Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

Звіт до лабораторної роботи №3 на тему: "Проблема знаходження власних чисел матриці"

> Виконав студент групи ОМ-3 Скибицький Нікіта

1 Постановка задачі

Для матриці

$$a_{i,j} = \begin{cases} \frac{i+j-1}{2n}, & i \neq j \\ n+10 + \frac{i+j-1}{2n}, & i = j \end{cases}$$

порядку $n = 5, 6, \dots$ знайти

1.
$$\lambda_{\max} = \max_{i} |\lambda_i(A)|;$$

2.
$$\lambda_{\min} = \min_{i} \lambda_i(A);$$

3.
$$\hat{\lambda}_{\max} = \min_{i} |\lambda_i(A)|$$
.

методом скалярних добутків та всі власні значення – методом обертання Якобі.

2 Теоретична частина

2.1 Степеневий метод

1. Знаходження $\lambda_{\max}: |\lambda_1| \equiv \lambda_{\max} > |\lambda_2| \geq |\lambda_3| \geq \dots$

Нехай $\vec{x}^{(0)}$ — заданий вектор, будемо послідовно обчислювати вектори

$$\vec{x}^{(k+1)} = A\vec{x}^{(k)}, \quad k = 0, 1, \dots$$
 (2.1)

Тоді $\vec{x}^{(k)} = A^k \vec{x}^{(0)}$. Нехай $\{\vec{e}_i\}_{i=1}^n$ – система власних векторів. Представимо $\vec{x}^{(0)}$ у вигляді:

$$\vec{x}^{(0)} = \sum_{i=1}^{n} c_i \vec{e}_i.$$

Оскільки $A\vec{e}_i = \lambda_i \vec{e}_i$, то $\vec{x}^{(k)} = \sum_{i=1}^n c_i \lambda_i^k \vec{e}_i$. При великих k: $\vec{x}^{(k)} \approx c_1 \lambda_1^k \vec{e}_1$. Тому

$$\mu_1^{(k)} = \frac{\vec{x}_m^{(k+1)}}{\vec{x}_m^{(k)}} = \lambda_1 + O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right).$$

Значить $\mu_1^{(k)} \xrightarrow[k \to \infty]{} \lambda_1$.

Якщо матриця $A = A^T$ симетрична, то існує ортонормована система векторів $(\vec{e}_i, \vec{e}_j) = \delta_{i,j}$. Тому

$$\mu_1^{(k)} = \frac{(\vec{x}^{(k+1)}, \vec{x}^{(k)})}{(\vec{x}^{(k)}, \vec{x}^{(k)})} = \frac{\left(\sum_{i=1}^n c_i \lambda_i^(k+1) \vec{e}_i, \sum_{j=1}^n c_j \lambda_j^k \vec{e}_j\right)}{\left(\sum_{i=1}^n c_i \lambda_i^k \vec{e}_i, \sum_{j=1}^n c_j \lambda_j^k \vec{e}_j\right)} = \frac{\sum_i c_i^2 \lambda_i^{2k+1}}{\sum_i c_i^2 \lambda_i^{2k}} = \frac{\sum_i c_i^2 \lambda_i^{2k}}{\sum_i c_i^2 \lambda_i^2} = \frac{\sum_i c_i^2 \lambda_i^2 \lambda_i^{2k}}$$

$$=\frac{c_1^2\lambda_1^{2k+1}+c_2^2\lambda_2^{2k+1}+\ldots}{c_1^2\lambda_1^{2k}+c_2^2\lambda_2^{2k}+\ldots}=\lambda_1+O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)\xrightarrow[k\to\infty]{}\lambda_1.$$

Це означає збіжність до максимального за модулем власного значення з квадратичною швидкістю.

Якщо $\lambda_1 > 1$, то при проведенні ітерацій відбувається зріст компонент вектора $\vec{x}^{(k)}$, що приводить до "переповнення" (overflow). Якщо ж $\lambda_1 < 1$, то це приводить до зменшення компонент (underflow). Позбутися негативу такого явища можна нормуючи вектори $\vec{x}^{(k)}$ на кожній ітерації.

Алгоритм степеневого методу знаходження максимального за модулем власного значення з точністю ε виглядає так:

(a)
$$\vec{x}^{(0)} \to \vec{e}_0 = \frac{\vec{x}^{(0)}}{\|\vec{x}^{(0)}\|};$$

(6)
$$\vec{x}^{(k+1)} = A\vec{x}^{(k)}, \ \mu_1^{(k)} = (\vec{x}^{(k+1)}, \vec{e}^{(k)}), \ \vec{e}^{(k+1)} = \frac{\vec{x}^{(k+1)}}{\|\vec{x}^{(k+1)}\|}, \ k = 0, 1, \ldots;$$

(B)
$$|\mu_1^{(k+1)} - \mu_1^{(k)}| \ge \varepsilon$$
 goto 2;

$$(\Gamma)$$
 $\lambda_1 \approx \mu_1^{(k+1)}$.

За цим алгоритмом для симетричної матриці $A^T=A$ швидкість прямування $\mu_1^{(k)}$ до λ_{\max} – квадратична.

2. Знаходження $\lambda_2: |\lambda_1| > |\lambda_2| > |\lambda_3| \geq \dots$ Нехай $\lambda_1, \vec{e_1}$ відомі.

Якщо $|\lambda_1| > |\lambda_2| > |\lambda_3| > \dots$, то

$$\mu_2^{(k)} = \frac{\vec{x}_m^{(k+1)-\lambda_1 \vec{x}_m^{(k)}}}{\vec{x}_m^{(k)-\lambda_1 \vec{x}_m^{(k-1)}}} \xrightarrow[k \to \infty]{} \lambda_2, \quad \text{де } \vec{x}^{(k+1)} = A \vec{x}^{(k)}.$$

 $x_m^{(k)}$ – m-та компонента $\vec{x}^{(k)}$.

 \mathfrak{C} алгоритм обчислення λ_2 , \vec{e}_2 , використовуючи нормування векторів та скалярні добутки для обчислення $\mu_2^{(k)}$).

3. Знаходження мінімального власного числа $\lambda_{\min}(A) = \min_i |\lambda_i(A)|$.

Припустимо , що $\lambda_i(A)>0$ та відоме λ_{\max} . Розглянемо матрицю $B=\lambda_{\max}E-A$. Маємо

$$\forall i : \lambda_i(B) = \lambda_{\max} - \lambda_i(A).$$

Тому $\max_{i} \lambda_{i}(B) = \lambda_{\max} - \min_{i} \lambda_{i}(A)$. Звідси $\lambda_{\min}(A) = \lambda_{\max}(A) - \lambda_{\max}(B)$.

Якщо $\exists i: \lambda_i(A) < 0$, то будуємо матрицю $\overline{A} = \sigma E + A$, $\sigma > 0$, $\overline{A} > 0$ і для неї попередній розгляд дає необхідний результат. Замість λ_{\max} в матриці B можна використовувати $\|A\|$.

Ще один спосіб обчислення мінімального власного значення полягає в використання обернених ітерацій:

$$A\vec{x}^{(k+1)} = \vec{x}^k, \quad k = 0, 1, \dots$$
 (2.2)

Але цей метод вимагає більшої кількості арифметичних операцій: складність методу на основі формули (2.1) $Q = O(n^2)$, а на основі (2.2) – $Q = O(n^3)$, оскільки треба розв'язувати СЛАР, але збігається метод (2.2) швидче.

2.2 Ітераційний метод обертання

Це метод розв'язання повної проблеми власних значень для симетричних матриць $A^T=A$. Існує матриця U, що приводить матрицю A до діагонального виду:

$$A = U\Lambda U^T, \tag{2.3}$$

де Λ – діагональна матриця, по діагоналі якої стоять власні значення λ_i ; U – унітарна матриця, тобто: $U^{-1} = U^T$.

З (2.3) маємо

$$\Lambda = U^T \Lambda U, \tag{2.4}$$

Нехай $\exists \tilde{U}$ – матриця, така що $\tilde{\Lambda} = \tilde{U}^T A \tilde{U}$ і $\tilde{\Lambda} = (\tilde{\lambda}_{i,j})_{i,j=1}^n, |\tilde{\lambda}_{i,j}| < \delta \ll 1, i \neq j$.

Тоді діагональні елементи мало відрізняються від власних значень

$$|\tilde{\lambda}_{i,i} - \lambda_i(A)| < \varepsilon = \varepsilon(\delta).$$

Введемо $t(A) = \sum_{\substack{i,j=1\\i\neq j}}^n a_{i,j}^2$. З малості величини t(A) витікає, що діагональні елементи малі. По $A=A_0$

за допомогою матриць обертання що повертають систему векторів на кут φ , побудуємо послідовність $\{A_k\}$ таку, що $A_k \to \Lambda$ при $k \to \infty$.

Матриця обертання U_k є унітарною: $U_k^{-1} = U_k^T$.

Послідовно будуємо:

$$A_{k+1} = U_K^T A_k U_k, (2.5)$$

Процес (2.5) називається монотонним, якщо: $t(A_{k+1}) < t(A_k)$. Для матриці (2.5) виконується:

$$a_{i,j}^{(k+1)} = a_{i,j}^{(k)} \cos 2\varphi + \frac{1}{2} (a_{j,j}^{(k)} - a_{i,i}^{(k)}) \sin 2\varphi, \tag{2.6}$$

А також $t(A_{k+1})=t(A_k)-2(a_{i,j}^{(k)})^2,$ якщо вибирати φ з умови $a_{i,j}^{(k+1)}=0.$

Звідси $\varphi = \varphi_k = \frac{1}{2}\arctan(p^{(k)}), \ p^{(k)} = \frac{2a_{i,j}^{(k)}}{a_{i,i}^{(k)} - a_{j,j}^{(k)}}, \ \text{де } |a_{i,j}^{(k)}| = \max_{\substack{m,l \\ m \neq l}} |a_{m,l}^{(k)}|.$ Тоді $t(A_k) \to 0, \to \infty$. Чим більше n тим більше ітерацій необхідно для зведення A до Λ .

3 Практична частина

Покажемо наочні результати для значення n=5 та для заданої точності $\varepsilon=10^{-6}$, хоча запрограмований алгоритм дає змогу отримати результати $\forall n \in \mathbb{N}$:

$$A = \begin{pmatrix} 15.1 & 0.2 & 0.3 & 0.4 & 0.5 \\ 0.2 & 15.3 & 0.4 & 0.5 & 0.6 \\ 0.3 & 0.4 & 15.5 & 0.6 & 0.7 \\ 0.4 & 0.5 & 0.6 & 15.7 & 0.8 \\ 0.5 & 0.6 & 0.7 & 0.8 & 15.9 \end{pmatrix}.$$

3.1 Метод скалярних добутків

Почнемо з $\vec{x}^{(0)} = (1,0,0,0,0)$ щоб довго не думати.

1. В процесі розв'язання задачі, були отримані відповідні результати для $\lambda_{\max} = \max_i |\lambda_i(A)|$ та $\lambda_{\min} = \min_i |\lambda_i(A)|$:

$$\lambda_{\text{max}} = 17.686140661634397$$

2. Для знаходження λ_{\min} була використана допоміжна матриця, $B = \lambda_{\max} \cdot E - A$:

$$B = \begin{pmatrix} 2.586140 & -0.2 & -0.3 & -0.4 & -0.5 \\ -0.2 & 2.486140 & -0.4 & -0.5 & -0.6 \\ -0.3 & -0.4 & 2.386140 & -0.6 & -0.7 \\ -0.4 & -0.5 & -0.6 & 2.286140 & -0.8 \\ -0.5 & -0.6 & -0.7 & -0.8 & 2.186140 \end{pmatrix}.$$

Для якої знаходимо $\lambda_{\min}(A) = \lambda_{\max}(A) - \lambda_{\max}(B)$:

$$\lambda_{\min} = 17.686140661634397 - 2.8722810782394337 = 14.813859583394963.$$

3. Для знаходження $\hat{\lambda}_{\min}$ була використана допоміжна матриця $C=E-\frac{A^2}{\lambda_{\max}^2}$:

$$C = \begin{pmatrix} -11.92254791 & -0.3788277 & -0.55693326 & -0.73503882 & -0.91314438 \\ -0.3788277 & -12.2815861 & -0.74069297 & -0.9216256 & -1.10255823 \\ -0.55693326 & -0.74069297 & -12.64627844 & -1.10821238 & -1.29197208 \\ -0.73503882 & -0.9216256 & -1.10821238 & -13.01662492 & -1.48138593 \\ -0.91314438 & -1.10255823 & -1.29197208 & -1.48138593 & -13.39262555 \end{pmatrix}$$

$$\begin{split} \hat{\lambda}_{\min} &= \min_{i} |\lambda_{i}(A)| = \sqrt{\lambda_{\max}^{2}(A)(1 - \lambda_{\max}(C))} = \\ &= \sqrt{17.686140661634397^{2}(1 - 0.2984311005453412))} = 14.813859583394963. \end{split}$$

3.2 Метод обертання Якобі

Враховуючи теоретичний арсенал та застосовуючи заданий алгоритм отримаємо:

$$\lambda(A) = (14.813859, 14.999999, 14.999999, 14.999999, 17.686140)$$

Ітерації виконуємо допоки не буде виконана умова зупинки:

$$t(A_k) = \sum_{\substack{i,j=1\\i\neq j}}^n a_{i,j}^2 < \varepsilon, \quad A_{k+1} = U_k^T \cdot A_k \cdot U_k$$

На останній ітерації: $t(A_N)=1.1086685175654626\cdot 10^{-7}$. Кількість ітерацій N=11