## 1 Free Response

A 1 storey building can be considered a SDOF system. Its top is displaced by means of a hydraulic jack, the applied force is 90kN, and the measured displacement is  $x_0 = 5.0$ mm.

The applied force is istantaneously released, so that the building oscillates in free response, starting from initial conditions  $x(0) = x_0$ ,  $\dot{x}(0) = 0$ . Note that  $x_0$  is a maximum, as the velocity at time t = 0 is equal to zero.

The maximum displacement after the first cycle of oscillation is measured, and it is found that  $x_1 = 4.0$ mm, at time t = 1.40s.

We want to determine the dynamical parameters of the system, and in particular its damping ratio.

#### 1.1 Determination of the Dynamical Parameters

First, we can derive the elastic stiffness relating the applied force and the initial displacement,

$$k = \frac{F}{x_0} = \frac{90,000\text{N}}{0.005\text{m}} = 18.0\frac{\text{MN}}{\text{m}}.$$

Next, with the understanding that the damped period is  $T_D = 1.4$ s, we find the damped frequency,

$$\omega_D = \frac{2\pi}{T_D} = \frac{6.2832 \mathrm{rad}}{1.40 \mathrm{s}} = 4.488 \frac{\mathrm{r}ad}{\mathrm{s}}.$$

The logarithmic decrement equation, when written for two consecutive maxima of the response, is

$$\log(\frac{x_n}{x_{n+1}}) = \delta = \frac{2\pi\zeta}{\sqrt{1-\beta^2}}.$$

Solving for  $\zeta$  and substituting  $\delta = \log 1.25$  gives

$$\zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}} = 3.54920237062\%.$$

As an alternative, one can use an iterative solution, starting with  $\zeta_0=0$  and writing

$$\zeta_{i+1} = \left(\frac{\delta}{2\pi}\right) \sqrt{1 - \zeta_i^2}.$$

Using this procedure, the successive approximations are

$$\zeta_1 = 3.55143992107\%$$
 $\zeta_2 = 3.54919954758\%$ 
 $\zeta_3 = 3.54920237420\%$ 
 $\zeta_4 = 3.54920237064\%$ 

Of course, from an engineering point of view the result  $\zeta_1=3.55\%$  is good enough.

| $\overline{i}$ | $\omega_i \; (\mathrm{rad/s})$ | $\rho_i \; (\mu \mathrm{m})$ | $\vartheta_i \text{ (deg)}$ | $\cos \vartheta_i$ | $\sin \vartheta$ |
|----------------|--------------------------------|------------------------------|-----------------------------|--------------------|------------------|
| 1              | 16.0                           | 183.                         | 15.0                        | 0.966              | 0.259            |
| 2              | 25.0                           | 368.                         | 55.0                        | 0.574              | 0.819            |

Table 1: Experimental data

## 2 Dynamic Testing

We want to measure the dynamical characteristics of a SDOF building system, i.e., its mass, its damping coefficient and its elastic stiffness.

To this purpose, we demonstrate that is sufficient to measure the steady-state response of the SDOF when subjected to a number of harmonic excitations with different frequencies.

The steady-state response is characterized by its amplitude,  $\rho$  and the phase delay,  $\vartheta$ , as in  $x_{SS}(t) = \rho \sin(\omega t - \vartheta)$ .

E.g., we excite our stucture with a vibrodyne that exerts a harmonic force  $p(t) = p_0 \sin \omega t$ , with  $p_0 = 2.224 \mathrm{kN}$ , and measure the steady-state response parameters for two different input frequencies, as detailed in table 1.

### 2.1 Determination of the Dynamical Parameters

We start from the equation for steady-state response amplitude,

$$\rho = \frac{p_0}{k} \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\zeta\beta)^2}}$$

where we collect  $(1 - \beta^2)^2$  in the radicand in the right member,

$$\rho = \frac{p_0}{k} \frac{1}{1 - \beta^2} \frac{1}{\sqrt{1 + [2\zeta\beta/(1 - \beta^2)]^2}}$$

but the equation for the phase angle,  $\tan \vartheta = \frac{2\zeta\beta}{1-\beta^2}$ , can be substituted in the radicand, so that, using simple trigonometric identities, we find that

$$\rho = \frac{p_0}{k} \frac{1}{1 - \beta^2} \frac{1}{\sqrt{1 + \tan^2 \vartheta}} = \frac{p_0}{k} \frac{\cos \vartheta}{1 - \beta^2}.$$

With  $k(1-\beta^2)=k-k\frac{\omega^2}{k/m}=k-\omega^2 m$  and using a simple rearrangement, we have

$$k - \omega^2 m = \frac{p_0}{\rho} \cos \vartheta.$$

Substituting the data from table 1 into the previous equation for i = 1, 2 we can write, using matrix notation, a system of two algebraic equations in the unknown k and m,

$$\begin{bmatrix} 1 & -16^2 \\ 1 & -25^2 \end{bmatrix} \begin{Bmatrix} k \\ m \end{Bmatrix} = p_0 \begin{Bmatrix} \frac{0.966}{183 \times 10^{-6}} \\ \frac{0.574}{368 \times 10^{-6}} \end{Bmatrix},$$



Figure 1: vertical profile of bridge surface



Figure 2: simplified model of the vehicle

that once solved gives us the values  $k=17.48\,\mathrm{MN/m}$  and  $m=22415\,\mathrm{kg}$ , while the natural frequency is  $\omega=\sqrt{k/m}=27.924\mathrm{rad/s}$ .

Using the previously established relationship for  $\cos \vartheta$ , we can write  $\cos \vartheta = k(1-\beta^2)\frac{\rho}{\rho_0}$ , from the equation of the phase angle (see above), we can write  $\cos \vartheta = \frac{1-\beta^2}{2\zeta\beta}\sin \vartheta$ , and finally

$$\frac{\rho k}{p_0} = \frac{\sin \vartheta}{2\zeta\beta}, \text{ hence } \zeta = \frac{p_0}{\rho k} \frac{\sin \vartheta}{2\beta},$$

and substituting the values for, e,g,, i=1 gives  $\zeta=15.7\%$ . Substituting the values for i=2 offers a result that is equivalent from an engineering point of view.

# 3 Vibration Insulation, Displacements

A vehicle with mass  $m=1800\mathrm{kg}$  travels at constant velocity  $v=72\mathrm{km/h}$  over a very long bridge; the bridge has a constant span  $L=12\mathrm{m}$  and, due to viscous displacements, its surface is no more horizontal (see figure 1). The vertical profile of the bridge surface can be approximated by a trigonometric function,

$$y_g = y_{g0}\cos(\frac{2\pi x}{L}),$$

where  $y_{g0} = \frac{\delta_{\text{max}}}{2} = 3.0 \text{cm}$ ,  $\delta = 6.0 \text{cm}$  being the maximum deflection measured between the supports and the midspan.

The vehicle can be considered as a single mass, connected to the road surface by a suspension system composed by a spring and a viscous damper . The stiffness is  $k=225 \mathrm{kN/m}$ , and the damping ratio is  $\zeta=40\%$ .

It is required the maximum value of the *total* vertical displacement of the vehicle body at steady state.

### 3.1 Determination of the total steady state displacement

The point of contact between the suspension and the road, assuming a constant vehicle velocity, goes up and down with a period T that is equal to the time that the vehicle uses to go from one maximum to the successive maximum, that is the time it takes to travel L=12m.

The vehicle velocity is

$$v = \frac{72000 \text{m}}{3600 \text{s}} = 20 \text{m/s},$$

and the excitation period is hence

$$T = \frac{12\text{m}}{20\text{m/s}} = 0.6\text{s}.$$

The natural period of excitation of the suspension-vehicle system is

$$T_n = \frac{2\pi}{\omega_n} = \frac{2\pi}{\sqrt{k/m}} = 0.562$$
s

and the excitation frequency ratio is

$$\beta = \frac{T_n}{T} = 0.9366$$

The transmittance ratio, TR, is defined as

$$TR = \frac{y_{\text{TOT}}}{y_{g0}} = \sqrt{\frac{1 + (2\zeta\beta)^2}{(1 - \beta^2)^2 + (2\zeta\beta)^2}} = 1.647,$$

so that the maximum displacement is

$$y_{\text{TOT}} = 1.647 \times 3.0 \text{cm} = 4.9371 \text{cm}.$$

For  $\zeta = 0.0$ , TR is equal to?

## 4 Vibration Insulation, Transmitted Forces.

A rotating machine has a total mass  $m=90,000{\rm kg}$ ; when it is in operation the machine transmits to its rigid support a harmonic force

$$p(t) = p_0 \sin(2\pi f_0 t)$$
, with  $p_0 = 2kN$  and  $f_0 = 40Hz$ .

Due to the excessive level of vibrations induced in the building in which the machine is housed, it is required that the transmitted force is reduced to a maximum value of 400N. This will be achieved by means of a suspension system that will consist of four equal springs of elastic constant k.

### 4.1 Maximum stiffness of the damping system

In this case the required maximum value of the transmissibility ratio is

$$TR = \frac{f_T}{p_o} = \frac{400\text{N}}{2000\text{N}} = 0.20,$$

and the required insulation efficiency is

$$IE = 1 - TR = 0.80$$

From the design chart in figure 3, for an excitation frequency of 40Hz and IE = 0.80, we see the following requirement for the static displacement,

$$\Delta_{\text{static}} = W/k_{\text{total}} \ge 0.095 \text{cm} = 0.00095 \text{m}.$$

Solving for  $k = k_{\text{total}}/4$ ,

$$k \le \frac{90,000 \times 9.81}{4 \times 0.00095}$$
N/m = 232.34MN/m.

Using a different approach, for an undamped system one can write

$$TR = \frac{1}{\beta^2 - 1}$$
, hence  $\beta = \sqrt{\frac{1 + TR}{TR}} = 2.45$ 

deriving  $\omega_n = (2\pi f_0)/2.0 = 102.64 \text{rad/s}$ , and

$$k = \frac{k_{\text{total}}}{4} = \frac{1}{4}m\omega_n^2 = \frac{90,000 \times 10,527.6}{4} = 236.87 \frac{\text{MN}}{\text{m}}$$



Figure 3: IE design chart