#### **Convertitore innalzatore di tensione (boost)**



#### Note:

- 1) Il diodo D collega direttamente ingresso e uscita e impone che sia U₀ ≥ Ui
- 2) La corrente assorbita dall'alimentazione é filtrata dall'induttanza L

#### **Convertitore innalzatore di tensione (boost)**



#### Ipotesi per lo studio:

interruttore ideale (u<sub>Son</sub>=0, i<sub>Soff</sub>=0, t<sub>swon</sub>= t<sub>swoff</sub> =0)

- → diodo ideale (u<sub>Son</sub>=0, i<sub>Soff</sub>=0, t<sub>swon</sub>= t<sub>swoff</sub>=0)
- → L,C ideali (R<sub>L</sub>=0, ESR=0, ESL=0)

$$u_i = U_i = costante$$
 $u_o = U_o = costante$ 
 $i_o = I_o = costante$ 

#### Analisi del funzionamento continuo (CCM)

Tempo di chiusura di S (t<sub>on</sub>) S on - D off



Durante questa fase viene trasferita energia dall'alimentazione all'induttanza

# Analisi del funzionamento continuo (CCM) Tempo di apertura di S (t<sub>off</sub>) S off - D on



Durante questa fase la sorgente e

L S L' I'induttanza forniscono energia allo stadio

PUNDO di uscita

Ly clé un monento in cui la u é indefinité e potrebbe essere multo alla mi serve un diodo reloce

devib li

# Boost - Forme d'onda in CCM: u $u_L$ Ui $U_{i} \cdot t_{on} = (U_{o} - U_{i}) \cdot t_{off} \qquad U_{i} \cdot T_{S} = U_{o} \cdot t_{off}$ $M = \frac{U_{o}}{U_{i}} = \frac{T_{S}}{t_{off}} = \frac{1}{1 - \delta} > 1$ ideale rcale M × S

### Boost - Forme d'onda in CCM: i



## A regime:

$$\Delta I_{Lon} = \Delta I_{Loff} = \Delta I_{L} = \frac{U_{i}}{L} \cdot t_{on} = \frac{U_{o} - U_{i}}{L} \cdot t_{off}$$

$$M = \frac{U_{o}}{U_{i}} = \frac{T_{S}}{t_{off}} = \frac{1}{1 - \delta} > 1$$

## Boost - Forme d'onda in CCM: is. us



# Boost - Forme d'onda in CCM: i<sub>D,</sub> u<sub>D</sub>



# Boost - Forme d'onda in CCM: i<sub>D,</sub> u<sub>D</sub>

$$I_{D} = \frac{I_{Lmin} + I_{Lmax}}{2 \cdot T_{S}} \cdot t_{off} = I_{L} \cdot (1 - \delta)$$





#### **Convertitore boost in CCM**





## Analisi del funzionamento discontinuo (DCM) Tempo di chiusura di S ( $t_{on}$ ) S on - D off



A differenza del funzionamento CCM la corrente i<sub>L</sub> inizia con valore nullo.

#### Analisi del funzionamento discontinuo (DCM)

Tempo di apertura di S (t'off) S off - D on



Alla fine di questa fase la corrente dell'induttanza si annulla

#### Analisi del funzionamento discontinuo (DCM)

Tempo di apertura di S (t"off) S off - D off



$$u_D = U_o - U_i > 0$$
  $u_S = U_i$ 

Durante questa fase il solo condensatore fornisce energia al carico

## **Boost - Forme d'onda in DCM: i**L



$$I_{Lmax} = \frac{U_i}{L} \cdot t_{on}$$

$$I_o = I_D = \frac{I_{Lmax} \cdot t'_{off}}{2 \cdot T_S}$$



## Boost - Forme d'onda in DCM: u<sub>L</sub>

### **Boost - Forme d'onda in DCM: u**L



#### **Boost: Caratteristica di controllo in DCM**

$$\begin{split} I_o &= \frac{I_{Lmax} \cdot t'_{off}}{2 \cdot T_S}; \qquad I_{Lmax} = \frac{U_i}{L} \cdot t_{on}; \\ t'_{off} &= \frac{U_i}{U_o - U_i} \cdot t_{on} \\ &\downarrow \downarrow \\ M &= \frac{U_o}{U_i} = 1 + \delta^2 \cdot \frac{U_i}{2 \cdot f_S \cdot L \cdot I_o} = 1 + \delta^2 \cdot \frac{I_N}{I_o} \\ dove: \qquad I_N &= \frac{U_i}{2 \cdot f_S \cdot L} \end{split}$$

# Nota: U<sub>odcm</sub> > U<sub>occm</sub>

$$U_i t_{on} = (U_{occm} - U_i)t_{off} = (U_{odcm} - U_i)t_{off}'$$

# Nota: U<sub>oDCM</sub> > U<sub>oCCM</sub>



$$U_i t_{on} = (U_{occm} - U_i)t_{off} = (U_{odcm} - U_i)t_{off}$$

$$\frac{U_{o_{DCM}}}{U_{o_{CCM}}} = 1 + \frac{t_{on}t''_{off}}{T_{S}t'_{off}} > 1$$

# NOTA: A vuoto (I<sub>o</sub> =0) il convertitore non è controllabile



Se  $I_o$  = 0 non c'è assorbimento di energia dal carico. L'energia fornita dall'alimentazione si accumula progressivamente nel condensatore C, la cui tensione  $U_o$  cresce indefinitamente.





Anche in questo caso valgono le curve che danno tensione d'uscita più elevata





Il funzionamento è continuo per valori di  $\delta$  estremi, discontinuo per valori intermedi

#### Ondulazione di corrente



#### Ondulazione di corrente



#### **Boost: Caratteristiche d'uscita**



Curva limite: 
$$\frac{I_o}{I_N} = \frac{1}{M} \cdot \left(1 - \frac{1}{M}\right)$$

# Caratteristica di controllo in DCM per carico resistivo

$$M = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\delta^2}{k}}$$

$$k = \frac{2 \cdot f_S \cdot L}{R_o}$$

#### Corrente del condensatore di filtro: ic



i<sub>C</sub> ha fronti ripidi; l'induttanza parassita di C (ESL) deve quindi essere minima

#### Note

- Le tecniche di controllo sono le stesse del convertitore Buck
- La risposta dinamica è però difficile da dominare (caratteristica statica nonlineare, modello ai piccoli segnali a parametri variabili e zero a parte reale positiva)
- Schemi a trasformatore basati sulla topologia boost risultano complessi e sono poco usati