Pracownia 2

Analiza Numeryczna (M) Prowadzący: Witold Karczewski Zadanie P2.9

Wojciech Adamiec, 310064

18 grudnia 2019

Spis treści

1	$\mathbf{W}\mathbf{st}$	ręp	1			
	1.1	Treść Zadania	1			
	1.2	Plan Działania	1			
	1.3	Sprawy Techniczne	4			
2	Rozwiązanie Zadania					
	2.1	Przykład 1				
	2.2	Przykład 2	:			
	2.3	Przykład 3	3			
	2.4	Przykład 4	٠			
3	Pod	sumowanie	3			

1 Wstęp

1.1 Treść Zadania

Wykorzystaj aproksymację średniokwadratową, aby dopasować funkcję postaci $y=ab^x$ do danych:

x	1	2	3	 m
y	y_1	y_2	y_3	 y_m

Opracowaną metodę przetestuj na wybranych przykładach.

1.2 Plan Działania

Zgodnie z poleceniem, do rozwiązania naszego problemu zastosujemy aproksymację średniokwadratową. Nie możemy jednak zastosować jej wprost, bowiem funkcja postaci $y=ab^x$ nie jest wielomianem. Aby rozwiązać ten problem, dokonamy kilku przekształceń:

$$y = ab^x$$

Logarytmujemy obustronnie równianie:

$$ln(y) = ln(ab^x)$$

Korzystamy z własności logarytmów:

$$ln(y) = ln(a) + ln(b^x)$$

$$ln(y) = ln(a) + x \cdot ln(b)$$

Zauważamy, że mamy już teraz postać wielomianu - w naszym przypadku funkcji liniowej. Użyjmy teraz zmiennych pomocniczych: Y = ln(y), A = ln(a) i B = ln(b). Dostajemy wówczas:

$$Y = A + x \cdot B$$

Teraz możemy już bez problemu zastosować aproksymację średniokwadratową. Szukamy minimum wyrażenia:

$$||Y - (A + x \cdot B)||^2$$

W tym celu musimy rozwiązać równanie:

$$\begin{bmatrix} \langle 1, 1 \rangle & \langle 1, x \rangle \\ \langle x, 1 \rangle & \langle x, x \rangle \end{bmatrix} \cdot \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} \langle Y, 1 \rangle \\ \langle Y, x \rangle \end{bmatrix}$$

W naszym przypadku przyjmujemy dyskretną definicję iloczynu skalarnego, co upraszcza nam równanie do:

$$\begin{bmatrix} m & \sum_{k=1}^{m} x_k \\ \sum_{k=1}^{m} x_k & \sum_{k=1}^{m} x_k^2 \end{bmatrix} \cdot \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{m} Y_k \\ \sum_{k=1}^{m} Y_k x_k \end{bmatrix}$$

Teraz pozostaje nam rozwiązać układ 2 równań liniowych, aby otrzymać A i B. Końcowym krokiem będzie wyliczenie a i b zgodnie ze wzorami:

$$a = e^A$$

$$b = e^B$$

Zatem nasz plan działania sprowadza się do:

- Obliczenia $Y_k = ln(y_k)$ dla k = 1, 2, 3, ..., m
- Obliczenia $\sum_{k=1}^{m} x_k$ oraz $\sum_{k=1}^{m} x_k^2$
- Obliczenia $\sum_{k=1}^{m} Y_k$ oraz $\sum_{k=1}^{m} Y_k x_k$
- Rozwiązania układu 2 równań liniowych
- Obliczeniu a i b

Do zadania dołączony jest program, który wykonuje wszystkie te czynności i od razu zwraca wartości a i b.

1.3 Sprawy Techniczne

Wszystkie obliczenia numeryczne zostały wykonane w języku *Julia* w wersji v1.2.0, w podwójnej precyzji - binary64 zgodnie ze standardem *IEEE 754*, którego opis można znaleźć np. tu: https://en.wikipedia.org/wiki/IEEE_754

2 Rozwiązanie Zadania

W treści zadania nie mamy żadnych konkretnych danych, zatem naszą metodę zastosujemy do kilku własnoręcznie wymyślonych przykładów. Będziemy je tworzyć w taki sposób, że najpierw wybierzemy pewną funkcję postaci $y=ab^x$, następnie dla m różnych wartości x odczytamy i zapiszemy odpowiadające wartości y. Na koniec dokonamy lekkiego zaburzenia wartości x i y, tak aby zasymulować rzeczywistą sytuację.

2.1 Przykład 1

Dla sprawdzenia poprawności przedstawionej metody zacznijmy od prostej funkcji $y=2^x$. W tym przykładzie wyjątkowo nie dokonamy zaburzenia wartości, aby upewnić się, że nasza metoda jest poprawna. Jako dane weźmiemy:

\boldsymbol{x}	1	2	3	4	5
y	2	4	8	16	32

Czyli m=5.

- 2.2 Przykład 2
- 2.3 Przykład 3
- 2.4 Przykład 4
- 3 Podsumowanie