

Politechnika Wrocławska

Programowanie efektywnych algorytmów

Problem komiwojażera (TSP)

Krzysztof Zalewa 22.1.2025

Spis treści

L	Wstęp teoretyczny				
1.1		Tabu search			
		1.1.1	Swap lub Insert	2	
		1.1.2	NN lub random	2	
		1.1.3	Iteracje bez zmian	3	
		1.1.4	Długość tabu	3	
		1.1.5	Podsumowanie	3	
	1.2	Simula	ated anealing	3	
		1.2.1	Swap lub Insert	3	
		1.2.2	NN lub random	3	
		1.2.3	Długość epoki	3	
		1.2.4	Wielkość alfa	3	
		1.2.5	Temperatura startowa	3	
		1.2.6	Podsumowanie	3	
	1.3	Algory	ytm mrówkowy	3	
		1.3.1	Rozkład feromonów	3	
		1.3.2	Wartość rho	3	
		1.3.3	Stosunek alfa do bety	3	
		1.3.4	Ilosc mrowek	3	
		1.3.5	Podsumowanie	3	
2	Zadanie laboratoryjne 4				
3	Wn	ioski		4	
1	Źró	dła		4	

1 Wstęp teoretyczny

Politechnika Wrocławska

Rysunek 1

- 1.1 Tabu search
- 1.1.1 Swap lub Insert

(5*ASYM + 5*ASM)*2*550

1.1.2 NN lub random

(5*ASYM + 5*ASM)*2*550

1.1.3 Iteracje bez zmian

(5*ASYM + 5*ASM)*5*4100

1.1.4 Długość tabu

(5*ASYM + 5*ASM)*5*4*100

1.1.5 Podsumowanie

ok 5h

1.2 Simulated anealing

1.2.1 Swap lub Insert

(5*ASYM + 5*ASM)*2*550

1.2.2 NN lub random

(5*ASYM + 5*ASM)*2*550

1.2.3 Długość epoki

(5*ASYM + 5*ASM)*5*4*100

1.2.4 Wielkość alfa

(5*ASYM + 5*ASM)*5*4*100

1.2.5 Temperatura startowa

(5*ASYM + 5*ASM)*5*4*100

1.2.6 Podsumowanie

ok 8,5h

1.3 Algorytm mrówkowy

1.3.1 Rozkład feromonów

(5*ASYM + 5*ASM)*5*4*100

1.3.2 Wartość rho

(5*ASYM + 5*ASM)*5*4*100

1.3.3 Stosunek alfa do bety

(5*ASYM + 5*ASM)*5*4100

1.3.4 Podsumowanie

ok 7h

2 Zadanie laboratoryjne

3 Wnioski

4 Źródła

- 1. https://www.javatpoint.com/what-is-a-tabu-search
- 2. https://www.geeksforgeeks.org/what-is-tabu-search/
- 3. https://www.baeldung.com/cs/tabu-search