Два вида индукции

Определение (принцип математической индукции)

Какое бы ни было $\varphi(x)$, если $\varphi(0)$ и при всех x выполнено $\varphi(x) \to \varphi(x')$, то при всех x выполнено и само $\varphi(x)$.

Определение (принцип полной математической индукции)

Какое бы ни было $\psi(x)$, если $\psi(0)$ и при всех x выполнено $(\forall t.t \leq x \to \psi(t)) \to \psi(x')$, то при всех x выполнено и само $\psi(x)$.

Теорема

Принципы математической индукции эквивалентны

Доказательство.

 (\Rightarrow) взяв $arphi:=\psi$, имеем выполненность arphi(x) oarphi(x'), значит, $orall x.\psi(x)$.

Два вида индукции

Определение (принцип математической индукции)

Какое бы ни было $\varphi(x)$, если $\varphi(0)$ и при всех x выполнено $\varphi(x) \to \varphi(x')$, то при всех x выполнено и само $\varphi(x)$.

Определение (принцип полной математической индукции)

Какое бы ни было $\psi(x)$, если $\psi(0)$ и при всех x выполнено $(\forall t.t \leq x \to \psi(t)) \to \psi(x')$, то при всех x выполнено и само $\psi(x)$.

Теорема

Принципы математической индукции эквивалентны

Доказательство.

$$(\Rightarrow)$$
 взяв $\varphi:=\psi$, имеем выполненность $\varphi(x)\to \varphi(x')$, значит, $\forall x.\psi(x)$. (\Leftarrow) возьмём $\psi(x):=\forall t.t\leq x\to \varphi(t)$.

Наследственные подмножества

Определение

Назовём вполне упорядоченное отношением (\in) множество S наследственным подмножеством A, если $\forall x.x \in A \rightarrow (\forall t.t \in x \rightarrow t \in S) \rightarrow x \in S$.

Теорема

Единственным наследственным подмножеством вполне упорядоченного множества является оно само.

Доказательство.

Пусть $B\subseteq A$ — наследственное и $B\neq A$. Тогда существует $a=\min(A\setminus B)$. Тогда $(\forall t.t\in a\to t\in B)\to a\in B$ по наследственности B, и выполнено $\forall t.t\in a\to t\in B$ (по минимальности a). Значит, $a\in B$.

Трансфинитная индукция

Теорема (ограниченная трансфинитная индукция)

Если для $\varphi(x)$ (некоторого утверждения теории множеств) и некоторого ординала ε (ограничения) выполнено $\forall x.x \in \varepsilon \to (\forall t.t \in x \to \varphi(t)) \to \varphi(x)$, то $\forall x.x \in \varepsilon \to \varphi(x)$.

Доказательство.

Рассмотрим $S=\{x\in \varepsilon\mid \varphi(x)\}$. Тогда $x\in S$ равносильно $x\in \varepsilon$ & $\varphi(x)$. Тогда перепишем: $\forall e.e\in \varepsilon \to (\forall x.x\in e\to x\in S)\to e\in S$. Отсюда по теореме о наследственных множествах $S=\varepsilon$.

Теорема (неограниченная трансфинитная индукция)

Если для $\varphi(x)$ (некоторого утверждения теории множеств) выполнено $\forall x.$ ординал $(x) \to (\forall t.t \in x \to \varphi(t)) \to \varphi(x)$, то $\forall x.$ ординал $(x) \to \varphi(x)$.

Альтернативная формулировка

Теорема

Для ординала ε подмножество $S \in \varepsilon$ — наследственное, если и только если одновременно:

Если $x \in \varepsilon$ и $x = \emptyset$, то $x \in S$;

Если $x \in \varepsilon$ и существует $y \colon y' = x$, то $y \in S \to x \in S$;

Если $x \in \varepsilon$ и x — предельный, то $(\forall t.t \in x \to t \in S) \to (x \in S)$.

Доказательство.

 (\Rightarrow) очевидно.

Альтернативная формулировка

Теорема

Для ординала ε подмножество $S \in \varepsilon$ — наследственное, если и только если одновременно:

Если $x \in \varepsilon$ и $x = \emptyset$, то $x \in S$;

Если $x \in \varepsilon$ и существует $y \colon y' = x$, то $y \in S \to x \in S$;

Если $x \in \varepsilon$ и x — предельный, то $(\forall t.t \in x \to t \in S) \to (x \in S)$.

Доказательство.

(⇒) очевидно. Докажем (⇐): пусть S не наследственное:

$$E:=\{e\inarepsilon\mid (orall t.t\in e o t\in S)\ \&\ e
otin S\}$$
 и $E
eqarnothing$. Тогда пусть $e=\min E$.

- $1. \ e=arnothing$ или предельный. Тогда $(orall t.t \in e
 ightarrow t \in S)
 ightarrow (e \in S).$
- 2. e=y'. Тогда $y\in \varepsilon$ (ε ординал) и ($\forall t.t\in y\to t\in S$) \to ($y\in S$) (так как e минимальный, для которого S не наследственное).

Альтернативная формулировка

Теорема

Для ординала ε подмножество $S \in \varepsilon$ — наследственное, если и только если одновременно:

```
Если x \in \varepsilon и x = \emptyset, то x \in S;
Если x \in \varepsilon и существует y \colon y' = x, то y \in S \to x \in S;
Если x \in \varepsilon и x — предельный, то (\forall t.t \in x \to t \in S) \to (x \in S).
```

Доказательство.

```
(\Rightarrow) очевидно. Докажем (\Leftarrow): пусть S не наследственное: E:=\{e\in \varepsilon\mid (\forall t.t\in e \to t\in S)\ \&\ e\notin S\} и E\neq\varnothing. Тогда пусть e=\min E.
```

- $1. \ e=arnothing$ или предельный. Тогда $(orall t.t \in e
 ightarrow t \in S)
 ightarrow (e \in S).$
- 2. e=y'. Тогда $y\in \varepsilon$ (ε ординал) и ($\forall t.t\in y\to t\in S$) \to ($y\in S$) (так как e минимальный, для которого S не наследственное). По условию, ($y\in S$) \to ($e\in S$), отсюда ($\forall t.t\in e\to t\in S$) \to ($e\in S$).

Пример применения: $\alpha \cdot \alpha = \alpha$ при $\alpha \geq \aleph_0$

Теорема

Если α — кардинальное число, $\alpha \geq \aleph_0$, то $\alpha \cdot \alpha = \alpha$.

Доказательство.

Трансфинитная индукция: $\varphi(x) := x < \omega \lor x \cdot x = x$

- 1. База: $x=\varnothing$. Тогда $\varphi(\varnothing)\equiv\varnothing<\omega\lor|\varnothing\times\varnothing|=\varnothing$, что доказуемо.
- 2. Переход: $\forall y.y < x \rightarrow \varphi(y)$, тогда $\varphi(x)$. Три случая:
 - $2.1 \;\; x < \omega$. Тогда $\varphi(x)$ истинно (аналогично базе).
 - 2.2 $x = \omega$. Счётный случай (рассмотрим отдельно).
 - 2.3 $x > \omega$. Общий случай (рассмотрим отдельно).

Счётный случай: $\omega < \omega \lor |\omega \cdot \omega| = \omega$

Тогда $\omega imes \omega$ упорядочим так: $\langle p,q \rangle \prec \langle s,t
angle$, если

- 1. $\max(p,q) < \max(s,t)$
- 2. $\max(p, q) = \max(s, t)$ и q < t
- 3. $\max(p, q) = \max(s, t), q = t \text{ u } p < s$

Очевидно, можно построить биекцию между так упорядоченными значениями и $\omega.$

12	$\langle 1, 3 \rangle$	14 ⟨2, 3⟩	15 (3,3)
6 (0, 2)	$\langle 1,2 \rangle$ 7	8 (2,2)	(3, 2)
2 (0, 1)	$\langle 1,1 \rangle$ 3	5 (2,1)	10 (3, 1)
0 (0,0)	$\langle 1,0 angle$	4 ⟨2,0⟩	9 (3,0)

Общий случай: $|\alpha \cdot \alpha| = \alpha$

Аналогично счётному случаю, lpha imeslpha упорядочим так: $\langle p,q
angle \prec \langle s,t
angle$, если

- 1. $p \cup q < s \cup t$
- 2. $p \cup q = s \cup t$ и q < t
- 3. $p \cup q = s \cup t$, q = t u p < s
- lacktriangle Легко заметить, что это линейный порядок (показав, что $p
 ot\prec q$ и $q
 ot\prec p$ влечёт p=q)
- lacktriangleright ... и полный порядок. Найти наименьший в $S
 eq \varnothing$ возможно, рассмотрев $m_1 := \min\{p \cup q \mid \langle p,q \rangle \in S\}$ и $M_1 := \{\langle p,q \rangle \mid \langle p,q \rangle \in S, p \cup q = m_1\}$, затем $m_2 := \min\{q \mid \langle p,q \rangle \in M_1\}$, $M_2 := \{\langle p,q \rangle \mid \langle p,q \rangle \in M_1, q = m_1\}$. Тогда требуемым наименьшим в S будет $\min\{p \mid \langle p,q \rangle \in M_2\}$
- lacktriangle Тогда $\langle lpha imes lpha, (\prec)
 angle$ соответствует какой-то ординал au и сохраняющая порядок биекция t: au o lpha imes lpha.
- ▶ Заметим, что $x < \omega$ тогда и только тогда, когда $\cup (\cup t(x)) < \omega$ (очевидно из того, что $|\{z \mid \text{ордина} n(z), z < x\}| = |\{p \mid p \prec t(x)\}|$).
- ightharpoonup Покажем, что $|\tau|=\alpha$.

Докажем au=lpha

$$\langle \alpha \times \alpha, (\prec) \rangle$$
 соответствует какой-то ординал τ $t: \tau \to \alpha \times \alpha$

Очевидно, что $au \geq \alpha$ (так как $| au| = |lpha imes lpha| \geq lpha$). Но пусть au > lpha.

- lacktriangle Тогда $t(lpha)=\langle \zeta,\eta
 angle$ определено (у lpha есть образ).
- lacktriangle Пусть $\sigma:=\zeta\cup\eta$. Очевидно, $\langle\zeta,\eta
 angle\preceq\langle\sigma,\sigma
 angle$ и $\sigma\in\alpha$.
- lacktriangle Каков образ t на этом начальном отрезке? $\{t(x)\mid x<\alpha\}\subseteq \{\langle p,q\rangle\mid p,q\leq\sigma\}.$ Поэтому $\alpha\leq |(\sigma+1)\times(\sigma+1)|.$
- ▶ С другой стороны, $\sigma < \alpha$. Поскольку α кардинал (т.е., в частности, предельный ординал), то $\sigma + 1 < \alpha$ и $|\sigma + 1| < \alpha$.
- ▶ По предположению индукции, $|\sigma+1|<\omega\lor|\sigma+1|=|\sigma+1|\cdot|\sigma+1|$, по свойствам (≺) имеем $\sigma\geq\omega$.
- lacktriangle Отсюда $lpha \leq |(\sigma+1) imes (\sigma+1)| = |\sigma+1| < lpha$, что невозможно.

арифметики

Исчисление S_{∞}

- 1. Язык: связки \neg , \lor , \forall , =; нелогические символы: (+), (\cdot) ,('),0; переменные: x.
- 2. Аксиомы: все истинные формулы вида $\theta_1 = \theta_2$; все истинные отрицания формул вида $\neg \theta_1 = \theta_2$ (θ_i термы без переменных).
- 3. Структурные (слабые) правила:

$$\frac{\zeta \vee \alpha \vee \beta \vee \delta}{\zeta \vee \beta \vee \alpha \vee \delta} \qquad \frac{\alpha \vee \alpha \vee \delta}{\alpha \vee \delta}$$

сильные правила

$$\frac{\beta}{\alpha \vee \beta} \quad \frac{\neg \alpha \vee \delta \quad \neg \beta \vee \delta}{\neg (\alpha \vee \beta) \vee \delta} \quad \frac{\alpha \vee \delta}{\neg \neg \alpha \vee \delta} \quad \frac{\neg \alpha[x := \theta] \vee \delta}{(\neg \forall x . \alpha) \vee \delta}$$

Формулы в правилах, обозначенные буквами ζ и δ , называются боковыми и могут отсутствовать.

4. и ещё два правила ...

Ещё правила S_{∞}

Бесконечная индукция:

$$\frac{\alpha[\mathsf{x} := \overline{\mathsf{0}}] \vee \delta \quad \alpha[\mathsf{x} := \overline{\mathsf{1}}] \vee \delta \quad \alpha[\mathsf{x} := \overline{\mathsf{2}}] \vee \delta \quad \dots}{(\forall \mathsf{x}.\alpha) \vee \delta}$$

Сечение:

$$\frac{\zeta \vee \alpha \qquad \neg \alpha \vee \delta}{\zeta \vee \delta}$$

Здесь α — секущая формула, число связок в $\neg \alpha$ — степень сечения.

В отличие от других правил, в правиле сечения хотя бы одна из боковых формул ζ или δ должна присутствовать.

Дерево доказательства

- 1. Доказательства образуют деревья.
- 2. Каждой формуле в дереве сопоставим порядковое число (ординал).
- 3. Порядковое число заключения любого неструктурного правила строго больше порядкового числа его посылок (больше или равно в случае структурного правила).

$$\frac{(\neg 1 = 0)_1 \quad (\neg 2 = 0)_2 \quad (\neg 3 = 0)_4 \quad (\neg 4 = 0)_8 \dots}{(\forall x. \neg x' = 0)_{\omega}}$$
$$\frac{(\forall x. \neg x' = 0)_{\omega}}{(\neg \neg \forall x. \neg x' = 0)_{\omega+1}}$$

4. Существует конечная максимальная степень сечения в дереве (назовём её степенью вывода).

Любая теорема Φ .А. — теорема S_{∞}

Теорема

Если $\vdash_{\phi a} \alpha$, то $\vdash_{\infty} |\alpha|_{\infty}$

Пример

Обратное неверно:

$$\frac{\neg \omega_1(\overline{0}, \lceil \overline{\sigma} \rceil) \qquad \neg \omega_1(\overline{1}, \lceil \overline{\sigma} \rceil) \qquad \neg \omega_1(\overline{2}, \lceil \overline{\sigma} \rceil) \qquad \dots}{\forall x. \neg \omega_1(x, \lceil \overline{\sigma} \rceil)}$$

Теорема

Если Φ .A. противоречива, то противоречива и S_{∞}

Обратимость правил де Моргана, отрицания, бесконечной индукции

Теорема

$$\frac{\neg(\alpha \lor \beta) \lor \delta}{\neg \alpha \lor \delta \quad \neg \beta \lor \delta} \quad \frac{\neg \neg \alpha \lor \delta}{\alpha \lor \delta} \quad \frac{(\forall x.\alpha) \lor \delta}{\alpha[x := \overline{0}] \lor \delta \quad \alpha[x := \overline{1}] \lor \delta \quad \alpha[x := \overline{2}] \lor \delta \quad \dots}$$

Доказательство.

Например, формула вида $\neg \neg \alpha \lor \delta$.

Обратимость правил де Моргана, отрицания, бесконечной индукции

Теорема

$$\frac{\neg(\alpha \lor \beta) \lor \delta}{\neg \alpha \lor \delta \quad \neg \beta \lor \delta} \quad \frac{\neg \neg \alpha \lor \delta}{\alpha \lor \delta} \quad \frac{(\forall x.\alpha) \lor \delta}{\alpha [x := \overline{\mathbf{0}}] \lor \delta \quad \alpha [x := \overline{\mathbf{1}}] \lor \delta \quad \alpha [x := \overline{\mathbf{2}}] \lor \delta \quad \dots}$$

Доказательство.

Например, формула вида $\neg \neg \alpha \lor \delta$.

Проследим историю $eg \neg \alpha$; она могла быть получена:

- 1. ослаблением заменим $\neg \neg \alpha$ на α в этом узле и последующих.
- 2. отрицанием выбросим правило, заменим $\neg\neg\alpha$ на α в последующих.

Устранение сечений

Теорема

Если α имеет вывод степени m>0 порядка t, то можно найти вывод степени строго меньшей m с порядком 2^t .

Доказательство.

Трансфинитная индукция. Пусть для всех деревьев порядка $t_1 < t$ условие выполнено. Покажем, что оно выполнено для порядка t. Рассмотрим заключительное правило. Это может быть...

- 1. Не сечение.
- 2. Сечение, секущая формула элементарная.
- 3. Сечение, секущая формула $\neg \alpha$.
- 4. Сечение, секущая формула $\alpha \vee \beta$.
- 5. Сечение, секущая формула $\forall x.\alpha$.

Случай 1. Не сечение

$$\frac{(\pi_0)_{t_0} \quad (\pi_1)_{t_1} \quad (\pi_2)_{t_2} \quad \dots}{(\alpha)_t}$$

Заменим доказательства посылок $(\pi_i)_{t_i}$ на $(\pi_i')_{2^{t_i}}$ по индукционному предположению.

- 1. Поскольку степени посылок $m_i' < m_i$, то $\max m_i' < \max m_i$.
- 2. Поскольку $t_i \le t$, то $2^{t_i} \le 2^t$.

Случай 5. Сечение с формулой вида $\forall x. \alpha$

$$\frac{\zeta \vee \forall x.\alpha \quad (\neg \forall x.\alpha) \vee \delta}{\zeta \vee \delta}$$

Причём степень и порядок выводов компонент, соответственно, (m_1,t_1) и (m_2,t_2) .

- 1. По индукции, вывод $\zeta \vee \forall x.\alpha$ можно упростить до $(m_1', 2^{t_1})$.
- 2. По обратимости, можно построить вывод $\zeta \vee \alpha[x := \theta]$ за $(m_1', 2^{t_1})$.
- 3. В формуле $(\neg \forall x.\alpha) \lor \delta$ формула $\neg \forall x.\alpha$ получена либо ослаблением, либо квантификацией из $\neg \alpha[x:=\theta_k] \lor \delta_k$.
 - 3.1 Каждое правило квантификации заменим на:

$$\frac{\zeta \vee \alpha[\mathsf{x} := \theta_k] \quad (\neg \alpha[\mathsf{x} := \theta_k]) \vee \delta_k}{\zeta \vee \delta_k}$$

- 3.2 Остальные вхождения $\neg \forall x. \alpha$ заменим на ζ (в правилах ослабления).
- 4. В получившемся дереве меньше степень так как в $\neg \alpha[x := \theta]$ меньше связок, чем в $\neg \forall x.\alpha$.

Случай 5. Как перестроим доказательство

Теорема об устранении сечений

Определение

Итерационная экспонента

$$(a\uparrow)^m(t)=\left\{egin{array}{ll} t, & m=0\ a^{(a\uparrow)^{m-1}(t)}, & m>0 \end{array}
ight.$$

Теорема

Если $\vdash_\infty \sigma$ степени m порядка t, то найдётся доказательство без сечений порядка $(2\uparrow)^m(t)$

Доказательство.

В силу конечности m воспользуемся индукцией по m и теоремой об уменьшении степени.

Порядок трансфинитной индукции

Определение

$$arepsilon_0$$
 — неподвижная точка $arepsilon_0=\omega^{arepsilon_0}$

Иначе говоря, $\varepsilon_0 = \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, (\omega \uparrow)^3(\omega), (\omega \uparrow)^4(\omega), \dots\}.$

Очевидно, что теорема об устранении сечений может быть доказана трансфинитной индукцией до ординала ε_0 (максимальный порядок дерева вывода, при правильной нумерации вершин).

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\forall_{\infty} \neg 0 = 0$$

Доказательство.

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

Пусть $\vdash_{\infty} \lnot 0 = 0$, устраним сечения и рассмотрим заключительное правило.

1. Правило де Моргана?

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\forall_{\infty} \neg 0 = 0$$

Доказательство.

Пусть $\vdash_{\infty} \neg 0 = 0$, устраним сечения и рассмотрим заключительное правило.

1. Правило де Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание?

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация?

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$ormall_{\infty}
eg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация? Нет квантора.

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация? Нет квантора.
- 4. Ослабление?

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация? Нет квантора.
- 4. Ослабление? Нет дизъюнкции ($\alpha \vee \beta$), хотя β обязана присутствовать.

Лемма

Если
$$\vdash_{\infty} \alpha$$
 и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация? Нет квантора.
- 4. Ослабление? Нет дизъюнкции ($\alpha \vee \beta$), хотя β обязана присутствовать.
- 5. Сечение?

Лемма

Если $\vdash_{\infty} \alpha$ и $\vdash_{\infty} \neg \alpha$, тогда $\vdash_{\infty} \neg 0 = 0$.

Теорема

$$\not\vdash_{\infty} \neg 0 = 0$$

Доказательство.

Пусть $\vdash_{\infty} \neg 0 = 0$, устраним сечения и рассмотрим заключительное правило.

- 1. Правило де Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация? Нет квантора.
- 4. Ослабление? Нет дизъюнкции $(\alpha \lor \beta)$, хотя β обязана присутствовать.
- 5. Сечение? Исключено по условию.

То есть, неизбежно, $\neg 0 = 0$ — аксиома, что также неверно.