Marthaler, Jakob, Reuter Algebra

Hans Marthaler, Benno Jakob, Reto Reuter Unter Mitarbeit von Matthias P. Burkhardt

Algebra

Mathematik I

Lösungen

Hans Marthaler, Benno Jakob, Reto Reuter Unter Mitarbeit von Matthias P. Burkhardt **Algebra** Mathematik I

Lösungen zur 7. Auflage

2021 Alle Rechte vorbehalten © 2021 hep Verlag AG, Bern

hep-verlag.ch

Grundlagen und Grundoperationen

Zahlenmengen und Terme

Lösungen zu Übungen 1

- natürliche Zahlen 1.
 - \mathbb{Z} ganze Zahlen
 - rationale Zahlen
 - \mathbb{R} reelle Zahlen
 - \mathbb{Z}^{-} negative, ganze Zahlen
 - positive, rationale Zahlen und Null
 - $\mathbb{R}\setminus\mathbb{Q}$ irrationale Zahlen

- {0; 1; 2; ...; 101; ...}
- $\{\ldots; -3; -2; -1; 0; 1; 2; 3; \ldots\}$
- $\left\{\frac{1}{2}; -0.34; \frac{5}{7}; 13; -\frac{19}{11}; \ldots\right\}$
- $\{\sqrt{2}; -3\pi; 11; ...\}$
- $\{-1;-2;-3; \dots\}$
- $\left\{0; \frac{2}{3}; \frac{203}{11}; 0.4007; \ldots\right\}$
- $\{-\sqrt{3}; \pi; e; ...\}$

- Grafik 2.
- 3. Falls *n* eine Quadratzahl ist, so ist \sqrt{n} rational.
- 4. rational: Der Dezimalbruch ist endlich oder periodisch unendlich. irrational: Der Dezimalbruch ist nicht periodisch unendlich.
- 5. a) \mathbb{Z}^- ; \mathbb{R}
- **b**) ℝ
- c) \mathbb{Q}^+ ; \mathbb{R}
- d) \mathbb{Q}^+ ; \mathbb{R}

- e) \mathbb{N} ; \mathbb{Q}^+ ; \mathbb{R}

g) ℝ

h) ℝ

- 6. a)

c) $\frac{2}{7}$

- 7. a) $\frac{3}{11}$

- 8. a) $A = \{2, 4, 6, 8, ...\}$
 - c) $C = \{5; 10; 15; ...\}$

- b) $B = \{1; 3; 5; 7; ...\}$
- d) $D = \{0; 1; 2; 3; 4; 5; 6; 7\}$

Lösungen zu Übungen 2

- 9. Richtig: (1); (2)
- 10. a) b < d < e < c < a
- 11. a) falsch b) falsch
 - e) falsch
- f) richtig
- b) a < b < e < d < c
- c) richtig
- d) falsch
- g) richtig
- h) richtig

- Abstand vom Nullpunkt: $|a| = \begin{cases} a, \text{ falls } a \ge 0 \end{cases}$ -a, falls a < 0
- 13. a) $]-4;-1]; L = \{-3;-2;-1\}$
 - c) $]-2; 2[; L = \{-1; 0; 1\}$
- 14. a) 4

15. a) 6

- b) 4
- f) -1
- e) -4
- b) 5
- **16.** a) a und b haben das gleiche Vorzeichen
 - c) für alle $a, b \in \mathbb{R}$

- b) $[-2; 2]; L = \{-2; -1; 0; 1; 2\}$
- d) $[4; \infty[; L = \{4; 5; 6; ...\}]$
- c) -4
- d) 20

g) 1

- h) 1
- b) $a+b \le 0 \implies a \le -b \lor b \le -a$
- d) a und b haben unterschiedliche Vorzeichen

b) L = { }

c) $L = \{4\}$

d) $L = \{-1\}$

e) $L = \{-1, 9\}$

f) $L = \{1; 7\}$

18. a) $L = \{ \}$

b) $L = \{-7, 7\}$

c) $L = \mathbb{R}_0^+$

d) $L = \mathbb{R}_0^-$

e) $L = \{-\frac{5}{2}\}$

f) $L = \{-1\}$

19. a) 65.000 mm $\leq d_{\rm Z} \leq$ 65.015 mm; 64.945 mm $\leq d_{\rm K} \leq$ 64.960 mm

(b)
$$\max(d_7 - d_K) = 0.07 \text{ mm}$$

Lösungen zu Übungen 3

Richtig: (1) (3) (4) 20.

21. a) Produkt

b) Potenz

c) Summe

d) Differenz

e) Quotient

f) Differenz

g) Potenz

h) Quotient

i) Differenz

22. a) Differenz, 12

b) Produkt, 100

c) Produkt, 125

d) Produkt, 125

e) Quotient, 5

f) Summe, -40

g) Summe, 65

h) Produkt, 68

i) Differenz, -185

23. a)
$$\frac{33}{33} = 1$$
; $\frac{3}{3} + \frac{3}{3} = 2$; $\frac{3+3+3}{3} = 3$; $\frac{3\cdot 3+3}{3} = 4$; $3+3-\frac{3}{3} = 5$;

$$(3+3) \cdot \frac{3}{3} = 6$$
; $3+3+\frac{3}{3} = 7$; $3 \cdot 3 - \frac{3}{3} = 8$; $3 \cdot 3 + 3 - 3 = 9$; $3 \cdot 3 + \frac{3}{3} = 10$

b)
$$\frac{44}{44} = 1$$
; $\frac{4}{4} + \frac{4}{4} = 2$; $\frac{4+4+4}{4} = 3$; $4+4\cdot(4-4) = 4$; $\frac{4\cdot4+4}{4} = 5$;

$$\frac{4+4}{4}+4=6$$
; $4+4-\frac{4}{4}=7$; $4+4+4-4=8$; $4+4+\frac{4}{4}=9$; $\frac{44-4}{4}=10$

c)
$$\frac{4! + 4! - 4}{4} = 11$$
; $\frac{44 + 4}{4} = 12$; $\frac{44}{4} + \sqrt{4} = 13$; $4! - 4 - 4 - \sqrt{4} = 14$; $\frac{44}{4} + 4 = 15$

$$\frac{4 \cdot 4 \cdot 4}{4} = 16$$
; $4 \cdot 4 + \frac{4}{4} = 17$; $\frac{44}{\sqrt{4}} - 4 = 18$; $4! - 4 - \frac{4}{4} = 19$; $\frac{44 - 4}{\sqrt{4}} = 20$

x = 2:4;8;-8;16;-224.

$$x = -1:1;-1;-2;4;-2$$

25.
$$(a; b) = (6; 4): 32; 4; -9;$$

$$(a;b) = (3;-2): 11; 25; \frac{9}{2}; \frac{9}{4}$$

$$(a;b) = (6;4): 32; 4; -9; \frac{9}{4}$$
 $(a;b) = (3;-2): 11; 25; \frac{9}{2}; \frac{9}{4}$ $(a;b) = (-2;-3): 7; 1; \frac{4}{3}; \frac{4}{9}$

26. a)
$$T(3) = 0$$
; $T(-2) = 15$

b)
$$T(2) = 34$$
; $T(-1) = 16$

c)
$$T(1; -1; 2) = 8$$

d)
$$T(1; -1; -2) = 32$$

27. a)
$$T(2; 1) = 2; T(1; 2) = -3$$

b)
$$T(-2; 1) = -\frac{1}{2}$$
; $T(6; 3)$ ist nicht definiert

28.
$$V(x) = 24x^3$$
; $S(x) = 70x^2$; $V(2) = 192$; $V(0.5) = 3$; $S(2) = 280$; $S(0.5) = 17.5$

29.
$$V(a; b) = 60 a^2 b$$
; $S(a; b) = 36 a^2 + 82ab$; $V(1; 2) = 120$; $V(0.5; 1) = 15$; $S(1; 2) = 200$; $S(0.5; 1) = 50$

Lösungen zu Übungen 4

30. a)
$$x^4 - x^2$$
: Polynom 4. Grades; $a_4 = 1$; $a_3 = 0$; $a_2 = -1$; $a_1 = a_0 = 0$

b)
$$x^2 + 2x$$
: Polynom 2. Grades; $a_2 = 1$; $a_1 = 2$; $a_0 = 0$

c)
$$\frac{1}{2}x^5 - \frac{1}{2}x^3$$
: Polynom 5. Grades; $a_5 = \frac{1}{2}$; $a_3 = -\frac{1}{2}$; $a_4 = a_2 = a_1 = a_0 = 0$

d)
$$x^3 - x^2 + 2x - 2$$
: Polynom 3. Grades; $a_3 = 1$; $a_2 = -1$; $a_1 = 2$; $a_0 = -2$

e)
$$-\sqrt{5} x^2 - \sqrt{3} x - \sqrt{2}$$
: Polynom 2. Grades; $a_2 = -\sqrt{5}$; $a_1 = -\sqrt{3}$; $a_0 = -\sqrt{2}$

f) kein Polynom

31. a) 3

b) 14

c) 50

d) 62

e) 97655

f) 97648

- 32. a) $x^5 + x^4 + x^3 + x^2 + x + 1$
- b) $2x^2 + x$
- c) $\frac{1}{4}x^3 + \frac{1}{2}x^2 + \frac{1}{2}x + 1$
- d) $5x^4 + 4x^3 + 3x^2 + 2x + 1$

Lösungen zu Übungen 5

33. a)
$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}; \frac{1}{199}; \frac{1}{1999}$$

- b) 0, 3,6,9; 297; 2997
- c) 1, 2,4,8; 2⁹⁹; 2⁹⁹⁹

- 34. a) 1, 3, 7, 15, 31
- b) 0, -3, -9, -21, -45
- c) 2, -1, 2, -1, 2

- **35.** a) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55
 - b) Das n-te Dreieck setzt sich aus n Spalten zusammen, deren Anzahl Punkte den natürlichen Zahlen entspricht.
- 36. a) Quadrat, Zeichnung
 - **b)** 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 $\{a_n\} = n^2, n \in \mathbb{N}^*$
- 37. a) Rechteck, Zeichnung
 - b) $n(n+1), n \in \mathbb{N}^*$
 - c) $\{d_n\} = \frac{n(n+1)}{2}, n \in \mathbb{N}^*$
- 38. a) Addiert man zum Dreifachen einer Dreieckszahl die nächstkleinere, so erhält man die 2n-te Dreieckszahl.

$$3\triangle_n + \triangle_{n-1} = \triangle_{2n} : \frac{3n(n+1)}{2} + \frac{(n-1)n}{2} = \dots = \frac{2n(2n+1)}{2}$$

b) Addiert man zum Dreifachen einer Dreieckszahl die nächstgrössere, so erhält man die (2n+1)-te Dreieckszahl.

$$3\triangle_n + \triangle_{n+1} = \triangle_{2n+1}: \frac{3n(n+1)}{2} + \frac{(n+1)(n+2)}{2} = \dots = \frac{(2n+1)(2n+2)}{2}$$

- 39. a) $a_1 = 1$; $a_{n+1} = a_n + 2$; $\{a_n\} = 2n 1, n \in \mathbb{N}^*$
 - **b)** $a_1 = 2$; $a_{n+1} = a_n + 2$; $\{a_n\} = 2n, n \in \mathbb{N}^*$
 - c) $a_1 = 1$; $a_{n+1} = (-1)a_n$; $\{a_n\} = (-1)^{n+1}$, $n \in \mathbb{N}^*$
 - d) $a_1 = 1$; $a_{n+1} = a_n + (-1)^n (n+1)$
 - e) $a_1 = 1$; $a_{n+1} = a_n + 2 \cdot 3^{n-1}$; $\{a_n\} = 3^{n-1}$, $n \in \mathbb{N}^*$
 - f) $a_1 = 1$; $a_{n+1} = a_n + 2^n$; $\{a_n\} = 2^n 1$, $n \in \mathbb{N}^*$
- **40.** a) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
- b) $f_n = f_{n-1} + f_{n-2}$

- 41. a) stimmt
- b) stimmt nicht
- c) stimmt
- d) stimmt

2 Grundoperationen

- 1. a) 4x + 3y
- **b**) a + 50
- c) 2x 6y
- d) $2e^3 + 3e^2 + e$

- e) $3y^2z 2yz^2$ f) $-2x^2 + x 12$ g) $\frac{7}{8}a^2 + ab + \frac{1}{2}b^2$ h) $x^2y + xy 0.2xy^2$ a) -10a b) $-6a^2$ c) -20b d) $-10b^3$
- 2. a) −10*a*
- f) -6aλ
- e) –19*c* 3. a) -m-n
- b) $3k^3 2k^2 + k$
- c) x-y-z
- d) x-y+z

- e) x + y z
- f) x+y+z

b)
$$-m + 1$$

b)
$$-m+1$$
 c) $-10r+8$

d)
$$9p^2 - 3p$$

e)
$$-e^3 - e^2$$

e)
$$-e^3 - e^2$$
 f) $4c^4 + c^3 + 2c^2 + c$

d)
$$5\delta + \varphi$$

5. a)
$$v - w + x - y$$

b)
$$v^2 + w^2 - x^2 - y^2$$
 c) $15u - v$

e)
$$22a^3 + a + 2$$
 f) $-b - x - 10$

6. a)
$$v - w + x - y + z$$
 b) $v^3 + w^3 - x^3 - y^3 + z^3$ c) $-a - 10$

g)
$$7a^2 + 20$$

h)
$$-5z^2 + 5z + 3$$

7. a)
$$T_1 + T_2 = 12a^2b - 22b - 6$$
; $T_1 - T_2 = -20a^4 + 6a - 24$

b)
$$T_1 + T_2 = 4x + 3xy - 2y - 18$$
; $T_1 - T_2 = 6x^2 + 4x - 7xy + 2y + 4$

8. a)
$$4a + 4b$$

b)
$$6c + 3$$

c)
$$3f^2 - 4fg$$

d)
$$6h^4 - 3h^3$$

e)
$$-10x - 5y$$

f)
$$z^3 - 4z$$

g)
$$w^2 - 1$$

h)
$$-\alpha\mu-1$$

9. a)
$$10p + 5q + 5r$$
 b) $-10p + 5q + 5r$

b)
$$-10p + 5q + 5r$$

c)
$$2x^3y - x^2y^2 + x^2yz$$

d)
$$-2x + y - z$$

e)
$$-9a^3b^4 + 12a^3b^2 - 6ab^4 + 3ab^2$$

f) $2c^6 - 2c^4 + 2c^2 + 2c$
10. a) $6a^2 - 18a - 30$ b) $-6a^2 + 18a + 30$ c) $a^4 - 3a^3 - 5a^2$ d) $-a^5 + 3a^4 + 5a^3$

e)
$$4a^3 - 12a^2 - 20a$$
 f) $-a^2 + 3a + 5$

h)
$$-a^2p + 3ap + 5p$$

11. a)
$$15a + 3b$$
 b) $3a + b$

b)
$$3a + b$$

c)
$$c^2 - 4c$$

d)
$$-36d + 6$$

e)
$$x - 11xz + z^2 - 18z$$
 f) 0

12. a)
$$pr + ps + qr + qs$$
 b) $ac - ad + bc - bd$ c) $20v^2 - 22vw + 2w^2$ d) $ac + ad - bc - bd$

e)
$$-ac - ad - bc - bd f$$
) $-ac - ad + bc + bd$

13. a)
$$3x^2 - 43x + 84$$
 b) $30y^2 - 28yz + 6z^2$

c)
$$-u^2 - 8u + 33$$

c)
$$-u^2 - 8u + 33$$
 d) $p^2 - 11pq + 18q^2$

a)
$$m^7 - m^5 - m^4 + m^2$$

e)
$$m^7 - m^5 - m^4 + m^2$$
 f) $2n^4 - 9n^2 + 9$

14. a)
$$12a^3 - 24a^2b^2 + 6ab - 12b^3$$

c)
$$ac + ad + ae + bc + bd + be$$

e)
$$-2r + 2rs - 2rt - s^2 + s + st$$

g)
$$2x^2 + 3xy - 2xz - 2y^2 + yz$$

15. a)
$$a^2 - 4ab - 12b^2 + 8bc - c^2$$

c)
$$2x^2 - 8x - xy - 6y^2 - 5y + 6$$

e) $c^5 - 2cd^4 + d^5$

b)
$$12e^3 + 6ef - 24e^2f^2 - 12f^3$$

d)
$$ac - ad - ae + bc - bd - be$$

f)
$$u - 3uw - v + 3vw - 3w^2 + w$$

h)
$$x^4 - x^3 - x^3y^2 - xy^2 + y^4 + y^2$$

b)
$$-a^4 + 4a^3 - 4a^2 + 5a + 2$$

d)
$$4x^5 + 5x^4 + 8x^3 - 6x^2 + 4x - 3$$

f)
$$4rt - 4ru + 4st - 4su$$

16. a)
$$2r^2 - 10r - 2rs + 10s$$
 b) $-3y^3 + 3y^2 + 6y$

b)
$$-3y^3 + 3y^2 + 6y$$

c)
$$2v^4 + 2v^3 - 40v^2$$

d)
$$ace + acf + ade + adf + bce + bcf + bde + bdf$$

e)
$$f^3 - 6f^2 + 11f - 6$$

f)
$$12a - 4ab + abc - 3ac + 8b - 2bc + 6c - 24$$

17. a)
$$a^3 - 2a^2 - 5a + 6$$
 b) $x^2 - x^2y + y - 1$ c) $z^8 - 81$
e) -6 f) $3a^2 + 8$ g) $-2k^3 - 4$

g)
$$-2k^3 - k^2 - 1$$
 h) $2st - 19s - 19t + 181$

d)
$$-f^2 + 24$$

18. a)
$$-140x^4 + 110x^3 + 4x^2 + 2x - 15$$

c)
$$-2u^2v - 2uv^2$$

e)
$$-e^5 + e^4 - 2e^3 + 3e^2 - 4e + 5$$

19. a)
$$a^2 + 2ab + b^2$$

e) -6

b)
$$c^2 + 8c + 10$$

19. a)
$$a^2 + 2ab + b^2$$
 b) $c^2 + 8c + 16$ c) $4d^2 + 12de + 9e^2$ d) $f^2 - 2fg + g^2$

d)
$$f^2 - 2fg + g^2$$

e)
$$z^2 - 6z + 9$$

f)
$$9v^2 - 24vw + 16w^2$$
 g) $x^2 - y^2$

g)
$$x^2 - y$$

h)
$$u^2 - 4$$

i)
$$g^4 - h^2$$

$$20 \text{ a}$$
 $16 \text{ m}^2 - 25 \text{ n}^2$

b)
$$p^6 + 2p^3q^3 + q^6$$

c)
$$y^4 - 1$$

d)
$$h_{\lambda}^{2} + 2hk + k^{2}$$

e)
$$r^4 + 2r^3 + r^2$$

f)
$$4\mu^2 + 2\mu + \frac{1}{4}$$

20. a)
$$16m^2 - 25n^2$$
 b) $p^6 + 2p^3q^3 + q^6$ c) $y^4 - 1$ d) $h^2 + 2h^2$ e) $r^4 + 2r^3 + r^2$ f) $4\mu^2 + 2\mu + \frac{1}{4}$ g) $x^6 - 0.2w^3x^3 + 0.01w^6$ h) $\frac{y^4}{16} - \frac{1}{4}$

h)
$$\frac{y^4}{16} - \frac{1}{4}$$

i)
$$-9z^4 + 1$$

21. a)
$$4x^3 + 24x^2 + 36x$$

b)
$$a^3 - 10a^2 + 25a$$

c)
$$-2c^3 + 20c^2 - 50c$$

d)
$$-10x^6 - 20x^4 - 10x^2$$

e)
$$g^3 + 3g^2h - 4h^3$$

f)
$$\vartheta^3 + 5\vartheta^2 + 7\vartheta + 3$$

g)
$$q^3 - 7q^2 + 15q - 9$$

h)
$$p^6 - 4p^5 + 5p^4 - 4p^3 + 4p^2$$
 i) $k^4 + k^2 - 2$

i)
$$V^4 + V^2 - 2$$

22. a)
$$4x^3 + 4x^2 - 9x - 9$$

c)
$$a^2b^4 - 4a^2 - b^4 + 4$$

$$a^2b^4 - 4a^2 - b^4 + 4$$

23. a)
$$x^2 + 2xy + y^2 - 1$$

c)
$$k^4 - 2k^3 + k^2 - 1$$

24. a)
$$a^2 - 8a + 81$$

c)
$$-24y^2 - 23y - 4$$

g)
$$5n^2 + 10n + 16$$

25. a)
$$c^3 + 3c^2d + 3cd^2 + d^3$$

c)
$$8f^3 + 48f^2q + 96fq^2 + 64q^3$$

e)
$$r^2 + 2rs + 2rt + s^2 + 2st + t^2$$

q)
$$\alpha^2 - 2\alpha\beta - 2\alpha\gamma + \beta^2 + 2\beta\gamma + \gamma^2$$

26. a)
$$15r^2 - 13r + 2$$

b)
$$3s + 2$$

27. a)
$$4a + 52$$

b)
$$16a^4 - 625b^4$$

d)
$$81u^{16} - 18u^8 + 1$$

a)
$$81u^{-1} - 18u^{-1} + 1$$

b)
$$-\delta^2 + \lambda^2 - 4\lambda + 4$$

d)
$$-a^2 + 2ab - b^2 + c^4$$

b)
$$-4x^2 - 1$$

d)
$$c^4 + c^2 - 2c^2d + 2cd^2 + d^4 + d^2$$

f)
$$h^4 - h^2 - 4h - 13$$

h)
$$\psi^4 - 12\psi^3 - 16\psi^2 - 3\psi + 4$$

b)
$$e^3 - 3e^2 + 3e - 1$$

d)
$$1000 k^3 - 30 k^2 + \frac{3}{10} k - \frac{1}{1000}$$

f)
$$p^2 + 4pq + 6pr + 4q^2 + 12qr + 9r^2$$

h)
$$16x^2 - 40xy + 8xz + 25y^2 - 10yz + z^2$$

c)
$$-x^2 + 10xy - 4y^2$$

c)
$$3d^2e^2 - 3de^3 + 6e^4$$
 d) $-3c^2 + 18$

d)
$$-3c^2 + 18$$

30. a)
$$a^4 + 8a^3 + 24a^2 + 32a + 16$$

b)
$$x^5 - 15x^4 + 90x^3 - 270x^2 + 405x - 243$$

c)
$$64x^6 + 192x^5y + 240x^4y^2 + 160x^3y^3 + 60x^2y^4 + 12xy^5 + y^6$$

d)
$$x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8xy^7 + y^8$$

31. –

- **b**) natürliche Zahlen: 1, 2, 3, 4, ...
- c) Dreieckszahlen: 1, 3, 6, 10, 15, ...
- 33. a) 1, 4, 10, 20, 35, 56, 84

- b) das vierte Element jeder Zeile
- c) jede vierte Tetraederzahl ist ungerade.
- d) 1 = 1/1 + 3 : 4/1 + 3 + 6 = 10/1 + 3 + 6 + 10 = 20/1 + 3 + 6 + 10 + 15 = 35/1 + 3 + 6 + 10 + 15 + 21 = 561+3+6+10+15+21+28=84/1+3+6+10+15+21+28+36=120
- e) $a_1 = 1; a_{n+1} = a_n + \frac{n(n+1)}{2}$

34. teilbar ohne Rest.
$$\frac{n(n+1)(n+2)}{6} = \frac{n^3 + 3n^2 + 2n}{6}$$

d)
$$(-1)^n \cdot 2^n$$

37. a)
$$4(x + y)$$
 b) $a^2(a - 1)$

b)
$$a^2(a-1)$$

c)
$$5z^9(5z+1)$$

d)
$$9ac(5b + 2)$$

38. a)
$$4a(4x-3y-2z)$$
 b) $7(7s+5t-4u)$ c) $v(v^4-v^2+w)$

b)
$$7(7s + 5t - 4u)$$

c)
$$v(v^4 - v^2 + w)$$

d)
$$2\lambda(\lambda^4 - 2\lambda^2 + 4)$$

e)
$$p^3q^2(-r+p^2+1)$$
 f) $33xyz(xy+2xz+3yz)$

$$xvz(xv + 2xz + 3vz)$$

b)
$$-1(4x + y)$$

c)
$$-1(-2b-1)$$

d)
$$-1(2q-1)$$

e)
$$-1(7h+i+10k)$$

f)
$$-1(-3 \mu^3 + 2 \mu^2 + \mu)$$

g)
$$-1(a_1-a_2+a_3)$$

h)
$$-1(w + x - y + z)$$

i)
$$-1(-2p+q+u+1)$$

40. a)
$$\frac{1}{3}(a+2b)$$

b)
$$\frac{1}{4}(c-d+4e-4)$$

c)
$$\frac{1}{50}(5g - 56h + 100)$$

41. a)
$$(g-h)(k+2)$$

c)
$$(ab + a)(a^2 - b^2) = a(a + b)(a - b)(b + 1)$$

d)
$$(v^2 + 1)(x - y - z)$$

e)
$$(ab - c)(d - 3)$$

f)
$$(m-n)(x+3y)$$

b) $(5a + 1)(2m^2 - n)$

42. a)
$$-10 c(p+q)$$

c)
$$(5a - 5b)(b^2 + 2c) = 5(a - b)(b^2 + 2c)$$

e)
$$(e-f)(2q-5)$$

b)
$$(a - b)(-2x + 4) = -2(a - b)(x - 2)$$

d) $(4x + y^2)(-y + z)$

e)
$$(e-1)(2g-5)$$

43. a)
$$(a+3)(c+d)$$

c)
$$(x-1)(x^2+y^2)$$

e)
$$(-3x+6)(y-z) = -3(x-2)(y-z)$$

b)
$$(a + b)(x - y)$$

a)
$$(-3y + 6)(y - 7) = -3(y - 2)(y - 7)$$

d)
$$(r+s)(t+u)$$

f) $(k^3+k^2)(1-k^2) = -k^2(k+1)^2(k-1)$

44. a)
$$10a(b+c)(x+y)$$

c)
$$(p^2 - q^3 + r)(x - y)$$

b)
$$5(e-2)(2f+1)$$

d)
$$2(a-5)(e+f-q)$$

e)
$$(a + b + c)(x + 1)$$

f)
$$(\delta - 1)(\delta - \varphi - \rho)$$

45. a)
$$(c+d)(c-d)$$

b)
$$4(x + 3y)(x - 3y)$$

c)
$$(5a + 1)(5a - 1)$$

e) $(7t + 3s)(7t - 3s)$

d)
$$(1 + e^5)(1 - e^5)$$

46. a)
$$(p+q)^2$$

f)
$$6(x^2y + z^2)(x^2y - z^2)$$

h) $3(3 \phi^2 + 1)(3 \phi^2 - 1)$

c)
$$(2e-1)^2$$

e)
$$(5a^3 - 2b)^2$$

d)
$$(\lambda^2 \gamma + 1)^2$$

q)
$$-6(2x+1)^2$$

f)
$$2(m+2)^2(m-2)^2$$

47. a)
$$(7a - 5)(a + 5)$$

h)
$$-r^2(r-s)^2$$

b) $-g(2e+2f+g)$

c)
$$(v + w + 1)(-v - w + 1)$$

d)
$$(2a + 2b + c)(-2a - 2b + c)$$

e)
$$(p+10q+1)(p-10q+1)$$

f)
$$4(m^2 - n + 5)(m^2 + n - 5)$$

48. a)
$$(a + 2)(a + 10)$$

c) $(a + 1)(a + 20)$

b)
$$(a + 4)(a + 5)$$

d)
$$(a-2)(a-10)$$

e)
$$(a-4)(a-5)$$

f)
$$(a-1)(a-20)$$

g)
$$(a + 4)(a - 5)$$

h)
$$(a-4)(a+5)$$

i)
$$(e+1)(e-2)$$

49. a) $(e+1)(e+2)$

b)
$$(b+6)(b-8)$$

c)
$$(y+9)(y-8)$$

d)
$$(a - b)(a - 10b)$$

c)
$$(y + 9)(y - 6)$$

f)
$$(m^2 + 2u^2)(m^2 - 18u^2)$$

e)
$$(\alpha^2 + 15)(\alpha^2 + 30)$$

g)
$$(3z + 1)(2z - 1)$$

i) $(h + 5)(2h + 1)$

h)
$$(k-1)(4k-1)$$

50. a)
$$x^2(x^2+1)(x+1)(x-1)$$

b)
$$3a(a+2)(a-5)$$

c)
$$5e(4q - h)^2$$

d)
$$2x^2(3y+z)^2$$

e)
$$(c-3)(c-11d)$$

f)
$$3(\gamma + 1)(2\gamma - \lambda + 2)$$

- 51. a) -1(h+1)(h-1)(m+x)
 - c) $3b^3(2b+3)(2b-3)(4b^2+9)$
 - e) $2b^2(2c+d)(2d-1)$

- **b**) geht nicht.
- d) $(y^2 2y 1)(2z 1)$
- f) (p+2)(p-2)(q+4)(q-3)

3 Dividieren

Lösungen zu Übungen 10

- Richtig: (1); (2); (3)
- 2. a) $\frac{1}{4}$; -1; nicht def. b) $\frac{3}{4}$; 0; nicht def.
- c) 2; 0; nicht def. d) -1; 0; 1

- 3. a) $D = \mathbb{R}\setminus\{0\}$
- b) $D = \mathbb{R}\setminus\{3\}$
- c) $D = \mathbb{R} \setminus \left\{ -\frac{1}{5} \right\}$ d) $D = \mathbb{R} \setminus \{-1; 1\}$

b) $x_1 = -2$; $x_2 = -1$; $x_3 = 1$

- 4. a) $x_1 = 0$; $x_2 = \frac{1}{5}$
- 5. a) $\frac{3}{2q}$
 - b) $-\frac{3a}{7d}$
- c) $-\frac{4x^3y^3}{3}$

- 6. a) c 6
- b) 3d + 5
- c) $\frac{9}{4}x$

- e) $\frac{X}{V}$ 7. a) $\frac{5}{x+v}$
- f) 2*v*
 - b) c(c-1)

b) $\frac{k-2}{k-4}$

- c) $\frac{m+n}{5}$
- d) $\frac{3(2e-1)}{4}$

- e) $\frac{p(p-1)}{q}$ f) $\frac{2z-5}{2(2z+5)}$
- 8. a) $\frac{a+b}{3}$ b) $\frac{s+1}{t+1}$

9. a) $\frac{a+8}{a-2}$

- c) $\frac{4}{6\lambda \omega}$
- d) $\frac{f+2}{f-1}$

- e) $\frac{c-d}{c-d+10}$ f) $\frac{a-c}{5a-b}$
- c) $\frac{x+5y}{x+3y}$
- d) $\frac{w-5}{w+4}$

- e) $\frac{c}{5(a+1)}$
- f) $\frac{p+q}{2}$
- g) $\frac{b^2+1}{b^2-10}$
- h) $\frac{y^2}{v + 4}$

i) $\frac{\phi - 11}{\phi - 2}$

10. a) −1

- c) $-\frac{a^2}{a+1}$
- d) $-\frac{4}{k+5}$

e) $-\frac{g+4}{g+6}$

11. a) $\frac{2k + lm}{2klm}$

- f) $-\frac{2\delta \varepsilon}{2(2\delta + \varepsilon)}$
- b) $\frac{n-1}{5n+2}$ c) $\frac{c + 2d + 2e}{c - 2d - 2e}$
- d) $\frac{3(x+y+z)}{4}$

- e) p + q + 3
- f) 1
- 12. a) $\frac{5x + 2y}{3(2x + 5y)}$ b) x y
- 13. a) $\frac{k-1}{k+2}$ b) $\frac{a}{-2c-d}$
- c) $\frac{x+y-8}{8xy}$
- d) $\frac{4 \cdot (m-7)}{n}$

- e) $\frac{(r-s) \cdot (r+2s)}{-t} = \frac{(s-r) \cdot (r+2s)}{t}$

- f) $\frac{-e^2 + 5ef f^2}{-f^2 + 3ef e^2}$

- 14. a) $\frac{x^2}{x^3}$
- b) $\frac{4xz}{4x^2z}$

b)
$$\frac{2(c-d)}{c^2-2cd+d^2}$$

c)
$$\frac{-2}{d-c}$$

16. a)
$$\frac{4(a+b)^2}{4a^2-4b^2}$$

b)
$$-\frac{(a+b)^2}{b^2-a^2}$$

c)
$$\frac{(a+b)(a+3b)}{a^2+2ab-3b^2}$$

17. a)
$$36x^3y^3z^3$$

b)
$$a(a - b)(a - c)$$

c)
$$2a^2(a-1)$$

d)
$$4(a+1)(a-1)$$

18. Falsch: (3)

19. a)
$$\frac{yz}{2xyz}$$
; $\frac{4xz}{2xyz}$; $\frac{6xy}{2xyz}$

b)
$$\frac{4c^3}{12c^3d^2}$$
, $\frac{d^2}{12c^3d^2}$

c)
$$\frac{(e-2)}{(e^2-4)}$$
; $\frac{(e+1)(e+2)}{(e^2-4)}$

d)
$$\frac{g}{3-\mu}; \frac{-3}{3-\mu}$$

e)
$$\frac{1}{x^4 - 4y^2}$$
; $\frac{-x(x^2 + 2y)}{x^4 - 4y^2}$

f)
$$\frac{15}{3a+3b}$$
; $\frac{20}{3a+3b}$; $\frac{18}{3a+3b}$

20. a)
$$\frac{21x}{5}$$

b)
$$\frac{5}{4y}$$

c)
$$\frac{7z}{4}$$

d)
$$-\frac{5}{2a}$$

c)
$$\frac{7z}{4}$$

g) $\frac{-3(m-2)}{2}$

h)
$$-\frac{1}{r}$$

21. a)
$$\frac{71x}{12}$$

b)
$$\frac{89y}{55}$$

c)
$$\frac{55z}{192}$$

d)
$$\frac{29a}{15c}$$

e)
$$\frac{12g - 7e}{4efg}$$
 f) $\frac{26p + pq}{2q^2}$

e)
$$\frac{12g - 7e}{4efg}$$
 f) $\frac{26p + pq}{2q^2}$
22. a) $\frac{12 + k}{4}$ b) $\frac{18 \vartheta \beta - 5}{3\beta}$

c)
$$\frac{3w^2 - 2w + 4}{w}$$

d)
$$\frac{2b+74}{7}$$

e)
$$\frac{45c-d}{8}$$
 f) $2m-1$

23. a)
$$\frac{v(3v-1)}{2(v-1)}$$
 b) $\frac{-x+y-z}{x(v-z)}$

b)
$$\frac{-x+y-z}{x(y-z)}$$

c)
$$\frac{r+9s}{(r+s)(r-s)}$$

c)
$$\frac{r+9s}{(r+s)(r-s)}$$
 d) $\frac{2a^2+2}{(a+2)(a-3)}$

e)
$$\frac{-14b^2 - 6b + 10}{(b^2 + 1)(b^2 - 5)}$$
 f) $\frac{4 - 3d}{36(2d - e)}$ g) $-\frac{f}{4e(3e + 4f)}$

f)
$$\frac{4-3d}{36(2d-e)}$$

g)
$$-\frac{f}{4e(3e+4f)}$$

h)
$$\frac{6(1-u)}{u^2-6}$$

24. a)
$$-\frac{n}{(m+2n)^2}$$

24. a)
$$-\frac{n}{(m+2n)^2}$$
 b) $\frac{10b}{(2a-5b)^2(2a+5b)}$ c) $\frac{z}{2y(3y+z)}$

c)
$$\frac{z}{2y(3y+z)}$$

d)
$$\frac{e^2}{(e+f)(e-f)}$$

e)
$$\frac{2k}{(k+4)(k-5)}$$
 f) $\frac{1}{h(h+2)(h-13)}$

e)
$$\frac{2h}{(k+4)(k-5)}$$
 f) $\frac{1}{h(h+2)(h-13)}$
25. a) $\frac{9}{(u+7)(u-2)^2}$ b) $-\frac{3}{4(q-1)}$

c)
$$\frac{u-9}{2(u+3)(u-3)}$$

d)
$$\frac{2 \mu^2 - 3 \phi^2}{(2\mu + 3\phi)(2\mu - 3\phi)}$$

e)
$$\frac{V}{V+3}$$

f)
$$\frac{1}{a+b}$$

26. a)
$$-\frac{ab^2}{(a+4)(a-b)}$$

b)
$$-\frac{h^2+15h}{(h+3)(h-3)(h^2-4)}$$

c)
$$\frac{3d+2e+1}{5(d+e)(d-e)}$$

d)
$$\frac{x-y+z-1}{(x-1)(y-1)(z-1)}$$

3

Lösungen zu Übungen 12

27. Richtig: (3)

28. a)
$$-\frac{xy}{7}$$

b)
$$\frac{xy}{Z}$$

c)
$$\frac{x^2}{y}$$

d)
$$\frac{y}{x}$$

e)
$$\frac{ey}{2e-g}$$
 f) $-\frac{1}{2}$

f)
$$-\frac{1}{2}$$

c)
$$\frac{3}{xy^5z}$$

30. a)
$$-\frac{y}{XZ}$$

b)
$$\frac{X}{VZ}$$

c)
$$\frac{xy}{z}$$

d)
$$\frac{a^3}{2}$$

e)
$$\frac{4e^2}{25f^3q^4}$$

f)
$$\frac{9 \delta^3}{2}$$

g)
$$\frac{-3v + 2}{w}$$

h)
$$\frac{-3y+4}{22x^2}$$

i)
$$\frac{b}{2c}$$

31. a)
$$\frac{x^2}{2vy}$$

c)
$$-\frac{4(q-1)}{3}$$

d)
$$-\frac{2}{c^2 d}$$

32. a)
$$\frac{3v(v-16)}{v+4}$$

b)
$$\frac{(p+q)^3}{p-q}$$

c)
$$\frac{2d}{d+4}$$

d)
$$\frac{\mu - 2\omega}{2\mu + \omega}$$

e)
$$\frac{u+4}{3u^2}$$

f)
$$\frac{2a-b}{6ab}$$

g)
$$-\frac{5(3x^2+2y^2)}{2(3x^2-2y^2)}$$

$$h) \ \frac{g(g-h)}{g-2}$$

c)
$$-cd^2$$

d)
$$\frac{56xz}{9y^2}$$

e)
$$\frac{m^2 n^2 o^2}{p^4 q^2}$$

f)
$$\frac{\delta^{10}}{16}$$

b)
$$\frac{128c^2}{243d^2}$$

d)
$$\frac{56}{81 \varepsilon^2 \phi}$$

35. a)
$$\frac{3}{77}$$

34. a) $\frac{-g^2}{h^2}$

b)
$$\frac{3(2c+1)}{2(a+b)}$$

c)
$$\frac{y}{3}$$

d)
$$\frac{u+4}{4(4-u)}$$

e)
$$\frac{a(3d-c)}{20}$$
 f) $\frac{x^2+1}{x^2+y}$

f)
$$\frac{x^2 + 1}{x^2 + y}$$

c)
$$-(m+n)$$

d)
$$\frac{x(x-1)}{3y(2x-y)}$$

36. a)
$$\frac{3b}{8a^2}$$

37. a) $a^2 - b^2$

b)
$$\frac{e+6}{2(e-10)}$$

c)
$$-(m+n)$$

d)
$$\frac{x(x-1)}{3y(2x-y)}$$

e)
$$\frac{2(k-2)}{k-1}$$
 f) $\frac{(\delta-1)^2}{5\sigma}$

b)
$$\frac{6c}{2c+d}$$

c)
$$\frac{f^2(g^2-1)}{g^2}$$

d)
$$\frac{(eh - fg)^2}{f^2h^2}$$

$$(p^2 + 8)$$

e)
$$\frac{(p^2+8)^2}{16p^2}$$
 f) $\frac{-y(2x+y)}{(x+y)^2}$

b)
$$\frac{ef}{3}$$

c)
$$h(k^2 - h^2)$$

d)
$$\frac{rt-s}{rt+s}$$

$$2c - 1$$

b)
$$\frac{e_1}{3}$$

c)
$$h(k^2 - h)$$

d)
$$\frac{rt-s}{rt+s}$$

e)
$$\frac{2c-1}{c}$$

f)
$$\frac{c+d}{4cd}$$

39. a)
$$-\frac{\varphi(2\varphi + \lambda)(\varphi - \lambda)^2}{(\varphi - 2\lambda)^2(\varphi + 2\lambda)}$$
b) $d - c$

c)
$$\frac{36y^2 + 28z^2}{3y - 2z}$$

b) $-\frac{vy}{x}$

c) $-\frac{V}{WX}$

d) $\frac{vy}{wx}$

e) 8

f) $-\frac{5xy^2}{8}$

g) $\frac{2a^2}{c^4}$

h) $-980 \alpha^2 \beta^3 \gamma^2$

41. a) $\frac{2p+1}{2p-1}$ b) $\frac{q}{q-1}$

c) $\frac{fg}{f+g}$

d) $-z^2$

42. a) $\frac{5}{2p}$

b) $\frac{y}{5}$

c) $\frac{-2r}{5}$

d) $\frac{b^3 - b + 2}{b^3 - b - 1}$

e) m

f) $-\frac{x+7y}{2}$

43. a) $\frac{c+2}{c+3}$

b) x + 1

c) -2

44. a) $\frac{p}{q} = \frac{5}{7}$ b) $\frac{p}{q} = \frac{11}{17}$

45. a) -

b) Durch Addieren zweier benachbarter Zahlen erhält man die nächstobere.

c)
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots / \frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}, \dots / \frac{1}{3}, \frac{1}{12}, \frac{1}{30}, \frac{1}{60}, \dots$$

d) Jedes Element ist die Differenz des Elements links (rechts) und oben links (rechts)

46. a)
$$2x^2 + 2x$$

b)
$$2x^3 + 1$$

c)
$$x - y - 1$$

d)
$$b^4 + b^3 + b^2 + b + 1$$

e)
$$a^3 - b^2$$

f)
$$z^3 + z^2 + z$$

g)
$$-2z^3 + z + 1$$
 h) $-p^3 + p + 2$

h)
$$-p^3 + p + 2$$

47. a)
$$2x + 1$$
, Rest 1

c)
$$2a^3 + a^2$$
, Rest $4a$

48. a)
$$a = -3$$

49. a)
$$2x^2 + 4$$

b)
$$\frac{1}{p+1}$$

b)
$$2z^2 - z + 1$$
, Rest -2

d)
$$b^2 + 2b$$
, Rest $b^2 - 1$

b)
$$a = 4$$

c)
$$x - y - 1$$

d)
$$\frac{1}{5f - a + 2h}$$

II Rechnen mit Potenzen

4 Potenzieren

Lösungen zu Übungen 14

Richtig (2); (3) 1.

2. a) 10^2

b) 10⁴

c) 10¹

d) 10⁶

3. a) 10000

b) 10000

c) -10000

d) 1000

e) -1000

f) -1000

g) 100

h) 1000000

4. a) 2; 4; 8; 16

c) 0.1; 0.01; 0.001; 0.0001

b) -1; 1; -1; 1d) $\frac{1}{3}$; $\frac{1}{9}$; $\frac{1}{27}$; $\frac{1}{81}$

5. a) 2⁴

b) 3³

c) 3⁴

d) 5⁴

6. a) -1

b) 1

c) 1

d) 1

e) -1

f) 1

g) -1

h) -1

7. a) 625

b) 625

c) -625

d) -64

e) -64

f) $\frac{4}{9}$

g) $\frac{1}{32}$

h) -0.03125

8. a) 1

b) -1

d) 1

9. a) 6; 27; 114

b) 8; 9000; 0.1875; 2

c) 15; $-\frac{83}{27}$; 2400; -0.972 d) -12; -60; -218

10. a) $a_1 = 1$; $a_2 = 4$; $a_3 = 9$; $a_4 = 16$; $a_5 = 25$, Quadratzahlen

b) $\{a_n\} = n^2$

c) Die Anzahl Punkte der Winkel entsprechen den ungeraden Zahlen.

d) n Winkel

e) $a_1 = 1$; $a_{n+1} = a_n + 2n + 1$

f) jedes n-te Folgeglied setzt sich aus den ersten eins bis n ungeraden Zahlen zusammen.

11. a) -

b) $b_1 = 1$; $b_2 = 8$; $b_3 = 27$; $b_4 = 64$; $b_5 = 125$; $b_6 = 216$; $b_7 = 343$; $b_8 = 512$, Kubikzahlen

c) $\{b_n\} = n^3$ d) $s_1 = 1$; $s_2 = 9$; $s_3 = 36$; $s_4 = 100$; $s_5 = 225$, Quadratzahlen

e) 1, 3, 6, 10, 15, ... f) $\{s_n\} = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4}$

Lösungen zu Übungen 15

12.

Exponent	3	2	1	0	-1	-2	-3
Potenz	10 ³	10 ²	10 ¹	10 ⁰	10 ⁻¹	10 ⁻²	10^{-3}
Potenzwert	1000	100	10	1	<u>1</u>	<u>1</u>	1 1000

Richtig: (1); (2); (4) 13.

14. a) $-\frac{9989}{100} = -99.89$ b) $\frac{1}{1000}$; $\frac{1}{100}$; $\frac{1}{10}$; 1; 10; 100; 1000

c) $-\frac{909}{100} = -9.09$ d) $-\frac{9899}{100} = -98.99$

c) 10^4

d) 10^2

16. a) 10^{-4}

c) 10^3

d) 10^{-4}

17. a) -1; 1; -1; 1; -1; 1; -1

b) $\frac{1}{64}$; $\frac{1}{16}$; $\frac{1}{4}$; 1; 4; 16; 64

c) $\frac{15}{16}$

18. a) $\frac{27}{1000}$

b) $\frac{1000}{27}$

c) $-\frac{27}{1000}$

d) $-\frac{1000}{27}$

e) $\frac{81}{16}$

f) $\frac{16}{81}$

g) $-\frac{81}{16}$

d) $\frac{156}{5}$

h) $\frac{16}{81}$

19. a) 1

b) −1

c) 1

d) $\frac{1}{4}$

20. a) $\frac{1}{a^4}$

b) $\frac{1}{(3b)^3} = \frac{1}{27b^3}$

c) $\frac{3}{h^3}$

 $d) \frac{1}{(c+d)^3}$

e) $c + \frac{1}{d^3}$ f) $\frac{1}{c^3} - \frac{1}{d^3}$

h) $-3y^4$

21. a) $5y^4$ b) $\left(\frac{w}{2v}\right)^4 = \frac{w^4}{16v^4}$ c) $\left(\frac{\sigma}{\phi}\right)^6 = \frac{\sigma^6}{\phi^6}$ 22. a) a^{-1} b) $b^{-2}c^{-5}$ c) $4b^{-2}c^5$

d) $\left(\frac{m-n}{m+n}\right)^3$

d) $x \cdot y^{-k}$

e) y^k f) u^{-m-5} 23. a) $eg^{2-n} - fg^{2n-2}$ b) $3x^{-1}(y-z)^{-3}$

g) $2z^{-1} - 3z^{-3}$ c) $r^{-2k}(s+t)^{1-2m}$

h) $4v^3 + v^{-3}$ d) $(\alpha + \delta + \mu)^{-1}$

Lösungen zu Übungen 16

24. a)
$$10^4(y-1) = 10000(y-1)$$

25. a)
$$7x^4$$

c)
$$1.75 k^4 + 0.1 k^3 + 0.2 k^2$$

e)
$$5 \cdot 3^{n}$$

c)
$$2 \cdot 8^n = 2 \cdot 2^{3n} = 2^{3n+1}$$

b)
$$10^{-7} = \frac{1}{10^7}$$

d)
$$5 \cdot 10^{-4} = \frac{1}{2000}$$

f)
$$-1.2 \cdot 10^{-8}$$

b)
$$(a-b)z^n$$

d)
$$\frac{11}{20}b^6 + \frac{1}{3}b^4$$

f)
$$(p^2 - q^2)(p - q)^k$$

b)
$$6 \cdot 4^n = 6 \cdot 2^{2n}$$

Lösungen zu Übungen 17

27. Falsch: (1); (4)

d) -2^{n}

f)
$$10^{-3}$$

b) $(-2)^6 = 2^6$

g)
$$10^{-(n+1)}$$

d)
$$\left(\frac{1}{2}\right)^{17} = \frac{1}{2^{17}}$$

e)
$$a^{36}$$

f)
$$b^{n+8}$$

30. a)
$$2u^{5n+1}$$

b)
$$d^{3n+8}$$

c)
$$-p^{18}$$

d)
$$q^{17}$$

b)
$$d^{3n+}$$

c)
$$-p^{18}$$

d)
$$q^{17}$$

e)
$$r^{17}$$
 f) $\alpha^{11} \cdot \beta^{5}$
31. a) $3^{2} = 9$ b) $5^{-1} = \frac{1}{5}$

f)
$$\alpha^{11} \cdot \beta$$

c)
$$-2^{-3} = -\frac{1}{2^3} = -\frac{1}{8}$$
 d) $2^{-10} = \frac{1}{2^{10}}$

d)
$$2^{-10} = \frac{1}{2^{10}}$$

f)
$$y^{-n-1}$$

32. a)
$$z^{-2n-2}$$
 b) 1

d)
$$-h^{-2k-2}$$

e)
$$(2k-1)^{-1} = \frac{1}{2k-1}$$

f) $-(v-w)^5 = (w-v)^5$

d)
$$-2^5$$

e)
$$-w^{20}$$

f)
$$x^{5n}$$

g)
$$7y^{10}$$

h)
$$\lambda^{2n-4}$$

34 a)
$$10^{-6}$$

33. a) 3¹³

d)
$$-\frac{1}{10^2}$$

e)
$$10^{m+1}$$

35. a)
$$5^{-7}$$

d)
$$-3^{-6} = -\frac{1}{3^6}$$

e)
$$b^{-5} = \frac{1}{b^5}$$
 f) $c^{-3} = \frac{1}{c^3}$

f)
$$c^{-3} = \frac{1}{3}$$

h)
$$y^{-3} = \frac{1}{v^3}$$

36. a)
$$z^{m+1}$$

c)
$$w^{4k}$$

d)
$$r^{-2} = \frac{1}{r^2}$$

e)
$$u^{-2n+8}$$

g)
$$(\delta - \varepsilon)^{3m-3}$$

e)
$$u^{-2n+8}$$
 f) p^{m+5}
h) $r^{-6}(s-2)^{-7} = \frac{1}{r^6(s-2)^7}$

37. a)
$$10^{-6} = \frac{1}{10^6}$$

b)
$$10^{-6} = \frac{1}{10^6}$$

g)
$$\frac{1}{10^6}$$

i)
$$10^{4a^2+8a}$$

38. a)
$$3^{-6} = \frac{1}{3^6}$$
 b) $3^{-6} = \frac{1}{3^6}$ e) a f) a^6

b)
$$3^{-6} = \frac{1}{3^6}$$

c)
$$3^6$$

g) $4b^{-6} = \frac{4}{b^6}$

h)
$$16e^4f^{-8}g^{12}$$

i)
$$5xy^4$$

39. a) 2^{12}

b)
$$\left(\frac{1}{2}\right)^{12} = \frac{1}{2^{12}}$$

c)
$$(\sqrt{5})^{10m} = 5^{5m}$$

d)
$$n^{n^2}$$

e)
$$m^{3n-3}$$

f)
$$(p-1)^{k^2+km+m-1}$$

c)
$$2(xy)^6$$

d)
$$-(6k)^a$$

g)
$$2(2a^2)^{n+3}$$

h)
$$\alpha(\alpha\beta^2\theta^2)^5 = \alpha^6\beta^{10}\theta^{10}$$

i)
$$x(xy^3z)^3 = x^4y^9z^3$$

41. a)
$$6^{-3} = \frac{1}{6^3}$$

b)
$$0.5^{-4} = \left(\frac{1}{2}\right)^{-4} = 2^4$$

(2*uv*)⁻³ =
$$\frac{1}{(2uv)^3}$$

h)
$$\alpha(\alpha\beta^2\theta^2)^5 = \alpha^6\beta^{10}\theta^{10}$$
 i) $x(xy^3z)^3 = x^4y^9z^3$
41. a) $6^{-3} = \frac{1}{6^3}$ b) $0.5^{-4} = \left(\frac{1}{2}\right)^{-4} = 2^4$ c) $(2uv)^{-3} = \frac{1}{(2uv)^3}$ d) $2(uv)^{-3} = \frac{2}{(uv)^3}$

e)
$$a^{-2n} = (a^2)^{-n} = \frac{1}{(a^2)^n} = \frac{1}{a^{2n}}$$

f)
$$(-5\delta\lambda)^{1-k}$$

g)
$$(f^2 - g^2)^{-m} = \frac{1}{(f^2 - g^2)^m}$$

h)
$$(16y^2 - 9x^2)^{3-4n} = \frac{1}{(16y^2 - 9x^2)^{4n-3}}$$

c)
$$\left(\frac{1}{20}\right)^4 = \frac{1}{20^4}$$

e)
$$(\frac{5}{2})^4$$

g)
$$16\left(\frac{x}{2y}\right)^3 = \frac{2x^3}{y^3}$$
 h) $\left(\frac{m^3}{n}\right)^2$

h)
$$\left(\frac{m^3}{n}\right)^2$$

i)
$$\left(\frac{p}{q}\right)^3$$

43. a)
$$3^{-3} = \frac{1}{3^3}$$
 b) $5^{-3} = \frac{1}{5^3}$

b)
$$5^{-3} = \frac{1}{5}$$

c)
$$w^{-2k} = (w^2)^{-k} = \frac{1}{(w^2)^k} = \frac{1}{w^{2k}}$$

d)
$$-\left(\frac{2x}{3y}\right)^{1-4m} = -\left(\frac{3y}{2x}\right)^{4m-1}$$

e)
$$(-3z)^{-3n} = \frac{1}{(-3z)^{3n}}$$

f)
$$(\beta + \delta)^{2k}$$

44. a)
$$x = 26$$

b)
$$x = 2$$

c)
$$x = \frac{33}{4}$$

d)
$$x = 2$$

e)
$$x = 1$$

f)
$$x = -1$$

g)
$$x = -15$$

44. a)
$$x = 26$$
 b) $x = 2$ c) $x = \frac{33}{4}$ d) $x = 2$ e) $x = 11$ f) $x = -12$ g) $x = -15$ h) $x = -\frac{2}{3}$

i)
$$x = \frac{1}{5}$$

45. a)
$$-20a^{10} + 12a^9 - 12a^8 + 4a^7$$

c)
$$c^8 - d^8$$

d)
$$u^{2m+2} - u^{2n+2}$$

e)
$$a^{20} + 2a^{10}b^5 + b^{10}$$

f)
$$x^{-5}y^{-5} - x^5y^5 = \frac{1}{x^5v^5} - x^5y^5$$

b) $6x^8y^7 + 6x^7y^6 + 4x^6y^8 - 6xy^{11}$

46. a)
$$m^{-2} - 2m^{-1}n^{-2} + n^{-4} = \frac{1}{m^2} - \frac{2}{mn^2} + \frac{1}{n^4}$$

c)
$$-2z^{-6} + 2 = -\frac{2}{z^6} + 2$$

d)
$$\frac{2\theta^2}{(\theta+1)(\theta-1)} = \frac{2\theta^2}{\theta^2-1}$$

47. a)
$$a^6(a+1)$$

b)
$$b^3(b+c)^2$$
 c) $d^n(d-1)$

d)
$$e^n (3e - 1)^2$$

e)
$$k^8(k^2+1)(k+1)(k-1)$$

f)
$$x^3(x-1)^2$$

g)
$$y^{n}(y+1)(y-1)$$
 h) $(f^{n}+g^{m})(f^{n}-g^{m})$ i) geht nicht

d)
$$k^{750} - 1$$

48. a)
$$a^{10} - a^5$$
 b) b^7
e) $p + 1$ f) $\frac{1}{3^{10}}$
49. a) $6ab^2$ b) $\frac{1}{6}$

d)
$$k^{750}$$
 –

b)
$$\frac{1}{6}$$

c)
$$\frac{64c^2}{z^2}$$

d)
$$96 a^{n-3} x^6$$

50. a)
$$(p-2)^2$$
 b) $-d^{12n}x$

b)
$$-d^{12n}x$$

c)
$$-\frac{1}{24}\lambda^{20}$$

d)
$$\frac{1}{10}a^{20}$$

J 1 . U /

Stadium n	0	1	2	3	4	5	6	7
I _n	1	3 ⁻¹	3 ⁻²	3 ⁻³	3 ⁻⁴	3 ⁻⁵	3 ⁻⁶	3 ⁻⁷
s _n	1	4 ¹	4 ²	4 ³	4 ⁴	4 ⁵	4 ⁶	4 ⁷
g_{n}	1	$\left(\frac{4}{3}\right)^1$	$\left(\frac{4}{3}\right)^2$	$\left(\frac{4}{3}\right)^3$	$\left(\frac{4}{3}\right)^4$	$\left(\frac{4}{3}\right)^5$	$\left(\frac{4}{3}\right)^6$	$\left(\frac{4}{3}\right)^7$

b)
$$\{I_n\} = 3^{-n}; \{s_n\} = 4^n; \{g_n\} = \left(\frac{4}{3}\right)^n$$

c)

Stadium n	8	9	10	20	30	50
I _n	3 ⁻⁸	3 ⁻⁹	3 ⁻¹⁰	3 ⁻²⁰	3 ⁻³⁰	3 ⁻⁵⁰
s _n	48	4 ⁹	4 ¹⁰	4 ²⁰	4 ³⁰	4 ⁵⁰
g_{n}	10.0	13.3	17.8	315.3	5560	1765781

d) l_n geht gegen null; s_n und g_n gehen gegen unendlich

53. a)
$$5 \cdot 10^4$$
 b) $1.23456 \cdot 10^5$

d)
$$7 \cdot 10^{-3}$$

e)
$$1.2345 \cdot 10^{-1}$$
 f) $2.71828 \cdot 10^{-5}$

i)
$$1.7 \cdot 10^{-2}$$

54. a)
$$1 \cdot 10^{-8} = 10^{-8} = \frac{1}{10^8}$$

c)
$$1 \cdot 10^{-1} = 10^{-1} = \frac{10}{10}$$

b)
$$-1 \cdot 10^{-8} = -10^{-8} = -\frac{1}{10^8}$$

d)
$$1 \cdot 10^1 = 10$$

55. a)
$$3517 \cdot 10^3$$
, $4 \cdot 10^6$, $3.5 \cdot 10^6$

b)
$$203468 \cdot 10^3, 203 \cdot 10^6, 2.0 \cdot 10^8$$

56. a)
$$7.879 \cdot 10^{-2}$$

56. a)
$$7.879 \cdot 10^{-2}$$
 b) $3.142 \cdot 10^{0} = 3.142$ c) $2.455 \cdot 10^{7}$ d) $5.055 \cdot 10^{-5}$

d)
$$5.055 \cdot 10^{-5}$$

57. a)
$$7 \cdot 10^{-5}$$
 m

b)
$$1.25 \cdot 10^{-7}$$
 m

$$(-7.10^{-10})$$

c)
$$7 \cdot 10^{-10}$$
 m d) $1 \cdot 10^{-14}$ m

e)
$$2.5 \cdot 10^{-7}$$
 m

Das Proton ist 1833-mal schwerer als das Elektron. 58.

60. a)
$$5 \cdot 10^{12}$$

b)
$$3 \cdot 10^{13}$$

c)
$$2.25 \cdot 10^8$$

e)
$$2.4 \cdot 10^{10} - 6 \cdot 10^{10}$$
 f) $1.4 \cdot 10^{-3} : 1$

c) $1.496 \cdot 10^6 \text{ km / Tag}$; $5.361 \cdot 10^8 \text{ km / Jahr}$

63. a)
$$4 \cdot 10^{-6} \,\text{mm} = 4 \,\text{Nanometer}$$

b)
$$2.5 \cdot 10^5 \,\text{m}^2$$
 Der ganze See ist mit Öl bedeckt.

b)
$$16; 19683; 4.295 \cdot 10^9; 2.98 \cdot 10^{17}; 1.031 \cdot 10^{28}; 2.569 \cdot 10^{41}; 6.277 \cdot 10^{57}; 1.966 \cdot 10^{77}; 10^{100}$$

c)
$$4^{4}$$
; $3^{3^{7.6 \cdot 10^{12}}}$; $2^{2^{65536}}$

Lösungen zu Übungen 21

70.

	64	128	256	255
a)	100 0000	1000 0000	1 0000 0000	1111 1111
b)	100	200	400	377
c)	40	80	100	FF

	1023	189	567	123
a)	11 1111 1111	1011 1101	10 0011 0111	111 1011
b)	1777	275	1067	173
c)	3FF	BD	237	7B

d) 3 Stellen im Binärsystem entsprechen einer Stelle im Oktalsystem. 4 Stellen im Binärsystem entsprechen einer Stelle im Hexadezimalsystem.

Es kann gruppenweise umgérechnet werden: $10 \ 011 \ 101 = 235_8$ oder $1001 \ 1101 = 9C_{16}$

+	1	2	3	4	5	6	7
1	2	3	4	5	6	7	10
2	3	4	5	6	7	10	11
3	4	5	6	7	10	11	12
4	5	6	7	10	11	12	13
5	6	7	10	11	12	13	14
6	7	10	11	12	13	14	15
7	10	11	12	13	14	15	16

b)

*	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	10	12	14	16
3	3	6	11	14	17	22	25
4	4	10	14	20	24	30	34
5	5	12	17	24	31	36	43
6	6	14	22	30	36	44	52
7	7	16	25	34	43	52	61

c)/d) z. B. "behalte" bei 8 statt 10.

5 Radizieren

Lösungen zu Übungen 22

e)
$$\frac{6}{9} = \frac{2}{3}$$

g)
$$xy^2z^3$$

h)
$$\frac{4}{b^5}$$

2. a) 0 b)
$$2\sqrt{n}$$

c)
$$1.4\sqrt{a} + \sqrt{l}$$

c)
$$1.4\sqrt{a} + \sqrt{b}$$
 d) $\frac{3}{8}\sqrt{x} + \frac{5}{8}\sqrt{y}$

3. a)
$$\sqrt{16} = 4$$

c)
$$\sqrt{4a}$$

d)
$$\sqrt{9} = 3$$

e)
$$\sqrt{\frac{b}{9}}$$

i) $\sqrt{\beta\gamma}$

f)
$$\frac{a}{b^2}$$

h)
$$\frac{6}{7}mn^2$$

4. a)
$$3\sqrt{3}$$
 b) $2y\sqrt{2y}$

b)
$$2y\sqrt{2y}$$

c)
$$4\sqrt{x}$$

d)
$$4abc^2\sqrt{3ac}$$

e)
$$\frac{u}{w}\sqrt{uv}$$

e)
$$\frac{u}{w}\sqrt{uv}$$
 f) $\frac{0.01y^2}{9z^4}\sqrt{\frac{y}{z}}$

g)
$$f\sqrt{f+1}$$

i)
$$(u-2)\sqrt{5}$$

5. a)
$$\frac{\sqrt{3}}{3}$$

b)
$$\frac{\sqrt{11}}{33}$$

c)
$$\frac{4\sqrt{5}}{5}$$

d)
$$\frac{\sqrt{21}}{7}$$

e)
$$\frac{\sqrt{2y}(\sqrt{3y}-1)}{2xy}$$
 f) $\sqrt{r}-\sqrt{s}$

f)
$$\sqrt{r} - \sqrt{s}$$

6. a)
$$\frac{5\sqrt{3}-5}{2}$$

b)
$$\sqrt{a} - 1$$

c)
$$\frac{\sqrt{5} + \sqrt{3}}{2}$$

d)
$$\sqrt{u} - \sqrt{v}$$

e)
$$\frac{(\sqrt{5} - \sqrt{2})^2}{3}$$
 f) $\frac{(3 - 2\sqrt{x})^2}{9 - 4x}$

f)
$$\frac{(3-2\sqrt{x})^2}{9-4x}$$

g)
$$\frac{\sqrt{q+3}}{q+3}$$

h)
$$\sqrt{a-b}$$

i)
$$\sqrt{a} + \sqrt{b}$$

7. Richtig: (1)

8. a)
$$121^{\frac{1}{2}} = 11$$

b)
$$27^{\frac{1}{3}} = 3$$

c)
$$32^{\frac{1}{5}} = 2$$

d)
$$1000^{\frac{1}{3}} = 10$$

e)
$$100000000^{\frac{1}{4}} = 100 \text{ f}$$
) $0.000001^{\frac{1}{6}} = 0.1$

g)
$$\left(\frac{36}{81}\right)^{\frac{1}{2}} = \frac{6}{9} = \frac{2}{3}$$
 h) $\left(\frac{243}{32}\right)^{\frac{1}{5}} = \frac{3}{2}$

h)
$$\left(\frac{243}{32}\right)^{\frac{1}{5}} = \frac{3}{2}$$

9. a)
$$\sqrt{144} = 12$$
 b) $\sqrt[3]{125} = 5$

b)
$$\sqrt[3]{125} = 5$$

c)
$$\sqrt[4]{256} = 4$$

d)
$$\sqrt[4]{625} = 5$$

e)
$$\sqrt[3]{0.000001} = 0.01$$
 f) $\sqrt[5]{0.00032} = 0.2$

g)
$$\sqrt[3]{\frac{8}{64}} = \frac{2}{4} = \frac{1}{2}$$

g)
$$\sqrt[3]{\frac{8}{64}} = \frac{2}{4} = \frac{1}{2}$$
 h) $\sqrt[5]{\frac{100000}{32}} = \frac{10}{2} = 5$

11. a)
$$\sqrt[3]{a}$$
 b) $\sqrt[4]{b^3} = (\sqrt[4]{b})^3$ c) $\sqrt[5]{c'} = (\sqrt[5]{a})$
e) $4x\sqrt{y^3} = 4x(\sqrt{y})^3$ f) $\sqrt{64x^3y^3} = 8\sqrt{x^3y^3}$ g) $\sqrt[4]{f} + \sqrt[4]{g}$

f) 3.201 g) 1.957
b)
$$\sqrt[4]{b^3} = (\sqrt[4]{b})^3$$
 c) $\sqrt[5]{c^r} = (\sqrt[5]{c})^r$

c)
$$\sqrt{c'} = (\sqrt[4]{c})'$$

d)
$$\sqrt[5]{m^2} = (\sqrt[5]{m})^2$$

h) $\sqrt[3]{\lambda} + \sqrt[3]{\mu^2} + 1$

i)
$$op^{a-1}\sqrt{q^{a+b}} = op^{(a-1)}\sqrt{q}^{a+b}$$

12. a)
$$\frac{1}{\sqrt[3]{x^4}} = \frac{1}{(\sqrt[3]{x})^4}$$
 b) $\frac{3}{\sqrt[5]{y^4}} = \frac{3}{(\sqrt[5]{y})^4}$

b)
$$\frac{3}{\sqrt[5]{\sqrt{4}}} = \frac{3}{(\sqrt[5]{y})^4}$$

c)
$$\frac{2}{\sqrt{z^5}}$$

d)
$$\sqrt[4]{a^3}$$

e)
$$\sqrt[q]{\left(\frac{c}{b}\right)^p}$$
 f) $\frac{1}{\sqrt[5]{e}}$

f)
$$\frac{1}{\sqrt[5]{e}}$$

g)
$$\sqrt[5]{k^4}$$

$$h) \quad \sqrt[3]{\frac{x}{\sqrt{y}} - \frac{1}{\sqrt{xy}} + y}$$

i)
$$\sqrt[6]{\frac{1}{\sqrt{(\alpha-\beta)^3}} + \phi}$$

13. a)
$$x^{\frac{1}{3}}$$

b)
$$y^{\frac{4}{5}}$$

c)
$$z^{-\frac{3}{2}} = \frac{1}{z^{\frac{3}{2}}}$$

d)
$$\left(\frac{2a}{b}\right)^{\frac{1}{4}}$$

e)
$$(c d^2 e^4)^{\frac{1}{3}} = c^{\frac{1}{3}} d^{\frac{2}{3}} e^{\frac{4}{3}}$$

f)
$$m^{\frac{2}{3}} \cdot n^{\frac{1}{2}}$$

g)
$$(p^2-q^2)^{\frac{1}{2}}$$

h)
$$(\psi - 2)^{\frac{-2}{3}} = \frac{1}{(\psi - 2)^{\frac{2}{3}}}$$

i)
$$(v - w^{\frac{3}{4}})^{\frac{1}{2}}$$

14 a)
$$3^2 = 9$$

b)
$$5^3 = 125$$

c)
$$2^7 = 128$$

d)
$$5^3 = 125$$

14. a)
$$3^2 = 9$$
 b) $5^3 = 125$
e) $10^{-1} = \frac{1}{10}$ f) $2^{-1} = \frac{1}{2}$

$$5^{\circ} = 125$$

g)
$$\left(\frac{1}{5}\right)^{-1} = 5$$

h)
$$\left(\frac{1}{2}\right)^{-1} = 2$$

i)
$$10^{-3} = \frac{1}{10^{3}} = \frac{1}{1000}$$

b)
$$\left(\frac{1}{2}\right)^{-3} = 2^3 = 8$$

c)
$$\left(\frac{1}{10}\right) = 10^2 = 1$$

d)
$$25^{\frac{1}{2}} = 5$$

e)
$$25^{-\frac{1}{2}} = 5^{-1} = \frac{1}{5}$$
 f) $32^{\frac{1}{5}} = 2$

f)
$$32^{\frac{1}{5}} = 2$$

g)
$$32^{-\frac{1}{5}} = 2^{-1} = \frac{1}{2}$$
 h) $\left(\frac{1}{10}\right)^{-1} = 10$

h)
$$\left(\frac{1}{10}\right)^{-1} = 10$$

i) $\frac{1}{6^3} = \frac{1}{216}$

Lösungen zu Übungen 24

16. a)
$$a^2$$

b)
$$b^{\frac{1}{30}}$$

c)
$$c^0 = 1$$

d)
$$x^{\frac{ru+st}{su}}$$

e)
$$y^{\frac{-3m+2n}{2n}}$$

f)
$$z^{\frac{-p^2-2}{p}}$$

17. a)
$$c^{\frac{1}{4}}$$

b)
$$d^{\frac{19}{12}}$$

c)
$$e^{\frac{2}{7}}$$

d)
$$x^{\frac{uw-tv}{vw}}$$

e)
$$v^{\frac{3m-n}{n}}$$

f)
$$\mu^{\frac{p+2q}{pq}}$$

18. a)
$$a^{\frac{7}{4}}$$

b)
$$b^{\frac{1}{8}}$$

c)
$$c^{\frac{n}{m}}$$

b)
$$\frac{1}{2}$$

c)
$$\frac{1}{4}$$

g) $\left(\frac{pq}{2}\right)^{\frac{r}{5}}$

h)
$$\frac{\varphi^4}{\chi^2}$$

i)
$$\left(\frac{n}{V}\right)^{\frac{1}{3}}$$

b)
$$\frac{1}{5^5} = \frac{1}{3125}$$

c)
$$\frac{1}{4^2} = \frac{1}{16}$$

d)
$$25^{\frac{1}{2}} = 5$$

20 a) $12^{\frac{1}{4}}$

f)
$$z^{\frac{9}{2}}$$

g)
$$\left(\frac{m}{n}\right)^{\frac{4}{3}}$$

h)
$$(r+s)^{\frac{p}{q}}$$

i)
$$\left(\frac{\delta}{dt}\right)^{\frac{1}{2}}$$

$$(\delta)^{\frac{1}{2}}$$

$$1) \quad (r+s)^{\overline{q}}$$

b)
$$2^{-5} = \frac{1}{2^5} = \frac{1}{32}$$

d)
$$5^3 = 125$$

c)
$$\frac{1}{7a}$$

d)
$$\frac{5}{\sqrt{h}}$$

22. a)
$$y^{\frac{1}{3}}$$
 e) $\frac{5 \varepsilon^5}{4 \lambda^2}$

f)
$$\frac{4}{25}u^{\frac{1}{3}}$$

23. a) $\frac{4}{3}$

c)
$$z^{\frac{6}{5}} - 2z + z^{\frac{4}{5}}$$

e)
$$\frac{(p+q)^2}{pq}$$

g)
$$\frac{1}{b^3 + 2b^2 + b}$$

24. a)
$$(d-1)^{\frac{1}{3}}$$

c)
$$c^{\frac{1}{2}} - d^{\frac{1}{2}}$$

e)
$$x^{\frac{1}{2}} \varphi^{\frac{1}{3}} + x^{\frac{1}{2}} \lambda^{\frac{1}{3}}$$

b)
$$x^{\frac{4}{3}} + 2x^{\frac{2}{3}}y^{-\frac{2}{3}} + y^{-\frac{4}{3}}$$

d)
$$m - n^{-1} = m - \frac{1}{n}$$

f)
$$-a - a^{\frac{1}{2}} - 1$$

h)
$$\frac{1}{\epsilon^{-\frac{4}{3}} - 2\epsilon^{-1} + \epsilon^{-\frac{2}{3}}}$$

b)
$$(e-f)^{\frac{1}{6}}$$

d)
$$x^{\frac{1}{5}} + y^{\frac{1}{5}}$$

f)
$$(a^{\frac{1}{2}} + b^{\frac{1}{2}})(c^{\frac{1}{4}} + d^{\frac{1}{4}})$$

25. a)
$$-2\sqrt[4]{a} = -2a^{\frac{1}{4}}$$

c)
$$\sqrt[6]{Z} + \sqrt[5]{Z} - \sqrt[3]{Z} + \sqrt{Z}$$

e)
$$\sqrt[3]{b} + \sqrt{b} = b^{\frac{1}{3}} + b^{\frac{1}{2}}$$

b)
$$3 \cdot \sqrt[5]{a} \cdot \sqrt{b}$$

d)
$$(a+b)^{10}\sqrt{x} - (c+d)^{4}\sqrt{x}$$

f)
$$\frac{7}{8}\sqrt[3]{x-y} = \frac{7}{8}(x-y)^{\frac{1}{3}}$$

26. a)
$$\sqrt{16} = 4$$

b)
$$\sqrt[4]{64} = \sqrt{8} = 2\sqrt{2}$$
 c) a^2b

c)
$$a^2b$$

d)
$$y^{2p+1}$$

f)
$$\frac{3f}{a^2h}$$

27. a)
$$\frac{6}{7}mn^2$$
 b) ab^2c^3

b)
$$ab^2c$$

c)
$$\frac{4 \mu^2}{\omega^2}$$

d)
$$\frac{rs^2}{t^3}$$

f)
$$\sqrt[5]{q-p}$$

28. a)
$$\sqrt{4a}$$
 b) $\sqrt[5]{32b}$

b)
$$\sqrt[5]{32b}$$

c)
$$\sqrt[4]{\frac{1}{9}} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3}$$

d)
$$\sqrt[3]{0.027a}$$

e)
$$\sqrt[3]{64c}$$
 f) $\sqrt[3]{\frac{b}{125}}$

29. a)
$$\sqrt[3]{32x^5}$$
 b) $\sqrt[4]{81c^5}$

30. a) $3\sqrt{3}$

b)
$$\sqrt[4]{81}c^5$$

c)
$$\sqrt[m]{p^3 q^{m-1}}$$

e)
$$\sqrt[4]{v^{15}w^5}$$
 f) $\sqrt[n]{\phi^{3n+1} - \phi^{3n-1}}$
a) $3\sqrt{3}$ b) $2\sqrt[3]{3}$

d)
$$5\sqrt[3]{2}$$

e)
$$2\sqrt[7]{2^3} = 2\sqrt[7]{8}$$

e)
$$2\sqrt[7]{2^3} = 2\sqrt[7]{8}$$
 f) $\frac{1}{3} \cdot \frac{1}{\sqrt[3]{3}} = \frac{1}{9} \cdot \sqrt[3]{9}$ g) $4\sqrt{x}$

g)
$$4\sqrt{x}$$

h)
$$y^2 \sqrt[3]{2}$$

i)
$$3pq \sqrt[4]{pr^3}$$

31. a)
$$3ab^3c \cdot \sqrt[3]{2b^2c^2}$$
 b) $\frac{u^4}{vw^8}\sqrt{\frac{u}{v}}$

b)
$$\frac{u^4}{vw^8}\sqrt{\frac{u}{v}}$$

c)
$$\frac{y^2}{900z^4}\sqrt{\frac{y}{z}}$$

d)
$$a^3 \sqrt[m]{a^{-1}} = \frac{a^3}{\sqrt[m]{a}}$$

e)
$$b^3 \sqrt[a]{b}$$

f)
$$\frac{1}{c} \sqrt[n]{c^5}$$

c)
$$\frac{\tau^2}{316} \sqrt[3]{\frac{\tau+1}{16}}$$

$$\frac{1}{4}\sqrt[3]{\frac{\tau+1}{14}}$$

32. a)
$$g^2 \sqrt[5]{g^5 + 1}$$
 b) $k \sqrt[k]{k^{2k} - 1}$

f)
$$\alpha \lambda^2 \sqrt[3]{\alpha^3 + \alpha^2 \lambda}$$

e)
$$(u-2)\sqrt{5}$$
 f) $\alpha \lambda^2 \sqrt[3]{\alpha^3 + \alpha^2 \lambda}$

d) -

e) 2 f) 2
34. a)
$$\frac{2^{\frac{9}{5}}}{2} = 2^{\frac{4}{5}} = \sqrt[5]{2^4}$$
 b) $\frac{\sqrt[3]{49}}{14}$

b)
$$\frac{\sqrt[3]{49}}{14}$$

c)
$$\frac{\sqrt[4]{y^3}}{v}$$

$$\mathbf{d)} \ \frac{\sqrt[m]{a^{m-1}}}{a}$$

e)
$$\frac{\sqrt[m]{b^{m-n}}}{b}$$
 f) $\frac{\sqrt[m+1]{c}}{c}$

f)
$$\frac{m+\sqrt{C}}{C}$$

35. a)
$$\sqrt{a} - 1$$

b)
$$\frac{(\sqrt{7} + \sqrt{3})^2}{4} = \frac{5 + \sqrt{21}}{2}$$

35. a)
$$\sqrt{a} - 1$$
 b) $\frac{(\sqrt{7} + \sqrt{3})^2}{4} = \frac{5 + \sqrt{21}}{2}$ c) $\frac{(3 - 2\sqrt{x})^2}{9 - 4x} = \frac{4x - 12\sqrt{x} + 9}{9 - 4x}$

d)
$$\sqrt{u} + \sqrt{v}$$
 e) $\sqrt{x} - \sqrt{y}$

e)
$$\sqrt{x} - \sqrt{y}$$

f)
$$\frac{\sqrt{5} + \sqrt{3}}{2}$$

g)
$$\frac{\sqrt[3]{(p-2)^2}}{p-2}$$

g)
$$\frac{\sqrt[3]{(p-2)^2}}{p-2}$$
 h) $\frac{\sqrt[3]{(2a+b)^2}}{2a+b}$

i)
$$\sqrt[4]{(\mu-\theta)^3}$$

36. a)
$$\sqrt[3]{9} - 2\sqrt[3]{6} + \sqrt[3]{4}$$

b)
$$\sqrt{5} + 2\sqrt[4]{5} + 1$$

c)
$$\sqrt{2} - 2$$

d)
$$\sqrt[5]{25} - 2\sqrt[5]{5}\sqrt[10]{2} + \sqrt[5]{2}$$

e)
$$x^{2k} - 2(xy)^k + y^{2k}$$

f)
$$\sqrt[m]{a} + 2\sqrt[2m]{a}\sqrt[n]{b} + \sqrt[n]{b^2}$$

g)
$$\sqrt[3]{\mu^2} + 2 \cdot \sqrt[3]{\mu\vartheta} + \sqrt[3]{\vartheta^2}$$

h)
$$\sqrt{c} + \sqrt{c^{-1}} + 2 = \sqrt{c} + \frac{1}{\sqrt{c}} + 2$$

37. a)
$$x = \frac{1}{6}$$

b)
$$x = \frac{3}{2}$$

c)
$$x = -\frac{7}{2}$$

c)
$$x = -\frac{7}{2}$$
 d) $x = \frac{1}{a} + 3 = \frac{3a+1}{a}$

e)
$$x = \frac{3}{20}$$

e)
$$x = \frac{3}{20}$$
 f) $x = -\frac{1}{m} - \frac{2}{n} = -\frac{2m+n}{mn}$

g)
$$x = \frac{5}{2}$$

h)
$$x = -\frac{14}{3}$$
 i) $x = \pm \sqrt{31}$

i)
$$x = \pm \sqrt{31}$$

c)
$$\sqrt{z}$$

e)
$$\sqrt[m]{\alpha^3 \phi^2 \mu}$$

f)
$$\sqrt{k}$$

q)
$$\sqrt[4]{h^3}$$

h)
$$\sqrt[3]{p}$$

39. a)
$$\sqrt[8]{y^7}$$

b)
$$\sqrt[15]{z^{17}}$$

d)
$$\sqrt[5]{f^{-8}} = \frac{1}{\sqrt[5]{f^8}}$$

e)
$$\sqrt[40]{\theta^{-51}} = \frac{1}{\sqrt[40]{\theta^{51}}}$$
 f) $\sqrt[72]{k}$

f)
$$\sqrt[72]{k}$$

g)
$$\sqrt[8]{p^{-5}} = \frac{1}{\sqrt[8]{p^5}}$$

h)
$$\sqrt[12]{\mu^{-1}} = \frac{\sqrt{1}}{\sqrt[12]{\mu}}$$

i)
$$\frac{\sqrt[4]{a^3}}{\sqrt[8]{b^7}} = \sqrt[8]{\frac{a^6}{b^7}}$$

40. a)
$$\sqrt[5]{x^{13}}$$

b)
$$a^{-6} = \frac{1}{a^6}$$

40. a)
$$\sqrt[5]{x^{13}}$$
 b) $a^{-6} = \frac{1}{a^6}$ c) $4b^{\frac{5}{12}} = 4 \cdot \sqrt[12]{b^5}$ d) $-\sqrt{y}$

d)
$$-\sqrt{v}$$

e) 2 f)
$$-d^{-\frac{1}{2}} = -\sqrt{d^{-1}} = -\frac{1}{\sqrt{d}}$$

41. a) $\sqrt[5]{p-q}$ b) $\sqrt[3]{v} + 1$ c) $\sqrt{a} (c^4 - d^3)$

41. a)
$$\sqrt[5]{p-q}$$

b)
$$\frac{\sqrt[3]{V} + 1}{\sqrt[3]{V} - 1}$$

c)
$$\sqrt{a} (c^4 - d^3)$$

d)
$$y^{\frac{1}{m}} \cdot (x+y)^{\frac{1}{2m}} = \sqrt[m]{y} \cdot \sqrt[2m]{x+y}$$

e)
$$x + y$$

42. a)
$$f_1 = 1$$
; $f_{50} = 1.259 \cdot 10^{10}$; $f_{100} = 3.542 \cdot 10^{20}$; $f_{400} = 1.7602 \cdot 10^{83}$

b) TR Überlauf (
$$f_{400} = 4.347 \cdot 10^{208}$$
)

c)
$$f_1 = f_2 = 1$$
; $f_3 = 2$; $f_4 = 3$; $f_5 = 5$; $f_6 = 8$; $f_7 = 13$

d) Fibonaccifolge

e)
$$f_n = f_{n-1} + f_{n-2}$$
; $f_8 = 21$; $f_9 = 34$; $f_{10} = 55$

43. a)
$$b_3 = 1.500$$
; $b_4 = 1.6\overline{6}$; $b_5 = 1.600$; $b_6 = 1.625$; $b_7 = 1.61538$...;

$$b_8 = 1.61904...; b_9 = 1.61764...; b_{10} = 1.61818...$$

b)
$$\Phi = \frac{\sqrt{5} + 1}{2} = 1.618033988...$$

c) geht *n* gegen unendlich, so geht f_n gegen Φ .

$$b_{20} = 1.618033998...; b_{50} = 1.618033988...; b_{100} = 1.618033988...$$

44. a) Vgl. Nr. 43. Die Folgenglieder sind die Kehrwerte: 1; $\frac{1}{2}$; $\frac{2}{3}$; ...

b)
$$\frac{1}{\Phi} = \frac{1 - \sqrt{5}}{2} = 0.618033988...$$

c)
$$c_{20} = 0.618033998...$$
; $c_{50} = 0.618033988...$; $c_{100} = 0.618033988...$

45. a)
$$v_1 = 1; v_2 = 1.4142...; v_3 = 1.5537...; v_4 = 1.5980...; v_5 = 1.61184...; v_6 = 1.61612...;$$

$$v_7 = 1.617442..; v_8 = 1.61785....; v_9 = 1.61797....; v_{10} = 1.61801....$$

b)
$$\Phi = \frac{\sqrt{5} + 1}{2} = 1.618033988...$$

c/d) geht *n* gegen unendlich, so geht v_n gegen $\frac{1+\sqrt{3}}{2}$.

46.
$$\frac{1+\sqrt{5}}{2}$$
; $\frac{1+\sqrt{3}}{2}$

c)
$$[1; 2; 2; 2; 2; 2; 2; 2] = 3.644 \cdot 10^{-7}$$
 (Differenz)

48. a) 2; 1.5; 1.6.... b) gegen
$$\Phi$$

49.

	Bahnradius <i>a</i> in AE	Umlaufzeit <i>T</i> in Jahren	
Merkur	0.3871	0.240843	
Venus	0.723186	0.615	
Erde	1	1	
Mars	1.5237	1.880829	
Jupiter	5.201221	11.862	
Saturn	9.5371	29.452659	
Uranus	19.181710	84.01	
Neptun	30.07	164.892211	
Pluto	39.438065	247.67	

50. a) 1;
$$\frac{1}{2}$$
; $\frac{1}{4}$; $\frac{1}{8}$; $\frac{1}{16}$; $\frac{1}{32}$; $\frac{1}{64}$; $\frac{1}{128}$; $\frac{1}{256}$; ...

b)
$$\{a_n\} = \left(\frac{1}{2}\right)^n$$

$$a_0 = 1; a_{n+1} = \frac{a_n}{2}$$

b)
$$\{a_n\} = \left(\frac{1}{2}\right)^n$$
 $a_0 = 1; a_{n+1} = \frac{a_n}{2}$
c) $1; \frac{1}{4}; \frac{1}{16}; \frac{1}{64}; \frac{1}{256}; \dots$ $\{a_n\} = \left(\frac{1}{4}\right)^n$

$$\{a_n\} = \left(\frac{1}{4}\right)^n$$

$$a_0 = 1; a_{n+1} = \frac{a_n}{4}$$

d) In Metern:
$$I_0 = 2^{\frac{1}{4}} \approx 1.1892$$
 (A0); $I_1 = 2^{-\frac{1}{4}} \approx 0.8409$ (A1); $I_2 = 2^{-\frac{3}{4}} \approx 0.5946$ (A2);

$$I_3 = 2^{-\frac{5}{4}} \approx 0.4204 \text{ (A2)}; I_4 = 2^{-\frac{7}{4}} \approx 0.2973 \text{ (A4)}; I_5 = 2^{-\frac{9}{4}} \approx 0.2102 \text{ (A5)};$$

$$I_6 = 2^{-\frac{11}{4}} \approx 0.1487 \text{ (A6)}; I_7 = 2^{-\frac{13}{4}} \approx 0.1051 \text{ (A7)};$$

e)
$$I_8 = 2^{-\frac{15}{4}} \approx 0.0743$$
 (A8);

f)
$$\{I_n\} = 2^{\frac{1-2n}{4}}; I_0 = 2^{\frac{1}{4}}; I_{n+1} = \frac{I_n}{2^{\frac{1}{2}}}$$

g)
$$\{I_n\} = 2^{\frac{1-4n}{4}}; \quad I_0 = 2^{\frac{1}{4}}; I_{n+1} = \frac{I_n}{2}$$

- 51. a) Zeichnung b) Ecke oben rechts, nein c) explizit: $d_n = \frac{3}{4(\sqrt[4]{2})^n}$ rekursiv: $d_1 = \frac{3}{4(\sqrt[4]{2})}$; $d_{n+1} = d_n \cdot \frac{1}{\sqrt{2}}$; $S_7 = 1.96$ m
 - d) $S_1 = 0.631...$
- **52.** a) Zeichnung b) z. B. 3.7013 m und 3.29648 m

6 Logarithmieren

2. a)
$$10^x = 10^3$$
; $x = 3$

b)
$$10^x = 10; x = 1$$

c)
$$10^x = 1; x = 0$$

d)
$$10^x = 10^{-8}; x = -8$$

b)
$$10^{x} = 10; x = 1$$

e) $10^{x} = 10^{-2}; x = -2$
f) $10^{x} = 10^{-1}; x = -1$

f)
$$10^x = 10^{-1}; x = -1$$

a)
$$10^x = 10^3; x = 3$$

b) $10^x = 10; x = 1$
d) $10^x = 10^{-2}; x = -8$
e) $10^x = 10^{-2}; x = -2$
g) $10^x = 10^{\frac{1}{2}}; x = \frac{1}{2}$
h) $10^x = 10^{\frac{2}{3}}; x = \frac{2}{5}$
a) $x = \log_{10} 10^4 = 4$
b) $x = 10^{-2}$

h)
$$10^x = 10^{\frac{2}{5}}; x = \frac{2}{5}$$

i)
$$10^x = 10^{-2}$$
; $x = -2$

3. a)
$$x = \log_{10} 10^4 = 4$$

c)
$$x = \log_{10} 1 = \log_{10} 10^0 = 0$$

e)
$$x = \lg 10^{\frac{1}{2}} = \frac{1}{2}$$

b)
$$x = \log_{10} 10^6 = 6$$

d)
$$x = \lg 10^{-3} = -3$$

f)
$$x = \lg 10^{-\frac{3}{7}} = -\frac{3}{7}$$

5. a) Zeichnung

6. a) $e^y = e^5; y = 5$

d) $e^y = e^1; y = 1$

7. a) $y = \ln e^k = k$

d) $y = \ln e^{\frac{4}{k}} = \frac{4}{k}$

8. a) $2^z = 2^3$; z = 3

d) $3^z = 3^{-3}; z = -3$

g) $10^{4z} = 10^1; z = \frac{1}{4}$

9. a) $w = \log_2 2^4 = 4$

d) $z = \log_2 2^0 = 0$

10. a) $y = \log_3 3^2 = 2$

12. a) 7

13. a) 3

14. a) $\frac{1}{4}$

e) $\frac{3}{2}$

15. a) x = 3

e) 70000

e) -3

d) $p = \lg 10 = 1$

b) 2 cm; 3 cm; 5 cm; 7 cm

b) $e^y = e^{-3}$; y = -3

e) $e^{y} = e^{\frac{5}{2}}; y = \frac{5}{2}$ b) $y = \ln e^{-k-1} = -k-1$ e) $y = \ln e^{-\frac{3}{k+1}} = -\frac{3}{k+1}$ b) $3^{z} = 3^{4}; z = 4$

e) $5^z = 5^{-4}$; z = -4

h) $2^{\frac{z}{2}} = 2^{-3}; z = -6$ b) $x = \log_2 2^{-6} = -6$ e) $v = \log_2 2^{-1} = -1$

b) $x = \log_3 3^{-\frac{1}{4}} = -\frac{1}{4}$

e) $q = \ln e^{-\frac{5}{4}} = -\frac{5}{4}$

11. a) 2; ln10; log₂5; 3; 4; 5; log₄1234; 6

b) -6; -5; $\log_5 0.001$; $\log_2 \frac{1}{18}$; -4; -3; $\log_3 \frac{1}{10}$; -2c) 20

g) 96

c) 0

g) $\frac{1}{3}$

c) $\frac{2}{3}$

g) $\frac{1}{4}$

c) $x = \frac{1}{2}$

c) x = 1

f) $\frac{e}{2}$

b) 1

f) 3

b) 30

b) $\frac{3}{2}$ f) $\frac{7}{2}$

b) x = 2

f) $x = \frac{1}{3}$ e) x = 516. a) x = 8 b) x = 256

e) x = 2f) $x = \frac{1}{4}$ b) x = 017. a) x = 1

e) $x = \frac{1}{2}$

i) $x = \frac{5}{2}$

f) x = -1

c) x = 2g) $x = -\frac{1}{4}$

18. a) D =]-4; $\infty[, x = -3]$

c) D = $\frac{1}{11}$; ∞ , $x = \frac{101}{11}$

e) D = $\frac{5}{2}$; ∞ , $x = \frac{15}{2}$

g) D =]-1; $\infty[, x = e^2 - 1]$

i) D =]0; ∞ [, $x = \frac{1}{e^2} = e^2$

19. a) 2.083 e) 10.02 **b**) 0.4878 f) -5.298 c) 1.000

g) -1.917

c) 2 cm; 2 cm; 4 cm; 6 cm

c) $e^y = e^{\frac{1}{2}}; y = \frac{1}{2}$

f) $e^y = e^0; y = 0$

c) $y = \ln e^{\frac{1}{k}} = \frac{1}{k}$

f) $y = \ln 0$; nicht definiert

c) $2^z = 2^{-4}$; z = -4

f) $2^{2z} = 2^1; z = \frac{1}{2}$

i) $5^{-z} = 5^{-2}; z = 2$

c) $y = \log_2 2^1 = 1$

f) $x = \log_2 2^{\frac{3}{2}} = \frac{3}{2}$

c) $x = \log_3 3^{\frac{3}{5}} = \frac{3}{5}$

f) $r = \log_5 5^{-3} = -3$

d) $\frac{1000}{1}$

h) $\frac{9}{2}$

d) -2

h) 4

d) $\frac{1}{2}$

h) $-\frac{2}{3}$

d) x = 4

d) $x = \frac{1}{9}$

d) x = n - 3

h) $x = \frac{6}{5}$

b) D =]2; ∞ [, x = 12

d) $D = \mathbb{R} \setminus \{1\}, x_1 = 1 + 10^{\frac{3}{2}}, x_2 = 1 - 10^{\frac{3}{2}}$

f) D = $\frac{3}{2}$; ∞ , $x = \frac{13}{2}$

h) D =]0; ∞ [, x = e

d) 2.303

h) nicht definiert

20. Richtig: (2)

21. a)
$$\log a + \log b$$

21. a)
$$\log_x a + \log_x b$$
 b) $\log_x 3 + \log_x y + 1$

c)
$$\ln 4 + \ln u + \ln(v + 3)$$

d)
$$4\log_a p + \log_a (4p^2 + 1) + \log_a (2p + 1) + \log_a (2p - 1)$$

$$f) - \lg p - \lg q$$

g)
$$\ln a + \ln b + \ln c - \ln v - \ln w$$

b) $\log_a 5 + 2 \log_a b + 5 \log_a c$

h)
$$\log_a y - \log_a (z+1) - \log_a (z-10)$$

i)
$$\log_a (a + 1) - \log_a (x - 4y) - \log_a (x - 4y)$$

f) $\frac{4}{3} + \log_a 2 + \frac{1}{6} \log_a p - \frac{5}{3} \log_a b - \frac{7}{3} \log_a q$

22. a)
$$2\log_a m + 3\log_a n$$

c)
$$(y + 3)\log_a x + \frac{1}{2}\log_a z$$

e)
$$b\ln(a+1) - (c-1)\ln a$$

23. a)
$$\frac{5}{6} - \log_p 4$$

f)
$$\frac{3}{2} + \log_k 3$$

c) $30 \lg s - 40 \lg r$

d) $4\ln f - 3\ln q$

d)
$$\frac{1}{2}$$
lg($\lambda + 2$) $-\frac{3}{4}$ lg σ

e)
$$2\log_2(y-4) - \log_2 x - 6$$

e)
$$2\log_2(y-4) - \log_2 x - 6$$

b)
$$\frac{2}{5}\log_a(a+b+1)$$

d)
$$\frac{1}{a} \lg(m^3 + n^2)$$

d)
$$\frac{1}{a} \lg(m^3 + n^2)$$
 e) $\frac{2}{p-a} \lg(x-y)$ f) $\frac{1}{x-y} \log_b(h-4) + \frac{1}{x-y} \log_b(h-2)$

24. a)
$$\log_a(a+b+c)$$
 b) $\frac{2}{5}\log_a(a+b+c)$ c) $\frac{1}{3}\log_a(c+d) + \frac{1}{3}\log_a(c-d)$

f) $\ln(\sqrt[4]{e} (e + 1)) = \ln(e^{\frac{5}{4}} + e^{\frac{1}{4}})$

h) $-\log_a v - \frac{1}{2}\log_a (v+1)$

g)
$$\log_{1}(u+1) - \log_{1}u = \log_{1}(1+\frac{1}{2})$$

g)
$$\log_b(u+1) - \log_b u = \log_b(1+\frac{1}{u})$$

$$i) \quad \frac{1}{2} - \frac{1}{2}log_a(\phi - 1)$$

26. a) $\log_a x$

b)
$$lg(\frac{b}{c})$$

c)
$$\ln\left(\frac{y^7}{z^5}\right)$$

d)
$$\lg(v+w)$$

e)
$$\lg\left(-\frac{2}{n+3}\right)$$

b)
$$\ln \frac{1}{\sqrt[3]{a^4}}$$

c)
$$\ln \frac{ab}{b-c}$$

d)
$$\ln \frac{\sqrt{p}}{\sqrt[3]{a^2}}$$

e)
$$\log_b \frac{k(k+1)}{-k+1}$$
 f) $\ln \frac{x^m z^{m+2}}{y^{m-1}}$
27. a) $\lg(10\alpha \tau^2)$ b) $\lg(u \cdot \sqrt[3]{10})$

f)
$$\ln \frac{X^m Z^{m+2}}{Y^{m-1}}$$

27. a)
$$lg(10\alpha\tau^2)$$

b)
$$\lg(u \cdot \sqrt[3]{10})$$

e)
$$\lg(p^a \cdot \sqrt[a]{p^2 - 4q^2})$$
 f) $\log_d(\sqrt[c]{a^b} \cdot \sqrt[a]{\frac{c^b}{(b-3)^c}})$

c)
$$\log_5 \frac{x^2}{(x-y)^3}$$

d)
$$\log_5 \delta^{m-9}$$

c)
$$\log_x \alpha^5$$

30. a)
$$\frac{\ln 7}{\ln 2}$$

b)
$$\frac{\log_2 11}{\log_2 3}$$

c)
$$\frac{\lg \sqrt[3]{10}}{\lg 5} = \frac{1}{3\lg 5}$$

d)
$$\frac{\log_d 3}{\log_d a}$$

e)
$$\frac{\ln \sqrt{c}}{\ln a}$$

f)
$$\frac{\lg 3 c^5}{\lg a}$$

31. a)
$$3.734 \cdot 10^{488}$$
 b) $3.487 \cdot 10^9$

32. a)
$$\frac{\log_2 \frac{x^2 - y^2}{x^3}}{\log_2 3}$$

32. a)
$$\frac{\log_2 \frac{x^2 - y^2}{x^3}}{\log_2 3}$$
 b) $\frac{\log_2 \frac{\lambda^8 (\varphi - \lambda)}{\varphi^2}}{\log_2 4} = \frac{1}{2} \log_2 \frac{\lambda^8 (\varphi - \lambda)}{\varphi^2}$

c)
$$\frac{\log_2\left(\frac{(y+4)^2}{z^6}\right)}{\log_2(5)}$$

b)
$$\frac{2(\ln 4 - \ln 5)}{\ln 2} \approx -0.6439$$

34. a)
$$4.371 \cdot 10^{2098959} - 1$$
 b) $9.249 \cdot 10^{4053945} - 1$ c) $1.260 \cdot 10^{6320429} - 1$

c)
$$1.260 \cdot 10^{6320429}$$
 –

d)
$$2.994 \cdot 10^{7235732} - 1$$

35. a)
$$h = 5500 \cdot \log_{\frac{1}{2}} \left(\frac{710}{1013} \right) \approx 2820 \text{ m}$$

- b) Matterhorn: 576 hPa; Mont Blanc: 553 hPa; Mount Everest: 332.15 hPa; Totes Meer: 1065 hPa
- 36. a) M = 4.84
- b) $r = 0.02004 \,\mathrm{pc}$
- **37.** a) 1: 11.11 %; 2: 11.11 %; 3: 11.11 %; ...
- b) -
- c) 1: 30.10 %; 2: 17.61 %; 3: 12.49 %; 4: 9.69 %; 5: 7.92 %; 6: 6.70 %; 7: 5.80 %; 8: 5.11 %; 9: 4.58 %
- pH von: Magensäure 2, Coca Cola 2, hautneutrale Seife 5.5, reines Wasser 7, Meerwasser 8, 38. Bleichmittel 12.5.
- 39. a) M = 6.3
- b) $M_2 = M_1 + 1$
- 40. a) M = 2.6 b) M = 4.8
- c) M = 9.3

III Gleichungen

7 Allgemeine Einführung

Lösungen zu Übungen 31

Aussagen: a); b); c); e) 1.

wahre Aussagen: a); c); e)

2. Aussagen: a); b); d); e)

d) Rhein, Rhone

wahre Aussagen: a); d)

3. a) Paris

b) 200 e) -

4. a) x = -5

b) $x_1 = 15$; $x_2 = -15$

c) 10; 11; 12; 13; 20; 21; 22; 30; 31; 40

d) 25; 26; 27; 28

Lösungen zu Übungen 32

richtig: (1); (2); (4)

falsch: (1), (2); (3); (5)

7. a) x = -2

b) –

c) $x \in \{4, 2.5, 0, -2\}$

c) z. B. CH, D, ...

d) $x \in \{4, 2.5\}$

e) x = 4

f) $x \in \{0; -2\}$

8. a) $L = \{-4\}$

b) $L = \{2.5\}$

c) $L = \left\{ x \in \mathbb{Q} \mid x \le \frac{5}{3} \right\}$ d) $L = \{7\}$

9. a) $L = \left\{ x \in \mathbb{R} \middle| x < -\frac{4}{5} \right\}$ b) $L = \left\{ x \in \mathbb{R} \middle| x > -\frac{25}{2} \right\}$

c) $L = \{x \in \mathbb{R} \mid x \le -\sqrt{15} \lor x \ge \sqrt{15} \}$

d) $L = \{x \in \mathbb{R} \mid 0 \le x \le 10\}$

8 Lineare Gleichungen

Lösungen zu Übungen 33

Falsch: (2); (3); (4)

2. a) $L = \{1\}$

b) $L = \{1\}$

c) $L = \{11\}$

d) $L = \{0\}$

e) $L = \{0\}$

f) $L = \{3\}$

g) $L = \mathbb{R}$

h) $L = \{\}$

3. a) $L = \{20\}$

b) $L = \left\{ -\frac{5}{4} \right\}$

c) $L = \{1\}$

d) $L = \left\{ -\frac{1}{8} \right\}$

e) $L = \{0\}$

f) $L = \{2\}$

g) $L = \{4\}$

h) L = $\{\frac{3}{2}\}$

4. a) L = {}

b) $L = \{12\}$

c) $L = \mathbb{R}$

d) $L = \{\}$

e) $L = \mathbb{R}$ f) $L = \left\{\frac{3}{8}\right\}$

5. a) L = {-2; -3; -4; ...}, L = $\left\{x \in \mathbb{R} \mid x \le -\frac{3}{2}\right\}$ b) L = {7; 8; 9; ...}, L = { $u \in \mathbb{R} \mid u \ge 7$ }

c) $L = \{1; 0; -1; -2; ...\}, L = \left\{x \in \mathbb{R} \mid x < \frac{3}{2}\right\}$ d) $L = \{5; 6; 7; ...\}, L = \left\{y \in \mathbb{R} \mid y > \frac{33}{8}\right\}$

e) $L = \mathbb{Z}, L = \mathbb{R}$

f) L = {1; 2; 3; ...}, L = { $z \in \mathbb{R} | z > 0$ }

b)
$$L = \{2\}$$

c)
$$L = \{-22\}$$

d)
$$L = \{0\}$$

e)
$$L = \mathbb{R}$$

f)
$$L = \{\}$$

7. a)
$$x = 1 - a, a \neq 0$$
 b) $x = 4b$

c)
$$x = \frac{3c - 2d}{c - d}, c \neq d$$
 d) $x = p + 2, p \neq 2$

$$d) x = p + 2, p \neq 2$$

e)
$$x = \frac{1-k}{k+1}, k \neq -1$$
 f) $x = \mu + \lambda, \lambda \neq \mu$
8. a) $L = \{4a^2\}$ b) $L = \{\frac{bc}{a+c}\}, a \neq -c$ c) $L = \{\alpha - \delta\}, \alpha \neq -\delta$ d) $L = \{\frac{h-1}{2}\}, h \neq 1$

8. a)
$$L = \{4a^2\}$$

b)
$$L = \left\{ \frac{bc}{a+c} \right\}, a \neq -c$$

$$L = {\alpha - \delta}, \alpha \neq -\delta$$

d)
$$L = \left\{\frac{h-1}{2}\right\}, h \neq 1$$

e)
$$L = \{q\}, -2p \neq q$$
 f) $L = \{m-n\}, m \neq n$

9. a)
$$r = \frac{M}{\pi s}, s = \frac{M}{\pi r}$$

b)
$$e = \frac{2A}{f}, f = \frac{2A}{e}$$

c)
$$b = \frac{S - 2ac}{2(a + c)}, c = \frac{S - 2ab}{2(a + b)}$$

d)
$$\alpha = \frac{360^{\circ}A}{\pi r^2}$$

e)
$$K = \frac{100Z}{p}, p = \frac{100Z}{K}$$

f)
$$p = 100 \left(\frac{K_1}{K_0} - 1 \right), K_0 = \frac{100 K_1}{p + 100}$$

g)
$$K = \frac{100 \cdot 360 \cdot Z}{p \cdot t}$$
, $t = \frac{100 \cdot 360 \cdot Z}{K \cdot p}$

h)
$$K_0 = \frac{100 \cdot 360 \cdot K_1}{100 \cdot 360 + p \cdot t}, t = \frac{100 \cdot 360 \cdot (K_1 - K_0)}{K_0 \cdot p}$$

10. a)
$$L = \{6\}; L = \{\}; L = \left\{\frac{7}{2}\right\}$$

b) L =
$$\{0\}$$
; L = $\{\}$; L = $\{\frac{5}{9}\}$

c)
$$L = \{\}; L = \{0\}; L = \left\{\frac{8}{13}\right\}$$

d)
$$L = \mathbb{R}; L = \{\}; L = \{2\}$$

e)
$$L = \mathbb{R}; L = \{5\}$$

f)
$$L = \{-1\}; L = \mathbb{R}; L = \mathbb{R}$$

11. a)
$$a \neq 0: x = -\frac{25}{a}, a = 0: L = \{\}$$

b)
$$b \neq 4: x = 0, b = 4: L = \mathbb{R}$$

11. a)
$$a \neq 0: x = -\frac{25}{a}, a = 0: L = \{\}$$

c) $a \neq -1: x = \frac{3}{a+1}, a = -1: L = \{\}$

d)
$$d \neq 2: x = \frac{d+2}{d-2}, d = 2: L = \{\}$$

e)
$$u \neq 10: x = 1, u = 10: L = \mathbb{R}$$

f)
$$v \neq -9 \land v \neq 0: x = \frac{v-9}{v}, v = -9: L = \mathbb{R}, v = 0: L = \{\}$$

12. a)
$$k \neq 2 \land k \neq -3: x = \frac{1}{k+3}, k = 2: L = \mathbb{R}, k = -3: L = \{\}$$

b)
$$w \neq 3: x = \frac{w+4}{3-w'} w = 3: L = \{\}$$

c)
$$a \neq -b: x = \frac{a^2}{a+b}, L = \left\{ \frac{a^2}{a+b} \right\} \ a = -b \neq 0: L = \{\}, \ a = b = 0: L = \mathbb{R}$$

d)
$$r \neq -s$$
: $x = r - s$, $r = -s$: $L = \mathbb{R}$

e)
$$m \neq n \lor m \neq -n: x = \frac{1}{m-n}, m = n \neq 0: L = \{\}, m = n \lor m = -n \neq 0: L = \mathbb{R}$$

f)
$$\lambda \neq 0 \land \theta \neq -5: x = \frac{\lambda + \theta}{\lambda(\theta + 5)'} \theta = -5 \land \lambda \neq 5 \lor \lambda = 0 \land \theta \neq 0: x = \frac{3}{a + 1}: L = \{\}, \theta = -5 \land \lambda = 5 \lor \lambda = 0 \land \theta = 0: L = \mathbb{R}$$

Lösungen zu Übungen 35

Richtig: (1); (2); (3); (4)

14. a)
$$D = \mathbb{R} \setminus \{0\}, L = \left\{-\frac{11}{2}\right\}$$

b)
$$D = \mathbb{R} \setminus \left\{ -\frac{1}{2}; 0 \right\}, L = \{-1\}$$

c)
$$D = \mathbb{R} \setminus \left\{ -\frac{3}{2}; \frac{1}{2} \right\}, L = \left\{ -\frac{9}{2} \right\}$$

d) D =
$$\mathbb{R} \setminus \{0; 3\}, L = \left\{-\frac{3}{5}\right\}$$

e)
$$D = \mathbb{R} \setminus \{-3, 3\}, L = \{-\frac{23}{7}\}$$

f)
$$D = \mathbb{R} \setminus \left\{ -\frac{9}{2}; \frac{9}{2} \right\}, L = \left\{ \frac{27}{110} \right\}$$

g) D =
$$\mathbb{R}\setminus\{3;5\}$$
, L = $\left\{\frac{8}{5}\right\}$

h) D =
$$\mathbb{R} \setminus \{-1; 0; 2\}, L = \{1\}$$

8

15. a)
$$D = \mathbb{R} \setminus \{2\}, L = \mathbb{R} \setminus \{2\}$$

c)
$$D = \mathbb{R} \setminus \{-1; 1; 6; 7\}, L = \{13\}$$

e)
$$D = \mathbb{R} \setminus \left\{ \frac{4}{3}; \frac{3}{2} \right\}, L = \{2\}$$

16. a)
$$D = \mathbb{R} \setminus \{4\}, L = \mathbb{R} \setminus \{4\}$$

c)
$$D = \mathbb{R} \setminus \{4\}, L = \{0\}$$

e)
$$D = \mathbb{R} \setminus \{0; 5\}, L = \mathbb{R} \setminus \{0; 5\}$$

17. a)
$$\mathbb{L} = \left\{ -\frac{mn}{m-n} \right\}$$
 b) $\mathbb{L} = \left\{ \frac{3b}{4} \right\}$

b)
$$\mathbb{L} = \left\{ \frac{3b}{4} \right\}$$

e)
$$\mathbb{L} = \{0\}$$
 f) $\mathbb{L} = \left\{\frac{c - d}{3}\right\}$

18. a)
$$z = \frac{p}{1 - p^2}$$
 b) $z = m$

b)
$$z = m$$

19. a)
$$y = \frac{m^2 + n^2}{2n}$$
 b) $y = a + 1$

b)
$$y = a + 1$$

c)
$$y = -\frac{d^2}{2c^2 - d}$$
 d) $y = \frac{\beta^2}{\beta - 2\mu^2}$

b) $D = \mathbb{R} \setminus \{2\}, L = \{0\}$

d) D = $\mathbb{R}\setminus\{-3;-2;-1;0\}$, L = $\left\{-\frac{3}{2}\right\}$

c) $\mathbb{L} = \left\{ \frac{2p}{a+b} \right\}$ d) $\mathbb{L} = \left\{ \frac{c}{c-1} \right\}$

f) D = $\mathbb{R} \setminus \left\{ \frac{3}{4}; \frac{12}{5} \right\}$, L = $\left\{ -\frac{3}{2} \right\}$

b) D = $\mathbb{R} \setminus \{4\}, L = \left\{ \frac{22}{5} \right\}$

f) $D = \mathbb{R} \setminus \{-5; -2\}, L = \{\}$

d)
$$y = \frac{\beta^2}{\beta - 2\mu^2}$$

20. a)
$$m = \frac{2E}{v^2}$$

c)
$$d = \frac{2(s_n - a_1 n)}{n(n-1)}, a_1 = \frac{2s_n - n(n-1)d}{2n}$$

d)
$$f = \frac{bg}{b+g}, g = \frac{bf}{b-f}$$

b) $G = \frac{F_G \cdot r^2}{m_1 \cdot m_2}, m_1 = \frac{F_G \cdot r^2}{G \cdot m_2}$

e)
$$R_1 = \frac{R \cdot R_2 \cdot R_3}{R_2 \cdot R_3 - R(R_2 + R_3)'}$$
 $R_3 = \frac{R \cdot R_1 \cdot R_2}{R_1 \cdot R_2 - R \cdot (R_1 + R_2)}$

f)
$$z = \frac{M \cdot Q}{m \cdot F}$$
, $F = \frac{M \cdot Q}{m \cdot Z}$

21. a)
$$x \neq 2$$

$$m \neq -1: x = \frac{2(m-1)}{m+1}, m = -1: L = \{\}$$

b)
$$x \in \mathbb{R}$$

$$n \neq 1: x = -n^2 + n + 1, n = 1: L = \{\}$$

c)
$$x \neq 0 \land x \neq 1$$

c)
$$x \neq 0 \land x \neq 10$$
 $c \neq 9: x = \frac{10}{c-9}, c = 9: L = \{\}$

d)
$$x \neq 0 \land x \neq \varphi$$

d)
$$x \neq 0 \land x \neq \varphi$$
 $\lambda \neq \varphi: x = \frac{\lambda \varphi}{\lambda - \varphi}, \lambda = \varphi \neq 0: L = \{\}, \lambda = \varphi = 0: L = \mathbb{R} \setminus \{0\}$

e)
$$x \neq 0$$

$$k \neq -5 \land k \neq 4: x = \frac{1}{k+5}, k = -5: L = \{\}, k = 4: L = \mathbb{R}$$

f)
$$x \in \mathbb{R}$$

$$a \neq 0 \land b \neq 0 \land b \neq 2: x = \frac{a-c}{a(b-2)'}$$

 $a = 0 \lor b = 0 \lor b = 2 \land a \neq c: L = \{\},$

$$b = 2 \land a = c : L = \mathbb{R}$$

Lösungen zu Übungen 36

22. a) D =
$$\mathbb{R}\setminus\{1\}$$
; L = $\left[1; \frac{3}{2}\right]$

c)
$$D = \mathbb{R} \setminus \left\{ -\frac{5}{2} \right\}; L = \left[-\frac{5}{2}; 4 \right]$$

e)
$$D = \mathbb{R}\setminus\{0\}; L =]-\infty; 0[\cup]5; \infty[$$

23. a) D =
$$\mathbb{R}\setminus\left\{\frac{1}{2};\frac{1}{5}\right\}$$
; L = $\left]-\infty;\frac{1}{5}\right[\cup\left]\frac{1}{2};\infty\right[$

c) D =
$$\mathbb{R}\setminus\{-4 ; 3\}$$
; L = $]-4$; $-3.85[\cup]1.85$; 3[

b) D =
$$\mathbb{R}\setminus\{1\}$$
; L = $\left]-\infty; -\frac{3}{2}\right[\cup 1]$; $\infty[$

d) D =
$$\mathbb{R} \setminus \{2\}$$
; L = $\left]2; \frac{9}{2}\right[$

f)
$$D = \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}; L = \left]-\infty; -\frac{1}{2}\right[\cup \left[\frac{5}{4}; \infty\right[$$

b) D =
$$\mathbb{R}\setminus\{-2; 2\}$$
; L =]-2; 0[\cup]0; 2[

d)
$$D = \mathbb{R} \setminus \{-11; 11\}; L =]-11; 11[$$

24.
$$\frac{55}{4} = 13.75$$

34. a) 16 cl

35. 67.7 % Alkohol

37. 145.83 l

39. 59.1 l

Kupfer: 7.844 kg, Zink: 4.156 kg 41.

43. p = 3.5%

45. p = 4.5%

47. $A = 27.3 \, \text{cm}^2$

49. l = 18 cm, b = 5 cm

51. n = 18

24 Ecken 53.

55. 2.28 m

56. a) $r = \frac{a}{6} = \frac{5}{3}$ cm

31. 25 Gäste

33.30 kg

b) 6.6 cl

36. 1. Sorte: 80.3 l, 2. Sorte: 129.7 l

38.653.33 I

40. 29.6 kg

42. CHF 9615.38

44. CHF 7000.-

46. K_1 = CHF 31 500.-, K_2 = CHF 13 500.-

48. I = 100 cm, b = 25 cm

50. s = 20 cm

52.n = 24

54. 1.80 m

b) $r = \frac{3a}{8} = \frac{15}{4}$ cm

c) 12-mal. Immer nach 65.45 Minuten liegen die Zeiger wieder übereinander.

 $x = \frac{720a}{11}$; a = 0, 1, 2, 3, ...; 11

58.

200.3 km/h 60.

113.6 km/h 62.

21 km/h 64.

59. 18 min 52 s

61. nach 9 min 46 s, nach 24.429 km (32.571 km)

63.7 Uhr 51

Gleichungssysteme

Lösungen zu Übungen 38

2. a) linear; Grundform: $\begin{vmatrix} 3x + 0y = 1 \\ 2x - 4y = 10 \end{vmatrix}$

b) nicht linear d) linear; Grundform: $\begin{vmatrix} \sqrt{2}c & -\sqrt{2}d & = & -4 \\ -\pi c & +\sqrt{5}d & = & -\sqrt{3} \end{vmatrix}$

3. a) $L = \{(1; 1)\}$

b) $L = \{(0, 4), (5, 8)\}$

4. a) $L = \{(-1, -5), (0, 0), (1, 5)\}$

b) L = $\{(-9, 0); (-6, -1); (-3, -2); (0, -3); (3, -4); (6, -5); (9, -6)\}$

5. a) $L = \left\{ (x; y) \middle| y \in \mathbb{R} \land x = -\frac{3y+2}{2} \right\}$ b) $L = \left\{ (x; y) \middle| y \in \mathbb{R} \land x = \frac{-y+10}{4} \right\}$

Lösungen zu Übungen 39

6. Falsch: (1)

7. a) $L = \{(4; -6)\}$ b) $L = \left\{\left(\frac{5}{2}; -\frac{15}{2}\right)\right\}$ c) $L = \{(-7; -4)\}$ d) $L = \left\{\left(\frac{3}{2}; \frac{3}{4}\right)\right\}$ e) $L = \{(5; 1)\}$ f) $L = \left\{\left(\frac{1}{23}; -\frac{41}{92}\right)\right\}$ g) $L = \left\{\left(\frac{42}{61}; \frac{60}{61}\right)\right\}$ h) $L = \{(-6; 5)\}$

8. a)
$$I = \{(2:6)\}$$

8. a)
$$L = \{(2, 6)\}$$
 b) $L = \{(-2, 2)\}$

c)
$$L = \{(3, 2)\}$$

d)
$$L = \{(1, 5)\}$$

e)
$$L = \left\{ \left(-\frac{4}{3}; \frac{4}{5} \right) \right\}$$

e)
$$L = \left\{ \left(-\frac{4}{3}; \frac{4}{5} \right) \right\}$$
 f) $L = \left\{ \left(-1; -\frac{1}{5} \right) \right\}$ g) $L = \left\{ \left(-\frac{5}{2}; 0 \right) \right\}$ h) $L = \{ (5; -4) \}$

g)
$$L = \left\{ \left(-\frac{3}{2}; 0 \right) \right\}$$

h)
$$L = \{(5; -4)\}$$

9. a)
$$L = \{(-3, 0)\}$$

b)
$$L = \{(1, 6)\}$$

c)
$$L = \{(-115; -49)\}$$

c)
$$L = \{(-115; -49)\}$$
 d) $L = \{(-3; -\frac{1}{3})\}$

e)
$$L = \{(3:3)\}$$

f)
$$I = \{(2\sqrt{2} \cdot \sqrt{2})^2\}$$

e)
$$L = \{(3;3)\}$$
 f) $L = \{(2\sqrt{2};\sqrt{2})\}$ g) $L = \{(-\sqrt{2};\sqrt{2})\}$ h) $L = \{(-2;-10)\}$

h)
$$I = \{(-2: -10)\}$$

10. a)
$$x = \frac{-2a}{5}$$
; $y = \frac{-3a}{5}$

b)
$$x = -3b + 4c$$
; $y = 4b - 3c$

c)
$$x = \frac{m+n}{2}; y = \frac{m-n}{2}$$

d)
$$x = -2u + v$$
; $y = -u + v$

e)
$$x = 1; y = 1$$

f)
$$x = a + b; v = a - b$$

11. a)
$$x = 1; y = 0$$

b)
$$x = s; y = -1$$

c)
$$x = \frac{a}{a - b}; y = -\frac{a}{a - b}$$

d)
$$x = \frac{\mu + \varphi}{\varphi}$$
; $y = \frac{\mu - \varphi}{\mu}$

e)
$$x = \frac{4m}{3}; y = m - n$$

f)
$$x = \frac{u+v}{w}$$
; $y = \frac{u-v}{w}$

12. a)
$$L = \left\{ \left(-1; -\frac{3}{11} \right) \right\}$$
 b) $L = \left\{ \left(-2; \frac{5}{4} \right) \right\}$ c) $L = \left\{ \left(\frac{1}{2}; -\frac{1}{3} \right) \right\}$ d) $L = \left\{ \left(\frac{1}{4}; -\frac{1}{5} \right) \right\}$

c)
$$L = \left\{ \left(\frac{1}{2}; -\frac{1}{3} \right) \right\}$$

d)
$$L = \left\{ \left(\frac{1}{4}; -\frac{1}{5} \right) \right\}$$

13. a)
$$L = \left\{ \left(\frac{19}{156}; \frac{7}{156} \right) \right\}$$
 b) $L = \left\{ \left(-\frac{2761}{2752}; \frac{2313}{2752} \right) \right\}$ c) $L = \{ (6; 5) \}$

d)
$$L = \{(5, 2)\}$$

Lösungen zu Übungen 41

14. a)
$$D = 14$$

b)
$$D = 30$$

c)
$$D = 0$$

d)
$$D = 0.96$$

e)
$$D = 0$$

f)
$$D = 11$$

g)
$$D = -\frac{5}{6}$$

h)
$$D = -\frac{1}{2}$$

i)
$$D = 0$$

15. a)
$$a = \frac{3}{2}$$

b)
$$a_1 = -1; a_2 = 2$$

c)
$$a_1 = 0; a_2 = -8$$

Lösungen zu Übungen 42

16. a)
$$D = -1, D_x = -2, D_y = 1; L = \{(2; -1)\}$$

b)
$$D = -5$$
, $D_x = -35$, $D_y = 25$; $L = \{(7, -5)\}$

16. a)
$$D = -1$$
, $D_x = -2$, $D_y = 1$; $L = \{(2; -1)\}$ b) $D = -5$, $D_x = -35$, $D_y = 25$; $L = \{(7; -5)\}$ c) $D = -11$, $D_x = -\frac{11}{2}$, $D_y = \frac{11}{3}$; $L = \left\{\left(\frac{1}{2}; -\frac{1}{3}\right)\right\}$ d) $D = 3$, $D_x = 6$, $D_y = \frac{3}{2}$; $L = \left\{\left(2; \frac{1}{2}\right)\right\}$

17.

b) L =
$$\{(x; y) | y \in \mathbb{R} \land x = \frac{3}{2}y + \frac{3}{4}\}$$

c)
$$L = \left\{ \left(3; \frac{3}{2}\right) \right\}$$

d) L =
$$\{(x; y) | y \in \mathbb{R} \land x = 2y - 6\}$$

e)
$$I = \{ \}$$

f)
$$L = \{(-14; 14)\}$$

19. a)
$$a \neq -\frac{5}{2}$$
: L = { }; $a = -\frac{5}{2}$: L = $\left\{ (x; y) \middle| y \in \mathbb{R} \land x = \frac{3y+5}{4} \right\}$

b)
$$k = -\frac{9}{5} \land m \neq -\frac{21}{5}$$
: $L = \{ \}; k = -\frac{9}{5} \land m = -\frac{21}{5}$: $L = \{ (x; y) | y \in \mathbb{R} \land x = \frac{2y + 21}{9} \}$

$$L = \left\{ (x; y) \middle| y \in \mathbb{R} \land x = \frac{2y + 21}{9} \right\}$$

c)
$$p = -4$$
: L = { }; $p = 4$: L = {(x; y)| $y \in \mathbb{R} \land x = -2y + 4$ }

d)
$$u = -3: L = \{ \}$$

20. a)
$$a \ne 2: x = \frac{-4a+2}{a-2}, y = \frac{2a^2-2}{a-2}; a = 2: L = \{ \}$$

b)
$$f \neq 4: x = -\frac{g+5}{f-4}, y = -\frac{5f+4g}{f-4}$$

c)
$$\vartheta \neq -6L = \{\}; \vartheta = -6: L = \{(x; y) | y \in \mathbb{R} \land x = 1.25y - 1\}$$

e)
$$m \neq \pm 1: x = 0; y = 0; m = \pm 1: L = \{(x; y) | y \in \mathbb{R} \land x = -y\}, L = \{(x; y) | y \in \mathbb{R} \land x = y\}$$

f)
$$x = 0, y = 0$$
 für alle n

21. a)
$$L = \{(-15; -1; 18)\}$$

c)
$$L = \{(9; -2; 16)\}$$

e)
$$L = \{(2; 3; 2)\}$$

22. a)
$$L = \left\{ \left(-\frac{2}{3}; \frac{1}{2}; -2 \right) \right\}$$

23. a)
$$x = -a + b$$
; $y = a - b$; $z = a + b$

23. a)
$$x = -a + b$$
; $y = a - b$; $z = a + b$

24. a)
$$L = \left\{ (x; y; z) \middle| z \in \mathbb{R} \land x = \frac{z+19}{7} \land y = \frac{4z-8}{7} \right\}$$

b)
$$L = \{(0; -12; -19)\}$$

b)
$$L = \{(0; -12; -19)\}$$

d)
$$1 - \int (y \cdot y \cdot z) |z| \in \mathbb{R} \wedge y$$

d) L =
$$\left\{ (x; y; z) \middle| z \in \mathbb{R} \land x = -\frac{5z+7}{16} \land y = \frac{z+35}{8} \right\}$$

25. a) $m \in \{ \}(m \neq 8: \text{ keine Lösung}; m = 8: \text{ unendlich viele Lösungen})$

b) $m \neq 1: x = y = z = 0$ (m = 1: unendlich viele Lösungen)

26. a)
$$L = \{(-20; -22; 11; -12)\}$$

c)
$$L = \{(1; 3; 2; 5)\}$$

b) $L = \{(-12, 2, 2, 20)\}$

c) $L = \{ \}$

b) $L = \{(18; -1; 4)\}$ d) $L = \{(40; -31; 24)\}$

f) L = $\{(-2; 2; -\frac{5}{3})\}$

b) $L = \left\{ \left(-\frac{2}{3}; \frac{1}{6}; \frac{5}{6} \right) \right\}$

b) $x = \frac{r}{2}$; $y = \frac{s}{2}$; $z = \frac{r+s}{2}$

d)
$$L = \{(346; -582; -82; -12; 144)\}$$

Lösungen zu Übungen 45

27.
$$\frac{1345}{9}$$
; $\frac{2152}{9}$ und $-\frac{1345}{9}$; $-\frac{2152}{9}$

49.
$$I = \frac{17}{2}$$
 cm; $b = 5$ cm

53.
$$a = 3 \text{ cm}; b = 5 \text{ cm}; c = 4 \text{ cm}$$

55.
$$a = 6 \text{ cm}, b = 6 \text{ cm}, c = 3 \text{ cm}; a = 4 \text{ cm}, b = 4 \text{ cm}, c = 7 \text{ cm}$$

56.
$$d = 17.5 \text{ cm}; h = 7.5 \text{ cm}; l = 19.04 \text{ cm}$$

62.
$$v_A = 70 \text{ km/h}; v_B = 80 \text{ km/h}$$

28.
$$\frac{8}{13}$$

50.
$$\alpha = 30^{\circ}$$
; $\beta = 45^{\circ}$

54.
$$x = 9 \text{ cm}, y = 60 \text{ cm}$$

57.
$$a = 3.67 \text{ cm}$$
; $b = 1.58 \text{ cm}$; $c = 4.74 \text{ cm}$

61.
$$t = 1.35 \text{ h}; s = 82.350 \text{ km}$$

63.
$$v_A = 96 \text{ km/h}; v_B = 84 \text{ km/h}$$

© hep Verlag, 2021

64.
$$v_F = 750 \text{ km/h}; v_W = 50 \text{ km/h}$$

65.
$$v_A = 21.605 \text{ km/h}$$
; $v_B = 23.605 \text{ km/h}$

66.
$$v_A = 12.22 \text{ m/s}; v_B = 10 \text{ m/s}$$

67.
$$s_1 = 28 \text{ km}$$
; $s_2 = 60 \text{ km}$; $s_3 = 12 \text{ km}$

68.
$$v_1 = 3.985 \text{ km/h}, t_1 = 57 \text{ min } 13\text{s}; v_2 = 13.947 \text{ km/h}, t_2 = 3 \text{ h } 01 \text{ min } 32 \text{ s};$$

 $v_3 = 39.850 \text{ km/h}, t_3 = 4 \text{ h } 31 \text{ min } 01 \text{ s}$

- **69.** 9 h; 18 h
- **70.** 4 h 36 min 55 s
- 71. $30 \,\mathrm{m}^3/\mathrm{min}$; $20 \,\mathrm{m}^3/\mathrm{min}$
- **72.** 30 h; 120 h
- **73.** 20 cm; 45 cm
- 74. 5t: 28 Fahrten; 6t: 30 Fahrten; 10t: 25 Fahrten
- **75.** 57 Set; 106 PCs; 34 Drucker
- 76. 22 Set; 11 Boards; 6 Bindungen
- 77. a) 3 Stück von Packung 1; 4 Stück von Packung 2; 7 Stück von Packung 3
 - b) eindeutige Lösung $\frac{25}{14}$; $-\frac{10}{7}$; $\frac{20}{7}$ gibt keine sinnvolle Antwort auf die Fragestellung, da negative und rationale Zahlen in der Lösung vorkommen.
 - Z. B. 1 Stück von Packung 1 und 2 Stück von Packung 3, oder 3 Stück von Packung 3.

78.
$$I_1 = 3 \text{ A}; I_2 = 2 \text{ A}; I_3 = 1 \text{ A}$$

79.
$$l_0 = 4.903 \text{ mA}; l_1 = 1.729 \text{ mA}; l_2 = 3.174 \text{ mA}; l_3 = 2.648 \text{ mA}; l_4 = 0.526 \text{ mA}; l_5 = 2.255 \text{ mA}$$

80. b)
$$a+13+10+d=a+11+9+c=b+11+13+e=b+9+12+d=c+12+10+d$$

d)
$$a+23+d=a+20+c=b+24+e=b+21+d=c+22+d$$

e)
$$\begin{vmatrix} c-d=3 \\ d-e=3 \\ a-e=2 \end{vmatrix}$$
 $\land \begin{vmatrix} b-a=2 \\ c-b=2 \\ a+b+c+d+e=20 \end{vmatrix}$; $a=3$; $b=5$; $c=7$; $d=4$; $e=1$

81. -

82. a)
$$s_n = \frac{n(n+1)}{2}$$
; $s_9 = \frac{9 \cdot 10}{2} = 45$

c) 1+5+9 = 1+6+8 = 2+4+9 = 2+5+8 = 2+6+7 = 3+4+8 = 3+5+7 = 4+5+6 = 15 8 Möglichkeiten: 1, 3, 7, 9 kommen 2-mal vor; 2, 4, 6, 8 kommen 3-mal vor; 5 kommt 4-mal vor. 5 in die Mitte, 1, 3, 7, 9 in die Seitenmitten, 2, 4, 6, 8 in die Ecken

d)
$$\begin{vmatrix} a+b+c &= 15 \\ d+f &= 10 \\ a+d+g &= 15 \\ b+h &= 10 \end{vmatrix} \land \begin{vmatrix} c+f+i &= 15 \\ a+i &= 10 \\ c+g &= 10 \end{vmatrix}$$

e) in den reellen Zahlen unendlich viele, mit den Ziffern eins bis neun 8 Lösungen.

$$I = 2; h = 7$$

8	3	4
1	5	9
6	7	2

- 83. a) z. B. 1. Zeile: a b + a + b + c + a c = 3a; 2. Spalte: a + b + c + a + a b c = 3a; Diagonale: a b + a + a + b = 3a
 - b)

4	9	1
3	5	7
8	7	6

c) z. B. +d

1. Zeile: a - b + d + b + c + + d + a - c + d = 3a + 3d = 3(a + d);

2. Spalte: a + b + c + d + a + d + a - b - c + d = 3a + 3d = 3(a + d);

Diagonale: a - b + d + a + d + a + b + d = 3a + 3d = 3(a + d)

- d) a = 12:3 = 4; d = -1
- e) d = -5

3	8	1
2	4	6
7	0	5

-1	4	-3
-2	0	2
3	-4	1

f) d = 5

9	14	7
8	10	12
13	6	11

g) für die erste Zeile:

$$Q_1: a-b+a+b+c+a-c = 3a, Q_2: d-e+d+e+f+d-f = 3d$$

 $Q_1+Q_2: a-b+d-e+a+b+c+d+e+f+a-c+d-f = 3a+3d = 3(a+b)$

h)

2 ⁴	2 ⁹	2 ²
2 ³	2 ⁵	2 ⁷
28	2 ¹	2 ⁶

Zeilenweise, spaltenweise und diagonal gebildete Produkte sind gleich 2¹⁵.

i) 1. Zeile:
$$2^{a-b} \cdot 2^{a+b+c} \cdot 2^{a-c} = 2^{a-b+a+b+c+a-c} = 2^{3a}$$
. Wenn $a = 5$ ist $3a = 15$ oder... $\log_2 2^{a-b} + \log_2 2^{a+b+c} + \log_2 2^{a-c} = (a-b)\log_2 2 + (a+b+c)\log_2 2 + (a-c)\log_2 2 = a-b+a+b+c+a-c = 3a$

10 Quadratische Gleichungen

Lösungen zu Übungen 46

- 1. Richtig: (2); (3); (4)
- 2. a) quadratisch
- c) quadratisch
- d) nicht quadratisch

- 3. a) $L = \{-7, 7\}$
- b) nicht quadratisch b) L = $\{-\sqrt{5}; \sqrt{5}\}$
- c) $L = \{\}$
- d) $L = \left\{-\frac{9}{4}; \frac{9}{4}\right\}$

- e) L = {} f) L = $\left\{-\frac{2}{\sqrt{3}}; \frac{2}{\sqrt{3}}\right\}$
- g) $L = \{0\}$
- h) $L = \{-3, 3\}$

d) $L = \{\}$

Lösungen zu Übungen 47

i) $L = \{-\sqrt{10}; \sqrt{10}\}$

4. a)
$$x_1 = -3$$
, $x_2 = 13$ b) $x_1 = -17$, $x_2 = 5$

e)
$$x_1 = 4 - \sqrt{2}$$
, $x_2 = 4 + \sqrt{2}$

5. a)
$$x_1 = -4$$
, $x_2 = -2$ b) $x_1 = -1$ $x_2 = 9$

f)
$$x_1 = -8, x_2 = -1$$

6. a)
$$x_1 = 1 - \sqrt{2}$$
, $x_2 = 1 + \sqrt{2}$

c)
$$x_1 = -3(\sqrt{6} + 2), x_2 = 3(\sqrt{6} - 2)$$

e)
$$x_1 = -\frac{3}{2}, x_2 = 2$$

7. a)
$$x_1 = \frac{1}{4}, x_2 = 3$$

b)
$$x_1 = -\frac{1}{3}, x_2 = \frac{1}{5}$$

d)
$$x_1 = 0, x_2 = \frac{11}{15}$$

$$x_1 - \frac{1}{2}x_2 - \frac{3}{2}$$

7. a)
$$x_1 = \frac{1}{4}$$
, $x_2 = 3$ b) $x_1 = -\frac{1}{3}$, $x_2 = \frac{1}{5}$ c) $x_1 = 2 - \sqrt{3}$, $x_2 = 2 + \sqrt{3}$ d) $x_1 = 0$, $x_2 = \frac{11}{15}$ e) $x_1 = \frac{1}{2}$, $x_2 = \frac{3}{2}$ f) $x_1 = -\frac{m}{3}$, $x_2 = \frac{n}{2}$

f)
$$x_1 = 13 - \sqrt{5}$$
, $x_2 = 13 + \sqrt{5}$
c) L = {}
d) $x_1 = -8$, $x_2 = 7$

f) $x_1 = 13 - \sqrt{5}$, $x_2 = 13 + \sqrt{5}$

b)
$$x_1 = 3 - \sqrt{5}$$
, $x_2 = 3 + \sqrt{5}$

d)
$$x_1 = -3, x_2 = \frac{1}{2}$$

c) x = 11

d)
$$x_1 = -3, x_2 = \frac{1}{2}$$

f) $x_1 = -5, x_2 = -\frac{1}{4}$

c)
$$x_1 = 2 - \sqrt{3}$$
, $x_2 = 2 + \sqrt{3}$

f)
$$x_1 = -\frac{m}{3}, x_2 = \frac{n}{2}$$

Lösungen zu Übungen 48

8. a)
$$L = \left\{-\frac{1}{2}; 4\right\}$$

b)
$$L = \left\{-\frac{1}{4}; 3\right\}$$

8. a)
$$L = \left\{-\frac{1}{2}; 4\right\}$$
 b) $L = \left\{-\frac{1}{4}; 3\right\}$ c) $L = \left\{\frac{1}{2}; \frac{3}{2}\right\}$ d) $L = \left\{-\frac{5}{3}; -1\right\}$ e) $L = \left\{-2; \frac{3}{4}\right\}$ f) $L = \left\{-\frac{7}{5}; \frac{1}{2}\right\}$ g) $L = \left\{\frac{5}{2}; 12\right\}$ h) $L = \left\{\right\}$

g)
$$L = \left\{ \frac{5}{2}; 12 \right\}$$

d)
$$L = \left\{-\frac{5}{3}; -1\right\}$$

g)
$$L = \left\{ \frac{5}{2}; 12 \right\}$$

h)
$$L = \{ \}$$

i) $L = \{-1; \frac{3}{5}\}$

9. a) L =
$$\{2 - \sqrt{2}; 2 + \sqrt{2}\}$$

b)
$$L = \{1 - 2\sqrt{2}; 1 + 2\sqrt{2}\}$$

c)
$$L = \left\{-\frac{\sqrt{5}+1}{2}; \frac{\sqrt{5}-1}{2}\right\}$$

d)
$$L = \{\}$$

e)
$$L = \left\{ -\frac{2\sqrt{2}-1}{2}; \frac{2\sqrt{2}+1}{2} \right\}$$

f)
$$L = \left\{ -\frac{\sqrt{10} + 3}{6}; \frac{\sqrt{10} - 3}{6} \right\}$$

g)
$$L = \left\{ -\frac{\sqrt{7}-3}{5}; \frac{\sqrt{7}+3}{5} \right\}$$

h) L =
$$\{-5\sqrt{2}; \sqrt{2}\}$$

i)
$$L = \left\{ \frac{\sqrt{3}}{3}; \sqrt{3} \right\}$$

10. a)
$$L = \{2.472; 5.528\}$$
 b) $L = \{-0.692; 2.892\}$

d)
$$L = \{-2.868; -0.274\}$$

e)
$$L = \{-2.667; 1.588\}$$
 f) $L = \{0.125; 1.063\}$

12. a)
$$L = \left\{0; \frac{7}{6}\right\}$$
 b) $L = \left\{-\frac{8}{5}; 4\right\}$

b)
$$L = \left\{-\frac{8}{5}; 4\right\}$$

c)
$$L = \{0\}$$

d)
$$L = \{0; 1\}$$

e)
$$L = \left\{-\frac{65}{11}; \frac{2}{5}\right\}$$
 f) $L = \left\{-\frac{4}{3}; \frac{2}{5}\right\}$

f)
$$L = \left\{ -\frac{4}{3}; \frac{2}{5} \right\}$$

g)
$$L = \{7\}$$

13. a)
$$x_1 = k - 1, x_2 = k + 1$$

b)
$$x_1 = -m_1 x_2 = m + 1$$

c)
$$x_1 = -1, x_2 = n - 1$$

d)
$$x_1 = -d, x_2 = \frac{c}{d}$$

e)
$$x_1 = pq, x_2 = \frac{\mu q}{p}$$

f)
$$x_1 = \frac{1}{a}, x_2 = \frac{a}{b}$$

14. a)
$$x_1 = -\frac{c}{a}, x_2 = \frac{d}{b}$$

13. a)
$$x_1 = k - 1, x_2 = k + 1$$
 b) $x_1 = -m, x_2 = m + 1$ c) $x_1 = -1, x_2 = n$ d) $x_1 = -d, x_2 = \frac{c}{d}$ e) $x_1 = pq, x_2 = \frac{\mu q}{p}$ f) $x_1 = \frac{1}{a}, x_2 = \frac{a}{b}$ 14. a) $x_1 = -\frac{c}{a}, x_2 = \frac{d}{b}$ b) $x_1 = \frac{v - 1}{u}, x_2 = \frac{v + 1}{u}$ c) $x_1 = 2r, x_2 = 3s$

c)
$$x_1 = 2r, x_2 = 3s$$

d)
$$x_1 = a, x_2 = \frac{c}{bd}$$

e)
$$x_1 = 3m + n, x_2 = m + 3n$$

f)
$$x_1 = -\frac{1}{\psi}, x_2 = \frac{6}{\psi}$$

15. a)
$$X_1 = -2\sqrt{3} \, \varphi, X_2 = 2$$

15. a)
$$x_1 = -2\sqrt{3} \varphi, x_2 = 2\sqrt{3} \varphi$$
 b) $x_1 = \frac{c+d}{c-d}, x_2 = \frac{c-d}{c+d}$

c)
$$x_1 = k - 1, x_2 = k + 1$$

d)
$$x_1 = 1, x_2 = \frac{m+n}{m-n}$$

16. a)
$$a = \frac{1}{36}$$

16. a)
$$a = \frac{1}{36}$$
 b) $b_1 = -1, b_2 = 2$ c) $m = -\frac{4}{3}$

c)
$$m = -\frac{4}{3}$$

17. a)
$$a > 1:L = \{\}; a = 1:L = \{-1\}; a < 1:L = \{-1 - \sqrt{1-a}; -1 + \sqrt{1-a}\}$$

b)
$$t > \frac{25}{16}$$
: L = {}; $t = \frac{25}{16}$: L = $\left\{\frac{8}{5}\right\}$; $t < \frac{25}{16}$: L = $\left\{\frac{5 - \sqrt{25 - 16t}}{2t}; \frac{5 + \sqrt{25 - 16t}}{2t}\right\}$

c)
$$-6 < u < 6$$
: L = {}; $u = -6$: L = {3}; $u = 6$: L = { -3 }; $u < -6 \lor u > 6$:
L = $\left\{ \frac{-u - \sqrt{u^2 - 36}}{2}; \frac{-u + \sqrt{u^2 - 36}}{2} \right\}$

d)
$$m = -\frac{n}{2}$$
: $L = \{\frac{n}{2}\}$; $m \neq -\frac{n}{2}$: $L = \{-m; m+n\}$

Herleitung 19.
$$x_1 + x_2 = -p$$
; $x_1 \cdot x_2 = q$

20. a)
$$q = -10; x_2 = -2$$
 b)

20. a)
$$q = -10$$
; $x_2 = -2$ b) $c = -12$; $x_2 = -12$ c) $p = 9$; $x_2 = 4$

d)
$$\varphi = 1; x_2 = -\frac{2}{3}$$

21.
$$k_1 = -90: x_1 = -\frac{1}{5}, x_2 = \frac{19}{5}; k_2 = 90: x_1 = -\frac{19}{5}, x_2 = \frac{1}{5}$$

22.
$$u = 0; x_1 = -2, x_2 = 2$$

23.
$$\lambda = 8; x_1 = \frac{1}{4}, x_2 = \frac{1}{2}$$

24.
$$w_1 = -343: x_1 = -\frac{7}{2}, x_2 = \frac{49}{4}; w_2 = 125: x_1 = \frac{5}{2}, x_2 = \frac{25}{4}$$

10

26. a)
$$(x-24)(x+64)$$

26. a)
$$(x-24)(x+64)$$
 b) $2(x-\frac{15}{2})(x+9)$ c) nicht zerlegbar

d)
$$25\left(x+\frac{18}{5}\right)^2$$

27. a) L =
$$\{-3; 2; 5\}$$
 b) L = $\{-\frac{3}{2}; -\frac{5}{6}; 4\}$

Lösungen zu Übungen 51

28. a) L =
$$\{-3; -2; 2; 3\}$$
 b) L = $\{-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\}$ c) L = $\{-2; 2\}$

b)
$$L = \left\{ -\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}} \right\}$$

c)
$$L = \{-2, 2\}$$

d)
$$L = \{2; 3\}$$

29. a)
$$L = \left\{ \frac{35}{3}; 6 \right\}$$

29. a)
$$L = \left\{ \frac{35}{3}; 6 \right\}$$
 b) $L = \left\{ -\frac{\sqrt{34}}{2}; -2\sqrt{2}; \frac{\sqrt{34}}{2}; 2\sqrt{2} \right\}$

c)
$$L = \left\{-\frac{12}{5}; 2\right\}$$
 d) $L = \left\{\frac{62}{9}; \frac{91}{8}\right\}$

$$L = \left\{ \frac{62}{9}; \frac{91}{8} \right\}$$

30. a)
$$x_1 = -\frac{17}{4}$$
; $x_2 = \frac{43}{4}$

b)
$$x_1 = -\frac{5}{4}$$
; $x_2 = \frac{1}{4}$

30. a)
$$x_1 = -\frac{17}{4}$$
; $x_2 = \frac{43}{4}$ b) $x_1 = -\frac{5}{4}$; $x_2 = \frac{1}{4}$ c) $x_1 = 2b - a$; $x_2 = -\frac{a}{6} - \frac{4b}{3}$
31. a) $x^2 - 7x - 18 = 0$ b) $15x^2 - 13x + 2 = 0$ c) $6y^2 + 5y = 0$

31. a)
$$x^2 - 7x - 18 = 0$$

$$c + 2 = 0$$
 c) $6y^2 + 5y = 0$

d)
$$z^2 + (3 - \sqrt{2})z - 3\sqrt{2} = 0$$

e)
$$m^2 - 4m - 1 = 0$$

f)
$$10 \psi^2 + (3 \sqrt{3} - 7)\psi - 2 = 0$$

Lösungen zu Übungen 52

32. a) L =]
$$-\infty$$
; -2] ∪ [3; ∞ [

c)
$$L = 10:11$$

e)
$$L =]-\infty; -2] \cup [3; 5]$$

33. a) L =
$$]\infty; -2[\cup]\frac{3}{2}; 2[$$

c)
$$L =]-1; 1[$$

34.
$$4.00 \text{ m} \le x \le 5.33 \text{ m}$$

b) L =]-5; -3[

d)
$$L = [0; 3]$$

f)
$$L =]-\infty; -2] \cup [3; 4]$$

b) L =
$$]\infty; -2[\cup]-1; 1[\cup]2; \infty[$$

d)
$$L = \left[-\frac{5}{2}; 6 \right]$$

36.
$$\frac{1}{5}$$
, $\frac{-11}{-7}$

38. 22; 78,
$$\frac{975}{7}$$
; $\frac{-275}{7}$

39.
$$\sqrt{2} + 1, -\sqrt{2} + 1$$

- 41 40.
- 41. 65
- 42. 252
- 43. 24 Personen

44.
$$a = 72 \text{ cm}; b = 65 \text{ cm}$$

45.
$$a = 56 \text{ cm}; b = 33 \text{ cm}$$

46.
$$s = 2.19 \, \text{cm}$$

47.
$$n = 36$$

48.
$$n = 12$$

50.
$$b_1 = 12.65 \text{ cm}; b_2 = 37.95 \text{ cm}$$

51.
$$r = 1 \,\mathrm{m}$$

52.
$$s = 18.48 \text{ cm}$$

53
$$a = 10 \text{ cm}$$

54.
$$x = 0.160 \cdot b \approx 16 \, \text{cm}$$

d) b =
$$\frac{a}{5}$$

57.
$$b = 0.38197 \,\mathrm{m}; I = 0.61803 \,\mathrm{m}$$

58.
$$b = 18.83 \,\mathrm{m}; I = 79.67 \,\mathrm{m}$$

60.
$$a = 27.85 \text{ cm}; b = 22.85 \text{ cm}$$

61. a)
$$l: b = \phi: 1 \approx 1.6618: 1$$

61. a)
$$l: b = \phi: 1 \approx 1.6618: 1$$
 b) $\{s_n\} = \frac{1}{\phi^n}; \{l_n\} = \frac{\phi}{\phi^n} = \frac{1}{\phi^{n-1}}$

c)
$$A = 1 + \frac{1}{\phi^2} + \frac{1}{\phi^4} + \frac{1}{\phi^6} + \dots$$

62. a)
$$l: b = \sqrt{2}: 1 \approx 1.414: 1$$

62. a)
$$l: b = \sqrt{2}: 1 \approx 1.414: 1$$
 b) $\{f_n\} = \sqrt{2} \cdot \frac{1}{2^n}; \{I_n\} = \sqrt{2} \cdot \frac{1}{\sqrt{2^n}}\}$

c)
$$x = \sqrt[4]{2} \approx 1.189 \text{ m}; b = \frac{1}{\sqrt{2}}$$

	I (m)	$b = \frac{l}{\sqrt{2}} (m)$
A0	1.189	0.841
A1	0.841	0.595
A2	0.595	0.420
A3	0.420	0.297
A4	0.297	0.210
A5	0.210	0.149
A6	0.149	0.105

63. a)/b)
$$l: b = (\sqrt{2} + 1): 1 \approx 2.414: 1$$

c)
$$I \approx 27.05 \text{ cm}$$

d)
$$|\overline{BC}| = \frac{1}{4} = 6.76 \text{ cm}$$

e)
$$|\overline{AC}| = 9.78 \text{ cm}$$

f)
$$m \approx 0.398$$
; $\alpha \approx 21.6^{\circ}$

66. a) gleichmässige Steigung b) Zeichnung d)
$$|\overline{BC}| = \frac{1}{4} = 6.76 \text{ cm}$$
 e) $|\overline{AC}| = 9.78 \text{ cm}$ 67. a) $m = \sqrt{\frac{1 - kr}{kr}}; m = \frac{1 \pm \sqrt{1 - r^2 w^2}}{2rw}$ b)

b)
$$w \approx 0.172 \text{ cm}; k \approx 0.432 \text{ cm}; r_k \approx 2.830 \text{ cm}$$

c)
$$m = 1$$

- 69. G: 149.8 km/h; P: 199.8 km/h
- 70. 976.3 km/h
- 71. 225 km/h
- 72. 35.8 s
- 73. a) 60.7 km/h
- b) 18 m
- c) 40 m
- d) 88 m

e) 180 m

- 74. 73.6 s (43.6 s)
- 75. $q = 59.36 \, \text{cm}$
- **76.** $R = 83.64\Omega$
- 77. $F_1 = 25.74N; F_2 = 75.74N$
- 78. 45 min
- 79. 11.52 h

Wurzelgleichungen

Lösungen zu Übungen 54

- Richtig (3)
- 2. a) 2x = 9

Äquivalenzumformung, $L_A = L_N = \{4.5\}$

- b) x = 25
- Äquivalenzumformung, $L_A = L_N = \{25\}$
- c) x = 25
- Gewinnumformung, $L_A = \{\}, L_N = \{25\}$ (Scheinlösung)
- d) $x = \frac{12}{5}$

f) x-2=0

- Äquivalenzumformung, $L_A = L_N = \left\{ \frac{12}{5} \right\}$
- e) 4x + 1 = 2x + 7
- Äquivalenzumformung, $L_A = L_N = \{3\}$
- 3. a) $D = \mathbb{R}_0^+$; $L = \{121\}$
 - c) $D = \mathbb{R}_0^+$; $L = \{\}$
 - e) $D = \mathbb{R}_0^-$; $L = \{-121\}$
 - g) D = { $w \in \mathbb{R} | w \le 5$ }; L = $\left\{ \frac{11}{4} \right\}$
 - i) $D = \{h \in \mathbb{R} | h \le 3\}; L = \{\}, SLh = -1\}$
- 4. a) $L = \{18\}$
 - c) $L = \{21\}$
 - e) $L = \left\{ \frac{81}{4} \right\}$
- 5. a) $L = \{19\}$
 - c) $L = \{-5\}$
 - e) $L = \{6\}, SLx = 0$
 - g) $L = \{25\}$
- 6. a) $L = \{81\}$
 - c) $L = \{\}, SL a = 23$
 - e) $L = \left\{ \frac{101}{4} \right\}$
 - g) D = $\{x \in \mathbb{R} | x \ge 4\}$; L = $\{5\}$, SL $x = \frac{3}{7}$

b) $D = \mathbb{R}_0^+$; $L = \{\}$

Verlustumformung, $L_A = \{-2, 2\}, L_N = \{2\}$ (eine Lösung geht verloren)

- d) $D = \mathbb{R}_0^+$; $L = \{121\}$
- f) $D = \mathbb{R}_0^-$; $L = \{\}$
- h) D = $\{b \in \mathbb{R} | b \ge -4\}$; L = $\{-3\}$
- b) $L = \{\}, SL\lambda = 12$
- d) $L = \{-3\}$
- f) $L = \{\}, SLm = -4$
- b) $L = \{-7\}$
- d) $L = \{10\}$
- f) $L = \left\{-\frac{1}{7}; 1\right\}$
- h) $L = \{10\}$
- b) $L = \{\}$
- d) $L = \{13\}$
- f) L = {1}, SL $x = -\frac{25}{3}$

c) L = {}, SL
$$x_1 = -28$$
; $x_2 = 6$

c)
$$L = \left\{ \frac{9}{16}; 15 \right\}$$

9. a)
$$x = a^2 n + b$$

c)
$$x = \frac{m^4}{4n^2}$$

e)
$$x = \frac{ef}{2e + 2f}$$

g)
$$x_1 = 1 - \sqrt{a}; x_2 = \sqrt{a}$$

10. a)
$$h_2 = 7.40 \,\mathrm{m}$$

a)
$$h_2 = 7.40 \,\mathrm{m}$$

c)
$$s = \sqrt{h_1(2r + h_1)} + \sqrt{h_2(2r + h_2)}$$
; $+h_{1,2}$ vernachlässigbar wegen grossem r

11. a)
$$m_{\rm G} \approx 4.93; m_{\rm A} = 7.67; m_{\rm G} < m_{\rm A}$$

c)
$$m_{\rm G} \leq m_{\rm A}$$

e)
$$x_2 \approx 10.125$$

g)
$$x_3 \approx 1.053; p \approx 5.3\%$$

13. a)
$$\sqrt{\frac{2}{3} \cdot \frac{2}{27}} = \sqrt{\frac{4}{81}} = \frac{2}{9}; \sqrt{2 \cdot \frac{2}{9}} = \sqrt{\frac{4}{9}} = \frac{2}{3}$$
 b) $\{a_n\} = \frac{2}{3^n}$

b)
$$L = \{\frac{3}{2}\}$$

d)
$$L = \{-2 - \sqrt{5}\}$$

b)
$$L = \{-3, 3\}$$

d)
$$L = \{\}, SL x_1 = -4 \lor x_2 = 4$$

b)
$$x = \frac{(m+n)^2}{4}$$

d)
$$x = e$$

f)
$$x = 4a^2 - 4b^2$$

h)
$$x_1 = m; x_2 = n$$

b)
$$m_G \approx 7.6...; m_A = 28.19; m_G < m_A$$

b)
$$m_{\rm G} \approx 7.6....; m_{\rm A} = 28.19; m_{\rm G} < m_{\rm A}$$

f)
$$x_2 \approx 23.22$$

b)
$$\{a_n\} = \frac{2}{3^n}$$

12 Exponential- und logarithmische Gleichungen

2. a)
$$x = 4$$
 b) $x = -3$ e) $x = 1$ f) $x = \frac{4}{5}$

b)
$$x = -3$$

d)
$$x = -4$$

e)
$$x =$$

f)
$$x = \frac{4}{5}$$

g)
$$x = -\frac{7}{8}$$

c)
$$x = -6$$

g) $x = -\frac{7}{8}$
d) $x = -4$
h) $x = -\frac{19}{9}$

i)
$$x = \frac{3}{7}$$

i)
$$x = \frac{3}{7}$$

3. a) $x = \log_3 8 = \frac{3\ln 2}{\ln 3} \approx 1.893$

c)
$$y = \log_4 100 + 5 = \frac{\ln 100}{\ln 4} + 5 \approx 8.322$$

e)
$$x = \frac{1 + e \ln 3}{1 + \ln 3} \approx 1.900$$

4. a)
$$x = \frac{\ln 3 + 3\ln 10}{\ln 10 + 2\ln 3} = 1.779$$

c)
$$k = \frac{3\ln 5}{5\ln 3} \approx 0.8790$$

e)
$$x = \frac{\ln 7 - \ln 3}{2 \ln 5 - \ln 3} \approx 0.3996$$

g)
$$x = \frac{\ln 5}{\ln 5 - 3\ln 2 - 2\ln 3} \approx -0.6034$$

i)
$$q = \frac{\ln 3 - 2\ln 5}{\ln 2 + 2\ln 5 - 2} = -1.109$$

b)
$$x = \log_8 3 = \frac{\ln 3}{3 \ln 2} \approx 0.528$$

d)
$$x = \lg \frac{1}{2} + 1 = \frac{\ln \frac{1}{2}}{\ln 10} + 1 \approx 0.699$$

f)
$$z = 0$$

b)
$$y = 0 \lor y = \left(\frac{\ln 4}{\ln 5}\right)^2 \approx 0.7419$$

d)
$$x = \frac{\ln 5}{\ln 2 - \ln 3} \approx -3.969$$

f)
$$p = \frac{4 \ln 5}{\ln 2 - 2 \ln 5} \approx -2.549$$

h)
$$x = \frac{\ln 2}{4 \ln 2 - 4 \ln 3 - \ln 5} \approx -0.2145$$

b) $y = 1 + \log_5 10 = \frac{\ln 50}{\ln 5} \approx 2.431$

d) $z = \frac{\ln 2 + 2\ln 3 - \ln 251}{6\ln 3} \approx -0.3998$ f) $u = \frac{3\ln 2}{2\ln 2 - \ln 5} \approx -9.319$

h) $v = \frac{\ln(e^2 - 1) + \ln 2 - \ln 3}{3\ln 2 - 2} \approx 18.241$

b) $L = \left\{ 0; \log_5 9 = \frac{\ln 9}{\ln 5} \approx 1.365 \right\}$

Lösungen zu Übungen 56

5. a)
$$x = \log_3 5 = \frac{\ln 5}{\ln 3} \approx 1.465$$

c)
$$x \in \{\}$$

e)
$$x = \frac{2\ln 2 - \ln 3}{3\ln 2 - \ln 3} \approx 0.293$$

g)
$$x = \frac{\ln 370 - 4 \ln 3}{2 \ln 2 - \ln 3} \approx 5.280$$

6. a)
$$L = \left\{ \log_3 \frac{1}{4} = \frac{\ln \frac{1}{4}}{\ln 3} \approx -1.262 \right\}$$

c)
$$L = \{ \ln \frac{1}{3} \approx -1.099 \}$$

e)
$$L = \left\{1; \lg 2 = \frac{\ln 2}{\ln 10} \approx 0.301\right\}$$

c) $x = \frac{\ln(\ln 4) - \ln(\ln 3)}{\ln 4 - \ln 3} = 0.8085$

e) $x = -\frac{2\ln 4 + 5\ln 5}{3\ln 4 + \ln 5} \approx -1.876$

7. a)
$$x = 4$$

8. a) $x \in \{\}$

e)
$$x = \frac{p-q}{p+q}$$

7. a)
$$x = 4$$
 b) $x_1 = -7; x_2 = 1$ c) $x = \frac{5}{3}$

e)
$$x = \frac{p-q}{p+q}$$
 f) $x = -\log_n(n^2 + n + 1)$ g) $x = \frac{d \ln c}{\ln a - \sinh b}$

f)
$$x = -\log_{10}(n^2 + n + 1)$$

$$) g) x = \frac{a \ln}{\ln a - 1}$$

d) $L = \{3\}$

f) $L = \left\{-\frac{1}{2}; 0\right\}$

g)
$$x = \frac{a \ln c}{\ln a - s \ln b}$$

$$\frac{9}{\ln a} - \sin a$$

b)
$$x = 0$$

d)
$$x = \frac{\ln 2}{\ln 5 - \ln 4} \approx 3.106$$

f)
$$x = \frac{4\ln 2 + 5\ln 3}{10\ln 3 - 4\ln 2} = 1.006$$

g)
$$x_1 = 0; x_2 = \frac{2}{3}$$

b) 7.05 Jahre

10. a) 80 %;

12.

b) 17.29 Tage

11. a) CHF 7206.39

b) 2.79 Jahre

c) 15.75 Jahre

h) $x_1 = -1$; $x_2 = \log_2 \frac{1}{5} = \frac{\ln \frac{1}{5}}{\ln 2} = -2.322$

h) L = $\left\{ \log_2(\sqrt{37} + 6) = \frac{\ln(\sqrt{37} + 6)}{\ln 2} \approx 3.595 \right\}$

d) $x_1 = 0; x_2 = p + q$

c) 21.29 Tage

c) 5.11 Jahre

Lösungen zu Übungen 57

16.61 Tage

13. Falsch: (3)

14. a)
$$x = 10^4$$

b)
$$x = \frac{1}{e}$$

c)
$$x = \frac{21}{4}$$

d)
$$x = \frac{1}{2}$$

e)
$$x = 97$$
 f) $x = 1001$

f)
$$x = 100$$

h)
$$x =$$

i)
$$x = \sqrt[3]{2^4}$$

15. a)
$$L = {\sqrt[5]{9}}$$
 b) $L = {80}$

b)
$$L = \{80\}$$

$$L = \{80\}$$

e)
$$L = \left\{\frac{1}{3}\right\}$$
 f) $L = \{5\}$
16. a) $x = \sqrt[3]{2^4} + 1 = 2\sqrt[3]{2} + 1$

c)
$$x = 25$$

e)
$$x = ^{+}_{-}5$$

17. a)
$$x = m e^{n}$$

17. a)
$$x = me^n$$
 b) $x = \frac{1}{10a^3}$

c)
$$x = \frac{21}{4}$$
 d) $x = \frac{1}{2}$ g) $x = 531434$ h) $x = 3$

g)
$$x = 531434$$

c)
$$L = \left\{ \frac{e^3}{2} \right\}$$

d)
$$L = \{4\}$$

b)
$$x = 2$$

d)
$$x = \frac{e^2 + 1 + \sqrt{e^4 + 6e^2 + 1}}{2e} \approx 3.382$$

f)
$$x_1 = -\frac{1}{8}$$
; $x_2 = \frac{1}{8}$

c)
$$x = \sqrt{e^b + 1}$$

d)
$$x = c^{x}$$

18. a)
$$x = 10^5$$
 b) $x = 10^{10}$

b)
$$x = 10^{10}$$

c)
$$x_1 = 12; x_2 = 4$$

c)
$$x_1 = 12$$
; $x_2 = 4$ d) $x_1 = \frac{1}{1000}$; $x_2 = 10$

e)
$$x_1 = \frac{1}{100}$$
; $x_2 = \sqrt{10}$

f)
$$y_1 = \frac{1}{300}$$
; $y_2 = 10$ g) m = 2

g)
$$m = 2$$

h)
$$x = e^{\frac{2 \ln 3}{1 + \ln 3}} \approx 2.849$$

20. a)
$$6.31 \cdot 10^{1}$$
 t TNT b) $7.94 \cdot 10^{6}$ t TNT c) $5.01 \cdot 10^{5}$ t TNT d) $7.08 \cdot 10^{11}$ t TNT

b)
$$7.94 \cdot 10^6$$
 t TNT

c)
$$5.01 \cdot 10^5$$
 t TNT

21. a)
$$r \approx 0.020045$$
 Parasec ≈ 0.072 Lichtjahre ≈ 4134.5 Astronomische Einheiten

b)
$$r \approx 2.642409$$
 Parasec ≈ 9.5 Lichtjahre $\approx 5.45 \cdot 10^5$ Astronomische Einheiten

c)
$$M \approx 4.9$$

d)
$$M \approx -3.4$$

IV Funktionen

13 Grundlagen

Lösungen zu Übungen 58

- 1. a) $\mathbb{A} \times \mathbb{B} = \{(-1, -2), (-1, 0), (-1, 2), (4, -2), (4, 0), (4, 2)\}$
 - **b**) $\mathbb{A} \times \mathbb{B} = \{(1; -3), (1; -2), (1; -1), (1; 0), (2; -3), (2; -2), (2; -1), (2; 0), (3; -3), (3; -2), (3; -1), (3; 0)\}$
- 2. a) $\mathbb{A} \times \mathbb{B} = \{(0, 0), (1123, 0), (35, -1), (1, -1), \dots\}$ b) $\mathbb{N} \times \mathbb{N} = \{(17, 5), (5, 17), (10^{12}, 10^7), (1, 1), \dots\}$
 - c) $\mathbb{Q}^+ \times \mathbb{R} = \left\{ \left(\frac{1}{2}; \sqrt{2} \right), \left(\frac{25}{4}; \pi \right), (1020; -10\sqrt{5}), (0.1\overline{6}; \ 1.010010001 \ldots), \ldots \right\}$
 - d) $\mathbb{Q} \times \mathbb{Q} = \left\{ \left(-\frac{1}{4}; \frac{12}{5} \right), \left(\frac{101}{100}; -7 \right), \left(-0.125; -10.\overline{3} \right), \left(\frac{1}{2}; \frac{1}{2} \right), \dots \right\}$
- 3. a) 1. Q: B; 2. Q.: D; 3. Q.: F; 4. Q.: H A, C, E und G liegen auf den Koordinatenachsen
 - b) Graph
 - c) $\overline{AB} = 4.5e$; $\overline{BD} = 4e$; $\overline{BF} = 5.7e$; $\overline{CF} = 8.2e$
- 4 a) a = 6.32e; b = 6.08e; c = 4.4e
- b) $M_a = (4; 4); M_b = \left(-\frac{1}{2}; 2\right); M_c = (3; 1)$

- c) $M = \left(\frac{p_1 + q_1}{2}; \frac{p_2 + q_2}{2}\right)$
- 5. a) Graph
 - b) $\overline{AB} = 8.6e$; $\overline{BC} = 9.06e$; $\overline{AC} = 4.47e$
 - c) $M_{\overline{AB}} = (6.5; 4.5); M_{\overline{BC}} = (5.5; 6.5); M_{\overline{AC}} = (2; 4); s_a = 5.15e; s_b = 8.54e; s_c = 5.7e$
 - d) A' = (-3; -2); B' = (-10; -7); C' = (-1; -6)
 - e) A'' = (1; 0); B'' = (-4; -7); C'' = (-3; 2)
- P: 8.944 km Rohrlänge; Q: 8.991 km Rohrlänge; R: 8.819 km Rohrlänge
- 7. a) *i*: (2; 3), (2; 4), (3; 2), (3; 3), (3; 4) b: (-1; 2), (0; 2), (1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (2; 5), (3; 1), (3; 5) (4; 1), (4; 2), (4; 3), (4; 4), (4; 5), (5; 4), (5; 5)
 - b) $A = i + \frac{b}{2} 1$ $i = 5; b = 19; A = 5 + \frac{19}{2} 1 = 13.5$
 - c) Graph, $A = 7 + \frac{10}{2} 1 = 11$; z. B. $A = 7 + \frac{1 \cdot 3}{2} + \frac{1 \cdot 2}{2} + 1 = 11$
 - d) Graph

Lösungen zu Übungen 59

8. a) $A \in G, B \in G$

b) $A \in G, B \notin G$

- c) $A \in G, B \in G$
- 9. a) P' = (4; -5), Q' = (1; 3),

b) P'' = (-4, 5) Q'' = (-1, -3)

- c) P''' = (-4; -5), Q''' = (-1; 3)
- **10.** a) A = (-3, 0), B = (6, 3), C = (1, -2)
 - **b**) $(-y)^2 = x + 3 \implies y^2 = x + 3$: symmetrisch zur x-Achse
 - c) Graph

b)
$$(-x)^2 + 4(-y)^2 = 4 \implies x^2 + 4y^2 = 4$$
: symmetrisch zum Ursprung.

c) Graph

12. a)
$$A = (0; 0), B = (1; 0.25), C = (2; 8)$$

b)
$$y = \frac{1}{4}(-x)^4 \implies y = \frac{1}{4}x^4$$
: symmetrisch zur y-Achse

c) Graph

13. a)
$$A = (0, 0), B = (8, 2), C = (1, 1)$$

b)
$$(-y)^3 - (-x) = 0 \implies y^3 - x = 0$$
: symmetrisch zum Ursprung.

c) Graph

14. a)
$$A = (0; 0), B = (2; 0), C = (3; \sqrt{5})$$

b)
$$(-x)^2 - (-y)^2 = 4$$
 \Rightarrow $x^2 - y^2 = 4$: symmetrisch zum Ursprung.

c) Graph

Lösungen zu Übungen 60

15. a)
$$U = 2r\pi$$
; u.V. r ; a.V. U

c)
$$d = \sqrt{2} \cdot s$$
; u.V. s; a.V. d

e)
$$I = \frac{U}{R}$$
; u.V. *U*; a.V. *I*

16 a)
$$y = f(x) = 3x - 2$$

c)
$$y = f(x) = -\frac{1}{x}$$

17. a)
$$y \in \{8; 4; 2; -1; -7\}$$

c)
$$y_1 = 5$$
; $y_2 = 14.6$; $y_3 = -31$

e)
$$D = W = \mathbb{R}$$

18. a)
$$y \in \left\{ \frac{1}{6}; \frac{3}{10}; \frac{1}{3}; -1 \right\}; -3 \notin D$$

c)
$$y_1 = \frac{1}{2}$$
; $y_2 = \frac{4}{7}$; $y_3 = \frac{2}{7}$

e)
$$D = \mathbb{R} \setminus \{-3\}; W = \mathbb{R} \setminus \{0\}$$

19. a)
$$y \in \left\{49; 4; \frac{81}{25}; \frac{9}{4}; 1; 0; \right\}$$

c)
$$y_1 = 1; y_2 = 9; y_3 = \frac{9}{16}$$

d)
$$x_{11} = \frac{19}{9}$$
; $x_{12} = \frac{17}{9}$; $x_{21} = 2 - \sqrt{2}$; $x_{22} = 2 + \sqrt{2}$; $-1 \notin W$

e)
$$D = \mathbb{R}; W = \mathbb{R}_0^+$$

f) Graph

Lösungen zu Übungen 61

20. Funktionen: (a); (c); (e); (h)

21. Funktionen sind b) und d). Keine Funktionen (Relationen) sind a) und c).

22. Funktionen sind b), d) und f). Keine Funktionen (Relationen) sind a), c) und e)

b)
$$\alpha = \frac{(n-2) \cdot 180^{\circ}}{n}$$
; u.V. n; a.V. α

d)
$$V = \frac{4\pi}{3}r^3$$
; u.V. r ; a.V. V

f)
$$W = \frac{1}{2} \cdot m \cdot v^2$$
; u.V. v; a.V. W

b)
$$y = f(x) = x^2 + 1$$

b)
$$x \in \left\{3; \frac{2}{3}; \frac{7}{18}; -\frac{1}{3}; -10\right\}$$

d)
$$x_1 = \frac{10}{3}$$
; $x_2 = \frac{1}{4}$

f) Graph

b)
$$x \in \left\{-\frac{16}{5}; -\frac{7}{2}; 0; -2\right\}; 0 \notin W$$

d)
$$x_1 = -4$$
; $x_2 = 7$

f) Graph

b)
$$x \in \left\{6; -2; 3; 1; \frac{11}{5}; \frac{9}{5}; 2\right\}; -4 \notin W$$

- 23. a) $f(2005) = 149\,000$; $f(2007) = 109\,000$; $f(2014) = 137\,000$
 - **b**) q(2005) = 3.8%; q(2007) = 2.8%; q(2014) = 3.2%
 - c) f: maximaler Wert im Jahr 2010, minimaler Wert im Jahr 2008 g: maximaler Wert im Jahr 2005, minimaler Wert im Jahr 2008
 - d) f: D: 10 Elemente; W: 9 Elemente g: D: 10 Elemente; W: 8 Elemente
 - e) f: im Durchschnitt 131 300; g: im Durchschnitt 3.18 %
 - f) Graph
- 24. (a) BMI: 24 und 30

- (b) $y = f(x) = \frac{75}{x^2}$ oder $BMI(h) = \frac{75}{h^2}$; Graph
- (c) $y = f(x) = \frac{4}{9}x$ oder $BMI(m) = \frac{4}{9}m$; Graph
- **25.** a) f(1997) = 6; f(2005) = 0; f(2015) = 3
 - b) y = 6:1997;2007;2009 / y = 4:2003 / y = 1:2011;2013
 - c) D: 11 Elemente; W: 7 Elemente
- **26.** a) f(Januar) = 8.15; f(März) = 7.09; f(Juni) = 4.38; f(2011) = 1; f(Oktober) = 6.29; f(Dezember) = 7.55
 - **b**) y = 5.14: Mai / y = 4.39: Juli / y = 7.13: November
 - c) y = 17.33: Februar / y = 19.40: Mai / y = 19.10: September
 - d) 1. Tag des Monates → Tageslänge (h, min.)
 - e) Graph
- **27.** a) f(70) = 1; f(240) = 1.3; f(400) = 2; f(950) = 4
 - **b**) $0 < x \le 100$; $250 < x \le 500$; $500 < x \le 1000$
 - c) $D = \{x \in \mathbb{Q} \mid 0 < x \le 1000\}; D = \{1; 1.3; 2; 4\}$
 - d) nein
 - e) Graph
- **28.** a) f(70) = 6; f(240) = 6.3; f(400) = 7; f(950) = 9
 - **b**) $0 < x \le 100; 100 < x \le 250$
 - c) $D = \{x \in \mathbb{Q} \mid 0 < x \le 1000\}; D = \{6, 6.3, 7, 9\}$
 - d) nein
 - e) Graph

14 Lineare Funktionen

- 1 Richtig: (1); (4)
- 2. a) linear
- b) nicht linear
- c) nicht linear
- d) linear

- e) nicht linear
- f) linear
- g) linear
- h) linear

- i) nicht linear
- 3. a) nicht linear
- b) linear
- c) nicht linear
- d) linear

- e) nicht linear
- f) linear
- g) nicht linear
- h) nicht linear

- i) linear
- 4. a) linear
- b) nicht linear
- c) nicht linear
- d) linear

- e) linear
- f) nicht linear
- g) linear

b)
$$x_1 = \frac{4}{3}$$
; $x_2 = \frac{8}{3}$; $m = -\frac{3}{4}$; $x_1 = 3$; $x_2 = \frac{20}{9}$; $m = -\frac{3}{4}$

b) Graph

7. a)
$$m = -\frac{2}{3}$$
; $q = 4$; Graph

b) $m = \frac{2}{5}$; q = -3; Graph

c)
$$m = 0; q = -2; Graph$$

d) $m = 0; q = \frac{5}{4}$; Graph

e)
$$m = -\frac{1}{8}$$
; $q = \frac{1}{2}$; Graph

f) $m = -\frac{3}{4}$; q = 1; Graph

8. a)
$$y = f(x) = \frac{3}{4}x$$
 b) $y = f(x) = x$

c)
$$y = f(x) = -\frac{8}{5}x$$

d) y = f(x) = 0

e)
$$y = f(x) = \frac{6}{11}x$$
 f) $x = 0$ (keine Funktion) g) $y = f(x) = -\frac{18}{11}x$ h) $y = f(x) = -5x$

g)
$$y = f(x) = -\frac{18}{11}x$$

i)
$$y = f(x) = \frac{\sqrt{6}}{8}x$$

rot: $f_1(x) = 2x$; dunkelblau: $f_2(x) = x$; grün: $f_3(x) = \frac{1}{3}x$; violett: $f_4(x) = -\frac{1}{5}x$;

hellblau: $f_5(x) = -\frac{3}{5}x$; olive: $f_6(x) = -\frac{4}{3}x$

grün: $f_1(x) = -\frac{1}{4}x + 3$; rot: $f_2(x) = -\frac{2}{3}x + 2$; olive: $f_3(x) = -\frac{1}{5}x - 1$ 10.

violett: $f_4(x) = -4$; dunkelviolett: $f_5(x) = 2x + 4$; hellblau: $f_6(x) = \frac{3}{5}x - 3$

olive: x = -5 (keine Funktion); hellblau: $f_2(x) = -\frac{8}{3}x - \frac{28}{3}$; grün: $f_3(x) = -\frac{5}{2}x + \frac{1}{2}$ 11.

dunkelviolett: $f_4(x) = -\frac{4}{9}x - \frac{11}{9}$; rot: $f_5(x) = \frac{1}{4}x - \frac{9}{4}$; hellviolett: $f_6(x) = 8x - 28$

12. a)
$$x = 1; y = -4$$
 b) $x = -2; y = 3$

b)
$$x = -2$$
: $y = 3$

c)
$$x = 0; y = \frac{1}{2}$$

d) x = -6.3; y = 0

13. a)
$$y = f(x) = -2x - 4$$
 b) $y = f(x) = \frac{3}{10}x + \frac{9}{2}$ c) $y = f(x) = \frac{7}{12}x - \frac{5}{6}$

b)
$$y = f(x) = \frac{3}{10}x + \frac{9}{2}$$

c)
$$y = f(x) = \frac{7}{12}x - \frac{5}{6}$$

d)
$$y = f(x) = -0.4x - 1.84$$

14. a)
$$y = f(x) = \frac{2}{3}x + 3$$
 b) $y = f(x) = -\frac{6}{5}x - 4$ c) $y = f(x) = -8x + \frac{32}{3}$

b)
$$y = f(x) = -\frac{6}{5}x - 4$$

c)
$$y = f(x) = -8x + \frac{32}{3}$$

d)
$$y = f(x) = 0.3x - 10.4$$

15. a)
$$y = f(x) = 3x + 4$$

b)
$$y = f(x) = -\frac{1}{2}x - \frac{5}{2}$$

15. a)
$$y = f(x) = 3x + 4$$
 b) $y = f(x) = -\frac{1}{2}x - \frac{5}{2}$ c) $y = f(x) = -\frac{6}{5}x + 2$

d)
$$y=6$$

16. a)
$$A ∈ g; B ∉ g; C ∈ g$$

b)
$$A \in q$$
; $B \in q$; $C \notin q$

b) Punkte bilden ein Dreieck

18. a)
$$x_p = -15$$

b)
$$y_{\rm p} = 91$$

c)
$$x_p = -8$$

19.
$$n(p) = \frac{5}{24}p + 1$$
; Graph

20. a)
$$p(t) = -0.15t + 2$$

b) um 08:00; um 10:00; um 13:20

Temperatur in Grad Celsius: *T*; Temperatur in Kelvin: γ; Temperatur in Fahrenheit: φ 21.

$$\gamma = T + 273.16$$
; $\gamma = \frac{5}{9} \varphi + 255.4$; $T = \frac{5}{9} \varphi - \frac{160}{9}$; $T = \gamma - 273.16$; $\varphi = \frac{9}{5} \gamma - 459.68$; $\varphi = \frac{9}{5} T + 32$

22. a)
$$s(t) = 150t + 100$$
 b) bei Kilometer 137.5

c) um 15:10

14

23. a)
$$S_v = (0; 3); S_x = (\frac{3}{5}; 0)$$

c)
$$S_y = (0; -\frac{5}{24}); S_x = (-\frac{5}{2}; 0)$$

e)
$$S_v = (0; 3); S_x = \left(-\frac{3}{5}; 0\right)$$

24. a)
$$S = (-24; -116)$$
 b) $S = (\frac{8}{5}; \frac{1}{5})$

b)
$$S = (\frac{8}{5}; \frac{1}{5})$$

25. a)
$$S = \left(\frac{5}{2}; -\frac{3}{2}\right)$$

c)
$$S = (3; 1)$$

26. a)
$$A = 21.6 \text{ cm}^2$$

b)
$$A = 20 \, \text{cm}^2$$

27.
$$A = 17.63 \, \text{cm}^2$$

28. a)
$$y = g_1(x) = -1.2x + 19.6$$

29. a) Graph;
$$L = \{(-2, 5)\}$$

c) Graph; L =
$$\{(x; y) | y \in \mathbb{R} \land x = 2y + 3\}$$

b)
$$S_y = (0; -\frac{15}{4}); S_x = (-6; 0)$$

d)
$$S_v = (0; -55); S_x = (\frac{11}{10}; 0)$$

f)
$$S_v = (0; s); S_x = (-\frac{s}{r}; 0)$$

c)
$$S = (0.4; 8.4)$$

c)
$$A = 8 \text{ cm}^2$$

b)
$$y = g_2(x) = -1.8x + 4.5$$

d) Graph;
$$L = \{(2, 3)\}$$

30. a)
$$y = f(x) = \frac{1}{250}x$$
; $y = f(x) = -\frac{3}{500}x + 400$; Graph

31. a) (a) A:
$$s_1(t) = 120(t - \frac{1}{4})$$
; P: $s_2(t) = 160(t - \frac{5}{12}) - 15$

32. a) A340:
$$s_1(t) = 850t$$
; FA18: $s_2(t) = -1912.32(t - \frac{1}{2}) + 6400$

b) Graph

33. a)
$$q(x) \perp h(x)$$

b)
$$g(x) \perp h(x)$$

c)
$$q(x) \perp h(x)$$

d)
$$g(x) \perp h(x)$$

34. a)
$$g_1(x) = -\frac{2}{11}x + \frac{69}{11}$$
; $g_2(x) = \frac{1}{6}x - 6$; $g_3(x) = -\frac{11}{7}x + \frac{82}{7}$

b)
$$h_1(x) = -\frac{2}{11}x + \frac{39}{11}$$
; $h_2(x) = \frac{1}{6}x - \frac{1}{2}$; $h_3(x) = -\frac{11}{7}x + \frac{47}{7}$

c)
$$k_1(x) = \frac{11}{2}x + 49$$
; $k_2(x) = -6x - 19$; $k_3(x) = \frac{7}{11}x + \frac{1}{11}$

35. a)
$$g(x) = \frac{3}{2}x - 3$$

b)
$$g(x) = -\frac{4}{5}x - \frac{84}{25}$$

c)
$$g(x) = -4x + 4\sqrt{2}$$

36. a)
$$h(x) = -\frac{1}{2}x + \frac{11}{2}$$

b)
$$h(x) = \frac{5}{4}x + \frac{13}{2}$$

c)
$$h(x) = 50x + 28.5$$

d)
$$h(x) = -\frac{1}{m}x + \frac{a}{m} + b$$

37. a)
$$Q_1 = (3;4)$$

38. a)
$$H = \left(\frac{13}{4}, \frac{3}{4}\right)$$

39. a)
$$P_1' = \left(\frac{40}{17}; -\frac{160}{17}\right)$$

b)
$$Q_2 = \left(\frac{3}{10}; -\frac{41}{10}\right)$$

b)
$$U = \left(\frac{15}{8}; \frac{17}{8}\right)$$

b)
$$P_2' = \left(\frac{52}{17}; -\frac{327}{17}\right)$$

40.
$$n(f) = -\frac{5}{20}f + 6$$
; Graph

41. a)
$$y = 4x + 8, y = 4.25x + 6$$

b) 8 Minuten, 40 Fr.

c)
$$y = 4x + 8 + 36 = 4x + 44$$
, $y = 4.25x + 6 + 31 = 4.25x + 37$; 28 Minuten; 156 Fr.

42. a)
$$f_1(x) = 2.40 \text{ für } 0 < x \le 60; f_2(x) = \text{Ganzzahl}\left(\frac{x - 45.01}{15}\right) \cdot 0.5 + 2.4 \text{ für } x \ge 60; \text{ Graph}$$

b) ab 11 h 45 min

c) ab 19 h 45 min

43. a) e:
$$y = 100$$
; m: $y = 0.28x + 15$; s: $y = 0.25(x - 30) + 35 = 0.25x + 27.5$

b) e:
$$y = 100$$
; m: $y = 0.1x + 15$; s: $y = 0.1(x - 500) + 35 = 0.1x - 15$

b) m-e: 850 MB (100 Fr.); s-e: 1150 MB (100 Fr.); e-s: 200 MB (35 Fr.)

45.
$$\overline{AB}$$
: $p = 0.7\%$; $y = f(x) = 0.0068x + 0.72$

$$\overline{CD}$$
: $p = -6.5\%$; $y = f(x) = -0.065x + 4.27$

$$\overline{EF}$$
: $p = -5.7\%$; $y = f(x) = -0.057x + 6.48$

46.
$$\overline{AB}$$
: $p = -0.03\%$, $y = f(x) = -0.00034x + 1.78$

$$\overline{CD}$$
: $p = -6.5\%$, $y = f(x) = -0.065x + 3.70$

48. a)
$$q = -2$$
; $x_1 = 4$; $x_2 = -1$

c)
$$q = 3$$
; keine Nullstellen

49. a)
$$L = \{-1, 7\}$$

47. a) - f): Graph

c)
$$L = \{-1.\overline{6}; 1.\overline{6}\}$$

50. a)
$$L = [-2; 2]$$

c)
$$L = [-6; 8]$$

e)
$$L =]-\infty; -2[$$

b)
$$q = -3$$
; $x = -3$

d)
$$q = -3$$
; $x_1 = 6$; $x_2 = -6$

 \overline{BC} : p = 4.9%; y = f(x) = 0.049x + 0.14

 \overline{DE} : p = 7.5%; y = f(x) = 0.075x - 3.94

 \overline{BC} : p = 2.9 %, y = f(x) = 0.029x + 1.60

 \overline{FG} : p = -0.3%; y = f(x) = -0.003x + 0.68

 \overline{DE} : p = -2.9 %, y = f(x) = -0.029x + 2.19

b)
$$L = \{-5, -1\}$$

d)
$$L = \{-2.1; 3.3\}$$

b) L =]
$$-\infty$$
; -3 [∪ [3; ∞ [

d)
$$L =]-\infty; 1[\cup]5; \infty[$$

f)
$$L =]-5; \infty[$$

51. a) Keine Lösung
$$q < -\frac{10}{3}$$
; eine Lösung: $q = -\frac{10}{3}$; zwei Lösungen: $q > -\frac{10}{3}$

b) eine Lösung für $q \in \mathbb{R}$

c) Keine Lösung q < -3; eine Lösung: q = -3; zwei Lösungen: q > -3

52. a) eine Lösung: $m \ge \lfloor 0.5 \rfloor$; zwei Lösungen: $m \le \lfloor 0.5 \rfloor$

b)
$$q = -\frac{5}{2}$$
; $m = -\frac{1}{2}$; $q = -\frac{7}{2}$; $m = \frac{1}{2}$

15 Quadratische Funktionen

Lösungen zu Übungen 66

1. a) nicht quadratisch

c) quadratisch

e) quadratisch

b) nicht quadratisch

d) nicht quadratisch

f) nicht quadratisch

- 2. a) nicht quadratisch
 - c) quadratisch
 - e) nicht quadratisch
 - g) nicht quadratisch
 - i) nicht quadratisch
- 3. a) $y = f(x) = 2x^2 + 6x 10$
 - c) $y = f(x) = -x^2 x 1$
- 4. hellblau: $y = x^2 + 6x + 9$; grün: $y = -\frac{1}{2}x^2 2x$ violett: $y = -x^2 + 3$; rot: $y = 2x^2 - 16x + 28$

- 5. a) Graph
- 6. a) Graph
- 7. a) Graph
- 8. a) Graph
- 9. a) Graph
- 10. a) $y = 5(x-3)^2 2$
 - c) $y = -\frac{1}{100}x^2 + 11$
- 11. Richtig: (1); (4)
- **12.** Richtig: (3); (4); (5)
- 13. a) Graph
- Lösungen zu Übungen 68
- 14. Richtig: (2); (3)
- **15.** Richtig: (1); (2); (5)
- **16.** a) $f(x) = -2x^2 + 6x 8$
 - c) $f(x) = 10(x+1)^2 12$
- 17. a) S = (2, -1); Graph
 - c) S = (-1, -2); Graph
- **18.** a) steigend: x > -6; fallend: x < -6
 - c) steigend: x > 10; fallend: x < 10

- b) quadratisch
- d) nicht quadratisch
- f) quadratisch
- h) quadratisch

b)
$$y = f(x) = -\frac{1}{2}x^2 + \frac{5}{4}x + 3$$

d) $y = f(x) = -5x^2 + \frac{5}{2}x - 5$

- b) siehe Theorieteil
- b) siehe Theorieteil
- b) siehe Theorieteil
- b) Graph
- b) Graph
- b) $y = -10(x+6)^2$
- d) $y = \frac{1}{4}(x+4)^2 + 10$
- b) Graph
- b) $f(x) = \frac{1}{2}x^2 + 2x + \frac{3}{4}$
- d) $f(x) = -\frac{3}{4}(x-4)^2 + 3$
- b) S = (3; 2); Graph
- d) S = (-3; 0); Graph
- **b**) steigend: $x < \frac{1}{4}$; fallend: $x > \frac{1}{4}$
- d) steigend: $x < \frac{7}{5}$; fallend: $x > \frac{7}{5}$

- b) Translation (Verschiebung) um 2 Einheiten nach rechts und 6 Einheiten nach oben
- Streckung in y-Richtung mit Faktor 3 Translation um 3 Einheiten nach links und 4 Einheiten nach unten
- d) Spiegelung an der x-Achse Streckung in y-Richtung mit Faktor $\frac{1}{4}$

Translation um 4 Einheiten nach rechts und $\frac{15}{4}$ Einheiten nach oben

e) Streckung in y-Richtung mit Faktor 10

Translation um 2 Einheiten nach rechts und 8 Einheiten nach oben

f) Spiegelung x-Achse

Streckung in y-Richtung mit Faktor $\frac{1}{5}$

Translation um $\frac{5}{2}$ Einheiten nach links und $\frac{9}{2}$ Einheiten nach oben

20. a)
$$y = f(x) = -3(x-3)^2 = -3x^2 + 18x - 27$$

b)
$$y = f(x) = -3(x+1)^2 + 4 = -3x^2 - 6x + 1$$

c)
$$y = f(x) = -3(x - 10)^2 - 1 = -3x^2 + 60x - 30$$

c)
$$y = f(x) = -3(x - 10)^2 - 1 = -3x^2 + 60x - 301$$
 d) $y = f(x) = -3\left(x + \frac{1}{5}\right)^2 + \frac{4}{50} = -3x^2 - \frac{6}{5}x - \frac{1}{25}$

21. violett:
$$y = (x + 3)^2 - 2 = x^2 + 6x + 7$$
; hellblau: $y = (x + 1)^2 - 3 = x^2 + 2x - 2$
rot: $y = (x - 3)^2 - 3 = x^2 - 6x + 6$; grün: $y = (x - 3)^2 + 1 = x^2 - 6x + 10$

22. hellblau:
$$y = (x + 3)^2 = x^2 + 6x + 9$$
; grün: $y = -\frac{1}{2}(x + 2)^2 + 2 = -\frac{1}{2}x^2 - 2x$
violett: $y = -x^2 + 3$; rot: $y = 2(x - 4)^2 - 4 = 2x^2 - 16x + 28$

23. a)
$$y = \frac{1}{2}(x+2)^2 + 4 = \frac{1}{2}x^2 + 2x + 6$$

b)
$$y = \frac{5}{4}(x+2)^2 - 5 = \frac{5}{4}x^2 + 5x$$

c)
$$y=3\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=3x^2-3x-\frac{1}{2}$$

d)
$$y = 4(x-3)^2 - \frac{7}{4} = 4x^2 - 24x + \frac{137}{4}$$

24. a)
$$y = f(x) = -\frac{1}{2}(x-1)^2 = -\frac{1}{2}x^2 + x - \frac{1}{2}$$

b)
$$y = f(x) = 2(x + 3)^2 + 2 = 2x^2 + 12x + 20$$

c)
$$y = f(x) = x^2 - 6$$

25. a)
$$y = f(x) = -x^2 - 6x - 12$$

b)
$$y = f(x) = x^2 + 4x + 8$$

c)
$$y = f(x) = -x^2 + 4x - 5$$

26. a) $y = f(x) = -\frac{1}{4}x^2 + 12x - 36$

b)
$$y = f(x) = -\frac{1}{4}x^2 + 12x - 6$$

c)
$$y = f(x) = -\frac{1}{4}x^2 - 8x + 48$$

d)
$$y = f(x) = -\frac{1}{4}x^2 - 18x - 236$$

um $-\frac{b}{2a}$ parallel zur x-Achse; um $\frac{4ac-b^2}{4a}$ parallel zur y-Achse

28. a)
$$x_1 = -3$$
; $x_2 = 2$; $c = 12$

b)
$$x_1 = -\frac{3}{4}$$
; $x_2 = 3$; $c = \frac{3}{4}$

c)
$$x_1 = -\sqrt{2}$$
; $x_2 = \sqrt{2}$; $c = -10$

d)
$$x_1 = -2\sqrt{3}$$
; $x_2 = \sqrt{3}$; $c = -3$

15

b)
$$S = (1; -\frac{9}{2}); x_1 = -2; x_2 = 4; c = -4; Graph$$

c)
$$S = (1; -3); x_1 \in \{\}; x_2 \in \{\}; c = -6; Graph$$

d)
$$S = (\frac{3}{2}; -\frac{1}{2}); x_1 = 1; x_2 = 2; c = 4; Graph$$

e)
$$S = (-2; 8); x_1 = -6; x_2 = 2; c = 6; Graph$$

f)
$$S = (2; 1); x_1 \in \{\}; x_2 \in \{\}; c = \frac{7}{2}$$

30. a)
$$\lambda = -9; x = 3$$

b)
$$\lambda_1 = -4$$
; $\lambda_2 = 4$; $x_1 = 2$; $x_2 = -2$;

c)
$$\lambda_1 = -4; \lambda_2 = 4; x = 5$$

d)
$$\lambda \in \{\}$$
, immer zwei Nullstellen da $D = 4$

31. a)
$$t > \frac{4}{3}$$
: keine Lösung; $t = \frac{4}{3}$: eine Lösung; $t < \frac{4}{3}$: zwei Lösungen

b)
$$t > \frac{25}{8}$$
: keine Lösung; $t = \frac{25}{8}$: eine Lösung; $t < \frac{25}{8}$: zwei Lösungen

c)
$$-2 < t < 6$$
: keine Lösung; $t = 6 \lor t = -2$: eine Lösung; $t > 6 \lor t < -2$: zwei Lösungen $(t \ne 0)$

d)
$$2 < t < 8$$
: keine Lösung; $t = 2 \lor t = 8$: eine Lösung; $t > 8 \lor t < 2$: zwei Lösungen ($t \ne 0$)

32. a)
$$\mu = -\frac{8}{3}$$

b)
$$\mu_1 = -2$$
; $\mu_2 = 2$

c)
$$\mu_1 = -\sqrt{5}$$
; $\mu_2 = \sqrt{5}$

d)
$$\mu \in \{\}$$

f)
$$\mu_1 = -2; \mu_2 = \frac{2}{3}$$

33.
$$u = -2$$
; $y = f(x) = -2x^2 - 8x + 24$

34. a)
$$u = -\frac{1}{4} = -0.25$$

b)
$$u = \frac{3\sqrt{2}}{2} \approx 2.12$$

c)
$$u = -\frac{2}{5}$$
; $v = 0$

d)
$$u = \frac{7}{20}$$
; $v = \frac{9}{400}$

35. a)
$$u = \frac{7}{2}$$
; $y = f(x) = -2x^2 + 14x - 20$

b)
$$u = -0.25$$
; $y = f(x) = 1.096x^2 + 0.548x - 1.644$

Lösungen zu Übungen 70

36. a)
$$P = (-1; 0)$$

b)
$$P = (1; 12); Q = (-2; -3)$$

37. a)
$$P = \left(-\frac{1}{2}; \frac{11}{4}\right)$$

b)
$$P = (\frac{1}{2}; -\frac{5}{4}); Q = (5; -44)$$

38. a)
$$P = (-\sqrt{3} - 2; 2\sqrt{3} + 6); Q = (\sqrt{3} - 2; -2\sqrt{3} + 6)$$

b) kein Schnittpunkt

c)
$$P = (-2; 5); Q = (4; 5)$$

d)
$$P = (1 - \sqrt{3}; 3); O = (1 + \sqrt{3}; 3)$$

39. a)
$$P = \left(-\frac{2}{3}; \frac{4}{9}\right); Q = (-2; 4)$$

b)
$$P = (-4; 6)$$

c)
$$P = \left(-1; \frac{3}{2}\right); Q = (2; -12)$$

40. a)
$$P = (-1; -4); Q = \left(-\frac{1}{2}; -\frac{13}{4}\right)$$

b)
$$P = (\frac{1}{6}; \frac{49}{12}); Q = (\frac{1}{2}; 4)$$

c)
$$P = (\frac{1}{2}; -\frac{1}{4}); Q = (-\frac{5}{4}; -\frac{67}{16})$$

41. a)
$$s = 15.540e$$
; $A = 29.65e^2$

a)
$$s = 15.540e$$
; $A = 29.65e^{2}$
c) $s = 5.154e$; $A = 3.75e^{2}$

42. a)
$$m_1 = -1; m_2 = \frac{1}{3}$$

b)
$$m_1 = \frac{1}{5}; m_2 = 1$$

43. a)
$$q = -5$$

b)
$$q = \frac{25}{8}$$

c)
$$q = n - \frac{1}{4}m^2$$

b)
$$q = \frac{25}{8}$$

d) $q = \frac{4ac - b^2}{4a}$

c)
$$t_1(x) = 0$$
; $t_2(x) = 6x - 9$

45. a) Gerade
$$y = f(x) = \frac{1}{2}x - 4$$

- 46. a) Graph
- 47. a) Graph
 - c) h = 137.82 m; t = 5.3 s
- **48.** a) s = 501.69 m
- 49. s = 1.81 m

b)
$$t_1(x) = 2x - 1$$
; $t_2(x) = -3x - \frac{9}{4}$

- d) t(x) = 6x 9
- **b**) Parabel $y = f(x) = \frac{1}{2}x^2 + 12$
- **b**) h = 11.47 m; t = 1.53 s
- b) $h(4) = 129.52 \text{ m}; t_2 = 6.6 \text{ s}$
- d) $t_1 = 1.07 \text{ s}; t_2 = 9.53 \text{ s}$
- **b**) $h_0 = 63.57$ m

50. a) trocken:
$$s_1 = 18 \text{ m}$$
; $s_2 = 40 \text{ m}$; $s_3 = 88 \text{ m}$; $s_4 = 180 \text{ m}$
nass: $s_1 = 27 \text{ m}$; $s_2 = 65 \text{ m}$; $s_3 = 152 \text{ m}$; $s_4 = 324 \text{ m}$
Schnee: $s_1 = 45 \text{ m}$; $s_2 = 115 \text{ m}$; $s_3 = 280 \text{ m}$; $(s_4 = 612 \text{ m})$
(Eis: $s_1 = 99 \text{ m}$; $s_2 = 265 \text{ m}$; $s_3 = 664 \text{ m}$; $s_4 = 1476 \text{ m}$)

b) trocken:
$$s(v) = \frac{3}{10}v + \frac{1}{100}v^2$$
; nass: $s(v) = \frac{3}{10}v + \frac{1}{50}v^2$
Schnee: $s(v) = \frac{3}{10}v + \frac{1}{25}v^2$; Eis: $s(v) = \frac{3}{10}v + \frac{1}{10}v^2$

c) trocken:
$$s(v) = \frac{1}{10}v + \frac{1}{100}v^2$$
; $s_1 = 12$ m; $s_2 = 30$ m; $s_3 = 72$ m; $s_4 = 156$ m
nass: $s(v) = \frac{1}{10}v + \frac{1}{50}v^2$; $s_1 = 21$ m; $s_2 = 55$ m; $s_3 = 136$ m; $s_4 = 300$ m
Schnee: $s(v) = \frac{1}{10}v + \frac{1}{25}v^2$; $s_1 = 39$ m; $s_2 = 105$ m; $s_3 = 265$ m; $(s_4 = 588$ m)

Eis:
$$s(v) = \frac{1}{10}v + \frac{1}{10}v^2$$
; $(s_1 = 93 \text{ m}; s_2 = 255 \text{ m}; s_3 = 648 \text{ m}; s_4 = 1452 \text{ m})$

- **51.** $y = f(x) = -0.0167 x^2 + 15.5$
- 52. $h_1 = 84 \text{ m}; h_2 = 227 \text{ m}$
- 53. Parabel mit $y = f(x) = -0.0087 x^2 + 73$. Die Werte von *a* schwanken zwischen -0.0082 und -0.0088.
- 54. a) Graph
 - b) $y = f(x) = \frac{2}{5}x^2$ keine Parabel: $y_2 = 0.4 \neq 0.25$; $y_3 = 1.6 \neq 1.1$; $y_4 = 3.6 \neq 2.7$; $y_5 = 6.4 \neq 5.4$

55. a)
$$k = -\frac{11}{3}$$
; $T(k) = 8.3...$

c)
$$k = -4$$
; $T(k) = 8$

56. a)
$$m = 6.2$$
; $T(m) = -192.2$

c)
$$m = -1$$
; $T(m) = 67$

- 57. a) 12.5 m und 25 m
 - c) 14 m und 28 m
- 58. x = 12.5 cm
- **59.** x = 41.38 cm
- 60. x = 30 cm; y = 20 cm; 50 %
- 61. x = 0.6 m; h = 0.686 m; 60.5 %
- 62. a = 4 m; b = 1.75 m

b)
$$k = 0$$
; $T(k) = -32$

b) m = 6; T(m) = -192

b) 25 m und 25 m (Quadrat)

16 Umkehrfunktionen

Lösungen zu Übungen 72

- 1. Richtig: (1); (3); (4)
- 2. a) injektiv
 - c) bijektiv
- 3. a) bijektiv (injektiv, surjektiv)
 - c) -
 - e) injektiv
 - g) bijektiv (injektiv, surjektiv)
- 4. a) $B = \{x \in \mathbb{R} \mid x \ge -3\}$
- 5. a) $B = \{x \in \mathbb{R} \mid x \ge -5\}$
- 6. umkehrbar: (a); (d)
- 8. a) (2); (4); (5); (6); (6)
- 9. a) (1); (2); (3)
- Umkehrfunktionen besitzen: a); c); g); h) 10.

- b) -
- d) surjektiv
- b) injektiv
- d) surjektiv
- f) bijektiv (injektiv, surjektiv)
- h) bijektiv (injektiv, surjektiv)
- b) $B = \mathbb{R}_0^+$
- **b**) $B = \{x \in \mathbb{R} \mid x \ge 2\}$ oder $B = \{x \in \mathbb{R} \mid x \le 2\}$
- **7.** umkehrbar: (c); (e)
- b) (4); (5)
- b) (1); (3)

11. a)
$$y = g(x) = -\frac{1}{2}x$$

- c) y = g(x) = -x + 4
- e) y = q(x) = x 4
- g) y = g(x) = 5x 2.5

- b) $y = g(x) = \frac{4}{5}x$
- d) y = q(x) = -x 1
- f) y = q(x) = 2x + 6
- h) $y = g(x) = \frac{3}{2}x \frac{9}{4}$

i)
$$y = g(x) = -\frac{5}{6}x + \frac{5}{6}$$

- **12.** a) Graph; f: D = [-2; 12], W = [-5; 11] g: D = [-5; 11], W = [-2; 12]
 - b) Graph; f: D = [-8; 2], W = [0; 7]; g: existiert nicht für $D_f = [-8; 2],$ Graph einer Relation!

13. a)
$$f^{-1}$$
: $y = \frac{1}{3}x + 2$

- c) h^{-1} : $y = \sqrt[3]{x}$
- e) I^{-1} : $y = \frac{x+3}{2-x}$ mit $x \ne 2$
- 14. a) $y = g(x) = \frac{1}{x-1}$; $D_g = \mathbb{R} \setminus \{1\}$
 - c) $y = g(x) = \frac{5}{x}$; $D_q = \mathbb{R} \setminus \{0\}$
 - e) $y = q(x) = x^2$; $D_a = \mathbb{R}_0^-$
 - g) $y = g(x) = x^2 + 2$; $D_a = \mathbb{R}_0^+$
 - i) $y = g(x) = \frac{x-2}{2x-1}$; $D_g = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$

- b) g^{-1} : $y = \frac{1}{2}x \frac{5}{2}$
- d) k^{-1} : $y = \frac{2x+3}{x-1}$ mit $x \ne 1$
- f) m^{-1} : $y = x^2 2 \text{ mit } x \ge 0$
- b) $y = g(x) = \frac{1}{x} 3$; $D_a = \mathbb{R} \setminus \{0\}$
- d) $y = g(x) = 4x^2$; $D_0 = \mathbb{R}_0^+$
- f) $y = g(x) = x^2 + 4x + 4$; $D_a = \{x \in \mathbb{R} \mid x \ge -2\}$
- h) $y = g(x) = \frac{x}{x+1}$; $D_g = \mathbb{R} \setminus \{-1\}$

- 15. a) umkehrbar in \mathbb{R}_0^+ ; Graph mit $y = g(x) = \frac{1}{2}\sqrt{2x-6}$
 - **b**) umkehrbar in \mathbb{R}_0^+ ; Graph mit $y = g(x) = \sqrt{x} 4$
 - c) umkehrbar in \mathbb{R}_0^+ ; Graph mit $y = g(x) = \sqrt{2x + 8} 2$
- **16.** a) D = [-10; ∞[; W = [-3; ∞[; $y = q(x) = \sqrt{x + 10} 3$
 - b) $D =]-\infty; 3]; W = [1; \infty[; y = q(x) = \sqrt{6-2x} + 1]$
 - c) $D = [0; \infty[; W = [-\frac{3}{2}; \infty[; y = g(x) = \sqrt{5x} \frac{3}{2}]]$
- 17. a) $\lambda = 1$; $\mu = 0$ oder $\lambda = -1$; $\mu \in \mathbb{R}$
 - b) $\mu = 1; \lambda \neq 1$
 - c) $\lambda = -\mu \text{ mit } \mu \in \mathbb{R}$

Potenz- und Wurzelfunktionen

- 1. (a) $D = \mathbb{R}$; $W = \mathbb{R}$
 - (b) (-1; -1); (0; 0); (1; 1)
 - (c) Punktsymmetrie zum Ursprung
- 2. (a) $D = \mathbb{R}; W = \mathbb{R}_0^+$
 - (b) (-1; 1); (0; 0); (1; 1)
 - (c) Achsensymmetrie zur y-Achse
- 3. Gemeinsamkeiten: Punkte (0; 0); (1; 1) und $D = \mathbb{R}$. Unterschiede: Symmetrien und Wertemenge (W = \mathbb{R} , W = \mathbb{R}_0^+)
- 4. Richtig: (1); (3); (5); (6)
- 5. a) $y = \frac{1}{2}x^4 + 5$ b) $y = \frac{1}{2}(x 3)^4 = \frac{1}{2}x^4 6x^3 + 27x^2 54x + \frac{81}{2}$
 - c) $y = -\frac{1}{2}x^4$ d) $y = \frac{1}{2}x^4$
- 6. a) $y = \frac{1}{5}(x+4)^5 2 = \frac{1}{5}x^5 + 4x^4 + 32x^3 + 128x^2 + 256x + \frac{1014}{5}$
- b) $y = -\frac{1}{5}x^5 5$
- c) $y = \frac{1}{5}(-x-2)^5 + 1 = -\frac{1}{5}(x+2)^5 + 1 = -\frac{1}{5}x^5 2x^4 8x^3 16x^2 16x \frac{27}{5}$
- d) $y = \frac{3}{5}(x-1)^5 10 = \frac{3}{5}x^5 3x^4 + 6x^3 6x^2 + 3x \frac{53}{5}$
- 7. a) $b = \frac{1}{2}$
- b) b = 2
- c) $b = \frac{1}{\sqrt[4]{77}} \approx 0.4387$ d) $b = \sqrt{2} \approx 1.414$

- 8. a) $a = \frac{1}{16}$
- b) *a* = 1048576
- c) $a = \frac{1}{256}$
- d) a = 27

- 9. a) Translation (Verschiebung) um 3 Einheiten nach unten
 - b) Spiegelung an der x-Achse; Translation um 2 Einheiten nach oben
 - c) Streckung in y-Richtung mit Faktor 0.5
 - d) Streckung in y-Richtung mit Faktor $\frac{1}{4}$; Translation um 3 Einheiten nach unten
 - e) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor 2; Translation um 6 Einheiten nach oben
 - f) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor $\frac{1}{5}$; Translation um 2 Einheiten nach oben

- 10. a) Translation um 5 Einheiten nach rechts
 - b) Translation um 4 Einheiten nach links
 - c) Spiegelung an der x-Achse; Translation um 3 Einheiten nach links
 - d) Translation um 1 Einheit nach rechts und 4 Einheiten nach unten
 - e) Streckung y-Richtung mit Faktor $\frac{1}{4}$; Translation um 2 Einheiten nach rechts und 4 Einheiten nach unten
 - f) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor $\frac{1}{2}$;

Translation um 5 Einheiten nach links und 6 Einheiten nach oben

11. a)
$$n = 3$$
; $y = f(x) = x^3$

b)
$$n = 5$$
; $y = f(x) = x^5$

c)
$$n = 4$$
; $y = f(x) = x^4$

d)
$$n = 6$$
; $y = f(x) = x^6$

12. blau:
$$y = -2(x+3)^4 - 1$$
; rot: $y = (x-2)^3$; grün: $y = -\frac{7}{16}(x+1)^4 + 4$

13. a)
$$a = 2$$
; $n = 3$; $y = f(x) = 2x^3$

b)
$$a = -\frac{3}{4}$$
; $n = 3$; $y = f(x) = -\frac{3}{4}x^3$

c)
$$a = \frac{1}{3}$$
; $n = 4$; $y = f(x) = \frac{1}{3}x^4$

d)
$$a = \frac{1}{81}$$
; $n = 5$; $y = f(x) = \frac{1}{81}x^5$

14. a)
$$y_0 = -7$$
; $x_0 \approx 2.357$

b)
$$y_0 = \frac{13}{4}$$
; $x_0 \approx -2.644$

c)
$$y_0 \approx 2.184$$
; $x_1 \approx 1.004$; $x_2 \approx -0.254$

d)
$$y_0 \approx 1.500$$
; $x_1 \approx 1.355$; $x_2 \approx -1.855$

15. a) Graph;
$$L = \{-2, 0, 2\}$$

b) Graph;
$$L = \{ -1.5 \}$$

c) Graph;
$$L = \{1.3\}$$

d) Graph;
$$L = \{1; -1.4\}$$

f) Graph;
$$L = \{ -1.2; 1.2 \}$$

16. a) Graph; L =]
$$-3.71$$
; ∞[

b) Graph;
$$L = [1.59; 4.41]$$

c) Graph;
$$L = \mathbb{R} \setminus [-2.18; 0.33]$$

d) Graph;
$$L =]-\infty$$
; $1[\cup]1.48$; $3.29[$

17. a)
$$V_w(a) = 8 a^3$$
 b) Graph

c)
$$V_{K}(a) = \frac{4}{3}\pi \ a^{3}$$

d)
$$\frac{V_W(a)}{V_K(a)} = \frac{6}{\pi}$$
 oder $V_W(a)$: $V_K(a) = 1:\frac{6}{\pi} = 1:1.9099$ e) $r = 1.2407$ m

e)
$$r = 1.2407 \text{ m}$$

18. a)
$$V(t) = \frac{4^4 \pi}{3} t^3$$

c) 8.24 Sekunden

Lösungen zu Übungen 75

19. a)
$$D = \mathbb{R} \setminus \{0\}, W = \mathbb{R} \setminus \{0\}$$

b)
$$(-1;-1);(1;1)$$

c) Punktsymmetrie zum Ursprung

20. a)
$$D = \mathbb{R} \setminus \{0\}, W = \mathbb{R}^+$$

- c) Achsensymmetrie zur y-Achse
- 21. Gemeinsamkeiten: Punkt (1; 1); D = \mathbb{R} ; Verhalten für $x \to +0$ und $x \to +\infty$ Unterschiede: Symmetrien; Wertemenge (W = $\mathbb{R} \setminus \{0\}$, W = \mathbb{R}^+); Verhalten für $x \to -0$ und $x \to -\infty$
- 22. Richtig: (2)

23. a)
$$y = f(x) = \frac{2}{x^3} + 1$$
 b) $y = f(x) = \frac{2}{(x+3)^3}$ c) $y = f(x) = -\frac{2}{x^3}$ d) $y = f(x) = -\frac{2}{x^3}$

b)
$$y = f(x) = \frac{2}{(x+3)^3}$$

c)
$$y = f(x) = -\frac{2}{x^3}$$

d)
$$y = f(x) = -\frac{2}{x^3}$$

e)
$$y = f(x) = \frac{6}{x^3}$$

24. a)
$$y = f(x) = \frac{1}{x-2} - 3$$
 b) $y = f(x) = \frac{1}{x+1} + 5$ c) $y = f(x) = -\frac{1}{x} + 5$ d) $y = f(x) = \frac{1}{2-x} - 1$

b)
$$y = f(x) = \frac{1}{x+1} + \frac{1}{x}$$

c)
$$y = f(x) = -\frac{1}{x} + 5$$

d)
$$y = f(x) = \frac{1}{2 - x} - 1$$

e)
$$y = f(x) = -\frac{3}{2x}$$

e)
$$y = f(x) = -\frac{3}{2x}$$
 f) $y = f(x) = \frac{2}{x+5} + 4$

25. a)
$$u = -\frac{7}{2}$$
 b) $u_1 = -2; u_2 = 6$ c) $u = -\frac{14}{3}$

b)
$$u_1 = -2$$
; $u_2 = 6$

c)
$$u = -\frac{14}{3}$$

d)
$$u_1 = -1; u_2 = 0$$

26. a)
$$p = 2$$
; $q = 3$

b)
$$p_1 = 64$$
; $q_1 = 5$; $p_2 = \frac{64}{9}$; $q_2 = -\frac{1}{3}$ c) geht nicht

27. a)
$$x_0 = \frac{3}{4}$$

b)
$$x_0 = -\frac{5}{3}$$

c)
$$x_1 \approx -4.41; x_2 \approx -1.59$$

d)
$$x_0 \approx -1.74$$

f)
$$x_1 \approx -0.60; x_2 \approx 0.60$$

28. a)
$$x = 0$$
; $y = 0$

$$x = 0: v = 2$$

c)
$$x = 0$$
; $y = 3$

d)
$$x = 0$$
; $y = 15$

e)
$$x = -2$$
; $y = 0$

b)
$$x = 0$$
; $y = 2$
f) $x = 5$; $y = 0$

$$\alpha$$
, $\lambda = 0$, $y = 13$

29. a)
$$x = -1$$
; $y = 4$ b) $x = 2$; $y = -1$

b)
$$x = 2$$
; $y = -1$

c)
$$x = -2$$
; $y = 3$ d) $x = 2$; $y = 4$

d)
$$x = 2$$
; $y = 4$

e)
$$x = -\frac{5}{2}$$
; $y = \frac{1}{2}$ f) $x = -4$; $y = 1$

f)
$$x = -4$$
; $y = 1$

30. a) Graph;
$$L =]-\infty; -2.58[\cup]-2; \infty[$$

b) Graph;
$$L =]-\infty$$
; 2.29] $\cup [3.71; \infty[$

c) Graph;
$$L =]-\infty; -6] \cup [-1.83; -0.23] \setminus \{-1\}$$

31.
$$a(b) = \frac{500}{b}$$
; Hyperbel

32.
$$h(a) = \frac{1000}{a^2}$$
; Hyperbel

b)
$$r > 0$$
; Graph

33. a)
$$S(r) = 2\left(\pi r^2 + \frac{355}{r}\right)$$

c)
$$f(r) = \underbrace{\frac{g(r)}{2\pi r^2} + \underbrace{\frac{h(r)}{710}}_{Parabel} + \underbrace{\frac{710}{r}}_{Hyperbel}$$

d)
$$r_{\text{min}} = 3.84 \text{ cm}$$
; $h_{\text{min}} = 7.66 \text{ cm}$; $S = 277.55 \text{ cm}^2$

34. a)
$$R(R_1) = \frac{R_1 \cdot 2.2}{R_1 + 2.2}$$

b)
$$R(R_1) = \underbrace{2.2 \cdot R_1}_{\text{Gerade}} \cdot \underbrace{\frac{1}{R_1 + 2.2}}_{\text{Hyperbel}}$$

c)
$$R_1 = 4.714 \text{ k}\Omega$$

d) kommt auf das Gleiche heraus

Lösungen zu Übungen 76

36. Graph; alle Graphen gehen durch die Punkte (0; 0) und (1; 1). Je grösser der Wurzelexponent, desto flacher verläuft die Kurve für $x \ge 1$.

37. Graph; alle Graphen gehen durch die Punkte (0; 0), (1; 1) (und (-1; -1)). Je grösser der Wurzelexponent, desto flacher verläuft die Kurve für $x \ge 1$.

38. a) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor 2; Translation(Verschiebung) um 3 Einheiten nach links Nullstelle x = -3; Graph

b) Translation um 5 Einheiten nach rechts und 3 Einheiten nach unten Nullstelle x = 14; Graph

- c) Translation um 2 Einheiten nach links und 4 Einheiten nach oben Nullstelle keine; Graph
- d) Streckung in x-Richtung mit Faktor $\frac{1}{2}$; Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor $\frac{1}{2}$;

Translation um 2 Einheiten nach rechts

Nullstelle x = 2; Graph

39. a) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor 2;

Translation um 3 Einheiten nach rechts und 3 Einheiten nach oben

Nullstelle $x = \frac{51}{8}$; Graph

b) Streckung in x-Richtung mit Faktor $\frac{1}{3}$; Streckung in y-Richtung mit Faktor 2;

Translation um $\frac{5}{3}$ Einheiten nach rechts

Nullstelle $x = \frac{5}{3}$; Graph

c) Spiegelung an der y-Achse; Streckung in x-Richtung mit Faktor $\frac{1}{5}$; Streckung in y-Richtung mit Faktor 3;

Translation um $\frac{2}{5}$ Einheiten nach rechts und 2 Einheiten nach unten

Nullstelle $x = \frac{46}{135}$; Graph

d) Streckung in x-Richtung mit Faktor $\frac{1}{2}$; Spiegelung an der x-Achse;

Translation um 1 Einheit nach rechts und 2 Einheiten nach oben

Nullstelle x = 5; Graph

- 40. rot: $y = f(x) = \frac{1}{2}\sqrt{x+4} + 1$; violett: $y = f(x) = \sqrt{x+2} 2$ blau: $y = f(x) = -\sqrt{x} + 4$; grün: $y = f(x) = \sqrt{x-1}$
- **41.** a) Graph; $D = [2; \infty[; W = \mathbb{R}^+]$
 - c) Graph; $D = [-2; \infty[; W = [-1; \infty[$
 - e) Graph; D = $[-3; \infty[; W = \mathbb{R}_0^+]$
 - g) Graph; D = $]-\infty; \frac{1}{2}]; W =]-\infty; 1]$
- **42.** a) a = 2; n = 3; $y = f(x) = 2\sqrt[3]{x}$
 - c) a = 3; n = 5; $y = f(x) = 3\sqrt[5]{x}$
- **43.** a) Graph; x = 34
 - c) Graph; $x \in \{\}$
 - e) Graph; $x_1 = -2\sqrt{7}$; $x_2 = 2\sqrt{7}$
 - g) Graph; $x_1 = 5$; $x_2 = 10$
- **44.** a) Graph; x > 33
 - c) Graph; $x \in]-1.304$; 1.304[
- **45.** a) $u \in \left[-\infty; \frac{1}{4} \right]$

- **b**) Graph; D = $[-5; \infty[; W = [-1; \infty[$
- d) Graph; $D = [-1; \infty[; W =] \infty; 3]$
- f) Graph; D = $\left[-\frac{1}{2}; \infty\right[; W =] \infty; 2$]
- h) Graph; $D = [-4; \infty[; W = [2; \infty[$
- b) $a = -\frac{1}{4}$; n = 2; $y = f(x) = -\frac{1}{4}\sqrt{x}$
- d) $a = -\frac{1}{10}$; n = 4; $y = f(x) = -\frac{1}{10} \sqrt[4]{x}$
- b) Graph; $x = \frac{5}{2}$
- d) Graph; $x = \frac{9}{2}$
- f) Graph; $x \approx 2.618$
- h) Graph; $x_1 = 4$; $x_2 \approx 6.063$
- b) Graph; $x \le -\frac{9}{8}$
- d) Graph; $x \in \left[\frac{4}{3}; 15.571 \right]$
- b) $v \in \mathbb{R}$

c) $w \in]-\infty; \approx 2.3]$

46. a)
$$M(r) = \pi r \sqrt{r^2 + 441}$$
; Graph

b) r = 2.335 cm

47.
$$r(h) = \sqrt{\frac{3V}{\pi h}}$$
 mit $V = 380$; Graph

48 a)
$$s \approx 15.12 \text{ m}$$

b) $t \approx 4.809 \text{ s}$

49.
$$x_{\text{max}} = 5.657 \text{ m; Graph}$$

50. a) wegen
$$\sqrt{9.81} \approx \pi$$
; Graph

b) 0.6344 s; 2.006 s; 6.344 s

c)
$$I(T) = \frac{9.81}{4 \pi^2} T^2$$
: 9.940 mm; 62.12 mm; 24.85 cm; 99.40 cm; 6.212 m

d) Mond: 4.967 s; Mars: 3.240 s; Jupiter: 1.232 s; Saturn: 1.877s

e) Richtig: (4)

51. a) 2.8 m/s; 5.6 m/s; 8.8 m/s; 12.5 m/s; 28 m/s

b) 2d9h23min

c)
$$0 < x \le 300 \text{ m}$$
: $v(x) = 1.25 \sqrt{x}$; Graph

52. a) im Bogenmass:
$$V(\alpha) = \frac{1}{3} \left(\frac{m \alpha}{2 \pi}\right)^2 \cdot \sqrt{m^2 - \left(\frac{m \alpha}{2 \pi}\right)^2}$$
 b) $\alpha_{\text{max}} = 5.130 \text{ rad oder } \alpha_{\text{max}} = 293.9^{\circ}$

53. a) Laufwettbewerbe: je kleiner die gemessene Zeit, desto höher die Punktzahl Wurfwettbewerbe: je grösser die gemessene Weite (Höhe), desto höher die Punktzahl

b) 100 m: $p(l) = 25.435 \cdot (18 - l)^{1.81}$; Graph

1500 m: $p(l) = 0.038 \cdot (480 - l)^{1.85}$; Graph

Weit: $p(I) = 0.144 \cdot (I - 220)^{1.40}$; Graph

Kugel: $p(l) = 51.39 \cdot (l - 1.5)^{1.05}$; Graph

c) 100 m: 10.40 Sekunden

1500 m: 233.87 Sekunden

Weit: 775.8 Zentimeter

Kugel: 18.39 Meter

54. a) 100 m: $p(l) = 7.080303 \cdot (21.50 - l)^{2.10}$

1500 m: $p(l) = 0.0024384 \cdot (509.65 - l)^{2.30}$

Weit: $p(l) = 136.081575 \cdot (l - 1.30)^{1.10}$ (Meter)

Kugel: $p(I) = 82.491673 \cdot (I - 1.78)^{0.90}$

b)	3 ,	,		
		IAAF	SWISSA	Leistungsdifferenz
	100 m	10.40 s	10.94 s	0.54 s
	1500 m	233.87 s	233.98 s	0.11 s
	Weit (Meter)	7.76 m	7.43 m	0.33 m
	Kugel (Meter)	18.39 m	17.78 m	0.61 m

18 Polynomfunktionen

- 1. (1); (3)
- 2. a) Polynomfunktion 1. Grades, Grundform: y = f(x) = -0.5x + 10
 - b) Polynomfunktion 8. Grades, Grundform: $y = f(x) = x^8$
 - c) -
 - d) -
 - e) Polynomfunktion 3. Grades, Grundform: $y = f(x) = -\frac{2}{5}x^3 + \frac{1}{10}x^2 \frac{1}{10}x$
 - f) -
 - g) -
 - h) Polynomfunktion 0. Grades (konstante Funktion), Grundform: y = f(x) = 5
 - i) -
- 3. a) ungerade
 - c) –
 - e) gerade
 - g) ungerade
 - i) -
- 4. a) Achsensymmetrie zur y-Achse
 - b) keine Symmetrie
 - c) Achsensymmetrie zur y-Achse, gerade
 - d) keine Symmetrie bezüglich Ursprung oder y-Achse; Punktsymmetrie zu (0; 1)
 - e) Punktsymmetrie zum Ursprung, ungerade
 - f) Punktsymmetrie zum Ursprung, ungerade
 - g) Achsensymmetrie zur y-Achse, gerade
 - h) Achsensymmetrie zur y-Achse, gerade
 - i) keine Symmetrie

5. a)
$$v = f(x) = x^3 + 5x^2 - 6$$

c)
$$y = f(x) = x^3 + 2x^2 - 7x + 2$$

e)
$$y = f(x) = -x^3 + 5x^2 - 2$$

g)
$$y = f(x) = 8x^3 + 20x^2 - 2$$

6. a)
$$y = f(x) = -x^4 + 12x^3 - 52x^2 + 96x - 57$$

c)
$$y = f(x) = x^4 - 2x^2 + 2$$

e)
$$y = f(x) = 2x^4 - 4x^2 - 8$$

7. a)
$$y = f(x) = -\frac{6}{5}x + 12$$

c)
$$v = f(x) = x^3 - 2x^2 + x - 1$$

e)
$$y = f(x) = \frac{4}{3}x^4 - \frac{7}{3}x^3 - \frac{25}{3}x^2 + \frac{16}{3}x + 3$$

- f) –
- /
- h) ungerade

b)
$$y = f(x) = x^3 + 20x^2 + 125x + 248$$

d)
$$y = f(x) = -x^3 - 5x^2 + 2$$

f)
$$y = f(x) = 4x^3 + 20x^2 - 8$$

b)
$$y = f(x) = -x^4 - 4x^3 - 4x^2 + 1$$

d)
$$y = f(x) = -x^4 + 8x^3 - 22x^2 + 24x - 5$$

f)
$$y = f(x) = -\frac{1}{2}x^4 - 4x^3 - 11x^2 - 12x + \frac{1}{2}$$

b)
$$y = f(x) = -\frac{1}{10}x^2 + \frac{3}{10}x - \frac{7}{10}$$

d)
$$y = f(x) = \frac{1}{2}x^3 - 3x^2 + 4x - 5$$

8. a)
$$y = f(x) = 2x^2 + 2x - 24$$

c)
$$v = f(x) = 5x^3 - 15x^2 - 30x + 40$$

e)
$$y = f(x) = x^4 + x^3 - 4x^2 - 4x$$

9. a)
$$x_1 = 2$$
; $x_2 = 3$; Graph

c)
$$x_1 = -3$$
; $x_2 = 0$; $x_3 = 3$; Graph

e)
$$x_1 = -\sqrt{\frac{5}{2}}$$
; $x_2 = \sqrt{\frac{5}{2}}$; Graph

b)
$$y = f(x) = 2x^2 - 8x + 8$$

d)
$$y = f(x) = x^{2n} - 1 n \in \mathbb{N}^*$$

b)
$$x_1 = -2$$
; $x_2 = \frac{2}{3}$; Graph

d)
$$x = 1$$
; Graph

f)
$$x \in \{\}$$
; Graph

10. a) Nullstellen:
$$x_1 = -1.414$$
; $x_2 = 1$; $x_3 = 1.414$; lokale Extremalstellen: $x_{\text{max}} \approx -0.549$; $x_{\text{min}} \approx 1.215$

b) Nullstellen:
$$x_1 = -1.732$$
; $x_2 = 1.732$; $x_3 = 2$; lokale Extremalstellen: $x_{max} \approx -0.535$; $x_{min} = 1.869$

c) Nullstellen:
$$x = 11$$
; lokale Extremalstellen: $x_{max} \approx 0.046$; $x_{min} \approx 7.288$

d) Nullstellen:
$$x_1 \approx -4.971$$
; $x_2 \approx -0.09725$; $x_3 \approx 2.068$; lokale Extremalstellen: $x_{\text{max}} \approx -3.082$; $x_{\text{min}} \approx 1.082$

e) Nullstellen:
$$x_1 = -2$$
; $x_2 = 3$; $x_{max} = \frac{1}{2}$; $x_{min} = -2$; $x_{min} = 3$

f) Nullstellen:
$$x_1 \approx -1.911$$
; $x_2 \approx 0.1535$; $x_3 \approx 2.615$; lokale Extremalstellen: $x_{\text{max}} \approx -1.245$; $x_{\text{min}} \approx 1.869$

11. a)
$$-9.481 Lösungen; $p_1 = -9.481$, $p_2 = 0: 2$ Lösungen; sonst 1 Lösung$$

b)
$$0 > p < -75.85$$
: 3 Lösungen; sonst 1 Lösung

c)
$$-1.040 : 3 Lösungen; $p_1 = -1.04$, $p_2 = 1.04$: 2 Lösungen; sonst 1 Lösung$$

d)
$$p > -16.98$$
: 2 Lösungen; sonst keine Lösung

12. a)
$$V(x) = 4x^3 - 70x^2 + 300x$$

b)
$$x_{\text{max}} = 2.829 \text{ cm}$$

c)
$$V_{\text{max}} = 379.0 \text{ cm}^3$$

13. a)
$$h_{\text{max}} = 2.667 \text{ dm}$$

b)
$$r_{\text{max}} = 1.886 \text{ dm}$$

b) Abnahme, z.B. wegen Futtermangel usw.

b)
$$D = \{t \in \mathbb{R} \mid 0 \le t \le 24\}; W = \{\vartheta \in \mathbb{R} \mid 8.1^{\circ} \le \vartheta \le 23.1^{\circ}\}$$

c)
$$t_{\text{max}} = 14:47$$
, $\vartheta_{\text{max}} = 23.1^{\circ}$; $t_{\text{min}} = 5:13$, $\vartheta_{\text{max}} = 8.1^{\circ}$

d) um 11:17 und um 19:00

16. a)
$$V(x) = \frac{4}{3}\pi x^3 + x^2\pi(4.2 - 2x)$$

b) Graph

c)
$$0 < x \le 2.1 \text{ m}$$

d) 1.59 cm

e)
$$x_{\text{max}} = 2.1 \text{ m}; V_{\text{max}} = 38.792 \text{ m}^2$$

17. a)
$$A(x) = -2x^3 + 8x$$

b) $l = 2x \approx 2.309 e$ (exakt mit Analysis: $l = \frac{4\sqrt{3}}{3}e$)

c)
$$A_{\text{max}} \approx 6.158 e^2$$
 (exakt mit Analysis: $A_{\text{max}} = \frac{32\sqrt{3}}{9} e^2$)

18. a)
$$A(x) = x^3 - 4.6x^2 + 4.93x$$

b) $a_{\text{max}} \approx 0.6920 \, e$ (exakt mit Analysis: $a_{\text{max}} = \frac{46 - 7\sqrt{13}}{30} \, e$)

c)
$$A_{\text{max}} \approx 1.540 e^2$$
 (exakt mit Analysis: $A_{\text{max}} = \frac{4459 \sqrt{13} + 4715}{13500} e^2$)

19 Exponential- und Logarithmusfunktionen

Lösungen zu Übungen 78

1. Richtig: (1); (3); (4)

2. (1)
$$a \in \mathbb{R}^+ \setminus \{1\}$$
; (2) $a = \frac{1}{4}$; (3) $a = \frac{1}{5}$; (4) $a > 1$

3 a) –

c) Exponentialfunktion

e) -

g) Exponentialfunktion

i) Exponential funktion

d) –

f) Exponentialfunktion

b) Exponentialfunktion

h) -

4. a) Graph; gemeinsamer Punkt: (0; 1); Asymptote *x*-Achse $(x \to -\infty)$; $D = \mathbb{R}$, $W = \mathbb{R}^+$

b) Graph; gemeinsamer Punkt: (0; 1); die beiden Kurven sind symmetrisch zur *y*-Achse; Asymptote *x*-Achse; $D = \mathbb{R}$, $W = \mathbb{R}^+$

c) Graph; gemeinsamer Punkt: (0; 1); die beiden Kurven sind symmetrisch zur *y*-Achse; Asymptote *x*-Achse; $D = \mathbb{R}$, $W = \mathbb{R}^+$

d) Graph; gemeinsamer Punkt: (0; 1); Asymptote x-Achse ($x \to \infty$); D = \mathbb{R} , W = \mathbb{R}^+

5. Graph; Spiegelung an der y-Achse; Spiegelung an der y-Achse; Spiegelung am Ursprung

6. Graph; Spiegelung an der y-Achse; Spiegelung an der y-Achse; Spiegelung am Ursprung

7. a) Graph

b) (1) + 2; +2x + 1; $\cdot 2 / (2) + 6$; +6x + 9; $\cdot 8 / (3) \cdot 2$; $\cdot 4$; quadrieren $\cdot (4) : 2$; $\cdot 4$; Wurzel ziehen

8. a) $y = g_1(x) = 10 \cdot 10^x$

c) $y = q_3(x) = 100 \cdot 10^x$

9. a) $y = g_1(x) = 25^x$

c) $y = g_3(x) = (\sqrt{5})^x$

10. a) $a = \frac{1}{4}$

c) $a = \frac{2}{5}$

e) $a = \pi$

11. a) $a = \frac{9}{10}$

c) $a = \frac{4}{5}$

e) $a = \sqrt[4]{3}$

b) $y = g_2(x) = \frac{1}{10} \cdot 10^x$

d) $y = g_4(x) = \frac{1}{1000} \cdot 10^x$

b) $y = q_2(x) = 125^x$

d) $y = q_A(x) = (\sqrt[4]{5})^x$

b) a = 4

d) $a = \sqrt{5}$

f) $a = e^2$

b) $a = \frac{10}{11}$

d) $a = \frac{5}{4}$

f) $a = \frac{1}{\sqrt[3]{2}}$

12. a) $f(x_1) = 2$; $f(x_2) \approx 2.5937$; $f(x_3) \approx 2.7048$; $f(x_4) \approx 2.70169$; $f(x_5) \approx 2.71828047$; $f(x_6) \approx 2.71828183$ (e ≈ 2.7182818285)

b) $x \to \infty$; $f(x) \to e$

13. a) – d) Graph

14. a)
$$y = f(x) = 2^{x+4.5}$$

c)
$$y = f(x) = -2^x + 4.8$$

e)
$$y = f(x) = -2^{-x+1.5}$$

q)
$$y = f(x) = 2^{\frac{x}{2.8}} - 5$$

b)
$$y = f(x) = 2^x - 10.7$$

d)
$$y = f(x) = -2^{-x} = -\frac{1}{2^x}$$

f)
$$y = f(x) = 0.6 \cdot 2^x$$

h)
$$y = f(x) = -2 \cdot 2^{-x-3} + 5$$

15. a)
$$f(x) \rightarrow g(x)$$
: Streckung in y-Richtung mit Faktor 2

$$f(x) \rightarrow h(x)$$
: Streckung in y-Richtung mit Faktor $\frac{1}{2}$

$$f(x) \rightarrow k(x)$$
: Spiegelung an der x-Achse und Streckung in y-Richtung mit Faktor $\frac{1}{3}$

b)
$$f(x) \rightarrow g(x)$$
: Translation (Verschiebung) um 1 Einheit nach rechts

$$f(x) \rightarrow h(x)$$
: Translation um 2 Einheiten nach links

$$f(x) \rightarrow k(x)$$
: Streckung in x-Richtung mit Faktor $\frac{1}{2}$

c)
$$f(x) \rightarrow g(x)$$
: Translation um 1.5 Einheiten nach unten

$$f(x) \rightarrow h(x)$$
: Streckung in y-Richtung mit Faktor $\frac{1}{3}$

$$f(x) \rightarrow k(x)$$
: Spiegelung am Ursprung und Streckung in y-Richtung mit Faktor 4

- b) Streckung in y-Richtung mit Faktor 3
- c) Translation um 3 Einheiten nach rechts
- d) Spiegelung an der x-Achse und Spiegelung an der y-Achse (oder Spiegelung am Ursprung)
- e) Translation um 1 Einheit nach links und um 5 Einheiten nach oben
- f) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor 2; Translation um 2 Einheiten nach links und um eine Einheit nach unten

17. a)
$$f_1(x) = 9^x$$

c)
$$f_3(x) = 5^x$$

e)
$$f_5(x) = 4^x$$

18. a)
$$h(x) = 4^{x-2}$$

c)
$$h(x) = 9^{x-\frac{1}{2}}$$

19. a)
$$y_2(x) = 9 \cdot 3^x$$

c)
$$y_2(x) = \frac{1}{\sqrt{10}} \cdot 10^x$$

20. a)
$$f(x) = h(x)$$

c)
$$q(x) = h(x)$$

22. a)
$$f(x) = 27 \cdot 3^x$$
; $g(x) = 27^x$; $h(x) = 3 \cdot 3^x$

c)
$$f \cap h = \left(\frac{1}{2}; 3\sqrt{3}\right)$$

b)
$$f_2(x) = \left(\frac{1}{8}\right)^x$$

d)
$$f_4(x) = \left(\frac{1}{2}\right)^x$$

f)
$$f_6(x) = \left(\frac{1}{8}\right)^x$$

b)
$$h(x) = 3^{x+3}$$

d)
$$h(x) = e^{x + \ln \frac{5}{3}} = e^{x + \ln 5 - \ln 3}$$

b)
$$y_2(x) = \frac{1}{8} \cdot 2^x$$

d)
$$y_2(x) = \frac{1}{100^{\pi}} \cdot 10^x$$

b)
$$f(x) = g(x)$$

d)
$$f(x) = g(x)$$

b)
$$f \cap g = (\frac{3}{2}; 81\sqrt{3})$$

23. a)
$$a = 8; k = \frac{1}{4}$$

b)
$$a = 2; k = 3$$

c)
$$a = \frac{1}{2}$$
; $k = -4$

d)
$$a = \sqrt{2}$$
; $k = -\frac{1}{5}$

24. grün:
$$y = -3^{x-3} + 2$$
; rot: $y = 3^x$; blau: $y = 3^x - 5$; violett: $y = -2 \cdot 3^{-x}$

25. a)
$$y_0 = -4$$
; $x_0 = \ln 5$

b)
$$y_0 = \frac{4}{3}$$
; $x_0 = 1$

c)
$$y_0 = -\frac{23}{4}$$
; $x_0 = \frac{\ln 24}{3}$

d)
$$y_0 = -\frac{13}{8}$$
; keine Nullstelle

26. a) Graph;
$$x_1 \approx 0.3792$$
; $x_2 \approx 1.794$

b) Graph;
$$x \approx -0.6860$$

c) Graph;
$$x \approx 1.272$$

d) Graph;
$$x \approx -0.6170$$

27. a) Graph;
$$D = \mathbb{R}$$
; $D = \mathbb{R}$; keine Extremalstellen

b) Graph;
$$D = \mathbb{R}$$
; $W = \left\{ y \in \mathbb{R} \mid y \ge \frac{1}{2} \right\}$; Minimum: $\left(0, \frac{1}{2}\right)$

c) Graph; D =
$$\mathbb{R}$$
; W = { $y \in \mathbb{R} \mid y > -0.3349$ }; Minimum: (-0.9102; -0.3349)

d) Graph; D =
$$\mathbb{R}$$
; W = $\left\{ y \in \mathbb{R} \mid y \leq \frac{1}{e} \right\}$; Maximum: $\left(1; \frac{1}{e} \approx 0.368\right)$

e) Graph; D =
$$\mathbb{R}$$
; W = { $y \in \mathbb{R} \mid -0.5151 < y < 0.5151$ }; Minimum: (-0.849 ; -0.515); Maximum: (-0.8493 ; -0.5151)

- f) Graph; $D = \mathbb{R}$; $W = \mathbb{R}$; keine Extremalstellen
- **28.** a) 3780B; 4762B; 6000B; 768000B; 2.162 · 10²⁰ B

b)
$$G(t) = 3000 \cdot 2^{\frac{t}{3}}$$

c) nach 55 h 02 min 23 s

29. a) 35 mm; 24.50 mm; 17.15 mm; 8.40 mm; 1.41 mm

b)
$$h(t) = h_0 \cdot \left(1 - \frac{p}{100}\right)^t = 50 \cdot 0.7^t$$

c) Graph

d) h(15) = 0.2374 mm

e) nach 1 min 57 s

- 30. Richtig: (2); (3); (5)
- 31. a) - d) Graph
- 32. a) Graph; gemeinsamer Punkt, Nullstelle: (1; 0); monoton steigend; $D = \mathbb{R}^+$, $W = \mathbb{R}$; Asymptote y = 0
 - b) Graph; gemeinsamer Punkt, Nullstelle: (1; 0); $D = \mathbb{R}^+$, $W = \mathbb{R}$; Asymptote y = 0; Die beiden Kurven sind symmetrisch zur x-Achse
 - Graph; gemeinsamer Punkt, Nullstelle: (1; 0); $D = \mathbb{R}^+$, $W = \mathbb{R}$; Asymptote y = 0; die beiden Kurven sind symmetrisch zur x-Achse
 - d) Graph; gemeinsamer Punkt, Nullstelle: (1; 0); monoton fallend; $D = \mathbb{R}^+$, $W = \mathbb{R}$; Asymptote y = 0

33. a)
$$y = g(x) = \log_2 x$$

b)
$$y = g(x) = \log_{\frac{1}{2}} x = -\log_2 x$$

c)
$$y = g(x) = \log_{\frac{3}{2}} x$$

d)
$$y = g(x) = \log_{\frac{2}{5}} x$$

34. a)
$$y = g(x) = \log_4(3x)$$

b)
$$y = g(x) = \lg x + 5$$

c)
$$y = g(x) = \frac{1}{4} \ln x = \ln \sqrt[4]{x}$$

d)
$$y = g(x) = 2 \log_3 \frac{x}{2} - 1$$

e)
$$y = g(x) = \sqrt{\lg x} - 1$$
 oder $y = g(x) = -\sqrt{\lg x} - 1$ f) $y = g(x) = \frac{1}{3}\ln(2x) - 2 = \ln \sqrt[3]{2x} - 2$

f)
$$y = g(x) = \frac{1}{3}\ln(2x) - 2 = \ln \sqrt[3]{2x} - 2$$

c)
$$y = g(x) = \frac{1}{2}3^x$$

e)
$$y = q(x) = -10^{4x} + 1$$

36.
$$y = \log_a x = \frac{1}{\lg a} \cdot \lg x$$

37. a)
$$y = \frac{3}{\lg 2} \cdot \lg x$$

c)
$$y = \frac{5}{\lg 4} \cdot \lg x$$

38. a)
$$y = g(x) = \log_2(x+1)$$
; Graph

c)
$$y = g(x) = 2 \cdot 4^x = 2^{2x+1}$$
; Graph

39. a)
$$P_1 = (-1.690; -1.690); P_2 = (2; 2)$$

40. a) Graph;
$$x_1 \approx 0.1586$$
; $x_2 \approx 3.146$

c) Graph;
$$x_1 = -4$$
; $x_2 \approx -1.249$; $x_3 \approx 1.136$

41. a)
$$k = 3$$

b)
$$y = -\frac{1}{2 \lg 3} \cdot \lg x$$

f) $v = a(x) = e^{\frac{x}{5}} - 4$

b) $y = q(x) = e^{\frac{3x}{4}}$

d) $y = q(x) = 3^{2x}$

c)
$$y = -\frac{6}{\lg 5} \cdot \lg x$$

b)
$$y = g(x) = \log_3(-\frac{x}{2})$$
; Graph

b)
$$P_1 = (-2.961; -2.961); P_2 = (1.335; 1.335)$$

b) Graph;
$$x_1 \approx -2.744$$
; $x_2 \approx 0.4469$

d) Graph;
$$x_1 \approx -0.3418$$
; $x_2 \approx 0.3778$; $x_3 \approx 2.510$

c)
$$a = 5^{\frac{5}{3}}$$
; $b = 5^{-\frac{13}{3}}$

Lösungen zu Übungen 81

42. a)
$$y = f(x) = \ln x + 2$$

c)
$$y = f(x) = -\ln x$$

e)
$$y = f(x) = -\ln(-x)$$

43. a)
$$y = f(x) = \ln(2.5x)$$

c)
$$y = f(x) = -\ln(-x)$$

e)
$$y = f(x) = 1.5 \ln x - 3$$

b)
$$y = f(x) = \ln(x - 3)$$

d)
$$y = f(x) = \ln(-x)$$

f)
$$y = f(x) = 3 \ln x$$

b)
$$v = f(x) = -\ln(x + 2.5)$$

d)
$$y = f(x) = -\ln(-x) + 10$$

f)
$$y = f(x) = -\ln(3.75 - 1.25x) - 2$$

44. a) Translation (Verschiebung) um 1 Einheit nach oben; Nullstelle: $x = \frac{1}{e}$; Graph

b) $b = \frac{20}{9}$

- b) Translation um 1 Einheit nach links; Nullstelle: x = 0; Graph
- c) Translation um 2 Einheiten nach rechts; Nullstelle: x = 3; Graph
- d) Spiegelung an der y-Achse; Nullstelle: x = -1; Graph
- e) Streckung in y-Richtung mit Faktor 2; Nullstellen: $x_1 = -1$, $x_2 = 1$; Graph
- f) Spiegelung an der x-Achse; Streckung in y-Richtung mit Faktor 2; Nullstellen: $x_1 = -1$, $x_2 = 1$; Graph
- g) Streckung in y-Richtung mit Faktor $\frac{1}{2}$; Translation um 3 Einheiten nach links; Nullstelle: x = -2; Graph
- h) Spiegelung an der y-Achse; Translation um 2 Einheiten nach rechts; Nullstelle: x = 1; Graph
- i) Streckung in x-Richtung mit Faktor $\frac{1}{2}$; Nullstelle: $x = \frac{1}{2}$; Graph
- **45.** a) Translation um 2 Einheiten nach unten; Nullstelle: x = 100; Graph
 - b) Translation um eine Einheit nach links; Nullstelle x = 0
 - c) Spiegelung an der x-Achse; Nullstelle: x = 1; Graph; Graph
 - d) Spiegelung an der x-Achse; Nullstelle: x = 1; Graph
 - e) Streckung in y-Richtung mit Faktor 3; Nullstelle: x = 1; Graph

- f) Streckung in y-Richtung mit Faktor $\frac{1}{3}$; Translation um 2 Einheiten nach rechts; Nullstelle: x = 3; Graph
- g) Spiegelung an der y-Achse; Translation um 4 Einheiten nach rechts; Nullstelle: x = 3; Graph
- h) Streckung in x-Richtung mit Faktor 2; Nullstelle: x = 2; Graph
- Streckung in x-Richtung mit Faktor $\frac{1}{2}$; Translation um $\frac{3}{2}$ Einheiten nach links; Nullstelle: x = -1; Graph
- **46.** a) $g(x) = \lg(ax) = \lg x + \lg a = \lg x + v = f(x) + v$
 - b) Ja, durch eine Streckung in x-Richtung um den Faktor $\frac{1}{a}$
- 47. a) v = 1

b) v = -4

c) $v = \lg 2 + 2$

d) v = -lq3

- $\lambda = a^{-v}$ 48.
- Horizontale Verschiebung um $\frac{1}{\log_a k} \rightarrow y = k \cdot a^x$ entspricht $y = a^{x + \log_a k}$ 49.
- **50.** a) kein Ordinatenabschnitt; $x_0 = e$
- **b**) $y_0 = 3.807; x_0 = 97$
- c) kein Ordinatenabschnitt; $x_0 = e^3 + 5$
- d) kein Ordinatenabschnitt; $x_0 = \frac{4}{5}$
- **51.** a) 0 phon; 10 phon; 20 phon; 10*n* phon
 - **b**) $1J_0$; $100J_0$; $10000J_0$; 10^8J_0 ; $10^{10}J_0$; $10^{13}J_0$
 - c) 3.010 phon; 0.4139 phon; 0.04321 phon; 10lg $\frac{n+1}{n}$ phon

20 Wachstum und Zerfall

Lösungen zu Übungen 82

- 1. a) $2^0 = 1$; $2^1 = 2$; $2^2 = 4$; $2^3 = 8$; . . .; $2^9 = 512$ Körner b) $G(n) = 2^{n-1}$

 - c) $G(64) = 2^{63} = 9.223 \cdot 10^{18} \text{ Körner}$
- d) Graph

e) 31. Feld

f) $2^{64} - 1 \approx 1.845 \cdot 10^{19}$ Körner

- g) $4.612 \cdot 10^{11}$ t
- 2. a) 1280 H; 81920 H; $5.243 \cdot 10^6 \text{ H}$; $3.355 \cdot 10^8 \text{ H}$; $20 \cdot 2^{6n} \text{ H}$
 - b) $G(t) = 20 \cdot 2^{\frac{t}{2}}$; $G(n) = 20 \cdot 2^{6n}$, t = Anzahl Monate, n = Anzahl Jahre
 - c) nach 2 Monaten; 1.661 Jahren; 3.322 Jahren; 4.983 Jahren; ...; $\frac{n}{6} \log_2 10 = \frac{n}{6} \cdot \frac{\ln 10}{\ln 2}$ Jahren
- 3. a) 90.00 %; 81.00 %; 72.90 %; 65.61 %; ...; $100 \cdot 0.9^x$ %
 - **b)** $L(x) = 100 \cdot \left(1 \frac{p}{100}\right)^x = 100 \cdot 0.9^x$
- c) Graph

d) L(20) = 12.16%

- e) $x_H = 6.579 \text{ m}$
- **4.** a) $I(x) = I_0 \cdot a^{\frac{x}{1}} = 5 \cdot 10^7 \cdot 0.2^{\frac{x}{16}}$ mit x in km
- **b**) $I(x) = 5 \cdot 10^7 \cdot e^{\frac{\ln 0.2}{16}x}$; $\delta = 9.941$ km

c) 1.001 %

- d) $x_H = 6.891 \text{km}$
- 5. a) $m(t) = 50 \cdot 0.834^t$ mit t in Tagen; $T_H = 3.8$ d
 - b) $m(t) = 10 \cdot 0.8706^{\frac{t}{5}}$ mit *t* in Minuten; $T_H = 25$ min
 - c) $m(t) = 125 \cdot 0.771934^{\frac{t}{9000}}$ mit t in Jahren; $T_H = 24100$ a

6.	a)	T =	: 5757 a

- c) t = 6039 a
- e) t = 5326 a
- g) t = 12754 a
- 7. a) 57.58 d
- 8.

- **b)** $A(t) = 6.0 \cdot 10^{10} \cdot e^{-\frac{t}{8306}}$
- **d**) $A = 3.284 \cdot 10^{10}$ Atome pro Gramm
- f) t = 3794 a
- b) 107.2 d
- linear: $B_0 \approx 55$; 25 %; $B_{31} \approx 480$ Bei linearem Wachstum beträgt die täglich Zunahme mit ungefähr 14 (13.7) immer gleich viel. Bezogen auf den Startwert von ungefähr 55 (54.8) Fliegen beträgt die tägliche Zuwachsrate ungefähr 25 %. Bezogen auf den Wert des Vortages würde der Prozentwert stets abnehmen (Angabe sinnlos).

exponentiell: $B_0 \approx 90$; 7.18 %; $B_{31} \approx 775$

Die tägliche Zunahme nimmt absolut von Tag zu Tag zu, dafür bleibt die tägliche Zuwachsrate in Prozent gleich, da sie sich immer auf den Wert des Vortages bezieht.

- 9. a) Normalwert: 0.08816 g
- 10. a) 297 719 m³
 - c) 1.44 %

- b) 11.3 Jahre
- 11. a) CHF 10 300.—; CHF 10 609.—; CHF 10 927.25; CHF 11 255.10; CHF 11 592.75; ...; 10 000 · 1.03ⁿ

b)
$$K(n) = K_0 \cdot \left(1 + \frac{p}{100}\right)^n = 10\,000 \cdot 1.03^n$$

- c) $K_{20} = \text{CHF } 18\,061.10$
- e) in 13.72 Jahren
- 12. a) $K(n) = 100\,000 \cdot 1.06^n$
 - c) nach 11.9 Jahren
- 13. CHF 3421.40
- 15. 6.961%
- 17. CHF 67 794.80; CHF 20 567.60; 4 %; 11 Jahre
- 18. a) 35.00 Jahre
 - c) $\log_{p+1} 2$ Jahre
- **19.** a) $1.1^7 = 1.95 \approx 2$
- **20.** a) $1.07^{10} = 1.97 \approx 2$
- $p = (\sqrt[n]{2} 1) \cdot 100$ 21.
- 22. a) p = 5.25 %; n = 6
- 23. a) die Zahlung vom 1.1.2008
- 24. CHF 32 245.30
- 26. CHF 191 426.60 und CHF 228 573.40

- d) Graph
- f) in 23.45 Jahren
- b) K(10) = CHF 179 085 .-
- d) $2K_0 = K_0 \cdot 1.06^n$, mit K_0 kürzen: $2 = 1.06^n$
- 14. CHF 12 278.30
- 16. nach 14.21 Jahren
- b) 14.21 Jahre
- **b**) 10.41 %
- **b**) 7.177 %
- b) CHF 751.13; CHF 1021.05
- b) die Zahlung vom 1.1.2005
- 25. nach 10.25 Jahren
- 27.3%;5.5%
- **28.** a) CHF 1 200 000 .—; CHF 720 000 .—; CHF 432 000 .—; CHF 259 200 .—; CHF 155 520 .—; ...; 2 000 000 \cdot 0.6ⁿ
 - **b**) $B(n) = B_0 \cdot \left(1 \frac{p}{100}\right)^n = 2\,000\,000 \cdot 0.6^n$
 - c) Graph
 - e) nach 1.357 Jahren
- 29. a) CHF 11 865.20
 - c) CHF 23 131.10; CHF 1744.50
 - e) 8 Jahre

- d) $B_{10} = CHF 12093.20$
- f) nach 4.508 Jahren
- b) CHF 43 749.80
- d) nach 8.53 Jahren (9 Jahren)

- 30. a) 36.3 %
 - c) 1.22 Jahre
- 31. a) 0.30 %
 - c) 0.73 %
- 32. a) 1.11 %
 - c) 2045
- 33. a) 14.27 Mia.
 - c) 85.7 Jahre; 74.4 Jahre
 - e) in 90.3 Jahren

- b) 2517 176.04 Fr.
- b) 0.27 %
- b) 0.58 %
- **b**) 0.81 %; 1.75 %
- d) 32.9 Jahre, 19.8 Jahre
- f) in 26.6 Jahren

- **34.** a) $f(t) = 30 \cdot (1 0.8\overline{6} \cdot e^{-\frac{t}{7.623}})$ b) 16.5°
- **35.** a) $T(t) = 5 + 90 \cdot e^{-\frac{t}{6.4101}}$
- b) Graph

c) 13.7 °C

- d) nach 8 min 13 s
- **36.** a) $T(t) = 20 + 65 \cdot e^{-\frac{t}{9.9836}}$
- b) 43.9 °C

c) 11.8 °C

- 37. a) $f(t) = 32(1 0.8125 \cdot e^{-\frac{t}{19.4957}})$ b) 15.07 Minuten
- 38. a) (1): $U(t) = 4 \cdot (1 e^{-\frac{t}{0.0047}})$; (2): $U(t) = 4 \cdot (1 e^{-\frac{t}{0.000484}})$; (3): $U(t) = 4 \cdot (1 e^{-\frac{t}{0.0022}})$
 - **b**) (1): t = 14.08 ms; (2): t = 1.450 ms; (3): t = 6.591 ms
 - c) (1): $U(t) = 4 \cdot e^{-\frac{t}{0.0047}}$; (2): $U(t) = 4 \cdot e^{-\frac{t}{0.000484}}$; (3): $U(t) = 4 \cdot e^{-\frac{t}{0.0022}}$
 - d) (1): t = 10.82 ms; (2): t = 1.114 ms; (3): t = 5.066 ms
- 39. a) $\tau = \frac{T_H}{\ln 2} = 2337 \text{Jahre}$
- **b**) 0.9573g

c) im Jahr 12 661

- **40.** a) $\tau = \frac{T_H}{\ln 2} = 8267 \text{ Jahre}$
- b) 17 190 Jahre

- c) 38 069 Jahre
- U-235: $T_{\rm H} = 7.001 \cdot 10^8 \, \text{a}$; Abnahme: $9.9 \cdot 10^{-8} \, \% \, a^{-1}$; $t_{1\%} = 4.652 \cdot 10^9 \, a$ 41.

Cs-137: $T_H = 30.18a$; Abnahme: 2.271 % a^{-1} ; $t_{1\%} = 200.5a$

P-32:
$$T_H = 14.3 \text{d}$$
; $\lambda = 0.04855 \, \text{d}^{-1}$; $t_{1\%} = 95.1 \text{d}$

I-131: $T_H = 7.977 d$; $\lambda = 0.08689 d^{-1}$; Abnahme: 8.322 % d^{-1}

Rn-220: $\lambda = 0.01247 \,\text{s}^{-1}$; Abnahme: 1.24 % s⁻¹; $t_{1\%} = 369.4 \,\text{s}$

- **42.** a) $f(t) = 1 + 165.\overline{6} \cdot e^{-\frac{t}{6.6}}$
- b) 15.6 Jahre

c) 88.5 Jahre

43. a) $f(t) = \frac{4500}{1 + 1254.493 \cdot e^{-\frac{t}{4.1314}}}$

b) 2393 Einwohner

c) nach 29.5 Tagen

d) nach 67 Tagen

- **44.** a) $f(t) = \frac{9000}{1 + 749 \cdot e^{-\frac{t}{13.68}}}$
 - b) 92 Einwohner

c) nach 106 Tagen

- d) nach 225 Tagen
- **45.** a) $f(t) = \frac{120}{1 + 59 \cdot e^{-\frac{t}{1.27}}}$

b) 33.5 cm; 107.8 cm; nach 11 Wochen

46. a) S1: y = 2000x + 2000; S2: $y = 2000 \cdot e^{\frac{x}{1.9969}}$; S3: $y = 20\ 000 \cdot (1 - 0.9e^{-\frac{x}{9.49122}})$; S4: $f(t) = \frac{20\ 000}{1 + 9 \cdot e^{-\frac{x}{2.1616}}}$ b) Graph c) -

V Datenanalyse

Lösungen zu Übungen 84

- 1. a) 21 Lernende
 - b) kleinste Zeit: 2 h, grösste Zeit: 25 h
 - c) 14.190 h
 - d) 15 h
 - e) 6
 - f) 28.571 %

Lösungen zu Übungen 85

- 2. –
- 3.

		Experiment	Befragung	Beobachtungs- studie	Daten- sammlung
21.1	Smartphone		×		
21.2	Kniearthrose	×			
21.3	Warenhaus		×		
21.4	Kaffee			×	
21.5	Weitsprung				×
21.6	Übergewicht			×	
21.7	Freiwurf-Contest				×
21.8	Blut			×	
21.9	Schwertlilien			×	
21.10	e-Bike			×	
21.11	1-€-Münze			×	
21.12	Bierfest			×	
21.13	Lohn		×		

4.

	zufälliger Fehler	systematischer Fehler	Übertragungs- fehler	mutwilliger Fehler
Fall A				×
Fall B			×	
Fall C				×
Fall D	×			
Fall E		×		
Fall F	×			

5. Bei sämtlichen Beispielen muss ein Bias erwartet werden. Die Stichproben werden kaum repräsentativ für die Grundgesamtheit sein.

Beispiel A:

Jede befragte Person aus der Klasse steht bereits für ein Kind in ihrer Familie. Beispiel B:

Da Zugfahrer keine Parkplätze brauchen, wird ihr Verlangen nach solchen eher gering sein. Würde dieselbe Frage in der Nähe von (besetzten) Parkplätzen gestellt, wäre eine andere Verteilung zu erwarten. Beispiel C:

Zuschauerinnen eines Volleyballspiels sind oder waren häufig selbst Volleyballspielerinnen. Grosse Spielerinnen haben auf den meisten Positionen auf dem Volleyballfeld Vorteile. Deshalb ist zu erwarten, dass die durchschnittliche Körpergrösse der 150 Zuschauerinnen über derjenigen der Schweizer Frauen liegt. Beispiel D:

Kampfjets, die Einschusslöcher im Bereich des Cockpits haben, sind wohl nie aus dem Krieg zurückgekehrt.

3.				nominal	ordinal	diskret	stetig
	21.1	Smartphone	Zeit				×
			Geschlecht	×			
			BMS-Richtung	×			
			BMS-Lehrgang	×			
	21.2	Kniearthrose	vor				*
			nach_1_Woche				*
			nach_3_Monaten				*
	21.3	Warenhaus	Früchte & Gemüse		×		
			Fleisch & Charcuterie		×		
	21.4	Kaffee	Uhrzeit				×
			Minuten				×
			Stunden				×
	21.5	Weitsprung	Gruppe	×			
			Gruppenrang		×		
			Weite				×
	21.6	Übergewicht	Alter				×
			BMI				×
			Taillenumfang				×
			Hüftumfang				×
			Blutdruck_syst				×
			Blutdruck_diast				×
	21.7	Freiwurf-Contest	Trefferanzahl			×	
	21.8	Blut	Blutgruppe	×			
			Rhesusfaktor	×			
			Land	×			
	21.9	Schwertlilien	Kelchblattlänge				×
			Kelchblattbreite				×
			Kronblattlänge				×
			Kronblattbreite				×
			Art	×			

21.10	e-Bike	Reichweite			×
		Modell	×		
21.11	1-€-Münze	Masse			×
		Packung	X		
21.12	Bierfest	Haarlänge			×
		Biermenge			×
		Geschlecht	×		
21.13	Lohn	Lohn			×
		Geschlecht	×		

^{*} Solche Skalen kommen in der Medizin und in der Psychologie häufig zur Anwendung. Aus statistischer Sicht ist es jedoch umstritten, ob die Merkmale als stetige Merkmale ausgewertet werden dürfen.

$$x_1 = 36.9$$

 $x_2 = 37.4$
 $x_3 = 39.1$
 $x_4 = 40.5$
 $x_5 = 39.1$
 $x_6 = 36.2$

$$x_3 = 39.1$$

 $x_4 = 40.5$
 $x_5 = 39.1$

$$x_{[1]} = 36.2$$

 $x_{[2]} = 36.9$
 $x_{[3]} = 37.4$
 $x_{[4.5]} = 39.1$
 $x_{[4.5]} = 39.1$
 $x_{[6]} = 40.5$

9.

Fleisch und Charcuterie

10. Bemerkung: Damit Lernende(r) im Selbststudium das Vorgehen besser kontrollieren können, sind in den Resultaten (zu) viele Ziffern angegeben. Grundsätzlich dürften in den Resultaten nicht so viele Ziffern angegeben werden, da sonst eine zu hohe Genauigkeit vorgetäuscht wird.

	absolute Häufigkeiten $h_{ m i}$	relative Häufigkeiten $f_{\rm i}$	Zentriwinkel Ψ _i
römisch-katholisch	2 544 641	0.382	137.5°
evangelisch-reformiert	1 791 427	0.269	96.8°
übrige	812 434	0.122	43.9°
konfessionslos	1 428 700	0.214	77.2°
unbekannt	85 130	0.013	4.6°

- 11. Je nach Startwinkel wirken gewisse Kuchenstücke zu gross oder zu klein im Vergleich zur dargestellten relativen Häufigkeit. Dreidimensionale Kuchendiagramme werden nicht selten zu manipulativen Zwecken missbraucht. Kreisdiagramme sind den dreidimensionalen Kuchendiagrammen vorzuziehen.
- 12. $\varphi_{Rh+} = 306^{\circ}, \ \varphi_{Rh-} = 54^{\circ}$
- 13. Blutgruppen:

Rhesusfaktoren:

14.

15.

- b) Die Streifenplots lassen eine kurzfristige, jedoch keine nachhaltige Wirkung vermuten.
- 17. A: rechtsschief
 - B: symmetrisch
 - C: linksschief
- 18. A: multimodal
 - B: unimodal
 - C: bimodal, multimodal

4.0	_		
10	KΔ	isp	
12.	De	134	

21.4	Kaffee
21.5	Weitsprung
21.7	Freiwurf-Contest
21.13	Lohn

Variable

St	unden
W	eite
Tre	efferanzahl
Lo	hn

Charakterisierung

bimodal, multimodal linksschief, unimodal rechtsschief, unimodal rechtsschief, unimodal

20. Zum Beispiel:

Klasse	Häufigkeit in der Klasse
]0;5]	3
]5;10]	4
]10; 15]	4
]15; 20]	5
]20; 25]	5

21. Zum Beispiel:

Klasse	Häufigkeit in der Klasse
[0;10[7
[10; 20[9
[20;30[5

Klasse	Häufigkeit in der Klasse
[0;5[2
[5; 10[5
[10; 15[3
[15; 20[6
[20; 25[2
[25;30[3

- 22. A: Die Anzahl Klassen ist zu klein.
 - B: Die Klassengrenzen sind zum Lesen etwas unangenehm.
 - C: gut
 - D: Die Anzahl Klassen ist zu gross.

b) Kelchblattlänge: unimodal Kelchblattbreite: unimodal Kronblattlänge: bimodal Kronblattbreite: multimodal

c) In den Merkmalen Kronblattlänge und -breite scheint sich je eine Schwertlilienart ziemlich klar von den beiden anderen Arten zu unterscheiden. Im Histogramm zum Merkmal Kronblattbreite lassen sich "mit etwas gutem Willen" sogar die drei Arten vermuten. 26. a)

27. b) Der linke Gipfel in den Histogrammen der Merkmale Kronblattlänge und -breite stammt offenbar von der Schwertlilienart setosa.

Die drei Gipfel im Histogramm zum Merkmal Kronblattbreite lassen sich tatsächlich als die drei Schwertlilienarten interpretieren.

b) Die Boxplots lassen (wie die Streifenplots) eine kurzfristige, jedoch keine nachhaltige Wirkung vermuten.

28.

- 29.
- 30. A: keine Korrelation

 - B: positive Korrelation
 C: negative Korrelation
 D: positive Korrelation
 E: keine Korrelation

 - F: keine Korrelation (evtl. quadratischer Zusammenhang)
- Einheiten: BMI in $\frac{kg}{m^2}$, Taillen-/Hüftumfang in cm 31.

32. Einheit: cm

b) Iris setosa

Iris versicolor

Iris virginica

Die Streudiagramme aus Aufgabe a) lassen verschiedene Korrelationen vermuten. Die Streudiagramme aus Aufgabe b) zeigen schliesslich, dass es lediglich um (Schein-)Korrelationen handelt, die durch die Schwertlilienarten hervorgerufen werden. Die Variable Schwertlilienart wirkt als Störfaktor. Innerhalb der Arten sind wenige Korrelationen erkennbar. Z. B. *Iris virginica:* positive Korrelation zwischen Kelchblattlänge und Kronblattlänge.

- 33. -
- 34. A: Die Summe aller relativen Häufigkeiten ist nicht 100 %.
 - B: Die Einheiten auf der y-Achse sind im oberen Teil gestreckt.
 - C: Die y-Achse startet nicht bei der Häufigkeit 0 (= null).
 - D: Die Klassen haben unterschiedliche Klassenbreiten.
 - E: Die dreidimensionale Darstellung vermittelt ein falsches Bild von den Unterschieden in den Häufigkeiten.

Lösungen zu Übungen 88

- 35. 1a) Stichprobenumfang
 - 1b) Minimum, Maximum
 - 1c) Mittelwert
 - 1d) Median
 - 1e) absolute Häufigkeit in einer Klasse
 - 1f) relative Häufigkeit in einer Klasse
- 36. Einheit: Schläge pro Minute Feld: \overline{x} = 136, \widetilde{x} = 136, SD = 13.856 Bank: \overline{x} = 94.4, \widetilde{x} = 96, SD = 20.707
- 37. a) Einheit: Stunden

$$x_{\min} = 2$$
, $x_{\max} = 25$, $\tilde{x} = 15$, $Q_1 = 9$, $Q_3 = 19$

38.

	\overline{X}	SD
grüne Stichprobe	1	1
blaue Stichprobe	4	1
rote Stichprobe	4	3

- 39. Einheit: °C
 - a) Mit Messfehler: $\bar{x} = 37.8$, $\tilde{x} = 37.2$ Ohne Messfehler: $\bar{x} = 37.3$, $\tilde{x} = 37.2$
 - b) Das Beispiel zeigt, dass der Mittelwert anfällig auf Messfehler ist. Der Median ist deutlich robuster als der Mittelwert.

40. a) Blaue Stichprobe: $\bar{x} = 13$, $\tilde{x} = 13$ Rote Stichprobe: $\bar{x} = 10.8$, $\tilde{x} = 13$

- b) Das Beispiel zeigt, dass der Mittelwert anfällig auf Ausreisser ist. Im Gegensatz zum Mittelwert ist der Median eine robuste Kennzahl.
- **41.** Z. B.:
 - a) 1, 2, 5

b) 1, 4, 5

c) 1, 3, 5, 9

d) 1, 3, 5, 6

42. Einheit: cm

	\overline{X}	\widetilde{x}	X _{min}	X _{max}	Q_1	Q_3	SD	IQR	SW
Taillenumfang	86.063	84	48	126	79	93	11.467	14	78
Hüftumfang	102.931	103	80	130	97	108	8.931	11	50

43. Einheit: g

a)

	\bar{x}	\tilde{x}	X _{min}	X _{max}	Q_1	Q_3	SD	IQR	SW
Ganze Stichprobe	7.521	7.520	7.201	7.752	7.498	7.544	0.034	0.046	0.551

b) Packung 4: $\bar{x} = 7.531$, $\tilde{x} = 7.533$

Packung 5: $\bar{x} = 7.531$, $\tilde{x} = 7.531$

Die beiden Packungen sind bezüglich zentraler Lage nahe beieinander. Mittelwert und Median beider Packungen liegen jedoch wesentlich über den Werten der ganzen Stichprobe.

c) Packung 7: SD = 0.033, IQR = 0.046

Packung 8: SD = 0.036, IQR = 0.044

Die Standardabweichung der Packung 8 wird durch einen Ausreisser nach oben getrieben.

44. a)

	\overline{X}	\widetilde{x}	SD	IQR
Zeitpunkt 1 (vor)	53.873	56	22.159	30
Zeitpunkt 2 (nach_1_Woche)	38.255	38	18.990	26
Zeitpunkt 3 (nach_3_Monaten)	51.660	52	23.684	28

- b) Die Vermutung aus den grafischen Darstellungen wird unterstrichen: Eine kurzfristige jedoch keine nachhaltige Wirkung darf vermutet werden.
- c) Bei grossen Streuungen kann ein (kleiner) Unterschied in der zentralen Lage bedeutungslos sein.

45. Einheit: km

	\bar{x}	\widetilde{x}	SD	IQR
Modell A	54.870	55.050	1.690	1.950
Modell B	57.460	53.850	15.401	19.275

Obwohl der Mittelwert von Modell B über demjenigen von Modell A liegt, wäre das Modell A zu bevorzugen. Die deutlich höhere Streuung der Reichweite von Modell B erhöht das Risiko, dass Sie den letzten Streckenteil Ihrer Velotour mit der eigenen Beinarbeit bewältigen müssen.

46. –

47.		robust	nicht robust
	Mittelwert		×
	Median, Quantile	×	
	Modus	×	
	Minimum, Maximum		×
	Standardabweichung		×
	Interquartilsabstand	×	
	Spannweite		×

- **48.** (A1|B2|H1), (A2|B1|H3), (A3|B3|H2)
- 49. Einheit: cm

a)
$$\frac{1 \cdot 145 + 2 \cdot 155 + 10 \cdot 165 + 23 \cdot 175 + 19 \cdot 185 + 6 \cdot 195}{61} = \underline{177.3}$$

b)
$$\frac{1}{n}\sum_{i=1}^{k}f_i \cdot m_i$$

wobei n: Stichprobenumfang

k: Anzahl Klassen

f_i: absolute Häufigkeit in der *i*-ten Klasse

 \dot{m}_i : Klassenmitte der *i*-ten Klasse