

AUTOMATIC MODE SHIFT / 150mA LOW VOLTAGE REGULATOR

NO.EA-175-120404

OUTLINE

R1118x Series are CMOS-based voltage regulator ICs with ultra low supply current (Typ.5.5 μ A), and remarkable improved transient response compared with the conventional low supply current voltage regulator. The supply current of these ICs is automatically shifts between fast mode and low power mode, it depending on the load current. The current threshold is fixed internally. R1118x shifts from low power mode to fast response mode at $I_{OUT}=7mA$ (Typ.) and shifts fast response mode to low power mode at $I_{OUT}=2mA$ (Typ.).

These ICs are capable of the low input voltage (Min.1.4V) and the output voltage range from 0.8V is possible. The output voltage of R1118x is fixed in the IC.

Each of these ICs consists of a voltage reference unit, an error amplifier, a resistor net for setting output voltage, a current limit circuits for over-current.

A standby mode with ultra low supply current can be realized with the chip enable function.

Since the packages for these ICs are SOT-23-5 (**Limited**) and DFN(PLP)1612-4B, therefore high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current (Low power Mode) Typ. 5.5 μ A ($I_{OUT}=0mA$)
- Supply Current (Fast Mode) Typ. 50 μ A ($I_{OUT}=11mA$)
- Supply Current (Standby Mode) Typ. 0.1 μ A
- Ripple Rejection Typ. 70dB ($f=1kHz$)
..... Typ. 60dB ($f=10kHz$)
- Input Voltage Range 1.4V to 6.0V
- Output Voltage Range 0.8V to 4.2V (0.1V steps)
(For other voltages, please refer to MARK INFORMATIONS.)
- Output Voltage Accuracy $\pm 1.0\%$ ($1.5V < V_{OUT} \leq 3.5V$, $T_{opt}=25^{\circ}C$)
- Temperature-Drift Coefficient of Output Voltage Typ. $\pm 100ppm/{^{\circ}C}$
- Dropout Voltage Typ. 0.27V ($I_{OUT}=150mA$, $V_{OUT}=2.8V$)
- Line Regulation Typ. 0.02%/V
- Packages DFN(PLP)1612-4B, SOT-23-5 (**Limited**)
- Built-in Fold Back Protection Circuit Typ. 40mA
- Ceramic capacitors are recommended to be used with this IC 1.0 μ F

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1118Kxx1*-TR	DFN(PLP)1612-4B	5,000 pcs	Yes	Yes
R1118Nxx1*-TR-FE	SOT-23-5 (Limited)	3,000 pcs	Yes	Yes

xx: The output voltage can be designated in the range from 0.8V(08) to 4.2V(42) in 0.1V steps.
(For other voltages, please refer to MARK INFORMATIONS.)

* : CE pin polarity and auto discharge function at off state are options as follows.
(B) "H" active, without auto discharge function at off state
(D) "H" active, with auto discharge function at off state

The products scheduled to be discontinued (be sold to limited customer) : "Limited"

These products will be discontinued in the future. You can not select these products newly.
We will provide these products to the customer who has been using or has ordered them before.
But we recommend changing to other products as soon as possible.

PIN CONFIGURATIONS

- DFN(PLP)1612-4B

- SOT-23-5

PIN DESCRIPTIONS

- DFN(PLP)1612-4B

Pin No	Symbol	Pin Description
1	V_{OUT}	Output Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	V_{DD}	Input Pin

*) Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

- SOT-23-5 (Limited)

Pin No	Symbol	Pin Description
1	V_{DD}	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	NC	No Connection
5	V_{OUT}	Output Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
V_{IN}	Input Voltage	6.5	V
V_{CE}	Input Voltage (CE Pin)	-0.3 to 6.5	V
V_{OUT}	Output Voltage	-0.3 to $V_{IN}+0.3$	V
I_{OUT}	Output Current (DC)	180	mA
P_D	Power Dissipation (DFN(PLP)1612-4B)*	580	mW
	Power Dissipation (SOT-23-5) (Limited)*	420	
T_{opt}	Operating Temperature Range	-40 to 85	°C
T_{stg}	Storage Temperature Range	-55 to 125	°C

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

- **R1118xxx1B/D**

V_{IN} =Set $V_{OUT}+1V$, $I_{OUT}=1mA$, unless otherwise noted.

The specification in is checked and guaranteed by design engineering at $-40^{\circ}\text{C} \leq T_{opt} \leq 85^{\circ}\text{C}$, unless otherwise noted.

$T_{opt}=25^{\circ}\text{C}$

Symbol	Item	Conditions		Min.	Typ.	Max.	Unit
V_{OUT}	Output Voltage	$T_{opt}=25^{\circ}\text{C}$	$V_{OUT} \leq 1.5\text{V}$	-15		15	mV
			$1.5\text{V} < V_{OUT} \leq 3.5\text{V}$	$\times 0.99$		$\times 1.01$	V
			$3.5\text{V} < V_{OUT}$	$\times 0.985$		$\times 1.015$	V
		$-40^{\circ}\text{C} \leq T_{opt} \leq 85^{\circ}\text{C}$	$V_{OUT} \leq 1.5\text{V}$	-40		30	mV
			$1.5\text{V} < V_{OUT} \leq 3.5\text{V}$	0.973		1.02	V
			$3.5\text{V} < V_{OUT}$	0.968		1.025	V
I_{OUT}	Output Current			150			mA
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	$1\text{mA} \leq I_{OUT} \leq 150\text{mA}$				80	mV
V_{DIF}	Dropout Voltage	Refer to the following table					
I_{SS1}	Supply Current (Low Power Mode)	$I_{OUT}=0\text{mA}$			5.5	16	μA
I_{SS2}	Supply Current (Fast Mode)	$I_{OUT}=11\text{mA}$			50	105	μA
$I_{standby}$	Standby Current	$V_{IN}=6.0\text{V}, V_{CE}=\text{GND}$			0.1	1.0	μA
I_{OUTH}	Fast Mode Current Threshold	$I_{OUT}=1\mu\text{A} \rightarrow 30\text{mA}$			7	12	mA
I_{OUTL}	Low Power Mode Current Threshold	$I_{OUT}=30\text{mA} \rightarrow 1\mu\text{A}$		1	2		mA
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	Set $V_{OUT}+0.5\text{V} \leq V_{IN} \leq 6.0\text{V}$ (In case that $V_{OUT} \leq 0.9\text{V}, V_{IN} \geq 1.4\text{V}$)			± 0.02	±0.2	%/V
RR	Ripple Rejection	Ripple 0.2Vp-p $I_{OUT}=30\text{mA}$ (In case that $V_{OUT}<1.5\text{V}, V_{IN}=\text{Set } V_{OUT}+1.5\text{V}$)	$f=1\text{kHz}$		70		dB
			$f=10\text{kHz}$		60		
V_{IN}	Input Voltage			1.4		6.0	V
$\Delta V_{OUT}/\Delta T_{opt}$	Output Voltage Temperature Coefficient	$-40^{\circ}\text{C} \leq T_{opt} \leq 85^{\circ}\text{C}$			± 100		ppm/ $^{\circ}\text{C}$
I_{sc}	Short Current Limit	$V_{OUT}=0\text{V}$			40		mA
I_{PD}	CE Pull-down Current			0.01	0.3	0.6	μA
V_{CEH}	CE Input Voltage "H"			1.0			V
V_{CEL}	CE Input Voltage "L"					0.4	V
en	Output Noise	$BW=10\text{Hz} \text{ to } 100\text{kHz}$			100		μVrms
R_{LOW}	Low Output Nch Tr. ON Resistance (of D version)	$V_{CE}=0\text{V}$			40		Ω

All of unit are tested and specified under load conditions such that $T_j \approx T_{opt}=25^{\circ}\text{C}$ except for Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

- Dropout Voltage by Output Voltage

Topt=25°C

Output Voltage V _{OUT} (V)	Dropout Voltage V _{DIF} (V)		
	Condition	Typ.	Max.
0.8 ≤ V _{OUT} < 0.9	I _{OUT} =150mA	0.82	1.06
0.9 ≤ V _{OUT} < 1.0		0.74	0.98
1.0 ≤ V _{OUT} < 1.2		0.66	0.90
1.2 ≤ V _{OUT} < 1.5		0.54	0.77
1.5 ≤ V _{OUT} < 2.0		0.45	0.64
2.0 ≤ V _{OUT} < 2.8		0.34	0.49
2.8 ≤ V _{OUT}		0.27	0.37

The specification in is checked and guaranteed by design engineering at $-40^{\circ}\text{C} \leq \text{Topt} \leq 85^{\circ}\text{C}$, unless otherwise noted.

TYPICAL APPLICATION

(External Components)

Ceramic Capacitor C2 1.0μF TDK C1005JB0J105K
Kyocera CM05X5R105K06AB

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with 1.0μF or more.

If a tantalum capacitor is used, and its ESR (Equivalent Series Resistance) of C2 is large, the loop oscillation may result. Because of this, select C2 carefully considering its frequency characteristics.

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 1.0μF or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

R1118x

Test Circuit for Load Transient Response

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current ($T_{opt}=25^{\circ}\text{C}$)

2) Output Voltage vs. Input Voltage ($T_{opt}=25^{\circ}\text{C}$)

R1118x

3) Supply Current vs. Input Voltage ($T_{opt}=25^{\circ}\text{C}$)

4) Supply Current vs. Output Current ($T_{opt}=25^{\circ}\text{C}$)

R1118x

5) Output Voltage vs. Temperature

R1118x081x

R1118x151x

R1118x281x

R1118x421x

R1118x

6) Supply Current vs. Temperature

R1118x081x

R1118x151x

R1118x281x

R1118x421x

7) Dropout Voltage vs. Output Current

R1118x081x

R1118x091x

R1118x101x**R1118x121x****R1118x151x****R1118x201x****R1118x281x****R1118x421x**

R1118x

8) Dropout Voltage vs. Set Output Voltage ($T_{opt}=25^{\circ}\text{C}$)

9) Minimum Operating Voltage

R1118x081x

10) Ripple Rejection vs. Input Bias Voltage ($C_1=\text{none}$, $C_2=\text{Ceramic } 1.0\mu\text{F}$, Ripple=0.2V_{p-p}, $T_{opt}=25^{\circ}\text{C}$)

R1118x281x

R1118x281x

R1118x281x**11) Ripple Rejection vs. Frequency ($C_1=\text{none}$, $T_{opt}=25^\circ\text{C}$)****R1118x081x****R1118x081x****R1118x151x****R1118x151x**

R1118x

12) Input Transient Response ($I_{OUT}=30mA$, $tr=tf=5\mu s$, $C1=none$, $C2=1\mu F$, $T_{opt}=25^\circ C$)

R1118x281x

R1118x421x

13) Load Transient Response ($t_r=t_f=500\text{ns}$, $C_1=1.0\mu\text{F}$, $T_{opt}=25^\circ\text{C}$)

R1118x081x

R1118x081x

(Low Power Mode→Fast Mode)

R1118x151x

(Fast Mode)

R1118x151x

(Low Power Mode→Fast Mode)

R1118x

14) Turn On Speed with CE pin (C1=Ceramic 1.0 μ F, C2=Ceramic 1.0 μ F, T_{opt}=25°C)

15) Turn Off Speed with CE pin (D Version) (C1=Ceramic 1.0 μ F, C2=Ceramic 1.0 μ F, T_{opt}=25°C)

R1118x

R1118x281D

R1118x421D

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band : 10Hz to 2MHz

Temperature : $-40^{\circ}C$ to $85^{\circ}C$

C1, C2 : $1.0\mu F$ (Murata, GRM155B31A105KE)

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY, LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.
Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.
The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

<http://www.ricoh.com/LSI/>

RICOH COMPANY, LTD.

Electronic Devices Company

● Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

● Semiconductor Support Centre
Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
P.O.Box 114, 1180 AC Amstelveen
Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd.

11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea
Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.

Room403, No.2 Building, 690#B1 Bo Road, Pu Dong New district, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD.

Electronic Devices Company

● Taipei office
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.