Найдем ее: $C(y) = \frac{y^4}{4} + C_1 \implies U(x,y) = y \ln x + \frac{y^4}{4} + C_1, C_1 \in \square$.

Таким образом, общий интеграл исходного дифференциального уравнения имеет вид $y \ln x + \frac{y^4}{4} + C_1 = C_2$, или $y \ln x + \frac{y^4}{4} = C$, где $C = C_2 - C_1$.

По начальному условию y(1) = -2, поэтому $-2\ln 1 + \frac{16}{4} = C \implies C = 4$ и $y\ln x + \frac{y^4}{4} = 4$ – решение поставленной задачи Коши.

10.3. Дифференциальные уравнения старших порядков

Уравнение вида $F(x, y, y'..., y^{(n)}) = 0$ называется дифференциальным уравнением n-го порядка. Если возможно выразить из этого равенства $y^{(n)}$, то получим дифференциальное уравнение

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)}),$$
(10.9)

которое называется уравнением, разрешенным относительно старшей производной.

График какого-либо решения дифференциального уравнения (10.9) называется его *интегральной кривой*.

ТЕОРЕМА Коши (о существовании и единственности решения дифференциального уравнения n-го порядка). Пусть функция $f\left(x,y,y',...,y^{(n-1)}\right)$ непрерывна вместе с $\frac{\partial f}{\partial y},\frac{\partial f}{\partial y'},...,\frac{\partial f}{\partial y^{(n-1)}}$ в некоторой области D изменения переменных $\left(x,y,y',...,y^{(n-1)}\right)$. Тогда для любой точки $M\left(x_0,y_0,y'_0,...,y_0^{(n-1)}\right) \in D$ существует, причем единственное решение дифференциального уравнения (10.9), удовлетворяющее начальным условиям

$$y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)}.$$
 (10.10)

Без доказательства.

Задачей Коши для дифференциального уравнения n-го порядка называется задача отыскания его решения, удовлетворяющего начальным условиям (или условиям Коши) (10.10).

Для дифференциального уравнения второго порядка, например, задача Коши ставится таким образом: найти решение дифференциального уравнения y'' = f(x, y, y'), удовлетворяющее начальным условиям $y(x_0) = y_0$, $y'(x_0) = y_0'$.

Геометрический смысл этой задачи состоит в следующем: требуется найти интегральную кривую данного дифференциального уравнения, которая проходит через точку $A(x_0, y_0)$ и имеет в этой точке заданную касательную (касательную с угловым коэффициентом $k = y_0'$).

ОПРЕДЕЛЕНИЕ. *Общим* решением дифференциального уравнения n-го порядка называется функция $y = y(x, C_1, C_2, ..., C_n)$, удовлетворяющая следующим условиям:

- 1) при любых значениях постоянных C_k , k=1,...,n из некоторого множества она является решением дифференциального уравнения;
- 2) для любых начальных условий $y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)},$ удовлетворяющих условиям теоремы Коши, существует единственный набор постоянных C_k^0 , k = 1, ..., n такой, что функция $y = y(x, C_1^0, C_2^0, ..., C_n^0)$ является решением, удовлетворяющим этим начальным условиям.

10.3.1. УРАВНЕНИЯ, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

Рассмотрим некоторые типы дифференциальных уравнений старшего порядка, порядок которых можно понизить, сделав подходящую замену переменной.

1. Дифференциальные уравнения вида $y^{(n)} = f(x)$. Чтобы решить уравнение такого вида, надо обе его части проинтегрировать последовательно n раз.

ПРИМЕР. Найти общее решение дифференциального уравнения $y''' = \sin \frac{x}{2}$.

$$y'' = \int \sin \frac{x}{2} dx = -2\cos \frac{x}{2} + C_1 \implies y' = \int \left(-2\cos \frac{x}{2} + C_1 \right) dx = -4\sin \frac{x}{2} + C_1 x + C_2 \implies$$

$$y = 8\cos \frac{x}{2} + C_1 \frac{x^2}{2} + C_2 x + C_3.$$