

Mesure la phase spectrale

Adeline Bonvalet

Laboratoire d'Optique et Biosciences

Ecole Polytechnique - CNRS - INSERM

Journée Thématique Mise en forme spatiale et temporelle d'impulsions femtoseconde

Plan

I. Représentation d'une impulsion brève

II. Mesures linéaires

- 1. Spectroscopie par Transformée de Fourier
- 2. Interférométrie temporelle
- 3. Interférométrie spectrale
- 4. Comparaison

III. Mesures non-linéaires

- 1. Autocorrélations
- 2. Spider
- 3. SRSI
- 4. Frog
- 5. Bilan

Introduction

Comment caractériser entièrement une impulsion?

Mesurer le champs électrique avec une impulsion plus courte :

Mesure d'impulsions THz ps avec une impulsion visible fs

➤ Mesure d'impulsions visibles fs à l'aide d'impulsions XUV as

800nm 375THz 2,7fs

300µm 1THz 1ps

IR

vis

UV

30PHz

10nm

33as

Fig. 1. Schematic of the measurement principle. A few-cycle pulse of laser light, together with a synchronized subfemtosecond XUV burst, is focused into an atomic gas target. The XUV pulse knocks electrons free by photoionization. The light electric field $E_{i}(t)$ to be measured imparts a momentum change to the electrons (black arrows), which scales as the instantaneous value of the vector potential $A_{i}(t)$ at the instant of release of the probing electrons. The momentum change is measured by an electron detec-

Goulielmakis, Science 305, 1267 (2004)

Le champ électrique (réel) de l'impulsion se décompose en ondes monochromatiques:

$$\varepsilon(t) = \int_{-\infty}^{\infty} \varepsilon(\omega) \exp(-i\omega t) \frac{d\omega}{2\pi} = TF[\varepsilon(\omega)]$$

\

Transformée de Fourier

Le champ $\mathcal{E}(\omega)$ est complexe:

$$\varepsilon(\omega) = \int_{-\infty}^{\infty} \varepsilon(t) \exp(i\omega t) dt = TF^{-1} [\varepsilon(t)]$$

$$\varepsilon(\omega) = |\varepsilon(\omega)| \exp(i\varphi(\omega))$$

Fréquence

Amplitude

Phase spectrale

 $\varepsilon(t)$ est réel donc $\varepsilon^*(\omega) = \varepsilon(-\omega)$

On définit le champ complexe:

$$E(\omega) = 2\Theta(\omega)\varepsilon(\omega)$$

$$E(t) = TF(E(\omega))$$

$$E(t) = \operatorname{Re}(\varepsilon(t))$$

E(t) est la représentation analytique du champ réel ou **champ complexe**

$$E(t) = |E(t)| \exp(i\phi(t))$$

Une impulsion brève peut être entièrement représentée par:

- son champ électrique réel $\mathcal{E}(t)$
- son champ électrique complexe E(t)

$$E(t) = TF(E(\omega))$$

• son champ électrique spectral $E(\omega) = |E(\omega)| \exp(i\varphi(\omega))$

Caractériser une impulsion consiste à mesurer l'amplitude et la phase spectrale

$$I(t) = n \frac{\varepsilon_0 c}{2} |\varepsilon(t)|^2$$
 Intensité temporelle

$$I(\omega) = n \frac{\varepsilon_0 c}{2} |\varepsilon(\omega)|^2$$
 Intensité spectrale

Intensités temporelles pour différentes phases spectrales

1. Spectroscopie par Transformée de Fourier

On mesure **l'intensité** en sortie d'un interféromètre de Michelson en fonction du **délai** τ **variable** d'un bras de l'interféromètre:

$$S(\tau) = \int (E(t) + E(t - \tau))^2 dt$$

$$S(\tau) = 2 \int E(t)^2 dt + 2 \int E(t)E(t-\tau)dt$$

Constante indépendante de τ

Autocorrélation du champs f(au)

$$f(\tau) = E(t) \otimes E(-t) = E(t) \otimes E^*(-t)$$

$$TF^{-1}(f(\tau)) = E(\omega).E^*(\omega) = |E(\omega)|^2$$

La transformée de Fourier inverse du signal oscillant donne **l'intensité spectrale**, mais aucune information sur la phase

2. Interférométrie temporelle avec une impulsion de référence

La mesure de la **corrélation** linéaire avec une impulsion de référence donne:

$$S(\tau) = \int (E(t) + E_0(t - \tau))^2 dt$$
$$f(\tau) = E(t) \otimes E_0(-t) = E(t) \otimes E_0^*(-t)$$

Produit de corrélation $f(\tau)$

$$TF^{-1}(f(\tau)) = E(\omega).E_0^*(\omega)$$

Si l'impulsion de référence est connue on peut déterminer l'amplitude **et la phase** de l'impulsion inconnue.

3. Interférométrie spectrale avec une impulsion de référence

On observe un **spectre cannelé** avec des franges spectrales de période environ $2\pi/\tau$

On mesure **l'intensité spectrale** de deux impulsions décalées d'un **retard** τ **fixe**.

$$S(\omega) = |E_0(\omega) + E(\omega)e^{i\omega\tau}|^2$$

$$S(\omega) = |E_0(\omega)|^2 + |E(\omega)|^2 + f(\omega)e^{i\omega\tau} + f^*(\omega)e^{-i\omega\tau}$$

$$2 |f(\omega)| \cos(\Delta\varphi(\omega) + \omega\tau) \qquad \Delta\varphi(\omega) = \varphi(\omega) - \varphi_0(\omega)$$

avec

$$f(\omega) = E_0^*(\omega) E(\omega) = |E_0^*(\omega) E(\omega)| \exp(i(\varphi(\omega) - \varphi_0(\omega)))$$
 Produit de corrélation

3. Interférométrie spectrale avec une impulsion de référence

$$S(\omega) = \mid E_0(\omega) \mid^2 + \mid E(\omega) \mid^2 + f(\omega)e^{i\omega\tau} + f^*(\omega)e^{-i\omega\tau}$$

3. Interférométrie spectrale avec une impulsion de référence

3. Interférométrie spectrale avec une impulsion de référence

Par traitement de Fourier du signal $S(\omega)$ on peut remonter à la différence de phase :

$$\Delta\varphi(\omega) = \varphi(\omega) - \varphi_0(\omega)$$

Froehly C et al. J. Opt. (Paris) 4 (1973) 183. Lepetit et al, JOSA B **12** (1995) Monmayrant, weber, Chatel, JPB **43** (2010)

4.bilan

Un mesure linéaire de phase spectrale nécessite une impulsion de référence connue.

Interférométrie temporelle

Balayage temporel

Détecteur monocanal (photodiode)

Interférométrie spectrale

Pas de balayage temporel (retard fixe) Détecteur multicanal (spectromètre)

Avantages de ces méthodes: sensibilité (car linéaire) simplicité

Applications:

Mesure d'une impulsion inconnue Mesure de la phase introduite par un composant optique

1. Autocorrélation

Autocorrélateur intensimétrique

L'impulsion est séparée en deux répliques **non-colinéaires** séparées d'un retard τ variable et focalisées dans un cristal non-linéaire.

$$E_{SHG}(t)\alpha\chi^{(2)}E(t)E(t-\tau)$$

On mesure l'intensité de génération de second harmonique en fonction du retard τ:

$$S(\tau) = \int |E_{SHG}(\tau)|^2 dt = \int I(t)I(t-\tau)dt$$

La durée RMS de l'impulsion est reliée à la durée RMS de l'autocorrélation: $\Delta au = \sqrt{2} \Delta t$

➤Information indirecte et partielle sur la phase....15

1. Autocorrélation

Autocorrélateur interférométrique

Photodiode

L'impulsion est séparée en deux répliques **colinéaires** séparées d'un retard τ variable et focalisées dans un cristal non-linéaire.

$$E_S(t)\alpha\chi^{(2)}(E(t) + E(t-\tau))^2$$
$$S(\tau)\alpha\int (E(t) + E(t-\tau))^4 dt$$

Par filtrage de Fourier on retrouve l'autocorrélation en intensité

$$\Delta \tau = \sqrt{2} \Delta t$$

2. Spider

Spider: Spectral Phase Interferometry for Direct Electric field Reconstruction Méthode **d'Interférométrie à décalage spectral** pour mesurer amplitude et phase

L'interférométrie spectrale mesure la différence de phase entre deux faisceaux.

Idée: utiliser une réplique de l'impulsion comme référence.

Mais alors on mesure $\varphi(\omega) - \varphi(\omega) + \omega \tau = \omega \tau$

4. Spider

Idée: créer une impulsion de référence décalée en fréquence

Par somme de fréquence avec une impulsion monochromatique dans un cristal nonlinéaire, on crée une réplique décalée spectralement:

$$E_s(\omega) = E(\omega - \omega_0)$$

4. Spider

Génération de deux répliques décalées spectralement

$$\varphi(\omega-\omega_1)-\varphi(\omega-\omega_2)$$

Interférométrie spectrale

$$\varphi(\omega - \omega_1) - \varphi(\omega - \omega_2) = (\omega_2 - \omega_1) \frac{d\varphi}{d\omega}$$

On reconstruit la phase spectrale par intégration ou concaténation

4. Spider

Les deux impulsions décalées spectralement sont obtenues par somme de fréquence avec une **impulsion chirpée**.

$$\varphi(\omega - \omega_1) - \varphi(\omega - \omega_2) = (\omega_2 - \omega_1) \frac{d\varphi}{d\omega}$$

On reconstruit la phase spectrale par intégration ou concaténation

4. Spider

Dispositif expérimental

Schéma Monmayrant Femto 2008

5. SRSI: Self –Reference Spectral Interferometry

✓ Génération d'une impulsion de référence par par Cross-Polarized Wave generation (XPW). L'impulsion engendrée présente un **spectre élargi et une phase spectrale constante.**

✓ Mesure de la phase spectrale par **interférometrie spectrale** avec l'impulsion de référence engendrée

6. Frog

FROG : Frequency Resolved Optical Gating Filtrage temporel résolu spectralement

Filtrage temporel :
$$E_{sig}(t) = E(t)G(t-\tau)$$

$$ightharpoonup$$
 Mesure du spectre $S(au,\omega)=\mid E_{sig}(\omega)\mid^2$

$$S(\tau, \omega) = |TF(E_{sig}(t))|^2$$

$$S(\tau, \omega) = |\int E_{sig}(t)e^{i\omega t}dt|^2$$

$$S(\tau, \omega) = |\int E(t)G(t - \tau)e^{i\omega t}dt|^2$$

Spectrogramme: convolution temporelle de l'impulsion et d'une porte

6. Frog

Spectrogramme: Convolution temporelle de l'impulsion et d'une porte

6. Frog

Frog: Frequency Resolved Optical Gating Filtrage temporel résolu spectralement

$$E_{sig}(t) = E(t)G(t - \tau)$$

- ightharpoonup Mesure du spectrogramme $\,S(au,\omega)=\mid E_{sig}(\omega)\mid^2$
- ➤ Algorithme itératif

6. Frog

PG-FROG (Polarization-Gating FROG)

La porte temporelle est réalisée par effet Kerr à partir de l'impulsion à déterminer.

6. Frog

SHG-FROG (Second Harmonic Generation-FROG)

La porte temporel est l'impulsion elle-même, retardée d'un délai τ .

$$G(t) = E(t- au)$$
 $arphi^{(2)} = 0$ $egin{array}{c} egin{array}{c} \egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{arra$

Time [fs] SHG FROG

50

-50

-100

675 700 725 750 775 800 825

10 fs

100 50 -50 -100 675 700 725 750 775 800 825

Et beaucoup d'autres: THG-FROG, GRENOUILLE, FROG-CRAB, etc.

7. bilan

Plusieurs techniques de caractérisation complète d'une impulsion brève:

>Avec référence

➤ Interférométrie temporelle

Balayage temporel
Détecteur monocanal (photodiode)

➤ Interférométrie spectrale

Pas de balayage temporel (retard fixe) Détecteur multicanal (spectromètre)

- ➤ Autoréférencées
 - **>**SPIDFR
- + monocoup, rapide, analytique
- signal faible, sensible à la calibration du spectro

≻FROG

- + mise en œuvre simple, signal intuitif
- Algorithme iteratif, sensible à la dynamique du spectro

>SRSI

- + mise en œuvre simple, monocoup, analytique
- Conditions sur la phase de l'impulsion à mesurer (durée<2xlimite TF)

$$f(t) = TF[f(\omega)](t) = \int_{-\infty}^{\infty} f(\omega) \exp(-i\omega t) \frac{d\omega}{2\pi}$$

$$f(\omega) = TF^{-1}[f(t)](\omega) = \int_{-\infty}^{\infty} f(t) \exp(i\omega t) dt$$

TF usuelles

f(t)	$f(\omega)$
$\delta(t-t_0)$	$\exp(i\omega t_0)$
$\exp(-i\omega_0 t)$	$2\pi\delta(\omega-\omega_0)$
$\exp(-t^2/2\tau^2)$	$\tau\sqrt{2\pi}\exp(-\tau^2\omega^2/2)$
$\exp(iat^2/2)$	$e^{-i\pi/4}\sqrt{2\pi/a}\exp(-i\omega^2/2a)$

Propriétés

$$TF^{-1}[f^*(t)](\omega) = f^*(-\omega)$$

$$\int f^*(t)g(t)dt = \int f^*(\omega)g(\omega)\frac{d\omega}{2\pi}$$

$$TF^{-1}\left(\frac{d^n f(t)}{dt^n}\right) = (-i\omega)^n f(\omega)$$

$$TF\left(\frac{d^n f(\omega)}{d\omega^n}\right) = (it)^n f(t)$$

$$TF^{-1}(f(t)g(t)) = \frac{1}{2\pi}f(\omega)\otimes g(\omega)$$

$$TF^{-1}(f(t)\otimes g(t)) = f(\omega)g(\omega)$$

1. Autocorrélation interférométrique

2. Autocorrélation interférométrique

Le cristal non-linéaire et le détecteur peuvent être remplacés par un détecteur optimisé pour l'absorption à deux photons

Photodiode à deux photons

