Propriétés des nombres réels

Partie entière

▶ 1 Propriétés de partie entière

- 1) Rappeler les deux outils du cours permettant de prouver que la partie entière d'un nombre est un nombre donné.
- 2) Soit $x \in \mathbb{R}$ et $n \in \mathbb{Z}$. Conjecturer puis démontrer la valeur de |x + n|.
- **3)** Écrire formellement l'affirmation « E est une fonction croissante ». Démontrer cette affirmation.
- **4)** Soit $x \in \mathbb{R}$. Conjecturer puis démontrer l'expression de $\lfloor -x \rfloor$ (on distinguera deux cas).
- 5) Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$ fixés. Donner un encadrement de $\frac{\lfloor nx \rfloor}{n}$ puis en déduire que

$$\left| \frac{\lfloor n \, x \rfloor}{n} \right| = \lfloor x \rfloor.$$

▶ 2

Soit x un nombre réel fixé. Montrer l'existence et déterminer la valeur de

$$\lim_{n \to +\infty} \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor (n-1)x \rfloor + \lfloor nx \rfloor}{n^2}.$$

▶ 3

On rappelle que, si a et b sont des nombres entiers,

$$a < b \iff a \le b - 1 \iff a + 1 \le b$$
,

cette propriété n'étant bien entendu pas valable quand a et b sont des réels quelconques.

1) Montrer que $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}$,

$$0 \le \lfloor n x \rfloor - n \lfloor x \rfloor \le n - 1.$$

2) Soit $(n, n') \in \mathbb{Z}^2$, $x \in \mathbb{R}$. Prouver que

$$n \le x < n' \implies n \le |x| < n'$$
.

3) Montrer que $\forall (x, y) \in \mathbb{R}^2$,

$$|x| + |y| \le |x + y| \le |x| + |y| + 1.$$

► 4 Suites des valeurs décimales approchées

Soit x un nombre réel fixé. Pour tout $n \in \mathbb{N}$, on note a_n et b_n les valeurs décimales approchées de x, par défaut et par excès, à 10^{-n} près.

- 1) Montrer que la suite a converge vers x.
- **2)** Montrer que, pour tout $n \in \mathbb{N}$,

$$10^{n+1}(a_{n+1}-a_n) \in [0,9].$$

En déduire la monotonie de la suite a.

3) Montrer que les suites a et b sont adjacentes.

Majorants, maximum, borne supérieure etc.

▶ 5 | Vrai / Faux

Soit A est une partie non vide de \mathbb{R} .

Dire si chacune des affirmations suivantes est vraie ou fausse (apporter suivant le cas une preuve ou un contre-exemple).

- 1) Si $\inf(A)$ et $\sup(A)$ existent, alors $\inf(A) \leq \sup(A)$.
- 2) Si $\sup(A)$ existe et $x > \sup(A)$, alors $x \notin A$.
- 3) Si $\inf(A)$ existe et $x \in A$, alors $x > \inf(A)$.
- **4)** Si M est un majorant de A et que $M \in A$, alors $M = \sup(A)$.
- 5) Si A n'admet pas de maximum, alors A n'admet pas de borne supérieure.
- **6)** Si inf(A) existe et n'appartient pas à A, alors A n'admet pas de minimum.
- 7) Si $\forall x \in A, x > 2$, alors $\inf(A)$ existe et $\inf(A) > 2$.
- 8) \bullet Si $\inf(A) = 1$, alors pour tout $\varepsilon > 0$ suffisamment petit. $1 + \varepsilon \in A$.

► 6 Jouons avec les bornes supérieures

Soit A et B deux parties de IR non vides et majorées.

- 1) Montrer que $A \subset B \implies \sup(A) \leq \sup(B)$.
- 2) Montrer que $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}\$
- 3) On dit que $A \le B$ si $\forall (x,y) \in A \times B, x \le y$. Montrer que $A \le B \implies \sup(A) \le \sup(B)$. Cet énoncé reste-t-il vrai si on le réécrit en substituant $< \grave{a} \le ?$

► 7 | Majorations et minorations de parties

1) Soit
$$A = \left\{ \frac{2x-3}{3x+2}, \ x > 0 \right\}$$
.

- **a.** Dresser rapidement le tableau de variation de $f: x \mapsto \frac{2x-3}{3x+2}$.
- **b.** Émettre des conjectures quant à l'existence et la valeur de sup(A) et max(A), puis les démontrer.
- **2)** Soit $B = \{\frac{1}{n} + (-1)^n, n \in \mathbb{N}^*\}.$
 - **a.** Représenter graphiquement quelques termes de la suite $u = \left(\frac{1}{n} + (-1)^n\right)_{n \ge 1}$.
 - **b.** Démontrer que la suite u n'a pas de limite.
 - **c.** Émettre des conjectures quant à $\inf(B)$, $\min(B)$, $\sup(B)$, $\max(B)$ puis les démontrer.
- 3) Mêmes questions pour l'ensemble

$$C = \left\{ \frac{n + (-1)^n}{n + (-1)^{n+1}}, \ n \in \mathbb{N} \setminus \{0, 1\} \right\}.$$

4) Étudier minimum, maximum, bornes inférieure et supérieure de $D = \lceil 0, 1 \rceil \cap \mathbb{Q}$.