Intervals, Transformations, and Slope Solution (version 35)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -5) \cup (-1, 4)$
Negative	$(-5,-1) \cup (4,9)$
Increasing	$(-8, -7) \cup (-3, 1)$
Decreasing	$(-7, -3) \cup (1, 9)$
Domain	(-8,9)
Range	(-5,3)

Intervals, Transformations, and Slope Solution (version 35)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=32$ and $x_2=40$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} \hline x & g(x) \\ \hline 32 & 36 \\ 36 & 40 \\ 40 & 48 \\ 48 & 32 \\ \hline \end{array}$$

$$\frac{g(40) - g(32)}{40 - 32} = \frac{48 - 36}{40 - 32} = \frac{12}{8}$$

The greatest common factor of 12 and 8 is 4. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{3}{2}$$

2