Operációs rendszerek

Absztrakciós szintek

A hardverek fölé egy olyan rendszert helyezünk, amivel a programozó egyszerűbben tudja kezelni az erőforrásokat:

Kernel szerepe, feladatai

Magas szintű függvények, amelyekkel hozzáférünk a hardverhez.

- Eszközkezelő
- Megszakításkezelő
- Rendszerhívás/válasz
- Erőforráskezelés
- Filekezelés
- Memóriakezelés
- Ütemezés
- Holtpontkezelés

Shell szerepe, feladatai

- Alkalmazások futásának kezelése
- Kapcsolat a felhasználóval

Processzus fogalma és állapotainak ismertetése

Végrehajtás alatt lévő programot jelent. Minden processzus rendelkezik saját címtartománnyal – a memória egy szeletével – amelyen belül olvashat ill. írhat. Minden procsszushoz tartozik még egy

regiszterkészlet, beleértve az utasításszámlálót, veremmutatót, egyéb hardver regisztereket, valamint a program futásához szükséges egyéb információt.

Egy processzus három állapotban lehet:

- Futó (az adott pillanatban éppen használja a CPU-t)
- Futáskész (készen áll a futásra; ideiglenesen leállították, hogy egy másik processzus futhasson).
- Blokkolt (bizonyos külső esemény bekövetkezéséig nem képes futni).

Folyamatok ütemezése

Amikor egynél több processzus képes futni, akkor az operációs rendszernek el kell döntenie, hogy melyik fusson először. Az operációs rendszer eme döntéshozó részét, ütemezőnek nevezzük, az erre a célra használt algoritmust pedig ütemezési algoritmusnak.

Ütemezési algoritmusok tulajdonságai

- Pártatlanság biztosítani, hogy minden processzus megkapja az őt megillető CPU-részt.
- Hatékonyság a CPU-t 100 százalékig kihasználni
- Válaszidő minimalizálni az interaktív felhasználók válaszidejét
- Áthaladási idő minimalizálni azt az időt, amíg a kötegelt felhasználók eredményre várnak
- Áteresztőképesség maximalizálni az óránként végrehajtott feladatok számát.

Ütemezési algoritmusok

- Round-Robin
 - o legegyszerübb, legpártatlanabb, széleskörben használt
 - minden processzusnak ki van osztva egy időintervallum amelyet időszeletnek nevezünk,
 ezalatt az idő alatt engedélyezett a futás

- a futtatandó processzusok egy listában vannak tárolva, ha egy processzus felhaszmálta az időszeletet a lista végére kerül
- Prioritásos ütemezés
 - minden processzushoz hozzárendelünk egy prioritást és a legmagasabb prioritású processzusnak engedjük meg hogy fusson
- Többszörös sorok
- Legrövidebb feladat először
- Garantált ütemezés
- Sorsjáték ütemezés
- Valós idejű ütemezés
 - Szigorú
 - Lágy

Rendszerhívás fogalma

Az operációs rendszer és a felhasználói programok közötti kapcsolatot az operációs rendszer által biztosított "kiterjesztett utasítás" készlet adja, amelyet hagyományosan rendszerhívásoknak nevezünk.

Többféle rendszerhívásról beszélhetünk:

- Processzuskezelő rendszerhívások
- Szignálkezelő rendszerhívások (váratlan események fellépésekor kapcsolatba lép a processzussal)
- Fájlkezelő rendszerhívások
- A védelem rendszerhívásai (A tulajdonos, a csoport és a többiek jogosultságaival foglalkozik)
- Az időkezelés rendszerhívásai (1970. január 1. 00:00)

Atomi műveletek. Kritikus szekció. Kölcsönös kizárás. Szemaforok.

Atomi művelet

Olyan művelet, amely nem szakítható meg. Pl: összeadás, szemfar emelése, leengedése

Kölcsönös kizárás

 valamilyen módszer, amely biztosítja, hogy ha egy processzus megosztott fájlt vagy változót használ, a többi processzus tartózkodjon ettől a tevékenységtől.

Kritikus szekció

 A programnak azt a részét, amelyben a megosztott memóriát használjuk, kritikus területnek vagy kritikus szekciónak nevezzük.

Szemafor

 A szemafor a számítógép-programozásban használt változó vagy absztrakt adattípus, amit az osztott erőforrásokhoz való hozzáférések szabályozásához használnak a többszálú környezetekben. Megalkotása <u>Edsger Dijkstra holland</u> matematikusnak, a programozás egyik úttörőjének nevéhez fűződik.

A holtpont fogalma. A holtpont kialakulásának előfeltételei

A folyamatok egy csoportja olyan eseményre vár, amelyet egy másik, ugyancsak várakozó folyamat tud előidézni.

Kialakulásának előfeltételei:

- kölcsönös kizárás (erőforrás használat)
- foglalva várakozás
- nem elvehető erőforrások
- körkörös várakozás.

A virtuális memória. Virtuális memória megvalósítása lapozással.

Tul nagy méretü programok futtatása amely a program rétegekbe van szervezve, ha egy réteg befejeződik hivja a következőt.

A rétegek cseréje OP feladat, de a rétegek darabolása a programozó feladata(mi a megoldás a rétegek közötti adatcserére, alkalmazni a rétegen kivül egy közös reszt, ahova elhelyezhetok a rétegek között cserélendő adatok.

A program az adat és a verem együttes területek meghaldhatja a fizikai memoria méretét. Az OP csak a program éppen használt részét tartja a memoriába, a program többi része a lemezen van tárolva.

Lapozás

A virtuális memóriát használó rendszerekben leggyakrabban a lapozás technikáját alkalmazzák.

Ezeket a program által generált virtuális címeknek, az egészet pedig virtuális címtérnek nevezik. A virtuális címek nem kerülnek közvetlenül a memóriabuszra, ehelyett a memóriakezelő egységbe (MMU, Memory Management Unit) kerülnek, ami a virtuális címeket képezi le fizikai címekre. A következő ábra erre a leképezésre mutat egy egyszerű példát. A virtuális címek 16 bitesek, 0-tól 64 KB-ig tudnak címezni. A gépnek azonban csak 32 KB memóriája van. A program teljes egészében a lemezen van, és csak azok a részek töltődnek be, amelyekre szükség van. A virtuális címteret lap (page) nevű egységekre osztják, ennek megfelelő egység a fizikai memóriában a lapkeret. A lapok és a lapkeretek mindig pontosan egyforma méretűek.

A laptábla célja az, hogy a virtuális lapokat lapkeretekre képezzük le.

Két probléma:

- a laptábla nagyon nagy lehet
- a leképezésnek gyorsnak kell lennie

Az első pont abból következik, hogy a modern számítógépek legalább 32 bites virtuális címeket használnak. 4 KB-os lapméretnél a címtér több mint egymillió lapból áll. A gyorsaság azért szükséges, mert a leképezést minden memóriahivatkozásnál végre kell hajtani (különben fellép az üvegnyakhatás).