

BAUELEMENTE UND SCHALTUNGEN II

ES2: Operationsverstärker

Studien- und Vorbereitungsaufgaben

Autor: Richard Grünert

4.5.2020

1 Vorbereitungsaufgaben

1.1 Kenngrößen des Operationsverstärkers

1.1.1 Spannungsgrenze

1.1.2 Leerlaufverstärkung

1.1.3 G

-Ausgangsspannungsgrenze -Leerlaufverstärkung -CMRR, Gleichtakt/-Gegentaktverstärkung -Eingangsruheströme -Gleichtakteingwiderstand differenzeingwiderstand

1.2 Rückkopplung

Abbildung 1: OPV-Kennlinie ohne Rückkopplung (ideal)

Abbildung 2: OPV-Kennlinie mit Rückkopplung

Durch Rückführung eines Teils des Ausgangs- auf das Eingangssignal durch ein Rückkopplungsnetzwerk wird der Operationsverstärker in einen linearen Arbeitsbereich gebracht, wodurch die Verstärkung nicht mehr den Wert der der Leerlaufverstärkung (Abb. 1), sondern einen kontrollierten Verstärkungswert (Abb. 2) annimmt.

1.3 Invertierender Operationsverstärker

Abbildung 3: Invertierende Verstärkerschaltung

$$U_a = V_0(U_p - U_n)$$
$$U_p = 0 V$$
$$U_a = -V_0 \cdot U_n$$

Bestimmung von U_n durch Überlagerung der Eingangs- und Ausgangswirkung:

$$U_n = U'_n + U''_n$$

$$U'_n = U_n|_{U_a=0}$$

$$= U_e \cdot \frac{R_2}{R_1 + R_2}$$

$$U''_n = U_n|_{U_e=0}$$

$$= U_a \cdot \frac{R_1}{R_1 + R_2}$$

$$U_a = -V_0 \cdot U_e \cdot \frac{R_2}{R_1 + R_2} - V_0 \cdot U_a \cdot \frac{R_1}{R_1 + R_2}$$

$$U_a(1 + V_0 \cdot \frac{R_1}{R_1 + R_2}) = -V_0 \cdot U_e \cdot \frac{R_2}{R_1 + R_2}$$

$$\frac{U_a}{U_e} = V = -\frac{V_0 \cdot \frac{R_2}{R_1 + R_2}}{1 + V_0 \cdot \frac{R_1}{R_1 + R_2}} = -\frac{V_0}{(R_1 + R_2) + V_0 \cdot R_1}$$

$$V = -\frac{R_2}{\frac{R_1 + R_2}{V_0} + R_1}$$

für $V_0 \to \infty$

$$V = -\frac{R_2}{R_1}$$

1.4 Beispielhafte Übertragungskennlinie

Abbildung 4: Kennlinie einer invertierenden OPV-Verstärkerschaltung mit einer Verstärkung von $V_u=-10$ und einer Versorgungsspannung von $U_s=\pm 15\,{\rm V}$

1.5 Nichtinvertierender Operationsverstärker

Abbildung 5: Nichtinvertierende Verstärkerschaltung

$$U_{a} = V_{0}(U_{p} - U_{n})$$

$$U_{a} = V_{0}(U_{e} - U_{n})$$

$$U_{n} = U_{a} \frac{R_{1}}{R_{1} + R_{2}}$$

$$U_{a} = V_{0}(U_{e} - U_{a} \frac{R_{1}}{R_{1} + R_{2}})$$

$$U_{a}(1 + V_{0} \frac{R_{1}}{R_{1} + R_{2}}) = V_{0}U_{e}$$

$$\frac{U_{a}}{U_{e}} = V = \frac{V_{0}}{1 + V_{0} \frac{R_{1}}{R_{1} + R_{2}}}$$
für $V_{0} \to \infty$

1.6 Beispielhafte Übertragungskennlinie

Abbildung 6: Kennlinie einer nichtinvertierenden OPV-Schaltung mit einer Verstärkung von $V_u=21$ und einer Versorgungsspannung von $U_s=\pm 15\,\mathrm{V}$

1.7 Eingangswiderstand des invertierenden Verstärkers

$$r_{\rm ein} = \frac{U_e}{I_e}$$

virtuelle Masse, daher $I_e=I_{R_1},\,U_{R_1}=U_e$

$$r_{\rm ein} = \frac{U_e}{I_{R_1}} = \frac{U_e}{\frac{U_e}{R_1}}$$

$$r_{\rm ein}=R_1$$

1.8 Eingangswiderstand des nichtinvertierenden Verstärkers

$$r_{\rm ein} = \frac{U_e}{I_e}$$

Der Eingangswiderstand $r_{\rm ein}$ der nichtinvertierenden Verstärkerschaltung wird bestimmt durch den Widerstand zwischen dem nichtinvertierenden und dem invertierenden Eingang des Operationsverstärkers. Für einen idealen OPV gilt daher:

$$r_{\rm ein} \to \infty$$

1.9 Weitere Grundschaltungen

1.9.1 Differenzverstärker

Abbildung 7: Differenzverstärkerschaltung

Der Differenzverstärker verstärkt die Differenz der Spannungen U_{e1} und U_{e2} .

Überlagerung:

$$U_a = U'_a + U''_a$$

$$U'_a = U_a|_{U_{e2}=0} = -U_{e1} \cdot \frac{R_3}{R_1}$$

$$U''_a = U_a|_{U_{e1}=0} = U_p \cdot \left(1 + \frac{R_3}{R_1}\right)$$

$$= U_{e2} \frac{R_4}{R_2 + R_4} \cdot \left(1 + \frac{R_3}{R_1}\right)$$

$$U_a = U_{e2} \cdot \frac{R_4}{R_2 + R_4} \cdot \left(1 + \frac{R_3}{R_1}\right) - U_{e1} \cdot \frac{R_3}{R_1}$$

$$U_a = U_{e2} \cdot \frac{R_4}{R_2 + R_4} + U_{e2} \cdot \frac{R_4}{R_2 + R_4} \cdot \frac{R_3}{R_1} - U_{e1} \cdot \frac{R_3}{R_1}$$

Wenn gilt $\frac{R_3}{R_1} = \frac{R_4}{R_2}$:

$$U_a = \frac{R_3}{R_1} \left(U_{e2} - U_{e1} \right)$$

Wenn alle Widerstände gleich dimensioniert werden:

$$U_a = U_{e2} - U_{e1}$$

1.9.2 Instrumentationsverstärker

Abbildung 8: Instrumentationsverstärkerschaltung

Virtuelle Masse, $U_d = 0$:

$$U_{R_2} = U_{e1} - U_{e2}$$

$$I_{R_2} = \frac{U_{e1} - U_{e2}}{R_2}$$

für $I_n = 0$:

$$I_{R_1} = I_{R_2} = I_{R_3}$$

$$U_{a1,2} = U_{a1} - U_{a2} = I_{R_3}(R_1 + R_2 + R_3)$$

$$U_{a1} - U_{a2} = \frac{U_{e1} - U_{e2}}{R_2} (R_1 + R_2 + R_3)$$

für $R_1 = R_3$:

$$U_{a1} - U_{a2} = U_{e1} - U_{e2} \left(1 + \frac{2 \cdot R_1}{R_2} \right)$$

der Dritte OPV ist als Differenzverstärker geschaltet für $R_4 = R_5 = R_6 = R_7$ ist die Verstärkung $V_{OPV3} = -1$ (Eingangsdifferenz tauschen)

$$U_{a3} = (U_{e2} - U_{e1}) \cdot (1 + \frac{2 \cdot R_1}{R_2})$$

Die Verstärkung ist somit durch R_2 einstellbar

1.9.3 Summierer

Abbildung 9: Summierverstärkerschaltung

Der Summierverstärker verstärkt die Summe der gewichteten Eingangsspannungen.

$$I_{\text{IN}} = \sum_{n=1}^{N} I_{en} = \frac{U_{e1}}{R_1} + \frac{U_{e2}}{R_2} + \dots + \frac{U_{eN}}{R_N}$$

$$U_a = -\left(\frac{R_f}{R_1}U_{e1} + \frac{R_f}{R_2}U_{e2} + \dots + \frac{R_f}{R_N}U_{eN}\right)$$

1.9.4 Integrator

Abbildung 10: Integratorschaltung

$$i_{R_1} = -i_{C_1}$$

$$\frac{u_e}{R_1} = -C_1 \cdot \frac{\mathrm{d}u_a}{\mathrm{d}t}$$

$$u_a = -\frac{1}{R_1 C_1} \cdot \int u_e \, \mathrm{d}t$$

Der Integrator bildet also das Integral der Eingangsspannung, wichtet es mit $\frac{1}{RC}$ (RC...Zeitkonstante) und invertiert es.

1.9.5 Differentiator

Abbildung 11: Differentiatorschaltung

$$i_{R_1} = -i_{C_1}$$

$$\frac{u_a}{R_1} = -C_1 \cdot \frac{\mathrm{d}u_e}{\mathrm{d}t}$$

$$u_a = -R_1 C_1 \cdot \frac{\mathrm{d}u_e}{\mathrm{d}t}$$

Der Differentiator differenziert die Eingangsspannung, wichtet das Ergebnis mit RC und invertiert es.

1.10 Aktive Filterschaltungen

Die Grenzfrequenz f_{gr} ist die Frequenz, bei der die Übertragungsfunktion (Verstärkung) den Wert $\frac{1}{\sqrt{2}}$ annimmt (Abfall von $-3\,\mathrm{dB}$).

Die Bandbreite B ist die Differenz zwischen niedrigster und höchster Frequenz, welche eine Dämpfung von $\frac{1}{\sqrt{2}}$ aufweisen.

Die Güte ist der Quotient aus Mittenfrequenz f_0 und Bandbreite B eines Bandpasses. Sie ist ein Maß für dessen Steilheit.

1.10.1 Tiefpass 1. Ordnung

Abbildung 12: Tiefpass 1. Ordnung

$$\frac{u_a}{u_e} = V(\omega) = -\frac{Z_2}{Z_1} = -\frac{R_f / / \frac{1}{j\omega C_1}}{R_1}$$
$$= -\frac{\frac{R_f \cdot \frac{1}{j\omega C_1}}{R_f + \frac{1}{j\omega C_1}}}{R_1}$$

$$V(\omega) = -\frac{R_f}{R_1} \cdot \frac{1}{1 + j\omega R_f C_1}$$

$$|V(\omega)| = \frac{R_f}{R_1} \cdot \frac{1}{\sqrt{1 + \omega^2 R_f^2 C_1^2}}$$

$$\phi(\omega) = -\arctan \omega R_f C_1$$

Abbildung 13: Beispielhafter (normierter) Betragsfrequenzgang des Tiefpasses

Abbildung 14: Beispielhafter Phasengang des Tiefpasses

1.10.2 Hochpass 1. Ordnung

Abbildung 15: Hochpass 1. Ordnung

$$\frac{u_a}{u_e} = V(\omega) = -\frac{Z_2}{Z_1} = -\frac{R_f}{R_1 + \frac{1}{j\omega C_1}}$$

$$V(\omega) = \frac{R_f}{R_1} \cdot \frac{1}{1 + \frac{1}{j\omega R_1 C_1}}$$

$$|V(\omega)| = \frac{R_f}{R_1} \cdot \frac{1}{\sqrt{1 + \frac{1}{\omega^2 R_1^2 C_1^2}}}$$

$$\phi(\omega) = \arctan \frac{1}{\omega R_1 C_1}$$

Abbildung 16: Beispielhafter (normierter) Betragsfrequenzgang des Hochpasses

Abbildung 17: Beispielhafter Phasengang des Hochpasses

1.10.3 Bandpass 1. Ordnung

Abbildung 18: Bandpass 1. Ordnung

$$\frac{u_a}{u_e} = V(\omega) = -\frac{Z_2}{Z_1} = -\frac{R_f / / \frac{1}{j\omega C_f}}{R_1 / / \frac{1}{j\omega C_1}}$$
$$= -\frac{\frac{R_f \cdot \frac{1}{j\omega C_f}}{R_f + \frac{1}{j\omega C_f}}}{R_1 + \frac{1}{j\omega C_1}} = -\frac{\frac{R_f}{1 + j\omega R_f C_f}}{R_1 + \frac{1}{j\omega C_1}}$$

$$V(\omega) = -\frac{R_f}{R_1} \cdot \frac{1}{(1 + j\omega R_f C_f) \cdot \left(1 + \frac{1}{j\omega R_1 C_1}\right)}$$

$$|V(\omega)| = \frac{R_f}{R_1} \cdot \frac{1}{\sqrt{\left(1 + \frac{R_f C_f}{R_1 C_1}\right)^2 \cdot \left(\omega R_f C_f - \frac{1}{\omega R_1 C_1}\right)^2}}$$

$$\phi(\omega) = \arctan \frac{\omega R_f C_f - \frac{1}{\omega R_1 C_1}}{1 + \frac{R_f C_f}{R_1 C_1}}$$

Abbildung 19: Beispielhafter (normierter) Betragsfrequenzgang des Bandpasses 1. Ordnung

Abbildung 20: Beispielhafter Phasengang des Bandpasses 1. Ordnung

1.10.4 Bandpass 2. Ordnung

Abbildung 21: Bandpass 2. Ordnung

$$|V(\omega)| = \frac{R_2 C_2}{\sqrt{(R_1(C_1 + C_2))^2 + \left(\frac{1}{\omega}\left(1 + \frac{R_1}{R_3}\right) - \omega R_1 C_1 R_2 C_2\right)^2}}$$

1.11 Komparator

Abbildung 22: Einfache Komparatorschaltung

$$U_a = V_0(U_p - U_n) = V_0(U_{e1} - U_{e2})$$

Ist U_{e1} größer als U_{e2} gerät der Operationsverstärker an seine maximale positive Ausgangsspannung (idealerweise die Versorgungsspannung), ist U_{e1} kleiner als U_{e2} an die maximal negative. Legt man U_{e2} auf einen konstanten positiven Referenzspannungswert, so verschiebt sich die Kennline aus Abbildung 1 nach rechts.

Abbildung 23: Übertragungskennlinie der Komparatorschaltung mit positiver Referenzspannung (U_{e2})

Zwischen invertierendem und nichtinvertierendem Eingang des Operationsverstärkers können zwei Dioden antiparallel geschaltet werden, um die Eingangsdifferenzspannung auf $\pm 0.7\,\mathrm{V}$ zu begrenzen. Zusätzlich müssen dann zur Strombegrenzung Widerstände vor die Eingangs-/ Referenzspannung geschaltet werden.