Introducing Mobile Systems

MS (Mobile Computing)
Lecture 1

Contact Information

Office: EA-409

Address: Dept. of Computer Science, FEECS

VSB-TU Ostrava

17. listopadu 15

708 33 Ostrava-Poruba

Phone: +420 59 732 5896

E-mail: pavel.moravec@vsb.cz

Web: http://wiki.cs.vsb.cz/index.php/Moravec/cz

http://www2.cs.vsb.cz/moravec/MS/ (VSB only)

References

- Kamal R.: Mobile Computing Course Materials http://www.dauniv.ac.in/Mobilecomputing.html
- JING J., HELAL A., ELMAGARMID A., Client-Server Computing in Mobile Environments, ACM Computing Surveys, červen 1999
- Taha S., Shen X.: Secure IP Mobility Management for VANET, Springer, 2013, ISBN: 978-3319013503, 118 stran.
- Satrapa P.: IPv6. 2011, 409 stran, ISBN 978-80-904248-4-5.
- Faludi R.: Building Wireless Sensor Networks, O'Reilly Media, 2011, 322 stran, ISBN 978-0596807733.
- Kamal R.: Mobile Computing, 2007, Oxford Press, 582 stran, ISBN 9780195686777.
- Mavromoustakis C., Pallis E., Mastorakis G.: Resource Management in Mobile Computing Environments. Springer, 2014, 597 stran, ISBN 978-3-319-06704-9.
- Pitoura, E.: Data Management for Mobile Computing http://www.cs.uoi.gr/~pitoura/summer-school98/index.html

What is a Mobile Device?

A pocket-sized computing device, typically with:

- a small visual display screen for user output
- a miniature keyboard or touch screen for user input.

Examples:

- Mobile phones
- Smartphones, Tablets
- Navigation devices
- Cameras, portable media players
- Handheld game consoles
- IoT devices, monitoring devices, "smart" devices

- - -

Limitations of Mobile Devices

- Small (often lower-resolution) display (on some types of devices even grayscale/BW) on specialized devices
- Limited input options (phone/software touch keyboard)
- Lower operating memory & internal storage space (the latter partly solved by external memory cards)
- Limited CPU power + absent or limited GPU capabilities
- Limited instruction set (e.g. only software-emulated floating point arithmetics, no SSE, vector-processing instructions)
- Network connectivity issues
- Smaller library of system functions
- Power considerations

5

Mobile Operating Systems

- Vendor-specific firmware, vendor SDKs for custom builds
- Real-time operating systems
- iOS on Apple devices
- Linux-based:
 - Android
 - OpenWRT, DDWRT, ...
 - Ubuntu Mobile (?)
 - Firefox OS, Tizen, Sailfish OS, Jolla
- Windows
 - Windows Phone 8.x, Windows RT (8), Windows CE
- BlackBerry OS
- Samsung BADA
- Symbian OS

Mobile Frameworks

- HTML5-based frameworks
 - AngularJS, jQuery Mobile, Sencha Touch, ...
 - Cordova, Ionic, ReactNative, PhoneGAP, ...
- Xamarin
- Flash Lite commercial
- CodeName One
- JavaME Java 2 Micro Edition, JavaFX
- 3rd party frameworks (of varying quality)
 - Java-based
 - Python-based
 - QT-based
 - LUA, ...

Programming languages

- HTML(5) + Javascript + CSS(3)
- Java (SE Android Development, ME, EE web)
- Objective C, Swift iOS
- C/C++ native libraries, e.g. Android NDK, singlechip solutions, custom firmware development, RTOSes
 - Processing language (Arduino)
- C# Windows 8, .NET compact framework, Xamarin
- Python
- Exotic choices: LUA, Lazarus (Pascal), Shell script, PHP, ...

New platforms changed everything!

- Device fragmentation → Platform fragmentation
- Vendors try to keep customer by vendor lock-in
- Applications sold by vendors directly through their Play Store/AppStore/Marketplace/Market/...
- 2 dominant platforms:
 - Android
 - •iOS (~15%)
 - Windows (Windows Phone 8, Windows Mobile)
 - Blackberry (US) / Symbian (EU)
- Feature phones may still offer Java ME

Current multi-platform develorment

Android

User interface

Application layer (using native API)

Java/NDK

iOS

User interface

Application layer (using native API)

Objective C

Windows Phone

User interface

Application layer (using native API)

SilverLight/XNA

Core library (C, C++, C#, HTML5+CSS+JS, ...)

Business Layer
Access Layer (Data Access, Service Access)
Data Layer

Generic Mobile OS Architecture

^{*} Virtual machine is not used on some platforms, which run native code directly. Usually, we use **platform APIs** for development, but on most platforms we can also write **native code** using built-in or even user-supplied **libraries**, or a HTML+JS+CSS application run in the web **browser** or embedded web view.

Mobility

- The ability to move from one place to the other (e.g. student mobility in Erasmus).
- In multi-agent systems (according to FIPA Foundation for Intelligent Physical Agents) we can distinguish between:
 - Platforms (locations) providing services and restricting/controlling access to them
 - Agents (objects) embedded in platforms at given time
 - Mobility is a type of special service
- In computer networks, nodes may also change location

Movement

Mobility is an interplay between locations (platforms) and objects (agents, nodes).

Differences are introduced by the direction of the synchronization necessary to perform the migration and its preconditions:

- Spontaneous move (no synchronization)
- Object move
- Transportation (location-initiated migration)
- Consensual Move (both sides agree)

Challenges of Mobility

- Location discovery
 - Reactive approach send out a request when traffic must be delivered
 - Proactive approach keep track of locations of all devices anytime
- Move detection
 - Best communication path
 - Cell selection in cellular networks
- Update signaling location changes, device is alive
- Path (re)establishment re(build) path to the device so that traffic can be delivered to its new location

AAAs of the Mobility vs. Security

- Anytime
- Anywhere
- Any device

- Authentication
- Authorization
- Accounting

Forms of mobility

- Wireless mobility
 - Campus mobility
 - Roaming
- Nomadicity
- Seamless mobility
- Ubiquitous computing

Wireless mobility

- Allows movement in given area
- Real-time communications whenever and wherever the device is turned on (in ideal case)
- Evolution of other types of devices besides laptops:
 - smartphones, personal digital assistants (PDAs), tablets, phablets,
 - embedded navigation system, ...
- Well known in 802.11 and cellular networks
- Different degrees of mobility: Limited to single node → connecting to different nodes on the go → passing through different nodes maintaining connection and transfers (e.g. call)

Campus mobility

- Mobility within a single administrative domain
 - university campus
 - hospital
 - conference rooms in a hotel
- No roaming across global Internet
- More easy to implement
- May be solved fully on 2nd layer of OSI-RM VLANs shared among several nodes providing the network connection

Roaming

- Extension of connectivity service in a location that differs from the location where the service has been registered (home location).
- Wireless device is kept connected to the network, without losing the connection
- Technically supported by mobility management and AAA
- Home network and visited network (e.g. cellphones)
- SIM based/certificate based/username+password based, ...

Nomadicity

- Ability to move from one location to another and start communication
- The communicating entity needs to terminate and restart communication as a result of the move
- Usually no communication on the move between nodes in nomadic environment infrastructure
- A nomadic environment is said to be transparent to the user, regardless of location, the device/platform, available bandwidth, and whether or not they are in motion at any given time.

Mobile vs nomadic user

- Mobile user
 - Stays always connected to the infrastructure when it is reachable
 - Uses the best available link
- Nomadic user
 - Does not usually require services during the move
 - Makes use of local infrastructure once the location has been reached
 - Uses potentially shareable devices and has a unique session on the device

Seamless Mobility (coined by Motorola)

- In ideal case, the user is not aware that the migration took place, or notices minimal changes.
- One device in motion, vs. moving between devices
- Typical examples are Internet connection and cells
 - Transfers continue when switching network connection type, ideally the user retains the same IP address
 - Cellular call is not interrupted during the movement
- Future: calls from landlines resumed on cellphone when leaving the office, automatic handover of call to integrated phone/handsfree in car, home entertainment synchronized as you move between rooms, etc.

Ubiquitous computing (1)

- Omnipresent devices in given environment
- Information processing is thoroughly integrated into everyday objects and activities
- Small, inexpensive, robust networked processing devices with "natural" interaction
 - Dust devices usually with no visual output (nm→mm)
 - Tabs wearable devices (cm scale)
 - Pads hand-held devices (dm scale)
 - Boards interactive display devices (m scale)

Ubiquitous computing (2)

- Additional forms for ubiquitous systems:
 - Skin flexible 2D non-planar display surfaces and products such as clothes and curtains. E.g. fabrics based upon light emitting and conductive polymers, organic computer devices, foldable OLED displays.
 - Clay arbitrary 3D shapes as artefacts resembling many different kinds of physical object (see also Tangible interface).

Recent trend – BYOD

- "Bring your own device"
- Employees may bring personally owned mobile devices to the workplace
- Many issues:
 - End node security (device may contain a virus, malware, spyware, may be compromised, etc.)
 - Risk of data breaches
 - Data ownership issues, company policies
- Company applications
 - How to install, update, manage
 - Legality of use when "at home"
- Remote wiping of organization's data