WHAT IS CLAIMED IS:

1 1. A multiple bandwidth antenna assembly comprising: 2 a helical radiator having at least a first helical pitch and a second 3 helical pitch; a core plug having a first axial piece and a second axial piece that 4 5 abut one another; and 6 a first recessed pattern configured on said first axial piece to engage at least said first helical pitch and a second recessed pattern configured on said 7 axial piece to engage at least said second helical pitch. 8 second 1 2. The multiple bandwidth antenna assembly of claim 1 wherein said 2 first axial piece and said second axial piece are configured to couple with one 3 another. 1 3. The multiple bandwidth antenna assembly of claim 1 wherein said 2 first axial piece and said second axial piece threadedly engage one another. The multiple bandwidth antenna assembly of claim 1 wherein said 1 4. first axial piece and said second axial piece engage one another in a snap-fit 2 3 engagement.

- The multiple bandwidth antenna assembly of claim 1 wherein medial ends of each of said first and second axial pieces are configured to matingly engage one another.
- 1 6. The multiple bandwidth antenna assembly of claim 1 wherein medial 2 ends of each of said first and second axial pieces are configured to frictionally 3 engage one another.
- 7. The multiple bandwidth antenna assembly of claim 1 wherein medial ends of each of said first and said second axial pieces are configured to be in abutment with one another.
- 1 8. The multiple bandwidth antenna assembly of claim 1 wherein medial 2 ends of each of said first axial piece and said second axial piece are held in 3 engagement by adhesion.
- 9. The multiple bandwidth antenna assembly of claim 1 wherein said first helical pitch creates resonance at a frequency of 1575MHz and a combination of said first helical pitch and said second helical pitch creates resonance between 806 and 941 MHz.
- 1 10. The multiple bandwidth antenna assembly of claim 1 wherein said 2 second axial piece is made of a relatively more elastic material than said first axial 3 piece.

1	11.	The multiple bandwidth antenna assembly of claim 10 wherein said							
2	second axial piece comprises Lexan 141 and said first axial piece comprises Texin								
3	255.								
1	12.	The multiple bandwidth antenna assembly of claim 1 wherein one of							
2	said first and second recessed patterns includes a second helical pitch.								
1	13.	The multiple bandwidth antenna assembly of claim 12 wherein said							
2	second recessed pattern is configured to engage both of said first and said second								
3	helical pitch	nes.							
1	14.	The multiple bandwidth antenna assembly of claim 1 wherein said							
2	first and sec	ond recessed patterns each include a second helical pitch.							
1	1.5	The multiple handwidth entenne accomply of alaim 14 wherein said							
1	15.	The multiple bandwidth antenna assembly of claim 14 wherein said							
2	helical radiator is configured to engage said first and second helical pitches and								
3	each of said first and second recessed patterns.								
1	16.	A multiple bandwidth antenna assembly comprising:							
2		core means having at least two pieces;							
3		coupling means having a predetermined helical pitch for removably							
4	coupling said at least two pieces to one another;								
5		engagement means disposed on said at least two pieces and							
6	configured	to matingly engage said coupling means.							
1	17.	The multiple bandwidth antenna assembly of claim 16 wherein said							

coupling means comprises a multiple pitch helical radiator.

- 1 18. The multiple bandwidth antenna assembly of claim 16 wherein said 2 engagement means comprises at least two recessed patterns.
- 1 19. The multiple bandwidth antenna assembly of claim 18 wherein said 2 at least two recessed patterns each include at least one helical pitch.
- 1 20. The multiple bandwidth antenna assembly of claim 18 wherein one 2 of said at least two recessed patterns includes a first and a second helical pitch.
- 1 21. The multiple bandwidth antenna assembly of claim 19 wherein one 2 of said at least two recessed patterns includes a helical pitch of 1.79 mm, and a 3 second of said at least two recessed patterns includes a helical pitch of 5.40 mm.
- The multiple bandwidth antenna assembly of claim 20 wherein one of said at least two recessed patterns includes a first helical pitch of 1.79 mm and a second helical pitch of 2.43 mm, and a second of said at least two recessed patterns includes a helical pitch of 5.40 mm.
- 1 23. The multiple bandwidth antenna assembly of claim 16 wherein said 2 core means comprises a plurality of pieces.
- 1 24. A method for assembling a multiple bandwidth antenna comprising: 2 providing a helical radiator having at least one predetermined helical
- 3 pitch;
- forming a first core plug piece configured to engage a first portion of said helical radiator;
- forming a second core plug piece configured to engage a second portion of said helical radiator;

8	inserting said first core plug piece into said first portion and said							
9	second core plug piece into said second portion; and							
10	coupling said first core plug piece to said second core plug piece.							
1	25. The method of claim 24 wherein said step of coupling said first core							
2	plug piece to said second core plug piece follows said step of inserting said first							
3	core plug piece into said first helical pitch.							
1	26. The method of claim 24 wherein said step of coupling said first core							
2	plug piece to said second core plug piece occurs while said second core plug piece							
3	is inserted into said second portion of said helical radiator.							
1	27. The method of claim 24 wherein said step of providing a helical							
2	radiator comprises providing a multiple pitch helical radiator configured to engage							
3	a first core plug piece having a helical pitch of 1.79 mm and a second core plug							
4	piece having a helical pitch of 5.40 mm.							
1	28. The method of claim 24 wherein said step of inserting said first core							
2	plug piece into said first helical pitch and said second core plug piece into said							
3	second helical pitch includes inserting a leading end of said helical radiator into a							
4	medial end of said first core piece.							
1	29. The method of claim 28 wherein a lagging end of said helical							
2	radiator is subsequently inserted into a medial end of said second core piece.							
3								
1	30. A method for assembling a multiple bandwidth antenna comprising:							
2	preforming a helical radiator having at least one predetermined							

pitch;

4		assembling a	core p	olug portio	on 11	nto a	Iirs	st pitc	n of	said h	encai
5	radiator; and										
6		assembling a	second	core plug	g poi	rtion i	into	a sec	ond p	oitch of	said
7	helical radiator.										
1	31. A multiple bandwidth antenna assembly comprising:										
2	core means having at least two pieces;										
3	a helical radiator having at least one predetermined helical pitch for										
4	removably coupling said at least two pieces to one another;										
5		engagement	means	disposed	on	said	at	least	two	pieces	and
6	configured	to ma	tingly	engag	e	said	d	hel	ical	rad	iator.