C12 - B - Résumé

Soit $f \in \mathbb{R}^{D_f}$,

Soit I un intervalle non trivial,

Définition de la continuité en un point

On dit que f est continue en a ssi elle admet une limite en a

Définition continuité en un point sur une restriction

Soit $a \in D_f$

Si il existe $\eta>0$ tel que $D_f\cap [a-\eta,a+\eta]$ soit un intervalle non trivial On dit que f est continue en a ssi $f|_{D_f\cap [a-\eta,a+\eta]}$ l'est.

Propriété

La fonction f est continue en a ssi

$$\lim_{\substack{x o a \
eq}} f(x) = f(a)$$

Définition de la continuité a gauche et a droite

Soit $l \in \mathbb{R}$ et $a \in \mathbb{R}$,

f est continue a droite:

$$\lim_{a^+} f = l \Leftrightarrow orall \epsilon > 0, \exists lpha > 0, orall x \in I, (a < x \leq a + lpha \Rightarrow |f(x) - l| \leq \epsilon)$$

f est continue à droite :

$$\lim_{a^-} f = l \Leftrightarrow orall \epsilon > 0, \exists lpha > 0, orall x \in I, (a - lpha \leq x < a \Rightarrow |f(x) - l| \leq \epsilon)$$

Définition du prolongement par continuité

Si f est définie sur $I \setminus \{a\}$ et possède une limite l en a. On définit alors le prolongement par continuité de f en a:

$$ilde{f}|_{{}_{I\setminus\{a\}}}=f$$

et $ilde{f}(a)=l$

Cette fonction est alors continue en a

Propriété: Caractérisation séquentielle

Soit $a \in I$.

 $D_f = I$

f est continue en a ssi :

$$orall (u_n) \in I^\mathbb{N}, (\lim_{n o \infty} u_n = a \Rightarrow \lim_{n o \infty} f(u_n) = f(a))$$

Théorème de la limite fixe

Soit $l \in \mathbb{R}$,

Soit $u=(u_n)\in\mathbb{R}^\mathbb{N}$, définie par :

$$egin{cases} u_0 \in I \ orall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

Si u est bien définie pour tout $n \in \mathbb{N}$ (si $f(I) \subset I$)

Si $\lim u = l$ et f est continue en l alors :

$$f(l) = l$$

Théorème : Opération de fonctions pour la continuité en un point

Soit $f,g\in\mathbb{R}^I$ et $a\in I$,

- Pour tout $\lambda, \mu \in \mathbb{R}$, $\lambda f + \mu g$ est continue en a
- fg est continue en a
- Si $g(a) \neq 0$, il existe $\alpha > 0$ tel que $\frac{f}{g}$ soit définie sur $I \cap]a \alpha, a + \alpha[$ et elle est continue en a

Théorème: Composition de continuité

Soit $g\in\mathbb{R}^J$ et $f\in\mathbb{R}^I$ telle que $f(I)\subset J$ puis I et J des intervalles non triviaux

Soit $a \in I$,

Si f est continue en a et g est continue en f(a) alors $g \circ f$ est continue en a

Définition

On dit que f est continue sur I ssi f est continue en tout point de I

Théorème

Les théorèmes précédents (opération de fonctions continues en un point et compositions de fonction continues en un point) fonctionnent

Définition

On dit que f est continue si

Pour tout $a \in D_f$, f est continue en a

(càd il existe $\eta>0$ tel que $D_f\cap [a-\eta,a+\eta]$ soit un intervalle non trivial et que $f|_{D_f\cap [a-\eta,a+\eta]}$ est continue en a)

Propriété : Continuité de fonctions particulières

• Polynômes :

Toute fonction polynôme est continue sur $\ensuremath{\mathbb{R}}$

Toute fonction rationnelle est continue sur son intervalle de définition

• Fonctions trigonométriques : $\sin \ et \cos \ sont \ continues \ sur \ \mathbb{R}$ Tout polynôme trigonométrique est continu sur \mathbb{R} Toute fonction rationnelle trigonométrique est continue sur son intervalle de définition

Définition: k-lipschitzienne

Pour $k \in R_+$, on dit que f est lipschitzienne de rapport k sur I ssi

$$orall (x,y) \in I^2, |f(x)-f(y)| \leq k|x-y|$$

Propriété: Continuité lipschitzienne

Toute fonction lipschitzienne est continue

Théorème des valeurs intermédiaires (TVI)

f est continue sur [a,b] où a < b telle que $f(a)f(b) \leq 0$ Alors il existe $c \in [a,b]$ tel que f(c)=0

Réécriture :

- f est continue sur [a,b] où a < b
- $f(a)f(b) \le 0$

Alors il existe $c \in [a,b]$ tel que f(c) = 0

Corollaire du TVI

- f est continue sur [a,b] où a < b
- $f(a)f(b) \le 0$
- f est strictement monotone

Alors il existe un unique $c \in [a,b]$ tel que f(c) = 0

Théorème de la bijection

- f est continue
- f est strictement monotone

Alors

f induit une bijection $ilde{f}:I o f(I)$

On peut décrire f(I) suivant des cas différents :

- Si *f* est strictement croissante :
 - Si I=[a,b[alors $f(I)=[a,\lim_b f[$

etc...

Théorème des fonctions réciproques (TFR)

Si

- I un intervalle
- f est continue
- ullet f est strictement monotone sur I

Alors

Il existe une unique fonction continue et strictement monotone (de même sens que f) sur f(I) noté f^{-1} et appelée fonction réciproque de f telle que :

$$orall x \in I, f^{-1}(f(x)) = x \ ext{ et } \ orall y \in f(I), f(f^{-1}(y)) = y$$

Théorème : Stricte monotonie et injectivité

Si

f est continue sur I

Alors

f est injective ssi f est strictement monotone

Lemme

Soit f injective, et continue sur I,

Alors pour tout $x \in I$, la fonction $Txf:Iackslash\{x\} o \mathbb{R}$ définie par :

 $Txf(y)=rac{f(y)-f(x)}{y-x}$ est non nulle et de signe constant sur $Iackslash\{x\}$. On note $\mathrm{SP}(x)\in\{\pm 1\}$ ce signe.

Théorème des bornes atteintes

Si f est continue sur un segment Alors elle est bornée et "atteint" ses bornes. (f admet un minimum et un maximum globaux)

Théorème de l'image d'un segment par une application

L'image d'un segment par une application continue est un segment

Soit $f:I\to\mathbb{C}$ (où I est un intervalle non trivial et a une borne de I) Soit $l\in\mathbb{C}$,

Définition de la limite complexe

Pour $a \in \mathbb{R}$,

$$\lim_{x o a}f(x)=l\Leftrightarrow orall \epsilon>0, \exists lpha>0, orall x\in I, (|x-a|\leq lpha\Rightarrow |f(x)-l|\leq \epsilon)$$

Pour $a = +\infty$,

$$\lim_{x o +\infty}f(x)=l\Leftrightarrow orall \epsilon>0, \exists A\in\mathbb{R}, orall x\in I, (x\geq A\Rightarrow |f(x)-l|\leq \epsilon)$$

Pour $a=-\infty$,

$$\lim_{x o -\infty}f(x)=l\Leftrightarrow orall \epsilon>0, \exists B\in \mathbb{R}, orall x\in I, (x\leq B\Rightarrow |f(x)-l|\leq \epsilon)$$

Proposition : Décomposition de la limite complexe

$$\lim_a f = l \Leftrightarrow (\lim_a \mathrm{Re}(f) = \mathrm{Re}(l) ext{ et } \lim_a \mathrm{Im}(f) = \mathrm{Im}(l))$$

Définition de la continuité complexe

f est continue en a ssi $\lim_a f$ existe

Propriétés : Opérations sur les limites et fonctions continues

La même que dans ${\mathbb R}$

Propriété composition a la source

On a aussi de même le fait qu'en composant f continue en a à la source par une fonction continue en b

 $h:J o\mathbb{R}$ tel que $h(J)\subset I$ et h(b)=a

On a alors : $f \circ h$ est continue en b

Propriété : Composition au but

Si f est continue en a (resp sur I)

Alors |f| et $\exp \circ f$ le sont aussi

(et aussi $\mathrm{Re}(f)$ et $\mathrm{Im}(f)$, ce qu'on a vu plus haut)

Théorème

L'image d'un segment par une fonction continue à valeurs complexes et une partie bornée de \mathbb{C} .

i.e. :

$$\exists M \in \mathbb{R}_+, orall x \in [a,b], |f(x)| \leq M$$