

# Вебинар №11. Теоремы о среднем. Производная сложной функции.

# Производная сложной функции

Очень часто функции, с которыми мы работаем, представляют собой функцию от функции, то есть сложную функцию. Для вычисления их производных существует специальное правило, известное, как формулу производной сложной функции.

#### Определение.

Пусть функция y = f(x) дифференцируема в точке x, и функция z = g(y) дифференцируема в точке y = f(x). Тогда сложная функция h(x) = g(f(x)) дифференцируема в точке x, и её производная равна:

$$g(f(x))' = g'(f(x)) \cdot f'(x)$$

## На пальцах (интуитивное понимание):

Представьте, что  $\Delta x$  — это маленькое изменение x, которое вызывает изменение  $\Delta y$  в функции f(x), а это, в свою очередь, вызывает изменение  $\Delta g$  в функции g(y). Тогда отношение  $\frac{\Delta g}{\Delta x}$  (скорость изменения всей сложной функции) можно представить как произведение:

$$\frac{\Delta g}{\Delta x} = \frac{\Delta g}{\Delta y} \cdot \frac{\Delta y}{\Delta x}$$

При переходе к пределу  $\Delta x \to 0$ , это превращается в произведение производных:  $\frac{dg}{dx} = \frac{dg}{dy} \cdot \frac{dy}{dx}$  Таким образом получается:

$$\boxed{\left(g\big(f(x)\big)\right)' = g'\big(f(x)\big) \cdot f'(x)}$$

#### Строгое доказательство:

Пусть y = f(x) и z = g(y) = g(f(x)). Так как f(x) дифференцируема в точке x, то по определению производной:

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x)$$

Мы можем записать это в виде:

$$\frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x)$$

где  $\Delta y=f(x+\Delta x)-f(x)$  и  $\alpha(\Delta x)$  — бесконечно малая функция при  $\Delta x\to 0$  (то есть  $\lim_{\Delta x\to 0}\alpha(\Delta x)=0$ ). Из этого следует:

$$\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x$$

Аналогично, так как g(y) дифференцируема в точке y, то:

$$\lim_{\Delta y \to 0} \frac{g(y + \Delta y) - g(y)}{\Delta y} = g'(y)$$



И мы можем записать:

$$\frac{\Delta g}{\Delta y} = g'(y) + \beta(\Delta y)$$

где  $\Delta g=g(y+\Delta y)-g(y)$  и  $\beta(\Delta y)$  — бесконечно малая функция при  $\Delta y\to 0$  (то есть  $\lim_{\Delta y\to 0}\beta(\Delta y)=0$ ). Из этого следует:

$$\Delta g = g'(y)\Delta y + \beta(\Delta y)\Delta y$$

Теперь подставим выражение для  $\Delta y$  в формулу для  $\Delta g$ :

$$\Delta g = g'(y)(f'(x)\Delta x + \alpha(\Delta x)\Delta x) + \beta(\Delta y)(f'(x)\Delta x + \alpha(\Delta x)\Delta x)$$

Разделим обе части на  $\Delta x$  (при  $\Delta x \neq 0$ ):

$$\frac{\Delta g}{\Delta x} = g'(y)f'(x) + g'(y)\alpha(\Delta x) + \beta(\Delta y)f'(x) + \beta(\Delta y)\alpha(\Delta x)$$

Теперь возьмем предел обеих частей при  $\Delta x \to 0$ . Мы знаем, что  $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$ . Так как f(x) непрерывна (поскольку дифференцируема), то  $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (f(x + \Delta x) - f(x)) = 0$ . Поэтому  $\lim_{\Delta x \to 0} \beta(\Delta y) = 0$  (так как  $\beta$  — бесконечно малая при  $\Delta y \to 0$ ). Тогда все слагаемые, содержащие  $\alpha(\Delta x)$  или  $\beta(\Delta y)$ , стремятся к нулю:

$$\lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} = g'(y)f'(x) + 0 + 0 + 0 = g'(y)f'(x)$$

Подставляя y = f(x), получаем:

$$\left(g(f(x))\right)' = g'(f(x)) \cdot f'(x)$$

Что и требовалось доказать.



## Примеры производных сложной функции

Давайте применим данную формулу на практике.

$$g(f(x))' = g'(f(x)) \cdot f'(x)$$

Пример 1.  $(\sin x^2)'$ 

**Решение:** Внешняя функция:  $g(u) = \sin(u)$ , где  $u = x^2$ . Внутренняя функция:  $f(x) = x^2$ . Производная внешней функции:  $g'(u) = \left(\sin(u)\right)' = \cos(u)$ . Производная внутренней функции:  $f'(x) = (x^2)' = 2x$ . Применяем формулу производной сложной функции:

$$(\sin x^2)' = \cos x^2 \cdot (x^2)' = \cos x^2 \cdot 2x = 2x \cos x^2$$

Otbet:  $2x \cos x^2$ .

Пример 2.  $(e^{\cos x})'$ 

**Решение:** Внешняя функция:  $g(u) = e^u$ , где  $u = \cos x$ . Внутренняя функция:  $f(x) = \cos x$ . Производная внешней функции:  $g'(u) = (e^u)' = e^u$ . Производная внутренней функции:  $f'(x) = (\cos x)' = -\sin x$ . Применяем формулу производной сложной функции:

$$(e^{\cos x})' = e^{\cos x} \cdot (\cos x)' = e^{\cos x} \cdot (-\sin x) = -\sin x e^{\cos x}$$

Ответ:  $-\sin x e^{\cos x}$ .

Применяя формулу производной сложной функции для функций, состоящих из более чем двух слоев, мы просто последовательно применяем правило. То есть:

$$\left[\left(h\big(g\big(f(x)\big)\right)\right)' = h'\Big(g\big(f(x)\big)\Big) \cdot g'\big(f(x)\big) \cdot f'(x)$$

Здесь h — внешняя функция, g — центральная, f — внутренняя.

Пример 3.  $\left(\sqrt{\sin x^2}\right)'$ 

**Решение:** Это функция из трех слоев: Внешняя функция:  $k(v) = \sqrt{v} = v^{1/2}$ , где  $v = \sin x^2$ . Центральная функция:  $g(u) = \sin(u)$ , где  $u = x^2$ . Внутренняя функция:  $f(x) = x^2$ .

$$\left(\sqrt{\sin x^2}\right)' = \frac{1}{2\sqrt{\sin x^2}} \cdot (\sin x^2)' = \frac{1}{2\sqrt{\sin x^2}} \cdot \cos x^2 \cdot (x^2)' = \frac{1}{2\sqrt{\sin x^2}} \cdot \cos x^2 \cdot 2x = \frac{x \cos x^2}{\sqrt{\sin x^2}}$$

Otbet:  $\frac{x \cos x^2}{\sqrt{\sin x^2}}$ .



Пример 4.  $\left(\ln(\ln x)\right)^{\prime}$ 

**Решение:** Здесь три функции ln друг в друге:

Внешняя:  $\ln(u)$ , где  $u = \ln(\ln x)$ . Центральная:  $\ln(v)$ , где  $v = \ln x$ . Внутренняя:  $\ln x$ .

$$\left(\ln(\ln(\ln x))\right)' = \frac{1}{\ln(\ln x)} \cdot (\ln(\ln x))' = \frac{1}{\ln(\ln x)} \cdot \frac{1}{\ln x} \cdot (\ln x)' =$$
$$= \frac{1}{\ln(\ln x)} \cdot \frac{1}{\ln x} \cdot \frac{1}{x} = \frac{1}{x \ln x \ln(\ln x)}$$

Otbet:  $\frac{1}{x \ln x \ln(\ln x)}$ .

Пример 5.  $\left(\sqrt[3]{\operatorname{tg}^4 3x}\right)'$ 

**Решение:** Перепишем выражение:  $(tg^4 3x)^{1/3} = tg^{4/3} 3x$ .

Слои: 1. Внешняя: степенная функция  $(...)^{4/3}$ . 2. Центральная: tg(...). 3. Внутренняя: 3x.

$$\left(\sqrt[3]{\lg^4 3x}\right)' = \frac{4}{3} \lg^{1/3} 3x \cdot (\lg 3x)' = \frac{4}{3} \lg^{1/3} 3x \cdot \frac{1}{\cos^2 3x} \cdot (3x)' =$$
$$= \frac{4}{3} \lg^{1/3} 3x \cdot \frac{1}{\cos^2 3x} \cdot 3 = 4\sqrt[3]{\lg 3x} \frac{1}{\cos^2 (3x)}$$

Otbet:  $4\frac{\sqrt[3]{\operatorname{tg} 3x}}{\cos^2 3x}$ .

Пример 6.  $\left(3^{(\cos 4x)^{12}}\right)'$ 

**Решение:** Слои: 1. Внешняя: показательная функция  $3^{(...)}$ . 2. Центральная: степенная функция  $(...)^{12}$ . 3. Центральная:  $\cos(...)$ . 4. Внутренняя: 4x.

$$\left(3^{(\cos 4x)^{12}}\right)' = 3^{(\cos 4x)^{12}} \ln 3 \cdot \left((\cos 4x)^{12}\right)'$$

$$= 3^{(\cos 4x)^{12}} \ln 3 \cdot 12(\cos 4x)^{11} \cdot (\cos 4x)'$$

$$= 3^{(\cos 4x)^{12}} \ln 3 \cdot 12(\cos 4x)^{11} \cdot (-\sin 4x) \cdot (4x)'$$

$$= 3^{(\cos 4x)^{12}} \ln 3 \cdot 12(\cos 4x)^{11} \cdot (-\sin 4x) \cdot 4$$

$$= -48 \ln 3 \sin 4x \cos^{11}(4x) 3^{\cos^{12}(4x)}$$

Otbet:  $-48 \ln 3 \sin 4x \cos^{11}(4x) 3^{\cos^{12}(4x)}$ .



# Производные от функций вида $[f(x)]^{g(x)}$ (Логарифмическое дифференцирование)

Для функций, у которых и основание, и показатель степени являются переменными (например,  $x^{x}$ ), прямое применение правил для степенных или показательных функций невозможно. В таких случаях используется метод логарифмического дифференцирования. Идея в том, чтобы представить функцию как  $e^{\ln(...)}$ , а затем найти производную.

Пример 1.  $(x^x)'$ 

**Решение:** Пусть  $y = x^x$ . Представим функцию в виде:

$$y = e^{\ln(x^x)} = e^{x \ln x}$$

Теперь используем формулу производной сложной функции  $(e^u)' = e^u \cdot u'$ , где  $u = x \ln x$ .

$$y' = (e^{x \ln x})' = e^{x \ln x} \cdot (x \ln x)'$$

Найдем производную от  $u = x \ln x$  с помощью правила производной произведения (fg)' = f'g + fg':

$$(x \ln x)' = (x)' \cdot \ln x + x \cdot (\ln x)' = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1$$

Подставим это обратно в выражение для y':

$$y' = e^{x \ln x} \cdot (\ln x + 1)$$

Заменим  $e^{x \ln x}$  обратно на  $x^x$ :

$$(x^x)' = x^x(\ln x + 1)$$

Otbet:  $x^x(\ln x + 1)$ .

Пример 2.  $\left((\sin x)^{\cos x}\right)'$ Решение: Пусть  $y=(\sin x)^{\cos x}$ . Представим функцию в виде:

$$y = e^{\ln \sin x^{\cos x}} = e^{\cos x \ln \sin x}$$

Теперь используем правило цепи  $(e^u)' = e^u \cdot u'$ , где  $u = \cos x \ln \sin x$ .

$$y' = (e^{\cos x \ln \sin x})' = e^{\cos x \ln \sin x} \cdot (\cos x \ln \sin x)'$$

Найдем производную от  $u = \cos x \ln \sin x$  с помощью правила производной произведения:

$$(\cos x \ln \sin x)' = (\cos x)' \cdot \ln \sin x + \cos x \cdot (\ln \sin x)'$$

Вычислим отдельные производные:  $(\cos x)' = -\sin x$ .  $(\ln \sin x)' -$  это производная сложной функции: внешняя  $\ln(v)$ , внутренняя  $v = \sin x$ .  $(\ln \sin x)' = \frac{1}{\sin x} \cdot (\sin x)' = \frac{1}{\sin x} \cdot \cos x = \cot x$ . Подставим эти производные:

$$(\cos x \ln \sin x)' = -\sin x \ln \sin x + \cos x \cot x$$

Теперь подставим это обратно в выражение для y':

$$y' = e^{\cos x \ln \sin x} \cdot (-\sin x \ln \sin x + \cos x \cot x) = (\sin x)^{\cos x} \cdot (-\sin x \ln \sin x + \cos x \cot x)$$

Other:  $(\sin x)^{\cos x} \cdot (-\sin x \ln \sin x + \cos x \cot x)$ .



Пример 3.  $(\sqrt[x]{x})'$ 

**Решение:** Функцию  $\sqrt[x]{x}$  можно переписать как  $x^{1/x}$ . Это функция вида  $[f(x)]^{g(x)}$ , где f(x) = x и  $g(x) = \frac{1}{x}$ . Представим функцию в виде:

$$y = x^{1/x} = e^{\ln(x^{1/x})} = e^{\frac{1}{x}\ln x}$$

Теперь используем правило цепи  $(e^u)' = e^u \cdot u'$ , где  $u = \frac{1}{x} \ln x$ .

$$y' = (e^{\frac{1}{x}\ln x})' = e^{\frac{1}{x}\ln x} \cdot \left(\frac{1}{x}\ln x\right)'$$

Найдем производную от  $u=\frac{1}{x}\ln x$  с помощью правила производной произведения:

$$\left(\frac{1}{x}\ln x\right)' = \left(\frac{1}{x}\right)' \cdot \ln x + \frac{1}{x} \cdot (\ln x)'$$

Вычислим отдельные производные:  $\left(\frac{1}{x}\right)' = (x^{-1})' = -1 \cdot x^{-2} = -\frac{1}{x^2}$ .  $(\ln x)' = \frac{1}{x}$ . Подставим эти производные:

$$\left(\frac{1}{x}\ln x\right)' = -\frac{1}{x^2}\ln x + \frac{1}{x} \cdot \frac{1}{x}$$
$$= -\frac{\ln x}{x^2} + \frac{1}{x^2}$$
$$= \frac{1 - \ln x}{x^2}$$

Теперь подставим это обратно в выражение для y':

$$y' = e^{\frac{1}{x}\ln x} \cdot \left(\frac{1 - \ln x}{x^2}\right)$$

Заменим  $e^{\frac{1}{x} \ln x}$  обратно на  $x^{1/x}$ :

$$(\sqrt[x]{x})' = x^{1/x} \left(\frac{1 - \ln x}{x^2}\right)$$

Otbet:  $x^{1/x} \left( \frac{1 - \ln x}{x^2} \right)$ .



## Теоремы о среднем значении

Теоремы о среднем значении — это группа фундаментальных теорем в математическом анализе, которые связывают значения функции и её производной на интервале. Для этих теорем ключевым является понятие непрерывности на отрезке.

## Теорема (Первая теорема Вейерштрасса):

Если функция f(x) непрерывна на отрезке [a,b], то она ограничена на этом отрезке.

## Доказательство (методом от противного):

Предположим, что функция f(x) непрерывна на [a,b], но неограничена на этом отрезке. Если f(x) неограничена, то для любого положительного числа M (как бы велико оно ни было) существует такая точка  $x \in [a,b]$ , что |f(x)| > M.

В частности, это верно для последовательности чисел  $M_n = n$ , где  $n \in \mathbb{N}$ . То есть, для каждого  $n = 1, 2, 3, \ldots$  существует такая точка  $x_n \in [a, b]$ , что  $|f(x_n)| > n$ . Мы построили последовательность точек  $\{x_n\}$ , все члены которой принадлежат у отрезку [a, b]. Следовательно, эта последовательность  $\{x_n\}$  является ограниченной.

По теореме Больцано-Вейерштрасса, из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность. Пусть  $\{x_{n_k}\}$  — это подпоследовательность из  $\{x_n\}$  такая, что  $\lim_{k\to\infty} x_{n_k} = x_0$ . Так как все  $x_{n_k} \in [a,b]$  и отрезок [a,b] замкнут, то предельная точка  $x_0$  также должна принадлежать этому отрезку:  $x_0 \in [a,b]$ .

Теперь используем условие непрерывности функции f(x) в точке  $x_0$ . Поскольку f(x) непрерывна на [a,b], она непрерывна и в точке  $x_0$ . По определению непрерывности по Гейне, если  $x_{n_k} \to x_0$ , то  $\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$ .

Однако, по построению последовательности  $\{x_n\}$ , мы имели  $|f(x_n)| > n$  для всех n. Для подпоследовательности это означает  $|f(x_{n_k})| > n_k$ . Поскольку  $n_k \to \infty$  при  $k \to \infty$ , то  $\lim_{n \to \infty} |f(x_{n_k})| = \infty$ .

Мы получили противоречие: с одной стороны,  $\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$  (конечное число), а с другой стороны,  $\lim_{k\to\infty} |f(x_{n_k})| = \infty$ . Конечное число не может быть равно бесконечности. Следовательно, наше исходное предположение о неограниченности функции f(x) было неверным. Таким образом, если функция f(x) непрерывна на [a,b], то она ограничена на этом отрезке. Доказательство окончено



## Теорема (Вторая теорема Вейерштрасса):

Если функция f(x) непрерывна на отрезке [a,b], то она достигает на этом отрезке своих наибольшего и наименьшего значений (супремума и инфимума).

## Доказательство (для наибольшего значения):

Пусть f(x) непрерывна на [a,b]. По Первой теореме Вейерштрасса, f(x) ограничена на [a,b]. Это означает, что существуют конечные супремум  $M = \sup_{x \in [a,b]} f(x)$  и инфимум  $m = \inf_{x \in [a,b]} f(x)$ . Нам

нужно показать, что существуют точки  $x_{max}, x_{min} \in [a,b]$  такие, что  $f(x_{max}) = M$  и  $f(x_{min}) = m$ . Покажем это для супремума M.

По определению супремума, для любого  $x \in [a,b]$  выполняется  $f(x) \leq M$ . Также, для любого числа M' меньше, чем M, существует  $x \in [a,b]$  такое, что f(x) > M'.

Рассмотрим последовательность  $M_n = M - \frac{1}{n}$ , где  $n \in \mathbb{N}$ . Очевидно, что  $M_n < M$  для всех n. Тогда по определению супремума, для каждого n существует такая точка  $x_n \in [a,b]$  (соответствующая  $M_n$ ), что:

$$M - \frac{1}{n} < f(x_n) \le M$$

Таким образом, мы построили последовательность точек  $\{x_n\}$ , все члены которой принадлежат у отрезку [a,b]. Следовательно, эта последовательность  $\{x_n\}$  является ограниченной.

По теореме Больцано-Вейерштрасса, из ограниченной последовательности  $\{x_n\}$  можно выделить сходящуюся подпоследовательность. Пусть  $\{x_{n_k}\}$  — это подпоследовательность из  $\{x_n\}$  такая, что  $\lim_{k\to\infty} x_{n_k} = x_{max}$ . Так как все  $x_{n_k} \in [a,b]$  и отрезок [a,b] замкнут, то предельная точка  $x_{max}$  также должна принадлежать этому отрезку:  $x_{max} \in [a,b]$ .

Теперь рассмотрим неравенство для подпоследовательности:

$$M - \frac{1}{n_k} < f(x_{n_k}) \le M$$

Возьмем предел всех частей этого неравенства при  $k \to \infty$ :

$$\lim_{k \to \infty} \left( M - \frac{1}{n_k} \right) = M - 0 = M$$

$$\lim_{k \to \infty} M = M$$

По теореме о двух милиционерах, из  $\lim_{k\to\infty}\left(M-\frac{1}{n_k}\right)=M$  и  $\lim_{k\to\infty}M=M$  следует, что  $\lim_{k\to\infty}f(x_{n_k})=M$ .

С другой стороны, поскольку функция f(x) непрерывна на [a,b], она непрерывна и в точке  $x_{max}$ . По определению непрерывности по Гейне, если  $x_{n_k} \to x_{max}$ , то  $\lim_{k \to \infty} f(x_{n_k}) = f(x_{max})$ .

Сравнивая два результата для  $\lim_{k\to\infty} f(x_{n_k})$ , получаем:

$$f(x_{max}) = M$$

Таким образом, функция достигает своего супремума M в точке  $x_{max} \in [a,b]$ . Аналогично доказывается, что функция достигает своего инфимума m в некоторой точке  $x_{min} \in [a,b]$ . Доказательство окончено.



# Экстремумы функции. Теорема Ферма.

Экстремумы — это локальные максимумы и минимумы функции, которые играют важную роль в исследовании поведения функции.

**Определение.** Пусть функция f(x) определена в некоторой окрестности точки  $x_0$ .

Точка  $x_0$  называется точкой **локального максимума** функции f(x), если существует  $\delta > 0$  такое, что для всех x из проколотой  $\delta$ -окрестности точки  $x_0$  значение функции в x меньше, чем значение функции в  $x_0$ :

$$\exists \delta > 0 : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(x) < f(x_0)$$

#### Определение.

Точка  $x_0$  называется точкой **локального минимума** функции f(x), если существует  $\delta > 0$  такое, что для всех x из проколотой  $\delta$ -окрестности точки  $x_0$  значение функции в x больше, чем значение функции в  $x_0$ :

$$\exists \delta > 0 : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(x) > f(x_0)$$



(а) Геом. смысл локального максимума

(b) Геом. смысл локального минимума

Рис. 1

Точки локального максимума и локального минимума называются точками экстремума функции.



## Теорема Ферма (необходимое условие экстремума):

Пусть функция f(x) дифференцируема в точке  $x_0$ , и  $x_0$  является точкой экстремума функции f(x). Тогда производная функции в этой точке равна нулю:

$$f'(x_0) = 0$$

#### Геометрический смысл:

В точке экстремума (максимума или минимума) дифференцируемой функции касательная к графику функции является горизонтальной (её угловой коэффициент равен нулю).



Рис. 2: Геом. смысл теоремы Ферма

#### Доказательство (для точки максимума):

Пусть  $x_0$  — точка локального максимума функции f(x). Тогда по определению существует  $\delta > 0$  такое, что для всех  $x \in U_{\delta}(x_0)$  выполняется  $f(x) < f(x_0)$ . Это означает, что  $f(x) - f(x_0) < 0$ . Поскольку f(x) дифференцируема в точке  $x_0$ , существует  $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ . Рассмотрим односторонние пределы (односторонние производные):

- Для  $\Delta x > 0$  (приближаемся к  $x_0$  справа),  $x_0 + \Delta x \in U_{\delta}(x_0)$ . Тогда числитель  $f(x_0 + \Delta x) f(x_0) < 0$ . Знаменатель  $\Delta x > 0$ . Следовательно, отношение  $\frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} < 0$ . При переходе к пределу,  $f'(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} \le 0$ .
- Для  $\Delta x < 0$  (приближаемся к  $x_0$  слева),  $x_0 + \Delta x \in U_{\delta}(x_0)$ . Тогда числитель  $f(x_0 + \Delta x) f(x_0) < 0$ . Знаменатель  $\Delta x < 0$ . Следовательно, отношение  $\frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} > 0$ . При переходе к пределу,  $f'(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} \ge 0$ .

Поскольку производная  $f'(x_0)$  существует, односторонние пределы должны быть равны. Из  $f'(x_0) \leq 0$  и  $f'(x_0) \geq 0$  следует, что  $f'(x_0) = 0$ . Аналогично доказывается для точки минимума. Доказательство окончено.



#### Важное замечание:

Теорема Ферма дает лишь необходимое условие экстремума, но не достаточное. То есть, если  $f'(x_0) = 0$ , это не всегда означает, что  $x_0$  — точка экстремума (например,  $y = x^3$  в x = 0). Также экстремум может существовать в точке, где производная не существует (как для y = |x| в x = 0).



Рис. 3: y = |x|



На Рис. 3 и Рис. 4 приведены графики y=|x| и  $y=x^3$  соответственно. Как видно, y=|x| имеет минимум в нуле, но производная не равна нулю (на самом деле, производная в нуле не существует у данной функции). Также видно, что производная  $y=x^3$  равна нулю в нуле, но функция не имеет экстремума в нуле, так как возрастает на всей числовой прямой (данная точка называется точкой перегиба и подробно рассматривается в курсе по графикам функций).



#### Теорема Ролля.

Пусть функция f(x) удовлетворяет следующим условиям:

- 1. Непрерывна на отрезке [a, b].
- 2. Дифференцируема на интервале (a, b).
- 3. Значения функции на концах отрезка равны: f(a) = f(b).

Тогда существует хотя бы одна точка  $\xi \in (a,b)$  такая, что производная функции в этой точке равна нулю:

$$\exists \xi \in (a, b) : f'(\xi) = 0$$



Рис. 5: Геом. смысл теоремы Ролля

#### Доказательство:

Так как функция f(x) непрерывна на отрезке [a,b], то по Второй теореме Вейерштрасса она достигает на этом отрезке своих наибольшего M и наименьшего m значений. Рассмотрим два случая:

- 1. Случай 1: Наибольшее и наименьшее значения достигаются на концах отрезка. То есть M=f(a) и m=f(b), или наоборот. По условию теоремы, f(a)=f(b). Следовательно, M=m. Это означает, что наибольшее и наименьшее значения функции совпадают. Тогда функция f(x) является константой на отрезке [a,b]. Если f(x)=C (константа), то её производная f'(x)=0 для всех  $x\in (a,b)$ . В этом случае любая точка  $\xi\in (a,b)$  удовлетворяет условию  $f'(\xi)=0$ .
- 2. Случай 2: Наибольшее или наименьшее значение достигается во внутренней точке интервала (a,b). Пусть, например, наибольшее значение M достигается в некоторой точке  $\xi \in (a,b)$ . То есть  $f(\xi) = M$ . Поскольку  $\xi$  является точкой локального максимума (она не является концом отрезка) и функция f(x) дифференцируема на (a,b), то по Теореме Ферма, производная функции в этой точке равна нулю:  $f'(\xi) = 0$ . Аналогично, если наименьшее значение m достигается в некоторой точке  $\xi \in (a,b)$ , то  $\xi$  является точкой локального минимума, и по Теореме Ферма  $f'(\xi) = 0$ .

Таким образом, в любом случае существует хотя бы одна точка  $\xi \in (a,b)$ , в которой  $f'(\xi) = 0$ . Доказательство окончено.



#### Важное замечание:

Если убрать одно из условий в формулировке теоремы Ролля, то в общем случае она не будет выполняться.

Давайте уберем пункт 3 про равенство отрезков на концах. То есть пусть  $f(a) \neq f(b)$ . Тогда рассмотрим функцию:

$$y = x, \ x \in [1,2]$$

Очевидно, что данная функция непрерывна на отрезке [a,b] и дифференцируема на интервале, однако не существует такой точки  $\xi$ , что y'=0, так как y'=x'=1.

Теперь давайте уберем пункт 2 про дифференцируемость функции на интервале (a,b). Тогда рассмотрим функцию:

$$y = |x|, \ x \in [-1,1]$$

Очевидно, что данная функция непрерывна на отрезке и принимает равные значения на его концах, однако не существует такой точки  $\xi$ , что y'=0, так как слева от нуля производная от y=|x| равна -1, справа от нуля равна 1, а в самом нуле функция y=|x| не является дифференцируемой.

Теперь давайте уберем пункт 1 про непрерывность функции на отрезке [a,b]. Тогда рассмотрим функцию:

$$y = \begin{cases} x, & x \in [0,1) \\ 0, & x = 1 \end{cases}$$

Очевидно, что данная функция дифференцируема на интервале (0,1) и принимает равные значения на его концах, однако не существует такой точки  $\xi$ , что y'=0, так как на всем интервале (0,1) производная функции  $y'=x'=1\neq 0$ .

Графики всех функций контрпримеров приведем ниже:







(b) Пусть f(x) не дифф. на (a;b)



(c) Пусть f(x) не непр. на [a;b]



#### Теорема Лагранжа.

Пусть функция f(x) удовлетворяет следующим условиям:

- 1. Непрерывна на отрезке [a, b].
- 2. Дифференцируема на интервале (a, b).

Тогда существует хотя бы одна точка  $\xi \in (a,b)$  такая, что:

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

### Геометрический смысл:

Теорема Лагранжа является обобщением теоремы Ролля. Она связывает угловой коэффициент секущей, проходящей через концы графика, с угловым коэффициентом касательной в некоторой промежуточной точке.

Теорема Лагранжа утверждает, что найдется такая точка  $\xi$  на интервале (a,b), в которой касательная к графику функции f(x) будет параллельна секущей, соединяющей концы графика функции (a, f(a)) и (b, f(b)).

Как видно из Рис. 7, угловой коэффициент секущей как раз и будет равен  $\frac{f(b)-f(a)}{b-a}$ .



Рис. 7: Геом. смысл теоремы Лагранжа

#### Доказательство:

Сведем задачу к теореме Ролля. Для этого построим вспомогательную функцию h(x), которая удовлетворяет всем условиям теоремы Ролля. Рассмотрим функцию:

$$h(x) = f(x) - \lambda x$$

где  $\lambda$  — некоторая константа, которую мы подберем так, чтобы h(a) = h(b).

- 1. Функция h(x) непрерывна на [a,b] (как сумма непрерывных функций f(x) и  $-\lambda x$ ).
- 2. Функция h(x) дифференцируема на (a,b) (как сумма дифференцируемых функций f(x) и  $-\lambda x$ ).



Теперь найдем  $\lambda$  из условия h(a) = h(b):

$$f(a) - \lambda a = f(b) - \lambda b$$
$$\lambda b - \lambda a = f(b) - f(a)$$
$$\lambda (b - a) = f(b) - f(a)$$
$$\lambda = \frac{f(b) - f(a)}{b - a}$$

Теперь, когда h(a) = h(b), по теореме Ролля для функции h(x), существует хотя бы одна точка  $\xi \in (a,b)$  такая, что  $h'(\xi) = 0$ . Найдем производную функции h(x):

$$h'(x) = (f(x) - \lambda x)' = f'(x) - \lambda$$

Подставим  $x = \xi$ :

$$h'(\xi) = f'(\xi) - \lambda = 0 \implies f'(\xi) = \lambda$$

Подставляем значение  $\lambda$ :

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Что и требовалось доказать.



## Теорема Коши.

Пусть функции f(x) и g(x) удовлетворяют следующим условиям:

- 1. Непрерывны на отрезке [a, b].
- 2. Дифференцируемы на интервале (a, b).
- 3. Производная  $g'(x) \neq 0$  для всех  $x \in (a, b)$ .

Тогда существует хотя бы одна точка  $\xi \in (a, b)$  такая, что:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

#### Важное замечание:

Условие  $g'(x) \neq 0$  гарантирует, что  $g(b) - g(a) \neq 0$  (иначе, по теореме Ролля для g(x), существовало бы  $x \in (a,b)$  такое, что g'(x) = 0, что противоречит условию). Это нужно, чтобы знаменатель в формуле не обратился в ноль.

#### Доказательство:

Сведем задачу к теореме Ролля. Для этого построим вспомогательную функцию h(x):

$$h(x) = f(x) - \lambda g(x)$$

где  $\lambda$  — константа, которую мы подберем так, чтобы h(a) = h(b).

- 1. Функция h(x) непрерывна на [a,b] (как разность непрерывных функций).
- 2. Функция h(x) дифференцируема на (a,b) (как разность дифференцируемых функций).

Найдем  $\lambda$  из условия h(a) = h(b):

$$f(a) - \lambda g(a) = f(b) - \lambda g(b)$$
$$\lambda g(b) - \lambda g(a) = f(b) - f(a)$$
$$\lambda (g(b) - g(a)) = f(b) - f(a)$$
$$\lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Теперь, когда h(a) = h(b), по теореме Ролля для функции h(x), существует хотя бы одна точка  $\xi \in (a,b)$  такая, что  $h'(\xi) = 0$ . Найдем производную функции h(x):

$$h'(x) = (f(x) - \lambda g(x))' = f'(x) - \lambda g'(x)$$

Подставим  $x = \xi$ :

$$h'(\xi) = f'(\xi) - \lambda g'(\xi) = 0 \implies f'(\xi) = \lambda g'(\xi) \implies \lambda = \frac{f'(\xi)}{g'(\xi)}$$

Приравнивая два выражения для  $\lambda$ :

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Что и требовалось доказать.



#### Связь между теоремой Коши и теоремой Лагранжа:

Теорема Лагранжа является частным случаем теоремы Коши. Если в теореме Коши мы возьмем функцию g(x) = x, то:

- 1. g(x) = x непрерывна на [a,b].
- 2. g(x) = x дифференцируема на (a,b) (g'(x) = 1).
- 3.  $g'(x) = 1 \neq 0$  на (a,b).

Все условия выполнены. Подставим g(x) = x в формулу теоремы Коши:

$$\frac{f(b) - f(a)}{b - a} = \frac{f'(\xi)}{1} = f'(\xi)$$

Таким образом, из теоремы Коши следует теорема Лагранжа.

Однако, из теоремы Лагранжа не следует теорема Коши. Иногда у студентов возникает желание вывести теорему Коши через теорему Лагранжа следующим образом: если f(x) и g(x) непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), то для них выполняется теорема Лагранжа. То есть:

$$\exists \xi \in (a,b): \ f'(\xi) = \frac{f(b) - f(a)}{b - a} \ \text{ if } \ \exists \xi \in (a,b): \ g'(\xi) = \frac{g(b) - g(a)}{b - a}$$

Значит, поделив оба равенства друг на друга получаем:

$$\exists \xi \in (a,b): \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

В чем же ошибка в данной цепочке действий?

Как видно из Рис. 8, точка  $\xi$  у двух произвольных функций f(x) и g(x), непрерывных на отрезке [a,b] и дифференцируемых на интервале (a,b) не обязательно совпадает. В общем случае данные точки разные. Поэтому, из теоремы Лагранжа мы можем получить лишь следующее утверждение:

$$\exists \xi_1, \xi_2 \in (a,b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi_1)}{g'(\xi_2)}$$

Теорема Коши же в свою очередь говорит о том, что обязательно найдется такая точка  $\xi$  (не две разные, а одна общая), в которой выполняется утверждение теоремы. Это утверждение является более сильным.



Рис. 8: Теорема Лагранжа ≠ Теорема Коши