Boyang Deng, Simon Kornblith, and Geoffrey Hinton

Google Brain, Toronto

1. 2D Representation?

1. 2D Representation?

Not enough, because a lot of objects, e.g. animals, are inherently 3D.

1. 2D Representation?

- Not enough, because a lot of objects, e.g. animals, are inherently 3D.
- 2D means a hard time for **novel viewpoints** and **novel lightings**, especially in generation.

1. 2D Representation?

- Not enough, because a lot of objects, e.g. animals, are inherently 3D.
- 2D means a hard time for **novel viewpoints** and **novel lightings**, especially in generation.
- And this is a 3D Vision workshop.

1. 2D Representation? Not Enough.

- 1. 2D Representation? Not Enough.
- 2. 3D Representation?

- 1. 2D Representation? Not Enough.
- 2. 3D Representation?
 - Good. Representing objects as they are.

- 1. 2D Representation? Not Enough.
- 2. 3D Representation?
- Good. Representing objects as they are.
- Friendly to re-rendering under novel scenes. Thanks to Graphics.

1. 2D Representation? Not Enough.

2. 3D Representation?

- Good. Representing objects as they are.
- Friendly to re-rendering under novel scenes. Thanks to Graphics.
- Which one to use? Voxel, point cloud, or mesh.

- 1. 2D Representation? Not Enough.
- 2. 3D Representation?
 - We choose mesh.
 - Compact compared to voxel.
 - Fast rasterization -> Plug a differentiable renderer in training -> <u>No 3D supervision</u>.

- 1. 2D Representation? Not Enough.
- 2. 3D Representation? Mesh.
- 3. Mesh for Articulated Bodies
- Previous methods $^{[1,2]}$ use a **single mesh** with fixed topology.
- Articulated bodies have poses, i.e. relative locations and orientations of parts.

- 1. 2D Representation? Not Enough.
- 2. 3D Representation? Mesh.
- 3. Mesh for Articulated Bodies
- Previous methods $^{[1,2]}$ use a **single mesh** with fixed topology.
- Articulated bodies have poses, i.e. relative locations and orientations of parts.
 - Single mesh is hard to fit various poses.

- 1. 2D Representation? Not Enough.
- 2. 3D Representation? Mesh.
- 3. Mesh for Articulated Bodies
- Previous methods $^{[1,2]}$ use a **single mesh** with fixed topology.
- Articulated bodies have poses, i.e. relative locations and orientations of parts.
 - Single mesh is hard to fit various poses.
 - Solution: A Part-based Model.

Image Encoding (Image -> Latent Vector + Heatmaps + Depth maps) Heatmap of 2D Location(x, y) & Pixel Depth(z) N Pairs Camera Frame **Object Latent** Translations **Deformations Shape Latent** ---→ In/Out →Add → Downsample → Upsample → Linear Conv Layers Initial Spheres Add Quaternions \leftarrow $N \longrightarrow$ Differentiable Part Meshes in the Camera Frame Parts in the World Frame Renderer $\leftarrow N \longrightarrow$ \leftarrow $N \longrightarrow$ **Inverse Camera Transformation (Given)**

Differentiable Mesh Rendering

• With supervision (e.g. keypoints) -> Easy. Add a loss term.

- With supervision (e.g. keypoints) -> Easy. Add a loss term.
- Can we learn parts without part annotations?

- With supervision (e.g. keypoints) -> Easy. Add a loss term.
- Can we learn parts without part annotations? Yes.
- Let's rethink the properties of parts.

Part Split No.1

Part Split No.2

No.2 is preferred Why?

Part Split No.1

Part Split No.2

No.2 is preferred

Why?

Pose Consistency

Part Split No.1

Part Split No.2

Part Split No.1

Part Split No.2

/ Another consistency

Viewpoint Consistency

/ Results

/ Results: Human Dataset*

NMR

NMRr

• NMRs is NMR with smooth loss.

NMRr is NMR with our differentiable Renderer

/ Results: Human Dataset*

NMR

• NMR is Neural Mesh Renderer.

• NMRs is NMR with smooth loss.

NMRr is NMR with our differentiable Renderer

Ours

Our Parts

Our Turn

/ Results: Human Dataset

Input	NMR	NMRs	NMRr	Ours	Parts	Turn
	1			•	•	Ř
1	1		İ	Ť	Ť	Ä
	V			•		Å
Ą	4			4	K	Å
1	4					

Model	Human	Human Hard	Animal
NMR	0.2596	19	$ \begin{vmatrix} 0.3000 \\ 0.2574 \\ 0.3201 \end{vmatrix} $
NMRs	0.2233	-	
NMRr	0.3084	-	
Cerberus	0.4970	0.4728 0.4365	0.4255
Free Cerberus	0.5099		0.4196

- Free Cerberus is Cerberus without pose consistency.
- Cerberus is better than baselines both quantitatively and qualitatively.

/ Results: Evaluate parts quantitatively

Model	Human	Human Hard	Animal	
NMR	0.2596	1-	0.3000	
NMRs	0.2233	-	0.2574	
NMRr	0.3084	-	0.3201	
Cerberus	0.4970	0.4728	0.4255	
Free Cerberus	0.5099	0.4365	0.4196	

/ Results: Evaluate parts quantitatively

Model	Human	Human Hard	Animal
NMR	0.2596	14	0.3000
NMRs	0.2233	:=	0.2574
NMRr	0.3084	-	0.3201
Cerberus	0.4970	0.4728	0.4255
Free Cerberus	0.5099	0.4365	0.4196

- The performance of Cerberus doesn't drop much on the hard test.
- Pose consistency can help learn better parts.

/ Results: Evaluate parts quantitatively

Free Cerberus Cerberus

Model	Human	Human Hard	Animal
NMR NMRs NMRr	0.2596 0.2233 0.3084	- -	0.3000 0.2574 0.3201
Cerberus Free Cerberus	0.4970 0.5099	0.4728 0.4365	0.4255 0.4196

- The performance of Cerberus doesn't drop much on the hard test.
- Pose consistency can help learn better parts.

/ Results: Animal Dataset* (Higher Shape Variance)

Model	Human	Human Hard	Animal
NMR	0.2596	i u	0.3000
NMRs	0.2233	:-	0.2574
NMRr	0.3084	-	0.3201
Cerberus	0.4970	0.4728	0.4255
Free Cerberus	0.5099	0.4365	0.4196

Cerberus is consistently better than baseline methods.

/ Summary

• We present Cerberus, a 3D perception framework for articulated bodies.

We present consistency constraints for learning parts without part supervision.

• Cerberus, trained with the proposed constraints, outperforms baselines on both standard and hard tests.

/ Thank you for listening!