Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 12

Abgabetermin: Freitag, 12.02.2021, 9:15 Uhr

Aufgabe 1. (Galoisbahnen) (6 Punkte, je 2 Punkte) Es sei L/K eine endliche Galoiserweiterung mit Galoisgruppe $G = \operatorname{Gal}(L/K)$. Die Gruppe G operiert auf L durch $G \times L \to L$, $(\sigma, \beta) \mapsto \sigma(\beta)$. Außerdem sei $\alpha \in L$ und $A := G\alpha = \{\sigma(\alpha) \mid \sigma \in G\}$ die Bahn von α . Zeigen Sie:

- (a) Die Isotropiegruppe G_{α} ist gleich $\operatorname{Gal}(L/K(\alpha)) \subset G$.
- (b) Das Polynom $f = \prod_{\alpha' \in A} (X \alpha')$ liegt in K[X] und ist separabel.
- (c) f ist das Minimalpolynom von α über K.

Aufgabe 2. (Konstruktion des regelmäßigen Fünfecks) (6 Punkte) Es sei $\zeta_5 := e^{2\pi i/5} \in \mathbb{C}$ und $\alpha := \zeta_5 + \zeta_5^{-1}$. Zeigen Sie:

- (a) (4 Punkte) Der einzige echte Zwischenkörper von $\mathbb{Q}(\zeta_5)$ ist $\mathbb{Q}(\alpha)$ und es gilt $\alpha^2 + \alpha 1 = 0$. Folgern Sie unter Benutzung von Re $\zeta_5 > 0$, dass $\alpha = \frac{\sqrt{5}-1}{2}$.
- (b) (2 Punkte) Die Punkte ζ_5^n , $n=0,\ldots,4$, bilden ein regelmäßiges Fünfeck der Seitenlänge $\sqrt{\frac{5-\sqrt{5}}{2}}$.

Bemerkung. Hieraus lässt sich eine Konstruktion des regelmäßigen Fünfecks mit Zirkel und Lineal ableiten.

Aufgabe 3. (Nicht auflösbare Gleichung) (6 Punkte, je 2 Punkte) Zeigen Sie:

- (a) Es sei $H \subset \mathfrak{S}_5$ eine Untergruppe, die eine Transposition τ und einen Fünferzykel σ enthält. Dann gilt $H = \mathfrak{S}_5$. Hinweis. OBdA sei $\tau = (12)$. Dann gibt es ein $k \in \{1, 2, 3, 4\}$ mit $\sigma^k(1) = 2$. Durch eventuelles Umbenennen von 3, 4, 5 können wir annehmen, dass $\sigma = (12345)$. Mit Hilfe von Blatt 11, Aufgabe 4(a) enthält H dann auch (23), (34) und (45), und (wieder mit Blatt 11, Aufgabe 4(a)) enthält H mit (12), (23), (34) und (45) schon jede Transposition und damit ganz \mathfrak{S}_5 .
- (b) Es sei $f \in \mathbb{Q}[X]$ ein irreduzibles Polynom fünften Grades, das genau drei reelle Nullstellen hat. Dann ist die Galoisgruppe der Gleichung f(x) = 0 gleich \mathfrak{S}_5 .

 Hinweis. Benutzen Sie die Wirkung der komplexen Konjugation auf der Menge der Nullstellen von f sowie die Sylowsätze, um Teil (a) anzuwenden.
- (c) Die Gleichung $2x^5-10x+5=0$ ist nicht durch Radikale auflösbar. (Hinweis: Zwischenwertsatz.)

Aufgabe 4 (Auflösbare Gruppen) (6 Punkte, je 2 Punkte) Zeigen Sie:

- (a) Jede Gruppe von Ordnung 42 ist auflösbar.
- (b) Jede Gruppe von Ordnung 30 ist auflösbar.
- (c) Sind G und H zwei auflösbare Gruppen, so ist auch $G \times H$ auflösbar.

(Hinweis zu (a) und (b): Benutzen Sie die Sylowsätze sowie Satz 5.48.)