

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

Васильев Александр Иванович

Начальные условия

Даны два датасета X_bp.xlsx и X_nup.xlsx.

Датасет X_bp.xlsx содержит 11 столбцов (10 признаков) и 1023 строки.

Датасет X_nup.xlsx содержит 4 столбца (3 признака) и 1040 строк.

Необходимо объединить датасеты по индексу (тип объединения INNER).

В результате объединения получен датасет с 13 признаками и 1023 строками.

Все признаки содержат значения float64, за исключением признака «Угол нашивки, град», у которого целочисленный тип int64, качественные характеристики отсутствуют, пропусков нет.

Признак «Угол нашивки, град» имеет два уникальных значения: 0 и 90.

Данные в датасете представлены в разном масштабе.

Разведочный анализ

Гистограмма распределения параметров.

Распределение величин близко к нормальному для большей части признаков, за исключением поверхностной плотности — большое смещением влево и угла нашивки — дискретная величина.

Тепловая карта коэффициентов корреляции.

Коэффициенты корреляции предварительно показывают, что явная зависимость между переменными датасета отсутствует.

Предобработка данных

```
le = LabelEncoder()
df['Угол нашивки, град'] = le.fit_transform(df['Угол нашивки, град'])

# Посмотрим, что получилось
df['Угол нашивки, град'].unique()

array([0, 1], dtype=int64)
```

Кодирование категориальных данных

В результате кодирования с помощью метода LabelEncoder() мы получили признак «Угол нашивки, град» со значениями 0 и 1.

Предобработка данных

```
Соотношение матрица-наполнитель , z-score: 0
Соотношение матрица-наполнитель , IQR: 6
Плотность, кг/м3 , z-score: 3
Плотность, кг/м3 , IQR: 9
модуль упругости, ГПа , z-score: 2
модуль упругости, ГПа , IQR: 2
Количество отвердителя, м.%, z-score: 2
Количество отвердителя, м.% , IQR: 14
Содержание эпоксидных групп,% 2 , z-score: 2
Содержание эпоксидных групп,% 2 , IQR: 2
Температура вспышки, C_2 , z-score: 3
Температура вспышки, C_2 , IQR: 8
Поверхностная плотность, \Gamma/M2 , z-score: 2
Поверхностная плотность, г/м2 , IQR: 2
Модуль упругости при растяжении, ГПа , z-score: 1
Модуль упругости при растяжении, ГПа , IOR: 6
Прочность при растяжении, МПа , z-score: 0
Прочность при растяжении, МПа , IQR: 11
Потребление смолы, г/м2 , z-score: 3
Потребление смолы, г/м2 , IQR: 8
Угол нашивки, град , z-score: 0
Угол нашивки, град , IQR: 0
Шаг нашивки , z-score: 0
Шаг нашивки , IOR: 4
Плотность нашивки , z-score: 7
Плотность нашивки , IQR: 21
Стандартизированная оценка (z-score), выбросов: 25
Межквартильное расстояние (IQR), выбросов: 93
```

```
z_score_clean = pd.DataFrame(index = df.index)

for column in df:

    z = stats.zscore(df[column])

    z_score_clean[column] = z.abs() > 3

df_clean = df[z_score_clean.sum(axis=1)==0]

# Посмотрим форму очищенного датасета.

df_clean.shape
```

Удаление выбросов.

(999, 13)

Удалим выбросы методом z-score.

В результате удаления выбросов мы получили датасет из 13 признаков и 999 строк.


```
# Целевой параметр - "Модуль упругости при растяжении, ГПа"
y1 = df_clean.iloc[:, df_clean.columns == 'Модуль упругости при растяжении, ГПа']
# Целевой параметр - "Прочность при растяжении, МПа"
y2 = df clean.iloc[:, df clean.columns == 'Прочность при растяжении, МПа']
# Входные параметры
X = df clean.drop(columns=['Модуль упругости при растяжении, ГПа', 'Прочность при растяжении, МПа'])
# Посмотрим форму полученных данных.
print(y1.shape)
print(y2.shape)
print(X.shape)
(999, 1)
(999, 1)
(999, 11)
```

Проведём разбиение датасета на входные (X) и целевые (y) данные в двух вариантах, для каждого целевого параметра.

«Модуль упругости при растяжении, ГПа»

	max_error	MAE	RMSE	R2		max_error	MAE	RMSE	R2
LinearRegression	-7.754544	-2.518390	-3.140033	-0.050320	Linear Regression (positive = True)	-7.709031	-2.505067	-3.127999	-0.041764
DecisionTreeRegressor	-11.837542	-3.799079	-4.746385	-1.437139	DecisionTreeRegressor(max_depth=1, max_features=2, random_state=42)	-7.837971	-2.498890	-3.117294	-0.035270
RandomForestRegressor	-7.907961	-2.554298	-3.199981	-0.091714	RandomForestRegressor(criterion='absolute_error', max_depth=3, max_features=1,\n n_estimators=200, random_state=42)	-7.723437	-2.502208	-3.117585	-0.036191
Ridge	-7.753969	-2.518327	-3.139936	-0.050255	Ridge(alpha=91, positive=True, solver='lbfgs')	-7.693051	-2.503336	-3.123893	-0.039065
Lasso	-7.687178	-2.506801	-3.114610	-0.033390	Lasso(alpha=1, positive=True)	-7.687178	-2.506801	-3.114610	-0.033390
ElasticNet	-7.687178	-2.506801	-3.114610	-0.033390	ElasticNet(alpha=1, I1_ratio=0.0, positive=True, tol=4000.0)	-7.662191	-2.502964	-3.116174	-0.034063
SVR	-8.007060	-2.523153	-3.160472	-0.066064	SVR(C=1, coef0=0, gamma='auto', kernel='sigmoid')	-8.003318	-2.516191	-3.176419	-0.075434
SGDRegressor	-7.748267	-2.517246	-3.137990	-0.048817	SGDRegressor(alpha=1, I1_ratio=0.2, learning_rate='constant', max_iter=10000000,\n	-7 68/1682	-2 501//60	-3.104073	-0.026146
KNeighborsRegressor	-8.613586	-2.741288	-3.440714	-0.269092	penalty='elasticnet', random_state=42)	7.004002	2.301400	3.104073	0.020140
					$KNeighbors Regressor (algorithm = 'ball_tree', \ n_neighbors = 23, \ p = 1, \\ \ n \ weights = 'distance')$	-7.892295	-2.543740	-3.168132	-0.071450

В работе применялись модели машинного обучения из библиотеки scikit-learn, применяемые для задач регрессии.

Был проведен поиск оптимальных гиперпараметров моделей с помощью поиска по сетке с перекрестной проверкой (GridSearchCV).

Перед обучением моделей датасеты были разделены на обучающую и тестовую выборки (70% на обучение и 30% на тестирование).

Обучающая выборка была масштабирована с помощью StandardScaler().

Выбор лучшей модели проводился по метрикам max_error, MAE, RMSE, R2.

«Прочность при растяжении, МПа»

	max error	MAE	RMSE	R2		max_error	MAE	RMSE	R2
LinasePaguagian		200 140001	400 202761	0.022017	LinearRegression(positive=True)	-1258.054267	-385.924801	-488.176644	-0.014997
LinearRegression	-12/6//90055	-509,140901	-409.595701	-0.023017	DecisionTreeRegressor(criterion='absolute_error', max_depth=3,	4067.045.475	204 404502	400 007665	0.000444
DecisionTreeRegressor	-1853.212070	-565.241047	-705.793418	-1.187462	max_features=7,\n random_state=42, splitter='random')	-1267.015475	-381.101592	-482,39/665	0.008114
RandomForestRegressor	-1295.309292	-397.583551	-496.374281	-0.056399	RandomForestRegressor(criterion='poisson', max_depth=2, max_features=2,\n n estimators=200, random state=42)	-1247.264367	-383.937358	-484.824258	-0.002294
Ridge	-1278.701017	-389.121962	-489.376075	-0.022937	Ridge(alpha=91, positive=True, solver='lbfgs')	-1255 130626	-385 688033	-487 804637	-0.013487
Lasso	-1276.501200	-388,572626	-488,798449	-0.020419					
					Lasso(alpha=21)	-1250.154999	-383.695991	-484.101871	0.000730
ElasticNet	-1260.882923	-385.862788	-486.452377	-0.009559	ElasticNet(alpha=21, l1_ratio=1.0, tol=4000.0)	-1249.856166	-383.695406	-484.127785	0.000621
SVR	-1256.587914	-386.793138	-487.032580	-0.010721	SVR(C=11, coef0=0, degree=4, kernel='poly')	-1224.265261	-383.879245	-485.013673	-0.001935
KNeighborsRegressor	-1404.589902	-422.401615	-529.352566	-0.201183	KNeighborsRegressor(algorithm='ball_tree', n_neighbors=27, p=1)	-1256.245922	-386.941168	-486.491225	-0.009783

В работе применялись модели машинного обучения из библиотеки scikit-learn, применяемые для задач регрессии.

Был проведен поиск оптимальных гиперпараметров моделей с помощью поиска по сетке с перекрестной проверкой (GridSearchCV).

Перед обучением моделей датасеты были разделены на обучающую и тестовую выборки (70% на обучение и 30% на тестирование).

Обучающая выборка была масштабирована с помощью StandardScaler().

Выбор лучшей модели проводился по метрикам max_error, MAE, RMSE, R2.

Модуль упругости при растяжении, ГПа

	max_error	MAE	RMSE	R2
SGDRegressor	-9.40674	-2.482018	-3.078749	-0.020254

Прочность при растяжении, МПа

	max_error	MAE	RMSE	R2
DecisionTreeRegressor	-1468.095589	-380.172727	-477.100938	-0.010834

Модели были обучены и применены на тестовой выборке для прогноза целевого признака.

Далее мы рассчитали показатели качества моделей, сравнив результаты прогноза с целевыми данными.

Разработка нейронной сети

```
# Целевой параметр - "Соотношение матрица-наполнитель"
y = df_clean.iloc[:, df_clean.columns == 'Соотношение матрица-наполнитель']
# Входные параметры
X = df clean.drop(columns=['Cooтнoшение матрица-наполнитель'])
# Посмотрим форму полученных данных.
print(y.shape)
print(X.shape)
(999, 1)
(999, 12)
                  X_train_scaled = scaler.fit_transform(X_train)
                  X test scaled = scaler.transform(X test)
```

Разработаем нейронную сеть для рекомендации соотношения матрица-наполнитель. Для этого проведём разбиение датасета на входные (X) и целевые (y) данные. Далее масштабируем входные данные.

Разработка нейронной сети

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	1664
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 64)	8256
dropout_1 (Dropout)	(None, 64)	0
dense_2 (Dense)	(None, 32)	2080
dropout_2 (Dropout)	(None, 32)	0
dense_3 (Dense)	(None, 16)	528
dropout_3 (Dropout)	(None, 16)	0
dense_4 (Dense)	(None, 1)	17

Total params: 12,545

Trainable params: 12,545 Non-trainable params: 0

В данной работе используется последовательная модель Sequential() из библиотеки «Tensorflow» с пятью полносвязными слоями Dense(), четырьмя вспомогательными слоями Dropout. Во входном и внутренних слоях используется функция активации «relu», в выходном слое – «linear».

В обучении модели используется метод EarlyStopping.

Разработка нейронной сети

График показывает уменьшение метрик MSE и MAE в процессе обучения.

При применении модели на тестовой выборке MSE составил 1.08, а MAE составил 0.83

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Выберите параметр для расчёта:

Модуль упругости при растяжении, ГПа
Прочность при растяжении, МПа
Соотношение матрица-наполнитель

Назад

Соотношение матрица-наполнитель

D.	
Введите значение	
Введите Плотность, кг/м3	
Введите Модуль упругости, ГПа	
Введите Количество отвердителя, м.%	
Введите Содержание эпоксидных групп,%_2	
Введите Температура вспышки, С_2	
Введите Поверхностная плотность, г/м2	
Введите Модуль упругости при растяжении, ГПа	
Введите Прочность при растяжении, МПа	
Введите Потребление смолы, г/м2	
Введите Угол нашивки, град	
Введите Шаг нашивки	
Введите Плотность нашивки	
Рассчитать Сброси	ТЬ

Разработка приложения

Модуль упругости при растяжении, ГПа

Назад

Прочность при растяжении, МПа

Введите значение	
Введите Соотношение матрица-наполнитель	
Введите Плотность, кг/м3	
Введите Модуль упругости, ГПа	
Введите Количество отвердителя, м.%	
Введите Содержание эпоксидных групп,%_2	
Введите Температура вспышки, С_2	
Введите Поверхностная плотность, г/м2	
Введите Потребление смолы, г/м2	
Введите Угол нашивки, град	
Введите Шаг нашивки	
Введите Плотность нашивки	
Рассчитать	сить

Web-приложение с использованием библиотеки Flask для применения наших моделей на практике.

Приложение запускается локально в браузере из среды Python.

Web-приложение выполнено по многостраничной схеме.

На стартовой странице выбирается признак для расчета.

После выбора признака пользователь перенаправляется на соответствующую страницу.

Для расчета необходимо ввести данные в соответствующие поля и нажать на кнопку «Рассчитать» в нижней части формы ввода данных.

Кнопка «Сбросить» в нижней части формы ввода данных очищает поля.

Результат расчета отображается ниже формы ввода данных.

Для возврата на стартовую страницу нажмите на кнопку «Назад» в верхнем левом углу.

Репозиторий

Файлы исследования и приложение размещены в репозитории:

https://github.com/Alvas01/BMSTU

Заключение

Примененные нами методы машинного обучения и нейронная сеть показали невысокую эффективность.

Разведочный анализ данных показал низкую (околонулевую) корреляцию признаков в датасете. Думаю, что это стало причиной низкой эффективности моделей, которые строят свою работу на выявлении взаимосвязей в данных.

Предполагаю, что в предоставленных данных имеются скрытые недостатки. Для повышения эффективности моделей необходима дополнительная информация и, возможно, более тонкая и трудоемкая настройка моделей.

do.bmstu.ru

