EE488 Special Topics in EE <Deep Learning and AlphaGo>

Sae-Young Chung
Lecture 5 Supplementary Material
September 25, 2017

k-nearest Neighbors

For each point, look at k nearest neighbors and follow the majority rule

Decision Tree

Decision tree is learned from labeled data

Unsupervised Learning

- Supervised learning examples
 - Regression
 - Classification
 - k-nearest neighbors (non-parametric learning)
 - Decision tree (non-parametric learning)
 - **–** ...
- Unsupervised learning examples
 - Principal component analysis (PCA)
 - k-means clustering
 - **–** ...

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

Supervised learning

Unsupervised learning

CNN for Image Classification

 Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, "ImageNet classification with deep convolutional neural networks", NIPS 2012

Tomas Mikolov, et al., Distributed representations of words and phrases and their compositionality, 2013

Principal Component Analysis

- Data matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$
- $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{W}^T$: SVD
- $\mathbf{X}^T \mathbf{X} = (\mathbf{U} \mathbf{\Sigma} \mathbf{W}^T)^T (\mathbf{U} \mathbf{\Sigma} \mathbf{W}^T) = \mathbf{W} \mathbf{\Sigma}^2 \mathbf{W}^T$
- Define $\mathbf{Z} = \mathbf{X}\mathbf{W}$, then

$$\mathbf{Z}^T\mathbf{Z} = \mathbf{W}^T\mathbf{X}^T\mathbf{X}\mathbf{W} = \mathbf{W}^T\mathbf{W}\mathbf{\Sigma}^2\mathbf{W}^T\mathbf{W} = \mathbf{\Sigma}^2$$

• If **X** has zero mean, then so does **Z**. Then, the unbiased estimation of the covariance matrix of **z** from the samples **Z** is given by

$$\frac{1}{m-1}\mathbf{Z}^T\mathbf{Z} = \frac{1}{m-1}\mathbf{\Sigma}^2$$

Principal Component Analysis

Fig. 5.8

