Register Map for the OpenHT

Wojciech Kaczmarski, SP5WWP M17 Project, May 2023

1 Control registers

1.1 Control register 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000	SSB		MOD]	O0_SRC	۲,	R	ESERVE	ED	PD		DEMOD		BA	ND
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Bits [1:0] – **BAND** – select operating band by using one of the DDR receivers

BAND	Value	Description
	<u>0x0</u>	sub-GHz (default)
	0x1	2.4 GHz
	0x2	invalid
	0x3	invalid

Bits [4:2] – **DEMOD** – select the demodulator

DEMOD	Value	Description				
	<u>0x0</u>	FM (default)				
	0x1	AM				
	0x2	SSB				
	0x3 to 0x7	reserved				

Bit [5] – **PD** – Phase dithering for the FM transmitter submodule

PD	Value	Description
	<u>0x0</u>	phase dithering disabled (default)
	0x1	phase dithering enabled

Bits [8:6] – **RESERVED**

RESERVED	Value	Description
	<u>0x0</u>	-
	0x1 to 0x7	-

Bit [11:9] – **IO0_SRC** – IO0 signal source mux

IO0_SRC	Value	Description
	<u>0x0</u>	logic low (default)
	0x1	DRDY signal
	0x2 to 0x7	reserved

Bits [14:12] – **MOD** – select modulation

MOD	Value	Description
	<u>0x0</u>	FM (default)
	0x1	AM
	0x2	SSB
	0x3 to 0x7	invalid

Bit [15] – **SSB**

SSB	Value	Description
	<u>0x0</u>	USB (default)
	0x1	LSB

1.2 Control register 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001	-	1	-	-	1	1	1	FM_TX_W			CTCS	SS_TX			STA	ATE
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW							

Bits [1:0] – **STATE** – set the FPGA to one of the operating modes

STATE	Value	Description
	<u>0x0</u>	idle (default)
	0x1	TX
	0x2	RX
	0x3	reserved

Bits [7:2] – **CTCSS_TX** – set the transmitter's CTCSS frequency (in hertz)

CTCSS_TX	Value	Description
	<u>0x00</u>	disabled (default)
	0x01	67.0
	0x02	69.3
	0x3F	254.1

Bit [8] – FM_TX_W – set the frequency modulator's maximum deviation

FM_TX_W	Value	Description				
	<u>0x0</u>	narrow, 12.5 kHz channel (default)				
	0x1	wide, 25 kHz channel				

Note: The actual maximum deviation is half the value from the table above.

Bits [15:9] – reserved.

1.3 I branch offset null

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0002	MSB						1	6-bit sigr	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Signed 16-bit value to be added to the I branch after applying predistortion.

1.4 Q branch offset null

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0003	MSB						1	6-bit sign	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Signed 16-bit value to be added to the Q branch after applying predistortion.

1.5 I branch linear gain

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0004	MSB						1	6-bit sign	ned intege	er						LSB
0x4000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Signed, fixed-point, 16-bit gain value to be applied to the I branch. 0x4000 corresponds to +1.0 (default value).

1.6 Q branch linear gain

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0005	MSB						1	6-bit sign	ned intege	er						LSB
0x4000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Signed, fixed-point, 16-bit gain value to be applied to the Q branch. 0x4000 corresponds to +1.0 (default value).

1.7 Digital predistortion register 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0006	MSB						1	6-bit sign	ned intege	er						LSB
0x4000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Polynomial coefficient p_1 value of the formula below:

$$D(x) = p_1 x + p_2 sgn(x) x^2 + p_3 x^3$$

Signed, fixed-point value, where 0x4000 equals positive unity, "+1.0" (default value). This applies to all 3 registers holding the predistortion coefficients. To disable the predistortion, set p_1 to 0x4000 (+1.0) and both p_2 and p_3 to 0x0000 (0.0).

1.8 Digital predistortion register 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0007	MSB						1	6-bit sign	ned integ	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Polynomial coefficient p_2 value. See 1.5 for details. Default value is 0x0000 (zero).

1.9 Digital predistortion register 3

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0008	MSB						1	6-bit sigr	ed intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Polynomial coefficient p_3 value. See 1.5 for details. Default value is 0x0000 (zero).

2 Modulators

2.1 Modulation word

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0009	MSB						16-bit	signed/u	nsigned i	nteger						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Depending on the modulation scheme selected by the **MOD** subregister of **Control register 1** (0x0000), the contents are one of the following:

- · frequency modulation instantaneous frequency control word, signed
- amplitude modulation instantaneous amplitude control word, unsigned
- SSB modulation baseband sample, signed

2.2 Reserved 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000A								RESE	RVED							
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW							

Instantaneous amplitude control word, unsigned.

2.3 Reserved 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000B								RESE	RVED							
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW							

--

2.4 Reserved 3

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000C								RESE	RVED							
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW							

--

3 Status registers

3.1 Status register 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000D								RI	$\Xi {f V}$							
0x4854	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Readback only register. This is mostly for fun or to check if the SPI comms are OK. Can be used to store revision number. The default **REV** value decodes to "HT".

3.2 Status register 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000E	-	-	1	1	-	-	-	-	-	-	-	1	-	-	PLL1	PLL0
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Values in this register are reset to 0x0000 at start-up and get updated in realtime.

Bit [0] – **PLL0** – Phase locked loop lock flag (38, 64, 152 MHz clocks)

PLL0	Value	Description
	<u>0x0</u>	PLL unlocked (default)
	0x1	PLL locked

Bit [1] – **PLL1** – Phase locked loop lock flag (7.2 MHz sample rate generator master clock)

PLL1	Value	Description
	<u>0x0</u>	PLL unlocked (default)
	0x1	PLL locked

Bits [15:2] – reserved.

4 Demodulators and signal info

4.1 Demodulator register

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000F	MSB						16-bit	signed/u	nsigned i	nteger						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Depending on the **DEMOD** subregister setting of **Control register 1**, the contents of this register are one of the following:

- frequency demodulator frequency discriminator output, signed
- amplitude demodulator signal's magnitude, unsigned
- SSB demodulator baseband sample, signed

4.2 RSSI

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0010	MSB						16	-bit unsig	gned integ	ger						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

--

5 Debug, raw readback

5.1 I branch sample

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0011	MSB						1	6-bit sign	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Raw *I* branch sample, 16-bit, left justified, signed. Bits [2:0] are always zero.

5.2 Q branch sample

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0012	MSB						1	6-bit sign	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Raw *Q* branch sample, 16-bit, left justified, signed. Bits [2:0] are always zero.

6 Registers summary

Read/write register Read-only register

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_ Page(s)
0x0000	SSB		MOD]	O0_SRC	7	RI	ESERVE	D	PD		DEMOD)	BA	ND	tbf
0x0001	-	-	-	-	-	-	-	FM_TX_W			CTCS	S_TX			STA	ATE	tbf
0x0002	MSB						1	6-bit sign	ed integ	er						LSB	tbf
0x0003	MSB 16-bit signed integer LSB														tbf		
0x0004	MSB 16-bit signed integer LSB														tbf		
0x0005	MSB 16-bit signed integer LSB														tbf		
0x0006	MSB 16-bit signed integer LSB													tbf			
0x0007	MSB 16-bit signed integer LSB														tbf		
0x0008	MSB 16-bit signed integer LSB													tbf			
0x0009	MSB						16-bit	signed/u	nsigned	integer						LSB	tbf
0x000A								RESE	RVED								tbf
0x000B								RESE	RVED								tbf
0x000C								RESE	RVED								tbf
0x000D								RE	EV								tbf
0x000E	PLL1 PLL0												tbf				
0x000F	MSB 16-bit signed/unsigned integer LSB												tbf				
0x0010	MSB 16-bit unsigned integer LSB											tbf					

Register Map for the OpenHT

0x0011	MSB	16-bit signed integer	LSB	tbf
0x0012	MSB	16-bit signed integer	LSB	tbf