Faster joins using sorting

Overview

In the last video, we saw how to do (Naïve) loop join to handle joins, e.g. natural join

Here, we will see a more advanced technique called sort join

Can We Go Faster?

Yes, we can!

Equijoins

Equijoin $\mathbb{R} \bowtie_{A=B} \mathbb{S}$ is defined as $\sigma_{A=B}(\mathbb{R} \times \mathbb{S})$

A, B are the join attributes

Stores

code	city
12345	1
678910	2

Employees

name	depart
Oscar	12345
Janice	678910
David	678910

Stores ⋈_{code=depart} **Employees**

code	city	name	depart
12345	1	Oscar	12345
678910	2	Janice	678910
678910	2	David	678910

If R is sorted on A and S is sorted on B, then R $\bowtie_{A=B}$ S can be computed with one pass over R and S + run time equal to the size of the output

as in merge sort

Goal: compute R ⋈_{A=B} S

Assume: R is sorted on A and S is sorted on B

В D 5 50 2 94 99 11 $\bowtie_{A=B}$ 74 15 4 52 9 4 sorted sorted

as in merge sort

Goal: compute R ⋈_{A=B} S

as in merge sort

Goal: compute R ⋈_{A=B} S

Assume: R is sorted on A and S is sorted on B

В D 5 50 2 94 99 11 J ⋈_{A=B} 15 74 4 52 9 4 sorted sorted

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	•••
2	2	99	50	

as in merge sort

Goal: compute R ⋈_{A=B} S

Assume: R is sorted on A and S is sorted on B

D 5 2 50 94 99 11 J ⋈_{A=B} 74 15 4 52 9 4 sorted sorted

Α	В	С	D	•••
2	2	99	50	•••

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	•••
2	2	99	50	•••
2	2	99	94	

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	
2	2	99	50	
2	2	99	94	

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	•••
2	2	99	50	
2	2	99	94	
2	2	99	11	

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	•••
2	2	99	50	
2	2	99	94	
2	2	99	11	

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	
2	2	99	50	
2	2	99	94	
2	2	99	11	

as in merge sort

Goal: compute R ⋈_{A=B} S

Α	В	С	D	•••
2	2	99	50	
2	2	99	94	
2	2	99	11	

as in merge sort

Goal: compute R ⋈_{A=B} S

Assume: R is sorted on A and S is sorted on B

A C ...

1 5 ...

1 4 ...

2 99 ...

3 15 ...

4 52 ...

...

...

...

sorted

B D ...

2 50 ...

2 94 ...

2 11 ...

4 74 ...

4 9 ...

...

...

sorted

Α	В	С	D	•••
2	2	99	50	•••
2	2	99	94	•••
2	2	99	11	•••
4	4	52	74	

as in merge sort

Goal: compute R ⋈_{A=B} S

sorted

Assume: R is sorted on A and S is sorted on B

 A
 C
 ...

 1
 5
 ...

 1
 4
 ...

 2
 99
 ...

 3
 15
 ...

 4
 52
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

sorted

Α	В	С	D	•••
2	2	99	50	•••
2	2	99	94	
2	2	99	11	
4	4	52	74	

as in merge sort

Goal: compute R ⋈_{A=B} S

Assume: R is sorted on A and S is sorted on B

A C ...

1 5 ...

1 4 ...

2 99 ...

3 15 ...

4 52 ...

A=B

B D ...

2 50 ...

2 94 ...

2 11 ...

4 74 ...

4 9 ...

... ...

sorted

sorted

Α	В	С	D	•••
2	2	99	50	•••
2	2	99	94	•••
2	2	99	11	•••
4	4	52	74	•••
4	4	52	9	•••

as in merge sort

Goal: compute R ⋈_{A=B} S Assume: R is sorted on A and S is sorted on B

A C ...

1 5 ...

1 4 ...

2 99 ...

3 15 ...

4 52 ...

4 9 ...

sorted

B D ...

2 50 ...

2 94 ...

4 74 ...

4 9 ...

...

sorted

Running time: $O(|\mathbf{R}| + |\mathbf{S}| + \text{ size of output})$

Α	В	С	D	•••
2	2	99	50	•••
2	2	99	94	•••
2	2	99	11	
4	4	52	74	
4	4	52	9	

Faster Joins With Sorting

Sort Join Algorithm:

```
Compute R \bowtie_{A=B} S:

Running time: O(|R| \times \log_2 |R|)

1. Sort R on A

2. Sort S on B

Running time: O(|S| \times \log_2 |S|)

3. Merge the sorted R and S

Running time: O(|R| + |S| + \text{size of output})
```

Typical running time: $O(|\mathbf{R}|\log_2|\mathbf{R}| + |\mathbf{S}|\log_2|\mathbf{S}|)$

- If not "too many" values in A occur multiple times
- E.g., this is the case if A is a key

Having a run time depending on the size of output is called output sensitive

Typically much faster than Nested Loop Join

 \circ Same time in the worst case, because output can have size up to $|R| \times |S|$

Remarks

Various **join algorithms** in practice:

- Index joins
- Hash joins
- Multiway joins: join more than two relations at once

Can compute **other operations of relational algebra** using similar methods as those in this lecture

We've neglected that relations are stored on disk

Running Time vs Disk Accesses

Relevant parameters:

- **B** = size of a disk block (typically $512 \rightarrow 4096$ bytes)
- **M** = number of disk blocks that fit into available RAM

Algorithm	No. of elementary operations	No. of disk accesses
Reading a relation R	O(R)	$O\left(\frac{ R }{B}\right)$
Sorting R on attribute A	$O(R \log_2 R)$	$O\left(\frac{ R }{B}\log_{M}\frac{ R }{B}\right)$

Summary

We saw one approach to do faster joins, namely sort joins

Sort join has run time close to linear (i.e. like sort) + the size of the output