Fiche méthode: Comparaison et résolution graphique

I. Variations et comparaisons

Variations et comparaisons :

- Dire que f est **strictement croissante** sur I signifie que f **conserve l'ordre**, c'est-à-dire : Pour tous nombres a et b de I, si a < b, alors f(a) < f(b) (inégalité stricte).
- Dire que f est croissante sur I signifie que f conserve l'ordre, c'est-à-dire :
 Pour tous nombres a et b de I, si a < b, alors f(a) < f(b) (inégalité large).
- Dire que f est strictement décroissante sur I signifie que f contrarie l'ordre, c'est-à-dire :
- Pour tous nombres a et b de I, si a < b, alors f(a) > f(b) (inégalité stricte).
- Dire que f est décroissante sur I signifie que f contrarie l'ordre, c'est-à-dire :
 Pour tous nombres a et b de I, si a < b, alors f(a) ≥ f(b) (inégalité large).
- Dire que *f* est **constante** sur *I* signifie que:
 - Pour tous nombres a et b de I, il existe un réel k tel que : f(a) = f(b) = k
- Dire que f admet un **maximum** atteint en x = a sur I signifie que :
- Pour tout nombre réel $x \in I : f(x) \le f(a)$.
- Dire que f admet un minimum atteint en x = b sur I signifie que :
 Pour tout nombre réel x ∈ I : f(x) ≥ f(b).

Application 1: Comparaison

On donne le tableau de variation d'une fonction f.

1. Déterminer l'ensemble de définition de f.

<u>Méthode</u>: Pour déterminer l'ensemble de définition dans un tableau de variations on lit les extrémités de la première ligne.

$$D_f = [0; 5]$$

2. Décrire les variations de f.

Méthode: Pour décrire les variations à l'aide d'un tableau de variations:

- Si la flèche est vers le haut, la fonction est croissante sur l'intervalle des valeurs correspondantes de la 1ère ligne.
- Si la flèche est vers le bas, la fonction est décroissante sur l'intervalle des valeurs correspondantes de la 1^{ère} ligne.

La fonction f est strictement croissante sur [2; 4].

La fonction f est strictement décroissante sur [0; 2] et sur [4; 5].

3. Quelle est le minimum de la fonction f sur [2; 5]?

Le minimum de la fonction f sur [2:5] est -5 atteint en x=2.

4. En justifiant ces réponses, indiquer dans chaque cas si l'affirmation est vraie ou fausse ou si le tableau ne permet pas de conclure.

a.	f(1) < f(3)	Le tableau ne permet pas de conclure.
b.	f(1) < f(0)	0 < 1, or la fonction f est strictement décroissante sur $[0; 2]$ ainsi :
		f(0) > f(1). VRAIE.
c.	f(3) < 0	Sur [2; 4], le maximum de la fonction f est -1 , ainsi pour tout $x \in [2; 4]$ on a :
		$f(x) \le -1 < 0$. Or $3 \in [2; 4]$ ainsi $f(3) < 0$. VRAIE.
d.	f(3) = -3	Le tableau ne permet pas de conclure.
e.	$f(x) \le -1 \operatorname{sur} [0; 5]$	Le maximum de la fonction f sur $[0;5]$ est -1 .
		Ainsi pour tout réel $x \in [0; 5]$ on a $f(x) \le -1$. VRAIE.
f.	f(1) = -4.5	Le tableau ne permet pas de conclure.
g.	f(1) < f(5)	$f(5) = -2$. Pour tout $x \in [0; 2]$ on a $-5 \le f(x) \le -4 < -2$.
		Or $1 \in [0; 2]$ donc VRAIE.
h.	f(2) = f(5)	$f(2) = -5$ et $f(5) = -2$. Ainsi $f(2) \neq f(5)$. FAUSSE.
i.	Le minimum de f sur	Le minimum de la fonction f sur $[-4; 6]$ est -5 . FAUSSE.
	[0; 5] est -2	

II. Résolution graphique d'équations et d'inéquations

Application 2:

On donne ci-dessous les courbes représentatives \mathcal{C}_f et \mathcal{C}_a de deux fonctions f et g

1) Quel est l'ensemble de définition de f ?

$$D_f = [-5; 5]$$

2) Résoudre graphiquement les équations et inéquations suivantes, en donnant l'ensemble S des solutions.

- a) f(x) = 3 $S = \{-3, 3\}$
- b) f(x) = 5 S = {4}
- c) f(x) = -2 $S = \{-2, 2\}$
- d) $f(x) \ge -2$ $S = [-5; -2] \cup [2; 5]$
- e) $f(x) \le 5$ $S = D_f = [-5; 5]$
- f) g(x) > 4 S = 0
- g) f(x) = g(x) $S = \{-2, 3\}$
- h) f(x) < g(x) S =] 2;3[
- i) $f(x) \le g(x)$ S = [-2; 3]
- j) f(x) > g(x) $S = [-5; -2[\cup]3; 5]$
- k) $f(x) \ge g(x)$ $S = [-5; -2] \cup [3; 5]$

Résolution graphique d'équations et inéquations : Soit k un réel.

- Les solutions de l'équation f(x) = k sont les abscisses des points d'intersections de la courbe C_f et de la droite d'équation y = k (droite horizontale).
 - <u>Autrement dit</u>: Résoudre l'équation f(x) = k, c'est trouver les **antécédents** de k.
- Les solutions de l'inéquation f(x) ≤ k sont les abscisses des points de la courbe C_f situés en dessous et sur la droite d'équation y = k.
- Les solutions de l'équation f(x) = g(x) sont les abscisses des points d'intersections des courbes C_f et C_g .
- Les solutions de l'inéquation f(x) ≤ g(x) sont les abscisses des points de la courbe C_f situés en dessous et sur la courbe C_a.