DAFTAR ISI

DAFTAR ISI	i
DAFTAR GAMBAR	iii
DAFTAR TABEL	iv
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Target Luaran	2
1.3 Manfaat Program	2
BAB 2. TINJAUAN PUSTAKA	3
2.1 Pencemaran Udara	3
2.2 Adsorpsi	3
2.3 Kulit Buah Kakao	3
2.4 Aktivator ZnCl ₂	3
2.5 Cyclone Separator	4
2.6 Arduino Mikrokontroler	4
BAB 3. TAHAP PELAKSANAAN	4
3.1 Waktu dan Tempat Pelaksanaan	4
3.2 Bahan dan Alat	5
3.3 Tahapan Pelaksanaan Program	5
3.3.1 Tahap Pengumpulan Data	5
3.3.2 Tahap Rancangan Awal	5
3.3.3 Penyusunan Desain	6
3.3.4 Pembuatan Prototipe	6
3.3.4.1 Pembuatan Karbon Aktif	6
3.3.4.2 Pembuatan Tabung Adsorpsi	6
3.3.4.3 Perancangan Sistem Arduino Mikrokontroler pada Cyclone	7
3.3.5 Pengujian Prototipe	7
3.3.6 Penyimpulan Hasil Prototipe	8
3.3.7 Tahap Evaluasi Prototipe	8
BAB 4. BIAYA DAN JADWAL KEGIATAN	9
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	10
LAMPIRAN	11
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas.	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	
Lampiran 5. Gambaran Teknologi yang akan Dikembangkan	

DAFTAR GAMBAR

Gambar 2.1 <i>Cyclone</i> Separator	4
Gambar 3.1 Konfigurasi Alat Pengukur Kualitas Udara	5
Gambar 3.2 Rancangan 3D Cyclone Separator Modifikasi	6
Gambar 3.3 Rancangan Tabung Adsorpsi	7
Gambar 3.4 Flowchart Konsep Kerja Perangkat	7
Gambar 3.5 Ilustrasi <i>Display</i> Hasil Pembacaan Sensor	8

DAFTAR TABEL

Tabel 3.1 Luaran dan Indikator Capaian Kegiatan	8
Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	9

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Menurut Survei Kualitas Udara IQAir pada tahun 2021, Indonesia memiliki kualitas udara terburuk ke-17 di dunia akibat adanya pencemaran udara. Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan Lingkungan Hidup dan Perlindungan Lingkungan Hidup menyatakan bahwa pencemaran udara merupakan suatu keadaan terlepasnya zat, energi dan/atau komponen lain ke udara (udara bebas pada permukaan bumi). Pencemaran udara dapat berdampak negatif terhadap kesehatan, ekosistem, dan perubahan iklim. Emisi karbon monoksida (CO), berbagai senyawa hidrokarbon, senyawa NOx, dan SOx merupakan contoh emisi yang merupakan sisa pembakaran yang terlepas ke udara dan mengandung komponen pencemar bagi lingkungan (Siswantoro dkk., 2012).

Emisi gas buang dapat dihasilkan dari hasil proses pembakaran sampah. Sampah merupakan bahan sisa yang tidak dapat digunakan kembali (Suharto dkk., 2017). Produksi sampah merupakan masalah nasional, sehingga diperlukan pengelolaan sampah yang komprehensif dan terpadu untuk memaksimalkan manfaat ekonomi, kesehatan masyarakat, dan keselamatan lingkungan. Salah satu teknik pengolahan sampah adalah pembakaran sampah, yang dapat mengurangi sampah hingga 5-10% melalui pembakaran yang dapat mengubah padatan (limbah) menjadi bahan gas dan FABA (Fly Ash Bottom Ash) seperti SO₂, NOx, CO, dan HC (Jayanti dkk., 2014).

Untuk mencegah terjadinya pencemaran udara akibat proses pembakaran mesin insinerator, diperlukan pengolahan gas buang dengan APPU (Alat Pengendali Pencemaran Udara) untuk mengendalikan emisi dari proses pembakaran mesin insinerator. APPU terdiri dari alat yang berbeda dengan metode dan komponen yang berbeda tergantung pada tujuan manajemen tautan, salah satunya adalah *cyclone* (Prasetyadi dkk., 2018). *Cyclone* adalah perangkat yang digunakan untuk menghilangkan emisi gas buang dari jenis FABA. FABA adalah partikel halus (abu) dari sisa pembakaran. Di mana, debu kering akan dipisahkan dan dikumpulkan dari aliran gas oleh *cyclone* menggunakan prinsip gaya sentrifugal (Rahmawati dkk., 2020).

Cyclone digunakan sebagai perangkat pengendali emisi partikulat (FABA), sehingga cyclone kurang efektif dalam mengendalikan emisi gas. Oleh karena itu, perlu dilakukan modifikasi alat dengan penambahan tabung adsorpsi. Adsorpsi adalah proses pengendali emisi gas di mana partikel emisi gas menempel pada permukaan padat (adsorben) karena perbedaan muatan yang lemah antara dua benda (Jaya, 2014). Salah satu adsorben yang efektif mengadsorpsi emisi gas adalah karbon aktif. Karbon aktif (activated carbon) memiliki daya serap yang tinggi terhadap anion, kation, dan molekul yang sebelumnya telah diaktivasi secara fisika maupun kimia dalam bentuk senyawa organik dan anorganik, baik berupa larutan ataupun gas (Lempang, 2014).

Kulit buah kakao merupakan salah satu contoh bahan yang mengandung senyawa polimer dan terbuat dari unsur karbon serta dapat diaktivasi dengan asam untuk menghasilkan karbon aktif. Badan Pusat Statistik mencatat, produksi kakao di Sumut mencapai 35.696 ton pada tahun 2020 yang tersebar di daerah Karo, Nias, Mandailing Natal, Tapanuli Tengah, Tapanuli Utara, Tapanuli Selatan, Toba Samosir, Labuhan Batu, Asahan, Simalungun, Dairi, dan Deli Serdang. Akan tetapi pemanfaatan limbah berupa kulit buah kakao hanya terbatas pada bahan baku pembuatan pupuk dan pakan ternak. Oleh karena itu, penambahan karbon aktif melalui tabung adsorpsi modifikasi *cyclone* ini akan menggunakan kulit buah kakao sebagai pemanfaatan kembali limbah menggunakan aktivator ZnCl₂.

Cyclone yang akan dimodifikasi merupakan jenis cyclone separator yang terhubung langsung pada mesin insinerator sederhana. Sambungan pipa pada cyclone akan ditambahkan karbon aktif, sehingga dapat mereduksi emisi gas dan partikulat secara bersamaan. Untuk mengetahui hasil kinerja alat tersebut, cyclone akan terintegrasi dengan IoT (Internet of Things) Arduino Mikrokontroler melalui pemasangan sensor yang dapat mendeteksi konsentrasi emisi gas dan partikulat pada saat sebelum dan sesudah melewati cyclone. Di mana sensor ultrasonik dipasang dengan jarak 1 meter dari cyclone yang terintegrasi dengan kabel utama untuk mengirimkan data yang diterima ke Arduino sebagai controller otomatis sesuai data yang telah dikirim. Modifikasi alat cyclone ini juga bertujuan menghadirkan alat pengendali pencemaran udara yang lebih baik guna mendukung Net Zero Emission Indonesia 2060 dan selaras dengan Tujuan Pembangunan Berkelanjutan Nomor 13: Climate Action.

1.2 Target Luaran

Adapun target luaran yang ingin dicapai pada program ini adalah sebagai berikut.

- 1. Laporan kemajuan;
- 2. Laporan akhir;
- 3. Prototipe *cyclone* berukuran kecil dan fleksibel hasil modifikasi dengan penambahan tabung adsorpsi karbon aktif dari limbah kulit buah kakao yang merupakan potensi lokal Sumatera Utara berbasis IoT Arduino Mikrokontroler sebagai sensor yang mendeteksi konsentrasi emisi gas dan partikulat; dan
- 4. Akun media sosial.

1.3 Manfaat Program

Adapun hasil penciptaan prototipe ini diharapkan dapat menjadi salah satu alat pengendali pencemaran udara yang baik dan efektif dalam mereduksi emisi dari mesin pembakaran insinerator. Dilakukan modifikasi pada *cyclone* separator bertujuan sebagai penyempurnaan dari alat-alat sebelumnya yang berukuran besar dibentuk dengan lebih kecil dan fleksibel serta penambahan karbon aktif yang berasal dari pemanfaatan limbah kulit buah kakao untuk mereduksi emisi udara. Prototipe ini juga memanfaatkan teknologi informasi yang berbasis IoT Arduino Mikrokontroler, sebagai bentuk inovasi teknologi dalam pengendalian pencemaran lingkungan.

BAB 2. TINJAUAN PUSTAKA

2.1 Pencemaran Udara

Pencemaran udara merupakan suatu keadaan di mana bercampurnya satu atau lebih bahan pencemar (dapat berupa padatan, cairan, atau gas) yang terdispersi ke udara dan kemudian menyebar ke lingkungan sekitarnya. Berdasarkan Peraturan Menteri Lingkungan Hidup dan Kehutanan RI Nomor 14 Tahun 2020 tentang Indeks Standar Pencemar Udara, terdapat tujuh parameter pencemar udara: partikulat (PM₁₀); partikulat (PM_{2.5}); karbon monoksida (CO); sulfur dioksida (SO₂); nitrogen dioksida (NO₂); ozon (O₃); dan hidrokarbon (HC). Parameter-parameter tersebut berbahaya bagi lingkungan, yang meliputi dampak bagi kesehatan masyarakat, hewan, tanaman, hingga menyebabkan kerusakan material (benda) seperti bangunan, logam, dan lain-lain. Kandungan CO yang berlebihan di dalam darah juga dapat menyebabkan kematian.

2.2 Adsorpsi

Adsorpsi adalah proses di mana partikel menempel pada permukaan karena perbedaan muatan dan membentuk lapisan tipis. Proses adsorpsi berlangsung di dinding pori atau area tertentu dari adsorben yang merupakan bahan berpori. Karbon aktif merupakan salah satu adsorben terbaik dalam proses adsorpsi. Hal ini dikarenakan arang aktif memiliki luas permukaan yang dalam dan terdiri dari karbon bebas, sehingga arang aktif memiliki daya serap yang tinggi. Limbah kulit kakao merupakan salah satu bahan yang dapat dimanfaatkan sebagai arang aktif (Jaya, 2014).

2.3 Kulit Buah Kakao

Kulit buah kakao memiliki kandungan 36,23% selulosa, 1,14% hemiselulosa, dan 20-27,95% lignin. Selulosa pada kulit buah kakao dapat dimanfaatkan sebagai absorben karena bahan tersebut akan kehilangan atom hidrogen dan oksigen jika dipanaskan pada suhu tinggi dan membentuk struktur heksagonal dengan atom karbon di setiap sudutnya. Proses karbonisasi, di mana atom hidrogen dan oksigen dilepaskan pada suhu tinggi, menyebabkan rusaknya susunan cincin heksagon yang ada. Adsorbat (zat yang diserap) dapat terserap ke dalam struktur arang aktif berpori karena adanya ruang-ruang pada struktur arang aktif struktur akibat susunan lapisan yang tidak sempurna dan cincin heksagonal yang dimiliki (Jaya, 2014).

2.4 Aktivator ZnCl₂

Senyawa kimia dengan rumus ZnCl₂ adalah seng klorida. Seng klorida (ZnCl₂) yang mudah larut dalam air ini bersifat higroskopis dan *deliquescent*, sehingga harus dijaga kelembabannya, mengingat adanya kelembaban untuk udara ambien. Penggunaan ZnCl₂ dalam proses aktivasi karbon aktif dapat menginhibisi pembentukan tar, serta mendorong terbentuknya karbon aktif yang berpori akibat terjadinya aromatisasi. Selain itu ZnCl₂ dapat meningkatkan permukaan karbon aktif, dapat menghambat pelepasan tar selama karbonasi, serta mendukung reaksi kondensasi.

2.5 Cyclone Separator

Cyclone separator adalah suatu perangkat alat yang dapat menghilangkan partikel dari fluida udara dengan tanpa menggunakan filter. Fluida bergerak dalam gerakan berputar dan biasanya turbulen, dengan kecepatan dan laju terbesar di pusat dan berkurang jauh dari pusat. Campuran padat-cair dapat dipisahkan dengan menggunakan efek rotasi dan gravitasi. Cyclone separator memiliki saluran masuk (inlet) dan saluran keluar (outlet), vortex finder, badan (body), kerucut (cone), dan hopper. Cyclone separator 70% efektif memisahkan fasa gas jika dibandingkan dengan teknologi pemisahan lainnya. Cyclone separator dapat menghilangkan partikel dari udara, gas, atau cairan, melalui pemisahan dengan prinsip gaya sentrifugal dan gravitasi. Prinsip utama dari teknologi ini adalah pemisahan berdasarkan perbedaan berat molekul (Putranto dkk., 2020).

Gambar 2.1 Cyclone Separator Sumber: Penulis, 2023.

2.6 Arduino Mikrokontroler

Arduino adalah papan mikrokontroler berbasis AT Mega 328 yang berisi chip *Integreted Circuits* (IC) di sebagian besar atau semua komponennya. Pada mikrokontroler juga memiliki memori, prosesor, serta peralatan *input* dan *output*. Hasil pengujian (Anwar dkk., 2022), mikrokontroler Arduino Mega 2560 dapat digunakan untuk membangun alat pengukur kualitas udara yang bekerja dengan baik dan merespon sejumlah perintah dengan membaca *input*, proses dan *output*, termasuk untuk *data logger*, fungsi IoT (*Firebase*) fungsi, pengukuran sensor, dan tampilan (*display*).

BAB 3. TAHAP PELAKSANAAN

3.1 Waktu dan Tempat Pelaksanaan

Penciptaan prototipe dilakukan selama lima bulan dimulai dari pengumpulan alat bahan, perancangan, pembuatan dan penyimpulan prototipe, hingga tahap pengujian dan evaluasi prototipe. Adapun tahap pembuatan prototipe akan dilaksanakan di Laboratorium Kimia Analisa dan Kimia Fisika Departemen Teknik Kimia Universitas Sumatera Utara. Pengujian dan evaluasi prototipe akan dilakukan di Tempat Pengelolaan Sementara (TPS) Terpadu Universitas Sumatera Utara.

3.2 Bahan dan Alat

Bahan yang digunakan dalam pembuatan prototipe ini di antaranya limbah kulit buah kakao, aktivator ZnCl₂, kabel, besi plat, baut, kabel protektor *Arduino Mega* 2560, Sensor MICS6814, dan Sensor PMS5003 dengan alat yang digunakan berupa solder, timah solder, multi-tester, *Relay*, RTC DS3231, SIM800L, *Data Logger* SD Card, SD Card SDHC 16 GB, dan Max7219 LED Dot *Matrix* 3 x P10 *Display*. Pengujian prototipe akan menggunakan alat penunjang berupa mesin insinerator sederhana yang terhubung dengan pipa *inlet* prototipe.

Gambar 3.1 Konfigurasi Alat Pengukur Kualitas Udara

Sumber: Penulis, 2023.

3.3 Tahapan Pelaksanaan Program

Adapun tahapan pelaksanaan program ini meliputi tahap pengumpulan data, rancangan awal, penyusunan desain, pembuatan prototipe, pengujian prototipe, penyimpulan hasil prototipe, dan evaluasi prototipe berdasarkan luaran dan indikator pencapaian dari masing-masing tahap. Seluruh rangkaian kegiatan ini akan dipublikasikan secara reguler melalui akun media sosial berupa Instagram dan *channel* Youtube dengan nama akun "Kcybertrone" (Karya Cipta Cybertrone). Sebanyak lima postingan di antaranya akan diberi *adsense* (*ads*) yang ditayangkan setiap tanggal 25 di bulan April-Agustus 2023 pada pukul 12.00 WIB.

3.3.1 Tahap Pengumpulan Data

Teknik pengumpulan data dalam pembuatan prototipe ini menggunakan kombinasi dari data primer dan data sekunder. Data primer yang digunakan bersumber dari hasil percobaan di laboratorium dan untuk data sekunder bersumber dari studi literatur artikel rujukan yang mendukung topik penciptaan prototipe.

3.3.2 Tahap Rancangan Awal

Adapun metode perancangan yang digunakan adalah model *French*, di mana metode ini dinilai mampu untuk mengakomodasi pemilihan varian secara lebih efisien pada perancangan prototipe yang memiliki banyak batasan pada varian. Tahap rangan awal ini dimulai dengan menentukan kebutuhan dan diakhiri dengan gambar rancangan dan keterangan lainnya.

3.3.3 Penyusunan Desain

Varian prototipe *cyclone* separator yang telah didapat dari model *French* kemudian didesain secara 2D dan 3D dengan ukuran dan bentuk berdasarkan literatur yang didapat. Untuk diameter *inlet* yang dijadikan patokan pada tiap metode dan variasi disesuaikan dengan *exhaust* mesin yang akan digunakan untuk uji emisi. Setelah tahap desain prototipe telah selesai, dilanjutkan dengan pembuatan prototipe *cyclone* separator dan pengujian emisi gas buang mesin insinerator untuk mendapatkan data kandungan parameter pencemarnya.

Gambar 3.2 Rancangan 3D Cyclone Separator Modifikasi

Sumber: Penulis, 2023.

3.3.4 Pembuatan Prototipe

3.3.4.1 Pembuatan Karbon Aktif

1. Preparasi Sampel Limbah Kulit Buah Kakao

Preparasi sampel dimulai dari pengumpulan dan pengeringan limbah kulit buah kakao (*Theobroma cacao L.*) selama satu minggu di bawah sinar matahari, kemudian dibersihkan. Limbah kulit buah kakao yang telah dibersihkan dimasukkan ke dalam lumpang besar dan ditumbuk hingga ukurannya menjadi lebih kecil. Kulit buah kakao yang telah ditumbuk diambil secara acak kemudian dicuci dengan air dan dikeringkan kembali di bawah sinar matahari.

- 2. Pembuatan Karbon Aktif dari Limbah Kulit Buah Kakao
 - a. Tahapan dehidrasi, kulit buah kakao dicuci dengan akuades dan dijemur di bawah sinar matahari selama 8 jam.
 - b. Tahapan karbonisasi, sebanyak 1 kg kulit buah kakao dimasukkan ke dalam tungku selama 20 menit hingga menjadi arang. Selanjutnya arang didinginkan, dihaluskan, dan diayak menggunakan ayakan 40 *mesh*.
 - c. Tahapan aktivasi, sebanyak 50 gram arang dimasukkan ke dalam gelas kimia 500 mL kemudian ditambahkan 100 mL larutan ZnCl₂ 10% selama 24 jam. Kemudian residu dicuci dengan akuades hingga pH netral. Selanjutnya dimasukkan ke dalam oven dengan suhu 100°C selama 2 jam.

3.3.4.2 Pembuatan Tabung Adsorbsi

Pembuatan tabung adsorpsi bertujuan untuk menyimpan karbon aktif sebagai media penyerap (adsorben) dari emisi gas dari proses pembakaran.

Gambar 3.3 Rancangan Tabung Adsorpsi

Sumber: Jaya, 2014.

3.3.4.3 Perancangan Sistem Arduino Mikrokontroler pada Cyclone

Berdasarkan rujukan dari rancangan sistem yang ada (Anwar dkk., 2022), perangkat yang dioperasikan akan menampilkan *display* untuk menyampaikan informasi instansi pengembang alat, kemudian disambungkan ke *server Firebase* oleh perangkat SIM800L. Selanjutnya sensor MICS6814 akan dikalibrasi untuk menentukan nilai resistansi dasar dari sensor tersebut. Pada tahapan *loop program* (setelah kalibrasi), akan dilakukan pengukuran kualitas udara dari parameter yang diukur. Tampilan *display* akan melakukan *update* pada interval waktu tertentu.

Gambar 3.4 Flowchart Konsep Kerja Perangkat

Sumber: Penulis, 2023.

Sistem informasi dibuat pada teks yang ditampilkan oleh *display* dengan nilai sensor dan referensi berdasarkan pada ISPU untuk menentukan kategori kondisi kualitas udara. *Realtime database* dibangun melalui *platform Firebase* dengan luaran *database* sensor berupa file dengan ekstensi (json), sehingga data dapat di akses dan dikonversi dengan mudah menjadi file .csv (*comma separated value*). Perangkat dibangun menjadi dua bagian utama dengan sumber daya listrik di bagian belakang.

3.3.5 Pengujian Prototipe

Pengujian prototipe dilakukan dengan mengubungkan *cyclone* dengan pipa *outlet* dari mesin insinerator. Berdasarkan rancangan desain yang telah dibuat, akan terdapat dua sensor yang dipasang pada *cyclone*, yakni sebelum dan sesudah

memasuki tabung adsorpsi dan *cyclone*. Data pengujian diambil dari hasil baca sensor terhadap parameter pencemar yang ingin diketahui, yaitu SOx, NOx, CO, dan HC. Tim akan menggunakan data yang ditampilkan pada *display* melalui sistem Arduino Mikrokontroler yang akan dibuat. Analisis data dilakukan dengan melakukan perbandingan terhadap data yang diambil.

Gambar 3.5 Ilustrasi Display Hasil Pembacaan Sensor

Sumber: Penulis, 2023.

3.3.6 Penyimpulan Hasil Prototipe

Penyimpulan hasil prototipe dilakukan agar memastikan apakah prototipe yang dibuat dapat melepas emisi gas buang sesuai dengan standar baku mutu atau tidak. Pada tahap ini tim akan mencoba prototipe yang dibuat dapat menjadi alat pengendali pencemaran udara berbasis *IoT Arduino* Mikrokontroler yang dapat mengendalikan emisi gas buang partikulat melalui modifikasi penambahan tabung adsorpsi karbon aktif limbah kulit buah kakao pada *cyclone*.

3.3.7 Tahap Evaluasi Prototipe

Pada tahap evaluasi, seluruh rangkaian tahapan pelaksanaan akan ditinjau berdasarkan luaran dan indikator masing-masing. Evaluasi prototipe dilakukan sebagai bahan koreksi untuk pengembangan prototipe ini kedepannya.

	1 8				
No.	Kegiatan	Luaran	Indikator Capaian		
1	Studi literatur	Jurnal penciptaan prototipe	Didapatkan literatur yang sesuai dengan topik penciptaan prototipe.		
2			Didapatkan surat izin penciptaan prototipe di laboratorium.		
3	Penyiapan alat dan bahan	Alat dan bahan	Didapatkan alat dan bahan untuk mendukung pembuatan prototipe.		
4	Pengambilan data	Data hasil uji prototipe	Didapatkan data hasil uji prototipe.		
5	Pengolahan data	Analisis data	Didapatkan data yang sesuai dan		

Tabel 3.1 Luaran dan Indikator Capaian Kegiatan

			disajikan dalam tabel dan chart.
6	Pembuatan laporan kemajuan	Laporan kemajuan	Didapatkan laporan kemajuan PKM 2023.
7	Postingan dan pengiklanan	Konten media sosial	Didapatkan akun media sosial dengan konten edukasi.
8	Pembuatan laporan akhir	Laporan akhir	Didapatkan laporan akhir yang telah dievaluasi dan di- <i>upload</i> dalam sistem SIMBelmawa.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Adapun anggaran biaya yang diperlukan dapat dilihat pada tabel berikut.

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
		Belmawa	4.211.000
1	Bahan habis pakai	Perguruan Tinggi	690.000
		Instansi Lain	-
		Belmawa	800.000
2	Sewa dan jasa	Perguruan Tinggi	150.000
		Instansi Lain	-
	Transportasi lokal	Belmawa	1.560.000
3		Perguruan Tinggi	100.000
		Instansi Lain	-
		Belmawa	900.000
4	Lain-lain	Perguruan Tinggi	60.000
		Instansi Lain	-
	Jumlah		8.481.000
		Belmawa	7.481.000
	Rekap Sumber Dana	Perguruan Tinggi	1.000.000
	KCKAP SUMDEI DANA	Instansi Lain	-
		Jumlah	8.481.000

4.2 Jadwal Kegiatan

Adapun rencana kegiatan yang akan dilaksanakan dapat dilihat pada tabel berikut. Tabel 4.2 Jadwal Kegiatan

No	Ionis Vogistan	Bulan					Person
110	Jenis Kegiatan	1	2	3	4	5	Penanggung Jawab
1	Penelusuran Pustaka						Semua Anggota
2	Tahapan Persiapan Bahan						Fiki Agustianda
2	Baku dan Bahan Lainnya						riki Agustianua
3	Tahap Pembuatan Prototipe						Fiki Agustianda

				Izharul Haq
4	Tahap Pengujian Prototipe			Fauziah Khairunnisa Afrylian Fauzan Siregar
5	Posting Konten PKM di Akun Media Sosial			Fauziah Khairunisa
6	Penulisan Laporan Kemajuan			Afrylian Fauzan Siregar
7	Penulisan Laporan Akhir			Fiki Agustianda Izharul Haq

DAFTAR PUSTAKA

- Anwar, S., A. Yuliat, dan R. Y. Manova. 2022. Rancang Bangun Alat Ukur Kualitas Udara (PM2.5, NO2, CO) Berbasis Iot Menggunakan Sim800l Dan Mikrokontroler Arduino Mega 2560 Di Kota Tasikmalaya. *Jurnal Informatika-COMPUTING* 9(1): 36-43.
- Jaya, F. T. 2014. Adsorpsi Emisi Gas CO, NO, dan NOx menggunakan Karbon Aktif dari Limbah Kulit Buah Kakao (Theobroma cacao L.) pada Kendaraan Bermotor Roda Empat. *Skripsi*. Fakultas Matematika dan Ilmu Pengetahuan Alam Uiversitas Hasanuddin. Makassar.
- Jayanti, N. E., Hakam, M., dan Santiasih, I. 2014. Emisi Gas Carbon Monooksida (CO) Dan Hidrocarbon (HC) Pada Rekayasa Jumlah Blade Turbo Ventilator Sepeda Motor "Supra X 125 Tahun 2006". Jurnal Teknik Mesin.
- Lempang, M. 2014. Pembuatan dan Kegunaan Arang Aktif. *Buletin Ebony*. 11(2). Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup.
- Prasetyadi, Wiharja, dan Wahyono, S. 2018. Teknologi Penanganan Emisi Gas dari Insinerator Sampah Kota. *Jurnal Rekayasa Lingkungan*. 11(2): 85-93.
- Putranto, A. W, F. P. Puspaningrum dan Sukardi. 2020. The cyclone separator application on physicochemical characterization of coconut shell-liquid smoke grade C. *Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineerin*: 3 (2): 68-74
- Rahmawati, F., Samadikun, B. P., dan Hadiwidodo, M. 2020. Evaluasi Kinerja Alat Pengendali Partikulat *Cyclone* dan *Wet Scrubber* Unit *Paper Mill* 7/8 PT. Pura Nusapersada Kudus. *Jurnal Presipitasi*. 17(2): 144-153.
- Siswantoro, Lagiyono, dan Siswiyanti. 2012. Analisa Emisi Gas Buang Kendaraan Bermotor 4 Tak Berbahan Bakar Campuran Premium dengan Variasi Penambahan Zat Aditif. *Jurnal Engineering*. 4(1): 75-84.
- Suhartono, T., Rahmalina, D., dan Maulana. E. 2020. Rancang Bangun *Cyclone* dan Wet Scrubber Pada Incinerator Untuk Mencegah Terjadinya Pencemaran Udara. *Jurnal Ilmiah TEKNOBIZ* 7(1): 1-8.

Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Fiki Agustianda
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	200405015
5	Tempat dan Tanggal Lahir	Purwodadi, 23 Agustus 2002
6	Alamat Email	fikiagustindaa23@gmail.com
7	Nomor Telepon/HP	082276391548

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Gantari Engineering Research Club	Pengurus Divisi Pembimbingan Anggota	Universitas Sumatera Utara, 2021-sekarang
2	Arunika Simetrikal	Pengurus Divisi HRD	Universitas Sumatera Utara, 2021-selesai
3	Inkubator Sains USU	Pengurus Divisi Hubungan Masyarakat Eksternal	Universitas Sumatera Utara, 2022-sekarang
4	Rumah Internet	Relawan Batch 4 Rumah Internet	Sumatera Utara, 2022-selesai
5	Asisten Laboratorium Kimia Analisa	Koordinator Asisten	Universitas Sumatera Utara, 2022-sekarang
6	ILP2MI	Anggota Regional 1 (Delegasi Inkubator Sains)	Universitas Sumatera Utara, 2022-sekarang
7	Covalen Study Group	Kepala Bidang Dakwah	Universitas Sumatera Utara, 2022-sekarang
8	HIMATEK-FT USU	Pengurus Bidang Penelitian dan Pengembangan	Universitas Sumatera Utara, 2021-sekarang
9	Rumah Kepemimpinan	Presiden Kabinet	Universitas Sumatera Utara, 2022-sekarang

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Silver Medal World Youth Inventon and Inovation Award (UNY)-Kategori Kesehatan Pangan	Universitas Negeri Yogyakarta	2021
2	Juara 3 Kompetisi Essai KWUSIK (Kewirausaan	Universitas Sumatera Utara	2022

	Seminar dan Kompetisi) USU-Inovasi Produk Makanan Sehat		
3	Bronze Medal The International Scientific Paper Competition Global Competition Life Sciences	Institut Pertanian Bogor	2022
4	Karya Tulis Ilmiah Qur'an Universitas Sumatera Utara	Universitas Sumatera Utara	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Ketua Tim

Fiki Agustianda

Biodata Anggota 1

A. Identitas Diri

Nama Lengkap	Fauziah Khairunnisa	
Jenis Kelamin	Perempuan	
Program Studi	Teknik Lingkungan	
NIM	210407011	
Tempat dan Tanggal Lahir	Medan, 07 Juni 2004	
Alamat Email	nisa.fauziah.khairunnisa@gmail.com	
Nomor Telepon/HP	085261607661	
	Jenis Kelamin Program Studi NIM Tempat dan Tanggal Lahir Alamat Email	

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	YouthCamp for Future Leader on Environment 2021	Delegasi USU	Balikpapan, November 2021
2	Kepanitiaan "Mengajar di Desa Batch 3"	Sekretaris Divisi Media Kreatif	Desa Ndeskati dan Desa Nelayan, Januari-Juli 2022
3	Society of Renewable Energy USU	Staff Creative Design SRE USU	April 2022-Sekarang
4	Smart Generation Community USU	Sekretaris Kementerian Jaringan dan Kemitraan	Desember 2022- Sekarang

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan Pihak Pemberi Penghargaan		Tahun
1	Juara III Lomba Poster	HIMTI FT USU	2021
2	Juara II Lomba Poster Nasional	Universitas Pendidikan Ganesha	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Anggota Tim

(Fauziah Khairunnisa)

Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Afrylian Fauzan Siregar
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Informasi
4	NIM	201402001
5	Tempat dan Tanggal Lahir	Tanjung Morawa, 12 April 2002
6	Alamat Email	afrylian.fauzan@gmail.com
7	Nomor Telepon/HP	081318883937

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Outbound Madrasah	Narasumber	2022, Madrasah Terpadu Ali bin Abi Thalib
2	Seminar Nasional Bersama dr. Gamal Albinsaid M. biomed	Sekretaris Panitia	2022, Wisma Tanjung Morawa
3	Jambore Cabang Pramuka Deli Serdang	Staff Panitia Perkemahaan	2022, Percut Sei Tuan
4	LDK OSIM MAN 2 Deli Serdang	Narasumber	2022, Aula MAN 2 Deli Serdang
5	Panitia IT FEST USU	Koordinator Dana & Sponsorship	2023, Universitas Sumatera Utara

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 3 Lomba Karya Tulis Ilmiah Al-Qur'an	LPTQ Universitas Sumatera Utara	2021
2	Lulus Pendanaan BIC	Universitas Sumatera Utara	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Anggota Tim

(Afrylian Pauzan Siregar)

Biodata Anggota 3

A. Identitas Diri

1	Nama Lengkap	Izharul Haq
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	200405076
5	Tempat dan Tanggal Lahir	Medan, 17 Februari 2003
6	Alamat Email	izharul.haq@students.usu.ac.id
7	Nomor Telepon/HP	083106981445

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Covalen Study Group	Ketua Umum	2022-sekarang di Universitas Sumatera Utara
2	Laboratorium Termodinamika Teknik Kimia	Asisten Laboratorium	2022-sekarang di Universitas Sumatera Utara
3	Latihan Dasar Kepemimpinan HIMATEK FT-USU	Penanggung Jawab Rundown dan Time Keeper	29-31 Agustus 2022 di Sibolangit Kab. Deli Serdang

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 2 Lomba Poster Ajang Kreativitas Ilmiah Mahasiswa	Universitas Pendidikan Ganesha	2021
2	Juara 2 Lomba Poster Kompetisi Karya Ilmiah Sains Mahasiswa	Universitas Pendidikan Ganesha	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Anggota Tim

(Izharul Haq)

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Muhammad Thoriq Al Fath, S.T., M.T.
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Teknik Kimia
4	NIP/NIDN	199509172021021001/0117099501
5	Tempat dan Tanggal Lahir	Kuta Cane, 17 September 1995
6	Alamat Email	thoriq@usu.ac.id
7	Nomor Telepon/HP	081360891823

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Teknik Kimia	Universitas Sumatera Utara	2017
2	Magister (S2)	Teknik Kimia	Universitas Sumatera Utara	2019
3	Doktor (S3)	-	-	-

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Menggambar Teknik	Wajib	2
2	Termodinamika Teknik Kimia 1	Wajib	2
3	Statistika	Wajib	2
4	Proses Petrokimia	Pilihan	2
5	Matematika Teknik Kimia	Wajib	3
6	Pengendalian Proses	Wajib	3
7	Teknopreurship	Wajib	2
8	Elektrokimia	Pilihan	2

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	-	-	-

Pengabdian Masyarakat

No	Judul Pegabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Penyuluhan Pemilahan Sampah Organik dan Non-Organik Kepada Anak Sekolah Dasar	Mandiri	2022

	Muhammadiyah 02 Medan		
2	Sosialisasi Pemilahan Jenis Sampah di SMP Muhammadiyah 57 Medan	Mandiri	2022
3	Edukasi Pemilahan Jenis Sampah Kepada Anak-Anak di Yayasan Al-Kahfi Medan	Mandiri	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Dosen Pendamping

Muhammad Thoriq Al-Fath

Lampiran 2. Justifikasi Anggaran Kegiatan

	oiran 2. Justifikasi Anggaran Ko		Harga	
No	Jenis Pengeluaran	Volume	Satuan (Rp)	Total (Rp)
1	Belanja Bahan (maks. 60%)		(1)	
	Besi plat	1	950.000	950.000
	Besi siku	1	77.000	77.000
	Besi pipa	1	125.000	125.000
	Arduino Mega 2560	1	350.000	350.000
	Sensor MICS6814	1	730.000	730.000
	Sensor PMS5003	1	500.000	500.000
	Aktivator ZnCl ₂	2.5 Kg	300.000	750.000
	Aquades	5 L	15.000	75.000
	Max7219 Led Dot Matrix 3 x P10 Display	1	225.000	225.000
	Relay	2	30.000	60.000
	RTC DS3231	1	50.000	50.000
	SIM800L	1	65.000	65.000
	Data Logger SD Card	1	58.000	58.000
	SD Card SDHC 16 GB	1	94.000	94.000
	Kabel	10 m	10.000	100.000
	Timah solder	1 roll	50.000	50.000
	Kabel protector	1 pcs	70.000	70.000
	Baut	5 pcs	50.000	50.000
	Multi-tester	1	125.000	125.000
	Solder	1	100.000	100.000
	Blower	1	167.000	167.000
	Bahan bakar insinerator	20 L	7.000	140.000
	SUB TOTAL			4.911.000
2	Belanja Sewa (maks. 15%)	-	-	ı
	Aplikasi AutoCAD	1	125.000	125.000
	Google Firebase	1	100.000	100.000
	Aplikasi Ansys	1	125.000	125.000
	Sewa pemakaian laboratorium	4 Bulan	150.000	600.000
	SUB TOTAL			950.000
3	Perjalanan Lokal (maks. 30%)			
	Biaya pengadaan limbah kulit buah kakao	20 Kg	3.000	60.000
	Penyiapan peralatan	4 Bulan	75.000	300.000
	Kegiatan ke laboratorium	4 Bulan	100.000	400.000
	Perjalanan pembelian bahan baku dan keperluan lain	-	900.000	900.000

	SUB TOTAL			1.660.000
4	Lain-lain (maks. 15%)			
	Jasa pembuatan alat	1	360.000	360.000
	Adsense akun media sosial	5	100.000	500.000
	Jasa simulasi Ansys	1	100.000	100.000
	SUB TOTAL			960.000
	GRAND TOTAL			8.481.000

GRAND TOTAL (Terbilang Delapan Juta Empat Ratus Delapan Puluh Satu Ribu Rupiah)

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/ming gu)	Uraian Tugas
1	Fiki Agustianda /200405015	Teknik Kimia	Teknik	12	1. Mencari sumber literatur pendukung pembuatan prototipe 2. Mempersiapk an bahan baku dan bahan penunjang pembuatan prototipe 3. Membuat prototipe cyclone separator modifikasi 4. Menulis Laporan Akhir
2	Fauziah Khairunnisa /210407011	Teknik Lingkungan	Teknik	12	1. Mencari sumber literatur pendukung pembuatan prototipe 2. Menguji efektifitas prototipe 3. Memposting konten PKM di akun media sosial sesuai dengan timeline

3	Afrylian Fauzan Siregar /201402001	Teknologi Informasi	Ilmu Komunikasi dan Teknologi Informasi	10	1. Mencari sumber literatur pendukung pembuatan prototipe 2. Menguji efektifitas alat 3. Menulis Laporan Kemajuan
4	Izharul Haq /200405076	Teknik Kimia	Teknik	10	1. Mencari sumber literatur pendukung pembuatan prototipe 2. Membuat prototipe cyclone separator modifikasi 3. Menulis Laporan Akhir

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Fiki Agustianda
Nomor Induk Mahasiswa	:	200405015
Program Studi	:	S1- Teknik Kimia
Nama Dosen Pendamping	:	Muhammad Thoriq Al Fath, S.T., M.T
Perguruan Tinggi	:	Universitas Sumatera Utara

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Modifikasi Cyclone Separator Berbasis IoT Arduino Mikokontroler dengan Karbon Aktif Limbah Kulit Buah Kakao sebagai Alat Pengendali Pencemaran Udara yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Medan, 14-2-2023 Yang menyatakan,

Fiki Agustianda NIM. 200405015

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

Rancangan 2D Cyclone Separator Modifikasi

Rancangan 3D Cyclone Separator Modifikasi