0$ , বা  $\beta = \gamma$ ; কিন্তু ইহা কল্পনাবিক্লম্ব, কেননা কল্পনারে  $\beta$  ও  $\gamma$  এক ও অভিন্ন নহে।

অতএব যে কল্পনা হইতে উহার বিক্লম সিদ্ধান্ত উৎপন্ন হয় সেই কল্পনা অবশ্রুই ভ্রমাত্মক হইবে। অর্থাৎ আলোচ্য দিঘাত-সমীকরণটির  $\alpha$  ও  $\beta$  এই তুইটিই বীজ্ঞ থাকিবে, উহার  $\gamma$ -জাতীয় তৃতীয় কোন বীজ্ঞ থাকিতে পারে না। স্কুতরাং সাধারণভাবে বলা যায় যে-কোন দিঘাত-সমীকরণের তুইটির বেশী বীজ্ঞ থাকিতে পারে না।

আনুসিদ্ধান্ত। অজ্ঞাত রাশিটির তিনটি বিভিন্ন মান দারা কোন দ্বিঘাত-সমীকরণ সিদ্ধ হইলে সমীকরণটি একটি অভেদ (identity) হইবে ( অর্থাৎ সমীকরণটি উহার অজ্ঞাত রাশির সকল সসীম মান দারাই সিদ্ধ হইবে )।

এস্থলে, উপরের (6) হইতে,  $\beta-\gamma$  শৃহ্য নয় বলিয়া, a=0. আবার (4) অথবা (5) হইতে, a=0 বলিয়া, b=0, এবং (1), (2) বা (3) হইতে, a=0, b=0 বলিয়া, c=0. অতএব, এক্ষেত্রে সমীকরণটি

$$0.x^2 + 0.x + 0 = 0$$

রূপ প্রাপ্ত হয়। স্পষ্টই, ইহা x-এর যে-কোন দ্রসীম মান দ্বারাই দিদ্ধ।

উদা. 1. 
$$2\{(x-a)(x-b)+(a-x)(a-b)+(b-x)(b-a)\}$$
  
=  $(a-b)^2+(x-a)^2+(x-b)^2$  কি সমীকরণ, না অভেদ ?

সমান চিহ্নযুক্ত বাম ও দক্ষিণ পক্ষস্থিত দ্বিঘাত-রাশিমালা ছুইটিতে x-এর পরিবর্তে তিনটি বিভিন্ন মান a, b ও 0 বসাইলে, বাম পক্ষ দক্ষিণ পক্ষের সমান হয় বলিয়া, উহা x-এর সকল দুসীম মান দ্বারাই সিদ্ধ হইবে। অতএব, উহা একটি অভেদ।

উন্ধা. 2. বনি 
$$(p-a)^3+(p-b)^3=2(p-c)^3$$
, 
$$(q-a)^3+(q-b)^3=2(q-c)^3,$$
 
$$(r-a)^3+(r-b)^3=2(r-c)^3,$$
 প্রমাণ কর বে,  $(s-a)^3+(s-b)^3=2(s-c)^3$ .

 $(x-a)^3 + (x-b)^3 = 2(x-c)^3$  সমীকরণটি বিবেচনা করা যাক।

দর্ল করিলে দেখা যায় যে, সমীকরণটি একটি দ্বিঘাত-সমীকরণ, এবং প্রদত্ত শর্ত-তিনটি হইতে বুঝা গাইতেছে যে, সমীকরণটি দ্বিঘাত হইলেও উহা  $p,\ q,\ r$  তিনটি মান দারা দিদ্ধ; অতএব, সমীকরণটি একটি অভেদ, অর্থাৎ উহা x-এর যে-কোন মান দারাই দিদ্ধ হইবে। অতএব, সমীকরণটিতে x=s বসাইয়া,

$$(s-a)^3 + (s-b)^3 = 2(s-c)^3.$$

7.3. দ্বিসাত-সমীকরণের বীজ্নতরের প্রকৃতিঃ নির্দাশক (Nature of the roots of a quadratic: Discriminant)ঃ বান্তব এবং মূলদ সহগযুক্ত সাধারণ আকারের দ্বিঘাত-সমীকরণ  $ax^2 + bx + c = 0$ -এর বীজ- তুইটি হইতেছে

$$\frac{-b+\sqrt{b^2-4ac}}{2a} \cdot \sqrt{aq^2-b-\sqrt{b^2-4ac}}.$$

অতএব,

- (1)  $b^2 4ac$  ধনা মুক হইলে, বীজ-ছুইটি বান্তব এবং অসমান হইবে;
- (2)  $b^2 4ac$  পূর্ণবর্গ হইলে, বীজ-চুইটি মূলদ এবং অসমান হইবে; আর ধনাক্ষক কিন্তু পূর্ণবর্গ না হইলে, বীজ-চুইটি অমূলদ এবং অসমান হইবে;
  - (3) b2 4ac শ्र रहेल, तीष-जुरें हि दांखव धवः मभान हरेत ;
  - (4)  $b^2 4ac$  কণাতাক হইলে, বীজ-জুইটি কাল্পনিক এবং অসমান হইবে।

সমাধান না করিয়া কেবলমাত্র  $b^2-4ac$  রাশিটির মান নির্ণয় করিয়াই দ্বিঘাত-সমীকরণের বীজের প্রকৃতি নির্ণয় করা যায় বলিয়া,  $b^2-4ac$ -কে দ্বিঘাত-সমীকরণটির কিরুপিক (discriminant) বলা হয়।

উদা. 1.  $2x^2 + 7x - 4 = 0$  সমীকরণটির বীজ-চুইটির প্রক্রতি নির্ণয় কর। একেত্রে নিরপক =  $7^2 - 4.2(-4) = 49 + 32 = 81$ ,

81 একটি পূর্ণবর্গ বলিয়া, বীজ-ছুইটি বাস্তব এবং অসমান।

উদা. 2.  $2x^2 - 9x + 8 = 0$  সমীকরণটির বীজন্বয়ের প্রাকৃতি নির্ণিয় কর। একেত্রে নিরপক =  $(-9)^2 - 4.2.8 = 81 - 64 = 17$ .

17 পূর্ণবর্গ নহে বলিয়া, বীজ ছুইটি বাস্তব, অমূলদ এবং অসমান।

উদা 3.  $3x^2 + 4x + 2 = 0$  স্মীকরণটির বীজ্বায়ের প্রকৃতি নির্ণয় কর। এক্টে নিরূপক =  $4^2 - 4.3.2 = 16 - 24 = -8$ .

- ৪-এর বর্গমূল কাল্পনিক (imaginary) বলিয়া, বীজ-ছুইটি কাল্পনিক এবং অসমান।

উদা. 4. m-এর মান কড হইলে,  $x^2 - 2(5 + 2m)x + 3(7 + 10m) = 0$  সমী-করণটির বীজন্বয় সমান হইবে ? [ Calcutta, 1936 ]

বীজ-তুইটি সমান বলিয়া নিরূপকের মান শৃন্ত হইবে। এখন, নিরপ্ত =  $\{-2(5+2m)\}^2 - 4.3(7+10m)$  $=4(5+2m)^2-4.3(7+10m)=4(4m^2-10m+4)$  $=8(2m^2-5m+2)=8(2m-1)(m-2)$ 

∴ বীজ-ছুইটি সমান বলিয়া.

$$8(2m-1)(m-2)=0$$
;  $m=2$   $\sqrt{1}$ 

## প্রোমালা 23

[ অন্তরূপ উল্লেখ না পাকিলে নিম্নলিখিত প্রশ্নসমূহে a, b, c প্রভৃতি অক্ষরগুলির প্রত্যেকটিকে বান্তব ধরিতে হইবে। 1

1. নিম্মলিখিত সমীকরণসমূহের বীজগুলির প্রকৃতি নির্ণয় কর:

(1) 
$$3x^2 + 20x - 19 = 0$$
. (2)  $3x^2 - 8x + 9 = 0$ .

(2) 
$$3x^2 - 8x + 9 = 0$$

(3) 
$$x^2 + 5x + 4 = 0$$
.

(3) 
$$x^2 + 5x + 4 = 0$$
. (4)  $4x^2 - 12x + 9 = 0$ .

$$(5) -3x^2 - 2x + 6 = 0$$

(5) 
$$-3x^2 - 2x + 6 = 0$$
. (6)  $-4x^2 + 5x - 8 = 0$ .

(7) 
$$x^2 - 2\sqrt{7}x - 2 = 0$$
. [G. U. 1948]

(8) 
$$99x^2 + 100x = 101$$
. [ A. U. 1921]

2. প্রমাণ কর যে, x-এর যে-কোন বাস্তব মানের জন্ম  $3x^2+7x+8=0$ সমীকরণটি সিদ্ধ হয় না।

(XI-XII)---8

- 3.  $4x^2 px + 9 = 0$ -এর বীজ্বর সমান হইলে p-এর মান কত?
- $m{4.}$  m-এর মান কত হইলে,  $2x^2+8x+m=m{0}$  সমীকরণ্টির বীজদ্বয় সমান হইবে ?
- হাদি (1+m)x²-2(1+3m)x+(1+8m)=0 স্মীকরণটির বীজন্বর স্মান

  হয়, তবে m-এর মান নির্ণয় কর।
- 6. প্রমাণ কর যে,  $(a-b+c)x^2+4(a-b)x+(a-b-c)=0$  সমীকরণটির বীজ্তার বাস্তিব।
- 7. (a) দেখাও যে,  $(a^2+c^2)x^2+2(ab+cd)x+(b^2+d^2)=0$  সমীকরণটির বীজহয় সমান, যথন ad=bc.
- (b) यनि  $(a^2+b^2)x^2+2(bc+ad)x+(c^2+d^2)=0$  স্মীকরণটির বীজন্ম বাস্তব হয়, তবে প্রমাণ কর যে, তাহারা সমান। [ Punjab, 1937 ]
- 8. প্রমাণ কর যে,  $ax^2 + bx + c = 0$  সমীকরণটির বীজহয় মূলদ, যখন a, b, c মূলদ সংখ্যা এবং a+b+c=0.
- 9. প্রমাণ কর যে,  $(a-b)x^2 + 2(a+b)x (a-b) = 0$  সমীকরণটির বীজ্বর বাস্তব।
- 10. প্রমাণ কর বে,  $(b-2c-a)x^2+(c+2a+b)x-(a+2b-c)=0$  সমীকরণ্টির বীজন্ম মূলদ, যখন a, b, c মূলদ সংখ্যা।
- 11. প্রমাণ কর যে,  $(b+c-a)x^2+(c+a-b)x+(a+b-c)=0$  সমীকরণটির বীজ্বয় মূলদ, যথন a,b,c মূলদ সংখ্যা এবং a+b+c=0.
  - 12. যদি c=0, অথবা  $a^3+b^3+c^8=3abc$  হয়, প্রমাণ কর যে,  $(b^2-ca)x^2-2(c^2-ab)x+(a^2-bc)=0$  সমীকরণটির বীজন্ম সমান।
- 13. প্রমাণ কর যে,  $ax^2 + 2bx + a = 0$  এবং  $bx^2 + 4ax + b = 0$  সমীকরণ্দয়ের একটির বীজন্ম বাস্তব হইলে, অপরটির বীজন্ম কাল্পনিক হইতে গারে না।
- 14. প্রমাণ কর যে,  $ax^2+bx+c=0$  সমীকরণটির বীজ্বয় বাস্তব বা কাল্পনিক হইলে, তদমুদারে  $cx^2-2(b-c)x+(4a-2b+c)=0$  সমীকরণটির বীজ্বয়ও বাস্তব বা কাল্পনিক হইবে।
- 15. প্রমাণ কর যে,  $x^2+px+q=0$  সমীকরণটির বীজহয় মূলদ, যদি  $p=k+rac{q}{k}$ , যথন  $p,\,q,\,k$  মূলদ সংখ্যা।

16. প্রমাণ কর যে, নিম্নলিখিত রাশিমালাসমূহের প্রত্যেকটি একটি অভেদ:

$$(1) \ \frac{a^2(x-b)(x-c)}{(a-b)(a-c)} + \frac{b^2(x-c)(x-a)}{(b-c)(b-a)} + \frac{c^2(x-a)(x-b)}{(c-a)(c-b)} = x^2.$$

$$(2) \frac{(a+x)^2}{(a-b)(a-c)} + \frac{(b+x)^2}{(b-c)(b-a)} + \frac{(c+x)^2}{(c-a)(c-b)} = 1.$$

(3) 
$$\frac{a(x-b)(x-c)}{(a-b)(a-c)} + \frac{b(x-c)(x-a)}{(b-c)(b-a)} + \frac{c(x-a)(x-b)}{(c-a)(c-b)} = x.$$

7'4. ছিঘাত-সমীকরণের সহগ ও বীজ্হারের সক্তরঃ

 $f(x) = ax^2 + bx + c = 0$  হইলে, সমীকরণটির বীজন্মের সমষ্টি ও গুণফল কি হইবে, নির্ণয় কর ।

[ If  $f(x) = ax^2 + bx + c = 0$ , find the sum and product of the roots.]

সাধারণ আকারের দ্বিঘাত-সমীকরণ  $ax^2 + bx + c = 0$ -এর বীজন্ম হইল,

 $\frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{এবং} \quad \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$   $a = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{এবং} \quad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \, \text{ধরিবেল,}$   $a + \beta = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2b}{2a} = -\frac{b}{a};$ 

$$\alpha\beta = \frac{(-b + \sqrt{b^2 - 4ac})(-b - \sqrt{b^2 - 4ac})}{4a^2}$$

$$= \frac{(-b)^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}.$$

অতএব, দেখা গেল যে,

(1) বীজন্বরের সমষ্টি = 
$$-\frac{b}{a} = -\frac{x^2 \cdot 0 \cdot 3}{x^2 \cdot 0 \cdot 3}$$

এবং (2) বীজন্বয়ের গুণফল =  $\frac{c}{a} = \frac{9 \sin \pi}{x^2 - \cos \pi}$ ।

অনুসিদ্ধান্ত।  $ax^2 + bx + c = 0$  সমীকরণটিকে  $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$  আকারেও লেখা যার বলিয়া, উপরের সিদ্ধান্ত-তুইটি হইতে অনায়াসেই এই সিদ্ধান্ত করা যায় যে,  $x^2$ -এর সহগ একক (unity) এবং একই পক্ষে লিখিত পদবিশিষ্ট  $x^2 + px + q = 0$  আকারের দ্বিঘাত-সমীকরণে,

- বীজন্বয়ের সমষ্টি = পরিবর্তিত চিহ্নযুক্ত x-এর সহগ;
   এবং (2) বীজন্বয়ের গুণফল = সমীকরণটির পরম (অর্থাৎ x-মুক্ত )
  রাশি।
- 7·5. প্রভিযোগী বীজ-বিষয়ক চুইটি প্রয়োজনীয় উপশান্ত:
- (1) মুলদ সহগ-বিশিষ্ট দ্বিঘাত-সমীকরণের একটি বীজ অমূলদ হইলে, অপরটি উহার প্রতিযোগী অমূলদ রাশি হইবে।

ধরা যাক, দ্বিঘাত–সমীকরণ  $ax^2+bx+c=0$ –এর a,b ও c বাস্তব, এবং একটি বীজ $=m+\sqrt{n}$ , যাহার m একটি মূলদ রাশি এবং  $\sqrt{n}$  অমূলদ, এবং অপর বীজটি $=\beta$ .

ম্বতরাং, 
$$\beta + m + \sqrt{n} = -\frac{b}{a}$$
 ··· (1)

(1) 
$$\overline{\epsilon}$$
  $\overline{\epsilon}$   $\overline{co}$ ,  $\beta = -\frac{b}{a} - m - \sqrt{n} = k - \sqrt{n}$  ... (3)

.:, (2)-তে β-এর এই মান বদাইলে,

$$(k-\sqrt{n})(m+\sqrt{n})=\frac{c}{a}$$
, অর্থাৎ, একটি মূলদ রাশি;

অথবা,  $\cdot km - n + (k-m)\sqrt{n} =$ একটি মূলদ রাণি; ইহা অসম্ভব, যদি না অমূলদ অংশ  $(k-m)\sqrt{n} = 0$  হয়।

- $(k-m)\sqrt{n}=0$ ; অতএব, k=m.
- $\therefore$  (3) **হ**ইতে,  $\beta=m-\sqrt{n}$ , অর্থাৎ  $(m+\sqrt{n})$ -এর প্রতিযোগী **অ**মূলদ রাশি।
- (2) বাস্তব সহগ-বিশিষ্ট দ্বিঘাত-সমীকরণের একটি বীজ জটিল রাশি হইলে, অপরটি উহার প্রতিযোগী জটিল রাশি হইবে।

মনে কর,  $ax^2+bx+c=0$  দ্বিঘাত-স্মীকরণটির  $a,\ b,\ c$  বাস্তব, এবং ইহার একটি বীজ=m+in, এছলে m এবং n বাস্তব, এবং  $i=\sqrt{-1}$ ; এবং অপর বীজটি $=\beta$ .

অতএব, 
$$\beta + (m+in) = -\frac{b}{a}$$
 ... (1)

$$\mathfrak{G}(m+in) = \frac{c}{a} \cdot \dots \qquad (2)$$

(1) 
$$\overline{\epsilon}$$
  $\overline{\epsilon}$   $\beta = -\frac{b}{a} - m - in = k - in$  (3)

্রথানে,  $k=-\frac{b}{a}-m=$ একটি বাস্তব রাশি, a,b,m প্রত্যেকেই বাস্তব।

স্থতরাং, β-এর মান (2)-তে বসাইলে,

$$(k-in)(m+in)=rac{c}{a}$$
, অর্থাৎ একটি বাস্তব রাশি;

অতএব,  $km+n^2+(k-m)in=$ একটি বাস্তব রাশি; ইহা অসম্ভব, যদি না কাল্লনিক অংশ=0 হয়।

∴ 
$$(k-m)in = 0$$
;  $\forall i, k=m$ .

অতএব, (3) হইতে,  $\beta=m-in$ , অর্থাৎ (m+in)-এর প্রতিযোগী জটিল রাশি।

7'6. দিঘাত-সমীকরণের বীজ্বর-স্বলিত প্রতি-সমরাশিমালা (Symmetrical functions of the roots) :

কোন দ্বিঘাত-সমীকরণের বীজ্বয়-সম্বলিত রাশিমালায় বীজ্বয়ের স্থান পরস্পর পরিবর্তন করিয়া লিখিলেও রাশিমালাটির মান অঙ্ক্র অর্থাৎ পূর্ববৎ থাকিলে, রাশিমালাটিকে বীজ্বয়ের প্রতিসম (symmetrical) রাশিমালা বলা হয়।

এইরপ প্রতিসম রাশিমালাকে বীজ্বয়ের সমষ্টি ও গুণফল-সম্বলিত রাশিমালায় পরিবর্তিত করা যায়। বীজ্বয়ের সমষ্টি ও গুণফলকে সমীকরণটির সহগ ছারা প্রকাশ করা যায় বলিয়া, স্পষ্টই এইরূপ রাশিমালার মান সমীকরণটির সহগ ছারা প্রকাশিত হইবে।

নিম্নলিখিত উদাহরণসমূহ হইতে বিষয়টি স্কুম্পষ্ট হইতে:

উদা. 1.  $x^2-px+q=0$  সমীকরণটির বীজন্বয় a এবং  $\beta$  হইলে, নিম্লিখিত প্রতিসম রাশিমালাসমূহের মান নির্ণয় কর :

(i) 
$$\frac{1}{a} + \frac{1}{\beta}$$
; (ii)  $a^2 + \beta^2$ ; (iii)  $a^3 + \beta^3$ ; (iv)  $a - \beta$ ;

 $(\nabla) \alpha^2 - \beta^2$ ;  $(\nabla i) \alpha^8 - \beta^8$ .

এইলে,  $\alpha + \beta = p$  এবং  $\alpha\beta = q$ ;

$$\therefore (i) \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{p}{q};$$

(ii) 
$$a^2 + \beta^2 = (a + \beta)^2 - 2a\beta = p^2 - 2q$$
;

(iii) 
$$a^3 + \beta^3 = (a + \beta)^3 - 3a\beta(a + \beta) = p^3 - 3qp = p^3 - 3pq$$
;

(iv) 
$$(a-\beta) = \pm \sqrt{(a+\beta)^2 - 4a\beta} = \pm \sqrt{p^2 - 4q}$$
;  
 $a > \beta \in \overline{\mathbb{Q}}, a-\beta = \sqrt{p^2 - 4q}$ ;  
 $a < \beta \in \overline{\mathbb{Q}}, a-\beta = -\sqrt{p^2 - 4q}$ ;  
(v)  $a^2 - \beta^2 = (a+\beta)(a-\beta) = p\sqrt{p^2 - 4q}$ ;  $(a > \beta)$   
(vi)  $a^3 - \beta^3 = (a-\beta)(a^2 + a\beta + \beta^2) = (a-\beta)\{(a+\beta)^2 - a\beta\}$   
 $= \sqrt{p^2 - 4q} (p^2 - q) = (p^2 - q)\sqrt{p^2 - 4q}$ .

উদা. 2.  $ax^2 + bx + c = 0$  সমীকরণটির বীজহুর a এবং  $\beta$  হইলে, নিম্নলিখিত প্রতিসম রাশিমালাসমূহের মান নির্ণয় কর :

(i) 
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
; (ii)  $(m\alpha + n\beta)(n\alpha + m\beta)$ ; (iii)  $\left(\frac{\alpha}{\beta} - \frac{\beta}{\alpha}\right)^2$ ;

(iv) 
$$\frac{1}{(a\alpha+b)^8} + \frac{1}{(a\beta+b)^8}$$
 [ C. U. 1943 ]

এইবে, 
$$\alpha + \beta = -\frac{b}{a}$$
 এবং  $\alpha\beta = \frac{c}{a}$  ;

(i) 
$$\frac{1}{a^2} + \frac{1}{\beta^2} = \frac{a^2 + \beta^2}{a^2 \beta^2} = \frac{(a+\beta)^2 - 2a\beta}{(a\beta)^2} = \frac{\left(-\frac{b}{a}\right)^2 - 2\frac{c}{a}}{\left(\frac{c}{a}\right)^2}$$

$$= \frac{b^2 - 2c}{a^2} = \frac{b^2 - 2ac}{a^2} = \frac{b^2 - 2ac}{c^2};$$

(ii) 
$$(m\alpha + n\beta)(n\alpha + m\beta) = mn\alpha^2 + (m^2 + n^2)\alpha\beta + mn\beta^2$$
  
 $= mn (\alpha^2 + \frac{\pi}{\beta})^2 + (m^2 + n^2)\alpha\beta$   
 $= mn \{(\alpha + \beta)^2 - 2\alpha\beta\} + (m^2 + n^2)\alpha\beta$   
 $= mn (\alpha + \beta)^2 + (m - n)^2 \alpha\beta$   
 $= mn \frac{b^2}{a^2} + (m - n)^2 \frac{c}{a}$   
 $= \frac{mnb^2 + (m - n)^2 \alpha c}{a^2}$ ;

(ii) 
$$\left(\frac{\alpha}{\beta} - \frac{\beta}{\alpha}\right)^2 = \frac{(\alpha^2 - \beta^2)^2}{(\alpha\beta)^2} = \frac{(\alpha + \beta)^2 (\alpha - \beta)^2}{(\alpha\beta)^2}$$

$$= \frac{(\alpha + \beta)^2 \left\{(\alpha + \beta)^2 - 4\alpha\beta\right\}}{(\alpha\beta)^2} = \frac{\frac{b^2}{\alpha^2} \left(\frac{b^2}{\alpha^2} - \frac{4c}{\alpha}\right)}{\frac{c^2}{\alpha^2}} = \frac{b^2(b^2 - 4ac)}{a^2c^2}.$$

(iv) 
$$ax^2 + bx + c = 0$$
 সমীকরণটির  $\alpha$  একটি বীজ;

$$aa^2 + ba + c = 0, \ \forall 1, \ a(aa + b) = -c, \ \forall 1, \ aa + b = -\frac{c}{a};$$

আবার β-ও ঐ সমীকরণটির একটি বীজ;

$$\therefore \quad a\beta^2 + b\beta + c = 0, \ \forall i, \ \beta(a\beta + b) = -c, \ \forall i, \ a\beta + b = -\frac{c}{\beta}.$$

$$\frac{1}{(aa+b)^3} + \frac{1}{(a\beta+b)^8} = \frac{1}{\left(-\frac{c}{a}\right)^3} + \frac{1}{\left(-\frac{c}{\beta}\right)^8}$$

$$= \frac{-a^3}{c^3} + \frac{-\beta^3}{c^8} = -\frac{(a^3+\beta^3)}{c^3} = -\frac{(a+\beta)^3 - 3a\beta(a+\beta)}{c^8}$$

$$= -\frac{\left(-\frac{b}{a}\right)^3 - 3\frac{c}{a}\left(-\frac{b}{a}\right)}{c^3} = -\frac{\frac{b^3}{a^8} + \frac{3bc}{a^3}}{c^8} = \frac{b^8 - 3abc}{a^8c^8}$$

উদা. 3.  $ax^2 + bx + c = 0$  সমীকরণটির বীজন্বমের অমূপাত = r হইলে, প্রমাণ কর যে,  $(r+1)^2/r = b^2/ac$ .

মনে কর, সমীকরণটির বীজহুর α ও ra,

$$\therefore \quad \alpha + r\alpha = -\frac{b}{a} \text{ and } \alpha. r\alpha = \frac{c}{a},$$

অৰ্থাৎ 
$$(r+1)a = -\frac{b}{a}$$
 এবং  $ra^2 = \frac{c}{a}$ 

$$\therefore \frac{(r+1)^2 a^2}{ra^2} = \frac{\left(-\frac{b}{a}\right)^2}{\frac{c}{a}} \quad \text{for } \frac{(r+1)^2}{r} = \frac{b^2}{a^2} \times \frac{a}{c} = \frac{b^2}{ac}.$$

উলা. 4. কোন শর্ত সিদ্ধ হইলে,  $ax^2+bx+c=0$  সমীকরণটির বীজন্বর (1) সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট, (2) একে অপরের অন্যোত্তক হইবে ?

এক্ষেত্রে সমীকরণটির একটি বীজ a হইলে, অপরটি – a হইবে;

.. বীজ-ছুইটির সমষ্টি = 
$$a + (-a) = 0$$
,  
বা,  $-\frac{b}{a} = 0$ ; ..  $b = 0$ , নির্ণেয় শর্ত।

(2) এক্ষেত্রে একটি বীজ a হইলে, অন্তটি  $rac{1}{a}$  হইবে ;

$$\therefore$$
 বীজন্মের গুণফল  $= a \cdot \frac{1}{a} = 1$ ,   
বা,  $\frac{c}{a} = 1$ ;  $\therefore c = a$ , নির্ণেয় শর্ত।

উলা. 5. কোন্ শর্ত সিদ্ধ হইলে,  $ax^2 + bx + c = 0$  সমীকরণটির (1) একটি বীজ শৃত্য (0) হইবে, (2) উভয় বীজই শৃত্য হইবে ?

(1) সমীকরণটির একটি বীজ শৃত্য হইলে, বীজন্বয়ের গুণফল = 0;

বা, 
$$\frac{c}{a} = 0$$
; ...  $c = 0$ , নির্ণেয় শর্জ।

(2) সমীকরণটির তুইটি বীজই শৃন্ত হইলে, বীজদ্বের সমষ্টি এবং গুণফল উভয়ই শৃন্ত হইবে;

$$\therefore -\frac{b}{a} = 0 \text{ and } \frac{c}{a} = 0,$$

বা, b=0 এবং c=0; ... b=c=0, নির্পেয় শর্ড।

উদা. 6. কোন্ শর্ভ দিদ্ধ হইলে,  $ax^2 + bx + c = 0$  দ্মীকরণটির বীজ্বয় (1) উভয়ই ধনাস্থক, (2) উভয়ই ঋণাস্থক এবং (3) একটি ধনাস্থক ও অপরটি ঋণাস্থক হইবে ?

(1) বীজ-ছেইটি উভয়ই ধনায়ক; অতএব, উহাদের সমষ্টি ও গুণফল উভয়ই ধনায়ক, অর্থাৎ, -b/a এবং c/a উভয়ই ধনায়ক।

$$-\frac{b}{a}$$
ধনাত্মক হইলে,  $\frac{b}{a}$ ধণাত্মক হইলে;

∴ b 'अ a विश्वती उ किल्मु के इंडेरन। ... ... (i)

আবার, r/a ধনা মুক হউলে, c ও a একই চিজ্যুক্ত হইবে। · · · (ii)

- (i) এবং (ii) হঠতে, a ও েএব চিহ্ন একই হইবে এবং টহ। b-এর চিহ্নের বিপরীত হটবে। ইথাই নির্দেশ্য শর্ত।
- (2) বীজ তুইটি উভয়ই ঋণাত্মক হইলে, উহাদের সমষ্টি ঋণাত্মক, কিছ গুণ্ফল ধনাত্মক হইবে।
  - $\frac{b}{a}$  ঋণাত্রক এবং  $\frac{c}{a}$  ধনাত্রক।
  - $-\frac{b}{a}$  ধণা মুক হইলে,  $\frac{b}{a}$  ধনা মুক হইলে ; a ও b একই চিহ্ন্যুক্ত হইলে। (i)

আবার,  $\frac{c}{a}$  ধনা মুক হইলে, a ও c একই চিহুযুক্ত হইবে।  $\cdots$  (ii)

- (i) ও (ii) হটতে দেখা যাইতেছে যে, এক্লেত্রে, a, b ও c একই চিহুযুক্ত হইবে। ইহাই নির্ণেশ্ব শর্ত।
  - (3) বীজ-হইটির একটি ধনাত্মক ও একটি ঋণাত্মক হইলে, উহাদের গুণফল

ঋণাত্মক হইবে, অর্থাৎ c/a ঋণাত্মক হইবে। অতএব, a ও c বিপরীত চিহ্নযুক্ত হইবে। ইহাই নির্ণেয় শর্ত।

অধিকন্ত বৃহত্তর সাংখ্যমানবিশিষ্ট বীজটি ধনাত্মক হইলে, বীজ-তৃইটির সমষ্টি, অর্থাৎ -b/a ধনাত্মক হইবে, অর্থাৎ b/a ঋণাত্মক হইবে, আর ইহা ধনাত্মক হইবে।

অত এব, বুহন্তর সাংখ্যমানবিশিষ্ট বীজটি ধনা ত্মক হইলে, b ও c একই চিহ্নযুক্ত হইবে এবং এই চিহ্ন a-এর চিহ্নের বিপ্রতি হইবে; আর বুহন্তর সাংখ্যমানবিশিষ্ট বীজটি ঝণাত্মক হইলে, a ও b একই চিহ্নযুক্ত হইবে এবং এই চিহ্ন c-এর চিহেন্র বিপ্রীত হইবে।

উদা. 7.  $ax^2+bx+c=0$  সমীকরণটির একটি বীজ অপরটির চতুর্গ্রণ ইইলে, প্রমাণ কর যে,  $4b^2=25ac$ . [Calcutta, 1940]

সমীকরণটির একটি বাজি ৫ হইলে, অপরটি 4৫ হইবে;

$$\therefore a + 4a = -\frac{b}{a} \quad \forall 1, \quad \delta_a = -\frac{b}{a}; \quad \cdots \quad (1)$$

এবং 
$$a.4a = \frac{c}{a}$$
 বা,  $4a^2 = \frac{c}{a}$  ... (2)

(1) হইতে, 
$$a = -\frac{b}{5a}$$
;  $a$ -এর এই মান (2)-এ বসাইয়া,

$$4\left(-\frac{b}{5a}\right)^{3} - \frac{c}{a}$$
,  $7$ ,  $\frac{4b^{3}}{25a^{3}} - \frac{c}{a}$ ,

$$\forall i, \quad 4b^2 = \frac{c}{a} \cdot 25a^2 = 25ac.$$

## প্রভামালা 24

1.  $ax^2 + bx + c = 0$  স্মীকরণটির বীজন্ম  $a + \beta$  হইলে, স্মীকরণের সহগের মাধ্যমে নিম্লিণিত রাশিমালাসমূহের মান নির্ণয় কর:

(i) 
$$\alpha^4 + \beta^4$$
; (ii)  $\alpha^4 - \beta^4$ ; (iii)  $\alpha^5 + \beta^5$ ;  
(iv)  $\alpha^5 - \beta^8$ ; (vi)  $\alpha^6 - \beta^6$ ; (vi)  $\alpha^6 - \beta^6$ ;

(vii) 
$$a^2\beta + \beta^2\alpha$$
; (viii)  $a^3\beta + \beta^3\alpha$ ; (ix)  $a^4\beta + \beta^4\alpha$ ;

(x) 
$$a^5\beta + \beta^5a$$
; (xi)  $a^4\beta^7 + \beta^4a^7$ ; (xii)  $\frac{a^3}{\beta} + \frac{\beta^3}{a}$ ;

(xiii) 
$$\alpha^4 \beta^{-2} + \beta^4 \alpha^{-2}$$
; (xiv)  $\alpha^8 \beta^{-8} + \beta^8 \alpha^{-8}$ ;

$$(xv) \frac{1}{aa-b} + \frac{1}{a\beta-b}; \quad (xvi) \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}; \quad (xvii) \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha};$$

$$(xviii) \frac{\alpha}{\beta^3} - \frac{\beta}{\alpha^3}; \quad (xix) \frac{\alpha^2}{\beta^4} - \frac{\beta^2}{\alpha^4};$$

(xx)  $a^{p+1}\beta^q + a^q\beta^{p+1}$ .

- 2.  $x^2-2(5+2m)x+3(7+10m)=0$  সমীকরণটির বীজ্বয়ের একটি অপরটির অন্যোক্ত ইইলে, m-এর মান কত ? [Calcutta, 1936]
- 3.  $x^2+px+q=0$  সমীকরণটির বীজ্বয় a এবং  $\beta$  হইলে, নিম্নলিখিত রাশিমালার মান p ও q-এর মাধ্যমে নির্ণয় কর ঃ
  - (i)  $\alpha^2 + \alpha\beta + \beta^2$ ; (ii)  $\alpha^3 + \alpha\beta + \beta^3$ ; (iii)  $\alpha^4 + \alpha^2\beta^2 + \beta^4$ ;
  - (iv)  $\alpha^{-3} + \beta^{-3}$ ; (v)  $(1 + \alpha + \alpha^{9})(1 + \beta + \beta^{9})$ ;
  - (vi)  $\alpha^2(\alpha+p)^{-1} + \beta^2(\beta+p)^{-1}$ ;
  - (vii)  $a^2(a^2\beta^{-1}-\beta)+\beta^2(\beta^2a^{-1}-a)$ . [Calcutta, 1941]
- 4. (a)  $x^2 + px + q = 0$  সমীকরণটির বীজ্বর a ও  $\beta$  হইলে, নিম্নলিথিত প্রতিসম রাশিমালার মান নির্ণয় কর:
  - (i)  $a^{-3} + \beta^{-3}$  [ Calcutta, 1946 ]; (ii)  $a^2 \beta^{-2} + \beta^2 a^{-2}$ ;
  - (iii)  $(a+p)^{-4} + (\beta+p)^{-4}$ .
  - (b)  $3x^2-6x+4=0$  সমীকরণটির বীজ্ছর a ও  $\beta$  হইলে,  $\left(\frac{\alpha}{\beta}+\frac{\beta}{a}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3a\beta$ -এর মান নির্ণয় কর। [Calcutta, 1943]
  - 5.  $x^2-(1+k^2)x+\frac{1}{2}(1+k^2+k^4)=0$  সমীকরণটির বীজন্বয় a ও  $\beta$  হইলে, প্রমাণ কর যে,  $a^2+\beta^2=k^2$ . [Calcutta, 1909]
    - 6.  $ax^2 2bx + c = 0$  সমীকরণটির বীজন্ম a + 0 8 হইলে,

$$\frac{b}{aa^2+c}+\frac{b}{a\beta^2+c}$$
এর মান নির্ণয় কর।

- 7. যদি  $x^2 + mx + m^2 + n^2 = 0$  সমীকরণের বীজন্ব  $x_1$  ও  $x_2$  হয়, তবে প্রমাণ কর যে,  $x_1^4 + x_1^2 x_3^2 + x_3^4 = n^2(2m^2 + 3n^2)$ .
- 8.  $x_1$  ও  $x_2$  যদি  $ax^2+bx+c=0$  সমীকরণটির বীজহুর হয়, তবে প্রমাণ কর যে,  $\frac{x_1}{x_2}+\frac{x_3}{x_1}=\frac{b^2-2ac}{ac}$ ; এবং  $2x^2-7x+3=0$  সমীকরণে ইহার প্রয়োগ করিয়া এই স্ত্রের প্রীক্ষা করে।

- 9. যদি a ও  $\beta$  এবং a' ও  $\beta'$  যথাক্রমে  $x^2-px+q=0$  এবং  $x^2-p'x+q'$  =0 সমীকরণদ্বের বীজদ্বয় হয়, তবে
  - (i)  $(a-\alpha')^2+(\beta-\alpha')^2+(\alpha-\beta')^2+(\beta-\beta')^2$ ; [ Calcutta, 1913 ] এবং (ii)  $(\alpha-\alpha')(\beta-\beta')+(\beta-\alpha')(\alpha-\beta')$ -এর মান নির্ণয় কর।
- 10. (a)  $x^2 px + q = 0$  সমীকরণটির একটি বীজ অপরটির দিগুণ হইলে, প্রমাণ কর যে,  $2p^2 = 9q$ . [ Calcutta, 1937 ]
- (b) কোন্ শর্জ সিদ্ধ হইলে,  $x^2+px+q=0$  সমীকরণটির বীজন্বরের সমষ্টি বীজন্বরের অস্তরের তিনগুণ হইবে ?
- 11. (a) বদি  $ax^2 + bx + c = 0$  সমীকরণটির বীজ্বয়ের অমুপাত 2:3 হয়, তবে প্রমাণ কর যে,  $6b^2 = 25ac$ . [ Calcutta, 1949 ]
- (b)  $ax^2 + bx + c = 0$  সমীকরণটির বীজঘ্রের অনুপাত 3:4 হুইলে, প্রমাণ কর যে,  $12b^2 = 49ac$ . [ Calcutta, 1945 ]
- 12. যদি  $ax^3 + bx + c = 0$  সমীকরণটির একটি বীজ অপরটির বর্গের সমান হয়, তবে প্রমাণ কর যে,  $b^3 + a^2c + ac^2 = 3abc$ .

[ ইব্লিড: বীজ-দুইটির একটি ৫ হইলে, অপরটি ৫° হইবে;

$$\therefore \quad a^2 + a = -\frac{b}{a} \quad \cdots \quad (1) \qquad \text{agr} \qquad a^2, a \quad \text{aff}, \quad a^3 = \frac{c}{a} \qquad \cdots \quad (2)$$

এখন, (2) হইতে,  $a = \left(\frac{c}{a}\right)^{\frac{1}{3}}$ ; a-এর এই মান (1)-এ বসাইয়া,

$$\left(\frac{c}{a}\right)^{\frac{8}{3}} + \left(\frac{c}{a}\right)^{\frac{1}{3}} = -\frac{b}{a};$$

এখন করণী নির্দন করিলেই নির্ণেয় ফল পাওয়া যাইবে!]

- 13. যদি  $x^2+px+q=0$  সমীকরণটির একটি বীজ অপরটির বর্গের সমান হয়, তবে প্রমাণ কর যে,  $p^3-q(3p-1)+q^2=0$ . [Calcutta, 1943]
- 14. (i) যদি  $lx^2 + nx + n = 0$  সমীকরণের বীজন্মের অনুপাত p:q হয়, তবে প্রমাণ কর যে,  $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{n}} + \sqrt{\frac{n}{l}} = 0$ . [Calcutta, 1948]
- (ii) যদি  $ax^2 bx + c = 0$  সমীকরণটির বীজদ্বরের অনুপাত p:q হয়, তবে a,b ও c-এর মধ্যে যে সম্বন্ধ, তাহা নির্ণয় কর।
  - 15. ৰদি  $x^2+px+q=0$  সমীকরণ্টির বীজন্মের অনুপাত,  $x^2+p_1x$

 $+q_1=0$  সমীকরণটির বীশ্বছরের অফুপাতের ন্মান হয়, প্রমাণ কর যে,  $p^sq_1=p_1{}^sq$ .

- 16.  $\frac{a}{x+a+k}+\frac{b}{x+b+k}=1$  সমীকরণটির বীজ্জ্ম সমান কিন্তু বিপরীত চিক্যুক; k-এর মান নির্ণয় কর।
- 17. প্রমাণ কর যে,  $x^2-2ax+b^2=0$  সমীকরণটির বীজন্মের সমাস্তর্মধাক  $x^2-2bx+a^2=0$  সমীকরণটির বীজন্মের প্রণোত্তর-মধ্যকের সমান, এবং বিপরীতক্রমে।
- 18. যদি  $x^2+Px+q=0$  সমীকরণটির বীজন্বয় a ও  $\beta$  এবং  $x^2+px+Q=0$  সমীকরণটির বীজন্বয়  $\gamma$ ,  $\delta$  হয়, তবে  $\alpha$ ,  $\beta$ ,  $\gamma$  ও  $\delta$ -এর মাধ্যমে  $x^2+px+q=0$  সমীকরণটির বীজন্ম নির্ণয় কর।
- 19. যদি  $ax^2+2bx+c=0$  স্মীকরণটির বীজন্ম a ও  $\beta$  এবং  $Ax^2+2Bx+C=0$  স্মীকরণটির বীজন্ম  $a+\delta$  ও  $\beta+\delta$  হয়, ভবে প্রমাণ কর যে,

$$\frac{h^2 - ac}{B^2 - AC} = \left(\frac{a}{A}\right)^2.$$
 [Calcutta, 1912]

- 20. যদি  $x^2 + 2px + q = 0$  এবং  $x^2 + 2qx + p = 0$  সমীকরণছয়ের বীজের অস্তর একটি ধ্রুবক সংখ্যা হয় এবং p, q-এর সমান না হয়, তবে প্রমাণ কর যে, p+q+1=0. [Calcutta, 1944]
- 21. যদি  $x^2-px+q=0$  সমীকরণটির বীজন্বরের অস্তর,  $x^2-qx+p=0$  সমীকরণটির বীজন্বরের অস্তরের সমান হয়, এবং p, q-এর সমান না হয়, ভবে প্রমাণ কর যে, p+q+4=0. [Calcutta, 1941]
- 22.  $x^2 px + q = 0$  স্মীকরণটির বীজন্মের অন্তর 1 হইলে, প্রমাণ কর যে,  $p^2 + 4q^2 = (1 + 2q)^2$ . [Allahabad, 1917]
- 7'7. প্ৰদেশু বীজন্ম হইতে সমীক্রণগঠন (To form the equation from the given roots) :

কোন দ্বিলাত-সমীকরণের বীজ-চুইটি যেন a ও β. সমীকরণটি গঠন করিতে হইবে।

নির্ণেয় দ্বিঘাত-নমীকরণটি যদি  $x^2 + px + q = 0$  হয়, তবে

 $a+\beta=-p$  and  $a\beta=q$ .

: নির্ণেয় দ্বিঘাত-সমীকরণটি হইল

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ 

অর্থাৎ  $x^2-($  বীজন্মরের সমষ্টি ) x+ বীজন্মরের গুণ্ফল =0.

7'8. কোন প্রদত্ত বিঘাত-সমীকরণের বীজবয়-সম্বলিত রুইটি রাশি যে সমীকরণের বীজ সেই সমীকরণগটন:

নিম্লিখিত উদাহরণদমূহ হইতে গঠন-প্রণালী স্বস্পষ্ট হইবে:

(i) যে সমীকরণের বীজ্বয়  $ax^2 + bx + c = 0$  সমীকরণটির বীজ্বয়ের সমান কিছু বিপরীত চিহ্যুক্ত, সেই সমীকরণটি গঠন কর। [Form the equation whose roots are equal in magnitude but opposite in sign to those of the equation  $ax^2 + bx + c = 0$ .]

 $ax^2 + bx + c = 0$  স্মীকরণটির তুইটি বীজ যেন  $a \otimes \beta$ ; তাহা হইলে,

$$\alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha \beta = \frac{c}{a}.$$

নির্ণেয় সমীকরণের বীজ্বয় - α ও - β; উহাদের সমষ্টি

$$= -(a+\beta) = -\left(\frac{-b}{a}\right) = \frac{b}{a}; \quad \text{এবং জনফল} = (-a)(-\beta) = a\beta = \frac{c}{a}.$$

$$\therefore$$
 নির্বেশ্ব সমীকরণটি হইল  $x^2-\left(\frac{b}{a}\right)x+\frac{c}{a}=0$ , বা,  $ax^2-bx+c=0$ .

(ii) যে সমীকরণের বীজ্বর  $ax^2 + bx + c = 0$  সমীকরণের বীজ্বয়ের অভোশুক, সেই সমীকরণটি গঠন কর। [Form the equation whose roots are reciprocals of the roots of the equation  $ax^2 + bx + c = 0$ .].

 $ax^2 + bx + c = 0$  স্থীকরণটির বীজ যেন  $a \otimes \beta$  তাহা হইলে,

$$a+\beta=-\frac{b}{a} \quad \text{and} \quad \alpha\beta=\frac{c}{a}.$$

এখন এরপ একটি দ্বিঘাত-স্মীকরণ গঠন করিতে হইবে, যাহার বীজ  $\frac{1}{a}$  এবং  $\frac{1}{\beta}$ .

নির্ণেয় সমীকরণের বীজ্বয়  $\frac{1}{a}$  ও  $\frac{1}{\beta}$  বলিয়া উহাদের সমষ্টি

$$=\frac{1}{a}+\frac{1}{\beta}=\frac{a+\beta}{a\beta}=\frac{-\frac{b}{a}}{\frac{c}{a}}=\frac{-b}{c};$$

এবং প্রণফল 
$$= \frac{1}{a} \cdot \frac{1}{\beta} = \frac{1}{a\beta} = \frac{1}{\frac{c}{a}} = \frac{a}{c}$$

:. নির্ণেয় সমীকরণটি হইল 
$$x^2-\left(\frac{-b}{c}\right)x+\frac{a}{c}=0$$
. বা,  $cx^2+bx+a=0$ .

(m) যে স্মীকলাৰে শীক্ষয় কেন নিনিষ্ঠ স্মীকলাৰে বীক্ষয়ের প্রতিস্থ বান্দ্রালা, সেই স্মীকল দি গ্রন্থ কর। To find the equation whose roots are symmetrical functions of the real of a real equation.

িন্দ্ৰ স্থাক্ষাপ্ৰ বীজন্ম পদ্ৰ স্থাক্ষাপ্ৰ বীজন্ম বাতা গঠিত ভাইটি প্ৰতিস্থ বালিয়ালা হ্ন্যাপ নিন্দ্ৰ স্থাক্ষাপৰ নাম্পাত্ৰ স্থাষ্ট এবা ওপ্ৰজ্ঞ উভয়ই প্ৰাপ্ত স্থাক্ষাপৰ নিন্দ্ৰ হাত পতিত ভ্ৰতী পাঙ্গম বাল হাইবে এবং ইহাদেৰ মান্দ্ৰ পুৰাতে ১৩ পদ্ৰ বঙ্গ নিন্দ্ৰ কৰা মতাৰ। ক্ষেত্ৰ স্থাক্ষাপ্ৰ স্থামী এবা প্ৰাত্ৰ ১৩ পদ্ৰ বঙ্গ নিন্দ্ৰ কৰা মতাৰ। ক্ষেত্ৰ স্থাক্ষাপ্ৰ স্থামী এবা প্ৰাত্ৰ ১৩ পদ্ৰ স্থাকি শশীক্ষাক্ষাৰ স্থাক্ষাৰ সংগ্ৰাহ

- (1) expert  $^{2}$  realise  $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{$

উদা- 2. । ১ এ ্র সে মূলস সহল ন শস্ত ছিমাত-সমীকরণারি একটি বীজ, সেই ছিমাত-সমীকরণটি গঠন কর।

একটি বাল বন এ, বা, জত্ত্বা, জপর বীকটি জন্মন্থ বল ৪ , 'ও হুটবে ।

· \*\* \*\*\* \*\*\* \*\* \*\* (4+2,3)+(4-2,3)-8,

EAT PROPERTY SCHOOL = (4 + 2 , 3 × 4 - 2 , '3) → 16 - 12 ↔ 4.

.. Pager x 2 440 3 23 x 22 - 8x + 4 = 0.

ভেশা. 8.  $\alpha = 2 + 7 \sqrt{-1}$  ছইলে,  $x^5 - 2x^2 + 45x + 114-42$  মান নির্ণয় কর।

$$x = 2 \div 7 \sqrt{-1};$$

$$x = 2 = 7 \sqrt{-1},$$

$$x = -2 = 7 \sqrt{-1},$$

$$x = -4x + 4 = -49;$$

$$x = -4x + 68 = 0;$$

$$x^{n} - 2x^{n} + 45x + 114$$

$$= x(x^{n} - 4x + 53) + 2(x^{n} - 4x + 53) + 8$$

$$= (2 + 7\sqrt{-1}) \times 0 + 2 \times 0 + 8$$

$$(x - 2 + 7\sqrt{-1}) \times 0 + 2 \times 0 + 8$$

=8.

উদা 4. a, 2 + hr + c = 0 > হ' সর্পতির সাজ্যত a ভ , হর্তে, ট > হ'ক্র টির বীজ্যা pa + yB বল ya + yB, এই /২ কর্ণি হসত কর ,

$$\begin{aligned} & \frac{d g^{(1)} g^{(2)} g^{(2)} - i g_{1} + i g_{1} + i g_{1} + i g_{2} + i g_{1} + i g_{2} +$$

্ৰ নিৰ্দেশ সমীকৰণটি ভটল

$$x^{2+\frac{(i+j+i)}{2}+\frac{(i+j+i)}{2}}, \frac{1}{i} \xrightarrow{j} \frac{i}{i} \xrightarrow{j} \infty \longrightarrow 0,$$

 $e_{ij} = a^{2}x^{2} + ab(j + q)x + b^{2}j_{ij} + (p - q)^{2} + c = 0.$ 

উলা. 5.  $ar^2+br+c=0$  স্থাকিবংটির বীজন্ম a ও g হটাসে, যে স্মীকরণ্টির শীজন্ম  $\frac{1}{aa+b}$   $\frac{1}{a\beta+b}$  , স্থাস্থীকরণ্টির গঠন কর ।

 $ax^2 + bx + c = 0$  সমীকরণটির বীষ্ণ  $a \otimes \beta$ ;

$$\therefore aa^2 + ba + c, \quad \forall i, \quad a(aa + b) = -c;$$

$$\therefore \quad \frac{1}{aa+b} = -\frac{a}{c};$$

থান  $a\beta^2 + b\beta + c = 0$ , বা,  $\beta(a\beta + b) = -c$ :

$$\therefore \quad \frac{1}{a\beta+b} = -\frac{\beta}{c}.$$

· নির্ণের সমীকরণটির বীজন্বয়ের

সমষ্টি = 
$$-\frac{a}{c} - \frac{\beta}{c} = -\frac{1}{c}(a+\beta) = -\frac{1}{c}\left[-\frac{b}{a}\right] = \frac{b}{ac}$$
;

এবং ওণফল 
$$=\left(-\frac{a}{c}\right) \times \left(-\frac{\beta}{c}\right) = \frac{a\beta}{c^2} = \frac{c}{ac^2} = \frac{1}{ac}$$

নির্ণেয় সমীকরণটি হইল

$$x^2 - \frac{b}{ac}x + \frac{1}{ac} = 0$$
,  $\forall i$ ,  $acx^2 - bx + 1 = 0$ .

উদা. 6.  $x^2+2ax+b=0$  সমীকরণটির বীজন্বয় a ও  $\beta$  হইলে, যে মৃলদ্ সহগ-বিশিষ্ট সমীকরণটির একটি বীজ  $a+\beta+\sqrt{a^2+\beta^2}$ , সেই সমীকরণটি গঠন কর।

$$a^2 + 2ax + b = 0$$
 স্মীকরণটের তুইটি বীজ  $a \le \beta$ ;

$$\therefore$$
  $a+\beta=-2a$  এবং  $a\beta=b$ .

মূলদ সহগ-বিশ্টি দ্বিঘাত-সমীকরণের একটি বীজ  $\alpha+\beta+\sqrt{\alpha^2+\beta^2}$  বলিয়া অপর বীজটি অবশ্যই  $\alpha+\beta-\sqrt{\alpha^2+\beta^2}$  ইইবে।

ে. নির্ণেয় সমীকরণের বীজন্বয়ের সমষ্টি =  $2(\alpha + \beta) = -4\alpha$ ;

এবং গুণফল = 
$$(\alpha + \beta)^2 - (\alpha^2 + \beta^2)$$

$$=2a\beta=2b.$$

· নির্ণেশ্ব সমীকরণটি হইল

$$x^{2} - (-4a)x + 2b = 0$$
,  $\pi$ ,  $x^{2} + 4ax + 2b = 0$ .

উদা. 7.  $x^2 + x + 1 = 0$  সমীকরণটির বীজন্বয়  $\alpha \le \beta$  হইলে, যে সমীকরণের বীজন্বয়  $\alpha^2 \le \beta^2$ , সেই সমীকরণটি গঠন কর। নির্ণেয় সমীকরণ ও প্রদন্ত সমীকরণ একই হয় কেন—ভাহার কারণ ব্যাখ্যা কর। [Allahabad, 1924]

এইলৈ, 
$$a+\beta=-1$$
, এবং  $a\beta=1$ .

· নির্ণের সমীকরণের বীজন্বরের

সমষ্টি = 
$$a^2 + \beta^2 = (a + \beta)^2 - 2a\beta$$
  
=  $1 - 2 = -1$ ;

এবং প্রণাফল =  $\alpha^2 \beta^2 = (\alpha \beta)^2 = 1$ .

 $\therefore$  নির্ণের সমীকরণটি  $x^2 - (-1)x + 1 = 0$ ,

$$\sqrt{3}$$
,  $x^2 + x + 1 = 0$ .

অতএব, দেখা যাইতেছে প্রদন্ত সমীকরণটিই নির্ণের সমীকরণ।

$$\alpha + \beta = -1; \qquad \beta = -\alpha - 1. \qquad \cdots \qquad (1)$$

আবার, প্রদত্ত সমীকরণ  $x^2 + x + 1 = 0$ -এর একটি বীজ  $\alpha$  বলিয়া,

$$a^2 + a + 1 = 0$$
;  $a^2 = -a - 1 = \beta$ , (1)  $\sqrt{2}$ 

আবার,  $a+\beta=-1$ ; ...  $a=-\beta-1$  ... (2) আর, প্রান্ত সমীকরণ  $x^2+x+1=0$ -এর একটি বীজ ৪ বলিয়া.

$$\beta^2 + \beta + 1 = 0$$
;  $\beta^2 = -\beta - 1 = a$ , (2)  $\delta^2 = 0$ 

 $\alpha = \beta^2$  এবং  $\beta = a^2$ ; স্থতরাং, দেখা গেল যে, নির্ণেয় সমীকরণের বীজহম এবং প্রদত্ত সমীকরণের বীজহম একই এবং সেইজগুই নির্ণেয় সমীকরণ এবং প্রদত্ত সমীকরণ এক হইয়াছে।

উদা. 8. a যদি b-এর সমান না হয়, কিন্তু  $a^2=5a-3$  এবং  $b^2=5b-3$  হয়, তবে যে সমীকরণের বীজন্বর  $\frac{a}{b}$  এবং  $\frac{b}{a}$ , সেই সমীকরণিট গঠন কর।

[ Calcutta, 1950 ]

$$a^2 - 5a + 3 = 0$$
  $93$ ?  $b^2 - 5b + 3 = 0$ 

- $\therefore$  স্পাষ্ট্ই,  $a \le b$ ,  $x^2 5x + 3 = 0$ , দ্বিঘাত-সমীকরণটির তুইটি বীজ;
- ∴ a+b=5 এবং ab=3.
- .. নির্ণের সমীকরণের বীজন্বরের

সম্প্রি = 
$$\frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = \frac{(a+b)^2 - 2ab}{ab}$$
  
=  $\frac{5^2 - 2.3}{3} = \frac{25 - 6}{3} = \frac{19}{3}$ ;

এবং গুণফল =  $\frac{a}{b} \times \frac{b}{a} = 1$ .

নির্ণেয় সমীকরণটি হইল

$$x^2 - \frac{19}{8}x + 1 = 0$$
,  $3x^3 - 19x + 3 = 0$ .

(XI-XII)--9

উদা. 9. যে সমীকরণের বীজন্বয় প্রত্যেকে  $x^2 - 16x + 63 = 0$  সমীকরণের বীজন্বয় হইতে 2 কম, সেই সমীকরণটি গঠন কর।

মনে কর, α ও β প্রদত্ত সমীকরণের তুইটি বীজ;

. :  $\alpha + \beta = 16$ , এবং  $\alpha\beta = 63$ .

প্রদত্ত সমীকরণের বীজ-ত্ইটি  $\alpha$  ও  $\beta$  হওয়ায়, নির্ণেয় সমীকরণের বীজ-ত্ইটি হইবে  $\alpha-2$  এবং  $\beta-2$ .

:. নির্ণেয় সমীকরণের বীজদ্বয়ের

সমষ্টি = 
$$(a-2)+(\beta-2)=a+\beta-4=16-4=12$$
;  
এবং শুকল =  $(a-2)(\beta-2)=a\beta-2(a+\beta)+4$   
=  $63-2.16+4=67-32=35$ .

:. নির্পেষ সমীকরণটি হইল  $x^2 - 12x + 35 = 0$ .

উদা. 10. যদি  $ax^2 + bx + c = 0$  সমীকরণটির বীজহয়  $a \, \Theta \, \beta$  হয় এবং  $a'x^2 + b'x + c' = 0$  সমীকরণটির বীজহয়  $a' \, \Theta \, \beta'$  হয়, তবে যে সমীকরণের বীজহয়  $aa' + \beta\beta' \, \Theta \, a\beta' + \beta a'$ , সেই সমীকরণটি গঠন কর।

$$\begin{array}{lll}
\text{PRIFF}, & a+\beta=-\frac{b}{a}, & a\beta=\frac{c}{a}, & a'+\beta'=-\frac{b'}{a'}, & \text{PRIFF}, & \text{PRIF$$

নির্ণেয় সমীকরণটি ছইল

$$x^{2} - \frac{bb'}{aa'}x + \frac{b^{2}a'c' + b'^{2}ac - 4aa'cc'}{a^{2}a'^{2}} = 0,$$

$$a^{2}a'^{2}x^{2} - aa'bb'x + (b^{2}a'c' + b'^{2}ac - 4aa'cc') = 0.$$

উদা. 11.  $4x^2 + 2x - 1 = 0$  সমীকরণটির একটি বীজ  $\alpha$  হইলে. প্রমাণ কর যে, অপর বীজটি 4a3 - 3a.

α প্রদত্ত সমীকরণটির একটি বীজ বলিয়া,

$$4a^2 + 2a - 1 = 0$$
,  $\forall 1$ ,  $4a^2 = 1 - 2a$ ;  $\therefore 4a^8 = a - 2a^2$ .

$$\therefore 4a^3 - 3a = a - 2a^2 - 3a = -2a - 2a^2$$

$$= -2a - \frac{1}{2}(1 - 2a) = -a - \frac{1}{2}.$$
(1)

এখন, প্রদত্ত সমীকরণটির বীজন্বয়ের সমষ্টি = - মূ বা - মূ এবং উহ্নার একটি বীজ ":

 $\therefore$  প্রদত্ত সমীকরণটির অপর বীজটি =  $-\frac{1}{2} - a = 4a^3 - 3a$ , (1) হইতে।

### প্রথমালা 25

- 1. নিম্নলিথিত সংখ্যাদ্য যে সমীকরণের বীজ, সেই সমীকরণ গঠন কর:
  - (i) 5, 7; (ii) 9, -2; (iii) -5, -3; (iv) 11, -7.
- 2. নিম্নলিখিত সম্বন্ধ হইতে যে দ্বিঘাত-সমীকরণের বীজন্বর p ও q. সেই সমীকরণ নির্ণয় কর এবং তাহা হইতে p ও q-এর মান নির্ণয় কর :

  - (i) p+q=7, pq=12; (ii) p+q=2, pq=-15;
  - (iii) p+q=-6, pq=8; (iv) p+q=6, pq=2;
  - $(\nabla) p + q = 5, pq = 6.$
- 3. যদি  $2x^2-5x+2=0$  সমীকরণটির বীজহর  $\alpha$  ও  $\beta$  হ্র, তবে যে শমীকরণের বীজ্বর নিমলিখিত প্রতিসম রাশিমালা, সেই শমীকরণ গঠন কর:
  - $(i) \frac{\alpha}{\beta^2}, \frac{\beta}{\alpha^2};$

- (ii)  $\alpha^2 + \beta^2$ ,  $\alpha^2 \beta^2$ :
- (iii)  $\frac{1}{2a-5}$ ,  $\frac{1}{28-5}$ ;
- (iv)  $\frac{\beta}{2\alpha-5}$ ,  $\frac{\alpha}{2\beta-5}$ ;

- $(\nabla) \alpha + \beta, \frac{1}{2}\alpha\beta.$
- 4. যদি  $x^2+px+q=0$  সমীকরণটির বীজহুয়  $\alpha$  ও  $\beta$  হয়, তবে ষে শমীকরণসমূহের বীজন্বয় নিমলিথিত প্রতিসম রাশিমালা, সেই সমীকরণসমূহ গঠন কর:
  - (i)  $\frac{\alpha}{\beta}$  equal  $\frac{\beta}{\alpha}$ ; [C. U. 1936] (ii)  $(\alpha + \beta)^2$ ,  $(\alpha \beta)^2$ ;
  - (iii)  $a^2 + a\beta$ ,  $\beta^2 + a\beta$ .

5. যদি  $x^2 + 7x + 12 = 0$  সমীকরণটির বীজন্ম p ও q হয়, তবে যে স্মীকরণটির বীজ  $(p+q)^2$  এবং  $(p-q)^2$ , সেই স্মীকরণটি গঠন কর।

[ Calcutta, 1920, '40 ]

- 6. যদি  $x^2 px + a = 0$  সমীকরণটির বীজন্বয়  $a \otimes B$  হয়, তবে যে সমীকরণের বীজ্বয় নিম্নলিখিত প্রতিসম রাশিমালা, সেই সমীকরণসমূহ গঠন কর:
  - (i)  $2\alpha \beta$ ,  $2\beta \alpha$ ; (ii)  $\alpha^{-1} + \beta^{-1}$ ,  $\alpha\beta$ ;

(iii)  $m\alpha + n\beta$ ,  $n\alpha + m\beta$ ; (iv)  $\alpha^2 + \alpha\beta^{-1}$ ,  $\beta^2 + \beta\alpha^{-1}$ ;

- (3)  $\frac{q}{n-q}$ ,  $\frac{q}{n+s}$
- 7. যদি  $x^2-px+q=0$  স্মীকরণটের বীজন্বয় a ও eta হ্য়, যে স্মীকরণের বীজন্বর  $\frac{2}{a}$  ও  $\frac{2}{8}$ , নেই সমীকরণটি নির্ণর কর । ইহা হইতে প্রমাণ কর যে,

$$\frac{1}{a^3} + \frac{1}{\beta^3} = \frac{p^3}{q^3} - \frac{3p}{q^2}.$$

- 8.  $ax^2 + bx + c = 0$  সমীকরণটির বীজহুয়  $a \, \Theta \, B$  হুইলে, যে সমীকরণের বীজ্বর নিম্নলিখিত প্রতিসম রাশিমালা, সেই সমীকরণ গঠন কর:
  - (i)  $\alpha^2$ ,  $\beta^2$ ; (ii)  $\alpha(1-\beta)$ ,  $\beta(1-\alpha)$ ; (iii)  $\frac{a\alpha+b}{\beta}$ ,  $\frac{a\beta+b}{\alpha}$ ;

(iv)  $\alpha + m\beta$ ,  $\beta + m\alpha$ ; (v)  $\alpha + \frac{1}{\beta}$ ,  $\beta + \frac{1}{\alpha}$ .

9. যদি  $3x^2+6x+2=0$  সমীকরণটির বীজ p ও q হয়, প্রমাণ কর খে, ষে সমীকরণটির বীজন্বয়  $\frac{-p^2}{q}$  ও  $\frac{-q^3}{p}$  সেই সমীকরণটি  $3x^2-18x+2=0$  হইবে 1

[ Calcutta, 1955 ]

- 10. যদি  $ax^2 + bx + c = 0$  সমীকরণটির বীজহর a ও  $\beta$  হয়, তবে প্রমাণ কর ষে, যে সমীকরণটির বীজদ্বয়
- 11. যে সমীকরণের বীজন্বর  $x^2 5x + 6 = 0$  সমীকরণটির বীজন্মরে অন্যোদ্ধক. সেই সমীকরণটি গঠন কর।
- 12. যে সমীকরণের বীজ্বন্ন  $x^2 x + 1 = 0$  সমীকরণটির বীজ্বনের অস্তোক্তক. সেই সমীকরণটি গঠন কর। Allahabad, 1925 ]

- 13. যদি  $x^2+x+1=0$  সমীকরণটির বীজদ্ব  $a \le \beta$  হয়, ভবে যে সমীকরণটির বীজদ্ব  $\frac{\alpha}{\beta}$  এবং  $\frac{\beta}{\alpha}$ , সেই সমীকরণটি নির্ণয় কর। নির্ণীত সমীকরণ এবং প্রদত্ত সমীকরণটি যে অভিন্ন, তাহার কারণ নির্দেশ কর।
- 14. যদি  $ax^2-bx+c=0$  সমীকরণটির বীজ্বয় a ও  $\beta$  হয়, তবে যে সমীকরণটির বীজ্বয় a ও b-a ও b-a সমীকরণটি নির্ণয় কর। নির্ণীত সমীকরণটি ও প্রদত্ত সমীকরণটি যে অভিন্ন, তাহার কারণ নির্দেশ কর।
- 15. যদি  $x^2-px+q=0$  সমীকরণটির বীজন্ম a ও  $\beta$  হয়, তবে দেখাও যে,  $qx^2-(p^2-2q)x+q=0$  সমীকরণটির একটি বীজ  $\frac{a}{\beta}$  [Calcutta, 1931]
- 16.  $x^2+px+q=0$  সমীকরণটির বীজন্বরের মাধ্যমে  $q^2x^2-(p^2-2q)x+1=0$  সমীকরণটির বীজন্ম প্রকাশ কর। [Calcutta, 1932]
- 17. যদি  $x^2+px+q=0$  সমীকরণটির বীজন্বয়  $a\pm\sqrt{\beta}$  হয়, তবে প্রমাণ কর যে,  $(p^2-4q)(p^2x^2+4px)=16q$  সমীকরণটির বীজন্বয়

$$\frac{1}{a} \pm \frac{1}{\sqrt{\beta}}$$
 হইবে।

- 18. যদি  $a^{\frac{1}{2}}\pm\beta^{-\frac{1}{2}}$ ,  $x^2-px+q=0$  সমীকরণটির বীজদ্বর নির্দেশ করে, তবে প্রমাণ কর যে, যে সমীকরণের বীজ্বর  $a\pm\beta$ , সেই সমীকরণটি  $(p^2-4q)^2(4x-p^2)^2=256$ .
- 19. মূলদ সহগবিশিষ্ট যে দ্বিঘাত-স্থীকরণের একটি বীজ 3 √5, সেই স্মীকরণটি নির্ণয় কর।
  - 20. নিমলিখিত রাশিমালার মান নির্ণর কর:
    - (i)  $x^3 7x^2 + 13x 2$ ,  $44 x = 2 + \sqrt{3}$ ;
    - (ii)  $x^3 4x^2 9x + 97$ ,  $\sqrt{-7}$ ;
    - (iii)  $x^4 + 4x^8 + 6x^2 + 4x + 9$ ,  $\sqrt{4} = \sqrt{-2 1}$ ;
    - (iv)  $16x^3 16x^2 11x + 173$ ,  $\sqrt[3]{4}$   $x = \frac{1}{4}(6 + 7\sqrt{-1})$ .
- 21.  $x^2 + 7x + 12 = 0$  সমীকরণটির বীজন্বয় অপেক্ষা যে সমীকরণের বীজন্বয় প্রত্যেকে  $\frac{1}{2}$  কম, সেই সমীকরণটি নির্ণয় কর।
- 22. যে সমীকরণের বীজন্বয়  $ax^2-2bx+c=0$  সমীকরণের বীজন্বয়ের অন্যোগ্যক, সেই সমীকরণিট নির্ণয় কর। ইহা হইতে প্রমাণ কর যে, a-এর মান সীমাহীনভাবে হ্রাস পাইলে, প্রদত্ত সমীকরণটির বীজন্বয়ের একটি অনির্দিষ্ঠভাবে বৃদ্ধি পায়।

# 7'9. পু**ইটি** সমীকরণের সাধারণ বীজ থাকিবার শর্ত:

যে শর্জ দিছে ইইলে  $ax^2+bx+c=0$  এবং  $a'x^2+b'x+c'=0$  সমীকরণ- দুইটির একটি সাধারণ বীজ থাকে তাহা নির্গন্ন কর। [To find the condition that the equations  $ax^2+bx+c=0$  and  $a'x^2+b'x+c'=0$  may have a common root. ]

সমীকরণ-ছুইটির সাধারণ বীজ যেন ৫.

a উভয় সমীকরণের বীজ বলিয়া, a দারা উভয় সমীকরণই নিদ্ধ হয়।

$$\begin{array}{ccc} aa^{2} + ba + c = 0 \\ & a'a^{2} + b'a + c' = 0 \end{array}$$

বছ্ৰগ্ৰণন দারা,

$$\frac{a^2}{bc'-b'c} = \frac{a}{ca'-c'a} = \frac{1}{ab'-a'b}; \qquad \cdots \quad (\overline{\Phi})$$

$$\therefore \frac{a^2}{(ca'-c'a)^2} = \frac{a^2}{bc'-b'c} \cdot \frac{1}{ab'-a'b}.$$

•• 
$$(ca' - c'a)^2 = (bc' - b'c)(ab' - a'b)$$
;

ইহাই নির্ণেয় শর্ত।

অনুসি. 1. (ক) হইতে স্বস্পষ্ট ষে, দাধারণ বীজ a

$$=\frac{ca'-c'a}{ab'-a'b}$$
, অথবা,  $\frac{bc'-b'c}{ca'-c'a}$ .

অবুসি. 2. প্রথম সমীকরণটির অপর বীজটি

$$= \left(\frac{c}{a} + \frac{ca' - c'a}{ab' - a'b}\right), \text{ with, } \left(\frac{c}{a} + \frac{bc' - b'c}{ca' - c'a}\right),$$

অর্থাৎ, 
$$\frac{c(ab'-a'b)}{a(ca'-c'a)}$$
, অথবা,  $\frac{c(ca'-c'a)}{a(bc'-b'c)}$ 

দ্বিতীয় সমীকরণটির অপর বীজটি

$$= \left(\frac{c'}{a'} + \frac{ca' - c'a}{ab' - a'b}\right), \text{ with, } \left(\frac{c'}{a'} + \frac{bc' - b'c}{ca' - c'a}\right),$$

অধাৎ, 
$$c'(ab'-a'b)$$
, অথবা,  $c'(ca'-c'a)$   
 $a'(ca'-c'a)$ 

উদা 1. প্রমাণ কর যে,  $x^2 + bx + ca = 0$  এবং  $x^2 + cx + ab = 0$  দ্মীকরণদ্বের একটি দাধারণ বীজ থাকিলে, উহাদের অপর বীজ্দ্য দ্বারা  $x^2 + ax + bc = 0$  দ্মীকরণটি দিদ্ধ হইবে।

সাধারণ বীজটি α হইলে,

$$a^3 + ba + ca = 0,$$

 $a^2 + ca + ab = 0.$ 

় বজ্ঞগন ছারা,

$$\frac{a^{2}}{a(b^{2}-c^{2})} = \frac{a}{-a(b-c)} = \frac{1}{-(b-c)},$$

$$\frac{a^{2}}{a(b+c)} = \frac{a}{-a} = \frac{1}{-1};$$
... (1)

এখন, (1) হইতে সাধারণ বীজ  $a = \frac{-a}{-1} = a$ ;

$$a(b+c) \times (-1) = (-a)^{\frac{a}{2}}, \quad \forall i, \quad -a(b+c) = a^{\frac{a}{2}}, \\ -(b+c) = a, \quad \forall i, \quad a+b+c=0.$$
 (2)

 $\therefore$  প্রথম সমীকরণের বীজহমের গুণফল ca বলিয়া, ইহার অপর বীজটি ca+a=c এবং দ্বিভায় সমাকরণের বীজহমের গুণফল ab বলিয়া, ইহার অপর বীজটি ab+a=b.

এখন, ৫ ও ১ বীজন্বয়ের দারা গঠিত সমীকরণটি হইল

$$x^2 - (b+c)x + bc = 0,$$

বা,  $x^2 + ax + bc = 0$ , কারণ (2) হইতে -(b+c) = a.

ভদা. 2. যদি  $ax^3 + 3bx^2 + 3cx + d = 0$  এবং  $ax^2 + 2bx + c = 0$  স্মীকরণদ্বের একটি সাধারণ বাজ থাকে, তবে প্রমাণ কর যে,  $(bc - ad)^2 = 4(ac - b^2)(bd - c^2)$ .

সাধারণ বীজটি α হইলে,

$$a\alpha^3 + 3b\alpha^2 + 3c\alpha + d = 0, \qquad \cdots \tag{1}$$

$$aa^{2} + 2ba + c = 0. ... (2)$$

∴ (1) এবং (2) হইতে,

$$(aa^3 + 3ba^2 + 3ca + d) - a(aa^2 + 2ba + c) = 0,$$

$$5a^2 + 2ca + d = 0.$$
(3)

(2) এবং (3) হইতে বজ্ঞগ্রন দারা,

$$\frac{a^{9}}{2(bd-c^{2})} = \frac{a}{bc-ad} = \frac{1}{2(ac-b^{2})};$$

$$\therefore \frac{a^2}{(bc-ad)^2} = \frac{a^2}{2(bd-c^2)} \cdot \frac{1}{2(ac-b^2)};$$

 $(bc-ad)^3 = 4(ac-b^3)(bd-c^3);$ ইহাই নিৰ্ণেয় শৰ্ত।

7'10.  $ax^2+bx+c=0$  দ্বিঘাত-সমীকরণাটির দুইটি বীজ  $\alpha$  ও  $\beta$  হইলে, প্রমাণ করিতে হইবে যে,  $ax^2+bx+c\equiv a(x-\alpha)(x-\beta)$ .

 $ax^2 + bx + c = 0$  দিঘাত-স্মীকরণটির ছুইটি বীজ  $a \in B$ .

$$\therefore \quad \alpha + \beta = -\frac{b}{a} \text{ agr } \alpha \beta = \frac{c}{a}.$$

$$\therefore ax^{2} + bx + c \equiv a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$
$$\equiv a\left\{x^{2} - (\alpha + \beta)x + \alpha\beta\right\} \equiv a(x - \alpha)(x - \beta).$$

জাইব্য 1. এই সূত্র অন্ধলারে যে-কোন দ্বিঘাত রা. শিলাকে ত্ইটি একঘাত (linear) গুণনীয়কে বিশ্লেষণ করা যায়।

জ্পত্তীয় 2. (ক) a ও  $\beta$  বাত্তব ও অসমান হইলে,  $ax^2+bx+c$ -এর গুণনীয়ক- ছইটি বাত্তব ও অসমান হইবে, অর্থাৎ,  $b^2>4ac$  হইলে, গুণনীয়ক ছুইটিও বাত্তব ও জসমান হইবে;

(খ) a ও  $\beta$  বান্তব ও সমান হইলে,  $ax^2+bx+c$ -এর গুণনীয়ক-ছুইটিও বান্তব ও সমান হইবে, অর্থাৎ,  $b^2=4ac$  হইলে,  $ax^2+bx+c$ -এর গুণনীয়ক-ছুইটি বান্তব ও সমান হইবে, অর্থাৎ,  $ax^2+bx+c$  একটি পূর্ণবর্গ হইবে;

(গ) a ও  $\beta$  অবান্তৰ হইলে,  $ax^2+bx+c$ -এর কোন বান্তব গুণনীয়ক থাকিবে না, অর্থাৎ,  $b^2<4ac$  হইলে,  $ax^2+bx+c$ -এর কোন বান্তব গুণনীয়ক থাকে না।

উদা.  $3x^2 - 7x + 3$  রাশিমালাকে একঘাত গুণনীয়কে বিশ্লেষণ কর।

$$3x^2 - 7x + 3 = 0$$
 স্মীকরণটির বীজন্ম  $\frac{7 \pm \sqrt{49 - 36}}{5} = \frac{7 \pm \sqrt{13}}{6}$ .

$$\therefore 3x^2 - 7x + 3 = 3\left(x - \frac{7 + \sqrt{13}}{6}\right)\left(x - \frac{7 - \sqrt{13}}{6}\right).$$

7'11. যে শর্ভ সিক্ক হইলে, ax²+bx+c এবং a'x²+b'x+c' দ্বিঘাত রাশিমালা-চুইটির একটি সাধারণ একঘাত গুণনীয়ক থাকে, তাহা নির্ণয় কর। (To find the condition that the two quadratic expressions  $ax^2 + bx + c$  and  $a'x^2 + b'x + c'$  may have a common linear factor.)

x-a রাশিমালা-ছুইটির একটি সাধারণ গুণনীয়ক হইলে, x-a দারা রাশিমালা ছুইটি সম্পূর্ণরূপে বিভাজ্য ;

.. 
$$aa^2 + ba + c$$
, এবং  $a'a^2 + b'a + c' = 0$ .
[ 7'9 অন্তেচনে সমাধান এইব্য ]

উলা. 1. কোন্ শত সিদ্ধ হইলে  $lx^2 + mxy + ny^2$  এবং  $l'x^2 + m'xy + n'y^2$  রাশিমালাদ্যের একটি সাধারণ একঘাত গুণনীয়ক থাকিবে ?

ধ্বা ঘাক, 
$$lx^2 + mxy + ny^2 \equiv l(x - ay) \times (x - by)$$
 ... (1)

তাহা হইলে, x-ay বাশিমালাদ্বের সানারণ এক্যাত গুণনীয়ক।

এখন, x = ay ধরিলে, (1) এবং (2) উভয়েরই দক্ষিণ পক্ষের মান = 0 হয়;

অতএব, x = ay ধরিলে, (1) এবং (2) উভরের বাম পক্ষের মানও = 0 হইবে।

:. x = ay বসাইলে (1) হইতে পাই

$$l(ay)^2 + m(ay)y + ny^2 = 0$$
;

$$71, \quad la^2 + ma + n = 0, \qquad \cdots$$
 (8)

:: (3) এবং (4) হইতে বঞ্চগুণন খারা,

$$\frac{a^{s}}{mn'-m'n} = \frac{a}{nl'-n'l} = \frac{1}{lm'-l'm} ;$$

$$\frac{a^2}{(nl'-n'l)^2} = \frac{a^2}{mn'-m'n'} \frac{1}{lm'-l'm'};$$

$$\therefore (nl' - n'l)^2 = (mn' - m'n)(lm' - l'm);$$

ইহাই নির্ণের শর্ত।

উদা. 2. যে শর্ড দিদ্দ হইলে  $ax^2 + 2hxy + by^2$  এবং  $a'x^2 + 2h'xy + b'y^2$  রাশিমালাদ্র যথাক্রমে y - mx এবং my + x আকারের গুণনীয়ক দারা বিভাজ্য, তাহা নির্ণয় কর।

মনে কর, 
$$ax^2 + 2hxy + by^2 \equiv b(y - mx)(y - nx)$$
 `... (1)

এবং 
$$a'x^2 + 2h'xy + b'y^2 \equiv a'(x + my)(x - ny)$$
. ... (2)

এখন,  $\eta = mx$  ধরিলে, (1)-এর দক্ষিণ পক্ষটি শৃভ হয় বলিয়া, উহার বাম শক্ষটিও শৃভ হইবে;

$$ax^{2} + 2hx \cdot mx + b(mx)^{2} = 0,$$

$$a + 2hm + bm^{2} = 0.$$
... (3)

আবার, x = -my ধরিলে, (2)-এর দক্ষিণ পক্ষটি শূতা হয় বলিয়া, উহার বাম পক্ষটিও শৃত্তা হইবে;

$$a'(-my)^2 + 2h'(-my)y + b'y^2 = 0,$$

$$\exists 1, \ a'm^2 - 2h'm + b' = 0. \qquad \cdots \qquad (4)$$

(3) এবং (4) হইতে দেখা যায়,

$$bm^{9} + 2hm + a = 0$$

$$a'm^2 - 2h'm + b' = 0$$

.". বছগুণন বারা,

$$\frac{m^{4}}{2(nb'+h'a)} = \frac{m}{aa'-bb'} = \frac{1}{-2(bh'+a'h)};$$

$$\therefore (aa' - bb')^2 = -4(hb' + h'a)(bh' + a'h).$$

$$(aa' - bb')^2 + 4(hb' + h'a)(bh' + a'h) = 0$$
;

ইহাই নির্ণের শর্ড।

7·12. যে শর্ভ সিক্ষ হউলে, x এবং y সম্মলিত সাধারণ দিয়াত রাশিমালা  $ax^2 + 2hxy + by^2 + 2gx + 2ly + c = 0$ -কে দুইটি এক্যাত গুণানাকৈ বিধেষণ করা যাইতে পারে, তাহা মির্ণার কর:

$$ax^{2} + 2hxy + hy^{2} + 2gx + 2fy + c = 0,$$

$$ax^{2} + 2x(hy + y) + (hy^{2} + 2fy + c) = 0.$$

[ ৫-এর শক্তির মধঃক্রম মতুসারে সাজাইয়া ]

हेर्एक प्र- धर विषए ७-मधी कर्षातर्भ ग्राप करिएक.

$$x = \frac{-2(h\eta + g) + \sqrt{4(h\eta + g)^2 - 4a(h\eta^2 + 2fy + c)}}{2a}$$

$$= \frac{-(h\eta + g) \pm \sqrt{(h\eta + g)^2 - a(h\eta^2 + 2f\eta + c)}}{a}$$

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ 

$$= a \left\{ x + \frac{hy + g - \sqrt{(hy + y)^2 - a(hy^2 + 2fy + c)}}{a} \right\} \times \left\{ x + \frac{hy + g + \sqrt{(hy + y)^2 - a(by^2 + 2fy + c)}}{a} \right\}.$$

ষ্পাষ্টই, গুণনীয়ক-তৃইটিকে একঘাত-বিশিষ্ট হইতে হইলে,

 $(hy + y)^2 - a(by^2 + 2fy + c)$ -কে একটি পূৰ্বৰ্গ হইতে ইইবে,

অর্থা২,  $y^2(h^2-ab)+2y(yh-af)+(y^2-ac)$ -কে একটি পূর্ণবর্গ হইতে হইবে,

 $\therefore 4(gh-af)^2 = 4(h^2-ab)(g^2-ac),$ 

বা, উভয় পক্ষ হইতে  $h^2g^2$  বাদ দিয়া এবং উভয় পক্ষকে a ঘারা ভাগ করিয়া,  $abc+2igh-ai^2-bg^2-eh^2=0$ ;

ইহাই নির্ণেয় শর্ত, এবং বামপক্ষন্থ রাশিমালাটিকে x, y সম্বলিত সাধারণ দিঘাত রাশিমালাটির নিরপ্ত বলা হয়।

উদা. 1. দেখাও যে,  $2x^2 + xy - x - 3y^2 + 16y - 21$  রাশিমালাকে ছইটি একঘাত গুণনীয়কে বিশ্লেষণ করা যায়।

 $ax^2 + 2hxy + by^2 + 2yx + 2fy + c$  রাশিমালাটিকে সুইটি একঘাও গুণুনীয়কে বিশ্বেষণ করা বাইতে পারে, যদি

$$abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0 \text{ } \overline{\mathbb{R}} \text{ } \text{ } 1$$

$$\text{GCFTGS}, \quad a \leftarrow 2, \ h \leftarrow \frac{1}{2}, \ b = -3, \ g = -\frac{1}{2}, \ f = 8, \ c = -21.$$

$$\text{ANT}, \quad abc + 2fgh - af^{2} - bg^{2} - ch^{2}$$

$$= 2.(-3)(-21) + 2.8.(-\frac{1}{2}).\frac{1}{2} - 2.8^{2} - (-3)(-\frac{1}{2})^{2} - (21)(\frac{1}{2})^{2}$$

$$= 126 - 4 - 128 + \frac{3}{4} + \frac{2}{4} - 6 + \frac{4}{4} = -6 + 6 = 0.$$

অভ্যান, প্রদার বাশিমাকাটিকে ছটাটি একঘাত গুণনীয়কে বিশ্লেষণ করা যাইতে পারে।

উদ্ $\{.2. m$ -এর মান কর হালে,  $2x^2 - xy - y^2 + 5x + my + 2 = 0$  বা শিক্ষালা সুঠট একঘার প্রধান হৈকের প্রকারের মমান হউবে  $\gamma$ 

4.777, 
$$a=2, b=-1, c=2, f=\frac{m}{2}, g=\frac{5}{2}, h=-\frac{1}{2}.$$

$$\therefore abc+2fyh-af^{2}-bg^{2}-ch^{2}$$

$$=2(-1)\cdot 2+2\cdot \frac{m}{2}\cdot \frac{5}{2}\cdot \left(-\frac{1}{2}\right)-2\left(\frac{m}{2}\right)^{3}$$

$$-(-1)(\frac{5}{2})^{2}-2(-\frac{1}{2})^{3}$$

$$=-4-\frac{5}{4}m-\frac{m^{2}}{2}+\frac{25}{4}-\frac{1}{2}=-\frac{m^{2}}{2}-\frac{5}{4}m+\frac{7}{4}.$$

এখন, প্রদত্ত রাশিটিকে তুইটি একঘাত গুণনীয়কে বিশ্লেষণ করা সম্ভব হুইলে,  $abc+2fgh-af^2+bg^2-ch^2=0$  হুইলে,

উদা. 3.  $2x^2 + xy - 6y^2 - 5x + 11y - 3$  রাশিমালার একঘ'ত গুণনীয়ক- ফুইটি নির্ণয় কর।

 $2x^2+xy-6y^2-5x+11y-3=0$  সমীকরণটি বিবেচনা করা যাক। সমীকরণটিকে  $2x^2+(y-5)x-(6y^2-11y+3)=0$  রূপে লিখিয়া এবং ইহাকে x-এর একটি দ্বিঘাত-সমীকরণরূপে গণ্য করিয়া সমাধান করিলে, দেখা যায়,

$$x = \frac{-(y-5) \pm \sqrt{(y-5)^2 + 8(6y^2 - 11y + 3)}}{4}$$

$$= \frac{-(y-5) \pm \sqrt{49y^2 - 98y + 49}}{4}$$

$$= \frac{-(y-5) \pm (7y-7)}{4} = \frac{6y-2}{4}, \text{ ft}, \frac{-8y+12}{4}$$

$$= \frac{3y-1}{2}, \text{ ft}, (-2y+3).$$

$$\therefore 2x^2 + xy - 6y^2 - 5x + 11y - 3$$

$$= 2\left(x - \frac{3y-1}{2}\right)\left\{x - (-2y+3)\right\}$$

$$= (2x-3y+1)(x+2y-3).$$

#### প্রথমালা 26

- (b) যদি  $x^2+px+q=0$  এবং  $x^2+qx+p=0$ -এর একটি সাধারণ বীজ্ঞাকে, তবে প্রমাণ কর যে, হয় p=q, অথবা, p+q+1=0. [ Calcutta, 1939 ]
- 2. যদি  $x^2+px+q=0$  এবং  $x^2+p'x+q'=0$  সমীকরণছয়ের একটি সাধারণ বীজ থাকে, তবে তাহা, হয়  $\frac{pq'-p'q}{q-q'}$  বা  $\frac{q-q'}{p'-p}$

- 3. যদি  $ax^2+bx+c=0$  এবং  $cx^2+bx+a=0$  সমীকরণদ্বের একটি সাধারণ বীজ থাকে, তবে দেখাও যে, a+b+c=0, অথবা, a-b+c=0.
- 4. যে শর্জ সিদ্ধ হইলে,  $ax^2 + bx + c = 0$  সমীকরণটির একটি বীজ  $a'x^2 + b'x + c' = 0$ -এর একটি বীজের সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট হয়, তাহা নির্পয় কর।
- 5. যে শর্ভ সিদ্ধ হইলে,  $ax^2 + bx + c = 0$  সমীকরণটির একটি বীজ  $a'x^2 + b'x + c' = 0$  সমীকরণটির একটি বীজের অন্যোক্তক হয়, তাহা নির্ণয় কর।
- 6. যে শর্ত সিদ্ধ হইলে,  $x^2+px+q$  এবং  $x^2+p'x+q'$  রাশিমালাদ্ধের একটি সাধারণ একঘাত গুণনীয়ক থাকে, তাহা নির্ণয় কর।
- 7. a-এর মান কত হইলে,  $x^2-11x+a$  এবং  $x^2-14x+2a$  রাশিমালা- ছয়ের একটি সাধারণ গুণনীয়ক থাকে, তাহা নির্ণয় কর।
- 8. यদি  $x^2+ax+b=0$  সমীকরণটির একটি বীজ  $x^2+cx+d=0$  সমীকরণটির একটি বীজ হয়, তবে প্রমাণ কর যে, প্রথম সমীকরণটির অপর বীজটি  $x^2+(2a-c)x+a^2-ac+d=0$  সমীকরণের একটি বীজ হইবে।
- 9. যদি  $ax^2+bx+c$  এবং  $bx^2+cx+a$  রাশিমালাদ্যের একটি সাধারণ একঘাত গুণনীয়ক থাকে, তবে প্রমাণ কর যে, a=0, অথবা,  $a^3+b^3+c^8=3abc$ .
- 10. যে শর্ভ দিদ্ধ হইলে,  $ax^2 + 2hxy + by^2$  রাশিমালার y mx এবং my + x আকারের হুইটি একঘাত গুণনীয়ক থাকে, তাহা নির্ণয় কর।
- 11. যদি  $ax^2+bx+c=0$  সমীকরণের বীজ্ছর  $a'x^2+b'x+c'=0$  সমীকরণের বীজ্ছরের বর্গমূল হয়, তবে প্রমাণ কর যে,  $a'b^2+a^2b'=2aa'c$  এবং  $a'c^2=c'a^2$ .
- 12. যদি  $ax^2 + bx + c = 0$  সমীকরণটির বীজন্ম  $a'x^2 + b'x + c' = 0$  সমীকরণটির বীজন্মের n-গুণ হয়, তবে প্রমাণ কর যে,  $an^2/a' = bn/b' = c/c'$ .
- 13. প্রমাণ কর যে, যদি  $ax^2+by^2+cz^2+2ayz+2bzx+2cxy$ -কে সুইটি একঘাত গুণনীয়কে বিশ্লেষণ করা যায়, তাহা হইলে,  $a^3+b^3+c^3=3abc$ .
- 14. m-এর মান কত হইলে,  $x^2 + 8xy 4y^2 + 2my 5$  তুইটি একঘাত গুণনীয়কের গুণফলের সমান হয়, তাহা নির্ণয় কর।
- 15. প্রমাণ কর যে,  $8x^2-8xy-6y^2+18x+21y-18$ -কে তুইটি একঘাত গুণনীয়কে বিশ্লেষণ কর। যায়। গুণনীয়কগুলি নির্ণয় কর।

# 7'13. দ্বিঘাত রাশিমালার মানের চিহ্ন :

প্রমাণ কর যে, x-এর সকল বাস্তব মানের জন্মই  $ax^2+bx+c$  রাশিমালাটির মান a-র চিহ্নবিশিপ্ট হইবে, কেবলমাত্র  $ax^2+bx+c=0$ 

সমীকরণটির বীজন্ম বান্তব এবং ভিন্ন হইলে এবং x-এর মান ঐ বীজন্মের অন্তর্বভী হইলে ঐরপ হইবে না। (To show that for all real values of x the expression  $ax^2 + bx + c$  has the same sign as a, except when the roots of the corresponding equation  $ax^2 + bx + c = 0$ , are real and different, and x lies between them.)

মনে কর,  $ax^2 + bx + c = 0$  সমীকরণটির বীজ  $a \le \beta$ .

তাহা হইলে,  $ax^2 + bx + c = a(x - a)(x - \beta)$ .

এখন এই বীজ-ছুইটি তিনপ্রকার হইতে পারেঃ (ক) বাস্তব এবং সমান,
(ব) অবাস্তব, (গ) বাস্তব এবং অসমান।

- (ক) বীজ-তুইটি বাস্তব এবং সমান হইলে,  $\alpha = \beta$ ;
- $ax^2 + bx + c \equiv a(x a)^3 = a \times একটি ধনাত্মক রাশি;$
- ∴ x-এর সকল বাস্তব মানের জন্মই  $ax^2 + bx + c$  রাশিমালাটির মান্ a-র চিহ্নবিশিষ্ট হইবে।
  - (খ) বীজ-তুইটি অবাস্তব হইলে, মনে কর, a=m+in এবং  $\beta=m-in$ ;
  - ∴  $ax^2 + bx + c = a\{x (m+in)\}\{x (m-in)\}$ =  $a\{(x-m) - in\}\{(x-m) + in\}$ =  $a\{(x-m)^2 + n^2\} = a \times$  একটি ধনাত্মক রাশি।
- x-এর সকল অবান্ডব মানের জন্মই  $ax^2+bx+c$  রাশিমালাটির মান a-র চিহুবিশিষ্ট ইইবে।
  - (গ) বীজ-ছুইটি বান্তব কিন্তু অসমান হইলে, মনে কর,  $a>\beta$ .

এখন, x-এর মান a ও  $\beta$ -র অন্তর্বতী হইলে, অর্থাৎ,  $\beta < x < \alpha$  হইলে, x-a ঝণাবাক হইবে এবং  $x-\beta$  ধনাজ্মক হইবে; অতএব,  $(x-a)(x-\beta)$  একটি ঝণাত্মক রাশি হইবে;

ে এক্টের,  $ax^2 + bx + c \equiv a(x - a)(x - \beta)$   $= a \times একটি স্পাত্মক রাশি;$ 

জ্ঞান্ত্রট, a ধনাত্মক হইলে, দক্ষিণ পক্ষ একটি শ্বণাত্মক রাশি হইবে।
a শ্বণাত্মক রাশি হইলে, দক্ষিণ পক্ষ একটি ধনাত্মক রাশি হইবে।

 $\therefore$  এক্ষেত্রে,  $ax^2 + bx + c$ -এর মান a-র বিপরীত চিহ্নবিশিষ্ট হইবে। এইবার মনে কর, x-এর মান a ও  $\beta$ -র অন্তর্বর্তী নহে। এক্ষেত্রে যদি x-এর মান a ও  $\beta$  অপেক্ষা বৃহত্তর হয়, তাহা হইলে, x-a ও

 $x-\beta$  উভয়ই ধনাত্মক হইবে; আর যদি x-এর মান a ও  $\beta$  অপেক্ষা ক্ষুদ্রতর হয়, তাহা হইলে, x-a ও  $x-\beta$  উভয়ই ঋণাত্মক হইবে।

স্তরাং, উভয় কেত্রেই,  $(x-a)(x-\beta)$  ধনা মুক হইবে।

- $ax^2 + bx + c = a(x a)(x \beta) = a \times$ একটি ধনায়ক রাগি।
- x-এর মান a ও  $\beta$ -এর সমূর্বর্তী না হইলে,  $ux^2+hx+c$  রাশিমালাটির মান a-র চিহ্নবিশিষ্ট হইবে।

অভ্রব, দেখা গেল যে, x-এর সকল বাস্ত্র মানের জন্তই  $ax^2+bx+c$ রাশিমালাটির মান a-র চিহ্নবিশিষ্ট ইইবে, কেবলমান  $ax^2+bx+c=0$  সমীকরণটির বীজ্পার বাস্তব এবং ভিন্ন হইলে এবং x-এর মান ঐ নীজ্পারের অন্তর্বতী হইলে, ঐরপ্র হইবে না।

### 

মনে কর, x-এর বাস্ত্র মানের জন্ম  $ax^2 + bx + c = y$ . ভাহা হটলে,  $ax^2 + bx + (c - y) = 0$  দিঘাত-স্মীকরণটির বীজদ্ম বাস্তব। এখন, স্মীকরণটি স্মাধান করিয়া,

$$a = \frac{-b \pm \sqrt{b^2 - 4a(c - y)}}{2a}$$

$$= -\frac{b}{2a} \pm \frac{\sqrt{4a(-\frac{4ac - b^2}{4a})}}{2a}$$

$$= -\frac{b}{2a} \pm \frac{1}{a} \sqrt{a(y - \frac{4ac - b^2}{4a})}.$$

এখন, ৫ বাস্তব বলিয়া, মূলচিহ~অন্তৰ্গত রাশিটি≔0 বা একটি ধনাত্মক রাশি হইবে।

:. (i) 
$$y = \frac{4ac - b^2}{4a}$$
, and  $x = -\frac{b}{2a}$ ;

অপনা, (ii)  $y = \frac{4ac + h^2}{4a}$ , এবং a উভয়ই অনুখ ধনাত্মক না ঋণাত্মক হইবে।

I. আতএন, x-এর নাত্র মানের জন্ম যদি a ধনাত্মক হয়, তাহা হইলে,

(i) 
$$y = \frac{4ac - b^2}{4a}$$
, we will, (ii)  $y > \frac{4ac - b^2}{4a}$ .

স্থাবিং, y ( অর্থাং  $ax^2+bx+c$ )-এর অবম মান =  $\frac{4ac-b^2}{4a}$  এবং  $x=-\frac{b}{2a}$  হইলেই এই অবম মান হইবে।

ইহা স্পষ্টই প্রতীয়মান হয় যে, এক্ষেত্রে ইহার চরম মানের কোন নির্দিষ্ট সীমা নাই।

Π. যদি α ঋণাত্মক হয়, তাহা হইলে,

(i) 
$$y = \frac{4ac - b^2}{4a}$$
, well, (ii)  $y < \frac{4ac - b^2}{4a}$ .

স্তবাং, y ( অর্থাং  $ax^2+bx+c$ )-এর চরম মান =  $\frac{4ac-b^2}{4a}$ , এবং  $x=-\frac{b}{2a}$  চইলেই এরপ চরম মান পাওয়া যায়।

ইহা স্পষ্টই প্রভীধমান হয় যে, এক্ষেত্রে অবম মানের কোন নির্দিষ্ট সীমা নাই। উদ্ধা. 1. স-এর বাস্তব মানের জন্ম  $3x^2-2x+5-4$ র চিহ্ন নির্ণয় কর।

 $3x^2 - 2x + 5 = 3(x^2 - \frac{2}{3}x + \frac{5}{8}) = 3\{(x - \frac{1}{3})^2 + \frac{1}{8}^4\}.$ 

এখন, x বাস্থব বলিয়া  $(x-rac{1}{2})^2$  সর্বদাই ধনাত্মক হইবে;

 $(x-1)^2 + \frac{1}{9}$  সর্বদাই ধনাত্মক হইবে।

∴ a-এর দকল বাস্থে মানের জয়ই প্রদন্ত রাশিমালাটি ধনায়ক ইইবে।

উদা. 2. x-এর বাক্তব মানের জন্ম  $x^2-6x+10$ -এর অবম (লঘিষ্ঠ) মান

প্রধান বালিকাল  $=(x^2-6x+9)+1=(x-3)^2+1$ .

এখন, x এর সকল বাদ্ধর মানের জন্ম  $(x-3)^2$  ধনাস্থক। অতএব রাশিমালাটি স্বিদাই >1, এবং শথন x=3 হ $\overline{c}$ ংবি, রাশিমালাটি =1 হ $\overline{c}$ ংবি।

: বাশিমালাটির অবম মান = 1.

উলা. 3. x-এর মান কত হউলে,  $2x^2+5x-3$  রাশিমালা ঝণায়ক হউবে ? ইহার অবম মান কত ? [Calcutta, 1950]

প্রথম অংশ ঃ  $2x^2 + 5x - 3 = 2x^2 + 6x - x - 3$ =  $(x+3)(2x-1) = 2(x+3)(x-\frac{1}{2})$ .

ি সক্ষণীয় যে, প্রথমে  $2x^2+5x-3=0$ -এর বীজ  $\frac{1}{2}$  এবং -3 নির্ণয় করিয়া একোরেই  $2x^2+5x+3=2(x+3)(x-\frac{1}{2})$  লেখা যায়।

এখন, x-এর মান  $> \frac{1}{2}$  হইলে, x+3 এবং  $x-\frac{1}{2}$  উভয়ই ধনামুক হইবে;

∴ রাশিমালাটির মানও ধনায়ক হইবে।

x-এর মান < -3 হইলে, x+3 এবং  $x-\frac{1}{2}$  উভরই ঝণাত্মক হইবে;

- ... রাশিমালাটির মান ধনা এক হইবে।  $-3 < x < \frac{1}{2}$  হইলে, x + 3 ধনাত্মক এবং  $x \frac{1}{2}$  কণাত্মক হইবে;
- ं. বাশিমালাটির মান ঋণাত্মক হইবে।

ষিঙীয় অংশ: মনে কর,  $2x^2 + 5x - 3 = y$ .

- $\therefore$  x বাৰ্থৰ বলিয়া,  $2x^2 + 5x (3 + y) = 0 স্মীক্ষণটির বীজন্ম বান্তব;$
- ∴ িরপক, 25 + 5(3+y) < 0, বা, 8y + 49 < 0, y < \dagger.
- .. y अर्थार श्रमत वार्तिभाजाित अवभ भान क्ष.

উদা 4. x-এর বাওব মানের জন্ম,  $x^2-x+1$ -এর চরম ও অবম মান নির্ণয় কর।

$$\frac{x^2-x+1}{x^2+x+1}=y.$$

জীহা ইটলে, 
$$y(x^2+x+1)=x^2-x+1$$
,   
বা,  $(y-1)x^3+(y+1)x+y-1=0$ .

এখন, a नार्क्य विका, a-अत अहे क्षिणाल-२६, कदनिवेद नी हक्ष्य वास्त्र ;

: নিজপক,  $(y+1)^2 - 4(y-1)^2 > 0$ ,

$$41, \quad \{(y+1)+2(y-1)\}\{(y+1)-2(y-1)\} > 0,$$

 $\P1, \quad (3y-1)(3-y) > 0,$ 

$$\forall 1, -3(y-\frac{1}{2})(y-3) > 0.$$

 $\P(y - \frac{1}{2})(y - 3) < 0.$ 

$$(y-\frac{1}{2})(y-3) < 0$$
 =  $\frac{1}{2}$ ( $y-\frac{1}{2} > 0$  (41°  $y-3 < 0$  =  $\frac{1}{2}$ (7); (2)

4', 
$$y - \frac{1}{2} < 0 \le 4' \quad y - 3 > 0$$
  $\geqslant \gtrsim (4 \mid \dots \mid (3))$ 

(2) vers, 
$$y > \frac{1}{2}$$
 each  $< 3$ , while  $\frac{1}{2} < y < 3$ . ... (4)

- (3) হটতে,  $y < \frac{1}{2}$  এবং > 3 ইহা অসম্ভব।
- ∴ (1) এবং (4) হইতে, ± < y < 3.
- .. y অর্থাৎ প্রদত্ত রাণি টির অবম মান 🖁 এবং চরম মান 3.

(XI-XII)-10

উদা. 5. যদি x বাস্তব হয়, প্রমাণ কর যে,  $\frac{2x^2-2x+4}{x^2-4x+3}$ -এর মান 1 ও -7-এর অস্তর্বর্তী হইতে পারে না। [Calcutta, 1944]

মনে কর, 
$$y = \frac{2x^2 - 2x + 4}{x^3 - 4x + 3}$$
;

$$y(x^2-4x+3)=2x^2-2x+4$$

$$(y-2)x^3-2(2y-1)x+(3y-4)=0.$$

এখন, x বাস্তব বলিয়া, x-এর এই দ্বিঘাত-সমীকরণটির বীজন্বয় বাস্তব ;

নিরপক, 
$$4(2y-1)^2-4(y-2)(3y-4) < 0$$
,

বা,  $(2y-1)^2-(y-2)(3y-4) < 0$ ,

বা,  $y^2+6y-7 < 0$ ,

বা,  $(y-1)(y+7) < 0$ .

এখন, y+7-কে y-(-7) রূপে লিখিলে দেখা যায় যে, y-এর মান >-7 কিন্ত <1 হইলে, y+7 ধনাত্মক, কিন্তু y-1 ঋণাত্মক হয় ; স্তরাং,

$$(y-1)(y-7) < 0$$
 হয়;

y>-7, কিন্ত <1 হইতে পারে না; অর্থাৎ, x-এর বাস্তব মানের জন্য, y অর্থাৎ প্রদত্ত রাশিটির মান -7 এবং 1-এর অন্তর্বর্তী হইতে পারে না।

উদা- 6. প্রমাণ কর যে, x-এর সকল বাস্তব মানের জন্ম,  $\frac{m^2}{1+x} = \frac{n^2}{1-x}$ রাশিমালার মান বাস্তব হইবে।

মনে কর, 
$$y = \frac{m^2}{1+x} - \frac{n^2}{1-x}$$
,

বা,  $y = \frac{(m^2 - n^2) - (m^2 + n^2)x}{1-x^2}$ ;

 $yx^2 - (m^2 + n^2)x + m^2 - n^2 - y = 0$ .

পিকান্তর-প্রক্রিয়া দ্বারা ]

গ্র-এর সমাধান করিয়া,

$$x = \frac{(m^2 + n^2) \pm \sqrt{(m^2 + n^2)^2 - 4y(m^2 - n^2 - y)}}{2y}.$$

এখন, ৫ বাস্তব বলিয়া, করণী-চিহ্নের অন্তর্গত রাশিমালা অবশ্রই ধনাত্মক হইবে। করণী-চিহ্নের অন্তর্গত রাশিমালা

= 
$$4y^2 - 4y(m^2 - n^2) + (m^2 + n^2)^2$$
  
=  $4y^2 - 4y(m^2 - n^2) + (m^2 - n^2)^2 + 4m^2n^2$   
=  $\{2y - (m^2 - n^2)\}^2 + (2mn)^2$   
=  $4n^2 + 4n^2 + 4n^2$ 

( ৮-এর যে-কোন বান্তব মানের জন্স )।

স্তরাং, x-এর সকল বাত্তব মানের জন্মই প্রদন্ত রাশিমালার মান বাত্তব হইবে।

জ্ঞ ব্যঃ প্রদত্ত রাশিমালাটি যে-কোন বাস্তব মানবিশিষ্ট হইতে পারে বলিয়া উহার কোন চরম বা অবম মান থাকিবে না।

উদা. 7. প্রমাণ কর যে, x-এর বাস্তব মানের জন্ম,  $\frac{(x-a)(x-c)}{x-b}$  রাশিটি যে-কোন বাস্তব মানবিশিষ্ট হইতে পারে, যদি a < b < c হয়।

মানে কর, 
$$\frac{(x-a)(x-c)}{x-b} = y ;$$

$$\therefore \qquad x^2 - (a+c+y)x + (ac+by) = 0.$$

ি সর্বীকরণ ও পক্ষান্তর প্রক্রিয়া দ্বারা ট

$$x = \frac{(a+c+y) \pm \sqrt{(a+c+y)^2 - 4(ac+by)}}{2}.$$

ি কপক 
$$(a+c+y)^2-4(ac+by) \qquad < 0,$$
বা,  $y^2+(a+c)^2+2y(a+c)-4ac-4by \qquad < 0,$ 
বা,  $y^2+2(a+c-2b)y+(a-c)^2 \qquad < 0,$ 
বা,  $\{y+(a+c-2b)\}^2+\{(a-c)^2-(a+c-2b)\}^2\} \qquad < 0,$ 
বা,  $\{y+(a+c-2b)\}^2+\{(a-c)+(a+c-2b)\} \times \{(a-c)-(a+c-2b)\} \times \{(a-c)-(a+c-2b)\} \qquad < 0,$ 
বা,  $\{y+(a+c-2b)\}^2+4(a-b)(b-c) \qquad < 0, \cdots (1)$ 

এখন, y-এর খে-কোন বাস্তব মানের জন্য  $\{y+(a+c-2b)\}^2$ , বাস্তব রাশির বর্গ বলিয়া ধনাত্মক হইবে, আর a < b < c বলিয়া, a-b একটি ঋণাত্মক রাশি এবং b-c-ও একটি ঋণাত্মক রাশি । অতএব, দেখা গেল, a < b < c হইলে, y-এর সকল বাস্তব মানের জন্মই (1) সিদ্ধ হইতেছে।

 $\cdot$  . a < b < c হইলে, x-এর বাস্তব মানের জন্ম প্রাদত্তি বাং-কোন বাস্তব রাশিবিশিষ্ট হইতে পারে।

**দ্রপ্তব্যঃ** a > b > c হইলেও একই ফল পাওয়া যায়।

### প্রামালা 27

- যদি x বাস্তব হয়, নিয়লিখিত রাশিয়ালাসমূহের চিহ্নরিপণ কর :
  - (a)  $3x^3 + 5x + 7$ ; (b)  $3x 4x^2 7$ ; (c)  $4x^2 28x + 49$ ;
  - (d)  $(a^2+b^2)x^2-2abx+\frac{a^2+b^2}{4}$ ;
  - (e)  $(a^2 + b^2)x^2 + 2(a + b)x + 2$ .
- 2. প্রমাণ কর যে,  $rac{2}{3}$  হইতে  $rac{2}{3}$  ব্যতীত x-এর সব বাস্তব মানের জন্ম  $6x^2-13x+6$  রাশিমালা ধনাত্মক।
- 3. x-এর মান কত হইলে,  $7x^2-9x+3$  রাশিমালার মান ঋণাজুক হইবে, তাহা নির্ণয় কর। "
- 4.(a) প্রমাণ কর যে, x-এর যে-কোন বাস্থ্য মানের জন্ম  $5x^2-30x+47$ রাশিমালা সর্বদা ধনাত্মক।
- (b) যদি x বাস্তব এবং  $x^2-2ax+a^2-b^2$  রাশিমালা ধনাত্মক হয়, দেখাও যে, x-এর মান কথনও a-b ও a+b-এর অন্তর্বতী হইতে পারে না।
- 5. প্রমাণ কর যে, x-এর মান কোন নির্দিষ্ট সীমার মধ্যে থাকিলেই  $8x-15-x^2$  রাশিমালা ধনাত্মক হুইতে পারে। ঐ নির্দিষ্ট সীমা নিরূপণ কর।
- 6. প্রমাণ কর যে, x-এর বাস্তব মানের জন্ম (x-1)(x-3)(x-5)(x-7)+20 রাশিমালা ধনাত্মক।
- 7. x-এর বাস্তব মানের জন্ম  $x^2 ax + 1 2a^2$  রাশিমালা সর্বশা ধনাত্মক হইলে, a-এর মান নির্ণয় কর।
  - 8. যদি a বান্তব হয়, প্রমাণ কর যে,
    - (a)  $4x^2 12x + 17$  রাশিমালার মান ৪-এর কম হইতে পারে না;
- α-এর বাস্তব মানের জন্ত, নিয়লিখিত রাশিমালাদমূহের অবম (লিঘিষ্ঠ)

  মান নির্ণয় কর।
- (a)  $4x^2 9x + 5$ ; (b)  $3x^2 5x + 4$ ; (c)  $2x^2 13x + 22$ . প্রত্যেক ক্রে অবম মানে *x*-এর মান নির্ণয় কর।

- 10. যদ x বাতাৰ হয়, প্ৰমাণ কর যে,  $4x^2-4x+1$  রাশিমালার অবম মান x = 0 ( শুহা ) এবং x-এর অনুরূপ মান x = 0 [ Calcutta, 1937 ]
- 11. x-এর বাস্তব মানের জন্ম নিয়লিখিত রাশিমালাসমূহের চরম (গরিষ্ঠ) মান নির্ণয় কর:
  - (a)  $6x-x^3-1$ ; (b)  $5+8x-8x^3$ ; (c)  $5+4x-4x^3$ . প্রত্যেক ক্ষেত্রে এই চরম মানে x-এর মান কত, তাহা নির্ণিয় কর।
  - 12. x-এর বাস্তব মানের জন্ম (1-x)(2+3x)-এর চরম মান নির্ণয় কর। [ Calcutta, 1946 ]
- 13. প্রমাণ কর যে, x বাস্তব হইলে,  $\frac{x^2-3x+4}{x^2+3x+4}$ -এর মান 7 এবং  $\frac{1}{7}$ -এর অন্তর্বতী। [Calcutta, 1940]
- 14. যদি x বাস্তব হয়, প্রামাণ কর যে,  $\frac{x^2+2x-11}{2(x-3)}$ -এর মান 2 হইতে 6-এর অন্তর্ব জী মান ব্যঙীত যে-কোন শাংখ্যমান হইতে পারে।
- 15. x-এর বান্তব মানের জন্ম  $x^2-4x+9$  রাশিমালার মান যে তৃইটি নির্দিষ্ট সীমার মধ্যে থাকে, ভাহা নিরূপণ কর।  $x^2+4x+9$  ু Calcutta, 1948 ]
- 16. যদি x বান্ধৰ হয়, দেখাও বে,  $\frac{x}{x^2-5x+9}$  মান নিশ্চয়ই 1 এবং  $-\frac{1}{1}$ -এর অন্তর্গ ইইবে। [Calcutta, 1953]
- 17. x-এর বাস্তব মানের জন্স  $\frac{x^2+14x+9}{x^2+2x+3}$ -এর চরম এবং অবম মান নির্ণয়
- 18. খদি x বাদ্ধব হয়, প্রমাণ কর যে,  $\frac{(x-1)(x+3)}{(x-2)(x+4)}$ -এর মান  $\frac{4}{9}$  ও 1-এর অন্তর্বতী হাইবে না।
- 19. যদি x বাশ্বব হয়, প্রমাণ কর যে, (a)  $\frac{x^3-2x+21}{6x-14}$ -এর মান 2 এবং  $\frac{10}{9}$ -এর অন্তর্গতী হইতে পারে না ; এবং (b)  $\frac{x^3+8x+80}{2x+8}$ -এর মান -8 এবং 8-এর স্কর্মের না ।
- 20. যদি x বান্তব হয়, প্রমাণ কর নে,  $\frac{x^3+34x-71}{x^2+2x-7}$ -এর মান, 5 এবং 9-এর জন্তবর্তী ব্যতীত যে-কোন সাংখ্যমান হইতে পারে। [Calcutta, 1954]

21. প্রমাণ কর যে,  $\alpha$ -এর যে-কোন বাস্তব মানের জন্ম

 $\frac{1}{x+1}+\frac{1}{3x+1}-\frac{1}{(x+1)(3x+1)}$  রাশিমালার মান 1 এবং 4-এর অন্তর্বর্তী হইতে পারে না।

- 22. x-এর সমস্ত বাস্তব মানের জন্ম  $6x^8-22x+21$ -এর চরম ও অবম মান নির্ণয় কর। [Calcutta, 1942]
- 23. যদি x বাস্তব হয়, প্রমাণ কর যে,  $\frac{3x^2+38x-85}{x^2+2x-7}$ -এর কোন মান 7 এবং 11-এর অন্তর্বর্তী হইতে পারে না। [Gauhati, 1949]
- 24. দেখাও যে, x-এর বাস্তব মানের জন্ম,  $\frac{2x^2+4x+1}{x^2+4x+2}$ -এর সব বাস্তব মান হইতে পারে।
- 25. যদি x বাস্তব হয়, দেখাও যে,  $\frac{16}{1+x}-\frac{9}{1-x}$  রাশিমালার যে-কোন বাস্তব মান হইতে পারে।
- 26.  $x^2-px+q^2=0$  সমীকরণে, যদি x বাস্তব হয়, প্রমাণ কর যে, p-এর মান +2q এবং -2q-এর অন্তর্বতী হইতে পারে না।
- 27. দেখাও যে, যদি p, 1 (unity) হইতে বৃহত্তর হয়, তাহা হইলে, x-এর সব বাস্তব মানের জন্ম  $x^2-2x+p^2$  এর মান p-1 এবং p+1 এবং p+1 এবং অন্তর্বতী থাকিবে।
- . 28. প্রমাণ কর যে,  $x^2+4y^2-8x+12=0$  সমীকরণটি x ও y-এর বান্তব মান দ্বারা সিদ্ধ হইলে, x, 2 ও 6-এর এবং y, -1 ও 1-এর অন্তর্বর্তী হইবে।
  - 29. দেখাও বে, x-এর সমন্ত বান্তব মানের জন্ম

$$\frac{(x^2-4)(x^2+3x+2)(x^2-x-2)+10}{x^2+5x+7}$$
 ধ্নাপুক।

### অষ্ট্রস অধ্যায়

# বিন্যাস ও সমবায়

### (Permutations and Combinations)

81. বিশ্রাস ও সমবায় 2 a, b ও c—এই তিনটি বস্তব একটি প্রস্থ হইতে তিনটিকেই একদঙ্গে সংঘবদ্ধ বা সমবেত করিলে ঐ তিনটি বস্তব্দ সংলত একটি মাত্র গুছু বা সমবায় পাওয়া যায়। এই গুছু বা সমবায় বস্তব্দ তেনটির কোনটির আগে বা পরে কোন্টি রহিল তাহা বিবেচ্য নহে। সেইজন্য abc, acb, bca প্রভৃতির প্রত্যেকটি একই সমবায় (combination) বুঝায়।

কিন্তু বস্তু-তিনটির কোন্টি কোন্টির পর রহিয়াছে তাহা যদি বিবেচনা করা হয় তবে তাহাদের বিস্তাস বা ক্রম-সজ্জার কথা আসে। সেক্ষেত্রে abc সমবায়টিকে এই চয়টি বিভিন্নক্রমে (order) সাজানো যায়ঃ abc, acb, bca, bac, cab ও cba; ইহাদের প্রত্যেকটি অপর প্রত্যেকটি হইতে ভিন্নরূপ বিস্তাস (permutation).

অনুরূপে, a, b ও c—এই তিনটি বস্তুর প্রস্থাট হইতে তুইটি-তুইটি করিয়া বস্তু লইলে বা সমবেত করিলে, a ও b-কে লইয়া একটি, b ও c-কে লইয়া এবং c ও a-কে লইয়া আরেকটি—মোট এই **তিনটি সমবায়** পাওয়া যায়। সমবারের ক্ষেত্রে সমবেত বস্তুর কোন্টি কোন্টির আগে বা পরে রহিয়াছে তাহা বিচায় নয় বলিয়া a ও b-সম্থালিত সমবায়টিকে ab বা ba—তুই ভাবেই লেখা যায়। একই কারণে b ও c-সম্থালিত সমবায়টিকে লেখা যায় bc বা cb-রূপে এবং c ও a-সম্থালিত সমবায়টিকেও লেখা যায় ca বা ac আকারে।

কিন্তু ঐরপ প্রত্যেক গুচ্চে বস্তগুলির ক্রম যদি বিচার করা হয় তবে ab ও la-কে ভিন্তমে বিভাস্থ তুইটি পৃথক বিভাস্রেশে গণ্য করিতে হইবে। এইভাবে a, b ও c-এর প্রস্থিটি হইতে তুইটি-তুইটি করিয়া লইলে,

a ও b-সম্বলিত ab ও ba, b ও c-সম্বলিত bc ও cb এবং c ও a-সম্বলিত ca ও ac—মোট **এই ছয়টি বিস্থাস** গঠন করা যায়।

অতএব, সাধারণভাবে সমবায় ও বিস্থাদের এইরূপ নংজ্ঞা নির্দেশ করা যায়:

(i) একপ্রস্থ বস্তুর নির্দিষ্ট সংখ্যক কণ্ণেকটি বা সব কয়টিকে লইয়া ঐ বস্তু-গুলিকে যতগুলি গুচ্ছে সংঘবদ্ধ বা সমবেত করা যায় ততগুলির প্রত্যেকটিকে একটি সমবায় বলে।

এবং (ii) একপ্রস্থ বস্তু হইতে প্রতিবার নিদিষ্ট-সংখ্যক কয়েকটি বা সব কয়টিকে

লইয়া বিভিন্ন ক্রেমে দক্ষিত বা বিশুন্ত যতগুলি গুচ্ছ গঠন করা যায় তাহাদের প্রত্যেকটিকে বলে একটি বিশ্বাস।

# (ক) বিন্যাস

8°2. r-সংখ্যক**ি** করিয়া লইয়া n-সংখ্যক বিভিন্ন বস্তুর বিস্থাস-সংখ্যা নির্ণয়।

n-শংখ্যক বিভিন্ন বস্তু হইতে প্রতিবার r-শংখ্যকটি লইরা যতসংখ্যক বিস্তাস রচনা করা যায়, ঠিক ততসংখ্যক উপায়ে r-সংখ্যক অবস্থানে n-সংখ্যক বিভিন্ন বস্তুকে বিভিন্ন ক্রমে সাজাইয়া রাখা যায়।

এখন, ঐ n-সংখ্যক বিভিন্ন বস্তুর যে-কোন একটিকে প্রথম অবস্থানে রাখা যায় বলিয়া, প্রথম অবস্থানটিকে n-সংখ্যক উপায়ে পূর্ণ করা যায়।

ষিতীয়ত, এই n-সংখ্যক উপায়ের যে-কোন একটি উপায়ে, একটি বস্তু দিয়া, ঐ প্রথম অবস্থানটি পূর্ণ করিলে, (n-1)-সংখ্যক বস্তু অবনিষ্ট থাকিবে এবং ইহাদের যে-কোন একটি নিয়া দিত্তীয় অবস্থানটি পূর্ণ কর। যাইবে। স্তত্তরাং প্রত্যেকবার একটি বস্তু দিয়া প্রথম অবস্থানটি পূর্ণ করার পর দিয়া অবস্থানটি (n-1)-সংখ্যক উপায়ের প্রত্যেকটির স্থিত দিত্তীয় অবস্থান পূর্ণ করার n-সংখ্যক উপায়ের প্রত্যেকটির সহিত দিত্তীয় অবস্থান পূর্ণ করার (n-1)-সংখ্যক উপায় যুক্ত করিলে, প্রথম ও দ্বিতীয় অবস্থান পূর্ণ করার মোট উপায়-সংখ্য n(n-1) হইবে।

তৃতীয়ত, উল্লিখিত n(n-1) উপায়ের যে-কোন একটি উপায়ে প্রথম দুইটি অবস্থান পূর্ণ করার পর (n-2)-সংখাক বস্তু অবস্থান থাকিবে এবং সেই কারণে তথন তৃতীয় অবস্থানটি (n-2) উপায়ে পূর্ণ করা যাইবে। ফতরাং প্রথম দুইটি অবস্থান পূর্ণ করার n(n-1) উপায়ের প্রত্যেকটির সহিত তৃতীয় অবস্থানটি পূর্ণ করার (n-2) উপায় যুক্ত করিলে প্রথম তিনটি অবস্থান পূর্ণ করার জন্ম n(n-1)(n-2)-সংখ্যক উপায় থাকিবে।

এইভাবে অগ্রদর হইলে দেখা যায় যে প্রত্যেক পর্যায়ে অবস্থান-সংখ্যা যাত ঠিক তত সংখ্যক উংপাদকের গুণফল দারাই ঐ অবস্থানসমূহ পূর্ণ করার উপায়-সংখ্যা স্চিত হয়। স্মতরাং ৮-সংখ্যক অবস্থান পূর্ণ করার উপায়-সংখ্যা '

$$= n(n-1)(n-2)(n-3) \cdots$$
 সংখ্যক উৎপাদক পর্যন্ত  $= n(n-1)(n-2)\cdots \{n-(r-1)\}$   $= n(n-1)(n-2)\cdots (n-r+1).$ 

 $\gamma$ -সংখ্যকটি করিয়া লইয়া, n-সংখ্যক বিভিন্ন বস্তুর বিস্তাস-সংখ্যাকে  ${}^nP_{\gamma}$  প্রতীকটি

দার। এবং 1 হইতে n পর্যন্ত স্বাভাবিক সংখ্যার ক্রমিক গুণফলকে  $\lfloor n^*$  বা n । প্রতীক দারা স্থাচিত করা হয়। তাহা হইলে 1 হইতে (n-r) পর্যন্ত স্বাভাবিক সংখ্যার ক্রমিক গুণফল নিশ্চয়  $\lfloor n-r \rfloor$  হইবে।

বিকল প্রমাণ ঃ ৮-সংখ্যকটি করিল লইয়া ৮-সংখ্যক বিভিন্ন বস্তুর বিস্থাস-সংখ্যা নির্ণয়।

n-সংখ্যক বিভিন্ন বস্তুলি খেন  $a_1,\ a_2,\ a_3,...,\ a_n$  এবং নির্গেয় বিক্যাস-সংখ্যা খেন  $^nP_{r-1}$ 

এখন, n সংখ্যক বস্ত্রর একটিকে পথম অবস্থানে রাখিলে, অবশিষ্ট থাকে (n-1) বস্তু এবং শন্ত থাকে (r-1) অবস্থান ৷ সতরাং n-4র স্থাবে (n-1) এবং r-এর স্থাবে (r-1) ব্যাইখা (n-1)-সংখ্যক অবস্থান পূর্ব করার সংখ্যা স্থাবে n-1 দে $P_{r-1}$ ; সেই কারণে প্রথম স্থানে একটি নির্দিষ্ট বস্তু বিশিষ্ট বিভাগ-সংখ্যাও স্থাবে n-1 দে $P_{r-1}$ :

<sup>ै।</sup> क वा क !- क्ल अड़ा हम 'क्लाकर मेर्डियम क (factorial क)'-क्र भी।

এই স্থতে n-এর স্থলে যথাক্রমে  $n,\ (n-1),\ (n-2)\cdots 3,\ 2,\ 1$  এবং r-এর স্থলে যথাক্রমে  $r,\ (r-1),\ (r-2)\cdots\ 3,\ 2,\ 1$  বদাইলে দেখা যায় যে,

$$\label{eq:problem} \begin{array}{lll} ^{n}P_{r} & = n \times ^{n-1}P_{r-1} \; ; \\ ^{n-1}P_{r-1} = (n-1) \times ^{n-2}P_{r-2} \; ; \\ \cdots & \cdots & \times & \cdots \\ ^{n-r+2}P_{3} = (n-r+2) \times ^{n-r+1}P_{1} \; ; \\ ^{n-r+1}P_{1} = (n-r+1). \end{array}$$

এইবার, প্রতিটি পক্ষকে স্বস্তক্রমে গুণ করিয়া উভয়পক্ষ হইতে সাধারণ শুণনীয়কগুলিকে অপসারণ করিলে দেখা যায় যে,

$$\mathbf{P}_{\mathbf{p}} = n(n-1)(n-2)\cdots(n-r+2)(n-r+1) 
= \frac{n(n-1)(n-1)\cdots(n-r+1)\times(n-r)(n-r-1)\cdots3.2.1}{(n-r)(n-r-1)\cdots3.2.1} 
= \frac{\mathbf{In}}{\mathbf{n-r}} \cdot \dots$$

खरेतु : इंश्वी कुम्लाहे त्य n ज r উভয়েই ध्रमाश्चक ध्वार r ≤ n.

অনুসি. 1. n-দংখ্যক বিভিন্ন বস্তুর দব কয়টিকে লইয়া গঠিত বিভাদ-দংখ্যা,

$$^{n}P_{n} = n(n-1)(n-2) \cdot \cdot n$$
-সংখ্যক উংপাদক প্রয়য়  $= n(n-1)(n-2) \cdot \cdot \cdot 3.2.1$ 

**TRY :** (1) 
$$[n = n(n-1)(n-2) \cdots 3.2.1$$
  
=  $n \times \{(n-1)(n-2) \cdots 3.2.1\}$   
=  $n[n-1]$ .

অসুরূপে,  $[n-n\,n-1-n(n-1)-n-2\,;$  ইত্যাদি। (2) থেকেড়,  ${}^nP_n=n(n-1)(n-2)\cdots 3.2.1$ 

এবং  $P_{n-1} = n(n-1)(n-2) \cdots 3.2.1$  সেইছেতু,  $P_n = P_{n-1}$ 

(3) 0-এর অর্থ :  ${}^{n}P_{r} = \frac{\lfloor n \rfloor}{n-r}$  করে r = n বসাইলে  ${}^{n}P_{n} = \frac{\lfloor n \rfloor}{\lfloor n-n \rfloor} = \frac{\lfloor n \rfloor}{\lfloor n \rfloor}$ .

$$\begin{array}{ccc}
& ^{n}P_{n}=n(n-1)(n-2)\cdots 3.2.1 \\
& = \lfloor n \rfloor \\
& \vdots \\
& = \lfloor \frac{n}{0} \rfloor ; \\
& \vdots \\
& = \lfloor \frac{n}{2} \rfloor = 1.
\end{array}$$

কিন্দ্র । n-এর সংজ্ঞা অগুসারে, (n-এর স্থলে 0 বসাইলে) [0 অর্থহীন হইয়া পড়ে। অতএব, [0-কে 1-মানবিশিষ্ট একটি প্রভীকর্মপে গণ্য করা। হইয়া থাকে।

**অনুসি.** 2. r-> ংখ্যকটি করিয়া গঠিত n-সংখ্যক বস্তুর বিস্থাস-সমূহের যে-গুলির মধ্যে একটি বিশেষ বস্তু সর্বনা বর্তমান, তাহাদের সংখ্যা r. $^{n-1}P_{r-1}$ .

n-সংখ্যক বল্ধর একটি যেন a এবং এই a বল্পটি যেন r-সংখ্যকটি করিয়া লইয়া গঠিত n-সংখ্যক বিভিন্ন বল্ধর বিক্যাস-সমূহের মধ্যে n-সংখ্যক বিজ্ঞানে বর্তমান থাকে।

এখন, a-কে প্রথম অবস্থানে রাখিয়া বাকী (r-1) অবস্থানে অবশিষ্ট (n-1)-সংখ্যক বস্তুকে  $^n$   $^1P_{r-1}$  উপায়ে স্থাপন করা যায়। অহারূপে, a-কে দিওীয়, তৃতীয়, চতুর্থ,  $\cdots$ , r-তম 'এবস্থানে রাখিয়া প্রত্যুক্তার অবশিষ্ট অবস্থানগুলিকে "  $^1P_{r-1}$  উপায়ে পূর্ণ করা যায়। স্থাতরাং প্রথম হংতে r-তম প্রয় r-শংখাক 'এবস্থান পাকায়

$$a$$
-বিশিষ্ট বিশ্বাদ-দংখ্যা,  $x=r.^{n-1}P_{r-2}$ .

অমুসি. 3. r সংগ্যকটি করিয়া লইয়া গঠিত n-সংখ্যক বিভিন্ন বস্তুর বিভাগ-সমূহের যেণ্ডালতে একটি বিশেষ বস্তু আনে থাকে না। তাহাদের সংখ্যা  $^{n-1}P_r$ .

r-সংখ্যকটি করিয়া কইয়া গঠিত n-সংখ্যক বিভিন্ন বন্ধর যে বিভাগন্তলিতে একটি বিশেষ বন্ধ নাই ভাষার। এ বন্ধটি বাবে অবশিষ্ঠ (n-1)-সংখ্যক বন্ধ হইতে প্রতিবাধি r-সংখ্যকটি স্বাধ্য গঠিত। স্বাভিনাই ভাষাদের সংখ্যা  $= r^{n-1} P_r$ .

जिल्ला: अश्रांत्र, 
$$2 = 3 = 27 + 3 = 27 = 100$$
 हम (व  $^{n}P_{r} = ^{n-1}P_{r} + r.^{n-1}P_{r-1}$ ; (काला,  $^{n-1}P_{r} + r.^{n-1}P_{r-1}$ ;  $= \frac{|n-1|}{|n-r-1|} + r \times \frac{|n-1|}{|n-r|} = \frac{1}{|n-1|} \cdot \frac{1 \times (n-r)}{(n-r)n-r-1} + \frac{r}{n-r}$ 

$$= \underbrace{n-1}_{n-r} \left\{ \underbrace{\frac{n-r+r}{n-r}} \right\} = \underbrace{\frac{nn-1}{n-r}}_{n-r}$$

$$= \underbrace{\frac{n}{n-r}}_{n-r} = \underbrace{^{n}P_{r}}_{r}.$$

উদা. 1. 6P4-थत्र मोन निर्वय कत्।

<sup>6</sup>P. = 4টি করিয়া লইয়া 6টি বল্ভর বিভাগ-সংখ্যা

$$= \frac{16}{16-4} = \frac{16}{2} = \frac{6.5.4.3.12}{12}$$
$$= 6.5.4.3 = 360.$$

উদা 2. 1, 2, 3, 4, 5—এই পাঁচটি অঙ্কের 3টি করিয়া লইয়া কতগুলি শংখ্যা গঠন করা যায়, নির্ণয় কর।

প্রদত্ত 5টি অঙ্ক হইতে 3টি করিয়া লইয়া বিভিন্নজমে সাজাইলে প্রত্যেকবারেই একটি ন্তন সংখ্যা পাওয়া যায় বলিয়া, নির্ণেয় সংখ্যাগুলির সংখ্যা

= 3টি করিয়া লইয়া 5টি বস্তুর বিক্যাস-সংখ্যা =  ${}^5P_8 = 5.4.3 = 60.$ 

উদা. 3. যদি "P4: "P6=1:2, তবে n-এর মান কত?

$${}^{n}P_{6} = \frac{1}{2}, \quad \text{al}, \quad 2.{}^{n}P_{4} = {}^{n}P_{6};$$

$$\therefore 2n(n-1)(n-2)(n-3) = n(n-1)(n-2)(n-3)(n-4)(n-5).$$

n-ঘটিত এই সমীকরণটির  $n=0,\,1,\,2,\,3$  কোন সমাধান হইতে পারে না, কারণ  $1,\,2$  অথবা 3টি বস্তু হইতে 4টি অথবা 6টি করিয়া লইয়া বিক্যাস-গঠন অর্থহীন; অতএব, উভয় পক্ষ হইতে n(n-1)(n-2)(n-3) সাধারণ গুণনীয়কগুলি অপসারণ করিয়া, (n-4)(n-5)=2,

কিন্তু n-এর 3 মানটি গ্রহণীর নয় বলিয়া ( কারণ উপরে বিবৃত হইয়াছে ), n=6.

$$\begin{aligned} & [2n = 1, 2, 3, 4, 5, \dots, (2n - 1), 2n \\ & = \{1, 3, 5, \dots, (2n - 1)\} \times (2, 4, 6, \dots, 2n) \\ & = 1, 3, 5, \dots, (2n - 1) \times \{(2, 1)(2, 2)(2, 3), \dots, (2, n)\} \\ & = 1, 3, 5, \dots, (2n - 1), 2^{n}, (1, 2, 3, \dots, n) \\ & = 2^{n}, 1, 3, 5, \dots, (2n - 1) \mid n. \end{aligned}$$

উদা. 5. Courtesy শক্তির অক্ষরগুলি দিয়া যতগুলি শব্দ গঠন করা যায়, তন্মধ্যে যাহাদের আদিতে c এবং অন্তে y থাকে, তাহাদের সংখ্যা নির্ণয় কর।

৪টি বিভিন্ন অক্ষর c,o,u,r,t,e,s,y আছে। শদসমূহের আদিতে এবং অস্তে সর্বদাই যথাক্রমে c এবং y থাকিবে বলিয়া, অন্তর্বতী ৪টি অক্ষরকে উহাদের স্বগুলিকে লইয়া যত বিভিন্ন উপায়ে সাজানো যায় ততগুলিই শদ হইবে।

ে নির্ণেয় শব্দ-দংখ্যা =  ${}^6P_5 = 6.5.4.3.2.1 = 720.$ 

উদা. 6. B এবং C-কে পাশাপাশি রাখিয়া A, B, C, D, E, F, G, এই 7টি অক্ষরকে যত প্রকারে বিক্যাস করা যায়, সেই বিক্যাস-সংখ্যা নির্ণয় কর।

B এবং C সর্বদাই একসঙ্গে থাকিবে বলিয়া, উহাদিগকে B-এর পরে C-কে একটি বন্ধনী-ভূক্ত করিয়া রাখ এবং এই বন্ধনী-ভূক্ত (BC)-কে একটি বস্তু মনে করিয়া

এই 6টি বিভিন্ন বস্তুকে সবগুলি একসঙ্গে লইয়া নিজেদের মধ্যে কত বিভিন্ন উপায়ে সাজানো যাইতে পারে তাহা নির্ণর করিতে হইবে।

ম্পষ্ট এইরপ বিভাস-সংখ্যা =  $^6P_6$  = 16 = 6.5.4.3.2.1 = 720.

এই 720টি বিশাদের প্রত্যেকটিতে B এবং C একদঙ্গে আছে, কিন্তু B-এর পরে C আছে। C-এর পরে B থাকিরাও উহারা একদঙ্গে থাকিতে পারে। অমুরূপ উপায়ে প্রমাণ করা যায় যে, এইরূপ বিশাস-সংখ্যাও 720.

.. প্রদত্ত 7টি অক্ষর ছারা বিভিন্ন বিভাগ গঠন করিলে, তাহাদের মধ্যে যতগুলিতে B এবং C পাশাপাশি থাকিবে তাহাদের সংখ্যা  $= 2 \times 720 = 1440$ .

উদা. 7. স্বরবর্ণগুলিকে সর্বদা একসঙ্গে রাখিয়া valedictory শব্দটির অক্ষরগুলি কত প্রকারে সাজানো যায়, সেই বিক্যাস-সংখ্যা নির্ণয় কর।

স্বরবর্ণগুলি সর্বদা একসঙ্গে থাকিবে বলিয়া, উহাদিগকে যে-কোন ক্রমে, ধরা যাক a, তারপরে e, তারপরে i এবং তারপরে o এই ক্রমে সাজাইয়া একটি বন্ধানী-ভূক্ত করিয়া রাখিলে, ৪টি বিভিন্ন বস্তু v, l, d, c, t, r, y, (aeio) পাওয়া যায়। ইহাদের সবগুলি লইয়া সন্ভাব্য সকল প্রকারে নিজেদের মধ্যে সাজাইলে যে সকল বিদ্যাস পাওয়া যায় তাহাদের সংখ্যা

$$= {}^{6}P_{8} = |8 = 8.7.6.5.4.3.2.1 = 40320.$$

এই বিভাসগুলিতে স্বরবর্ণগুলি একদঙ্গে a, e, i, o এই ক্রম আছে। কিন্তু উহারা যে-কোন ক্রমে থাকিয়াও একদঙ্গে থাকিতে পারে, এবং অন্তর্গপ যুক্তি-সাহায্যে প্রমাণ করা যায় যে, স্বরবর্ণসমূহের যে-কোন ক্রমের জন্ত মোট বিভাস-সংখ্যা হইবে 40320. এখন স্বরবর্ণগুলির সংখ্যা 4 বলিয়া উহাদিগকে 14 বা 24টি বিভিন্ন উপায়ে

বা ক্রমে নিজেদের মধ্যে সাজানো যাইতে পারে। অতএব, প্রতি ক্রমের জন্ত মোট বিস্তাস-সংখ্যা 40320 হয় বলিয়া,

নির্ণেয় বিভাদ-সংখ্যা = 40320 × 24 = 967680.

**দ্রপ্তর্যঃ** যদি বলা হইত যে স্বরবর্ণগুলি কেবলমাত্র পাশাপাশি থাকিবে না, অধিকন্ত তাহারা পরস্পারের সম্পর্কে কোন নির্দিষ্ট অবস্থানে থাকিবে, তাহা হইলে নির্দেশ্ব বিক্তাস-সংখ্যা হইত 40320.

উদা. 8. স্বরবর্ণগুলিকে অযুগ্ম-স্থানে বদাইয়া machine শব্দটির অক্ষরগুলিকে যত প্রকারে দাজানো যায়, দেই বিকাস-সংখ্যা নির্ণয় কর।

এস্থলে, 7টি বর্ণের মধ্যে 4টি ব্যক্তনবর্ণ এবং 3টি স্বর্ন্তরণ ; 7টি স্থানের মধ্যে স্বর্ন্তনিটিকে প্রথম, তৃতীয়, পঞ্চম ও সপ্তম এই চারিটি অযুগ্য-সংখ্যক স্থানের যে-কোন তিনটিকে ক্যাইতে হইবে। স্পষ্টই, স্বর্ন্ত তিনটিকে  $p_3$  বা  $4 \times 3 \times 2$ , বা 24টি বিভিন্ন উপায়ে অযুগ্য-সংখ্যক স্থানগুলিতে বসানো যাইতে পারে। এখন স্বর্ন্তনিটিকে যে-কোন এক উপায়ে সাঞ্জাইলে যে চারিটি স্থান অবশিষ্ট থাকে সেই চারিটি স্থানে ব্যঞ্জনবর্ণ চারিটিকে  $p_4$  বা  $p_4$  বা

নির্পের বিক্তাস-সংখ্যা = 24 × 24 = 576.

উদা. 9. তোমাকে ৪ রঙের (কালো, সাদা, লাল, হলদে, সবুজ, আসমানি, নীল এবং বেগুনী) ৪টি বল দেওয়া হইল। কালো এবং সাদা বল ছুইটি একসঙ্গে না থাকে এরপ যত বিশ্বাসে তাহাদের সাজানো যায়, সেই বিশ্বাস-সংখ্যা নির্ণয় কর।

আটটি বলকে একসঙ্গে লইয়া বিস্তাস গঠন করিলে মোট বিস্তাস-সংখ্যা হইবে  $^9P_a$  বা [8]. উদা. 6-এর অন্তর্প যুক্তি-সাহায্যে প্রমাণ করা যায় যে, এইসকল বিস্তাসের যেগুলিতে কালো এবং সাদা বল ছইটি একসঙ্গে থাকিবে তাহাদের সংখ্যা হইতেছে  $2 \times ^9P_a$  বা  $2 \times [7]$ .

অতএব, যে দকল বিস্তাদে উহারা একদকে থাকিবে না ভাহাদের দংখ্যা

 $-18-2\times17-8\times17-2\times17$ 

 $=(8-2)(7-6\times7.6.5.4.3.2.1=30240.$ 

উদা. 10. 7টি নির্দিষ্ট বস্তুর 3টি করিয়া লইয়া যতগুলি বিক্যাস পাওয়া যায়, তর্মাধ্যে যে বিক্যানগুলিতে একটি বস্তু (i) কথনও থাকে না, (ii) সর্বদা থাকে, তাহাদের সংখ্যা নির্ণয় কর।

 (i) নির্দিষ্ট বস্থাটকে পৃথক্ করিয়া রাখিয়া এবং ইহার জন্ম কোন স্থান না রাখিয়াই অবশিষ্ট (7-1) বা ছয়টি বল্প হইতে তিনটি করিয়া লইয়া বিশ্রাস গঠন করিলে যে বিন্যাসগুলি পা ৪য়া যাইবে, তাহাদের একটিতেও নির্দিষ্ট বস্তুটি থাকিবে না।

- : নির্পেয় সংখ্যা =  ${}^{6}p_{8} = 6 \times 5 \times 4 = 120$ .
- (ii) মা ৩টি বন্ধ হইতে 3টি করিয়া লইয়া বিক্তাস রচনা করিলে মোট বিক্তাস-সংখ্যা হইবে  $^7p_8$  বা  $7\times 6\times 5$  বা 210টি। এখন 120টি বিক্তাসে নির্দিষ্ট বস্তুটি থাকিবে তাছাদের সংখ্যা = 210-120=90.

উদা. 11. 1, 2, 3, 4, 5—এই পাঁচটি অঙ্কের 3টি করিয়া লইয়া মোট কয়টি যুগা-শংখ্যা পাওয়া যায়, ভাঙা নির্ণয় কর।

সংখ্যাগুলি মুগা বলিয়া, উহাদের শেষে অর্থাৎ এককের স্থানে 2 অথবা 4 থাকিবে।

2-কে এককের স্থানে রাখিয়া দিয়া অবশিষ্ট (5-1) বা 4টি অহ দারা অবশিষ্ট (3-1) বা 2টি স্থান পূর্ব করিয়া বিভিন্ন বিকাস রচনা করিলে, যেসকল সংখ্যা পাওয়া মাইবে তাহাদের শেষে 2 থাকিবে। অতএব, যেসকল সংখ্যার শেষে 2 থাকিবে তাহাদের সংখ্যা =  ${}^4P_8 = 4 \times 3 = 12$ .

अहेक्स्प, 4-तक धकरकत सारम दायितम द्यांचे 12ि मःथा पांच्या गाहेरत।

ं. যোট যুগ্ম-সংখ্যা 12 × 2 বা 24 ि।

#### প্রশ্নমালা 28

1. মান নির্ণয় কর:

- 2. ছয়টি শ্র-আসনবিশিষ্ট কোন রেলগাদীর কামরায় দুইজন লোক উঠিয়া কতপ্রকারে বনিতে পারে? [Calcutta, 1910]
- 3. Naresh শশতির অক্ষরশমূহের সরগুলি একযোগে লইয়া বিভাস-সংখ্যা নির্ণিয় কর। [Calcutta, 1918]
- 4. dogmatic শন্তির অকরসম্ভবে আর কঙপ্রকারে সাজানো যাইতে পারে ?
- 5. কলিকাতা হউতে দমদম বিমানবন্দর প্যস্ত ৪টি বাস-গাড়ী যাতায়াত করে। একজন লোক একটি বাস-গাড়ীতে দমদম যাইয়া অন্ত যে-কোন বাস-গাড়ীতে ফিরিয়া আসিলে, সে কতপ্রকারে কলিকাতা হউতে দমদম যাইয়া ফিরিয়া আসিতে পারে ?
- 6. কোন পিতা তাতার 4 জন প্রের জন 7টি পেশা ঠিক করিলেন। যদি তাহাদের যে-কোন ড'জনে একই পেশা গ্রহণ না করে, তাহ। হইলে তাহার। কতপ্রকারে পেশা গ্রহণ করিতে পারিবে-?

7. পূর্ব বেলওয়ের শিয়ালদহ বিভাগে কলিকাতা-রানাঘাট শাখায় 22টি স্টেশন আছে। এক স্টেশন হইতে অন্ত স্টেশনের টিকেট বিক্রয় করিতে হইলে তৃতীয় শ্রেণীর কতপ্রকারের টিকেটের প্রয়োজন হইবে ?

[ ইঞ্জিড ঃ প্রত্যেক স্টেশনে 21 রকম টিকেট থাকিবে।]

- 8. (a) যদি <sup>n</sup>P<sub>4</sub> = 12 × <sup>n</sup>P<sub>2</sub>, n-এর মান নির্ণয় কর।
  - (b) যদি <sup>20</sup>P<sub>r</sub>=13 × <sup>20</sup>P<sub>r-1</sub>, r-এর মান নির্ণয় কর।
  - (c) যদি <sup>n-1</sup> P<sub>4</sub>: <sup>n+1</sup>P<sub>4</sub>=1:3, n-এর মান নির্ণয় কর।
  - (d) যদি  $^{2n+1}P_{n-1}: ^{2n-1}P_n=3:5$ , n-এর মান নির্ণয় কর।
- (e) যদি  $^{m-2n}P_2=12$  এবং  $^{m+2n}P_2=132$ , m ও n-এর মান নির্ণয় কর।
- 9. 12খানা পতাকায় এক সময়ে একথানায় উপয় আয় একথানা কয়য়য় 4খানা তুলিয়া কতপ্রকারেয় বিভিয় সয়েত কয়া য়য়?
- 10. 10টি বিভিন্ন বস্তুর 4টি করিয়া লইয়া বিক্তাস গঠন করিলে, কভগুলি বিস্তাসে একটি নির্দিষ্ট বস্তু (i) সর্বদা থাকিবে, (ii) কখনও থাকিবে না ?
- 11. Bengal শক্টির অক্ষরগুলিকে কতপ্রকারে সাজানো যায়? এই বিভাসসমূহের মধ্যে কতগুলি B অক্ষর দিয়া আরম্ভ হইবে ? এই বিভাসসমূহের মধ্যে কতগুলি
  B অক্ষর দিয়া আরম্ভ হইবে এবং l অক্ষর দিয়া শেষ হইবে ? এই বিভাসসমূহের
  কতগুলিতে প্রথমে B অক্ষর থাকিবে না ? এই বিভাসসমূহের কতগুলি B অক্ষর দিয়া
  আরম্ভ হইবে কিন্তু l অক্ষর দিয়া শেষ হইবে না ?
- 12. m-সংখ্যক লোক এবং n-সংখ্যক বানর আছে; n-এর মান m-এর মান অপেকা বৃহত্তর। প্রত্যেকটি লোক কতপ্রকারে একটি বানরের মনিব হইতে পারে?
- 13. কোন মহাবিভালয়ের প্রথম বাধিক শ্রেণীতে 10টি ছাত্র। তাহাদের একজন মুসলমান, একজন খ্রীষ্টান এবং অবশিষ্ট সকলে হিন্দু। মুসলমান ও খ্রীষ্টান ছাত্র-দুইটিকে দুই প্রান্তে বসাইয়া ছাত্রদিগকে কতপ্রকারে এক সারিতে সাজানো খাইতে পারে?
- 14. n-দংখ্যক বিভিন্ন বস্তুর সবগুলি লইয়া বিশাস গঠন করিলে, কতগুলি বিশাসের মধ্যে 2টি নির্দিষ্ট বস্তু সর্বদা একত্র থাকিবে ?
- 15. Failure শব্দটির স্বরবর্ণ চারিটিকে (aiue) একতা রাখিয়া, অক্ষরসমূহ ছারা যুতগুলি শব্দ গঠন করা যায়, তাহা নির্ণয় কর। [Calcutta, 1940]
- 16. Daughter শক্টির স্বরবর্ণগুলিকে (aue) পৃথক্ না রাখিয়া যতগুলি শব্দ গঠন করা যায়, তাহা নির্ণয় কর। [C. U. 1946]

- 17. তোমাকে 7 প্রকারের 7টি মুদ্রা দেওয়া হইল; তর্মাধ্যে ছইটি তায়মুদ্রাও তায়মুদ্রাওলিকে তুমি সর্বদা অযুগ্য-স্থানে বলাইয়া মুদ্রাওলিকে কতপ্রকারে দাজাইতে পার?
- 18. তোমাকে পাঁচটি অক্ষর দেওয়া হইল, তন্মধ্যে তিনটি ব্যঞ্জনবর্ণ এবং 2টি অরবর্ণ। কতপ্রকারে তুমি অক্ষরগুলিকে সাজাইতে পার যাহাতে ব্যঞ্জনবর্ণগুলি পাশাপাশি না থাকে?
- 19. প্রখ্যাত দার্শনিক Brojen Sil-এর নামের অক্ষরসমূহ দারা কতগুলি শব্দ গঠন করা যায় যাহাদের আদিতে ব্যঞ্জনবর্ণ এবং অন্তে একটি স্বরবর্ণ থাকিবে ?
- 20. ভোমাকে নিম্নলিখিত পুস্তকগুলির একখানা করিয়া দেওয়া হইল: টড্
  হান্টারের বীজগণিত, হুম্রিন স্থিথের ত্রিকোণমিতি, রবীক্রনাথের গীতাঞ্চলি,
  বিভৃতিভৃষণের পথের পাঁচালি, কে. পি. বস্থর জ্যামিতি, সেক্সপীয়ারের হামলেট,
  ফাউলারের তর্কবিদ্যা, এবং কালিদানের রঘুবংশম্। গণিতের পুস্তকগুলি একত রাখিয়া
  এ পুস্তকগুলিকে তুমি কতপ্রকারে একটি তাকের উপর সাজাইতে পার ?
- 21. পূর্ববর্তী প্রশ্নে, সাহিত্যের পুন্তকগুলিও একত্র রাখিয়া কতপ্রকারে উহাদিগকে সাজাইতে পার ?
- 22. তুইখণ্ডের (volume) তিনখানা এবং তিনখণ্ডের তুইখানা গ্রন্থবলী আছে। বে-কোন গ্রন্থবলীর খণ্ডগুলিকে পৃথক্ না করিয়া ঐ 12খানা পুস্তককে একটি তাকের উপর কতপ্রকারে সাজানো যাইতে পারে ?
- 23. 7টি ব্যঞ্জনবর্ণের 2টি এবং 3টি স্বরবর্ণের 1টি লইয়া ক্তগুলি শব্দ গঠন ক্রা ষাইতে পারে যদি স্বরবর্ণটি সর্বদা ব্যঞ্জনবর্ণ ছুইটির মধ্যে বসে ? [Calcutta, 1922]
- 24. (a) 10খানি পরীক্ষার উত্তরপত্র কতপ্রকারে সাজানে। যায় যাহাতে সর্বোৎকৃষ্ট এবং সর্বনিকৃষ্ট উত্তরপত্র তুইখানি পাশাপাশি না থাকে ? [Calcutta, 1953]
- (b) প্রমাণ কর যে, সবগুলি একত লইয়া n-সংখ্যক বিভিন্ন বস্তুর বিভাসের মধ্যে  $(n-2)^n-1$  বিভাসে জুইটি নিদিষ্ট বস্তু একত থাকিবে না ?
- 25. পূর্ব রেল এয়ের কলিকাত। বনগাঁও শাথার হৃদয়পুর হইতে চাঁদপাড়া পর্যন্ত 12টি স্টেশন আছে। একজন উভিয়া, একজন মারাসী এবং অপর কয়জন বাদালী লইয়া মোট 12 জন প্রার্থীর মধ্য হইতে এই স্টেশনগুলির প্রত্যেকটিব জন্ত একজন টিকেট-বিক্রেতা নিযুক্ত করিতে হইবে। পর পর তৃইটি স্টেশনে উডিয়া ও মারাসী প্রার্থীকে নিয়োগ না করিয়া প্রার্থী দিগকে কতপ্রকারে নিয়োগ করা যাইতে পারে?
- 26. Youngster শক্ষাটির অক্ষরগুলি লইয়া কতগুলি বিশ্বাস গঠিত হইতে পারে, যাহাতে স্বরবর্ণগুলি পর পর থাকিবে না ?
- 27. তুইজন B. Sc. পরীক্ষার্থীকে যদি গাশাপাশি না বসানো হয়, তবে 12 জন B. Sc. ও 15 জন I. Sc. পরীক্ষার্থীকে এক সারিতে কতপ্রকারে বসানো যায় ?

- 28. 3টি করিরা লইয়। n-সংখ্যক বিভিন্ন বন্ধর বিক্তাস-সংখ্যা যাহাতে একটি নির্দিষ্ট বস্তু না থাকে এবং যাহাতে ঐ নির্দিষ্ট বস্তুটি সর্বদা থাকে, এই তৃই বিক্তাস-সংখ্যা যদি একই হয়, তবে n-এর মান নির্ণয় কর।
- 29. (a) 1, 2, 3, 4, 5, 6, 7 অভগুলি লাইয়া 100 এবং 1000-এর মধ্যবর্তী কতগুলি সংখ্যা গঠন করা যাইতে পারে ?
- (b) 1, 2, 3, 4, 5, 6, 7 অক্ষণ্ডলি লইয়া 3000 এবং 4000-এর মধ্যবর্তী কতগুলি সংখ্যা গঠন করা যাইতে পারে ?
- 30. 5, 6, 7, 8, 9 অঙ্কগুলি লইয়া 1000 অপেক্ষা বৃহত্তর কতগুলি সংখ্যা গঠন করা যাইতে পারে ?
- 31. 2, 3, 4, 0, 8, 9 খারা 10 এবং 1000-এর মধ্যব তী কতন্তলি সংখ্যা গঠন করা যায় ?
  - 32. 5, 2, 0, 4, 7 ছারা পাঁড ী দার্থক অলের কয়টি অযুগা-সংখ্যা গঠন করা যায় ?
- 33. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ইংলের প্রত্যেকটিকে একাধিকবার না গাইয়া 5 দ্বারা বিভালো 1000 অপেক। ক্ষতা কতওলি সংখ্যা গঠন করা যায়, তাংগদের সংখ্যা নির্ণয় কর। [Calcutta, 1942]
  - 34, क्षमां क्य (व,
    - (i)  ${}^{n}P_{r} = (n-r+1)^{n}P_{r-1}$ .
    - (ii)  ${}^{n}P_{n} = 1 + 1$ .  ${}^{1}P_{1} + 2$ .  ${}^{2}P_{2} + 3$ .  ${}^{3}P_{3} + \cdots + (n-1)$ .  ${}^{n-1}P_{n-1}$ .
    - (iii)  $2.6.10.14 \cdots n$ -সংখ্যক উৎপাদক প্যত্ত $-(n+1)(n+2)(n+3)\cdots n$ -সংখ্যক উৎপাদক প্যত্ত।
  - 35. যদি  ${}^nP_{r-1}$   $a = {}^nP_r/b = {}^nP_{r+1}/c$ , প্ৰমাণ কর যে,  $b^a = a(b+c).$

# (খ) সমবায়

8'3. n-সংখ্যক বিভিন্ন বস্তু তেইতে r-সংখ্যকতি করিয়া লাইয়া গাঁঠিত সমবায়সমূতের সংখ্যা নির্ণিয়। [To find the number of combinations of n different things taken r at a time (r < n).]

নির্ণেয় সমবাগ্র-শংপ্যা যেন " $C_r$  প্রতীক্ষারা স্কৃতিত। এই " $C_r$ -সংখ্যক সমবায়ের প্রত্যেকটির অন্তর্গত r-সংখ্যক বস্ত্রর সবগুলিকে লইয়া বিলাস রচনা করিলে, প্রত্যেকটি সমবায় হইতে  $[r^{-1}$ ংখ্যক বিলাস পাওয়া যাইবে; স্ত্রাং, " $C_r$ -সংখ্যক বিলাস পাওয়া যাইবে। ইহা স্পষ্ট যে n-সংখ্যক বিভিন্ন বস্ত্র

হট্তে গু-সংখ্যকটি কবিয় লট্ড গ্রিত **বিজ্ঞাস**-সম্ভের হ'খ্যা তে "(', ×,গু-সংখ্যার সমান।

$$\therefore \quad {^{\tau}C_r} \times \lfloor \underline{r} = {^{\prime\prime}P_r} = n(n-1)(n-2)\cdots(n-r+1) ; \qquad [\text{ a.s. } 8.2]$$

$$C_{\tau} = \frac{{}^{n}P_{\tau}}{{}^{p}} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{{}^{p}} \qquad \cdots \qquad (1)$$

আবার, (1)-এর দক্ষিণ প্রের এব এবং হর উভ্চকে দ্রু ছারা গুণ করিলে, দেখা যায়,

$${}^{n}C_{r} = \frac{n(n-1)(n-2)\cdots(n-r+1)\times n-r}{|\underline{r}\times|\underline{n-r}|}$$

$$= \frac{\lfloor \underline{n} \rfloor}{|\underline{r}|\underline{n-r}|} \cdots \cdots (2)$$

সমবার সংখ্য প্রতিগণ শিষ সংখ্যার প্রাশ করিছে ইইলে, স্থা (1) প্রয়োগ কবিতে ইয়া, আর বাছগণিতায় রাশিষ্ণার প্রাশ করিছে ইইলে, কর (৪) প্রয়োগ করাই স্থিধিজনক।

বিকল প্রামাণ (বিদ্যাস-সংখ্যা মিণ্ট্রের সূত্রের সাহায্য-ব্যভিরেকে)  $\alpha$   $\alpha$ -সংখ্যক বিভিন্ন বস্ত হতাত উহাদের  $\alpha$ -সংখ্যক কিন্ত্রে গ্রহন প্রমাণ গ্রহণ প্রমাণ কিন্তু সমবান্য সংখ্যাটিকে  $\alpha$ -দে পাব প্রমাণ কিন্তু সাহায় কিন্তু করা হতাব। যে সকল সমবানে কোন একটি বিশেষ অক্ষর,  $\alpha$ - পাবে, ভাহাদের প্রমাণ কিন্তু বালে আবর (n-1) সংখ্যক বিজ্ঞাল কিন্তু বালে আবর (n-1) সংখ্যক কিন্তু পাবে । এই  $\alpha$ -কে মালানা কিন্তুন বালিকে  $\alpha$ -সংখ্যক বজার (n-1) সংখ্যক বিভিন্ন বস্তুত্র  $\alpha$ - মান্যান কিন্তুন বস্তুত্র স্থান সংখ্যক কিন্তুন কিন্তুন স্বামাণ কিন্তুন স্থান কিন্তুন বস্তুত্র স্থান সংখ্যক কিন্তুন কিন্তুন স্থান কিন্তুন কিন্তুন স্থান স্থান স্থান কিন্তুন কিন্তুন স্থান স্থান স্থান স্থান কিন্তুন কিন্তুন স্থান স্থান স্থান স্থান কিন্তুন স্থান স্থ

্তাকপে, যে সকল সম্বাহ্য  $a_0$  মঞ্চনটি বহুমান থাকে, ভাতাদের সংখ্যাও  $n^{-1}C_{p-1}$ , যেওলৈতে  $a_0$  বহুমান পাকে, ভাতাদের সংখ্যাও  $n^{-1}C_{p-1}$ , উভাগ্নি; প্রভাগনত  $a_0$  বহুমান পাকে, ভাতাদের সংখ্যাও  $n^{-1}C_{p-1}$ , উভাগ্নি; প্রভাগ মঞ্জরত  $n^{-1}C_{p-1}$ -সংখ্যাক সম্বাহ্য বহুমান পাকিবে এবং কোন পাকিবে মান কোনার কারত ৷ ত ভূবে, n সংখ্যাক বিভিন্ন মঞ্জরত তিও অভাগনত n-সংখ্যাকতি কারত লভ্যা গতিও n-সংখ্যাক সম্বাহ্যর সম্পর্জনিক জিলিয়া কোনার, নিজ্ঞা মঞ্চলতে, নিজ মানার করিয়া মানের স্বাহ্য ব্যাব্য মঞ্চলতে সংখ্যাক অম্বরর প্রভাগনি সংখ্যাক করিয়া মানের করিয়া মানের স্বাহ্য মঞ্চলত সম্বাহ্য মঞ্চলতে প্রভাগন সংখ্যাক সম্বাহ্য মঞ্চলতে সংখ্যাক সম্বাহ্য মঞ্চলতে সংখ্যাক সংখ্যাক করিয়া মানের সংখ্যাক সংখ্যাক সম্বাহ্য মঞ্চলতে প্রভাগনিক মোটি সংখ্যা হাইবে n স্বাহ্য মঞ্চলত স

আবার,  ${}^nC_r$ -সংখ্যক সমবায়ের প্রত্যেকটি r-সংখ্যক অক্ষর লইয়া গঠিত বলিয়া, মোট অক্ষর-সংখ্যা হইবে  $r \times {}^nC_r$ .

এই স্ত্রে n ও r-কে প্রথমে ষথাক্রমে n-1 ও r-1-এ, তারপর যথাক্রমে n-2 ও r-2-এ ইত্যাদিতে পরিবর্তন করিলে দেখা যায় যে,

এবং জান্তই n-r+1  $C_1 = \frac{n-r+1}{1}$ .

এখন ভন্তজনে গুণ করিয়া এবং সমতা-চিহ্নযুক্ত গুণফল ছুইটি হইতে উহাদের সাধারণ গুণনীয়কগুলি অপসারণ করিলে,

$${}^{n}C_{r} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{r(r-1)(r-2)\cdots2.1}$$

$$= \frac{n(n-1)(n-2)\cdots(n-r+1)}{\lfloor r \rfloor}.$$

অনুসিদ্ধান্ত।  ${}^nC_1 = n$ ;  ${}^nC_n = 1$ ;  ${}^nP_r = \lfloor r \times {}^nC_r$ .

- 8.4. n-সংখ্যক বিভিন্ন বস্ত হইতে উহাদের r-সংখ্যকতি করিয়া লাইয়া গঠিত সম্বায়সমূহের বেগুলিতে (ক) p-সংখ্যক নিদিষ্ট বস্ত সর্বদা বর্তমান থাকে, ভাহাদের সংখ্যা নির্ভিন্ন; এবং (খ) বেগুলিতে p-সংখ্যক নিদিষ্ট বস্ত কখনই থাকে না ভাহাদের সংখ্যা নির্ভিম। [ To find the number of combinations of n things, taken r at a time, in which (i) p particular things will always occur, (ii) p particular things never occur.]
- (ক) n-শংখ্যক বস্তু হইতে নির্দিষ্ট p-শংখ্যক বস্তু পৃথক্ করিয়া রাখিয়া অবশিষ্ট (n-p)-শংখ্যক বস্তু হইতে উহাদের (r-p)-শংখ্যকটি করিয়া লইয়া n-p $C_{r-p}$ -শংখ্যক

সমবায় গঠন করা যায়। ইহাদের প্রত্যেকটির সহিত ঐ পৃথক্ করিয়া রাখা p-সংখ্যক বস্তু যুক্ত করা যায়। স্থতরাং যে সকল সমবায়ে ঐ p-সংখ্যক বস্তু সর্বদা বর্তমান থাকে তাহাদের সংখ্যা  $^{n-p}C_{r-p}$ .

- ∴ নির্ণেয় সমবায়-সংখ্যা = \*\*- PC\*-p.
- খে) নির্দিষ্ট p-সংখ্যক বস্তু কোন সমবায়েই থাকিবে না বলিয়া, n-সংখ্যক বস্তু হইতে নির্দিষ্ট p-সংখ্যক বস্তু পৃথক করিয়া রাখিয়া অবশিষ্ট (n-p)-সংখ্যক বস্তু হইতে r-সংখ্যকটি করিয়া লইরা সমবায় গঠন করিলে, এই সকল সমবায়ের কোনটিতেই নির্দিষ্ট p-সংখ্যক বস্তু কথনই থাকিবে না।
  - .. নির্ণের সমবার-সংখ্যা = "-PC.

# 8'5. পূৰক সমৰায় (Complementary Combinations) :

n-সংখ্যক বিভিন্ন বস্তু হইতে উহাদের r-সংখ্যকটি করিয়া লইয়া গঠিত সমবায়-সংখ্যা, n-সংখ্যক বিভিন্ন বস্তু হইতে (n – r)-সংখ্যকটি করিয়া লইয়া গঠিত সমবায়-সংখ্যার সমান।

আমরা জানি, 
$${}^{n}O_{r} = \frac{\lfloor n \rfloor}{\lfloor r \rfloor n - r}$$
 ... (1)

এই স্বত্তে দ্এর স্থানে % - দ বসাইলে,

$${}^{n}C_{n-r} = \frac{\lfloor n \rfloor}{\lfloor n-r \rfloor n - (n-r)} = \frac{\lfloor n \rfloor}{\lfloor n-r \rfloor r} \qquad \cdots \qquad (2)$$

. . (1) এবং (2) হইতে, °C<sub>p</sub> = °C<sub>я−p</sub>.

বিকল্প পদ্ধতিঃ n-সংখ্যক বিভিন্ন বস্তু হুইতে যতবারই n-সংখ্যক বস্তু নির্বাচন করা যাক না কেন, ততবারই (n-r)-সংখ্যক বস্তু পড়িয়া থাকে। অতএব, n-সংখ্যক বিভিন্ন বস্তু হুইতে যত বিভিন্ন উপায়ে n-সংখ্যক বস্তু নির্বাচন করা যায়, ঠিক তত বিভিন্ন উপায়েই (n-r)-সংখ্যক বস্তুকে নির্বাচন করা যায়;

অर्थार, "C"="C"-"

এইরূপ সমবায়কে পূরক সমবায় বলে।

অনুসিন্ধান্ত।  $^nC_x=^nC_y$  হইলে, স্পষ্টই x=y; আবার x+y=nও হইতে পারে; কারণ,  $^nC_x=^nC_{n-x}$ ; স্থতরাং, y=n-x, বা, x+y=n.

$$C_x = {}^nC_y$$
 ইইলে,  $x = y$ , অথবা,  $x + y = n$ .

#### 8.6. 원제이 주경(전, "C,+"C,-1="1C,.

অর্থাং n-সংখ্যক বিভিন্ন বস্ত হইতে  $\gamma$ -সংখ্যকটি করিয়া লইয়া গঠিত  ${}^nC_r$ -সংখ্যক সমবায় এবং ঐ n-সংখ্যক বস্ত হছতে (r-1)-সংখ্যকটি করিয়া লইয়া গঠিত  ${}^nC_{r-1}$ -সংখ্যক সমবায়ের সমস্তি (n+1)-সংখ্যক বিভিন্ন বস্ত হইতে  $\gamma$ -সংখ্যকটি করিয়া লইয়া গঠিত সমবায়েন সমস্তি n+1-এর শ্রমান।

$${}^{n}C_{r} + {}^{n}C_{r-1} = \frac{\lfloor n \rfloor}{\lfloor r - r \rfloor - r} + \frac{\lfloor n \rfloor}{\lfloor r - 1 \rfloor - r + 1}$$

$$= \frac{\lfloor n \rfloor}{r + r - 1 - r} + \frac{\lfloor n \rfloor}{r - 1 - r - r + 1} + \frac{\lfloor n \rfloor}{\lfloor n - r \rfloor}$$

$$= \frac{\lfloor n \rfloor}{\lfloor r - 1 \rfloor - r} \times \frac{n - r + 1 + r}{r(n - r + 1)}$$

$$= \frac{\lfloor n \rfloor}{\lfloor r - 1 \rfloor - r + 1} \times \frac{n - r + 1 + r}{r(n - r + 1)}$$

$$= \frac{(n + 1 \rfloor n)}{\lfloor r - 1 \rfloor - r + 1} \times \frac{n + 1}{r - r + 1} C_{r}.$$

বিক্তা পাছতি ঃ (১৮) সংখ্যক বিভিন্ন বস্ত ২৩)তে দুসংখ্যকটি কৃত্যি কাইয়া গঠিত মোট <sup>পাৰ্য</sup>েন্দ মাকু সম্পাহকে ভিন্নবিশিত মুহাভাগে ভাগে কবিয় তাগে যায় ঃ

কে। এক । দেব । সংসাধ বঙ্গ কেন কেন্টি ভিনিষ্ঠ বিষ্ঠা বিভিন্ন সংগ্ৰেছ । অবং বি, জি নিশিষ্ট বঙ্গ বৃদ্ধিত সম্বাধ্যমন্ত।

এপন, নিনিষ্ট লখটি সংক্ৰিত সমল্যসমূহত সংস্কৃতি, নিনিষ্ট লখটিকে পুণক করিয়া বাবিবেশ যে ১ সংগাক বস্তু অল'শহ আকে ১৮টা সকল লখ্য চটাতে (৮−1)-সংখ্যক্টি ক্রিয়ে লটানা গ্রিতি সমল্যসমূহত সংগ্রে সম্মাত ক্রিড

শাবারে, নিনিত বস্তু-বানিত সম্বায়সমূহের সাথা, নিনিত্ত বস্থাকৈ পৃথক্ করিয়া রাখিলে যে দ্-সাধাক বস্তু শ্বাকে প্রত্যাক দেই সকল বস্তু হউতে দু-সাধাক্তি ক্রিয়া হউও, গঠিত সম্বায়সমূহের সাধারে সমান ; আত্তব্যাক্তি ক্রিয়া হউও,

Called 1985-18 5 2 2 1 1 1 2 1 21 12 1 Cr.

$$C_r + {}^{n}C_{r-1} = {}^{n+1}C_r.$$

341. 1. 12 Ca, 10 Cu ser 20 Ca2-515 2 a facts est 1

$$^{12}C_{8} = ^{12}C_{12-8} = ^{12}C_{4} = \frac{12 \times 11 \times 10 \times 9}{1 \times 2 \times 3 \times 1} = 11 \times 5 \times 9 = 495.$$

$$^{15}C_{0} = ^{15}C_{15-9} = ^{15}C_{0} = \frac{15 \times 14 \times 13 \times 12 \times 11 \times 10}{1 \times 2 \times 3 \times 4 \times 5 \times 6} = 7 \times 13 \times 11 \times 5 = 5005.$$

$$^{25}C_{22} = ^{25}C_{28-22} = ^{25}C_{8} = \frac{25 \times 24 \times 23}{1 \times 2 \times 3} = 2800.$$

341. 2. "C14 "C16 \$27", "C24 54: 52 Cn-45 210 40 2277

$$C_{28} = {}^{30}C_{28} = {}^{30}C_{2} = \frac{30 \times 29}{1 \times 2} = 435 ;$$

$$d_{\text{eff}} = \frac{32 \times 31}{1 \times 2} = 496.$$

खेका, 8. श्रामाण कर (य,

$$^{4n}C_{2n}: {}^{2n}C_{n} \cdots \{1,3.5...(4n-1)\} = \{1,3.5...(2n-1)\}^{2}.$$

$$\frac{4^{n}C_{nn}}{2n}: \frac{4^{n}C_{n}}{2n} = \frac{4^{n}}{2n} \times \frac{n^{n}}{2n} + \frac{4^{n}}{2n} \cdot \left(\frac{n^{n}}{2n}\right)^{2}.$$

$$\therefore \frac{1}{126} = \{1,3.5... (1n-1)\} \le 2^{9n}. \tag{1}$$

where,  $\{2n-1\}\times \{2,4,6,3n\}$ = $\{1,3,5,...(2n-1)\} \cdot 2^n \{1,2,3,...n\}$ .

$$\frac{12^n}{1^n} = \{1, 3.5...(2n-1)\} \times 2^n ;$$

$$2.5 < (1.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.65) + (2.6$$

উদা. 4. কোন সভালের ছাম্ট 16টি কের নির প্রথানি গাটে। 20 জন কার্থীর মানা 16 জন কর্ম কর্মকার ভিত্তন কর যায় সু একজন ভিটিন্ন কারী ক্তবার নির্বাচিত হইতে পারে ? এস্থলে 20 জন প্রার্থী ইউতে 16 জন করিয়া নির্বাচন করিয়া বিভিন্ন দল গঠন করিতে ইইবে। অভএব, নির্বেগ্ন দল-সংখ্যা

$$= {}^{20}C_{16} = {}^{20}C_4 = \frac{20 \times 19 \times 18 \times 17}{4 \times 3 \times 2 \times 1}$$
$$= 5 \times 19 \times 3 \times 17 = 4845.$$

এখন, নির্ধান কবিতে চইবে একজন নিশিষ্ট প্রার্থীকে কতবার নির্ধাচন করা যাইতে পারে। নিনিষ্ট পার্থীটিকে বেবার্থ নির্বাচন করা হুইবে, সেইবার্থী বার্কা 15 জনকে অবশিষ্ট 19 জন প্রথী হুইতে নির্বাচন করেতে হুইবে।

অ তএব, যত বিভিন্ন উপত্যে 19 জন বাজি ২ইতে 15 জন ব্যক্তিকে নির্বাচন করা যায়, ঠিক ততপ্রেই নিদিয় এজিউকেও নির্বাচন করা যায়।

ে কোন নিদিপ্ত প্রাী যত্ব র নিধা টত হর ভাহার সংখ্যা

$$= {}^{10}C_{16} = {}^{10}C_4 = {}^{19 \times 18 \times 17 \times 16} \atop 4 \times 3 \times 2 \times 1}$$
  
= 19 \times 3 \times 17 \times 4 = 3876.

উদা. 5. কোন পিতে উত্তরে ৮ জন সভানের ও জন ক্রিয়া স্থানকে লইয়া চিচিদ্যাগানার যান। কিন্তু ব্রুট ও জন স্থানতে একবারের বেশী না প্রাথে, উত্তিকে কতবার চিচ্যাগানায় যাহতে হত্তে প্রতক্তি স্থান বতবার চিচ্যাগানায় ঘাইবে?

া জন ক্রিয় গাস্তি পুৰ বিজ্ঞান প্রতাত দিলের স্থিতি পিতার চিন্দ্র বিলাম মাজতে হয় বলিবল্প, দ জন পুৰ কলাল মধুবা ও জন কলিবল লাজ্যা মত বিন্তিয়া দল পুঠন করে মাল, পি ভার তিত্বার চিল্লিক মাজতে মালতে হতাবে। মত্বার মতবার চিল্লিক মাজতে হন তে হলার স

$$- {}^{\circ}C_{\circ} = \frac{8 \times 7 \times 6}{8 \times 2 \times 1} = 56.$$

্ষেপা গোল, পুর কলাল ২০১০ চনটি বিভিন্ন দল গঠন করা ধায়। এই 56টি দলের মধ্যে পুর কলার কোন নিনিপ্ত ব্রজন ধভা দলে থাকেবে পুর কলার প্রভাবক ভিতবার কর্মা ৮ ৮০ খানাট খালবে। অভবল, খালোকে ৪ জনের বার্কাও জন ক্রিয়া গ্র্যা খালাক ৪ ব জনের ২০৮। ধাত্রা লালাক ৪ ব জনের ২০৮। ধাত্রা লালাক ৪ ব জনের ২০৮। ধাত্রা লালাক ৪ ব

ं. পुर कह द शा शास्त्र '5 वेशाय'ाय महत्त्व याही ह देव हाहात स्रशाः

$$= {}^{7}C_{2} = \frac{7 \times 6}{2 \times 1} = 21.$$

উলা 6. একটি হাদশভূজবিশিষ্ট বছভূজের কৌণিক বিন্ধুওলি মৃক্ত ক্রিয়া যতগুলি বিভিন্ন বিভূজ পালুয়া যাহ, ত হাদের সংখ্যা নির্দিন করে। বছভূজটির কর্ণসংখ্যাও নির্দিন করে।

ছাদশভূপবিশিষ্ট বহুভুজতীর 19ট কৌপিক বিনু আছে। এই 19ট বিশ্ব 36 36 করিছ সংস্কৃত কিবলৈ পতিবাহেই কেটী বিশ্ব প্রতিষ্ঠ সংস্কৃত হৈছে অত্বৰ, 196 বিশ্ব হত এই বিশ্ব জাত বি ভার উপাতে জিলাচন কৰা যতে, মান বিশ্ব শাসাল ভতবে ভতগুলি।

## ় নির্ণের ত্রিভূজ-সংখ্যা

$$C_3 = \frac{12 \times 11 \times 10}{3 - 2 \times 1} = 2 \times 11 \times 10 - 220.$$

साराज, 198 ,कोई के उन्हें 2ी के वा जायुक के गाल, विकित्यां देशी सदेश दक्का भाष्ट्रम याष्ट्रिया।

$$\frac{12 \times 11}{2 \times 1} = 6 \times 11 \times 66$$

ধ্যন, এজনা হত্তি ,কালক বিদ্যাস করেছে, বিচ্ছানির বাচ্চাস পারাথ নাস্থিতি, চদাবিজ্ঞান দিনী সবল ,বংগর সংখ্যাবিচ্ছাই বাচ্চাস করে। ক্ষাইটা করিছে। ক্ষাইটা করিছে। বিচ্ছাইটা করিছে। বিশ্বনাম করিছে।

mess, facility ad 2021 - 06-12 51.

- উদ্ধান 7. () কোন সম্প্রত ছাল্লটি বিন্ আছে। তেছেবের ১টি বা টা ত অন্ত ক্রান তি টি বিন্তু হবে কাল্ডল ক্রান তি টি বিন্তু ক্রম্পত ক্রমান হব স্থান্ত। বি 19টি বিন্তু হবে কাণ্ডল স্বল ক্রম পাননা নাইছে পারে স ()) বি 19টি বিন্তু হার কাণ্ডাল বিভূম তাইপ্র হুইতে পারো ?
- - ( (accepted ) 39/2 2001 66-10+1. 57.
- (ii) এক সরত বেলার অবস্থিত ১৫০ বেলার কোন টেট সিন্ধ সামে গে বিশ্ব উৎপর হর। এখনে 125 বিশ্ব কোন 15 সিন্ধ কেন 15 সিন্ধ কেন 125 বিশ্ব কোন 15 সিন্ধ কেন স্বলার বিশ্ব করে বিশ্ব অবস্থিত হওলে, বেলার বিশ্ব হওছে 120 কিছু 15 বিশ্ব কেন স্বলার অবস্থিত হওলের,

উহাদের 3টি 3টি দারা কোন ত্রিভুজই গঠিত হয় না। উক্ত  $^{12}C_3$ -সংখ্যক ত্রিভুজের মধ্যে এই 5টি বিন্দুর 3টি 3টি দারা গঠিত  $^5C_3$ -সংখ্যক ত্রিভুজ সংখ্যাও ধরা হইয়াছে;

∴ নির্ণেয় ত্রিভুজ-সংখ্যা

$$={}^{2}C_{3}-{}^{5}C_{3}=\frac{12\times11\times10}{3\times2\times1}-\frac{5\times4\times3}{3\times2\times1}=220-10=210.$$

উদা. 8. 10টি বিভিন্ন ব্যঞ্জনবর্ণ এবং 4টি বিভিন্ন স্বরবর্ণের মধ্যে ৪টি ব্যঞ্জনবর্ণ এবং 2টি স্বরবর্ণ একযোগে লইয়া কতগুলি শব্দ গঠন করা যাইতে পারে ?

10টি ব্যঞ্জনবর্ণ হইতে 3টি 3টি করিয়া মোট  ${}^{10}C_3$ -সংখ্যক সমবায় গঠন করা যায়।
4টি স্বরবর্ণ হইতে 2টি 2টি করিয়া লইয়া মোট  ${}^{4}C_2$ -সংখ্যক সমবায় গঠন করা
যায়।

এখন, ব্যঞ্জনবর্ণসমূহ দারা গঠিত সমবায়সমূহের প্রত্যেকটির সহিত স্বরবর্ণসমূহ দারা গঠিত সমবায়সমূহের প্রত্যেকটি সংযুক্ত করিয়া, 3টি করিয়া ব্যঞ্জনবর্ণ এবং 2টি করিয়া স্বরবর্ণ-সংব্লিত  $^{10}C_3 \times ^4C_2$ -সংখ্যক সমবায় পাওয়া যাইবে।

আবার, এই দক্ত দমবায়ের প্রত্যেকটিতে যে 5টি করিয়া অক্ষর আছে, তাহাদের সবগুলিকে লইয়া বিভাস রচনা করিলে, প্রত্যেক দমবায় হইতে [5-সংখ্যক শব্দ পাওয়া যায়।

ে নির্পেয় শাল-দংখ্যা = 
$${}^{10}C_3 \times {}^4C_2 \times \lfloor 5$$

$$= \frac{10 \times 9 \times 8}{3 \times 2 \times 1} \times \frac{4 \times 3}{2 \times 1} \times \lfloor 5$$

$$= 120 \times 6 \times \lfloor 5 \rfloor = 720 \times 120 = 86400.$$

উদা. 9. 5টি করিয়া ছই ভাগে বিভক্ত 10টি প্রশ্নের মধ্যে কোন পরীক্ষার্থীকে 6টি প্রশ্নের উত্তর দিতে হইবে। কোন ভাগ হইতেই 4টির অধিক প্রশ্নের উত্তর দিতে পারিবে না। কতপ্রকারে দে প্রশ্ন নির্বাচন করিতে পারে ? [C. U. 1932]

প্রদত্ত শর্ত হইতে, স্পষ্টই পরীক্ষার্থী নিম্নলিখিত বিভিন্ন উপায়ে প্রশ্নগুলি নির্বাচন করিতে পারে:

- (i) প্রথম বিভাগের 5টি প্রশ্ন হইতে ষে-কোন 4টি, দ্বিতীয় বিভাগের 5টি প্রশ্ন হইতে ষে-কোন 2টি;
- (ii) প্রথম বিভাগের 5টি প্রশ্ন হইতে যে-কোন 3টি, দ্বিভীয় বিভাগের 5টি প্রশ্ন হইতে যে-কোন 3টি;
- (iii) প্রথম বিভাগের 5টি প্রশ্ন হইতে যে-কোন 2টি, দিতীয় বিভাগের 5টি প্রশ্ন হইতে যে-কোন 4টি।
  - (i) প্রথম বিভাগের 5টি হইতে 4টি, °C₄-সংখ্যক বিভিন্ন উপায়ে এবং দিতীয়

বিভাগের 5টি হইতে 2টি,  ${}^5C_2$ -সংখ্যক বিভিন্ন উপায়ে নির্বাচন করা যায়। এখন প্রথম বিভাগের প্রশ্ন-নির্বাচনের প্রত্যেক উপায়ের সহিত দ্বিতীয় বিভাগের প্রশ্ন-নির্বাচনের প্রত্যেকটি উপায় সংযুক্ত করা যায় বলিয়া, ছুই বিভাগ হইতে (i)-বর্ণিত উপায়ে প্রশ্ন-নির্বাচন-সংখ্যা =  ${}^5C_4 \times {}^5C_2$ ,

এইরপে (ii)-এ বর্ণিত উপায়ে প্রশ্ন-নির্বাচন-সংখ্যা =  ${}^5C_3 \times {}^5C_3$ , এবং (iii)-এ বর্ণিত উপায়ে প্রশ্ন-নির্বাচন-সংখ্যা =  ${}^5C_3 \times {}^5C_4$ .

.. যে সকল বিভিন্ন উপায়ে প্রশ্নগুলি ছুইটি বিভাগ হুইতে নির্বাচিত হুইতে পারে তাহাদের সংখ্যা

$$= {}^{5}C_{4} \times {}^{5}C_{3} + {}^{5}C_{3} \times {}^{5}C_{3} + {}^{5}C_{2} \times {}^{5}C_{4}$$

$$= {}^{5}C_{1} \times {}^{5}C_{2} + {}^{5}C_{2} \times {}^{5}C_{2} + {}^{5}C_{3} \times {}^{5}C_{1}$$

$$= 5 \times \frac{5 \times 4}{2 \times 1} + \frac{5 \times 4}{2 \times 1} \times \frac{5 \times 4}{2 \times 1} + \frac{5 \times 4}{2 \times 1} \times 5$$

$$= 5 \times 10 + 10 \times 10 + 10 \times 5 = 50 + 100 + 50 = 200.$$

উলা. 10. Metaphysics শক্ষটির অক্ষরগুলি হইতে একযোগে চটি করিয়া লইয়া যতগুলি শক্ষ গঠন করা যায়, তন্মধ্যে কতগুলিতে 't' সর্বদা থাকিবে ?

এখানে 11টি অক্ষরের 5টি 5টি লইয়া শব্দ গঠন করিলে, কতকগুলির মধ্যে ৮ সর্বদা থাকিবে, তাহাই নির্ণয় করিতে ইইবে।

'' সর্বদা থাকিবে; অতএব, t বাদ দিয়া যে 10টি অক্ষর থাকে, তাহাদের মধ্য হইতে 4টি কবিয়া লইয়া যেসব সমবায় ( $^{10}C_4$ ) গঠন করা যায়, তাহার প্রত্যেকের সহিত t যুক্ত করিয়া প্রত্যেকটি সমবায় হইতে বিশ্বাস-সংখ্যা লইলেই মোট বিশ্বাস-সংখ্যা পাওয়া যাইবে, প্রত্যেকটি সমবায়ে 5টি অক্ষর থাকিবে বলিয়া, উহা হইতে 6- সংখ্যক বিশ্বাস পাওয়া যাইবে।

 $\therefore$  নির্ণেয় বিক্যাস-সংখ্যা =  ${}^{10}O_4 \times \underline{|b|}$  =  $\frac{10.9.8.7}{1.2.3.4} \times 120 = 25200$ .

্ সমবায়-স্থত্র-ব্যতিরেকে মাত্র বিক্যাস-স্থ্র-সাহায্যে সমাধানের ভার শিক্ষাথিগণের উপর অর্গিত হইল।]

উদা. 11. 21টি শ্বেতবর্ণের এবং 19টি ক্বফবর্ণের বলকে এক সারিতে এরপভাবে সাজাইতে হইবে, যেন এটি ক্বফবর্ণের বল পাশাপাশি না বসে। কতপ্রকারে এরপে সাজানো যাইতে পারে ?

খেতবর্ণের বলগুলিকে W দারা স্থচিত করিলে, কৃষ্ণবর্ণের বলগুলি যাহাতে

পাশাপাশি না বদে তাহার জন্ম তাহাদিগকে নিয়লিখিতরপে '×'-চিহ্নিত স্থানে বদাইতে হইবে

$$\times W \times W \times W \times W \times \cdots \times W \times W \times 1$$

এখন খেতবর্ণ বলের সংখ্যা 21 বলিয়া '×'-চিহ্নের সংখ্যা অবশুই 22 হইবে। এই 22টি স্থানের মধ্যে যে-কোন 19টি স্থান নির্বাচন করিয়া সেই সকল স্থানে কুফ্বর্ণ বল বসাইলে উহার। কথনই পাশাপাশি বলিবে না।

#### · . নির্ণেয় বিভিন্ন উপায়-সংখ্যা

$$=$$
  $^{22}C_{19} = ^{22}C_{8} = \frac{22 \times 21 \times 20}{3 \times 2 \times 1} = 1540.$ 

উদা. 12. একথানি নৌকার ৪ জন মাঝির 3 জন একপার্থে আর 2 জন অক্সপার্থে দাঁড় টানিতে পারে। মাঝিদিগকে মোট কতপ্রকারে সাজাইতে পার। যায় ?

মনে কর, মাঝিদের নাম A, B, C, D, E, F, G ও H এবং A, B, C মাত্র একপার্থে এবং D, E অনুপার্থে কাজ করিতে পারে, অতএব, তাহাদিগকে নিয়োক্ত প্রকারে সাঞ্চানো যায়:—

$$egin{array}{c|c} A & D \\ B & E \\ C & \end{array}$$

মেহেছু মানিদের 4 জন করিরা একপার্থে থাকিবে, অভএব, অবন্টি 3 জনের 1 জনকে A,B,C-এব পার্থে ববং অপর 2 জনকে D,E-এর পার্থে রাথা যায় - ইহা স্পান্ট যে, ইহা ভিন একারে করা যায়, কেননা অবশিষ্ট 3 জনের যে-কোন 1 জনকে A,B,C-এর পার্থে রাথা যায়।

মাকিদের টে তিনপ্রকারের অবস্থানের একটির আলোচনা করা যাক, যাহাতে রু, B, C-এর পার্যে দ্রু-কে রাখা হটল:

 $A \mid D$ 

B - E

 $C \mid G$ 

 $F \mid H$ 

একণে A, B, C, Fেক ভাষাদের মধ্যে  $\lfloor 4$  প্রকারে সাজামো যায়, এইরূপে অপর গাখের D, E, G, Hেকেও ভাষাদের মধ্যে  $\lfloor 4$  প্রকারে সাজানো যায়।

অতএব, বাম পঞ্চের প্রত্যেক প্রকারের সহিত দৃক্ষিণ পক্ষের প্রত্যেক প্রকার

সংযুক্ত করা যার বলিয়া, এক্ষেত্রে মোট [4 × | 4 প্রকারে মাঝিদের সাজানো যায়। অপর ছই ক্ষেত্রের ( অর্থাং ৫ ও H-এর এক এক ভনকে A, B, C-এর পাথে রাথিয়া ) প্রত্যেক ক্ষেত্রে মাঝিদিগকে মোট [4 × | 4 প্রকারে সাজানো যায়।

ম্বতরাং, মোটের উপর  $3 \times [4 \times | 4 = 3 \times 24 \times 24 = 1728$  প্রকারে মাঝিদিগকে শাজানো যায়।

উদা. 13. গ-সংখ্যক বিভিন্ন বস্তব একযোগে ৮-সংখ্যক বস্তু লইখা বিজ্ঞাস-সংখ্যার কভগুলির মধ্যে ৪টি নিনিষ্ট বস্তু স্বদা থাকিবে ২

প্রথমে n-শাধ্যক নিভিন্ন বাস্ত কাতে উতাদের ক্সংখ্যকটি করিয়া লইয়া গঠিত বিভিন্ন সমবায়ে যে সকল সমবাধে নির্দিষ্ট বস্তু-তিনটি স্বলাই থাকিবে, ভাতাদের সংখ্যা নির্ণিয় করা যাক।

নিদিষ্ট বশ্ব-ভিনিটকে পৃথক করিয়া রাখিয়া অবশিষ্ট (n-3)-২ংখ্যক বস্তু ইইডে সন্থাবা সকল প্রকাবে (r-3)-২ংখ্যক বস্তু লইয়া  $^{n-1}C_{r-3}$ -২ংখ্যক সমবায় গঠন করা শায়, দেখা যায় যে, পৃথক করিয়া রাখা বস্ত্ব-ভিনিটকে এই দক্ষল সমবায়ের প্রত্যেকটির সাহত সংযুক্ত ক্রিলে প্রভাক সমবাবের বস্ত্ব-২ংখ্যাও হয় r এবং এই r-সংখ্যাক বস্তুর মধ্যে। নিদিষ্ট বস্ত্ব-ভিনিট সবদাই বভ্যান প্রকে।

অত্এব, যে সকল সম্বাহে নিদিষ্ট বস্ত্র-তিনটি স্বদাই থাকে ভাষ্টেপর সংখ্যা

$$-n-8C_{r-8} - \frac{|n-8|}{|r-3|} - \frac{n-8}{n-r}$$

নিনিষ্ট তিনটি বস্ত্ৰসভাত এই ক্ষাত্ৰাক বস্ত্ৰিক সম্বায়ন্ত্ৰির প্রাত্ত্যকটি ইইডে ক্ষাত্ৰাক বিকাস পাৰত। যায় বক্ষা, যে সকল বিহাসে নিনিষ্ট বস্ত্ৰ তিনটি স্বাহি বভ্যান পাকে তাত বেব সংগ্ৰা

$$= \frac{n-3}{r-3} \times (r = \frac{n-3}{n-r} \times r(r-1)(r-2).$$

## প্রোধানালা 29

- 1. ""('17. 27('33. 4"C35-50 Ale face 44)
- 2. 2nCr. 2nCr., 2 vect, 1-44 ma (adu 44 ) [C. U. 1930]
- 8. m="C2 を行う,何以( ラス (中、 "C2 = 3. "+1C4. 「C. U. 1912]
- <sup>n</sup>P<sub>r</sub> 720 sec <sup>n</sup>C<sub>r</sub> = 120 ≥ ইতো, n এবং r-এর মান নির্ণয় কর।
- 5. " 1Cr: "Cr: "11 Cr = 1:3:8 হট'ল, n এবং r-এর মান নির্ণয় কর।
- 6. 经期间 季点 (司, nCr+n 1Cr-1+n-1Cr-2=n+1Cr.

- 8. কোন প্রশ্নপত্তের 15টি প্রশ্নের মধ্যে 12টির উত্তর করিতে হইবে। একজন প্রীক্ষার্থী কতপ্রকারে প্রশ্ন নির্বাচন করিতে পারে ?
- 9. দশজন লোকের মধ্যে চারিজন লোকের একটি দল কতপ্রকারে নির্বাচন করা যাইতে পারে এবং একজন লোক কতবার নির্বাচিত হইতে পারে ?
- 10. একটি ঝুড়িতে 10টি আম আছে। একটি নিৰ্দিষ্ট আম-সহ তিনটি আম তুমি কতবার বাছাই করিতে পার? [C. U. 1921]
- 11. 15 জন লোকের একটি দল হইতে কোন নির্দিষ্ট 3 জন লোক বাদ দিয়া 9 জন লোকের কতগুলি দল গঠন করিতে পারা যাইবে?
- 12. টাকায় 3টি দরের 20টি নাশপাতি আছে। 6 টাকার নাশপাতি কিনিতে হইলে, কিভাবে নির্বাচন করা যাইতে পারে এবং এই নির্বাচনের কতগুলির মধ্যে একটি নির্দিষ্ট নাশপাতি থাকিবে?
- 13. কোন সমতলে 16টি বিন্দু আছে; তাহাদের যে-কোন তিনটি এক সরল রেথায় অবস্থিত নহে। ঐ বিন্দুগুলি সংযুক্ত করিয়া কতগুলি সরল রেথা পাওয়া হাইতে পারে?
- 14. n-সংখ্যক ভুজবিশিষ্ট ক্ষেত্রে কতগুলি কর্ণ অঙ্কিত হইতে পারে? এ-ক্ষেত্রটির শীর্ষবিন্দুগুলি সংযুক্ত করিয়। কতগুলি ত্রিভুজ উৎপন্ন করা যাইতে পারে?
- 15. কোন সমতলে n-সংখ্যক বিন্দু আছে; তন্মধ্যে m-সংখ্যক বিন্দু ব্যতীত অপর যে-কোন তিনটি বিন্দু এক সরল রেখায় অবস্থিত নহে। ঐ বিন্দুগুলি সংযুক্ত করিয়া যতগুলি (i) বিভিন্ন সরল রেখা, (ii) বিভিন্ন ত্রিভূজ উৎপন্ন করা যাইতে পারে, তাহাদের সংখ্যা নির্ণয় কর।

  [ C. U. 1928 ]
- 16. 2 জন মুদলমান এবং অবশিষ্ট হিন্দু—মোট 23 জন কর্মপ্রার্থীদের মধ্য হইতে 20 জন কেরানী নিযুক্ত হইবে। যাহাতে কোন মুদলমানপ্রার্থী বাদ না যায়, এন্ধপ কতপ্রকারে প্রার্থী নির্বাচন করা যাইতে পারে ?
- 17. কোন নির্বাচনে 5 জন প্রার্থীর মধ্যে 3 জন নির্বাচিত হইবে। একজন ভোটদাতা নির্বাচিত প্রার্থিসংখ্যা অপেক্ষা অন্ধিক যে-কোন সংখ্যক প্রার্থীকে ভোট দিতে পারেন। একজন ভোটদাতা কতপ্রকারে ভোট দিতে পারেন ?

[ C. U. 1935 ]

18. কোন পৌরপ্রতিষ্ঠানে (Municipal Corporation) 20 জন কাউন্সিলর (Councillor) এবং 5 জন অন্ডারম্যান (Alderman) আছেন। তন্মধ্যে 6 জন কাউন্সিলর ও 3 জন অন্ডারম্যান লইয়া কতগুলি সমিতি (Committee) গঠন করা থাইতে পারে?

- 19. ইংরেজী বর্ণমালার অক্ষরের প্রত্যেক ক্ষেত্রে 2টি স্বরবর্ণ লইয়া 6টি বর্ণের কতগুলি সমবায় (combination) গ্রুন করা যাইতে পারে ?
- 20. 7 জন ভদ্রলোক এবং 4 জন মহিলা হইতে, 5 জন সভ্যের একটি সমিতি গঠন করা হইবে। যদি সমিতিতে অন্তভ:পক্ষে একজন মহিলার অন্তর্ভুক্তি বাধ্যতা-মূলক হয়, তাহা হইলে কতপ্রকারে দ্যিতি গঠন করা যাইতে পারিবে ?

[ C. U. 1948 ]

- 21. একটি নৃতন মহাবিভালয়ে ৪ জন অধ্যাপকের পদ থালি আছে; 3 জন D.Sc. এবং 12 জন M.Sc. অধ্যাপক-পদ-প্রার্থী। (i) সব কয়জন D.Sc.-কে লইয়া, (ii) অন্ততঃপক্ষে একজন D.Sc.-কে লইয়া কতপ্রকারে অধ্যাপক নির্বাচন করা যাইতে পারে?
- 22. 15টি বালকের মধ্যে 7 জন স্কাউট (Scout)-এর অন্তর্ভুক্ত। (i) মাত্র 6 জন স্কাউটের বালক লইয়া এবং (ii) অন্তঃপঙ্গে 6 জন স্কাউটের বালক লইয়া কত-প্রকারে 12টি বালককে নিবাচন করা ঘাইতে পারে ? [ C. U. 1943 ]
- 23. 6 জন থেলোয়াডের এবং ৪ জন থেলোয়াডের চুইটি দল হইতে 11 জন থেলোয়াডের একটি দল গঠন করিতে হইবে। যদি 6 জন থেলোয়াডের দল হইতে 4 জনের কম থেলোয়াড লওয়া না হয়, তবে কভপ্রকারে থেলোয়াড় নির্বাচন করা বাইতে পারে?

  [C. U. 1938]
- 24. কোন এক পরিষদে একজন সভাপতি, ছইজন সহ-সভাপতি এবং দাদশজন অপর সভ্য আছেন। যদি সমিতিতে (Committee) সভাপতির এবং একজন সহ-সভাপতির থাকা বাগ্যতামূলক হয়, তাহা হইলে, তাহাদিগকে লইয়া 6 জনের একটি সমিতি কতপ্রকারে নির্বাচন করিতে পারা যাইবে ?

  [C. U. 1914]
- 25. পৌরসভার 20 জন কমিশনারের মধ্যে 15 জন হিন্দু ও 5 জন মুসলমান। তাঁহাদের মধ্য হইতে 5 জন হিন্দু ও 2 জন মুসলমান কমিশনার পাইয়া কডপ্রকারে একটি 7 জনের সমিতি গঠিত হইতে পারে? এইরূপ সমিতির কডগুলি হইতে একজন নির্দিষ্ট হিন্দু কমিশনার বাদ পড়িয়া যাইবেন?
- 26. 1, 2, 3, 4, 5, 6, 7, 8 চিপ্তিত আটটি কাউণ্টার (counter)-এর একযোগে চারিটি করিয়া লইয়া কওগুলি সমবায় গঠন করা যাইতে পারে, যাহাতে অস্ততঃপক্ষে একটি অনুগা ও একটি মৃগা অন্ধ দারা চিপ্তিত কাউণ্টার গাকিবে ? [C. U 1941]
- 27. 17টি বিভিন্ন ব্যঞ্জনবর্ণ ও চটি বিভিন্ন স্বরবর্ণের 3টি ব্যঞ্জনবর্ণ ও 2টি স্বরবর্ণ লইয়া কতগুলি শব্দ গঠন করা যাইতে পারে ? [C. U. 1939]
- 28. ৪টি বিভিন্ন ব্যঞ্জনবর্ণ ও 4টি বিভিন্ন সরবর্ণের ছুইটি বিভিন্ন ব্যঞ্জনবর্ণ ও একটি স্বরবর্ণ লইয়া কতগুলি শব্দ গঠন করা যাইতে পারে, যাহাতে স্বরবর্ণটি ব্যঞ্জন-বর্ণদয়ের মাঝখানে বদে?

- 29. প্রমাণ কর যে, a, b, c, d, e, f অক্ষরগুলির অস্কতঃপক্ষে একটি স্থরবর্ণ-সংবলিত তিনটি অক্ষরে গঠিত শব্দের সংখ্যা 96.
- **30.** .Centrifugal শন্দটির অক্ষরসমূহের একযোগে 6টি অক্ষর লইয়া শন্দ গঠন করিলে, কতগুলিতে c, t, f অক্ষরতার থাকিবে ?
- 31. একথানি সাহিত্য-বিষয়ক পুস্তকের 37 থানা এবং একথানি গণিত-পুস্তকের 35 থানা আছে। যদি গণিত-পুস্তকের তুইথানা একত্ত না থাকে, তাহা হইলে পুস্তকগুলিকে একথানির উপর আর একথানি করিয়া একটি হুস্তে কতপ্রকারে সাজানো যাইতে পারে?
- 32. একথানি নৌকার 10 জন মাঝির 3 জন মাত্র একদিকে এবং 2 জন মাত্র অপরদিকে গাড় টানিতে পারে। মাঝিদের কতপ্রকারে সাজানো যাইতে পারে ?

#### 8'7. "C,-এর চরম মান।

r-এর মান কত হইলে, n-সংখ্যক বিভিন্ন বস্ত হইতে উহাদের r-সংখ্যকটি করিয়া লইয়া গঠিত সমবায়সমূহের সংখ্যা বৃহত্তম হইবে, তাহা নির্ণয় করিতে হইবে।

আমরা জানি,

$${}^{n}C_{r} = \frac{n(n-1)(n-2) \cdot (n-r+2)(n-r+1)}{r(r-1)(r-2)\cdots \cdot 3.2.1}$$

এবং 
$${}^nC_{r-1} = \frac{n(n-1)(n-2)\cdots\cdots(n-r+2)}{(r-1)(r-2)\cdots3.2.1}$$
;

$$\therefore \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r} = \frac{n+1}{r} - 1. \tag{1}$$

অতএব, n একটি ধনাত্মক পূর্ণরাশি হইলে, n-এর মান বৃদ্ধির সহিত  $\frac{n+1}{r}-1$ -এর মান হ্রাস পাইবে, r-এর মান হ্রাসপ্রাপ্ত হইলে,  $\frac{n+1}{r}-1$ -এর মান বৃদ্ধি পাইবে। r-এর কোন নির্দিষ্ট মানের জন্ত,  $\frac{n+1}{r}-1$ -এর মান যেন k, তাহা হইলে, ঐ নির্দিষ্ট মান অপেক্ষা r-এর সমস্ত ক্ষুদ্রতর মানের জন্তই  $\frac{n+1}{r}-1>k$ , এবং r-এর উচ্চতর সমস্ত মানের জন্ত  $\frac{n+1}{r}-1< k$ .

ধরা যাক ৮-এর কোন নির্দিষ্ট মানের জন্ম

$$\frac{n+1}{r} - 1 > 1. \qquad \cdots \qquad \cdots \tag{2}$$

 $\gamma$ -এর ক্ষতর সমন্ত মানের জন্ম  $rac{n+1}{r}-1$  মানটি 1 অপেক্ষা আরও বৃহত্তর।

মুভরাং, (1) হইতে, 
$${}^{n}_{\mathcal{O}_{r-2}} > 1$$
,  ${}^{n}_{\mathcal{O}_{r-3}} > 1$ ,  ${}^{n}_{\mathcal{O}_{r-3}} > 1 \cdots$ ;

অর্থাৎ,  ${}^{n}C_{r} > {}^{n}C_{r-1} > {}^{n}C_{r-2} > {}^{n}C_{r-3} > \cdots$  ... (A)

এইরপে, যদি r-এর যে-কোন মানের জন্ম  $^nC_r > ^nC_{r-1}$  হয়, তাহা হইলে ইহা  $^nC_{r-2}, ^nC_{r-3}, \ldots$  অপেক্ষাও বৃহত্তর ২ইবে।

ঐরপে, r-এর কোন নির্দিষ্ট মানের জন্ম যদি  $\frac{n+1}{r}-1 < 1$  হয়, তাহা হইলে ঐ নির্দিষ্ট মান অপেক্ষা r-এর মকল বৃহত্তর মানের জন্মই  $\frac{n+1}{r}-1$ -এর মান 1 অপেক্ষা শারও ক্ষুত্রতর হইবে।

অত্তব, (1) হইতে, 
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} < 1$$
,  $\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} < 1$ ,  $\frac{{}^{n}C_{r+2}}{{}^{n}C_{r+1}} < 1$ ,  $\cdots$ : ভাগাৎ,  ${}^{n}C_{r-1} > {}^{n}C_{r} > {}^{n}C_{r+1} > {}^{n}C_{r+2} > \cdots$   $\cdots$  (B) এইনপে, দেখা যায় যে, প্রব শী সুম্বায়গুলির মান ক্রমশং প্রায়প্তাপ্ত হয়।

(A) এবং (B) ইউতে, ইছা স্পষ্ট যে, r-এর মান 1 ইইতে n প্রয়ন্ত বৃদ্ধিপ্রাপ্ত ইইলে, যে প্রয়ন্ত না n+1 - 1 এর মান 1 ইউতে ক্ষুত্র হয়, সেই প্রয়ন্ত r না ক্ষাধ্য়ে বৃদ্ধিপ্রাপ্ত ইউতে পাকে, এবং ভাছার পর ইউতে ক্যাধ্য়ে ব্রাহিপ্রাপ্ত ইউতে পাকে।

.. "O, বৃহত্তম ত্ইবে, বখন  $\frac{n+1}{r}$  - 1 হয় 1 অপেক্ষা ঠিক বৃহত্তর অগণা 1-এর সমান:

অথবা,  $\frac{n+1}{r}$  হয় 2 অপেক ঠিক বুহুছের অথবা 2-এর স্থান ;

অথবা, n+1 হয় 2r অপেশা ঠিক বৃহত্তর অথবা 2r-এর স্মান ;

অথবা, r হয় ½ (n+1) অপেখা ঠিক ক্ষতর বা ½ (n+1)-এর ঠিক সমান ••• ••• (8)

n মুগা বা অমুগা ধনা হক পূর্ণরাশি ১ইলে, r-এর মান কিরূপ দাঁডায় দেখা যাক।  $(\sigma)$  n মুগা ধনাত্মক পূর্ণরাশি ১ইলে, মনে কর, n=2m, ভাতা ২ইলে (3) হঠতে পাওয়া যায় যে,  $^nC_r$  বৃহত্তম হইবে, যখন r,  $\frac{1}{2}(2m+1)$  অপেকা ঠিক ক্ষেত্তর বা  $\frac{1}{2}(2m+1)$ -এর সমান। কিন্ত r একটি ধনাত্মক পূর্ণরাশি বলিনা, ইহা  $m+\frac{1}{2}$ -এর

(XI-XII)-12

শ্রমান হইতে পারে না; অতএব  $m+\frac{1}{2}$  অপেক্ষা ঠিক ক্ষুদ্রতর পূর্ণদংখ্যা m-এর স্মান হইবে; অতএব,

# r=m অর্থাৎ $\frac{n}{2}$ হইলেই, $^n$ C, বৃহত্তম হইবে।

(४) n অযুগ্য ধনাত্মক পূর্ণরাশি হঠলে, মনে কর, n=2m+1, অতএব, (3) হইতে পাওরা যায় যে,  ${}^nC_r$  বৃহত্তম হইবে, যথন r,  $\frac{1}{2}(2m+1+1)$  অর্থাৎ (m+1) অপেকা ঠিক ক্ষুত্তর অথবা (m+1)-এর সমান। (m+1) অপেকা ঠিক ক্ষুত্তর পূর্ণরাশি m. অতএব,

r=m বা m+1 অর্থাৎ  $\frac{n-1}{2}$  অথব।  $\frac{n+1}{2}$  হঠলে,  ${}^nC_r$  বৃহত্তম হঠবে। n অর্থা হইলে,  ${}^nC_{n+1}$  এবং  ${}^nC_{n-1}$ -ই  ${}^nC_r$ -এর চরম মান হইবে। কেননা উভরই পুরক সম্বায়।

## প্রথমালা 30

- Pantheism শক্টির কয়টি অক্ষর লইয়া গঠিত সমবায়য়য়ৄতের সংখ্যা
  বৃহত্তম হইবে? এই সমবায়য়য়ৄতের কতগুলির মধ্যে p ও m থাকিবে ?
- 2. একজন লোক তাহার 20 জন বন্ধুকে লইয়া, প্রত্যেক দলে একই সংখ্যক বন্ধু থাকে এন্ধা যতগুলি দল গঠন করা সম্ভব, ভতগুলি দল গঠন করিয়া থাওয়াইতে ইচ্ছুক। সে কভজন বন্ধুকে একবারে নিমন্ত্রণ করিবে ? এই দলসমূহের কভগুলিতে একই লোককে দেখিতে গাওয়া যাইবে ?
- 8. Barouche শন্দির অক্ষরসমূহ হইতে, প্রত্যেক সমবায়ে একই সংখ্যক অক্ষর থাকিবে, এরপ সমবায়ের বৃহত্তম সংখ্যা নির্ণয় কর। এরপ সমবায়ের কতকগুলিতে ০ থাকিবে ?
  - 4. প্রমাণ কর যে,  $^{2n}C_r$  এবং  $^{2n-1}C_r$ -এর বৃহত্তম মানের অফুপাত 2:1.

# (গ) জটিল বিন্যাস ও সমবায়

8'8. স্বশুল বিভিন্ন নতে একশ বস্তুসমূত্ত্ব বিস্থাস। স্বশুলি বিভিন্ন নহে একপ n-সংখ্যক বস্তুর স্বশুলি লইরা বিস্থাস গঠন করিলে যে বিস্থাসগুলি পাওরা যাইবে ভাহাদের সংখ্যা নির্ণয়। [ To find the number of permutations of n things, taken all together, when the things are not all different. ] n-সংখ্যক বস্তুকে n-সংখ্যক অক্ষর দারা স্থৃচিত করা হইল; এই সকল অক্ষরের p-সংখ্যকটি a, q-সংখ্যকটি b, r-সংখ্যকটি যেন c এবং অবশিষ্ট অক্ষরগুলির সবগুলি যেন পরস্পর বিভিন্ন।

ধরা গেল, নির্ণেয় বিন্তাস-সংখ্যা &

বিয়াসগুলির প্রত্যেকটিতেই p-সংখ্যক a আছে। ইহাদের প্রত্যেকটিতে, এই p-সংখ্যক a-এর স্থানে যদি অবস্থি অন্থ সকল অক্ষর ও পরস্পার হইতে ভিন্ন p-সংখ্যক নৃতন অক্ষর থাকিত তবে অন্থ অক্ষরসকলের স্থান আদে পরিবর্তন না করিয়া, এই নৃতন p-সংখ্যক বিভিন্ন অক্ষরের সব ক্যটিকে লইয়া |p-সংখ্যক বিভাস পাওয়া যাইত। যাইত। ফলে এরপ প্রত্যেকটি বিয়াস হইতে |p-সংখ্যক বিভিন্ন বিয়াস পাওয়া যাইত। এইভাবে x-সংখ্যক বিয়াসের প্রত্যেকটিতে এইরপ পরিবর্তন ও বিয়াস-গঠন করিলে, x-সংখ্যক বিয়াস হইতে মোট  $x \times |p$ -সংখ্যক নৃতন বিয়াস পাওয়া যাইত।

আবার, এই  $x \times \lfloor p$ -সংখ্যক নৃতন বিশাসগুলির প্রতিটিতে q-সংখ্যক b-অক্ষরের স্থানে যদি অবশিষ্ট অন্থ সকল অক্ষর এবং পরম্পরও হইতে ভিন্ন q-সংখ্যক নৃতন অক্ষর থাকিত, তবে বিশ্বাসটির অন্থ অক্ষরসকলের স্থান আদে পরিবর্তন না করিয়া, এই নৃতন q-সংখ্যক বিভিন্ন অক্ষরের সব কর্নটিকে লইয়া  $\lfloor q$ -সংখ্যক বিভিন্ন বিশ্বাসপাওয়া যাইত ।  $x \times \lfloor p$ -সংখ্যক বিশ্বাসপাওলির যে-কোনটি হইতেই, এইরূপ পরিবর্তন ও বিশ্বাস-গঠন দারা  $\lfloor q$ -সংখ্যক বিভিন্ন বিশ্বাস পাওয়া যাইত বলিয়া,  $x \times \lfloor p$ -সংখ্যক বিশ্বাস হইতে মোট  $x \times \lfloor p$ -সংখ্যক নৃতন বিশ্বাস পাওয়া যাইত ।

অনুদ্ধে, এই  $x \times \lfloor p \times \lfloor q - r + v \rfloor$ ক নৃতন বিয়াসগুলির প্রত্যেকটিতে r-সংখ্যক c অক্ষরের স্থানে যদি অবশিষ্ট অন্ত সকল অক্ষর ও পরস্পার হুইতে ভিন্ন r-সংখ্যক নৃতন অক্ষর থাকিত তবে এই r-সংখ্যক বিভিন্ন অক্ষরের মধ্যে বিন্তাস রচনা করিলে, মোট  $x \times \lfloor p \times \lfloor q \times \lfloor r - r + v \rfloor$ ক নৃতন বিন্তাস পাওয়া যাইত। সেক্ষেত্রে এ বিন্তাসগুলির প্রত্যেকটিতে n-সংখ্যক পরস্পার ভিন্ন অক্ষর থাকিত।

তাহা হইলে দেখা গেল যে, পরস্পর ভিন্ন n-সংখ্যক অক্ষরগুলি লইয়া বিশ্রাস রচনা করিলে মোট বিশ্রাস-সংখ্যা হয়,  $x \times \lfloor \underline{p} \times \lfloor \underline{q} \times \lfloor \underline{r}$ . আবার, আমরা জানি, n-সংখ্যক বিভিন্ন অক্ষরগুলির সবগুলি লইয়া বিশ্বাস রচনা করিলে বিশ্বাস-সংখ্যা হয়  $\lfloor n$ .

$$\therefore x \times [\underline{p} \times [\underline{q} \times \underline{r} = \underline{n}; \quad \mathbf{x} = \underline{\underline{n}}]$$

জ্ঞেষ্ট প্রক্রিয়াটি সম্পূর্ণ সাধারণ ; a, b, c-এর গ্রায় তিন-এর অধিক-সংখ্যক বস্তুর প্রত্যেকটি একাধিক করিয়া থাকিলেও বিশ্রাস-সংখ্যা-নির্ণয়ে উপরের স্থ্রটি প্রযোজ্য।

# 8.9. পুনৱান্ততি-ঘটিত বিস্থাস।

n-সংখ্যক বিভিন্ন বস্ত হইতে r-সংখ্যকটি লইয়া বিশ্বাস রচনা করিলে এবং প্রতিটি বিশ্বাসে উক্ত n-সংখ্যক বস্তুর প্রত্যেকটিরই একবার, সুইবার, r-সংখ্যকবার পর্যন্ত থাকা সম্ভব হইলে, যে বিশ্বাসগুলি গঠিত হইবে, তাহাদের সংখ্যা নির্ণয়। (To find the number of permutations of n different things taken r at a time, when each may occur once, twice up to r times in any permutation.]

n-সংখ্যক বিভিন্ন বস্তুকে n-সংখ্যক বিভিন্ন অক্ষর দারা স্থাচিত করা হইল। বিশ্রাসপ্তলির প্রত্যেকটিতে বস্তুগুলির প্রত্যেকটি এক, তুই, ..... অথবা r-সংখ্যকবার থাকিতে পারে বলিয়া উক্ত r-সংখ্যক অক্ষরের প্রত্যেকটি একবার, তুইবার, ... r-সংখ্যকবার আছে। এখন, r-সংখ্যকটি লইয়া বিশ্রাস-রচনা আর উহাদের দারা r-সংখ্যকটি স্থান পূর্ণ করা একই কথা।

n-সংখ্যক বিভিন্ন অক্ষরের যে-কোনটিকেই প্রথম স্থানে রাখা যাইতে পারে বিলিয়া প্রথম স্থানটি n-সংখ্যক বিভিন্ন উপায়ে পূর্ণ করা যাইতে পারে। এই n-সংখ্যক বিভিন্ন উপায়ে পূর্ণ করা যাইতে পারে, কারণ যে ছিত্রীয় স্থানটিকেও n-সংখ্যক বিভিন্ন উপায়ে পূর্ণ করা যাইতে পারে, কারণ যে অক্ষরটিকে প্রথম স্থানে বসানো হইরাছে তাহার আরও অন্ততঃ (r − 1)-সংখ্যকটি অবশিষ্ট আছে বলিয়া তাহাকেও পুনরায় দিতীয় স্থানে বসানো যায়। অতএব, প্রথম স্থান পূর্ণ করিবার প্রত্যেক উপায়ের সহিত দিতীয় স্থান পূর্ণ করিবার প্রত্যেকটি উপায়েক সংযুক্ত কর। যায় বলিয়া, প্রথম ছুইটি স্থান n×n বা n²-সংখ্যক বিভিন্ন উপায়ে পূর্ণ করা যাইতে পারে। এইরূপে প্রথম তিনটি স্থান n³-সংখ্যক বিভিন্ন উপায়ে পূর্ণ করা যায়। যত-সংখ্যক স্থান পূর্ণ করা হয়, n-এর স্চকও সেই সংখ্যা ইহা লক্ষ্য রাখিয়া, এইরূপে অগ্রসর হইলে, স্পাইই দেখা যাইতেছে যে, যে সকল বিভিন্ন উপায়ে n-সংখ্যক স্থান পূর্ণ করা যাইতে পারে তাহাদের সংখ্যা n². অতএব, নির্ণেয় বিশ্বাসসংখ্যা = n².

উদা 1. Constantinople শব্দির অক্ষরসমূহ একযোগে লইয়া কতগুলি শব্দ গঠন করা যায় ? উহাদের কতগুলির মধ্যে n তিনটি পর পর বদিবে ?

প্রাদন্ত শব্দে মোট 14টি অক্ষর আছে এবং ইহাদের মধ্যে 2টি ০, 3টি n, 2টি t এবং "অবশিষ্ট 7টি পরস্পর ভিন্ন।

.'. নির্ণেয় শব্দ-সংখ্যা =  $\frac{14}{2 \cdot 3 \cdot 2}$  = 14.13.12.11.10.9.8.7.6.5

<sup>= 3632428800.</sup> 

3টি n সর্বদাই পাশাপাশি থাকিলে, উহাদিগকে একটি অক্ষর মনে করিষা বিন্যাস রচনা করিলে, নির্দেষ শব্দ-সংখ্যা পাওয়! যাইবে। অতএব, এক্ষেত্রে মোট অক্ষর-সংখ্যা হইবে 12 এবং ইহাদের মধ্যে 2টি o এবং 2টি t.

ে নির্গের শব্দ-সংখ্যা = 
$$\frac{\lfloor 12 \rfloor}{\lfloor 2 \rfloor 2}$$
 = 12.11.10.9.8.7.6.5.3.2 = 119750400.

উদা. 2. 15টি নৌকাচালন-সম্বের (Rowing Club) তুইটির প্রত্যেকের তিনখানি, অপর পাঁচটির প্রত্যেকের তুইখানি এবং অবশিষ্ট আটটির একখানি করিয়া নৌকা নদীতে আছে। এই 24খানি নৌকা লইয়া কতগুলি তালিকা রচনা করিতে পার। যাইবে, যাহাতে একটি সজ্বের দ্বিতীয় নৌকা প্রথম নৌকার পরে বা তৃতীয় নৌকা প্রথম ও দ্বিতীয় নৌকার পরে থাকিবেই ?

প্রদত্ত শর্তাহ্বদারে, মোট যতগুলি তালিকা রচনা করা সম্ভব তাহাদের সংখ্যা-জ্ঞাপক রাশিকে  $\alpha$  ঘারা স্থাচিত করা হইল। এখন, পনেরটি সম্বাক্তি  $\alpha_1$ ,  $\alpha_2$ ,  $\cdots$ ,  $\alpha_{15}$  ঘারা স্থাচিত করিয়া, ধরা যাক,  $\alpha_1$  এবং  $\alpha_2$  সম্ভোব প্রত্যোকের তিনখানি করিয়া নৌকা আছে,  $\alpha_3$ ,  $\alpha_4$ ,  $\alpha_5$ ,  $\alpha_6$ ,  $\alpha_7$  সম্বাগুলির প্রত্যোকের ছইখানি করিয়া নৌকা আছে এবং অন্যান্য সম্বাগুলির প্রত্যোকর একখানি করিয়া নৌকা আছে।

প্রদত্ত শর্তামুসারে তালিকা প্রস্তুত করিলে দেখা যায় যে, কোন তালিকাতেই  $a_1$ ,  $a_2$  প্রভৃতি কোন সভ্যেরই স্ব স্থ নোকাগুলির মধ্যে পরস্পার স্থান-ধিনিময় করাইয়া নৃতন বিদ্যাস রচনা করা সম্ভব নহে কেননা প্রত্যেকটি সভ্যের নৌকাগুলি পরস্পর বিভিন্ন নহে, যদিও তাহারা অহা সব সভ্যের সকল নোকা হইতে বিভিন্ন। কাজেই 24 খানা নোকার মধ্যে  $a_1$  সভ্যের নোকা তিনখানি একই, কিন্তু অহা সভ্যগুলির নোকাগুলি হইতে ভিন্ন;  $a_2$  সভ্যের নোকা তিনখানি একই, কিন্তু অহা সভ্যগুলির নোকাগুলি হইতে ভিন্ন; এইরূপ,  $a_3$ ,  $a_4$ ,  $a_5$ ,  $a_6$ ,  $a_7$  সভ্যের প্রত্যেকটির তুইথানি নোকা পরস্পর অভিন্ন, কিন্তু অহা সবগুলি হইতে ভিন্ন; এবং বাকী আটেট সভ্যের প্রত্যেকটির এক-একখানি নোকা পরস্পর এবং অহাহা সবগুলি হইতে ভিন্ন। অতএব,

$$x = \frac{|24}{(3)^2(2)^5}$$

- উদা. 3. multiple শক্ষির অক্ষরগুলির (1) স্বর্বর্ণের ক্রম-পরিবর্তন না করিয়া, (2) স্বরবর্ণগুলির স্থান নির্দিষ্ট রাখিয়া, (3) ব্যঞ্জনবর্ণ ও স্বরবর্ণের আপেক্ষিক অবস্থানের পরিবর্তন না করিয়া, কতপ্রকারে পুনবিক্যাস করা যাইতে পারে ?
- (1) এস্থলে, প্রদান্ত শর্তান্মনারে গঠিত বিভাসসমূহের কোনটিতেই স্থরবর্ণক্রম পরিবর্তন নিষিদ্ধ বলিয়া স্থরবর্ণ-তিনটির স্থান পরস্পর বিনিময় করাইয়া নৃতন বিভাস রচনা করা সম্ভব নহে। অভএব, এক্ষেত্রে পরস্পর বিভিন্ন স্থরবর্ণ-তিনটিকে কার্যত

একই এবং পরস্পর অভিন্ন মনে করা যাইতে পাবে। তাহা হইলে, মোট ৪টি অক্ষরের 2টি া এবং কার্যত অভিন্ন বিবেচ্য ৪টি স্বর্বর্ণ ;

:. মোট বিজ্ঞাস-সংখ্যা = 
$$\frac{18}{13.2}$$
 = 8.7.6.5.2 = 3360.

কিন্তু প্ৰদাৰ multiple শক্তিই একটি বিফাস বলিয়া, পুন্ৰবিফাস-সংখ্যা = 3360 - 1 = 3359.

- (2) স্ববর্শ-তিনটির স্থান অপধিবর্তিত থাকিবে বলিয়া এক্ষেত্রে 2টি *।*-যুক্ত, 5টি ব্যৱনবর্ণ লইয়া বিশ্রাস গঠন করিতে হইবে।
  - .. মোট বিভাগ-সংখ্যা =  $\frac{15}{12}$  = 60.
  - .. নিৰ্ণেয় পুনৰিজান-সংখ্যা = 60 1 = 59.
- (3) বিত্যাসগুলিতে স্বর্গর্প এবং ব্যক্তন্বর্গের আপেন্ধিক অবস্থান সর্বনাই পূর্ববং আর্থাং প্রথমে 'm dtipda' শশ্চিতে যেখন প্রথম, তেওঁগে, চতুর্থ, ষষ্ঠ ও মপ্তম স্থানে ব্যক্তনের্থ এবং হিভাব, পঞ্চম ও এইম স্থানে স্বর্গে ছিল মেইরপ্র থাকিবে।

এখন, সরবর্ণ-তিনটিকে উক্ নিষ্টি স্থান তিনটিতে [3 বিভিন্ন উপায়ে রাখা মায় এবং ব্যৱনবর্ণ চটির মধ্যে ৪টি । বলিব। উত্থানিগতে উক্ত নিষ্টিই চটি স্থানে [5 বিভিন্ন উপায়ে রাখা মায়। স্বতরাং স্বরবর্ণ-তিনটির বিভাসের [3 বিভিন্ন উপায়ের প্রত্যেকটির মহিত ব্যৱনবর্ণ চটির বিভাসের  $\frac{15}{12}$  বিভিন্ন উপায়ের প্রত্যেকটি সংমুক্ত করা মায় বলিয়া মোট বিদ্যাস-সংখ্যা ইইবে [3 ×  $\frac{15}{12}$  = 360;

∴ নির্ণেয় মোট পুনবিভাদ-দংখ্যা = 360 - 1 = 359.

উদা. 4. 2, 3, 0, 3, 4, 2, 3 অক্ডলির সাহায্যে নিযুত (million) অপেক্ষা বৃহত্তর কতগুলি সংখ্যা গঠন করা যাইতে পারে ?

সংখ্যাপ্তলি এক নিমৃত অপেকা বৃহত্তর বলিয়া, উহাদের প্রত্যেকটিই সাত অথবা সাতের মধিক অন্ধবিশিষ্ট হইবে। কিন্তু সাতটি অন্ধ দেওয়া আছে; অতএব সবপ্তলি অন্ধ লইয়াই সংখ্যা গঠন করিতে হইবে।

এখন, অম্বন্ধনির মোট সংখ্যা 7 এবং ইহাদের মধ্যে তুইটি 2 ও ভিনটি 3 আর্ডে ; স্থতরাং, অম্বন্ধনির স্বগুলি লইয়া গঠিত মোট বিক্সাস-সংখ্যা  $= \frac{17}{12 \cdot 13} = 420$ .

এই 490টি নিশাসের কতক্পলির আদিতে 0 আছে; ইহার' নিয়ত অপেজা বৃহত্তর মংখ্যা নহে বলিয় ইহা দগতে বদে দিতে হটাবে। বাকী GG ভাষের ছইটি 2 এবং তিনটি 3.

়ে যে সকল বিভালের আনিতে ও আতে ভাষাদের সংখ্যা

$$=\frac{6}{2}=60.$$

.. বিশেষ এক বিষ্ঠু অপেক্ষা বৃহ হর সংখ্যাপ্তবির সংখ্যা 
= 420 - 60 = 860.

खेला. 5. arrange कादि अकदम्प्राक काउद्यकाद मालामा याहाए भारत ?

- (a) यभि y पृष्टिपित अकता ना थाका दावा धामुलक,
- (b) যদি ৮ ওইটি এক a ছাইটির একর না থাকা বাধ্যভাষ্পক হয়, ভাষা হংলে কভপ্রকারে উহা'নগকে সাজানে যাগতে পারে ?

এন্তলে মোট গটি অব্দরের মধ্যে ৪টি a, ৪টি r এবং বাকী অব্দরভালি পরস্পর এবং অস্ত সকল অব্দর হইতে ভিন্ন।

- ়ে এই প্ৰতির বিশ্বাসন্ত গে। = <mark>(ব</mark> = 7.6 5.2 3 · · **1260.**
- (a) r গুটাটিকে ন্দ্রনাপুত্র করির। কর্মটি একর মুরে ক্রিকো প্রক্রেপ্রাক্তর গুলি ইট্ল  $a_r$  (rr), a, a, c ; ইংহাদের সংখ্যা ও বিং নিরে মুগো গুরুটি a
  - ं त्या रका निकारर १,३ विकार विवास वादक वादन वास्ता

$$-\frac{16}{12}$$
 - 8.5.4.8 - 360.

মে সকল নিজাপে ছঙাটি ল একত্র নাই ভাষায়দর সংবাদ

= 1260 − 360 = 900.

- (b) arrange শম্প্রি স্ব্রুথি একর তত্যা বিভাস রচনা করিলে যে 1260টি বিভাস পান্য যায় ভাষাদেশকে নিয়ে ব্রিভ চারিভাগে ভাগ করিয়া রাখা যায় :
- $(\cdot)$  দুইটি  $_{r}$  'এলনা দুইটি  $_{tt}$  নথনাই পাশে পাশি আনিবাৰ  $_{r}$ ', এইরপ নিয়াসসমূহের সংখ্যা খেন N.
- (i.) ১৯টি ৮-৪ পাশাপাদি পাদিনে, ১৯টি লাভ পাশাপাদি থাবিবে, এইনপ বিজ্ঞানসমূহের সংখ্যা বেন ১;
- (हा) ক্রেন্সমার ৪০টি সপালাপ নি থাকিবে, কিন্তু চুইটি ৫ প্লোপানি থাকিবে না, এইজপ কোনসমূহের সংখ্যা মন সং ;

(iv) কেবলমাত্র ছুইটি a পাশাপাশি থাকিবে, কিন্তু ছুইটি r পাশাপাশি থাকিবে না, এইরপ বিভাসসমূহের সংখ্যা যেন n.

তাহা হইলে, 
$$N+l+m+n=1260$$
,  
বা,  $N=1260-(l+m+n)$ .

ছুইটি r-কে এবং তুইটি a-কে বন্ধনীভূক করিয়া সকল অক্ষর হুইতে ভিন্ন অক্ষর মনে করিলে, (aa), (rr), n, g, e এই পাঁচটি বিভিন্ন অক্ষর পাওয়া যায়, ভাহাদের সবগুলিকে লইয়া গঠিত বিভাস-সংখ্যার সমান।

$$l = 120.$$
 ... (1)

l+m= যে দকল বিভাগে 2টি r পাশাপাশি থাকে, তাহাদের সংখ্যা

=2টি r-কে বন্ধনী ভুক্ত করিয়া অন্থা সকল অন্ধর হইতে ভিন্ন একটি অন্ধর মনে করিলে,  $\alpha$ , (rr),  $\alpha$ , n, g, e এই ছয়টি অন্ধর পাওয়া যায়, তাহাদের সবগুলি লইয়া গঠিত বিস্থাসসমূহের সংখ্যা

$$= \frac{6}{2} = 6.5.4.3 = 360. \tag{2}$$

এই ~~বিং~~ল, 
$$l+n=360$$
. ... (3)

(2) ও (3)-এর যোগফল হইতে (1) বিয়োগ করিয়া,

$$l+m+n=(l+m)+(l+n)-l$$
= 360+360-120=600.

$$N = 1260 - (l + m + n) = 1260 - 600 = 660.$$

উদা. 6. যদি n-সংখ্যক ব্যক্তিকে দেওয়ার জন্ম x-সংখ্যক বস্তু থাকে, তবে দেখাও যে, মোট যত বিভিন্ন প্রকারে তাহাদিগকে দেওয়া যায়, তাহার সংখ্যা  $n^x$  ?

ক্ত-সংখ্যক জিনিসের যে-কোন একটি জিনিস n-সংখ্যক বিভিন্ন উপায়ে লোক-গুলিকে দেওয়া যায়; কারণ n-সংখ্যক লোকের যে-কোন জনকেই জিনিসটি দেওয়া যায়। এই জিনিসটি n-সংখ্যক বিভিন্ন উপায়ের যে-কোন এক উপায়ে একজনকে দেওয়া হইলে আর একটি জিনিসও n-সংখ্যক বিভিন্ন উপায়ে লোকগুলিকে দেওয়া যায়; কারণ প্রথম জিনিসটি যে লোক পাইয়াছে, এ জিনিসটিও সেই লোকের পাইবার বাধা নাই বলিয়া, n-সংখ্যক বিভিন্ন লোকের যে-কোন জনকেই এই জিনিসটিও দেওয়া যায়। এখন, প্রথম জিনিসটি দিবার n-সংখ্যক বিভিন্ন উপায়ের প্রত্যেকটির সহিত দিতীয়া জিনিসটি দিবার n-সংখ্যক বিভিন্ন উপায়ের প্রত্যেকটিকে সংযুক্ত করিলে তুইটি জিনিস n×n বা n² বিভিন্ন উপায়ের দেওয়া যায়; এইরূপে তুইটি জিনিস দিবার n-সংখ্যক উপায়ের প্রত্যেকটিকে সংযুক্ত করিলে, তিনটি জিনিস n বা n³ বিভিন্ন উপায়ের প্রত্যেকটিকে সংযুক্ত করিলে, তিনটি জিনিস n² ম বা n³ বিভিন্ন উপায়ের প্রত্যেকটিকে সংযুক্ত করিলে, তিনটি জিনিস n² ম বা n³ বিভিন্ন উপায়ের প্রত্যেকটিকে সংযুক্ত করিলে, তিনটি জিনিস n² ম বা n³ বিভিন্ন উপায়ের দেওয়া যায়।

এইরপে অগ্রসর হইরা দেখা যায় যে, n-সংখ্যক লোকের মধ্যে x-সংখ্যক জিনিস্থত উপায়ে দেওরা যায় তাহাদের সংখ্যা  $= n^x$ .

উদা. 7. কালো এবং সাদা এই ঘুই রঙের, প্রত্যেক রঙের অন্ততঃ 4টি করিয়া বল থাকিলে 4টি বিভিন্ন বান্দের প্রত্যেকটিতে কত বিভিন্ন প্রকারে একটি বল রাখা যাইতে পারে?

কালো অথবা সাদা যে-কোন একটিকেই প্রথম বাক্সে রাখা যায় বলিয়া প্রথম বাক্সে তৃই উপারে একটি বল রাখা যায়; আবার প্রথম বাক্সে কালো অথবা সাদা যে-কোন রণ্ডের বলই রাখা হউক না কেন, দিতীয় বাক্সেও সাদা অথবা কালো অর্থাৎ ছই উপারে একটি বল রাখা যায়। এখন, প্রথম বাক্সে বল রাখার চূই উপারের প্রত্যেক উপারের সহিত দ্বিতীয় বাক্সে বল রাখার দুই উপারের প্রত্যেক উপারের সহিত দ্বিতীয় বাক্সে বল রাখার দুই উপারের প্রত্যেক উপারের করিলে হুইটি বাক্সে 2 × 2 বা 2° বিভিন্ন উপারে বল রাখা হুইলে, তৃতীয় বাক্সে হুই বাক্সে 2° বিভিন্ন উপারের যে-কোন এক উপারে বল রাখা হুইলে, তৃতীয় বাক্সে 2 উপারে বল রাখা যায়, এবং প্রথম ছুই বাক্সে 2° উপারে বল রাখার প্রত্যেকটি উপারের সহিত তৃতীয় বাক্সে বল রাখার 2 উপারের প্রত্যেকটি উপার সংযুক্ত করিলে একটি বাক্সে 2° × 2 বা 2° বিভিন্ন উপারে একটি একটি বল রাখা যায়। সবশেষে তিনটি বাক্সে বল রাখিবার 2° বিভিন্ন উপারের প্রত্যেকটির সহিত চতুর্থ বাক্ষটিতে একটি বল রাখিবার 2টি বিভিন্ন উপারের প্রত্যেকটিকে সংযুক্ত করিয়া যত বিভিন্ন উপারের চারিটি বাক্সে একটি করিয়া বল রাখা যায় ভাহাদের সংখ্যা

 $=2^8 \times 2 = 2^4 = 16$ .

## প্রগ্রমালা 31

1. India শক্তির অক্ষরসমূহের বিক্যাস-সংখ্যা নির্ণয় কর।

[ Calcutta, 1918, '20 ]

- 2. Calcutta শব্দতির সবগুলি অক্ষর একযোগে লইয়া কতগুলি বিস্থাস গঠন করা যাইতে পারে ? [Calcutta, 1916]
- 3. যে অক্ষরসমূহ Allahabad শক্ষাটি গঠন করে, সেই অক্ষরসমূহ লইয়া কতগুলি বিশ্রাস গঠন কর। যায় ? ঐ বিশ্রাসগুলির মধ্যে কতগুলিতে স্বরবর্ণগুলি যুগ্ম স্থানে বসিবে ?
- 4. কোন গ্রন্থাগারে একথানা বইয়ের পাঁচখানা, অপর ছইখানা বইয়ের প্রত্যেকের 4 খানা, অপর তিনখানা বইয়ের প্রত্যেকের 6 খানা এবং অপর ৪ খানা বইয়ের একথানা করিয়া আছে। সব বইগুলি কতপ্রকারে সাজানো যাইতে পারে ?
- 5. Orion শন্টির অক্ষরসমূহ দারা, যদি ধরিয়া লওয়া হয় যে, (i) অক্ষরগুলি যে-কোন ক্রমে থাকিতে পারিবে এবং (ii) ব্যঞ্জনবর্ণদ্বয় একত্র থাকিবে না, তবে কতগুলি শব্দ গঠন করা যাইতে পারে ?

- 6. rationalization শক্ষতির অকরসমূহের কতপ্রকারে পুনর্বিক্তান হইতে পারে? এই পুনবিত্তাসের কতগুলির মধ্যে t তৃইটি একত্র থাকিবে? আর কতগুলিতে a তিনটি প্রথম তিনটি পর পর স্থানে বিসাবে?
- 7. কোন স্বর্বর্ণের অবস্থানের পরিবর্তন না করিয়া utilitarianism শব্দটির অক্ষরগুলির কতপ্রকারে পুনবিশ্রাস করা যায় ?
- স্বরবর্গ এবং ব্যক্ষনবর্ণের আপেক্ষিক অবস্থানের পরিবর্তন না করিয়া Civilisation শব্দটির অক্ষরগুলিকে কতপ্রকারে পুনবিভাস করা যাইতে পারে।
- 9. তোমাকে 12টি বল দেওয়া হইল, তন্মধ্যে 4টি লাল, 3টি কালো এবং 5টি সাদা; কতপ্রকারে তুমি বলগুলি সাজাইতে পার, যেন 2টি সাদা বল পাশাপাশি না বসানো হয়?
- 10. একখানা ট্রেনের 12 খানা বর্গি (carriage) আছে; তন্মধ্যে 5 খানা প্রথম শ্রেণীর, 4 খানা দ্বিতীয় শ্রেণীর এবং অবশিষ্ট কৃতীয় শ্রেণীর। ব্যাপ্তিলিকে কত বিভিন্ন প্রকারে সাজানো যাইতে পারে? স্বশুলি প্রথম শ্রেণীর বর্গি একত্র রাখিয়া ব্যাপ্তিলিকে কত বিভিন্ন প্রকারে সাজানো যাইতে পারে?
- 11. 121,202 সংখ্যাটির অঙ্কগুলির সাহায্যে 6 অঙ্কের কতওলি বিভিন্ন সংখ্য. গঠন করা যাইতে পারে ?
- 12. 9, 8, 5, 2, 3, 4, 3, 2, 5, 8, 5, 2, 3 অস্কগুলির সবগুলি একযোগে লইরা, যুগা স্থানে যুগা অঙ্ক বসাইয়া কতগুলি সংখ্যা গঠন করা যাইতে পারে ?
- 13. 15টি বলের কয়েকটি সাদা এবং বাকিগুলি কালো। সাদা বল কয়টি হইলে: এসব বলগুলি লইয়া গঠিত সমবায়সমূহের সংখ্যা বৃহত্তম হইবে ?
- 14. যে-কোন বালক যে-কোন পুরস্কার পাইতে পারিলে, 3টি পুরস্কার গটি বালকের মধ্যে কতপ্রকারে বিতরণ করা যাইতে পারে ?
- 15. একন অধ্যাপকের পদের জন্ম 3 জন প্রার্থী। 5 জনের ভোটে একজন নির্বাচিত হইবেন; নির্বাচনে কতপ্রকারে ভোট দেওয়া যাইতে পারে ?
- 16. কলিকাতা হইতে চাঁদবালির মধ্যে 4 খানা স্টাঁমার যাতায়াত করে।
  4 খানা স্টাঁমার কলিকাতা হইতে একই নময়ে ছাডিলে, কোন ভদ্রলোকে কত বিভিন্ন
  প্রকারে কলিকাতা হইতে চাঁদবালি 7 বার ভ্রমণ করিতে পারেন ?
- 17. 16-নং প্রশ্নে, ভদ্রলোকের তৃতীয়বার ভ্রমণের সময় যদি একখানা স্চীমার আর পঞ্চমবার ভ্রমণের সময় যদি 2 খানা স্টীমার মেরামতের জন্ম ডকে (dock) থাকিয়া বাইত এবং অন্তান্থবার ভ্রমণের সময় 4 খানা স্টীমারই যাতায়াত করিত, তবে উত্তর কত হুইত ?
  - 18. দৌড়, সম্ভরণ এবং অখারোহণ প্রতিযোগিতায় 15 জন লোক প্রতিদ্বন্দিত

করেন। যদি দৌচের জন্ম 1টি, সন্তরণের জন্ম 2টি এবং অশ্বারোহণের জন্ম ৪টি পুরস্কার হয়, তবে বিভিন্ন মৃল্যের এই 6টি পুরস্কারের দ্বারা কতপ্রকারে তালিকা রচিত হইতে পারে ?

- 19. কোন অভিভাবক তাঁহার 6টি সন্থানকে আইন বা চিকিৎসা বা শ্বপতিবিদ্যা পড়াইতে ইচ্ছুক। প্রত্যেকটি সন্থানই যদি ঐ তিনটি বিষয়ের যে-কোনটি প্র্যোর উপযুক্ত হয়, তবে তিনি তাহাদিগকে কতপ্রকারে শিক্ষা দিতে মন্স্থ করিতে পারেন ?
- 20. m-সংখ্যক লোক আর n-সংখ্যক বানর আছে। m-এর মান অপেক্ষা n-এর মান বৃহত্তর। যদি একজন লোক খে-কোন সংখ্যক বানর পাইতে পারে, তবে প্রত্যেকটি বানর কত প্রকারে একজন মনিব পাইতে পারে ?



A হইতে আরম্ভ করিয়া, ঘডির কাঁটা যেদিকে চলে দেদিকে বৃভটির পাশে পাশে চলিলে চিত্র (1) ও (2) নম্বর চিত্রে পরপর একট অক্ষর পাওয়া যায় বলিয়া বিক্তাস- ছুইটিকে অভিন্ন বিক্তাসরূপে গণ্য করা হয়, কিন্তু চিত্র (3) ও (4)-এ এরূপ পাওয়া যায় না বলিয়া, উহাদিগকে ছুইটি ভিন্ন বিক্তাসরূপে গণ্য করা হয়।

অতএব, কতকগুলি বিভিন্ন বস্তুকে বৃত্তাকারে সঞ্জিত করিয়া বিভিন্ন বিশ্বাস পাইতে হইলে, ঐ সকল বস্তুর যে-কোন একটির অবস্থান স্থির রাখিয়া অবশিষ্ট সকলগুলিকে নম্ভাব্য সকলপ্রকার বিভিন্ন উপায়ে সাজাইতে হয়।

অতএব, n-সংখ্যক বিভিন্ন বস্তুর একটির অবস্থান স্থির রাখিয়া অবশিষ্ট (n-1)-সংখ্যক বিভিন্ন বস্তু হারা যে n-1-সংখ্যক বিভিন্ন বস্তু হারা যে n-1-সংখ্যক বিভিন্ন বস্তুকে বৃত্তাকারে সাজাইবার মোট বিশ্বাস-সংখ্যা।

দ্রেষ্টব্য 1. অনেক বীজগণিতে সারিতে সারিতে সাজানোকে রৈথিক বিভাস (Linear permutations) এবং বৃত্তাকারে সাজানোকে বৃত্তাকার বিভাস (Circular permutations) বলা হইয়াছে। দেষ্টব্য 2. উপরের অন্তচ্ছেদে, ঘডির কাঁটা যেদিকে ঘুরে দেদিকে এবং ইহার উন্টাদিকে একই অক্ষরসমূহ ঘারা গঠিত বিক্তাস-জুইটিকে অতন্ত্র গণ্য করা হইয়াছে; কিন্তু উহাদিগকে অভিন্ন মনে করিলে মোট বিক্তাস হইবে  $\frac{1}{2}$  n-1. যেমন, n-সংখ্যক বিভিন্ন আকারের বা বিভিন্ন রঙের ফুল লইয়া মালা রচনা করিলে  $\frac{1}{2}$  n-1-সংখ্যক বিভিন্ন নমুনা পাওয়া যাইবে; কারণ, কোন নমুনায়, ঘডির কাঁটা যেদিকে ঘুরে সেদিকে ফুলগুলি যে-ক্রমে সজ্জিত থাকে, অন্য এক নমুনায় যদি অন্তন্ধপ ফুলগুলি ঘডির বাঁটা যেদিকে ঘুরে ভাহার উন্টাদিকে একই ক্রমে সংজ্ঞাত থাকে, ভবে মালাটিকে ঘুরাইয়া ধরিলে নমুনা-ছুইটির মধ্যে কোন পার্থক্য থাকে না বলিয়া, নমুনা-ছুইটিকে অভিন্ন ধরা হয়।

জন্তব্য 3. গ-সংগ্যক ব্যক্তি n-1 উপাল্পে বৃত্তাকারে বিগতে পারেন, কিন্তু, গ-সংখ্যক ব্যক্তি একটি গোল টেবিলের চাহিপাশে বিদতে পারেন। গ উপায়ে; কারণ, এক্ষেত্রে ব্যক্তিসমূহের পরম্পরের আপেক্ষিক অবস্থান নহে, টেবিলের সহিত ঐব্যক্তিগণের আপেঞ্চিক অবস্থান বিবেচন। করিতে হ্য।

উদা 1. 7 জন ইংরেজ এবং 7 জন আমেরিকান একটি গোল টেবিলের চতুর্দিকে এরূপে বদিবেন, যেন যে-কোন তৃইজন আমেরিকান একত্র না বদেন। কত-প্রকারে তাঁহারা বদিতে পারেন ?

একজন ইংরেজের অবস্থান স্থির রাখিয়া অবশিষ্ট 6 জন ইংরেজ সন্তাব্য সকল উপায়ে টেবিলের পাশে পাশে বনিলে মোট। 6 বা 720টি বিস্থাস পাওয়া যাইবে।

এই 720টি বিস্তাদের প্রতিটি বিস্তাদে পাশাপাশি উপৰিষ্ট ত্ইজন ইংরেজের মাঝখানে একজন আমেরিকান বদিলে, 7 জন আমেরিকান ঐরূপ 7টি স্থানে বদিতে পারেন এবং আমেরিকানদেরও কোন তুইজনই একত্র বদিবেন না। এখন, 7 জন আমেরিকান ঐ 7টি স্থানে 17 বিভিন্ন উপারে বদিতে পারেন; এবং ইংরেজদের বদিবার প্রতিটি বিস্তাদ হইতে আমেরিকানদের বদিবার 17-সংখ্যক বিভিন্ন বিস্তাদ পাওয়া যায়। ইংরেজদের বদিবার 16-সংখ্যক বিস্তাদ আছে; অতএব, মোট বিস্তাদ-সংখ্যা

## $= 16 \times 17 = 3628800.$

উদা. 2. কতপ্রকারে ৪ জন লোককে একটি গোল টেবিলের চতুর্দিকে এরপভাবে বসানো যাইবে, যেন যে-কোন তুইটি বিস্থাদে যে-কোন লোকের পাশে একই লোক না থাকে।

8 ব্যক্তিকে টেবিলের পাশে পাশে গোল করাইয়া বসাইলে <u>18—1</u> বা <u>17-</u>সংখ্যক বিস্তাস পাওয়া যায়। এই সকল বিস্তাসের কোন একটিতে ঐ সকল লোক ঘড়ির কাঁটা থেদিকে ঘুরে সেদিকে যে-ক্রমে উপবিষ্ট থাকে, অপর একটিতে ঐ সকল লোক ঘড়ির কাঁটা খেদিকে ঘুরে তার বিপরীত দিকে একই ক্রমে উপবিষ্ট থাকে; অভএব এই ত্ইটি বিস্তাসের একটির যে-কোন লোকের তুইপাশে যে তুইজন লোক থাকিবে, অপরটিতেও

ঐ লোকের ছুইপাশে একই ছুইজন লোক থাকিবে। স্থতবাং, শ্রাত্মসারে, এই ছুইটি বিস্তাসকে বিভিন্ন না ধরিয়। অভিন্ন মনে করিতে হুইবে। এইরূপ ছুইটি বিস্তাসকে অভিন্ন মনে করিলে যোট বিস্তাস-সংখ্যা হুইবে  $\frac{1}{2}$  বা  $\frac{1}{2} \times 5040 = 2520$ .

### প্রশ্নমালা 32

- 1. 10টি শিশু একটি আনন্দ-মেলায় কতপ্রকারে বুত্তাকারে বসিতে পারে?
- 2. যে-কোন লোকের পাশে তুইবারে একই লোকেরা না বসে, এরূপে 6 জন লোককে কৃতপ্রকারে একটি গোল টেবিলের চারিদিকে বসানো যাইতে পারে ?
- 3. একাদশ শ্রেণীর 5টি ছাত্র ও দশম শ্রেণীর 5টি ছাত্রকে একজন অন্তর একজনকে কতপ্রকারে একটি গোল টেবিলের চারপাশে বদানো যাইতে পারে ?
- 4. কোন ভোজনভায় 2n-সংখ্যক শতিথির সমাবেশ ইইয়াছে। বাড়ীর কর্তা ও গিন্নীর আদন সামনা-সামনি নিদিষ্ট আছে, আর ছুইজন বিশিষ্ট অভিথি আছেন যাঁহার। পাশাপানি বদিবেন না, অতিথিগণ কতপ্রকারে আদনগ্রহণ করিতে পারেন ?
- 8°11. n-সংখ্যক বিভিন্ন বস্ত হইতে উহাদের যভগুলি ইচ্ছা লইরা গঠিত সমবায়সমূহের সংখ্যা নির্নিয়। [To find the total number of combinations of n dissimilar things by taking some or all at a time.]

n-সংখ্যক বিভিন্ন বস্তকে  $a_1, a_2, \ldots, a_n$  দ্বার। স্টেত করিলে দেখা যায় যে, উক্ত n-সংখ্যক বস্তুর একটি একটি, ছুইটি এইং সর্বশেষে সবগুলিকে লইয়া সন্তান্য সকল প্রকার বিভিন্ন সমবায় গঠন করিলে, এই সকল সমবায়ের যে-কোনটিতে  $a_1$  বস্তুটি (1) থাকিতে পারে, অথবা, (2) নাও থাকিতে পারে। অভএব, দেখা যাইতেচে, প্রদত্ত শর্ত অনুসারে গঠিত সমবায়সমূহে  $a_1$  বস্তুটি মাত্র ছুই উপায়ে বিবেচিত হুইতে পারে।

এইরপে  $a_2$  বস্তুটিও ছুই উপায়ে বিবেচিত হুইতে পারে; এবং  $a_1$ -কে বিবেচনা করিবার প্রত্যেক উপায়ের সহিত  $a_2$ -কে বিবেচনা করিবার প্রত্যেকটি উপায় সংযুক্ত করা যায় বলিয়া, ঐ ছুই বস্তুকে একসঙ্গে মোট  $2\times 2$ , বা  $2^2$ -সংখ্যক বিভিন্ন উপায়ে বিবেচনা করা যায় । আবার,  $a_3$  বস্তুটিকে যে ছুই উপায়ে বিবেচনা করা যায় তাহার প্রত্যেক উপায়ের সহিত  $a_1$  এবং  $a_2$ -কে বিবেচনা করিবার  $2^2$ -সংখ্যক উপায়ে প্রত্যেকটিকে সংযুক্ত করিলে দেখা যায় যে,  $a_1$ ,  $a_3$ ,  $a_3$  বস্তু-তিনটিকে একসঙ্গে  $2^2\times 2$  বা  $2^8$  বিভিন্ন উপায়ে বিবেচনা করা যায় । এইরপে অগ্রানর হুইলে, দেখা যায় যে, n-সংখ্যক বস্তুকে একসঙ্গে  $2^n$ -সংখ্যক বিভিন্ন উপায়ের মধ্যে যেটিতে সম্দয় n-সংখ্যক বস্তুই পরিত্যক্ত হুইয়াছে বিলিয়া ধরা হুইয়াছে, উহা হুইতে কোন সমবায়ই উৎপন্ন হয় না বিলিয়া উহাকে বাদ দিয়া মোট সমবায়-সংখ্যা হুইবে

জাইনা: উপরের ফল চটতে খামরা দেখিতে পাট  ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \cdots + {}^{n}C_{n} = 2^{n} - 1.$ 

8°12. সবশুলি বিভিন্ন মতে, এরূপ বস্তুসমূতের মোট সমবায়।

(p+q+r+···)-সংখ্যক বস্তর মধ্যে p-সংখ্যক বস্তু একজাতীয় এবং পরম্পর অভিন্ন, q-সংখ্যক বস্তু ভিন্ন একজাতীয়, কিন্তু পরম্পর অভিন্ন, r-সংখ্যক বস্তুও ঐ প্রইজাতীয় বস্তু হইতে ভিন্ন অহ্য একজাতীয়, কিন্তু পরম্পর অভিন্ন, ইত্যাদিসপে অহ্যাহ্য জাতীয় বস্তুগুলিও থাকিলে এই সকল বস্তু হইতে একটি একটি করিয়া লইয়া, পৃষ্ঠিট প্রইটি করিয়া লইয়া, ইত্যাদিক্রপে সর্বশেষে স্বক্লিকে লইয়া সভাব্য সকল প্রকার বিভিন্ন সমবায় গঠন করিলে মোট সমবায়-সংখ্যা হইবে

$$(p+1)(q+1)(r+1)\cdots -1$$

p সংস্থাক সমাজানীয় হল প্ৰজ্ঞার অভিন্ন লক্ষ্ণ কমন্ত প্ৰস্তুত্ব প্ৰিন্ত মন্ত্ৰ সমূহের

- (1) কণ্ডলাপ্তে কেই কবিল পাড়িছে পাছে,
- (এ) কতকর্মতে তুলটি কলিল বাকিতে পারে,
- (৪) কংকর্ডিতে (৬৮টি করিনা পাকিতে পরে,

(p) ক্তক্ত্ৰিতে p সংখ্যকটি কবিং পাৰিতে পাৰে,

(p+1) ক চকড় লিচে এ বস্তুটি মোটেই না প্রক্রিতে পারে।

'মাত্রব, দেখা গল, উক্ত p-শাধ্যক বস্তুকে সমব্যে গঠনকালে (p+1)-সাধ্যক বিভিন্ন উপায়ে বিবেছনা করা যায়।

এটনপ্, গু-শ্রাক সম্পাত্ত এবং প্রস্পর অভিন্ন বস্তুকে সম্বায় গঠনকালে (৫ ৮1)-বংগাক বিভিন্ন উপায়ে বিকেচন কর মাত্র

এবন, p-শংখাক সমতাত ও বাধাকে বিশেচনা কারণার (p+1)-শংখাক বিভিন্ন উপাতের প্রত্যাক্তির ২.১৩ p-শংখাক সমতাত এই বাধাকে বাধাকে , p-রোধার (q+1)-শংখাক বিভিন্ন উপাতের প্রত্যাক্তির শংগাক বিভান উপাতের প্রত্যাক্তির শংগাক বিভান উপাতের প্রত্যাক্তির শংগাক বিভান উপাতের সমস্থিত দ্বাধার বাধাকে শমবাত গংলকালে নোন (p+1)-শংখাক বিভিন্ন উপাতের বিশ্বেচনা করা যায়। এ০কাপে, p, q, r-শংখাক শমবাত গংলকালে মোনি (p+1)-শংখাক বিভান করা যায়।

$$(p+1)(q+1)(r+1)\cdots -1.$$

क्षानु निकास । १४ वर्ष १०१८, १ मन् मार्गाम । १०१८, जातर १०४० १ १८ - ११ मार्गाम १९१५ १९१४ १४ वर्ष १०१८ १७, छन्। मार्गायाक वि

# ৪'13. বিভিন্ন দেকেবর বি লাল।

(m+n)-সংখ্যক বস্তুকে কন্ত বিভিন্ন উপায়ে যথাক্রেমে m-সংখ্যক এবং
n-সংখ্যক বস্তু-সংবলিত ছুইটি দলে ভাগ করা যায় ভাই। নির্ধায় করিছে
ছুইবে। নির্ধান বিভ্নান বিভাগ করা হালে লিগায় করিছে
ক্রেরে। নির্ধান বিভাগ বিভাগ বিভাগ করা হালে বিভাগ করিছে

সং কর্ম করা করা হলাক লাগালে হাছাক বিলাচে না নাগাক লাভ চলালি ভ ব্র নাছন কিল লাভ করা না তাল গকলাক তার তালে করার না তাল পদা গাসন করার হাছা কালালের কাল করালের তাল করার পা লাগাকলে, হাহা হলাছে তিনি লাহা হিলাব লাগালের কালাক লাভ সালিক করা বালা হালালের হালাল লাহা হিলাব লাগালের কালালের সংখ্যা

সুষ্ঠার বা বা — নাহর্লি, কালো সাল , — আন্তা জন বি নাম সলাক কেবি । বা , বালু বাহ্যাসক পৰি এ বা পুলিমাকে কেবি লৈ সাহুই সল পাকে অক্কিটেডক এ ছই দলেরই স্থান অদল-বদল করা হয় মাত্র বলিয়া ঠিক সেই ছই দলই থাকে; অতএব, এক্ষেত্রে, 2m-সংখ্যক বস্তুকে m-সংখ্যক বস্তু-সংবল্তি ছুইটি ছুইটি দলে ভাগ করিবার বিভিন্ন উপায়-সংখ্যা হইবে

$$\frac{|2m|}{2 \cdot |m|m}, \ \ \forall |, \ \ \frac{1}{2} \cdot \frac{|2m|}{(|m|^3)}.$$

উদা 1. একটি এক প্রসা, একটি তুই প্রসা, একটি তিন প্রসা, একটি পাঁচ প্রসা, একটি দশ প্রসা, একটি বিশ প্রসা, একটি পাঁচিশ প্রসা এবং একটি প্রশাশ প্রসা দ্বারা কতগুলি অর্থ-প্রিমাণ গঠন করা যায় ?

্রপ্রবে মোট ৪টি বিভিন্ন মূদ্রা আছে; এই সকল মূদ্রা হইতে একটি করিয়া বা ছুইটি করিয়া, ইত্যাদিরপে লওয়া যায়।

... মোট নির্বাচন-সংখ্যা

$$= {}^{8}C_{1} + {}^{8}C_{2} + {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{5} + {}^{8}C_{6} + {}^{8}C_{7} + {}^{8}C_{8}$$
$$= 2^{8} - 1 = 256 - 1 = 255.$$

উলা. 2. 42-এর কতগুলি বিভিন্ন উৎপাদক আছে?

কোন সংখ্যার মৌলিক উৎপাদকগুলির প্রত্যেকটিই উহার উৎপাদক, আবার, এইসব মৌলিক উৎপাদকের একাবিকের গুণফলও উহার উৎপাদক।

এখন, 42-এর তিনটি মেলিক উৎপাদক 2,3 ও 7. এই তিনটি মেলিক উৎপাদকের এক বা একানিককে যত বিভিন্ন উপায়ে নির্বাচন করা যায়, 42-এর ততগুলিই উৎপাদক হইবে।

ে মোট উৎপাদক-সংখ্যা =  ${}^3C_1 + {}^3C_2 + {}^3C_3 = 2^3 - 1 = 7$ .

কিন্তু এই 7টি উৎপাদকের মধ্যে 42ও আছে, সেটিকে বাদ দিয়া নির্ণের উৎপাদক-সংখ্যা = 7 - 1 = 6.

উদা 3. 10টি বিভিন্ন বস্তুকে 2টি, 3টি ও 5টি এইরূপ তিন ভাগে কত-প্রকারে ভাগ করা যাইতে পারে ?

 $10^{\circ}$  জিনিস হইতে  $2^{\circ}$  করিয়। নির্বাচন করা যায়  $^{\circ}C_2$  উপায়ে;  $2^{\circ}$ ে জিনিস নির্বাচিত হইবার পরে অবশিষ্ট ৪টি জিনিস হইতে  $3^{\circ}$ ট করিয়। নির্বাচন করা যায়  $^{\circ}C_3$  উপায়ে এবং  $3^{\circ}$ টেক নির্বাচন করিবার পরে অবশিষ্ট  $5^{\circ}$ ট হইতে  $5^{\circ}$ ট করিয়া নির্বাচন করা যায়  $^{\circ}C_3$  উপায়ে। স্কতরাং,  $10^{\circ}$ ট জিনিসকে যথাক্রমে 2, 3 ও  $5^{\circ}$ ট জিনিস-সংবলিত  $3^{\circ}$ ট দলে ভাগ করিবার মোট উপায়-সংখ্যা

$$= {}^{10}C_2 \times {}^{8}C_8 \times {}^{5}C_5 = \frac{10 \times 9}{2 \times 1} \times \frac{8 \times 7 \times 6}{3 \times 2 \times 1} \times 1 = 45 \times 56 = 2520.$$

- উদা. 4. (i) কত উপায়ে 15টি বিভিন্ন বস্ত 3 ব্যক্তির মধ্যে সমান ভাগে ভাগ করা যাইতে পারে ?
- (ii) 15টি বিভিন্ন বস্তকে 5টি বস্তু-সংবলিত 3টি রটি দলে কঙপ্রকারে ভাগ করা যাইতে পারে ?
- (i) এগুলে 15টি বিভিন্ন বস্তুকে 3 ব্যক্তির মধ্যে সমান ভাগে ভাগ করিয়া দিলে প্রভ্যেকে 5টি কবিয়া বস্তু পাইনে এবং যত বিভিন্ন উপায়ে উহাদের ভাগ করিয়া দেওয়া যায় তাহাদের সংখ্যা

$$= \frac{15}{(5)^3} = \frac{15.14.13.12.11.10.9.8.7.6}{5.4.3.2.1.5.4.3.2.1.5} = 14.13.11.9.7.6$$

$$= 756756.$$

(ii) এম্বলে, বিভিন্ন 5টি বস্তু-সংবলিত 3টি 3টি দলে 15টি বস্তুকে ভাগ করিতে ইইবে বলিয়া, 3টি 3টি দলের মোট সমবায়-সংখ্যা, অর্থাং যত বিভিন্ন উপায়ে উহাদের লইয়া 5টি বস্তু-সংবলিত 3টি করিয়া দল গঠন করা যায়, তাহাদের সংখ্যা

$$-\frac{|15|}{(|5|^3|3}-\frac{756756}{6}-126126.$$

#### প্রেরমালা 33

- 1. একজন লোকের 6 জন বসু আছেন। তিনি কতপ্রকারে তাঁহাদের একজন বা একাদিক জনকে মধ্যাক্তভাকে নিমন্ত্রণ ক্রিতে পারেন ? [C. U. 1950]
- 2. একটি থলিতে একটি সভাবিন, একটি অর্থ সভাবিন্, একটি জাউন, একটি মোরিন, একটি শিলিং, একটি পেনি এবং একটি ফাদিং আছে। কভল্লকালে ঐ থলি হলতে কিছু পরিমাণ অর্থ ভোল। যাহতে পারে দ
  - 3. 4290-এর কাটি বিভিন্ন উংপাদক আছে ?
- 4. একট আওঁয়ে ফলগুলি একট আকারের হউলে, 4টি লেবু, 6টি আপেল এবং 7টি পেয়ার। ইউতে কতপ্রকারে বাতাই করা মন্তব ?
- 5. রবীক্নাথের 'গাঁভাজনি' 3 খানা, বল্লিমচন্দ্রের 'আনক্ষঠ' 5 খানা ও শরওচন্দ্রের 'পথের দাবী' 7 খানা ছুইটি ছাত্তের মধ্যে কতপ্রকারে ভাগ করিয়া দেওয়া যাইতে পারে?
- 6. প্রমাণ কর যে, ৪টি প্রদান্ত প্রশ্নের প্রভ্যেকটির একটি করিয়া বিকল্প থাকিলে, ভাষাদের মধ্যে এক বা একাধিক প্রশ্ন নির্বাচনের সংখ্যা 3\*-1. [C. U. 1918]
- 7. প্রমাণ কর যে, daddy did a deadly deed-এর অক্ষরগুলির সম্বায়-সমূহের সংখ্যা 1919. [B. U. 1910]

- 8. ৪টি বিভিন্ন প্রকারের বস্তু ত্ইজন লোকের মধ্যে ক্তপ্রকারে ভাগ করিয়া দেওয়া যায় ?
- 9. নিজেদের মধ্যে খেলার জন্ম 22 জন খেলোয়াড়কে কতপ্রকারে 2টি ক্রিকেট-দলে (cricket team) ভাগ করা যায় ? [C. U. 1950]
- 10. (p+q+r)-সংখ্যক বস্তুর p-সংখ্যক বস্তু একই প্রকারের, q-সংখ্যক বস্তু একই প্রকারের এবং অবশিষ্ট বস্তুগুলি বিভিন্ন প্রকারের হুইলে, প্রমাণ কর যে, উহাদের কতন্তুলি বা সবগুলি একনোগে লইয়া সমবায় গঠিত হুইলে, তাহাদের সংখ্যা  $=(p+1)(q+1)2^r-1$ .

#### 8°14. বিবিধ প্রশ্ন।

উদা 1. examination শদ্ধির অক্ষরগুলিকে 4টি 4টি করিয়া লইয়া কতগুলি বিশ্বাস এবং সমবায় পাওয়া যাইবে ?

শল্টিতে মোট 11টি অক্ষর (a,a), (i,i), (n,n), e,x,m, t, o আছে; ইহাদের মধ্যে 2টি a, 2টি i, 2টি n, এবং 5টি অক্ষর আছে 1টি করিয়া।

এই সকল অক্ষর হইতে 4টি করিয়া লইয়া সমবায় গঠন করিলে, ইহাদের কতকগুলিতে 4টি অক্ষরই বিভিন্ন থাকিতে পারে, আবার কতকগুলিতে সেইরূপ নাও থাকিতে পারে, অতএব, ঐ সকল সমবায়কে নিম্নলিথিত 3 শ্রেণীতে বিভক্ত করা যায়:

- (1) 4টি বিভিন্ন অক্ষরযুক্ত সমবায়সমূহ,
- (2) 2টি একই প্রকার এবং 2টি বিভিন্ন এইরূপ 4টি অক্ষরযুক্ত সমবায়সমূহ,
- (3) 2টি একপ্রকার এবং অপর তুইটি ভিন্ন অশু একপ্রকার এইরূপ 4টি অক্ষর-যুক্ত সমবায়সমূহ।

ইহা স্পষ্টই প্রতীয়মান হয় যে, সম্ভাব্য সকলপ্রকার সমবায় উপরিউক্ত শ্রেণী তিনটিতে আছে। স্থতরাং, প্রত্যেক প্রেণীর সমবায়-সংখ্যা নির্ণয় করিয়া, সেই সংখ্যা হইতে নির্ণেয় বিক্যাস-সংখ্যা পাওয়া যাইবে।

(1) a, i, n, e, x, m, t, o এই ৪টি অক্ষর হইতে 4টি করিয়া লইয়া সমবায় গঠন করিলে এই শ্রেণীর সমবায়গুলি পাওয়া যাইবে।

অতএব, উহাদের সংখ্যা= 8C1.

আবার, এই দকল দমণায়ের প্রত্যেকটি হইতে  $\lfloor 4$ -সংখ্যক বিক্তাস পাওয়া যায় বিলিয়া, এই শ্রেণীর দমবায়দমূহ হইতে গঠিত বিক্তাস-সংখ্যা =  $^8C_4 \times \lfloor 4$ .

(2) (a, a)-এর সহিত i, n, e, x, m, t, o এই 7টি অক্ষরের 2টি করিয়া লইয়া

লংমুক্ত করিলে, (i, i)-এর সহিত a, n, e, x, m, t, o এই 7টি অক্ষরের ছুইটি করিয়া লইয়া সংযুক্ত করিলে, এবং (n, n)-এর সহিত a, i, e, x, m, t, o এই 7টি অক্ষরের ছুইটি করিয়া সংযুক্ত করিলে, এই শ্রেণীর সমবায়গুলি পাওয়া যাইবে। অভএব, এই শ্রেণীর সমবায়সমূহের মোট সংখ্যা  $= 3 \times {}^{7}C_{2}$ .

জাবার, এই দকল সমবায়ের প্রত্যেকটি হইতে  $\frac{4}{2}$ -সংখ্যক বিক্রাস পাওয়া যায় বলিয়া, এই শ্রেণীর সমবায়সমূহ হইতে গঠিত মোট বিক্রাস-সংখ্যা  $= 3 \times {}^7C_3 \times \frac{14}{2}$ .

(3) (a, a), (i, i) এবং (n, n) এই তিনজোড়া অক্ষর হইতে তুইজোড়া করিয়া লইলেই এই শ্রেণীর সমবারগুলি পাওয়া যাইবে। অতএব, এই শ্রেণীর সমবায়- সংখ্যা =  ${}^3C_2 = {}^3C_1$ .

জাবার, এই দকল সমবায়ের প্রত্যেকটি হইতে  $\frac{4}{2 \cdot 2}$ -সংখ্যক বিশ্বাস পাওয়া যায় বলিয়া, এই শেণীর দমবারদম্হ হইতে গঠিত মোট বিশ্বাস-সংখ্যা =  ${}^3C_1 imes \frac{4}{2 \cdot 2}$ .

· নির্ণের মোট সমবার-সংখ্যা

$$= {}^{8}C_{4} + 3 \times {}^{7}C_{2} + {}^{8}C_{1}$$

$$= {}^{8.7.6.5}_{4.3.2.1} + 3 \times {}^{7.6}_{2.1} + 3 = 70 + 63 + 3 = 136;$$

এবং নির্ণের মোট বিস্তাস-সংখ্যা

$$= {}^{8}C_{4} \times [4 + 3 \times {}^{7}C_{2} \times \frac{[4}{2} + {}^{8}C_{1} \times \frac{[4}{2]2}]$$

 $=70 \times 24 + 63 \times 12 + 3 \times 6$ 

= 1680 + 756 + 18 = 2454.

উদা 2. হাওড়া হইতে খজগপুরগামী একখানা ট্রেন মধ্যবর্তী 9টি স্টেশনে থামে। ছয়জন যাত্রী ছয়খানা বি ভিন্ন টিকিট লইয়া ট্রেনের কামরায় উঠে। তাহাদের নিকট কত বিভিন্ন প্রকারের টিকিট থাকিতে পারে ?

## HS1 S2 S3 S4 S5 S6 S7 S8 S9 K

মধ্যবর্তী স্টেশনসমূহকে  $S_1, S_2, ..., S_9$  দারা স্থাচিত করিলে, স্পষ্টই দেখা যাইতেছে, খড়গপুর অভিমুখে যাইবার জন্ম,  $S_1$  স্টেশনে 9 প্রকার বিভিন্ন টিকিট পাওয়া যায়,  $S_2$  স্টেশনে 8 প্রকার বিভিন্ন টিকিট এবং

এইরপে  $S_4$ ,  $S_5$ ,  $S_6$ ,  $S_7$ ,  $S_8$  এবং  $S_9$  স্টেশনসমূহে যথাক্রমে 6, 5, 4, 3, 2 এবং 1 প্রকার বিভিন্ন টিকিট পাওয়া যায়। অতএব, হাওডা হইতে খড়গপুর যাইবার সময়ে মধ্যবর্তী স্টেশনসমূহে মোট 9+8+7+6+5+4+3+2+1, বা 45 প্রকার বিভিন্ন টিকিট পাওয়া যায়। প্রশ্নে প্রদত্ত 6 থানি বিভিন্ন টিকিট এই 45 প্রকার বিভিন্ন টিকিট এই 45 প্রকার বিভিন্ন টিকিট হইতে 6 থানি যড প্রকারে নির্বাচন করা যায়, তাহাই হইবে নির্বোধ সংখ্যা।

:. নির্পেয় সংখ্যা = 
$${}^{4.5}C_6 = \frac{45.44.43.4241.40}{6.5.4.3.2.1} = 3 \times 11 \times 43 \times 7 \times 41 \times 20 = 8145060.$$

## প্রশালা 34

# (বিবিধ প্রশ্নমালা)

n-দংখ্যক বিভিন্ন বস্তুর 1-দংখ্যক বস্তু লইয়া গঠিত বিক্রাদদম্হের মোট
দংখ্যা P<sub>7</sub> দারা স্টিত হইলে, প্রমাণ কর যে,

$$P_1 + \frac{P_4}{2!} + \frac{P_3}{3!} + \frac{P_4}{4!} + \dots + \frac{P_n}{n!} = 2^n - 1.$$

- 2. যদি  ${}^nC_{r-1}/a = {}^nC_r/b = {}^nC_{r+1}/c$  হয়, তবে n এবং r-এর মান নির্ণয় কর।
- 3. একটি টেলিগ্রাফের m বাহু আছে। প্রত্যেকটি বাহুকে n বিভিন্ন অবস্থানে রাখিতে পারা যায়। সবগুলি বাহু একযোগে লইবা একটি সঙ্কেত দিতে হইলে, টেলিগ্রাফটি দ্বারা যতগুলি সঙ্কেত দেওয়া যায়, তাহার সংখ্যা নির্ণয় কর।
- 4. একজন ভদলোক 12 জন বন্ধুকে নৈশভোজে নিমন্ত্রণ করেন। 6 জনকে এক টেবিলে আর অপর 6 জনকে অন্ত টেবিলে বসান; টেবিল ছুইটি গোলাকার। তিনি অতিথিদিগকে কন্তপ্রকারে বসাইতে পারেন ?

্ ইঙ্গিত ঃ অন্তচ্ছেদ ৪'11 দ্রষ্টব্য অনুসারে সমবায়-সংখ্যা  $\frac{2m}{(\lfloor m)^2}$  হয়; যেহেতু যে-কোন দলটিকে যে-কোন এক টেবিলে বসানো যায়। অতএব, নির্ণেয় সমবায়-সংখ্যা  $\frac{12}{(6)^2}$ ে ইহা হইতে নির্ণেয় বিক্যাস-সংখ্যা নির্ণীত হইবে। ]

5. কোন বীজগণিতীয় প্রশ্নমালার পুস্তকে সমাস্তর-শ্রেণীর 15টি উদাহরণ, বিস্তাস ও সমবায়ের 20টি উদাহরণ এবং দ্বিপদ উপপাত্যের 18টি উদাহরণ আছে। প্রত্যেক বিষয় হইতে অনধিক ছুইটি করিয়া উদাহরণ একজন শিক্ষক তাঁহার ছাত্রের জন্ম কতপ্রকারে বাছাই (select) করিতে পারেন ?

- 6. ৪টি একই প্রকারের বস্তুদহ মোট 16টি বস্তুর ৪টি করিয়া লইয়া মোট সমবায়সমূহের সংখ্যা নির্ণয় কর।
- 7. length, stroke এবং number শব্দ কয়টির প্রত্যেকটি হইতে অস্ততপক্ষে 4টি করিয়া অক্ষর লইয়া কভগুলি বিভিন্ন সমবায় গঠিত হইতে পারে ?
- 8. random, noble এবং integral শব্দ কয়টির প্রত্যেকটি হইতে অন্ততপক্ষে একটি অক্ষর লইয়া কতগুলি বিভিন্ন সমবায় গঠিত হইতে পারে ?
- 9. 2a, 3a,....., na-সংখ্যক বস্তু-সংবলিত (n-1)-সংখ্যক ভাগ আছে। প্রমাণ কর যে, প্রথম ভাগ হইতে a-সংখ্যক বস্তু, দ্বিতীয় ভাগ হইতে 2a-সংখ্যক বস্তু এবং অনুরূপভাবে প্রত্যেক ভাগ হইতে লইয়া সমবায় গঠিত হইলে, মোট সমবায়ের সংখ্যা  $\frac{(na)!}{(n!)^n}$ .
- 10.  $(a_1, a_2, a_3, a_4)$ ,  $(b_1, b_2, b_3)$  এবং  $(c_1, c_2)$ —এই তিন শ্রেণীর অক্ষরগুলি লইয়া গঠিত সমবায়সমূহের মধ্যে যাহাতে কোন শ্রেণীর ছুইটি অক্ষর থাকিবে না, সেইরপ সমবায়সমূহের সংখ্যা নির্ণয় কর।
- 11. n-সংখ্যক কামরার প্রত্যেক কামরার n-সংখ্যক কাউণ্টার (counter) আছে; উহাদের যে-কোন তৃইটি একই রকমে চিহ্নিত নহে। প্রমাণ কর যে, কাউণ্টারগুলি লইরা গঠিত সমবারসমূহের সংখ্যা যাহাতে একই কামরার 2টি কাউণ্টার খাকিবে না= $(n+1)^n-1$ .
- 12. দেখাও বে, 1, 2, 3, ইত্যাদি 10টি অন্ধ দারা গঠিত 1000 অপেক্ষা ক্ষুদ্রতর এবং 5 দারা বিভাজ্য সংখ্যাসমূহের সংখ্যা = 154.
- 13. 2 থানা নীল, 1 থানা সাদা, 1 থানা লাল এবং 1 থানা কালো—এই 5 থানা পতাকার সাহায্যে কতগুলি বিভিন্ন সংগত করা যাইতে পারে ?
- 14. এক ভদ্রলোক তাঁহার (m+n)-সংখ্যক বন্ধুকে নৈশভোজে নিমন্ত্রণ করেন এবং m-সংখ্যক বন্ধুকে এক গোল টেবিলে এবং n-সংখ্যক বন্ধুকে অন্ত গোল টেবিলে বসান । কতপ্রকারে তিনি বন্ধুনিগকে বসাইতে পারেন, তাহার সংখ্যা নির্ণয় কর ।
- 15. thatch শব্দটির অক্ষরসমূহের 3টি 3টি লইরা গঠিত সমবারসমূহের সংখ্যা নির্ণিয় কর।
- 16. toleration শক্টির অক্ষরদম্হের 4টি 4টি লইয়া গঠিত সমবায়সমূহের সংখ্যা নির্ণয় কর।
- 17. alliteration শব্দটির অক্ষরসমূহের 4টি 4টি লইরা গঠিত সমবায়সমূহের সংখ্যা নির্ণয় কর।

- 18. parallelogram শন্ধটির অক্ষরসমূহের 4টি 4টি লইরা গঠিত সমবার ও বিভাসসমূহের সংখ্যা নির্ণয় কর।
- 19. accommodation শক্ষতির অক্ষরসমূহের 7টি 7টি লইরা গঠিত সমবায়-সমূহের সংখ্যা নির্ণয় কর।
- 20. 1, 1, 2, 3, 4, 0 সক্ষেপ্তির 4টি 4টি লাইর। 1000 অপেক্ষা বৃহত্তর যতগুলি সংখ্যা গঠন করা যাইতে পারে, তাহাদের সংখ্যা নিগর কর।
- 21. 3 খানা গণিতের পুস্তক, 4 খানা বিজ্ঞানের পুস্তক এবং 5 খানা সাহিত্যের পুস্তকের মধ্য ছইতে (i) প্রত্যেক বিষয়ের একখানা পুস্তক লইয়া, (ii) প্রত্যেক বিষয়ের অন্তপক্ষে একখানা পুস্তক লইয়া গঠিত সমশায়ের সংখ্যা নির্ণয় কর।
- 22. কলিকাতা হইতে গোয়ালন্দগামী একথানা মেলগাড়ী মধ্যবর্তী 12টি স্টেশনে থামে। 75 জন যাত্রী মধ্যবর্তী স্টেশন হইতে একটি দ্বিতীয় শ্রেণীর কামরায় বিভিন্ন টিকিট লইখা উঠিল। তাহাদের নিকট কতপ্রকারের টিকিট থাকিতে পারে ?
- 23. প্রমাণ কর যে, m এবং n এই তুই শ্রেণীর সমান্তরাল সরল রেখাসমূহের ছেদনে যে সমন্ত সামান্তরিক উৎপন্ন হইতে পারে, তাহাদের সংখ্যা

$$= \frac{1}{4} m n (m-1)(n-1).$$

24. কোন সমতলে অবস্থিত n-সংখ্যক বিন্দু অনিৰ্দিষ্ট সরল রেখা দারা সম্ভাব্য সকল প্রকারে যুক্ত হইলে, এবং একটি সরল রেখা আর একটির উপর সমাপতিত বা একটি সরল রেখা অপর একটি সরল রেখার সমাস্তরাল না হইলে, বা মূল n বিন্দু ব্যতীত অপর কোন বিন্দুতে তিনটি সরল রেখা একবিন্দুগামী না হইলে, প্রমাণ কর যে, মূল n-বিন্দুগুলি ব্যতীত, সরল রেখাসমূহের ছেদবিন্দুর সংখ্যা হইবে

$$\frac{n(n-1)(n-2)(n-3)}{8}.$$

25. প্রমাণ কর যে,

$$^{m+n}C_r = {}^mC_r + {}^mC_{r-1} \cdot {}^nC_1 + {}^mC_{r-2} \cdot {}^nC_2 + \dots + {}^mC_1 \cdot {}^nC_{r-1} + {}^nC_r \cdot {}^nC_$$

[(m+n)-সংথাক বস্তুকে m-সংথাক এবং n-সংথাক বস্তু-সংবলিত তুইটি ভাগে ভাগ করিয়া, (1) m-সংথাকের ভাগ হইতেই r-সংথাকটি করিয়া লইয়া, (2) m-সংথাকের ভাগ হইতে (r-1)টি করিয়া এবং n-সংখাকের ভাগ হইতে 1টি করিয়া লইয়া, (3) m-সংখাকের ভাগ হইতে (r-2)টি করিয়া এবং n-সংখাকের ভাগ হইতে 2টি করিয়া লইয়া, ইত্যাদিরূপে সমবায়সমূহ গঠন করিলে (m+n)-সংখ্যক বস্তু ইইতে r-সংখ্যকটি করিয়া লইয়া গঠিত সকল সমবায়ই পাওয়া যাইবে 1]

#### ন্ব্য অথ্যায়

# ধনাত্মক ও অথও হুচকের ক্ষেত্রে দিপদ উপপাত্ত ( Binomial Theorem for Positive Integral Index )

- 9'1. ভিশাদ রাশি: ছুইটি পদ্যুক্ত রাশিমালাকে দ্বিপদ রাশি (Binomial) বলে। (a+x), (1+x), (x+y), (2x+3y) ইত্যাদি দ্বিপদ রাশি।
- 9'2. ত্রিশাল উপশাল : যে বীজগণিতীয় স্তরদাহায্যে দ্বিপদ রাশির কোন ঘাতকে বিস্তৃত করিয়া একটি শ্রেণীর আকারে প্রকাশ করা যায়, তাহাকে দ্বিপদ উপপাত্ত (Binomial Theorem) বলে এবং শ্রেণীটিকে ঐ ঘাতের বিস্তৃতি (expansion) বলা হয়।

ধিপদ রাশিটির ঘাতের স্থচক ধনাত্মক পূর্ণদংখ্যা হইলে, উপপাছটিকে ধনাত্মক এবং পূর্ণসূচকবিশিষ্ট ঘাত-সম্প্রসারক দ্বিপদ উপপাছ (Binomial theorem for positive integral index) বলা হয়।

9'3. ধনাত্মক এবং পূর্ণসূতকবিশিষ্ট ঘাতসম্প্রসারক দ্বিশাস উপপাত : n ধনাত্মক এবং পূর্ণসংখ্যা হইলে প্রমাণ করিতে হইবে যে,

$$(a+x)^n = a^n + {}^nC_1a^{n-1}x + {}^nC_2a^{n-2}x^2 + {}^nC_3a^{n-3}x^3 + \cdots + {}^nC_ra^{n-r}x^r + \cdots + x^n$$
 (1)

$$= a^{n} + na^{n-1}x + \frac{n(n-1)}{2}a^{n-3}x^{2} + \frac{n(n-1)(n-2)}{3}a^{n-3}x^{3} + \cdots$$

$$+\frac{n(n-1)(n-2)\cdots(n-r+1)}{\lfloor r\rfloor}a^{n-r}x^r+\cdots+x^n,\qquad \cdots \qquad (2)$$

 $(a+x)^n = n$ -সংখ্যক (a+x)-এর ক্রমিক গুণফল,

$$=(a+x)(a+x)\cdots$$
ূন-সংখ্যক গুণক প্ৰযন্ত।

এই n-সংখ্যক গুণকের ক্রমিক গুণফলের প্রত্যেকটি পদ হইবে উক্ত n-সংখ্যক গুণকের প্রত্যেকটি হইতে একটি করিয়া লইয়া যে n-সংখ্যক অক্ষর পাওয়া যায়, তাহাদের গুণফল। প্রতিটি গুণক হইতে একটি করিয়া লইয়া এই n-সংখ্যক অক্ষর নির্বাচনের সময়

- (ক) উক্ত n-শংখ্যক গুণকের কতকগুলি হইতে x এবং বাকীগুলি হইতে a লওয়া যায়;
  - (খ) সবগুলি হইতেই ৫ লওয়া যায; আবার,
- এবং (গ) সবগুলি হইতেই x-ও লওয়া যায়।

স্পষ্টত, এই তিনপ্রকার বিভিন্ন উপায় নির্বাচন করিলেই, উক্ত ক্রমিক গুণফলের সব কয়টি পদ পাওয়া যাইবে।

এখন, (ক) ধরা যাক n-সংখ্যক গুণকের মধ্যে r-সংখ্যক গুণকের প্রত্যেকটি হইতে যেন  $\alpha$  এবং বাকী (n-r)-সংখ্যক গুণকের প্রত্যেকটি হইতে যেন  $\alpha$  লওয়া হইল। এই দকল অক্ষরের গুণন হইতে  $\alpha^{n-r}x^r$  দম্বলিত পদটি পাওয়া যায়। কিন্তু n-সংখ্যক গুণক হইতে, r-সংখ্যক যে-গুণকগুলির প্রত্যেকটি হইতে  $\alpha$  অক্ষরটি লওয়া হইল, তাহাদের  $nC_r$  উপারে নির্বাচন করা যায় বলিয়া,  $nC_r$ -সংখ্যক  $\alpha^{n-r}x^r$  দম্বলিত পদ পাওয়া যাইবে; অতএব, উক্ত ক্রমিক গুণফলে  $\alpha^{n-r}x^r$  পদটির সহগ হইবে  $nC_r$ ; তাহা হইলে পদটি হইল  $nC_r\alpha^{n-r}x^r$ . স্পষ্টই, r-এর মান 0 হইতে n পর্যন্ত যে-কোন সংখ্যাই হইতে পারে; কিন্তু ইহার মান ক্যনই n অপেক্ষা বৃহত্তর হইবে না। r-এর এই সকল বিভিন্ন মানের জন্ম  $nC_r\alpha^{n-r}x^r$ -জাতীয় বিভিন্ন পদ পাওয়া যাইবে।

- (খ) উপরে (ক)-এ r=0 ধরিলে, কোন গুণক হইতেই x অক্ষরটি লওয়া হইবে না, n-সংখ্যক গুণকের সবগুলি হইতে a অক্ষরটি লওয়া হইবে। অতএব, এক্ষেত্রে, প্রটি হইবে  $a^n$  কেননা, ইহার সহগ হইবে  ${}^nC_0$  ব. 1. স্পষ্টই,  ${}^nC_ra^{n-r}x^r$ -এ r=0 বসাইয়া, সহগ-সমেত  $a^n$ -সম্প্রতি প্রটি পাওয়া যায়।
- (গ) r=n ধরিলে, (ক) হইতে দেখা যায়, কোন গুণক হইতেই a অক্ষরটি লওয়া হইবে না, n-সংখ্যক গুণকের সবগুলি হইতে x অক্ষরটি লওয়া হইবে। অতএব, এক্ষেত্রে,  $x^n$  পদটি পাওয়া যাইবে, কেননা, ইংার সংগ হইবে  $^nC_n$  বা 1. ইহাও  $^nC_ra^{n-r}x^r$ -এ r=n বসাইয়া পাওয়া যায়।

অ ত এব, দেখা গেল উক্ত ক্রেক গুণফলের সহগ-সমেত সকল পদই  $^nC_ra^{n-r}x^{r}$ -এ পর পর  $r=0,\,1,\,2,\,\cdots,\,n$  বসাইয়া পাওয়া যায়।

#### বিকল্প প্রমাণ ঃ

প্রকৃত গুণন দারা দেখা যায়,

$$(a+x)^{3} = a^{2} + 2ax + x^{2} = a^{2} + {}^{2}C_{1}a^{2-1}x + x^{2},$$

$$(a+x)^{3} = a^{3} + 3a^{2}x + 3ax^{3} + x^{3}$$

$$= a^{3} + {}^{3}C_{1}a^{3-1}x + {}^{3}C_{2}a^{3-2}x^{2} + x^{3}.$$

n=2 এবং 3-এর ক্ষেত্রে দ্বিপদ উপপাখটি সত্য প্রমাণিত হইল।

এখন, ধরা যাক, n-এর কোন বিশেষ মান m-এর জন্ম উপপাতটি মন্ত্য। তাহা ছইলে.

$$(a+x)^m = a^m + {}^mC_1a^{m-1}x + {}^mC_2a^{m-2}x^2 + {}^m({}^1_3a^{m-3}x^3 + \cdots + {}^mC_7a^{m-7}x^7 + \cdots + x^m).$$
 (A)

(A)-এর উভন পক্ষকে (a + x) ঘারা গুণ কবিলে,

$$(a+x)^{m+1} \cdot \cdot \cdot (a+x) \{a^m + {}^mC_1 a^{m-1} x + {}^mC_2 a^{m-2} x^2 + {}^mC_3 a^{m-3} x^3 + \cdots + {}^mC_7 a^{m-7} x^7 + \cdots + x^m \}$$

$$= a^{m-1} + ({}^mC_1 + 1) i^m x + ({}^mC_2 + {}^mC_1) a^{m-1} x^2 + ({}^mC_3 + {}^mC_2) a^{m-2} x^3 + \cdots + ({}^mC_7 + {}^mC_{7-2}) a^{m-7+1} x^7 + \cdots + x^{m+2}.$$

এখন,  ${}^mC_r+{}^mC_{r-1}={}^{m+1}C_r$ . [ অনুক্রেন মার দ্বীবার উভয় পক্ষে  $r=1,\,2,\,3,\,\cdots$ , m বসাইলে,

$${}^{m}C_{1} + {}^{m}C_{0} = {}^{m}C_{1} + 1 = {}^{m+1}C_{1}, {}^{m}C_{2} + {}^{m}C_{1} = {}^{m+1}C_{2},$$

$${}^{m}C_{0} + {}^{m}C_{0} = {}^{m+1}C_{0}, \text{ SONE}$$

$$(a+x)^{m+1} - a^{m+1} + {}^{m+1}C_1a^mx + {}^{m+1}C_2a^{m-1}x^2$$

$$+ {}^{m+1}C_3a^{m-2}x^3 + \cdots + {}^{m+1}C_7a^{m-r+1}x^r$$

$$+ \cdots + x^{m+1}.$$

মত্রব, দেখা বেল উপপালটাকে n-m-রর জন মত্য মনে কবিলে, উহা n-m+1-রর জন্ত মত্য। কিছে দেখা সিঘাছে, উপপালটি n-3-রর জন্ত মত্য; মত্রব, উহা n-3+1, বা র-রর জন্ত মত্য; মাবরে, উপপালটি n-4-রর জন্ত মত্য ব্রেয়া, n-4+1 বা র-রর জন্ত মত্য। ব্যঙ্গ মধ্যর হললৈ দেখা যায়, n-রর মক্র রনায়ক বাবং পূন মানের জন্ত উপপালটি মত্য। আত্রব, n একটি ধ্নায়ক বাবং পূর্ণসংখ্যা হইলে,

$$(a+x)^{n} = a^{n} + {}^{n}C_{1}a^{n-1}x + {}^{n}C_{2}a^{n-2}x^{2} + {}^{n}C_{3}a^{n-3}x^{3} + \cdots + a^{n}C_{r}a^{n-r}x^{r} + \cdots + x^{r}$$

$$= a^{n} + na^{n-1}x + \frac{n(n-1)}{12}a^{n-2}x^{2} + \frac{n(n-1)(n-2)}{12}a^{n-3}x^{3} + \cdots + a^{n}(n-1)(n-2)\cdots(n-r+1)a^{n-r}x^{r} + \cdots + x^{n}.$$

জ্ঞিব্য ।  $(a+x)^n$ -এর বিভৃতির  ${}^nC_0$ ,  ${}^nC_1$  প্রভৃতি সহগওলিকে **ত্থিপদ সহগ** (Binomial coefficients) বলা হয়।

### 9'4. (1+x)"-এর বিস্তৃতি নিণ্র।

কোন হতের সাহায্য না লইয়া প্রমাণ কর যে, n একটি ধনাত্মক এবং পূর্ণসংখ্যা হইলে,

$$(1+x)^{n} = 1 + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + {}^{n}C_{3}x^{3} + \dots + {}^{n}C_{r}x^{r} + \dots + x^{n} \qquad \cdots \qquad (1)$$

$$= 1 + nx + \frac{n(n-1)}{2}x^{2} + \frac{n(n-1)(n-2)}{2}x^{3} + \dots + \frac{n(n-1)(n-2)\cdots(n-r+1)}{2}x^{r} + \dots + x^{n} \qquad \cdots \qquad (2)$$

প্রকৃত গুণন ছারা দেখা যায়,

$$\begin{aligned} &(1+x)^3 = 1 + 2x + x^3 = 1 + {}^2C_1x + x^2, \\ &(1+x)^3 = 1 + 3x + 3x^2 + x^3 = 1 + {}^3C_1x + {}^3C_2x^2 + x^3. \end{aligned}$$

দেখা গেল, n = 2 এবং 3-এর ক্ষেত্রে দিপদ উপপাছটি দত্য।

এখন, ধরা যাক, n-এর কোন বিশেষ মান m-এর জন্ম উপপাতটি সভ্য। তাহা হৈলৈ,

$$(1+x)^m = 1 + {}^mC_1x + {}^mC_2x^2 + {}^mC_3x^3 + \cdots + {}^mC_rx^r + \cdots + {}^mx^m \qquad \cdots \qquad (3)$$

(3)-এর উভয় পক্ষকে (1+x) দারা গুণ করিলে,

$$(1+x)^{m+1} = (1+x)\{1 + {}^{m}C_{1}x + {}^{m}C_{2}x^{2} + {}^{m}C_{3}x^{3} + \cdots + x^{m}\}$$

$$= 1 + ({}^{m}C_{1} + 1)x + ({}^{m}C_{2} + {}^{m}C_{3})x^{2} + ({}^{m}C_{3} + {}^{m}C_{3})x^{3} + \cdots + x^{m}\}$$

$$= 1 + ({}^{m}C_{1} + 1)x + ({}^{m}C_{2} + {}^{m}C_{1})x^{2} + ({}^{m}C_{3} + {}^{m}C_{2})x^{3} + \dots + ({}^{m}C_{r} + {}^{m}C_{r-1})x^{r} + \dots + x^{m+1}.$$

Proof.  ${}^{m}C_{r} + {}^{m}C_{r} = {}^{m+1}C_{r} =$ 

এখন,  ${}^mC_r+{}^mC_{r-1}={}^{m+1}C_r$ . ইহার উভয় পক্ষে  $r=1,\ 2,\ 3,\ \dots,\ m$  বসাইলে,  ${}^mC_1+{}^mC_0,\$  অগাং  ${}^mC_1+1={}^{m+1}C_1,\ {}^mC_2+{}^mC_1={}^{m+1}C_2,$   ${}^mC_3+{}^mC_2={}^{m+1}C_3,\$ ইত্যাদি।

অতএব, দেখা গেল, উপপাছটিকে n=m-এর জন্ম সত্য মনে করিলে, উহা n=m+1-এর জন্মও সত্য। কিন্তু দেখা গিয়াছে, উপপাছটি n=3-এর জন্ম সত্য; অতএব, উহা n=3+1 বা 4-এর জন্মও সত্য; আবার উপপাছটি n=4-এর জন্মও

সত্য বলিয়া, n=4+1, বা, 5-এর জন্তও সত্য। এইরপে অগ্রসর হইলে দেখা যায়, n-এর দকল ধনাত্মক এবং পূর্ণ মানের জন্মই উপপালটি সত্য। অতএব, n একটি ধনাত্মক এবং পূর্ণসংখ্যা হইলে,

$$(1+x)^{n} = 1 + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + {}^{n}C_{3}x^{3} + \dots + {}^{n}C_{r}x^{r} + \dots + x^{n}$$

$$= 1 + nx + \frac{n(n-1)}{2}x^{2} + \frac{n(n-1)(n-2)}{2}x^{3} + \dots$$

$$+ \frac{n(n-1)(n-2)\cdots(n-r+1)}{2}x^{r} + \dots + x^{n}.$$

জ্পুরৈয়। ইহা স্পষ্ট যে,  $(a+x)^n$  ও  $(1+x)^n$ -এর বিস্তৃতি-চুইটিতে সহগগুলি অভিন্ন। প্রকৃতপক্ষে, a=1 বসাইলে, বিশেষ ক্ষেত্রে  $(a+x)^n$ -এর রূপই হয়  $(1+x)^n$  ; স্থতরাং,  $(1+x)^n=1+{}^nC_1x+{}^nC_2x^2+\cdots+{}^nC_rx^r+\cdots+x^n$ .

তানুসিদ্ধান্ত।  $(a+x)^n$  এবং  $(1+x)^n$ -এর বিভৃতি নির্ণয়-কালে x এবং a-র মানের উপর কোন বিধি-নিষেধ আরোপ করা হয় নাই। বিভৃতি-ছুইটি a এবং x-এর সকল মানের জন্মই সভ্য। অভএব, x-এর স্থলে -x লিথিয়া,

$$(a-x)^n = a^n - {}^nC_1a^{n-1}x + {}^nC_2a^{n-2}x^2 - {}^nC_3a^{n-3}x^3 + \cdots + (-1)^r {}^nC_ra^{n-r}x^r + \cdots + (-1)^nx^n.$$

$$(1-x)^n = 1 - {}^nC_1x + {}^nC_2x^2 - {}^nC_3x^3 + \cdots + (-1)^r {}^nC_rx^r + \cdots + (-1)^nx^n.$$

#### দেখা যাইতেছে:

- (1)  $(a+x)^n$  এবং  $(a-x)^n$ -এর সহগগুলি একই সাংখ্যমান (numerical value)-বিশিষ্ট ; আবার,  $(1+x)^n$  এবং  $(1-x)^n$ -এর সহগগুলিও একই সাংখ্যমান-বিশিষ্ট  ${\bf l}$
- $(2) \ (a-x)^n \ g \ (1-x)^n \ উভয়েরই প্রথম পদ হইতে আরম্ভ করিয়া একান্তর পদগুলি ধনাত্মক এবং দিতীয় পদ হইতে আরম্ভ করিয়া একান্তর পদগুলি ঋণাত্মক।$
- (3) n যুগাসংখ্যা হইলে,  $(a-x)^n$  ও  $(1-x)^n$  উভয় ক্ষেত্ৰেই শেষ পদটি ধনাত্মক এবং অধুগা হইলে, উভয় ক্ষেত্ৰেই শেষ পদটি ঋণাত্মক।

# 9'5. বিস্তৃতির সাধারণ পদ।

 $^nC_ra^{n-r}x^r$ -এ r-এর বিভিন্ন মান বদাইয়া বিভৃতির সকল পদই পাওরা যায় বলিয়া,  $^nC_ra^{n-r}x^r$ -কে বিভৃতির সাধারণ পদ (general term) বলা হয়।

এখন, প্রথম পদ =  $a^n={}^nC_0a^{n-o}x^o$  ; স্পষ্টিই, ইহা সাধারণ পদ  ${}^nC_ra^{n-r}n^r$ -এ, r=0 বসাইয়া পাওয়া গেল ;

দিতীয় পদ =  ${}^nC_1a^{n-1}x$ ; স্পাঠই ইহা সাধারণ পদে

r=1 বসাইয়া পাওয়া **যা**য়;

তৃতীয় প্দ =  ${}^nC_2a^{n-2}x^2$ ; n n n n r=2 n n n; চতুৰ্থ প্দ =  ${}^nC_3a^{n-3}x^3$ ; n n n n r=3 n n ;

ইতাদি, ইতাদি, ইতাদি।

অতএব, দেখা গেল, r=0 হইলে, পদটি হয় প্রথম, অর্থাৎ (0+1)-তম;

r=1 " " দিতীয়, অৰ্থাৎ (1+1)-তম;

r=2 " " তৃতীয়, অৰ্ণাৎ (2+1)-তম ;

r=3 " " চতুর্থ, অর্থাং (3+1)-তম ; ইত্যাদি, ইত্যাদি, ইত্যাদি।

অতএব, "Cran-rx" পদটি হইবে বিস্কৃতির (r+1)-তম পদ।

অতএব, (r+1)-ভম পদটি  $(a+x)^n$ -এর বিস্তৃতির সাধারণ পদ, এবং এই সাধারণ পদ

$$= {}^{n}C_{r}a^{n-r}x^{r} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{|r|}a^{n-r}x^{r}.$$

এইরূপে,  $(1+x)^n$ -এর বিস্তৃতির **সাধারণ পদ** 

= ইহার (++1)-তম পদ

$$= {}^{n}C_{r}x = \frac{n(n-1)(n-2)\cdots (n-r+1)}{\lfloor r \rfloor}x^{r}.$$

অনুসিদ্ধান্ত।  $(a-x)^n$ -এর বিস্তৃতির সাধারণ পদ

= ইহার (r+1)-ভম পদ =  $(-1)^r {}^n C_r a^{n-r} x^r$ ;

এবং (1-x)"-এর বিভৃতির দাধারণ পদ

= ইহার (r+1)-তম পদ =  $(-1)^r {}^nC_rx^r$ .

**দ্রপ্তর**। বিস্তৃতির সাধারণ পদ  ${}^n C_r a^{n-r} x^r$ -টিকে লক্ষ্য করিলে বুঝা যায়:

- বিস্তৃতির প্রত্যেক পদে α এবং x-এর স্টক-সমৃষ্টি n;
- (2) বিস্থৃতির প্রত্যেক পদে
- (ক) সহগ <sup>n</sup>C<sub>r</sub>-এ <sub>r</sub>-এর মান হইবে পদটির ক্রমিক সংখ্যা (ordinal number of the term) অপেকা 1 কম;
- (খ) দ্বিপদ রাশিটির দ্বিতীয় পদের x-এর স্থচক হইবে  ${}^{n}C_{r}$ -এর x-এর সমান, অর্থাৎ পদটির ক্রমিক সংখ্যা অপেক্ষা 1 কম ; এবং

(গ) বিপদ রাশিটির প্রথম পদ a-এর স্টেক হইবে সহগ  $^nC_r$ -এর n হইতে r-এর বিয়োগফল (n-r), অথবা, বলা চলে, x-এর স্টেক n হইতে r-এর বিয়োগফল।

বেমন, 
$$(a+x)^n$$
-এর বিস্তৃতির 
$$20\text{-তম পদ} = {}^nC_{19}a^{n-19}x^{19},$$
 
$$33\text{-তম পদ} = {}^nC_{38}a^{n-82}x^{32}.$$
 
$$\left(2x+\frac{3}{y}\right)^{19}\text{-এর বিস্তৃতির}$$
 অস্তম পদটি হইবে  ${}^{10}C_7(2x)^{19-7}\left(\frac{3}{y}\right)^7,$  অর্থাৎ,  ${}^{19}C_7(2x)^{12}\left(\frac{3}{y}\right)^7,$  অর্থাৎ,  ${}^{19}C_7(2x)^{12}\left(\frac{3}{y}\right)^7,$ 

 $\sqrt{19.18.17.16.15.14.13} 2^{13}.x^{13}.3^{7}.\frac{1}{y^{7}},$ 

चर्शर,  $451373285376\frac{x^{13}}{y^7}$ .

### 9'6. বিস্তৃতির সধ্যপদ।

 $(a+x)^n$ -এর বিভৃতির মধ্যপদ (middle term) নির্ণয় করিতে হইবে। [ To find the middle term ( or terms ) in the expansion of  $(a+x)^n$ . ]

(ক) n বেন একটি যুগাসংখ্যা এবং ইহা=2m ; তাহা হইলে,  $m=rac{n}{2}$  ·

এক্টের, বিস্তৃতির পদ-সংখ্যা=n+1=2m+1; স্পষ্টই (2m+1) একটি বিযুগ্মসংখ্যা। অতএব, বিস্তৃতির **একটিমাত্র** মধ্যপদ থাকিবে, এবং বিস্তৃতির (m+1)-তম পদ, অর্থাৎ,  $\binom{n}{2}+1$ -তম পদ।

: n একটি যুগাদংখ্যা হইলে, বিস্তৃতির মধ্যপদ =  $^nC_{4n}a^{n-4n}x^{4n}$  =  $\frac{\lfloor n \rfloor}{(\lfloor \frac{1}{2}n \rfloor)^2}a^{4n}x^{4n}$ .

(খ) এখন, n যেন একটি অযুগাসংখ্যা এবং ইহা = 2m+1; তাহা হইলে,

$$m = \frac{n-1}{2}.$$

এক্ষেত্রে, বিস্তৃতির পদ-সংখ্যা = n+1=2m+2; স্পষ্টই (2m+2) একটি মুগ্মসংখ্যা। অতএব, বিস্তৃতির তুইটি মধ্যপদ থাকিবে, এবং ইহারা বিস্তৃতির

(m+1)-তম এবং (m+2)-তম পদ, অর্থাং,  $\left(\frac{n-1}{2}+1\right)$ -তম এবং  $\left(\frac{n-1}{2}+2\right)$ -তম পদ, অর্থাং,  $\left(\frac{n-1}{2}+1\right)$ -তম এবং  $\left(\frac{n+1}{2}+1\right)$ -তম পদ।

n অযুগ্দশংখ্যা হইলে, বিন্তৃতির তুইটি মধ্যপদ থাকিবে, এবং ইহারা

$$^{n}C_{\frac{n-1}{2}}\,a^{\,\frac{n-\frac{n-1}{2}}{2}}\,x^{\frac{n-1}{2}}\,\text{ arr }^{n}C_{\frac{n+1}{2}}\,a^{\,\frac{n-\frac{n+1}{2}}{2}}\,x^{\frac{n+1}{2}},$$

জ্ঞতীর। n অযুগাসংখ্যা হইলে, লক্ষ্য করিতে হইবে, মধ্যপদ-তুইটির সহগ-ছইটি একই।

n অযুগ্যসংখ্যা হইলে,  $(a-x)^n$ -এর বিভৃতির মধ্যপদ-তুইটির সহগ-তুইটির একটি ধনাত্মক এবং অন্তটি ঋণাত্মক হইবে, কিন্তু তাহাদের সাংখ্যমান একই হইবে।

## 9'7. সমদূরবর্তী পদযুগ্ম।

 $(a+x)^n$ -এর বিস্তৃতিতে প্রথম এবং শেষ হইতে সমদূরবর্তী পদ্যুগ্মের সহগদ্ধ সমান। [In the expansion of  $(a+x)^n$ , the coefficients of the terms equidistant from the beginning and the end are equal.]

বিস্তৃতির প্রথম হইতে (r+1)-তম পদের সহগ  ${}^nC_r$ .

এখন, বিভৃতিটিতে মোট (n+1)-সংখ্যক পদ থাকায়, শেষ হইতে (r+1)-তম পদটির পূর্বে  $\{(n+1)-(r+1)\}$ , অর্থাৎ (n-r)-সংখ্যক পদ থাকিবে; অতএব এই পদটি বিভৃতিটির প্রথম হইতে (n-r+1)-তম পদ, এবং সেইজন্ম ইহার সহগ  $^nC_{n-r}$ .

কিন্ত,  ${}^nC_r = {}^nC_{n-r}$ .

 $\therefore$  বিস্তৃতিটির প্রথম হইতে (r+1)-তম পদের সহগ = বিস্তৃতিটির শেষ হইতে (r+1)-তম পদের সহগ।

উদা. 1. (2x - 3y)<sup>5</sup>-এর বিস্তৃতি নির্ণয় কর।

$$(2x - 3y)^5 = (2x)^5 + 5 \cdot (2x)^4 (-3y) \cdot + \frac{5 \cdot 4}{1 \cdot 2} (2x)^3 \cdot (-3y)^2 + \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} (2x)^2 (-3y)^3 + \frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4} (2x) (-3y)^4 + \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} (-3y)^5 = 32x^5 - 240x^4y + 720x^3y^2 - 1080x^2y^3 + 810xy^4 - 243y^5.$$

উদা. 2. (½x - 2y)<sup>7</sup>-এর বিস্তৃতি নির্ণয় কর।

$$\begin{aligned} (\frac{1}{2}x - 2y)^7 &= \left\{\frac{x}{2}\left(1 - \frac{4y}{x}\right)\right\}^7 = \left(\frac{x}{2}\right)^7 \left(1 - \frac{4y}{x}\right)^7 \\ &= \frac{x^7}{128} \left\{1 + {}^7C_1 \left(-\frac{4y}{x}\right) + {}^7C_2 \left(-\frac{4y}{x}\right)^2 + {}^7C_3 \left(-\frac{4y}{x}\right)^3 \right. \\ &+ {}^7C_4 \left(-\frac{4y}{x}\right)^4 + {}^7C_5 \left(-\frac{4y}{x}\right)^5 + {}^7C_6 \left(-\frac{4y}{x}\right)^6 \\ &+ {}^7C_7 \left(-\frac{4y}{x}\right)^7 \right\} \\ &= \frac{x^7}{128} \left\{1 - 7\left(\frac{4y}{x}\right) + \frac{7.6\left(4y}{x}\right)^3 - \frac{7.6.5\left(4y}{x}\right)^3 \right. \\ &+ \frac{7.6.5\left(4y}{x}\right)^4 - \frac{7.6\left(4y}{x}\right)^5 + 7\left(\frac{4y}{x}\right)^6 - \left(\frac{4y}{x}\right)^7 \right\} \\ &= \frac{x^7}{128} \left\{1 - \frac{7.4.y}{x} + \frac{21.4^2.y^2}{x^2} - \frac{35.4^3.y^3}{x^3} \right. \\ &+ \frac{35.4^4.y^4}{x^4} - \frac{21.4^5.y^5}{x^5} + \frac{7.4^6.y^6}{x^6} - \frac{4^7.y^7}{x^7} \right\} \\ &= \frac{x^7}{128} - \frac{7}{32}x^6y + \frac{21}{8}x^5y^2 - \frac{35}{2}x^4y^3 + 70x^8y^4 \\ &- 168x^2y^5 + 224xy^6 - 128y^7. \end{aligned}$$

উদা. 3.  $(a^3+3ab)^9$ -এর বিস্তৃতিতে সপ্তম পদ নির্ণয় কর। নির্ণের পদ =  ${}^9C_6.(a^3)^3.(3ab)^6 = {}^9C_3(a^3)^3.(3ab)^6$   $= \frac{9.8.7}{1.2.3}a^9.3^6.a^6.b^6 = 61236a^{15}b^6.$ 

উদা. 4.  $(a-x)^{5\,0}$ -এর বিভৃতিতে 49-তম পদ নির্ণয় কর। নির্ণেয় পদ =  ${}^{5\,0}C_{4\,8}.a^{2}.(-x)^{4\,8}={}^{5\,0}C_{2}.a^{2}(-x)^{4\,8}$  =  $\frac{50.49}{1.2}\cdot a^{2}.(-x)^{4\,8}=1225a^{2}x^{4\,8}.$ 

উদা 5.  $\left(y^8+\frac{c^3}{y}\right)^5$ -এর বিভৃতিতে y-এর সহগ নির্ণয় কর। মনে কর, বিভৃতিটির (r+1)-তম পদে y আছে। এখন, (r+1)-তম পদ =  ${}^5C_r(y^8)^{5-r}\left(\frac{c^3}{y}\right)^7={}^5C_r.c^{8r}y^{10-8r}.$ 

এই পদটিতে  $\gamma$  থাকিলে, অর্থাৎ  $\gamma$ -এর স্ফচক 1 হইলে, অবশুই 10-3r=1 ; r=3.

অতএব, নির্ণেয় সহগ =  ${}^5C_3$   $c^{3\times 3} = {}^5C_3c^9 = 10c^9$ .

উদা. 6.  $\left(x^4-\frac{1}{x^3}\right)^{15}$ -এর বিভৃতিতে (i)  $x^{32}$  এবং (ii)  $x^{-17}$ -এর সহগ

(i) মনে কর, বিভৃতিটির (r+1)-তম পদে  $x^{3/2}$  আছে।

এবং ন, 
$$(r+1)$$
-ভন পদ =  ${}^{1.5}C_r(x^4)^{1.5-r}\left(-\frac{1}{x^3}\right)^r$  
$$= {}^{1.5}C_rx^{60-4r}\cdot\frac{(-1)^r}{x^{5r}} = (-1)^{r-1.5}C_rx^{60-7r}.$$

এই পদটিতে  $x^{3\,c}$  থাকিলে, অর্থাৎ x—এর স্ফেক 32 হইলে, অবশুই 60-7r=32, বা 7r=60-32, বা 7r=28 ;

 $\therefore$  r=4.

ে নিৰ্বেষ শহগ=
$$(-1)^{r-16}C_r=(-1)^4.^{15}C_4$$

$$=1\times \frac{15.14.13.12}{4.3.2.1}$$

$$=1365.$$

(ii) মনে কর, বিস্তৃতিটির (r+1)-ভম পদে  $x^{-17}$  আছে।

$$\begin{split} \text{APA, } (r+1)\text{-BAPA} &= {}^{18}C_r(x^4)^{1:5-r}\left(-\frac{1}{x^3}\right)^r \\ &= {}^{15}C_rx^{50-4r}\cdot\frac{(-1)^r}{x^{3r}} = (-1)^{r-15}C_rx^{60-7r}. \end{split}$$

এই পদটিতে  $x^{-17}$  থাকিলে, অর্থাৎ x-এর স্চক -17 ছইলে, অবশুই 60-7r=-17, বা, 7r=77;  $\therefore$  r=11.

$$\therefore$$
 निर्देश महश  $= (-1)^{11} \cdot ^{18}C_{11} = -1 \cdot ^{16}C_4$ 

$$= - \frac{15}{4 \cdot 3 \cdot 2 \cdot 1}$$

$$= -1365.$$

উদা- 7.  $\left(x-\frac{1}{x^2}\right)^{3n}$ -এর বিভৃতিতে x-বর্জিত পদটি নির্ণয় কর। মনে কর, বিভৃতিটির (r+1)-তম পদে x নাই, অর্থাৎ ঐ পদে x-এর সূচক 0. এখন, (r+1)-তম পদ =  $^{3n}C_7x^{3n-r}\left(-\frac{1}{x^2}\right)^r=(-1)^r\cdot ^{3n}C_7x^{3n-3r}$ .

এই পদে x ন। থাকিলে, অথাং x—এর সূচক 0 হইলে, অবশুই 3n-3r=0 ;

$$x'$$
,  $y = n$ ,

:. fixed 
$$\Re q = (-1)^n \operatorname{Bn} C_n = (-1)^n \cdot \frac{(3n)!}{n! (2n)!}$$

উদা. 8.  $\left(x+\frac{1}{x}\right)^n$ -এর বিভৃতিতে যদি  $x^r$ -সংবলিত একটি পদ থাকে, প্রমাণ

কর যে, উহার সহগ = 
$$\frac{|n|}{\frac{1}{2}(n-r)|(n+r)}$$
.

মনে কর, x'-সংবালভ পদটি বিস্তৃতিটির (p+1)-ভম পদ।

এখন, 
$$(p+1)$$
-ভম পদ =  ${}^nC_px^{n-p}\left(\frac{1}{x}\right)^p={}^nC_px^{n-2p}$ . এই পদে  $x^r$  থাকিলে,

অর্থাৎ ৫-এর স্ফক ৮ হইলে.

$$n-2p=r$$
; ...  $p=\frac{1}{2}(n-r)$ .

ে. নিবেশ্য সহগ = 
$${}^nC_p = \frac{\lfloor n \rfloor}{\lfloor p \rfloor (n-p)} = \frac{\lfloor n \rfloor}{\lfloor \frac{1}{2}(n-r) \rfloor \lfloor \frac{1}{2}(n+r)}$$

উদা. 9. (2x-y)°-এর বিস্তৃতিটির মধ্যপদটি নির্ণয় কর।

বি গৃতিটিং গাঁট পদ থাকায় উহার একটিমাত্র মধ্যপদ থাকিবে এবং (🖁 + 1)-তম ৰা চতুর্ব পদটিই ছইবে এই মধ্যপদ।

ै. जिर्देश मधाशम = 
$${}^6 C_8(2x)^{8-8}(-y)^8$$
 =  $(-1)^3$ ,  ${}^6 C_3 2^8$ ,  $x^8 y^8 = -1 \cdot \frac{6.5.4}{3.2.1} \cdot 8. x^8 y^8$  =  $-160x^8 y^8$ .

উদা 10. ক্র-এর ঘাত এর উপ্লক্ষ অসুসারে  $(1+2x-3x^2)^8$ -এর বিস্কৃতির প্রথম চারিটি পদ নির্ণয় কর।

বিজ্ঞিটিকে ক্র-এর শক্তির উপ্তেম অফুসারে সাজাইলে প্রথম পদটি হইবে 1. দিল্লিয়, ২০টার, চতুর পদ স্থাজনে ক্র. ক্র এবং ক্র-সংবলিত হইবে; স্তরাং, এছলে বিজ্ঞিতিরি ক্র-সংবলিত পদ প্রভূই মাত্র নির্ণয় করিতে হইবে।

$$2x - 3x^3$$
-এর পরিবর্তে  $y$  বসাইলে, 
$$(1 + 2x - 3x^2)^8 = (1 + y)^8$$
 
$$= 1 + 8y + \frac{8.7}{2.1}y^2 + \frac{8.7.6}{3.2.1}y^3 + \cdots$$

(XI-XII)-14

$$=1+8(2x-3x^2)+28(2x-3x^2)^2+56(2x-3x^2)^8+\dots x^8$$
 অপেন্ধা  $x$ -এর উচ্চতর ঘাত-সংবলিত পদসমূহ 
$$[y$$
-এর ছলে  $2x-3x^2$  বসাইয়া  $]$ 
 $=1+8(2x-3x^2)+28(4x^2-12x^3+9x^4)$ 
 $+56(8x^5-\cdots)+\cdots$ 
 $=1+16x+88x^2+112x^3\cdots$ 

#### প্রশাসালা 32

1. (a) নিম্লিখিত রাশিমালাসমূহের বিস্তৃতি নির্ণয় কর (Expand the following):

(i) 
$$(a+2b)^6$$
; (ii)  $(a-3x)^6$ ; (iv)  $(\frac{2x}{3}-\frac{3}{2x})^6$ .

- (b) বিস্তৃতি নির্ণয়পূর্বক সরল কুর:  $(x + x \ /y)^5 + (x x \ /y)^5$ .
- 2. মান নির্ণয় কর:

(i) 
$$\{a + \sqrt{a^2 - 1}\}^6 + \{a - \sqrt{a^2 - 1}\}^6$$
;

(ii) 
$$(2+3\sqrt{-1})^4 + (2-3\sqrt{-1})^4$$
.

- (2x y)<sup>11</sup>-এর বিস্তৃতির দশম পদ নির্ণয় কর।
- $4. \quad (x^{\frac{3}{2}}y^{\frac{1}{3}}-x^{\frac{1}{2}}y^{\frac{3}{3}})^{10}$ -এর বিস্তৃতির অষ্ট্রম পদ নির্ণয় কর।
- $\int_0^\infty \left( \frac{x}{a} \frac{a}{x} \right)^{10}$ -এর বিস্তৃতির চতুর্থ পদ নির্ণয় কর।
- 6.  $(x-x^2)^{10}$ -এর বিস্তৃতিতে  $x^{15}$ -এর সহগ নির্ণয় কর।

[ C. U., 1926 ]

- 7.  $(ax^*-bx)^9$ -এর বিস্তৃতিতে  $x^{1\,8}$ -এর সহগ নির্ণয় কর।
- 8.  $\left(y+rac{c^3}{y^2}
  ight)^{10}$ -এর বিস্তৃতিতে  $rac{1}{y^2}$ -এর সহগ নির্ণয় কর।
- 9. m এবং n ধনাত্মক পূর্ণনংখ্যা হইলে, প্রমাণ কর যে,  $(1+x)^{m+n}$ -এর বিস্তৃতিতে  $x^m$  ও  $x^m$ -এর সহগষ্য সমান।  $\qquad \qquad [C.~U.,~1923,'35~]$ 
  - 10.  $(x+y)^n$ -এর বিভৃতিতে  $x^m$ -এর সহগ কত ?
  - 11.  $\left(x-rac{1}{x}
    ight)^{2n+1}$  -এর বিস্তৃতিতে  $x^{2r+1}$ -এর সহগ নির্ণয় কর।

12. 
$$\left(x-rac{1}{x}
ight)^{8n}$$
-এর বিস্তৃতিতে  $(2n+1)$ -তম পদটি নির্ণয় কর।

13. দেখাও যে,  $(1+x)^{2n}$ —এর বিস্তৃতিতে  $x^n$ –এর সহগ  $(1+x)^{2n-1}$ –এর বিস্তৃতিতে  $x^{n-1}$ –এর সহগের দিওগে। [C.~U.,~1947]

14. 
$$\left(x-rac{1}{x}
ight)^{4n+1}$$
 -এর বিস্তৃতিতে  $x^{2n-1}$ -এর সহগ নির্গয় কর।

15. 
$$\left(x+rac{1}{x}
ight)^{ exttt{10}}$$
-এর বিস্থৃতিতে  $x$ -বর্জিত পদটি নির্ণয় কর।

[ O. U., 1910, '21, 27 ]

$$16.$$
 (i)  $(1-x)^3\left(x-rac{1}{x}
ight)^5$  ; (ii)  $(1+x)^m\left(1+rac{1}{x}
ight)^n$ -এর বিস্তৃতিতে  $x$ -বেজিত পদটি নির্ণয় কর। (Utkal,  $1947$ ]

17.  $(1+x+x^2)(1-x)^{1.5}$ -এর বিস্তৃতিতে  $x^{1.0}$ -এর সহগ নির্ণয় কর। [ Madras, 1920 ]

18. 
$$(1-2x+3x^2-4x^3+5x^5)\left(1+\frac{1}{x}\right)^7$$
-তে  $x^2$ -এর সহগ নির্ণয় কর।

19. (i) নিম্নলিখিত বিভৃতিগুলির মধ্যপদ ( বা মধ্যপদ্ভয় ) নির্ণয় কর:

(a) 
$$(a+b)^8$$
; (b)  $\left(x-\frac{1}{x}\right)^9$ ; (c)  $\left(x-\frac{1}{x}\right)^{2n}$ .

- (ii)  $(1+x)^{100}$ -এর বিভৃতির পদসংখ্যা নির্ণয় কর এবং দেখাও যে, ইহার মধ্যপদ $=\frac{1100}{150150}$   $x^{80}$ ,
- 20. বিশেষতঃ দাধারণ পদ ও মধ্যপদছর নির্ণয় করিয়া  $\left(\frac{a}{b} + \frac{b}{a}\right)^{2n+1}$ -এর বিভৃতি নির্ণয় কর।
- 22.  $(x+1)^{2}$ ্নএর বিস্তৃতিতে  $\gamma$ -তম পদের সহগ (x+4)-তম পদের সহগের সমান হইলে,  $\gamma$ -এর মান নির্ণয় কর। [C.  $\mathbb{U}$ ., 1946]
- 23.  $(1+x)^{3\,n+1}$ -এর বিস্তৃতিতে  $x^r$  এবং  $x^{r+1}$ -এর সহগ সমান হইলে, r-এর মান নির্ণয় কর। [C.  $\mathbb{U}$ -, 1930]
- 24. দেখাও যে,  $(1+x)^{2n}$ -এর বিস্তৃতির মধ্যপদের সহগ,  $(1+x)^{2n-1}$ -এর বিস্তৃতির মধ্যপদেরের সহগের সমষ্টির সমান। [Cal., 1918; Pat., 1942]

25.~~x-এর শক্তির উর্ধক্রম অনুসারে  $(1-x+x^2)^n$ -এর বিস্তৃতির প্রথম চারিটি পদ নির্ণয় কর।

26. দেখাও যে,

$$(a) \left(x+rac{1}{x}
ight)^{2n}$$
-এর বিস্তৃতির মধ্যপদ  $1.3.5 \cdot \cdot \cdot \cdot \cdot (2n-1) \over n \,! \, 2^n$  ; [ Pat., 1942 ]

(b) 
$$\left(x-\frac{1}{x}\right)^{2n}$$
-এর বিস্তৃতির মধ্যপূদ্  $\frac{1.3.5\cdots\cdots(2n-1)}{n!}(-2)^n$ .

27.  $(x-x^{-2})^{4n}$ -এর বিস্তৃতিতে যদি  $x^{4r}$  থাকে, প্রমাণ কর যে,

উহার সহগ = 
$$\frac{4n}{\frac{4}{3}(n-r)}$$

#### 9'8. বহুত্ম সহগ।

 $(a+x)^n$  অথব৷  $(1+x)^n$ -এর বিস্তৃতির বৃহত্তম সহগ নির্ণয়৷ [ To find the greatest coefficient in the expansion of  $(a+x)^n$  or  $(1+x)^n$ .]

সহগগুলি হইতেছে,  $^nC_0$ ,  $^nC_1$ ,  $^nC_2$ ,  $^nC_3$ , .....,  $^nC_n$ . ইহাদের মধ্যে কোন্টি বৃহত্তম, তাহাই নির্ণয় করিতে হইবে।

্বিশাস ও সম্বায় অধ্যায় হইতে আম্বা জানি,

(1) n যুগা সংখ্যা হইলে, যথন  $r=rac{n}{2}$  হয়, তথন  ${}^nC_r$  বৃহত্তম হয় ;

আর, (2) n অযুগা দংখা। হইলে, যখন  $r=rac{n-1}{2}$ , বা,  $rac{n+1}{2}$  হয়, তখন  $^nCr$  বৃহত্তম হয়।

অতএব, n যুগা হইলে, "Cn বিস্তৃতির বৃহত্তম সহগ;

আর, n অযুগা হইলে,  ${}^nC_{n-1}$  এবং  ${}^nC_{n+1}$  সহগ-ছুইটি সমমানবিশিষ্ট হয় এবং তথনই ইহারাই বিস্তৃতির বৃহত্তম সহগ।

#### 9'9. বহুত্তম পদ।

 $(a+x)^n$ -এর বিস্তৃতির বৃহত্তম পদ নির্ণিয়।  $\ [$  To find the greatest term in the expansion of  $(a+x)^n$ .  $\ ]$ 

বিস্থৃতির r-তম এবং (r+1)-তম পদ-ত্ইটিকে যথাক্রমে  $T_r$  এবং  $T_{r+1}$  দারা স্ফুচিত করিলে,

$$T_{r+1} = {}^{n}C_{r}a^{n-r}x^{r} = \frac{n(n-1)(n-2)\cdots(n-r+2)(n-r+1)}{r(r-1)(r-2)\cdots3.2.1} \cdot a^{n-r}x^{r},$$

$$\operatorname{GRF} T_r = {^nC_{r-1}}a^{n-r+1}x^{r-1} = \frac{n(n-1)(n-2)\cdots(n-r+2)}{(r-1)(r-2)\cdots3.2.1} \cdot a^{n-r+1}x^{r-1}.$$

জতএব, 
$$\frac{T_{r+1}}{T_r} = \frac{n-r+1}{r} \cdot \frac{x}{a}$$
.

$$T_{r+1}$$
,=,  $T_r$ ,  $T$ 

যদি 
$$(n-r+1)x>$$
, =, বা  $< ra$  হয়,

অर्था॰, यि 
$$(n+1)x > =$$
,  $\exists 1 < ra + rx$ ,  $\exists 1 \ r(a+x)$  इस,

অর্থাৎ, যদি 
$$\frac{(n+1)x}{a+x}>$$
,  $=$ , বা  $< r$  হয়,

खर्थार, यमि 
$$r < 0.00$$
 ,  $r < 0.00$  ,  $r < 0.00$  ह्य ।

এখন,  $\frac{(n+1)x}{a+x}$  (i) পূর্ণদংখ্যা হইতে পারে, আবার (ii) ভগ্নান্ধও হইতে পারে।

(i)  $\frac{(n+1)x}{a+x}$  পূর্ণদংখ্যা হইলে, উহা যেন = p.

তাহা হইলে, r-এর 1, 2, 3 প্রভৃতি (p-1) পর্যন্ত সকল মানের জন্ম  $T_{r+1}>T_r$ , অর্থাৎ,  $T_1$ ,  $T_2$ ,  $T_3$ ,  $\cdots$ ,  $T_{p-1}$  এবং  $T_p$  পদগুলির প্রত্যেকটি ইহার পূর্ববর্তীটি অপেক্ষা বৃহত্তর ; স্বতরাং,  $T_p$ ই এই পদগুলির মধ্যে বৃহত্তম পদ।

$$r=p$$
 ইইলো,  $T_{r+1}=T_r$ , অপাৎ  $T_{p+1}=T_p$ .

r>p হইলে,  $T_{r+1}< T_r$ , অর্থাৎ  $T_{p+1}$ ,  $T_{p+2}$ ,  $T_{p+8}$ , .....,  $T_n$ ,  $T_{n+1}$  পদগুলির প্রত্যেকটি ইহার পূর্ববর্তীটি অপেক্ষা ক্ষুদ্রতর; স্থতরাং,  $T_{p+1}$ ই এই পদগুলির মধ্যে রহন্তম।

অতএব, দেখা গেল, এক্ষেত্রে  $T_p=T_{p+1}$ , অর্থাং বিস্তৃতির p-তম পদটি (p+1)-তম পদটির সমান এবং ইহারাই বিস্তৃতির বৃহত্তম পদদম ।

(ii)  $\frac{(n+1)x}{a+x}$  পূর্বসংখ্যা না হইয়া ভগ্নান্ধ হইলে, এই ভগ্নান্ধটি যেন =q পূর্ব-সংখ্যা + একটি প্রকৃত ভগ্নাংশ, অর্থাং q এই ভগ্নান্ধটির পূর্ব অংশ। তাহা হইলে, r-এর 1, 2, 3 প্রভৃতি q পর্যন্ত সকল মানের জন্ম  $r<\frac{(n+1)x}{a+x}$ ; অতএব,  $T_{r+1}>T_r$ , অর্থাং  $T_1$ ,  $T_2$ ,  $T_3$ , ...  $T_a$ ,  $T_{a+1}$  পদগুলির প্রত্যেকটি ইহার পূর্ববভীটি অপেক্ষা বৃহত্তর; স্তরাং,  $T_{a+1}$ ই ঐ পদগুলির বৃহত্য পদ।

আবার, r-এর q+1, q+2, ..., n পর্যন্ত সকল মানের জন্মই  $r>\frac{(n+1)x}{a+x}$ ; অতএব,  $T_{r+1}< T_r$ , অর্থাৎ,  $T_{q+1}$ ,  $T_{q+2}$ ,  $T_{q+3}$ , ...,  $T_n$ ,  $T_{n+1}$  পদগুলির

প্রত্যেকটি ইহার পূর্ববর্তীটি অপেক্ষা ক্ষুদ্রতর ; স্বতরাং,  $T_{2+1}$ ই এই পদগুলির মধ্যে বৃহত্তম পদ।

অতএব, দেখা গেল, এক্ষেত্রে  $T_{q+1}$  অর্থাৎ বিস্তৃতিটির (q+1)-তম পদই বৃহত্তম পদ।

**দেন্তব্য 1.** দ্বিতীয় কেত্রে  $r = \frac{(n+1)x}{a+x}$  হইতে পারে না।

জন্তীব্য 2. (a+x)"-এর বিস্তৃতির বৃহত্তম পদও a-এর স্থলে 1 বসাইয়া অনুরূপ যুক্তি-সাহায্যেই নির্ণন্ন করা যায়।

**জেষ্ট্রব্য ৪.**  $(a-\alpha)$ "-এর বিস্তৃতির পদগুলি এবং  $(a+\alpha)$ "-এর বিস্তৃতির পদগুলি একই দাংখ্যমানবিশিপ্ত বলিয়া, উভয়ের বিস্তৃতির বৃহত্তম পদদ্ম একই দাংখ্যমানবিশিপ্ত হইবে। হতরাং,  $(a-\alpha)$ "-এর বিস্তৃতির চিহ্ন-নিরপেক্ষ বৃহত্তম পদ (numerically greatest term) নির্ণয় করিতে হইলে, পদগুলির ঝণ-চিহ্ন বর্জন করিয়া উপরের অমুজ্ছেদে বর্ণিত পদ্ধানির ঝণ-চিহ্ন বর্জন করিয়া উপরের অমুজ্ছেদে বর্ণিত পদ্ধানিত অগ্রদর হইতে হয়।

উদা. 1. (i)  $(1+x)^{10}$ , (ii)  $(2-3x)^7$ -এর বিভৃতিতে বৃহত্তম সাংখ্য-সহগটি নির্ণিয় কর।

(i) এম্বলে সহগগুলি হইতেছে  $^{10}C_0$ ,  $^{10}C_1$ ,  $^{10}C_2$ , ...,  $^{10}C_{10}$  ; ইহাদের মধ্যে বৃহত্তমটি নির্গয় করিতে হইবে।

এখন, 
$${}^{10}C_r = \frac{10}{r}$$
; এবং  ${}^{10}C_{r-1} = \frac{10}{r-1}$   $\vdots$   $\vdots$   ${}^{10}C_r = \frac{10-r+1}{r}$   $\vdots$   $\vdots$   ${}^{10}C_{r-1} = \frac{10-r+1}{r}$   $\vdots$   ${}^{10}C_{r-1} = \frac{10-r+1}$ 

ে. নির্পেয় বৃহত্তম সহগ =  ${}^{10}C_{\delta} = \frac{10.9.8.7.6}{5.4.3.2.1} = 252$ .

(ii)  $(2-3x)^7 = 2^7(1-\frac{2}{3}x)^7$ ; অতএব, চিহ্ন-নিরপেক্ষ  $(1-\frac{2}{3}x)^7$ -এর বৃহত্তম সহগকৈ  $2^7$  দারা গুণ করিলে বৃহত্তম সহগঠি পাওয়া যাইবে।

এখন,  $(1-\frac{2}{3}x)^7$ -এর চিহ্ন-নিরপেক দহগগুলি হইতেছে  ${}^7C_0$ ,  $(\frac{3}{3})^7C_1$ ,  $(\frac{3}{2})^2$   ${}^7C_2$ ,  $(\frac{3}{2})^3$   ${}^7C_3$ ,  $(\frac{3}{3})^4$   ${}^7C_4$ ,  $(\frac{3}{3})^5$   ${}^7C_5$ ,  $(\frac{3}{2})^6$   ${}^7C_6$ ,  $(\frac{3}{3})^7$   ${}^7C_7$ ; ইহাদের বৃহত্তমটি নির্ণয় করিতে হইবে।

এখন, 
$$\frac{(r+1)-\sqrt{5}\sqrt{7}}{r-\sqrt{5}\sqrt{7}} = \frac{(\frac{3}{2})^{r-7}C_r}{(\frac{3}{2})^{r-1}\cdot {}^{7}C_{r-1}} = \frac{3}{2}\cdot \frac{(7-r+1)}{r} = \frac{24-3r}{2r}$$

:. (r+1)-তম সহগ >, =, বা < ,-তম দহগ হইবে,

যদি 
$$24-3r>$$
,=, বা  $< 2r$  হয়, অর্থাৎ যদি  $24>$ ,=, বা  $< 5r$  হয়, অর্থাৎ যদি  $r<$ ,=, বা  $> \frac{2}{8}$  অর্থাৎ  $4\frac{4}{5}$  হয়।

.. পঞ্চম সহগটি বৃহত্তম;

∴ নির্ণেষ্ট চিহ্-নিরপেক্ষ বৃহত্তম সহগ  $= 2^7. (\frac{8}{2})^4 \, ^7 C_4$  $= 2^3.3^4. ^7 C_8$  $= 8 \times 81 \times \frac{7.6.5}{3.2.1} = 22680.$ 

উদা. 2.  $x=\frac{5}{6}$  হইলে,  $(2+3x)^{1/2}$ -এর বিস্তৃতির বৃহত্য পদটি নির্ণয় কর । r-তম এবং (r+1)-তম পদ-ছুইটিকে যথাক্রমে  $T_r$  এবং  $T_{r+1}$  ছারা স্চিত করিলে,

$$\frac{T_{r+1}}{T_r} = \frac{12-r+1}{r} \cdot \frac{3x}{2} = \frac{13-r}{r} \cdot \frac{5}{4};$$

$$\therefore \qquad T_{r+1} >, =, \ \text{d} < T_r \ \text{erd},$$
যদি  $5(13-r) >, =, \ \text{d} < 4r \ \text{er},$ 
অর্থাৎ, যদি  $65-5r >, =, \ \text{d} < 4r \ \text{er},$ 
অর্থাৎ, যদি  $65 >, =, \ \text{d} < 9r \ \text{er},$ 
অর্থাৎ, যদি  $r <, =, \ \text{d} > 7\frac{\circ}{\circ} \ \text{er},$ 

$$\therefore \qquad \text{অন্তম পদটি বৃহত্যম পদ এবং ইহার মান}$$

$$= {}^{12}C_7.2^5.(3x)^7 = {}^{12}C_8.2^5.(\frac{5}{2})^7$$

$$= 15468750.$$

উদা. 3.  $x=\frac{1}{8}$  হইলে,  $(3-5x)^{11}$ -এর বিভৃতিতে বৃহত্তম সাংখ্যমানের পদটি নির্দয় কর।

r-তম এবং (r+1)-তম পদদ্যকে যথাক্রমে  $T_r$  এবং  $T_{r+1}$  দারা স্চিত করিলে,

$$\frac{T_{r+1}}{T_r} = \frac{11 - r + 1}{r} \cdot \frac{5x}{3} - \frac{12 - r}{r} \cdot \frac{1}{3}.$$

$$\therefore T_{r+1} >, =, \forall 1 < T_r \ \text{ইবৈব},$$

$$12 - r >, =, \forall 1 < 3r \ \text{হয},$$

বীঞগণিত

অত্তব্দ,  $T_*$ , ত্র্বাং বিস্তৃতির তুর্বায় এবং চতুর্থপদ হাইটির চিহ্ননিরপেক্ষমান বা প্রথ যান স্থান এবং এই প্রত্তিই বৃহত্ত্য এবং এই যান

$$= {}^{11}C_2.3^{\circ}.(5x)^2 = {}^{11}10.3^{\circ} = 1082565.$$

#### প্রগ্রমালা 33

- 1. (i) (1+x)14, (ii) (3-2x)0- এব বৈ ছু তাত বৃহ কম সত্য নিৰ্দিষ কৰে।
- 2.  $\left(3ax \frac{2n^2}{x}\right)^{1/4}$  -এর বিপুর্নিত ও রচন্দ্রম সাংগ্য সহগ নির্ণয় কর।
- 8. নিম্নিখিত বিপ্লতি-ছইটির প্রত্তেকের বৃহত্তম পদ কোন্ট, ভাহা নির্ণর
  - (1)  $\left(\frac{x}{2} \frac{v}{3}\right)^{1/8}$ ,  $\forall x = 8, y = 9$ ;
  - (ii) (元m-3n)10, 对可 m=8, n=3.
  - 4. जिम्न १०० १८६ ० मुटकद का शास्त्रक तुरुक्षा पत्र जिल्हा कर ।
    - (i)  $(1+x)^4$ ,  $\sqrt[4]{2}$   $x=\frac{1}{2}$ ; (ii)  $2+3x)^{1/4}$ ,  $\sqrt[4]{4}$   $x=\frac{2}{3}$ ;
    - (iii) (a+x), गरान a= +, x=+, n=9,

### 9'10. ত্রিপদ সহসের ধ্রম।

(i)  $(1+x)^n$ -an fire  $6\pi$  nermy real number of the coefficients of the terms in the expansion of  $(1+x)^n$  is  $2^n$ .

The section 
$$(1+x)^n = 1 + {}^nC_1 + x + {}^nC_2 + {}^2C_3 + x^3 + \cdots + {}^nC_n + x^n :$$

উভয় প্রেক্ত x-1 ক ভিন্তে,  $2^n-1+C_1+C_2+C_3+\cdots+C_n$  ; জাত্রব, সহপসমূহের সমন্তি  $=2^n$ .

**অনুসদান্ত**। " $C_1 + {}^nC_2 + {}^nC_3 + \cdots + {}^nC_4 + 2^n + 1$ , জ্ঞান n-সাধ্যক ব**ভ** হাইছে একনকে ভাই বের 1, 2, 3,  $\cdots$  নাম হাক্তি কার্য লাইছে গঠিত সমব্যসমূহের সংখ্যা  $= 2^n + 1$ .

জাইনা।  $^{\circ}C_1$ ,  $^{\circ}C_2$ ,  $^{\circ}C_2$ , প্রাচ্চ কিপ্র চহগ্রেজিকে মনকেপে  $C_0$ ,  $C_2$ ,  $\cdots$  প্রভৃতি রূপেও লেখা হয়।

(ii)  $(1+x)^n$ -as fixfore any of wantes seems of the confirments of the and terms is equal to the sum of the confirments of the confirments of the sum of the confirments of the confirments.

#### 9'11. বিভিন্ন প্রক্রের সমাধান।

উদা. 1. (z+m)-এর বিপু: ৩৫৩ মন্ম পদওবির সমষ্টি A এবং মুগা পদওশির সমষ্টি B হইলে, প্রমাণ কর বে,

$$A^2 - B^2 = (a^2 - x^2)^n$$

 $(a+x)^n$  থর বিস্থাতির প্রস্থাগকে  $t_0,\,t_1,\,t_2,\,\delta$  ভালি ছারা ক্ষতি ভ করিবেল,

$$(a+x)^n = t_0 + t_1 + t_2 + t_3 + \cdots + t_n$$

$$= (t_0 + t_2 + t_4 + \cdots) + (t_1 + t_2 + t_3 + \cdots)$$

$$= A + B;$$

$$(a-x)^n \cdot (t_0 - t_1 + t_2 - t_3 + t_4 - t_4 + \cdots + (-1)^n t_n$$

$$= (t_0 + t_8 + t_4 + \cdots) - (t_1 + t_8 + t_8 + \cdots )$$

$$= A - B.$$

$$\therefore A^{2} - B^{2} = (A + B \cdot A - B) - (a + x)^{n} (a - x)^{n} = (a^{2} - x^{2})^{n}.$$

উদা. 2. জন ১৯.৫, ৫৯.৮৯ ই জান (১৮৯) এই নিকৃতির পদ নির্দেশ করে, ভাছা ক্টলে, প্রমাণ কর বে,

$$(t_1 - t_2 + t_4 - \dots)^2 + (t_1 - t_3 + t_5 - \dots)^2 = (4^2 + x^2)^n.$$

$$(x + x)^n = a^n + {}^n C_1 \ a^{n-1} \ x + {}^n C_2 \ a^{n-2} \ x^2 + {}^n C_3 \ a^{n-3} \ x^3 + \dots$$

$$+ {}^n C_n \ x^n$$

$$= t_0 + t_1 + t_2 + t_3 + \dots + t_n.$$

উভয় পক্ষে x-এর স্থলে ix বসাইলে,

$$(a+ix)^{n} = a^{n} + {}^{n}C_{1} \ a^{n-1}ix + {}^{n}C_{2} \ a^{n-2}i^{2}x^{2}$$

$$+ {}^{n}C_{3} \ a^{n-3} \ i^{3}x^{3} + {}^{n}C_{4} \ a^{n-4} \ i^{4}x^{4} + \cdots$$

$$= a^{n} + i^{n}C_{1}a^{n-1}x - {}^{n}C_{2}a^{n-2}x^{2} - i^{n}C_{3}a^{n-3}x^{3} +$$

$${}^{n}C_{4}a^{n-4}x^{4} + i^{n}C_{5}a^{n-5}x^{5} - {}^{n}C_{6}a^{n-6}x^{6} - i^{n}C_{7}a^{n-7}x^{7} + \cdots$$

$$= t_{0} + it_{1} - t_{2} - it_{3} + t_{4} + it_{5} - t_{6} - it_{7} + t_{8} + it_{9} - \cdots$$

$$= (t_{0} - t_{2} + t_{4} - t_{6} + \cdots)$$

$$+ i(t_{1} - t_{3} + t_{5} - t_{7} + \cdots) \cdots (1)$$

.: (1) এবং (2) হইতে,

$$(a+ix)^{n}(a-ix)^{n} = \{(t_{0}-t_{2}+t_{4}-t_{6}+\cdots)+i(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)\} \times \{(t_{0}-t_{2}+t_{4}-t_{6}+\cdots)-i(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)\}$$

$$\forall (a^{2}+x^{2})^{n} = (t_{0}-t_{2}+t_{4}-t_{6}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{3}+t_{5}-t_{7}+\cdots)^{2}+(t_{1}-t_{7}+t_{7}+\cdots)^{2}+(t_{1}-t_{7}+t_{7}+t_{7}+\cdots)^{2}+(t_{1}-t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_{7}+t_$$

উদা. 3. যদি কোন দ্বিপদ রাশিমালার বিস্কৃতিতে a,b,c,d যে-কোন চারিটি ক্রমিক সহগ হয়, তবে প্রমাণ কর যে,  $(bc+ad)(b-c)=2(ac^2-b^2d)$ .

মনে কর, a, b, c, d  $(1+x)^n$ -এর বিভৃতির যথাক্রমে (r-1)-ভম, r-ভম, (r+1)-তম, (r+2)-তম পদ।

এখন, 
$$\frac{{}^nC_r}{{}^nC_{r-1}}=\frac{n-r+1}{r}$$
;

:. (i) 
$$\frac{b}{a} = \frac{{}^{n}C_{r-1}}{{}^{n}C_{r-2}} = \frac{n - (r-1) + 1}{r-1} = \frac{n - r + 2}{r-1}$$
;

(ii) 
$$\frac{c}{b} = \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$
;

(iii) 
$$\frac{d}{c} = \frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n - (r+1) + 1}{r+1} = \frac{n-r}{r+1}.$$

(i) 
$$\overline{e}$$
  $\overline{e}$   $\overline{c}$   $\overline{c$ 

(ii) , 
$$\frac{c}{b}r = n - r + 1$$
 ... ( $\beta$ )

(iii) 
$$\cdot$$
,  $\frac{d}{c}(r+1) = n - r$ .  $(\gamma)$ 

$$\frac{b}{a}(r-1) - \frac{c}{b}r = 1, \ \forall i, \ r\left(\frac{b}{a} - \frac{c}{b}\right) = \frac{b}{a} + 1; \quad \therefore \quad r - \frac{b(a+b)}{b^2 - ac};$$

এইরপে, (β) এবং (γ) হইতে,

$$\begin{pmatrix} c \\ b \end{pmatrix} = \frac{d}{c} + 1 ; \quad \therefore \quad r = \frac{b(c+d)}{c^2 - bd}.$$

অতথ্ৰ, 
$$\frac{c+d}{c^2-bd}=\frac{a+b}{b^2-ac}$$
;

$$\forall 1, b^2c - ac^2 + b^2d - acd = ac^3 - abd + bc^3 - b^2d;$$

$$\exists 1, b^2c + abd - bc^2 - acd = 2(bc^2 - b^2d);$$

উদ্ধা. 4. 
$$(1+x)^n=C_0+C_1x+C_2x^2+C_3x^3+\cdots\cdots+C_nx^n$$
 হইলে, 
$$C_0+\frac{C_1}{2}+\frac{C_2}{3}+\frac{C_3}{4}+\cdots+\frac{C_n}{n+1}$$
্এর মান নির্ণয় কর।

[ C. U., 1945; Delhi, 1950]

দ্বিপদ উপপাদ্য হইতে,

$$(1+x)^n = 1 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + \dots + {}^nC_nx^n;$$

$$C_0 = 1, C_1 = {}^nC_1, C_2 = {}^nC_2,$$
 ইত্যাদি।

.. প্রদত্ত রাশিমালা

$$= 1 + \frac{{}^{n}C_{1}}{2} + \frac{{}^{n}C_{2}}{3} + \frac{{}^{n}C_{3}}{4} + \dots + \frac{{}^{n}C_{n}}{n+1}$$

$$= 1 + \frac{n}{2} + \frac{n(n-1)}{3\lfloor 2 \rfloor} + \frac{n(n-1)(n-2)}{4\lfloor 3 \rfloor} + \dots + \frac{1}{n+1}$$

$$= 1 + \frac{n}{2} + \frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{2} + \dots + \frac{1}{n+1}$$

$$= \frac{1}{n+1} \left\{ (n+1) + \frac{(n+1)n}{2} + \frac{(n+1)n(n-1)}{2} + \dots + 1 \right\}$$

$$+ \frac{(n+1)n(n-1)(n-2)}{2} + \dots + 1$$

$$= \frac{1}{n+1} \left\{ n+1 C_1 + n+1 C_2 + n+1 C_3 + n+1 C_4 + \dots + n+1 C_{n+1} \right\}$$

$$= \frac{1}{n+1} \left( 2^{n+1} - 1 \right).$$

উপা. 5.  $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \cdots + C_n x^n$  হইলে,  $C_1 + 2C_2 + 3C_3 + \cdots + nC_n$ -এর মান নিশ্য কর। [O. U., 1938]

বিপদ উপপাত্ত অমুসারে.

$$(1+x)^n = 1 + {}^nC_1x + {}^nC_2x^2 + \cdots + {}^nC_nx^n;$$

$$C_0 = 1, C_1 = {}^nC_1, C_2 = {}^nC_2, \text{ Solid};$$

$$\vdots \text{ Constant};$$

$$= {}^nC_1 + 2, {}^nC_2 + 3, {}^nC_3 + \cdots + n, {}^nC_n$$

$$= {}^n + 2n(n-1) + 3n(n-1)(n-2) + \cdots + n$$

$$= {}^n + n(n-1) + \frac{n(n-1)(n-2)}{2} + \cdots + n$$

$$= {}^n\{1 + (n-1) + \frac{(n-1)(n-2)}{2} + \cdots + 1\}$$

$$= {}^n\{1 + (n-1) + (n-1)(n-2) + \cdots + 1\}$$

$$= {}^n(1+1)^{n-1}$$

$$= {}^n(1+1)^{n-1}$$

$$= {}^n(1+1)^{n-1}$$

 $C_0^2 + C_1^2 + C_2^2 + \cdots + C_n x^n \in \mathbb{Z}_q,$   $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \cdots + C_n x^n \in \mathbb{Z}_q,$   $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \cdots + C_n x^n. \quad (1)$ 

x-এর স্থলে  $\frac{1}{x}$  বসাইয়া,

$$\left(1 + \frac{1}{x}\right)^n = C_0 + \frac{C_3}{x} + \frac{C_2}{x^2} + \dots + \frac{C_n}{x^n}$$
 ... (2)

(1) धवः (2) इटेंटि खनन बाता,

$$(1+x)^n \cdot \left(1+\frac{1}{x}\right)^n = (1)$$
 এবং (2)-এর শ্রেণী-মুইটির গুণফল,

ৰা, 
$$\frac{(1+x)^{2n}}{x^n} = (1)$$
 এবং (2)-এর খোণী-তুইটির গুণফল । ... (i)

ম্পষ্টই, (1) এবং (2)-এর দন্ধিণ-পক্ষত্ত শ্রেণী-তৃইটির গুণফলের দ্র-বঞ্জিত রাশিটিই প্রদন্ত রাশিমালা।

.. প্রদত্ত রাদি মালা = 
$$\frac{(1+r)^{2n}}{x^n}$$
-এর  $x$ -বিভাত রাদি =  $(1+x)^{2n}$ -এর বিভৃতির  $x^n$ -এর সহগ =  $\frac{2}{n}C_n = \frac{|2n|}{n!}$ 

জন্তিবা টপরের সমাধান (।) এর সমীকরণটি একটি অভেদ, অর্থাং উহা ৮-এর সকল মানের জন্তই সভা বলিয়া, ইহার এক পক্ষের ৮-এর যে কোন খাতের সহগ অপর পক্ষের ৮-এর সম্পাতের সহগের সমান ধরা হইলাছে।

বিকল প্ৰাতি : 
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
 ... (1)

থাবাৰ,  $(x+1)^n = C_0 x^n + C_1 x^{n-1} + C_0 x^{n-2} + \dots + C_n$  ... (2)

(1) এবং (2)-এর গুণন দারা, উপরে বণিত পদ্ধতিতেও প্রদত্ত রাশিমালার মান নির্ণয় করা যায়।

উদা- 7.  $(1+x)^n$ -এর বিজ্ঞিতে (r+1)-ভম পদের সহগ  $n_r$  হউলে, প্রমাণ কর যে.

উভয় পক্ষের প্র'-এ সহগ সমিত করিয়া,

$$(n+p)_r = n^r + n_{r-1}p_1 + n_{r-2}p_2 + \dots + n_1p_{r-1} + p_r.$$

ফুঠুব্য। এই ফলটি ভেণ্ডারমণ্ডির (Vendermonde's) উপপান্থ নামে থাত।

উপা. 8. 
$$a-(a+b)n+(a+2b)\frac{n(n-1)}{1.2}-(a+3b)^{n(n-1)(n-2)}$$
  
1.2.3  
+ ---- এর মান নির্ণয় কর।

প্রদত্ত রাশিমালা

$$= a\{1-n+\frac{n(n-1)}{\lfloor 2}-\frac{n(n-1)(n-2)}{\lfloor 3}+\dots$$

$$(n+1)- দংখ্যক পদ পর্যন্ত }$$

$$-b\{n-n(n-1)+\frac{n(n-1)(n-2)}{\lfloor 2}-\dots n- দংখ্যক পদ পর্যন্ত }$$

$$= a(1-1)^n-bn\{1-(n-1)+\frac{(n-1)(n-2)}{\lfloor 2}-\dots$$

$$n- দংখ্যক পদ পর্যন্ত }$$

$$= a(1-1)^n - bn(1-1)^{n-1} = 0.$$

উদা. 9. প্রমাণ কর যে, গু-এর মান 1 অপেক্ষা বৃহত্তর যে-কোন ধনাত্মক পূर्वमः था। इहेरल,  $4^n - 3n - 1$ , 9 घाता विভाजा।

$$4^{n} - 3n - 1 - (1+3)^{n} - 3n - 1$$

$$= 1 + n \cdot 3 + {}^{n}C_{3} \cdot 3^{3} + {}^{n}C_{3} \cdot 3^{3} + \dots - 3n - 1$$

$$= {}^{n}C_{3} \cdot 3^{3} + {}^{n}C_{3} \cdot 3^{3} + \dots$$

এখন দক্ষিণ পক্ষস্থ সমন্ত পদ ই 3° বা 9 ছারা বিভাজ্য;

অতএব, 4<sup>n</sup> - 3n - 1ও 9 দার। বিভাজা।

উদা. 10. দ্বিপদ উপপাত্ত প্রয়োগ করিয়া 99°-এর মান নির্ণয় কর।

$$99^{s} = (100-1)^{s} = 100^{s} - {}^{s}C_{1}100^{2}.1 + {}^{s}C_{2}100.1^{2} - 1^{s}$$

$$= 100^{s} - 3.100^{2} + 3.100 - 1$$

$$= 10000000 - 30000 + 300 - 1$$

$$= 970299.$$

#### প্রথমালা 34

- 1.  ${}^{20}C_1 + {}^{20}C_3 + {}^{20}C_3 + \cdots + {}^{20}C_{20}$ -এর মান নির্ণয় কর।
- 2.  $(a)^{-26}C_1 + {}^{26}C_3 + {}^{26}C_5 + {}^{26}C_7 + \cdots + {}^{26}C_{25}$ -এর মান নির্ণয় কর। (b) দেখাও যে  $(1+x)^{2n}$ -এর বিভৃতিতে অযুগ্ম পদস্থের সহগের मगष्ठि 2<sup>2n-1</sup> [ C. U. 1917 ]
- 3.  $(1+x)^n$ -এর বিভৃতিতে তিনটি ক্রমিক দহগ 165, 330 ও 462 হইলে, %-এর মান নির্ণয় কর। [ P. U., 1945]

- $4.~(1+x)^n$ -এর বিভৃতির প্রথম পদ-তিনটি সমান্তর-শ্রেণীভুক্ত হইলে দেখাও যে,  $2-4nx+n(n-1)x^2=0$ .
- 5. যদি  $(1+x)^n$ -এর বিস্তৃতিতে r-তম, (r+1)-তম এবং (r+2)-তম সহগগুলি সমাস্তর-শ্রেণীভূক হয়, তাহা হইলে দেখাও যে,

$$n^2 - n(4r+1) + 4r^2 - 2 = 0.$$

- 6.  $(a+x)^n$ -এর বিস্তৃতিতে দ্বিতীয়, তৃতীয় এবং চতুর্থ পদ যথাক্রমে 240, 720 এবং 1080 স্থলৈ, a, x এবং n-এর মান নির্ণয় কর।
- 7.  $(x+a)^n$ -এর বিস্তৃতিতে তৃতীয়, চতুর্থ ও পঞ্চম পদ বথাক্রমে 84, 280 এবং 560 হইলে, x, a এবং n-এর মান নির্ণয় কর। [ Pat., 1947 ; C. U., 1955 ]
- 8. (1+x)-এর কোন ঘাতের বিস্তৃতিতে তিনটি ক্রমিক সহগ a, b, c হইলে, প্রমাণ কর যে, ঘাতের স্চক  $\frac{2ac+b(a+c)}{b^2-ac}$  এবং  $\frac{a(b+c)}{b^2-ac}$ তম পদটির সহগ a.

[ Pat., 1941 ]

- 9. কোন দ্বিপদ রাশির বিভৃতিতে তৃইটি ক্রমিক সহগ সমান হইলে, প্রমাণ কর যে, উহাদের ঠিক পূর্বব লী এবং পরব লী সহগ-তৃইটিও সমান।
- 10. যদি  $(x+A)^n$ -এর বিস্তৃতিতে a, b, c, d যথাক্রমে তৃতীয়, চতুর্থ, পঞ্চম এবং ষ্ঠ পদ হয়, এবং n একটি ধনাত্মক পূর্ণরাশি হইলে, দেখাও যে,

$$\frac{b^2 - ac}{c^2 - bd} = \frac{5a}{3c}.$$
 [ C. U., 1957 ]

- 11. কোন দিপদরাশির বিভ্তিতে  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$  চারিটি ক্রমিক সহগ হইলে, দেখাও যে,  $\frac{a_1}{a_1+a_2}+\frac{a_3}{a_3+a_4}=\frac{2a_2}{a_2+a_3}$  [ Pat., 1950 ]
- 12. যদি  $P_n$   $(1+x)^n$ -এর বিস্তৃতির সহগদমূহের গুণফল নির্দেশ করে, তাহা হইলে, দেখাও যে,  $\frac{P_{n+1}}{P_n}=\frac{(n+1)^n}{n}$ .
- 13. যদি n-সংখ্যক বস্তুর একযোগে r-সংখ্যকটি লইয়া গঠিত সমবায়-সংখ্যা  $C_r$  ছারা স্থচিত হয়, তাহা হইলে, দেখাও যে,

$$\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots = \frac{2^n - 1}{n + 1}.$$

14.  $\sqrt[3]{\pi} (1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ , extension of  $C_1$ ,

(i) 
$$\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots = \frac{2^n}{n+1}$$

(ii)  $C_0 + 2C_1 + C_2 + 2C_3 + C_4 + 2C_5 + \dots = 3.2^{n-1}$ .

15. খদি 
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, প্রমাণ কর যে,

(1) 
$$C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n = (n+2)2^{n-1}$$
. [C. U., 1929]

(ii) 
$$C_0 + 3C_1 + 5C_2 + \dots + (2n+1)C_n = (n+1)2^n$$
.

(iii) 
$$C_2 + 2C_3 + 3C_4 + \dots + (n-1)C_n = (n-2) \cdot 2^{n-1} + 1$$
.

(iv) 
$$C_1 - 2C_2 + 3C_3 - \dots + (-1)^{n-1}nC_n = 0$$
.

(v) 
$$C_0 - 2C_1 + 3C_2 - \dots + (-1)^n(n+1)C_n = 0$$

(vi) 
$$2C_0 - 3C_1 + 4C_2 - 5C_3 + \cdots + (n+1)$$
-সংখ্যক পদ প্র্যস্ত = 0.

(vii) 
$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$$
 [ Pat., 1944]

(viii) 
$$\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{nC_n}{C_{n-1}} = \frac{n(n+1)}{2}$$
.

(ix) 
$$(C_0 + C_1)(C_1 + C_2) \cdots (C_{n-1} + C_n) = \frac{C_0 C_1 C_2 \cdots C_n (n+1)^n}{\lfloor n \rfloor}$$

(x) 
$$2C_0 + \frac{2^2C_1}{2} + \frac{2^8C_2}{2} + \frac{2^4C_3}{4} + \dots + \frac{2^{n+1}C_n}{2n+1} = \frac{3^{n+1}-1}{n+1}$$
.

(xi) 
$$C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n = \frac{2n}{n+1} \frac{2n}{n-1}$$

(xii) 
$$C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n = \frac{|2n|}{|n+2||n-2|}$$

(xiii) 
$$C_0C_n + C_1C_{n-1} + C_2C_{n-2} + \dots + C_nC_0 = \frac{2n}{n \lfloor n \rfloor}$$

(xiv) 
$$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + C_{n-r}C_n = \frac{|2n|}{|n-r|, n+r|}$$

(xv) n-এর মান অযুগা বা যুগা হইলে, যথাক্রমে

$$C_0^2 - C_1^2 + C_2^2 - C_3^2 + \dots + (-1)^n C_n^2 = 0,$$

$$\overline{4}, \ (-1)^{\frac{3}{2}} \frac{\left(\frac{n}{|n|}\right)^{2}}{\left(\frac{|n|}{|n|}\right)^{2}}.$$

(xvi) 
$$C_1^2 + 2C_2^2 + 3C_3^2 + \dots + nC_n^2 = \frac{i2n-1}{([n-1]^2)^2}$$

(xvii) 
$$C_0^2 + 2C_1^2 + 3C_2^2 + \dots + (n+1)C_n^2 = \frac{(n+2) 2n-1}{|n-1| n}$$
.

16. দেখাও যে, (a)  $(C_0+C_1+C_2+\cdots+C_n)^p={}^{pn}C_0+{}^{pn}C_1+{}^{pn}C_2+\cdots+{}^{pn}C_{pn}$ , যথন p একটি ধনাত্মক পূর্ণরাশি।

(b) 
$$\left\{ 1 + 3n + \frac{3n(3n-1)}{2} + \frac{3n(3n-1)(3n-2)}{3} + \cdots \right\}$$

$$\times \left\{ 1 + 4n + \frac{4n(4n-1)}{2} + \frac{4n(4n-1)(4n-2)}{3} + \cdots \right\}$$

$$= 1 + 7n + \frac{7n(7n-1)}{2} + \frac{7n(7n-1)(7n-2)}{3} + \cdots$$

17.  $\sqrt[3]{\pi} (1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ , (  $\sqrt[3]{\pi}$ 

(i) 
$$a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$$
, (ii)  $a_0 - a_1 + a_2 - \dots + a_{2n} = 1$ .

ইহা হইতে প্রমাণ কর যে, (i)  $a_0 + a_2 + a_4 + \cdots + a_{2n} = \frac{1}{2}(3^n + 1)$ ,

(ii) 
$$a_1 + a_3 + \dots + a_{2n-1} = \frac{1}{2}(3^n - 1)$$
.

18. দেখাও যে.

$$\left(\frac{1+x}{1+4x}\right)^n = 1 - {^nC_1}\left(\frac{3x}{1+4x}\right) + {^nC_2}\left(\frac{3x}{1+4x}\right)^2 - \dots + (-1)^n {\binom{3x}{1+4x}}^n.$$

19. দেখাও যে, n একটি ধনাত্মক পূর্ণরাশি হইলে,

$$2^{n} - n \cdot 2^{n-1} + \frac{n(n-1)}{2} \cdot 2^{n-2} - \dots + (-1)^{n} = 1.$$

20. দেখাও যে.

$$x - {^{n}C_{1}}(x - y) + {^{n}C_{2}}(x - 2y) - {^{n}C_{3}}(x - 3y) + \dots + (-1)^{n}(x - ny) = 0.$$

21. n একটি ধনাত্মক পূর্ণরাশি হইলে, প্রমাণ কর যে,

$$1 - n \cdot \frac{1+x}{1+nx} + \frac{n(n-1)}{1.2} \cdot \frac{1+2x}{(1+nx)^2} - \frac{n(n-1)(n-2)}{1.2.3} \cdot \frac{1+3x}{(1+nx)^8} + \dots = 0.$$

22. দেখাও যে,

$$\frac{x^{n}}{n} + \frac{x^{n-1}y}{n-1} + \frac{x^{n-2}y^{2}}{n-2} + \dots + \frac{xy^{n-1}}{1 \mid n-1} + \frac{y^{n}}{n} = \frac{(x+y)^{n}}{n}.$$

23. দেখাও যে, যদি n একটি ধনাত্মক পূর্ণরাশি হয়,

$$(1-x)^n = (1+x)^n - 2nx(1+x)^{n-1} + \frac{2n(2n-2)}{2} x^2 (1+x)^{n-2} - \cdots$$

- 24. প্রমাণ কর যে, 1 অপেক্ষা বৃহত্তর n-এর যে-কোন অথও ধনাত্মক মানের জন্ম  $5^{2n}-24n-1$ , 576 ছারা বিভাজ্য।
- 25. প্রমাণ কর যে, 1 অপেক্ষা বৃহত্তর n-এর যে-কোন অথও ধনাত্মক মানের জন্ম  $3^{8n}-26n-1$ , 676 দারা বিভাজ্য।
- 26. দ্বিপদ উপপাত প্রয়োগ করিয়া, (i) (99)⁴, (ii) ('999)⁴-এর শুদ্ধ মান তিন দশমিক স্থান পর্যন্ত নির্ণয় কর।

#### দেশম ভাগ্ৰায়

# অসীম গুণোত্তর-শ্রেণী এবং ঋণাত্মক বা ভগ্নাস্ক সূচক-বিশিষ্ট দ্বিপদ উপপাত্ত

(Infinite Geometric Series and Binomial Theorem for negative or fractional index)

10.1. 'প্রগতি' অধ্যায়ে সমান্তর-শ্রেণী ও গুণোত্তর-শ্রেণীর আলোচনা হইয়াছে। তাহাতে যে সকল শ্রেণীর আলোচনা হইয়াছে, সেগুলি সদীম (finite) শ্রেণী; কেননা তাহাদের পদ-সংখ্যা নির্দিষ্ট। এরপ শ্রেণীর যোগফলও নির্দিষ্ট এবং নির্ণয় করা সন্তব।

এক্ষণে যে শ্রেণীর পদ-সংখ্যা অসীম অর্থাং যে শ্রেণীর পদগুলি অনস্ত পর্যন্ত বিস্তৃত তাহার আলোচনা করা হইতেছে। যে শ্রেণীর পদ-সংখ্যার সীমা নাই অর্থাৎ অসীম, তাহাকে অসীম শ্রেণী (infinite series) বলে।

10'2. n একটি অখণ্ড ধন-সংখ্যা ও r একটি প্রকৃত ভগ্নাংশ হইলে, প্রমাণ করিতে হইলে যে, n-এর মান যভই বাড়িতে থাকিবে, r'-এর মান ভভই কমিতে থাকিবে।

ধরা যাক, ৮= নৃঁ. এখন যেহেতু কোন সংখ্যার দ্বী-তম অংশ স্পষ্টতঃ ঐ সংখ্যা অপেকা ছোট, অতএব,

- $(\frac{3}{7})^3$ -এর মান  $\frac{3}{7}$  অপেকা ছোট; কারণ,  $(\frac{3}{7})^2 = (\frac{3}{7})$ -এর  $\frac{3}{7}$ ;
- $(\frac{3}{7})^3$ -এর মান  $(\frac{3}{7})^2$  অপেক্ষা ছোট ; কারণ,  $(\frac{3}{7})^3=(\frac{3}{7})^2$ -এর  $\frac{3}{7}$  ;
- $(\frac{3}{7})^4$ -এর মান  $(\frac{3}{7})^3$  অপেক্ষা ছোট ; কারণ,  $(\frac{3}{7})^4=(\frac{3}{7})^3$ -এর  $\frac{3}{7}$  1

স্থতরাং, দেখা যাইতেছে যে,  $\frac{9}{7}$ ,  $(\frac{9}{7})^2$ ,  $(\frac{9}{7})^4$ ,..... শ্রেণীতে, যে-কোন পদ উহার পূর্ববর্তী পদ অপেক্ষা ছোট; অর্থাৎ n-এর মান যতই বাড়িতে থাকিবে,  $(\frac{3}{7})^n$ -এর মান ততই কমিতে থাকিবে।

এইপ্রকারে যে-কোন প্রকৃত ভগ্নাংশের ক্ষেত্রে উপরিউক্ত সিদ্ধান্তের সত্যতা প্রতিপন্ন করা যাইতে পারে।

স্বতরাং, r-এর মান এক অপেক্ষা ছোট ষে-কোন সংখ্যাই হউক না কেন, n-এর মান ষতই বড় হইতে থাকিবে,  $r^n$ -এর মান বতই কমিতে থাকিবে।

টীকা। উপরিউক্ত দৃষ্টান্ত হইতে স্পষ্টই বুঝা যায় যে, দ যে-কোন প্রকৃত ভগ্নাংশ স্থাচিত করিলে, n যদি অসীম হয়, তবে দা-এর মান নগণ্য হইবে।

10'3. কোন গুণোত্র-শ্রেণীর পদসংখ্যা অসীম হইলে, ঐ শ্রেণীর পদসমূহের সমষ্টি নির্ণয়।

 $a, ar, ar^2, ar^3$  ইত্যাদি শ্রেণীটির বিষয় বিবেচনা করা যাক ৷ ইহার প্রথম n-সংখ্যক পদের সমষ্টি S দারা স্টিত করিলে, স্পষ্টতঃ,

$$S = \frac{a(1-r^n)}{r-r} = \frac{a}{1-r} - \frac{ar^n}{1-r}.$$

এখন, r এক প্রকৃত ভগ্নংশ হইলে, n-এর মান যতই বাড়িতে থাকিবে,  $r^n\left($  অতএব,  $\frac{ar^n}{1-r}\right)$ -এর মান ততই ক্ষুদ্রতর হইতে থাকিবে। স্বতরাং, n ( অর্থাৎ প্রদত্ত শ্রেণীর পদ-সংখ্যা )-এর মান ক্রমশঃ বর্ধিত করিয়া  $\frac{ar^n}{1-r}$ -এর মানকে যে-কোন অভিকৃত্র সংখ্যা অপেক্ষা ক্ষুত্রতর করা যায়। অভএব, n-কে সীমাতীতরূপে বর্ধিত করিতে থাকিলে, n-সংখ্যক পদের সমষ্টিকে  $\frac{a}{1-r}$ -এর যতদ্র ইচ্ছা সন্নিকটবর্তী করা যায়।

এই সিদ্ধান্তকেই সাধারণতঃ নিম্নলিখিতরপে প্রকাশ করা হয়: যে-কোন গুণোন্তর-শ্রেণীর সাধারণ অফুপাত এক প্রকৃত ভগ্নাংশ এবং পদ-সংখ্যা অসীম হইলে, উক্ত পদসমূহের সমষ্টি  $\frac{a}{1-r}$ -এর সমান হয়। অথবা, সংক্ষেপে, অসীম-

সংখ্যক পদবিশিষ্ট গুণোত্তর-শ্রেণীর পদসমূহের সমষ্টি $-\frac{\alpha}{1-r}$ 

অর্থাৎ, প্রথম পদ 1-( সাধারণ অরুপাত)।

দৃষ্টান্তঃ 1, ½, ½, ₺,... ইত্যাদি গুণোত্তর-শ্রেণীর বিষয় বিবেচনা করা যাক। এক্লেত্রে,  $\alpha=1, r=\frac{1}{2}$ ; ∴ প্রথম n-সংখ্যক পদের সমষ্টি

$$= \frac{1}{1 - \frac{1}{2}} \left( 1 - \frac{1}{2^n} \right) = 2 \left( 1 - \frac{1}{2^n} \right) = 2 - \frac{1}{2^{n-1}}.$$

এখন, n-কে দীমাভীতরূপে বাড়াইতে থাকিলে,  $2^{n-1}$  দীমাতীতরূপে বাড়িতে থাকিবে, এবং কাজেই,  $\frac{1}{2^{n-1}}$  ক্রমশঃ কমিতে কমিতে নগণ্য হইয়া যাইবে।

স্তরাং, উপরিউক্ত শ্রেণীর পদ-সংখ্যা অসীম হইতে থাকিলে, পদসমূহের সমষ্টি ক্রমশঃ 2-এর সন্নিকটবর্তী হইতে থাকিবে; অর্থাৎ,

উক্ত শ্রেণীর অসীম-সংখ্যক পদের সমষ্টি = 2.

তীকা। লক্ষ্য করিবার বিষয় এই যে, কোন গুণোন্তর-শ্রেণীর n-সংখ্যক পদের সমষ্টি, n শীমাতীতরূপে বাড়িতে থাকিলে, ক্রমশঃ এক নিদিষ্ট সগীম সংখ্যার সন্নিকটবর্তী হইতে থাকে, যদি উক্ত শ্রেণীর সাধারণ অন্থপাত এক অপেক্ষা ছোট হয়। কিন্তু সাধারণ অন্থপাত যদি এক অপেক্ষা বড় হয়, তাহা হইলে উপরিউক্ত সমষ্টির কোন নির্দিষ্ট সসীম মান থাকে না।

10'4. আহ্নত দেশমিক (Recurring Decimals)। আবৃত দশমিক অদীম গুণোত্তর-শ্রেণী ছারা উৎপন্ন রাশিমালার উৎকৃষ্ট দৃষ্টাত। যুধা,

0

এক্ষেত্রে,  $\frac{2}{10^{-9}}$  পরবর্তী পদসমূহ এরপ এক গুণোভর-শ্রেণী উৎপন্ন করিয়াছে, যাহার প্রথম পদ  $\frac{34}{10^{-9}}$  এবং সাধারণ অন্তপাত  $\frac{1}{10^{-9}}$ 

অতএব, '2\$4 = 
$$\frac{2}{10} + \frac{34}{10^3} \div \left(1 - \frac{1}{10^2}\right) = \frac{2}{10} + \frac{34}{990} = \frac{232}{990}$$
, [ অৰ্ণাৎ,  $\frac{234 - 2}{990}$ ].

উলা 1. অসীম-সংখ্যক পদবিশিষ্ট কোন গুণোত্তর-শ্রেণীর পদসমূহ ক্রমশঃ কমিতে থাকিলে, উহার যে-কোন পদ এবং উক্ত পদের পরবর্তী পদসমূহের সমষ্টির অমুপাত এক শ্রুবক-সংখ্যা হইবে।

মনে কর, উল্লিখিত গুণোত্তর-শ্রেণীটি  $a,\ ar,\ ar^2,\ ar^3,\cdots\cdots$ , ইত্যাদি দারা স্টিত হইতেছে। এখন, ঐ শ্রেণীর n-তম পদ  $=ar^{n-1}$ ;

এবং উক্ত n-তম পদের পরবর্তী পদসমূহের সমষ্টি

$$= ar^{n}(1+r+r^{2}+r^{3}+\cdots \cdots c_{0})$$

$$= ar^{n}\frac{1}{1-r},$$

.. ( 
$$n$$
-ভম পদ) : (উহার পরবর্তী পদস্মূহের সমষ্টি )  $\frac{ar^{n-1}}{ar^n\frac{1}{1-r}}=\frac{1-r}{r}$ 

= এক ধ্রুবক-সংখ্যা, কারণ, n-এর মান ঘাহাই হউক না কেন,  $\frac{1-r}{r}$ -এর মান সকল ক্লেত্রে একই থাকিবে।

[ অসীম-সংখ্যক পদবিশিষ্ট গুণোন্তর-শ্রেণীকে সংক্ষেপে **অসীম গুণোত্তর-শ্রেণী** বলাহয়।

উলা, 2. নিয়লিখিত রাশিমালার মান নির্ণয় কর:

একেত্রে,  $a = \frac{3}{3}$ , এবং  $r = -\frac{2}{3} + \frac{3}{3} = -\frac{4}{3}$ .

:. নির্দেষ্ট মান = 
$$\frac{\frac{3}{3}}{1-(-\frac{4}{9})} = \frac{\frac{3}{3}}{1+\frac{4}{9}} = \frac{3}{2} \times \frac{9}{13} = \frac{27}{26}$$

উদা. 3. x < 1 হইলে.  $1 + 2x + 3x^2 + 4x^3 + \cdots$  অসীম-সংখ্যক পদ পর্যস্ত রাশিমালার যোগফল নির্ণর কর।

মনে কর. নির্ণেয় যোগফল = S : তাহা হইলে.

$$S = 1 + 2x + 3x^2 + 4x^3 + \dots$$
 (1)

$$93 : Sx = x + 2x^2 + 3x^3 + \cdots$$
 (2)

(1) হইতে (2) বিয়োগ করিয়া,

$$S(1-x) = 1 + x + x^{2} + x^{3} + \dots$$

$$= \frac{1}{1-x}.$$

$$\therefore S = \frac{1}{(1-x)^{2}}.$$

#### প্রামালা 35

নিমূলিখিত অসীম-সংখ্যক পদবিশিষ্ট রাশিমালাসমূহের মান নির্ণয় কর (Sum to infinity each of the following series):

3. 
$$\frac{5}{8} + \frac{1}{2} + \frac{2}{8} + \frac{2}{25} + \cdots$$
 ইত্যাদি। 4.  $1 - \frac{2}{8} + \frac{4}{5} - \cdots$  ইত্যাদি।

■. 
$$\frac{2}{5} + \frac{3}{5^2} + \frac{2}{5^3} + \frac{3}{5^4} + \cdots$$
 ইত্যাদি।

7. 
$$\frac{4}{7} + \frac{5}{7^2} + \frac{4}{7^3} + \frac{5}{7^4} + \cdots$$
 ইত্যাদি।

8. 
$$\sqrt{3} + \frac{1}{\sqrt{3}} + \frac{1}{3\sqrt{3}} + \cdots$$
 ইভ্যাদি।

10. কোন অসীম গুণোত্তর-শ্রেণীর প্রত্যেক পদ উহার পরবর্তী পদসমূহের সমষ্টির দশগুণের সমান। উহার সাধারণ অমুপাত নির্ণয় কর।

11. অসীম গুণোত্তর-শ্রেণীর যোগফল নির্ণয়ের প্রণালীতে নিম্নলিখিত সংখ্যা-গুলির মান নির্ণয় কর:

(i) '027; (ii) 1'145; (iii) '21501; (iv) '142857.

নিম্লিখিত অসীম-সংখ্যক পদবিশিষ্ট রাশিমালাসমূহের সমষ্টি নির্ণয় কর:

- 12. 1+3x+5x2+7x3+ · · ইত্যাদি। \*
- 13. 1.2x+2.4x\*+3.8x\*+ ... ইত্যাদি।
- 14. 1.3x + 4.9x2 + 7.27x3 + ... ইত্যাদি।
- 15. 1-3x+5x2-7x3+ -- ইত্যাদি ।
- 16. \frac{1}{8} + \frac{8}{9} + \frac{8}{87} + \cdots \empty \infty |
- 17. r এবং a প্রকৃত ভগ়ংশ হইলে,  $1+(1+a)r+(1+a+a^2)r^3+(1+a+a^2+a^3)r^3+\cdots$  অদীম পদ পর্যন্ত রাশিমালার মান নির্ণয় কর।
- 10'5. অসীম শ্রেণীগুলিকে ইহাদের যোগফলের প্রকৃতি অনুসারে সাধারণতঃ তিনভাগে ভাগ করা ধার:
- (ক) যে শ্রেণীর পদ-সংখ্যা (n) অসীম পর্যন্ত হইলেও উহার n পদসমূহের যোগফল (sn) কোন নির্দিষ্ট মান অতিক্রম করিতে পারে না, তাহাকে **অভিসারী** (convergent) **অসীম শ্রেণী** বলে। যথা,

$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^8} + \cdots$$
  $\infty$ .

এই শ্রেণীর খোগফল 2-কে অভিক্রম করে না। এক্ষেত্রে দেখা যায় যে, n-এর মান যতই রুদ্ধি পায়, যোগফল ততই 2-এর নিকটবর্তী হয়।

n-এর মান অদীমের দিকে অগ্রসর হইতেছে ব্ঝাইবার জন্ম ' $n o \infty$ ' প্রতীকটি ব্যবস্থত হয়।

r যদি অসীমের দিকে অগ্রসর হয়  $(r \to \infty)$ , তবে  $\frac{1}{r}$ -এর সীমাস্থ মান শ্রু (0) হয়।

r-এর মান 1 অপেক্ষা ক্ষুদ্রতর হইলে ( |r| < 1 ), ঐ অসীম শ্রেণীটি অভিসারী হয়।

(খ) যে শ্রেণীর পদ-সংখ্যা (n) অনন্তের দিকে অগ্রসর হইলে, উহার n-তম পদ অসীম হইয়া পড়ে এবং  $S_n$ -এর সীমাস্থ মানও অসীম হইয়া পড়ে—এরপ শ্রেণীকে অপসারী (divergent) অসীম শ্রেণী বলে।

যথা,  $1+2+3+4+\cdots$ ,  $1+2+2^2+2^3+\cdots$ . এরূপ শ্রেণীর যোগফল নির্ণয় করা সম্ভব নহে। এরূপ ক্ষেত্রে সাধারণ অন্তর বা অন্তপাত কথনও 1-এর চেয়ে ক্ষুত্রের নহে।

(গ) উপরিউক্ত (ক) ও (খ) শ্রেণী ভিন্নও আর একপ্রকার অসীম শ্রেণী আছে, যাহার সমষ্টি বিভিন্ন ক্ষেত্রে বিভিন্ন হয়। এরপ শ্রেণীকে দেশলায়মান (oscillatory)
ভারীম শ্রেণী বলে। যথা,

এক্টের, শ্রেণীটিকে  $(1-1)+(1-1)+(1-1)-\cdots$  ধরিলে, ইহার সমষ্টি =0.

আবার, শ্রেণীটিকে 1 − (1 − 1) − (1 − 1) − ····· ∞ ধরিলে, ইহার যোগফল = 1.

10.6. ঋণাত্মক অথবা ভগ্নাজ সূচক-বিশিষ্ট দিশদ উপশাত (Binomial Theorem for negative or fractional index)।

x-এর সাংখ্যমান বা পরম মান 1 অপেক্ষা ক্ষ্মতের হইলে, অর্থাং  $\mid x \mid < 1$  হইলে, ঝণাত্মক অথবা ভগ্নান্ধ n-এর জন্ত, \*

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{3}x^3 + \cdots$$

$$+ \frac{n(n-1)(n-2)\cdots(n-r+1)}{r}x^r + \cdots$$

x-এর সাংখ্যমান বা পরম মান 1 অপেক্ষা ক্ষুত্র হইলে, x সংখ্যাটি -1 এবং 1-এর অন্তর্বর্তী শৃষ্ঠ ভিন্ন (কারণ x শৃষ্ঠ হইলে, 1+x দিপদ হইবে না) কোন সংখ্যা হইবে। উহা -1 অপেক্ষা ক্ষুত্র, বা, 1 অপেক্ষা বৃহত্তর কোন সংখ্যা হইতে পারে না; অতএব, শর্তটিকে -1 < x < 1 হইলে, এইরপেও লেখা চলে। লক্ষণীয় যে, দক্ষিণ পক্ষন্থ শ্রেণীটির (r+1)-তম পদ হইতেছে

$$\frac{n(n-1)(n-2)\cdots(n-r+1)}{\mid r}x^r ;$$

ম্পট্ই, ইহার লব, n ঋণাত্মক অথবা ভগ্নান্ধ বলিয়া, r-এর কোন ধনাত্মক পূর্ণ মানের জন্মই শৃন্ম হইতে পারে না; অভএব, শ্রেণীটির কোন পদই শূন্ম হইবে না। স্বতরাং, শ্রেণীটি **অসীম পর্যন্ত** বিস্তৃত হইবে। মনে রাথিতে হইবে, n ঋণাত্মক অথবা ভগ্নান্ধ না হইবা ধনাত্মক এবং পূর্ণদংখ্যা হইলেও  $(1+x)^n$ -এর বিস্তৃতির (r+1)-তম পদ হইবে

$$n(\underline{n-1)(n-2)\cdots(n-r+1)}x^r,$$

<sup>\*</sup>x-এর সাংখ্যমান 1 অপেক্ষা কুজতর বলিতে চিহ্ন-বিজিত x-এর মান 1 অপেক্ষা কুজতর —এই অর্থ ব্যায়। সাংখ্যমান ও পরম মান সমার্থক। স্কুতরাং সাংকেতিক ভাষায়। x। < 1 দারা x-এর সাংখ্যমান 1 ইইতে কুজতর—এই অর্থ ব্যায়।

কিন্তু, এক্ষেত্রে, (n+1), (n+2), প্রভৃতি n অপেক্ষা বৃহত্তর n-এর যে-কোন ধনাত্মক, পূর্ণ মানের জন্মই পদটির লব শৃন্ম হইবে বলিয়া, বিকৃতিটিতে (n+1)-তম পদের পরে আর কোন পদই থাকিবে না, অর্থাৎ, এক্ষেত্রে শ্রেণীটি সঙ্গীম (finite) এবং ইহার পদ-সংখ্যা n+1.

অভএব একমাত্র, -1 < x < 1 হইলেই উপপাখটি সভ্য হয়, অশুধা,  $(1+x)^m$ দক্ষিণ পক্ষস্থ বিস্তৃতিটির সমান হইবে না। উদাহরণস্ক্রপ,

x-এর স্থলে -x এবং n-এর স্থলে -1 ধরিয়া বিস্তৃতিটির পদগুলি সরল করিয়া বাধিলে, নিম্নলিখিত বিস্তৃতিটি পাওয়া যায়:

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots$$
 ... (1)

৫-এর ছলে ৪ বসাইলে,

পূর্বেই দেখানো হইয়াচে ইহ। একটি অপসারী শ্রেণী; ইহার সমষ্টি কথনই -1 হইতে পারে না। অতএব, দেখা গেল, যথন x>1, অর্থাৎ যথন -1< x<1 নহে, তথন (1)-এর বাম পক্ষ ও দক্ষিণ পক্ষ সমান হয় না।

#### 10'7. সাধারণ পদ।

বিস্তৃতির সাধারণ পদ (r + 1)-তম পদকে  $t_{r+1}$  দারা স্ফতিত করা হয়।

$$\mathbf{d}_{2} = 1 + nx + \frac{n(n-1)}{2}x^{3} + \frac{n(n-1)(n-2)}{2}x^{3} + \cdots$$

$$\mathbf{t}_{r+q} = \frac{\mathbf{n}(\mathbf{n}-1)(\mathbf{n}-2)\cdots(\mathbf{n}-r+1)}{2}x^{p}.$$

# 10'8. কভিশয় প্রয়োজনীয় বিস্তৃতি।

(1) 
$$(1-x)^n = 1 + n(-x) + \frac{n(n-1)}{2}(-x)^2 + \frac{n(n-1)(n-2)}{2}(-x)^3 + \dots + \frac{n(n-1)(n-2)\cdots(n-r+1)}{2}(-x)^r + \dots + \frac{n(n-1)}{2}x^2 - \frac{n(n-1)(n-2)}{2}x^3 + \dots + (-1)^r \frac{n(n-1)(n-2)\cdots(n-r+1)}{2}x^r + \dots$$

(2) 
$$(1+x)^{-n} = 1 + (-n)x + \frac{-n(-n-1)}{2}x^2 + \frac{-n(-n-1)(-n-2)}{3}x^3 + \dots + \frac{-n(-n-1)(-n-2)\cdots(-n-r+1)}{2}x^r + \dots + \frac{-n(n+1)}{2}x^2 - \frac{n(n+1)(n+2)}{3}x^3 + \dots + (-1)^r \frac{n(n+1)(n+2)\cdots(n+r-1)}{2}x^r + \dots$$

(3) 
$$(1-x)^{-n}$$
  

$$= 1 + (-n)(-x) + \frac{(-n)(-n-1)}{2}(-x)^{2} + \cdots$$

$$+ \frac{(-n)(-n-1)(-n-2)}{3}(-x)^{3} + \cdots$$

$$+ \frac{(-n)(-n-1)(-n-2) \cdot (-n-r+1)}{2}(-x)^{r} + \cdots$$

$$= 1 + nx + \frac{n(n+1)}{2}x^{2} + \frac{n(n+1)(n+2)}{3}x^{3} + \cdots$$

$$+ \frac{n(n+1)(n+2) \cdot \cdot \cdot (n+r-1)}{2}x^{r} + \cdots$$

(4) 
$$(1+x)^{-1} = 1-x+x^2-x^2+\cdots+(-1)^r x^r+\cdots$$

(5) 
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^7 + \dots$$

(6) 
$$(1+x)^{-n} \cdot 1 - 2r + 3r^2 - 4x^n + \dots + (-1)^r (r+1)x^r + \dots$$

(7) 
$$(1-x)^{-2} = 1 + 2x + 3x^{2} + 4x^{3} + \dots + (i+1)x^{i} + \dots$$

(8) 
$$(1+x)^{-3} = 1 - 3x + 6x^{3} - 10x^{3}$$

$$+\cdots+(-1)^r\frac{(r+1)(r+2)}{12}x^r+\cdots$$

(9) 
$$(1-x)^{-s} = 1 + 8x + 6x^{s} + 10x^{s} + \dots + \frac{(r+1)(r+2)}{2}x^{r} + \dots$$

অনুসি. (1) 
$$(1-x)^n$$
-এর বিস্তৃতির দ্বোরণ পদ 
$$t_{r+1} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{\Gamma}(-x)^r$$
 
$$= (-1)^p \frac{n(n-1)(n-2)\cdots(n-r+1)}{\Gamma} x^p.$$

(2) 
$$(1+x)^{-n}$$
-এর বিস্তৃতির সাধারণ পদ 
$$t_{r+1} = -n(-n-1)(-n-2)\cdots(-n-r+1) {r \over x^r}$$
 
$$= (-1)^{r} {n(n+1)(n+2)\cdots(n+r-1) \over x^r}.$$

(3) 
$$(1-x)^{n}$$
-এর বিস্তৃতির দাধারণ প্র
$$t_{r+1} = \frac{-n(-n-1)(-n-2)\cdot (-n-r+1)}{t^{r}}(-x)^{r}$$

$$= (-1)^{r} \frac{n(n+1)(n+2)\cdots(n+r-1)}{t^{r}} (-1)^{r} x^{r}$$

$$= (-1)^{2r} \frac{n(n+1)(n+2)\cdots(n+r-1)}{t^{r}} x^{r}$$

$$= \frac{n(n+1)(n+2)\cdots(n+r-1)}{t^{r}} x^{r}$$

জ্ঞ তিবা। (৪)-এর সাধারণ পদের আকার হইতে বুঝা যায়  $(1-x)^{-n}$ -এর বিভৃতির সকল পদই ধনাত্মক।

10'9. ভগাল অথবা ঝণাতাক সূচক-বিশিষ্ট (a + x)-এর n-ভম দাভ : (a + x)-এর বিস্তৃতি।

(1) 
$$x < a$$
  $\sqrt[n]{a} < 1$ ;  

$$\therefore (a+x)^n = \left\{ a\left(1 + \frac{x}{a}\right)\right\}^n$$

$$= a^n \left(1 + \frac{x}{a}\right)^n$$

$$= a^n \left\{1 + \frac{nx}{a} + \frac{n(n-1)}{2} \left(\frac{x}{a}\right)^2 + \cdots\right\}$$

$$= a^n + na^{n-1}x + \frac{n(n-1)}{2} a^{n-2}x^2 + \cdots$$

(2) 
$$x > a \in \mathbb{Z}^n, \frac{a}{x} < 1$$
;  

$$\therefore (a+x)^n = \left\{ x \left( 1 + \frac{a}{x} \right) \right\}^n$$

$$= x^n \left\{ 1 + \frac{na}{x} + \frac{n(n-a)}{2} \left( \frac{a}{x} \right)^2 + \cdots \right\}$$

$$= x^n + nx^{n-1}a + \frac{n(n-1)}{2} x^{n-2}a^2 + \cdots$$

উদা 1. 
$$\frac{1}{(2-3x^2)^{\frac{2}{5}}}$$
্ণর বিস্তৃতির প্রথম চারিটি পদ নির্ণয় কর।  $[C.~U.,~1876]$ 

$$\frac{1}{(2-3x^2)^{\frac{4}{8}}} = \frac{1}{2^{\frac{4}{8}} \left(1 - \frac{3x^2}{2}\right)^{\frac{4}{8}}} = \frac{1}{2^{\frac{4}{8}}} \left(1 - \frac{3x^2}{2}\right)^{-\frac{4}{8}}$$

$$= \frac{1}{2^{\frac{4}{8}}} \left\{1 + \left(-\frac{4}{8}\right) \cdot \left(-\frac{3x^2}{2}\right) + \left(-\frac{4}{8}\right) \left(-\frac{4}{8} - 1\right) \cdot \left(-\frac{3x^2}{2}\right)^2$$

$$+ \left(-\frac{4}{8}\right) \left(-\frac{4}{8} - 1\right) \left(-\frac{4}{8} - 2\right) \left(-\frac{3x^2}{2}\right)^3 + \cdots\right\}$$

$$= \frac{1}{2^{\frac{4}{8}}} \left\{1 + \frac{4}{5} \cdot \frac{3x^2}{2} + \frac{4 \cdot 9}{5^2 \cdot 2} \cdot \frac{9x^4}{4} + \frac{4 \cdot 9 \cdot 14}{5^3 \cdot 2 \cdot 3} \cdot \frac{27x^6}{8} + \cdots\right\}$$

$$= \frac{1}{5 \cdot 16} \left\{1 + \frac{6}{5} \cdot x^2 + \frac{81}{50} x^4 + \frac{567}{250} x^6 + \cdots\right\}.$$

উদা. 2.  $(1+x)^{\frac{1}{r}}$ -এর বিভৃতির (r+1)-ভম পদটি নির্ণয় কর।

$$\begin{split} (r+1)\text{-Val} & \ \forall \forall = \frac{1}{2}(1-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-r+1)_{x^r} \\ & = \frac{1}{2}(-1)(-3)\cdots(-2r+3)_{x^r} \\ & = \frac{2^r \cdot \lfloor \frac{r}{2} \rfloor}{2^r \cdot \lfloor \frac{r}{2} \rfloor} \, x^r \\ & = (-1)^{r-1} \cdot \frac{1.8.6}{2^r \cdot \lfloor \frac{r}{2} \rfloor} \, x^r. \end{split}$$

্লিব চইতে উচার (r − 1)-সাধাক স্থাকের প্রভাকটি চইতে − 1 বাহির করিয়া শ্রীমা 1

উদা 3.  $(1-x)^{-4}$ -এর বিজ্ঞাতি (r+1)-ওম পদটি নির্ণয় কর।

[ O. U., 1912, '16 ]

$$(r+1) - \sqrt[3]{7} = \frac{(-4)(-4-1)(-4-2) - (-4-r+1)}{r} \cdot (-x)^r$$

$$= \frac{(-4)(-5)(-6)\cdots(-r-3)}{r} \cdot (-x)^r$$

$$= (-1)^r \cdot \frac{4 \cdot 5 \cdot 6 \cdot \cdots (r+3)}{r} \cdot (-1)^r \cdot x^r$$

$$= (-1)^{3}r \cdot \frac{4.5.6 \cdot \cdots (r+3)}{1.2.3 \cdot \cdots r} \cdot x^{r}$$
$$= \frac{(r+1)(r+2)(r+3)}{1.2.3} \cdot x^{r}.$$

(লব ও হর হইতে সমান পদগুলি অপসারণ করিয়া)

[মনে রাখিতে হইবে, n ভগ্নান্ধ, অথবা ঋণাত্মক হইলে, (r+1)-তম পদের সহগ  $^nC_r$  নহে।]

উদা. 4. 
$$(1-x)^{\frac{3}{2}}$$
-এর বিস্তৃতির  $r$ -তম পদ নির্ণয় কর। [ C. U., 1878 ]  $r$ -তম পদ  $=\frac{\frac{3}{2}(\frac{3}{2}-1)(\frac{3}{2}-2)\cdots(\frac{3}{2}-r+2)}{|r-1|}\cdot(-x)^{r-1}$   $=\frac{3.1.(-1)(-3)\cdots(-2r+7)}{2^{r-1}}\cdot(-x)^{r-1}$   $=(-1)^{r-3}\cdot\frac{3.1.1.3.5.\cdots(2r-7)}{2^{r-1}}\cdot(-1)^{r-1}.x^{r-1}$ 

[ r>3 ধরিয়া এবং লক্ষ্য করিয়া যে, লবের (r-1)-সংখ্যক গুণ**কের 2টি ডিন্ন** সবগুলিই ঋণাত্মক]

$$= (-1)^{2r-4} \cdot \frac{3 \cdot 1 \cdot 1 \cdot 3 \cdot 5 \cdot \cdots (2r-7)}{2^{r-1} | r-1|} \cdot x^{r-1}$$

$$= 3 \times \frac{1 \cdot 3 \cdot 5 \cdot \cdots (2r-7)}{2^{r-1} | r-1|} \cdot x^{r-1}.$$

উদা 5. দেখাও যে,  $(1+x)^{\frac{6}{5}}$ -এর বিস্কৃতিতে  $x^r$ -এর সহগ $\frac{10}{3r}\frac{1.4.7\cdots(3r-8)}{r!}(-1)^{r-2}$ .

 $(1+x)^{rac{6}{3}}$ -এর বিস্তৃতিতে ইহার (r+1)-তম পদে  $x^r$  থাকিবে।

:. নির্পের সহগ = 
$$\frac{5(5-1)(5-2)(5-3)\cdots(5-r+1)}{r!}$$

$$= \frac{5 \cdot 2 \cdot (-1)(-4)(-7)\cdots(-3r+8)}{3^r \cdot r!}$$

$$= (-1)^{r-2} \cdot \frac{5 \cdot 2 \cdot 1 \cdot 4 \cdot 7 \cdots (3r-8)}{3^r \cdot r!}$$

[ লবের স্পংখ্যক গুণকের মাত্র 2টি ধনাত্মক, বাকী সবগুলিই শ্বণাত্মক বলিয়া]

$$= \frac{10}{3r} \cdot \frac{1.4.7 \cdots (3r-8)}{r!} (-1)^{r-2}.$$

উদা. 6. দেখা ও যে,  $(1-2x)^{-\frac{1}{2}}$ -এর বিভৃতিতে (r+1)-তম পদটির সহগ

$$\frac{\lfloor 2r}{2^r(\lfloor r \rfloor^2} \cdot \qquad \qquad [C. U., 1938]$$

$$(r+1) \cdot \sqrt[3]{r} = \frac{\frac{1}{2}(\frac{1}{2}+1), \frac{1}{2}+2) \cdots (\frac{1}{2}+r-1)}{\lfloor r} \cdot (2x)^r$$

$$= \frac{1.3.5 \cdots (2r-1)}{2^r \lfloor r \rfloor} x^r \cdot$$

$$= \frac{1.3.5 \cdots (2r-1)}{|r|} x^r \cdot$$

$$\cdot \cdot \cdot (r+1) \cdot \sqrt[3]{r} = \frac{1.3.5 \cdots (2r-1)}{|r|}$$

$$= \frac{1.3.5 \cdots (2r-1)}{2.4.6 \cdots 2r \lfloor r \rfloor}$$

$$= \frac{[2r]}{2^r \lfloor r \rfloor r} = \frac{[2r]}{2^r (\lfloor r \rfloor^2)} \cdot$$

উদা. 7. x-এর শক্তির উর্ধক্রম অনুসারে  $x^4$  পর্যন্ত  $\sqrt{\frac{1+x}{1-x}}$ -এর বিস্তৃতি নির্ণয়

কর।

$$\sqrt{\frac{1+x}{1-x}} = \sqrt{\frac{(1+x)^2}{1-x^2}} = \frac{1+x}{(1-x^3)^{\frac{1}{2}}} = (1+x)(1-x^3)^{-\frac{1}{2}}$$
$$= (1+x)(1+\frac{1}{2}x^2+\frac{3}{8}x^4+\cdots)$$
$$= 1+x+\frac{1}{3}x^3+\frac{1}{2}x^3+\frac{3}{8}x^4.$$

### প্রথমালা 36

1. বিস্তৃতি নির্ণয় কর:

(a)  $\sqrt{1+x}$ . (b)  $\sqrt[3]{1-x}$ .

[C. U., 1911]

2. পাঁচটি পদ পর্যন্ত বিস্তৃতি নির্ণয় কর (Expand to 5 terms) :

(a)  $(1-2x)^{-3}$ . (b)  $(1-x)^{-\frac{1}{2}}$ . (c)  $(1-3x)^{-\frac{1}{3}}$ .

 ${f 3.}$  চারিটি পদ পর্যস্ত  $\left(1+rac{2x}{{f q}^2}
ight)^{rac{y}{2}}$ -এর বিস্তৃতি নির্ণয় কর।

চারিটি পদ পর্যন্ত (9 – 6x)<sup>-3/2</sup>-এর বিস্তৃতি নির্ণয় কর।

5. পাঁচটি পদ পর্যন্ত বিস্তৃতি নির্ণয় কর:

(a) 
$$(3a^{-2}-2x)^{-1}$$
. (b)  $\frac{1}{(1+\sqrt[3]{x})^6}$ .

- 6. x-এর শক্তির উর্ধক্রম অনুসারে  $x^6$  পর্যন্ত  $\sqrt{rac{1-x}{1+x}}$ -এর বিস্তৃতি নির্ণয় কর।
- 7. সহগ নির্ণয় কর:
- $(a)~(1-5x)^{-\frac{3}{4}}$ -এর বিস্তৃতিতে  $x^{7}$ -এর।  $(b)~(1-2x)^{-1}$ -এর বিস্তৃতিতে  $x^{8}$ -এর।
- 8.  $(a)~(1-4x)^{\frac{1}{2}}$  [ C. U., 1923 ] এবং  $(b)~(1-\frac{1}{2}x)^{-\frac{1}{2}}$ -এর বিস্কৃতির প্রথম চারিটি পদ নির্গয় কর ।
  - 9.  $(2-2x)^{\frac{1}{2}}$ -এর বিস্তৃতির একাদশ পদটি নির্ণয় কর।
  - ${f 10.} \quad {f (1-px)}^{rac{1}{p}}$ -এর বিস্কৃতিতে (r+1)-তম পদটি নির্ণয় কর।
  - 11.  $\sqrt[4]{1-x}$  এর বিস্তৃতিতে (r+1)-তম পদটি নির্ণয় কর।
  - 12.  $(1-2x)^{-\frac{7}{2}}$ -এর বিভৃতিতে (r+1)-তম পদটি নির্ণয় কর।
  - 13.  $(a^2+x^2)^{-2}$  এবং  $(1-x^2)^{-\frac{1}{6}}$ -এর বিভৃতিতে r-তম পদটি নির্ণয় কর।
  - 14.  $(a^5-b^3x^2)^{\frac{5}{2}}$ -এর বিস্তৃতিতে  $x^{12}$ -এর সহগ নির্ণয় কর।
  - 15.  $(2^{10}-2^7.x)^{\frac{13}{2}}$ -এর বিস্তৃতির চতুর্দশ পদটি নির্ণয় কর।
- 16. পাঁচটি পদ পর্যস্ত $\frac{3a}{(a^3-x^2)^{\frac{1}{3}}}$ -এর বিস্তৃতি নির্ণয় কর এবং ঐ বিস্তৃতির (r+1)-তম পদটি লেখ।
  - 17. (a) (a x) <sup>1</sup> ন-এর বিস্তৃতির r-তম পদ, [ C. U., 1885 ]
  - এবং (b)  $(1-nx)^{-\frac{1}{n}}$ -এর বিস্তৃতির সাধারণ পদ নির্ণয় কর।
  - 18.  $(1-2x)^{-\frac{3}{3}}$ -এর বিভৃতিতে (r+1)-তম পদ নির্ণয় কর।
- 19. দেখাও যে,  $(1-x)^{-n}$ -এর বিস্কৃতিতে n-তম সহগ সর্বদাই (n-1)-তম সহগের দ্বিগুণ।

20. (a) দেখাও যে, 
$$(1-4x)^{-\frac{1}{2}}$$
-এর বিস্কৃতিতে  $x^r$ -এর সহগ  $\frac{\lfloor 2r}{(\lfloor r \rfloor)^2}$ .

(b) দেখাও যে, যদি  $t_r$ ,  $(1+x)^{2r}$ -এর বিভৃতির মধ্যপদ হয়, তাহা হইলে,  $t_0+t_1+t_2+\cdots=(1-4x)^{-\frac{1}{2}}$ .

$$21.$$
 দেখাও যে,  $(1-x)^{-rac{p}{q}}$ -এর বিস্তৃতিতে  $x^r$ -এর সহগ $rac{p(p+q)(p+2q)\cdots\{p+(r-1)q\}}{|r.q^r}$ .

 $(1+2x)^{\frac{1}{2}}$ -এর বিভৃতির কোন্ পদ  $(1-2x)^{-\frac{1}{2}}$ -এর বিভৃতির সেই পদের  $\frac{1}{8}$  ।

### 10'10. হহতম পদ।

n ধনাত্মক পূর্ণদংখ্যা হইলে, যে পদ্ধতিতে বৃহত্তম পদ নির্ণয় করা হইয়াছে, ভগাংক বা ঋণাত্মক n-এর ক্ষেত্রেও সেই একই পদ্ধতিতে বৃহত্তম পদ নির্ণয় করা যায়। নিম্নে প্রদত্ত উদাহরণগুলি হইতে প্রক্রিয়া স্বস্পাষ্ট হইবে।

উপা. 1. 
$$x=\frac{2}{3}$$
 ইইলো,  $(1+x)^{\frac{2}{3}}$ -এর বিস্তৃতিতে কোন্ট বৃহত্তম পদ? 
$$T_{r+1}=\left(\frac{\frac{2}{3}-r+1}{r}\cdot x\right)\times T_r=\left(\frac{\frac{2}{3}-r}{r}\cdot\frac{2}{3}\right)\times T_r.$$

$$T_{r+1}>$$
, = , অথবা,  $< T_r$  হইবে, বিদ $^{\frac{2.5}{3}-\gamma}$   $^{\circ}_{8}>$ , = ,অথবা,  $< 1$  হয়,

অর্থাৎ, যদি 23-2r > = , অথবা, < 3r হয়,

**অর্থা**ৎ, যদি 23 >, =, অথবা, < 5r হয়,

वर्षां९, यि । ← , ≔, वर्षां, > 4 है इस् ।

অতএব, r-এর 4 পর্যন্ত সকল মানের জন্ম  $T_{r+1}>T_r$  এবং r-এর 4 অপেক্ষা বৃহত্তর মানের জন্ম  $T_{r+1}< T_r$ . অতএব, পঞ্চম পদটি বৃহত্তম পদ।

উদা- 2.  $x = \frac{\pi}{7}$  এবং n = 3 হইলে,  $(1+x)^{-n}$ -এর বিস্তৃতিতে কোন্টি বৃহত্তম পদ ?

$$\begin{split} T_{r+1} &= \left(\frac{-n-r+1}{r} \cdot x\right) \times T_r = -\left(\frac{n+r-1}{r} \cdot x\right) \times T_r \\ &= -\left(\frac{2+r}{r} \cdot \frac{5}{7}\right) \times T_r. \end{split}$$

$$|T_{r+1}|>$$
, =, with,  $<|T_r|$ ,

যদি 
$$\frac{2+r}{r} \cdot \frac{5}{7} >$$
, =, অথবা, < 1 হয়,

वर्षा ९. यमि 10 + 5r >, =, वर्षा, < 7r रुष,

पर्शाः, यि 10 >. =. प्रथता, < 2r हत्र,

जर्था<sup>4</sup>, यि r < . = . ज्या, > 5 रुप्त.

অতএব, r-এর 4 পর্যন্ত মানের জন্ম,  $\mid T_{r+1} \mid > \mid T_r \mid$  ;

r=5 হইলে, |  $T_{r+1}$  | = |  $T_r$  | ; r-এর 5 অপেকা বৃহত্তর মানের জন্ম  $|T_{r+1}| < |T_r|$ 

অতএব, চিহ্ন-বজিত পঞ্চ ও ষষ্ঠ পদ-তুইটি পরস্পর সমান হইবে এবং উহারাই বৃহত্তম পদ হইবে।

উলা. 3. দেখাও যে,  $(1+2x)^{\frac{2}{3}}$ -এর বিস্তৃতিতে একাদশ পদটিই প্রথম ঋণাতাক পদ।

মনে কর,  $(1+2x)^{rac{2}{3}}$ -এর বিভৃতিতে উহার (r+1)-তম পদ প্রথম ঋণাত্মক চিহ্যুক্ত পদ; তাহা হইলে r-তম পদটি ধনাত্মক।

এখন, 
$$T_{r+1} = \frac{n-r+1}{r} \cdot 2x \times T_r$$
 
$$= \frac{\frac{25}{8} - r + 1}{r} \cdot 2x \times T_r = \frac{9\frac{2}{8} - r}{r} \cdot 2x \times T_r.$$

x এবং  $T_r$  ধনাত্মক বলিয়া,  $9 frac{a}{b} - r$  ঝণাত্মক হইলে,  $Tr_{+1}$  ঋণাত্মক হইবে, অর্থাৎ  $r>9^2_5$  হইলেই  $T_{r+1}$  ঋণাত্মক পদ হইবে। অতএব, r=10 হইলে,  $T_{r+1}$ প্রথম ঋণাত্মক পদ হইবে।

ं. (r+1)-তম পদ, অর্থাৎ 11-তম পদটিই প্রথম ঋণাত্মক পদ।

### প্রগ্রমালা 37

নিম্নিথিত বিস্তৃতিগুলির বৃহত্তম পদ কোন্টি? (Which is the greatest term in each of the following expansions?)

- 1.  $(1+x)^{-n}$ , যখন  $x=\frac{1}{5}$  এবং n=12.
- 2.  $(1-7x)^{-\frac{1}{4}}$ , युक्त  $x=\frac{1}{8}$ . 3.  $(1+x)^{\frac{8}{3}}$ , युक्त  $x=\frac{5}{8}$ .
- 4.  $(5-4x)^{-7}$ , 직적히  $x=\frac{1}{2}$ .
- 5. (12+7x)-n, যখন x=1 এবং n= ৩.

6. বিস্তৃতির কোনটি প্রথম ঋণাত্মক পদ গ

(i) 
$$(1+x)^{\frac{1}{3}}$$
. (ii)  $\left(1+\frac{7x}{2}\right)^{\frac{3}{2}}$ . [P. U., 1947]

 $7. \quad (1-x)^{rac{7}{8}}$ -এর বিস্তৃতির কতগুলি পদ ধনাত্মক, তাহা নির্ণয় কর।

#### ভিশদ উপশাতের প্রয়োগ। 10'11.

উদা. 1. দিপদ উপপাত প্রয়োগ করিয়া 124-এর মান পাঁচ দশমিক স্থান পর্যন্ত নির্ণয় কর। [ C. U., 1872 ]

$$\sqrt{24} = (24)^{\frac{1}{2}} = (5^2 - 1)^{\frac{1}{2}} = 5\left(1 - \frac{1}{5^2}\right)^{\frac{1}{2}}$$

$$= 5\left[1 + \frac{1}{2} \cdot \left(-\frac{1}{5^2}\right) + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{1 \cdot 2} \cdot \left(-\frac{1}{5^2}\right)^2 + \frac{\frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)}{1 \cdot 2 \cdot 3} \cdot \left(-\frac{1}{5^2}\right)^8 + \cdots\right]$$

$$= 5\left[1 - \frac{1}{2 \cdot 5^2} - \frac{1}{2^8 \cdot 5^4} - \frac{1}{2^4 \cdot 5^6} - \cdots\right]$$

$$= 5\left[1 - \frac{2}{10^2} - \frac{2}{10^4} - \frac{2^2}{10^6} - \cdots\right]$$

$$= 5\left[1 - (02 + 0002 + 000004) - &c.\right]$$

$$= 5(1 - 020204)$$

$$( দশ্মিক বিন্দুর পরে পাঁচটি স্থানেই শ্রু আরে$$

বলিয়া অন্যান্য পদগুলি বিবেচনা না করিয়া)

 $=5 \times '979796 = 4'89898.$ 

উদা. 2. 5 দশমিক স্থান পর্যন্ত ∜3128-এর মান নির্ণয় কর।

$$\sqrt[5]{3128} = (3125 + 3)^{\frac{1}{6}} = (5^8 + 3)^{\frac{1}{8}} = 5\left(1 + \frac{3}{5^6}\right)^{\frac{1}{8}}$$

$$= 5\left[1 + \frac{1}{5} \cdot \frac{3}{5^6} + \frac{\frac{1}{8}\left(\frac{1}{5} - 1\right)}{1.2} \cdot \frac{9}{5^{15}} + \cdots\right]$$

$$= 5\left[1 + \frac{3}{5^6} - \frac{1.4}{1.2} \cdot \frac{9}{5^{12}} + \cdots\right]$$

$$= 5\left[1 + \frac{3.2^6}{10^6} - \frac{18.2^{12}}{10^{12}} + \cdots\right] = 5\left(1 + \frac{192}{1000,000}\right)$$
( দশমিক বিন্দুর পরে পাঁচটি ছানেই শৃশ্য আদে বলিয়া প্রবর্তী পদগুলি বাদ দিয়া )

 $=5 \times 1.000192 = 5.00096$ 

উদা - 3. 1-এর সহিত তুলনায় ৫-এর মান ক্ষুদ্র হইলে, দেখাও বে,

$$\frac{\sqrt{1+x} + \sqrt[8]{(1-x)^8}}{1+x+\sqrt{1+x}} = 1 - \frac{5x}{6} \text{ (প্রায়)}$$

1-এর তুলনার ৫-এর মান ক্ষ্ম বলিয়া, আদন্ধ মান নির্ণয়ের দময়  $x^3$ ,  $x^3$ ,...
দংবলিত পদগুলিকে প্রত্যেকটি দ্বিপদের বিস্তৃতি হইতে বর্জন করিয়া কেবলমাত্র বিস্তৃতির প্রথম তুইটি পদ রাখিলেই যথেষ্ট হইবে।

অতএব, প্রদত্ত রাশি

$$\begin{split} & \frac{-(1+x)^{\frac{1}{3}} + (1-x)^{\frac{1}{3}}}{1+x+(1+x)^{\frac{1}{3}}} = \frac{(1+\frac{1}{2}x) + (1-\frac{2}{3}x)}{1+x+(1+\frac{1}{2}x)} = \frac{2-\frac{1}{6}x}{2+\frac{3}{3}x} = \frac{1-\frac{1}{12}x}{1+\frac{3}{4}x} \\ & = (1-\frac{1}{12}x)(1+\frac{3}{4}x)^{-1} = (1-\frac{1}{12}x)(1-\frac{3}{4}x) \\ & = 1-\frac{1}{12}x-\frac{3}{4}x \qquad \left[ \quad x^2-\pi^2\sqrt{6\pi} \otimes 9\pi \left[ \vec{b} \right] \right] \\ & = 1-\frac{6}{6}x. \end{split}$$

উদা- 4. যদি c এরপ একটি কুদ্র সংখ্যা হয় যে,  $l^3$ -এর সহিত তুলনায়  $c^3$  উপেক্ষণীয়, তাহা হইলে, দেখাও যে,  $\sqrt{\frac{l}{l+c}}+\sqrt{\frac{l}{l-c}}$   $2+\frac{3c^2}{4l^2}$ -এর প্রায় সমান।

[ C. U., 1888]

$$\sqrt{\frac{l}{l+c}} = \sqrt{\frac{1}{1+\frac{c}{l}}} = \left(1+\frac{c}{l}\right)^{-\frac{1}{2}} = 1 - \frac{1}{2} \cdot \frac{c}{l} + \frac{(-\frac{1}{2})(-\frac{3}{2})}{1.2} \cdot \frac{c^2}{l^2} + \frac{(-\frac{1}{2})(-\frac{3}{2})}{1.2} \cdot \frac{c^3}{l^3} + \cdots$$

$$= 1 - \frac{1}{2} \cdot \frac{c}{l} + \frac{3}{8} \cdot \frac{c^2}{l^2} - \frac{c^3}{l^3} \times \text{একটি অভিসারী অসীম স্থোণী}$$

( পরবর্তী প্রত্যেক পদ হইতে  $rac{c^3}{l^3}$  সাধারণ গুণনীয়**কটি** 

বাহির করিয়া লইয়া)

$$=1-\frac{1}{2}\cdot\frac{c}{l}+\frac{3}{8}\cdot\frac{c^{2}}{l^{2}}$$
 (  $2$  (  $2$   $) | 1$ 

 $\left[ egin{array}{c} c^3 \end{array} 
ight]$  অতি ক্ষু একটি রাশি বলিয়া পরবর্তী অংশ বর্জন করিয়া ight] অমুরূপ পদ্ধতিতে.

$$\sqrt{\frac{l}{l-c}} = \left(1 - \frac{c}{l}\right)^{-\frac{1}{2}} = 1 + \frac{1}{2} \cdot \frac{c}{l} + \frac{3}{8} \cdot \frac{c^{3}}{l^{2}}$$

.. প্রদান বাশিমালা =  $2 + \frac{3}{4} \cdot \frac{c^2}{l^2}$ .

### প্রশ্নমালা 38

- 5 দশমিক স্থান পর্যন্ত 127-এর সপ্তাম মূল নির্ণয় কর।
- 4 দশমিক স্থান পর্যন্ত 1°03-এর ঘনমূল নির্ণয় কর।
- 3. দ্বিপদ উপপাত্তের দাহায্যে 3 দশমিক স্থান পর্যন্ত মান নির্ণয় কর:

(i) 
$$\sqrt[7]{108}$$
. (ii)  $\sqrt[8]{999}$ . (iii)  $\sqrt[8]{101}$ 

5 দশমিক স্থান পর্যন্ত মান নির্ণয় কর:

যদি  $\alpha$ -এর মান এত ক্ষুদ্র হয় যে ইহার বর্গ ও উচ্চতর ঘাত উপেক্ষণীয়, তাহা হইলে মান নির্ণয় কর:

7. 
$$\sqrt{1-3r+\sqrt[3]{(1-x)^5}}$$
 8.  $\frac{(1-x)^{\frac{1}{3}}+(1-5x)^2}{\sqrt[4]{16-x}}$ 

10:12. বিবিধ প্রশ্নের সমাধান।

উদা. 1. 1 +  $\frac{1}{4}$  +  $\frac{1.3}{4.8}$  +  $\frac{1.3.5}{4.8.12}$  + ..... ইত্যাদি রাশিমালার সমষ্টি নির্ণয় কর।

প্রবৃত্তি বাশিমালা = 
$$1 + \frac{1}{2} \cdot (\frac{1}{2}) + \frac{1}{2} \cdot \frac{3}{2} \cdot (\frac{1}{2})^3 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot (\frac{1}{2})^3 + \cdots$$

$$= 1 + \frac{1}{2} \cdot (\frac{1}{2}) + \frac{\frac{1}{2} \cdot \frac{3}{2}}{1 \cdot 2} \cdot (\frac{1}{2})^2 + \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}{1 \cdot 2 \cdot 3} \cdot (\frac{1}{2})^3 + \cdots$$

$$= (1 - \frac{1}{2})^{-\frac{1}{2}} = (\frac{1}{2})^{-\frac{1}{2}} = 1 + (\frac{1}{2})^{\frac{1}{2}} = 1 \div \frac{1}{\sqrt{2}} = \sqrt{2}.$$

উদা. 2. 1+  $\frac{3}{4}$ + $\frac{3.5}{4.8}$ + $\frac{3.5.7}{4.8.12}$ + ..... ইত্যাদি রাশিমালার মান নির্ণয়

প্রদত্ত রাশিমালা = 
$$1 + \frac{3}{2} \cdot (\frac{1}{2}) + \frac{3.5}{2.4} \cdot \frac{1}{2})^2 + \frac{3.5.7}{2.4.6} \cdot (\frac{1}{2})^3 + \cdots$$

$$= 1 + \frac{3}{2} \cdot (\frac{1}{2}) + \frac{\frac{3}{2} \cdot \frac{5}{2}}{1 \cdot 2} \cdot (\frac{1}{2})^2 + \frac{\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2}}{1 \cdot 2 \cdot 3} \cdot (\frac{1}{2})^3 + \cdots$$

$$= (1 - \frac{1}{2})^{-\frac{3}{2}} = (\frac{1}{2})^{-\frac{3}{2}} = 1 + (\frac{1}{2})^{\frac{3}{2}} = 2^{\frac{3}{2}} = \sqrt{8} = 2\sqrt{2}.$$

উদা. 3. প্রমাণ কর যে,

$$\sqrt{2} = \frac{7}{5} \left( 1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} + \frac{1.3.5}{1.2.3} \cdot \frac{1}{10^6} + \cdots \right).$$

$$1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} + \frac{1.3.5}{1.2.3} \cdot \frac{1}{10^6} + \cdots$$

$$= 1 + \frac{1}{10^2} + \frac{1}{12} \cdot \frac{3}{12} \cdot \frac{2^2}{10^4} + \frac{1}{12.3} \cdot \frac{3}{10^6} + \cdots$$

$$= 1 + \frac{1}{2} \cdot \frac{2}{10^2} + \frac{1}{2} \cdot \frac{3}{2} \cdot \left( \frac{2}{10^2} \right)^2 + \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \left( \frac{2}{10^2} \right)^3 + \cdots$$

$$= \left( 1 - \frac{2}{10^2} \right)^{-\frac{1}{2}} = \left( 1 - \frac{1}{50} \right)^{-\frac{1}{2}} = \left( \frac{49}{50} \right)^{-\frac{1}{2}} = \left( \frac{50}{49} \right)^{\frac{1}{2}} = \frac{5}{7} \sqrt{2}.$$

অতএব, দক্ষিণ পক্ষ = %(% /2) = /2,

উদা. 4. প্রমাণ কর ষে,

$$\left(\frac{1+x}{1-x}\right)^n = 1 + n \cdot \frac{2x}{1+x} + \frac{n(n+1)}{1\cdot 2} \cdot \frac{2^2 x^2}{(1+x)^2} + \cdots$$

$$\left(\frac{1+x}{1-x}\right)^n = \left(\frac{1-x}{1+x}\right)^{-n} = \left(1 - \frac{2x}{1+x}\right)^{-n}$$

$$= 1 + n \cdot \frac{2x}{1+x} + \frac{n(n+1)}{1\cdot 2} \cdot \left(\frac{2x}{1+x}\right)^2 + \cdots$$

উদা. 5.  $\frac{1+4x^2+x^4}{(1-x)^4}$ -এর বিভৃতিতে  $x^r$ -এর সহগ কত ?

প্রদত্ত রাশিমালা

= 
$$(1+4x^2+x^4)(1-x)^{-4}$$
=  $(1+4x^2+x^4)(1+p_1x+p_2x^2+\cdots+p_rx^r+\cdots)$ , মনে কর ; মতএব,  $x^r$ -এর সহগ= $p_r+4p_{r-2}+p_{r-4}$ .

কিছ, 
$$p_r = \frac{(r+3)(r+2)(r+1)}{1.2.3}$$
 [ পু. 235, উনা. 3 ]

: নির্ণেয় সহগ

$$= \frac{(r+3)(r+2)(r+1)}{1.2.3} + 4\frac{(r+1)r(r-1)}{1.2.3} + \frac{(r-1)(r-2)(r-3)}{1.2.3}$$

$$= \frac{(r^{5}+6r^{2}+11r+6) + 4(r^{3}-r) + (r^{3}-6r^{2}+11r-6)}{5}$$

$$= \frac{6r^{3}+18r}{6} = r^{3}+3r.$$

উদা. 6. 
$$\frac{2+x+x^2}{(1+x)^3}$$
-এর বিস্তৃতিতে  $x^n$ -এর সহগ নির্ণয় কর।

প্ৰাণ্ড বাণ্ডি = 
$$(2+x+x^2)(1+x)^{-8}$$
 =  $(2+x+x^2)(1+p_1x+p_2x^2+\cdots+p_nx^n+\cdots)$ , মনে কর ;

$$x^n$$
-এর সহগ =  $2p_n + p_{n-1} + p_{n-2}$ .

কিন্ত 
$$p_n = (-1)^n \frac{(n+1)(n+2)}{2}$$
 [ অনু. 10.8]

:. নির্বেয় সহগ = 
$$(-1)^n \cdot 2 \cdot \frac{(n+1)(n+2)}{2} + (-1)^{n-1} \cdot \frac{n(n+1)}{2} + (-1)^{n-2} \cdot \frac{(n-1)n}{2}$$

$$= \frac{(-1)^n}{2} \left\{ 2(n+1)(n+2) - n(n+1) + (n-1)n \right\}$$

$$\left[ \because (-1)^{n-1} = \frac{(-1)^n}{-1} = -(-1)^n, \text{ ags } (-1)^{n-2} = \frac{(-1)^n}{(-1)^2} = (-1)^n \right]$$

$$= \frac{(-1)^n}{2} \left( 2n^2 + 4n + 4 \right) = (-1)^n.(n^2 + 2n + 2).$$

উদা. ?. x-এর ঘাতের উর্পক্রম অনুসারে  $\frac{3x-8}{4-4x+x^2}$ -এর বিভৃতিতে প্রমাণ কর যে,  $x^4$ -এর সহগ =  $-\frac{1}{2}$ , এবং  $x^r$ -এর সহগ নির্ণয় কর।

প্রাপত বাণিটি = 
$$\frac{3x-8}{(2-x)^2} = \frac{3x-8}{4\left(1-\frac{x}{2}\right)^2} = \frac{1}{4}\left(3x-8\right)\left(1-\frac{x}{2}\right)^{-2}$$

$$= \frac{1}{4}\left(3x-8\right)\left(1+2\cdot\frac{x}{2}+3\cdot\frac{x^2}{2^2}+4\cdot\frac{x^3}{2^3}+\cdots\right)$$

$$+ y\cdot\frac{x^{y-1}}{2^{y-1}}+(y+1)\cdot\frac{x^y}{2^y}+\cdots\right);$$

অতএব, ৫%-এর সহগ

$$= \frac{1}{4} \left[ 3 \cdot \frac{r}{2^{r-1}} - 8 \cdot \frac{r+1}{2^r} \right] = \frac{3r}{2^{r+1}} - \frac{8(r+1)}{2^{r+2}}$$
$$= \frac{6r - 8(r+1)}{2^{r+2}} = -\frac{2r+8}{2^{r+2}} = -\frac{r+4}{2^{r+1}}.$$

$$\therefore x^4 - 4 র সহগ = -\frac{4+4}{2^5} = -\frac{8}{32} = -\frac{1}{4} \cdot$$

উলা. 8. যদি 
$$(1-x)^{-n}=p_0+p_1x+p_2x^2+\cdots+p_rx^r+\cdots,$$
  $p_0+p_1+p_2+\cdots+p_r$ -এর মান নির্বয় কর।

$$(1-x)^{-n} = p_0 + p_1 x + p_2 x^2 + \dots + p_r x^r + \dots$$
 (1)

$$43(1-x)^{-1} = 1 + x + x^2 + \dots + x^r + \dots$$
 (2)

 $p_0 + p_1 + p_2 + \cdots + p_r = (1)$  এবং (2)-এর দক্ষিণপক্ষস্থ শ্রেণী চুইটির গুণফলের  $x^r$ -এর সহগ

$$= (1-x)^{-n} \cdot (1-x)^{-1}$$
-এর  $x^r$ -এর সহগ
 $= (1-x)^{-(n+1)}$ -এর  $x^r$ -এর সহগ
 $= \frac{(n+1)(n+2)\cdots(n+r)}{\lfloor r \rfloor}$ .

টদা. 9. যদি 
$$p_r = \frac{1.3.5\cdots(2r-1)}{2.4.6\cdots 2r}$$
, প্রমাণ কর যে,

 $p_{2n+1} + p_1 p_{2n} + p_2 p_{2n-1} + \dots + p_{n-1} p_{n+2} + p_n p_{n+1} = \frac{1}{2}$ 

$$p_r = \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \dots \cdot 2r - 1}{1 \cdot 2 \cdot 3 \cdot \dots r} = \frac{\frac{1}{2} (\frac{1}{2} + 1)(\frac{1}{2} + 2) \dots (\frac{l}{2} + r - 1)}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2$$

মত এব,  $p_1$ ,  $p_2$ ,  $p_3$ , $\cdots$  যথাক্রমে  $(1-x)^{-\frac{1}{2}}$ -এর বিভৃতির x,  $x^2$ ,  $x^3$ , $\cdots$ 

ে 
$$(1-x)^{-\frac{1}{3}}=1+p_1x+p_2x^2+\cdots+p_{2n}x^{2n}+p_{2n+1}x^{2n+1}+\cdots$$
 ছুই পক্ষ বৰ্গ করিলে, দক্ষিণ পক্ষের  $x^{2n+1}$ -এর স্কৃগ

$$\begin{split} 2(p_{2n+1}+p_1p_{2n}+p_2p_{2n-1}+\cdots+p_{n-1}p_{n+2}+p_np_{n+1})\\ &=\text{বাম পান্দের বর্গের }x^{2n+1}-এর সহগ, অর্গাং  $\{(1-x)^{-\frac{1}{2}}\}^2\\ &=(1-x)^{-2}$ -এর  $x^{2n+1}$ -এর সহগ$$

 $p_{2n+1} + p_1 p_{2n} + p_2 p_{2n-1} + \dots + p_{n-1} p_{n+2} + p_n p_{n+1} = \frac{1}{2}.$ 

উদা 10. যদি n একটি ধনাত্রক পূর্ণনংখ্যা হয়, তবে দেখাও যে, (3 + √5)"-এর অথও অংশ একটি অমুমা নংখ্যা।

মনে কর,  $(3+\sqrt{5})^n=I+f$ , (I একটি পূর্ণ-ংখ্যা এবং f একটি প্রকৃত ভাগেশ)।

$$I + f = (3 + \sqrt{5})^{n}$$

$$= 3^{n} + {}^{n}C_{1} \cdot 3^{n-1} \cdot \sqrt{5} + {}^{n}C_{3} \cdot 3^{n-2} \cdot 5$$

$$+ {}^{n}C_{8}3^{n-8}(\sqrt{5})^{8} + \cdots$$
(1)

এখন, 3 - 🗸 ১ ধনাত্মক এবং 1 অপেন্ধা কৃষ্টের;

∴ (3 – √5)" একটি প্রভ্ত ভঃগ°শ ; ইহাকে ƒ দারা স্চিডি কর। ভাহা হইবা,

$$f' = (3 - \sqrt{5})^n = 3^n - {}^nC_13^{n-1}. \sqrt{5} + {}^nC_23^{n-2}.5$$
$$- {}^nC_33^{n-3}.(\sqrt{5})^3 + \cdots$$
(2)

:. (!) ও (2) যোগ করিলে, দক্ষিণ পক্ষের অমূলদ পদগুলির মান শ্রা ইইয়া যার, এবং

$$I + f + f' = 2\{3^n + {}^nC_23^{n-2}.5 + \cdots\}$$
= একটি যুগ্ম সংখ্যা;

- :. f+f' অবশ্ৰই একটি পূৰ্বদ্যো ইইবে; কিন্তু f একটি প্ৰকৃত ভগ্নাংশ;
- $\therefore f < 1$ ; আবাৰ f' গুড়ত ভানেশ বনিয়া, f' < 1;
- f + f' < 2; f + f' = 1.

অভবের, 1= একটি মুখ্য সংখ্যা - । । একটি অবুধা সংখ্যা।

### প্রামালা 39

- 1.  $(1+x+x^2+x^3+\cdots$  অস্থ্য-সংখ্যক পদ প্রস্ত $)^{-1}$ -এর বিস্কৃতিতে  $x^{2,2}$ -এর সূহ্য নির্পয় কর।
- 2.  $(1+2x+3x^2+4x^5+\cdots$  অসীম-সংখ্যক পদ পর্যস্ত $)^{-3}$ -এর বিস্তৃতিতে  $x^7$ -এর সহগ নির্ণয় কর।
- 3.  $(1+3x+6x^2+10x^5+\cdots$  স্থানি-সংখ্যক পদ প্রয়ন্ত প্রিক্তিডে  $x^{24}$ -এর বিভৃতিডে
- 4.  $(1+2x+3x^3+\cdots$  অর্গায়ক বেদ প্রথম ) $^2$ -এর বিভৃতিতে  $x^*$ -এর সহগ নির্দায় কর।
  - 5. (i) 1+ x ্বর বিপ্রতিতে x 10-এর সহগ নির্গ্ম কর। [C. U., 1937]
    - (ii)  $\frac{1-2x}{3+2x-x^2}$ -এর বিভৃতিতে  $x^7$ -এর মহগ নির্ণয় কর। [ C. U., 1909 ]

6. 
$$\frac{1+x}{1-x}$$
-এর সহগ নির্ণয় কর। [ C. U., 1919 ]

(iii)  $(1-x+x^2-x^3+\cdots)^3$ -এর বিস্থৃতিতে  $x^r$ -এর সহগ নির্ণয় কর।

8. (i) দেখাও বে, (1+x+x²+x³+.....)²

$$-1+2x+3x^3+4x^3+\cdots$$
 [ C. U., 1922 ]

(ii) প্রমাণ কর যে, 
$$(1+2x+3x^3+4x^3+\cdots)\times(1+x+x^2+\cdots)$$
  
=  $\frac{1}{8}(1.2+2.3x+3.4x^3+4.5x^3+\cdots)$ .

9. (i) যদি  $y = 2x + 3x^2 + 4x^3 + \cdots$  হয়, ভাহা হইলে y-এর উপজেমিক ঘাতবিশ্বিষ্ট এক শ্রেণার মাধ্যমে x-এর মান গ্রাকাশ কর।

(ii) 
$$\sqrt[3]{q} y = 8x - 6x^3 + 10x^3 - \cdots$$
,  $\sqrt[3]{q} \sqrt[3]{q} \sqrt[$ 

**10.** 
$$1 + \frac{2}{3} \cdot \frac{1}{2} + \frac{2.5}{3.6} \cdot \frac{1}{2^{3}} + \frac{2.5.8}{3.6.9} \cdot \frac{1}{2^{3}} + \cdots$$
 as the field for the state of the state

11. 
$$1 - \frac{1}{2} \cdot \frac{1}{3} + \frac{1.3}{2.4} \cdot \frac{1}{3}^2 - \frac{1.3.5}{2.4.6} \cdot \frac{1}{3}^3 + \cdots$$
- ध्व पान निर्णय कवा

12. (स्थाप व.स. 
$$\sqrt{3} = 1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \cdots$$

13. প্রমাণ কর যে, 
$$1+\frac{1}{6}+\frac{1.4}{6.12}+\frac{1.4.7}{6.12.18}+\frac{1.4.7.10}{6.12.18.24}+\cdots= 3/2.$$

**14.** Giving (4) 
$$\sqrt{\frac{3}{3}} = 1 - \frac{1}{4} + \frac{1.3}{4.8} - \frac{1.3.5}{4.8.12} + \dots$$

(b) 
$$\sqrt{8} = 1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \cdots$$

অসীম-সংখ্যক পদ প্রস্ত নিম্নলিখিত শ্রেণীসমূহের সমষ্ট নির্ণয় কর (Find the sum to infinity of the following series):

**15.** 
$$1 + 2 \cdot \frac{1}{3^2} + \frac{2.5}{1.2} \cdot \frac{1}{3^4} + \frac{2.5.8}{1.2.3} \cdot \frac{1}{3^6} + \dots$$

**16.** 
$$1 + \frac{4}{6} + \frac{4.5}{6.9} + \frac{4.5.6}{6.9.12} + \cdots$$

[ Andhra, 1954 ]

17. 
$$1 + \frac{5}{8} + \frac{5.8}{8.12} + \frac{5.8.11}{8.12.16} + \cdots$$
 [Annamalai, 1949]

18. 
$$1 - \frac{1}{2^8} + \frac{1.8}{1.2} \cdot \frac{1}{2^6} - \frac{1.3.5}{1.2.3} \cdot \frac{1}{2^5} + \cdots$$

19. 
$$1 - \frac{3}{4} + \frac{3.5}{4.8} - \frac{3.5.7}{4.8.12} + \cdots$$
 [Gujrat, 1952]

**20.** 
$$2 + \frac{5}{2!3} + \frac{5.7}{3!3^2} + \frac{5.7.9}{4!3} + \cdots$$
 [ Allahabad, 1946 ]

21. 
$$1+3\cdot\frac{3}{16}\cdot+3^2\cdot\frac{3.7}{16.32}+3^3\cdot\frac{3.7.11}{16.32.48}+\cdots$$

22. Chairs CV, 
$$(1+x)^{-n} = \frac{1}{2^n} \left[ 1 + n \cdot \frac{1-x}{1+x} + \frac{n(n-1)}{2} \left( \frac{1-x}{1+x} \right)^2 + \frac{n(n-1)(n-2)}{3} \left( \frac{1-x}{1+x} \right)^3 + \cdots \right]$$
 [ C. U., 1914 ]

23. (मधा ७ (य,

$$(a-b)^{n} = a^{n} \left\{ 1 - n \binom{b}{a-b} + \frac{n(n+1)}{1.2} \binom{b}{a-b}^{2} - \cdots \right\}.$$

$$\left[ (a-b)^{n} = \left( \frac{1}{a-b} \right)^{-n} = a^{n} \cdot \binom{a}{a-b}^{n} = a^{n} \cdot \left( 1 + \frac{b}{a-b} \right)^{-n} \right].$$

24, দেখাও বে,

(i) 
$$\binom{1+2x}{1+x}^n = 1 + n\binom{x}{1+2x} + \frac{n(n+1)}{1.2} \binom{x}{1+2x}^2 + \cdots$$

(ii) 
$$(1+x)^{-n} = (2x)^{-n} \left\{ 1 - n \cdot \frac{1-x}{1+x} + \frac{n(n-1)(1-x)}{1\cdot 2} \left( \frac{1-x}{1+x} \right)^2 - \cdots \right\}$$

25. প্রমাণ কর বে,

$$1 + n \cdot \frac{2x}{1+x} + \frac{n(n+1)}{12} \left(\frac{2x}{1+x}\right)^{3} + \cdots$$

$$= 1 + n \cdot \frac{2x}{1-x} + \frac{n(n-1)}{12} \left(\frac{2x}{1-x}\right)^{3} + \cdots$$

26. দেখাও বে,

$$\sqrt{x} = 1 + \frac{1}{2} \left( 1 - \frac{1}{x} \right) + \frac{1.3}{2^2 \cdot 2} \left( 1 - \frac{1}{x} \right)^n + \cdots$$

27. দেখাও বে,

$$\frac{2x}{\sqrt{1-x^2}} = \frac{2x}{1+x} + \frac{1}{2} \left(\frac{2x}{1+x}\right)^2 + \frac{1 \cdot 3}{2 \cdot 4} \left(\frac{2x}{1+x}\right)^3 + \cdots$$

28. দেখাও বে.

$$1 - \frac{n+3x}{1+3x} + \frac{(n-1)(n+6x)}{(1+3x)^{3} + 2} - \frac{(n-1)(n-2)(n+9x)}{(1+3x)^{3} + 3} + \dots = 0.$$

29. প্রমাণ কর থে,

$$2^{n}\left\{1+\frac{1}{3}n+\frac{n(n+1)}{1.2}\cdot \left(\frac{1}{3}\right)^{2}+\frac{n(n+1)(n+2)}{1.2.3}\cdot \left(\frac{1}{3}\right)^{3}+\cdots\right\}=3^{n}.$$

30. প্রমাণ কর যে,

$$\begin{split} & 3^n \Big\{ 1 + \frac{2n}{5} + \frac{2n(2n+2)}{5} + \frac{2n(2n+2)(2n+4)}{5 \cdot 10 \cdot 15} + \cdots \Big\} \\ & = 2^n \Big\{ 1 + \frac{3n}{5} + \frac{3n(3n+3)}{5 \cdot 10} + \frac{3n(3n+3)(3n+6)}{5 \cdot 10 \cdot 15} + \cdots \Big\}. \end{split}$$

31. নিম্লিখিত নিছতিতে প্রশালর মহগ নির্পদ কর:

(a) 
$$\frac{(1-2x)^a}{(1+x)^a}$$
 (b)  $\frac{x}{(1-3x)(1-4x)}$ 

- **32.** CHAIN ON,  $\frac{(1-2r)^2}{(1-x)^4}$  -NA . NA . SEC  $x^n$  -CA > < 7 (n-6),  $n^2-1$ ).
- 33. \frac{(1+w)^2}{(1-x)^2}-এর বিস্থৃতিতে ক্ল'লের মহগানিব্যাকর। [C. U., 1939]
- **34.**  $(1+x)^2$  ear first see  $x^{2n+1}$  ear non finds x = 1
- 35.  $(1+x+x^2)^{-1}$ -এব বিস্থাতিতে  $x^{10}$ -এর মহগ নির্গয় কর।
- 36. দেখাও যে,  $(1-2x+3x^2-4x^3+\cdots)^{-n}$ -এর বিভৃতিতে  $x^n$ -এর

ন্ত্ৰ 1.3.5···(2n-1).2n.

- 87. দেখাও যে,  $(1-x)^{-4}$ -এর বিন্দৃতিতে প্রথম (r+1)-সংখ্যক পদের সহগের সমষ্টি (r+1)(r+2)(r+3)(r+4).
  - 38. অসাম-নংপাক পদ পর্যন্ত নিম্নলিবিত শ্রেণাসমূহের সমষ্টি নির্ণয় কর:

(a) 
$$1 + \frac{1}{6} + \frac{1.6}{6.12} + \frac{1.6.11}{6.12.18} + \cdots$$

(b) 
$$1 + \frac{1}{9} + \frac{1.3}{1.2} \left(\frac{1}{9}\right)^2 + \frac{1.3.5}{1.2.3} \left(\frac{1}{9}\right)^3 + \cdots$$

39. त्यशं ७ त्य,

$$\frac{5}{3.6} + \frac{5.7}{3.6.9} + \frac{5.7.9}{3.6.9.12} + \dots = \frac{1}{3} (3\sqrt{3} - 2).$$

- 40. যদি n একটি ধনাত্মক পূর্ণস্থা হল, তবে দেখাও যে,  $(5+2\sqrt{6})^n$ -এর অধ্য অংশ একটি অযুগ্র সংখ্যা।
- 41. যদি (২'10+3)<sup>2n+1</sup> I+F, যথন I অগও অংশ এবং F একটি প্রকৃত ভগ্নাংশ, দেখাও যে, n একটি ধনা এক গ্রাসাথ্যা ২ংকো, F(I+F)=1.
  - 42.  $\sqrt{a+r}$  is fixed a  $x^{2r}$  as  $x^{2r+1}$  is zer first for

$$\left[ \text{ Fig. 5: } \left( \frac{a+x}{a-x} \right)^{\frac{1}{2}} = \frac{a+x}{\left(a^2-x^2\right)^{\frac{1}{2}}} - \left(a+x/(a^2-x^2)^{-\frac{1}{2}}, \right) \right]$$

43. প্রমাণ কর যে, যদি n একটি ধনা প্রক দ্বা পূর্ণবাশি হয়,

$$\frac{1}{11} \frac{1}{n-1} + \frac{1}{13} \frac{1}{n-3} + \frac{1}{15(n-5)} + \dots + \frac{1}{n-1} \frac{2^{n-1}}{12} = \frac{2^{n-1}}{12}.$$

িউরিউ: দ্বিশ্ব প্রকৃত্ব রাশিয়ালা = 
$$\frac{1}{2} \left\{ n + \frac{n(n-1)(n-2)}{3} + \cdots \right\}$$

44. দ্বিপদ রাশির বিজ্ভির ২জিত অভিন্ন প্রতিপন্ন করিয়া (identifying) দেখাও বে,

1.8 + 1.3.5 + 1.3.5.7 + ... = 0.4 ( ANT ) + [ Rajputana, 1950 ]

45. n-এর আকার 3m, 3m-1, বা, 3m+1 ছইলে, প্রমাণ কর যে,

1 1+x+x² -এর বিভৃতিতে xশ-এর সহর যথাক্ষে 1, 0, বা, -1.

[ Punjab, 1953 ]

### একাদ্ৰণ অধ্যায়

# লগারিদ্ম ও উহার প্রয়োগ

11°1.  $a^{\alpha}=m$  হইলে x-স্চকটিকে a-নিধান সাপক্ষে m-এর **লগারিদ্ম** বলে এবং উহাকে অর্থাং x-কে  $\log_a m$ -রূপে লিখিয়া বুঝান হয়। স্থতরাং,  $a^{\alpha}=m$  হইলে  $x=\log_a m$  স্মীকরণ-তুইটি সমার্থক।

অতএব, কোন নিধান দাপক্ষে একটি দংখ্যার লগারিদ্ম বলিতে ঐ সংখ্যার এমন একটি স্টচক ব্ঝায় যে নিধানটির ঐ স্টকনির্নিষ্ট ঘাওই সংখ্যাটির মান স্টিত করে।

উদাহরণস্বরণ:

 $1=10^{\circ}$  বলিয়া  $\log_{10}1=0$  ;  $10=10^{\circ}$  বলিয়া  $\log_{10}10=1$  ;  $100=10^{\circ}$  বলিয়া  $\log_{10}100=2$ , ইত্যাদি।

অকুরপে, ' $1=\frac{1}{10}=10^{-1}$  বলিয়া  $\log_{10}$  '1=-1; ' $01=\frac{1}{100}=\frac{1}{10^2}=10^{-2}$  বলিয়া  $\log_{10}$  '01=-2; ' $001=10^{-3}$  বলিয়া  $\log_{10}$  '001=-3, ইত্যাদি।

টীকা। উপরের উদাহরণগুলিতে নিধান 10 ধরা হইগাছে। নিধান যে-কোন সংখ্যা হইতে পারে, কিন্তু উল্লেখ না থাকিলে শুধু log 2, log 3 প্রভৃতির প্রত্যেক ক্ষেত্রে নিধান 10 ব্রিতে হর।

## 11'2. লগারিদ্মের ভত্তাবলী:

(i) ছাই বা ভতোধিক সংখ্যার গুণফলের লগারিদ্ম, ঐ সংখ্যাগুলির লগারিদ্মের সমষ্টির সমান ঃ

x, y ও z এই ভিনটি সংখ্যার গুণফলের লগারিদ্ম =  $\log (xyz)$ .

धन। यांक,  $\log_a x = m$ ,  $\log_a y = n$ ,  $\log_a z = p$ .

 $\therefore \quad x = a^m, \ y = a^n, \ z = a^p \ ;$ 

∴ xyz = a<sup>m+n+p</sup>; স্তরা; স্ঞায়ুসারে,
 log<sub>a</sub> (xyz) = m+n+p=log<sub>a</sub> x+log<sub>a</sub> y+log<sub>a</sub> z.

(ii) একটি ভাগফলের লগারিদ্ম সংশ্লিপ্ত ভাজ্য ও ভাজকের লগা-রিদ্মের অন্তরের সমানঃ

অর্থাৎ, x ভাজ্য এনং y ভাজক ধরিলে  $\frac{x}{y}$  = ভাগফল এবং সেক্ষেত্রে,  $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$ .

ধরা বাক,  $\log_a x = m$ ,  $\log_a y = n$ .

$$\therefore \quad x = a^m, \ y = a^n \ ;$$

$$\therefore \quad \frac{x}{y} = \frac{a^m}{a^n} = a^{m-n} \; ; \quad \text{agai: } residual price,$$

$$\log_a\left(\frac{x}{y}\right) = m - n = \log_a x - \log_a y$$
.

(iii) কোন সংখ্যার একটি ঘাতের লগারিদ্ন, ঐ ঘাতের সূচক ও সংখ্যাটির লগারিদ্মের গুণফলের সমান :

धवा याक, loga x = m.

$$\therefore \alpha = \alpha^m$$
;

$$\therefore x^n = (a^m)^n = a^{nm}, \quad \text{weak them wanter,}$$

$$\log_n (x^n) = nm = n \log_n x.$$

(iv) যে-কোন নিধান সাপক্ষে 1-এর লগারিদ্ম শৃহ্য।

কারণ, 
$$a^{\circ} = 1$$
,  $h^{\circ} = 1$ ,  $c^{\circ} = 1$ , ইত্যাদি বলিয়া  $\log_a 1 = 0$ ,  $\log_b 1 = 0$ ,  $\log_c 1 = 0$ , ইত্যাদি।

(v) যে-কোন সংখ্যার নিজেরই সমান নিধান সাপকে লগারিদ্য = 1; কারণ,  $a^1=a, b^2=b, c^2=c,$  ইত্যাদি;

अङ्भार, loga a = 1, loga b = 1, loga c = 1, हेट्डािमि ।

(vi) নিধান-পরিবর্তনের সূত্র ঃ

x, a, b (य-कान िनिष् धनाश्चक मरवा) इंडेरन,

$$\log_a x = \log_b x \times \log_a b \text{ and } \log_b x = \frac{\log_a x}{\log_a b}.$$

ধ্রা বাক, loga w = m, logb w = n.

$$\therefore \quad x = a^m = b^n.$$

$$\therefore a^{\frac{m}{n}} = b \; ; \quad \therefore \quad \frac{m}{n} = \log_a b \; ;$$

$$\therefore m = n \log_a b,$$

चर्थाः  $\log_a x = \log_b x \times \log_a b$ , धन्  $\log_b x = \frac{\log_a x}{\log_a b}$ 

অসুক্রপে, loga x = log, x × loga b × loga c × loga d.

অনুসিদ্ধার। x=a বসাইলে,  $\log_b a \times \log_a b = \log_a a = 1$ ;

অতএব, 
$$\log_b a = \frac{1}{\log_a b}$$

## [বিকল্প প্রমাণ ঃ

यि,  $\log_b a = m$ , धवः  $\log_a b = n$  स्व,

 $\therefore \quad a = (a^n)^m = a^{mn}.$ 

 $\therefore mn = \log_a a = 1 \text{ with } \log_b a \times \log_a b = 1.$ 

উদা. 1. নিধান 3 √2 হইলে, 5832-এর লগারিদ্ম নির্ণয় কর।  $\log_{3\sqrt{2}} 5832 = x$  ধরিলে,  $5832 = (3\sqrt{2})^x$ ,

উদা. 2. সরল করঃ log 40 × 18

প্রদত্ত রাশি = log (3 × 32<sup>1/2</sup>) - log (40 × 18<sup>1/2</sup>)

 $= \log 3 + \log (32)^{\frac{1}{2}} - \{\log 40 + \log (18)^{\frac{1}{2}}\}$ 

 $= \log 3 + \frac{1}{2} \log 32 - \log 40 - \frac{1}{3} \log 18$ 

=  $\log 3 + \frac{1}{2} \log (2^5) - \log (5 \times 2^3) - \frac{1}{3} \log (2 \times 3^2)$ 

 $= \log 3 + \frac{5}{4} \log 2 - (\log 5 + 3 \log 2) - \frac{1}{3} (\log 2 + 2 \log 3)$ 

 $=(1-\frac{2}{3})\log 3+(\frac{5}{3}-3-\frac{1}{3})\log 2-\log 5$ 

- 1 log 3 - 2 log 2 - log 5.

উলা. 3. নিম্পিত সমীকরণটি ইউতে x-এর মান নির্ণয় কর :  $a^{2m} = b^{3-m} \times c^{m+s}$ .

উ अस भरकत नगादिन्स नहेशा भाष्या यास

 $\log a^{2x} = \log b^{3-x} + \log c^{x+5}.$   $2x \log a = (3-x) \log b + (x+5) \log c.$ 

:.  $\alpha(2 \log a + \log b - \log c) = 3 \log b + 5 \log c$ .

 $\therefore x = \frac{3 \log b + 5 \log c}{2 \log a + \log b - \log c}$ 

উলা- 4. Iogio 2=130103 হটলে, (i) logio 5 এবং (ii) logi 64-এখ মান নির্ণয় কর।

(i) 
$$\log_{10} 5 = \log_{10} \frac{10}{2} = \log_{10} 10 - \log_{10} 2$$
  
= 1 - '30103 = '69897.

(ii) 
$$\log_5 64 = \frac{\log_{10} 64}{\log_{10} 5} - \frac{\log_{10} 2^5}{69897} = \frac{6 \log_{10} 2}{69897}$$
  
=  $\frac{6 \times 30103}{69897}$   
=  $\frac{1.80618}{69897} = 2.58$ .

### প্রগ্রমালা 40

লগারিদ্ম নির্ণয় কর ( Find the logarithms of ):

- নিধান ই 9 হইলে ৪1-এর।
   নিধান 2 \/ 8 হইলে 1728-এর।
- 3. নিধান 2<sup>™</sup>√5 হইলে 64000-এর। 4. নিধান 5 ্ট হইলে '00017'-এর। নিম্নলিখিত বালিওলি সহল কর (Simplify the following):
  - 5.  $\log (\sqrt[3]{m^6} \times \sqrt[5]{n^8})$ . 6.  $\log \frac{a^8 \times b^{-6}}{\sqrt[4]{a^6 \times b^8}}$  7.  $\log \frac{9 \times \sqrt[6]{216}}{4 + \sqrt[8]{144}}$
  - 8. a x x b 2 x + 5 = c 4 x. 9. 2 x + 3 = 27 × 5 4 x.
- 10. যদি a, b, c কোন গুণোরের এগাঁণুক হয়, প্রমাণ কর থে, loga n. log, n, loga n বিপরাত প্রগাততে থাতে।
- 11. leg<sub>10</sub> 2 = '301030, এবং leg<sub>10</sub> 7 = '815098 ইইলে, 1000-কে নিধান স্থা (নু4<sub>3</sub>)<sup>1</sup>-তের লগারিদ্য নিব্য কর।
- 12. leg 10 2 = '3010300 এবং leg 10 3 = '4771213 হইলে, ্স্তি নিধান লইয়া তিন দশ্যিক স্থান প্ৰায় ৬৪-এর প্ৰায়িদ্য নিশ্ম কর।
- 11'3. লাগালিদ্ম-এর শূর্লিক (characteristic) ও অংশক (mantissa) |

्य (कान ६३) छै भरभग 59 ७ '0082-এর লগারিদ্যের মান ক্ত হয় ভাহা বিচার করা যাক।

অর্থাৎ log 59, 1 অপেক্ষা বড, কিন্তু 2 অপেক্ষা চোট হইবে।

∴ log 59 = 1 + একটি বনাত্মক প্রকৃত দশমিক ভগ্নাংশ।

পুন\*চ, '0001 < '00082 < '001 ;

... log '0001 < log '00082 < log '001;

অর্থাৎ -4 < log '00082 < -3;

.. log '00082, - 4 এবং - 3-এর মধ্যে থাকিবে;

∴ log '00082 = -4+একটি ধনাত্মক প্রকৃত দশমিক ভগ্নাংশ, কেননা
-4-এর সহিত 1 যোগ করিলে -3 হয়।

স্তরাং, দেথা যাইতেছে যে, কোন সংখ্যার লগারিদ্ম-এর ছুইটি অংশ আছে— একটি ধনাত্মক বা ঋণাত্মক অথগুংশ (integral part) যাহাকে বলা হয় পূর্ণক (characteristic), অপরটি ধনাত্মক প্রকৃত দশমিক ভগ্নংশ (pure decimal fraction), ষাহাকে বলা হয় অংশক (mantissa)।

## 11.4. পূর্ণক নির্ণন্ধ।

(1) সংখ্যাটি ষেন 1 অপেক্ষা বড়।

আমরা জানি বে, 1=10°, এবং 10=10¹; অর্থাৎ, log 1=0, এবং log 10=1.

অন্তএব, 1 ও 10-এর মধ্যবর্তী ( 4'567-এর মতো ) যে-সংখ্যার অখণ্ডাংশ এক-অঙ্কবিশিষ্ট তাহার লগারিদ্ম 0 এবং 1-এর ভিতরে থাকিবে অর্থাৎ লগারিদ্ম-এর পূর্ণক 0 হইবে।

আবার, 10=10<sup>1</sup>, এবং 100=10<sup>2</sup>; আর্থাৎ log 10=1, এবং log 100=2,

অতএব, 10 ও 100-এর মধ্যবর্তী ( 97'043-এর মতো) যে-সংখ্যার অথগুাংশ ছই-অঙ্কবিশিষ্ট তাহার লগারিদ্ম 1 এবং 2-এর ভিতরে থাকিবে অর্থাৎ লগারিদ্ম-এর পূর্ণক 1 হইবে।

পুনশ্চ, 100 = 10<sup>s</sup> এবং 1000 = 10<sup>s</sup> ; অর্থাৎ log 100 = 2 এবং log 1000 = 3.

অতএব, 100 এবং 1000-এর মধ্যবর্তী (801'325-এর মতো) যে-সংখ্যার অথগুংশ তিন-অঙ্কবিশিষ্ট) ডাহার লগারিদ্ম 2 এবং 3-এর ভিতরে থাকিবে অর্থাৎ লগারিদ্ম-এর পূর্ণক 2 হইবে। এইরপে দেখা যায় যে, কোন সংখ্যার অথগুণশের (integral part) অঙ্কের সংখ্যা = n হইলে, সংখ্যাটির লগারিদ্ম-এর পূর্ণক = n-1;

ষণা, log 532'7468-এর পূর্ণক = 2, log 53'27468-এর পূর্ণক = 1,

log 53274680-এর পূর্ণক = 7.

অর্থাৎ, পূর্ণক নির্ভর করে শুধু অথগুণেশের অঙ্ক-দংখ্যার উপর, এবং উহা অথগুণেশের অঙ্ক-দংখ্যা অপেক্ষা 1 কম।

(2) আবার ধরা যাক, সংখ্যাটি যেন 1-এর কম, অর্থাৎ ইহা একটি প্রকৃত দশমিক ভগাংশ।

আমরা জানি বে,  $1=10^{\circ}$  এবং  $1=\frac{1}{10}=10^{-1}$ ,

অৰ্থাৎ log 1 = 0 এবং log ('1) = -1.

অতএব, '1 এবং 1-এর মধ্যবর্তী '1032 বা '42916 ইত্যাদির মত যে সংখ্যা দশমিক বিন্দু দিয়া আরম্ভ এবং যাহাতে দশমিক বিন্দুর পরেই 0 (শৃশু) নাই, তাহার লগারিদ্ম –1 এবং 0-এর ভিতরে থাকিবে এবং তাহার মান হইবে = -1 + একটি দশমিক ভগ্নাংশ (কেননা –1-এর সহিত 1 যোগ করিলে যোগফল 0 হর) অর্থাৎ লগারিদ্ম-এর পূর্ণক হইবে –1.

জাবার,  $1 = \frac{1}{10} = 10^{-1}$  এবং '01 =  $\frac{1}{100} = \frac{1}{10^2} = 10^{-2}$ ,

অৰ্থাৎ log ('1)= −1 এবং log ('01)= −2.

অতএব, '01 এবং '1-এর মধ্যবর্তী '05321 বা '08901 ইত্যাদির মত যে-সংখ্যা দশমিক বিন্দু দিরা আরম্ভ এবং যাহাতে ঐ বিন্দু এবং প্রথম সার্থক অঙ্কের মধ্যে একটিমাত্র ০ (শৃষ্ম) থাকে তাহার লগারিদ্ম – 2 এবং – 1-এর মধ্যে থাকিবে এবং সেই লগারিদ্ম

– 2 + একটি ধনাত্মক দশমিক ভগাংশ।

(কেননা, -2-এর সহিত 1 যোগ করিলে যোগফল -1 হয় ) অর্থাৎ লগারিদ্ম-এর পূর্ণক হইবে -2 (অংশক সর্বত্রই ধনাত্মক দশমিক ভগ্নাংশ।)

এইরপে দেখা যায় যে, 1 অপেক্ষা ক্ষুদ্রতর কোনও সংখ্যার লগারিদ্ম-এর পূর্ণক ঋণাত্মক (negative) হয় এবং দশমিক বিন্দু ও প্রথম সার্থক অঙ্কের মধ্যে যত সংখ্যক শূল্য থাকে, পূর্ণক সাংখ্যমান হিসাবে তাহা অপেক্ষা 1 বেশী হয়।

ঋণাত্মক পূৰ্ণক -1, -2, -3 প্ৰভৃতিকে  $\overline{1}$ ,  $\overline{2}$ ,  $\overline{3}$ , রূপে লিখিতে হয় এবং পড়িতে হয়, bar one, bar two, bar three ইত্যাদি রূপে ।

∴ log '30721-এর পূর্ণক = T, log 0'030721-এর পূর্ণক = 2, log '00030721-এর পূর্ণক = 4, ইত্যাদি।

(XI-XII)-17

তীকা। উপরিলিখিত I, 2, 3 প্রভৃতির ক্ষেত্রে বামে — (বিয়োগ-চিছ্ছ) না বসাইয়া উপরে bar দেওরা হয় কেন, তাহার ব্যাখ্যা এই: একটি লগারিদ্মের পূর্ণক — 4 এবং অংশক ক্ষেত্র '8261072.

— 4 + '8261072 ব্ঝাইতে যদি — 4'8261072 লেখা হয়, তাহাতে '8261072-কেও ঋণাত্মক ব্ঝায়। কিন্ত ইহা ঋণাত্মক নহে, ধনাত্মক। কিন্তু বি'8261072 দারা ব্ঝায় যে 4 ঋণাত্মক এবং অবশিষ্ট অংশ '8261072 ধনাত্মক।

11.5. 
$$n$$
-এর লগারিদ্ম যেন =  $l$ , অর্থাৎ  $\log n = l$  ... (1)

 $n = 10^{l}$ ;

 $n \times 10^x = 10^l \times 10^x = 10^{l+x}$ :

এখন x যদি একটি অথও (ধনাত্মক বা ঋণাত্মক) সংখ্যা হয়, তাহা হইলে n এবং  $n\times 10^x$  এই তুইটির দার্থক অস্কগুলি এবং তাহাদের ক্রমিক স্থানের পরিবর্তন হয় না, শুরু দশমিক বিন্দুর অবস্থান পরিবর্তিত হয়।\* এবং (1) ও (2) হইতে পাওয়া গেল যে, উহাদের লগারিদ্ম-এর অস্তর একটি অথও সংখ্যা x, অর্থাৎ উহাদের অংশক একই খাকে। (দশমিক অংশে কোনও হস্তক্ষেপ করা হয় নাই।)

অতএব, যে সংখ্যাগুলির সার্থক অঙ্কসকল জ্রমিক অবস্থানসহ অপরিবর্তিত থাকে, তাহাদের লগারিদ্য-এর অংশক একই থাকিবে।

∴ यिन log 3271=3'5147 হয়,

তবে log 3271000 = 6°5147, log 327°1 = 2°5147, log '3271 = 1°5147, log '0003271 = 4°5147, ইত্যাদি হইবে। (ভধু পূৰ্ণকগুলি বিভিন্ন)

উদা. 1. 4300'567 এবং '00005008-এর লগারিদম্-এর পূর্ণক কত হইবে ? প্রথম সংখ্যাটির অধ্তাংশ চারি-অঙ্কবিশিষ্ট ;

. log 4300'567-এর পূর্ণক=3.

দিতীয় সংখ্যাটির কোন অথগুংশ নাই, এবং দশমিক বিন্দুর অব্যবহিত পরে চারিটি শৃন্ত (0) আছে;

ইহার পূর্ণক = - 5.

পুনন্দ, x = -4 হইলে,  $n \times 10^{2} = 543 \cdot 76809 \times 10^{-4}$ 

 $=\frac{543.76809}{10000}=054376809.$ 

<sup>\*</sup> মনে কর, n=543.76809 এবং x=4;
.'. n×10x=543.76809×10000=5437680.9

উদা 2. দেওয়া আছে log 67005=4'8261072, log '00067005 কড

স্পাইই log '00067005-এর পূর্ণক = -4, কেননা দশমিক বিন্দুর ঠিক পরেই তিনটি শৃষ্য (0) আছে। ইহার অংশক log 67005-এর অংশকের সমান হইবে, কেননা রাশি তুইটির মধ্যে দশমিক বিন্দুর অবস্থানের পার্থক্য ব্যতীত অন্ত কোন পার্থক্য নাই।

 $\log 00067005 = -4 + 8261072 = \overline{4}8261072.$ 

উপা. 3. log 2= 30103 এবং log 3= 4771213 হইলে, log '00015=

আমরা জানি,  $\log 15 = \log (3 \times 5) = \log 3 + \log (\frac{10}{2})$ =  $\log 3 + \log 10 - \log 2 = 4771213 + 1 - 30103$ = 4771213 + 69897 = 11760913. স্তরাং,  $\log (00015) = -4 + 1760913 = \overline{4}1760913$ .

## প্রগ্রমালা 41

- 1. নিম্লিখিত দংখ্যাগুলির পূর্ণক নির্ণয় কর। (Write down the characteristics of the logarithms of the numbers): 375609, 2036, '0000020009, 5'678 এবং '9876.
- 2. log 53498 = 4'7283375 ইইলে, log 5'3498, log '053498, log '53498 এবং log 534980000 = কত ?
- 3. log 2= 30103 এবং log 3= 4771213 হইলে, (648) -এর অঙ্কসংখ্যা নির্ণয় কর।

## 11'6. তাংশক-নির্গয়।

11.5 অনুচ্ছেদে বর্ণিত নিরমে চোথে দেখিয়াই লগারিদ্ম-এর পূর্ণক নির্ণয় করা যায়।
কিন্তু অংশক নির্ণয় করিতে হয় লগারিদ্ম-এর তালিকা হইতে। লগারিদ্ম এবং অ্যান্টিলগারিদ্ম-এর তালিকা পরিশিষ্টে দেওয়া হইল। উহা হইতে অংশক-এর মান দশমিকের
চতুর্থ স্থান পর্যস্ত সঠিক নির্ণয় করা যায়। তালিকার ব্যবহার-পদ্ধতি নিয়ে প্রদর্শিত
হইল। মনে রাখিতে হইবে য়ে, তালিকায় অংশকের দশমিক বিন্দুটি বাদ দেওয়া থাকে।
আমাদের দশমিক বিন্দুটি ব্যাইয়া লইতে হইবে।

যে-সংখ্যার লগারিদ্ম চাই তাহার প্রথম ছইটি অঙ্ক তালিকার বামদিকে অর্থাৎ প্রথম শুন্তে পাওয়া যাইবে। তাহার পর ডানদিকের দ্বিতীয় হইতে একাদশ পর্যন্ত দশটি শুন্তের মাথায় যথাক্রমে 0, 1, 2,..., 8, 9 লেখা আছে, তাহা হইতে সংখ্যাটির তৃতীয় অঙ্ক বাছিয়া লইতে হইবে। চতূর্থ অঙ্কটি পাওয়া যাইবে দাদশ হইতে বিংশ স্বস্তের কোনও একটির মাথায়। উহারা অস্তর-স্তম্ভ।

উদা. 1. log 37 = কত?

সংখ্যাটি ছই অঙ্কের, অতএব পূর্ণক=1 ; এইবার তালিকা হইতে অংশক নির্ণয় করিতে হইবে। log 37-এর অংশক=log 370-এর অংশক।

তালিকার বামদিকের অর্থাৎ প্রথম স্তম্ভে 10, 11, 12,......, 98, 99 লেখা আছে।

এখন 37-এর মধ্য দিয়া আড়াআডি লাইনটি বিতীয় বা 0-স্তম্ভের সহিত যেথানে মিলিত হইল, সেধানে পাওয়া গেল 5682; উহা নির্ণেয় অংশক।

 $\log 37 = 1.5682$ 

উদা. 2. log 378 = কত?

এখানে পূর্ণক = 2; দশম স্তন্তের মাথায় ৪ লেখা আছে। 37-এর মধ্য দিয়া আড়াআডি লাইনটি দশ্ম স্তন্তের যেখানে মিলিত হইল, দেখানে পাওয়া গেল 5775; উহাই হইবে নির্ণেয় অংশক।

 $\log 378 = 2.5775$ .

উদা. 3. log 37'89 - কত ?

এগানে পূর্ণক = 1. চতুর্থ অঙ্ক 9 পাওয়া যাইবে বিংশ হুন্তের মাথায়। এই স্বস্তুটি যেথানে 37-এর মধ্য দিয়া আডাআড়ি লাইনের সহিত মিলিত হইয়াচে, সেথানে পাওয়া গেল 10; অর্থাৎ '0010; ইহা log 378-এর অংশক '5775-এর সহিত যোগ করিলে '5785 হইবে log 3789-এর অংশক; ... log 37'89=1'5785.

এই প্রক্রিয়াটি নিম্নে প্রদর্শিত সংক্ষিপ্ত পদ্ধতিতে লেখা হয়।

log 378-এর অংশক = '5775 } 9-এর জন্ম অংশক-এর অন্তর = '0010 } ∴ log 37°89 = 1°5785.

**GFI. 4.** log '006425= 季で?

log 642-এর অংশক = '8075 চতুর্থ অন্ধ 5-এর জন্ম অংশক-এর অন্ধর = '0003 } (বোগ করিতে হইবে)

· . log 6425-এর অংশক = 8078

· . log '006425 = 3'8078. (পূর্ণক = ঋণাত্মক 3 = 3)

11.7. কোন সংখ্যার লগারিদ্ম দেওয়া আছে, সংখ্যাতি কত নির্ণয় করিতে হইবে। ইহা অ্যাতি-লগারিদ্ম ভালিকা (anti-log table) হইতে নির্ণয় করিতে হইবে।

যদি  $\log x = m$  হয়, তবে x-কে m-এর অ্যাণ্টি-লগারিদ্য বলে। অর্থাৎ x = anti-log m.

উদা. 1. log x=1'5958 হইলে, x=কত?

প্রথমে পূর্ণক ছাড়িয়া দিয়া কেবল অংশক-এর সাহায্যে সংখ্যা নির্ণয় করা হয়;
পরে পূর্ণক দেখিয়া যথাস্থানে দশমিক বিন্দু বসাইতে হয়।

এখানেও পূর্ব-অন্তচ্চেদে বর্ণিত প্রকারে anti-log তালিকার প্রথম স্তম্ভ হইতে । 59 বাহির করিতে হইবে। তৃতীয় অন্ধ 5, দপ্তম স্তম্ভের মাথায় পাওয়া যাইবে। ইত্যাদি।]

anti-log 
$$595 = 3936$$
 8-এর জন্ম অন্তর =  $\frac{7}{3943}$  ( যোগ করিতে হইবে )

অতএব, যে সংখ্যার লগারিদ্য-এর অংশক 5958, তাহার অন্ধ্রপ্তলি হইবে যথাক্রমে 3943. x=39.43; এখানে পূর্ণক 1 আছে বলিয়া নির্ণেয় সংখ্যার অথগুংশ ছুই অন্কের হুইবে।

অন্ত্রূপে যে সংখ্যার লগারিদ্ম = 3'5958, সে সংখ্যাটি = '003943; কারণ এখানে পূর্ণক 3 অর্থাৎ ঋণাত্মক 3, নির্ণেয় সংখ্যাটি দশমিকের পর তুইটি শৃত্ত দিয়া আরম্ভ হইবে।

11'8. গণিতীয় সহজ শ্রষ্থ সমাধানে লগারিদ্ম-এর শ্রোগ (application of logarithm in simple arithmetical calculations) l

উদা. 1. log 79003 = 4'8976436 হইলে, log √000079003-এর মান 7 দশমিক স্থান পর্যন্ত সঠিক নির্ণয় কর।

নির্পেয় লগারিদ্য =  $\frac{1}{7} \log (000079003 = \frac{1}{7}(-5 + 8976436))$ =  $\frac{1}{7}(-7 + 28976436) = -1 + 41394908\cdots$ =  $\frac{1}{7}(4139491.$ 

উদা- 2. উদাহরণ 1-এ <sup>7</sup>√000079003-এর মান নির্ণর কর, যদি log 2593875 = 6'4139491 হয়।

মনে কর, æ= নির্ণেয় মান।

তাহা হইলে  $\log x = \log \sqrt[7]{000079003} = \bar{1}.4139491$ . [ পূর্বের উদাহরণে ]

স্তরাং,  $\alpha$  একটি দশমিক ভগাংশ, ইহার দশমিক বিন্দুর ঠিক পরেই কোন শৃষ্ঠ (0) নাই, এবং  $\log x$ -এর অংশক এবং  $\log 2593875$ -এর অংশক একই।

∴ x ( অর্থাৎ নির্ণেয় মান )= '2593875.

উদা. 3. তিন দশমিক স্থান পর্যন্ত ∜36-এর সঠিক মান নির্ণয় কর।

মনে কর,  $x = \sqrt[8]{36} = (36)^{\frac{1}{3}}$ ;

∴ log x= 1 log 36= 1 × 1 5563 = 0 5188 ( এখানে পূৰ্ক = 0 )

 $\therefore$  x = anti-log '5188.

Anti-log তালিকা হইতে পাওয়া যায়

anti-log 518 = 3296

8-এর জন্ম অন্তর **=** 6 3302

 $\therefore x = 3.302.$ 

উদা. 4. 7/00002675 = কত ?

মনে কর,  $x = 7/00002675 = (00002675)^{\frac{1}{7}}$ ,

 $\log x = \frac{1}{7} \log (00002675)$ 

 $= \frac{1}{7} \times \overline{5} \cdot 4273 = \frac{1}{7} \times (-5 + 4273)$ 

 $=\frac{1}{7}\times(-7+2.4273)=(-1+.3468)=1.3468.$ 

x = Anti-log T : 3468.

তালিকা ইইতে, anti-log 346 = 2218

8-এর জন্ম অন্তর = <u>4</u>

x = 2222.

উদা. 5. লগারিদ্যিক তালিকার দাহায্যে  $\frac{(3.937)^8 \times 1000}{1728 \times 16}$ -এর মান নির্ণয

কর।

মনে কর, 
$$w = \frac{(3.937)^3 \times 1000}{1728 \times 16}$$
;

 $\log x = 3 \log 3.937 + \log 1000 - \log 1728 - \log 16$  $= 3 \times .5952 + 3 - 3.2375 - 1.2041$ 

= '3440. ( এধানে পূর্ণক = 0 )

 $\therefore$  x = anti-log '3440.

তালিকা হইতে, anti-log 344 = 2208.

x = 2.208.

উদা 6. একটি ঘনকের (cube) প্রাত্তিকী = 4'83 মিটার। যে গোলকের ঘনফল ঘনকটির ঘনফলের সমান, তাহার ব্যাসার্ধ কত ? [  $\pi = {}^2\Omega {}^6$  ]

মনে কর, ব্যাসার্ধ= দ ফিটার।

:.  $\frac{4}{5}\pi r^3 =$  গোলকের ঘনফল = ঘনকের ঘনফল =  $(4.8)^3$ .

$$r^3 = \frac{3}{4\pi} \times (4.83)^8 = \frac{3}{4} \times \frac{1}{5} \frac{1}{5} \frac{6}{5} \times (4.83)^8 = \frac{339 \times (4.83)^8}{1420}.$$

 $\therefore 3 \log r = \log 339 + 3 \log 4.83 - \log 1420$  $= 2.5302 + 3 \times .6839 - 3.1523 = 1.4296.$ 

 $\log r = 4765.$ 

r = anti-log ' 4765.

তালিকা হইতে, anti-log 476 = 2992

: r=2'995 মিটাৰ।

উলা. 7. 206 এর অস-সংখ্যা নির্ণয় কর। মনে কর, x = 206.

 $\therefore \log x = 64 \log 2 = 64 \times 3010 = 192640.$ 

:. log জ-এর পূর্ণক = 19.

· . প্র-এর অন্ব-সংখ্যা = 20

जर्शर 264 ,, ,, = 20.

উদা ৪. ৪<sup>- ৫ -</sup> এর মান নিগ্য করিলে দশ্মিক বিদ্যুর পরে কয়টি 0 ( শৃহা ) বলিবে ?

মনে কর,  $\alpha = 2^{-6.4}$ .

$$\log x = -64 \times \log 2 = -64 \times 3010$$

$$= -19.2640 = -19 - 2640$$

$$= -20 + 1 - 2640 = 20.7360.$$

:. log x- এর প্র = 20. : বিপের শুস্ত-সংখ্যা = 19.

উলা. 9. প্রমাণ কর যে, 7 log 10 - 2 log 25 + 3 log 30 = log 2.

[ C. U. 1923 ]

ৰাম পশ = 
$$7 \log \frac{5 \times 2}{3^2} - 2 \log \frac{5^3}{2^3 \times 3} + 3 \log \frac{3^4}{5 \times 2^4}$$
=  $7[\log (5 \times 2) - \log 3^2] - 2[\log 5^2 - \log (2^3 \times 3)]$ 
+  $3[\log 3^4 - \log (5 \times 2^4)]$ 
=  $7[\log 5 + \log 2 - 2 \log 3] - 2[2 \log 5 - 3 \log 2 - \log 3]$ 
+  $3[4 \log 3 - \log 5 - 4 \log 2]$ 
=  $(7 + 6 - 12) \log 2 + (7 - 4 - 3) \log 5$ 
+  $(-14 + 2 + 12) \log 3$ 
=  $\log 2$ .

ি দ্রন্তব্য। এখানে নিধানের উল্লেখ করা হয় নাই, অর্থাৎ যে-কোনও নিধান লওরা যাইতে পারে।]

উপা. 10. প্রমাণ কর যে, 1 < log 10 2 < 1.

মনে কর,  $x = \log_{10} 2$ .  $10^x = 2$ .  $10 = 2^x$ .

কিন্তু 8 < 10 < 16 অৰ্থাৎ 2³ < 2² < 2⁴

$$3 < \frac{1}{x} < 4$$
.  $\frac{1}{3} > x > \frac{1}{4}$ 

বা, 1 < log 10 2 < 1.

উদা. 11. প্রমাণ কর যে,  $\log_b a \times \log_c b \times \log_a c = 1$ . [C. U. 1934] মনে কর,  $\log_b a = x$ ,  $\log_c b = y$ ,  $\log_a c = z$ .

$$\therefore \quad a = b^{\alpha}, \ b = c^{\gamma}, \ c = a^{\varepsilon}.$$

$$a = b^{\infty} = (c^y)^{\infty} = c^{\infty y} = (a^z)^{\infty y} = a^{\infty y}.$$

$$\therefore xyz=1,$$

खर्था९ logo a × logo b × loga c=1.

বিকল্প প্রমাণঃ log<sub>b</sub> a × log<sub>c</sub> b × log<sub>a</sub> c

$$= \frac{\log_{100} a}{\log_{100} x} \times \frac{\log_{10} b}{\log_{100} x} \times \frac{\log_{10} c}{\log_{100} a} = 1.$$

**छना.** 12. श्रमां कद रा,

 $x^{\log y - \log s} \times y^{\log s - \log x} \times z^{\log x - \log y} = 1.$ 

[ C. U. 1939,'44,'55 ]

মনে কর, বাম পক্ষ= ॥.

∴ u=1, অর্থাৎ প্রদত্ত বাম পক্ষ=1.

ভদা. 13. 
$$\frac{\log a}{a(b+c-a)} = \frac{\log b}{b(c+a-b)} = \frac{\log c}{c(a+b-c)}$$
 ইইলে,

প্রমাণ কর যে,  $b^c c^b = c^a a^c = a^b b^a$ .

মনে কর, প্রত্যেক অমুপাত = k.

$$\therefore \log a = ka(b+c-a), \log b = kb(c+a-b), \log c = kc(a+b-c).$$

$$\therefore c \log b + b \log c = kbc(c + a - b + a + b - c) = 2kabc,$$

অর্থাৎ  $\log b^o + \log c^b = 2kabc$ ,

অমুরপে, 
$$\log(c^aa^o) = \log(a^bb^a) = 2kabc$$
.

$$\log (b^c c^b) = \log (c^a a^c) = \log (a^b b^a).$$

$$b^c c^b = c^a a^c = a^b b^a.$$

উছা. 14. যদি 
$$x^2 + y^2 = 7xy$$
, দেখাও বে, 
$$\log (x+y) = \log 3 + \frac{1}{2} \log x + \frac{1}{2} \log y.$$
$$x^2 + y^2 + 2xy = 9xy. \quad \therefore \quad (x+y)^2 = 9xy = 3^2xy.$$

 $\therefore$  2 log (x+y)=2 log 3+log  $x+\log y$ .

$$\log (x+y) = \log 3 + \frac{1}{2} \log x + \frac{1}{2} \log y$$
.

উদা. 15. যদি  $\log (x^{8}y^{2}) = 3a + 2b$ , এবং  $\log (x^{2}y^{3}) = 2a + 3b$  হয়, তবে  $\log x$  এবং  $\log y$ -এর মান নির্ণয় কর। [ C. U. 1948 ]

$$\log (x^3 y^2) = 3a + 2b$$
.  $\therefore$  3  $\log x + 2 \log y = 3a + 2b$  ... (1)

অনুরপে, 
$$2 \log x + 3 \log y = 2a + 3b$$
. ... (2)

এবং (2) যোগ করিয়া, 5 (log x + log y) = 5a + 5b.

$$\therefore \log x + \log y = a + b.$$

(1) হইতে (2) বিয়োগ করিয়া,  $\log x - \log y = a - b$ .

$$\therefore \log x = a, \log y - b.$$

$$2^{x} = 3^{y}, 2^{y+1} = 3^{x-1}$$

[ C. U. 1942]

$$2^r - 3^y$$
; ...  $m \log 2 - y \log 3$ ; ...  $m - y \frac{\log 3}{\log 2}$ 

$$2^{y+1} + 3^{x-1}$$
. . .  $(y+1) + g = (r-1) \log 3 = (y + g - 1) \log 3$ .

$$\frac{\log 2(\log 3 + \log 2)}{(\log 3)^2 - (\log 3)^2} = \frac{\log 2}{\log 3 - \log 2}$$

$$= \frac{0.3010300}{0.1771213 - 0.3010300} = 1.71 \text{ (2.27)};$$

$$\deg(|x*|) \eta = \frac{\log 3}{\log 2} = \frac{\log 3}{\log_3 3 + \log_4 2} \cdot \frac{0.1771 \times 13}{0.1770 \times 13} = 2.71 + 2.71 + 2.71$$

### প্রামালা 42

- 1. বিশ্ব 2 -- 30103 এবং বিশ্ব 3 14771213 চটালে (645 শতর অভ্যান্তর) কড় গু
- 2. Ing 35~74~4.554776~ চলালে, সংস্কৃত ফশ্মিত সূত্র প্রস্থ  $\log\sqrt[3]{00000035874}$  নির্বাহ্
  - 8. leg 355 74 23517705 867.7, & 1988, 574-69 697/285 200 2
- 4. log 594154 = 57773\\99 ২০০০, ১০ দৰ্শিক জান প্ৰহন্ত (135\\74)^-তেই মান নিৰ্পৰ কয় ৷

बिर्ह्म के किर्देश सम्बद्धित संबद्धित सहित हुई हो अपन भगन रहिन साब विनेत्र कर :

- 5. 13, 2,7894, 2,3 175, 2,00 5)79.
- 6. '3010 × 2'303.

- 7. 3957 × 3·142.
- 8. 774 10 (827.5) 1393 1504 (8.55) 3 × 32 18 × (7.25)<sup>2</sup>.
- 9. \$ 65-4, 11 × 67 10. 35 57 × ((1 025) 15 1).
- 11. (2'718)\*\*\*\*, ('3724)\*\*\*.
- 12. 16251 -, 6271 . \ think & built
- 13. 9.753 × 10.34 × .9252 1.453 × 3.142
- 14. 210.500, 3714-55 550 00 00 face 401

- 15. अक्षि अ'ल्डक्ट मन्यक अ'758 मन अकिम नद बहेरल, खेबाद आर पर कह इंटेरल १ (ल - १६६).
- 16. (০০৪৮৭৫)" রর মধন নির্দ্ধ করিলো, দশ্মিক বিকৃত পর কটটি শঞ্ বলিবে ৮
  - 17. 2815 40 A. 71 8 19 + 5 leg 25 + 3 log 25 leg 2.

[ C. U. 1936 ]

- 18. जशादिष्य निर्वत कत :
  - (.) 6 in a sein 216-25 1 (n) [3 intia sein 11-20 1
  - (m) 312 Latia vers 2016 421
- 19. leg a 1) 2 1 g (ar) + 10, (br) 4 3 log (br) 45 2 4 6 6 6 4 46 (sign for the sign for the
  - 20. 45.14 35 (3, lo. 18 2 log 5 : log 225 log 2. C. U 1951 :
- 21. 3 legt 1/8 + 2 legt 1/8 lo t 1/2" 2 legt 1 + 3 legt 10-03 হ'-
  - 22. 14m l. (1+2+3-leg1+leg2+le, 3, 27% 461)
  - 23.  $e^{2\pi i n}$ ,  $e^{2\pi i n}$ . [C. U. 1941.]
- 24. 1 of extra extra the extra extra extra (function) 25% m. (cf. U 1913).
  - 25. 11: 4: 1. 1 g a log. 1 1 pt c log. 1

  - 27. 27. q-r-p-p-q

    getryrtsgste = x3yex.

$$1 : \left(\frac{2a}{1-a^2+\frac{2b}{1-a^2}+\frac{2c}{1-a^2}}\right)$$

$$= 1 : \left(\frac{2a}{1-a^2+\frac{2b}{1-a^2}+\frac{2b}{1-a^2}+\frac{2c}{1-a^2}}\right)$$

29. যদি  $a^{8-x}.b^{5x} = a^{x+5}.b^{3x}$  হয়, প্রমাণ কর যে.

$$x \log\left(\frac{b}{a}\right) = \log a.$$

[ C. U. 1937 ]

30.  $\log x : \log y : \log z = b - c : c - a : a - b$  হইলে, দেখাও বে,

(i)  $x^a y^b z^a = 1$ .

(ii)  $x^{b+c}y^{c+a}z^{a+b}=1$ .

(iii)  $x^{b^2+bc+c^2}.y^{c^2+ca+a^2}.z^{a^2+ab+b^2} = 1.$ 

31.  $xy^{p-1} = a$ ,  $xy^{q-1} = b$ ,  $xy^{r-1} = c$  ইইলো, প্ৰমাণ কর যে,  $(q-r)\log \alpha + (r-p)\log b + (p-q)\log c = 0$ .

- 32.  $\log x : \log y : \log z = y z ; z x : x y$  হইলে, প্রমাণ কর যে,  $x^{x}y^{y}z^{x} = 1.$
- 33. a, b, c, d চারিটি ধন-সংখ্যা হইলে, প্রমাণ কর যে,  $\log_b a \times \log_c b \times \log_d c = \log_d a.$  [ C. U. 1942 ]
- 34. loga b = 10, logea (32b) = 5 হইলে, a-এর মান নির্ণয় কর।
- 35.  $xy \log (xy): yz \log (yz): zx \log (zx)=x+y: y+z: z+x$  হইলে, প্রমাণ কর বে,  $x^x=y^y=z^z$ .
- 36. প্রমাণ কর যে, গুণোভর-শ্রেণীর সংখ্যাগুলির লগারিদ্য সমান্তর-শ্রেণী হইবে (Show that the logarithms of a series in G. P. is a series in A. P. ) ∤
  - 37. নিম্নলিখিত সমীকরণগুলি সমাধান কর:
    - (i)  $\frac{1}{\log_x 10} = \frac{2}{\log_x 10} 2$ .
    - (ii)  $5^{5-3x} = 2^{x+2}$ .

[ দেওয়া আছে, log10 2= 30103]

(iii)  $8.2^x = 9^{x + \frac{1}{2}}$ .

[ দেওয়া আছে, log10 3='4771218]

(iv)  $a^{x} + (ab)a^{-x} = a + b$ . (v)  $a^{3-x}b^{5x} = a^{x+5}b^{3x}$ .

(vi)  $6^{3-4\alpha}.4^{\alpha+5}=8$ . [ O. U. 1938 ]

(vii)  $3^{m} = 2$ ,

[ C. U. 1927 ]

(viii)  $2^{\infty}, 3^{2\infty} = 100$ .

[ C. U. 1925 ]

38. নিম্নলিথিত সমীকরণগুলি সমাধান কর:

(i)  $x^y = y^x$  এবং x = 2y.

[ C. U. 1935 ]

(ii)  $\log (x^2 y^3) = a \operatorname{qq} \log \left(\frac{x}{y}\right) = b.$  [ C. U. 1919]

- (iii)  $a^{x+y}b^{2x+y} = c$  and  $a^{2x}b^{3y} = 1$ .
- (iv)  $5^{x+1} = 6^y$ ,  $2^{x+y} = 3^{x-y}$ .
- (v)  $\log x \log y = \log m$ ,  $\frac{x}{a} + \frac{y}{b} = 1$ .
- (vi)  $a^x = b^y$ ,  $b^x = a^y$ . (vii)  $2^x 3^y 6^z = 3^x 6^y 2^z = 6^x 2^y 3^z = 10$ .
- (viii)  $a^x b^y = mc^{-s}, b^x c^y = na^{-s}, c^x a^y = pb^{-s}.$

# চক্রবৃদ্ধি ও বার্ষিকী

### (Interest and Annuities)

11'9. চ্ছ্রান্ড শুধু আসলের উপর স্থানকে সরল স্থান হয়। একটা নির্দিষ্ট হারে নির্দিষ্ট সময় পর পর স্থানেমূলে যাহা হয় তাহার উপর যদি স্থান লওয়। হয় তবে সেই স্থাকে বলে চক্রবৃদ্ধি।

আসল, স্থানের হার, সময় ও সর্দ্মিশ্লকে যথাক্রমে  $p,\,r,\,t$  ও A-দ্বারা স্টিত করা হয়। সরল স্থানের বেলায় প্রযোজ্য A=p(1+tr) স্থাটি মাধ্যমিক পাঠ্যক্রমে আলোচিত হইয়াছে। স্থানের হার সাধারণত শতকরা হিসাবে দেওয়া থাকে। এই স্থানে শতকরা স্থানকে টাকা প্রতি স্থানে রূপান্তরিত করা হইয়াছে, স্থানের হার যদি x% হয়,

তবে টাকা প্রতি স্থদ হইবে  $\frac{x}{100} = r$ .

চক্রবৃদ্ধির হিদাবে টাকা প্রতি স্থদ যদি r হয়, তবে

1 টাকার 1 বৎসরের স্থদ = r টাকা ;

 $\therefore$  1 বংসর পর 1 টাকার সবৃদ্ধিমূল = 1+r টাকা ; এই সবৃদ্ধিমূল R টাকা হইলে, R=1+r »।

2 বংশর পর 1 টাকার সর্দ্ধিম্ল = R টাকা + R টাকার স্থদ

 $=R+Rr=R(1+r)=R^{2}.$ 

অনুকাপে 3 " " n "  $=R^2$  ঢাকা  $+R^2$  ঢাকা বৈষ্টা  $=R^2+R^2r=R^2(1+R)=R^2R$   $=R^3$ 

 $\cdot \quad n \quad n \quad n \quad n \quad n = R^n,$ 

: n বৎসর পর P টাকার সর্দ্ধিমূল, A=PRn=P(1+r)n ··· (1)

ম্প্রত, চক্রের্জি,  $I = P(1+r)^n - P = P(R^n - 1)$  ... (2)

অনুসিদ্ধান্ত 1 : (1) হইতে উভয় পক্ষের লগারিদ্য লইয়া  $\log A = \log PR^n$ 

 $= \log P + \log R^n = \log P + n \log R$ .

অনুসিদ্ধান্ত 2: টাকা-প্রতি বার্ষিক চক্রবৃদ্ধি r টাকা এবং সেই চক্রবৃদ্ধি যদি বংসরে q কিন্তিতে দেয় হয়, তবে প্রতি টাকার জন্ম প্রত্যেক কিন্তিতে q টাকা প্রাপ্য হইবে।

সেকেবে, 
$$1$$
 কিন্তির পর  $1$  টাকার সবৃদ্ধিষ্ণ  $=\left(1+\frac{r}{q}\right)$ ;
  $2$  স স স স  $=\left(1+\frac{r}{q}\right)^2$ .

অনুরূপে,  $q$  স স স স  $=\left(1+\frac{r}{q}\right)^q$ ;

 $\therefore$  ম বংসর পর স স স  $=\left(1+\frac{r}{q}\right)^{qn}$ ;

 $\therefore$  ম স স স  $=\left(1+\frac{r}{q}\right)^{nn}$ ,

অব্দের পর স  $=P\left(1+\frac{r}{q}\right)^{nn}$ ,

টীকা: একই হারে বার্ষিক চক্রবৃদ্ধি অপেকা, মাগ্রানিক ও ব্রৈমানিক চক্রবৃদ্ধি বেনী। উদাহরণস্বরূপ, 1 টাকার

ষাগাসিক চক্রবৃদ্ধিতে 1 বংসরের সবৃদ্ধিমৃল – বাধিক চক্রবৃদ্ধির 1 বংসরের সবৃদ্ধিমৃল ;

$$=\left(1+\frac{r}{2}\right)^{3}-\left(1+r\right)=\frac{r^{3}}{4}.$$

অন্ত্রূপে, ত্রৈমাসিক চক্রবৃদ্ধিতে 1 বংসরে স্থৃদ্ধিমূল – বার্ষিক চক্রবৃদ্ধিতে

1 বংসরের সবৃদ্ধিমূল = 
$$\left(1 + \frac{r}{4}\right)^4 - (1+r) = \frac{3}{8} r^3 + \frac{r^3}{16} + \frac{r^4}{256}$$
.
$$= \frac{3r^3}{8} \left( \text{প্রায়} \right) 1$$

স্পষ্টত, একই হারে বার্ষিক চক্রবৃদ্ধি অপেক্ষা ষাগ্রাসিক ও ত্রৈমাসিক চক্রবৃদ্ধির পরিমাণ একটু বেশী হয়।

উদা. 1. বার্ষিক 3% হারে 2 ব বংসরে 4000 টাকার সম্লচক্রবৃদ্ধি, আসর টাকার কত হইবে ? 3% এর্থাৎ শতকরা 3 টাকা র্দ = টাকা প্রতি 📆 বা '03 টাকা স্থদ।

1 টাকার 1 বৎসরে চক্রবৃদ্ধি R<sup>n</sup>=1+'03 বা 1'03 টাকা।

 $A=PR^n$  স্ত্র অনুবারে, নির্ণের সম্লচক্র্দি $=4000~(1.03)^{2\frac{3}{3}}$  টাকা $=4000~(1.03)^{\frac{8}{3}},$ 

এখন লগারিদ্ম লইয়া এবং লগারিদ্ম ও অ্যাণ্টিলগারিদ্ম তালিকা হইতে দেখা যার,  $\log 4000(1.03)^{\frac{3}{8}} = \log 4000 + \frac{6}{3} \log 1.03$ 

 $= 3.6021 + \frac{8}{8} \times .0128$ 

= 3.6021 + .0342 = 3.6363

-log 4328.

ে নির্ণেয় সমৃলচক্রবৃদ্ধি = 4328 টাকা।

উদা. 2. বার্ষিক 4% হারে কত বংশরে 100 টাকার সমূলচক্রবৃদ্ধি 1000 টাকা হুইবে ?

প্রশ্ন অসুসারে, এখানে সম্লচকর্দ্ধি A=1000, আস্ল P=100 এবং টাকা প্রতি ফান  $r=r\delta_0=04$ ; অতএব 1 টাকার বংসরের সম্লচক্রের্দ্ধি R=1+04 বা 104 টাকা; নির্ণেয় বংসর বেন n.

∴  $A = PR^n$  স্ত্র অমুসারে,

 $1000 = 100 (1.04)^n$ ;

উভয় পক্ষের লগারিদ্ম লইয়া, log 10 = n log (1'04);

:. 
$$n = \frac{\log 10}{\log (1.04)} = \frac{1}{.0170333}$$
 [ লগ্-তালিকা হইতে ]

পুনরায় উভয় পক্ষের লগারিদ্ম লইয়া,

$$\log n = -\log (0170333) = -(\overline{2}2312987)$$
$$= 2 - 2312987 = 17687013$$

 $= \log (58.70854054)$ 

[লগ্-তালিকা হইতে ]

∴ নির্ণেয় বৎসর, n = 58.7 বৎসর (প্রায়)।

উদা. 3. শতকরা কত হার বার্ষিক চক্রকৃদ্ধিতে 175 টাকা 2 বংসরে স্থদেম্বে  $192\frac{15}{16}$  টাকার পরিণত হইবে ?

এখানে সম্লচক্র্দি  $A=\frac{3087}{16}$  টা; আসল=175 টা.; সময় n=2 বংসর ৷ এখন নির্পেয় টাকা প্রতি চক্রন্দির্হার r এবং 1 টাকার 1 বংসরের সমূলচক্রন্দি R হইলে,

 $A = PR^n$  সূত্র অমুসারে,

$$\frac{3087}{16} = 175R^2 \; ;$$

- $\therefore$  2 log  $R + \log 175 = \log 3087 \log 16$ ;
- $2 \log R = \log 3087 \log 16 \log 175$  = 3.4895366 2.2430380 1.2041200 = 3.4895366 3.4471580 = 0.423786 ;
- $\log R = 0211893 = \log (1.05)$ ;
- R = 1.05;
- r=1.05-1=.05.
- ∴ নির্ণেয় বার্ষিক চক্রবৃদ্ধি স্থদের হার = 5%

### প্রথমালা 43

- 1. বার্ষিক 4% হারে 5000 টাকার 3 বংসরে সম্লচক্রবৃদ্ধি আসন্ন টাকার কত হইবে ?
- 2. বংসরে ছয় মাস অস্তর দেয় বার্ষিক 6% চক্রবৃদ্ধি হারে 12000 টাকা 10 বংসর পর কত টাকা হইবে ?
- 3. বার্ষিক 4% হারে 643 টাকার 5 বংসরের চক্রবৃদ্ধি আসন্ন টাকায় কত হইবে?
- 4. কত সময়ে বাধিক 4% হাবে একটি আসল সমূলচক্রবৃদ্ধিতে উহাব দিওণ হইবে ?
- 5. কত সময়ে বার্ষিক 5% হারে একটা টাকা সমূলচক্রবৃদ্ধিতে নিজের দ্বিগুণ পরিমাণ হইবে ?
- 6. 9 বংসর পর 400 টাকার সম্লচক্রেদ্ধি 569 টাকায় পরিণত হয় ? বাধিক চক্রেদ্ধির হার কত ? [log 569'3\$ = 2'7553666.]
- 7. ৪ বংসর পর 500 টাকার নমূলচক্রবৃদ্ধি 742'25 টাকায় পরিণত হয়। স্থদ ছয় মাদ অন্তর দেয় হইলে ঐ চক্রবৃদ্ধির বার্ষিক হার কত ? [ log 1'025 = '0107239 এবং log 74225 = 4'8705524.]

- 8. 1965 খৃষ্টাব্দের পয়লা জামুয়ারী কোন শহরের লোকসংখ্যা ৪০০০ ছিল। বার্ষিক 10% হারে লোকবৃদ্ধি পাইলে 1968 খৃষ্টাব্দের পয়লা জামুয়ারী ঐ শহরের লোকসংখ্যা কত হইবে ?
- 9. কোন গ্রামের লোকসংখ্যা 10 বংসরে 4550 হইতে বাডিয়া যদি 5821 হয়, তবে লোকসংখ্যা বুদ্ধির হার কত ?
- 10. একটা টাকা একটা নির্দিষ্ট হারে বাড়িয়া m বংসরে সমূলচক্রবৃদ্ধিতে যদি উহার p গুণ এবং n বংসরে উহার q গুণ হয় তবে প্রমাণ কর যে  $n=m\log_2 q$ .
- 11'10. বাষিকী (Annuties): বাষিকী বলিতে নির্দিষ্ট সময় পর পর বিশেষ শর্তে বা বিনা শর্তে দেয় নির্দিষ্ট পরিমাণ অর্থ ব্যায়।

বার্ষিকী বংসরাস্তে তে। বটেই, অর্ধবংসরাস্তে অর্থাং ছয়মাস অন্তর, তিনমাস অন্তর প্রভৃতি বিভিন্ন সময়-পর্বাস্তেও দের হইতে পারে। সময়-পর্বের উল্লেখ না থাকিলে অবশু বার্ষিকী বলিতে বংসরাস্তে দের বা প্রাপ্য নির্দিষ্ট পরিমাণ টাকাই বুঝায়।

বার্ষিকী নির্দিষ্টসংখ্যক বংসর পর্যন্ত অথবা আজীবন প্রাপ্য (Life annuity) হইতে পারে। কখনও আবার তাহা চিরকাল প্রাপ্য (Perpetuity)ও হইতে পারে।

যে বাৰ্ষিকী একটা নিৰ্দিষ্ট সময় পরে দেয় হয়, তাহাকে বিলম্বিত বার্ষিকী (Deferred annuity বা Reversion) বলে।

11'11. কতিপায় বৎসরের অনাদায়ী বার্ষিকীর সমূলচক্রবৃদ্ধি  $^2$   $^2$  টাকা পরিমাণ বার্ষিকী,  $^n$  বংসর পর্যন্ত যেন আদার করা হয় নাই। চক্রবৃদ্ধি স্থদের হার টাকা-প্রতি  $^r$  টাকা, এক টাকার এক বংসরের সমূলচক্রবৃদ্ধি  $^n$  টাকা এবং  $^n$  বংসরের অনাদায়ী বার্ষিকীর সমূলচক্রবৃদ্ধি যেন  $^n$  টাকা।

এখন, প্রথম বৎসর পরে দের A টাকা পরবর্তী (n-1) বৎসর আদার করা না হইলে, A-এর সমূলচক্রবৃদ্ধি হইবে  $AR^{n-1}$  টাকা; দিজীয় বৎসর পরে দেয় বার্ষিকী টাকা পরবর্তী (n-2) বংসর আদায় করা না হইলে উহার সমূলচক্রবৃদ্ধি হইবে  $AR^{n-2}$  টাকা; এই ভাবে,

িবর্গের 
$$M = AR^{n-1} + AR^{n-2} + AR^{n-3} + \cdots + A$$
  
 $= A(R^{n-1} + R^{n-2} + R^{n-8} + \cdots + 1)$   
 $= A \cdot \frac{R^{n-1}}{R-1} = \frac{A}{r} (R^{n-1})$  [ :  $R = 1 + r$  ]

অনুসিদ্ধান্তঃ মোট হুদ I বারা হুচিত হইলে,

$$I = \frac{A}{r} (R^n - 1) - nA.$$

11'12. টাকা প্রতি r টাকা চক্রয়রির স্থাদে কত টাকা নিয়োগ করিলে n বৎসৱের জন্ম বাহিকী A টাকা দেয় ইইবে ?

নিযোজ্য টাকার পরিমাণ P এবং 1 টাকার 1 বংশরের স্মৃলচক্রন্থি যেন  $m{R}$  টাকা।

স্পষ্টতঃ, P টাকার n বংসরের সমৃলচক্রবৃদ্ধি =  $PR^n$  ;

এবং n বৎসর অনাদায়ী A পরিমাণ বার্ষিকীর সম্লচক্রন্দ্র =  $\frac{A}{r}(R^n-1)$ . উহারা পরস্পর সমান বলিয়া

$$PR^{n} = \frac{A}{r}(R^{n} - 1)$$

$$\therefore P = \frac{A(R^{n} - 1)}{rR^{n}} = \frac{A}{r} \frac{R^{n} - 1}{R^{n}} = \frac{A}{r} (1 - R^{-n}).$$

টীকা : উপরের সত্তে P টাকাকে n বৎসরের জন্ম দেয় বার্ষিকী A টাকার বর্তমান মূল্য (present worth) বলে।

অনুসিদ্ধান্ত ঃ বার্ষিকীর মেয়াদ যথন অনন্তকাল ব্যাপী হয় অর্থাৎ যথন n = ∞ হর, তথন ঐ বার্ষিকী-কে চিরন্তন বার্ষিকী (Perpetuity) বলে। যে সম্পত্তি

ইইতে চিরকাল একটা নির্দিষ্ট হারে বার্ষিক আয় পাওয়া যায় দেই সম্পত্তিকে নির্দায়

সম্পত্তি (Freehold Estate) বলে এবং ভাহার আয় চিরন্তন বার্ষিকী রূপে গণ্য হয়।

11·13. p বৎসর পরে n বৎসরের জন্ম দেয় বিলম্ভি বার্মিকী A টাকার বর্তমান মূল্য নির্ণয়।

নির্ণেয় বর্তমান মূল্য P', টাকা-প্রতি চক্রবৃদ্ধির হার r এবং এক টাকার এক বৎসরের সমূলচক্রবৃদ্ধি R হইলে,

 $\mathbf{P}' = (p+n)$  বৎসরের জন্ম বার্ষিকী A-এর ২৩মান মূল্য – p বৎসরের জন্ম বার্ষিকী A-এর বর্তমান মূল্য

$$\begin{split} &= \frac{A}{r} \left\{ 1 - R^{-n-p} \right\} - \frac{A}{r} \left( 1 - R^{-p} \right) \\ &= \frac{A}{r} \left\{ R^{-p} - R^{-n-r} \right\} = \frac{A}{r} \left( 1 - R^{-n} \right) R^{-p}. \end{split}$$

অনুসিদ্ধান্ত ে n বংসরের জন্ম বার্ষিকী A-এর বর্তমান মূল্য  $P=rac{A}{r}\left(1-R^{-n}
ight)$ বলিয়া,

$$P' = \frac{A}{r} (1 - R^{-n}) R^{-p} = P R^{-p}$$
;

$$P = \frac{P'}{R^{-p}} = P'R^p$$

$$= P'-এর p বংসারের সমৃলচক্রবৃদ্ধি।$$

ম্পাষ্টতঃ, চিরন্তন বার্ষিকীর বর্তমান মূল্য  $P=rac{A}{r}\left(1-R^{-n}
ight)$ 

$$=\frac{A}{r}\left(1-\frac{1}{R^n}\right)=\frac{A}{r}.$$

কারণ,  $n=\infty$  বলিয়া,  $\frac{1}{R^n}=0$ .

উলা. 1. বার্ষিক 31% চক্রবৃদ্ধি হারে 20 বংসরের মেয়াদী বার্ষিকীর পরিমাণ বদি 500 টাকা হয়, তবে উহার বর্তমান মূল্য কত ? [log 1'035='0149403 এবং log 50'2567=1'7011940]

এখানে, বার্ষিকী A=500, মেয়াদ n=20, টাকা-প্রতি বার্ষিক চক্রবৃদ্ধি  $r=\frac{3.5}{100}$  বা 0.035 টা. এবং 1 টাকার এক বংসরের সম্লচক্রবৃদ্ধি R=(1+0.035) বা 1.035 টা. ; নির্ণেয় বর্তমান মূল্য P হইলে,

$$P = \frac{A}{r}(1 - R^{-n})$$
 স্থ্য অস্পারে, 
$$P = \frac{500}{035}[1 - (1.035)^{-2}].$$

এখন, æ=(1.035)-20 ধরিলে,

$$\log x = -20 \log (1.035) = -20 \times .0149403$$
$$= -.2988060 = -1 + 1 -.2988060$$
$$= \overline{1}.7011940 = \log .502567.$$

x = 502567;

.. 
$$P = \frac{500}{035} (1 - 502567) = \frac{500}{035} (49743) = \frac{1}{7} \times 49743^{\circ}3$$
  
= 7106'18 ( क्यांब )।

.: নির্ণের বর্তমান মূল্য = 7106 টাকা 18 প্রসা (প্রায়)।

উদা. 2. 5 বংশর পরে 20 বংশর মেয়াদী কোন বিলম্বিত বার্ষিকীর বাংশরিক পরিমাণ যদি 40 টাকা হয়, তবে কত টাকায় উহাকে ক্রয় করিলে, ক্রয়মূল্যের উপর বার্ষিক 4% হারে চক্রবৃদ্ধি আদায় হইবে ? স্পষ্টতঃ, নির্ণের ক্রম্প্র প্রশ্লেলিখিত বিলম্বিত বার্ষিকীর বর্তমান মূল্য। উহা 5 বৎসর বিলম্বিত এবং তাহার পরে 4% চক্রব্দিতে 20 বৎসর মেরাদী।

অতএব, নির্ণেয় ক্রম্লা = বর্তমান মূলা P'.

$$P'=rac{A}{r}\;R^{-p}\;(1-R^{-n})$$
 স্ত্র অনুসারে, এখানে  $p=5,\;r=0.4,\;R=1.04,\;$ 

$$n=20$$
 এবং  $A=40$  বলিয়া ঐ নির্ণেয় ক্রেম্ল্য  $P'=\frac{40}{04}(1.04)^{-5}\{1-(1.04)^{-20}\}.$ 

এখন, 
$$x = R^{-p} (1.04)^{-s}$$
 ইইলে,  $\log x = -5 \log 1.04$   
=  $-5 \times 0170333 = -0.0851665$   
=  $-1 + 1 - 0.0851665 = \overline{1.9148335} = \log 0.82193$ .

$$x = 82193 = R^{-y}$$
.

$$\therefore (1.04)^{-20} = .45639.$$

$$P' = \frac{40}{04} \times 82193(1 - 45639) = \frac{40 \times 82193 \times 5436}{04}$$
$$= 82193 \times 54361.$$

:. নির্ণের জনমুল্য P'=446 টাকা 81 পয়স।

উদা. 3. একটি চিরস্তন বার্ষিকী: (Perjetuity) যদি 25 বছরের বার্ষিকীর মূল্যে ক্রয়বোগ্য হয়, তবে 3 বৎসর মেয়াদী যে-বার্দিকীটিকে 625 টাকায় ক্রয় করা যায় তাহার মান নির্ণয় কর।

আমরা জানি, টাকা-প্রতি বাধিক চক্রবৃদ্ধি r, এক টাকার এক বংসরের সম্ল-চক্রবৃদ্ধি R, বাধিকী A, মেয়াদ n বংসর এবং বর্তমান মূল্য P হইলে,

$$P = \frac{A}{r} \left( 1 - R^{-n} \right) = \frac{A}{r} \left( 1 - \frac{1}{R^n} \right).$$

চিরন্তন বার্ষিকীর ক্ষেত্রে  $n=\infty$  বলিয়া,  $\frac{1}{R}$  =0 এবং সেই কারণে চিরন্তন বার্ষিকীর বর্তমান মূল্য  $\mathbf{P}=\frac{\mathbf{A}}{\mathbf{F}}$  .

কিন্তু প্ৰদেশ্ব প্ৰহান 
$$P=25.4$$
 ; ...  $25A=rac{A}{r}$  ,  $r=rac{1}{28}=rac{1}{28}=rac{1}{28}$ 

অতএব প্রদত্ত প্রবার দিতীয়ার্ধে উল্লিখিত বাচিকীটি 4% (=100r) চক্রবৃদিতে 3 বৎসর মেয়াদী এবং উহার বর্তমান মূল্য 625 টাকা।

$$\therefore 625 = \frac{A}{04} \{1 - (1.04)^{-3}\}.$$

এখন, log (1'04)<sup>-3</sup> = - 3 log 1'04 = - 3 × '0170333 = - '0510999 = T'9489001 = log ('88900).

$$\therefore 625 = \frac{A}{.04}(1 - 88900) = \frac{A \times 1111}{.04} = A \times 2.775$$

$$\therefore A = \frac{625}{2.775} = \frac{25}{111} = 225.225.$$

... নির্বেয় বার্ষিকীর মান = 225 টাকা 23 প্রসা ( প্রায় )।

উদঃ 4. 2500 টাকায় একটি নিদায় সম্পত্তি ক্রয় কর; হইগ। উহার বার্ষিক আয় 100 টাকা হইলে চক্রবৃদ্ধির শতকরা শাষ্ঠিক হার কত হয় ?

নির্দায় দম্পত্তির আয় চিরন্তর-বাদিকীরূপে গণ্য হয় বলিয়া **এক্ষেত্রে উহার** বর্তমান মূল্য = 2500 টাকা এবং ঐ বাধিকীর মান = 100 টাকা।

 $\therefore$  চিরস্থন বার্ষিকার ক্লেব্রে প্রযোজ্য  $P=rac{A}{r}$ 

কর অনুষ্ঠারে, একারে 2500  $\sim \frac{100}{r} < r = \frac{1}{25} = 04$ .

় নির্বেথ চারুবুদির শতকর ভার = 100r = 4%.

উদা 5. বাধিক 500 চাকা তারের একটি সম্পত্তি 20 বংসরের ইজারা দেওয় হটর ছো। চক্রপ্রের হার 6 হটলে, 7 বংসর পরে কভ টাকা জরিয়ানা দিয়া পরবর্তী 20 বংসরের জন্ম উ ইজারা ভোগ করা মাইবে গ্

প্রর অন্ত্যারে, প্রথম 20 প্রসর মেলাদের স্বাহ্মর অভিবাহিত ইইপার পরে 
13 ব্যুররর জন্ম থার চাকা দিলেও ইইবে ন । ঐ 13 ব্যুরর পরে জারও স্বাহ্মরর 
জন্মই জ্রিমানা দেয়। ওতিরাধ 13 ব্যুরর পরে স্বাহ্মর মেয়াদ-র্ক্ষির জন্ম দেয় 
ভ্রিমানা 13 ব্যুরর বিল্পিড ৫% হারে প্রবর্তী স্ব্যুরর মেয়াদী ধার্মিকীর বর্তমান 
মুলোর স্মান ইইবে। এই জ্রিমানা যেন দি টাকা।

$$P = \frac{A}{r} \cdot R^{-p}(1 - R^{-n})$$
 সূত্রে এখানে,

A ( বার্ষিকী ) = 500, r ( টাকা-প্রতি চক্রবৃদ্ধি ) = '06, R ( এক টাকার এক বংশরের সমূলচক্রবৃদ্ধি ) — 1'06, n = 7, p = 13 এবং বর্তমান মূল্য P = F.

$$\therefore F = \frac{500}{06} \times (1.06)^{-1.8} \{1 - (1.06)^{-7}\}.$$

এখন, 
$$\log (1.06)^{-1.8} = -13 \log 1.06 = -3289767$$
  
=  $\overline{1}.6710233 = \log .46884$ .

$$(1.06)^{-18} = .46884.$$

অমুরূপে, (1'06)-7 = '665506.

$$\therefore F = \frac{500}{06} \times 46884 \times (1 - 665506)$$

$$-5 \times 46.884 \times \frac{33.4494}{6}$$

 $=234'42 \times 5'5749$ .

$$\log F = \log 234.42 + \log 5.5749$$

= 2'36699947 + '7462371

= 3°1162318 = log 1306°87 ( 四河 ) |

F = 1306.87.

ं. নির্ণের জরিমানা = 1306 টাকা 87 পরস। (প্রায় )।

### প্রামালা 44

সেভিংশ্ ব্যাঙ্কে এক ব্যক্তি প্রতিবংশর 30 টাক। করিয়া জমা রাখে। এ
ব্যাঙ্ক যদি চক্রবৃদ্ধি হারে 2'5% স্থদ দেয়, তবে 20 বংশরের মাথায় দম্লচক্রবৃদ্ধি কৃত
হইবে ?

[ log 1'025 = '0107239; log 16386 = 4'214478 ]

2. চক্রবৃদ্ধি হারে স্থাদ যদি 4% হয়, তবে 5 বংশরের জন্ম দেয় 300 টাকার একটি বার্ষিকীর বর্তমান মূল্য কত ? [C. U. 1936]

[ log 104 = 3.0170333 역적 log 8279 = 4.9148335 ]

3. চক্রবৃদ্ধি স্থাদের হার 4% হইলে 40 বংসরের জন্ত দেয় 100 টাকার একটি বার্ষিকী কত টাকায় কর করা যাইবে ?

[ log 104 = 3'0170333 এবং log '20829 = ī'318668 ]

4. ৪% চক্রবৃদ্ধিতে 25 বংশর মেগালী 100 টাকার একটি বার্ষিকার বর্তমান মূল্য কত ?

[log 103 = 2'0128372 49° log 477606 = 5'67907]

- 5. চক্রবৃদ্ধি স্থানের হার 3'5% হইলে কত বংসর বাষিকীর মূল্যে একটি নির্দার সম্পত্তি ক্রয় করা যাইবে?
- 6. একটি নির্দায় সম্পত্তির গ্রদ্ আয় 150 টাকা হইতে উহার 25% ভাড়া ও অক্সান্ত করের জন্ত এবং মেরামতের ধরচ বাবদ ৪½% ব্যয় করা হয়। 2500 টাকাম যদি ঐ স্পত্তি ক্রয় করা যায় তবে চক্রবৃদ্ধি স্তদের হার কত ?
- 7. চক্রবৃদ্ধি স্থাদের হার 2'5% হইলে, 2 বংসারের জন্ম বিলম্বিত 168 টাকা 10 প্রদা প্রিমাণ একটি চিরন্তন বার্ষিকীর বিক্রয়মূল্য নির্ণয় কর।

[ইঙ্গিতঃ p বংদর বিলম্বিত যে-কোন বার্ষিকীর বর্তমান মূল্য

$$=\frac{A}{r} R^{-p} (1-R^{-n});$$

এ বার্ষিকী চিরস্তন হইলে,  $n=\infty$  বলিয়া,  $R^{-n}=\frac{1}{R^n}=0$  ;

$$\therefore$$
 সেকেতো,  $P = \frac{A}{r} R^{-p}$ ;

. :. এখানে বৰ্তমান মূল্য = 
$$\frac{1681 \times (1.025)^{-8}}{0.025}$$
 ; ইত্যাদি।]

8. 30 বংসরের বার্ষিকী দিয়া একটি নির্দিষ্ট মেয়াদের বার্ষিকী কেনা যায় এবং 6 বংসরের বার্ষিকী দিয়া পুরোক্ত মেয়াদের দ্বিগুণ সময়ের জন্ম একই বার্ষিকী কেনা যায়। চক্রবৃদ্ধির শতকরা হার কত ?

[ইঙ্গিত: উভয়ক্ষেত্রে বার্ষিক A মেয়ান প্রথম ক্ষেত্রে n বংসর, দ্বিতীয় ক্ষেত্রে

$$2n$$
 বৎসর ধরিলে,  $30A = \frac{A}{r}(1 - R^{-n})$  এবং  $6A = \frac{A}{r}(A - R^{-2n})$ ;

$$R^{-n} = 1 - 30r$$
;  $R^{-2n} = 1 - 6r$ ;

কিৰ,  $R^{-2n} = (R^{-n})^2 = (1 - 30r)^2$ ; ∴  $(1 - 30r)^2 = 1 - 6r$ ; ইত্যাদি।]

9. 6% চক্রবৃদ্ধি স্থদে এক ব্যক্তি 3000 টাকা ধার করে। 300 টাকা করিয়া পর পর 5টি বার্ষিক কিলিতে ধার শোধ দিবার পরে ঐ ব্যক্তি 140 টাকা বার্ষিক আরের একটি নির্দায় সম্পত্তি প্রত্যপণ করিয়া ঋণমুক্ত হয়। ইহাতে ঐ ব্যক্তির কি পরিমাণ ক্ষতি বা লাভ হয়?

[log 106 = 2'0253059 역자 log 133'8226 = 2'1265295]

10. এক ব্যক্তি তাহার 1000 টাকা মূলধনের উপর 5% চক্রবৃদ্ধি হারে স্কল্ পায়। সে যদি প্রতিবংসর 90 টাকা হিসাবে খরচ করিয়া যায় তবে দেখাও যে 17 বংসর পার হইবার আগেই সে নিঃস্ব হইয়া পড়িবে।

 $[\log 105 = 2.0211893]$ 

11. টাকা-প্রতি r হিনাবে চক্রবৃদ্ধি স্থদে p টাকা পরিমাণ ঋণ যদি বার্ষিক  $\frac{p}{m}$  টাকা কন্তিতে n বংসরে শোধ দেওয়া যায় তবে প্রমাণ কর যে  $n=-\frac{\log{(1-mr)}}{\log{(1+r)}}$ .

#### ত্বাদশ অধ্যায়

# সূচক-শ্ৰেণী

(Exponential Series)

12'1. e দারা সূচিত অসীম শ্রেণী।

$$1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{r} + \dots$$

অসীম শ্রেণীটিকে e দারা স্থাচিত করা হয়।

12°2. e সসীম এবং 2 ও 3-এর অন্তর্বতী মান-বিশিষ্ট।

$$e = 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$= 1 + 1 + \frac{1}{2} + \frac{1}{3} + \cdots = 2 + \frac{1}{2} + \frac{1}{3} + \cdots$$

দিশিণপক্ষস্থ সকল পদই ধনাত্মক বলিয়া, স্পষ্টই, e-এর মান 2-অপেক্ষা বৃহত্তর। আবার, 3=3.2.1;  $\therefore 3>2.2.1$ , অর্থাং  $2^{\circ}$ ;

$$\therefore \quad \frac{1}{\lfloor \frac{3}{2} \rfloor} < \frac{1}{2^{3}},$$

এই ऋপ,  $\frac{1}{4} < \frac{1}{2^s}$ ;  $\frac{1}{5} < \frac{1}{2^4}$ , ...

অতএব, 
$$c=1+1+\frac{1}{\lfloor \frac{1}{2}+\frac{1}{\lfloor \frac{3}{2}+\frac{1}{2}+\frac{1}{\lfloor \frac{1}{2}+\cdots}}{\lfloor \frac{1}{2}+\frac{1}{2^8}+\frac{1}{2^8}+\frac{1}{2^8}+\frac{1}{2^8}+\cdots}$$
 
$$<1+1+\frac{1}{2}+\frac{1}{2^8}+\frac{1}{2^8}+\frac{1}{2^8}+\frac{1}{2^4}+\cdots$$
 
$$<1+\left(1+\frac{1}{2}+\frac{1}{2^8}+\frac{1}{2^8}+\frac{1}{2^8}+\frac{1}{2^4}+\cdots\right)$$
 
$$<1+\frac{1}{1-\frac{1}{2}}\left($$
 সন্ধান মধ্যন্ত অসীম গুণোভার-শ্রেণীর সমষ্টি লইয়া  $\right)$   $<3.$ 

অতএব, e সদীম এবং ইহার মান 2 ও 3-এর অন্তর্বর্তী।

জান্তব্যঃ উচ্চতের গণিতে ৫-এর ব্যবহার এবং প্রয়োজন অত্যন্ত অধিক। অধ্যাপক অ্যান্ডামস্ ইহার মান 260 দশমিক স্থান পর্যন্ত নির্ণিয় করিয়াছেন। সাধারণতঃ ইহার 7 দশমিক স্থান পর্যন্ত শুদ্ধ মানই যথেট। ইহার 9 দশ্মিক স্থান পর্যন্ত শুদ্ধ মান নিচে দেওায়া হইলঃ

e = 2.718281828.

### 12'3. e একটি অসের সংখ্যা।

থে সংখ্যাকে তৃইটি পূর্ণসংখ্যার অভূপাতরূপে প্রকাশ করা যায়, তাহাকে প্রমেয় (commensural le) সংখ্য এবং যাহাকে তৃইটি পূর্ণসংখ্যার অভূপাতরূপে প্রকাশ করা যায় ন , ভাহাকে (incommensurable) সংখ্যা বলে।

যদি সভব হন, মনে কর, e অমেয় নর, ইহা একটি প্রমের সংখ্যা এবং ইহা ত্ইটি গনা ক্ষক পূর্ণসংখ্য m এবং n-এর অভপাত  $\frac{m}{n}$  এর সমান  $\epsilon$ -এর মান ধনাত্মক বলিরা, একেতে m এবং n-কে ধনা এক পূর্ণসংখ্য, ধরা হাইল। ভাহা হাইলে,

$$\frac{m}{n} = 1 + 1 + \frac{1}{12} + \frac{1}{13} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots$$

উভয় পক্ষকে [ 22 বারা গুণ করিলে,

$$m \cdot |n-1| = |n+|n+|\frac{n}{2} + \frac{n}{3} + \dots + 1 + \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots$$

স্পৃত্তি বাম পক্ষ । — 1 এবং সেইজন্ম । ন – 1 পূর্বসংখ্যা এবং দক্ষিণ পক্ষন্থ প্রাথম ছইতে 1 প্রস্থ সমস্থ পদ্প প্রধাংখ্যা, এবং সেইজন্ম উহাদের সমষ্টিও একটি পূর্বসংখ্যা। অতএব,

একটি পূর্বসংখ্যা = একটি পূর্বসংখ্যা + 
$$\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \cdots$$
 (1)

এখন,  $\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\cdots$ , লগেষ্ট ইছার প্রথম পদ  $\frac{1}{n+1}$  অপেক্ষা

বৃহস্ক এবং  $\frac{1}{n+1} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} + \cdots$  অসীম শ্রেণীটি অপেকা কৃত্তত ;

$$\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \cdots > \frac{1}{n+1}$$

$$\frac{1}{(n+1)} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} + \cdots$$

$$\frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n}.$$

কিন্তু ইহা অসম্ভব; অতএব, ৫ অমের নর প্রমের, এই কল্পনা ভূল।
∴ ৫ একটি অমের সংখ্যা।

# 12.4. সূচক-উপপাত ও সূচক-শ্রেণী।

(1) x-এর সকল মানের জন্ম  $e^x = 1 + x + \frac{x^2}{12} + \frac{x^3}{13} + \cdots + \frac{x^7}{17} + \cdots$ 

(2) 
$$a > 0$$
 হৈছে,  $x$ -এর সকল মানের জন্স 
$$a^x = 1 + \frac{x}{1!} (\log_e a) + \frac{x^2}{2!} (\log_e a)^2 + \frac{x^3}{3!} (\log_e a)^3 + \dots + \frac{x^r}{r!} (\log_e a)^r + \dots$$

লক্ষ্য করিতে হইবে উভয় শ্রেণীই অসীম পর্যন্ত বিস্তৃত।

(1) এবং (2)-কে হচক-উপপাত (Exponential Theorem) এবং (1) এবং (2)-এর দক্ষিণ পক্ষস্থ অভিসারী অগীম শ্রেণীছয়কে হচক-শ্রেণী (Exponential Series) বলা হয়।  $e^x$  এবং  $a^x$ -কে হচক-অপেক্ষক (Exponential Function) বলে।

জ্ঞপ্তব্য :, উপপাত্ত-তৃইটির প্রমাণ পাঠ্যতালিকা-বহির্ভূত।

**অনুসিদ্ধান্ত।**  $e^n$ -এর বিভৃতিতে,  $\alpha$ -এর স্থলে যথাক্রমে  $-\alpha$ , 1, এবং -1 বসাইলে,

$$e^{-x} = 1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{2} + \dots + (-1)^{r} \frac{x^{r}}{2} + \dots$$

$$e = 1 + 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} + \dots$$

$$e^{-1} = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \dots + (-1)^{r} \frac{1}{2} + \dots$$

বিস্তৃতিগুলি পাওয়া যায়।

অসীম শ্রেণীর সমষ্টি-নিণরের সময়ে ধনাত্মক পূর্ণসংখ্যা ৫-সংবলিত (-r)!
প্রতীকটি অনেক্সময় আসিয়া পড়ে। ক্যাক্টরিয়ালের সংজ্ঞা-মতে ইহা অর্থহীন
হুইলেও, আমরা জানি,

$$\frac{n!}{(n-r)!} = n(n-1)(n-2)\cdots(n-r+1);$$

উভয় পক্ষে n=0 বদাইলে,

$$\frac{0!}{(-r)!} = 0 \; ; \; \widehat{\text{form }} \; 0! = 1 \; ;$$

$$\therefore \quad \frac{1}{(-r)!} = 0.$$

12'6. সূচক-উপপাত্ত-সম্বন্ধীর বিবিধ প্রশ্নের সমাধান।

উদা 1.  $\frac{1}{2}\left(e+\frac{1}{e}\right)$  এবং  $\frac{1}{2}\left(e-\frac{1}{e}\right)$ -এর মান নির্ণয় কর।  $\left[\text{ Find the value of }\frac{1}{2}\left(e+\frac{1}{e}\right)\text{ and }\frac{1}{2}\left(e-\frac{1}{e}\right)\right]$ 

আমর: জানি, 
$$e^x = 1 + r + \frac{r^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$

উভয় প্ৰে 
$$x = 1$$
 ব্যাইলে,  $c = 1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$  (1)

$$x = -1$$
 বসাইলে,  $e^{-1} = \frac{1}{e} = 1 - 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \cdots$  (2)

(1) এবং (2) বোগ করিলে,

$$e + \frac{1}{e} = 2\left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots\right).$$

$$\therefore \frac{1}{2} \left( e + \frac{1}{e} \right) = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \cdots$$

আবার, (1) ২ইতে (2) বিয়োগ করিয়া বিয়োগফলকে 2 দারা ভাগ করিলে,

$$\frac{1}{2}\left(s-\frac{1}{s}\right)=1+\frac{1}{3}+\frac{1}{5}+\cdots$$

উদা. 2. চারি দশমিক স্থান প্যস্তু -এর উদ্ধান নির্ণয় কর। [Find the value of 1 correct to four places of decimal.]

e=-अत निर्देशित = - रे नम्डिल

$$\frac{1}{5^{6}} = e^{-\frac{1}{8}} = 1 - \frac{1}{5} + \frac{1}{5^{2} \cdot 2} - \frac{1}{5^{5} \cdot 3} + \frac{1}{5^{4} \cdot 4} - \frac{1}{5^{5} \cdot 5} + \cdots$$

$$= 1 - \frac{2}{10} + \frac{2^{2}}{10^{2} \cdot 2} - \frac{2^{8}}{10^{3} \cdot 3} + \frac{2^{6}}{10^{4} \cdot 4} - \frac{2^{5}}{10^{5} \cdot 5} + \cdots$$

$$= 1 - 2 + \frac{04}{2} - \frac{008}{6} + \frac{0002}{3} - \frac{00004}{15} + \cdots$$

উদা. 3. প্রমাণ কর বে (Show that),

$$\frac{1}{2} + \frac{1+2}{3} + \frac{1+2+3}{4} + \frac{1+2+3+4}{5} + \dots = \frac{e}{2}.$$
[O. U., 1942, '45]

প্রদত্ত শ্রেণীটির গ্ল-তম পদ

$$= \frac{1+2+3+\cdots+n}{|n+1|} = \frac{n(n+1)}{2|n+1|} = \frac{1}{2|n-1|}$$

ইহাতে %=1, 2,... বদাইয়া,

প্ৰথম পদ = 
$$\frac{1}{2 \lfloor \underline{0}'}$$
 দ্বিতীয় পদ =  $\frac{1}{2 \lfloor \underline{1}'}$  তুতীয় পদ =  $\frac{1}{2 \lfloor \underline{3}'}$  ইত্যাদি।

:. নির্পেয় সমষ্টি = 
$$\frac{1}{2} \left( 1 + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \cdots \right) = \frac{e}{2}$$

উদা 4. প্রমাণ কর বে (Prove that),

(i) 
$$\frac{2}{11} + \frac{4}{13} + \frac{6}{15} + \frac{8}{17} + \dots = 6$$
. [C. U., 1936]

(ii) 
$$\frac{2}{13} + \frac{4}{15} + \frac{6}{17} + \frac{8}{19} + \dots = \frac{1}{e}$$
 [C. U., 1937]

(i) শৌশীর 
$$n$$
-ভূম প্র =  $\frac{2n}{|2n-1|}$   $\frac{(2n-1)+1}{|2n-1|}$  =  $\frac{2n-1}{|2n-1|}$  +  $\frac{1}{|2n-1|}$  =  $\frac{1}{2n-2}$  +  $\frac{1}{|2n-1|}$ .

∴ ইহাতে n=1, 2,··· বসাইয়া,

প্রথম পদ = 
$$\frac{1}{10} + \frac{1}{12}$$
, বিতীয় পদ =  $\frac{1}{12} + \frac{1}{13}$ , তুতীয় পদ =  $\frac{1}{16} + \frac{1}{17}$ , ইত্যাদি।

.. নির্পেষ্ট সম্প্রি = 
$$1 + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \dots = e$$
.

শিকল পদতি: প্রদেষ করি = 
$$\frac{1+1}{12} + \frac{3+1}{13} + \frac{5+1}{15} + \frac{7+1}{17} + \cdots$$
  
=  $1 + \frac{1}{12} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \cdots = c$ .

(ii) CHARA 1-3% 
$$\forall n = \frac{2n}{2^n+1} = \frac{(2n+1)-1}{2^n+1} = \frac{2n+1}{2^n+1} = \frac{1}{|2n+1|} = \frac{1}{|2n+1|} = \frac{1}{|2n+1|}$$

.. ইভাতে n − 1, 2, 3,... ই'ভাত্মি ব্যুট্ছা,

প্রথম দেশ 
$$= \frac{1}{2} - \frac{1}{13}$$
, বি ্ত দেশ  $= \frac{1}{1} - \frac{1}{13}$ , তুর্ভার পদ  $= \frac{1}{16} - \frac{1}{17}$ ,

ভিজা. 5. 4 + 11 + 22 + 37 + 56 + · · অস্ট্র পর্যন্ত শ্রেণীটির সমষ্টি নির্ণয় কর (Sun. the series · · · to infinity)।

মত্ত কর, 4 + 11 + 22 + ··· শ্রেণীতির ৮-তম কল দে এবং উতার প্রথম তইতে ক্র-শংশ্যক পদের সমষ্টি 🗓 .

$$S_n = 4 + 11 + 22 + 87 + \dots + t_n;$$
 
$$\Re(Y|X), S_n = 4 + 11 + 22 + \dots + t_{n-1} + t_n.$$

:. [47219] 
$$\Phi_n^2(3)^2$$
,  $0 = 4 + 7 + 11 + 15 + \dots + (t_n - t_{n-1}) - t_n$   
=  $4 + \{7 + 11 + 15 + \dots (n-1)^{-2}\}$  where  $\{-t_n\}$ 

:. 
$$t_n = 1 + (3 + 7 + 11 + 15 + \cdots n - \sqrt{3} )$$
 পদ প্ৰতি )
$$= 1 + \frac{n}{2} \left\{ 2 \cdot 3 + (n - 1)^4 \right\}$$

$$= 1 + n + 2n^4 = 2n^4 + n + 1.$$

় প্রাণত শ্রেণীটির গ্র-তম পদ

$$= \frac{2n^3 + n + 1}{2n} = \frac{2n(n-1) + 3n + 1}{2n}$$
$$= \frac{2n(n-1)}{2n} + \frac{3n}{2n} + \frac{1}{2n} = \frac{2}{2n-2} + \frac{3}{2n-1} + \frac{1}{2n}.$$

∴ ইহাতে n=1, 2, -- ইত্যাদি বসাইয়া,

প্রথম পদ 
$$\cdot$$
 ,  $\frac{2}{1} + \frac{3}{10} + \frac{1}{11} = 0 + 3 + \frac{1}{11}$ , দ্বিভাগ পদ  $\cdot$  ,  $\frac{2}{1} + \frac{3}{10} + \frac{1}{11} = 2 + \frac{3}{11} + \frac{1}{12}$ , তুভাগ পদ  $\cdot$  ,  $\frac{2}{11} + \frac{3}{12} + \frac{1}{3}$ ,  $\cdot$  চতুৰ্থ পদ  $\cdot$  ,  $\frac{2}{11} + \frac{3}{12} + \frac{1}{3}$ ,  $\cdot$  ,

্ উন্নত ভাবে (Vertically) এবি কবিও ,

$$\begin{cases} \operatorname{far}(4\pi + 2\pi - 2(1 + \frac{1}{14} + \frac{1}{12} + \cdots) + 3(1 + \frac{1}{14} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \cdots) \\ + \left( \frac{1}{14} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \cdots \right) \\ = 2a + 3a + (a - 1) = 6a - 1. \end{cases}$$

উদা 6. । +  $\frac{1+x}{2}$  +  $\frac{1+x+x^2+1+x+x^2+x^3}{3}$  +  $\cdots$  অসীম ূপদ প্ৰস্থ রাশিমালার মান নির্থব কর ।

লেপতির 
$$n^{-2}$$
 প্রদূর্ণ  $1 + r : r^1 + \dots + r^{n-1}$   $1 \cdot 1 - x^n$   $n \cdot 1 - x$ 

$$f_{3} = \frac{1}{1!} \cdot \frac{1-x}{1-x}, \ f_{3} = \frac{1}{1!} \cdot \frac{1-x^{3}}{1-x},$$

$$f_{3} = \frac{1}{1!} \cdot \frac{1-x^{3}}{1-x}, \ \mathcal{F} \in \mathcal{H}^{\mathcal{F}_{N}}_{1} \setminus \mathbb{R}$$

∴ নির্ণেয় সমৃষ্টি

$$= \frac{1}{1-x} \left( \frac{1-x}{\lfloor 1} + \frac{1-x^2}{\lfloor 2} + \frac{1-x^3}{\lfloor 3} + \cdots \right)$$

$$= \frac{1}{1-x} \left[ \left( \frac{1}{\lfloor 1} + \frac{1}{\lfloor 2} + \frac{1}{\lfloor 3} + \cdots \right) - \left( \frac{x}{\lfloor 1} + \frac{x^2}{\lfloor 2} + \frac{x^3}{\lfloor 3} + \cdots \right) \right]$$

$$= \frac{1}{1-x} \left[ (e-1) - (e^x - 1) \right] = \frac{e^x - e^x}{1-x}.$$

উদা. 7. x-এর শক্তির আরোহ ক্রমাম্কলারে  $e^{c_n^{2\alpha}}$ -এর বিস্তার কর। (Expand  $e^{e^{n^{2\alpha}}}$  in ascending powers of x.)

$$e^{ax^{2}} = e^{1+ax+a^{2}x^{2}+a^{3}x^{3}} + \cdots = e \cdot e^{-ax+a^{2}x^{2}+a^{3}x^{3}} + \cdots$$

$$= e \cdot e^{e} \left( ax + \frac{e^{2}x^{3}}{12} + \cdots = e \cdot \sqrt{3x} \right)$$

$$= e \left( 1 + s + \frac{s^{2}}{12} + \frac{2^{3}}{13} + \cdots \right)$$

$$= e \left( 1 + \left( ax + \frac{a^{2}x^{2}}{2} + \frac{a^{3}x^{3}}{3} + \cdots \right) + \frac{1}{12} \left( ax + \frac{a^{2}x^{2}}{2} + \cdots \right)^{3} + \cdots \right)$$

$$+ \frac{1}{13} \left( ax + \frac{a^{2}x^{2}}{2} + \cdots \right)^{3} + \cdots \right)$$

$$= e \left( 1 + ax + a^{2}x^{2} + \frac{5}{3}a^{3}x^{3} + \frac{6}{3}a^{4}x^{4} + \cdots \right).$$

উদা. 8.  $(a+bx+cx^2)e^{nx}$ -এর বিশারে  $x^r$ -এর সহগ নির্ণয় কর [Find the coefficient of  $x^r$  in the expansion of  $(a+bx+cx^2)e^{nx}$ ].

প্রদন্ত রাশিমালা

$$= (a + bx + cx^{2})(1 + nx + \frac{n^{2}x^{2}}{2} + \frac{n^{3}x^{3}}{3} + \cdots + \frac{n^{r-2}x^{r-2}}{r-2} + \frac{n^{r-1}x^{r-1}}{r-1} + \frac{n^{r}x^{r}}{r} + \cdots)$$

এই **अग्रमणा**त ॥ न्यारविनिक शम

$$= \frac{a \cdot n^r x^r + b \cdot n^{r-1}}{r-1} x^r + \frac{c \cdot n^{r-2}}{r-2} x^r.$$

ে নিবেয় মহগ = 
$$\frac{an^r}{1r} + \frac{bn^{r-1}}{r-1} + \frac{cn^{r-2}}{1r-2}$$
.

# প্রভামালা 45

প্রমাণ কর বে (Show that),

1. 
$$\left\{1+x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots\right\}\left\{1-x+\frac{x^2}{2}-\frac{x^3}{3}+\cdots\right\}=1.$$

2. 
$$\left\{1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots\right\} \left\{1 - \frac{1}{1} + \frac{1}{2} - \frac{1}{3} + \cdots\right\} = 1.$$

3. 
$$\left\{1 + \frac{1}{2} + \frac{1}{4} + \cdots\right\}^{8} - \left\{1 + \frac{1}{3} + \frac{1}{5} + \cdots\right\}^{8} = 1$$
.

4. 
$$\left\{1 + \frac{a^2x^2}{2} + \frac{a^4x^4}{4} + \cdots\right\}^2 - \left\{ax + \frac{a^3x^3}{3} + \frac{a^5x^5}{5} + \cdots\right\}^2 = 1.$$

5. 
$$\left\{1 - \frac{x^2}{2} + \frac{x^4}{4} - \cdots\right\}^2 + \left\{x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots\right\}^2 = 1$$
.

6. 
$$\frac{1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots}{1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots} = \frac{e^2 + 1}{e^3 - 1}$$

7. 
$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots}{1 + \frac{1}{3} + \frac{1}{5} + \cdots} = \frac{e - 1}{e + 1}.$$
 [C. U. 1984]

8. 
$$x = 1 + \log_{\pi} x + \frac{(\log_{\pi} x)^2}{|2|} + \frac{(\log_{\pi} x)^3}{|3|} + \cdots$$

9. 
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \cdots = e^{-1}$$
.

10. 
$$1 + \frac{1+2}{12} + \frac{1+2+3}{13} + \frac{1+2+3+4}{14} + \dots = \frac{3}{3}e$$
. [C. U. 1935]

11. 
$$1 + \frac{3}{1} + \frac{5}{2} + \frac{7}{13} + \frac{9}{4} + \cdots = 3e$$
.

12. 
$$\frac{1^2}{11} + \frac{2^2}{12} + \frac{3^2}{13} + \frac{4^3}{14} + \frac{5^3}{15} + \dots = 2e$$
.

13. 
$$1 + \frac{1+2}{2} + \frac{1+2+2^3}{3} + \frac{1+2+2^3+2^3}{4} + \dots = e^2 - e$$
.

[ C. U. 1929 ]

14. 
$$1 + \frac{1+3}{2} + \frac{1+3+3^2}{3} + \frac{1+3+3^2+3^3}{4} + \dots = \frac{1}{2}e(e^2-1)$$
. [Madras, 1953]

15. 
$$1 + \frac{1+a}{2} + \frac{1+a+a^2}{3} + \frac{1+a+a^2+a^3}{4} + \dots = \frac{e-e^a}{1-a}$$

16. 
$$1 + \frac{1 + \frac{2^2 + 2^4 + 2^6 + \dots}{1 + \frac{1}{2} + \frac{1}{2} + \frac{2}{3} + \frac{2^2}{4} + \dots}}{1 + \frac{1}{2} + \frac{1}{2} + \frac{2}{3} + \frac{2^2}{4} + \dots}} = e^2.$$

17. 
$$\frac{1 + \frac{1}{2} + \frac{2}{13} + \frac{2^{2}}{4} + \frac{2^{3}}{15} + \cdots}{1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \cdots} = \frac{e}{2}.$$

18. 
$$\frac{1^{2} \cdot 2^{2}}{1} + \frac{2^{2} \cdot 3^{2}}{2} + \frac{3^{2} \cdot 4^{2}}{2} + \dots = 27e.$$
 [Andhra, 1953]

19. 
$$\frac{1^s}{\lfloor \frac{1}{4}} + \frac{2^s}{\lfloor \frac{2}{4}} + \frac{3^s}{\lfloor \frac{3}{4}} + \dots = 5_{\ell}$$
. [ C. U. 1939]

20. 
$$\frac{1}{1.3} + \frac{1}{1.2.3.5} + \frac{1}{1.2.3.4.5.7} + \cdots = e^{-1}$$
.

21. e-এর মাধ্যমে নিম্নলিখিত রাশিমালার মান প্রকাশ কর (Express in terms of e):

(a) 
$$\left(1 + \frac{1}{12} + \frac{1}{13} + \cdots\right) \left(1 - \frac{1}{12} + \frac{1}{3} - \cdots\right)$$
 [ C. U. 1922, '38]

$$(b) \ \left( \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots \right) \left( 1 + \frac{2}{13} + \frac{3}{15} + \frac{4}{17} + \cdots \right) \cdot$$

(c) 
$$(3^{9}-2^{3})+\frac{1}{2}(3^{6}-2^{6})+\frac{1}{2}(3^{9}-2^{9})+\cdots$$

22. গে অগীম শ্রেণীটির (r+1)-তম পদ  $\frac{(r+1)}{r}$ , দেখাও যে উহার সমষ্টি = 15e.

§ Show that the sum to infinity of the series whose (r+1)th term is  $\frac{(r+1)^3}{r}$  is 15e ].

নিএলিখিত শ্রণীনমূহের অসীম পদ পর্যন্ত সমষ্টি নির্ণয় কর (Sum to infinity the following series):

23. 
$$\frac{1.2}{1} + \frac{2.3}{2} + \frac{3.4}{13} + \cdots$$
 [ Gauhati, 1948 ]

**24.** 
$$1.3 + \frac{2.4}{1.2} + \frac{3.5}{1.2.3} + \frac{4.6}{1.2.3.4} + \cdots$$

25. 
$$\frac{2.3}{13} + \frac{3.5}{4} + \frac{4.7}{15} + \frac{5.9}{16} + \cdots$$

[ Mysore, 1952]

**26.** 
$$\frac{1}{11} + \frac{1+3}{2} + \frac{1+3+5}{13} + \cdots$$

**27.** 
$$\frac{9}{11} + \frac{19}{12} + \frac{35}{3} + \frac{57}{4} + \frac{85}{15} + \cdots$$

28. 
$$\frac{1.4}{10} + \frac{2.5}{11} + \frac{3.6}{12} + \frac{4.7}{13} + \frac{5.8}{14} + \cdots$$

- 29.  $(e^x-1)^2$ -এর বিস্তাবে  $x^4$ -এর সহগ নির্ণয় কর। [ Find the coefficient of  $x^4$  in the expansion of  $(e^x-1)^3$  ].
- 30. x-এর ঘাতের আরোহ্জনে  $e^{6x} + e^{x}$ -এর বিস্তার কর। (Expand  $\frac{e^{5x} + e^{x}}{e^{3x}}$  in a series of ascending powers of x).
- 31.  $\frac{x+1}{\lfloor \frac{1}{2} \rfloor} + \frac{(x+1)^8}{\lfloor \frac{3}{2} \rfloor} + \frac{(x+1)^8}{\lfloor \frac{3}{2} \rfloor} + \cdots$ তে  $x^r$ -এর সহগ নির্ণয় কর। (Find the coefficient of  $x^r$  in  $\frac{x+1}{\lfloor \frac{1}{2} \rfloor} + \frac{(x+1)^8}{\lfloor \frac{3}{2} \rfloor} + \frac{(x+1)^8}{\lfloor \frac{3}{2} \rfloor}$ .
- 32.  $\frac{a-ax-x^2}{e^x}$  -এর বিস্তারে  $x^r$ -এর সহগ নির্ণয় কর! (Find the coefficient of  $x^r$  in the expansion of  $\frac{a-ax-x^2}{e^x}$ ).
  - 33. (a)  $(1+x+x^2)e^{-x}$ . [ O. U., 1915 ] (b)  $\frac{a+bx+cx^2}{e^x}$ .
- (c)  $\sqrt{\frac{4x^2-12x+9}{e^x}}$ . —ইহাদের বিস্তারে  $x^n$ -এর সহগ নির্ণয় কর। (Find the coefficient of  $x^n$  in the above expansions).
  - 34. n একটি ধনাত্মক পূর্ণসংখ্যা হইলে, দেখাও যে n মুগ্ম হা অযুগ্ম হইলে,

$$1 + \frac{1+x^2}{\lfloor \frac{1}{2}} + \frac{(1+x^2)^2}{\lfloor \frac{2}{2}} + \frac{(1+x^2)^3}{\lfloor \frac{3}{2}} + \cdots$$
েতে  $x^n$ -এর সহগ =  $\frac{e}{n}$ , অথবা  $0$ .

[ Show that the coefficient of  $x^n$  in  $1 + \frac{1+x^2}{\lfloor \frac{1}{2}} + \frac{(1+x^2)^2}{\lfloor \frac{1}{2}} + \frac{(1+x^2)^3}{\lfloor \frac{1}{2}} + \cdots$  where n is a positive integer, is  $\lfloor \frac{n}{2} \rfloor$ , or, 0, according as

n is even or odd. ]

35. (a)  $z^2 = 1 + e + \frac{z^3}{2} + \frac{z^3}{3} + \cdots$ , এবং z ক'ল্পনিক বাশি পরিয়া x-এর ঘাতের আবোহকমে

(i) 
$$\frac{1}{2}(e^{sx}+e^{-tx})$$
 এবং (ii)  $\frac{1}{2i}(e^{sx}-e^{-tx})$ -এর বিভার কর।

(b) 
$$\sqrt[4]{\mathbb{R}} \quad a = 1 + \frac{x^3}{3} + \frac{x^6}{16} + \cdots, \quad b = x + \frac{x^4}{14} + \frac{x^7}{17} + \cdots,$$

$$c = \frac{x^2}{12} + \frac{x^5}{15} + \frac{x^6}{18} + \cdots,$$

(7) (3),  $a^8 + b^3 + c^3 - 3abc = 1$ .

36. 

ক্রের ঘাতের আরোহক্রম বিভার কর (Expand in ascending powers of x):

(i) 
$$\left(1 - x + \frac{x^{s}}{2} - \frac{x^{s}}{2} + \cdots\right)^{s}$$
 (ii)  $\left(x - \frac{x^{s}}{2} + \frac{x^{s}}{2} - \cdots\right)^{s}$  (iii)  $\left(x + \frac{x^{s}}{2} + \frac{x^{s}}{2} + \cdots\right)^{s}$ 

37. গমষ্টি নিৰ্ণয় কর (Sum the Series):

$$1 + \frac{2^3}{11}x + \frac{3^3}{12}x^3 + \frac{4^3}{13}x^3 + \cdots$$
 [Bombay, 1948]

38. দেখাও বে (Prove that),

$$\frac{2}{1} + \frac{5}{13} + \frac{8}{15} + \dots = e + \frac{1}{2}e^{-1}$$
.

- 39. (a) x-এর ঘাতের আরোহক্রমে  $x^4$  প্যন্ত  $e^{e^x}$ -এর বিস্তার লেখ (Expand  $e^{e^x}$  in ascending powers of x upto  $x^4$ ).
  - (b) প্রমাণ কর যে, e<sup>ox</sup>-এর বিন্তারে ক্র'-এর সহগ

$$= \frac{1}{L} \left[ \frac{1^r}{L_1^2} + \frac{3^r}{L_2^2} + \frac{3^r}{L_3^2} + \cdots \right]$$
 [ C. U. 1938]

অভএব, প্রমাণ কর যে,

$$\frac{1^4}{11} + \frac{2^4}{12} + \frac{3^4}{13} + \dots = 15e.$$

40. স্থাক উপপান্ত ও দ্বিপদ উপপান্ত প্রয়োগ করিয়া প্রমাণ কর যে (Apply the exponential and the binomial theorems to show that ),

$$n^n - n(n-1)^n + \frac{n(n-1)}{2}(n-2)^n + \dots = \underline{n}.$$
 [Poona, 1952]

 $[(e^x-1)^n=(x+\frac{x^2}{\sqrt{2}}+\frac{x^3}{\sqrt{3}}+\cdots)^n$ ; স্পষ্টই, বন্ধর্ম-মধ্যন্থ বিভৃতিটির n-তম্বাতের  $x^n$ -এর দহগ=1. এখন,  $(e^x-1)^n$ -কে দ্বিপদ উপপাত্য-সাহায্যে সম্প্রসারিত করিয়া, বিভৃতি হইতে  $x^n$ -এর সহগ নির্ণয় করিয়া, পূর্বের  $x^n$ -এর সহগ নির্ণয় করিছে হার্মিন স্থানিক স্বিত্তি হার্মিন স্থানিক স্বিত্তি হার্মিন স্থানিক স্থানি

#### ত্ৰয়োদশ অধ্যায়

# লগারিদ্ম শ্রেণী

(Logarithmic Series)

# 13'1. লগারিদ্ম প্রেণী।

-1< x < 1 হইলে,

$$\log_{e} (1+x) = x - \frac{x^{8}}{2} + \frac{x^{8}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{r-1} \frac{x^{r}}{r} + \dots (1)$$

 $\log_{\epsilon}(1+x)$ -এর বিভৃতি-জ্ঞাপক দক্ষিণৎক্ষ .শ্রণীটিকে লগারিদ্ম-শ্রেণী (Logarithmic Series) বলে। ইহা একটি অদীম-শ্রেণী; x-এর  $-1 < x \le 1$  মানসমূহের জন্মই কেবলমাত্র এই অদীম-শ্রেণীটি  $\log_{\epsilon}(1+x)$ -এর সমান হয়, অন্তথা নহে; অর্থাৎ কেবলমাত্র x-এর ঐসকল মানের জন্মই (1)-এর দক্ষিণপক্ষ অদীম-শ্রেণীটি অভিসারী হয় এবং তথন উহার সমষ্টি হয়  $\log_{\epsilon}(1+x)$ .

দ্রপ্তব্য ঃ লগারিদ্ম শ্রেণী নির্ণয়-পদ্ধতি পায়তালিকা বহি ছত।

**অনুসিদ্ধান্ত 1.** (i)  $-1 < x \le 1$  হইলে, (1)-এর উভয় পক্ষ সমান বলিয়, (1)-এর উভয় পক্ষে x=1 লিখিয়া,

$$\log_6 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(1)^{p-1}}{p} + \dots$$

(ii) x-এর -1 < x ≤ 1 মানদম্ভের জন্ম (1)-এর উভর পক্ষ সমান।</li>
 x-এর স্থলে - x লিখিলে, স্পষ্টই x-এর দীমা পরিবভিত হইয়। -1 ≤ x < 1 হইবে। অভএব,</li>

-1 < x < 1 इंडेल.

$$\log_{e} (1-x) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \dots - \frac{x^{r}}{r} - \dots$$

অসুসিদ্ধান্ত 2. আমরা জানি,  $\log_{10} (1+x) = \log_e (1+x)$ .  $\log_{10} e$   $= \frac{\log_e (1+x)}{\log_e 10} \quad [ \ \ \, \cdot \ \ \, \log_{10} e = 1 \ ]$ 

•• 
$$\log_{10} (1+x) = \mu \log_e (1+x), \ \mu = \frac{1}{\log_e 10} \, \text{Reg},$$

$$= \mu(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots)$$

এইরপে,  $\log_{10}(1-x) = \mu(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots).$ 

জ্বৈত্য ও নিধান-বিশিষ্ট লগারিদ্মকে, লগারিদ্মের আবিছর্ভা নেপিয়ার (Napier)-এর নামাস্থলারে, নেপিরীয় (Napierian) লগারিদ্ম বলা হয়। এই লগারিদ্মগুলিকে প্রাকৃতিক (natural) লগারিদ্মও বলে। সাধারণ লগারিদ্মে, 10 নিধানরূপে ব্যবহৃত হয়।

দিতীর অনুসিদ্ধান্ত হইতে দেখা যায়, নেপিরীয় (Napierian) লগারিদ্মকে সাধারণ (common) লগারিদ্মে পরিবর্তিত করিতে হইলে, নেপিরীয় লগারিদ্মকে  $\mu$ , অর্থাৎ,  $\frac{1}{\log_e 10}$  দারা গুণ করিতে হয়। গুণক  $\mu$ -কে, এই কারণে, সাধারণ লগারিদ্মের মডিউল্যাস (modulus) বলা হয়। এই মডিউল্যাসের মান  $\frac{1}{2\cdot 30258509}$ 'বা, '43429448.

# 13'2. কভিপয় প্রয়োজনীয় সিক্ষান্ত।

$$-1 < x < 1$$
 হইলে,  $\log_{x} (1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots$  (1)

$$-1 \le x < 1$$
 हैरेल,  $\log_e(1-x) = -x - \frac{x^4}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots$  (2)

$$\log_{6} \frac{1+x}{1-x} = \log_{6} (1+x) - \log_{6} (1-x)$$

$$= 2(x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \cdots) \qquad (3)$$

[ C. U. 1911 ]

 $-1 < x \leqslant 1$  হইলে, (1) সিদ্ধ হয়, আর,  $-1 \leqslant x < 1$  হইলে, (2) সিদ্ধ হয়। অতএব, -1 < x < 1 হইলে, অর্থাং |x| < 1 হইলে, (3) সিদ্ধ হইবে।

(i) যদি 
$$x=rac{1}{n}$$
 হয়, ভাহা হইলে,  $x<1$  হইলে,  $n>1$  হইবে ; অতএব,

(1) ब्रेंस् (2)-ब, 
$$x = \frac{1}{n}$$
 निश्चित्र,
$$n > 1 \ \text{इंट्रिल, loge} \left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^3} + \frac{1}{3n^3} - \cdots$$

$$\text{₹1, loge } (n+1) - \log_e n = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \cdots$$

$$\text{4}$$

$$\text{बह $\epsilon$ loge } \left(1 - \frac{1}{n}\right) = -\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} - \cdots$$

া, 
$$\log_e n - \log_e (n-1) = \frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + \cdots$$
 (5)  
( উভয় পক্ষের চিহ্ন পরিবর্তন করিয়া)

(4) এবং (5) যোগ করিয়া, n > 1 হইলে,

$$\log_{e}(n+1) - \log_{e}(n-1) = 2\left(\frac{1}{n} + \frac{1}{3n^{3}} + \frac{1}{5n^{5}} + \cdots\right)$$
 (6)

(4), (5) এবং (6)-এর দক্ষিণপক্ষস্ত অগীম-শ্রেণীগুলি, n-এর n>1 মান্দ্র্যুক্তর জন্মই কেবলমাত্র অভিসারী হইবে এবং তথন স্ব স্থ দক্ষিণপক্ষস্ত রাশি উহাদের সমষ্টি হইবে।

দেখা যাইতেচে, কোন সংখ্যার লগারিদ্ম দেওরা থাকিলে, (4) অথবা (5)-এর সাহায়ে, এ সংখ্যা অপেক্ষা 1- বড সংখ্যার লগারিদ্ম নির্ণয় করা যায়। এখন মাহায়ে, এ সংখ্যা অপেক্ষা 2- বড সংখ্যার লগারিদ্ম নির্ণয় করা যায়। এখন (4), (5) এবং (6)-এর দক্ষিণপক্ষস্ত ক্রমক্ষীয়মাণ অভিসারী অসীম-শ্রেণীগুলি অতি মন্থর ভাবে ক্ষীয়মাণ বলিয়া, উহাদের সাহায়ে, কোন সংখ্যার লগারিদ্মের কোন নির্দিষ্ট দশমিক স্থান পর্যস্ত শুদ্ধ আদার মান নির্ণয় করিতে হইলে, এসকল শ্রেণীর অনেকগুলি পদের প্রয়োজন হয়, এবং সেইজন্ম লগারিদ্ম-নির্ণয়ে ইহাদের ব্যবহার একটু অস্থ্যবিধাজনক। নিম্নে (7)-এর অসীম-শ্রেণীট ক্রত ক্ষীয়মাণ বলিয়া লগারিদ্ম-নির্ণয়ে ইহার ব্যবহার (4), (5) বা (6) অপেক্ষ, অধিকতর স্থ্যিজনক।

(ii) (3)-এ x-এর সীমা হইতেচে -1 < x < 1, অর্থাং |x| < 1;

$$(3)$$
-এ  $x$ -এর স্থলে  $\frac{1}{2n+1}$  বসাইলে,  $\frac{1}{2n+1}$ -এরও সীমা হইবে  $\left|\frac{1}{2n+1}\right|<1$ , বা,  $|2n+1|>1$ , বা,  $2n+1>1$  এবং  $2n+1<-1$ , বা,  $n>0$  এবং  $n<-1$ .

মতএব, (3)-এ,  $x=\frac{1}{2n+1}$  বসাইয়া, n>0, বা, <-1 হইলে,

$$\log_{\sigma}\left(\frac{1+\frac{1}{2n+1}}{1-\frac{1}{2n+1}}\right) = 2\left\{\frac{1}{2n+1} + \frac{1}{3(2n+1)^3} + \frac{1}{5(2n+1)^5} + \cdots\right\},\,$$

$$\overline{1}, \log_e(n+1) - \log_e n$$

$$= 2 \left\{ \frac{1}{2n+1} + \frac{1}{3(2n+1)^3} + \frac{1}{5(2n+1)^5} + \cdots \right\} \cdots (7)$$

**অনুসিদ্ধান্ত।** স্পষ্টই, (7) হইতে,

$$\log_{10} (n+1) - \log_{10} n$$

$$= \mu \{ \log_{10} (n+1) - \log_{10} n \}$$

$$= 2\mu \left[ \frac{1}{2n+1} + \frac{1}{3(2n+1)^3} + \frac{1}{5(2n+1)^5} + \dots \right];$$

আবার (4) হইতে,

$$\log_{10}(n+1) - \log_{10}n$$

$$= \mu \left( \frac{1}{n} - \frac{1}{2n^3} + \frac{1}{3n^3} - \cdots \right)$$

$$= \frac{\mu}{n} - \frac{\mu}{2n^2} + \frac{\mu}{3n^3} - \cdots$$
[C. U. 1924]

(iii) (3)-এ x-এর দীমা হইতেছে |x| < 1;

(3)-এ 
$$\frac{1+x}{1-x} = \frac{n}{n}$$
 - অর্থাং  $x = \frac{m-n}{m+n}$  বসাইলে,  $\frac{m-n}{m+n}$ -এর ও সংখ্যা হইবে

$$\left|\frac{m-n}{m+n}\right| < 1, \, \exists \mathbb{I}, \, \left(\frac{m-n}{m+n}\right)^2 < 1.$$

বা, 
$$\left(\frac{m-n}{m+n}\right)^2-1 < 0$$
, বা,  $\frac{-4mn}{(m+n)^2} < 0$ ,

$$\overline{q}$$
,  $\frac{4mn}{(m+n)^2} > 0$ ,  $\overline{q}$ ,  $mn > 0$ ,

অর্থাং, m এবং n উভএই গনাবাক, অথবং, উভয়ই ঋণাবাক হইবে।

মতএব, (3)-এ 
$$\frac{1+x}{1-x}=\frac{m}{n}\cdot$$
 বা,  $x=\frac{m-n}{m+n}$  বদাইয়া,  $mn>0$  হইলে,

অর্থাং m এবং n উভয়ই বনাত্মক অথবং উভয়ই ঝণাত্মক হইলে,

$$\log_e \frac{m}{n} = 2\left\{\frac{m-n}{m+n} + \frac{1}{3}\left(\frac{m-n}{m+n}\right)^3 + \frac{1}{5}\left(\frac{m-n}{m+n}\right)^5 + \cdots\right\} \qquad \cdots \quad (8)$$

1. CTTS CT (Show that),

(%

$$\log 2 = \frac{1}{2} = \frac{1}{123} \cdot \frac{1}{345} \cdot \frac{1}{567} \cdot \frac{1}{607} \cdot \frac{1}{1010}$$

$$1 - x \le 1 \text{ eft.} (1_{10}, 1_{10}, 1_{10}, 1_{10}, x_{10}, x_{10},$$

উভৰ পক্ষে #=1 বলাইবঃ,

$$\log_{2} 2 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{2}{1} + \dots$$

$$= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{2}) + \dots$$

$$= \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \dots \qquad (1)$$

$$= 1 - (\frac{1}{6} - \frac{1}{6}) - (\frac{1}{6} - \frac{1}{6}) - (\frac{1}{6} - \frac{1}{6}) - \dots$$

$$= 1 - \frac{1}{9.8} - \frac{1}{4.5} - \frac{1}{6.7} - \dots \qquad (9)$$

(1) 444 (2) per: , (with weiter.

- (i) log. 2,
- (iii) loge 10,
- (till) log 10 2.

log. 2 ~ 69814718

(ji) (6)-এব উভার প্রেছ n=9 বসাইবা,

log. 
$$10 - \log_{2} 8 = 2\left(\frac{1}{9} + \frac{1}{3 \times 9^{3}} + \frac{1}{5 \times 9^{3}} + \frac{1}{7 \times 9^{3}} + \cdots\right)$$
.

 $\sim 2.079441540$ 
 $\approx 2.079441540$ 

জ্পতিব্য । উপরের (1)-এ  $\log_e 2$ -এর করেক দশমিক স্থান পর্যন্ত আসন্ত মান নির্ণয় কর হইয়াছে ; এই মানের সাহাবে (7)-এর উভর পার্থে n=2 বসাইয়া,  $\log_e 3$ -এর মান নির্ণয় কর। যায়। আবার,  $\log_e 2 = 2\log_e 2$  বলিয়া,  $\log_e 2$  ইইতেই  $\log_e 4$ -এর মান নির্ণয় করা যায়। আবার, (7) ইইতে,  $\log_e 4$ -এর সাহায্যে  $\log_e 5$ ,  $\log_e 4$ -এর সাহায্যে  $\log_e 6$ , ইত্যাদি নির্ণয় করা যায়। এইরূপে সমস্ত সংখ্যার e নির্ধান-যুক্ত স্থারিদ্য় নির্ণয় কর যায়। আবার, এইসকল লগারিদ্যের প্রত্যেককে  $\mu$ , আর্থাং  $1\log_e 10$  দ্বারা গুল করিয়া সংখ্যাসমূহের 10 নির্ধান-বিশিষ্ট লগারিদ্য় নির্ণয় করা যায়।

উলা: 3. x- গর ঘাটের আবেছিক্ম অনুসারে  $\log_r(1+x+x^2)$ - গর বিস্তারে, প্রমাণ কর ্য  $x^n$ - এর হগ হয়  $\frac{1}{n}$  বা  $-\frac{2}{n}$  (n- এর মান 3- এর গুলিভক ন' ইইলে, বা হউলে)। (Show that the coefficient of  $x^n$  in the expansion of  $\log_r(1+x+x^2)$  in ascending powers of x is  $\frac{1}{n}$  or  $-\frac{2}{n}$  according as n is not or is a multiple of 3.)

$$\begin{split} \log_{\pi}\left(1+x+x^{4}\right) &= \log_{\pi}\left(1-x^{3}\right) = \log_{\pi}\left(1-x^{3}\right) - \log_{\pi}\left(1-x\right) \,, \\ &\text{Add}, \, \log_{\pi}\left(1-x^{3}\right) = -x^{3} - \frac{1}{3}x^{6} - \frac{1}{3}x^{9} = \cdots \\ &\text{Add}, \, \log_{\pi}\left(1-x\right) = -x - \frac{1}{3}x^{2} - \frac{1}{3}x^{3} = \cdots \\ &\log_{\pi}\left(1+x+x^{2}\right) = \log_{\pi}\left(1-x^{3}\right) + \log_{\pi}\left(1-x\right) \\ &- (x+\frac{1}{2}x^{2}+\frac{1}{3}x^{3}+\cdots) + (x^{3}+\frac{1}{2}x^{6}+\frac{1}{3}x^{9}+\cdots). \end{split}$$

মন্ত্র, n, 3 এর কোন গুণি রক না ইইলো,  $x^n$ - এর স্কগ $=\frac{1}{n}$ ; আরে, n, 3- এর গুণিতক ইইলো,  $x^n$ -এর স্কগ্

$$\frac{1}{n} - \frac{1}{n}$$

$$\frac{3}{n} - \frac{3}{n} = -\frac{2}{n}.$$

$$3 \% 1. \ 4. \ \ 7 \% \ \ 7 = x - \frac{x^3}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

$$3 \% 16 \ \ 7 = x + \frac{y^3}{12} + \frac{y^3}{13} + \frac{y^4}{14} + \dots$$

$$y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \log_2(1+x);$$

$$(C. \ U. \ 1931)$$

.. 
$$1+x=e^y$$
;

$$\therefore x = e^{y} - 1 = \left(1 + y + \frac{y^{2}}{2} + \frac{y^{3}}{3} + \frac{y^{4}}{4} + \cdots\right) - 1$$

$$= y + \frac{y^{2}}{2} + \frac{y^{3}}{3} + \frac{y^{4}}{4} + \cdots$$

উদা. 5. যদি a এব°  $\beta$ ,  $ax^2 + bx + c = 0$  সনীকরণের বীজ হয়, তবে প্রমাণ কর যে (If a and  $\beta$  are the roots of the equation  $ax^2 + bx + c = 0$ , show that),

$$\log_{\pi} (a - bx + cx^{2}) = \log_{\pi} a + (a + \beta)x - \left(\frac{a^{2} + \beta^{2}}{2}\right)x^{2} + \left(\frac{a^{3} + \beta^{3}}{3}\right)x^{3} + \cdots$$

 $\alpha$  এবং  $\beta$ ,  $ax^2 + bx + c = 0$ -এর বীন্দ বলিয়া

$$a + \beta = -\frac{b}{a}$$
 । এবং  $a\beta = \frac{c}{a}$  .

$$\mathfrak{GMA}, \ a - bx + cx^2 = a \left( 1 - \frac{b}{a} x + \frac{c}{a} x^2 \right)$$
$$= a \left\{ 1 + (a + \beta)x + a\beta x^2 \right\} - a(1 + ax)(1 + \beta x).$$

$$\log_{\theta} (a - bx + cx^{3})$$

$$= \log_{\theta} a + \log_{\theta} (1 + ax) + \log_{\theta} (1 + \beta x)$$

$$= \log_{\theta} a + \left\{ ax - \frac{a^{2}x^{3}}{2} + \frac{a^{3}x^{3}}{3} - \cdots \right\}$$

$$+ \left\{ \beta x - \frac{\beta^{3}x^{2}}{2} + \frac{\beta^{3}x^{3}}{3} - \cdots \right\}$$

$$= \log_{\theta} a + (a + \beta)x - \left(a^{3} + \beta^{2}\right)x^{2} + \left(a^{3} + \beta^{3}\right)x^{3} - \cdots$$

উদা. 6. দেখাও বে (Show that),

$$\log_{\theta}(x+2h) = 2\log_{\theta}(x+h)$$

$$-\log_{\theta}x - \left\{\frac{h^{3}}{(x+h)^{2}} + \frac{1}{2} \cdot \frac{h^{4}}{(x+h)^{4}} + \frac{1}{3} \cdot \frac{h^{6}}{(x+h)^{6}} + \cdots\right\}.$$

$$\text{where } \gamma = \log_{\theta}(x+h)^{3} - \log_{\theta}x + \log_{\theta}\left\{1 - \frac{h^{3}}{(x+h)^{2}}\right\}$$

$$= \log_{\theta}\left\{\frac{(x+h)^{3}}{x}\right\} + \log_{\theta}\left\{\frac{x^{3} + 2xh}{(x+h)^{3}}\right\}$$

$$= \log_{\sigma} \left\{ \frac{(x+h)^2}{x} \times \frac{x(x+2h)}{(x+h)^2} \right\} = \log_{\sigma} (x+2h).$$

### প্রশালা 46

প্রমাণ কর (Prove that):

1. 
$$\frac{1}{1.2} + \frac{1}{2.2^2} + \frac{1}{3.2^3} + \dots = \log_e 2$$
.

2. 
$$\frac{1}{3} + \frac{1}{3^2 \cdot 2} + \frac{1}{3^3 \cdot 3} + \frac{1}{3^4 \cdot 4} + \dots = \log_e 3 - \log_e 2$$
.

3. 
$$\frac{a-x}{a} + \frac{1}{2} \left(\frac{a-x}{a}\right)^2 + \frac{1}{3} \left(\frac{a-x}{a}\right)^3 + \dots = \log_e a - \log_e x$$
.

4. 
$$\frac{1}{n+1} + \frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^8} + \dots = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^8} - \dots$$

5. 
$$\log_{\theta} (1+x^2) = 2\{\frac{1}{3}x^2 - \frac{1}{4}x^4 + \frac{1}{6}x^6 - \dots\}$$

6. 
$$-2\left(\frac{1}{2\cdot 2^2} + \frac{1}{4\cdot 2^4} + \frac{1}{6\cdot 2^6} + \cdots\right) = \log_e 3 - 2\log_e 2.$$

7. 
$$\left(\frac{1}{8} - \frac{1}{7}\right) + \frac{1}{2}\left(\frac{1}{8^2} + \frac{1}{7^2}\right) + \frac{1}{3}\left(\frac{1}{8^3} - \frac{1}{7^3}\right) + \dots = 0.$$

8. 
$$\log_e m - \log_e n = 2\left[\frac{m-n}{m+n} + \frac{1}{3}\left(\frac{m-n}{m+n}\right)^3 + \frac{1}{5}\left(\frac{m-n}{m+n}\right)^5 + \cdots\right].$$

9. 
$$\log_e m = 2\left\{\frac{m-1}{m+1} + \frac{1}{3}\left(\frac{m-1}{m+1}\right)^3 + \frac{1}{5}\left(\frac{m-1}{m+1}\right)^5 + \cdots\right\}$$

[ C. U. 1932 ]

[C. U. 1914, 1945]

10. 
$$\frac{1}{2.3} + \frac{1}{4.5} + \frac{1}{6.7} + \dots = 1 - \log_e 2$$
. [C. U. 1913, 40]

11. 
$$\frac{x-1}{x+1} + \frac{x^2-1}{2(x+1)^2} + \frac{x^3-1}{3(x+1)^3} + \dots = \log_x x.$$
 [Madras, 1954]

12. 
$$\log \left(1 + \frac{1}{n}\right)^n = 1 - \frac{1}{1.2(n+1)} - \frac{1}{2.3(n+1)^2} - \frac{1}{3.4(n+1)^3} - \dots$$

13. (a) 
$$2 \log_e x - \log_e (x+1) - \log_e (x-1)$$

$$= \frac{1}{x^2} + \frac{1}{2 \cdot x^4} + \frac{1}{3 \cdot x^6} + \cdots \qquad [Agra, 1941]$$

(b) 
$$\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \frac{1}{4.5} + \dots = \log_e \frac{4}{e}$$
 [ Andhra, 1950 ]

14. 
$$\left(\frac{1}{4} + \frac{1}{6} + \frac{1}{8}\right) + \frac{1}{3}\left(\frac{1}{4^3} + \frac{1}{6^3} + \frac{1}{8^3}\right) + \frac{1}{5}\left(\frac{1}{4^5} + \frac{1}{6^5} + \frac{1}{8^5}\right)$$

+ · · = log . . /3

15. x-এর ঘাত অনুসারে  $\log_e (1+x+x^2+x^3)$ -এর বিস্তার কর এবং  $x^{2n}$  এবং  $x^{2n+1}$ -এর সহগ নির্বয় কর।

[Expand  $\log_{\theta} (1+x+x^2+x^3)$  in powers of x, and find the coefficient of  $x^{2n}$  and  $x^{2n+1}$ .]

[C. U. 1947]

- 16. যদি  $\log_e \frac{1}{1-x-x^2+x^3}$  রাশিটি x-এর আরোহক্রম ঘাত অনুসারে বিস্তৃত হয়, তবে দেখা ও যে, n যুগা বা অযুগা অনুসারে  $x^n$ -এর সহগ  $\frac{3}{n}$  বা  $\frac{1}{n}$
- 17. যদি  $\log_{e}\frac{1}{1+x+x^2+x^3}$  রাশিটি x-এর উর্জ্জেমে একটি শ্রেণীতে বিস্তৃত হয়, তবে দেখাও যে, n যদি 4-এর গুণিতক হয়, তবে  $x^n$ -এর সহগ $\frac{3}{n}$  এবং n যদি 4-এর গুণিতক না হয়, তবে  $x^n$ -এর সহগ $-\frac{1}{n}$  হইবে।
  - 18. বিস্তাৰ কর:  $\log_{\theta} \frac{1 + x + x^2}{1 x + x^2}$ .
- 19. (a) x-এর উর্ধ্বক্রমে  $\log_* (1+x+x^2+x^3+\cdots)$ -এর বিস্তার কর এবং দেখাও বে,  $x^n$ -এর সহগ =  $\frac{1}{x}$
- (b) যথন | x | < 1, তথন x-এর উর্দ্ধেরে  $\log_{\theta}~(1+3x+6x^2+10x^3+\cdots)$ -এর বিস্তার কর এবং দেখাও যে,  $x^9$  এর সহগ =  $\frac{3}{2}$  -
- 20. x-এর অধঃক্রেম  $\log_a \{x^2 + (a+b)x + ab\} 2\log_e x$ -এর বিস্তার নির্ণয় কর। [C. U. 1912]

অসীম পর্যন্ত নিম্লিখিত শ্রেণীগুলির সমষ্টি নির্ণয় কর (Sum to infinity the following series):

21. 
$$\frac{1}{2} - \frac{1}{2 \cdot 2^3} + \frac{1}{3 \cdot 2^8} - \frac{1}{4 \cdot 2^4} + \cdots$$
 [ C. U. 1953]

22.  $\frac{1}{3}x^3 + \frac{1}{6}x^6 + \frac{1}{3}x^9 + \frac{1}{13}x^{12} + \cdots + (x^3 < 1)$ .

23. 
$$2\left(\frac{1}{7} + \frac{1}{3} \cdot \frac{1}{7^3} + \frac{1}{5} \cdot \frac{1}{7^5} + \cdots\right)$$
. [Annamalai, 1949]

**24.** 
$$1 + \frac{1}{3.2^2} + \frac{1}{5.2^4} + \frac{1}{7.2^6} + \cdots$$
 [ C. U. 1943 ]

25. 
$$1 + \frac{1}{3} \cdot \frac{1}{3^a} + \frac{1}{5} \cdot \frac{1}{3^4} + \frac{1}{7} \cdot \frac{1}{3^6} + \cdots$$
 [ C. U. 1949]

**26.** 
$$\frac{x^2}{1.2} + \frac{x^3}{2.3} + \frac{x^4}{3.4} + \cdots$$

27. 
$$\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \cdots + (|x| < |1)$$
 [C. U. 1944]

**28.** 
$$1 + \frac{2}{1.2.3} + \frac{2}{3.4.5} + \frac{2}{5.6.7} + \cdots$$

**29.** 
$$\frac{5}{1.2.3} + \frac{7}{3.4.5} + \frac{9}{5.6.7} + \cdots$$
 [ C. U. 1958 ]

মান নির্ণয় কর (Find the value of the following):

**30.** 
$$(1+3)\log_6 3 + \frac{1+3^2}{\lfloor 2}(\log_6 3)^2 + \frac{1+3^3}{\lfloor 3}(\log_6 3)^3 + \cdots$$

31. যদি  $x^2 - px + q = 0$  সমীকরণটির বীজ  $a \le \beta$  হয়, তাহা হইলে প্রমাণ কর (If a and  $\beta$  the roots of  $x^2 - px + q = 0$ , show that):

$$-\log_{7} (1 - px + qx^{3}) = (\alpha + \beta)x + \frac{1}{2}(\alpha^{3} + \beta^{2})x^{2} + \frac{1}{3}(\alpha^{3} + \beta^{3})x^{3} + \cdots$$
$$+ \frac{1}{n}(\alpha^{n} + \beta^{n}) x^{n} + \cdots$$

32.  $ax^2 + bx + c = 0$  দ্মীকরণ্টারি বীজ  $a \le \beta$  ছেইলে, প্রমাণ কর যে (If a,  $\beta$  he the roots of the equation  $ax^2 + bx + c = 0$ , prove that),

$$\log_{a}(ax^{2} + bx + c) = \log_{a} a + 2 \log_{a} x - \frac{1}{x}(a + \beta)$$
$$- \frac{1}{2x^{2}}(a^{2} + \beta^{2}) - \frac{1}{3x^{3}}(a^{3} + \beta^{3}) - \cdots$$

33. 
$$\forall \forall (a) \ y = x + \frac{x^3}{2} + \frac{x^3}{3} + \cdots$$
, (Fat's (4,  $x = 1 - e^{-y}$ )

$$= y - \frac{y^2}{12} + \frac{y^3}{13} - \frac{y^4}{14} + \cdots$$

[ C. U. 1950]

(b) 
$$\sqrt[3]{8} y = 1 - x + \frac{x^3}{12} - \frac{x^3}{13} + \cdots$$

$$\sqrt{3} < z = -y - \frac{y^2}{2} - \frac{y^3}{3} - \dots,$$

দেখাও যে,

$$x = \log_e \frac{1}{1 - e^x}$$
 [ C. U. 1951]

34. 
$$\sqrt[4]{9} x^2 y = 2x - y$$
 and  $x < 1$ , and  $\sqrt[4]{9} < \frac{1}{3} + \frac{y^5}{5} + \dots = 2\left(x + \frac{x^8}{3} + \frac{x^5}{5} + \dots\right)$ .

# ত্রিকোণমিতি



#### প্রথম অধ্যার

# কোণ-পরিমাণ

1.1. ত্রিকোণিনিভিন্ন বিচারে কোপ ঃ মাধ্যমিক তরে ত্রিকোণমিতির বিচারে কোণের পারণা দেওল ইইয়াছে। একটি নিদিষ্ট রেখার একটি প্রাপ্তবিন্দৃকে কেন্দ্র করিয়া ষখন একটি খণ্ডরেখা ঘড়ির কাটার বিপরীত মৃথে আবর্তিত হয়,
তখন ধনাত্মক এবং যখন ঘড়ির কাটার মূথে আবর্তিত হয়, তখন ধণাত্মক কোণ
উৎপন্ন হয়।

কোণ-পরিমাণ নির্ণনের জন্ম ষষ্টিমূলক (sexagesimal), শতমূলক (centesimal) ও বৃত্তীয় (circ dur), এই তিন প্রকার পদ্ধতি রহিয়াছে। মাধ্যমিক ছরেই আলোচিত চইয়াছে যে, কোণের একক ষষ্টিমূলক পদ্ধতিতে 1° (এক ডিগ্রী), শতমূলক পদ্ধতিতে 1' (এক প্রাচ) এবং বৃত্তীয় মানে 1° (এক রেডিয়ান)।

- 1.2. ডিপ্রী: মষ্টিমূলক মানে কোণের বৃহত্তম একক 1 সমকোণ।
  । সমকোণ= 90 ডিপ্রাঁ (৪০)°): । ডিপ্রা. (1°)=60 মিনিট (60′): এবং 1 মিনিট (1′)
  =60 সেকেণ্ড (60″)।
- 1'3. ব্রেডিক্রান্যঃ বৃত্তীয় মানে, যে কোন বৃত্তের কেন্দ্রে ঐ বৃত্তের ব্যাসার্থের স্থান একটি চাপ যে পরিমাণ কোণ উৎপন্ন করে তাহাকেই কোণের একক ধর' হয় এবং ভাহাকে বলা হয় এক বেডিয়ান।

বিভিন্ন বৃত্তের ধ্যাসাধ অবশুই বিভিন্ন। কিন্তু যে-কোন বৃত্তের কেন্দ্রে উহার
ব্যাধার্ধের সমান চাপ স্বলাই এক রেডিয়ান পরিমাণ কোণ উৎপন্ন করে। কাজেই
প্রেন্ন উঠে রেডিয়ানের মান কি ধ্ববক ? এই প্রান্নের উত্তর পাইতে ইইলে নিচের
উপপাতিটি জানা দরকার।

1'4. প্রত্যেক রতের পরিথি ও ব্যাসার্থের অনুপাত ধ্বক।

০ বিন্দুকে কেন্দ্র করিয়া ষে-কোন গুইটি বৃত্ত অভিত হইল। ইহাদের মধ্যে বৃহত্তর সুত্তিতে ABCD… স্থম বহুত্তি অহালিখিত হইল। তিA, তিট, তিট, তিট প্রভৃতি ব্যালাধ বেখাগুলি ক্ষুত্তর বৃত্তিকে যেন A', B', C', D' প্রভৃতি বিন্তুতে হেদ করিয়াছে। এখন A' ও B', B' ও C', C' ও D'… প্রভৃতি যুক্ত করিলে A'B'C'D'… নামান্ধিত যে বহুত্তি পাওয়া যায় তাহাও জ্যা মিতিক নিয়মে অব্ধা স্বম হইবে এবং ABCD… বহুত্তের বাহু-সংখ্যা দ ধরিলে A'B'C'D'… বহুত্তের বাহু-সংখ্যা ৮ ছইবে। এইবার

দেখা যায়, OAB এবং OA'B' ব্রিভূজ-ছুইটির মধ্যে  $\angle$ AOB =  $\angle$ A'OB' ( সাধারং কোণ ) এবং  $\frac{OA'}{OA} = \frac{OB}{OB'}$  [ : OA = OB এবং OA' = OB'.



অতএব, OAB ও OA'B' ত্রিভূজ-চুইটি

मृन्य ।

 $\therefore \quad \frac{OA}{OA'} = \frac{AB}{A'B'} = \frac{n \cdot AB}{n \cdot A'B'}$ 

= ABCD · · বছভূজের পরিসীমা A'B'C'D' · · বছভূজের পরিসীমা

[ কারণ, বহুভূজ-চুইটির প্রত্যেক্টি স্থ্যম ও উহাদের প্রত্যেক্টির বাহু-সংখ্যা n. ]

हेहा हहेएक व्याहेहें त्या यात्र (स. ११-५५

মান যতই বাডিবে, বহুতুজ-তুইটির প্রত্যেক বাহুর মান ততই কমিবে এবং তাহার ফলে একদিকে A, B, C, D··· প্রভৃতি কৌণিক বিন্দুগুলি যেমন প্রস্পারের কাহাকাছি আসিয়া পড়িবে, তেমনি A', B', C', D'··· প্রভৃতি কৌণিক বিন্দুগুলিও পরস্পারের কাছে ঘেষিয়া আদিবে। এইভাবে n-এর মান যথন সীমাতীত পরিমাণ বাডিয়া যাইবে তথন প্রত্যেকটি বহুভুজের কৌণিক বিন্দুগুলি সংশ্লিষ্ট বৃত্তের উপরিস্থ পাশাপাশি বিন্দুগুলির সহিত এমনভাবে মিলিয়া যাইবে যে, অন্তিমে উহাদের প্রত্যেকটির পরিসীমা উহার সংশ্লিষ্ট বৃত্তের পরিবির সহিত সম্পূর্ণজ্পে মিলিয়া যাইবে।

্সক্ষেত্রে, OA = ABCD··· পরিসীমা \_ বৃহত্তর বৃত্তের পরিধি ,
OA' = A'B'C'D'··· পরিসামা ফুডতের বৃত্তের পরিধি

অথবা, বৃহত্তর বৃত্তের পরিধি ক্ষুদ্রতের বৃত্তের পরিধি

OA (বৃহত্তর বৃত্তের ব্যাসাধ) OA'(ক্ষুদ্রতের বৃত্তের ব্যাসাধ)

.: <u>বে কোন রন্তের পরিধি</u> = একটি ধ্রুবক সংখ্যা।

উপরোক্ত ধ্রুবক দংখ্যাটি গ্রীক্ অক্ষর n (পাই) দারা স্থচিত হয়।

**দ্রেপ্টব্য ঃ** উচ্চতর গণিতের পদ্ধতিতে এই <sub>স</sub>-এর মান নির্ণীত হইয়াছে। আসর মানে

 $n = \frac{22}{7} = 3'14159.$ 

অনুসিদ্ধান্তঃ একটি বুত্তের ব্যাদাধ ৮ হইলে,

ঐ বুত্তের পরিধি  $=\pi$  . ∴ বুতের পরিধি  $=2\pi$ г.

## 1'5. রেডিয়ানের প্রবক্ত।

০ বিন্দুকে কেন্দ্ৰ প্রিমা অন্ধিত বুত্তে OA এব√ OB যেন উহার যে-কোন গৃইটি

পরস্পর-লম্ব ব্যাসার্ধ। তাহা হইলে  $\angle$  AOB এক সমকোণ বলিনা, চাপ AB ঐ বুত্তের পরিধির এক-চতুর্থাংশ হইলে। স্বভরাং, r ঐ বুত্তের ব্যাসার্ধ হইলে,

$$\text{Diff AB} = \frac{1}{4}.2\pi r = \frac{\pi r}{2}.$$

আবার, AP চাপটি, ষেন, ব্যাসার্ধ প্রথম সমান। তাহা হইলে সংজ্ঞানসারে, ∠AOP কোণটি এক রেডিয়ান। এখন জ্যামিতি হইতে জানা যায় যে.

$$\angle AOP = \frac{\text{DIM AP}}{\angle AOB} = \frac{r}{\text{DIM AB}} = \frac{r}{\pi r} = \frac{2}{\pi}$$

$$\therefore \angle AOP = \frac{2}{\pi} \times \angle AOB;$$

এক বে ছিয়ান 
$$=\frac{2}{\pi}$$
 × এক সমকোণ।

এখন সমকোণ একটি জনক-কোণ, ও দ একটি জনক-দংখ্যা বলিয়া উপরিলিখিত দলন্ধ হইতে স্পষ্টই বুঝা যায় যে, রেডিংগনও একটি জনক-কোণ হইবে; অর্থাৎ, ষে-কোন বৃত্তের দল্পকেই ইহাকে অন্ধিত করা যাক না কেন, ইহার মান সকল সময় একই খাকিবে।

# 1'6. রেডিয়ানের ষ্টিমূলক মান।

এক ব্ৰেডিয়ান = 
$$\frac{2}{\pi}$$
 × এক সমকোণ =  $\frac{2}{\pi}$  × 90° =  $\frac{180^{\circ}}{\pi}$  =  $180^{\circ}$  × '3183098862 $\cdots$  =  $(57.2957795)^{\circ}$  =  $57^{\circ}$  17′ 44′8″ ( প্রায় ) ।

1.7. ্যহেতু এক রেডিয়ান  $=\frac{2}{\pi}$  × এক সমকোণ,

মতএন, 
$$90^\circ =$$
এক সমকোণ =  $\frac{\pi}{2}$  রেডিয়ান ; 
$$180^\circ =$$
ছই সমকোণ =  $\pi$  রেডিয়ান ;

360° = চারি সমকোণ = 2 π রেডিয়ান।

এক রেডিয়ানকে দাধারণতঃ 1° এই প্রতীকটি দার। স্থচিত করা হয়।

## 1'8. কোণের রতমূলক মান নিপ্র।

∠xoo (य-त्कान वकाँठे त्कान। উशाद हृह्यूनक यान किर्नः क्रिट्ट इहेरिय।



O-কে কেন্দ্র করিয়া এবং যে-কোন এক ব্যাদাধ দলইয়া মন্ধ্রিত একটি বুছচাপ OX-কে যেন A বিন্দুতে এবং OQ-কে B বিন্দুতে কাটিল।

আবার, ঐ বৃত্তের ব্যাসার্ধ ৫ এর সমান করিও। অন্য একটি চাপে AP চিক্তিত ইইল। ০ এবং Pজ্জ করিলে, উৎপন্ন / AOP কাণ্টি এক রেডিয়ান।

ভারাং, ∠ AOB- এর গৃত্যুল্ক মান = <sup>চাপ</sup> AB.

শত্রেব, ১-একক দীর্ঘ একটি ব্রুচাপ যদি উহার কেন্দ্রে ৫ রেছিয়ান কোণ উংপন্ন করে এবং ঐ বুরের ব্যাসাধি যদি স-একক দার্ঘ হয়, ভবে,

$$\theta = \frac{8}{r}$$

## 1'9. বিভিন্ন কোপ-মানের সহস্পর সম্প্র । পূর্বেই দানা নিয়াছে বে,

90° = এক সমকোণ; অভএব, 150° - চুই সমকোণ; এবং বং ( অথবা, সংক্ষোপে ভ্রুব ) = ছুই সমকোণ; .: 180° = কং

$$\therefore 1^{\circ} = \left(\frac{\pi}{180}\right)^{\circ}, \text{ while } 1^{\circ} = \left(\frac{180}{\pi}\right)^{\circ}.$$

অভএব, 
$$x^2 = {nx \choose 180}^c$$
:  $x^c = {180x \choose n}^c$ .

### উদগহরণমালা

উপা. 1.  $40^{\circ}$  15' 36''- কৈ বেডিয়ানে প্রকাশ কর।
এখন  $40^{\circ}$  15'  $36'' = 40^{\circ}(15\frac{3}{6}0)' = 40^{\circ}(15\frac{3}{3})' = 40^{\circ}(\frac{7}{3}0)'$   $= \left(40\frac{78}{5 \times 60}\right)^{\circ} = (40.26)^{\circ} = \left(\frac{40.26 \times \pi}{180}\right)'$ 

= 
$$\left(\frac{40.26 \times 22}{180 \times 7}\right)^{\circ}$$
 ( প্রার )  
= '703 রেডিয়ান ( প্রার )।

উদ্য 2. কোন সমকোণী ত্রিভূজের স্থাকোণ্ডবের অন্তর 6 রেডিয়ান স্থাকোণ্ডবের মান ডিগ্রীতে প্রকাশ কর।

সমকোণী ত্রিভূজের স্ক্রকোণদ্বয়ের যোগফল = এক সমকোণ = 90°.

স্থাকোণব্যের প্রদত্ত অন্তর্ফল = 
$$\frac{\pi}{6}$$
 রেডিয়ান =  $\left(\frac{\pi}{6} \times \frac{180}{\pi}\right)^{\circ}$  = 30°.

ে যদি স্থাকে। প্রয়ের ডিগ্রী-মান  $x \in y$ , এবং যদি x>y হয়, ওবে  $x+y=90^\circ$  এবং  $x-y=80^\circ$ .

যোগ করিয়া,  $2x = 120^{\circ}$ . . .  $x = 60^{\circ}$ . . .  $y = 30^{\circ}$ .

কাজেই স্ম্প্রকোণদ্বয়ের নির্ণেষ্ মান যথাক্রমে 60° ও 30°.

উদা. 3. একটি ত্রিভূজের কোণগুলি এইরূপ যে বৃহত্তম ও ক্ষুদ্রতম কোণ-ঘূইটির সমষ্টি অবশিষ্ট কোণটির থিগুণ, এবং ক্ষুদ্রতম কোণের ডিগ্রার সংখ্যা এবং বৃহত্তম কোণের ব্রেডিয়ানের সংখ্যার অন্তপাত 90 : ন. ত্রিভূজটির কোণগুলির মান ডিগ্রাতে নির্ণয় কর।

কোণ-তিনটি যথাক্রমে যেন A°, B°, C°.

 $\therefore A^{\circ} + C^{\circ} = 2B^{\circ}.$ 

$$A^{\circ} + B^{\circ} + C^{\circ} = 3B^{\circ}, \quad 3B^{\circ} = 180^{\circ}; \quad B = 60^{\circ}.$$

আবার, A বৃহত্তম এবং C কুদ্রভম কোণ হউলে,  $A^\circ = \frac{\pi}{150} A$  রেডিয়ান।

$$\therefore \frac{\mathbf{C}}{\frac{\pi}{180}} = \frac{90}{\pi}, \quad \boxed{\mathbf{A}} = \frac{90}{\pi} \times \frac{\pi}{180} = \frac{1}{2}; \quad \therefore \quad \mathbf{A} = 2\mathbf{C}.$$

- .. (1) হইতে, 3C=120°; ... C=40° এবং A=80°.
- . কোণতার 80°, 60°, 40°.

উদা. 4. 10 সেটিমিটার ব্যাসাধবিশিট বৃত্তে যে বৃত্তচাপ কেন্দ্রে 33° 15' কোণ উৎপন্ন করে, তাহার দৈর্ঘ্য কত ?

মনে কর, নির্ণেয় দৈর্ঘ্য = æ সেমি.।

$$\frac{x}{10} = 33^{\circ} \ 15'$$
 কোণের বৃত্তমূলক মান  $= \frac{33 \, t}{180} \pi$  রেডিয়ান  $= \frac{133}{720} \pi$  রেডিয়ান ;

$$x = \frac{138}{73}\pi$$
 সেমি.  $= \frac{138}{73} \times \frac{28}{7}$  সেমি. (প্রায়)  $= 5\frac{29}{86}$  সেমি. (প্রায়)।

## প্রাথালা 1

1. (a) নিম্নলিখিত কোণগুলি ডিগ্রীতে প্রকাশ কর:

 $\frac{\pi^o}{3}$ ,  $4\pi^o$ ,  $4\pi^o$ .

- b) নিম্নলিখিত কোণগুলি রেডিয়ানে প্রকাশ কর: 60°, 395°, 110° 30′, 175° 45′.
- 2. কোন ব্রিভূজের কে.প্রয়ের গ্রন্থান্ত ১.১:৪: কাণ্ডলি রেচিয়ানে প্রকাশ কর।
- 3. তইটি স্বয়ম বছ ভূজের বাছ-সংখ্যার অন্তপাত 5:4, উথাদের কোণ্জুলির মধ্যে গন্তর 9°; দেখাও যে, বছ ভূজন্বের বাল-সংখ্যা 10 এব° ৪.

ইঙ্গিত: সুষম বহুভূজের প্রত্যেকটি কোণ =  $\frac{2n-4}{n} \times 90$ °; ইত্যাদি।

- 4. একটি ধ্ৰম বহুভূজের কোল ও মপন একটি প্ৰদা বহুভূজের কোণের মাসপাত 3: 2 এবং প্রথম বহুভূজাটির বাহু-সংখ্যা বিভূমিটির বাহু-সংখ্যার জুইওল। দেখাও মে বহুভূজহারের বাহু-সংখ্যা ৪ এবং 1
- 5. একট দৈর্ঘ্যের চাপ ত্ইটি বুজের কেন্দ্রে 60° ও 75° কোণ উৎপন্ন করিলে. দেখা ও দে, বুজন্মের ব্যাসাধের অফুপাত 5 : 4.

[ W. B. S. E. H. S. 1962 Comp. ]

6. পৃথিবীতে মাজুষের চাথে ক্ষ একটি 32' কোণ উৎপন্ন করে। ( পৃথিবী ছইতে সংখ্যে দূরত্ব 9250000) মাইল ধরিলে কেখাও ্য স্থের ব্যাস ১62000 মাইল।

্ইঙ্গিতঃ E, দুষ্ঠান চক্ষ্য অবস্থান এবং AB স্থান বাস ১ইলে, AB ( = D মাইল ৮কে, E কেন্দ্রেক একটি বৃত্তের ক্ষুদ্র চাপ ধর বাইতে পারে, যাহার নাসার্ধ পৃথিবী হইতে প্যের দ্রন্থের সমান।

- বুদ্রাকার পরে ঘন্টার 10 মাইল বেগে দৌডাইল একজন লোক 36 মেকেন্ডে কেন্দ্রে 56° কোণ উৎপন্ন করে এরপ চাপ শতিক্রে করে; দেখাও যে বুল্লাকার পথটির ব্যাস 360 গজ। [ π = %
   W. B. S. E. S. F. 1958
- 8. একটি অশ 27 মিটাব দীর্ঘ বঙ্জ্ দার। একটি খুঁটির সভিত বাবা। বঙ্জ্বটি স্বাধা টান বাগিয়া অশ্বটি বুৱাকার পথে কতন্ব চলিলে, কেন্দ্র 70° পরিমাণ কোণ উৎপন্ন হইবে?
- 9. একটি ত্রিভ্জের ছুইটি কোণের বৃত্তমূলক মান হু এবং । ভূজার কোণটির মান ডিগ্রী ও মিনিটে নির্ণয় কর। W. B. S. F. H. S. 1962 ]

- 10. সুইটি কোণের অন্তর 40°; উহাদের বৃত্তমূলক মানের সমষ্টি 1 । n = 2 । [W. B. S. E. S. F. 1960]
- 11. একটি ত্রিভূজের কোণসমূহ সমাপ্তর-শ্রেণীভূক্ত; বৃহত্তম কোণের রেডিয়ান-সংখ্যা এবং ক্ষুদ্রতম কোণের দিগ্রী সংখ্যার অন্তপাত π:36. বৃহত্তম কোণ্টির মান ডিগ্রীতে নির্ণয় কর।
  [W. B. S. E. S. F. 1959]
- 12. কোন বুৰের ব্যাসার্ধ 10 নেন্টিমিটার। 6 সেন্টিমিটার দীর্ঘ একটি বৃত্তচাপ কেলে যে কোণ উৎপর করে, হিগ্রী ও মিনিটে উতার মান নির্ণয় কর। (π ॰ 🚧) [W. B. S. E. H. S. 1961]
- 13. একটি সমকোণী ত্রিভূজের কৃষ্ণকোণহয়ের অস্তর 2π রেডিয়ান; এই কোণকুটাকৈ ডিপ্রাতে প্রকাশ কর। [W. B. S. E. H. S. 1960 Comp.]
- 14. একটি বিভূজের কোণগুলি নমান্তর-শ্রেণীভূক্ত এবং বৃহত্তর কোণটি ক্রু-তরটির স্থিত; কোণগুলি রেডিয়ানে প্রকাশ কর। [C. U. 1951]
- 15. 5 দু ফুট দীর্ঘ একজন লোককে অধু মাইল দূর হুইতে দেখা যাইতেছে। তিনি সেথানে যে কোণ উৎপন্ন করেন, সে কোণের পরিমাণ কত ?

[ W. B. S. E. S. F. 1952 ]

- 16. একটি বিভূজের কোণগুলি সমাস্তর-শ্রেণীভূক্ত; ক্ষদ্রতম কোণের ডিগ্রী-দংখ্য এবং বৃহত্তম কোণের রেডিয়ান-দংখ্যার অনুপাত 60: দ. কোণগুলি ডিগ্রীতে নির্পয় কর। [W. B. S. E. H. S. 1960]
- 17. পৃথিবীকে 1.000 মাইল ব্যাদার্ধনিশিষ্ট একটি গোলক ধরিলে, একটি স্থানের 200 মাইল উত্তরে অবস্থিত অপর একটি স্থানের অক্ষাংশের পার্থকা আসমভাবে নির্ণয় কর। [W. B. S. E. S. F. 1955]

### দ্বিভীয় অধ্যায়

# মৌগিক কোণের ত্রৈকোণমিতিক অনুপাত

## (Trigonometrical ratios of Compound angles)

21. ত্যোগিকে কোপেঃ মাধ্যমিত করে সক্ষরেধণের তৈকোণমিতিক অনুপাত সময়ে বিশ্ব আলোচনা ছইয়াছে। কেই আলোচনার ভিত্তিতে এই অধ্যায়ে যৌগিক কোণের অন্তপাত সময়ে আলোচনা করা ম্উত্তেত

A + B, A - B, A + B + C, ই আদির মতে গুটটি বা ততে। ধিক কোণের যোগ-ফল বা বিয়োগদলকে **্থাগিক কোণ** বলে।

2.2. A এবং ৪ উভয়ই সমাগ্রক কোণ এবং A + B - 90° ইইলে প্রয়াণ করিতে হইবে যে,

- (i)  $\sin (A + B) = \sin A \cos B + \cos A \sin B$ ;
- (ii) cos (A+B) = cos A cos B sin A sin B;
- (iii)  $\tan (A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$

কটি ঘুণ্যমান এল ⊙x ০ইং - ঘুরিতে আর্ছ করিয়া ∠ xoy = A কোণ



ে তি হছতে আবত খুরিয়া যেন 🗸 YOZ

- ৪ কোণ উংগ্র করিল; শহা হইলে 🗸 XOZ

- ৪ কোণ।

তুণামান রেধার অন্তিম অবস্থান ÖZ-এর উপর একটি বিন্দু P সওমা ইইল। P হইতে ÖX এবং ÖY-এর উপর ধ্যাক্রমে PM ও PN লম্ম এবং N ১ইতে ÖX এবং PM-এর উপর ব্যাপক্রমে NS এবং NR লম্ম পাতিত করা ইইল।

9%, / NFR::90° · / PNR / RNO [ 河溪 / PNO=90° ]
- / NOS=河内A.

সমকোণী ত্রিভূজ POM হইতে,

(i) 
$$\sin (A + B) = \sin POM$$

sin A cos B + cos NPR sin B

Fsin A cos B + cos A sin B.

= cos A cos B - sin NPR sin B = cos A cos B - sin A sin B.

থ্যন, 
$$\frac{NS}{OS} = \tan A$$
, এবং  $\frac{RN}{RP} = \tan A$ .

আবার, NOS এসং RPN ত্রিভূজগ্ম স্চৃশ ;

$$\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

অথবা:

$$\tan (A + B) = \frac{\sin (A + B)}{\cos (A + B)}$$

$$\sin A \cos B + \cos B$$

= sin A cos B + cos A sin B cos A cos B - sin A sin B

েপ্ৰ-এবং হর উভয়কেই cos A cos B স্থারা ভাগ করিয়া ৷

- 2'3. A এবং B উভ্যত ধনাত্মক স্ক্রেকাণ এবং A > B চইকে, প্রমাণ করিতে হইবে যে,
  - (i) sin (A-B) = sin A cos B cos A sin B;
  - (11)  $\cos (A B) = \cos A \cos B + \sin A \sin B$ ;

(iii) 
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$



একটি ঘ্র্নামান রেখা, তিই হইতে ঘুরিতে আরম্ভ কবির ∠xoy = A .কাণ এব ভাষার পর তিওঁ ইইতে বিপ্রীত দিকে ঘ্রিয়া যেন ∠yoz = B কোণ উংপ্র কবিল। ভাষা ইইলে ∠xoz = A - B কোণ।

ধ্ণামান রেখার অভিন অবস্থান ÖZ-এর উপর একটি বিন্দু P লভ্যু হইল। P ২ইতে ÖX এবং OY-এর উপর ফাজেমে PM ও PN লম্ম এবং N হইতে ÖX এবং ব্যক্তি MP-এর উপর ফাজেমে NS এবং NR লম্ম শাভিত ক্রে হইল।

এপন, 
$$\angle RPN = 90^{\circ} - \angle PNR = \angle YNR$$
 :  $\angle PNY = 90^{\circ}$  =  $\angle XOY = A$ .

:. সমকোণী ত্রিভূজ POM হইতে,

(i) 
$$\sin (A - B) = \sin POM$$

= sin A cos B - cos RPN sin B

=sin A cos B - cos A sin B.

= cos A cos B + sin RPN sin B

= cos A cos B + sin A sin B.

(iii) 
$$tan (A-B) = tan POM$$

$$= \frac{PM}{OM} = \frac{RM - PR}{OS + SM} = \frac{NS - PR}{OS + RN}$$

$$= \frac{NS}{OS} = \frac{PR}{OS} = \frac{NS}{OS} = \frac{PR}{OS}$$

$$= \frac{OS}{OS} = \frac{OS}{OS} = \frac{PR}{OS} = \frac{PR}{OS}$$

$$\mathfrak{Q} = \frac{NS}{OS} = \tan A$$
,  $\frac{RN}{PR} = \tan A$ ;

আবার, NOS এবং RPN ত্রিভূজনং সদশ ;

অতএব, 
$$\frac{PR}{OS} = \frac{PN}{ON} = t_{BN}$$
 B.

$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

অথবা ঃ

## 2.4. প্রমাণ করিতে হইবে বে.

(i) 
$$\cot (A+B) = \cot A \cot B - 1$$
;  $\cot B + \cot A$ 

(ii) 
$$\cot (A-B) = \frac{\cot A \cot B+1}{\cot B - \cot A}$$

(i) 
$$\cot (A + B) = \frac{\cos (A + B)}{\sin (A + B)} = \frac{\cos A \cos B - \sin A \sin B}{\sin A \cos B + \cos A \sin B}$$
  
[ লব ও হর উভয়কেই  $\sin A \sin B$  দিয়া ভাগ করিয়া

(ii) 
$$\cot (A-B) = \frac{\cos (A-B)}{\sin (A-B)}$$
  
 $\cot (A-B) = \frac{\cos A \cos B + \sin A \sin B}{\sin A \cos B - \cos A \sin B}$ 

[লব প্রহর উভয়কেই sin A sin B দিয়া ভাগ ক্রিয়া

cos A cos B sin A sin B sin A sin B sin A sin B sin A cos B cos A sin B sin A sin B

 $= \frac{\cot A \cot B + 1}{\cot B - \cot A}.$ 

2'5. পৃথবর্তী 2'1 হইতে 2'4 পর্যন্ত স্ক্রোবলী প্রমাণের সময়ে A ও B-কে স্ক্রোবলী বলিয়া ধরা ইইলাছে। প্রক্রতপকে A ও B যে-কোন কোণ ইউক-না, ঐ স্ক্রোবলী সাধারণভাবে প্রযোজ্য। প্রথম-শিক্ষার্থীর পক্ষে চ্কুছ বলিয়া সাধারণ প্রমাণ দেওয়া ইইল না।

#### উদোহরণমালা

উদা. 1. খনি sin A = ৫, cos B = 1৫ হয়, তাহা হটলে প্রমাণ কর খে.
cos (A + B) = ৫৫ থবং sin (A - B) = 1৫.
(A < 90°, B < 90°)
cos A = √1 - sin²A = √1 - dy = √2.5 = 4.

 $\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \frac{1}{164}} = \sqrt{\frac{2}{164}} = \frac{6}{164}$ 

003 (A +B)=cos A cos B-sin A sin B

 $=\frac{4}{5},\frac{18}{18}-\frac{8}{5},\frac{5}{18}=\frac{88}{38}$ 

 $\sin (A - B) = \sin A \cos B - \cos A \sin B$ =  $\frac{3}{5} \cdot \frac{13}{15} - \frac{4}{5} \cdot \frac{5}{15} = \frac{16}{5}$ .

उला. 2. वामान कत:

$$\cos (45^{\circ} - A) - \sin (45^{\circ} + A) = 0$$

বাম পক = cos 45° cos A + sin 45° sin A

= 
$$\frac{1}{\sqrt{2}}\cos A + \frac{1}{\sqrt{2}}\sin A - \left(\frac{1}{\sqrt{2}}\cos A + \frac{1}{\sqrt{2}}\sin A\right) = 0.$$

উদা, 3. sin 75°, cos 75°, tan 75°, sin 15°, cos 15° এবং tan 15°-এর মান নির্ণয় কর।

$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ})$$

$$- \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$

$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ})$$

$$\cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}.$$

$$\tan 75^{\circ} = \tan (45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}}.$$

$$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}.$$

$$= (\frac{\sqrt{3} + 1}{\sqrt{3} - 1})(\frac{\sqrt{3} + 1}{\sqrt{3} + 1}) = (\frac{\sqrt{3} + 1}{3 - 1})$$

$$= \frac{3 + 1 + 2\sqrt{3}}{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}.$$

$$\sin 15^{\circ} = \sin (45^{\circ} - 30^{\circ})$$

$$= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}.$$

$$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ})$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$

$$\tan 15^{\circ} = \tan (45^{\circ} - 30^{\circ})$$

$$= \tan 45^{\circ} - \tan 30^{\circ}$$

$$= 1 + \tan 45^{\circ} \tan 30^{\circ}$$

$$= \frac{1 - \frac{1}{3}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$$

$$= \frac{1 - \frac{1}{3}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$$

$$= \frac{1 - \frac{1}{3}}{1 + \frac{1}{3}} = \frac{3 - 1}{3 + 1} = (\frac{3 - 1}{3 + 1})(\frac{3 - 1}{3 - 1})$$

$$= \frac{3 - 1}{3 - 1} = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{3 - 2} = \frac{3 - 3}{3 - 1}.$$

উদা. 4. প্রমাণ কর যে,

(i) 
$$\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B$$
  
=  $\cos^2 B - \cos^2 A$ .

(ii) 
$$\cos (A + B) \cos (A - B) = \cos^3 A - \sin^2 B$$
  
=  $\cos^3 B - \sin^2 A$ .

(i) বাম প্স – (
$$\sin A \cos B + \cos A \sin B$$
)( $\sin A \cos B - \cos A \sin B$ )
$$= \sin^2 A \cos^2 B - \cos^2 A \sin^2 B$$

$$= \sin^2 A (1 - \sin^2 B) - (1 - \sin^2 A) \sin^2 B$$

$$= \sin^2 A - \sin^2 A \sin^2 B - \sin^2 B + \sin^2 A \sin^2 B$$

$$= \sin^2 A - \sin^2 B = (1 - \cos^2 A) - (1 - \cos^2 B)$$

$$= \cos^2 B - \cos^2 A$$

(ii) 
$$ATA PA = (\cos A \cos B - \sin A \sin B)(\cos A \cos B + \sin A \sin B)$$
  
 $= \cos^2 A \cos^2 B + \sin^2 A \sin^2 B$   
 $= \cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A) \sin^2 B$   
 $= \cos^2 A - \cos^2 A \sin^2 B - \sin^2 B + \cos^2 A \sin^2 B$   
 $= \cos^2 A - \sin^2 B = (1 - \sin^2 A) - (1 - \cos^2 B)$   
 $= 1 - \sin^2 A - 1 + \cos^2 B = \cos^2 B - \sin^2 A$ .

**छमा. 5.** श्रेमान कत (य,

(i) 
$$\tan (45^{\circ} + A) = \frac{1 + \tan A}{1 - \tan A}$$
;

(ii) 
$$\tan (45^{\circ} - A) = \frac{1 - \tan A}{1 + \tan A}$$

(ii) বাম প্ৰ = 
$$\frac{\tan 45^{\circ} - \tan A}{1 + \tan 45^{\circ} \tan A} = \frac{1 - \tan A}{1 + \tan A}$$

उषा. 6. প্রমাণ কর যে, cct 0 - cot 20 = co.ec 20.

$$\frac{\sin \theta - \frac{\cos \theta}{\sin \theta} - \frac{\cos 2\theta}{\sin 2\theta} - \frac{\sin 2\theta \cos \theta - \cos 2\theta \sin \theta}{\sin \theta \sin 2\theta}}{\sin \theta \sin 2\theta} = \frac{\sin (2\theta - \theta)}{\sin \theta \sin 2\theta} - \frac{\sin \theta}{\sin 2\theta} - \frac{1}{\sin 2\theta} = \csc 2\theta.$$

তান 7. প্রমাণ কর বে,  

$$\frac{\sin (B-C)}{\cos B \cos C} + \frac{\sin (C-A)}{\cos C \cos A} + \frac{\sin (A-B)}{\cos A \cos B} = 0$$

প্রথম পদ = 
$$\frac{\sin B \cos C - \cos B \sin C}{\cos B \cos C}$$
  
 $\frac{\sin B \cos C}{\cos B \cos C}$   $\frac{\cos B \sin C}{\cos B \cos C}$   
=  $\tan B - \tan C$ .

অমুরপে, দিতীয় পদ = tan C - tan A, এবং তৃতীয় পদ = tan A - tan B.

∴ বাম 今年 = tan B - tan C + tan C - tan A + tan A - tan B = 0.

উদা. ৪. প্রমাণ কর যে,

(i)  $\sin (A+B+C) = \sin A \cos B \cos C + \sin B \cos C \cos A$ +  $\sin C \cos A \cos B - \sin A \sin B \sin C$ .

(ii)  $\cos (A + B + C) = \cos A \cos B \cos C - \cos A \sin B \sin C$ -  $\cos B \sin C \sin A - \cos C \sin A \sin B$ .

(iii)  $\tan (A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan B \tan C - \tan C \tan A - \tan A \tan B}$ 

(i)  $\forall T \Rightarrow \sin \{A + (B + C)\} = \sin A \cos (B + C)$ +  $\cos A \sin (B + C)$ 

- sin A (cos B cos C - sin B sin C)

+ cos A (sin B cos C+ cos B sin C)

= sin A cos B cos C+sin B cos C cos A

+ sin C cos A cos B - sin A sin B sin C.

(ii)  $\forall \exists \exists \forall \exists \exists cos \{A + (B + C)\} \}$ = cos A cos (B + C) - sin A sin (B + C)= cos A (cos B cos C - sin B sin C)- sin A (sin B cos C + cos B sin C)

□ cos A cos B cos C − cos A sin B sin C

-cos B sin C sin A - cos C sin A sin B.

(iii) বাম পক= $\tan \{A + (B + C)\} = \frac{\tan A + \tan (B + C)}{1 - \tan A \tan (B + C)}$ 

=  $\frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan B \tan C - \tan C \tan A - \tan A \tan B}$ 

$$\cos^2 A + \cos^2 (120^\circ - A) + \cos^2 (120^\circ + A) = \frac{8}{2}$$

$$-\cos^2 A + 2(\cos^2 120^\circ \cos^2 A + \sin^2 120^\circ \sin^2 A)$$

$$= \cos^2 A + 2 \left[ (-\frac{1}{2})^2 \cos^2 A + \left(\frac{\sqrt{3}}{2}\right)^2 \sin^2 A \right]$$

$$=\cos^2 A + 2(\frac{1}{2}\cos^2 A + \frac{3}{2}\sin^2 A)$$

$$=\cos^{8}A + \frac{1}{2}\cos^{8}A + \frac{3}{4}\sin^{9}A$$

$$=\frac{8}{8}\cos^2 A + \frac{8}{9}\sin^2 A$$

$$=\frac{3}{2}(\cos^2 A + \sin^2 A) = \frac{3}{2}$$

#### উপা. 10. প্রমাণ কর:

$$1 + \tan A \tan \frac{A}{2} = \sec A$$
.

$$4 \operatorname{FR} \operatorname{PW} = 1 + \frac{\sin A}{\cos A} \cdot \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{\cos A \cos \frac{A}{2} + \sin A \sin \frac{A}{2}}{\cos A \cos \frac{A}{2}}$$

$$\cos \left(A - \frac{A}{2}\right) = \cos \frac{A}{2}$$

$$\frac{\cos\left(A-\frac{A}{2}\right)}{\cos A \cos \frac{A}{2}} = \frac{\cos \frac{A}{2}}{\cos A \cos \frac{A}{2}} = \frac{1}{\cos A} = \sec A.$$

#### প্রথমালা 2

#### প্রমাণ কর:

- 1.  $\sin A = \frac{4}{3}$   $43? \sin B = \frac{8}{13}$   $\frac{1}{2}$   $\frac{1}$
- 2. See  $A = \frac{1}{8}$  GRI cosec  $B = \frac{\pi}{8}$  Fig., see  $(A B) = \frac{9.5}{81}$ .
- 3.  $\cos 84^{\circ} 25' \cos 24^{\circ} 25' + \cos 5^{\circ} 35' \cos 65^{\circ} 35' = \frac{1}{2}$ .
- 4.  $\sin (45^{\circ} A) \cos (45^{\circ} + B) + \cos (45^{\circ} A) \sin (45^{\circ} + B)$ =  $\cos (A - B)$ .
- 5.  $\cos (45^{\circ} A) \cos (45^{\circ} B) \sin (45^{\circ} A) \sin (45^{\circ} B)$ =  $\sin (A + B)$
- 6.  $\tan A \tan B = \frac{\sin (A B)}{\cos A \cos B}$

- 7.  $\frac{\cos{(A-B)}}{\sin{A}\cos{B}} = \cos{A} + \tan{B}$ .
- 8.  $\frac{\tan A + \tan B}{\tan A \tan B} = \frac{\sin (A+B)}{\sin (A-B)}$
- 9.  $\sin (A B) \cos B + \cos (A B) \sin B = \sin A$ .
- 10.  $\cos \frac{A-B}{2} \sin A \sin \frac{A+B}{2} = \cos A \cos \frac{A+B}{2}$
- 11.  $\sin(n+1) \land \cos(n-1) \land -\cos(n+1) \land \sin(n-1) \land -\sin 2A$ .
- 12. 1 + tan 2A tan A = sec 2A.
- 13.  $\tan A \cot \frac{A}{2} 1 = \sec A$ .
- 14.  $\cos (A B) \sin (A + B)$  (cos A sin A)(cos B sin B).
- 15.  $\cos (A+B) + \sin (A-B)$ =  $(\cos A + \sin A)(\cos B - \sin B)$ .
- 16.  $\sin A \sin (B-C) + \sin B \sin (C-A) + \sin C \sin (A-B) = 0$ .
- 17.  $\cos A \sin (B-C) + \cos B \sin (C-A) + \cos C \sin (A-B) = 0$ .
- 18.  $\sin (A + B) \sin (A B) + \sin (B + C) \sin (B C) + \sin (C + A) \sin (C A) = 0.$
- 19.  $\frac{\sin (B-C)}{\sin B \sin C} + \frac{\sin (C-A)}{\sin C \sin A} + \frac{\sin (A-B)}{\sin A \sin B} = 0.$
- 20.  $\frac{\tan (A+B) \tan A}{1 + \tan (A+B) \tan A} = \tan B$ .
- 21.  $\tan (A + B) \tan (A B) = \frac{\sin^3 A \sin^2 B}{\cos^2 A \sin^2 B}$
- 22.  $\tan^2 A \tan^2 B = \frac{\sin (A + B) \sin (A B)}{\cos^2 A \cos^2 B}$
- 23.  $\tan (A+B) + \tan (A-B) = \frac{\sin 2A}{\cos^2 A \sin^2 B}$
- 24. tan 20° + tan 25° + tan 20° tan 25° = 1.
- 25.  $\cos A + \cos (120^\circ + A) + \cos (120^\circ A) = 0$ .
- 26.  $\sin (60^{\circ} + A) \sin (60^{\circ} A) = \sin A$ .
- 27. sin (A B + C) = sin A cos B cos C sin B cos C cos A + sin C cos A cos B + sin A sin B sin C.

28. tan (A-B-C)

 $= \frac{\tan A - \tan B - \tan C - \tan A \tan B \tan C}{1 - \tan B \tan C + \tan C \tan A + \tan A \tan B}$ 

29. A + B + C = 90° হইলে, প্রমাণ কর খে, tan B tan C + tan C tan A + tan A tan B=1.

প্রমাণ কর:

- 30.  $\cos^2(A-B) + \cos^2 B 2 \cos(A-B) \cos A \cos B = \sin^2 A$ .
- 31.  $\sin^2(A-B) + \sin^2 B + 2 \sin(A-B) \cos A \sin B = \sin^2 A$ .
- 32. প্রমাণ কর:  $\sec(x+y) = \frac{\sec x \sec y}{1 \tan x \tan y}$
- 33.  $\tan \theta = \frac{a \sin x + b \sin y}{a \cos x + b \cos y}$  ইইলে, প্রমাণ কর যে,  $a \sin (\theta x) + b \sin (\theta y) = 0$ .
- 34. প্রমাণ কর ষে, cot 2A + tan A = cosec 2A.
- 35. প্রমাণ কর যে, <u>cot A</u> <u>tan A</u> <u>tan A</u> = 1.
- 36. প্রমাণ কর বে, tan 3A tan A cot 3A cot A = cot 2A.
- 37. যদি  $\theta$  কোপকে এমন তুই অংশে ভাগ করা যার যে, অংশদ্বের tangent-এর অন্থাত  $\kappa$  হয়, এবং সংশদ্বের অন্তর x হয়, তবে প্রমাণ কর যে,

$$\sin x = \frac{\kappa - 1}{\kappa + 1} \sin \theta.$$

38. প্রমাণ কর থে, tan 3A tan 2A tan A = tan 3A - tan 2A - tan A.

[ रेकिंठ : tan 3A = tan (2A + A). ]

39. cos (B-C) + cos (C-A) + cos (A-B) = - = হইলে, প্রমাণ কর হে, cos A + cos B + cos C=0 এবং sin A + sin B + sin C=0.

## ভভীয় অপ্রায়

# গুণফল, যোগফল ও বিয়োগফলের পরিবর্তন (Transformation of Products, Sums and Differences)

31. Sine ও Cosine-এর গুণফলকে যোগফল বা বিয়োগফলে এবং যোগফল বা বিয়োগফলকে গুণফলে পরিবতিত করার পদ্ধতি।

প্রমাণ করিতে হইবে যে. (i) 2 sin A cos B = sin (A+B) + sin (A - B). (ii)  $2 \cos A \sin B = \sin (A + B) - \sin (A - B)$ . (iii) 2 cos A cos B = cos (A + B) + cos (A - B). (iv) 2 sin A sin B = cos (A - B) - cos (A + B). (v)  $\sin C + \sin D = 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$ . (vi)  $\sin C - \sin D = 2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}$ (vii)  $\cos C + \cos D = 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$ . (viii)  $\cos D - \cos C = 2 \sin \frac{C + D}{2} \sin \frac{C - D}{2}$ (i) হইতে (iv) পর্যন্ত স্ক্রাবলীর প্রমাণ যৌগিক কোণের স্ত্র অনুসারে sin (A+B) = sin A cos B+cos A sin B (1)sin (A-B) = sin A cos B - cos A sin B (2)(i) .: (1) এবং (2) যোগ করিয়া,  $2 \sin A \cos B = \sin (A+B) + \sin (A-B)$ (3)(ii) সেইরূপ, (1) হইতে (2) বিয়োগ করিয়া, 2 cos A sin B = sin (A + B) - sin (A - B) (4)আবার, যৌগিক cosine স্ত্র হইতে cos (A + B) = cos A cos B - sin A sin B (5)(6)cos (A-B) = cos A cos B + sin A sin B (iii) ... (5) এবং (6) যোগ করিয়া,  $2\cos A\cos B = \cos (A+B) + \cos (A-B)$ (7)(iv) সেইরূপ, (6) হইতে (5) বিয়োগ করিয়া,

 $2 \sin A \sin B = \cos (A-B) - \cos (A+B)$ 

(8)

(v) হইতে (viii) পর্যস্ত সূত্রাবলীর প্রমাণ

ধ্রা যাক, A+B=C, A-B=D.

$$\therefore A = \frac{C+D}{2}, B = \frac{C-D}{2}.$$

(v) :. (3) হৈছে, 
$$\sin C + \sin D = 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2}$$
.

(vii) (7) 
$$\overline{\text{exc}}$$
,  $\cos C + \cos D = 2 \cos \frac{C + D}{2} \cos \frac{C - D}{2}$ .

(viii) (8) 
$$\overline{\text{evo}}$$
,  $\cos D - \cos C = 2 \sin \frac{C + D}{2} \sin \frac{C - D}{2}$ .

### উদাহরণমালা

#### উদা. 1. প্রমাণ কর:

$$\cos 2\theta - \cos 12\theta \\ \sin 12\theta + \sin 2\theta = \tan 5\theta.$$

বাম পক = 
$$\frac{2 \sin \frac{12\theta + 2\theta}{2} \sin \frac{12\theta - 2\theta}{2}}{2 \sin \frac{12\theta + 2\theta}{2} \cos \frac{12\theta - 2\theta}{2}} = \frac{2 \sin 7\theta \sin 5\theta}{2 \sin 7\theta \cos 5\theta} = \tan 5\theta.$$

#### উদা. 2. প্রমাণ কর:

$$\sin A + \sin 3A + \sin 5A + \sin 7A$$
  
 $\cos A + \cos 3A + \cos 5A + \cos 7A = \tan 4A$ .

বাম পক্ষ = 
$$\frac{(\sin 7A + \sin A) + (\sin 5A + \sin 3A)}{(\cos 7A + \cos A) + (\cos 5A + \cos 3A)}$$
  
2 sin  $\frac{7A + A}{(\cos 7A + \cos 7A)}$   $\frac{7A + A}{(\cos 7A + A)}$   $\frac{5A + 3A}{(\cos 7A + A)}$ 

$$= \frac{2 \sin \frac{7A+A}{2} \cos \frac{7A-A}{2} + 2 \sin \frac{5A+3A}{2} \cos \frac{5A-3A}{2}}{2 \cos \frac{7A+A}{2} \cos \frac{7A-A}{2} + 2 \cos \frac{5A+3A}{2} \cos \frac{5A-3A}{2}}$$

$$\frac{\sin 4A (\cos 3A + \cos A)}{\cos 4A (\cos 3A + \cos A)} = \tan 4A.$$

#### উদা. 3. প্রমাণ কর:

$$\sin \frac{11\theta}{4} \sin \frac{\theta}{4} + \sin \frac{7\theta}{4} \sin \frac{3\theta}{4} = \sin 2\theta \sin \theta.$$

ৰাম পক্ষ = 
$$\frac{1}{2} \left[ 2 \sin \frac{11\theta}{4} \sin \frac{\theta}{4} + 2 \sin \frac{7\theta}{4} \sin \frac{3\theta}{4} \right]$$

$$= \frac{1}{2} \left[ \left\{ \cos \left( \frac{11\theta}{4} - \frac{\theta}{4} \right) - \cos \left( \frac{11\theta}{4} + \frac{\theta}{4} \right) \right\} + \left\{ \cos \left( \frac{7\theta}{4} - \frac{3\theta}{4} \right) - \cos \left( \frac{7\theta}{4} + \frac{3\theta}{4} \right) \right\} \right]$$

$$= \frac{1}{2} \left[ \cos \frac{5\theta}{2} - \cos 3\theta + \cos \theta - \cos \frac{5\theta}{2} \right]$$

$$= \frac{1}{2} \left[ \cos \theta - \cos 3\theta \right] = \frac{1}{2} \left[ 2 \sin \frac{3\theta + \theta}{2} \sin \frac{3\theta - \theta}{2} \right]$$

$$= \sin 2\theta \sin \theta.$$

উলা. 4. প্রমাণ কর বে,

$$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = 1^{\circ}$$
.

$$714 \ 7\% = \cos 60^{\circ}. \cos 20^{\circ}. \cos 40^{\circ} \cos 80^{\circ}$$

$$= \frac{1}{2} \cos 20^{\circ}. \frac{1}{2}(2 \cos 80^{\circ} \cos 40^{\circ})$$

$$= \frac{1}{4} \cos 20^{\circ} (\cos 120^{\circ} + \cos 40^{\circ})$$

$$= \frac{1}{4} \cos 20^{\circ} (-\frac{1}{2} + \cos 40^{\circ})$$

$$= -\frac{1}{8} \cos 20^{\circ} + \frac{1}{4} \cos 40^{\circ} \cos 20^{\circ}$$

$$= -\frac{1}{8} \cos 20^{\circ} + \frac{1}{8} (2 \cos 40^{\circ} \cos 20^{\circ})$$

$$= -\frac{1}{8} \cos 20^{\circ} + \frac{1}{8} (\cos 60^{\circ} + \cos 20^{\circ})$$

$$= -\frac{1}{8} \cos 20^{\circ} + \frac{1}{8} (\frac{1}{2} + \cos 20^{\circ})$$

$$= -\frac{1}{8} \cos 20^{\circ} + \frac{1}{18} + \frac{1}{8} \cos 20^{\circ} = \frac{1}{18}.$$

## প্রার্থমালা 3

প্রমাণ কর:

1. 
$$\frac{\cos 2A - \cos 4A}{\sin 4A + \sin 2A} = \tan 3A$$
. 2.  $\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A + B}{2}$ .

3. 
$$\frac{\sin 3A + \sin 5A}{\cos 3A - \cos 5A} = \cot A$$
. 4.  $\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{A + B}{2}}{\tan \frac{A - B}{2}}$ 

5. 
$$\cos 9^{\circ} + \sin 9^{\circ} = \tan 54^{\circ}$$
. 6.  $\cos 55^{\circ} + \cos 65^{\circ} + \cos 175^{\circ} = 0$ .

7. 
$$\sin 40^{\circ} - \sin 80^{\circ} + \sin 20^{\circ} = 0$$
.

8. 
$$\sin A + \sin 2A + \sin 3A + \sin 4A = 4 \cos A \cos \frac{A}{2} \sin \frac{5A}{2}$$

9.  $\cos A + \cos 3A + \cos 7A + \cos 9A = 4 \cos A \cos 3A \cos 5A$ .

- 10.  $\frac{\sin 5A + 2 \sin 9A + \sin 13A}{\cos 5A + 2 \cos 9A + \cos 13A} = \tan 9A.$
- 11.  $\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A$ .
- 12. A+B+C=90° হইলে, প্রমাণ কর সে,
  sin²A+sin²B+sin²C=I-2 sin A sin B sin C.
- 13. A+B=C হইলে, প্রমাণ কর বে,
  cos²A+cos²B+cos²C=1+2 cos A cos B cos C.
- 14. eo. (A + B) sin (C + D) = eo. (A B) sin (C D) ১টলে, প্ৰাণ্য কর যে, cot A cot B cot C = cot D.
- মদি a co. (x + y) = n co. x y) হয়, প্রসাৎ কর ্ম,
   (a+b) ten x = (a-b) cot y.
- 16. প্রাণ কর যে, sin 20' sin 40° sin 60° sin 80° = 1° त.
- 17. 型形写 季 (八, cos A + cos B + cos C + cos (A + B + C)

  = 4 cos B + C cos C + A cos A + B.
- 18.  $\forall \exists \exists \text{ sin } A + \sin B + x \iff \cos A + \cos B = y \ \forall \exists z,$   $\forall \exists \exists \exists \exists \exists \exists \exists x \in A + B = x \text{ for } x = y^2 \text$
- 19. প্রমাণ কর নে, (cos A + cos B)<sup>n</sup> + (sin A + sin B)<sup>n</sup> + (sin B + sin B)<sup>n</sup> + (sin B + sin B)<sup>n</sup> + (sin B + s
- 20.  $\sin x = k \sin \eta$  \$21%,  $\Re \mathbb{Y}^{(q)} \neq \mathbb{I} \mathbb{V}^{(q)}$ ,  $\lim_{k \to 1} \frac{x y}{k + 1} \tan \frac{x + y}{2}$ .
- 21. co. r + co. y ব বেং বাণ জ + বাণ দ্ব ই ইটাল, প্রমাণ কর যে,

  ten প্রাণ কর হে,
- 22.  $x \cos A + y \sin A = x \cos B + y \sin B = 5 / x$ , প্রমাণ কর বে,  $\frac{x}{\cos \frac{A+B}{2}} = \frac{y}{\sin \frac{A+B}{2}} = \frac{h}{\cos \frac{A-B}{0}}$
- 23. SIMPLE (1 sin A sin (60° A) sin (60° + A) =  $\frac{1}{4}$  sin 3A. 11, cos A cos (60° - A, cos (60° + A) =  $\frac{1}{4}$  cos 3A.
- 24. The 4: A cos 10' 10 10° = tan 35°.

## চভুৰ্ অপ্যায়

# গুণিতক ও আংশিক কোণের বৈকোণমিতিক অনুপাত (Trigonometrical ratios of Multiple and Submultiple angles)

4.1. 
$$\sin 2A = \sin (A + A)$$
  
=  $\sin A \cos A + \cos A \sin A$   
=  $2 \sin A \cos A$  ... (1)

অর্থাং কোন প্রত্নর কোণের নান এ x প্রদ্রর কোণের অধাংশের sin x অধীংশের cosine.

$$\therefore \sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2} \cdot \cdots$$
 (2)

আবার (1) হইতে, sin 2A = 2 sin A cos A

$$= \frac{2 \sin A \cos A}{\cos^2 A + \sin^2 A} \quad [\because \cos^2 A + \sin^2 A = 1]$$

$$= \frac{2 \tan A}{1 + \tan^2 A} \qquad \cdots \qquad (8)$$

$$2 \tan \frac{A}{2} \qquad \qquad \cdots \qquad (4)$$

4.2. 
$$\cos 2A = \cos (A + A)$$

$$=\cos^2 A - \sin^2 A \qquad \cdots \qquad (5)$$

$$=(1-\sin^9A)-\sin^9A$$

$$= 1 - 2 \sin^2 A \qquad \cdots \qquad (6)$$

$$= \cos^9 A - (1 - \cos^9 A)$$

$$= 2\cos^2 A - 1 \qquad \cdots \qquad (7)$$

#### অর্থাৎ কোন প্রদত্ত কোপের cosine

= 1 - 2 × প্রদৃত্ত কোণের অধাংশের sin-এর বর্গ

= 2 প্রদত্ত কোণের অধাংশের cosine-এর বর্গ - 1.

(6) এবং (7) হইতে,

$$1 - \cos 2A = 2 \sin^2 A \qquad \cdots \qquad (9)$$

$$1 + \cos 2A = 2 \cos^2 A \qquad \cdots \qquad \cdots \qquad (10)$$

$$47574, \quad 1-\cos A=2\sin^2\frac{A}{2} \qquad \cdots \qquad \cdots \qquad (11)$$

$$1 + \cos A = 2 \cos^2 \frac{A}{2} \qquad \cdots \tag{12}$$

প্নক, (5) হইতে,

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= \frac{\cos^2 A - \sin^2 A}{\cos^2 A + \sin^2 A}$$

$$= \frac{\cos^2 A - \sin^2 A}{\cos^2 A}$$

$$= \frac{\cos^2 A}{\cos^2 A}$$

$$= \frac{1 - \tan^2 A}{1 + \tan^2 A} \qquad \cdots \qquad (13)$$

$$\cos A = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \dots$$
 (14)

(9)-কে (10) বারা ভাগ করিলে,

$$\frac{1-\cos 2A}{1+\cos 2A} = \tan^2 A \qquad \cdots \qquad (15)$$

等死气, 
$$\frac{1-\cos A}{1+\cos A} = \tan^2 \frac{A}{2}$$
 ... (16)

4.3. 
$$\tan 2A = \tan (A + A)$$

$$= \frac{\tan A + \tan A}{1 - \tan A \tan A}$$

$$= \frac{2 \tan A}{1 - \tan^2 A} \qquad \cdots \qquad \cdots \qquad (17)$$

অৰ্থাৎ কোন প্ৰদত্ত কোণের tangent

2 × প্রদান্ত কোণের অধাণালের tangent
1 – প্রাধান্ত কোণের ভাধাণালের tangent-এর বর্গ

$$\therefore \tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}} \qquad \cdots \qquad (18)$$

4'4.  $\sin 3A = \sin (2A + A)$ 

= sin 2A cos A + cos 2A sin A

 $= 2 \sin A \cos A \cos A + (1 - 2 \sin^2 A) \sin A$ 

 $= 2 \sin A \cos^2 A + (1 - 2 \sin^2 A) \sin A$ 

 $-2 \sin A (1-\sin^2 A) + (1-2 \sin^2 A) \sin A$ 

 $= 3 \sin A - 4 \sin^8 A \qquad \cdots \qquad \cdots \qquad (19)$ 

অর্থাৎ কোন প্রাদন্ত কোণের Bin

= 3 × প্রধান কোরের এক- ই হ্রীয়া শোর sin

-4× " " " sin-এর তৃতীর ঘাত;

$$\therefore \sin A = 8 \sin \frac{A}{3} - 4 \sin^3 \frac{A}{3} \cdot \cdots \qquad \cdots \qquad (20)$$

**4.5.**  $\cos 8A = \cos (2A + A)$ 

= cos 2A cos A - sin 2A sin A

 $=(2\cos^2 A - 1)\cos A - 2\sin A\cos A\sin A$ 

 $=(2\cos^8 A - 1)\cos A - 2\cos A\sin^8 A$ 

 $= (2 \cos^2 A - 1) \cos A - 2 \cos A (1 - \cos^2 A)$ 

 $= 4 \cos^8 A - 3 \cos A \qquad \cdots \qquad \cdots \qquad (21)$ 

অর্থাৎ কোন প্রদত্ত কোণের cosine

=4 × প্রদান্ত কোণের এক-তৃতীয়াংশের co-ine-এর তৃতীয় ঘাত

-3 x n n n n cosino.

মন্তএব, 
$$\cos A = 4 \cos^3 \frac{A}{3} - 3 \cos \frac{A}{3}$$
 ... (22)

4.6. 
$$\tan 3A = \tan (2A + A)$$

$$= \tan (2A + \tan A)$$

$$= \tan (2A + \tan A)$$

$$= 1 - \tan (2A + \tan$$

অর্থাৎ কোন প্রদন্ত কোণের tangent

3 × পানন্ত কোণের এক-তৃতীয়াংশের tangent – প্রদন্ত কোণের এক-তৃতীয়াংশের tangent-এর ভতীয় ঘাত

এক-কৃত্যিংকেব tangent-এর তৃতীয় ঘাত 1 - 3 × প্রদান্ত কোণের এক-কৃত্যংশংশের tangent এর বর্ষ

মতএব, 
$$\tan A = \frac{3 \tan \frac{A}{3} - \tan^3 \frac{A}{3}}{1 - 3 \tan^3 \frac{A}{3}} \dots$$
 (24)

#### উদাতরণমালা

$$\cos 4A = 2 \cos^2 2A - 1 = 2 (2 \cos^2 A - 1)^2 - 1$$
  
= 8 \cos^4 A - 8 \cos^2 A + 1

$$\cos 5A = \cos 5A + \cos A - \cos A$$
  
= 2 \cos 3A \cos 2A - \cos A  
= 2 \cdot \cos ^1A - 3 \cos A \cdot 2 \cos ^2A - 1) - \cos A  
= 16 \cos ^8A - 20 \cos ^8A + 5 \cos A.

$$\sin A = 2^4 \cos \frac{A}{2} \cos \frac{A}{4} \cos \frac{A}{8} \cos \frac{A}{16} \sin \frac{A}{16}$$

$$\sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}$$

$$\sin \frac{A}{2} = 2 \sin \frac{A}{4} \cos \frac{A}{4}$$

$$\sin \frac{A}{4} = 2 \sin \frac{A}{8} \cos \frac{A}{8},$$

$$\sin \frac{A}{8} = 2 \sin \frac{A}{16} \cos \frac{A}{16},$$

$$\therefore \sin A \sin \frac{A}{2} \sin \frac{A}{4} \sin \frac{A}{8}$$

$$= 2^4 \sin \frac{A}{2} \sin \frac{A}{4} \sin \frac{A}{8} \sin \frac{A}{16} \cos \frac{A}{2} \cos \frac{A}{4} \cos \frac{A}{8} \cos \frac{A}{16};$$

$$\therefore \sin A = 2^4 \cos \frac{A}{2} \cos \frac{A}{4} \cos \frac{A}{8} \cos \frac{A}{16} \sin \frac{A}{16}$$

উদা. 4. (i) sin 18° এবং (ii) cos 36°-এর মান নির্ণয় কর।

(i) We fix, 
$$\theta = 18^{\circ}$$
;  $\therefore 5\theta = 90^{\circ}$ ;  $\therefore 2\theta = 90^{\circ} - 3\theta$ ;  $\therefore \sin 2\theta = \sin (90^{\circ} - 3\theta) = \cos 3\theta$ ,

কিছ co: 0=0 হইতে পারে না, কারণ ভাষ ইউলে 0=90°:

$$2 \sin \theta = 4 \cos^2 \theta - 3 = 4 (1 - \sin^2 \theta) - 3 = 1 - 4 \sin^2 \theta$$
;

$$\therefore$$
 4 sin<sup>2</sup>  $\theta$  + 2 sin  $\theta$  - 1 = 0.

$$\therefore \sin \theta = \frac{-2 \pm \sqrt{4 + 16}}{8} = \frac{-1 \pm \sqrt{5}}{4}.$$

किंड 0 < 90°, ∴ ain 0 धनावाक स्टेटन।

$$\therefore \sin \theta = \frac{\sqrt{5-1}}{4} \text{ Softs } \sin 18^{\circ} = \sqrt{5-1}.$$

(ii) 
$$\cos 36^{\circ} = 1 - 2 \sin^{2} 18^{\circ} = 1 - 2 \left(\frac{\sqrt{5} - 1}{4}\right)^{2}$$
  
=  $1 - 2 \times \frac{6 - 2\sqrt{5}}{16} = 1 - \frac{8 - \sqrt{5}}{4} = \frac{\sqrt{5} + 1}{4}$ .

উন্না বিদি  $\tan x = \frac{b}{a}$  হয়, তাৰে  $a\cos 2x + b\sin 2x$ -এর মান নির্ণয়

$$a \cos 2x + b \sin 2x = a \cdot \frac{1}{1} - \frac{\tan^3 x}{4 \tan^2 x} + b \cdot \frac{2 \tan x}{1 + \tan^2 x}$$

$$= a \cdot \frac{1 - \frac{b^2}{a^2}}{1 + \frac{b^2}{a^2}} + b \cdot \frac{2 \frac{b}{a}}{1 + \frac{b^2}{a^2}}$$

$$= a \cdot \frac{a^2 - b^2}{a^2 + b^2} + \frac{2ab^2}{a^2 + b^2} = \frac{a(a^2 + b^2)}{a^2 + b^2} = a.$$

উদা. 6. যদি A এবং B ছুইটি সুদ্ম এবং ধনাত্মক কোণ

এবং 
$$\cos 2A = \frac{3\cos 2B - 1}{3 - \cos 2B}$$
 হয়, প্রমাণ কর যে,  $\tan A = \sqrt{2} \tan B$ .

$$\cos 2A = \frac{3\cos 2B - 1}{3 - \cos 2B}$$

: যোগ একং বিয়োগ প্রক্রিয়া দারা,

$$\frac{1 - \cos 2A}{1 + \cos 2B} = \frac{(3 - \cos 2B) - (3\cos 2B - 1)}{(3 - \cos 2B) + (3\cos 2B - 1)}$$
$$= \frac{4 - 4\cos 2B}{2 + 2\cos 2B} = 2 \times \frac{1 - \cos 2B}{1 + \cos 2B}.$$

$$\therefore \frac{2 \sin^2 A}{2 \cos^2 A} = 2 \times \frac{2 \sin^2 B}{2 \cos^2 B};$$

অথবা,  $\tan^2 A = 2 \tan^2 B$ :  $\therefore \tan A = \pm \sqrt{2} \tan B$ .
কিন্তু, বেছেতু A এবং B প্রত্যেকেই ধনাত্মক কোণ,

.. tan A এবং tan B উভবই ধনাত্মক; ... tan A = √2 tan B.

উপা. 7. 
$$A + B = 90^{\circ}$$
 হইলে, প্রমাণ কর যে,  $\frac{\cos 2B - \cos 2A}{\sin 2A} = \tan A - \tan B$ .

$$\frac{1}{2} \sin A \cos A$$

$$\frac{\sin 90^{\circ} \sin (A - B)}{\cos A \sin (90^{\circ} - B)}$$

$$\frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B}$$

$$\frac{\sin A \cos B}{\cos A \cos B}$$

$$\frac{\sin A \cos B}{\cos A \cos B}$$

$$\frac{\cos A \cos B}{\cos A \cos B}$$

$$= \tan A - \tan B.$$

উদা. 8. বদি 2 tan A = 3 tan B,

প্রমাণ কর যে, 
$$\tan (A-B) = \frac{\sin 2B}{5 - \cos 2B}$$

প্রদত্ত শর্তামুদারে, tan A = 🖁 tan B.

অতএব, tan (A - B)

$$= \frac{\tan A - \tan B}{1 + \tan A \tan B} = \frac{\frac{3}{2} \tan B - \tan B}{1 + \frac{3}{2} \tan^2 B}$$
$$= \frac{\tan B}{2 + 3 \tan^2 B}$$

$$\frac{\sin B}{\cos B} = \frac{\sin B \cos B}{2 + 3 \frac{\sin^2 B}{\cos^2 B}} = \frac{2 \cos^2 B + 3 \sin^2 B}{2 \cos^2 B + 6 \sin^2 B}$$

$$= \frac{2 \sin B \cos B}{4 \cos^2 B + 6 \sin^2 B}$$

$$\frac{\sin 2B}{2(1 + \cos 2B) + 3(1 - \cos 2B)} = \frac{\sin 2B}{5 - \cos 2B}$$

### প্রামালা 4

#### প্রমাণ কর:

1. 
$$\frac{\sin 2A}{1 + \cos 2A} = \tan A.$$

$$2. \quad \frac{\sin 2A}{1-\cos 2A} = \cot A.$$

3. 
$$\cot A + \tan A = 2 \csc 2A$$
.

4. 
$$\cot A - \tan A = 2 \cot 2A$$
.

5. 
$$\frac{\cot A - \tan A}{\cot A + \tan A} = \cos 2A.$$

6. 
$$\cos^4 \theta - \sin^4 \theta = \cos 2\theta$$
.

7. 
$$\cos^4 A + \sin^4 A = \frac{1}{2}(1 + \cos^2 2A)$$
.

8. 
$$\cos^6 A + \sin^6 A = \frac{1}{2}(1 + 3\cos^2 2A)$$
.

9. 
$$\cos^6 A - \sin^6 A = \cos 2A (1 - \frac{1}{2} \sin^2 2A)$$
.

10. 
$$\frac{\cos^8 A + \sin^8 A}{\cos A + \sin A} = 1 - \frac{1}{2} \sin 2A$$
.

11. 
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan (A + B).$$

12. 
$$\frac{1-\cos\theta+\sin\theta}{1+\cos\theta+\sin\theta}=\tan\frac{\theta}{2}$$
.

13. 
$$\frac{1-\tan^2(45^\circ-A)}{1+\tan^2(45^\circ-A)} = \sin 2A$$
.

14. 
$$\frac{\sin A - \sqrt{1 + \sin 2A}}{\cos A - \sqrt{1 + \sin 2A}} = \cot A$$
.

15. 
$$\frac{\cos A - \sin A}{\cos A + \sin A} = \sec 2A - \tan 2A.$$

16. 
$$\frac{\cos A + \sin A}{\cos A - \sin A} = \frac{\cos A - \sin A}{\cos A + \sin A} = 2 \tan 2A.$$

17. 
$$\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$$
.

18. 
$$\frac{\sin 4A}{\cos 2A} = \frac{1 - \cos 2A}{1 - \cos 4A} = \tan A$$
.

19. 
$$\sin 5A = 16 \sin^5 A - 20 \sin^3 A + 5 \sin A$$
.

21. 
$$\tan 4A = \frac{4 \tan A - 4 \tan^3 A}{1 - 6 \tan^3 A + \tan^4 A}$$

22. 
$$\cos^3 A \cos 3A + \sin^3 A \sin 3A = \cos^3 2A$$
.

23. 
$$\sin^8 A + \sin^8 (120^\circ + A) + \sin^8 (240^\circ + A) = -\frac{3}{4} \sin 3A$$
.

24. 
$$\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\tan 8A}{\tan 2A}$$

25. 
$$\cos 4A - \cos 4B = 8(\cos A - \cos B)(\cos A + \cos B) \times (\cos A - \sin B)(\cos A + \sin B)$$
.

26. 
$$\sin^4 A = \frac{8}{8} - \frac{1}{2} \cos 2A + \frac{1}{8} \cos 4A$$
.

27. 
$$\cos^4 A = \frac{3}{8} + \frac{1}{2} \cos 2A + \frac{1}{8} \cos 4A$$
.

28. 
$$\overline{4} = \frac{1}{2} \left( x + \frac{1}{x} \right) = \overline{4}$$

প্রমাণ কর ঃ (i) 
$$\cos 2A = \frac{1}{3} \left(x^2 + \frac{1}{x^2}\right)$$

এবং (ii) 
$$\cos 3A = \frac{1}{8} \left( x^3 + \frac{1}{x^3} \right)$$

29. যদি tan A = cos 2B হয়,  
প্রমাণ কর যে, sin 2A = 
$$\frac{1-\tan^4 B}{1+\tan^4 B}$$

32. 
$$\sqrt[A]{1-\kappa} \tan \frac{B}{2} = \sqrt{\frac{1-\kappa}{1+\kappa}} \tan \frac{B}{2} = \sqrt[A]{1-\kappa}$$

প্রমাণ কর যে, 
$$\cos B = \frac{\cos A - K}{1 - K \cos A}$$

33. প্রমাণ কর বে, 
$$\cos^2 18^\circ \sin^2 36^\circ - \cos 72^\circ \sin 54^\circ = \frac{1}{16}$$
.

#### প্ৰজন অধ্যায়

# পূরক, সম্পূরক এবং যে-কোন কোণের অন্সপাত

মাধ্যমিক স্তরে প্রক কোণের অনুপাতসমূহ নির্ণয় করার পদ্ধতি আলোচিত হইরাছে। এই অধ্যায়ে তাহার পুনরালোচনা এবং সম্পুরক কোণের অনুপাত সম্বন্ধে আলোচনা করা হইবে। সেই প্রদঙ্গে যে-কোন কোণের অনুপাত-নির্ণয়ের পদ্ধতিও প্রদর্শিত হইবে। ইহার প্রস্তুতি হিসাবে, ঝণাত্মক কোণের অনুপাত ও বিভিন্ন পাদে অবস্থিত কোণের ত্রৈকোণমিতিক অনুপাতগুলির মধ্যে কোন্গুলির মান ধনাত্মক এবং কোন্গুলিরই বা মান ঋণাত্মক হয়, তাহা জানা দরকার। এই কারণে প্রথমে এখানে উল্লিখিত প্রসঙ্গসমূহের আলোচনা করা হইতেছে।

### 5'1. ঋণাত্মক কোণের অনুপাত:

ঘড়ির কাঁটার বিপরীতমুখে আবর্তনশীল  $\overline{OP}$ রেখা যেন  $\angle xOP = \theta$  কোণ উৎপন্ন করিয়াছে এবং  $\overline{OP}$ -এর সমান দৈর্ঘ্যবিশিষ্ট  $\overline{OQ}$  রেখা ঘড়ির কাঁটার মুখে ঘুরিয়া বেন  $\angle xOQ = \angle xOP$  কোণ উৎপন্ন করিয়াছে।  $\overline{OQ}$  ঘড়ির কাঁটার মুখে আবর্তনশীল বলিয়া  $\angle xOQ$  নিশ্চয় ঋণাত্মক এবং ডাহার জ্যামিতিক মান  $\angle xOP$  বা  $\theta$ -এর সমান বলিয়া নিশ্চয়  $\angle xOQ = -\theta$ .



এইবার P হইতে OX-এর উপর অঙ্কিত লম্বটিকে Q পর্যস্ত বর্ধিত করা হইল।
এখন POM ও QOM ক্রিভুজ-তুইটিতে OP≃OQ, OM সাধারণ এবং সাংখ্যমানে
∠MOP — ∠MOQ.

অতএব ত্রিভুজ-জুইটি সর্বসম; ∴ ∠QMO=∠PMO=এক সমকোণ এবং সাংখ্যমানে MP=MQ; কিন্তু MP ধনাত্মক এবং MQ ঋণাত্মক।

:. MQ = - PM. বলা বাহুল্য, OP ও OQ উভৱেই ধনাত্মক।

$$\sin(-\theta) = \frac{MQ}{QQ} = \frac{-PM}{QP} = -\sin\theta ;$$

$$\cos(-\theta) = \frac{OM}{QQ} = \frac{OM}{QP} = \cos\theta ;$$

$$\tan(-\theta) = \frac{MQ}{QM} = \frac{-PM}{QM} = -\tan\theta .$$

(XI-XII)-22

অতএব,

$$\begin{aligned} \cos \cot \left(-\theta\right) &= \frac{1}{\sin \left(-\theta\right)} = \frac{1}{-\sin \theta} = -\csc \theta \ ; \\ \sec \left(-\theta\right) &= \frac{1}{\cos \left(-\theta\right)} = \frac{1}{\cos \theta} = \sec \theta \ ; \\ \cot \left(-\theta\right) &= \frac{1}{\tan \left(-\theta\right)} = \frac{1}{-\tan \theta} = -\cot \theta. \end{aligned}$$

লক্ষণীয় যে ঝণাত্মক কোণের একমাত্র cos ও sec ধনাত্মক।

## 5'2. বিভিন্ন পাদে অবস্থিত কোপের অনুপাতসমূহের (চিহ্ন) বিচার:

মাধ্যমিক তবে একমাত্র স্ক্ষকোণের অন্তপাত সম্বন্ধে আলোচনা করা হইয়াছে। স্ক্রকোণ মাত্রই প্রথম পাদে অবস্থিত। স্কুলকোণ অবস্থিত দ্বিতীয় পাদে এবং তৃতীয় ও চতুর্ব পাদে অবস্থিত প্রবৃদ্ধকোণ।

(i) চিত্রে ∠০০M প্রথম পাদে অবস্থিত বলিয়া লম্ব ত্রন এবং ত্র-এর উপর ত্র-এর অভিক্ষেপ ত্রন উভয়েই ধনাত্মক।

ে cosec QOM, sec QOM এবং cot QOM যথাক্রমে sin QOM, cos QOM ও tan QOM-এর অন্যোক্তক; ে তাহারও ধনাত্মক। অতএব, প্রথম পাদে অবস্থিত কোণের সবকয়টি ত্রৈকোণমিতিক অনুপাতই ধনাত্মক।

(ii) চিত্রে ∠ QOM বিতীয় পাদে অবস্থিত বলিয়া লম্ব্ QM ধনাত্মক হইলেও অভিক্ষেপ তাল-এর মান ঋণাত্মক।

- ় sin QOM-এর অন্যোশুক cosec QOM ধনাত্মক, কিন্তু cos QOM ও tan QOM-এর অন্যোশুক যথাক্রমে sec QOM ও cot QOM ঋণাত্মক। অতএব, বিতীয় পাদে অবস্থিত যে-কোন কোণের একমাত্র sine ও cosec ধনাত্মক। অশু সব-কয়টি ত্রৈকোণমিতিক অন্থগাত ঋণাত্মক।
- (iii) চিত্তে ∠ QOM তৃতীয় পাদে অবস্থিত বলিয়া লম্ব QM ও অভিক্ষেপ তাম—উভয়ের মানই ঋণাত্মক।

়: sin QOM ও cos QOM-এর অস্থোক্তক বধাক্রমে cosec QOM ও sec QOMও ঝণাত্মক। কিন্তু tan QOM-এর অন্যোক্তক cot QOM ধনাত্মক।

অতএব, তৃতীয় পাদে অবস্থিত যে-কোন কোণের একমাত্র tan ও cot ধনাত্মক। (iv) চিত্রে ∠ QOM চতুর্থ পাদে অবস্থিত বলিয়া, লম্ব QM-এর মান ঋণাত্মক কিন্তু অভিক্ষেপ OM-এর মান ধনাত্মক।



.: sin QOM ও tan QOM-এর অন্তোশুক বথাক্রমে cosec QOM ও cot QOM, উভয়েই ঝণাত্মক। কিন্তু cos QOM-এর অন্তোশুক sec QOM ধনাত্মক।

অতএব, **চতুর্থ পাদে অবস্থিত যে-কোন কোণের একমাত্র c**os ও sec ধনাত্মক।

(i) হইতে (iv)-এর সিদ্ধান্ত অনুসারে বিভিন্ন পাদের কোণগুলির **ধ্বনাত্মক** অনুপাতগুলিকে চিত্র দ্বারা নিম্নরেপ স্থচিত করা যায়।

## 5'3. পূৱক কোণের ত্রৈকোণমিতিক অনুপাত :

ছুইটি কোণের সমষ্টি যথন এক সমকোণ হয়, তথন একটিকে অপরটির পূরক কোণ বলে।  $\theta$  কোণের পূরক কোণ ( $90^\circ - \theta$ ), কেননা  $\theta + 90^\circ - \theta = 90^\circ$  বা এক সমকোণ। মাধ্যমিক স্তরে দশম শ্রেণীর পাঠ্যক্রমে ( $90^\circ - \theta$ ) কোণের অহুপাত সম্বন্ধে বিশদ আলোচনা হুইয়া গিয়াছে। পুনরালোচনা প্রসঙ্গে অহুপাতগুলির মান নিম্নে আবার বিবৃত্ত হুইল।

$$\sin (90^{\circ} - \theta) = \cos \theta$$
;  $\sec (90^{\circ} - \theta) = \csc \theta$ ;  
 $\cos (90^{\circ} - \theta) = \sin \theta$ ;  $\csc (90^{\circ} - \theta) = \sec \theta$ ;  
 $\tan (90^{\circ} - \theta) = \cot \theta$ ;  $\cot (90^{\circ} - \theta) = \tan \theta$ .

# 5·4. (90°+6) কোণের ত্রৈকোণমিভিক অনুপাত:

পূরক কোণের সূত্র প্রয়োগ করিয়া অনায়াসেই  $(90^\circ + \theta)$ -এর অন্ধূপাতগুলি নির্ণয় করা যায়। কারণ  $(90^\circ + \theta)$  কোণ  $(-\theta)$ -এর পূরক।

$$\sin (90^{\circ} + \theta) = \sin \{90^{\circ} - (-\theta)\} = \cos (-\theta) = \cos \theta;$$

$$\cos (90^{\circ} + \theta) = \cos \{90^{\circ} - (-\theta)\} = \sin (-\theta) = -\sin \theta;$$

$$\tan (90^{\circ} + \theta) = \tan \{90^{\circ} - (-\theta)\} = \cot (-\theta) = -\cot \theta;$$

$$\cot (90^{\circ} + \theta) = \cot \{90^{\circ} - (-\theta)\} = \tan (-\theta) = -\tan \theta;$$

$$\sec (90^{\circ} + \theta) = \sec \{90^{\circ} - (-\theta)\} = \csc (-\theta) = -\csc \theta;$$

$$\csc (90^{\circ} + \theta) = \csc \{90^{\circ} - (-\theta)\} = \sec (-\theta) = \sec \theta.$$

### বিকল্প জ্যামিতিক প্রমাণ

আবর্তনশীল OP রেখা OX-এর উপর অবস্থান হইতে  $\theta$  কোণে ঘুরিয়া যেন  $\angle$  xoP উৎপন্ন করিয়াছে এবং OP-এর সমান দৈর্ঘ্যবিশিষ্ট অপর একটি রেখা OP-র অবস্থান হইতে 90° কোণ ঘুরিয়া যেন OQ অবস্থান গ্রহণ করিয়াছে।

তাহা হইলে,  $\angle xoq = \angle xop + \angle poq = 90^{\circ} + \theta$ .

P ଓ Q ইইতে XOX'-এর উপর যথাক্রমে PM ও QN লম্ব অন্ধিত হইল।



এখন OY || NO विनिष्ठा ∠OQN = धकास्ट्रत ∠YOQ.

∴ △ POM ও △ OQN-এর মধ্যে

OP ≃ OQ, ∠PMO = ∠QNO [ প্রত্যেকটি এক সমকোণ বলিয়া ] এবং ∠POM = 90° − ∠POY = ∠POQ − ∠POY = ∠YOQ = ∠OQN.

- $\therefore$   $\triangle$ POM  $\cong$   $\triangle$ OQN.
- :. OM = QN এবং সাংখ্যমানে PM = ON; কিন্তু PM ধনাত্মক এবং ON খণাত্মক বলিয়া ON = PM.

$$\therefore \sin (90^{\circ} + \theta) = \sin x_{OQ} = \frac{ON}{OQ} = \frac{OM}{OQ} = \cos \theta ;$$

$$\cos (90^{\circ} + \theta) = \cos \times OQ = \frac{ON}{OQ} = \frac{-PM}{OP} = -\sin \theta ;$$

$$\tan (90^{\circ} + \theta) = \tan \times OQ = \frac{ON}{ON} = \frac{OM}{-PM} = -\cot \theta ;$$

$$\cot (90^{\circ} + \theta) = \cot \times OQ = \frac{ON}{QN} = \frac{-PM}{OM} = -\tan \theta ;$$

$$\sec (90^{\circ} + \theta) = \sec \times OQ = \frac{OQ}{ON} = \frac{OP}{-PM} = -\csc \theta ;$$

$$\csc (90^{\circ} + \theta) = \csc \times OQ = \frac{OQ}{QN} = \frac{OP}{OM} = \sec \theta .$$

#### উদাহরণ ঃ

sin 
$$120^\circ = \sin (90^\circ + 30^\circ) = \cos 30^\circ$$
;  
 $\cos 120^\circ = \cos (90^\circ + 30^\circ) = -\sin 30^\circ$ ;  
 $\tan 120^\circ = \tan (90^\circ + 30^\circ) = -\cot 30^\circ$ ; Exim

5·5. 180°-৪ এবং θ কোণারমের অর্থাৎ সম্পূরক কোণারমের ত্রৈকোণামিতিক অনুসাতের সম্পর্ক।

যদি 0 একটি স্ক্ষকোণ হয়, তাহা হইলে 180° – 0 ইহার সম্প্রক কোণ। একটি আবর্তনশীল রেখা ০x-এর উপর হইতে 0 কোণ ঘ্রিয়া যেন তচ অবস্থান গ্রহণ



করিয়াছে। তাহা হইলে  $\angle \times OP = \theta$ .
অপর একটি  $\overline{OP}$ -এর সমান দৈর্ঘ্য-বিশিষ্ট
আবর্তনশীল রেখা  $\overline{OX}$  হইতে ঘুরিতে আরম্ভ
করিয়া  $\overline{OX}'$  পর্যন্ত ঘাইয়া আবার  $\overline{OX}'$ হইতে বিপরীত দিকে  $\theta$  কোণে ঘুরিয়া  $\overline{OO}$ অবস্থান গ্রহণ করিল; তাহা হইলে,

 $\angle xoq = \angle xox' - \angle x'oq = 180^{\circ} - \theta$ .

P এবং Q হইতে, XOX-এর উপর যথাক্রমে PM এবং QN লম্ব টানা হইল। তাহা হইলে PMO এবং QNO ত্রিভূজন্বর সমকোণী এবং অতিভূজ ÖP ও অতিভূজ ÖQ উভয়ই ধনাত্মক এবং সমান।

- উক্ত ত্রিভ্রময়ের বাহু OP = OQ;
   ∠POM = ∠QON; ∠PMO = ∠QNO = এক সমকোণ;
- ় ত্রিভুজ্বয় সর্বসম।
- ∴ সাংখ্যমান হিসাবে, PM = QN, এবং উভয়ই ধনাত্মক;
  এবং OM ≅ ON, কিছ OM ধনাত্মক এবং ON ঝণাত্মক।
  অর্থাৎ ON = OM.

$$\sin (180^{\circ} - \theta) = \frac{\text{QN}}{\text{OQ}} = \frac{\text{PM}}{\text{OP}} = \sin \theta ;$$

$$\cos (180^{\circ} - \theta) = \frac{\text{ON}}{\text{OQ}} = \frac{-\text{OM}}{\text{OP}} = -\cos \theta ;$$

$$\tan (180^{\circ} - \theta) = \frac{\text{QN}}{\text{ON}} = \frac{\text{PM}}{-\text{OM}} = -\tan \theta ;$$

$$\cot (180^{\circ} - \theta) = \frac{\text{ON}}{\text{QN}} = \frac{-\text{OM}}{\text{PM}} = -\cot \theta ;$$

$$\sec (180^{\circ} - \theta) = \frac{\text{OQ}}{\text{ON}} = \frac{\text{OP}}{-\text{OM}} = -\sec \theta ;$$

$$\csc (180^{\circ} - \theta) = \frac{\text{OQ}}{\text{QN}} = \frac{\text{OP}}{\text{PM}} = \csc \theta .$$

#### উদাহরণ ঃ

$$\sin 120^\circ = \sin (180^\circ - 60^\circ) = \sin 60^\circ$$
,  
 $\cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ$ ,  
 $\tan 120^\circ = \tan (180^\circ - 60^\circ) = -\tan 60^\circ$ ,  
 $\sin 150^\circ = \sin (180^\circ - 30^\circ) = \sin 30^\circ$ ,  
 $\cos 150^\circ = \cos (180^\circ - 30^\circ) = -\cos 30^\circ$ ,  
 $\tan 150^\circ = \tan (180^\circ - 30^\circ) = -\tan 30^\circ$ ,  
 $\sin 180^\circ = \sin (180^\circ - 0^\circ) = \sin 0^\circ$ ,  
 $\cos 180^\circ = \cos (180^\circ - 0^\circ) = -\cos 0^\circ$ ,

5.6. (180°+0) কোণের বিভাবে বিভাবে বিভাবে বিভাবের অনুপাতঃ (180°+0) কোণ, (-0) কোণের সম্পূরক। ∴ সম্পূরক কোণের স্ত্র প্রয়োগ করিয়া

$$\sin (180^{\circ} + \theta) = \sin \{180^{\circ} - (-\theta)\} = \sin (-\theta) = -\sin \theta;$$

$$\cos (180^{\circ} + \theta) = \cos \{180^{\circ} - (-\theta)\} = -\cos (-\theta) = -\cos \theta;$$

$$\tan (180^{\circ} + \theta) = \tan \{180^{\circ} - (-\theta)\} = -\tan (-\theta) = \tan \theta;$$

$$\cot (180^{\circ} + \theta) = \cot \{180^{\circ} - (-\theta)\} = -\cot (-\theta) = \cot \theta;$$

$$\sec (180^{\circ} + \theta) = \sec \{180^{\circ} - (-\theta)\} = -\sec (-\theta) = -\sec \theta;$$

$$\csc (180^{\circ} + \theta) = \csc \{180^{\circ} - (-\theta)\} = \csc (-\theta) = -\csc \theta.$$

### বিকর (জ্যামিত্রিক) প্রমাণ

আবর্তনশীল একটি রেখ ∠xop=0 কোণ ঘূরিয়া ⊙P অবস্থান গ্রহণ করিল,



এবং অপর একটি সমান দৈখ্য-বিশিষ্ট আবর্তনশীল রেখা আরও ঘৃরিয়া এমন-ভাবে তি অবস্থান গ্রহণ করিল, যেন POQ একই সরল রেখা হয়। তাহা হটলে  $\angle xoq = \angle qop + \angle xop = 180° + \theta$ .

P এবং Q হইতে XOX'-এর উপর

মধাক্রমে PM এবং QN লছ প্রতিভ্র করা হইল। সমকোণা বিভ্রত্ত সম PMO এবং QNO-এর মতিভুক্ত GP এবং 'মতিভুক্ত GQ উভয়ই সমান এবং ধনায়ক।

ं উক্ মিকুছছার্বর, বাত OP ≃ বাত OQ,

🗀 আিকুজ্জন সৰ্বসম।

ে সংখ্যমান হিস্তের PM - QN, কিন্তু PM ধনাত্মক এবং QN স্থাত্মক ;

$$\therefore \sin (1 \le 0^\circ + \theta) = \frac{QN}{QQ} = \frac{-PM}{QP} = -\sin \theta ;$$

$$\cos (180^{\circ} + \theta) = \frac{ON}{OQ} = \frac{-OM}{OP} = -\cos \theta$$
;

$$\tan (180^{\circ} + \theta) = \frac{QN}{ON} = \frac{-PM}{-OM} = \tan \theta ;$$

$$\cot (150^{\circ} + \theta) = \frac{ON}{QN} = \frac{-OM}{-PM} = \cot \theta ;$$

coses 
$$(180)' + \theta) = \frac{QQ}{QN} = \frac{QP}{PM} = -\csc\theta$$
.

#### 'डेमार्ज्न :

$$\sin 240^\circ = \sin (140^\circ + 60^\circ) = -\sin 60^\circ$$

$$\cos 240^\circ = \cos (150)^\circ + (60)^\circ = -\cos 60^\circ$$

$$\tan 240^\circ = \tan (180^\circ + 60^\circ) = \tan 60^\circ$$
,

# 5·7. 270° – θ প্রবং θ কোণাব্যয়ের কৈকোণামিতিক অনুশাতের সম্পর্ক।

$$\sin (270^{\circ} - \theta) = \sin [180^{\circ} + (90^{\circ} - \theta)]$$

$$= -\sin (90^{\circ} - \theta) = -\cos \theta;$$

$$\cos (270^{\circ} - \theta) = \cos [180^{\circ} + (90^{\circ} - \theta)]$$

$$= -\cos (90^{\circ} - \theta) = -\sin \theta;$$

$$\tan (270^{\circ} - \theta) = \tan [180^{\circ} + (90^{\circ} - \theta)]$$

$$= \tan (90^{\circ} - \theta) = \cot \theta;$$

$$\cot (270^{\circ} - \theta) = \cot [180^{\circ} + (90^{\circ} - \theta)]$$

$$= \cot (90^{\circ} - \theta) = \tan \theta;$$

$$\sec (270^{\circ} - \theta) = \sec [180^{\circ} + (90^{\circ} - \theta)]$$

$$= -\sec (90^{\circ} - \theta) = -\csc \theta;$$

$$\csc (270^{\circ} - \theta) = \csc (90^{\circ} - \theta) = -\sec \theta.$$

#### उमारुत्र :

5·8. 270°+০ এবং ৫ কোণ্ডারের ব্রৈকোণ্ডিকিক অনুসাতের সম্পর্ক।

$$\sin (270^{\circ} + \theta) = \sin [180^{\circ} + (90^{\circ} + \theta)]$$

$$= -\sin (90^{\circ} + \theta) = -\cos \theta;$$

$$\cos (270^{\circ} + \theta) = \cos [180^{\circ} + (90^{\circ} + \theta)]$$

$$= -\cos (90^{\circ} + \theta) = -(-\sin \theta) = \sin \theta;$$

$$\tan (270^{\circ} + \theta) = \tan [180^{\circ} + (90^{\circ} + \theta)]$$

$$= \tan (90^{\circ} + \theta) = -\cot \theta;$$

$$\cot (270^{\circ} + \theta) = \cot [180^{\circ} + (90^{\circ} + \theta)]$$

$$= \cot (90^{\circ} + \theta) = -\tan \theta;$$

$$\sec (270^{\circ} + \theta) = \sec [180^{\circ} + (90^{\circ} + \theta)]$$

$$= -\sec (90^{\circ} + \theta) = -\sec \theta;$$

$$\cos \cot (270^{\circ} + \theta) = \csc (180^{\circ} + (90^{\circ} + \theta))$$

$$= -\csc (90^{\circ} + \theta) = -\sec \theta.$$

### উদাহরণ ঃ

$$\sin 315^{\circ} = \sin (270^{\circ} + 45^{\circ}) = -\cos 45^{\circ},$$
  
 $\cos 315^{\circ} = \cos (270^{\circ} + 45^{\circ}) = \sin 45^{\circ},$   
 $\tan 315^{\circ} = \tan (270^{\circ} + 45^{\circ}) = -\cot 45^{\circ},$   
 $201\pi$ 

## 5°9. 360° - ৫ এবং ৫ কোণদ্বরের ত্রৈকোণমিতিক অনুপাতের সম্পর্ক।

(360° – θ)-কে {180° + 180° – θ} আকারে লিখিয়া সম্পূরক কোণের স্ত্র অন্ত্যারে উহার অন্ত্রপাতগুলি সহজেই নির্ণয় করা যায়। জ্যামিতিক নিয়মে (360° – θ)-এর অন্ত্রপাত নিম্নরূপে নির্ণয় করা যায়:—একটি ঘূর্ণ্যমান রেখা θ কোণ ঘূরিয়া তিP



অবস্থান গ্রহণ করিল; ফলে  $\angle XOP = \theta$ ; আবার অপর একটি সমান দৈর্ঘ্য-বিশিষ্ট ঘূর্ণ্যমান রেখা  $\overrightarrow{OX}$  হইতে আরম্ভ করিয়া O বিন্দুর চতুর্দিকে একবার প্রদক্ষিণ করিয়া  $\overrightarrow{OX}$ -এ আসিয়া মিশিল এবং তাহার পর বিপরীত দিকে  $\theta$  কোণ ঘূরিয়া  $\overrightarrow{OQ}$  অবস্থান গ্রহণ করিল। তাহা হইলে  $\angle XOQ = 360^\circ - \theta$ , এবং ঘূর্ণ্যমান রেখা  $\overrightarrow{OQ}$   $(-\theta)$  অথবা  $(360^\circ - \theta)$ 

খুরিলে, একই স্থানে গিয়া পড়ে। স্বতরাং, উভয় কোণের ত্রৈকোণমিতিক অন্পাত একই হইবে।

$$\sin (360^{\circ} - \theta) = \sin (-\theta) = -\sin \theta ;$$

$$\cos (360^{\circ} - \theta) = \cos (-\theta) = \cos \theta ;$$

$$\tan (360^{\circ} - \theta) = \tan (-\theta) = -\tan \theta ;$$

$$\cot (360^{\circ} - \theta) = \cot (-\theta) = -\cot \theta ;$$

$$\sec (360^{\circ} - \theta) = \sec (-\theta) = \sec \theta ;$$

$$\csc (360^{\circ} - \theta) = \csc (-\theta) = -\csc \theta .$$

### উদাহরণ ঃ

$$\sin 315^{\circ} = \sin (360^{\circ} - 45^{\circ}) = -\sin 45^{\circ}$$
.  
 $\cos 315^{\circ} = \cos (360^{\circ} - 45^{\circ}) = \cos 45^{\circ}$ .  
 $\tan 315^{\circ} = \tan (360^{\circ} - 45^{\circ}) = -\tan 45^{\circ}$ .  
 $\cot 315^{\circ} = \cot (360^{\circ} - 45^{\circ}) = -\cot 45^{\circ}$ .  
 $\sec 315^{\circ} = \sec (360^{\circ} - 45^{\circ}) = \sec 45^{\circ}$ .  
 $\csc 315^{\circ} = \csc (360^{\circ} - 45^{\circ}) = -\csc 45^{\circ}$ .

 $5\cdot 10.~360^{\circ} + heta$  এবং heta কোণদ্বয়ের ত্রৈকোণমিতিক অনুসাতের সম্পর্ক।

(360°+  $\theta$ ) কোণকে  $\{180°+(180°+\theta)\}$  রূপে লিথিয়া সম্পূরক কোণের স্থত দারা অনারাদে উহার অমুপাত্দমূহ নির্ণয় করা যায়। নিমে জ্যামিতিক নিয়মে উহার অমুপাতগুলি নির্ণয় করা হইতেছে।

একটি ঘূর্ণ্যমান রেখা ৪ কোণ ঘূরিয়া OP অবস্থান গ্রহণ করিল; ফলে

∠xop= । জাবার এই ঘ্র্ণ্যমান রেখাই

op অবস্থান হইতে ঘুরিতে আরম্ভ করিয়া,
o বিন্দুর চতুর্দিকে একবার প্রদক্ষিণ করিয়।
পুনরায় op অবস্থানে প্রত্যাবর্তন করিল;
তাহা হইলে এই ঘ্র্ণনের পরে ∠xop-এর
পরিমাণ 360°+ । হইল।



স্তরাং, ঘ্র্নান রেখা (360°+)। স্থবা । ধ্রিলে একই স্থানে গিয়া পড়ে।

অতএব, উভয়ের ত্রৈকোণমিতিক অমুপাত একই।

$$\sin (360^\circ + \theta) = \sin \theta : \cos (360^\circ + \theta) = \cos \theta ;$$

$$\tan (360^\circ + \theta) = \tan \theta ; \cot (360^\circ + \theta) = \cot \theta ;$$

$$\sec (360^\circ + \theta) = \sec \theta ; \csc (360^\circ + \theta) = \csc \theta.$$

### উদাহরণ ঃ

$$\sin 390^\circ = \sin (360^\circ + 30^\circ) = \sin 30^\circ,$$
  
 $\cos 390^\circ = \cos (360^\circ + 30^\circ) = \cos 30^\circ,$   
 $\tan 390^\circ = \tan (360^\circ + 30^\circ) = \tan 30^\circ,$ 

5°11. 5'10. (i)-এ যদি ঘূর্ণ্যান রেখা  $\theta$  কোণ ঘূরিয়া যে-কোনও পাদে তিল-ভে অবস্থান করে এবং পরে তিল অবস্থান ইইতে ঘূরিতে আরম্ভ করিয়া ০-বিন্দুর চতুর্দিকে একবার, ছইবার, তিনবার ইত্যাদি করিয়া পূর্ণসংখ্যকবার ঘূরিয়া আদে, তবে 360° +  $\theta$ ,  $2 \times 360^\circ + \theta$ ,  $3 \times 360^\circ + \theta$ , ইত্যাদি পরিমাণের কোণ উৎপন্ন করিয়া পুনরায় তিল-ভে অবস্থান করে। অভএব,  $(360^\circ + \theta)$ ,  $(2 \times 360^\circ + \theta)$ ,  $(3 \times 360^\circ + \theta)$ , ইত্যাদি কোণসমূহের এবং  $\theta$  কোণের ত্রৈকোণমিতিক অন্থণাত একই হইবে; অর্থাৎ  $360^\circ$ -এর যে-কোন পূর্ণসংখ্যক গুণ, যে-কোন কোণের পরিমাণের সহিত যোগ করিলে, অথবা যে-কোন কোণের পরিমাণ হইতে বিরোগ করিলে প্রাপ্ত কোণের ত্রেকোণমিতিক অন্থণাতগুলি মূলকোণের অন্থণাতের সমান হইবে।

**अमृजिकांख 1.** १ ८ किं प्रभाषाक वा अवाद्यक भूविमःथ्या इंडेरन,

 $(n.360^{\circ}\pm\theta)$  বা  $(2n\pi+\theta)$  কোণের ত্রৈকোণমিভিক অম্পাতগুলি  $\pm\theta$  কোণের অম্পাতগুলির সমান হইবে।

স্বাধি 
$$\sin(2n\pi \pm \theta) = \sin(\pm \theta)$$
;  $\cos(2n\pi \pm \theta) = \cos(\pm \theta)$ ;  $\tan(2n\pi \pm \theta) = \tan(\pm \theta)$ ; ইত্যাদি।

অনুসিদ্ধান্ত 2. 5'10 এবা 5'11 অক্তেদ্দ্য চইতে ইচ' স্পষ্টই প্রভীয়মান ইয় যে, যে-কোন মান-বিশ্বি কোণের বেকোণিয়াতক অঞ্চপাত, 0° হইতে 45°-এর মধ্যস্থ কোণের ত্রৈকোণ্যিতিক অঞ্চপাতরপে প্রকাশ করা যায়।

 $sin 1320^{\circ} = sin [3 \times 360^{\circ} + 240^{\circ}] \\
= sin 240^{\circ} \\
- sin (180^{\circ} + 60^{\circ}) = -sin 60^{\circ} - cos 30^{\circ}; \\
cos (-1230^{\circ}) = cos 1230^{\circ} \cdot cos (3 \times 360^{\circ} + 150^{\circ}) \\
- cos 150^{\circ} = cos (180^{\circ} - 30^{\circ}) = -cos 30^{\circ}; \\
tan 1760^{\circ} = tan (4 \times 360^{\circ} + 320^{\circ}) \\
- tan 320^{\circ} = tan (360^{\circ} - 40^{\circ}) \\
= tan (-40^{\circ}) = -tan 40^{\circ}; \\
cosec (-1460^{\circ}) = -cosec 1460^{\circ} \\
= -cosec (4 \times 360^{\circ} + 20^{\circ}) \\
= -cosec 20^{\circ};$ 

## 512. ভিজের ভার্নাভা (Ambiguity of signs) (

আমারা দেখিয়া : যে, ৪-এর যে কান মানে

 $\sin^2\theta + \cos^2\theta = 1$ , so  $\theta = 1 + \tan^2\theta$ ,  $\csc^2\theta = 1 + \cot^2\theta$ .

$$\cos \theta = \pm \sqrt{1 + \cot^2 \theta}, \quad \sec \theta = \pm \sqrt{1 + \cot^2 \theta},$$

$$\cos \theta = \pm \sqrt{1 + \cot^2 \theta}.$$

া । ১০০ ০ বর মান সেওমা পর্কেলে, ০০১ ০-৭র মান সুইটি চইবে— একটি ধনাত্মক, একটি ধণাত্মক।

কোন পালে অব্দিত জানলৈ প্রতে চিজটি নিশ্ম করা যায়। অফরপে

থিতীয় ও ছাতীয় করাটি প্রেশ্বের সম্যোধ্যনকল চিতের হ,গতিং দেবা দিবে, তথাত্ব
অক্তর্জভাবে সমাধান করিছে চটবে।

।

यत्न कत, sin 126° 53'-1.

া  $126^\circ$  53', খিতীয় পাদে অব্ভিত্ত ; ... ইকার cosine-এর মান ঝণাখ্যক হুইবে ; ...  $\cos 126^\circ$  53'  $= \sqrt{1-18} = -8$ .

आनात cot 126° 53'-इद भान क्या ६क नायश,

$$\cot 126^{\circ} 53' = -\sqrt{\cos^2 126^{\circ} 53 - 1}$$
$$= -\sqrt{(\frac{5}{2})^6 - 1} = -\sqrt{\frac{3}{26}} = -\frac{\pi}{4}.$$

5°13. 0°, 30, 45°, 60° এনং 90°-এর বৈর্কোণমিভিক অনুস্থাতের সাভাষ্ট্যে করেক্টি বিশেষ কোণের বৈর্কোপ-মিভিক অনুস্থাতের মান নির্ণিয়।

$$\sin 120^\circ - \sin (150^\circ - 60^\circ) - \sin 60^\circ - \frac{3}{2}$$
;  
 $\cos 120^\circ - \cos (150^\circ - 60^\circ) - -\cos 60^\circ - -\frac{1}{2}$ ;  
 $\tan 120^\circ - \tan (150^\circ - 60^\circ) - -\tan 60^\circ - -\frac{1}{2}$ ;  
 $\cot 150^\circ - \sin (150^\circ - 30^\circ) - \sin 30^\circ - \frac{1}{2}$ ;

$$\cos 150^\circ = \cos (180^\circ - 30^\circ) = -\cos 30^\circ = -\frac{3}{2}$$

$$\sin 180^\circ - \sin (180^\circ - 0^\circ) - \sin 0^\circ - 0$$
;

$$\cos 180^{\circ} = \cos (180^{\circ} - 0^{\circ}) = -\cos 0^{\circ} = -1$$
.

$$\sin 270^{\circ} - \sin (180^{\circ} + 90^{\circ}) = -\sin 90^{\circ} - -1$$
;

#### উদাহরণমালা

#### छमा. 1. ध्यान कर त्व,

(i) 
$$\cos (-1305)^\circ = -\frac{1}{\sqrt{2}}$$
. (ii)  $\tan 840^\circ = -\sqrt{3}$ .

(i) 
$$\cos (-1305^\circ) = \cos 1305^\circ = \cos (3 \times 360^\circ + 225^\circ) = \cos 225^\circ$$
  
=  $\cos (180^\circ + 45^\circ) = -\cos 45^\circ = -\frac{1}{2}$ .

(ii) 
$$\tan 840^\circ = \tan (2 \times 360^\circ + 120^\circ) = \tan 120^\circ$$
  
=  $\tan (180^\circ - 60^\circ) = -\tan 60^\circ = -\sqrt{3}$ .

উদা. 2. cosec 202° 37' = - 1/8 হইলে, cos 202° 37' এবং cot 202° 37-এর মান নির্ণয় কর।

202° 37' (=180°+22° 37') কোণটি তৃতীয় পাদে অবস্থিত বলিয়া cos 202° 37' ঝণাস্মক এবং cot 202° 37' ধনাস্মক।

উদা. 3. প্রমাণ কর যে,

 $\sin^2 60^\circ + \cos^2 150^\circ + \tan^2 120^\circ + \cos 180^\circ - \tan 135^\circ = 4\frac{1}{2}$ .

ৰাম পক্ষ = 
$$\left(\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 + (-\sqrt{3})^2 + (-1) - (-1)$$
  
=  $\frac{3}{4} + \frac{3}{4} + 3 - 1 + 1$   
=  $4\frac{1}{2}$ .

উদা. 4.  $\sin (-1230^{\circ}) - \cos \left\{ (2n+1)n + \frac{n}{3} \right\}$ -এর মান নির্ণয় কর।

প্রাণি = 
$$-\sin 1230^{\circ} - \cos\left(2n\pi + \pi + \frac{\pi}{3}\right)$$
  
=  $-\sin (3 \times 360^{\circ} + 150^{\circ}) - \cos\left(\pi + \frac{\pi}{3}\right)$   
=  $-\sin 150^{\circ} + \cos\frac{\pi}{3}$   
=  $-\sin (180^{\circ} - 30^{\circ}) + \cos\frac{\pi}{3}$   
=  $-\sin 30^{\circ} + \cos\frac{\pi}{3}$   
=  $-\frac{1}{3} + \frac{1}{2} = 0$ .

**উদ**া. 5. n একটি পূর্ণসংখ্যা হইলে,  $an\left\{rac{n\pi}{2}+(-1)^nrac{\pi}{4}
ight\}$ -এর মান নির্ণয়

(i) মনে কর, n=একটি যুগাসংখ্যা = 2m.

.. প্রদের রাশি = 
$$\tan\left(m\pi + \frac{\pi}{4}\right)$$
 বেছেছু  $(-1)^{2m} = +1$ .

এখন, m যুগাসংখ্যা হইলে,  $m\pi+rac{\pi}{4}$  প্রথম পাদে অবস্থিত ;

এখন m বিযুগাদংখ্যা ছইলে,  $m\pi + rac{\pi}{4}$  তৃতীয় পাদে অবস্থিত।

... উভয় কেবেই 
$$\tan\left(m\pi + \frac{\pi}{4}\right) = 1$$
.

(ii) মনে কর,  $n = (3 \pi \pi)^{n} = 2m + 1$ .

ে প্ৰদেশ = 
$$\tan \left( m\pi + \frac{\pi}{2} - \frac{\pi}{4} \right)$$
 [ :  $(-1)^{2m+1} = -1$  ] =  $\tan \left( \frac{\pi}{2} - \frac{\pi}{4} \right) = \cot \frac{\pi}{4} = 1$ .

উদা. 6. প্রমাণ কর যে,

$$\frac{\sin 250^{\circ} + \tan 290^{\circ}}{\cot 200^{\circ} + \cos 340^{\circ}} = -1.$$

বাম পক্ষের লব = sin (180° + 70°) + tan (270° + 20°) = - sin 70° - cot 20°;

এবং বাম পক্ষের হর = cot (180° + 20°) + cos (270° + 70°) = cot 20° + sin 70°;

:. বাম পক = 
$$\frac{-(\sin 70^{\circ} + \cot 20^{\circ})}{(\sin 70^{\circ} + \cot 20^{\circ})} = -1$$
.

উদা. 7.  $an \theta = -\sqrt{3}$  এবং  $0^\circ < \theta < 360^\circ$  হইলে,  $\theta$ -এর মান নির্ণয় কর।

$$\tan \theta = -\sqrt{3} = -\tan 60^{\circ} = \tan (180^{\circ} - 60^{\circ}),$$

অথবা, tan (360° - 60°);

∴ θ=120° ₹1 300°.

উদা 8.  $\cos \theta = -\frac{1}{2}$  এবং  $450^\circ < \theta < 540^\circ$  হইলে,  $\theta$ -এর মান নির্ণয় কর।

$$\cos \theta = -\frac{1}{3} = -\cos 60^{\circ} = \cos (180^{\circ} - 60^{\circ})$$
$$= \cos (360^{\circ} + 180^{\circ} - 60^{\circ}) = \cos 480^{\circ};$$
$$\therefore \theta = 480^{\circ}.$$

উদা. 9.  $2\sin^2\theta + 3\cos\theta = 0$  এবং  $0^\circ < \theta < 360^\circ$  ছইলে,  $\theta$ -এর মান নির্ণয় কর।

 $2 \sin^2 \theta + 3 \cos \theta = 0$ .

বা,  $(\cos\theta-2)(2\cos\theta+1)=0$ ; কিন্তু  $\cos\theta$  কথনও 1 অপেকা বড় হইতে পারে না।

ende tel la mara la mara de la mina de la mina de la filia de la mina de la mina de la filia de la mina del mina de la mina della mina del

CT - TO THE METER AND GIVE

#### श्राक्रामा 5

नाधान कर त्य,

6. 
$$\cot \frac{17n}{3} - \tan \frac{17n}{3} = \frac{2\sqrt{3}}{3}$$

less than 45") !

26.  $3 \tan \theta = 4$  এবং  $180^{\circ} < A < 270^{\circ}$  হইলে, প্রমাণ কর খে,  $2 \cot \theta - 5 \cos \theta + \sin \theta = 3\frac{\pi}{10}$ .

যদি A, B, C কোন ব্রিভূজের তিনটি কোণ হয়, প্রমাণ কর গে (If A, B, C are the three angles of a triangle, prove that),

- 27. tan A = tan B + tan C.
- 28.  $\cot A \tan (B+C) \cos A \sec (B+C) = 0$
- 29.  $\sin A \cos (B+C) + \cos A \sin (B+C) = 0$ .
- 30.  $\sin (B+C) \sin A \cos (B+C) \cos A = 1$ .
- 31. tan A + tan B + tan C = tan A tan B tan C.
- 32.  $\tan (B+C) + \tan (C+A) + \tan (A+B) \\ \tan (\pi-A) + \tan (2\pi-B) + \tan (3\pi-C) = 1.$
- 33. প্রমাণ কর:  $\cos^2(90^\circ + A) + \sin^2(270^\circ A)$   $-\cot(90^\circ + A)\cot(270^\circ A) = \sec^2 A$
- 34. ABCD একটি চতু হুজ, প্রমাণ কর বে,  $\tan \frac{1}{2} \left( A + B \right) + \tan \frac{1}{2} \left( C + D \right) = 0.$
- 35. ABCD একটি বৃত্তস্থ চতু ঠ্জ, প্রমাণ কর যে,
  (i) cos A + cos B + cos C + cos D = 0.
  - (ii) cot A + cot B + cot C + cot D = 0.

 $0^{\circ} < \theta < 360^{\circ}$  হইলে, নিম্নলিখিত স্মীকরণগুলি হইতে  $\theta$ -এর মান নিগ্য কর :

36.  $\cos \theta + \sqrt{3} \sin \theta = 2$ .

[ C. U. 1936 ]

- 37.  $\sin \theta = \cos \theta$ .
- 38.  $2 \cos \theta + 5 \tan \theta = 4 \sec \theta$ .
- 39.  $\cos^2\theta \sin^2\theta = 1$ .
- 40.  $3(\sec^2\theta + \tan^2\theta) = 5$ .
- 41.  $\cot \theta + \tan \theta = 2 \sec \theta$ .
- 42. প্রমাণ কর যে, x=y হইলেই সমীকরণ  $\sec^2\theta=\frac{4xy}{(x+y)^2}$  সম্ভব এবং x-এর যে-কোন বাস্তব মানের জন্ম  $\cos\theta=x+\frac{1}{x}$  অসম্ভব।
- . 43. n যে-কোন পূৰ্ণসংখ্যা হইলে,  $\sin\left\{n\pi+(-1)^n\frac{\pi}{3}\right\}$ -এর মান নির্ণয় কর :

- 44. m-এর যে-কোন পূর্বদংখ্যক মানের জন্মই  $\cos\left(2mn\pm\frac{\pi}{3}\right)$  এবং  $\tan\left(mn+\frac{\pi}{6}\right)$ -এর প্রত্যেকের একই মান থাকিবে।
- 45. A+B+C=180° এবং cos A = cos B cos C হইলে, প্রমাণ কর যে, cot B cot C= 1/2.
- 5.14. বৈলকোণ মিতিক অভেদাবলী: তিন বা ততোধিক কোণ সম্বৰ্জ হইলে, বিশেষ করিয়া পূৰ্ব বা সম্প্ৰক সম্পর্কিত হইলে ক্ষেকটি অত্যন্ত প্রয়োজনীয় অভেদ পাওৱা যায়। অভেদের উভয়পার্যন্থ রাশিষ্মের সমতা প্রতিপন্ন করিতে পারিলেই অভেদটি প্রতিষ্ঠিত হয়। এ-সমন্ত ক্ষেত্রে পূর্বক বা সম্প্রক কোণের ধর্ম অভ্যারে যথাযোগ্য হক্ত প্রয়োগ করিতে হয়। উদাহরণম্বরূপ,

তিনটি কোণ A, B ও C যদি এমন হয় বে,

অভএব, (i) sin (B + C) = sin (180° - A) = sin A.

(iii)  $\tan (B + C) = \tan (180^{\circ} - A) = -\tan A$ ;

অথবা,  $\tan A = -\tan (B + C)$ ; ইত্যাদি !

$$\therefore \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}.$$

:. 
$$\frac{B}{2} + \frac{C}{2} = 90^{\circ} - \frac{A}{2}$$
, ইত্যাদি 1

অত্এব (i) 
$$\sin\left(\frac{\mathbf{B}}{2} + \frac{\mathbf{C}}{2}\right) = \sin\left(90^{\circ} - \frac{\mathbf{A}}{2}\right) = \cos\frac{\mathbf{A}}{2}$$
;

অথবা,  $\cos\frac{\mathbf{A}}{2} = \sin\left(\frac{\mathbf{B}}{2} + \frac{\mathbf{C}}{2}\right)$ .

(ii) 
$$\cos\left(\frac{B}{2} + \frac{C}{2}\right) = \cos\left(90^{\circ} - \frac{A}{2}\right) = \sin\frac{A}{2}$$
,
জ্বাব,,  $\sin\frac{A}{2} = \cos\left(\frac{B}{2} + \frac{C}{2}\right)$ ;

(iii) 
$$\tan\left(\frac{B}{2} + \frac{C}{2}\right) = \tan\left(90^{\circ} - \frac{A}{2}\right) = \cot\frac{A}{2}$$
,

অধবা,  $\cot\frac{A}{2} = \tan\left(\frac{B}{2} + \frac{C}{2}\right)$ ,

অধবা,  $\tan\frac{A}{2} = \cot\left(\frac{B}{2} + \frac{C}{2}\right)$ ,

ইত্যাদি।

#### উদ্যহরণমালা

= 2 sin A cos A + 2 sin 
$$(\pi - A)$$
 cos (B - C)

$$= 2 \sin A [\cos (B - C) + \cos A]$$

$$= 2 \sin A [\cos (B - C) + \cos {\pi - (B + C)}]$$

$$= 2 \sin A [\cos (B - C) - \cos (B + C)]$$

 $\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C$ .

$$= -1 + 2 \cos^2 A + 2 \cos (\pi - A) \cos (B - C)$$

$$=-1+2\cos^2 A - 2\cos A\cos (B-C)$$

= 
$$-1 - 2 \cos A [\cos (B - C) - \cos {\pi - (B + C)}]$$

$$= -1 - 2 \cos A [\cos (B - C) + \cos (B + C)]$$

$$\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$

বাম পক্ষ = 
$$2 \sin \frac{A}{2} \cos \frac{A}{2} + 2 \sin \left(\frac{B}{2} + \frac{C}{2}\right) \cos \left(\frac{B}{2} - \frac{C}{2}\right)$$
  
=  $2 \sin \frac{A}{2} \cos \frac{A}{2} + 2 \sin \left(\frac{\pi}{2} - \frac{A}{2}\right) \cos \left(\frac{B}{2} - \frac{C}{2}\right)$ 

পূরক, স্পূরক এবং যে-কোন কোণের অনুপাত

$$= 2 \sin \frac{A}{2} \cos \frac{A}{2} + 2 \cos \frac{A}{2} \cos \left(\frac{B}{2} - \frac{C}{2}\right)$$

$$= 2 \cos \frac{A}{2} \left[\sin \frac{A}{2} + \cos \left(\frac{B}{2} - \frac{C}{2}\right)\right]$$

$$= 2 \cos \frac{A}{2} \left[\sin \left\{\frac{\pi}{2} - \left(\frac{B}{2} + \frac{C}{2}\right)\right\} + \cos \left(\frac{B}{2} - \frac{C}{2}\right)\right]$$

$$= 2 \cos \frac{A}{2} \left[\cos \left(\frac{B}{2} + \frac{C}{2}\right) + \cos \left(\frac{B}{2} - \frac{C}{2}\right)\right]$$

$$= 2 \cos \frac{A}{2} \cdot 2 \cos \frac{B}{2} \cos \frac{C}{2} = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}.$$

উদা. 4. বদি  $A+B+C=\pi$ , প্রমাণ কর যে,

$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

ৰাম পাই = 
$$1 - 2 \sin^2 \frac{A}{2} + 2 \cos \left( \frac{B}{2} + \frac{C}{2} \right) \cos \left( \frac{B}{2} - \frac{C}{2} \right)$$

$$= 1 - 2 \sin^2 \frac{A}{2} + 2 \cos \left( \frac{\pi}{2} - \frac{A}{2} \right) \cos \left( \frac{B}{2} - \frac{C}{2} \right)$$

$$= 1 - 2 \sin^2 \frac{A}{2} + 2 \sin \frac{A}{2} \cos \left( \frac{B}{2} - \frac{C}{2} \right)$$

$$= 1 + 2 \sin \frac{A}{2} \left[ \cos \left( \frac{B}{2} - \frac{C}{2} \right) - \sin \frac{A}{2} \right]$$

$$= 1 + 2 \sin \frac{A}{2} \left[ \cos \left( \frac{B}{2} - \frac{C}{2} \right) \left\{ - \cos \left( \frac{B}{2} + \frac{C}{2} \right) \right\} \right]$$

$$= 1 + 2 \sin \frac{A}{2} \cdot 2 \sin \frac{B}{2} \sin \frac{C}{2}$$

$$= 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}.$$

উদা. 5. A + B + C = π হইলে, প্রমাণ কর যে.

sin<sup>2</sup>A = cos<sup>2</sup>B + cos<sup>2</sup>C + 2 cos A cos B cos C.

বাম পক = 
$$\sin^2 \{\pi - (B+C)\}$$
  
=  $\sin^2 (B+C)$   
=  $(\sin B \cos C + \cos B \sin C)^2$ 

 $= \sin^2 B \cos^2 C + \cos^2 B \sin^2 C + 2 \sin B \cos C \times \cos B \sin C$ 

$$=(1-\cos^2 B)\cos^2 C + \cos^2 B_0(1-\cos^2 C)$$

+ 2 sin B sin C cos B cos C

 $=\cos^2C + \cos^2B - 2\cos^2B\cos^2C + 2\sin B\sin C\cos B\cos C$ 

 $=\cos^2B+\cos^2C-2\cos B\cos C$ 

 $\times [\cos B \cos C - \sin B \sin C]$ 

 $=\cos^2B + \cos^2C - 2\cos B\cos C\cos (B+C)$ 

 $=\cos^2 B + \cos^2 C - 2 \cos B \cos C \cos (\pi - A)$ 

 $=\cos^2B + \cos^2C - 2\cos B\cos C(-\cos A)$ 

 $=\cos^{2}B + \cos^{2}C + 2\cos A\cos B\cos C$ 

উদা. 6. A+B+C=π হইলে, প্রমাণ কর যে,

 $\sin^2\frac{A}{2} + \sin^2\frac{B}{2} - \sin^2\frac{C}{2} = 1 - 2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}$ 

기계 위해 = 
$$1 - \cos^2 \frac{A}{2} + \sin \left( \frac{B}{2} + \frac{C}{2} \right) \sin \left( \frac{B}{2} - \frac{C}{2} \right)$$
  
=  $1 - \cos^2 \frac{A}{2} + \sin \left( \frac{\pi}{2} - \frac{A}{2} \right) \sin \left( \frac{B}{2} - \frac{C}{2} \right)$   
=  $1 - \cos^2 \frac{A}{2} + \cos \frac{A}{2} \sin \left( \frac{B}{2} - \frac{C}{2} \right)$   
=  $1 - \cos \frac{A}{2} \left[ \cos \frac{A}{2} - \sin \left( \frac{B}{2} - \frac{C}{2} \right) \right]$   
=  $1 - \cos \frac{A}{2} \left[ \sin \left( \frac{B}{2} + \frac{C}{2} \right) - \sin \left( \frac{B}{2} - \frac{C}{2} \right) \right]$ 

$$=1-\cos\frac{A}{2}\cdot 2\cos\frac{B}{2}\sin\frac{C}{2}$$
$$=1-2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}.$$

উদা. 7. যদি  $A+B+C=\pi$  হয়, প্রমাণ কর যে,

 $\tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} + \tan\frac{A}{2}\tan\frac{B}{2} = 1.$ 

$$\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2}$$

$$\therefore \frac{\mathbf{B}}{2} + \frac{\mathbf{C}}{2} = \frac{\pi}{2} - \frac{\mathbf{A}}{2}.$$

$$\therefore \tan \left(\frac{B}{2} + \frac{C}{2}\right) = \tan \left(\frac{\pi}{2} - \frac{A}{2}\right) = \cot \frac{A}{2};$$

$$\therefore \frac{\tan\frac{B}{2} + \tan\frac{C}{2}}{1 - \tan\frac{B}{2}\tan\frac{C}{2}} = \frac{1}{\tan\frac{A}{2}};$$

$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{A}{2} \tan \frac{C}{2} = 1 - \tan \frac{B}{2} \tan \frac{C}{2};$$

$$\tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1$$

$$\therefore \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1.$$

উপা. 8. যদি 
$$A+B+C=\pi$$
 হয়, প্রমাণ কর যে, 
$$\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}=4\cos\frac{\pi-A}{4}\cos\frac{\pi-B}{4}\cos\frac{\pi-C}{4}$$
$$=4\cos\frac{B+C}{4}\cos\frac{C+A}{4}\cos\frac{A+B}{4}.$$

ৰাম পক = 
$$\cos \frac{\pi}{2} + \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$
 ( :  $\cos \frac{\pi}{2} = 0$ )

=  $2 \cos \frac{\pi + A}{4} \cos \frac{\pi - A}{4} + 2 \cos \frac{B + C}{4} \cos \frac{B - C}{4}$ 

=  $2 \cos \frac{\pi + A}{4} \cos \frac{\pi - A}{4} + 2 \cos \frac{\pi - A}{4} \cos \frac{B - C}{4}$ 

=  $2 \cos \frac{\pi - A}{4} \left[ \cos \frac{\pi + A}{4} + \cos \frac{B - C}{4} \right]$ 

=  $2 \cos \frac{\pi - A}{4} \cdot 2 \cos \frac{\pi + A + B - C}{8} \cos \frac{\pi + A - B + C}{8}$ 

=  $4 \cos \frac{\pi - A}{4} \cdot \cos \frac{\pi + (\pi - C) - C}{8} \cos \frac{\pi + (\pi - B) - B}{8}$ 

=  $4 \cos \frac{\pi - A}{4} \cos \frac{\pi - C}{4} \cos \frac{\pi - B}{4}$ 

=  $4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}$ 

=  $4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}$ 

=  $4 \cos \frac{B + C}{4} \cos \frac{C + A}{4} \cos \frac{A + B}{4}$ . [ :  $\pi - A = B + C$ ,

উদা. 9. যদি A + B + C = 
$$\pi$$
 হয়, প্রমাণ কর যে, 
$$\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} = 1 + 4 \sin\frac{\pi - A}{4} \sin\frac{\pi - B}{4} \sin\frac{\pi - C}{4}$$
$$= 1 + 4 \sin\frac{B + C}{4} \sin\frac{C + A}{4} \sin\frac{A + B}{4}.$$

বাম প্শ = 
$$1 - \sin \frac{\pi}{2} + \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$
 ( :  $\sin \frac{\pi}{2} = 1$  )
$$= 1 - 2 \cos \frac{\pi + A}{4} \sin \frac{\pi - A}{4} + 2 \sin \frac{B + C}{4} \cos \frac{B - C}{4}$$

$$= 1 - 2 \cos \frac{\pi + A}{4} \sin \frac{\pi - A}{4} + 2 \sin \frac{\pi - A}{4} \cos \frac{B - C}{4}$$

$$= 1 + 2 \sin \frac{\pi - A}{4} \left[ \cos \frac{B - C}{4} - \cos \frac{\pi + A}{4} \right]$$

$$= 1 + 2 \sin \frac{\pi - A}{4} \cdot 2 \sin \frac{\pi + A + B - C}{8} \sin \frac{\pi + A - B + C}{8}$$

$$= 1 + 4 \sin \frac{\pi - A}{4} \sin \frac{\pi + (\pi - C) - C}{8} \sin \frac{\pi + (\pi - B) - B}{8}$$

$$= 1 + 4 \sin \frac{\pi - A}{4} \sin \frac{\pi - C}{4} \sin \frac{\pi - B}{4}$$

$$= 1 + 4 \sin \frac{\pi - A}{4} \sin \frac{\pi - B}{4} \sin \frac{\pi - C}{4}$$

$$= 1 + 4 \sin \frac{B + C}{4} \sin \frac{C + A}{4} \sin \frac{A + B}{4} \cdot \left[ : : \pi - A = B + C, \frac{B + C}{4} \right]$$

উদা. 10. যদি A + B + C = 2S হর, প্রমাণ কর যে,  $\cos^2 S + \cos^2 (S - A) + \cos^2 (S - B) + \cos^2 (S - C)$ = 2 + 2 cos A cos B cos C.

국 지 역  $= \cos^2 S + \cos^2 (S - A) + 1 - \sin^2 (S - B) + 1 - \sin^2 (S - C)$   $= 2 + [\cos^2 S - \sin^2 (S - B)] + [\cos^2 (S - A) - \sin^2 (S - C)]$   $= 2 + \cos \{S + (S - B)\} \cos \{S - (S - B)\}$   $+ \cos \{(S - A) + (S - C)\} \cos \{(S - A) - (S - C)\}$   $= 2 + \cos (2S - B) \cos B + \cos (2S - A - C) \cos (C - A)$   $= 2 + \cos (2S - B) \cos B + \cos (C - A)$   $= 2 + \cos B [\cos (2S - B) + \cos (C - A)]$   $= 2 + \cos B \cos C \cos A$  [  $\therefore 2S - B - C + A$   $= 2 + 2 \cos B \cos C \cos A$  [  $\therefore 2S - B - A = C$ ]  $= 2 + 2 \cos A \cos B \cos C$ .

উদা 11. যদি  $\alpha + \beta + \gamma + \delta = 2\pi$  হয়, প্রমাণ কর যে,  $\tan \alpha + \tan \beta + \tan \gamma + \tan \delta$  =  $\tan \alpha \tan \beta \tan \gamma \tan \delta$  ( $\cot \alpha + \cot \beta + \cot \gamma + \cot \delta$ ).

$$\alpha + \beta = 2\pi - (\gamma + \delta);$$

$$\therefore \tan (\alpha + \beta) = \tan [2\pi - (\gamma + \delta)]$$
$$= -\tan (\gamma + \delta);$$

$$\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -\frac{\tan \gamma + \tan \delta}{1 - \tan \gamma \tan \delta};$$

- $\therefore \tan \alpha + \tan \beta \tan \alpha \tan \gamma \tan \delta \tan \beta \tan \gamma \tan \delta$   $= -\tan \gamma \tan \delta + \tan \alpha \tan \beta \tan \gamma + \tan \alpha \tan \beta \tan \delta;$
- :.  $\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = \tan \beta \tan \gamma \tan \delta$   $+ \tan \alpha \tan \gamma \tan \delta + \tan \alpha \tan \beta \tan \delta + \tan \alpha \tan \beta \tan \gamma$  $= \tan \alpha \tan \beta \tan \gamma \tan \delta (\cot \alpha + \cot \beta + \cot \gamma + \cot \delta).$

উদা. 12. যদি A + B + C = n, হয়, প্রমাণ কর যে,

$$\cos \frac{\mathbf{A}}{2} \cos \frac{\mathbf{B} - \mathbf{C}}{2} + \cos \frac{\mathbf{B}}{2} \cos \frac{\mathbf{C} - \mathbf{A}}{2} + \cos \frac{\mathbf{C}}{2} \cos \frac{\mathbf{A} - \mathbf{B}}{2}$$

$$= \sin \mathbf{A} + \sin \mathbf{B} + \sin \mathbf{C}.$$

প্রথম পদ = 
$$\cos\left[\frac{\pi}{2} - \frac{B+C}{2}\right] \cos\frac{B-C}{2}$$
  
=  $\sin\frac{B+C}{2} \cos\frac{B-C}{2} = \frac{1}{2} \cdot 2 \sin\frac{B+C}{2} \cos\frac{B-C}{2}$   
=  $\frac{1}{2} (\sin B + \sin C)$ .

অন্তরণে দিতীয় পদ =  $\frac{1}{2}(\sin C + \sin A)$ এবং তৃতীয় পদ =  $\frac{1}{2}(\sin A + \sin B)$ .

∴ বাম পক = sin A + sin B + sin C.

উদা 13. যদি x + y + z = xyz হয়, প্রমাণ কর যে,

$$\frac{2x}{1-x^2} + \frac{2y}{1-y^2} + \frac{2z}{1-z^2} = \frac{2x}{1-x^2} \cdot \frac{2y}{1-y^2} \cdot \frac{2z}{1-z^2}$$

মনে কর,  $x = \tan A$ ,  $y = \tan B$ ,  $z = \tan C$ ,

.. tan A + tan B + tan C = tan A tan B tan C,

$$\therefore \tan A = -\frac{\tan B + \tan C}{1 - \tan B \tan C} = -\tan (B + C)$$
$$= \tan \left[\pi - (B + C)\right],$$

.. 
$$A = \pi - (B + C)$$
, ..  $A + B + C = \pi$ .

$$\therefore$$
 2A + 2B + 2C =  $2\pi$ ,  $\therefore$  2B + 2C =  $2\pi$  - 2A.

$$\therefore$$
 tan (2B + 2C) = tan (2 $\pi$  - 2A)

$$= - \tan 2A$$
,

$$\frac{\tan 2B + \tan 2C}{1 - \tan 2B \tan 2C} = -\tan 2A,$$

- ...  $\tan 2B + \tan 2C = -\tan 2A + \tan 2A \tan 2B \tan 2C$
- .. tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C.

$$\frac{2 \tan A}{1 - \tan^{9} A} + \frac{2 \tan B}{1 - \tan^{9} C} + \frac{2 \tan C}{1 - \tan^{9} C}$$

 $= \frac{2 \tan A}{1 - \tan^2 A} \frac{2 \tan B}{1 - \tan^2 C} \frac{2 \tan C}{1 - \tan^2 C}$ 

 $\therefore \frac{2r}{1-r^2} + \frac{2\eta}{1-\eta^2} + \frac{2z}{1-z^2} = \frac{2r}{1-r^2} \cdot \frac{2\eta}{1-\eta^2} \cdot \frac{2z}{1-z^2}$ 

#### প্রার্গালা 6

য A + B + C = π হর, প্রমাণ কর বে,

- 1. sin 2A + sin 2B sin 2C 4 cos A cos B sin C.
- 2. (0) 2A + (0) 2B cos 2C + 4 sin A sin B cos C = 1
- 3. cos 2A + cos 2B + cos 2C = 1 + 2 cos 2A cos 2B cos 2C.
- 4.  $\sin A + \sin B \sin C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$ .
- 5.  $\cos A + \cos B \cos C = 1 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} 1$ .
- 6. cos2A + cos2B cos2C = 1 2 sin A sm B cos C.
- 7.  $\sin^2 A + \sin^2 B \sin^2 C = 2 \sin A \sin B \cos C$
- 8. 1-2 sin A sin B cos C + cos 2C cos 2A + cos 2B
- 9. यमि A+B+C= x, প্রমাণ কর বে,

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C.

10. A + B + C = n হইলে, প্রমাণ কর বে,

tan A + tan B + tan C - tan A tan B tan C = 0.

11. A+B+C= क स्टेरन, अभाग कत त्य,

 $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1.$ 

- 12. cot B cot C + cot C cot A + cot A cot B = I.
- 13.  $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

14. 
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$
.

[O. U. 1948]

15. 
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

16. 
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi \cdot A}{4} \cos \frac{\pi \cdot B}{4} \cos \frac{\pi - C}{4}$$

17. 
$$\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = \frac{\sin \frac{A}{2}}{2} \cdot \frac{\sin \frac{B}{2}}{\sin \frac{A}{2}} \cdot \frac{\cos \frac{C}{2}}{\sin \frac{A}{2}} \cdot \frac{\cos \frac$$

18. 
$$\frac{\sin B + \sin C - \sin A}{\sin A + \sin B} + \frac{\cos A}{\sin C} = \tan \frac{B}{2} \tan \frac{C}{2}$$

19. 
$$\frac{1 + \cos A - \cos B + \cos C}{1 + \cos A} = \frac{B}{\cos C} = \frac{B}{2} \cot \frac{C}{2}$$

22. 
$$\frac{\tan A + \tan B + \tan C}{\sin A + \sin B} + \frac{2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{\cos A \cos B \cos C}$$

23. 
$$\tan \frac{A}{2} + \tan \frac{B+C}{2} = \sec \frac{A}{2} \sec \frac{B+C}{2}$$

- 24. Sin A CE B COS C CSIN B COS C COS A 4 SIN C COS A COS B

  = sin A sin B sin C.
- 25. cos A sin B sin C + cos B sin C sin A + cos C sin A sin B =1+cos A cos B cos C.
- 26. tan A + tat B + tan C, of A + cot B + det C; =1 + sec A sec B sec C.

27. 
$$\sin 5A = \sin 5B + \sin 5C = 4 \cos \frac{5A}{2} \cos \frac{5B}{2} \cos \frac{5C}{2}$$

28. sin 6A + sin 6B + sin 6C + 4 sin 3A sin 3B sin 3C.

29. sin\*A + sin\*B + sin\*C

= 
$$3 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} - \cos \frac{3A}{2} \cos \frac{3B}{2} \cos \frac{3C}{2}$$

30.  $\sin^4 A + \sin^4 B + \sin^4 C$ =  $\frac{8}{2} + 2 \cos A \cos B \cos C + \frac{1}{2} \cos 2A \cos 2B \cos 2C$ .

31.  $\sin (B + 2C) + \sin (C + 2A) + \sin (A + 2B)$ =  $4 \sin \frac{B - C}{2} \sin \frac{C - A}{2} \sin \frac{A - B}{2}$ 

32.  $\sin (B + C - A) + \sin (C + A - B) + \sin (A + B - C)$ = 4  $\sin A \sin B \sin C$ .

33.  $\tan \frac{A}{2} \tan \frac{B}{2} = \frac{n-1}{n+1}$ ,  $\tan \frac{C}{2} = \sin \left(A + \frac{C}{2}\right)$ .

34. (cot B + cot C)(cot C + cot A)(cot A + cot B)
= cosec A cosec B cosec C.

35.  $\sin \frac{A}{2} \cos \frac{B-C}{2} + \sin \frac{B}{2} \cos \frac{C-A}{2} + \sin \frac{C}{2} \cos \frac{A-B}{2}$   $= \cos A + \cos B + \cos C$ 

36.  $\tan (B+C-A) + \tan (C+A-B) + \tan (A+B-C)$ =  $\tan (B+C-A) \tan (C+A-B) \tan (A+B-C)$ .

यिन  $\alpha + \beta + \gamma = \frac{\pi}{2}$  হয়, প্রমাণ কর (य,

37.  $\tan \beta \tan \gamma + \tan \gamma \tan \alpha + \tan \alpha \tan \beta = 1$ .

38.  $\cot \alpha + \cot \beta + \cot \gamma = \cot \alpha \cot \beta \cot \gamma$ 

39.  $\frac{\cos \alpha + \sin \beta + \sin \gamma}{\sin \alpha + \cos \beta + \sin \gamma} = \frac{1 - \tan \frac{\alpha}{2}}{1 - \tan \frac{\beta}{2}}$ 

40.  $\cos(\alpha-\beta-\gamma)+\cos(\beta-\gamma-\alpha)+\cos(\gamma-\alpha-\beta)$ -4  $\cos\alpha\cos\beta\cos\gamma=0$ .

यि  $\alpha + \beta + \gamma = 2\pi$  इहा, श्रामां कद त्य,

41.  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2 \cos \alpha \cos \beta \cos \gamma = 1$ .

42.  $\sin^3 a + \sin^3 \beta + \sin^3 \gamma = 3 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$   $-\sin \frac{3\alpha}{2} \sin \frac{3\beta}{2} \sin \frac{3\gamma}{2}.$ 

A, B, C, D এकि हर्डू इंटबन हानि कि कान इटेंटन, खामान कर रम,

43.  $\frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D} = \tan A \tan B \tan C \tan D.$ 

44. cos A + cos B + cos C + cos D

$$= 4 \cos \frac{B+C}{2} \cos \frac{C+A}{2} \cos \frac{A+B}{2}$$

45. দেখাও যে,

ন-বঞ্জিত।

 $\cos^2 \theta + \cos^2 (a + \theta) - 2 \cos a \cos \theta \cos (a + \theta)$  রাশিমালাটি

যদি A+B+C= 2S হয়, প্রমাণ কর যে:

- 46.  $\sin (S-A) \sin (S-B) + \sin S \sin (S-C) = \sin A \sin B$ .
- 47.  $4 \sin S \sin (S A) \sin (S B) \sin (S C)$ =  $1 - \cos^2 A - \cos^2 B - \cos^2 C + 2 \cos A \cos B \cos C$ .
- 48.  $\sin (S A) + \sin (S B) + \sin (S C) \sin S$ =  $4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ .
- 49.  $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C$ = 1 + 4 \cos S \cos (S - A) \cos (S - B) \cos (S - C).

যদি  $\alpha + \beta + \gamma = 0$  হয়, প্রমাণ কর বে :

- **50.**  $\cos a + \cos \beta + \cos \gamma = 4 \cos \frac{a}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} 1.$
- 51.  $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 2(\sin \alpha + \sin \beta + \sin \gamma)$  $\times (1 + \cos \alpha + \cos \beta + \cos \gamma).$
- 52. যদি cos A + cos B + cos C= 0 হয়, প্রামাণ কর যে, cos 3A + cos 3B + cos 3C = 12 cos A cos B cos C.

[ ইনিড: 
$$\cos 3A = 4 \cos^8 A - 3 \cos A$$
. ]  $a+b+c=0$  ইবলৈ,  $a^8+b^8+c^8-3ahc$ .

53. যদি x + y + z = xyz হয়, প্রমাণ কর যে,  $3x - x^3 + 3y - y^3 + 3z - z^3 = 3x - x^3 \cdot 3y - y^3 \cdot 3z - z^5 + 1 - 3x^2 + 1 - 3x^$ 

#### ষ্ট্র ভাষ্যায়

# ব্রেকোণমিতিক অপেক্ষকের লেখ (Graphs of Trigonometrical Functions)

# 61. কোণের পরিমাণ-রক্ষির সহিত ত্রৈকোণমিতিক অনুপাতের পরিবর্তম।

০ বিন্দুর চারিদিকে আবর্তনশীল OP দরলরেখা ox-এর উপর অবস্থান হইতে ঘটির কাঁটার বিপরীত মৃথে 0° হইতে ক্রমশঃ 360° কোণ পর্যন্ত ঘ্রিয়া আসিলে



P বিন্দুর সঞ্চারপথ P<sub>1</sub> P<sub>2</sub> P<sub>3</sub> P<sub>4</sub> P<sub>5</sub> বৃত্তরেখায় শারিত হইবে।

O-কে কেন্দ্র করিয়া এবং ষে-কোন ব্যাসার্থ
লইয়া একটি বৃত্ত আঁক। P1, P2 ইত্যাদি ঘ্র্ণ্যমান
সরল রেয়া OP-এর বিভিন্ন অবস্থানে বৃত্তের সহিত
উহার ছেদবিন্দুসমূহ। স্পষ্টই বৃত্তের ব্যাসার্থ= OP1
= OP2 = OP3 = OP4 = OP5. OP-এর বিভিন্ন
অবস্থানে P1, P2 প্রভৃতি বিন্দু হইতে P1N11

P2N2, P3N3, P4N4, P5N5, OX-এর উৎর হম। ঐ সকল ক্ষেত্রে OP1, OP2, OP3, OP4, OP5 অভিস্কৃত্র ON1, ON2, ON3, ON4, ON5 দ্মিহিত বাহু এবং P1N1, P2N2, P3N3, P4N4, P5N5 হইবে বিপরীত বাহু।

### (a) কোণের sine-এর মানের পরিবর্তন :

Sine = जिल्ला । যথন ঘ্র্যমান দরল রেখাটি ox-এর সহিত মিলিয়া থাকে, তথন  $\angle xop = 0^\circ$  এবং অভিভূজ = বৃত্তের ব্যাসার্থ, কিন্তু লম্বের মান 0; স্থতরাং,  $\sin 0^\circ = 0$ . কোণ  $0^\circ$  হইতে  $90^\circ$  পর্যন্ত বাড়িতে থাকিলে, স্পষ্টই অভিভূজ সর্বদা ব্যাসার্থের সমান থাকে, কিন্তু চিত্রটি পরীক্ষা করিলে দেখা ঘাইবে,  $p_1N_1$ ,  $p_2N_2$  ক্রমেই বাড়িরা চলিবে; তাহা হইলে  $\angle xop = \theta$  মনে করিলে,  $\sin \theta$ -এর মানও  $\theta$ -এর ০° হইতে  $90^\circ$  মানের জন্ম ক্রমেই বাড়িরা চলিবে। যথন  $\theta = 90^\circ$  ইইবে, তথন অভিভূজ ও লম্ব সমান হইবে বলিরা  $\sin \theta = 1$  হইবে।  $\theta$  যথন  $90^\circ$  ইইতে বাডিরা  $180^\circ$  পর্যন্ত অপ্রসর হয়, তথন চিত্র হইতে দেখ যার, অভিভূজ  $op_3$  ব্যাসার্থের সমানই থাকে, কিন্তু লম্ব  $p_3N_3$  ক্রমেই কমিতে থাকে এবং  $\theta$  যথন  $p_3N_3$  ক্রমেই কমিতে থাকে এবং  $\theta$  যথন  $p_3N_3$  ত্রমেই ত্রমান  $p_3N_3$  ত্রমেই কমিতে থাকে এবং  $p_3N_3$  ত্রমেই ত্রমির তির্যা  $p_3N_3$  ত্রমেই কমিতে থাকে এবং  $p_3N_3$  ত্রমেই বিত্রমান  $p_3N_3$  ত্রমেই কমিতে থাকে এবং  $p_3N_3$  ত্রমের বিত্রমান  $p_3N_3$  ত্রমেই কমিতে থাকে এবং  $p_3N_3$  ত্রমেন বাড়িয়া  $p_3N_3$  ত্রমেন বাড়িয়া  $p_3N_3$ 

পাদে আদে, তথন অতিভুজ ধনা মুক থাকিবে, কিন্তু লম্ম ধণাত্মক হইবে; অতএব, তৃতীয় পাদে sin  $\theta$ -এর মান দবদাই ঋণাত্মক হইবে। অধিকস্ত, এম্মেন্তে অতিভুজটি দবদাই ব্যাসাধের দমান থাকিবে, কিন্তু লম্বটি বাড়িতে থাকিবে এবং  $\theta$  যথন 270°-এর দমান হইবে, তথন উহার দৈর্ঘ্য ব্যাসাধের দমান হইবে। সেইজন্ম  $\theta$  যথন বাডিয়া 180° হইতে 270°-তে আসে, তথন sin  $\theta$ -এর মান  $\theta$  হইতে কমিতে কমিতে  $\theta$  নাত্ম । চতুর্থ পাদেও লম্ম দবদাই ঋণাত্মক, কিন্তু অতিভুজটি দবদাই ধনাত্মক; মতরাং, এই পাদেও sin  $\theta$ -এর মান দবদাই ঋণাত্মক। অধিকস্ক, চিত্র হইতে দেখা যাইবে,  $\theta$  যথন বাড়িতে বাড়িতে 270° হইতে 360'-এর দিকে আসে, লম্বের দৈর্ঘ্য তথন কমিতে থাকে এবং  $\theta$  যথন 360°, তথন লম্বের দৈর্ঘ্য শুন্ম হইয়া মার বলিয়া sin  $\theta$ 0 (শুন্ম) হয়। অতএব দেখা গেল,

- (i) প্রথম পালে, ο যথন 0° হইতে 90° পর্যন্ত বাডে,
   তথন sin θ-এর মান 0 হইতে 1 পর্যন্ত বাড়ে;
- (ii) দিতীয় পাদে, θ যথন 90° হইতে 180° পর্যন্ত বাডে,
   তথন sin θ-এর মান 1 হইতে কমিতে কমিতে 0-এ আদে;
- (iii) তৃতীয় পাদে,  $\theta$  যখন  $180^\circ$  হইতে  $270^\circ$  পর্যস্ত বাডে, তথন  $\sin\theta$ -এর মান  $\theta$  হইতে কমিতে কমিতে -1-এ আসে;
- এবং (iv) চতুর্থ পাদে,  $\theta$  যথন  $270^\circ$  হইতে  $360^\circ$  পর্যন্ত বাড়ে, তথন  $\sin \theta$ -এর মান -1 হইতে বাড়িতে বাঙিতে 0-এ আসে।
  - (b) কোণের cosine-এর মানের পরিবর্ডন:

Cosine = শ্রিহিত বাহু ( = অভিক্রেপ)। যথম ঘ্র্যামান সরল রেখাটি Ox-এর সহিত মিলিয়া থাকে, তথন xop কোণের পরিমাণ 0° এবং তথন অভিভূজ এবং সন্নিহিত বাহু বৃত্তের ব্যাসার্ধের সমান; হতরাং, cos 0°=1. কোণ 0° ইততে 90° পর্যন্থ বাজিতে থাকিলে স্পষ্টই অভিভূজ সর্বদা ব্যাসার্ধের সমান থাকে, কিন্তু সন্নিহিত বাহু তমা, তমা ক্রমণ:ই কমিতে থাকিবে। তাহা ইইলে cos ৫-এর মানও, (ইহা সন্নিহিত বাহু তমা-এর সমান বলিয়া) ৫-এব ০° ইততে 90° পর্যন্থ কমবর্ধমান অভিভূজ মানসমূহের জন্ম কমবংই কমিতে থাকিবে। যথন ০=90° ইইবে, তথন অভিভূজ ব্যাসার্ধের সমান থাকিবে, কিন্দু সন্নিহিত বাহু ০ হইবে বলিয়া cos ০=০ ইইবে। ধ্যামার্ধের সমান থাকিবে, কিন্দু সন্নিহিত বাহু ০ হইবে বলিয়া cos ০=০ ইইবে। ধ্যামার্ধ প্রত্তিভূজ তম্বাসার্ধের সমান থাকিবে, কিন্দু সন্নিহিত বাহু ০ হইবে বলিয়া cos ০=০ ইইবে। ধ্যামার্ক প্রত্তিভূজ তম্বাসার্ধের সমানই থাকে, এবং ইহা সর্বদাই ধনাত্রক, কিন্দু সন্নিহিত বাহু এই পাদে সর্বদাই ঝণাত্রক। অভএব, cos ৪-এর মান এই পাদে সর্বদা ঝণাত্রক ইইবে এবং ইহার দৈর্ঘ্য ০ ইইতে ক্রমণ: বাছিয়া ব্যাসার্ধের সমান হয়; অভএব, এই পাদে cos ৪-এর মান শুল হইতে ক্মিতে ক্মিতে, ০ বখন 180° হয়, তথন — 1

হয়।  $\theta$  যথন আরও বাড়িয়া তৃতীয় পাদে আদে, তথনও এই পাদের সকল অবস্থানেই সন্নিহিত বাহু ঋণা যাক থাকে, কিন্তু অভিভূজ সর্বদাই ধনা যুক্ত; স্কুতরাং, তৃতীয় পাদেও  $\cos\theta$  ঋণা যাক; অধিকন্তু, এক্ষেত্রে অভিভূজটি সর্বদাই ব্যাসার্দের সমান এবং ধনা আক থাকিবে, কিন্তু সন্নিহিত বাহুর দৈখ্য কমিতে কমিতে  $\theta$  যথন  $270^\circ$  হইবে, তথন 0 হইবে; অভএব, এই পাদে  $\cos\theta$ —এর মান -1 হইতে বাড়িতে বাছিতে  $\theta$  যথন  $270^\circ$  হইবে, তথন 0 হইবে। চিত্র হইতে স্পাইই দেখা যায়, চতুর্থ পাদে স্নিহিত বাহু ধনা যাক; স্কুতরাং অভিভূজ সর্বদাই ধনা যাক বলিয়া এই পাদে  $\cos\theta$  স্বাদাই ধনা যাক হইবে। অধিকন্তু, এই পাদে স্নিহিত বাহু স্বাদাই ধনা যাক থাকিয়া 0 হইতে বাড়িতে বাড়িতে,  $\theta$  যখন  $360^\circ$  হইবে, তথন ব্যাসাধের সমান হইবে; স্কুতরাং  $\cos\theta$ -এর মান এই পাদে 0 হইতে বাড়িয়া 1 হইবে।

অতএব, দেখা গেল,

- (i) প্রথম পাদে θ যথন 0° হইতে 90° প্রয়ন্ত বাদে,
   তথন cos θ-এর মান 1 হইতে ক্রমণঃ ক্রিয়া 0 হয়;
- (ii) দিতীয় পাদে θ যথন 90° হইতে 180° পর্যন্ত বাডে,
   তথন cos θ-এর মান 0 হইতে ক্রমশঃ ক্রিয়া 1 হয়;
- (iii) তৃতীয় পাদে θ যথন 180° হইতে 270° পর্যস্থ কাডে, তথন cos θ-এর মান – 1 হইতে ক্রমশঃ বাডিতে বাডিতে 0 হয়;
- এবং (iv) চতুর্থ পাদে 🛭 যখন 270° হইতে 360° পর্যন্ত বাড়ে, তখন cos ৪-এর মান ০ হইতে ক্রমশঃ বাড়িতে বাড়িতে 1 হয়।
  - (c) কোণের tangent-এ মানের পরিবর্তন :

বাড়িয়া বিতীয় পাদে 180° প্রত্ত অগ্রসর হয়, তথন চিত্র হইতে দেখা যায়, সমিহিত বাহু ON3 শূন্য হইতে ক্রমণঃ বাড়িতে থাকে এবং θ যথন 180°-এর সমান হয়, তথন উহ। ব্যাপার্ধের সমান হয়; আর লম্বটি কমিতে কমিতে শূল হয়। অধিকন্ত এই পাদে লম্বটি সর্বনাই ধনা অক, কিন্তু সরিহিত বাহু সর্বদাই ঝণা অক; স্তরাং, এই পাদে tan 0 সর্বদাই ঋণাত্মক হইবে। । প্রথম পাদ অতিক্রম করিয়া দিতীয় পাদে আসোমাত্রই স্ক্লিছিত বাহু ঋণাত্মক হুইয়া যাইবে, কিন্তু লখটি ধনাত্মকই থাকিবে। ফলে tan ৪-এর মান স্ববৃহৎ পর্ম মান-বিশিষ্ট ঋণাত্মক হইয়া পড়ে। ইহার পর ৪-এর মান বাডিতে বাডিতে যথন 180° হয় tan ∂-এর মান তথন দেই স্কুবুহৎ এই প্রম মান হইতে কমিতে কমিতে শূন্তে পরিণত হয়। তৃতীয় পাদে লম্বটি এবং সন্নিহিত বাহু উভয়ই ঋণাত্মক বলিয়া এই পাদে  $\tan \theta$  স্বদাই ধনায়ক; অধিকন্ত,  $\theta$  180° হইতে 270° পর্যন্ত বাড়িয়া চলিলে লম্বের দৈর্ঘ্য ০ হইতে বাডিয়া ব্যাসার্ধের সমান হইবে, আর সমিহিত বাছ কমিতে কমিতে শৃন্ত হইবে। স্থতরাং, এক্ষেত্রে tan ৪-এর মান, ৪ যত 270°-এর দিকে যাইবে ততই বাডিতে থাকিবে ; কিন্তু ৩ যথন 270° হইবে, তখন সন্নিহিত বাহুর দৈর্ঘ্য 0 হয় বলিয়া tan θ, tan 90°-এর স্থায় অর্থহীন, অনির্দিষ্ট হইয়া পড়ে। অতএব tan 0-এর মান, এই পাদে, শৃভ হইতে 270°-এর পূর্ব পর্যন্ত ক্রমেই বাড়িতে থাকিবে, কিন্ত  $\theta = 270^\circ$  হইলে  $\tan \theta$ -এর মান কত, নির্দিষ্ট করিরা বলা যাইবে না, অর্থাৎ  $\tan \theta$ তথন অনিদিষ্ট হইবে। চতুর্থ পাদে দলিহিত বাছ ধনাত্মক, কিন্তু বিপরীত বাছ ঝণাত্মক; স্তুরাং, এই পাদে tan a সর্বদাই ঝণাত্মক। এই পাদে a যথন 270°-এর অতি নিকটবতী থাকে, তখন সন্নিহিত বাহু অতিকুদ্ৰ বলিয়া tan θ ঋণাত্মক হইলেও উহার পরম মান অতিবৃহৎ হইবে। স্বতরাং, ০-এর মান 270° অতিক্রম করিয়া চতুর্থ পাদে আদিলে tan 0-এর ধনাত্মক স্ববৃহৎ মান হঠাৎ ঋণাত্মক হইয়া যায়; কিন্তু পরম মান স্বৃহ্ংই থাকে। তারপর ও যতই 360°-এর দিকে অগ্রসর হয় তত্ই tan θ-এর পরম মান কমিতে কমিতে শৃত্য হয়, অথবা বলা চলে tan θ-এর মান বাড়িতে বাড়িতে শৃন্ত হয়। অতএব,

- (i) প্রথম পাদে  $\theta$ -এর মান যখন  $0^{\circ}$  হইতে  $90^{\circ}$  পর্যন্ত বাডে, তথন  $\tan \theta$  এর মান 0 হইতে ক্রমাগত বাডিয়াই চলে, কিন্তু সর্বদাই সদীম থাকে;  $\theta$ -এর  $90^{\circ}$ -এর নিক্টবর্তী মানসমূহের জন্ম  $\tan \theta$ -এর মান সদীম হইলেও স্বৃহৎ; কিন্তু  $\theta = 90^{\circ}$  হইলে,  $\tan \theta$  অনিদিষ্ট হইয়া পড়ে।
- (ii) θ-এর মান প্রথম পাদ অতিক্রম করিয়া দ্বিতীয় পাদে আলিবামাত্রই  $\tan \theta$ -এর মান ঝণাত্রক, কিন্তু 90°-এর অব্যবহিত পূর্বে যেরপ ছিল সেইরপ অতিবৃহৎ পরম মান-বিশিষ্ট হইরা পড়ে এবং  $\theta$  যতই বাভিতে থাকে, এই পরম মান ততই ক্মিতে থাকে এবং ক্মিরা ক্মিয়া  $\theta$  যথন 180° হয় তথন  $\tan \theta$ -এর মান 0 হয়, অর্থাৎ এই পাদে  $\tan \theta$ -এর ঝণাত্রক অতি বৃহৎ পরম মান বাড়িয়া 0 হয়।

- (iii) তৃতীয় পাদে  $\tan\theta$ -এর মান সর্বদাই গনাত্মক এবং  $\theta$ ,  $180^{\circ}$  হইতে  $270^{\circ}$  পর্যন্ত বাড়িতে থাকিবে,  $\tan\theta$ -এর মানও শূক্ত হইতে ততই বাড়িতে থাকে।  $\theta$ -এর  $270^{\circ}$ -এর নিকটতম মানসমূহের জন্ত  $\tan\theta$ -এর মান সসীম হইলেও স্বর্হং; কিন্তু  $\theta=270^{\circ}$  হইলে,  $\tan\theta$  আবার অনির্দিষ্ট হইয়া পড়ে।
- (iv)  $\theta$ -এর মান তৃতীয় পাদ অতিক্রম করিয়া চতুর্থ পাদে আদিবামাত্রই  $\tan \theta$ -এর মান কণাত্মক, কিন্তু  $270^\circ$ -এর অব্যবহিত পূর্বে যেরূপ ছিল সেইরূপ অতিবৃহৎ পরম মান-বিশ্বি হইয়া পড়ে এবং  $\theta$  যতই বাডিতে থাকে এই পরম মান ততই কমিতে থাকে এবং কমিয়া কমিয়া  $\theta$  যথন  $360^\circ$  হয় তথন 0 হয়। এই পাদেও  $\tan \theta$ -এর ক্ণাত্মক অতি বৃহৎ পরম মান বাছিয়া 0 হয়।

### (d) কোণের cosecant-এর মানের পরিবর্তনঃ

- (i)  $\csc\theta=\frac{1}{\sin\theta}$  বলিয়া,  $\theta=0^\circ$  হইলে  $\csc\theta$  জনির্দিষ্ট হয়, কিন্তু  $0^\circ$ -এর নিকটবর্তী মানসমূহের জন্ম ইহার মান স্থীম কিন্তু সূত্রং;  $\theta$  যতই  $90^\circ$ -এর দিকে যায়,  $\csc\theta$ -এর মানও ততই কমিতে থাকে এবং যথন  $\theta=90^\circ$  হয়, তখন  $\csc\theta=1$  হয়।
- (ii) বিভীর পাদে  $cosec \theta$  ধনাত্মক এবং  $\theta$  ষর্থন বাচিতে বাডিতে 90° হইতে 180°-তে যায়,  $cosec \theta$ -এর মান আবার 1 হইতে বাডিতে বাডিতে সর্বদা সসীম থাকিলেও 180°-এর নিকটবর্তী মানসমূহের জন্ত ধনাত্মক কিন্তু স্ববৃহৎ হইরা পড়ে; এবং 180°-তে  $cosec \theta$  অনিদিষ্ট হয়।
- . (iii) তৃতীয় পাদে cosec θ দর্বদাই ঋণাত্মক এবং θ দ্বিতীয় পাদ অতিক্রম করিয়া তৃতীয় পাদে আদিবামাত্রই cosec θ-এর মান, ধনাত্মক স্বত্বহুৎ হইতে ঋণাত্মক কিন্তু স্বত্বহুৎ পরম মান-বিশিষ্ট হইয়া পড়ে এবং বাড়িতে বাডিতে যুখন θ = 270° হয়, তথন cosec θ = -1 হয়।
- (iv) চতুর্থ পাদেও cosec θ ঝণান্মক। θ, 270° ছইতে 360° পর্যন্ত বাডিতে থাকিলে, cosec θ, -1 ছইতে ক্রমশঃ কমিতে থাকে এবং ইহার পরম মান ক্রমশঃ বৃদ্ধি পাইতে থাকে। θ-এর 360°-এর নিকটবর্তী মানস্মৃহের জন্ত cosec θ ঝণাত্মক কিন্তু সুবৃহ্ৎ পরম মান-বিশিষ্ট হয়; θ=360° হইলে, cosec θ অনিধিষ্ট হইরা পড়ে।

#### (e) কোণের secant-এর মানের পরিবর্তন :

(i)  $\sec \theta = \frac{1}{\cos \theta}$  বলিরা,  $\theta$  কোণ যথন 0°, তথন  $\sec \theta = 1$ . প্রথম পাদে  $\sec \theta$  সর্বদাই ধনাত্মক এবং  $\theta$  যতই 90°-এর দিকে যায়, ইহার মান ধনাত্মক এবং সদীম থাকিয়া ততই বাড়িতে থাকে। 90°-এর নিকটবর্তী মান্সমূহের জন্ম  $\sec \theta$ 

ধনাত্মক, সদীম কিন্তু স্থ্ৰহৎ প্ৰম মান-বিশিষ্ট হয়। যখন  $\theta = 90^\circ$ , তথন  $\sec \theta$  অনিদিষ্ট হইয়া পড়ে।

- (ii) দ্বিতীয় পাদে sec θ ঋণাত্মক। θ-এর মান 90° অতিক্রম করিয়া দ্বিতীয় পাদে আদিবাম.এই sec θ-এর মান ঋণাত্মক কিন্তু স্তব্হুৎ এবং সদীম প্রম মান-বিশিষ্ট স্থ্যা পড়ে এবং θ ষতই 180°-এর দিকে যার, ততই sec θ-এর মান ক্রমশঃ বাড়িতে বাড়িতে – 1-এব দিকে যায়। θ=180° হুইলে, sec θ= – 1 হয়।
- (iii) তৃতীয় পাদে sec  $\theta$  ঋণাত্মক। এই পাদে  $\theta$  যতই বাদিতে থাকে sec  $\theta$  এর মানও ততই -1 হইতে কমিতে থাকে এবং  $\theta$ -এর 270°-এর নিকটবর্তী মান- সমূহের জন্ম sec  $\theta$  ঋণাত্মক, কিন্তু সদীম ও স্থবৃহৎ প্রম মান-বিশ্বিষ্ট হয়।  $\theta=270^\circ$  হইলে, sec  $\theta$  ঋনিদিপ্ত ইয়া পড়ে।
- (iv) চতুর্থ পাদে sec θ ধনাত্মক। θ-এর মান 270° অভিক্রম করিয়া চতুর্থ পাদে আদিলেই sec θ ধনাত্মক, কিন্তু সদীম ও ফুর্ছং পরম মান-বিশিষ্ট ইইয়া পড়ে এবং θ ষভই 360°-এর দিকে যার, sec θ কমিতে থাকে এবং θ যথন 360° হয়, তথ্য উহা 1 হয়।

# (1) কোণের cotangent-এর মানের পরিবর্তন :

- (i)  $\cot\theta = \frac{1}{\tan\theta}$  বলিয়া, প্রথম পাদে  $\cot\theta$  ধনাত্মক;  $\theta$  কোণ যখন  $0^\circ$ , তথন  $\cot\theta$  জনিদিষ্ট;  $\theta$  কোণ  $0^\circ$  হুইতে একটু বাড়িলেই  $\cot\theta$  ধনাত্মক, কিন্তু সদীম ও স্তবৃহৎ হইয়া পড়ে এবং  $\theta$  কোণ বাড়িতে বাড়িতে  $90^\circ$  পর্যন্ত জমতে 0 হয়।
- (ii) দ্বিতীয় পাদে cot θ ঋণাত্মক এবং θ যখন বাডিতে বাডিতে 180°-এর দিকে যায়, cot θ ঋণাত্মক থাকিয়াই ক্রমবর্ধমান পরম মান-বিশ্বিষ্ট হয়। θ কোণের 180°-এর নিকটবর্তী মানসমূহের জন্ম cot θ ঋণাত্মক, কিন্তু স্কাম ও স্কৃত্বং পরম মান-বিশিষ্ট হয়। θ=180° হুইলে cot θ অনিধিষ্ট হুইয়া প্রে।
- (iii) তৃতীয় পাদে  $\cot \theta$  ধনাত্মক।  $\theta$  কোণ  $180^\circ$  অতিক্রম করিয়া তৃতীয় পাদে আদিবামাত্রই  $\cot \theta$ -এর মান ধনাত্মক, কিন্তু স্বৃহৎ ও সদীম পরম মান-বিশিষ্ট হইয়া পড়ে এবং  $\theta$  যতই  $180^\circ$  হইতে  $270^\circ$ -এর দিকে অগ্রসর হয়,  $\cot \theta$ -এর মান তত্রই ক্মিতে থাকে এবং  $\theta$  যথন  $270^\circ$  হয়, তথন উহা 0 হয়।
- (iv) চতুর্থ পালে  $\cot \theta$  ঋণাত্মক। ০-এর মান 270° হইতে যতই 360°-এর দিকে যার,  $\cot \theta$ -এর মান ০ হইতে ততই কমিতে থাকে। চতুর্থ পালে 360°-এর নিকটবর্তী মানসমূহের জন্ম  $\cot \theta$  ঋণাত্মক, কিন্তু স্মীম ও স্থ্রহৎ প্রম মান-বিশিষ্ট হয়।  $\theta$  যথন 360° হয়, তথন  $\cot \theta$  ঋনিদিষ্ট হইয়া পড়ে।

6'2. ক্রৈকোপমিতিক অসেক্টের ক্রেপে (Graphs of Trigonometrical Functions)। বীজগণিতের ন্থার বৈকোপমিতিক অপেক্ষকের লেখ অন্ধন করিবার সময়ে তুইটি পরস্পরছেদী সরল রেখাকে XOX' এবং YOY' অক্ষ্রিসাবে লওয়া হয়। এ-অক্ষ বরাবর কোণের মান এবং গু-অক্ষ বরাবর ঐ সকল কোণের অন্ধর্ম বৈকোণমিতিক অন্থপাতগুলির মান বসানো হয়। এইরূপে কোণ ও তাহার বৈকোণমিতিক অপেক্ষক-প্রকাশক যেসকল বিভিন্ন বিন্দু পাওয়া যায়, তাহাদিগকে একটি সন্তত রেখা দারা যোগ করিলে ত্রৈকোণমিতিক অপেক্ষকটির লেখ পাওয়া যায়।

কোণের বিভিন্ন মানের জন্ম অন্তরূপ বিভিন্ন হৈকোণমিতিক অন্তুপাত sine, cos, tan প্রভৃতি মান-সংবলিত তালিকার ব্যবহার করিতে হয়।

#### 6'3. sin x-এর কোখা

মনে কর,  $y=\sin x$ ; x-এর বিভিন্ন মান এবং এই সমীকরণ হইতে প্রাপ্ত y-এর অনুরূপ মানসমূহ লইয়া নিমের তালিকা প্রস্তুত করা হইল।

e-অফ বরাবর চক-কাগজের ক্স বর্গকেত্রের এক বাহুর দিগুণ দৈর্ঘাকে 10° এবং y-অফ বরাবর ক্স বর্গকেত্রের এক বাহুর 20 গুণ দৈর্ঘাকে sine-সচক একক ধরিয়া উপরের বিন্দুর্গলি স্থাপন করা হইল এবং একটি সন্তুত রেখা দ্বারা উহাদিগকে যোগ করা হইল। প্রাপ্ত রেগাই (পরপৃষ্ঠার চিত্র) এই অপেক্ষকের লেখ।



#### 6'4. cos x-এর কোখ।

মনে কর,  $y = \cos x$ .

x-এর বিভিন্ন মান এবং এই সমীকরণ হইতে প্রাপ্ত y-এর অনুরূপ মানসমূহ লইয়া নিমের তালিকা প্রস্তুত করা হইল।

| $y = \cos \alpha$ 0 17 34 50 64 77 87 94 98 | gs      | -90° | -80° | -70° | -60° | -50° | -40° | -30° | -20° | -10° |
|---------------------------------------------|---------|------|------|------|------|------|------|------|------|------|
|                                             | y=cos œ | 0    | 17   | *84  | .20  | -64  | *77  |      | 194  | '98  |

| 23      | 0° | 10° | 20° | 3 <b>0°</b> | 40° | 50° | 60° | 70° | 80° | 90° | 100° | 110° | ইত্যাদি |
|---------|----|-----|-----|-------------|-----|-----|-----|-----|-----|-----|------|------|---------|
| y=cos ≈ | 1  | •98 | 194 | 187         | -77 | *64 | *50 | '84 | .17 | 0   | 17   | 84   | ইত্যাদি |

æ-অক্ষ বরাবর কৃত্র বর্গক্ষেত্রের 1 বাহুর দিগুণ দৈর্ঘ্যকে 10° এবং y-অক্ষ বরাবর কৃত্র বর্গক্ষেত্রের 1 বাহুর দৈর্ঘ্যের 20 গুণ দৈর্ঘ্যকে cosine-স্থচক একক ধরিয়া উপরের বিন্দুগুলি স্থাপন করা হইল এবং একটি সন্থত রেথা দ্বার উহাদিগকে যোগ করা হইল। প্রাপ্ত বেখাই (পৃষ্ঠা 69-এর ডানদিকের চিত্র) এই অপেক্ষকের লেখ।

#### 6'5. tan x-এর লেখ।

মনে কর,  $y= ext{tan }x:x$ -এর বিভিন্ন মান এবং এই সমীকরণ হইতে প্রাপ্ত y-এর **অনুরূপ** মানসমূহ লইরা নিম্নের তালিকা প্রস্তুত করা হইল।

| ge ge      | -20°   | -10° | 0° | 10° | 20° | 30° | 40° | 50°  |
|------------|--------|------|----|-----|-----|-----|-----|------|
| $y = \tan$ | x -'36 | 18   | 0  | 18  | .36 | *58 | *84 | 1.19 |

| 60°  | 70°  | 80°  | 90° | 100°  | ইত্যাদি |
|------|------|------|-----|-------|---------|
| 1.73 | 2'75 | 5'67 | 00  | -5.67 | ইতাদি   |

e-অক্ষ বরাবর ক্ষুদ্র বর্গক্ষেত্রের 1 বাছর বিগুণ দৈর্ঘাকে 10° এবং y-অক্ষ বরাবর ক্ষুদ্র বর্গক্ষেত্রের এক বাছর দৈর্ঘ্যের 6 গুণ দৈর্ঘ্যকে tan-স্ফক একক ধরিয়া উপরের বিন্দুগুলি স্থাপন করা হইল এবং একটি সন্থত রেখা দ্বারা উহাদিগকে যোগ করা হইল। এই চিত্রটি (পরপৃষ্ঠার চিত্র) এই অপেক্ষকের লেখ।

জন্তব্য। tangent লেখ-এর বৈশিষ্ট্য: চিত্র হইতে দেখা যাইতেছে যে,





এই লেখটি একটিমার সন্তত রেখা নহে। ইহা অনুরূপ আরুতির অসংখ্য বিচ্ছিন্ন (separate) অংশ লইরা গঠিত। x-এর মান যথন  $\frac{\pi}{2}$  বা তাহার কোন অযুগা গুণিতক হয়, তথনই এই অসম্ভতি (discontinuity) দেখা যায়। x যথন বাম হইতে আদিরা এইপকল মানের দক্ষিণে যায় (যেমন 80° বা 85° ছইতে 95° বা 96°-তে গেলে) তথন  $\tan x$ -এর মান মহুলা অতিবৃহ্ধ ধনা এক মান হুইতে পরিবৃত্তি হুইরা অতিবৃহ্ধ ধণা এক মানে পরিণত হয়। x-এর মান  $\frac{\pi}{2}$  বা তাহার অযুগা গুণিতকের যত নিকটে আসে, লেখটিও সেই বিন্দু  $\binom{\pi}{2}$  বা ভাহার অযুগা গুণিতক দিরা y-রেখার দমান্তরাল রেখার ভাত নিকটে চালিয়া আসে। কিন্দু ক্ষনই লেখ এই রেখার সহিত মিলিত হয় না। সেই রেখাটিকে লেখচির **অসীম রেখা** (asymptote) বলে।

#### 6.6. cot x-의콕 (লখ।

গ = cot ক প্রিয়া lan ক-এর তায় এই লেখনিও অগ্নিও করা যায়। এই লেখনিও অসংখ্য অস্ত্ত লেখ লাইন, গঠিত। ৫-এর মান ।° বা ফ-এর কোন গুণিতক ইইলেই এই লেখ-এ অসম্ভতি আসিয়া পড়ে।

#### 6'7. cosec x-으로 (주익!

মনে কর,  $\eta = \cos \alpha x$ ;  $\alpha$ -এর বিভিন্ন মান এবং এই স্মীকরণ হইতে প্রাপ্ত গ্র-এর অফ্রপ মানসমূহ লইয় নিমের তালিক, প্রস্তুত কর; হইন।

ক্র-এক বরবের ক্র বর্গক্ষেরের 1 বাজুর বিপ্তা দৈর্ঘ্যকে 10° এবং সু-অক্ষ বরবের ক্র বর্গক্ষেরের 1 বাজুর বৈর্ঘ্যের 6 গুণ দেয়াকে cosec-স্থচক একক ধরিয়া উপরের বিশ্বলি স্থাপন কর হইল ৭বং সম্ভূত বেগা দ্বারা উহাদিগকে যোগ করা হইল। এই ডিএটি (পরপ্রার তির্) এই অপেক্ষকের লেগ। [ cosec ক্র-এর লেগও এসংখ্য অসম্ভূত রেখা লউবা গঠিত। সু-এর মান ক্যনই —1 ইইতে 1-এর মধ্যে থাকিবে না।]

#### 6.8. sec x-의로 (원칙)

 $y=\sec x$  বরিয়া অফ্রপে  $\sec x$ -এর লেখ পা ওয়া যায়।

এন্থলে sec  $\alpha = \frac{1}{\cos x}$  এই সূত্র হইতে  $\alpha$ -এর বিভিন্ন মানের জন্ম sec  $\alpha$ -এর মান নির্ণয় করিয়া চিত্রটি অংক্টি করিতে হইবে।



6.9. উদা. 1. x-এর মান  $0^\circ$  হইতে  $2\pi$ -এর মধ্যে লইয়া  $y=\sin x+\cos x$ -এর লেখ অন্ধন কর। লেখ হইতে x-এর যে মানের জন্ম (i) y=0, (ii) y চরম এবং (iii) y অবম হয়, সেই মানগুলি নির্ণয় কর।

sine ও cosine তালিকা হইতে x-এর বিভিন্ন মানের অন্তরূপ sine ও cosine-এর মান নির্ণয় করিয়া এই সমীকরণের সাহায্যে y-এর মান নির্ণয় করিতে হইবে। নিম্নের ডালিকায় x ও অমুরূপ y-এর মানসমূহ সন্নিবিষ্ট হইল।



(sin x + cos x)-এর লেখ

| œ | 0,0 | 10°  | 20°  | 30°  | 40°  | 50°    | 60°  | 70°  | 80°  | 90° | 100° |
|---|-----|------|------|------|------|--------|------|------|------|-----|------|
| y | 1 1 | 1.15 | 1.27 | 1'37 | 1'41 | 1'41 1 | 1:37 | 1 27 | 1.12 | 1   | -81  |

| de | 110° | 120° | 130° | 140° | 150°  | 160° | 170° | 180° | 190°  | 200°  |
|----|------|------|------|------|-------|------|------|------|-------|-------|
| y  | .29  | '87  | •13  | 13   | - '37 | 59   | 81   | -1   | -1.15 | -1.27 |

ক্র-অক্ষ ব্রাবর কুই নর্গাদেরে এক বাজর ছিন্তুণ দেখাকে 10° এবং গু-অক্ষ বরাবর কুন্ত বর্গাদেরে এক বাজর দৈখোর 20 আ দেখাকে sine ও cosine-এর সমষ্টিস্টক একক দ্বিশ এই বিন্তাল ওপেন করা ইবল এবং একটি স্থাত রেখা ছারা উহাদিগকে যোগ করা ইবল। প্রপ্রের্বাং প্রস্কার টিন্তে ডিক্ট বেখা।

লেখ ২ইডে দেখা যাগেখেছ, (i) y=0, যান  $x=135^\circ$  এবং  $x=315^\circ$ , (ii) y-এর মান চরম, যথন  $x=45^\circ$ , (iii) y-এর মান চরম, যথন  $x=45^\circ$ , (iii) y-এর মান চরম, যথন  $x=45^\circ$ , (iii) y-এর মান জনম, যথন  $x=225^\circ$ .

### 6'10. ভৈতেকাণামিভিক স্থাকরণের লৈগিক স্থাসান (Trigonometrical Solutions of equations) |

বি এক বি এর সম কর্পের কাম সাগ বংশে: সম কর্পের এই প্রথের এইটি লোখ অল্প ক্রিয়া একপ্রাক একেব রে শন্ত কর্পের এই সংগ্রান করা যাই। সময়ে সময়ে অবজ্ঞা প্রথায়ের ক্রিয়া একপ্রাক একেব রে শন্ত কর্পের মধ্যা, জাবিসাম্ভে প্রথা ক্রিয়া এবং স্থান্যায়ের ব্যাক্তিন অথব ভ্রথপ্রায় মধ্যের করিয়া ভাইয়া সমাধান করা হয়।

উদা. 2. লৈখিক উপায়ে সমাধান কর :  $2\sin^2 x \cdot \cos 2x$  ;  $-\frac{\pi}{2}$  এবং  $\frac{3\pi}{3}$ -এর মধ্যবর্তী ক্র-এর মানগুলি নির্মি করিছে হউবে।

এছলৈ, 
$$2 \sin^2 x = \cos 2x$$
,
বা,  $1 - \cos 2x = \cos 2x$ ,
বা,  $\frac{1}{4} = \cos 2x$ .

অত্তব, (i)  $y=\frac{1}{2}$  এবং (ii)  $y=\cos 2x$ -এর লেখ ভূইটি অন্ধিত করিয়া উহালের ভেদবিন্দুর x-জানান্দই নির্ণেধ বিজে হ্ইবে।

(i) y-অন্ধের ম্যাণরাল এবং উহা ২০তে y-মন্দের ধনায়ক দিকে  $\frac{1}{2}$  একক দূরে অবস্থিত মরল রেখাটিই  $y-\frac{1}{2}$ -এর লেখ। y-অন্ধ বরাবর ক্ষুদ্র বর্গদেত্রের



বাহুর 20 গুণকে একক ধ্রিয়া লেখটি অহিত করা হইল। চিত্রে লেখটি AB রেখা দারা স্থানিত হইয়াছে।

(ii)  $y = \cos 2x$ -এর লেখ অস্কিত করিবার জন্ম সমীকরণটিকে সিদ্ধ করে এইরপ x এবং অস্ক্রপ y-এর মান নিণ্য করিয়। নিয়ের তালিকাটি প্রস্তুত করা হইলঃ

| x | - 90° | -75°  | -60° | -45° | - 30° | -15° | 0°    |
|---|-------|-------|------|------|-------|------|-------|
| y | -1    | - '87 | - '5 | 0    | •5    | '87  | 1     |
| œ | 15°   | 30°   | 45°  | 60°  | 75°   | 90°  | 105°  |
| y | '87   | *5    | 0    | - '5 | - '87 | -1   | - *87 |

এখন ছক-কাগজে x-অক্ষ বরাবর ক্ষুদ্র বর্গক্ষেত্রের বাছর পাঁচগুণ দৈর্ঘ্যকে 15°-এর সমান ধরিয়া এবং y-অক্ষ বরাবর ক্ষুদ্র বর্গক্ষেত্রের বাছর দৈর্ঘ্যের 20 গুণ দৈর্ঘ্যকে cos-স্চক একক ধরিয়া উপরের বিদ্যুত্ত স্থাপন করা হইল এবং একটি সন্ততে রেখা দ্বারা উহাদিগকে সংযুক্ত করা হইল। প্রাপ্ত রেখাই (পূর্বপৃষ্ঠার চিত্র) cos 2x-এর লেখ।

একই মৃলবিন্দু এবং অক্ষ লইয়া এবং একই এককে  $y=\frac{1}{2}$ -এর লেখটিও অঙ্কিত করা হইয়াছে।

চিত্র হইতে দেখা যায, লেখ-ছইটি পরস্পর চারিটি বিন্দৃতে ছেদ করিয়াছে। ছেদবিন্দু-চারিটির ভুজ — 30°, 30°, 150°, 210°.

:. নির্ণেয় সমাধান  $x = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}$ 

উদা. 3. লৈখিক উপায়ে সমাধান কর:  $\tan x = 2x$ , বখন x = 0 এবং  $x = \frac{\pi}{2}$  এর মধ্যবর্তী।

এস্থলে x রেডিয়ানে প্রকাশিত হইয়াছে মনে করিতে হইবে।

(i)  $y = \tan x$  এবং (ii) y = 2x-এর লেখ-তৃইটি অন্নিত করিলে উহাদের ছেদ্বিন্দ্র x-স্থানান্মই নির্ণেয় বীজ।



x=0 এবং  $x=rac{\pi}{2}$  দীমার মধ্যে সমীকরণকে দিদ্ধ করে এইরূপ x-এর মানসমূহ এবং অন্তর্জপ y-এর মানসমূহ লইয়। নিম্নের ভালিকাটি প্রস্তুত করা হইল :

| x ( রেডিয়ানে প্রকাশিত ) | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | <u>z</u> |
|--------------------------|---|-----------------|-----------------|----------|
| y                        | 0 | 1.05            | 2.10            | 3.15     |

(ii)

| <ul><li>x ( রেডিয়ানে</li><li>প্রকাশিত )</li></ul> | 0 | $\frac{\pi}{18}$ | 2π<br>18 | 3π<br>18 | 4π<br>18 | 5π<br>18 | 6л<br>18 | 7π<br>18 | 8π<br>  18 | π<br>2     |
|----------------------------------------------------|---|------------------|----------|----------|----------|----------|----------|----------|------------|------------|
| y                                                  | 0 | 18               | .36      | .57      | '84      | 1.19     | 1.73     | 2.75     | 5.67       | অনিৰ্দিষ্ট |

এখন ছক-কাগজে ৫-অক্ষ বরাবর ক্ষুদ্র বর্গক্ষেত্রের 1 বাছর 10 গুণ দৈর্ঘ্যকে  $\pi$  রেডিগ্নানের সমান এবং y-অক্ষ বরাবর ক্ষুদ্র বর্গক্ষেত্রের 1 বাছর দৈর্ঘ্যের 20 গুণ দৈর্ঘ্যকে কোণের  $\tan$ -স্চক একক ধরিরা উপরের বিন্দুগুলি স্থাপন করা ইইল এবং প্রতিক্ষেত্রে একটি সন্তর্ভ রেখা ঘারা প্রত্যেকটির বিন্দুগুলিকে সংযুক্ত করা ইইল। প্রাপ্ত রেখা-স্ইটি ( পূর্বসূষ্ঠার চিত্র ) (i) এবং (ii)-এর লেখ।

িত্র হইতে দেখা যার লেখ-ছইটি যে ছইটি বিন্তে ছেদ করিবাছে, মূলবিন্ হইতে x-জক্ষ বরাবর তাহাদের দূরত্ব 0 এবং 33.5 ( সূলভাবে ); জতএব, ঐ ছুই ছেদবিন্দুর x-স্থানাম্ভ =0 এবং  $\frac{33.5}{5} \times \frac{\pi}{18}$  রেডিয়ান, জর্থাৎ, 0 এবং 1.17 রেডিয়ান ( সুলভাবে )।

অতএব, x=0 এবং  $x=\frac{\pi}{2}$  সীমার মধ্যে প্রদত্ত সমীকরণের সমাধান x=0 রেডিয়ান এবং x=1.17 রেডিয়ান ( স্থুলভাবে )।

#### প্রেমালা 7

- 1. লেখ অন্ধন কর:
  - (i) sin 5x-এর;
- (ii) sin x cos x-এর;
- (iii)  $x=0^\circ$  হইতে  $x=\frac{\pi}{2}$  পর্যন্ত  $\tan 2x$ -এর।
- 2.  $\theta=0^\circ$  হইতে  $\theta=\pi$  সীমার মধ্যে  $\sin\theta$  এবং  $\cos\theta$ -এর লেখ অস্কন কর। লেখ-ছইটির ছেদবিন্দুগুলি নির্ণয় কর।

- cos x sin 2x-এর লেখ অহন কর। x-এর মান 0° হইতে 90°-এর
   মধ্যে হইতে হইবে। এই শীমার মধ্যে cos x sin 2x-এর ক্ষুত্তম মান নির্ণয় কর।
  - 4.  $x=0^\circ$  এবং  $x=rac{\pi}{2}$  সীমার মধ্যে লেখ অন্ধন করিয়া সমাধান কর ঃ  $an x=\cos x$ .
- 5.  $x=-\pi$  হইতে  $x=+\pi$  দীমার মধ্যে  $y=\sin\left(x+\frac{\pi}{2}\right)$ -এর বেখ অঙ্কন কর।
- 6.  $x=0^\circ$  এবং  $x=\frac{\pi}{2}$  সীমার মধ্যে লেখ অন্ধন করিয়া x= an x-এর স্মাধান কর।
- . 7. একই অক্ষন্ত্র লইয়া  $-\frac{\pi}{2}$  এবং  $+\frac{\pi}{2}$  সীমার মধ্যে y=x,  $y=\sin x$  এবং  $y=\tan x$ -এর লেখ অন্ধন কর। মৃল্বিন্ত নিকট লেখসমূহের প্রকৃতি হইতে, ম্লবিন্তে লেখসমূহের মধ্যে কোন সম্পর্ক তুমি কি উল্লেখ করিতে পার ?

#### সম্ভন অধ্যায়

## ত্রৈকোণ্যিতিক সমীকরণ এবং সাধারণ মান (Trigonometrical Equations and General Values)

7'1. একই মানের হৈকোণ মিতিক অন্তপাত-বিশিষ্ট অমংখ্য কোণ থাকিতে পারে; যেমন,  $\sin\theta=\frac{1}{2}$  চইলে,  $\sin\theta$  ধনা এক বলিয়া  $\theta$  কোণটি প্রথম অথবা দিতীয় পাদের চইলে। এখন, আমরা জানি  $\sin 45^\circ - \frac{1}{2}$ : অভ এব,  $\theta$ -এর ক্ষুম্ভম ধনা মুক মান  $45^\circ$ , আর উচার দিতীয় পাদের মান চইল,  $(180^\circ - 45^\circ)$  বা  $185^\circ$ . আবার, কোন কোণের সহিত  $360^\circ$ -এর ধনা মুক অথবা ক্ষাম্মক যে-কোন গুণিতক যোগ করিলেও হৈকোণ্মিতিক সমুপ্ত একই থাকে বলিয়া,

45°, 135°, 405°, 195°, -315°, -225°, ...

ই গ্রাদি খসাখ্য কোণের প্রভাকতিরই নান হইবে  $\frac{1}{\sqrt{2}}$  এইরূপ  $\cos \theta = \frac{1}{3}$  ছইবো,  $\theta$ -এর মান  $60^\circ$ ,  $300^\circ$ ,  $420^\circ$ ,  $660^\circ$ ,  $\cdots$ ,  $-300^\circ$ ,  $-60^\circ$ ,  $\cdots$  পার্চ ও অসংখ্য কোণের খে-কোন একটি হইবে পারে ;  $\tan \theta = \sqrt{3}$  ছইবো,  $\theta$ -এর মান  $60^\circ$ ,  $240^\circ$ ,  $420^\circ$ ,  $600^\circ$ ,  $\cdots$ ,  $-300^\circ$ ,  $-120^\circ$ ,  $\cdots$  প্রাদ্ধি অসংখ্য কোণের যে-কোন কেটি হুহতে পারে ।

বৈকোনমিতিক স্থাকিবৰ সমানানে এবং অক্সান্ত কেন্দ্রেও এই ওকি যে সকল অসংখ্য কোনের কোন বেকোব্যিকিক অক্সাত কেই মানবিশিষ্ট ভাষাদের নিল্যের প্রোজন হয় বলিয়ে। ই সকল অসংখ্য কে অকাশক স্থাক্ত স্থাধারণ করে উদ্ধানিত হুইয়াছে। পরবাহী ক্ষেক্তি অহতে হাল অধাবন প্রাঞ্জী স্থাক্ত বিভিন্ন কোনান্তকল লাখারণ ক্রেন্স্থ্রাক্ত হুইল।

- 7'2. শূন্য বৈলেগখিতিক ভানুপাভনিশিষ্ট কোণ-সমূকের সাধারণ রূপ।
- (i) যেত্ৰান কোগ ৪-এর এক বাছ ছিত কোন বিন্দু হউতে অপর বাজর উপর লম্ব অঙ্কন করিলে, আমর' জানি sin θ = প্রতিমূল :
  - ∴ sin θ = 0 হইলে, ল্ব = 0.

এখন, লখের মান শ্ল ২ই: ৬ ছইজে, কোণ্টির বাছফ্যকে একই সরল রেখায় অবস্থিত হইতে ২ইবে; অভএব, ভেগন ০-এর মান হইবে

$$0, \pi, 2\pi, 3\pi, \dots, -\pi, -2\pi, -3\pi, \dots$$

স্পষ্টই, এই অসংখ্য কোণগুলিকে n-এর মান শৃস্ত অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা লইলে, nπ ছারা প্রকাশ করা যায়। অতএব,

$$\sin \theta = 0$$
 হইলে,  $\theta = n\pi$ .

এস্থলে, n শৃত্য অথবা ষে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা।

(ii) যে-কোন কোণ θ-এর এক বাহুস্থিত কোন বিন্দু হইতে অপর বাহুর উপর লম্ব অন্তন করিলে, আমরা জানি  $\cos \theta = \frac{\sqrt[6]{4}}{\sqrt[6]{4}}$ ;

∴ cos θ=0 হইলে, ভূমি=0.

এখন ভূমির মান শৃত্য হইতে হইলে কোণের বাহুদ্য়কে প্রত্পর লম্ব হইতে হইবে; অতএব, তথন θ-এর মান হইবে

$$\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots, -\frac{\pi}{2}, -\frac{3\pi}{2}, -\frac{5\pi}{2}, \dots$$

স্পষ্টই, এই অসংখ্য কোণগুলিকে n-এর মান শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা লইলে,  $(2n+1)\frac{\pi}{2}$  দারা প্রকাশ করা যায়। অতএব,  $\cos\theta=0$  হইলে,  $\theta=(2n+1)\frac{\pi}{2}$ 

এস্থলে, n শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্বসংখ্যা।

(iii) 
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = 0$$
 EVET,  $\sin \theta = 0$ ;

 $\therefore \quad \theta = n\pi.$ 

এস্থলে, n শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা।

(iv) 
$$\cot \theta = \frac{\cos \theta}{\sin \theta} = 0$$
 হইলে,  $\cos \theta = 0$ ;

$$\therefore \quad \theta = (2n+1) \, \frac{\pi}{2} \, \cdot$$

এন্থলে, n শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা।

- (v)  $|\sin \theta| < 1$  এবং  $|\cos \theta| < 1$ ;
  - ∴ |cosec θ|>1 এবং|sec θ|>1;
  - $\therefore$  cosec  $\theta \neq 0$ , ज्वर sec  $\theta \neq 0$ .

# 7'3. একই sin (অথবা cosecant)-বিশিষ্ট অসংখ্য কোণ-প্রকাশক সূত্র।

a একটি নিৰ্দিষ্ট ধনাত্মক অথবা ঋণাত্মক সংখ্যা, এবং a < 1. যে অসীমসংখ্যক কোণের প্রত্যেকটির sine a-এর সমান, সেই সকল কোণ-প্রকাশক স্ত্র নির্ণয় করিতে হইবে। যে সকল কোণের  $\sin a$ -এর সমান, মনে কর, তাহাদের মধ্যে কুদ্রতম ধনাত্মক কোণটি a, এবং  $\theta$  যেন সেই অজ্ঞাত কোণসমূহের সাধারণ নাম। তাহা হইলে,

$$\sin \theta = \sin \alpha$$
,  $\forall |\alpha|$ ,  $\sin \theta - \sin \alpha = 0$ ,

$$7, \quad 2 \cos \frac{\theta + \alpha}{2} \sin \frac{\theta - \alpha}{2} = 0 ;$$

$$\therefore \quad \cos\frac{\theta+\alpha}{2}=0, \qquad \cdots \qquad \cdots$$

(1) হৈতে, 
$$\frac{\theta + a}{2} = (2m+1)\frac{\pi}{2}$$

এস্থলে, m শূন্ত অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা,

$$\forall 1, \qquad \theta = +(2m+1)n - a \qquad \cdots \qquad \cdots$$
 (3)

(2) হইতে, 
$$\frac{\theta-a}{2}=m\pi$$
,

এন্থলে, m শূক্ত অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা,

$$\forall i, \quad \theta = 2m\pi + \alpha \qquad \cdots \tag{4}$$

(3) এবং (4) একত্র করিয়া,

$$\theta = n\pi + (-1)^n a. \qquad \cdots \tag{5}$$

কেননা, n অধ্যা সংখ্যা 2m+1 হইলে,

$$\theta = (2m+1)\pi + (-1)^{2m+1}\alpha = (2m+1)\pi - \alpha,$$

এবং n যুগ্ম-স্থ্যা 2m হইলে,

$$\theta = 2m\pi + (-1)^{2m}a = 2m\pi + a.$$

এন্থলে, n শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঝণাত্মক পূর্ণসংখ্যা। আবার,  $\csc\theta = \csc a$  হইলে,  $\sin \theta = \sin a$ ;

ে একেত্রেও 
$$\theta = n_{\pi} + (-1)^n a$$
.

অতএব, যে দকল কোণের sine অথবা cosecant a-এর sine অথবা cosec-এর সমান, তাহাদিগকে n শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা ধরিয়া,

$$n\pi + (-1)^n \alpha$$

রাশিটি হইতে পাওয়া যায়।

 খে-কোন একটিকেই লইয়া স্ক্র গঠন করিলেও সেই স্ক্র হইতে প্রান্তরূপ কোণসমূহই পাওয়া যাইবে।

### 7'4. একই cosine (অথবা secant)-বিশিষ্ট অস্থ্য কোপ-প্রকাশক সূত।

a একটি নির্দিষ্ট ধনাত্মক অথবা ঋণাত্মক সংখ্যা, এবং a < 1. যে অসীমসংখ্যক কোণের প্রভ্যেকটির cosine a-এর সমান, মনে কর, তাহাদের মধ্যে ক্ষুত্রতম ধনাত্মক কোণটি a, এবং  $\theta$  যেন সেই অজ্ঞাত কোণসমূহের সাধারণ নাম। তাহা হইলে,

$$\boxed{4}, \qquad 2 \sin \frac{\theta + \alpha}{2} \sin \frac{\theta - \alpha}{2} = 0,$$

$$\sin\frac{\theta+\alpha}{2}=0, \qquad \cdots \qquad \cdots \qquad (1)$$

অথবা, 
$$\sin \frac{\theta - \alpha}{2} = 0$$
. ... (2)

(1) হইতে,  $\frac{\theta + \alpha}{2} = n\pi$ , এস্থলে n শূস্ত অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্বনংখ্যা,

$$\forall 1, \quad \theta = 2n_n - a.$$
 (3)

(2) হইন্ডে,  $\frac{\theta-\alpha}{2}=n\pi$ , এন্থলেও n শ্রা অথবা যে-কোন ধনাত্মক অথবা খণাত্মক পূর্বসংখ্যা,

$$\exists 1, \ \theta = 2n\pi + \alpha \qquad \cdots \qquad (4)$$

(3) এবং (4) একত্ত করিয়া,

 $heta=2n\pi\pm a$ , এস্থলে n শৃন্ত অথবা যে-কোন ধনাত্মক অথবা ধণাত্মক পূর্বসংখ্যা।

আবার, sec  $\theta = \sec \alpha$  হইলে,  $\cos \theta = \cos \alpha$ ;

ं. अस्ति  $\theta = 2n\pi \pm a$ .

অতএব, যে সকল কোণের cosine অথবা secant α-এর cosine অথবা secant-এর সমান, তাহাদিগকৈ n শূত্য অথবা যে-কোন ধনাত্মক অথবা ঝণাত্মক পূর্বসংখ্যা ধরিয়া,

 $2n\pi \pm \alpha$ 

রাশিটি হইতে পাওয়া বার।

জ্ঞ হৈব্য : যে অসীম-সংখ্যক কোণের প্রত্যেকটির cosine অথবা secant a, তাহাদিগের ক্ষুত্রম ধনাত্মক কোণ a-কে লইয়া স্ত্র গঠন না করিয়া তাহাদিগের ষে-কোন একটিকেই লইয়া স্ত্র গঠন করিলেও সেই স্ত্র হইতে পূর্বামূরপ কোণসমূহই পাওয়া যাইবে।

7'5. একই tangent (অথবা cotangent)-বিশিষ্ট অস্থ্য কোণপ্ৰকাশক সূত্ৰ।

α একটি নির্দিষ্ট ধনাত্মক অথবা ঋণাত্মক সংখ্যা। যে অসীম-সংখ্যক কোণের প্রত্যেকটির tangent α-এর সমান, মনে কর, তাহাদের মধ্যে ক্ষুপ্তম ধনাত্মক কোণটি α, এবং θ যেন সেই অজ্ঞাত কোণসমূহের সাধারণ নাম। তাহা হইলে,

 $\tan \theta = \tan \alpha$ ,  $\overline{\alpha}$ ,  $\tan \theta - \tan \alpha = 0$ ,

 $\forall i, \quad \frac{\sin \theta}{\cos \theta} - \frac{\sin \alpha}{\cos \alpha} = 0,$ 

 $\frac{\sin\theta\cos\alpha-\cos\theta\sin\alpha}{\cos\theta\cos\alpha}=0,$ 

 $\boxed{\text{di,}} \quad \frac{\sin (\theta - \alpha)}{\cos \theta \cos \alpha} = 0,$ 

 $\forall 1, \sin (\theta - \alpha) = 0 \times \cos \theta \cos \alpha = 0,$ 

কারণ, cos θ অথবা cos α-এর কোনটিই অদীম নহে;

 $\theta - a = n\pi$ , এস্থলে n শ্রু অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা;

 $\theta = n\pi + \sigma$ .

আবার,  $\cot \theta = \cot \alpha$  ইইলে,  $\tan \theta = \tan \alpha$ ;

ं. একেবেও θ = nπ + a.

অতএব, যে সকল কোণের tangent অথবা cotangent a-এর tangent, অথবা cotangent-এর সমান, তাহাদিগকে n শৃত্য অথবা যে-কোন ধনাত্মক অথবা ঝণাত্মক পূর্ণসংখ্যা ধরিয়া,

 $n\pi + \alpha$ 

### রাশিটি হইতে পাওয়া যায়।

7.6. পূর্বপ্রাপ্ত সূত্র-সমূহ নির্ণয়ের জ্যামিতিক পদ্ধতি।

(i) একই sine ( বা cosecant )-বিশিষ্ট অসংখ্য কোণ-প্রকাশক সূত্র : a একটি নির্দিষ্ট ধনাত্মক অথবা ঋণাত্মক সংখ্যা, এবং a < 1. যে অসীম-সংখ্যক

কোণের প্রত্যেকটির sine a-এর দখান, ভাহানিগকে অন্ধন করিতে হইবে এবং দেই সকল কোণ-নির্দায়ক করে গঠন করিতে হইবে।



স্তম্ব, পৃত্যু দুইটি প্রশার লছ

শরল রেগা ০ বিন্তু ছেদ করিয়াছে।

০-কে কেন্দ্র করিয়া এবং একক ব্যাসার্থ
লইয়া একটি বুর অভি ত কর। এখন,

৫ ধনা এক হইলে, ০০ হইতে এবং
ঋণা এক হইলে, ০০ হইতে এবং
শানের সমান করিয়া ০০ অংশ কাটিয়া লও
এবং ম বিন্দু দিয়া PNQ ॥ хох জাক।

PNQ সরল রেখা বুরুটিকে P ও এ বিন্তু ত

তেদ করিল। P ও এ ইইতে хох এব

উপর ধণাক্রমে ইন্না ও এনা লদ টান।

এখন, MP=ON = a,

$$\sin \angle POM - \frac{MP}{OP} - \frac{a}{1} = a.$$

.'. যে সকল কোণের sine a-এর সমান, ∠ POM তাহাপের একটি। ∠ POM-কে a দাবা স্চিত কর।

আবার, M'Q = ON = a;

$$\therefore \sin \angle QOX = \frac{M'Q}{QQ} = \frac{a}{1} = a.$$

ं. শে সকল কোলের sine a-এর স্থান, 🛴 QOX'ও ভাত্রের একটি।

এখন, POM ও QOM' दिङ्ख्या भवंस्य विद्या,

 $\angle QOX = \pi - \alpha$ 

ভাষা চটালে, যে সকল কোণের sine a ভাষাদের ঘুটটি চইল a এবা n - a.

N বিন্দুর অবস্থানটি স্থানিনিষ্ট এবং এই N বিন্দুর সাহায়ে  $\alpha ও \pi - \alpha$  কোণ দুইটি অবন করা হইয়াছে; অতবন, OX হইতে আরও ক্রেয়া ঘৃণ্যমান সরল রেখাটির একবার ঘৃরেয়া পুনরার OX অবস্থানে আসার মধ্যে, অর্থাই, O হইতে প্রন্থার বাধা  $\alpha ও \pi - \alpha$  ভিন্ন মন্তান কোণ নাই যাহাদের sine  $\alpha$ -এর স্থান 1

এখন  $2\pi$  বা  $2\pi$ -এর কোন গুণিভক কোন কোণের সহিত যোগ বা উহা হইতে বিয়োগ করিবেণ লব্ধ কোণ বা কোনসমূহের তৈকোণ মিডিক অয়পাত একই থাকে; অভএব, যে দকল কোণের sine a-এর সমান, তাহার হুইভেচ্ছে  $2p_n+a$  এবং  $2p_m+n-a$ , মর্থাং,  $(2p+1)_n-a$ , এমতে p শুন্ত অপবং ,ম-কোন ধনাত্মক অপবা ক্ষায়েক পূর্ণ হয়।। এই ভূমন্তি মন একর ক'বন n-এর শুন্ত অপবা ধনাত্মক ম্যাবা ম্বা গ্রেক যে-,কান পূর্ণ-শংখাক মাতে র জন্ম

$$n\pi + (-1)^n\alpha$$

সূত্র হুইতে যে সকল কোনের sine a হর স্থান ভাল্পিকে পাজ্যা যাইবে।

(ii) একই cosine (বা secant)-বিশিষ্ট অসংখ্য কোণ-প্রকাশক সূত্র:

a একটি নিশিষ্ট সনায়ক অবং কণাছক সংখ্যা, এবা a < 1. a সনায়ক ভইলে, ox' হঠতে a—এর সাগোমানের সমান করিয়া om অংশ কাটিয়া লগু এবং m বিন্দু নিয়া  $pmo \perp xox'$  শাক;  $pmo \rightarrow xom$  রবা রুবা রুবা রুবিটিকে p প্র a বিন্দুতে (১৮ করিল।

अस्त, 
$$\cos \angle POM = \frac{OM}{OP}$$

$$= \frac{a}{1} = a.$$

়ে বে-সকল কোণের cosine

এ এর সমান 🗸 POM ভিন্তানের একটি।

∠ POM-কে এ খারা হ'চত কর। মানার,
ভারম কোণ QOM-এর

$$cosine = \frac{OM}{OQ} = \frac{a}{1} = a.$$

়, বে-সকল কোণের cosine ব-এর সমান, প্রবৃদ্ধ কোণ QOMশ গ্রাই -দের একটি।



STA POM S COM (CHESS HAND S'PULL COM - L POM - a.

". 435 ∠ QOM = 2g - a.

ভোষা হবলৈ, তা সকল কোণের cosme a ভোষ্টের ছবটি হউল a এবং থিলাল । ৪ বং থিলাছর মাধ্য মাত্র এই ছবটি কোণেবেই cosme a-বর সমান। ইতাদের স্থিত থিল বা থান বর কোণে ভাগতক যোগা বা উহা হবতে বিযোগ কবিয়া ব্যাসকল কোণের cosme a-এর সমান, তাহাতা হততে হাত্

2pa+a এবা 2pa+2a-a, অর্থাং, 2/p+1m-a, এয়াল p পুরু অব্বা ব্যকোন ধনায়ক হলত কলায়ক প্রসংখা। এই ৪ইটি কর একর করিয়া n-4র শ্ন্য অথবা ধনাত্মক অথবা ঋণাত্মক যে-কোন পূর্ণ-সংখ্যক মানের জন্ত  $2n\pi\pm\alpha$ 

স্থ্র হইতে যে-সকল কোণের cosine a-এর সমান তাহাদিগকে পাওয়া যায়।

(iii) একই tangent (বা cotangent )-বিশিষ্ট অসংখ্য কোণ-প্রকাশক

a একটি নিদিষ্ট ধনাত্মক অথবা ঋণাত্মক সংখ্যা। যে অসীম-সংখ্যক কোণের প্রত্যেকটির tangent a-এর সমান, তাহাদিগকে অন্ধন করিতে হইবে এবং সেই সকল কোণ-নির্ণায়ক স্ত্রে গঠন করিতে হইবে।



তৃতীয় পাদে (আর, ঋণাত্মক হইলে, দিতীয় বা চতুর্থ পাদে) α-এর সমান করিয়া MP L xox'টান। op ধোগ কর।

এখন, 
$$\tan \angle POM = \frac{\alpha}{1} = \alpha$$
.

ं. যে-দকল কোণের tangent a-এর সমান, ZPOM তাহাদের একটি। ZPOM কে বারা স্থচিত কর।

আবার, Po-কে P' পর্যন্ত এরপভাবে বর্ধিত কর, যেন Po = OP' হয়, এবং P' ইইতে XOX' এর উপর P'M' লম্ব টান। POM এবং P'OM' ত্রিভূজদ্বর সর্বসম বলিয়া,

$$M'P'=PM=-MP=-a,$$
 $M'P'=PM=-MP=-a,$ 
 $M'P'=PM=-MP=-a,$ 

:. প্রবৃদ্ধ 
$$\angle P'OM$$
-এর tangent =  $\frac{M'P'}{OM'} = \frac{-a}{-1} = a$ ;

∴ মে-সকল কোণের tangent a-এর সমান, প্রবৃদ্ধ কোণ p'omও তাহাদের একটি।

এখন, POM ও P'OM' ত্রিভুজ্বয় সর্বসম বলিয়া, ∠P'OM' = ∠POM = a.

প্রবৃদ্ধ কোণ P'OM = π + a.

তাহা হইলে, যে সকল কোণের tangent a তাহাদের তুইটি হইল a এবং n+a. 0 এবং 2n-এর মধ্যে মাত্র এই তুইটি কোণেরই tangent a-এর মমান। ইহাদের সহিত 2n বা 2n-এর কোন গুণিতক যোগ বা উহা হইতে বিয়োগ করিয়া যে-সকল কোণের tangent a-এর সমান, তাহার। হইতেছে  $2p\pi+a$ , এবং  $2p\pi+\pi+a$ , অর্থাৎ,  $(2p+1)\pi+a$ , এন্তলে p শুন্ত অথবা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণ-সংখ্যা। এই তুইটি ক্ষেত্র একত্র করিয়া n-এর শুন্ত অথবা ধনাত্মক অথবা ঋণাত্মক যে-কোন পূর্ণ-সংখ্যক মানের জন্ত

 $n\pi + \alpha$ 

স্তুত হইতে যে-সকল কোণের tangent a-এর সমান ভাহাদিগকে পাওয়া যায়।

7.7. বিশেষ ত্রৈকোণমিতিক অনুপাতের ক্ষেত্র।

(i) 
$$\sin \theta = 1 = \sin \frac{\pi}{2}$$
:

0 এবং  $2\pi$ -এর মধ্যে  $\frac{\pi}{2}$  হইতেছে একমাত্র কোণ যাহার  $\sin=1$ .

$$\therefore \quad \theta = 2nn + \frac{\pi}{2} = (4n+1) \frac{\pi}{2}.$$

এম্বলে, n=0, অথবা, যে-কোন ধনাস্থক অথবা ঋণাস্থক পূর্ণসংখ্যা।

(ii) 
$$\sin \theta = -1 = \sin \frac{8\pi}{2}$$

$$\therefore \quad \theta = 2n\pi + \frac{3\pi}{2} = (4n + 8) \frac{\pi}{2}.$$

এস্কলে, n=0, অথবা যে-কোন ধনাত্মক অপবা ঝণাত্মক পূর্ণসংখ্যা।

(iii) 
$$\cos \theta = 1 = \cos 0^{\circ}$$
;

$$\theta = 2n\pi.$$

এস্থলে, n=0 অথবা যে-কোন ধনায়ক অথব ঋণায়ক পূৰ্ণসংখ্যা।

(iv) 
$$\cos \theta = -1 = \cos \pi$$
;

$$\therefore \quad \theta = 2n\pi + \pi = (2n+1)\pi.$$

এস্থলে, n=0 অথবা যে-কোন ধনাত্মক অথবা ৰণাত্মক পূৰ্ণসংখ্যা।

জাইব্য: প্রপাপ ত্রেকোণ্মিতিক অমুপাতসমূহের স্ত্র প্রয়োগ করিয়াও উপরের সিদাস্তর্গিতে উপনাত হওয়। যায়; কিন্তু এক্ষেত্রে ফলগুলি অধিকতর সংক্ষিপ্ত।

#### 7'8. উদাহরণমালা।

উপা. 1. ৪-এর সাধারণ মান নির্ণয় করে, যথন

(i) 
$$\sin \theta = \frac{1}{\sqrt{2}}$$
; (ii)  $\cos \theta = -\frac{\sqrt{3}}{2}$ ; (iii)  $\tan \theta = \sqrt{3}$ .

(i) মেনকে কোণের sine  $-\frac{1}{\sqrt{2}}$ , ভাছাদের মধ্যে বনায়ক ক্ষুদ্রমটি  $\frac{\pi}{4}$ :

$$\therefore \quad \theta = n\pi + (-1)^n \frac{\pi}{4} \cdot$$

এম্বলে, ॥ শ্র অপবা হে-কোন ধনাপ্রক অথবা ঋণাপ্রক পূর্ণসংখ্যা।

(ii) যে সকল কোণের  $\cos ine = -\frac{\sqrt{3}}{2}$ , ভাছাদের মধ্যে ধনাব্যক কুমতমটি  $\frac{6\pi}{6}$ ;

$$\therefore \quad \theta = 2n\pi \pm \frac{5\pi}{6}.$$

এন্তাল, দ শ্রা অপব যে-কোন ধনা হক অথবা ধ্লাহাক প্রসংখ্যা।

(iii) (য-সকল কোণের tangent =  $\sqrt{3}$ , ভাছাদের মধ্যে ধনাত্মক ক্ষতমটি  $\frac{\pi}{8}$ ;

$$\therefore \quad \theta = nn + \frac{n}{3}.$$

এস্থাল, ম শুনা অপবা যে-কোন ধনায়ক অপবা ঋণায়ক পূৰ্ণসংখ্যা।

উদা. 2.  $\theta$ -এর মে সাধারণ মান sec  $\theta = -2$  এবং  $\cot \theta = \frac{1}{\sqrt{3}}$ কে সিদ্ধ করে, তাহা নির্ণয় কর ।

sec ০ কণাশ্বক বলিডা, ০ অবছাই খিডাঁয় অথবা ডুডাঁয় পাদের একটি কোণ।
sec ০ কণাশ্বক বলিডা, ০ অবছাই খিডাঁয় অথবা ডুডাঁয় পাদের একটি কোণ।

$$\frac{1}{3}$$
 । অবকাই  $n - \frac{n}{3}$  । অবকা,  $n + \frac{n}{3}$  । অব্দেং,  $\frac{2n}{3}$ , অব্দেং,  $\frac{4n}{3}$  হউলে।

আবার  $\cot \theta$  ধনা ক্ষক বলিরে,  $\theta$  অবশুই প্রথম পাদ অথবা তৃতীয় পানের একটি কোণ। এখন,  $\cot \frac{\pi}{8} = \frac{1}{\sqrt{3}}$ 

$$\theta$$
 अवशह  $\frac{\pi}{3}$ , अवर,  $\pi + \frac{\pi}{3}$ , अवर,  $\frac{\pi}{3}$ , अवर,  $\frac{4\pi}{3}$  हहेरव। ... (2)

: (1) এবং (১) ২ইছে, ০-এর সাধারণ মান প্রহণ করিয়া,

$$\theta = \frac{4\pi}{3}$$
.

...  $\theta$ -as sixted with  $=2n\pi+\frac{4\pi}{3}=2(3n+2)\frac{\pi}{3}$  .

शकरण, n मृज्ञ अधनः (ग-,कान ४०। धक अधना अणा शक पूर्वभरणा।

উদা. 3. নিমাগ্রিভ স্থাকিরপ্রাগ ০ ~ ফে ± ০ কলে স্থাধান কবিয়া প্রমাণ কর যে, তাহারা অভিয়ঃ

sin<sup>2</sup>0 - sin<sup>2</sup>a, cos<sup>2</sup>0 - cos<sup>2</sup>a, tan<sup>2</sup>0 - tan<sup>2</sup>a এবং ইত ছইছে সমাধান কয়: 8 sin<sup>2</sup>0 + 5 cos<sup>2</sup>0 - 4.

 $\sin^2\theta \sim \sin^2 a$ ,  $1 - \sin^2 \theta = 1 - \sin^2 a$ .

 $\therefore 1 + \tan^2 \theta = 1 + \tan^2 \theta, \qquad \therefore \tan^2 \theta = \tan^2 \theta.$ 

 $\mathbb{R}^{3} = \cos^{2}\theta + \cos^{2}\theta, \qquad \qquad 2\cos^{2}\theta = 2\cos^{2}\theta$ 

. 1+ cos 29 = 1+ cos 2a, ... cos 29 = cos 2a,

3 sin 0 + 5 cos 0 - 4.

4,  $3(1-\cos^2\theta) + 5\cos^2\theta - 4$ , 4,  $2\cos^2\theta - 1$ , 41,  $\cos^2\theta - \frac{1}{4}$ =  $\left(-\frac{1}{\sqrt{2}}\right)^8 = \cos^8\frac{\pi}{4}$ ;

 $\therefore \quad \theta = n\pi \pm \frac{\pi}{4}.$ 

**Sw**[. 4.  $\Rightarrow x = 6 \Rightarrow x = \cot x - \tan x = 2$ . [C. U. 1934, '37]  $\cot x - \tan x = 2$ .  $< 1 + \cos x = \frac{\sin x}{\sin x} = \frac{1}{\cos x}$ .

31,  $\cos^2 x - \sin^2 x - 2 \sin x \cos x$ , 3,  $\cos 2x - \sin 2x$ ,

 $\mathfrak{A}_{1}, \frac{\sin 2x - 1}{\cos 2x} = 1, \mathfrak{A}_{1}, \quad \text{tin } 2x = 1 \cdot \tan \frac{\pi}{4};$ 

'.  $9x = nn + \frac{\pi}{4}$  '  $\forall i$ ,  $x = \frac{n\pi}{2} + \frac{\pi}{5} = (4n + 1) \frac{\pi}{5}$ 

উপা. 5. সমাধান কর: 
$$2 \sin^2 x + \sin^2 2x = 2$$
. [ C. U. 1940 ]  $2 \sin^2 x + \sin^2 2x = 2$ ,

 $\sqrt[3]{1}, \quad 2\sin^2 x + (2\sin x \cos x)^2 = 2,$ 

 $\sqrt{3}$ ,  $\sin^2 x + 2 \sin^2 x \cos^2 x = 1$ .

 $\forall 1, \quad \cos^2 x - 2 \sin^2 x \cos^2 x = 0, \quad \forall 1, \quad \cos^2 x (1 - 2 \sin^2 x) = 0,$ 

 $\sqrt[3]{}, \quad \cos^2 x \cdot \cos 2x = 0 \ ;$ 

$$\therefore \quad \cos x = 0, \quad \forall \forall \forall \forall, \quad x = (2n+1) \frac{n}{2},$$

অথবা,  $\cos 2x = 0$ , অর্থাৎ  $2x = (2n+1) \frac{\pi}{2}$ ;  $\therefore x = (2n+1) \frac{\pi}{4}$ 

উদা. 6. সমাধান করঃ  $\sin x + \cos x = \sqrt{2}$ .

[C. U. 1935; B. H. U. 1946]

উভয় পক্ষ  $\sqrt{1^2+1^2}$ , অর্থাৎ,  $\sqrt{2}$  দারা ভাগ করিয়া,

$$\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = 1,$$

 $\boxed{7}, \quad \sin\frac{\pi}{4} \sin x + \cos\frac{\pi}{4} \cos x = 1,$ 

$$\therefore x = 2n\pi + \frac{\pi}{4} = (8n+1) \frac{\pi}{4}.$$

জাইব্য 1. একই প্রশ্ন অনেক সময়ে বিভিন্ন পদ্ধতিতে সমাধান করিয়া বিভিন্ন আকারের ফল পাওয়া যায়; কিন্তু প্রকৃতপক্ষে আকার বিভিন্ন হইলেও এই সকল ফল একই কোণ-শ্রেণী স্থাচিত করে।

দ্রষ্টব্য 2. অবান্তর বীজ ঃ কোন ত্রৈকোণমিতিক সমীকরণের সমাধান বিভিন্ন পদ্ধতিতে নিষ্পন্ন করা সন্তব হুইলেও এরপ ক্রটিপূর্ণ পদ্ধতিও আছে, যাহাতে সমীকরণের আসল বীজের সহিত এরপ কতকগুলি ফল আসিয়া পড়ে যাহারা ঐ সমীকরণের বীজ নহে, অর্থাং যাহাদের দ্বারা সমীকরণটি দিদ্ধ হয় না; এই জাতীয় ফলকে অবান্তর বীজ (extraneous solution) বলে। যেমন, বর্তমান উদাহরণে, উভর পক্ষ বর্গ করিলে,

> $\sin^2 x + \cos^2 x + 2 \sin x \cos x = 2$ ,  $3 \cdot 1 + \sin 2x = 2$ ,  $3 \cdot 1$ ,  $\sin 2x = 1$ ;

$$\therefore$$
  $2x = (4n+1)\frac{\pi}{2}$ ,  $\forall i$ ,  $x = (4n+1)\frac{\pi}{4}$ .

এস্থলে, n শৃশ্য বা ষে-কোন ধনাত্মক অথবা ঋণাত্মক পূর্ণসংখ্যা।

n=0 হইলে,  $x=rac{\pi}{4}$ ; ইহা দারা সমীকরণটি সিদ্ধ হয়।

n যে-কোন ধনাত্মক অথবা ঋণাত্মক যুগা পূর্ণসংখ্যা, মনে কর, 2m হইলে,

$$x = (8m+1) \frac{\pi}{4}$$
;

m-এর 0 বা ধনাত্মক অথবা ঝণাত্মক সকল পূর্ণ-সংখ্যক মানের জন্মই ইহাদের ত্বারা সমীকরণটি সিদ্ধ হয়।

n যে-কোন ধনাত্মক অথবা ঋণাত্মক অযুগ্য পূর্ণসংখ্যা, মনে কর, 2m+1 হইলে,

$$x = (8m + 5) \frac{\pi}{4}$$

এছলে, m শৃত্য বা ধনাত্মক অথবা ঋণাত্মক পূর্ণদংখ্যা। কিন্তু ইহাদের দারা সমীকরণটি সিদ্ধ হয় না। ইহারা সমীকরণটির অবান্তর বীজ। এই সকল অবান্তর বীজ সমক্ষে সর্বদাই সাবধান হইতে হয়, এবং সমাধানান্তে পদীক্ষা করিয়া দেখিতে হয় প্রাপ্ত বীজসমূহ দারা মূল সমীকরণটি সিদ্ধ হয় কিনা; যেটি দারা সিদ্ধ হয় না, তাহাকে অবান্তর বলিয়া পরিত্যাগ করিতে হয়।

এখন, এই অবাস্তর বীজগুলি আদিল কিরপে? আদিবার হেতু, মূল সমীকরণটি সমাধান না করিলা সমাধান করা হইলাছে

 $\sin^2 x + \cos^2 x + 2 \sin x \cos x = 2$ 

সমীকরণটিকে। এই সমীকরণ যেরূপ মূল সমীকরণের উভয় পক্ষ বর্গ করিয়া পাওয়া গিয়াছে, সেইরূপ

$$\sin x + \cos x = -\sqrt{2} \qquad \cdots \qquad \cdots \qquad (1)$$

সমীকরণের উভয় পক্ষ বর্গ করিয়াও উহাকে পাওয়া যায়। মূল সমীকরণের অবাস্তর বীজগুলি সমীকরণ (1)-এর বীজ।

উদা. 7. সমাধান কর:  $2 \cos^2 \theta - \sin \theta \cos \theta = 1$ .

এছলে,  $2 \cos^2 \theta - 1 = \sin \theta \cos \theta$ ,

 $\overline{\theta}$ ,  $\cos 2\theta = \sin \theta \cos \theta$ ,

 $\frac{\sin 2\theta}{\cos 2\theta} = 2$ , বা,  $\tan 2\theta = 2 = \tan \alpha$ , মনে কর;

$$\therefore 2\theta = n\pi + \alpha, \quad \forall |, \quad \theta = n\frac{\pi}{2} + \frac{\alpha}{2}.$$

এস্থলে, n=0 বা যে-কোন ধনাত্মক অথবা ঋণাত্মক পূৰ্ণসংখ্যা,

এবং  $\tan \alpha = 2$ .

উদা. 8. দ্মাধান কর:  $\cos 4x + \cos 3x + \cos 2x = 0$ .  $\cos 4x + \cos 3x + \cos 2x = 0$ ,

 $4x + \cos 2x + \cos 3x = 0$ 

4,  $2\cos 3x\cos x + \cos 3x = 0$ ,

 $\sqrt{3}$ ,  $\cos 3x (2 \cos x + 1) = 0$ ,

$$\therefore$$
 cos  $3x = 0$ , weige,  $3x = (2n+1)\frac{\pi}{2}$ ;  $\therefore$   $x = (2n+1)\frac{\pi}{6}$ ;

অথবা,  $2\cos x = -1$ , অর্থাৎ,  $\cos x = -\frac{1}{2} = \cos \frac{2\pi}{3}$ ;

$$\therefore \quad x = 2n\pi \pm \frac{2n}{3}.$$

উদা. 9. সমাধান কর ঃ  $a\cos\theta+b\sin\theta=c$ , ( যথন  $c<\sqrt{a^2+b^2}$ ). উভয় পক্ষকে  $\sqrt{a^2+b^2}$  ছারা ভাগ করিয়া,

$$\frac{a}{\sqrt{a^2 + b^2}} \cos \theta + \frac{b}{\sqrt{a^2 + b^2}} \sin \theta = \frac{c}{\sqrt{a^2 + b^3}} \cdots \qquad (1)$$

ম্পাইই,  $a < \sqrt{a^2 + b^2}$  এবং  $b < \sqrt{a^2 + b^2}$ ;

অতএব, মনে করা বাইতে পারে  $\frac{a}{\sqrt{a^2+b^2}}$  =  $\cos a$ 

$$\frac{b}{\sqrt{a^2+b^2}} = \sin a.$$

$$\therefore (1) \ \overline{\gtrless co}, \cos \theta \cos \alpha + \sin \theta \sin \alpha = \frac{c}{\sqrt{a^2 + b^2}} = \cos \beta,$$

মনে কর।  $c \leqslant \sqrt{a^2 + b^2}$  হইলেই এইরপ মনে করা যায়।

 $\cos (\theta - \alpha) = \cos \beta$ ;  $\theta - \alpha = 2n\pi \pm \beta$ , বা,  $\theta = 2n\pi \pm \beta + \alpha$ . এস্বল, n = 0 বা বে-কোন পূর্বসংখ্যা, ধনাত্মক বা ঋণাত্মক।

#### উলা 10. সমাধান কর:

 $4 \cos x + 3 \sin x = 3$  (দেওয়া আছে  $\tan 36^{\circ} 50' = \frac{3}{4}$ ).

সমীকরণটির উভয় পক্ষকে √4° +3°, অর্থাৎ, 5 দারা ভাগ করিয়া,

 $\frac{4}{5}\cos x + \frac{3}{5}\sin x = \frac{3}{5}.$  (1)

tan 36° 50′ =  $\frac{3}{4}$ ; ... sin 36° 50′ =  $\frac{3}{8}$ , 44° cos 36° 50′ =  $\frac{4}{8}$ 

:. (1) 
$$\overline{\text{exc}}$$
,  $\cos x \cos 36^{\circ} 50' + \sin x \sin 36^{\circ} 50' = \sin 36^{\circ} 50'$ ,  $\sin x \sin 36^{\circ} 50' = \sin 36^{\circ} 50' = \cos (90^{\circ} - 36^{\circ} 50')$ 

$$= \cos 53^{\circ} 10'$$
:

$$\therefore x - 36° 50' = 2n\pi \pm 53° 10'; \quad \therefore x = 2n\pi \pm 53° 10' + 36° 50',$$

$$\text{Tefts}, x = 2n\pi + 90°, \text{ If}, x = 2n\pi - 16° 20'.$$

উদা. 11. সমাধান কর: tan 40 = cot 50.

$$\tan 4\theta = \cot 5\theta = \tan \left(\frac{\pi}{2} - 5\theta\right);$$

$$\therefore \quad 4\theta = n\pi + \frac{\pi}{2} - 5\theta \; ;$$

$$\theta = (2n+1)\frac{\pi}{2}$$
,  $\theta = \frac{2n+1}{9} \cdot \frac{\pi}{2}$ 

#### উলা. 12. সমাধান কর:

(i) 
$$\cos \theta + \sqrt{3} \sin \theta = 1$$
, ( যথন  $-2\pi < \theta < 2\pi$  ).

(ii) 
$$6\cos^2\theta - 13\cos\theta + 5 = 0$$
, ( যথল  $-\pi < \theta < \pi$  ).

(i) উভয় পক্ষকে √1+3, অর্থাৎ, 2 দারা ভাগ করিয়া,

$$\cos\theta\cdot\frac{1}{2}+\frac{\sqrt{3}}{2}\sin\theta=\frac{1}{2}$$

$$71, \quad \cos\theta \cdot \cos\frac{\pi}{3} + \sin\theta \sin\frac{\pi}{3} = \frac{1}{2},$$

$$\forall i, \qquad \cos\left(\theta - \frac{\pi}{3}\right) = \frac{1}{2} - \cos\frac{\pi}{3};$$

$$\therefore \quad \theta - \frac{\pi}{3} = 2n\pi \pm \frac{\pi}{3},$$

অথবা, 
$$\theta = 2n\pi$$
. (2)

(1) হইতে, n=-1, 0 হইলে, 6-এর মান  $-2\pi$  হইতে  $2\pi$ -এর মধ্যে থাকিবে;

$$\therefore \qquad \theta = -\frac{4n}{3}, \ \frac{2n}{3}.$$

(2) হইতে, কেবলমাত্র n=0 হইলে,  $\theta$ -এর মান  $-2\pi$  হইতে  $2\pi$ -এর মধ্যে **পাকিবে** ;

$$\theta = 0$$
.

 $\cdot\cdot$   $-2\pi$  হইতে  $2\pi$ -এর মধ্যে অবস্থিত  $\theta$ -এর  $-\frac{4\pi}{3}$ , 0 এ বং $\frac{2\pi}{3}$  মান তিনটি ছারা সমীকরণটি সিদ্ধ হয়।

(ii)  $6 \cos^2 \theta - 13 \cos \theta + 5 = 0$ ;  $\forall 1$ ,  $(2 \cos \theta - 1)(3 \cos \theta - 5) = 0$ .

কিছ cos θ ≠ ξ, (: ξ>1)

$$\therefore \quad \cos \theta = \frac{1}{2} = \cos \frac{\pi}{3}; \quad \therefore \quad \pi = 2n_{\pi} \pm \frac{\pi}{3};$$

অধবা, 
$$\theta = 2n\pi - \frac{\pi}{3}$$
 ... (2)

- (1) হইতে, কেবলমাত্র n=0 হইলে,  $\theta$ -এর মান  $-\pi$  হইতে  $\pi$ -এর মধ্যে থাকে;  $\cdot$ :  $\theta=\frac{\pi}{3}$
- (2) হইতে, কেবলমাত্র n=0 হইলে,  $\theta$ -এর মান  $-\pi$  হইতে  $\pi$ -এর মধ্যে থাকে;  $\therefore$   $\theta = -\frac{\pi}{3}$ ;
- $\pi$  হইতে  $\pi$ -এর মধ্যে অবস্থিত  $\theta$ -এর  $-\frac{\pi}{3}$  এবং  $\frac{\pi}{3}$  মান-ছইটি দার।

উদা. 13. সমাধান কর:  $\tan x + \tan 2x + \tan 3x = 0$ .

[ A. I. 1941; B. H. U. 1946]

 $\tan x + \tan 2x + \tan 3x = 0,$ 

 $\overline{\triangleleft}$ ,  $\tan 3x = -(\tan x + \tan 2x)$ ,

 $\overline{\triangleleft}$ ,  $\tan(x+2x) = -(\tan x + \tan 2x)$ ,

 $\forall |, \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} + \tan x + \tan 2x = 0,$ 

$$\therefore \tan x + \tan 2x = 0 \qquad \dots \tag{1}$$

অথবা, 
$$\frac{1}{1-\tan x \tan 2x} + 1 = 0$$
 ... (2)

(1) ইইডে, 
$$\tan x = -\tan 2x = \tan (-2x)$$
;

$$x = n\pi - 2x$$
,  $\forall 1, 3x = n\pi$ ,  $\forall 1, x = \frac{n\pi}{3}$ ;

(2)  $\sqrt{2}$  (3),  $1+1-\tan x \tan 2x = 0$ ,  $\sqrt{3}$ ,  $\tan x \tan 2x = 2$ ,

$$\boxed{1, \quad \tan x. \frac{2 \tan x}{1 - \tan^2 x}} = 2,$$

বা, 
$$\tan^2 x = \frac{1}{2}$$
, বা,  $\left(\frac{1}{\sqrt{2}}\right)^2 = \tan^2 \alpha$   $\left(\frac{1}{\sqrt{2}} = \tan \alpha,$ মনে করিয়া $\right)$ 

 $\therefore x = nn \pm a.$ 

#### প্রামালা 8

নিয়লিথিত দ্মীকরণসমূহ θ-এর যে সাধারণ মান ছারা সিদ্ধ হয়, তাহা
 নির্ণয় কর:

(i) 
$$\sin \theta = \frac{1}{2}$$
; (ii)  $\cos \theta = \frac{\sqrt{3}}{2}$ ; (iii)  $\tan \theta = \frac{1}{\sqrt{3}}$ ;

(iv) 
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
; (v)  $\cos \theta = -\frac{1}{\sqrt{2}}$ ; (vi)  $\tan \theta = -\sqrt{3}$ ;

(vii) cosec 
$$\theta = \sqrt{2}$$
; (viii)  $\sec \theta = -\frac{2}{\sqrt{3}}$ ; (ix)  $\cot \theta = -1$ .

2. নিম্লিখিত সমীকরণসমূহ ৪-এর যে সাধারণ মান দ্বারা সিদ্ধ হয়, তাহা নির্ণয় কর:

(i) 
$$\cos \theta = -\frac{\sqrt{3}}{2}$$
,  $\tan \theta = \frac{1}{\sqrt{3}}$ ;

(ii) 
$$\sin \theta = -\frac{1}{2}$$
,  $\cot \theta = -\sqrt{3}$ .

3. যেসকল কোণের sin-এর মান, cos A-এর মানের সমান, সেই কোণ-প্রকাশক স্থ্রটি নির্ণয় কর।

নিম্লিখিত সমীকরণনমূহের সমাধান কর:

4. 
$$2 \sin^2 \theta - 2 \cos^2 \theta + 1 = 0$$
.

5. (i) 
$$\sec^2 \theta + \tan^2 \theta = 3$$
. (ii)  $2 \tan^2 \theta = \sec^2 \theta$ .

6. 
$$\tan^2\theta = 3 \csc^2\theta - 1$$
.

[C. U. 1939]

7.  $2\cos^2\theta + \sqrt{2}\sin\theta = 2$ .

8. 
$$\csc^2\theta + \cot^2\theta = 3 \cot \theta$$
.

[ C. U. 1913 ]

(XI-XII)-26

35.

 $\tan 2x + \tan 4x = 2 \tan 3x$ 

```
9. \tan^2\theta + \cot^2\theta = 2.
                                                                       [ Patna, 1942]
10. (i) \tan x + \cot x = 4.
                                                                        [ C. U. 1913 ]
    (ii) \tan 5\theta = \cot 2\theta.
                                                                        [ A. U. 1943 ]
11. \cot 2x + \tan x = 2.
                                               12. \cos \theta + \cos 5\theta = 0.
     \sin 4x - \sin 2x = \cos 3x.
13.
14.
     \cos 3\theta - \cos 5\theta = \sin \theta.
                                                                        [ A. U. 1939 ]
15. (i) \sin 2\theta = \cos \theta.
                                                                        [ C. U. 1953 ]
     (ii) \sin 4\theta = \sin \theta.
                                                                    [B. H. U. 1949]
16. \sin m\theta + \sin n\theta = 0.
17. \cos 3x + \cos 2x + \cos x = 0.
                                                                        [ C. U. 1946 ]
18. \sin 7\theta - \sin 3\theta - \sin \theta = 0.
                                                                        [ P. U. 1939 ]
19. (i) \cos \theta + \cos 2\theta + \cos 3\theta + \cos 4\theta = 0.
     (ii) \cos x + \cos 3x + \cos 5x + \cos 7x = 0.
                                                                        [ C. U. 1959 ]
20.
       \cos x + \sin x = \cos 2x + \sin 2x.
                                                                         [ C. U. 1943 ]
        \cos x - \sin x = \cos a + \sin a.
21.
                                                                    [ B. H. U. 1938 ]
       \sin^2 2\theta = \sin^2 \theta.
22.
       \sin^2 n\theta - \sin^2 (n-1)\theta = \sin^2 \theta.
23.
24.
       \sin 5x \cos 3x = \sin 9x \cos 7x
                                                                    [ B. H. U. 1946 ]
       2 \sin 2x \tan x - 1 = \tan x - 2 \sin 2x.
25.
       \sin x + \cos x = \frac{1}{\sqrt{2}}
26.
                                                                    [ B. H. U. 1948 ]
27.
       \cos \theta + \sqrt{3} \sin \theta = 2.
                                                                        [ C. U. 1936 ]
       \sin x + \sqrt{3} \cos x = \sqrt{2}.
28.
                                                                  [ C. U. 1938, '47 ]
       \cos \theta + \sqrt{3} \sin \theta = \sqrt{2}
29.
                                                                        [ C. U. 1944 ]
30.
       \sin \theta + 2 \cos \theta = 1.
                                                                        [ C. U. 1934 ]
       2\cos\theta+3\sin\theta=2, (দেওয়া আছে যে, \tan 56^{\circ} 20'=1\frac{1}{2}).
31.
       \tan x + \tan 2x + \tan x \tan 2x = 1.
32.
                                                     [ C. U. 1941, '45, '48]
       \tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x. [C. U. 1956]
33.
      \tan \left(\frac{\pi}{4} + \theta\right) + \tan \left(\frac{\pi}{4} - \theta\right) = 4.
34.
                                                                        [ C. U. 1949 ]
```

```
36.
            \tan \theta + \tan 2\theta = \tan 3\theta.
                                                            , [ C. U., B. Sc., 1926 ]
            \cos \theta - \sin 3\theta = \cos 2\theta.
      37.
                                                                    [ U. P. B. 1947 ]
      38.
            \tan \theta + \tan 2\theta + \sqrt{3} \tan \theta \tan 2\theta = \sqrt{3}. B. H. U. 1954
            \sin \frac{n+1}{2} \theta = \sin \frac{n-1}{2} \theta + \sin \theta.
                                                                [ U. P. B. 1953 ]
      39.
      40.
            \cos 3\theta + 3 \cos \theta = \frac{1}{2}
                                          [ C. U., B. Sc., 1935 ]
     41. 4 \sin 4\theta + 1 = \sqrt{5}.
     42. যদি sin A = sin B, cos A = cos B, প্রমাণ কর যে, হয় A = B অথবা
A ও B-এর অস্তর চার-সমকোণের কোন গুণিতক হইবে।
                                                              [ C. U. 1935 ]
           সমাধান কর : \frac{\sin \alpha}{\sin 2x} + \frac{\cos \alpha}{\cos 2x} = 2.
                                                                       [ C. U. 1958 ]
       সমাধান কর:
     44. (i) cos θ + √3 sin θ = 2, 0 < θ < 2n হইলে । [ C. U. 1936 ]
         (ii) \cos \theta - \sin \theta = \frac{1}{\sqrt{2}}, \theta - \pi হইতে + \pi-এর মধ্যে অবস্থিত হইলে।
                                                                       [ C. U. 1952 ]
         (iii) \sin \theta + \sqrt{3} \cos \theta = \sqrt{2}, 0 < \theta < 2\pi ইইলে। [C. U. 1938]
           sin 3A + sin 2A + sin A = 0, 0 < A < 2 म स्ट्रिंग | [ Patna, 1944 ]
     45.
                                                                  [ C. U. 1937 ]
           \cot \theta - \tan \theta = 2, 0 < \theta < 2\pi হইলো !
     46.
            \sin 4\theta = \cos 3\theta + \sin 2\theta, 0 < \theta < \pi हरेल। [ C. U. 1951 ]
     47.
           4 \sin \theta \cos \theta = 1 - 2 \sin \theta + 2 \cos \theta, 0 < \theta < \pi হইলো।
     48.
                                                                        [ C. U. 1950 ]
           49.
           সমাধান কর ( মাধারণ মানের প্রয়োজন নাই ):
     50.
               \tan x + \tan y = 2,
                                                                        [ C. U. 1955 ]
               2\cos x\cos y = 1
```

### অষ্টম অধ্যায়

## বিপরীত-রতীয় অপেক্ষক (Inverse Circular Functions)

### 81. অপেক্ষক ও বিপরীত অপেক্ষক।

যদি তুইটি বাস্তব চলরাশি x এবং y এরপ সম্মাযুক্ত হয় যে, কোন নির্দিষ্ট সীমার মধ্যে অবস্থিত x-এর প্রত্যেকটি ( বাস্তব ) মানের জন্ম y-এর অন্তর্মণ একটিমাত্র নির্দিষ্ট বাস্তব মান থাকে, তাহা হইলে y-কে উক্ত নির্দিষ্ট সীমার মধ্যে অবস্থিত x-এর **অপ্রেক্ষক** (function) বলে, এবং x-কে বলা হয় মৃক্ত বা নিরপেক্ষ (independent) চলরাশি এবং y-কে বলা হয় বদ্ধ বা **অপ্রেক্ষক** (dependent) চলরাশি। যেমন, x-এর সকল বাস্তব মানের জন্ম

 $y = 2x + 5 \qquad \dots \qquad \dots \qquad \dots \qquad \dots$ 

e-এর একটি অপেক্ষক।

(1) হইতে প্রাপ্ত *w* = ½(*y* → 5) ··· ··· (2) *y*-এর সকল বাস্তব মানের জন্ম, *y*-এর একটি অপেক্ষক।

দেখা যাইতেছে, একটির মৃক্ত এবং বদ্ধ চলরাশি যথাক্রমে অপরটির বদ্ধ এবং মৃক্ত চলরাশি এবং গাণিতিক প্রক্রিয়ায় একটি হইতে অপরটি পাওয়া যায়, স্তরাং, উহারা সমার্থ-জ্ঞাপক। এইরূপ সম্বন্ধযুক্ত তুইটি অপেক্ষকের একটিকে অপরটির বিপরীত (inverse) বলা হয়। f(x),  $\phi(x)$ ,  $\psi(x)$  প্রভৃতি বারা x-এর অপেক্ষককে স্থাচিত করা হয়, এবং y=f(x) হাইলে, f(x)-এর বিপরীত অপেক্ষকটিকে  $f^{-1}(y)$  বারা স্থাচিত করা হয়।

### 8°2. রতীয় এবং বিশরীত-রতীয় অশেক্ষক ও ভাহার অর্থ।

x-এর কোণ-জাপক সকল মানের জন্ম,

 $y = \sin x \qquad \dots \qquad \dots \qquad \dots \qquad \dots \tag{3}$ 

ত্ত-এর একটি অপেক্ষক।

ইহাকে এবং  $\cos x$ ,  $\tan x$  প্রভৃতি ত্রৈকোণমিতিক অনুপাত-প্রকাশক অপেক্ষক-সমূহকে ত্রৈকোণমিতিক (trigonometrical), বা বৃত্তীয় (circular) অপেক্ষক বলে।

এই অপেক্ষকসমূহের বিপরীত অপেক্ষকসমূহকে বিপরীত-বৃতীয় অপেক্ষক ' (inverse circular functions) বলে।

y=f(x) দারা স্টিত হইলে, f(x)-এর বিপরীত অপেক্ষককে  $x=f^{-1}(y)$  দারা স্টিত করা হয়।

এইরপ,  $y=\sin x$  হইলে,  $\sin x$ -এর বিপরীত অপেক্ষককে  $x=\sin^{-1}y$  দারা স্টিত করা হয় এবং ইহাকে 'দাইন ইন্ভার্স y' (sine inverse y)-রূপে পড়া হয়।  $\sin^{-1}y$ -কে ' $\arcsin y$ '-রূপেও লেখা হয়।

অতএব,  $\sin^{-1}y$ ,  $\cos^{-1}y$ , ইত্যাদি বিপরীত-বৃত্তীর অপেক্ষক। তাহা ইইলে,  $y=\sin x$  ইইলে,  $x=\sin^{-1}y$ ,  $y=\cos x$  ইইলে,  $x=\cos^{-1}y$ ,  $y=\tan x$  ইইলে,  $x=\tan^{-1}y$ ,  $y=\sec x$  ইইলে,  $x=\sec^{-1}y$ , ইত্যাদি।

এইরপ,  $\frac{1}{2} = \sin \frac{\pi}{6}$ ;  $\frac{\pi}{6} = \sin^{-1} \frac{1}{2}$ ,  $\frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}$ ;  $\frac{\pi}{6} = \cos^{-1} \frac{\sqrt{3}}{2}$ ,  $1 = \tan \frac{\pi}{4}$ ;  $\frac{\pi}{4} = \tan^{-1} 1$ , ইত্যাদি।

দেখা যাইতেছে, বিপরীত-বৃত্তীয় অপেক্ষকগুলি কোণ-প্রকাশক।

 $\sin^{-1}\frac{1}{2}=\frac{\pi}{6}$ , একটি কোণ যাহার  $\sin e=\frac{1}{2}$ ,  $\cos^{-1}\frac{\sqrt{3}}{2}=\frac{\pi}{6}$ , একটি কোণ যাহার  $\cos ine=\frac{\sqrt{3}}{2}$ ,  $\tan^{-1}1=\frac{\pi}{4}$ , একটি কোণ যাহার  $\tan gent=1$ , ইত্যাদি।

এইরপ, যে কোণের  $\sin e = y$ , তাহাকে  $\sin^{-1}y$  ঘারা, যে-কোণের  $\cosh e = y$ , তাহাকে  $\cos^{-1}y$  ঘারা প্রকাশ করা হয়।

তাহা হইলে,  $\sin^{-1}\frac{1}{3}$ -এর অর্থ হঠল একটি কোণ যাহার  $\sin e = \frac{1}{2}$ ; কিন্তু আমরা জানি,  $\frac{\pi}{6}$ -ই একমাত্র কোণ নয়, যাহার  $\sin e = \frac{1}{3}$ ; পরস্ত, n শৃষ্ঠ বা যে-কোন ধনাত্মক বা ঋণাত্মক পূর্ণ-সংখ্যক মানের জন্ম  $n\pi + (-1)^n \frac{\pi}{6}$  অসংখ্য কোণসমূহের প্রত্যেকটি কোণের  $\sin e = \frac{1}{2}$ . অতথ্য,  $\sin^{-1}\frac{1}{2} = n\pi + (-1)^n \frac{\pi}{6}$  এইরূপ,  $\cos^{-1}\frac{\sqrt{3}}{2} = 2n\pi \pm \frac{\pi}{6}$ ;  $\tan^{-1}1 = n\pi + \frac{\pi}{4}$ ; ইত্যাদি।

দেখা যাইতেছে, বিপরীত-বৃত্তীয় অংশক্ষকসমূহ বহু-মানবিশিষ্ট (multiple valued). এই অসংখ্য কোণ-প্রকাশক মানস্মূহের মধ্যে যে কোণটির সাংখ্যমান ক্ষুত্তম, ধনাত্মক হউক, বা ঋণাত্মক হউক, তাহাকে বিপরীত-বৃত্তীয় অংশক্ষকটির মুখ্য মান (principal value) বলে। যেমন,

 $\sin^{-1}\frac{1}{2}$ -এর মুধ্য মান 30°, বা,  $\frac{\pi}{6}$  একই সাংখ্যমান, কিন্তু বিপরীত চিছ্নবিশিষ্ট ছুইটি কোণের একই ত্রৈকোণমিতিক অনুপাত থাকিলে, ধনাত্মক চিছ্যুক্ত কোণটিকেই বিপরীত-বৃত্তীয় অপেক্ষকের মুখ্য মানস্বপে ধরা হয়।

বেমন,  $\cos^{-1}\frac{\sqrt{3}}{2}$  এর মুখ্য মান 30°,  $-30^\circ$  নয়, যদিও  $\cos{(-30^\circ)}=\frac{\sqrt{3}}{2}$ 

জনেক। সময়ে, মুখ্য মানগুলিকে বড-হাতের অক্ষর দারা প্রকাশ করা হয়। থেমন,

$$\sin^{-1}\frac{1}{2}$$
-এর মুখ্য মান =  $\sin^{-1}\frac{1}{3}$  = কেবলমান্ত  $\frac{\pi}{6}$ ;  $\cos^{-1}\frac{\sqrt{3}}{2}$ -এর মুখ্য মান =  $\cos^{-1}\frac{\sqrt{3}}{2}$  = কেবলমান্ত  $\frac{\pi}{6}$ ;  $\tan^{-1}1$ -এর মুখ্য মান =  $\tan^{-1}1$  = কেবলমান্ত  $\frac{\pi}{4}$ , ই গ্রাদি। 
$$\cdot \cdot \cdot \sin^{-1}\frac{1}{2} = n\pi + (-1)^n \cdot \sin^{-1}\frac{1}{2}$$
;  $\cos^{-1}\frac{\sqrt{3}}{2} = 2n\pi \pm \cos^{-1}\frac{\sqrt{3}}{2}$ ; ই গ্রাদি।

কিন্তু, বিপরীত-রুত্তীয় অপেক্ষক-সংবলিত প্রশ্নসূতে অথবা উহাদের সমাধানে মৃথ্য মান-প্রকাশক এই সকল চিহ্ন ব্যবহার না করিয়া, sin<sup>-1</sup>, cos<sup>-1</sup>, tan<sup>-1</sup> ইত্যাদি চিহ্ন ধরাই মুখ্য মান প্রকাশ করা হইখাছে; এই সকল চিহ্নযুক্ত প্রশ্নে, উহাদের সাধারণ মান না ধরিয়া মুখ্য মান ধরিয়াই সমাধান করিতে হইবে।

জন্তব্য ঃ  $\sin^{-1}x = (\sin x)^{-1}$  নয়, কেননা  $(\sin x)^{-1} = \frac{1}{\sin x}$  মনে রাখিতে হইবে।

- 8'3. বিবিধ প্রয়োজনীয় তথ্য।
- (1)  $\sin \theta = x$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$   $\overline{\xi}$

••  $\sin^{-1}\sin\theta = \theta$ .

এইরপে,  $\cos^{-1}\cos\theta=\theta$ ,  $\tan^{-1}\tan\theta=\theta$ , ইত্যাদি।

- (2)  $\sin \theta = x \ \overline{2} \ \overline{q}, \ \theta = \sin^{-1} x$ ;
  - Sin sin<sup>-1</sup>x = x.

এইরপে, cos cos<sup>-1</sup>x = x, tan tan<sup>-1</sup>x = x, ইত্যাদি।

(3) প্রমাণ কর বে,

$$\csc^{-1}x = \sin^{-1}\frac{1}{x}$$
;  $\sec^{-1}x = \cos^{-1}\frac{1}{x}$ ;  $\cot^{-1}x = \tan^{-1}\frac{1}{x}$ .

মনে কর,  $\csc^{-1}x = \theta$ ; ...  $x = \csc \theta$ ;

$$\therefore \frac{1}{x} = \sin \theta \; ; \quad \therefore \quad \sin^{-1} \frac{1}{x} = \theta = \csc^{-1} x.$$

এইরপে, প্রমাণ কর' যায়,  $\sec^{-1}x - \cos^{-1}\frac{1}{x}$  এবং  $\cot^{-1}x = \tan^{-1}\frac{1}{x}$  জাবার, অনুরূপ প্রক্রিয়ায় প্রমাণ করা যায় যে,

 $\sin^{-1}x = \csc^{-1}\frac{1}{x}$ ;  $\cos^{-1}x = \sec^{-1}\frac{1}{x}$  43.  $\tan^{-1}x = \cot^{-1}\frac{1}{x}$ .

(4) বৃত্তিয় অংপক্ষককে য়েরপ একটিকে অপ্রটির সাধায়ে প্রকাশ করা য়য়ে।
য়য়য়

$$\sin \theta = \sqrt{1 - \alpha^2 \theta} = \frac{\tan \theta}{\sqrt{1 + \tan \theta}} = \frac{1}{\cos \cos \theta}$$

$$= \frac{\sqrt{\sec^2 \theta - 1}}{\sec \theta} = \frac{1}{\sqrt{1 + \cot^2 \theta}}$$

দেইস্ল, বিপ্নীত-রুত্তীর আপেত্যবেক্সন্ত যে কোন্টাকে অপর একটির মাহায্যে। প্রকাশ করা যায়। যথা—

$$\sin \theta = x \text{ even}, \cos \theta = \sqrt{1 - x^2}, \tan \theta = \sqrt{1 - x^2}$$

$$\cos \theta = \frac{1}{x}, \sec \theta = \frac{1}{\sqrt{1 - x^2}}, \cot \theta = \sqrt{1 - x^2}.$$

$$\therefore \theta = \sin^{-1}x = \cos^{-1}x = \tan^{-1}\frac{x}{\sqrt{1-x^2}} = \cot^{-1}\frac{\sqrt{1-x^2}}{x}.$$

$$= \sec^{-1}\frac{1}{\sqrt{1-x^2}} = \cot^{-1}\frac{\sqrt{1-x^2}}{x}.$$

sin in, co. i vil — ma, প্রতি বিগণি তবুলীয় তিপেক্কমন্থের আভোকটি ক্ষেপ্র মান্তি করে। তপরের ফল চতাত স্বেশ হলতে পারে, 'হসংখ্য মান্ত্রিল সব ক্ষেত্রত এক, ক্রিম্ব তাহ করে। বিস্কৃত বিপ্রতি বৃদ্ধ হেপেক্রত লগেম্প্য মান্ত্রিল কেব্লমান্ত্র প্রক্ষার সমান।

- (5) প্রমাণ কর বে,
  - (i)  $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ ;

(ii) 
$$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$
;

(iii) 
$$\operatorname{cosec}^{-1} x + \operatorname{sec}^{-1} x = \frac{\pi}{2}$$

(i) NGH 
$$\Rightarrow q$$
,  $\sin^{-1} x = \theta$ ; ... (1)

তাহা হইলে,  $x = \sin \theta = \cos \left(\frac{\pi}{2} - \theta\right)$ ;

$$\therefore \quad \cos^{-1} x = \frac{\pi}{2} - \theta \qquad \qquad \cdots \tag{2}$$

(1) এবং (2) হইতে, 
$$\sin^{-1}x + \cos^{-1}x = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$

$$\therefore \quad x = \tan \theta = \cot \left( \frac{\pi}{2} - \bar{\theta} \right);$$

$$\therefore \cot^{-1} x = \frac{\pi}{2} - \theta. \tag{4}$$

(3) এবং (4) হইতে, 
$$\tan^{-1}x + \cot^{-1}x = \theta + \frac{\pi}{2} - \hat{\theta} = \frac{\pi}{2}$$
.

(iii) মনে কর, 
$$\csc^{-1}x = \theta$$
; ... (5)

$$\therefore \quad x = \csc \theta = \sec \left(\frac{\pi}{2} - \theta\right);$$

$$\therefore \sec^{-1} x = \frac{\pi}{2} - \theta. \tag{6}$$

:. (5) এবং (6) হইতে, 
$$\csc^{-1}x + \sec^{-1}x = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$
.

**জন্ঠব্য 1.** এন্থলে, বিপরীত-বৃতীর অপেক্ষকগুলির ম্থ্য মান ধরা হইরাছে।

**উপেরের** ফলগুলি স্ত্য হয়। x ঝণাত্মক হইলেই কেবলমাত্র উপরের ফলগুলি স্ত্য হয়। x ঝণাত্মক হইলে, (i) এবং (iii)-এর ফল-তুইটি স্ত্য হয়; কিন্তু (ii)-এর ফলটি x ঝণাত্মক হুইলে,

$$\tan^{-1}x + \cot^{-1}x = -\frac{\pi}{2} \overline{\mathfrak{S}} \overline{\mathfrak{I}}$$

(6) প্রমাণ কর যে,

(i) 
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$$
;

(ii) 
$$\tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x - y}{1 + xy}$$

মনে কর,  $\tan^{-1}x = a$ , এবং  $\tan^{-1}y = \beta$ ; তাহা হইলে,  $x = \tan a$  এবং  $y = \tan \beta$ .

(i) এখন, 
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
$$= \frac{x + y}{1 - xy};$$

$$\therefore \quad \alpha + \beta = \tan^{-1} \frac{x+y}{1-xy},$$

 $\sqrt[3]{x} + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$ 

(ii) এইরপে, 
$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{x - y}{1 + xy}$$
;

$$\therefore \quad \alpha - \beta = \tan^{-1} \frac{x - y}{1 + xy};$$

 $\forall \forall \{1, \cdot \tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x - y}{1 + xy}.$ 

অনুরূপভাবে প্রমাণ করা যায় যে,

\*

(i) 
$$\cot^{-1}x + \cot^{-1}y = \cot^{-1}\frac{xy-1}{y+x}$$
;

(ii) 
$$\cot^{-1}x - \cot^{-1}y = \cot^{-1}\frac{xy+1}{y-x}$$
.

(7) প্রমাণ কর যে.

$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\frac{x+y+z-xyz}{1-yz-zx-xy}$$

মনে কর,  $\tan^{-1}x = a$ ,  $\tan^{-1}y = \beta$ ,  $\tan^{-1}z = \gamma$ ; তাহা হইলে,  $x = \tan a$ ,  $y = \tan \beta$ ,  $z = \tan \gamma$ .

$$\tan (\alpha + \beta + \gamma) = \frac{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - \tan \beta \tan \gamma - \tan \gamma \tan \alpha - \tan \alpha \tan \beta}$$

$$= \frac{x + y + z - xyz}{1 - yz - zx - xy} ;$$

$$\therefore \quad \alpha + \beta + \gamma = \tan^{-1} \frac{x + y + z - xyz}{1 - yz - zx - xy},$$
with,  $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z$ 

$$= \tan^{-1} \frac{x+y+z-xyz}{1-yz-zx-xy}.$$

(8) প্রমাণ কর বে,

(i) 
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}\{x \sqrt{1 - y^2 + y} \sqrt{1 - x^2}\}$$
;

(ii) 
$$\sin^{-1}x - \sin^{-1}y = \sin^{-1}\{x \sqrt{1-y^2} - y \sqrt{1-x^2}\}$$
;

(iii) 
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}\{xy - \sqrt{(1-x^2)(1-y^2)}\}$$
;

(iv) 
$$\cos^{-1}x - \cos^{-1}y = \cos^{-1}\{xy + \sqrt{(1-x^2)(1-y^2)}\}.$$

মনে কর,  $\sin^{-1}x = a$  এবং  $\sin^{-1}y = \beta$ ;

তাহা হইলে,  $x = \sin \alpha$  এবং  $y = \sin \beta$ .

$$\therefore \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - x^2}$$

এবং 
$$\cos \beta = \sqrt{1-\sin^2\beta} = \sqrt{1-y^2}$$
.

(i) এখন, 
$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
  
=  $x \sqrt{1 - y^2} + y \sqrt{1 - x^2}$ .

$$\therefore \alpha + \beta = \sin^{-1}\{x \sqrt{1 - y^2} + y \sqrt{1 - x^2}\},\$$

$$\forall \forall \forall \forall x, \sin^{-1} x + \sin^{-1} y = \sin^{-1} \{x \sqrt{1 - y^2} + y \sqrt{1 - x^2}\}.$$

(ii) Width, 
$$\sin (a - \beta) = \sin a \cos \beta - \cos a \sin \beta$$
  
=  $x \sqrt{1 - y^2} - y \sqrt{1 - x^2}$ ;  
 $\therefore a - \beta = \sin^{-1}\{x \sqrt{1 - y^2} - y \sqrt{1 - x^2}\},$ 

 $\forall x \forall x, \sin^{-1} x - \sin^{-1} y = \sin^{-1} \{x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \}.$ 

(iii) মনে কর,  $\cos^{-1}x = a$  এবং  $\cos^{-1}y = \beta$ ;

তাহা হইলে,  $w = \cos \alpha$  এবং  $y = \cos \beta$ ;

$$\therefore \sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - x^2}$$

$$44\% \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - y^2}.$$

এখন, 
$$\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta=xy-\sqrt{(1-x^2)(1-y^2)}$$
;

$$\therefore a + \beta = \cos^{-1}\{xy - \sqrt{(1-x^2)(1-y^2)}\},$$

जर्थार, 
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}\{xy - \sqrt{(1-x^2)(1-y^2)}\}$$
.

(iv) with 
$$(a-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$= xy + \sqrt{(1-x^2)(1-y^2)};$$

$$\alpha - \beta = \cos^{-1}\{xy + \sqrt{(1-x^2)(1-y^2)}\},$$

$$\forall \forall \forall 1, \cos^{-1} x - \cos^{-1} y = \cos^{-1} \{xy + \sqrt{(1-x^2)(1-y^2)}\}.$$

(9) প্রমাণ কর যে,

(i) 
$$2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1-x^2})$$
;

(ii) 
$$2\cos^{-1}x = \cos^{-1}(2x^2 - 1)$$
:

(iii) 
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}$$
.

(i) মনে কর, 
$$\sin^{-1}x = a$$
; তাহা হইলে,  $x = \sin a$ ;

$$\therefore \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - x^2}.$$

এখন,  $\sin 2a = 2 \sin a \cos a = 2x \sqrt{1-x^2}$ 

$$2\alpha = \sin^{-1}(2x\sqrt{1-x^2}),$$

অপ্তি,  $2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1-x^2})$ .

(ii) মনে কর, 
$$\cos^{-1}x = a$$
; তাহা হইলে,  $\cos a = x$ .

এখন,  $\cos 2a = 2 \cos^2 a - 1 = 2x^2 - 1$ :

$$2a = \cos^{-1}(2x^2 - 1)$$
, where  $2\cos^{-1}x = \cos^{-1}(2x^2 - 1)$ .

(iii) মনে কর,  $\tan^{-1}x = a$ ; তাহা হইলে,  $\tan a = x$ .

$$4\sqrt[4]{q}$$
,  $\tan 2a = \frac{2 \tan a}{1 - \tan^2 a} = \frac{2x}{1 - x^2}$ ;

$$\therefore 2a = \tan^{-1} \frac{2x}{1 - x^2}, \ \forall \forall \uparrow \varsigma, \ 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}.$$

#### (10) প্রমাণ কর যে,

(i) 
$$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$$
;

(ii) 
$$3 \cos^{-1} x = \cos^{-1} (4x^8 - 3x)$$
;

(iii) 
$$3 \tan^{-1} x = \tan^{-1} \frac{3x - x^3}{1 - 3x^2}$$
.

(i) মনে কর,  $\sin^{-1}x = a$ ; তাহা হইলে,  $\sin a = x$ .

এখন,  $\sin 3a = 3 \sin a - 4 \sin^3 a = 3x - 4x^3$ ;

:. 
$$3a = \sin^{-1}(3x - 4x^3)$$
,  $\forall \forall \uparrow \uparrow$ ,  $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$ .

(ii) মনে কর, 
$$\cos^{-1}x = a$$
; তাহা হইলে,  $\cos a = x$ .

ब्रंब, 
$$\cos 3a = 4 \cos^3 a - 3 \cos a = 4x^3 - 3x$$
;

$$3a = \cos^{-1}(4x^3 - 3x)$$
, we explain  $3\cos^{-1}x = \cos^{-1}(4x^3 - 3x)$ .

(iii) মনে কর,  $\tan^{-1}x = a$ ; তাহা হইলে,  $\tan a = x$ .

এখন, 
$$\tan 3a = \frac{3 \tan a - \tan^3 a}{1 - 3 \tan^2 a} = \frac{3x - x^3}{1 - 3x^2}$$
;

$$\therefore 3a = \tan^{-1} \frac{3x - x^3}{1 - 3x^2}, \text{ Weigh, } 3 \tan^{-1} x = \tan^{-1} \frac{3x - x^3}{1 - 3x^2}.$$

(11) দেখাও যে,

2 
$$\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2} = \cos^{-1}\frac{1-x^2}{1+x^2} = \tan^{-1}\frac{2x}{1-x^2}$$

মনে কর,  $\tan^{-1}x = \theta$ ; ...  $\tan \theta = x$ .

এখন, 
$$\sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{2x}{1 + x^2}$$
;

$$\therefore 2 \tan^{-1} x = 2\theta = \sin^{-1} \frac{2x}{1 + x^2} \qquad \cdots (i)$$

জাবার, 
$$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - x^2}{1 + x^2}$$
;

$$\therefore 2 \tan^{-1} x = 2\theta = \cos^{-1} \frac{1 - x^2}{1 + x^2}, \qquad \cdots \text{ (ii)}$$

আবার, 
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{2x}{1 - x^2}$$
;

$$\therefore 2 \tan^{-1} x = 2\theta = \tan^{-1} \frac{2x}{1 - x^2}.$$
 (iii)

(i), (ii) এবং (iii) হইতে,

2 
$$\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2} = \cos^{-1}\frac{1-x^2}{1+x^2} = \tan^{-1}\frac{2x}{1-x^2}$$

### 8'4. বিবিধ উদাহরণ।

উमा. 1. cos<sup>-1</sup>(- ⅓)-धत स्था साम अ माशात्रण साम निर्णय कव।

$$\frac{1}{2} = \cos 60^{\circ}$$
;  $\therefore -\frac{1}{2} = \cos (180^{\circ} - 60^{\circ})$ ,

বা, cos (180° + 60°), অধাং, cos 120°, বা, cos 240°;

∴ 0° হইতে 360°-এর মধ্যে 120° এবং 240° কোণ-ছইটির cosine - ½.

... (1)

(1) এবং (2) হউতে দেখা যাউতেতে, যেসকল কোণের cosine — ½, তাহাদের মধ্যে 'কুল্লভম সাংখ্যমান-বিশিষ্টি হউতেতে 120° বা  $\frac{2\pi}{3}$ , একই সাংখ্যমান-বিশিষ্ট — 120° গ্রহণ না করিয়া।

ে 
$$\cos^{-2}\left(-\frac{1}{2}\right)$$
-এর মুখ্য মান  $=\frac{2\pi}{3}$ ;

এবং সাধারণ মান =  $2n\pi \pm \frac{2\pi}{3}$ ,

এস্থলে, n=0 অগনা বে-কোন ধনা মুক বা ঋণা মুক পূর্ণদংখ্যা।

উদা. 2. cot 'a-কে গ্রাভ বিপরী ও বৃত্য অংগ্রহের মান্যমে প্রকাশ কর।

মনে কর,  $\cot^{-1}x = \theta$ ;

- $\therefore \cot \theta = x$ ;
- ∴ পাগৰতী চিব্ৰে, ভূমি ৫, বিপরীত বাহ=1

এবং অভিভূজ =  $\sqrt{1+x^2}$ .



$$\therefore \quad \sin \theta = \frac{1}{\sqrt{1+x^2}}, \quad \therefore \quad \theta, \text{ with, } \cot^{-1}x = \sin^{-1}\frac{1}{\sqrt{1+x^2}}.$$

$$\text{WISIA, } \cos \theta = \frac{x}{\sqrt{1 + x^2}}; \quad \text{i. 6. Wisit, } \cot^{-1} x = \cos^{-1} \frac{x}{\sqrt{1 + x^2}}.$$

$$\mathfrak{SMS}, \tan\theta = \frac{1}{x}; \qquad \therefore \theta, \ \mathfrak{In}^{+}z, \cot^{-1}x = \tan^{-1}\frac{1}{x}.$$

cosec 
$$\theta = \sqrt{1+x^2}$$
;  $\therefore \theta$ , weight, cot  $\sqrt{x} = \csc^{-1}\sqrt{1+x^2}$ ; see  $\theta = \sqrt{1+x^2}$ ,  $\therefore \theta$ , weight, cot  $\sqrt{x} = \sec^{-1}\sqrt{1+x^2}$ .

উদা. 3. (मशाब (ग. cos<sup>-1</sup> ±1 - tan 1 1 h

মনে কর, 
$$\cos^{-1}\frac{40}{21}=0$$
; ...  $\cos\theta=\frac{40}{21}$ ;

$$\therefore \tan \theta = \sqrt{(\frac{1}{40})^2 - 1}$$

$$= \frac{2}{30}. \quad (\cot \theta) = \sqrt{(\frac{1}{40})^2 - 1}$$

$$= \frac{2}{30}. \quad (\cot \theta) = \sqrt{(\frac{1}{40})^2 - 1}$$

:  $tan^{-1}\frac{0}{10} = \theta = cos^{-1}\frac{40}{10}$ 

প্রের সভাগ্যা সমাপ্র গণেগ্র ১৫ সাধ্যের সমাপ্রের প্রতিরাই প্রকার



चित्रव किर दर्भ है, स्था १०, १ १ १७ ४१ ।

- ় বিপনীত বাহ = √41°-40° = 9.
- : tan θ= 10; ... θ, 10/2, cos 1 40 = tan 1 0

উপা. 4. প্রমাণ কর যে,  $\sin^{-1}\frac{8}{17} + \cos^{-1}\frac{3}{5} = \cos^{-1}\frac{13}{85}$ . মনে কর,  $\sin^{-1}\frac{8}{17} = \alpha$  এবং  $\cos^{-1}\frac{3}{5} = \beta$ ;





তাহা হইলে, sin a= # এবং cos  $\beta = \frac{\pi}{3}$ ;

∴ উপরস্থ চিত্র হইতে, cos α = ½% এবং sin β = ¾.

এখন,  $\cos (\sin^{-1} \frac{8}{17} + \cos^{-1} \frac{8}{6}) = \cos (\alpha + \beta)$ 

= 
$$\cos \alpha \cos \beta - \sin \alpha \sin \beta = \frac{15}{17} \cdot \frac{3}{5} - \frac{8}{17} \cdot \frac{4}{5} = \frac{19}{85}$$
;

$$\therefore \sin^{-1} \frac{8}{17} + \cos^{-1} \frac{9}{6} = \cos^{-1} \frac{18}{86}.$$

উল 5. প্রমাণ কর যে, 
$$\sin^{-1}\frac{4}{6} + \sin^{-1}\frac{5}{18} + \sin^{-1}\frac{16}{68} = \frac{\pi}{2}$$

[ C. U. 1941 ]

মনে কর,  $\sin^{-1}\frac{4}{6} = \alpha$ ,  $\sin^{-1}\frac{5}{13} = \beta$  এবং  $\sin^{-1}\frac{1}{6}\frac{6}{6} = y$ ;





তাহা হইলে,  $\sin a = \frac{4}{5}$ ,  $\sin \beta = \frac{5}{13}$  এবং  $\sin y = \frac{1}{65}$ .

 $\therefore$  উপরস্থ চিত্র হইতে,  $\tan \alpha = \frac{4}{3}$ ,  $\tan \beta = \frac{5}{12}$ ,

এবং পার্যন্থ চিত্র হইতে,  $\tan y = \frac{1}{6}\frac{\alpha}{3}$ .

:. বাম পক = a + B + 11

= tan-1 4+tan-1 5 +tan-1 18

$$= \tan^{-1} \frac{\frac{4}{5} + \frac{5}{13}}{1 - \frac{4}{5} \cdot \frac{5}{12}} + \tan^{-1} \frac{1}{6} \frac{6}{3}$$

$$= \tan^{-1} \frac{63}{16} + \cot^{-1} \frac{63}{16} = \frac{\pi}{2}.$$



[ Art. 8'3(5)]

উদ্য. 6. প্রমাণ কর বে,  $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{8}$ [ C. U. 1940, '42, '52 ]

প্রথম ও দ্বিতীয় পদ একদধ্বে এবং তৃতীয় ও চতুর্থ পদ একদক্ষে লইয়া

বাম পক্ষ = 
$$\tan^{-1} \frac{1 + \frac{1}{4}}{1 - \frac{1}{3} \cdot \frac{1}{8}} + \tan^{-1} \frac{\frac{1}{4} + \frac{1}{8}}{1 - \frac{1}{4} \cdot \frac{1}{8}}$$

$$= \tan^{-1} \frac{4}{7} + \tan^{-1} \frac{4}{11} = \tan^{-1} \frac{\frac{4}{7} + \frac{1}{11}}{1 - \frac{4}{7} \cdot \frac{1}{11}}$$

$$= \tan^{-1} 1 = \frac{\pi}{4}.$$

উদা. 7. প্রমাণ কর যে,  $2 \tan^{-1} \frac{1}{7} + \sin^{-1} \frac{4}{5} = \cos^{-1} \frac{44}{125}$ .  $\tan \left(2 \tan^{-1} \frac{1}{7}\right) = \frac{2.\frac{1}{7}}{1 - \frac{1}{45}} = \frac{7}{34}; \quad \therefore \quad 2 \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{7}{24}.$ 





উপরস্থ চিত্র হইনেড,  $\sin^{-1}\frac{4}{6} = \tan^{-1}\frac{4}{74}$ ,

এবং  $\cos^{-2}\frac{44}{128} = \tan^{-1}\frac{117}{44}$ .

... বাম পক্ষ =  $(\tan^{-1}\frac{27}{34} + \tan^{-1}\frac{4}{3})$ =  $\tan^{-1}\frac{27}{147} = \cos^{-1}\frac{44}{128}$ . [(1) ইইনেড ]

উপ. 8. প্রাণ কর বে, 2 tan<sup>-1</sup> ½ + tan<sup>-1</sup> ½ + 2 tan <sup>1</sup> ½ =  $\frac{1}{4}$ .

বাম পক = 2 (tan<sup>-1</sup> ½ + tan<sup>-1</sup> ½) + tan<sup>-1</sup> ½

= 2 tan<sup>-1</sup> ½ + ½

1 - ½.½

+ tan<sup>-1</sup> ½ = 2 tan<sup>-1</sup> ⅓ + tan<sup>-1</sup> ½

$$= \tan^{-1} \frac{2 \cdot \frac{1}{3}}{1 - \frac{1}{3}} + \tan^{-1} \frac{1}{7}$$

$$= \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}} = \tan^{-1} 1 = \frac{\pi}{4}.$$

উদা. 9. প্রমাণ কর যে,  $\tan^{-1}x + \cot^{-1}(x+2) = \tan^{-1}\frac{1}{2}(x+1)^2$ .

বাম প্ল = tan-1 x + tan-1 1 x+2

$$= \tan^{-1} \frac{x + \frac{1}{x + 2}}{1 - x \cdot \frac{1}{x + 2}} = \tan^{-1} \frac{1}{2} (x + 1)^2. \quad ( নরল করিয়া )$$

উদা. 10. প্রমাণ কর (য়, cot-1 (tan x) - cot-1 (tan 2x) = x.

উপা. 11. প্রমাণ কর যে, sec² (tan<sup>-1</sup> 2) + cosec² (cot<sup>-1</sup> 3) = 15. [ C. U. 1956 ]

यत्न कृत, tan-1 2= a এবং cot-1 3 = 8 :

তাহা হইলে, tan α=2 এবং cot β=3;

ে বাম পক = 
$$\sec^2 \alpha + \csc^2 \beta$$
  
=  $1 + \tan^2 \alpha + 1 + \cot^2 \beta$   
=  $1 + 2^2 + 1 + 3^2 = 2 + 4 + 9 = 15$ .

উদী. 12. প্ৰমাণ কর যে,  $\tan^{-1} \frac{a-b}{1+ab} + \tan^{-1} \frac{b-c}{1+bc} + \tan^{-1} c$   $= \tan^{-1} a. \qquad \qquad [O. U. 1946, '55]$ 

বাম প্ল =  $(\tan^{-1} a - \tan^{-1} b) + (\tan^{-1} b - \tan^{-1} c) + \tan^{-1} c$ =  $\tan^{-1} a$ .

উপা. 13. প্রমাণ কর বে, cos tan<sup>-1</sup> sin cot<sup>-1</sup>  $x = \left(\frac{x^2+1}{x^2+2}\right)^{\frac{1}{2}}$ .
[ A. U. 1947; U. P. B. 1950 ]

মনে কর,  $\cot^{-1}x = \theta$ ; .'.  $\cot \theta = x$ ;

$$\therefore \sin \cot^{-1} x - \sin \theta = \frac{1}{\sqrt{1 + \cot^2 \theta}} = \frac{1}{\sqrt{1 + x^2}}.$$

:. 
$$\tan^{-1} \sin \cot^{-1} x = \tan^{-1} \frac{1}{\sqrt{1+x^2}} = \phi$$
, ACA  $\overline{\Phi}$ 3; ... (1)

$$\therefore \tan \phi = \frac{1}{\sqrt{1+x^2}}; \quad \therefore \cos \phi = \frac{1}{\sec \phi} = \frac{1}{\sqrt{1+\tan^2\phi}}$$

$$= \frac{1}{\sqrt{1+\frac{1}{1+x^2}}} = \frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}. \quad \cdots \quad (2)$$

ে. (1) হইতে, বাম পক্ষ = 
$$\cos \phi = \frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}$$
 [ (2) হইতে ] 
$$= \left(\frac{1+x^2}{2+x^2}\right)^{\frac{1}{2}}.$$

উদা. 14. যদি tan<sup>-1</sup>x+tan<sup>-1</sup>y+tan<sup>-1</sup>z=π, প্রমাণ কর যে, x+y+z=xyz. [ C. U. 1954 ]

প্রদত্ত শর্ত হইতে,

 $\tan (\tan^{-1}x + \tan^{-1}y + \tan^{-1}z) = \tan \pi$ ,

 $\therefore x + y + z - xyz = 0, \exists 1, x + y + z = xyz.$ 

উদা. 15. সমাধান কর:  $\cos^{-1}x = 2 \sin^{-1}x$ .

মনে কর,  $\sin^{-1}x = \theta$ ; তাহা হইলে,  $\sin \theta = x$ . ... (1)

এখন,  $\cos^{-1} x = 2 \sin^{-1} x$ ;

$$x = \cos(2\sin^{-1}x) = \cos 2\theta$$

$$= 1 - 2\sin^2\theta = 1 - 2a^2$$
[(1) 2

:. = 1-2 
$$\sin^2\theta = 1 - 2x^2$$
, [(1) ইইতে ]

 $71, \quad 2x^2 + x - 1 = 0 ;$ 

$$\therefore x = \frac{-1 \pm \sqrt{1 + 4.2.1}}{2.2} = \frac{-1 \pm 3}{4} = \frac{1}{2}, -1.$$

কিন্তু x=-1 দারা সমীকরণটি সিদ্ধ হয় না; কারণ  $\cos^{-1}(-1)=\pi$ 

-এবং 
$$2 \sin^{-1}(-1) = 2 \times \left(-\frac{\pi}{2}\right) = -\pi.$$

∴ -1 একটি অবান্তর বীজ; উহাকে বর্জন করিয়া,  $x=\frac{1}{2}$ .

(XI-XII)-27

छलो. 16. সমাধান कर : 
$$\tan^{-1} 3x + \tan^{-1} \frac{4x}{7} = \frac{\pi}{4}$$
. 
$$\tan^{-1} \frac{25x}{7 - 12x^2} = \frac{\pi}{4}; \quad \therefore \quad \frac{25x}{7 - 12x^2} = \tan \frac{\pi}{4} = 1,$$
 
$$71. \quad 25x = 7 - 12x^2, \quad 71. \quad 12x^2 + 25x - 7 = 0,$$
 
$$\therefore \quad x = \frac{-25 \pm \sqrt{625 + 336}}{24} = \frac{-25 \pm \sqrt{961}}{24} = \frac{-25 \pm 31}{24}$$

কিন্ত  $x=-\frac{7}{8}$  দারা সমীকরণটি সিদ্ধ হয় না; কারণ  $x=-\frac{7}{8}$  বসাইলে,  $\tan^{-1}3x$  এবং  $\tan^{-1}\frac{4x}{7}$  উভয়ের মুখ্য মানই ঋণাত্মক হয় এবং তুইটি ঋণাত্মক কোণের সমষ্টি কথনই দক্ষিণ-পক্ষয়  $+\frac{\pi}{4}$ -এর সমান হইতে পারে না। অভএব,  $x=-\frac{7}{8}$  বর্জন করিয়া,  $x=\frac{1}{8}$ .

উলা. 17. সমাধান কর: cos cot<sup>-1</sup>x = tan (sin<sup>-1</sup> ½).

মনে কর,  $\cot^{-1} x = a$ ; ...  $\cot a = x$ .

$$\therefore \quad \sqrt{1+x^2} = \cos a = \frac{x}{\sqrt{1+x^2}}.$$

ভাবার মনে কর,  $\sin^{-1} \frac{1}{8} = \beta$ ;



... দিকিও পক্ষ = 
$$\tan \beta = \frac{1}{\sqrt{8}}$$

$$\therefore \quad \frac{x}{\sqrt{1+x^2}} = \frac{1}{\sqrt{8}} \qquad \cdots \quad (1)$$



উভয় পক্ষ বৰ্গ কৰিয়া,  $\frac{x^2}{1+x^2} = \frac{1}{8}$ , বা,  $8x^2 = 1+x^2$ ,

$$\sqrt{7}x^2 = 1$$
;  $\therefore x = \pm \frac{1}{\sqrt{7}}$ 

কিন্তু  $x = -\frac{1}{\sqrt{7}}$  দারা (1) এবং সেইজন্ম মূল সমীকরণটিও সিদ্ধ হয় না। ইহা অবাস্তর বীজ ; ইহাকে বর্জন করিয়া নির্ণেয় সমাধান

$$x=\frac{1}{\sqrt{7}}.$$

#### প্রামালা 9

1. নিম্লিখিত বিপরীত-বৃত্তীয় অপেক্ষকগুলির ম্থ্য মান ও সাধারণ মান নির্ণয় কর:

(i) 
$$\sin^{-1}\frac{\sqrt{3}}{2}$$
; (ii)  $\sin^{-1}(-\frac{1}{2})$ ; (iii)  $\cos^{-1} 1$ ;

(iv) 
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
; (v)  $\tan^{-1}\sqrt{3}$ ; (vi)  $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ .

2. নিম্নলিখিত বিপরীত-বৃতীয় অপেক্ষকগুলিকে অন্তান্ত বিপরীত-বৃতীয় **অপেক্ষকে**র মাধ্যমে প্রকাশ কর:

(i) 
$$\cot^{-1}x$$
; (ii)  $\csc^{-1}x$ ; (iii)  $\tan^{-1}x$ .

মান নির্ণয় কর: (i) sin (sin<sup>-1</sup> ½ + cos<sup>-1</sup> ½);

[ C. U. 1917, '35 ]

(ii)  $\cos (\tan^{-1} 3 + \cot^{-1} 3)$ .

প্রমাণ কর যে,

4. 
$$\cos^{-1}\frac{15}{17} = \tan^{-1}\frac{8}{15}$$
.

5. (i) 
$$2 \tan^{-1} \frac{n}{6} = \tan^{-1} \frac{1.5}{8}$$
. (ii)  $\cos^{-1}(-\frac{7}{2.5}) = 2 \tan^{-1} \frac{4}{8}$ .

6. 
$$\csc(\cot^{-1}x) = \sqrt{1+x^2}$$
.

7. 
$$\sin^{-1} \frac{3}{8} + \sin^{-1} \frac{8}{17} = \sin^{-1} \frac{77}{88}$$
.

[B. H. U. 1948]

8. 
$$\cos^{-1} \frac{24}{38} + \cos^{-1} \frac{8}{8} = \cos^{-1} \frac{44}{138}$$

9. 
$$\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$$

10. 
$$\tan^{-1} 7 - \tan^{-1} 1 = \tan^{-1} \frac{3}{4}$$
.

11. 
$$\tan^{-1}\frac{1+x}{1-x} - \tan^{-1}x = \frac{\pi}{4}$$

12, 
$$\sin^{-1}\frac{5}{18} = \cos^{-1}\frac{8}{8} = \cos^{-1}\frac{18}{85}$$
.

13. 
$$\cos^{-1}\frac{13}{87} + \cos^{-1}\frac{3}{8} = \sin^{-1}\frac{153}{186}$$
.

14. (a) 
$$2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$$
. [ C. U. 1937; B. H. U. 1945]  
(b)  $2 \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{4} = \tan^{-1} \frac{32}{48}$ .

[ C. U. B.A. & B. Sc., 1951 ]

15. 
$$\tan^{-1} \frac{4}{5} + \cos^{-1} \frac{4}{8} = \tan^{-1} \frac{81}{8}$$
.

16. 
$$\cos^{-1} \frac{63}{68} + 2 \tan^{-1} \frac{1}{8} = \sin^{-1} \frac{8}{8}$$
.

17. 
$$4(\cot^{-1} 3 + \csc^{-1} \sqrt{5}) = \pi$$
.

[ C. U. 1939 ]

18. 
$$\tan^{-1} \frac{840}{161} = 2 \cos^{-1} \frac{15}{17}$$
.

19. (i) 
$$\sin^{-1} \frac{4}{8} + 2 \tan^{-1} \frac{1}{8} = \frac{\pi}{2}$$
.

(ii) 
$$\sin^{-1} \frac{\pi}{85} + 2 \sin^{-1} \frac{8}{6} = \frac{\pi}{9}$$
.

**20.** 
$$\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{9}{9} = \frac{1}{2} \cos^{-1} \frac{3}{5}$$
. [ U. P. B. 1947]

21. 
$$\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{8} = \sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 8 = 45^{\circ}$$
.

[B. H. U. 1952]

22. 
$$\tan^{-1} \frac{1}{a+b} + \tan^{-1} \frac{b}{a^2 + ab + 1} = \tan^{-1} \frac{1}{a}$$
 [ C. U. 1949]

23. 
$$\sin^{-1}\frac{\pi}{88} + \sin^{-1}\frac{18}{17} + \sin^{-1}\frac{87}{488} = \frac{\pi}{2}$$

24. 
$$\tan^{-1} \frac{1}{8} + \tan^{-1} \frac{3}{11} + \tan^{-1} \frac{7}{86} = \frac{\pi}{4}$$

25. 
$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$$
  
=  $2(\tan^{-1} 1 + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3})$ .

**26.** 
$$\cos^{-1} x = 2 \sin^{-1} \sqrt{\frac{1-x}{2}} = 2 \cos^{-1} \sqrt{\frac{1+x}{2}}$$
.

27. 
$$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \frac{1-x}{1+x}$$
 [ C. U. 1943 ]

28. 
$$\sin^{-1} \sqrt{\frac{a+x}{2a}} = \cos^{-1} \sqrt{\frac{a-x}{2a}} = \tan^{-1} \sqrt{\frac{a+x}{a-x}}$$

29. 
$$\tan^{-1} \frac{a-b}{1+ab} + \tan^{-1} \frac{b-c}{1+bc} + \tan^{-1} \frac{c-a}{1+ca}$$
  

$$= \tan^{-1} \frac{a^3-b^2}{1+a^3b^2} + \tan^{-1} \frac{b^2-c^3}{1+b^3c^3} + \tan^{-1} \frac{c^2-a^3}{1+c^3a^2}.$$
[P. U. 1931]

30. (a) 
$$\cot^{-1} \frac{ab+1}{a-b} + \cot^{-1} \frac{bc+1}{b-c} + \cot^{-1} \frac{ca+1}{c-a} = 0$$
.

(b) 
$$\tan (\tan^{-1}x + \tan^{-1}y + \tan^{-1}z)$$
  
=  $\cot(\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)$ .

[ C. U. B.A. & B.Sc. 1939 ]

31. 
$$\{\sec(\cot^{-1}x)\}^2 = \{\csc(\tan^{-1}x)\}^2$$
.

32. 
$$\sec^2 (\tan^{-1} 3) + \csc^2 (\cot^{-1} 4) = 27$$
.

33.  $\sin \csc^{-1} \cot \tan^{-1} x = x$ .

34. 
$$\cos \tan^{-1} \sin \cot^{-1} \sqrt{\frac{2x^2-1}{1-x^2}} = x$$
.

35.  $\tan^{-1} (\frac{1}{2} \tan 2A) + \tan^{-1} (\cot A) + \tan^{-1} (\cot^8 A) = 0.$  [C. U. 1948]

36. যদি  $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$ , প্রমাণ কর যে,  $x^2 + y^2 + z^2 + 2xyz = 1$ . [ C. U. B.A. & B.Sc., 1941 ]

37. যদি  $A+B+C=\pi$ , এবং  $A=\tan^{-1}2$ ,  $B=\tan^{-1}3$ , তাহা হইলে দেখাও যে,  $C=\frac{\pi}{4}$   $\cdot$  [ C. U. 1951 ]

38.  $\sqrt[3]{1-\alpha^2} + \sin^{-1}\beta + \sin^{-1}\gamma = \pi$ , (Fig. 4),  $a\sqrt{1-\alpha^2} + \beta\sqrt{1-\beta^2} + \gamma\sqrt{1-\gamma^2} = 2\alpha\beta\gamma$ . [ C. U. 1944 ]

**39.**  $\tan^{-1} x + \cot^{-1} (x+1) = \tan^{-1} (x^2 + x + 1)$ .

নিম্লিখিত সমীকরণসমূহের সমাধান কর:

**40.** (i) 
$$\sin^{-1} x = \cos^{-1} x$$
. (ii)  $\tan^{-1} x = \cot^{-1} x$ .

41. 
$$\sin^{-1}\frac{\delta}{x} + \sin^{-1}\frac{12}{x} = \frac{\pi}{2}$$
 [ C. U. 1914 ]

42. 
$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$
 [ C. U. B.A. & B.Sc., 1947]

43. 
$$\tan^{-1} \frac{1}{1+2x} + \tan^{-1} \frac{1}{4x+1} = \tan^{-1} \frac{2}{x^2}$$
 [ Agra, 1947]

44. 
$$\sin^{-1} \frac{2a}{1+a^2} + \sin^{-1} \frac{2b}{1+b^2} = 2 \tan^{-1} x$$
. [ C. U. 1947]

45. 
$$\tan^{-1} \frac{1}{4} + 2 \tan^{-1} \frac{1}{6} + \tan^{-1} \frac{1}{6} + \tan^{-1} \frac{1}{x} = \frac{\pi}{4}$$
 [ C. U. 1949]

46. 
$$3 \tan^{-1} \frac{1}{2 + \sqrt{3}} - \tan^{-1} \frac{1}{x} = \tan^{-1} \frac{1}{3}$$
. [ Agra, 1943]

47. नमाधान क्र : 
$$\sin^{-1}x + \sin^{-1}y = \frac{2}{3}\pi$$
 [C. U. B.A. & B.Sc., 1940]

48. 
$$\tan^{-1} \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}} = \beta.$$

49. 
$$\csc^{-1}x = \csc^{-1}a + \csc^{-1}b$$
.

50. विक 
$$\cos^{-1}\frac{x}{a} + \cos^{-1}\frac{y}{b} = a$$
, (नवां भ दा, 
$$\frac{x^2}{a^2} - \frac{2xy}{ab}\cos a + \frac{y^2}{b^2} = \sin^2 a.$$

#### নবম অধ্যায়

# ত্রিভুজের গুণাবলী

#### (Properties of Triangles)

9.1. প্রত্যেক ত্রিভূপের তিনটি বাছ ও তিনটি কোণ, এই চ্য়টি অঙ্গ থাকে। বাছ অন্ম্পারে ত্রিভূপেন্ম্ইকে বিষমবাহু, সমনিবাহু ও সমবাহু—এই তিন প্রেণীতে ভাগ করা যায়, আর, কোণ অন্মনারে উহাদিগকে স্থন্ধকোণী, স্থূলকোণী ও সমকোণী—এই তিন প্রেণীতে ভাগ করা যায়।

ত্রিভূজের কোণ-তিনটিকে সাধারণতঃ A, B ও C ধারা, ঐ সকল কোণের বিপরীত বাহগুলিকে যথাক্তমে a, b ও c ঘারা এবং ত্রিভূজের ক্ষেত্রফলকে △ বা S ধারা প্রকাশ করা হয়।

ঐ সকল বাছ, কোণ, ক্ষেত্রফল, ত্রিভূজের অন্তর্গ্যাসার্ধ, পরিব্যাসার্ধ, বহির্ব্যাসার্ধ ইত্যাদি সংশ্লিষ্ট, উহাদের পরস্পারের সম্বন্ধ-জ্ঞাপক ফুত্রাবলী বর্তমান অধ্যায়ে আলোচনা করা হইবে।

### 9'2. যে-কোন জিপুজে

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

অর্থাৎ, বাহুগুলি স্ব স্ব বিপরীত কোণের sine-এর সমাসুপাতী।

[ In any triangle, prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

i.e., the sides are proportional to the sines of the opposite angles.]

মনে কর, ABC একটি ত্রিভূজ।

যে-কোন শীর্ষবিন্দু A হইতে বিপরীত বাহু BC-এর উপর AD লম্ব টানা হইল; ইহা, চিত্র 1-এ স্ক্ষকোণী ত্রিভূজের ক্ষেত্রে, BC-এর মধ্যে অবস্থিত কোন বিন্দু D-তে, চিত্র 2-এ স্থলকোণী ত্রিভূজের ক্ষেত্রে, বর্ষিত BC-কে কোন বিন্দু D-তে ছেদ করিল এবং চিত্র 3-এ সমকোণী ত্রিভূজের ক্ষেত্রে AD লম্ব বলিয়া AC-এর উপরই সমাপতিত হইল। এখন, ABD বিভূজে, AD = AB  $\sin ABD = c \sin B$ , ... (1) এবং ACD বিভূজে, AD = AC  $\sin ACD$ ;



এখন, চিত্ৰ 1-এ, AC sin ACD = b sin C;
এবং চিত্ৰ 2-এ, AC sin ACD = b sin (π - C) = b sin C; ... (2)

$$c = b \sin B = b \sin C$$
, we sin B =  $\frac{c}{\sin B} = \frac{c}{\sin C}$ 

এইরূপে, ৪ হইতে AC-এর উপর লম্ব টানিয়া চিত্র 1 এবং 2-এ, প্রমাণ করা বায় যে,

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

.. চিত্র 1 এবং 2-এ, অর্থাং, স্ক্রকোণী এবং স্থলকোণী ত্রিভূজের কেত্রে,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

চিত্ৰ ৪-এ, C একটি সমকোণ;

$$\therefore \sin A = \frac{a}{c} \text{ and } \sin B = \frac{b}{c}, \text{ and } \sin C = 1;$$

$$\therefore \frac{a}{\sin A} = c = \frac{b}{\sin B}, \text{ with, } \frac{a}{\sin A} = \frac{b}{\sin B} = c = \frac{c}{\sin C}$$

অতএব, যে-কোন ত্রিভূবে,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

অর্থাৎ, ত্রিভূজের বাহগুলি স্ব স্থ বিপরীত কোণের sine-এর সমাস্থপাতী।

#### বিকল্প প্রমাণঃ

মনে কর, ABC ত্রিভূঞের পরিকেন্দ্র O এবং পরিব্যাসার্ধ R.



চিত্র 4-এ ABC ত্রিভূজটি স্ক্রকোণী; ইহার সবগুলি কোণই স্ক্রকোণ; এবং চিত্র 5-এ, ABC ত্রিভূজটি স্কুলকোণী; মনে কর, ইহার A কোণটি স্কুলকোণ।

চিত্র 4 এবং 5-এ BO যোগ করিয়া পরিধি পর্যন্ত বর্ধিত কর; ইহা পরিধিকে D বিন্দুতে ছেদ করিল। CD যোগ কর।

উভয় চিত্রেই BCD কোণটি অর্ধবৃত্তস্থ বলিয়া সমকোণ, এবং BD = 2R.

চিত্ৰ 4-এ, একই বৃত্তাংশস্থ বলিয়া, ∠A= ∠D.

$$\therefore \sin A = \sin D = \frac{BC}{BD} = \frac{a}{2R}, \forall I, \frac{a}{\sin A} = 2R.$$

চিত্র 5-এ, ABDC বৃত্তস্থ চতুর্জ বলিয়া,  $\angle A + \angle D = \pi$ , বা,  $\angle A = \pi - \angle D$ .

$$\therefore \sin A = \sin (\pi - D) = \sin D = \frac{BC}{BD} = \frac{a}{2R}; \ \forall i, \frac{a}{\sin A} = 2R.$$

চিত্ৰ 6-এ,  $\angle A$  সমকোণ;  $\sin A = 1 = \frac{BC}{BC} = \frac{a}{a} = \frac{a}{2R}$ 

$$\overline{q}$$
,  $\frac{\overline{a}}{\sin A} = 2R$ .

∴ বে-কোন ত্রিভূব্নে, <u>a</u> = 2R.

এইরপে, AO যোগ করিয়া E পর্যন্ত বর্ধিত করিয়া প্রথমে CE এবং পরে BE যোগ করিলে দেখা ঘাইবে

$$\frac{b}{\sin B} = 2R$$
 এবং  $\frac{c}{\sin C} = 2R$ .

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

অনুসিদ্ধান্ত। 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
;

(i) :  $a = 2R \sin A$ ,  $b = 2R \sin B$ ,  $c = 2R \sin C$ ;

(ii) 
$$\sin A = \frac{a}{2R}$$
,  $\sin B = \frac{b}{2R}$ ,  $\sin C = \frac{c}{2R}$ .

(iii)  $a:b:c=\sin A:\sin B:\sin C$ .

# 9'3. ত্রিভূজের যে-কোন কোণের Cosine-কৈ বাহু হারা প্রকাশ।

প্রমাণ করিতে হইবে, যে-কোন ত্রিভুজে,

$$a^{2} = b^{2} + c^{2} - 2bc \cos A, \text{ al, } \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc},$$

$$b^{2} = c^{2} + a^{3} - 2ca \cos B, \text{ al, } \cos B = \frac{c^{2} + a^{2} - b^{2}}{2ca},$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C, \text{ al, } \cos C = \frac{a^{2} + b^{2} - c^{3}}{2ab}.$$

#### 9'1 অনুভেদের

চিত্ৰ 1-4, AB2 = BC2 + CA2 - 2BC.CD.

এখন, ACD অভিজ্ঞ, CD = AC. cos C = h cos C.

$$c^{9} = a^{9} + b^{9} - 2ab \cos C$$
.

চিত্র 2-এ, AB<sup>2</sup> - BC<sup>2</sup> + CA<sup>2</sup> + 2BC.CD.

এখন, ACD ত্রিস্থান, CD = AC  $\cos(\pi - C) = -b \cos C$ .

$$c^2 = a^2 + b^2 - 2ab \cos C.$$

চিত্ৰ 3-এ, AB<sup>2</sup> = BC<sup>2</sup> + CA<sup>2</sup> :

$$c^{2} = a^{2} + b^{2} = a^{2} + b^{2} - 2ab.0$$

$$= a^{2} + b^{2} - 2ab \cos C. \quad [\because \cos C = \cos 90^{\circ} = 0.]$$

অতএব সকল প্রকার ত্রিভূজের ক্ষেত্রেই,

$$c^2 = a^2 + b^2 - 2ab \sin C$$
,

$$volt, \cos c = \frac{a^2 + b^2 - c^2}{2ab}.$$

অনুরূপ প্রক্রিয়ায় অন্য তুইটি হুত্তও প্রমাণ করা যায়।

9.4. অমুচ্ছেদকে 9.2-এর অন্নসিদ্ধান্ত এবং 9.3 অমুচ্ছেদ হইতে দেখা যায়,

$$\tan A = \frac{\sin A}{\cos A} = \frac{2R}{\frac{b^2 + c^2 - a^2}{2bc}} = \frac{abc}{R} \cdot \frac{1}{b^2 + c^2 - a^2}.$$

এইনশে 
$$\tan B = \frac{a\hbar c}{R} \cdot \frac{1}{c^3 + a^3 - b^3}$$

$$470 \tan c = \frac{abc}{R} \cdot \frac{1}{a^2 + b^2 - c^2}.$$

9.5. সেকোন জিল্পজে, প্রমাণ করিতে হইবে,

a-b cos C+c cos B, b=c cos A+a cos C, c=a cos B+b cos A,

অহ. 9 এ-এর চিত্রগ্রা হার :

টিয় 1~এ, C কোনটি মুক্তকেলে, এবং

BC-BD+CD-AB cos ABD+AC cos ACD :

 $a=c\cos B+b\cos C$ :

िख ४-१, C .कानि वृज्दकान, ध्वर

BC = BD - CD = AB COS ABD - AC COS ACD;

$$a = c \cos B - b \cos (180^{\circ} - c)$$
  
=  $c \cos B - b (-\cos C) = c \cos B + b \cos C$ ;

िख 3-4, C कानि नमस्कान अवः

BC = AB cos ABC = c cos B :

 $a = c \cos B + b \cos C$ ; [ #712 cos C = cos 90° = 0.]

আঙ্এব, স্বিক্ষেট্ট a=h cos C+c cos B.

অমুরূপ প্রণালীতে অপর স্থার হুইটিও প্রমাণ করা যায়।

9'6. বিভূজের ভার্ম কোণাসমূতের Sine-কে উহার বাহু-ভিন্তির দৈর্মা চারা প্রকাশ।

[ To express the sines of half angles of a triangle in terms of the sides.]

'apag of a, cos A - 1 - 2 sin 2 A.

$$2 \sin^{2} \frac{A}{2} = 1 - \cos A = 1 - \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$= \frac{2^{i}c - h^{2} - c^{2} + a^{2}}{2bc} = \frac{a^{2} - (h^{2} - 2bc + c^{2})}{2bc}$$

$$= \frac{a^{2} - (h - c)^{2}}{2bc} = \frac{(a - h + c)(a + b - c)}{2bc} \qquad \cdots \qquad (1)$$

এখন যদি ভিত্ততে পারনীমাকে  $y_3$  খারা সাচত করা হয়, তাহা হটাবে 2s=a+b+o এক  $s=\frac{a+b+o}{2}$ 

... (1) \$87.5, 
$$2 \sin^2 \frac{A}{2} = \frac{2(1-i)(2\alpha - i)}{2bc}$$
.

$$\sin^{2}\frac{A}{2}=\frac{(s-b)(s-c)}{bc};$$

$$\lim_{n \to \infty} \frac{A}{2} = \sqrt{\frac{(\kappa - 1)(\kappa - c)}{bc}} .$$

বর্গমূলের গলায়ক মান্টি মার বছলে গ্রহণ করিছে ২০বে; কারণ, বিভূজের বর্গবহা  $A < 180^\circ$  এবং দেওমভ  $\frac{A}{3}$  +1  $90^\circ$ , মতরব,  $\sin\frac{A}{3}$  -এর মান স্বলাই ধনায়ক।

प्रकृति भागानी । इ. भागान करा गाय . ग.

$$\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}, \sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

9'7. বিকুর্কের ভার্লেকাপ্সমূহের Conine কৈ উঠার ভিন্নবাহর দৈলা জার। প্রকাশ।

To express the control find Carry confinition, and terms of the sides.]

$$\therefore \quad \cos^2 \frac{A}{2} = \frac{s(s-a)}{bc}; \quad \cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}};$$

বর্গমূলের ধনাত্মক মৃগটি মাত্র এন্থলে গ্রহণ করা হইয়াছে ; কারণ, ত্রিভূঞ্জের কোণ বলিয়া,  $A < 180^\circ$  এবং সেইজন্ম  $\frac{A}{2} < 90^\circ$ , অভএব,  $\cos\frac{A}{2}$  -এর মান সর্বদাই ধনাত্মক।

षर्क्ष ल्यानी ए समान कता यात्र (य,

$$\cos \frac{\mathbf{B}}{2} = \sqrt{\frac{\mathbf{s}(\mathbf{s} - \mathbf{b})}{\mathbf{c}\mathbf{a}}}, \cos \frac{\mathbf{C}}{2} = \sqrt{\frac{\mathbf{s}(\mathbf{s} - \mathbf{c})}{\mathbf{a}\mathbf{b}}}.$$

9'8. নিভুজের অর্থকোণসমূহের Tangent-কে উহার ভিন বাহুর দৈর্ঘ্য দ্বারা প্রকাশ।

[ To express the tangents of half anyles of a triangle in terms of the sides.]

$$\tan \frac{A}{2} = \sin \frac{A}{2} + \cos \frac{A}{2}$$

$$= \sqrt{\frac{(s-b)(s-c)}{bc}} + \sqrt{\frac{s(s-a)}{bc}} \quad [\text{ AZ. 9'8 & 9'7}]$$

$$= \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

অন্তর্মপ প্রণালীতে প্রমাণ করা যায় যে,

$$\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$
 and  $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ .

A, B, C ত্রিপুজের কোণ বলিয়া, উহাদের প্রত্যেকটি  $180^\circ$  অপেক্ষা ছোট এবং সেইজন্ম  $\frac{A}{2}$ ,  $\frac{B}{2}$ ,  $\frac{C}{2}$ -এর প্রত্যেকটি  $90^\circ$  অপেক্ষা ছোট ; স্বতরাং  $\tan\frac{A}{2}$ ,  $\tan\frac{B}{2}$ ;  $\tan\frac{C}{2}$ -এর প্রত্যেকটি ধনাত্মক হইবে। উপরের স্ক্রসমূহে এইজন্মই বর্গমূলের কেবলমাত্র ধনাত্মক চিক্ন গ্রহণ করা হুইয়াছে।

9'9. ত্রিভুজের কোপের sine-কে উহার বাহুগুলির ভারা শুকাশ।

[ To express the sines of angles of a triangle in terms of the sides.]

$$\sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2} = 2 \sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{s(s-a)}{bc}};$$
  
 $\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}.$ 

এই কণে, 
$$\sin B = \frac{2}{ca} \sqrt{s(s-a)(s-b)(s-c)}$$
;  

$$\sin C = \frac{2}{ab} \sqrt{s(s-a)(s-b)(s-c)}.$$

9'10. বিভূত্তের ক্ষেত্রফল (Area of a triangle)।

ABC অভিত্তের যে-কোন শীর্ম A বিন্দু হরতে বিপরীত বাহু BC-এর উপর AD লহু টান।

ACD जिल्ल रहेरज,

 $AD = AC \sin C = b \sin C$ .

়. ব্রিভূজের ক্ষেত্রফলকে △ ধারা স্টিও করিলে,



এইরেপে, B ৭ C ২২ তে বিপরীত বাছর উপর লগ টানিয়া প্রামাণ করা যায় যে,  $\Lambda = bbc \sin A = bca \sin B$ .

$$\therefore \quad \Delta = \frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B, \qquad \cdots \quad (1)$$

দ্রবাং, ত্রিভূজের ক্ষেত্রফল⇒ ১× দ্বই বাছর গুণফল × ঐ দ্বই বাছর অন্তর্ভূত কোণের nine।

্ৰাবাৰ, ম পৰিব্যাদাৰ্থ হইলে,

দেইবাঃ গ্রিপুজের কেগ্রফল স্টিত করিবার জন্য 🔉 অকরটিও ব্যবহৃত হয়।

অনুসিদ্ধান্ত 1. (1) হইতে, 
$$\sin A - \frac{2\triangle}{bc}$$
,  $\sin B = \frac{2\triangle}{ca}$ ,  $\sin C = \frac{2\triangle}{ab}$ ;

এবং (4) হইতে,  $R = \frac{abc}{4\triangle}$ .

অসুসিদ্ধান্ত 2. অনু. 9'8 হইতে,

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \sqrt{\frac{(s-b)(s-c)(s-b)(s-c)}{s(s-a)(s-b)(s-c)}}$$
$$= \frac{(s-b)(s-c)}{\Delta}.$$

অহরপে, 
$$\tan \frac{\mathbf{B}}{2} = \frac{(\mathbf{s} - \mathbf{c})(\mathbf{s} - \mathbf{a})}{\Delta}$$
,  $\tan \frac{\mathbf{C}}{2} = \frac{(\mathbf{s} - \mathbf{a})(\mathbf{s} - \mathbf{b})}{\Delta}$ .
$$\cot \frac{\mathbf{A}}{2} = \sqrt{\frac{s(s - a)}{(s - b)(s - c)}} = \sqrt{\frac{s(s - a)}{(s - b)(s - c).s(s - a)}} = \frac{\mathbf{s}(\mathbf{B} - \mathbf{a})}{\Delta}.$$
এইরপে,  $\cot \frac{\mathbf{B}}{2} = \frac{\mathbf{s}(\mathbf{s} - \mathbf{b})}{\Delta}$ ,  $\cot \frac{\mathbf{C}}{2} = \frac{\mathbf{s}(\mathbf{s} - \mathbf{c})}{\Delta}$ .

9<sup>1</sup>11. প্রসাপ করিতে হইবে যে, শে-কোন ত্রিভুজে (In any triangle, to prove that)

$$\tan \frac{\mathbf{B} - \mathbf{C}}{2} = \frac{\mathbf{b} - \mathbf{c}}{\mathbf{b} + \mathbf{c}} \cot \frac{\mathbf{A}}{2}$$

বে-কোন ত্রিভূজ ABC-তে,

$$A + B + C = 180^{\circ}, \ \forall 1, \ \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}$$
 ... (1)

এবং 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 .  $\frac{b}{c} = \frac{\sin B}{\sin C}$  ... (2)

(2) 
$$\cot \theta$$
,  $\frac{b-c}{b+c} = \sin \theta - \sin \theta$   $\frac{2 \cos \theta + C}{2 \sin \theta + C} = \frac{2 \cos \theta + C}{2 \sin \theta + C} = \frac{2 \cos \theta + C}{2 \sin \theta + C} = \frac{B-C}{2} = \cot \theta + C = \frac{B+C}{2} = \cot \theta + C = \frac{B-C}{2} = \cot \theta$ 

$$\therefore \tan \frac{\mathbf{B} - \mathbf{C}}{2} = \frac{b - c}{b + c} \cdot \frac{1}{\tan \frac{\mathbf{A}}{2}} = \frac{b - c}{b + c} \cot \frac{\mathbf{A}}{2}.$$

অমুরপভাবে প্রমাণ করা যায় যে,

$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$$
;  $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$ .

অনুসিদ্ধান্ত। (3) হইতে, স্পাইই, 
$$\frac{b-c}{b+c} = \frac{\tan \frac{B-C}{2}}{\tan \frac{B+C}{2}}$$
; এইরপে,

$$\frac{a-b}{a+b} = \frac{\tan \frac{\mathbf{A} - \mathbf{B}}{2}}{\tan \frac{\mathbf{A} + \mathbf{B}}{2}} \operatorname{ags} \frac{c-a}{c+a} = \frac{\tan \frac{\mathbf{C} - \mathbf{A}}{2}}{\tan \frac{\mathbf{C} + \mathbf{A}}{2}}$$

উদা. 1. যদি a=4 ্'3, b=12,  $A=30^\circ$  হয়, ABC ত্রিভূজের পরিবৃত্তের ব্যাদার্থ এবং C-এর মান নির্ণয় কর।

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
;  $\therefore \sin B = \frac{b \sin A}{a} = \frac{12.\sin 30^{\circ}}{4 \sqrt{3}}$   
=  $\frac{12.1}{4 \sqrt{3}.2} = \frac{\sqrt{3}}{2}$ ;

∴ B=60° বা 120°.

উপা. 2. কোন বিভেজ, a=7, b=5, c=8 হইলে A-র মান নির্ণয় কর।  $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{5^2 + 8^2 - 7^2}{2.5.8} = \frac{40}{80} = \frac{1}{2}$ ;

. A = 60°.

উদা. 3. কোন তিভূজে, a=8, b=10 এবং c=14 হইলে  $an rac{A}{2}$ -এর মান

$$4767, \quad s = \frac{a+b+c}{2} = \frac{8+10+14}{2} = 16;$$

$$\therefore$$
  $s-a=16-8=8$ ,  $s-b=16-10=6$ ,  $s-c=16-14=2$ .

$$\therefore \tan \frac{A}{2} = \sqrt{\frac{(s-h)(s-c)}{s(s-a)}} = \sqrt{\frac{6.2}{16.8}} = \sqrt{\frac{6}{64}} = \frac{\sqrt{6}}{8}.$$

উদ। 4. কোন ত্রিভূজে,  $a^4+b^4+c^4=b^2c^2+2a^2(b^2+c^2)$ , A-এর মান নিশ্য কর।

$$a^4+b^4+c^4=b^2c^2+2a^3(b^2+c^2)=b^2c^2+2a^2b^2+2a^2c^3,$$
 
$$\forall 1, \quad a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=3b^2c^2,$$

বা, 
$$\frac{(b^2+c^2-a^2)^2}{4b^2c^2}=\frac{3}{4}$$
 ( উভয় পক্ষকে  $4b^2c^2$  দারা ভাগ করিয়া )

$$\therefore \cos A = \pm \frac{\sqrt{3}}{2}; \qquad \therefore A = 30^{\circ}, 150^{\circ}.$$

উদা 5. দেখাও যে, ABC ত্রিভূজে,

 $a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0.$ 

বাম পক্ষ =  $(a \sin B - b \sin A) + (b \sin C - c \sin B)$ 

 $+(c \sin A - a \sin C)$ 

=0+0+0, [ 
$$\overline{\phi}$$
 |  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ ;

... a sin B = b sin A, বা, a sin B − b sin A = 0, ইত্যাদি।]

=0.

উদা. 6. কোন ত্রিভূজের বাহুগুলি যথাক্রমে  $x^2+x+1$ , 2x+1 এবং  $x^2-1$ . বৃহত্তম কোণের পরিমাণ নির্ণয় কর। [C. U. 1910]

ত্রিভূচ্চের বাহু ধনাত্মক;  $\therefore$  2x+1>0, বা,  $x>-\frac{1}{2}$ ;  $\cdots$  (1

এবং  $x^2-1$  ধনাত্মক হইবে, স্তরাং, x-এর মান অবশুই 1 অপেকা বৃহত্তর।  $\cdots$  (2)

(1) এবং (2) হইতে, x > 1.

এগন, x > 1 হইলে, স্পষ্টই  $(x^2 + x + 1) - (2r + 1)$ , অর্থাৎ,  $x^2 - x > 0$  এবং  $(x^2 + x + 1) - (x^2 - 1)$ , অর্থাৎ, x + 2 > 0;

 $x^2+x+1$  বৃহত্তম বাহু এবং ইহার বিপরত কোণ্টিই বৃহত্তম কোণ্।

এই কোণটি  $\theta$  হইলে,  $\cos \theta = \frac{(x^2-1)^2+(2x+1)^2-(x^2+x+1)^2}{2(x^2-1)(2x+1)}$ 

$$= \frac{-2x^3 - x^2 + 2x + 1}{2(2x^3 + x^2 - 2x - 1)} = -\frac{1}{2};$$

 $\theta = 120^{\circ}.$ 

উদা. 7. প্রমাণ কর যে, যে-কোন ত্রিভুজে,

$$a(b \cos C - c \cos B) = b^2 - c^2$$
.

বাম পক=ab cos C-ac cos B

$$=ab.\frac{a^{2}+b^{2}-c^{2}}{2ab}-ac.\frac{c^{2}+a^{2}-b^{2}}{2ac}$$

$$= \frac{a^2 + b^2 - c^2}{2} - \frac{c^2 + a^2 - b^2}{2}$$

$$= \frac{1}{2}(a^2 + b^2 - c^2 - c^3 - a^2 + b^3)$$

$$= \frac{1}{2}(2b^2 - 2c^2) = b^2 - c^3.$$

উলা. ৪. প্রমাণ কর যে, যে-কোন ত্রিভূতে,

$$(b+c)\sin\frac{A}{2} = a\cos\frac{B-C}{2}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
;  $\therefore a = 2R \sin A$ ,

 $b=2R \sin B$ ,  $c=2R \sin C$ .

$$\frac{L+c}{a} = \frac{2R(\sin B + \sin C)}{2R\sin A} = \frac{\sin B + \sin C}{\sin A}$$

$$2\sin B + C\cos B - C$$

$$= \frac{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}}{2\sin\frac{A}{2}\cos\frac{A}{2}}$$

$$\frac{\cos \frac{A}{2} \cos \frac{B-C}{2}}{\sin \frac{A}{2} \cos \frac{A}{2}} \qquad [\because A+B+C=180^{\circ}; \\ \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}; \\ \frac{A}{2} + \frac{B+C}{2} = \sin \left(90^{\circ} - \frac{A}{2}\right)$$

$$= \cos \frac{A}{2}$$

$$=\frac{\cos\frac{B-C}{2}}{\sin\frac{A}{2}};$$

$$\therefore$$
  $(h+c)\sin\frac{A}{2}=a\cos\frac{B-C}{2}$  (বজ্রগুণন ছারা)

উদা. 9. প্রমাণ কর যে, ষে-কোন ত্রিভুঞ্জে,

$$(b-c) \cot \frac{A}{2} + (c-a) \cot \frac{B}{2} + (a-b) \cot \frac{C}{2} = 0.$$

বাম পক = 
$$(b-c)^{s(s-a)} + (c-a)^{s(s-b)} + (a-b)^{s(s-c)} \triangle$$

$$= \int_{a}^{s} \{(b-c)(s-a) + (c-a)(s-b) + (a-b)(s-c)\}\$$

(XI-XII)--28

$$= \sum_{a=0}^{s} \left[ s(b-c+c-a+a-b) - \left\{ a(b-c) + l(c-a) + c(a-b) \right\}^{-1} \right]$$

$$= \sum_{a=0}^{s} (a-b) \cdot a = 0.$$

উদা. 10. যে-কোন ত্রিভূজে,  $\cos A = \frac{\sin B}{2 \sin C}$  হইলে, প্রমাণ কর যে, ত্রিভূজটি সমন্বিবাছ। [B. H. U. 1950]

$$\cos A = \frac{\sin B}{2 \sin C}$$

ৰা,  $\sin \mathbf{C} \cos \mathbf{A} = \sin \mathbf{A} \cos \mathbf{C}$ ,

 $\exists$ 1,  $\sin C \cos A - \sin A \cos C = 0$ ,

বা, sin (C-A)=0; ... C=A, 
অর্থাৎ, ত্রিভুজটি সমন্বিবাহ।

উদা. 11. একটি ত্রিভূজের বাহগুলি সমান্তর-শ্রেণীতে থাকিলে, দেখাও যে,  $\cot \frac{A}{2}$ ,  $\cot \frac{C}{2}$ ও সমান্তর-শ্রেণীতে থাকে।

$$\cot \frac{\mathbb{A}}{2} = \frac{s(s-a)}{\triangle}, \cot \frac{\mathbb{B}}{2} = \frac{s(s-b)}{\triangle}, \cot \frac{\mathbb{C}}{2} = \frac{s(s-c)}{\triangle};$$

∴ cot A/2, cot B/2, cot C/2 সমান্তর-শ্রেণীতে থাকিবে,

যদি  $\frac{s(s-a)}{\triangle}$ ,  $\frac{s(s-b)}{\triangle}$  এবং  $\frac{s(s-c)}{\triangle}$  একটি সমান্তর-শ্রেণীতে থাকে,

s - a + s - c = 2(s - b)  $\overline{\epsilon}$  $\overline{a}$ ,

-a-c=-2b হয়,

 $,, \quad a+c=2b \ \overline{\epsilon} \overline{s},$ 

" , a, b, c সমান্তর-শ্রেণীতে থাকে।

উদা. 12. প্রমাণ কর ষে, কোন ত্রিভুজের ছই কোণের cosine-এর অনুপাত কোণৰয়ের বিপরীত বাছময়ের অনুপাতের সমান হইলে, ত্রিভুজটি সমন্বিবাহ।

[ C. U. 1924 ]

প্রাম্নারে,  $\frac{\cos A}{\cos B} = \frac{a}{b} = \frac{\sin A}{\sin B}$ ;

- $\therefore$  sin A cos B = cos A sin B,
- $\overline{A}$ ,  $\sin A \cos B \cos A \sin B = 0$ ,
- বা, sin (A-B)=0; ∴ A-B=0, বা, A=B;
- .. ত্রিভূজটি সমদ্বিবাস্থ।

#### প্রগ্রমালা 10

- বিদি α = 3, b = 3 (3 এবং A = 30° হয়; B-এর মান নির্ণয় কর।
- 2. যদি a = 20, h = 10, C = 60° হয়; A, B, েএর পরিমাণ নির্ণয় কর।
- 3. কোন ত্রিভূজের বাহুগুলি 340, 266 এবং 155 হইলে, বৃহত্তম কোণের আর্থেকের tangent নির্ণয় কর।
- 4. কোন বিভূজের বাহুগুলি 3, 5, 7 হইলে, উহার সুহত্ম কোণের sin নির্ণিয় কর।
  - 5. ত্রিভৃঞ্জের ক্ষেত্রফল নির্ণয় কর, যখন
    - (i) a = 12, b = 35, c = 37;
    - (ii) a:b:c=2:3:4 এবং s=18.

প্রমাণ কর যে, ষে-কোন ত্রিভূজে,

- 6.  $a(\sin B \sin C) + b(\sin C \sin A) + c(\sin A \sin B) = 0$ .
- 7.  $(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$ .
- 8.  $a \sin A b \sin B = c \sin (A B)$ .
- 9.  $a \sin \frac{B-C}{2} = (b-c) \cos \frac{A}{2}$
- 10.  $(b+c)\cos\frac{B+C}{2} = a\cos\frac{B-C}{2}$
- 11.  $a \sin (B-C) + b \sin (C-A) + c \sin (A-B) = 0$ .
- 12.  $(b^3 + c^3 a^2) \tan A = (c^2 + a^2 b^3) \tan B$ =  $(a^2 + b^2 - c^2) \tan C$
- 13.  $b \cos B + c \cos C = a \cos (B C)$ .
- 14.  $a \cos A + b \cos B + e \cos C = 4R \sin A \sin B \sin C$ ,
- 15.  $a \cos (B-C) + b \cos (C-A) + c \cos (A-B)$ = 8R sin A sin B sin C.
- 16.  $\frac{\sin{(A-B)}}{\sin{(A+B)}} = \frac{a^2-b^2}{c^2}$

17. 
$$\frac{c \sin (A-B)}{a^2-b^2} = \frac{a \sin (B-C)}{b^2-c^2} = \frac{b \sin (C-A)}{c^2-a^2}$$
.

18. 
$$b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = c \cos^2 \frac{A}{2} + a \cos^2 \frac{C}{2}$$
  
=  $a \cos^2 \frac{B}{2} + b \cos^2 \frac{A}{2}$ .

19. 
$$c^2 = (a-b)^2 \cos^3 \frac{C}{2} + (a+b)^2 \sin^3 \frac{C}{2}$$

**20.** 
$$(s-a) \tan \frac{A}{2} = (s-b) \tan \frac{B}{2} = (s-c) \tan \frac{C}{2}$$

21. 
$$\frac{b-c}{a}\cos^2\frac{A}{2} + \frac{c-a}{b}\cos^2\frac{B}{2} + \frac{a-b}{c}\cos^2\frac{C}{2} = 0$$
.

22. 
$$\tan A = \frac{a \sin C}{b - a \cos C}$$

**23.** 
$$(b^2-c^2) \cot A + (c^2-a^2) \cot B + (a^2-b^2) \cot C = 0$$
.

**24.** 
$$(b+c-a) \tan \frac{A}{2} = (c+a-b) \tan \frac{B}{2} = (a+b-c) \tan \frac{C}{2}$$

25. 
$$a^2 (\sin^2 B - \sin^2 C) + b^3 (\sin^2 C - \sin^2 A) + c^3 (\sin^2 A - \sin^2 B) = 0$$
.

26. 
$$a^{2} (\cos^{2}B - \cos^{2}G) + b^{2} (\cos^{2}C - \cos^{2}A) + c^{3} (\cos^{3}A - \cos^{2}B) = 0$$

27. 
$$\frac{a^2 \sin (B-C)}{\sin A} + \frac{b^2 \sin (C-A)}{\sin B} + \frac{c^2 \sin (A-B)}{\sin C} = 0.$$

28. 
$$b = \frac{a^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0$$
.

[ C. U. 1912 ]

29. 
$$\frac{a^2 \sin (B-C)}{\sin B+\sin C} + \frac{h^2 \sin (C-A)}{\sin C+\sin A} + \frac{c^2 \sin (A-B)}{\sin A+\sin B} = 0.$$

[ B. H. U. 1945 ]

30. 
$$a^8 \cos (B-C) + b^8 \cos (C-A) + \epsilon^3 \cos (A-B) = 3abc$$
.

[ Pat. U. 1939 ]

31. 
$$1 - \tan \frac{A}{2} \tan \frac{B}{2} = \frac{2c}{a+b+c}$$

32. 
$$\tan \frac{A}{2} \tan \frac{B-C}{2} = \frac{b-c}{b+c}$$

33. 
$$a^2 + b^2 - 2ab \cos \left(C + \frac{\pi}{3}\right) - b^2 + c^2 - 2bc \cos \left(A + \frac{\pi}{3}\right)$$
  
=  $c^2 + a^2 - 2ca \cos \left(B + \frac{\pi}{3}\right)$ 

34. 
$$\frac{c}{\cot \frac{A}{2} + \cot \frac{B}{2}} = \frac{ab \sin C}{a + b + c}$$

35. यमि cos B = sin A হল, দেখা ও যে, ব্ৰিভৃজটি সমন্বিশাহ।

[ B. H. U. 1944 ]

36. কোন বিভূজে,  $C = 60^{\circ}$  ১ গৈ, প্রমণ কর যে.

 $2a - b = 2c \cos B$ . [B. H. U. 1949]

37. শদি একটি বিভূজের জুইটি কোণের cosine ভাষাদের বিপরীত বাছয়য়য় সহিত ব্যস্ত জনস্পাত্র পাকে, নিধা ও যে, ত্রিভূজটি হয় স্মতিবাছ নতুর স্মত্রাণী।

[ C. U. 1923 ]

- 38. খনি  $(a^2 + h^2) \sin (A B) = (a^2 h^2) \sin (A + B)$  হয়, দেখাও যে, গ্রেহজটি হয় সম্বিধাত ন এবা সমকোণী।
- 39. যদি কোন বিভূজে  $a^2$ ,  $b^3$ ,  $c^2$  স্মান্তব-ংশীভুক্ত হয়, প্রমাণ কর যে, cot A, cot B, cot C সমান্তব-ংশীভূক্ত। A. U. 1943 ]
- 40. সদি কোন বিভূলে tan A tan B, tan C সমান্তর-শ্রেণীভূক হয়,
  প্রমাণ কর বে, cos A, cos B, cos C স্মান্তর শ্রেণীভূকা।
  - 41. यमि a = 2 १९८९ A = 30 ३८, जि. ५ १ कि त कार्यक्षित श्रांत्र भारियान निर्मेष्ठ कत्र।
  - 42. যুদ্দি  $a^4 + b^4 + c^4 = 2b^2(a^2 + c^2) c^2a^2$  হয়, প্রমাণ কর যে, B = 60° বা 120°.

প্রমাণ কর হে, যে-কোন ত্রিভূজে,

43. (i) be 
$$\cos^2 \frac{A}{2} + \cos \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} = s^2$$
,

(ii) 
$$4\triangle = \frac{a^2 + b^2 + c^2}{\cot A + \cot B + \cot C}$$

(iii)  $4\triangle = a^2 \cot A + b^2 \cot B + c^2 \cot C$ .

44. यशि 
$$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$
 হয়, দেখাও বে,  $c = 60^\circ$ .

45. Lab ( )  $\frac{1}{2}$  ( )  $\frac{$ 

# 9'12. ভিত্ততের পরিহতের ব্যাসার্থ (Radius of the circumscribing circle of a triangle)

ABC ত্রিভুঞ্জর পরিবৃত্তের ব্যাসাধ R হইলে, অত্ 9'2 হইতে দেখা যায়,

$$\frac{\mathbf{a}}{\sin \mathbf{A}} = \frac{\mathbf{b}}{\sin \mathbf{B}} = \frac{\mathbf{c}}{\sin \mathbf{C}} = 2\mathbf{R} ;$$

$$\therefore R = \frac{a}{2 \sin A} = \frac{abc}{2bc \sin A} = \frac{abc}{4\Delta}$$

## 9'13. ক্রিভুজের ভাস্তর ত (In-circle)।

ত্রিভূজের অভান্থরে সম্পূর্ণরূপে অবস্থিত এবং উহার বাহু তিনটিকে স্পর্শ করে এইরপ বৃত্তকে ঐ ক্রিভূজের অন্তর্ন্তর বা অন্তলিখিত বৃত্ত (In-circle ব. Inscribed circle) বলে। বিভূজের ফেকোন তৃই কোণের অন্তঃসমদ্বিগণ্ডকদ্বরের ছেদ্বিন্দু এই বৃত্তের কেন্দ্র। এই কেন্দ্রকে অন্তঃকেন্দ্র (In-centre) বলে এবং ইহাকে সাধারণতঃ I দারা স্টিত করা হয়। স্প্রেই এই কেন্দ্র ইইতে ক্রিভূজটির ফেকোন বাহুর উপর



অন্ধিত লম্ব, ত্রিভুজটির অন্ধ্যাসার্ধ। অন্ধ্যাসার্ধকে ৮ দারা স্মৃচিত করা হয়।

#### 9'14. ত্রিভুজের অস্ত-ব্যাসার্থ।

মনে কর, । এবং r যথাক্রমে ABC বিভূজের অন্তঃকেন্দ্র এবং অন্তঃ-ব্যাসার্ধ। । হইতে ID, IE, IF, যথাক্রমে BC, CA ও AB-এর উপর তিনটি লম্ব টানা হইল। AI, BI, CI যুক্ত কর।

তাহা ইইলে, |D = |E = |F = r.

$$\triangle ABC = \triangle IBC + \triangle ICA + \triangle IAB$$

$$=\frac{1}{2}ar+\frac{1}{2}br+\frac{1}{2}cr$$

$$=\frac{1}{2}r(a+b+c)=r_{S}$$

আবার, IBD ত্রিভূজে, BD = 
$$r \cot \frac{B}{2}$$

এবং ICD ত্রিভূবে, DC = 
$$r \cot \frac{C}{2}$$

$$\therefore a = BC = BD + DC$$

$$= r \cot \frac{\mathsf{B}}{2} + r \cot \frac{\mathsf{C}}{2}$$

$$= r \left(\cot \frac{B}{2} + \cot \frac{C}{2}\right)$$

$$= r \left( \frac{\cos \frac{\mathbb{I}}{2}}{\sin \frac{\mathbb{B}}{2}} + \frac{\cos \frac{\mathbb{C}}{2}}{\sin \frac{\mathbb{C}}{2}} \right)$$

$$= r \left( \frac{\cos \frac{B}{2} \sin \frac{C}{2} + \sin \frac{B}{2} \cos \frac{C}{2}}{\sin \frac{B}{2} \sin \frac{C}{2}} \right)$$

$$= r \frac{\sin\left(\frac{B}{2} + \frac{C}{2}\right)}{\sin\frac{B}{2}\sin\frac{C}{2}} = r \frac{\cos\frac{A}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}$$

$$\begin{bmatrix} \cdot \cdot \cdot & \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \end{bmatrix}$$

$$\therefore \sin_{n} \left( \frac{B}{2} + \frac{C}{2} \right) = \sin \left( \frac{\pi}{2} - \frac{A}{2} \right) = \cos \frac{A}{2}.$$

$$\therefore r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}} = a \sin \frac{B}{2} \sin \frac{C}{2} \sec \frac{A}{2}.$$

কিছ,  $\alpha = 2R \sin A = 4R \sin \frac{A}{2} \cos \frac{A}{2}$ 

$$\therefore \quad \mathbf{r} = 4\mathbf{R} \sin \frac{\mathbf{A}}{2} \sin \frac{\mathbf{B}}{2} \sin \frac{\mathbf{C}}{2} \cdot \dots \quad \dots \quad (ii)$$

আবার, চিত্র হইতে,

িকন্ত, 
$$(AF + BD + CD) + (AE + BF + CE)$$
  
=  $(AF + BF) + (BD + CD) + (AE + CE)$   
=  $AB + BC + CA = 2s$ .

. AF+BD+CD=AE+BF+CE = 
$$\frac{2s}{2}$$
 =  $s$ ,

$$\forall 1, \quad AF + a = 8 : ... \quad AF = 8 - a.$$

এইরপে, BF=s-b এবং CE=s-c.

এখন, AIF তিভূজে, IF = AF tan IAF,

ৰা, 
$$r=(s-a) \tan \frac{A}{2}$$
, এই ক্পে,  $r=(s-b) \tan \frac{B}{2}$ , ... ... (iii) 
$$r=(s-c) \tan \frac{C}{2}$$
.

# 9°15. অস্তঃকেন্দ্র হইতে কৌশিক বিন্দুসমূহের দূরত্ব।

IA, IB, IC, অন্ত:কেন্দ্র ইইতে কৌ পিক বিন্দুরয়ের দ্রম।

△ IAF হইতে, IA = IF cosec IAF

$$=$$
r cosec  $\frac{A}{2}$ .

সমূরপে, IB=r cosec  $\frac{B}{2}$ , IC=r cosec  $\frac{C}{2}$ 

# 9'16. বহির ত (Ex-circle)।

ত্রিভূজের যে-কোন এক বাছকে এবং বৃধিত অপর তুই বাছকে যে বৃত্ত স্পর্শ করে, দেই বৃত্তকে ঐ ত্রিভূজের বৃহ্তি (Ex-circle বা Escribed circle) বলে। স্পষ্টই প্রত্যেক ত্রিভূজের তিনটি বহিবৃত্তি থাকে। ত্রিভূজের যে-কোন এক কোণের সন্তঃদমদ্বিধন্তক এবং অপর কোণদ্বরের যে-কোন একটির বহিঃদমদ্বিধন্তকের ছেদ বিন্দু অথবা যে-কোন তুই কোণের বহিঃদম্দ্বিধন্তকদ্বরের ছেদবিন্দু বহিবৃত্তির কেন্দ্র (ex-centre), বা, বৃহ্ণকেন্দ্র এবং বৃহিংকেন্দ্র হুইতে ত্রিভূজের বাহুদ্মৃহের উপর পাতিত লম্বই বহিব্যাসাধ (ex-radius)।

# 9'17. বহিব্যাসাধ সমূহ নির্ণয়।

( to find the ex-radii of a triangle. )

মনে কর, ABC ত্রিভ্জের BC বাছকে এবং বর্ণিত AB ও AC বাছকে যে বিচিত্র বুটি স্পর্শ করিয়াছে তাহার, অর্থাৎ A কোণের বিপরীত বহির্ব তুটির কেন্দ্র । এবং ব্যাসার্ধ গা. । ইইতে BC-এর উপর এবং বর্ণিত AC ও AB-এর উপর যথাক্রমে IID, IIE, IIF লম্ব অন্ধিত কর ।

এখন, 
$$l_1D = l_1E = l_1F = r_1$$
. Al  $l_1$ , Bl  $l_1$  এবং Cl  $l_2$  কর  $l_2$  ABC =  $\triangle l_1AB + \triangle l_1AC - \triangle l_1BC$  =  $\frac{1}{2}AB.l_1F + \frac{1}{2}AC.l_1E - \frac{1}{2}BC.l_1D$  =  $\frac{1}{2}(cr_1 + \frac{1}{2}br_1 - \frac{1}{2}ar_1$  =  $\frac{1}{2}(b+c-a)r_1$  =  $\frac{1}{2}(b+c+a-2a)r_1$  =  $\frac{1}{2}(2s-2a)r_1 = (s-a)r_1$ .

 $\Gamma_1 = \frac{\Delta}{a-a}$ 



এইরপে,  $r_2$ ,  $r_3$  যথাক্রমে B এবং C কোণের বিপরীত বহিবুভিছরের বাচার্ধ ছইলে,

$$\mathbf{r}_2 = \frac{\Delta}{\mathbf{s} - \mathbf{b}}$$
 এবং  $\mathbf{r}_3 = \frac{\Delta}{\mathbf{s} - \mathbf{c}}$  ... (1)   
খাবার, I,BD এিড়াজ, ∠I,BD = ½ ∠DBF   
= ½ (180° – ∠B) = 90° – ½ ∠B.

:. 
$$BD = I_1D \cot I_1BD = I_1D \cot (90^\circ - \frac{1}{2} \angle B) - I_1D \tan \frac{B}{2}$$
  
=  $r_1 \tan \frac{B}{2}$ .

এইরপে, I<sub>1</sub>CD ছিঙ্জে, CD=I<sub>1</sub>D 
$$\tan\frac{\mathbf{C}}{2}=r$$
,  $\tan\frac{\mathbf{C}}{2}$ .

$$\therefore \alpha = BC = BD + CD = r_1 \tan \frac{B}{2} + r_1 \tan \frac{C}{2}$$
$$= r_1 \left( \tan \frac{B}{2} + \tan \frac{C}{2} \right)$$

$$= r_1 \left( \frac{\sin \frac{B}{2}}{\cos \frac{B}{2}} + \frac{\sin \frac{C}{2}}{\cos \frac{C}{2}} \right)$$

$$= r_1 \left( \frac{\sin \frac{B}{2} \cos \frac{C}{2} + \cos \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}} \right)$$

$$= r_1 \frac{\sin \left( \frac{1}{2} B + \frac{1}{2} C \right)}{\cos \frac{B}{2} \cos \frac{C}{2}}$$

$$= r_1 \frac{\cos \frac{1}{2} A}{\cos \frac{B}{2} \cos \frac{C}{2}}$$

$$\left[ \because \sin\left(\frac{1}{2}B + \frac{1}{2}C\right) = \sin\left(90^\circ - \frac{A}{2}\right) = \cos\frac{A}{2} \cdot \right]$$

$$\therefore \quad r_1 = a \cos \frac{\mathbf{B}}{2} \cos \frac{\mathbf{C}}{2} \sec \frac{\mathbf{A}}{2}.$$

ইহাতে  $\alpha = 2R \sin A = 4R \sin \frac{A}{2} \cos \frac{A}{2}$  বসাইয়,

$$\mathbf{r}_{1} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2};$$

$$\mathbf{r}_{2} = 4R \sin \frac{B}{2} \cos \frac{A}{2} \cos \frac{C}{2};$$

$$\mathbf{r}_{3} = 4R \sin \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2}.$$

$$(2)$$

আবার, AE = AC + CE = b + CD, [∴ CE = CD]

এবং AF = AB + BF = c + BD; ে BF = BD.

কিছ AE = AF;

ে খোগ করিয়া, 2AE = b + c + CD + BD = b + c + BC = b + c + a = 2s;

. AE = 8,

এখন, AliE তিকুকে, IIE = AE tan IIAE ;

ে 
$$r_1 = s \tan \frac{A}{2}$$
;
এই মণে,  $r_2 = s \tan \frac{B}{2}$ , ... (3)

9'18. বহিঃকেন্দ্র হইতে কৌণিক বিন্দুসমূহের দূরত্ব।

 $1_1A$ ,  $1_1B$ ,  $1_1C$  ব'ংকেন  $1_1$  হউতে কৌশিক বিন্দুসমূহের পূর্থ।  $\triangle 1_1AF$  হইতে,  $\frac{1_1A}{1_1F}=\csc\frac{A}{2}$  ;

$$3 \quad I_1 A = r_1 \, \csc \frac{A}{2} = i R \, \cos \frac{B}{2} \cos \frac{C}{2} \, . \qquad \qquad 2 \quad \text{and} \quad \text{with } j$$

$$\triangle$$
 1, BF \*\*:  $\frac{1}{12}$ F = cosec  $\left(90^{\circ} - \frac{B}{2}\right)$  = sec  $\frac{B}{2}$ .

$$A = I_1B = r, \sec \frac{B}{2};$$

এইরবে, 
$$I_1C = r_1 \sec \frac{C}{2}$$

গত্তকপ প্রণালীতে। এ এবং। এ চইতে কৌশিক বিশুসমূহের দ্বায় নিণীয় করা যায়।

উদা. 1. প্রমাণ কর খে, s(s-a) tan A - Δ.

$$r = (s - a) \tan \frac{A}{2}$$

$$\varepsilon(s-a)\tan\frac{A}{2} = sr = \frac{1}{2}(a+b+c)r$$
$$= \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr = \Delta$$

উদা. 2. প্রযাণ কর বে, ABC जिल्ल,

$$4Rrs = abc.$$

$$R = \frac{abc}{4\Delta} \text{ and } r = \frac{\Delta}{s}.$$

$$\therefore \quad 4Rrs = 4 \cdot \frac{abc}{4\Delta} \cdot \frac{\Delta}{s} \times s = abc.$$

$$\begin{aligned} \mathbf{SW} \| & 3. \quad 2^{|\mathbf{x}|} | \mathbf{SM} \| \mathbf{SM}$$

$$\begin{aligned} & \mathbf{S} \mathbf{r} | \mathbf{r}, \mathbf{A}, \quad \mathbf{M} \mathbf{r} | \mathbf{r} | \mathbf{r} | \mathbf{r} | \mathbf{r}, \mathbf{r}, \mathbf{r} + \frac{1}{r_2} + \frac{1}{r_3} &= \frac{1}{r} \cdot \\ & \mathbf{r} | \mathbf{r}, \mathbf{r} | \mathbf{r} | \mathbf{r}, \\ & \mathbf{r} | \mathbf{r$$

উল[. 5. পাল কৰা যে, যে কোন বিহুছে,  $rr_1r_2r_3 = \Delta^3$  এবং  $s^3 = r_2r_2 + r_2r_3 + r_3r_4$ . [C. U., B.Sc., 1954]

$$rr_{1}r_{2}r_{3} = \frac{\Delta}{s} \cdot \frac{\Delta}{s-a} \cdot \frac{\Delta}{s-b} \cdot \frac{\Delta}{s-c}$$

$$= \Delta^{2} \cdot \frac{\Delta^{2}}{\sqrt{s-a(s-b)(s-c)}} = \Delta^{2} \cdot \frac{\Delta^{2}}{\Delta^{2}} = \Delta^{2}.$$

$$r_{1}r_{2} + r_{2}r_{3} + r_{3}r_{4}$$

$$= \frac{\Delta}{s-a} \cdot \frac{\Delta}{s-b} + \frac{\Delta}{s-b} \cdot \frac{\Delta}{s-c} + \frac{\Delta}{s-c} \cdot \frac{\Delta}{s-a}$$

$$= \Delta^{2} \left\{ \frac{1}{(s-a(s-b))} + \frac{1}{(s-a(s-b)$$

अमा. 6. १४% कट ८६, ? कास १९५७.

$$\frac{1}{I_c} + \frac{1}{I_c} + \frac{1}{I_c} = \frac{1}{2R^2}$$

f B. H. U. 1948, '56'

$$\operatorname{dis}_{NR} = \frac{a+b+o}{a^{2}} = \frac{2s}{a^{2b}} = \frac{2s}{4 \triangle R} \quad \left[ \begin{array}{ccc} \ddots & R = \frac{abc}{4 \triangle} \end{array} \right]$$

$$= \frac{1}{2R} \cdot \frac{1}{2$$

341.7. 42 44 1, - A+ 0.8 + 0. C-1 + R

ध्यम,  $\tau = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ 

$$\eta$$
,  $\frac{r}{R} = 4 \sin \frac{\Lambda}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ :

cos A + cos B + cos C = 1 + 7.

BW1. 8. PX14 44 . 7, r, + r, + r, + r, - r - 1 R.

$$= \Delta \left[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} \right]$$

$$= \Delta \left[ \frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} \right]$$

-(a-a)(a-b)(a-c)

$$= (a + b) + (a$$

$$= \Delta \cdot \frac{2a^{2} - (a + b + c)a^{2} + abc}{\Delta^{2}}$$

$$=\frac{abz}{\Delta}=4R.$$

[ A. U., 1949 ]

$$\operatorname{TR} = \begin{pmatrix} \triangle \\ s - a \end{pmatrix} \begin{pmatrix} \triangle \\ s - b \end{pmatrix} \begin{pmatrix} \triangle \\ s - b \end{pmatrix} \begin{pmatrix} \triangle \\ s - c \end{pmatrix} \begin{pmatrix} \triangle \\ s - c \end{pmatrix} = \frac{\Delta}{s} \begin{pmatrix} \frac{1}{s - c} - \frac{1}{s} \end{pmatrix} \\
= \Delta^{s} \begin{pmatrix} \frac{1}{s - a} - \frac{1}{s} \end{pmatrix} \begin{pmatrix} \frac{1}{s - b} - \frac{1}{s} \end{pmatrix} \begin{pmatrix} \frac{1}{s - c} - \frac{1}{s} \end{pmatrix} \\
= \Delta^{s} \cdot \frac{a}{s(s - a)} \cdot \frac{b}{s(s - b)} \cdot \frac{c}{s(s - c)} \\
= \frac{\Delta^{s} abc}{s^{2} \Delta^{2}} = \frac{\Delta abc}{s^{2}} \\
= \frac{abc}{4\Delta} \cdot \frac{4\Delta^{2}}{s^{2}} - R.4 \begin{pmatrix} \triangle \\ s \end{pmatrix}^{2} \quad \left[ \begin{array}{c} \cdot \cdot abc \\ 4\Delta \end{array} \right] = 4Rr^{2}.$$

উপা. 10. প্রমাণ কর বে,  $a \cot A + b \cot B + c \cot C = 2(R + r)$ .

ৰাম পক = 
$$a \cdot \frac{\cos A}{\sin A} + b \cdot \frac{\cos B}{\sin B} + c \cdot \frac{\cos C}{\sin C}$$

$$= \frac{a}{\sin A} \cdot \cos A + \frac{b}{\sin B} \cdot \cos B + \frac{c}{\sin C} \cdot \cos C$$

$$= 2R \cos A + 2R \cos B + 2R \cos C$$

$$= 2R(\cos A + \cos B + \cos C) = 2R\left(1 + \frac{r}{R}\right) \cdot [\text{উদা. 7 চই/5.5}]$$

উদা. 11. প্রমাণ কর যে,

$$= 4R \cdot \frac{1}{r^2 s^2} \left[ \therefore R = \frac{abc}{4\Delta} \le 3 \cdot \frac{\Delta}{s} = r \right]$$

$$= \frac{4R}{r^2 s^2} = \frac{4.4R}{4r^2 s^2} = \frac{16R}{r^2 (2s)^2} = \frac{16R}{r^2 (a+b+c)^2}.$$

উদা. 12. যদি  $8R^2 = a^2 + b^2 + c^2$  হয়, প্রমাণ কর যে, তিভুজটি সমকোণী।  $a = 2R \sin A$ ,  $b = 2R \sin B$ ,  $c = 2R \sin C$ ;

$$8R^{2} = 4R^{2} (\sin^{2}A + \sin^{2}B + \sin^{2}C)$$
  
= 4R<sup>2</sup>.(2+2 cos A cos B cos C).

- $\therefore 2 = 2 + 2 \cos A \cos B \cos C;$
- .. cos A cos B cos C=0, cos A, cos B 340 cos C 0;
- ... A, অথবা B, অথবা C = 90°.

অতএব, ত্রিভূজটি সমকোণী।

উদা 13. ABC বিজ্ঞার পরিকেন্দ্র ইউতে BC, CA এবা AB বতর উপাশ স্থাপত লক্ষেব দৈখা যথাক্তম  $p_1, p_2, p_3$  ইউলে, দেখা ও যে,

$$\frac{a}{p_1} + \frac{b}{p_2} + \frac{c}{p_3} = \frac{abc}{4p_1p_3p_3}.$$

চিত্রে s পরিকেন্দ্র, sp. sq. st বাজরকের উপর লম। ভাহা হইলে,

$$SP = p_1$$
,  $SQ = p_2$ ,  $ST = p_3$ ,

93° ∠ BSC = 2A, दिलेशा, / BSP = ∠A.

এবং এই রূপে,



eq: 
$$\tan A = \frac{a}{2p_1} \cdot \tan B = \frac{b}{2p_2} \cdot \tan C = \frac{c}{2p_3}$$
 ... (2)

$$a + b + c = a$$

$$p_1 + p_2 + p_3 = R \cos A + R \cos B + R \cos C$$

$$= 2R \sin A + 2R \sin B + 2R \sin C$$

$$= R \cos A + R \cos B + R \cos C$$

$$= 2 (\tan A + \tan B + \tan C)$$

$$= 2 \tan A \cdot \tan B \cdot \tan C$$

$$[A + B + C - \pi = 0]$$

$$= 2 \cdot \frac{b}{2p_1} \cdot \frac{c}{2p_2} \cdot \frac{b}{2p_3} \cdot \frac{c}{2p_3}$$

$$= \frac{abc}{4p_1 p_3 p_3}$$

#### প্রাহ্মালা 11

- ABC বিশ্বহৃত, AB = 1400 মিচার, AC = 1300 নিচার বেলা/ A = 60°;
   ইছার কেরফল নির্ণর কর ।
- একটি ছিত্ত জব ক্ষেত্ৰকল ও লগ কিলো মিচার এলা ৪০টি লাষ্ট ও কিলোমিচার এবল ৪ কিলোমিটার ; মধ্য লাষ্ট্র মিশ্য কর।

- 3. ABC ত্রিভূভের ক্ষেত্রফল 24 বর্গ-মিটার এবং a:b:c=3:4:5 ; বাহগুলি নির্ণন্ন কর।
- 4. যে ব্রিভূজের বাতগুলি 4,5 এবং 7, সেই ব্রিভূজের অন্তর্গতের ব্যাসার্ধ নির্ণর কর।
- একটি ত্রিভূজের বাত্তালি 5 দেমি., ৪ দেমি. এবং 5 দেমি.। প্রমাণ কর বে,
   ত্রিভূজটির ছুইটি বহিবৃত্তি সমান।

যে-কোন জিতুকে, প্রমাণ কর যে:

- 6.  $\sin A + \sin B + \sin C = \frac{8}{R}$
- 7.  $r_1 + r_2 = c \cot \frac{C}{2}$  [ A. U., 1946]
- 8.  $\frac{rr_1}{r_2r_8} = \tan^2\frac{A}{2}$  [ A. U., 1947]
- 9.  $\triangle = \frac{1}{2}(a^2 \sin 2B + b^2 \sin 2A)$ .
- 10.  $\triangle = \frac{b^2 + c^2 a^2}{4 \cot A}$  11.  $\triangle rr_1 \cot \frac{A}{2}$
- 12.  $\triangle = 4Rr \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
- 13.  $\frac{\triangle}{R^2} = 2 \sin A \sin B \sin C$ .
- 14.  $\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^3}{4\Delta}$
- 15.  $\frac{b-c}{r_1} + \frac{c-a}{r_s} + \frac{a-b}{r_s} = 0$ .
- 16.  $s = 4R \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
- 17.  $\triangle = r^2 \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$
- 18.  $a \cos A + b \cos B + c \cos C = \frac{2\Delta}{R}$
- 19.  $a \cos B \cos C + b \cos C \cos A + c \cos A \cos B = \frac{\triangle}{R}$
- 20.  $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2Rr}$

21. 
$$\left(\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_3}\right)^2 = \frac{4}{r} \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)$$

22. 
$$4R = \frac{(r_2 + r_3)(r_3 + r_1)(r_1 + r_2)}{r_2r_3 + r_3r_4 + r_2r_3}$$

23.  $r_1(r_3+r_5)$  cosec  $A=r_8(r_5+r_5)$  cosec  $B=r_8(r_1+r_2)$  cosec C.

24. 
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = a \sin A + b \sin B + c \sin C$$

25. यमि  $r_1 = r_2 + r_3 + r$  इस, अभाग कद (म, विज्ञानि मस्कानी।

26. যদি 
$$\left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2$$
 হয়, প্রমাণ কর যে রিভ্রুটি সমকোণী।

বে-কোন বিশুজে, প্রমাণ কর যে, মন্তর্তির কেত্রমণ : △

 = π : cot iA cot iB cot iC.

28. যদি হ, যু, হ একটি ত্রিভূবের ভিনটি উচ্চতা হয়, প্রমাণ কর বে,

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{s} = \frac{1}{r_1} + \frac{1}{r_0} + \frac{1}{r_0}.$$

29. ABC এ গুজের লম্বনিন্ হইটে A. B. C শীধ্বিন্ত্রের দূরত যথাক্রমে 

৫, y এবং এ হইলে, দেখাও বে,

$$\frac{a}{x} + \frac{b}{y} + \frac{c}{s} = \frac{abc}{xyz}$$

30. ABC রি স্তের অভাকের হউটে A, B, C শীর্থাকর্মের দূরত্ব বর্গাক্তমে জ, y এবং # হউলে, প্রমাণ কর বে,

31. অন্তর্গতর ক্ষেত্রমল  $\triangle$  এবং গণ্ডের ক্ষেত্রমল  $\triangle_1$ ,  $\triangle_0$ ,  $\triangle_0$  হুইলে, প্রমাণ কর খে,

$$\frac{1}{\sqrt{\Delta}} = \frac{1}{\sqrt{\Delta_1}} + \frac{1}{\sqrt{\Delta_2}} + \frac{1}{\sqrt{\Delta_3}}$$

32. ABC তিপুজের A শীপ্রিন্দুগ্রেই বে রুক্ত BC-রে মধ্যবিন্দুতে BC-কে স্পর্শ করে, ভাতার ব্যাসাধ  $\frac{2(h^0+r^0)-a^2}{8b$ ্নার C

#### দেশম অধ্যায়

### ত্রিভুজের সমাধান ( Solution of Triangles )

### 10'1. লগারিদ্ম ও ত্রৈকোণমিতিক তালিকা।

ক্রিভুজের সমাধান করিতে হইলে লগারিদ্ম তালিকার ব্যবহার অপরিহার্য। সেইজন্ত ঐ নকল তালিকা ব্যবহারের নির্মাবলী প্রথমে আলোচিত হইতেছে।

Table I. সাধারণ লগ-তালিকা—এই তালিকায় 10 হইতে 10000 পর্যন্ত সংখ্যার লগারিদ্ম দেওয়া আছে। ব্যবহারের নিয়ম বীজগণিতে আলোচিত হইয়াছে।

Table II. অ্যান্ট-লগারিদ্ম-তালিকা—এই তালিকার সাহায্যে প্রদন্ত লগারিদ্ম হইতে উহা কোন্ সংখ্যার লগারিদ্ম ভাহা নির্ণয় করা যায়। এই তালিকার ব্যবহারও বীজগণিতে আলোচিত হইয়াচে।

Table III. Natural Sines and Cosines Table—এই তালিকায়
1' অস্থ্য, 0° হইতে আরম্ভ করিয়া 90° পর্যন্ত কোণসমূহের sine এবং cosine উদ্ভয়ই
দেওয়া আছে। লক্ষণীয়, একই তালিকায় sine এবং cosine উদ্ভয়ই দেওয়া আছে।
Sine-এর কোণগুলি উপরের বামদিক হইতে ক্রমে ডানদিকে এবং নীচের দিকে
বাডিয়া গিয়াছে, আর cosine-এর কোণগুলি নীচের ডানদিক হইতে আরম্ভ হইয়া
উপরের বামদিকে বাড়িয়া গিয়াছে। তালিকার উপরে লেখা আছে Natural sines
এবং নীচে স্বেখা আছে Natural cosines. তালিকার প্রধান অংশে 10' অন্তর্ম অন্তর্ম
কোণ্যের sine এবং cosine দেওয়া আছে। পাশ্যের Mean difference (গুড পার্থক্য)
আংশের সাছায়েয় 1' অন্তর্ম অন্তর কোণ্যের sine এবং cosine পাওয়া যায়। তালিকা
দেখিবার সময়ে মনে বাখিতে হইবে, কোণ ০° হইতে 90° পর্যন্ত বাড়িয়া চলিলে
sine-এর মান ক্রমশঃই বাড়ে, কিন্তু cosine-এর মান ক্রমশঃই কমে। সেইজন্ম
Mean difference-শুন্থর মান sine নির্গরের সময়ে যোগা করিতে হয় আর
cosine নির্গরের সময়ে বিয়োগা করিতে হয়।

ধরা যাক, sine 25° 44' নির্ণয় করিতে হইবে। Sine বলিয়া একেবারে বামশার্থের শুন্তের উপরের দিক্ হইতে আরম্ভ করিয়া নীচের দিকে আদিয়া 25° বাহির করা
হইল; ঐ দারিতে মাধার 40'-এর নীচে আছে 0'43313; পরে ঐ দারিতেই মাধার
উপরের Mean difference-শুন্তগুলির 4'-এর স্তন্তে আছে 105. তালিকাটিতে দশমিক
বিন্দর পরবর্তী পঞ্চম অন্ধৃতির আদন্ত মান গ্রহণ করা হইয়াছে বলিয়া, অর্থাৎ উহাতে
দল্লিবিষ্ট সকল সংখ্যা পাঁচ দশমিক স্থান পর্যন্ত শুদ্ধ বলিয়া, 105-কে মনে করিতে হইবে
'00105.

.'. निर्देश sine = 0'48318 + '00105 = 0'43418.

खाराह भन्न शाक, cos 44° 45' 'चण्ड काडाड दहेरन।

ভানদিকের (ইয়া চিত্ত ছাত্র নীচের দিক্ ইইচ্ছ আরম্ভ করিয়া উপ্তর দিকে আসিয়া 44° বাহির করা ইইল ; ঐ সাবেতে নীচের 40' বগাবর আছে 0'71121; পরে ঐ সারিতেই নীচের Mean durerence-এর শুক্তর্ভার মান্তর পাল্ল আছে 163;

ं. निर्देश cosine = 0'71121 - '00168 = 0'70958.

Table IV. Natural Tangents কল Cotangents Table—এই তালিকান্ত 1' অপর, 0' কটাও আরম্ভ কাব্য ৪০° লগত কে লান্ত্রত tangent এবং cotangent দেশলৈ আবং নিটের নিকে বাজি চিনারে। তালিকার্থ উপরে কাব্য আন্তর্ভাগ আবং নিটের নিকে বাজি চিনারে। তালিকার উপরে কোন আব্য Natural tangents কাব্য নিটের কোনে আবং নিটে সেল আবং Natural cotangents. তালিকার আনার আব্য আব্য অপর কোনের কোনের কাব্য cotangent কোনে আবং কোনের। পার্থ Mean difference আবলের সাহাল্যা 1' অসর অত্য কোনের tangent করা cotangent আরম্ভ আবলা আবং cotangent আরম্ভ আবলা আবং বিক্রার বালিকার আবলা করার কাব্য আবলা কাব্য আবলা আবলা কাব্য আবলা কা

**適所を紹介** | tan 5~ 37'=0 63185 + 00716 = 0 63931, cot 64° 48'=0'47341 = '00286 = 0'47055.

Tallo V. Legarithmic Sines ofth Cosines Tallo entering sine 0 date cosine 0. 42 and 10 + log sin 0 date took 0 date the sine of the log cos 0 date the sine of the log sine of the log sine of the log sine of the log sine of the sine date the sine of the sine

क्ष्युंट्ड cotangent 1 ब्रालक कृष्ट्डा ब्रह्म, हेशाहम्ड क्याहिम्स क्याहिक। ब्रह्म, 0° क्टांट 45 क्षयु क्ष्युंट्ड tangent एकः 45' ट्टांट आ। व्यक्त क्याहिक। তালিকার যাহাতে এই কণাত্মক মানগুলি না আদে, সেইজ্বন্ত তৈকোণমিতিক অমুপাত-সমূহের লগারিদ্য-এর সহিত সর্বদা 10 যোগ করিয়া তালিকা প্রস্তুত করা হয়।

উদাহরণ। L sin 65° 18'

=9.95786 + .00046 = 9.95832

L cos 54° 37'

=9'76395 - '00124 = 9'76271.

Table VI. Logarithmic Tangents এবং Cotangents Table—এই তালিকায়ও 1' অন্তর অন্তর 0° হইতে 90° প্রস্ত লগারিদ্যিক tangents এবং cotangents-এর মান দেওয়া আছে। লগারিদ্যিক tangents এবং cotangents-কে L tan  $\theta$  এবং L cot  $\theta$  রূপে লেখা হয় এবং উহাদের অর্থ যথাক্রমে  $10 + \log \tan \theta$  এবং  $10 + \log \cot \theta$ . ব্যবহার-পদ্ধতি পূর্বের তালিকারই অন্তরূপ; মনে রাখিতে হইবে, এক্ষেত্রেও লগারিদ্যিক tangent-তালিকার Mean difference গোগ করিতে হয় এবং লগারিদ্যিক cotangent তালিকার Mean difference বিয়োগ করিতে হয়।

উদাহরণ। L tan 48° 35′ = 10°05319 + 0°00127

= 10.05446.

 $L \cot 44^{\circ} 28' = 10.01011 - .00202$ 

=10.00809.

10°2. সমানুশাভী অংশ-বিথি (Principle of Proportional Parts)।

অতি ক্ষুদ্র রাশি অন্তর অন্তর কোন চলরাশির মান এবং উহার কোন অপেক্ষকের অন্তর্গ মানসমূহ তালিকাবন্ধ করিলে দেখা যায়, চলরাশির মানের অতি ক্ষুদ্র পরিবর্তনের জন্ম উহার অপেক্ষকের অন্তর্গ মানের যে পরিবর্তন হয়, তাহা চলরাশিটির মানের ক্ষুপ্রবির্তনের সমান্ত্রণাতী। ইহাই সমান্ত্রণাতী অংশ-বিধি নামে খ্যাত।

প্রমাণ পাঠ্যতালিকা-বহির্ভূত, কিন্তু প্রয়োগ-বিধি প্রয়োজনীয়। নিম্নের উদাহরণ-সমূহ হইতে প্রয়োগ-বিধি স্কুম্পষ্ট হুইবে।

উদা 1. দেওরা আছে: log 49765=4'6969240 এবং log 49766=4'6969327, (i) log 49'7658 এবং (ii) 3'6969282 যে সংখ্যাটির log, তাহা নির্ণিয় কর।

(i) স্পষ্টই log 49765'8-এর মান log 49765 এবং log 49766-এর মধ্যবর্তী হইবে। আরও দেখা যায়, 49765'8 সংখ্যাটি 49765 অপেক্ষা '8 অধিক।

এখন, log 49766 = 4'6969327

এবং log 49765 = 4'6969240

.:. 1 বৃদ্ধির জন্ত অন্তর = '0000087 ;

- :. '8 বৃদ্ধির জন্ম অন্তর = '0000087 × '8 = '00000696 ;
- ... log 49765'8=4'6969240 + '00000696 = 4'69693096;
- · log 49'7658 = 1'69693096

=1'6969310 (7 দশমিক স্থান পর্যন্ত আসন্ন মান)।

(ii) যে সংখ্যার লগারিদ্ম 4.6969282, তাহাই প্রথমে নির্ণয় করিতে ইইবে।
এখন, 4.6969282 সংখ্যাটি 4.6969240 এবং 4.6969327-এর মধ্যবর্তী।
অতএব, 4.6969282 যে সংখ্যার লগারিদ্ম তাহা অবশ্যই 49765 এবং 49766-এর
মধ্যবর্তী হইবে।

মনে কর, এই নির্ণের সংখ্যাটি=49765 + x.
এখন, log 49766 = 4'6969327, ... (1)
log 49765 = 4'6969240, ... (2)
এবং log 49765 + x = 4'6969282 ... (3)

- (1) এবং (2) হইতে 1 বৃদ্ধির জন্ম অন্তর '0000087, (সংক্ষেপে, 1 বৃদ্ধির জন্ম অন্তর 87)
- (2) এবং (3) হইতে x বৃদ্ধির জন্ম অন্তর '0000042, ( সংক্ষেপে, x বৃদ্ধির জন্ম অন্তর 42)

| 42)       |          |        |     |       |        |
|-----------|----------|--------|-----|-------|--------|
| অর্থাৎ,   | অন্তর    | বৃদ্ধি | বা, | অন্তর | বৃদ্ধি |
| . , , , , | .0000087 | 1      | 1   | 87    | 1      |
|           | '0000042 | œ      |     | 42    | 20     |

- $\therefore \quad x = \frac{.0000042}{.0000087} = \frac{42}{87} = 0.48 \cdots$
- :. log 49765'48 = 4'6969282.

এখন, 3'6969282 এবং 4'6969282-এর অংশক একই; অতএব উহারা যে-সকল সংখ্যার লগারিদ্ম তাহার। একই জ্বমে দক্ষিত একই অন্ধন্ম্ দ্বারা গঠিত। স্বতরাং 3'6969282 যে সংখ্যার লগারিদ্ম সেই সংখ্যাটি অবশু 4976548 সংখ্যাটির উপযুক্ত স্থানে দশমিক বিন্দু বসাইয়া পাওয়া যাইবে। এখন এক্ষেত্তে পূর্ণক 3;

· নির্ণেয় সংখ্যা = '004976548.

উদা. 2. দেওয়া আছে: sin 62° 25' = '8863383 এবং sin 62° 24' = '8862036, sin 62° 24' 35" নির্ণয় কর।

sin 62° 25' = '8863383 sin 62° 24' = '8862036

∴ 1' বা 60"-এর জন্ম অন্তর = '0001347.

$$35''$$
 ,, ,, =  $\frac{0001347 \times 35}{60}$  =  $00007857$ ...

... sin 62° 24′ 35″ = '8862036 + '00007857... = '88628217.... = '8862822.

উদা. 3. দেওয়া আছে: cos 20° 13' = '9383925 এবং cos 20° 14' = '9382920, cos 20° 13' 45" নির্ণয় কর।

এম্বলে, 20° 13′ 45" ও 20° 13′-এর অন্থর 45".

এবং 1' বা 60"-এর জন্ম অন্তর '9383925 - '9382920.

অৰ্থাৎ '0001005.

কোণের অন্তর

cosine-এর মানের অন্তর

60"

'0001005

45

er.

$$\therefore x = \frac{0001005 \times 45}{60} = \frac{0001005 \times 3}{4} = 0.00007537 \cdots$$

এখন, কোণের পরিমাণ বৃদ্ধিপ্রাপ্ত হইলে, উহার cosine হাসপ্রাপ্ত হয়;

$$\cos 20^{\circ} 13' 45'' = 0.9383925 - 0.00007537...$$
  
= 0.93831713 = 0.9383171.

উদা 4. দেওরা আছে: cot 6° 28'=8'8225186 এবং cot 6° 29' =8'7996446, cot 6° 28' 25" নির্ণয় কর।

এস্থলে, কোণের পরিমাণ 1' বা 60" বাডিবার জন্ম cotangent-এর মান (৪'8225186 - 8'7996446) বা '0228740 কমিয়া গিয়াছে;

. কোণের পরিমাণ-বৃদ্ধি cot-এর মানহাস 60" '0228740 25" #

$$\therefore x = \frac{.0228740 \times 25}{60} = .00953083 \cdots$$

... cot 6° 28′ 25″ = 8.8225186 - .00953083... = 8.81298777 = 8.8129878.

```
উদা. চ. দেওয়া আছে:
```

L sin 44° 24' = 9'8448891 역장 L sin 44° 23' = 9'8447601, L sin 44° 23' 40" এবং L cosec 44° 23' 40" निर्वय क्र ।

L sin 44° 24' = 9'8448891 L sin 44° 23' = 9'8447601

: 1' বা 60"-এর জন্ম অন্তর = '0001290 ( বা সংক্রেপে, 1290 )

উহাদের লগারিদ্মিক ় কোণের অন্তর sine-এর মানের অন্তর

60"

'0001290

40"

55

 $\therefore x = 0.001290 \times \frac{40}{80} = 0.000860.$ 

.. L sin 44° 23′ 40″ = 9.8447601 + .0000860 -9'8448461.

এখন, L cosec 44° 28' 40"

=10+log cosec 44° 28' 40"

=  $10 + \log \left( \frac{1}{\sin 44^{\circ} 23' 40''} \right) = 10 + \log 1 - \log \sin 44^{\circ} 23' 40''$ 

 $=10 - \log \sin 44^{\circ} 23' 40'' = 10 + 10 - 10 - \log \sin 44^{\circ} 23' 40''$ 

 $= 20 - (10 + \log \sin 44^{\circ} 23' 40'') = 20 - L \sin 44^{\circ} 23' 40''$ 

= 20 - 9.8448461 = 10.1551539.

উলা. 6. দেওয়া আছে: L sec 32° 21'=10'0732486, এবং L sec 32° 20′ = 10°0731686, লগারিদ্ম তালিকায় যে কোণটির secant 10'0732126, তাহার পরিমাণ নির্ণয় কর।

L sec 32° 21' = 10'0732486 L sec 32° 20' = 10'0731686

·· 1' বা 60" এর জন্ম অস্তর = '00008.

আবার, 10'0732126 - 10'0731686 = '000044

.. লগাবিদ্যিক secant-এর মান-বৃদ্ধি কোণের পরিমাণ-বৃদ্ধি 60" \*00008 203

'000044

 $\therefore x = \frac{.000044}{.00008} \times 60'' = 33''.$ 

- .. নিৰ্বেঘ কোণ = 92° 20' 38".

```
sin 58° 39' × cos 28° 5' –এর মান নির্ণয় কর।
     শেওয়া আছে: L sin 61° 55' = 9'9455985,
                    L cos 31° 21' = 9'9314605.
                    L cot 22° 41'=10'8788577
                       log 180'3 = 2'2559167.
            गत्न कत, निर्दित्र मान = ∞.
            x = \sin 58^{\circ} 39' \times \cos 28^{\circ} 5' \times \tan 67^{\circ} 19'
             - cos (90° - 58° 39') × sin (90° - 28° 5') × cot (90° - 67° 19')
             = cos 31° 21' × sin 61° 55' × cot 22° 41'.
    :. \log x = \log \cos 31^{\circ} 21' + \log \sin 61^{\circ} 65' + \log \cot 22^{\circ} 41'
            = L cos 31° 21′ - 10 = 9'9314605 - 10
               + L sin 61° 55' - 10
                                          + 9'9455985 - 10
               + L cot 22° 41' - 10
                                           + 10*3788577 - 10
                                          - 30°2559167 - 30
                                               0'2559167
           -log 1'808.
   x = 1.803
  উদা 8. যদি sin 0 -- 0'4912, 6-এর সমাধান কর;
  দেওৱা আছে : log 2 = 3010300,
             log 8'07 = 0'4872685.
         L sin 29° 25' - 9'6912205,
        L sin 29° 26' = 9.6914445.
                 sin #=0'4912:
 \log \sin \theta = \log 0.4912
               = log 4912 = log 4912 - log 104
               =\log(16\times307)-4\log10
              -log 24 + log 307 - 4
              -4 log 2+log 307-4
              -4 × 3010300 + 24572655 - 4
              · 1 2011200 + 2 4572655 - 4
              = 3 6913885 - 4 = 1 6913885.
\therefore L sin \theta = 10 + \log \sin \theta = 10 - 1 + 6913885
                              -9'6913885.
```

9'6913895 সংখ্যাতি 9'6919905 ও 9'6914445-এর মাধ্য অর্থকের রাজ্য ক্রিকা, উরু কোণ্ডের L sine ভাষা, অর্থায়, ৫ অর্কার 29 ৪৫' এবং 29° ৪৫ এর মধ্যে অবস্থিত ছাইবে।

যনে কর, 0 - 29° 25' æ".

क्षन, 9'6914445 - L sine 29° 26'

9'6912205 - L sine 29° 25'

'0002240 = 1' वा 60"-वर **एक** भक्द

491 9'6913885 - L sin 29° 25' a"

9'6912205 - L sin 29" 25'

·0001680 = g"-45 ## W#6

6 = 29° 25' 45".

r = 10 ( - 6) 15

#### श्रामाना 12

अर्था देवर के शक्ष हर्द्र के न कर्ड देव दे

1. sin 60° 28'.

2. cos 38° 42'.

8. tan 25° 25'.

4, cot 65° 45'.

5. sec 26° 21'.

6, cosec 55° 15'.

মান নিৰ্বৰ কর :

7. L sin 36" 35'.

8. L. cos 72° 28'.

9. (a) L tan 45° 35'.

(b) L cot 22° 41'.

11. 44. 44. . . . . . . . . . . . .

12. 20. 11. 11. 11. 15. 1.

control to the second of the s

13. \*\*\* \* 1-1 1 1-11. \*\*\*

(\*\* | 2.345) + 1 | 1.5. | 1. | 1. | 1. | 1. | 1. | 5.4

- 15. দেওয়া আছে: log 3=0'4771213, log 74008=4'8692787 এবং 1-এব পার্থক্য=59, '00243-এর বিংশতম মূল নির্ণয় কর।
- 16. দেওয়া আছে: sin 62° 24'=0'8862036 এবং sin 62° 25' = '8863383, sin 62° 24' 40''-এর মান নির্ণয় কর।
- 17. দেওরা আছে: tan 49° 35'=1'1743038 এবং tan 49° 34'=1'1736120, tan 49° 34' 40"-এর মান নির্বয় কর।
- 18. দেওর। আছে: cos 40° 47'=0'7571851 এবং cos 40° 48' =0'7569951, যে কোণটির cosine '7570711, সেই কোণটি নির্ণয় কর।
- 19. দেওয়া আছে: cosec 34° 27'=1'7677625 এবং cosec 34° 28' =1'7670133, যে কোণটির cosecant 1'7672006, সেই কোণটি নির্ণয় কর।
- 20. দেওয়া আছে: L sin 5° 25'=8'9749624 এবং L sin 5° 26' =8'9762926, L sin 5° 26' 38''-এর মান নির্ণয় কর।
- 21. দেওৱা আছে: L sin 37° 43′ 50″ = 9'7867152 এবং L sin 37° 44′ = 9'7867424, L sin 37° 43′ 56″- এর মান নির্ণয় কর। [C. U., 1910]
- 22. দেওয়া আছে: L cos 42° 25'=9'8682088 এবং L cos 42° 26' = 9'8680234, যে কোণের L cos 9'8681318, সেই কোণটি নির্ণয় কর।
- 23. দেওয়া আছে: L tan 79° 51′ 40″ = 10.7475657 এবং L tan 79° 51′ 50″ = 10.7476872, যে কোণের L tan 10.7476532, সেই কোণটি নির্ণিয় কর।
- 24. (দওরা আছে: L cot 68° 52′ 50″ = 9'5868773 এবং 10″-এর জন্ম অন্তর '0000626, যে কোণের L cot 9'5868939, সেই কোণটি নির্ণয় কর।
- 25. প্রমাণ কর (य,  $L \sin \theta + L \csc \theta = L \cos \theta + L \sec \theta$  =  $L \tan \theta + L \cot \theta = 20$ .
  - 26. প্রমাণ কর (য, (i)  $\bot \sin \theta \bot \csc \theta = 2 \log \sin \theta$ ,
    - (ii)  $L \cos \theta L \sec \theta = 2 \log \cos \theta$ ,
    - এবং (iii)  $L \tan \theta L \cot \theta = 2 \log \tan \theta$ .
- 27. দেওয়া আছে: L cos 36° 22'=9'9059247, L sec 36° 22'-এর মান নির্ণয় কর।
- 28. দেওয়া আছে: L sin 61° 55'=9'94560 এবং L cos 61° 55'=9'67281, L tan 61° 55'-এর মান নির্ণয় কর।

29. sin 67° 14' x cos 38° 26' এর মান নির্ণর কর;

দেওয়া আছে: L sin 51° 34′ = 9'8939458, L cos 22° 46′ = 9'9647726, L tan 42° 36′ = 9'9635740,

এবং log 6642 = 3'8222924.

30. tan 0 = '981 হউলে, 0- এর মান নিব্যু কর ;
প্রেপুরা আছে: log 3 = 0'47712.
log 10'9 = 1'03743,
L tan 44° 27' = 9'99166,
1'-এর জন্ম অন্তর = 25.

### 10'3. িভুজের সমাপান।

কোন বিভ্রের তিনটি বাছ ও তিনটি কোণের প্রত্যেককে বিভ্রেকর এক-একটি অল (element) বলে। বিভ্রেকর এই সকল অলের প্রক্রের মধ্যে কোন-না-কোন সম্পাক থাকে। এইজন্ম এই অলসমূহের মধ্যে সাধারণতঃ যেকোন ভিনটি দেশব্যা থাকিলে, অবশিষ্ট তিনটি নির্ণয় করা যায়। প্রসত্ত অলসমূহ হইতে অবশিষ্ট অলসমূহ নির্ণয়র এই প্রক্রিয়াকে বিভ্রেকর সমাধান বলে।

जिल्हा मधारात्वत कल (ग-कान हिन्छि अल (मध्या पानिश्व पादाः

- (i) তিনটি বাহ,
- (ii) ডিনটি কোণ,
- (111) उड़ेि (कान जर जकि नाठ,
- (iv) ছইটি বাত গ্ৰুপ উচাদের মুম্পুত কোল,
- (v) ছাটাট বাজ এবং উভাগের একটির বিপরী ভ কোণ।

ইতাদের মধ্যে ডিভীয় কের চাম সকল কেরেট জিলুজের ম্লাম্প সমাধান সন্তব। কিন্তু বিভীয় কেরে বিশ্বজের সমাধান করিয়া কেবলমার ব্যক্তপুলর অধুপ্তিই পাশ্রেয় যায়; বাক্তপির মধার্থ দৈখ্য জান যায় না।

10'4. প্রাক্ত ভিশতি বাজ ঠউতে জিপ্লুজের স্মাঞ্জন।
কোন ছিলুজের ভিনটি বাজ a, b, c দেশ্বর পাকিলে, ছিলুজের কোণ ভিনটি
নির্বয় করা যায়। নবম এধ্যায়ে আয়ারা দেবিয়াছি:

(1) 
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

(2) 
$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$
, (44) (3)  $2s = a+b+c$ ,

(3) 
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
,

(4) 
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$
,

(5) 
$$\tan \frac{A}{2} = \sqrt{\frac{(s-h)(s-c)}{s(s-a)}}$$
.

এই সকল স্থাত্তের যে-কোনটির সাহায্যেই A কোণটিকে নির্ণয় করা যায়। অমুরূপ স্থানস্থের সাহায্যে ৪ ও C-এর মান নির্ণয় করা যায়।

ষিতীয় স্ত্র হইতে  $\bf A$  কোণ নির্ণয় করিতে গেলে  $0^\circ$  হইতে  $\pi$ -এর মধ্যে  $\bf A$  কোণের ছইটি মান পাওয়া যাইবে। কারণ,  $\sin {\bf A} = \sin (\pi - {\bf A})$ . স্তরাং, এই স্ত্র ব্যবহার করা চলে না।

প্রথম স্ত্রের সাহায্যে cos A-এর মান জানা যায়। 0° হইতে π-এর মধ্যে প্রত্যেক কোণের কোসাইন স্বভন্ত বলিয়া এক্ষেত্রে কোসাইন-ভালিকার সাহায়ে A কোণের কেবলমাত্র একটি মানই পাওরা যাইবে। এদিক দিয়া প্রথম স্ত্রের ব্যবহার মুক্তিযুক্ত। কিন্তু cos A-এর মান-নির্ণয়ে লগারিদ্মের ব্যবহার খুব স্থবিধাজনক নহে। a, b, c-এর মান বড় হইলে প্রক্রিয়াটি দীর্ঘ এবং সময়সাপেক্ষ হইয়া পড়ে। এইজন্ত কেবলমাত্র a, b, c-এর মান ক্ষুদ্র হইলে এই সূত্র ব্যবহার করা যায়।

অবশিষ্ট স্থত্রগুলি হইতে লগারিদ্মের সাহায্যে সহজেই কোণ্টির মান জানা যায়।

বিভিন্ন তালিকা হইতে এই কোণের যে মান নিরূপণ করা হয়, অধিকাংশ ক্ষেত্রে তাহার সকল মানই আসন্ন মান মাত্র। উচ্চতর গণিতে প্রমাণ করা হইরাছে যে, কোন কোণের বিভিন্ন তালিকা হইতে প্রাপ্ত আসন্ন মানস্মৃহের মধ্যে লগারিদ্মিক ট্যানজেন্ট (logarithmic tangent) তালিকা হইতে প্রাপ্ত আসন্ন মানই স্বাপেক্ষা শুদ্ধ। স্থতরাং কোণগুলির যথাসম্ভব শুদ্ধ মান পাইবার জন্ম কার্যক্ষেত্রে উপরিউক্ত পঞ্চম স্ত্রই ব্যবহৃত হইরা থাকে।

পঞ্ম সত্ৰ হইতে আমরা জানি,

$$\tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}},$$

$$\therefore \quad \text{L} \tan \frac{A}{2} = 10 + \log \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$= 10 + \frac{1}{2} [\log (s-b) + \log (s-c) - \log s - \log (s-a)].$$

উদা. 1. একটি ত্রিভূজের বাহুগুলি 15, 19, 24; ত্রিভূজের বৃহত্তম কোণটির পরিমাণ নির্ণয় কর। দেওয়া আচে,  $\log 5.7 = 0.75587$ ,  $L\cos 88^\circ 59' = 8.24903$  এবং 1'-এর অস্তর = 718.

24—এই বৃহত্তম বাহুর বিপরীত কোণটিই ত্রিভূজটির বৃহত্তম কোণ হইবে। একেত্রে a=15, b=19, c=24 ধরিলে,

$$\cos \mathbf{c} = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{15^2 + 19^2 - 24^2}{2 \times 19 \times 15} = \frac{225 + 361 - 576}{570}$$

$$= \frac{10}{570} = \frac{1}{57};$$

$$\therefore \quad \text{$L$ cos $C = 10 + \log \frac{1}{57}$}$$
$$= 10 - \log 57 = 10 - 1.75587 = 8.24413;$$

দেওয়া আছে L cos 88° 59'=8'24903.

মনে কর, ∠c=88° 59' x",

.: e"-এর অন্তর = 8·24903 - 8·24413 = ·00490.

কিন্তু 1' বা 60"-এর অন্তর = '00718;

$$\therefore \quad \frac{x}{60} = \frac{.00490}{.00718}, \text{ at, } x = \frac{490}{718} \times 60 = \frac{.29400}{.718} = 41 \text{ ( e)ta});$$

∴ ∠c=88° 59′ 41″ (প্রায় )।

উদা. 2. একটি ত্রিভূজের বাহুগুলি 9, 10 এবং 11. যে বাহুর দৈর্ঘ্য 10 তাহার বিপরীত কোণের পরিমাণ নির্ণয় কর; দেওয়া আছে, log 2 = '30103, L tan 29° 30' = 9'7526420, L tan 29° 29' = 9'7523472.

[ C. U., 1943 ]

একেরে a=9, b=10, c=11 ধ্রিলে,  $s=\frac{1}{2}(a+b+c)=\frac{1}{2}(9+10+11)$  = 15; স্তরাং, s-a=15-9=6, s-b=15-10=5, s-c=15-11=4.

যে বাহুর দৈর্ঘ্য 10 তাহার বিপরীত কোণ B. B কোণ নির্ণেয়।

$$\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}} = \sqrt{\frac{4.6}{15.5}} = \sqrt{\frac{8}{25}} = \sqrt{\frac{32}{100}}$$
$$= \frac{2^{\frac{5}{2}}}{10}.$$

প্রদন্ত মান হইতে দেখা ঘাইতেছে যে,  $L an rac{B}{2}$ -এর মান  $L an 29^\circ 29'$  ও  $L an 29^\circ 30'$ -এর মধ্যে রহিয়াছে। স্বতরাং, মনে কর,  $rac{B}{2} = 29^\circ 29' x''$ .

... x''-এর অন্তর = 9.752575 - 9.7523472 = .0002278; আবার 1' বা 60-এর অন্তর = 9.7526420 - 9.7523472 = .0002948;

$$\therefore \quad \frac{x}{60} = \frac{0002278}{0002948} = \frac{2278}{2948};$$

$$\therefore x = \frac{2278}{2948} \times 60 = 46^{\circ}363 \text{ (273)};$$

স্তরাং,  $\frac{B}{2} = 29^{\circ} \ 29' \ 46'363''$ ; ...  $B = 58^{\circ} \ 59' \ 32'73''$  ( প্রায় )।

#### প্রামালা 13

1. কোন দমতল জিভুলে a=18, b=20, c=22; L  $\tan \frac{A}{2}$  -এর মান নির্ণয় কর। দেওরা আছে,  $\log 2=30103$ ,  $\log 3=4771213$ .

[ C. U., 1915]

- 2. একটি ত্রিভূজের বাছগুলি 7, 8, 9; ত্রিভূজের কোণসমূহ নির্ণয় কর। দেওয়া আছে,  $\log 2 = 3010300$ , L  $\tan 24^\circ 5' 40'' = 9.6505634$ , L  $\tan 29^\circ 12' 20'' = 9.7474183$  এবং L  $\tan 29^\circ 12' 30'' = 9.7474677$ . [C. U., 1938; B. H. U., 1938]
- 3. ষে ত্রিভূজের বাইগুলি 2, 3, 4, উহার বুহত্তম কোণটি নির্ণয় কর। দেওয়া আহে, log 2='30103, log 3='4771213, L tan 52° 14'=10'1108395, L tan 52° 15'=10'1111004. [C. U., 1929; B. H. U., 1952]
- 4. একটি ব্রিভ্জের বাহগুলি 315, 420, 531; যে বাহুর দৈর্ঘ্য 420, তাহার বিপরীত কোণটি নির্ণয় কর। দেওয়া আছে, log 633 = 2'8014037, log 318 = 2'5024271, log 213 = 2'3283796, log 102 = 2'0086002, L tan 26° 7' 37'43" = 9'6906220.
- 5. যে ত্রিভূজের বাহগুলি 32, 40, 66, উহার বৃহত্তম কোণটি নির্ণয় কর ৷ দেওয়া আছে, log 207 = 2'3159703, log 1073 = 3'0305997, ∟ cos 66° 18′ = 9'6424342, 1'-এর জন্ম অন্তর = '0003431. [C. U., 1955]
- 6. কোন ত্রিভূজের বাহগুলি 4, 5, 6; 5 বাহুর বিপরীত কোণটি নির্ণয় কর। দেওয়া আছে, log 2='30103, L cos 27° 53'=9'9464040, 1'-এর জন্ম অন্তর ='0000669. [C. U. 1941]

- 7. যে ত্রিস্থান্তর বাহগুলি 5, 6, 7, উহার বৃহত্তম কোণটি নির্ণয় কর। দেওয়া আছে, log 6='7781513, ∟ cos 39° 14'=9'8890644, 1'-এর জন্ম অন্তর = 1032. [Pat. U., 1933; U. P. B., 1944]
- 8. যে জিভুজের বাছওলি 12, 15, 16, উহার বুহত্তম কোণটি নির্ণয় কর। [লগারিদ্য তালিকার সাহাযো] [C. U., 1957]
- একটি ত্রিভুজের বাহুওলি 7, 8, 9; ত্রিভুজটি সমাধান কর। [লগারিদ্ম তালিকা ব্যবহার কর।]
- **10.** একটি ত্রিভূজের বাহগুলি 2, 3, 4; ত্রিভূজটি সমাধান কর। [লগারিদ্য ভালিকা ব্যবহার কর।]

### 10°5. প্রদত্ত চুইটি কোপ ও একটি বাহু হইতে ভিতুজের সমাধান।

মনে কর, কোন বিভূজের তৃইটি কোণ A ও B দেওয়া আছে; এবং যে-কোন বাছ ৫ দেওয়া আছে। বিভূজের অপর তৃই বাছ ও অবশিষ্ট কোণটি নির্ণয় কারতে হইবে।

আমরা জানি, A+B+C=180°; ∴ C=180°-(A+B).

আবার, 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 বলিয়া,  

$$b = \frac{a \sin B}{\sin A}, c = \frac{a \sin C}{\sin A}$$

উদা 1. কোন বিভূজের a=39, A=81°35′, B=27°55′, বিভূজটির নুমাধান কর। [O. U., 1935]

$$C = 180^{\circ} - (A + B) = 180^{\circ} - (81^{\circ} 35' + 27^{\circ} 55') = 70^{\circ} 30'$$

তালিকা হইতে জানা যায়, L sin 81° 35′ = 9′99530, L sin 27° 55′ = 9′67044, L sin 70° 30′ = 9′97435.

$$b = a \frac{\sin B}{\sin A} = 39 \times \frac{\sin 27^{\circ} 55'}{\sin 81^{\circ} 35'}$$

..  $\log b = \log 39 + \log \sin 27^{\circ} 55' - \log \sin 81^{\circ} 35'$ =  $\log 39 + L \sin 27^{\circ} 55' - L \sin 81^{\circ} 35'$ = 1.59106 + 9.67044 - 9.99530 = 1.26620 :

b = 18'46.

আবার,  $c = a \times \frac{\sin c}{\sin A} = 39 \times \frac{\sin 70^{\circ} 30'}{\sin 81^{\circ} 35'}$ 

:. 
$$\log c = \log 39 + \text{L} \sin 70^{\circ} 30' - \text{L} \sin 81^{\circ} 35'$$
  
= 1'59106 + 9'97435 - 9'99530  
= 1'57011;

c = 37.16.

b = 18'46, c = 37'16,  $C = 70^{\circ} 30'$ .

### 10·6. প্রদত্ত চুই বাছ ও ভদ**ত**পূত কোণ হইভে তিতুজের সমাধান।

ব্রিভূজের গৃই বাহু ১ ও ৫ এবং তাহাদের অস্তর্ভূত কোণ A দেওয়া আছে। ব্রিভূজের সমাধান করিতে ২উবে।

মনে কর, b>c; তাহা হইলে  $\angle B> \angle C$  হইবে।

$$B + C = 180^{\circ} - A$$
;  $\therefore \frac{B + C}{2} = 90^{\circ} - \frac{A}{2}$ 

আবার,  $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$ 

$$\therefore \quad \mathsf{L} \tan \frac{\mathsf{B} - \mathsf{C}}{2} = 10 + \log \left( \frac{b - c}{b + c} \cot \frac{\mathsf{A}}{2} \right)$$
$$= 10 + \log \left( b - c \right) - \log \left( b + c \right) + \mathsf{L} \cot \frac{\mathsf{A}}{2}$$

b, c ও A-এর মান জানা থাকায়, দক্ষিণ পক্ষের মান নির্ণয় করিলে L  $an rac{\mathsf{B}-\mathsf{C}}{2}$ -এর মান পাওয়া যায়। L  $an rac{\mathsf{B}-\mathsf{C}}{2}$ -এর মান হইতে  $rac{\mathsf{B}-\mathsf{C}}{2}$ -মান জানা যায়।

 B+C
 এবং
 B-C

 এই
 এই
 মান
 হইতে
 সহজেই
 B
 G
 এব
 মান
 আমা

 এই
 আমা
 এই
 ক্রিক্রিকর
 এই
 ক্রিক্রিকর
 ক্রিকর
 ক্রিকর<

এখন,  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ , স্বাটির সাহাযো a-র মান পূর্বের প্রক্রিয়ায় নির্ণয় করা বাইবে।

উদা. 2. একট ত্রিভুজের তুইটি বাহু ৪০ সেমি. ও 100 সেমি. এবং তাহাদের অন্তর্ভুত কোণটি 60°; অক্তান্ত কোণগুলি নির্ণয় কর। দেওয়া আছে,  $\log 3 = 47712$  এবং L  $\tan 10^\circ 53'$  36'' = 9.28432. [ C. U., 1923, '46 ]

মনে কর, b = 100 সেমি., c = 80 সেমি.; তাহা হইলে,  $A = 60^\circ$ .

এখন, 
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{1}{2}A = \frac{100-80}{100+80} \cot 30^\circ = \frac{1}{6}\sqrt{3}$$
;

$$\therefore \quad \text{L } \tan \frac{\mathsf{B} - \mathsf{C}}{2} = 10 + \log \frac{1}{9} \sqrt{3} = 10 + \log 3^{-\frac{8}{2}} = 10 - \frac{8}{3} \log 3$$
$$= 10 - \frac{8}{3} \times 47712 = 10 - 71568 = 9.28432$$
$$= \mathsf{L} \tan 10^{\circ} 53' 36''.$$

.. 
$$\frac{B-C}{2} = 10^{\circ} 53' 36'';$$
which is, 
$$\frac{B+C}{2} = 90^{\circ} - \frac{A}{2} = 90^{\circ} - 30^{\circ} = 60^{\circ}.$$
.. 
$$B = 70^{\circ} 53' 36'', \quad C = 49^{\circ} 6' 24''.$$

উদা. 3. একটি ত্রিভূজের চইটি বাহু 3 সেমি. ৪ 5 সেমি. এবং তাহাদের অন্তর্ভূত কোণটি 120°; অক্যান্ত কোণগুলি নির্ণয় কর। দেওয়া আছে, log 48 = 1'6812412, L tan 8° 12' = 9'1586706, এবং 1'-এর জন্ম অন্তর = '0008940.

[C. U., 1940, '49]

अरुक्ट भरन कर, 
$$b=5$$
 (त्रीस.,  $C=3$  (त्रीस., क्रिक्ट ,  $120^\circ=A$ .

प्रथम,  $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} = \frac{5-3}{5+3} \cot 60^\circ = \frac{1}{4} \cdot \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{48}}$ .

 $\therefore \text{ L} \tan \frac{B-C}{2} = 10 + \log \frac{1}{\sqrt{48}} = 10 - \frac{1}{2} \log 48$ 

$$= 10 - \frac{1}{3} \times 1.6812412 = 10 - \frac{1}{8}406206$$

$$= 9.1593794.$$

দেওয়া আছে, L tan 5° 12' = 9'1586706 এবং 1'-এর অন্তর = 0008940 মনে কর, B-C=8° 12' x".

:. x''-এর অহর = 9°1593794 - 9°1586706 = °0007088 ;

$$\frac{x}{60} = \frac{0007088}{0008940}$$
,  $71$ ,  $x = \frac{7088}{8940} \times 60 = 47.6$  (211);

$$\frac{B-C}{2} = 8^{\circ} 12' 47'6''.$$

$$\frac{B+C}{2} = 90^{\circ} - \frac{A}{2} = 90^{\circ} - 60^{\circ} = 30^{\circ}.$$

$$B = 38^{\circ} 12' 47'6'', C = 21^{\circ} 47' 12'4''.$$

#### প্রক্রমালা 14

1. ABC বিভূজে, a=19,  $B=52^{\circ}$  25' এবং  $C=93^{\circ}$  40'; b নির্ণয় কর। দেওয়া আছে,  $\log 19=1.2787536$ .  $L\sin 52^{\circ}$  28'=9'8992727,  $\log 27037$ =4'4319585,  $\log 27038-4'4319746$ ,  $L\sin 33^{\circ}$  52'=9'7460595.

[ Pat. U., 1936 ]

- 2. যদি b=10,  $A=45^\circ$ ,  $B=66^\circ$  42' 20'' : a নিগ্র কর ৷ দেশসা জাতে,  $\log 2=3010300$ ,  $\log 7.698622=8864131$ , L  $\sin 66^\circ$  42'=9.9630538, 1'-এর ভন্থ সম্ভর=544.
- 3. যদি B=45°, C=10°, এবং a=200 সেমি; ৮-২ দৈখ্য নির্ণয় কর। দেওয়া আছে,  $\log 2=3010300$ ,  $\log 1726'4 \cdot 3'2371414$ ,  $\log 1726'5=3'2371666$ , L  $\sin 55^\circ=9.9133645$ .
- একটি বিভুজের কোপদম্
  ৪ 40°, 60°, 80°, এবং বৃহত্ত বাছর দৈখা
   মিটার : ক্ষুত্তম বাছর দৈখা নির্ণয় কর ! দেশ্যা আতে,

L sin 40° = 9'8080675, L sin 80° = 9'9933515, log 22 = 1'3424927, log 14359 = 4'1571242, এবং 1'-এর জন্ম অন্তর = '0000302

একটি ত্রিভূজের তুইটি বাত যথাক্রমে 5 মিটার ও 4 মিটার এবং উই দের
অন্তর্ভিত কোণ্টি 60°: অপর কোণ্ডলি নির্ণিষ কর। দেওয়া আছে,

log 3 = '47712, L tan 10° 53' = 9'28390, L tan 10° 54' = 9'28458.

6. একটি সমতল ত্রিভূজে, b = 540, c = 420, এবং  $A = 52^{\circ}$  6': B এবং C নিপির কর। দেওখা আছে, L tan 26° 3' = 96891430, L tan 14° 20' = 9'4074189, L tan 14° 21' = 94079543.

[ C. U., 1934; Pat. U., 1950]

- 7. একটি ত্রিভূজের a এবং h বাছর দৈখার সভাপাত 7:3 এবং উহাদের সভাপ্ত কোণ C=60°; A ও B নির্বিয় কর। দেওয়া আছে,  $\log 2 = 3010300$ .  $\log 3 = 4771213$ , L  $\tan 34°42' = 98403776$ , 1'-এর জন্ম অন্তর = 2699. [ Pat. U. 1940 : B. H. U., 1940 ]
- 8. একটি সমতল ব্রিভূজের স্টাটি শহ 14 ও 11 এবং উহাদের অভূভূত কোণটি 60°; অবশিষ্ট কোণগুলি নির্ণির কর। দেওয়া আছে,  $\log 2 - 3010300$ ,  $\log 3 = 4771213$ , L tan 11° 44′ = 93174299, L tan 11° 45′ = 9'3180640.

[C. U., 1944; B. H. U., 1948]

- 9. একটি ত্রিভূজের মুইটি বাহুর দৈখ্য 19 সেমি, এবং 2 সেমি, এবং উহাদের অর্ভুঙ্ কোণ্টি 55°; অবস্থি কোণগুলি নিণ্য কর। দেওলা আছে,  $\log 2 = 3010300$ , L cot  $27^\circ$  30' = 10 2835233, L tan  $56^\circ$  46' = 10'1863769 এবং 1'-এর জ্ঞা অন্তর = '0002763.
  - 10. যদি h= 、3. c=1 এবং A=30° হয়, ডিভুজটির সমাধান কর। [ C. U., 1951 ]

10'7. প্রাদতে তুই বাহু এবং বাহুদ্রের **একটির** বিপরীত কোণ হউতে জিতুজের সমাধান কর।

কোন ক্রিণুজের মুই বাছ a. i. এবং a বাছঃ বিপরীত কোণ A দেওয়া আছে। ক্রিভুজটি সমাধান করিতে হুইবে।

যামরা জানি, 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\therefore \qquad \sin B = \frac{b}{a} \sin A, \qquad \cdots \qquad \cdots \qquad (i)$$

$$\therefore \qquad \qquad \text{L sin B} = \log b - \log a + \text{L sin A}. \qquad \cdots \quad \text{(ii)}$$

a, b এব° A-এর মান জানা থাকার, এই সমীকরণ হইতে B-এর মান জানা যাইবে। এইরূপে A ও B এব মান জানিলে, ∠ C-এর মান সহজেট ভান থাইবে। কারণ,

$$\angle C = 180^{\circ} - (A + B).$$

আবার, 
$$c = \frac{a \sin C}{\sin A}$$

প্রথম সমীকরণ হইতে বিভূজ দম্পর্কে প্রদন্ত উপাত্ত বিষয়ে তিনটি সম্ভাবনা দেখা যাইতেছে। প্রদন্ত উপাত্ত হইতে

- (1) কোন ব্রিভুজ্ঞ অন্ধন করা সম্ভব নতে;
- (2) মাত্র একটি বিভূজ অন্ধন করা সহব;
- (3) তুইটি ব্রিভুজ অন্ধন করা সম্ভব।
- (1) यि h sin A > a অর্থাং a < 1 sin A হয়, ভাতা হইলে,

$$\sin B = \frac{b \sin A}{a} > 1$$

ছইবে; অর্থাৎ sin ৪-এর মান 1 অপেকা বড হইবে। কিন্তু বাস্থব ক্ষেত্রে কোন কোণের sinc, 1 অপেকা বড হইতে পারে ন। স্কুতরা, এরূপ কোণের অস্কিত্ব অসম্ভব বনিয়া একোনে কোন ব্রিস্কুজ**ই অঙ্কন করা সস্ত**ব হ**ইবে না।** 

- (2) যদি  $b \sin A = a$  হয়, তাহা হইবে  $\sin B = \frac{b \sin A}{a} = 1$  ইইবে; অর্থাৎ  $B = 90^\circ$  হইবে। এক্ষেবে একটিয়াত্ত সমকোণী ত্রিভুজ অঙ্কন করা সম্ভব যদি b > a হয়। কিন্তু b = a হইবে কিনা ত্রিভুজই অঙ্কন করা সম্ভব ইইবে না।
  - (3) যদি b sin A < a জগাং a > b sin A হত, ভাছা হইলে,

$$\sin B = \frac{b \sin A}{a} < 1$$

ইইবে; অর্থাৎ sin B-এর মান 1 অলেশকা কম হইবে। কিন্তু sin (a - B) = sin B বলিয়া, a - B ও B উভিয় কোণের sine.ই সমান হইবে। একেটে ইহাদের মধ্যে একটি কোণ ক্যকোণ হইবে এবং অপর কোণেটি সুলকোণ হইবে।

যদি b < a হয়, তেবে B < A হটবে। হাতলা, B কে গঢ়িকে অবখ্য স্থাকোণ হইতে হটবে। আবার b = a হটবেও B = A হটবে, এবং এক্ষেত্রেও B কোণটি স্থাকোণ হওয়া আবখ্য যা হাত্রাং, k < a হটবে B কোণের ভূটটি মানের মধ্যে  $90^\circ$  অপেকা কম মান ( স্থাকোণ) হট্যে হটবে। ১৩এব, এক্ষেবে একটিই মানে বিভুক্ত অন্ধন করা যাইবে।

কিন্তু যদি b>a, ভাগা হইলে  ${\sf B}>{\sf A}$  হইবে। গ্রেগ্রে  ${\sf A}$  .ক.ণ স্থাকোণ্ড ইইতে পারে, স্কুলকোণ্ড হইতে পারে। স্বত্যাং, একোংর তুইটি ব্রিভুজ মন্তন করা সম্ভব হইবে। স্ত্ত্যাং, a>b sin  ${\sf A}$  কিন্তু a< b হইলে, পদত্ত উপাত্ত হইটি বিভূজ মন্তন করা সম্ভব। বিভূজের সমাধানে ইহাকে **স্থাকি জোরে** (Ambiguous case) বলা হয়। যেকেত্রে তুইটি বাত্ত ও ক্ষুত্তর বাহুটির বিপ্রাত কোণ দেওয়া থাকে, কেবলমাত্র সেই ক্ষেত্রেই দ্বার্থক সমাধানের উদ্ভব হটতে পারে।

### 10:8. জ্যামিতিক আকোতেনা। উপরের তথ্যগুলি জ্যাম্ভির দাহ'লো মহজেই দেখানো যায়।





প্রদত্ত b বাহুর সমান করিয়া AC সরল রেখা আঁকা হইয়াছে। প্রদত্ত কোণ A-এর দমান ক্রিয়া ∠ CAD আকা ছইলাভে। CD দ্রল রেখা C হইতে AD-এর উপর লম। স্তরাং, CD=b sin A. C কে কেন্দ্র করিয়া প্রদান্ত বাছ ৫-এব সমান ব্যাসাধ লইয়া বৃত্তচাপ অন্ধিত করা হইল।

- (a)  $a < b \sin A$  হইলে, এই বৃত্ত AD রেখাকে আনৌ ছেদ করিবে না। স্কুতরাং, এক্ষেত্রে কোন ত্রিভুজ্ঞই পাওয়' যাইবে না।
- (b) a = b sin A হইলে, এই বন্ধ AD-কে D বিশ্বতে স্পূৰ্ণ করিবে। স্বভরাং, এক্ষেত্রে একটিমাত্র ত্রিভুজ পা ৭য়া যাইবে এবং তাহ একটি সমকোণী ত্রিভুজ হইবে।
- (c) a > b sin A কিছ a < b হইলে, এই বৃত্ত AD কে B, ও B, বিন্তে ছোদ করিবে এবং এক্ষেত্রে ডুইটি ব্রভুদ্ধ পাওরা ধাইবে এবং ছুইটি ব্রিভুক্তেরই অঙ্গসমূহ প্রদত্ত উপাত্তের সহিত সন্ধতিযুক্ত হইবে।
- (d) a = h হইলে, বুরট AD-কে A বিন্দু ছাছ। আর কেবলমার একটি বিন্দু B-তে ড়েদ করিবে। স্বতরাং, এক্ষেত্রে একটিই মাত্র ত্রিভুল্প পাওয়া যাইবে।
- (e) a > b इट्टेल, उन्नि AD-एक B' 9 B क्ट्रिंग विमुख्य उद्धम कविरव। किन्न কেবলমাত্র CAB ত্রিভুলটিই উপাত্তের সহিত স্প্তিপূর্ণ হইবে। কারণ / CAB = / A: কিন্ত CAB' ত্রিভূজে ∠ CAB' কোণ A কোণো সমান নাই। স্বভরাং, এক্ষেত্রেও একটিমাত্র ত্রিভূজ পাওয়া যাইবে।
- উদা. 4. ABC বিজ্ঞাত, b=16, r=25, এবং B=35° 15'; অপর কোণগুলি নির্ণয় কর। দেওয়া আছে,

log 2 = '30103,

L sin 33° 15′ − 9′7390129.

L sin 58° 56' = 9'9327616 44' L sin 58° 57' = 9'9328376.

থামরা জানি,  $\frac{b}{\sin B} = \frac{c}{\sin C}$  :  $\sin C = \frac{c \sin B}{h}$ 

 $\therefore$  L sin C= log c - log b + L sin B

= log 25 - log 16 + L sin 38° 15'

- log 100 - 2 log 2j - 4 log 2 + L sin 33° 15'

 $= 2 - 6 \log 2 + L \sin 33^{\circ} 15'$ 

 $= 2 - 6 \times 30103 + 97390129$ 

= 2 - 1.80618 + 9.7390129

=9.9328329.

দেওয়া বাছে, L sin 58° 57' = 9 9328376

এবং L sin 58° 56' = 9'9327616;

় 1'-এর অস্থর = '0000760.

মনে কর,  $c = 58^{\circ} 56' x''$ .

.'. x'-এর অন্তর - 9'9328329 - 9 9327616 = '0000713;

$$\therefore \quad \frac{x}{60} = \frac{.0000713}{.0000760}, \quad 7, \quad x = \frac{713}{760} \times 60 = 563 \quad (200);$$

.. C=58° 56' 56'3";

$$A = 180^{\circ} - (B + C) = 180^{\circ} - (33^{\circ} 15' + 58^{\circ} 56' 56 3'')$$
$$= 180^{\circ} - 92^{\circ} 11' 56' 3'' = 87^{\circ} 48' 3'7'';$$

किंड धरकरंब c > b विशि, C > B:

ে কোণের অপর মানটি নই । ও আর একটি ত্রিভুজ অন্ধন কর। বাইবে।
 C' - 180° - C - 180° - 58° 56′ 56′5″ = 121° 3′ 3′7″

$$44. A' = 180^{\circ} - (B + C) = 180^{\circ} - (33^{\circ} 15' + 121^{\circ} 3' 3.7'')$$
$$= 180^{\circ} - 154^{\circ} 18' 3.7'' = 25^{\circ} 41' 56'5''.$$

উদা. 5. শলি a=5, b=7, এবং  $A=30^\circ$ , ৪-এর মান ডিগ্রী ও মিনিটে নির্বন্ধ কর। দেওয়া আছে,  $\sin 44^\circ=6917$ ,  $\sin 45^\circ=7071$ .

[ C. U., 1929 ]

আমরা জানি,  $\frac{a}{\sin A} = \frac{b}{\sin B}$ 

$$\therefore \sin B = \frac{b \sin A}{a} = \frac{7 \sin 30^{\circ}}{5} = \frac{7}{10} = 7.$$

পেওয়া আছে, sin 45° = '7071, sin 44° = '6947.

.. 1°-এর অন্তর = '0124.

মনে কর, B=44° x'; ... x' এর এম্বর='7-'6947='0053.

$$\therefore \quad \frac{x}{60} = \frac{.0053}{.0124}, \quad \therefore \quad x = \frac{.53}{.124} \times .60 = 25.6 \text{ (2017)};$$

 $B = 44^{\circ} 25^{\circ}6'$ 

কিন্ত b > a হৃত্যায় B > A; স্ত্রাং, B কোণটি তুলকোণ ও হৃততে পারে। B-এর অপর মানকে B' হারা স্চিত ক্রিলে,

10'9. প্রাদাত তিন্তি কোণ হইতে ত্রিভুজের সমাধান।

কেবলমাত্ত্র ভিনটি কে'। দেওয়া থাকিলে কোন ত্রিভুজের বাহু-ভিনটিকে যথাযথভাবে নির্ণয় করা সাহু না। কারণ কোন ত্রিভুজ ABC-এর সদৃশ দকল ত্রিভুজেরই কোণ-তিনটি যথাক্রমে ABC-এর তিনটি কোণের সমান। এই সকল সদৃশ বিভূজের বাহুওলি সমাস্থ্পাতিক মাত্র, সমান নহে। স্ত্রাং, তিনটি কোণ দেওয়া থাকিলে 'দাইন-সূত্রের' দাহায়্যে ত্রিভুজের পাহ-ভিন্টির কেবলমাত্র অরুপাত নির্ণয় করা যায়।

উদা 6. একটি ত্রিভূজের কোণগুলির অনুপাত 1:2:3; বাহুগুলির অনুপাত নির্ণয় কর।

মনে কর, কোণ-তিনটি যথাক্রমে ৪, ৪৪ এবং ৪৪.

 $180^{\circ} = \theta + 2\theta + 3\theta = 6\theta$ ,  $\theta = 30^{\circ}$ .

মুদ্রাং, কোণগুলি মুখাক্রম 30°, 60° এবং 90°.

আমরা জানি,  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

অৰ্থাৎ, a:b:c=sin A:sin B:sin C

= sin 30°: sin 60°: sin 90°

 $=\frac{1}{9}:\frac{\sqrt{3}}{9}:1=1:\sqrt{3}:2.$ 

### প্রথমালা 15

- 1. यमि A=45°, b=1+ √3, a=2; B, C এবং c নির্ণয় কর।
- 2. একটি ব্রিভূজে যদি a=5, b=4 এবং  $A=45^\circ$  হয়; অপর কোণগুলি নির্ণয় কর। দেওয়া আছে,

log 2 = '30103, L sin 34° 26' = 9'7523919, L sin 34° 27' = 9.7525761. [ B. H. U., 1951 ]

- 3. a=13, b=20, A=36° 52' 11'5"; ত্রিভুজটির সমাধান কর। দেওয়া ছাছে, log 2=0'3010300, log 11=1'0413927, log 13=1'1139434, log 21 = 1'3222193, L sin 67° 22' 48'5'' = 9'9652379, L sin 75° 45' = 9'9864272, L.  $\sin 30^{\circ} 30' 37'' = 9.7056006$ .
- 4. একটি ত্রিভক্তের a = 5 সেমি., b = 8 সেমি. এবং A = 30°; প্রথমে c-এর মান নির্ণয় করিয়া ত্রিভজটির সমাধান কর। দেওয়া আচে,  $\sqrt{3}=1.732051$ . sin 83° 7' = '9927922, 1'-এর জন্ম অস্তর = '0000349,
- যদি a = 5 মিটার, b = ৪ মিটার, A = 35°; c-এর ক্ষুত্তর মান নির্ণয় কর। দেওয়া আছে,

 $\log 2 = 30103$ . log 456706 = 5'659637,  $L \sin 31^{\circ} 35' 43'' = 9.719261$ ,  $L \sin 66^{\circ} 36' = 9.962727$ .

 $\perp \sin 35^{\circ} = 9.758591$  $\perp \sin 66^{\circ} 35' = 9.962672$ 

[ A. U. 1913 ]

- 6. ABC ত্রিভূজের a, b এবং A দেওয়া আছে; প্রমাণ কর যে, দ্বার্থক ক্ষেত্রে c-এর মানদ্বরের অন্তর  $2\sqrt{a^2-b^2\sin^2 A}$ . [B. H. U., 1941]
- দেখাও বে, বে কেত্রে ছইটি সমাধান দপ্তব, দেখানে c-এর উভয় মান

  ভারাই

$$\frac{(a+b)^3}{1+\cos C} + \frac{(b-a)^3}{1-\cos C} = \frac{2a^3}{\sin^2 A}$$
 সমীকরণটি সিদ্ধ হয়।

[B. H. U., 1942]

- 8. a, b, A দেওয়া আছে; দ্বার্থক ক্ষেত্রে যদি তৃতীয় বাছর মান  $c_1$ ,  $c_2$  হয়, প্রমাণ কর যে, যদি  $c_1 > c_2$  হয়, তাহা হইলে,
  - (i)  $c_1 c_2 = 2a \cos B$ .

[B. H. U., 1928]

- (ii)  $c_1^2 + c_2^2 2c_1c_2 \cos 2A = 4a^2 \cos^2 A$ . [ Pat. U., 1946]
- একটি ত্রিভূজের কোণগুলির অন্থপাত 7 : 3 : 2 হইলে, বাহুগুলির অন্থপাত নির্ণয় কর।
- 10. একটি ত্রিভুজের কোণগুলির অন্তপাত 2 : 3 : 4 হইলে, বাছগুলির অন্তপাত নির্ণিয় কর।

#### একাদশ অখ্যায়

## উচ্চতা ও দূরত্ব

( Height and Distance )

11'1. দূরস্থ বস্তর হৈচিতা ও দূরত নির্থি (Determination of the height and distance of a distant object)।

মনে কর, পর্যবেক্ষণ দ্বারা কোন A বিন্দুর অন্নভূমিক তল হইতে দ্রুত্থ বস্তু P-এর উদ্ধৃতা এবং A হইতে P-এর পাদবিন্দুর দূরস্থ (AM) নির্ণয় করিতে হইবে। প্রথমে A বিন্দু হইতে P-এর উন্নতি লক্ষ্য করিতে হয়। পরে A বিন্দুর সহিত একই অন্নভূমিক তলে অবস্থিত অপর কোন একটি স্থগম্য বিন্দু B হইতে P-এর উন্নতির পরিমাপ করিতে হয়। A ও B বিন্দু হইতে P-এর উন্নতি এবং AB দৃর্থের পরিমাপ হইতে P-এর উচ্চতা নির্ণয় করা যায়।

(a) A ও B বিন্দুদন্ম P-এর সহিত একই উল্লম্ভ তলে অবস্থিত।

মনে কর, A বিন্দুর অমূভূমিক তল হইতে P-4র উচ্চতা PM=h এবং AM=d.

চিত্ৰ হইতে দেখা যাইতেছে,

$$\alpha = AB = AM - BM$$

$$= h \cot \alpha - h \cot \beta$$

$$= h \left( \frac{\cos \alpha}{\sin \alpha} - \frac{\cos \beta}{\sin \beta} \right)$$

$$=h\left(\frac{\cos \alpha \sin \beta - \sin \alpha \cos \beta}{\sin \alpha \sin \beta}\right) = h \frac{\sin (\beta - \alpha)}{\sin \alpha \sin \beta};$$

$$h = \frac{a \sin \alpha \sin \beta}{\sin (\beta - \alpha)} = a \sin \alpha \sin \beta \csc (\beta - \alpha).$$

$$d = AM = h \cot \alpha = a \sin \alpha \sin \beta \csc (\beta - a) \cot \alpha$$
  
=  $a \cos \alpha \sin \beta \csc (\beta - \alpha)$ .

লগারিদ্মের সাহায্যে এখন সহজেই h বা d-এর মান নির্ণয় করা যায়।

### (b) A ও B বিন্দুদ্বর P-এর সহিত বিভিন্ন উলম্ব তলে অবস্থিত।



P এবং A যে উল্ফ তলে অবস্থিত, B তাহা হইতে ভিন্ন উল্ফ তলে অবস্থিত।

এক্ষেত্রে P-এর উচ্চতা বা দ্রত্ব জানিতে হইলে, A হইতে P-এর উন্নতি a.  $\angle$  PAB= $\psi$ .  $\angle$  PBA= $\phi$  এবং AB-এর দূরত্ব a-এর পরিমাপ করা প্রয়োজন। এই চারিটি বিষয় জানিলে P এর উচ্চতা PM (h) বা দূর্ব্ব AM (d) সহজেই জানা বাইবে।

আমরা sine-এর স্ত্র হইতে জানি, PAB ত্রিভূজে,

$$\frac{AP}{\sin \phi} = \frac{BP}{\sin \psi} = \frac{AB}{\sin APB};$$

$$AP = \frac{AB \sin \phi}{\sin AFB} \sin \frac{a \sin \phi}{\left(180^{\circ} - (\alpha + \psi)\right)} = \frac{a \sin \phi}{\sin (\phi + \psi)}$$

আবার, PAM ত্রিভুজে, AP = PM cosec a = h cosec a:

$$\therefore h \csc \alpha = \frac{a \sin \phi}{\sin (\phi + \psi)}$$

$$h = \frac{a \sin \phi \sin \alpha}{\sin (\phi + \Psi)}$$

- a  $\sin \phi \sin \alpha \csc (\phi + \Psi)$ .

:  $\mathbf{d} = h \cot \alpha = a \sin \phi \cos \alpha \csc (\phi + \Psi)$ .

এই স্ত্রেশ্বর হইতেও লগারিদ্মের সাহায্যে সহজেই h ও d-এর মান নির্ণয় করা যায়।

11'2. পুইতি অগম্য বস্তর মধ্যবর্তী দূরত নির্ণয় (Determination of distance between two inaccessible objects) |

ে ও p তুইটি অগম্য বস্তু।
উহাদের মধ্যের দ্বার CD নির্ণয় করিতে
হইবে। কোন বিন্দু A এবং A হইতে
স্থাম আর একটি বিন্দু B হইতে পর্যবেক্ষণ
করিয়া  $\angle CAB = a$ ,  $\angle DAB = \gamma$ ,  $\angle CAD = \theta$ ,  $\angle CBA = \beta$  এবং  $\angle DBA$   $= \delta$  নির্ণয় করা হয়। আবার AB-এর
দ্বত্ব a জানিলে CD-এর দ্বত্ব জানা ঘাইবে।



$$\therefore AC = \frac{AB \sin CBA}{\sin ACB} = \frac{a \sin \beta}{\sin (a+\beta)} \qquad \cdots \qquad (i)$$

[ :  $\angle ACB = 180^{\circ} - \alpha - \beta$  ]

আবার DAB ত্রিভূজে,  $\frac{AD}{\sin DBA} = \frac{BD}{\sin DAB} = \frac{AB}{\sin ADB}$ ;

$$\therefore AD = \frac{AB \sin DBA}{\sin ADB} = \frac{a \sin \delta}{\sin (\gamma + \delta)} \qquad \cdots \quad (ii)$$

এখন, ACD ত্রিভ্জে,

$$CD^{2} = AC^{2} + AD^{2} - 2AC.AD \cos \theta,$$
 ... (iii)

(i) ও (ii) সমীকরণ হইতে AC ও AD-এর মান পাওয়া যায়। AC ও AD-এর এই মান তৃতীয় সমীকরণে বসাইলে CD-এর মান পাওয়া যাইবে।

উদা. 1. কোন অট্যালিকার সহিত উলম্ব সমতলে অবস্থিত তুইটি স্থান A ও B হইতে সেই অট্যালিকার উচ্চতা যথাক্রমে 30° ও 60°. যদি A ও ৪-এর মধ্যে দূরত্ব 60 মিটার হয়, তবে অট্যালিকার উচ্চতা কত ?

মনে কর, উচ্চতা -h.

পার্যন্থ চিত্র হইতে দেখা যাইতেছে,

AB = AM - BM  
= PM cot 30° - PM cot 60°  
= 
$$h (\cot 30° - \cot 60°)$$
  
=  $h (\sqrt{3} - \frac{1}{\sqrt{3}}) = h \cdot \frac{2}{\sqrt{3}}$   
 $\therefore h = \frac{\sqrt{3}}{2} AB = \frac{\sqrt{3}}{2} \times 60$  মিটার  
= 30 মিটার × 1'732 (প্রায়)  
= 51'96 মিটার (প্রায়)।

উচ্চতা – 51'96 মিটার (প্রায়)।

উদা. 2. একটি হুদের 200 মিটার উপরে কোন স্থান হইতে একটি এরোপ্লেনের উন্নতি-কোণ 45° এবং ইহার প্রতিবিশ্বের অবনতি-কোণ 75°; হুদের ভদতল হইতে



এরোপ্লেনটি কত উচ্চে আছে, তাহা নির্ণয় কর। ধরিয়া লও, জলতল হইতে এরোপ্লেনটি যত উচ্চে আছে, জলতল হইতে উলম্বভাবে তত নিচে ইহার প্রতিবিধ্ন।



মনে কর, এরোপ্লেনটি A এবং A' উহার প্রতিধিম্ব ; CD জনতল। AA' উলম্ব রেখা। DA = DA'. পর্যনেক্ষণ-কেন্দ্র O জনতল হইতে 200 মিটার উচ্চে। O বিন্দৃতে A-এর উন্নতি-কোণ 45° এবং A'-এর অবনতি-কোণ 75°.

অতএব, AA'-এর উপর OB লম্ব হ**লে**, ∠BOA = 45° এবং ∠BOA'=75°, এবং BD=200 মিটার;

$$AB = \frac{OB \tan 45^{\circ}}{OB \tan 75^{\circ}} = \frac{\tan 45^{\circ}}{\tan 75^{\circ}};$$

$$AB + A'B = \frac{\tan 45^{\circ} + \tan 75^{\circ}}{\tan 75^{\circ} - \tan 45^{\circ}};$$

$$\frac{AA'}{2BD} = \sin 45^{\circ} \cos 75^{\circ} + \sin 75^{\circ} \cos 45^{\circ}$$
  
 $\sin 75^{\circ} \cos 45^{\circ} - \sin 45^{\circ} \cos 75^{\circ}$ 

$$71, \quad \frac{2AD}{2BD} = \frac{\sin(45^{\circ} + 75^{\circ})}{\sin(75^{\circ} - 45^{\circ})} = \frac{\sin 120^{\circ}}{\sin 30^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{1} = \sqrt{3}$$

$$AB + A'B = AD + A'D = 2AD,$$
  
 $A'B - AB = (A'D + BD) - (AD - BD) = 2BD.$ 

∴ AD = √3BD = √3 × 200 মিটার = 200 × 1'732 মিটার = 346'4 মিটার।

় নির্ণেয় উজতা = 346'4 মিটার।

উদ্ধা. 3. ৮ সেমি. ব্যাসার্ধ-বিশিষ্ট একটি গোলকাক্বতি বেলুন একজন দর্শকের চোখে a কোণ উৎপন্ন করে, যখন ইহার কেন্দ্রের উন্নতি-কোণ  $\beta$ . বেলুনটির কেন্দ্রের উচ্চতা নির্ণয় কর। [C. U., 1953]



মনে কর, ০ দর্শকের চক্ষা AC বেলুন ০ বিন্তুতে ৫ কোণ ধারণ করে; অর্থাৎ ০ হইতে ৪ কেন্দ্রীয় AC গোলকে ০A এবং ০C স্পর্শক টানিলে ∠AOC = ৫ হইবে।

ON অস্কৃথিক রেথা O বিন্দুর মধ্য দিয়া গিয়াছে। B হইতে ON-এর উপর BP লম্ব টানা হইল। BP-ই বেলুনের কেন্দ্রের উদ্দিষ্ট উচ্চতা। OB যোগ কর।

শর্তামুদারে, ∠BOP= β. OB রেখা a কোণকে সমদিখণ্ডিত করিয়াছে।

.. BOC =  $\frac{1}{2}a$ .

এখন, BOC থিভূজে, OB = BC  $\csc \frac{a}{2} = r \csc \frac{a}{2}$  ;

- $\therefore$  BOP बिङ्क, BP=OB  $\sin \beta = r \csc \frac{a}{2} \sin \beta$ .
- . . নিৰ্বেয় উচ্চতা =  $\mathbf{r}$  cosec  $\frac{\alpha}{2}$  sin  $\beta$ .

উদা. 4. পতাকাদণ্ডযুক্ত একটি অট্টালিকার দিকে অগ্রসর হইতে হইতে এক ব্যক্তি দেখিলেন যে, অট্টালিকার পাদদেশ হইতে ন পরিমিত দূরত্বে পতাকাদণ্ডটি বৃহত্তম কোণ ধারণ করে। এই বৃহত্তম কোণ ৫ হইলে, অট্টালিকার উচ্চতা এবং পতাকাদণ্ডের দৈর্ঘ্য নির্ণয় কর।

[P. U., 1921]

মনে কর, PM একটি অট্টালিকা এবং উহার উপর অবস্থিত PQ একটি

পতাকাদণ্ড। PM হইতে A বিন্দুর দ্রত্ব যেন त ; স্কতরাং, প্রদত্ত পঠাকুসারে A বিন্দুতে PQ-এর সন্ম্থকোণ বৃহত্তম ( তথাৎ AM-এর উপর যে-কোন বিন্দুতে PQ-এর সন্ম্থ-কোণ ও অপেক্ষা ক্ষুদ্রতর )। PQ ও PM-এর মান নির্ণয় করিতে হইবে। জ্যামিতির সাহায্যে জানা যায় যে, P, Q ও A বিন্দুত্র দিয়া অন্ধিত বৃত্তি যদি AM-কে A বিন্দুতে স্পর্শ করে, তবেই AM-এর উপর A বিন্দুতে PQ-এর সন্মুথকোণ্টি বৃহত্তম হইবে।



মনে কর, 
$$\angle PAM = a$$
,  $\therefore \angle AQP = \angle PAM = a$ ,  $\therefore \angle QAM + \angle AQM = 90^\circ$ ;  $\therefore \theta + 2a = 90^\circ$ .

একাণে,  $PQ = MQ - PM = AM \tan QAM - AM \tan PAM$ 

$$= d \tan (\theta + a) - d \tan a = d \left\{ \frac{\sin (\theta + a)}{\cos (\theta + a)} - \frac{\sin a}{\cos a} \right\}$$

$$= a \left\{ \frac{\sin (\theta + a) \cos a - \sin a \cos (\theta + a)}{\cos (\theta + a) \cos a} \right\}$$

#### প্রভাষালা 16

A একটি অটালিকার চৃড, যে মুম্বলে অলালিকাটি অবস্থিত, B এক
 C ্মট সম্বলে অবস্থিত ছলটি বিন্। B 5 C হলতে A-এর উম্বি-কোন যথাক্রমে
র ও দৃদ্ভ হইলে, প্রমাণ কর বে,

$$\tan ABC = \frac{\sin \alpha \sin \beta}{\gamma - \cos \alpha \sin \beta} \tan ACB = \frac{\sin \alpha \sin \gamma}{\sin \beta - \cos \alpha \sin \gamma}$$

2. প্রত্নিধের ছেপ্র দ্ধান্ত একটি উল্প হটাতিকার উচ্চতা বিশ্বির। প্রত্ত প্রদানিকার সভাবে দ্বানিকাটি বিক্রির প্রতিকাটি রিক ম্বানিকাটি রিক প্রতিভাগে হার্নিকার ভারিকার উল্লেখ্য এবং β. ৪ ২০০৬ অন্নানিকাটি রিক প্রতিম্ন অবস্থিত থকা উভার নীথের উল্লেখ্য 45°. দেখাও বে, ম ও ৪-এর মধ্যেত্রী দূর্ভ

= 
$$c \cos a/\sin (\beta - a)$$
.

8. A বিক্র ঠিক উত্তর ঘণ্ডিত একটি অট্টালিকার উল্লিত-কোণ ৪ এবং A-এর ঠিক প্রিয়ে অব্বিত ৪ বিশ্তে ৫ : প্রমাণ কর সে, অট্টালিকার উচ্চত

$$= \frac{AB \sin \theta \sin \phi}{\sqrt{(\sin^2 \theta - \sin^2 \phi)}}$$
 [P. U. 1935 Su].

্ব সমন্ত্রালবিশিষ্ট প্রভাগেরের কোন বিন্দু হউতে প্রভিন্তিধাপরি পাড়। প্রভিন্ত ধ্যেও চুলার উরতি কোণ a , নির্দের দিকে a হিটার অপ্রদেব হউলে উন্নতি-কোণ β হয়। দেখা ও যে, যদি ), প্রভারসভারে উচ্চতা হয় এবং অক্সভূতিক সমত্যেলর স্থিতি পর্বতের চালু দিক ৪ কোণো নাভ থাকে, তাহা হইলে

$$\cos \theta = \frac{a \sin (a - \theta) \sin (\beta - \theta)}{h \sin (\beta - a)}.$$

- 5. কোন দণ্ডের পাদ্দেশের ২০িত একট গছভূমিক সমতলে অবস্থিত এক বিশ্বতে ঐ দণ্ডের উপরাধ যে কোন ধাবন কবে, ভাহার tan = ₹. সম্পূর্ণ দণ্ডটি ঐ শিক্তে যে কান ধাবন কবে, ভাহার tan ;নর্গন করে। ... B. H. U., 1942 ]
- 8. ন পরিমাণ চালযুক্ত প্রতের চালে দাঁডাংখ্যা কোন লোক প্রতের পাদদেশে দণ্ডাংমান কোন গুড়ের শীংধর উল্লাভি-কোণ ৪০° দেখিল ৷ সেন পরিমাণ দূরত্ব নিচের দিকে আফিয়া দেখিল কন্ত্রশীর্ষের উল্লাভ কোণ ৪০°. দেখা ও যে, ভঞ্জের উল্লেভা

$$= \frac{1}{2}a(\sqrt{8} \sec a + 4 \sin a).$$

7. 2a প্রিমাণ শার্থ এক অক্তৃমিক ভূমির (base) প্রভাক প্রান্থ ইইটে কোন প্রতশিবরের উন্নতি-কোণ ০ এবং ঐ ভূমির মধ্যবিদ্ হইটে ক. দেখাও যে, শিবরের উন্নত-উচ্চতা (vertical height)

$$\underset{\sim}{=} \frac{a \sin \theta \sin \phi}{\sin (t + \theta) \sin (\phi - \theta)}, \quad \text{U. P. B., 1955 }$$

 একটি মট্টালকার ঠিক দখিণে অবস্থিত কোন বিন্দু A-তে ইংার উয়তি কোণ 30°. A হইতে ঠিক পশ্চিমে এবং α গরিমাণ দূরে অবস্থিত অপর কোন বিন্দু B-তে ইয়তি-কোণ 1৯°. দেখাণ য়ে, অয়ালিকার উয়ত।

$$=\frac{a}{\sqrt{(2+2\sqrt{5})}}.$$

৪. এক সরল অন্ত ভৃত্তিক রাজার স্থিত উল্লেখনার অবহিত কোন ওরে। প্রের জনক অবস্থিত এক ।করে। মতার অববংশী চইটি প্রকর-ফলকের জাবন হিলাপত ও

। বিলোমিলারে ।

$$= \tan \alpha \tan \beta$$

$$\tan \alpha + \tan \beta$$

10. তৃহটি বস্থা মধ্যে বাবেষান ৪৪০ মেটার। একটি প্রতিশীধ ইউত্তৈ ঐ বিশ্বন্ধ ছোরে ঘবনাতি কাণ গথাক্রমে ৪৫° 1৪' বেল ১৮° ৪১', বাংগ ৪০টি এবা প্রতিশীধ একট শ্যাংগে ঘবাস্থিত ঘ্রিয়ান, ইয়া গ্রাহের উচ্চিত্র বিশ্বক্র।

[ .W487 %[%, b g 36 ) \* 2 5563, 1 g 339 4 \* 2 5708, log sin 27° 12′ \* 1 6609, log sin 18° 21′ \* 1 4992, 1 g sin 8° 48′ = 1 4847. }



# বিশ্লেষণমূলক দিমাত্রিক জ্যামিতি (Analytical Geometry of Two Dimensions)



#### প্রথম অধ্যায়

### কার্ভেজীয় আয়ত স্থানাঙ্ক ( Rectangular cartesian co-ordinates )

- 1'1. বিশ্লেষ্ট্রশাসুলক দ্বিসাত্তিক জ্যামিতি: রেথাচিত্রের সাহায্য না লইরা কেবলমাত্র বিন্দুনিচয়ের স্থানাস্কের বৈজিক বিশ্লেষণ দ্বারা যে জ্যামিতিশাস্ত্র গড়িয়া উঠিয়াছে, তাহাকে স্থানাস্ক বা বিশ্লেষণমূলক জ্যামিতি বলে। সামতলিক
  বিন্দুমাত্রেরই, ভুজ ও কোটি, এই তুইটি মাত্র মাত্রা আছে। সেইজন্য বিশ্লেষণমূলক
  জ্যামিতির যে-অংশ শুধু সামতলিক বিন্দুর বিচারেই সীমাবদ্ধ তাহাকে বিশ্লেষণমূলক
  দ্বিমাত্রিক জ্যামিতি বলে।
- 1'2. স্থাকাইজ (Co-ordinates)ঃ মাধ্যমিক স্তরে বিন্দ্বিশেষের স্থানাস্ক-নির্ণয় এবং স্থানান্ধ হইতে বিন্দৃ-স্থাপন-প্রণালী বিশদভাবে আলোচিত হইয়াছে। পুনরালোচনা-প্রসঙ্গে এথানে একটি নৃতন তথ্যের অবতারণা করা যাইতেছে।

যে-কোন সমতলে xox' ও yoy'-এর মত ত্ইটি পরস্পরচ্ছেদী সরল রেখার

তুলনায় ঐ সমতলস্থিত যে-কোন বিন্দুর
অবস্থান নির্ণয় করা যায়। উদাহরণস্বরূপ,

P যেন xox' ও yoy'-এর সমতলে একটি
বিন্দু। P-এর মধ্য দিয়া PN || xox' এবং
PM || yoy' টানিলে ompn একটি
সামান্তরিক হয়। উহার NP বাহু ≅ om বাহু
এবং MP ≅ on বাহু বলিয়া, om ও on-এর



দৈর্ঘ্য দ্বারা P-এর অবস্থান স্থচিত করা যায়।  $\times OX'$  এবং YOY' এথানে, যথাক্রমে ভূজ-জ্ঞাপক ও কোটি-স্থচক অক্ষ। স্থতরাং P-এর ভূজ  $\overline{OM}$ , কোটি  $\overline{ON}$ ;  $\overline{OM}$  ও  $\overline{ON}$ -এর মান যথাক্রমে x ও y হইলে P-বিন্দুর স্থানাম্ব (x,y).

অক্ষররের মধ্যবর্তী কোণটি যদি এক সমকোণ না হয় তবে উহাদের **তির্যক্**আক্ষ এবং স্থানাক্ষযুগলকে **তির্যক্ স্থানাক্ষ** বলা হয়; সেক্ষেত্রে দেখা গেল, যে-কোন বিন্দু P-এর স্থানাক্ষ স্চিত হয় একটি সামান্তরিকের স্থানিহত ছই বাহুর ছইটি মান দারা।

আর অক্ষন্তরের মধ্যবর্তী কোণটি যদি হয় এক সমকোণ, তবে ঐরপ যে-কোন বিন্দু P-এর স্থানাম্ব স্থানিত হয় একটি আয়তক্ষেত্রের একজোড়া সন্নিহিত বাহুর মান তুইটি দ্বারা। উপরের চিত্রে সেক্ষেত্রে OMPN ক্ষেত্রটি আয়তাকার হইয়া পড়িবে। সেইজন্ম এইরপ ক্ষেত্রে, যেখানে অক্ষন্তর পরস্পরকে লহুভাবে ছেদ করে সেখানে এ অক্ষন্তরকে আয়েত অক্ষ্ণ বলে এবং উহাদের তুলনায় ভূজ ও কোটি-স্ফচক মান-যুগলকে বলা হয় আয়ুত স্থানাস্ক (Rectangular Co-ordinates)।

বিখ্যাত ফরাসী দার্শনিক Descartes সর্বপ্রথম উল্লিখিত দুই প্রকার অক্ষ ব্যবহার করিয়া বিন্দুসমূহের স্থানাম্ক-নির্ণয়-প্রণালী প্রবর্তন করেন। সেইজন্ম তাহার নাম অনুসারে এইগুলিকে কার্তেজীয় (cartesian) স্থানাম্ক বলে। একই কারণে আয়ত স্থানাম্ক-কেও কার্তেজীয় আয়ত স্থানাম্ক (Rectangular Cartesian Coordinates) রূপেই প্রায়শঃ উল্লেখ করা হয়।

মাধ্যমিক তবে একমাত্র আয়ত স্থানান্ধেরই ব্যবহার-পদ্ধতি বিবৃত হইয়াছে। উচ্চ মাধ্যমিক তবেও কার্তেজীয় পদ্ধতির এই আয়ত স্থানাশ্বই পাঠ্য। স্থাতরাং এ-বিষয়ে পূর্বজ্ঞানের একটি সারসংকলন দেওয়া যাইতেছে।

(i) অক্ষন্ত্য পরস্পরকে যে-বিন্দুতে ছেদ করে তাহাকে মূলবিন্দু বলা হয়।

ফুতরাং xox' ও yoy', এই তুইটি লম্বচ্ছেদী অক্ষন্ত্যের মূলবিন্দু হইল o-বিন্দু।

y-অক্ষ হইতে  $\overrightarrow{ox}$  বরাবর ভানদিকের দৈর্ঘ্যস্চিত মান ধনাত্মক ভূজ এবং  $\overrightarrow{ox}'$  বরাবর বামদিকের দৈর্ঘ্যস্চিত মান ধণাত্মক ভূজ ব্ঝায়।

- (iii) x-অক্ষ হইতে OY-বরাবর উপরদিকের দৈর্ঘ্যস্থচিত মান ধনাত্মক কোটি এবং OY'-বরাবর নিচদিকের দৈর্ঘ্যস্থচিত মান ঋণাত্মক কোটি বৃঝায়।
- (iv) স্থতরাং অক্ষ-তৃইটি উহার সমতলকে বে-চারিটি পাদে বিভক্ত করে তাহাদের প্রথমটিতে বে-কোন বিন্দুর ভূজ ও কোটি উভয়ে ধনাত্মক; দ্বিতীয়টিতে বে-কোন বিন্দুর ভূজ ঋণাত্মক, কোটি ধনাত্মক; তৃতীয়টিতে বে-কোন বিন্দুর ভূজ ও কোটি, উভয়ে ঋণাত্মক; চতুর্ঘটিতে বে-কোন বিন্দুর ভূজ ধনাত্মক কিন্তু কোটি ঋণাত্মক। নিচের চিত্রে বিভিন্ন পাদে ভূজ ও কোটির মান, ধনাত্মক বা ঋণাত্মক কিরপ হয়, তাহা প্রত্যক্ষ করা বাইতে পারে।

| ২য় পাদ    | ১ম পাদ   |  |  |
|------------|----------|--|--|
| (ঋণ, ধন)   | (ধন, ধন) |  |  |
| ৩য় পাদ    | ৪র্থ পাদ |  |  |
| ( ঋণ, ঋণ ) | (ধন, ঋণ) |  |  |

#### কাৰ্তেজীয় আয়ত স্থানাক

(v) স্থতরাং কোন বিন্দু P-এর ভুজ ও কোটির সাংখ্যমান যদি যথাক্রমে ফ ও ফু হয়, তবে

প্রথম পাদে অবস্থিত হইলে P-এর স্থানাঙ্ক (x, y);

দিতীয় পালে " " " (- a, y);

ভৃতীয় পাদে » » (-x, -y);

এবং চতুর্থ পালে w » w (x, -y).

## 1'3. পোলার স্থানাক (Polar co-ordinates) :

কার্তেঞ্জীয় পদ্ধতি হইতে ভিন্ন আরেক প্রণালীতেও সামতদিক বিন্দুর অবস্থান নির্ণয় করা যায়।

একটি স্থির-বিন্দু o এবং ঐ o-বিন্দুগামী একটি স্থির-রেখা ox লইলে, একই
সমতলে বে-কোন বিন্দু p-এর অবস্থান
নির্ণয় করিবার জন্ম শুধু op-এর দৈর্ঘ্য ও
∠xop-এর মান জানা দরকার। স্কভরাং
op-এর দৈর্ঘ্য যদি ৫ এবং ∠xop-এর মান



যদি হয় 0, ভবে P-বিন্দুর স্থানাস্ক  $(r, \theta)$  বলিয়া নির্দেশ করা যায়। লক্ষণীয় যে এই পদ্ধতিতে স্থির-বিন্দুকে মৃলবিন্দু বলা চলে, বস্তুতঃ কথনও কথনও উহাকে মূলবিন্দুই বলা হয়। আবার দৈর্ঘা r এবং কোণ θ-এর পক্ষে Ο বিন্দুকে পোল (pole) বা মেফ বলিয়াও অভিহিত করা হয়। সেইজন্ম  $(r, \theta)$ -স্চিত স্থানাস্ক্ষকে পোলার স্থানাস্ক্ষ বলে।

পোলার স্থানাঙ্কের **অক্ষ** একটি-ই এবং তাহা হইল Ox স্থির রেখা। এই অক্ষকে কখনও কখনও **প্রারম্ভিক রেখা** (initial line) বলে।

স্থানান্ধ-দুইটির r-দৈর্ঘ্য (= ÖP)-কে বলে রেডিয়াস-ভেক্টর (Radius vector) এবং  $\theta$  (= m∠xop) কোণকে বলে ভেক্টর-কোণ (Vectorical angle)।

## 1'4. ভেক্টর-কোণের ধনাত্মক ও ঋণাত্মক সান :

ত্রিকোণমিতির কোণের ন্যায় ঘটির কাঁটার বিপরীত মূথে মাপিলে ভেক্টর-কোণের মান ধনাত্মক এবং ঘড়ির কাঁটার মূথে মাপিলে ঋণাত্মক ধরা হয়।

1.5. ব্রেডিন্সাস-ভেক্টব্রের প্রনাত্মক ও প্রাণীত্মক মানঃ
ভেক্টর-কোণের একটি বাহু প্রারম্ভিক রেখা এবং তাহা স্থির। পোল O বিন্দু হইতে
অপর বাহু OP বরাবর মাপিলে r-এর মান ধনাত্মক, কিন্তু উহার বিপরীত দিকে PO

মুখে r-এর সমান দৈর্ঘাযুক্ত  $\overrightarrow{OP}'$  এর মানকে ঋণাত্মক অর্থাৎ (-r) ধরিতে হয়। সেই ছিদাবে উপরের চিত্রে, P বিন্দুর স্থানাস্ক  $(r,\theta)$ ; কিন্তু P'-এর স্থানাস্ক ছেইভাবে লেখা যায়। একভাবে উহার স্থানাস্ক  $(-r,\theta)$ , কেননা  $\theta$  কোণের বাহু  $\overrightarrow{OP}$ -এর বিপরীত দিকে  $\overrightarrow{OP}'$ -এর দূরত্ম r একক। আবার  $\angle XOP' = \pi + \theta$  বলিয়া প্রস্কু কোণ XOP'-এর বাহু  $\overrightarrow{OP}'$  এবং সেই বাহু বরাবর  $\overrightarrow{OP}'$  দৈর্ঘ্য r-এর মান অবস্থাই ধনাত্মক ধরিতে হইবে। অতএব  $(\pi+\theta)$  ভেক্টর-কোণ-দাপক্ষে রেডিয়াস-ভেক্টর হইবে r এবং সেই কারণে, P'-এর স্থানাস্ক হইবে  $(r,\pi+\theta)$  স্থতরাং  $(-r,\theta)$  ও  $(r,\pi+\theta)$  উভয়েই একই বিন্দ P'-এর পোলার স্থানাস্ক স্থৃচিত করিবে।

1'6. এক শক্ষতির স্থানাস্ক হইতে অস্থা শক্ষতির স্থানাস্কে রূপাস্তর (Transformation from one system of Co-ordinates to another) :

xox' ও Yoy' এই তুইটি লম্বচ্ছেদী অক্ষের সমতলে অবস্থিত p-বিন্দুর কার্তেজীয়



প ্ৰায়ত এবং পোলার স্থানান্ধ যথাক্রমে যেন (x,y) ও  $(r,\theta)$ . P-বিন্দু হইতে অন্ধিত PM যেন OX-এর উপর লম্ব এবং  $\angle$  XOP-এর মান যেন  $\theta$ . তাহা হইলে,

OM=x, PM=y, এবং  $OP=\sqrt{M^2+PM^2}=\sqrt{x^2+y^2}$ . জাবার, P বিন্দুর রেডিয়াস-ভেক্টর  $r=OP=\sqrt{x^2+y^2}$  এবং ভেক্টর-কোণ  $\angle XOP=\theta$ .

এখন,  $\tan \theta = \tan XOP = \frac{PM}{OM} = \frac{y}{x}$  বলিয়া,

 $\theta = \tan^{-1} \frac{y}{x}$ . অধিকন্ত  $x = r \cos \theta$  এবং  $y = r \sin \theta$ .

(i) . :. P-বিন্দুর কার্তেজীয় আয়ত স্থানাম্ব (x, y) হইলে উহার পোলার স্থানাম্ব  $(r, \theta)$  হইবে,

$$\left(\sqrt{x^2}+y^2, \tan^{-1}\frac{y}{x}\right)$$
  $\left[\because r = \sqrt{x^2+y^2} \text{ and } \theta = \tan^{-1}\frac{y}{x}\right]$ 

(ii) বিপরীতক্রমে, P-বিন্দুর পোলার স্থানাম্ব  $(r, \theta)$  হইলে উহার কার্তেজীয় আয়ত স্থানাম্ব (x, y) হইবে  $(r \cos \theta, r \sin \theta)$ 

[  $x = e \cos \theta$   $q = r \sin \theta$  ].

## কার্তেজীয় আয়ত স্থানাক

#### উদাহরপমালা

উদা. 1. নিমে স্থানাম্ব-স্চিত বিন্তুলের কোন্টি কোন্ পাদে অবস্থিত তাহা কারণসহ বল:

(i)  $(\sqrt{5}, \sqrt{3})$ ; (ii)  $(1-\sqrt{3}, 1+\sqrt{3})$ ; (iii)  $(4 \cos 150^{\circ}, 4 \sin 150^{\circ})$ .

(i) √5 ও √3 উভয়ে ধনাত্মক বলিয়া (√5, √3)-স্চিত বিন্টু প্রথম পাদে অবস্থিত।

(ii) √3-এর মান > 1 বলিয়া (1 – √3) < 1 অর্থাৎ (1 – √3) ঝণাত্মক কিন্তু 1 + √3 ধনাত্মক। স্কুতরাং এক্ষেত্রে (1 – √3, 1 + √3)-স্ফুচিত বিন্দুটির ভুজ ঋণাত্মক, কোটি ধনাত্মক বলিয়া উহা দ্বিতীয় পাদে অবস্থিত।

(iii) 150° দিতীয়পাদস্থ কোণ বলিয়া উহার sine ধনাত্মক, cos ঋণাত্মক;

়. 4 cos 150° ঋণাত্মক এবং 4 sin 150° ধনাত্মক এবং সেই কারণে (4 cos 150°, 4 sin 150°)-স্ফচিত বিন্দু দ্বিভীয় পাদে অবস্থিত।

উদা. 2. একটি বিন্দুর কার্তেজীয় স্থানান্ধ (-3,3) হইলে, উহার পোলার স্থানান্ধ নির্ণয় কর।

প্রশান্ত্রারে, বিন্দুটির ভূজ x=-3 এবং কোটি y=3.

যেহেতু, স্ত্রান্ত্রারে, (x, y) বিন্দুর পোলার স্থানাক  $\left(\sqrt{x^2+y^2}, \tan^{-1}\frac{y}{x}\right)$ 

সেইহেতু, বিন্দুটির রেডিয়াস-ভেক্টর  $\gamma = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + 3^2}$  =  $\sqrt{9+9} = 3\sqrt{2}$ 

এবং ভেক্টর-কোণ  $\theta = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{3}{3} = \tan^{-1} (-1).$ 

(-3,3) দ্বিতীয়পাদক্ষ বিন্দু বলিয়া  $\theta$  কোণ নিশ্চয়ই দ্বিতীয়পাদক্ষ। আবার,  $\tan \theta = -1 = \tan (180^\circ - 45^\circ) = \tan 135^\circ$ ;

 $\theta = 135^\circ = \frac{3\pi}{4}$  ব্ৰেডিয়ান।

... নির্ণেয় পোলার স্থানাম্ব  $\left(3\sqrt{2},\frac{3\pi}{4}\right)$ 

দেষ্টব্য ঃ উপরের উদাহরণে বিন্দুটির স্থানান্ধ যদি (3,-3) হইত, তবে উহার অবস্থান হইত চতুর্থ পাদে এবং সেই কারণে ঐ বিন্দুর ভেক্টর-কোণও চতুর্থ পাদে পড়িত। সেক্ষেত্রে  $\tan\theta=\frac{-3}{3}=-1=\tan(360^\circ-45^\circ)=\tan 315^\circ$  বা  $\frac{7\pi}{4}$ রেডিয়ান হইত কিন্তু রেডিয়াস-ভেক্টর একই অর্থাৎ  $3\sqrt{2}$ -ই থাকিত।

উদা 3. একটি বিন্দুর পোলার স্থানাঙ্ক  $\left(2\sqrt{3},\frac{4\pi}{3}\right)$  হইলে, উহার কার্তেজীয় স্থানাঙ্ক নির্ণয় কর ।

প্রশাস্সারে, বিদ্টির রেডিয়াস-ভেক্টর  $r=2\sqrt{3}$  এবং ভেক্টর-কোণ  $\theta=\frac{4\pi}{3}$ 

উহার কার্ডেজীয় ভূজ  $x=2\sqrt{3}\cos\frac{4\pi}{3}=2\sqrt{3}\times\cos240^\circ=2\sqrt{3}$ ×  $\cos(180^\circ+60^\circ)=2\sqrt{3}\times(-\cos60^\circ)=2\sqrt{3}\times(-\frac{1}{2})=-\sqrt{3}$ .

এবং কোটি  $y = 2\sqrt{3} \sin \frac{4\pi}{4} = 2\sqrt{3} \times \sin 240^{\circ} = 2\sqrt{3} \sin (180^{\circ} + 60^{\circ})$ =  $2\sqrt{3} \times (-\sin 60^{\circ}) = 2\sqrt{3} \times \left(-\frac{\sqrt{3}}{2}\right) = -3$ 

∴ আলোচ্য বিন্দুর কার্তেজীয় স্থানাঙ্ক (- √3, -3).

#### প্রশ্নমালা 1

- 1. নিম্লিখিত বিন্তুলির আয়ত স্থানাম্ক নির্ণয় কর:
- (i) চতুর্থপাদস্থ যে বিন্দু x ও y অক্ষ হইতে সাংখ্যমানে যথাক্রমে 3 ও 4 একক দুরে অবস্থিত ;
  - (ii) মূলবিন্দু o এবং y অক্ষ হইতে যে বিন্দুর দূরত্ব যথাক্রমে 5 ও 4 একক।
- 2. আয়ত স্থানাক্ষে প্রকাশিত নিম্নলিখিত বিন্তুলির পোলার স্থানাম্ব নির্ণর কর:
  - (i) (1, 1); (ii) (1, -1); (iii)  $(-1, -\sqrt{3})$ ; (iv) (-4, 0); (v)  $(-3, -\sqrt{3})$ .
  - 3. নিম্মলিখিত বিন্তুলির পোলার হইতে আয়ত স্থানাম্ব নির্ণয় কর:

(i) 
$$\left(2, \frac{\pi}{2}\right)$$
; (ii)  $\left(2, -\frac{\pi}{3}\right)$ ; (iii)  $\left(\sqrt{2}, \frac{\pi}{4}\right)$ ; (iv)  $\left(4, \frac{2\pi}{3}\right)$ ; (vi)  $\left(1, \frac{5\pi}{6}\right)$ .

1'7. প্রতিফলন, চলন ও আবর্তনের বিশ্লেষণমূলক রূপ:

প্রতিফলন, চলন ও আবর্তনের ফলে বিদ্বিশেষের যে স্থানান্তর ঘটে তাহা স্থানান্তের পরিবর্তন দারা প্রকাশ করা যায়। বস্তুত বিশ্লেষণমূলক জ্যামিতিতে এইরূপ পরিবর্তিত স্থানান্ত দারাই উলিধিত রূপান্তরসমূহ (অর্থাৎ প্রতিফলন, চলন ও আবর্তনজনিত রূপাপ্তরসমূহ) স্থচিত হইয়া থাকে। উহাদের প্রত্যেকটিকে স্বতন্ত্র-ভাবে আলোচনা করা যাইতেছে।

## 1.8. প্রতিফলনঃ

- (a) বিভিন্ন অক্ষে প্রতিফলনজনিত প্রতিবিশ্ব:
  - (i) x-অক্ষের উপর প্রতিফলনে P বিন্দুর প্রতিবিদ্ধ যদি Q হর এবং P-এর

স্থানাম্ক যদি হয় (a, b), তবে (a, -b) স্থানাম্ক মারা  $\mathbf{Q}$  বিন্দুকে স্ফেড করা যায়।  $\mathbf{P}$ -বিন্দু হইতে অন্ধিত  $\mathbf{X}$ -অন্ধের উপর  $\mathbf{PM}$  লম্বকে  $\mathbf{PM} \cong \mathbf{MQ}$  করিরা বর্ধিত করিলে,  $\mathbf{Q}$ -বিন্দু  $\mathbf{P}$  বিন্দুর প্রতিবিশ্ব হইবে।

এখন, Q-এর ভুজ= OM = a এবং কোটি MQ = - PM = - b. ∴ Q-এর স্থানাস্ক (a, -b).



অত এব, x-অক্টের উপর প্রতিফলনে (a, b) বিন্দুর প্রতিবিদ্ধ হয়
(a, -b) বিন্দু ৷

(ii) দ্বিতীয়তঃ, y-অক্ষের উপর P (a, b) বিন্দুর প্রভিফলনে প্রতিবি**ষ** Q



হইলে, ধরা যাক, p-হইতে γ-অক্ষের উপৰ অন্ধিত লম্ব pN; প্রতিফলনের সূত্র অন্থসারে, pN-কে বিধিত করিলে Ω বিন্দু দিয়া যাইবে এবং pN  $\cong$  NQ হইবে।

> এখন, NP=a বলিয়া Q-এর ভুজ NQ = - NP= - a হইবে;

কিন্তু Pa || xox' বলিয়া P ও Q-এৰ কোটি সমান হইবে,

অর্থাৎ P-র কোটি b বলিয়া Q-এর কোটিও b হইবে।

∴ Q-এর স্থানাক হইবে (-a, b).

অতএব, y-অক্টের উপর প্রতিফলনে (a, b) বিন্দুর প্রতিবি<del>ষ্ণ হইবে</del> (-a, b) বিন্দু ।

(iii) x = c-এর উপর প্রতিফলনে P(a, b) বিন্দুর প্রতিবিম্ব যেন Q বিন্দু । স্থানাম্ব দারা Q বিন্দুর অবস্থান নির্দেশ করিতে হইবে। প্রতিফলন-সূত্র অনুসারে PQ রেখা x = c রেখার উপর লম্ম এবং M উহাদের হেদবিন্দু ইইলে PM = MQ.

ম্পষ্টতঃ x=cরেখা y-অক্ষের সমান্তরাল এবং উহাদের ছেদবিন্দু L হইলে



এবং ভংগদের ছেদাবন্দু L হংলে

OL=০ হইবে। Q হইতে অন্ধিত

লম্ব তি

ত

ত

করে।

মতরাং Q বিশ্ব ভূজ = OK = OL + LK = c + MQ = c + PM = c + NL = c + OL - ON= c + c - a = 2c - a.

আবার, x=c-এর উপর উভয়ে লম্ব বলিয়া  $\overline{PQ}$   $\stackrel{1}{\downarrow}$   $\overline{OX}$ .

স্তবাং, α বিন্দুর কোটি = P বিন্দুর কোটি, অর্থাৎ κα = NP = b.

কাজেই, Q বিনুর স্থানান্ধ (2c-a, b).

অতএব, x = c-এর উপর প্রতিফলনে (a, b) বিন্দুর প্রতিবিদ্ধ হইবে (2c - a, b) বিন্দু।

(iv) y=c-এর উপর প্রতিফলনে P (a,b) বিন্দুর প্রতিবিম্ব যেন Q বিন্দু। স্থানাম্ভ দারা Q বিন্দুর অবস্থান স্থচিত করিতে হইবে।

y=c রেখা x-অক্ষের সমান্তরাল। P হইতে y=c ও x-অক্ষের উপার অন্ধিত লম্ব যেন উহাদের যথাক্রমে M ও N বিন্তে ছেদ করিয়াছে।



প্রতিফলন-স্ত্র অন্তুসারে Q বিন্দু PM-এর উপর অবস্থিত এবং PM = MQ.

এবং কোটি= NQ = NM - QM = 
$$c$$
 - MP =  $c$  - (NP - NM) =  $c$  - ( $b$  -  $c$  -  $b$  +  $c$  =  $2c$  -  $b$ .

অতএব, y=c-এর উপর প্রতিফলনে (a, b) বিন্দুর প্রতিবিন্ধ হইবে (a, 2c - b) বিন্দু।

(v) x=y রেখার উপর প্রতিফলনে P(a,b) বিন্দুর প্রতিবিম্ব যেন Q বিন্দু। Q-বিন্দুর স্থানাম্ক নির্ণয় করিতে হইবে।

P হইতে x=y-এর উপর লম্বরেখাটি যেন x=y-কে M বিন্দৃতে ছেদ করিয়া প্রতিবিম্ব Q বিন্দু পর্যন্ত প্রসারিত।

P ও M হইতে OX-এর উপর
বথাক্রমে যেন PN ও MK লম্ব এবং Q
হইতে OY-এর উপর যেন QL লম।
প্রতিফলন-স্ত্র অঞ্সারে PM=MQ.



∴ POM ও QOM ত্রিভুজ্বয়ে PM ≃ QM, OM সাধারণ এবং ∠PMO

আবার, м বিন্দু  $x=\eta$ -এর উপর অবস্থিত বলিয়া উহার ভূজ = উহার কোটি এবং সেই কারণে  $\infty$  রেখা  $\angle$  LON-এর সমদ্বিধন্তক।

- $\therefore$   $\angle$ MOL= $45^{\circ}$ = $\angle$ MON.
- .. ∠LOQ= ∠MOL- ∠MOQ = ∠MON- ∠MOP= ∠PON.
- ∴ LOQ ও NOP, এই তুইটি সমকোণী ত্রিভূজে অভিভূজ তP হ অভিভূজ তQ এবং ∠LOQ = ∠NOP বলিয়া ত্রিভূজ-তুইটি সর্বসম।
  - $\cdot$  ON = OL = a এবং PN = QL = b.
    অতএব, Q-এর ভুজ = QL = b এবং কোটি = OL = a.

স্তরাং, x=y-এর উপর প্রতিফলনে (a, b) বিন্দুর প্রতিবি**দ্ধ হইবে** (b, a) বিন্দু।

(vi) x + y = 0-এর উপর প্রতিফলনে P(a, b) বিন্দুর প্রতিবিম্ব যদি Q হয়, তবে Q-এর স্থানাম্ব নির্ণয় করিতে হইবে।



P হইতে x+y=0-এর উপর

অন্ধিত লম্বরেখাটি বেন QX, x+y=0,
এবং QY'-কে বথাক্রমে, K, L ও Mবিন্দৃতে ছেদ করিয়া প্রতিবিম্ব Q বিন্দৃতে

সীমাবন্ধ হইয়াছে। P হইতে QX'-এর উপর লম্মতি বেন বথাক্রমে PN ও QR.

এখন, ৫+০+0 বা ৫= -০-এর উপর যে-কোন বিশ্ব ভূজ ও কোটির সাংখ্যান মান বলিয়া বেখাটি মহকোণ NOR-বর মা,২২৪ক।

- .. /KOL = 45° GAR /OLK = 90° TOWN /OKL = 45°.
- :. ZKOL-ZOKL 4代 ()是 可识的KL=OL.

অফুরূপে LM - OL.

.". KL=LM.

আবার প্রতিষ্ঠ ন পর ওয়ুসগরে, PL = LQ বলিয়া,

PK = PL - KL = LQ - LM = MQ.

ं. PNK '8 QRM बिड्बच्दर,

94 /KPN- LOMR [: PN MR 44 PQ BETTHE CENT]

- . : ত্রিভূজ-গুইটি পর্বসম।
- .'. KN = QR प्रेर PN = MR.

- ... OK 8+178 € 14" OM 8- 75 \$ 8 (14" OM = OK.
- ∴ Q রে ; ে = RQ = -QR = -b রে বি = GR = GM + MR
   = -OK RM = -OK KN = -ON
   = -a, কাজেই Q-এর ছালার (-b, -a).

শতবে, x+y-0-এর উপর প্রতিফলনে (a, b) নিন্দুর প্রতিনিম্ব হুইবে (-b, -a).

- (b) अ. अध्यानत मान्यी:
  - (1) र काक ( पर्वार १००० हत देलद । ४० विकास (a, b)-खत लिए

(a, -b):

(1) 1 4 500 2012 = 0=0 380 18 28 24-114 (a, b)-50 00 660 (-a, b):

- (111) 5 - 53 300 9 0 000 1 1, 1, -55 2 0,58 (2c-a, b);
- (iv) y = c + v + v + v + (a, 2c + b);
- (v) x = y = 0 (b, a):
- (vi) x+4. )-24 342 2 30000 (1. ), 24 2 3(48 (-b, -a).

#### **उ**ष्टाइसन्याना

উদা 1. নিম্পিতিত বিভূপতি x অলেক ওপর পতিফলিত হউলো প্রতিক কেন্তে জানার থারা প্রবিধ হু ৮৩ কবঃ

(i) (-4, -5); (ii) (-5, 7); (iii) (-7, 4).

x-18174 391 4 . 190 ( a (a, 1 ) 45 2 2 1 23 (a, -b).

- (i) এধানে a = -4 এবং b = 5 বা -b = 5;
- :. (-4, -5) ga et et et e et (-4, 5).
- (ii) 44177, a = -5, 447, b = 7. :. -b = -7;
- ... × মাকের উপর পা ভ্রমণান (+5, 7) এর প্রতি বয় ভবাব (+5, +7).
- (iii) sellin, a = -7 get h= 4 2441 h= -4.
- .. x- sca s Berg ed everes (-7, 4)-19 et elek elek (-7, -4).

উদা. 2. ক - - 5-এর উপর প্রতিম্বনে (৪, 4) বিশ্ব যে প্রতিবিধ হইবে ভাষার স্থানাম নিশ্বি কর।

 $x \sim c$ -গর উপর প্রিফ লে (a,b) পর  $x \sim c$ -গ্রহ হয় (2c-a,b) বিশু । এখালে  $x \sim 3, b=4$  এবং c=-5.

- $\therefore 2e a 2 \times (-5) 3 = -10 \cdot 3 \cdot -13 \text{ SC } h \cdot 4.$
- ं. निर्मित ला. डालप्रिक्टर (- 13, 4) लिखे ।

উলা. 3. (h, q), প্ৰেক পৰ পৰ সম্পূত্ৰ কৰা সম্পূত্ৰ কৰিছে কৰিছে। আৰু সম্পূত্ৰ কৰিছে বিজ্ঞান সংগ্ৰেছ কৰিছে বিজ্ঞান সংগ্ৰেছ

 $x = y = \lim_{n \to \infty} \alpha_n' \in \mathbb{R} = \mathbb{R} + (a, b) \in \mathbb{R} = \alpha_n \cup (1, a) = \mathbb{R} + (a, b) \in \mathbb{R} +$ 

#### প্রামালা 2

1. জনসংক্ষর উপর জাতনভানে নিয়া হত জাতাকট বিভার তাতিবিস্থ নির্ণিয় কয়ঃ

(i) 
$$(3_1 - 5)$$
, (ii)  $(-4, 5)$ , (ii)  $(-5, -2)$ .

2. ্থাকের উপর প্রতিষ্ঠানে চনা পরে বলের নিশুগুলির প্রতিষ্ঠানির প্রতিবিদ্ধ নির্বিদ্ধানী করে।

- 3. নিম্নলিখিত বিন্দুগুলি x=-2 অক্ষে প্রতিফলিত হইলে উহাদের প্রত্যেকটির প্রতিবিম্ব নির্ণয় কর:
  - (i) (2, 3); (ii) (-3, 2); (iii) (-4, 3);

(iv) (4, -2) (v) (-1, -1).

y=1 অক্ষে প্রতিফলিত হইলে 3নং প্রশ্নে প্রদন্ত বিন্দৃত্তলির প্রতিবিষ্
নির্ণয় কর।

5. 3নম্ব প্রশ্নে প্রদত্ত বিন্তুলির x=y অক্ষে প্রতিফলনজনিত প্রতিবিশ

নির্ণয় কর।

6. 1নম্ব প্রশ্নে প্রদত্ত বিন্দুগুলির x+y=0 অক্ষে প্রতিফলনজনিত প্রতিবিধ নির্ণয় কর।

7. (i) (3, 5) বিন্টি পর পর x-অক্ষ এবং y-অক্ষে প্রতিফলিত হইলে অস্তিম প্রতিবিষের স্থানান্ধ কি হইবে ?

(ii) ঐ বিন্দু পর পর y-অক্ষ ও x-অক্ষে প্রতিফলিত হইলেই বা উহার অস্তিম

প্রতিবিষের স্থানাম্ব কি হইবে ?

- 8. (4, 3) বিন্দুকে পর পর y-অক্ষ এবং x=y-অক্ষে প্রতিফলিত করিলে অস্তিম প্রতিবিশ্বের স্থানান্ধ কি হইবে ?
- 9. (5,7) বিন্দুকে পর পর x=3 এবং x=5 অক্ষে প্রতিফলিত করিলে অন্তিম প্রতিবিশ্বের স্থানান্ধ কি হইবে ?
- 10. (-3,5) বিন্দুকে পর পর x=2 ও y=2 অক্ষে প্রতিফলিত করিলে অন্তিম প্রতিবিষের স্থানাম্ব কি হইবে ?
- 11. (-2, -5) বিন্দুকে পর পর x+y=0 এবং x=y অক্ষে প্রতিফলিত করিলে অন্তিম প্রতিবিদের স্থানাম্ব কি হইবে ?
- 1.9. চলনঃ চলনের ফলে P বিন্দু তাহার (a,b) অবস্থান ইইতে যেন Q বিন্দুতে (x,y) অবস্থানে স্থানান্তরিত হইয়াছে।



শাস্তব: লম্বজ্ঞেদী XOX' ও YOY', এই 
ফুইটি কার্ডেজীয় আয়ত অক্ষের তুলনায় P-এর
স্থানাম্ব (a, b) এবং Q-এর স্থানাম্ব (a, y).

P ও Q হইতে OX-এর উপর যথাক্রমে PM
ও QN লম্ব এবং P হইতে অন্ধিত OX-এর
সমান্তরাল রেখা যেন QN-কে L বিন্তুতে ছেদ

ক্রিয়াছে। তাহা হইলে দেখা যায়, ox মুখে PL পরিমাণ এবং oy মুখে LQ পরিমাণ চলনের সমবেত ফলই PQ চলন।

ধরা যাক,  $\operatorname{PL}=p$  এবং  $\operatorname{LQ}=q$ . তাহা হইলে বলা যায় যে  $\overrightarrow{\operatorname{OX}}$  মূখে p পরিমাণ এবং  $\overrightarrow{\operatorname{OY}}$  মূখে q পরিমাণ চলনের ফলে  $\operatorname{P}(a,b)$  বিন্দু  $\operatorname{Q}(x,y)$  বিন্দুতে স্থানাস্তরিত হইয়াছে। গণিতের ভাষায় এই চলনকে  $\binom{p}{q}$  এই সংক্তে প্রকাশ করা হইয়া থাকে।

x = ON = OM + MN = a + PL = a + p  $GR \quad y = NQ = NL + LQ = MP + q = b + q ;$ 

এখন চিত্ৰ হুইতে দেখা যায়.

 $\therefore$  বলা চলে যে,  $\binom{p}{q}$  চলন (a,b) বিন্দুকে (a+p,b+q) বিন্দুতে চিত্রিত করে।

দ্রেষ্ট্র লক্ষণীয় যে (p,q) এমন একটি বিন্দু স্থাচিত করে যাহার ভূজ = p এবং কোটি = q; আর  $\binom{p}{q}$  এমন একটি চলন স্থাচিত করে যাহার ফলে একটি বিন্দু x-অক্ষের সমান্তরাল রেথায় p পরিমাণ এবং y-অক্ষের সমান্তরাল রেথায় q পরিমাণ অপস্ত হয়।

#### উদাহরণমালা

উদা. 1. ABCD সামস্তরিকের A, B ও C শীর্ষবিন্দুর স্থানাম্ব যথাক্রমে (1, 1), (3, 5) ও (-3,4) হইলে D-এর স্থানাম্ব নির্ণয় কর ।

ABCD সামান্তরিক বলিয়া  $\overline{BA}$  চলন  $=\overline{CD}$  চলন। ধরা যাক,  $\binom{p}{q}$  চলনে  $\overline{B(3,5)}$  বিন্দু  $\overline{A}$  বিন্দুতে এবং  $\overline{C}$  (-3,4)  $\overline{D}$  বিন্দুতে চিত্রিত হয়। তাহা হইলে

3+p=1 অথবা p=-2 এবং 5+q=1 অথবা q=-4.

 $\therefore$   $\begin{pmatrix} -2 \\ -4 \end{pmatrix}$  চলনে  $\mathbf{C}$  (-3,4) বিন্দু  $\mathbf{D}$  বিন্দুতে চিত্রিত হইয়াছে এবং সেই কারণে  $\mathbf{D}$  বিন্দুর স্থানান্ধ (-3-2,4-4) বা (-5,0).

উদা. 2. (a, b) বিন্দু পর পর x-অক্ষ ও y-অক্ষে প্রতিফলিত হইলে যে অন্তিম প্রতিবিম্ব পাওয়া যায়, দেখাও যে একটিমাত্র চলনে সেই প্রতিবিদ্ব পাওয়া যায়।

x-অক্ষে প্রতিফলিত হইলে (a,b)-এর প্রতিবিম্ব (a,-b) হয়, আবার y-অক্ষে (a,-b) প্রতিফলিত হইলে অন্তিম প্রতিবিম্ব হয় (-a,-b).

$$\left(egin{array}{c} p \\ q \end{array}
ight)$$
 চলনের ফলেও যেন  $(a,\,b)$ -এর প্রতিবিম্ব  $(-a,\,-b)$  হয়। তাহা ইইলে

$$a+p=-a$$
 বা  $p=-2a$   
এবং  $b+q=-b$  বা  $q=-2b$ .

 $\begin{pmatrix} -2a \\ -2b \end{pmatrix}$  চলনে (a,b) বিন্দুর প্রতিবিম্ব (-a,-b) হইবে।

## প্রশালা 3

1.  $\binom{3}{-5}$  চলনে নিমলিখিত বিন্গুলি কোন্ কোন্ বিন্তুতে চিত্রিত হইবে?

(i) (1, 2); (ii) (-3, 5); (iii) (3, -1);

(iv) (-2, 6); (v) (-4, 4).

2.  $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$  চলনের ফলে নিম্নলিখিত বিন্দুঙলির প্রতিবিম্ব নির্ণিয় কর:

(i) (3, 4); (ii) (2, 2); (iii) (3, 2);

(iv) (2, 3); (v) (-3, -2).

3. ABCD সামাস্তরিকের A, B ও D-এর স্থানান্ধ যথাক্রমে (0, 1), (3, 4) ও (-2, 3); C-এর স্থানান্ধ নির্ণয় কর।

4. A(2,0) বিন্দু  ${4\choose 6}$  চলনে B বিন্দুতে এবং  ${2\choose 3}$  চলনে D-বিন্দুতে চিত্রিত হয়। ABCD একটি সামাস্তরিক হইলে C বিন্দুর স্থানাস্ক নির্ণয় কর।

5. x=3 অক্ষে প্রতিফ লত হইলে (2,3) বিন্দুর যে প্রতিবিদ্ধ পাওয়া যায়  $\binom{p}{q}$  চলনে ঐ বিন্দুকেও সেই প্রতিবিদ্ধ-বিন্দুতেই চিত্রিত করে।  $\binom{p}{q}$ -এর মান নির্ণয় কর।

6. y = -1 অক্ষে প্রতিফলিত হইলে P(4, 4) বিন্দুর প্রতিবিদ্ধ Q পাওয়া বায়। যে-চলন P-কে Q বিন্দুতে চিত্রিত করে তাহার মান নির্ণয় কর।

7. পর পর x=2 এবং x=5-এর উপর প্রতিফলনে P(1,1) বিন্দুর প্রতিবিম্ব Q হয়। কি পরিমাণ চলন P-কে Q বিন্দুতে চিত্রিত করিবে ?

8. x=y অক্ষে প্রতিফলিত হইলে P(3,5) বিন্দু Q বিন্দুতে প্রতিবিধিত হয় ।  $\binom{p}{q}$  চলনেও P বিন্দু র্যাদ Q বিন্দুতেই চিত্রিত হয় তবে  $\binom{p}{q}$ -এর মান নির্ণয় কর।

y. x+y=0-এর উপর প্রতিফলন ও  $\binom{p}{q}$  চলন  $(3,\ 2)$  বিন্তে চিত্রিত করে।  $\binom{p}{q}$ -এর মান কত ?

10. পর পর x=2 এবং y=2 অক্ষে প্রতিফলিত  $\mathbf{P}(1,1)$  বিন্দুর অন্তিম প্রতিবিম্ব  $\mathbf{Q}$  বিন্দু  $\begin{pmatrix} p \\ q \end{pmatrix}$  চলনে পুনরায়  $\mathbf{P}$  বিন্দুতে চিত্রিত হয়।  $\begin{pmatrix} p \\ q \end{pmatrix}$ -এর মান কত ?

#### 1'10. আবর্তনঃ

(I) 0 (বা মূলবিন্দুর) চারিদিকে 180° আবর্তনে P (a, b) বিন্দু যদি Q বিন্দুতে চিত্রিত হয়, তবে Q-বিন্দুর স্থানাম্ক নির্ণয় কর।

মৃলবিন্দু ০-এর চারিদিকে 180° আবর্তনে P(a, b) বিন্দুর প্রতিবিদ্ধ যেন এ হইরাছে। Pও Q হইতে ক্ল-অক্ষের উপর ধর্থাক্রমে PM ও QN লম্ব টানা হইল।

ত্ৰ 180° আবৰ্তিত হইয়া ০০ অবস্থানে আসায়,

ত P ≅ ত ; এবং ∠ POM ≃ বিপ্রতীপ ∠ QON ও সমকোণ PMO ≅ সমকোণ QNO.



- $\therefore$   $\triangle$ PMO  $\cong$   $\triangle$ QNO.
- .. PM = QN = -NQ = -b, 44? OM = -ON = -a.
- ∴ Q-এর স্থানাক (-a, -b).

জ্ঞ ষ্টব্য—০ বিন্দুর চারিদিকে 180° আবর্তনকে ০<sub>180°</sub> লিখিলে বলা যায় যে, ০<sub>180°</sub> আবর্তন (a, b) বিন্দুকে (–a, – b) বিন্দুতে চিত্রিত করে।

(II) মূলবিন্দু O–এর চারিদিকে 90° আবর্তন ( অর্থাৎ O<sub>90°</sub> বা O<sub>−90°</sub> আবর্তন ) (a, b) বিন্দুকে যে-বিন্দুতে চিত্রিভ করে তাহার স্থানান্ধ-নির্ণয়।



(i) (a, b) বিন্দুকে P ঘারা এবং উহার

০০০০ আবর্তনন্দনিত প্রতিবিধকে ০-ঘারা

স্ফুচিত করা হইল। P হইতে ৫-অক্ষের
উপর এবং ০ হইতে 

তু-অক্ষের উপর যথাক্রমে

চুক্র ও তুম লম্ব টানা হইল।

০০০০ আবর্তন M বিন্দুকে N বিন্দুতে এবং P বিন্দুকে Q বিন্দুতে চিত্রিত করায়,  $\overline{OM} \cong \overline{ON}$  এবং  $\overline{MP} \cong \overline{NQ}$ .

কিন্তু NQ ঋণাত্মক বলিয়া, NQ = -MP = -b, এবং ON = OM = a.



.'. Q বিন্দুর স্থানাক (-b, a),

(ii) আবার P(a, b) বিদ্যুর O\_១০০ আবর্তন-জনিত প্রতিবিম্বকে R-দ্বারা স্টতিত করা হইল।

P হইতে x-অক্ষের উপর  $\overrightarrow{PM}$  এবং R হইতে y-অক্ষের উপর লম্ব বেন  $\overline{RL}$ .

O<sub>-800</sub> আবর্তন P বিন্দুকে R বিন্দুতে এবং M বিন্দুকে L বিন্দুতে চিত্রিত করিয়াছে।

∴ R বিন্দুর স্থানাক (b, -a).

অতএব, O<sub>90</sub> আবর্তন (a, b)-কে (-b, a)-তে এবং O<sub>-90°</sub> আবর্তন (a, b)-কে (b, -a) বিন্দুতে চিত্রিভ করে।

(III) Q (h, k) বিন্দুর চারিদিকে 180° আবর্তন P (a, b) বিন্দুকে যদি P' বিন্দুতে চিত্রিত করে, ভবে P-এর স্থানাঙ্ক-নির্ণয়।

P, Q ও P' বিন্দু হইতে

%-অকের উপর যথাক্রমে PK, QL এবং

P'M লম্ব টানা হইল। আবার P

হইতে QL-এর উপর PN এবং Q হইতে

P'M-এর উপর যথাক্রমে PN ও QR

লম্ব টানা হইল।



∠PQN = ∠QP'R এবং সমকোণ PNQ = সমকোণ QRP'.

..  $\triangle$ PQN  $\cong$   $\triangle$ QP'R; ..  $\widehat{NP}$   $\cong$   $\widehat{RQ}$  এবং  $\widehat{NQ}$  =  $\widehat{RP}'$ .

অতএব, P'-এর ভূজের মান = OM = OL - ML = h - RQ = h - NP = h - LK = h - (OK + OL) = h - (a - h) = 2h - a:

এবং P'-এর কোটির মান= MP'= MR+ RP'= LQ+ NQ= LQ+ LQ- LN= 2LQ- KP= 2k-b.

.. P'-এর স্থানাক (2h-a, 2k-b).

#### উদাহরণমালা

- উদা 1. o মৃলবিন্দু হইলে নিম্লিখিত আবর্তন (৪, -2) বিন্দুকে কোন্ বিন্দুতে চিত্রিত করিবে ?
  - (i) O180°; (ii) O90°; (iii) O-90°.
- (i) O<sub>180</sub> আবর্তন (a, b) বিন্দুকে (-a, -b) বিন্দুতে চিত্রিত করে। এই <mark>স্থত্ত</mark> অনুসারে, O<sub>180</sub> আবর্তন (3, -2) বিন্দুকে (-3, 2) বিন্দুতে চিত্রিত করিবে।
  - (ii) Oao আবর্তন (a, b)-কে (-b, a) বিন্দৃতে চিত্রিত করে।
  - ∴ Оө०० আবর্তন (3, -2)-কে (2, 3) বিন্দুতে চিত্রিত করিবে।
  - (iii) O<sub>-90°</sub> (a, b)-কে (b, -a) বিন্দুতে চিত্রিত করে।
  - ∴ O<sub>-90°</sub> আবর্তন (3, -2)-কে (-2, -3) বিন্দুতে চিত্রিত করিবে।
- উদা: 2. ম্লবিন্দু ০ হইলে, (-4, 1) বিন্দুর চারিদিকে 180° আবর্তন (2, -3) বিন্দুকে কোন্ বিন্দুতে চিত্রিত করিবে ?
- (h, k) বিন্দুর চারিদিকে  $180^\circ$  আবর্তন (a, b)-কে (2h-a, 2k-b) বিন্দুতে চিত্রিত করে।
  - .'. (-4,1) বিন্দুর চারিদিকে  $180^\circ$  আবর্তন (2,-3) বিন্দুকে  $\overline{[2\times (-4)-2,\, 2\times 1+3]}$  বা (-10,5) বিন্দুতে চিত্রিত করিবে।
- উদা. 3. পর পর y-অক্ষ ও x=y অক্ষে প্রতিফলনের পর (h,q) বিন্দুর যে অন্তিম প্রতিবিদ্ধ পাওয়া যাইবে তাহা একটিমাত্র রূপান্তর প্রক্রিয়ায় পাওয়া যাইতে পারে কি? সম্ভব হইলে ঐ রূপান্তর-প্রক্রিয়াটি কি?

y-অক্ষে প্রতিফলন (h,q)-কে (-h,q) বিন্দুতে চিত্রিত করিবে। আবার x=y অক্ষে প্রতিফলিত হইলে (-h,q) বিন্দুর প্রতিবিদ্ধ হইবে (q,-h) বিন্দু এবং তাহাই আলোচ্য প্রশ্নে (h,q)-এর অন্তিম প্রতিবিদ্ধ। আমরা জানি,  $O_{90^\circ}$  আবর্তন, ( ষেখানে O মূলবিন্দু ) (a,b)-কে (-b,a) বিন্দুতে চিত্রিত করে। স্কতরাং  $O_{90^\circ}$ , এই একটিমাত্র রূপান্তর প্রক্রিয়ায় (h,q)-কে (q,-h) বিন্দুতে চিত্রিত করা সম্ভব।

## প্রশালা 4

- 1. মূলবিন্দুর চারিদিকে 90° আবর্তন হইলে নিম্নলিখিত বিন্তুলির প্রতিবিধের স্থানাক লিখ: (i) (2,3); (ii) (-3,2); (iii) (4,-5).
- 2. মূলবিন্দু ০ হইলে  $O_{-90^\circ}$  আবর্তন নিম্নলিখিত বিন্দুগুলিকে কোন্ বিন্তে চিত্রিত করিবে ? (i) (-2,3); (ii) (1,-1); (iii) (-3,-5).
- 3. 1 ও 2 নম্বর প্রশ্নে প্রদত্ত বিন্দুগুলি মূলবিন্দুর চারিদিকে 180° আবর্তিত হইলে, কোন্ কোন্ বিন্দুতে চিত্রিত হইবে?

- 4. নিম্নলিখিত বিন্তুলির চারিদিকে 180° আবর্তন (3, -5) বিন্তুক কোন কোন বিন্তুত চিত্রিত করিবে ?
  - (i) (1, 1); (ii) (-3, 5); (iii) (-2, -3).
- 5. পর পর x = y এবং y-অক্ষে প্রতিফলনে (a, b) বিন্দুর যে অন্তিম প্রতিবিষ্
  হয়, একটিয়াত্র কোন্ আবর্তনের সাহায্যে ঐ বিন্দুর একই প্রতিবিষ্ণ পাওয়া যায় ?
- 1°11. ভূইটি বিশূর মধ্যে দূরত্ব (Distance between two points)।

ছ্ইটি বিন্দুর স্থানান্ধ দেওয়া আছে ; উহাদের মধ্যে দ্বাত্থ নির্ণয় করিতে হইবে।
[ To find the distance between two points whose co-ordinates are given.]



 $P_1$  এবং  $P_2$  যেন ত্ইটি প্রদত্ত বিন্দু এবং উহাদের স্থানান্ধ যথাক্রমে যেন  $(x_1,y_1)$  এবং  $(x_1,y_2)$ . OX এর উপর  $P_1M_1$ ,  $P_2M_2$  এবং  $P_1M_1$ -এর উপর  $P_2R$  লম্ব টানা হইল।

ভাচা ইইলে  $P_2R = M_2M_1 = OM_1 - OM_2 = x_1 - x_2$ . এখন,  $P_1R = P_1M_1 - RM_1 = P_1M_1 - P_2M_2 = y_1 - y_2$ .

- . . PıRPı সমকোণী জিভুজে,  ${\rm P_1P_2}^{\, 2} \sim {\rm P_2R}^{\, 2} + {\rm P_1R}^{\, 2} = (x_1-x_2)^2 + (y_1-y_2)^3.$
- ..  $P_1P_2 = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ .

অনুসিদ্ধান্ত।  $P_3$  বিদ্ধি মূলবিন্দু ০-এর সহিত মিলিয়া গেলে,  $x_2=0$ ,  $y_2=0$ ;  $\therefore$   $P_1O=\sqrt{x_1}^2+y_1^2=$  মূলবিন্দু হইতে  $P_1$  বিন্দুর দূরত।

1'12. একটি খণ্ডরেখাকে নির্দিষ্ট অন্থপাতে বিভাজন।

[ Division of a segment in a given ratio. ]

(1)  $P_1P_3$  খণ্ডরেখাটিকে P বিন্দুতে  $m_1:m_2$  অমূপাতে অস্তঃস্থভাবে বিভাজন এবং P বিন্দুর স্থানান্ত-নির্ণয়।



ধ্রা যাক,  $P_1$ -এর স্থানাক,  $(x_1,\ y_1)$  এবং  $P_2$ -এর স্থানাক,  $(x_2,\ y_2)$ , এবং P বিলু  $P_1P_2$ -এর উপর এরপে অবস্থিত, যেন  $P_1P:PP_2::m_1:m_2$ .

P-এর স্থানাস্ক যেন (x, y). OX-এর উপর PM, P<sub>1</sub>M<sub>1</sub>, P<sub>2</sub>M<sub>2</sub> এবং <del>PM</del>-এর উপর P<sub>1</sub>R<sub>1</sub> ও P<sub>2</sub>M<sub>2</sub>-এর উপর PR<sub>2</sub> গ্রু টান। ইইল।

ভাষা ইইলে 
$$P_1R_1 = M_1M = OM - OM_1 = x - x_1$$
,
$$PR_2 = MM_2 = OM_2 - OM = x_2 - x,$$

$$R_1P = PM - R_1M = PM - P_1M_1 = y - y_1,$$

 $\text{QR} = P_2 M_2 - R_3 M_2 - P_2 M_2 - PM = y_3 - y.$ 

unda, APIRIP ଓ APRIP, अमृत्र,

$$\therefore \frac{m_1}{m_2} = \frac{P_1 P}{P P_2} = \frac{P_1 R_1}{P R_2} = \frac{x - x_1}{x_2 - x};$$

$$\therefore m_1(x_3-x)=m_2(x-x_1) ;$$

$$\therefore \quad \alpha = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$

$$\Psi(\vec{q})\vec{q}, \frac{m_1}{m_2} = \frac{P_1P}{P_2} = \frac{PR_1}{P_2R_2} = \frac{y - y_1}{y_2 - y};$$

$$\therefore m_1(y_1 - y) = m_2(y - y_1) ;$$

$$\therefore y = \frac{m_1 y_3 + m_2 y_1}{m_1 + m_2}.$$

... P-13 31-15, 
$$\binom{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1u_2 + m_2u_1}{m_1 + m_3}$$
.

(2)  ${f Q}$  বিন্দু  ${f P_1P_2}$ কে  $m_1:m_3$  অনুপাতে বহিবিভক্ত করিলে উহার স্থানাম্ব নির্ণয় করিতে হইবে।

[ To find the co-ordinates of Q which externally divides  $P_1P_2$  in the ratio  $m_1:m_3$ .]

ধরা যাক,  $\mathbf{Q}$  বিন্দৃটি বর্ধিত  $\mathbf{P_1P_2}$ -এর উপর এরপভাবে অবস্থিত যে,  $\mathbf{P_1Q}:\mathbf{P_2Q}=m_1:m_2$  এবং  $\mathbf{Q}$ -এর স্থানার  $(x_3,y_3)$ .



OX-এর উপর P<sub>1M1</sub>, P<sub>2M2</sub>, QM3 এবং QM3-এর উপর P<sub>1R1</sub> এবং P<sub>2R2</sub> লম্ব টানা হইল।

তাহা হইলে 
$$\mathsf{P_1R_1} = \mathsf{M_1M_3} = \mathsf{OM_3} - \mathsf{OM_1} = x_3 - x_1,$$
 
$$\mathsf{P_2R_2} = \mathsf{M_2M_3} = \mathsf{OM_3} - \mathsf{OM_3} = x_3 - x_2,$$
 
$$\mathsf{QR_1} = \mathsf{QM_3} - \mathsf{R_1M_3} = \mathsf{QM_3} - \mathsf{P_1M_1} = y_3 - y_1,$$
 
$$\mathsf{QR_2} = \mathsf{QM_3} - \mathsf{R_2M_3} = \mathsf{QM_3} - \mathsf{P_2M_2} = y_3 - y_2.$$

একবে, △P1QR1 এবং △P2QR2 সদৃশ;

$$\therefore \frac{m_1}{m_2} = \frac{P_1Q}{P_2Q} = \frac{P_1R_1}{P_2R_2} = \frac{x_3 - x_1}{x_3 - x_2} :$$

$$\therefore m_1x_3 - m_1x_2 = m_2x_3 - m_2x_1;$$

$$(m_1 - m_2)x_3 = m_1x_2 - m_2x_1 ;$$

$$\therefore x_8 = \frac{m_1 x_2 - m_2 x_1}{m_1 - m_2}.$$

$$\frac{m_1}{m_2} = \frac{P_1Q}{P_2Q} = \frac{QR_1}{QR_2} = \frac{y_3 - y_1}{y_3 - y_2};$$

$$... m_1 y_8 - m_1 y_2 = m_2 y_8 - m_2 y_1 ;$$

$$\therefore (m_1 - m_2)y_3 = m_1y_2 - m_2y_1 ;$$

$$\therefore y_3 = \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2}.$$

ে Q-এর স্থানাম্ম 
$$\binom{m_1x_2-m_2x_1}{m_1-m_2}$$
,  $\frac{m_1y_2-m_2y_1}{m_1-m_2}$ .

তালুসিদ্ধান্ত  $\circ$  P বিন্দু  $P_1P_2$ -কে সমন্বিধণ্ডিত করিলে, অর্থাৎ  $P_1P_2$ -এর মধ্যবিন্দু হইলে,  $m_1:m_2=1$ , অর্থাৎ  $m_1=m_2$ .

$$x = \frac{m_1 x_2 + m_1 x_1}{m_1 + m_1} = \frac{m_1 (x_2 + x_1)}{2m_1} = \frac{x_1 + x_2}{2},$$

$$y = \frac{m_1 y_2 + m_1 y_1}{m_1 + m_1} = \frac{m_1 (y_2 + y_1)}{2m_1} = \frac{y_1 + y_2}{2}.$$

### উদাহরণমালা

উদা. 1. মৃলবিন্দু হইতে (৪, 12) বিন্দুর দ্রত্ব নির্ণয় কর। মূলবিন্দুর স্থানাক (০, ০);

ে নির্বেয় দ্বার = 
$$\sqrt{x^2 + y^2} = \sqrt{8^2 + 12^2} = \sqrt{64 + 144}$$
  
=  $\sqrt{208} = 4\sqrt{13}$ .

উদা. 2. (13, 7) এবং (8, -5) বিন্দু হয়ের মধ্যে দ্রম্থ নির্ণয় কর। ধরা যাক,  $P_1$  বিন্দুর স্থানাঙ্গ (13, 7) এবং  $P_2$  বিন্দুর স্থানাঙ্গ (8, -5);

উদা 3. a-এর মান যাহাই হউক না কেন, মূলবিন্দু হইতে  $(b\cos a, b\sin a)$  বিন্দুর দূরত্ব সর্বনাই b-এর সমান।

নির্দের দ্রন্থ = 
$$\sqrt{(b \cos a)^2 + (b \sin a)^2}$$
[ যেহেতু ম্লবিন্তর স্থানান্ধ (0, 0) ]
$$= \sqrt{b^2 \cos^2 a + b^2 \sin^2 a} = b \sqrt{\cos^2 a + \sin^2 a} = b \times 1 = b.$$

উদা. 4. প্রমাণ কর যে, (2, 2), (-2,-2) এবং (-2√3, 2√3) বিন্দুত্রর একটি সমবাছ তিভূজের শীর্ষবিন্দু।

ধরা যাক A (2, 2), B (-2, -2) এবং C (-2√3, 2√3) ত্রিভূজের তিনটি শীর্ষবিন্দু।

$$AB = \sqrt{(2-(-2))^2 + (2-(-2))^2} = \sqrt{32} = 4\sqrt{2};$$

BC = 
$$\sqrt{(-2\sqrt{3}+2)^8+(2\sqrt{3}+2)^8}$$
  
=  $\sqrt{12+4-8\sqrt{3}+12+4+8\sqrt{3}} = \sqrt{32}=4\sqrt{2}$ ;  
CA =  $\sqrt{(-2\sqrt{3}-2)^8+(2\sqrt{3}-2)^8}$   
=  $\sqrt{12+4+8\sqrt{3}+12+4-8\sqrt{3}} = \sqrt{32}=4\sqrt{2}$ .

ষেহেতু বাহু-তিনটির প্রত্যেকটির দৈর্ঘ্য =  $4\sqrt{2}$ , অতএব, A, B, C সমবাহ বিভূজের শীর্থবিন্দুত্রয়।

উদা. 5. (x,4) এবং (2,1) বিন্দুখয়ের মধ্যে দ্রত্ব 5 হইলে, x-এর মান কড হইবে ?

প্রদান্ত বিন্দ্রের মধ্যে দূরত্ব =  $\sqrt{(x-2)^2+(4-1)^2}$ .

$$(x-2)^3+9=5^3=25$$
;  $(x-2)^3=16$ ;  $(x-2)^3=16$ ;  $(x-2)^3=16$ ;

$$x = 2 \pm 4 = 6$$
  $\sqrt{1}$ ,  $-2$ .

উদা. 6. (x, y) বিন্টি (4, 5) এবং (-2, 3) বিন্তৃইটি হইতে সমদ্রবর্তী। প্রমাণ কর বে, 3x + y = 7.

(x, y) এবং (4, 5) বিন্দুদ্বরের মধ্যে দূরত্ব =  $\sqrt{(x-4)^2 + (y-5)^2}$ .

(x, y) এবং (-2, 3) বিন্দ্রয়ের মধ্যে দ্রম্থ =  $\sqrt{(x+2)^2 + (y-3)^2}$ .

যেহেতু (x, y) বিন্টি (4, 5) এবং (-2, 3) বিন্দ্র হইতে সমদূরবর্তী,

 $\sqrt{(x-4)^2 + (y-5)^2} = \sqrt{(x+2)^2 + (y-3)^2}$ ;

অথবা,  $(x-4)^2 + (y-5)^2 = (x+2)^2 + (y-3)^2$ :

অথবা, -8x-4x-10y+6y=4+9-16-25;

ज्यता, 12x + 4y = 28;

3x + y = 7.

উদা 7. तिथा ७ (४, (८, ६) এবং (१६, १२) विन्तृष्ट्यत मः दांखक मत्रन द्रिथी मुनविन् मित्रा शहिरा ।

$$\begin{aligned} \mathsf{OP_1} &= \sqrt{16^3 + 12^2} = 20 \ ; \\ \mathsf{P_1P_2} &= \sqrt{(16 - 8)^2 + (12 - 6)^2} = \sqrt{8^2 + 6^2} = 10 \ ; \\ \mathsf{OP_3} &= \sqrt{8^2 + 6^2} = 10. \end{aligned}$$

 $P_1 + P_1 = 10 + 10 = 20 = OP_1$ 

∴ O, P₂, P₁ একই সরল রেধায় অবস্থিত।

উদা. 8. (4, 6) এবং (10, 12) বিন্দুছয়ের সংযোজক সরল রেথাকে (6, 8) বিন্দু কি অন্তপাতে বিভক্ত করে, তাহা নির্ণয় কর। ধরা যাক, নির্ণেয় অনুপাত =  $m_1 : m_2$ . স্তুত্র 1'12 হইতে দেখা যায়,

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}.$$

$$\therefore 6 = \frac{m_1 \times 10 + m_2 \times 4}{m_1 + m_3}$$

অধবা,  $6m_1 + 6m_2 = 10m_1 + 4m_2$ ; বা,  $-4m_1 = -2m_2$ ;

$$\therefore \quad \frac{m_1}{m_2} = \frac{-2}{-4} = \frac{1}{2}.$$

∴ নির্ণেয় অমুপাত=1:2.

[ ফ্রষ্টবর্ট ।  $y=rac{m_1\eta_2+m_2\eta_1}{m_1+m_2}$  হইতেও একই অমুপাত নির্ণীত হইবে। ]

উদা. 9. যে বিন্দৃটি (13, -1) এবং (8, 9) বিন্দুছয়ের সংযোজক সরল রেখাকে 2:3 অফুপাতে অন্তবিভক্ত করে, উহার স্থানান্ধ নির্ণয় কর।

ধরা যাক, নির্ণের স্থানাম = (x, y);  $2:3=m_1:m_2$ .

অমুচ্ছেদ 1'12 (1)-এর সূত্র ২ইতে পাই,

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} = \frac{2.8 + 3.13}{2 + 3} = \frac{55}{5} = 11;$$
  
$$m_1 y_2 + m_2 y_1 = 2 \times 9 + 3(-1) = 15 = 3$$

$$y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} = \frac{2 \times 9 + 3(-1)}{2 + 3} = \frac{15}{5} = 3$$

... নির্ণেয় স্থানাক = (11, 3).

উদা 10. (10, 1) এবং (4, 8) বিন্দুর্যের সংযোজক সরল রেখাকে যে বিন্দু 3:4-এর অন্তুপাতে বহিবিভক্ত করে, উহার স্থানান্ধ নির্ণয় কর।

ধরা যাক, নির্পের স্থানাম =  $(x_8, y_8)$ ;  $3:4=m_1:m_2$ .

1'12 (2)-এর স্বত্ত হইতে পাই,

$$x_3 = \frac{m_1 x_2 - m_2 x_1}{m_1 - m_2} = \frac{3 \times 4 - 4 \times 10}{3 - 4} = \frac{-28}{-1} = 28$$
;

$$y_8 = \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2} = \frac{3 \times 8 - 4 \times 1}{3 - 4} = \frac{20}{-1} = -20.$$

· . নিৰ্ণেয় স্থানাম = (28, -20).

উদা. 11. দেখাও যে, (9, -2), (10, 6), (-1, 6) এবং (-2, -2) বিন্দু-চতৃষ্টয় একটি সামান্তরিকের শীর্ষবিন্দু। [কোন চতুর্জার কর্ণবয় পরস্পরকে সমন্বিধণ্ডিত করিলে, চতুর্জাট সামাস্তরিক
—এই জ্যামিতিক শর্তের উপর আলোচ্য প্রশ্নের সমাধান নির্ভর করে।]

ধরা যাক, A (9, −2), B (10, 6), C (−1, 6) এবং D (−2, −2) বিন্দুগুলি চতু ভূজটির কৌণিক বিন্দু।

এবং কর্ণন্বয়  $\overline{AC}$  এবং  $\overline{BD}$ -এর মধ্যবিন্দুর স্থানান্ধ যথাক্রমে  $(x_1,y_1),(x_2,y_2).$ 

AC-এর মধ্যবিন্ধ স্থানান্ধ 
$$x_1 = \frac{9-1}{2} = 4$$
,  $y_1 = \frac{-2+6}{2} = 2$ .

BD-এর মধ্যবিন্দ্র স্থানান্ধ 
$$x_2 = \frac{10-2}{2} = 4$$
,  $y_3 = \frac{6-2}{2} = 2$ .

- ·· (v1, y1) এবং (x2, y3) বিন্দুদ্ধ একই বিন্দু।
- .. AC এবং BD পরস্পরকে সমদ্বিখণ্ডিত করে।
- .'. ABCD একটি সামাস্তরিক।

উদা- 12. (3, 3), (10, 4) এবং (2, 10) বিন্দুত্তম হইতে সমদ্রবর্তী বিন্টির স্থানাক নির্ণয় কর।

নির্ণেষ্ট স্থানাক বেন (x, y).

অন্তুচ্ছেদ 1'11-এর স্থত্র অমুসারে

$$\sqrt{(x-3)^2 + (y-3)^2} = \sqrt{(x-10)^2 + (y-4)^2} = \sqrt{(x-2)^2 + (y-10)^2}$$

ইহা হইতে পাওয়া যায়,

$$(x-3)^2 + (y-3)^2 = (x-10)^2 + (y-4)^2 \qquad \cdots \qquad (i)$$

$$(x-10)^2 + (y-4)^2 = (x-2)^2 + (y-10)^2$$
 ... (ii)

(i) হইতে -6x+9-6y+9=-20x+100-8y+16; অথবা, 14x+2y=98; অথবা, 7x+y=49; ··· (iii)

(ii) হইতে 
$$-20x+100-8y+16=-4x+4-20y+100$$
;  
অথবা,  $-16x+12y=-12$ ;  
অথবা,  $4x-3y=3$ ; ··· (iv)

- (iii) ও (iv) সমীকরণছরের সমাধান করিরা, x=6 এবং y=7 পাওয়া বার।
- .'. নিৰ্ণেয় স্থানাম্ব (6, 7).

উদা 13. ABC ত্রিভুজে BC-এর মধ্যবিদ্ D. প্রমাণ কর বে,
AB<sup>2</sup> + AC<sup>2</sup> = 2(AD<sup>2</sup> + BD<sup>2</sup>).

B-কে মৃলবিন্দু, বৰ্ধিত BC-কে  $\alpha$ -অক্ষরেখা, এবং BC-এর উপর অন্ধিত লম্ব BY-কে  $\alpha$ -অক্ষরেখা, ধরা হইল।  $\therefore$  B-এর স্থানান্ধ (0,0), এবং BC =  $\alpha$  ধরিলে, C-এর স্থানান্ধ (a,0), D-এর স্থানান্ধ  $\left(\frac{a}{2},0\right)$ -



A-এর স্থানাক যেন  $(x_1, y_1)$ . তাহা হইলে,

$$\begin{aligned} \mathsf{AB}^2 + \mathsf{AC}^2 &= (x_1^2 + y_1^2) + (a - x_1)^2 + y_1^2 \\ &= 2x_1^2 + 2y_1^2 - 2ax_1 + a^2 \end{aligned}$$
 
$$= 2(\mathsf{AD}^2 + \mathsf{BD}^2) = 2\left[\left\{\left(x_1 - \frac{a}{2}\right)^3 + y_1^2\right\} + \left(\frac{a}{2}\right)^3\right] \\ &= 2x_1^3 + 2y_1^2 - 2ax_1 + a^3.$$

.. 
$$AB^2 + AC^2 = 2(AD^2 + BD^2)$$
.

উদা 14. ABC জিভূজে D, E, F যথাক্তমে BC, CA এবং AB বাছর মধ্য বিন্দু।
G বিন্দু AD-কে 2:1 অন্তপাতে বিভক্ত করিলে, G-এর স্থানাম্ব নির্ণয় কর; এবং
প্রমাণ কর যে, G বিন্দু BE ও CF উভয়কেই একই অন্তপাতে ভাগ করিবে।

ইহা হইতে প্রমাণ কর যে, ত্রিভুজের মধ্যমাত্রয় সমবিন্দু।

A, B, C-এর স্থানার যেন যথাক্রমে (x1, y1), (x2, y2), (x3, y3).

$$\therefore \quad \text{D-AR Winite}, \begin{pmatrix} x_2 + x_3, y_4 + y_5 \end{pmatrix}.$$

∴ G-এর স্থানাম, (æ, y) হইলে,

$$x = \frac{2 \times \frac{x_2 + x_3 + 1 \times x_1}{2} - x_1 + x_2 + x_3}{2 + 1} = \frac{x_1 + x_2 + x_3}{3}$$

অহরবে, 
$$y = \frac{y_1 + y_2 + y_3}{3}$$
.

এইরপে প্রমাণ করা যায় যে, যে বিন্দুছয় BE এবং  $\overline{\text{CF-co}}$  2:1 অমুপাতে ভাগ করে, তাহাদের স্থানান্ধ  $\binom{x_1+x_2+x_3}{3}$ ,  $\binom{y_1+y_2+y_3}{3}$  অর্থাৎ G বিন্দু  $\overline{\text{AD}}$ ,  $\overline{\text{BE}}$  এবং  $\overline{\text{CF-u}}$ র প্রত্যেকটির উপর অবস্থিত।

ষ্মতএব, মধ্যমাত্রয় একবিন্দুগামী।

বিশেষ জপ্তব্য। G বিদ্দকে ABC ত্রিভূজের ভরকেন্দ্র (centroid) বলে। অতএব কোন ত্রিভূজের ভরকেন্দ্রের স্থানাক হইবে

[  $\frac{1}{3}$  ( শীর্ষবিন্দুত্রের x স্থানাঙ্কের যোগফল ),  $\frac{1}{3}$  ( শীর্ষবিন্দুত্রের y স্থানাঙ্কের যোগফল )]।

উদা. 15. A $(x_1, y_1)$ , B $(x_2, y_2)$  এবং C $(x_8, y_3)$  কোন ত্রিভূজের শীর্ষবিন্দু এবং a,b,c ত্রিভূজের বাহু হইলে, দেখাও যে, অন্তঃকেন্দ্রের স্থানান্ধ  $ax_1+bx_2+cx_3$ , a+b+c a+b+c

ত্রিভূজটির কোণত্রয়ের সমদ্বিধগুকগুলি যেন। বিন্দুতে মিলিত হইয়াছে, এবং AI ব্যিত হইয়া যেন D বিন্দুতে BC-এর শহিত মিলিত হইয়াছে।



অতএব, BD:DC=AB: AC=c:b.

অতএব, D বিন্দু BC-কে c: b-এর অমুপাতে বিভক্ত করিয়াছে।

ে D-এর স্থানাক 
$$\begin{pmatrix} cx_3+bx_2, cy_3+by_2\\ c+b \end{pmatrix}$$
.

CI, ∠ACD-এর সমদ্বিগণ্ডক বলিয়া.

BI, ∠ABD-এর সমন্বিখণ্ডক বলিয়া,

$$\therefore \quad \frac{AI}{ID} = \frac{AC}{DC} = \frac{AB}{BD} = \frac{AC + AB}{DC + BD} = \frac{b + c}{a}.$$

1-এর স্থানাক (x, y) হইলে,

$$x = \frac{(b+c) \times \frac{(cx_3 + bx_2)}{(c+b)} + ax_1}{b+c+a}, \quad y = \frac{(b+c) \times \frac{(cy_3 + by_2)}{(c+b)} + ay_1}{b+c+a},$$

$$\text{ with } x = \frac{ax_1 + bx_2 + cx_3}{a + b + c}, \quad y = \frac{ay_1 + by_2 + cy_3}{a + b + c}.$$

#### প্রগ্রমালা 5

1. মূলবিন্দু হইতে নিম্লিখিত বিন্দুগুলির দ্বায় নির্ণয় কর (Find the distance between the origin and the following points): (3, 4), (-4, 3), (-8, -6), (12, 5).

2 इटेंटि 6 व्यदश्य विभूष्यस्य भएमा मृत्र निर्भय कर :

- 2. (2, 3) এবং (5, 7).
- 3. (4, -7) এবং (-1, 5).
- 4. (a, 0) এবং (0, b).
- 5. (b+c, c+a) এবং (c+a, a+b).
- 6. (am, 2, 2am, ) এবং (am, 2, 2am, 2).
- 7.  $(x_1, 2)$  এবং (3, 4) বিন্দুরয়ের মধ্যে দূরত্ব 8 হইলে,  $x_1$ -এর মান নির্ণয় কর।
- 8. ৪-এর বে-কোন মানের জন্ম ম্লবিন্দু এবং (a cos θ, a sin θ) বিন্দ্রির সংযোজক সরল রেখা সর্বদা α-এর সমান।
- 9. দেখাও যে, (3, 5) এবং (6, 10) বিন্দুর্যের সংযোজক সরল রেখা মুগবিন্দু-গামী।
- 10. AB সরল রেথার দৈর্ঘ্য 10, A এবং B-এর স্থানান্ধ যথাক্রমে (2,-3) এবং  $(10,y_1)$  হইলে,  $y_1$ -এর মান নির্ণয় কর।
- 11. প্রমাণ কর যে, (2a, 4a), (2a, 6a) এবং  $(2a + \sqrt{3}a, 5a)$  বিন্দুত্রয় সংমুক্ত করিলে, একটি সমবাহু ত্রিভুজ পাওয়া গাইবে, যাহার প্রত্যেক বাহুর দৈর্ঘ্য = 2a.
- 12. প্রমাণ কর বে, (-2, -1), (1, 0), (4, 3) এবং (1, 2) বিন্দৃচভৃষ্টর যথাক্রমে যোগ করিলে একটি সামান্তরিক উৎপন্ন ছইবে।

( দেখা ও যে বিপরীত বাহগুলি সমান, অথবা কর্ণছয়ের মধ্যবিন্দ্রয় একই।)

- 13. প্রমাণ কর যে, (a,b) (a+h,b+k), (a+h+h',b+k+k'), এবং (a+h',b+k') বিশ্চতুষ্ট্র যথাক্রমে যোগ করিলে একটি সামান্তরিক উৎপন্ন হইবে।
- 14.  $(x_1, y_1), (x_2, y_2), (x_8, y_8)$  এবং  $(x_4, y_4)$  বিন্দুচ্ছুষ্ট্য যথাক্রমে যোগ করিলে উৎপন্ন ক্লেক্রটি একটি সামাস্থরিক হইলে, প্রমাণ কর যে,

$$x_1 + x_3 = x_2 + x_4$$
 (44)  $y_1 + y_3 = y_2 + y_4$ .

- 15. প্রমাণ কর বে, (0, 0) (a, 0), (0, b) বিন্দুত্তয় একটি সমকোণী ব্রিভ্রের কৌণিক বিন্দু ।
- 16. A, B, C, D-এর স্থানাদ যথাক্রমে (2, −2), (8, 4), (5, 7) এবং (−1, 1). প্রমাণ কর যে, ABCD একটি আয়তক্ষেত্র।
- 17. প্রমাণ কর যে, (3, 0), (6, 4) এবং (-1, 3) বিন্দুত্রর সংযুক্ত করিলে একটি সমকোণী ত্রিভূজ উৎপন্ন হইবে।
- 18. A, B এবং C-এর স্থানাত্ব যথাক্রমে (3, 1), (1, 3) এবং (8, 8)। প্রমাণ কর বে, ABC একটি সমন্বিবাহু জিতুল।
- 19. প্রমাণ কর যে, A, B, C এবং D-এর স্থানান্ধ যথাজমে (-7, 2), (-1, -4), (5, 2) এবং (-1, ৪) হইলে, ABCD একটি বর্গক্ষেত্র হইবে।
- 20. A, B, C এবং D-এর স্থানাক যথাক্রমে (1,1), (2,3), (-2,2) এবং  $(-\frac{1}{8},\frac{8}{18})$ । প্রমাণ কর শে, D বিশু ABC ত্রিভূজের পরিকেন্দ্র।
- 21. প্রমাণ কর যে,  $(a\cos\theta_1, a\sin\theta_1)$ ,  $(a\cos\theta_2, a\sin\theta_2)$ ,  $(a\cos\theta_3, a\sin\theta_3)$  এবং  $(a\cos\theta_4, a\sin\theta_4)$  বিন্দৃচ চুইয় মূলবিন্দৃ ঘটতে সমদ্রবর্তী, স্কুতরাং বিন্দৃত্তইয় একটি বুজন্ব চতু হলের শীশবিন্দু।
- 22. P এবং Q-এর স্থানান্ধ (-7, 3), (14, -6)। প্রমাণ কর বে, P, Q এবং O (মুলবিন্দু) সমরেখ।

[ প্রমাণ কর ষে, OP+OQ=PQ.]

- 23. প্রমাণ কর যে, (12, 5), (-12, 5), (12, -5). (-12, -5) বিন্দ্রভূষ্ট্য মূলবিন্দ্ হউতে সমদ্রবর্তী। উহা হউতে দেখাও যে, বিন্দৃরভূষ্ট্য সমন্ত ।
- 24. (x, y) বিশুটি (3, 4) এবং (1, -2) হইতে সমদ্রবর্তী হইলে, প্রমাণ কর বে, x + 3y = 5.
- 25. A এবং B বিন্দুর স্থানাম যথাক্রমে (1, 3), (2, 7). P বিন্দু যদি ⊼B শরল রেপাকে 3: 4 অসপাতে (i) অন্থবিভক্ত, (ii) বহিবিভক্ত করে, তবে P-এর স্থানাস্থ নির্ণয় কর।
- 26. A 9 B বিন্দুর স্থানাত্ত (-3, -5) ও (6, 10). প্রমাণ কর যে, মি মুলবিন্দু বারা 1:2 অহুপাতে বিভক্ত।
- 27. (x, y) বিন্দে (৪, ১) ও (4, 9) বিন্দেয় হইতে সমদ্রবর্তী হইলে, দেখাও যে, x-y+1=0.
- 28. (x, y) বিন্দুটি (3, 3) এবং (-1, 7) বিন্দুছয় হইতে সমদ্রবর্তী হইলে, দেখাও বে, x-y+4=0.

- 29. (2, 9), (3, 2) এবং (6, 1) বিন্দু হয় হাইতে সমদ্রবর্তী বিন্দৃটির স্থানাক নির্ণয় কর।
- 30. (-1, 6), (3, 2) এবং (7, 6) বিক্তম হততে সমদ্রবাতী বিক্টির জানাম্ব নির্বয় কর।
- 31. কোন্ শর্ড শিক্ষ হাইলে, (৫, ৫) বিন্দৃটি (৪, ৪) এবং (7, ৪) বিন্দৃদ্ধ হাইতে সমদ্ববর্তী হাইবে।
- 32. A এবং B-এর স্থানাস্থ মধাক্ষে (1, −2) এবং (−3, 4). P এবং Q, AB-কে ভিন্সমান খংশে বিভক্ত কবিলে, P এবং Q এর স্থানাস্থ নির্ণয় কর।
- 33. A, B এবং C-এর স্থানাত মণাক্রম (1, −1), (4, 3) এবং (5, −4) ছউলে, প্রমাণ কর যে, ABC তি হুফ সমকোণী সম্ভিতাত হউবে।
- 34. প্রমাণ কর যে, (2, 5), (5, 9), (9, 12) এবং (6, ৪) বিন্দুচতুইয় একটি রম্বদের কৌণিক বিন্দু।
- 35. यमि A, B, C, P, Q এবং R এই ১য়টি বিন্দুর স্থানাক যথাক্রমে (2, 3), (3, -4), (8, -7), (4, -3), (6, -5) এবং (3, 0) ২য়, ভাহা ১ইলে প্রমাণ কর যে, ABC এবং PQR বিভূজ্যার একট ভরকেন্দ্র (centroid) হইবে।
- 36. প্রমাণ কর যে, কোন ব্রিজুজের ছই বাধর মধ্যতিকুর সংযোজক সরল রেখা তৃতীয় বাছর অধ্যংশ হইবে।
- 87. প্রমাণ কর যে, কোন চতু ইজের বিপরীত বাতওলির মধ্যবিদ্দম্ছ যুক্ত করিয়া যে তুই মরল রেখা পাওয়া যায়, ভাষারা প্রস্পরকে সম্থিহন্তিত করে।
- 1°13. বিভূতিভাৱ ক্ষেত্র সানাজের স্থানার বিশ্বতিভাৱ ক্ষেত্র প্রাথা বিশ্বতিভাৱ ক্ষেত্র প্রাথা বিশ্বতিভাৱ বিশ্ব

ট্রাপিজিয়নের কে ফেল (the area of a Trapezium) I



ধর, ABCD যেন একটি ট্রাপিজিখন; এবং উহার AB ও CD বাছৰ্থ যেন ব্যাস্থ্যাবা। AB-এর দৈর্ঘ্য যেন a ও CD-এর দৈর্ঘ্য যেন b. টেট-এর উপর AM এবং AB-এর উপর তম লম টানা হইল। ... AMCN একটি আয়তক্ষেত্র।

মুতরাং, AM = CN = p হইলে,

ABCD-এর ক্ষেত্রফল =  $\triangle$  ABC +  $\triangle$  ACD =  $\frac{1}{2}ap + \frac{1}{2}bp = \frac{1}{2}(a+b)p$ ; অর্থাৎ ট্রাপিজিরমের ক্ষেত্রফল = ( সমান্তরাল বাহুছরের সমষ্টির অর্থভাগ )  $\times$  ( এই বাহুছরের মধ্যের দূরত্ব )।

1°14. কোন ত্রিভূজের কৌণিক বিন্ত্রের স্থানান্ধ দেওয়া থাকিলে, উহার ক্ষেত্রফল-নির্ণয়।

[ To find the area of a triangle, having given the co-ordinates of its angular points.]



ABC গ্রিস্থাজর কোণিক বিন্দুত্র A, B এবং C-এর স্থানাক যেন যথাক্রমে  $(x_1, y_1), (x_2, y_3)$  এবং  $(x_3, y_3)$ .

x-আক্ষ (OX)-এর উপর  $\overline{AL}$ ,  $\overline{BM}$  এবং  $\overline{CM}$  লম্ব টানা হইল। তাহা হইলে, ABC জিভুজের ক্ষেত্রফলকে  $\triangle$  বারা স্থাচিত করিলে,

 $\Delta$  = ট্রাপিজিয়ম ALNC + ট্রাপিজিয়ম BMNC - ট্রাপিজিয়ম ALMB

 $=\frac{1}{2}(LA + NC) LN + \frac{1}{2}(NC + MB) NM - \frac{1}{2}(LA + MB) LM$ 

 $= \frac{1}{2}[(y_1 + y_3)(x_3 - x_1) + (y_3 + y_3)(x_2 - x_3) - (y_1 + y_2)(x_3 - x_1)]$ 

 $= \frac{1}{2}[x_8y_1 + x_3y_3 - x_1y_1 - x_1y_3 + x_2y_2 + x_2y_3 - x_8y_2 - x_2y_8 + x_1y_2 + x_1y_1 - x_2y_1 - x_2y_2]$ 

 $= \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3).$ 

জ্ঞ কৈব্য । এই স্থ্ৰটি সহজে মনে রাখিবার জন্ম প্রপৃষ্ঠার চিত্রটি দ্রষ্ট্রা। চিত্রে শীর্ষবিন্দু-তিনটির স্থানাম্ব পর পর লিখিয়া, পুনরায় প্রথমটির স্থানাম্ব নিচে লেখা হইয়াছে। তাহার পর বজ্ঞগুণন-প্রণালীর কোন্টিকে কোন্টি দ্বারা গুণ করিতে হইবে তাহা কোনাকুনি তীরচিহ্ন দ্বারা এবং কোন্ ক্রমে গুণ করিয়া ধাইতে হইবে তাহা অহুভূমিক তীরচিহ্ন ধারা নির্দেশ করা হইয়াছে, নিয়গামী তীরচিহ্নের গুণফলগুলিকে ধনাত্মক

এবং উর্দ্বগামী তীরচিছের গুণফলগুলিকে ঋণাত্মক ধরিতে হইবে। তাহার পর উহাদের সমষ্টিকে তুই দারা ভাগ করিলে, ভাগফলই নির্ণের ক্ষেত্রফল হইবে।

এই প্রসঙ্গে মনে রাখিতে হইবে যে ( $x_1$ ,  $y_1$ ), ( $x_2$ ,  $y_2$ ) এবং ( $x_3$ ,  $y_3$ ) বিন্দুগুলিকে এরপ ক্রমে লইতে হইবে যে যদি ত্রিভুজটির পরিসীমা ধরিয়া কোন লোক যুরিয়া আদে, তাহা হইলে ত্রিভুজটি সর্বদা তাহার বাম দিকে থাকে, অর্থাং ঘড়ির কাঁটা যে দিকে ঘুরে, তাহার বিপরীত দিক্ ক্রমে (anticlockwise) ত্রিভুজের শীর্ষ-বিন্দুগুলি লইয়া ক্লেক্রফল বাহির করিতে হইবে। যদি ইহার বিপরীত দিকে অর্থাং ঘড়ির কাঁটার গতির দিকে (clockwise) নেওয়া হয়, তাহা হইলে ক্লেক্রফলের পরিমাণ ঋণাত্মক হইবে। যাহা অসম্ভব। দেক্লেক্তে শুক্রটির সংখ্যা-



গুলির চিহ্ন বদলাইয়া ( অর্থাৎ '+' স্থলে '-' এবং '-' স্থলে '+') লিখিয়া ক্ষেত্রফল নির্ণয় করিলেই ক্ষেত্রফল পাওয়া যাইবে।

ভাষুসি. 1. একটি ত্রিভুজের কৌণিক বিন্দুত্রের স্থানাম্ব (0, 0),  $(x_1, y_1)$  এবং  $(x_2, y_2)$  হইলে, উহার ক্ষেত্রফল  $= \frac{1}{2}(x_1y_2 - x_2y_1)$ .

ভাষাসি. 2. A, B, C বিন্দুত্রর সমরেথ হইলে,  $\triangle = 0$ , এবং বিপরীতক্রমে  $\triangle = 0$  হইলে A, B, C সমরেথ হইবে।

#### উদাহরণমালা



উদা 1. কোন ত্রিভুজের শীর্ষ বিন্দুত্রয়ের স্থানাম্ব (5, 7), (9, 4) এবং (7, 10), উহার ক্ষেত্রফল নির্ণয় কর। ক্ষেত্রফল =  $\frac{1}{2}[5.4 - 9.7 + 9.10 - 7.4 + 7.7 - 5.10]$ 

 $= \frac{1}{3}[20 - 63 + 90 - 28 + 49 - 50]$  $= \frac{1}{2}[159 - 141] = \frac{1}{2}.18 = 9.$ 

উদা. 2. প্রমাণ কর যে, (2, 6), (5, 9) এবং (9, 13) বিদ্রের সমরের (collinear).

তিনটি বিন্দু একই সরল রেখার অবস্থিত হইলে, উহাদিগকে শীর্ণবিন্দু লইয়া অঙ্কিত ত্রিভূজের ক্ষেত্রফল = 0.

প্রদত্ত বিন্দৃত্তয় দারা গঠিত ত্রিভূজের ক্ষেত্রফল

 $=\frac{1}{2}[2.9-5.6+5.13-9.9+9.6-2.13]$ 

 $= \frac{1}{2}[18 - 30 + 65 - 81 + 54 - 26]$ 

 $= \frac{1}{2}[137 - 137] = 0.$ 

অতএব, প্রদত্ত বিন্দুত্রয় একই সরল রেখায় অবস্থিত।

(XI-XII)-33

উদ্ধি 3. কোন ত্রিভূজের শীর্থবিদূত্র (5,0),(0,6) এবং (x,y); উহার ক্ষেত্রফল 12 হইলে, প্রমাণ কর যে, 6x+5y=6.

অথবা.



উদা 4. (x, y), (4, 6) এবং (0, 4) বিদূত্রে সমরেখ হইলে, প্রমাণ কর যে, x-2y+8=0.

6x + 5y = 6.

প্রদন্ত বিন্দু-তিনটি দারা গঠিত ত্রিভূলের ক্ষেত্রফল

= \frac{1}{6}x - 4y + 16 - 0 + 0 - 4x};

মেহেতু বিন্দুত্র একই রেখায় অবস্থিত, অতএব

. 2x-4y+16=0; অপবা, x-2y+8=0.

(क्वक्न = 0:

উদা. 5. A, B, C এবং D-এর স্থানান্ধ যথাক্রমে  $(x_1, y_1), (x_2, y_2), (x_3, y_3)$  এবং  $(x_4, y_4)$  হইলে, ABCD চতু ভূজটির ক্ষেত্রফল নির্ণয় কর।

ABCD-এর ক্রেফ্ল =  $\triangle$ ABD +  $\triangle$ DBC  $= \frac{1}{2}(x_1y_2 - x_2y_3 + x_2y_4 - x_4y_5 - x_4y_5 + x_2y_5 - x_4y_5 - x_5y_5 - x$ 

$$\begin{split} &= \tfrac{1}{2}(x_1y_2 - x_2y_1 + x_2y_4 - x_4y_2 + x_4y_1 - x_1y_4) \\ &\quad + \tfrac{1}{2}(x_4y_3 - x_2y_4 + x_2y_3 - x_3y_2 + x_3y_4 - x_4y_3) \\ &= \tfrac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_4 - x_4y_3 \\ &\quad + x_4y_1 - x_1y_4). \end{split}$$

উদা 6. প্রমাণ কর যে, ত্রিভূজের বাহুদমূহের মধ্যবিদ্পুলি যোগ করিলে যে ত্রিভূজ উৎপন্ন হয়, উহার ক্ষেত্রফল মূল ত্রিভূজের এক-চতুর্থাংশ মাত্র।

ABC একটি ব্রিভূজ এবং D, E এবং F যথাক্রমে যেন BC, CA এবং AB-এর মধ্যবিদ্যু।

D বিন্দুর মধ্য দিয়া  $\overline{DY}$  যেন  $\overline{BC}$ -এর উপর লম্ব এবং DC ও DY যেন যথাক্রমে x-অক্ষ এবং y-অক্ষ। ধরা যাক, BD = DC = a.

.. B এবং C-এর স্থানাস্ক যথাক্রমে ইইবে (-a, 0) এবং (a, 0). A বিন্দুর স্থানাস্ক যেন (a, y):

$$\therefore$$
 D, E এবং F-এর স্থানাফ হইবে যথাক্রমে  $(0,0), \quad {x+a, \quad y \choose 2}$  এবং  $\left(\frac{x-a}{2}, \quad \frac{y}{2}\right).$ 

$$\triangle ABC = \frac{1}{2} \{x \times 0 - (-a) \times y + (-a) \times 0 - 0 \times a + a \times y - x \times 0\}$$

$$= ay.$$

$$\begin{split} \triangle \text{DEF} &= \frac{1}{2} \Big\{ 0 \times \frac{y}{2} - 0 \times \frac{a+x}{2} + \frac{a+x}{2} \times \frac{y}{2} - \frac{x-a}{2} \times \frac{y}{2} \\ &\quad + \frac{x-a}{2} \times 0 - 0 \times \frac{y}{2} \Big\} \end{split}$$

∴ △DEF=½× △ABC.

#### প্রামালা 6

ত্রিভূজের শীর্যবিন্দ্ত্রয়ের স্থানান্ধ দেওয়া আছে, উহার ক্ষেত্রফল নির্ণয় কর ( Find the area of the triangle whose vertices are ):

- 1. (1, 3), (-7, 6) এবং (5, -1).
- 2. (0, 4), (3, 6) এবং (-8, -2).
- 3. (1, 1), (5, -1) এবং (2, 3).
- 4. (0, 2), (3, 5) এবং (-3, -1).
- 5. (am, 2, 2am,), (am, 2, 2am, 2) এবং (am, 2, 2am, 3).
- 6. A, B, C, P, Q এবং R বিন্দু-চ্য়টির স্থানাদ্ধ যথাক্রমে  $(x_1,\ y_1), (x_2,\ y_2),$   $(x_3,\ y_3),\ (x_1+h,\ y_1+k),\ (x_2+h,\ y_2+k)$  এবং  $(x_3+h,\ y_3+k)$  হইলে, প্রমাণ কর যে,  $\triangle$ ABC এবং  $\triangle$ PQR-এর ক্ষেত্রফল সমান।
  - A, B এবং C বিন্দুত্রের স্থানান্ধ দেওয়া আছে। প্রমাণ কর যে, উছারা সমবেথ:
  - 7. (-1, 3), (2, 9) अवर (-3, -1).
  - 8. (1, 4), (3, -2) এবং (-3, 16).
  - 9. (3a, 0), (0, 3b) এবং (a, 2b).
  - 10. (a, b+c), (b, c+a) এবং (c, a+b).
- বে ত্রিভ্জের শীর্ষবিন্দুসমূহ (8, 2), (4, 6) এবং (x, y), উহার ক্ষেত্রফল
   হইলে, প্রমাণ কর বে, x+y=0.
- 12. যে ত্রিভুজের শীর্ষবিন্দুসমূহ (x, y), (6, 9) এবং (8, 12), কোন্ শর্ত সিদ্ধ ছইলে, উহার ক্রেফল 30 হইবে ?

- 13. কোন্ শর্ত সিদ্ধ হুইলে, (x, y), (6, 9) এবং (8, 12) বিন্দুগুলি সমরেখ হুইবে?
- 14. A, B, C এবং P বিন্দু চতুইয়ের স্থানাম বথাক্রমে (6, 3), (-3, 5), (4, -2) এবং (x, y) হইলে, প্রমাণ কর যে,  $\triangle PBC = \frac{x + y 2}{7}$ .
- 15. A, B, C, D বিন্দু চতুষ্টারের স্থানান্ধ যথাক্রমে (6,3), (-3,5), (4,-2) এবং (x, 3x) এবং  $\frac{\triangle DBC}{\triangle ABC} = \frac{1}{2}$  হইলে, প্রমাণ কর যে,  $x = \frac{1}{8}$ .

## 1:15. বিস্কুর সঞ্চারপথ ( Locus of a point ) :

একটি বিন্দু যদি কোন নির্দিষ্ট নিয়ম বা শর্ত অমুসারে সঞ্চরমান হয়, তবে যে-পথে বিন্দুটি চলে, তাহাকে উহার **সঞ্চারপথ** (locus) বলে।

ঐ সঞ্চরমান বিন্দুর স্থানাক্ষ যদি (æ, y) হয়, তবে যে-শর্ড দ্বারা উহার গতিপথ নিয়ন্ত্রিত হয় সেই শর্তকে উহার স্থানাক্ষ æ ও y-এর একটি সম্পর্ক বা সমীকরণ দ্বারা স্থাচিত করা হয়। সেই কারণে ঐ শর্তস্থাচক সমীকরণটিকে সঞ্চারপথের সমীকরণ বলা হয়। বিপরীতক্রমে সঞ্চারপথিটিকে বলা হয় উক্ত সমীকরণের লেখ।

বীজগণিতে এইরপ সমীকরণের লেখ সঞ্চারপথের উৎকৃষ্ট উদাহরণ। কিন্তু 
ত ও গু-এর জোড়া জোড়া মান লইরা যেমন লেখ বা সঞ্চারপথ চিত্রিত করিতে
হয়, বিশ্লেষণমূলক জ্যামিতিতে তেমন কোন চিত্র অন্ধনের প্রয়োজন নাই। কারণ
এই জ্যামিতিতে সমীকরণের গঠন দেখিয়াই সঞ্চারপথটির আকৃতি-প্রকৃতি অতি
সহজে নির্ণয় করা চলে। পরবর্তী উদাহরণে বিষয়টি স্পষ্টতর করা যাইতেচে।

#### উদ্গহরণমালা

উদা । একটি বিন্দু যদি এব্ধপভাবে স্থান পরিবর্তন করে যে, সকল অবস্থানেই উহার স্কুজ 5 একক দীর্ঘ, তাহা হইলে এ বিন্দুর সঞ্চারপথের সমীকরণ নির্ণয় কর।

ধরা যাক, বিন্দুটির যে-কোনও অবস্থানে স্থানাফ (x, y), তাহা হইলে প্রদত্ত শর্তান্থ্যারে সর্ব অবস্থানেই x=5; ... এই সমীকরণটিই নির্দেশ্ব সমীকরণ।

উদা 2. A এবং B ছইটি বিন্দুর স্থানাস্ক যথাক্রমে (2, 4) এবং (3, 5). যদি একটি বিন্দু P এরপভাবে স্থান পরিবর্তন করে যে, P-এর সকল অবস্থানেই APB কোণটি সমকোণ, তাহা হইলে P-এর সঞ্চারপথের সমীকরণ নির্ণয় কর।

ধরা দাক, P বিন্টার যে-কোন অবস্থানে স্থানান্ধ (x, y), তাহা হইলে প্রদণ্ড শর্তামুসারে APB একটি সমকোণী গ্রিভুজ।

.. দৰ্ব অবস্থানেই, AP2 + BP2 = AB2.

$$\therefore (x-2)^2 + (y-4)^2 + (x-3)^3 + (y-5)^2 = (3-2)^3 + (5-4)^3,$$

 $\boxed{7}, \quad 2x^2 + 2y^2 - 10x - 18y + 52 = 0,$ 

 $\boxed{3}, \quad x^2 + y^2 - 5x - 9y + 26 = 0.$ 

় এই স্মীকরণটিই নির্ণেয় স্মীকরণ।

উলা. 3. একটি সচল বিন্দুর সকল অবস্থানেই যদি ইহার কোটি, ভূজের তিনগুণ হয়, তবে বিন্দুটির সঞ্চারপথের সমীকরণ নির্ণয় কর।

ধর। যাক, সচল বিন্দুটির খে-কোন অবস্থানে স্থানাম্ব (x, y)।

 $\therefore$  প্রদত্ত শর্তাত্নারে, y=3x;  $\therefore$  ইহাই নির্ণেয় সমীকরণ।

উদা. 4. y-অক্ষ হইতে কোন সচল বিন্দুর দূরত্ব সকল অবস্থানেই (2, 2) বিন্দু হইতে উহার দূরত্বের দিগুণ হইলে, ঐ বিন্দুর সঞ্চারপথের সমীকরণ নির্ণয় কর।

সচল P বিন্দুটির স্থানাস্ক যেন (x, y) এবং প্রদন্ত বিন্দু (2, 2) যেন Q বিন্দু প্রদন্ত শর্ত হইতে P বিন্দুর দূরত্ব x এবং Q (2, 2) বিন্দু হইতে P (x, y) বিন্দুর দূরত্ব PQ

$$= \sqrt{(x-2)^2 + (y-2)^2}.$$

:. প্রদত্ত শতি হইতে  $x = 2 \sqrt{(x-2)^2 + (y-2)^2}$ ;

অথবা,  $x^2 = 4\{(x^2 - 4x + 4) + (y^2 - 4y + 4)\}$ ;

অথবা,  $x^2 = 4x^2 - 16x + 16 + 4y^2 - 16y + 16$ ;

অথবা,  $3x^2 + 4y^2 - 16x - 16y + 32 = 0$ ; ইহাই নির্ণেয় সমীকরণ।

উদা 5. ABC ত্রিভূজের শীর্ষবিন্দু A সচল এবং স্থির শীর্ষবিন্দুদ্ব B ও C-এর স্থানাত্ব যথাক্রমে (2, 4) এবং (-6, 8). A-এর সকল অবস্থানেই যদি ত্রিভূজটির ক্ষেত্রফল 30 হয়, তাহা হইলে A-এর সঞ্চারপথের সমীকরণ নির্ণয় কর।

সচল বিন্দু A-এর স্থানান্ধ যেন (x, y).

 $\triangle$ ABC-এর ক্রেফল =  $\frac{1}{2}$  $\{x(4-8) + 2(8-y) + (-6)(y-4)\}$ =  $\frac{1}{2}$  $\{-4x + 16 - 2y - 6y + 24\}$ =  $\frac{1}{2}$  $\{-4x - 8y + 40\}$ = -2x - 4y + 20;

. প্রাণত শর্তামুদারে 30 = -2x - 4y + 20;

অথবা, 2x+4y+10=0; অথবা, x+2y+5=0;

ইহাই নির্ণেয় সমীকরণ।

টীকা 1. কোন নির্দিষ্ট সমীকরণকে একটি সচল বিন্দুর সঞ্চারপথের সমীকরণ বলিয়া অভিহিত করা যায়, যদি উক্ত সচল বিন্দুর যে-কোন অবস্থানের ভূজ-কোটির মানদ্বাই নির্দিষ্ট সমীকরণটিকে সিদ্ধ করে। টীকা 2. কোন বিন্দুর স্থানান্ধ যদি একটি সমীকরণকে সিদ্ধ করে, তাহা হইলে ঐ সমীকরণটি যে সঞ্চারপথের সমীকরণ, সেই সঞ্চারপথের উপর বিন্দৃটি অবস্থিত বলা হয়। যেমন, y=3x সমীকরণটিকে মূলবিন্দুর স্থানান্ধ (0,0) সিদ্ধ করে। (0,0) বিন্দৃটি, y=3x যে সঞ্চারপথের সমীকরণ সেই সঞ্চারপথের উপর অবস্থিত।

#### প্রশ্নমালা 7

ফুইটি নির্দিষ্ট বিন্দু A এবং B-এর স্থানান্ধ যথাক্রমে (a, 0) এবং (-a, 0), P বিন্দুর সঞ্চারপথ নির্ণয় কর, যথন (The co-ordinates of two fixed points A and B are (a, 0) and (-a, 0) respectively; find the equation of the locus of any point P, when)

- 1. PA \* + PB \* = 2K \*, ( যেখানে K একটি ধ্রুবক সংখ্যা ) ।
- 2.  $PA^2 PB^2 = 2K^2$ , , , , , , , , ,
- 8. PA = K.PB, ,, ,, ,, ,, ,, ,,
- 4. PA+PB=K, ,, ,, ,, ,, ,,
- 5- PB2+PC2=2PA2, [ C-এর স্থানাক (c, 0) ].
- 6. PA = PB.
- P বিন্দুর সঞ্চারপথের সমীকরণ নির্ণয় কর, যদি (Find the equation of the locus of any point, P, if)
  - 7. অক্ষয় হইতে P বিন্দুর দূরত্বের যোগফল = 49.
  - অক্ষণয় হইতে P বিনার দ্রত্বের বর্গের সমষ্টি = 25.
  - 9. y-জক্ষ হইতে P বিন্দুর দ্রহ, (2, 2) বিন্দু হইতে ইহার দ্রত্ত্বের সমান।
- 10. (-1,0) বিন্ হইতে p-এর দ্রজ, (0,2) বিন্ হইতে ইহার দ্রজের তিনগুণ হয়।
- 11. ত্ইটি নির্দিষ্ট বিন্দু Q এবং R-এর স্থানাক যথাক্রমে (-4, 8) এবং (12, 16). P এরপ একটি সচল বিন্দু যে P-এর সকল অবস্থানেই PQR ত্রিভূজের ক্ষেত্রফল = 40. P-এর স্কারপথের সমীকরণ নির্দিয় কর।
- 12. ৫-অক্ষ হইতে কোন বিন্দুর দ্রত্ব (1, 1) বিন্দু হইতে ইহার দ্রত্বের দিওণ হইলে, বিন্দুটির সঞ্চারপথের সমীকরণ নির্ণয় কর।
- 13. কোন ত্রিভুজের ভূমি = 2a এবং বাহুদ্বয়ের বর্গের অস্তর =  $\kappa$  দেওয়া আছে; শীর্ষবিন্টির সঞ্চারপথের সমীকরণ নির্ণয় কর। [সংকেড: ভূমিকে  $\kappa$ -অক্ষ ও উহার মধ্যবিন্কে মূলবিন্দু ধরিলে ভূমির প্রান্তবিন্দু-তুইটির স্থানান্ধ (-a, 0) ও (a, 0) ইত্যাদি।]

# দ্রিতীয় অপ্র্যায় সরল রেখা ( Straight Line )

2'1. কোন অক্ষের সমাস্তরাল যে-কোন সরল রেখার সমীকরণ নির্ণয়।

[ To find the equation to a straight line parallel to one of the

y-অক্ষের সমান্তরাল AB সরল রেখা, x-অক্ষকে যেন B বিন্দৃতে ছেদ করিয়াছে। ধরা যাক, OB = a.

AB সরল রেখার উপর যে-কোন বিন্দু P-এর স্থানান্ধ (x, y) হইলে, P-এর ভূজ x সর্বদা =a, অর্থাৎ x=a.



অতএব, AB সরল রেখার সমীকরণ, x=a. অফুরপে, x-অক্ষের সমান্তরাল কোন সরল রেখার সমীকরণ হইবে y=b.

টীকা 1. y-অক্ষের সমান্তরাল সরল রেথার উপরিস্থিত প্রত্যেক বিন্দুই y-অক্ষ হইতে সমদ্রবর্তী, এবং x-অক্ষের সমান্তরাল সরল রেথার উপরিস্থিত প্রত্যেক বিন্দুই x-অক্ষ হইতে সমদ্রবর্তী।

o ইহার সমীকরণ, y=0.

অফুর্পে, y-অক্ষের সমীকরণ, æ=0.

## 2'2. অক্ষদ্ৰয়ের পরিবর্তন (changes of axes).

কোন বিন্দুর স্থানান্ধ বলিতে, x এবং y অক্ষন্ধয় হইতে ঐ বিন্দুর দূর্ত্ব বুঝায়। অতএব, বিন্দুটির অবস্থানের কোন পরিবর্তন না ঘটলেও উহার অক্ষন্ধয়ের অবস্থানের পরিবর্তন ঘটলেই ঐ বিন্দুর স্থানাঙ্কেরও পরিবর্তন হইবে। কেননা পরিবর্তিত অক্ষন্ধয় হয় বিন্দুটির নিকটবর্তী নতুবা অধিকতর দূরবর্তী হইবে।

এখন, অক্ষয়ের অবস্থান-পরিবর্তন ঘটিতে পারে তিন প্রকারে।

- (1) প্রথমতঃ, অক্ষরের দিক্-পরিবর্তন না করিয়া, শুধু উহাদের অবস্থানের পরিবর্তন করা যায়। ইহাতে মূলবিন্দুর পরিবর্তন স্থনিশ্চিত। অক্ষরয়ের এইরূপ পরিবর্তনকে সমান্তরাল পরিবর্তন (parallel displacement) বলে।
- (2) দিতীয়তঃ, মৃলবিন্দু স্থির রাখিয়া উহার অক্ষরের দিক্ পরিবর্তন করা যাইতে পারে।
- (3) তৃতীয়তঃ, মৃলবিন্দু এবং অক্ষয়য়ের দিক্ উভয়ই পরিবর্তিত হইতে পারে। বিতীয় ও তৃতীয় প্রকার পরিবর্তন পাঠ্যতালিকার বহির্ভূত। এখানে প্রথম প্রকার পরিবর্তন সম্বন্ধে আলোচনা করা হইতেছে।

ধরা যাক, ox এবং oy অক্ষন্তের সম্পর্কে p বিন্দুর স্থানাক্ষ (x, y).



OX এবং OY-এর সমাস্করাল O'X' এবং O'Y' যেন নৃতন অক্ষন্ধ এবং উহাদের ছেদবিন্দু O' যেন নৃতন মূলবিন্দু; OX এবং OY মূল অক্ষন্ধরের সম্পর্কে O'-এর স্থানান্ধ যেন (h, k).

ধরা বাক, নৃতন অক্ষন্তরের (O'x' এবং O'y') সম্পর্কে P বিন্দুর স্থানান্ধ (x', y').

OY-এর সমান্তরাল PM অন্ধিত হইল, উহা O'X'-কে M' বিন্দুতে ছেদ করিল। Y'O'-কে বর্ধিত করা হইল। উহা যেন

Ox-এর সহিত N বিদ্তুতে মিলিত হইল।

তাহা হইলে, ON = h, O'N = k, OM = x, PM = y; x = OM = ON + NM = ON + O'M' = h + x'; y = PM = MM' + M'P = O'N + PM' = k + y',

 $\therefore$  x=h+x', y=k+y'-ই নির্ণেয় পরিবর্তনের স্থ্ত।

অতএব, দেখা যায় যে, বিন্দুটির আদি স্থানাস্ক (x, y)-এর স্থানে যথাক্রমে (h+x') এবং (k+y') বসাইলেই আদি মূলবিন্দুটি (0,0) পরিবর্তিত হয়। (h,k) বিন্দুতে পরিবর্তিত হয়।

ইহা লম্ব এবং তির্যক্ উভয় প্রকার অক্ষন্তরের ক্ষেত্রেই সত্য।

2'3. সৱল ৱেখাৰ প্ৰবাতা (Gradient of a straight line).

AB সরল রেখার উপর P বিদ্যুর তিনটি অবস্থান যেন P, P<sub>1</sub> এবং P<sub>2</sub>; OX-এর উপর PN, P<sub>1</sub>N<sub>1</sub> এবং P<sub>2</sub>N<sub>2</sub>, এবং P হইতে P<sub>2</sub>N<sub>2</sub>-এর উপর PS লম্ব আঁকা হইল। PS যেন P<sub>1</sub>N<sub>1</sub>-কে R বিদ্তে ছেদ করিল। PS এবং OX সমান্তরাল বলিয়া,  $\angle$ P<sub>1</sub>PR ( $\angle$ P<sub>2</sub>PS)= $\theta$ .



P বিন্দুটি P অবস্থান হইতে P<sub>1</sub> অবস্থানে গেলে, ইহার ভূজ  $ON_1 - ON = NN_1 = PR$  পরিমাণ এবং কোটি  $P_1N_1 - PN = P_1N_1 - RN_1 = P_1R$  পরিমাণ রদ্ধি পাইল।

অতএব, P বিন্দুটির ভূজের PR বৃদ্ধির জন্ম কোটির বৃদ্ধি হইল P1R.

:. ভূজের এক একক বৃদ্ধির জন্ম কোটির বৃদ্ধি হইল PiR.

এইভাবে কোন সরল রেখার কোন বিন্দুর ভুজের এক একক বৃদ্ধির জন্ম কোটির যভটুকু বৃদ্ধি হয়, তাহাকে বলে এ সরল রেখার প্রবণতা (Gradient).

জাবার দেখা যায় যে, P বিন্দুটি আরও অগ্রসর হইয়া P<sub>2</sub> অবস্থানে আসিলে P বিন্দুর ভূজ ON<sub>2</sub> – ON = NN<sub>2</sub> = PS পরিমাণ বৃদ্ধি পায় এবং তজ্জন্য কোটি বৃদ্ধি পায় P<sub>2</sub>N<sub>2</sub> – PN = P<sub>2</sub>N<sub>2</sub> – SN<sub>2</sub> = P<sub>2</sub>S পরিমাণ।

Arr P বিন্দুর  $P_2$  অবস্থানে ভূজের এক একক বৃদ্ধির জন্ম কোটির বৃদ্ধি হয়।  $P_2S$  পরিমাণ। PS

 $P_1PR$  এবং  $P_2PS$  সদৃশ বিভূজন্ব হইতে দেখা যায় যে,  $\frac{P_1R}{PR} = \frac{P_2S}{PS}$ 

অতএব, ইহাই দিদ্ধায় হয় যে, একই সরল রেখার উপরিস্থিত যে-কোন বিন্দুর পক্ষে প্রবণতা একই ( ধাবক ) গ্রহে ।

যদি OX এবং OY অক্ষন্থার দৈর্ঘ্যের প্রক্র একই হয়, ভাষা ইইলে

$$\frac{P_1R}{PR} = \tan \theta$$
.

অতএব দেখা যায় যে, কোন সরল রেখা X-অক্টের ধনাত্মক দিকের (positive direction-এগ) সহিত যে কোণ উৎপন্ন করে, তাহার tangent-ই ঐ সরল রেখার প্রবণতা।

দীকা 1. AB-এর সমাস্তরাজ সরল রেখাগুলির (যথা, CD-এর) প্রবণ্ডা ≕tan θ.

টীকা 2. সরল রেখার প্রবর্ণতা tan 6-কে সাধারণতঃ m দারা বুঝানো হয়।

অনুসিদান্ত 1. তুইটি নির্দিষ্ট বিন্দুর সংযোজক সরল রেখার প্রবণ্ডা নির্ণয়। [To find the gradient of the straight line joining two points.]

্ অঞ্চ.  $2^{\circ}3$  (i) এর চিত্রে P এবং  $P_1$  বিদ্যুখ্যের স্থানাম যেন যথাক্তম (x,y) এবং  $(x_1,y_2)$ .

অনুসিদ্ধান্ত 2. তিনটি বিন্দুর সমরেখ হইবার শর্ড। [Collinearity of three points.]

ই ভিপ্রে প্রতিপর হটয়াছে .ম. বিদ্রেয় ছারা গঠিত রিক্জের কেরফল – 0 হালে, বিদ্রেয় সমরের। কিছ বিদ্-ভিন্টির মে কোন ছাইটি ছাইটি লইয়া ছাইটি সরল রেশ শাকিলে, ভাতাদের প্রবণতা বাতির করিয়া যদি দেখা যায় যে, উভয় কেটের প্রবণতা একই, ভাতা চালে বিদ্রুম সমরের।

2'4. একটি নিদিষ্ট বিন্দৃগার্মা এবং x-ডাক্ষের সহিত এক নিদিষ্ট কোণে নত সরল রেখার স্মীকরণ নির্ণয়।

To find the equation to a straight line which passes through a given point and is inclined at a given angle to the x-axis.]

প্রণার সরক রেশ R  $(x_1,y_1)$  বিদ্যামী এবং x-আক্রে সভিত যেন a কোণে নত।

এ দরল রেখার উপর P দেন এরপ একটি বিন্দু, বাছার স্থানাম (a, v).

P এবং R বৈশ্ চইটে OX-এর উপর PM শ মন এবং R ইইডে PM-এর উপর R8 লব টানা হইল।



PS = PM - SM = 
$$y - y_1$$
;  
RS = NM = OM - ON =  $x - x_1$ .  
 $tan \ a = PS = \frac{y - y_1}{x - x_1} = m$ .  
 $tan \ a = \frac{y - y_1}{x - x_1} = m(x - x_1)$ .

# 2'5. সে সরল রেখা y-ভাক্ষ হউতে c ভাংশ ছেদ করে এবং x-ভাক্ষের সভিত a কোল উৎপদ্ম করে, ভাতার স্থাসকল নিলয়।

[ To find the equation to the stringht line which is inclined to the x ixis at a given and e a and cuts off a given intercept c from the y-axis.]



মিট সরল রেব । আক্তে বেন C বিন্তে ১৮৪ করে। OC = c,  $\angle ABX = a$  থবা মিট রব উপার্বারত বেন্ডেন বিন্তু সন্ধান বিন্তু সানার বেন (x,y)। ভাষা হচ্যাত x এবা y-এর মাধ্য সম্প্রেক কবিয়েত হচ্চার ;

OX-এর উপর ঈm এবং ঈm-এর উপর CN লম্ব টানা হইল। তাহা হইলে om=x, PM=y.

 $\begin{array}{ll} \ddots & \text{PN} = \text{PM} - \text{NM} = \text{PM} - \text{OC} = y - c, \\ \\ \text{GRCN} = \text{OM} = x \text{ GRC} & \angle \text{PCN} = a. \end{array}$ 

∴ PCN তি ভুজ হইতে, PN = tan α;

অধবা, 
$$\frac{y-c}{x} = \tan a$$
;  
 $\therefore y-c = x \tan a$ ,  
বা,  $y=x \tan a+c$ ,

... দাধারণতঃ tan α-কে m ছারা স্থচিত করা হয় বলিয়া y=mx+c, সরল রেখাটির সমীকরণ।

টীকা 1. উপরি উক্ত সরল রেখাটি (0, c) বিনুগামী।

দীকা 2. যদি c=0 হয়, অর্থাৎ সরল রেখাট মূলবিন্দুগামী হয়, তবে উহার স্মীকরণটি হইবে, y=mx.

2.6. যে সরল রেখা <sub>x</sub>-অক্ষ এবং <sub>y</sub>-অক্ষ হইতে যথাক্রমে a এবং b অংশ কার্টিয়া লয়, ভাহার সমীকরণ নির্ণয়।

[ To find the equation to the straight line which cuts off intercepts a and b from x- and y- axes respectively.]



LM রেখা, OX এবং OY-কে যেন যথাক্রমে A এবং B বিন্দৃতে এরপে ছেদ করে, যেন OA = a এবং OB = b.

এই সরল রেখার উপরিস্থিত খে-কোন বিন্দু p-এর স্থানান্ধ যেন (x, y). OX-এর উপর  $\overline{PN}$  লম্ব টানা ইইল। তাহা ইইলে ON = x এবং PN = y.

এখন APN এবং ABO সদৃশ ত্রিভুজ্বয় হইতে

অর্থাৎ,  $\frac{x}{a} + \frac{y}{b} = 1$ , সরল রেখাটির সমীকরণ।

টীকা। সরল রেখাটি (a, 0) এবং (0, b) বিন্দু ছয়গামী।

এই অক্তচ্ছেদে প্রাপ্ত সমীকরণকে সরল রেখার **ছেদিতাংশরূপে** (Intercept form) বলে !

এখানে সরল রেথার সমীকরণ নির্ণয়ের জন্ম  $\overrightarrow{OX}$  এবং  $\overrightarrow{OY}$ -এর ধনাত্মক জংশ হইতে ছেদিতাংশ লওয়া হইয়াছে। মনে রাথা দরকার যে, প্রদত্ত ছেদিতাংশ  $\overrightarrow{XX}'$  বা  $\overrightarrow{YY}'$ -এর একটি ঋণাত্মক বা উভয়ই ঋণাত্মক অংশ হইতে লওয়ার দরকার হইতে পারে। সেক্লেত্রে আবহাকমত -a, -b লইতে হইবে।

2'7. যদি মূলবিন্দু হইতে কোন সরল রেখার উপর অক্ষিত লাসের দৈর্ঘ্য p হয় এবং ঐ লম্ব, ম-অক্ষরেখার ধনাত্মক দিকের সহিত a কোণ উৎপন্ন করে, তাহা হইলে তাহার সমীকরণ নির্ণয়।

[ To find the equation to the straight line in terms of the perpendicular p drawn to it from the origin and the angle a that the perpendicular makes with positive side of x-axis.]



ধরা যাক, LM সরল রেখার উপর O হইতে অৱিত লম্ব OR-এর দৈর্ঘ্য = p এবং  $\angle ROX = a$ .

যদি LM, অক্ষন্বয়কে A এবং B বিন্দুতে ছেদ করে, তাহা হইলে,

$$\frac{OA}{OR} = \sec ROA$$
,  $\boxed{A} = \frac{OA}{p} = \sec a$ ;  $\therefore OA = p \sec a$ 

eqq: 
$$OB = \sec (90^{\circ} - a) = \csc a$$
; ...  $OB = p \csc a$ .

 $\therefore$  সরল রেধার  $\frac{x}{a}+\frac{y}{b}=1$ , এই সমীকরণটিতে x ও y অক্ষের উপর ছেদিতাংশ যথাক্রমে a ও b-এর ছলে p sec a ও p cosec a-বসাইলে দেখা যায়,

$$\frac{x}{p \sec a} + \frac{y}{p \csc a} = 1$$

 $x \cos a + y \sin a = p$ , সরল রেখাটির সমীকরণ।

2·8. (x, y)-বিশিষ্ট সরল সমীকরণ মাত্রই সরল রেখা সূচিভ করে।

x ও y-সম্বলিত সরল সমীকরণের সাধারণ রূপ Ax + By + C = 0, বেখানে A. B ও C ঞ্চবক সংখ্যা।

যেতেতু 
$$Ax + By + C = 0$$
, বা  $By = -Ax - C$ , বা  $y = \left(-\frac{A}{B}\right)x + \left(-\frac{C}{B}\right)$ 

সেইত্ত্ত্,  $-\frac{A}{B}=m$  এবং  $-\frac{C}{B}=c$  বসাইয়া সমীকরণটিকে y=mx+c আকারে প্রকাশ করা যায়।

জাবার যেহেতু, m ও c যে-কোন তুই ধ্রুবক সংখ্যা (any two constants)-ই হউক না কেন, y=mx+c-এর লৈখিক চিত্র (0,c) বিন্দৃগামী একটি সরল রেখা স্ফিত করে।

সেইহেতু, সমীকরণটি দ্বারা  $\left(0,-\frac{\mathbf{C}}{\mathbf{B}}\right)$  বিন্দৃগামী সরল রেখা স্থচিত হইবে।

### বিকল্প প্রমাণ ঃ

Ax + By + C = 0 সমীকরণটির লৈখিক চিত্রের উপর P, Q, R যেন যে-কোন তিনটি বিন্দু এবং উহাদের স্থানাস্ক যেন যথাক্রমে  $(x_1, y_1)$ ,  $(x_2, y_2)$  এবং  $(x_3, y_3)$ . যেছেতু ইহারা প্রত্যেকেই উক্ত লৈখিক চিত্রের উপর অবস্থিত, অতএব,

$$Ax_1 + By_1 + C = 0 \qquad \cdots \qquad \cdots \qquad (1)$$

$$Ax_2 + By_2 + C = 0 \qquad \cdots \qquad \cdots \qquad (2)$$

$$Ax_3 + By_3 + C = 0 \qquad \cdots \qquad \cdots \qquad \cdots \qquad (3)$$

:. (2) এবং-(3) হইতে, 
$$\frac{A}{y_3 - y_3} = \frac{B}{x_3 - x_2} = \frac{C}{x_2 y_3 - x_3 y_3} = K$$
 ধরিলে, 
$$A = K(y_2 - y_3), B = K(x_3 - x_2), C = K(x_2 y_3 - x_3 y_2);$$

:. (1) EFTE, 
$$Kx_1(y_2 - y_3) + Ky_1(x_3 - x_2) + K(x_2y_3 - x_3y_2) = 0$$
;

$$\forall 1, \quad x_1(y_3 - y_3) + y_1(x_3 - x_2) + (x_2y_3 - x_3y_2) = 0 ;$$

বা, 
$$\frac{1}{2}[x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3] = 0$$
, অধাং POR বিভক্তির ক্রেফ্স = 0.

কিন্ত P, Q, R, লৈখিক চিত্রটির উপরিস্থিত যে-কোন তিনটি বিন্দু। অতএব, চিত্রটি একটি সরল রেখা হইনে, কেননা কোনও বক্ত রেখার উপর তিনটি বিন্দু লইলে বিন্দুত্রম ধারা অঙ্কিত ত্রিভুজের ক্ষেত্রফলের মান = 0 হইতে পারে না।

2'9. 
$$Ax + By + C = 0$$
, সমীকরণাতিকে  
(i)  $\frac{x}{a} + \frac{y}{b} = 1$ ,

এবং (ii) x cos a+y sin a=p আকারে প্রকাশ করিতে ইউবে।

(i) 
$$Ax + By + C = 0$$
;

$$\therefore$$
 Ax +By = -C.

$$\therefore$$
  $Ax + By = 1$ ; (উভয় পক্ষকে – C ছারা ভাগ করিয়া)

$$\boxed{1}, \quad \frac{x}{-\frac{\mathbf{C}}{\mathbf{A}}} + \frac{y}{-\frac{\mathbf{C}}{\mathbf{B}}} = 1,$$

বা, 
$$\frac{a}{a} + \frac{y}{b} = 1$$
, বৈধানে  $a = -\frac{C}{A}$  এবং  $b = -\frac{C}{B}$ 

টীকা। a এবং b সমান হইলে, A-B হইবে। অতএব, একটি সহল রেখা অক্ষয় হইতে সমান অংশ ছেদ করিলে, উহার সমীকরণে x এবং y-এর সহগদ্ধের মান সমান হইবে।

(ii) 
$$Ax + By + C = 0$$
.

$$\therefore$$
 A $x + By = -C$ .

উভয় পক্ষকে 🗷 বারা 🖦 করিয়া.

$$KAx + KBy = -KC$$
 ... (1)

এখন ধরা যাক, KA = cos a এবং KB = sin a, - KC = n;

 $\therefore$   $x \cos a + y \sin a = p$ .

আবার,  $K^2A^2 + K^2B^2 = \cos^2 a + \sin^2 a = 1$ ;

$$K^{8} = \frac{1}{A^{8} + B^{3}}; K = \frac{1}{\pm \sqrt{A^{3} + B^{3}}};$$

.. (i) 
$$\frac{A}{\pm \sqrt{A^2 + B^2}} + \frac{B}{\pm \sqrt{A^2 + B^2}} y = -\frac{C}{\pm \sqrt{A^2 + B^2}}$$

 $\forall 1, \ x \cos x + y \sin x = p.$ 

[ C ধনা গ্লক বা কণা স্থাক হউলো, ু'A<sup>2</sup> + B<sup>2</sup> কণা স্থাক বা ধনা স্থাক চিক্তসহ লইতে ইয়, অৰ্থাং যেন ভান পক্ষ ধনা স্থাক হয়।]

# 2'10. (x<sub>1</sub>, y<sub>1</sub>) বিন্দুগামী যে-কোম সরল রেখার সমাকরণ মিণ্র।

[ To find the equation to the straight line which passes through a given point  $(x_1, y_1)$ .]

 $y \sim mx + c$ , যেন  $(x_1, y_1)$  বিদ্যামী যে-কোন দরল রেখার সমীকরণ। মতেরব, x এবং y- এর মান যথাক্রমে  $x_1$  এবং  $y_1$  ঘারা সমীকরণটি সিদ্ধ হইবে।

.\*.  $y_1 = mx_1 + c$ ; .\*.  $c = y_1 - mx_1$ .

.".  $y = mx + y_1 - mx_1$ ;

বা, y-y, - m(x-x,), নিবেশ্য সহী করত ,

টীকা। । । । অনিশী ও বলিছা, । । এর বে-কোন মান বসাইয়া (৫১, ৮১) বিশুগামী বে-কেনে সরলারধার সমাকরণ পান্ধয়া যাইবে। তাভরাং বুঝা যায় বেং, একটি বিন্দু দিয়। অসংখ্যা সম্ভা**েরখা** যাইতে পারে।

# 2'11. (x<sub>1</sub>, y<sub>1</sub>) এবং (x<sub>2</sub>, y<sub>2</sub>) বিন্দুগামী সরল রেখার সমাকরণ নিশ্য |

[ To find the equation to the straight line passing through two sites  $\{x_1, y_1\}$  and  $\{x_2, y_2\}$ .]

y = ma + c दबन, निटर्वत नयी कर्त्र ।

এবন স্বল এবং টি (x; । ৮) এবং (x; । ৮৫) বিকুখ্যগামী;

ে । (r1. ) 1) এবং r2. (/2) এর প্রেড্ডেরিট যুগল মান বারাই স্মীকরণটি সিদ্ধ হল্পেঃ

$$\therefore y_1 = mx_1 + c, \qquad \cdots \quad (1)$$

 $y_a = mic_a + c$ ; ... (2)

. (1) ESTE 3 PROPERTY AFORT,  $y_1 - y_2 = m(x_1 - x_2)$ ;

 $\text{Width}, \ c = y_1 - mx_1 - y_1 - \frac{y_1 - y_2}{x_1 - x_2}x_1.$ 

:. The property 
$$y = \frac{y_1 - y_2}{x_1 - x_2} x + y_1 - \frac{y_1 - y_2}{x_1 - x_2} x_1$$
:

$$\exists 1, \quad y - y_1 = \frac{y_1 - y_2}{x_1 - x_2} (x - x_1) ;$$

ष्यं 
$$\frac{y-y_1}{x-x_1} = \frac{y_1-y_0}{x_1-x_0}$$
.

টীকা। সরল রেখাটির 'm' বা প্রবণতা (gradient)

# বিকল প্রেমাণ:

P এবং Q. ৭র স্থানাত যেন মপা ক্রমে  $(x_1,y_1)$  ও  $(x_2,y_2)$  এবং ব্রণিত PQ যেন প্র-মন্তের সহিত  $\theta$  কোণ উৎপত্ন করে।

৫-অক্টের উপর PM ও PN এবং PM-এর উপর QR লগ অক্টিভ হটল।



ं. भवन ख्या दिव स्टब्स त

$$m = \tan \theta = \tan PTM = \tan PQR$$

$$= \frac{PR}{QR} = \frac{PM - RM}{NM} = \frac{PM - QN}{OM - ON} = \frac{y_1 - y_0}{x_1 - x_0}$$

# উদাহরণমালা

উদ্ধা. 1. 'অক্ষর (4, -3) বিক্রাম' হইবে, 4x + 3y - 25 = 0 সমীকরণটি বে সমীকরণ করিত হতবে, ভাতা ভির্ব কর ।

x এর পরিবর্গে (x'+4) এবং y এর পরিবর্গে (y'-3) লিখিলে পরিবর্গিত সমীকরণটি হয়,

$$4(x'+4)+3(y'-3)-25=0,$$
 $4x'+16+3y'-9-25=0,$ 
 $4x'+3y'-18=0,$ 
(XI-XII)—34

উদা. 2.  $x^2 + 4x - y^2 + 6y - 5 = 0$  সমীকরণটি হইতে x এবং y অপসারিত করিতে হইলে, অক্ষরেরে দিক্ পরিবর্তন না করিয়া, মূলবিন্দু কোধায় স্থানান্তরিত করিতে হইবে, তাহা নির্ণয় কর।

$$x^{2} + 4x - y^{2} + 6y - 5 = (x^{2} + 4x + 4) - (y^{2} - 6y + 9)$$
$$= (x + 2)^{2} - (y - 3)^{2},$$

অতএব, প্রদত্ত সমীকরণ হইতে  $x \otimes y$  যুক্ত পদ অপসারিত করিতে হইলে, (x+2) এবং (y-3)-এর সহিত এরপ সংখ্যা যোগ করিতে হইবে, যাহাতে যথাক্রমে x এবং y পাওয়া যায়।

∴ পরিবভিত মূলনিদ্র স্থানাক ( – 2, 3).

উদ্বা. 3. (3,5) এবং (~1,3) বিল্বয়ের সংযোজক সরল রেখার প্রবণতা

 $(x_1,y_1)$  এবং  $(x_2,y_2)$  বিন্যামী স্বল রেখার প্রবণতা  $=\frac{y_1-y_2}{x_1-x_2}$  প্রদত্ত প্রবো $y_1=5,y_2=8$  এবং  $x_1=3,x_2=-1$ .

:. Arefa প্রবণতা 
$$\frac{5-3}{3-(-1)} = \frac{9}{4} = \frac{1}{2}$$
.

উদা 4. (-2, 6) বিক্ষামী যে সবল রেপার প্রবণতা (gradient) 3, তাহার সমীকরণটি নির্ণয় কর।

 $(r_1,u_1)$  বিক্গামী সরল রেখার প্রবণ্ড। m হটলে, সরল রেখাটির স্মীকরণ হয়  $(y-y_1)=m(x-x_1)$ .

প্রাণয় প্রাণো = 3, x, = -2, y, = 6,

অভ এব, নিৰ্বেশ্ন স্মাক্ষণ y - 6 - 3{x - (-2)}

= 9971, y - 6 = 3x + 6;

चथना, 3x - y + 12 = 0.

উদা 5. একটি সরল রেখ: মক্ষারের সহিত একটি সমকোণী ত্রিভূজ উৎপন্ন করে। বিভূজটির ক্ষেত্রগণ 21 বর্গ দেখি, এবং অভিভূজের দৈখ্য 10 সেমি, হইলে বিভূজটির সমাক্রণ নিশ্য কর।

ষে প্রজাতি ৮-মক্ষ এবং ৮-এক হউত্ত মধাক্রমে ৫ এবং ৮ কাটিয়া স্থ, উহার সমীকরণ

$$\frac{x}{a} + \frac{y}{b} = 1.$$

া অক্সয়ের মধ্যতে বিধ্ন বিধারির দৈখ্য  $= \sqrt{a^2 + b^2} = 10$  সেমি.  $\cdots$  (1)

(1) এবং (2) হইতে,

$$a^{2} + b^{2} + 2ab = 10^{2} + 96 = 196 = 14^{2}$$
;  
 $a^{2} + b^{2} - 2ab = 10^{2} - 96 = 4 = 2^{2}$ .

জড়এব, 
$$(a+b)^2 = 14^2$$
; ...  $(a+b) = \pm 14$   
 $(a-b)^2 = 2^2$ ; ...  $(a-b) = \pm 2$ .

$$a = \pm 8 \cdot 6b = \pm 6$$
;

এবং 
$$a = \pm 6$$
 ও  $b = \pm 8$ .

:. নিৰ্বেগ স্মীকরণ 
$$\frac{x}{\pm 8} \pm \frac{y}{\pm 6} = 1$$
, বা,  $6x + 8y = \pm 48$ ,

$$93: \frac{x}{\pm 6} + \frac{y}{\pm 8} = 1, \ 3!, \ 8x + 6y = \pm 48.$$

উদা. 6. যে সরল রেখা y-অক্ষের ঋণাত্মক দিক্ ছইতে ও একক কাটিয়া লব এবং x-অক্ষের সহিত 120° কোণ উৎপন্ন করে, তাহার স্মীকরণ নির্ণয় করে। অর্থাৎ x-অক্ষের সহিত 120° কোণ উৎপন্নকারী এবং (0, -3) বিন্দুগামা সরল রেখার স্মীকরণ নির্ণয় করে।

y = ma + c अंडे ख्वां स्माद्य,

$$m = \tan 120^\circ = -\sqrt{3}$$
, এবং  $c = -3$ ,

নির্ণেয় স্মীকরণ  $y = -\sqrt{3x-3}$ , বা,  $y + x\sqrt{3} + 3 = 0$ .

উদা 7- (3, -4) বিন্ধানী যে সরল রেখা x-অক ও y-অক হইতে সমান আশ (equal intercepts) কানিয়া লর, তাভার সমীকরণ নির্ণয় কর।

মনে কর, নির্পের স্ফীকেরণ  $\frac{x}{a} + \frac{y}{-a} = 1$ .

ज्यशि x-y=a.

এখন সরল রেখাটি (3, -1) বিন্দৃগামী বলিফা, (3, -4) মানযুগল ছারা সমীকরণটি সিদ্ধ হইবে।

- $\therefore$  3 (-4) = a, 41, a = 7;
- ∴ নির্ণেয় সমীকরণ x y = 7.

উদা. ৪. (1, 1) এবং (3, - ½) বিশু-ছইটি দিয়া অন্ধিত সরল রেখাটির সমীকরণ নির্ণর কর।

ধরা যাক, y = mx + c নির্ণের স্মীকরণ।

ষেহেতু (1, 1) এবং (3, — ট্র)-এর প্রত্যেক মানযুগল দারাই সমীকরণটি সিদ্ধ হইবে, অতএব,

$$1 = m + c$$
  $97$   $-\frac{1}{2} = 3m + c$ .

স্তরাং,  $2m = -\frac{8}{3}$ ; কাজেই  $m = -\frac{8}{4}$ ,

এবং 
$$c = 1 + \frac{8}{4} = \frac{7}{4}$$
.

:. নির্পেয় সমীকরণ  $y = -\frac{3}{6}x + \frac{7}{6}$ ; অথবা, 3x + 4y = 7.

অথবা, 2'11-এর স্ত্রাহ্বায়ী---

নির্ণের সমীকরণ  $y-1 = \frac{1-(-\frac{1}{2})}{1-3}(x-1)$ ,

অথবা, 
$$y-1=-\frac{3}{4}(x-1)$$
,

অথবা, 4y + 3x = 7.

উদা. 9. (3, 5) বিন্দুগামী একটি সরল রেখা অক্ষন্ধাকে A এবং B বিন্তুতে ছেদ করে। (3, 5) বিন্দুটি AB-কে নমন্বিখণ্ডিত করিলে, উহার সমীকরণ নির্ণয় কর।



ধরা যাক, OA = a, OB = b.

 $\therefore$  নির্ণেষ সমীকরণ  $\frac{x}{a} + \frac{y}{b} = 1$ .

কিন্ত A-এর স্থানাক (a, 0) এবং B-এর স্থানাক (0, b);

 $\therefore$  AB-এর মধ্যবিদ্র স্থানাক  $\left(\frac{\alpha+0}{2}, \frac{0+h}{2}\right)$ .

অতএব,  $\frac{a+0}{2}=3$ , অথবা, a=6

এবং  $\frac{0+b}{2} = 5$ , অথবা, b = 10.

... নির্ণেষ্য সমীকরণ  $\frac{x}{6} + \frac{y}{10} = 1$ .

উদা. 10. (-1, 9) এবং (7, 13) বিন্দুদ্বের সংযোজক সরল রেখার মধ্যবিন্দু এবং (0, 2) বিন্দুগামী সরল রেখার সমীকরণ নির্ণয় কর।

(-1, 9) এবং (7, 13) বিন্দুছের সংযোজক দরল রেখার মধ্যবিন্দুর স্থানাম্ব  $\left(\frac{-1+7}{2}, \frac{9+13}{2}\right)$  অথবা (3, 11).

. . নির্ণের সমীকরণ 
$$\frac{y-11}{11-2} = \frac{x-3}{3-0}$$
;

অথবা, 
$$3y-33=9x-27$$
;  
অথবা,  $y=3x+2$ .

## প্রশ্নালা ৪

1. অক্ষর স্মীকরণের পার্বে লিখিত বিন্দুগামী এবং মূল অক্ষরের স্মান্তরাল হইলে, নিম্নলিখিত স্মীকরণগুলি বে স্মীকরণে রূপান্তরিত হয়, তাহা নির্ণয় কর:

[ Transform the following equations by referring to parallel axes through the points indicated against each : ]

- (a) 2x + 3y + 7 = 0; (3, -2).
- (b)  $4x^{9} + y^{9} + 4x 8y = 0$ ; (2, 0).
- (c) ax + by + c = 0;  $\left(\frac{c}{a} \cdot c\right)$ .
- (d)  $x^2 + 8x + y^3 2y = 15$ ; (4, 1),
- 2. অক্ষদ্বয়কে কোন বিশেষ বিশু (h, k)-গামী করিয়া, প্রমাণ কর যে, নিম্নলিখিত সমীকরণটিকে মাত্র দিঘাত-পদ্বিশিষ্ট সমীকরণে রূপান্তরিত করা যায়:

$$12x^2 - 10xy + 2y^2 + 11x - 5y + 2 = 0.$$

- 3. নিম্নিখিত বিন্দুরয়গামী দরল রেখার প্রবণতা (gradient) নির্ণয় কর:
  - (i) (4, 3) এবং (3, 4).
- (ii) (0, -6) এবং (-5, 8).
- (iii) (-3, -9) এবং (-7, 3).
- 4. যে সরল রেখা y-অক্ষের ধনাত্মক দিক্ হইতে 5 একক কাটিয়া লয় এবং ফ-অক্ষের সহিত 45° কোণ উৎপত্ন করে, তাহার সমীকরণ নির্ণয় কর।
- 5. যে সরল রেখা y-অক্লের ঋণাত্মক দিক্ হইতে 2 একক কাটিয়া লয় এবং ফ্র-অক্লের সহিত 30° কোণ উংপল্ল করে, তাহার সমীকরণ নির্ণয় কর।
- বে দরল রেখা অক্ষয় হইতে যথাক্রমে (i) 3 এবং 2 একক, (ii) 5 এবং
   একক কাটিয়া লয়, তাহার সমীকরণ নির্ণয় কর।
- 7. (5, 6) বিন্দুগামী যে দরল রেখা অক্ষন্তর হইতে (i) ধনাত্মক দমান অংশ, (ii) বিপরীত চিহুযুক্ত দমান অংশ কাটিয়া লয়, তাহার দমীকরণ নির্ণয় কর।

- 8. (1, -2) বিন্দৃগামী যে-সকল সরল রেখা অক্ষন্তর হইতে সমান অংশ কাটির।
  শয়, তাহাদের সমীকরণ নির্ণয় কর।
- 9. (x', y') বিন্দুগামী একটি সরল রেখা  $x \otimes y$  অক্ষন্বয়কে যথাক্রমে A এবং B বিন্দুতে ছেদ করে। (r', y') বিন্দুটি AB-কে দমিছিখণ্ডিত করিলে প্রমাণ কর যে, উহার সমীকরণ  $\frac{x}{2x'} + \frac{y}{2y'} = 1$ .
- 10. (-4,3) বিলুগামী একটি সরল রেখা  $x \cdot 9y$  অক্ষন্ধকে যথাক্রমে A এবং B বিন্দুতে ছেদ করে। যদি (-4,3) বিন্দুটি  $\overline{\rm AB}$ -কে 5:3 অনুপাতে বিভক্ত করে, তাহা হইলে প্রমাণ কর যে, উহার সমীকরণ 20y-9x=96.
- 11. একটি সরল রেখা অক্ষন্বয়কে A ও B বিন্দৃতে চেদ করে। যদি AOB বিভূজটির ক্ষেত্রফল 30 বর্গ একক এবং AB এর দৈর্ঘ্য 13 একক হয়, তবে সরল রেখাটির সমীকরণ নির্ণিয় কর।
- 12. প্রমাণ কর যে, 4x + 9y = 36 এবং  $\frac{x}{9} \frac{y}{4} = 1$  সরল রেখাদ্বয় এবং y-অক্ষ একটি সমদ্বিবাছ ত্রিভূজ উৎপন্ন করে।

নিমলিথিত বিশৃষ্যের মধ্য দিয়া অন্ধিত সরল রেথাসমূহের সমীকরণ নির্ণয় কর:—

**13.** (0, 0), (5, 6),

14. (0, 5), (7, 0).

15. (6, -8), (-7, 5),

16. (-4, 8), (-9, -13).

**17.** (-11, 0), (7, -10).

18. (at2, 2at) (at12, 2at1).

19. 
$$\left(at_1, \frac{a}{t_1}\right), \left(at_2, \frac{a}{t_2}\right).$$

- 20.  $(a \cos \theta_1, a \sin \theta_1), (a \cos \theta_2, a \sin \theta_2)$ .
- 21.  $(a \cos \theta_1, b \sin \theta_1), (a \cos \theta_2, b \sin \theta_2)$
- 22. ABC ত্রিভ্জের কৌণিক বিন্দুত্রয়ের স্থানাম্ব

(i) (1, 4), (2, -3) 의학 (-1, -2),

- (ii) (0, 1), (2, 0) এবং (-1, -2) হইলে, উহার বাহুত্রেরে সমীকরণ নির্ণয় কর।
- 23. অক্ষন্ত্র হইতে যে দরল রেখা 2 এবং 1 একক কাটিয়া লয়, তাহার সমীকরণ নির্ণয় কর।
  [ C. U., 1944 ]
- 24. একটি গতিশীল সরল রেথা অক্ষন্তাকে এরপভাবে ছেদ করে, যে অক্ষন্তার ছেদিতাংশন্তার অন্যোক্তকের সমষ্টি ধ্রুবক। প্রমাণ কর যে, সরল রেথাটি একটি নির্দিষ্ট বিন্দুগামী।

- 25. (1, 2) এবং (2, 1) বিন্দুগামী সরল রেখার সমীকরণ নির্ণয় কর। অক্ষরের মধ্যবর্তী সরল রেখার অংশের দৈর্ঘ্য নির্ণয় কর। [C. U. 1936]
- 26.  $x \sin \theta + y \cos \theta = \frac{a}{2} \sin 2\theta$  এবং  $x \cos \theta y \sin \theta = a \cos 2\theta$  সরল রেখাছয়ের উপর মূলবিন্দু হইতে লম্ব p,  $p_1$  হইলে, প্রমাণ কর যে,  $4p^2 + p_1^2 = a^2$ .
- 27. A, B, C, D বিন্দুচতুইবের স্থানান্ধ যথাক্রমে (a, b), (a', b'), (-a, b) এবং (a', -b') হইলে,  $\overline{AB}$  ও  $\overline{CD}$  সরল রেথার সমন্বিধণ্ডক সরল রেথার সমীকরণ নির্ণয় কর।
- 28. একটি আয়তক্ষেত্রের চারিটি বাহুর সমীকরণ  $x=a,\ x=a',\ y=b,\ y=b'$  ছইলে, ইহার কর্ণরয়ের সমীকরণ নির্ণয় কর।
- 29. 3x+y=12 সরল রেখা অক্ষহয়কে A এবং B বিনুতে ছেদ করে। C এবং D বিনুত্ব  $\overline{AB}$ -কে সমান তিন অংশে বিভক্ত করিলে, OC এবং OD-এর সমীকরণ নির্ণয় কর।
- 30.  $\theta$ -এর বিভিন্ন মানের জন্ম  $x\cos\theta+y\sin\theta=6$  সমীকরণটি দারা কি বুঝায় তাহা ব্যাখ্যা কর।
  - 2.12. ভূইটি সরল রেখার অন্তর্বভী কোপ নির্ণয়। [ To find the angle between two given straight lines. ]



 $\Theta$  এবং PR সরল রেখা-ছুইটি পরস্পারকে P বিন্দৃতে, এবং  $\alpha$ -অক্ষকে যথাক্রমে যেন Q এবং R বিন্দৃতে ছেদ করে। ধরা যাক,  $\angle PQX = \theta_1$ ,  $\angle PRX = \theta_2$  এবং  $\angle QPR = \theta$ ;

- ∴ PQ ও PR-এর অন্তর্বতী কোণ QPR = θ₁ − θ₂.
- (i) রেখাদ্বরের সমীকরণ যথাক্তমে যেন,  $y = m_1 x + c_1$  এবং  $y = m_2 x + c_2$

... tan 
$$\theta_1 = m_1$$
, এবং tan  $\theta_2 = m_2$ ;

$$\therefore \tan \theta = (\theta_1 - \theta_2) = \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2} = \frac{m_1 - m_2}{1 + m_1 m_2}.$$

অতএব নির্ণের কোণ  $\theta = \tan^{-1} \frac{m_1 - m_2}{1 + m_1 m_2}$ 

(ii) সরল রেখান্তরে সমীকরণ যদি যথাক্রমে  $a_1x+b_1y+c_1=0$  এবং  $a_2x+b_2y+c_3=0$  হয়, তবে,

এই সমীকরণদমকে নিমলিখিত আকারে প্রকাশ করা যায়:

$$y = -\frac{a_1}{b_1}x - \frac{c_1}{b_1}$$

এবং 
$$y = -\frac{a_9}{b_2}x - \frac{c_9}{b_2}$$
;

$$\therefore$$
 (1)-এর স্থিত তুলনা করিলে,  $m_1=-rac{a_1}{b_1}, m_2=-rac{a_2}{b_2}$ 

$$\therefore \tan \theta = \frac{-\frac{a_1}{b_1} + \frac{a_2}{b_2}}{1 + \frac{a_1}{b_1} \cdot \frac{a_3}{b_2}} = \frac{b_1 a_2 - a_1 b_2}{a_1 a_2 + b_1 b_2}.$$

অতএব, নিৰ্বেয় কোণ,  $\theta = \tan^{-1} \frac{b_1 a_2 - a_1 b_3}{a_1 a_2 + b_1 b_2}$ .

(iii) সরল রেখাদ্যের সমীকরণ যথাক্রমে যদি

$$x\cos\alpha_1 + y\sin\alpha_1 - p_1 = 0$$

এবং  $x \cos a_2 + y \sin a_2 - p_2 = 0$  হয়, তাবে

মৃলবিন্দু হইতে রেথাদ্বরের উপর অন্ধিত লম্বদ্ধর ৫-অক্ষের সহিত ধথাক্রমে α1 এবং α2 কোণ উৎপন্ন করে।

এখন, চুইটি সরল রেখার অন্তর্গত কোণ, উহাদের উপর অন্ধিত লম্বদ্যের অন্তর্গত কোণের সমান বা সম্পূরক, অতএব, **প্রদত্ত সরল রেখাদ্বয়ের অন্তর্গত কে†ণ** =  $\alpha_1$  –  $\alpha_2$  অথবা  $180^\circ$  –  $(\alpha_1$  –  $\alpha_2$ ).

2<sup>·</sup>13. সুই**টি** সরল রেখার শরম্পর সমান্তরাল হওয়ার শর্ত।

[ Condition of parallelism of two straight lines. ]

- (i)  $y = m_1 x + c_1$  এবং  $y = m_2 x + c_2$  দ্বল বেখা-তুইটি যেন সমান্তরাল ;
- $\therefore$  উহাদের অন্তর্বর্তী কোণ  $\theta=0$  ;  $\therefore$   $an \theta=0$  ;

$$\forall \forall 1, \quad \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = 0 ;$$

.. 
$$m_1 - m_2 = 0$$
, অৰ্থং  $m_1 = m_2$ .

(ii) সরল রেখাছয়ের সমীকরণ

$$a_1x + b_1y + c_1 = 0$$
 এবং  $a_2x + b_2y + c_2 = 0$  হঠলে,

$$m_1 = -\frac{a_1}{b_1}, \ m_2 = -\frac{a_2}{b_2}.$$

.. সরল রেখাদ্বর সমান্তরাল হইলে,

$$-\frac{a_1}{b_1} = -\frac{a_2}{b_2}, \qquad \qquad \left[ (বহৈতু m_1 = m_2) \right]$$

$$\boxed{a_1} = \frac{b_1}{b_2}$$

#### বিকল্প প্রমাণ ঃ

[ অমুচ্ছেদ 2'12-এর চিত্র দ্রষ্টব্য ]

- (i) সরল রেখাদ্য সমান্তরাল হইলে,  $\theta_1 = \theta_2$  ( একান্তর কোণ)। অতএব,  $\tan \theta_1 = \tan \theta_2$ , অর্থাৎ  $m_1 = m_2$ .
- (ii) সরল রেথাদ্বয় পরস্পর লম্ব হইলে, θ = 90°.

অতএব,  $\theta_1 = 90^\circ + \theta_2$ ;

$$\therefore \tan \theta_1 = \tan (90^\circ + \theta_2) = -\cot \theta_2 = -\frac{1}{\tan \theta_2}.$$

অধিং 
$$m_1 = -\frac{1}{m_2}$$
 অভএব,  $m_1 m_2 = -1$ .

# 2<sup>1</sup>14. চুইটি সরল রেখার শরস্পর লম্ব হওয়ার **শ**র্ড।

[ Condition of perpendicularity of two straight lines. ]

ছুইটি সরল রেখা  $y=m_1x+c_1$ ,  $y=m_2x+c_3$  যেন পরস্পারের উপর লম্ব।

- .. সরল রেখা-তুইটি মধ্যবর্তী কোণ  $\theta = 90^\circ$ ,
- $\therefore \cot \theta = \cot 90^{\circ} = 0;$
- .. সুরোম্পারে  $\cot \theta = \frac{1 + m_1 m_2}{m_1 m_2}$  ব্লিয়া  $\frac{1 + m_1 m_2}{m_1 m_2} = 0$ ;
- $m_1m_2=-1.$

ষদি  $a_1x + b_1y + c_1 = 0$  এবং  $a_2x + b_2y + c_2 = 0$  সরল রেখাদ্বয়ের সমীকরণ

হয়, তাহা ইইলে, 
$$m_1 = -\frac{a_1}{b_1}$$
,  $m_2 = -\frac{a_2}{b_2}$ 

$$\cdot$$
ৈ উহারা প্রস্পর লম্ব হইলে,  $\left(-rac{a_1}{b_1}
ight)\!\left(-rac{a_2}{b_2}
ight)\!=-1$ ,

অৰ্থাৎ 
$$\frac{a_1a_9}{b_1b_2} = -1.$$

 $a_1a_2 + b_1b_2 = 0.$ 

টীকা 1. অন্ন. 2'13 হইতে ইহা স্পষ্টই প্রতীয়মান হয় যে,  $y=mx+c_1$  এবং  $y=mx+c_2$  প্রস্পার সমান্তরাল এবং  $ax+by+c_1=0$  এবং  $ax+by+c_2=0$  প্রস্পার সমান্তরাল।

দীকা 2. অন্ন. 2'14 হইতে ইহা স্পষ্টই প্রতীয়মান হয় যে,

$$y = mx + c_1$$
 এবং  $y = -\frac{1}{m}x + c_2$  প্রম্প্র লম্ম ;

এবং  $ax + by + c_1 = 0$  এবং  $bx - ay + c_2 = 0$  পরস্পার লয়।

#### উদাহরণমালা

উদা 1. (4, -5) বিন্দুগামী এবং 3x + 4y + 5 = 0 সরল রেখার সমাস্তরাল সরল রেখার সমীকরণ নির্ণয় কর।

### প্রথম পদ্ধতিঃ

रेश (4, -5) विन्तृशामी इट्टें विन

 $3 \times 4 + 4 \times (-5) + c = 0$ 

অৰ্থাৎ যদি c=20-12=8.

:. নির্ণের সমীকরণ 3x + 4y + 8 = 0.

্রএই পদ্ধতিতে আমরা এরপ একটি সরল রেখার সমীকরণ লই যাহা দারা প্রদত্ত সরল রেখার সমান্তরাল যে-কোন সরল রেখা ব্যায়। c-এর বিভিন্ন মানের জন্ত সমীকরণ (a) প্রদত্ত সরল রেখার বিভিন্ন সমান্তরাল সরল রেখা ব্যায়। এই সমান্তরাল রেখাসম্হের মধ্যে যে সরল রেখাটি প্রদত্ত বিন্দু (4, -5) দিয়া যাইবে, উহার সমীকরণে c=8.

# দিতীয় পদ্ধতিঃ

প্রদত্ত সমীকরণটিকে নিম্নলিখিত আকারে লেখা যায়:

$$y = -\frac{3}{4}x - \frac{5}{4} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

সমীকরণ (1) এর প্রবণতা = - ই.

य मतल त्रथा (4, -5) विभूगाभी, তाहां मभीकृत्व

$$y+5=m(x-4) \qquad \cdots \qquad \cdots \qquad (2)$$

দরল রেখা (2) সরল রেখা (1)-এর সমান্তরাল হইবে, যদি  $m=-\frac{\pi}{4}$  হয়,

:. নির্ণেয় সমীকরণ  $y + 5 = -\frac{3}{4}(x - 4)$ ,

 $\boxed{4y + 20 = -3x + 12}.$ 

 $\exists 1, \quad 3x + 4y + 8 = 0.$ 

্র প্রতিতে প্রথমে যে সকল সরল রেখা প্রানত বিন্দুগামী তাহাদের সাধারণ সমীকরণটি লওয়া হয়। তারপর, সেই সরল রেখাগুলির মধ্যে যেটি মাত্র প্রদত্ত সরল রেখার সমান্তরাল তাহাকে প্রবণতা  $(m=-\frac{2}{3})$ -এর সাহায্যে নির্ণয় করা হয়।

# তৃতীয় পদ্ধতিঃ

প্রদান্ত সরল রেখার সমান্তরাল সরল রেখার সমীকরণ যেন y=mx+c ... ... (1) যেহেতু সরল রেখা (1) (4,-5) বিন্দৃগামী, অভএব. -5=4m+c ... ... (2) যেহেতু সরল রেখা (1) 3x+4y+5=0 সরল রেখার সহিত সমান্তরাল, অভএব,  $y=-\frac{3}{2}x-\frac{5}{6}$ -এর সমান্তরাল। ... (1)-এর  $m=-\frac{3}{4}$  ... ... (3) অভএব (2) এবং (3) হইতে c=-2. স্বভরাং, সমীকরণ (1)-এ m এবং c-এর মান বসাইয়া,

$$y=-\tfrac{8}{4}x-2\;;$$

বা, 3x + 4y + 8 = 0.

্রিই পদ্ধতিতে আমরা নির্ণেয় সরল রেখার সমীকরণটি কল্পনা করিয়া লই এবং প্রদত্ত শর্ভগুলি হইতে কল্পিত সমীকরণের গ্রুবক-সংখ্যা (m ও c)-এর মান নির্ণয় করি।]

উদ। 2. (4, -5) বিন্দুগামী এবং 3x + 4y + 5 = 0 সরল রেখার উপর লমভাবে অবস্থিত সরল রেখার সমীকরণ নির্ণয় কর।

# প্রথম পদ্ধতিঃ

প্রদত্ত সরল রেখার সমীকরণটি নিমলিখিত আকারে প্রকাশ করা যায়:

$$y = -\frac{3}{4}x - \frac{5}{4}. \qquad \cdots \qquad \cdots \qquad \cdots \qquad (1)$$

(4. -5) বিনুগামী যে-কোন সরল রেখার সমীকরণ,

$$y - (-5) = m(x - 4)$$
. [ অহ. 2°10 বছব্য ]

এই সরল রেখা এবং প্রদত্ত (1) সরল রেখা পরস্পার লম্ব হইলে,

$$m \times (-\frac{3}{4}) = -1$$
; [ जरू. 2.14 सहेरा ]

·. m= \$.

:. নির্ণেয় সমীকরণ  $y + 5 = \frac{4}{5}(x - 4)$ , অথবা, 4x - 3y = 31.

# দ্বিতীয় পদ্ধতি ঃ

3x+4y+5=0 সরল রেখার উপর লম্বভাবে অবস্থিত যে-কোন সরল রেখার স্মীকরণ 4x-3y+c=0.

ইহা (4, -5) বিন্দুগামী হইলে,  $4 \times 4 - 3(-5) + c = 0$ ;

c = -31;

:. নির্পের সমীকরণ 4x - 3y - 31 = 0, বা, 4x - 3y = 31.

উদা. 3. A এবং B বিন্দুছয়ের স্থানান্ধ যথাক্রমে (5, 3) এবং (7, 9); AB সরল বেধার লম্ব-সমন্বিধগুকের সমীকরণ নির্ণয় কর।

AB সরল রেখার স্মীকরণ

$$y-9=\frac{9-3}{7-5}(x-7)=3(x-7).$$

जश्रा, y = 3x - 12.

AB-এর মধ্যবিদ্ M-এর স্থানান্ধ  $\left(\frac{5+7}{2}, \frac{3+9}{2}\right)$ , বা, (6, 6).

(6, 6) বিন্দুগামী যে-কোন সরল রেখার সমীকরণ y-6=m(x-6).

ইহা  $\overrightarrow{AB}$ -এর উপর লম্ব হইলে,  $m \times 3 = -1$ ;

 $m = -\frac{1}{3}$ ;

:. নির্ণেষ্ঠ সমীকরণ  $y-6=-\frac{1}{3}(x-6)$ .

 $\sqrt{3}y + x = 24$ .

উদা. 4.  $(x_1, y_1)$  বিন্দুগামী এবং  $xx_1 + yy_1 = a^2$  সরল রেখার উপর লম্ব-ভাবে অবস্থিত সরল রেখার সমীকরণ নির্ণয় কর।

প্রদত্ত সরল রেখার উপর লগভাবে অবস্থিত যে-কোন সরল রেখার সমীকরণ  $xy_1-yx_2=c$ .

ইহা ( $x_1, y_1$ ) বিন্পামী হইলে  $x_1y_1 - y_1x_1 = c$ ,

c=0;

ে নির্ণের সমীকরণ  $xy_1 - yx_1 = 0$ .

# প্রামালা 9

- 1.  $x-y\sqrt{3}=5$  এবং  $x\sqrt{3}+y=7$  সরল রেধাদ্মের অন্তর্গত কোণের মান
- 2. y=3x+7 এবং 3y-x=8 সরল রেখাছয়ের অন্তর্গত কোণের মান  $\theta$

- 3. প্রমাণ কর যে, (2, -1), (0, 2), (2, 3) এবং (4, 0) বিন্দৃচভুষ্টয় একটি সামাভরিকের কোণিক বিন্দু। ইহার কর্ণছয়ের সমীকরণ নির্ণয় কর এবং কর্ণছয়ের অন্তর্গত কোণের পরিমাণ নির্ণয় কর।
- 4. (2,3) বিন্দৃগামী এবং 4x-3y=10 সরল রেথার উপর লম্বভাবে অবস্থিত সরল রেথার সমীকরণ নির্ণয় কর।
- 5.  $(x_1, y_1)$  বিন্যামী এবং ax + by + c = 0 সরল রেখার সমান্তরাল সরল রেখার সমীকরণ নির্ণয় কর।
- 6. (2, -3) বিন্দৃগামী এবং (5, 7) ও (-6, 3) বিন্দুছয়ের সংযোজক সরল দ্বেখার উপর লম্ব ভাবে অবস্থিত সরল রেখার সমীকরণ নির্ণয় কর।
- 7.  $\frac{a}{a} \frac{1}{b} = 1$  সরল রেখা যদি a-অক্ষকে A বিন্দৃতে ছেদ করে, তবে A বিন্দৃগামী এবং এই সরল রেখার উপর লম্বভাবে অবস্থিত সরল রেখার সমীকরণ নির্দয় কর ।
- 8. A এবং B বিন্দুহয়ের স্থানাক যথাক্রমে (2a, 2b) এবং (2c, 2d). AB সরস্ব রেখার সম্বন্দম্বিথণ্ডকের স্মীকরণ নির্ণয় কর ।
- 9. (x',y') বিন্দুগামী এবং  $\frac{xx'}{a^2}+\frac{yy'}{b^2}=1$  সরল রেখার উপর লম্বভাবে অবস্থিত সরল রেখার সমীকরণ নির্ণয় কর।
- 10. A এবং B বিশ্বষের স্থানাত্ব যথাক্রমে (-3,7) এবং (5, -4); C বিশূ AB-কে 4:7 অমুপাতে বিভক্ত করিলে C বিশূগামী এবং AB-এর উপর লম্বভাবে অবস্থিত সরল রেখার সমীকরণ নির্ণয় কর।

# 2'15. তিনটি বিন্দুর সমরেখ হওয়ার শর্ত।

[ Condition of collinearity of three points. ]

তিনটি বিশু A, B, C সমরেথ হইবে, যদি ABC ত্রিভ্জের ক্ষেত্রফল = 0 হয়,
অথবা A এবং B বিন্দৃগামী দরল রেখা দদি C বিন্দুর মধ্য দিয়া যায় অর্থাৎ AB দরল
রেখার সমীকরণটির C বিন্দুর স্থানাহ দারা নিদ্ধ হয়।

# 2:16. সুইটি সরল রেখার ছেদ্বিন্দুর স্থানাঞ্চ নির্ণয়।

[To find the co-ordinates of the point of intersection of two given straight lines.]

জুইটি সরল রেখা  $a_1x+b_1y+c_1=0$  এবং  $a_2x+b_2y+c_2=0$  খেন (h,k) বিন্তুতে ছেদ করিয়াছে।  $\therefore$  প্রত্যেক সরল রেখাই (h,k) বিন্তুগামী।

 $\therefore a_1h + b_1k + c_1 = 0 \text{ and } a_2h + b_2k + c_3 = 0.$ 

: বজ্ঞগন-প্রক্রিয়া দারা,

$$\frac{h}{b_1c_2-b_2c_1}=\frac{k}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1};$$

ে ছেদ্বিশুর স্থানাম  $\binom{b_1c_2-b_2c_1}{a_1b_2-a_2b_1}, \frac{c_1a_2-c_2a_1}{a_1b_2-a_2b_1}$ .

টীকা। অন্ন. 2.16 হইতে স্পষ্ট প্রতীয়মান হয় যে, ছইটি সরল রেখার দমীকরণদ্ব সমাধান করিরা ৫ এবং y-এর যে মান পাওয়া যাইবে, ভাহাই সরল রেথাদ্যের ছেদবিন্দুর স্থানাক।

2'17. তিনটি সরল বেং ার একবিন্দুগামী হওয়ার শর্ত।
[ To find the condition of concurrence of three straight lines.]
সমল বেখাতায়ের সমীকরণ যেন.

$$a_1x + b_1y + c_1 = 0 \qquad \cdots \qquad \cdots \qquad (1)$$

$$a_3x + b_3y + c_3 = 0 \qquad \dots \tag{2}$$

$$a_8x + b_8y + c_8 = 0 \qquad \dots \qquad (3)$$

(1) এবং (2)-এর ছেদবিন্দুর স্থানাস্ক যদি (3)-কে দিন্ধ করে, তাহা হুইলেই সরল রেখাত্রের একবিন্দুগামী হুইবে।

### উদ্যাহরণমালা

উদা. 1. প্রমাণ কর বে, (5, 1), (1, -1) এবং (11, 4) বিন্দুত্রর সমরেখ। মনে কর, বিন্দুত্রর বথাক্রমে A, B এবং C.

AB সরল রেথার স্থীকরণ  $y-1 = \frac{1-(-1)}{5-1}(x-5)$ ;

অথবা, 2(y-1)=(n-5):

অথবা, 
$$x-2y=3$$
. ... (1)

এখন ৫-এর মান 11 এবং y-এর মান 4 বসাইলে, (1) সমীকরণটির বাম পক্ষ = 11 - 8 = 3 = ভান পক্ষ; ... C-এর স্থানান্ধ (1)-কে দিদ্ধ করে অর্থাৎ C বিন্দু AB-এর উপর অবস্থিত, অর্থাৎ A, B, C বিন্দু তার সমরেধ।

উদ। 2. প্রমাণ কর যে, 2x-3y=7, 3x-4y=13 এবং 8x-11y=33 দরল রেখাত্রয় একবিন্দুগামী।

প্রথম ও বিতীয় সমীকরণ সমাধান করিয়া দেখা যার, n=11, y=5.

অর্থাং উহাদের ছেদবিন্দুর স্থানাস্ক (11. 5). এখন তৃতীয় সমীকরণে x=11, y=5 বসাইলে, বাম পক্ষ=88-55=33= ভান পক্ষ।  $\therefore$  (11, 5) বিন্দুর স্থানাস্ক তৃতীয় দরল রেখার সমীকরণকে দিন্ধ করে, অর্থাং তৃতীয় দরল রেখাটি (11, 5) বিন্দুগামী, অর্থাং দরল রেখাত্তর একবিন্দুগামী।

উদা. 3. m-এর মান কত হইলে, y=3x-1, 2y=x+3 এবং 3y=mx+4 সরল রেখাত্রয় একবিন্দুগামী হইবে ?

y=3x-1 এবং 2y=x+3 সমীকরণদ্বরের সমাধান করিয়া ছেদবিন্দুর স্থানাম্ব (1,2) পাওয়া যায়। যেহেতু তৃতীয় সমীকরণ-নির্দিষ্ট সরল রেখাটি এবং প্রথম সরল বেখা-তৃইটি একবিন্দুগামী; অত এব, প্রথম তৃইটির ছেদবিন্দুর স্থানাম্ব (1,2) তৃতীয়টিকে শিদ্ধ করিবে।

$$6 = m + 4$$
:  $m = 2$ .

উদ্ধা 4. বে সরল রেখা 3x-4y+1=0 এবং 5x+y-1=0 সরল রেখা ছিমের ছেদবিন্দুগামী এবং অক্ষন্তর হউতে সমান অংশ ছেদ করে, উহার সমীকরণ নির্ণয় কর।

[C. U. 1947]

3x-4y+1=0 এবং 5x+y-1=0 এই সরল রেখাছারের ছেদ্ধিন্দুগামী বে-কোন সরল রেখার সমীকরণ

$$3x-4y+1+l(5x+y-1)=0$$
, [বেধানে  $l$  একটি ধ্রুবক সংখ্যা] বা,  $(5l+3)x+(l-4)y-(l-1)=3$  ··· (a) বা,  $\frac{(5l+3)x}{(l-1)}+\frac{(l-4)y}{(l-1)}=1$ ,

ইহাকে intercept form-এ পরিবর্তিত করিলে

$$\frac{x}{\frac{l-1}{5l+3}} = \frac{y}{\frac{l-1}{l-4}} = 1$$
 পাওয়া यात्र।

থেহেতু দরল রেখা (a) অক্ষর হইতে সমান অংশ ছেদ করে,

$$\therefore \frac{l-1}{5l+3} = \frac{l-1}{l-4}; \quad \therefore \quad l=1, \ \forall l, \quad -\frac{7}{4}.$$

l=1 লইলে (a) দমীকরণটি মূলবিন্দুগামী সরল রেখার সমীকরণ হয় এবং এই সরল রেখাটি অক্ষয়কে ভে্দ করিতে পারে না। স্বতরাং, l=1 হইতে পারে না। অতএব,  $l=-\frac{7}{2}$  ধরিয়াই নির্পের সমীকরণটি

2<sup>·</sup>18. সুইটি সরল রেখার ছেদবিন্দুগামী যে-কোন সরল রেখার সমীকরণ নির্ণর।

[ To find the equation to the straight line passing through the point of intersection of two given straight lines.]

ছুইটি সরল রেখার সমীকরণ যেন  $a_1x+b_1y+c_1=0$  এবং  $a_2x+b_2y+c_2=0$ . ইহাদের ছেদবিন্দুগামী যে-কোন সরল রেখার সমীকরণ নির্ণয় করিতে হইবে।

রেথাছয়ের ছেদবিন্দ্র স্থানাস্ক যদি  $(x_1, y_1)$ , তবে সমীকরণ-তৃইটির সমাধান করিয়া  $x_1 \otimes y_1$ -এর মান পাওয়া ধাইবে।

স্তরাং,  $(x_1, y_1)$  বিন্দুগামী যে-কোন সরল রেখার সমীকরণ  $y-y_1=m(x-x_1)$ , যেখানে m যে-কোন ধ্রুক-সংখ্যা।

### প্রাথ্যালা 10

- 1.  $\frac{x}{a}+\frac{y}{b}=1$  এবং  $\frac{x}{b}+\frac{y}{a}=1$ , সরল রেখাছয়ের ছেদবিন্দুর স্থানান্ধ নির্ণয় কর।
- 2.  $\frac{x}{4} + \frac{y}{5} = 1$  এবং  $\frac{x}{5} + \frac{y}{4} = 1$ , সরল রেখাদ্বয়ের ছেদবিন্দুর স্থানাম্ভ
- 3. প্রমাণ কর যে,  $\frac{x}{a}+\frac{y}{b}=1$ ,  $\frac{x}{b}+\frac{y}{a}=1$  এবং x-y=0 সরল রেখাত্র **এক**বিন্দুগামী।
- 4. প্রমাণ কর যে, 3x+4y+6=0, 6x+5y+9=0 এবং 3x+3y+5=0 সরল রেখাত্তর এক বিন্দুগামী।
- 5. a-এর মান কত হইলে, 3x+y-2=0, ax+2y-3=0 এবং 2x-y-3=0 সরল রেখাত্র এক বিন্যুগামী হইবে ?
  - 6. প্রমাণ কর যে, (3a, 0) (0, 3b) এবং (a, 2b) বিন্দু রয় সমরেখ।

[ ইঙ্গিতঃ প্রথম বিন্দুরয়ের সংযোজক রেখা  $\frac{x}{3a} + \frac{y}{3b} = 1$ , (a, 2b) বিন্দুগামী।]

- 7. প্রমাণ কর যে, (a, 0), (0, b), (1, 1) সমরেথ হইলে,  $\frac{1}{a} + \frac{1}{b} = 1$ .
- 8.  $\frac{x}{a} + \frac{y}{b} = 1$  সরল রেখা, 2x y = 1 এবং 3x 4y + 6 = 0 সরল রেখাছয়ের ছেদবিন্দুগামী এবং 4x + 3y 6 = 0 সরল রেখার সমান্তরাল। a এবং b-এর মান নির্ণয় কর।

# 2'19. অত্যাবশ্যক প্রতিজ্ঞা।

 $a_1x+b_1y+c_1=0$  এবং  $a_2x+b_2y+c_2=0$  সরল রেখাছয়ের ছেদবিন্দুগামী যে-কোন সরল রেখার সমীকরণ  $a_1x+b_1y+c_1+l(a_2x+b_2y+c_2)=0$ , ষেখানে যে-কোন একটি ফ্রক সংখ্যা।

$$a_1x + b_1y + c_1 = 0$$
 ... (1)  
এবং  $a_2x + b_2y + c_2 = 0$  ... (2)

সরল রেখাছয়ের ছেদবিন্দু যেন (h, k);

 $\therefore a_1h + b_1k + c_1 = 0 \text{ and } a_2h + b_2k + c_3 = 0.$ 

 $\therefore a_1h + b_1k + c_1 + l(a_2h + b_3k + c_2) = 0.$  (3)

(3) হইতে স্পষ্টই প্রতীয়মান হয় বে,

 $(a_1x+b_1y+c_1)+l(a_2x+b_2y+c_2)=0$ , (h,k) বিন্দুগামী ৷ এই সমীকরণটিকে  $(a_1+la_2)x+(b_1+lb_2)y+c_1+lc_2=0$ ,

বা, Ax + By + C = 0 আকারে প্রকাশ করা যায়, যেথানে  $A = a_1 + la_2$ ,  $B = b_1 + lb_2$ , এবং  $C = c_1 + lc_2$ .

∴ ইহা একটি সরল রেখার সমীকরণ।

... (1) এবং (2)-এর ছেদবিন্দুগামী যে-কোন সরল রেখার সমীকরণ  $a_1x+b_1y+c_1+l(a_2x+b_2y+c_3)=0$ .

উদা. 1. (3, 2) বিন্দুগামী এবং 3x + 5y - 8 = 0 এবং x - 3y + 2 = 0 সরল রেখাদয়ের ছেদবিন্দুগামী সরল রেখার সমীকরণ নির্ণয় কর।

সমীকরণ্যর সমাধান করিয়া প্রদত্ত সরল রেখাদ্যের ছেদবিন্দুর স্থানান্ধ (1, 1) পাওয়া যায়।

:. (3, 2) এবং (1, 1) বিন্দুদ্বয়ের সংযোজক সরল রেখার স্মীকরণই নির্ণেয়
স্মীকরণ।

: নির্ণের সমীকরণ  $y-2=\frac{2-1}{3-1}(x-3)$ ,

অথবা, 2y-4=x-3, অথবা, x-2y+1=0.

# বিকল্প পদ্ধতিঃ

প্রদত্ত সরল রেখাছয়ের ছেদবিন্দুগামী যে-কোন সরল রেখার সমীকরণ 3x+5y-8+k(x-3y+2)=0, যেখানে k একটি ধ্রুবক সংখ্যা।

हेश (3, 2) विन्गामी हहेल,

 $3 \times 3 + 5 \times 2 - 8 + k(3 - 3 \times 2 + 2) = 0$ ,

ष्यश्री,  $11+k\times(-1)=0$ ; ... k=11.

:. নির্বেয় সমীকরণ 3x + 5y - 8 + 11(x - 3y + 2) = 0,

অথবা, 14x - 28y + 14 = 0, অথবা, x - 2y + 1 = 0.

উদা. 2. 2x-3y+4=0 এবং 3x+4y-5=0, সরল রেখাছমের ছেদ-বিন্দুগামী এবং 6x-7y+8=0 সরল রেখার উপর লম্বভাবে অবস্থিত সরল রেখার স্মীকরণ নির্ণয় কর।

(XI-XII)-35

প্রদত্ত প্রথম ও দিতীয় সরল রেখাদ্বয়ের ছেদবিন্দৃগামী যে-কোন সরল রেখার সমীকরণ

2x-3y+4+k(3x+4y-5)=0, যেখানে k একটি ধ্রুবক সংখ্যা অর্থাৎ (2+3k)x+y(-3+4k)+4-5k=0. ইহা প্রদন্ত তৃতীয় সরল রেখার উপর লম্ব হইবে, যদি  $(2+3k)\times 6+(-3+4k)\times (-7)=0, \qquad \qquad [ অনু. 2.14 দুইব্য ]$  অর্থাৎ  $k=\frac{9}{10}$ .

.. নির্ণেয় সমীকরণ  $2x - 3y + 4 + \frac{3}{15}(3x + 4y - 5) = 0$ , অথবা, 10(2x - 3y + 4) + 33(3x + 4y - 5) = 0, অথবা, 119x + 102y - 125 = 0.

### প্রামালা 11

- 1. (3, 2) বিন্দুগামী এবং 2x+3y-1=0 ও 3x-4y-6=0 দরল রেখাবয়ের ছেদবিন্দুগামী দরল রেখার সমীকরণ নির্ণয় কর।
- 2. (a, b) বিন্দৃগামী এবং  $\frac{x}{a} + \frac{y}{b} 1 = 0$  ও  $\frac{x}{b} + \frac{y}{a} 1 = 0$  সরল রেখা- ব্যের ছেদবিন্দৃগামী সরল রেখার সমীকরণ নির্ণয় কর।
- $3. \quad x-2y-a=0$  এবং x+3y-2a=0-এর ছেদবিন্দুগামী এবং 3x+4y=0-এর দমান্তরাল সরল রেখার স্মীকরণ নির্গয় কর।
- 4. x+2y+3=0 এবং 3x+4y+7=0 সরল রেখাদ্বরের ছেদবিন্দুগামী এবং y-x=8 সরল রেখার উপর লম্বভাবে স্থিত সরল রেখার সমীকরণ নির্ণয় কর।
- 5. 2x-3y-10=0 এবং x+2y-6=0 সরল রেখাছয়ের ছেদবিন্দুগামী এবং 16x-10y-33=0 এবং 12x+14y+29=0 সরল রেখাছয়ের ছেদবিন্দুগামী সরল রেখার সমীকরণ নির্গয় কর।
- 6. প্রমাণ কর যে, ax+by+c=0, a'x+b'y+c'=0, (a+a')x+(b+b')y+(c+c')=0, এবং (a-a')x+(b-b')y+(c-c')=0 সরল রেখা-চডুইর এক-বিনুগামী।
- 2'20. কোন সরল রেখার সম্পর্কে কোন বিন্দুর অবস্থান।

[ Position of a point in relation to a line. ]

একটি সরল রেখার সমীকরণ যেন ax + by + c = 0, এবং ইহা যেন অক্ষন্ধরকে যথাক্রমে P এবং Q বিন্তে ছেদ করিয়াছে। এখন, PQ রেখার সম্পর্কে যেন M বিন্তুর

অবস্থান নির্ণয় করিতে হইবে। M বিন্দু ছাড়া অপর একটি বিন্দু N লওয়া হইল।  $\longleftrightarrow$  M এবং N-এর স্থানাস্ক যথাক্রমে  $(x_1,y_1)$  এবং  $(x_2,y_2)$  এবং উহারা যেন  $\mathsf{PQ}$ -এর বিপরীত পাশে অবস্থিত [চিত্র (ক)]।





 $\overline{MN}$  যুক্ত করিলে উহ। যেন  $\overrightarrow{PQ}$  সরল রেখাকে L বিন্তে ছেদ করে এবং L বিন্তু করে করে করে জেশ L m .

.. 
$$L$$
 বিন্দুর স্থানাম্ভ  $\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$ .

ষেহেতু ∟ বিন্দু РО সরল রেখার উপর অবস্থিত, সেইহেতু

$$a \cdot \frac{mx_2 + nx_1}{m + n} + b \cdot \frac{my_3 + ny_1}{m + n} + c = 0 ;$$

আবার, চিত্র (খ)-এ м এবং N বিন্দ্রয়  $\overrightarrow{PQ}$  রেখার একই পাশে অবস্থিত।  $\overrightarrow{MN}$  যোগ করিয়া  $\overrightarrow{PQ}$  অভিমূখে বর্ধিত করিলে, যেন উহা  $\overrightarrow{PQ}$ -কে L বিন্দৃতে ছেদ করে এবং L বিন্দু  $\overrightarrow{MN}$  সরল রেখাকে  $\frac{m}{n}$  অমুপাতে বহির্বিভক্ত করে; অর্থাৎ  $\overrightarrow{ML}: LN = m:n$ .

$$\dots$$
 L বিন্দুর স্থানাক  $\frac{mx_2-nx_1}{m-n}$ ,  $\frac{my_2-ny_1}{m-n}$ .

L বিন্দু PQ সরল রেখার উপর অবস্থিত বলিয়া,

$$a \cdot \frac{mx_2 - nx_1}{m - n} + b \cdot \frac{my_2 - ny_1}{m - n} + c = 0;$$

$$ax_1 + by_1 + c = + \frac{m}{n} \qquad \cdots \qquad \cdots \qquad (2)$$

যেহেতু  $\frac{m}{n}$  একটি ধনাত্মক সংখ্যা, অতএব

 $\frac{ax_1+by_1+c}{ax_2+by_2+c}$  অমূপাতটির মান (1)-এ ঋণাত্মক এবং (2)-এ ধনাত্মক।

 $\therefore$  বিন্দুষ্য যদি প্রদত্ত নরল রেখাটির বিভিন্ন পার্গে অবস্থিত হয়, তবে  $ax_1+by_1+c$  এবং  $ax_2+by_2+c$  রাশিদ্ধ্যের মান বিপরীত চিহ্নবিশিষ্ট হইবে, এবং বিন্দুষ্য প্রাণত্ত সরল রেখার একই পাশে অবস্থিত হইলে, উভয়ের মান একই চিহ্নযুক্ত হইবে।

এখন, (2)-নং সমীকরণে  $(x_2,y_2)$ -এর স্থলে (0,0) বসাইলে,  $ax_2+by_2+c$  মানটি a.0+b.0+c=c হইরা পড়ে। ইহার অর্থ, N-বিন্দুর বদলে মূলবিন্দুর স্থানাম্ব বসাইলে ax+by+c-এর মান উহার জনক সংখ্যা C-এর সমান হইয়া যায়। কাজেই  $ax_1+by_1+c$  মানটির চিহ্ন এবং c-এর চিহ্ন যদি একই হয় তবে M এবং মূলবিন্দু PQ-রেখার একই পাশে অবস্থিত হইবে। c ও  $ax_1+by_1+c$  এই ছইটি মানের চিহ্ন বিপরীত হইলে, PQ-এর যে-পাশে মূলবিন্দু অবস্থিত তাহার বিপরীত পাশে M বিন্দু অবস্থিত হইবে। c ও ক্ষেত্র অবস্থান নির্দিষ্ করা যাইবে।

বিশেষ জন্ন : সরল রেখা-বিশেষের যে-পাশে মূলবিন্দুটি অবস্থিত হয়, সেই পাশটিকেই সাধারণতঃ ধনাত্মক বলিয়া গণ্য করা হয়। কাজেই ধবক সংখ্যাটির মান যাহাতে ধনাত্মক হয়, সেইভাবে এ রেখার সমীকরণটিকে পরিবর্তিত করিতে হয়; উদাহরণ য়য়প সমীকরণটি যদি ax + by + c = 0 হয় তবে উহার ধ্রুবক সংখ্যা c ধনাত্মক হইতে পারে। না হইলে c ধণাত্মক কিন্ধ (-c) ধনাত্মক এবং সেক্ষেত্রে ax + by + c = 0-কে -ax - by - c = 0 রূপে লেখা যায় যাহাতে মূলবিন্দুর স্থানান্ধ (0,0) বসাইলে -ax - by - c-এর মান = (-c) ধনাত্মক হয়। এইভাবে ax + by + c অথবা -ax - by - c-এর ঘেটিতে c বা (-c) ধনাত্মক, সেইটিতে বিন্দুবিশেষের স্থানান্ধ বসাইলে যদি ধনাত্মক মান পাওয়া যায় তবে এ বিন্দুটি অবশ্বই রেখাটির যে-পাশে মূলবিন্দু সেই ধনাত্মক পাশেই অবস্থিত হইবে। আর যদি সেই মান ঝণাত্মক হয় তবে বিন্দুটি রেখাটির ঝণাত্মক পাশে অর্থাৎ মূলবিন্দুর বিপ্রীত পাশে অবস্থিত হইবে।

# উদাহরণমালা

উদা. 1. দেখাও যে মূলবিন্দু এবং (1,3) বিন্দু 3x-2y+1=0 রেখাটির বিপরীত পাশে অবস্থিত। (1,3) বিন্দু ঐ রেখার ধনাত্মক বা ঝণাত্মক, কোন্ পাশে অবস্থিত?

মূলবিনুর স্থানান্ধ বদাইয়া 3x - 2y + 1-এর মান হইবে 3.0 - 2.0 + 1 = 1 ... (1)

এবং (1, 3) মান বসাইলে 3x - 2y + 1-এর মান হইবে  $3.1 - 2.3 + 1 = 3 - 6 + 1 = -2 \qquad \cdots \qquad (2)$ 

1 এবং -2 বিপরীত চিহ্নবিশিষ্ট বলিয়া মূলবিন্দু এবং (1, 3) বিন্দু 3x-2y+1=0-এর ছেইপাশে অবস্থিত।

(2)-এর মান ঝণাত্মক বলিরা (1, 3) বিন্দুটি 3x - 2y + 1 = 0-এর ঋণাত্মক পাশে অবস্থিত হইবে।

উদা. 2. x-2y+3=0 এবং x-3y+1=0, এই তুইটি সমীকরণ-স্চিত রেখার কোন্টি ধনাত্মক বা ঋণাত্মক, কোন্ পাশে  $(1,\,1)$  বিন্দুটি অবস্থিত ?

(1, 1) বিন্দু স্থানান্ধ বসাইলে x - 2y + 3-রে মান হয় 1 - 2.1 + 3 = 2 ··· (1)

এবং (1,1) স্থানান্ধ বসাইলে x-3y+1-এর মান হয়

$$1 - 3.1 + 1 = -1$$
 ... (2)

 $\therefore$  (1)-এর মান 2 ধনাত্মক বলিয়া (1, 1) বিন্ট x-2y+3=0-এর ধনাত্মক দিকে অবস্থিত এবং (2)-এর মান -1 ঝণাত্মক বলিয়া (1, 1) বিন্টে x-3y+1=0-এর ঝণাত্মক দিকে অবস্থিত।

উদা. 3. দেখাও যে, (3, 2) বিন্দুটি 5x - 7y - 2 = 0-এর ধনাত্মক পাশে অবস্থিত।

5x-7y-2=0 সমীকরণটির ধ্রুবক সংখ্যা -2 শূণাত্মক। এ ধ্রুবক সংখ্যাটি ধনাত্মক করিয়া সমীকরণটিকে -5x+7y+2=0 আকারে লেখা যায়।

এখন (3, 2) স্থানাক বসাইলে -5x+7y+2-এর মান হয়  $-5\times3+7.2+2=-15+14+2=1.$ 

 $\therefore$  (3, 2) বিন্দৃটি 5x - 7y - 2 = 0-এর ধনাত্মক পাশে অবস্থিত।

## প্রগ্রমালা 12

- 1. (0,0) এবং (5,7) বিন্দু-ছুইটির কোন্টি 4x-5y+7=0-এর কোন্ পাশে অবস্থিত ?
- 2. একটি রেখার ষে-পাশে ম্লবিন্দু থাকে ভাহাকে ধনাত্মক ধরিয়া (3, -5) বিন্দুটি 7x-5y+1=0-এর কোন্ পাশে অবস্থিত তাহা নির্ণিম কর।
- দেখাও যে (2, -3) ও (-2, 3) বিন্দু-ছইটি 5x-7y+9=0-এর ছইপাশে অবস্থিত।
- 4. দেখাও যে, (2,4) বিন্টি 5x-3y-2=0-এর ধনাত্মক দিকে এবং 2y-5x+1=0-এর ধণাত্মক দিকে অবস্থিত।

5. নিম্লিখিত বিন্তুলির কোন্টি x-2y-3=0-এর কোন্ পাশে অবস্থিত তাহা নির্ণয় কর :

# 2'21. কোন নিদিষ্ট বিন্দু হইতে কোন নিদিষ্ট সৱল রেখার উপর অঞ্চিত লম্বের দৈর্ঘ্য নির্ণয়।

[ To find the length of the perpendicular drawn from a given point on a given straight line.]

(1) ধরা যাক,  $x\cos\alpha+y\sin\alpha=p$ , একটি সরল রেখা AB-এর সমীক্রণ, এবং  $(x_1,y_1)$  একটি নিদিষ্ট বিন্ P-এর স্থানাস্ক।



 $\overrightarrow{AB}$ -এর উপর  $\overrightarrow{ON}$  এবং  $\overrightarrow{PM}$  লম্ব মহিত হঠল। P-এর মধ্য দিয়া  $\overrightarrow{AB}$ -এর সমাস্তরাল একটি সরল রেখা টানা হটল। উহু, যেন ( $\overrightarrow{ON}$ -কে বা) বর্ধিত  $\overrightarrow{ON}$ -কে  $\overrightarrow{N}_1$  বিন্দৃতে ছেদ করে। ধরা যাক,  $\overrightarrow{ON}_1 = p_1$ .

: PN1-এর স্মীকরণ x cos a + y sin a = p1,
কিন্তু এই রেখা P বিনুগামী।

 $\therefore x_1 \cos \alpha + y_1 \sin \alpha = p_1.$ 

:.  $PM = N_1N = ON_1 - ON = p_1 - p = x_1 \cos a + y_1 \sin a - p$ .

(ii) সরল রেখাটির সমীকরণ যেন ax + by + c = 0.

ইহাকে (i)-এর আকারে প্রকাশ করিলে স্মীকরণটি নিম্নোক্ত রূপ হইবে:

$$\frac{a}{\sqrt{a^2 + b^2}}x + \frac{b}{\sqrt{a^2 + b^2}}y + \frac{c}{\sqrt{a^2 + b^2}} = 0. \quad [\text{wg. 2.9 aga}]$$

ে নির্ণেয় লভের দৈর্ঘ্য =  $\frac{ax_1 + hy_1 + c}{\sqrt{a^2 + b^2}}$ 

### বিকল্প পদ্ধতি :

ধরা যাক, ax + hy + c = 0 ... (1) একটি নির্দিষ্ট সরল রেখার সমীকরণ; এবং P একটি নির্দিষ্ট বিন্দু  $(x_1, y_1)$ .

 $\stackrel{\longleftrightarrow}{\mathsf{AB}}$ -এর উপর  $\stackrel{}{\mathsf{PM}}$  লম্ব টানা হইল। ধরা যাক, M-এর স্থানাম্ব  $(x_2,y_2)$ , এবং  $\stackrel{\longleftrightarrow}{\mathsf{AB}}$ -এর উপর যে-কোন লম্ব-রেখার সমীকরণ bx-ay+k=0 ;



ইহা  $(x_1, y_1)$  বিন্গামী হইলে  $bx_1 - ay_1 + k = 0$ , অর্থাৎ,  $k = ay_1 - bx_1$ .

$$\therefore \quad \stackrel{\longleftrightarrow}{\mathsf{PM}} \text{- un } \ \, \forall x = 0 \ \, \exists x = 0 \$$

এখন, (2), (x2, y2) বিন্দৃগামী

$$\therefore b(x_2 - x_1) - a(y_2 - y_1) = 0 \qquad \cdots \qquad (3)$$

পুনশ্চ, (1),  $(x_8, y_8)$  বিন্দৃগামী;

$$\therefore \quad ax_2 + by_2 + c = 0,$$

অথবা, 
$$ax_2 + by_3 = -c$$
,

অধবা, 
$$a(x_2 - x_1) + l(y_2 - y_1) = -ax_1 - by_1 - c.$$
 (4)

(3) এবং (4)- अत्र वर्ग कतिया छेशारमत त्यागकन नहेल,

 $(a^2+b^2)(x_2-x_1)^2+(a^2+b^2)(y_2-y_1)^2=(ax_1+by_1+c)^2;$  with,  $(a^2+b^2)\{(x_2-x_1)^2+(y_2-y_1)^2\}=(ax_1+by_1+c)^2;$  with,  $(a^2+b^2)\mathsf{PM}^2=(ax_1+by_1+c)^2;$ 

$$\therefore PM = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

টীকা 1.  $N_1$  বিন্দু যদি O এবং N এর মধ্যে অবস্থিত হইত, অর্থাৎ P বিন্দু যদি O এবং AB-এর মধ্যে অবস্থিত হইত, তবে PM = p - p' = -(p' - p).

অতএব, লখের দৈখ্য 
$$\pm (p'-p)$$
, অথবা,  $\pm \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$ .

মূলবিন্দু হইতে কোন দরল রেখার উপর অঙ্কিত লগ ধনাত্মক হইবে ধরিয়া লইলে, নিয়-পদ্ধতিতে লম্বের দৈর্ঘ্য ধনাত্মক বা ঋণাত্মক বলিয়া গণ্য হয়: সরল রেখার সমীকরণকে এরূপ আকারে প্রকাশ করিতে হইবে, যেন প্রক পদটি (অর্থাং x, y চল-বিহান পদটি) ধনাত্মক হয়। তাহা হইলে মূলবিন্দুটি সরল রেখার যেদিকে অবস্থিত সেইদিকে নির্দিষ্ট বিন্দু থাকিলে লম্বের দৈর্ঘ্য ধনাত্মক নতুবা ঋণাত্মক।

টীকা 2. ম্লবিন্ (0,0) ২ইতে ax+ly+c=0 সরল রেখার উপর জন্ধিত লম্বের দেখ্য  $= \sqrt{a^2+l^2}$ 

2'22.  $a_1x+b_1y+c_1=0$  এবং  $a_2x+b_2y+c_2=0$  সরল বেখাদ্বরের ভাস্তর্গ ভ কোণ্ডের সম্ভিশগুকদ্বরের স্মীকরণ নির্ণিয় করিতে ভাইলে।

[ To find the equations to the straight lines bisecting the angle between two straight lines  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$ .]

পরা থাক, সরল রেখাদ্বর AB এবং AC; এবং উহালের কোণ্ডবের সম্দ্রিখণ্ডক AQ এবং AR.

P এই সম্বিধাওকখনের সেত্রান্তির উপর একটি বিন্দু। P হইতে AB এবং
AC-রে উপর PL এবং দুর্মা প্রধান হরতা। এখন △PAL এবং △PAM সর্বস্থ
বাস্থা PL'ও PM বর বৈশ্য স্থান।

स्थान मही, कदर्शकर क के क्लारन . जरा ३ हेन (म, c, यदः c, दनां शक ह्या।



P--এর স্থানার (a', y') হইলে,

$$\mathsf{PL} = \frac{a_1 x' + h_1 y' + c_1}{\sqrt{a_1^2 + h_1^2}} \; \mathsf{SK}; \; \mathsf{PM} = \frac{a_2 x' - h_2 y' + c_2}{\sqrt{a_2^2 + h_2^2}}.$$

এখন AQ বা ব্রিও QA-এর উপর অবস্থিত হইলে P এবং O (মূলবিন্দু) দরল রেখাব্যের একই পার্থে অখবা বিভেন্ন পার্থে অবস্থিত হইবে। সতএন, PC এবং PM উভয়ই ধনাত্মক অথবা উভয়ই ঋণাগ্মক হইবে। [ অস্থ্য, 2'21-এর টীকা এটবা ]

$$\frac{a_1x'+b_1y'+c_1}{\sqrt{a_1}^2+b_1^2} = \frac{a_2x'+b_3y'+c_3}{\sqrt{a_2}^2+b_3^2}.$$

P বিশুটি  $a_1x + b_1y + c_1 = a_2x + b_1y + c_2$ , সরল রেখার উপর  $\sqrt{a_2^2 + b_1^2} = \sqrt{a_2^2 + b_2^2}$ 

### অবশ্বিত হইবে।

অভ এব, AC-এর সমীকরণ 
$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1}^2 + b_2^2} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2}^2 + b_2^2}$$
.

পূনন্দ, P বিন্দু AR-এর উপর অবস্থিত হইলে, P এবং O, AB-এর একই পার্থে,
কিন্দু AC-এর বিভিন্ন পার্থে অবস্থিত হইবে।

ে Pi ধনা গ্ল'ফ এবং PM ঝণা থক, অর্থাং PE এবং PM বিপরীত টিজনিশিষ্ট।

$$4 \cdot 94, \quad \text{ACACA} \quad \frac{a_1 x' + b_1 y' + c_3}{\sqrt{a_1}^3 + b_1^3} = -\frac{a_3 x' + b_3 y' + c_9}{\sqrt{a_2}^3 + b_3^2}.$$

.. AR-49 मशी-49 
$$\frac{a_1x+b_1y+c_1}{\sqrt{a_1}^2+b_1^2} = -\frac{a_2x+b_1y+c_2}{\sqrt{a_1}^2+b_1^2}$$

. Force with a 
$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1}^8 + b_2^8} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_3}^8 + b_3^8}$$

#### किलावस्थानार ।

উদা. 1. ৪৮ - 49 + 7 • ০ এবং 12x - 5y - ৪ = ০ সর্বা রেজাধ্যের অধ্বতি কোনোর সমান্ধ্রক ক্ষর সম্ভিত্ত কোনোর সমান্ধ্রক ক্ষর সম্ভিত্ত

স্মাক্রপ্রয় ন্র্যাধিত আকারে প্রকাশ করা ইউলাই

$$3x-4y+7=0$$
 are  $-12x+5y+8=0$ .

.. মুলাবন্দু যে কাণের ২০০ আনে, ১৯ কে পের সম্ছিপাণকের ম্মীকরণ

$$\frac{3x - 4y + 7}{\sqrt{3^2 + 4^2}} = + \frac{-12x + 5y + 8}{\sqrt{12^2 + 5^2}}$$

33x - 4y + 7 = 5(-12x + 5y + 8),

অথবা, 99x - 77y + 51 = 0.

অপর সমন্বিধণ্ডকের সমীকরণ,

$$\frac{3x - 4\eta + 7}{\sqrt{3^2 + 4^2}} = -\frac{-12x + 5\eta + 8}{\sqrt{12^2 + 5^2}},$$

অপ্র। 13(3x-4y+7) = -5(-12x+5y+8),

অথবা, 21x + 27y - 131 = 0.

উদা . 2.  $y=mx+c_1$  এবং  $y=mx+c_2$  সমাস্তরাল সরল রেখাদ্যের মধ্যের দূরত্ব নির্ণয় কর।

 $(x_1, y_1)$  যেন দিভীয় সরল রেখাটির উপর যে-কোন একটি বিন্দু।

 $y_1 = mx_1 + c_2.$ 

 $y_1 - mx_1 = c_2, \qquad \cdots \qquad \cdots \qquad (1)$ 

 $(x_1, y_1)$  হইতে প্রথম সরল রেখাটির, যাহার সমীকরণ  $mx-y+c_1=0$ , উপর অন্ধিত লন্দের দৈর্ঘ্য =  $\frac{mx_1-y_1+c_1}{\sqrt{1+m^2}}=\frac{c_1-c_2}{\sqrt{1+m^2}}$  [(1) হইতে ]

এবং ইহাই শরল রেখাব্যের মধ্যের দূরত।

উদা. 3. y=mx+c এবং y=mx+d সমাস্তরাল সরল রেখাছয়ের মধ্যের দ্রছ নির্ণয় কর।

প্রদান্ত রেখাদ্বরের যে-কোনটির যে-কোন বিন্দু হুইতে অপরটির উপর অঙ্কিত লক্ষের দৈর্ঘাই নির্দেশ্য দূরত্ব।

প্রথম সরল রেখাটির যে-কোন বিন্দু (0,c) [প্রথম সরল রেখা এবং y-আক্ষের ছেদবিন্দু]।

বিতীয় সরল বেথার সমীকরণ, y - mx - d = 0:

 $\therefore$  লম্বের দৈর্ঘ্য =  $\frac{c \sim d}{\sqrt{1-m^2}}$  ইহাই নির্ণেয় দ্রন্ত !

#### প্রখ্নালা 13

- 1. (a) (4, 5) বিন্দু হইতে 3x + 4y = 10 সরল রেখাটির উপর,
- (n) (-3,-4) বিন্দু হইতে  $\frac{\pi}{3}-\frac{n}{4}=1$  সরল রেখাটির উপর, অঙ্কিত লম্বের দৈখ্য নির্দয় কর।
- 2.  $\alpha$ -অক্ষের উপর যে তৃই বিন্দু হইতে  $\frac{x}{a}+\frac{y}{b}=1$  সরল রেখার উপর অঙ্কিত গম্মবের প্রত্যেকের মান  $\alpha$  হইবে, তাহাদের স্থানান্ধ নির্ণয় কর।
- 3. প্রমাণ কর যে, 2x+11y=5 দরল রেখার উপর অবস্থিত খে-কোন বিন্দু হুইতে 24x+7y=20 এবং 4x-3y=2 দরল রেখাদ্বরের উপর অন্ধিত লম্বদ্বের দৈর্ঘ্য সমান।
- 4. প্রমাণ কর যে, 7x-9y+10=0 দরল রেখার যে-কোন বিন্দু হইতে 3x+4y=5 এবং 12x+5y=7 দরল রেখাছরের উপর লম্ব অঙ্কন করিলে, লম্বর পরস্পার স্মান। [C. U., B. Sc., 1952]

- 5. 12x+5y-4=0 এবং 3x+4y+7=0 সরল রেখান্যের অন্তর্গত কোণ-স্বরের সমৃদ্ধিগুক্তমুরের স্মীকরণ নির্ণয় কর।
- কোন ত্রিভূজের কোণিক বিন্দুগুলির স্থানাম্ব (-2, 1), (1, 4) এবং (3, -1)
  হইলে, উহার শীর্ষবিন্দুত্রর হইতে বিপরত বাহুর উপর অন্ধিত লম্বের দৈর্ঘ্য নির্ণয় কর।
- 7. 3x + 4y = 6 এবং 3x + 4y = -5 শুমান্তরাল সরল রেখাদ্যের মধ্যের দ্রত্বির্বির কর ৷
- 8. (i) M ( 2, 7) বিশ্বটি ১৫ 3॥ 7 = 0 সরল রেথার কোন্ পার্বে অবস্থিত, তাহা নির্ণয় কর।
- (ii) P (6, -3) বিন্দৃটি 4r + 5y 5 = 0 সরল রেখার কোন্ পার্বে অবস্থিত, তাহা নির্ণয় কর।
- 9. A এবং B বিনুদ্ধের স্থানাক মথাক্রমে (a cos a, h sin a) এবং (a cos β, a sin β) হইলে, প্রমাণ কর যে, মুলবিন্দু চইতে AB সরল রেখার উপর অন্ধিত লম্ব
  AB-কে সমন্বিধ্নিত করে।
- 10. কোন চলমান বিন্দু P হইতে x + y 5 = 0 এবং 3x 2y + 7 = 0 সরল রেখান্মের উপর এক্ষিত লম্বন্মের দৈর্ঘ্যের সমষ্টি সবদাই 10 হউলে, প্রমাণ কর বেষ, P বিন্দুর স্কারপণ একটি বল রেখ হউবে। [C. U., B, Se., 1950]

# প্রশ্নমালা 14 (বিবিধ)

- 1. 2x 3y + 5 । এবং 7x + 4y 3 = 0 সরলারেখাছয়ের চেদবিন্দুর স্থানাম্ব
- 2. (3,4) বিন্দৃগামী এবং 4x-3y+1=0 সরল রেখার উপর লম্বভাবে অবস্থিত সরল রেখার সমীকরণ নির্ণয় কর।
- 3. মৃলবিন্দামী এবং 2x+3y=1 এবং x-y=2 সরল রেখাছয়ের ছেদ-বিন্দামী সরল রেখার সমীকরণ নির্ণয় কর।
- 4. 25x + 41y 8 = 0 এবং 5x + 7y + 9 = 0 সরল রেখান্বয়ের ছেদ্দিশুগামী এবং 2x + 3y + 7 = 0 সরল রেখার স্থিত সমান্তরালভাবে অবস্থিত সরল রেখার স্মীকরণ নির্ণয় কর।
- 5. প্রমাণ কর যে,  $y=2, y-\sqrt{3}x=5$  এবং  $y+\sqrt{3}x=4$  সরল রেখাত্রয় একটি সমবাছ ত্রিভূজের তিনটি বাছ।
- 6. (2a, 2b) এবং (2c, 2d) বিন্দুরয়ের সংযোজক সরল রেখার লম্ব-সমিষ্বিগুতকের স্মীকরণ নির্ণিয় কর।

- 7. মূলবিন্দু হইতে  $\frac{7}{2}$  দূরে অবস্থিত এবং y-2x+2=0 ও y-3x+5=0 সরল রেখাদ্যের ছেদবিন্দুগামী সরল রেখাশ্মুহের স্মীকরণ নির্ণয় কর।
- 8. (3,5) বিন্দুগামী এবং 4x-3y+1=0 সরল রেখার সমাস্তরাল সহল বেখার সমীকরণ নির্ণয় কর।
- 9. প্রমাণ কর যে,  $y=m_1x+c_1$ ,  $y=m_2x+c_2$  এবং x=0 সরল রেখাত্রর দারা গঠিত ত্রিভূজের ক্ষেত্রফল  $\frac{1}{2}\frac{(c_1-c_2)^2}{m_2-m_1}$ . [ C. U., 1955 ]
- 10. প্রমাণ কর যে, যদি a+b=0 না হয়, তাহা হইলে  $\frac{a}{a}+\frac{v}{b}=1$ ,  $\frac{x}{b}+\frac{y}{a}=1$  সরগ রেখাদ্যের ছেদবিন্দু একটি বর্ণক্ষেত্রের কৌণিক বিন্দু হইবে, যাহার সমিহিত বাত্দ্ব অক্ষদ্ধ বরাবর থাকিবে।
- 11. প্রমাণ কর যে,  $\sqrt{3}x+y=0$ ,  $\sqrt{3}y+x=0$ ,  $\sqrt{3}x+y=1$  এবং  $\sqrt{3}y+x=1$  শরশ রেখাচতৃষ্ট্র দারা গঠিত সামাস্থ্রিকের কর্ণদ্র প্রস্থার লম্ব।
- 12. যে শর্ত সিদ্ধ হইলে, (3, -2) বিন্দু হইতে lx + my + n = 0 সরল রেখার উপর অন্ধিত লম্বের দৈর্ঘ্য সর্বদা 5 হইবে, তাহা প্রকাশ কর।
- 13. কোন ত্রিভূজের ভরকেন্দ্র (1,4) এবং ইহার তুইটি শীর্ষবিন্দু (4,-3) এবং (-9,7); ত্রিভূজটির অপর শীর্ষবিন্দৃটির স্থানাম্ক নির্ণয় কর।

# ভূভীয় অথ্যায়

# রতের সমীকরণ

### (Equations of Circles)

3.1. কোন সমতলের উপর চলমান কোন বিন্দুর দূরত্ব ঐ সমতলে অবস্থিত কোন নির্দিষ্ট বিন্দু হইতে দর্বদা একই হইলে, চন্মান বিন্দুটির সঞ্চারপথকে বৃত্ত (circle) বলে।

নির্নিষ্ট বিদ্যুটিকে এই বৃত্তের কেন্দ্র (centre) এবং এই কেন্দ্র ইতে চলমান বিদ্যুর ফ্রবক দুরত্বকে ঐ বৃত্তের ব্যাসার্ধ (radius) বলে।

3'2. মূলবি-দূতে কেন্দ্র এবং a ব্যাসার্থ বিশিষ্ট হতের সমীকরণ।

[ The equation of a circle whose radius is a and whose centre is at the origion. ]

 ত মৃলবিন্দু এবং XOX',
 ΥΟΥ' ছইটি আয়ত অক । বৃত্তের কেন্দ্র মৃলবিন্দু ০-তে অবস্থিত এবং উহার ব্যাসাধ α.

বৃত্তের উপর বে-কোন একটি বিন্দু  $\mathbf{p}$ -এর স্থানাম্ব বেন (x, y).

ত মুক্ত হইল এবং p হইতে æ-আক্ষের উপর PM লম্ব টানা হইল। তাহা হইলে, OM = æ এবং PM = y.



এখন, OPM সমকোণী ত্রিভুজে, OM2 + PM2 = OP2;

 $\sqrt{x^2 + y^2} = a^2$ ;

ইহাই মূলবিলতে কেন্দ্র এবং a ব্যাসাধবিশিষ্ট ব্রন্তের সমীকরণ।

দ্ধির ঃ এক্ষেত্রে লক্ষণীয় যে, সমীকরণে  $x^2$  এবং  $y^2$ -এর সহগ একই, এবং উহাতে xy-সংবলিত কোন পদ নাই।

3'3. (h, k) স্থানাঙ্কযুক্ত বিন্দুতে কেন্দ্র এবং a ব্যাসার্থ-বিশিষ্ট রত্তের সমীকরণ।

[ The equation of a circle whose radius is a and the co-ordinates of whose centre are (h, k). ]

বৃত্তের ব্যাদাধ a এবং উহার কেন্দ্র যেন c বিন্তুতে অবস্থিত। XOX এবং
YOY আয়ত অক্ষয় অন্তদারে c বিন্তু স্থানাক (h, k).



বৃত্তের উপর ষে-কোন বিন্দু P-এর স্থানাম্ব বেন (x, y). CP-কে যোগ করা হইল।

এখন, 
$$CP = a$$
;  
 $CP^3 = a^2$ .

আবার,
 $CP^3 = (x - h)^2 + (y - k)^3$ .

•  $(x - h)^2 + (y - k)^2$ 
 $= a^2$ ;

ইচাই a ব্যামাধ এবং (h, k) বিদ্যুত কেন্দ্ৰবিশিষ্ট বৃত্তের সমীকরণ।

জন্তব্য : কেন্দ্রে ভানাম এবং ব্যাসার্থ দেওয়া থাকিলে, উপরিউক্ত সমীকরণ-সাধায়ো সে-কোন ক্রের সমীকরণ নির্ণয় করা ধার। যেমন,

(1) .কম (3, 5), ব্যাসার 4 . সহীকরণ:  $(x-3)^2 + (y-5)^2 = 4^2$ , অর্থাৎ 16.

(11) কেন্দ্র (7. -3), ব্যাস্থার্থ 5 : সমীকরণ :  $(x-7)^2 + \{y-(-3)\}^2 = 5^2$ , বা,  $(x-7)^2 + (y+3)^2 = 25$ .

'বপরীতক্রমে, কোন বৃত্তের সমীকরণ দেওলা থাকিলে অনায়াসেই বৃত্তিতির কেল্ল এবং ব্যাণাধ নিরুপণ করা গাঁল। যেমন,

সমীকরণ :  $(x-h)^2+(y-k)^2=a^2$  ; কেন্দ্র (h,k), ব্যাসার্ধ a ( দক্ষিণপক্ষ বানির বর্গমূল ) ।

সমীকরণ:  $(x-3)^2 + (y-4)^2 = 25$ ; কেন্দ্র (3, 4), ব্যাসাধ  $\sqrt{25}$ , অর্থাৎ, 5. সমীকরণ:  $(x+2)^2 + (x-6)^2 = 64$ ; কেন্দ্র (-2, 6), ব্যাসাধ 8. 3'4.  $x^2+y^2+2gx+2ly+c=0$  আকাৰের দিঘাত-সমী-করপ সর্বদাই (-g, -l) কেন্দ্র এবং  $\sqrt{g^2+l^2-c}$  ব্যাসার্থ-বিশিষ্ট রস্ত সৃতিত করে।

[Any quadratic equation of the form  $x^2 + y^2 + 2gx + 2fy + c = 0$  always represents a circle, the co-ordinates of whose centre are (-g, -f) and whose radius is  $\sqrt{g^2 + f^2} - c$ .]

$$x^3 + y^3 + 2gx + 2fy + c = 0,$$

 $\boxed{1, \quad (x^2 + 2jx + y^2) + (y^2 + 2fy + f^2) = y^2 + f^2 - c},$ 

41,  $\{x-(-q)\}^2 + \{y-(-f)\}^2 = (\sqrt{q^2+f^2-c})^2$ .

3.3 অন্তচ্চেদের স্মীকরণের সহিতে মিলাইলে দেখা যায়, ইছা একটি বৃত্তের স্মীকরণ এবং এই বৃত্তের কেন্দ্র (-y,-f) এবং ব্যাসার্ধ  $\sqrt{y^2+f^2-c}$ .

**অমুসিজান্ত।** g প f-এর মান সর্বদা অপরিবর্তিত কিন্ত c-এর মান পরিবর্তনশীল হzলে  $x^2+y^2+2gx+2fy+c=0$  (-g,-f) কেন্দ্রবিশিষ্ট একাধিক এককেন্দ্রীয় বৃত্ত স্থুচিত করিবে।

জন্তব্য  $^{\circ}$  (i)  $\eta^{\circ}+f^{\circ}>c$  হইলে, ব্যাসাধ ধনাত্মক এবং সেইজন্ম বৃশুটি বান্তব (real) হইবে ;

- (ii)  $y^2 + f^2 < c$  হইলে, ব্যাশাধ ঋণা মুক এবং সেইজন্ম বৃত্তিও কাল্লনিক (imaginary) হইবে ;
- (iii) 'আবার,  $\eta^2+f^2=c$  হইলে, ব্যাসাধ শৃক্ত (0) হইবে এবং তথন বৃত্তটি একটি বিন্তুতে পরিণত হইবে।
- 3'5. সাধারণ দিঘাত-সমীকরণ ax²+by²+2hxy+2gx +2fy+c=0-এর রত স্ডিভ করিবার শেও।

The condition that the general quadratic equation of the second degree  $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$  may represent a circle.

 $ax^2 + by^2 + 2hxy + 2yx + 2fy + c = 0$  ; উভয় পশকে a দার। ভাগ করিয়া,

$$x^{2} + \frac{b}{a}y^{3} + \frac{2h}{a}xy + \frac{2g}{a}x + \frac{2f}{a}y + \frac{c}{a} = 0. \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

(1)-খারা কোন রন্ত হচিত হইলে, এই রন্তের কেন্দ্র (-y', -f') এবং ব্যাসার্থ  $\sqrt{g'^2+f'^2-c'}$ , এইকপ ধরিলে সাধারণত্বের কোন ব্যতিক্রম হয় না। কিন্তু এইকপ রন্তের মন্ত্রিকরণ  $x^2+y^2+2g'x+2f'y+c'=0$ ; ... (2)

अ १९८१ । १ ... ४.१६ वटा ५२० १८० १८१ १८१ १८१ 

$$x^{2} + \frac{7}{a} + \frac{7}{2} + \frac{2}{2} + \frac{2}{2} + \frac{27}{2} +$$

$$\frac{f_{j}}{dt} = \frac{2}{dt} \cdot \frac{g_{j}}{dt} = \frac{1}{dt} \cdot \frac{g_{j}}{dt} \cdot \frac{f_{j}}{dt} = \frac{f_{j}}{dt} \cdot \frac{f_{j}}{dt} \cdot \frac{f_{j}}{dt} = \frac{f_{j}}{dt} = \frac{f_{j}}{dt} \cdot \frac{f_{j}}{dt} = \frac{f_{j}}{dt}$$

wind of the old by A to 12 the of 1

1 -1 - 1 - 1 n=b sat h=0

अहे कहे कि बिटर्नन मर्ट ।

चक्रवर, भाषायन विवास-गरीनदन

witteren.

a-batth-0.

desiry that is the second of t MIND RANGE TO BE TO THE RESIDENCE

3.6. (x,, ),) = -12 (x,, ),) (-1-, 1) (-1-) अवस्य १ तक । १३। ११ १ त ६ ००० व नाम, जार व माना-कवला।

It is to a retire with lemons the som of (ray) and (E2, Y3) as a diameter. ]

The State of the State of the Advanta A con B Ato. 25 . State বুৰেৰ উপায় বে-কোন বিদ্ P (x,y) p (3 7/2 % Tei (5, 1)



स्तर ल्लाक इन्ति मुल्ला करण्ड - 1 रहत्तः

प्रम e हिन युक्त क्हेन I

AH MIT HELL AFB 22947 210, CAL (22 4 5)6 উচা এক সমকোণের সমান। कारबहे 📭 थ 📅 भवन्भव मह चर्या, उन स हिन नेतन विधी- থাবং স্তাই-ধ্যা প্রবিশ্ত =  $\frac{V-V_0}{x-x_0}$ :

 $y = y_{\perp}, y = y_{2} = -1,$   $x = x_{1}, x = x_{2}$ 

f. f. -- i -) - - - i -- i -- i .

3.7. প্রকর্মার হে, বিশ্বর জন্ম করে জিল্ল।

भव राज, भिति हार्गात तथा ए पर विश्व हा अहा हराह.

CP - 1 com, prog gales com

Berre.

open esti, programming of the entry

open a sere, pringle gross were

at extension of entry



were proceed to a transfer of the transfer of

1. 1 1. 1 214, 124 24 24 2 2 111.

the transfer of the transfer o

(XI-XH)-36

## 1'8. বিবিধ্ব প্রশ্নের সমাধান।

উদা । মূলবিন্দুতে কেন্দ্ৰ এবং 5 ব্যাসাধিবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর। মূলবিন্দুতে কেন্দ্ৰ এবং a ব্যাসাধিবিশিষ্ট বৃত্তের সমীকরণ হইতেছে  $x^2 + y^2 = a^3$ ; এস্থলে a = 5 বলিয়া,

নির্ণের সমীকরণ হইল  $x^2 + y^2 = 5^2$ , বা,  $x^2 + y^2 = 25$ .

উদা 2. (2,5) স্থানাস্বযুক্ত বিন্দুতে কেন্দ্র এবং 4 ব্যাসাধবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।

(h, k) বিন্দৃতে কেন্দ্র এবং a ব্যাসার্ববিশিষ্ট বৃত্তের সমীকরণ হইল  $(x-h)^2 + (y-k)^2 = a^2$ .

এস্থলে,  $h=2,\,k=5$  এবং a=4 বলিয়া, নির্ণেয় সমীকরণ হইল  $(x-2)^2+(y-5)^2=4^2$ ,

 $\forall i, \quad x^2 - 4x + 4 + y^2 - 10y + 25 = 16,$ 

 $\forall i, \quad x^2 + y^2 - 4x - 10y + 13 = 0.$ 

উদা 3. মূলবিন্তে কেন্দ্র এবং (3, 5) বিন্দুগামী বৃত্তের সমীকরণ মির্ণ্য কর। কেন্দ্র মূলবিন্তুতে অবস্থিত বলিয়া, বৃত্তিরৈ সমীকরণ

$$x^2 + y^2 = a^2 \qquad \cdots \qquad \cdots \qquad (1)$$

ধরা যায়।

এখন, বৃত্তটি (3, 5) বিল্পামী বলিয়া,  $3^2 + 5^2 = a^2$ , বা,  $a^2 = 34$ .

(1) হইতে, নির্ণেয় সমীকরণ হইল  $x^2 + y^2 = 34$ .

উলা 4. (-3, 2) স্থানাক্ষযুক্ত বিন্দৃতে কেন্দ্র এবং (2, -4) বিন্দুগামী বুত্তের সমীকরণ নির্ণয় কর।

কেন্দ্র (-3, 2) বিন্দুতে অবস্থিত বলিয়া বৃত্তির সমীকরণ  $(x+3)^2 + (y-2)^2 = a^2$   $\cdots$  (1)

ধরা যায় ।

এখন, বৃত্তটি (2, -4) বিন্দুগামী বলিয়া,  $(2+3)^2 + (-4-2)^2 - \alpha^2, \text{ বা, } \alpha^2 = 5^2 + (-6)^2 = 61.$ 

ে (1) হইতে, নির্পের সমীকরণ হইল  $(x+3)^2 + (y-2)^2 = 61$ , বা,  $x^2 + 6x + 9 + y^2 - 4y + 4 = 61$ , বা,  $x^2 + y^2 + 6x - 4y - 48 = 0$ .

উলা. 5.  $x^2 + y^2 - 6x + 10y - 15 = 0$  সমীকরণটি দাবা স্থচিত বৃত্তের ব্যাসাধ এবং কেন্দ্রের স্থানান্ধ নির্ণয় কর।

$$x^2+y^2-6x+10y-15=0,$$
 বা,  $(x^2-6x+9)+(y^2+10y+25)=25+9+15,$   $(-15$  কে পক্ষান্তর করিয়া, এবং উভয় পক্ষে  $9+25$  যোগ করিয়া )

$$\sqrt{(x-3)^2+(y+5)^2}=49=7^2$$
;

∴ বুত্তটির ব্যাসার্ধ 7 এবং কেন্দ্রের স্থানাম্ম (3, -5).

উদা. 6. (2,3) স্থানাস্বযুক্ত বিন্দুতে কেন্দ্র এবং 3x-2y-1=0 এবং 4x+y-27=0 সরল রেখাদ্যের ছেদ্বিন্দুগামী বৃত্তের সমীকরণ নির্ণয় কর।

[ C. U., 1947 ]

ধরা যাক, বৃত্তির সমীকরণ  $(x-2)^2 + (y-3)^2 = a^2$ . ... (1)

সরল রেথা-ছুইটির ছেদবিন্দু পাইতে হইলে, উহাদের সমীকরণ-ছুইটিকে সছ-সমীকরণরূপে সমাধান করিতে হইবে।

এখন, 
$$3x-2y-1=0$$
,  
এবং  $4x+y-27=0$ ;

$$\frac{x}{-2 \times (-27) - 1 \times (-1)} = \frac{y}{-1 \times 4 - (-27) \times 3}$$

$$= \frac{1}{3 \times 1 - 4 \times (-2)}$$

$$\forall 1, \quad \frac{x}{55} = \frac{y}{77} = \frac{1}{11};$$

$$\therefore x = \frac{55}{11} = 5, y = \frac{77}{11} = 7;$$

: সরল রেখা-তুইটির ছেদবিন্দু (5, 7).

এখন, বৃত্তটি ছেদবিন্দু (5, 7)-গামী বলিয়া, (1) হইতে,

$$(5-2)^2 + (7-3)^2 = a^2$$
,  $\exists 1$ ,  $a^2 = 3^2 + 4^2 = 25$ .

:. (1) হইতে নির্দেষ দমীকরণ হইল  $(x-2)^2 + (y-3)^2 = 25$ ,

$$\sqrt[4]{x^2-4x+4+y^2-6y+9}=25$$

$$\boxed{3}, \quad x^2 + y^2 - 4x - 6y - 12 = 0.$$

উদা 7. (3, -2) এবং (-1, 6) বিদ্দুরের সংযোজক সরল রেখা যে বৃত্তের ব্যাস তাহার সমীকরণ নির্ণয় কর।

(3, -2) এবং (-1, 6) বিন্দু-তুইটিকে যথাক্রমে A ও B ছারা স্থাচিত করা হুইল। এখন, বৃত্তম্ব বে-কোন বিন্দু P-এর স্থানাম্ব (x, y) হুইলে,

AP-এর প্রবণতা (gradient) =  $\frac{y+2}{x-3}$ ,

এবং BP-এর প্রবণতা =  $\frac{y-6}{x+1}$ 

AP ও BP সরল রেখাদ্য পরস্পর লম্ব বলিয়া,

$$y+2,y-6 = -1$$
,  $\forall 1, (y+2)(y-6)+(x-3)(x+1)=0$ ,

 $\boxed{4}, \quad y^2 - 4y - 12 + x^3 - 2x - 3 = 0,$ 

বা,  $x^2+y^2-2x-4y-15=0$ ; ইহাই নির্ণের সমীকরণ।

উদা. 8. (3, -4), (4, -1) এবং (2, -2) বিন্দুত্রগামী বৃত্তের সমীকরণ নির্ণয় কর।

ধরা যাক, বুভটির দমীকরণ  $x^2 + y^2 + 2yx + 2fy + c = 0$ . (1)

বৃত্তটি প্রদত্ত বিদ্তারগামী বলিয়া উহাদের স্থানাম্ব দারা বৃত্তটির সমীকরণ বিদ্ধ হইবে।

 $3^2 + (-4)^2 + 2.3g + 2.(-4)f + c = 0,$ 

 $4^{2} + (-1)^{2} + 2.4g + 2.(-1)f + c = 0,$ 

এবং  $2^2 + (-2)^2 + 2.2g + 2.(-2)f + c = 0$ ,

(2), (3) ও (4) সমীকরণ-তিনটি সমাধান করিলে পাওয়া যায়,

 $g = -\frac{\eta}{2}$ ,  $f = \frac{\xi}{2}$  এবং c = 16.

:. (1) হইতে নির্ণেশ্ব সমীকরণ হইল  $x^2 + y^2 + 2 \cdot (-\frac{\pi}{4})x + 2 \cdot \frac{5}{4}y + 16 = 0$ .

 $\sqrt{3}$ ,  $x^2 + y^2 - 7x + 5y + 16 = 0$ .

উদা. 9. প্রমাণ কর যে, (0, 0), (1, 2), (1, -1) এবং (2, -1) বিন্দুচতু ইয় একই বৃত্তের পরিধির উপর অবস্থিত। সেই বৃত্তির দমীকরণ নির্ণয় কর।

প্রথম বিন্দুত্রগামী বৃত্তটির সমীকরণ যেন

$$x^{2} + y^{2} + 2gx + 2fy + c = 0. (1)$$

বৃত্তটি প্রথম বিদ্রেরগামী বলিয়া উহাদের স্থানাই দারা বৃত্তটির সমীকরণ দিছ ছইবে। অতএব,

$$c=0$$
 ... (2)  
 $5+2g+4f+c=0$  ... (3)  
 $2+2g-2f+c=0$  ... (4)

(2) হইতে (3) এবং (4)-এ c=0 বদাইয়া,

$$5 + 2g + 4f = 0$$
 ... (5)

$$2 + 2g - 2f = 0 \qquad \cdots \qquad (6)$$

বিয়োগ করিয়া, 3+6f=0, বা,  $f=-\frac{1}{3}$ ;

f-এর মান (6)-এ বসাইরা, 2+2g+1=0, বা,  $g=-\frac{3}{2}$ .

অতএব, (2), (3) এবং (4) সমাধান করিয়া,  $f=-\frac{1}{2},\ g=-\frac{3}{2},\ c=-0$  পাওয়া গেল।

:. (1) হইতে প্রথম বিন্দুর্যগামী বৃত্তের সমীকরণ হইল  $x^2 + y^2 - 3x - y = 0$ .

এখন, এই সমীকরণের বাম পক্ষে x এবং y-এর পরিবর্তে যথাক্রমে চতুর্থ বিন্দৃটির স্থানাম্ব (2,-1)-এর ভূজ ও কোটি বলাইলে দেখা যায়

বাম পক্ষ=
$$2^2+(-1)^2-3.2-(-1)$$
  
= $4+1-6+1=0=$ দক্ষিণ পক্ষ;

অতএব, দেখা গেল, (2,-1) বিন্দৃটির স্থানান্ধ দারা স্থাকরণটি সিদ্ধ হয়। স্তরাং (2,-1) বিন্দৃটি ঐ বৃত্তের উপর অবস্থিত।

.. প্রমাণিত হইল যে, প্রদত্ত বিন্দু-চারিটি একই বৃত্তস্থ এবং সেই বৃত্তের সমীকরণ

$$x^2 + y^2 - 3x - y = 0.$$

উদা. 10. (4,3) এবং (-2,5) বিন্দুষ্যগামী যে বৃত্তের কেন্দ্র 2x-3y=0 সুরল রেখার উপর অবস্থিত, তাহার সমীকরণ নির্ণয় কর। [C.U.1950]

হুতুটির সমীকরণ যেন  $x^2 + y^2 + 2gx + 2fy + c = 0$  ··· (1) (4, 3) এবং (-2, 5) বিন্দুদর হুতুটির উপর অবস্থিত বলিয়া,

$$25 + 8g + 6f + c = 0 (2)$$

$$49 - 4g + 10f + c = 0 (3)$$

আবার, (1)-এর ছারা স্থাচিত বৃত্তির কেন্দ্র (-y, -f). ইহা 2x - 3y = 0 সরল বেখাটির উপর অবস্থিত বলিয়া,

$$-2g + 3f = 0$$
. (4)

(2), (3) এবং (4)-এর স্মীকরণগুলি সমাধান করিলে,

g= के, f= के धवर c= - की शा खार ।

g, f এবং c-এর এইসকল মান (1)-এ বদাইয়া নির্ণেয়  $\tau$  ীক্রণটি হইল  $x^2 + y^2 + \frac{2}{7}x + \frac{4}{7}y - \frac{2}{1} = 0$ .

 $7x^2 + 7y^2 + 6x + 4y - 211 = 0.$ 

উদা 11. মূলবিন্দুগামী যে বৃত্ত অক্ষত্ত্যের ধনাত্মক দিকু হইতে যথাক্রমে 3 এবং 4 অংশ চেদ করে, ভাহার সমীকরণ নির্ণয় কর।

[Rajputana, Gwalior & Ajmeer, 1943]



বৃত্তটি x—মঞ্চ এবং y—মঞ্চকে যথাক্রমে মূলনিন্দু ভিন্ন A ও B বিন্দৃতে যেন ছেদ করিয়াছে I রুত্তটি দ্বারা x ও y—মঞ্চ হইতে ছেদিতাংশ যথাক্রমে 3 ও 4 বলিয়া, A বিন্দৃর স্থানান্ধ (3,0) এবং B বিন্দৃর স্থানান্ধ (0,4) হউবে I অতএব, বৃত্তটি (0,0), (3,0) এবং (0,4) বিন্দৃরয়গামী I

এখন, বুড়টির স্মীকরণ যেন

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 ... (1)

বৃত্তটি (0, 0), (3, 0) এবং (0, 4) বিন্তুরগামী বলিয়া,

$$c=0$$
 ... (2)

$$9 + 6g + c = 0 \qquad \cdots \qquad (3)$$

$$16 + 8f + c = 0$$
 ... (4)

(2), (3) ও (4) সমীকরণগুলি সমাধান করিয়া,  $g=-\frac{3}{2}$ , f=-2, c=0.

 $\therefore$  (1) হইতে, নির্ণেয় সমীকরণটি হইল  $x^2 + y^2 - 3x - 4y = 0$ .

বিকল্প পদ্ধতিঃ বুভটির সমীকরণ যেন

$$x^{2} + y^{2} + 2gx + 2fy + c = 0 (1)$$

व्खिष म्लिविन्गामी विनया, c=0.

ে (1) সমীকরণটি দাঁডাইল  $x^2 + y^2 + 2yx + 2fy = 0$ . (2)

এখন, বৃত্তটি যে ত্বই বিন্দুতে x-অক্ষকে ছেদ করে ভাহাদের ভূজ বৃত্তটির সমীকরণ, অর্থাং সমীকরণ (2)-এ y=0 বসাইরা পাওরা যায়; অতএব, তাহাদের ভূজ্বয়  $x^2+2gx=0$ , বা, x(x+2y)=0 সমীকরণের বীজ।

অতএব, তাহারা x=0 এবং x= -2a.

অতএব, বুত্তটি দারা  $\alpha$ -অক্ষের ছেদিতাংশ = -2g-0=-2g.

আবার, বৃত্তটি g অক্ষকে যে তুই বিদ্যুত ছেদ করে তাহাদের কোটি মুমীকরণ (2)-এ x=0 বসাইয়া দেখা যায়, 0 এবং -2f.

$$\therefore$$
 -2f-0=4,  $\forall$ 1, f=-2.

সমীকরণ (2)-এ g এবং f-এর মান বসাইলে নির্ণের সমীকরণটি হইল  $\mathbf{x^2 + v^2 - 3x - 4y = 0}$ .

উদা. 12. (3, -2) বিদুগামী এ<sup>২</sup>ং  $x^2 + y^2 - 5x + 3y - 4 = 0$  ছারা স্থাচিত মুক্তটির সন্থিত এককেন্দ্রীয় বৃত্তের সমীকরণ নির্ণয় কর ।

 $x^2+y^2+2qx+2fy+c=0$  দারা স্চিত বৃত্তির কেন্দ্র (-u,-f); এই বৃত্তির সহিত এককেন্দ্রীয় বৃত্তসমূহের কেন্দ্রও (-y,-f) বলিয়া, এইসকল এককেন্দ্রীয় বৃত্তসমূহের কেন্দ্রও (-y,-f) বলিয়া, এইসকল এককেন্দ্রীয় বৃত্তসমূহের ব্যাসার্ধ প্রদত্ত বৃত্তির ব্যাসার্ধ (-y,-f) বলিয়া বৃত্তসমূহের ব্যাসার্ধ প্রদত্ত বৃত্তির ব্যাসার্ধ (-y,-f) কর্মান হইতে ভিন্ন এবং (-y,-f) প্রদত্ত এবং একই বলিয়া (-y,-f) বলিত রাশিটি, অর্থাং, (-y,-f) বলিত বৃত্তির ক্রেড একং এককেন্দ্রীয় বৃত্তসমূহের সমীকরণে ভিন্ন হইবে। তাহা হইলে প্রদত্ত বৃত্তির সহিত এককেন্দ্রীয় ব্যাক্রন ব্যাকরণ

$$x^2+y^2-5x+3y+c=0$$
 ··· (1), মনে করা যায়। এখন, এই বৃভটি (3,  $-2$ ) বিন্দুগামী বলিবা,

$$3^2 + (-2)^2 - 5.3 + 3(-2) + c = 0$$
,  $4^{\circ}$ ,  $c = 8$ .

∴ (1)-এ e-এর মান বসাইয়। নির্ণেয় সমীকরণ হইল
 x²+y²-5x+3y+8=0.

উদা. 13. প্রমাণ কর যে,  $x^2+y^2=1$ ,  $x^2+y^2+6x-2y=1$ ,  $x^2+y^2-12x+4y=1$  সমীকরণ দারা স্চিত বৃত্তারের কেন্দ্র একই সরল রেখায় স্বাহতি; ঐ সরল রেখাটির সমীকরণ নির্ণয় কর। [ C. U., B. A. & B. Sc., 1920 ]

 $x^2 + y^2 + 2gx + 2fy + c = 0$  দাবা স্টিড বৃভটির কেন্দ্র (-g, -f);

∴ প্রদত্ত বৃত্ত-ভিন্টির কেল (0, 0), (-3, 1), (6, -2).

এখন, প্রথম বিন্দুদ্বরগামী সরল রেখার স্মীকরণ

$$y=0$$
  
 $0=1$  =  $0-(-3)$ ,  $x+3y=0$ ; ... (1)

এবং তৃতীয় কেন্দ্রের স্থানান্ধ (6, - 2) দারা (1) সমীকরণটি সিদ্ধ হয়।

### প্রগ্রমালা 15

- 1. মূলবিন্দুতে কেন্দ্র এবং 8 ব্যাদার্ধবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।
- 2. বুত্তের সমীকরণ কর, যাহার কেন্দ্রবিন্দুর স্থানাম্ব
  - (i) (-2, 0) এবং ব্যাসার্ধ 4;
  - (ii) (4, 5) এবং ব্যাসার্ধ 5;
  - (iii) (-4, -5) এবং ব্যাসার্থ 7;
  - (iv) (a, b) এবং ব্যাদার্থ a b;
  - (v) (3, -4) এবং ব্যাসাধ √5.
- 3. বুরের সমীকরণ নির্ণয় কর, যাহার কেন্দ্রিসূর স্থানাম্ব
  - (i) (0, 0) এবং যাহা (-2, 1) বিনুগামী;
  - (ii) (2, 3) এবং যাহা (5, 7) বিন্দুগামী;

[ C. U., 1957 ]

- (iii) (-2, 5) এবং যাহা (-5, 4) বিন্দৃগামী;
- (iv) (-3, -2) এবং যাহা (2, -3) বিন্দৃগামী।
- 4. মূলবিন্ধামী এবং (a) a-অন্দের উপর মূলবিন্ধু হইতে 5 দ্বে; (b) (-g, -f) স্থানাস্বযুক্ত বিন্তে কেন্দ্রবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।
- 5. (1,1) বিন্দুগামী এবং y-অক্ষের উপর মূলবিন্দু হইতে 7 দূরে অবস্থিত কেন্দ্রবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।
- 6. নিয়লিথিত সমীকরণসমূহ যে বৃত্ত স্থচিত করে, তাহার কেন্দ্রিক্সানাম এবং ব্যাসার্থ নির্ণয় কর:
  - (i)  $x^2 + y^2 = 16$ :
- (ii)  $x^2 + y^2 = 3$ ;
- (iii)  $x^2 + y^2 10x + 16 = 0$ ;
- (iv)  $x^2 + y^2 + 8y 20 = 0$ ;
- (v)  $x^2 + y^2 10x 12y + 12 = 0$ ;
- (vi)  $x^2 + y^2 6x + 14y + 33 = 0$ ; [C. U., B. A. & B. Sc., 1951]
- (vii)  $9(x^2+y^2)+12x-6y-4=0$ ;
- (viii)  $a(x^2 + y^2) + 2bx + 2cy = 0$ .
- 7. নিম্লিখিত বিন্দুর্বগামী বুত্তের স্মীকরণ নির্ণয় কর:
  - (i) (0, 0), (0, 5) এবং (-2, -1);

[ Mysore, 1946 ]

- (ii) (0, 0), (2, 0), (0, 3);
- (iii) (2, -1), (2, 3), (4, -1).
- · 8. প্রমাণ কর যে, (3, 2), (1, 4), (3, 4), (1, 2) বিন্দুচ্তুষ্টর একই বৃত্ত ; এই বিন্দুচ্তুষ্টরগামী বৃত্তের সমীকরণ নির্ণয় কর।

- -12x+18y+17=0 সমীকরণত্ত্র দ্বারা স্থাচিত বৃত্তরের কেন্দ্রবিন্দুগুলিকে সংযুক্ত করিলে যে ত্রিভূজটি উৎপন্ন হয়, তাহার ক্ষেত্রফল নির্ণয় কর।
- **10.**  $x^2 + y^2 2x + 2y 7 = 0$ ,  $x^2 + y^2 6x 2y 6 = 0$  and  $x^2 + y^2$ -8x-4y-5=0 সমীকরণ দারা স্টিত বৃত্তের কেন্দ্র এবং ব্যাসার্ধ নির্ণয় কর। পরীক্ষা করিয়া দেখ যে, কেন্দ্রত্তর একই সরল রেখায় অবস্থিত; ঐ সরল রেখার সমীকরণ [ C. U., 1950 ] নির্ণয় কর।
- 11. প্রমাণ কর যে,  $x^2 + y^2 = 1$ ,  $x^2 + y^2 2x 6y = 6$  এবং  $x^2 + y^2$ -4x-12y=9 দারা স্টিত বৃত্তরের ব্যাদার্ধগুলি এক দমান্তর-শ্রেণীভুক্ত।

[ C. U., B. A. & B. Sc., 1917 ]

12. (1,-2) স্থানাম্মুক্ত বিন্দুতে কেন্দ্র এবং 3x+y=14 এবং 2x+5y=18সমীকরণ দ্বারা স্থচিত সরল রেখাদ্যের ছেদ্বিন্দুগামী বৃত্তের সমীকরণ নির্ণয় কর।

[C. U., 1945]

- 13. 5x-4y=20 সমীকরণ দারা স্ফুচিত সরল রেখা যে-বিন্দুদয়ে অক্ষদ্ধরকে ছেদ করে, দেই বিন্দুর এবং মূলবিন্গামী বৃত্তের সমীকরণ নির্ণয় কর।
  - 14. মূলবিন্তে কেন্দ্রবিশিষ্ট যে বৃত্ত
    - (a) y-অক্ষের উপর  $\frac{x}{5}-\frac{y}{6}=1$  সরল রেখার সহিত

[ C. U., 1940 ]

- (b) x-অক্ষের উপর  $\frac{x}{3} + \frac{y}{5} = 1$  সরল রেখার সহিত মিলিত হয়, তাহার সমীকরণ নির্ণয় কর।
- 15. (2, 1), (1, 2) বিন্দুছনগামী যে বৃভটির কেন্দ্র 3x + 4y 7 = 0 সরল রেখার উপর অবস্থিত তাহার সমীকরণ নির্ণয় কর।
- 16. (a, 0), (m, n) বিন্বয়গামী যে বৃত্তের কেন্দ্র y-অক্ষের উপর অবস্থিত তাহার সমীকরণ নির্ণয় কর।
- 17. যে বিন্দুতে 2x + 5y = 5 সরল রেখা y-অক্ষের সহিত মিলিত হয়, সেই বিনুগামী, এবং যাহার কেন্দ্র 3x+4y+1=0, 2x-3y-5=0 সরল রেথাছরের ছেদবিন্দুতে অবস্থিত সেই বৃত্তের সমীকরণ নির্ণর কর।
- (-2, 6), এবং (6, -8) বিলুদ্ধয়ের সংকোজক সরল রেখা যে বৃত্তের একটি ব্যাস, ভাহার সমীকরণ নির্ণয় কর।
- (0, 1), (-2, 0) এবং (1, 0) বিন্দুবয় বে ত্রিভুজের শীর্ষবিন্দু, তাহার বাহ-গুলির সমীকরণ নির্ণয় কর। প্রথম পাদে অবস্থিত ঐ ত্রিভূজের বাহু যে বৃত্তের একটি ব্যান, ভাহার সমীকরণ নির্ণয় কর। [ C. U., 1950 (Suppl.)]

- 20. (a) মূলবিন্দুগামী যে বৃত্ত x ও y জন্দ্রের ধনাজাক দিক্ হইতে যথাক্রমে 5 ও 3 ছেদ করে, তাহার সমীকরণ নির্ণয় কর।
  - (b) (a)-তে বণিত হৃত্তে (4,-5) বিন্দৃটির জবস্থান নির্ণয় কর।
- 21. x+y=6, 2x+y=4 এবং x+2y=5 সরল রেখা দার। গঠিত ত্রিভূজের পরিবৃত্তের সমীকরণ নির্ণয় কর। [ Agra, 1945 ]
- 22. মূলবিন্দু হইতে 4 দূরে α-অক্ষের উপর অবস্থিত বিন্দুদয়গামী যে বৃত্তের ব্যাসাধ 5, তাহার সমীকরণ নির্ণয় কর।
- 23. (a) (3, -4) বিশ্বগামী এবং  $x^2 + y^2 6x + 8y + 9 = 0$  বুতের সহিত এককেন্দ্রীয় বুতটির সমীকরণ নির্ণয় কর।
  - (h) α-তে বর্ণিত এককেন্দ্রীয় বৃত্তে (5, 2) বিন্টুর অবস্থান নির্ণয় কর।
- 24. (a)  $9(x^2+y^2)+12x-6y-4=0$  বৃত্তের সূহিত এককেন্দ্রীয় যু ব্যাসাধ্বিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।
  - (h) a-তে বৰ্ণিত এককেন্দ্রীয় বৃত্তে (-1, বু) বিন্দৃটির অবস্থান নির্ণয় কর।
- 25. ABCD, a একক দীর্ঘ বাহুবি িষ্ট একটি বর্গন্ধেত্র ; AB ও AD-কে অক্ষ্পরিয়া প্রমাণ কর যে,  $x^2+y^2=a(x+y)$  ABCD-এর পরিবৃত্তের সমীকরণ।

[ C. U., 1951 ]

26.  $x^2 + y^2 + 2gx + 2fy + c = 0$  দারা স্থাচিত বৃত্তে অঙলিখিত সম্বাহ্ বিভূজের ক্ষেত্রফল নির্ণয় কর। [ C. U., B. A. & B. Sc., 1918 ]

[ সংকেত : ABC সমবাহ ত্রিভূজের মধ্যমাত্রের ছেদ্বিন্দু o বৃত্তিরি কেন্দ্র । একটি মধ্যমা  $\overline{\text{AD}}$ -এর  $\frac{2}{3}$  অংশ = ব্যাসার্ধ =  $\sqrt{g^2+f^2-c}$  ;  $\cdot$  AD =  $\frac{8}{3}$   $\sqrt{g^2+f^2-c}$  ; BC = AD cosec  $60^\circ$  =  $\frac{2}{3}$  ×  $\frac{3}{2}$   $\sqrt{g^2+f^2-c}$  =  $\sqrt{3}$   $\sqrt{(\bar{g}^2+f^2-c)}$  ;

 $\triangle$  ABC =  $\frac{1}{2}$ BC.AD =  $\frac{3}{4}(y^2+f^2-c)$ .

# চতুৰ্থ অধ্যায়

# শঙ্কু চ্ছেদ বা কনিক বিভাগের ধারণা ( Idea of Conic Sections )

41. অধিৱত, উপৱত ও প্রাহত ( Parabola, Ellipse and Hyperbola ) |

সাধারণ-শীর্ধবিশিষ্ট একটি লম্ববৃত্তাকার যুগ্যশঙ্কুকে বিভিন্ন সমতলে ছেদ করিলে বিভিন্ন আকৃতির চিত্র পাওয়া যায়।

- (i) এইরূপ একটি শঙ্কুচ্ছেদের সমতলটি যথন উতার সংশ্লিষ্ট শঙ্কটির একটিমাত্র উৎপাদক রেখার, ধরা যাক, ত্র-এর সমান্তরাল হয় তথন এ শৃষ্টেদের বক্ত দীমারেখাটকে একটি অধিবৃত্ত (Parabola) বলে। উদাহরণস্বরূপ, ডান পাশের চিত্রে ৫,৫৯৫৪ রেখা-বেষ্টিত শক্ষুচ্ছেদটির সমতল শক্ষুটির একটি উৎপাদক রেখা তA'-এর সমান্তরাল। সেই জন্ম a10203 বক্র রেখাটি একটি অধিবৃত্ত।
- (ii) দিতীয়তঃ, একটি শঙ্কচ্ছেদের সমতল যথন সংশ্লিষ্ট শৃষ্কৃটির অক্ষকে তির্যক্ভাবে ছেদ করে, তখন উহার বক্ত ও বন্ধ দীমারেখাটিকে উপরত্ত (Ellipse) বলে। উদাহরণস্বরপ, ভান পাশের চিত্রে,  $b_1b_2b_3b_4$  রেখা-বেষ্টিত সামতলিক শঙ্কুচ্চেদটি শঙ্কুর অক্ষটিকে তির্থকভাবে ছেদ করিয়াছে। কারণে ঐ শঙ্কুচ্ছেদের বক্ত ও বদ্ধ সীমারেখা b1b2b3b4 একটি উপবৃত্ত।
- (iii) তৃতীয়তঃ, একটি যুগাশস্কু যথন উহার



উল্লিখিত তিনটি ছাড়া, বৃত্ত, যুগারেখা, এমনকি বিন্দুকে পর্যন্ত শঙ্কুচ্ছেদ ইইতে উৎপন্ন বলিষা ধরা যায়। কারণ, শকুর ভূমির সমাতরাল সামতলিক ছেদমাত্র-ই একটি



বৃত্তরেখায় বেষ্টিত, শঙ্কুর শীর্বগামী উল্লম্ব সমতলমাত্রই যুগরেখায় শঙ্কুটিকে ছেদ করে এবং ঐ শঙ্কুর শীর্ববিন্দুগামী অন্তভূমিক সমতলটি একটিমাতা বিন্দু অর্থাৎ শীর্ববিন্দুতে শঙ্কুটিকে ছেদ করে।

শঙ্কুচ্ছেদের জ্যামিতিক আলোচনা কিন্ত অধিবৃত্ত, উপবৃত্ত ও পরাবৃত্তের মধ্যেই সীমাবদ্ধ। কারণ ইহারাই মাত্র **নাভি-নিয়ামক সূত্র** অভিহিত একটি নিয়ম মানিয়া চলে।

গ্রীষ্টপূর্ব 300 শতকে Perga-নিবাসী Apollonius সর্বপ্রথম শঙ্কুচ্ছেদসমূহের নামকরণ করেন। ইহার প্রায় পাঁচ-ছয়শত বংসর পরে, 300 খ্রীষ্টান্দের কাছাকাছি কোন এক সময়ে, Alexendria-নিবাসী Pappus অধিবৃত্ত, উপরত ও পরাবৃত্ত, এক কথায় কলিকের নাভি-নিয়ামক স্থাটি আবিন্ধার করেন। সর্বশেষে, বিখ্যাত দার্শনিক Descartes আবিন্ধার করেন যে, দিমাত্রিক সাধারণ সমীকরণের জ্যামিতিক রূপসমূহ আদলে শঙ্কুভেদ বা কনিকের লেখচিত্র। এইখানেই বিশ্লেষণমূলক জ্যামিতিতে কনিক-সংক্রান্ত আলোচনার স্ত্রপাত।

পরবর্তী অন্নচ্চেদে নাভি-নিয়ামক স্ত্র ও তাহার আলোকে কনিকের নৃতন সংজ্ঞা দেওয়া যাইতেছে।

# 4.2. কনিক:

একটি বিন্দু যথন একটি দমতলে এমনভাবে দঞ্চনমান হয় যে, ঐ দমতলস্থিত একটি স্থিননিদিষ্ট বিন্দু ও অপর একটি স্থিননিদিষ্ট দরল রেখা হইতে উহার ( অর্থাৎ ঐ দঞ্চনমান বিন্দুর) দূরত্বের অনুপাত দর্বদা অপরিবর্তিত থাকে, তথন ঐ চলমান বিন্দুটির সঞ্চারপথকে ক্রিক বলে।

উল্লিখিত নির্দিষ্ট বিন্দৃটিকে কনিকের নাভি (Focus), ঐ নির্দিষ্ট সরল রেখাকে নিয়ানক (Directrix) এবং দূরত্বদ্বের ধ্রুবক অনুপাতকে বলা হর কনিকের উৎকেন্দ্রভা (Eccentricity)। উৎকেন্দ্রভা সাধারণতঃ e দ্বারা স্থাচিত হয়; ইহা দূইটি দূরত্বের অনুপাত বলিয়া সর্বদাই ধনাত্মক। e-এর এই তিনপ্রকার মান অনুসারে কনিককে তিন ভাগে বিভক্ত করা হয়। যথাঃ

e=1 হইলে, কনিকের নাম দেওয়া হর অধিবৃত্ত (Parabola), e<1 হইলে, কনিকের নাম দেওয়া হর উপবৃত্ত (Ellipse), এবং e>1 হইলে, কনিকের নাম দেওয়া হর পরাবৃত্ত (Hyperbola).

দেখা যাইতেচে, অধিবৃত্তে নির্দিষ্ট বিন্দু এবং নির্দিষ্ট সরল রেখা হইতে চলমান বিন্দুটির দূরত্বরের অন্তপাত e=1; অতএব, এই দূরত্বর সর্বদাই সমান, অর্থাৎ চলমান বিন্দুটি নির্দিষ্ট বিন্দু এবং নির্দিষ্ট সরল রেখা হইতে সতত সমদ্রবর্তী থাকে; স্বতরাং, অধিবৃত্তের নিম্নলিখিত সংজ্ঞাও পাওয়া যায়।

### 4'3. অধিৱক্তঃ

বলা হয়।

কোন সমতলের উপর অবস্থিত একটি স্থিরনিদিষ্ট বিন্দু এবং একটি স্থিরনিদিষ্ট সরল রেখা হইতে সর্বদা সমদূরবর্তী থাকিয়া একটি বিন্দু যথন ঐ সমতলের উপর সঞ্চরমান হয় তথন ঐ বিন্দুর সঞ্চারপথকে অধিভৃত্ত (Parabola) বলে।

নির্দিষ্ট বিন্দৃটিকে ঐ অধিবৃত্তের নাভি (Focus) এবং নির্দিষ্ট দরল রেখাকে উহার নিয়ামক (Directrix) বলে।

নাভিবিন্দুগামী সরল রেখা নিয়ামকের উপর লম্ব ইইলে, তাহাকে অধিবৃত্তের আক্ষ (Axis) এবং অক্ষের সহিত অধিবৃত্তের M ছেদবিন্দুকে ঐ অধিবৃত্তের শীর্ষবিন্দু (Vertex)

নাভিবিন্দুগামী জ্যা অক্ষের লম্ব ইইলে, জ্যা-টিকে **নাভিলন্থ** (Latus rectum) বলা হয়। পার্শ্ববর্তী চিত্রে LAL' অধিবৃত্ত, **s** এ অধি-ব্যুক্তর নাভি MX নিয়ামক (ব্যিতি) XS অক্ষ

পৃথিবত। চিত্রে LAL আবস্তুর, ১ ব বাব বৃত্তের নাভি, MX নিয়ামক, (বর্ষিত ) XS জক্ষ, A শীর্ষবিন্দু এবং LSL' নাভিলম্ব !

# X A S

# 4.4. অধিরতের সমীকরণ :

অধিবৃত্তের অক্ষকে x-অক, শীর্ষনিদূকে মূলবিন্দু এবং মূলবিন্দু দিয়া অঙ্কিত অক্ষেব্ৰ লম্ববোকে y-অক্ষধ্রা হইল।



A অধিবৃত্তের শীর্ষবিন্দু, S নাভি, এবং

ZM নিরামক। ত্রন যোগ করিয়া বর্ধিত করা

হইল; বর্ধিত SA নিরামককে Z বিন্দুতে ছেদ
করিল। SZ নিরামকের উপর লম্ব। A-কে

ম্লবিন্দু, বর্ধিত ZS-কে ৫-অক্ষ এবং A বিন্দু

দিরা অক্ষের উপর লম্ব AY সরল রেখা টানা

হইল। ইহা y-অক্ষ হইবে। এখন, A অধি-

বৃত্তের শীর্ষবিন্দু বলিরা, ধরা যাক, ZA = AS = a. অধিবৃত্তের উপর যে-কোন বিন্দু P-এর স্থানাস্ক যেন (x, y). SP যোগ করা হইল এবং P হইতে নিয়ামকের উপর অন্ধিত হইল PM লম্ব ; ইহা y-অন্ধকে N বিন্দুতে ছেদ করিল।

ম্পাষ্ট্র S বিন্দুর স্থানান্ধ (a,0) এবং PM = PN + NM = PN + AZ = x + a. P অধিবৃত্তম্ব বিন্দু বলিয়া, SP = PM;

... 
$$SP^2 = PM^2 = (x + a)^2$$
,

$$\forall 1, (x-a)^2 + y^2 = (x+a)^2,$$

$$y^2 = (x+a)^2 - (x-a)^2 = 4ax.$$

: অধিবৃত্তের শীর্ষবিন্দুকে মূলবিন্দু, অধিবৃত্তের অক্ষকে ৫-অক্ষ এবং শীর্ষবিন্দু দিয়া অক্ষিত অক্ষের লম্বরেখাকে গু-অক্ষ ধরিয়া অধিবৃত্তের সমীকরণ হইল

$$y^2 = 4ax$$
.

### 4'5, ভাধিরতের আকার:

অধিবৃত্তের সমীকরণ হইতে উহার আকার-নির্ণায়ক নিয়লিখিত তথ্যগুলি পাওয়া যায়:

(1) বাস্তব রাশির বর্গ কখনই ঝণাত্মক হইতে পারে না; অতএব,  $y^2$ , অর্থাৎ 4ax এবং a দৈর্ঘ্য-জ্ঞাপক বলিয়া সর্বদাই ধনাত্মক, দেজ্ঞ x কখনই ঝণাত্মক হইতে পারে না। অতএব, ঝণাত্মক ভুজবিশ্টি কোন বিন্দুই উক্ত সমীকরণ দারা স্টিত অধিবৃত্তের উপর থাকিবে না, অর্থাং y-অক্ষের বামপার্থে অধিবৃত্তির কোন অংশই গাকিবে না।

অধিরুত্তের শীর্ষবিন্দুকে মৃলবিন্দু ধরিয়া সমীকরণ নির্ণয় করা হইয়াছে বলিয়া,

- .
  (2) উক্ত সমীকরণটি দ্বারা স্থাচিত অধিবৃত্তিট মূলবিন্দুগামী; সমীকরণটি (0,0)
  দ্বারা সিন্ধ হয় বলিয়াও এই দিন্ধান্ত করা যায়।
- (3) x-এর যে-কোন ধনাত্মক মানের জন্তই y-এর সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট তুইটি মান থাকিবে, অর্থাৎ অধিবৃত্তন্ত কোন বিন্দু  $(x_1, y_1)$  হইলে  $(x_1, -y_1)$  বিন্দুটি অবশ্যই অধিবৃত্তন্ত হইবে। অতএব, অধিবৃত্তটি x-অক্ষে, অর্থাৎ উহার অক্ষেপ্রতিসম (symmetrical)।
  - (4) অপিবৃত্তি একমাত্র শীর্ষবিন্দুতেই উহার অক্ষকে ছেদ করে; 21-এর শূন্য ডিন্ন



আর কোন মানের জন্মই y শূন্ত হয় না, পরস্ত x ডান দিকে যতই বাডিয়া চলে, yও ঐ সমীকরণ অনুযায়ী ততই বাড়িয়া চলিবে; অতএব, অধিবৃত্তটি বদ্ধ রেখা (closed curve) নহে, x-এর ক্রমবর্ধমান মানের সহিত y-এর চিহ্ন-বর্জিত মান্যুগ্যও ক্রমবর্ধমান।

এইসকল তথ্য হইতে এই সিদ্ধান্তে উপনীত হওয়া বায় থে, অধিবৃত্তটি পার্শ্বস্থ চিত্তের ভায় ম্লবিন্দুগামী, নিজ অক্ষে প্রতিসম এবং y-অক্ষের ডানদিকে অসীম পর্যন্ত বিস্তৃত একটি সন্তত রেখা (continuous curve)।

# 4'6. অধিরতের মাভিল্ফ।

নাভি S বিন্দৃগামী এবং অক্ষের লম্ব LSL' জ্যা-নাভিলম্ব (Latus rectum)।

এখন, A বিন্দু (0,0), S বিন্দু (a,0) এবং L ও L' বিন্দুহরের ভূজ = AS = a. L ও L' বিন্দুহরের কোটি  $y^2 = 4ax$  সমীকরণে x-এর স্থলে a বসাইয়। পাওয়া যার। এ সমীকরণে x = a বসাইলে,  $y^2 = 4a^2$ ;

$$\therefore y = \pm 2a.$$

হতরাং, L বিশূর স্থানান্ধ (a, 2a) এবং L' বিশূর স্থানান্ধ (a, -2a).

ে LL' = 
$$\sqrt{(a-a)^2 + (2a+2a)^2} = 4a$$
.
অতএব, দেখা গেল অধিবৃত্তটির নাভিলয



- (i) উহার শীর্ণবিন্দু হইতে উহার নাভির দূরত্বের চারিগুণ;
- এবং (ii) অধিবৃত্তটির সমীকরণের a অর্থাৎ একঘাত চলবাশিটির চিহ্ন-বর্জিত সহগের সমান।

# 4·7. অধিরত ও তাহার সমীকরণ-বিষয়ক কয়েকটি জোতব্য তথ্য।

- (1) অবিবৃত্তের সমীকরণ  $y^2 = 4ax$  হইলে,
  - (i) উহার শীর্ষবিন্দুর স্থানাক (0, 0);
- (ii) x-জক্ষ উহার জক্ষ; স্পষ্টই সমীকরণে চলরাশিটির দ্বিঘাতকে শ্রের সহিত সমিত করিয়া অধিবৃত্তির অক্ষের সমীকরণ পাওয়া যায়; এহলে, দ্বিঘাত চলরাশি  $y^2$ -কে শ্রের সহিত সমিত করিয়া,  $y^2=0$  বা y=0 অধিবৃত্তির অক্ষের সমীকরণ;
- (iii) অধিবৃত্তটির নাভিলম্ব হইবে 4a; স্পষ্টই স্মীকরণের এক্যাত চলরাশির সহগের সাংখ্যমান, অর্থাৎ চিহ্ন-বর্জিত উক্ত সহগ অধিবৃত্তের নাভিলম্ব;
- (iv) পরে দেখা যাইবে, y-অক্ষ অনিবৃত্তির শীর্ষবিন্দুতে স্পর্শক; স্পষ্টই, সমীকরণের একঘাত চলরাশি x-কে শুন্তের মহিত সমিত করিয়া এই স্পর্শকের সমীকরণ পাওয়া যায়; x=0 শীর্ষবিন্দুতে অধিবৃত্তির স্পর্শক;
- (v) নাভির স্থানাম্ব (a, 0), অর্থাৎ  $\frac{1}{2}$  ( সমীকরণের একহাত রাশির সহগ ) এবং 0 ;
- (vi) নিরামকের সমীকরণ x=-a, অর্থাৎ  $x=-(\frac{1}{4}$  সমীকরণের একঘাত রাশির সহগ );

(vii) অধিবৃত্তটির অবতলতা (concavity) বা বক্ততা x-অফের ধনাত্মক দিক্-ম্খী; দেখা যাইবে, a ধনাত্মক হইলে, অবতলতা ধনাত্মক দিক্-ম্খী এবং a ঝণাত্মক হইলে, অবতলতা ঝণাত্মক দিক্-মুখী হয়।

x' S A X

- (2) অধিবৃত্তের সমীকরণ  $y^2 = -4ax$  হইলে, পার্থবতী চিত্রের স্থার ইহার অবস্থান ও আকার হইবে, এবং
  - (i) ইহার শীর্ষবিন্দুর স্থানাক হইবে(0, 0);
  - (ii) y=0, অর্থাৎ x-অক্ষ হইবে ইহার অক্ষ;
  - (iii) ia इट्रेंट ना जिन्द ;
- (iv) x=0, অর্থাৎ y-অক্ষ উহার শীর্ষবিন্তে স্পর্শক হইবে;
- (v) নাভির স্থানাক হইবে (-a, 0);
- (vi) নিয়ামকের সমীকরণ হইবে x = -(-a) = a;
- (vii) অধিবৃত্তটির অবভলতা, a ঋণাত্মক বলিয়া ৫-অক্ষের ঋণাত্মক দিক্-মুখী হইবে।

(3) অধিবৃত্তের সমীকরণ  $x^2 = 4\alpha y$  হইলে, নিমুস্থ চিত্তের ভায় ইহার অবস্থান ও আকার হইবে, এবং

- (i) ইशांत्र भीर्विन्तू श्रेट्व (0, 0);
- (ii) x=0, অর্থাৎ y অক্ষ হইবে ইহার অক্ষ ;
  - (iii) 4a श्रेत नां जिन्ह ;
- $({
  m iv}) \ y=0$ , অর্থাৎ x-অক্ষ হইবে শীর্থ-বিনুতে স্পর্শক ;
  - (v) নাভির স্থানান্ধ হইবে (0, a);
  - (vi) নিয়ামকের সমীকরণ হইবে y = -a;
  - (vii) অধিবৃত্তটির অবতলতা y-অক্ষের ধনাত্মক দিক্-ম্খী হইবে।
- (4) অধিবৃত্তের স্মীকরণ  $x^2 = -4ay$  হইলে, প্রপৃষ্ঠার চিত্রের স্থায় ইহার অবস্থান ও আকার হইবে, এবং
  - (i) ইহার শীর্ষবিন্দু হইবে (0, 0);
  - (ii) x = 0, অর্থাং y-অক্ষ হইবে ইহার অক্ষ;



- (iii) 4a হইবে নাভিলম্ব;
- (iv) y = 0, অর্থাৎ x-অক্ষ হুইবে শীর্ষবিন্দৃতে স্পর্শক ;
- (v) নাভির স্থানাম্ব হইবে (0, a);
- (vi) নিয়ামকের সমীকরণ হইবে y = -(-a) = a;
- (vii) অধিবৃত্তটির অবভলতা y-অক্ষের ঋণাত্মক দিক্-ম্খী হইবে।



# 4'8. নাভি হইতে অধিরত্তত্ কোন বিন্দুর দুরত্ব।

অধিবৃত্তের সমীকরণ  $y^2=4ax$  হইলে, A হইবে মৃলবিন্দু; তথন অধিবৃত্তস্থ কোন বিন্দু P(x, y)-এর নাভি দ্বত্ব (focal distance) =SP=PM=ZN=ZA+AN=B+x.



## 4'9. বিন্দুর অবস্থান।

অধিবৃত্তের সমীকরণ  $y^2=4ax$  হইলে, শীর্ষবিদ্ A হইবে মৃলবিন্দু, এবং অধিবৃত্তের অক্ষ হইবে x-অক্ষ। কোন বিন্দু P-এর স্থানাস্ক  $(x_1,y_1)$  এবং P বিন্দু

হইতে ৫-অক্ষের উপর লম্ব যেনা PN; PN, অথবা, (P অধিবৃত্তের ভিতরে



অবস্থিত হইলে) বৰ্ধিত NP অধিবৃত্টিকে  $\mathbf{P}'$  বিন্দুতে ছেদ করিল। এখন,  $\mathbf{AN}=x_1$ ,  $\mathbf{PN}=y_1$ ;  $\mathbf{P}'$  বিন্দুর ভূজ= $\mathbf{AN}=x_1$ ; এবং মনে কর,  $\mathbf{P}'$  বিন্দুর কোটি= $y_1'$ .  $\mathbf{P}'$   $(x_1, y_1')$  বিন্দুটি অধিবৃত্তের উপর অবস্থিত বলিয়া,

$$y_1^{\prime 3} = 4ax_1. \qquad \cdots \qquad (1)$$

ম্পষ্টই, P বিন্দুর অবস্থান অধিবৃত্তের বাহিরে, উহার উপর অথবা ভিতরে হইবে,

ষদি PN >, =, অথবা, < P'N হয়, অর্থাৎ, যদি  $y_1>$ , =, অথবা, <  $y'_1$  হয়,

অর্থাৎ, যদি  $y_1^2>$ , =, অথবা,  $< y_1'^2$  হয়, অর্থাৎ, যদি  $y_1^2>$ , =, অথবা,  $< 4ax_1$  হয়। [(1) হইতে] উদাহরণ। (2, 4) বিন্দুটি  $y^2=4x$  অধিবৃত্তের বাহিরে অবস্থিত; কারণ  $4^2>4$ . 2;

- (4, 4) বিন্দুট  $y^2 = 4x$  অধিরুত্তের উপর অবস্থিত; কারণ  $4^2 = 4, 4$ ;
- (4, 2) বিন্ট  $y_2 = 4x$  অধিবৃত্তের ভিতরে অবস্থিত; কারণ  $2^2 < 4$ . 4.

4'10. x-অক্ষের সমাস্তরাল অক্ষ ও (h, k) শীর্ষবিন্দু-বিশিষ্ট অধিরতের সমীকরণ :

শীর্ষবিন্দু (h, k) যেন A বিন্দু ছারা,
নাভি ৪ ছারা এবং অধিবৃত্তম্ব থে-কোন
বিন্দু (x, y) P ছারা স্টেড হইল।
P হইতে অন্ধিত x-অন্দের উপর লম

PN বর্ষিত AS-কে N1 বিন্দুতে চেদ
করিল। PM নিয়ামক ZM-এর উপর
এবং AL, x-অন্দের উপর লম।

এখন,  $\overline{\text{AS}}$ ,  $\overline{\text{AN}_1}$  ও  $\overline{\text{PN}_1}$ -এর মান যথাক্রমে a,  $x_1$  ও  $y_1$  ছারা স্টিত করিলে,  $x_1 = \overline{\text{AN}_1} = \overline{\text{LN}} = \overline{\text{ON}} - \overline{\text{OL}} = x - h$ 



... (1)

$$y_1 = PN_1 = PN - NN_1 = y - AL = y - k$$
 (2)

জাবার, 
$$SP = PM = ZN_1 = ZA + AN_1 = AS + x_1 = a + x_1$$
 ... (3)

$$938 \quad SN_1 = AN_1 - AS = x_1 - a \qquad (4)$$

যেহেতু  $SP^2 = SN_1^2 + PN_1^2$ , সেইহেতু, (3), (4) ও (2) হইতে

$$(a+x_1)^2 = (x_1-a)^2 + y_1^2$$
;

$$\forall 1, \quad y_1^2 = (x_1 + a)^2 - (x_1 - a)^2 = 4ax_1;$$

বা, 
$$(y-k)^2 = 4a(x-h)$$
 [(1) ও (2) হইতে ]

কিন্ত স্পষ্টিতঃ, AS-এর সমীকরণ y=k

অতএব x-অক্ষের সমান্তরাল অক্ষy=k এবং (h,k) শীর্ষবিন্দৃবিশিষ্ট অধিবৃত্তের সমীকরণ,  $(y-k)^2=4a(x-k)$ .

জ্প্রৈর ঃ এথানে অধিবৃত্তটির অবতলতা x-অক্ষের ধনাত্মকম্খী। স্পষ্টতঃ, ঋণাত্মকম্খী হইলে উহার সমীকরণ হইবে,  $(y-k)^2=-4a(x-h)$ .

অনুরূপে প্রমাণ করা যায় গু-অক্ষের সমান্তরাল অক্ষ ও (h, k)-শীর্ঘবিশিষ্ট অধিবৃত্তের সমীকরণ,  $(x-h)^2=4a(y-k)$ ;

 $\forall 1, (x-h)^2 = -4a(y-k).$ 

অনুসিদ্ধান্ত 1. x-অক্টের সমান্তরাল অক্ট এবং নাতি মূলবিন্দু হইলে অধিবৃত্তের শর্ষবিন্দুর স্থানাহ্ন হইবে -a, 0। সেক্টেরে অধিবৃত্তির সমীকরণ হইবে,  $(y-0)^2 = 4a\{x-(-a)\}$ 

বা,  $y^2 = 4a (x + a)$ ; উহার অবতলতা হইবে ধনাত্মকম্থী এবং নিয়ামকের সমীকরণ হইবে x = -2a বা x + 2a = 0; অবতলতা ঋণাত্মকম্থী হইলে অধিবৃত্তের সমীকরণটি হইবে,  $y^2 = -4a(x + a)$  এবং উহার নিয়ামকের সমীকরণ হইবে x - 2a = 0.

অনুরূপে, y-অক্ষের সমান্তরাল অক্ষ এবং নাভি মূল $\int_{-\infty}^{\infty}$  হইলে অধিবৃত্তের সমীকরণ হইবে  $x^2=\pm 4a\;(y+a)$  এবং নিয়ামকের সমীকরণ হইবে  $y\pm 2a=0$ .

অনুসিদ্ধান্ত 2. x-অক্ষ অধিবৃত্তের অক্ষ এবং y-অক্ষ যদি নিয়ামক হয়, তবে শীর্ষবিন্দুর স্থানান্ধ (a, 0) এবং নাভির স্থানান্ধ হইবে (2a, 0).

.. ধনাত্মকমুখী অবতলতাযুক্ত অধিবৃত্তের সমীকরণ হইবে,

$$(y-0)^2 = 4a(x-a)$$

বা,  $y^2=4a(x-a)$  এবং ঋণাত্মকম্খী অবতলতাযুক্ত অধিবৃত্তের সমীকরণ ছইবে  $y^2=-4a(x-a)$ .

অনুসিদ্ধান্ত 3. অনুসিদ্ধান্ত 1 হইতে দেখা যায় যে x-অক্ষের সমান্তরাল অক্ষযুক্ত অধিরত্তের সমীকরণ  $y^2=\pm 4a\;(x-h)$  ;

বা, 
$$y^2 = \pm 4ax \pm 4ah$$
 বা,  $x = \pm \frac{1}{4a} y^2 \pm ah$ .

অর্থাৎ, 
$$x = Ay^2 + By + c$$
 আকারের ( এখানে,  $A = \frac{1}{\pm 4a}$  B = 0

এবং o = ± ah).

অন্তর্মেণ, y-অক্টের সমান্তরাল অক্ট্যুক্ত অধিবৃত্তের সমীকরণের আকার, y = Ax² + Bx + C.

4·11. নিয়ামক ax+by+c=0 এবং নাভি (h, k)-বিশিষ্ট অধিরতের সমীকরণ:

অধিবৃত্তস্থ যে-কোন একটি বিন্দু P-এর স্থানাম্ব যদি  $(x_1,y_1)$  হয়, তবে নাভি হইতে  $(x_1,y_1)$ -এর দ্বত্ব

$$= \sqrt{(x_1 - h)^2 + (y_1 - k)^2}.$$

এবং  $(x_1, y_1)$  হইতে ax + by + c-এর লম্পূর্ম

$$= \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}.$$

যেহেতু, অধিবৃত্তের দংজ্ঞা অনুদারে, এই হুইটি দ্রত্ব সমান, দেইছেতু

$$\sqrt{(x_1-h)^2+(y_1-k)^2} = \frac{ax_1+by_1+c}{\sqrt{a^2+b^2}};$$

$$\forall 1, \qquad (x_1 - h)^2 + (y_1 - h)^2 = \left\{ \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right\}^2.$$

∴ P-এর যে-কোন স্থানাক (x, y)-এর জয় অধিবৃত্তটির সমীকরণ হইবে,

$$(x-h)^{2} + (y-k)^{2} = \left\{\frac{ax+by+c}{\sqrt{a^{2}+b^{2}}}\right\}^{2}.$$

দ্রেষ্টব্য ঃ ব্রু অমুচ্ছেদের সমীকরণটিকে সরল করিলে দেখা যাইবে যে উহা এমন একটি দ্বিমাত্রিক সাধারণ সমীকরণ যাহার দ্বিমাত্রিক পদগুলিকে উল্লিখিত ভাবে পূর্ণবর্ণের আকারে বিশুন্ত করা যায়। দ্বিমাত্রিক সাধারণ সমীকরণ এই শর্তেই অধিবৃত্ত স্থাচিত করে।

### উলাহরণমালা

উদা. 1. নিম্লিখিত সমীকরণ-স্চিত অধিবৃত্তের নাভিলখ, নাভির স্থানাক এবং নিয়ামকের সমীকরণ নির্ণয় কর:

(i) 
$$y^2 = 16x$$
; (ii)  $y^2 = -6x$ ; (iii)  $x^2 = 4y$ ;

(iv)  $3x^2 = -8y$ .

- (i) এখানে, নাভিলম্ব = সমীকরণটির একঘাত চলরাশির সহগের সাংখ্যমান = ∞-এর সহগের সাংখ্যমান = 16.
  - ∴ } নাভিলম = 4.

এখানে, x=0 হইলে y=0 বলিয়া মৃলবিন্দু (0,0)-ই অধিবৃত্তটির শীর্ষবিন্দু; y=0 বা x-অক্ষ উহার অক্ষ এবং অবতলতা x-অক্ষের ধনাত্মক দিক্ম্থী।

∴ নাভির স্থানাক (4, 0) এবং নিয়ামকের স্মীকরণ x = -4; বা. x + 4 = 0.

(ii) এখানে, নাভিলম্ব = সমীকরণটির একঘাত চলরাশির সহগের
 সাংখ্যমান = 
 æ-এর সহগের সাংখ্যমান = 6.

এখন,  $\frac{1}{4}$  নাভিলম্ব  $=\frac{6}{4}=\frac{6}{3}$ , শীর্ষবিন্দু (0,0), অক্ষy=0 বা x-অক্ষ এবং অবতলত। x-অক্ষের ঝণাত্মক দিক্ম্থী।

 $\therefore$  নাভি, শীর্ষবিন্দুর বামদিকে অবস্থিত বলিয়া উহার স্থানাম্ব  $(-\frac{2}{3},0)$  এবং নিয়ামকের সমীকরণ,  $x=-(-\frac{2}{3})$ .

বা,  $x = \frac{3}{2}$  বা, 2x = 3.

এখন,  $\frac{1}{2}$  নাভিলম্ব =  $\frac{1}{2}$  = 1, শীর্যবিদ্ট মৃস্বিন্দু, x=0 বা y-অক্ষ অধিবৃত্তারৈ অক্ষ এবং অবতলতা y-অক্ষের ধনাত্মক দিকুমুখী।

∴ নাভির স্থানাস্ক (0, 1) এবং নিয়ামকের সমীকরণ হইবে

y = -1;  $\forall i, y+1=0$ .

 $(i\nabla)$  এখানে,  $3x^2 = -8y$ ; বা,  $x^3 = -\frac{8}{8}y$ .

: নাভিলম্বের দৈর্ঘ্য = এক্ষাত চলরাশির সহগের সাংখ্যমান = 🖁 .

এখন,  $\frac{1}{4}$  নাভিলম্ব  $=\frac{8}{3\times 4}=\frac{2}{3}$ , শীর্ষবিন্দুই মূলবিন্দু; x=0 বা, y-অক্ষই অধিবৃত্তির অক্ষ এবং উহার অবতলতা y-অক্ষে ঋণাত্মক দিক্মুখী বলিয়া, নাভির স্থানাম্ব  $(0, -\frac{2}{3})$  এবং নিয়ামকের সমীকরণ,  $y=-(-\frac{2}{3})$  বা  $y=\frac{2}{3}$ ; বা 3y=2.

উদা. 2. (4, -4) বিন্দুগামী একটি অধিবৃত্তের সমীকরণ যদি  $y^2 = 4mx$  হয়, তবে উহার নাভির স্থানাম্ব নির্ণয় কর।

অধিবৃত্তটি (4, -4) বিন্দৃগামী বলিয়া

 $(-4)^2 = 4m \times 4$ ,  $\forall 1, 16 = 16m$ ;  $\forall 1, m = 1$ .

 $\therefore$  অধিবৃত্তটির সমীকরণ হয়  $y^2=4x$ .

উহার নাভিলম্ব = 4 এবং টু নাভিলম্ব = 💃 = 1.

x=0 হইলে, y=0 হয়, x=0 অধিবৃত্টির অক্ষ y=0 এবং শীর্ষবিন্দুই মূলবিন্দু (0,0) এবং উহার অবতলতা y=0 বা x-অক্ষের ধনাত্মকম্থী।

∴ উহার নাভির স্থানাক (1, 0).

উদা. 3.  $\frac{x}{a}+\frac{y}{b}=1$  ও  $\frac{x}{b}+\frac{y}{a}=1$ -এর ছেদবিন্দুগামী অধিবৃত্তের সমীকরণ  $y^2=2mx$  হইলে এবং  $a+b\pm 0$  হইলে, অধিবৃত্তির নাভির স্থানাম্ব নির্ণয় কর। [ C. U. 1952 ]

$$\frac{x}{a} + \frac{y}{b} = 1 \text{ এবং } \frac{x}{b} + \frac{y}{a} = 1 - কে বেশ স করিলে$$

$$x\left(\frac{1}{a} + \frac{1}{b}\right) + y\left(\frac{1}{a} + \frac{1}{b}\right) = 2;$$
বা,  $(x+y) \cdot \frac{a+b}{ab} = 2$ ; বা,  $x+y = \frac{2ab}{a+b}$  ...

(1)

with 
$$\frac{x}{a} + \frac{y}{b} - \frac{x}{b} - \frac{y}{a} = 0$$
;  $\forall i \left(\frac{x}{a} - \frac{x}{b}\right) - \left(\frac{y}{a} - \frac{y}{b}\right) = 0$ ;

$$x\left(\frac{1}{a} - \frac{1}{b}\right) - y\left(\frac{1}{a} - \frac{1}{b}\right) = 0 ; \exists 1, (x - y) \cdot \frac{b - a}{ab} = 0$$

$$\exists 1, \quad x - y = 0 \qquad \cdots \qquad \cdots \qquad (2)$$

(1) ও (2) হইতে, যোগ করিয়া 
$$2x = \frac{2ab}{a+b}$$
; বা,  $x = \frac{ab}{a+b}$ 

এবং (1) হইতে (2)-কে বিয়োগ করিয়া  $2y = \frac{2ab}{a+b}$ ; বা,  $y = \frac{ab}{a+b}$ 

এখন প্রশান্ত্রারে  $y^2=2mx\Big(rac{ab}{a+b},rac{ab}{a+b}\Big)$  বিনুগামী বলিয়া

$$\left(\frac{ab}{a+b}\right)^2 = 2m \cdot \frac{ab}{a+\bar{b}} \; ; \; \forall 1 \quad 2m = \frac{ab}{a+\bar{b}} \; ; \; \forall 1, \quad m = \frac{ab}{2(a+b)} \; .$$

... সমীকরণটির রূপ হয় 
$$y^2 = 2 \cdot \frac{ab}{2(a+b)} x = \frac{ab}{a+b} x$$
.

... উহার 
$$\frac{1}{4}$$
 × নাভিলয় =  $\frac{1}{4} \cdot \frac{ab}{a+b} = \frac{ab}{4(a+b)}$ .

$$\therefore$$
 নাভির স্থানাক  $\left(\frac{ab}{4(a+b)}, 0\right)$ 

উলা. 4. নিম্লিখিত তথ্য হইতে সংশ্লিষ্ট অধিবৃত্তের সমীকরণ নির্ণয় কর:

(i) মৃলবিন্দুতে যাহার শীর্ষবিন্দু, y=0 যাহার অক্ষ এবং যাহা  $(2,\,4)$  বিন্দুগামী ;

(ii) মৃলবিন্দুতে যাহার শীর্ষ এবং যাহার নাভি (3, 0) বিন্দু;

(iii) মূলবিন্তে শীর্ষ, x=0, যাহার অক্ষ, নাভিলম্ব =1 এবং যাহা ধনাত্মকম্থী।

 $(\mathrm{iv})$  নিয়ামকের সমীকরণ x=4 এবং মূলবিন্দুতে যাহার শীর্ষ ;

(i) মৃগবিন্তে যাহার শীর্ষ এবং y=0 রেখাটি অক্ষ বলিয়া অধিবৃত্তটির সমীকরণটি, n<sup>2</sup> = 4ax আকারের হইবে।

: ' উহা (2, 4) বিন্দৃগামী, :. 4° = 4a.2;

$$\boxed{4}, \quad a = \frac{4^2}{4.2} = \frac{16}{8} = 2.$$

:. নির্ণেয় সমীকরণ,  $y^2 = 4.2.x$ ; বা,  $y^2 = 8x$ .

(ii) নাভি (3,0) বিন্x-অক্ষের উপর এবং উহার শীর্ষ মৃগবিন্তে অবস্থিত বলিয়া, a-অক্ষই অধিবৃত্তটির অক।

আবার এখানে 🖟 নাভিলম্ব = 3; ∴ নাভিলম্ব = 12.

 $\therefore$  নির্ণেয় সমীকরণ  $y^2 = 12x$ .

(iii) x=0, অর্থাং y-অক্ষই অধিবৃত্তির অক্ষ, মূলবিন্দু উহার শীর্ষ এবং উহার অবতলতা y-অক্ষের ধনাত্মকম্খী।

∴ অধিবৃত্তটির সমীকরণ x² = 4ay আকারের হইবে।

কিন্তু অধিবৃত্তটির নাভিলম্ এখানে = 1.

 $\therefore$  নির্ণেয় সমীকরণ,  $x^2 = y$ .

(iv) নিয়ামকের আদর্শ সমীকরণ æ - a.

এখানে -a=4; বা, a=-4.

আবার নিয়ামকের সমীকরণ x=4 বলিয়া অধিবৃত্তটির অক্ষ নিশ্চয় x-অক্ষ।

∴ অধিবৃত্তটির সমীকরণ, y² = 4ax,

 $\forall 1, \quad y^2 = 4 \times (-4) \times x = -16x.$ 

উদা. 5.  $y^2 = 8(x-1)$  অধিবৃত্তের নাভিলম, শীর্ষবিন্দু ও নাভির স্থানাস্ক এবং নিয়ামকের সমীকরণ নির্ণয় কর।

নাভিলম্ব = সমীকরণের একঘাত চলরাশির সহপের সাংখ্যমান = 8.

 $\frac{1}{4}$  নাভিলম্ব =2 = শীর্ষবিন্দু হইতে নিয়ামকের দ্রত্ব y=0, অর্থাৎ x-অক্ষ অধিবৃত্তের অক্ষ। সমীকরণটিতে x=1 বসাইলে y=0 হয় বলিয়া (1,0). বিন্দৃতে অক্ষটি অধিবৃত্তটিকে ছেদ করে।

: (1, 0) विन्त्रे উशांत नीर्वविन्।

∴ শীর্ষবিন্দুর স্থানাক (1, 0).

- া. নাভি শীর্ষবিন্দুর ডানদিকে এবং শীর্ষবিন্দু হইতে 2 একক দূরে বলিয়া উহার স্থানায় (1+2,0) বা, (3,0). আবার, অবিবৃত্তির অবতলতা ধনাত্মক মুখী বলিয়া শীর্ষবিন্দু হইতে নিয়ামকের দূরত্ব ঋণাত্মক মুখে 2 একক অর্থাৎ -2; স্থতরাং মূলবিন্দু হইতে নিয়ামকের দূরত্ব =1-2=-1.
  - ∴ নিয়ামকের সমীকরণ হইবে x = -1 বা x + 1 = 0.

উদা. 6.  $y^2 - 4x - 8y + 4 = 0$  অধিবৃত্তের নাভিলম্ব, শীর্ষবিন্দুও নাভির স্থানাম্ব এবং নিয়ামকের সমীকরণ নির্ণয় কর।

এন্থলে, অধিবুত্তের সমীকরণ  $y^2 - 4x - 8y + 4 = 0$ ;

 $\forall 1, \quad y^2 - 8y = 4x - 4 \; ; \; \forall 1, \quad y^2 - 8y + 16 = 4x - 4 + 16 = 4x + 12 \; ;$   $\forall 1, \quad (y - 4)^2 = 4(x + 3). \qquad \cdots \qquad \cdots \qquad \cdots \qquad (1$ 

নাভিলম্ব = সমীকরণের একঘাত চলরাশির সহপের সাংখ্যমান = 4.

∴ भौर्यिन्तू इटेट नाভित्र দূরজ= र नाভिनश = 1.

y-4=0, বা, y=4 অধিবৃত্তের অক্ষ; অধিবৃত্তের সমীকরণটিতে y=4 বসাইলে x=-3 হয়। স্থতরাং অক্ষ ও অধিবৃত্তের ছেদবিন্দু (-3, 4) এবং তাহাই শীর্ষবিন্দু।

∴ শীর্ষবিন্দুর স্থানান্ধ (-3, 4).

এখন, সমীকরণটিকে (1)-এর আকারে লিখিলে দেখা যায়, একঘাত চলরাশির সহগ ধনাত্মক চিহ্নযুক্ত; স্থতরাং অধিবৃত্তটির অবতলতা ইহার অক্ষy=4 সরল রেখার ধনাত্মক দিক্-মুখী;

.. নাভি অধিবৃত্তের অক্ষy=4 সরল রেখার উপর শীর্ষবিন্দু A-এর ডানদিকে 1 একক দূরে অবস্থিত হইবে, এবং দেইজন্মই ইহার কোটি 4 হইবে এবং ভূজ হইবে (-3+1) অর্থাৎ -2; স্বতরাং, নাভির স্থানাহ হইল (-2,4).

আবার, শীর্ষবিন্দু হইতে নিয়ামকের দ্বত্ব ঋণাত্মক দিকে 1 একক অর্থাৎ -1.
অতএব, শীর্ষবিন্দুর ভূজ = -3 বলিয়া নিয়ামকের যে-কোন বিন্দুর ভূজ
= -3 -1 = -4.

ে নিয়ামকের স্মীকরণ x=-4, বা, x+4=0.

অবতলতা  $\alpha$ -অক্ষের ঋণাত্মকদিক্ম্খী বলিয়া, নির্ণেয় সমীকরণটি হইবে,  $y^2 = -4ax$  আকারের। অধিবৃত্ত (-3, -6) বিন্দুগামী বলিয়া,  $(-6)^2 = -4a(-3)$ , বা, a=3,

∴ নির্ণেয় সমীকরণ y² = -12x.

উদা 8. যে অধিবৃত্তের স্থানাস্ক (3, -2) এবং ধাহার নিয়ামক 2x - y +3 =0, সেই অধিবৃত্তির সমীকরণ নির্ণয় কর। [C. U., 1958]

অধিবৃত্তি টির উপর অবস্থিত যে-কোন বিন্দুর স্থানান্ধ যেন (x, y). এখন, নাভি হইতে অধিবৃত্তের উপর অবস্থিত কোন বিন্দুর দূরত্ব, নিয়ামক হইতে ঐ বিন্দুর দূরত্বের সমান বলিয়া,

$$\sqrt{(x-3)^2 + (y+2)^2} = \frac{2x - y + 3}{\sqrt{2+1^2}} = \frac{2x - y + 3}{\sqrt{5}};$$

$$\forall 1, \quad (x-3)^2 + (y+2)^2 = \frac{(2x - y + 3)^2}{5};$$

$$\forall 1, \quad 5(x-3)^2 + 5(y+2)^2 = (2x - y + 3)^2;$$

$$\forall 1, \quad 5x^2 - 30x + 45 + 5y^2 + 20y + 20$$

(1, 0x - 50x + 40 + 0y + 20y + 20

 $=4x^{2}+y^{2}+9-4xy+12x-6y;$ 

 $71, \quad x^2 + 4y^2 + 4xy - 42x + 26y + 56 = 0$ 

বা,  $(x+2y)^2 = 42x - 26y - 56$ ; ইহাই নির্ণেয় সমীকরণ।

উদ। 9. x-7y+12=0 সরল রেখাটি যে বিন্দুদরে  $y^2=x$  অধিবৃত্তকে ছেদ করে উহাদের স্থানান্ধ নির্ণয় কর।

সমীকরণ-তুইটিকে সহ-সমীকরণরূপে সমাধান করিলে ছেদবিন্দুরের কোটি- নির্ণায়ক  $y^2-7y+12=0$  দ্বিঘাত-সমীকরণটি পাওয়া যায়। ইহার তুইটি বীজ 4 এবং 3 বিলয়া ছেদবিন্দুরেরে কোটি 4 এবং 3.

কোটি 4 হইলে,  $y^2=x$  হইতে, ভূজ হইবে 16, এবং কোটি 3 হইলে,  $y^2=x$  হইতে, ভূজ হইবে 9.

: . চেদবিন্দুধ্যের স্থানাম্ব (16, 4) এবং (9, 3).

উদা 10. প্রমাণ কর যে, অধিবৃত্তের অক্ষের সমাস্তরাল যে-কোন সরল রেখা অধিবৃত্তকে একটি মাত্র বিন্তুতে ছেদ করে।

মনে কর, অধিবৃত্তটির স্মীকরণ  $y^2 = 4ax$ ;

তাহা হইলে y=0, অর্থাৎ x-অক্ষ অধিবৃত্তটির অক্ষ; স্কতরাং, অধিবৃত্তের অক্ষের সমাস্তরাল সরল রেখার সমীকরণ y=c, মনে করা যাইতে পারে।

 $y^2=4ax$  এবং y=c-কে সহ-সমীকরণরপে সমাধান করিলে, সরল রেখা এবং অধিবৃত্তের ছেদবিন্দুর ভূজ-নির্ণায়ক  $c^2=4ax$  সমীকরণটি পাওয়া যায়; ইহা হইতে x-এর একটিমাত্র মান  $\frac{c^2}{4a}$  পাওয়া যায় এবং ইহাই ছেদবিন্দুর ভূজ, আর y=c হইতে দেখা যায়, ছেদবিন্দুর কোটি=c. অতএব সরল রেখাটি অধিবৃত্তিকৈ একটিমাত্র বিন্দুতে ছেদ করে; এই বিন্দুর স্থানান্ধ  $\binom{c^2}{4a}$ , c).

- া নাভি শীর্ষবিন্দুর ডানদিকে এবং শীর্ষবিন্দু হইতে 2 একক দূরে বলিয়া উহার স্থানাস্থ (1+2,0) বা, (3,0). আবার, অধিবৃত্তটির অবতলতা ধনাত্মক মুখী বলিয়া শীর্ষবিন্দু হইতে নিয়ামকের দূরত্ব ঋণাত্মক মুখে 2 একক অর্থাৎ -2; স্থতরাং মূলবিন্দু হইতে নিয়ামকের দূরত্ব =1-2=-1.
  - ∴ নিয়ামকের সমীকরণ হইবে x = -1 বা x + 1 = 0.

উদা. 6.  $y^2 - 4x - 8y + 4 = 0$  অধিবৃত্তের নাভিলম্ব, শীর্ষবিন্দুও নাভির স্থানাম্ব এবং নিয়ামকের সমীকরণ নির্ণয় কর।

এঙ্লে, অধিবুত্তের সমীকরণ  $y^2 - 4x - 8y + 4 = 0$ ;

 $\forall 1, \quad y^2 - 8y = 4x - 4; \ \forall 1, \ y^2 - 8y + 16 = 4x - 4 + 16 = 4x + 12;$ 

নাভিলম্ব = সমীকরণের একঘাত চলরাশির সহম্বের সাংখ্যমান = 4.

∴ শীর্ষবিন্দু হইতে নাভির দূর্ত্ব = টু নাভিলম্ব = 1.

y-4=0, বা, y=4 অধিবৃত্তের অক্ষ; অধিবৃত্তের সমীকরণটিতে y=4 বসাইলে x=-3 হয়। স্থতরাং অক্ষ ও অধিবৃত্তের ছেদবিন্দু (-3, 4) এবং তাহাই শীর্ষবিন্দু।

∴ শীৰ্ষবিন্দুর স্থানাক (-3, 4).

এখন, সমীকরণটিকে (1)-এর আকারে লিখিলে দেখা যায়, একঘাত চলরাশির সহগ ধনাত্মক চিহুযুক্ত; স্থতরাং অধিবৃত্তটির অবতলতা ইহার অক্ষ y=4 সরল রেখার ধনাত্মক দিকু-মুখী;

.. নাভি অধিবৃত্তের অক্ষ y=4 সরল রেখার উপর শীর্ষবিন্দু A-এর ডানদিকে 1 একক দূরে অবস্থিত হইবে, এবং সেইজগুই ইহার কোটি 4 হইবে এবং ভূজ হইবে (-3+1) অর্থাৎ -2; স্থতরাং, নাভির স্থানাত্ত হইল (-2,4).

আবার, শীর্ষবিন্দু হইতে নিয়ামকের দূরত্ব ঝণাত্মক দিকে 1 একক অর্থাৎ – 1.
অতএব, শীর্ষবিন্দুর ভূজ = – 3 বলিয়া নিয়ামকের যে-কোন বিন্দুর ভূজ = – 3 – 1 = – 4.

 $\therefore$  নিয়ামকের সমীকরণ x=-4, বা, x+4=0.

উদা. 7. x-অক্ষ ও শীর্ষবিন্দুকে যথাক্রমে অক্ষ ও মূলবিন্দু ধরিরা (-3, -6) বিন্দুগামী এবং x-অক্ষের ঋণাত্মক দিক্-মুখী অবতলতাবিশিষ্ট অধিবৃত্তটির সমীকরণ নির্ণয় কর।

অবতলতা  $\alpha$ -অক্ষের ঋণাত্মকদিক্ম্খী বলিয়া, নির্ণেয় স্মীকরণটি হইবে,  $y^2 = -4ax$  আকারের। অধিবৃত্ত (-3, -6) বিন্দৃগামী বলিয়া,  $(-6)^2 = -4a(-3)$ , বা, a=3,

∴ নির্ণেয় সমীকরণ y² = -12x.

উদা. 8. যে অধিবৃত্তের স্থানান্ধ (3, -2) এবং যাহার নিয়ামক 2x-y+3 =0, সেই অধিবৃত্তটির সমীকরণ নির্ণয় কর। [C.U., 1958]

অধিবৃত্তির উপর অবস্থিত ষে-কোন বিন্দুর স্থানাস্ক যেন (x, y). এখন, নাভি হইতে অধিবৃত্তের উপর অবস্থিত কোন বিন্দুর দূরত্ব, নিয়ামক হইতে ঐ বিন্দুর দূরত্বের সমান বলিয়া,

$$\sqrt{(x-3)^2 + (y+2)^2} = \frac{2x - y + 3}{\sqrt{2} + 1^2} = \frac{2x - y + 3}{\sqrt{5}};$$

$$\forall 1, \quad (x-3)^2 + (y+2)^2 = \frac{(2x - y + 3)^2}{5};$$

$$\forall 1, \quad 5(x-3)^3 + 5(y+2)^2 = (2x - y + 3)^2;$$

 $\boxed{41, \quad 5x^2 - 30x + 45 + 5y^2 + 20y + 20}$ 

 $=4x^2+y^2+9-4xy+12x-6y;$ 

 $\forall 1, \quad x^3 + 4y^2 + 4xy - 42x + 26y + 56 = 0 ;$ 

বা,  $(x+2y)^2 = 42x - 26y - 56$ ; ইহাই নির্ণেয় সমীকরণ।

উদা 9. x-7y+12=0 সরল রেখাটি যে বিন্দুদরে  $y^2=x$  অধিবৃত্তকে ছেদ করে উহাদের স্থানান্ধ নির্ণয় কর ।

সমীকরণ-তৃইটিকে সহ-সমীকরণরপে সমাধান করিলে ছেদবিন্দুরের কোটি-নির্ণায়ক  $y^2-7y+12=0$  দ্বিঘাত-সমীকরণটি পাওয়া যায়। ইহার তৃইটি বীচ্চ 4 এবং 3 বিলিয়া ছেদবিন্দুরের কোটি 4 এবং 3.

কোটি 4 হইলে,  $y^2=x$  হইতে, ভূজ হইবে 16, এবং কোটি 3 হইলে,  $y^2=x$  হইতে, ভূজ হইবে 9.

∴ ছেদবিনুদ্বয়ের স্থানাক (16, 4) এবং (9, 3).

উদা. 10. প্রমাণ কর যে, অধিবৃত্তের অক্ষের সমাস্তরাল যে-কোন সরল রেখা অধিবৃত্তকে একটি মাত্র বিন্দুতে ছেদ করে।

মনে কর, অধিবৃত্তির স্মীকরণ  $y^2 = 4ax$ ;

তাহা হইলে y=0, অর্থাৎ x-অক্ষ অধিবৃত্তির অক্ষ; স্থতরাং, অধিবৃত্তের অক্ষের সমাস্তরাল সরল রেখার সমীকরণ y=c, মনে করা যাইতে পারে।

 $y^2=4ax$  এবং y=c-কে সহ-সমীকরণরূপে সমাধান করিলে, সরল রেখা এবং অধিবৃত্তের ছেদবিন্দ্র ভূজ-নির্ণায়ক  $c^2=4ax$  সমীকরণটি পাওয়া যায়; ইহা হইতে x-এর একটিমাত্র মান  $\frac{c^2}{4a}$  পাওয়া যায় এবং ইহাই ছেদবিন্দ্র ভূজ, আর y=c হইতে দেখা যায়, ছেদবিন্দ্র কোটি=c. অতএব সরল রেখাটি অধিবৃত্তিকৈ একটিমাত্র বিন্দৃতে ছেদ করে; এই বিন্দ্র স্থানাম্ব  $\binom{c^2}{4a}$ ,  $\binom{c^2}{4a}$ 

- .. নাভি শীর্ষবিন্দুর ডানদিকে এবং শীর্ষবিন্দু হইতে 2 একক দূরে বলিয়া উহার স্থানায় (1+2,0) বা, (3,0). আবার, অধিবৃত্তীর অবতলতা ধনাত্মক মুখী বলিয়া শীর্ষবিন্দু হইতে নিয়ামকের দূরত্ব ঋণাত্মক মুখে 2 একক অর্থাৎ -2; স্থতরাং মূলবিন্দু হইতে নিয়ামকের দূরত্ব =1-2=-1.
  - ∴ নিয়ামকের সমীকরণ হইবে x = -1 বা x + 1 = 0.

উদা. 6.  $y^2 - 4x - 8y + 4 = 0$  অধিবৃত্তের নাভিলম্ব, শীর্ষবিন্দুও নাভির স্থানাত্ব এবং নিয়ামকের সমীকরণ নির্ণয় কর।

এম্বলে, অধিবৃত্তের সমীকরণ  $y^2 - 4x - 8y + 4 = 0$ ;

 $\forall 1, \quad y^2 - 8y = 4x - 4 \; ; \; \forall 1, \quad y^2 - 8y + 16 = 4x - 4 + 16 = 4x + 12 \; ;$ 

নাভিলম্ব = সমীকরণের একঘাত চলরাশির সহগের সাংখ্যমান = 4.

... শীর্ষবিন্দু হইতে নাভির দূরত্ব = টু নাভিলম্ব = 1.

y-4=0, বা, y=4 অধিবৃত্তের অক্ষ; অধিবৃত্তের সমীকরণটিতে y=4 বসাইলে x=-3 হয়। স্থতরাং অক্ষ ও অধিবৃত্তের ছেদবিন্দু (-3,4) এবং তাহাই শীর্ষবিন্দু।

∴ শীর্ষবিন্দুর স্থানাম্ভ (-3, 4).

এখন, সমীকরণটিকে (1)-এর আকারে লিখিলে দেখা যায়, একঘাত চলরাশির সহগ ধনাত্মক চিহুযুক্ত; স্কুতরাং অধিবৃত্তটির অবতলতা ইহার অক্ষy=4 সরল রেখার ধনাত্মক দিকু-মুখী;

.. নাভি অধিবৃত্তের অক্ষ y=4 সরল রেখার উপর শীর্ষবিন্দু A-এর ডানদিকে 1 একক দূরে অবস্থিত হইবে, এবং দেইজগুই ইহার কোটি 4 হইবে এবং ভুজ হইবে (-3+1) অর্থাৎ -2; স্বত্তরাং, নাভির স্থানাম্ভ ইল (-2,4).

ে নিয়ামকের সমীকরণ x=-4, বা, x+4=0.

উদা. 7. x-অক্ষ ও শীর্ষবিন্দুকে যথাক্রমে অক্ষ ও মূলবিন্দু ধরিয়া (-3, -6) বিন্দুমামী এবং x-অক্ষের ঝণাত্মক দিক্-মুখী অবতলতাবিশিষ্ট অধিবৃত্তটির সমীকরণ নির্ণয় কর।

অবতশতা x-অক্ষের ঋণাত্মকদিক্ম্খী বলিয়া, নির্ণেয় সমীকরণটি হইবে,  $y^2 = -4ax$  আকারের। অধিকৃত্ত (-3, -6) বিন্দুগামী বলিয়া,  $(-6)^2 = -4a(-3)$ , বা. a=3,

∴ নির্ণের সমীকরণ y° = -12x.

উদা. ৪. যে অধিবৃত্তের স্থানাম্ক (3, -2) এবং যাহার নিয়ামক 2x-y+3 =0, সেই অধিবৃত্তটির সমীকরণ নির্ণয় কর। [  $C.\ U.,\ 1958$  ]

অধিবৃত্তির উপর অবস্থিত যে-কোন বিন্দুর স্থানাস্ক যেন (x, y). এখন, নাভি হইতে অধিবৃত্তের উপর অবস্থিত কোন বিন্দুর দূরত্ব, নিয়ামক হইতে ঐ বিন্দুর দূরত্বের সমান বিলিয়া,

$$\sqrt{(x-3)^2 + (y+2)^2} = \frac{2x - y + 3}{\sqrt{2} + 1^2} = \frac{2x - y + 3}{\sqrt{5}};$$

$$\forall 1, \quad (x-3)^2 + (y+2)^2 = \frac{(2x - y + 3)^3}{5};$$

$$\forall 1, \quad 5(x-3)^2 + 5(y+2)^3 = (2x - y + 3)^2;$$

 $71, \quad 5x^2 - 30x + 45 + 5y^2 + 20y + 20$ 

 $=4x^2+y^2+9-4xy+12x-6y;$ 

বা,  $(x+2y)^2 = 42x - 26y - 56$ ; ইহাই নির্ণেয় সমীকরণ।

উদা. 9. x-7y+12=0 সরল রেখাটি যে বিন্দুদরে  $y^2=x$  অধিবৃত্তকে ছেদ করে উহাদের স্থানান্ধ নির্ণয় কর।

সমীকরণ-তৃইটিকে সহ-সমীকরণরূপে সমাধান করিলে ছেদবিন্দু রের কোটি- নির্ণায়ক  $y^2-7y+12=0$  দ্বিঘাত-সমীকরণটি পাওয়া যায়। ইহার তৃইটি বীজ 4 এবং 3 বিলিয়া ছেদবিন্দু রের কোটি 4 এবং 3.

কোটি 4 হইলে,  $y^2=x$  হইতে, ভূজ হইবে 16, এবং কোটি 3 হইলে,  $y^2=x$  হইতে, ভূজ হইবে 9.

: ছেদবিন্দুষয়ের স্থানান্ধ (16, 4) এবং (9, 3).

উদা. 10. প্রমাণ কর যে, অধিবৃত্তের অক্ষের সমাস্তরাল যে-কোন সরল রেখা অধিবৃত্তকে একটি মাত্র বিন্দুতে ছেদ করে।

মনে কর, অধিবৃত্তটির সমীকরণ  $y^2 = 4ax$ ;

তাহা হইলে y=0, অর্থাৎ x-অক্ষ অধিবৃত্তটির অক্ষ; স্বতরাং, অধিবৃত্তের অক্ষের সমান্তরাল সরল রেথার সমীকরণ y=c, মনে করা যাইতে পারে।

 $y^2=4ax$  এবং y=c-কে দহ-সমীকরণরূপে সমাধান করিলে, সরল রেখা এবং অধিবৃত্তের ছেদবিন্দুর ভূজ-নির্ণায়ক  $c^2=4ax$  সমীকরণটি পাওয়া যায় ; ইহা হইতে x-এর একটিমাত্র মান  $\frac{c^2}{4a}$  পাওয়া যায় এবং ইহাই ছেদবিন্দুর ভূজ, আর y=c হইতে দেখা যায়, ছেদবিন্দুর কোটি=c. অতএব সরল রেখাটি অধিবৃত্তিকৈ একটিমাত্র বিন্দুতে ছেদ করে ; এই বিন্দুর স্থানাম্ব  $\left(\frac{c^2}{4a}, c\right)$ -

উদা 11. প্রমাণ কর যে অধিবৃত্তের নাভিলমের দিওণ যুগাকোটি উহার শীর্ববিন্দুতে এক সমকোণ উৎপন্ন করে।

অধিবৃত্তটির সমীকরণ যদি  $y^2=4ax$  হয়, তবে তাহার নাভিলম্ব = 4a. স্ক্রাং নাভিলম্বের দ্বিগুণ যুগ্মকোটির মান = 8a. যুগ্মকোটিমাত্রই নাভিলম্বের সমাস্তরাল বলিয়া উহা অক্ষদারা লম্বভাবে সমন্বিখণ্ডিত হইবে এবং সেই কারণে ঐ যুগাকোটি ও অধিবতের ছেদবিন্দুরয়ের কোটি হইবে 4a - 4a.

অধিবৃত্তের সমীকরণে  $y=\pm 4a$  বসাইলে, 

 $\therefore$  ছেদবিন্দু-ছুইটি  $\mathsf{P_1}$  ও  $\mathsf{P_3}$  হুইলে তাহাদের স্থানাক (4a,4a) এবং (4a, -4a).

এখন শীর্ষবিন্দৃটি A হইলে, A-র স্থানান্ধ (0, 0).

ম্পষ্টতঃ, যুগাকোটি P1P2 শীর্ষবিদ্যুতে P1AP2 কোণ উৎপন্ন করিয়াছে।

এখন,  $\overline{P_1A}$ -এর প্রবণ্ডা  $=\frac{4a}{4a}=1$ ;

এবং,  $P_2A$ -এর প্রবৃত্তা =  $\frac{-4a}{4a}$  = -1.

- $P_1A$ -এর প্রবণতা  $\times P_2A$ -র প্রবণতা  $= 1 \times (-1) = -1$ .
- .'. P1A ও P9A পরস্পরের উপর লম্ব।
- P1AP2 কোণ একটি সমকোণ।

নাভিলম্বের দিগুণ যুগ্নকোটি সর্বদা অধিবতের শীর্ষে এক সমকোণ অতএব, উৎপন্ন করে।

### প্রগ্রমালা 16

1. নিম্নলিথিত সমীকরণ-নির্দিষ্ট অধিবৃত্তগুলির নাভিলম্ব, নাভির স্থানাম্ব এবং নিয়ামকের সমীকরণ নির্পয় কর।

(i)  $y^2 = 8x$ ; (ii)  $y^2 = -12x$ ; (iii)  $x^2 = 20y$ ;

(iv)  $x^2 = -16y$ ; (v)  $x^2 = -10y$ ;

(vi)  $5y^2 = 7x$ . [ C. U. 1936 ]

উপরি-উক্ত প্রতিটি অধিবৃত্তের ক্ষেত্রে (2, 4) বিন্দুটির অবস্থান নির্ণয় কর।

2. रय व्यक्तिरखंद भीर्विम् मृनिदिम् धवः

(i) যাহার অক্ষ x-অক্ষ্, নাভিলম্বের দৈর্ঘ্য 2 এবং অবতলতা x-অক্ষের ধনাত্মক দিক্-মুখী; (ii) যাহার অক্ষ 🐠 অক্ষ, নাভিলম্বের দৈর্ঘ্য 🛔 এবং অবতল্তা y-অক্ষের ঋণাত্মক দিক্-ম্থী; সেই অধিবৃত্তের সমীকরণ মির্ণর কর।

(i) (4, 0); (ii) (-2, 0); (iii)  $(0, \frac{3}{4})$ ; (iv) (0, -5), তাহার সমীকরণ নির্ণয় কর। প্রত্যেক ক্ষেত্রেই নিয়ামকের সমীকরণ নির্ণয় কর।

- 4. একটি অধিবৃত্তের নাভিলম্বের দৈষ্য 16, ইছার সমীকরণ নির্ণয় কর যথন ইহার অক্ষ ও নিয়ামক যথাক্রমে x-অক্ষ ও y-অক্ষ এবং অবতলতা
  - (i) p-অক্ষের ধনাত্মক দিক্-মুখী;

(ii) x-অক্ষের ঋণাত্মক দিক্-মুখী।

5. একটি অধিবৃত্তের নাভিলমের দৈর্ঘ্য 10; মূলবিন্দু ইহার নাভি, α-অক ইহার অক্ষ এবং ইহার অবতল্ডা

(i) x-অক্ষের ধনাত্মক দিক্-মুখী, (ii) x-অক্ষের ঋণাত্মক দিক্-মুখী, হুইলে ইহার সমীকরণ নির্ণর কর। প্রত্যেক ক্ষেত্রে নিয়ামকের সমীকরণ নির্ণয় কর।

6. একটি অধিবৃত্তের নাভিলমের দৈর্ঘ্য 6; মূলবিন্দু ইহার নাভি এবং y-অক্ষ ইহার অক্ষ এবং ইহার অবতলতা

 (i) y-অক্ষের ধনাত্মক দিক্-মুখী,
 (ii) y-অক্ষের ঋণাত্মক দিক্-মুখী, হইলে, ইহার সমীকরণ নির্ণয় কর। প্রত্যেক ক্ষেত্রে নিয়ামকের সমীকরণ নির্ণয় কর।

(0,3) বিন্দু এবং নাভিলম্বের দৈখ্য 12. ইহার সমীকরণ নির্ণয় কর।

[ C. U., 1950, Special ]

8.  $y^2 = 4ax$  অধিবৃত্ত (3, -2) বিন্দুগামী হইলে, ইহার নাভিল্পের দৈর্ঘ্য [ C. U., 1934 ] এবং নাভির স্থানান্ধ নির্ণয় কর।

9.  $y^2=20x$  অধিবৃত্তটির নাভিলম্বের সমীকরণ নির্ণয় কর এবং নাভিলম্বের श्री खितिनूष्रात श्री नाक निर्वत्र कत ।

10. অধিবৃত্তের অক্ষ এবং শীর্ষবিন্দু যথাক্রমে ৫-অক্ষ ও মৃলবিন্দু ধরিয়া অধিবৃত্তের সমীকরণ নির্ণয় কর, ষখন

(i) অধিবৃত্তটি (4, 8) বিন্দুগামী এবং ইহার অবতলতা x-অক্ষের ধনাত্মক क्ट्-मूथी;

(ii) অধিবৃত্তটি ( - ই, 6) বিন্দুগামী এবং ইহার অবতলতা x-অক্ষের ঋণাত্মক निक्-मृथी।

প্রত্যেক ক্ষেত্রে নাভির স্থানাঙ্ক নির্ণয় কর।

11. অধিবৃত্তের অক্ষ এবং শীর্ষবিন্দুকে ষথাক্রমে γ-অক্ষ এবং মূলবিন্দু ধরিয়া অধিবৃত্তের সমীকরণ নির্ণয় কর, যখন

(i) অধিবৃত্তটি (12, 9) বিন্পামী এবং ইহার অবতলতা y-অক্ষের ধনাত্মক मिक्-मूथी ;

(ii) অধিবৃত্তটি (5, -5) বিন্দৃগামী এবং ইহার অবতল্তা গু-অন্দের ঋণাজুক मिक्-भूशी।

প্রত্যেক ক্ষেত্রে ইহার নান্ডির স্থানান্ধ নির্ণয় কর।

- 12. নিয়লিখিত সমীকরণ-নির্দিষ্ট অধিবৃত্তসমূহের প্রত্যেকটির নাভিলম্ব, নাভির স্থানাক্ষ এবং নিয়ামকের সমীকরণ নির্ণয় কর :

(i)  $y^2 = 4(x-3)$ ; (ii)  $y^2 = 2x + 3$ ; (ii)  $y^2 + 8(x+1) = 0$ ; (iv)  $y^2 + 4x - 6 = 0$ ; (v)  $2x^2 - 2y + 3 = 0$ ; (vi)  $4x^2 + 12y - 15 = 0$ 

(vi)  $4x^2 + 12y - 15 = 0$ ; (vii)  $y^2 - 4x - 4y + 16 = 0$ ; (viii)  $y^2 + 8x + 6y + 25 = 0$ .

- 13.  $(y+3)^2 \Rightarrow 2(x+2)$  অধিবৃত্তটির শীর্ষবিন্দু, নাভির স্থানাত্ত এবং নিয়ামকের সমীকরণ নির্ণয় কর। [ U. P., 1946]
  - 14. (a)  $y^2 = 4y 4x$ ;

(b)  $y - ax^2 + bx + c$ . [C. U. B. A. & B. Sc., 1912]

ष्यित्र छत भौर्गावन्, नां छि धवर नां छिन्छत देनचा निर्वय कत।

15. কোন অধিবুত্তের নাভির স্থানান্ধ (-1,1) এবং নিয়ামকের সমীকরণ x+y+1=0. অধিবুত্তটির সমীকরণ নির্ণয় কর।

[ C. U. B. A. & B. Sc., 1932]

- 16. কোন অধিবৃত্তের নাভির স্থানান্ধ (-2, 3) এবং নিয়ামকের সমীকরণ x-2y+3=0. অধিবৃত্তির স্মীকরণ নির্ণয় কর।
- 17.  $y^2 = 2ax$  অধিবৃত্তটি  $\frac{x}{3} + \frac{y}{2} = 1$  এবং  $\frac{x}{2} + \frac{y}{3} = 1$  সরল রেখাছয়ের ছেদবিন্দুগামী। ইহার নাভির স্থানান্ধ নির্ণয় কর। [ C. U., 1943 ]
  - 18. নিয়লিপিত অধিবৃত্ত এবং সরল রেখার ছেদবিন্দুর স্থানাম্ব নির্ণয় কর:
    - (i)  $y^2 = 2x$  অধিবৃত্ত এবং y = x 4 সরল রেখার ;
    - (ii)  $y^2 = x$  অধিকৃত্ত এবং x 5y + 6 = 0 সরল রেখার;

[ C. U., 1944 ]

- (iii)  $3x^2 = -4y$  অধিবৃত্ত এবং 3x 2y = 12 সরল রেখার ;
- (iv)  $5y^2 = 12x$  অধিবৃত্ত এবং 5y + 9x 5 = 0 সরল রেখার।
- 19.  $3y^2 = 4x$  অপিবৃত্তটি নাভিলত্বের দৈখ্য এবং নাভির স্থানাম্ব নির্ণয় কর এবং যে নিন্দুয়ে ইহা 2x=3y সরল রেখাকে ছেদ করে, উহাদের স্থান।ক্ষ নির্ণয় কর।

[ C. U., 1935 ]

20. একটি অধিবৃত্তের শীর্ঘবিলু ও নাভির স্থানাক বথাক্রমে যদি (a, 0) ও (b, 0) হয়, তবে প্রমাণ কর যে, অধিবৃত্তটির সমীকরণ  $y^2=4(b-a)(x-a)$ .

্নংকেত: এখানে শীর্ষবিন্দু হইতে নাভির দূরত্ব  $(b-a)=\frac{1}{2}$  নাভিলয়।  $(y-k)^2=4a(x-h)$  সমীকরণে  $h=a,\ k=0$  এবং a-এর স্থলে (b-a) বসাইয়া সমাধান কর।

#### 4·11. 영역국정 (Ellipse) :

পূর্বেই বলা হইয়াছে যে, কনিকের উৎকেন্দ্রতা (৫), এক (1) অপেক্ষা কুন্তবে হুইলে, কনিককে উপবৃত্ত (Ellipse) বলা হয়, অর্থাৎ,

কোন সমতলের উপর অবস্থিত একটি স্থিরনির্দিষ্ট বিন্দু এবং একটি স্থিরনির্দিষ্ট সরল রেখা হইতে ঐ সমতলের উপর গতিশীল কোন বিন্দুর দ্রত্বয়ের অস্পাত ধ্রুবক কিন্তু এক অপেক্ষা ক্ষুদ্রতর হইলে, গতিশীল বিন্দুটির সঞ্চারপথকে উপরুত্ত (Ellipse) বলে।

নির্দিষ্ট বিন্দৃটিকে ঐ উপবৃত্তের **নান্ডি** (Focus), নির্দিষ্ট সরল রেথাকে উহার নিয়ামক (Directrix) এবং দ্রঅষ্থ্যের প্রবক অস্কপাতকে ঐ উপবৃত্তের উৎকেন্দ্রভা (Eccentricity) বলা হয়। সাধারণতঃ নাভিকে s অক্ষর ঘারা এবং উৎকেন্দ্রভাকে ও অক্ষর ঘারা স্থৃচিত করা হয়।

নাভিনিদ্গামী এবং নিয়ামকের লম্ব সরল রেখাকে উপর্ভের মূল আক বা পরাক্ষ (Major axis) এবং এই অক্ষের সহিত উপর্তের ছেদনিন্দ-ছইটিকে ঐ উপ-রুত্তের শীর্যবিন্দু (Vertex) বলে। শীর্ষবিন্দু-ছইটি দারা সীমাবদ্ধ অক্ষাংশের অক্ষের মধ্য-বিন্দুকে বলে উপর্ত্তের কেন্দ্র। কেন্দ্রবিন্দু দিয়া অন্ধিত এবং উপর্ত্ত দারা সীমাবদ্ধ লম্বের গণ্ডাংশকে বলে উপাক্ষ (Minor axis)।

নাভিবিন্গামী এবং অক্ষের গম্ব-জ্যা-কে উপবৃত্তের **নাভিল্**ছ (Latus rectum) বলে।

# 4·12. উপরত্তের সমীকরণ (Equation of an ellipse).

S উপর্ত্ততির নাভি এবং MM' উহার নিয়ামক। S হইতে নিয়ামকের উপর

SZ লম্ব টানিয়া, S-এর দিকে ব্রিড করা হইল ; ইহাই হইল অক্ষ।

SZ-এর উপর এরপ একটি বিন্দু A নির্ণয় করা যায়, অর্থাৎ SZ-কে এরপে অর্ডাণ্ডিক করা যায় যে,

> 8A = c.AZ ··· (1) আবার, c < 1 বলিয়া, বর্ধিত

M S C N A' X

→ ZS-এর উপর এরপ একটি বিন্দু A' থাকিবে যে,

 $SA' = e.A'Z \cdots (2)$ 

ধরা খাক্, AA' = 2a, এবং AA' -এর মধ্যবিদ্ C.
সংজ্ঞামুসারে, A ও A' উভয়ই উপরুত্তের শীর্ষবিদ্ এবং C উপরুত্তের কেব্রু

সংজ্ঞান্ত্রসারে, A ও A' উভয়ই উপবৃত্তের শ্ববিন্দু এবং C উপবৃত্তের (কেন্দ্র).

(1) এবং (2) হইতে, যোগ করিয়া, 2a = e(AZ + A'Z) = 2e.CZ;

$$\therefore \quad CZ = \frac{a}{e} \qquad \cdots \qquad (3)$$

(2) হইতে (1) বিয়োগ করিয়া, SA' - SA = e(A' Z - AZ),

$$\forall$$
1,  $(CS + CA') - (CA - CS) = e.AA'$ ,...... $\forall$ 1,  $2CS = e.2a$ ,  $\forall$ 1,  $CS = ae$ .......

এখন, কেন্দ্র C-কে মূলবিন্দ্, CA'-কে x-অক্ষ এবং C বিন্দু দিয়া অন্ধিত AA'-এর লম্ব-রেখাকে y-অক্ষ ধরিলে, উপরত্তের উপর অবস্থিত যে-কোন বিন্দু P-এর স্থানাম্ব যেন (x, y) হয়। P বিন্দু হইতে নিয়ামকের উপর PM লম্ব এবং AA' এর উপর PN লম্ব টানা হইল।

CS = ae বলিয়া, নাভি S-এর স্থানান্ধ ( -ae, 0). এখন,  $SP^2 = (e.PM)^2 = (e.ZN)^2 = e^2ZN^2 = e^2(CN + ZC)^2$ ;

... 
$$(x + ae)^2 + y^2 = e^2 \left(x + \frac{a}{e}\right)^2$$
,

 $\forall i, \quad x^2(1-e^2) + y^3 = a^2(1-e^2),$ 

বা, উভয় পক্ষকে  $a^2(1-e^2)$  দারা ভাগ করিয়া,

$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-a^2)} = 1.$$
(5)

ইহাই উপরুত্তের সমীকরণ; এই সমীকরণে x=0 বসাইয়া দেখা যায়, উপরুত্তি y-অক্লকে ত্ইটি বিন্দৃতে ছেদ করে এবং তাহাদের কোটি  $\pm a \sqrt{1-e^2}$ . অভএব, এই ছেদবিন্দৃ-ত্ইটি y-অক্লের উপর মুলবিন্দু C-এর বিপরীত পার্থে অবস্থিত হইবে এবং C হইতে সমদ্রবর্তী হইবে। এই তুইটি বিন্দৃকে B ও B' নারা স্চিত করিলে, CB=B'C =  $a \sqrt{1-e^2}=b$  ধরা হয়। তাহা হইলে, BB' = 2b এবং  $b=a \sqrt{1-e^2}$ , বা  $b^2=a^2(1-e^2)$ ··· (6)

∴ (5) হইতে, উপবৃত্তের সমীকরণ হইলে

 \( \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fra

## 413. উপরত্তের দ্বিতীয় নাভি ও দ্বিতীয় নিয়াসক।

[The second focus and the second directrix of an ellipse.]

উপরুত্তের কেন্দ্র C বিন্দুর যে পার্যে নাভি S বিন্দু অবস্থিত, তাহার বিপরীত পার্বে (4·14 অসুচ্ছেদের চিত্র দ্রষ্টবা) পরাক্ষের উপর S' যেন এমন একটি বিন্দু যে

 $\mathbf{C}\mathbf{S} = \mathbf{C}\mathbf{S}'$  হয় এবং বৃধিত  $\overline{\mathbf{Z}}\mathbf{A}'$ -এর উপর  $\mathbf{Z}'$  যেন এমন আরেকটি বিন্দু যে  $\mathbf{C}\mathbf{Z} = \mathbf{C}\mathbf{Z}'$  হয় এবং  $\overline{\mathbf{Z}}'$  সরল রেখা যেন  $\overline{\mathbf{Z}}\overline{\mathbf{Z}}'$ -এর উপর লম্ব । বৃধিত  $\overline{\mathbf{MP}}$  রেখা  $\overline{\mathbf{Z}'\mathbf{M}'}$ -এর উপর  $\mathbf{M}$  বিন্দুতে লম্ব ইইল ।

এখন CS' = CS = ae ; S'-এর স্থানাক (ae, 0) ; এবং  $CZ' = CZ = \frac{a}{e}$ 

জাবার, 
$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$
 হইতে 
$$(1-e^2)x^2 + y^2 = a^2(1-e^2),$$
বা,  $x^2 + a^2e^2 + y^2 = e^2x^2 + a^2,$ 
বা,  $(x-ae)^2 + y^2 = e^2x^2 - 2aex + a^2$ 

$$= e^2\left(x^2 - \frac{2a}{e}x + \frac{a^2}{e^2}\right) = e^2\left(\frac{a}{c} - x\right)^2,$$
কৈই,  $x-ae = NS', y = PN$ 
এবং  $\frac{a}{b} - x = CZ' - CN = NZ' = PM'.$ 
জমিকই,  $PN^2 + NS'^2 = S'P^3;$ 
বা,  $(x-ae)^2 + y^2 = SP^2.$ 

(x - ae) + 1  $\therefore S'P^2 = e^2 PM'^2$ 

বা. S'P-e.PM';

বা,  $\frac{S'P}{PM'} = e$ .

অতএব, দেখা গেল, s' বিন্দু হইতে উপবৃত্তের উপর অবস্থিত যে-কোন বিন্দু 
P-এর দূরত্ব এবং z'M' রেখা হইতে ঐ P বিন্দুর দূরত্বের অলুপাত, উপবৃত্তের উংকেন্দ্রতা 
e-এর সমান। স্বতরাং, s' বিন্দুকে নাভি এবং z'M' রেখাকে নিয়ামক ধরিলেও একই 
উপবৃত্ত পাওয়া যাইবে; অর্থাৎ উপবৃত্তের একটি দ্বিতীয় নাভি এবং দ্বিতীয় নিয়ামক 
পাকে।

অনুসিদান্ত 1. শীর্ঘবিদু A-এর স্থানাঙ্ক (~ a, 0), A'-এর স্থানাঙ্ক(a, 0); নাভি s-এর স্থানাঙ্ক (~ ae, 0) এবং নাভি s'-এর স্থানাঙ্ক (ae, 0).

অনুসিদ্ধান্ত 2. AA'-কে উপর্ত্তের প্রাক্ষ (Major Axis) এবং BB'-কে উহার উপাক্ষ (Minor Axis) বলা হয় বলিয়া

म्लंहेरे, अतारक्तत्र रिमर्घा = 2a এवः उभारक्तत्र रिमर्घा = 2b.

অসুসিদ্ধান্ত 3. 
$$b^2 = a^2(1-e^2)$$
, স্বীকৃত বলিয়া  $a^2e^2 = a^2 - b^2$ ; ...  $e = \sqrt{\frac{a^2 - b^2}{a^2}}$ , অৰ্থাৎ,  $\sqrt{1 - \frac{b^2}{a^2}}$ .

অমুসিদ্ধান্ত 4. নিরামকের সমীকরণ:  $x=-\frac{a}{e}$ , বা,  $x+\frac{a}{e}=0$ .

নাভিলম্বের স্মীকরণ:  $\alpha = -ae$ , বা  $\alpha + ae = 0$ .

অনুসিদ্ধান্ত 5. (3) হইতে, CA = a = e CZ;

(4) হইতে, CS = e.a = e.CA;

(3) ও (4) গুণ করিয়া, CS.CZ =  $a^2$  = CA $^2$  ( উভয় পক্ষ হইতে সাধারণ গুণনীয়ক e অপসারিত করিয়া )।

অনুসিদ্ধান্ত 6. উপর্ত্তের স্মীকরণ হইতে দেখা যায়,

$$\frac{y^{2}}{b^{2}} = 1 - \frac{x^{2}}{a^{2}} = \frac{a^{2} - x^{2}}{a^{2}} = \frac{(a + x)(a - x)}{a^{2}},$$

$$\frac{PN^{2}}{BC^{2}} = \frac{(AC + CN)(CA' - CN)}{AC^{2}} = \frac{AN.NA'}{AC^{2}},$$

$$\frac{PN^2}{AN.NA'} = \frac{BC^2}{AC^2}.$$

বা.

4·14. নাভিদ্রর হইতে উপরত্তের উপর অবস্থিত যে-কোন বিন্দুর দূরব্রদয়ের সমষ্টি পরাক্ষের সমান।



[The sum of the focal distances of any point on an ellipse is equal to the major axis.]

উপবৃত্তের উপর অবস্থিত বে-কোন বিন্দু P. ইহার স্থানাম্ব (x, y).

SP=6.PM, এ작 S'P=6.PM';

 $\therefore SP + S'P = e(PM + PM') = e.MM' = e.ZZ'$ 

$$=e.2CZ - e.2\frac{a}{e} = 2a = 2$$

বিশেষ জ্রষ্টব্য। নাভি হইতে উপর্ত্তের উপর অবস্থিত যে-কোন বিন্দুর দূরত্ব।

$$SP = e.PM = e.NZ = e(CZ + CN)$$

$$= e\left(\frac{a}{e} + x\right) = a + ex;$$

$$S'P = e.PM' = e.NZ' = e(CZ' - CN)$$

$$= e\left(\frac{a}{e} - x\right) = a - ex.$$

অনুসিদ্ধান্ত। উপাক্ষের অন্তর্বিন্দু B-এর স্থানাঙ্ক (0, b) বলিয়া, SB = a + e.0 = a; S'B = a - e.0 = a; এবং SB + S'B = a + a = 2a.

## 4'15. উপরতের নাভিলম্বের দৈর্ঘ্য।

নাভিগামী এবং পরাক্ষের লম্ব LSL' জ্যা উপর্ত্তের নাভিলম্ব। এখন L বিন্দুর ভূজের মান CS = - ae.

:. 
$$SL = nile S$$
 size L-as yes 
$$= a + e(-ae) = a - ae^{2}$$
 
$$= a(1 - e^{2}) = a \cdot \frac{b^{2}}{a^{2}}.$$
 [ :  $b^{2} = a^{2}(1 - e^{2})$  ] 
$$= \frac{b^{2}}{a};$$



 $\mathbf{L}'$  বিন্দুর ভুজের মানও -ae বলিয়া,  $\mathbf{SL}'=rac{b^{\mathbf{a}}}{a}$  হইবে; উপবৃত্তটি পরাক্ষে প্রতিসম বলিয়াও বলা চলে যে,  $SL = SL' = \frac{b^2}{a}$ .

. . নাভিলপের মান LL'=SL+SL'=2SL= $\frac{2b^2}{2}$ .

দ্রেষ্টব্য 1. উপরুত্ত  $\frac{x^2}{a^2} + \frac{y^3}{b^2} = 1$  সম্বন্ধীয় পূর্বে প্রাপ্ত এবং অতি প্রয়োজনীয় বিভিন্ন ফলসমূহ নিমে একসঙ্গে লিপিবদ্ধ করা হইল। ইহাদিগকে মনে রাখিতে হইবে।

(i) পরাক AA' = 2a;

(ii) উপাক্ষ BB' = 2b:

(iii) CA = CA' = a:

(iv) CB = CB' = b;

(v)  $CS = CS' = \alpha \beta$ ; (vi)  $CZ = CZ' = \frac{\alpha}{\beta}$ ;

(vii) s নাভিগামী নাভিলম্ব LSL'=s' নাভিগামী নাভিলম্ব =  $\frac{2b^2}{a^2}$ ;

(viii) উপরুত্তের উপর অবস্থিত কোন বিন্দু P(x, y) হইলে, SP = a + ex, S'P = a - ex;

(ix) SP + S'P = 2a;

(x) SB = S'B = a (: SB + S'B = 2a):

(XI-XII)—38

(মেন্ন্রি) A ও A' শীর্গবিন্দ্রয়ের জানান্ধ যথাজ্ঞে (-a, 0), (a, 0);

 $\mathbf{z}$  ও  $\mathbf{z}'$  বিন্দুহয়ের স্থানান্ধ যথা-জমে  $\left(-\frac{a}{e},0\right)$ ।  $\left(\frac{a}{c},0\right)$  ;

s 9 s' ना जिस्टार श्रानाह यथाकरम (-ac, 0), (ac, 0);

В ЗВ' উপাক্ষের অন্থবিনুধ্যের স্থানাম্ব যথাক্রমে (0, h), (0, - h);

(xii) 
$$b^2 = a^2(1 - e^2)$$
;  $e = \sqrt{1 - \frac{b^2}{a^2}}$ ;

(xiii) পরাক্ষের নহীকরণ : y=0;

নিয়াম্কদ্রের স্থীকরণ:  $x = -\frac{a}{c}$ ,  $x = \frac{a}{c}$ ;

নাভিলম্বরের সমীকরণ: x = -ae, x = ae.

জুইব্য 2.  $b^2=a^2(1-e^2)$  এবং 0 < c < 1; অতএব,  $b^2 < a^2$ , বা, b < a, অর্থাৎ উপাক্ষার্থ < পরাক্ষার্থ ; আর,

মনে রাখিতে হইবে: (i) নাভিদ্য প্রাক্ষের উপর অবস্থিত;

(ii) নিয়ামক্ষয় উপাক্ষের সমাস্তরাল; এবং

লক্ষ্য করিতে হইবে, পরাক্ষx-অক্ষ বরাবর না হইয়া, y-অক্ষ বরাবর, কিন্তু মূলবিন্ধু পূর্ববং কেন্দ্রে অবস্থিত এবং পরাক্ষার্ধ ও উপাক্ষার্ধ যথাক্রমে পূর্ববং a ও b হইবে, উপযুক্তটির সমীকরণ হইবে

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1.$$

তথন, নাভিদ্যের স্থানাক হইবে (0, ae) এবং (0, -ae), এবং নিয়ামকদ্যের সমীকরণ হইবে  $y=\pm\frac{a}{2}$ 

**37.** 1. (i)  $3x^2 + 4y^2 = 48$ ; [C. U., 1941, Gauhati, 1949] (ii)  $25x^2 + 16y^2 = 400$ ;

উপবৃত্তের অক্ষরমের দৈর্ঘ্য, নাভিগন্থের দৈর্ঘ্য, উৎকেন্দ্রতা, নাভিবয়ের স্থানাম্ব এবং নিয়ামক্ষয়ের দমীকরণ নির্ণয় কর।

(i) উভগ্ন পদকে 48 দাব। ভাগে করিলে, সমীকরণটি হয়  $\frac{\pi^2}{16} + \frac{\eta^2}{12} = 1$ , সমীকরণটির আকার হইতে সিদ্ধান্ত করা যার, এন্থানে, মৃশবিন্দুটি উপস্থাটির কেন্দ্রে অবস্থিত এবং 16 > 12 বলিয়া  $a^2 = 16$ ,  $b^2 = 12$  ধরিতে হইবে; কাজেই উপবৃত্তির প্রাক্ষ ও উপাক্ষ যথা ক্রমে  $\alpha$ -অক্ষ ও  $\eta$ -অক্ষ ব্যাবর।

ে প্রাক্ষ = 
$$2a = 2\sqrt{16} = 2.4 = 8$$
; উপাক্ষ =  $2b = 2\sqrt{12} = 2.2\sqrt{3} = 4\sqrt{3}$ ; নাভিন্তর =  $\frac{2b^2}{a} = \frac{2.12}{4} = 6$ ; উৎকেজতা  $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{12}{16}} = \sqrt{\frac{4}{16}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$ ; নাভিন্তরের স্থানান্ধ :  $(-ae, 0)$  এবং  $(ae, 0)$ , অর্থাৎ,  $(-4.\frac{1}{2}, 0)$ ,  $(4.\frac{1}{2}, 0)$ , অর্থাৎ,  $(-2, 0)$ ,  $(2, 0)$ ; নিয়ামক্ষয়ের সমীক্রণ :  $x = -\frac{a}{16} = \frac{4}{16} = -8$ , অর্থাৎ,  $x + 8 = 0$ , এবং  $x = \frac{a}{16} = 8$ , অর্থাৎ,  $x - 8 = 0$ .

(ii) উভয় পক্ষকে 400 দারা ভাগ করিয়া,  $\frac{x^2}{16} + \frac{y^2}{25} = 1$ .

সমীকরণটির আকার হইতে শিদ্ধান্ত করা যায়,

(1) মূলবিন্দু উপবৃত্তটির কেন্দ্রে অবস্থিত;

(2) 25 > 16 বলিয়া  $a^2 = 25$  এবং  $b^2 = 16$  ধরিতে হইবে;

ফলে (3) উপরুত্তটির পরাক্ষ y-অক্ষ বরাবর এবং উপাক্ষ x-অক্ষ বরাবর এইরপ সিদ্ধান্ত করিতে হইবে।

া. প্রাক্ত = 
$$2a - 2\sqrt{25} = 2.5 = 10$$
;
উপাক্ত =  $2b = 2\sqrt{16} = 2.4 = 8$ ;
নাভিল্য =  $\frac{2b^2}{a} = \frac{2.16}{5} = \frac{32}{5} = 6\frac{2}{5}$ ;
উৎকেন্দ্রতা  $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$ ;
নাভিন্য  $y$ -অক্ষের উপর অবস্থিত বলিয়া, উহাদের স্থানাম্ম :  $(0, a_0^2), (0, -a_0),$  অর্থাৎ  $(0, 5.\frac{3}{5}), (0, -5.\frac{5}{5}),$  অর্থাৎ  $(0, 3)$  এবং  $(0, -3)$ ;
নিয়ামকন্বর  $x$ -অক্ষের সমান্তর্গাল বলিয়া, উহাদের সমীকরণ

 $y = \frac{a}{4} = \frac{5}{3/5} = \frac{25}{3}$ ,  $q \approx y = -\frac{a}{6} = -\frac{25}{3}$ .

উদা. 2. (-3, 1) এবং (2, -2) বিনুদ্রগামী যে উপর্ত্তের অক্ষন্ধয় ৫-অক্ষ এবং y-অক্ষের খণ্ডাংশ, তাহার সমীকরণ নির্ণয় কর। ইহার নাভিলদের দৈর্ঘ্য, উৎকেন্দ্রতা এবং নাভিন্তরের স্থানান্ধ নির্ণয় কর। [C. U., 1945]

উপবৃত্তটির সমীকরণ যেন, 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

উপবৃত্তটি (-3, 1) এবং (2, -2) বিন্দুগামী বলিয়া,

$$\frac{9}{a^2} + \frac{1}{b^2} = 1$$
,  $\frac{4}{a^2} + \frac{4}{b^2} = 1$ .

সমীকরণদার সমাধান করিয়া,  $a^2 = \frac{32}{3}$  এবং  $b^2 = \frac{32}{5}$ 

. নির্ণেয় সমীকরণ 
$$\frac{x^2}{32/3} + \frac{y^2}{32/5} = 1$$
,

$$\boxed{7}, \quad \frac{3x^2}{32} + \frac{5y^2}{32} = 1, \quad \boxed{7}, \quad 3x^2 + 5y^2 = 32.$$

নাভিলম্বের দৈখ্য = 
$$\frac{2b^2}{a} = \frac{2.32}{5.\sqrt{32}} = \frac{2}{5}.\sqrt{3}.\sqrt{32} = \frac{8\sqrt{6}}{5}.$$

উৎকেজতা 
$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{32/5}{32/3}} = \sqrt{1 - \frac{3}{5}} = \sqrt{\frac{2}{5}}$$

নাভির স্থানামঃ  $(\pm ae, 0)$ , জর্থাং,  $(\pm \sqrt{\frac{3}{3}}, \sqrt{\frac{3}{6}}, 0)$ ,

$$ext{eq} \left(\pm \frac{8\sqrt{15}}{15}, 0\right)$$

উদা. 3. (१९०, √5) বিন্দুগামী যে উপবৃত্তের অক্ষন্ধ ৫-অক্ষণ্ড y-অক্ষের উপর অবস্থিত এবং যাহার উংকেন্দ্রতা శ্বু, দেই উপবৃত্তির সমীকরণ নির্ণয় কর।

[ C. U. 1942 ]

উপর্তটির সমীকরণ কেন 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. . . . . . . . (1)

উপরুতটি (
$$\frac{10}{8}$$
,  $\sqrt{5}$ ) বিন্দুগামী বলিয়া,  $\frac{100}{9a^2} + \frac{5}{b^2} = 1$ . ... (2)

জাবার, 
$$b^2 = a^2 (1 - e^2) = a^2 (1 - \frac{16}{25}) = \frac{9}{25}a^2$$
. ... (3)

(2) এবং (3) সমাধান করিয়া,  $a^2 = 25$ ,  $b^2 = 9$ .

 ${
m \cdot \cdot \cdot \cdot }$   $a^2$  এবং  $b^2$ -এর মান (1)-এ বদাইয়া উপরুত্তের সমীকরণ হইল

$$\frac{x^2}{25} + \frac{y^2}{9} = 1.$$

উদা. 4. যে উপবৃত্তের অক্ষর x- ও y-অক্ষের উপর অবস্থিত এবং যাহার উৎকেন্দ্রতা  $-\frac{1}{\sqrt{5}}$  এবং নাভিলম্ব ৪, সেই উপবৃত্তির সমীকরণ নির্ণয় কর।

উপর্তটির সমীকরণ যেন 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. ... (1)

প্রদত্ত শর্তাকুসারে,

$$\sqrt{1-\frac{b^2}{a^2}} = \frac{1}{\sqrt{5}}, \ \forall i, \ b^2 = \frac{4}{5}a^2;$$
 ... (2)

এবং 
$$\frac{2b^2}{a} = 8$$
, বা,  $b^2 = 4a$ . (3)

(2) এবং (3) হইতে,  $\frac{4}{5}a^2 = 4a$ , বা,  $a^2 - 5a = 0$ , বা, a(a - 5) = 0; কিন্তু  $a \neq 0$ ; ... a = 5 এবং  $b^2 = 4a = 20$ ;

$$\therefore$$
 (1) হইতে,  $\frac{x^2}{25} + \frac{y^2}{20} = 1$ .

উদা. 5. যে উপর্ত্তের অক্ষন্তর x- এবং y-অক্ষের উপর অবস্থিত, যাহার উংকেন্দ্রতা  $\frac{1}{2}$ , এবং নাভিদ্নরের স্থানান্ধ ( $\pm 2$ , 0), সেই উপর্ত্তটির সমীকরণ নির্ণয় কর।

উপর্ভটির সমীকরণ যেন 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. ... (1)

এন্থলে, নাভির স্থানান্ধ ( $\pm ae$ , 0), এবং  $b^2 = a^2 (1 - e^2)$ ;

- ে প্রান্ত শতিক্সারে, ae = 2, অর্থাৎ,  $\frac{1}{2}a = 2$ , বা, a = 4; এবং  $b^2 = 16$   $(1 \frac{1}{4}) = 16 \times \frac{3}{4} = 12$ .
- ∴ (1) হইতে, নির্পেয় সমীকরণ  $\frac{x^2}{16} + \frac{y^2}{12} = 1$ .

উদা. 6. যে উপরুত্তের অক্ষন্ধর x- এবং y-অক্ষের উপর অবস্থিত, যাহার নাভিলম্ব 16 এবং উপাক্ষ নাভিদ্নরের মধ্যবর্তী দূরত্বের সমান, সেই উপরুত্তির সমীকরণ নির্ণয় কর।

ধরা যাক, উপবৃত্তটির সমীকরণ 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 .... (1)

প্রদত্ত শর্তামুদারে, 
$$\frac{2h^2}{a} = 16$$
, বা,  $b^2 = 8a$  .... (2)

এবং 
$$2ae = 2b$$
, বা,  $a^2e^2 = b^2 = a^2(1 - e^2) = a^2 - a^2e^2$ , বা,  $2a^2e^2 = a^2$ ; কিন্তু  $a^2 \neq 0$ ;  $2e^2 = 1$ .

(2) 
$$\overline{2200}$$
,  $8a = b^2 = a^2(1 - e^2) = a^2(1 - \frac{1}{2}) = \frac{1}{2}a^2$ ,

$$a(8-\frac{1}{2}a)=0$$
;  $a≠0$ ; ∴  $\frac{1}{2}a=8$ ,  $a=16$ . ... (3)

$$(2) \ \overline{2200}, \ b^2 = 8a = 8.16 = 128.$$

(1)-এ (3) এবং (4) হইতে a² ও b²-এর মান বসাইয়া,

নির্ণেয় সমীকরণ 
$$\frac{x^2}{256} + \frac{y^2}{128} = 1$$
,  
বা.  $x^2 + 2y^2 = 256$ .

উলা. 7. p-এর মান কত হইলে,  $px^3 + 4y^2 = 1$  উপযুত্তি  $(\pm 1,0)$  বিন্দুম্ব্যামী হইবে ? উপবৃত্তির অক্ষয়ের দৈর্ঘ্য নির্ণয় কর। [C. U., 1935]

উপবৃত্তটি (±1, 0) বিন্দুদ্যগামী বলিয়া,

$$p.(1)^2 + 4.0 = 1$$
 এবং  $p.(-1)^2 + 4.0 = 1$ ;

উভয় সমীকরণ হইতেই, p = 1.

অতএব, সমীকরণটি হইল  $x^2 + 4y^2 = 1$ ,

$$\sqrt[3]{1}, \quad \frac{x^2}{1} + \frac{y^2}{1} = 1.$$

a=1 and  $b=\sqrt{1}=\frac{1}{3}$ .

উদা. 8. যে উপবৃত্তটির নাভি (2,-1), নিয়ামক x+2y+3=0 এবং উৎকেন্দ্রতা  $\frac{x}{6}$ , সেই উপবৃত্তটির সমীকরণ নির্ণয় কর।

উপবৃত্তটির উপর অবস্থিত যে-কোন বিলুর স্থানাম্ব যেন (x, y).

এখন, নাভি হইতে বিশ্টির দ্রত্ব = e × নিয়ামক হইতে বিশ্টির দ্রত্ব,

$$\sqrt{(x-2)^2 + (y+1)^2} = \frac{5}{6} \cdot \frac{x+2y+3}{\sqrt{1^2+2^2}} = \frac{5}{6} \cdot \frac{x+2y+3}{\sqrt{5}};$$

বা, উভয় পক্ষ বৰ্গ করিয়া, 
$$(x-2)^2 + (y+1)^2 = \frac{25}{36} \cdot \frac{(x+2y+3)^2}{5}$$
;

$$\boxed{4}, \quad 36(x^2 + y^2 - 4x + 2y + 5) = 5(x^2 + 4y^2 + 4xy + 6x + 12y + 9);$$

$$\boxed{31x^2 + 16y^2 - 20xy - 174x + 12y + 135 = 0};$$

ইহাই নির্ণেয় স্থীকরণ।

উপ।. 9. (i) 
$$4x^2 + 9y^2 - 24x = 0$$
,

(ii) 
$$16x^2 + 25y^2 - 64x - 150y = 111$$

উপবৃত্তের কেন্দ্র, উৎকেন্দ্রতা, নাভিন্বর নিয়ামকন্বয় নির্ণন্ন কর।

(i) উপবৃত্তির সমীকরণ 
$$4x^2 + 9y^2 - 24x = 0$$
;

$$\boxed{4}, \quad (2x-6)^2 + 9y^2 = 36,$$

$$4(x-3)^2 + 9y^2 = 36,$$

$$\boxed{4}, \quad \frac{(x-3)^2}{9} + \frac{y^3}{4} = 1,$$

বা, 
$$X=x-3$$
 বদাইয়া  $\frac{X^2}{9} + \frac{y^2}{4} = 1$ .

- (1) প্রাক্ষ y=0 রেখা বরাবর হইবে, এবং উপাক্ষ  $\mathbf{x}=0$  বা x-3=0 রেখা বরাবর হইবে; এই তুই রেখার ছেদবিন্দু কেন্দ্র ;
  - .. সমাধান করিয়া কেন্দ্রের স্থানার (3, 0).
  - (2) এইলে, a<sup>2</sup> = 9 এবং b<sup>2</sup> = 4;

ে উংকেন্দ্রতা 
$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{35}$$

- (3) নাভিদ্বর পরাক্ষে, অর্থাৎ, এস্থলে, y=0 রেখার উপর এবং কেন্দ্র (3, 0)-এর উভয় পার্ধে অবস্থিত এবং কেন্দ্র হইতে উহাদের দূরত্ব ae, অর্থাৎ,  $3\cdot\frac{\sqrt{5}}{3}$ , অর্থাৎ,  $\sqrt{5}$ ; অত্এব, নাভিদ্বরের স্থানাম্ব হইবে  $(5-\sqrt{5},0)$  এবং  $(3+\sqrt{5},0)$ .
- (4) নিরামকদর উপাদের সমাহরাল; অতএব, উহারা x-3=0 রেখা এবং সেইজন্ম x=0 রেখার সমান্তরাল। আবার উহারা কেন্দ্রের ছই পার্ধে অবস্থিত এবং কেন্দ্র হইতে উহাদের দূরত্ব  $\frac{a}{e}$ , অর্থাৎ,  $\frac{3}{\sqrt{5/3}}$ , অর্থাৎ,  $\frac{9}{\sqrt{5}}$ , অতএব, নিরামকদরের সমীকরণ হইবে

$$x = 3 - \frac{\sqrt{5}}{9}$$
 and  $x = 3 + \frac{\sqrt{5}}{9}$ .

(ii) উপবৃত্ত টির সমীকরণ  $16(x^2-4x)+25(y^2-6y)=111$ ;

$$41, \quad 16(x-2)^2 + 25(y-3)^2 = 111 + 64 + 225 = 400 ;$$

$$\boxed{4}, \quad \frac{(x-2)^2}{25} + \frac{(y-3)^2}{16} = 1.$$

(1) পরাক্ষ y-3=0 রেখা বরাবর হইবে, এবং উপাক্ষ x-2=0 রেখা বরাবর হইবে; এই ছই রেখার ছেনবিশু কেন্দ্র; অতএব, সমাধান করিয়া কেন্দ্রের ছানান্ধ (2, 3).

$$e = \sqrt{1 - \frac{b^3}{a^2}} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$$

- (3) নাভিদ্বয় পরাক্ষে, অর্থাং, এস্থলে, y=3 রেখার উপর এবং কেন্দ্র (2,3)-এর উভয় পার্ষে অবস্থিত, এবং কেন্দ্র হইতে উহাদের দূরত্ব ae, অর্থাৎ, 5.ই, অর্থাৎ 3; অতএব, নাভিদ্বের কোটি হইবে 3 এবং ভুজ হইবে 2-3, অর্থাৎ -1, এবং 2+3, অর্থাৎ 5:
  - ∴ নাভিদ্বের স্থানাক (-1, 3), (5, 3).
- (4) নিয়ামকদার উপাক্ষের সমাস্তরাল; অতএব, উহারা x-2=0, অর্থাৎ, x=2 রেখার সমান্তরাল। আবার, উহারা উপাক্ষের তুই পার্থে অবস্থিত এবং উপাক্ষ হইতে উহাদের দূরত্ব কেন্দ্র হইতে উহাদের দূরহের সমান এবং এই দূরত্ব

$$=\frac{a}{e}=\frac{5}{3/5}=\frac{25}{3}$$
;

.. নিয়ামক্রয়ের সমীকরণ  $x = 2 - \frac{2.5}{3} = -\frac{1.9}{3}$  অর্থাৎ, 3x + 19 = 0,  $x=2+\frac{2.5}{3}=\frac{3.1}{3}$ ,  $\sqrt{2}$ 

## প্রগ্রমালা 17

1. নিম্নলিথিত সমীকরণগুলির প্রত্যেকটি দারা স্থচিত উপরুত্তের অক্ষরমের দৈর্ঘ্য, উৎকেন্দ্রতা, নাভিলম্বের দৈর্ঘ্য, কেন্দ্রের স্থানাস্ক, নাভিদ্যের স্থানাস্ক এবং নিয়ামকের সমীকরণ নির্ণয় কর:

(i) 
$$\frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$$
; [C. U., 1936] (ii)  $\frac{x^2}{100} + \frac{y^2}{36} = 1$ ;

(iii)  $9x^2 + 25y^2 = 225$ ;

[ C. U., 1944 ]

(iv)  $x^2 + 2y^2 = 2$ :

[ C. U., 1947 ]

(v)  $2x^2 + 3y^2 = 1$ :

[U.P., 1952]

(vi)  $9x^2 + 4y^2 = 36$ ;

(vii)  $3x^2 + 2y^2 = 8$ ; (viii)  $3x^2 + 4y^2 - 24x = 0$ ; (ix)  $2x^2 + 3y^2 - 4x = 4$ ;

(x)  $9x^2 + 25y^2 - 72x + 100y = 656$ .

- 2.  $\frac{x^2}{64} + \frac{y^2}{98} = 1$  উপবৃত্তের একটি নাভি এবং তদ্দম্পর্কীয় নিয়ামকের মধ্যবর্তী দূরত্ব নির্ণয় কর।
- $\frac{x^2}{25} + \frac{y^2}{24} = 1$  উপর্ত্তের নাভিদ্র হইতে (কু,  $3\sqrt{2}$ ) বিন্দুটির দূরত্ব নির্ণঙ্গ কর ।
- 4. কোন উপরুত্তের পরাক্ষ ও উপাক্ষ যথাক্রমে 3 এবং ৫ দেওয়া আছে। এই **অক্ষরের সম্পর্কে উপব্রুটির** সমীকরণ নির্ণয় কর।

- ${f 5.}$  যে উপরুত্তের অক্ষদ্ধয় x- এবং y-অক্ষদ্ধের উপর অবস্থিত এবং যাহা
- (i) (5, 0) এবং (0, 4); (ii) (2, 2) এবং (3, 1); [ C. U., 1939 ]
- (iii)  $\begin{pmatrix} \sqrt{5}, & \sqrt{3} \end{pmatrix}$  and  $\begin{pmatrix} 3 & \sqrt{5}, & \sqrt{7} \\ 4 & 2 \end{pmatrix}$ ;
- (iv) (4,  $\sqrt{21}$ ) এবং (4  $\sqrt{3}$ ,  $\sqrt{7}$ ); বিন্দুষ্যগামী, তাহার সমীকরণ নির্ণয় কর।
- 6. a-এর মান কত হইলে,  $9ax^2 + 5y^2 = 9$  উপবৃত্তটি (  $\pm \sqrt{5}$ , 0) বিন্দুম্ম-গামী হইবে ? উপবৃত্তটির উংকেন্দ্রতা নির্ণয় কর।
- 7. যে উপরুত্ত x-অক্ষের উপর  $\frac{x}{7}+\frac{y}{2}=1$  সরল রেখা এবং y অক্ষের উপর  $\frac{x}{3}+\frac{y}{5}=1$  সরল রেখার সহিত মিলিত হয়, এবং যাহার অক্ষ x-এবং yঅক্ষের উপর অবস্থিত, সেই উপরুত্তির সমীকরণ নির্ণয় কর। উপরুত্তির উৎকেন্দ্রতা এবং নাভিদ্বরের অবস্থান নির্ণয় কর। [C. U., 1938]
- (-3, 1) বিল্পামী ষে উপবৃত্ত ( যাহার অক্ষরয় যথাক্রমে ৫-এবং ৸-অক্ষরয়) এবং যাহার উৎকেন্দ্রত। ৴ৄৡ, নেই উপবৃত্তির সমীকরণ নির্ণয় কর।

[ C. U., 1949 ]

- 9.  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  উপবৃত্তি 7x + 13y 87 = 0 এবং 5x 8y + 7 = 0 সরল রেখাছয়ের ছেদ্বিন্দুগামী এবং ইহার নাভিল্য  $\frac{4}{3}$   $\sqrt{2}$ ;  $a \, \Theta \, b$ -এর মান নির্ণয় কর। [C. U., 1949]
- 10. একটি উপবৃত্তের নাভি ও নিয়ামকের মধ্যে দূরস্থ 16 সেমি. এবং ইহার উৎকেল্রতা है. ইহার প্রধান অক্ষপ্তলির দৈর্ঘ্য নির্ণয় কর। [C. U., 1943]
- যে উপর্ত্তের নাভিলম্বের দৈর্ঘ্য 4 সেমি., এবং নিকটতর নাভি হইতে
   যাহার শীর্ষবিন্দুর দূরত্ব 1'5 দেমি., তাহার উৎকেন্দ্রতা নির্ণয় কর। [C. U., 1944]
- 12. একটি উপবৃত্তের নাভিলম্ব, (a) পরাক্ষের অর্ধেক; (b) উপাক্ষের অর্ধেক হইলে, উহার উৎকেন্দ্রতা নির্ণয় কর।
- 13. যে উপর্ত্তের অক্ষয় x- ও y-অক্ষের উপর অবস্থিত এবং (i) <mark>যাহার</mark> পরাক্ষ 10 এবং উৎকেন্দ্রতা  $\frac{1}{6}$ ; (ii) যাহার নাভিলম্ব 5 এবং উৎকেন্দ্রতা  $\frac{3}{6}$ ; (iii) যাহার উৎকেন্দ্রতা  $\frac{1}{3}$  এবং নাভির্বের স্থানান্ধ ( $\pm 1$ , 0), তাহার স্থাকিরণ নির্ণিয় কর।
- 14. একটি উপবৃত্তের নাভিবরের স্থানান্ধ (0, 1) এবং (0, -1), উপাক্ষের দৈর্ঘ্য 1. উপবৃত্তটির সমীকরণ নির্ণয় কর। [C. U., 1951]

15. যে উপরুত্তের

- (i) নাভির স্থানাম্ব (-1,1), উৎকেন্দ্রভা  $\frac{1}{2}$  এবং নিয়ামক x-y+3=0; [ C. U., B. A. & B. Sc., 1945 ]
- (ii) নাভির স্থানান্ধ (2, 3), উংকেন্দ্রতা  $\frac{1}{\sqrt{13}}$  এবং নিয়ামক x-y+13=0 ; ভাহার সমীকরণ নির্ণয় কর।
- 16. একটি উপরত্তে  $CS.CX = CA^2$ , যথন C কেন্দ্র, S একটি নাভি, A অন্পর্বপ নীর্যবিন্দু এবং X দেই বিন্দুটি যেথায় CS উপর্ভটির অন্তর্গে নিয়ামকের সহিত মিলিত হয়। এই উপপাছটির সভ্যতা  $x^2 + 2y^2 = 2$  উপরত্তে প্রতিপন্ন কর।

## 4'16. প্রারত (Hyperbola):

কনিকের উৎকেন্দ্রতা (e) এক অপেক্ষা বৃহত্তর হইলে, কনিককে প্রাবৃত্ত (Hyperbola) বলা হয়, অর্থাৎ,

কোন সমতলের উপর অবস্থিত একটি স্থির নির্দিষ্ট বিন্দু এবং একটি স্থির নির্দিষ্ট সরল রেখা হইতে ঐ সমতলের উপর গতিশীল কোন বিন্দুর দূর্ব্বহয়ের অনুপাত ধ্বেক কিন্তু এক (1) অপেক্ষা বুহতুর হুইলে, গতিশীল বিন্দুটির দক্ষারপথকে প্রাবৃত্ত বলে।

নির্দিষ্ট বিন্দৃটিকে ঐ পরার্ত্তের নাভি (Focus), নির্দিষ্ট দরল রেথাকে উহার নিরামক (Directrix) এবং দূরত্বরকে ধ্রুবক অনুপাতকে ঐ পরার্ত্তের উৎকেন্দ্রতা (Eccentricity) বলা হয়।

সাধারণতঃ নাভিকে s দারা এবং উৎকেন্দ্রতাকে e দারা স্থাচিত করা হয়।

নাভিবিন্দুগামী এবং নিয়ামকের উপর লম্ব সরল রেখা এবং পরাবৃত্তের ছেদবিন্দুকে ঐ পরাবৃত্তের **নীর্যবিন্দু** (Vertex) বলে।

নাভিবিন্দৃগামী এবং নিয়ামকের সমান্তরাল জ্যা-কে পরাবৃত্তের **নাভিলম্ব** (Latus rectum) বলে।

# 4'17. প্রাহতের সমীকরণ (Equation of a hyperbola) :

S পরাবৃত্তটির নাভি এবং ZK উহার নিয়ামক। S হইতে নিয়ামকের উপর
 SZ লয় টানিয়। S-এর দিকে বর্ধিত করা হইল; ইহা হইল অয়।

SZ-এর উপর এরপ একটি বিন্দু A নির্ণয় করা যায়, অর্থাৎ SZ-কে এরপে অন্তর্শিভক্ত করা যায় যে,

 $SA = \theta AZ$ 

জাবার, e > 1 বলিয়া, বর্দিত SZ-এর উপর এরপ একটি বিন্দু A' নির্ণয় করা ষায় বে, SA'=e.A'Z .... (2) ধরা যাক,  $\overline{AA}' = 2a$  এবং C, উহার মধ্যবিন্দু।
[  $\overline{A}$  ও  $\overline{A}'$  পরাবৃত্তের নীর্ববিন্দু এবং C পরাবৃত্তের কেন্দ্র (centre). ]



(1) এবং (2) বোগ করিয়া, SA + SA' = e(AZ + A'Z);

▼1, 2SA+2AC=e.2AC';

বা, cs = ae.

... (3)

... (4)

আবার, (2) হইতে (1) বিয়োগ করিয়া,

SA'-SA=e(A'Z-AZ);

 $\forall i, AA' = e\{(A'C + CZ) - (CA - CZ)\}\$ 

এখন, কেন্দ্র C-কে মূল্রিন্দু, বহিত CS-কে  $\alpha$ -অক্ষ এবং C বিন্দু দিয়া অন্ধিত  $\Delta A'$ -এর লম্ব রেখাকে  $\gamma$ -অক্ষ ধরা হইল। পরাবৃত্তের উপর অবস্থিত যে-কোন বিন্দু P-এর স্থানান্ধ যেন  $(\alpha, \, \eta)$ . P বিন্দু হইতে নিয়ামকের উপর  $\overline{PM}$  লম্ব এবং  $\overline{CS}$ , অর্থাৎ  $\alpha$ -অক্ষের উপর  $\overline{PN}$  লম্ব টানা হইল।  $\alpha$ -অক্ষের উপর  $\overline{PN}$  লম্ব টানা হইল।  $\alpha$ -অক্ষের উপর  $\overline{PN}$  লম্ব টানা হইল।  $\alpha$ -অক্ষের উপর  $\overline{PN}$  লম্ব টানা হইল।

এখন, 
$$\mathrm{SP}^2 = (e.\mathrm{PM})^2 = (e\,\mathrm{ZN})^2 = e^2\mathrm{ZN}^2 = e^2(\mathrm{CN} - \mathrm{CZ})^2$$
;
বা,  $\mathrm{SN}^2 + \mathrm{PN}^2 = e^2\left(x - \frac{a}{e}\right)^3$  [  $\therefore$   $\mathrm{SP}^3 = \mathrm{SN}^2 + \mathrm{PN}^2$  ]

 $(\mathrm{CN} - \mathrm{CS})^2 + y^2 = e^2\left(x - \frac{a}{e}\right)^3$ ;
 $\therefore$   $(x - ae)^2 + y^2 = e^3\left(x - \frac{a}{e}\right)^3$ ;
বা,  $x^2 - 2aex + a^2e^3 + y^2 = e^3x^2 - 2aex + a^3$ ;
বা,  $(e^3 - 1)x^2 - y^2 = a^2(e^2 - 1)$ ;
বা,  $\frac{x^2}{a^3} - \frac{y^2}{a^3(e^3 - 1)} = 1$ . .... (5)

ইহাই পরবৃত্তের সমীকরণ!
এখন,  $e > 1$  বলিয়া,  $e^3 > 1$ ;
 $\therefore$   $e^2 - 1$  এবং সেই কারণে,  $a^2(e^2 - 1)$  ধনাবাক বাশি।
 $a^2(e^2 - 1) = b^2$  ধরা হয়।
ভাহা হইলে, (5) হইতে পরার্ত্তের সমীকরণ হইল  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ .

আমুসিরান্ত 1.  $a^2(e^2 - 1) = b^2$ ; বা,  $a^2e^2 = a^2 + b^2$ ;
বা,  $e^2 = \frac{a^2 + b^2}{a^2} = 1 + \frac{b^2}{a^2}$ ;
 $\therefore$   $e = \sqrt{1 + \frac{b^2}{a^2}}$ .

আমুসিরান্ত 2.  $a^2(e^2 - 1) = b^2$ ; বা,  $a^2e^2 = a^2 + b^2$ ;
বা,  $(ae)^2 = a^2 + b^2$ ; অর্থাৎ,  $\mathrm{CS}^2 = a^2 + b^2$ ,
 $\mathrm{CS}^2 = a^2 + b^2$ ,

তাবুসিদ্ধান্ত 4. A বিন্দুর স্থানান্ধ (a, 0),
A' বিন্দুর স্থানান্ধ (-a, 0),
S বিন্দুর স্থানান্ধ (ae, 0)নিয়ামক 2K-এর সমীকরণ  $x=\frac{x}{e}$ 

#### 4'18. সংজ্ঞা।

শীর্ষদ্ব সংযোজক এবং শীর্ষদ্বয়ের মধ্যে শীমাবদ্ধ 🗚 নরল রেখাকে পরাবৃত্তের **তির্যক্ অক্ষ** (Transverse axis) বলে। যদি পরাবৃত্তের কেন্দ্র দিয়া অক্ষিত তিয়ক্ আক্ষের লম্ব সরল রেখার উপর ৪ ও ৪' এরপ ছইটি বিন্দু হয় যে, ৪'C=CB=b, তাহা হইলে ৪৪'-কে পরাবৃত্তের অক্ষুবন্ধী (Conjugate) অক্ষ বলা হয়।

ভিষক্ অক্ষ AA' = 2a, এবং অন্তবন্ধী অক্ষ BB' = 2b.

পরাবৃত্তের ডির্মক্ এবং অনুবন্ধী অক্ষ দাধারণত অসমান থাকে। ডির্মক্ অক্ষ ও অনুবন্ধী অক্ষ দমান হটলে পরাবৃত্তকে ইংরেজাতে Equilateral বা Rectangular বলা হয়, আর বাংলায় উহাকে বলা যাইতে পারে সমাক্ষ প্রাবৃত্ত বা আয়ত প্রাবৃত্ত।

সমাক্ষ পরাবতে 2a - 2b, বা a - b

... সমাক্ষ পরাবৃত্তের সমীকরণ 
$$\frac{x^2}{a^2} - \frac{y^2}{a^3} = 1$$
, বা,  $x^2 - y^2 = a^2$ .

ইহার উৎকেশ্রতা 
$$e = \sqrt{1 + \frac{b^3}{a^2}} = \sqrt{1 + \frac{a^2}{a^3}} = \sqrt{2}$$
.

#### 419. পরাক্তের দিতীয় নাভিও দিতীয় নিয়ামক।

পরাবৃত্তের কেন্দ্র যে পার্থে s বিন্দু অবস্থিত তাহার বিপরীত পার্থে বর্ধিত ভিষক্ অক্ষের উপর s' যেন এখন একটি বিন্দু যে cs = cs' হয়, এবং c বিন্দুর যে পাথে z বিন্দু অবস্থিত ভাহার বিপরীত পাথে ভিষক্ অক্ষের উপর z' যেন এখন একটি বিন্দু যে cz = cz' হয়; z' বিন্দু বিয়া ভিষক্ অক্ষের লম্ব বা নিয়ামকের সমান্তরাল করিয়া, z'ম' মরল রেখা চালা হইল। [ অহাডেদ 4 17-এর চিত্র এইবা ]

তাহা ২ইলে CS' = SC • ac. . . S' বিশুর স্থানাফ ( - ac, 0);

এবং 
$$cz' = zc = \frac{a}{a}$$

পরার্ডের উপর অবস্থিত খে-কোন বিন্দু  $\mathsf{P}(x,y)$  হউতে  $\mathsf{Z}'\mathsf{K}'$ -এর উপর  $\mathsf{PM}'$  লম্ব টানা হইল।

:. 
$$S'P^2 = S'N^2 + PN^2 = (S'C + CN)^2 + PN^2$$
  
=  $(x + ae)^2 + y^2$ ,  $GR'PM' = NZ' = CN + CZ' = x + \frac{a}{e}$ .

এখন প্রার্ডের স্থীকরণ 
$$\frac{x^2}{a^2} - \frac{y^2}{a^2(a^2 - 1)} = 1$$
,

$$71, \quad x^{2}(e^{2}-1)-y^{2}=a^{2}(e^{2}-1);$$

$$71, \quad x^{2}+a^{2}e^{2}+y^{2}=e^{2}x^{2}+a^{3}:$$

41, 
$$(x^2 + 2aex + a^2e^2) + y^2 = e^2x^2 + 2aex + a^2$$
;

41, 
$$(x + ac)^2 + y^2 = e^2 \left(r^2 + \frac{2ar}{c} + \frac{a^2}{c^2}\right) = e^2 \left(x + \frac{a}{c}\right)^2$$
;

41, S'N"+PN" = 62Z'C+CN"

 $\vec{A}_{1}, \quad S'P^{2} = e^{2}PM'^{2}, \quad \vec{A}_{1}, \quad S'P = e.PM';$ 

বা, <u>8'P</u> = s.

নেবা খেল, ও বিন্ হটাত পরাব্যাণর উপর অবাজত যে-কোন বিন্ধ দূর্য ববং 2 K' রেগ হটাও টহার নরহের অহাপাত পরাব্যাণর উংকেজত। ১-এর সমান; তবা, ও বিন্ধে নাছে বল 2 K' রেগাকে নিলাসক স্বিকেশ কেই পরাবৃত্ত পান্যা বালাবে। অহাবে, দেবা খেল প্রাবৃত্ত স্বন্ধে নকটি ছিতার নাডি এবং একটি ছিতার নিয়াসক থাকে।

অকুসিক্ষান্ত। ও জিলুব জান্তে (লানা, ()), এবা ছিড়ীয় নিয়ামক Z'K'ল্ডৰ স্থীকরণ ৪০০ - ৫

4'20. শ্রাক্তের আকার।

পরাসুরের সমী করব  $\frac{\pi^2}{a^2} = \frac{\sigma^2}{D^2} \sim 1$  ইইটাই দেখা যাও,

$$v = \pm b \sqrt{\frac{x^2}{a^n} - 1} \qquad \dots \tag{1}$$

$$477 e = \pm a \sqrt{\hat{v}^{0}_{0} + 1} \qquad ... (2)$$

৩৯ হলতে প্রত্যের মাঝার নির্বায়ক নিম্নিরিত তাল্যালি প্রেয় বায় :

(1) বাং চাং চ, কা ন না, জার্থাং কান্তের, জার্থাং, তা ন ন চাংতো, কা না, তা জার্থাং, তা ন ন চাংতো, কা না, তা জার্থাং, তা জারথাং, তা জার্থাং, তা জারথাং, তা জার্থাং, তা জারথাং, তা জারথাং, তা জারথাং, তা জারথাং, তা

ा (1 वर्षा १०१० वर्षा १८) ज्यानारी, अवस्थित अस्ताः, १९४८ — व वर्षाताः, ४ ० वर्षाः, १९४८, १८८५ वर्षाः १८ मध्याः १८ ४ ४ ४ १८५८ । १८ १८४ ।

11 \* 호현 \* 보다 4 (2011 11일,  $x^2 = a^2$ , 함께 x > a, 함께 a , x < -a 이 해 x 이로 보는 지수를 가장 해 a (2012 ) 이 후 (201

A বিলু হৈছে হ'লেই ক্ব.িড গ্ৰেচ জনায়ত দিবে, বহুত গ্ৰুচ পাৰ্থে আৰু য প্ৰতিবিভাগ

্তি জনত ভাগ হয়তে এই জনগুলে তিন্তি হ'ব হৈছিল। ইয়ে সি, সাজাবুক, তেনু, কুক্তি বি তিনিক্ত A প A তালত ন'ল তেনতে, লাভ মান্তি সাজাবুক, লাভ মান্তি সভা হুকা হ'ব হালে চুকা হিন্দ্ৰ হৈছিল। স্কৃতি সংস্কৃতি সভা বিজ্ঞান

4.21. -11(-5-2) = 15-5 \*\*Alas and 5-15 \*\*Alas and 6-5 (2)-5-4-1 (2)-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4 (2)-5-4

सन्पृत्य पर्यापक श्रास्त्र स्थान

षष्. 4'17-धन हित हहेटड,

SP - CPM GR S'P - CPM':

'. 8'P-8P=c(PM'-PM)=c.MM'=c.ZZ'

· c 202···2 1 · 2n- (55) 夜 四年 )

বিৰোগ জাইবা। মাভি ২ইতে প্রার্থের উপর অবশ্বিত ্য-কোন বিন্দুর দূরতঃ

SP-com-chi-con Cr-c $\left(x-\frac{1}{c}\right)$ mex-a: SP-com-chi-con-(-1) mex+a.

122. 2 -11-19 and -19 -1 72 -1 1 50 11

ভাৰতি তেওঁ ল' হ'ব বাহু বাস্ত প্ৰায় প্ৰায়ৰ প্ৰায়ৰ প্ৰায়ৰ ছাইটি মাভিন্য।

3 7 5 T - 1.

$$\forall 1, \quad \mathrm{SL}^2 = b^2(e^2 - 1) = b^2 \left( 1 + \frac{b^2}{a^2} - 1 \right) = \frac{b^4}{a^2} \; ;$$

$$\therefore$$
 SL =  $\frac{b^a}{a}$ ; এইরবেগ, SL' =  $\frac{b^a}{a}$ .

$$\therefore LSL' = \frac{2b^2}{a}.$$

একই পদ্ধতিতে দেখানো যায়,  $L_1S'L_1'=\frac{2b^2}{a}$ 

স্ক্তরাং পরাব্তের নাভিলম্বরের সমীকরণ x = ae, x = - ae.

**জন্তব্য**ঃ উপর্ত্তের সমীকরণে ৮° স্থলে – ৮° লিখিয়া পরাবৃত্তের সমীকরণ পাওয়া যায়।

#### উদাহরণমালা

উদা. 1. (i) যে পরাবৃত্তের তির্বক্ অক্ষ এবং অনুবন্ধী অক্ষ যথাক্রমে ৪ এবং 6;

(ii) যে পরাবৃত্তের অন্নবন্ধী অক্ষ 12 এবং নাভিদ্নয়ের মধ্যস্থ দূরত্ব 20;

- (iii) যে পরারত্ত (2,1) এবং (3,-2) বিন্দুগামী; x- ও y-অক্ষকে অক্ষ ধরিয়া তাহাদের সমীকরণ নির্ণয় কর।

  - :. নির্ণের সমীকরণ  $\frac{x^{-1}}{16} \frac{y^2}{9} = 1$ , বা,  $9x^2 16y^2 = 144$ .
  - (ii) এস্থলে, 2b=12 ; b=6 ; এবং নাভিদ্যের দ্রম্ভ = 2ae=20 ; ae=10.

এখন, 
$$b^2 = a^2(e^2 - 1) = a^2e^2 - a^2$$
;

$$36 = 100 - a^2; \quad a^2 = 100 - 36 = 64.$$

ে. নির্পেয় সমীকরণ 
$$\frac{x^2}{64} - \frac{y^2}{36} = 1$$
; বা,  $36x^2 - 64y^2 = 64 \times 36$ ,

$$\forall 1, \quad 9x^2 - 16y^2 = 576.$$

(iii) মনে কর, পরাবৃত্তির সমীকরণ  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ .

পরাবৃত্তটি (2, 1) এবং (3, -2) বিন্দুর্যগামী বলিয়া,

$$\frac{4}{a^2} - \frac{1}{b^2} = 1$$
এবং  $\frac{9}{a^2} - \frac{4}{b^2} = 1$ 

সমীকরণ-তুইটি সমাধান করিয়া,  $a^2 = \frac{7}{8}$ ,  $b^2 = \frac{7}{6}$ .

.. নির্ণেয় সমীকরণ 
$$\frac{x^2}{\frac{y}{3}} - \frac{y^2}{\frac{y}{8}} = 1$$
;  
বা.  $3x^2 - 5y^2 = 7$ .

(i) যাহার একটি নাভির স্থানান্ধ (2 √15, 0) এবং উৎকেন্দ্রতা √ৡ;

(ii) যাহা (5, 
$$-3$$
) বিনুগামী এবং যাহার উৎকেন্দ্রতা  $\frac{2\sqrt{10}}{5}$ .

$$\therefore a = \frac{2\sqrt{15}}{\sqrt{5}} = 6; \quad \therefore a^2 = 36 \qquad \cdots \qquad \cdots$$
 (1)

$$43? b^2 = a^2(e^2 - 1) = 36(\frac{5}{8} - 1) = 36(\frac{2}{8} = 24)$$
 (2)

:. (1) এবং (2) হইতে, পরাবৃত্তের সমীকরণ 
$$\frac{r^3}{36} - \frac{y^2}{24} = 1$$
,

 $\P|, \quad 2x^2 - 3y^2 = 72.$ 

(ii) মনে কর, পরাবৃত্তির সমীকরণ 
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
. ... (1)

পরাবৃত্তটি (5, 
$$-3$$
) বিন্দুগামী বলিয়া,  $\frac{25}{a^2} - \frac{9}{b^2} = 1$  ... (2)

আবার, 
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \frac{2\sqrt{10}}{5}$$
;

$$\therefore 1 + \frac{b^2}{a^2} = \left(\frac{2\sqrt{10}}{5}\right)^2 = \frac{8}{5},$$

$$\forall i, \quad \frac{b^2}{a^2} = \frac{3}{5}, \ \forall i, \ b^3 = \frac{3}{5}a^2 \qquad \cdots \qquad \cdots$$
 (3)

(2) 
$$43$$
? (3)  $\sqrt{25}$ ,  $\frac{25}{a^2} - \frac{9}{36a^2} = 1$ ,  $\sqrt{3}$ ,  $a^2 = 25 - 15 = 10$ ,

এবং (3) হইতে,  $b^2 = \frac{8}{5}a^2 = \frac{8}{5}.10 = 6$ .

:. (1) হইতে নির্পের সমীকরণ  $\frac{x^2}{10} - \frac{y^2}{6} = 1$ ;

 $\forall 1, \quad 3x^2 - 5y^2 = 30.$ 

উদা. 3. যে পরাবৃত্তের নাভির স্থানাস্ক (-2,3), উৎকেন্দ্রতা 5, এবং 3x-4y-5=0 সরল রেথা যাহার নিরামক, সেই পরাবৃত্তের সমীকরণ নির্ণয় কর। মনে কর, পরাবৃত্তের উপর অবস্থিত যে-কোন বিন্দুর স্থানাস্ক (x,y).

(XI-XII)-39

নাভি হইতে এই বিন্দুর দ্বস্থ = 
$$\sqrt{(x+2)^2 + (y-3)^2}$$
  
=  $\sqrt{x^2 + y^2 + 4x - 6y + 13}$ .

নিয়ামক হইতে 
$$(x, y)$$
 বিন্দুর দূরত্ব =  $\frac{3x - 4y - 5}{\sqrt{3^2 + 4^2}} = \frac{3x - 4y - 5}{5}$ ;

 $\therefore$  পরাবৃত্তের উপর (x,y) বিন্দুর সকল অবস্থানের জ্ঞানাভি হইতে (x,y) বিন্দুর দূরত্ব -e [ নিয়ামক হইতে (x,y) বিন্দুর দূরত্ব ] বলিয়া, নির্ণেয় পরাবৃত্তের সমীকরণ

$$\sqrt{x^2 + y^2 + 4x - 6y + 13} = 5 \times \frac{3x - 4y - 5}{5} = 3x - 4y - 5$$

বা, উভাৱ পক্ষ বৰ্গ করিয়া, 
$$x^2+y^2+4x-6y+13=(3x-4y-5)^2=9x^2+16y^2+25-24xy-30x+40y$$
,

$$\boxed{4}, \quad 8x^2 + 15y^2 - 24xy - 34x + 46y + 12 = 0.$$

উদা 4.  $x^2-4y^2=16$  পরাবৃত্তের নাভিলম্ব, উৎকেন্দ্রতা, নাভিদ্বয়ের স্থানাম্ব এবং নিয়ামকের সমীকরণ নির্ণয় কর।

পরাবৃত্তের সমীকরণ  $x^2 - 4y^2 = 16$ ; বা,  $\frac{x^3}{16} - \frac{y^2}{4} = 1$ ;

:. নাভিলম্বের দৈর্ঘ্য = 
$$\frac{2b^3}{a} = \frac{2.4}{4} = 2$$
.

উৎকেশ্রতা 
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{16}} = \frac{2\sqrt{5}}{4}$$

নাভির স্থানাফ (
$$\pm ae$$
, 0), অর্থাং,  $\left(\pm 4.\frac{2\sqrt{5}}{4}, 0\right)$   
অর্থাং,  $\left(\pm 2\sqrt{5}, 0\right)$ .

নিরামকের সমীকরণ 
$$x = \pm \frac{a}{e} = \pm \frac{4}{2\sqrt{5}} = \pm \frac{8}{\sqrt{5}} = \pm \frac{8\sqrt{5}}{5}$$
.

উদi. 5.  $4x^2-9y^2-16x-54y-101=0$  পরাবৃত্তের (i) তির্যক্ অক, (ii) অন্তবন্ধী অক, (iii) উংকেন্দ্রতা, (iv) কেন্দ্রের স্থানাক, (v) নাভিদ্বয়ের স্থানাক এবং

(vi) নিয়ামকদ্বয়ের সমীকরণ নির্ণয় কর।

প্রার্ভের সমীকরণ 
$$4x^2 - 9y^2 - 16x - 54y - 101 = 0$$
; বা,  $(4x^2 - 16x + 16) - (9y^2 + 54y + 81) = 36$ ; বা,  $(2x-4)^2 - (3y+9)^2 = 36$ :

পরাবুত্তের সমীকরণ হইতে, স্পষ্টই a=3, b=2;

.. (i) তিৰ্যক্ অক্ষ = 2a = 6; (ii) অহুবন্ধী অক্ষ = 2b = 4.

(iii) উৎকেন্দ্রতা 
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{9}} = \frac{\sqrt{13}}{3}$$
.

(iv) তির্বক্ অক্ষের সমীকরণ y + 3 = 0,

এবং অমুবন্ধী অক্ষের সমীকরণ x-2-0;

কেন্দ্র এই তুই অক্ষের ছেদবিন্দু বলিয়া, উহার স্থানান্ধ (2. - 3).

(v) নাভিদ্য বর্ধিত তির্থক্ অক্ষের উপর কেন্দ্রের উভয় পার্শ্বে অবস্থিত, এবং কেন্দ্র হইতে উহাদের দূরত্ব ae=3.  $\frac{\sqrt{13}}{3}=\sqrt{13}$ .

এখন, তির্যক্ অক্ষের উপর অবস্থিত বলিয়া নাভিদ্যের উভয়েরই কোটি — 3 ; আর একটির ভূজ 2 + √13 এবং অপরটির ভূজ 2 − √13.

- ∴ নাভিদ্নরের স্থানান্ধ (2 + √13, -3) এবং (2 √13, -3).
- (vi) নিয়ামকদয় অমুবন্ধী অন্দের সমান্তরাল, অর্থাৎ, উহারা x-2=0, অর্থাৎ x=2 রেখার সমান্তরাল। আবার উহারা অমুবন্ধী অন্দের উভয় পার্থে অবস্থিত এবং এই অক্ষ হইতে উহাদের দ্রত্ব কেন্দ্র হইতে উহাদের দ্রত্বের সমান। অতএব,

$$\frac{a}{s} = \frac{3}{\sqrt{13/3}} = \frac{9}{\sqrt{13}} = \frac{9\sqrt{13}}{13};$$

... নিয়ামকদ্বের সমীকরণ

$$x = 2 + \frac{9\sqrt{13}}{13}$$
, with,  $13x = 26 + 9\sqrt{13}$ ,

এবং  $x=2-\frac{9\sqrt{13}}{13}$ , অর্থাৎ,  $13x=26-9\sqrt{13}$ .

উদ্য. 6.  $4x^2-5y^2=16$  পরাবৃত্ত এবং 2x+5y=4 সরল রেখার ছেদবিন্দু নির্ণয় কর।

সরল রেখার সমীকরণ 
$$2x = -5y + 4$$
; ••• (1) বর্গ করিয়া,  $4x^2 = (-5y + 4)^2$ .

পরাবৃত্তের সমীকরণে  $4x^2$ -এর মান বসাইয়া,

$$(-5y+4)^2 - 5y^2 = 16$$
;  $\forall 1, 20y^2 - 40y = 0$ ;

 $\sqrt{3}$ ,  $y^3 - 2y = 0$ ,  $\sqrt{3}$ , y(y - 2) = 0;

ে 
$$y=0$$
, 2.  
 $y=0$  হইবল, (1) ইইতে,  $2x=-5.0+4=4$ ;  
ে  $x=2$ ;  
 $y=2$  ইইবল, (1) ইইডে,  $2x=-5.2+4=-6$ ;

 $x^{2}$ ,  $x^{2} = -3$ 

∴ নির্ণেয় ছেদবিলয়র স্থানায় (2, 0) এবং (-3, 2).

উদা. 7. যে-পরারতের একটি নাভির স্থানাম্ম (4, -3), যাস্থার উংকেন্দ্রতা  $\frac{1}{6}$  এবং নিয়ামক 2x - 3y + 1 = 0 রেখা তাস্থার সমীকরণ নির্ণয় কর।

পরার্ভটির একটি বিন্তুর স্থানান্ধ যেন (৫, ॥).

নাভি (4, -3) ইইডে 
$$(x, y)$$
-এর দ্বস্ত্র  $\cdots$  (1)  $= \sqrt{(x-4)^2 + (y+3)^2}$ 

এবং, (x, y) বিন্দু হইতে নিয়ামক 2x - 3y + 1 = 0-এর লম দূরত্ব

$$= \frac{2x - 3y + 1}{\sqrt{2^2 + 3^2}} = \frac{2x - 3y + 1}{\sqrt{13}} \qquad \cdots \qquad (2)$$

(1) ও (2)-এর অনুপাত = পরাবৃত্তের উংকেন্দ্রতা = 1 a.

$$\frac{\sqrt{(r-4)^2 + (y+3)^2}}{2x - 3y + 1} = \frac{13}{5};$$

$$\exists 1, \quad \frac{[13(x-4)^2 + (y+3)^2]}{(2x-3y+1)^2} = \frac{13^2}{5^2};$$

$$71, \quad \frac{x^2 + y^2 - 8x + 6y + 25}{4x^2 + 9y^2 + 1 - 12xy - 6y - 4x} = \frac{13}{25};$$

 $41, \quad 25x^3 + 25y^2 - 200x + 150y + 625 = 52x^2$ 

$$+117y^2 - 156xy - 78y - 52x + 13$$

. নির্ণেয় দমীকরণ

$$27x^3 + 92y^2 - 156xy - 228y + 148x - 612 = 0$$

#### প্রামালা 18

- - (i) শাসার তির্ণক্ এবং অন্তবন্ধী অঞ্চ মথাক্রমে 6 এবং 5 :
  - (ii) যাহার অক্রন্ধা অক্ষ 2 এবং নাভিদ্যের মধাবতী ব্যবধান 2 √8:
  - (iii) যাতা (-2, 1) এবং (3, √5) বিশ্বরগামী;
  - (iv) যাহার একটি নাভির স্থারাম্ব ( $-6\sqrt{2}$ , 0) এবং উংকেন্দ্রতা  $\frac{3\sqrt{2}}{4}$ ;

- (v) যাহার ভিষক মক ৪ বেং উংকেনতে 🚡 ;
- (vi) মাজা (4, ব্লা বিশ্বসামী এবং মাজার উৎক্রেন তা ব্ল:
- (vii) याक्षेत्र अञ्चलके अस 5 खार याक (ठ, क्षे) दिल्कुणाणी ;
- (viii) মাহার নাভিলম দ্র বেশ উংকেশতা 🚊 ;
- (ix) যাতার তিয়ক সক্ষম ব বেং যাতার শীর্গনিন্ধ কেন্দ্র এবং নাভির মধ্যস্থ দূরত্বকৈ সমন্বিধণ্ডিত করে।
  - 2. (i)  $x^2 4y^2 + 16$ ; (ii)  $5x^2 4y^2 + 20$ ; (iii)
    - (iii)  $11x^8 25y^2 = 275$

প্রাসুধ্যমূতের উংকেশভা, নাভিক্ষের দৈগা, নাভিদ্ধের স্থানাম্ব, এবং নিয়ামক-স্থায়ের সমীকরণ নির্ণয় কর।

- $3. 9r^2 16r^2 15r 64r 631 প্রার্থের (i) তিম্কু অফ, (ii) অস্বেদ্ধী অফ, (iii) উৎক্রেনতা, (iv) একদের স্থানাল, (v) নাভিষ্টের স্থানাল জোগ (vi) নিয়াসকস্থার সমাক্রণ নিশ্ন করে।$
- 4.  $\frac{a^2}{a^2} \frac{a^2}{b^2} = 1$  পরারও 2x 3y + 2 = 0 এবং 5x 2y 28 সরল রেখা- স্থায়ের ভেগবিন্দুগামা এবং ইখার নাভিলম্বের দেখা 6 : a এবং b-এর মান নিশ্ম কর ।
- 5. A-১র মান কত হইলে, Ar<sup>u</sup> 5 $y^2$  4 পরারত (± 2.0) বিশ্বয়গামী ইইবে ৪

প্রাপ্তির (i) না ভল্পের দেখা, (ii) অক্সন্তের দৈখা, ববং (iii) উৎকেজতা নির্ণর কর।

- 6. খে পরার ও 6৮ 5৮ ৪ সরল রেখার স্থাত ৮-অংশর উপর নিজিত হয় এবং মাহার উংক্রেও । বু. ৮ ৬ ৮ খজকে 'এজ প্রেয়া সেই পরার্ত্তির স্থাকেরণ নির্ণয় কর।
- 7.  $2x^2 + 3y^2 + 5$  প্ররেষ ৭বং 2x + 3y = 1 সরল রেখার ওেদবিন্দ্রের স্থান্ত নিধ্য কর । প্রারেও ছারা সরল রেখার ,১৯ স্থান্ত্র ম্যানিন্দ্র অবস্থান কোশার ?
- 8. যে প্রার্ট্রের একটি নাভি (৪, ৮4) বিভূতে, উৎকেন্ডা হৃণ এবং 6x=8y+5 স্বন্ধের নিল্যাক, সূত্রপ্রস্থাক্রণ নির্বিয় করা।

#### শঞ্জম অধ্যার

# স্পার্শক ও অভিলয়

#### (Tangents and Normals)

5.1. কানিকের ক্পশ্লি ও অভিনক্তের সংভ্রাঃ বে সরল রেথা একটি কনিক-রেথাকে উহার তুইটি সমাপতিত (coincident) বিদ্তে ছেদ করে ভাহাকে ঐ কনিকের ক্শার্শক বলা হয়। তুইটি সমাপতিত বিন্দু কার্যতঃ একটি বিন্দুতেই পরিণতি লাভ করে; কাছেই তুইটি সমাপতিত বিন্দুতে ছেদ করা আরু ক্পার্শ করা একই অর্থ বহন করে। সেই কারণে যে সরল রেথা কনিকের তুইটি সমাপতিত বিন্দুগার্মী হয় ভাহাকে ক্শার্শক বলে।

ম্পর্শক যে-বিন্তুত কনিক রেথাকে স্পর্শকরে তাহাকে স্পর্শবিন্দু বলে এবং এ স্পর্শবিন্তুগামী যে রেথা ঐ বিন্দুতে কনিকের স্পৃত্তকর উপর লহভাবে অবস্থিত হয়, তাহাকে বলে অভিলয়।

5'2. কনিকের উপনিত একটি নিদিট বিস্তুতে ভাষিতে স্পৃশ্বিকর স্মীকরণ (Equation of a tangent drawn at a given point on the conic):

সংজ্ঞা অনুসারে কনিকের উপরিছ-তুইটি সমাপ্তিত বিনুগামী সরলরেখা ঐ কনিকের একটি স্পর্শক।

(i) কনিক-রেপাটি যদি  $x^2 + y^2 = a^2$ -দারা স্চিত একটি বৃত্ত হয় এবং  $(x_1, y_1)$  ও  $(x^2, y^2)$  যদি উহার উপবিস্থ চুক্টি নিন্দু হয় তবে

$$x_1^2 + y_1^2 - a^2,$$
  
 $x_2^2 + y_2^2 - a^2.$ 

इंशादमत्र विद्यांश ७ शकायत क तथा दिया याद त्य,

$$\begin{split} & x_1^2 - x_2^2 = - \left( y_1^2 - y_2^2 \right) \,; \\ & \forall |, \quad (x_1 + x_2)(x_1 - x_2) = - \left( y_1 + y_2 \right) \! \left( y_1 - y_2 \right) \,; \\ & \forall |, \quad \frac{y_1 - y_2}{x_1 - x_2} = - \frac{x_1 + x_2}{y_1 + y_2}. \end{split}$$

ছাত্রব,  $(x_1, y_1)$  ও  $(x_2, y_2)$  বিন্দুগামা সরলরেখার সাধারণ সমীকরণ

$$y-y_1=\frac{y_1-y_2}{x_1-x_3}(x-x_1),$$

বুরুটির ক্ষেত্রে পরিবতিত হইয়া যায়

$$y-y_1=-rac{x_1+x_2}{y_1+y_2}\left(x-x_1
ight)$$
 नशीकदर्व।

এখন,  $(x_2,y_2)$  বিকৃতি যদি সরিয়া আসিয়ে  $(x_1,y_1)$  বিকৃতির উপর সমাপতি গ্ হর, তবে,  $x_2=x_1$  এবং  $y_2=y_1$  ১ইবে এবং সেলেয়ে জ ত্ই বিকৃপামী রেখার স্মীকরণটি  $(x_1,y_1)$  বিকৃতে বুড্টির একটি স্পান্ক সচিত করিবে।

चाउ ्त,  $(x_1, y_1)$  दिसार  $x^2 + y^2 = a^2$ -अंद्र अलंदिक भशीकतल,

(ii) দি নিয়ত কৰিক বেখাটি যদি  $y^2-4a\sigma$  – দাব: কচিত একটি আধিবৃত, এক  $(x_1,y_1)$  ও  $(x_2,y_3)$  যদি ভঙার চপরিস্ব চুইটি বিন্দু হয়, তবে,

$$y_1^2 = 4ax_1, \\ y_2^2 = 4ax_2, \\$$

हेर्डाट्सेड निर्देशिक्त लंडरने अथा घड रहे.

$$y_1 = -y_2 = -4ax_1 - 4ax_2;$$

$$\forall 1, \quad (y_1 + y_2)(y_1 - y_2) = 4a(x_1 - x_2);$$

$$\forall 1, \quad \frac{y_1 - y_2}{x_1 - x_2} = \frac{4a}{y_1 + y_2};$$

হতরাং (x1, y1) ও (x1, y2) বিদ্যুগামী,

$$y-y_1 = \frac{y_1 - y_2}{x_1 - x_2} (x - x_1)$$

সরল রেগাটির ২মীকরণ অধিবৃত্তির ক্ষেত্র,  $y-y_1\cdot\frac{4a}{y_1+y_2}(x-x_1)$  আকারে পরিবভিত্ত হুট্রা হায়। স্পষ্টতঃ  $(x_2,y_2)$  বিন্তি যপন  $(x_1,y_1)$  বিন্তুর উপর সমাপ্তিত হুহ তথন বি ইট বিন্দুগামা সমাকরণ-স্চিত রেগাটি অধিবৃত্তির স্পাত্ত রূপান্তরিত হয় এবং ভিন্ন  $y_2-y_1$  ব্যাহারে  $(x_1,y_1)$  বিন্দুগে  $y^2-4ax$  অধিবৃত্তে

স্পর্কির স্মীকরণটি হয়, 
$$y-y_1=rac{4a}{2y_1}(x-x_1)-rac{2a}{y_1}(x-x_1)$$
 :

$$\forall 1, \quad yy_1 - y_1^2 = 2ax - 2ax_1;$$
 $\forall 1, \quad yy_1 = 2ax - 2ax_1 + y_1^2;$ 
 $\forall 1, \quad yy_1 = 2ax - 2ax_1 + 4x_1;$ 
 $\forall 1, \quad yy_1 = 2a(x + x_1)$ 

(iii) তৃতীয়তঃ, কনিক-রেখাটি যদি  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ -দারা স্থচিত একটি উপবৃত্ত এবং  $(x_1,y_1)$  ও  $(x_2,y_2)$  যদি উহার উপবিস্থ তৃইটি বিন্দু হয় তবে,

$$\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} = 1,$$

$$\frac{{x_2}^2}{a^2} + \frac{{y_3}^2}{b^2} = 1.$$

हैशामित विद्याभकन नहेयां भक्तांख्य कवितन प्राया व्या,

$$\frac{y_1^2 - y_2^2}{b^2} = -\frac{x_1^2 - x_2^2}{a^2};$$

$$\forall 1, \quad \frac{(y_1 + y_2)(y_1 - y_3)}{b^2} = -\frac{(x_1 + x_2)(x_1 - x_2)}{a^2};$$

$$\forall 1, \quad \frac{y_1 - y_2}{a^2} = -\frac{b^2}{a^2} \frac{(x_1 + x_2)}{(y_1 + y_3)};$$

জাতএব,  $(x_1,y_1)$  ও  $(x_2,y_2)$  বিশুগামী  $y-y_1=\frac{y_1-y_2}{x_1-x_2}$   $(x-x_1)$  রেখাটির স্মীকরণ, উপরুত্তির ক্ষেত্রে পরিবভিত হটয়া পাড়ায় এইরূপ,

$$y-y_1 = -\frac{b^2}{a^3} \frac{(x_1+x_2)}{(y_1+y_2)} (x-x_1).$$

স্পষ্ট ত:,  $(x_2, y_2)$  বিন্দৃটি যথন  $(x_1, y_1)$  বিন্দৃর উপর সমাপতিত হয় তথন,  $x_2 = x_1$  এবং  $y_2 = y_1$  হয় এবং এই সমাকরণ হচিত রেখাটি স্পর্গকে রূপান্তরিত হইরা যায়।

ম ভএব,  $(x_1,y_1)$  বিন্দৃটিতে  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  উপবৃ ওটির স্পর্শকের সমীকরণ হইবে,  $h^2$   $9\pi$  —  $h^2 \pi$ 

$$y - y_{1} = -\frac{b^{2}}{a^{2}} \cdot \frac{2x_{1}}{2y_{1}} (x - x_{1}) = \frac{-b^{2}x_{1}}{a^{2}y_{1}} (x - x_{1});$$

$$\forall 1, \quad \frac{yy_{1}}{b^{2}} - \frac{y_{1}^{2}}{b^{2}} = -\frac{xx_{1}}{a^{2}} + \frac{x_{1}^{2}}{a^{2}};$$

$$\forall 1, \quad \frac{xx_{1}}{a^{2}} + \frac{yy_{1}}{b^{2}} = \frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} = 1 \qquad \left[ \begin{array}{ccc} \cdot & \frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} = 1 \end{array} \right]$$

$$\forall x \in \left[ \begin{array}{ccc} \frac{xx_{1}}{a^{2}} + \frac{yy_{1}}{b^{2}} = 1 \end{array} \right]$$

$$\forall x \in \left[ \begin{array}{ccc} \frac{xx_{1}}{a^{2}} + \frac{yy_{1}}{b^{2}} = 1 \end{array} \right]$$

$$(3)$$

(iv) অন্তর্গে, কনিক-ব্রেগাটি যদি  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ -স্চিত একটি পরার্ভ হয়। এবং  $(x_1,y_1)$  ও  $(x_2,y_2)$  যদি উহার উপরিস্থ ছুইটি বিন্দু হয়,

$$\text{TR} \frac{x_1^2}{a^2} - \frac{y_1^2}{b^4} - 1 \qquad \text{TR} \frac{x_2^2}{a^4} - \frac{y_3^2}{b^4} = 1 \quad \text{TR}$$

এবং সেই কার্ণে 11,2-1122 = 112-122.

$$71, \qquad \frac{y_1 - y_2}{x_1 - x_2} = \frac{L^2}{a^2} \left( \frac{r_1 + r_2}{y_1 + y_2} \right) = 2.41$$

অভএব (৫1, 11) ৭ (৫9, 11) বিক্লামী এলার সাধারণ স্থাকরণ

 $y-y_1=\frac{y_1-y_2}{x_1-x_2}(x-x_1)$  পরার-তির কোরে পরিবৃত্তি ইইরা দীড়ায়

এইনপ:  $y-y_1 = \frac{b^2(x_1+x_2)}{a^2(y_1+y_2)}(x-x_1).$ 

শ ইত:,  $(x_3, y_3)$  যথন  $(r_1, y_1)$  এর উপর সমাপ্তিত হয় অর্থাৎ যথন  $x_0 + x_1$  এবং  $y_1 + y_2 + x_3$  ওবন র সমাকরণ  $(x_1, y_3)$  বিনুত্ত প্রার্থনির ম্প্তিকর সমাকরণে প্রিণ্ড হয়।

$$y - y_1 + \frac{b^2}{a^2} \frac{\gamma x_1}{2y_1} (x - x_1) = \frac{b^2 x_1 (r - x_1)}{a^2 y_1}.$$

$$\boxed{71, \quad \frac{\eta \eta_1}{b^2} - \frac{{\eta_1}^2}{b^2} - \frac{xr_1}{a^2} - \frac{{r_1}^2}{a^2}}.$$

$$41, \quad \frac{xx_1}{a^2} - \frac{nn_1}{b^2} = \frac{n_1^2}{a^2} - \frac{n_1^2}{b^2} = 1$$

$$\left[ \begin{array}{ccc} & x_1^2 - y_1^2 \\ & a^2 - b^2 \end{array} = 1 \right]$$

 $\therefore \quad (x_1,y_2) \stackrel{\text{for the }}{=} \frac{x^2}{a^2} - \frac{b^2}{b^2} = 1, \text{ Month of } 0$ 

$$\frac{xx_3}{a^2} - \frac{yy_3}{b^2} = 1 \qquad \cdots \qquad (4)$$

বিশেষ জন্তব্য ৪ (1), (2), (3)  $\oplus$  (1) তব সম্ক্রণ  $\oplus$  ৪৪৫ ত দেখা গাম খে,  $(x_1,y_1)$  বিন্ধু ৪ স্পর্ভারের স্মাক্রণ  $\oplus$  লাক্রিব র সম্মন্

ক্ৰিকের স্মাকরতে নেগতে জা, স্প্রিকর স্মাকরতে সেখানে জলত

$$v$$
  $v$   $v$   $v$   $v$   $v$   $v$   $v$ 

प्रदेश क क y , w क क है (y+y<sub>1</sub>)

বদাইতে হয়।

**অনুসিদ্ধান্ত** ঃ  $x^2 + y^2 + 2gx + 2fy + c = 0$  স্চিত বৃত্তির উপনিস্থ ছ**টি** বিন্দুর স্থানার  $(x_1, y_1)$  এবং  $(x_2, y_2)$  ১৯৮৫,

$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$$

$$4 = x_2^2 + y_2^2 + 2gx_2 + 2fy_2 + c = 0.$$

$$\therefore (x_1^2 - x_2^2) + (y_1^2 - y_2^2) + 2g(x_1 - x_2) + 2f(y_1 - y_2) = 0;$$

$$(x_1 - x_2)(x_1 + x_2 + 2g) = -(y_1 - y_2)(y_1 + y_2 + 2f) ;$$

$$\frac{y_1 - y_2}{x_1 - x_2} = -\frac{x_1 + x_2 + 2g}{y_1 + y_2 + 2f}$$

$$= (x_1, y_1) \otimes (x_2, y_2)$$
 বিন্ধানী ছেদকের প্রবণতা।

ে. এ ছেদকের স্মাকরণ, 
$$y-y_1=-\frac{x_1+x_2+2g}{y_1+y_2+2f}(x-x_1)$$
.

ম্পেষ্টত:,  $x_2=x_1$  এবং  $y_2=y_1$  হটলে ছেদকটি  $(x_1,y_1)$  বিন্তুত বৃত্তটির ম্পেশ্কে পরিণত হয়।

জতএব,  $(x_1, y_1)$  বিন্তে  $x^2 + y^2 + 2gx + 2fy + c = 0$ , বৃত্তের স্পাদ্কির স্মীকরণ হয়,

$$y-y_1=-\frac{2(x_1+g)}{2(y_1+f)}(x-x_1)=-\frac{x_1+g}{y_1+f}(x-x_1)\;;$$

$$71, \quad yy_1 - y_1^2 + fy - fy_1 = -xx_1 + x_1^2 - gx + gx_1 ;$$

$$\forall 1, \quad xx_1 + yy_1 + gx + fy = x_1^2 + y_1^2 + gx_1 + fy_1;$$

$$xx_1 + yy_1 + gx + gx_1 + fy + fy_1 + c = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$$
;

$$\forall 1, \quad xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0.$$

['.' 
$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$$
]

5'3. অবকলনাক্ষের (Differential Co-efficient-এর) সাঠায্যে স্পূর্শকের সমীকরণ নির্ভিয় :

কলনের ভাষায় যে-কোন কনিকের স্থাকিরণকেই y=f(x)-রূপে লেখা যায়।  $(x_1,y_1)$  এবং  $(x_2,y_2)$  কোন কনিক y-f(x)-এর উপরিস্থ তুইটি বিন্দু হইলে, ঐ তুই বিন্দুগানী ভেদকের প্রণ্ডা  $= \frac{y_1-y_2}{x_1-x_2}$ 

পঠত:,  $(x_2,y_3)$  বিন্দু  $(x_1,y_1)$  বিন্দুটির নিকটতর হইতে নিকটতম অবস্থানে আদিয়া শেষ পদত যথন  $(x_1,y_1)$ -এর উপর সমাপতিত হয়, তথন ছেদকটি ঐ কনিকের  $(x_1,y_1)$  বিন্দুতে একটি স্পর্শকে রূপাতরিত হয়। এই অবস্থায়  $y_2$ -এর মান  $y_1$ -এর মানের ও  $x_2$ -এর মান  $x_1$ -রে মানের নিকটতম হয় এবং তথন ছেদকটির প্রবণতা উহার প্রান্তিক মানে পৌছার।

ধরা যাক,  $y_1 - y_2 = \delta y$  এবং  $x_1 - x_2 = \delta x$ ;

মূত্রাং, প্রবিভা =  $\frac{y_1 - y_2}{x_1 - x_2} = \frac{\delta y}{\delta x}$  এবং

উহার প্রান্তিক মান =  $L_t$   $\frac{\partial y}{\partial x} = \frac{dy}{dx}$ 

= x সাপকে y অপেক্ষকটির অবকলনাম (Differential co-efficient).

অতএব, (৫,, 4,) ও (৫৫, 42) বিশ্বামী ছেদক্টি যখন উহার প্রাণ্ডিক অবস্থানে **স্পর্শকে রূপান্তরিত হ**য়, তথন উহার স্থীকরণ

 $y-y_1=\frac{y_1-y_2}{x_1-x_2}(x-x_1)$  ১টতে  $y-y_1=\frac{dy_1}{dx_2}(x-x_1)$  সমী করণে পরিবৃতিত হইয়া যায়।

মতরাং,  $(x_1, y_1)$  বিন্দুতে y = I(x)-এর স্পর্শকের সমীকরণ  $y - y_1 = \frac{dy_1}{dx} (x - x_1).$ 

বিশেষ জন্তবা ঃ কানবিভার সাহায্যে স্প্রক্রির সমীকরণ নিব্য করিবার সময় निश्रनिथिए यनधान भनेगा यान दाशा धारमाकन :

(i)  $\frac{d(by^2)}{dy} = 2by \frac{dy}{dy}$ ;

(ii)  $\frac{d}{dx}(ax^2) = 2ax$ ;

(मनाटन a. b. c ल k मनक भण्या।

অনুসিদ্ধান্ত 1. (x1, y1) বিন্দুতে x²+y² = a²-এর স্পর্শকের সমীকরণ : x-সাপকে  $x^2 + y^2 = a^2$ -এর অবক্তান ধারা (by differentiation)

$$\frac{d(x^2)}{dx} + \frac{d(y^2)}{dx} = \frac{d(a^2)}{dx}, \qquad 41, \quad 2x + 2y \frac{dy}{dx} = 0;$$

... (৯, 2,) বিন্দতে

$$x^2 + y^2 = a^2$$
-এর স্পাশাকর সমীকরণ  $y - y_1 = -\frac{r_1}{y_1}(x - x_1)$ ;

 $\forall 1, \quad xx_1 + yy_1 = x_1^2 + y_1^2 = a^2$ 

অনুদিদ্ধান্ত 2. (x1, y1) বিন্দৃতে y² = 4ax-এর স্পর্শকের সমীকরণ। x-দাপকে y² = 4ax-এর অবকলন (differentiation) ছারা

$$\frac{d(y^2)}{dx} = \frac{d(4ax)}{dx}, \qquad \qquad \text{II}, \quad 2y \frac{dy}{dx} = 4a :$$

অতএব,  $(x_1, y_1)$  বিন্তুতে  $y^2 = 4ax$ -এর স্পর্ণকের সমীকরণ,

$$y - \dot{y}_1 = \frac{dy}{dx} (x - x_1);$$

$$\forall i, \ y - y_1 = \frac{2a}{y_1} (x - x_1) ;$$

$$\forall 1, \ yy_1 = 2ax - 2ax_1 + y_1^2 = 2ax - 2ax_1 + 4ax_1 \ [ \ \therefore \ y_1^2 = 4ax_1 ]$$
$$= 2ax + 2ax_1 = 2a(x + x_1).$$

# অনুসিদ্ধান্ত 3. $(x_1, y_1)$ বিন্দুতে $\frac{x^2}{a^2} \pm \frac{y^2}{b^2} = 1$ -এর স্পর্শকের সমীকরণ।

x-সাপকে  $\frac{x^2}{a^2} \pm \frac{y^2}{b^2} = 1$ -এর অবকলন (differentiation) দারা

$$\frac{d(x^2/a^2)}{dx} \pm \frac{d(y^2/b^2)}{dx} = \frac{d(1)}{dx};$$

$$\forall 1, \quad \frac{2x}{a^2} \pm \frac{2y}{b^2} \frac{dy}{dx} = 0 ;$$

$$\forall 1, \quad \frac{dy}{dx} = \mp \frac{2x/a^2}{2y/b^2} = \mp \frac{b^2x}{a^2y};$$

$$\therefore \quad \frac{dy_1}{dx_1} = \mp \frac{b^2 x_1}{a^2 y_1}.$$

নির্দের সমীকরণ  $y - y_1 = \mp \frac{h^2 x_1}{a^2 y_1} (x - x_1)$ ;

ৰা, 
$$\frac{\eta\eta_1}{b^2} - \frac{\eta_1}{b^2} = + \left(\frac{rx_1}{a^2} - \frac{r^2}{a^2}\right);$$

$$\forall 1, \quad \frac{\sigma x_1}{a^2} \pm \frac{\eta y_1}{b^2} = \frac{{x_1}^2}{a^2} \pm \frac{{y_1}^2}{b^2} = 1 \; ; \quad \forall 1, \quad \frac{\sigma x_1}{a^2} \pm \frac{\eta y_1}{b^2} = 1.$$

#### উদ্বাহরণমালা

উদা. 1. নিয়লিখিত কনিক রেখা ওলির উপর প্রদত্ত বিদ্তে স্পর্ণকের স্মীকরণ নির্ণিয় কর:

(i) 
$$x^2 + y^2 + 6x - 2y + 2 = 0$$
-এর (-1, 3) বিন্যুতে;

(iii) 
$$3x^2 + 5y^2 = 120$$
-এর (5, -3) বিশুতে;

(iv) 
$$3x^2 - 8y^2 = 16$$
-এর (4, -2) বিন্তে।

(i)  $x^2+y^2+2gx+2fy+c=0$  বৃধ্বে ( $x_1,y_1$ ) বিশুতে অংশকের সমীকরণ করে  $+yy_1+g(x+x_1)+f(y+y_1)+c=0$ .

$$x^{2} + y^{2} + 6x - 2y + 2 = 0,$$

$$50.9 (-1, 3, 5 + 10.2 \text{ separate } 3.5 + 2.2 \text{ separate } 3.2 \text{ separate } 3.$$

 $71, \quad -x + 3y + 3x - 3 - y - 3 + 2 = 0 ;$   $71, \quad 2x + 2y = 4 ;$ 

বা, x+y=2.

(ii)  $y^2-4ax$  অধিয়াও  $(x_1,y_1)$  বিভূতি পৰিকের ম্যাকরণ হয়,  $yy_1=2a(x+x_1)$ .

এখানে,  $y^2=21\pi$  বা  $y^2=4.6,\pi$  অবিশ্বতে a-র স্থলে 6 বসিয়াছে এবং প্রস্তৃতি কুর  $x_1=6,\ y_1=12$  ২৬% মুর্ম নির্দেশ স্ক্রীকরণ y.12=2.6(x+6) ;

বা, y=x+6; বা, x-y+6=0.

ে (6, 12) বিপুতে  $y^2 = 24x$ -এর ম্পান্তের মনীকরণ, x - y + 6 - 0.

(iii)  $3x^2+5y^2=120$ -এর ভূগপথকে 120 বিষা ভাগ করিনে,  $\frac{x^2}{40}+\frac{y^2}{24}-1$  উপরুত্তি পাওয়া যার।  $(x_1,y_1)$  বিশ্বতে  $\frac{x^3}{a^2}+\frac{y^3}{b^2}=1$ -এর স্পাকরণ করে ম্যাকরণ  $\frac{xx_1}{a^2}+\frac{yy_1}{b^2}=1$ ; মেট প্রে অনুসারে (5,-3) বিশ্বতে  $\frac{x^3}{40}+\frac{yy_1}{24}=1$ -এর স্পাকরণ  $\frac{5x}{40}+\frac{-3y}{24}=1$ ;

ৰা, 
$$\frac{x}{8} - \frac{y}{8} = 1$$
; বা,  $x - y = 8$ .

$$\boxed{1}, \quad \frac{3x}{4} + y = 1; \qquad \boxed{1}, \quad 8x + 4y = 4.$$

উদা. 2. x-y=k সভল বেখাটি যদি  $x^2+y^2-4x-6y+11=0$ -কে স্পর্শ করে তবে k-এর মান ও স্পর্শবিন্দুর স্থানান্ধ কি ভইবে ?

সরল রেখার স্মীকরণ হইতে x=y+k মান বৃত্তির স্মীকরণে বসাইলে, উচাদের ছেদবিন্দুর কোটি নির্ণায়ক স্মীকরণটি হয়  $(y+k)^2+y^2-4(y+k)-6y+11=0$  ;

বা, 
$$2y^2 + (2k - 10) y + k^2 - 4k + 11 = 0$$
.  $\cdots$   $\cdots$  (1) সরল রেখাটি স্পর্শক বলিয়া এই বিঘাত সমীকরণে বীজ্বয় সমান হইবে। অর্থাং সমীকরণটির নিরূপক  $(2k - 10)^2 - 4.2.(k^2 - 4k + 11) = 0$ ; বা,  $-4k^2 - 8k + 12 = 0$ ; বা,  $k^2 + 2k - 3 = 0$ ; বা,  $(k+3)(k-1) = 0$  হইবে।

... k = -3 3 1.

(1)-এ k = -3 বসাইলে,  $2y^2 - 16y + 32 = 0$ ; বা,  $y^3 - 8y + 16 = 0$ ; বা,  $(y-4)^2=0$ ;  $\therefore y-4$  এবং x=y+k=4-3=1 হয়। স্পর্শবিন্দর নির্ণেয় স্থানান্ধ (1, 4).

উদা. 3.  $y^2 = 24x$ -এর নাভিলম্বের প্রান্তবিন্দুরয়ে স্পর্শকের সমীকরণ নির্ণম কর ৷

 $y^2 = 24x$  বা  $y^2 = 4.6.x$  অধিবৃত্টি নাভির স্থানাম (6,0); স্পষ্টতঃ, নাভিলম্ব-বয়ের প্রান্তবিন্দ্রয়ের ভূজও 6 হইবে। স্বতরাং ঐ প্রান্তবিন্দ্রয়ের

(中間=y=± /24x=± /24×6=± /144=±12 まえてす) ় নাভিলম্বটির প্রান্থবিনুদ্ধরের স্থানাম হইবে (6,12) ও (6, -12). অতএব (6, 12) প্রান্তবিদ্তে স্পর্শকের সমীকরণ 12y = 12(x+12);  $\sqrt{3}$ , y=x+12;  $\sqrt{3}$ , x-y+12=0; এবং (6, -12) প্রাস্তবিদ্যুতে স্পর্শকের সমীকরণ হইবে -12y = 12(x+6);  $\forall 1, -y = x+6$ ;  $\forall 1, x+y+6=0$ .

উদা. 4.  $2x^2 + 3y^2 = 56$  উপবৃত্তটির যে-বিন্দুর কোটি, উহার ভূঞের দিখা, দেই বিদ্যুতে স্পর্শকের সমীকরণ নির্ণয় কর।

উপবৃত্তটির  $(x_1,\,2x_1)$  বিন্দুর কোটি, তাহার ভূজের দিওণ।  $\therefore$  উপবৃত্তটির সমীকরণে  $x=x_1$  এবং  $y=2x_1$  বসাইলে,  $2x_1^2 + 3(2x_1)^2 = 56$ 

 $\sqrt{1}$ ,  $14x_1^2 = 56$ ;  $\sqrt{1}$ ,  $x_1^2 = 4$ ;  $\sqrt{1}$ ,  $x_1 = \pm 2$ ;

এবং y<sub>1</sub> = 2x<sub>1</sub> = 2 × (±2) = ±4. পাওয়া যায়।

∴ (x₁, 2x₁) – স্থাচিত বিন্দুর স্থানাছ-ছইটি হয় (2, 4) ও (-2, -4). (2, 4) বিনতে উপবৃত্তটির স্পর্শকের সমীকরণ 2x.2 + 3y.4 = 56:

71 x + 3y = 14:

এবং (-2, -4) বিন্তুতে উপস্বভটির স্পর্শকের স্মীকরণ হয়  $2x \times (-2) + 3y \times (-4) = 56$ ; 4x - 3y = 14;  $\sqrt{3}$ , x+3y+14=0.

উদা. 5.  $x^2-y^2=9$ , পরাবৃত্তের (5,4) বিন্দুগামী স্পর্শকটি x-অক্ষকে কোন বিন্দুতে ছেদ করে ?

- (5, 4) বিন্দুতে  $x^2 y^2 = 9$  পরাবৃত্তের স্পর্শকের সমীকরণ হয় 5x 4y = 9;
- x-অক্ষ বা y=0 রেখার সহিত এই ম্পর্শকের ছেদবিন্দুর ভূজ-নির্ণয়াক শ্মীকরণ হইবে  $5x-4\times 0=9$ ; x=8.
  - :. (है, 0) বিন্তে স্পর্শকটি ৫-অক্ষকে ছেদ করিবে।

## প্রশ্নালা 19

- 1. নিম্নলিথিত সমীকরণস্চিত কনিক রেথাগুলির উল্লিথিত বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর:
  - (i)  $x^2 + y^2 = 20$ -এর (-2, 4) বিশ্বতে;
  - (ii)  $x^2 + y^2 16x + 4y 5 = 0$  (0, -5) विन्तुर ;
  - (iii) y<sup>a</sup> = 4x-এর (9, -6) বিদ্যুতে;
  - (iv) y<sup>2</sup> = 12x-এর (-3, 6) বিন্তুতে;
  - (v)  $\frac{x^2}{16} + \frac{y^2}{9} = 1$   $4\pi$  (4, 0)  $6\pi$  (7);
  - (vi)  $\frac{x^3}{25} + \frac{y^2}{16} = 1$ -এর (0, 4) বিশুতে ;
  - (vii)  $\frac{x^2}{18} + \frac{y^2}{8} = 1$ -এর (3, 2) বিশুতে;
  - (viii) 5x2-8y2=40-এর (4, 5) বিন্দতে;
  - (ix)  $3x^2 4y^2 = 48 43 (-4, -3)$  বিশুতে;
  - (x)  $4x^2 8y^2 = 16$ -এর (4, -2) বিন্তে।
- 2. a-এর মান কত হইলে y=3x+1 রেখাটি  $y^2=4ax$  অধিবৃত্তিকৈ স্পার্শ করিবে ?
- 3.  $y^2=5x$  অধিবৃত্তের যে-স্পর্শকটি 20x-4y+9=0 রেখাটির সমাস্করাল সেই স্পর্শকের দমীকরণ ও স্পর্শবিন্দুর স্থানান্ধ নির্পয় কর।
- 4.  $y^2=9x$  অধিবৃত্তের নাভিলম্বের প্রান্তবিন্দুদ্বে অন্ধিত স্পর্শক্রয়ের সমীকরণ নির্ণয় কর ।
- 5. দেখাও যে x-3y+9=0 রেখাটি  $6x^2+27y^2=162$ , উপবৃত্তটিকে স্পর্শ করে; স্পর্শবিন্দুর স্থানান্ধ নির্ণয় করে।
- 6.  $3x^2 + 4y^2 = 84$ -স্চিত উপবৃত্তটির যে-বিন্দুর কোটি -3, সেই বিন্দুজে উহার স্পর্শকটির সমীকরণ নির্ণয় কর।

- 7.  $3x^2 + 4y^2 = 48$  স্কৃতিত উপস্থাতের নাভিন্সটের যে–প্রাস্ত হিতীয় পাদে স্বাস্থিত সেই প্রাস্তে উপস্থাটার স্পর্শকের স্মাকরণ নিশ্চ কর।
- 8. দেখাও যে 3x-8y=2 রেখা  $5x^2-36y^2=180$  স্থাচিত পরাস্থতকৈ স্পর্শ করে; স্পর্শবিদ্য স্থানাম্ক নির্ণয় করে।
- 9. m-এর কত মান হইলে 5y=mx-9 রেখাটি  $7x^2-16y^2=112$  স্চিত পরাবৃত্তকে স্পর্ণ করিবে ?
- 10. 4x-3y+9=0 রেখাটি  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ , পরাবৃত্টিকে স্পর্শ করে। পরাবৃত্টির উৎকেন্দ্রভা  $\frac{4}{3}$  হইলে a ও b-এর যান নিগম কর।
- 5·4. y=mx+c রেখাটির কনিকের স্পর্শক হওয়ার শর্তঃ
  - (i) y=mx+c রেখা  $x^2+y^2=a^2$  রুম্ভকে স্পূর্শ করিবে যদি  $x^2+(mx+c)^2-a^2=0$ , [ বুডের সমীকরণে y-এর হলে mx+c বসাইয়া ] বা,  $(1+m^2)x^2+2mex+e^3-a^2=0$ , সমীকরণটির বীজ্ছয় স্মান হয়। ইহার শুভ এই যে, নিরূপক  $4m^2c^2-4(1+m^2)(c^2-a^2)-0$ , স্থাৎ  $a^2+m^2a^2-c^2=0$  বা  $c^2=a^2(1+m^2)$ ; বা,  $c=\pm a\sqrt{1+m^2}$  ইইবে।

তীক।: স্পষ্টত:, m-এর সকল মানের জন্য  $y=mx\pm a\sqrt{1+m^2}$  স্বাদা  $x^2+y^2=a^2$ , বৃত্তের স্পর্শক।  $mx-y\pm a\sqrt{1+m^2}=0$  এবং  $xx_1+yy_1-a^2=0$ , উভয়ে একই বৃত্তের একই স্পর্শক বলিয়া,  $\frac{m}{x_1}=\frac{-1}{y_1}=\frac{\pm a\sqrt{1+m^2}}{-a^2}=\frac{\pm \sqrt{1+m^2}}{-a}$ ;

(ii) y=mx+c यनि  $y^2=4ax$  অধিবৃত্তকে স্পূর্শ করে, তবে  $(mx+c)^2=4ax$ , বা,  $m^2x^2+2(mc-2a)x+c^2=0$ -এর বীজহুর সমান হইবে। ইহার শত এই যে, এই স্থাকরণের নিরপক,  $4(mc-2a)^2-4m^2c^2=0$  হইবে। অর্থাৎ  $-4amc+4a^2=0$ ; বা, mc=a; বা  $c=\frac{a}{m}$  হইবে।

টীকা ঃ m-এর দকল মানের জন্ম  $y=mx+rac{n}{m}$  স্বাদা  $y^2=4ax$ -এর স্পাদাক এবং ভাহা  $yy_1=2a(x+x_1)$ -এর সহিত এক ৪ অভিন ।

ফুতরাং 
$$\frac{n_1}{1} = \frac{2a}{m} = \frac{2ax_1}{a/m} = 2mx_1$$
 বলিয়া  $x_1 = \frac{a}{m^2}$  এবং  $y_1 = \frac{2a}{m}$ ; জ্বাং স্পান্ত  $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ .

(iii) y=mx+c যদি  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$  বা  $b^2x^2+a^2y^2-a^2b^2=0$  উপবৃত্তকে কৰে, তবে  $b^2x^2+a^2(mx+c)^2-a^2b^2=0$ 

বা  $(b^2+a^2m^2)x^2+2a^2mcx+a^2c^2-a^3b^2=0$ -এর বীজ্বর স্থান হইবে। তাহার শর্ড, স্থাকরণটির নিরপ্রক=0, হইবে;

चर्रा द  $4a^4m^2c^2 = 4(b^2 + a^2m^2) a^2(c^2 - b^2)$ , चा,  $a^2m^2c^2 = b^2c^2 + a^2m^2c^2 - b^4 - a^2b^2m^2$ ; चा,  $b^2c^2 = b^4 + a^2b^2m^2 = b^2(b^2 + a^2m^2)$  चा  $c^2 = a^2m^2 + b^2$ . चर्रा द  $c = \pm \sqrt{a^2m^2 + b^2}$  हरेदि।

টীকা ঃ স্পষ্টতঃ, m-এর সকল মানের জন্য  $\mathbf{y}=\mathbf{m}\mathbf{x}\pm\sqrt{\mathbf{a}^2\mathbf{m}^2+\mathbf{b}^2}$  সর্বদা  $\frac{\mathbf{r}^2}{a^2}+\frac{\eta^2}{b^2}=1$  উপরুত্তের স্পর্শক।  $mx-\eta\pm\sqrt{a^2m+b^2}=0$  এবং  $x\frac{x_1}{a^2}+y\frac{\eta_1}{b^2}-1=0$ 

একই সমীকরণ বুকায় বলিয়া  $\frac{x_1/a^2}{m} = \frac{y_1/b^2}{-1} = \frac{-1}{\pm \sqrt{a^2m^2+b^2}}$  স্থতরাং  $x_1 = \frac{-a^2m}{\sqrt{a^2m^2+b^2}}$  এবং  $y_1 = \frac{b^2}{\sqrt{a^2m^2+b^2}}$  হইবে। তথাং  $\left(\frac{-a^2m}{\sqrt{a^2m^2+b^2}}, \frac{b^2}{\sqrt{a^2m^2+b^2}}\right)$  স্পর্যাক্ষার হানাম।

(iv) y=mx+e বদি  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$  বা  $b^2x^2-a^2y^2-1=0$ , পরাবৃত্তকে স্পর্শ করে, তবে mx-y+c=0 এবং  $x\frac{x_1}{a^2}-y\frac{y_1}{b^2}-1=0$  একই স্পর্শকের স্মীকরণ

 $x_1/a^2=y_1/b^2=-1$  হইবে। সেই কারণে  $x_1=-a^2m$  এবং  $y^1=-b^2$  হইবে। পরাবৃত্তের সমীকরণে প্রাপ্ত মান কমাইয়া

$$\frac{(-a^2m/c)^2}{a^2} - \frac{(-b^2/c)^2}{b^2} = 1;$$

इटेरव।

বা,  $\frac{a^4m^2}{a^2c^3} - \frac{b^4}{b^2c^3} = 1$ ; বা,  $a^4b^2m^2 - a^2b^4 = a^2b^2c^2$ ; বা,  $c^2 = a^2m^2 - b^2$ ; বা,  $c = \pm \sqrt{a^2m^2 - b^2}$  ইইবে। ইহাই নিৰ্বেয় শত। (XI-XII)—40

তীকা ঃ স্পাঠতঃ, m-এর সকল মানের জন্য  $\mathbf{y} = \mathbf{m}\mathbf{x} \pm \sqrt{\mathbf{a}^2\mathbf{m}^2 - \mathbf{b}^2}$  সর্বদা  $\frac{\mathbf{x}^2}{\mathbf{a}^2} - \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$  সারারতের স্পার্কি ।  $x_1 = \frac{-a^2m}{c}$  এবং  $y_1 = -\frac{b^2}{c}$ -এ c-র মান বসাইলে এ স্পার্কর স্থানাম্ন হইবে  $\left(\frac{-\mathbf{a}^2\mathbf{m}}{\sqrt{\mathbf{a}^2\mathbf{m}^2 - \mathbf{b}^2}}, \frac{-\mathbf{b}^2}{\sqrt{\mathbf{a}^2\mathbf{m}^2 - \mathbf{b}^2}}\right)$ 

### উপাহরণসালা

উদা . 1.  $x^2 + y^2 - 3$  স্থচিত বৃদ্দের যে-ছুইটি স্পর্শক  $\alpha$ -অক্ষের সহিত  $60^\circ$  কোণ উৎপন্ন করে, তাহাদের স্থাকরণ নির্ণয় কর।

বৃত্তির স্মীকরণ,  $x^2+y^2=3=(\pm\sqrt{3})^2$  বলিয়া, m-এর সকল মানের জন্তুই  $y=mx\pm\sqrt{3}\sqrt{1+m^2}$  বৃত্তির স্পর্শক হইবে। যেহেতু ইংারা x-অক্ষের সহিত  $60^\circ$  কোণ উৎপন্ন করে, সেইহেতু  $m=\tan 60^\circ=\sqrt{3}$ .

ে নির্পেয় সমাকরণ্ছয়, 
$$y = \sqrt{3}x \pm \sqrt{3}\sqrt{1 + (\sqrt{3})^2}$$

$$= \sqrt{3}x \pm \sqrt{3}\sqrt{4},$$
মর্থাৎ
$$y = \sqrt{3}x \pm 2\sqrt{3}.$$

- উদা- 2. দেখাও নে,  $x^2+y^2-4x+6y+8=0$  এবং  $x^2+y^2-10x-6y+14=0$  পরস্পারকে (3,-1) বিন্দৃতে স্পর্শ করে।
- (3, -1) বিন্দুটির স্থানান্ধ দারা উভয় সমাকরণই দিন্ধ হর বলিয়া বিন্দুটি উভর বুত্তর উপরই অবস্থিত। এখন, বিন্দুটিতে উভয় বুত্ত পরস্পরকে স্পর্শ করিলে বিন্দুটিতে অন্ধিত প্রথম বুত্তের স্পর্শক দিতীয় বুত্তেরও স্পর্শক হউবে।
  - (3, -1) বিশ্তে প্রথম বৃত্তের স্পর্শকের সমীকরণ  $3x-y-2(x+3)+3(y-1)+8=0, \text{ বা, } x+2y=1 \qquad \cdots \qquad (1)$
  - (3, -1) বিন্তে দি তীয় বৃত্তের স্পর্শকের সমীকরণ 3x-y-5(x+3)-3(y-1)+14=0,
- বা, -2x-4y+2=0, বা, x+2y=1. ... (2)
  (1) এবং (2) ইইতে দেখা যায়, x+2y=1 সরল রেগাটি (3. -1) বিদ্যুতে উভয়
- (1) এবং (2) হইতে দেখা যায়, x+2y-1 সরল রেগাটি (3, -1) বিন্তে উভয় ব্রেবেই স্পর্শক হইয়াছে।
  - ं বুজন্বর (3, -1) বিন্দুতে পরস্পরকে স্পর্শ করে।
- উদা. 3. প্রমাণ কর যে,  $x^2+y^2-6x+4y+12-0$  এবং  $x^2+y^2-12x+4y+36=0$  বুভাষ পরস্পরকে স্পর্শ করে। স্পর্শ করে।

বৃত্তের সমী,করণ  $x^2 + y^2 + 2gx + 2fy + c = 0$  হ'ইলে, কেন্দ্র হয় (-g, -f) এবং ব্যাসাধ হয  $\sqrt{g^2 + f^2} - c$ .

ে প্রথম বৃত্তের কেন্দ্র (3, -2) এবং ব্যাসার্থ 1; এবং দ্বিতীয় বৃত্তের কেন্দ্র (6, -2) এবং ব্যাসার্থ 2. এখন, কেন্দ্রদ্রের দূরত্ব  $= \sqrt{(3-6)^2 + (-2+2)^2} = 3$  = 1 + 2 = 3 ব্যাসার্থ-সমষ্টি;

.. বৃশ্ভদ্বয় পরস্পারকে স্পার্শ করে।

এখন, বৃত্তদ্বয় পরস্পরকে স্পর্শ করিলে, কেন্দ্রদ্বর সংযোজক সরল রেখা স্পর্শবিদ্গামী হয় এবং স্পর্শবিদ্ উক্ত সরল রেখাকে ব্যাসাধ্দ্রের অমুপাতে অন্তবিভক্ত করে। অতএব, স্পর্শবিদ্টি (৫, ৫) হইলে,



$$x = \frac{2 \times 3 + 1 \times 6}{1 + 2} = 4$$
, and  $y = \frac{2 \times (-2) + 1 \times (-2)}{1 + 2} = -2$ .

∴ নির্ণেয় ম্পর্শবিন্দু (4, -2).

দুরত্ব্য : এন্থলে, বৃত্তহয়ের বহিংস্পর্শ ইইরাছে। অন্তঃস্পর্শের ক্ষেত্রে কেন্দ্রহয়ের স্বাসার্ধহয়ের অন্তরের স্মান।

উদা. 4.  $y = x \sin a + a \sec a$  বারা স্চিত সরল রেখা  $x^2 + y^2 = a^2$  সুত্তকে স্পর্শ করিলে, প্রমাণ কর যে,  $\cos^2 a = 1$ . [C. U., B.A. & B.Sc., 1919]

$$y = mx + c$$
 সরল রেখাটি  $x^2 + y^2 = a^2$  বৃত্তের স্পর্শক হইলে,  $c^2 = a^2(1 + m^2)$ :

অতএব, এক্ষেত্রে, প্রদত্ত সরল রেগাটি প্রদত্ত বুতের স্পর্শক হইলে,

$$a^2 \sec^2 a = a^2 (1 + \sin^2 a)$$
,  $\forall i$ ,  $\sec^2 a = 1 + \sin^2 a$ ,

$$\exists i, \quad \sec^2 a - 1 = \sin^2 a, \qquad \quad \exists i, \quad \tan^2 a = \sin^2 a,$$

$$\forall 1, \frac{\sin^3 a}{\cos^2 a} = \sin^3 a, \qquad \forall 1, \frac{\sin^2 a}{\sin^2 a} = \cos^2 a;$$

 $\cos^2 \alpha = 1$ .

**উলা. 5.** 2x-3y+6-0 সরল রেখার সমান্তরাল,  $y^2=8x$  অধিবৃত্তের স্পর্শকটির সমীকরণ নির্ণর কর।

2x-3y+6=0 সরল রেখায় প্রবণতা 2/3 বলিয়া,  $y=\frac{2}{3}x+a/\frac{2}{3}$  উহার সমাস্তরাল।

এখন,  $y^2 = 8x = 4.2x$  বলিয়া, a = 2 লিখিলে,  $y = \frac{2}{3}x + \frac{2}{3}$ ;

বা,  $y=\frac{2}{3}x+3$  রেখাটি 2x-3y+6=0-এর সমাস্তরাল এবং  $y^2=8x$ -এর স্পার্শক হইবে।

.. নির্ণেয় স্পর্শকের স্মীকরণ হইল

$$3y = 2x + 9$$
,

$$\boxed{4}, \quad 2x - 3y + 9 = 0.$$

উদা. 6.  $y^2=16x$  অধিবৃত্তের যে স্পর্শক x-অক্টের সহিত  $\pi/4$  কোণ উৎপন্ন করে, তাহার সমীকরণ নির্ণয় করে।

m-এর সকস মানের জন্ম y=mx+a/m স্বল রেখা  $y^2=4ax$  অধিবৃত্তের স্পর্শক; এন্থলে,  $a=\frac{1}{2}r=4$  বলিয়া y=mx+4/m স্বল রেখা  $y^2=16x$ -এর স্পর্শক। এখন,  $m=\tan \pi/4=1$ :

y=mx+4/m-এ m=1 বসাইয়া, নির্পেয় স্পর্শকের স্মীকরণ y=x+4.

উদা. 7.  $3x^2 + 4y^2 = 16$  উপবৃত্তির যে-ম্পর্কগুলি 3x - 2y + 5 = 0 সরল রেখাটির সমান্তরাল, তাহাদের স্থাকরণ নির্ণয় কর।

3x-2y+5=0 সরল রেখার সমান্তরাল যে-কোন সরল রেখার সমীকরণ

$$3x - 2y + c = 0,$$
  
 $\exists 1, \quad 2y = 3x + c$  ... (1)  
 $\exists 1, \quad y = \frac{3}{2}x + c/2.$ 

এথন, উপরুত্তের স্থীকরণটির উভর পক্ষকে 16 ঘারা ভাগ করিয়া স্থীকরণটিকে  $x^2+\frac{y^2}{4}=1$  রূপে লিখিলে দেখা যাব,  $a^2=\frac{1}{3}$  এবং  $b^2=4$ .

:. দরল রেখা (1)-এর ঐ উপরুত্তের স্পর্শক হইলার শর্ভ হইল

$$\frac{c}{2} = \pm \sqrt{\frac{16}{3} \cdot \frac{9}{4} + 4} = \pm 4;$$

$$c = \pm 8. \qquad \cdots \qquad (2)$$

: উপর্ভটির তুইটি স্পর্শক প্রদত্ত সরল রেগার সমান্তরাল হইবে এবং (1) ও (2) হইতে এ স্পর্শকদ্যের সমীকরণ

উদা 8.  $4x^2 + 5y^2 = 21$  উপবৃত্ততির যে স্পর্শকগুলি 5x - 2y + 3 = 0 সরল রেখার উপর লম, তাহাদের দ্যীক্রণ নির্ণত কর।

5x - 2y + 3 = 0 সরল রেখার লম্ব তে-কোন সরল রেখার সমীকরণ

$$2x + 5y = 5c \qquad \dots \tag{1}$$

এখন, উপবৃত্তটির সমীকরণের উভয় পক্ষকে 24 দারা ভাগ করিয়া সমীকরণটিকে  $x^2+y^2=1$  রূপে লিখিলে দেখা যায়,  $a^2=6$  এবং  $b^2=\frac{24}{5}$ .

ে সরল রেখা (1) বা (2)-এর ঐ উপরুত্তের স্পর্শক হইবার শর্ত হইল  $c=\pm \sqrt{6(-\frac{2}{8})^2+\frac{2}{8}^4}=\pm \frac{1}{8}^2$ . (3)

:. (1) ও (3) হইতে দেখা যায়, উপবৃত্তের ছুইটি স্পর্শক প্রদত্ত সরল রেখার লম্ব হুইবে, এবং এই ছুইটি স্পর্শকের সমীকরণ

$$2x+5y=12$$
  $4x$   $2x+5y+12=0$ .

উদা. 9.  $3x^2 + 5y^2 = 30$  উপবৃত্তির যে স্পর্শকগুলি x-অক্ষের ধনাত্মক দিকের সহিত  $45^\circ$  কোণে নত, তাহাদের স্মীকরণ নির্ণয় কর।

উপরত্তের সমীকরণের উভয় পক্ষকে 30 দারা ভাগ করিয়া সমীকরণকে  $\frac{x^2}{10} + \frac{y^2}{6} = 1$  রূপে লিখিলে দেখা যায়,

$$a^2 = 10$$
 এবং  $b^2 = 6$ .

আবার, এমলে স্পর্শকের প্রবণতা m = tan 45° = 1.

.. নির্ণের স্পর্শকের সমীকরণ  $y=mx\pm\sqrt{a^2m^2+b^2}$  ;

অপাৎ  $y = x \pm \sqrt{10+6} = x \pm 4$ .

অতএব প্রদত্ত শর্ত অমুসারে স্পর্শক-চুইটির সমীকরণ হইবে,

$$y = x + 4$$
 and  $y = x - 4$ .

উদা. 10. প্রমাণ কর যে, lx+my=n,  $\frac{x^2}{a^2}+\frac{v^2}{b^2}=1$ , উপরুত্তীর স্পর্শক হইলে  $a^2l^2+b^2m^2=n^2$  হইবে।

উপবৃত্তটির যে-কোনও স্পর্শকের সমীকরণ

$$y = m_1 x + \sqrt{a^2 m_1^2 + b^2}$$
;

$$\therefore lx + my = n, \quad \text{al}, \quad y = -\frac{l}{m}x + \frac{n}{m} \text{ which } \xi \xi \xi \xi \eta$$

$$m_1 = -\frac{1}{m}$$
, and  $\sqrt{a^2 m_1^2 + b^2} = \frac{n}{m}$ ;

$$a^{2}\left(-\frac{l}{m}\right)^{2}+b^{2}=\frac{n}{m^{2}};$$

### প্রশ্নমালা 20

- 1. প্রমাণ কর যে, y-3x=10, সরল রেখাটি  $x^2+y^2=10$  বৃত্তকে ছুইটি স্মাণ্ডিত বিন্তুতে ছেদ করে। ঐ ছেদবিন্তুর স্থানাস্ক নির্ণয় করে।
- 2. প্রমাণ কর যে,  $x+\sqrt{3}y=8$  সরল রেখাটি  $x^2+y^2=16$ -কে স্পর্শ করে। স্পর্শবিন্দুর স্থানান্ধ নির্ণয় কর।

- 3. প্রমাণ কর যে,  $x^2 + y^2 2ax 2ay + a^2 = 0$ , বৃত্টি x ও y-অক্ষকে করে।
- 4. c-এর মান কড ইইলে, m-এর সকল মানের জন্ম y=mx+c রেখাটি  $x^2+y^2=4y$  বুওকে স্পর্শ করিবে।
- 5.  $x^2+y^2=45$ -এর যে-ম্পর্শকগুলির কোটি, y=-6, ভাহাদের সমীকরণ নির্ণিয় করে।
- 6.  $x^2+y^2=5$  বৃত্তির যে-ম্পর্শকগুলি 2x+y=4 রেখার উপর লয় ভারাদের শ্মীকরণ নির্ণয় কর।

#### প্রমাণ কর যে---

- 7. y = 3x + 2 রেখা  $y^2 = 24x$ -কে স্পর্শ করে;
- 8. 4(y-3x)=5 রেখা  $y^2=15x$  অধিবৃত্তকে স্পর্শ করে;
- 9. 4a(y-b)=x রেখা  $ay^2=bx$  অধিবৃত্তকে স্পর্শ করে:
- 10. দেখাও বে,  $y = m(x + a) + \frac{a}{m}$  রেখা  $y^2 = 4a(x + a)$  এর স্পাক।
- 11. দেখাও যে, m-এর সকল মানের জন্ম  $x+my+am^2=0$  রেখাটি  $y^2=4ax$ -এর স্পর্শক হইবে।

[ সংকেত ঃ  $y=m'x+\frac{a}{m}$ , সবদা  $y^2=4ax$ -এর স্পর্শক ;  $m'=\frac{1}{m}$  বদাইয়া অগ্রসর হও! ]

- 12. 7 হইতে 11 পর্যন্ত প্রশান্ত লিব প্রত্যেকটি হইতে স্পর্ণবিন্দুর স্থানাস্ক নির্ণয় কর।
- 13. y=mx+c রেখাটি যদি  $y^2=5x$  অধিবৃত্তকে স্পর্শ করে এবং তাহা যদি 5y+3x+25=0 রেখাটির সমান্তরাল হয়, তবে m ও c-এর মান নির্ণয় কর।
- 14.  $y^2 = 24x$ -এর যে-স্পর্শক x + 3y + 4 = 0 রেখার উপর লম্ব, তাহার সমীকরণ নির্ণয় কর।
- 15.  $y^2 = bx$ -এর একটি স্পর্শক x-অক্ষের সহিত  $60^\circ$  কোণ উৎপন্ন করে। ঐ স্পর্শকের সমীকরণ এবং স্পর্শবিন্দুর স্থানাম্ক নির্ণয় করে।
- 16.  $y^2=8x$ -এর একটি স্পর্শক y=3x+5 রেখাটির সহিত  $45^\circ$  কোণ উৎপন্ন করে। স্পর্শকটির সমীকরণ এবং অধিবৃত্তিটির উপর উহার স্পর্শবিন্দুর স্থানাম্ব নির্ণয় কর।

ি সংকেত ঃ  $y^2=4.2.x$ -এর স্পর্শক  $y=mx+\frac{a}{m}$  যেন x-অক্ষের স্থিত  $\theta$  কোণ এবং y=3x+5 যেন x-অক্ষের স্থিত  $\phi$  কোণ উংপন্ন করে;  $\tan \theta=m$  এবং  $\tan \phi=3$  এবং  $\tan (\theta-\phi)=\tan 45^\circ=1$ ; এইভাবে অগ্রসর ২৪।]

- 17.  $y^2=4ax$ -এর t বিন্দুতে (জর্থাই  $at^2$ , 2at বিন্দুতে) স্পর্গকের সমীকরণ নির্ণয় কর।
- 18.  $x^2 + 3y^2 = 3$ , উপবৃত্তের বে-স্পর্শক y = 4x 3-এর সমান্তরাল সেই স্পর্শকের সমীকরণ ও স্পর্শবিদ্যর স্থানাম্ব নির্ণয় কর।
- 19. 3x-4y=8-এর সমান্তরাল যে-রেখা  $9x^2+32y^2=96$ -কে স্পর্শ করে সেই রেখার সমীকরণ ও স্পর্শবিন্দুর স্থানাস্ক নির্ণয় করে।
- 20. 6x+5y+4=0-এর উপর লম্ব মে-রেখা  $2x^2+3y^2=8$  অধিবৃত্তকে স্পর্শ করে সেই রেখার সমাকরণ ও স্পর্শবিন্দুর স্থানাম্ব নির্ণয় করে।
- 21.  $3x^2 + 5y^2 = 32$  অধ্বৃত্তির যে-স্পর্শক 5x + 3y + 1 = 0 রেখার উপর লম্ব দেই স্পর্শকের স্মীকরণ এবং স্পর্শবিন্দুর স্থানান্ধ নির্ণয় কর।
- $2x^2 + 3y^2 = 18$  উপবৃত্তির যে-স্পর্শকটি x-অক্ষের ধনাত্মক-মুখী অংশের সহিত  $60^\circ$  কোণ উৎপন্ন করে সেই স্পর্শকের স্মীকরণ এবং উহার স্পর্শবিশুর স্থানাম্ব নির্ণয় কর।
- 23. 5x 9y + 8 = 0 সরল রেখার সমাস্টরাল  $x^2 9y^2 = 9$  পরাবৃত্তের স্পর্শকের স্মীকরণ নির্ণয় কর।
- $24. \quad 2x+3y+8=0$  সরল রেথার উপর লম  $8x^2-9y^2=72$  পরাবৃত্তের স্পর্শকের সমীকরণ নির্ণয় কর।
- 25. x-অক্ষের ধনাত্মক দিকের সহিত  $60^\circ$  কোণ উৎপন্নকারী  $5x^2-7y^3=35$  পরাবুত্তের স্পর্শকের সমীকরণ নির্ণয় কর।
  - 26. দেখাও যে,  $x^2+y^2-8x+6y+21=0$  এবং  $x^2+y^2-14x+6y+57=0$ , এই ফুইট খুভ প্রস্কারকে (6,-3) বিনুতে স্প<sup>্ন</sup> করে।
- 27. দেখাও যে,  $x^2+y^2+8x-4y+15=0$  এবং  $x^2+y^2-8x-12y+7=0$ , এই বৃত্ত-তৃ*ইটি* বহিঃস্থভাবে পরস্পারকে স্পার্শ করে। উহাদের স্পার্শবিদ্ নির্দিয় করে।
- 28. দেখাও যে,  $x^2+y^2-4x+6y-77=0$  এবং  $x^2+y^2-10x+8y+1=0$ , বুড়েছ্ব পরস্পারকে অন্তঃস্কভাবে স্পর্শ করে। উহাদের স্পর্শবিন্দুর স্থানাস্থ নির্দিষ্কর ।
- 29. lx + my + 1 = 0 রেখাটি যদি  $x^2 + y^2 = a^2$  রুভকে স্পর্শ করে তবে দেখাও যে (l, m) বিন্দু একটি বৃভের উপর অবস্থিত হয়। (l, m) বিন্দুর স্বশ্বপথ নির্ণয় কর।
- 30.  $9r^2 + 16y^2 = 144$  সূচিত উপস্থের খে-স্পর্শকটি অক্ষর্যের ধনাত্মক দিকে স্মান অংশ ছিন্ন করে ভাহার সমীকরণ নির্ণিয় করে।

31.  $\frac{x^2}{a^2} + \frac{y^3}{b^3} = 1$ , উপবৃত্টির উপর যে-বিন্তে অঙ্কিত স্পর্কটি অক্ষরের সহিত সমান কোণ উংশন্ত্র করে, সেই বিন্দুর স্থানাহ নির্ণা কর।

[ সংকেত ঃ  $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$  স্পর্শকটি অফর্যের সহিত সমান কোণ উৎপন্ন করে বলিয়া উহার প্রবণতা  $\frac{-x_1b^2}{a^2y_1} = 1$ , এবং  $\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$ ; ইত্যাদি। ]

- 82.  $\frac{x^3}{a^2} + \frac{y^3}{b^2} = 1$ -এর যে-ম্পর্শক্তি অক্ষন্ত্র হইতে সমান অংশ হিন্ন করে তা**হার** সমীকরণ নির্ণয় করে।
- 33. দেখাও যে,  $x^2 + y^2 = 2a^2$  বৃত্ত এবং  $y^2 = 8ax$  অধিবৃত্তের সাধারণ শর্মকটির স্মীকরণ,  $y = \pm (x + 2a)$ .

্লিংকেড: মাধারণ স্পর্লকটি যদি y=mx+c হয়, তবে বৃত্তের ক্ষেত্রে  $c=\pm a\sqrt{2}$   $\sqrt{1+m^2}$  এবং অধিবৃত্তের মেত্রে  $c-\frac{2a}{m}$ : প্রশাস্থাবের উভয়ক্ষেত্রে c-র মান স্মান, অগাৎ  $\frac{2a}{m}=a\sqrt{2}$   $\sqrt{1+m^3}$ ; ইন্থ্যোদি।

- 5'5. বিভিন্ন কনিলের অভিলম্ব-সমূত্রের সমীকর্প:
- (i)  $(x_1, y_1)$  বিক্তে  $x^2 + y^2 = a^2$  বৃত্তের স্পর্গতের সমীকরণ  $xx_1 + yy_1 = a^2$ ; ঐ স্পর্শকের প্রবৃত্তা  $= -\frac{x_1}{y_1}$ .
  - ে  $(x_1,y_1)$  বিন্তুত স্পৰ্কিটির উপর সমভাবে অবস্থিত অভিলম্নের প্রবণতা  $=rac{-1}{x_1}rac{y_3}{y_1};$

ে ঐ বিন্ধৃতে অভিন্তের সমীকরণ,  $(y-y_1)=\frac{y_1}{x_1}(x-x_1)$ :
বা,  $x_1y-x_1y_1=xy_1-x_1y_1$ ; বা,  $xy_1=x_1y$  ··· (1)
টাকা ঃ  $y=mx\pm a\sqrt{1+m^2}$  আন্তর্গতি  $x^2+y^2=a^2-\zeta$ ক

 $\binom{-a}{m\sqrt{1+m^2}}, \binom{a}{\sqrt{1+m^2}}$  বিন্দুতে অপৰ্শ করে বলিয়া ঐ অপৰ্শবিন্দুতে অভিনামের সমীকরণ

$$\frac{x.a}{\sqrt{1+m^2}} = \frac{-ay}{m\sqrt{1+m^2}}$$
 :  $\forall 1, mx+y=0$ .

(ii)  $(x_1, y_1)$  facts  $y^2 - 4ax$  which a surface  $yy_1 = 2x'x + x_1$ ) for Sets was  $e' = \frac{y_1}{y_2}$ .

 $(x_1,y_1)$  িন্দ্র ল মভিলমের প্রবৃত্ত  $=-rac{y_1}{9a}$  রভিত্ত আভিলম্পটির

मधीकरण हरेल ॥—।। —— गृ (० — ८) ,

$$\forall 1, \ y_1 x + 2ay = y_1 \ (2a + x_1). \qquad \cdots \qquad (2)$$

করে ব'লে, বি ম্পূর্ব ম ভাগের মহীকরণ হয়,  $\frac{\Omega_{2}\sigma}{m} + 2av = \frac{2a}{m} \left(2a + \frac{a}{m^2}\right)$  ;

 $\forall 1, m^2x + m^2y = 2am^2 + a$ 

 $\sqrt[3]{n^2y + (x - 2a)m^2 - a} = 0.$ 

অভিন স্বটির প্রবং হ' — —  $\frac{1}{m}$  – m' স্থিতিল, অভিল**েদর সমীকরণটি** ইইবে

$$\frac{y}{-m^{2}a} + \frac{(x-2a)}{m^{2}a} - a = 0;$$

 $71, \quad -y + (x-2a)m' - am'^2 = 0$ 

ব'. y = m'x - 2am - am ° ে আস্থাকা উপা ঐ অভিলব্ধের পাদনিন্দুর স্থানাত্ত হইবে (am'³, -2am').

স্পান্ত ক্রি ক্রি বিষ্ণান্ত সমীকরণ ন বে (বা m'বর) হিছা ও সমীকরণ।
স্থাবা , n, বে (বা m'বর চিন্টি বাবের জল অধিবস্তুটির ভিনটি অভিলয়
পাওয়া বাইবে।

কার্ন ্দ্র না, যে স্মাক্রনীর শ্রেণ না শুনু সার লাভ কোন পদ না পাকার m হর (বা  $m_1$  হর ভিননি সান্দ্র দারি না ইইবা । মহাহে  $m_1$  হর ভিননি মান মাধ্য  $m_2$  শ্রেণ  $m_3$  শ্রেণ  $m_4$  শ্রেণ  $m_4$  শ্রেণ  $m_4$  শ্রেণ  $m_4$  শ্রেণ  $m_4$  শ্রেণ  $m_5$  শ্রেণ  $m_4$  শ্রেণ  $m_6$  শ্রেণ

 $\frac{(iii) \left( x_1, \, y_1, \, \frac{1}{2} x_2 \right) \left( \frac{x_1^2}{a} + \frac{x_1^2}{a^2} + 1 \right) \, x_1^2 \, s_1^2 \, x_2^2 + \frac{1}{2} x_1^2 \, x_2^2 + \frac{1}{2} x_1^2 \, x_1^2 \, x_1^2 + \frac{1}{2} x_1^2 \, x_1^2 \, x_1^2 + \frac{1}{2} x_1^2 \, x_1^2 \, x_1^2 \, x_1^2 + \frac{1}{2} x_1^2 \, x_1$ 

ফুডবাং  $(x_1, y_1)$  বিন্দৃত্ত  $\frac{r^2}{a^2} + \frac{y^2}{b^2} - হ' 5 ত উপস্তৃতির অভিনয়ের সমীকরণ কইবে, <math>y-y_1 = \frac{a^3y_1}{b^2x_1}(x-x_1)$ ;

$$\forall 1, \quad \frac{y - y_1}{y_1 b^2} = \frac{x - x_1}{x_1 a^2} \qquad \cdots \qquad (3)$$

(iv)  $(x_1, y_1)$  বিন্দুতে  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ -% চিত প্রাবৃত্তের অভিলম্ব (iii)-এর নিয়মে অনাবাদে নির্ণৱ করা যায়। উপকৃত্তের স্থীকরণে  $b^2$ -এর স্থানে  $-b^2$  লিথিলেই প্রাবৃত্তের স্থীকরণ পাওৱা যায়। (iii)-এর এম্বর্গত (3)-নম্ব স্থীকরণে  $b^2$ -এর স্থানে  $-b^2$  বসাইনা  $(x_1, y_1)$  বিশ্বতে  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ -এর অভিলম্ভির স্ক্রে হয়,

$$-\frac{y-y_1}{y_1/b^2} = \frac{x-x_1}{x_1/a^2} \qquad \cdots \qquad (4)$$

ভাষ্ সিকান্ত 1. মেন্টেড় ৪-এর মে-টেন্স মানের ভাল  $(a\cos\theta,b\sin\theta)$  বিন্দুর স্থানাস  $\frac{\sigma^2}{a^2} + \frac{\sigma^2}{b^2} = 1$  সমানিবলে সিক্ষ হয়, সেইটেড় ( $\theta\cos\theta,b\sin\theta$ ) বিন্দুতে জি উপবৃধ্বের উপর জনাস্থাত জি বিন্দুতে উপবৃদ্ধির ক্ষমত্বের সমীকরণ

 $\frac{x \cos \theta + y \sin \theta}{a} = 1 \qquad x_1 = a \cos \theta \leq x_2 = b \sin \theta \Leftrightarrow |z| + |z|$ 

 $\frac{d a^* \text{ where } b = \frac{x - a \cos \theta}{b - \sin \theta} = \frac{x - a \cos \theta}{a^2};$ 

 $\forall 1, \quad by \ cosec \ \theta - b^2 = ax \ sec \ \theta - a^2 \ ;$ 

41, ax sec  $\theta$  - by cosec  $\theta$  =  $a^2$  -  $b^2$ .

অসুসিদ্ধান্ত 2. মেতের ৪-৭৫ সর্গ মানের জন্য পরার্থের স্মীবরণে ত=a sec ৪ এবং y=b tan ৪ বসাইলে,

ে বিশ্ব হৈ তি বিশ্ব হ প্রাপ্ত ক্ষেত্র ক্ষেত্র ক্ষেত্র,  $a = 1 + \tan^2 \theta - \tan^2 \theta = 1$ তিপার হন্তি । তি বিশ্বত প্রাপ্তের ক্ষেত্র ক্ষেত্র স্থান্ত, a = 0  $a = 1 + \tan^2 \theta - \tan^2 \theta = 1$ তিপার হন্তি । তি বিশ্বত প্রাপ্তের ক্ষেত্র স্থান্ত,  $a = 0 + \tan \theta = 1$ ;

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}$$

5'6, ভাৰত্ৰ-স্কেল (Differential Co-officient) সাহাত্ৰয় ভাতিত্বতাৰ সমাক্ৰ------

ই গ্রেষ্ট প্রাণিত হত্যাটে যে  $y \cdot f(x)$  এর  $\pm 84$   $(x_1,y_1)$  বিন্তৃতি ফেক্টেড ম্পেল্ডের প্রগত্য  $\frac{44}{60x_1}$  এত্রতে বিন্তৃতি মন্স্থের কর্মতা হত্যের  $\frac{4}{60x_1}$ 

 $-\frac{1}{dy_1/dx_1} = \frac{dx_1}{dx_2} \frac{dx_2}{dx_3} \frac{dx_4}{dx_4} \frac{dx_5}{dx_5} \frac{dx_5}{d$ 

(1) y = And अंद किन्यु भाषा अन्तर्भाष प्रदेश.

.. (x1, y1) from 1 p - 1/21 (5 1 5 195 2 2 454

$$y-y_1=-\frac{y_1}{2a}(x-x_1).$$

(11, 'Agaim, 122 + 400 - 1 or an original mass, and series,

$$2px + 2p = \frac{3q}{\alpha x} = 0$$
,  $x = \frac{dy}{dx} = \frac{2px}{2p} = \frac{x}{qy}$ 

$$\frac{-ax}{dy} = \frac{1}{1y} \frac{yx}{yx} \qquad \frac{x + cx}{ax} = \frac{x_1 - x_1}{ax}$$

. (r1. 91) low t pr + qy + - 1 65 tor + + 184 > 2 400,

$$y - y_1 = \frac{qy_1}{px_1} (s - x_1) \qquad \cdots \qquad \cdots \qquad (2)$$

### উদাহরণমালা

উদা. 1.  $(x_1, y_1)$  বিনুতে  $x^2+y^2+2gx+2fy+c=0$  স্চিত বুতের অভিনম্বের সমীকরণ নির্ণয় কর।

অবকলনাম্ব লইয়া,

$$2x + 2y \frac{dy}{dx} + 2g + 2f \frac{dy}{dx} = 0$$
;

$$71, \quad 2(y+f) \frac{dy}{dx} = -2(x+g) ; \qquad 71, \quad \frac{dy}{dx} = -\frac{x+g}{y+f} .$$

$$\therefore -\frac{dx}{dy} = \frac{1}{-\frac{dy}{dx}} = \frac{y+f}{x+g}; (x_1, y_1) \text{ for all } \frac{-dx_1}{dy_1} = \frac{y_1+f}{x_1+g}.$$

 $(x_1,y_1)$  বিন্দৃতে  $x^2+y^2+2yx+2fy+c=0$ -এর অভিলম্বের স্মীকরণ হইবে,

 $\forall 1, \quad x(y_1+f)-y(x_1+g)+gy_1-fx_1=0.$ 

উদ। 2.  $y^2 = -8x$  অধিবৃত্তির, (2, -4) বিন্দৃতে অভিলম্বের সমীকরণ নির্ণয় কর।

প্রথম পদ্ধতিঃ  $y^2 = -8x = -4.2.x$  বলিরা, উহার নাভিলদের চতুর্থাংশ, a=2.

এখন,  $y^2 = 4ax$ -এর  $(x_1, y_1)$  বিন্দুতে অভিলম্বের সমীকরণ

$$y-y_1=\frac{y_1}{2a}(x-x_1).$$

बंशील, a=2,  $w_1=2$  बंश  $y_1=-4$ ;

নির্ণের অভিলম্বের সমীকরণ

$$y-(-4)=\frac{-4}{2.2}(x-2)$$
;

বিভীয় প্রতিঃ  $y^2 = -8x$ -এর উভয় পক্ষের অবকলনাম্ব লইয়া,

$$2y \cdot \frac{dy}{dx} = -8; \qquad \therefore \quad \frac{dy}{dx} = \frac{-4}{y}; \qquad \therefore \quad \frac{-dx}{dy} = \frac{-y}{4}.$$

$$(2, -4)$$
 विमृत्य,  $-\frac{dy_1}{dx_1} = \frac{-4}{4} = -1$ .

ে. নির্বেথ স্থাকরণ y - (-4) = -1 (x - 2); বা, x + y + 2 = 0.

উদা. 3. প্রমাণ কর যে 3x + 9y - 19 = 0 সরল বেখাটি  $y^2 = 12x$  অধিবজ্ঞের একটি অভিলয়ের সনাকরণ। আধুর ওটির যে-বিন্দুতে প্রদার বেখাটি অভিলয় সেই বিন্দুর ছানান্ধ নির্ণন্ন কর।

এখানে, 
$$y^2 = 12x - 4.3x$$
 আধ্যাত তা না, ভলমের চতুর্থানে,  $a = 3$ ;

রপন, 
$$3x + 9y - 19 + 0$$
 রেকাটির প্রক্রেছা  $- \frac{\pi}{6} = -\frac{1}{2}$ ,  $m = -\frac{1}{2}$  বিষাইনে (1)-এর সমাক্রগটি হন,

$$y = -\frac{1}{3}x - 6 \times -\frac{1}{3} - 8 \times -\frac{1}{3.9}$$
;

উভয় পক্ষকে 9 খারা গুণ করিয়া,

স্মতকাং এই সমাক্রণ, গলন্ত অধিবনের (3m², - 6m) শিক্

तः, (1:2) विकार हाया जनगरि विकार कारता

# প্রখ্যালা 21

व्यक्तित्रस्य मभीकवन निर्नय कतः

- 1. a + y = 40-এর (2, 6) বিশ্বতে;
- 2. x2+y2+4x-Gy+5=0 61(-1,1) (\*\*).\*;
- 3. y2 = 4x-এর (9, 6) বিশতে ;
- 4. y2 = 12x-এর (-3,6) বিন্দুতে;
- 6.  $\frac{\sigma^4}{4} + \frac{\tau^2}{4} = rail < \left(\frac{15}{7}, -\frac{4}{7}\right)^{-\frac{4}{3}}$
- 7. 3x\*+5y\*=17-এর (2, 1) বিদ্যুত ;
- 8. 5x\*+9y\*=81-এর (3, -2) বিন্তে;
- 9. 5-2 8,2-4-01 1,-1, 1-9:54
- 10. 3. 2 4y2 18 0-40 (-4, -3) (4473);

- 11. প্রথম পাদের যে-বিন্দুর ভূজের মান উহার কোটির মানের দ্বিগুণ, সেই বিন্দুতে  $4x^2+5y^2=2$ া-এর অভিলম্বের সমীকরণ নির্ণয় কর।
- 12. প্রমাণ কর যে,  $5x-2y=8\sqrt{2}$  রেখাটি  $\frac{x^2}{25}+\frac{y^2}{9}=1$  উপরুত্তীর একটি অভিলম্ব।
- 13.  $5c=a^2e^2$  হইলে, প্রমাণ কর যে  $\frac{a\,r}{3}+\frac{b\,y}{4}=c$  রেখাটি,  $\frac{r^2}{a^3}+\frac{y^2}{b^3}=1$ -স্চিত উপরুত্তের একটি অভিলম্ব।
- 14. lx + my = 1 রেখাটি যদি  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ -এর একটি অভিলম্ব হয়, তবে প্রমাণ কর যে,

 $\frac{a^2}{l^2} - \frac{b^2}{m^2} = (a^2 + b^2)^2.$ 

- 15. ax + by = a + b রেখাটি যদি  $\frac{x^2}{a} + \frac{y^2}{b^2} = 1$  উপবৃত্তির একটি অভিলম্ব হয়, তবে প্রমাণ কর যে  $a b = \sqrt{2}$ .
- 5'7. কনিকের উপর বহিঃস্থ বিন্দুবিশেষ হইতে অক্ষিত প্রপর্কের সংখ্যাঃ
- (i)  $x^2+y^2=a^2$  বুত্তের যে-কোন স্পর্শকের সমীকরণ,  $y=mx+\alpha\sqrt{1+m^2}$ . স্পর্শকটি  $(x_1,\ y_1)$ -ফুটি ত বহিঃস্থ একটি বিশেষ বিন্দুগামী হ ইলে, সমীকরণটি হয়,

$$y_1 = mx_1 + a\sqrt{1 + m^2}$$
;  $\exists |, (y_1 - mx_1)^2 = a^2(1 + m^2)$ ;

 $\forall 1, (x_1^2 - a^2)m^2 - 2x_1y_1m + y_1^2 - a^2 = 0$ ;

ইহা m-এর একটি দ্বিঘাত স্মাকরণ বলিয়া m-এর তুইটি মান পাওয়া যাইবে। m-এর এইরপ প্রত্যেক মানের জন্ম একটি করিয়া স্মাকরণ পাওয়া যাইবে বলিয়া  $(x_1, y_1)$  বিন্দু হইতে বৃত্তির উপর তুইটি স্পূর্শক অস্ক্রন করা যাইবে।

(ii) y=mx+a/m রেখাটি m-এর সকল মানের জন্ম  $y^2=4ax$  অধিরুতের একটি স্পর্শক হইবে। উহা  $(x_1,y_1)$ -স্চিত কোন বহিঃস্থ বিদ্যুগামী হইলে, সমীকরণটি হইবে

 $y_1 = mx_1 + a/m$ ; বা,  $m^2x_1 - my_1 + a = 0$ ; ইহা m-এর ছিঘাত সমীকরণ বলিরা m-এর ছুইটি মান থাকিবে এবং m-এর এটরপ চুইটি মানের জন্ম  $(x_1, y_1)$  বিন্দু হইতে  $y^2 = 4ax$ -এর উপর ছুইটি স্পর্শকের সমীকরণ পাওয়া যাইবে।

অভএব, বহিঃস্থ বিন্দু  $(x_1,\ y_1)$  হইতে  $y^2=4ax$  **অধিবৃত্তের উপর তুইটি** স্পর্শক অন্ধন করা যাইবে। (iii)  $y=mx+\sqrt{a^2m^2+b^2}$ , রেখা m-এর সকল মারের জন্ম  $\frac{a^2}{a^2}+\frac{\eta^2}{b^2}=1$  উপরুত্তের স্পত্র হল বলিয়া উঠা যদি বহিংগ  $(x_1,y_1)$  বিন্দুরাখী হয়, তবে m-সংবলিত ভিয়ন্ত্রপ বিঘাত স্মাকরণটি পাজের বায়,

$$y_1 = mx_1 + \sqrt{a^2m^2 + b^2}$$
;  $(y_1 - m_1x_1)^2 = a^2m^2 + b^2$ ;  $(x_1^2 - a^2)m^2 - 2x_1y_1m + y_1^2 - b^2 = 0$ .

এই ছিঘাত স্থাকরণ হইতে m-এর ছুইটি মান এবং এইরূপ প্রত্যেকটি মানের জন্ম একটি স্পেশকের স্থাকরণ পাওয়া যাইবে। স্থান্থনা, বহিঃস্ক বিন্দু  $(x_1,y_1)$  হইতে  $x_0^2+y_0^2-1$  উপার্ব্রের উপার দুইটি স্পেশক একন করা যাইবে।

(iv) অন্তর্মপে,  $y \cdot mx + \sqrt{a^2m^2 - h^2}$  স্থাকরণটি সর্বনা  $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ পরাবৃদ্ধের স্পান্ধক স্ঠিত করে ব্রিছা উহা যদি বহিংস্ক  $(x_1,y_1)$  বিন্দৃগামী হয়, তবে m-সংবলিত ছিঘাত সমীকরণটি হয়

$$y_1 = mx_1 + \sqrt{a^3m^2 - b^2}$$
;  
 $\forall i, (y_1 - mx_1)^2 = a^2m^2 - b^2$ ;  
 $\forall i, (x_1^2 - a^2)m^2 - 2x_1y_1m + y_1^2 + b^2 = 0$ ,

ইতা হটতে n. বে ছইটি মান এবং ঐক্লপ প্রশ্যেনটি মানের একটি স্পর্শকের সমীকরণ পাওয়া যাইবে।

স্থাতরাং, বৃহিন্ত  $(\alpha_1, \eta_1)$  বিন্দু হাইতে  $\frac{\alpha^2}{\alpha^2} - \frac{\eta^2}{b^2} = 1$  পরাবৃত্তের উপর তৃইটি স্পার্শক আছন করা যাইবে।

- আ চন্দ্র, (i) ২ইটে (iv) প্রথ মালোচনার দিছাস্থ এই হয় গে, ব**হিঃছ নিম্পু** বিশেষ হইটে প্রটেড্যকপ্রকার কনিকের উপর তুইটি করিয়া স্পর্শক অঙ্কন করা যায়।
- 5'8. লালেটেকলী স্প্ৰাক্তিন তেলেলি-চুল স্পাৰ্-পুল (Locus of the point of intersection of two mutually perpendicular tangent) :
  - (1) भ<sup>2</sup> = 4ar अशि १८ ३४ ८१ ८०% स्पर्वेडकत स्थितिहरू

$$y = mx + \frac{a}{m}$$
:  $\forall 1, m^2x - my + a = 0.$ 

ইচ m ফংবলিত একটি বিঘাত সমাকরণ বনিত এই সমাকরণ হটতে m-এর

ছুইটি মান এবং এইরূপ প্রত্যেকটি মানের জন্ম একটি স্প্রাকরণ পাওয়া যাইবে। m-এর মান ছুইটি যদি  $m_1$  ও  $m_2$  হ $\gamma$ , তবে স্প্রটভঃ,

$$m_1 m_2 = \frac{a}{x} .$$

কিন্ত  $m_1$  ও  $m_2$  প্রবণতাসম্পন্ন স্পর্শক-ত্ইটি যদি (h,k) বিন্দৃতে লম্বছেদী হয়, তবে  $m_1m_2=-1$  ইইবে।

$$\therefore m_1 m_2 = -1 = \frac{a}{h};$$

$$\exists 1, a = -h; \exists 1, h + a = 0.$$

স্তরাং, অধিবৃত্তের লম্বত্তেনী স্পর্শক-যুগলের ছেদ্বিন্দু (h, k)-এর দ্ঞারপথের স্মীকরণ হইবে x+a=0.

স্পষ্টতঃ, ইহা অধিরত্তির নিয়ামকের সমীকরণ।

(ii) 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
-স্চিত উপর্ত্তের যে-কোন স্প্রিকর স্থীকরণ,

$$y = mx + \sqrt{a^2m^2 + b^2}$$
;  $\forall 1$ ,  $(y - mx)^2 = a^2m^2 + b^2$ ;  $\forall 1$ ,  $(a^2 - x^2)m^2 + 2xym + b^2 - y^2 = 0$ .

ইহা m-সংবলিত দ্বিগত স্মাকরণ বলিরা, m-এর তুইটি মান, ধরা যাক,  $m_1$  ও  $m_2$  পাওয়া যাইবে। অধিকন্ত m-এর এই দ্বিগত স্মীকরণ হইতে দেখা যায়,

$$m_1 m_2 = \frac{b^2 - y^2}{a^2 - x^2}.$$

এখন,  $m_1$  '3  $m_2$  প্রবণতা-সম্পন্ন ম্পর্লক-মুগল যদি  $(h,\ k)$  বিন্দুতে লম্বচেছদী হয়, তবে,  $m_1m_2=-1={b^2-k^2\over a^2-k^2}$  হইবে।

স্তরাং, উপরত্তের লম্বচ্ছেদী স্পর্শক-যুগলের  $(h,\ k)$  ছেদ্বিদ্বুর স্ঞারপথের স্মীকরণ হইবে  $\frac{b^2-y^2}{a^2-x^2}=-1$  ;

$$\forall 1, \quad -a^2 + x^2 = b^2 - y^2; \quad \forall 1, x^2 + y^2 = a^2 + b^2.$$

স্পষ্টতঃ, ইহা একটি একটি বৃত্ত, যাহার কেন্দ্র উপবৃত্তের কেন্দ্রে এবং ব্যাসার্ধ  $\sqrt{a^2+b^2}$ . ইহাকে **নিয়ামক বৃত্ত** বলে।

(iii) উপরত্তের স্পর্শকের সহীকরণে  $b^2$ -এর স্থান  $-b^2$  লিখিলে, পরাবৃত্তের স্পর্শক এবং তাহার বেলায় লম্পচ্চেদী স্পর্শক-মুগলের ছেদবিন্দুর সঞ্চারপথ  $x^2+y^2=a^2-b^2$  দ্বারা স্থাচিত হয়।

 $a^2>b^2$  হইলে  $x^2+y^2=a^2-b^2$  প্রাবৃত্তির নিয়ামক বৃত্ত স্চিত করে যাহার কেন্দ্র প্রাবৃত্তের কেন্দ্র এবং ব্যাসার্ধ  $\sqrt{a^2-b^2}$ ;  $a^2< b^2$  হইলে নিয়ামক বৃত্তি কাল্পনিক হইয়া পড়ে। আর,  $a^2=b^2$  হইলে  $x^2+y^2=0$  হয় বলিয়া নিয়ামক বৃত্তির ব্যাসার্ধ শৃত্য হইয়া যায় এবং সেই কারণে উহা তথন বিন্দুর্ত্তে (point-circle) পর্যবৃদিত হয়।

(iv) উপরুত্তের লম্বচ্ছেদী স্পর্শক-যুগলের ছেদবিন্দুর স্ঞারপথ-সূচক সমীকরণে  $b^2$ -এর স্থলে  $a^2$  লিখিলে বুতের লম্বচ্ছেদী স্পর্শক-যুগলে ছেদবিন্দুর স্ঞারপথ-সূচক সমীকরণটি হয়  $\mathbf{x}^2 + \mathbf{y}^2 = 2\mathbf{a}^2$ .

জ্ঞ ব্য ঃ (ii)-এর নিয়মে (iii) ও (iv)-এর সমীকরণগুলি সরাস্ত্রি প্রকাশ করা যায়।

5·9. উপ-স্পাৰ্শক ও উপ-অভিলম্ব (Subtangent and subnormal) :

সংস্থেতা ঃ কোন কনিকের কোন বিন্দুতে অন্ধিত স্পর্শক এবং তাহার স্পর্শনিব্দুর কোটি x-অক্ষের যে-অংশ ছিন্ন করে সেই অংশটিকে উল্লিখিত বিন্দুর উপ-স্পর্শক (subtangent) বলে।

কোন কনিকে উপরিস্থ একটি বিন্দৃতে ঐ বিন্দৃগামী স্পর্শকের উপর লম্ব এবং ঐ বিন্দৃর কোটি  $\alpha$ -অক্ষের যে-অংশ ছিন্ন করে সেই অংশটিকে উল্লিখিত বিন্দূর উপ-অভিলক্ষ (subnormal) বলে।

উপ-স্পর্শক ও উপ-অভিলম্ব সংক্রান্ত কয়েকটি প্রয়োজনী তথ্যকে নিম্নে উপপাতের আকারে প্রমাণ করা যাইতেছে।

(1) অধিবৃত্তের উপর অবস্থিত কোন বিন্দু উপ-স্পর্শক শীর্ষবিন্দুতে সমশ্বিশণ্ডিত হয় (Subtangent at a point of a parabola is bisected at the vertex):

 $P(x_1, y_1)$  বিন্দুতে অন্ধিত স্পর্শক এবং P বিন্দুর PN কোটি x-অন্ধিক বথাক্রমে T ও N বিন্দুতে ছেদ করিয়াছে। অতএব, P বিন্দুর উপ-স্পর্শক TN. অধিবৃত্তের সমীকরণ  $y^2 = 4ax$  ধরিয়া PT স্পর্শকের সমীকরণ  $yy_1 = 2a(x+x_1)$  এবং x-অন্দের



সমীক্রণ y=0 হয়; ইহাদের সমাধান করিলে,  $0=2a(x+x_1)$ ; বা,  $x=-x_1$  পাওয়া যায়। স্থতরাং, শীর্ষবিন্দু A হইতে  $\overline{\rm AT}=x=-x_1$  এবং  $\overline{\rm AN}=x_1$ ; অতএব সাংখ্যমানে  $\overline{\rm AT}={\rm AN}$ , অর্থাং শীর্ষবিন্দু A-তে  $\overline{\rm TN}$  উপ-স্পর্শক সমন্বিখণ্ডিত।

(2) অধিরত্তের উপরিস্থ যে-কোন বিন্দুর উপ-অভিলম্বের দৈর্ঘা নাভিলম্বের অর্ধেকের সমান (Subnormal at a point of a Parabola is equal to the semi-latus rectium) ?



 $y^2 = 4ax$  অধিবৃত্তে  $P(x_1, y_1)$  বিন্ত্ত অভিলম্বের সমীকরণ  $y - y_1 = -\frac{y_1}{2a}(x - x_1)$ . অভিলম্বতি y = 0 বা, x-অক্ষকে G বিন্তুত ছেদ করিয়াছে।  $\therefore 0 - y_1 = -\frac{y_1}{2a}(x - x_1)$  হইতে G বিন্তু ভুজ x পাওয়া যাইবে। স্পষ্টতঃ,

 $x-x_1=2a$ ; বা,  $x=2a+x_1$ . P বিন্দু কোটি PN বলিয়া,

$$NG = AG - AN = 2a + x_1 - x_1 = 2a = \frac{1}{2}$$
 AT Gera !

#### উদ্গাহরণমালা.

উদা. 1. (1, 6) বিন্দু হইতে  $y^s = 20x$  অধিবৃত্টির স্পর্শক্ষ্যের স্মীকরণ নির্ণর কর।

 $y^2=20x=4.5.x$ ; অতএব এথানে নাভিলম্বের চতুর্থাংশ, a=5. স্পষ্টতঃ, m-এর সকল মানের জন্ম, y=mx+5/m অধিবৃত্তটির স্পর্শকের সমীকরণ। এই স্পর্শক (1,6) বিন্দুগামী বলিয়া,

6 = m + 5/m;  $\forall 1, m^2 - 6m + 5 = 0$ ,  $\forall 1, (m - 5)(m - 1) = 0$ .

.. m=5 বা 1.

 $\therefore$  (1, 6) হইতে  $y^2 = 20x$ -এর উপর অঙ্কিত স্পর্শক-মুইটির সমীকরণ হইবে,

 $y = 5x + \frac{5}{5}$ ;  $\forall 1, y = 5x + 1,$  $y = 1.x + \frac{5}{5}$ .  $\forall 1, y = x + 5$ .

উদা. 2. (-2, -3) বিন্দু হইতে  $2x^2 + 3y^2 = 5$  উপবৃত্তটিতে অঙ্কিত স্পর্শক-গুলির সমীকরণ নির্ণয় কর এবং স্পর্শবিন্দুগুলিও নির্ণয় কর।

উপবৃত্তটির সমীকরণ  $\frac{x^3}{\frac{5}{2}} + \frac{y^3}{\frac{5}{3}} = 1$  রূপে লিখিলে দেখা যায়,  $a^2 = \frac{5}{2}$  এবং  $b^2 = \frac{5}{3}$ .

এখন m-এর সকল বাস্তব মানের জন্ট  $\eta=mx+\sqrt{5}m^2+5$   $\cdots$  (1) উপবৃত্টির স্পর্শক। এই স্পর্শক (-2, -3) বিদুগামী হইলে,

$$-3 = -2m + \sqrt{\frac{5}{2}}m^2 + \frac{5}{3}$$
;  $\overline{4}$ ,  $(2m - 3)^2 = \frac{5}{2}m^2 + \frac{5}{3}$ ;

$$m = \frac{72 \pm \sqrt{(-72)^2 - 4.9.44}}{18} = \frac{7^2 \pm \sqrt{3600}}{18}$$

$$= \frac{72 \pm 60}{18} = \frac{22}{3}, \frac{2}{3}, \dots$$
 (2)

. (1) এবং (2) হটতে (-2, -3) বিন্দু হইতে উপবৃত্তে অঙ্কিত স্পর্শকদ্বয়ের সমীকরণ

$$y = \frac{22}{8}x + \sqrt{\frac{5}{2}(\frac{22}{8})^2 + \frac{5}{8}} = \frac{22}{8}x + \frac{35}{8},$$

$$\exists 1, \quad \exists y = 22x + 35. \qquad \dots$$
 (3)

**স্পর্শ বিন্দুর স্থানান্ধ** সমীকরণ (3) এবং প্রদত্ত উপবৃত্তের সমীকরণ **হইতে** (3)-এর স্পর্শবিন্দুর ভূজ-নির্ণায়ক  $2x^2+3(\frac{9}{8}^2x+\frac{5}{8}^5)^2=5$ ,

$$\forall 1, \quad \frac{490}{8}x^2 + \frac{1540}{8}x + \frac{1210}{8} = 0,$$

বা,  $49x^2 + 154x + 121 = 0$ , বা,  $(7x + 11)^2 = 0$  সমীকরণটি পাওরা যায়।

$$x = -\frac{11}{7}; \quad y = \frac{29}{8}(-\frac{11}{7}) + \frac{35}{8} = \frac{1}{7}.$$

$$3y = 22x + 35$$
 ম্পর্শকটির ম্পর্শবিদ্য  $(-\frac{1}{7}, \frac{1}{7})$ .

এইরপে, 3y = 2x + 5 স্পর্শকটির স্পর্শবিদ্য (-1, 1).

#### বিকল্প পদ্ধতিঃ

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  উপরত্তের খে-কোন স্পার্শক  $y = mx + \sqrt{a^2m^2 + b^2}$ -এর স্পার্শক্

$$\left(\frac{-a^2m}{\sqrt{a^2m^2+b^2}}, \frac{b^2}{\sqrt{a^2m^2+b^2}}\right)$$

... (৪)-চিক্সিত সমীকরণ-স্চিত স্পাশকের স্পাশবিন্দু হইবে

$$\left(\frac{-\frac{5}{2}\cdot\frac{2}{3}}{\sqrt[3]{3}\cdot(\frac{2}{3}\cdot\frac{2}{3})^2+\frac{5}{3}},\frac{\frac{5}{3}}{\sqrt[3]{\frac{6}{3}\cdot(\frac{2}{3}\cdot\frac{2}{3})^2+\frac{5}{3}}}\right),$$

$$\overline{q}_{1}, \quad \left( \frac{-\frac{5.22}{3}}{\frac{3}{3.5}}, \frac{5}{\frac{3}{3.5}} \right), \quad \overline{q}_{1}, \quad \left( -\frac{11}{7}, \frac{1}{7} \right);$$

এবং (4) চিহ্নিত স্থীকরণ স্পর্শবিন্দু ত্ইবে

$$\begin{pmatrix} -\frac{5}{2},\frac{8}{3} & \frac{5}{3} \\ \sqrt{\frac{5}{2}},(\frac{2}{3})^2 + \frac{5}{3} & \sqrt{\frac{2}{2}},\frac{\frac{2}{3}}{\frac{2}{3}} \end{pmatrix} \ \forall \ \begin{pmatrix} -\frac{5}{3}, & \frac{5}{3} \\ \frac{5}{3}, & \frac{5}{3} \end{pmatrix}$$

জতএব, 3y = 22x + 35 স্পর্শকটির স্পর্শবিন্দু  $(-\frac{1}{7}, \frac{1}{7})$  এবং 3y = 2x + 5 স্পর্শকটির স্পর্শবিন্দু (-1, 1).

M<sup>1</sup>

উদা. 3. প্রমাণ কর যে, অধিরত্তের উপরিস্থ কোন বিন্দুতে অঙ্কিত স্পর্শকের যে-অংশ অধিরত্তন্থ ঐ বিন্দু এবং নিয়ামক ছারা সীমাবদ্ধ, সেই অংশটি নাভিত্তে এক সমকোণ উৎপন্ধ করে।

ধরা যাক,  $y^2 = 4ax$  অধিবৃত্তটি উপরিস্ত P বিন্দুর স্থানাস্ক  $(a\iota^2, 2a\iota)$  এবং ঐ বিন্দুতে অন্ধিত স্পর্শকটি নিয়ামক রেখাটিকে Z বিন্দুতে ছেদ করে। স্পষ্টতঃ, নাভি S বিন্দুর স্থানাম্ক (a,0). এখন  $y^2 = 4ax$ -এর উপরিস্থ

Z A S (a,0)

$$y.2at = 2a(x + at^2);$$

(at2, 2at) বিন্তুত অন্ধিত ম্পর্ণকের স্মীকরণ

$$\overline{4}, \quad ty = x + at^2$$

এবং নিয়ামকে স্থীকরণ x=-a; এই ছুইটি স্থীকরণ স্মাধান করিলে,

Z-এর কোটি 
$$y=\frac{x+at^2}{t}=\frac{-a+at^2}{t}=\frac{a(t^2-1)}{t}$$
 এবং ভূজ  $x=ty-at^2=\frac{t\times a(t^2-1)}{t}-at^2$ 

ম্ভরাং z-এর স্থানাফ  $\left\{-a, \frac{(\iota^2-1)}{t}\right\}$  এবং S-এর স্থানাফ (a,0) বলিয়া,

ত্তি বিশ্ব প্ৰবিশ্ব 
$$m_1 = \frac{a(t^2-1)}{t} - 0$$
  $= -t^2-1$ 

এবং P-এর স্থানান্ধ (at2, 2at) ও S-এর স্থানান্ধ (a, 0) বলিয়া,

SP-এর প্রবণতা 
$$m_3 = \frac{2at - 0}{at^2 - a} = \frac{2t}{t^2 - 1}$$

এখন, বেহেতু, 
$$m_1 m_2 = -\frac{t^{-1} - 1}{2l} \times \frac{2t}{t^2 - 1} = -1$$
.

সেইহেডু SP ও SZ পরম্পরের উপর লম্ব অর্থাং ∠PSZ = 90°.

অতএব, P বিন্তে অঙ্কিত স্পর্ণকের P বিন্তু ও নিয়ামক দারা সীমাবদ্ধ PZ অংশ নাভি S বিন্তুতে এক সমকোণ উৎপন্ন করে।

টীকাঃ বিপরীতক্রমে, অধিঃতত্ত P বিন্দু হইতে নিয়ামকে Z বিন্দু পর্যন্ত অঙ্কিত PZ রেখা যদি নাভিত্তে এক সমকোণ উৎপ্রা করে, তবে প্রমাণ করা যায় যে, PZ রেখা P বিন্দুতে অধিরত্তের স্পর্শক। এক্ষেত্রে ৪ ২ইতে নিয়ামক পর্যন্ত লম্বদূর্ত্ব ৫ এবং ৪৮ ⊥ ৪৮ বাল্যা z বিন্দুর স্থানাস্ক  $(-a_1y_1)$ ধরা যার।  $\overline{SP}$  ও  $\overline{SZ}$  প্রবণতার গুণফল =-1 বলিরা  $y_1$ -এর মান নির্ণয় করা যাইবে এবং তাহার পর অনারাদে  $\overline{PZ}$ -এর সমীকরণ নির্ণয় করিলে দেখা যাইবে ধে, উহা অধিবৃত্তটির একটি স্পর্শক।

উদা. 4. প্রমাণ কর যে, অধিবৃত্তস্থ যে-কোন বিন্দুতে অঙ্কিত অভিলম্ব ঐ বিন্দুর নাভি-দূরহ এবং অধিবৃত্তের অক্ষের সহিত সমান কোণ উৎপন্ন করে।

 $y^2=4ax$  অধিবৃত্তের উপরিস্থ P চিহ্নিত  $(x_1,y_1)$  বিন্দুতে অন্ধিত অভিলয় PG যেন অধিবৃত্তের অক্ষকে G বিন্দুতে ছেদ করে। P হইতে অধিবৃত্তির নাভি S (a,0)-এর দূরত্ব SP, অধিবৃত্তি শীর্ষবিন্দু যেন A.

প্রমাণ করিতে হইবে যে PG অভিলম্বটি PS ও S3 অক্ষের সহিত সমান কোণ উৎপন্ন করে অর্থাৎ  $\angle$  SPG =  $\angle$  SGP,  $(x_1, y_1)$  বিদ্যুতে অভিনম্ব বলিয়া

PG-এর সমীকরণ,



 $y-y_1=-rac{y_1}{2a}\left(x-x_1
ight)$  এবং SG অক্ষের সমীকরণ y=0.

এই ছুইটিকে সহ-স্মীকরণরূপে স্মাধান করিলে,  $0-y_1=-rac{y_1}{2a}\left(x-x_1
ight)$ 

বা,  $x-x_1=2a$ ; বা,  $x=2a+x_1$  হয়।

- $\therefore$  G-এর ভূজ  $x=2a+x_1$  এবং কোটি y=0 এবং উহার স্থানান্ধ (2a+x,0).
- ে SG = AG AS =  $2a + x_1 a = a + x_1$ .
  আবার, P বিন্দুর ভূজ =  $x_1$  বলিয়া, SP =  $a + x_1$ .
- ∴ SG = SP এবং সেই কারণে ∠SPG = ∠SGP.

ইহা হইতে প্রমাণিত হয় যে P বিন্তে অন্ধিত PG অভিনন্ধটি P-এর নাভিদ্রত্ব PS ও অধিবৃত্তের অক্ষ SZ-এর সহিত সমান কোণ উৎপন্ন করে।

উদা. 5. প্রমাণ কর যে একটি অধিবৃত্তের বহিঃস্থ কোন বিন্দু হইতে অঙ্কিত স্পর্শক্ষুণাল নাভি বিন্দুতে সমান কোণ উৎপন্ন করে।

 $y^2=4 \, m$  অধিবৃত্তের উপরিস্থ  $P(at_1,\, 2at_1)$  এবং  $Q'at_2^2,\, 2at_2)$  বিন্দৃতে অন্ধিত স্পর্শক-ছুইটি যেন বহিঃস্থ T বিন্দৃতে ছেদ করে। অধিবৃত্তটির নাভি যেন T হিন্দৃতি ভিন্দ করে। অধিবৃত্তটির নাভি যেন T

প্রমাণ করিতে হইবে যে ZTSP = ZTSQ

তাহা হইলে P বিন্তে সংগতির স্থীকরণ  $t_1y=x+at_1^2$  ... (1)

এক Q বিন্তে স্পর্কের সমীকরণ  $t_2y = x + at_2^2$  ... (2)

(1) ও (2)-কে সহস্মীকরণ হিসাবে স্মাধান করিলে

$$(t_1 - t_2) y = a(t_1 - t_2) = a(t_1 - t_2)(t_1 + t_2);$$

$$\forall t_1 = a(t_1 + t_2);$$

এবং  $x = t_1 y - at_1^2 - t_1 a(t_1 + t_2) - at_1^2 = at_1 t_2$  পাওলা যায়! সূত্রাং  $T - \{a + a \}$  যান্য যান্য  $\{at_1 t_2, a(t_1 + t_2)\}$ 

ं. 
$$\overrightarrow{SP}$$
-এর স্মীকরণ  $y - 2at_1 = \frac{2at_1 - 0}{at_2^3 - a}(x - at_1^2)$   
स्रा  $(t_1^2 - 1)y - 2at_1^3 + 2at_1 = 2t_1x - 2at_1^3$   
स्रा  $(t_1^3 - 1)y - 2t_1x + 2at_1 = 0$  ...

T{at1t2, a(t1+t2) ইইটে SP বা (3)-এর উপর লম TK

$$= \frac{o(t^1 + t_2)(t_1^2 - 1) - 2t_1at_1t_2 + 2at_1}{\sqrt{(t_1^2 - 1) + 4t_1^2}}$$

$$=\frac{a(t_1^2+t_1^2t_9-t_1-t_3-2t_1^2t_9+2t_1}{t_1^2+1}$$

$$= a(t_1^8 - t_1^2t_2 + t_1 - t_0) = \frac{a\{t_1^2(t_1 - t_2) + 1(t_1 - t_2)\}}{t_1^8 + 1}$$

$$= \frac{a(t_1 - t_2)(t_1^2 + 1)}{(t_1^2 + 1)} = a(t_1 - t_2).$$

अरूक्टन, (मर्थान योष (र SQ-এর সমীকরণ

$$(t_2^2 - 1)y - 2t_2x + 2at_2 = 0 ;$$

এবং T বিন্দু হইতে ইহার উপর

লম্ম 
$$= a(t_2 - t_1) = -a(t_1 - t_2)$$

ं. नांश्यामारन TK=TL. बट्धन △TSK≅ △TSL.

ে ZTSK=ZTSL, অর্থাং ZTSP=ZTSQ.

স্ত্রাং, TP ও TQ স্পর্শক নাভি বন্তে দামান কোণ উংপন্ন করে।

উদা. 6. প্রমাণ কর যে, কোন উপবৃত্তের স্পর্শকের উপর নাভিদ্য হইতে অঙ্কিত লম্বদূরত্বের গুণফল উপবৃত্তির উপাক্ষাধের বর্গপরিমাণ। উপবৃত্তের সমীকরণ  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$  এবং উহার নাভিদ্য  $\mathbf{S}(-ae,0)$  ও  $\mathbf{S}'(ae,0)$  হইলে ঐ নাভিদ্য হইতে যে-কোন স্পর্শকের উপর লম্বদ্যত্ত যেন যথাক্রমে p ও p'.

প্রমাণ করিতে হইবে বে  $pp'=b^2$ .

উপবৃত্তির খে-কোন স্পর্গকের সমীকরণ  $y=mx+\sqrt{a^2m^2+b^2}$ 

 $\cdot\cdot\cdot$  (1)-এর উপর S( -ae, 0) হইতে লক্ষের দ্বস্থ  $p=\frac{-mae+\sqrt{a^2m^2+b^2}}{\sqrt{1+m^2}}$ 

অমুরূপে, (1)-এর উপর S'(ac, 0) ইইতে লম্বের দূরত্ব p'

অর্থাৎ উপবৃত্তের স্পর্শকের উপর নাভিষয় হইতে লম্মূর ছ-ছইটির গুণফল pp' = উপবৃত্তের উপাক্ষার্থের বর্গ  $b^a$ .

উদা. 7. প্রমাণ কর, যে-কোন স্পর্শকের উপর নাভিদ্য হইতে অন্ধিত লম্বের পাদবিন্দুর স্থারপথ ঐ উপবৃত্তের সহায়ক বৃত্ত।

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 উপযুত্তির বে-কোন স্পর্শকের সমীকরণ  $y = mx + \sqrt{a^2m^2 + b^2}$  ... (1)

উপরুত্তটির নাভি (-ae, 0) হইতে (1)-এর উপর লম্বের সমীকরণ

$$y - 0 = -\frac{1}{m}(a + ac)$$
;  $\forall 1, my + c = -ae$  ... (2)

(1) 
$$\overline{\xi}\overline{\xi}\overline{\zeta}\overline{\zeta}, (y-mx)^2 = a^3m^2 + b^3;$$
  
 $\overline{\zeta}$ ,  $y^9 + m^2x^2 - 2mxy = a^3m^2 + b^3$  ... (3)

এবং (2) হইতে,  $(my+x)^2 = a^2 e^2$ ;

$$\forall 1, \quad m^2 y^2 + x^2 + 2mxy = a^2 e^2 \qquad \cdots \qquad \cdots$$
 (4)

(3) 
$$\Theta$$
 (4) (যাগ কৰিয়া,  $(1+m^2)y^2 + (1+m^2)x^2 = a^2m^2 + a^2e^2 + b^2$ 

$$= a^2m^2 + a^2, \frac{a^2 - b^2}{a^2} + b^2 \quad \left[ \because e^2 = \frac{a^2 - b^2}{a^2} \right]$$

$$= a^2(1+m^2);$$

$$\therefore x^3 + y^2 = a^2.$$

ম্পষ্টতঃ ইহা এমন একটি বৃত্ত, যাহার কেন্দ্র  $(0,\ 0)$  এবং ব্যাসার্ধ a ; এক্ষেত্রে, উপবৃত্তের কেন্দ্র  $(0,\ 0)$  এবং a পরাক্ষার্ধের সমান। স্কৃতরাং,  $x^2+y^2=a^2$  উপবৃত্তির **সহায়ক বৃত্ত।** 

টীকাঃ উপরত্তের কেন্দ্রকে কেন্দ্র এবং উহার পরাক্ষার্ধের সমান ব্যাসার্ধ লইয়া অঞ্চিত বৃত্তকে ঐ উপরত্তের সহায়ক বৃত্ত বলে।

# প্রথমালা 22

- 1. (3, 14) বিন্দু হইতে  $y^2=32x$ -এর উপর অন্ধিত স্পর্শকের স্মীকরণ নির্দির কর।
- 2. a-এর মান কত হইলে, y=2x+3 রেখাটি  $y^2=4ax$  অধিবৃত্টিকে ম্পর্শ করিবে ?
- 3. দেখাও যে,  $y=x+\sqrt{5}.6$  রেখাটি  $2x^2+3y^2=1$  উপবৃত্তটির একটি স্পার্শক। উহার স্পর্শবিন্দু নির্ণয় কর।
- 4. m-এর মান কত হইলে, 4y=mx+8 রেখাটি  $15x^2+16y^2=40$  উপরুত্তিকৈ স্পর্শ করিবে ? স্পর্শকবিন্দুর স্থানাম্ব নির্দিয় কর।
- 6. 4x² + 9y² = 72-এর উপর (3, 6) বিন্দু হইতে অঙ্কিত স্পর্শকের সমীকরণ ও স্পর্শবিন্দুর স্থানান্ধ নির্ণয় কর।
- 7.  $y^2 = 4ax$  অধিবৃত্তের উপরিস্থ একটি বিন্দু P হইতে অন্ধিত সরল রেখ।
  নিয়ামক রেখাকে z বিন্তুতে ছেদ করিয়াছে। PZ যদি অধিবৃত্তের নাভিতে এক
  সমকোণ উৎপন্ন করে, তবে দেখাও যে, PZ রেখাটি ঐ অধিবৃত্তের একটি স্পার্শক।
- প্রমাণ কর যে, অধিবৃত্তের যে-কোন স্পর্শকের উপর নাভি হইতে অঙ্কিত
  লাম্বের পাদবিন্দ্র সঞ্চারপথ ঐ অধিবৃত্তের শার্ধবিন্দৃগায়ী স্পর্শক।

ি সংকেত ঃ  $y^2=4ax$ -এর স্পর্শক  $y=mx+\frac{a}{m}$ -এর উপর লম্বরেখার প্রবণত।  $=-\frac{1}{m}$ ; নাভি (a,0) বিন্দুগামী বলিয়া, উহার সমীকরণ  $y-0=-\frac{1}{m}\left(x-a\right)$ ; স্পর্শক ও এই লম্বরেখার ছেদবিন্দুর ভূজ নির্ণয় করিয়া প্রশ্ন সমাধান কর। ]

- 9. প্রমাণ কর যে, যে-কোন অধিবৃত্তের নাভিলম্বের প্রান্তম্বরে অন্ধিত স্পর্শক-যুগল ঐ অধিবৃত্তের নিয়ামক ও অক্ষের ছেদবিন্দুতে লম্বভাবে মিলিত হয়।
- 10. একই শীর্ধবিন্

  কুক্ত ছইটি সমান অধিবৃত্তের অক্ষ-ছইটি যদি পরস্পারের উপর

  কর্ম হয়, তবে প্রমাণ কর যে, উহাদের সাধারণ স্পর্ণক প্রত্যেকটি অধিবৃত্তকে উহার

  নাভিলক্ষের একপ্রান্তে স্পর্শ করে।

্নিংকেতঃ সমান বলিয়া অধিবৃত্ত-চুইটির নাভিলম্বের মান সমান; উহাদের অক্ষ প্রস্পরের উপর লম্ব বলিয়া একটি  $y^2=4ax$ , অপরটি  $x^2=4ay$  আকারের হইবে। প্রথমটির নাভিলম্বের একপ্রান্তের স্থানান্ধ (a,-2a), দ্বিতীয়টির নাভিলম্বের একপ্রান্তের স্থানান্ধ (a,-2a), বিন্দৃটিতে বিতীয়টির স্পর্শকের সমীকরণ নির্গ্য করিয়া প্রশ্ন সমাধান কর। ]

11. প্রমাণ কর যে, কোন অধিবৃত্তের উপরিস্থ যে-বিন্দুর ভূজ ও কোটির মান সমান সেই বিন্দুগামী অভিলম্ব জ্যানটি ঐ অধিবৃত্তের নাভিতে এক সমকোণ উৎপন্ন করে।

[সংক্তেঃ প্রদত্ত বিন্দু P-এর স্থানাম নির্ণয় কর; P-বিন্দুগামী অভিলম্বটি অধিবৃত্তকে অপর বিন্দু Q-তে ছোন করিলে অভিলম্ব ও অধিবৃত্তের সমাকরণ ইইতে Q-এর স্থানাম্ব নির্ণয় কর। SP ও SQ-এর প্রবণতা নির্ণয় করিয়া প্রশ্ন সমাধান কর।]

- 12. প্রমাণ কর যে, একটি উপবৃত্তের কোন স্পর্শকের যে-অংশ উহার স্পর্শবিন্দৃ ও নিয়ামক দ্বারা সীমাবদ্ধ সেই অংশ নাভিতে এক সমকোণ উৎপন্ন করে।
- 13. প্রমাণ কর যে, উপবৃত্তের যে-কোন বিন্দুতে অঙ্কিত অভিলম্ব ঐ বিন্দুজে, উহার নাভি-দূরত্বয়ের অন্তর্গত কোণটিকে সম্বিধণ্ডিত করে।
- 14. যদি কোন উপবৃত্তের পরাক্ষ 2a, উহার উপরিস্থ P-বিন্দুর ভূজ  $x_1$  এবং P বিন্দুতে অন্ধিত স্পর্শক ও অক্ষের ছেদ্বিন্দুর ভূজ  $x_2$  হয়, তবে, প্রমাণ কর যে,  $x_1 x_2 = a^2$ .
- 15. C-কেন্দ্রবিশিষ্ট কোন উপর্ত্তের উপরিস্থ P বিশ্বর কোটি PN এবং P বিশ্বতে অঙ্কিত অভিলম্বটি যদি উপর্ত্তের পরাক্ষকে G বিশ্বতে ছেদ করে, তবে, প্রমাণ কর যে, CG = e²CN.
- 16. কোন বিন্দু হইতে কোন অধিবতের উপর যদি তিনটি অভিলম্ব অন্ধন করা যায়, তবে প্রমাণ কর যে, ঐ অভিলম্ব-তিনটির পাদবিন্দুগুলির কোটিত্রযের বৈজিক সমষ্টি শৃক্ত হয়।
- 17.  $y^2=4ax$ -এর উপরিস্থ  $(am_1^2,2am_1)$  বিন্দুতে অভিলম্বটি যদি অধিবৃত্তটিকে পুনরার  $(am_2^2,2am_3)$  বিন্দুতে ছেদ করে, তবে দেখাও যে,  $m_1^2+m_1m_2+2=0$ .
- 18. একটি বৃত্ত ও একটি অধিবৃত্ত চারিটি বিন্দৃতে ছেদ করে। দেখাও যে, ঐ ভেদবিন্দু-চতুষ্টুরের কোটিগুলির মানের বেজিক সমষ্টি শুভা হইবে।

19. যদি কোন "মবিশ্বত বিন্তু চ ইইতে নিগামকের উপর অঙ্কিত লাম্বের পাদবিন্দু M হয় এবং P বিন্তুত অঙ্কিত স্পর্শকটি যদি অধিবৃত্তির ফ্র-অক্ষাকে T বিন্তুত ছেদ করে, তবে দেখাও যে, নাভি S হইতে SM রেখা ও PT স্পর্শক অধিবৃত্তের মু-অক্ষের (বা নীর্যবিন্ধামী স্পর্শকের) উপর প্রস্পরকে ছেদ করে।

ি সংকেত ঃ  $\mathbf{M}$  বিন্দুর ভূজ = -a ;  $\mathbf{P}$  বিন্দুর ছানাস্ক  $(x_1, y_1)$  হইলে,  $\mathbf{M}$  বিন্দুর কোটি  $y_1$  এবং জানাস্ক  $(-a, y_1)$  হটবে ।  $\mathbf{S}$ -এর ছানাস্ক (a, 0) :  $\mathbf{PT}$  স্পর্শকের এবং x-অক্ষের সমীকরণ হইতে  $\mathbf{T}$ -এর ছানাস্ক নিগর কর ।  $\mathbf{SP}$  এর এবং y-অক্ষের সমীকরণ হইতে উহাদের স্থান কর ।  $\mathbf{SP}$  ও y-এথের সমীকরণ হইতে উহাদের স্থান, করে । এই তুইটি ছানাক্ষের অভিনত। হইতে প্রশ্ন সমাধান করে ।

- 20. কোন উপদৃত্তের উপাক্ষন্তিত যে বিন্দু-চুইটির প্রত্যেকটি, কেন্দ্র ইইডে দাংখ্যমানে  $\sqrt{a^2-b^2}$  পরিমাণ দূরে অপন্তিত, প্রমাণ কর যে, সেই বিন্দু চুইটি হুইডে ঐ উপবৃত্তের যে-কোন স্পর্শকের দূরত্ব-চুইটির বর্গের বৈজিক সমষ্টি  $2a^2$  পরিমাণ হুইবে।
- 21. প্রমাণ কর যে, একটি পরাবৃত্তের যে-কোন স্পর্শকের উপর ঐ অধিবৃত্তের নাভি হইতে অন্ধিত লম্বের পাদবিন্দুর সঞ্চারপ্থ পরাবৃত্তির সহায়ক বৃত্ত।
- 22.  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  পরাবৃত্তটির যে-কোন ম্পর্শকের উপর নাভিছয় হইতে অন্ধিত লম্ব যদি যথাক্রমে p ও p' হয়, তবে প্রমাণ কর যে,  $pp' = b^2$ .
- 23. কোন উপবৃত্তের নাভিলমের একটি প্রান্তবিদূতে অন্ধিত অভিলমটি যদি ঐ উপবৃত্তের উপাক্ষের একটি প্রান্তবিদৃগামী হয়, তবে দেখাও যে, উপবৃত্তিরি উংকেন্দ্রতা  $\delta$ -এর মান  $e^4+e^2-1=0$  সমীকরণটি দ্বারা নিদিষ্ট হইবে।
- 24. একটি উপর্ত্তের যে-কোন স্পর্শক যদি ঐ উপর্ত্তের পরাক্ষের প্রান্তবিন্দ্রের অদ্ধিত স্পর্শক-যুগলকে т₁ ও т₂ বিন্দৃতে ছেদ করে, ভবে দেখাও যে, т₁т₂ ব্যাদের উপর অদ্ধিত বৃত্ত উপবৃত্তির নাভিগামী হইবে।

[ সংক্তেঃ т₁ ও т₂-এর এবং т₁т₂-এর মধ্যবিন্ধুর স্থানাস্ক নিণ্যু কর এবং দেখাও যে ঐ মধ্যবিন্ধু হইতে প্রতিটি নাভির দ্রস্ক = ⅓т₁т₂; ইহা হইতে প্রশ্ন স্মাধান কর।]

25.  $\frac{x^2}{a^2} - \frac{y^2}{b^3} = 1$  ৎরাই ওটির উপরিস্থ  $(x_1, y_1)$  বিন্দুতে অঙ্কিত অভিলম্বটি যদি x-অক্ষকে M বিন্দুতে এবং y- মন্দকে N বিন্দুতে ছেদ করে এবং O বিন্দুটি যদি মূলবিন্দু হয়, ভবে ভবে দেখাও যে (OM, ON) হুচিত বিন্দুটি  $\frac{x^2}{(k/a)^2} - \frac{y^2}{(k/b)^2} = 1$  আকারের একটি পরার্ত্তের উপর শায়িত ছইবে, যেখানে  $k = a^2 + b^2$ .

[সংকেতঃ মভিলম, ম-মক্ষ ও ৮-মক্ষের সমীকরণ

ষথাক্রমে  $\frac{y-y_1}{y_1/b^2} = -\frac{x-x_1}{x_1/a^2}$  ... (1), y=0 ... (2) এবং x=0 ... (3); (1) ও (2) হইতে x=0M এবং (1) ও (3) হইতে y=0N-এর মান নির্ণয় করিয়া দেখাও .য,  $\frac{a^2x^3}{(a^2+b^2)^2} - \frac{b^8y^8}{(a^2+b^2)^2} = \frac{x_1^8}{a^2} - \frac{y_1^8}{b^3} = 1$ ; ইন্ড্যানি।

- 26. (i) কোন অধিবৃত্তের কোন জা৷ যদি অধিবৃত্তিকে  $(at_1^2, 2at_1)$  এবং  $(a_2t^2, 2at_2)$  বিদ্তে চেদ করে, তবে দেখা ৭ মে, এ জ্যা:-টির নাভিগামী হওয়ার শর্ত হইল  $t_1t_2=-1$ .
- (ii) মত এব, প্রমাণ কর যে অধিবৃত্তের নাভিগামী জ্যা:–এর প্রাস্থবিন্দুছয়ে অঙ্কিত স্পর্শক-দ্বয় ঐ অধিবৃত্তের নিয়ামকের উপয় পরস্পর লম্বভাবে মিলিত হয়।

্রেণ্ড তেওঁ (i) দেখাও যে  $(at_1^2, 2at_1)$  ও  $(at_2^2, 2at_2)$  বিন্দুগামী রেখা  $y(t_1+t_2)=2(x+at_1t_2)$  নাভিগামী ছাইলে, 0=2  $(a+at_1t_2)$  বা  $t_1t_2=-1$  : (ii) নাভিগামী জ্যা-এর প্রান্থবিন্দুরে স্পর্নকের সমীকরণ  $t_1y=x+at_1^2$  এবং  $t_2y=x+at_2^2$  সমাধান করিলে  $x=at_1t_2=-a$  হয় ; ইভ্যাদি ! ]

27. দেখাও যে কোন অধিবৃত্তের নাভিগামী জ্ঞা—এর একপ্রান্থে অন্ধিত স্পর্শকটি উহার অপর প্রান্থে অন্ধিত অভিলম্বটির সমান্তরাল হয়।

্সংকেড: যে-কোন নাভিগামী জ্যা-এর প্রাস্থবিন্দুছয়ের স্থানান্ধ  $(at_1^2, 2at_1)$  এবং  $(at_2^2, 2at_2)$  ধরিলে  $t_1t_2=-1$  হটবে। ঐ প্রাস্থদয়ের একটিতে স্পর্শকের প্রবণতা  $\frac{1}{t_1}$  এবং অপরটির অভিলম্বের প্রবণত। যে  $(-t_2)$  তাহা প্রমাণ কর ; ইত্যাদি।]

- 28. দেখাও যে অধিবৃত্তের যে-কোন জ্ইটি স্পর্শকের ছেদবিন্দুর কোটি স্পর্শবিন্দু জুইটির কোটিরয়ের সমান্তর-মধাক (Arithmetic mean).
- 5·10. স্পৃশ্জিয়া বা বিন্দৃহিসেহের শোলার (Chord of contact or polar) :

বহিঃস্থ কোন বিন্দু হইতে প্রতোক কণিকের উপর যে-তুইটি স্পর্শক আঁকা বায়, সেই স্পর্শক্ষয়ের স্পর্শবিদ্দু-তুইটির সংযোজক জ্যা-কে স্পর্শ-জ্যা বা পোজার এবং বহিঃস্থ বিদ্যুটিকে বলে এ পোলারের মেরুবিন্দু বা পোল।

# 5'11. স্পর্শ-জ্যা বা পোলারের সমীকরণ:

(i)  $x^2+y^3=a^3$  স্চিত একটি বৃত্তের উপর বহিঃস্থ বিন্দু  $(x_1,\ y_1)$  হইতে অনিতি স্পর্শকর্মের সমীকরণ হইবে,  $xx_1+yy_1=a^2$  ; ইহারা বৃভটিকে যেন  $(x_2,y_2)$ 

এবং  $(x_8, y_8)$  বিন্দুতে স্পর্শ করে। স্পষ্টঙঃ, এই বিন্দু-ছেইটিই বৃত্তটির উপর অবস্থিত এবং ইহাদের প্রত্যেকটি বিন্দুতে অন্ধিত স্পর্শক  $(x_1, y_1)$  বিন্দুগামী।

এখন,  $(x_2, y_3)$  বিন্দৃতে স্পর্শকের সমীকরণ  $xx_2 + yy_2 = a^2$ .
এই স্পর্শক  $(x_1, y_1)$  বিন্দৃগামী বলিয়া,  $x_1x_2 + y_1y_2 = a^2$ .

অফ্রপে,  $(x_3, y_3)$  বিন্দৃতে স্পর্শকের সমীকরণ,  $xx_3 + yy_3 = a^2$ এবং এই স্পর্শক  $(x_1, y_1)$  বিন্দৃগামী বলিয়া,  $x_1x_3 + y_1y_3 = a^2$   $\cdots$  (2)

স্পষ্টতঃ,  $xx_1+yy_1=a^2$  সমীকরণটিতে x ও y-এর স্থলে যথাক্রমে  $x_2$  ও  $y_2$  বসাইলে, (1)-মন্বর সমীকরণ এবং  $x_3$  ও  $y_3$  বসাইলে, (2)-মন্বর সমীকরণ পাওয়। যায়। অতএব  $(x_3,y_3)$  এবং  $(x_3,y_3)$  বিন্দুবয় উভয়েই

 $\alpha x_1 + yy_1 = a^2$  স্চিত রেখার উপর অবস্থিত।

স্তরাং  $(x_2, y_2)$  ও  $(x_3, y_3)$  স্পর্শবিন্দুরের সংযোজক জ্যা বা স্পর্শ-জ্যা ভার্যাং  $(x_1, y_1)$  বিন্দুর পোলারের সমীকরণ,

 $xx_1 + yy_1 = a^2.$ 

অনুরূপে প্রমাণ করা যায় যে,  $(x_1 \ y_1)$  বিন্দুর পোলার বা স্পর্শ-জ্যা-এর সমীকর্ণ:

- (ii) অধিবৃত,  $y^2 = 4nx$ -এর কেতে  $yy_1 = 2a(x + x_1)$ ;
- (iii) উপয়ন্ত  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ -এর কেনে  $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$
- এবং (iv) প্রাবৃত্ত  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ -এর কোনে  $\frac{ax_1}{a^2} \frac{yy_1}{b^2} = 1$ .

টীকাঃ লক্ষণীয় যে, (ক্র., y) বিন্দৃতে কনিকের স্পর্শক ও পোলারের সমীকরণ, উভয়ের আকার এক। বিন্দৃটি কনিকের উপর অবস্থিত হইলে ঐ সমীকরণ স্পর্শক, এবং কনিকের বহিঃস্থ হইলে পোলার বা স্পর্শ-জ্যা বুঝায়।

- 5.12. জ্যা-বিশেষের সম্প্রবিশ্বর স্থানাক্ষে প্রকাশিত সমীকরণ (Equation of a chord in terms of the co-ordinates of its middle point):
- (i)  $y^2=4ax$  অধিবৃত্তের একটি জ্য.—এর মধ্যবিদ্ যেন  $(x_1,y_1)$ . এই জ্যা-টি যদি y=mx+c ছারা স্টিত হয়, তবে তাহা মেন অধিবৃত্টিকে (x',y') এবং (x'',y'') বিদ্তে ছেদ করে।

এখন,  $y^2=4ax$  সমীকরণে y=mr+c হইতে প্রাপ্ত মান  $x=\frac{y-c}{m}$  বসাইয়া

 $y^2=rac{4a(y-c)}{m}$  বা  $my^2-4ay+4ac=0$  পাওয়া যায়। y-এর এই দ্বিঘাত সমীকরণ হইতে y' ও y'', এই তুইটি মান পাওয়া যাইবে।

ম্পষ্টত:,  $y'+y''=rac{4a}{m}$ : কিন্তু জ্যা-টির মধ্যবিন্দুর কোটি  $y_1=rac{y'+y''}{2}$  বলিয়া,

$$\mathbf{y}_1 = \frac{y' + y''}{2} = \frac{2\mathbf{a}}{\mathbf{m}} \qquad \cdots \qquad \cdots \qquad (1)$$

বা,  $m=\frac{2a}{y_1}$  অৰ্থাং আলোচ্য জ্যাটির প্ৰবণতা  $=\frac{2a}{y_1}$ 

স্বতরাং (x1, y1)-গামী জ্যা-এর সমীকরণ ইইবে

$$y - y_1 = \frac{2a}{y_1} (x - x_1);$$

 $\forall 1, \quad yy_1 - 2ax = y_1^2 - 2ax_1;$ 

 $\forall i, \quad yy_1 - 2ax - 2ax_1 = y_1^2 - 2ax_1 - 2ax_1$ ;

$$\forall 1, \quad yy_1 - 2a(x + x_1) = y_1^2 - 4ax_1 \qquad \cdots \qquad (2)$$

টীকা 1.  $(x_1, y_1)$  বিন্দুতে  $y^2 = 4ax$ -এর স্পর্শক  $yy_1 - 2a(x + x_1) = 0$ -কে  $T_1 = 0$  এবং অধিবৃত্তিতে  $(x_1, y_1)$  বসাইয়া, প্রাপ্ত  $y_1^2 - 4ax_1 = 0$ -কে  $S_1 = 0$  দারা স্টিত করিলে, উপরোক্ত জ্যা-এর সমীকরণ হয়  $T_1 = S_1$ .

(2) উপরের উপপাজটির (1)-চিফিত সমীকরণ হইতে দেখা যায় যে,  $(x_1, y_1)$  বিন্দু যাহার মধ্যবিন্দু এবং m যাহার প্রবণতা সেইরপ জ্যা-এর মধ্যবিন্দুর কোটি  $y_1 = \frac{2a}{m}$ . স্বতরাং ঐ জ্যা-এর সমাস্তরাল একপ্রস্থ জ্যা-এর মধ্যবিন্দুর স্থারপথের

সমীকরণ হইবে  $y = \frac{2a}{m}$ 

(ii)  $\frac{x^2}{a^2} + \frac{y^3}{b^2} = 1$  উপর্তটির (x',y') ও (x'',y'') বিন্দু-চ্ইটির সংযোজক জ্যা-এর মধ্যবিন্দু যেন  $(x_1,y_1)$ . এ জ্যা-এর সমীকরণ যদি y=mx+c হয়, তবে অধিবৃত্তের সমীকরণে y=mx+c বসাইযা,  $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ ;

বা,  $b^2x^2 + a^2m^2x^2 + 2a^2mcx + a^2c^2 = a^2b^2$ ; বা,  $(b^2 + a^2m^2)x^2 + 2a^2mcx + a^2c^2 - a^2b^2 = 0$  সমীকরণটি হইতে  $x' + x'' = \frac{-2a^2mc}{b^2 + a^2m^2}$  হয় ।

কিন্তু জ্ঞা-টির মধ্যবিন্দুর ভূজ 
$$x_1=rac{x^{'}+x^{''}}{2}$$
 বিলিয়া  $x_1=rac{-a^2mc}{b^2+a^2m^2}$ ;

আবার,  $(x_1,y_1)$  যেহেতু y=mx+c-এর উপর অবস্থিত, দেইছেতু

$$y_1 = mx_1 + c$$
;  $\forall i, c = y_1 - mx_1$ . ... (2)

$$\therefore (1) \, \Im (2) \, \overline{ 22 (3)}, \, \frac{-x_1}{a^2 m} \frac{(b^2 + a^2 m^2)}{a^2 m} = y_1 - m x_1 \; ;$$

 $a = a^2 m^2 x_1 + a^2 m^2 x_1 = a^2 m y_1 - a^2 m^2 x_3$ ;

$$m = \frac{-b^2 x_1}{a^3 y_1}.$$
 (3)

স্তরাং, আলোচ্য জ্যা-টির প্রবণতা =  $\frac{-b^2x_1}{a^3y_1}$  এবং উহা  $(x_1,y_1)$  বিন্দু বলিয়া, উহার সমীকরণ এইবার নিম্রুপে লেখা যায়,

$$y - y_1 = \frac{-b^2 x_1}{a^2 y_1} (x - x_1) ;$$

$$\text{11,} \quad \frac{yy_1}{b^2} - \frac{y_1}{b^2} = \frac{-xx_1}{a^2} + \frac{x_1}{a^2};$$

$$\boxed{1, \quad \frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}}$$

हैशह मधाविन्द स्नाति जा-छित्र मभीकृत्।

টীকা. 1.  $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 0$ , স্পর্শকিটিকে  $T_1 = 0$  এবং উপরুত্তের সমীকরণে  $(x_1, y_1)$  বলাইরা, প্রাপ্ত মানকে  $S_1 = 0$  বরিলে, এক্ষেত্রেও  $(x_1, y_1)$  মধ্যবিন্দু-বিশিষ্ট জ্যা-এর সমীকরণ  $T_1 = S_1$  হয়।

টীকা. 2.  $a^2=b^2$  ধরিলে,  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$  উপর্তের স্মীকরণটি  $x^2+y^2=a^2$  বতে রূপান্তরিত হয় এবং ঐ উপরতের  $(x_1,y_1)$  মধ্যবিদ্–বিশিষ্ট জ্ঞা-এর স্মীকরণ  $\frac{xx_1}{a^2}+\frac{yy_1}{b^2}=\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}$ -এ রূপান্তরিত হয়,  $xx_1+yy_1=x_1^2+y_1^2$  স্মীকরণে।

হতরাং, x²+y²=a² বৃত্তের একটি জ্যা-এর মধ্যবিন্দু যদি (x1, y1) হয়, তবে ঐ জ্যা-এর সমীকরণ হইবে

 $xx_1 + yy_1 = x_1^2 + y_1^2$ .

5°12. (ii)-এর পদ্ধতিতে ইহা অনারাদে প্রমাণ করা যায়।

টীকা. 3. আবার,  $b^2=-h^2$  ববিজে, উপর্জের স্মাকরণ  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$  রূপান্তরিত হয়,  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$  পরার্ত্তের স্মাকরণে এবং উপর্জের  $(x_1,y_1)$  মধ্যবিদ্ধিবিশ্বিষ্ট জ্যা-এর স্মাকরণ রূপান্থরিত হয়, পরার্ত্তের  $(x_1,y_1)$  মধ্যবিদ্ধিবিশ্ব জ্যা-এর স্মাকরণে রূপান্থরিত হয়, পরার্ত্তের  $(x_1,y_1)$  মধ্যবিদ্ধিবিশ্ব জ্যা-এর স্মাকরণে  $\frac{x^2}{a^2}-\frac{yy_1}{b^2}=\frac{x^2}{a^2}-\frac{y_1}{b^2}$ . 5'12 (ii) এর প্রতিতে ইহাকেও সহজেই প্রমাণ করা যায়।

তীকা. 4. 5'12 অনুভেদের (ii) বিভাগের (3)-চিচিত স্থাকরণ হইতে দেখা যার যে,  $(x_1, y_1)$  মন্যবিন্দু বিশিষ্ট জ্ঞান্ত্রর প্রবণ্ডা  $m=\frac{-b^2x_1}{a^2y_1}$ ,

$$\therefore \quad y_1 = \frac{b^2}{a^2 m} x_1.$$

 $\therefore$  উপরত্তের একপ্রস্থ সমান্তরাল জ্ঞা এর মধাবিন্দুর সঞ্চারপ্রথর স্মীকরণ  $\mathbf{y} = \frac{-\mathbf{b}^2}{\mathbf{a}^2 \mathbf{m}} \, \mathbf{x}$  ; ইহা একটি সরল রেখা।

অহরেপে,  $b^a=-b^a$  শ্নাইয়া **পরার্ত্তর** এক গ্রন্থ শ্নাধ্রাল জ্যা-এর মধ্যবিদ্যুর সঞ্চারপথ  $\mathbf{y}=\frac{\mathbf{b}^2}{\mathbf{a}^2\mathbf{m}} \mathbf{x}$  শ্নীকরণ স্থাচিত সরল রেখা। বেং  $u^a-b^a$  বিশাইয় র**তের** একপ্রান্থ স্থাচিত্র স্থাবিদ্যুর সঞ্চারপথ  $\mathbf{y}=\frac{-\mathbf{x}}{\mathbf{m}}$  স্থাকরণ ক্তিত সরল রেখা।

টীকা. 5. **জক্ষণী**য় যে, কুল, উপর ব এবং প্রাকৃত্রে একপ্রস্থান্থ্রা জ্যা-এর সঞ্চারপ্রের স্থাকরণ ফলক-মংখা-এজিও ব(-) স্বদা কেন্দ্র্যান্থ্রা স্থান্থ্র স্থান্থ্রা করে। তকবল অনিবৃত্রের কেন্দ্রে একপ্র ম্যান্ত্রাল ভ্যা-এর স্থান্ধরণ  $y = \frac{2a}{n}$  স্থান্ড স্বল রেখাটি x-মন্দ্রের স্থান্থ্রাল হয়।

স্থান্ডরাঃ (a) যে-কোন কনিকের একপান্ত সমান্ত্রাল জ্যান্তর মধাবিন্তুর সঞ্চারপথকে সংক্ষিষ্ট কনিকের বেন্ট ব্যাস (Diameter) ধলে।

- (b) এইরপ একটি ব্যাস যে দকর স্থাসবাল আত্রে মধ্যবিক্রামী হয়, কেই-দকল জ্ঞাবর যেটি নাভিগামী হন, ভাষাকে ঐব্যাসের পাণুরামিটার (Parameter) বলো।
- (e) কোন কনিকের ছউটি স্যাত্ত্ব কেটি যথন অপ্রটির স্থাপর লি গা-স্মৃত্ত্ব ম্ব্যবিদ্যামা হয় তথন উহালের একটিকে অপ্রটির প্রান্তিবোদী বঢ়াস (Conjugate diameter) বলে।

**অনুসিদ্ধান্তঃ** টীকা (4) ২ইডে দেখা যায়, উপবৃত্, পরাবৃত্ত এবং বৃত্তের ব্যাস-সম্হের সমীকরণ গুলিকে  $y=rac{k}{m}$  ঞ আকারে লেখা যায়।

এখন  $y=n\omega x$  একপন্থ সমান্তরাল জ্যা এবং উহাদের মধাবিন্দুগামী ব্যাদের স্মান্তরণ যেন  $y=m_1(x)$  কিন্তু যে-কোন ব্যাদের স্মান্তরণ

$$y = \frac{k}{m} x$$
 বলিয়া,  $m_1 = \frac{k}{m}$ .

স্তারার  $mm_1=k$  শতে  $y=m_1x$  শেমন y=mx-স্চিত সমান্তরাল জ্যান্দ্রের মধ্যবিক্থামী ব্যাস, y=mx তমনি  $y=m_1x$ -স্চিত সমান্তরাল জ্যান্দ্রের মধ্যবামী ব্যাস।

জতএব,  $mm_1=k$  শহিদাপেক p=mx এবং  $p=m_1x$ , চ্ইটি গুভিযোগী ব্যাদের সমীকরণ।

এই শর্ডে 
$$k=-\frac{h^2}{a^2}$$
 হইলে উপবৃত্তের,  $k=\frac{h^2}{a^2}$  হইলে পরাবৃত্তের  $4 ext{d} < k=-1$  হইলে উহারা বৃত্তের প্রতিযোগী ব্যাস হইবে।

#### উলাহবণসালা

উদা. 1.  $x^2+y^2=169$  इত-শাপকে (13, -13) বিন্দুর ম্পর্শ-জ্য:-এর স্থীকরণ নির্ণয় কর।

 $x^2+y^2=169$  বৃত্ত-সাপক্ষে  $(x_1,y_1)$  বিন্দুর স্পর্শ-জ্যা-এর সর্যা, করণ  $xx_1+yy_1=169$ . স্বতরাং একই বৃত্ত-শৃপক্ষে (13,-13) বিন্দুর স্পর্শ-জ্যা-এর সমীকরণ হইবে,

$$13x - 13y = 169$$
,  $\forall i, x - y = 13$ .

উদা. 2.  $\eta^2 = 4ax$ -এর কোন নির্দিষ্ট বিন্দু (h, k)-গামী ভ্য!-সমূহের মধ্যবিন্দু-গুলির হঞ্চারপথ নির্দ্দ কর। [ C. U., B. A. & B. Sc., 1924 ]

 $y^2=4ax$  অধিব্যুত্তর কোন ত্যা-এর মধ্যবিদ্  $(x_1,y_1)$  হইলে, এই ভ্যা-এর মধ্যবিদ্  $(x_1,y_1)$  হইলে, এই ভ্যা-এর

$$yy_1 - 2ax = y_1^2 - 2ax_1$$
.

জ্যা-টি  $(h, k)$  বিশ্বামী হইলে,
$$ky_1 - 2ah = y_1^2 - 2ax_1$$

खाउत्यत, भगातिक (x1, y1) व्यव नकात्रभण,

 $ky - 2an = y^2 - 2ax$ , 31,  $y^2 - ky = 2a(x - h)$ ;

ইহা একটি অধিবৃত্ত।

উদা. 3. অধিবৃত্তের যে-কোন ব্যাদের শীর্ষবিন্দৃতে স্পর্শকটি, ঐ ব্যাস ছারা সম্বিথিতিত স্মান্তরাল জ্যা-সমূহের স্মান্তরাল।

অধিবৃত্তের ব্যাস উহার অক্ষের সমান্তরাল বলিয়া অধিবৃত্তের সমীকরণ  $y^2=4ax$  হইলে, উহার যে-কোন ব্যাসের স্মীকরণ  $y=\frac{2a}{x^2}$  ধরা যায়।

এই ব্যাস  $y=m\alpha$ -এর সমান্তরাল জ্যা-সমূহকে সমন্বিংণ্ডিত করে।  $\cdots$  (1)

 $y^2 = 4ax$  এবং  $y = \frac{2a}{m}$ -কে নহ-ন্মীকরণরপে সমাধান করিলে দেখা যায়,  $y = \frac{2a}{m}$  এবং  $x = \frac{y^3}{4a} = \frac{4a^2}{m^2} = \frac{a}{m^2}$ .

অত এব, ব্যাস এবং অবিবৃত্তের ছেদবিন্দু, অর্থাৎ ব্যাসের শীর্ষবিন্দুর স্থানাম্ব

$$\left(\frac{a}{m^2}, \frac{2a}{m}\right)$$
.

এই বিন্তুতে অধিবৃত্তের স্পর্শকের সমীকরণ

$$y \cdot \frac{2a}{m} = 2a \left( x + \frac{a}{m^3} \right) \cdot$$

$$y = mx + \frac{a}{m} \qquad \cdots \qquad (2)$$

(1) এবং (2) হইতে দেখা যার, উভর ক্ষেত্রেই প্ররণতা m ; অভএব, যে-কোন ব্যাসের শীর্ষবিশূতে অফিড স্প্রকি, ঐ ব্যাস দারা সম্ভিষ্ডিত জ্য, স্মৃহের সমান্তরাল।

উদা- 4.  $y^3 = 8x$  অধিবৃত্তের (4,5) বিন্তুতে সমদিখণ্ডিত জ্যা-টির সমীকরণ নির্ণয় কর।

 $y^2=8x=4.2x$  বলিয়া, এখানে a=2,  $y^2=4ax$ -এর  $(x_1,y_1)$  বিনুতে সম-ছিখণ্ডিত জ্যা-এর সমীকরণ

$$yy_1 - 2a(x + x_1) = y_1^2 - 4ax_1.$$

:.  $y^2 = 4.2.x$  অধিবৃত্তের (4, 5) বিশুতে সমদিখ্ণিতে জ্যা-টির সমীকরণ হইবে  $y.5 - 2.2(x + 4) = 5^2 - 4.2.4$ 

বা, 5y-4x-16=25-32; বা, 5y-4x=9.

উদা. 5.  $y^2=4x$  অধিবৃত্তটির বে-নকল জ্যা ( -2, 3) বিন্দুগামী তাহাদের মধ্যবিন্দুর সঞ্চারপথ নির্ণয় কর।

 $y^2=4ax$ -এর  $(x_1,\ x_1)$  বিশ্বতে যাহার মধ্যবিশ্ব চেই জ্যা-এর সমীকরণ  $yy_1-2a(x+x_1)={y_1}^2-4ax_1.$ 

(XI-XII)-42

 $y^2=4x-4.1.x$  অধিবৃত্তের মধ্যবিন্দু $(x_1,y_1)$  হইলে, উহার সমীকরণ হইবে  $yy_1-2(x+x_1)=y_1^2-4x_1$ . এই জ্যা (-2,3) বিন্দুগামী বলিয়া,

$$3y_1 - 2(-2 + x_1) = y_1^2 - 4x_1$$
;

 $\exists 1, 3y_1 + 4 - 2x_1 = y_1^2 - 4x_1; \exists 1, 3y_1 + 4 = y_1^2 - 2x_1;$ 

 $\forall 1, y_1^2 - 3y_1 - 2(x_1 + 2) = 0.$ 

 $\therefore$   $(x_1, y_1)$ -এর সঞ্চারপথ  $y^2-3y-2(x+2)=0$ . ইহা দিঘাত সমীকরণ বলিয়া একটি অধিবৃত্ত স্চিত করে।

উদা. 6.  $5y^2 = 8x$ -এর খে-ব্যাস 4x - 5y + 10 = 0-এর সমাস্তরাল সকল জ্যা-কে সম্বিখণ্ডিত করে তাহার সমীকরণ নির্ণয় কর।

প্রদান্ত অধিবৃত্তের সমীকরণ,  $5y^2 = 8x$ ; বা,  $y^2 = 4.\frac{2}{8}.x$ .

∴ এখানে, a = §.

প্রদত্ত সরল রেখার সমীকরণ, 4x-5y+10=0, বা,  $y=\frac{4}{5}x+2$  বলিয়া, উহার প্রবর্ণতা  $m=\frac{4}{5}$ .

... নির্ণেয় ব্যাদের সমীকরণ,  $y = \frac{2a}{m} = \frac{2 \times \frac{2}{8}}{\frac{4}{8}} = 1$ :

বা, y=1 বা, y-1=0.

উদা- 7.  $\frac{x^3}{a^2} + \frac{y^2}{b^2} = 1$  উপবৃত্তের (h, k) বিন্দুগামী জ্যা-সমূহের মধ্যবিন্দুর সঞ্চারপথ নির্ণয় কর।

উপবৃত্ততির যে জ্যা-এর মধাবিলু (x1, y1) তাহার সমীকরণ,

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}$$
; উহা  $(h, k)$  বিন্দুগামী বলিয়া,

$$\frac{hx_1}{a^2} + \frac{ky_1}{b^2} = \frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2}.$$

.. মধ্যবিন্দুর (x1, y1)-এর দঞ্চারপথ হইবে

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{hx}{a^{2}} + \frac{ky}{b^{2}}$$

উদা. 8.  $3x^2 + 5y^2 = 15$ -এর যে-ব্যাসটি 3x - 4y + 4 = 0 রেথার স্মান্তরাল জ্যা-সমূহের মধ্যবিন্দুগামী ভাহার স্মীকরণ নির্ণয় কর।

উভয়পক্ষকে 15 দারা ভাগ করিলে, প্রদত্ত সমীকরণটি হয়,

$$\frac{x^2}{5} + \frac{y^2}{3} = 1$$
; ইতবাং,  $a^2 = 5$  এবং  $b^2 = 3$ .

আবার, 3x-4y+4=0; বা,  $y=\frac{3}{4}x+1$ -এর প্রবণতা  $m=\frac{3}{4}$ ;

 $\cdot$  নির্ণেয় ব্যাদের সমীকরণ,  $y=m_1$  x হইলে, এখানে  $mm_1=-rac{b^{-1}}{a^2}$ :

$$\vec{\P}, \quad \frac{3}{4} m_1 = -\frac{8}{5}; \quad \vec{\P}, \quad m_1 = -\frac{4}{5};$$

:. নির্ণেয় ব্যাদের সমীকরণ,  $y = -\frac{4}{5}x$ ; বা, 4x + 5y = 0.

উদা. 9.  $3x^2 + 4y^2 = 36$ -এর খে-ব্যাসটি ঐ উপরুত্তের 2y = 3x ব্যাসটির প্রতিযোগী, তাহার সমীকরণ নির্ণয় কর।

36 দারা ভাগ করিয়া  $3x^3+4y^3=36$ -কে  $\frac{x^3}{12}+\frac{y^3}{9}=1$  আকারে লিখিলে,  $a^2=12.3b^2=9$  হয় ৷

প্রদত্ত ব্যাদ, 2y=3x, বা,  $y=\frac{a}{2}x$  এর প্রবণতা  $m=\frac{a}{2}$ ; উহার প্রতিযোগী ব্যাদের প্রবণতা  $m_1$  হইলে,

$$mm_1 = -\frac{b^3}{a^2}$$
;  $\forall i, \frac{3}{2}m_1 = -\frac{b^2}{a^2} = -\frac{9}{12}$ ;  $\therefore m_1 = -\frac{1}{2}$ 

∴ নির্ণেয় প্রতিযোগী ব্যাদের সমীকরণ  $y = -\frac{1}{2}x$ , বা, x + 2y = 0.

উন্পা. 10. দেখাও যে, 3y+2x=0 এবং 5x-4y=0 রেখা-ছুইটি  $5x^2+6y^2=15$  উপ্রুত্তির ছুইটি প্রস্পার প্রতিযোগী ব্যাস।

প্রদত্ত উপর্ত্তের সমীকরণকে 15 দিয়া ভাগ কবিলে  $\frac{x^2}{3}+\frac{y^2}{5/2}=1$  হয়। স্থাবাং ইহার ক্ষেত্রে  $a^2=3$  এবং  $b^2=\frac{5}{3}$  ;  $\therefore$   $-\frac{b^2}{a^2}=-\frac{\frac{5}{3}}{3}=-\frac{5}{6}$ .

আবার, প্রদত্ত ব্যাদ-তৃইটিকে  $y=-\frac{2}{3}x$  এবং  $y=\frac{\pi}{2}x$  রূপে লিখিলে উহাদের প্রবণতার গুণফল= $-\frac{2}{3}\times\frac{\pi}{2}=-\frac{\pi}{6}$ ; স্বতরাং ব্যাদ-তৃইটি পরস্পারের প্রতিযোগী।

উদা. 11.  $8x^2 + 12y^2 = 96$  উপবৃত্তের যে-ছুইটি প্রতিযোগী ব্যাস পরস্পারের সৃহিত  $\tan^{-1}7$  কোণে নত, তাহাদের সমাকরণ নির্ণয় কর।

উপস্তের সমীকরণটির উভয় পক্ষকে 96 দারা ভাগ করিলে, উহা এইরূপ হয়:

$$\frac{x^3}{12} + \frac{y^2}{8} = 1$$
. স্ত্রাং এখানে  $a^2 = 12$  এবং  $b^2 = 8$ .

এখন, প্রতিযোগী ব্যাস-তৃইটি ষেন,  $\eta=m_1x$  এবং  $\eta=m_2x$  এবং তাহাদের অন্তর্গত কোণ  $\tan^{-1}7$  যেন  $\theta$  ; তাহা হইলে,

$$m_1 m_2 = -\frac{b^2}{a^2} = -\frac{8}{12} = -\frac{2}{3}; \quad \text{(1)}$$

আবার, tan-1 7=0 বলিয়া,

$$\tan \theta = 7 = \frac{m_1 + m_2}{1 + m_1 m_2} = \frac{m_1 - m_2}{1 - \frac{\pi}{3}} = 3(m_1 - m_3) ;$$

$$\forall 1, \qquad m_1 - m_2 = \frac{7}{3} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (2)$$

(1) ও (2) সমাধান করিয়া,

$$m_1 + m_2 = \sqrt{(m_1 - m_2)^2 + 4m_1m_2} = \sqrt{\frac{4n}{9} - \frac{8}{9}} = \sqrt{\frac{9n}{9}} = \pm \frac{5}{9};$$

$$m_1 + m_2 = \pm \frac{5}{9} \qquad \cdots \qquad (3)$$

(2) ও (3) হইতে, m, = 1(5±5) = 2, বা, 1

এবং  $m_3 = \frac{1}{2}(\pm \frac{5}{3} - \frac{7}{3}) = -\frac{1}{3}$ , বা, -2.

: নির্ণেয় ব্যাসদ্বয়ের সমীকরণ  $y = 2x + 9 y = -\frac{1}{2}x$ ;

অথবা,  $y = \frac{1}{2}x$  ও y = -2x;

चर्चार, 2x - y = 0 ও x + 3y = 0, ज्ञाची, x - 3y = 0 ও 2x + y = 0.

**উদা. 12.**  $3x^2-4y^2=36$  পরাবৃত্তের (6,1) বিন্দৃতে সমদ্বিত্তিত জ্যা-টির সমীকরণ নির্ণয় কর।

পরার্ত্তর সমীকরণটির তুইপক্ষকে 36 দিলা ভাগ করিলে  $\frac{\sigma^2}{12} - \frac{\eta^2}{9} = 1$  হয় ;

মুভবাং ইহার কোরে  $a^2 = 12$ ,  $b^2 = 9$  এবং  $\frac{b^{11}}{a^2} = \frac{9}{12} = \frac{3}{4}$ .

এখন (6,1) বিন্তামী রেখার সমীকরণ হয়, y-1=m(x-6); রেখাটি প্রদত্ত পরাবৃত্তের জ্যা হইলে উহার মধ্যবিন্তামী ব্যাদের সমীকরণ হইবে,

$$y = \frac{b^2}{a^2 m} x = \frac{3x}{4m} ;$$

যেহে হু এই ব্যাস (6, 1) বিনুগামী সেইহেতু

$$1 = \frac{3 \times 6}{4m}$$
,  $= \frac{9}{2}$ .

y-1=m(x-6) সমীকরণটিতে m-এর মান বসাইয়া নির্পেষ জ্যা-এর সমীকরণটি হয়  $y-1=\frac{c}{2}(x-6)$  ; বা,  $8\mathbf{x}-2\mathbf{y}=52$ .

#### প্রথমালা 23

- (i) x² + y² = 16-স্টিত বৃত্ত-মাপকে (3, 4) বিন্দৃর এবং (ii) x² + y²
   = 4-স্টিত বৃত্ত-মাপকে (-2, 0) বিন্দৃর স্পর্শ-জ্যা নির্ণয় কর।
- 2.  $x^2 + y^2 = 81$  বৃত্তের যে-জ্যা (-2, 3) বিন্দুতে সমদ্বিখণ্ডিত সেই জ্যা-এর সমীকরণ নির্ণয় কর।

- 3.  $y^2 = 6x$  অধিবৃত্তের যে-ব্যাসটি 3y + x + 5 = 0 রেখার সমান্তরাল জ্যা-গুলিকে সম্বিধন্তিত করে ভাহার সম্করণ নির্ণয় কর।
- 4. দেশার যে, 3y+20=0 বেখাটি  $y^2=30x$  অধিব্যক্তর যেনকল জ্ঞা 9x+4y-1=0 বেখার সমান্তরাল, ভাহাদের সম্বিধ্যিও ত করে।
- 5. γ²=10x অধিব্যন্তর বে-জ্যা∸টি (4, −5) বিন্দৃতে সমবিখণ্ডিত হয়, তাতার সমীকরণ নির্ণয় কর।
- 6.  $5y^2-16x$  অধিবৃত্তের (৪, -5) বিন্দুগামী জ্য'-গুলির মধ্যবিন্দুর সধারপথ নির্ণিয় কর।
- 7. দেখা ও যে,  $y^2 = 1ax$  অধিকৃত্তের শীমগামী ভ্যা-গুলির মধ্যবিশুর স্ঞারপথটি হইবে  $y^2 = 2ax$  অধিকৃত্ত।
- 8.  $y^2 = 15x$  অধিবৃত্তের নাভিগামী যে-জ্যা x-জক্ষের ধনাত্মক দিকের সহিত  $45^\circ$  কোনে নত, সেই জ্যা-এর সমীকেরণ নিগম কর ।
  - 9, 5y2 = ৪x অধিবৃত্ত-সাপ্তে (5, 4) বিন্দুর স্পর্ণ-জ্যা-এর স্থাকরণ নির্ণয় কর।
- 10.  $3x^2+4y^2=1$  উপ্রেভর যে-স্কল জ্যা y=3x+1-এর সমস্থিরাল তাহাদের মধ্যবিদ্যামী ব্যাস্টির সমীকরণ নির্ণির করা।
- 11.  $5x^2 + 6y^2 = 30$  উপ্রভের যে-ব্যাস 5x + 6y + 8 = 0 রেখার সমাহরাল জ্যা-গুলিকে সম্বিধৃত্তি করে তাহার ম্মাকরণ নির্ণয় করে।
- 12.  $2x^2 + 3y^2 = 24$ -স্চিত ক্ষিবৃত্তির মে-ব্যাস 2x + 3y = 0-এর প্রভিযোগী, তাহার সমীকরণ নির্ণয় কর।
- 13. দেখাও যে, 5y-6x=0 এবং 2x+3y=0, এই রেখা-ছুইটি  $4x^2+5y^2=20$  উপসতের ছুইটি প্রস্থান-প্রিযোগী বাবি।
- 14. দেখাও যে, y+3x=0 এবং 4y-x=0, এই ভূইটি রেখা  $3x^2+4y^2=5$  উপরতের পরস্পার-প্রতিযোগী ব্যাস।
- 15. দেখাও যে, 4x-3y+4=0 এবং x+3y-7=0, এই ছুইটি রেখা  $4x^2+9y^2=36$  উপর ের হুংটি প্রস্পার-প্রিমের ব্যাসের মুমাধ্রাল ।
- 16.  $3x^2+4y^2=12$ -এর যে-সুইটি ব্যাস পরস্পত্রের স্থিত  $\tan^{-1}$  13 কোণে অবস্থিত, তাখ্যের স্থাক্রণ নিগ্ন কর ৷
- 17. একটি উপ্রয়ের যে-ছঙ্চি ব্যাস পরস্পরের ২ছিত 135° কোণ উৎপন্ন করে ভাহাদের সমীকরণ নির্ণয় কর।
- 18.  $\frac{x^2}{8} + \frac{y^2}{6} = 1$  উপসূত্রের যে-জ্যা (2, 1) বিন্দুতে স্থাদিখণ্ডিত, তাহার স্মীকরণ নির্ণিয় কর ৷

- 19.  $3x^2 + 4y^2 = 36$ -এর যে-জ্যা-এর মধ্যবিন্ (3, -1), সেই জ্যা-এর সমীকরণ নির্ণয় কর।
- 20.  $\frac{x^2}{9} + \frac{y^2}{4}$ -এর একটি জ্যা-এর মধ্যবিন্দু যদি (2, -1) হয়, তবে দেখাও যে, এ জ্যা-টির সমীকরণ 8x - 9y = 25.
- 21. দেখাও যে,  $5x^2 + 6y^2 = 30$ -এর জ্যা-গুলির মধ্যবিন্ত্র সঞ্চারপথ  $\frac{x^2}{6} + \frac{y^2}{5} = \frac{x}{2} y$ .
- 22. দেখাও যে,  $5x^2 8y^2 = 40$  পরাবৃত্তে 3x + 16y + 8 = 0 রেখাটির সমান্তরাল সমস্ত জ্যা-কে 10x + 3y = 0 রেখাটি সমন্বিধ্নিত করে।
- 23. দেখাও যে, 7x 8y = 0 এবং 4x 5y = 0 রেখাছয়  $7x^2 10y^2 = 70$  পরাব্রুতের ফুইটি প্রতিযোগী ব্যাস।
- 24.  $16x^2 9y^2 = 144$  পরাবৃত্তের যে-ব্যাস x = 2y ব্যাদের প্রতিযোগী, তাহার সমীকরণ নির্ণয় কর।
- 25.  $4x^2 5y^3 = 60$ -এর বে-জ্যা (5, 3) বিন্তে সমবিখণ্ডিত, তাহার সমীকরণ নির্ণয় কর।
- 26. স্পর্শ-জ্যা-এর সমীকরণের সাহায্যে দেখাও যে, অধিবৃত্তের নাজিগামী জ্যা-এর প্রাস্থবিন্তে অঞ্চিত স্পর্শক-যুগলের ছেদবিন্দু ঐ অধিবৃত্তের নিয়ামকের উপর অবস্থিত।

# উত্তরমালা

# বীজগণিত

### প্রশ্বালা 1

- 1.  $\frac{7}{4}a^5$ . 2.  $\frac{1}{\sqrt[4]{x^3}}$  3. (Read  $x = \frac{4}{5}$  for  $x = \frac{4}{5}$ )  $3\frac{5}{4}x^4$ .

  4.  $\frac{3}{\sqrt[8]{x^2}}$ ,  $\sqrt{a}$  5.  $\frac{8}{5}\frac{8}{m^5}$  6.  $\frac{4\sqrt[4]{a^8}}{3\frac{5}{4}x^4}$  7.  $\frac{1}{2\frac{6}{5}}$
- 8.  $\sqrt[5]{x^{\frac{2}{3}+\alpha}}$ . 9.  $\sqrt[6m]{a^{\frac{1}{2}}}$ . 10.  $\sqrt[6]{x^{\frac{1}{4}}}$ . 11.  $x^{\frac{1}{6}}$ . 12.  $\frac{1}{a}$ . 13.  $x^{\frac{1}{6}}$ . 14.  $a^{\frac{1}{6}}$ . 15.  $x^{\frac{1}{6}}$ .
- 12.  $\frac{1}{a^{\frac{3}{4}}}$  13.  $a^{\frac{3}{4}}$  14.  $a^{\frac{3}{4}}$  15.  $a^{\frac{3}{4}}$  16.  $a^{\frac{3}{4}}$  17.  $\frac{1}{8}$  18. 4. 19. 27. 20. 32. 21.  $\frac{1}{2}$  22. 36. 28.  $\frac{1}{4}$
- 20. 32. 21.  $\frac{1}{27}$ . 22. 36. 24. 81. 25. 36. 26.  $x^{-m}$ .

### প্রশ্বমালা 2

- 1.  $a^{-a}$ . 2.  $a^{-\frac{1}{2}}b^{\frac{a}{6}}$ . 8.  $ab^{a}$ . 4.  $a^{-a}b^{-\frac{a}{6}}$ .
- 5. a b b . 6. a y . 7. a . 8. a 1.
- 9. y. 10.  $\frac{4}{9}x^2a^2$ . 11.  $\frac{6}{18}x^2a^3$ . 12.  $a^{\frac{3}{9}}b^{\frac{3}{7}}c^{\frac{3}{3}}$ .

# 13. $a^{-1}b^{\frac{3}{2}}c^{\frac{1}{2}}$ . 14. $a^{\frac{3}{2}}b^{-\frac{1}{2}}c^{\frac{1}{2}}$ . 15. $a^{4}b^{3}$ .

### अभ्याना 8

- 1.  $x-2x^{\frac{1}{2}}+1$ . 2. a-27b. 3.  $a^{8}-64b^{8}$ .
- **4.**  $x = x^{\frac{1}{2}}$ . **5.**  $a + a^{\frac{1}{2}}b^{\frac{1}{2}} = b$ . **6.**  $x^{2n} 1 + x^{-2n}$ .
- 7.  $x^{\frac{9}{4}} x^{\frac{1.5}{6}}a^{\frac{9}{8}} + x^{\frac{9}{8}}a^{\frac{9}{8}} x^{\frac{9}{8}}a^{\frac{1.5}{8}} + a^{\frac{2}{4}}$  8.  $x^{2^{n}} a^{2^{n}}$
- 9.  $x^{2^{m-1}} y^{2^{m-1}}$ . 10.  $a^{m-1}$ . 11.  $x^{\frac{n}{2}} + 3x^{\frac{1}{2}} 1$ .
- 12.  $x^{\frac{5}{4}} 2x^{\frac{5}{4}}y^{\frac{1}{4}} + xy^{-\frac{1}{2}} + 2x^{\frac{5}{4}}y^{\frac{1}{2}} 2x^{\frac{1}{2}}y^{\frac{1}{4}} + y$ .
- **13.**  $x^n + x^{\frac{n}{2}}a^{\frac{n}{2}} + a^n$ . **14.**  $(x^{\frac{1}{3}} + y^{\frac{1}{2}})(x^{\frac{2}{3}} x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{2}{3}})$ .

**15.** 
$$a^{\frac{2}{3}}x^{-\frac{9}{3}} + a^{\frac{1}{3}}x^{-\frac{1}{3}} + a^{-\frac{1}{3}}x^{\frac{1}{3}} + a^{-\frac{2}{3}}x^{\frac{2}{3}}$$
.

**16.** 
$$\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$
 **17.**  $\frac{2x + 36x^{\frac{1}{3}}y^{\frac{2}{3}}}{x - 27y}$ 

18. 
$$\frac{a+x}{a^2+3ax+x^2}$$
 19. 1.

20. 
$$x^{\frac{1}{4}}y^{\frac{1}{4}} - x^{-\frac{1}{4}}y^{\frac{1}{4}}$$
.

22. 
$$\frac{a^2+b^3}{a(a+b)}$$
. 23. 2.

24. 
$$\left(\frac{a-b}{a+b}\right)^n + 2$$
. 26.  $\frac{\sqrt{a}}{b}$ . 27.  $\left(\frac{p}{q}\right)^{nm}$ .

26. 
$$\frac{\sqrt{a}}{b}$$
.

27. 
$$\left(\frac{p}{q}\right)^{9m}$$

28. 
$$\left(\begin{array}{c}p\\q\end{array}\right)^{p+q}$$
.

34. 
$$m = n^{n-1}$$
.

**34.** 
$$m = n^{n-1 \over 1}$$
. **40.** 3. **41.** (i)  $x = 4$ ,  $y = 2$ . (ii)  $x = y = z = \frac{1}{3}a$ .

(ii) 
$$x = y = z = \frac{1}{3}a$$

### প্রশ্বালা 4

1. (i)  $\sqrt{45}$ . (ii)  $\sqrt[6]{24}$ . (ii)  $\sqrt[6]{95}$ . (iv)  $\sqrt[4]{1280}$ . (vi)  $\sqrt[8]{a^{8}b^{3}}$ . (vii)  $\sqrt[5]{a^{20}b^{3}}$ .

2. (i) 3 \( \sqrt{2}.

(ii)  $4\sqrt{5}$ . (iii)  $5\sqrt[5]{2}$ . (iv)  $2\sqrt[5]{4}$ . (v)  $3\sqrt[4]{5}$ . (vi)  $7\sqrt[3]{4}$ . (vii)  $5\sqrt[4]{3}$ . (viii)  $a^2\sqrt[3]{b}$ . (ix)  $-8\sqrt[3]{5}$ . (x)  $-4ab\sqrt[3]{3b}$ . (xi)  $5a^2x\sqrt[3]{4ax}$ .

3. (i) 7./5.

(ii) \*\frac{8}{\sqrt{2}}.

(iii) 5<sup>4</sup>/5. (iv) 3 <sup>1</sup>/<sub>2</sub>.

(v)  $6\sqrt{6}$ . (vi) 0.

(vii) 0. (viii)  $(7x + y) \sqrt{5x}$ .

(ix)  $(x^2 - 2y^2 + 3z^2)^3/a$ . 4. (i) <sup>6</sup>/27 এবং <sup>6</sup>/4.

(x)  $4a\sqrt[4]{2x}$ .

(iii) 15/8 97: 15/943.

(ii) 12 256 978 12/125. (iv) 12/27 gq: 12 25.

(v) <sup>24</sup>/<sub>256</sub> এবং <sup>24</sup>/<sub>216</sub>.

5. (i) শেবেরটি। (ii) প্রথমটি। (iii) প্রথমটি। (iii) প্রথমটি। 6. (i) <sup>8</sup>√4, <sup>4</sup>√6, √2. (ii) <sup>8</sup>√10, <sup>4</sup>√3, <sup>12</sup>√25.

7.  $5\sqrt{2}$ . 8. 9. 9. 30. 10. 5. 11.  $3ax\sqrt[3]{6x}$ .

**12.**  $\sqrt[6]{864}$ . **13.**  $\sqrt[6]{288}$ . **14.**  $9\sqrt[6]{3}$ . **15.**  $\sqrt[18]{32}$ . **16.**  $40\sqrt[3]{3}$ . **17.**  $480\sqrt[3]{3}$ . **18.**  $210abx\sqrt[3]{x}$ . **19.**  $2\sqrt[3]{8}$ . **20.**  $\sqrt[8]{4}$ .

**21.**  $\sqrt[6]{3}$ . **22.** 577. **23.** 1'341. **24.** 3'535. **25.** 26'832.

### প্রশালা 5

1. (i)  $5\sqrt{3}-4\sqrt{3}0+\sqrt{2}$ . (ii)  $5\sqrt{2}$ . 2.  $5\sqrt{2}$ . 3. (i) (a-b).

(ii)  $5 + 2^{\frac{1}{3}} 3^{\frac{2}{3}} + 3 \sqrt[8]{12} + 2 \sqrt[8]{18}$ . 4. (i)  $a^{\frac{1}{2}} b^{\frac{1}{2}}$ . (ii)  $x^{\frac{1}{4}} - y^{\frac{1}{4}}$ .

5. (i) 
$$83 + 12 \sqrt{35}$$
.

5. (1) 
$$83 + 12 \sqrt{3}$$
5. (2)  $23 - 3 \sqrt{3}$ 1

(ii) 
$$2a^2 - 2\sqrt{a^4 - 4b^4}$$
.

**6.** (i) 
$$\frac{23-3\sqrt{2}1}{10}$$
.

ii) 
$$\frac{a + \sqrt{a^2 - x^2}}{x}$$
.

(ii) 
$$\frac{a + \sqrt{a^2 - x^2}}{x}$$
. (iii)  $\frac{2 + \sqrt{2} - \sqrt{6}}{4}$ .

9. 
$$\sqrt{10} + \sqrt{5}$$

8. 
$$2x$$
. 9.  $\sqrt{10} + \sqrt{5}$ . 10.  $2 + \sqrt{3}$ . 11. 198.

12. 
$$4x\sqrt{x^2-1}$$
. 13.

12. 
$$4x\sqrt{x^2-1}$$
. 13.  $2x^2$ . 14.  $\sqrt[3]{9} = \sqrt[8]{6} + \sqrt[8]{4}$ .

15. 
$$2\sqrt[3]{2} + \sqrt[3]{12} + \sqrt[3]{9}$$
.

### अग्रमाना 6

1. 
$$\sqrt{3}-1$$
.

2. 
$$2 + \sqrt{3}$$

3. 
$$3-\sqrt{2}$$
.

4. 
$$\sqrt{5} + \sqrt{3}$$
.

5. 
$$3 - \sqrt{5}$$
.

6. 
$$5+\sqrt{3}$$

7. 
$$4-\sqrt{5}$$
.

1. 
$$\sqrt{3}-1$$
. 2.  $2+\sqrt{3}$ . 3.  $8-\sqrt{2}$ . 4.  $\sqrt{5}+\sqrt{3}$ . 5.  $3-\sqrt{5}$ . 6.  $5+\sqrt{3}$ . 7.  $4-\sqrt{5}$ . 8.  $3+2\sqrt{2}$ . 9.  $6+\sqrt{5}$ . 10.  $5-2\sqrt{3}$ . 11.  $2\sqrt{7}+\sqrt{3}$ . 12.  $3\sqrt{5}-2\sqrt{7}$ .

9. 
$$6 + \sqrt{5}$$
.

13. 
$$2\sqrt{11} + \sqrt{3}$$
. 14.  $\sqrt{\frac{2}{3}} - \sqrt{\frac{1}{2}}$ . 15.  $\sqrt{\frac{2}{3}} - \sqrt{\frac{5}{2}}$ . 16.  $\sqrt[4]{2}(\sqrt{2} - 1)$ . 17.  $\sqrt[4]{2}(\sqrt{3} - 1)$ . 18.  $\sqrt[4]{3}(\sqrt{2} + 1)$ . 19.  $\sqrt[4]{5}(\sqrt{3} + \sqrt{2})$ .

17. 
$$\sqrt[4]{2}(\sqrt{3}-1)$$
.

18. 
$$\frac{4}{3}(\sqrt{2}+1)$$

**20.** 
$$\sqrt{2}$$
.

$$24. \quad \sqrt{a+3x}+\sqrt{3x}.$$

20. 
$$\sqrt{2}$$
. 21. b. 22.  $x + \sqrt{a^2 - x^2}$ . 23.  $\sqrt{a + b} + \sqrt{a - b}$ . 24.  $\sqrt{a + \frac{1}{2}x} + \sqrt{\frac{1}{2}x}$ . 25.  $\sqrt{x + 2} + \sqrt{x - 3}$ .

26. 
$$\sqrt{x+y} + \sqrt{s}$$
.

### প্রধালা ?

1. 
$$\sqrt{6} + 1$$
.

1. 
$$\sqrt{6}+1$$
. 2.  $2-\sqrt{3}$ .

3. 
$$\sqrt{5} + \sqrt{2}$$
.

4. 
$$3\sqrt{2}-\sqrt{5}$$
. 5.  $\sqrt{3}(4+\sqrt{2})$ .

### প্রথমালা ৪

i. 
$$\sqrt{5} + \sqrt{2} + 1$$
.

1. 
$$\sqrt{5} + \sqrt{2} + 1$$
. 2.  $\sqrt{2} + \sqrt{3} + \sqrt{5}$ . 3.  $\sqrt{2} + \sqrt{3} + \sqrt{6}$ .

4. 
$$2-\sqrt{5}+2\sqrt{3}$$
. 5. (i) 44721. (ii)  $2(\sqrt{10}-\sqrt{5}+2\sqrt{2}-3)$ .

$$(\sqrt{10} - \sqrt{5} + 2\sqrt{2} - 3)$$

6. 
$$\frac{\sqrt{3}}{3}$$

7. 
$$a+b$$
.

7. 
$$a+b$$
. 8.  $\sqrt{3}+1$ . 9.  $\frac{3\sqrt{5}}{4}$ .

9. 
$$\frac{3\sqrt{5}}{4}$$

14. 1692. 17. 
$$\sqrt[5]{a^3b}$$
. 18.  $2\sqrt{2}$ .

18. 
$$2\sqrt{2}$$
.

19. 
$$\sqrt{2}$$
.

**20.** 
$$-2\sqrt{2}$$
.

### প্রথমালা 9

9. 2. 
$$\frac{4}{2}$$
. 3.  $\frac{9}{20}$ . 4. 8. 4. 8. 4. 7.  $\frac{(a-b)^2}{2b}$ . 8. 5. 9. 5.

12. 
$$\frac{81}{a}$$

81. 12. 
$$\frac{81}{a}$$
. 13.  $\frac{1}{a} \left( b + \frac{c^2}{c-1} \right)^2$ 

15. 0, 
$$\frac{b^2-4a^2}{4a}$$
.

16. 
$$x = 0 \blacktriangleleft 8$$
.

### প্রশালা 10

2. 24.

3. 1.

4.  $27x^2 = 4y^3$ 

5.  $y = \pm 6$ .

8.  $12x^2 - 25xy + 12y^2 = 0$ .

**12.**  $b^2x^2 + a^4y^2 = a^2b^2$ . **15.** (i)  $x = \frac{22}{15}z + \frac{2}{15z}$ . **16.** 26 जिला 25 %.

**10.** (i)  $y = 2x + \frac{2}{x}$  (ii)  $y = 2x + \frac{4}{x^2}$  **11.**  $y = 3 + 2x - x^3$ .

17. 45 সেমি.। 19. 3% দিন। 20. <sup>৩</sup>/ ৮<sup>5</sup> + ৮<sup>18</sup>. 23. 45 বর্গ-মিটার। 25. d = 4. 26. 346 ৳ বর্গ-মিটার।

27. 8:21.

28. 950 ঘন-দেমি.। 29. 15 মি.।

34. 224½ দিন (প্রায়)।

**33.** 1610 ফুট ; 305'9 ফুট।

36. হীরকের ম্ল্য =  $\mathfrak{L} \frac{mn^2c}{a^2(m+1)}$  কবির ম্ল্য  $\to \mathfrak{L} \binom{n}{h}^3 \dots c$ 

37. বার সর্বাপেক্ষা কম হইবে মথন গাড়ীর গতিবেগ ঘন্টার 12 কিলোমিটার এবং

100 কিমি. যাইতে থরচ 9 পা. 7 नि. 6 পে.।

### প্রশালা 11

**1.** (i) 16, **4**0, 2n-6. (ii) 15, 39, 2n-7. (iii)  $-\frac{29}{3}$ ,  $-\frac{101}{9}$ ,  $\frac{37}{3}-2n$ .

(iv)  $-\frac{19}{7}$ ,  $-\frac{67}{7}$ ,  $\frac{25-4n}{7}$ .

(v) 47, 119, 6n - 19.

2. 29 তম, 46 তম, (3n-10) তম। 3. 6. 4. 98.

5. -48, -44, -40; 20 TT = 28. 6. 13, -38. 7. 2, 3.

8.  $\frac{d(p-r)-c(q-r)}{p-q}$ 

### প্রেশ্বশালা 12

1.

325. 2. 900. 3. 504.

4. 88. 5.  $-\frac{15}{38}$ 

6.  $1\frac{1}{7}$ . 8.  $52\frac{1}{2}$ .

9. 0.

10. 25452, 11.  $\frac{1}{2}(n-1)$ .

 $\frac{n}{(a+b)}\left\{na-\frac{n+1}{2}b\right\}.$ 

13. 720. 14. n.

15.  $n(a+b)^2 - n(n-1)ab$ .

**16.** 899. **17.** 704.

18.  $\frac{n}{2}\{(x-2y)n+x\}$ . 19. 4080.

 $21n - 5n^2$ 20.

### প্রেমালা 18

1. 3. 2. 9. 3. 7. 4. 13 বা 17. 5. পদসংখ্যা—12 বা 10; শেষপুর 3 বা -1. 6. 1৪ বা 19; মেকেডু 19 ৩ম-পুর্নটি 0.

7.  $n^2$ . 8. 2401, 10. 16549, 11. 1,  $\frac{\pi}{4}$ ,  $\frac{n}{2}$ ,  $\frac{7}{4}$ ...; 1470.

12. 1, 3, 5, 7,...; n2, 18. 2. 14. 10 অগবা 4.

19. 50'5 किलाभिहात ।

### প্রভাগা 14

**1.** (i)  $6\frac{1}{2}$ . (ii) 8. (iii) m. (iv)  $a^2 + x^2$ . **2.** (i)  $9\frac{1}{2}$ ,  $10\frac{2}{3}$ . (ii)  $\frac{2}{3}$ ,  $7\frac{1}{5}$ .

**8.** 207, 297, 387. **4.** -2, -6, -10, -14.

5.  $1, -1\frac{1}{2}, -4, -6\frac{1}{2} - 39$ . 6. 14.

### প্রশালা 15

1.  $\frac{n}{2}(6n^2+3n-1)$ , 2.  $\frac{n(n+1)(n+2)(3n+5)}{12}$ , 3.  $\frac{n}{3}(4n^2+6n-1)$ .

4.  $n^{2}(2n^{2}-1)$ . 5.  $\frac{n(n+1)(n+2)}{6}$ . 6.  $\frac{n(n+1)(2n+1)}{6}$ .

7.  $\frac{n(n+1)(n+2(n+3))}{4}$  8.  $\frac{n}{12}(9n^3+46n^2+51n-34)$ .

9.  $-\frac{n}{2}$  ( n मुझा इंड्रेटन ),  $\frac{n+1}{2}$  ( n अमुद्रा इंड्रेटन ).

10.  $\pm \frac{n(n+1)}{2}$  (n in exco - , while exco + ).

11. n(n+1)(4n-1). 12.  $n(n+1)(n^2+n+2)$ .

### প্রথমালা 16

1.  $\frac{(2n+1)^m(na-nb)}{a-b}$  2. 9. 13. 17, 21, 25. 3. 13, 6. 4. 70.

5.  $\frac{n(n+1)(n+2)}{6}$  6.  $\frac{n}{6}(2n^2+3n+7)$  7.  $\frac{n}{6}(2n^2+9n+1)$ 

8.  $\frac{n}{2}(n^2+6n-1)$ . 9. (i)  $\frac{n}{3(2n+3)}$ . (ii)  $\frac{n}{a(a+nb)}$ .

**10.** 8, 12, 16, 20, **11.** 3, 5, 7, **12.** 1, 3, 5, 7, **13.** 3, 5, 7, 9, 11, 13.

**16.**  $\frac{n}{2}(4n^2+17n+21)$ . **18.** 16. **21.**  $\frac{n(n+1)(n+2)}{6}$ .

22. [1 (n-1)] (2n-1) (20 조 1 23. 16. 24. 5. 25. 10 작 기 1

### প্রশ্নালা 17

**1.** 8748. **2.** 4. 3. 65536. **4.** -243.

5.  $\frac{9}{87}$ .  $\pm \frac{9^{n-8}}{2^{n-8}}$  ( n যুগা হইলে + , অসুগা হইলে - ). 6.  $-\frac{448}{249}$ .

7.  $\frac{1}{28}$ ,  $\frac{1}{128}$ , 8.  $3^{\frac{8}{2}-8}$ . 9.  $\frac{9}{\sqrt{2}}$ . 11.  $\frac{1}{6381}$ . 12. 2, 2,

**18.** 16, 24, 36, 54, 81. **14.** 9.

(ii) 27, 9, 3, 1, 1, 1, ......

**15.** (i) 6, 12, 24, 49,....

থিকা, -27, 9, -3, 1, -1,....... (ii) হা, 9, 5, 1, 5,......, (iii) গুরু, -27, 18, -12,....

 $16. \quad \binom{c^{n+q}}{r^{n-p}}^{p-q}.$ 

18. p-তম পদ =  $\sqrt{mn}$ , q-তম পদ =  $m \binom{n}{2}^{\frac{n}{2}}$ 

### প্রশালা 18

1. 265720.

2.  $60\frac{30}{57}$ . 3. -682. 4.  $\frac{181}{576}$ .

5.  $\{1-2^2\}$ . 6.  $\{5^n+2^n\}$  ( n যুগা হইলে +, জাম্গা হইলে +).

7.  $2\left(1-\frac{1}{2^n}\right)$ . 8.  $\frac{a(a^n-1)}{a-1}-\frac{x(x^n-1)}{(x-1)}$ .

9. 8. 11. 40.

### अभ्याना 19

1. (i) 12; (ii) 2; (iii) 1; (iv)  $ab^2c^2$ . 2. 6, 12. 3.  $\frac{3}{3}$ , 1,  $\frac{2}{3}$ . 4. -1,  $\frac{3}{3}$ ,  $-\frac{2}{4}$ ,  $\frac{27}{8}$ . 5.  $\frac{16}{3}$ , 8, 12, 18, 27. 6. 3, 27.

### প্রথালা 20

1.  $\frac{a(1-a^n)}{(1-a)^2} - \frac{na^{n+1}}{1-a}$  2.  $4 - \frac{n+2}{2^{n-1}}$  3.  $2^{n-1}(2n-1)$ ;  $3 + (2n-3) \cdot 2^n$ .

4.  $\frac{5^{n+1}-5-4^n}{16.5^{n-1}}$  5.  $\frac{40}{51}(10^n-1)-\frac{4n}{9}$  6.  $n-\frac{1}{9}\left(1-\frac{1}{10^n}\right)$ 

7.  $2^{n+1} - (n+2)$ . 8.  $2(2^n - 1 - 4n)$ . 9.  $\frac{1}{2}(4^n - 1 + 15n)$ .

10.  $2n-2+\frac{1}{2^n-1}$ .

14. 4, 10, 25; অথবা, 25, 10, 4.

16. 2, 5, 8; অথবা, 26, 5, -16.

17. 4, 8, 16.

18.  $\frac{4}{8}$ , 4, 20, 22.  $n \cdot 2^{n+2} - 2^{n+1} + 2$ 

### প্রশালা 21

1. i.

2. -1.

3. i.

4. 1. 5. -1.

6. -i.

7. i.

8. - j.

9. -i, 10. -1.

11. *i*. 12. *i*. 13. *i*. 14. 
$$-i$$
. 15. *i*. 16. 0. 17.  $-2$ . 18. 0. 19. 19*i*. 20. 9*i*. 21.  $\sqrt{-2}$ . 22. 0. 23.  $5\sqrt{-5}$ .

21. 
$$\sqrt{-2}$$
. 22. 0. 23. 5  $\sqrt{-2}$ 

### <u> - 소리 파이 22</u>

1. 
$$99 + 23\sqrt{-3}$$
.  
2.  $-6\sqrt{15}$ .  
3.  $63 + 11\sqrt{21}$ .  
4.  $\frac{28}{13} + \frac{29}{13}i$ .  
5.  $\frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i$ .  
6.  $x^2 - x + 1$ .

15. 
$$\pm \frac{1}{\sqrt{2}} (\sqrt{x^2 + x + 1} + i \sqrt{x^2 - x + 1})$$
. 16. (i) -1, (ii) 1, -1,  $i, -i$ .

**19.** 
$$-27$$
. **25.**  $a^2$  -  $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9^2$   $9$ 

### প্রেমালা 23

1. (1) বাস্তব, অমূলদ এবং অসমান।

(3) বান্তব, মূলদ এবং অসমান।

(5) বাস্তব, অমূলদ এবং অসমান।

(7) বাস্তব, মূলদ এবং অনুমান।

(2) কাল্পনিক এবং অসমান।

(4) বাস্তব ও স্থান।

(6) কাল্পনিক ও অসমান।

(৪) বাস্তব, অমূলদ এবং

অসমান ৷

4. 8. 5. 0, 3.  $3. \pm 12.$ 

### প্রশ্বালা 24

1. (i) 
$$b^4 - 4ab^2c + 2a^2c^3$$
; (ii)  $(2abc - b^8)\sqrt{b^2 - 4ac}$ ;  
(iii)  $\frac{-b(b^4 - 5ab^3c + 5a^2c^2)}{a^5}$ ;  
(iv)  $\frac{(b^4 - 3ab^3c + a^2c^2)\sqrt{b^2 - 4ac}}{a^5}$ ;  
(v)  $\frac{(b^2 - 2ac)(b^4 - 4ab^2c + a^2c^3)}{a^5}$ ;  
(vi)  $\frac{b(ac - b^3)(b^2 - 3ac)\sqrt{b^2 - 4ac}}{a^5}$ ; (vii)  $\frac{c(b^2 - 2ac)}{a^3}$ ; (ix)  $\frac{bc(3ac - b^2)}{a^4}$ ;  
(x)  $\frac{c(b^4 - 4ab^2c + 2a^3c^2)}{a^5}$ ; (xi)  $\frac{bc}{a^7}(3ac - b^2)$ ;

$$(x)$$
  $c(b^4 - 4ab^2c + 2a^2c^2)$ ;  $(xi)$   $\frac{bc^4}{a^7}(3ac - b^2)$ ;

(xii) 
$$b^4 - 4ab^2c + 2a^2c^2$$
; (xiii)  $bc - 2ac$  ( $b^4 - 4ab^2c + a^2c^2$ ); (xiv)  $(b^3 - 2ac)(b^4 - 4ab^3c + a^2c^2)$ ; (xv)  $a^3c^3$ ; (xv)  $ac + 2b^2$ ; (xvi)  $b^4 - 4ab^3c + 2a^2c^2$ ; (xvii)  $b(3ac - b^2)$ ; (xviii)  $(2abc - b^3)\sqrt{b^2 - 4ac}$ ; (xviii)  $b(ac - b^3)(b^2 - 3ac)\sqrt{b^2 - 4ac}$ ; (xix)  $b(ac - b^3)(b^2 - 3ac)\sqrt{b^2 - 4ac}$ ; (xx)  $a^2c^4$ ; (xx)  $a^3c^4$ ; (xx)  $a^3c^4$ ; (ii)  $a^3c^4$ ; (iii)  $a^3c^4$ ; (iv)  $a^3c^4$ ; (v)  $a^3c^4$ ; (v)  $a^3c^4$ ; (vi)  $a^3c^4$ ; (

4. (a) (i) 
$$\frac{-p^{8} + 3pq}{q^{3}}$$
; (ii)  $\frac{p^{4} - 4p^{2}q + 2q^{2}}{q^{8}}$ ; (iii)  $\frac{p^{4} - 4p^{8}q + 2q^{2}}{q^{4}}$ .

6. 
$$\frac{b}{c}$$
. 9. (i)  $2(p^2 - 2q) + 2(p'^2 - 2q') - 2pp'$ . (ii)  $2q + 2q' - pp'$ .

10. (b) 
$$2p^2 = 9q$$
. 14. (ii)  $\frac{(p+q)^2}{pq} = \frac{b^2}{ac}$ . 16.  $k=0$ .

18. वीयवर <sup>γ + 8 ±</sup>  $\sqrt{(\gamma + \delta)^2 - 4a\beta}$ .

1. (i)  $x^2 - 12r + 35 = 0$ .

### প্রেশ্বনালা 25

1. (i) 
$$x^2 - 12r + 35 = 0$$
, (ii)  $x^2 - 7x - 18 = 0$ , (iv)  $x^2 + 8x + 15 = 0$ . (iv)  $x^2 - 4x - 77 = 0$ .  
2. (i)  $x^2 - 7x + 12 = 0$ ;  $p = 3$ ,  $q = 4$ . (ii)  $x^2 - 2x - 15 = 0$ ;  $p = 5$ , (iv)  $x^2 - 6x + 2 = 0$ ;  $p = 3 - \sqrt{7}$ ,  $q = 3 \pm \sqrt{7}$ .

(v) 
$$x^2 - 5x + 6$$
;  $p - 3$ ,  $q - 2$ . 3. (i)  $8x^2 - 65x + 8 = 0$ .

(ii) 
$$16x^2 - 128x + 255 = 0$$
.  
(iv)  $4x^2 + 4x + 1 = 0$ 

4. (i) 
$$qx^2 - (p^2 - 2q)x + q = 0$$
.

3. (i) 
$$8x^2 - 65x + 8 = 0$$
.

(iii) 
$$4x^2 + 5x + 1 = 0$$
.

(v) 
$$4x^2 - 12x + 5 = 0$$
.

6. (i)  $x^3 + px + 9q - 2p^2 = 0$ . (ii)  $qx^2 - (p + q^2)x + pq = 0$ .

(ii)  $\alpha^2 - 2(p^2 - 2q)x + p^2 \times (p^2 - 4q) = 0$ .

(v)  $acx^{9} + b(a+c)x + (c+a)^{9} = 0$ .

14. निर्मिश्र स्थे कर्तन स स्वस्य स्थीकरूत खक्डा।

(d) 4. (s) m=8, n=2.

1. (a)  $\frac{7}{4}$ ,  $-\frac{1}{6}$ .

7. 4-0 41 21.

14. m " 1 1().

(in)  $x^2 - p^2 x + p^2 q = 0$ . 5.  $x^2 - 50x + 49 = 0$ .

(iii)  $x^2 - (m+n)pr + mn(p^2 - 2q) + q(m^2 + n^2) = 0$ , (iv)  $qx^2 - (p^2 - 2r)(q+1)x + p^2 + q^3 - q - 0$ , (v)  $x^2 - px + q = 0$  [ (3) - 62 4/.276 x 4/.276 y 5/.2 y 7/.2 y 7/.2

(iv)  $a^2x^2 + ab/1 + m)x + (b^4 - 2ac)m + ac(1 + m^2) = 0$ .

19.  $x^2 - 6x + 4 = 0$ .

প্রাধ্বমালা 26

5.  $(bx' - b'c)(ab' - bc') + (cc' - ax')^3$ . 6.  $(pq - p'q) p' - 1) = (q - q')^2$ .

4. (bc'+b'c,'ab'+a'b)+(a'-c'a)''=0.

11.  $6x^2 - 5x + 1 - 0$ , 12.  $x^3 - x + 1 = 0$ ,

20. (i) 1. (ii) 5. (iii) 19.

**21.**  $4x^2 + 32x + (3 - 0)$  **22.**  $6x^3 - 25x + a = 0$ 

13.  $x^{9} + x + 1 = 0$ .

(iv) 8.

10. a + h - () 2, 20 m 2 + 1 gd ().

15. 4x + 2y + 5 - 2x - 3y + 6).

9. 11880.

19. 729. 20. m<sup>n</sup>.

10. (i) 2016; (ii) 3024. 11. 720; 120; 24; 600; 96. 12.  $n(n-1)(n-2)\cdots(n-m+1)$ . 13. 80640. 14.  $2(n-1)(n-2)\cdots 3.2.1$ . 15. 576. 
 16. 4920.
 17. 1440.

 19. 90720.
 20. 4320.
 18. 12. 21. 864. 22. 34560. 23, 126, 24. (a) 2903040. **25.** 399168000. **26.** 332640. 27 [16 × [15] 28. 6. 29. (a) 210; 4 (b) 240. 30, 240. 31. 125. 32. 36. 33. 154. প্রধালা 29 **1.** 19600; 17550; 341149446. **2.** (n-1). 4. r=3; n=10. 5. n = 15, r = 10. 9. 210, 84. 8. 455. 11. 220. 10. 36. 12. 190, 171. 18. 120. **14.** (i)  $\frac{n(n-3)}{2}$ . (ii) n(n-1)(n-2) 6. **15.** (i)  $\frac{1}{2} \cdot \{n(n-1)\}$ (ii)  $\frac{1}{6} \{ n(n-1)(n-2) - m(m-1)(m-2) \}.$ -m(m-1)+2. 
 17. 25.
 18. 387600.

 20. 441.
 21. (i) 792;
 16. 1830. 19. 59850. 20. 441. (ii) 5940. **22.** (i) 196; (ii) 252. **23.** 344. **24.** 990. **25.** 30030; 20020. **26.** 68. 24. 990. 28. 224. 27. 81600. 30, 40320, 32. 141000. 31. 8156. श्रिमाना ३० 1. 4 작 5 : 21 작 35. 2. 10 ; 92378. 3. 70 ; 35. প্রেমালা 31 

 1. 60.
 2. 5040.
 3. 7560; 60.

 4. [39<sup>5</sup>5,(4)<sup>6</sup>6)<sup>8</sup>.
 5. (i) 60; (ii) 36.
 6. 4540535999;

 605104800; 9979200.
 7. 2519.
 8. 21599.

 9. 1960. 10. 27720; 280. 11. 50. 12. 8100. 13. 7 31 8. 14. 343. 15. 243. 16. 16334. 17. 6144. 18. 12902400.

### প্রেমালা 32

3.  $2 \approx 0$ . 4.  $(4n^2 - 6n + 1)(2n + 2)$ . 1. 362940. 2. 60.

### প্রথমালা 88

**8.** 31. **4.** 279. **5.** 190. **1.** 63. **2.** 127.

8, 254. 9. 352716.

### **외취과 하 34**

2. n = hh, a/h = a + r + 1 + h, h = a + h. 3.  $h^{\text{th}}$ . 7. 106 3. 5, 43 (50), 6, 256, 4. 135 (56.)6

9 कि निमान स्थाप के लिए के दिया 8, 198015.

13. (a). 14.  $\frac{1}{3} \cdot \frac{(m+n)!}{n!}$  15. (2). 10. 19.

17, 160. 18, 150, 2510, 19, 315. 16, 2190,

21. (. (0). (1.) 3., 6. 22. 7.466. 20, 159,

### প্রভাষালা 82 [ প: 210—212 ]

1. (a)(i)  $a^{n} + 12x^{n}b + 60x^{4}b^{2} + 100x^{n}b^{3} + 240x^{2}b^{4} + 142x^{5} + 64x^{6}$ 

 $+ i20r^{6}$ . (i.e.  $x^{6} + 6x^{6} + 15x^{6} + 2x + \frac{1}{4}x + \frac$ 

(iv) 
$$\frac{64}{137}\sigma^0 - \frac{32}{137}\sigma^4 + \frac{20}{137}\sigma^9 - 20 + \frac{135}{137} - \frac{213}{137} + \frac{729}{137}$$

2. 1) (10 - 10 0 + 1 1 2.  $(b_1 - 2)^{\circ}(1 + 10y + 5y^{\circ}).$ 

3. - 32 1. "y". 4. - 12" "y".

(11) - 238.

5.  $\frac{-120x^4}{a^4}$ . 6. -252. 7.  $84a^6b^6$ .

10. °Cmy n-m, ₹₹₹ m ≯ n.

11.  $(-1)^{n-r} \frac{m+1}{n-r-n-r+1}$ 

14.  $^{4n+1}C_{n+1}(-1)^{n+1}$ . 15. 2.2. 16. 0.25.

(ii) |m+n | |m|n 17. 4433. 18. 150.

**19.** (i) (i)  $70a^4b^4$ . (b) 126r,  $\frac{-125}{x}$  c.  $(-1)^4\frac{7n}{10}$ . (a) 101.

20. 
$$\frac{a^{2n+1}}{b^{2n+1}} + \frac{2n+1}{b^{2n-1}}C_1 \cdot \frac{a^{2n-1}}{b^{2n-1}} + \frac{2n+1}{b^{2n-3}}C_2 \cdot \frac{a^{2n-3}}{b^{2n-3}} + \cdots$$

মধ্যপদ্দম 
$$(n+1)$$
-তম এবং  $(n+2)$ -তম পদ যথাক্রেম  $^{2\,n+1}C_n$ .  $^a_L$ 

এবং 
$$^{2n+1}C_{n+1} \cdot \frac{b}{a}$$
 21.  $r=1$ . 22.  $r=9$ .

**21.** 
$$r = 1$$

22. 
$$r = 9$$
.

23. 
$$r = n$$
.

**25.** 
$$1 - nx + \frac{n(n+1)}{2}x^2 - \frac{n(n-1)(n+4)}{6}x^3$$
.

## প্রশ্বালা 33 [ श: 216 ]

1. (i) 3432. (ii) 489888. 2. 3°.2° 3°.10° 3. (i) 7-তম। (ii) 5 তম এবং 6-তম। 4. (i) 15. তম এবং 6-তম।

2. 3°.25. 14/5. 9.

(ii) 56229888. (iii) 1744.

# প্রশালা 34 [পঃ 222—225]

1. 220-1.

2. (a) 225

3. 11.

**6.** a=2, x=3, n=5.

7. x=1, a=2, n=7

# 26, (i) 96059601. (ii) '996.

### প্রশালা 35

1. 1. 2. \frac{3}{5}. 3. 3\frac{1}{5}.

4. \frac{1}{2}. \quad 5. \quad 10\frac{1}{2}.

**6.**  $\frac{13}{24}$ . **7.**  $\frac{11}{16}$ . **8.**  $\frac{3\sqrt{3}}{2}$ . **9.**  $\frac{1}{3}(4+3\sqrt{2})$ .

**10.**  $\frac{1}{11}$ . **11.** (i)  $\frac{1}{86}$ ; (ii)  $1_{85}^{8}$ ; (iii)  $\frac{358}{1668}$ ; (iv)  $\frac{1}{7}$ .

12.  $\frac{1+x}{(1-x)^2}$ .

13.  $(\frac{2x}{1-2x})^2$ . 14.  $(\frac{1+6x}{3x})^3$ 

15.  $\frac{1-x}{(1+x)^2}$ 

16. 1.

17.  $\frac{1}{(1-r)(1-ar)}$ 

### প্রশ্বমালা 36

1. (a) 
$$1 + \frac{1}{2}x - \frac{1}{2.4}x^{3} + \frac{1}{2.4}.6$$
  $x^{3} - \cdots$  (b)  $1 - \frac{1}{3}x - \frac{1}{3^{2}}x^{2} - \frac{5}{3^{4}}x^{3} - \cdots$ 

2. (a)  $1 + 6x + 24x^2 + 80x^3 + 240x^4 + \cdots$ 

(b) 
$$1 + \frac{x}{2} + \frac{3x^3}{8} + \frac{5x^8}{16} + \frac{35x^4}{128} + \dots$$

(c)  $1+x+2x^2+\frac{14}{8}x^3+\frac{86}{8}x^2+\cdots$  3.  $1+x+\frac{1}{6}x^2-\frac{1}{54}x^3+\cdots$ 4.  $\frac{1}{27}(1+x+\frac{5}{8}x^2+\frac{5}{8}\frac{5}{2}x^3+\cdots)$ 

5. (a) 
$$\frac{1}{3}a^2 + \frac{2}{9}a^4x + \frac{4}{27}a^6x^2 + \frac{8}{81}a^8x^3 + \frac{16}{243}a^{10}x^4 + \cdots$$
  
(b)  $1 - \frac{1}{6}x^{\frac{1}{8}} + \frac{7}{79}x^{\frac{2}{8}} - \frac{91}{1296}x + \frac{1729}{31104}x^{\frac{4}{8}} - \cdots$ 

6. 
$$1-x+\frac{x^2}{2}-\frac{x^3}{2}+\frac{3}{8}x^4-\frac{3}{8}x^5+\frac{5}{16}x^6-\cdots$$

7. (a) 
$$\frac{3.7.11.15.19.23.27.5^7}{4^7.17}$$
. (b)  $2^r$ .

8. (a) 
$$1 - 2x - 2x^2 - 4x^3 - \cdots$$
 (b)  $1 + \frac{1}{4}x + \frac{8}{33}x^2 + \frac{5}{136}x^3 + \cdots$ 

8. (a) 
$$1 - 2x - 2x^2 - 4x^3 - \cdots$$
 (b)  $1 + \frac{1}{4}x + \frac{8}{3}x^2 + \frac{1}{128}x^3 - \cdots$   
9.  $\frac{1}{2^{\frac{9}{3}}} \cdot \frac{77}{256}x^{\frac{1}{9}}$  10.  $-\frac{(p-1)(2p-1)(3p-1)\cdots(r-1.p-1)}{2^r}x^r$ 

11. 
$$\frac{1.5.9\cdots(4r-3)}{4^r!r}x^r$$
.  
12.  $\frac{7.9.11\dots(2r+5)}{x^r}x^r$ .  
13.  $(-1)^{r-1}.r\frac{x^{3r-3}}{x^{3r+2}}$ ;  $\frac{1.4.7.10\dots(3r-5)}{3^{r-1}.r-1}x^{2^{r-1}}$ .

14. 
$$-\frac{5}{1024}a^{-\frac{3.5}{8}}b^{1.8}$$
. 15.  $-1848x^{1.5}$ .

16. 
$$3\left\{1+\frac{1}{3}\cdot\frac{x^{8}}{a^{8}}+\frac{2}{9}\cdot\frac{x^{4}}{a^{6}}+\frac{14}{81}\frac{x^{6}}{a^{9}}+\cdots\right\}; \frac{1.4.7.\cdots(3r-2)}{3^{r-1}.!r}\cdot\frac{x^{3r}}{a^{3r}}$$

17. (a) 
$$\frac{(n+1)(2n+1)(3n+1)\cdots(r-2\cdot n+1)}{n^{r-1}|r-1} \frac{x^{r-1}}{a^{n+r-1}}$$

(b) 
$${n+1}(2n+1)(3n+1)\cdots\{(r-1)n+1\}\atop r}x^r$$
.

18. 
$$\frac{2.5.8.11...(3r-1)}{r} \cdot \left(\frac{2x}{3}\right)^r$$
. 22.  $\overline{\text{pg}}$ 

### প্রেশ্বনালা 37

1. তৃতীয়। 2. 13 তম। 3. দিতীয়। 4. চতুর্থ এবং পঞ্চম।

5. তৃতীর। 6. (i) বর্চ। (ii) নবম।

7. প্রথম ও তৃতীয়।

### প্রেম্বর্যালা 38

3. (i) 1'952. **2.** 1'0099. (ii) 9'997. 1. 1 99776. **5**. 5'01329. 5. 9'99333. 4. 3'14138. (iii) '990.

8.  $1 - \frac{989}{192}x$ . 7.  $1 - \frac{1}{2}x$ .

### প্রধালা 39

4.  $\frac{1}{2}(r+1)(r+2)(r+3)$ . 1, -1, 2, 0, 3, 25,

5. (i) 121; (ii)  $-\frac{1}{2}\left(3+\frac{5}{3^8}\right)$ . 6. 2.

7. (i) 5; (ii) 
$$(-1)^n$$
; (iii)  $(-1)^r \cdot \frac{1}{2}(r+1)(r+2)$ .

**9.** (i) 
$$\frac{1}{2}y - \frac{3}{2^2}\frac{y^2}{\lfloor \frac{3}{2} + \frac{15}{2^3}\frac{y^8}{\lfloor \frac{3}{2} - \cdots}}$$
 **10.** \$\frac{2}{4}\$. 11. \$\frac{\sqrt{5}}{2}\$.

**15.** 
$$\binom{9}{4}^{\frac{1}{3}}$$
. **16.**  $\binom{1}{8}^{9}$ . **17.**  $4(2)^{\frac{1}{3}} - 2$ . **18.**  $\binom{2}{8}^{\frac{1}{3}}$ .

17. 
$$4(2)^{\frac{1}{6}} - 2$$
.

18. 
$$\frac{2}{\sqrt{5}}$$

**19.** 
$$\frac{2}{3}\sqrt{\frac{3}{3}}$$
. **20.**  $3\sqrt{3}$ . **21.**  $\sqrt[4]{64}$ . **31.** (a)  $\frac{(-i)^n}{2}(9n^2+3n+2)$ . (b)  $4^n-3^n$ . **33.**  $4n$ .

$$(b) 4^n - 3^n$$
.

**34.** 
$$(n+1)(n+2)$$
. 35. -1. 38.  $(a) \stackrel{*}{\sim} 6$ .  $(b) \stackrel{3}{\sim}_{9}$ 

42. 
$$x^{2r}$$
-est here  $= \frac{1.3.5.\cdots(2r-1)}{2}$  ,  $\frac{2}{a^2}$  ,  $\frac{a^2}{r}$  ,  $\frac{1}{2}$  ,  $\frac{2}{a^{2r}}$  ,  $\frac{1}{2}$  ,  $\frac{1}{2}$ 

### প্রশাসা 40

**1.** 6. 2. 6 **3.** 9. **4.** -4. **5.** 
$$\frac{1}{2} \log m + \frac{2}{3} \log n$$
.

6. 
$$\frac{1}{2} (17 \log a - 19 \log l)$$

8. 
$$\frac{4 \log c - 3 \log b}{\log a + 2 \log b + \log c}$$

11. T'67779433.

### श्रिमाना 41

**1.** 5; 3; -6; 0; -1. **2.** '7283375;  $\overline{2}$  7283375;  $\overline{1}$  7283375; 8'7283375. 3. 15.

### প্রশালা 42

**1. 15. 2.** 
$$\overline{3}$$
 8515933. **3.**  $\overline{2}$  88869495. **4.** '005942.

**22.** 
$$\text{CNTE} \ \overline{y} \ 1 + 2 + 3 = 1 \times 2 \times 3$$
. **24.**  $m = \frac{n}{n-1}$ 

37. (i) 
$$\frac{a^2}{100}$$
. (ii) 1'206. (iii) '65 ( 217) (iv) 1,  $\log_a b$ .

38. (i) 
$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$
  $\forall 1 \begin{cases} x = 4 \\ y = 2 \end{cases}$ .

(ii) প্রদত্ত লগারিদ্মগুলি একই প্রকারের ধ্রিয়া লইলে,  $x=10^{\frac{1}{5}(a+3b)}$  এবং  $y=10^{\frac{1}{5}(a-2b)}$ 

(iii) 
$$\frac{x = -3k \log b}{y = 2k \log a}$$
 and  $\frac{1 \log c}{2 \log a}$  and  $\frac{1 \log c}{\log (ab) - 3 \log b}$ .  $\frac{1}{\log ab^2}$ .

(iv) 
$$x = \frac{\log 5}{\log 3}$$
,  $y = \frac{\log 5 \cdot \log 1.5}{\log 3 \cdot \log 6}$ .

(v) 
$$x = \frac{abm}{a+bm}$$
,  $y = \frac{ab}{a+bm}$ .

(vi) 
$$x = 0$$
,  $y = 0$ . (vii)  $x = y = z = 64$  (21)

(viii) 
$$x = k[(\log a)^2 \log m + (\log b)^2 \log n + (\log c)^2 \log p - \log b \log c \log m - \log c \log a \log n - \log a \log b \log p].$$

$$y = k[(\log a)^2 \log p + (\log b)^2 \log m + (\log c)^2 \log n$$

$$-\log b \log c \log p - \log c \log a \log m - \log a \log b \log n$$
],

$$z = k[(\log a)^2 \log n + (\log b)^2 \log p + (\log c)^2 \log m$$

$$-\log b \log c \log n - \log c \log a \log p - \log a \log b \log m$$
,

যধন 
$$k = \frac{1}{\log (abc) \{(\log a)^2 + (\log b)^2 + (\log c)^2 - \log b \log c - \log c \log a - \log a \log b \}}$$
.

### প্রশ্বালা 48

1. 5624 bl. | 2. 21673 31 bl. | 3. 139 bl. |

4. 17 व. 6 মা. 6 हि.। 5. 14 वर, 25 मान (প্রায়)।

6. 4%. 7. 5%. 8. 10650. 9. 2½%.

### প্রশালা 44

1. 766 हो. 32 म.। 2. 1335 हो. 75 म.। 3. 1979 हो. 27 म.।

4. 1741 টা 31 প.। 5. 284 বংসর। 6. 4%.

7. C400 টাকা। 8. 6% 9. 9 টাকা 78 পর্না ক্ষতি হয়।

11. [ 'क ডিভে'র পরিবর্টে 'কিডিডে' প্রিডে ইইবে।]

### প্রশ্বনালা 45

21. (a)  $e-2+e^{-1}$ . (b)  $\frac{1}{8}e$ . (c)  $e^{2\pi}-e^{4}$ . 23. 3c. 24. 4c. 25.  $2e-\frac{\pi}{8}$ . 26. 2e. 27. 12e-5.

28. 11e. 29. 
$$\frac{7}{12}$$
. 30.  $2\left[1+\frac{(2r)^2}{2}+\frac{(2r)^4}{4}+\cdots\right]$ .

33. (a) 
$$(-1)^n \frac{(n-1)^2}{n!}$$

(c) 
$$\frac{(-1)^n}{2^n \lfloor n} \{3+4n\}$$
.

**35.** (a) (i) 
$$1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^4}{4}$$

**35.** (a) (i) 
$$1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^4}{2}$$

36. (i) 
$$1-2x+\frac{2^2x^2}{12}-\frac{2^3x^3}{13}+$$

(ii) 
$$\frac{(2^3-2)x^2}{2} - \frac{(2^3-2)x^3}{2} + \frac{(2^4-2)x^4}{4} - \dots$$

(iii) 
$$\frac{1}{4} \times 2 \left( \frac{(2x)^9}{12} + \frac{(2x)^4}{14} + \frac{(2x)^6}{16} + \cdots \right)$$

$$37. \ (x^3 + 6x^2 + 7x + 1)e^x$$

**37.** 
$$(x^3 + 6x^2 + 7x + 1)e^x$$
. **39.** (a)  $c[1 + x + 2 \cdot \frac{x^2}{12} + 5 \cdot \frac{x^3}{13} + 15 \cdot \frac{x^4}{14}]$ .

(ii)  $x - \frac{x^3}{13} + \frac{x^5}{5} + \dots$ 

32.  $\frac{(-1)^r}{r} \{a+a,r-r, (r-1)\}.$ 

(b)  $\frac{(-1)^n}{n-2} \left\{ a - \frac{b}{(n-1)} + c \right\}$ .

### প্রেশ্বালা 4৪

15. 
$$x + \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{3}{4}x^4 + \frac{1}{5}x^5 + \frac{1}{6}x^6 + \frac{1}{7}x^7 - \frac{1}{6}x^6 + \cdots$$

$$x^{2n}$$
-এর সহগ  $\frac{1}{2n}$  যথন  $n$  অযুগ্য সংখ্য ;  $-\frac{3}{2n}$  যথন  $n$  মুগ্য সংখ্য ;

$$x^{2n+1}$$
-এর সহগ  $\frac{1}{2n+1}$ .

18. 
$$2\left(x-\frac{2}{3}x^{9}+\frac{x^{6}}{5}+\frac{x^{7}}{7}-\frac{2}{9}x^{9}+\cdots\right)$$
.

**20.** 
$$\frac{a+b}{x} - \frac{a^2+b^3}{2x^3} + \frac{a^2+b^3}{3x^3} - \dots$$

**21.** 
$$\log_e 3 - \log_e 2$$
,  $22. - \frac{1}{2} \log_e (1 - e^3)$ .

26. 
$$(1-x)\log_{x}(1-x)+x$$
.

27. 
$$\frac{x}{1-x}$$
 [ :  $|x| < 1$ ] +  $\log_e (1-x)$ .

# ত্রিকোণমিতি

### প্রশ্বালা 1

1. (a) 60°, 240°, 144°,

(b)  $\frac{\pi}{9}$ ,  $\frac{79}{36}\tau$ ,  $\frac{921}{880}\pi$ ,  $\frac{703}{790}\pi$ .

2.  $\frac{\pi}{5}$ ,  $\frac{\pi}{2}$ ,  $\frac{3\pi}{10}$ .

8. 33 মিটার। 9. 132° 15'2'.

10. 25°.

11. 100°.

12. 34° 21'81'.

13. 81°. 9°.

14.  $\frac{2\pi}{9}$ ,  $\frac{\pi}{3}$ ,  $\frac{4\pi}{9}$ . 15.  $\frac{1}{180}$  রেডিয়ান।

16. 30°. 60°. 90°.

17. 2° 51′ 49″.

### প্রেশালা 5

1. (i) -1. (ii)  $-\frac{1}{2}$ . (iii)  $\frac{1}{\sqrt{8}}$ 

11. - cos 23°.

12. sin 4°. 13. -tan 41°. 15. sin 18°. 16. -cot 7°.

14. sin 20°.

17. cosec 33°. 18. -sec 30°. 19. cot 7°.

20. cot 24°.

21. 0.

22.  $-\frac{4}{\sqrt{3}}$ 

23. প্রথম ক্ষেত্রে ঋণাত্মক; দ্বিতীয় ক্ষেত্রে রাশিমালার মান = 0.

24. ধ্নাত্মক, ঋণাত্মক। 25.  $\frac{7}{24}$  36. 60°, 300°.

**37.** 45°, 225°. **38.** 30°, 150°. **39.** 0°, 180°.

40. 30°, 150°, 210°, 330° ( অর্থাং, n × 180° ± 30° ).

**41.** 30°, 150°. **43.**  $\frac{\sqrt{3}}{9}$ .

### প্রধালা 7

2. # 3. - '368 (প্রায়)। 4. x=38° 10' (প্রায়)।

 17° 20' (প্রায়)।
 লেখ-অঙ্কনে ৫-এর মান রেডিয়ানে লইতে হইবে; লেখগুলি পরস্পরকে মৃলবিন্ধতে স্পর্শ করিবে।

### প্রশালা ৪

1. (i)  $n\pi + (-1)^n \frac{\pi}{6}$  (ii)  $2n\pi \pm \frac{\pi}{6}$  (iii)  $n\pi + \frac{\pi}{6}$ 

(iv)  $n\pi - (-1)^n \frac{\pi}{3}$  (v)  $2n\pi \pm \frac{3\pi}{4}$  (vi)  $n\pi + \frac{2\pi}{3}$ 

(vii) 
$$n\pi + (-1)^n \frac{\pi}{4}$$
 (viii)  $2n\pi \pm \frac{5\pi}{6}$  (ix)  $n\pi + \frac{3\pi}{4}$ 

2. (i) 
$$2n\pi + \frac{7\pi}{6}$$
 (ii)  $2n\pi - \frac{\pi}{6}$  3.  $n\pi + (-1)^n \left(\frac{\pi}{2} - A\right)$ 

4. 
$$n\pi \pm \frac{\pi}{6}$$
. 5. (i)  $n\pi \pm \frac{\pi}{4}$ . (ii)  $n\pi \pm \frac{\pi}{4}$ . 6.  $n\pi \pm \frac{\pi}{3}$ .

7. 
$$n\pi + (-1)^n \frac{\pi}{4}$$
. 8.  $n\pi + \frac{\pi}{4}$  71  $n\pi + \alpha$ ,  $\pi + \alpha$  21  $\cot \alpha = \frac{1}{2}$ .

9. 
$$n\pi \pm \frac{\pi}{4}$$
 (ii)  $\frac{1}{2}n\pi + (-1)^n \frac{\pi}{12}$  (ii)  $(2n+1)^{\frac{\pi}{14}}$ 

11. 
$$n\pi + \frac{5\pi}{12}$$
  $\vec{q}$   $n\pi + \frac{\pi}{12}$  12.  $(2n+1)\frac{\pi}{6}$   $\vec{q}$   $(2n+1)\frac{\pi}{4}$ .

13. 
$$(2n+1)\frac{\pi}{6}$$
  $\forall 1 \ n\pi + (-1)^n \frac{\pi}{6}$  14.  $n\pi \ \forall 1 \ \frac{n\pi}{4} + (-1)^n \frac{\pi}{24}$ 

**15.** (i) 
$$(2n+1)\frac{\pi}{2}$$
  $\forall 1 \ \pi\pi + (-1)^n \frac{\pi}{6}$ . (ii)  $(2n+1)\frac{\pi}{5}$   $\forall \frac{2n\pi}{3}$ .

16. 
$$\frac{2r\pi}{m+n}$$
  $\Rightarrow \frac{2r+1}{m-n}$ . 17.  $(2n+1)\frac{\pi}{4}$   $\Rightarrow 2n\pi \pm \frac{2\pi}{3}$ .

18. 
$$\frac{n\pi}{3} \stackrel{\pi}{\triangleleft} \frac{n\pi}{2} \pm \frac{\pi}{12}$$
 19. (i)  $(2n+1)\frac{\pi}{5} \stackrel{\pi}{\triangleleft} (2n+1)\frac{\pi}{2} \stackrel{\pi}{\triangleleft} (2n+1)\pi$ . (ii)  $(2n+1)\frac{\pi}{8} \stackrel{\pi}{\triangleleft} (2n+1)\frac{\pi}{4} \stackrel{\pi}{\triangleleft} (2n+1)\frac{\pi}{2}$ .

**20.** 
$$2n\pi \, \text{ of } (4n+1)\frac{\pi}{6}$$
 **21.**  $2n\pi - a \, \text{ of } (4n-1)\frac{\pi}{2} + a$ .

**22.** 
$$n\pi$$
  $\triangleleft$   $\frac{n\pi}{3}$ . **23.**  $m\pi$ ,  $\triangleleft$   $(2m+1)\frac{\pi}{2n}$   $\triangleleft$   $\frac{m\pi}{n-1}$ .

**24.** 
$$(2n+1)_{24}^{\pi} \stackrel{n\pi}{=} \frac{n\pi}{4}$$
. **25.**  $n\pi + \frac{3\pi}{4} \stackrel{n}{=} \frac{n}{2} \pi + (-1)_{12}^{n}$ .

**26.** 
$$2nn + \frac{5\pi}{12}$$
  $\Rightarrow$   $2n\pi + \frac{\pi}{12}$  **27.**  $2n\pi + \frac{\pi}{3}$ .

**28.** 
$$2n\pi + \frac{5n}{12}$$
  $\stackrel{\text{def}}{=} 2n\pi - \frac{\pi}{12}$ . **29.**  $2n\pi + \frac{7\pi}{12}$   $\stackrel{\text{def}}{=} 2n\pi + \frac{\pi}{12}$ .

**30.** 
$$2n\pi + \frac{\pi}{2}$$
  $\Rightarrow 12n\pi - \frac{\pi}{2} + 2\alpha$ . **31.**  $n.360^{\circ} + 112^{\circ}40'$   $\Rightarrow 1.360^{\circ}$ .

**32.** 
$$\frac{n\pi}{3} + \frac{\pi}{13}$$
 **33.**  $\frac{n\pi}{3}$  **34.**  $n\pi \pm \frac{\pi}{6}$  **35.**  $\frac{n\pi}{3}$   $\triangleleft$   $n\pi$ .

36. 
$$\frac{n\pi}{3}$$
  $4 | n\pi| 4 | \frac{n\pi}{2}$ . 37.  $\frac{2n\pi}{3}$   $4 | n\pi| + \frac{\pi}{4}$   $4 | 2n\pi| - \frac{\pi}{2}$ .

38. 
$$\frac{n\pi}{3} + \frac{\pi}{9}$$
 39.  $2m\pi = \frac{4m\pi}{n+1}$ 

40. 
$$2n\pi \pm \frac{\pi}{9}$$
.

40. 
$$2n\pi \pm \frac{\pi}{3}$$
 41.  $\frac{n\pi}{4} + (-1)^n \frac{\pi}{40}$  43.  $\frac{n\pi + (-1)^n \alpha}{4 - 2(-1)^n}$ 

43. 
$$\frac{n\pi + (-1)^n a}{4 - 2(-1)^n}$$

**44.** (i) 
$$\frac{\pi}{3}$$
 • যথল  $n=0$ 

44. (i) 
$$\frac{\pi}{3}$$
, যথন  $n = 0$ . (ii)  $\frac{\pi}{12}$ ,  $-\frac{7\pi}{12}$ , যথন  $n = 0$ .

(iii) 
$$\frac{5\pi}{12}$$
,  $\frac{23\pi}{12}$ , প্রথমটিতে ষধন  $n=0$  এবং দ্বভীয়টিতে  $n=1$ .

45. 
$$\frac{\pi}{2}$$
 ন,  $\frac{3\pi}{2}$  প্রথমটিতে বধন  $n=1, 2, 3$ .

$$\frac{2\pi}{3}, \frac{4\pi}{3}$$
, দ্বিতীয়টিতে যথন  $n=0, 1,$  ঋণাত্মক মান বাদ দিয়া।

46. 
$$\frac{\pi}{8}$$
,  $\frac{5\pi}{8}$ ,  $\frac{\pi}{8}$ ,  $\frac{\pi}{8}$ ,  $\frac{\pi}{6}$ ,  $\frac{\pi}$ 

**49.** 
$$\theta = \left(n + \frac{m}{2}\right)\pi + \frac{\pi}{6} + (-1)^m \frac{\pi}{12}, \quad \phi = \left(\frac{m}{2} - n\right)\pi \mp \frac{\pi}{6} + (-1)^m \frac{\pi}{12}.$$

$$50. \ \ \alpha = y = \frac{\pi}{4}.$$

### প্রশ্বালা 9

1. (i) 
$$\frac{\pi}{3}$$
,  $n\pi = -1$ )<sup>n</sup>  $\frac{\pi}{3}$ . (ii)  $-\frac{\pi}{6}$ ,  $n\pi = (-1)^n \frac{\pi}{6}$ .

(ii) 
$$-\frac{\pi}{6}$$
  $n\pi - (-1)^n \frac{\pi}{6}$ 

(iv) 
$$\frac{3\pi}{4}$$
  $2n\pi \pm \frac{3\pi}{4}$ 

(v) 
$$\frac{\pi}{3}$$
,  $n\pi + \frac{\pi}{3}$ .

(vi) 
$$\frac{2\pi}{3}$$
  $n\pi + \frac{2\pi}{3}$ 

2. (i) 
$$\sin^{-1} \sqrt{1-x^2}$$
,  $\tan^{-1} \sqrt{1-x^2}$ ,  $\cot^{-1} \frac{x}{\sqrt{1-x^2}}$ ,  $\sec^{-1} \frac{1}{x}$ ,

$$\cos e^{-1} \frac{1}{\sqrt{1-x^2}}$$

(ii) 
$$\sin^{-1}\frac{1}{x}$$
,  $\cos^{-1}\frac{\sqrt{x^2-1}}{x}$ ,  $\tan^{-1}\frac{1}{\sqrt{x^2-1}}$ ,  $\cot^{-1}\sqrt{x^2-1}$ ,

$$800^{-1} \frac{\pi}{\sqrt{x^3-1}}$$

(iii) 
$$\sin^{-1} \frac{x}{\sqrt{x^2 + 1}}, \cos^{-1} \frac{1}{\sqrt{x^2 + 1}}, \cot^{-1} \frac{1}{x},$$
  
 $\csc^{-1} \frac{\sqrt{x^2 + 1}}{x}, \sec^{-1} \sqrt{x^2 + 1}.$ 

**40.** (i) 
$$\frac{1}{\sqrt{2}}$$
.

42. 
$$\pm \frac{1}{\sqrt{2}}$$

48. 
$$-\frac{3}{5}$$
, 3. 44.  $\frac{a+b}{1-ab}$ .

$$45, -\frac{461}{9}$$

46. 2. 47. 
$$x = \frac{1}{2}, y = 1$$
.

49. 
$$ab$$

### প্রশ্নমালা 10

1. 
$$60^{\circ}$$
  $\stackrel{1}{\triangleleft}$   $120^{\circ}$ .
2.  $A = 90^{\circ}$ ,  $R = 30^{\circ}$ ,  $c = 10 \sqrt{3}$ .
3.  $\sqrt{\frac{2947}{2373}}$ .
4.  $\frac{\sqrt{3}}{2}$ .
5. (i)  $210 \stackrel{1}{\triangleleft}$   $60^{\circ}$ 

3. 
$$\sqrt{\frac{2947}{2373}}$$

4. 
$$\frac{\sqrt{3}}{2}$$
.

### প্রখ্যালা 11

1. 455000 \/3 বর্গ-সেমি. I

1.  $455000\sqrt{3}$  বর্গ-সেমি.। 2. 4 বা  $2\sqrt{13}$  কিলোমিটার। 3. a=6 সেমি., b=8 সেমি.. c=10 সেমি.। 4.  $\sqrt{\frac{5}{2}}$ .

### প্রশালা 12

**1.** 0'87006. **2.** 0'78042. **3.** 0'47520.

4. 0'45049.

**5.** 1'11589. **6.** 1'21707. **7.** 9'77525.

8. 9'47894.

9. (a) 10'00885; (b) 10'37889. 10. 25° 13'.

11. 5'37130064.

12. 4'63849928, T'6384893,

13. 2'37020915.

14. '00338134766.

**15.** '7400825.

16. 0'8862934.

17. 1'1740732.

20. 8'97580486.

 18. 40° 47′ 36″.
 19. 34° 27′ 45″.

 21. 9′78673152.
 22. 42° 25′ 24′ 9″.

23. 79° 51′ 47'2".

**24.** 68° 52′ 42′6″. **27.** 10′0940753.

28. 10'27279.

29. '6642.

30. 44° 27′ 2°4."

### প্রশালা 13

- 1. 9'6733937. 2. 48° 11' 23", 58° 24' 43", 73° 23' 54"( প্রায় )।
- 3. 104°28′39″ (পাষ)। 4. 52°15′14′86″. 5. 132°34′32″ (পাষ)।
- 6. 55° 46′16′14″ (প্ৰায়)। 7. 78° 28′13″. 8. 71° 42′ (প্ৰায়)। 9. 48° 11′ 22′86″, 58° 24′ 42′7″, 73° 23′ 54′ 44″,
- 10. 104° 28′ 39″ (空河 ), 46° 34′ 17″, 28° 57′ 4″,

### প্রশ্নমালা 14

- 1. 27'0375.
- 4. 14'35948 মিটার।
- 6. 78° 17′ 39′6″, 49° 36′ 20′4″.
- 8. 71° 44′ 29′5″, 48° 15′ 30′5″.
- 10. a = 1,  $B = 120^{\circ}$ ,  $C = 30^{\circ}$ .

- 3. 172'6436 মিটার।
- 5. 70° 53′ 37″, 49° 6′ 23″.
- 7. 94° 42′ 54″, 25° 17′ 6″.
- 9. 119° 16′ 51″, 5° 43′ 9″.

### প্রশ্নালা 15

1.  $\sqrt{9} = 75^{\circ} < 105^{\circ}, c = 60^{\circ} < 30^{\circ}, c = \sqrt{6} < \sqrt{2}$ .

2. 7'698622.

- 2. B=34° 27′ (প্রায়), C=100° 33′ (প্রায়)।
- 3. B = 67° 22′ 48′5″ বা 112° 37′ 11′5″, C = 75° 45′ বা 33° 30′ 37″; c = 21 ব 11. 4. B = 66° 52′ 11′6″ বা 113° 7′ 47′1″, C = 83° 7′ 48′4″ ব . 36° 52′ 12 9″; c = 10 সে.মি. (প্রায়) বা 4 সে.মি. (প্রায়) ।
- 4'56706 चितंत्र।
   (√3+1): 2: √2.
   64279: 86603: 98481.

### প্রশ্নালা 16

5. 1 বা 2. 10. 339'4 बि.।

# বিশ্লেষণমূলক দিমাত্রিক জ্যামিতি

### প্রশ্বালা 1

- 1. (i) (4, 3); (ii) (4, 3) বা (4, -3) বা (-4, 3) বা (-4, -3).
- 2. (i)  $\left(\sqrt{2}, \frac{\pi}{4}\right)$ : (ii)  $\left(\sqrt{2}, \frac{7\pi}{4}\right)$ : (iii)  $\left(2, \frac{4\pi}{3}\right)$ ; (iv)  $\left(4, \pi\right)$ ; (v)  $\left(2\sqrt{3}, \frac{7\pi}{6}\right)$ .
- 3. (i) (0, 2): (ii)  $(1, -\sqrt{3})$ ; (iii) (1, 1): (iv)  $(-2, 2\sqrt{3})$ ; (vi)  $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ .

### প্রশ্নমালা 2

- **1.** (i) (3, 5); (ii) (-4, -3); (iii) (-5, 2).
- **2.** (i) (-3, -5); (ii) (4, 3); (iii) (5, -2).
- 3. (i) (-6, 3); (ii) (-1, 2); (iii) (0, 3); (iv) (-8, -2); (v) (-3, -1).
- **4.** (i) (2, -1); (ii) (-3, 0); (iii) (-4, -1); (iv) (4, 4); (v) (-1, 3).
- **5.** (i) (3, 2); (ii) (2, -3); (iii) (3, -4); (iv) (-2, 4); (v) (-1, -1).

6. (i) (-3, -2); (ii) (-2, 3); (iii) (-3, 4); (iv) (2, -1); (v) (1, 1).

7. (i) (-3, -5); (ii) (-3, -5). 8. (3, -4). 9. (9, 7).

10. (7, -1). 11. (2, 5).

### প্রশালা 3

**1.** (i) (4, -3); (ii) (0, 0); (iii) (6, -6); (iv) (1, 1); (v) (-1, -1).

2. (i) (1, 1); (ii) (0, -1); (iii) (1, -1); (iv) (0, 0); (v) (-5, -5).

3. (1, 6). 4. (8, 9). 5.  $\binom{2}{0}$ . 6.  $\binom{0}{-10}$ . 7.  $\binom{6}{0}$ . 8.  $\binom{2}{-2}$ .

9.  $\int "x + y = 0$  এর উপর প্রতিফলন ও  $\binom{p}{q}$  চলন (-7, -9) বিন্দৃকে (3, 2) বিন্দৃতে

চিত্রিত করে"—এইরূপ পদ।  $\begin{pmatrix} -6 \\ -5 \end{pmatrix}$  10.  $\begin{pmatrix} -2 \\ -2 \end{pmatrix}$ 

### श्रीयांना 4

1. (i) (-3, 2); (ii) (-2, -3); (iii) (5, 4).

2. (i) (3, 2): (ii) (-1, -1): (iii) (-5, 3).

3. 1(i)(-2, -3): (ii) (3, -2); (iii) (-4, 5);

2(i)(2, -3); (ii) (-1, 1);

(ii) (-1, 1); (iii) (3, 5), (ii) (-9, 15); (iii) (-7, -1). 4. (i) (-1, 7);

5. O-90 আবর্তন I

### প্রথমালা 5

1. 5; 5; 10; 13. 2. 5. 3. 13. 4.  $\sqrt{a^2+b^2}$ .

5.  $\sqrt{a^2 + 2b^2 + c^2 + 2b^2 + 2b^2}$ . 6.  $a(m_1 - m_2) \sqrt{(m_1 + m_2)^2 + 4}$ .

7.  $3 \pm 2 \sqrt{15}$ . 10. 3, -9. 25. (i)  $\binom{10}{7}$ ,  $\frac{3}{7}$ ; (ii) (-2, -9). 29. (6,  $\ell$ ). 30. (3, 6). 31. x + y = 12. 32.  $(-\frac{1}{5}, 0)$ ,  $(-\frac{6}{5}, 2)$ .

### প্রশ্বালা 6

1. 10. 2. 1. 1. 10. 2. 1. 3. 5. 4. 0. 5.  $a^2(m_3-m_3)(m_3-m_1)(m_1-m_2)$ . 12. 3x-2y+60-0.

13. 3x - 2y = 0.

### প্রধ্যালা 7

1.  $x^2 + y^2 = K^2 - a^2$ 2.  $2ax + K^2 = 0$ . 3.  $(K^2 - 1)(x^2 + y^2 + a^2)$  $+2ax(K^2+1)=0$ 4.  $4x^2(K^2-4a^2)+4K^2y^2=k^2(K^2-4a^2)$ .

5. 
$$(6a-2c)x=a^2-e^2$$
. 6.  $x=0$ . 7.  $x+y=49$ .

8. 
$$x^3 + y^2 = 25$$
.  
9.  $y^3 - 4x - 4y + 8 = 0$ .

**10.** 
$$8(x^2 + y^3) - 2x - 36y + 35 = 0$$
. **11.**  $x - 2y + 30 - 0$ .

12. 
$$4x^2 + 3y^2 - 8x - 8y + 8 = 0$$
. 13.  $x = \frac{k}{4a}$  (  $k$ , \$97\$).

### अध्याना 8

1. (i) 
$$2x + 3y + 7 = 0$$
. (ii)  $4x^2 + 2(x + y^2 - 8y + 24 = 0$ .  
(ii)  $ax + by + (b + 2)c = 0$ . (iv)  $x^2 + 16x + y^2 + 32 = 0$ .

2. 
$$12x^2 - 10xy + 2y^2 = 0$$
 [  $3\sqrt{4}$   $h = -\frac{3}{4}$ ,  $k = -\frac{5}{4}$ ].

3. (i) 
$$-1$$
. (ii)  $-\frac{3.4}{8}$ . (iii)  $-3$ .

**4.** 
$$y = x + 5$$
.  
(ii)  $6x - 5y + 30 = 0$ .  
**5.**  $x - y \sqrt{3} - 2\sqrt{3} = 0$ .  
**6.** (i)  $2x + 3y = 6$ .  
(ii)  $y - x = 1$ .

8. 
$$x+y+1=0$$
,  $x-y=3$ . 11.  $5x\pm 12y=\pm 60$ ,  $12x\pm 5y=\pm 60$ .

13. 
$$6x - 5y = 0$$
. 14.  $6x + 7y = 35$ . 15.  $x + y + 2 = 0$ .

16. 
$$21x - 5y + 124 = 0$$
. 17.  $5x + 9y + 55 = 0$ .

18. 
$$y(t+t_1) = 2x + 2att_1$$
. 19.  $x+t_1t_2y = a(t_1+t_2)$ .

20. 
$$x \cos \frac{\theta_1 + \theta_2}{2} + y \sin \frac{\theta_1 + \theta_2}{2} = a \cos \frac{\theta_1 - \theta_2}{2}$$

21. 
$$\frac{x}{a} \cos \frac{\theta_1 + \theta_2}{2} + \frac{y}{b} \sin \frac{\theta_1 + \theta_2}{2} = \cos \frac{\theta_1 - \theta_2}{2}$$
.

22. (i) 
$$x + 3y + 7 = 0$$
;  $y - 3x = 1$ ;  $y + 7x = 11$ .  
(ii)  $2x - 3y = 4$ ;  $y - 3x = 1$ ;  $x + 2y = 2$ .

23. 
$$x + 2y = 2$$
.  
25.  $x + y = 3$ ;  $3\sqrt{2}$   $9\overline{>} 0$   
27.  $2ay - 2b'x = ab - a'b'$ .  
28.  $y(a'-a) - x(b'-b) = a'b - ab'$ ;

$$y(a'-a)+x(b'-b)=a'b'-ab$$
. 29.  $y=6x$ ;  $2y=3x$ .

### প্রেমালা 9

1. 90°. 2. 
$$\frac{4}{9}$$
. 3.  $x = 2$ ,  $2y + x = 4$ ; Catical arial  $= 0$ , Cauta  $\tan \theta = 2$ . 4.  $4y + 3x = 18$ . 5.  $ax + by = ax_1 + by_1$ .

6. 
$$4y + 11x = 10$$
. 7.  $ax + by = a^3$ .

8. 
$$x(a-c)+y(b-d)=a^2-c^2+b^2-d^2$$
.

9. 
$$a^2xy' - b^2x'y = (a^2 - b^2)x'y'$$
. 10.  $121y - 88x = 371$ .

### প্রশ্নালা 10

1. 
$$\begin{pmatrix} ab \\ a+b \end{pmatrix}$$
,  $\frac{ab}{a+b}$ . 2.  $\frac{20}{6}$ ,  $\frac{20}{6}$ . 5. 5. 8.  $a=\frac{17}{8}$ .

### প্রথমালা 11

1. 
$$43x - 29y = 71$$
.

1. 
$$43x - 29y = 71$$
. 2.  $a^2y - b^2x = al(a - b)$ . 3.  $3x + 4y = 5a$ .

3. 
$$3x + 4y = 5a$$
.

4. 
$$x+y+2=0$$
.

5. 
$$13x - 23y = 64$$
.

### প্রশ্বালা 12

1. (0, 0) ধনাত্মক দিকে এবং (5, 7) ঋণাত্মক দিকে অবস্থিত। 2. ধনাত্মক দিকে অবস্থিত। 5. (i) ঋণাত্মক দিকে; (ii) ধনাত্মক দিকে; (iii) ঋণাত্মক দিকে।

### প্রশ্বমালা 13

1. (a) 
$$4\frac{2}{5}$$
; (b)  $2\frac{3}{5}$ 

1. (a) 
$$4\frac{a}{8}$$
; (b)  $2\frac{a}{8}$ . 2.  $\left\{ \frac{a}{b} \left( b \pm \sqrt{a^2 - b^2} \right) \cdot 0 \right\}$ .

5. 
$$99x + 77y + 71 = 0$$
;  $7x - 9y - 37 = 0$ .

6. 
$$\frac{7}{\sqrt{2}}$$
,  $\frac{21}{\sqrt{29}}$ ,  $-\frac{21}{\sqrt{29}}$ .

8. (i) মূলবিন্দর একই পার্মে।

(ii) মলবিন্দর বিপরীত পার্যে।

### প্রশালা 14 (বিবিধ)

1. 
$$\left(-\frac{1}{2}\frac{1}{9}, \frac{4}{2}\frac{1}{9}\right)$$
.

2. 
$$3x + 4y - 25 = 0$$
.

3. 
$$3x + 7y = 0$$
.

4. 
$$12x + 18y + 11 = 0$$
.

**4.** 
$$12x + 18y + 11 = 0$$
. **6.**  $x(c-a) + y(d-b) = c^2 + d^2 - a^2 - b^2$ .

7. 
$$x + y = 7$$
  $\leq 3$   $17x + 31y = 175$ . 8.  $4x - 3y + 3 = 0$ .

8. 
$$4x - 3y + 3 = 0$$
.

12. 
$$(3l-2m+n)^2 = 25(l^2+m^2)$$
. 13. (8, 8).

### প্রসালা 15

1. 
$$x^2 + y^2 = 64$$
.

1. 
$$x^2 + y^2 = 64$$
.  
(ii)  $x^2 + y^2 - 8x - 10y + 16 = 0$ .

(iv) 
$$x^2 + y^2 - 2ax - 2by + 2ab = 0$$
.

3. (i) 
$$x^2 + y^2 = 5$$
;

(iii) 
$$x^2 + y^2 + 4x - 10y + 19 = 0$$
;

(iv) 
$$x^2 + y^2 + 6x + 4y - 13 = 0$$
,

(b) 
$$x^2 + y^2 + 2gx + 2fy = 0$$
.

(vii) 
$$(-\frac{9}{8}, \frac{1}{8}), 1$$
;

7. (i) 
$$x^2 + y^2 + 5x - 5y = 0$$
.

(iii) 
$$x^2 + y^2 - 6x - 2y + 5 = 0$$
.

2. (i) 
$$x^2 + y^2 + 4x - 12 = 0$$
.

(iii) 
$$x^2 + y^2 + 8x + 10y - 8 = 0$$
.

(v) 
$$x^2 + y^2 - 6x + 8y + 20 = 0$$
.

(ii) 
$$x^2 + y^2 - 4x - 6y - 12 = 0$$
;

4. (a) 
$$x^2 + y^2 - 10x = 0$$
:

5. 
$$x^3 + y^2 - 14y + 12 = 0$$
.

(iv) 
$$(0, -4), 6$$
;

(viii) 
$$\left(-\frac{b}{a}, -\frac{c}{a}\right), \frac{\sqrt{b^2+c^2}}{a}$$
.

(ii) 
$$x^2 + y^2 - 2x - 3y = 0$$
.

8. 
$$x^2 + y^2 - 4x - 6y + 11 = 0$$
.

9. 15 বর্গ-একক।

(4, 2); ব্যাসাদ্ধ : 3, 4, 5; x - y = 2.

13.  $x^2 + y^2 - 4x + 5y = 0$ .

(b)  $x^2 + y^2 = 9$ .

16.  $n(x^2 + y^2 - a^2) = (m^2 + n^2 - a^2)y$ .

17.  $x^2 + y^2 - 2x + 2y - 3 = 0$ .

18.  $x^2 + y^2 - 4x + 2y = 60$ . 19. यमि विन्नुश्रान A, B e C बादा यथालाम श्रुष्टिक इम्र, जारा इट्टान AB, BC,

CA সরল রেথাত্রয়ের সমীকরণ যথাত্রয়ে

x-2y+2=0, y=0, x+y=1:  $x^2+y^2=x+y$ .

**20.** (a)  $x^2 + y^2 - 5x - 3y = 0$ ;

**21.**  $x^2 + y^2 - 17x - 19y + 50 = 0$ .

**23.** (a)  $x^2 + y^2 - 6x + 8y + 25 = 0$ :

**24.** (a)  $9(x^2 + y^2) + 12x - 6y + 4 = 0$ ;

**26.**  $\frac{3\sqrt{3}}{4}(g^2+f^2-c)$ .

(b) व्राप्तव वाहिरत ।

22.  $x^2 + y^2 \pm 6y - 16 = 0$ .

(b) বুত্তের বাহিরে।

(b) বিন্দুটি পরিধির উপর।

10. (本質: (1, -1), (3, 1),

14. (a)  $x^2 + y^2 = 36$ ;

12.  $x^2 + y^2 - 2x + 4y - 20 = 0$ .

15.  $x^2 + y^2 - 2x - 2y + 1 = 0$ ,

### প্রশ্বমালা 16

1. (i) 8, (2, 0), x + 2 = 0.

(iii) 20, (0, 5), y + 5 = 0.

(v) 10,  $(0, -2\frac{1}{2}), 2y - 5 = 0.$ 

(i) উপর; (ii) ভিতর;

(v) ভিতর; (vi) বাহির।

2. (i)  $y^2 = 2x$ : (ii)  $3x^2 + 4y = 0$ .

3. (i)  $y^2 = 16x$ ; (ii)  $y^2 = -8x$ ;

(i) x + 4 = 0; (ii) x = 2;

4. (i)  $y^2 = 16(x-4)$ ; (ii)  $y^3 = -16(x+4)$ .

(ii) 12, (-3, 0), x - 3 = 0.

(iv) 16, (0, -4), y-4=0.

(vi)  $\frac{7}{8}$ , ( $\frac{7}{90}$ , 0), 20x + 7 = 0.

(iii) ভিতর; (iv) ভিতর;

(iii)  $x^2 = 3y$ ; (iv)  $x^2 + 20y = 0$ .

(iii) 4y + 3 = 0; (iv) y = 5.

5. (i)  $y^2 = 10x + 25$ ; নিয়ামক: x + 5 = 0;

(ii)  $y^2 + 10x = 25$ ; निशासक : x = 5.

6. (i)  $x^2 = 6y + 9$ ; निशायक : y + 3 = 0;

(ii)  $x^2 + 6y = 9$ ; নিয়ামক: y = 3.

7.  $x^2 = 12y$ . 8.  $\frac{4}{3}$ ,  $(\frac{1}{3}, 0)$ .

10. (i) y² = 16x; নাভি: (4, 0);

11. (i)  $x^2 = 16y$ ; = 160; (0, 4);

**12.** (i) 4, (4, 0), x + 2 = 0;

(iii) 2, (-1, 0), x + 2 = 0;

(v) 1, (0,  $\frac{7}{4}$ ), 4y - 5 = 0.

(vii) 4, (4, 2), x = 2;

9. x = 20, (5, 10), (5, -10).

(ii)  $y^2 = -16x$ ; নাভি: (-4,0).

(ii)  $x^2 = -5y$ ; নাডি: (0,  $-\frac{5}{4}$ ).

(ii) 8, (-3, 0), x = 1;

(iv) 4,  $(\frac{1}{2}, 0)$ , 2x - 5 = 0;

(vi) 3,  $(0, \frac{1}{2})$ , y = 2;

(viii) 8, (-4, -3), x=0

**13.** 
$$(-2, -3), (-\frac{8}{2}, -3), 2x + 5 = 0.$$
 **14.** (a) (1, 2), (0, 2), 4; (b)  $\left(-\frac{b}{2a}, -\frac{b^2 - 4ac - 1}{4a}\right), \left(-\frac{b}{2a}, -\frac{b^2 - 4ac - 1}{4a}\right), \frac{1}{a}$ 

15.  $x^2 - 2xy + y^2 + 2x - 6y + 3 = 0$ .

**16.** 
$$4x^3 + y^2 + 4xy + 14x - 18y + 56 = 0$$
. **17.**  $(\frac{3}{10}, 0)$ .

18. (i) (8, 4), (2, -2); (iii) (9, 3), (4, 2); (iv) 
$$(\frac{5}{27}, \frac{3}{3})$$
,  $(\frac{6}{3}, -2)$ .

19. 4. (১, 0), ছেদ বি-দূষয় : (0, 0), (3, 2).

### প্রশালা 17

2. 14. 3. 10.

5. (i)  $x^2/25 + y^2/16 = 1$ :

(iii)  $x^2/5 + y^2/4 = 1$ : **6.** a = 1/5, c = 1/5.

8.  $3x^2 + 5y^2 = 39$ 

10. 30 সেমি., 24 সেমি.। 11. 1/3. 12. (a) 1 √2: (b) √3/2.

**13.** (i)  $x^2/25 + y^2/24 = 1$ ; (ii)  $4x^2/81 + 4y^2/45 = 1$ ; (iii)  $x^2/9 + v^2/8 = 1$ .

9.  $a = 5 \cdot 2$ ,  $b - 4 \cdot 2$ .

(ii)  $3x^2 + 5y^2 = 32$ ;

7.  $x^2/49 + y^2/25 = 1$ ,  $2\sqrt{6/7}$ ,  $(+2\sqrt{6}, 0)$ .

 $(iv + x^2/61 + y^2/29 = 1.$ 

14.  $20x^2 + 4y^2 = 5$ .

**15.** (i)  $7x^2 + 2xy + 7y^2 + 10x - 10y + 7 = 0$ ;

(ii)  $25(x^2 + y^2) + 2xy - 130(x + y) + 169 = 0$ 

### প্রশ্বালা 18

1. (i) 
$$\frac{x^2}{9} - \frac{4y^2}{25} = 1$$
; (ii)  $x^2 - 4y^2 = 4$ ; (iii)  $4x^2 - 5y^2 = 11$ ;

(iv) 
$$x^2 - 8y^2 = 64$$
; (v)  $\frac{x^2}{16} - \frac{y^2}{9} = 1$ ; (vi)  $\frac{x^2}{9} - \frac{y^2}{7} = 1$ ;

(vii) 
$$\frac{x^2}{9} - \frac{4y^2}{25} = 1$$
; (viii)  $\frac{x^2}{4} - \frac{4y^2}{9} = 1$ ; (ix)  $\frac{x^2}{4} - \frac{y^2}{12} = 1$ .

2. উৎকেন্দ্রতা নাভিলম্ব নাভি নিয়ামক  
(i) 
$$\sqrt{5}/2$$
 2 ( $\pm 2\sqrt{5}$ , 0)  $x = \pm 8/\sqrt{5}$ ;  
(ii)  $3/2$  5 ( $\pm 3$ , 0)  $x = \pm \frac{4}{3}$ ;  
(iii)  $6/5$  22/5 ( $\pm 6$ , 0)  $x = \pm \frac{35}{6}$ .

- (iii) 6/5 22/5 ( $\pm 6$ , 0)  $x = \pm \frac{35}{8}$ . 3. (i) 16; (ii) 12; (iii) 5/4; (iv) (1, -2); (v) (11, -2), (-9, -2); (vi) 5x = 37, 5x + 27 = 0.
- **4.** a = 4,  $b = 2\sqrt{3}$ . **5.** A = 1; (i)  $\frac{4}{8}$ ; (ii) **4.**  $4/\sqrt{5}$ . ·(iii)  $\frac{1}{8}\sqrt{30}$ .
- 6.  $20x^2 16y^2 = 5$ . 7. (2, -1), (-4, 3); (-1, 1).
- 8.  $27x^{2} + 55y^{2} 96xy 6x + 8y = 200$ .

### প্রস্থালা 19

1. (i) 
$$x - 2y + 10 = 0$$
; (ii)  $8x + 3y + 15 = 0$ ; (iii)  $x + 3y + 9 = 0$ ; (iv)  $x + y = 3$ ; (v)  $x = 4$ ; (vi)  $y = 4$ ; (vii)  $2x + 3y = 12$ ; (viii)  $x - 2y = 2$ ; (ix)  $x - y + 4 = 0$ ; (x)  $x + y = 1$ .

- (viii) x-2y=2; (ix) x-y+4=0; (x) x+y=1. 2. 3. 3. 20x-4y+1=0;  $(\frac{1}{20},\frac{1}{2})$ ; 4. 4x-4y+9=0; 4x+4y+9=0. 5. (-3,2). 6. x-y-7=0 and x+y+7=0. 7. x-2y+8=0. 8. (54,20).
- 9. ±4. 10. a=3, b= \7. [উৎকেন্দ্রতা 4 পড]

### প্রসালা 20

1. 
$$(-3, 1)$$
. 2.  $(2, 2\sqrt{3})$ . 4.  $2(1 \pm \sqrt{1 + m^2})$ . 5.  $\pm x - 2y = 15$ .

6. 
$$\alpha - 2y \pm 5 = 0$$
.  
12.  $(\frac{5}{3}, \frac{4}{3})$ ;  $(\frac{5}{13}, \frac{5}{2})$ ;  $(4ab, 2b)$ ;  $(\frac{a}{m^2} - a, \frac{2a}{m})$ ;  $(am^2, -2am)$ .  
13.  $m = -\frac{3}{5}$ ;  $c = -\frac{25}{12}$ .  
14.  $y = 3x + 2$ .

15. 
$$4\sqrt{3}y = 12x + b$$
;  $\left(\frac{b}{12}, \frac{b}{2\sqrt{3}}\right)$ .  
16.  $y + 2x + 1 = 0$ ;  $(\frac{1}{2}, -2)$ ;  $2y = x + 8$ ;  $(8, 8)$ .  
17.  $ty = x + at^2$ .  
18.  $y = 4x \pm 7$ ;  $\left(-\frac{1}{7}, \frac{1}{7}\right)$ ;  $\left(\frac{1}{7}, -\frac{1}{7}\right)$ .  
19.  $4y = 3x + 12$ ;  $\left(-\frac{8}{8}, 1\right)$ ;  $4y = 3x - 12$ ;  $\left(\frac{8}{8}, -1\right)$ .

**20.** 
$$6y = 5x \pm 14$$
;  $(-\frac{10}{7}, \frac{8}{7})$ ;  $(\frac{10}{7}, -\frac{8}{7})$ . **21.**  $5y = 3x \pm 16$ ;  $(-2, 2)$ ;  $(2, -2)$ . **22.**  $y = \sqrt{3}x \pm \sqrt{33}$ ;  $(\frac{9\sqrt{11}}{11}, \frac{20\sqrt{33}}{11})$ ;

$$\left(-\frac{9\sqrt{11}}{11}, -\frac{2\sqrt{33}}{11}\right)$$
. 23.  $9y = 5x \pm 12$ . 24.  $2y = 3x \pm 7$ .

25. 
$$y = \sqrt{3}x \pm 4$$
. 27. (-2, 3). 28. (11, -6).

29. 
$$a^2(x^2 + y^2) = 1$$
. 30.  $x + y = 5$ . 31.  $\left(\frac{a^3}{\sqrt{a^2 + b^2}}, \frac{b^2}{\sqrt{a^2 + b^2}}\right)$ .

32. 
$$x+y=\pm \sqrt{a^2+b^2}$$
.

(XI-XII)-43A

### প্রশ্নালা 21

1. 3x - y = 0. 2. x + y - 1 = 0. 3. 3x + y = 33. 4. y = x + 9.

5. x + y = 3a, x - y = 3a.

**6.** 7x + 21y = 3. **7.** 5x - 6y = 4.

**8.** 6x + 5y = 8, **9.** 2x - y = 13, **10.** x + y + 7 = 0.

11. 5x - 8y - 2 = 0.

### **연범과 이 22**

**1.** y = 4x + 2, 2x - 3y + 36 = 0. **2.** a = 6. **3.**  $\left( -\frac{\sqrt{30}}{10}, \frac{\sqrt{30}}{15} \right)$ .

14x + 3y = 60; (-3, 2);  $(\frac{91}{5}, \frac{9}{5})$ .

**4.**  $m = \pm 3$ ;  $(-1, \frac{5}{2})$ ;  $(1, \frac{5}{2})$ . **5.** a = 5, b = 4. **6.** 2x - 3y + 12 = 0,

**엘링파리** 23

**1.** (i) 3x + 4y = 16; (ii) x + 2 = 0. **2.** 2x - 3y + 13 = 0. **3.** y + 9 = 0.

**5.** x+y+1=0. **6.**  $5y^2=8x-25y-64$ . **8.** 4(x-y)=15.

9. 5y = x + 5. 10. x + 4y = 0.

11. x = y.

**16.** y = 3x, x + 4y = 0, y + 3x = 0, 4y - x = 0. 12. x = y. 17. প্রদত্ত শর্ত সিদ্ধ করে এরপ কোন বাস্তব ব্যাস-যুগলের অস্তিত্ব নাই।

18. 3x + 2y = 8.

19. 9x - 4y = 31. 24. 9y = 32x.

25. 4x - 3y = 11.

# লগারিদ্ম ও অ্যাণ্টি-লগারিদ্ম-এর তালিকা

TABLE I नभीतिक्य-अत्र जानिका

| 6                 | 38   | 33       | 32                                                  | 29   | 288   | 25   | 22       | 223   | 21     | 19     |
|-------------------|------|----------|-----------------------------------------------------|------|-------|------|----------|-------|--------|--------|
| 00                | 455  | 31 29    | 2%                                                  | 25   | 23    | 23   | 22 21 21 | 28    | 100    | 18     |
| Ses 7             | 283  | 27 26    | 22                                                  | 23   | 22 22 | 19   | 19       | 100   | 17     | 15     |
| eren<br>6         | 245  | 23       | 202                                                 | 19   | 19    | 17   | 16       | 15    | 14     | 13     |
| Differences 5 6 7 | 202  | 20 20 18 | 178                                                 | 16   | 524   | 44   | 13       | 13    | 112    | ==     |
| ean <del>4</del>  | 17   | 15       | <del>1</del> <del>1</del> <del>1</del> <del>1</del> | 13   | 12    | ==   | 10       | 90    | 6      | 0.00   |
| Zπ                | 13   | 12       | 11 10                                               | 01   | 00    | 0,00 | 00 00    | 00 00 | P-P-   | 7 9    |
| 2                 | 0.00 | ∞ 1/200  | 7.7                                                 | 40   | 9     | 99   | (O)      | רטוט  | 10.4   | 44     |
|                   | n4   | 44       | 63 KD                                               | <br> | w     | 30   | m m      | 3     | 22     | 22     |
| 6                 | 0374 | 0755     | 1106                                                | 1430 | 1732  | 2014 | 2279     | 2529  | 2765   | 2989   |
| 00                | 0334 | 61/0     | 1072                                                | 1399 | 1703  | 1987 | 2253     | 2504  | 2742   | 2962   |
| 7                 | 0294 | 0682     | 1038                                                | 1367 | 1673  | 1959 | 2227     | 2480  | 2718   | 2945   |
| 9                 | 0253 | 0645     | 1004                                                | 1335 | 1644  | 1931 | 2201     | 2455  | 2695   | 2923   |
| ιń                | 0212 | 2090     | 6960                                                | 1303 | 1614  | 1903 | 2175     | 2430  | 2672 2 | 2900 2 |
| 4                 | 0170 | 0569     | 0934                                                | 1271 | 584   | 1875 | 2148     | 2405  | 2648   | 2878   |
|                   |      |          |                                                     |      | _     |      |          | 2     |        |        |
| 3                 | 0128 | 0531     | 080                                                 | 1239 | 1553  | 1847 | 2122     | 2380  | 2625   | 2856   |
| 7                 | 9800 | 0492     | 0864                                                | 1206 | 1523  | 1818 | 2095     | 2355  | 2601   | 2833   |
|                   | 0043 | 0453     | 0828                                                | 1173 | 1492  | 1790 | 2068     | 2330  | 2577   | 2810   |
| 0                 | 0000 | 0414     | 0792                                                | 1139 | 1461  | 1761 | 2041     | 2304  | 2553   | 2788   |
|                   | 10   | =        | ed:                                                 | 60   | #     | 15   | 16       | L= T  | 00     | 61     |

| 15 15 16                                                     | 55445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000                                              | C 00 00 00 00                                                       | 6   |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----|
| 79222                                                        | 45555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00000                                            | 01/1/10                                                             | 00  |
| 24425                                                        | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1111100                                            | 77.000                                                              | 10  |
| 2222                                                         | 55000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000                                              | O CO LO LO LO                                                       | 9   |
| 110000                                                       | 0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00/1/1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W. W. W. W. W.                                     | 11 11 11 11 11                                                      | 10  |
| 00000NF                                                      | 1/1/000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99101616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101010104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | चित्रचन्य                                          | चचचचच                                                               | 4   |
| 00000                                                        | in in in in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | निचचचच                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er, er, er, er, er,                                | 000000                                                              | 3   |
| 44444                                                        | <b>~~~~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NOUNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | व्यवस्था                                           | 000000                                                              | 2   |
| 20000                                                        | 22277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                     | -   |
| 3201<br>3201<br>3358<br>3952<br>3952                         | 4133<br>4278<br>4456<br>4003<br>4757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000<br>5172<br>5473<br>5428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 A S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fallega                                            | 6512<br>6512<br>6513<br>6513<br>6513<br>6513                        | 0   |
| 3181<br>37.79<br>37.66<br>3045                               | 4116<br>4281<br>4440<br>4742<br>4742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.86<br>50.34<br>51.50<br>51.50<br>51.50<br>54.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOWN TO THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STATE OF STATES                                    | 80000<br>80441                                                      | 00  |
| 3365<br>3365<br>3747<br>3927                                 | 9054444<br>905754<br>905754<br>905754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ C. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 8 5 6 5 5 5                                                         | 7   |
| 3333                                                         | 4245<br>4745<br>4713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 445,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWO ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESSEE<br>ESSEE                                     | 87978                                                               | 9   |
| 3118<br>3324<br>3324<br>3711<br>3892                         | \$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$55.25<br>\$5 | 13.15.05.55<br>13.15.05.55<br>13.15.05.55<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.15.05<br>13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 877. 8<br>87. 87. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¥3777                                              | 9868                                                                | 1/2 |
| 3006<br>3304<br>3602<br>3672                                 | 44535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$2.450<br>\$2.60<br>\$2.60<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50<br>\$3.50 | 85577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$2025<br>\$2025                                   | 1.50<br>1.80<br>1.80<br>1.80<br>1.80<br>1.80<br>1.80<br>1.80<br>1.8 | 4   |
| 8875 S.                  | 4031<br>4502<br>4503<br>4513<br>4669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,85,83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESSIE                                              | 6.55                                                                | 60  |
| 3054<br>3054<br>3054<br>3055<br>3055<br>3055<br>3055<br>3055 | 44444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 545113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Company of the Compan | वश्याक                                             |                                                                     | 2   |
| 3032<br>3343<br>3443<br>3453<br>3453<br>3453                 | \$ 500 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 4 4 7 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 17 5 S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2001                                               | # 15 E E E E E E E E E E E E E E E E E E                            | -   |
| 3010                                                         | and the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 7 7 70 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7.23                                             |                                                                     | 0   |
| 22021                                                        | 80 80 80 80 80 80 80 80 80 80 80 80 80 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 8 8 8<br>8 8 8 8<br>8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44544                                              | 54744                                                               | 1   |
| -                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                     |     |

# नगातिष्य-धत्र जानिका

| Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4444<br>2000000000000000000000000000000000                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| The state of the s | 44444                                                              |
| 2000 NUNNIN NUNNIN NUNNIN NUNNIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4444                                                               |
| 0 N UNION WONG + 14444 44444 44444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + + + + +                                                          |
| 350 44444 44444 44450 WWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000                                                             |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V1 V1 V1 V1 V1                                                     |
| <b>An</b> manan anana anana ananan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0101010101                                                         |
| a dutate dutie mener meani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| pt 1 ptmmmm mmmmm promount mmmmmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |
| 28.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88 88.88  | 202<br>202<br>203<br>203<br>203<br>203<br>203<br>203<br>203<br>203 |
| 20 27.7.5.3 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7.5 27.7 | 85.00<br>85.21<br>87.39<br>87.39                                   |
| 7 7050<br>7135<br>72135<br>72135<br>72135<br>7236<br>7236<br>7236<br>7236<br>7236<br>7236<br>7236<br>7236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8555<br>8675<br>8733                                               |
| 7120<br>7120<br>7120<br>7120<br>7210<br>7210<br>7228<br>7228<br>7228<br>7228<br>7228<br>7228<br>7228<br>722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8488<br>8549<br>8600<br>8669<br>8727                               |
| 7033<br>7703<br>7703<br>7703<br>7707<br>7707<br>7707<br>7707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8482<br>85.43<br>8663<br>8722                                      |
| 7024<br>7110<br>7110<br>7110<br>7275<br>7356<br>7356<br>7356<br>7356<br>7358<br>7358<br>7358<br>7358<br>7358<br>7358<br>7358<br>7358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8476<br>8537<br>8537<br>8637<br>8716                               |
| 7016<br>7016<br>7101<br>7101<br>7101<br>7267<br>7348<br>7657<br>77502<br>77502<br>77503<br>77645<br>8014<br>8082<br>8082<br>8082<br>8082<br>8082<br>8082<br>8084<br>8084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8470<br>8531<br>8591<br>8651<br>8710                               |
| 7007<br>7007<br>7777<br>7759<br>7759<br>7759<br>7759<br>8075<br>8075<br>8075<br>8075<br>8075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88463<br>88525<br>8858<br>8845<br>8704                             |
| 1<br>6998<br>7084<br>7168<br>7251<br>7251<br>7251<br>7251<br>7776<br>7776<br>7778<br>7778<br>7778<br>7778<br>7778<br>777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8457<br>8519<br>8579<br>8639<br>8698                               |
| 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| 60004 40040 000000 00000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8573<br>8573<br>8653                                               |
| 7076<br>7076<br>7076<br>7076<br>7076<br>7077<br>7032<br>7782<br>7782<br>7783<br>7783<br>7783<br>7783<br>7783<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8451<br>72 8573<br>73 8633<br>74 8692                              |

| N IN IN IN IN                                | លលេខហេល                                      | RN444                                        | 44444                                        | 4444                                 | 6  |
|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----|
| nn444                                        | निपदन्प                                      | 44444                                        | 44444                                        | 44440                                | 00 |
| 44444                                        | य य य य य य                                  | 44000                                        | ~~~~                                         | <i>~~~~~</i>                         | 7  |
| ~~~~~~                                       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1     | ~~~~                                         | 10 10 10 10 10 10                            | <i>~~~~~</i>                         | 9  |
| <b>~</b> ~~~~~                               | <i>~~~~~</i>                                 | 99999                                        | 20200                                        | 20000                                | ນາ |
| 00000                                        | 22222                                        | 20200                                        | 00000                                        | 20000                                | 4  |
| 44444                                        | 22000                                        | 77777                                        |                                              | <del></del>                          | 3  |
|                                              |                                              |                                              | ннннн                                        |                                      | 2  |
|                                              |                                              | 000                                          | 00000                                        | 00000                                |    |
| 3802<br>3859<br>3915<br>3915<br>9025         | 9079<br>9133<br>9186<br>9238<br>9289         | 3340<br>3390<br>3440<br>3489<br>3538         | 9586<br>9633<br>9633<br>9727<br>9773         | 9818<br>9863<br>9908<br>9952<br>9996 | 6  |
|                                              |                                              | 0.000.000                                    |                                              | 40.000                               |    |
| 8797<br>8854<br>8910<br>8965<br>9020         | 9074<br>9128<br>9180<br>9232<br>9232         | 9335<br>9385<br>9435<br>9484<br>9533         | 9581<br>9628<br>9675<br>9722<br>9768         | 9814<br>9859<br>9903<br>9948<br>9991 | 00 |
| 8791<br>8848<br>8964<br>8960<br>8960         | 0069<br>0175<br>0175<br>0227                 | 0330<br>0330<br>0430<br>0470<br>0528         | 9624<br>9624<br>9671<br>9717<br>9763         | 9809<br>9849<br>9943<br>9987         | 7  |
| 200000000000000000000000000000000000000      | 82222                                        | 86888                                        | 86866                                        | \$0000                               |    |
| 88842<br>8842<br>8899<br>8954<br>9009        | 9063<br>9117<br>9170<br>9222<br>9274         | 9325<br>9375<br>9425<br>9425<br>9474<br>9523 | 9571<br>9619<br>9666<br>9713<br>9759         | 9805<br>9850<br>9854<br>9939<br>9983 | 9  |
| 07:204                                       | 272120                                       | 82888                                        | 9566<br>9614<br>9708<br>9708                 | 9800<br>9800<br>9834<br>9878         | 10 |
| 8837<br>8893<br>8893<br>8949<br>9004         | 9058<br>9112<br>9165<br>9217<br>9269         | 9320<br>9370<br>9420<br>9469<br>9518         | 986,676                                      | 88888                                |    |
| 88774<br>8831<br>8887<br>8943<br>8943        | 053<br>106<br>1159<br>2212<br>263            | 365<br>365<br>365<br>415<br>1465<br>1513     | 9609<br>9609<br>9609<br>9703<br>9703         | 9841<br>9886<br>9930<br>9974         | 4  |
| 00000000                                     | 8,3000                                       | 0.0.0.0                                      | 0,10,010,01                                  | -12-120                              |    |
| 8768<br>8825<br>8882<br>8938<br>8993         | 9047<br>9101<br>9154<br>9206<br>9258         | 9309<br>9360<br>9410<br>9410<br>9509         | 9557<br>9605<br>9652<br>9652<br>9699<br>9745 | 9836<br>9836<br>9881<br>9926<br>9969 | 63 |
| 22,22,22                                     | 2042<br>20.42<br>20.40<br>20.01<br>20.53     | 93.04<br>93.55<br>94.75<br>95.04             | 2552<br>2657<br>2647<br>2647<br>2647         | 05.85<br>08.77<br>09.21<br>09.65     | 2  |
| 8762<br>8820<br>8820<br>8932<br>8932<br>8987 | 88588                                        | 88338                                        | 88888                                        | 66668                                |    |
| 8756<br>8814<br>8871<br>8927<br>8927         | 9036<br>9090<br>91-13<br>91%<br>9248         | 9250<br>9450<br>9450<br>9450                 | 9547<br>9595<br>9639<br>9736                 | 9782<br>9827<br>9872<br>9917<br>9961 | -  |
| E833E39                                      | 133833                                       | ######################################       | 542<br>590<br>685<br>685<br>731              | 2777<br>2868<br>2868<br>2956         | 0  |
| 8751<br>8768<br>8921<br>8921<br>8976         | 9031<br>9085<br>9138<br>9191<br>9191<br>9243 | 44544                                        | 62388                                        | 38838                                |    |
| 13 24 24 24                                  | 80<br>82<br>83<br>84<br>84                   | 88<br>88<br>89<br>89                         | 900                                          | 900 000                              |    |
|                                              |                                              |                                              |                                              |                                      |    |

TABLE II बार्मि-लशादिक्स-এव डालिका

| 6     | NUNNN                                | 010101010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 17 17 17 17 17 17 17 17 17 17 17 17 1                                                                                                                                                                                                                                                                                                                                                                                                           | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                              | <b>100044</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00    | NNNNN                                | NNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) (2) (2) (2) (3) (3) (4)                                                                                         | 12 12 12 12 12 12 12 12 12 12 12 12 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8     | NNNNN                                | 90000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000m                                                                                                               | 10 m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| o     |                                      | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 44444                                                                                                             | 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Diff. |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -00000                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000000                                                                                                              | NNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                     | -010101 <b>0</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| M'm   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 62    | 0000                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9-4   | 00000                                | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000                                                                                                               | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6     | 1021<br>1045<br>1065<br>1094<br>1119 | 1175<br>1175<br>1199<br>1227<br>1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1315<br>1346<br>1377<br>1409                                                                                                                                                                                                                                                                                                                                                                                                                       | 1442<br>1476<br>1510<br>1545<br>1581                                                                                | 1618<br>1656<br>1694<br>1734<br>1774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00    | 1019<br>1042<br>1067<br>1091<br>1117 | 1143<br>1169<br>1197<br>1225<br>1253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1282<br>1312<br>1343<br>1374<br>1406                                                                                                                                                                                                                                                                                                                                                                                                               | 1439<br>1472<br>1507<br>1542<br>1578                                                                                | 1614<br>1652<br>1690<br>1730<br>1770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7     | 1016<br>1040<br>1064<br>1089<br>1111 | 1140<br>1167<br>1194<br>1222<br>1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1279<br>1309<br>1340<br>1371<br>1403                                                                                                                                                                                                                                                                                                                                                                                                               | 1435<br>1469<br>1503<br>1538<br>1574                                                                                | 1611<br>1648<br>1687<br>1726<br>1766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9     | 1014<br>1038<br>1062<br>1062<br>1112 | 1138<br>1164<br>1191<br>1219<br>1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1276<br>1306<br>1337<br>1368<br>1400                                                                                                                                                                                                                                                                                                                                                                                                               | 1432<br>1466<br>1500<br>1535<br>1570                                                                                | 1607<br>1644<br>1683<br>1722<br>1762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rc.   | 1012<br>1035<br>1035<br>1084<br>1109 | 1135<br>1161<br>1189<br>1216<br>1245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1274<br>1303<br>1334<br>1365<br>1396                                                                                                                                                                                                                                                                                                                                                                                                               | 1429<br>1462<br>1496<br>1531<br>1567                                                                                | 1603<br>1641<br>1679<br>1718<br>1758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4     | 1009<br>1033<br>1057<br>1081<br>1107 | 1132<br>1159<br>1186<br>1213<br>1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1271<br>1300<br>1330<br>1361<br>1361                                                                                                                                                                                                                                                                                                                                                                                                               | 1426<br>1459<br>1493<br>1528<br>1563                                                                                | 1600<br>1637<br>1675<br>1714<br>1754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23    | 1007<br>1030<br>1054<br>1079<br>1104 | 1130<br>1156<br>1183<br>1211<br>1239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1268<br>1297<br>1327<br>1358<br>1358                                                                                                                                                                                                                                                                                                                                                                                                               | 1455<br>1455<br>1489<br>1524<br>1560                                                                                | 1596<br>1633<br>1671<br>1710<br>1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7     | 1005<br>1028<br>1052<br>1076<br>1102 | 1127<br>1153<br>1180<br>1208<br>1236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1265<br>1294<br>1324<br>1355<br>1355                                                                                                                                                                                                                                                                                                                                                                                                               | 1419<br>1452<br>1486<br>1521<br>1556                                                                                | 1592<br>1629<br>1667<br>1706<br>1746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 1026<br>1026<br>1050<br>1074<br>1099 | 1125<br>1151<br>1178<br>1205<br>1233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1262<br>1291<br>1321<br>1352<br>1384                                                                                                                                                                                                                                                                                                                                                                                                               | 1416<br>1449<br>1483<br>1517<br>1552                                                                                | 1589<br>1626<br>1663<br>1702<br>1742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     | 1023<br>1023<br>1047<br>1072<br>1096 | 1122<br>1148<br>1175<br>1202<br>1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1259<br>1288<br>1318<br>1349<br>1380                                                                                                                                                                                                                                                                                                                                                                                                               | 1413<br>1479<br>1574<br>1549                                                                                        | 1585<br>1622<br>1660<br>1698<br>1738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 95999                                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51551<br>51551                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.17                                                                                                               | 65 55 55 55<br>57 55 55 55<br>57 55 55 55<br>57 55 55 55<br>57 55 55<br>57 55 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 55<br>57 57 57<br>57 57 57<br>57 57 57<br>57 57 57<br>57 57<br>57<br>57 57<br>57 57<br>57<br>57 57<br>57 |
|       | 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8    | 0         1         2         3         4         5         6         7         8         9         1         2         Mean Differences           1000         1002         1005         1007         1009         1012         1014         1016         1019         1021         0         0         1         1         1         2         2           1023         1026         1030         1031         1035         1038         1040         1042         1045         0         0         1         1         1         2         2           1072         1050         1054         1057         1059         1062         1064         1067         1067         1069         0         1         1         1         2         2         2           1072         1054         1057         1059         1062         1064         1067         1069         0         1         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         < | 0 1 2 3 4 5 6 7 8 9 1 2 Mean Differences<br>1000 1002 1005 1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2 2 1 1000 1002 1005 1054 1057 1059 1062 1064 1067 1060 0 0 1 1 1 1 2 2 2 2 1000 1009 1102 1104 1107 1109 1102 1104 1107 1109 1102 1104 1107 1109 1112 1114 1117 1119 0 1 1 1 1 2 2 2 2 1115 1178 1186 1189 1191 1194 1107 1109 1104 1107 1109 1104 1107 1109 1104 1107 1109 1105 1106 1106 1109 1100 1100 1 1 1 1 2 2 2 2 1 1100 1100 | 1000   1002   1005   1007   1009   1012   1014   1016   1019   1021   0   0   1   1   1   2   2   2   2   2   2   2 | 0 1 2 3 4 5 6 7 8 9 9 1 2 Mean Differences   0 1000 1002 1005 1007 1009 1012 1014 1016 1019 1021 0 0 0 1 1 1 1 2 2 2   1023 1026 1028 1030 1033 1035 1035 1042 1042 1042   1047 1050 1052 1054 1057 1059 1032 1035 1045 1067 1060   1052 1054 1076 1059 1059 1059 1059 1059 1059 1091 1094   1052 1054 1076 1059 1059 1132 1135 1138 1140 1143 1146   1148 1151 1153 1156 1159 1161 1164 1167 1169 1172 0 1 1 1 1 2 2 2 2 2   1153 1156 1159 1161 1173 1150 1131 1210 1225 1227 0 1 1 1 1 2 2 2 2 2   1153 1156 1159 1151 1213 1216 1219 1225 1225 1227 0 1 1 1 1 2 2 2 2 2 2   1158 1291 1294 1397 1309 1303 1306 1312 1315 0 1 1 1 1 2 2 2 2 2 2 3 3 3 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 44444                                    | 4444W                                        | เนเนเนเนน                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nnooo                                | 00000                                | 0  |
|------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----|
| <i>ಯಾಗು</i> ಕರ                           | 44444                                        | 444470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | របស់ សេស ស                           | nnnoo                                | 00 |
| 10 to to to to                           | <i>~~~~</i>                                  | 44444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44444                                | เกาบาบาบาบ                           | ~  |
| <b>(1</b> 00000                          | ~~~~~~                                       | നവനനന                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44444                                | <b>444</b> 44                        | 9  |
| 00000                                    | 20000                                        | <b>~~~~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>                              | www44                                | נא |
| 00000                                    | NNNNN                                        | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4444m                                | <b>~~~~</b>                          | 4  |
| ныныны                                   |                                              | 22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20000                                | 20000                                | 65 |
| aaaaa                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                      | 2  |
| 00000                                    | 0000-                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | and and and and and                  |    |
| 816<br>858<br>1901<br>945<br>1991        | 2037<br>2084<br>2133<br>2234                 | 2586<br>2333<br>2506<br>2506<br>2506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2564<br>2624<br>2685<br>2748<br>2812 | 2877<br>2944<br>3013<br>3083<br>3155 | 6  |
| 81<br>92<br>192<br>191                   | 22222                                        | 88888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d(d)alala                           |                                      |    |
| 1811<br>1854<br>1897<br>1941<br>1986     | 2032<br>2080<br>2128<br>2178<br>2228         | 2280<br>2333<br>2388<br>2443<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2559<br>2618<br>2679<br>2742<br>2805 | 2871<br>2938<br>3006<br>3076<br>3148 | 00 |
|                                          |                                              | 10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82228                                | 2864<br>2931<br>2999<br>3069<br>3141 | 1  |
| 1807<br>1849<br>1892<br>1936<br>1936     | 2028<br>2075<br>2123<br>2123<br>2173<br>2223 | 2275<br>2328<br>2382<br>2438<br>2438<br>2495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2553<br>2612<br>2673<br>2735<br>2735 | #33558<br>#3558                      |    |
| 803<br>845<br>1932<br>1977               | 2023<br>2070<br>2118<br>2118<br>22168        | 23.70<br>23.77<br>243.2<br>243.2<br>248.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2547<br>2606<br>2667<br>2729<br>2729 | 2858<br>2924<br>2992<br>3062<br>3133 | 9  |
| 188<br>189<br>190<br>190                 | 88888                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | -                                    |    |
| 1799<br>1928<br>1928<br>1972             | 2018<br>2065<br>2113<br>2163<br>2213         | 2265<br>2317<br>2371<br>2427<br>2483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2541<br>2661<br>2723<br>2782         | 2851<br>2917<br>2985<br>3055<br>3126 | גע |
| 101/0/20                                 | 4-10-88                                      | 72823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2535<br>2594<br>2655<br>2716<br>2780 | 2844<br>2911<br>2979<br>3048<br>3119 | 4  |
| 1795<br>1837<br>1879<br>1923<br>1968     | 2014<br>2061<br>2109<br>2158<br>2208         | 2259<br>2312<br>2366<br>2421<br>2477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22822                                | 38888                                |    |
| 1832<br>1832<br>1875<br>1919<br>1963     | 2009<br>2056<br>2153<br>2203                 | 2254<br>2307<br>2360<br>2415<br>2472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2529<br>2588<br>2649<br>2773         | 2838<br>2904<br>2972<br>3041<br>3112 | 60 |
|                                          | 4.4(4.4.4                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | HV10410                              |    |
| 1786<br>1828<br>1871<br>1914<br>1959     | 2004<br>2051<br>2099<br>2198<br>2198         | 2249<br>2355<br>2410<br>2466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2523<br>2582<br>2642<br>2764<br>2767 | 2831<br>2897<br>2965<br>3034<br>3105 | 2  |
| 2222                                     | 85248                                        | 25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25,555<br>25 | 2518<br>2576<br>2636<br>2698<br>2761 | 2825<br>2891<br>2058<br>3027<br>3097 | -  |
| 1782<br>1824<br>1806<br>1910<br>1910     | 2000<br>2046<br>2094<br>2193                 | 22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3888                                 |                                      |    |
| 778<br>820<br>862<br>862<br>905<br>950   | 2042<br>2042<br>2089<br>2138<br>2188         | 23,345,233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2512<br>2570<br>2630<br>2692<br>2754 | 2818<br>2884<br>2951<br>3020<br>3090 | 0  |
|                                          |                                              | 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.444.4                              | 24.<br>64.<br>74.<br>64.<br>64.      |    |
| 22.25.25.25.25.25.25.25.25.25.25.25.25.2 | 000 mm      | en en in in in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77777                                | 2 2 2 2 2                            |    |

| 6                 | 211111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80000                                                               | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ==== <u>1</u>                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 00                | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 00 00 00 00·                                                      | 80000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000                                            |
| ses 7             | niningo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01111                                                               | VV 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000000                                           |
| Differences 5 6 7 | 4.0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | מטוטוטוטוט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000                                                               | 93777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1111000                                          |
| THE STATE OF      | <b>गंगंगंगं</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | מומומומומ                                                           | 101111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99999                                            |
| Mean<br>3 +       | , თოოო                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ころりょよ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ****                                                                | चचचचा0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | יטיטיטיטיטי                                      |
| Ze                | utcrototet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n'an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30000                                                               | <b>~~~~~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | चित्रचन                                          |
| 61                | -01010101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1300000                                                             | 44444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>000000</b>                                    |
|                   | ненен                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                |
| 0                 | SERVICE SERVIC | 362<br>3797<br>3798<br>3798<br>3798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44444<br>86.66.75                                                   | 45667<br>45667<br>5000<br>5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$525<br>\$525<br>\$610                          |
| od od             | 222828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288888<br>48463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$5555<br>\$555<br>\$555<br>\$555<br>\$555<br>\$555<br>\$555<br>\$5 | 84444<br>68258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5108<br>5276<br>5376<br>5376<br>5598             |
| 2                 | 1 1 1 1 1 1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SERVICE SERVIC | \$3.5%<br>\$3.0%                                                    | なるなる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5005<br>5212<br>553 3<br>5478<br>5585            |
| 4                 | 27.7.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STEW F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 50.15                                                            | 24418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3555                                             |
| 2                 | 800 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | をおかれる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22224                                                               | 2.44.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.45.00<br>4.4 | 5 45 8 A                                         |
| 4                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 芸芸されま                                                               | 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 123 4 + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STEERS STEERS                                    |
| ~                 | 基本的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | での子ろう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 古古古古古                                                               | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | はますをは                                            |
|                   | 87813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82333                                                               | 1444<br>155<br>155<br>155<br>155<br>155<br>155<br>155<br>155<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.12.12.15.15.15.15.15.15.15.15.15.15.15.15.15. |
|                   | PRACE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ののないから                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24444                                                               | 17744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.58%<br>84.58%                                 |
| 0                 | 38378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ##X30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 mm 4 mm                            | 1217999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22322                                            |
|                   | 84362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 44 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.                            | 99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73333                                            |

|                                                       |                                        |               | 1.1.1.2.2                               | 1111168                | 6    |
|-------------------------------------------------------|----------------------------------------|---------------|-----------------------------------------|------------------------|------|
| HUNGE                                                 | SZZZZ                                  | *****         |                                         | F-F-F-C-S              | 60   |
| 2                                                     | 22222                                  | CTTTT         | 44499                                   |                        | -    |
| 00000                                                 | 22222                                  | 정당당당경         | 22223                                   | 20022                  | 7    |
| 00,000,000                                            | 00000                                  | 52522         | ======================================= | frights, ret, ret, eq. | ٥    |
| Istalia lata                                          | 1.00 % 6 %                             | 20 20 20 20   | 00222                                   |                        | ro   |
| 17,17,17 00                                           | 00000                                  | trial tits    | 1 - 7. 1. 1. 1.                         | X X 2 2 2              | *7   |
| 44444                                                 | 410101010                              | NUMBER        | 00000                                   | 00111                  | 60   |
| <b>1000000</b>                                        | 10 mmmm                                | 200044        | 44444                                   | 44440                  | 62   |
| and any prof part land                                | ^,^,^,^1                               | *, *10, *101  | * * * * * * * * * * * * * * * * * * * * | 0,7,0,0,0              |      |
| 5741<br>5875<br>5012<br>6012<br>6152                  |                                        | 65. Kg        | 11112                                   |                        | 2    |
|                                                       |                                        | 1111111111111 |                                         | 7 0 0 1 m              |      |
| 55728<br>5861<br>5861<br>5861<br>5861<br>5861<br>5861 | 50000                                  |               |                                         |                        | 20   |
| 5.622.23                                              | 22.44.13                               | ERT S         | 17.7.                                   | 1971                   | 1.   |
| 558485                                                | 22000                                  | THE WAR       | 21116                                   | 0 1 1 1 0              |      |
| 22,26,52                                              | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | EXCE!         |                                         |                        | 6    |
|                                                       |                                        |               | 77                                      | 5 1 3 1 9              | N/   |
| 33043                                                 | 3 2 3 3 5                              | Ex 3          | 1) 1777                                 | ( Tyle?                |      |
| . 4 5 = 53                                            | 69879                                  |               | 1 4 57                                  |                        | 약    |
| : Atag                                                |                                        | i.t.t         | · · , · · ;                             | NAALWA                 |      |
| 31111                                                 | 1 , 1, 5                               | 31111         | 11 17                                   | 17 1 19                | HQ I |
| · AASS                                                |                                        |               |                                         | NE                     |      |
|                                                       |                                        | 1.084         | 7                                       | ** `                   | C3   |
| 4 61 1 5                                              |                                        | 884118        | 10111                                   | 1 7.                   |      |
|                                                       | Tes.                                   | A BEAT        | SEC.                                    |                        |      |
| 17003                                                 | ESILE                                  | *             |                                         | ,                      | 0    |
|                                                       | 3 7 9 7 2                              | 111110        |                                         | 5.6533                 |      |
| SAPAS                                                 | 1 7 7 2 2                              |               |                                         |                        |      |



### ত্রৈকোণমিতিক অনুপাতের লগারিদ্মিক তালিকা

( LOGARITHMIC TABLES OF TRIGONOMETRIC RATIOS )

### TABLE III NATURAL SINES

|        | , 6,                    | 233 262<br>233 262<br>232 261<br>232 261                                                | 232 261<br>232 261<br>231 260<br>230 259<br>230 258 | 229 258<br>228 257<br>226 255<br>226 255                                                             | 224 252<br>223 251<br>222 250<br>221 248        |
|--------|-------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|        | 7, 8,                   | 204                                                                                     | 20000000000000000000000000000000000000              | 201<br>200<br>199<br>200<br>198<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20 | 196 22<br>198 22<br>198 22<br>199 22            |
|        | Differences<br>5' 6' 7' | 145 175<br>145 175<br>145 175<br>145 174<br>145 174                                     | 145 174<br>145 174<br>145 173<br>144 173            | 144 172<br>143 171<br>142 170<br>141 169                                                             | 140 168<br>140 167<br>139 166<br>138 166        |
|        | Mean<br>4               | 116 1<br>116 1<br>116 1<br>116 1<br>116 1                                               | 116 1<br>116 1<br>116 1<br>115 1                    | 11.5                                                                                                 | 112 142 142 142 142 142 142 142 142 142         |
|        | 1, 2, 3                 | 9 58 87<br>9 58 87<br>9 58 87<br>9 58 87<br>9 58 87                                     | 58 87<br>58 87<br>58 87<br>58 86<br>67 86           | 57 86<br>57 86<br>57 85<br>57 85<br>56 85                                                            | 56 84<br>56 83<br>55 83<br>55 83                |
|        |                         | 888<br>887<br>887<br>856<br>856<br>856<br>856<br>856<br>856<br>856<br>856<br>856<br>856 | 80.000.000<br>80.000.000<br>80.000.000              | 778° 29                                                                                              | 27.73°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°        |
| INES   | ,09                     | 0.01745<br>03490<br>05234<br>06976                                                      | 0.10453<br>12187<br>13917<br>15643<br>17365         | 0.19681<br>22495<br>22495<br>24192<br>35882                                                          | 207564<br>304027<br>31557<br>34202              |
| DUAL D | 50,                     | 0.01454<br>.01199<br>.05913<br>.05985                                                   | 0.10164<br>.11598<br>.13629<br>.15366               | 0.18795<br>.20507<br>.23910<br>.23910                                                                | 0.57254<br>.30625<br>.32552<br>.33929           |
| INAL   | 40,                     | 0.01164<br>0.02908<br>0.02908<br>0.02908                                                | 0.09874<br>11609<br>13841<br>15069<br>16793         | 0.18509<br>-20122<br>-21528<br>-23627                                                                | 0.27004<br>.2×650<br>.80348<br>.82006<br>.33655 |
|        | 30,                     | 0.00873<br>.02518<br>.02518<br>.0453<br>.0555<br>.0555                                  | 0.09585<br>.11320<br>.13053<br>.14751               | 0.18224<br>.19037<br>.28345<br>.28345                                                                | 0.26724<br>.25402<br>.30071<br>.31730           |
|        | 20%                     | 0.00582<br>.04071<br>.04071<br>.0510                                                    | 0.09235<br>11031<br>12764<br>1493<br>16218          | 0.17937<br>.19652<br>.21360<br>.23062                                                                | 0.26443<br>.28123<br>.29793<br>.31454           |
|        | 10,                     | 18480.<br>18480.<br>18480.<br>1850.                                                     | 0.09005<br>10742<br>12476<br>12555<br>15931         | 0117651<br>19366<br>21076<br>22778                                                                   | 0.26163<br>.27543<br>.29515<br>.31178           |
|        | .0                      | 0.00000<br>0.03430<br>0.03430<br>0.03534                                                | 0.08716<br>10453<br>12187<br>13917<br>15643         | 0.17365<br>19081<br>20791<br>123495                                                                  | 0.25882<br>20002<br>32555<br>32555              |
|        |                         | မိုက်တိုင်                                                                              | ထိုထို-ဒီထိုလို                                     | <b>उ</b> च्युक्षक्षक                                                                                 | 198236                                          |

### NATURAL COSINES

| 246<br>245<br>245<br>245<br>245<br>245<br>245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 234<br>234<br>234<br>232<br>232<br>232<br>232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 225<br>223<br>223<br>221<br>219<br>219<br>216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2111<br>2011<br>205<br>206<br>206            | 199<br>196<br>193<br>190<br>187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 218<br>215<br>215<br>218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200<br>198<br>196<br>194<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 185<br>185<br>185<br>179                     | 174<br>174<br>172<br>169<br>166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30    |     |
| 191<br>190<br>188<br>185<br>186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175<br>174<br>179<br>170<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166<br>162<br>162<br>163<br>163              | 155<br>153<br>150<br>148<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-    |     |
| 164<br>163<br>160<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 155<br>155<br>155<br>164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150<br>149<br>147<br>146<br>146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140<br>130<br>137<br>137                     | 133<br>129<br>129<br>127<br>124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ર્જ   |     |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1119<br>1116<br>1114<br>1114                 | 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10 | coi . |     |
| 109<br>108<br>107<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 823888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000000000000000000000000000000000000000      | 8 2 6 6 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     |     |
| 823 1<br>80 1<br>80 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 4 4 10 0d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170 200 200 200 200 200 200 200 200 200 2    | 653 466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | òo    |     |
| 70 14 4 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ## 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000 44 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46 46                                        | 44884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 791   |     |
| 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 원 전 전 전 전<br>전 전 전 전 전 전                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | स्था स्था स                                  | 88888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     |     |
| 6667.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$2822<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | राक्षेत्राक्षेत्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 855887<br>855887                             | Q & + & A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |
| t 00 " 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ##### 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #OMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RUBBR                                        | SISBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |
| 19517.<br>19517.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143837<br>143837<br>145147<br>151418<br>150000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1249.<br>1249.<br>1269.<br>1269.             | 707.11<br>707.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | DAM |
| O THE PARTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | COL |
| 最初至不是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1.65386<br>1.65.77<br>1.65.05<br>1.70505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,   | 2   |
| 0.85°65<br>(4.777)<br>(4.04)<br>(4.10)<br>(4.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 751254<br>75_745<br>75_77<br>75_77<br>75_77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.54-13<br>61-13<br>617.08<br>617.08         | 90.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | M   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80 11 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E SEE SE                                     | 29722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | TID |
| *\$5293<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96767.<br>11517.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257.<br>1257 | \$10015<br>\$1233<br>\$1233<br>\$1233<br>\$1233<br>\$1233<br>\$1233<br>\$1233<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$1333<br>\$133 | 58.07<br>5.715<br>6.47<br>6.47               | 65166<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30    | 1   |
| S ME ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                            | 0 7777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | F   |
| 122253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1991198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MARIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-170                                        | 67.73<br>67.73<br>67.73<br>70091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30,   | П   |
| 3.021<br>3.021<br>3.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5<br>5.1.5 | 13051.<br>00317.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0754<br>5.150<br>5.151<br>1.511<br>1.5534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20000                                        | 19 19 19 19 19 19 19 19 19 19 19 19 19 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI.   |     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W 0 1- 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 00 00 00 00 00 00 00 00 00 00 00 00       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |
| 117.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42758<br>4450<br>450-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50=03<br>5 1-4<br>51-51<br>56401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.33<br>59.18<br>69.74<br>683.48            | 64733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .04   |     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE PERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to in a con                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | L   |
| 27222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA SA SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STIPE                                        | SPILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~     |     |
| 331475<br>34735<br>37 30<br>37 41<br>140.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.03th.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$17.3<br>\$17.3<br>\$17.3<br>\$17.3<br>\$17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 577.95<br>16 14<br>16 17.85<br>16 11.88      | 641.15<br>641.16<br>641.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20    | L   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |
| 34202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1975.<br>1975.<br>1975.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.573.<br>6.573.<br>6.53.<br>6.53.<br>6.53.  | (477)<br>(477)<br>(67-0)<br>(87-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,09   |     |
| <b>表现外因是</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                        | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |
| 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-10-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-5-6-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SKASK<br>SKASK                               | 84484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |
| នត្តអន្តន                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ललललल                                        | क च के की की                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |     |

### NATURAL SINES

|             | 40500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 0 0 0 0                                  | m + - 1- m                                      | 0.00                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------|
| Ď           | 150<br>173<br>173<br>173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 163<br>163<br>159<br>156<br>156             | 144                                             | 125<br>125<br>121<br>121<br>117          |
| œ           | 163<br>160<br>157<br>154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148<br>145<br>145<br>138<br>138             | 132<br>126<br>125<br>122<br>118                 | 111108                                   |
| T'          | 148<br>138<br>138<br>135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127<br>127<br>121<br>118                    | 1112                                            | 97 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |
| Differences | 12001118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116861                                      | 99 99 99                                        | 888<br>178<br>178                        |
|             | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93<br>91<br>85<br>11<br>85                  | 80<br>14<br>14<br>14<br>14                      | 72<br>69<br>67<br>65<br>63               |
| Mean<br>4'  | 2095-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74<br>77<br>59<br>68                        | 66<br>63<br>63                                  | 55 55 55 55 55 55 55 55 55 55 55 55 55   |
| m           | 61 60 60 60 60 60 60 60 60 60 60 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 523                                         | 24444                                           | 83 4 4 0 88<br>8 8 9 9 8 8               |
| Ç4          | 44 % % & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000000<br>200000000000000000000000000000   | 8888888                                         | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 |
| ře          | 800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138 171                                     | 16 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 | 44555                                    |
|             | <b>428328</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | क्षेत्रक्षेत्रक्ष                           | ន្តមន្ត្រ                                       | 88288                                    |
| .09         | 0.71934<br>.73135<br>.74314<br>.75471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77715<br>.78801<br>.79864<br>.80902       | 0.82904<br>.83×67<br>.84505<br>.85717<br>.86603 | 0.87462<br>88295<br>89101<br>89579       |
| 20,         | 0.71732<br>.72937<br>.74120<br>.75280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77531<br>77622<br>79648<br>80730          | 0.88741<br>.884650<br>.85567<br>.86457          | 0.87321<br>.85158<br>.85968<br>.99752    |
| 40,         | 72737<br>72737<br>73924<br>75088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 777347<br>78442<br>79512<br>80558           | 0.82577<br>.83549<br>.84495<br>.85416           | 0.87178<br>.85020<br>.88535<br>.90383    |
| 30,         | 0.71825<br>.72537<br>.73728<br>.74896<br>.76041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77162<br>.79335<br>.80356<br>.81412       | 0.82413<br>.83389<br>.84339<br>.85264           | 0.87036<br>.57832<br>.88701<br>.89493    |
| 20,         | 0.71191<br>.72337<br>.73531<br>.74703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.76977<br>.78079<br>.79158<br>.80212       | 0.82248<br>.84182<br>.84182<br>.85112           | 0.86892<br>.87743<br>.88566<br>.89363    |
| 10,         | 0.70916<br>.72136<br>.73333<br>.74509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77597<br>77597<br>76950<br>80038<br>81072   | 0.82089<br>.83066<br>.8402b<br>.84969           | 0.86748<br>.87603<br>.85431<br>.69232    |
| H           | 0.70711<br>71934<br>73135<br>74314<br>75471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.76604<br>77715<br>78801<br>79864<br>80902 | 0.81916<br>.82904<br>.83-67<br>.84-05           | 0.86603<br>87462<br>88,295<br>10168.     |
|             | \$5.44<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50<br>\$6.50 | **************                              | 25,50                                           | 82883                                    |

| 108<br>104<br>100<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83<br>75<br>70<br>70                            | 65<br>61<br>63<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 00 00 00 00 00 00 00 00 00 00 00 00  | 18 21<br>14 16<br>10 12<br>近代本部                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | à    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 900<br>900<br>800<br>800<br>800<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78<br>74<br>70<br>66<br>66                      | 550<br>400<br>400<br>400<br>400<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8    | 18<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | òo   |
| 881<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68<br>64<br>61<br>54                            | 84<br>84<br>84<br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 mm 0   | 153 B | È=   |
| 772<br>770<br>67<br>64<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8000<br>4000<br>7000<br>7000                    | 888 888<br>888 888<br>888 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120 88 8 11                              | #10 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ġ    |
| 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44<br>44<br>39                                  | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>113<br>14                          | - 1 - 10 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ìo   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | ज ह                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₹#   |
| 84 46<br>84 45<br>84 85<br>84 85<br>84<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9         | 22 29 29 20 27 20 27 25 25 21 25 21 28 21 21 28 21 21 21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 19<br>13 17<br>11 15<br>10 18<br>8 11 | F104 B 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | èa   |
| 22 33 25 22 33 22 33 22 33 22 33 32 33 32 33 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 29<br>18 28<br>18 26<br>17 25<br>16 29       | 23 T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000-0                                   | क्ष्मित्व क्ष्मित्व क्षम्                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ġŧ.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000000                                          | 66644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ひま400</b>                             | मिन्स विशेष                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ä    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | က်တိုးကိုကိ                              | ಕ್ಷಿಣ್ಣ ಕ್ಷ್ಮಿಕ್ಟ್                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88448                                           | *######                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    |
| 250<br>250<br>250<br>250<br>250<br>250<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5552<br>106<br>530<br>530<br>553                | 030<br>487<br>815<br>163<br>481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .98769<br>.99255<br>.99255<br>.99619     | .99756<br>.9998<br>.99939<br>.99985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,   |
| .92050<br>.92718<br>.93358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95106<br>95106<br>9506<br>96126                 | 97030<br>97437<br>97815<br>98163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.0                                     | 6.66.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| <b>6</b> 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70007                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23<br>20<br>21<br>21<br>24               | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ١    |
| 91936<br>91936<br>93253<br>93253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .94457<br>.95015<br>.95545<br>.96046            | 196959<br>197371<br>197754<br>198107<br>198430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .98723<br>.98986<br>.99219<br>.99594     | 987969.<br>198899<br>1,00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| .91116<br>.91822<br>.92499<br>.93148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .94361<br>.94924<br>.95459<br>.95964            | .97304<br>.97304<br>.97692<br>.98050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98676<br>98344<br>99390<br>99567         | 99973<br>99973<br>99973<br>99998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,  |
| 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.<br>46.<br>56.                               | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000                                   | 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 99895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **************************************          | 35 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 329<br>357<br>357<br>540                 | 96666.<br>99666.<br>99666.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| .90996<br>.91706<br>.92338<br>.93042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .94264<br>.94833<br>.95372<br>.95882            | 97237<br>97237<br>97630<br>97992<br>98325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.98629<br>1.98144<br>1.98144<br>1.99540 | 66.69.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,  |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 88888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 92276<br>92276<br>92276<br>93565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .94740<br>.94740<br>.95284<br>.95739            | 97169<br>97169<br>97566<br>97534<br>98372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .98558<br>.98858<br>.99106<br>.99324     | .99668<br>-99795<br>-99858<br>-99993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40,  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 9 9 9 9                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 53<br>54<br>54<br>62<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95 95 95 96 96 96 96 96 96 96 96 96 96 96 96 96 | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98531<br>98514<br>995067<br>99459        | 99578<br>99776<br>99978<br>99919<br>99989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200, |
| 92164<br>92164<br>92827<br>93462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .94068<br>.94646<br>.95195<br>.95715            | 7.00667<br>7.00170<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764<br>7.0764 | 86.0                                     | 99999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O                                               | 807.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                      | 00<br>85<br>85<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 190631<br>191355<br>192050<br>193718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .94552<br>.94552<br>.95106<br>.95630            | 97437<br>97437<br>97437<br>97815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98481<br>98769<br>98769<br>98355         | 995196<br>99568<br>99568<br>99989<br>99985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,09  |
| 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                        | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *    |
| 888,7,86,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4335                                            | 300,700,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 53.00 m                               | 9 88 7 88 50<br>80 7 8 8 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| @ \$0 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Telefatete                                      | Part - Care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |

### NATURAL COSINES

TABLE IV
NATURAL TANGENTS

| 9,          | 262<br>262<br>263<br>263<br>263                        | 265<br>265<br>265<br>267<br>267                 | 271<br>273<br>275<br>277<br>279                 | 282<br>285<br>288<br>291<br>294                                                 |
|-------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|
| ϫ           | 233<br>233<br>234<br>234                               | 235<br>235<br>235<br>238<br>238                 | 242<br>244<br>246<br>248                        | 250<br>253<br>253<br>256<br>256<br>262                                          |
| псев        | 204<br>204<br>204<br>204<br>204                        | 206<br>206<br>207<br>208<br>208                 | 211<br>212<br>213<br>214<br>216<br>217          | 219<br>221<br>224<br>226<br>226                                                 |
| Differences | 175<br>175<br>175<br>175                               | 176<br>176<br>178<br>178<br>179                 | 181<br>182<br>183<br>185<br>186                 | 188<br>190<br>194<br>194                                                        |
|             | 146<br>146<br>146<br>146<br>146                        | 147<br>147<br>148<br>149<br>150                 | 151<br>152<br>153<br>154<br>155                 | 157<br>158<br>160<br>162<br>164                                                 |
| Mean<br>4'  | 116<br>116<br>116<br>117                               | 118<br>118<br>119<br>120                        | 120<br>121<br>122<br>123<br>124                 | 126<br>128<br>129<br>131                                                        |
| Ì 85 1      | 888                                                    | 88<br>88<br>89<br>89<br>90                      | 922 1 93 1 93 1 93 1                            | 94<br>195<br>196<br>197<br>198                                                  |
| Č4          | 50 S S S S S S S S S S S S S S S S S S S               | 50<br>50<br>50<br>60                            | 60<br>61<br>62<br>62<br>62                      | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>6 |
| - in        | 888888                                                 | 888888                                          | 31 31 31 31                                     | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                        |
| ,           | දින්ත් සිස                                             | 2000 00 00 00 00 00 00 00 00 00 00 00 00        | 39399                                           | 37233                                                                           |
| ,09         | 0.01746<br>.03492<br>.05241<br>.06393                  | 0.10510<br>12278<br>14054<br>15838<br>17633     | 0.19438<br>.21256<br>.23087<br>.24933           | 0.28675<br>32492<br>34433<br>36397                                              |
| 200,        | 00190.<br>00190.<br>10750.<br>10750.                   | 0.10216<br>11983<br>13758<br>15540<br>17333     | 0.19136<br>.20953<br>.22781<br>.24624<br>.26483 | 0.28360<br>:30255<br>:32171<br>:34108                                           |
| ,<br>V      | 0.01164<br>.02910<br>.04658<br>.06408                  | 0.09928<br>11688<br>13461<br>15243<br>17083     | 0.15835<br>.20648<br>.22475<br>.2416            | 0.28046<br>.29338<br>.31850<br>.33783                                           |
| 30,         | 0.00873<br>.02619<br>.04366<br>.06116                  | 0.09620<br>11304<br>13165<br>14945<br>16734     | 0.18534<br>20345<br>22169<br>22169<br>22862     | 0.27732<br>.29621<br>.31530<br>.33460                                           |
| 200,        | 0.00582<br>.02328<br>.04075<br>.05824                  | 0.09335<br>.11099<br>.12569<br>.14648           | 0.18233<br>.20042<br>.21564<br>.23700           | 0.27419<br>.29305<br>.31210<br>.33136                                           |
| 10,         | 0.00201<br>760500<br>760500<br>765530<br>77856<br>7785 | 0.09042<br>10805<br>12574<br>14351<br>16137     | 0.17933<br>.19740<br>.21560<br>.23393           | 0.27107<br>.28900<br>.30891<br>.32814<br>.34758                                 |
| ,0          | 0.00000<br>003492<br>05241<br>05241                    | 0.08749<br>.10510<br>.12278<br>.14054<br>.15838 | 0.17633<br>19438<br>21256<br>233057<br>24933    | 0.26795<br>.28675<br>.30573<br>.32492                                           |
| 1           | <b>್ಲಿ</b> ಕ್ಷಣ್ಣಕ್ಕ                                   | ක්තද්ගත්                                        | Pagaga<br>A                                     | 1887788                                                                         |

## NATURAL COTANGENTS

| 298<br>302<br>306<br>311<br>316                      | 321<br>321<br>333<br>339<br>346                 | 353<br>360<br>368<br>368<br>376<br>385   | 895<br>405<br>416<br>440                  | 453<br>467<br>482<br>105<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٦, ر   |
|------------------------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 265<br>269<br>273<br>277<br>281                      | 291<br>295<br>302<br>307                        | 313<br>320<br>327<br>334<br>342          | 351<br>360<br>370<br>391                  | 402<br>415<br>420<br>442<br>457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ထ      |
| 232<br>233<br>242<br>246                             | 254<br>254<br>259<br>264<br>264<br>269          | 230<br>286<br>286<br>293<br>300          | 307<br>315<br>324<br>333<br>342           | 363<br>363<br>375<br>357<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | È      |
| 199<br>202<br>205<br>205<br>208<br>211               | 218<br>222<br>222<br>226<br>230                 | 245<br>245<br>251<br>251                 | 263<br>277<br>285<br>293                  | 302<br>311<br>321<br>332<br>343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , , ,  |
| 166<br>168<br>170<br>173<br>176                      | 179<br>182<br>185<br>189<br>192                 | 196<br>200<br>205<br>205<br>209<br>214   | 225<br>225<br>231<br>238<br>245           | 256<br>268<br>277<br>277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ' io   |
| 133<br>134<br>136<br>140                             | 145<br>145<br>151<br>154                        | 157<br>166<br>171<br>171                 | 176<br>185<br>190<br>196                  | 201<br>222<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ক      |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 1103                                            | 118<br>123<br>123<br>126<br>128          | 135<br>135<br>143<br>143                  | 151<br>156<br>161<br>166<br>172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ŝ      |
| 65<br>63<br>70<br>70<br>70                           | 1272                                            | 86 88 88 88 88 88 88 88 88 88 88 88 88 8 | 88888                                     | 1100011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | int in |
| 8 4 4 8 8 8<br>5 4 4 8 8 8                           | 88848                                           | 84444                                    | 44444                                     | 0.00 de 50 CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | per .  |
| හිතිරානය                                             | \$28828                                         | 82 82 73 88 89                           | ಕ್ಷಿಪ್ಪಜ್ಞಾಜ್ಜ್ ಕ್ಷ್ಮಾಪ್ಟ್                | 9444<br>955<br>955<br>955<br>955<br>955<br>955<br>955<br>955<br>955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| 0.33386<br>.40403<br>.42447<br>.44523                | 0.48773<br>50°53<br>53171<br>55431              | 0.60056<br>140457<br>140477<br>161757    | 0.72551<br>.75355<br>.78129<br>.80378     | 0.86929<br>-93202<br>-93202<br>-90000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0     |
| 0.38053<br>.40065<br>.42105<br>.44175                | .50587<br>.52798<br>.55051<br>.67348            | 0.59691<br>.62083<br>.64528<br>.67028    | 0.72211<br>-74900<br>-77661<br>-80498     | 0.86419<br>.89515<br>.92508<br>.93420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,    |
| 0.87720<br>.39727<br>.41763<br>.43828                | 0.48055<br>-50232<br>-53427<br>-54678<br>-56962 | 0.59297<br>61317<br>64117<br>66608       | 0.71769<br>74447<br>77196<br>.80020       | 0.85912<br>.92170<br>.92170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50     |
| 0.57383<br>-39391<br>-41421<br>-43481<br>-45573      | .49858<br>.52057<br>.54296<br>.56577            | 0.55905<br>(13-0<br>(0)-07<br>(66189     | 73996<br>76733<br>79544<br>78434          | 0.55.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.66.109<br>8.6 | 20.    |
| 0 37057<br>.39055<br>.41081<br>.43136                | 0.47341<br>49495<br>51688<br>53920<br>55994     | 0.5 13<br>6.2 7<br>6.5771<br>6.5771      | 78547<br>76272<br>79070<br>79046          | 10 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,0°±   |
| 0.36727<br>.38721<br>.49791<br>.48791                | 0.460-5<br>49184<br>51830<br>58545<br>58545     | 0.55121<br>665-3<br>665-3<br>665355      | 73100<br>75813<br>76813<br>76598<br>78598 | 0.51407<br>(5.7441)<br>(5.7741)<br>(5.7741)<br>(5.7741)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50     |
| 0.36397<br>.98386<br>.40403<br>.43447                | .48778<br>.50958<br>.53171<br>.55431            | 0.57735<br>6405-6<br>64941<br>67451      | 0.70031<br>.72654<br>.75355<br>.78129     | 0.5310<br>0.292<br>6.252<br>9.2539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03     |
| 8888 <b>8</b>                                        | 882888                                          | <b>8</b> 888 <b>8</b>                    | क्षेत्रज्ञेत्रे                           | 3.253.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |

### NATURAL TANGENTS

|             | ිග         | 533<br>553<br>573<br>596<br>620       | 647<br>676<br>707<br>740                        | 816<br>860<br>907<br>959<br>1016      | 108<br>115<br>122<br>131<br>141                                                                     |
|-------------|------------|---------------------------------------|-------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
|             | 00         | 474<br>491<br>510<br>530<br>552       | 575<br>601<br>628<br>658<br>690                 | 725<br>764<br>852<br>903              | 96<br>102<br>109<br>117                                                                             |
| 98          | -          | 414<br>430<br>446<br>463<br>483       | 503<br>526<br>540<br>540<br>576<br>603          | 634<br>669<br>705<br>746              | 84<br>89<br>95<br>102<br>110                                                                        |
| renc        | œ !        | 355<br>368<br>382<br>307<br>413       | 431<br>451<br>471<br>493<br>517                 | 544<br>573<br>604<br>639<br>677       | 27 7 28 8 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 24 24 24 24 24 24 24 24 24 24 24 24 |
| Differences | ia         | 296<br>307<br>319<br>332<br>345       | 360<br>376<br>392<br>411<br>431                 | 453<br>475<br>504<br>533<br>565       | 64<br>40<br>79<br>79                                                                                |
| Mean        | *जुर       | 237<br>246<br>255<br>255<br>276       | 258<br>300<br>314<br>329<br>845                 | 363<br>382<br>403<br>426<br>451       | 54<br>54<br>58<br>63<br>63                                                                          |
| M           | ත්         | 178<br>184<br>191<br>199<br>207       | 216<br>225<br>235<br>247<br>259                 | 272<br>287<br>302<br>330              | 88.84.44.44.44.74.74                                                                                |
|             | °04        | 118<br>123<br>127<br>138<br>138       | 144<br>150<br>157<br>164<br>173                 | 181<br>191<br>201<br>213<br>226       | 2007<br>2007<br>2007<br>2007                                                                        |
|             | ` <b>=</b> | 63<br>64<br>66<br>69                  | 8 8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3         | 91<br>96<br>101<br>107<br>113         | 113 12 12 12 12 12 12 12 12 12 12 12 12 12                                                          |
|             |            | <b>क्रिक्स</b>                        | 88488                                           | ಹಿಚ್ಚಜ್ಞ                              | 路路路路路                                                                                               |
|             | ,09        | 1.03553<br>.07337<br>.11061<br>.15037 | 1.23490<br>27994<br>32704<br>37638              | .66428<br>.66428<br>.73205            | 1.8040<br>1.8807<br>1.9626<br>2.0503<br>2.1445                                                      |
|             | 50,        | 1.02952<br>.06613<br>.10414<br>.14863 | 1.22758<br>.27230<br>.81904<br>.86800           | 1.47330<br>53010<br>59002<br>65337    | 1.7917<br>1.8676<br>1.9486<br>2.0853<br>2.1283                                                      |
|             | 40,        | 1.02355<br>.05994<br>.09770<br>.13694 | 1.22031<br>26171<br>31110<br>35568<br>41061     | 1.46411<br>.52043<br>.57981<br>.64256 | 1.8546<br>1.9347<br>2.0204<br>2.1123                                                                |
|             | 30,        | 1.01761<br>.05378<br>.09131<br>.13029 | 1.21310<br>.25717<br>.30323<br>.35142           | 1.45501<br>.51084<br>.56969<br>.63185 | 1.7675<br>1.8418<br>1.9210<br>2.0057<br>2.0965                                                      |
|             | 20,        | 1.01170<br>.04766<br>.08406<br>.12369 | 1.20593<br>.24969<br>.29541<br>.34323           | 1.44598<br>.55966<br>.62125           | 1.7556<br>1.9291<br>1.9074<br>1.9912<br>2.0809                                                      |
|             | 10,        | 1.00683<br>.04158<br>.07864<br>.11713 | 1.19882<br>.24227<br>.28764<br>.33511           | 1.49703<br>.49190<br>.54972<br>.61074 | 1.7437<br>1.8165<br>1.8910<br>1.9768<br>2.0655                                                      |
|             | 0,         | 1.00000<br>.03553<br>.07237<br>.11061 | 1.19175<br>'23490<br>'27994<br>'32704<br>'32768 | 1.42816<br>.48256<br>.58987<br>.60033 | 1.7321<br>1.8040<br>1.8507<br>1.9626<br>2.0503                                                      |
|             |            | 34,24,24,34                           | <u>ಹೆಬ್ಬೆಬ್ಬ್ಬ್</u>                             | තිනී දැනින්<br>වන්නේ දැනින්           | <b>\$</b> 3855                                                                                      |

| 162<br>165<br>179<br>195<br>213                | 285<br>200<br>290<br>325<br>366                | 418<br>481<br>559<br>659<br>788                | <u>ত</u><br>ভ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                          | 9,               |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------|
| 135<br>146<br>159<br>174<br>190                | 209<br>231<br>258<br>258<br>326                | 871<br>497<br>497<br>586<br>701                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oot छ<br>समाम ।                                            | 8,               |
| 118<br>128<br>139<br>152<br>166                | 202 202 202 202 202 202 202 202 202 202        | 325<br>374<br>435<br>512<br>618                | <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F F                                                        | 7,               |
| 110111101111011110111101111011110111101111     | 157 1<br>174 2<br>198 2<br>216 3               | 278<br>373<br>526<br>526                       | ১ পশ্বিবর্জনশীল বে<br>নহে।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | क्षात्व.<br>इत्तर्भाव                                      | 9                |
| 988                                            | 131<br>145<br>161<br>181<br>204                | 232<br>267<br>311<br>366<br>438                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CATCHA<br>1 3487"                                          | οί               |
| 95 25 25 25 25 25 25 25 25 25 25 25 25 25      | 104                                            | 185<br>214<br>248<br>293<br>350                | 19 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a) কোণের কেত্রে,<br>প্রায় 3487.7 ÷ ৫-এর                   | 4                |
| 1650551                                        | 78<br>87<br>97<br>108<br>122<br>122            | 189 1<br>160 2<br>186 2<br>220 2<br>263 3      | ক বা ক বা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P G                                                        | के               |
| 34<br>47<br>47<br>47                           | 52<br>58<br>64<br>72<br>31                     | 93 1<br>107 1<br>124 1<br>146 3                | এন্দেরে<br>লকাতুত্ত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ब्बाहिङ<br>(90°-                                           | Ç4               |
| 17<br>18<br>20<br>22<br>24<br>28               | 26<br>29<br>36<br>41                           | 46<br>63<br>73<br>88                           | একেরে<br>তালিকাতুজ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tan (                                                      | 7                |
|                                                | 00000                                          | 0.0.0.0.0                                      | ကိတိဘိုတ်လိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | & 80 80 ± 00                                               |                  |
| 828888                                         | 262283                                         | 200000000000000000000000000000000000000        | 0.001-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400000                                                     |                  |
| 2.2460<br>2.3559<br>2.4751<br>2.6051<br>2.7475 | 2.9042<br>3.0777<br>3.2709<br>3.4874<br>3.7321 | 4.0108<br>4.3315<br>4.7046<br>5.1446<br>5.6713 | 6.3138<br>7.1154<br>8.1443<br>9.5144<br>11.4301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.3007<br>19.0311<br>28.6363<br>67.2900<br>+ ~            | o,               |
| 2.2286<br>2.3369<br>2.4545<br>2.7228           | 3.0475<br>3.2371<br>8.4495<br>3.6891           | 9.9617<br>4.2747<br>4.6382<br>5.0658           | 6.1970<br>6.9682<br>7.9530<br>9.2553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.7267<br>18.0750<br>96.4316<br>49.1039<br>843.774        | 10,              |
| 2.2113<br>2.3183<br>2.4342<br>2.5605<br>2.6985 | 2.8502<br>3.0178<br>3.2041<br>3.4124<br>3.6470 | 3.9136<br>4.2193<br>4.5736<br>4.9894<br>5.4845 | 6.0844<br>6.8269<br>7.7704<br>9.0098<br>10.7119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.1969<br>17.1693<br>24.5418<br>42.9641<br>171.835        | 20,              |
| 2.1943<br>2.2998<br>2.4142<br>2.5386<br>2.6746 | 2.8239<br>2.9887<br>3.1716<br>3.8759<br>3.6059 | 3.8667<br>4.1653<br>4.5107<br>4.9152<br>5.3955 | 5.9758<br>6.6912<br>7.5958<br>8.7769<br>10.3854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.7062<br>16.3490<br>22.9038<br>38.1885<br>114.589        | 30,              |
| 2.1775<br>2.2817<br>2.3945<br>2.6511           | 2.7980<br>2.9600<br>3.1397<br>3.3402<br>8.5656 | 3.8208<br>4.1126<br>4.4494<br>4.8430<br>5.3093 | 5.8708<br>6.5606<br>7.4287<br>8.5555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.2505<br>15.6048<br>21.4704<br>34.3678<br>85.9398        | ,0 <del>\$</del> |
| 2.1609<br>2.3750<br>2.4960<br>2.6279           | 2.7725<br>2.9319<br>3.1084<br>3.5261           | 8.7760<br>4.0611<br>4.3897<br>4.7729<br>5.2257 | 6.4348<br>7.2687<br>8.3450<br>9.7882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.8262<br>14.9244<br>20.2056<br>31.2416<br>68.7501        | 50,              |
| 2.1446<br>2.2460<br>2.3559<br>2.4761<br>2.6051 | 2.9042<br>3.9042<br>3.0777<br>3.2709<br>8.4874 | 3.7321<br>4.0108<br>4.3315<br>4.7046<br>6.1446 | 5.6718<br>6.3138<br>7.1154<br>8.1443<br>9.5144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.4301<br>14.3007<br>19.0811<br>28.6363<br>57.2900<br>+ 0 | 60′              |
| 683.00                                         | ¥33313                                         | 7000                                           | \$25.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$40.00<br>\$4 | දු දු දු දු දු                                             |                  |

## NATURAL COTANGENTS

TABLE V LOGARITHMIC SINES

| 도말두                                                                             | 364<br>751<br>680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 613<br>653<br>613<br>473<br>440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 410<br>884<br>861<br>340<br>821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 五                                                                               | 768<br>676<br>604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 545<br>497<br>456<br>481<br>391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 364<br>341<br>302<br>302<br>286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| नित्रक्त<br>भ रहत्व<br>१६ ६क                                                    | 672<br>592<br>629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 848<br>848<br>848<br>848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 319<br>299<br>281<br>264<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                         | 507<br>453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2342<br>2342<br>2342<br>233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 225<br>225<br>225<br>225<br>225<br>225<br>225<br>225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 108 i                                                                           | 480<br>428<br>378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 341<br>310<br>285<br>244<br>244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 228<br>213<br>201<br>189<br>179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| हुन हैं<br>जिल्ला<br>जिल्ला<br>जिल्ला<br>जिल्ला                                 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 90° 1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ACTIVE THE STATE OF COSE (                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91<br>86<br>76<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| विहि                                                                            | 28.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 8 0 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8 8 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                         | \$28.88.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.58.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.68.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4 | 30439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 97778                                                                           | 32935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 448810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.010<br>8.010<br>8.010                                                         | 9.019<br>9.113<br>9.131<br>9.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.44034<br>.46594<br>.5126<br>.53405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                         | 9.0070<br>9.0070<br>9.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.274<br>3111<br>355<br>374<br>374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.43591<br>.46178<br>.43607<br>.5036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 02100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 55 55 55 55 55 55 55 55 55 55 55 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 E C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8.003                                                                           | 8.994<br>9.127<br>9.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.43143<br>.45758<br>.45.213<br>.52705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88 44 C 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 041140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00 10 10 10 10 10 10 10 10 10 10 10 10 1                                        | 1115<br>1115<br>1115<br>11169<br>11169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15231.<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314<br>17314 |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 76 £7                                                                           | 110 v<br>110 v<br>110 v<br>11511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.54<br>2.04<br>3.05<br>3.05<br>3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.42232<br>.477111<br>.47768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7887<br>56.55<br>77.52<br>77.52<br>8612                                         | 28. 15<br>0333<br>0733<br>0734<br>2734<br>2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2457<br>2 70<br>3 75<br>3 75<br>3 8 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41769<br>41005<br>40355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ç,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 812.27.2                                                                        | 04030<br>0132<br>08554<br>14354<br>19455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.965<br>266<br>31755<br>35203<br>35203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11300<br>144034<br>16291<br>15291<br>151864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| गंदं र वं                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ಕ್ಷಣ್ಯುತ್ತಿದ್ದ                                                                  | ကိတ်-ဒိတ်ကိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ठ्यस्त्रस्य                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>6</b> 6-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                 | - करणाया के प्राप्त                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - ~ 7.16373 7.76175 7.91694 8.06578 8.16269 8.21156 89 attracta arga de spe offaterille states at a special states at a specia | T.16873 T.76175 T.91094 8.06678 S.16269 P.21156 8.8   St. 1252 8.8   St. 1252 8.7   St. 1252 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 304<br>2889<br>275<br>262<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 193<br>185<br>178<br>178<br>165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 169<br>149<br>149<br>143<br>188        | 133<br>120<br>120<br>1150               | 6   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----|
| 25.54<br>25.54<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55  | 212<br>203<br>194<br>179<br>179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 172<br>165<br>159<br>159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142<br>132<br>127<br>127               | 11 H H H H H H H H H H H H H H H H H H  | ò   |
| 237 2<br>225 2<br>214 2<br>204 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 156<br>156<br>156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120<br>120<br>1116<br>106              | 200000                                  | è-  |
| 203 2<br>198 2<br>174 2<br>174 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 159<br>152<br>146<br>146<br>184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90000                                  | 87775                                   | oj. |
| 169 2<br>161 1<br>163 1<br>153 1<br>146 1<br>139 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127 1172 1172 1173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42788                                  | #2863                                   | ìo  |
| 128 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 552 25 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 22 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128823                                 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5   |
| 96 19<br>96 19<br>97 19<br>97 19<br>98 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 825.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500 mg                                 | 46448                                   | 90  |
| 688 10<br>648 9<br>648 9 | 20042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #=372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | おは田田田                                  | 90442                                   | Ç19 |
| 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 古りガタ門                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75-27-2                                | 17 4 4 m m                              | ied |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ************************************** | 337753                                  |     |
| 88,988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | इडिट्टिड                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RRAIRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |     |
| 9.55409<br>-61358<br>-591-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 964174<br>66174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174<br>16174 | 9711-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FE-1-6                                 |                                         | 0   |
| 55102<br>557044<br>55349<br>65549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.94<br>6.15<br>6.15<br>7.15<br>7.15<br>7.15<br>7.15<br>7.15<br>7.15<br>7.15<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000                                   |                                         | 10, |
| 10 第 4 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00 to 10 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67                                     | 7                                       |     |
| \$6727<br>\$6727<br>\$9889<br>\$0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9637-59<br>67-79<br>67-79<br>67-79<br>67-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9770751<br>9770751<br>9770751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                         | 8   |
| 56408<br>-56408<br>-56408<br>-56408<br>-561173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.305<br>65.275<br>65.775<br>65.775<br>65.775<br>65.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | State<br>Parket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                         | .0  |
| 17.0<br>18.0<br>18.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5年 年 年 年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rayalay f                              |                                         |     |
| *56085<br>*56085<br>*57978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | masme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sept. |                                        |                                         | 9   |
| 55751<br>55761<br>55762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 37.11.7                                 | 8   |
| 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.44.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Printer.                               |                                         |     |
| 9153,75<br>-55438<br>-57759<br>-57759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.93596<br>9.11.1<br>9.11.1<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.11.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31917                                  |                                         | 3   |
| នត់និងន                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 'মঙ্গদপ্তপ্ত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>8</b> क्षेत्रं त्रेक्षक्ष           | 33333                                   |     |

LOGARITHMIC COSINES

### LOGARITHMIC SINES

| ,                    |                                                                                  |                                       |                                                 |                                            |
|----------------------|----------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------------|
| à                    | 1112<br>1001<br>1001<br>1001                                                     | 924 834 831                           | 76<br>70<br>70<br>67                            | 662<br>67<br>67<br>67<br>67                |
| ào                   | 900000000000000000000000000000000000000                                          | 83<br>78<br>74<br>72                  | 62 63 60 60 60 60 60 60 60 60 60 60 60 60 60    | 55<br>55<br>50<br>50<br>48                 |
| ed je                | 87<br>78<br>78<br>78<br>76                                                       | 65<br>65<br>65<br>65<br>65            | 61<br>62<br>62<br>62<br>63                      | 000 44 44<br>000 44 44<br>000 44 64        |
| Differences 5' 6' 7' | 74<br>70<br>67<br>65                                                             | 62<br>56<br>56<br>56<br>54            | 52<br>50<br>47<br>47<br>46                      | 44.0<br>44.0<br>38<br>36                   |
| Diff                 | 62<br>60<br>56<br>56<br>56                                                       | 52<br>44<br>47<br>45                  | 444488                                          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8      |
| Mean<br>3' 4'        | 60<br>44<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45 | 440<br>840<br>871<br>860<br>860       | 32 33 34 30 30 30 30 30 30 30 30 30 30 30 30 30 | 25<br>25<br>25<br>25<br>25                 |
| 6                    | 35<br>35<br>35<br>35<br>35<br>35                                                 | 30<br>29<br>27<br>27                  | 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 22<br>20<br>13<br>13<br>18                 |
| àı                   | 2000000                                                                          | 20<br>20<br>19<br>19<br>18            | 17<br>16<br>16<br>15                            | 123                                        |
| H H                  | 22222                                                                            | 010000                                | Q2 000 000 000 00                               | P & P & D                                  |
| _                    | 48843                                                                            | 88888                                 | ಹಿಜ್ಜಿಜಿಜಿ                                      | 88888                                      |
| ,09                  | 9.85693<br>.86413<br>.87107<br>.87778                                            | 9.89050<br>.90285<br>.90796<br>.91336 | 9.91867<br>92359<br>92359<br>92350<br>93307     | 9.94182<br>.94593<br>.94988<br>.95366      |
| 20,                  | 9.85571<br>.86299<br>.86998<br>.87668                                            | 9.88948<br>.90139<br>.90704<br>.91241 | 9.91772<br>.92277<br>.92763<br>.93230           | 9.94112<br>.94526<br>.94923<br>.95304      |
| 40,                  | 9.85448<br>.86176<br>.86879<br>.87557                                            | 9.88844<br>.89455<br>.90043<br>.90611 | 9.01686<br>.92194<br>.92683<br>.93154           | 9.94041<br>94458<br>94458<br>94458<br>9609 |
| ,08                  | 9.85324<br>.86056<br>.86763<br>.87446                                            | 9.88741<br>.89854<br>.90518<br>.91069 | 9.91599<br>.92603<br>.93077<br>.93532           | 9.93970<br>.94793<br>.95179<br>.95179      |
| 20,                  | 9.85200<br>.85536<br>.86647<br>.87534                                            | 9.88636<br>-89254<br>-90424<br>-90978 | 9.91512<br>.92027<br>.92522<br>.92552           | 9.93898<br>.94727<br>.95116<br>.95488      |
| 10,                  | 9°85074<br>85816<br>86530<br>87221<br>87887                                      | 9.88531<br>.89152<br>.90330<br>.90837 | 9.91425<br>.91942<br>.92441<br>.92921           | 9.93826<br>.94460<br>.95052<br>.95437      |
| 0,                   | 9.84949<br>.86698<br>.86413<br>.87107<br>.87778                                  | 9.88425<br>.89659<br>.90236           | 9.91836<br>.91857<br>.92842<br>.93807           | 9.93753<br>94182<br>94598<br>94988         |
|                      | 344483                                                                           | ន្តន្ទន្ទន្ទន្                        | 8000 1 80 00<br>8000 1 80 00                    | 88385                                      |

| 620<br>447<br>424<br>424                      | 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                            | 25<br>25<br>25<br>25<br>21            | 19<br>17<br>15<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 F-70 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ò       |
|-----------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 04444088<br>888                               | 28<br>28<br>28<br>28<br>28<br>28                                   | 22<br>22<br>22<br>19<br>19            | 17<br>12<br>12<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 00 44 GM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | œ       |
| 048888888888888888888888888888888888888       | 31<br>28<br>28<br>28<br>25<br>25                                   | 23<br>20<br>18<br>16                  | 112 113 110 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P-10 41 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | j.o     |
| 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13  | 222467                                                             | 20<br>118<br>117<br>116               | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ත ස හ ශ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | è,      |
| 226899                                        | 220<br>220<br>1130<br>1180<br>1180                                 | 122451                                | 110 100 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ත 40 cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | à       |
| 120112011                                     | 18<br>17<br>16<br>15                                               | 22100                                 | 000-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41 00 Gd 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Sel    |
| 17 2<br>17 2<br>16 2<br>14 1                  | 2222                                                               | 00000                                 | 001044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ක්      |
| 21000                                         | 00000                                                              | F-00000                               | 44000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 여여러러                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )<br>() |
| 00000                                         | বা বা বা বা বা                                                     | ကတတက္ရ                                | 010101-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HHH0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74      |
| 82888                                         | 5,6,7,8,9                                                          | 45555<br>5                            | ကိုတ်-ဒီထိလိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | တိုင်္ဂလိုလိုမှ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|                                               | P = 0 4 4                                                          | 00101010                              | なららます                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 9-96073<br>-96403<br>-96717<br>-97015         | 9.97567<br>.97621<br>.98284<br>.98284                              | 9.98690<br>.99040<br>.99195           | 9.99462<br>.99575<br>.99675<br>.99761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99894<br>99940<br>99974<br>10.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,<br>O  |
| 114<br>149<br>165<br>165<br>152               | 779<br>779<br>848<br>60                                            | 2559<br>243<br>213<br>313             | 148<br>323<br>323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3885<br>334<br>395<br>395<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 9.96017<br>96665<br>96666<br>96966            | 9.97523<br>.97779<br>.98021<br>.98248                              | 9.98659<br>.98843<br>.99013<br>.99170 | 9.99442<br>.99557<br>.99659<br>.99748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.55886<br>.55584<br>.55566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6566<br>.6 | 10,     |
| .95960<br>.96294<br>.96614<br>.96917          | .97479<br>.97982<br>.98211                                         | .98627<br>.98813<br>.98986<br>.99145  | 199421<br>199539<br>199643<br>199734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .999876<br>.99926<br>.99964<br>.99998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _       |
| 99999999999                                   | 9.97<br>79.98<br>99.98                                             | 9 9 9 9                               | 999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20,     |
| 302<br>240<br>562<br>568<br>568               | 435<br>696<br>942<br>174<br>391                                    | .98594<br>.98783<br>.98958<br>.99119  | 99520<br>99520<br>99527<br>99720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .99866<br>.99919<br>.99959<br>.99985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 9.95902<br>.96240<br>.96562<br>.96563         | 9.97435<br>.97696<br>.97942<br>.98391                              | 80.0<br>80.0<br>80.0<br>80.0          | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,     |
| 344<br>195<br>509<br>318<br>111               | 356<br>356<br>356                                                  | 561<br>753<br>930<br>998<br>243       | 879<br>501<br>610<br>705<br>787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 956<br>911<br>953<br>997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 9.95844<br>.96185<br>.96509<br>.96818         | 9.97890<br>97658<br>97902<br>98136                                 | 9.98861<br>.98753<br>.98930<br>.99093 | 9.99379<br>.99501<br>.99610<br>.99705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99856<br>.99911<br>.99988<br>.99988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40,     |
| 29<br>29<br>156<br>167                        | 144<br>110<br>110<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 228<br>228<br>229<br>301<br>319       | 357<br>182<br>390<br>775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 345<br>347<br>347<br>395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 9-95786<br>-96129<br>-96456<br>-96767         | 9-97344<br>-97610<br>-97861<br>-98098<br>-98320                    | 9.98528<br>.98722<br>.98901<br>.99067 | 91166.<br>96966.<br>98766.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 999845<br>99947<br>999947<br>999978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200     |
| 728<br>073<br>403<br>717                      | 299<br>567<br>821<br>060                                           | 494<br>690<br>872<br>040              | 335<br>462<br>575<br>675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 834<br>894<br>940<br>974<br>993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| 9.95728<br>.96073<br>.96403                   | 9.97299<br>.97567<br>.97821<br>.98060                              | 9.98494<br>.98690<br>.98873<br>.99040 | 9-99338<br>-99462<br>-99575<br>-99675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99834<br>.99340<br>.99940<br>.99974<br>.99993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60,     |
| 200 21 00 00 00 00 00 00 00 00 00 00 00 00 00 | 733° 23° 24° 25° 25° 25° 25° 25° 25° 25° 25° 25° 25                | £82-88                                | \$25,55 %<br>\$25,55 %<br>\$25 | 0 888-388<br>8888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| <b>2</b> 00000                                | [alalalala]                                                        | tototototo                            | 800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ගගගගග ක                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |

## LOGARITHMIC COSINES

TABLE VI LOGARITHMIC TANGENTS

|                         | ,                      |                                                                                                                                                                |                                                     |                                             |                                                                 |
|-------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|
|                         | ò                      | 8, 40 B                                                                                                                                                        | 873<br>779<br>698                                   | 685<br>582<br>588<br>500<br>469             | 442<br>415<br>396<br>375<br>362                                 |
|                         | ào                     | श्विष्टेनचील<br>। सञ्च्यश्व न्<br>। og sin æ'<br>-                                                                                                             | 762<br>692<br>621                                   | 564<br>518<br>478<br>445<br>417             | 392<br>371<br>352<br>352<br>336                                 |
|                         | ces<br>7'              | भित्रिय<br>स्थर<br>10g                                                                                                                                         | 684<br>606<br>543                                   | 494<br>453<br>419<br>389<br>365             | 343<br>325<br>308<br>294<br>281                                 |
|                         | Differences<br>5' 6' 7 | स्तान स्थान                                                                                                                                                    | 586<br>519<br>466                                   | 9888<br>9889<br>9884<br>913                 | 204<br>264<br>252<br>241                                        |
|                         | Diff<br>5'             | ্<br>• কেন্ত্ৰে অনুব ত ফুভ প্ৰিবিশীল ও<br>ভ্ৰাণিগৰে ভালিক।ডুভ কয়া নৃষ্ধাণু নাই<br>অভি স্কুৰ ৯' কেণ্ডিগ পোনো log sin ফ' ব<br>log cos (90° – x) = log x+∓46573. | 24.33<br>28.88<br>38.88                             | 354<br>328<br>290<br>278<br>261             | 245<br>220<br>220<br>220<br>210<br>201                          |
|                         | Mean 4'                | यस्त्र<br>डानिस<br>(कोए<br>- क)                                                                                                                                | 346<br>346<br>310                                   | 2022                                        | 196<br>176<br>176<br>169                                        |
|                         | es E                   | ल्लाव य<br>क्रम प्र'<br>क्रम प्र'                                                                                                                              | 293<br>250<br>238<br>238                            | 212<br>194<br>179<br>167<br>167             | 185<br>185<br>126<br>126                                        |
|                         | ,<br>Cd                | ं एकचि<br>इक्षांभ्यास्क्<br>याँ इक्ष्यं अ                                                                                                                      | 195<br>173<br>155                                   | 120                                         | 88888                                                           |
|                         | <u>~</u>               | ्र ज्या<br>बांड                                                                                                                                                | 18.78                                               | 500 000 000 000 000 000 000 000 000 000     | 58443                                                           |
| NID                     |                        | සිනින්න්හි                                                                                                                                                     | \$ 50 50 50 50 50 50 50 50 50 50 50 50 50           | र्वाक्र नुक्र के                            | 455555<br>4555<br>555<br>555<br>555<br>555<br>555<br>555<br>555 |
| TOUT                    | ,09                    | 6.24192<br>8.51304<br>8.51304<br>8.51193<br>8.91105                                                                                                            | 9.02162<br>9.05314<br>9.14530<br>9.19971<br>9.24632 | 9.28865<br>-82747<br>-86320<br>-39677       | 45534<br>51178<br>53697                                         |
| 77                      |                        |                                                                                                                                                                |                                                     |                                             | ~,                                                              |
| ועדעון                  | 50,                    | 8.16373<br>8.50127<br>8.50153<br>8.42010<br>8.92716                                                                                                            | 9.00030<br>9.07558<br>9.13554<br>9.19146<br>9.23587 | 9.28186<br>.32122<br>.35757<br>.39136       | 9745971<br>-45080<br>-50746<br>-55285                           |
| SUMPLIFICATION TANGENTS | 40,                    | 8.46385<br>8.46385<br>8.66516<br>8.50674<br>8.91185                                                                                                            | 8-99662<br>0-06775<br>9-12909<br>9-13906<br>9-23130 | 9.27496<br>31489<br>35170<br>38589<br>41784 | 9.44787<br>.47622<br>.50311<br>.52570                           |
| 4                       | 30.                    | 7.94086<br>8.41x07<br>8.61009<br>8.7x519<br>8.89598                                                                                                            | 8.98358<br>9.05666<br>9.11943<br>9.17450<br>9.22361 | 9.26797<br>.30846<br>.34576<br>.88035       | 9.44299<br>.47160<br>.49572<br>.54915                           |
|                         | 30,                    | 7.76476<br>8.36659<br>8.01000<br>8.70525<br>8.70525                                                                                                            | 8.97013<br>9.04528<br>9.10356<br>9.16577<br>9.21578 | 9.26086<br>.30195<br>.33574<br>.37476       | 9.43806<br>.46694<br>.49180<br>.52031                           |
|                         | 10,                    | 7.46373<br>8.30588<br>8.57753<br>8.74392<br>8.74392                                                                                                            | 8.95627<br>9.03361<br>9.09947<br>9.15658<br>9.20782 | 9.25955<br>.29535<br>.38865<br>.36909       | 9.43308<br>.46224<br>.48984<br>.51606                           |
|                         | 0,                     | 8.24192<br>6.54308<br>8.71940<br>5.84464                                                                                                                       | 8.94195<br>9.02162<br>9.08914<br>9.14780<br>9.19971 | 9-24682<br>-28865<br>-38747<br>-39677       | 9-42805<br>-45750<br>-48534<br>-51178<br>-53697                 |
|                         | ,                      | <b>ಕ್ಷಿಕ್ಷಣ್ಣ</b>                                                                                                                                              | က်ထိုက်တဲ့လို                                       | <b>84884</b>                                | 82482                                                           |

| 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 202<br>293<br>277<br>277<br>265               | 255<br>255<br>217<br>217<br>244                | 241<br>235<br>236<br>236<br>237<br>233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222<br>222<br>222<br>223<br>223<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,   |
|-----------------------------------------|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 308<br>296<br>256<br>277                | 268<br>250<br>250<br>240<br>240<br>230        | 221<br>222<br>220<br>220<br>217                | 214<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ζο   |
| 270<br>259<br>250<br>242                | 235<br>221<br>221<br>221<br>221<br>221<br>221 | 202<br>128<br>195<br>195                       | 155<br>181<br>181<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.   |
| 231<br>222<br>214<br>205                | 201<br>195<br>190<br>185<br>171               | 173<br>170<br>167<br>165<br>168                | 160<br>150<br>150<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,   |
| 193<br>185<br>179                       | 153                                           | #22259                                         | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 827728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,0   |
| 154<br>148<br>138                       | 134<br>126<br>126<br>123<br>1150              | 110                                            | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *9t  |
| 11101101                                | 101<br>98<br>92<br>90<br>88                   | 52.03.9                                        | 22125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50   |
| 77 4 5 6 9                              | 65 65 65 65 65 65 65 65 65 65 65 65 65 6      | 55 54 55                                       | 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .71  |
| 35<br>35                                | 280 28 28 28 28 28 28 28 28 28 28 28 28 28    | 822282                                         | 22 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 12 to 12 to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | j-ri |
| හැද් කින්න<br>මේ සිනින්න                | <b>8 8 8 8 9 9 9</b>                          | 25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2       | र्घ रहे रहे रहे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | कुं कुं हैं कुंसे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 9.55418<br>.60541<br>.62785             | 9.68818<br>70717<br>72567<br>74.75            | 9.77877<br>779579<br>12552<br>82.79<br>82.79   | 9.86126<br>18263<br>18263<br>18263<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>18363<br>1836 | 9 24916<br>90.11.<br>952.86<br>1921.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0   |
| 9.58039<br>.60276<br>.62433             | 266537<br>10407<br>10407<br>17047<br>17047    | 0.77591<br>799997<br>80975<br>752626<br>754254 | 9.55960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 9,661<br>95712<br>95712<br>99747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,  |
| 9.57658<br>.59909<br>.62079             | 9.65174<br>71955<br>71955<br>75777            | 77303<br>779015<br>78394<br>83984              | 9.55594<br>.871.85<br>.5-759<br>.90.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.9°105<br>910.15<br>96~70<br>97.378<br>98495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,  |
| 9.57274<br>.59540<br>.61729<br>.63530   | 9.67%50<br>69774<br>71648<br>72476            | 9.777015<br>7.8732<br>80419<br>87733<br>85713  | 9 85927<br>-S6321<br>-5-195<br>-90551<br>-91610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.93150<br>.9429<br>.97725<br>.97725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30,  |
| \$5163.<br>\$9163.<br>\$9163.           | 9.67524<br>77.733<br>77.733<br>77.733         | 9.76725<br>75148<br>'50140<br>'51408           | 9 88059<br>80556<br>10857<br>10857<br>10857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95628.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>573.8.<br>57 | 40,  |
| 9.56498                                 | 9.67196<br>(60138<br>(71028<br>(74673         | 9.7438<br>77-153<br>77-153<br>81523<br>83171   | 9.54791<br>37.374<br>37.374<br>9.99541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.92638<br>94171<br>95739<br>97319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,  |
| 9.56107                                 | 9.66267<br>9.66267<br>7.0717<br>7.2567        | 77277<br>77277<br>77277<br>77277               | 3.51533<br>55153<br>11773<br>18213<br>18213<br>19033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0574<br>19716<br>19716<br>19716<br>19716<br>19716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60,  |
| ន្តិដូន្តិន                             | 882888                                        | क्रेलेखे <b>न्द्र</b>                          | <b>8</b> 8 तं क्षेत्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 944444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |

# LOGARITHMIC COTANGENTS

## LOGARITHMIC TANGENTS

# LOGARITHMIC COTANGENTS

| 302<br>311<br>322<br>333<br>333                  | 362<br>378<br>396<br>442                                                      | 469<br>500<br>538<br>583<br>685                  | 698<br>779<br>879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E -                                                                    | ó   |
|--------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| 268<br>277<br>286<br>296<br>308                  | 321<br>336<br>352<br>371<br>392                                               | 417<br>445<br>478<br>518<br>564                  | 621<br>692<br>782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ক্ষক পরিবর্তনশীল<br>ফু করা সম্ভবগর নাই                                 | òo  |
| 235<br>242<br>251<br>259<br>270                  | 281<br>294<br>306<br>325<br>343                                               | 365<br>389<br>419<br>453<br>494                  | 543<br>606<br>684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | मैं जियम्<br>महस्य                                                     | j.  |
| 201<br>208<br>214<br>222<br>231                  | 252<br>252<br>264<br>278<br>294                                               | 818<br>834<br>859<br>859<br>420                  | 466<br>519<br>586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P   P   P   P   P   P   P   P   P   P                                  | 9   |
| 168<br>173<br>179<br>185<br>193                  | 201<br>210<br>220<br>232<br>245                                               | 261<br>278<br>299<br>323<br>354                  | \$88<br>483<br>488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                      | à   |
| 134<br>138<br>143<br>148                         | 160<br>168<br>176<br>186<br>196                                               | 000000000000000000000000000000000000000          | 310<br>346<br>391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>অস্ত</b> র এড ক্রক্ত পরিবর্তনশীল রে<br>তানিকাভুক্ত করা সন্তবপর নহে। | *   |
| 101 104 101 101 101 1104 1116                    | 121<br>126<br>132<br>139                                                      | 156<br>167<br>179<br>194<br>212                  | 283<br>290<br>290<br>290<br>290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        | හේ  |
| 69<br>72<br>74<br>77                             | 00 40 80 80 80 80 80 80 80 80 80 80 80 80 80                                  | 104<br>120<br>120<br>141                         | 155<br>173<br>195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | वाकाज<br>जहामिश्र                                                      | Pú  |
| 36 35                                            | 0444464                                                                       | 55<br>65<br>71                                   | 98 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        | è   |
| <b>ន</b> ំនំនំនំន                                | 12 12 18 18 18 18 18 18 18 18 18 18 18 18 18                                  | の世ばは時代                                           | ಬೆಡೆ-ನೆಜಿದ್ದ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48840                                                                  |     |
| 10.35142<br>.37215<br>.39359<br>.41582           | 10.46303<br>.48822<br>.51466<br>.54250                                        | 10.60323<br>.63664<br>.67253<br>.71135           | 10.80029<br>.91056<br>.97838<br>11.05805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.15536<br>11.28060<br>11.45692<br>11.75808<br>+ \infty               | ò   |
| 10.34803<br>.36865<br>.38996<br>.41206           | 10.45894<br>.48394<br>.51016<br>.53776<br>.56692                              | 10.59788<br>.63091<br>.66635<br>.74635           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.13767<br>11.25708<br>11.42212<br>11.69112<br>12.58627               | 10, |
| 10.34466<br>.36516<br>.36636<br>.40832           | 10.45488<br>.47969<br>.50570<br>.53306                                        | 10.59258<br>.62524<br>.66026<br>.69805<br>.73914 | 10.78422 10.79218<br>.83423 .84312<br>.89044 .90053<br>.95472 .96639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.12047<br>11.23475<br>11.38991<br>11.68311<br>12.23524               | 20, |
| 10'34130<br>'36170<br>'38278<br>'40460           | 10.45085<br>.47548<br>.50128<br>.52840                                        | 10.58734<br>.61965<br>.65424<br>.69154<br>.73203 | 10.77639<br>.82550<br>.88057<br>.94334<br>11.01642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.10402<br>11.21351<br>11.35991<br>11.65193<br>12.05914               | 80, |
| 10'53796<br>'35525<br>'37921<br>'42342           | 10.44288 10.44685<br>46715 47130<br>49254 49689<br>51920 52378<br>54729 55213 | 10.58216<br>.64830<br>.68511<br>.72604           | 10.76870<br>'81694<br>'87091<br>'93425<br>11.00338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.08815<br>11.19326<br>11.33184<br>11.53615<br>11.93419               | ,07 |
| 10.33463<br>.35483<br>.37567<br>.89724           |                                                                               | 10.67703<br>160564<br>164243<br>167878<br>171814 | 10.76113 10.76870<br>'80854 '81694<br>'86146 '87091<br>'92142 '93225<br>'99070 11.00338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.07284<br>11.17390<br>11.30547<br>11.49473<br>11.83727               | 20  |
| 10.33193<br>.95142<br>.37215<br>.39359<br>.41582 | 10.43893<br>.46303<br>.48822<br>.51466                                        | 10.57195<br>62259<br>62663<br>67253<br>71135     | 02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02268°<br>02688°<br>02688°<br>02688°<br>02688°<br>02688°<br>02688°<br>02688°<br>02688°<br>02 | 11.05805<br>11.15536<br>11.32060<br>11.45692<br>11.75808               | ,09 |
| 85 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8         | \$25.5.4<br>73.55.4                                                           | 434,435                                          | 828888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ක් ක්ක්ස්ස්ස්                                                          |     |



### WEST BENGAL COUNCIL OF H. S. EDUCATION

### HIGHER SECONDARY EXAMINATION-1978

### FIRST PAPER

### Group A

1. (a) If 
$$\frac{x}{y} \propto x + y$$
 and  $\frac{y}{x} \propto x - y$ ,

prove that  $x^2 - y^2$  is constant.

- (b) If x varies directly as y and y varies inversely as z, then which of the following statements is true? Give reasons.
  - (i) z varies directly as s.
  - (ii) x varies inversely as s.
  - (c) (i) If a and  $\beta$  be the roots of x(x-3)=4, determine the value of  $a^2+\beta^2$ .
    - (ii) If one root of  $2x^2 5x + k = 0$  be double the other, find the value of k.
- 2. (a) If each term of a series in A.P. be multiplied by 3, would the series so obtained be again in A.P.? Give reasons for your answer.
- (b) The 12th term of a series in A.P. is -13 and the sum of the first four terms of it is 24. Find the sum of its first ten terms,
  - (c) Express in the form A+iB (A and B are real numbers):  $\left(\frac{1+i}{1-i}\right)^a$ .
- 3. (a) Find how many different words can be formed from the letters of the word PEOPLE in which two P's would not remain side by side.
  - (b) Prove that  ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ .
  - (c) Find the square root of  $5+2 \sqrt{6}$ .
  - 4. (a) State "Binomial Theorem" for a positive integral index.
- (b) Write down the general term in the expansion of  $(a+x)^n$  where n is a positive integer.
  - (c) Find the term independent of x in the expansion of  $\left(2x + \frac{1}{3x^2}\right)^2$ .
  - 5. (a) Considering the series for ee, prove that

$$z=1+\log_e z+\left(\frac{\log_e z}{1^2}\right)^2+\left(\frac{\log_e z}{1^3}\right)^3+\cdots$$
 to  $\infty$ .

(b) If  $y=x-\frac{x^3}{2}+\frac{x^5}{3}-\frac{x^4}{4}+\cdots$  to  $\infty$ ,

prove that  $x=y+\frac{y^2}{2!}+\frac{y^3}{3!}+\cdots$  to  $\infty$  under necessary condition to be stated by you.

(c) What sum of money put out at 4% per annum at compound interest for 18 years will amount to Rs. 10,000?

Given, log 10'4=1'0170333, log 4036'29=3'6934006.

### Group B

- 6. (a) Show that  $\cos 75^{\circ} = \frac{\sqrt{3}-1}{2\sqrt{2}}$ .
- (b) A positive acute angle is divided in two parts whose tangents are  $\frac{1}{2}$  and  $\frac{1}{3}$ . Find the angle.
  - (c) Prove that cot 24+tan 4=cosec 24.
  - 7. (a) Express tan 2A in terms of tan A.
    - (b) If  $\tan x = \frac{b}{a}$ , find the value of  $a \cos 2x + b \sin 2x$ .
    - (c) From the value of sin 30°, deduce the value of sin 15°.
  - 8. (a) Prove that  $tan^{-1}x + cot^{-1}x = \frac{\pi}{2}$ .
    - (b) Find the general solution of  $\sin 2\theta = \cos \theta$ .
- (c) If in a triangle  $(a^2 + b^3) \sin (A B) = (a^2 b^3) \sin (A + B)$  holds, show that the triangle is either isosceles or right-angled.
  - 9. (a) Draw the graph of  $\cos 2\theta$  for  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ .

    From the graph find  $\theta$  when  $\cos 2\theta = \frac{1}{4}$ .
- (b) Is the following statement true? (live reasons.  $x = \frac{\pi}{4}$  is a solution of the equation  $8x + 4 = 6 5 \tan 2x$ .
- (c) Is it possible to find a solution of the equation  $x \cos x = 0$  between  $x = -\frac{\pi}{2}$  and x = 0? Give reasons.
- 10. (a) The sides of a triangle are 50, 36 and 28; find the greatest angle, having given log 19=1.2787536, log 29=1.4623980.

 $L \tan 51^{\circ} 0' = 10^{\circ}0916308$ ,  $L \tan 51^{\circ} 1' = 10^{\circ}0918891$ .

(b) For a triangle, is the following result correct?
a=b cos C-c cos B.

If not, what is the correct result?

(c) The sides of a triangle are in the ratio

V2:2:( V8+1).

Find the possible values of the angles of the triangle.

### Group C

- 11. (a) OX and OY are the coordinate axes of a rectangular cartesian coordinate system and O and OX are the pole and the initial line respectively of a polar coordinate system.
- (i) If the polar coordinates of the point P be (2, 30°), find its cartesian coordinates.
- (ii) If the cartesian coordinates of the point P be (0, 2), find its polar coordinates.

- (iii) If the cartesian equation of a straight line be  $y=x \tan \alpha$ , find its polar equation.
- (b) A and B are two points having coordinates (-5, 3) and (2, 4) respectively. Find the locus of a point P such that PA: PB=3:2. What kind of curved line is this locus?
- 12. (a) Find the equation of the straight line passing through the point of intersection of the straight lines x+2y+3=0 and 3x+4y+7=0 and parallel to the straight line  $y=-\frac{\pi}{2}x$ .
- (b) Find the equations of the bisectors of the angles between the straight lines 3x-4y-5=0 and 4x+3y+2=0. Which one of the bisectors bisects the angle that contains the origin?
  - 13. (a) Examine, whether the equation  $x^2 + y^2 x 4y + 7 = 0$  represents a circle.
- (b) Which of the following statements is correct and why? "The point (2, 1) lies; (i) on; (ii) inside; (iii) outside the circle  $x^2 + y^2 4x 6y + 9 = 0$ ."
  - (c) Prove that the circles  $x^2 + y^2 4 = 0$  and  $2x^2 + 2y^2 11 = 0$  are concentric.
- 14. (a) Find the equation of the tangent to the ellipse  $\frac{x^2}{9} + \frac{y^3}{4} = 2$  at the point (3, 2).
- (b) Find the eccentricity of the hyperbola  $4x^2 9y^2 = 36$ . Find the equation of the normal to this hyperbola at the point (8, 0).
- 15. (a) State which of the following statements is true? "A straight line parallel to the axis of a parabola cuts it in (i) one point only, (ii) two points, (iii) more than two points."
  - (b) Find the equation of the tangent to the parabola  $y^2 = 4x$  at the point (1, 2).
- (c) The straight line 2x+3y=1 is a tangent to the parabola  $y^2=4ax$ . Find the length of the latus rectum of the parabola.

### HIGHER SECONDARY EXAMINATION-1979

### FIRST PAPER

### Group A

- 1. (a) Is the relation  $2^x = 3^{-x}$  true for some value of x? If true what is the value of x?
  - (b) If x is a positive integer, find the value of x from the equation

$$\frac{\sqrt{(5+2)/6} - \sqrt{(5-2)/6}}{\sqrt{(5+2)/6} + \sqrt{(5-2)/6}} = \sqrt{\frac{x}{16}}.$$

- (c) Can you consider the number 4 to be a complex number? If so, why?
- 2.(a) Given, A=B+C, where  $B \propto x^3$  and  $C \propto x^3$ . If A=0 when x=1 and A=2 when x=-1, express A as a function of x.
- (b) Three rational numbers x, y, z are in G.P. The sum of the numbers is 65 and the product of the first and the third numbers is 225. Find the common ratio of the G.P. series.
  - (c) Let  $f(x) = ax^2 + bx + c$ , where a, b, c, are real numbers and  $a \neq 0$ .

Is it possible that one root of the equation f(x) = 0 is a real number and the other a complex number? Give reasons.

- 3. (a) For what values of x will the expression  $x^2 2x + 3$  be negative?
  - (b) If the roots of the equation  $px^2 + rx + r = 0$  be in the ratio a:b, prove that  $p(a+b)^2 = rab$ .
- (c) Is it possible that three different numbers a, b, c may be both in A.P. and in G.P.? Give reasons for your answer.
- 4. (a) Let " $P_r$  and " $C_r$  denote respectively the number of permutations and combinations of n different things taken r at a time. Assuming the formula " $P_r = n(n-1)(n-2)\cdots(n-r+1)$ , find the formula for " $C_r$ ".
- (b) Find the number of straight lines formed by joining 10 different points on a plane, no three of them being collinear (with the exception of 4 points which are collinear).
  - (c) Is the result | 0=0 correct? If not, what is the correct result?
  - 5. (a) Find the coefficient of x in  $\left(1-2x^3+3x^5\right)\left(1+\frac{1}{x}\right)^{1/2}$ .
    - (b) if -1 < x < 1, prove that  $(1+x+x^2+\cdots\cdots+\cos \infty)(1+2x+3x^2+\cdots\cdots+\cos \infty)$  $= \frac{1}{2}(1.2+2.3x+3.4x^2+\cdots\cdots+\cos \infty).$
    - (c) If x, y, z are in G.P., prove that  $\log ax + \log a^2 = \frac{1}{\log y^a}$ (x, y, z, a > 0).

### S and A and here to the day of the Group B of and or while the state of

- 6. (a) Prove that tan 15°=2- \( \sqrt{8}. \)
  - (b) Find the value of cos 20° cos 40° cos 60° cos 80°.
  - (c) If x, y are real positive quantities, is the relation sec  $\theta = \frac{2xy}{(x+y)^2}$  true? Give reasons for your answer.
- 7. (a) Express cot A in terms of cos 2A.
  - (b) Find the value of k from the following relation  $3(\cos 2\phi \cos 2\theta) = 1 \cos 2\theta \cos 2\phi$ ,  $\tan \theta = k \tan \phi$ ,

where  $\theta$  and  $\phi$  are soute angles.

(c) Point out the correct statement (with reasons):

If  $\sin^4 x + \cos^4 x = 1$ , then the positive value of x is (i) zero; (ii) any multiple of  $\pi$ : (iii) zero or any multiple of  $\pi$ ; (iv) zero or any multiple of  $\frac{\pi}{2}$ .

- 8. (a) Find the general value of  $\theta$  which satisfies the equation  $\sin 2\theta = \frac{3}{2}$ .
- (b) Draw the graph of the function  $y=\sin 3x$  for  $-\pi \leqslant x \leqslant \pi$ . From the graph, find the values of x when y=0.
  - (c) Is the following statement true? Give reasons.

 $x = \frac{2\pi}{3}$  is a root of the equation 5x - 2 = 7 + 4 cosec 3x.

- 9. (a) Prove that  $\tan^{-1} x \tan^{-1} y = \tan^{-1} \frac{x y}{1 + xy}$ 
  - (b) Solve the equation  $\sqrt{3}\cos x + \sin x = 1$  for  $-2\pi < x < 2\pi$ .
- (c) State only in which of the following cases, the inverse functions are meaningless.

(i)  $\cos^{-1}$  (3); (ii)  $\sec^{-1}$  ( $\sqrt{2}$ ); (iii)  $\cot^{-1}$  ( $\frac{1}{2}$ ); (iv)  $\csc^{-1}$  ( $-\frac{1}{\sqrt{5}}$ ).

- 10. (a) If in a triangle magnitudes of two angles A and B are  $60^{\circ}$  and  $45^{\circ}$  respectively and the length of the side opposite to A is  $2\sqrt{3}$  units, find the length of the side opposite to B.
- (b) In a triangle lengths of two sides are 2.25 and 1.75 units and the included angle is 54°. Find the two other angles having given

log 2= '30103,  $\lfloor \tan 63^{\circ} = 10^{\circ}292834$ ,  $\lfloor \tan 13^{\circ} 47^{\prime} = 9^{\circ}389724$ ,  $\lfloor \tan 13^{\circ} 48^{\prime} = 9^{\circ}390270$ .

(c) In a triangle, a = 2b and A = 3B, mention which of the following statements

is true: (i) The triangle is equilateral; (ii) The triangle is isosceles; (iii) The triangle is right-angled; (iv) Existence of such a triangle is not possible.

### Group O

- 11. (a) If A=(1,5) and B=(-4,7), find the point P which divides AB in the ratio 2; 3 internally.
  - (b) By using the method of co-ordinate geometry, prove that the area of a triangle is four times the area of the triangle obtained by joining the middle points of its sides.

(c) If the three points (a, b),  $(a+k\cos a, b+k\sin a)$  and  $(a+k\cos \beta,$  $b+k\sin\beta$ ) are the vertices of an equilateral triangle, then which of the following results is true and why?

(i) 
$$\left| \alpha - \beta \right| = \frac{\pi}{4}$$
; (ii)  $\left| \alpha - \beta \right| = \frac{\pi}{2}$ ; (iv)  $\left| \alpha - \beta \right| = \frac{\pi}{3}$ .

12. (a) Test whether the straight lines x-y+4=0, 2x+3y-6=0, 8x+7y-26=0 are concurrent.

(b) Deduce the formula for the magnitude of the angle between the two straight lines given by y=mx and y=m'x. Hence deduce the condition of perpendicularity of the two straight lines.

(c) A straight line passes through a fixed point (α, β). Prove that the locus of the middle point of the portion intercepted between the co-ordinate axes is

$$\frac{a}{x} + \frac{\beta}{y} = 2$$

- 13. (a) Find the centre and the radius of the circle passing through the points (1, 8), (2, -1) and (-1, 1).
  - (b) Find the equation of the tangent to the circle  $x^2 + y^2 - 6x + 4y - 7 = 0$  which is perpendicular to the straight line 2x - y + 3 = 0.
- (c) Is it possible to draw a tangent to a circle from its centre? Give reasons.
- 14. (a) Find the equation of the tangent to the parabola  $y^2 = 12x$  which makes an angle of 60° with the x-axis.
- (b) Determine the co-ordinates of the focus of the parabola y2 = 2ax which passes through the point of intersection of the straight lines  $\frac{x}{3} + \frac{y}{2} = 1$  and  $\frac{x}{2} + \frac{y}{3} = 1$ .

$$\frac{x}{3} + \frac{y}{2} = 1$$
 and  $\frac{x}{2} + \frac{y}{3} = 1$ .

- (c) Prove that the locus of the foot of the perpendicular drawn from the focus of the parabola  $y^2 = 4ax$  upon any tangent to it is the tangent at the vertex.
- 15. (a) The hyperbola  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  passes through the points (5, 0) and  $\left(-7, \frac{2}{5}\right)$ . Find a and b.
- (b) Find the eccentricity of the ellipse, the length of whose minor axis is equal to the distance between its foci.
- (c) Given that the length of the perpendicular drawn on the directrix from a point of a conic is half the distance of the point from the focus. Which of the following statements is true and why?
  - (i) The conic is a parabola.
- (ii) The conic is an ellipse.
- (iii) The conic is a hyperbola.
- (iv) Existence of such a conic is not possible.



