Numerical Analysis Computational Assignment B

Name: Nate Stemen (20906566)

Due: Fri, Sep 25, 2020 5:00 PM

Email: nate.stemen@uwaterloo.ca

Course: AMATH 740

Problem 1. Implementation of the Gauss-Seidel method.

Solution. First, the code from GaussSeidel.py.

```
1 import numpy as np
def GaussSeidel(A, guess, b, tolerance, maxIterations):
     n = A.shape[0]
     x_old = guess
6
     for iteration in range(maxIterations):
         x_new = np.zeros_like(x_old)
          for i in range(n):
              new_sum = np.dot(A[i, :i], x_new[:i])
10
              old_sum = np.dot(A[i, i + 1 :], x_old[i + 1 :])
11
              x_new[i] = (b[i] - new_sum - old_sum) / A[i, i]
          if np.linalg.norm(x_new - x_old) < tolerance:</pre>
13
              break
14
          x_old = x_new
     if iteration == maxIterations - 1:
          print("HIT MAX ITERATION: ", maxIterations)
17
     return x_new
```

And here's the output of VerifyGaussSeidel.py:

total error: 7.596379365363873e-14

So pretty good if I do say so myself. And because I'm working in python here's the file VerifyGaussSeidel.py.

```
import numpy as np
from GaussSeidel import GaussSeidel

n = 100

A = np.random.rand(n, n)
b = np.random.rand(n)

for i in range(n):
    A[i, i] = sum(A[i, j] for j in range(n))

x = GaussSeidel(A, np.zeros(n), b, 1e-12, 1000)

rror = np.linalg.norm(x - np.linalg.solve(A, b))

print(f"total error: {error}")
```

Problem 4. Implementation of the preconditioned CG and GMRES methods.

Solution. First, the code from myGMRES.py:

```
1 import numpy as np
2 from scipy import sparse, linalg
5 def myGMRES(A, guess, b, tolerance=1e-12, maxIterations=1000):
      n = A.shape[0]
      maxIterations = min(n, maxIterations)
      r0 = b - A @ guess
8
      rho = np.linalg.norm(r0)
9
      Q = np.zeros((n, maxIterations))
10
      Q[:, 0] = r0 / rho
11
      H = sparse.lil_matrix((maxIterations + 1, maxIterations))
      residuals = []
13
      for iteration in range(maxIterations):
14
          v = A @ Q[:, iteration]
15
          for j in range(iteration + 1):
16
              H[j, iteration] = np.dot(Q[:, j], v)
17
              v -= H[j, iteration] * Q[:, j]
18
          norm_v = np.linalg.norm(v)
          H[iteration + 1, iteration] = norm_v
20
          Q[:, iteration + 1] = v / norm_v
21
22
          e = np.zeros(maxIterations + 1)
          e[0] = rho
24
25
          y, *_ = linalg.lstsq(H.toarray(), e)
26
          residual = np.linalg.norm(e - H @ y) / rho
27
28
          residuals.append(residual)
29
          if residual < tolerance or iteration == maxIterations - 1:</pre>
30
              x = guess + Q @ y
31
              break
32
33
      return x, residuals, iteration + 1
```

Second, the code from myGMRES_SSOR.py:

```
1 import numpy as np
2 from scipy import sparse, linalg
5 def myGMRES_SSOR(A, guess, b, tolerance=1e-12, maxIterations=1000):
      n = A.shape[0]
      maxIterations = min(n, maxIterations)
      omega = 1.9
      AL = -1 * sparse.tril(A, k=-1)
9
      AU = -1 * sparse.triu(A, k=1)
      AD = sparse.spdiags(A.diagonal(), [0], n, n)
11
      ADinv = sparse.spdiags([1 / x for x in A.diagonal()], [0], n, n)
12
      Pinv = (AD - omega * AL) @ ADinv @ (AD - omega * AU) / (omega * (2))
13
         - omega))
14
      r0 = b - A @ guess
15
      rho = np.linalg.norm(r0)
16
      r0 /= rho
17
18
      Q = np.zeros((n, maxIterations))
19
      Q[:, 0] = r0
20
      H = sparse.lil_matrix((maxIterations + 1, maxIterations))
21
      residuals = []
22
      for iteration in range(maxIterations):
23
          z = sparse.linalg.spsolve(Pinv, Q[:, iteration])
24
          v = A @ z
25
          for j in range(iteration + 1):
26
               H[j, iteration] = np.dot(Q[:, j], v)
27
               v \rightarrow H[j, iteration] * Q[:, j]
29
          norm_v = np.linalg.norm(v)
30
          H[iteration + 1, iteration] = norm_v
31
          Q[:, iteration + 1] = v / norm_v
33
          e = np.zeros(maxIterations + 1)
34
          e[0] = rho
35
          y, *_ = linalg.lstsq(H.toarray(), e)
          residual = np.linalg.norm(e - H @ y) / rho
37
          residuals.append(residual)
38
39
          if residual < tolerance or iteration == n - 1:</pre>
40
               w = sparse.linalg.spsolve(Pinv, Q @ y)
41
              x = guess + w
42
43
              break
      return x, residuals, iteration + 1
45
```

Third, the code from myCG_SSOR.py:

```
1 import numpy as np
2 from scipy import sparse
3 from scipy.sparse import linalg
6 def myCG_SSOR(A, guess, b, tolerance=1e-12, maxIterations=1000):
      n = A.shape[0]
      maxIterations = min(n, maxIterations)
      omega = 1.9
9
      AL = -1 * sparse.tril(A, k=-1)
      AU = -1 * sparse.triu(A, k=1)
11
      AD = sparse.spdiags(A.diagonal(), [0], n, n)
12
      ADinv = sparse.spdiags([1 / x for x in A.diagonal()], [0], n, n)
13
      Pinv = (AD - omega * AL) @ ADinv @ (AD - omega * AU) / (omega * (2))
         - omega))
15
      Rvecs = np.zeros((n, maxIterations))
16
      Qvecs = np.zeros((n, maxIterations))
17
      Pvecs = np.zeros((n, maxIterations))
18
      Xvecs = np.zeros((n, maxIterations))
19
      Xvecs[:, 0] = guess
20
21
      r0 = b - A @ guess
22
      q0 = linalg.spsolve(Pinv, r0)
23
      p0 = np.copy(q0)
24
      Rvecs[:, 0], Qvecs[:, 0], Pvecs[:, 0] = r0, q0, p0
25
26
      residuals = [np.linalg.norm(r0)]
27
      for k in range(1, maxIterations):
          Aonp = A @ Pvecs[:, k - 1]
29
          alpha = np.dot(Rvecs[:, k - 1], Qvecs[:, k - 1]) / np.dot(Pvecs
30
              [:, k - 1], Aonp)
          xk = Xvecs[:, k - 1] + alpha * Pvecs[:, k - 1]
32
          rk = Rvecs[:, k - 1] - alpha * Aonp
33
          residual = np.linalg.norm(rk) / residuals[0]
          residuals.append(residual)
          if residual < tolerance or k == maxIterations - 1:</pre>
37
              return xk, residuals, k
38
39
          Xvecs[:, k] = xk
40
          Rvecs[:, k] = rk
41
42
          qk = sparse.linalg.spsolve(Pinv, rk)
          Qvecs[:, k] = qk
44
45
          beta = np.dot(rk, qk) / np.dot(Rvecs[:, k - 1], Qvecs[:, k -
              1])
          Pvecs[:, k] = qk + beta * Pvecs[:, k - 1]
47
      return xk, residuals, maxIterations
```

I also wrote a verson of Conjugate Gradient without preconditioning, so here's that:

```
1 import numpy as np
2 from scipy import sparse
5 def myCG(A, guess, b, tolerance=1e-12, maxIterations=1000):
      n = A.shape[0]
6
      maxIterations = min(n, maxIterations)
      Rvecs = np.zeros((n, maxIterations))
      Pvecs = np.zeros((n, maxIterations))
10
      Xvecs = np.zeros((n, maxIterations))
11
      Xvecs[:, 0] = guess
13
      r0 = b - A @ guess
14
      p0 = np.copy(r0)
15
      Rvecs[:, 0], Pvecs[:, 0] = r0, p0
17
      residuals = [np.linalg.norm(r0)]
18
      for k in range(1, maxIterations):
19
          Aonp = A @ Pvecs[:, k - 1]
20
          alpha = np.dot(Rvecs[:, k - 1], Rvecs[:, k - 1]) / np.dot(Pvecs
21
              [:, k - 1], Aonp)
22
          xk = Xvecs[:, k - 1] + alpha * Pvecs[:, k - 1]
          rk = Rvecs[:, k - 1] - alpha * Aonp
24
25
          residual = np.linalg.norm(rk) / residuals[0]
          residuals.append(residual)
27
          if residual < tolerance or k == maxIterations - 1:</pre>
28
              return xk, residuals, k
29
          Xvecs[:, k] = xk
31
          Rvecs[:, k] = rk
32
33
          beta = np.dot(rk, rk) / np.dot(Rvecs[:, k - 1], Rvecs[:, k -
             1])
          Pvecs[:, k] = rk + beta * Pvecs[:, k - 1]
      return xk, residuals, maxIterations
```

Now, here's the output of test_iterative.py:

```
********
error for GMRES, # of steps
error: 4.164109009000164e-13
steps: 31
---
error for GMRES_SSOR, # of steps
error: 2.6580413851364233e-12
steps: 22
---
error for CG, # of steps
error: 4.1577704537099615e-13
steps: 31
---
error for CG_SSOR, # of steps
```

```
error: 1.904849842831412e-12
steps: 23
```

And the translated code test_iterative.py:

```
1 import numpy as np
2 import sys
4 sys.path.insert(0, "../assignment1/problemThree")
5 from build_laplace_2d import build_laplace_2D
6 from myGMRES import myGMRES
7 from myGMRESSSOR import myGMRES_SSOR
8 from myCG import myCG
9 from myCGSSOR import myCG_SSOR
print("*******")
13 maxIterations = 500
14 tolerance = 1e-12
_{15} N = 8
n = N ** 2
17 A = build_laplace_2D(N)
18 x_exact = np.random.rand(n)
_{19} b = A @ x_exact
x0 = np.zeros(n)
22 x_gmres, resgmres, stepsgmres = myGMRES(A, x0, b, tolerance,
    maxIterations)
23 x_gmresSSOR, resgmresSSOR, stepsgmresSSOR = myGMRES_SSOR(
     A, x0, b, tolerance, maxIterations
25 )
26 x_cg, rescg, stepscg = myCG(A, x0, b, tolerance, maxIterations)
27 x_cgSSOR, rescgSSOR, stepscgSSOR = myCG_SSOR(A, x0, b, tolerance,
     maxIterations)
29 print("error for GMRES, # of steps")
30 error = np.linalg.norm(x_exact - x_gmres)
print(f"error: {error}")
print(f"steps: {stepsgmres}")
34 print ("---")
36 print("error for GMRES_SSOR, # of steps")
37 error = np.linalg.norm(x_exact - x_gmresSSOR)
38 print(f"error: {error}")
39 print(f"steps: {stepsgmresSSOR}")
41 print("---")
43 print("error for CG, # of steps")
44 error = np.linalg.norm(x_exact - x_cg)
45 print(f"error: {error}")
46 print(f"steps: {stepscg}")
48 print("---")
50 print("error for CG_SSOR, # of steps")
```

```
51 error = np.linalg.norm(x_exact - x_cgSSOR)
52 print(f"error: {error}")
53 print(f"steps: {stepscgSSOR}")
```

(e)

Now here's the code for driverPCG_PGMRES.py:

```
1 import numpy as np
2 import sys
4 sys.path.insert(0, "../assignment1/problemThree")
6 from build_laplace_2d import build_laplace_2D
7 from myGMRES import myGMRES
8 from myGMRESSSOR import myGMRES_SSOR
9 from myCG import myCG
10 from myCGSSOR import myCG_SSOR
import matplotlib.pyplot as plt
plt.style.use("ggplot")
16 maxIterations = 400
17 tolerance = 1e-10
_{19} N = 32
20 n = N ** 2
21 A = build_laplace_2D(N)
b = np.ones(n)
x0 = np.zeros(n)
27 x_gmres, resgmres, stepsgmres = myGMRES(A, x0, b, tolerance,
    maxIterations)
x_gmresSSOR, resgmresSSOR, stepsgmresSSOR = myGMRES_SSOR(
     A, x0, b, tolerance, maxIterations
30 )
x_cg, rescg, stepscg = myCG(A, x0, b, tolerance, maxIterations)
32 x_cgSSOR, rescgSSOR, stepscgSSOR = myCG_SSOR(A, x0, b, tolerance,
     maxIterations)
34 print(f"Steps for GMRES:
                                     {stepsgmres}")
35 print("---")
36 print(f"Steps for GMRES with SSOR: {stepsgmresSSOR}")
37 print("---")
38 print(f"Steps for CG:
                                     {stepscg}")
39 print("---")
40 print(f"Steps for CG with SSOR: {stepscgSSOR}")
42 fig = plt.figure()
ax = plt.subplot(111)
ax.plot(resgmres, label="GMRES")
45 ax.plot(resgmresSSOR, label="GMRES with SSOR")
46 ax.plot(rescg, label="CG")
ax.plot(rescgSSOR, label="CG with SSOR")
```

```
48
49 plt.title("Residual Size")
50 ax.legend()
51 ax.set_xlabel(r"Iterations $n$")
52 ax.set_ylabel(r"Residual $\|\|r_n\|\|\$")
53 plt.yscale("log")
54 plt.show()

And it's output:

Steps for GMRES: 66
----
Steps for GMRES with SSOR: 31
----
Steps for CG: 66
----
Steps for CG with SSOR: 32
```

And the associated plot. Really cool to see the two preconditioned algorithms perform-

Figure 4.1: Residual Size as a function of iteration number

ing so much better on this problem. I would never have expected, but then again, what do I know!? It says in the homework CG with SSOR is the optimal solution for this problem, but GMRES with SSOR seems to be performing slightly better. Why is that?

(f)

For this part I wrote a new file to generate the required log-log plot. Here's loglog.py:

```
1 import numpy as np
2 import sys
4 sys.path.insert(0, "../assignment1/problemThree")
5 from build_laplace_2d import build_laplace_2D
6 from myGMRES import myGMRES
7 from myGMRESSSOR import myGMRES_SSOR
8 from myCG import myCG
9 from myCGSSOR import myCG_SSOR
import matplotlib.pyplot as plt
plt.style.use("ggplot")
14 \text{ Ns} = \text{range}(80, 150, 10)
ns = [N ** 2 for N in Ns]
16 \text{ tol} = 1e-10
18 steps = {"gmres": [], "gmresssor": [], "cg": [], "cgssor": []}
19 for N in Ns:
    print(N)
     n = \mathbb{N} ** 2
    A = build_laplace_2D(N)
    b = np.ones(n)
23
     x0 = np.zeros(n)
24
25
     *_, stepsgmres = myGMRES(A, x0, b, tol)
26
     print("\tdone with GMRES")
27
     *_, stepsgmresSSOR = myGMRES_SSOR(A, x0, b, tol)
     print("\tdone with GMRES SSOR")
     *_{,} stepscg = myCG(A, x0, b, tol)
30
     print("\tdone with CG")
31
     *_, stepscgSSOR = myCG_SSOR(A, x0, b, tol)
32
     print("\tdone with CG SSOR")
33
     steps["gmres"].append(stepsgmres)
35
      steps["gmresssor"].append(stepsgmresSSOR)
36
      steps["cg"].append(stepscg)
      steps["cgssor"].append(stepscgSSOR)
40 fig = plt.figure()
ax = plt.subplot(111)
x = np.log(ns)
43 ax.plot(x, np.log(steps["gmres"]), label="GMRES")
44 ax.plot(x, np.log(steps["gmresssor"]), label="GMRES with SSOR")
45 ax.plot(x, np.log(steps["cg"]), label="CG")
46 ax.plot(x, np.log(steps["cgssor"]), label="CG with SSOR")
48 ax.legend()
49 ax.set_xlabel(r"Log of Problem Size")
50 ax.set_ylabel(r"Log of # of Iterations")
51 plt.show()
slope_gmres, _ = np.polyfit(x, np.log(steps["gmres"]), 1)
54 print(f"GMRES loglog slope: {slope_gmres}")
slope_cg, _ = np.polyfit(x, np.log(steps["cg"]), 1)
```

```
print(f"CG loglog slope: {slope_cg}")
slope_gmresssor, _ = np.polyfit(x, np.log(steps["gmresssor"]), 1)
print(f"GMRES with SSOR loglog slope: {slope_gmresssor}")
slope_cgssor, _ = np.polyfit(x, np.log(steps["cgssor"]), 1)
print(f"CG with SSOR loglog slope: {slope_cgssor}")
```

This generates the following log-log plot. Note both CG and GMRES (without preconditioning) lie basically on top of each other, and are hard to distinguish.

Figure 4.2: Log-log plot

The file also prints out the slopes of these lines as given by np.polyfit.

GMRES loglog slope: 0.5013427593113042 CG loglog slope: 0.5003337819405206

GMRES with SSOR loglog slope: 0.17676643756871577 CG with SSOR loglog slope: 0.18072452126753552

With this we see that both CG and GMRES have a slope of approximately $\frac{1}{2}$ and the preconditioned problems have slope that's about three times as small. Pretty sweet!