-)[15 pts]. The ODE: $\underline{z}f''+(b-\overline{z})f'-af=0$, $a \nmid b = cnsts$, for $f=f(\overline{z})$, is the Confluent hypergeometric equation. (A) By direct substitution, show that a series solution is: $f(\overline{z}) = F(a;b;z) = \sum_{k=0}^{\infty} [(a)_k/(b)_k] \frac{z^k}{k!}$, $f''(a)_k = a(a+1)\cdots(a+k-1) \notin (a)_0 = 1$, the Pochhammer symbol. (B) Let $|z| \rightarrow lange$, and note (a)_k = $\Gamma(k+a)/\Gamma(a)$. By examining the dominant terms in the series for F, and using suitable approximations for the Γ -fcns, show that for k "lange", the k^{th} term in the series is $\Gamma(b)/\Gamma(a) = \frac{z^k}{(k-(a-b))!}$. Use this to show that for large (+) we $z \in \mathbb{Z}$ (z = 1): z = 1 for z = 1 for z = 1. (C) We the result of part (B) to show that for large z = 1 for z = 1.
- ② Verify that: exf(x) = $(2/\sqrt{\pi}) \propto F(\frac{1}{2}; \frac{3}{2}; -x^2)$, $F = confluent hypergeometric fon. Find an expression for erf(x), correct to <math>\theta(x^3)$, as $x \to 0$.
- 3 A QM system consists of two particles, of masses $m_1 \not\in m_2$. Express the operators for total momentum $\hat{\mathbf{P}} = \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2$ and total X momentum $\hat{\mathbf{L}} = \hat{\mathbf{l}}_1 + \hat{\mathbf{l}}_2$ in terms of the relative co-ordinate $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$ and center-of-mass coordinate $\mathbf{R} = (m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2)/(m_1 + m_2)$. Show that the kinetic energy part of the Hamiltonian, viz $\hat{\mathbf{K}} = \frac{1}{2m_1} \hat{\mathbf{p}}_1^2 + \frac{1}{2m_2} \hat{\mathbf{p}}_2^2$ can be put in the form: $\hat{\mathbf{K}} = -(\hbar^2/2\mathbf{m}) \nabla_{\mathbf{k}}^2 (\hbar^2/2\mu) \nabla_{\mathbf{r}}^2$, by $\mathbf{M} = m_1 + m_2 \not\in \mu = m_1 m_2/(m_1 + m_2)$.
- (4) [15 pts]. Consider a central potential of form: $V(r) = -\frac{B}{r} + \frac{A}{r^2}$; B&A are Hue consts.

 (A) Shetch VIr) vs. r. What physical system might be represented by such a potential?

 (B) Twite the radial egth in dimensionless variables ("atomic units" here are: length $0 = \frac{\hbar^2}{mB}$, energy $E_0 = \frac{B}{a_0}$). Find the radial wavefer R(p), and show that the bound state energies are: $E_{ne} = -\frac{1}{2} \frac{E_0}{(n+\Delta_E)^2}$, n=1,2,3,... and l=0,1,...,(n-1), just as for H-atoms. The quantum defect Δ_E lifts the L-degeneracy. Find an exact expression for Δ_E .

 (C) Now approximate E_0 the radial time of Δ_E .
- (C) Now approximate Ene through terms of O(A). In a given state n, how are the l-states arranged? Sketch an energy-level diagram for n=1,2,3. What is the energy spread in level n?

- [15 pts]. This problem concerns details of H-atom radial wavefons in Davydov 9 38.
- (A) When a=-N, $^{W}N=0,1,2,...$, show that the confluent hypergeometric for F(a;b;x) reduces to the polynomial: $F(-N;b;x)=\sum_{k=0}^{N}\frac{\Gamma(b)}{\Gamma(k+b)}\binom{N}{k}(-x)^k$, $^{W}\binom{N}{k}=\frac{N!}{k!(N-k)!}$ the binomial coefficient. Using this result, find an explicit form for the full H-atom radial wavefern for $(\rho)=\frac{1}{\rho}R_{ne}(\rho)$ for the 3s state. Compare with Davydov Table 8.
- (B) H-atom states $|nl\rangle$ with maximum allowed 4 momentum l=n-1 are called "raster" states. Find the general form of the full radial wavefor fre(p) when l=n-1.
- (C) Calculate expectation values of powers of p, viz. $\langle p^{\lambda} \rangle$, in the states $|n,l=n-1\rangle$ you found in part (B). For $\lambda=-3$, specifically, compare with Davydov's Eq. 38.17e.
- **6** A QM & momentum \hat{J} has eigenfons $|jm\rangle$. Consider the ladder operators $\hat{J}_{\pm}=\hat{J}_{x}\pm i\hat{J}_{y}$.
 - (A) Show that J+ 12m) is an eigenfen of J2, with z-value unchanged.
 - (B) Show that $\hat{J}_{\pm}|_{Jm}$ is an eigenfer of \hat{J}_{z} , corresponding to eigenvalues $m\pm 1$.
 - (C) Using the J±, find the most general matrix elements of Jx & Jy--i.e. evaluate (x'y'm' | Jx,y | dym), with pertinent selection rules for the quantum # 5 ax', yy', mm'.
- Flowsider the Pauli matrices $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ for spin $\frac{1}{z}$; they obey the commutation of the commutation of xyz [Sakurai, Sec 3.2].
 - (A) Prove the anti-commutation rule: { Ta, Tp} = Ta Tp + Tp Ta = 28ap.
 - (B) If $\vec{A} \in \vec{B}$ are any two vector operators that commute with $\vec{\sigma}$, use $[\vec{\sigma}_{\alpha}, \vec{\sigma}_{\beta}]$ and $\{\vec{\sigma}_{\alpha}, \vec{\sigma}_{\beta}\}$ to prove the Dirac identity: $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) = \vec{A} \cdot \vec{B} + i \vec{\sigma} \cdot (\vec{A} \times \vec{B})$.
- BIf vector operators \$\vec{A} \vector B\$ are both \$\vec{T}\$-vectors W.r.t. a QM & momentum operator \$\vec{J}\$, Show that: \$[\vec{J}, \vec{A} \vec{B}] = 0\$. Why does this establish \$\vec{A} \vec{B}\$ as a "true scalar"?
- 9[5pts]. Given: noncommuting operators $\hat{P} \neq \hat{Q}$ and a set of basis fons {Uk(x)}. If $P_{ij} = \int dx \ u_i^*(x) \hat{P} \ u_j(x)$, verify the matrix egtn: $(PQ)_{ke} = \sum_{m} P_{km} \ Q_{me}$, directly. What assumption(s) must be made about the set {Uk(x)}?

- Tonsider the 2P states of a one-electron atom. Here, the orbital & momentum \vec{L} (ligenweste l=1) and electron spin & momentum \vec{S} (ligenweste S=1/2) comple to form $\vec{J} = \vec{L} + \vec{S}$, with g-values $\frac{3}{2} = \frac{1}{2}$. By using the step-down operator J_{-} , and imposing orthonormality, explicitly do a Clebsch-Gordan transform from the uncoupled states (Ismems) to the complete states (Isgm.). Make a table of your results, i.e. each (Isgm.) state in turn, as a linear combination of the (Ismems), with appropriate C-G coefficients.
- 1 [15pts]. To generalize prob. 1 , let I have any value >0; then $g = l \pm \frac{1}{2}$. With $m_s = \pm \frac{1}{2}$ only, there are just two me values for a given m : viz. $m_l = m \mp \frac{1}{2}$ (here $m = m_g$). Let $\alpha = |s = \frac{1}{2}, m_s = +\frac{1}{2}$) & $\beta = |s = \frac{1}{2}, m_s = -\frac{1}{2}$ be the spin-up & spin-down eigenfens. Then the eigenfens of the complete states have just two terms (suppress lass, ad libitum):

 [$n_s \mid s \mid m_s \mid = C_1(m) \mid n_s \mid m_s \mid m_s$

The C-G transform in this case amounts to finding two pairs of constants Ck, one pair for each of J=1±2. By using the J-operator, calculate the Ck (gm) explicitly.

12 In an atom where the orbital & spin & momenta \vec{L} & \vec{S} couple to form $\vec{J} = \vec{L} + \vec{S}$, the magnetic moments $\vec{\mu}_L = -g_L \mu_0 \vec{L}$ & $\vec{\mu}_S = -g_S \mu_0 \vec{S}$ likewise couple to form a total $\vec{\mu}_J = \vec{\mu}_L + \vec{\mu}_S$. Use the Vector Model to show that (in an expectation-value sense): $\vec{\mu}_J = -g_J \mu_0 \vec{J}$. Show that $g_J = -\omega$ which is called the Landé g-factor -- is given by: $g_J = \left[\frac{\chi(\chi+1) + l(l+1) - \varsigma(\varsigma+1)}{2\chi(\varsigma+1)}\right]g_L + \left[\frac{\chi(\chi+1) + \varsigma(\varsigma+1)}{2\chi(\varsigma+1)}\right]g_S.$

Calculate & values for the hydrogen states 2B12, 2P12 & 2512. What is the maximum

Observable My in each state? If a weak magnetic field H were applied to buis system how would the state energies vary with H? Drawa picture. [This is the Zeeman Effect].

(3) Consider the hydrogenic states $2S_{\frac{1}{2}}$ [the m=±½ levels are denoted α ¢ β] and $2P_{3/2}$ [m=+½, +½,-½,-½,-½ levels denoted a,b,c,d]. Some of the m-levels are coupled by a Stark interaction $V = \tilde{E} \cdot \tilde{r}$, $\tilde{r} = position$ and $\tilde{E} = case$. Find the absolute value of <u>all</u> matrix elements $M = |\langle 2S_{\frac{1}{2}}|V|2P_{\frac{1}{2}}\rangle|$ allowed between the six m-levels, up to a reduced matrix element R. If $\Gamma \propto M^2$ is the transition rate induced by V, establish the equalities:

 $\Gamma(\alpha+b)=\Gamma(\beta+c)$, $\Gamma(\alpha+a)=\Gamma(\beta+d)=3\Gamma(\alpha+c)=3\Gamma(\beta+b)$.

(1) [15 pts]. For a particle (q,m) in an EM field specified by a 4-potential (Ap) = (A,ip), the Klein-Gordon wave equation and continuity equation are [18 (xp) = (8,ict)]...

$$\left[\left[\left(\frac{\partial}{\partial x_{\mu}} - \frac{iq}{\hbar c} A_{\mu} \right)^{2} - k_{o}^{2} \right] \psi = 0, \quad w_{\mu} k_{o} = mc/\hbar; \\
\partial S_{\mu} / \partial x_{\mu} = 0, \quad w_{\mu} S_{\mu} = \frac{\hbar}{2im} \left[\psi^{*} \left(\frac{\partial}{\partial x_{\mu}} - \frac{iq}{\hbar c} \right) \psi - c.c. \right]. \right]$$

Consider the gauge transformation: $A\mu \rightarrow A\mu' = A\mu + \partial \eta/\partial x\mu$, $\eta = \text{arbitrary fcn}$. Given that $\Psi \rightarrow \Psi' = \Psi \exp \left[i(q/hc)\eta\right]$ under this transform, show that :(A) $S\mu$ is gauge invariant, and:(B) the KG Eqt. itself is gauge covariant (form-invariant).

- (B) [15 pts]. Consider a particle of mass m in a 3D attractive spherical potential well of depth V and radius a. Using the Klein-Gordon Egth for S-states only (set the orbital & momentum l=0), find the minimum well depth VKG which just barely binds the particle. State your answer in terms of the well-known result from the Schrödinger Egth, viz: Vs = $\pi^2 h^2 / 8ma^2$. Interpret the difference between VKG and Vs.
- (9) [15 pts]. A Schrödinger-type form for the free-particle Klein-Gordon Egth can be manufactured as follows. Define a fen ξ via: $(mc^2)\xi = i\hbar \partial \psi/\partial t$. Then the KG Egth is: $\frac{1}{m} \left[\vec{p}^2 + (mc)^2\right] \psi = i\hbar \partial \xi/\partial t$. Next, define a two-component wavefunction by: $\Psi = (\psi) = \frac{1}{2}(\psi + \xi)$. In these terms, show the KG Egth can be written as: $i\hbar \partial \Psi/\partial t = \mathcal{H} \Psi$, $i\hbar \partial \Psi/\partial t = \mathcal{H} \Psi$.

Notice that this "Hamiltonian" Ho is not Hermitian. For nonrelativistic particles ($\vec{p}^2/2m \ll mc^2$), evidently Ψ_+ is the solution for positive energy states $E \simeq + mc^2$, while Ψ_- is the solution for negative energy states $E \simeq -mc^2$. Now show that the KG "probability density": $\rho = -(t_1/mc^2) \, \text{Im} \left[\Psi^*(\partial \Psi/\partial t) \right]$, class notes ρ . fs 16, can be written as a charge density: $\vec{p} = q\rho = q\{|\Psi_+|^2 - |\Psi_-|^2\}$. Then (+) we energy solutions (Ψ_+ dominant) have $\vec{p} \doteq +q$, while (-) we energy solutions (Ψ_- dominant) have $\vec{p} \doteq -q$. We will see that the Derice Egtin has similar features.

- To approximate the ground state of the simple harmonic oscillator (SHO), use the trial wavefunction: $\phi(x) = A[1-(|x|/\alpha)]$, for $|x| \le \alpha$, and $\phi(x) = 0$, for $|x| > \alpha$. Here A= enst and $\alpha = variable$ (length) parameter. Calculate $E(\alpha) = \frac{\langle \phi| \mathcal{H}(SHO)| \phi \rangle}{\langle \phi| \phi \rangle}$ and—for optimum α —Show that this energy lies less than 10% above the exact value.
- 21 [Dowydor Ch. VII # 6, p. 205]. Use the trial wavefunction: $\frac{\phi(\alpha, r) = Ae^{-\frac{1}{2}\alpha r^2}}{1}$, to estimate the ground state energy of the hydrogen atom. <u>NOTE</u>: here you are approximating the atom's radial motion by that of an "equivalent" 1D SHO.
- ② In a QM system with Hamiltonian Hb, let the eigenfunctions of eigenenergies be $\frac{1}{4}$ En, so: HbH= En. To approximate the ground state energy Eo, suppose you use the trial function: $\frac{1}{2}$ = $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ = actual ground state wave fen, $\frac{1}{4}$ is a small (real) parameter, and $\frac{1}{4}$ is an arbitrary fen with the expansion $\frac{1}{4}$ = $\frac{1}{4}$ Cn. The Show that if the approximate (variational) energy: $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = 0, while $\frac{1}{4}$ is the positive quantity: $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = 0, while $\frac{1}{4}$ is the positive quantity: $\frac{1}{4}$ = $\frac{1}$
- (3) A) Show by substitution) that a solution to: $y''(\xi) + \alpha \xi^n y(\xi) = 0$, was n = cnsts and $\xi \gg 0$, is given by: $y(\xi) = A \sqrt{\xi} J_{\nu}(\xi)$, where $\lambda = cnst$, $\nu = \frac{1}{n+2}$, $\lambda = (\frac{2\sqrt{\alpha}}{n+2}) \xi^{\frac{1}{2}(n+2)}$. $J_{\nu}(\xi)$ is the Bessel for of order ν . (B) Assume the asymptotic form: $y(\xi) \sim \xi^{-k} e^{-a\xi^2}$, as $\xi \to \infty$. By proper choice of the consts k, l & a, show that as $\xi \to \infty$, this form satisfies the differential extra: $y''(\xi) + \alpha \xi^n y(\xi) = \frac{n}{4} (\frac{n}{4} + 1) \xi^{-2} y(\xi) \to 0$.

DBessel's ODE is: $\frac{y'' + \frac{1}{x}y' + (1 - \frac{v^2}{x^2})y = 0}{y} = 0$, v = Neal const. Find an approximate solution for the Bessel fon $y \simeq J_v(x)$ by the WKB method. Find an asymptotic form for $J_v(x)$ as $x \to \text{"large"}$ (specifically: x >> |v|). You may assume $|v| >> \frac{1}{z}$.

Forming variables: $t \rightarrow s = \int \Omega(t) dt$, $v \rightarrow u = v \sqrt{\Omega}$, so the diff. eq. is u'' + [1 + b(s)]u = 0, with b(s) defined in Eq.(20) of Notes. For b(s) = 0, we get the zeroth-order (WKB) solution: $u(s) \simeq u_0(s) = Ae^{+is} + Be^{-is}$. We then iterated to get: $u_1 \simeq u_0 + \int u_0 K d\sigma$, with K defined in Eq.(27). After n+1 iterations: $u_{n+1} = u_n + \int u_n K d\sigma$. White out $u_{n+1} = u_n + \int u_n K d\sigma$. White out $u_{n+1} = u_n + \int u_n K d\sigma$. White out $u_{n+1} = u_n + \int u_n K d\sigma$. Show that: $u_{n+1}(s) = u_0(s) + \sum_{k=1}^{n+1} \binom{n+1}{k} \int d\sigma_1 \int d\sigma_2 \cdots \int d\sigma_k u_0(\sigma_k) K(\sigma_k, ..., \sigma_1, s)$. Identify K.

26) A QM particle of mass m and energy E moves in a 1D SHO, W/potential $V(x) = \frac{1}{2} m \omega^2 x^2$, where $\omega = SHO$ natural frequency. Use Bohr-Sommerfeld quantization [i.e. $\int_{x_1}^{x_2} k(x) dx = (n+\frac{1}{2})\pi$, $w_1 = 0,1,2,...$] to find the eigenenergies E_n for this motion. How does your result compare with the known E_n (SHO)?

(30 pts]. For a QM particle (mass m, energy E) moving in > 1D, and in an attractive radial pot V(r), the effective potential U(r) = V(r) + \frac{\mu^2 h^2}{2mr^2}. The term in \frac{1}{r^2} is the "centrifugal barrier", present because of m's rotational K.E. M is a quantum # related to m's 4 lar momentum [in

3D: $\mu^2 = l(l+1)$, ${}^{N} l = 0,1,2,...$; in 2D: $\mu^2 = m^2 - \frac{1}{4}$, ${}^{N} m = \pm 1,\pm 2,...$]. Here, just take $\mu^2 > 0$. (A) Let length r_0 be the "size" of U(r), and define a dimensionless variable: $x = r/r_0$. Write $V(r) = V_0 f(x)$, $V_0 = cnst \notin f(x)$ arbitrary. Show the Bohr-Sommerfeld condition becomes: $\int_{x_1}^{x_2} \sqrt{\varepsilon - [\sigma f(x) + \mu^2/x^2]} dx = (n + \frac{1}{2})\pi \int_{x_1}^{N} x_1 dx_2 = solutions to: \sigma f(x) + \mu^2/x^2 = \varepsilon.$ Specify $\varepsilon \notin \sigma$ in terms of m, r_0, t , $\varepsilon \notin V_0$.

(B) Specialize to f(x) = ln x [log potentials are use to model quark confinement -- see Quigg & Rossner, Phys. Lett. 71B, 153(1977)]. Sketch U(x) vs. x, and find the minimum, Xo. Expand U(x) about Xo, find the effective "spring constant" near xo, and calculate the quantized energies Enp of a quark trapped near xo: You have a SHO here. Why?

(C) For large vibrations: 5>> μ^2 . Evaluate the above integral to find how En varies 2/n.

-(D) For large rotations: μ^2 >>0. Find Enu, approximately, to see how it varies $\mu \in n$.

28 [20pts]. A particle of mass m and total energy E>0 is initially bound in a nuclear potential well of depth Vo and vadial size ro. m tunnels thru the Coulomb barrier β/r , emerging at r_1 with zero & momentum.

(A) Per WKB, calculate the probability T(E) that the tunneling occurs.

Show that for high barriers (E(\ \beta/r_0): T(E) = exp{-\frac{\pi}{\pi}\sqrt{2m/E}}, independent of To.

(B) Consider deuterium fusion: 1H²+1H²+2He³+n (3.2MeV), by collisions between 1H² nuclei. Calculate the tunneling factor for 1H²→1H² penetration at room temperature (300°K).

(C) Consider 1H² gas at STP, Whensity n & thermal speed T. The probability/unit time of ordinary collisions is: $\Gamma_0 = n\sigma_A \bar{\nu}$, $^{4/7}\sigma_A = atomic collision cross-section. The fusion rate is: <math>\Gamma_f = n\sigma_B \bar{\nu} T(\bar{\nu})$, $^{4/7}\sigma_D = _1H^2$ nuclear cross-section. Approximate $\sigma_A \notin \sigma_D$ as geometrical, and estimate Γ_f/Γ_0 . Is "cold fusion" plausible?

2 [30 pts]. A symmetric potential V(x) consists of two wells separated by a barrier of height Vo as shown. A particle of Mass m and energy E < Vo is initially placed in one well. m can tunnel thru the barrier (-a < x < a), coupling the wells.

HINT: establish this condition by starting out with $Y_1 = (A/JK)e^{-Jx^b}kdx'$ in the region x < -b, and connecting $Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow Y_4 \rightarrow Y_5$ in x > b. Make sure Y_5 doesn't diverge.

(B) For $V_0>> E$, $\theta \Rightarrow$ "large", and the condition of part (A) is: $\phi \simeq (n+\frac{1}{2})\pi \pm \frac{1}{2}e^{-\theta}$. Let $E_n^{(0)}$ be the n energy level of either well alone (% barrier). Show that the presence of a benetrable barrier <u>perturbs</u> $E_n^{(0)}$ by an amount which is approximated to lowest order by: $\Delta E_n = \pm (\frac{\hbar \omega_n}{2\pi}) \exp \{-\int_{-a}^{+a} \sqrt{(2m/\hbar^2)} [V(x) - E_n^{(0)}] dx \}$. Here ω is the classical natural frequency of motion in the well, defined by: natural period = $\frac{2\pi}{\omega} = 2 \int_a^b dx/[p|x]/m]$.

(C) Suppose the well is: $V(x) = \frac{1}{2}m\omega^2(|x|-x_0)^2$ [double SHO well]. Calculate the splitting ΔE_0 (in the n=0 ground state) explicitly in terms of $\omega \notin V_0 = \frac{1}{2}m\omega^2 x_0^2$.

- 30 In stationary-state (non-degenerate) perturbation theory for $\mathcal{H}_0\mathcal{H}_k^{(0)}=E_k^{(0)}\mathcal{H}_k^{(0)}$, the first-order correction to the system wavefunctions when $\mathcal{H}_0\to\mathcal{H}_0=\mathcal{H}_0+V$ is: $\frac{\mathcal{H}_k^{(0)}\to\mathcal{H}_k=\mathcal{H}_k^{(0)}+\mathcal{H}_k^{(0)}}{\mathcal{H}_k}\mathcal{H}_k^{(0)}+\mathcal{H}_k^{(0$
- (3) [15pts, ~ Davydov # 5, p. 205]. The proton has a finite size; its (rms) radius: Rp = 0.8×10⁻¹³ cm. At distances r~ Rp the e-p interaction is thus not Coulombic, but is modified to: -e²/r+U(r), ¹⁴ U(r) the perturbation due to the proton Charge distribution. U(r) shifts the hydrogen atom energy levels En by small amounts.

 (A) Assume the proton is a uniformly charged spherical shell of radius Rp. Show that the m Si/z state energies shift by: ΔEn = \frac{4}{3}(Z²/n)[Rp/ao]²[En], En=Bohrenergy.

 (B) What is ΔEn of pant(A) if the proton is a uniformly Charged sphere of radius Rp?

 (C) How big is ΔEn (comparatively) for states with 4 momentum l>0?
- 32 The Stark Effect on the ground state of hydrogen penturbs the energy $E_0^{(0)}$ to $O(E^2)$ as: $E_0 = E_0^{(0)} e^2 E^2 S_z$, where: $S_z = \sum_{n \geq 0} |\langle n|z|0\rangle|^2/\langle E_n^{(0)} E_0^{(0)}\rangle$, for a field \vec{E} along the z-axis. We showed in class that the sum was just: $S_z = -\langle 0|zF|0\rangle$, if a function F could be found such that: $\overline{Z|0\rangle} = [F, H_0]10\rangle$, W W
- 3 [Schmidt orthogonalization]. Consider an N-fold set of eigenfons {u; }, 1 \le i \le N, that are degenerate (each has same eigenenergy E: Hui=Eui), and not orthogonal: \langle ui \rangle 70. We want a set \langle vk \rangle, constructed from linear comb of the ui, which is orthogonal.
- (A) Start with $v_1=u_1$. Set $v_2=u_2+a_{21}v_1$ and find a_{21} such that $\langle v_1|v_2\rangle=0$. Next, Set $v_3=u_3+a_{31}v_1+a_{32}v_2$, and find $a_{31}\notin a_{32}$ such that $\langle v_1|v_3\rangle=0\notin \langle v_2|v_3\rangle=0$.
- (B) Show by induction that the non member of the orthogonal set $\{v_k\}$ is, for n>1: $\frac{v_n = u_n \sum_{k=1}^{n-1} (\langle v_k | v_k \rangle / \langle v_k | v_k \rangle) v_k}{\langle v_k | v_k \rangle | v_k \rangle}$

(H611

33 [20 pts]. Ref. class notes on tD Pert to Theory, pp. tD 11-12. A two-level QM system (energy gap to wo) is subjected to a "chirped" coupling pulse $U(t,v) = E(t)e^{-i[v-\theta(t)]t}$. The envelope E(t) has finite duration $\sim T$, and the main frequency $v \sim w_0$ drives transitions $b \rightarrow a$ as usual. What's new is trust the "chirp" for $\theta(t)$ can <u>modulate</u> v during the pulse.

(A) Find the spectral fon δ corresponding to the rf corrier $e^{-i[\nu-\theta|t]}t$ in the case where the chirp is: $\theta(t) = \delta \nu \cdot \frac{t}{\tau}$, $\frac{4}{\nu} \Delta \nu (\text{bandwidth}) \stackrel{4}{\tau} \tau (\text{risctime}) = \text{cnsts}$. Show: $\frac{\delta(\omega)}{\delta(\omega)} = \frac{(\alpha/\sqrt{\pi})e^{i\pi/4}e^{-i\alpha^2\omega^2}}{\epsilon^2}$, and find α in terms of $\Delta \nu \stackrel{2}{\tau} \tau$. Show that δ becomes a Dirac delta fon as $\alpha \rightarrow \infty$. What is the significance of this limit?

(B) If the envelope for is $E(t) = E_0 e^{-(t/T)^2}$, find the transition amplitude $\partial(\Omega)$ for the chirp of part (A). $\Omega = \omega_0 - v$ is the detuning frequency.

(C) Analyse the transition lineshape, i.e. $|a(\Omega)|^2 vs$, Ω . Under what conditions on Δv , $\tau \notin T$ does the envelope dominate $|a(\pi)|^2$? When does the Chirp dominate?

[20 pts.]. A pulsed harmonic perturbation $V(x,t)=2t_1\Omega(x)\cos\omega t$, over $0 \le t \le T$, drives QM transitions $m \to k$. In class [class p. tD6, Eg.[18)], we found the 1st order transition amplitude $\partial_k^{(1)}(t)$, which describes direct $m = t \le t \le T$ Single-photon $m \to k$ processes. Here we analyse the 2nd order amplitude $\partial_k^{(2)}(t)$, describing two-photon processes: $m \to \{n\}$, $\{n\} \to k$, through a set of intermediate states $\{n\}$. To fix ideas, let the transition be absorptive, and let the driving frequency $w \to t \le T$ when $t \to t \le T$ when $t \to t \le T$ and $t \to t \le T$ when $t \to t \le T$ in $t \to t \le T$.

(A) Calculate the 2nd order amplitude a/k (t) for the pulsed harmonic post on V(x,t).

(B) Denote $S_{nm} = \omega - \omega_{nm}$. Show that the <u>resonant pants</u> of $a_k^{(2)}(t)$ contribute: $\left[a_k^{(2)}(t) \simeq \sum_{n} \frac{\Omega_{kn} \Omega_{nm}}{S_{nm}} \left[\frac{1 - e^{-i(2\Delta\omega - S_{nm})t}}{2\Delta\omega - S_{nm}} - \frac{1 - e^{-i(2\Delta\omega)t}}{2\Delta\omega} \right] \right], \text{ for } m \to \{n\} \to k \otimes \omega \simeq \frac{\omega_{nm}}{2}.$

(C) In $a_k^{(2)}(t)$ of part (B), we can have $\Delta\omega \to 0$ (by turning) and $\delta_{nm} \to 0$ (by "accident"). Find the limiting forms of $a_k^{(2)}(t)$ for the following 3 cases: (I) $\delta_{nm} \to 0$, for some n, and $\Delta\omega \to 0$; (II) $\delta_{nm} \to 0$, for some n, love $\Delta\omega \neq 0$; (III) $\delta_{nm} \neq 0$, for any n, while $\Delta\omega \to 0$. Show that $a_k^{(2)}(t)$ is always finite, but its behavior depends oritically on the δ_{nm} .

39[20 pts]. Consider a pulsed harmonic perturbation $V_{ij}(t) = 2\hbar \Omega_{ij}\cos\omega t$, applied at t=0 to a QM system, in the case where ω approaches an exact resonance for transitions $m\leftrightarrow k$, i.e. $v=(\omega_{km}-\omega)\to 0$. In class, we remarked [Notes, p. tD6] that the first-order transition amplitude

is $a_k^{(1)}(t) \simeq -i\Omega_{km}t$, and hence cannot be correct as t + large. Here we remedy that situation by solving a new version of the $m \to k$ transition problem very near resonance (v = 0). We make an exactly solvable two-level problem out of $m \leftrightarrow k$.

(A) When $N=(\omega_{km}-\omega)\to 0$, basically only the states $m \notin k$ participate intransitions, to good approximation. Show then that the "exact" egths for the amplitudes are: i åk = Ω_{km} am $e^{i\nu t}$, i åm = Ω_{mk} ak $e^{-i\nu t}$; the approximation is that all other states are so far off resonance they can be ignored. We have a two-level problem.

- (B) The problem in part (A) can be solved exactly (assuming Ω_{km} is independent of t). Find $\Delta_k(t)$, assuming the system was initially in State $m:\Delta_m(0)=1$, $\Delta_k(0)=0$. Define and use the quantity: $Q=[1+(2|\Omega_{km}|/v)^2]^{1/2}$. Also find $\Delta_m(t)$.
- (C) Sketch the m→k transition probability lakl vs. v. Now what happens as v →0?
- 40 A QM state of nominal energy En which undergoes exponential decay at rate Γ_n is represented by a wavefen: $\frac{V_n(x,t)=[\phi_n(x)e^{-(i/h)E_nt}]e^{-\frac{1}{2}\Gamma_nt}}{V_n(x,t)}$; $|\psi_n|^2=|\phi_n|^2e^{-\Gamma_nt}$ decays with a "difetime" $T_n=1/\Gamma_n$. Fourier transform $\psi_n(x,t) \to \widetilde{\psi}_n(x,\omega)$ to a frequency variable $\omega=E/h$. Then $|\widetilde{\psi}_n(x,E)|^2$ vs. E should give the spectrum of photon energies which can be emitted during the decay. Find and analyse this spectrum. Also, evaluate $\int_{-\infty}^{\infty} |\widetilde{\psi}(x,E)|^2 dE$. Why is this "interesting"?
- 4) A QM harmonic oscillator (1D, mass $m \not\in Spring\ cnst\ k$) is initially in its ground State, with (normalized) wavefor: $\frac{\phi(x) = (\alpha/\pi)^{1/4} e^{-\frac{1}{2}\alpha x^2}}{e^{-\frac{1}{2}\alpha x^2}}$, $\frac{1}{2}\alpha = \sqrt{km}/\hbar$. The Spring cnst is suddenly changed from k to Nk, $\frac{1}{2}N > 0$ some numerical factor. Find the probability P_0 that the oscillator will remain in its (new) ground state. Calculate P_0 for N=2, and $N=\frac{1}{2}$. Over what range of N-values will P_0 be greater than 50%?

(20 pts]. The 25½ level in hydrogen is metastable (lifetime $T_{25} \sim \frac{1}{7}$ sec for decay $25\sqrt{2}$ } \$ 25 + 15 by two photons). The near by $2P_{12}$ level decays rapidly: the lifetime for $2P_{12}$ } \$ $2P \rightarrow 15 + \text{Ly} \propto (1216 \, \text{Å})$ is $T_{27} = 1.6 \times 10^{-9} \text{sec}$. The levels are separated by the Lamb Shift S (in circular freq. $S = 2\pi \times 1058 \, \text{MHz}$) and can be coupled by an $T_{25} = 10^{-4} \, \text{MHz}$ above $25 \, \text{MHz}$ at freq. $W \simeq S$. Since the next nearest level, $2P_{3/2}$, lies $\simeq 10^{-4} \, \text{MHz}$ above $25 \, \text{Mz}$, the $25 \, \text{Mz} - 2P_{3/2}$ coupling is well-represented by a two-level problem, $7 \, \text{Mz} = 10^{-4} \, \text{MHz}$ is $= 10^{-4} \, \text{Mz} = 10^{-4} \, \text{Mz}$. $1 \, \text{S} = \Omega^*(t) \, P \, e^{i v t}, \quad i \, \dot{P} = \Omega(t) \, S \, e^{-i v t} - \frac{1}{2} \, i \, \gamma \, P$

S(t) & P(t) are the $2S_{1/2}$ & $2P_{1/2}$ amplitudes, and $\Omega(t) = \frac{1}{2\pi} \langle \phi_{2r} | e \text{ if } E(t) | \phi_{2s} \rangle$ is the envelope of the E-field pulse. The term in γ is added phenomenologically, so that -- when the Coupling $\Omega \rightarrow 0$ -- $2P_{1/2}$ decays naturally, according to $|P(t)|^2 = |P(0)|^2 e^{-\gamma t}$.

- (A) A sample of 251/2 atoms experiences a weak of pulse Ω=const, over 0 < t < T, ^W T_{2P} «T « T_{2s}. Solve the above two-level problem to find the fraction | S(t > T) | ² of 251/2 atoms remaining after the pulse. Sketch | S(after) | ² vs. w. What is the width of this resonance?

 (B) What fractional resolution in the linewidth [part(A)] is needed to measure S to 100 ppm?
- (3) [20 pts]. The time-dependent Schrödinger Eq. can be solved by Green's fons. At t<0, start with a known stationary system: He un(r) = $\omega_n u_n(r)$, He = $-\frac{1}{2m} \nabla^2 + V(r)$ [units: h=1]. At t>0, add coupling W=W(r,t), so Hb > Hb+W, and consider the time-dept Schrödinger Eq: $(H-i\frac{\partial}{\partial t})\Psi = -W(r,t)\Psi$. Now define K via: $(H-i\frac{\partial}{\partial t})K = -i\delta(r-r_0)\delta(t-t_0)$, for t>to, and K=0 for t<to. K=K(r,t; ro,to) is the Green's for for the problem.
- (A) Show that: $\Psi(\mathbf{r},t) = \phi(\mathbf{r},t) i \int_0^{t_1} dt_0 \int_0^{t_1} d^3x_0 K(\mathbf{r},t; \mathbf{r}_0,t_0) \Psi(\mathbf{r}_0,t_0) \Psi(\mathbf{r}_0,t_0)$, where $\phi(\mathbf{r},t) = \int_0^{t_1} d^3x_0 K(\mathbf{r},t; \mathbf{r}_0,0) \Psi(\mathbf{r}_0,0)$, and $t = \lim_{t \to 0} (t + \epsilon)$.
- (B) Verify that: $\frac{K(r,t; r_0,t_0) = \theta(t-t_0)}{K(r,t)} = \frac{2}{n} \frac{u_n(r_0) u_n(r_0)}{u_n(r_0)} = \frac{1}{n} \frac{u_n(r_0)}{u_n(r_0)} = \frac{1}{n} \frac$
- (C) Specify the initial state of the system by: $\Psi(\mathbf{r}_0,0) = \sum_{k} a_k u_k(\mathbf{r}_0)$, the $\{a_k\} = cnsts$. With K of part (B), show that the first term in the solution for Ψ in part (A) amounts to: $\Phi(\mathbf{r}_1t) = \sum_{k} a_k u_k(\mathbf{r}_0) e^{-i\omega_k t}$. Clearly, $\Phi(\mathbf{r}_1t)$ is the evolution of the <u>unporturbed</u> state $\Psi(\mathbf{r}_10)$.
- (D) Write down 4 of part (A) in the first Born Approxen. Discuss briefly how you would proceed to find 4 to terms higher order in W.

- 4 Using the first Born approximation, find the differential and total scattering cross-sections for the central potentials: (A) $V(r) = V_0 e^{-\alpha r}$, (B) $V(r) = V_0 e^{-\alpha^2 r^2}$. With α held const, adjust V_0 so that each potential has the same "volume", i.e. so that $\int_0^\infty V(r) \cdot 4\pi r^2 dr = \Lambda$, const. Intercompare your results for $\frac{d\sigma}{d\Omega} \notin \sigma$ in parts (A) \notin (B).
- (3) [20 pts]. The Green's fan K for the time-dependent Schrödinger Eq. in prel-#(43), viz. K(1x,t; 1x0,t0) = θ (t-t0) Σ 11x'(1x0) 11n(1x) $e^{-i\omega_n(t-t_0)}$ is hard to evaluate explicitly. Here we reformulate the "scattering problem" [i.e. how Ψ (1x,t) evolves from some initial state Ψ (1x0,0) by repeated interactions with a potential ∇] in terms of K0, the Green's fon for a free particle, which can be handled. As a compact notation, let $\xi = (x,t)$ stand for a space-time point (x=x in 1D, x=1 in 3D, etc.). Let t=1, and write θ (0) = $-(1/2m) \frac{\partial^2}{\partial x^2}$ for the free-particle Hamiltonian. The free-particle Green's fon is then defined θ : $(i\frac{\partial}{\partial t} \theta_0) K_0(\xi, \xi') = i \delta(\xi-\xi')$, for t > t', and zero otherwise. The Schrödinger Eq. θ : $(i\frac{\partial}{\partial t} \theta_0) \Psi(\xi) = U(\xi) \Psi(\xi)$, where now $U(\xi)$ now contains all interactions $[U(\xi) = V(x) \{ \text{binding} \} + W(\xi) \{ \text{compling} \}$, W on θ t=0].
- (A) Show that Eqs. \mathbb{Q} together give the usual integral equation for \mathbb{Y} , \mathbb{Y} \mathbb{Y}
- (B) Now construct Ko. Use above bound-state K, with $u_n(x) \rightarrow (1/\sqrt{2\pi}) e^{ikx}$ for a free particle with energy $\omega_n \rightarrow k^2/2m$ in 1D [delta-for norm for the plane waves]. Show, when $\sum_{n=0}^{+\infty} \int_{-\infty}^{+\infty} dk$, that: $K_0(\xi,\xi') = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk \exp\left[ikk-x'\right] i\frac{k^2}{2m}(t-t')$]. By judicious choice of a convergence factor, evaluate this integral, and show that in 1D: $K_0(\xi,\xi') = \left(\frac{m/2\pi i}{t-t'}\right)^{1/2} \exp\left[\frac{im}{2}(x-x')^2/(t-t')\right]$. What would Ko be in 3D? Sketch a graph of how $K_0(1D)$ evolves in space of time.
- (C) Briefly discuss the successive (Born-type) iterations to the 4(5) integral equation in part (A). The resultant perturbation series is the Feynman-Hellman approach to QM.