

Universidad de Granada

Algorítmica

$Algoritmos\ Backtracking,\ parte\ 1$

Laura Calle Caraballo Cristina María Garrido López Germán González Almagro Javier León Palomares Antonio Manuel Milán Jiménez

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introducción.	2
2.	Descripción del problema.	2
3.	Resolución.	2
4.	Algoritmo Backtracking sin garantía de optimalidad. 4.1. Pseudocódigo	3
5.	Algoritmo Backtracking con garantía de optimalidad. 5.1. Pseudocódigo	4 4
6.	Análisis de eficiencia empírico.	5
7.	Comparativa de calidad de soluciones.	6
8.	Conclusión.	8

1. Introducción.

El objetivo de esta práctica es el estudio de los algoritmos de tipo *Backtracking*, aplicados particularmente al problema de encontrar un camino desde la entrada de un laberinto hasta su salida.

2. Descripción del problema.

Inicialmente tenemos una matriz de tamaño $n \times n$ que representa un laberinto con o sin solución. Las casillas libres se representan mediante espacios, y los muros mediante X.

Los movimientos permitidos son: norte, sur, este y oeste (no es posible avanzar en diagonal).

3. Resolución.

Se han implementado dos algoritmos Backtracking: el primero encuentra un camino (en caso de que exista) y el segundo encuentra el camino más corto posible.

Adicionalmente, se ha realizado un estudio de eficiencia para determinar su viabilidad en términos de tiempo.

4. Algoritmo Backtracking sin garantía de optimalidad.

Esta versión del algoritmo construirá el camino probando diferentes alternativas hasta que encuentre una solución completa, momento en el que terminará.

4.1. Pseudocódigo.

A continuación se muestra el pseudocódigo del algoritmo:

```
posActual \leftarrow entrada;
camino \leftarrow camino \cup posActual;
function EncontrarCamino(laberinto, posActual);
encontrado \leftarrow false;
begin
   if EsSolucion(camino) then
       return true;
   else
       for m \in movimientosPosibles and not encontrado do
           h \leftarrow GenerarHijo(m);
           if Factible(h) then
              camino \leftarrow camino \cup h;
              encontrado \leftarrow EncontrarCamino(laberinto,h);
           end
       end
       if not encontrado then
           camino \leftarrow camino - posActual;
       end
   end
   return encontrado;
end
```

5. Algoritmo Backtracking con garantía de optimalidad.

Esta versión del algoritmo encontrará un primer camino y continuará la búsqueda de un camino mejor siempre que la longitud de los recorridos que pruebe sea menor que la del mejor camino actual.

5.1. Pseudocódigo.

```
A continuación se muestra el pseudocódigo del algoritmo:
```

```
posActual \leftarrow entrada;
camino \leftarrow camino \cup posActual;
mejorDistancia \leftarrow \infty;
function EncontrarMejorCamino(laberinto, posActual);
encontrado \leftarrow false;
begin
   if EsSolucion(camino) then
       if Longitud(camino) < mejorDistancia then
           mejorCamino \leftarrow camino;
           camino \leftarrow camino - posActual;
           mejorDistancia \leftarrow Longitud(camino);
           return true;
       else
           camino \leftarrow camino - posActual;
           return false;
       end
   else
       for m \in movimientosPosibles and Longitud(camino) < mejorDistancia do
           h \leftarrow GenerarHijo(m);
           if Factible(h) then
              camino \leftarrow camino \cup h;
              encontrado \leftarrow EncontrarMejorCamino(laberinto,h);
           end
       end
       camino \leftarrow camino - posActual;
   end
   return encontrado;
end
```

6. Análisis de eficiencia empírico.

Tamaño	Backtracking 1 (s)	Backtracking 2 (s)
7		
9		
11		
13		
15		
17		
19		
21		
23		
25		
27		
29		

Figura 1: Tiempos de ejecución de los dos algoritmos.

7. Comparativa de calidad de soluciones.

Para mostrar que, efectivamente, el segundo algoritmo realiza una búsqueda más completa y encuentra caminos más cortos en caso de haberlos, compararemos las soluciones obtenidas para un caso concreto.

El laberinto generado es el siguiente:

La solución proporcionada por el algoritmo no óptimo tiene una longitud de 41 y es:

La solución óptima encontrada por el segundo algoritmo, de tamaño 35, es:

8. Conclusión.