NCTU-EE IC Design LAB - Fall 2023

Lab13 Power Rail Analysis Practice Tutorial

1. Flow overview

2. Set environment

- unix% tar -xvf ~iclabta01/Lab13.tar
- unix% cd Lab12/Practice/05_APR
- unix% mkdir power_log (You will save all the things here)
- unix% innovus
- Restore the design DBS/CHIP.inn

3. Static Power Analysis

- 1. Save CHIP.v
- 2. Write CHIP.sdf
- **3.** Run post simulation at 06_POST, the generated waveform CHIP_POST.fsdb will be used for power rail analysis.
- 4. In the innovus menu, open Power -> Power Analysis -> Setup

- i. Click OK.
- 5. In the innovus menu, open Power -> Power Analysis -> Run
 - i. ◆Activity FILE ◆FSDB
 - ii. Fill the information:
 - Select CHIP_POST.fsdb (from 06_POST)
 - Scope: TESTBED/u_CHIP
 - Start: 0; Stop: 1000
 - Press Add
 - iii. Results Directory: power_log
 - iv. Click OK.

v. Results appear at terminal

4. Create Power Grid Library

In the innovus menu, open Power -> Rail Analysis -> Set PG Library
 Mode

- i. Cell type: ◆Tech Only
- ii. Filler Cell Names: FILL1 FILL16 FILL2 FILL32 FILL4 FILL64 FILL8
- iii. Extraction
 - Extraction tech file: 05_APR/RC/icecaps.tch (File of type: All files(*))
 - LEF Layermap: 05_APR/layermap/lefdef.layermap.libgen(File of type: All files(*))
- iv. Supply Pins
 - Voltages: 1.8
 - Power pin: VCC
 - Ground pin: **GND**
- v. Click OK

- 2. In the innovus menu, open *Power -> Rail Analysis -> Generate PG Library*
 - i. Choose power_log
 - ii. Click OK

iii. Check if the directory technoly.cl exists (under power_log/)

- In the innovus menu, open Power -> Rail Analysis -> Set PG Library
 Mode
 - i. Cell type: ◆Std Cells
 - ii. Filler Cell Names: FILL1 FILL16 FILL2 FILL32 FILL4 FILL64 FILL8
 - iii. Extraction
 - Extraction tech file: 05_APR/RC/icecaps.tch
 - LEF Layermap: 05_APR /layermap/ lefdef.layermap.libgen
 - iv. Supply Pins
 - Voltage: **1.8**
 - Power pin: VCC
 - Ground pin: GND
 - v. Click OK.

- 4. In the innovus menu, open Power -> Rail Analysis -> Generate PG Library
 - i. Click OK
 - ii. Check if the directory **stdcells.cl** exists (under power_log/)

5. Rail Analysis

- In the innovus menu, open Power -> Rail Analysis -> Setup Rail Analysis
 - i. Analysis Method: ◆ Static
 - ii. PowerGrid Libraries:

power_log/technoly.cl (should be added first)
power_log/stdcells.cl

iii. Click OK

2. In the innovus menu, open Power -> Rail Analysis -> Run Rail Analysis

- i. ◆ Domain Based Domain Name: PD
- ii. Power Net(s): VCC Voltage(s): 1.8 Threshold:1.7 (Press ADD)

 Power Net(s): GND Voltage(s): 0 Threshold:0.1 (Press ADD) $(1.8v * 5\% \approx 0.1v)$
- iii. Power/Current Files(s):
 power_log/static_VCC.ptiavg
 power_log/static_GND.ptiavg
- iv. Power Pads: ♦ XY File
- v. Click Create
 - Net Name: VCC
 - Click Fetch
 - Save as power_log/CHIP_VCC.pp
- vi. Click **Create** again
 - Net Name: GND
 - Click Fetch
 - Save as power_log/CHIP_GND.pp
- vii. Click Cancel
- viii. File: power_log/CHIP_VCC.pp Net Name: VCC (press ADD)
 - ix. File: power_log/CHIP_GND.pp Net Name: GND (press ADD)
 - x. Results Directory: power log
 - xi. Click **OK**

6. Power & IR Drop Results

- 1. In the innovus menu, open Power -> Report -> Power & Rail Result
 - i. ◆Auto Apply for Color Scale
 - ii. Click DB Setup
 - Power Databas: power_log/power.db
 - Rail Database: power_log/PD_25C_avg_1
 - Click OK
 - iii. Type: ◆Rail
 - iv. Choose ir IR Drop

i. ◆Result Browser

The following shows the distribution of IR Drop (they should in the range 0.1V)

