This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

30

3.5

WO 00/41557

GRAMM, LINS & PARTNER

+49 6 9 9 8 8 9 0 9 8 РСТ/ФЕООООО68

1018 Re CT/PTO 1 1 JUL 2001

Verfahren zum Hervorrufen oder Fördern einer Anthocyanfärbung in grundsätzlich Anthocyan-bildenden Pflanzen und/oder Früchten

Gebiet der Erfindung:

Die Erfindung betrifft ein Verfahren zum Hervorrufen oder Fördern einer Anthocyanfärbung in grundsätzlich Anthocyanbildenden Pflanzen und/oder Früchten.

Hintergrund der Erfindung:

Eines der wichtigsten Ziele der Fruchtproduktion ist die mög-15 lichst lange Lagerung von Früchten, die anschließend noch attraktiv aussehen, gut schmecken und gesund sein müssen. Aus diesem Grund sind Äpfel als Früchte in gemäßigten Breiten so wichtig, da die meisten Sorten diese Bedingungen erfüllen. Um dieses Ziel zu erreichen, erfolgt die Lagerung von Äpfeln 20 heutzutage in sog. ULO-Lagern ("Ultra Low Oxygen") oder CA-Lagern ("Controlled Atmosphere"); in denen bei 0°C ein erhöhter Kohlendioxid- und ein stark verminderter Sauerstoffgehalt " vorhanden ist. Stoffwechsel und Nachreife werden so verhindert und Lagerung bis zu 6 Monaten und mehr wird erreicht. Früher 25 wurde nur die Temperatur reguliert, was zu kürzeren Lagerzei ten führt. Für den Verbraucher ist die Stärke der roten Pigmentierung (Färbung) der Rinde von Apfeln ein wichtiges Kriterium für deren Qualität. Die Rotfärbung bestimmt damit den Wert der Äpfel am Markt.

Daher wird es als nachteilig empfunden, daß bei Früchten immer schon die Rotfärbung innerhalb eines Baumes stark variierte, und die im Schatten gewachsenen Früchte als qualitativ geringer eingestuft werden, und zwar vorwiegend wegen der Farbe. Außerdem gibt es etliche bekannte und wohlschmeckende Sorten, die schlecht rot werden und deswegen weniger beliebt sind, als sie vielleicht sein könnten, z.B. Cox Orange. Erfahrungen beim Verkauf verschiedener Sorten gehen eindeutig dahin, daß rote über allen anderen Auswahlkriterien steht. Wichtige Sorten

PCT/DE00/00068

WO 00/41557

ten, die überhaupt nicht rot werden, sind Golden Delicious (Europa und weltweit) und Granny Smith, der meist auf der Südhalbkugel (Neuseeland) produziert wird.

5 Deshalb ist die Erzeugung bzw. Förderung der Rotfärbung der Äpfel ein ständiges Ziel des Apfelbauern.

Obwohl der Mechanismus der Pigmentierung der Apfelrinde noch nicht vollständig aufgeklärt ist, ist es bekannt, daß eine ausreichende Belichtung mit Sonnenlicht, aber auch künstlichem Licht (DE 3409796, WO 86/00492), die Pigmentierung verstärkt. Darüber hinaus ist bekannt, daß auch chemische Substanzen (FR 81 15845, EP 0 598 304) die Pigmentierung der Rinde von Äpfeln vorteilhaft beeinflussen können. Allerdings ist die Verwendung chemischer Substanzen nicht immer unbedenklich (FR 81 15845) bzw. zeigt nicht bei allen Apfelsorten den gewünschten Effekt, und die Methoden, bei denen Sonnenlicht eingesetzt wird, sind auf dessen Verfügbarkeit angewiesen.

- Bekannte Verfahren zur künstlichen Belichtung setzen im allgemeinen weißes oder sonnenlichtartiges Licht ein, d.h. sie versuchen die natürliche Sonnenbestrahlung durch eine entsprechende Strahlung zu ergänzen oder zu ersetzen.
- Ferner ist es aus der DE 34 09 796 Al bereits bekannt, die Anthocyanbildung in Früchten und Pflanzen durch eine Kombination aus blauem und rotem Licht zu fördern. Die Auswahl des dort für die Bestrahlung gewählten Spektralbereiches bezieht sich darauf, daß für die Anthocyansynthese zwei fotochemische Reaktionen bekannt sind, nämlich eine energieschwache, rot/langwellig-rot, umsteuerbare (reversible) phytochrom gesteuerte Reaktion und eine Intensivbestrahlungsreaktion, die im blauem und im langwellig roten Bereich des sichtbaren Lichtspektrums am wirksamsten ist. Für diese bei der Anthocyanbildung beteiligten Fotoreaktionen wird das Phytochrom als Fotorezeptor diskutiert bzw. angenommen.

Die WO 86/00492 beschreibt ein Verfahren zur Kennzeichnung von Äpfeln, in dem die Äpfel mit einer lichtundurchlässigen Maske

PCT/DE00/00068

 ≈ 3

versehen werden und dann mit einer künstlichen Lichtquelle, z.B. mit einer weißes Licht emittierenden Leuchtstoffröhre ("fluorescent light source") bestrahlt werden.

- 5 Die Ansprüche des Marktes fordern heutzutage einerseits gut aussehende und optimal gerötete Früchte, wobei der Markt insbesondere der Anwendung künstlicher Mittel, wie z.B. der Aufbringung chemischer Substanzen, kritisch begegnet. Die Verwendung von Licht zur Herbeiführung der Rötung kommt dagegen ohne 10 die Anwendung chemischer Mittel aus. Allerdings sind die bisher beschriebenen Verfahren, wie die Nachtunterbrechungsbehandlung vor der Ernte aufwendig und wenig effizient und die bekannten Bestrahlungsverfahren mit weißem, blauem oder rotem Licht sind languierig und schon deshalb verbesserungsbedürf-15 tig. Eine Veränderung der Farbe anthocyangefärbter Früchte oder Pflanzenteile im Sinne einer Attraktivitätssteigerung dieser Früchte oder Pflanzen konnte bislang nicht erzielt werden.
- Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Hervorrufen oder Fördern einer Anthocyanfärbung in Pflanzen und/oder Früchten bereitzustellen, das sich durch eine besonders schnell erzielbare Wirkung auszeichnet und sich problemlos in die etablierten Schritte vom Anbau bis zum Verkauf integrieren läßt, wobei insbesondere die Rotfärbung von Pflanzen(teilen) oder Früchten ermöglicht werden soll, die normalerweise keine rote Farbe entwickeln, z.B. von sog. grünen Apfelsorten.

30 Zusammenfassung der Erfindung

Überraschend wurde jetzt gefunden, daß UV-B Licht, und Licht, das sich aus einer Mischung von weißem Licht und Licht aus dem spektralen Bereich des UV-B zusammensetzt, die Anthocyanbil-dung von Pflanzen und/oder Früchten nicht nur fördert, sondern ggf. erst induziert. Bei einer Verwendung von UV-B-Licht zusammen mit weißem Licht soll der UV-B-Anteil höher als in Sonnenlicht, wobei davon ausgegangen wird, daß der UV-B-Anteil in Sonnenlicht (im Mittel) 2,5% beträgt. Die Anthocyanfärbung

35

WO 00/41557

- 4 -

läßt sich erfindungsgemäß auch durch eine Bestrahlung mit wei-Bem Licht und zusätzlich mindestens einer blaues Licht emittierenden Lichtquelle fördern.

5 Detaillierte Beschreibung der Erfindung

Das erfindungsgemäße Verfahren läßt sich im Prinzip auf alle anthocyanbildenden Strukturen von Pflanzen (z.B. Blüten und Blätter) bzw. deren Früchte anwenden. Anthocyane verursachen 10 gelbe, orange, rote und blauviolette sowie blaue Farbtöne, wobei es sich um verschiedene Stoffgemische handelt, die in den Vakuolen gespeichert werden. Fast alle oberflächlich liegenden Zellen (Epidermis) von den oberirdischen Organen der Pflanzen speichern Anthocyane besonders gut, sind aber bei weitem nicht 15 immer bunt, sondern oft mit farblosen, nur UV-Licht absorbierenden Anthocyanen gefüllt. Die gelben, gelbroten und roten Anthocyane sind chemisch etwas einfacher gebaut als die blauen. Manche Pflanzen können keine roten und blauen, manche keine blauen Anthocyane bilden. Anthocyane sind auch die Farb-20 stoffe, die Blätter (z.B. Blutbuche, Buntnessel und viele Zierpflanzen) färben. Nicht alle gelben/roten Früchte/Blüten sind durch Anthocyane gefärbt, roter und gelber Paprika z.B. 🐬 durch Carotinoide, die biosynthetisch völlig anders entstehen.

25 Bevorzugtermaßen wird das erfindungsgemäße Verfahren zum Her- vorrufen und Fördern der Rotfärbung oder Gelbfärbung (der Aus- bildung roter oder gelber Anthocyane), stärker bevorzugt zur Förderung der Rotfärbung, insbesondere bei Früchten einge- setzt.

Wichtige Früchte, die durch Anthocyane rot oder gelb werden, wie Äpfel, Birnen, Pfirsiche, Nektarinen, Pflaumen, Kirschen (alle Rosengewächse), Blaubeeren und Preiselbeeren, fallen in das Gebiet der Erfindung. Bevorzugtermaßen wendet man das erfindungsgemäße Verfahren bei Birnen und Äpfeln, insbesondere bei Äpfeln an.

In einer bevorzugten Ausführungsform der Erfindung fördert man die Anthocyanbildung in Äpfeln, die, wenn am Baum gereift,

20

25

30

WO 09/41557

normalerweise eine Rotfärbung, wenn auch oft nicht in dem gewünschten Maße, zeigen. Hierzu zählen beispielsweise Cox Orange, Elstar, Gloster, Idared, Jonagold und Pilot.

In einer besonders bevorzugten Ausführungsform wird die Rotfärbung von Früchten, insbesondere Äpfeln gefördert, die sich
normalerweise nicht rot färben. Dies erreicht man durch die
Bestrahlung mit UV-B-Licht oder einer Mischung aus UV-B-Licht
und weißem Licht und wurde erfolgreich beispielsweise an den
folgenden Apfelsorten durchgeführt.: Golden Delicious, Zitronenapfel, Granny Smith und Mutsu.

Da man in der Regel mit UV-B-Licht oder einer Mischung aus UV-B-Licht und weißem Licht die Anthocyanbildung stärker fördert als mit einer Mischung aus weißem und blauem Licht, sind die ersten beiden Varianten bevorzugt.

Bei der Verwendung von UV-B-Licht setzt man bevorzugtermaßen Lichtquellen ein, deren Strahlungsflußanteil im Bereich von 280-315 nm bezogen auf den Gesamtstrahlungsfluß von 100-780 nm (Φ280-315 nm /Φ100-780nm; jeweils in Watt gemessen) nicht unter 10%, weiter bevorzugt nicht unter 20% liegt. In den derzeit bevorzugten Ausführungsbeispielen liegt der Wert für Φ280-315nm /Φ100-780 nm bei mindestens 30%, insbesondere bei mindestens 45%. Höhere Werte (z.B. mindestens 70 oder mindestens 90%) sind im Hinblick auf die Energieausbeute noch günstiger. Lampen mit solchen höheren Strahlungsflußanteilen im Bereich von 280-315 nm sind in der Regel aber teurer. Somit kann man mit günstigen käuflich erhältlichen UV-B-Lampen (z.B. TL 40W/12 der Fa. Philipps), deren Wert (ca. 57%) für Φ280-315 nm/Φ100-780 nm bei oberhalb von 45% liegt, bereits äußerst wirtschaftlich arbeiten.

Analog verwendet man vorzugsweise Blaulichtquellen bzw. Weißlichtquellen, deren Strahlungsflußanteil (Φ_{400-510 nm} /Φ_{100-780 nm})

nm) bzw. (Φ_{400-780 nm} /Φ_{100-780 nm}) im Bereich von 400-510 nm
bzw. 400-780 nm bezogen auf den Gesamtstrahlungsflusses von
100-780 nm bei mindestens 10%, insbesondere mindestens 20 bis 30%, am stärksten bevorzugt mindestens 45% liegt. Da Licht-

10

WO 00/41557

- 6

PCT/DE00/00068

quellen für blaues bzw. weißes Licht mit Strahlungsflußanteilen von mindestens 70%, insbesondere mindestens 90% relativ günstig käuflich zu erwerben sind, ist das Arbeiten mit solchen Lichtquellen noch stärker bevorzugt.

Arbeitet man mit zwei Lichtquellen, deren Spektren sich überlappen, d.h. mit einer Mischung aus weißem und blauem Licht,
so dürfen die entsprechenden Strahlungsflußanteile nicht null
sein und sollten jeweils die zuvor spezifizierten Werte zeigen. Alternativ kann man mit einer Lichtquelle arbeiten, falls
diese eine gegenüber weißem Licht im blauen Bereich entsprechend angereicherte Strahlungsflußdichte aufweist.

Bei der Optimierung der Verfahrensbedingungen für die Bestrahlung spielen insbesondere die Zahl und Art der eingesetzten
Lichtquellen, deren Leistung, deren Anordnung und Abstand relativ zu den Früchten, die Bestrahlungsdauer, die Temperatur
und eine etwaige Nachlagerung unter Kühlung eine Rolle. Generell sollte die Bestrahlung mit Licht in dem oben bereits näler spezifizierten Wellenlängenbereich mit einer solchen Intensität und über eine solche Zeitdauer durchgeführt werden,
daß der gewünschte Effekt erzielt wird. Der Fachmann kann die
hierfür geeigneten Parameter - je nach den zur Verfügung stehenden Lichtquellen und der geometrischen Anordnung - experimentell ohne größeren Aufwand feststellen.

Üblicherweise verwendet man pro Lichtsorte 1-8, bevorzugterma-Ben 1-4, insbesondere 2 Lichtquellen.

Die Anordnung der Lichtquellen stellt bevorzugtermaßen sicher, daß die Pflanze(n) bzw. die Frucht (Früchte) genau dort bestrahlt wird (werden), wo sich das Anthocyan bilden soll. Besonders bevorzugt ist die Anordnung zweier Lichtquellen pro Lichtsorte oberhalb der Pflanze (Frucht) bzw. der Pflanzen (Früchte). Bevorzugtermaßen ordnet man sowohl die Lichtquelle als auch die zu bestrahlenden Früchte (Pflanzen) in einem Gehäuse bzw. Behälter (insbesondere mit spiegelnden Oberflächen) an.

15

20

25

30

15 2 315

:.:∌%

WO-00/41557

7. -

PCT/DE00/00068

Der Abstand zwischen der (den) Lichtquelle(n) und den einzelnen Pflanzen (Früchten) beträgt bevorzugtermaßen bis zu 300 cm, insbesondere 25 bis 100 cm, bevorzugt 60 bis 80 cm. Man kann jedoch auch mit geringeren oder größeren Distanzen arbeiten, wenn man die anderen Verfahrensparameter (z.B. spektraler Strahlungsflußanteil und Leistung der Lampe, Bestrahlungsdauer) entsprechend anpaßt. Beispielsweise kann man einen größeren Abstand zwischen Früchten (Pflanzen) und Lichtquelle(n) durch eine höhere Leistung der Lichtquelle(n) oder durch einen höheren Strahlungsflußanteil derselben kompensieren.

Die Leistung der eingesetzten Lichtquellen liegt üblicherweise im Bereich bis zu 100W (20-100W), bevorzugtermaßen 36-60W pro Lichtquelle. Wegen Verlusten durch Wärme und Strahlung in "unerwünschten" Spektralbereichen wird in der Regel jedoch nur ein Bruchteil dieser Leistung im "gewünschten" Spektrenabschnitt abgegeben. Beispielsweise liegt bei der käuflich erhältlichen UV-B-Leuchstofflampe TL 40W/12 der Fa. Phillips die im Bereich von 280-315 nm abgegebene Leistung bei 5,1 W. Beider Wahl einer geeigneten Lichtquelle ist ferner zu beachten, daß eine höhere Leistung bei ansonsten identischen Verfahrensparametern nicht automatisch eine beschleunigte Anthocyanbildung mit sich bringt, da es zu Sättigungseffekten kommen kann. In einigen Beispielen wurde eine Wattleistung von 10 bis 20-3-3 W/m² gemessen.

Bevorzugtermaßen arbeitet man im erfindungsgemäßen Verfahren mit den folgenden Lichtintensitäten, wobei sich die angegebenen werte auf die Lichtintensität (in µEs-1m²) an der Pflanze bzw. Frucht und auf den (die) Wellenlängenbereich(e) der jeweiligen Lichtsorte(n) beziehen.

Blau/Weiß: mehr als 1; stärker bevorzugt mehr als 2; insbesondere 20-50;

35 UV-B: mehr als 0,5; stärker bevorzugt mehr als 1,0; insbesondere 10-20;

UV-B/Weiß: mehr als 0,75; stärker bevorzugt mehr als 1,5; insbesondere 15-20;

PCT/DE00/00068

Beim Mischen von blauem und weißem Licht beträgt das Verhältnis der Lichtintensitäten (blau/weiß) von 1/10 bis 10/1. Für eine Mischung aus UV-B und weiß beträgt das Verhältnis bevorzugtermaßen 1/20 bis 10/1.

5

10

15

Es ist bevorzugt, die Bestrahlung über einen Zeitraum zwischen 6 h und mehreren Tagen, insbesondere 12 bis 72 h, stärker bevorzugt 12 bis 36, am stärksten bevozugt 12 bis 24 h durchzuführen. Bei der Bestrahlung von Früchten hängt die Wahl der Bestrahlungsdauer u.a. davon ab, ob die Früchte frisch geerntet sind oder bereits gelagert wurden. Frisch geerntete Früchte sprechen bei UV-B-Licht, ggf. gemischt mit weißem Licht, in der Regel stärker an als bereits längere Zeit gelagerte Früchte (z.B. mehr als 100 Tage, insbesondere mehr als 1 Jahr), so daß man innerhalb von 72h den Endwert der Rotfärbung erreicht. Bei bereits länger gelagerten Früchten können auch längere Bestrahlungszeiten als 72h zum Erreichen des Endwerts erforderlich sein. Der geeignete Bestrahlungszeitraum läßt sich durch Beobachtung der Pflanzen (Früchte) leicht ermitteln.

20

30

Auch die Temperatur hat auf die Anthocyanbildung einen Einfluß. Üblicherweise bestrahlt man in einer Klimakammer bei and Temperaturen von 5 bis 25°C, bevorzugtermaßen bei 14 bis 19°C (insbesondere 15 bis 18°C), wobei die Bestrahlung in einer 25 Klimakammer häufig besonders vorteilhaft ist. Bei diesen Temperaturen werden auch das Aussehen und der Geschmack der Äpfel so wenig wie möglich beeinträchtigt. Erfindungsgemäß bewährt hat sich das Bestrahlen bei 17°C (vorzugsweise in einer Klimakammer). Eine Regelung der Luftfeuchtigkeit in der Klimakammer ist nicht erforderlich, kann aber dazu beitragen, die Früchte "frisch" zu halten.

Man kann das erfindungsgemäße Verfahren auf sich noch am Strauch oder am Baum befindende Früchte anwenden, z.B. als Nachtunterbrechungsbehandlung. Bei Baumfrüchten, z.B. Äpfeln und Birnen, ist es jedoch aus wirtschaftlichen Erwägungen bevorzugt, die Früchte zunächst zu ernten. Die Früchte können dann entweder im frischen Zustand oder nach einer frei wählbaren Zeit der Lagerung bestrahlt werden.

15

20

35

. ಆತ್ರಭ

WO 00/41557

- 9 -

PCT/DE00/00068

Insbesondere, wenn man "frische" Früchte bestrahlt, ist es bevorzugt, die bestrahlten Früchte nach der Bestrahlung im Dunkeln zu lagern. (Ob eine Frucht "frisch" ist oder nicht, hängt entscheidend von den Lagerbedingungen und der Sorte ab, so daß die hier beschriebene Verfahrensvariante nicht nur auf frisch geerntete Früchte, sondern bevorzugtermaßen auch auf bis zu 1 Jahr, insbesondere auf bis zu 100 Tage gelagerte Früchte angewendet werden kann). Während dieser Nachlagerung beobachtet man oft trotz Dunkelheit eine Anthocyanbidung, die diese Variante des erfindungsgemäßen Verfahrens besonders vorteilhaft macht. Bevorzugtermaßen kombiniert man eine Bestrahlung über einen Zeitraum von 12 bis 72h, vorzugsweise 12 bis 36h, insbesondere 12 bis 24h mit einer Nachlagerung im Dunkeln über mindestens 2 bis 7 Tage. Eine über 10 Tage hinausgehende Nachlagerung ist jedoch problemlos möglich.

Die Nachlagerung kann in einem Temperaturbereich von 0°C bis ca. 30-35°C durchgeführt werden, wobei im Hinblick auf die angestrebte Frischhaltung der Früchte Temperaturen von 0-10°C bevorzugt sind. Überraschenderweise wurde festgestellt, daß ein frisch gepflückter Apfel, der 1 Tag bestrahlt und dann nachgelagert wurde (z.B. 1 Tag Bestrahlung mit UV-B oder einer Mischung aus UV-B und weißem Licht, dann 7tägige Nachlagerung im Kühlschrank bei 4°C), eine stärkere Rotfärbung zeigte als ein frisch gepflückter Apfel, der 3 Tage unter denselben Bedingungen bestrahlt wurde und nicht nachgelagert wurde. Zur Nachlagerung im Dunkeln eignen sich auch die bereits erwähnten ULO-Lager oder CA-Lager mit ihren typischerweise bei 0°C lie-30° genden Lagertemperaturen.

Nach dem erfindungsgemäßen Verfahren ist es auch möglich, die Pflanzen und/oder Früchte mit einer Aussparung der Anthocyanfärbung in einer beliebig zu wählenden Form zu versehen, indem man vor der Bestrahlung eine lichtundurchlässige Abdeckung mit dieser Form auf die nicht oder wenig pigmentierten Pflanzen und/oder Früchte aufbringt und diese Abdeckung nach der Bestrahlung wieder entfernt.

25

30

35

WO 00/41557

- 10 -

PCT/DE00/00068

Damit ergibt sich nach dem erfindungsgemäßen Verfahren die Möglichkeit, ein im Prinzip bekanntes Verfahren zur Aufbringung von Zeichnungen und Schriftzügen auf die Oberfläche von Früchten, insbesondere Äpfeln wesentlich zu verbessern, da das neue Verfahren auch auf ansonsten grünbleibende Fruchtsorten angewandt werden kann. Ein weiterer Vorteil liegt darin, daß man diese Variante des Verfahrens auch noch lange Zeit nach der Ernte durchführen kann, wobei Belichtungszeiten von nur 2 Tagen genügen können, um eine deutlich sichtbare Anthocyanbildung hervorzurufen.

Die Fruchtoberfläche wird so z.B. zu einer neuen Werbefläche.

Man kann auch an Weihnachtsmotive, Firmenlogos, Vornamen,

Sprüche aller Art usw. denken, die so auf die Fruchtoberfläche

aufgebracht werden können. Dies bereichert den normalen Obst
verkauf um eine zusätzliche Möglichkeit. Da das Muster sehr

schnell und unabhängig von der Sorte aufgebracht werden kann,

bietet die Erfindung mit ihrer schnellen und einfachen Methode

zur nachträglichen Rötung von Früchten, insbesondere Äpfeln,

einen entscheidenden Vorteil gegenüber bekannten Verfahren.

Das erfindungsgemäße Bestrahlungsverfahren ermöglicht es auch

noch spät nach der Ernte kurzfristig auf Bestellung durch Auf
bringen von Aufklebern und anschließende Bestrahlung ein Motiv

auf die Oberfläche der Früchte aufzubringen.

Mit dem erfindungsgemäßen Verfahren läßt sich insbesondere beim Einsatz von spektralem UV-B oder einer Mischung aus UV-B und weißem Licht die Anthocyanbildung gegenüber herkömmlichen Verfahren beschleunigen.

Ein entscheidender Vorteil des erfindungsgemäßen Verfahrens bei der Bestrahlung von Pflanzen und/oder Früchten ist es, daß es ohne großen technischen Aufwand schnell durchgeführt werden kann und sich problemlos in die bestehenden Verfahrensschritte vom Anbau bis zum Verkauf eingliedern läßt. Bei Früchten, insbesondere Äpfeln ist es von großem Vorteil, daß sich das Verfahren in etablierte Lagerungsschritte integrieren läßt. Somit kann man die Früchte, insbesondere Äpfel ohne Frischeverlust bestrahlen und dann wie herkömmlich unter ULO- oder CA-

WO 00/41557

- 11 -

PCT/DE00/00068

Bedingungen lagern. Der aufwendigste Schritt im Gesamtablauf, die Belichtung, kann folglich zentralisiert werden, d.h. dem Lagerbetrieb angegliedert werden.

Darüber hinaus wurde überraschend gefunden, daß insbesondere auch solche Früchte, die bei normaler Reifung und Lagerung grün bleiben, z.B. grüne Äpfel, nach einer Behandlung mit UV-B oder einer Mischung aus UV-B und weißem Licht eine kräftige Rotfärbung zeigen.

10

Figuren:

Die Figur 1 ist eine schematische Skizze einer Bestrahlungskammer, die sich für das erfindungsgemäße Verfahren eignet.

15

Die Figur 2 enthält 2 Fotografien von Äpfeln (a: Zitronenapfel, b: Golden Delicious), die nach einer 7-tägigen Bestrahlung mit 4 unterschiedlichen Lichtsorten (UV-A/Weiß, UV-B, Blau/Weiß, UV-B/Weiß) aufgenommen wurden.

20

35

Figur 3 ist ein Balkendiagramm, in dem die Absorption bei 527,5 nm von Extrakten aus den Schalen von Pilotäpfeln gegen die Bestrahlungsdauer in Stunden für 2 Versuchsreihen (Anthocyanmessung direkt nach der Bestrahlung; Anthocyanmessung nach Bestrahlung und zusätzlicher 7-tägiger Lagerung) aufgetragen ist.

Beispiele:

30 METHODIK:

Für das erfindungsgemäße Bestrahlungsverfahren verwendete man eine auf 17°C eingestellte Klimakammer (1), wie sie in Figur 1 dargestellt ist. Beim Arbeiten mit farbigem bzw. UV-Licht wurden je zwei Lampen (2) (Abstand 50 cm, je 25 cm von der Dekkenmitte) in einer Höhe von 80 cm an der Decke einer Klimakammer mit den folgenden Maßen befestigt: 160 cm Höhe x 120 cm Breite x 140 cm Tiefe. Beim Einsatz von Mischungen aus farbigem bzw. UV-Licht mit weißem Licht verwendete man zusätzlich

20

25

30

WO 00/41557

PCT/DE00/00068

zwei Weißlichtlampen (3), die man rechts und links der farbigen (bzw. UV)-Lampen (2), und zwar jeweils 10 cm weiter von der Deckenmitte entfernt, anbrachte. Für die Bestrahlung mit Weißlicht verwendete man 4 Lampen (2, 3), die die gleiche Anordnung wie bei der Mischlicht-Bestrahlung hatten. Die Position der zu bestrahlenden Früchte (20-50 Früchte pro Versuch) ist durch schwarze Balken (4) dargestellt. Der Abstand zwischen den Früchten und den Lampen ist durch den Doppelpfeil (5) angedeutet. Die Innenwände der gesamten Kammer (1) waren mit einer Metallfolie verspiegelt.

12

Wo in den Beispielen von einem Versuchsaufbau "halbe Kammer" die Rede ist, wurde die Kammer durch die schwarze, nicht verspiegelte Zwischenwand (6) getrennt. In den Versuchen mit einer "halben Kammer" arbeitete man folglich mit nur 1 bzw. 2 Leuchtstoffröhren und ca. halben Lichtintensitäten.

Die Bestrahlungen wurden mit den folgenden Lichtquellen durchgeführt.

Weißes Licht: Phillips TLD 36W/83 (Länge: 120 cm)
Blaues Licht: Phillips TLD 36W/18 BLUE (Länge: 120 cm)
Rotes Licht: Phillips TLD 36W/15 RED (Länge: 120 cm)

UV-A: Phillips TL 60W/09 N" (Länge: 120 cm)
UV-B: Phillips TL 40W/12 (Länge: 120 cm)

Für die Lampen wurde die in der Tabelle 1 angegebene Strahlungsflußverteilung ermittelt (Abstand ca. 65 cm, jeweils eine Lampe).

Die Anthocyanbildung wurde über die Zunahme der Rotfärbung der Versuchsfrüchte nach den folgenden drei Verfahren bewertet.

1. Bestimmung der Chromameter-Werte (Y, x, y), wobei Y für

Helligkeit, x für Blau-Gelb-Werte und y für Rot-Grün-Werte der Farbe steht. Aus diesen drei Zahlenwerten läßt sich jede Farbe somit wieder "zusammensetzen". Die erhaltenen Werte sind in hohem Maße reproduzierbar. Die Messungen wurden mit einem von der Firma Minolta hergestellten Gerät der Bezeichnung

∴ no.:

1 11 11 11 11 11

WO 00/41557

- (

PCT/DE00/00068

- 13 -

"Chromameter II Reflectance" durchgeführt. Bei der Messung wurde die Versuchsfrucht wie folgt vermessen:

Der Meßkopf wurde dreimal abgelesen und es wurden Mittelwerte für jeden Meßpunkt angegeben. Die Schwankungen sind \lequip 3% vom Mittel. Die Wertevariation liegt demzufolge in der zwangsläufig nicht vollkommenen Gleichmäßigkeit der Früchte.

- 2. Photometrische Absorptionsmessungen bei 527,5 nm: nach dem Schälen der Frucht wurden drei kreisförmige Flächen von zusammen 2,4 cm² aus der Fruchtschale mit einem Korkbohrer ausgestanzt, die einmal unter Schütteln mit 1,5 ml einer Mischung aus 10N-HCl und Methanol im Volumen-Verhältnis 1/99 (1% 10N-HCl + 99% MeOH) extrahiert wurden. Dann maß man die Absorption bei 527,5 nm des Extrakts in einer Küvette mit einer Pfadlänge von 1 cm unter Verwendung eines handelsüblichen Photometers, das von der Fa. Perkin-Elmer hergestellt wurde.
- 3. Optische Bewertung: vor dem Auslegen der Früchte wurden **

 20 schwarze Klebetikette auf die Schale geklebt, unter denen beim *

 Bestrahlen die ursprüngliche Farbe erhalten blieb. Nach Beendigung der Belichtung wurde auf einem Foto die ursprüngliche **

 mit der direkt daneben entstandenen neuen Farbe verglichen. In *

 den Fig. 2a-2b sind für mehrere der durchgeführten Versuche **

 25 die entsprechenden Fotografien beigefügt. Bei der optischen **

 Bewertung wurden die Früchte wie folgt klassifiziert:

"+++": sehr starke Rotfärbung

"++": starke Rotfärbung

"+": schwache Rotfärbung

30 "-/+": sehr schwache Rotfärbung"

"-": keine Rotfärbung

Alle drei Methoden liefern völlig übereinstimmende Ergebnisse.

35 <u>BEISPIEL 1 (Kinetik)</u>

Frisch geerntete (Ernte Herbst 1997 und 1998) Äpfel der folgenden Sorten wurden vom Versuchsgut der Universität Hannover zur Verfügung gestellt. Die Bestrahlung der folgenden Sorten

- 14 -

PCT/DE00/00068

计设计 化二烷二烷 建橡胶 医斯马

Service of the Control of the Contro

wurde mit einer "halben Kammer" jeweils 0 bis 5 Tage nach der Ernte durchgeführt (Ausn.: Mutsu wurde in der "ganzen Kammer" untersucht).

Rotwerdende Sorten: Cox Orange, Elstar, Gloster, Idared, Jonagold, Pilot;

Gründe Sorten: Golden Delicious, Zitronenapfel, Mutsu

Ferner wurde in Beispiel 1 in einem Versuchsaufbau mit einer "ganzen Kammer" die Rotfärbung von bereits 30-50 Wochen gelagerten Granny Smith-Äpfel untersucht, die aus Neuseeland stammten.

äpfel gleicher Färbung wurden aus einer jeden Sorte ausgewählt. Jeweils ein Apfel wurde dann über einen Zeitraum von 0,
3, 5 bzw. 7 Tagen in der zuvor beschriebenen Klimakammer
(17°C) mit Dauerlicht bestrahlt. Als Lichtquellen wurden

• eine Mischung aus blauem Licht und weißem Licht (Erfindung)

ကြောက်သည်။ ကြောက်သည့် သွေးသည် ကြို့ရေးများကြ

. . .

- blaues Licht (Vergleich)
- 20 UV-B (Erfindung)

25

35

• eine Mischung aus UV-B und weißem Licht (Erfindung) and Temple of

- UV-A (Vergleich)
- eingesetzt. Die Lichtquellen waren wie im Absatz (*Methodik* 600) beschrieben angeordnet.

Unmittelbar nach der Bestrahlung wurde jeder Apfel mit einem Chromameter vermessen. Dann entfernte man mit einem Korkbohrer ein Stück der Apfelschale, die dann nach dem zuvor beschriebenen Verfahren (2) auf ihren relativen Gehalt (bezogen auf die Nullwerte) an Anthocyan untersucht wurde.

Die Werte für "O Tage" (Nullwert) wurde durch die Untersuchung einer abgeklebten Fläche oder durch Messung zu Versuchsbeginn erhalten.

Die Ergebnisse sind in der Tabelle 2a zusammengestellt. Die Schwankungen der Meßwerte sind durch die niemals perfekte Übereinstimmung zwischen Äpfeln einer Meßreihe bedingt. Ein

15

WO 00/41557

PCT/DE00/00068-

- 15 -

Teil der Ergebnisse ist in den Fig. 2a-2b dargestellt, die 2 grünen Sorten zeigen (2a: Zitronenapfel, 2b: Golden Delicious), die jeweils 7 Tage mit den folgenden Lichtsorten bestrahlt wurden:

5 1. UV-A/Weiß, 2: UV-B, 3: Blau/Weiß, 4: UV-B/Weiß

Die Ergebnisse einer weiteren Versuchsreihe unter identischen Bedingungen, in der jedoch ausschließlich eine photometrische Anthocyanmessung nach 0 und 3 Tagen stattfand ist in Tabelle 2b dargestellt.

Die Zunahme roter Anthocyane bei der Bestrahlung mit UV-B oder UV-B/Weiß erkennt man in Fig. 2a und 2b an der Kreisfläche auf den Äpfeln, die dem mit einer lichtundurchlässigen Folie abgedeckten Bereich entspricht, und wo sich somit die Farbe der unbestrahlten Äpfel erhalten hat.

Die Ergebnisse zeigen, daß die Bildung roter Anthocyane durch UV-B-Licht stark gefördert wurde; wobei man die Wirkung durch Beimischung von weißem Licht noch verstärken kann. Gute Ergeb-20 nisse erhielt man bei natürlicherweise rot werdenden Sorten 3845 auch beim Bestrahlen mit einer Mischung aus weißem und blauem Licht. Die Effekte, die man mit einer Mischung aus weißem und blauem Licht erhält, waren jedoch bis auf wenige Ausnahmen blaue. schwächer als beim Bestrahlen mit UV-B-Licht oder beim Be-25 strahlen mit einer Mischung aus UV-B und weißem Licht, so daß man eine merkliche Rotfärbung erst ab einer Bestrahlungsdauer von mehr als 7 Tagen beobachtete. Blaues Licht allein zeigt eine wesentlich schwächere Wirkung als UV-B oder UV-B/weiß. 30 die Bestrahlung mit rotem Licht und UV-A (mit oder ohne weißes Licht) war nahezu wirkungslos. Da UV-A-und UV-B-Röhren im 1988 sichtbaren Bereich ungefähr die gleiche, wenn auch geringere Strahlungsdichte (vgl. Tabelle 1) zeigen, belegt dieses Ergebnis, daß die mit UV-B erzielten Ergebnisse nicht durch "Verunreinigungen" mit weißem oder blauen Licht hervorgerufen 35 es albino. werden.

Die Tabellen 2a und 2b (Mutsu, Zitronenapfel und Granny Smith) zeigen auch, daß man bei "grünen" Sorten eine Anthocyanbildung

25

35

WO 00/41557

- 16 -

PCT/DE00/00068

" 1,5 : [15 =

nur mit UV-B-Licht, insbesondere in Mischung mit Weißlicht erzielt.

BEISPIEL 2 (Bestrahlung und Nachlagerung)

Die Apfelsorten Cox Orange, Jonagold, Pilot und Golden Delicious wurden unter den in Beispiel 1 angegebenen Bedingungen Oh, 12h, 24h, 32h und 40h mit einer Mischung aus UV-B Licht und weißem Licht in der Klimakammer (17°C) bestrahlt. Die Messung der Anthocanbildung erfolgte in Beispiel 2 nicht nur un-10. mittelbar nach der Bestrahlung, sondern auch nach einer zusätzlichen 7-tägigen Lagerung in einem Kühlschrank (bei 4°C). Die Messung der Anthocyanbildung erfolgte mit den zuvor erläuterten Verfahren (1) und (2). Die Ergebnisse sind in Tabelle 3 15 zusammengefaßt. Die mit Pilotäpfeln erhaltenen Ergebnisse (und zusätzliche Messungen an Pilotäpfeln nach 28h, 36h, 48h, 52h und 60h) sind in Fig. 3 graphisch dargestellt. Fig. 3 ist ein Balkendiagramm, in dem die Anthocyanbildung (gemessen durch Absorptionsmessungen bei 527,5 nm) für Pilotäpfel dargestellt sind, bei denen die Messung entweder sofort nach der Bestrah-20 lung oder nach einer zusätzlichen Nachlagerung von einer Woche bei 4°C im Dunkeln vorgenommen wurde. Die beobachteten geringfügigen Schwankungen beruhen darauf, daß die Messungsreihe mit unterschiedlichen Äpfeln vorgenommen werden mußte.

Die Ergebnisse zeigen, daß bei der Bestrahlung mit einer Mi-se schung aus UV-B-Licht und weißem Licht schon 12h genügen, um eine merkliche Anthocyanbildung hervorzurufen.

Der Vergleich mit den entsprechenden Werten des Beispiels 1 zeigt ferner, daß während der Nachlagerung im Dunkeln (4°C): sich weiterhin Anthocyan bildete. Sehr gute Werte erhält man bereits bei einer 24-stündigen Bestrahlung und einer 7-tägigen Nachlagerung.

BEISPIEL 3 (Lageräpfel):

Frisch geerntete Äpfel der folgenden Sorten wurden bis zu 4 mit Monaten bei Normalbedingungen oder bis zu 12 Monaten unter plant

10

PCT/DE00/00068

WO 00/41557

ULO-Bedingungen gelagert und dann unter den gleichen Bedingungen wie in Beispiel 1 bestrahlt, abgesehen davon, daß man über eine Dauer von 3 Tagen bzw. 7 Tagen (teilweise 13 Tage) bestrahlte, wobei man je nach Lichtquelle(n) die folgenden Messungen durchführte:

7-Tage-Werte (13 Tage-Werte) für Blau / Blau + Weiß / UV-A, 3-Tage-Werte für UV-B und UV-B + Weiß.

Die Anthocyanbildung wurde nach den Verfahren (1) bis (3) bestimmt.

Rotwerdenden Sorten: Cox Orange, Elstar, Gloster, Idared, Jonagold, Pilot;

Grüne Sorten: Golden Delicious, Granny Smith und Mutsu.

- 15 Die (nicht dargestellten) Ergebnisse zeigten, daß auch bei der Bestrählung von längerer Zeit gelagerten Äpfeln mit einer Mischung aus UV-B und weißem Licht die Rotfärbung bei allen Äpfeln nach drei Tagen voll ausgebildet war.
- 20 Die Mischung aus blauem + weißem Licht zeigte eine stärkere Wirkung als bei frisch geernteten Äpfeln. So erhält man im Unterschied zu frisch geernteten Äpfeln (vgl. Tabelle 2) bereits nach 7 Tagen eine merkliche Rotfärbung. Bei einer Bestrahlung mit einer Mischung aus blauem und weißem Licht von gelagerten Idared-Äpfeln erhielt man beispielsweise nach 13 Tagen eine leuchtend rote Färbung, ausgehend von grünen Äpfeln.

Bei schlecht rot werdenden Sorten (z.B. Cox Orange) hat UV-B allein eine stark beschleunigende Wirkung, ebenso wie bei al-30 len anderen Sorten. Bei den ohnehin relativ gut rot werdenden sorten z.B. Pilot und Gloster hat schon blaues Licht (oder eine Mischung aus blauem und weißem) eine beschleunigende Wirkung.

35 Der Zeitverlauf der Rotfärbung ist bei den gut rot werdenden Sorten nicht wesentlich schneller als bei den grünen Sorten.

WO 00/41557

PCT/DE09/00068

- 18 -

Der überraschendste Befund war jedoch, daß alle drei "grünen" Sorten mit UV-B allein, oder noch stärker, mit UV-B + weiß, ebenfalls vollständig rot werden.

5 BEISPIEL 4 (andere Früchte):

Gelagerte, noch gründe Birnen der Sorte Abate (Herkunftsland: Italien) wurden auf die gleiche Weise wie in Beispiel 1 bestrahlt, jedoch nur mit UV-B-Licht, UV-B- und Weißlicht, Blaulicht und Blau- und Weißlicht. Nur UV-B- bzw. UV-B und Weißlicht führten zu einer Rötung der Früchte nach 3 bis 7 Tagen.

Dieses Ergebnis zeigt, daß das erfindungsgemäße Verfahren auch auf andere Früchte als Äpfel anzuwenden ist.

(a) The second of the secon

The second of the second second

ានប្រជាពល ប្រជាពល ប្រជាពល ប្រជាពល ប្រជាពល សម្រេច ស្គ្រោះ ប្រជាពេល ប្រជាពល ប្រជាពល ប្រជាពល ប្រជាពល ប្រជាពល ប្រជ ប្រជាពល ប្រជា ប្រជាពល ប្រជាព

- 19 -

PCT/DE00/00068

Strahlungsflußverteilung (W/m²)

Slau (400-510nm) (510-620nm)		o-w	W-B	UV-A		VIS	
Blau (400-510nm) (510-620nm)		100-280 nm	280-315 mm	315-400 mm	·	(400 - 780 nm)	
0 0 0,1 2,5 9,1 0 0 0,1 12,2 2,0 0 0 0,05 0,16 0,19 0 0,11 31,4 5,25 0,3 max. 16,8 9,9 2,5					Blau (400-510nm)		Rot (620-780nm)
0 0 0 0,1 12,2 2,0 0 0 0 0,05 0,16 0,19 0,3 max. 16,8 3,9 9,9 2,5					2 5	9.1	10,0
0 0 0,1 12,2 2,0 0,19 0,16 0,19 0,3 max. 16,8 3,3 3,4 2,5	TLD 36 4/83	5		1 2	7		-
0 0,05 0,16 0,19 0,3 max. 16,8 3,3 1,4 2,5	(weiß)						F 0
0 0,05 0,16 0,19 0,3 max. 16,8 31,4 2,5	TLD 36 W/18	0	0	T 0	12,2	0.7	2
0 0 0 0,05 0,12 0,12 0,12 0,12 0,13 0 0,13 max. 16,8 2,5 2,5	(blan)					01.0	4.5
0 0,11 31,4 0,3 max. 16,8 3,350 0,3 max. 16,8	TLD 36 W/15	0	0	50'0	91.0	111	
0 0,11 31,4 0,3 max. 16,8 9,9	(rot)					F 25	
0,3 max. 16,8	TL 60 W/09 N''	0	0,11	31,4	-	0,47	
0,3 max. 16,8	(UV-A)					2 5	
	TL 40 W/12	0,3 max.	1	3		C (2	
	(g-\n)						

Section 200

- 20

PCT/DE00/00068

					Tabelle 2a					
			idared			Jonagold			Pilot	
Lichlquelle		Chromamelerwerte (Y/My)	Absorption. (527,5 nm)	opt. Auswertung	Chromameterwerle (Y/x/y)	Absorption (527,5 nm)	opl. Auswerlung	Chromamelerwerte (Y/x/y)	Absorption (527,5 nm)	opl. Auswerting
·	0 Tage	37,4/0,348/0,429	0,413	•	33,6/0,347/0,418	0,173		34,6/0,347/0,431	0,154	•
Blau	3 Tage	34,3/ 0,346/ 0,427	9	•	34,010,347/0,421			35,3/0,351/0,432		•
	5 Tage	33,3/0,349/0,435			32,40,35110,425			32,1/0,354/0,443		
	7 Tage	34,410,35410,445	0,180		28,210,35310,426	0,159	•	33,4/0,358/0,450	0,152	,
	3 Tago	35,5/0,348/0,428			33,410,34710,426		•	31,0/0,350/0,425		•
Blau + Weiß	5 Tarie	34,910,34910,434			31,9/0,348/0,432			30,3/0,352/0,432		
	7 Tage	33,9/0,350/0,438	0,144	,	31,1/0,352/0,431	0,137	1	30,870,353/0,438	0,195	•
	3 Tage	34,210,34810,430		•	32,410,34510,422		i	32,370,34810,429		•
UV-A	5 Tage	1			30,2/0,350/0,433			28,410,349/0441		
	7 Tage	39,9/0,354/0,436	980,0	*	33,5/0,352/0,437	0,105	9	31,670,35270,446	0,132	
-	3 Tarje	37,010,34410,425		•	32,4/0,346/0,422		•	33,670,349/0,432		•
UV-A + Weiß	5 Tage	37,1/0,351/0,434		·	32,1/0,348/0,428			32,1/0,351/0,440		
	7 Tage	36,9/0,353/0,437	0,108		29,7/0,352/0,430	0,161	•	31,770,355/0,447	0,087	
	3 Tage	28,0/0,359/0,461		+	26,1/0,366/0,387	-	+/-	21,0/0,377/0,369	·	4
NV-B	5 Tage	23,8/0,372/0,385	·		21,7/0,373/0,383			17,8/0,381/0,364		
	7 Tage	28.8/0,377/0,408	0.430	+	19,3/0,383/0,376	0,320	#	16,3/0,388/0,366	0,782	‡
	3 Tage	24,3/0,363/0,414		+	21,4/0,359/0,373		+	16,910,369/0,348		‡
UV-B + Well 5 Tage	5 Tage	21,4/0,378/0,374			17,010,36810,357			13,2/0,366/0,335		,
	7 Tage	17,8/0,376/0,369	1,676	‡	17,210,37310,367	1,008	**	12,9/0,372/0,338	1,950	‡

WO-00/41557

- 21 -

PCT/DE00/00068

Tabelle 2a (Fortsetzung)	Cox Orange Gloster	mamelerwerte Absorption opt. Chromamelerwerte Absorption opt. Chromamelerwerte Absorption opt. (527,5 nm) Auswertung (Y/My) (527,5 nm) Auswertung (Y/My) (527,5 nm) Auswertung (Y/My)	6/0,349/0,427 0,088 - 46,7/0,352/0,424 0,118 - 41,2/0,345/0,411 0,183 -	4/0,349/0,422 - 37,5/0,353/0,423 -: 37,6/0,353/0,383 -/+	2/0,345/0,433 36,8/0,358/0,433	3/0,355/0,440 0,133 -/+ 37,9/0,360/0,438 0,135 - 28,5/0,372/0,374 0,256 -/+	5/0,351/0,427 - 39,4/0,352/0,424 - 39,0/0,348/0,402 -	90,353/0,431 32,170,353/0,435	0,100	5/0,353/0,432 - 32,7/0,348/0,421 - 40,0/0,345/0,410	2/0,357/0,443 32,5/0,353/0,435 38,0/0,355/0,405	9/0,356/0,444 0,127 - 32,1/0,357/0,441 0,095 - 31,5/0,362/0,382 0,170 -	9/0,351/0,427 - 35,1/0,346/0,425 - 37,7/0,349/0,397 -	1/0,349/0,430 32,1/0,355/0,386 32,1/0,355/0,386	.170,35470,439 0,098 - 32,170,35770,441 0,150 - 32,510,35970,403 0,205 -	910,36910,352 + 23.5/0,367/0,376 + 20,6/0,378/0,348 ++	9/0,376/0,363	0,00,385/0,380 0,679 +++ 20,3/0,381/0,377 0,853 .+++ 15,3/0,387/0,346 0,832 +++	++ ++ 21,210,376,015 + 19,610,37010,340 ++	6.0,376.0,346 17,610,38810,351 17,610,33810,351	410,37910,345 1,472 +++ 18,310,38410,362 1,421 +++ 16,110,37710,341 2,509 +++
	Сой Оганде	amelerwerte Absorption opt. (527,5 nm) Auswerlung	•	40,4/0,34910,422 37,5/0,3/		4	39,4/0,35		0,100 -	•),443	7,244 0,127		33,170,34970,430	0,098	7	17,9/0,376/0,363	0,679	‡	15,600,37610,346	+++ 2/2/1
		Lichtquelle Chrom (Y/x/y)	0 Tage 3				3 Tage 3		7 Tage	3 Tage 3	UV-A 5 Tage 3	7 Tage 3	3 Tage 3	UV.A + Weiß 5 Tage 3	7 Tage 3	3 Tage 2	UV-B 5 Tage 1	7 Tage	3 Tage 1	UV-B + Welf 5 Tage 1	!

_ 22.

PCT/DE00/00068

Tabelle 2a (Fortsetzung)

			- Golden Delicious			Zifronen- apfel		Mulsu	Granny Smith	·
Lichtquelle		Chromamelerwarte (Y/x/y)	Absorption (527,5.nm)	opt. Auswerlung	Chromameterwerta (YAAy)	Absorption (527,5 nm)	opl. Auswertung	opl. Auswerlung	Absorplion (527,5 nm)	opl. Auswertung
	0 Tage	35,270,345/0,418	0,124		41,410,34610,421	0,144			0,184	
Bîau	3 Tage			•	34,0/0,347/0,426		,	-		
	5 Tage	33			32,010,348/0,434					
	7 Tage	35	0,172		32,5/0,355/0,444	0,089		•	0,126	,
	3 Tage			•	32,710,349/0,425		•	,		
Biau + Weiß	5 Tage			:	32,4/0,353/0,435		·			
		9.	0,189	(q)-	32,2/0,356/0,441	9,068	(c)*	,	0,132	_
	3 Tage	38,310,35010,421			32,2/0,346/0,421		4			
UV.A	5 Tage				32,610,35010,437					
	7 Tage		0,087	•	32,0/0,353/0,444	0,127	•			·
	3 Tage			1	34,1/0,348/0,429					
UV-A + Wells 5 Tage	5 Tage	<u>L</u>			30,4/0,348/0,433					
:	7 Tage		0,137	(q) -	30,8/0,353/0,443	0,134	(E).		0,153	•
	3 Tage			+	24,710,36910,377		+			
9. An	5 Tage		•		17,2/0,379/0,354					
	7 Tage		0,508	(q)++	16,210,38470,364	0,750	(E) ⁺⁺	‡	0,512	‡
	3 Tage	-		+	20,210,375/0,353	,	‡			
UV-B + Wells	5 Tage				15,210,37810,338					
:	7 Tage		1,039	(q) +++	13,510,38010,337	1,953	(c) +++	‡	0,717	‡
(a) vgi, Fig. 2a	23		(e)	belieeren !	bel leeren Kästchen keine Messung durchgeführt	g durchgefül	¥			

(a) vg. rg. 29 (b) vg. Fg. 29

- 23 -

PCT/DE00/00068

		ldared	plogenof	Pilot	Cox Orange	Elstar	Gloster	Gofden Delicious	Zitronen- apfel
Lichtquelle		Absorption (527,5 nm)	Absorption (527,5 nm)						
	0 Tage	0,183	0,129	0,148	0,154	0,173	0,146	0,207	0,144
Blau	3 Tage	0,246	0,224	0,167	0,197	0,144	0,304	0,140	0,153
Blau + Weiß	3 Tage	0,170	. 0,137	0,243	0,126	0,179	265,0	0,135	0,141
UV-A	3 Tage	0,258	0,132	0,211.	0,196	0,172	0,216	0,162	0,162
UV-A + Weiß 3 Tage	3 Tage	0,193	0,190	0,203	0,192	0,169	0,387	0.136	0,141
UV-B	3 Tage	0,485	0,485	0,858	0,283	0,582	0,459	0,500	0,329
UV-B + Weiß 3 Tage	3 Tage	0,871	6,973	1,919	0,461	1,089	1,582	0,668	0,549

abelle 7

- 24

PCT/DE00/00068

				Tabelle 3				
		.•	ŕ					
	Cox Or	range	Jonagold	plo			, C	
Bestrahlungs-	-						solden Uelicions	Jelicions
dauer mit UV. B/Weiß-Licht	Chromameter- werte (Y/x/y)	Absorption (527,5nm)	Chromameter- werte (Y/xky)	Absarption (527,5nm)	Chromameter- werle (Y/x/y)	Absorption (527.5nm)	Chromameter-	Absorption
0 h B	40.5/0.378/0.474	0.449	30 5/0 264/0 120	207.0			(form)	(327, 36111)
		25.12	974,01106,010,66	0,128	38,370,369/0,438	0,159	40,6/0,378/0,434	0,166
12 h B	41,6/0,385/0,435	0,163	40,7/0,359/0,428	0,13	39.2/0.367/0.432	. 0440	44 6/000000	
12 h B +						2	41,000,000,435	0,159
7 Tage L	43,5/0,406/0,437	0,248	36,7/0,383/0,439	0,118	23,1/0,404/0,406	0.540	38 4/0 387/0 425	6
							מבייתו המיחורים	0,140
1 Tag B	38,2/0,376/0,438	0,199.	48,0/0,372/0,425	0,113	32,910,37110,425	0.196	38 210 17E10 120	,
1 Tag B +	31 8/0 407/0 400	. C	מסך מונטך מוך טר				025,010,12,012,02	0,12/
		2,630	Za,3/U,4U8/U,4UU	0,233	17,3/0,420/0,359	1,102	33,4/0,382/0,425	0,205
32 h B	35,0/0,408/0,417	0,209	42,9/0,382/0,431	0.155	33 0M 303/0 474			
32 h B +					במימונים ביומים	<u> </u>	39,2/0,388/0,432	0,131
7 Tage L	39,270,388/0,432	0,249	24,0/0,413/0,380	0.363	15,970,41770,353	354	20 200 44400 2002	6
						1	יייייייייייייייייייייייייייייייייייייי	0,223
40 h B	34,2/0,400/0,421	0,225	37,3/0,386/0,409	0,183	24,0/0,402/0,388	26P.U	34 2/0 400m 424	
40 h B +	24 710 407 P.						יייייייייייייייייייייייייייייייייייייי	0,148
ו זמאם ר	51,170,401/0,405	0,281	23,1/0,405/0,393	0,413	16,4/0,422/0,350	1,373	25/0,405/0,387	0.461

B = Bestrahlung L = Lagenung

25

30

35

WO 60/41557

- 25 -

PCT/DE00/00068

Patentansprüche:

- 1. Verfahren zum Hervorrufen oder Fördern einer Anthocyanfärbung in grundsätzlich Anthocyan-bildenden Pflanzen und/oder Früchten, dadurch gekennzeichnet, daß man die Pflanzen und/oder Früchte mit UV-B-Licht oder einer Mischung aus UV-B und weißem Licht oder mit weißem und blauem Licht bestrahlt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Bestrahlung bezogen auf die Wattleistung wenigstens 10% Licht im Wellenlängenbereich zwischen 280 und 315 nm UV-B-Licht enthält, vorzugsweise wenigstens 20%.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Früchte aus Äpfeln und Birnen ausgewählt werden.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die ? Apfelsorten ausgewählt sind aus Cox Orange, Elstar, Gloster; ? Idared, Jonagold und Pilot.
 - 5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man eine Rotfärbung bei natürlicherweise nicht
 rotwerdenden Apfelsorten ausbildet, wobei die Apfelsorten vorzugsweise ausgewählt sind aus Golden Delicious, Zitronenapfel,
 Granny Smith und Mutsu.

- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Pflanzen und/oder Früchte über eine Dauer zwischen 6 Stunden und mehreren Tagen, vorzugsweise zwischen 12 h und 72 h bestrahlt.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Bestrahlung bei einer Temperatur von 0 bis 30°C, vorzugsweise 5 bis 25°C durchführt.
 - 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Abstand der zu bestrahlenden Pflanzen

4. 经更惠股份

కించి కోటించి కోటికి కోటించి ఈ కోటికి కోటి

··· •

5 35 2 to 2

WO 00/41557

- 26 -

und/oder Früchte zu der oder den Lichtquellen bis zu 3 m, vorzugsweise 25 bis 100 cm beträgt.

- 9. Verfahren mach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die Früchte nach der Bestrahlung im Dunkeln lagert.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man über eine Dauer von 12 bis 72 h bestrahlt und anschließend bei 0-10°C für mindestens 2 Tage im Dunkeln lagert.
 - 11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Früchte nach der Bestrahlung in einem ULO-Lager oder CA-Lager gelagert werden.
 - 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß man zur Ausbildung einer Aussparung der Anthocyanfärbung mit einer beliebig gewählten Form vor der Bestrahlung eine lichtundurchlässige Abdeckung mit dieser Form auf die nicht oder wenig gefärbten Pflanzen und/oder Früchte aufbringt und die Abdeckung nach der Bestrahlung wieder entfernt.
- 13. Eine Anthocyanfärbung aufweisende Pflanze und/oder Frücht;
 25 dadurch gekennzeichnet, daß sie nach einem Verfahren gemäß einem der Ansprüche 5 bis 12 erhältlich ist.

FLTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
DUNG VERÖFFENTLICHT NACH DE

RTRAG UBER DIE

INTERNATIONALE AN MENARBEIT AUF DEM GEBIET DES ENTWESENS (PCT) INTERNATIONALE ZUS

(51) Internationale Patentklassifikation 7: A01G 7/04, A01H 3/02

A1

- (11) Internationale Veröffentlichungsnummer: WO 00/41557
- (43) Internationales Veröffentlichungsdatum:

20. Juli 2000 (20.07.00)

(21) Internationales Aktenzeichen:

PCT/DE00/00068

- (22) Internationales Anmeldedatum: 11. Januar 2000 (11.01.00)
- (30) Prioritätsdaten:

199 00 616.4

· 11. Januar 1999 (11.01.99)

DE

- (71)(72) Anmelder und Erfinder: SCHERER, Günther [DE/DE]; Immenweg 14, D-30827 Garbsen-Beerenbostel (DB).
- (74) Anwalt: LÄUFER, Martina; Gramm, Lins & Partner GbR, Koblenzer Str. 21, D-30173 Hannover (DE).

(81) Bestirnmungsstaaten: JP, NZ, US, ZA, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: METHOD FOR INDUCING OR PROMOTING AN ANTHOCYANIN COLORATION IN PLANTS AND/OR FRUIT WHICH BASICALLY PRODUCE ANTHOCYANIN
- (54) Bezeichnung: VERFAHREN ZUM HERVORRUFEN ODER FÖRDERN EINER ANTHOCYANFÄRBUNG IN GRUNDSÄTZLICH ANTHOCYAN-BILDENDEN PFLANZEN UND/ODER FRÜCHTEN

(57) Abstract

The invention relates to a method for inducing or promoting an anthocyanin coloration in plants and/or fruit. According to the inventive method, the plants and/or fruit are irradiated with UVB light, with a mixture of UVB light and white light or with a mixture of white light and blue light. invention facilitates the production of red anthocyanins in green apple varieties such as Golden Delicious, Zitronenapfel, Granny Smith or Mutsu.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Förderung der Anthocyanbildung in Pflanzen und/oder Prüchten, in welchen man die Pflanzen und/oder Früchte mit UV-B-Licht, mit einer Mischung aus UV-B und weißem Licht oder mit einer Mischung aus weißem Licht und blauem Licht bestrahlt. Erfindung ermöglicht die

(2) 2.1 4 3/2 5/ (2) (2) (1) Master 77:25 4 T (5) Sec. 25 ...: ...<u>.</u> ,...

Ausbildung roter Anthocyane in grunen Apfelsorten wie Golden Delicious, Zitronenapfel, Granny Smith oder Mutsu.

DE

DK EE

Deutschland

Dinemark

Estland

LK LR

Sri Lanka

Liberia

LEDIGLICH ZUR INFORMATION

the section of the section

CONTROL OF THE PROPERTY OF THE SECOND SERVICE OF THE SERVICE OF TH

Action of the

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen. 1.* .

		1	٠, -	•••	a see ye was a see to be		male i	1	- Language Application (特別の)。特別の
· AL	Albanica		ES.	· :	Spanien	LS	Lesotho ·	Si -	Slowenien
MA	Armenica	. • •	FI -	**	Finaland	LT	Litauen	SK	Slowakei
AT	Osterreich		FR		Frankreich	LU -	Luxemburg	SN	Scregat
ΑŲ	Australien		GA		Gaban	·LV	Leitland	SZ	- Swasiland
AZ	Aserbaldschan	·	GB	:	Vereinigtes Königreich	MC	Monaco	TD.	Txchad
BA	Bosnica-Herzegowins		GE		Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados		СH		Ohana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgica		GN		Guinea	MK	Die chemalige jugoslawische	YM	Turkmenistan
BF	Burkina Faso		GR		Griechenland		Republik Mazedonies	TR	Türkei
BG	Bulgarien		RU		Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	•	1B		Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien		IL		Israel ·	MR	Mauretanien	UĠ	Ugunda
BY	Belarus		18		Island	MW	Malawi	US	Vereinigte Staaten von
ĊA	Kanada		IT		Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik		JР		Jepan	NE	Niger	UZ	Usbekistan
ÇÇ	Koogo		KE		Kenia	NL	Niederlande	VN	Victnam
CIT	Schweiz		KG		Kirgisistan	NO	Norwegen	An .	Jugoslawien
CI	Càc d'Ivoire		KР		Demokratische Volksrepublik	NZ	Neusceland	ZW	Zimbabwe
CM	Kamerun				Korea	PL	Polen		
CN	China	•	KR	. •	Republik Korea	PT	Portogal		
CU	Kuba		KZ		Kasachstan	. RO	Rumanien		医内脏性 网络二种 医精神病炎
cz	Tschechische Republik	?	LC		St. Lucia	RU .	Russische Föderation		

Sudan

Schweden

Singapur

SE

SG