Estatística Descritiva

Momentos de ordem θ ($\theta=1,2,...$) em relação à média: $m_{\theta}=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})^{\theta}; m_{\theta}=\sum_{k=1}^{K}f_{k}(x_{k}-\overline{x})^{\theta}.$ Coeficiente de assimetria (skewness): $\frac{n^{2}}{(n-1)(n-2)}\frac{m_{3}}{s_{o}^{2}}.$

Ordem da observação correspondente ao quantil ordem α : $(n+1)\alpha$.

Barreiras de outliers:

$$Q_1 - 1.5(Q_3 - Q_1)$$
 e $Q_3 + 1.5(Q_3 - Q_1)$;
 $Q_1 - 3.0(Q_3 - Q_1)$ e $Q_3 + 3.0(Q_3 - Q_1)$.

Teoria Elementar da Probabilidade

$$\begin{array}{l} 0 \leq P(A) \leq 1; \ \mathrm{P}(\emptyset) = 0; \ \mathrm{P}(\Omega) = 1; \\ \mathrm{P}(\overline{A}) = 1 - \mathrm{P}(A); \quad P(A) \leq P(B) \ \text{se} \ A \subset B; \\ \mathrm{P}(A \cup B) = \mathrm{P}(A) + \mathrm{P}(B) - \mathrm{P}(A \cap B); \\ \mathrm{P}(A \cup B) = \mathrm{P}(A) + \mathrm{P}(B) \ \text{se} \ A \in B \ \text{disjuntos}; \\ \mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B) \ \text{se} \ A \in B \ \text{independentes}. \end{array}$$

Probabilidade condicionada

P(A|B) =
$$\frac{P(A \cap B)}{P(B)}$$
 \Rightarrow P(A \cap B) = P(A|B)P(B);
P(A|B) = P(A) se A e B independentes;
P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B).

Teoremas: Se
$$\Omega = A_1 \cup \ldots \cup A_n$$
, $A_i \cap A_j = \emptyset$, $i \neq j$, então, (i) Bayes: $P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)}$;

(ii) **Prob. Total**:
$$P(B) = \sum_{j=1}^{n} P(A_j)P(B|A_j)$$
.

Variáveis Aleatórias (v.a.'s)

Função massa de prob. (fmp), v.a. X discreta: f(x) = P(X = x) é fmp sse (i) $0 \le f(x) \le 1$ e (ii) $\sum_{x_i} f(x_i) = 1$.

Função densidade de prob. (fdp), v.a. X contínua: f(x) é fdp sse (i) $f(x) \ge 0$ e (ii) $\int_{-\infty}^{+\infty} f(x) dx = 1$.

Função de distribuição (fd)

$$F(x) = P(X \le x) = \begin{cases} \sum_{x_i \le x} f(x_i), & X \text{ discreta;} \\ \int_{-\infty}^{x} f(t) dt, & X \text{ continua;} \end{cases}$$

F(x) é fd sse (i) $0 \le F(x) \le 1$, (ii) F é contínua (só à direita, se X discreta), (iii) F é não decrescente, (iv) $\lim_{x \to -\infty} F(x) = 0$ e $\lim_{x \to +\infty} F(x) = 1$. Se X contínua, então F'(x) = f(x).

Média ou valor esperado:
$$\mu = \mathbf{E}[X]$$

$$\mathbf{E}(X) = \left\{ \begin{array}{l} \sum_{x_i} x_i \mathbf{P}(X=x_i), \ X \ \text{discreta} \\ \int_{-\infty}^{+\infty} x f(x) \ dx, \ X \ \text{contínua} \end{array} \right.$$

$$E[aX + b] = aE[X] + b; E[X + Y] = E[X] + E[Y];$$

Variância:
$$\sigma^2 = \text{Var}[X]$$
 (Desvio padrão $\sigma = \sqrt{\sigma^2}$)
$$\text{Var}(X) = \begin{cases} \sum_{x_i} (x_i - \mu)^2 P(X = x_i), X \text{ discreta} \\ \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) \, dx, X \text{ contínua} \end{cases}$$

$$Var[X] = E[X^2] - \mu^2$$
; $Var[aX + b] = a^2Var[X]$;
 $Var[X + Y] = Var[X] + Var[Y]$ se X e Y independentes;

Das propriedades resulta que: Se X_1, \ldots, X_n são v.a.'s i.i.d. com $E[X_i] = \mu$ e $Var[X_i] = \sigma^2$, então $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ tem $E[\overline{X}] = \mu e Var[\overline{X}] = \sigma^2/n$.

Quantil de ordem p

$$x_p = \begin{cases} x_p : p \le F(x_p) \le p + \mathrm{P}(X = x_p), \ X \text{ discreta} \\ x_p : F(x_p) = p, \ X \text{ continua} \end{cases}$$
 (Exemplo: a mediana é o quantil de ordem $p = 1/2$.)

Distribuições e TLC

Bernoulli $X \sim Be(p)$

$$X=1$$
 ("sucesso" com prob. p) ou 0 (prob. $1-p$); $P(X=x)=p^x(1-p)^{1-x}, \quad x=0,1;$ $E[X]=p; Var[X]=p(1-p).$

Binomial $X \sim B(n, p)$

 $X = n^{\circ}$ de "sucessos" em n provas independentes;

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, \dots, n$$

$$E[X] = np; Var[X] = np(1-p);$$

Propriedade Se X_1, X_2, \dots, X_m são v.a.'s independentes com $X_i \sim B(n_i, p), i = 1, 2, \dots, m$, então $\sum_{i=1}^m X_i \sim B(\sum_{i=1}^m n_i, p)$.

Geométrica (nº de provas) $X \sim G(p)$

X= n° de provas independentes até obter o primeiro "su-

$$P(X = x) = (1 - p)^{x-1}p, \quad x = 1, 2, ...;$$

 $E[X] = 1/p; Var[X] = (1 - p)/p^2.$

Hipergeométrica $X \sim H(N, M, n)$

X= n° de "sucessos" em n provas dependentes; $P(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}, \forall x$ possíveis; $E[X]=np; Var[X]=np(1-p)\frac{N-n}{N-1}; p=M/N.$

$$E[X] = np; Var[X] = np(1-p) \frac{N-n}{N-1}; p = M/N$$

$\overline{\mathbf{Poisson}\ X \sim P(\lambda)}$

Em geral, $X = n^{\circ}$ de ocorrências por intervalo de tempo ou regiões do espaço; $P(X=x) = e^{-\lambda} \frac{\lambda^x}{x!}, x = 0, 1, ...; \lambda > 0;$ $E[X] = \lambda; Var[X] = \lambda;$

$$P(X = r) = e^{-\lambda} \frac{\lambda^x}{r}$$
 $r = 0.1$ $\lambda > 0$

$$E[X] = \lambda; Var[X] = \lambda$$

Propriedade Se X_1, X_2, \ldots, X_n são v.a.'s independentes com $X_i \sim P(\lambda_i), i = 1, 2, \dots, n$, então $\sum_{i=1}^{n} X_i \sim P\left(\sum_{i=1}^{n} \lambda_i\right).$

Exponencial $X \sim \text{Exp}(\lambda)$

Em geral, X= tempo de duração ou tempo entre ocorrências consecutivas;

$$f(x) = \lambda e^{-\lambda x}, x \ge 0, \lambda > 0;$$

$$E[X] = 1/\lambda; Var[X] = 1/\lambda^2.$$

Normal $X \sim N(\mu, \sigma^2)$

Normal Standard $X \sim N(0,1)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x, \mu \in \mathbb{R}, \sigma > 0;$$

$$E[X] = \mu; Var[X] = \sigma^2;$$

(I) Se
$$X \sim N(\mu, \sigma^2)$$
, então (i) $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ e

(ii)
$$Y = aX + b \sim N(a\mu + b, a^2\sigma^2);$$

(II) Se $X_i \sim N(\mu_i, \sigma_i^2), i = 1, ..., n$ são independentes, então $\sum_{i=1}^{n} X_i \sim N(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2);$

(III) Se
$$X_i \sim N(\mu, \sigma^2), i = 1, ..., n$$
 são independentes, então $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n)$.

Teorema do Limite Central (TLC)

Se $X_1, X_2, \dots, X_n, \dots$ é uma sucessão de v.a's i.i.d. com $E[X_i] = \mu \text{ e Var}[X_i] = \sigma^2$, então

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \stackrel{n \to +\infty}{\sim} N(0,1).$$

Do **TLC** resulta que (i) $\sum_{i=1}^{n} X_i \stackrel{aprox}{\sim} N(n\mu, n\sigma^2)$ e (ii) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{aprox}{\sim} N(\mu, \sigma^2/n)$, para n suficientemente elevado (em geral n > 30).

Estimação pontual

Método dos Momentos: (usualmente)

Um parâmetro: $E[X] = \overline{X}$ (ou $Var[X] = S^2$); Dois parâmetros: $E[X] = \overline{X} e Var[X] = S^2$.

Método da Máxima Verosimilhança:

- (1) escrever a função de verosimilhança $L(\theta)$;
- (2) considerar o logaritmo de $L(\theta)$, se necessário;
- (3) obter o maximizante de $L(\theta)$ (ou $\ln L(\theta)$).

TH - noções e procedimentos

Nível de significância:

 $\alpha = P(\text{Erro Tipo I}) = P(\text{rejeitar } H_0|H_0 \text{ verdadeira});$

Potência do teste: $1 - \beta = 1 - P(\text{Erro Tipo II}) =$ = $P(\text{rejeitar } H_0|H_1 \text{ verdadeira});$

Conversão *p-value* bilateral a unilateral:

Se a amostra aponta no sentido de H_1 , então

 $p ext{-}value_{ ext{uni}} = rac{p ext{-}value_{ ext{bil}}}{2};$ senão $p ext{-}value_{ ext{uni}} = 1 - rac{p ext{-}value_{ ext{bil}}}{2}.$ Cálculo de $p ext{-}value$ num teste bilateral:

 $p\text{-}value_{bil} = 2P(T < t_{obs}|H_0)$, se t_{obs} é reduzido;

p-value_{bil} = $2P(T > t_{obs}|H_0)$, se t_{obs} é elevado.

Considera-se t_{obs} reduzido (elevado) quando a estimativa que se obtém para o parâmetro a testar é inferior (superior) ao valor especificado em H_0 .

IC e TH em Populações Normais

Média populacional, μ , com σ^2 conhecida

Variável fulcral: $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1);$

$$IC_{1-\alpha}(\mu) = \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right);$$

TH \rightarrow H₀ : $\mu = \mu_0$; usa-se ET $\sim_{sob\ H_0} N(0,1)$.

(ET significa Estatística de Teste)

Média populacional, μ , com σ^2 desconhecida

Variável fulcral: $T = \frac{\overline{X} - \mu}{S_n / \sqrt{n}} \sim t_{n-1};$

$$IC_{1-\alpha}(\mu) = \left(\overline{X} - t_{1-\frac{\alpha}{2},n-1} \frac{S_c}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2},n-1} \frac{S_c}{\sqrt{n}}\right);$$

 $\mathrm{TH} \to \mathrm{H}_0: \mu = \mu_0; \text{ usa-se ET} \underset{sob\ H_0}{\sim} t_{n-1}.$

Diferença $\mu_X - \mu_Y$ em amostras emparelhadas com variâncias desconhecidas

Considerar $D_i = X_i - Y_i \sim N(\mu_D, \sigma_D^2)$, com $\mu_D = \mu_X - \mu_Y$.

Variável fulcral: $T = \frac{\overline{D} - \mu_D}{S_{-D}/\sqrt{n}} \sim t_{n-1};$

$$IC_{1-\alpha}(\mu_D) = \left(\overline{D} - t_{1-\frac{\alpha}{2},n-1} \frac{S_{cD}}{\sqrt{n}}, \overline{D} + t_{1-\frac{\alpha}{2},n-1} \frac{S_{cD}}{\sqrt{n}}\right)$$

 $\mathrm{TH} \rightarrow \mathrm{H}_0: \mu_D = \mu_0; \; \mathrm{usa\text{-}se} \; \mathrm{ET} \underset{sob\ H_0}{\sim} t_{n-1}.$

Diferença $\mu_X - \mu_Y$ em amostras independentes com variâncias conhecidas

Variável fulcral: $Z = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}} \sim N(0, 1);$

$$IC_{1-\alpha}(\mu_X - \mu_Y) = \left(\overline{X} - \overline{Y} \mp z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}\right);$$

 $TH \to H_0: \mu_X - \mu_Y = \mu_0; \text{ usa-se ET} \underset{sob \ H_0}{\sim} N(0, 1).$

Diferença $\mu_X - \mu_Y$ em amostras independentes com variâncias desconhecidas (consideradas iguais)

Variável fulcral:
$$T = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{S} \sim t_{n+m-2},$$
onde
$$S = \sqrt{\frac{1}{n} + \frac{1}{m}} \sqrt{\frac{(n-1)S_{cX}^2 + (m-1)S_{cY}^2}{n+m-2}};$$

 $IC_{1-\alpha}(\mu_X - \mu_Y) = (\overline{X} - \overline{Y} \mp t_{1-\frac{\alpha}{2},n+m-2} S);$

 $\mathrm{TH} \to \mathrm{H}_0: \mu_X - \mu_Y = \mu_0; \text{ usa-se ET} \underset{sob\ H_0}{\sim} t_{n+m-2}.$

Variância populacional, σ^2 , com μ conhecida

Variável fulcral: $V = \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi_n^2$;

$$\begin{split} & \mathrm{IC}_{1-\alpha}(\sigma^2) = \Bigg(\frac{\sum_{i=1}^n \left(X_i - \mu\right)^2}{\chi_{1-\frac{\alpha}{2},n}^2}, \frac{\sum_{i=1}^n \left(X_i - \mu\right)^2}{\chi_{\frac{\alpha}{2},n}^2}\Bigg); \\ & \mathrm{TH} \to \mathrm{H}_0: \sigma^2 = \sigma_0^2; \; \mathrm{usa\text{-se ET}} \underset{sob\ H_0}{\sim} \chi_n^2. \end{split}$$

Variância populacional, σ^2 , com μ desconhecida

Variável fulcral: $V = \frac{(n-1)S_c^2}{\sigma^2} \sim \chi_{n-1}^2$;

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-1)S_c^2}{\chi_{1-\frac{\alpha}{2},n-1}^2}, \frac{(n-1)S_c^2}{\chi_{\frac{\alpha}{2},n-1}^2}\right);$$

 $\mathrm{TH} \to \mathrm{H}_0: \sigma^2 = \sigma_0^2; \text{ usa-se } \mathrm{ET} \underset{sob\ H_0}{\sim} \chi_{n-1}^2.$

IC e TH em outras Populações (invocando TLC)

Média populacional, μ , com σ^2 (des)conhecida

Variável fulcral: $Z = \frac{X - \mu}{\sigma / \sqrt{n}} \stackrel{aprox}{\sim} N(0, 1);$

Variável fulcral: $Z = \frac{\overline{X} - \mu}{S_{c} / \sqrt{n}} \stackrel{aprox}{\sim} N(0, 1);$

$$\operatorname{IC}_{1-\alpha}(\mu) \stackrel{\text{\tiny TLC}}{\approx} \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right);$$

$$\operatorname{IC}_{1-\alpha}(\mu) \stackrel{\text{TLC}}{\approx} \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{S_c}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{S_c}{\sqrt{n}} \right);$$

TH \rightarrow H₀: $\mu = \mu_0$; usa-se ET $\stackrel{aprox}{\sim}_{sob\ H_0} N(0,1)$.

Proporção populacional, p

Estimador para p: $\widehat{p} = \frac{X}{n} \stackrel{aprox}{\sim} N\left(p, \frac{p(1-p)}{n}\right)$.

(X representa a quantidade de interesse na amostra.)

Variável fulcral: $Z = \frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{aprox}{\sim} N(0,1);$

$$\mathrm{IC}_{1-\alpha}(p) \overset{\scriptscriptstyle\mathrm{TLC}}{\approx} \left(\widehat{p} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \widehat{p} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \right);$$

TH \rightarrow H₀ : $p = p_0$; usa-se ET $\stackrel{aprox}{\sim}_{sob\ H_0} N(0,1)$.