Laboratório de Eletrônica Básica I

Práticas de simulação com QUCS

Laboratório 2 - Diodos de Junção PN

Pedro Henrique Fabriz Ulhoa Marina Duda Albuquerque

Vitória, 01/10/2020

01. Resultados do Experimento

3.1) No primeiro passo do laboratório, foi feita a simulação do circuito ilustrado na Figura 1.

3.1.1)

Figura 1

3.1.2) Montado o circuito, foi feita uma análise dos valores da tensão no diodo e da corrente no resistor, para uma variação da tensão da fonte de 0V a 30V. Os resultados obtidos foram registrados na Tabela 1, com passos de 0,2V e na Tabela 2, com passos de 2V.

Vf	Vd.V	corrente.I
0	0	0
0.2	0.2	1.59e-08
0.4	0.397	3.05e-06
0.6	0.52	8.04e-05
0.8	0.56	0.00024
1	0.581	0.000419
1.2	0.595	0.000605
1.4	0.605	0.000795
1.6	0.614	0.000986
1.8	0.62	0.00118
2	0.626	0.00137

Vf	Vd.V	corrente.l
4	0.659	0.00334
6	0.677	0.00532
8	0.689	0.00731
10	0.698	0.0093
12	0.705	0.0113
14	0.712	0.0133
16	0.717	0.0153
18	0.722	0.0173
20	0.726	0.0193
22	0.73	0.0213
24	0.733	0.0233
26	0.736	0.0253
28	0.739	0.0273
30	0.742	0.0293
		Acres of the second of

Tabela 1 Tabela 2

3.1.3) Invertendo a polaridade da fonte, repetimos os mesmos passos dos itens 3.1.1) e 3.1.2).

Figura 2: Circuito 3.1.1, com a fonte de tensão invertida.

3.1.4)

Vf	Vd.V	corrente1.I
0	0	0
5	-5	-4.61e-10
10	-10	-8.46e-10
15	-15	-1.23e-09
20	-20	-1.61e-09
25	-25	-2e-09
30	-30	-2.38e-09

Tabela 3: Tensão V1 variando de 0 a 30V, com passos de 5V

3.1.5) Utilizando os dados dos itens 3.1.2 e 3.1.3 e a função *PlotVs* do QUCS, plotamos o gráfico da Figura 5, que pode ser visto mais detalhadamente pela Figura 3 (terceiro quadrante) e pela Figura 4 (primeiro quadrante).

Figura 3: Região de polarização inversa do diodo, com a fonte de tensão invertida (-30V a 0V).

Figura 4: Região de polarização direta do diodo, com a fonte de tensão variando de 0 a 2V.

Figura 5: Gráfico completo com a tensão da fonte variando de -30 a 30V.

Nota-se que, para valores da tensão da fonte maiores de 2V, torna-se muito difícil obter um gráfico detalhado, uma vez que a escala do eixo X deve ser muito pequena.

3.1.6) Os passos anteriores foram repetidos para o Diodo 1N750 (Zener) no mesmo circuito:

Figura 6: Circuito com o diodo 1N750

V1	Pr3.I	Pr2.V
0	0	0
0.2	4.41e-09	0.2
0.4	1.85e-06	0.398
0.6	7.82e-05	0.522
0.8	0.00024	0.56
1	0.00042	0.58
1.2	0.000606	0.594
1.4	0.000796	0.604
1.6	0.000987	0.613
1.8	0.00118	0.621
2	0.00137	0.628

Tabela 4: Tabela para o resultado da pergunta 3.1.2

	V1	Pr3.I	Pr2.V
ľ	4	0.00333	0.674
	6	0.00529	0.707
	8	0.00726	0.736
	10	0.00924	0.762
	12	0.0112	0.786
	14	0.0132	0.809
	16	0.0152	0.832
	18	0.0171	0.854
	20	0.0191	0.875

Tabela 5: Tabela para o resultado da pergunta 3.1.2

Da mesma forma, a fonte foi invertida, e o resultado foi:

٧	1	Pr3.I	Pr2.V
2 2	0 5 0 5	0 -0.000435 -0.00531 -0.0102 -0.0152 -0.0201	0 -4.56 -4.69 -4.76 -4.82 -4.87
3	0	-0.0251	-4.92

Tabela 6: Tabela para o resultado da pergunta 3.1.4

Utilizando os dados da Tabela 4, o gráfico da Figura 7 foi plotado (1° Quadrante); o Gráfico da Figura 8 foi feito com a Tabela 5 (ainda 1° Quadrante) e finalmente, o Gráfico da Figura 9 foi feito com a Tabela 6 (3° Quadrante).

Figura 7: Referente à Tabela 4

Figura 8: Referente à Tabela 5

Figura 9: Referente à Tabela 6

Para plotar toda a curva e juntar todos os quadrantes, a fonte variou de -30 a 30 volts e a Tabela e o Gráfico da Figura 10 foram obtidos.

Figura 10: Gráfico completo referente ao circuito com diodo Zener.

3.2) Para essa parte do experimento, o circuito da Figura 3.2.1 foi criado no QUCS, com as configurações do recurso Equação mostradas na figura 3.2.2.

Figura 10: Circuito com fonte de onda quadrada

Figura 11: Configurações da Equação

Obs. Uma fonte de tensão contínua com o valor de -5V foi adicionada para gerar um OFFSET.

3.2.3) As frequências foram alteradas na Equação e as formas de onda no Resistor e na fonte foram adquiridas.

Primeiro, para um Diodo 1N4004:

Figura 12: Forma de onda para uma frequência de 200 Hz

Figura 13: Forma de onda para uma frequência de 5000 Hz

Figura 14: Forma de onda para uma frequência de 20000 Hz

3.2.4) Agora, para um diodo 1N4148, foi observado que o gráfico permanece inalterado para todas as frequências:

Figura 15: Forma de onda para o Diodo 1N4148 nas frequências de 200, 5000 e 20000 Hz