Modeling Durotaxis using Mechanical Bidomain model

Prof Brad Roth, Debabrata Auddya January 22, 2019

Analytical treatment - 10/03/2018

The equations formulated below consider a gradient in the extracellular stiffness in a 1-d strand of tissue using the mechanical bidomain model.

Consider u_x and w_x as the intra- and extra-cellular displacements of the bidomain layer. x being the principal direction of the one-dimensional tissue strand, T being the tension, p and q being the intra- and extra-cellular pressure contributions arising mostly from hydrostatic forces.

The standard equations of the bidomain model are as follows [1]:

$$-\frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2}\right) + \gamma \frac{\partial^2 u_x}{\partial x^2} + \frac{\partial T}{\partial x} = K(u_x - w_x) \tag{1}$$

$$-\frac{\partial q}{\partial x} + \mu \left(\frac{\partial^2 w_x}{\partial x^2} + \frac{\partial^2 w_x}{\partial y^2}\right) = -K(u_x - w_x) \tag{2}$$

For this problem we consider:

- $\bullet \ \mu = \mu_0 + gx$
- No contributions along the v axis
- p,q and T are constant and hence their gradients are zero along the x axis
- Slope of μ is a constant
- K is same for intra- and extra-cellular displacements

$$\nu \frac{\partial^2 u_x}{\partial x^2} + \gamma \frac{\partial^2 u_x}{\partial x^2} = K(u_x - w_x) \tag{3}$$

$$\mu_0 \frac{\partial^2 w_x}{\partial x^2} + gx \frac{\partial^2 w_x}{\partial x^2} = -K(u_x - w_x) \tag{4}$$

Simplifying the above expression, replacing u_x in equation (2) from (1):

$$u_x = w_x + \frac{\nu}{K} \frac{\partial^2 u_x}{\partial x^2} + \frac{\gamma}{K} \frac{\partial^2 u_x}{\partial x^2} + \gamma \frac{\partial^2 u_x}{\partial x^2}$$
 (5)

$$\therefore \frac{\mu_0}{K} \frac{\partial^2 w_x}{\partial x^2} + x \frac{g}{k} \frac{\partial^2 w_x}{\partial x^2} = -\left(\frac{\nu}{K} \frac{\partial^2 u_x}{\partial x^2} + \frac{\gamma}{K} \frac{\partial^2 u_x}{\partial x^2}\right) \tag{6}$$

Final form the equation can be written as:

$$\frac{\partial^2 w_x}{\partial x^2} \left(\frac{\mu_0}{K} + \frac{gx}{K}\right) + \frac{\partial^2 u_x}{\partial x^2} \left(\frac{\nu}{K} + \frac{\gamma}{K}\right) = 0 \tag{7}$$

Analytical treatment - 10/04/2018

The equations formulated below consider a gradient in the extracellular stiffness in a 1-d strand of tissue using the mechanical bidomain model.

Consider u_x and w_x as the intra- and extra-cellular displacements of the bidomain layer. x being the principal direction of the one-dimensional tissue strand, T being the tension, p and q being the intra- and extra-cellular pressure contributions arising mostly from hydrostatic forces.

The intra and extra-cellular stresses arising in the 1-d strand of tissue can be expressed as [2]:

$$\tau_{ix} = -p + 2\nu\epsilon_{ix} + T \tag{8}$$

$$\tau_{ex} = -q + 2\mu(x)\epsilon_{ex} \tag{9}$$

Relationship between the strains and displacement can be written as:

$$\frac{\partial \tau_{ix}}{\partial x} = K(u_x - w_x) \tag{10}$$

$$\frac{\partial \tau_{ix}}{\partial x} = K(u_x - w_x)$$

$$\frac{\partial \tau_{ex}}{\partial x} = -K(u_x - w_x)$$
(10)

Using equation (8) and (9) in (10) and (11) the resulting intra- and extra-cellular equations are:

$$\frac{\partial}{\partial x}(-p + 2\nu \frac{\partial u_x}{\partial x}) = K(u_x - w_x) \tag{12}$$

$$\frac{\partial}{\partial x}(-q + 2\mu(x)\frac{\partial w_x}{\partial x}) = -K(u_x - w_x) \tag{13}$$

For the problem we have assumed $\mu = \mu_0 + gx$, where g is a constant. Rewriting (12) and (13) we have:

$$-\frac{\partial p}{\partial x} + 2\nu \frac{\partial^2 u_x}{\partial x^2} = K(u_x - w_x) \tag{14}$$

$$-\frac{\partial q}{\partial x} + 2(g\frac{\partial w_x}{\partial x} + \frac{\partial^2 w_x}{\partial x^2}\mu(x)) = -K(u_x - w_x)$$
(15)

Analytical treatment - 11/13/2018

In order to obtain an analytical solution for the problem initially we consider g = 0. The boundary limits of the 1-dimensional problem assume the length of the domain spanning form x=-L to x=+L. The stresses are taken to be zero at each of the boundaries. We begin by implementing a trial solution for u_x and w_x .

$$u_x = Ax + Bsinh\left(\frac{x}{\sigma}\right) \tag{16}$$

$$w_x = Cx + Dsinh\left(\frac{x}{\sigma}\right) \tag{17}$$

For estimating the values of A,B,C,D we assume additionally p=q=0. Rewriting (12):

$$2\nu \frac{\partial^2}{\partial x^2} \left(Ax + B \sinh\left(\frac{x}{\sigma}\right) \right) = K \left(Ax + B \sinh\left(\frac{x}{\sigma}\right) - Cx - D \sinh\left(\frac{x}{\sigma}\right) \right) \tag{18}$$

$$2\nu \frac{\partial}{\partial x} \left(A + \frac{B}{\sigma} \cosh\left(\frac{x}{\sigma}\right) \right) = K\left((A - C)x + (B - D)\sinh\left(\frac{x}{\sigma}\right) \right) \tag{19}$$

$$2\nu \frac{B}{\sigma^2} \sinh\left(\frac{x}{\sigma}\right) = K\left((A - C)x + (B - D)\sinh\left(\frac{x}{\sigma}\right)\right) \tag{20}$$

and (13)

$$2\mu(x)\frac{\partial^2}{\partial x^2}\left(Cx + D\sinh\left(\frac{x}{\sigma}\right)\right) = -K\left(Ax + B\sinh\left(\frac{x}{\sigma}\right) - Cx - D\sinh\left(\frac{x}{\sigma}\right)\right) \tag{21}$$

$$2\mu(x)\frac{\partial}{\partial x}\left(C + \frac{D}{\sigma}cosh\left(\frac{x}{\sigma}\right)\right) = -K\left((A - C)x + (B - D)sinh\left(\frac{x}{\sigma}\right)\right)$$
(22)

$$2\mu(x)\frac{D}{\sigma^2}sinh\left(\frac{x}{\sigma}\right) = -K\left((A-C)x + (B-D)sinh\left(\frac{x}{\sigma}\right)\right)$$
 (23)

From (20) and (23) we have:

$$D = -\frac{\nu}{\mu(x)}B\tag{24}$$

Comparing coefficients of hyperbolic sine terms we see that (20) and (23) is satisfied only when the coefficient of the linear term is zero. Therefore,

$$A = C (25)$$

Hence the length constant σ has the value σ

$$\sigma = \sqrt{\frac{2\nu\mu}{K(\nu+\mu)}}\tag{26}$$

To obtain the values of the unknown parameters B and C, we impose boundary conditions. At the edge (x = \pm L) we have, normal stresses τ_{ix} and τ_{ex} as zero. As a result we get,

$$C + \frac{D}{\sigma} \cosh\left(\frac{L}{\sigma}\right) = 0 \tag{27}$$

$$A + \frac{B}{\sigma} cosh\left(\frac{L}{\sigma}\right) = -\frac{T}{2\nu} \tag{28}$$

¹This might also be a variable since μ is a function of x for the problem

 $^{^{2}\}mu(x)$ is also written as μ

Solving (27) and (28) using (24)-(26) we have:

$$A = C = -\frac{T}{2(\nu + \mu)} \tag{29}$$

$$B = -\frac{T}{2\nu} \left(\frac{\mu}{\nu + \mu}\right) \frac{\sigma}{\cosh(\frac{L}{\sigma})} , D = \frac{T}{2(\mu + \nu)} \frac{\sigma}{\cosh(\frac{L}{\sigma})}$$
 (30)

Using this we get the intra and extracellular displacement in terms of T as:

$$u_x = -\frac{T}{2(\nu + \mu)} \left(x + \frac{\mu}{\nu} \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})} \right)$$
 (31)

$$w_x = -\frac{T}{2(\nu + \mu)} \left(x - \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})} \right)$$
 (32)

Since μ is variable for the problem we now write it as: $\mu = \mu_0 + gx$. Remaining derivation of u_x and w_x along with its derivatives and double derivatives has been attached separately.

Analytical treatment - 12/22/2018

We are considering plane stress conditions for the model. Nothing depends on y.

$$\tau_{exx} = -q + 2\mu\epsilon_{exx}$$

$$\tau_{eyy} = -q$$

$$\tau_{ezz} = -q + 2\mu\epsilon_{ezz}$$

Since $\tau_{ezz} = 0$ so

$$-q + 2\mu\epsilon_{ezz} = 0$$

or, $q = 2\mu\epsilon_{ezz}$, but, $\epsilon_{exx} + \epsilon_{ezz} = 0$, so

$$q = -2\mu\epsilon_{exx}$$

Therefore the stresses along the principal directions can be written as:

$$\tau_{exx} = 4\mu\epsilon_{exx}$$
 $\tau_{eyy} = 2\mu\epsilon_{exx}$ $\tau_{ezz} = 0$ $\tau_{exy} = 0$

The final partial differential form of the equations look like:

$$\frac{\partial \tau_{exx}}{\partial x} + \frac{\partial \tau_{exy}}{\partial y} = -K(u_x - w_x)$$

$$or, \quad 4\left(\frac{\partial \mu}{\partial x}\epsilon_{exx} + \mu \frac{\partial \epsilon_{exx}}{\partial x}\right) = -K(u_x - w_x)$$

For the intracellular layer the principal stress is the same except that Tension T along the principal direction (x) is also taken into account. Thus the final set of working equations are, considering μ has a gradient along x and ν is a constant for the problem.

$$4\mu \frac{\partial^2 w}{\partial x^2} + 4\frac{\partial w}{\partial x} \frac{\partial \mu}{\partial x} = -K(u_x - w_x)$$
$$4\nu \frac{\partial^2 u}{\partial x^2} = K(u_x - w_x)$$

 $\mu = constant$

$$4\mu \frac{\partial^2 w}{\partial x^2} = -K(u_x - w_x)$$
$$4\nu \frac{\partial^2 u}{\partial x^2} = K(u_x - w_x)$$

The stresses are taken to be zero at each of the boundaries. We begin by implementing a trial solution for u_x and w_x .

$$u_x = Ax + Bsinh\left(\frac{x}{\sigma}\right)$$
$$w_x = Cx + Dsinh\left(\frac{x}{\sigma}\right)$$

For estimating the values of A,B,C,D we assume: Rewriting (12):

$$4\nu \frac{\partial^{2}}{\partial x^{2}} \left(Ax + B \sinh\left(\frac{x}{\sigma}\right) \right) = K \left(Ax + B \sinh\left(\frac{x}{\sigma}\right) - Cx - D \sinh\left(\frac{x}{\sigma}\right) \right)$$

$$4\nu \frac{\partial}{\partial x} \left(A + \frac{B}{\sigma} \cosh\left(\frac{x}{\sigma}\right) \right) = K \left((A - C)x + (B - D) \sinh\left(\frac{x}{\sigma}\right) \right)$$

$$4\nu \frac{B}{\sigma^{2}} \sinh\left(\frac{x}{\sigma}\right) = K \left((A - C)x + (B - D) \sinh\left(\frac{x}{\sigma}\right) \right)$$

and (13)

$$4\mu(x)\frac{\partial^{2}}{\partial x^{2}}\left(Cx + Dsinh\left(\frac{x}{\sigma}\right)\right) = -K\left(Ax + Bsinh\left(\frac{x}{\sigma}\right) - Cx - Dsinh\left(\frac{x}{\sigma}\right)\right)$$

$$4\mu(x)\frac{\partial}{\partial x}\left(C + \frac{D}{\sigma}cosh\left(\frac{x}{\sigma}\right)\right) = -K\left((A - C)x + (B - D)sinh\left(\frac{x}{\sigma}\right)\right)$$

$$4\mu(x)\frac{D}{\sigma^{2}}sinh\left(\frac{x}{\sigma}\right) = -K\left((A - C)x + (B - D)sinh\left(\frac{x}{\sigma}\right)\right)$$

From (20) and (23) we have:

$$D = -\frac{\nu}{\mu}B\tag{33}$$

Comparing coefficients of hyperbolic sine terms we see that (20) and (23) is satisfied only when the coefficient of the linear term is zero. Therefore,

$$A = C \tag{34}$$

Length constant σ remains as:

$$\sigma = \sqrt{\frac{4\nu\mu}{K(\nu + \mu)}}\tag{35}$$

To obtain the values of the unknown parameters B and C, we impose boundary conditions. At the edge (x = \pm L) we have, normal stresses τ_{ix} and τ_{ex} as zero. As a result we get,

$$C + \frac{D}{\sigma} \cosh\left(\frac{L}{\sigma}\right) = 0 \tag{36}$$

$$A + \frac{B}{\sigma} cosh\left(\frac{L}{\sigma}\right) = -\frac{T}{4\nu} \tag{37}$$

Solving the equations using given by (33) - (35) and using them in (36) and (37) we have: Solving (27) and (28) using (24)-(26) we have:

$$A = C = -\frac{T}{4(\nu + \mu)} \tag{38}$$

$$B = -\frac{T}{4\nu} \left(\frac{\mu}{\nu + \mu}\right) \frac{\sigma}{\cosh(\frac{L}{\sigma})} , D = \frac{T}{4(\mu + \nu)} \frac{\sigma}{\cosh(\frac{L}{\sigma})}$$
(39)

Using this we get the intra and extracellular displacement in terms of T as:

$$u_x = -\frac{T}{4(\nu + \mu)} \left(x + \frac{\mu}{\nu} \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})} \right) \tag{40}$$

$$w_x = -\frac{T}{4(\nu + \mu)} \left(x - \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})} \right) \tag{41}$$

$$\mu = \mu_0 + \mathbf{g}\mathbf{x}$$

For this condition the set of equations which we need to consider for obtaining an analytical solution are:

$$4\mu \frac{\partial^2 w}{\partial x^2} + 4\frac{\partial w}{\partial x} \frac{\partial \mu}{\partial x} = -K(u_x - w_x)$$
(42)

$$4\nu \frac{\partial^2 u}{\partial x^2} = K(u_x - w_x) \tag{43}$$

Replacing unknowns term by term from the previous solutions and given data we have an expression for the difference between u_x and w_x :

$$\frac{-4}{K}(\mu_0 + gx) \frac{\partial^2}{\partial x^2} \left(-\frac{T}{4(\nu + \mu)} \left(x - \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})} \right) \right) - \frac{4g}{K} \frac{\partial}{\partial x} \left(-\frac{T}{4(\nu + \mu)} \left(x - \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})} \right) \right)$$

Mathematica Code

The code below returns the value of the above expression. f(x) returns the value of $u_x - w_x$

Analytical treatment - 12/28/2018

We assume the trial solution for u_x and w_x for the given problem as:

$$u_x = Ax + Bsinh\left(\frac{x}{\sigma}\right) \tag{44}$$

$$w_x = Cx + Dsinh\left(\frac{x}{\sigma}\right) \tag{45}$$

Additionally the extracellular gradient is taken as $\mu = \mu_0 + gx$. The final set of working equations are taken as:

$$4\mu \frac{\partial^2 w}{\partial x^2} + 4\frac{\partial w}{\partial x} \frac{\partial \mu}{\partial x} = -K(u_x - w_x)$$
$$4\nu \frac{\partial^2 u}{\partial x^2} = K(u_x - w_x)$$

Replacing the values for u and w with that of (44)-(45) we have

$$4(\mu_0 + gx)\frac{D}{\sigma^2}sinh(\frac{x}{\sigma}) + 4g(C + \frac{D}{\sigma}cosh(\frac{x}{\sigma})) = -K\left((A - C)x + (B - D)sinh(\frac{x}{\sigma})\right)$$
(46)
$$4\nu \frac{B}{\sigma^2}sinh(\frac{x}{\sigma}) = K\left((A - C)x + (B - D)sinh(\frac{x}{\sigma})\right)$$
(47)

Using boundary conditions on $\epsilon_{exx}=0$ at x=L (Since we have $\tau_{exx}=0$ at x=±L)

$$\frac{\partial w}{\partial x} = 0$$

$$\therefore C + \frac{D}{\sigma} \cosh(\frac{x}{\sigma}) = 0$$

Plugging the above result in equation (46) and (47) we have:

$$(\mu_0 + gx)\frac{D}{\sigma^2}sinh(\frac{L}{\sigma}) = -\nu \frac{B}{\sigma^2}sinh(\frac{L}{\sigma})$$
$$D = -\frac{\nu}{\mu_0 + gL}B$$

For finding relation between A and C we manipulate equation (47) with the relationship between B and D

$$\begin{split} 4\nu\frac{B}{\sigma^2}sinh(\frac{x}{\sigma}) &= K\Big((A-C)x + (B-D)sinh\Big(\frac{x}{\sigma}\Big)\Big)\\ or, &\quad 4\nu\frac{B}{\sigma^2}sinh\Big(\frac{x}{\sigma}\Big) - K(B-D)sinh\Big(\frac{x}{\sigma}\Big) = K(A-C)x\\ or, &\quad sinh\Big(\frac{x}{\sigma}\Big)\Big(\frac{4\nu B}{\sigma^2} - K(B + \frac{B\nu}{\mu_0 + gL})\Big) = K(A-C)x\\ \hline \\ A-C &= \frac{B}{Kx}sinh\Big(\frac{x}{\sigma}\Big)\Big(\frac{4\nu}{\sigma^2} - K(1 + \frac{\nu}{\mu_0 + gL})\Big) \end{split}$$

To obtain the values of the unknown parameters B and C, we impose boundary conditions. At the edge $(x = \pm L)$ we have, normal stresses τ_{ix} and τ_{ex} as zero. Rewriting it, we have,

$$C + \frac{D}{\sigma} \cosh\left(\frac{L}{\sigma}\right) = 0 \tag{48}$$

$$A + \frac{B}{\sigma} cosh\left(\frac{L}{\sigma}\right) = -\frac{T}{4\nu} \tag{49}$$

Subtracting (49) - (48) we have:

$$(A-C) + (\frac{B-D}{\sigma})\cosh\left(\frac{L}{\sigma}\right) = -\frac{T}{4\nu}$$
 (50)

Plugging in A - C and B,D relationship in the equation we have:

$$\frac{B}{Kx}sinh\Big(\frac{x}{\sigma}\Big)\Big(\frac{4\nu}{\sigma^2}-K(1+\frac{\nu}{\mu_0+gL})\Big)+\frac{1}{\sigma}\Big(B+\frac{B\nu}{\mu_0+gL}\Big)cosh\Big(\frac{L}{\sigma}\Big)=-\frac{T}{4\nu}$$

However we have to replace x in the above equation with L as we have been using boundary conditions in (48) - (49). The final form is: (taking out B common in the expression)

$$\mathbf{B} = -\frac{T}{4\nu} \left(\frac{1}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma^2 L} - \frac{K}{L} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right) + \cosh\left(\frac{L}{\sigma}\right) \left(\frac{1}{\sigma} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right)} \right) \tag{51}$$

The value of D can be computed using its relationship with B which is $D=-\frac{\nu}{\mu_0+gL}B$

$$\mathbf{D} = \frac{T}{4(\mu_0 + gL)} \left(\frac{1}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma^2 L} - \frac{K}{L} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right) + \cosh\left(\frac{L}{\sigma}\right) \left(\frac{1}{\sigma} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right)} \right)$$
(52)

The value of C can be computed from (48) as $C = -\frac{D}{\sigma} cosh(\frac{L}{\sigma})$

$$\mathbf{C} = -\frac{T}{4(\mu_0 + gL)} \left(\frac{\cosh\left(\frac{L}{\sigma}\right)}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right) + \cosh\left(\frac{L}{\sigma}\right) \left(1 + \frac{\nu}{\mu_0 + gL}\right)} \right)$$
(53)

The value of A can be obtained from (49) as $A = -\frac{B}{\sigma} cosh(\frac{L}{\sigma}) - \frac{T}{4\nu}$

$$\mathbf{A} = -\frac{T}{4(\nu)} \left(1 - \frac{\cosh\left(\frac{L}{\sigma}\right)}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right) + \cosh\left(\frac{L}{\sigma}\right) \left(1 + \frac{\nu}{\mu_0 + gL}\right)} \right)$$

$$\therefore \mathbf{A} = -\frac{T}{4\nu} \left(\frac{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right) + \cosh\left(\frac{L}{\sigma}\right) \left(\frac{\nu}{\mu_0 + gL}\right)}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L} \left(1 + \frac{\nu}{\mu_0 + gL}\right)\right) + \cosh\left(\frac{L}{\sigma}\right) \left(1 + \frac{\nu}{\mu_0 + gL}\right)} \right) \tag{54}$$

Thus the value of of u_x is:

$$\begin{split} u_x &= -\frac{T}{4(\nu)} \bigg(\frac{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L} (1 + \frac{\nu}{\mu_0 + gL})\right) + \cosh\left(\frac{L}{\sigma}\right) \left(\frac{\nu}{\mu_0 + gL}\right)}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L} (1 + \frac{\nu}{\mu_0 + gL})\right) + \cosh\left(\frac{L}{\sigma}\right) \left(1 + \frac{\nu}{\mu_0 + gL}\right)} \bigg) \mathbf{x} \\ &- \frac{T}{4\nu} \bigg(\frac{1}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma^2 L} - \frac{K}{L} (1 + \frac{\nu}{\mu_0 + gL})\right) + \cosh\left(\frac{L}{\sigma}\right) \left(\frac{1}{\sigma} (1 + \frac{\nu}{\mu_0 + gL})\right)} \bigg) \mathbf{sinh} \bigg(\frac{x}{\sigma}\bigg) \end{split}$$

The value of w_x is:

$$\begin{split} w_x &= -\frac{T}{4(\mu_0 + gL)} \bigg(\frac{\cosh\left(\frac{L}{\sigma}\right)}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma L} - \frac{K\sigma}{L}(1 + \frac{\nu}{\mu_0 + gL})\right) + \cosh\left(\frac{L}{\sigma}\right) \left(1 + \frac{\nu}{\mu_0 + gL}\right)} \bigg) \mathbf{x} + \\ &\frac{T}{4(\mu_0 + gL)} \bigg(\frac{1}{\sinh\left(\frac{L}{\sigma}\right) \left(\frac{4\nu}{\sigma^2 L} - \frac{K}{L}(1 + \frac{\nu}{\mu_0 + gL})\right) + \cosh\left(\frac{L}{\sigma}\right) \left(\frac{1}{\sigma}(1 + \frac{\nu}{\mu_0 + gL})\right)} \bigg) \mathbf{sinh} \bigg(\frac{x}{\sigma}\bigg) \end{split}$$

Issues

Need some insights for calculating the length constant σ

Perturbation Theory - 1/22/2019

The following result has been obtained using first order perturbation to obtain approximate analytical solutions.

$$\begin{split} u_0 &= -\frac{T}{4(\nu + \mu)} \Big(x + \frac{\mu}{\nu} \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})}\Big) \\ w_0 &= -\frac{T}{4(\nu + \mu)} \Big(x - \sigma \frac{\sinh(\frac{x}{\sigma})}{\cosh(\frac{L}{\sigma})}\Big) \\ u_1 &= c_1 e^{\sqrt{\phi_1} x} + c_2 e^{-\sqrt{\phi_1} x} - \frac{\phi_2 e^{-\sqrt{\phi_1} x} (e^{2\sqrt{\phi_1} x} Ei(-\sqrt{\phi_1 x}) + Ei(\sqrt{\phi_1 x}) - 2e^{\sqrt{\phi_1} x} ln(x))}{2\phi_1} \\ w_1 &= c_3 ln(x) \\ Ei(x) &= -\int_{-x}^{\infty} \frac{e^{-t}}{t} dx \end{split}$$

where Ei(x) is the Exponential Integral Function. However this is different from the proposed guess for u_1 which involved consisting of sinh and cosh terms only.

Bibliography

- [1] Bradley J Roth The Mechanical Bidomain Model: A Review ISRN Tissue Eng. 2013
- [2] Sharma, Kharananda; Al-Asuoad, Nofe; Shillor, Meir; Roth, Bradley J. Intracellular, extracellular, and membrane forces in remodeling and mechanotransduction: The mechanical bidomain model Journal of Coupled Systems and Multiscale Dynamics, Volume 3, Number 3, September 2015, pp. 200-207(8)