Harry Langford hiel Z Question 4 Proof by induction RTP $\frac{K}{2} = \frac{K \pmod m}{2}$ $2K = \frac{K \pmod m}{2} = \frac{K}{2} \times \frac{K \pmod m}{2}$ this is true by assumption. Assume that x= y (nod m) x = y (mod m) =7 ○ $\exists k \in \mathbb{Z}$: x = y + k = ySince $x = y \pmod{n}$ by assumption D Fie Z: x = y + im Combining () in (2) gives] = (y = im) x (y = kgm) => JijeZ= xn+1 = yn+1 + m(gy) + m(iyn) 70, 167: DC = ynt (mod m) Since the statement is true for DT K=1, and the touth of the statement for K=1 n K= n => the truth for K = ~ 1, by induction by includion x = y (mod m) => YKEZ: x" = y" (mod m)

2000	2		

then sends and records a amonth the inverse of a mod ph-1 a = 1 (mod p-1)	She sends of to bob . This gives hing. Sends it back to alier. She exponentiates by K. This gives hing.	starts with g (modp)	experientiates of mo ls orb ords kr: krb	Alice exponentiates by K, u Zi gabk, = b(1+2p-1) = g x gib(p-1) = f (medpe) She then sends this to bob, Bob receives gb (mod p)	K. I.
9)-		(3)		(A)	

Using Euclids Extuded arbordhan R = 4	(bt pow) 1 = 21 (mod 34) (bt pow) 12 = 12	46; 1, 0 39:0, 1 7:1, -1 39:0, 1 7:1, -1 4:-5, 6 3:6, -7 4:-5, 6 1:-1113 50 39 ²⁰ =-11 (mod 39)	39° = 68(mod 39) So Alice sencks 68,		
13			ε,		