Shukai Du Curriculum Vitae

Assistant Professor Office: Carnegie 206D
Department of Mathematics Email: sdu113@syr.edu

Syracuse University Website: https://shukaidu.github.io

RESEARCH INTERESTS

- Finite element and discontinuous Galerkin methods
- Scientific machine learning and data-driven methods
- Computational inverse and ill-posed problems
- Numerical methods for radiative transfer
- Electromagnetic and elastic/viscoelastic waves

PROFESSIONAL EXPERIENCE

Syracuse University

• Assistant Professor Oct 2024 – now

University of Wisconsin-Madison

• Visiting Assistant Professor Sep 2020 – Sep 2024

University of Minnesota-Twin Cities

• Visiting Doctoral Student Sep 2019 – June 2020

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Peer-reviewed

17. J. L. Torchinsky, **S. Du**, and S. N. Stechmann. Angular-spatial hp-adaptivity for radiative transfer with discontinuous Galerkin spectral element methods. *J. Quant. Spectrosc. Radiat. Transf.* 348 (2026).

DOI: 10.1016/j.jqsrt.2025.109687

16. D. H. Marsico, **S. Du**, S. N. Stechmann. Can second-order numerical accuracy be achieved for Moist Atmospheric Dynamics with non-smoothness at cloud edge? *J. Adv. Model. Earth Syst.* 17 (2025).

DOI: 10.1029/2025MS005293

15. **S. Du**, and S. N. Stechmann. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative

transfer. J. Comp. Math. (2024).

DOI: 10.4208/jcm.2407-m2024-0047

14. **S. Du**, and S. N. Stechmann. Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion. *Inverse Probl. 39 (2023), no. 11*. DOI: 10.1088/1361-6420/acf785

13. B. Cockburn, **S. Du**, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations. *ESAIM: M2AN 57* (2023), no.4, 2097-2129.

DOI: 10.1051/m2an/2023048

12. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* 480 (2023). DOI: 10.1016/j.jcp.2023.112021

11. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement. *J. Adv. Model. Earth Syst.* 15 (2023). DOI: 10.1029/2023MS003688

10. B. Cockburn, **S. Du**, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems. *Front. Appl. Math. Stat. 9* (2023).

DOI: 10.3389/fams.2023.1165371

9. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

8. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022).

DOI: 10.1515/cmam-2021-0215

7. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

6. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput.* 85, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

5. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

4. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89 (2020)*, *1745-1782*.

DOI: 10.1090/mcom/3499

3. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798*. DOI: 10.1515/cmam-2019-0173

2. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018), no. 1, 55-96.*DOI: 10.21042/AMNS.2018.1.00006

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

GRANTS

- NSF (DMS-2324368): Breaking the 1D Barrier in Radiative Transfer: Fast, Low-Memory Numerical Methods for Enabling Inverse Problems and Machine Learning Emulators. Senior personnel. \$498,832 total, \$350,000 at UW (2023-2026).
- NSF (AGS-2326631): Convective Processes in the Tropics Across Scales. Senior personnel. \$768,471 total, \$471,155 at UW (2024-2026).

PRESENTATION

Invited talks

- 33. Accelerating finite element-type methods with machine learning on substructures *Third HKSIAM Biennial Conference, Chinese University of Hong Kong* July 2025
- 32. Element learning: accelerating finite element-type methods via machine learning, with applications to radiative transfer
 - SIAM sectional meeting, Fort Worth, Texas

March 2025

- 31. Forward and inverse computation for radiative transfer via hp-adaptive mesh refinements
 - 14th AIMS Conference, Abu Duhabi

Dec 2024

30. Inverse radiative transfer via goal-oriented hp-adaptive mesh refinement 14th AIMS Conference, Abu Duhabi

Dec 2024

- 29. Element learning: accelerating finite element-type methods via operator learning with cost-effective training
 - SIAM sectional meeting, Rochester Institute of Technology

Nov 2024

- 28. Forward and inverse computation for radiative transfer via hp-adaptive mesh refinement and machine learning acceleration
 - Analysis seminar, Binghamton University

Oct 2024

- 27. Element learning: a systematic approach of accelerating finite element-type methods via machine learning
 - CCAM seminar, Purdue University

Mar 2024

- 26. Element learning: a systematic approach of accelerating finite element-type methods via machine learning
 - Analysis and Data Science Seminar, SUNY at Albany

Feb 202

- 25. Element learning: a systematic approach of accelerating finite element-type methods via machine learning
 - Math Department Colloquium, Syracuse University

Jan 20:

- 24. Element learning: a systematic approach of accelerating finite element-type methods via machine learning
 - Math Department Colloquium, Chinese University of Hong Kong

Dec 2023

- 23. Element learning: a systematic approach of accelerating finite element-type methods, with applications to radiative transfer
 - University of Electronic Science and Technology of China

Nov 2023

22. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer *Scientific Computing Seminars, University of Houston*Nov 2023

21.	Element learning: a systematic approach of accelerating finite element-typ- via machine learning, with applications to radiative transfer	e methods
	Applied Math seminar, University of Louisiana at Lafayette	Oct 2023
20.	Element learning: a systematic approach of accelerating finite element-type with applications to radiative transfer	methods,
	Numerical analysis and PDE seminar, University of Delaware	Sep 2023
19.	Energy-conserving discontinuous Galerkin methods with time-operators in to for time-dependent electromagnetics	heir traces
	17th UCNCCM, Albuquerque, NM	July 2023
18.	Fast, low-memory methods for radiative transfer through hp-adaptive ment	esh refine-
	13th AIMS Conference, Wilmington, NC	June 2023
17.	Unified analysis of HDG methods for the static Maxwell equations	
	CILAMCE-PANACM 2021, Brazil	Nov 2021
16.	Generalized projection-based error analysis of hybridizable discontinuous	
	(HDG) methods	
		June 2021
15.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) me	
10.	Wenbo Li Prize Talk, U of Delaware	Feb 2020
14.	Unified analysis of HDG methods for the static Maxwell equations	100 2020
± 1.	SIAM CSE2021, Virtual Meeting	Mar 2021
13	New analysis techniques of HDG+ method	111ai 2021
10.	SIAM Sectional Meeting, Iowa State U	Oct 2019
12.	Uniform-in-time optimal convergent HDG method for	000 2017
	transient elastic waves with strong symmetric stress formulation	
	WAVES2019, TU Wien, Vienna	Aug 2019
11	Hybridizable Discontinuous Galerkin schemes for elastic waves	7145 2017
11.	ICIAM2019, Valencia	July 2019
10	HDG for transient elastic waves	July 2017
10.	WONAPDE2019, U of Concepcion	Jan 2019
	•	Jan 2017
	ributed talks	
9.	Element learning: accelerating finite element methods via operator learning	g
	FEM Circus, U of Notre Dame	Oct 2023
8.	Three-dimensional radiative transfer: fast, low-memory numerical methods	S
	Collective Madison Meeting, Madison, WI	Aug 2022
7.	Projection-based analysis of HDG methods with reduced stabilization	
	DelMar Num Day 2019, U of Maryland	May 2019
6.	Projection-based error analysis of HDG methods for transient elastic waves	
	FEM Circus, U of Delaware	Nov 2018
5.	Devising a tailored projection for a new HDG method in linear elasticity	
	FEM Circus, U of Tennessee	Mar 2018
4.	A new HDG projection and its applications	
	Mid-Atlantic Numerical Analysis Day. Temple U	Nov 2017

Poster presentation

3. Fast, low-memory numerical methods for radiative transfer: forward and inverse problems

New Trends in Computational and Data Sciences, Caltech

Dec 2022

2. Hybridizable Discontinuous Galerkin methods in transient elastodynamics *FACM2018, New Jersey Institute of Technology* Aug 2018

1. Building a computational code for 3D viscoelastic wave simulation *Mid-Atlantic Numerical Analysis Day, Temple U*

Nov 2016

TEACHING

Instructor

•	Applied Linear Algebra (MAT532) at Syracuse University	Fall 2025
•	Multivariable calculus (MAT397) at Syracuse University	Spring 2025
•	Linear Algebra and Differential Equations (Math320) at UW-Madison	Spring 2023

Teaching Assistant

Analytic Geometry and Calculus C (Math243)	2016&2017 Fall
 Analytic Geometry and Calculus B (Math242) 	2017 Spring
• Calculus I (Math221)	2018 Spring
 Review of Advanced Mathematical Problems 	
(summer courses offered to incoming graduate students)	2018 Fall

MENTORING ACTIVITIES

Graduate mentorship

• Jason Torchinsky (co-mentored with S. N. Stechmann) 2022 – 2023

Undergraduate mentorship

•	WISCERS project at th	ne University of Wisconsin-Madison	2023
•	GEMS summer resear	ch project at the University of Delaware	Fall 2016

JOURNAL REFEREE

Journal of Scientific Computing • SIAM Journal on Scientific Computing • SIAM Multiscale Modelling and Simulation • ESAIM: Mathematical Modelling and Numerical Analysis • Inverse Problems and Imaging • Computers and Mathematics with Applications • Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009 - 2011

SERVICES

Mentor for SIAM Virtual Resume Building Workshop

Oct 2024

CODING PROJECTS

Fast, low-memory methods for radiative transfer

2020 - 2022

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with hp-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods

2016 - 2020

(based on HDG3D library: github.com/team-pancho/HDG3D)

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentation with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library: team-pancho.github.io)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

Last update: October 20, 2025