Ve203 Discrete Mathematics

Sample Exercises for the First Midterm Exam

The following exercises are sample exercises of a difficulty comparable to those found the actual first midterm exam. The exam will usually include of 7 to 8 such exercises to be completed in 100 minutes.

Exercise 1. Find $x, y \in \mathbb{Z}$ such that $24x + 138y = \gcd(24, 138)$. (1 Mark)

Exercise 2. Find all solutions of $140x \equiv 133 \pmod{301}$. (2 Marks)

Exercise 3. Calculate $3^{20} \mod 99$. (3 Marks)

Exercise 4. Find all solutions of $140x \equiv 133 \pmod{301}$. (2 Marks)

Exercise 5. Let A, B, C be statements. Are the following tautologies:

$$((A \Rightarrow B) \Rightarrow C) \Leftrightarrow (A \Rightarrow (B \Rightarrow C)),$$
$$((A \Rightarrow B) \land (C \Rightarrow \neg B)) \Rightarrow (A \Rightarrow \neg C)?$$

Give proofs or counterexamples!

(2+2 Marks)

Exercise 6. Let A, B, C, D, E be statements. Prove that the argument

$$A \Rightarrow C$$

$$D \lor E$$

$$\neg E \Rightarrow \neg B$$

$$(\neg B \land D) \Rightarrow A$$

$$\neg E$$

$$C$$

is valid by succesively applying known rules of inference. (3 Marks)

Exercise 7. Prove the following statement using induction in n:

$$\sum_{j=1}^{n} x^{n-j} y^{j-1} = \frac{x^n - y^n}{x - y}, \qquad x, y \in \mathbb{R}, \ x \neq y, \ n \ge 1.$$

(4 Marks)

Exercise 8. We define the set $S \subset \mathbb{Z}^2$ by the following properties

- $(3,5) \in S$
- $(x,y) \in S \Rightarrow (x+2,y) \in S$
- $(x,y) \in S \Rightarrow (-x,y) \in S$
- $(x,y) \in S \Rightarrow (y,x) \in S$

Show that S = T, where

$$T = \{(x,y) \in \mathbb{Z}^2 : \exists_{m,n \in \mathbb{Z}} : (x,y) = (2m+1,2n+1)\}.$$

Hint: show that $S \subset T$ and $T \subset S$.

(6 Marks)

Exercise 9.

i) Solve the system of congruences

$$x \equiv 2 \mod 3,$$
 $x \equiv 5 \mod 7,$ $x \equiv 6 \mod 8.$

ii) Solve the congruence $x^2 \equiv 29 \mod 35$.

(4+4 Marks)

Exercise 10. Let M_q be an integer of the form $a^q - 1$, where a and q are natural numbers. M_q is called a *Mersenne number*. When M_q is prime and a = 2, M_q is called a *Mersenne prime*.

- i) Prove that $(a-1) | (a^q 1)$.
- ii) Conclude that if M_q is prime then a=2 or q=1.
- iii) Prove that if M_q is a Mersenne prime, then q is prime.

(2+2+3 Marks)