

GRID computing with MPI

BELNET - BEgrid

UCL - INGI – 14th December 2010

Agenda

- A word on BELNET
- GRID in Europe
- BELNET and GRID
- How it works
 - Virtual Organisations
 - Authentication
 - Searching for resources
 - Sending a job
- Message Passing Interface MPI
 - MPI principles and API
 - GRID and MPI
- References

BELNET

- BELNET is the Belgian National Research and Education Network (NREN)
 - Provide network connectivity to education world
 - Universities
 - Research centers
 - High schools
 - •
 - Offer services
 - « base services »
 - GRID
 - •
 - CERTs Computer Emergency Response Team
 - BELNET CERT
 - National CERT (CERT.be)

GRID in Europe

- GRID pushed by EU commission and CERN for LHC needs
 - 205 173 cores
 - PB of storage
 - 33 countries
 - 73M€ in 4 years
 - 13 000 researchers
- In Belgium mainly used by IIHE and UCL for CMS (High-energy physic)
- Resources and authentication distributed worldwide

« Central » GRID services

- Belgian « virtual organisations » (VO) permission management (VOMS)
- Work Management Systems (WMS)
- Information Services (BDII)
- Monitoring
- GRID Security
 - In collaboration with CERTs
- Support and training
- Bring resources to the GRID ;-)

BEgrid

- BEgrid is a collaboration between belgian universities to participate in the GRID
- BELNET acts as coordinator
- Round 1000 cores available
 - + 2000 cores given by the Netherlands (SARA)

Connection to BELNET

.begrid.be 193.190.113.128/26

Virtual Organisations

- GRID is not dedicated to a single research field / experiment
- Principe of Virtual Organisations (VO)
- For each VO
 - Each site decide to allow to use resources
 - Priority at site level
 - Access control to softwares, datas...
- Membership to some VO is controlled on VOMS servers (Virtual Organisation Management System)
 - For BELNET: 4 local VOs
 - betest
 - beapps
 - becms and becms-t2

Security principles

Authentication:

- Each server has a certificate valid for 2 years
- Each user has a certificate valid for 1 year
- Each certificate is signed by a recognized registration authority (RA)
 - BELNET is a recognized RA

Authorisation:

- Each job is send with a certificate signed by a VOMS server
 - Valid for maximum 24 hours
 - Per default, 8 hours on BELNET Virtual Organisations

Security principles (2)

Each server is able to check identity of his pair

Searching for resources

Global overview

A simple job

- Job described using the Job Description Language (JDL)
- « Minimum » set of parameters:
 - Command / binary to execute
 - Input parameters
 - Output filename
 - Error filename
 - Sandbox(es)

```
Executable = "/bin/echo";
Arguments = "Hello World";
Stdoutput = "message.txt";
StdError = "error.txt";
OutputSandbox = {"message.txt","error.txt"};
```


Software stack

- Operating Systems RedHat based
 - ScientificLinux 5.x Computing resources
 - CentOS 5.x
- Middleware
 - gLite 3.1 and gLite 3.2 (www.glite.org)
- Central management of OS and softwares
 - Quattor (www.quattor.org)
- Regristration Authority
 - OpenTrust (www.opentrust.com)
- Firewalls
 - pfSense (www.pfsense.org)

Requesting access

- 1. Request a user certificate
 - At BELNET (https://gridra.belnet.be)
 - At TERENA
 - Any recognized institution
- 2. Request VO membership
 - Depends on the VO
 - https://voms.begrid.be:8443/vomses/
 - For betest, beapps, becms and becms-t2
- 3. Request an account on a user interface
 - At BELNET, send a mail to begrid@belnet.be with your public SSH key for ui.begrid.be

« Defaults » applications

- Compilers / Interpreters
 - gcc C, C++, Fortran...
 - Perl
 - Python
 - MPI compiler
- Computing environments
 - Octave
 - R
- VO specifics applications
- Other applications
 - Based on needs
 - Based on licenses
 - If needed, request!

Job control environnent

- Command line interface
 - Typically a SSH on a machine with tools installed
 - ui.begrid.be for instance not a computing node!
- Web interfaces

CLI tools – execute a job

- Create a valid proxy
 - voms-proxy-init --voms betest
- Send a job using the proxy
 - glite-wms-job-submit -a myjob.jdl
 - Output an address on the WMS
- Get job status
 - glite-wms-job-status wms_job_address
- Retrieve result
 - glite-wms-job-output -a --dir /path/you/want wms_job_address
- Get matching ressources
 - glite-wms-job-list-match -a myjob.jdl

Message Passing Interface - MPI

- Language-independent
- Message passing programming
- MPI Goals
 - High performance
 - Scalability
 - Portability
- Two major versions used
 - MPI-1.2
 - MPI-2
- Often one process per processor / core

MPI-1 and MPI-2

- MPI-1 (1994)
 - Point-to-point communication
 - Collective operations
 - Process groups and topologies
 - Communication contexts
 - Datatype management
- MPI-2 (1997)
 - Dynamic process management
 - File I/O
 - One sided communications
 - Extension of collective operations

MPI concepts: Communicator

- Connect groups of processes in the MPI session
- In each session
 - Each process receive an independent ID
 - Communicator create a topology
- Communication is
 - Single group intra-communication
 - Bilateral inter-communication
- Could be partitioned

MPI concepts: Point-to-point

- MPI SEND
 - Allows one process to send a message to another process
- Blocking or not blocking communication
- « Ready-send »
 - A send could only be made when the matching receive request has been done

MPI concepts: Collectives

- Communication among all processes in a process group
- MPI_Bcast
 - One process send a message to all other processes in the process group
- MPI_Reduce
 - Take data from all processes
 - Perform some operation
 - Store result
- MPI_Alltoall
 - n items exchanged
 - nth node receive the nth item from each node

Inspired from Wikipedia MPI page (http://www.wikipedia.org)

MPI concepts: Datatypes

- Pre-defined MPI types for standard types
 - MPI_INT for int
 - MPI_CHAR for char
 - MPI_DOUBLE for double
 - ...

MPI concepts: Datatypes

- Pre-defined MPI types for standard types
 - MPI_INT for int
 - MPI_CHAR for char
 - MPI_DOUBLE for double
 - ...

GRID and MPI

- To simplify « GRIDification » of MPI Jobs
 - MPI-Start
 - Portable
 - Permit to enable debug
 - Interface to run MPI job
 - MPI command invisible to user
 - Allow to run MPI job without change to GRID middleware
 - Wrapper
 - Set environment for MPI-Start
 - Call MPI-Start
 - Submitted with the job
 - Hooks
 - Handle compilation
 - Submitted with the job

Start wrapper

```
#!/bin/bash
MY EXECUTABLE=`pwd`/$1
MPI FLAVOR=$2
MPI FLAVOR LOWER='echo $MPI FLAVOR | tr '[:upper:]' '[:lower:]'`
eval MPI PATH=`printenv MPI ${MPI FLAVOR} PATH`
eval I2G ${MPI FLAVOR} PREFIX=$MPI PATH
export I2G ${MPI FLAVOR} PREFIX
touch $MY EXECUTABLE
export I2G MPI APPLICATION=$MY EXECUTABLE
export I2G MPI APPLICATION ARGS=
export I2G MPI TYPE=$MPI FLAVOR LOWER
export I2G_MPI_PRE_RUN_HOOK=mpi-hooks.sh
export I2G MPI POST RUN HOOK=mpi-hooks.sh
export I2G MPI START VERBOSE=1
#export I2G MPI START DEBUG=1
$12G MPI START
```


Start wrapper

export I2G_MPI_APPLICATION

- Executable

```
export I2G_MPI_APPLICATION_ARGS
```

- Parameters to give to the executable

```
export I2G_MPI_TYPE
```

- MPI implementation (*OpenMPI* for BEgrid)

```
export I2G_MPI_PRE_RUN_HOOK
export I2G_MPI_POST_RUN_HOOK
```

- Path to hooks

```
export I2G_MPI_START_VERBOSE=1
export I2G_MPI_START_DEBUG=1
```

Enable verbose / debug modes

Hooks

The network of knowledge

```
#!/bin/sh
pre run hook () {
  echo "Compiling ${I2G_MPI_APPLICATION}"
  cmd="mpicc ${MPI_MPICC_OPTS} -o ${I2G_MPI_APPLICATION} ${I2G_MPI_APPLICATION}.c"
  echo $cmd
  $cmd
  if [ ! $? -eq 0 ]; then
    echo "Error compiling program.
                                    Exiting..."
    exit 1
  Fi
  echo "Successfully compiled ${I2G MPI APPLICATION}"
  return 0
post_run_hook () {
  echo "Executing post hook."
  echo "Finished the post hook."
  return 0
```


C job – Hello World

```
#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[]) {
  int numprocs; /* Number of processors */
  int procnum; /* Processor number */
  /* Initialize MPI */
  MPI Init(&argc, &argv);
  /* Find this processor number */
  MPI Comm rank(MPI COMM WORLD, &procnum);
  /* Find the number of processors */
  MPI Comm size(MPI COMM WORLD, &numprocs);
  printf ("Hello world! from processor %d out of %d\n", procnum, numprocs);
  /* Shut down MPI */
  MPI Finalize();
  return 0:
```


Job description

```
The network of knowledge
```

```
JobType = "MPICH";
NodeNumber = 16;
Executable = "mpi-start-wrapper.sh";
Arguments = "mpi-test OPENMPI";
StdOutput = "mpi-test.out";
StdError = "mpi-test.err";
InputSandbox = {"mpi-start-wrapper.sh", "mpi-hooks.sh", "mpi-test.c"};
OutputSandbox = {"mpi-test.err", "mpi-test.out"};
Requirements =
    Member("MPI-START", other.GlueHostApplicationSoftwareRunTimeEnvironment)
    && Member("OPENMPI", other.GlueHostApplicationSoftwareRunTimeEnvironment)
;
```

- Ask for a site with MPI-START and OPENMPI
- Job Type set to MPI
- 16 cores claimed

Ressources

- BELNET trainings
- Hands-on
- BEgrid website
 - http://www.begrid.be
- BEgrid WIKI
 - http://quattorrepository.begrid.be
 - Only available from R&E institutions
- GridCafé
 - http://www.gridcafe.org

Ressources - MPI

- The Message Passing Interface (MPI) Standard
 - http://www.mcs.anl.gov/research/projects/mpi/
- MPI Documents
 - http://www.mpi-forum.org/docs/docs.html
- Open MPI documentation
 - http://www.open-mpi.org/doc/
- EGEE and EGI projects documentation
 - http://www.euegee.org/fileadmin/documents/UseCases/MPIJo bs.html
 - https://quattorrepository.begrid.be/trac/centrali sed-begrid-v6/wiki/MPI_on_the_grid
- Wikipedia

Questions and answers

Thanks!

?

Feel free to contact us at: begrid@belnet.be http://www.begrid.be

Now... do it yourself :-D

Compute the value of π using MPI

$$\pi \approx \int_{-1/2}^{1/2} \frac{4}{1+x^2} \, dx$$

Hint:

- Use MPI_Broadcast and MPI_Reduce calls
- Compute by summing rectangles
- Help: http://www.open-mpi.org/doc/v1.5/