Методы оптимизации. Семинар б. Условия оптимальности для безусловных задач

Александр Катруца

Московский физико-технический институт

11 октября 2020 г.

Напоминание

- Субградиент и субдифференциал
- Теорема Моро-Рокафеллара
- Условный субдифференциал

Мотивация

Вопрос 0

Когда существует решение оптимизационной задачи?

Вопрос 1

Как проверить, что точка является решением оптимизационной задачи?

Вопрос 2

Из каких условий можно найти решение оптимизационной задачи?

Существование решения

Теорема Вейерштрасса

Пусть $X\subset R^n$ компактное множество и пусть f(x) непрерывная функция на X. Тогда точка глобального минимума функции f(x) на X существует.

Эта теорема гарантирует, что решение подавляющего большинства разумных задач существует.

Условия оптимальности

Определение

Условием оптимальности будем называть некоторое выражение, выполнимость которого даёт необходимое и (или) достаточное условие экстремума.

Классы задач:

- Общая задача минимизации
- Задача безусловной минимизации
- Задача минимизации с ограничениями типа равенств
- Задача минимизации с ограничениями типа равенств и неравенств

Общая задача минимизации

Задача

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathcal{X}}$$

Критерий оптимальности

Пусть $f(\mathbf{x})$ определена на множестве $\mathcal{X} \subset \mathbb{R}^n$. Тогда

- 1. если \mathbf{x}^* точка минимума $f(\mathbf{x})$ на \mathcal{X} , то $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$
- 2. если для некоторой точки $\mathbf{x}^* \in \mathcal{X}$ существует субдифференциал $\partial_{\mathcal{X}} f(\mathbf{x}^*)$ и $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$, то \mathbf{x}^* точка минимума $f(\mathbf{x})$ на \mathcal{X} .

Какие недостатки у приведённого критерия?

Примеры

$$\mathbf{x}^{\top}\mathbf{x} + \alpha \|\mathbf{x} - \mathbf{c}\|_{2} \to \min_{\mathbf{x} \in \mathbb{R}^{n}}, \ \alpha > 0$$

$$\mathbf{x}^{\top} \mathbf{x} + \alpha \| \mathbf{c}^{\top} \mathbf{x} - b \|_{2} \to \min_{\mathbf{x} \in \mathbb{R}^{n}}, \ \alpha > 0$$

▶ Ограничение на допустимое множество

$$(x+2)^2 + |y+3| \to \min_{(x,y) \in \mathbb{R}^2}$$
 s.t. $8+2x-y \le 0$

Задача безусловной минимизации

Задача: $f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbb{R}^n}$.

Критерий оптимальности для выпуклых функций

Пусть $f(\mathbf{x})$ выпуклая функция на \mathbb{R}^n . Тогда точка \mathbf{x}^* решение задачи безусловной минимизации $\Leftrightarrow 0 \in \partial f(\mathbf{x}^*)$.

Следствие

Если $f(\mathbf{x})$ выпукла и дифференцируема на \mathbb{R}^n . Тогда точка \mathbf{x}^* решение задачи безусловной минимизации \Leftrightarrow $f'(\mathbf{x}^*)=0$.

Достаточное условие для невыпуклых функций

Пусть f дважды дифференцируема на \mathbb{R}^n и \mathbf{x}^* такая что $f'(\mathbf{x}^*)=0$. Тогда если $f''(\mathbf{x}^*)\succ 0$, то \mathbf{x}^* точка строгого локального минимума $f(\mathbf{x})$ на \mathbb{R}^n .

Примеры

- $x_1 e^{x_1} (1 + e^{x_1}) \cos x_2 \to \min$
- Функция Розенброка:

$$(1-x_1)^2 + \alpha \sum_{i=2}^n (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

 $x_1^2 + x_2^2 - x_1 x_2 + e^{x_1 + x_2} \to \min$

Резюме

- ▶ Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации