# High-Performance Computing 2025

Basics of Numerical Methods for PDEs

### **SIMD** and **Memory Hierarchy** are

fundamental to modern computing systems.

### **Review** OpenMP

#### **Shared Memory Parallelization**

Computation is distributed along **threads**.

Synchronization between threads.



### **OpenMP** is easy to use ...

```
#include <omp.h>
#include <vector>
int main() {
    std::vector<double> val(1e8,0);

    #pragma omp parallel for
    for (int i = 0; i < val.size(); i++)
        val[i] = COSTLY_OPERATION(i);
    return 0;
}</pre>
```

```
// In Terminal/Command line
// Compile via command line (or makefile)
g++ -fopenmp -O3 main.cpp -o main.exe
// Run
export OMP_NUM_THREADS=2; ./main.exe
```

# A **brief** and **basic** overview of the numerical methods for solving PDEs.

## **Differential Equations**Ordinary and Partial

### **Ordinary Differential Equation (ODE)**

Differentiation is with respect to one variable.

For example, exponential growth and decay, and Newton's second law of motion.

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x^2$$

### **Partial Differential Equation (PDE)**

Differentiation is with respect to <u>more than one variable</u>. For example, heat equation, wave equation, and Fisher's equation.

$$\frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} = \alpha \frac{\partial s}{\partial t}$$

### Multivariate Calculus Notation and Jargon

#### Gradient

Differentiation of scalar valued function with respect to a vector.

$$\nabla f = \left[ \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right]^{\top}$$

#### **Jacobian**

Differentiation of vector valued function with respect to more than one variables (i.e., vector).

$$\mathbf{J}_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix}$$

#### Hessian

Second-order differentiation of scalar valued function with respect to more than one variable .

$$\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

### Laplacian (operator)

Divergence of the gradient or vector field (i.e., trace of the Hessian).

$$\Delta f = \sum_{i}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}$$

## **Solution Method (Finite Difference)**Basic Steps

### 1. Formulation and representation

Define the mathematical model of the problem including the domain, **initial condition**, **boundaries conditions**, of the governing equations.\*

### 2. Discretization in space and time

Convert the continuous problem into a set of discrete equations using a chosen numerical method.

**3.** Solve discretized problem in space and time Compute the solution of the discrete system over the defined domain.

\*consider also stability of the solution.



Representation of space and time for 2D.

### **Solution Method (Finite Difference)**

Formulation/Discretization, e.g., Fisher's Equation

$$\frac{\partial s}{\partial t} = \delta \Delta s + \rho s (1 - s)$$

Used to describe biological populations: **spatial diffusion** with **reaction/growth**.

$$\frac{1}{\tau}(s_{i,j}^k - s_{i,j}^{k-1}) = \underbrace{\frac{\delta}{h^2} \left( -4s_{i,j}^k + s_{i+1,j}^k + s_{i-1,j}^k + s_{i,j+1}^k + s_{i,j-1}^k \right) + \rho s_{i,j}^k (1 - s_{i,j}^k)}_{\text{linear}}$$

**Boundary Conditions**: What if the (i,j) is at the edge of the grid? **Initial Condition**: We always need the previous solution!

### **Solution Method (Finite Difference)**

Solve, e.g., Fisher's Equation

$$\frac{1}{\tau}(s_{i,j}^k - s_{i,j}^{k-1}) = \underbrace{\frac{\delta}{h^2} \left( -4s_{i,j}^k + s_{i+1,j}^k + s_{i-1,j}^k + s_{i,j+1}^k + s_{i,j-1}^k \right) + \rho s_{i,j}^k (1 - s_{i,j}^k)}_{\text{linear}} + \underbrace{\frac{\delta}{h^2} \left( -4s_{i,j}^k + s_{i+1,j}^k + s_{i-1,j}^k + s_{i,j+1}^k + s_{i,j-1}^k \right) + \rho s_{i,j}^k (1 - s_{i,j}^k)}_{\text{nonlinear}}$$

Let 
$$\mathbf{s}^k := [s_{i,j}^k, s_{i,j+1}^k, s_{i,j+2}^k, \dots, s_{i+1,j}^k, s_{i+2,j}^k, \dots]^\top$$

The solution is than the **root** of:

$$f(\mathbf{s}^k|\mathbf{s}^{k-1}, \mathbf{A}, c_1, c_2) := \mathbf{s}^k - \mathbf{s}^{k-1} - c_1 \mathbf{A} \mathbf{s}^k - c_2 \mathbf{s}^k \cdot (1 - \mathbf{s}^k)$$

### Solution Method (Finite Difference)

Solve, e.g., Fisher's Equation

*Newton Iteration*—A Method for root finding:

$$\mathbf{s}^k \leftarrow \mathbf{s}^k - [\mathbf{J}_f]^{-1} f(\mathbf{s}^k)$$

Remark: We omit the "given" variables in the notation for clarity.

We need to **solve a linear system** of equations!

$$[\mathbf{J}_f]^{-1} f(\mathbf{s}^k) = \mathbf{x} \iff f(\mathbf{s}^k) = [\mathbf{J}_f] \mathbf{x}$$

## **Solution Method (Finite Difference )**Pseudo Algorithm

```
Input s_initail value, K, iter max, eps
// Initial Conditions
s last \leftarrow s initail value
    ← s last
// Time loop
For k = 1 to K
      // Newton loop
      For iter=1 to iter max
             // Linear Solve (will have its own loop)
             update \leftarrow lin solve(J(s|s last),f(s|s last))
             s \leftarrow s - update
             // Convergence Check
             If norm(update) < eps
             break
             Endif
      Endfor
      // Swap Solution
      s last \leftarrow s
Endfor
Return s
```

# Common Options for lin\_solve:

#### Direct Methods

Solve matrices in fixed steps with notable stability, especially for well-conditioned systems.

#### 2. Iterative Methods

Memory-efficient with adjustable accuracy, though they demand careful considerations for stability.

Note: Iterative methods can be implemented in a matrix-free manner and rely on easily parallelizable operations.

### Solution Method (Finite Difference) Implicit vs Explicit

As before, the solution is than the **root** of:

$$f(\mathbf{s}^k|\mathbf{s}^{k-1},\mathbf{A},c_1,c_2) := \mathbf{s}^k - \mathbf{s}^{k-1} - c_1 \mathbf{A} \mathbf{s}^k - c_2 \mathbf{s}^k \cdot (1 - \mathbf{s}^k)$$

### **Explicit vs Implicit Methods**

What if we use  $\mathbf{s}^{k-1}$  in place of  $\mathbf{s}^k$ ? ... we get an "explicit method".

- Explicit Methods (in the above)
   No need to solve a system of equations, making them much easier to program.
   The solution can be unstable (may diverge), making them unsuitable for many serious applications.
- Implicit methods (what we showed before)
  Require solving a system of equations, increasing programming complexity.
  The solution is stable, making implicit methods essential for many challenging problems.