50.012 Networks

Lecture 20: Wireless Networks

2021 Term 6

Assoc. Prof. CHEN Binbin

Outline

Wireless and mobile networks overview

Wi-Fi

Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered
 Internet access

About 8000 Terabytes / day (src: Nokia):

- 2001: global Internet
- 2010: global mobile traffic
- 2018: a country (Finland)'s internet traffic
- 5G and beyond: a single game in our national stadium

Wireless and Mobile Networks

- two important (but different) challenges
 - wireless: communication over wireless link
 - Communication error (due to noise, interference)
 - Energy constraint
 - mobility: handling the mobile user who changes point of attachment to network

Characteristics of selected wireless links

Singapore Spectrum Allocation Chart *Frequency Spectrum

https://www.imda.gov.sg/-/media/Imda/Files/Regulation-Licensing-and-Consultations/Frameworks-and-Policies/Spectrum-Management-and-Coordination/SpectrumChart.pdf

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Outline

Wireless and mobile networks overview

Wi-Fi

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

802. Hac (Wi-Fi 5), 802. Hax (Wi-Fi 6)....

- all use CSMA/CA (will be explained soon) for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station

BSS₂

802. I I: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing
 AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP's subnet

802. I I: passive/active scanning

passive scanning:

- (1) Beacon frames sent from APs
- (2) Association Request frame sent: H1 to selected AP
- (3) Association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

Multiple access protocols (review)

 distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit

given: broadcast channel of rate R bps desiderata:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:

 no special node to coordinate transmissions
 no synchronization of clocks, slots
- 4. Simple

802.11's solution: DCF (Distributed Coordination Function)

IEEE 802. I 1: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA (carrier sense multiple access) sense before transmitting
 - if channel sensed busy, defer transmission
 - if channel sensed idle: transmit entire frame
 - Goal: don't collide with ongoing transmission by other node
 - human analogy: don't interrupt others!
- However, CSMA cannot eliminate all collisions
 - Two senders may sense an idle channel together, then decide to send at the same time (collision!)
 - Hidden terminal: Clear at the sender, but collision at the receiver

Background: CSMA/CD (collision detection) for wired link

- collisions detected within short time
 - colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

IEEE 802. I 1: multiple access

- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for DIFS (DCF Inter-frame space) then transmit entire frame (no Collision Detection)
2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval (exponential increase here), repeat 2

802.11 receiver

if frame received OK
 return ACK after SIFS (Short inter-frame space)

Example 1: without collision

From: https://www.cs.purdue.edu/homes/park/cs422-wireless-2-06s.pdf

Example 2: With collision

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they' re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.3 frame

802.11 frame

802.11 frame: more

802.11: mobility within same subnet

- HI remains in same IP subnet: IP address can remain same
- switch: which AP is associated with HI?
 - self-learning: switch
 will see frame from
 HI and "remember"
 which switch port can
 be used to reach HI

802. I I: advanced capabilities

Rate adaptation

base station, mobile
 dynamically change
 transmission rate
 (physical layer modulation
 technique) as mobile
 moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802. I I: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame