Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Resistores Integrados

- Película Delgada Thin Film
 - Película de hasta 5 micrómetros
 - NiCromo -Cromo cobalto Nitruro de Tantalio
 - Gran homogeneidad entre las resistencias
 - Tolerancia: ±1
 - Coeficiente Térmico: 50 ppm/°C
 - Disipación Total: 1,25W
 - Disipación Individual: 1/8W
 - Valores: 50Ω 100ΚΩ

Resistores Integrados

- Película Gruesa Thick Film
 - Película mayor a 5 micrómetros.
 - Tolerancia: ±2%
 - Coeficiente de Temperatura: ±300ppm/°C
 - Disipación Total: 1 a 3W
 - Disipación Individual: 1/8W
 - Valores: $20\Omega 1M\Omega$

ANATOMY OF A HIGH RELIABILITY THICK FILM CHIP RESISTOR

Resistores

- De precisión
 - Tolerancia: 0.005 a 0.1%
 - Coeficiente Térmico: +10 a 50 ppm/°C
 - De Alambre
 - Bajo Ruido
 - Uso en bajas frecuencias

Resistores

- De precisión
 - Para disminuir efecto Inductivo

Resistores

Para Alta Tensión

- Vmax: 600 a 30KV
- Tolerancia: ± 1%
- Coeficiente Térmico: ±80 ppm/°C
- Potencia: 0.5 a 15W
- Resistencia de Aislación: 100MΩ
- Caddock's posee modelos No inductivos

- Características Generales
 - Son resistores de tres terminales
 - Para usar una Única vez PRESET
 - 1 vuelta
 - Multivueltas
 - Materiales
 - Composición de Carbón
 - De plástico
 - Película de carbón o metálica
 - Cermet (cerámica metal)

- Para ajustar en el sentido de las agujas del reloj.
 - El terminal indicado como CW se conecta al potencial mas alto
 - Ejemplo BOURNS 3296

Product Dimensions

Common Dimensions

3296Y

3296Z

3296P

DIMENSIONS: $\frac{MM}{(INCHES)}$

- Resistencia Residual
 - Es la que queda al poner el cursor en el extremo mas bajo de resistencia.
 - Valores Normalizados EIA
 - Composicion \rightarrow 5 Ω o 1%
 - Película $\rightarrow 5\Omega$ o 2.5%
 - Cermet \rightarrow 5 Ω o 1%
 - Alambre \rightarrow 5 Ω o 1%

- De composición
 - Económico.
 - Pista al descubierto
 - Cambia la R con la suciedad
 - Elevado ruido
 - Tolerancia: 5 al 10%

CERMET

- Película gruesa Metal Cerámica
- 1 vuelta
- Multivuelta: 10 15 20 22 30
- Resistencia Residual: 1 a 5Ω
- Estabilidad Ajuste: 0.1%
- Tolerancia: 5 al 10%

- Película de Carbón
 - Similar en características a las resistencias Pirolíticas.
- De plástico
 - Comparativos en precio a los de carbón.
- Película metálica
 - Similar en características a los CERMET.

- De alambre
 - Mayor estabilidad
 - Menor coeficiente térmico
 - Discontinuidad en la lectura al pasar de espira en espira

- Integrados
 - Encapsulado DIP
 - 500Ω 500ΚΩ
 - Tolerancia: 10%
 - Disipación: 0,5 a 8W.

DISIPACION DE POTENCIA: 0,5 a 1.5 W a 85°C (varía según el tipo)
RECORRIDO DEL POTENCIOMETRO: 230°
ENCAPSULADO: DIL (DUAL IN LINE)

IURAS

ELEMENTO RESISTIVO: CERMET
TEMPERATURA DE OPERACION: -55 A 125°C
COEF. DE TEMPERATURA: 100 ppm/°C (máx)
TOLERANCIA DE R: ± 20%

FI

- Terminología Aplicable
 - Resistencia Total
 - Resistencia fija a bornes del preset
 - Resistencia Residual
 - Resistencia que queda cuando se considera que el preset está en 0.
 - Resolución
 - Es la capacidad que se tiene para dejar el preset en un valor determinado.
 - Mas vueltas → mayor resolución.
 - Estabilidad de Ajuste
 - Se define como la tensión de salida Eo respecto de la tensión Ei aplicada al preset.

- Terminología Aplicable
 - Vida Rotacional
 - Es el número máximo de ciclos de rotación sin degradar los parámetros del preset.
 - Vida útil
 - Es el número de horas durante las cuales el preset disipa la máxima potencia nominal.
 - Par de Accionamiento
 - Es el par que se debe aplicar para producir desplazamiento.
 - Par de Tope
 - Es el par máximo que se puede aplicar al tope de final del recorrido.

- Terminología Aplicable
 - Disipación
 - Es el valor máximo de disipación del preset entre sus bornes fijos.
 - Si se modifica la R, la potencia máxima será menor:

$$\frac{R_{1-2}}{X_{1-2}} = \frac{R}{L} \qquad \frac{W_{1-2}}{R_{1-2}} = \frac{W}{R}$$

$$R_{1-2} = \frac{R}{L} * X_{1-2}$$
 $W_{1-2} = W * \frac{R_{1-2}}{R}$

$$\frac{W_{1-2}}{R_{1-2}} = \frac{W}{R}$$

$$W_{1-2} = W * \frac{R_{1-2}}{R}$$

Disipación – Ejemplo

$$R = 1000\Omega$$

$$R_1 = 750\Omega$$

$$W = 0.5W$$

$$W_{1-2} = W * \frac{R_{1-2}}{R} = 0.5W * \frac{750\Omega}{1000\Omega}$$

$$W_{1-2} = 0.375W$$

Valores Comparativos

Parámetro	Composición	Película	Cermet
Rango	100Ω a $5ΜΩ$	10Ω a 1ΜΩ	10Ω a 2ΜΩ
Tolerancia	$\pm 10~a~\pm 20$	±1 a ±10	$\pm 10~a~\pm 20$
Res. Residual	5Ω o 1% de R	5Ω o 2% de R	5Ω o 1% de R
Disipación	¼ a ½ W	⅓ a ¾	¼ a 1
Temperatura	120°C	150°C	75°C a 125°C
Ciclos de Rotación		200	200
Coeficiente Térmico (±ppm/°C)	500 a 1000	20 a 50	100 a 500
Estabilidad Ajuste	2%	1%	Menor a 1%

- Definición
 - Son aquellos que están preparados para múltiples ajustes.
 - Baja Potencia → POTENCIOMETRO
 - Composición
 - Alta Potencia → REOSTATOS
 - Alambres

- Potenciómetro de Composición

 - Ángulo de giro: 240° a 300°
 - Material móvil:
 - Bronce fosforoso
 - De 1 a 3 puntos de contacto
 - Eje: Aluminio Plástico
 - Si tiene interruptor
 - Angulo de giro máximo para funcionar 40°

- Potenciómetro de plástico conductivo
 - Material resistivo de película gruesa.
 - Ciclos de rotación: elevados
 - Bajo coeficiente térmico.
 - Ejemplo: 50.000 rotaciones

- Potenciómetro de Cermet
 - Material Cerámico Metálico
 - Valores: $10\Omega 5M\Omega$
 - Tolerancia: ±5% a ±10%
 - Coeficiente térmico: ±200ppm/°C
 - Ejemplo:
 - Ciclos de uso: 50.000 ciclos

- Potenciómetro de Alambre
 - Valores: 50Ω a 250ΚΩ
 - Tolerancia: ±3% a ±5%
 - 1 Vuelta
 - Multivueltas:
 - 3 a 40 vueltas
 - Coeficiente térmico:
 - ±20 ppm/°C
 - Ejemplo:
 - Nro vueltas: 1.000.000

- Potenciómetro Híbrido
 - Pista formada por plástico y alambre
 - Tolerancia: ±5% a ±10%
 - Coeficiente térmico: +100ppm

- Potenciómetro de Precisión
 - Pueden obtenerse giros mayores a 360°
 - Se debe tener presente la discriminación

$$D = \frac{R}{360^{\circ} N}$$

Features

- Bushing mount
- Optional AR pin feature
- Plastic or metal shaft and bushings
- Wirewound
- Solder lugs or PC pins
- Sealable (Full body seal)
- Designed for use in HMI applications

3590 - Precision Potentiometer

■ RoHS compliant*

- Potenciómetro de Precisión
 - Discriminación definida

- Potenciómetro No Lineal
 - Variación Logarítmica
 - De composición
 - Para seguir la respuesta del oído a variaciones del nivel de la señal.
 - Tipos menos comunes
 - Variación Anti Logarítmica
 - De composición
 - Variación Senoidal
 - De alambre
 - Variación Especial
 - De alambre

