No	me	${f N}^o$ $acksquare$ ENGFIS $acksquare$ FIS
Ins	struções: res	onda e justifique brevemente as suas respostas nesta folha.
1.	(1 valor) Sejam	$\mathbf{a} = (2, 1, 0)$ e $\mathbf{b} = (0, 1, 3)$. Existem escalares t e s tais que $t\mathbf{a} + s\mathbf{b} = (1, 1, 1)$.
	\bigcirc Verdadeiro	○ Falso
2.	$(1 \ valor)$ Sejan $\mathbf{v} = t\mathbf{a} + s\mathbf{b}$, co	$\mathbf{a}=(1,2)$ e $\mathbf{b}=(2,3)$. Todo vetor $\mathbf{v}\in\mathbb{R}^2$ pode ser representado como n $t,s\in\mathbb{R}$.
	O Verdadeiro	○ Falso
3.	(1 valor) Se o v	etor $\mathbf{v} \in \mathbb{R}^3$ satisfaz $\mathbf{v} \cdot (\mathbf{i} \times \mathbf{j}) = 0$ então é proporcional a \mathbf{k} .
	O Verdadeiro	○ Falso
4.	(1 valor) Se os	retores \mathbf{a} e \mathbf{b} de \mathbb{R}^3 são ortogonais então $\ \mathbf{a} \times \mathbf{b}\ = \ \mathbf{a}\ \ \mathbf{b}\ $.
	O Verdadeiro	○ Falso
5.	(1 valor) Se os dentes.	retores ${\bf a},{\bf b}$ e ${\bf c}$ formam uma base de $\mathbb{R}^3,$ então os vetores ${\bf a}$ e ${\bf b}$ são indepen-
	O Verdadeiro	○ Falso
6.	$(1 \text{ valor}) O \text{ con}$ de \mathbb{R}^3 .	unto dos vetores $(x,y,z)\in\mathbb{R}^3$ tais que $x-2y+3z=4$ é um subespaço vetorial
	\bigcirc Verdadeiro	○ Falso
7.	$(1 \ valor)$ A inte de \mathbb{R}^n .	seção $A\cap B$ de dois subespaços vetoriais A e B de \mathbb{R}^n é um subespaço vetorial
	O Verdadeiro	○ Falso
8.	(1 valor) Existe	uma transformação linear sobrejetiva $L: \mathbb{R}^3 \to \mathbb{R}^2$.
	○ Verdadeiro	() Falso

9. (1 valor) Sejam $\mathbf{a}=(1,1,1), \ \mathbf{b}=(2,0,-1)$ e $\mathbf{c}=(0,1,2).$ Determine, se existirem, escalares s,t,u tais que $s\mathbf{a}+t\mathbf{b}+u\mathbf{c}=(-3,4,9).$

$$\mathbf{a} - 2\mathbf{b} + 3\mathbf{c} = (-3, 4, 9)$$

10. (1 valor) Sejam $\mathbf{a}=(1,1,1),\,\mathbf{b}=(1,0,-1)$ e
 $\mathbf{c}=(0,1,0).$ Calcule

$$\mathbf{a} \cdot \mathbf{b}$$
 $\mathbf{a} \times \mathbf{b}$ $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ e $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

$$\mathbf{a}\cdot\mathbf{b}\ = 0 \qquad \qquad \mathbf{a}\times\mathbf{b} = (-1,2,-1) \qquad \qquad \mathbf{a}\cdot(\mathbf{b}\times\mathbf{c}) = 2 \qquad \qquad \mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = (1,0,1)$$

11. $(1 \ valor)$ Sejam $\mathbf{v} = (1, 1, 1)$ e $\mathbf{w} = (2, 0, -1)$. Determine um escalar t tal que $\mathbf{w} = t \mathbf{v} + \mathbf{a}$ com \mathbf{a} ortogonal a \mathbf{v} .

$$t = \frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} = 1/3.$$

12. (1 valor) Determine uma equação cartesiana do plano $P \subset \mathbb{R}^3$ passando por $\mathbf{a} = (1, 2, 3)$ e ortogonal ao vetor $\mathbf{n} = (1, -1, 1)$.

$$x - y + z = 2.$$

13. (1 valor) Determine a interseção entre a reta $R \subset \mathbb{R}^3$ formada pelos vetores proporcionais a $\mathbf{v} = (3, 2, 1)$ e o plano $P \subset \mathbb{R}^3$ passando por $\mathbf{a} = (1, 2, 3)$ e ortogonal ao vetor $\mathbf{n} = (1, -1, 1)$.

$$R \cap P = \{ \mathbf{v} \}$$
.

14. (1 valor) Determine um vetor unitário $\mathbf{v} \in \mathbb{R}^3$ ortogonal aos dois vetores $\mathbf{a} = (1,1,0)$ e $\mathbf{b} = (0,1,-1)$.

$$\frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|} = \frac{1}{\sqrt{3}}(-1, 1, 1)$$

15. (1 valor) Determine o vetor da reta $R \subset \mathbb{R}^2$ de equação cartesiana 2x - 3y = 4 que tem norma menor possível.

$$(8/13, -12/13)$$

16. (1 valor) Calcule a área do triângulo de vértices $\mathbf{a} = (1,1)$ e $\mathbf{b} = (3,2)$ e $\mathbf{c} = (2,3)$.

$$\frac{1}{2} \left| \text{Det} \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right) \right| = 3/2.$$

17. (1 valor) Calcule o volume do paralelepípedo de lados $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{k}$ e $\mathbf{c} = \mathbf{j} + \mathbf{k}$.

$$|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}| = \left| \text{Det} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \right| = 1.$$

18. (1 valor) Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que $T(\mathbf{i}) = \mathbf{i} - \mathbf{j}$ e $T(\mathbf{j}) = \mathbf{i} + 2\mathbf{j}$. Determine $T^2(2\mathbf{i} + 3\mathbf{j})$.

$$T^2(2\mathbf{i} + 3\mathbf{j}) = 9\mathbf{i} + 3\mathbf{j}$$

- 19. (1 valor) Seja $L : \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por L(x, y, z) = (z, x y, -x + y z). Determine o espaço nulo, a imagem, a nulidade e a ordem de L.
 - O espaço nulo é a reta $\mathbb{R}(1,1,0)$ e a imagem é o plano x+y+z=0. A nulidade é 1 e a ordem é 2.
- 20. (1 valor) Seja $M : \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por M(x, y, z) = (z, z y, z y + x). Diga se M é invertível. Caso afirmativo, determine a transformação inversa.
 - É invertível, e a inversa é $M^{-1}(u,v,w)=(w-v,u-v,u).$

Nome N^o	☐ ENGFIS
------------	----------

Instruções: responda e justifique brevemente as suas respostas nesta folha.

- 1. (1 valor) Existe uma matriz quadrada 3×3 real A tal que $A^2 = -I$.
 - O Verdadeiro
- (Falso
- 2. (1 valor) Sejam A e B duas matrizes quadradas $n \times n$ reais. Se AB=0, então A=0 ou B=0.
 - O Verdadeiro
- () Falso
- 3. (1 valor) Sejam A e B duas matrizes quadradas $n \times n$ reais. Se Ae B são invertíveis, então também A+B é invertível.
 - O Verdadeiro
- (Falso
- 4. (1 valor) Se A e B são matrizes quadradas $n \times n$ então Tr(AB BA) = 0.
 - O Verdadeiro
- O Falso
- 5. (1 valor) Todo operador $L: \mathbb{R}^3 \to \mathbb{R}^3$ admite pelo menos um valor próprio.
 - O Verdadeiro
- Falso
- 6. (1 valor) Se 4 é um valor próprio do operador L^2 , então 2 é um valor próprio do operador L.
 - Verdadeiro
- (Falso
- 7. (1 valor) A matriz

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

é diagonalizável.

- O Verdadeiro
- O Falso

8. (1 valor) As matrizes

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$

são semelhantes.

- O Verdadeiro
- O Falso
- 9. (1 valor) Seja $T : \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que $T(\mathbf{i}) = 3\mathbf{i} 2\mathbf{j} + \mathbf{k}$ e $T(\mathbf{j}) = -\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$. Determine a matriz que representa T relativamente às bases canónicas e o valor de T(5,4). A matriz que representa T é

$$\left(\begin{array}{ccc}
3 & -1 \\
-2 & 2 \\
1 & -3
\end{array}\right)$$

e
$$T(5,4) = (11, -2, -7)$$
.

10. (1 valor) Sejam $M: \mathbb{R}^3 \to \mathbb{R}^2$ e $L: \mathbb{R}^2 \to \mathbb{R}^3$ as transformações lineares definidas por M(x,y,z) = (2x+y+3z,y-z) e L(x,y) = (-5x+y,3x-2y,x+y). Calcule as matrizes das composições S = LM e T = ML relativamente às bases canónicas.

A matriz que representa S = LM é

$$\left(\begin{array}{ccc} -5 & 1\\ 3 & -2\\ 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 2 & 1 & 3\\ 0 & 1 & -1 \end{array}\right) = \left(\begin{array}{ccc} -10 & -4 & -16\\ 6 & 1 & 11\\ 2 & 2 & 2 \end{array}\right)$$

e a matriz que representa T=ML é

$$\left(\begin{array}{ccc} 2 & 1 & 3 \\ 0 & 1 & -1 \end{array}\right) \left(\begin{array}{ccc} -5 & 1 \\ 3 & -2 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{ccc} -4 & 3 \\ 2 & -3 \end{array}\right)$$

11. (1 valor) Dê um exemplo, se existir, de uma matriz quadrada 2×2 real E tal que $E^3 = -I$, ou prove que não existe.

$$E = \begin{pmatrix} \cos(\pi/3) & -\sin(\pi/3) \\ \sin(\pi/3) & \cos(\pi/3) \end{pmatrix}$$

12. (1 valor) Diga se a matriz

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right)$$

é invertível e, caso afirmativo, calcule a inversa.

A matriz A é invertível e a sua inversa é

$$A^{-1} = \left(\begin{array}{ccc} 1 & -2 & 1\\ 0 & 1 & -2\\ 0 & 0 & 1 \end{array}\right)$$

13. (1 valor) Calcule os determinantes das matrizes B^2 e B^{-1} , se

$$B = \left(\begin{array}{cccc} 0 & 1 & 2 & 3 \\ 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 3 & 4 \end{array}\right).$$

$$Det(B^2) = (4!)^2$$
 e $Det(B^{-1}) = \frac{1}{4!}$

14. *(1 valor)* Determine um sistema linear definido por uma matriz em escada de linhas que seja equivalente ao sistema linear

$$\begin{cases} 3x - y + 2z &= 9\\ 2x + 2y - 3z &= -1\\ x + 3y + 4z &= 3 \end{cases}.$$

e calcule as suas soluções.

Um sistema equivalente é

$$\left\{ \begin{array}{cccc} x & +3y & +4z & = 3 \\ & y & +z & = 0 \\ & z & = 1 \end{array} \right. .$$

e a única solução é (x, y, z) = (2, -1, 1).

15. (1 valor) Determine o espaço das soluções do sistema

$$\begin{cases} x + 2y + 3z + 4w &= 5\\ 6x + 7y + 8z + 9w &= 10\\ 11x + 12y + 13z + 14w &= 15 \end{cases}$$

O espaço das soluções é o plano afim

$$\{(-3+t+2s, 4-2t-3s, t, s) \text{ com } t, s \in \mathbb{R}\}$$

ou seja, o plano passando por $\mathbf{a} = (-3, 4, 0, 0)$ e gerado pelos vetores $\mathbf{v} = (1, -2, 1, 0)$ e $\mathbf{w} = (2, -3, 0, 1)$.

16. (1 valor) Determine valores e vetores próprios da reflexão $R: \mathbb{R}^2 \to \mathbb{R}^2$ que transforma cada ponto do plano euclidiano no seu simétrico em relação à reta y = 3x.

Os valores próprios são ± 1 , e uns vetores próprios são $\mathbf{v}_+ = (1,3)$ e $\mathbf{v}_- = (-3,1)$, respetivamente.

17. (1 valor) Determine a matriz 2×2 que define, relativamente à base canónica, a reflexão $R: \mathbb{R}^2 \to \mathbb{R}^2$ que transforma cada ponto do plano euclidiano no seu simétrico em relação à reta y=3x.

$$\left(\begin{array}{cc} -4/5 & 3/5 \\ 3/5 & 4/5 \end{array}\right)$$

18. $(1 \ valor)$ Seja B uma matriz real 3×3 com valores próprios 1, 2 e -2. Calcule o determinante e o traço da matriz -2B.

O determinante é Det(-2B) = 32 e o traço é Tr(-2B) = -2.

19. (1 valor) Determine os valores próprios e os vetores próprios da matriz

$$C = \left(\begin{array}{cc} 6 & -1\\ 2 & 3 \end{array}\right)$$

Os valores próprios são 5 e 5, e os vetores próprios são proporcionais a $\mathbf{v}_4 = (1,2)$ e $\mathbf{v}_5 = (1,1)$, respetivamente.

20. (1 valor) Diagonalize, se possível, a matriz

$$C = \left(\begin{array}{cc} 6 & -1\\ 2 & 3 \end{array}\right)$$

ou seja, determine uma matriz invertível U e uma matriz diagonal Λ tais que $\Lambda = U^{-1}CU$.

$$U = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$
 e $\Lambda = \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix}$