	Page 1	
Name:		IIT Kanpur CS771A (IML) End-sem Exam
Roll No	Dept.:	Date: November 22, 2023
Instruc	etions:	Total: 100 marks
1. 2. 3. 4. 5.	Total duration: 3 hours . Please write your name, roll number, depending This booklet has 10 pages (8 pages + 2 pages for rough work). No pages designated for rough work. Additional rough sheets may be Write/mark your answers clearly in the provided space. Please kee Avoid showing very detailed derivations. You may do those on rough the exam). If you want to make any assumptions, please see the space of the exam.	part of your answers should be on provided if needed. p your answers precise and concise. ght sheet and only show key steps. uestion (no clarifications during
Section	1 (9 Descriptive Answer Questions: Total 100 marks).	
a c tra an equ	nsider a classification problem with K classes. Assume that for each class-attribute vector $\mathbf{a}_c \in \mathbb{R}^M$. We are giving training data $\{\mathbf{x}_n, y_n\}$ ining examples are only from the first S classes and the remaining training examples. The test input \mathbf{x}_* can be from any of the K classes) how you would learn a learning with prototypes (LwP) classes and use anything other than simple vector operations like additional vector operations.	$\{x_n\}_{n=1}^N$ with inputs $x_n \in \mathbb{R}^D$, but the $\{x_n\}_{n=1}^N$ with inputs $x_n \in \mathbb{R}^D$, but the elastic $\{x_n\}_{n=1}^N$ with inputs $\{x_n\}_{n=1}^N$ with inputs $\{x_n\}_{n=1}^N$, but the elastic $\{x_n\}_{n=1}^N$ with inputs $\{x_n\}_{n=1}^N$, but the elastic $\{x_n\}_{n=1}^N$ with inputs $\{x_n\}_{n=1}^N$ with inputs $\{x_n\}_{n=1}^N$, but the elastic $\{x_n\}_{n=1}^N$ with inputs $\{x_n\}_{n=1}^N$

	Page 2
Name:	
Roll No.:	Dept.:

IIT Kanpur CS771A (IML) End-sem Exam

Date: November 22, 2023

2. Consider the ridge regression problem:

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2 + \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} = \arg\min_{\boldsymbol{w}} \frac{1}{2} (\boldsymbol{y} - \mathbf{X} \boldsymbol{w})^{\top} (\boldsymbol{y} - \mathbf{X} \boldsymbol{w}) + \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w}$$

where **X** is the $N \times D$ feature matrix and \boldsymbol{y} is the $N \times 1$ vector of labels of the N training examples. Note that the factor of $\frac{1}{2}$ has been used in the above expression just for convenience of derivations required for this problem and does not change the solution to the problem.

Derive the Newton's method's update equations for each iteration. For this model, how many iterations would the Newton's method will take to converge? (14 marks)

Page 3 Name: Dept.: Roll No.:

IIT Kanpur CS771A (IML) End-sem Exam

23

				Date: November 22, 2023
3.	$\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N\}$, with each $\boldsymbol{x}_n\in\mathbb{R}^D$. Su "close" to known vectors μ_1^*,\ldots,μ_K^* , re	appose we ha espectively. I ow derive the	ave some a propose a sure K -means a	means μ_1, \ldots, μ_K , given N observations priori information that the K means are itable prior distribution for each mean μ_k algorithm updates for cluster assignments a regularizer. (12 marks)

IIT Kanpur CS771A (IML) End-sem Exam

Date: November 22, 2023

4. Suppose we have collected N observations $\{x_1, \ldots, x_N\}$ using a sensor. Let us assume each $x \in \mathbb{R}^D$ as generated from a Gaussian distribution $\mathcal{N}(\mu, \Sigma)$. We would like to estimate the mean and covariance of this Gaussian. However, suppose the sensor was faulty and each x_n could only have part it as observed (think of a blacked out image). Denote $x_n = [x_n^{obs}, x_n^{miss}]$ where x_n^{obs} and x_n^{miss} denote the observed and missing parts, respectively, of x_n . We only get to see x_n^{obs} . Note that different observations could have different parts as missing (e.g., different images may have different sets of pixels as missing), so the indices of the observed/missing entries of the vector x_n may be different for different n.

We can use EM to get maximum likelihood estimates of μ and Σ given this partially observed data. To do so, you will treat each \boldsymbol{x}_n^{miss} as a latent variable and estimate its conditional posterior $p(\boldsymbol{x}_n^{miss}|\boldsymbol{x}_n^{obs},\mu,\Sigma)$, given the current estimates μ and Σ of the parameters. In the M step, you will re-estimate μ and Σ . Clearly write down the following: (1) The expression for $p(\boldsymbol{x}_n^{miss}|\boldsymbol{x}_n^{obs},\mu,\Sigma)$; (2) The expected CLL for this model; (3) The M step update equations for μ and Σ . (14 marks)

	$\begin{array}{c} \text{for } p(oldsymbol{x}_n^{miss} oldsymbol{x}_n^{obs},\mu, \\ . & (14 \text{ marks}) \end{array}$	

Page 5	
--------	--

Name:	Page 5	IIT Kanpur CS771A (IML)
Roll No.:	Dept.:	End-sem Exam Date: November 22, 2023
distribut	we have data from two classes whose inputs are assumed to ions $\mathcal{N}\left(\begin{pmatrix}0\\0\end{pmatrix},\begin{bmatrix}2&0\\0&2\end{bmatrix}\right)$ and $\mathcal{N}\left(\begin{pmatrix}2\\2\end{pmatrix},\begin{bmatrix}5&0\\0&5\end{bmatrix}\right)$, respectively. So a model on this data but the model isn't performing on the test	Suppose we have learned a logistic
	re have infinite amount of training data, will logistic regression effy justify your answer. (3 marks)	model achieve zero training error?
	we also add a regularizer to the above logistic regression modieve zero training error? Briefly justify your answer. (3 marks	
	re switch to a kernel SVM (but keep the training set size as fir ning error? Briefly justify your answer. (3 marks)	nite), is it possible to achieve zero
	re switch to a deep neural network (but keep the training set size training error? Briefly justify your answer. (3 marks)	e as finite), is it possible to achieve

	Page 6
Name:	
Roll No.:	Dept.:

IIT Kanpur CS771A (IML) End-sem Exam

Date: November 22, 2023

6.	Given query, key, and value matrices \mathbf{Q} , \mathbf{K} , and \mathbf{V} , respectively (and all being of size $N \times d$), one way
	to define the $N \times d$ output of the self-attention mechanism is $ATT(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax} \left(\mathbf{Q} \mathbf{K}^{\top} / \sqrt{d}\right) \mathbf{V}$,
	where the softmax function is assumed to be applied row-wise on the matrix $\mathbf{Q}\mathbf{K}^{\top}/\sqrt{d}$.
	Note that we can also write the same as $ATT(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathbf{D}^{-1}\mathbf{A}\mathbf{V}$ where $\mathbf{A} = \exp(\mathbf{Q}\mathbf{K}^{\top}/\sqrt{d})$, and

 $\mathbf{D} = \operatorname{diag}(\mathbf{A}\mathbf{1}_N)$ and $\mathbf{1}_N$ denotes a column vector of all 1s. Denoting \mathbf{A} as $\operatorname{SM}(\mathbf{Q}, \mathbf{K})$, we can define a "softmax" kernel function $SM(\mathbf{q}_i, \mathbf{k}_j) = \exp(\mathbf{q}_i^{\top} \mathbf{k}_j / \sqrt{d})$, such that the $(i, j)^{th}$ entry of \mathbf{A} equals $SM(\mathbf{q}_i, \mathbf{k}_j)$.

- Show that the above softmax" kernel function $SM(q_i, \mathbf{k}_i)$ can be written as a scalar multiplied with well-known kernel function. You must show this with precise mathematical expressions. (6 marks)
- $\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}\mathbf{V}$ where $\tilde{\mathbf{A}} = \text{tril}(\mathbf{A})$ $\tilde{\mathbf{D}}$ en

Nam	Page 7	IIT Kanpur
Roll		CS771A (IML) End-sem Exam Date: November 22, 2023
7.	Consider modeling some data $\{(\boldsymbol{x}_n, y_n)\}_{n=1}^N$, $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \{0, 1\}$, us models, where we model each binary label y_n by first picking one obased on the value of a latent variable $z_n \sim \text{multinoulli}(\pi_1, \dots, \pi_K)$, on z_n as $y_n \sim \text{Bernoulli}[\sigma(\boldsymbol{w}_{z_n}^{\top} \boldsymbol{x}_n)]$. Now consider the marginal probation, $p(y_n = 1 \boldsymbol{x}_n)$, and show that this can be quantity can also be the network. Clearly specify what is the input layer, hidden layer(s), acconnection weights of this neural network. (5 marks)	of the K logistic regression models, and then generating y_n conditioned bility of the label $y_n = 1$, given \boldsymbol{x}_n , anought of as the output of a neural
8.	Consider the following activation function: $h(x) = x\sigma(\beta x)$ where σ d $\frac{1}{1+\exp(-z)}$. Show that, for appropriately chosen values of β , this activates the linear activation function, and (2) the ReLU activation function.	ation function can approximate (1)

Page 8 **IIT Kanpur** Name: CS771A (IML) **End-sem Exam** Dept.: Roll No.: Date: November 22, 2023 9. You are given an $N \times M$ matrix **R** with binary entries. Your goal is to approximate **R** using a product of two matrices $\mathbf{U} \in \mathbb{R}^{N \times K}$ and $\mathbf{V} \in \mathbb{R}^{M \times K}$ where K is usually smaller than N and M. In particular, assume $p(\mathbf{R}|\mathbf{U}, \mathbf{V}) = \text{Bernoulli}(\mathbf{R}|\sigma(\mathbf{U}\mathbf{V}^{\top}))$ where the sigmoid operation and Bernoulli are applied elementwise on their respective input matrices. Note that this is also equivalent to $p(R_{nm}|\mathbf{u}_n,\mathbf{v}_m)=$ Bernoulli $(R_{nm}|\sigma(\mathbf{u}_n^{\top}\mathbf{v}_m)), \mathbf{u}_n^{\top}$ and \mathbf{v}_m denote the n^{th} row of \mathbf{U} and m^{th} column of \mathbf{V} , respectively. Give an ALT-OPT algorithm to learn U and V and show that it reduces to solving N+M logistic regression problems in each iteration. For each logistic regression problem, what is the corresponding input matrix, labels, and the weight vector? (14 marks)

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS771A (IML) End-sem Exam

Date: November 22, 2023

Some distributions and their properties:

- For $x \in \mathbb{R}$, the PDF of univariate Gaussian: $\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$. If using precision $\beta = 1/\sigma^2$, the PDF is $\mathcal{N}(x|\mu,\beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\{-\frac{\beta}{2}(x-\mu)^2\}$.
- For $x \in \mathbb{R}^D$, D-dimensional Gaussian: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\}.$
- PDF of a Bernoulli random variable x is $p(x) = \text{Bernoulli}(x|\mu) = \mu^x (1-\mu)^{1-x}$ where $\mu \in (0,1)$ is the success probability.
- Covariance of a vector random variable X is $cov[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ where \mathbb{E} denotes expectation.

Some other useful results:

• Given a joint distribution of two groups of random variables \boldsymbol{x}_a and \boldsymbol{x}_b which is Gaussian with mean vector $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix}$ and covariance matrix $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}$, the marginal and conditional distributions for Gaussians are:

$$\begin{split} &p(\boldsymbol{x}_a) = \mathcal{N}(\boldsymbol{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa}), \\ &p(\boldsymbol{x}_a | \boldsymbol{x}_b) = \mathcal{N}(\boldsymbol{x}_a | \boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b}) \\ &\text{where } \boldsymbol{\Sigma}_{a|b} = \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} \boldsymbol{\Sigma}_{ba}, \text{ and } \boldsymbol{\mu}_{a|b} = \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\boldsymbol{x}_b - \boldsymbol{\mu}_b) \end{split}$$

• $\frac{\partial}{\partial \mu}[\mu^{\top} \mathbf{A} \mu] = [\mathbf{A} + \mathbf{A}^{\top}] \mu$, $\frac{\partial}{\partial \mathbf{A}} \log |\mathbf{A}| = \mathbf{A}^{-\top}$, $\frac{\partial}{\partial \mathbf{A}} \operatorname{trace}[\mathbf{A} \mathbf{B}] = \mathbf{B}^{\top}$

Page 10

Name:		
Roll No.	:	Dept.:

IIT Kanpur CS771A (IML) End-sem Exam

Date: November 22, 2023

FOR ROUGH WORK ONLY