SDK - HTHardDll.dll Manual

VC++ 6.0 IDE

目录

1.	WORD	dsoHTSearchDevice(short* pDevInfo)
2.	WORD	dsoInitHard(WORD DeviceIndex)
3.	WORD	dsoHTDeviceConnect(WORD nDeviceIndex)4
4.	WORD	dsoGetFPGAVersion (WORD DeviceIndex)5
5.	WORD	dsoHTSetCHPos5
6.	WORD	dsoHTSetVTriggerLevel6
7.	WORD	dsoHTSetHTriggerLength7
8.	WORD	dsoHTSetCHAndTrigger
9.	WORD	dsoHTSetSampleRate
10.	WORD	dsoHTSetSampleRateVi8
11.	WORD	dsoHTStartCollectData
12.	WORD	dsoHTGetState
13.	WORD	dsoHTGetData
14.	WORD	dsoHTGetScanData
15.	WORD	dsoHTGetRollData11
16.	ULON	G dsoHTGetHardFC
17.	WORD	dsoHTSetHardFC
18.	WORD	dsoHTSetCHAndTriggerVB
19.	WORD	0 ddsSetOnOff
20.	WORD	0 ddsSetCmd
21.	WORD	ddsEmitSingle
22.	WORD	ddsSetFrequency
23.	WORD	0 ddsDownload
24.	WORD	dsoInitADCOnce 14
25.	WORD	dsoHTADCCHModGain
26.	WORD	dsoHTSetAmpCalibrate
27.	WORD	dsoHTSetRamAndTrigerControl
28.	WORD	dsoHTSetTrigerMode
29.	WORD	dsoHTSetVideoTriger
30.	WORD	dsoHTSetPulseTriger
31.	ddsSDK	SetFre
32.	ddsSDK	SetAmp17
33.	ddsSDK	SetOffset
34.	ddsSDK	SetBurstNum
35.		SetWaveType
36.		SetWavePhase
37.	ddsSDK	(SetWaveDuty

Table 1:	Sampling rate	21
Table 2:	timebase and channel mode	22
Table 3:	Range of each voltage base	22
Table 4:	Common oscilloscope settings	23
DDS Sar	nple	23
1.	Output Infinite sine wave	23
2.	Output N Cyc sine wave	24
3.	Output square	24

Remarks:

HTHardDll.dll was compiled under VC++6.0..

WORD: unsigned short

BOOL: bool

ULONG: unsigned long

The following ifdef block is the standard way of creating macros which make exporting from a DLL simpler. All files within this DLL are compiled with the symbol defined on the command line. This symbol should not be defined on any project that uses this DLL. This way any other project whose source files include this file see functions as being imported from a DLL, wheras this DLL sees symbols defined with this macro as being exported.

```
#ifndef DLL_API

#define DLL_API extern "C" __declspec(dllimport)

#endif

Define _stdcall:

#define WIN_API __stdcall
```

Defines the struct for the application.

```
_HT_RELAY_CONTROL contains the relay control information.
               typedef struct _HT_RELAY_CONTROL
                   BOOL bCHEnable[MAX_CH_NUM];
                   WORD nCHVoltDIV[MAX_CH_NUM];
                   WORD nCHCoupling[MAX_CH_NUM];
                   BOOL bCHBWLimit[MAX_CH_NUM];
                   WORD nTrigSource;
                   BOOL bTrigFilt;
                   WORD nALT;
                }RELAYCONTROL,*PRELAYCONTROL;
MAX_CH_NUM: Detail in DefMacro.h.
Parameters Remarks:
bCHEnable[MAX_CH_NUM]: Chanel Switch Array(Size to MAX_CH_NUM). Value: 1 ON, 0
                  OFF.
nCHVoltDIV[MAX CH NUM]: Chanel Voltage Array(Size to MAX CH NUM).
nCHCoupling[MAX_CH_NUM]: Chanel Couple Array(Size to MAX_CH_NUM). Value: 0 DC, 1
                     AC, 2 GND
bCHBWLimit[MAX CH NUM]: Chanel Band Limit Array(Size to MAX CH NUM). Value: 1
ON, 0 OFF.
nTrigSource: Trigger Source. 0 CH1, 1 CH2, 2 CH3, 3 CH4,5 EXT, 6 EXT/10.
```

```
bTrigFilt: High Frequency Rejection. Value: 1 ON, 0 OFF.

nALT: Whether is alternate. Value: 1 is alternate, 0 is non-alternate.

Example:

Declare a variable: PELAYCONTROL

myPolayControl:
```

Declare a variable: RELAYCONTROL myRelayControl;
Declare a pointer: PRELAYCONTROL pRelayControl;

Functions

1. WORD dsoHTSearchDevice(short* pDevInfo)

Return Value:

The number of Having Connected devices..

Parmeter:

pDevInfo

Pointer to devices that have connected to PC.

Remarks:

You should call this function to know how many device that have connected to PC. One PC support 32 devices to be connected.

Example:

```
short DevInfo[32];
WORD nConnectedDevNum = 0;
//DevInfo Initial
//...
//Call this function
nConnectedDevNum = dsoHTSearchDevice(DevInfo);
When DevInfo[n] is 0 , there are devices. When DevInfo[n] is -1, there is no device.
```

2. WORD dsoInitHard(WORD DeviceIndex)

Return Value:

0: Fail. Non 0: Succeed...

Parmeter:

nDeviceIndex

The device index.

Remarks:

You should call this function after connected

3. WORD dsoHTDeviceConnect(WORD nDeviceIndex)

Return Value:

```
1 : connect, 0: disconnect.
```

Parameter:

nDeviceIndex

The device index.

Remarks:

Whether the device is connected.

Example:

If there are two devices On PC, and you check whether to connect to the second device, you Need to do:

```
WORD nDeviceIndex = 1;  //0: the first device
WORD nRe = 0;
//Call this function
nRe = dsoHTDeviceConnect(nDeviceIndex);
if (nRe == 1)
    ;//the device si connected
else
    ;//the device is disconnected
```

4. WORD dsoGetFPGAVersion (WORD DeviceIndex)

Return Value:

FPGA Version

Parameter:

DeviceIndex

Index of the device.

Remarks:

get FPGA Version

Example:

```
WORD DeviceIndex = 0;
```

//...

WORD nFPGVersion = dsoGetFPGAVersion (DeviceIndex)

5. WORD dsoHTSetCHPos(

```
WORD nDeviceIndex,
WORD nVoltDIV,
WORD nPos,
WORD nCH
WORD nCHMode
)
```

Return Value:

```
0: Fail. Non 0: Succeed.
```

```
Parameter:
nDeviceIndex
    Index of the device.
nVoltDIV
    Index of channel voltage.
nPos
    The position of chnanel, range :0~255.
nCH
    The targer channel.0 CH1,1 CH2,2 CH3,3 CH4.
nCHMode
    channel working mode(1,2,4)
Remarts:
    Set channel level.
Example:
    WORD nDeviceIndex = 0;
    WORD CHLevel[288]; //the calibration level, See in dsoHTReadCalibrationData.
    WORD nVoltDIV = 6; //voltage 1V/div, index is 6.
    WORD nPos = 128; //Zero level is 128.
    WORD nCH = 0; //CH1.
    WORD nCHMod=4;
    //Call this function.
    if (0 = = dsoHTSetCHPos(nDeviceIndex, CHLevel, nVoltDIV, nPos, nCH, nCHMod))
         ://Fail
    else
         ://Succeed
6.
     WORD dsoHTSetVTriggerLevel(
                              WORD nDeviceIndex,
                              WORD nPos
                              WORD nSensitivity)
Return Value:
    0: Fail. Non 0: Succeed.
Parameter:
nPos
    The position of the trigger level.
nSensitivity
    Trigger Sensitivity, if the lines is thick try it bigger
Remarks:
    Set the position of the trigger level.
Exmaple:
    WORD nDeviceIndex = 0;
    WORD nPos = 128;
```

```
//call this function
    if ( 0 = = dsoHTSetVTriggerLevel( nDeviceIndex, nPos, 4) )
             ; //Fail
    else
             ; //Succeed
7.
     WORD dsoHTSetHTriggerLength(
                            WORD nDeviceIndex,
                            PCONTROLDATA pControl,
                            WORD nCHMod
                            )
Return Value:
    0: Fail. Non 0: Succeed.
Parameter:
pControl
    Pointer to Struct PCONTROLDATA, read "HTSoftDll.h" for detail.
nCHMode
    Channel working mode(1,2,4).
Remarks:
    Set trigger length.
8.
     WORD dsoHTSetCHAndTrigger(
                                   WORD nDeviceIndex,
                                   RELAYCONTROL RelayControl,
                                   WORD nTimeDIV)
Return Value:
    0: Fail. Non 0: Succeed.
Parameter:
RelayControl
    See in the structure HT_RELAY_CONTROL.
nTimeDIV
    The index of time base 0-35.
Remarks:
    Set channel and trigger.
Example:
        WORD nDeviceIndex = 0;
        RELAYCONTROL RelayControl;
        WORD nTimeDIV=12;
        //RelayControl
        //Call this function
        if (0 = = dsoHTSetCHAndTrigger(nDeviceIndex,RelayControl,nTimeDIV))
             ; //Fail
```

; //succeed

9. **WORD dsoHTSetSampleRate**(

WORD nDeviceIndex,
WORD nYTFormat,
PRELAYCONTROL pRelayControl,
PCONTROLDATA pControl))

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nYTFormat

The mode of horizontal format. 0: Normal, 1: Scan, 2:Roll.

pRelayControl

See in the structure HT_RELAY_CONTROL.

pControl

Pointer to Struct PCONTROLDATA, read "HTSoftDll.h" for detail.

Remarks:

Set Sampling Rate.

10. WORD dsoHTSetSampleRateVi(WORD nDeviceIndex,

WORD* pCHEnable, WORD* pCHVoltDIV, WORD* pCHCoupling, WORD* pCHBWLimit, WORD nTriggerSource, WORD nTriggerFilt, WORD nALT,

PCONTROLDATA pControl);

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

pAmpLevel,

Pointer to amplitude calibration.

pCHVoltDIV

See in the structure HT_RELAY_CONTROL.nCHVoltDIV.pCHEnable

See in the structure HT_RELAY_CONTROL.bCHEnable. pCHCoupling

See in the structure $HT_RELAY_CONTROL.nCHCoupling$. pCHBWLimit

See in the structure HT_RELAY_CONTROL.bCHBWLimit.

```
nTriggerSource, nTriggerFilt,nALT
```

```
pControl
```

Pointer to Struct PCONTROLDATA, read "HTSoftDll.h" for detail.

Remarks:

transform of dsoHTSetSampleRate

11. WORD dsoHTStartCollectData(WORD nDeviceIndex

WORD nStartControl)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nDeviceIndex

The index of the device.

nStartControl

8bit use index 0-2 3bit

0:1 AUTO Trigger

1:1 ROLL Mode

2:1 stop after this collect

Remarks:

This inform the device start collecting.

Example:

```
WORD nDeviceIndex = 0;
WORD nStartControl=1;
if (0 = = dsoHTStartCollectData(nDeviceIndex, nStartControl))
    ;//Fail
else
    ;//Succeed
```

12. **WORD dsoHTGetState**(WORD nDeviceIndex)

Return value:

```
8bit use index 0-1 2bit
0:if triggered this bit is 1
1:if date collection is finished this bit is 1
```

Parameter:

nDeviceIndex

The index of the device.

Remarks:

Retrieve the collect state of the device.

Example:

```
WORD nDeviceIndex = 0;
```

```
while (dsoHTGeState(nDeviceIndex)!=0x02)
             continue;
        //Read data from the device.
13. WORD dsoHTGetData (
                 WORD nDeviceIndex,
                 WORD* pCH1Data,
                 WORD* pCH2Data,
                 WORD* pCH3Data,
                 WORD* pCH4Data,
                 PCONTROLDATA pControl,
                 );
Return Value:
    0: Fail. Non 0: Succeed.
Parameter:
nDeviceIndex
    The index of the device.
pCH1Data
    Pointer to CH1 data buffer.
pCH2Data
    Pointer to CH2 data buffer.
pCH3Data
    Pointer to CH3 data buffer.
pCH4Data
    Pointer to CH4 data buffer.
pControl
    Pointer to Struct PCONTROLDATA, read "HTSoftDll.h" for detail.
Remarks:
    Read the Normal Mode data to PC buffer from the device.
Example:
        WORD nDeviceIndex = 0;
        if (0 = = dsoSDGetData (nDeviceIndex, pCH1Data, pCH2Data, pCH3Data, pCH4Data
                              , pControl) )
             ; //Fail
        else
             ; //Succeed
     WORD dsoHTGetScanData(WORD nDeviceIndex,
                             WORD* pCH1Data,
                             WORD* pCH2Data,
                             WORD* pCH3Data,
```

```
WORD* pCH4Data,
PCONTROLDATA pControl);
```

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nDeviceIndex

The index of the device.

pCH1Data

Pointer to CH1 data buffer.

pCH2Data

Pointer to CH2 data buffer.

pCH3Data

Pointer to CH3 data buffer.

pCH4Data

Pointer to CH4 data buffer.

pControl

Pointer to Struct PCONTROLDATA, read "HTSoftDll.h" for detail.

Remarks:

Read the SCAN Mode data to PC buffer from the device.

15. WORD dsoHTGetRollData(WORD nDeviceIndex,

WORD* pCH1Data,

WORD* pCH2Data,

WORD* pCH3Data,

WORD* pCH4Data,

PCONTROLDATA pControl)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nDeviceIndex

The index of the device.

pCH1Data

Pointer to CH1 data buffer.

pCH2Data

Pointer to CH2 data buffer.

pCH3Data

Pointer to CH3 data buffer.

pCH4Data

Pointer to CH4 data buffer.

pControl

Pointer to Struct PCONTROLDATA, read "HTSoftDll.h" for detail.

Remarks:

Read the ROLL Mode data to PC buffer from the device.

```
16. ULONG dsoHTGetHardFC(WORD nDeviceIndex)
Return value:
    nIndata ,Retrieve the hardware counter value.
Parameter:
nDeviceIndex
    The index of the device.
Remarks:
    frequency= nIndata*1E9/(8* nTime).
17. WORD dsoHTSetHardFC (WORD nDeviceIndex,
                                            ULONG nTime
                                           )
Return value:
        0: Fail. Non 0: Succeed.
Parameter:
nDeviceIndex
    The index of the device.
nTime
    set the interval (uint ns) during after which you can call dsoHTGetHardFC.We
recomment 0.1S-1S,
18. WORD dsoHTSetCHAndTriggerVB(WORD nDeviceIndex,
                   WORD* pCHEnable,
                  WORD* pCHVoltDIV,
                  WORD* pCHCoupling,
                   WORD* pCHBWLimit,
                  WORD nTriggerSource,
                  WORD nTriggerFilt,
                  WORD nALT,
                  WORD nTimeDIV);
Return Value:
    0: Fail. Non 0: Succeed.
Parameter:
pCHVoltDIV
    See in the structure HT_RELAY_CONTROL.nCHVoltDIV.
pCHEnable
    See in the structure HT_RELAY_CONTROL.bCHEnable.
pCHCoupling
    See in the structure HT_RELAY_CONTROL.nCHCoupling.
```

pCHBWLimit

```
See in the structure HT_RELAY_CONTROL.bCHBWLimit.
```

nTriggerSource, nTriggerFilt, nALT

see struct RELAYCONTROL

The index of time base 0-35.

Remarks:

transform of dsoHTSetCHAndTrigger.

19. **WORD ddsSetOnOff**(WORD DeviceIndex,short nOnOff)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nOnOff

0 for Open and 1 for Close

Remarks:

DDS switch

20. **WORD ddsSetCmd**(WORD DeviceIndex, **USHORT** nSingle)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nSingle

Set it to 1 will get single wave and 0 get continual wave

Remarks:

Set output wave form

21. **WORD ddsEmitSingle**(WORD DeviceIndex)

Return Value:

0: Fail. Non 0: Succeed.

Remarks:

If you set nSingle to 1 in function ddsSetCmd you should call this function to gennerate wave

22. WORD ddsSetFrequency(WORD DeviceIndex,

double dbFre,

WORD* pWaveNum,

WORD* pPeriodNum)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

dbFre

The frequency of wave

pWaveNum

Actually this parameter is a return value when you call ddsDownload pPeriodNum

Actually this parameter is a return value when you call ddsDownload

Remarks:

set wave frenquency

23. WORD ddsDownload(WORD DeviceIndex,

WORD iWaveNum,

WORD* pData)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

iWaveNum

come from function ddsSetFrequency.

pData

Pointer to wave pots array you will send to the Device

Remarks:

Send wave data

24. **WORD dsoInitADCOnce**(WORD DeviceIndex)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

Remarks:

Call this function after dsoSetUSBBus

25. WORD dsoHTADCCHModGain(WORD DeviceIndex,

WORD nCHMod)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nCHMod

Channel working mode(1,2,4).

Remarks:

call this function when channel mode changge

26. WORD dsoHTSetAmpCalibrate(WORD nDeviceIndex,

WORD nCHSet,

```
WORD nTimeDIV,
WORD *nVoltDiv,
WORD *pCHPos)
```

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nCHSet

same as PCONTROLDATA->nCHSet.

nTimeDIV

The index of time base 0-35.

nVoltDiv

See in the structure HT_RELAY_CONTROL.nCHVoltDIV.

pCHPos

Ponter to 4 lenth array which store all channels vertical position

Remarks:

Amplitude calibration

27. WORD dsoHTSetRamAndTrigerControl(WORD DeviceIndex,

WORD nTimeDiv,

WORD nCHset,

WORD nTrigerSource,

WORD nPeak)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nTimeDiv

The index of time base 0-35.

nCHSet

same as PCONTROLDATA->nCHSet.nTimeDIV

nTrigerSource

Trigger Source 0-3

nPeak

Set it to 1 to open peak collection

Remarks:

Set Trigger Source

28. WORD dsoHTSetTrigerMode(WORD m_nDeviceIndex,

WORD nTriggerMode,

WORD nTriggerSlop,

WORD nTriggerCouple)

Return Value:

0: Fail. Non 0: Succeed.

WORD nLevel,

WORD nLogicTriggerSource)

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nStand

Analog television system 0:PALSECAM 1:NTSC.

nVedioSyncSelect

The video sync.

Value:

All Lines: 0
Line Num: 1
Odd Field: 2
Even Field: 3
All Field: 4

nVideoHsyncNumOption,

The video line number, the min value is 1.

nVideoPositive

Video Polarity 0:Positive 1:Negative

nLevel

Trigger level

nLogicTriggerSource

Logical Trigger source

Remarks:

Call this function after dsoHTSetTrigerMode when trigger mode is VIDEO

```
30. WORD dsoHTSetPulseTriger(WORD m_nDeviceIndex, ULONG nPW, WORD nPWCondition)
```

Return Value:

0: Fail. Non 0: Succeed.

Parameter:

nPW

The pulse width value. The time range of the pulse width is $10\text{ns}\sim10\text{s}$, the pulse width value range is $2\sim2000000000$ ($10\text{ns}/5\sim10000000000\text{ns}/5$)

nPWCondition

The condition fo the pulse trigger

Value:

Equal 0.

NoEqual 1.

More 2.

Less 3.

Remarks:

Call this function after dsoHTSetTrigerMode when trigger mode is PULSE

31. ddsSDKSetFre

```
float ddsSDKSetFre(WORD DeviceIndex, float dFre)
```

Return Value:

previous Value

Parmeter:

 ${\tt DeviceIndex}$

WORD Data Type, The device index.

dbFre

double Data Type, Frequency

Remark:

Set Frequency.

32. ddsSDKSetAmp

WORD ddsSDKSetAmp(WORD DeviceIndex, WORD nAmp)

Return Value:

previous Value

Parmeter:

DeviceIndex

WORD Data Type, The device index.

nAmp

WORD Data Type, Unit mV. if Sinwave nAmp=1000, then Vamp=1V, Vpp=2V

Remark:

Set amplitude.

33. ddsSDKSetOffset

short ddsSDKSetOffset(WORD DeviceIndex, short nOffset)

Return Value:

previous Value

Parmeter:

DeviceIndex

WORD Data Type, The device index.

nOffset

shortData Type, Unit mV.

Remark:

Signal Offset.

34. ddsSDKSetBurstNum

WORD ddsSDKSetBurstNum(WORD DeviceIndex, WORD nBurstNum)

Return Value:

previous Value

Parmeter:

DeviceIndex

WORD Data Type, The device index.

nBurstNum

WORD Data Type, N cycle

35. ddsSDKSetWaveType

WORD ddsSDKSetWaveType (WORD DeviceIndex, WORD nType)

Return Value:

previous Value

Parmeter:

DeviceIndex

WORD Data Type, The device index.

nType

WORD Data Type, wavetype 0 Sin; 1 Ramp 2 Square; 4DC; 8 Noise

Remark:

Set Wavetype.

36. ddsSDKSetWavePhase

float ddsSDKSetWavePhase(WORD DeviceIndex, float fPhase)

Return Value:

previous Value

Parmeter:

DeviceIndex

WORD Data Type, The device index.

fPhase

The initial phase of the signal

37. ddsSDKSetWaveDuty

```
float ddsSDKSetWaveDuty(WORD DeviceIndex, float fDuty)
```

Return Value:

previous Value

Parmeter:

DeviceIndex

WORD Data Type, The device index.

fPhase

Signal duty

Flow Chart:

Table 1: Sampling rate

Index	dex Timebase Sampling rate (Sa)		Index	Timebase	Sampling rate (Sa)
0	2nS	S:1G D:0.5G Q:250M	19	5mS	50K
1	5nS	S:1G D:0.5G Q:250M	20	10mS	25K
2	10nS	S:1G D:0.5G Q:250M	21	20mS	12.5K
3	3 20nS S:1G D:0.5G Q:250M		22	50mS	5K
4	50nS	S:1G D:0.5G Q:250M	23	100mS	2.5K
5	100nS	S:1G D:0.5G Q:250M	24	200mS	1.25K
6	200nS	S:1G D:0.5G Q:250M	25	500mS	500
7	500nS	S 双: 0.5G Q:250M	26	1S	250
8	1uS	250M	27	2S	125
9	2uS	125M	28	5S	50
10	5uS	50M	29	10S	25
11	10uS	25M	30	20S	12. 5
12	20uS	12.5M	31	50S	5
13	50uS	5M	32	100S	2.5
14	100uS	2.5M	33	200S	1.25
15	200uS	1.25M	34	500S	0.5
16	500uS	500K	35	1000S	0.25
17	1mS	250K			
18	2mS	125K			

Note:

- 1 Column "Sampling rate" shown in bold need Interpolation
- 2 When the oscilloscope does not require interpolation, sample rate = 250 /timebase; 250 is number of points in a single grid, such as when the timebase is 1uS sampling rate = 250/(1e-6) = 250MSa
- 3 "S" indicates single-channel mode; "D" means dual channel mode; "Q" means four-channel mode. About channel mode shown in Table 2: timebase and channel mode

Table 2: timebase and channel mode

Index	TimeBase	number of channel enabled /		
		channel mode		
0	2nS	1/S; 2/D; 3、4/Q		
•••	•••	1/S; 2/D; 3、4/Q		
6	200nS	1/S; 2/D; 3、4/Q		
7	500nS	1, 2/D; 3, 4/Q		
8	1uS	*/Q		
•••	•••	*/Q		
35	1000S	*/Q		

Note:

1 For example when time base is 200nS, Single channel enabled will be the single-channel mode; two for dual channel mode; three and four for four-channel mode

Table 3: Range of each voltage base

Index	voltage base	Range	Index	voltage base	Range
0	2mV	16mV	6	200mV	1.6V
1	5mV	40mV	7	500mV	4V
2	10mV	80mV	8	1 V	8V
3	20mV	160mV	9	2V	16V
4	50mV	400mV	10	5V	40V
5	100mV	800mV	11	10V	80V

Note:

- 1 "Voltage division" means a large vertical grid voltage corresponding to the value, more precisely, is a waveform data acquisition data 32 corresponding to the difference value
- 2 "Range" is represented by 1: 1 probe corresponding to the range. For example 100mV with a 1: 1 scale probe is 800mV; 1:10 probe range is 8V

Table 4: Common oscilloscope settings

Index	Setting	Functions		
1	Voltage DIV	dsoHTSetCHAndTrigger dsoHTSetAmpCalibrate: call if channel mode has changged		
2	Time DIV	dsoHTSetSampleRate dsoHTSetRamAndTrigerControl SetADCCHModGain: call if channel mode has changged SetAmpCalibrate: call if channel mode has changged		
l enable/disable		dsoHTSetCHAndTrigger SetADCCHModGain: call if channel mode has changged SetAmpCalibrate: call if channel mode has changged		
4	Vertical trigger position	dsoHTSetVTriggerLevel		
5	Horizontal trigger position	dsoHTSetHTriggerLength		
6	Bandwidth limitations	dsoHTSetCHAndTrigger		
7	input coupling: AC /DC	dsoHTSetCHAndTrigger		
8	Trigger Mode	dsoHTSetTrigerMode dsoHTSetVideoTriger: call if Trigger Mode is Video dsoHTSetPulseTriger: call if Trigger Mode is Pulse		
9	Trigger source	dsoHTSetRamAndTrigerControl		
10	Trigger slope Rise / Fall	dsoHTSetTrigerMode		

DDS Sample

1. Output Infinite sine wave

```
Freq 10k;Ampl 1.5V;Offset -0.5V
ddsSetCmd(nIndex, 0);
ddsSDKSetFre(nIndex, 10000);
ddsSDKSetAmp(nDIndex, 1500);
ddsSDKSetOffset(nIndex, -500);
```

```
ddsSDKSetWaveType(nIndex, 0);
ddsSetOnOff(nIndex, 1)
```

2. Output N Cyc sine wave

```
Freq 10k;Ampl 1.5V; Output once every 10s; output 11 waveforms at all
ddsSetCmd(nIndex, 4);
ddsSDKSetFre(nIndex, 10000);
ddsSDKSetAmp(nDIndex, 1500);
ddsSDKSetBurstNum(nIndex, 11);
ddsSDKSetWaveType(nIndex, 0);
ddsSetOnOff(nIndex, 1);
while(true) {
    sleep(10S);
    ddsEmitSingle(nIndex);
}
```

3. Output square

```
Freq 1k;Ampl 2V;Duty 0.3
ddsSetCmd(nIndex, 0);
ddsSDKSetFre(nIndex, 1000);
ddsSDKSetAmp(nDIndex, 2000);
ddsSDKSetWaveDuty(nIndex, 0.3);
ddsSDKSetWaveType(nIndex, 2);
ddsSetOnOff(nIndex, 1);
```