Теория и реализация языков программирования.

Задание 3: Вычислительные возможности конечных автоматов

Сергей Володин, 272 гр.

задано 2013.09.18

Упражнение 1

Пусть $\sim \subset X \times X$. $C(x) = \{z \in X | x \sim z\}$, $C(y) = \{w \in X | y \sim z\}$. Пусть $\exists z \in C(x) \cap C(y)$. Тогда $x \sim z, y \sim z$, и $w \in C(x) \overset{\text{def}}{\Leftrightarrow} x \sim w \overset{z \sim x}{\overset{\text{транэ.}}{\Leftrightarrow}} z \sim w \overset{\text{def}}{\Leftrightarrow} y \sim w \overset{\text{def}}{\Leftrightarrow} w \in C(y)$, то есть, C(x) = C(y).

В противном случае $](\exists z \in C(x) \cap C(y)) \Leftrightarrow C(x) \cap C(y) = \emptyset$. Получаем, что возможны два случая:

- 1. $C(x) \cap C(y) = \varnothing$ (не пересекаются)
- 2. C(x) = C(y) (совпадают)

Упражнение 2

Пусть $\varphi \colon \Sigma^* \supseteq X \longrightarrow \Delta^*$. $\varphi(\sigma_i) \stackrel{\text{def}}{=} \delta_i \in \Delta^*$, $|\sigma_i| = 1$.

1. $(e\partial uncmbehocmb)$ Предположим, что существует такое φ — морфизм. Тогда $\forall w=w_1...w_n\in X, |w_i|=1\hookrightarrow \varphi(w)\equiv \varphi(w_1...w_n)=\varphi(w_1)\cdot \varphi(w_2...w_n)=...=\varphi(w_1)\cdot ...\cdot \varphi(w_n)\in \Delta^*$. Для $w=\varepsilon$ получаем $\varphi(\varepsilon)=\varepsilon$, так как φ — морфизм: $w_0\stackrel{\mathrm{def}}{=}\varphi(\varepsilon)=\varepsilon$. $\varphi(\varepsilon)\equiv \varphi(\varepsilon)=\varphi(\varepsilon)\varphi(\varepsilon)=w_0w_0\Rightarrow w_0=w_0w_0\Rightarrow |w_0|=|w_0||w_0|\Rightarrow w_0=\varphi(\varepsilon)=\varepsilon$.

Таким образом, получаем, что такой морфизм единственный (если существует).

- 2. (существование) Докажем, что определенное выше отображение φ морфизм: пусть $x, y \in X$. Рассмотрим случаи:
 - a. $|x| = 0, |y| = 0 \Rightarrow \varphi(xy) = \varphi(\varepsilon\varepsilon) = \varphi(\varepsilon) = \varepsilon = \varepsilon\varepsilon = \varphi(\varepsilon)\varphi(\varepsilon)$
 - b. $|x| = 0, |y| > 0 \Rightarrow \varphi(xy) = \varphi(y) = \varepsilon \varphi(y) = \varphi(x)\varphi(y)$
 - c. $|x| > 0, |y| = 0 \Rightarrow \varphi(xy) = \varphi(x) = \varphi(x)\varepsilon = \varphi(x)\varphi(y)$
 - $\mathrm{d.} \ |x|>0, |y|>0 \Rightarrow \varphi(xy)=\varphi(x_1...x_my_1...y_n)=\varphi(x_1)...\varphi(x_m)\varphi(y_1)...\varphi(y_n)=\varphi(x)\varphi(y)...\varphi(y_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=\varphi(x_1)...\varphi(x_n)=$

Таким образом, если заданы значения $\varphi(\sigma_i), \sigma_i \in X \subset \Sigma^*$, то морфизм $\varphi \colon \Sigma^* \supseteq X \longrightarrow \Delta^*$ с этими значениями существует и единственнен.

Задача 1

Определим $R_3: \mathsf{REG} \ni X \longrightarrow \mathbb{N} \cup \{0\}$ — количество применений правила 3 из определения регулярности X. В случае X = AB или $X = A|B, A, B \in \mathsf{REG}\ R_3(X) \stackrel{\mathrm{def}}{=} 1 + R_3(A) + R_3(B)$. В случае $X = A^*, A \in \mathsf{REG}$, определим $R_3(X) \stackrel{\mathrm{def}}{=} 1 + R_3(A)$. В случае $X = \emptyset$ или $X = \{\sigma\}$ определим $R_3(X) \stackrel{\mathrm{def}}{=} 0$. Функция $R_3(X)$ определена корректно, так как определение регулярного языка корректное.

Пусть $\varphi \colon \Sigma^* \supset X \longrightarrow Y \subset \Delta^*$ — морфизм, $X \in \mathsf{REG}$. Докажем, что $Y \equiv \varphi(X) \in \mathsf{REG}$ индукцией по $R_3(X)$:

 $P(i) = (\forall X \in \mathsf{REG} \colon R_3(X) \leqslant i \ \forall \varphi - \mathsf{морфизм} \hookrightarrow \varphi(X) \in \mathsf{REG}).$

1. Докажем P(0): пусть $X \in \mathsf{REG} \colon R_3(X) = 0$. Тогда X получен без применения третьего правила. Значит, $\forall \varphi$ — морфизм либо $X = \varnothing \Rightarrow \varphi(X) = \varnothing$, либо $X = \{\sigma\} \Rightarrow \varphi(X) = \{\varphi(\sigma)\} = \{w\}, w \in \Delta^*$.

Докажем, что $\Delta^* \supset \{w\} \in \mathsf{REG}$. $\{w\} \equiv \{\sigma_1...\sigma_n\} \equiv \{\sigma_1\} \cdot ... \cdot \{\sigma_n\}$. Поскольку $\{\sigma_i\} \in \mathsf{REG}$, и регулярные языки замкнуты относительно конкатенации (по определению), получаем требуемое.

Итак, $\varphi(X) \in \mathsf{REG} \blacksquare$

- 2. Пусть P(n). Докажем P(n+1). Пусть $\mathsf{REG} \ni X \colon R_3(X) \leqslant n+1$. Если $R_3(X) < n+1$, $P(n) \Rightarrow X \in \mathsf{REG}$. $\sphericalangle X \colon R_3(X) = n+1$. Возможны случаи:
 - а. $X=WZ,\,W,Z\in\mathsf{REG}.$ Тогда $\varphi(X)\equiv\varphi(WZ)=\{\varphi(wz)|w\in W,z\in Z\}=\{\varphi(w)\varphi(z)|w\in W,z\in Z\}=\{\varphi(w)|w\in W\}\cdot\{\varphi(z)|z\in Z\}=\varphi(W)\varphi(Z).$ $R_3(X)=1+R_3(W)+R_3(Z)=n+1\Rightarrow R_3(W),R_3(Z)\leqslant n\stackrel{P(n)}{\Rightarrow}\varphi(W),\varphi(Z)\in\mathsf{REG}\Rightarrow\varphi(X)=\varphi(W)\varphi(Z)\in\mathsf{REG}.$

- b. $X = W|Z, W, Z \in \mathsf{REG}$. Тогда $\varphi(X) \equiv \varphi(W|Z) \equiv \varphi(W)|\varphi(Z)$. Аналогично $R_3(W), R_3(Z) \leqslant n \overset{P(n)}{\Rightarrow} \varphi(W), \varphi(Z) \in \mathsf{REG} \Rightarrow \varphi(X) = \varphi(W)|\varphi(Z) \in \mathsf{REG}$.
- с. $X = W^*, W \in \mathsf{REG}$. Тогда $R_3(X) = 1 + R_3(W) = n + 1 \Rightarrow R_3(W) = n \overset{P(n)}{\Rightarrow} \varphi(W) \in \mathsf{REG} \Rightarrow \varphi(W^*) = \varphi(\varepsilon|W|WW|...) = \varphi(\varepsilon)|\varphi(W)|\varphi(WW)... \overset{\varphi(\varepsilon)=\varepsilon}{=} \varepsilon|\varphi(W)|\varphi(WW)... = \varphi(W)^* \in \mathsf{REG}.$

Получаем $\forall i\geqslant 0\hookrightarrow P(i)\Rightarrow \forall X\in\mathsf{REG}\,\forall \varphi-\mathsf{мор}$ физм $\hookrightarrow \varphi(X)\in\mathsf{REG}\,\blacksquare$

Задача 2

- 1. Нет. Пусть $\Sigma = \{0,1\}$, $L = \Sigma^*$. Определим $\varphi \colon L \longrightarrow L \colon \forall w \in L \hookrightarrow \varphi(w) = \varepsilon$. В этом случае φ морфизм, так как $\forall x \in L \, \forall y \in L \hookrightarrow \varphi(xy) = \varepsilon = \varepsilon \varepsilon = \varphi(x)\varphi(y)$. Тогда $\forall \varnothing \neq X \subset L \hookrightarrow \varphi(X) = \{\varepsilon\}$, так как $\forall w \in L \hookrightarrow \varphi(w) = \varepsilon$. Поскольку $\varphi(\varepsilon) = \varepsilon \in L$, $\varphi^{-1}(\varepsilon) \ni \varepsilon \Rightarrow \varphi^{-1}(L) \supset \{\varepsilon\} \neq \varnothing \Rightarrow \varphi^{-1}(L) \neq \varnothing \Rightarrow \varphi(\varphi^{-1}(L)) = \{\varepsilon\} \neq L$. Таким образом, $\exists L \subset \Sigma^* \, \exists \varphi$ морфизм: $\varphi(\varphi^{-1}(L)) \neq L$.
- 2. Нет. Пусть $\Sigma=\{a,b\},\ L=\{b\}^*,\ \varphi(a)\stackrel{\mathrm{def}}{=}\varphi(b)\stackrel{\mathrm{def}}{=}a$. Доопределим φ так, чтобы оно было морфизмом (это возможно, см. упражнение 2). Тогда $\varphi(L)\equiv\varphi(\{b^*\})\ni\varphi(b)=a\Rightarrow\varphi^{-1}(\varphi(L))\supset\varphi^{-1}(a)\ni a\notin L\Rightarrow\varphi^{-1}(\varphi(L))\nsubseteq L\Rightarrow\varphi^{-1}(\varphi(L))\neq L$. Таким образом, $\exists L\subseteq\Sigma^*\exists\varphi$ морфизм: $\varphi^{-1}(\varphi(L))\neq L$.
- 3. Нет. Пусть $\Sigma = \{a,b\}, \ L = \{ab\}, \ \text{морфизм} \ \varphi \colon \Sigma^* \longrightarrow \Sigma^* \text{из предыдущего пункта. Тогда} \ \varphi(L) = \{\varphi(ab)\} = \{\varphi(a)\varphi(b)\} = \{aa\}, \ \varphi^{-1}(L) = \{x \in \Sigma^* | \varphi(x) \in \{ab\}\} = \{x \in \Sigma^* | \varphi(x) = ab\} = \varnothing, \ \text{так как} \ \varphi(\Sigma^*) = \varphi((a|b)^*) \stackrel{1.2.c}{=} (\varphi(a|b))^* = \{\varphi(a), \varphi(b)\}^* = \{a\}^* = a^* \not\ni ab. \ \text{Тогда} \ \varphi(\varphi^{-1}(L)) = \varphi(\varnothing) = \varnothing \not\ni aa \in \varphi^{-1}(aa) = \varphi^{-1}(\varphi(L)).$ Таким образом, $\exists L \subseteq \Sigma^* \exists \varphi \text{морфизм} \colon \varphi(\varphi^{-1}(L)) \neq \varphi^{-1}(\varphi(L)).$

Упражнение

Докажем, что не всякий обратный морфизм — морфизм, то есть $\exists \Sigma \exists \Delta \exists \varphi \colon \Sigma^* \longrightarrow \Delta^* \colon \exists w_1 \in \Delta^* \exists w_2 \in \Delta^* \colon \varphi^{-1}(w_1w_2) \neq \varphi^{-1}(w_1) \cdot \varphi^{-1}(w_2)$ (здесь немного модифицировано определение морфизма для φ^{-1} , так как множество значений φ^{-1} – это 2^{Σ^*} , а не Σ^*).

Пусть $\Sigma = \Delta = \{a,b\}$, $\varphi(a) \stackrel{\text{def}}{=} \varphi(b) \stackrel{\text{def}}{=} ab$. Доопределим φ так, чтобы оно было морфизмом (это возможно, см. упражнение 2). Тогда $\varphi^{-1}(a) = \varphi^{-1}(b) = \varnothing$, так как $\forall \varepsilon \neq w \in \Sigma^* \hookrightarrow |\varphi(w)| \geqslant 2$ и $|\varphi(\varepsilon)| = |\varepsilon| = 0$, то есть, значение $|\varphi(w)| = 1$ не достигается. Отсюда $\varphi^{-1}(a) \cdot \varphi^{-1}(b) = \varnothing$, но $\varphi^{-1}(ab) \supset \{a,b\} \Rightarrow \varphi^{-1}(ab) \neq \varnothing$. Поэтому $\varphi^{-1}(ab) \neq \varphi^{-1}(a) \varphi^{-1}(b) \blacksquare$

Задача 3

(Хопкрофт. 4.2.4. Обратный гомоморфизм)

 $\Delta^* \supset L \in \mathsf{REG} \Rightarrow \exists \mathcal{A} = (Q, \Delta, q_0, \gamma, F) - \mathsf{ДKA}$: $L(\mathcal{A}) = L$. Построим НКА $\mathcal{A}' = (Q', \Sigma, q_0, \gamma', F)$ для $L^{-1} \stackrel{\mathsf{def}}{=} \varphi^{-1}(L)$. Определим $\gamma'(q, \sigma) = \gamma(q, \varphi(\sigma))$. Докажем, что тогда $\gamma'(q, w) = \gamma(q, \varphi(w))$:

 $P(i) = \{ \forall w \in \Sigma^* \colon |w| \leqslant i \hookrightarrow \gamma'(q, w) = \gamma(q, \varphi(w)) \}.$

- 1. Докажем для $i=0 \Rightarrow w=\varepsilon$. $\gamma'(q,\varepsilon)\stackrel{\text{не определено}}{=} \varnothing \stackrel{\text{дка}}{=} \gamma(q,\varepsilon)=\gamma(q,\varphi(\varepsilon))$
- 2. Пусть $P(i) \Rightarrow \forall w \in \Sigma^* \colon |w| \leqslant i \hookrightarrow \gamma'(q,w) = \gamma(q,\varphi(w))$. Пусть $\sigma \in \Sigma, |w| = i$. Тогда $\gamma'(q,w\sigma) = \gamma'(\gamma'(q,w),\sigma) = \gamma(\gamma'(q,w),\varphi(\sigma)) \stackrel{\mathrm{P}(i)}{=} \gamma(\gamma(q,\varphi(w)),\varphi(\sigma)) = \gamma(q,\varphi(w)\varphi(\sigma)) = \gamma(q,\varphi(w)) \Rightarrow P(i+1)$.

Тогда $x \in L^{-1} \Leftrightarrow \varphi(x) \in L \Leftrightarrow \varphi(x) \in L(\mathcal{A}) \Leftrightarrow \gamma(q_0, \varphi(x)) = q \in F \Leftrightarrow \gamma'(q_0, x) = q \in F \Leftrightarrow x \in L(\mathcal{A}') \Rightarrow L^{-1} \equiv \varphi^{-1}(L) \in \mathsf{REG} \blacksquare$

Задача 4

Пусть языки $\Sigma^* \supset X, Y \in \mathsf{REG}$. Докажем, что

- 1. $X \cup Y \in \mathsf{REG}$: из определения регулярности $\forall X,Y \in \mathsf{REG} \hookrightarrow X \cup Y \in \mathsf{REG} \blacksquare$
- 2. $\overline{X} \stackrel{\text{def}}{=} \Sigma^* \backslash X \in \mathsf{REG} : X \in \mathsf{REG} \Rightarrow \exists$ полный ДКА $\mathcal{A} \colon L(\mathcal{A}) = X$. $F' \stackrel{\text{def}}{=} Q \backslash F$, \mathcal{A}' автомат \mathcal{A} с множеством принимающих состояний F'. Докажем, что $L(\mathcal{A}') = \Sigma^* \backslash X \colon w \in \Sigma^*$, $(q_0, w) \vdash^* (q_w, \varepsilon)$ (здесь используется полнота). $w \in X \Leftrightarrow w \in L(\mathcal{A}) \Leftrightarrow q_w \in F \Leftrightarrow \neg (q_w \in Q \backslash F) \Leftrightarrow \neg (q_w \in F') \Leftrightarrow \neg (w \in L(\mathcal{A}'))$. Но $w \in X \Leftrightarrow \neg (w \in \Sigma^* \backslash X)$, откуда $\neg (w \in \Sigma^* \backslash X) \Leftrightarrow \neg (w \in L(\mathcal{A}'))$ и Получаем ДКА $\mathcal{A}' \colon L(\mathcal{A}') = \Sigma^* \backslash X \xrightarrow{\text{па}}_{\text{семинаре}} \Sigma^* \backslash X \in \mathsf{REG} \blacksquare$
- $3. \ \ X \cap Y \in \mathsf{REG} \colon X \cap Y = \overline{\overline{X} \cup \overline{Y}}. \ \ X, Y \in \mathsf{REG} \overset{(2)}{\Rightarrow} \overline{X}, \overline{Y} \in \mathsf{REG} \overset{(1)}{\Rightarrow} \overline{X} \cup \overline{Y} \in \mathsf{REG} \overset{(2)}{\Rightarrow} \overline{\overline{X} \cup \overline{Y}} \in \mathsf{REG} \blacksquare$

$$w \in X \cap Y \Leftrightarrow \begin{cases} w \in X \\ w \in Y \end{cases} \Leftrightarrow \begin{cases} \neg(w \in \overline{X}) \\ \neg(w \in \overline{Y}) \end{cases} \Leftrightarrow \neg\left[\begin{array}{c} w \in \overline{X} \\ w \in \overline{Y} \end{array}\right. \Leftrightarrow \neg(w \in \overline{X} \cup \overline{Y}) \Leftrightarrow w \in \overline{\overline{X} \cup \overline{Y}} \text{ (подразумевается } w \in \Sigma^*) \blacksquare$$

 $4. \ \ X\backslash Y \in \mathsf{REG} \colon X\backslash Y = X\cap \overline{Y}. \ Y \in \mathsf{REG} \overset{(2)}{\Rightarrow} \overline{Y} \in \mathsf{REG} \overset{(3)}{\Rightarrow} X\cap \overline{Y} \in \mathsf{REG} \blacksquare$

$$w \in X \cap \overline{Y} \Leftrightarrow \begin{cases} w \in X \\ w \in \overline{Y} \end{cases} \Leftrightarrow \begin{cases} w \in X \\ \neg (w \in Y) \end{cases} \Leftrightarrow w \in X \backslash Y \text{ (подразумевается } w \in \Sigma^*) \blacksquare$$

Задача 5

 $\Sigma \stackrel{\text{def}}{=} \{a\}. \ \text{Предположим, что } \Sigma^* \subset L = \{a^{2^n} | n \geqslant 0\} \in \mathsf{REG} \stackrel{\text{по лемме}}{\Rightarrow} \exists p = p_0 \geqslant 1 \colon \forall w \in L \hookrightarrow (w = xyz, |y| \geqslant 1, |xy| \leqslant p, (\forall i \geqslant 0 \hookrightarrow xy^iz \in L)). \ \Phi$ иксируем $n = n_0 = p, w_0 = a^{2^p} \in L$. Получаем $w_0 = x_0y_0z_0, |y0| \geqslant 1, |x_0y_0| \leqslant p$. Поскольку $L \subset a^*, y \in a^*,$ откуда $y = a^j, j \geqslant 1$. Аналогично $x = a^i, z = a^k \Rightarrow w_0 = a^{2^p} = xyz = a^{i+j+k} \Rightarrow i+j+k=2^p$. По лемме должно выполняться $xy^2z = a^{i+2j+k} \in L \Rightarrow a^{i+2j+k} = a^{2^q},$ откуда $i+2j+k=2^q \Rightarrow j=2^q-2^p \geqslant 2^{p+1}-2^p=2^p(2-1)=2^p$. Но $|x_0y_0| \leqslant p \Rightarrow |y_0| \leqslant p$. Получаем $p \geqslant |y_0| = j \geqslant 2^p$ — противоречие, т.к. $\forall p \geqslant 1 \hookrightarrow p < 2^p$.

Значит, предположение неверно, и $L \not\in \mathsf{REG} \blacksquare$

Задача 6

1. Да. $L_1 = \{a^{2013n+5} | n \in \mathbb{N} \cup \{0\}\} \cap \{a^{509k+29} | k \in \mathbb{N}, k \geqslant 401\}$. $w \in L_1 \Leftrightarrow \exists n_w \in \mathbb{N} \cup \{0\}, 401 \leqslant k_w \in \mathbb{N} \colon w = a^{2013n_w+5} = a^{509k_w+29}$.

Решим в целых числах $2013n+5=509k+29\Leftrightarrow 2013n-509k=24\Leftrightarrow (*)$ — линейное диофантово уравнение, $24:1=gcd(2013,509)\Rightarrow$ решение существует, и $(*)\Leftrightarrow \left|\left|\begin{array}{c}n\\k\end{array}\right|\right|=\left|\left|\begin{array}{c}x_0\\y_0\end{array}\right|\right|+t\left|\left|\begin{array}{c}x\\y\end{array}\right|\right|; x_0,y_0,\,x,y,\,t\in\mathbb{Z},\,x_0,y_0,\,x,y$ — фиксированные, $t\geqslant t_0$ — параметр. Тогда $2013n+5=509k+29=2013(x_0+xt)+5=pt+q,\,p,q\in\mathbb{Z}$ — фиксированные, $\mathbb{Z}\ni t\geqslant 0$ — параметр.

параметр. Получаем $L_1 = \{a^{pt+q} | \mathbb{Z} \ni t \geqslant 0\} = \{a^{pt} | \mathbb{Z} \ni t \geqslant 0\} \cdot \{a^q\} = \{(a^p)^t | \mathbb{Z} \ni t \geqslant 0\} \cdot \{a^q\} = (a^p)^* a^q \equiv (\underbrace{a...a}_p)^* \underbrace{a...a}_q -$ задается

регулярным выражением

2. Нет. Предположим, что $L_2 = \{a^{200n^2+1} | \mathbb{Z} \ni n \geqslant 1000\} \in \mathsf{REG} \overset{\text{по лемме}}{\underset{\text{о накачке}}{\Longrightarrow}} \exists p \geqslant 1 \colon \forall w \in L_2 \hookrightarrow (w = xyz, |y| \geqslant 1, |xy| \leqslant p, (\forall i \geqslant 0 \hookrightarrow xy^iz \in L_2))$. Выберем $\mathbb{Z} \ni n = \max\{p, 1000\} \geqslant 1000 \Rightarrow w \overset{\text{def}}{=} a^{200n^2+1} \in L_2$. Получаем $\exists x, y, z \colon |y| \geqslant 1, |xy| \leqslant p \colon w = xyz,$ откуда $x = a^i, y = a^j, z = a^k, i + j + k = 200n^2 + 1$. Также получаем $xy^2z \in L_2$. Но $xy^2z = a^{i+2j+k} = a^{200m^2+1} \Rightarrow i + 2j + k = 200m^2 + 1 \geqslant 200(n+1)^2 + 1 \Rightarrow j \geqslant [200(n+1)^2 + 1] - [200n^2 + 1] = 200 + 400n \geqslant 200 + 400p$. С другой стороны, $|xy| \leqslant p \Rightarrow j = |y| \leqslant p \Rightarrow p \geqslant j \geqslant 200 + 400p \Rightarrow 399p + 200 \leqslant 0$ при $p \geqslant 1$ — противоречие.

Значит, предположение неверно, и $L_2 \notin \mathsf{REG} \blacksquare$

3,4. Можно не читать, доказательство не закончено Да. $L_3 = \{ \text{itoa}_2(x) | 0 \leqslant x \mod 3 = 2 \}$, где $\text{itoa}_2(x) - \text{запись числа}$ x в двоичной системе счисления, начиная со старших разрядов. Построим ДКА \mathcal{A} : $L(\mathcal{A}) = L_3$, чем докажем $L_3 \in \mathsf{REG}$. Реализуем алгоритм деления в столбик на конечном автомате \mathcal{A} .

Формализуем деление на 3 в столбик с остатком в двоичной системе счисления. Пусть $|itoa_2(x)| = n$. Функции $p, r : \overline{0, n} \longrightarrow \mathbb{N} \cup \{0\}$. $P(i) \stackrel{\text{def}}{=} \{x = 3p(i) + r(i), r(i) < 3 \cdot 2^{n-i}\}$. Определим эти функции индуктивно и докажем $\forall i \in \overline{0, n} \hookrightarrow P(i)$.

- (a) Определение: $p(0) \stackrel{\text{def}}{=} 0$, $r(0) \stackrel{\text{def}}{=} x$. Доказательство P(0): $x = 3 \cdot 0 + x$, $r(0) = x = \sum_{k=0}^{n-1} 2^k x_{n-k} < 2^n < 3 \cdot 2^n$.
- (b) Пусть p(k), r(k) определены для $k \in \overline{0,i}, \forall k \in \overline{0,i} \hookrightarrow P(k)$. Определим p(i+1), r(i+1) и докажем P(i+1)
 - 1. Если $r(i) < 3 \cdot 2^{n-i-1}$, то $p(i+1) \stackrel{\text{def}}{=} p(i)$, $r(i+1) \stackrel{\text{def}}{=} r(i)$. $x \stackrel{P(i)}{=} 3p(i) + r(i) \equiv 3p(i+1) + r(i+1)$, $r(i+1) \equiv r(i) \stackrel{\text{случай}}{<} 3 \cdot 2^{n-i-1} \Rightarrow P(i+1) \blacksquare$
 - 2. Иначе, если $r(i)\geqslant 3\cdot 2^{n-i-1},\ p(i+1)\stackrel{\text{def}}{=} p(i)+2^{n-i-1},\ r(i+1)\stackrel{\text{def}}{=} r(i)-3\cdot 2^{n-i-1}\stackrel{\text{случай}}{\geqslant} 0\Rightarrow 3p(i+1)+r(i+1)=3p(i)+3\cdot 2^{n-i+1}+r(i)-3\cdot 2^{n-i+1}=3p(i)+r(i)=x.\ r(i)\stackrel{P(i)}{<} 3\cdot 2^{n-i}\Leftrightarrow r(i)<3\cdot 2^{n-i-1}+3\cdot 2^{n-i-1}\Leftrightarrow r(i)-3\cdot 2^{n-i-1}<3\cdot 2^{n-i-1}\Leftrightarrow r(i+1)<3\cdot 2^{n-i-1}.$ Получаем P(i+1)

Получаем $P(n) \Rightarrow x = 3p(n) + r(n), r(n) < 3 \cdot 2^{n-n} = 3 \Rightarrow p(n)$ — частное, r(n) — остаток.

Дальше была идея формально доказать, что строку можно разбить на куски длиной не более, чем 3 символа $\{0,11,101,100\}$ («пропусков» вида (b.1) не больше трех подряд не в конце и не в начале слова) и что после прочтения каждого куска можно только хранить одно из трех чисел $\{0,1,2\}$ в состоянии автомата, а в конце это число и будет остатком...