

Duality in vv-RKHSs with Infinite Dimensional Outputs: Application to Robust Losses

Pierre Laforgue, Alex Lambert, Luc Brogat-Motte, Florence d'Alché-Buc

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Motivations

A duality theory for general OVKs

Robust losses as convolutions

Experiments

Motivation 1: structured prediction by surrogate approach

Kernel trick in the input space.

Kernel trick in the output space [Cortes '05, Geurts '06, Brouard '11, Kadri '13, Brouard '16], **Input Output Kernel Regression (IOKR).**

$$\hat{h} = \underset{h \in \mathcal{H_K}}{\operatorname{argmin}} \ \frac{1}{2n} \sum_{i=1}^n \left\| \phi(y_i) - h(x_i) \right\|_{\mathcal{F}_{\mathcal{Y}}}^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H_K}}^2, \qquad g(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \ \left\| \phi(y) - \hat{h}(x) \right\|_{\mathcal{F}_{\mathcal{Y}}}$$

Motivation 2: function to function regression

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{2n} \sum_{i=1}^{n} \left\| y_i - h(x_i) \right\|_{L^2}^2 + \frac{\Lambda}{2} \|h\|^2 \qquad [\text{Kadri et al., 2016}]$$

And many more!

e.g. structured data autoencoding [Laforgue et al., 2019]

$$\min_{h_1,h_2\in\mathcal{H}_{\mathcal{K}}^1\times\mathcal{H}_{\mathcal{K}}^2} \quad \frac{1}{2n}\sum_{i=1}^n \left\|\phi(x_i)-h_2\circ h_1(\phi(x_i))\right\|_{\mathcal{F}_{\mathcal{X}}}^2 + \Lambda \ \mathsf{Reg}(h_1,h_2).$$

Purpose of this work

Question: Is it possible to extend the previous approaches to different (ideally robust) loss functions?

First answer: Yes, possible extension to maximum-margin regression [Brouard et al., 2016], and ϵ -insensitive loss functions for matrix-valued kernels [Sangnier et al., 2017]

What about general Operator-Valued Kernels (OVKs)? What about other types of loss functions?

Motivations

A duality theory for general $\ensuremath{\mathsf{OVKs}}$

Robust losses as convolutions

Experiments

Learning in vector-valued RKHSs (vv-RKHSs)

- $\bullet \ \mathcal{K} \colon \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y}), \quad \mathcal{K}(x,x') = \mathcal{K}(x',x)^*, \quad \sum_{i,j} \left\langle y_i, \mathcal{K}(x_i,x_j) y_j \right\rangle_{\mathcal{Y}} \geq 0$
- $\bullet \ \ \mathsf{Unique} \ \mathsf{vv-RKHS} \ \mathcal{H}_{\mathcal{K}} \subset \mathcal{F}(\mathcal{X},\mathcal{Y}), \quad \mathcal{H}_{\mathcal{K}} = \overline{\mathsf{Span} \left\{ \mathcal{K}(\cdot,x) y : x,y \in \mathcal{X} \times \mathcal{Y} \right\}}$
- Ex: decomposable OVK $\mathcal{K}(x,x')=k(x,x')A$, with k scalar, A p.s.d. on \mathcal{Y}

Learning in vector-valued RKHSs (vv-RKHSs)

•
$$\mathcal{K} \colon \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$$
, $\mathcal{K}(x, x') = \mathcal{K}(x', x)^*$, $\sum_{i,j} \langle y_i, \mathcal{K}(x_i, x_j) y_j \rangle_{\mathcal{Y}} \ge 0$

- $\bullet \ \ \mathsf{Unique} \ \mathsf{vv-RKHS} \ \mathcal{H}_{\mathcal{K}} \subset \mathcal{F}(\mathcal{X},\mathcal{Y}), \quad \mathcal{H}_{\mathcal{K}} = \overline{\mathsf{Span} \left\{ \mathcal{K}(\cdot,x)y : x,y \in \mathcal{X} \times \mathcal{Y} \right\}}$
- Ex: decomposable OVK $\mathcal{K}(x,x')=k(x,x')A$, with k scalar, A p.s.d. on \mathcal{Y}
- For $\{(x_i, y_i)\}_{i=1}^n \in (\mathcal{X} \times \mathcal{Y})^n$ with \mathcal{Y} a Hilbert space, we want to find:

$$\hat{h} \in \underset{h \in \mathcal{H}_{\mathcal{K}}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i) + \frac{\Lambda}{2} ||h||_{\mathcal{H}_{\mathcal{K}}}^{2}.$$

Representer Theorem [Micchelli and Pontil, 2005]:

$$\exists (\hat{\alpha}_i)_{i=1}^n \in \mathcal{Y}^n$$
 (infinite dimensional!) s.t. $\hat{h}(x) = \sum_{i=1}^n \mathcal{K}(\cdot, x_i) \hat{\alpha}_i$.

When
$$\ell(\cdot,\cdot) = \frac{1}{2} \|\cdot - \cdot\|_{\mathcal{Y}}^2$$
, $\mathcal{K} = k \cdot I_{\mathcal{Y}}$: $\hat{\alpha}_i = \sum_{j=1}^n A_{ij} y_j$, $A = (K + n\Lambda I_n)^{-1}$.

Applying duality

$$\hat{h} \in \underset{h \in \mathcal{H_K}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n \ell_i(h(x_i)) + \frac{\Lambda}{2} \|h\|_{\mathcal{H_K}}^2 \quad \text{is given by} \quad \hat{h} = \frac{1}{\Lambda n} \sum_{i=1}^n \mathcal{K}(\cdot, x_i) \hat{\alpha}_i,$$

with $(\hat{\alpha}_i)_{i=1}^n \in \mathcal{Y}^n$ the solutions to the **dual problem**:

$$\min_{(\alpha_i)_{i=1}^n \in \mathcal{Y}^n} \quad \sum_{i=1}^n \ell_i^*(-\alpha_i) + \frac{1}{2\Lambda n} \sum_{i,j=1}^n \langle \alpha_i, \mathcal{K}(x_i, x_j) \alpha_j \rangle_{\mathcal{Y}},$$

with $f^*: \alpha \in \mathcal{Y} \mapsto \sup_{y \in \mathcal{Y}} \langle \alpha, y \rangle_{\mathcal{Y}} - f(y)$ the Fenchel-Legendre transform of f.

Applying duality

$$\hat{h} \in \underset{h \in \mathcal{H_K}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n \ell_i(h(x_i)) + \frac{\Lambda}{2} \|h\|_{\mathcal{H_K}}^2 \quad \text{is given by} \quad \hat{h} = \frac{1}{\Lambda n} \sum_{i=1}^n \mathcal{K}(\cdot, x_i) \hat{\alpha}_i,$$

with $(\hat{\alpha}_i)_{i=1}^n \in \mathcal{Y}^n$ the solutions to the **dual problem**:

$$\min_{(\alpha_i)_{i=1}^n \in \mathcal{Y}^n} \quad \sum_{i=1}^n \ell_i^*(-\alpha_i) + \frac{1}{2\Lambda n} \sum_{i,j=1}^n \langle \alpha_i, \mathcal{K}(x_i, x_j) \alpha_j \rangle_{\mathcal{Y}},$$

with $f^{\star}: \alpha \in \mathcal{Y} \mapsto \sup_{y \in \mathcal{Y}} \langle \alpha, y \rangle_{\mathcal{Y}} - f(y)$ the Fenchel-Legendre transform of f.

- 1st limitation: the FL transform ℓ^\star needs to be computable (o assumption)
- 2nd limitation : the dual variables $(\alpha_i)_{i=1}^n$ are still infinite dimensional!

Applying duality

$$\hat{h} \in \underset{h \in \mathcal{H_K}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n \ell_i(h(x_i)) + \frac{\Lambda}{2} \|h\|_{\mathcal{H_K}}^2 \quad \text{is given by} \quad \hat{h} = \frac{1}{\Lambda n} \sum_{i=1}^n \mathcal{K}(\cdot, x_i) \hat{\alpha}_i,$$

with $(\hat{\alpha}_i)_{i=1}^n \in \mathcal{Y}^n$ the solutions to the **dual problem**:

$$\min_{(\alpha_i)_{i=1}^n \in \mathcal{Y}^n} \quad \sum_{i=1}^n \ell_i^*(-\alpha_i) + \frac{1}{2\Lambda n} \sum_{i,j=1}^n \left\langle \alpha_i, \mathcal{K}(x_i, x_j) \alpha_j \right\rangle_{\mathcal{Y}},$$

with $f^*: \alpha \in \mathcal{Y} \mapsto \sup_{y \in \mathcal{Y}} \langle \alpha, y \rangle_{\mathcal{Y}} - f(y)$ the Fenchel-Legendre transform of f.

- 1st limitation: the FL transform ℓ^\star needs to be computable (o assumption)
- 2nd limitation : the dual variables $(\alpha_i)_{i=1}^n$ are still infinite dimensional!

If
$$\mathbf{Y} = \mathsf{Span}\{y_j, \ j \leq n\}$$
 invariant by \mathcal{K} , i.e. $\forall (x, x'), \ y \in \mathbf{Y} \ \Rightarrow \ \mathcal{K}(x, x')y \in \mathbf{Y}$:
then $\hat{\alpha}_i \in \mathbf{Y} \ \rightarrow \ \mathsf{possible}$ reparametrization: $\hat{\alpha}_i = \sum_i \hat{\omega}_{ij} y_j$

The double representer theorem (1/2)

Assume that OVK $\mathcal K$ and loss ℓ satisfy the appropriate assumptions (see paper for details, verified by standard kernels and losses), then

$$\hat{h} = \operatorname*{argmin}_{\mathcal{H}_{\mathcal{K}}} \ \frac{1}{n} \sum_{i} \ell(h(x_i), y_i) + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2 \ \ ext{is given by}$$

$$\hat{h} = \frac{1}{\Lambda n} \sum_{i,j=1}^{n} \mathcal{K}(\cdot, x_i) \, \hat{\omega}_{ij} \, y_j,$$

with $\hat{\Omega} = [\hat{\omega}_{ij}] \in \mathbb{R}^{n \times n}$ the solution to the **finite dimensional** problem

$$\min_{\boldsymbol{\Omega} \in \mathbb{R}^{n \times n}} \ \sum_{i=1}^n L_i\left(\underline{\Omega}_i, \boldsymbol{\mathcal{K}}^{\boldsymbol{\mathsf{Y}}}\right) + \frac{1}{2 \Lambda n} \mathsf{Tr}\left(\tilde{\boldsymbol{\mathcal{M}}}^\top (\underline{\boldsymbol{\mathsf{\Omega}}} \otimes \underline{\boldsymbol{\mathsf{\Omega}}})\right),$$

with \tilde{M} the $n^2 \times n^2$ matrix writing of M s.t. $M_{ijkl} = \langle y_k, \mathcal{K}(x_i, x_j)y_l \rangle_{\mathcal{Y}}$.

The double representer theorem (2/2)

If K further satisfies $K(x,x')=\sum_t k_t(x,x')A_t$, then tensor M simplifies to $M_{ijkl}=\sum_t [K_t^X]_{ij}[K_t^Y]_{kl}$ and the problem rewrites

$$\min_{\boldsymbol{\Omega} \in \mathbb{R}^{n \times n}} \ \sum_{i=1}^n L_i \left(\underline{\boldsymbol{\Omega}}_{i:}, \boldsymbol{K}^{\boldsymbol{Y}} \right) + \frac{1}{2 \Lambda n} \sum_{t=1}^T \text{Tr} \left(\boldsymbol{K}_t^{\boldsymbol{X}} \underline{\boldsymbol{\Omega}} \boldsymbol{K}_t^{\boldsymbol{Y}} \underline{\boldsymbol{\Omega}}^{\top} \right).$$

Rmk. Only need the n^4 tensor $\langle y_k, \mathcal{K}(x_i, x_j)y_i \rangle_{\mathcal{V}}$ to learn OVKMs.

Simplifies to 2 n^2 matrices $K_{ij}^X K_{kl}^Y$ if K is decomposable.

How to apply the duality approach?

Motivations

A duality theory for general OVKs

Robust losses as convolutions

Experiments

Infimal convolution and Fenchel-Legendre transforms

Infimal-convolution operator \square between proper lower semicontinuous functions [Bauschke et al., 2011]:

$$(f \square g)(x) = \inf_{y} f(y) + g(x - y).$$

Relation to FL transform:

$$(f \square g)^* = f^* + g^*$$

Ex: ϵ -insensitive losses. Let $\ell: \mathcal{Y} \to \mathbb{R}$ be a convex loss with unique minimum at 0, and $\epsilon > 0$. The ϵ -insensitive version of ℓ , denoted ℓ_{ϵ} , is defined by:

$$\ell_{\epsilon}(y) = (\ell \square \chi_{\mathcal{B}_{\epsilon}})(y) = \left\{ \begin{array}{cc} \ell(0) & \text{if } \|y\|_{\mathcal{Y}} \leq \epsilon \\ \inf_{\|d\|_{\mathcal{Y}} \leq 1} \ell(y - \epsilon d) & \text{otherwise} \end{array} \right.,$$

and has FL transform:

$$\ell_{\epsilon}^{\star}(y) = (\ell \square \chi_{\mathcal{B}_{\epsilon}})^{\star}(y) = \ell^{\star}(y) + \epsilon ||y||.$$

Interesting loss functions: sparsity and robustness

Specific dual problems

For the ϵ -ridge, ϵ -SVR and κ -Huber, it holds $\hat{\Omega}=\hat{W}V^{-1}$, with \hat{W} the solution to these finite dimensional dual problems:

$$(D1) \quad \min_{W \in \mathbb{R}^{n \times n}} \quad \frac{1}{2} \left\| AW - B \right\|_{\mathsf{Fro}}^2 + \epsilon \ \| W \|_{2,1},$$

(D2)
$$\min_{W \in \mathbb{R}^{n \times n}} \frac{1}{2} \|AW - B\|_{\text{Fro}}^2 + \epsilon \|W\|_{2,1},$$

s.t. $\|W\|_{2,\infty} \le 1,$

(D3)
$$\min_{W \in \mathbb{R}^{n \times n}} \qquad \frac{1}{2} \|AW - B\|_{\text{Fro}}^{2},$$
s.t.
$$\|W\|_{2,\infty} \le \kappa,$$

with V, A, B such that: $VV^{\top} = K^{Y}$, $A^{\top}A = K^{X}/(\Lambda n) + \mathbf{I}_{n}$ (or $A^{\top}A = K^{X}/(\Lambda n)$ for the ϵ -SVR), and $A^{\top}B = V$.

Motivations

A duality theory for general OVKs

Robust losses as convolutions

Experiments

Surrogate approaches for structured prediction

- Experiments on YEAST dataset
- \bullet Empirically, $\epsilon\textsc{-}\mathsf{SV}\textsc{-}\mathsf{IOKR}$ outperforms ridge-IOKR for a wide range of ϵ
- Promotes sparsity and acts as a regularizer

Figure 1: MSEs and sparsity w.r.t. Λ for several ϵ

Robust function-to-function regression

Task from [Kadri et al., 2016]: predict lip acceleration from EMG signals.

- Dataset augmented with outliers, model learned with Huber loss
- Improvement for every output size M (see paper for approximation)

Figure 2: LOO generalization error w.r.t. κ

Motivations

A duality theory for general OVKs

Robust losses as convolutions

Experiments

Conclusion

State of the art:

- OVK and vv-RKHSs tailored to infinite dimensional outputs
- RT: expansion with few information on the coefficients
- Duality: coefficients solutions to the (infinite) dual problem

Contributions:

- Double RT: coefficients linear combinations of the outputs
- Allows to cope with many losses (ϵ , Huber) and kernels
- Empirical improvements on surrogate approaches

Much more in the paper!

- Thorough algorithmic stability analysis
- What if Y is not invariant by K?

References I

Bauschke, H. H., Combettes, P. L., et al. (2011). *Convex analysis and monotone operator theory in Hilbert spaces*, volume 408.

Springer.

Brouard, C., Szafranski, M., and d'Alché-Buc, F. (2016).

Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernel.

Journal of Machine Learning Research, 17:176:1–176:48.

Kadri, H., Duflos, E., Preux, P., Canu, S., Rakotomamonjy, A., and Audiffren, J. (2016).

Operator-valued kernels for learning from functional response data. *Journal of Machine Learning Research*, 17:20:1–20:54.

Laforgue, P., Clémençon, S., and d'Alché-Buc, F. (2019).

Autoencoding any data through kernel autoencoders.

In Artificial Intelligence and Statistics, pages 1061–1069.

References II

Micchelli, C. A. and Pontil, M. (2005).

On learning vector-valued functions.

Neural computation, 17(1):177-204.

Sangnier, M., Fercoq, O., and d'Alché-Buc, F. (2017).

Data sparse nonparametric regression with ϵ -insensitive losses.

In Asian Conference on Machine Learning, pages 192–207.