Pruebas de Cl's aplicando un pulso en las Fuentes de Polarización.

Por:

Sergio Feliciano Mendoza Barrera Supervisada por:

Dr. Víctor Champac Vilela

Dr. Mónico Linares Aranda

Contenido

- Estado del Arte.
 - Defectos en Cl's
 - Prueba de Cl's
 - Prueba de idog
- Análisis de DC.
 - Descripción de la técnica de prueba
 - Análisis de Voltaje
 - Análisis de Corriente

Contenido

- Pruebas de ide en un módulo combinacional.
 - Circuito bajo prueba
 - Respuesta a la aplicación del vector de prueba
- Conclusiones

Defectos de Cl's

- Corto-circuitos entre conductores
- Roturas en los conductores
- Roturas en los contactos o vías
- Uniones P-N defectuosas.

Esquema General de Pruebas

- Aplicación de vectores de prueba
- La medición en un punto observable
- Comparación con respecto a la referencia

Modelos de fallas

- Modelo de fallas stuck-at
- Modelo de fallas stuck-open
- Modelo de fallas stuck-on
- Modelo de fallas bridging

Modelo stuck-at

- Un vector puede detectar más de una falla
- Diferentes vectores detectan la misma falla

Modelo stuck-open

- Prueba de doble patrón
- Propagación del error
- Generación autómatica de vectores

Modelo stuck-on

$$V_f = \frac{R_n}{R_n + 2R_p} V_{DD}$$

- Algún transistor permanece encendido
- Selección adecuada de vectores de prueba

Falla de corto-circuito

- Falla de tipo no retroalimentante en un elemento lógico
- Falla de tipo no retroalimentante entre dos elementos
- Fallas con retroalimentación

Prueba de idad

- Monitoreo de corriente
- Consumo mayor de corriente
- Usado en células CMOS estáticas

Corriente de IDDQ

 Corriente resultante de la prueba de idda

Descripción de la técnica de Prueba

- Pulsos simultáneos
 en V_{DD} y V_{SS}
- Monitoreo de la corriente de ida
- Mismos vectores de prueba para cualquier falla

Vectores de prueba

 Se aplica sólo un vector de prueba

Modelo de primer orden

$$I_{DS} = \mu C_{ox} \frac{W}{L} (V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2$$

$$R_{transistor} \cong \frac{1}{\mu C_{ox} \frac{W}{L} (V_{GS} - V_t)}$$

$$V_O = V_{DD} \frac{R_n}{R_n + R_p} + V_{SS} \frac{R_p}{R_n + R_p}$$

Caso simétrico

Modelo de primer orden

Simulación

Caso asimétrico (a)

Modelo de primer orden

Simulación

Caso asimétrico (b)

Modelo de primer orden

Simulación

Análisis de Corriente

Análisis de Corriente

 Existe corriente en la parte estable y durante la rampa del vector de prueba

Caso asimétrico Wp>>Wn

Prueba de ide en un módulo combinacional

 Circuito sumador completo optimizado

Elección de fallas

 Layout de circuito sumador

Fallas elegidas			
f 50-1	f 1-2	f 1-4	f 60-6
f 50-4	f 5 -9	f 5-11	f 10-5
f 50-9	f 60-11	f 1-3	f 2-3

Fallas entre V_{DD} (V_{SS}) y entradas

 Falla entre VDD y la entrada A

Rutas desbalanceadas

Rutas no desbalanceadas

Desbalanceo de rutas a las entradas

 Falla de difícil detección, se desbalancean rutas.

Fallas entre nodos internos

 Fallas de fácil detección

Fallas entre V_{DD} (V_{SS}) y nodos internos

 Falla de fácil detección

Fallas entre V_{DD} (V_{SS}) y nodos internos

 Falla de difícil detección, nodo (60,11)

Fallas entre entradas y nodos internos

 Falla de fácil detección

Resumen

- Fallas fáciles de detectar:
 - Fallas entre V_{DD} (V_{SS}) y entradas
 - Fallas entre nodos internos
 - Fallas entre entradas y nodos internos
 - La mayoría de las fallas entre VDD (Vss) y nodos internos

Resumen

- Fallas de detección difícil:
 - Fallas entre entradas
 - Fallas entre nodos en los cuales existan transistores en paralelo
- Al variar la pendiente, se mejora la detectabilidad de fallas entre alimentaciones y nodos internos
- La zona estable del vector de prueba es importante para la detectabilidad

Conclusiones

- Se desarrolló un modelo de primer orden para predecir el comportamiento de las celdas CMOS estáticas en la aplicación de la prueba
- Se desarrolló una optimización de tiempos de aplicación del vector de prueba para máxima detección
- Se desarrolló una técnica que permite encontrar fallas de difícil detección