Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Лабораторная работа №4 по основам профессиональной деятельности

Вариант: 1984

Группа: Р3114

Студент: Лагус

Максим Сергеевич

Преподаватель: Перминов Илья Валентинович

г. Санкт-Петербург

Февраль, 2021

Задание:

Лабораторная работа №4

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

Введите ном	ер вариан	та 1984				
3A0: + 0200 3A1: EE1A 3A2: AE16 3A3: 0700 3A4: 0C00 3A5: D71F 3A6: 0800 3A7: 0740 3A8: 4E13 3A9: EE12 3AA: AE10 3AB: 0C00 3AC: D71F 3AD: 0800	3AE: 3AF: 3B0: 3B1: 3B2: 3B3: 3B4: 3B5: 3B6: 3B7: 3B8: 3B9: 3BA:	4E0D EE0C AE09 0740 0C00 D71F 0800 0740 6E05 EE04 0100 ZZZZ YYYY	3BC: 	0731 AC01 F001 F308 7E0A F806 F005 0500 4C01 4E05 CE01 AE02	72B: 72C: 72D: 72E: 	EC01 0A00 F8CA 00FD

Выполнение работы:

Расшифровка текста исходной программы

Адрес	Код	Мнемоника	Комментарии
3A0	0200	CLA	Очистка регистра
3A1	EE1A	ST IP+1A	Обнуляем переменную RES
3A2	AE16	LD IP+16	Z> AC, Загружаем в АС переменную Z
3A3	0700	INC	Z+1> AC
3A4	0C00	PUSH	Кладём на вершину стека Z+1
3A5	D71F	CALL 71F	Кладём на вершину стека адрес возврата, и переходим по адресу 71F
3A6	0800	POP	Кладём в аккумулятор результат работы подпрограммы
3A7	0740	DEC	AC-1> AC

3A8	4E13	ADD IP+13	AC+RES> AC
3A9	EE12	ST IP+12	AC> RES
ЗАА	AE10	LD IP+10	X> AC,
			Загружаем в АС переменную Х
3AB	0C00	PUSH	Кладём на вершину стека переменную Х
3AC	D71F	CALL 71F	Кладём на вершину стека адрес возврата, и переходим по адресу 71F
3AD	0800	POP	Кладём в аккумулятор результат работы подпрограммы
3AE	4E0D	ADD IP+D	AC+RES> AC
3AF	EE0C	ST IP+C	AC> RES
3B0	AE09	LD IP+9	Y> AC,
			Загружаем в АС переменную Ү
3B1	0740	DEC	Y-1> AC
3B2	0C00	PUSH	Кладём на вершину стека Ү-1
3B3	D71F	CALL 71F	Кладём на вершину стека адрес возврата, и переходим по адресу 71F
3B4	0800	POP	Кладём в аккумулятор результат работы подпрограммы
3B5	0740	DEC	AC-1> AC
3B6	6E05	SUB IP+5	AC-RES> AC
3B7	EE04	ST IP+4	AC> RES
3B8	0100	HLT	Завершение работы программы
3B9	ZZZ	Z	Переменная

ЗВА	YYY	Y	Переменная
3BB	XXX	X	Переменная
3BC	0731	RES	Переменная, результат работы программы
71F	AC01	LD &1	Загрузка в АС первого сверху элемента стека.
720	F001	BEQ 01	Если элемент равен нулю, то пропускаем следующую операцию
721	F308	BPL 08	Если элемент положительный, переходим на 72A
722	7E0A	CMP IP+A	Сравниваем
			AC и COMPARATOR
723	F806	BLT 06	Если AC меньше чем COMPARATOR, то переходим в 72A
724	F005	BEQ 05	Если AC равно COMPARATOR, то переходим в 72A
725	0500	ASL	AC * 2> AC
726	0500	ASL	AC * 2> AC
727	4C01	ADD &1	Прибавляем к АС первый сверху элемент стека
728	4E05	ADD IP+5	Прибавляем к АС переменную ADDITIONAL
729	CE01	JUMP IP+1	Пропускаем следующую операцию
72A	AE02	LD IP+2	Загружаем в АС переменную COMPARATOR
72B	EC01	ST &1	Загружаем содержимое АС в первый сверху элемент стека
72C	0A00	RET	Возвращаемся из подпрограммы
72D	F8CA	COMPARATOR	Переменная
72E	00FD	ADDITIONAL	Переменная

Описание программы

1) Расположение программы в памяти

Переменные, поступающие на вход программы, расположены в ячейках 3B9 - 3BC

Сама программа расположена в ячейках ЗАО - ЗВ8

Вызываемая из основной программы подпрограмма расположена в ячейках 71F - 72C

Переменные для подпрограммы расположены в 72D, 72E

2) Область представления

X, Y, Z — обрабатываемые программой переменные, 16 разрядные знаковые числа

RES — результат работы программы, 16-разрядное знаковое число

COMPARATOR, ADDITIONAL - переменные, задающие работу подпрограммы, 16 разрядные знаковые числа

3) Назначение программы

let additional

Сначала определим семантику работы подпрограммы, записав алгоритм её работы на псевдокоде

```
let comparator  \begin{aligned} &\text{func } f(x) \colon \\ &\text{if } (x \leq 0 \&\& \ x > \text{comparator}) \colon \\ &x = 5x + \text{additional} \\ &\text{else:} \\ &x = \text{comparator} \end{aligned}
```

return x

Теперь мы можем записать результат работы всей программы

let res = 0
func main(x,y,z):
res +=
$$f(z + 1) - 1$$

res += $f(x)$
res = $f(y - 1) - 1$ - res
return res

4) Область допустимых значений

Рассмотрим два варианта

■ $COMPARATOR \ge 0$

В таком случае, результатом функции f() всегда будет COMPARATOR (следует из логики работы подпрограммы).

Тогда, $X, Y, Z \in [-2^{15} + 1; 2^{15}]$, так как они не учавствуют не в каких арифметических операциях, кроме ± 1 , и, как следствие, не могут вызвать переполнения при таком ОДЗ.

После второго вызова подпрограммы, в RES хранится f(z - 1) + f(x), что в нашем случае равно 2 * COMPARATOR. Чтобы не случилось переполнения, мы должны требовать: COMPARATOR $\in [0; 2^{14}]$.

Так как ADDITIONAL вообще не учавствует в исполнении программы при данных условиях, он может принимать любые значения.

ADDITIONAL
$$\in [-2^{15}; 2^{15} - 1].$$

В переменной RES, после исполнения программы, будет лежать значение, равное: - COMPARATOR. Значит, RES \in [-2¹⁴; 0].

■ COMPARATOR < 0

Если X,Y,Z < COMPARATOR, то подпрограмма возвращает COMPARATOR, и ограничения на такой случай мы уже рассматривали в первом пункте. Если же обрабатываемые переменные больше чем COMPARATOR и меньше нуля, то мы получаем:

COMPARATOR
$$< X,Y,Z \le 0$$

Затем подпрограмма вычисляет значение 5X + ADDITIONAL.

Чтобы не допустить переполнения, мы должны наложить ограничения на ADDITIONAL и COMPARATOR, так как именно эти две переменные задают возвращаемое из подпрограммы значение.

Чтобы 2 * (5X + ADDITIONAL) не вызвало переполнения из отрицательного числа в положительное:

COMPARATOR
$$\in$$
 [- 2⁹; 0].

Чтобы 2 * (5X + ADDITIONAL) не вызвало переполнения в положительную сторону:

ADDITIONAL
$$\in$$
 [0; 2^{14} - 1].

Заметим, что на сами переменные X,Y,Z не накладывается дополнительных ограничений, так как все возможные переполнения с участием этих переменных уже учтены в ограничениях на COMPARATOR, ADDITIONAL:

$$X, Y, Z \in [-2^{15}; 2^{15} - 1].$$

Трассировка программы