Introduction to Constrained Optimization Lecture 01A

John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science Technical University of Denmark

02612 Constrained Optimization

Course Learning Objectives

Apply and implement numerical algorithms for constrained optimization in problems relevant to engineering.

Outline

Problems

Applications

Parameter Estimation

Constrained Optimization

Solution of Systems of Linear Equations

Lecture 1 - Readings

- 1. Nocedal & Wright: Chapter 1: Introduction, pp 1-9
- Lecture Notes: Chapter 1: Introduction. Appendix A: Derivatives
- 3. Nocedal & Wright: Appendix A.2, pp 617-634
- 4. Nocedal & Wright: Chapter 8, Finite-Difference Derivative Approximation, pp. 193-204
- 5. Nocedal & Wright: Appendix A.1, pp 598-617

Lecture 1 - Exercises

Lecture notes

Appendix A: Derivatives

- Problem 1: Gradient and Hessian of Multivariate Scalar Function
- 2. Problem 2: Rosenbrock Function
- 3. Problem 3: Derivatives of a Multivariate Vector Function

Lecture 01B Read about fmincon in the Matlab documentation and do the Himmelblau optimization problem as presented in the slides

Constrained Optimization

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$s.t. \quad c_i(x) = 0 \qquad i \in \mathcal{E}$$

$$c_i(x) \ge 0 \qquad i \in \mathcal{I}$$

$$f: \mathbb{R}^n \mapsto \mathbb{R}$$
 $f \in \mathcal{C}^2(\mathbb{R}^n)$
 $c_i: \mathbb{R}^n \mapsto \mathbb{R}$ $c_i \in \mathcal{C}^2(\mathbb{R}^n)$

Constrained Optimization Problem

$$\min_{\substack{(x_1,x_2)\in\mathbb{R}^2\\ s.t.}} f(x_1,x_2) = (x_1^2+x_2-11)^2 + (x_1+x_2^2-7)^2$$

$$s.t. c_1(x_1,x_2) = (x_1+2)^2 - x_2 \ge 0$$

$$c_2(x_1,x_2) = -4x_1 + 10x_2 \ge 0$$

Contour Plot with Matlab

$$\min_{x_1, x_2} \quad f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
s.t.
$$c_1(x_1, x_2) = (x_1 + 2)^2 - x_2 \ge 0$$

$$c_2(x_1, x_2) = -4x_1 + 10x_2 \ge 0$$

```
x = -5:0.005:5:
v = -5:0.005:5;
[X,Y] = meshgrid(x,y);
F = (X.^2+Y-11).^2 + (X + Y.^2 - 7).^2;
v = [0:2:10 \ 10:10:100 \ 100:20:200]
[c,h]=contour(X,Y,F,v,'linewidth',2);
colorbar
vc1 = (x+2).^2;
yc2 = (4*x)/10;
hold on
    fill(x,yc1,[0.7 0.7 0.7],'facealpha',0.2)
    fill([x x(end) x(1)], [yc2 -5 -5], [0.7 0.7 0.7], 'facealpha', 0.2)
hold off
```

Constrained Optimization

Constrained Optimization

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$s.t. \quad c_i(x) = 0 \qquad i \in \mathcal{E}$$

$$c_i(x) \ge 0 \qquad i \in \mathcal{I}$$

$$f: \mathbb{R}^n \mapsto \mathbb{R}$$
 $f \in \mathcal{C}^2(\mathbb{R}^n)$
 $c_i: \mathbb{R}^n \mapsto \mathbb{R}$ $c_i \in \mathcal{C}^2(\mathbb{R}^n)$

Feasible Region

$$\Omega = \{ x \in \mathbb{R}^n : c_i(x) = 0, i \in \mathcal{E}, c_i(x) \ge 0, i \in \mathcal{I} \}$$

$$\min_{x \in \Omega} f(x)$$

Convex Program

Convex Programming

$$\min_{x \in \Omega} \, f(x)$$

A convex set, $\mathcal{C} \subset \mathbb{R}^n$:

$$\forall x,y \in \mathcal{C}: \quad \alpha x + (1-\alpha)y \in \mathcal{C} \quad \forall \alpha \in [0,\,1] \qquad \qquad \forall x,y \in \mathbb{R}^n,\, \forall \alpha \in [0,\,1]$$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
$$\forall x, y \in \mathbb{R}^n, \forall \alpha \in [0, 1]$$

Convex Function

Convex Function

Convex Program

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{1a}$$

$$s.t.$$
 $c_i(x) = a_i'x + b_i = 0$ $i \in \mathcal{E}$ (1b)

$$c_i(x) \ge 0$$
 $i \in \mathcal{I}$ (1c)

- $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a convex twice continuously differentiable function
- $c_i(x)$ for $i \in \mathcal{I}$ are concave twice continuously differentiable functions.

Univariate Convex Program

$$\min_{x \in \mathbb{R}_{++}} \quad f(x) = (x-1)^2 - \sqrt{x} - \ln(x)$$
s.t.
$$c_1(x) = x - 2 \ge 0$$

Convex Program

$$\min_{x \in \mathbb{R}^2_{++}} f(x) = (x_1 - 1)^2 + (x_2 - 1)^2 - \sqrt{x_1 + x_2} - \ln(x_1) - \ln(x_2)$$
s.t.
$$c_1(x) = x_1 + x_2 - 4 \ge 0$$

$$c_2(x) = -x_1^2 - x_2^2 + 16 \ge 0$$

Convex Programming

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{2a}$$

$$s.t. c_i(x) = a_i'x + b_i = 0 i \in \mathcal{E} (2b)$$

$$c_i(x) \ge 0$$
 $i \in \mathcal{I}$ (2c)

- $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a convex function
- ► Equality constraints are affine (linear) functions: $c_i(x) = a'_i x + b_i = 0, i \in \mathcal{E}$
- ▶ Inequality constraints: $c_i(x)$ are concave functions for $i \in \mathcal{I}$. $(-c_i(x) \le 0, -c_i(x))$ are convex functions for $i \in \mathcal{I}$)

Convex Programming Problems

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{3a}$$

$$s.t. c_i(x) = a_i'x + b_i = 0 i \in \mathcal{E} (3b)$$

$$c_i(x) \ge 0$$
 $i \in \mathcal{I}$ (3c)

- ► Linear program (LP): $f(x) = g'x + \rho$, $c_i(x) = a'_i x + b_i$ for $i \in \mathcal{I}$
- ► Convex quadratic program (QP); $f(x) = \frac{1}{2}x'Hx + g'x + \rho$, $c_i(x) = a'_ix + b_i$ for $i \in \mathcal{I}$
- ► Second-Order Cone Program (SOCP)
- ► Semi-Definite Program (SDP)

$$\min_{x \in \mathbb{R}^n} \quad f(x) = g'x + \rho \tag{4a}$$

s.t.
$$c_i(x) = a_i'x + b_i = 0$$
 $i \in \mathcal{E}$ (4b)
 $c_i(x) = a_i'x + b_i \ge 0$ $i \in \mathcal{I}$ (4c)

$$\min_{x \in \mathbb{R}^2} \quad f(x) = -2x_1 - x_2$$

$$s.t. \quad c_1(x) = x_1 \ge 0$$

$$c_2(x) = x_2 \ge 0$$

$$c_3(x) = -x_1 - x_2 + 4 \ge 0$$

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \frac{1}{2}x'Hx + g'x + \rho \tag{5a}$$

$$s.t. c_i(x) = a_i'x + b_i = 0 i \in \mathcal{E} (5b)$$

$$c_i(x) = a_i'x + b_i \ge 0$$
 $i \in \mathcal{I}$ (5c)

$$H \succ 0$$

$$\min_{x \in \mathbb{R}^2} \quad f(x) = 3x_1^2 + 2x_2^2 + x_1x_2 + 3x_1 + 2x_2 + 4$$
s.t.
$$c_1(x) = x_1 \ge 0$$

$$c_2(x) = x_2 \ge 0$$

$$c_3(x) = x_1 + x_2 - 3 \ge 0$$

Classification and Support Vector Machines (SVM)

Construct a classifier that can distinguish red from blue

Classification and Support Vector Machines (SVM)

Separating hyperplane

$$3x_1 - x_2 + 4 = 0$$

The training data $\{x_k,y_k\}_{k=1}^m$ may be used to find the hyperplane as the solution of

$$\begin{aligned} & \min_{w,b,\left\{\varepsilon_{k}\right\}} & w'w + c' \sum_{k=1}^{m} \varepsilon_{k} \\ s.t. & w'x_{k} + b \geq 1 - \varepsilon_{k} & \text{if } y_{k} = 1 & k = 1, \dots, m \\ & w'x_{k} + b \leq -1 + \varepsilon_{k} & \text{if } y_{k} = -1 & k = 1, \dots, m \\ & \varepsilon_{k} \geq 0 & k = 1, \dots, m \end{aligned}$$

This is a quadratic program

Markowitz Portfolio Optimization Problem

Portfolio: $x \in \mathbb{R}^n$, $0 \le x \le 1$, x_i : fraction of budget invested in asset i

Model for return of assets: $\mathbf{y} \sim N(\mu, H)$ Portfolio return: $\mathbf{r} = \sum_{i=1}^n \mathbf{y}_i x_i = \mathbf{y}' x$ Expected return: $r = E\left\{\mathbf{r}\right\} = E\left\{\mathbf{y}'x\right\} = E\left\{\mathbf{y}\right\}' x = \mu' x$ Variance (risk):

$$V(x) = E\left\{ (\mathbf{r} - r)(\mathbf{r} - r)' \right\} = E\left\{ (\mathbf{y}'x - \mu'x)(\mathbf{y}'x - \mu'x)' \right\}$$
$$= x' E\left\{ (\mathbf{y} - \mu)(\mathbf{y} - \mu)' \right\} x = x' H x$$

 $\mbox{Markowitz portfolio optimization problem} = \mbox{Convex Quadratic} \\ \mbox{Program}$

$$\min_{x \in \mathbb{R}^n} \quad V(x) = x' H x$$

$$s.t. \quad \mu' x = r$$

$$e' x \le 1$$

$$x > 0$$

Markowitz Portfolio Optimization Problem

$$\min_{x \in \mathbb{R}^n} \quad V(x) = x' H x$$

$$s.t. \quad \mu' x = r$$

$$e' x \le 1$$

$$x \ge 0$$

Data: (μ,H) . Solve for $r\in [r_{\min}\,r_{\max}]$, to obtain the optimal portfolio and return-risk profile

Optimal Control (optimizaition of dynamical systems)

Model Predictive Control

$$\min_{\{z,u\}} \phi = \frac{1}{2} \sum_{k=0}^{N-1} \|z_{k+1} - r_{k+1}\|_{Q_z}^2 + \|\Delta u_k\|_S^2$$

$$s.t. \quad z_k = b_k + \sum_{i=1}^n H_i u_{k-i} \quad k = 1, \dots, N$$

$$u_{\min} \le u_k \le u_{\max} \quad k = 0, \dots, N-1$$

$$\Delta u_{\min} \le \Delta u_k \le \Delta u_{\max} \quad k = 0, \dots, N-1$$

Model Predictive Control - Closed-Loop Profile

Optimal Control

$$\min_{\{u(t), x(t)\}} \quad J = \int_{t_0}^{t_f} g(x(t), u(t)) dt + h(x(t_f))$$
 (6a)
$$s.t. \qquad x(t_0) = x_0$$
 (6b)
$$\frac{dx}{dt} = f(x(t), u(t)) \quad t \in [t_0, t_f]$$
 (6c)

Discrete-Time Optimal Control

$$\min_{\{x_{k+1}, u_k\}} \quad J = \sum_{k=0}^{N-1} g(x_k, u_k) + h(x_N) \tag{7a}$$
 s.t.
$$x_0 = a \tag{7b}$$

$$x_{k+1} = f(x_k, u_k) \qquad k = 0, 1, \dots, N-1 \tag{7c}$$

$$c(x_k, u_k) \ge 0 \qquad k = 0, 1, \dots, N-1 \tag{7d}$$

$$d(x_N) \ge 0 \tag{7e}$$

Glucose concentration regulation

Inject insulin to keep the glucose concentration in the range 60 - $140\ mg/dL$.

Typical blood glucose for people with diabetes

The artificial pancreas

NMPC problem formulation

$$\begin{split} \min_{\{u_k\}_{k=0}^{N-1}} \quad \phi &= \frac{1}{2} \sum_{k=0}^{N-1} \left[\int_{t_k}^{t_{k+1}} \kappa_1 |\max\{0, G(t) - \bar{G}\}|^2 + \kappa_2 |\max\{0, \bar{G} - G(t)\}|^2 \right. \\ &\quad + \kappa_3 |\max\{0, G(t) - G_U\}|^2 + \kappa_4 |\max\{0, G_L - G(t)\}|^2] \, dt \\ s.t. \qquad x(t_0) &= x_0 \\ &\quad \dot{x}(t) = f(x(t), u(t), d(t)) \\ &\quad y(t) = g(x(t)) \\ &\quad u(t) = u_k \qquad t_k \leq t < t_{k+1} \end{split}$$

$$u_{\min} \leq u_k \leq u_{\max} \\ \Delta u_{\min} \leq \Delta u_k \leq \Delta u_{\max} \end{split}$$

The objective function

Optimal blood glucose profile - Full state information

Meals announced in advance.

Meals announced at mealtimes.

Parameter Estimation

Parameter Estimation

$$\min_{x} \quad f(x)$$

$$s.t. \quad x_{\min} \le x \le x_{\max}$$

- ▶ Model / prediction: $\hat{y}(x)$
- ► Measurement: *y*
- ► Error (residual): $e = e(x) = \hat{y}(x) y$
- ► Covariance of error (residual): R = R(x)
- ▶ Objective function: f(x)
 - ► Least Squares (LS)

$$f(x) = \frac{1}{2} \|e(x)\|_2^2$$

► Maximum Likelihood (ML) [negative log likelihood function]

$$f(x) = \frac{1}{2} \ln\left[\det R(x)\right] + \frac{1}{2} e(x)' R(x)^{-1} e(x)$$

Modern Convex Optimization for Regression

SOCP, SDP

$$\begin{aligned} & \min_{x} & \phi = \sum_{k=1}^{N} \rho(e_k) \\ & s.t. & e_k = A_k x - b_k \qquad k = 1, 2, \dots, N \end{aligned}$$

$$\begin{array}{ll} l_1 & \rho(t) = \left\| t \right\|_1 & \rho(t) = \begin{cases} 0 & \left| t \right| \leq \gamma \\ \left| t \right| - \gamma & \left| t \right| > \gamma \end{cases} \\ \\ l_2 & \rho(t) = \frac{1}{2} \left\| t \right\|_2^2 & \rho(t) = \begin{cases} 0 & \left| t \right| \leq \gamma \\ \frac{1}{2} (\left| t \right| - \gamma)^2 & \left| t \right| > \gamma \end{cases} \\ \\ \text{Huber} & \rho(t) = \begin{cases} \frac{1}{2} t^2 & \left| t \right| \leq \gamma \\ \gamma \left| t \right| - \frac{1}{2} \gamma^2 & \left| t \right| > \gamma \end{cases} \end{array}$$

Constrained Optimization & Numerical Linear Algebra

Constrained Optimization Problem

Constrained optimization problem

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{8a}$$

s.t.
$$c_i(x) = 0$$
 $i \in \mathcal{E} = \{1, 2, \dots, r\}$ (8b)

$$c_i(x) \ge 0$$
 $i \in \mathcal{I} = \{r+1, \dots, m\}$ (8c)

Functions

$$f: \mathbb{R}^n \mapsto \mathbb{R}$$
 $f \in \mathcal{C}^2$ $c_i: \mathbb{R}^n \mapsto \mathbb{R}$ $c_i \in \mathcal{C}^2$ $i \in \mathcal{E} \cup \mathcal{I} = \{1, 2, \dots, m\}$

Linear System of Equations

Standard linear system of equations

$$Ax = b$$

- ► LU-factorization: *A* indefinite, unsymmetric.
- ► Cholesky factorization: A positive definite, symmetric.
- ► LDL-factorization: *A* indefinite, symmetric
- ▶ QR-factorization: Often used for least-squares problems
- ► SVD-factorization: Rank revealing factorization

The KKT system appears very often in constrained optimization

$$\begin{bmatrix} H & -A \\ -A' & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = - \begin{bmatrix} g \\ b \end{bmatrix}$$

- ightharpoonup H is symmetric and positive semi-definite
- $\blacktriangleright \quad K = \begin{bmatrix} H & -A \\ -A' & 0 \end{bmatrix} \text{ is non-singular }$
- ightharpoonup K is symmetric and indefinite

III Factorization

$$Ax = b$$

LU factorization with pivoting

$$PA = LU$$

- ▶ P is a pivot matrix that interchanges the rows of A.
- ► L is lower triangular matrix
- ► U is an upper triangular matrix

Matlab implementation

Back substitutions

$$LUx = PAx = Pb$$

- 1. Compute: $\bar{b} = Pb$
- 2. Solve: $Ly = \bar{b}$
- 3. Solve: Ux = y

Matlab implementation $x = U \setminus (L \setminus b(p));$

Cholesky Factorization

$$Ax = b$$

A is a symmetric positive definite matrix. Positive definite matrix: $x'Ax > 0 \forall x \neq 0$ (all eigenvalues positive)

Cholesky factorization

$$PAP' = LL'$$

L is a lower triangular matrix P is a permutation matrix

Matlab implementation [L,p,s] = chol(A,'lower','vector');

Back-substitution LL'x = PAP'x = Pb

- 1. Compute $\bar{b} = Pb$
- 2. Solve Ly = b
- 3. Solve L'z = u
- 4. Compute x = Pz

Matlab implementation $x(s) = L' \setminus (L \setminus b(s));$

LDL factorization

$$Ax = b$$

A is a symmetric indefinite matrix.

LDL factorization

$$PAP' = LDL'$$

L is a lower triangular matrix D is a block-diagonal matrix P is a permutation matrix

Back-substitution LDL'x = PAP'x = Pb

- 1. Compute $\bar{b}=Pb$
- 2. Solve $Ly = \bar{b}$
- 3. Solve Dv = y
- 4. Solve L'z = v
- 5. Compute x = Pz

Matlab implementation $x(p) = L' \setminus (D \setminus (L \setminus b(p)));$