

Counter Terrorism using Density Based Clustering and Naive Bayes Classification

Aakash Tanwar 2016215 Dewangee Agrawal 2016034 Gagandeep Singh 2016037 Suraj Prathik Kumar 2016101

Abstract

The most important global issues currently are pollution, unemployment, corruption, drugs, terrorism and climate change. Terrorism is a serious issue throughout the world causing fear, anxiety, insecurity, violence and death among innocent people. This makes national security an important issue and steps need to be taken to combat terrorism. It is further used as a tool for a political cause. In this analysis, Density-Based clustering is used to obtain clusters through Rapid Miner tool. The clusters are used to find patterns of terrorist attacks in India and inferences from these attacks. Naive Bayes Classification is also used to predict probable attacks in the future.

1 Introduction

Terrorism, today, is one of the main threats to international peace and security. Al-Qaida, Haram and other terror groups have their own ideology and indulge in barbaric attack as per the report collected from the article published in the website Top 10 current global issues. As per the map (Refer Fig 1) shown below terrorism is spread worldwide. In particular, countries like India, Pakistan and Afghanistan fall in the danger zone as per the report collected from the article published in the website Our World In Data

2 Literature Survey

Several research work have been done on terrorism using data mining techniques. Ali, G. A. (2016) used data mining to understand Terrorist affiliations through social network. Classification of criminal data was done through decision tree by Sakhare Joshi (2014) and ensemble classifier was used by Sivaraman, R., S. et al (2015). Young, J. K., Findley, M. G. (2011) had done research work on terrorism pitfalls, Counter-terrorism by

Figure 1: World Map showing Terrorism related incidents in 2016

Heath-Kelly, C. (2013). The other techniques like clustering by Gupta, P et al(2018), big data and hadoop(Strang, K. D., Sun, Z. (2017) are used for the study of terrorism.

2.1 Need of Data Mining

Data mining can be defined as a technique that helps extract useful knowledge from a large amount of data and analyse it to find patterns in the data. It involves the preprocessing steps like Data Cleaning, Integration, Selection and Data Transformation/ Reduction. The various data mining techniques are Clustering, Association, Classification, Outlier Analysis and Prediction. Data Mining Techniques have applications in areas like education, health care and environmental analysis, fraud detection and crime analysis etc. These techniques help analyse and determine the new trends and unknown patterns of the data. Clustering techniques are used to find the targeted groups, days attacked etc. Data Mining for counter terrorism can be categorized as real time or non real time threats. Classification algorithms like Decision Tree and Naive Bayes can be used to get models to predict probable attacks.

2.2 Clustering analysis

Clustering algorithms are used to partition a dataset into homogeneous groups based on features considered for analysis . The similar objects are grouped together whereas dissimilar objects are in different groups. The algorithm is chosen based on the features like scalability, ability to handle noisy data, deal with data set of high dimensionality, arbitrary-shaped clusters etc. The various clustering techniques are K-means, K-medoid, FCM, PAM, CLARANS, DBSCAN, CURE and ROCK etc (Han Kamber 2011). Clustering Algorithms can be broadly classified as Unsupervised linear clustering algorithm, Fuzzy C-Means, Gaussian(EM) clustering, Hierarchical(AGNES DIANA) and Unsupervised nonlinear clustering algorithms such as Partitioned based algorithms such as K-Means, Density based clustering algorithms like Density-Based Spatial Clustering of Applications with Noise(DBSCAN) and Ordering points to identify the clustering structure (OPTICS).

2.3 Density based Clustering Algorithm

DBSCAN is the most widely used density based algorithm as it uses the concept of density reachability and density connectivity. The two parameters used are Epsilon(Eps) and Minimum points(MinPts). Density is the number of points within a specified radius Eps and Minimum number of points within the specified distance (MinPts). DBScan does not require us to know the number of clusters in the data. The algorithm is shown in Fig 2.

OPTICS, a generalization of DBSCAN, is also used for density based clustering. The salient features of DBSCAN are as follows:

- It does not require to specify the number of clusters in the data in contrast to K-Means where the value of K has to be determined before the start of the algorithm.
- It leads to the formation of arbitrary-shaped clusters.
- It deals with different attribute types and data of high dimensionality.
- It is insensitive to noise and outliers.
- The result obtained is interpretable and usable.

- Arbitrarily select a point p
- Retrieve all points density-reachable from p for a given Eps and Min Pts.
 - If p is a core point, a cluster is formed.
 - If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.

Continue the process until all points has been processed.

Figure 2: DBSCAN Algorithm

Table 1: Metadata about Global Terrorism

Data Set Information	
File Name	Global Terrorism
	database
	(july 2018 released)
Year	1970-2017
Total no. of attributes	135
Attributes	Eventid, Year, Month
	,Country, Region attacked
	, group name etc
Number of Instances	1,81,692 records
Scope(Region)	India
Attributes considered	Date, Year, Provstate
for analysis	,City Group name,
	Type of Attack ,Latitude etc
Number of instances	11,500record
for Analysis	(approximately)
Url	Click to open Data Set

3 Data Resources

3.1 Data Collection/ Metadata

The data set was downloaded from the kaggle.com website. There were 1,81,692 records initially consisting of countries all over the world. The metadata is shown in Table 1.

3.2 Data Set

The Figure given in Appendix shows a Screenshot of dataset considered (Refer Figure 23)

4 Methodology

Tool Used - Rapid Miner

The steps of the methodology are as follows-

- a. Data Preprocessing (Data Cleaning, Data Selection and Data Normalisation)
- Pilot study to understand clusters using K-Mean
- c. Clustering using DBSCAN

K-Mean clustering Algorithm:-

Given k, the k-means algorithm is implemented in four steps (Han 2006)

- 1. Partition objects into k nonempty subsets
- Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster)
- 3. Assign each object to the cluster with the nearest seed point
- 4. Go back to Step 2, stop when no more new assignment

It uses a min sum of squared distance calculated using the formula:-

Figure 3: K-Means Algorithm

Davies-Bouldin index index for K=3, 4,5,6,7,8

k	3	4	5	6	7	8
Davies Bouldin:	0.452	0.271	0.06	0.199	0.315	0.396

Figure 4: Calculation of value of K

- d. Cluster model analysis and Inference is obtained
- e. Naive Bayes classification technique to predict probable place of attacks

4.1 Pilot study : K-Mean Clustering Algorithm

Cluster analysis focuses on the object collections and the class labels are unknown initially. Distance measures (Manhattan, Euclidean) and non-Euclidean distance measures (Jacquard, Cosine) are used to find the distance between points. In this case study K-Means partitioned based clustering technique is used. One of the advantages of the K-Means approach over other techniques is that it is a well established technique various applications. It can also be used on large datasets. The figure represents K-Means Algorithm (Refer Figure 3).

The Cluster Distance Performance operator of Rapid Miner is used to find out Davies-Bouldin index. This performance measures (DB-Index) are used to identify the appropriate value of K in K-Means algorithm. The figures (Refer Fig 4,5,6,7,8) shows the cluster model and scatter plot of cluster obtained.

4.1.1 Inference of K-Means

5 spherical clusters were obtained with all the points were grouped within them. The outliers were also stored within the clusters.

Figure 5: Graph for Value of K

Process Model

Figure 6: Process Method for K-Means

Cluster Model

```
Cluster 0: 3175 items
Cluster 1: 1184 items
Cluster 2: 1224 items
Cluster 3: 5359 items
Cluster 4: 994 items
Fotal number of items: 11936
```

Figure 7: Cluster Model for K-Means 1

Figure 8: Cluster Model for K-Means 2

> library(readxl)
> dbscan_data <read_excel("C:/Users/Desktop/globalterrorismdb_0718dist.csv
(1)/globalterrorismdb_0718dist.csv (original)/dbscan data.xlsx")
> View(dbscan_data)
terror <- as.matrix(dbscan_data[,1:8])
kNNdist(terror, k=4, search="kd")
cl <- dbscan(terror, eps = .5, minPts = 25)
pairs(terror, col = cl\$cluster+1L)
kNNdistplot(dbscan_data, k=20)

Figure 9: Graph for Calculation of Eps using R

4.2 Density Based Clustering analysis (DBSCAN)

4.2.1 Identify the value of epsilon and min points

Tool Used - R

DBSCAN take Radius of Clusters (Eps) and Minimum Points (min points within radius Eps) as input parameters. The process followed by us is fixing the value of minimum points according to domain knowledge and calculating the value of Eps by forming the kk-distance graph using R. The minimum points was fixed to 25 and the epsilon value obtained was 1. The process can be seen in Figures 9, 10, 11, 12. The scatter plots are shown in Figures 13, 14 and 15 depicting clusters w.r.t date, month, year, latitude and longitude

4.2.2 Inference of DBSCAN

The clusters were analysed as follows -

Figure 10: Code for Calculation of Eps using R

Figure 11: Process Method for DBSCAN

Cluster Model

Cluster 0: 1867 items

Cluster 1: 6799 items

Cluster 2: 203 items

Cluster 3: 193 items

Cluster 4: 49 items

Cluster 5: 1017 items

Cluster 6: 34 items

Cluster 7: 33 items

Cluster 8: 706 items

Cluster 9: 665 items

Cluster 10: 27 items

Cluster 11: 159 items

Cluster 12: 26 items

Total number of items: 11778

Figure 12: Cluster Model for DBSCAN

Figure 13: Scatter Plot 1

Figure 14: Scatter Plot 2

Figure 15: Scatter Plot 3

Analysi	s of	Cluster	2
---------	------	---------	---

- No of instances 203
- Dates/Month active 1983-2004
- Province/State
 Punjab and Jammu 'n' Kashmir

Attack Type
 Bombing/Explosion
 An incident of hostage is reported

• Group Name

(BTHK)

- 1.Akali Dal Party2.Bhinderanwale Tiger Force of Khalistan
- 3. Dishmish Regiment
- 4. Hizbul Mujahideen (HM)
- 5.Muslim Janbaz Force
- 6.Muslim Militants
- 7.Muslim Rebels
- 8. Muslim Separatists
- 9.Saffron Tigers
- 10.Sikh Extremists

Inference

Arms and explosives were used. Muslim and Sikh extremists played an important role in the attack (1983-2004)

Operation Bluestar was an Indian military operation carried out between 1st and 8th June 1984 by Prime minister Indira Gandhi in Amristar, so there were many Sikh extremists who carried out attacks in and after 1984.

Analysis of Cluster 3

- No of instances 193
- Dates/Month active 1984-2008
- Province/State
 Punjab and Jammu 'n' Kashmir
- Attack Type
 Assassination
- Group Name
 Sikh and Kashmiri Extremists

500	• Inference	• Inference	550
501	Specificity is 3 which means an event did not	Number of Arms and Ammunitions	551
502	occur in city/ village. Latitude and Longitude	Recovered from Smugglers in India	552
503	targeted often are:-	(2010 to 2012-upto 08.05.2012) As per	553
504	30.966064	https://www.indiastat.com/crime-and-law-	554
505	76.523162	data/6/extremist-activities/94/stats.aspx	555
506	31.326015	website	556
507	75.576183	Analysis of Chroton 6	557
508	Districts frequently targeted are :- Amritsar	Analysis of Cluster 6	558
509	District, Doda District, Firozpur district Gur-	 No of instances 	559
510	daspur District, Jalandhar district	34 items	560
511			561
512	Analysis of Cluster 4	• Dates/Month active	562
	• No of instances	Month: 6,7,8,9,10 Year: 1995-2009	
513	49	Province/State	563
514	7)	Jammu and Kashmir	564
515	 Dates/Month active 		565
516	1985-2002	• Attack Type	566
517		Armed Assault, Assassination, Bombing/Ex-	567
518	• Province/State	plosion	568
519	Delhi, Chandigarh, Haryana, Punjab, Jammu	- Crown Nama	569
520	and Kashmir, Uttar Pradesh	Group Name Al Farar Highest Musickidean (HM) Joich a	570
521	Attack Tyma	Al-Faran, Hizbul Mujahideen (HM), Jaish-e-	571
522	Attack Type Furtherings and Firesomes	Mohammad (JeM), Lashkar-e-Taiba (LeT)	572
523	Explosives and Firearms	• Inference	573
524	• Group Name	Mostly targeting: Military Personnel, Police	574
525	Sikh Extremists	Patrol.	575
526		In the year 2001, many incidents took place	576
527	• Inference	in the months of July and August. The dates	577
528	Many attacks took place in June, 1991.	19,23,26 are widely used.	578
529	The reason for the attacks could be the May	·	579
530	21, 1991 assassination of Mr Rajiv Gandhi by	Analysis of Cluster 7	580
531	LTTE.	 No of instances 	581
532		34 items	582
	Analysis of Cluster 5		
533	• No of instances	• Dates/Month active	583
534	1017	Dates active: 2-15 Month: 5-11 Year: 1995-	584
535	1017	2007	585
536	 Dates/Month active 	Province/State	586
537	2010-2017, mostly 2009 and 2010	Jammu and Kashmir	587
538	·	Jamma and Ixasimm	588
539	Province/State	• Attack Type	589
540	West Bengal	Armed Assault, Bombing/ Explosion, Assas-	590
541	A 440 ole Truno	sination, Hostage Taking (Kidnapping)	591
542	• Attack Type	C V	592
543	1.Assassination	Group Name Al Farar Highest Musickidean (HM) Joich a	593
544	2.Bombing/Explosion	Al-Faran, Hizbul Mujahideen (HM), Jaish-e-	594
545	3.Armed Assault	Mohammad (JeM), Lashkar-e-Taiba (LeT),	595
546	4.Facility/Infrastructure Attack	Muslim militants	596
547	Group Name	• Inference	597
548	Communist Party of India - Maoist (CPI-	Mostly targeting:Private Citizens and Prop-	598
549	Maoist)	erty Dates of 2-15 was found.	599
J 10	1.140104)	-10, - 2000 01 = 10 1100 1001101	555

600	Analysis of Cluster 10	Cluster_12
601	No of instances	35
602		30
603	27 items	<u>9</u> 25
604	• Dates/Month active	25 15 15 15 imonth
605	Dates active: 25-30 Month: 07 Year: 2008	
606		10 5
607	• Province/State	5
608	Gujarat/Surat	2011 2012 2013 2014 2015 2016 2017 2018
609	• Attack Type	Axis Title
610	Bombing/Explosion	
611	Bollionig/Explosion	Figure 16: Cluster 12
612	 Group Name 	
613	unknown	C N
614	If	• Group Name
	• Inference	Maoists
615	Business/Private Citizens Property repeat-	• Inference
616	edly targeted	
617	Analysis of Cluster 11	November month dates 23,24,25,26,27,30
618	·	,11/23 and 11/25 were repeated.
619	• No of instances	
620	159 items	4.2.3 Observations
621	Dates/Month active	The following observations were made -
622	Dates active:25-30 Month:09-12	The following observations were made -
623	Dates active. 25-50 Month. 07-12	• Parliament sessions are conducted in India
624	• Province/State	as:Budget session: February to May. Mon-
625	Jammu and Kashmir, Uttar Pradesh, Punjab,	soon session: July to September. Winter ses-
626	Uttaranchal	sion: November to December.(Cluster12) It
627	A. () T	has been observed from the clusters that the
628	• Attack Type	frequently targeted months are budget ses-
629	Firearms, Explosives	sion months.
630	Group Name	sion monuis.
631	Mujahideen (HM),Jaish-e-Mohammad	• Constitution Day (Samvidhan Divas), is on
632	(JeM),Khalistan Liberation Force,Lashkar-e-	26 November which is celebrated to com-
633	Taiba (LeT),Separatists,Tehrik al-Mojahedin	memorate the adoption of Constitution of In-
634	Turou (201),50 parations, Tomak ar 1110 juneum	dia. Many Clusters showed that there are fre-
635	• Inference	quent targets on Date 26 of months or around
	(Sopore) a place is repeatedly targeted Date	27, 28 of different months.
636	27 was widely used in years 2011-2018 and	27, 20 of different mondies.
637	in Srinagar.	 World of Warcraft, a multiplayer online role-
638	Analysis of Cluster 12	playing video game was world's most used
639	Analysis of Cluster 12	and subscribed game in 2004. Since the
640	 No of instances 	game's release in 2004, over 100 million
641	26 items	accounts have been created and attacks in-
642	D (D# 0 4	creased after the release.
643	• Dates/Month active	
644	Dates active:25-30 Month:09-12	• There were several attacks in 2003 after Nov
645	Province/State	23 when India accepted Pakistan's offer of a
646	Chhattisgarh	ceasefire in Kashmir.
647	Ciniattiogarii	
648	• Attack Type	• The targets were mostly defense or police
649	Bombing/Explosion, Armed Assault	personnel.

- The attack was repeated on specific dates like 11/23 and 11/25. The eastern region of Kashmir like the town of Sopore is affected several times because of the Pakistan border, as it is easy for the terrorists to enter.
- A pattern has also been recognized that the eastern coast cities of India is attacked as the terrorists find their way to enter through Arabian Sea.

4.3 Classification Technique - Naive Bayes

We have used the Naive Bayes classifier. It is basically based on Bayes' theorem and predicts class probabilities by considering independence of feature from class instance. It gives result by estimating the normal distributions. Bayes theorem uses the property of prior probability, observed probability, possibilities and observe probability. Major Zero probability influence can be overcome by Laplace correction.

The advantages of Naive Bayes are-

- With a small amount of training data, the parameters required to classify the dataset can be obtained. Complex real world problems can be solved with simple assumptions and code designs. Categorical and continuous values are supported by this classifier.
- Assuming independent between features requires only the variance of the variables for each label to be determined.
- Intensity of computational memory and processing is low.
- The training time is also less compared to other methods.

The training and testing dataset for classification can be seen in Figures 17,18. The output was obtained using Rapid Miner. (Ref Fig 19, 20) The code can be seen in figures 21,22.

4.3.1 Inference of Classification

• Study 1 was conducted using Rapid Miner Tool (Refer Fig. 19) The Figure 18 shows that the record 2234, the year 2018, date 19 and month 2 predicted a class label sopore and on 10th of February 2018, there was an attack by Jaish-e-Mohammed fidayeen terrorist group in Sunjuwan, Jammu nearly 300

id	iyear	imont	iday	provstate	city	latitude	longitude
1	1988	4	1	Punjab	Kapurthala District	31.37148	75.39368
2	1988	4	1	Haryana	Bhagana	29.0696	75.85194
3	1988	4	1	Uttaranchal	Pangot	29.42301	79.42749
4	1988	4	1	Punjab	Jodhan Nagri	31.60648	75.14724
5	1988	5	1	Punjab	Patiala	30.34	76.38
6	1988	5	1	Orissa	Dadha	20.40494	85.83455
7	1988	6	1	Punjab	Mudki	30.77664	74.88288
8	1988	7	1	West Bengal	Darjeeling	27.04632	88.27116
9	1988	7	1	Punjab	Rupnagar	30.96606	76.52316
10	1988	8	1	Madhya Pradesh	Nowgong	25.06225	79.43966
11	1988	8	1	Assam	Tinsukia	27.48946	95.36014
12	1988	9	1	Punjab	Qadian	31.81903	75.37658
13	1988	9	1	Punjab	Gurdaspur district	32.04076	75.40189

Figure 17: Training Data for Naive Bayes

222	2221	2017	3	31	Odisha	18.16408	81.953482
223	2222	2017	3	31	Odisha	19.175813	83.41065
224	2223	2017	3	31	Karnataka	12.470556	77.001667
225	2224	2017	3	31	Odisha	18.16408	81.953482
226	2225	2017	5	31	Jammu and Kashmir	34.288891	74.463715
227	2226	2017	5	31	Meghalaya	25.896315	91.768356
228	2227	2017	7	31	Jammu and Kashmir	33.785717	75.066156
229	2228	2017	7	31	Odisha	18.543655	82.222946
230	2229	2017	8	31	Jammu and Kashmir	33.75245	74.907013
231	2230	2017	8	31	Bihar	25.18041	86.259059
232	2231	2017	10	31	West Bengal	22.891893	88.396714
233	2232	2017	12	31	Jammu and Kashmir	33.966527	74.964225
234	2233	2017	12	31	Assam	25.180162	93.015788
235	2234	2018	10	2	Jammu and Kashmir	34.288891	74.463715

Figure 18: Testing Data for Naive Bayes

Figure 19: Process Method for Naive Bayes

Row No.	F	prediction(ci	confidence(confidence(
2222	?	Mahupadar	0	0
2223	?	Unknown	0	0
2224	?	Mahupadar	0	0
2225	?	Sopore	0	0
2226	?	Bishnupur	0	0
2227	?	Arwani	0	0
2228	?	Mathili	0	0
2229	?	Imam Sahib	0	0
2230	?	Raniganj	0	0
2231	?	Raniganj	0	0
2232	?	Srinagar	0	0
2233	?	North Cachar	0	0
2234	?	Sopore	0	0

Figure 20: Naive Bayes Prediction

kms away from Sopore. Here the attack instance and the places data set was not in the available training and test data set considered. Study 2 was conducted using Python Code for Naive Bayes Classifier. The training(Refer Fig 17) and test(Refer Fig 18) dataset was used. The accuracy obtained by the model was 63%. The class label obtained for the record 2234 in the test data was found to be the same(City Sopore).

- Terrorist attack on May 4, 2018
 Location: Tinsukia, Assam, India
 Group: United Liberation Front of Assam
 Fatalities: A police officer and a terrorist died in a shooting and grenade attack.
 Output: A place named Ramnagar 600 km (apprx) from Tinsukia was predicted.
- Terrorist attack on Oct 20, 2018
 Location: Imphal, Manipur, India
 Group: Unknown
 Fatalities: A grenade blast targeted a CRPF truck in Imphal resulting in one CRPF personnel killed and another one injured.
 Output: A place named Wangoi 17.2 km (apprx) from Imphal, Manipur was predicted.
- Terrorist attack on Nov 14, 2018
 Location: Bijapur, Karnataka, India
 Group: CPI
 Fatalities: A bomb placed by Maoists detonated injuring five security personnel and one civilian.
 Output: Unknown was predicted as one of the

```
ort numpy
ef runtest(testPoint):
  LabelTest = []
   for i in testPoint:
      values = 0
      save = "
       for k in tempflag:
           prob = 1 * totalprob[k]
               prob = prob * gaussian_distribution(i(j), Labelmean(k)[j], Lablestd(k)[j])
           if(values<prob):</pre>
               save = k
              values = prob
      LabelTest.append(save)
  return LabelTest
🕼 filewrite(LabelTest):
   f = open("output txt", "v")
  for i in LabelTest:
      f.writelines(i + '\n')
 f gaussian_distribution(x, mean, stdev);
  # Correcting the Error
  if(stdev=0):
      stdev=1
  exponent = math.exp(-(((x - mean) ** 2) / (2 * (stdev ** 2)))))
   return (1 / (stdev * ((2 * math.pi) ** (1 / 2)))) * exponent
  StandardDV(val):
   return numpy.std(numpy.transpose(val), axis=1)
   return numpy.mean(numpy.transpose(val), axis=1)
ef trainNB(featureMatrix, labels):
   global Labledict
    lobal Labelmean
     obal Lablestd
    abledict = {}
```

Figure 21: Code for Naive Bayes Classifier

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

900 901 902 903 904 905 906 907 908 909 910 912 914 916 918 919 920 921 922 923

948

949

947

Churachandpur district Churachandpur district Anantnag district Gandachera Kumkumpudi Gandachera Srinagar Senapati district Koraput district Mahupadar Mahupadar Bishnupur Bishenpur district Samba district Churachandpur district Churachandpur district Nambol Churachandpur district Itkhori Gaya district

Murdanda Kalimela Srinagar Srinagar Kanker district Nawadih **Gumla district** Srinagar Sirnoo

Lnuracnanopur district

Churachandpur district

Imphal Unknown Unknown Polampalli Mahupadar Kumkumpudi Polampalli Sopore

Srinagar

Bishnupur Srinagar Machkund Imam Sahib Itkhori

Jhargram Srinagar Sugnu Sopore

Figure 22: Outcomes of Naive Bayes Classifier

References

Ali, G. A. (2016). Identifying Terrorist Affiliations through Social Network Analysis Using Data Mining Techniques.

Chen, H., Reid, E., Sinai, J., Silke, A., Ganor, B. (Eds.). (2008). Terrorism Informatics: Knowledge management and data mining for homeland security (Vol. 18). Springer Science Business Media.

Gill, P., Horgan, J., Deckert, P. (2014). Bombing alone: Tracing the motivations and antecedent behaviors of loneactor terrorists. Journal of forensic sciences, 59(2), 425-435.

Gupta, P., Sabitha, A. S., Choudhury, T., Bansal, A. (2018). Terrorist Attacks Analysis Using Clustering Algorithm. In Smart Computing and Informatics (pp. 317-328). Springer, Singapore.

Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier, 2011.

Sakhare, N. N., Joshi, S. A. (2014). Classification of Criminal Data Using J48-Decision Tree Algorithm. IFRSA International Journal of Data Warehousing Mining, 4.

Sivaraman, R., S. Srinivasan, and R. M. Chandrasekeran. "Big Data On Terrorist Attacks: An Analysis Using The Ensemble Classifier Approach." Technology 255 (2015): 261.

Sun, Z. (2017). Strang, K. D., relationships in terrorism big data using Hadoop and statistics. Journal of Computer Information Systems, 57(1), 67-75.

Appendices

id	iyear	imonth	iday	provstate	city	latitude	longitude	specificity	success	suicide	attacktype	targtype1	targsubty	gname	weaptyp
201001070003.00	2010	1	7	Jharkhand	Salpatra	23.7014	86.58667	1	1	0	Hostage T	Violent Po	Party Office	Communi	Firearm
201001070004.00	2010	1	7	West Ben	Murabani	22.56916	86.97367	1	1	0	Hostage T	Terrorists	Non-State	Communi	Firearm
201001150002.00	2010	1	15	Jharkhand	Gumla	23.04151	84.54449	1	1	0	Bombing/	Police	Police Sec	Communi	Explosiv
201001150005.00	2010	1	15	Jharkhand	Gumla dis	23.04151	84.54449	3	1	0	Armed As	Police	Police Sec	Communi	Firearm
201001170002.00	2010	1	17	Bihar	Gaya	24.78147	84.98641	1	1	0	Bombing/	Telecomn	Telephone	Communi	Explosiv
201001170003.00	2010	1	17	Bihar	Gaya	24.78147	84.98641	1	1	0	Facility/In	Private Cit	Vehicles/	Communi	Incendia
201001170014.00	2010	1	17	Andhra pr	Khamman	17.24705	80.1493	1	1	0	Armed As	Terrorists,	Terrorist	Unknown	Melee
201001180024.00	2010	1	18	Bihar	Nadaul	25.29663	85.01738	1	1	0	Bombing/	Transport	Train/Trai	Communi	Explosiv
201001180027.00	2010	1	18	Punjab	Nabha	30.37367	76.14519	1	0	0	Bombing/	Utilities	Oil	Khalistan	Explosiv
201001190001.00	2010	1	19	Jharkhand	East Singh	22.48668	86.49966	3	1	0	Armed As	Private Cit	Student	Communi	Firearm
201001190016.00	2010	1	19	Manipur	Imphal	24.79835	93.94043	1	1	0	Bombing/	Police	Police Sec	Unknown	Explosiv
201001200003.00	2010	1	20	Manipur	Imphal	24.79835	93.94043	1	0	0	Armed As	Private Cit	Unnamed	Unknown	Firearm
201001200012.00	2010	1	20	Orissa	Koraput d	18.81524	82.7121	3	1	0	Bombing/	Telecomn	Telephon	Communi	Explosiv
201001210004.00	2010	1	21	Manipur	Imphal	24.79835	93.94043	1	0	0	Bombing/	Private Cit	House/Ap	Unknown	Explosiv
201001210005.00	2010	1	21	Manipur	Hiyangtha	24.72843	93.89672	1	0	0	Bombing/	Governme	Governme	United Ku	Explosiv
201001210008.00	2010	1	21	Jharkhand	Palamu di	24.12861	84.18571	3	1	0	Facility/In	Telecomn	Telephon	Communi	Incendia
201001210009.00	2010	1	21	Manipur	Bishenpur	24.55934	93.81465	2	1	0	Bombing/	Business	Mining	Unknown	Explosiv
201001210011.00	2010	1	21	Manipur	Bishnupur	24.62872	93.76133	1	1	0	Bombing/	Governme	Governme	Unknown	Explosiv
201001210012.00	2010	1	21	Manipur	Imphal	24.79835	93.94043	1	0	0	Bombing/	Private Cit	House/Ap	Kuki Liber	Explosiv
201001220012.00	2010	1	22	Orissa	Koraput	18.81524	82.7121	1	1	0	Facility/In	Governme	Governme	Communi	Incendia
201001230004.00	2010	1	23	Orissa	Sundargar	22.124	84.04318	3	1	0	Hostage T	Violent Po	Party Offic	Communi	Unknow
201001230006.00	2010	1	23	Assam	Chirang di	26.63755	90.64405	3	1	0	Bombing/	Transport	Subway	Unknown	Explosiv
201001230011.00	2010	1	23	Orissa	Koraput	18.81524	82.7121	1	1	0	Bombing/	Police	Police Sec	Communi	Explosiv
201001240001.00	2010	1	24	Tripura	Bhagirath	23.69563	91.91281	1	0	0	Armed As	Governme	Politician	National L	Firearms

Figure 23: Terrorism data Set