Álgebra II. Hoja de ejercicios 3: Anillos cociente y productos de anillos Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Sea R un anillo conmutativo y sea N(R) su nilradical. Demuestre que el anillo cociente R/N(R) no tiene nilpotentes; es decir, N(R/N(R)) = 0.

Ejercicio 2. *Sea R un anillo conmutativo y sea I* \subseteq *R un ideal. Demuestre que* $M_n(R)/M_n(I) \cong M_n(R/I)$.

Ejercicio 3. Sea k un cuerpo y $c \in k$. Consideremos el homomorfismo de evaluación

$$ev_c: k[X] \to k$$
, $f \mapsto f(c)$.

- 1) Demuestre que $\ker ev_c = (X c)$ es el ideal generado por el polinomio lineal X c.
- 2) Deduzca del primer teorema de isomorfía que $k[X]/(X-c) \cong k$.
- 3*) De modo similar, demuestre que para $c_1, \ldots, c_n \in k$ se tiene $k[X_1, \ldots, X_n]/(X_1 c_1, \ldots, X_n c_n) \cong k$. Sugerencia: considere el automorfismo de $k[X_1, \ldots, X_n]$ dado por $X_i \mapsto X_i + c_i$.

Ejercicio 4. Demuestre que el cociente $\mathbb{Q}[X]/(X^2+5)$ es isomorfo al cuerpo

$$\mathbb{Q}(\sqrt{-5}) := \{ x + y\sqrt{-5} \mid x, y \in \mathbb{Q} \}$$

(en particular, verifique que $\mathbb{Q}(\sqrt{-5})$ es un cuerpo).

Ejercicio 5. Para el anillo de los enteros de Gauss $\mathbb{Z}[\sqrt{-1}]$ demuestre que

$$\mathbb{Z}[\sqrt{-1}]/(1+\sqrt{-1}) \cong \mathbb{Z}/2\mathbb{Z}, \quad \mathbb{Z}[\sqrt{-1}]/(1+2\sqrt{-1}) \cong \mathbb{Z}/5\mathbb{Z}.$$

Ejercicio 6. Consideremos el anillo de los enteros de Gauss $\mathbb{Z}[\sqrt{-1}]$ y los ideales

$$I = (1 + \sqrt{-1}), \quad J = (1 + 2\sqrt{-1}).$$

- 1) Demuestre que $I + J = \mathbb{Z}[\sqrt{-1}]$.
- 2) Demuestre que $IJ = (1 3\sqrt{-1})$. Sugerencia: note que en cualquier anillo conmutativo, se tiene $(x) \cdot (y) = (xy)$ para cualesquiera $x, y \in R$.
- 3) Demuestre que $\mathbb{Z}[\sqrt{-1}]/(1-3\sqrt{-1}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ usando el teorema chino del resto.

Ejercicio 7. Demuestre el segundo teorema de isomorfía para anillos.

Ejercicio 8. Demuestre el tercer teorema de isomorfía para anillos.

Ejercicio 9. *Sean* R y S *anillos* y *sean* $I \subseteq R$, $J \subseteq S$ *ideales bilaterales.*

1) Demuestre que

$$I \times J := \{(x, y) \mid x \in I, y \in J\}$$

es un ideal bilateral en el producto $R \times S$.

2) Demuestre que todos los ideales bilaterales en $R \times S$ son de esta forma. Sugerencia: para un ideal bilateral $A \subseteq R \times S$ considere $I = p_1(A)$ y $J = p_2(A)$ donde

$$R \xleftarrow{p_1} R \times S \xrightarrow{p_2} S$$

$$r \longleftrightarrow (r,s) \longmapsto s$$

son las proyecciones canónicas.

Ejercicio 10.

- 1) Sean R y S dos anillos no nulos. Demuestre que el producto $R \times S$ tiene divisores de cero.
- 2) Demuestre que el producto de dos anillos no nulos nunca es un cuerpo.