Reg. No.								
----------	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, DECEMBER 2023

Fourth Semester

18MAB203T - PROBABILITY AND STOCHASTIC PROCESSES

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)
(Statistical tables to be provided)

(Statisti

Note:

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3	hours		9	Max. N	Mark	s: 1	00
	$PART - A (20 \times 1)$	= 20 1		Marks			
	Answer ALL Q						
1.	A discrete random variables takes			1	1	1	1
	(A) Positive		Finite				
	(C) Countably infinite	(D)	Finite or countably infinite				
2.	If the probability density function of $f(x) = kx, 0 < x < 1$, find k.	of a	random variable X is given by	r 1	2	1	2
	(A) 0	(B)	1.				
	(C) 2		1/2				
-3.	If the pdf of a RV X is $f(x) = 2x, 0 < x$	< 1, t	hen $P(X > 0.5)$ equal to	1	2	1	2
	(A) 1/2		2/3				
	(C) 3/4		4/5				
4.	The first moment of X about its mean is a	lwavs		1	1	1	1
	(A) 1	(B)					
	(C) 0	(D)					
5.	The joint pdf of (X, Y) is $f(x, y) = \begin{cases} 2x \\ 0 \end{cases}$	x 0	< x, y < 2 then the marginal pdf of X therwise	1	2	2	1
	is						
	(A) $2(1-x)$	(B)	2(1-y)				
	(C) 4x	(D)	2xy				
6.	Correlation coefficient r lies in the interva	al	3	1	1	2	1
	(A) $-1 \le r \le 1$		$0 \le r < 1$				
	(C) $r < -1$	(D)	r > 1				
7.			() 10	1	2	2	2
1.0	The joint pdf of (X,Y) is given by $f(x)$	c, y)=	$\begin{cases} xy & 0 < x < 1, 0 < y < 2 \\ 0 & otherwise \end{cases}$ then the	;	2	2	4
	value of E(XY) is						
	(A) ·8/3	(B)	8/9				
	(C) 1/3	(D)	1/9			_	
8.	If $f_{XY}(x, y)$ is the joint pdf of (X,Y) the	en f(x)	(y)	1	1	2	1
	(A) $f(x,y)/f_X(x)$	(B)	$f(x,y)/f_Y(y)$				
	(C) $f_X(x)/f_Y(y)$		$f_Y(y)/f_X(x)$				
	$J\Lambda \setminus J \setminus JI \setminus JJ$		J = (J J' J A ("J)				

9.		is a random variable with mean $0 \ge a \le a$	and t	finite variance σ^2 then for any a>0,	1	1	3	1
	(A)	$\frac{\sigma}{\sigma^2 + a^2}$	(B)	$\frac{\sigma^2}{\sigma^2 - \sigma^2}$				
	(C)	$\frac{\sigma^2}{\sigma^2 + a^2}$	(D)	$\frac{\sigma^2}{\sigma^2 - a^2}$ $\frac{\sigma}{\sigma^2 - a^2}$				
10.	A rar		d a va	riance of 3. Then an upper bound for	1	2	3	2
	(A) (C)	3	(B) (D)	9 1/3				
11.	$P\{ $	$ X - \mu \le C$ \ge where C>	- 0		1	1	3	1
				$1-\frac{\sigma}{C^2}$				
	(C)	$1 - \frac{\sigma^2}{C^2}$ $\frac{\sigma^2}{C^2}$	(D)	$1 - \frac{\sigma}{C^2}$ $1 + \frac{\sigma^2}{C^2}$				
12.		ean=1000 and S.D=100 for each of by central limit theorems, we have	n inde	ependent random variables with n=60	1	1	3	1
		$N\left(1000, \frac{100}{\sqrt{60}}\right)$	(B)	N(1000,100)				
	(C)	$N(1000,100\sqrt{60})$	(D)	$N\left(1000, \sqrt{\frac{100}{60}}\right)$				
13.		first and second order densities of an			1	1	4	1
	(A) (C)	Dependent on time Continuous	(B) (D)	Independent of time Discrete				
14.		$-\tau$) is equal to $-R_{XX}(\tau)$ $\tau R_{XX}(\tau)$	(B) (D)	$R_{XX}(\tau)$ $R_{XY}(\tau)$	1	1	4	1
15.	A sta	tionary process has auto correlation f	functio	on given by $R(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$, then	1	2	4	2
		nean value of the process is		3,23,				
	(A) (C)		(B) (D)					
16.	R _{XY}			7 <u>111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-</u>	1	1	4	1
		$R_{XX}(0)R_{YY}(0)$	(B)	$\sqrt{R_{XX}(0)R_{YY}(0)}$				
	(C)	$\sqrt{R_{XX}(0)+R_{YY}(0)}$	(D)	$\sqrt{R_{XX}(0)-R_{YY}(0)}$				
17.		convolution form of the output of lin		me invariant system is	1	1	5	1
	(A)	$Y(t) = \int_{-\infty}^{+\infty} h(u)X(t-u)du$	(B)	$Y(t) = \int_{0}^{\infty} h(u)X(t-u)du$				
-	(C)	$Y(t) = \int_{-\infty}^{+\infty} h(t)X(t-u)du$	(D)	$Y(t) = \int_{-\infty}^{\infty} h(t)X(t-u)du$				
				0				

	The power spectral density of a random signal with autocorrelation function $R_{XX}(\tau) = e^{-2 \tau }$ is	1	2	5	1
	$(A) \qquad 4 \qquad (B) \qquad 2$				
	$\frac{4}{4 \cdot x^2}$				
	$\begin{array}{ccc} 4 + \omega & & & & \\ \text{(C)} & 4 & & \text{(D)} & 2 \end{array}$				
,	(A) $\frac{4}{4+\omega^2}$ (B) $\frac{2}{2+\omega^2}$ (C) $\frac{4}{4-\omega^2}$ (D) $\frac{2}{2-\omega^2}$				
	529			-	
	The power spectral density of a WSS process is always (A) Finite (B) Zero	1	1	5	1
	(A) Finite (B) Zero (C) Non-negative (D) Negative				
20.	If $X(t)$ and $Y(t)$ are orthogonal then	1	1	5	1
	(A) $S_{XY}(\omega) = 1$ (B) $S_{XY}(\omega) = 0$				
	(C) $S_{XY}(\omega) \le 1$ (D) $S_{XY}(\omega) \ne 0$				
	PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
21.	State and prove memory less property of exponential distribution.	4	3	1	1
22.	$\begin{cases} x + y & 0 < x < 1, 0 < y < 1 \end{cases}$	4	3	2	2
	If X and Y are have joint pdf of $f_{XY}(x,y) = \begin{cases} x+y & 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$ check				
	whether X and Y are independent.				
23.	State and prove Cauchy Schwartz inequality.	4	4	3	2
24.	Consider the random process $X(t) = \cos(t+\emptyset)$, where \emptyset is a random variable with	4	3	4	1
	density function $f(\emptyset)=1/\pi$, $-\pi/2<\emptyset<\pi/2$, check whether the process is stationary or				
	not.				
25.	If $R(\tau) = e^{-2\lambda \tau }$ is the auto correlation function of a random process $X(t)$, obtain	4	3	5	1
	the spectral density of $X(t)$.				
26.	A random variable X has the following probability function.	4	3	1	1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$P(x) \mid 0.4 \mid k \mid 0.2 \mid 0.3$ Find the value of k and the mean value of X.				
27.		4	3	2	1
	If the joint pdf of (X,Y) is given by $f(x,y) = \begin{cases} 2-x-y, 0 \le x \le 1, 0 \le y \le 1 \\ 0 & otherwise \end{cases}$				
	Find E(x).				
	$PART - C (5 \times 12 = 60 \text{ Marks})$	36-1	nr	CO	DO.
28 a	Answer ALL Questions A discrete random variable X has the following probability distribution.	Marks 16	BL 3	1	PO 1
20. a.	x 0 1 2 3 4 5 6 7 8				
	P(X=x) a 3a 5a 7a 9a 11a 13a 15a 17a (i) Find a (ii) mean (iii) variance, (iv) find $F(x)$.				
	(OR)				
b.i.	Out of 2000 families with 4 children each, how many would you expect to have (1)	8	4	1	2
	atleast 1 boy (2) 2 boys (3) 1 or 2 girls (4) no girls.				
ii.	State and prove memoryless property of geometric distribution.	8	3	1	1
ge 3 of 4	05DA4	-18MAB			

Page 3 of 4

- If the joint pdf of (X,Y) is given by $f(x,y) = k(x^3y + xy^3)0 \le x \le 2, 0 \le y \le 2$. Find (i) the value of k (ii) $P(1/2 \le Y \le 3/4)$ $P(1/4 \le X \le 1/2)$ (iii) (iv) f(X/Y)(OR) b. The joint probability mass function of X and Y is given below. 1/8 3/8 2/8 2/8 Find the correlation coefficient of X and Y. 30. a. If $X_1, X_2, ... X_n$ are independent Poison variables with parameter $\lambda=2$, use central limit theorem to estimate P(120 \leq s_n \leq 160), where S_n=X₁+X₂...+X_n and n=75. b. A random variable X is exponentially distributed with parameter 1. Use Tchebycheff's 12 inequality to show that $P(-1 \le X \le 3) \ge 3/4$. Find the actual probability also.
- 31. a. Show that the process $X(t) = A\cos \lambda t + B\sin \lambda t$ (where A and B are random variables) is WSS, if A and B are un-correlated independent uncorrelated random variables with zero mean and having same variances.
 - b.i. If Y(t) = X(t+a) X(t-a), where X(t) is a WSS process then show that $R_{YY}(\tau) = 2R_{XX}(\tau) R_{XX}(\tau 2a) R_{XX}(\tau + 2a).$
 - ii. Prove that $|R_{XY}(\tau)| \le \sqrt{R_{XX}(0) R_{YY}(0)}$.
- 32. a. If the power spectral density of a WSS process is given by $S_{XX}(\omega) = \begin{cases} \frac{b}{a}(a |\omega|) & \text{if } |\omega| \le a \\ 0 & \text{if } |\omega| > a \end{cases}$

Find the auto-correlation function of the process.

b. A random process X(t) is the input to a linear system whose impulse response is 12 3 5 2 $n(t) = 2e^{-t}, t > 0$, if the auto correlation function of the process is $R_{XX}(\tau) = e^{-2|\tau|}$. Find the power spectral density of the output process Y(t).

* * * * *