Foundations of Cryptography: Homework 12 (Deadline: Dec 20, 2018)

- 1. (20 points) Let \mathcal{G} be a cyclic group generator that on input n and output (q, G, g), where q is an n-bit prime, $G = \langle g \rangle$ is a cyclic group of order q and generated by g. Let $\Pi = (\mathbf{Gen}, h)$ be a hash function defined as below.
 - $s \leftarrow \mathbf{Gen}(1^n)$: generate $(q, G, g) \leftarrow \mathcal{G}(1^n)$, choose $h \leftarrow G$ uniformly and at random, output s = (q, G, g, h).
 - h: given s = (q, G, g, h) and $(x, y) \in \mathbb{Z}_q^2 = \{0, 1, \dots, q 1\}^2$, output $h^s(x, y) = g^x h^y \in G$. (h^s) is a function with domain \mathbb{Z}_q^2 and range G.)

Show that if the problem of computing discrete logarithm is hard with respect to \mathcal{G} , then Π is a collision-resistant hash function.

- 2. (20 points) Consider the following key-exchange protocol:
 - (a) Alice chooses $k, r \in \{0, 1\}^n$ uniformly, and sends $s = k \oplus r$ to Bob.
 - (b) Bob chooses $t \in \{0,1\}^n$ uniformly, and sends $u = s \oplus t$ to Alice.
 - (c) Alice computes $w = u \oplus r$ and sends w to Bob.
 - (d) Alice outputs k and Bob outputs $w \oplus t$.

Show that the protocol is correct but not secure.