Candidate's Name:	••••••			
Signature :	Random No.	Personal No.		

(Do not write your School /Centre Name or Number anywhere on this booklet.)

545/2

CHEMISTRY

Paper 2

Oct./Nov. 2022

2 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer all the questions in this section.

Answers to these questions must be written in the spaces provided.

Section **B** consists of 4 semi-structured questions. Answer any **two** questions from this section. Answers to the questions **must** be written in the answer booklet(s) provided.

In both sections all working must be clearly shown and must be in blue or black ink.

Any work done in pencil will not be marked except drawings.

Mathematical tables and silent non-programmable calculators may be used. Where necessary use:

$$[H=1, C=12, O=16, Mg=24]$$

1 mole of gas occupies 24 l at room temperature.

1 mole of gas occupies 22.4 l at s.t.p.

					For	Exar	niner	s' Us	e Onl	ly				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

© 2022 Uganda National Examinations Board

Turn Over

SECTION A: (50 MARKS)

Answer all questions in this section.

1.	Carb	on exists in different for	ms.	
	(a)	Giving a reason in each	h case, name the form of carl	bon which is used
		(i) to make glass cu	utters.	(02 marks)
		Name:		
		Reason:		
		(ii) as electrodes.		(02 marks)
		Name:		
		Reason:	••••••	
	(I-)		than than anykan that aviat in	
	(b)	Name two elements of	ther than carbon that exist in	(01 mark)
2.		atomic numbers of elem ctively.	nents Q, T, X, Y and Z are 2,	7, 11, 13 and 16
	(a)	Write a formula for th	e compound formed if:	
		(i) Y reacts with Z	2.	(01 mark)
		(ii) X reacts with T		(01 mark)
		() IL TOUCIS WITH I		

	(D)	State the element(s) that:	
(c) 3. Zin (a)		(i) exist(s) as diatomic gas(es).	(½ mark)
		(ii) is/are inert.	(½ mark)

		(iii) is/are metals.	(01 mark)
	(c)	Which one of the elements belongs to group I in the P	Periodic Table?
			(01 mark)
	7:	weeks with steem to give a solid V and a gas 7	•••••
••		reacts with steam to give a solid Y and a gas Z. Identify;	
	(a)	(i) solid Y.	(01 mark)
		(ii) gas Z.	
	a >	G 1 7 can be tested in the laboratory	
	(b)	State how gas Z can be tested in the laboratory.	(01 mark)
	(c)	Z was passed over heated triiron tetraoxide (Fe_3O_4).	
		equation for the reaction that took place.	$(1\frac{1}{2} \text{ marks})$
		2	T. O

	(d)		te an equation for the reaction that would take plated to warm dilute nitric acid.	ce if solid Y was $(1\frac{1}{2} \text{ marks})$
4.	A hy	drocar	bon Q consists of 85.7% carbon by mass.	
	(a)	Dete	ermine the simplest formula of Q.	(02 marks)
		•••••		
	(b)	0.22	24 g of Q occupies 96 cm ³ at room temperature.	
		(i)	Determine the molecular formula of Q.	(03 marks)
		•••••		•••••
		•••••		
		•••••	••••••	
		•••••		
		•••••		
		•••••		

5.	(a)	State what is observed and write an ionic equation for the reaction that takes place when excess dilute sodium hydroxide solution is added to copper(II) chloride solution.					
		(i)	Observation (½	mark)			
			••••••				
		(ii)	Ionic equation $(1\frac{1}{2})$	marks)			
	(b)	(i)	Name the reagent that can be used to identify the anion in copper(II) chloride. (1/2)	mark)			
		(ii)	State what would be observed if the anion was treated wit reagent you have named. (1/2)	h the mark)			
	(c)	solut	en aqueous ammonia was added dropwise until in excess to a tion containing zinc ions, a white precipitate was formed wholved afterwards into a colourless solution.	ich			
		(i)	Give a reason why the precipitate dissolved. (01)	mark)			
		(ii)	Write the formula of the cation in the colourless solution. (01)	mark)			
		<u>.</u>					

Turn Over

6.	(a)	State what is meant by the term heat of combustion . (01 mark)
		•••••
	(b)	When 0.4 g of an alcohol X was burnt completely, it raised the temperature of 100 g of water by 21.5 °C. Calculate the heat of combustion of X.
		(Formula mass of $X = 32$, specific heat capacity of water= 4.2 $Jg^{-1} {}^{o}C^{-1}$). (2½ marks)
	(c)	(i) State how the heat of combustion of X that you have calculated in (b) would compare with the theoretical value. (01 mark)

		(ii)	Give a rea	son for your a	answer in (c) (i).	(½ mark)
7.	Imp	ure copp	er is purific	ed by electrol	ysis.	
					the purification of copper	(01 mark)
		····	••••••			
	(b)			n for the react	tion at the:	
		(i)	anode.		aslarao	(01 mark)
		•••••	••••••			
		(ii)	cathode.	•••••••	- 40	(01 mark)
		•••••				
	(-)					
	(c)	State			nd of the process.	(01 mark)
7.		•••••				
						•••••
						•••••
	(d)	State v	what would olyte you ha	be observed ave named in	if a clean iron-nail was pla (a).	(01 mark)

Ferme	ntation	of glucose produces ethanol which is about 10% by vo	lume.
(a)	(i)	Name the process by which the percentage of ethanol increased.	could be (01 mark)
	(ii)	State the principle on which the process you have nan in (a) (i) works.	(01 mark)
			• • • • • • • • • • • • • • • • • • • •
(b)	Etha	nol undergoes complete combustion in oxygen according owing equation.	g to the
	C_2H	$I_5OH(l) + 3O_2(g) \longrightarrow 3H_2O(l) + 2CO_2(g)$	
	(i)	Calculate the heat evolved when 21.6 g of ethanol und complete combustion.	(02 marks)
		(The enthalpy of combustion of ethanol = 1370.0 kJ m	nol^{-l})
	•••••		
		15 (15 m) 15	
			•••••••
	· · · · · ·		

8.

		(11) State the practical application of combustion of	fethanol. (01mark)
9.	(a)	A clean piece of calcium was dropped into water in	a beaker.
		(i) State what was observed.	(2½ marks)
			ped into water in a beaker. (2½ marks) action. (1½ marks) the resultant solution in (a). State (01 mark) c contact process, sulphur dioxide expresence of vanadium(V) oxide at ur trioxide. leading to the formation of sulphur (1½ marks)
		(ii) Write an equation for the reaction.	(1½ marks)
	(b)	Blue litmus paper was dipped into the resultant solu what was observed.	and the second second second
10.	reacts	manufacture of sulphuric acid by the contact process, reversibly with excess oxygen in the presence of vanatively low temperature to form sulphur trioxide.	sulphur dioxide adium(V) oxide at
	(a)	Write an equation for the reaction leading to the for trioxide.	
	(b)	Suggest a reason for the use of:	(01 mark)
		(i) excess oxygen.	
			T O

	(ii) low temperature.	$(1\frac{1}{2} \text{ marks})$

(c)	State one reason why vanadium(V) oxide is preferred as a the manufacture of sulphuric acid.	catalyst in (01 mark)
		ie.
	SECTION B: (30 MARKS)	TION B: (30 MARKS) TWO questions from this section. Ton solor concentrated sulphuric acid, the gas is then through concentrated sulphuric acid before it ance that is reacted with hydrochloric acid to formation of chlorine. (01 mark) Itions and write an equation for the reaction formation of chlorine. (2½ marks) why chlorine is passed through water and then sulphuric acid before it is collected. (02 marks) Itel with chlorine was inverted in a beaker of then allowed to stand in sunlight for sometime. Tyed and explain your observations. (06 marks) Foolution that was left in the glass tube in (b), silver added. Tyed and write an ionic equation for the reaction (2½ marks)
	SECTION B: (30 MARKS) Answer any two questions from this section. Additional question(s) answered will not be marked. aboratory preparation of chlorine from hydrochloric acid, the gas is ed through water, then through concentrated sulphuric acid before it ed. Name a substance that is reacted with hydrochloric acid to produce chlorine. (01 mark) State the conditions and write an equation for the reaction leading to the formation of chlorine. (2½ marks) Give reasons why chlorine is passed through water and then concentrated sulphuric acid before it is collected. (02 marks) long glass tube filled with chlorine was inverted in a beaker maining water and then allowed to stand in sunlight for sometime. It what was observed and explain your observations. (06 marks) a sample of the solution that was left in the glass tube in (b), silver rate solution was added. te what was observed and write an ionic equation for the reaction	
first	passed through water, then through concentrated sulphuric acollected.	id before it
(4)	A POINT CONTRACTOR STORY STORY STORY	
	· /	
	` '	
(b)		ometime.
(c)	To a sample of the solution that was left in the glass tube in nitrate solution was added.	(b), silver
(b)	State one use of chlorine	(01 auls)

11.

- 12. (a) Describe how a dry sample of zinc sulphate crystals can be prepared from zinc. (Your description should include equation(s) for the reaction(s) that take(s) place.) (7½ marks)
 - (b) To a mixture of zinc sulphate crystals and sufficient sodium carbonate, water was added and the mixture shaken then filtered.
 - (i) State what would be observed if acidified barium chloride solution was added to the filtrate. (01 mark)
 - (ii) Write an ionic equation for the reaction in (b) (i). (1½ marks)
 - (c) The residue in (b) was dried and heated until no further change then allowed to cool.
 - State what was observed.

(11/2 marks)

- (ii) Write an equation for the reaction that took place. (1½ marks)
- (d) To the cooled product in (c) was added dilute sulphuric acid. State what was observed and write the equation for the reaction. (02 marks)
- 13. (a) State what is meant by the term rate of reaction. (01 mark)
 - (b) Table 1 shows volumes of hydrogen gas liberated when 2.0 g of magnesium separately reacted with different volumes of hydrochloric acid of a uniform concentration.

Table 1

Volume of hydrochloric acid (cm ³)	0	5	15	20	25	35	45
Volume of hydrogen gas (cm ³)	0	120	360	500	600	600	600

- (i) Plot a graph of volume of hydrogen gas formed against volume of hydrochloric acid used. (04 marks)
- (ii) Determine the volume of hydrochloric acid needed to react exactly with the 2.0 g of magnesium. (01 mark)
- (c) (i) Write an equation for the reaction in (b). (1½ marks)
 - (ii) Determine the number of moles of magnesium that reacted.

 (1½ marks)
 - (iii) Calculate the concentration of hydrochloric acid in moles dm⁻³. (2½ marks)
- (d) Explain the effect of the following on the rate of reaction:
 - (i) Concentration.

(02 marks)

(ii) Surface area.

(1½ marks)

11

Turn Over

- 14. (a) Sodium metal is extracted by the electrolysis of molten sodium chloride to which calcium chloride has been added.
 - (i) Give a reason for adding calcium chloride. (01 mark)
 - (ii) Name **one** substance that is used as the cathode and another as the anode. (01 mark)
 - (b) (i) Write equations for the reactions that take place at the cathode and anode. (03 marks)
 - (ii) State how the product at the cathode is collected and give a reason. (1½ marks)
 - (iii) Name **two** other elements that can be extracted by a similar method. (01 mark)
 - (c) A small piece of sodium metal was lit and lowered into a gas jar of oxygen. State what was observed and write an equation for the reaction that took place. (03 marks)
 - (d) The product in (c) was dissolved in water and the solution tested with litmus. State what was observed and write an equation for the reaction that took place.

 (2½ marks)
 - (e) Name **one** place in Uganda where a plant for extraction of sodium could be constructed and give a reason for your answer. (02 marks)