CDA 3103 Midterm Practice (Summer 2024)

Exam Format

- Exam duration and location: 2 hours in CHE 217
- Closed Everything: closed text, closed notes, closed electronics except calculators
- Bring:
 - o Calculator (phone, wearables, and other mobile devices cannot be used as a calculator)
 - o Pen + eraser
 - o Pencil
 - o USF ID
- Test Format
 - Paper exam administered in person
 - o Multiple Choice
 - o Open-Ended Questions
- Proctors may ask you to switch seats before and/or during the exam.

Academic Integrity

If the proctors of the exam notice any academic dishonesty during and/or after the exam is proctored, that student may receive a 0 on the exam, which may result in failing the course. There is also the possibility for the student to receive an FF and be reported to the department.

Topics

This is a quick overview of the topics. Make sure to go over the class slides. Do not rely on this document.

- 1. Computer Organization vs Computer Architecture
- 2. Computer Systems
 - a. Processor, Memory, and Mechanism
- 3. Unis of Measurements
 - a. Processor Speed
 - b. Capacity Measurements
 - c. Time and Space
- 4. Computer Level Hierarchy (Level 0 6)

- 5. Von Neumann Model
- 6. Non-Von Neumann Model
- 7. Parallel Computing
- 8. Number Representations
- 9. Positional Numbering Systems
- 10. Converting Between Bases
- 11. Unsigned Numbers
- 12. Signed Numbers: Signed-Magnitude, 1's Complement, 2's Complement
- 13. Signed Integer Representation
- 14. Floating-Point Representation
- 15. Character Codes
- 16. Boolean Algebra
 - a. AND, OR, NOT
 - b. Identities
 - c. Canonical Forms
 - d. Minterms
 - e. Functions, truth tables, and Karnaugh Maps (KMaps)
- 17. Logic Gates
 - a. Digital Components
 - b. Combinational Circuits
 - c. Multiplexer, Decoder

Some sample questions.

- 1. Convert unsigned binary number (1101 1010.0101)₂ to decimal number. Show your work.
- 2. Convert the unsigned octal number (264.735)₈ to hexadecimal number. Show your work.
- 3. Convert the binary number $(1101110011001.0110101)_2$ to hexadecimal number. Show your work.
- 4. One processor runs at 2.4 GHz. How many nanoseconds is one clock cycle for this processor?
- 5. Express the following decimal numbers 38_{10} , 86_{10} , -38_{10} and -86_{10} as an 8-bit binary number sign-magnitude form, 1's complement form, and 2's complement form.

Sign Magnitude		
1's complement		
2's complement		

- 6. Compute the result for -38_{10} 86_{10} using 8-bit 2's complement operation. Verify if the result is correct. If not, explain why.
- 7. Compute the result for -38_{10} 86_{10} using 8-bit 1's complement operation. Verify if the result is correct. If not, explain why.
- 8. Write the Boolean expression in canonical sum-of-product form and canonical product-of-sum form for the following truth table. Draw a Kmap with the truth table. Then, find the simplified Boolean expression.

X	у	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

9. Use Boolean Identities to simplify the following Boolean functions utilizing the identity table. Show detailed steps to earn full credits and list Boolean identities applied for each step.

$$f(A,B,C,D) = \overline{(A+\overline{C}+D)(\overline{B}+C)(A+\overline{B}+D)(\overline{B}+C)(\overline{B}+C+\overline{D})}$$

Identity Name	AND Form	OR Form	
Identity Law	1x = x	0+x=x	
Null (or Dominance) Law	0x = 0	1 + x = 1	
Idempotent Law	XX = X	X + X = X	
Inverse Law	xx'=0	x + x' = 1	
Commutative Law	xy = yx	X + y = y + X	
Associative Law	(xy)z = x(yz)	(x + y) + z = x + (y + z)	
Distributive Law	X + (yz) = (X + y)(X + z)	X(y+z)=Xy+Xz	
Absorption Law	x(x+y)=x	X + XY = X	
DeMorgan's Law	(xy)' = x' + y'	(x+y)'=x'y'	
Double Complement Law	x'' = x		

10. The logic circuit shown in the diagram directly implements which of the following Boolean expressions?

a.
$$(xy')' + z'(x + y')$$

b.
$$(yz') + z(x + y')$$

c.
$$((x + y)z)' + xy'$$

d.
$$(x + y)'(xy' + z')$$