Problema do fluxo máximo

Redes de fluxos (1)

Modelam redes de ligações, por onde flui algo:

- Líquidos
- Gases
- Trânsito automóvel
- Comunicações
- **>** . . .

Cada ligação liga dois pontos da rede, tem uma direcção e uma capacidade

Em cada rede de fluxos existem dois pontos especiais:

- ► Fonte (source) Origem de tudo o que flui na rede
- Dreno (sink) Destino final de tudo o que flui na rede

Redes de fluxos (2)

 ${\color{red}c}$ é a capacidade da ligação (u,v)

Redes de fluxos (3)

Rede de fluxos (Flow network)

- ▶ Modelada através de um grafo orientado G = (V, E)
- ightharpoonup c(u,v) > 0 é a capacidade do arco (u,v)
- ▶ $s \in V$ é a fonte (source) da rede
- ▶ $t \in V$ é o dreno (sink) da rede ($s \neq t$)
- ▶ Se $(u, v) \in E$, então $(v, u) \notin E$
- Assume-se que, qualquer que seja o vértice $v \in V$, existe um caminho $s \dots v \dots t$

(Logo,
$$|E| \ge |V| - 1$$
)

Fluxos (1)

Fluxo

▶ Um fluxo numa rede de fluxos é uma função $f: V \times V \rightarrow \mathbb{R}$, que satisfaz:

Capacidade O fluxo que passa numa ligação não pode exceder a sua capacidade

$$0 \le f(u,v) \le c(u,v)$$

Conservação do fluxo O fluxo que entra num vértice (diferente de s e de t) é o fluxo que sai do vértice

$$\forall u \in V \setminus \{s,t\}, \quad \sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$$

 $(u,v) \not\in E \to f(u,v) = 0$

Fluxos (2)

f é o fluxo que passa pela ligação (u, v), com capacidade c NOTA: Quando f é 0, por vezes, omite-se o '0/'

Fluxos (3)

Valor do fluxo

O valor de um fluxo é o fluxo produzido pela fonte s

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Rede residual (1)

Dado um fluxo f, a capacidade residual da rede G = (V, E) é

$$c_f(u,v) = \left\{ egin{array}{ll} c(u,v) - f(u,v) & & ext{se } (u,v) \in E \\ f(v,u) & & ext{se } (v,u) \in E \\ 0 & & ext{caso contrário} \end{array}
ight.$$

A rede residual resultante é $G_f = (V, E')$, com

$$E' = \{(u,v) \mid c_f(u,v) > 0\}$$

Rede residual (2)

Rede residual (3)

Numa rede residual

- A capacidade dos arcos comuns à rede original corresponde à capacidade não utilizada pelo fluxo
- A capacidade dos arcos com orientação oposta à dos da rede original corresponde à quantidade de fluxo que pode ser cancelada

Uma rede residual indica os limites das alterações que podem ser feitas a um fluxo

Problema do fluxo máximo

Dada uma rede de fluxos, qual é o valor máximo de um fluxo?

Incremento de um fluxo (1)

Seja G_f uma rede residual e seja $p = v_1 v_2 \dots v_k$, com $v_1 = s$ e $v_k = t$, um caminho simples em G_f , da fonte s para o dreno t

A capacidade residual de p é

$$c_f(p) = \min_{1 \le i < k} \{ c_f(v_i, v_{i+1}) \} > 0$$

O fluxo aumentado por p é

$$f'(u,v) = \left\{ egin{array}{ll} f(u,v) + c_f(p) & ext{se } (u,v) \in E ext{ está em } p \ \\ f(u,v) - c_f(p) & ext{se } (v,u) \in E ext{ está em } p \ \\ f(u,v) & ext{caso contrário} \end{array}
ight.$$

O valor de f' é $|f'| = |f| + c_f(p)$

Incremento de um fluxo (2)

Caminho s...t na rede residual

Incremento de um fluxo (3)

Numa rede residual

- A capacidade dos arcos comuns à rede original corresponde à capacidade não utilizada pelo fluxo
- A capacidade dos arcos com orientação oposta à dos da rede original corresponde à quantidade de fluxo que pode ser cancelada

Uma rede residual indica os limites das alterações que podem ser feitas a um fluxo

Método de Ford-Fulkerson

- 1. Inicializar f(u, v) = 0, para todo $(u, v) \in E$
- 2. Enquanto houver um caminho simples $p = s \dots t$ na rede residual
 - a. Seja $c_f(p) = \min \{ c_f(u, v) \mid (u, v) \text{ está em } p \}$
 - b. Para cada arco (u, v) em p
 - ▶ Se $(u, v) \in E$, o fluxo no arco (u, v) é aumentado em $c_f(p)$ unidades

$$f(u,v)=f(u,v)+c_f(p)$$

▶ Senão, então $(v, u) \in E$ e são canceladas $c_f(p)$ unidades de fluxo no arco (v, u)

$$f(v,u)=f(v,u)-c_f(p)$$

Algoritmo de Edmonds-Karp

```
EDMONDS-KARP(G, s, t)
   for each edge (u,v) in G.E do
        (u,v).f < 0
                               // fluxo f(u,v) = 0
3 Gf <- RESIDUAL-NET(G)</pre>
   while (cf \leftarrow BFS-FIND-PATH(Gf, s, t)) > 0 do
5
        v <- t.
6
        while v.p != NIL do
            if edge (v.p,v) is in G.E then
8
                (v.p,v).f = (v.p,v).f + cf
            else // edge (v,v.p) is in G.E
10
                (v,v.p).f = (v,v.p).f - cf
11
           g.v -> v
12
       UPDATE(Gf, G)
```

Complexidade temporal $O(VE^2)$

Complexidade temporal do algoritmo de Edmonds-Karp

Grafo representado através de listas de adjacências

Linhas

- 1–2 Ciclo executado |E| vezes
- 3 Construção da rede residual: $\Theta(V + E)$
- 4–12 Ciclo executado O(VE) vezes
 - 4 Percurso em largura no grafo: O(V + E)
 - 6-11 Ciclo executado O(V) vezes
 - 12 Actualização da rede residual: O(V)

Complexidade temporal do algoritmo

$$\Theta(E) + \Theta(V + E) + O(VE(V + E)) = O(VE^{2})$$

$$(\forall_{v \in V}, \text{ existe um caminho } s \dots v \dots t, \text{ pelo que } |E| \geq |V| - 1)$$

Restantes operações com complexidade temporal constante

Cortes (1)

Um corte (cut) (S, T), numa rede de fluxos G = (V, E), é uma partição tal que

- ► s ∈ S
- ▶ t ∈ T
- T = V S

A capacidade do corte (S,T) é soma das capacidades das ligações que o atravessam, de S para T

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Considera-se que c(u, v) = 0, se $(u, v) \notin E$

Cortes (2)

Dado um fluxo f, o fluxo (líquido) que atravessa o corte (S,T) é a diferença entre o fluxo que o atravessa de S para T e o que o atravessa de T para S

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

O fluxo (líquido) que atravessa o corte (S, T) não pode ser superior à capacidade do corte

$$f(S,T) \leq c(S,T)$$

Vasco Pedro, EDA 2, UE, 2021/2022

Cortes (3)

Corte (S, T) numa rede de fluxos

$$S = \{s, a, b\}, T = \{t, c, d\}$$

Capacidade do corte: c(S, T) = 12 + 14 = 26

Fluxo que atravessa o corte: f(S, T) = 12 + 10 - 7 = 15

Corte mínimo

Um corte é mínimo se não existe nenhum corte com capacidade inferior

Nenhum fluxo pode ter um valor superior à capacidade de um corte mínimo

Teorema do fluxo-máximo corte-mínimo (*Max-flow min-cut theorem*)

Seja G = (V, E) uma rede de fluxos e f um fluxo em G

f é um fluxo máximo sse existe um corte (S, T) de G tal que

$$|f|=c(S,T)$$

Variações (1)

Arcos anti-paralelos

Podem eliminar-se acrescentado um novo vértice intermédio

Múltiplas fontes e/ou múltiplos drenos

Acrescenta-se uma nova fonte s, ligada às anteriores por arcos de capacidade $+\infty$, e/ou um novo dreno t, a que os anteriores são ligados por arcos de capacidade $+\infty$

Variações (2)

Vértices com capacidade

Divide-se o vértice u em dois

- O vértice de entrada u_e, que será o destino de todos os arcos que tinham destino u
- 2. O vértice de saída u_s , que será a origem de todos os arcos que tinham origem u

Acrescenta-se o arco (u_e, u_s) , com a capacidade de u

