# 2.4.2 FPGA auf dem gleichen Modul wie der Prozessor (System On Module) - Bauweise "SOM"

Bei einem SOM (System On Module) ist die CPU und auch der FPGA auf dem gleichen PCB-Modul verbaut verbaut. Dadurch kann der Hersteller auf dem Modul ein Bus mit kontrollierter Impedanz implementieren. Dies ermöglicht sehr hohe Bandbreite bei der Kommunikation zwischen der CPU und dem FGPA möglich. Das Modul benötigt ein zusätzliches PCB, ein Basisboard, in dem es eingebettet werden kann. Oft existieren Experimentierboards mit einer grossen Zahl an unterschiedlichen I/O-Möglichkeiten die gebrauchsfertig gekauft werden können. Für eine spezifische Anwendung muss so ein Basisboard für das SOM selbst designed werden, weil ein Experimentierboard oft zu gross ist, oder nicht die benötigte Peripherie enthält. Da neben dem FPGA auch High-Speed-Peripherie wie z.B. RAM auf dem Modul verbaut ist, kann beim Basisboard oft auf die aufwändige Entwicklung von High-Speed-PCB-Traces verzichtet werden.

Es hat sich gezeigt, dass es nur zwei Anbieter SOM mit FPGA produzieren. Nur die beiden Anbieter solectrix<sup>5</sup> und *OposSom*<sup>6</sup> scheinen solche Module zu verkaufen.

Weil die Auswahl für SOMs sehr klein ist wurde diese Bauform nicht mehr weiter verfolgt.

## 2.4.3 FPGA im gleichen Gehäuse wie der Prozessor (System On Chip - Bauweise "SOC"

Seit einigen Jahren werden Produkte verkauft, die eine programmierbare Logik (FPGA) und auch eine dedizierte CPU in einem Chip-Gehäuse verbaut haben. Da der FPGA und auch die CPU im selben Gehäuse verbaut sind, ist eine sehr schnelle, integrierte Kommunikation zwischen CPU und FPGA möglich.

Die beiden grossen FPGA-Hersteller Altera und auch Xilinx bieten beide mehrere Produkte als eine SOC Lösung an. Die Produkte von Altera sind aber deutlich teurer als die Chips von Xilinx. Besonders die Evaluierungsboards von Altera sind sehr teuer.

Bei der Produktfamilie Zynq von Xilynx gibt es ein breites Angebot von SOCs und auch von Experimentierboards. Das Experimentierboard "Zyb" wird sogar schon im Unterricht der NTB für die Entwicklung von VHDL genutzt.

#### 2.4.4 ARM als Softcore in FPGA - Bauweise "FPGA"

In FPGAs können Prozessoren als sogenannte *Softcores* implementiert werden. Dabei wird ein Teil der FPGA-Gates so konfiguriert, dass sie wie ein Mikroprozessor verwendet werden können.

Es existieren aber nur Designs für einfachere Mikroprozessoren, da komplexe Prozessoren viel zu viele Gates benötigen um ökonomisch sinnvoll zu sein. ARM Prozessoren der Cortex-A Familie sind sehr komplex und nicht als FPGA-Softcores erhältlich. Von der ARM Cortex-Familie sind nur Cortex-M0 und Cortex-M1 erhältlich. Diese Cores sind aber kostenpflichtig und nicht Open Source.

Weil keine Cortex-A Cores erhältlich sind und alle anderen ARM-Cores kostenpflichtig sind, wird diese Bauweise nicht mehr weiter verfolgt.

#### 2.4.5 Wahl der Bauweise

Es hat sich gezeigt, dass es nicht sehr viele Produkte gibt, die einen Cortex-A Prozessor in Kombination mit einem FPGA bieten. Einige Produkte zielen mehr auf den Hobby-Bereich wie zum Beispiel das "FPGA Development Board CAPE for the BEAGLEBONE". Für professionellere Lösungen scheinen selbst entwickelte PCBs der Standard zu sein. Alle anderen Ansätze sind oft nur Nischenprodukte für spezielle Anwendungen oder mit geringer Verfügbarkeit.

<sup>&</sup>lt;sup>5</sup>https://www.solectrix.de/de/sxom-module

<sup>&</sup>lt;sup>6</sup>https://www.solectrix.de/de/sxom-module

Tabelle 2.2: Übersicht Bauformen

| Bauweise | Vorteile                                         | Nachteile                    |
|----------|--------------------------------------------------|------------------------------|
| Modular  | * Günstig wenn nur Prozessor verwendet wird      | * Datenbus evt. nicht Memory |
|          | * Unterschiedliche FPGAs können verwendet werden | mapped                       |
| SOB      | * Sauberes, abgeschlossenes System               | * FPGA ist fix               |
|          | * Potenziell sehr schnelle Datenverbindung       | * FPGA ist fix               |
| SOC      | zwischen FPGA und Prozessor                      | * Relativ teuer              |
|          | * Sauberes, abgeschlossenes System               | Relativ teuer                |
| FPGA     | * Flexibel                                       | * Sehr teuer                 |

Seit einigen Jahren ist aber eine signifikante Auswahl von SOCs auf dem Markt. Diese werden aber nur von den beiden Herstellern Altera und Xilinx angeboten. Beide Hersteller bieten aber ein sehr umfangreiches Angebot.

### 2.5 Fazit - Auswahl der Hardware

Da die Wahl bereits auf einen Cortex-A in einem SOC eingeschränkt wurde, ist das verbleibende Angebot sehr begrenzt. Die Entscheidung zwischen Zynq von Xilinx und den SOCs von Altera fällt auf Zynq, da die Altera Experimentierboards mehrere tausend Franken kosten.

Das Zybo-Experimentierboard ist eine sehr naheliegende Wahl, da es bereits für den Unterricht in der NTB genutzt wird. Der Preis des Boards ist auch tief genug, dass eine ganze Klasse für den Unterricht damit ausgerüstet werden kann. Eine grosszügige Auswahl an I/Os bieten eine sehr hohe Flexibilität zum experimentieren und auch für den Unterricht.

Das Zybo ist mit Zynq-7000 bestückt. Der Zynq-7000 ist ein Modell mit einem Dual-Core Cortex-A9 Prozessor mit 667 MHz. Es existieren aber auch noch günstigere Zynqs mit weniger Leistung und sehr viel teurere Varianten mit einem leistungsstärkeren Prozessor und grösseren FPGA. Zusätzlich sind die Zynqs als standalone Chip oder als Modul inklusive RAM erhältlich.

All diese Eigenschaften machen das Zybo mit dem Zynq-7000 zum klaren Favorit.