Time Series Domain Adaptation

May 15, 2020

Baseline

$$L_{class_target} = -\sum_{(x'_i, y'_i) \in D_t^{label}} y'_i log(C(T(x'_i)))$$

Only use 70% target-domain data for training, and evaluate at the rest 30%

Accuracy: 32%

$$L_{class_target} = -\sum_{(x_i', y_i') \in D_t^{label}} y_i' log(C(T(x_i')))$$

Naive Adaptation

$$L_{class_source} = -\sum_{(x_i, y_i) \in D_s} y_i log(C(T(x_i)))$$

Use both target-domain (70% training and 30% testing) and source-domain

Accuracy on 30% target-domain: 37%

GAN Background

Min-Max game for adapting target distribution to source distribution

$$\min_{G} \max_{D} \mathbb{E}_{x \sim p} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_{Z}} \left[\log \left(1 - D(G(z)) \right) \right]$$

GAN Background

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

Wasserstein GAN

- Wasserstein Distance is a measure of the distance between two probability distributions
- Avoid vanishing gradients in normal GAN
- State-of-the-art training for GAN

Martin Arjovsky et. al (2017)

Global GAN

$$L_{global_GAN} = \mathbb{E}_{x' \sim P_t} [D(G(T(x')))] - \mathbb{E}_{x \sim P_s} [D(T(x))] + \lambda_{gp} * \mathbb{E}_{\hat{x} \sim P_{\hat{x}}} [(||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2]$$

Minimize marginal distribution of source-domain and target-domain Acc on rest 30% unlabeled target data: 40%

$$\begin{split} L_{conditional_GAN} &= \mathbb{E}_{y \sim P_y} [\mathbb{E}_{x' \sim P_t(x|y)} [D(G(T(x'), y))] \\ &- \mathbb{E}_{x \sim P_s(x|y)} [D(T(x))] \\ &+ \lambda_{gp} * \mathbb{E}_{\hat{x} \sim P_{\hat{x}}(x|y)} [(||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2]] \end{split}$$

Conditional GAN

Minimize conditional distribution of source-domain and target-domain Acc on rest 30% unlabeled target data: 44%

- Use MLP to approximate g.
- Train g by using the dual form of Jensen-shannon divergence
- Report on Kullback–Leibler divergence using the trained g

$$JS(P_s||P_t) = \sup_{g} \mathbb{E}_{P_s} [-softplus(-g(x))] - \mathbb{E}_{P_t} [softplus(g(x))]$$
$$g^* = log \frac{p_s(x)}{p_t(x)}$$
$$KL(P_s||P_t) = \mathbb{E}_{P_s} log \frac{p_s(x)}{p_t(x)}$$

$KL(P_s||P_t) = \mathbb{E}_{P_s} log \frac{p_s(x)}{p_t(x)}$

Naive Adaptation

- Target unlabeled accuracy: 32% -> 37%
- Shared-weight transformer and classifier
- Labeled KL divergence decrease to about 20.

$$KL(P_s||P_t) = \mathbb{E}_{P_s} log \frac{p_s(x)}{p_t(x)}$$

Global GAN

- Slightly improve unlabeled target accuracy (37% -> 41%)
- Slightly push target data hidden representation to source data hidden representation
- Push target and source testing accuracy together
- Labeled KL divergence decrease to about 10.

$$KL(P_s||P_t) = \mathbb{E}_{P_s} log \frac{p_s(x)}{p_t(x)}$$

Conditional GAN

- Improve unlabeled target accuracy (41% -> 44%)
- Push target data hidden representation to source data hidden representation
- Push target and source testing accuracy together
- Labeled KL divergence decreases to about 9.

Testing accuracy analysis

- Native adaptation
 - Gap between target-domain and source-domain, because source-domain has more data than target-domain
- Global GAN
 - Shrinks the accuracy gap between domains
- Conditional (Local) GAN
 - Shrinks the accuracy gap even further

Testing accuracy summary

Target label seen during training	Baseline Test Accuracy	Naive adaptation Test Accuracy	Global GAN Test Accuracy	Conditional GAN Test Accuracy
10%	15%	13%	22%	21%
30%	22%	22%	28%	33%
50%	28%	28%	35%	38%
70%	32%	37%	41%	44%