Analyse et manipulation des données

DigitalLab@LaPlataforme_

What is it about?

data solution

task

We want to bring out the

important features for a given

Data science is like Plato's cave allegory

The data is a **projection** that shows us only certain aspects of the phenomenon we are studying.

Data Curation

Conceptual aspects

- Outlier Treatment
- Bias Detection
- Value Imputation

Practical Aspects

- Reading and Cleaning
- Aggregation and Transformation
- Reproducibility
- Partitioning and Sampling

Data Exploration

- To decide on curation processes, we have to understand our data as a whole. It includes:
 - All the analytics tools we've seen.
 - More complex techniques for data analysis that allow multiple variables to be related.
 - Unstructured data visualization techniques

Problematic situation	Data	Curation decisions
Predict programmers salaries in Argentina in 2020	Voluntary survey with age, gender, years of experience and salary columns	 Delete ages less than 18 and greater than 99 Eliminate salaries greater than 1 million pesos Standardize the years of experience so that the mean is 0. Rescale the ages in a range from 1 to 0, such that 18 years or less corresponds to 0 and 70 years or more corresponds to 1. Delete the gender column.

т

ш

Problematic situation	Data	Curation decisions
Predict programmers salaries in Argentina in 2020	Voluntary survey with age, gender, years of experience and salary columns	 Delete ages less than 18 and greater than 99 Eliminate salaries greater than 1 million pesos Standardize the years of experience so that the mean is 0. Rescale the ages in a range from 1 to 0, such that 18 years or less corresponds to 0 and 70 years or more corresponds to 1. Delete the gender column.
Predict the price of a property	Government database with records of real estate transactions. It has price, date and location.	 Delete day and month of the transaction. Scrape buying/selling sites to extract additional information about each property. Impute missing values using estimates based on similar examples.

knowledge vs limiting our

Tradeoff: using domain

modeling too much

The curse of the categories

What **information** does the address of a property give me?

The address of a property for sale is a categorical variable that cannot be used without transforming it. Intuitively, we infer the neighborhood of a property based on its address, and based on that we estimate the value.

 The categories give me information because they group different examples. The fewer examples they group together, the less informative they are.

The curse of the categories

- Delete the variable.
- Combine it with another variable.
 - Ex: We only use the zipcode for neighborhoods that have more than one postal code, or to differentiate homonymous localities.
- Create new categories:
 - Group similar categories.
 - Create an "other" category for categories that don't have many examples.

Demo notebook Ol_exploration.ipynb

Data Enrichment

Combining different datasets

Data Structure

- A dataset is set of records.
- Each record has a set of features associated with it, and the features can be related in complex ways.
- Different structures are often stored with particular file formats
 - The data structure is not the same as the type of database.

Relational Data

- All records in a table have the same characteristics.
- Characteristics of some records may be linked with others in different tables.

- Files in CSV format, parquet, etc.
- Relational databases like MySQL, Postgres

Semi-structured data

- Each record has a different set of characteristics
- Records can be nested
- One record in a collection doesn't need to have the same features than the others.

```
{"orders": [
   "client id": 1458,
   "items":
    {"description": "Empanadas", "amount": 12},
    {"description": "Hot sauce", "amount": 1}
   "total": 950.
   "payment method": "cash"
   "client id": 985,
   "items":
    {"description": "Full sandwich", "amount": 2,
    "observations": "One without egg"}
   "total": 1400.
   "payment method": "debit",
   "debit card": "Mastercard"
```

- Files in JSON format
- Non-relational databases like MongoDB

Semi-structured data

- Records can have complex relationships
 - Hierarchies
 - Graph Structure (Twitter)

- Triple RDF
- Graph-oriented databases

Unstructured Data

- Collections of different types:
 - Text documents
 - Images
 - Audio
- May or may not have associated metadata

Grouping and aggregation

1. groupby:

- Takes a series of columns A, B, C
- For each combination of column values (a1, b1, c1), group the rows that have those values.

2. agg:

- Takes a function f
- For each group of rows, apply the function f to each column.

Grouping and aggregation

https://towards datascience.com/how-to-use-the-split-apply-combine-strategy-in-pandas-group by -29e0eb44b62e

Join and merge

- 1. df1.join(df2, how='outer')
 - Horizontally join the DataFrames and match the rows where the index value is the same

Join and merge

- 1. df1.merge(df2, on='key')
 - o Same as join, but instead of comparing indexes, it compares a set of columns.

	lef	t			rig	ht				Res	ult		
	key	Α	В		key	С	D		key	Α	В	С	D
0	KΩ	A0	В0	0	KD	00	D0	0	KD	A0	В0	ω	D0
1	K1	Al	B1	1	Кl	Cl	D1	1	кı	Al	B1	Cl	D1
2	K2	A2	B2	2	K2	C2	D2	2	K2	A2	B2	(2	D2
3	КЗ	A3	В3	3	Ю	СЗ	D3	3	Ю	A3	В3	СЗ	D3

Join and merge

Unexpected duplicates!

df1

df2

R5

P17

Product	Sales		
R22	45		
J14	10		
R5	58		
P17	24		
Product	Category		
R22	T-shirt		
J14	Jean		
J14	Trousers		

T-shirt

Trousers

all_sales = df1.merge(df2, on='Product')

Product	Category	Sales
R22	T-shirt	45
J14	Jean	10
J14	Trousers	10
R5	T-shirt	58
P17	Trousers	24

cat_sales = all_sales\
.groupby(Category).sum()

Category	Sales
T-shirt	103
Jean	10
Trousers	34

total_sales =
 all sales.Sales.sum()

Demo notebook O2_combining_datasets.ipynb