NTNU

Institutt for matematiske fag

Kontinuasjonseksamen i TMA4100 Matematikk 1

5. august 2013

Løsningsforslag

1

(i)
$$\lim_{x \to 0} \frac{1 - \cos(x^2)}{x^4} = \lim_{x \to 0} \frac{2x \sin(x^2)}{4x^3} = \frac{1}{2} \lim_{x \to 0} \frac{\sin(x^2)}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{2x \cos(x^2)}{2x}$$
$$= \frac{1}{2} \lim_{x \to 0} \cos(x^2) = \boxed{\frac{1}{2}}$$

$$(ii) \quad \lim_{x \to 0} \left(\frac{1}{x} + \frac{1}{\ln(1-x)} \right) = \lim_{x \to 0} \frac{\ln(1-x) + x}{x \ln(1-x)} = \lim_{x \to 0} \frac{-\frac{1}{1-x} + 1}{\ln(1-x) - x \frac{1}{1-x}}$$
$$= \lim_{x \to 0} \frac{-x}{(1-x)\ln(1-x) - x} = \lim_{x \to 0} \frac{-1}{-\ln(1-x) - 2} = \boxed{\frac{1}{2}}$$

- 2 a) Vi viser først at ligningen har en løsning i intervallet [0,1]. Sett $f(x) = x^3 + x 1$. Vi har f(0) = -1 < 0 og f(1) = 1 > 0, så f(0) < 0 < f(1). Fra skjæringssetningen (Intermediate Value Theorem) følger at det finnes et $x \in [0,1]$ slik at f(x) = 0. Så ligningen har en løsning i [0,1]. Videre har vi at $f'(x) = 3x^2 + 1 > 0$ for alle x, så f er strengt voksende. Dette medfører at det ikke finnes mer enn ett x slik at f(x) = 0, så løsningen er entydig.
 - **b)** Vi har $x_{n+1}=x_n-\frac{x_n^3+x_n-1}{3x_n^2+1},\ n=0,1,2,3,\ldots$ Med startverdi $x_0=1$ får vi følgende tabell:

n	0	1	2	3	4
x_n	1	0.75	0.6860465116	0.6823395824	0.6823278040

Vi ser at fjerde desimal ikke endrer seg etter tredje iterasjon, så vi tar x = 0.6823 som tilnærmet løsning med 4 desimalers nøyaktighet.

[3] Med betegnelser som på figuren er bilens hastighet gitt ved $\frac{dy}{dt}$, hvor t er tiden. For alle t gjelder at $y^2 + 75^2 = s^2$. Derivasjon av denne ligningen mhp. t gir $2y\frac{dy}{dt} = 2s\frac{ds}{dt}$, dvs., $\frac{dy}{dt} = \frac{s}{y}\frac{ds}{dt}$. I det gitte øyeblikket er s = 125 m og ds/dt = -20 m/s, som gir $y = \sqrt{125^2 - 75^2}$ m = 100 m og $\frac{dy}{dt} = \frac{125}{100}(-20)$ m/s = -25 m/s = -90 km/h. Så bilen kjører med en fart av $\boxed{90$ km/h}.

For de som løste oppgaven ut fra feil bokmålsversjon: Her er ds/dt = -17,5 m/s, så $\frac{dy}{dt} = \frac{125}{100}(-17,5)$ m/s = -21,875 m/s = -78,75 km/h. Så bilen kjører med en fart av $\boxed{78,75$ km/h.

a) La *V* være volumet til rotasjonslegemet. Med skivemetoden får vi:

$$V = \int_0^h \pi (\sqrt{\frac{y}{a}})^2 dy = \frac{\pi}{a} \left[\frac{y^2}{2} \right]_0^h = \left[\frac{\pi}{2} \frac{h^2}{a} \right].$$

b) Hvis vi lar y være vannhøyden, vil volumet V ved vannhøyde y være gitt ved

$$V = V(y) = \frac{\pi}{2} \frac{y^2}{a} .$$

Derivasjon mhp. tiden t gir $\frac{dV}{dt}=\frac{\pi}{a}y\frac{dy}{dt}$, dvs., $\frac{dy}{dt}=\frac{a}{\pi y}\frac{dV}{dt}$. I det gitte øyeblikket er $\frac{dV}{dt}=-2\,\mathrm{dm}^3$ og $y=1\,\mathrm{m}=10\,\mathrm{dm}$. Med $a=\pi\,\mathrm{dm}^{-1}$ gir dette

$$\frac{dy}{dt} = \frac{\pi \,\mathrm{dm}^{-1}}{\pi \cdot 10 \,\mathrm{dm}} (-2) \frac{\mathrm{dm}^{3}}{\mathrm{s}} = -0, 2 \,\mathrm{dm/s} = -2 \,\mathrm{cm/s} \,.$$

Med andre ord: Vannhøyden avtar med 2 cm/s i det gitte øyeblikket.

 $\boxed{\mathbf{5}}$ **a)** Med $u_n = \frac{x^{n+1}}{n}$ får vi

$$\frac{|u_{n+1}|}{|u_n|} = \frac{n|x|^{n+2}}{(n+1)|x|^{n+1}} = \frac{n}{n+1}|x| \to |x| \quad \text{når } n \to \infty.$$

Forholdskriteriet gir da at rekken konvergerer for |x| < 1 og divergerer for |x| > 1, dvs., R = 1.

Endepunkter.

x=1: Vi får den harmoniske rekken $\sum_{n=1}^{\infty} \frac{1}{n}$ som divergerer (f.eks. ved integralkriteriet).

x=-1: Vi får den alternerende harmoniske rekken $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ som konvergerer ved Leibniz's kriterium, nemlig: Rekken er alternerende, og absoluttverdien til leddene går monotont mot 0.

b) Med f(x) = xg(x) får vi $g(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ for |x| < 1. Leddvis derivasjon av rekken er tillatt innenfor det åpne konvergensintervallet, så vi får $g'(x) = \sum_{n=1}^{\infty} x^n$ når |x| < 1. Dette er en geometrisk rekke med faktor x, og summeformelen for geometriske gir $g'(x) = \sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$ når |x| < 1. Siden g(x) = 0, får vi $g(x) = g(x) - g(0) = \int_0^x g'(t) dt = \int_0^x \frac{1}{1-t} dt = [-\ln(1-t)]_0^x = -\ln(1-x)$, som til slutt gir

$$f(x) = xg(x) = \boxed{-x\ln(1-x)} \quad \text{når } -1 < x < 1.$$