13: Resampling FiltersResampling

- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

13: Resampling Filters

Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose we want to change the sample rate while preserving information: e.g.

Audio $44.1 \text{ kHz} \leftrightarrow 48 \text{ kHz} \leftrightarrow 96 \text{ kHz}$

Downsample:

LPF to new Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Upsample:

LPF to old Nyquist bandwidth: $\omega_0 = \frac{\pi}{K}$

Rational ratio: $f_s imes rac{P}{Q}$

LPF to lower of old and new Nyquist

bandwidths: $\omega_0 = \frac{\pi}{\max(P,Q)}$

$$x[i]$$
 1: K LPF $y[n]$

$$x[n]$$
 1:P LPF Q:1 $y[i]$

- Polyphase decomposition reduces computation by $K = \max(P, Q)$.
- The transition band centre should be at the Nyquist frequency, $\omega_0=rac{\pi}{K}$
- Filter order $M \approx \frac{d}{3.5\Delta\omega}$ where d is stopband attenuation in dB and $\Delta\omega$ is the transition bandwidth (Remez-exchange estimate).
- Fractional semi-Transition bandwidth, $\alpha = \frac{\Delta \omega}{2\omega \omega}$, is typically fixed.

e.g.
$$\alpha=0.05$$
 \Rightarrow $M pprox \frac{dK}{7\pi\alpha}=0.9dK$ (where $\omega_0=\frac{\pi}{K}$)

Halfband Filters

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

If K=2 then the new Nyquist frequency is $\omega_0=\frac{\pi}{2}.$

We multiply ideal response $\frac{\sin \omega_0 n}{\pi n}$ by a Kaiser window. All even numbered points are zero except h[0]=0.5.

If $4\mid M$ and we make the filter causal $(\times z^{-\frac{M}{2}})$, $H(z)=0.5z^{-\frac{M}{2}}+z^{-1}\sum_{r=0}^{\frac{M}{2}-1}h_1[r]z^{-2r}$ where $h_1[r]=h[2r+1-\frac{M}{2}]$

Half-band upsampler:

We interchange the filters with the 1:2 block and use the commutator notation.

 $H_1(z)$ is symmetrical with $\frac{M}{2}$ coefficients (mn-zero) so we need $\frac{M}{4}$ multipliers in total (input gain of 0.5 can usually be absorbed elsewhere).

Computation: $\frac{M}{4}$ multiplies per input sample

Dyadic 1:8 Upsampler

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose X(z): BW = $0.8\pi \Leftrightarrow \alpha = 0.2$

Upsample 1:2 $\rightarrow U(z)$:

Filter $H_P(z)$ must remove image: $\Delta\omega=0.2\pi$ For attenuation = 60 dB, $P\approx\frac{60}{3.5\Delta\omega}=27.3$ Round up to a multiple of 4: P=28

Upsample 1:2
$$\rightarrow V(z)$$
: $\Delta \omega = 0.6\pi \Rightarrow Q = 12$

Upsample 1:2 $\rightarrow Y(z)$: $\Delta \omega = 0.8\pi \Rightarrow R = 8$ [diminishing returns + higher sample rate]

Multiplication Count:

$$\left(1 + \frac{P}{4}\right) \times f_x + \frac{Q}{4} \times 2f_x + \frac{R}{4} \times 4f_x = 22f_x$$

Alternative approach using direct 1:8 upsampling:

 $\Delta\omega=0.05\pi\Rightarrow M=110\Rightarrow 111f_x$ multiplications (using polyphase)

Rational Resampling

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summarv
- MATLAB routines

```
x[n]
                       0 \Delta \Diamond 0 \Delta \bigcirc 1 : 2
```

Resample by
$$\frac{P}{Q} \Rightarrow \omega_0 = \frac{\pi}{\max(P,Q)}$$

 $\Delta\omega \triangleq 2\alpha\omega_0 = \frac{2\alpha\pi}{\max(P,Q)}$

Polyphase:
$$H(z) = \sum_{p=0}^{P-1} z^{-p} H_p(z^P)$$

Commutate coefficients:

$$v[s]$$
 uses $H_p(z)$ with $p = s \operatorname{mod} P$

Keep only every Q^{th} output:

$$y[i]$$
 uses $H_p(z)$ with $p = Qi \bmod P$

Multiplication Count:

$$H(z)$$
: $M+1 \approx \frac{60 \text{ [dB]}}{3.5\Delta\omega} = \frac{2.7 \max(P,Q)}{\alpha}$

$$H_p(z)$$
: $R+1 = \frac{M+1}{P} = \frac{2.7}{\alpha} \max\left(1, \frac{Q}{P}\right)$

Multiplication rate:
$$\frac{2.7}{\alpha} \max \left(1, \frac{Q}{P}\right) \times f_y = \frac{2.7}{\alpha} \max \left(f_y, f_x\right)$$

To resample by $\frac{P}{Q}$ do 1:P then LPF, then Q:1.

$$x[n]$$
 1:3 $H(z)$ $v[s]$ 5:1 $y[i]$ $y[i]$

$$\frac{x[n]}{@1} \frac{y[i]}{m^{3/5}}$$

$$h_0[r] \longrightarrow h_2[r] \longrightarrow r=0:R$$

$$h_1[r] \longrightarrow m^{3/5}$$

M+1 coeficients in all

Arbitrary Resampling

+

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Sometimes need very large P and Q:

e.g.
$$\frac{44.1 \text{ kHz}}{48 \text{ kHz}} = \frac{147}{160}$$

Multiplication rate OK: $\frac{2.7 \max(f_y, f_x)}{\alpha}$

However # coefficients: $\frac{2.7 \max(P,Q)}{\alpha}$

Alternatively, use any large integer P and round down to the nearest sample:

E.g. for
$$y[i]$$
 at time $i\frac{Q}{P}$ use $h_p[r]$ where $p=(\lfloor iQ \rfloor)_{\mathrm{mod}\ P}$

Equivalent to converting to analog with zero-order hold and resampling at $f_y = \frac{P}{O}$.

Pπ 2Pπ Continuous time Ω (rad/s)

Zero-order hold convolves with rectangular $\frac{1}{P}$ -wide window \Rightarrow multiplies periodic spectrum by $\frac{\sin\frac{\Omega}{2P}}{\frac{\Omega}{2P}}$. Resampling aliases Ω to Ω_{mod} $\frac{2P\pi}{Q}$.

Unit power component at Ω_1 gives alias components with total power:

$$\sin^2 \frac{\Omega_1}{2P} \sum_{n=1}^{\infty} \left(\frac{2P}{2nP\pi + \Omega_1} \right)^2 + \left(\frac{2P}{2nP\pi - \Omega_1} \right)^2 \approx \frac{\omega_1^2}{4P^2} \frac{2\pi^2}{6\pi^2} = \frac{\Omega_1^2}{12P^2}$$

For worst case, $\Omega_1=\pi$, need P=906 to get -60 dB \odot

 $4P\pi$

Polynomial Approximation

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Suppose P=50 and H(z) has order M=249 H(z) is lowpass filter with $\omega_0 \approx \frac{\pi}{50}$

Split into 50 filters of length $R+1=\frac{M+1}{P}=5$:

 $h_p[0]$ is the first P samples of h[m]

 $h_p[1]$ is the next P samples, etc.

$$h_p[r] = h[p + rP]$$

Use a polynomial of order L to approximate each segment:

$$h_p[r] pprox f_r(rac{p}{P})$$
 with $0 \leq rac{p}{P} < 1$

h[m] is smooth, so errors are low. E.g. error $< 10^{-3}$ for L=4

- Resultant filter almost as good
- Instead of M+1=250 coefficients we only need (R+1)(L+1)=25 where

$$R+1 = \frac{2.7}{\alpha} \max\left(1, \frac{Q}{P}\right)$$

Farrow Filter

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

Filter coefficients depend on fractional part of $i\frac{Q}{P}$:

$$\begin{array}{l} \Delta[i]=i\frac{Q}{P}-n \text{ where } n=\left\lfloor i\frac{Q}{P}\right\rfloor\\ \text{Calculate on the fly . (rather than store)}\\ y[i]=\sum_{r=0}^R f_r(\Delta[i])x[n-r]\\ \text{where } f_r(\Delta)=\sum_{l=0}^L b_l[r]\Delta^l \end{array}$$

$$y[i] = \sum_{r=0}^{R} \sum_{l=0}^{L} b_{l}[r] \Delta[i]^{l} x[n-r]$$

$$= \sum_{l=0}^{L} \Delta[i]^{l} \sum_{r=0}^{R} b_{l}[r] x[n-r]$$

$$= \sum_{l=0}^{L} \Delta[i]^{l} v_{l}[n] \quad \text{filter coef} \cdot \text{dote}$$
where $v_{l}[n] = b_{l}[n] * x[n]$
[like a Taylor series expansion]

Horner's Rule:

$$y[i] = v_0[n] + \Delta (v_1[n] + \Delta (v_2[n] + \Delta (\cdots)))$$

Multiplication Rate:

Each $B_l(z)$ needs R+1 per input sample

Horner needs L per output sample

Total:
$$(L+1)(R+1)f_x + Lf_y = \frac{2.7(L+1)}{\alpha} \max\left(1, \frac{f_x}{f_y}\right) f_x + Lf_y$$

$$R + 1 \approx \frac{2.7}{\alpha} \max\left(1, \frac{Q}{P}\right)$$

Summary

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

- Transition band centre at ω_0
 - ω_0 = the lower of the old and new Nyquist frequencies
 - Transition width = $\Delta\omega = 2\alpha\omega_0$, typically $\alpha \approx 0.1$
- Factorizing resampling ratio can reduce computation
 - halfband filters very efficient (half the coefficients are zero)
- ullet Rational resampling $imes rac{P}{Q}$
 - \circ # multiplies per second: $\frac{2.7}{\alpha} \max{(f_y, f_x)}$
 - \circ # coefficients: $\frac{2.7}{\alpha} \max{(\tilde{P}, Q)}$
- Farrow Filter
 - o approximate filter impulse response with polynomial segments
 - o arbitrary, time-varying, resampling ratios
 - \circ # multiplies per second: $\frac{2.7(L+1)}{\alpha} \max{(f_y, f_x)} \times \frac{f_x}{f_y} + Lf_y$
 - $ho pprox (L+1) rac{f_x}{f_y}$ times rational resampling case
 - \circ # coefficients: $\frac{2.7}{\alpha} \max{(P, Q)} \times \frac{L+1}{P}$
 - \circ coefficients are independent of f_y when upsampling

For further details see Mitra: 13 and Harris: 7, 8.

MATLAB routines

13: Resampling Filters

- Resampling
- Halfband Filters
- Dyadic 1:8 Upsampler
- Rational Resampling
- Arbitrary Resampling
- Polynomial Approximation
- Farrow Filter
- Summary
- MATLAB routines

gcd(p,q)	Find $\alpha p + \beta q = 1$ for coprime p , q
polyfit	Fit a polynomial to data
polyval	Evaluate a polynomial
upfirdn	Perform polyphase filtering
resample	Perform polyphase resampling