Decoding handwritten characters from neural activity using RNNs

Tyler Singer-Clark Tarun Tiwari Karamjeet Gulati Adil Bukhari

Brain-computer interfaces (BCI) help people with paralysis

Think about moving

Control a device

Hochberg et al. 2006

Overview of the neural control of movement

Microelectrode arrays record individual neuron activity

BCI handwriting dataset

BCI handwriting dataset

The neural data contain character-specific patterns

Our question: Can deep learning techniques improve on the original study's 94.1% k-nearest neighbors performance?

Original k-NN	Our k-NN	Chance	Logistic regression	FFNN	RNN	GRU	LSTM
94.1%	?	~3%	?	?	?	?	?
State-of-the-art	Replication	Bas	selines		Deep le	earning	

Data Pre-Processing

Data Labeling: Labelling the data with corresponding character labels (excluding rest trials)

Data Normalization: Applying Z-scoring to the neural data using block-specific means and standard deviations.

Data Smoothing: Applies Gaussian smoothing to the neural data to reduce noise.

Logistic Regression

- Trained in multiclass setting.
- Reshaped the neural data into 1D array of trial window 28800-length vector.

(192 electrodes x 150 time bins = 28800 features)

Solver Function: newton-cg solver

k-Nearest Neighbors

- Applies Principal Component Analysis (PCA) to reduce the dimensionality of the data, retaining only the most significant components
- Number of neighbors = 10
- Dimension of each time bin's z-scored threshold crossing vector reduced from 192 to 25
- Trial window flattened to a 3750-length vector

(25 principal components x 150 time bins = 3750 features)

Uses a custom distance metric (dist_with_time_warp()) which accounts for temporal distortions in the data.

Feed Forward Neural Network

Architecture & Training:

- FFNN: Multilayer
 Architecture
- Implemented Varying
 Dropout Rates Strategically
- Used SGD Optimizer, Momentum 0.9, LR=0.001
- Training: 20 Epochs
- Varying Learning rate with LR scheduler and early stopping

Layer (type)	Output Shape	Param #
Linear-1 BatchNorm1d-2 ReLU-3	[-1, 128] [-1, 128] [-1, 128] [-1, 128]	2,211,968 256 0
Dropout-4 Linear-5 BatchNorm1d-6 ReLU-7 Dropout-8	[-1, 128] [-1, 64] [-1, 64] [-1, 64] [-1, 64]	0 8,256 128 0 0
Linear-9 ====================================	[-1, 32]	2,080

Trainable params: 2,222,688 Non-trainable params: 0

RNN

Architecture & Training:

HIDDEN_SIZE: Set to 512 for the size of the RNN hidden layers.

NUM_LAYERS: Set to 2 for the number of stacked RNN layers.

DROPOUT: Set to 0.5, indicating a high level of dropout regularization.

Optimizer: Stochastic Gradient Descent (SGD), Learning rate 0.0005, momentum 0.99

WEIGHT_DECAY: Set to 0.0001, adding a regularization, prevents overfitting.

Data Augmentation: NOISE_STDDEV: Set to 0.1, defining the standard deviation of the noise added for data augmentation. **Gaussian noise** added to the training data every epoch as intended

LSTM & GRU

Architecture & Training:

HIDDEN_SIZE: Set to 512 for the size of the RNN hidden layers.

NUM_LAYERS: Set to 2 for the number of stacked RNN layers.

DROPOUT: Set to 0.5, indicating a high level of dropout regularization.

Optimizer: Stochastic Gradient Descent (SGD), Learning rate 0.0005 - 0001, momentum 0.99

ayer (type:depth-idx)	Param # 	
	3,547,136	
—Linear: 1-2	2,380,831	
otal params: 5,927,967		
rainable params: 5,927,967		
Ion-trainable params: 0		

LSTM

GRU

Model Evaluation

 Benchmarked against the prior study's RNN and chance

k-NN outperformed
 Neural Networks

RNNs got very close...

Training Trials Comparison

- Varied the number of training trials:
 - 300, 600, 900, 1200,1500, 1800, 2100, 2400,2700

 RNN seems to be growing at a faster rate and might plateau later

 Increasing number of training trials could lead to better results

Electrodes Comparison

- Varied the number electrodes:
 - 24, 48, 72, 96, 120, 144, 168, 192

 Not super clear if RNN is taking more advantage of additional electrodes

 Increasing number of electrodes could lead to better results

Acknowledgements

- Dataset and many methods: High-performance brain-to-text communication via handwriting, Willett et al. 2019.
- BrainGate participant image: Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Hochberg et al. 2006.
- Brain and motor neuron image: https://www.physio-pedia.com/Motor_Neurone
- Utah array image: https://www.medicaldesignandoutsourcing.com

Thank you for listening!

Any questions?

