Contents

Acknowledgements							
Ał	stra	ct			vi		
Li	st of	Abbreviations			vii		

No	otatio	on and Conventions			viii		
1	Intr	oduction			1		
2	Rac	kground			2		
	2.1	Sequential Monte Carlo			2		
	2.1	2.1.1 Motivation			2		
		2.1.2 Inference in SSMs			2		
		2.1.3 Exact solutions \checkmark			2		
		2.1.4 Feynman-Kac models			3		
		2.1.5 Sequential Monte Carlo for Feynman-Kac models			3		
		2.1.6 Theoretical justification			4		
	2.2	Coalescent theory \checkmark			4		
		2.2.1 Kingman's coalescent			4		
		2.2.2 Properties of Kingman's coalescent			5		
		2.2.3 Models in population genetics			8		
		2.2.4 Particle populations			10		
	2.3	Sequential Monte Carlo genealogies			10		
		2.3.1 From particles to genealogies			10		
		2.3.2 Performance			10		
		2.3.3 Mitigating ancestral degeneracy			11		
		2.3.4 Asymptotics			11		
	2.4	Resampling ~			11		
		2.4.1 Definition ✓			11		
		2.4.2 Examples ~			12		
		2.4.3 Properties ~			18		
		2.4.4 Stochastic rounding ✓			28		
	2.5	Conditional SMC ∼			28		
		2.5.1 Particle MCMC ✓			28		
		2.5.2 Particle Gibbs algorithm			20		

Contents

		2.5.3 Ancestor sampling \sim	30
3	Lim	its 🗸	35
	3.1	Encoding genealogies	35
		3.1.1 The genealogical process	35
		3.1.2 Time scale	35
		3.1.3 Transition probabilities	38
	3.2	An existing limit theorem	41
	3.3	A new limit theorem	43
		3.3.1 Proof of theorem	45
4	App	lications	54
	4.1	Multinomial resampling	54
	4.2	Stratified resampling \sim	54
	4.3	Stochastic rounding	56
	4.4	Residual resampling with stratified residuals \sim	59
	4.5	Residual resampling with multinomial residuals	60
	4.6	Star resampling	60
	4.7	Conditional SMC ~	60
		4.7.1 Effect of ancestor sampling \sim	63
_			
5	Wea	k Convergence 🗸	65
	5.1	Bounds on sum-products	70
	5.2	Main components of weak convergence	73
	5.3	Indicators	93
	5.4	Fubini/DCT conditions	98
	5.5	Dependency graph	99
6	Disc	cussion	100