令 K 为域, 令 V 是 K-有限维线性空间.

设 $M \subset V, a \in V$, 称 $M + a = \{x + a \mid x \in M\}$ 为 M 平移 a(the translate of M by a). 称 V 的子集 N 平行于 M, 若存在 $a \in V$ 使得 N = M + a. 易见平行是等价关系.

设 $M \subset V$, 若存在 V 的子空间 W, 使得 M 和 W 平行, 则称 M 是一个仿射集 (Affine set). 也就是说, 仿射集就是 V 的子空间作为 Abel 子群的陪集.

定理 1 (i) 设 M 是 V 的非空子集,则 M 是 V 的子空间当且仅当 M 是包含 0 的仿射集.

(ii) 设 M 为非空仿射集, 则 M 平行于唯一一个 V 的子空间 L. 其中 L 可以由 $L=M-M=\{x-y\,|\,x\in M,y\in M\}$ 给出.

(iii) 设 K 特征不为 2, 则非空集 $M \subset V$ 是一个仿射集当且仅当任意 $x,y \in M, \lambda \in K$, 有

$$(1 - \lambda)x + \lambda y \in M$$
.

即过点 x,y 的直线是 M 的子集.

仿射集 M 的维数就被定义为与它平行的子空间 L 的维数. 为了方便定义空集的维数为 -1. 证明. (i) 显然.

(ii) 设 M = L + a, 其中 $L \in V$ 的子空间, 则

$$M - M = (L + a) - (L + a) = L - L = L.$$

易见和 M 平行的子空间 L 唯一.

(iii) \Rightarrow 是显然的. 反之, 设 $M \subset V$ 满足条件. 取 $x \in M,$ 记 L = M - x. 证明 L 是子空间即可.

设 $\{M_i\}$ 是仿射集的集族, 若 $\bigcap M_i \neq \emptyset$, 取 $x \in \bigcap M_i$, 则 $\{M_i - x\}$ 是子空间的集族, 易见 $\bigcap M_i - x = \bigcap (M_i - x)$, 从而 $\bigcap M_i$ 也是仿射集.

维数为 $\dim V - 1$ 的仿射集 M 被成为仿射超平面 (Affine hyperplane).

记 $V^* = \operatorname{Hom}_K(V, K)$. 则 V 的任意 k 维子空间 L 可表为 $\{x \in V \mid f(x) = 0, f \in L'\}$. 其中 L' 是 V^* 的 $\dim V - k$ 维子空间. 设 M = L + a 是一个仿射集, $a \in V$. 则 M 就是 $\{x \in V \mid f(x) = f(a), f \in L'\}$. 特别当 M 是仿射超平面时,M 可以表示为 $f^{-1}(c)$, 其中 $f \in V^*$ 非零, $c \in K$. 当取 $V = K^n$, 取 V 和 V^* 的自然基时, 论述归结为仿射集是线性方程组的解集.

Problem 4. Let K be a field and let V be a finite-dimensional K-vector space.

- (a) Assume that K is infinite. Show that V is not the union of finitely many proper linear K-subspaces.
- (b) Assume that K is finte and V is non-zero. Let S be the set of affine hyperplanes of V. Let $g \colon V \to \mathbb{R}$ be a function. The Radon transform $Rg \colon S \to \mathbb{R}$ is defined by $(Rg)(\xi) = \sum_{x \in \xi} g(x)$ for $\xi \in S$. Show that Rg = 0 implies g = 0.
- (c) Let $v_1, \ldots, v_n, w_1, \ldots, w_n \in V$. Assume that for K-linear map $f: V \to K$, $(f(v_1), \ldots, f(v_n))$ and $(f(w_1), \ldots, f(w_n))$ coincide up to permutation of the indices. Deduce that (v_1, \ldots, v_n) and (w_1, \ldots, w_n) coincide up to permutation of the indices. Here we make no assumptions on K.

证明.(中文)(a)归纳.

(b) 设 $h: S \to \mathbb{R}$. 定义 h 的对偶 Radon 变换 $R^*h: V \to \mathbb{R}$ 为 $(R^*h)(x) = \sum_{x \in \xi \in S} h(\xi)$. 则对 $g: V \mapsto \mathbb{R}$ 有

$$(R^*Rg)(x) = \sum_{x \in \xi \in S} \sum_{y \in \xi} g(y) = \sum_{x \in \xi \ni y} g(y).$$

记 $d = \dim V \ge 1$. 对 $x \in V$, 由 V 的 d-1 维子空间共 $\frac{q^{d-1}}{q-1} = a$ 个 (熟知), 知包含 x 的仿射超平面共 a 个. 对 $x \ne y$, 包含 y-x 的 d-1 维子空间共 $\frac{q^{d-1}-1}{q-1} = b$ 个, 从而包含 x,y 的仿射超平面共 b 个 (设 M 是包含 x,y 的仿射超平面, 则 M-x 是包含 y-x 的 d-1 维子空间. 反之设 M 是包含 y-x 的 d-1 维子空间, 则 M+x 是包含 x,y 的仿射超平面). 于是

$$(R^*Rg)(x) = \sum_{x \in \xi \ni y} g(y) = \sum_{\xi \ni x} g(x) + \sum_{x \in \xi \ni y, y \neq x} g(y) = ag(x) + b \sum_{y \neq x} g(y)$$

$$= b \sum_{y \in V} g(y) - bg(x) + ag(x) = q^{d-1}g(x) + b \sum_{y \in V} g(y);$$

$$\sum_{\xi \in S} (Rg)(\xi) = \sum_{x \in \xi \in S} g(x) = a \sum_{x \in V} g(x).$$

从而

$$aq^{d-1}g(x) = a(R^*Rg)(x) - b\sum_{\xi \in S} (Rg)(\xi).$$

因此,Rg = 0 推出 g = 0.

(c) 当 K 是无限域时,设 $x,y \in V, x \neq y$,集 $\{f \in \operatorname{Hom}_K(V,K) \mid f(x) = f(y)\}$ 是 V^* 的 d-1 维子空间. 于是设 $x,y \in \{v_1,\ldots,v_n,w_1,\ldots,w_n\}, x \neq y$,记 $V_{x,y} = \{f \in \operatorname{Hom}_K(V,K) \mid f(x) = f(y)\}$,有 $\{V_{x,y}\}_{x,y}$ 是有限个 V^* 的真子空间,它们的并是 V^* 的真子集,于是存在 $f \in V^*$ 使得 $f \notin V_{x,y}, \forall x,y$. 于是 f 在 $\{v_1,\ldots,v_n,w_1,\ldots,w_n\}$ 上是单射. 从而由 $(f(v_1),\ldots f(v_n))$ 和 $(f(w_1),\ldots,f(w_n))$ 相差一个置换得到 (v_1,\ldots,v_n) 和 (w_1,\ldots,w_n) 相差同一个置换.

当 K 是有限域时,不妨设 $V \neq 0$. 定义 $g,g'\colon V \to \mathbb{Z} \subset \mathbb{R}$ 分别为某一向量在 $\{v_1,\ldots,v_n\}$ 和 $\{w_1,\ldots,w_n\}$ 中出现的次数. 对一仿射超平面 $\xi\in S$, 存在 $f\in \mathrm{Hom}_K(V,K),c\in K$ 使得 $\xi=f^{-1}(\xi)$. 则 c 在 $\{f(v_1),\ldots,f(v_n)\}$ 中出现的次数为

$$\sum_{f(v_i)=c} 1 = \sum_{v_i \in f^{-1}(c)=\xi} 1 = \sum_{x \in \xi} g(x) = (Rg)(\xi).$$

同理于 Rg'. 不难看出 Rg=Rg', 从而 g=g'. 也就是说作为多元集合 $\{v_1,\ldots,v_n\},\{w_1,\ldots,w_n\}$ 相等.