STAT 230 Notes / Definition

Thomas Liu

August 9, 2023

Contents

1	Cha	apter 1					
	1.1	Sample Space					
	1.2	Classical Probability					
	1.3	Relative Frequency					
	1.4	Subjective Probability					
2	Chapter 2						
	2.1	Simple Event / Compound Event					
	2.2	Probability					
	2.3	Odds in Favour / Odds Against					
3	Chapter 3						
	3.1	Addition Rule					
	3.2	Multiplication Rule					
	3.3	Permutation					
	3.4	Combination					
	3.5	Number of arrangements when symbols are repeated					
	3.6	Useful Series and Sums					
		3.6.1 Geometric Series					
		3.6.2 Binomial Thoerem					
		3.6.3 Multinomial Theorem					
		3.6.4 Hypergeometric Identity					
		3.6.5 Exponential Series					
		3.6.6 Special series					
4	Chapter 4						
	4.1	De Morgan's Laws					
	4.2	Addition Law of Probability of the Union of n Events					
		4.2.1 Two Events					
		4.2.2 Three Events					
		4.2.3 n events					

	4.3	Mutually Exclusive
	4.4	Probability of the Union of Mutually Exclusive Events
		4.4.1 Two Events
		4.4.2 <i>n</i> Events
	4.5	Complement
	4.6	Independent / Dependent Events
	4.7	Conditional Probability
	4.8	Product Rule
	4.9	Law of Total Probability
		Baye's Theorem
	1.10	Bayo 5 Theorem 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	Cha	pter 5
	5.1	Range
	5.2	Random Variable 9
	5.3	Discrete Random Variables
	5.4	Continuous Random Variables
	5.5	Probability Function
	5.6	Cumulative Distribution Function (CDF)
	5.7	Discrete Uniform Distribution
	0.1	5.7.1 Physical Setup
		5.7.2 Probability Function
	5.8	Hypergeometric Distribution
	5.6	5.8.1 Physical Setup
		5.8.2 Probability Function
	5.9	
	5.9	
		5.9.1 Physical Setup
	F 10	5.9.2 Probability Function
	5.10	Negative Binomial Distribution
		5.10.1 Physical Setup
		5.10.2 Probability Function
	5.11	Geometric Distribution
		5.11.1 Physical Setup
		5.11.2 Probability Function
	5.12	Piosson Distribution
		5.12.1 Probability Function
		Two ways to interpret Poisson distribution
	5.14	Poisson Process
		5.14.1 Definition
c	CI.	
6		pter 7
	6.1	Sample Mean
	6.2	Median & Mode
		6.2.1 Median

		6.2.2 Mode	13				
	6.3	Expected Value	13				
	6.4	Linearity Properties of Expectation	14				
	6.5	Variance	14				
	6.6	Standard Deviation	14				
7	Chapter 8						
	7.1	Probability Density Function	14				
	7.2	Properties of a probability density function	14				
	7.3	Expectation, Mean, and Variance for Continuous Random Variable	15				
	7.4	Continuous Uniform Distribution	15				
	7.5	Exponential Distribution	15				
	7.6	Gamma Function	16				
	7.7	Memoryless Property of the Exponential Distribution	16				
	7.8	Normal Distribution	16				
		7.8.1 Physical Setup	16				
		7.8.2 Cumulative distribution function	16				
	7.9	Theorem	16				
8	Cha	Chapter 9					
	8.1	Joint Probability Function	$\frac{17}{17}$				
	8.2	Independent Random Variables	17				
	8.3	Conditional Probability Functions	17				
	8.4	Poisson	17				
	8.5	Binomial	17				
	8.6	Joint Probability Function	17				
	8.7	Expectation for Multivariate Distributions: Covariance and Correlation	18				
		8.7.1 Expected Value	18				
		8.7.2 Property of Multivariate Expectation	18				
	8.8	Covariance	18				
	8.9	Correlation Coefficient	18				
	8.10	Results for Means	18				
		Results for Covariance	18				
		Results for Variance	19				
	8.13	Linear Combinations of Independent Normal Random Variables	19				
9	Chpater 10						
	9.1	Central Limit Theorem	19				
	9.2	Normal Approximation to Poisson	20				
	9.3	Normal Approximation to Binomial	20				
	9.4	Moment Generating Function (m.g.f.)	20				
	9.5		20				
	9.6	Uniqueness Theorem for Moment Generating Functions	20				
	9.7	m.g.f. of a Continuous Random Variable	20				

1 Chapter 1

1.1 Sample Space

The set of all possible distinct outcomes to a random experiemnt or process, with the property that in a single trial, one and only one of these outtimes occurs

1.2 Classical Probability

The probability of some event is

number of ways the event can occur number of outcomes in S

provided all points in the sample space S are equally likely

1.3 Relative Frequency

The probability of an event is the (limiting) proposition (or fraction) of times the event occurs in a very long series of repetitions of an experiemnt or process

1.4 Subjective Probability

The probability of an event is a measure of how sure the person making the statement is that the event will happen

2 Chapter 2

2.1 Simple Event / Compound Event

Simple event if the event is indivisible so it contains only one point Compound event if an event A made up of two or more simple events

2.2 Probability

Let $S = \{a_1, a_2, \dots\}$ be a discrete sample space. Assign numbers (probabilities) $P(a_i)$, $i = 1, 2, \dots$ to the a_i 's such that

1.
$$0 \le P(a_i) \le 1$$

2.
$$\sum_{\text{all } i} P(a_i) = 1$$

The set of probabilities $\{P(a_i), i=1,2,\cdots\}$ is called a probability distribution on S

2.3 Odds in Favour / Odds Against

The odds in favour of an event A is the probability the event occurs divided by the probability it does not occur, $\frac{P(A)}{1-P(A)}$

The odds against the event is the reciprocal, $\frac{1-P(A)}{P(A)}$

3 Chapter 3

3.1 Addition Rule

Suppose we can do job 1 in p ways and job 2 in q ways. Then we can do either job 1 **OR** job 2 (not both), in p + q ways

3.2 Multiplication Rule

Suppose we can do job 1 in p ways and, for each of these ways, we can do job 2 in q ways. Then we can do both job 1 **AND** job 2 in $p \times q$ ways

3.3 Permutation

The sample space is a set of arrangements or sequences, called permutations

$$n^{(k)}$$
(n to k factors) = $\frac{n!}{(n-k)!}$

3.4 Combination

The combinatorial symbol $\binom{n}{k}$ (n choose k) is used to denote the number of subsets of size k that can be selected from a set of n objects

$$\binom{n}{k} = \frac{n^{(k)}}{k!}$$

Properties:

1.
$$n^{(k)} = \frac{n!}{(n-k)!} = n(n-1)^{(k-1)}$$
 for $k \ge 1$

2.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n^{(k)}}{k!}$$

3.
$$\binom{n}{k} = \binom{n}{n-k}$$
 for all $k = 0, 1, \dots, n$

4. If we define 0! = 1, then the formulas hold with $\binom{n}{0} = \binom{n}{n} = 1$

5.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

6. Binomial Theorem: $(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n$

3.5 Number of arrangements when symbols are repeated

If we have n_i symbols of type i, $i = 1, 2, \dots, k$ with $n_1 + n_2 + \dots + n_k = n$, then the number of arrangements using all of the symbols is

$$= \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n_k}{n_k}$$

$$= \frac{n!}{n_1! n_2! \cdots n_k!}$$

3.6 Useful Series and Sums

3.6.1 Geometric Series

$$\sum_{i=0}^{n-1} t^i = 1 + t + t^2 + \dots + t^{n-1} = \frac{1 - t^n}{1 - t} \text{ for } t \neq 1$$

If |t| < 1, then

$$\sum_{x=0}^{\infty} t^x = 1 + t + t^2 + \dots = \frac{1}{1-t}$$

Differentiate:

$$\frac{d}{dt}\sum_{x=0}^{\infty}t^{x} = \frac{d}{dt}(\frac{1}{1-t})$$

or

$$\sum_{x=0}^{\infty} x t^{x-1} = \frac{1}{(1-t)^2} \text{ for } |t| < 1$$

3.6.2 Binomial Thoerem

$$(1+t)^n = 1 + \binom{n}{1}t + \binom{n}{2}t^2 + \dots + \binom{n}{n}t^n = \sum_{x=0}^n \binom{n}{x}t^2$$

3.6.3 Multinomial Theorem

$$(t_1 + t_2 + \dots + t_k)^n = \sum \frac{n!}{x_1! x_2! \dots x_k!} t_1^{x_1} t_2^{x_2} \dots t_k^{x_k}$$

3.6.4 Hypergeometric Identity

$$\sum_{x=0}^{\infty} \binom{a}{x} \binom{b}{n-x} = \binom{a+b}{n}$$

3.6.5 Exponential Series

$$e^{t} = \frac{t^{0}}{0!} + \frac{t^{1}}{1!} + \dots = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \text{ for all } t \in \mathbb{R}$$
$$e^{t} = \lim_{n \to \infty} (1 + \frac{t}{n})^{n} \text{ for all } t \in \mathbb{R}$$

3.6.6 Special series

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

4 Chapter 4

4.1 De Morgan's Laws

1.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

2.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

4.2 Addition Law of Probability of the Union of n Events

4.2.1 Two Events

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4.2.2 Three Events

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

4.2.3 *n* events

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) = \sum_i P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k)$$
$$- \sum_{i < j < k < l} P(A_i A_j A_k A_l) + \dots$$

4.3 Mutually Exclusive

Events A and B are mutually exclusive if $A \cap B = \emptyset$

4.4 Probability of the Union of Mutually Exclusive Events

4.4.1 Two Events

$$P(A \cup B) = P(A) + P(B)$$

4.4.2 n Events

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i)$$

4.5 Complement

Probability of the complement of an event

$$P(A) = 1 - P(\overline{A})$$

4.6 Independent / Dependent Events

Events A and B are **independent events** if and only if $P(A \cap B) = P(A)P(B)$ If the events are not independent, the events are **dependent** The events A_1, A_2, \dots, A_n are mutually independent if and only if

$$P(A_{i1} \cap A_{i2} \cap \cdots \cap A_{ik}) = P(A_{i1})P(A_{i2}) \cdots P(A_{ik})$$

4.7 Conditional Probability

The **conditional probability** of event A, given event B, is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 provided $P(B) > 0$

A and B are independent events if and only if

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$

4.8 Product Rule

Let A, B, C, D, \cdots be arbitrary events in a sample space. Assume that P(A) > 0, $P(A \cap B) > 0$, and $P(A \cap B \cap C) > 0$. Then

$$P(AB) = P(A)P(B|A)$$

$$P(ABC) = P(A)P(B|A)P(C|AB)$$

$$P(ABCD) = P(A)P(B|A)P(C|AB)P(D|ABC)$$

and so on

4.9 Law of Total Probability

Let A_1, A_2, \dots, A_k be a partition of the sample space S into disjoint (mutually exclusive) events

$$A_1 \cup A_2 \cup \cdots \cup A_k = S$$
 and $A_i \cap A_j = \emptyset$ if $i \neq j$

Let B be an arbitrary event in S

$$P(B) = P(BA_1) + P(BA_2) + \dots + P(BA_k)$$

= $\sum_{i=1}^{k} P(B|A_i)P(A_i)$

4.10 Baye's Theorem

Suppose A and B are events defined on a sample space S. Suppose P(B) > 0

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|\overline{A})P(\overline{A}) + P(B|A)P(A)}$$

5 Chapter 5

5.1 Range

The set of possible values for the variable

5.2 Random Variable

A random variable is a function that assigns a real number to each point in a sample space S

5.3 Discrete Random Variables

Take integer values or, values in a countable set

5.4 Continuous Random Variables

Tae values in some interval of real numbers like (0,1) or $(0,\infty)$ or $(-\infty,\infty)$

5.5 Probability Function

Let X be a discrete random variable with range(X) = A. The **probability function** of X is the function

$$f(x) = P(X = x)$$
, defined for all $x \in A$

The set of pairs $\{(x, f(x)) : x \in A\}$ is called the **probability distribution** of X

1.
$$f(x) \ge 0$$
 for all $x \in A$

$$2. \sum_{\text{all } x \in A} f(x) = 1$$

5.6 Cumulative Distribution Function (CDF)

The **cumulative distribution function (CDF)** of X is the function denoted by F(x)

$$F(x) = P(X \le x)$$
 defined for all $x \in \mathbb{R}$

5.7 Discrete Uniform Distribution

5.7.1 Physical Setup

Suppose the range of X is $\{a, a+1, \dots, b\}$ where a and b are integers and suppose all values are equally probable. Then X has a Discrete Uniform distribution on the set $\{a, a+1, \dots, b\}$. The variables a and b are called the parameters of the distribution

5.7.2 Probability Function

There are b-a+1 values in the set $\{a,a+1,\cdots,b\}$ so the probability of each value must be

$$\frac{1}{b-a+1}$$
 in order that $\sum_{x=a}^{b} f(x) = 1$

$$f(x) = P(X = x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x = a, a+1, \dots, b \\ 0 & \text{otherwise} \end{cases}$$

5.8 Hypergeometric Distribution

5.8.1 Physical Setup

We have a collection of N objects which can be classified into two distinct types. Call on type 'success' (S) and the other type 'failure' (F). There are r success and N-r failures. Pick n objects at random without replacement. Let X be the number of successes obtained. Then X has a Hypergeometric distribution. The parameters of the distribution are N, r and n

5.8.2 Probability Function

Using counting techniques we note there are $\binom{N}{n}$ points in the sample space S if we don't consider order of selection. There are $\binom{r}{x}$ ways to choose the x success objects from the r available and $\binom{N-r}{n-x}$ ways to choose the remaining (n-x) objects from the (N-r) failures.

$$f(x) = P(X = x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

The range of values for x is somewhat complicated. Of course, $x \ge 0$. However if the number, n, picked exceeds the number N-r, of failures, the difference, n-(N-r) must be successes. So $x \ge max(0, n-N+r)$. Also $x \le r$ since we can't get more successes than the number available. But $x \le n$, since we can't get more successes than the number of objects chosen. Therefore $x \le min(r, n)$

5.9 Binomial Distribution

5.9.1 Physical Setup

Suppose an experiemnt has two types of distinct outcomes. Call these types 'success' (S) and 'failur' (F). Let P(S) = p and P(F) = 1 - p. Repeat the experiemnt n independent times. Let X be the number of successes obtained. Then X has what is called a Binomial distribution. The parameters of the distribution are n and p. We write $X \sim binomial(n, p)$ as a shorthand for 'X is distributed according to a Binomial distribution with n repetitions and probability p of success' or 'X has a Binomial distribution with parameters n and p'. The n individual experiemnts in the process just described are often called 'trials' or 'Bernoulli trials' and the process is called a Bernoulli process or a Binomial process

5.9.2 Probability Function

There are $\binom{\frac{n!}{x!(n-x)!}=n}{x}$ different arrangements of x S's and (n-x) F's over the n trials. The probability for each of these arrangements has p multiplied together x times and (1-p) multiplied (n-x) times, in some order, since the trials are independent. So each arrangement has probability $p^x(1-p)^{n-x}$

$$f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, \dots, n$ and 0

5.10 Negative Binomial Distribution

5.10.1 Physical Setup

The setup for this distribution is almost the same for Binomial; that is, an experiemnt (trial) has two dinstinct types of outcome, S and F, and is repeated independently with P(S) = p on each trial. Continue doing the experiemnt until a specified number, k, of successes have been obtained. Let X be the number of failures obtained before the kth success. Then X has a Negative Binomial distribution. Write $X \sim Negative\ Binomial(k,p)$ to denote this. The parameters of the distribution are k and p

5.10.2 Probability Function

In all there will be x + k trials (x F's and k S's) and the last trial must be a success. In the first x + k - 1 trials we therefore need x failures and (k - 1) successes, in any order. There are $\frac{(x+k-1)!}{x!(k-1)!} = {x+k-1 \choose x}$ different orders. Each order will have probability $p^k(1-p)^x$ since there must be x trials which are failures and k which are success

$$f(x) = P(X = x) = {x + k - 1 \choose x} p^k (1 - p)^x \text{ for } x = 0, 1, \dots \text{ and } 0$$

5.11 Geometric Distribution

5.11.1 Physical Setup

Conside the Negative Binomial distribution with k = 1. In this case we repeat independent Bernoulli trials with two types of outcome, S and F, and P(S) = p each time until we obtain the first success. Let X be the number of failures obtained before the first success. We write $X \sim Geometric(p)$. The parameter of the distribution is p

5.11.2 Probability Function

There is only the one arrangement with x failures followed by 1 success. This arrangement has probability

$$f(x) = P(X = x) = (1 - p)^{x} p \text{ for } x = 0, 1, \dots \text{ and } 0$$

5.12 Piosson Distribution

- The random variable X represents the number of events of some type
- The events occur according to some rate, denoted by $\mu,\,\mu>0$
- Write $X \sim Poisson(\mu)$

5.12.1 Probability Function

$$f(x) = \frac{e^{-\mu}\mu^x}{x!}$$
 for $x = 0, 1, 2, \dots$
 $\mu = np$

Let this be the rate of success. That is the number of trials n-however many there are-multiplied by the chance of success p for each of those trials

5.13 Two ways to interpret Poisson distribution

- 1. limiting case of binomial distribution, when you fix $\lambda = np$, and let $n \to \infty$ and $p \to 0$
- 2. Poisson Process

5.14 Poisson Process

Suppose the events you are counting satisfy the following assumption:

- 1. Independence: the number of occurrences in non-overlapping intervals are independent
- 2. Individuality: for sufficiently short time periods of length Δt , the probability of 2 or more events occurring in the intervals is close to zero

$$\frac{P(2 \text{ or more events in } (t, t + \Delta_t))}{\Delta_t} \to 0, \ \Delta_t \to 0$$

3. Homogeneity or Uniformity: events occur at a uniform or homogeneous rate λ and propositional to time interval Δ_t ,

$$\frac{P(one\ event\ in\ (t,t+\Delta_t)) - \lambda \Delta_t}{\Delta_t} \to 0$$

If X = occurrences in a time period of length t, then

$$X \sim Poi(\lambda t)$$

5.14.1 Definition

A process that satisfies the prior conditions on the occurrence of events is often called Poisson Process. More precisely, if X_t , for $t \geq 0$, (a random variable for each t) denotes the number of events that have occurred up to time t, then X_t is called a Poisson process

6 Chapter 7

6.1 Sample Mean

Let x_1, x_2, \dots, x_n be n outcomes for a random variable X (such a set is called sample). Then its sample mean is defined as

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

6.2 Median & Mode

6.2.1 Median

A value such that half of the results are below it and the other half above it, when the sample is arranged in numerical order

6.2.2 Mode

The most frequency-occurring value in a sample. (can have more than one mode in a sample)

6.3 Expected Value

Suppose X is a discrete random variable with probability function $f_X(x)$. Then E(X) is called the expected value of X, defined by

$$E(X) = \sum_{x \in X(S)} x \cdot f_X(x)$$

The expected value of X is sometimes referred to as the mean of X or the first moment of X

6.4 Linearity Properties of Expectation

For constants a and b

$$E[ag(X) + b] = aE[g(X)] + b$$

6.5 Variance

The variance of a random variable X, denoted by Var(X) or by σ^2 , is

$$\sigma^2 = Var(X) = E[(X - \mu)^2]$$

The variance is the average square of the distance from the mean

$$Var(X) = E(X^{2}) - [E(X)]^{2} = E(X^{2}) - \mu^{2}$$

$$Var(X) = E[X(X-1)] + E(X) - [E(X)]^{2} = E[X(X-1)] + \mu - \mu^{2}$$

6.6 Standard Deviation

The standard deviation of a random variable X is

$$\sigma = sd(X) = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]}$$

7 Chapter 8

7.1 Probability Density Function

f(x) for a continuous random variable X is the derivative

$$f(x) = \frac{dF(x)}{dx}$$

where F(x) is the cumulative distribution function for X

7.2 Properties of a probability density function

1.
$$P(a \le X \le b) = F(b) - F(a) = \int_a^b f(x)dx$$

2.
$$f(x) \ge 0$$

3.
$$\int_{-\infty}^{\infty} f(x)dx = \int_{allx} f(x)dx = 1 \ (P(-\infty \le X \le \infty) = 1)$$

$$4. \ F(x) = \int_{-\infty}^{x} f(u)du$$

7.3 Expectation, Mean, and Variance for Continuous Random Variable

When X is a continuous random variable we define

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

For $\mu = E(x)$

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2 = E(X^2) - [E(X)]^2$$

7.4 Continuous Uniform Distribution

Write $X \sim Unifrom(a, b)$

Probability density function:

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

Cumulative distribution function:

$$F(x) = \begin{cases} 0 & x < a \\ \int_a^x \frac{1}{b-a} dx & a \le x \le b \\ 1 & x > b \end{cases}$$

$$E(X) = \frac{a+b}{2}$$
 and $Var(X) = \frac{(b-a)^2}{12}$

7.5 Exponential Distribution

In a Poisson process for events in time, let X be the length of time until the first event occur, show X has exponential distribution

Probability density function:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

Cumulative distribution function:

$$F(x) = \begin{cases} 1 - \frac{(\lambda x)^0 e^{-\lambda x}}{0!} = 1 - e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

Or let $\theta = \frac{1}{\lambda}$, $\theta = E(X)$

Probability density function:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0\\ 0 & x \le 0 \end{cases}$$

Cumulative distribution function:

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}} & x > 0\\ 0 & x \le 0 \end{cases}$$

$$E(X) = \theta$$
 and $Var(X) = \theta^2$

7.6 Gamma Function

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$

7.7 Memoryless Property of the Exponential Distribution

$$P(X > c + b|X > b) = P(X > c)$$

7.8 Normal Distribution

7.8.1 Physical Setup

A A random variable X has a Normal distribution if it has probability density function of the form

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \quad x \in \mathbb{R}$$

where $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$ are parameters of the distribution. It turns out that $E(X) = \mu$ and $Var(X) = \sigma^2$ for this distribution that is why its probability density function is written using the symbols μ and σ^2

We write $X \sim N(\mu, \sigma^2)$ to denote that X has a Normal distribution with mean μ and variance σ^2

7.8.2 Cumulative distribution function

The cumulative distribution function of the NOrmal distribution $N(\mu, \sigma^2)$ is

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dy \quad x \in \mathbb{R}$$

7.9 Theorem

Let $X \sim N(\mu, \sigma^2)$ and define $Z = \frac{X - \mu}{\sigma}$. Then $Z \sim N(0, 1)$ and

$$P(X \le x) = P(Z \le \frac{x - \mu}{\sigma})$$

8 Chapter 9

8.1 Joint Probability Function

Suppose there are two discrete random variables X and Y, define function

$$f(x,y) = P(X = x, Y = y)$$

Call f(x, y) the joint probability function of (X, Y)

$$f(x,y) \ge 0, \sum_{all(x,y)} f(x,y) = 1$$

8.2 Independent Random Variables

X and Y are independent random variables if $f(x,y) = f_1(x)f_2(y)$ for all values (x,y)

8.3 Conditional Probability Functions

The conditional probability function of X given Y = y is

$$f_1(x|y) = \frac{f(x,y)}{f_2(y)}, \ f_2(y) > 0$$

Y given X = x is

$$f_2(y|x) = \frac{f(x,y)}{f_1(x)}, \ f_1(x) > 0$$

8.4 Poisson

If $X \sim Poisson(\mu_1)$ and $Y \sim Poisson(\mu_2)$ independently then

$$T = X + Y \sim Poisson(\mu_1 + \mu_2)$$

8.5 Binomial

If $X \sim Binomial(n, p)$ and $Y \sim Binomial(m, p)$ independently then

$$T = X + Y \sim Binomial(n + m, p)$$

8.6 Joint Probability Function

The joint probability function of X_1, X_2, \cdots, X_k is given by extending the argument in the sprinters example from k=3 to general k. There are $\frac{n!}{x_1!x_2!\cdots x_k!}$ different outcomes of the n trials in which x_1 are of the 1^{st} type, x_2 are of 2^{nd} type, etc. Each of these arrangements has probability $p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}$ since p_1 is multiplied x_1 times in some order, etc.

$$f(x_1, x_2, \dots, x_k) = \frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

8.7 Expectation for Multivariate Distributions: Covariance and Correlation

8.7.1 Expected Value

$$E[g(X,Y)] = \sum_{all(x,y)} g(x,y)f(x,y)$$

and

$$E[g(X_1, X_2, \dots, X_n)] = \sum_{all(x_1, x_2, \dots, x_n)} g(x_1, x_2, \dots, x_n) f(x_1, x_2, \dots, x_n)$$

8.7.2 Property of Multivariate Expectation

$$E[ag_1(X,Y) + bg_2(X,Y)] = aE[g_1(X,Y)] + bE[g_2(X,Y)]$$

8.8 Covariance

The covariance of X and Y, denoted Cov(X,Y) or σ_{XY}

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$$

If X and Y are independent, Cov(X,Y) = 0, $E[g_1(X)g_2(Y)] = E[g_1(X)]E[g_2(Y)]$

8.9 Correlation Coefficient

The correlation coefficient of X and Y is

$$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

8.10 Results for Means

•
$$E(aX + bY) = aE(x) + bE(Y) = a\mu_X + b\mu_Y$$

•
$$E(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i \mu_i, \ E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$$

• let X_1, X_2, \dots, X_n be random variables with mean μ , the sample mean is $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $E(\overline{X}) = \mu$

8.11 Results for Covariance

•
$$Cov(X, X) = E[(X - \mu_X)(X - \mu_X)] = E[(X - \mu)^2] = Var(X)$$

$$\bullet \ \ Cov(aX+bY,cU+dV) = acCov(X,U) + adCov(X,V) + bcCov(Y,U) + bdCov(Y,V) \\$$

8.12 Results for Variance

- $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$
- let X and Y be independent, since Cov(X,Y) = 0, result gives

$$Var(X+Y) = \sigma_X^2 + \sigma_Y^2$$

for independent variables, the variance of a sum is the sum of the variances

$$Var(X - Y) = \sigma_X^2 + (-1)^2 \sigma_Y^2 = \sigma_X^2 + \sigma_Y^2$$

for independent variables, the variance of a difference is the sum of the variances

• let a_i be constants and $Var(X_i) = \sigma_i^2$

$$Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 \sigma_i^2 + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_i a_j Cov(X_i, X_j)$$

8.13 Linear Combinations of Independent Normal Random Variables

• let $X \sim N(\mu, \sigma^2)$, Y = aX + b where a and b are constant real number

$$Y \sim N(a\mu + b, a^2\sigma^2)$$

• let $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ independently, let a and b be constants

$$aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$$

• let X_1, X_2, \dots, X_n be independent $N(\mu, \sigma^2)$ random variables

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

$$\overline{X} \sim N(\mu, \sigma^2/n)$$

9 Chpater 10

9.1 Central Limit Theorem

If X_1, X_2, \dots, X_n are independent random variables all having the same distribution, with mean μ and variance σ^2 , then as $n \to \infty$, the cumulative distribution function of the random variable

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

approacges the N(0,1) cumulative distribution function. Similarly, the cumulative distribution function of

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

approaches the N(0,1) cumulative distribution function

9.2 Normal Approximation to Poisson

Suppose $X \sim Poisson(\mu)$. Then the cumulative distribution function of the standardized random variable

$$Z = \frac{X - \mu}{\sqrt{\mu}}$$

approaches that of a standard Normal random variable as $\mu \to \infty$

9.3 Normal Approximation to Binomial

Suppose $X \sim Binomial(n, p)$. Then for n large, the random variable

$$W = \frac{X - np}{\sqrt{np(1-p)}}$$

has approximately a N(0,1) distribution

9.4 Moment Generating Function (m.g.f.)

Consider a discrete random variable X with probability function f(x). The moment generating function (m.g.f.) of X is defined as

$$M(t) = E(e^{tX}) = \sum_{all \ x} e^{tx} f(x)$$

We will assume that the moment generating function is defined and finite for values of t in an interval around 0

9.5

Suppose the random variable has moment generating function M(t) defined for all $t \in [-a, a]$ for some a > 0

$$E(X^k) = M^{(k)}(0) \text{ for } k = 1, 2, \cdots$$

where

$$M^{(k)}(0) = \frac{d^k}{dt^k} M(t)|_{t=0} \text{ for } k = 1, 2, \cdots$$

9.6 Uniqueness Theorem for Moment Generating Functions

Suppose that random variables X and Y have moment generating functions $M_X(t)$ and $M_Y(t)$ respectively. If $M_X(t) = M_Y(t)$ for all t then X and Y have the same distribution

9.7 m.g.f. of a Continuous Random Variable

Consider a continuous random variable X with probability density function f(x). The m.g.f. of X is defined as

$$M(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$