UNIVERSIDAD TECNOLÓGICA DE PANAMÁ INGENIERÍA DE SISTEMAS DINÁMICOS

Grupo: <u>21L141/21F131</u>		
Msc. José Mendoza V.	Fecha:	
Nombre:	N° Cédula:	
Parte I	(70 pun	itos
Escoja la mejor respuesta - cierto y falso		
1. La dinámica de sistemas ayuda a compr	ender dos cosas:(10 puntos)	
(a) El sistema y la dinámica		
(b) Eventos y patrones		
(c) Comportamiento a lo largo de tiempo		
(a) Comportamiento a la largo de tiempo		
2. Sistemas: Es una parte de la realidad qu	e puede ser aislada del resto y que	<u> </u>
posee reglas internas de funcionamiento. ((10 puntos)	
(a) Cierto		
(b) Falso		
3. Las taxonomías de los sistemas son: (10	puntos)	
(a) Paulding Chapkland Paary Michael		
(a) Boulding, Checkland, Beer y Michael(b) Boulding, Jordan, Beer y Checkland		
(c) Checkland, Beer, Boulding y Control		
(b) Officerialia, Beef, Bodianing y Control		
4. el programa más utilizado en dinámica d	le sistemas es Vensim. (10 puntos)	
(a) Cianta		
(a) Cierto		
(b) Falso		
5. Principal precursor en managment: (10 p	puntos)	
(a) Alan Turing		
(b) John Atanasoff		
(c) Jay Forrester		

6. Dinámica de sistemas es un método para describir, modelar y simular sistemas dinámicos. (10 puntos)

- (a) Cierto
- (b) Falso

7. Los sistemas que varían con el paso del tiempo se denominan: (10 puntos)

- (a) sistemas estáticos
- (b) sistemas dinámicos
- (c) sistemas inteligentes

Parte II (30 puntos)

Desarrollar dos modelos con el software Vensim y subirlos a la plataforma moodle:

Primer problema para resolver (15 puntos)

En una población un virus denominado "ebola" contagia entre 30 y 70 personas por hora. Las autoridades sanitarias están alarmadas ya que cada 120 minutos mueren entre el 15 % y el 30 % de las personas contagiadas, Han desarrollado una vacuna que es capaz de sanar alrededor de 10 personas por hora y se estima que sea 20 personas en 120 minutos. La población contagiada será la adición entre la población contagiada y los contagiados y le resta entre las muertes y los vacunados

Utilizar la dinámica de sistemas para saber cuántas horas se necesitan para curar a toda una población.

Los valores iniciales son: unidad de tiempo: hora

Segundo problema para resolver (15 puntos)

Una empresa dispone inicialmente de 300 unidades. Además, cada día se producen 30 unidades y se gestionan 15 pedidos. Deseamos saber cómo evolucionará el inventario a lo largo del tiempo. El inventario será dado por producción y el restante de pedidos. Valores iniciales: initial time: 0, final time: 25, time step: 0.125, unit for time: Day.