Bonusový test

Definice (38)

definujte...

- rozšířená matice soustavy
 - soustava m lineárních rovnic o n neznámých ... Ax = b
 - rozšířená matice soustavy ... $(A|b) \in \mathbb{R}^{m imes (n+1)}$
 - matice soustavy ... $A \in \mathbb{R}^{m \times n}$
 - vektor pravých stran ... $b \in \mathbb{R}^m$
 - vektor neznámých ... $x = (x_1, \dots, x_n)^T$
 - vektor $x \in \mathbb{R}^n$ je řešení soustavy Ax = b, pokud splňuje všechny její rovnice
 - soustavy Ax = 0 se nazývají homogenní a vždy umožňují x = 0
- elementární řádkové operace
 - definujeme základní dvě elementární řádkové úpravy
 - vynásobení i-tého řádku nenulovým $t \in \mathbb{R} \setminus \{0\}$
 - přičtení j-tého řádku k i-tému řádku
 - z těch lze odvodit další dvě úpravy
 - přičtení t-násobku j-tého řádku k i-tému řádku (t může být i nulové)
 - záměna dvou řádků
 - ullet provedení jedné elementární úpravy značíme $A\sim A'$
 - provedení posloupnosti úprav značíme $A \sim \sim A'$
- odstupňovaný tvar matice
 - matice je v řádkově odstupňovaném tvaru (REF = row echelon form), pokud jsou nenulové řádky seřazeny podle počtu počátečních nul a nulové řádky jsou pod nenulovými
 - první nenulový prvek nenulového řádku se nazývá pivot, pod pivotem jsou v REF všechny prvky nulové
- napište pseudokód pro Gaussovu eliminaci
 - // input: matice A
 - // output: matice A v REF
 - foreach i do určete j(i)

- // j(i) = sloupec s pivotem daného řádku, $j(i) = min\{j: a_{i,j} \neq 0\}$
- // prázdný řádek má j(i) = ∞
- seřaďte řádky A podle j(i)
- forever
 - if $\exists i: j(i) = j(i+1) < \infty$ then
 - // i-tý a (i+1)-ní řádky jsou nenulové a mají stejně počátečních nul
 - přičtěte $-a_{i+1,j(i)}/a_{i,j(i)}$ -násobek i-tého řádku
 - // nyní je prvek ve sloupci j(i) řádku i+1 nulový
 - aktualizujte j(i + 1) a zařaďte (i + 1)-tý řádek na místo
 - else
 - // všechny nenulové řádky mají různý počet počátečních nul
 - return A
- // konečnost: v každé iteraci roste celkový počet počátečních nul
- volné a bázické proměnné
 - pro soustavu A'x=b' s A' v REF jsou proměnné odpovídající sloupcům s pivoty bázické, ostatní jsou volné
- hodnost matice
 - hodnost matice A, značená jako rank(A), je počet pivotů v libovolné A' v REF takové, že $A\sim\sim A'$
- jednotková matice
 - pro $n\in\mathbb{N}$ je jednotková matice $I_n\in\mathbb{R}^{n imes n}$ definovaná tak, že $(I_n)_{i,j}=1\iff i=j$, ostatní prvky jsou nulové
- transponovaná matice
 - transponovaná matice k matici $A \in \mathbb{R}^{m \times n}$ je matice $A^T \in \mathbb{R}^{n \times m}$ splňující $(A^T)_{i,j} = a_{j,i}$
- symetrická matice
 - ullet čtvercová matice A je symetrická, pokud $A^T=A$, tedy $a_{i,j}=a_{j,i}$
- maticový součin
 - pro $A\in\mathbb{R}^{m imes n}, B\in\mathbb{R}^{n imes p}$ je součin $(AB)\in\mathbb{R}^{m imes p}$ definován $(AB)_{i,j}=\sum_{k=1}^n a_{i,k}b_{k,j}$
- inverzní matice
 - pokud pro čtvercovou matici $A\in\mathbb{R}^{n\times n}$ existuje $B\in\mathbb{R}^{n\times n}$ taková, že $AB=I_n$, pak se B nazývá inverzní matice a značí se A^{-1}
 - výpočet: $(A|I_n) \sim \sim (I_n|A^{-1})$

- regulární matice
 - pokud má matice A inverzi, pak se nazývá regulární, jinak je singulární
- binární operace
 - binární operace na množině X je zobrazení X × X → X
 - tedy např. podíl na ℝ ani rozdíl na ℕ nejsou reální operace
- · komutativní a asociativní binární operace
 - asociativní bin. operace na množině G: $\forall a,b,c \in G: (a\circ b)\circ c = a\circ (b\circ c)$
 - komutativní bin. operace na množině G: $\forall a,b \in G: a \circ b = b \circ a$
- neutrální prvek
 - $(\exists e \in G)(\forall a \in G): a \circ e = e \circ a = a$
- inverzní prvek
 - $\bullet \ \ (\forall a \in G)(\exists b \in G): a \circ b = b \circ a = e$
 - inverzní prvek se obvykle značí a^{-1} (u aditivních grup jako -a)
- grupa
 - grupa (G, \circ) je množina G spolu s binární operací \circ na G splňující asociativitu operace \circ , existenci neutrálního prvku a existenci inverzních prvků
 - pokud je navíc operace o komutativní, pak se jedná o abelovskou grupu
- permutace
 - permutace na množině $\{1,2,\dots,n\}$ je bijektivní zobrazení $p:\{1,2,\dots,n\} o \{1,2,\dots,n\}$
- transpozice
 - transpozice je permutace, která má pouze jeden netriviální cyklus o délce
 - jakoukoliv permutaci lze rozložit na transpozice
 - cyklus (1,2,3,4) lze rozložit na $(1,4)\circ(1,3)\circ(1,2)$ nebo na $(1,2)\circ(2,3)\circ(3,4)$
- inverze v permutaci
 - inverze v p je dvojice prvků $(i,j): i < j \land p(i) > p(j)$
- znaménko permutace
 - znaménko permutace p je $\mathrm{sgn}(p) = (-1)^{\mathrm{počet\;inverzi}\;p}$
 - permutace s kladným znaménkem jsou sudé, se záporným liché
 - v exponentu může být # inverzí, # transpozic, # sudých cyklů, n-# cyklů
- těleso

- těleso je množina $\mathbb K$ spolu se dvěma komutativními binárními operacemi + a \cdot , kde $(\mathbb K,+)$ a $(\mathbb K\setminus\{0\},\cdot)$ jsou abelovské grupy a navíc platí distributivita $\forall a,b,c\in\mathbb K: a\cdot(b+c)=(a\cdot b)+(a\cdot c)$
- charakteristika tělesa
 - v tělese \mathbb{K} , pokud $\exists n \in \mathbb{N}: \underbrace{1+1+\cdots+1}_n = 0$, pak nejmenší takové n je charakteristika tělesa \mathbb{K}

 - značí se $char(\mathbb{K})$
- vektorový prostor
 - vektorový prostor $(V,+,\cdot)$ nad tělesem $(\mathbb{K},+,\cdot)$ je množina spolu s binární operací + na V a binární operací skalárního násobku

$$\cdot: \mathbb{K} imes V o V$$

- (V,+) je abelovská grupa
- $ullet \ orall lpha, eta \in \mathbb{K}, orall u,v \in V$
 - asociativita ... $(\alpha \cdot \beta) \cdot u = \alpha \cdot (\beta \cdot u)$
 - neutrální prvek (skalár) vůči násobení skalárem ... $1 \cdot u = u$
 - distributivita ... $(\alpha + \beta) \cdot u = (\alpha \cdot u) + (\beta \cdot u)$
 - distributivita ... $\alpha \cdot (u+v) = (\alpha \cdot u) + (\alpha \cdot v)$
- ullet prvky $\mathbb K$ se nazývají skaláry, prvky V vektory
- ullet rozlišujeme nulový skalár 0 a nulový vektor o
- podprostor vektorového prostoru
 - nechť V je vektorový prostor na \mathbb{K} , potom podprostor U je neprázdná podmnožina V splňující uzavřenost na součet vektorů a uzavřenost na násobení skalárem (z \mathbb{K}) z toho nutně vyplývá $o \in U$
- lineární kombinace
 - lineární kombinace vektorů $v_1,\ldots,v_k\in V$ nad $\mathbb K$ je libovolný vektor $u=lpha_1v_1+\cdots+lpha_kv_k$, kde $lpha_1,\ldots,lpha_k\in \mathbb K$
- lineární obal (podprostor generovaný množinou)
 - lineární obal $\mathcal{L}(X)$ podmnožiny X vektorového prostoru V je průnik všech podprostorů U z V, které obsahují X
 - alternativní značení: span(X)
 - pro $X \subseteq V$ platí $\mathrm{span}(X) = \bigcap U : U \subseteq V, X \subseteq U$
 - jde o podprostor generovaný X, vektory v množině X se označují jako generátory podprostoru
- řádkový a sloupcový prostor matice $A \in \mathbb{K}^{m \times n}$

- sloupcový prostor $\mathcal{S}(A) \subseteq \mathbb{K}^m$ je lineární obal sloupců A
- řádkový prostor $\mathcal{R}(A) \subseteq \mathbb{K}^n$ je lineární obal řádků A
- $ullet \ \mathcal{S}(A) = \{u \in \mathbb{K}^m : u = Ax, x \in \mathbb{K}^n\}$
- ullet $\mathcal{R}(A)=\{v\in\mathbb{K}^n:v=A^Ty,y\in\mathbb{K}^m\}$
- jádro matice $A \in \mathbb{K}^{m \times n}$
 - $\bullet \ \ker(A) = \{x \in \mathbb{K}^n : Ax = 0\}$
- lineárně nezávislé vektory
 - množina vektorů X je lineárně nezávislá, pokud nulový vektor nelze získat netriviální lineární kombinací vektorů z X; v ostatních případech je množina X lineárně závislá
 - vektory v_1, \ldots, v_n jsou lineárně nezávislé $\equiv \sum_{i=1}^n \alpha_i v_i = o \iff \alpha_1 = \cdots = \alpha_n = 0$
- báze vektorového prostoru
 - báze vektorového prostoru V je lineárně nezávislá množina X, která generuje V (tedy $\mathrm{span}(X) = V$)
- dimenze vektorového prostoru
 - dimenze konečně generovaného vektorového prostoru V je mohutnost kterékoli z jeho bází; značí se dim(V)
- vektor souřadnic
 - nechť $X=(v_1,\ldots,v_n)$ je uspořádaná báze vektorového prostoru V nad \mathbb{K} , potom vektor souřadnic $u\in V$ vzhledem k bázi X je $[u]_x=(\alpha_1,\ldots,\alpha_n)^T\in\mathbb{K}^n$, kde $u=\sum_{i=1}^n\alpha_iv_i$
- lineární zobrazení
 - nechť U a V jsou vektorové prostory nad stejným tělesem K
 - zobrazení $f:U \to V$ nazveme lineární, pokud splňuje $\forall u,v \in U, orall \alpha \in \mathbb{K}:$
 - $\bullet \quad f(u+v) = f(u) + f(v)$
 - $f(\alpha \cdot u) = \alpha \cdot f(u)$
 - z toho vyplývá, že pro lineární zobrazení obecně platí f(o) = o
- matice lineárního zobrazení
 - nechť U a V jsou vektorové prostory nad stejným tělesem $\mathbb K$ s bázemi $X=(u_1,\ldots,u_n)$ a $Y=(v_1,\ldots,v_m)$
 - matice lineárního zobrazení $f:U\to V$ vzhledem k bázím X a Y je $[f]_{X,Y}\in\mathbb{K}^{m\times n}$, jejíž sloupce jsou vektory souřadnic obrazů vektorů báze X vzhledem k bázi Y, tedy $[f(u_1)]_Y,\ldots,[f(u_n)]_Y$
 - pro $w \in U$ tedy platí, že $[f(w)]_Y = [f]_{X,Y}[w]_X$
- matice přechodu

- nechť X a Y jsou dvě konečné báze vektorového prostoru U
- matice přechodu od X k Y je $[id]_{X,Y}$
- pro $u \in U$ tedy platí, že $[u]_Y = [id(u)]_Y = [id]_{X,Y}[u]_X$
- matice přechodu je regulární, platí $[id]_{Y,X} = ([id]_{X,Y})^{-1}$
- ullet výpočet: $[id]_{X,Y}=Y^{-1}X$ nebo také $(Y|X)\sim\sim (I_n|[id]_{X,Y})$
- isomorfismus vektorových prostorů
 - vektorové prostory jsou isomorfní, pokud mezi nimi existuje isomorfismus, tedy bijektivní (vzájemně jednoznačné) lineární zobrazení
 - pro isomorfismus f platí, že existuje f^{-1} a je také isomorfismem
 - isomorfní prostory mají shodné dimenze
- afinní prostor a jeho dimenze
 - nechť W je podprostor vektorového prostoru U a $u \in U$
 - afinní podprostor u+W je množina $\{u+w:w\in W\}$
 - dimenze afinního prostoru u+W je $\dim(u+W)=\dim(W)$
 - prvky afinního prostoru se nazývají body

Věty a důkazy (15)

vyslovte a dokažte... / uveďte a dokažte...

- vztah mezi elementárními řádkovými operacemi a soustavami rovnic
 - věta
 - Nechť Ax=b a A'x=b' jsou dvě soustavy splňující $(A|b)\sim\sim (A'|b')$
 - Pak obě soustavy mají totožné množiny řešení.
 - důkaz
 - dokážeme, že množina řešení je zachována, pokud je provedena jediná úprava prvního nebo druhého typu (1. typ = vynásobení řádku, 2. typ = přičtení jiného řádku)
 - ukazujeme rovnost $\{x \in \mathbb{R}^n : Ax = b\} = \{x \in \mathbb{R}^n : A'x = b'\}$
 - rovnost plyne ze dvou inkluzí, které převedeme na implikace
 - $\bullet \quad Ax = b \implies A'x = b'$
 - $\bullet \ \ A'x=b' \implies Ax=b$
 - elementární úpravou se vždy mění jenom i-tý řádek matice, ostatní zůstávají zachovány, tedy ověříme dvakrát dvě implikace pro i-tý řádek

- násobení
 - $Ax = b \implies A'x = b'$
 - předpoklad: $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$
 - chceme: $a'_{i,1}x_1+\cdots+a'_{i,n}x_n=b'_i$
 - víme: $orall k \in \{1,\ldots,n\}: a'_{i,k} = ta_{i,k}, b'_i = tb_i$
 - ullet důkaz: $a_{i,1}'x_1+\cdots+a_{i,n}'x_n=ta_{i,1}x_1+\cdots+ta_{i,n}x_n \ =t(a_{i,1}x_1+\cdots+a_{i,n}x_n)=tb_i=b_i'$
 - $egin{array}{l} ullet a_{i,1}x_1 + \cdots + a_{i,n}x_n = rac{1}{t}(ta_{i,1}x_1 + \cdots + ta_{i,n}x_n) \ = rac{1}{t}(a'_{i,1}x_1 + \cdots + a'_{i,n}x_n) = rac{1}{t}b'_i = rac{1}{t}tb_i = b_i \end{array}$
- přičtení
 - $egin{aligned} ullet & a_{i,1}'x_1+\cdots+a_{i,n}'x_n=(a_{i,1}+a_{j,1})x_1+\cdots+(a_{i,n}+a_{j,n})x_n\ &=(a_{i,1}x_1+\cdots+a_{i,n}x_n)+(a_{j,1}x_1+\cdots+a_{j,n}x_n)=b_i+b_j=b_i' \end{aligned}$
 - $egin{aligned} ullet & a_{i,1}x_1+\cdots+a_{i,n}x_n=a_{i,1}x_1+\cdots+a_{i,n}x_n+b_j-b_j \ &=(a_{i,1}x_1+\cdots+a_{i,n}x_n)+(a_{j,1}x_1+\cdots+a_{j,n}x_n)-b_j \ &=(a_{i,1}+a_{j,1})x_1+\cdots+(a_{i,n}+a_{j,n})x_n-b_j \ &=(a_{i,1}'x_1+\cdots+a_{i,n}'x_n)-b_j=b_i'-b_j=b_i+b_j-b_j=b_i \end{aligned}$
 - pozor, druhá implikace se dokazuje pomocí $+b_j-b_j$
- věta o jednoznačnosti volných a bázických proměnných
 - věta: Pro libovolnou matici A a libovolnou A' v REF takovou, že $A \sim \sim A'$, jsou indexy sloupců s pivoty v A' určeny jednoznačně podle A.
 - důkaz
 - Předpokládejme pro spor, že $A \sim \sim A' \sim \sim A''$.
 - Nechť i je nejvyšší index, kde se charakter proměnných v A^\prime a $A^{\prime\prime}$ liší.
 - Předpokládejme BÚNO, že x_i je bázická v A' a volná v A''.
 - Pro libovolnou volbu proměnných A' určuje soustava A'x = 0 jednoznačnou hodnotu x_i (protože x_i je v A' bázická).
 - Protože proměnná x_i je volná v A'', můžeme její hodnotu zvolit odlišně. Všechny ostatní volné proměnné zvolíme u obou matic stejně.
 - Získáme řešení A''x=0, které není řešením A'x=0, což je spor.
- Frobeniova věta
 - věta: Soustava Ax = b má řešení právě tehdy, když se hodnost matice A rovná hodnosti rozšířené matice (A|b).
 - důkaz
 - zvolíme libovolné (A'|b') v REF takové, že $(A|b) \sim \sim (A'|b')$

- řešení x existuje $\iff b'$ nemá žádný pivot \iff počet pivotů A' se shoduje s počtem pivotů $(A'|b') \iff \operatorname{rank}(A) = \operatorname{rank}(A|b)$
- protože převod $A \sim \sim A'$ lze provést stejnými elementárními úpravami jako $(A|b) \sim \sim (A'|b')$
- věta o vztahu mezi řešeními Ax = b a Ax = 0
 - věta: Nechť x^0 splňuje $Ax^0=b$. Poté zobrazení $\bar x\mapsto \bar x+x^0$ je bijekce mezi množinami $\{\bar x:A\bar x=0\}$ a $\{x:Ax=b\}$.
 - důkaz
 - $U = \{\bar{x} : A\bar{x} = 0\}, \quad V = \{x : Ax = b\}$
 - $f: U \rightarrow V$, $\bar{x} \mapsto \bar{x} + x^0$
 - $ullet g: V o U, \quad x \mapsto x x^0$
 - f je bijekce, neboť
 - $g \circ f$ je identita na $U \implies f$ je prosté
 - $f \circ g$ je identita na $V \implies f$ je "na"
 - jiný mechanismus důkazu
 - f je zobrazení: $A\bar{x}=0 \implies A(\bar{x}+x_0)=A\bar{x}+Ax_0=0+b=b$
 - f je prosté: $x
 eq x' \implies x + x^0
 eq x' + x^0$, což zjevně platí
 - f je na: $(orall x \in V)(\exists ar x \in U): x = ar x + x^0$, takové ar x lze určit jako $ar x = x x^0$
- věta popisující všechna řešení Ax=b
 - věta
 - Necht' soustava Ax=b má neprázdnou množinu řešení, kde $A\in\mathbb{R}^{m imes n}$ je matice hodnosti r.
 - Pak všechna řešení Ax=b lze popsat jako $x=x^0+p_1ar{x}^1+\cdots+p_{n-r}ar{x}^{n-r}.$
 - p jsou libovolné reálné parametry
 - \bar{x} jsou vhodná řešení soustavy $A\bar{x}=0$
 - x^0 je libovolné řešení soustavy Ax = b
 - Soustava $A\bar{x}=0$ má pouze triviální řešení $\bar{x}=o\iff \mathrm{rank}(A)=n.$
 - důkaz
 - pro $A\bar{x}=0$
 - ullet přejmenujeme volné proměnné na $p_1,\ldots\,p_{n-r}$
 - zpětnou substitucí můžeme vyjádřit každou složku řešení jako lineární funkci volných proměnných

•
$$\bar{x}_1 = \alpha_{1,1}p_1 + \cdots + \alpha_{1,n-r}p_{n-r}$$

• ...

- $\bullet \ \ \bar{x}_n = \alpha_{n,1}p_1 + \cdots + \alpha_{n,n-r}p_{n-r}$
- ullet zvolíme $ar{x}^1=(lpha_{1,1},\ldots,lpha_{n,1})^T,\ldots,ar{x}^{n-r}=(lpha_{1,n-r},\ldots,lpha_{n,n-r})^T$
- ty řeší $A\bar{x}=0$, což lze ověřit tak, že pro každý z nich vynulujeme všechny volné proměnné (tedy parametry p) kromě toho s odpovídajícím indexem, který nastavíme jako 1
- je-li rank(A) = n, proměnné jsou jen bázické a o je jediné řešení
- pro Ax=b vztah plyne z přechozí věty a důkazu této věty pro Ax=0
 - ale lze dokázat také pomocí $x_1=eta_1+lpha_{1,1}p_1+\cdots+lpha_{1,n-r}p_{n-r}$
- věta o ekvivalentních definicích regulárních matic
 - věta: pro čtvercovou matici $A \in \mathbb{R}^{n \times n}$ jsou následující podmínky ekvivalentní
 - 1. matice A je regulární, tedy k ní existuje inverzní matice ...

$$\exists B : AB = I_n$$

- $2. \operatorname{rank}(A) = n$
- 3. $A \sim \sim I_n$
- 4. systém Ax=0 má pouze triviální řešení x=0
- důkaz
 - 2. \iff 4. vyplývá z předchozí věty
 - ullet \Longrightarrow lze také dokázat tak, že do rovnic dosazujeme zespodu
 - $2. \implies 3$. podle Gauss-Jordanovy eliminace, $2. \Longleftarrow 3$. triviálně
 - $2. \implies 1.$
 - ullet označme $I_n=(e^1|\dots|e^n)$
 - ullet pro $i\in\{1,\ldots,n\}$ uvažme soustavy $Ax^i=e^i$
 - $\operatorname{z} \operatorname{rank}(A) = n$ dostaneme $B = (x^1 | \dots | x^n)$
 - $1. \implies 2.$
 - pokud rank(A) < n, tak pro jedno (či více) i bude i-tý řádek matice A eliminován ostatními řádky
 - konkrétní rovnice $Ax^i=e^i$ tedy nebude mít žádné řešení, protože onu jedinou jedničku v e^i není možné eliminovat nulami
- věta o znaménku složené permutace
 - věta: Pro libovolné $p,q \in S_n : \operatorname{sgn}(q \circ p) = \operatorname{sgn}(p) \cdot \operatorname{sgn}(q).$

- důkaz
 - # inverzí $(q\circ p)=$ # inverzí p+# inverzí q $-2|\{(i,j):i< j\land p(i)>p(j)\land q(p(i))< q(p(j))\}|$
 - od součtu odečítáme dvojité inverze ty se totiž ve složené permutaci "rozmotají" (každou takovou inverzi odečítáme dvakrát – jednou za každou permutaci)
 - protože od součtu odečítáme sudé číslo, sudost/lichost součtu je zachována – tedy postačí součin znamének obou permutací (exponenty se sčítají)
- věta charakterizující, kdy \mathbb{Z}_n je těleso
 - věta: \mathbb{Z}_p je těleso, právě když je p prvočíslo.
 - důkaz
 - \implies pokud by p bylo složené p=ab, pak $ab\equiv 0\mod p$, což je spor s pozorováním, že pokud ab=0, pak a=0 nebo b=0
 - důkaz pozorování (sporem)
 - pro nenulová a, b by existovaly inverzní prvky a^{-1}, b^{-1}
 - $1 = aa^{-1}bb^{-1} = aba^{-1}b^{-1} = 0a^{-1}b^{-1} = 0$
 - =
 - většina axiomů plyne z vlastností + a \cdot na \mathbb{Z} , kromě existence inverzních prvků a^{-1} , protože \mathbb{Z} není uzavřená na dělení
 - $A = \{1, \dots, p-1\}$
 - chceme: $(\forall a \in A)(\exists a^{-1} \in A): aa^{-1} \equiv 1 \mod p$
 - ullet nechť $f_a:A o A,\quad x\mapsto ax\mod p$
 - hledané a^{-1} splňuje $f_a(a^{-1})=1$
 - tedy stačí ukázat, že 1 je v oboru hodnot f_a
 - dokážeme dokonce, že f_a je surjektivní ("na")
 - protože f_a zobrazuje konečnou množinu na sebe samu, pak platí, že je surjektivní, právě když je prosté
 - pokud by pro spor f_a nebylo prosté, pak $\exists b,c:b>c\wedge f_a(b)=f_a(c) \ \Longrightarrow \ 0=f_a(b)-f_a(c)=ab-ac=a(b-c)\mod p$
 - což je spor, neboť $a,(b-c)\in A$
- malá Fermatova věta
 - věta: Pro prvočíslo p a každé $a \in \{1,\ldots,p-1\}: a^{p-1} \equiv 1 \mod p$.
 - důkaz
 - zobrazení $f_a:x\mapsto ax$ je v \mathbb{Z}_p bijekcí na $\{1,\ldots,p-1\}$ (viz výše)

- proto v \mathbb{Z}_p platí $\prod_{x=1}^{p-1}x=\prod_{x=1}^{p-1}f_a(x)=\prod_{x=1}^{p-1}ax=a^{p-1}\prod_{x=1}^{p-1}x$
- a po zkrácení $\prod_{x=1}^{p-1} x$ dostaneme $1=a^{p-1}$
- důsledek: $a = a^p$ (v tělese \mathbb{Z}_p)
- věta o průniku vektorových prostorů
 - věta
 - Nechť $(U_i, i \in I)$ je libovolný systém podprostorů prostoru V
 - Průnik tohoto systému $\bigcap_{i \in I} U_i$ je také podprostorem V.
 - důkaz
 - nechť $W = \bigcap_{i \in I} U_i$, ukážeme, že W je uzavřen na + a \cdot
 - $egin{array}{ll} ullet \ \forall u,v \in W: u,v \in W \implies orall i \in I: u,v \in U_i \ \implies orall i \in I: u+v \in U_i \implies u+v \in W \end{array}$

 - věta platí i pro $I=\emptyset$, neboť prázdný průnik $\equiv V \Subset V$
- věta o ekvivalentních definicích lineárního obalu
 - věta
 - Nechť V je vektorový prostor nad \mathbb{K} a X je podmnožina V.
 - Potom $\mathcal{L}(X)$ je množina všech lineárních kombinací vektorů z X.
 - důkaz
 - $W_1 = \bigcap U : U \Subset V, X \subseteq U$
 - ullet $W_2=\{\sum_{i=1}^klpha_iv_i:k\in\mathbb{N},lpha_i\in\mathbb{K},v_i\in X\}$
 - chceme ukázat $W_1 = \mathcal{L}(X) = W_2$
 - W_2 je podprostor, protože je uzavřen na skalární násobky $u \in W_2 \implies u = \sum_{i=1}^k \alpha_i v_i \ \implies \alpha u = \beta \sum_{i=1}^k \alpha_i v_i = \sum_{i=1}^k (\beta \alpha_i) v_i \implies \alpha u \in W_2$
 - a analogicky také na součty
 - ullet protože $X\subseteq W_2$, máme W_2 mezi protínajícími se podprostory U_i
 - z toho plyne $W_1 \subseteq W_2$
 - každý U_i obsahuje X a je uzavřen na sčítání a skalární násobky
 - ullet každý U_i tedy obsahuje všechny lineární kombinace vektorů X
 - proto $\forall U_i: W_2 \subseteq U_i \implies W_2 \subseteq W_1$
- Steinitzova věta o výměně (včetně lemmatu, pokud jej potřebujete)
 - lemma o výměně
 - Buď y_1,\ldots,y_n systém generátorů vektorového prostoru V a nechť vektor $x\in V$ má vyjádření $x=\sum_{i=1}^n \alpha_i y_i.$

- Pak pro libovolné k takové, že $\alpha_k \neq 0$, je $y_1, \ldots, y_{k-1}, x, y_{k+1}, \ldots, y_n$ systém generátorů prostoru V.
- důkaz lemmatu

$$ullet \ x = \sum_i lpha_i y_i = \sum_{i
eq k} lpha_i y_i + lpha_k y_k$$

$$ullet y_k = rac{1}{lpha_k}(x - \sum_{i
eq k} lpha_i y_i)$$

• libovolný vektor $z \in V$ lze vyjádřit jako

$$z = \sum_i eta_i y_i = \sum_{i
eq k} eta_i y_i + eta_k y_k = \sum_{i
eq k} eta_i y_i + rac{eta_k}{lpha_k} (x - \sum_{i
eq k} lpha_i y_i) \ = rac{eta_k}{lpha_k} x + \sum_{i
eq k} (eta_i - rac{eta_k}{lpha_k} lpha_i) y_i$$

- S. věta
 - Buď V vektorový prostor, buď x_1, \ldots, x_m lineárně nezávislý systém ve V a nechť y_1, \ldots, y_n je systém generátorů V.
 - Pak platí $m \leq n$ a existují navzájem různé indexy k_1, \ldots, k_{n-m} takové, že $x_1, \ldots, x_m, y_{k_1}, \ldots, y_{k_{n-m}}$ tvoří systém generátorů V.
- důkaz věty matematickou indukcí podle m
 - je-li m=0, tvrzení platí triviálně
 - předpokládejme, že tvrzení platí pro m-1 a ukážeme, že platí i pro m
 - kdyby m-1=n, pak by vektory x_1,\dots,x_{m-1} byly generátory prostoru V, což by byl spor s lineární nezávislostí x_1,\dots,x_m

•
$$\implies m-1 < n \implies m \le n$$
 \square_1

- během indukce vektory postupně nahrazujeme pomocí lemmatu o výměně
- vycházíme z toho, že věta platí pro m-1 vektorů z LN množiny a n-m+1 vektorů z množiny generátorů
- takže m-tý vektor z LN množiny vyjádříme z ostatních a pomocí lemmatu o výměně jím nahradíme (n-m+1)-tý vektor z množiny generátorů
- lemma o výměně bude možné uplatnit, protože alespoň u jednoho z n-m+1 vektorů z množiny generátorů bude ve vyjádření doplňovaného vektoru nenulový koeficient (jinak by to bylo ve sporu s LN) viz skripta
- věta o jedinečnosti lineárního zobrazení
 - věta
 - Nechť U a V jsou prostory nad \mathbb{K} a X je báze U.
 - Pak pro jakékoliv zobrazení $f_0: X \to V$ existuje jediné lineární zobrazení $f: U \to V$ rozšiřující f_0 , tj. $\forall u \in X: f(u) = f_0(u)$.

- (Jinými slovy: To, kam se zobrazí vektory báze, jednoznačně definuje lineární zobrazení jako celek – tedy i zobrazení všech ostatních vektorů daného prostoru.)
- důkaz
 - vektor $w \in U$ lze jednoznačně vyjádřit jako lineární kombinaci bázických vektorů, tedy $w = \sum_i \alpha_i u_i$
 - potom $f(w) = f(\sum_i lpha_i u_i) = \sum_i lpha_i f(u_i) = \sum_i lpha_i f_0(u_i)$
- důsledek: pokud je f:U o V lineární, pak $\dim(U)\geq \dim(f(U))$, protože obraz f(X) báze X prostoru U generuje f(U)
- věta o charakterizaci isomorfismu mezi vektorovými prostory
 - věta: Lineární zobrazení $f:U\to V$ je isomorfismus prostorů U a V s konečnými bázemi X a Y právě tehdy, když $[f]_{X,Y}$ je regulární.
 - důkaz
 - ullet \Longleftrightarrow uvažme g:V o U takové, že $[g]_{Y,X}=[f]_{X,Y}^{-1}$, pak
 - $ullet [g\circ f]_{X,X}=[f]_{X,Y}^{-1}[f]_{X,Y}=I_{|X|}=[id]_{X,X} \implies f$ je prosté
 - $ullet \ [f\circ g]_{Y,Y}=[f]_{X,Y}[f]_{X,Y}^{-1}=I_{|Y|}=[id]_{Y,Y} \implies f$ je "na"
 - =
 - $ullet \ [f^{-1}]_{Y,X}[f]_{X,Y} = [id]_{X,X} = I_{|X|} \implies |Y| \geq |X|$
 - $ullet [f]_{X,Y}[f^{-1}]_{Y,X} = [id]_{Y,Y} = I_{|Y|} \implies |X| \ge |Y|$
 - ullet \Longrightarrow |X| = |Y|
 - matice jsou navzájem inverzní (a čtvercové), takže jejich součinem získáváme jednotkovou matici – lze tedy říci, že jsou regulární
 - důsledek: když f je isomorfismus, pak platí $[f^{-1}]_{Y,X} = [f]_{X,Y}^{-1}$
- věta o vektorových prostorech souvisejících s maticí A
 - lemma: Pokud A' = BA, pak $\dim(\mathcal{S}(A')) \leq \dim(\mathcal{S}(A))$.
 - zkrácený důkaz lemmatu
 - BÚNO předpokládejme, že bázi $\mathcal{S}(A)$ tvoří d prvních sloupcových vektorů u
 - $w \in A, w' \in A'$
 - $w'=Bw=B\sum_{i=1}^d lpha_i u_i=\sum_{i=1}^d lpha_i Bu_i=\sum_{i=1}^d lpha_i u_i'$
 - bázi $\mathcal{S}(A')$ tedy tvoří nejvýše d prvních sloupcových vektorů u'
 - věta: Jakákoli $A \in \mathbb{K}^{m imes n}$ splňuje $\dim(\mathcal{R}(A)) = \dim(\mathcal{S}(A)).$
 - důkaz věty

- nechť $A \sim \sim A'$ v odstupňovaném tvaru, neboli existuje regulární R taková, že A' = RA
- podle lemmatu $\dim(\mathcal{S}(A')) \leq \dim(\mathcal{S}(A))$
- z $A=R^{-1}A'$ dostaneme $\dim(\mathcal{S}(A'))\geq \dim(\mathcal{S}(A))$, a tudíž i rovnost dimenzí
- pro matice A' v odstupňovaném tvaru platí věta přímo
 - $\dim(\mathcal{R}(A')) = \#\operatorname{pivot}\mathring{\mathsf{u}} = \operatorname{rank}(A') = \dim(\mathcal{S}(A'))$
- protože $\mathcal{R}(A) = \mathcal{R}(A')$, dostaneme
- $\dim(\mathcal{R}(A)) = \dim(\mathcal{R}(A')) = \dim(\mathcal{S}(A')) = \dim(\mathcal{S}(A))$

Přehledy (13)

přehledově sepište, co víte o...

uveďte definice, tvrzení, věty, příklady a souvislosti – důkazy nejsou vyžadovány

- elementární řádkové operace a Gaussova eliminace
 - rozšířená matice soustavy
 - 4 typy elementárních řádkových úprav
 - elementární matice
 - odstupňovaný tvar matice
 - věta o totožnosti řešení
 - Gaussova eliminace
 - zpětná substituce
 - věta o libovolné volbě volných proměnných (jakoukoli volbu volných proměnných lze jednoznačně rozšířit na řešení)
 - věta o jednoznačnosti sloupců s pivoty (o jednoznačnosti volných a bázických proměnných)
 - bázické a volné proměnné
 - hodnost matice
 - Frobeniova věta
- řešení homogenních a nehomogenních soustav lineárních rovnic
 - homogenní × nehomogenní soustava rovnic
 - ullet věta o vztahu mezi řešeními Ax=b a Ax=0
 - ullet věta popisující všechna řešení Ax=b
 - homogenní soustava má triviální řešení x=0, když $\mathrm{rank}(A)=n$

- provedení zkoušky (dosazení řešení včetně parametrů do původní soustavy)
- redukovaný odstupňovaný tvar
- maticové operace
 - nulová matice, jednotková matice, hlavní diagonála
 - transponovaná matice, symetrická matice
 - součet matic, α-násobek matice
 - součin matic, jeho asociativita
 - elementární matice
 - inverzní matice
 - maticové rovnice (viz níže)
- regulární a singulární matice
 - inverzní matice, její jednoznačnost
 - regulární × singulární matice
 - věta o ekvivalentních definicích regulárních matic
 - výpočet inverzní matice
 - vlastnosti regulárních matic
 - pro R regulární: $A=B \iff AR=BR \iff RA=RB$
 - pro A, B regulární (stejného řádu)
 - $(A^{-1})^{-1} = A$
 - AB je regulární
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^T)^{-1} = (A^{-1})^T$
 - maticové rovnice (viz prezentace)
 - $A + X = B \implies X = B A$
 - $\alpha X = B \implies X = \frac{1}{\alpha}B$
 - $AX = B \implies X = A^{-1}B$ pro regulární A
 - $XA = B \implies X = BA^{-1}$ pro regulární A
- binární operace a jejich vlastnosti
 - binární operace jako zobrazení
 - komutativita, asociativita
 - neutrální prvek, inverzní prvek
- (obecné) grupy
 - definice grupy
 - binární operace a jejich vlastnosti

- aditivní a multiplikativní grupy
- vlastnosti grup (jednoznačnost neutrálního prvku, jednoznačnost inverzního prvku, ekvivalentní úpravy, jednoznačnost řešení rovnic)

permutační grupy

- permutace jako zobrazení (bijekce)
- způsob popisu permutace (tabulkou, jejím druhým řádkem, pomocí bipartitního grafu, podle grafu cyklů, seznamem cyklů, pomocí permutační matice P)
- množina S_n všech permutací na n prvcích s operací skládání tvoří symetrickou grupu
 - identita je neutrální prvek
- pevný bod, transpozice, inverze
- znaménko permutace (sudé/liché permutace)
- věta o znaménku složené permutace

tělesa

- definice tělesa
- distributivita
- konečná tělesa zbytkové třídy modulo prvočíslo p, Galoisovo těleso (těleso o velikosti n existuje $\iff n$ je mocninou prvočísla)
- metavěta tvrzení o soustavách rovnic, maticích a výpočtech nad reálnými čísly platí i v libovolném tělese
- vlastnosti tělesa (jednoznačnost neutrálních a inverzních prvků, korektnost ekvivalentních úprav, řešitelnost rovnic)
- pokud ab=0, pak a=0 nebo b=0
- charakteristika tělesa
- věta charakterizující, kdy \mathbb{Z}_n je těleso
- malá Fermatova věta
- vektorové prostory a jejich podprostory
 - definice vektorového prostoru nad tělesem
 - binární operace ve vektorovém prostoru
 - aritmetický vektorový prostor, vektorový prostor matic, triviální vektorový prostor (pouze nulový vektor)
 - vlastnosti vektorových prostorů (jednoznačnost nulového a opačného vektoru, korektnost ekvivalentních úprav, řešitelnost rovnic)
 - definice podprostoru
 - věta o průniku podprostorů

- lineární obal, generátory podprostoru
- lineární kombinace
- věta o ekvivalentních definicích lineárního obalu
- vektorové prostory určené maticí A
 - jádro, řádkový prostor, sloupcový prostor
 - elementární úpravy nemění jádro ani řádkový prostor
 - (technické) lemma o dimenzích sloupcového prostoru
 - věta o dimenzích sloupcového a řádkového prostoru matice
 - počet řádků matice je roven součtu dimenze jádra a hodnosti matice (tedy dimenzi sloupcového/řádkového prostoru)
- lineární závislost
 - definice lineární nezávislosti (LN)
 - lineární nezávislost řádků matice v odstupňovaném tvaru
 - lineární nezávislost podmnožin (podmnožina lineárně nezávislé množiny bude rovněž nezávislá apod.)
 - báze vektorového prostoru
- báze vektorových prostorů
 - definice báze
 - lineární nezávislost
 - vektor souřadnic
 - kanonická báze v aritmetickém vektorovém prostoru
 - věta o existenci báze (každý vektorový prostor má bázi)
 - lemma o výměně
 - Steinitzova věta o výměně
 - jakoukoliv LN množinu lze rozšířit na bázi
 - všechny báze konečně generovaného prostoru mají stejnou mohutnost
 - dimenze vektorového prostoru
- lineární zobrazení a jejich matice
 - definice lineárního zobrazení
 - triviální lineární zobrazení (na nulový vektor), identita
 - geometrická lineární zobrazení (rotace, osová souměrnost podle osy procházející počátkem, stejnolehlost se středem v počátku)
 - skládání lineárních zobrazení, existence inverze pro bijektivní zobrazení (isomorfismus)
 - transformace na vektor souřadnic

- věta o rozšiřitelnosti (jedinečnosti) lineárního zobrazení
- afinní prostor a jeho dimenze
- matice lineárního zobrazení
- matice přechodu
- isomorfismus vektorových prostorů