Energy, development and climate change

Sustainable energy and climate change mitigation course

Dr. Bert Metz

CEU, March 2011

Sources of primary energy

Primary energy use in major economic sectors

Primary energy, final energy and energy service

EU 27 final energy by sector

Primary energy and per capita income

HDI and electricity use per capita, 2003/2004

Electricity consumption (kWh/person.year)

Access to electricity

Energy security: oil imports and exports

^{*}Trade between WEO regions only. Negative figures indicate net imports.

World coal reserves

Country	% of world reserves
USA	27
Russia	17
China	13
India	10
South Africa	5
Ukraine	4
EU	4
Kazachstan	3

Natural gas import dependency

Region	% of demand imported currently	% of demand imported 2030 BAU
Japan	97	98
EU	40	70
North America	2	16
China		50
India		60

Development and climate change

Emissions of Greenhouse Gases increased by 70% between 1970 and 2004

64% of GHG emissions are from energy use

Emissions of CO2 and per capita income

Primary energy and per capita income

Differences in per capita emissions

Cumulative population in million

Emissions per unit of GDP

Personal emissions (UK)

Activity	Emission (tCO2eq/cap/yr)
Home heating	1.2
Hot water, cooking	0.4
Lighting, appliances	0.7
Transport: motorcycle, car	1.2
Transport: bus, rail	0.1
Transport: air	1.8
Other direct	0.6
Indirect emissions from food	2.1
Indirect emissions from consumer goods	3.1
Indirect emissions from workplace	1.3
TOTAL	12.5

UK:

actonco2.direct.gov.uk/index.html

Australia: www.carbonneutral.com.au/

Distribution of emissions in countries, 2030

Source: Chakravarty, S., et al, PNAS vol 106, no 29, p 11884-11888

Fig. 4. Regional emission distributions in 2030, revealing the number of individuals above the cap of 10.8 tCO₂/yr (corresponding to a global target of 30 GtCO₂ in 2030). The regional efforts are comparable: The U.S. has 270 million people who, relative to "Business As Usual" for 2030, in aggregate reduce emissions by 4.4 GtCO₂; the OECD minus U.S. has 280 million who reduce 2.1 GtCO₂; China has 300 million who reduce 2.9 GtCO₂; and the non-OECD minus China has 280 million who reduce 3.5 GtCO₂.

Development paths behind the IPCC SRES scenarios

Projected climate change without climate policy

Development path with HIGH base emissions

The response to climate change must be rooted in development

- Development is essential for eradicating poverty
- Climate change can undermine development
- Low carbon and climate resilient development ("climate compatible development") as the answer

Making development more sustainable

Mainstreaming climate change in development policies

- Modernising industry to become competitive
- Improving energy security and reducing oil imports
- Providing clean and efficient transport to people
- Improving air quality to protect health
- Ensuring a strong and sustainable agricluture and forestry sector
- Greening macro-economic policy
- Providing electricity to the poor
- Developing coastal regions sustainably
- Building a good public health system
- Protect nature and biodiversity

Economic growth and mainstreaming climate change can go hand in hand

Changing development paths is not so simple

How to change development paths?

- Develop capacity for change
- Start at the top
- Coordinate actions
- Climate proofing
- Prepare long term low carbon, climate resilient development plan (= green growth plan)

Low carbon (and climate resilient) growth plans as a strategic instrument for *all* countries to plan their transition

Focus: Development, and mainstreamed mitigation + adaptation

Time horizon: Long term and short/medium term

Content: Priorities, transition strategies, policies/measures and international support LCGP (=low carbon/ climate resilient growth plans)

Differentiation: Both developing + developed

Process: Ownership, participation, best practices, review, support,

Low carbon development, examples

Brazil:

- Program for Incentive of Alternative Electric Energy Sources (PROINFA): reduce electricity sector emissions by 14 % below BAU levels in 2020
- Brazil's ethanol program (flex fuel vehicles and cost competitive ethanol): reduce transportation emissions by 18 % below BAU levels in 2020
- No net forest cover loss by 2015
- GHG emissions 20% below 2005 by 2020

China:

- Renewable Energy Law and the Tenth Five-Year Plan: reduce electricity sector emissions by 5 % below BAU in 2020
- Medium and Long Term Energy Conservation Plan:
 - reduce cement sector emissions by 15 % below BAU levels in 2020
 - reduce iron and steel sector emissions by 9% below BAU levels in 2020
- Fuel efficiency standards for passenger cars, SUVs, and multi-purpose vans: reduce transportation sector emissions by 5% below BAU levels in 2020

China Renewable Energy Expansion

Source: DB Climate Change Advisors

Low carbon development, examples (2)

- India:
 - Reduce transportation sector emissions by up to 15 % below BAU levels in 2020
 - 20 MW solar PV capacity by 2020
- Korea:
 - National Green Growth Plan
 - GHG emissions 4% below 2005 by 2020
- South Africa:
 - National long term climate change strategy
 - GHG emissions 34% below BAU by 2020, 42% by 2025 and peaking between 2020-2025 (conditional)
- Indonesia :
 - GHG emission 26% below BAU by 2020
 - 0.5Mha/yr tree planting; 0.3 Mha/yr forest rehabilitation and stop illegal deforestation
- OECD: Green growth Strategy 2011
- EU:
 - GHG emissions 80-95% below 1990 by 2050
- US:
 - GHG emissions 80% below 1990 by 2050

OECD