# Account-Wise Ledger: Implementation

Che-Yu Liu, Jia-Wei Liang, Yi-Chen Liu

#### **Agenda**

- Current Situation and Our Motivations
- Summary and Our Contribution
- Mechanism and How We Overcome
- Security Discussion
- Implementation
- Q&A

#### **Current Situation of Blockchain**



# Why is Scalability/Mining Important?

# Real World Applications VisaNet: 4K transaction per sec. Alipay: 256K transaction per sec. Ethereum: 15 transaction per sec.





#### Source:

https://www.bbc.com/news/technology-48853230

#### **Current Solutions:**

- Scalability Issue => Solution: Database Sharding
- Mining Competition => Solution: Proof of Stack





https://blogs.oracle.com/dev2dev/javascalability-with-sharded-database

#### **Related Studies**



J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu and Y. Liu, "A Survey on the Scalability of Blockchain Systems," in *IEEE Network*, vol. 33, no. 5, pp. 166-173, Sept.-Oct. 2019.

Lots of them address scalability problem but...

disregard "security discussion"



#### **Our Goals and Contribution**

- Account-Wise Ledger: Reduce the Burden of Each Node
- (1) Divide the blockchain into different sub-networks
- (2) Each node only needs to store the data in its own sub-network

- Three-End Commitment Protocol: Cancel Mining Competition
- (1) Removes competition reward
- (2) Increases the overall blockchain security

### **Account-Wise Ledger**



#### **Account Wise Ledger (cont.)**



### **Account Wise Ledger (cont.)**



#### **Three-End Commitment**

STEP 1: Sender announces the transaction task to the receiver and each subnetwork

STEP 2: Receiver announces the acknowledgement of each subnetwork



# Three-End Commitment (cont.)

STEP 3: Each subnetwork randomly selects one node as the representative operator (High Council)



### Three-End Commitment (cont.)

STEP 4: Representative operator do the mining and broadcast to each node in the whole network



#### **Three-End Commitment (cont.)**



#### **System Design**



#### **Advantages of Our Design**

- Speed up the response time of request
  - Queries go over fewer data and the results are returned much more quickly by sharing one table into multiple tables.
- More reliable by mitigating the impact of outages
  - An outage is likely to affect only a single shard
- Solve the major drawback of database sharding (Sharding incorrectly)
  - All the related users in the account will do the verification

#### **Security Discussion**

- Faulty Type Sender:
  - The Receiver would not send the ACK, attack failed.
- Faulty Type Receiver:
  - The Receiver would not receive any money, meaningless.
  - Always-Accept Principle: Whatever decision made by the High Council, accept it anyway
- Faulty Type Sender & Receiver Collusion:
  - The High Council will consult the sender side sub-network and the receiver side sub-network to ensure the validity of the transaction
- Faulty Type Operators:
  - K: the number of sub-networks
  - $\circ$   $\tau$ : the distribution coefficient

# Security Discussion - au



- $\tau$  = 0: the distribution of faulty participants is extremely unevenly
- $\tau$  = 1: the distribution of faulty participants is extremely evenly

### **Security Discussion** - K



Figure 6: The changes of the failure probability of a transaction corresponding to the number of K. Assume  $\tau = 0$ 

### **Implementation**

- Inter and Cross Sub-network transaction
  - Send task and receive ACK
  - Broadcast
  - High Council is elected

### **Inter Sub-network Transaction**

| Peers My Transactions                          |          |                |         | User ID: Jessies-MBP Sub-Network Index: 1                                                                                  |                  |  |
|------------------------------------------------|----------|----------------|---------|----------------------------------------------------------------------------------------------------------------------------|------------------|--|
| User                                           |          | IP Address     | Port SN | SN Your Balance 960                                                                                                        |                  |  |
| 1 LEO-UX3                                      | 390UA 1  | 192.168.43.234 | 54789 0 | 0 Receiver ID CCC                                                                                                          | Make Transaction |  |
| 2 LEO-UX3                                      | 390UA2 1 | 192.168.43.234 | 54792 1 | 1 Amount 10                                                                                                                | h                |  |
| 3 LEO-UX3                                      |          |                | 54795 0 |                                                                                                                            |                  |  |
| 4 Jessies-I                                    | MBP 1    | 192.168.43.245 | 50134 1 | High Council Member: { LEO-0X3900A2 , LEO-0X3900A3 }                                                                       |                  |  |
| 5 BBB                                          | 1        | 192.168.43.234 | 54798 0 | [LEO-UX390UA2] gives me a Sender-Side-Block: [Jessies-MBP] >> [CCC] with \$10                                              |                  |  |
| 6 CCC                                          | 1        | 192.168.43.234 | 54801 1 | [LEO-UX390UA2] gives me a Receiver-Side-Block: [Jessies-MBP] >> [CCC] with \$10 [Jessies-MBP] gives me its Last Block Hash |                  |  |
| 7 AAA                                          |          | 192.168.43.245 | 56403 0 | [CCC] gives me its Last Block Hash                                                                                         |                  |  |
|                                                |          |                |         |                                                                                                                            |                  |  |
| Update Peer List Update AWL List Task Complete |          |                |         |                                                                                                                            |                  |  |

#### **Cross Sub-network Transaction**



# Thank You Triple L Group