Задание 2

Молекурялная динамика

Софиа Белен Лопес Висенс Группа Б02-903

Московский физико-технический институт

Содержание

1	Радиальная функция распределения	3
2	Автокорреляционная функция скорости	4
3	Расчёт коэффициента самодиффузии	4
4	Сравнение с первым заданием	5
5	Влияние термостата на расчет коэффициента диффузии	7

1 Радиальная функция распределения

Рис. 1: Радиальная функция распределения для жидкого Аргона при $\rho=0.0213\frac{atoms}{\mathring{\rm A}^3},$ $T=85^\circ K.$ Соответственные параметры в единицах Леннарда-Джонса $\rho=0.84,$ T=1.409.

2 Автокорреляционная функция скорости

Рис. 2: График автокорреляционной функции скорости в зависимости от времени при различных температурах. Расчёт коэффициент самодиффузии с помощью формулы Грина-Кубо.

3 Расчёт коэффициента самодиффузии

Maybe we are still in subdiffusive regime? But then shouldn't D be lower than expected, and not higher? That probably means we are still in ballictic regime.

Рис. 3: График зависимость среднего квадратичного смещения в зависимости от времени. Расчет коэффициента самодиффузии через формулу Эйнштейна-Смолуховского.

Таблица 1: Коэффициент самодиффузии полученный через формулу Эйнштейна-Смолуховского и Грина-Кубо при $\rho=0.7$.

Темература	Эйнштейна-Смолуховского	Грина-Кубо	Ожидаемое значение
1.0	0.258	0.00743	0.105
1.5	0.366	0.01308	0.156
2.0	0.384	0.01515	0.217

4 Сравнение с первым заданием

Вопрос: Как это $<\Delta r^2(t)>$ связано с значением из другого пункта?

Рис. 4: Усреднённые разбегания координат $<\Delta r^2(t)>$ и скоростей $<\Delta v^2(t)>$ на двух траекториях, рассчитанных из тождественных начальных условий с шагами $\Delta t_1=0.001$ и $\Delta t_2=0.0001$. При температуре T=1.0 и плотности $\rho=0.7$ получим коэффициент самодиффузии D=0.079. Он оказывается на порядок меньше значения полученного с помощью соотношения Эйнштейна-Смолуховского

5 Влияние термостата на расчет коэффициента диффузии

Рис. 5: График зависимость среднего квадратичного смещения в зависимости от времени. Расчет коэффициента самодиффузии через формулу Эйнштейна-Смолуховского при температуре T=1.5 для различных характерных величин термостата τ . Вертикальная линия момент, начиная с которого мы рассчитаем коэффициент диффузии.