

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 21,10,1998 Bulletin 1998/43
- 21.10.1998 Bulletin 1998/43
 (21) Application number: 97120324.5

(51) Int. Cl.⁶: **C12N 15/52**, C12P 23/00, A23K 1/16, A23L 1/275, C12N 1/21

(11)

- (22) Date of filing: 20.11.1997
- _____
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 02.12.1996 EP 96810839
- (71) Applicant: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH)
- (72) Inventors:
 - Pasamontes, Luis 4632 Trimbach (CH)

- Tsygankov, Yuri, State Scient. Cnt. of Russian Fed Moscow 113545 (RU)
- (74) Representative: Braun, Axel et al F.Hoffmann-La Roche AG Patent Department (PLP), 124 Grenzacherstrasse 4070 Basel (CH)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) Improved fermentative carotenoid production

(57) The present invention is directed to processes for the preparation of carthaxanthin, adonixanthin, astaxanthin, a mixture of adonixanthi and astaxanthin and astaxanthin by a cell which has been transformed by DNA sequences encoding the respective biosynthetic enzymes of Flavobacterium and the gram negative bacterium E-396. Furthermore the present invention is directed to a food or feed composition comprising one or more of the aforementioned carotenoids.

30

35

aο

45

55

Over 600 different carotenoids have been described from carotenogenic organisms found among bacteria, yeast, fungi and plants. Currently only two of them, β-carotene and astaxanthin are commercially produced in microorganisms and used in the food and feed industry. β-carotene is obtained from algae and astaxanthin is produced in Pfaffia strains which have been generated by classical mutation. However, fermentation in Pfaffia has the disadvantage of long fermentation cycles and recovery from algae is cumbersome. Therefore it is desiderable to develop production systems which have better industrial applicability, e.g. can be manipulated for increased titers and/or reduced fermentation times. Two such systems using the biosynthetic genes form Erwinia herbicola and Erwinia uredovora have already been described in WO 91/13078 and EP 393 690, respectively. Furthermore, three β-carotene ketolase genes (β-carotene β-4-oxygenase) of the marine bacteria Aprobacterium aurantiacum and Alcaligenes strain PC-1 (crtW) [Misawa, 1995. Biochem. Biophys. Res. Com. 209, 867-876][Misawa, 1995, J. Bacteriology 177, 6575-6584] and from the green algae Haematococcus pluvialis (bkt) [Lotan, 1995, FEBS Letters 364, 125-128][Kajiwara, 1995, Plant Mol. Biol. 29, 343-352] have been cloned, E. coli carrying either the carotenogenic genes (crtE, crtB, crtY and crtf) of E. herbicola [Hundle, 1994, MGG 245, 406-416) or of E. uredovora and complemented with the crtW gene of A. aurantiacum [Misawa, 1995] or the bkt gene of H. pluvialis [Lotan, 1995][Kajiwara, 1995] resulted in the accumulation of canthaxanthin (β,β-carotene-4.4'-dione), originating from the conversion of 8-carotene, via the intermediate echinenone (6.8-carotene-4-one). Introduction of the above mentioned genes (crtW or bkt) into E. coli cells harbouring besides the carotenoid biosynthesis genes mentioned above also the crtZ gene of E. uredovora [Kajiwara, 1995][Misawa, 1995], resulted in both cases in the accumulation of astaxanthin (3.3'-dihydroxy-6.6-carotene-4.4'-dione). The results obtained with the bkt gene, are in contrast to the observation made by others [Lotan, 1995], who using the same experimental set-up, but introducing the H. pluvialis bkt gene in a zeaxanthin (6,6-carotene-3,3'-diol) synthesising E. coli host harbouring the carotenoid biosynthesis genes of E. herbicola, a close relative of the above mentioned E. uredovora strain, did not observe astaxan-

Since there is a continuing need in even more optimized fermentation systems for industrial application it is theretore in the first instance an object of the present invention to provide a process for the preparation of canthaxanthin by culturing under suitable culture conditions a cell which is transformed by a DNA sequence comprising the following DNA sequences:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous;
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous;
- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous;
- d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous;
- e) a DNA sequence which encodes the β-carotene β4-oxygenase of the microorganism E-396 (FERM BP-4283) [crtW_{E398}] or a DNA sequence which is substantially homologous;
- or a cell which is transformed by a vector comprising DNA sequences specified above under a) to e) and by isolating canthaxanthin from such cells or the culture medium by methods known in the art.

Furthermore it is in the second instance an object of the present invention to provide a process for the preparation of a mixture of adonixanthin and astaxanthin or adonixanthin or astaxanthin alone by a process as mentioned above characterized therein that in addition to the DNA sequences specified under a) to e) the following additional DNA sequence is present:

- f) a DNA sequence which encodes the β -carotene hydroxylase of the microorganism E-396 (FERM BP-4283) [crtZ_{E396}] or a DNA sequence which is substantially homologous;
- and the DNA sequence specified under e) is as specified above or the following sequence:
- g) a DNA sequence which encodes the 6-carotene 64-oxygenase of Alcaligenes strain PC-1 (crtW) or a DNA

and isolating the desired mixture of adonixanthin and astaxanthin or adonixanthin or a astaxanthin alone from such cells of the culture medium and separating the desired mixture or carotenoids alone from other carotenoids which might be oresent by methods known in the art.

Furthermore it is an object of the present invention to provide a process for the preparation of zeaxanthin by a process as claimed in the first instance characterized therein that the DNA sequence as specified under e) is replaced by the DNA sequence as specified under e) in the second instance and by isolating zeaxanthin from the cell or the culture medium and separating if from other carotenoids which might be present by methods known in the art.

Furthermore it is an object of the present invention to provide a process for the production of adonixanthin by culturing under suitable culture conditions a cell which is transformed by a DNA sequence comprising the following heterologous DNA sequences:

- a) a DNA sequence which encodes the GGPP synthase of the microorganism E-396 (FERM BP-4283) [crtE_{E396}]
 or a DNA sequence which is substantially homologous;
 - b) a DNA sequence which encodes the prephytoene synthase the microorganism E-396 (FERM BP-4283) [crtB_{E396}] or a DNA sequence which is substantially homologous;
 - c) a DNA sequence which encodes the phytoene desaturase of the microorganism E-396 (FERM BP-4283) [crtl_{E395}] or a DNA sequence which is substantially homologous;
 - d) a DNA sequence which encodes the lycopene cyclase of the microorganism E-396 (FERM BP-4283) [crtY_{E396}] or a DNA sequence which is substantially homologous;
 - e) a DNA sequence which encodes the β -carotene hydroxylase of the microorganism E396 (FERM BP-4283) [crtZ_{F396}] or a DNA sequence which is substantially homologous; and
- f) a DNA sequence which encodes the β -carotene β 4-oxygenase of the microorganism E396 (FERM BP-4283) [α tW_{E396}] or a DNA sequence which is substantially homologous;

and isolating adonixanthin from the cell or the culture medium and separating it from other carotenoids which might be present by methods known in the art.

Further it is an object of the present invention to provide a process as described above characterized therein that the transformed host cell is a prokaryotic host cell, like E. coli, Bacillus or Flavobacter and a process as described above characterized therein that the transformed host cell is a eukaryotice host cell, like yeast or a fungal cell.

Furthermore it is an object of the present invention to provide a DNA sequence comprising one or more DNA sequences selected from the group consisting of:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous:
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous;
 - c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous;
 - d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous; and
 - e) a DNA sequence which encodes the β-carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed

20

25

30

46

50

by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable culture conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid or carotenoid mixture is added to food or feed.

Furthermore, a DNA sequence comprising the following DNA sequences is an object of the present invention:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous;
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) of a DNA sequence which is substantially homologous; and
 - c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R 1534 (crtl) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of lycopene and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably lycopene or carotenoid mixture, preferably a lycopene comprising mixture is added to food or feed.

Furthermore a DNA sequence comprising the following DNA sequence is also an object of the present invention:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous;
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous;
- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous; and
- d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is that the stransformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of β -carotene and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably β -carotene or carotenoid mixture, preferably β -carotene comprising mixture is added to food or feed.

Furthermore a cell which is transformed by the above mentioned DNA sequence comprising subsequences a) to d) or the vector comprising it and a second DNA sequence which encodes the β-carotene β4-avoygenase of Acadigenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous or a second vector which comprises a DNA.

10

15

20

30

35

40

sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially hormologous; and a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of echinenone and a process for the preparation of a tood or feed composition characterized therein that after such a process has been effected the carotenoid, preferably echinenone or carotenoid mixture, preferably an echinenone comprising mixture is added to food or feed.

Furthermore it is an object of the present invention to provide a DNA sequence as mentioned above comprising subsequences a) to d) and a DNA sequence which encodes the p-carotene p4-covygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous and a vector comprising such DNA sequence preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably hich is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoids or a mixture of carotenoids by culturing such a cell under suitable culture conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells of the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, especially such a process for the preparation of echinenone or canthaxanthin and a process for the preparation of a food or feed compositing characterized therein that after such a process has been effected the carotenoid, preferably echinenone or canthaxanthin or carotenoid mixture, preferably a cehinenone or canthaxanthin carotenoid mixture, preferably a chinenone or canthaxanthin carotenoid mixture, preferably a chinenone or canthaxanthin and a process for the preparation of a food or feed compositing

Furthermore a DNA sequence comprising the following DNA sequences is also an object of the present invention:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous;
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous;
- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous;
- d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous; and
- e) a DNA sequence which encodes the β-carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells of the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of zeanxanthin and a process for the preparation of zeanxanthin and a process for the preparation of zeanxanthin and a desired to do or feed.

Furthermore a DNA sequence as mentioned above comprising subsequences a) to e) and in addition a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes stain PC-1 (crt W) of a DNA sequence which is substantially homologous is an object of the present invention and to provide a vector comprising such DNA sequence, preferably in form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is carostromed by such DNA sequence or vector, preferably which is a protenty over land more preferably which is E. coli or a Bacilius strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable culture conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells of the culture medium and, in case only one carotenoid is desired

25

30

separting it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of zeaxanthin, adonixanthin or astaxanthin and a process for the preparation of a tood or feed composition characterized therein that after such a process has been effected the carotenoid, preferably zeaxanthin, adonixanthin or astaxanthin or carotenoid mixture, preferably a zeaxanthin, adonixanthin or astaxanthin containing mixture is addied to find or feed.

Furthermore a cell which is transformed by the DNA sequence mentioned above comprising subsequences a) to e) or a vector comprising such DNA sequence and a second DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous or a second vector which comprises a DNA sequence which is substantially homologous is also an object of the present invention and a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium, and in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of zeanxanthin or adonixanthin and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably zeaxanthin or adonixanthin containing mixture is deferably a zeaxanthin or adonixanthin containing mixture is deferably and and a process for the preparation of the deferably a desirably a zeaxanthin or adonixanthin containing mixture is deferably a zeaxanthin or adonixanthin containing mixture is deferably and and a process for the preparation of the deferably and and a process for the preparation of the deferably and and a process for the preparation of the deferably a zeaxanthin or adonixanthin containing mixture is deferably and and a process for the preparation of the deferably and and and a process for the preparation of the deferably and and and and a process for the preparation o

Furthermore it is an object of the present invention to provide the DNA sequences and vectors as specified before and a process for the preparation of a food or feed composition characterized therein that after a process as specified before has been effected the carateroid prepared by such process is added to food or feed.

In this context it should be mentioned that the expression "a DNA sequence is substantially homologous" refers with respect to the crtE encoding DNA sequence to a DNA sequence which encodes an amino acid sequence which shows more than 45 %, preferably more than 60 % and more preferably more than 75 % and most preferably more than 90 % identical amino acids when compared to the amino acid sequence of crtE of Flavobacterium sp. 1534 and is the amino acid sequence of a polypeptide which shows the same type of enzymatic activity as the enzyme encoded by crtE of Flavobacterium sp. 1534. In analogy with respect to crtB this means more than 60 %, preferably more than 80 % and most preferably more than 90 %; with respect to crtI this means more than 70 %, preferably more than 80 % and most preferably more than 90 %; with respect to crtI this means 55 %, preferably 70 %, more preferably 80 % and most preferably more than 90 %; with respect to crtI this means 55 %, preferably 70 %.

"DNA sequences which are substantially homologous" refer with respect to the crtW_{E396} encoding DNA sequence to a DNA sequence which encodes an amino acid sequence which shows more than 60%, preferably more than 75% and most preferably more than 90% identical amino acids when compared to the amino acid sequence of crtW of the microorganism E 396 (FERM BP-4283) and is the amino acid sequence of a polypeptide which shows the same type of enzymatic activity as the enzyme encoded by crtW of the microorganism E 396. In analogy with respect to crtZ_{E396} this means more than 75%, preferable more than 80% and most preferably more than 90%, with respect to crtZ_{E396} crtB_{E396}. crtY_{E396} and crtZ_{E396} this means more than 80%, preferably more than 90% and most preferably 95%.

DNA sequences in form of genomic DNA, cDNA or synthetic DNA can be prepared as known in the art (see e.g. Sambrook et al., Molecular Cloning, Cold Spring Habor Laboratory Press 1989) or, e.g. as specifically described in Examples 1, 2 or 7. In the context of the present invention it should be noted that all DNA sequences used for the process for production of carotenoids of the present invention encoding crt-gene products can also be prepared as synthetic DNA sequences according to known methods or in analogy to the method specifically described for crtW in Example 7.

The cloning of the DNA-sequences of the present invention from such genomic DNA can than be effected, e.g. by using the well known polymerase chain reaction (PCR) method. The principles of this method are outlined e.g. in PCR Protocols: A guide to Methods and Applications, Academic Press, Inc. (1990). PCR is an in vitro method for producing large amounts of a specific DNA of defined length and sequence from a mixture of different DNA-sequences. Thereby, PCR is based on the enzymatic amplification of the specific DNA fragment of interest which is flanked by two oligonucleatide primers which are specific for this sequence and which hybridize to the apposite strand of the target sequence. The primers are oriented with their 3' ends pointing toward each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences and extension of the annealed primers with a DNA polymerase result in the amplification of the segment between the PCR primers. Since the extension product of each primer can serve as a template for the other, each cycle essentially doubles the amount of the DNA fragment produced in the previous cycle. By utilizing the thermostable Tag DNA polymerase, isolated from the thermophilic bacteria Thermus aquaticus, it has been possible to avoid denaturation of the polymerase which necessitated the addition of enzyme after each heat denaturation step. This development has led to the automation of PCR by a variety of simple temperature-cycling devices. In addition, the specificity of the amplification reaction is increased by allowing the use of higher temperatures for primer annealing and extension. The increased specificity improves the overall yield of amplified products by minimizing the competition by non-target fragments for enzyme and primers. In this way the specific sequence of interest is highly amplified and can be easily separated from the non-specific sequences by methods known in the

art, e.g. by separation on an agarose gel and cloned by methods known in the art using vectors as described e.g. by Holten and Graham in Nucleic Acid Res. 19, 1156 (1991), Kovalic et. al. in Nucleic Acid Res. 19, 4560 (1991), Marchuk et al. in Nucleic Acid Res. 19, 1154 (1991) or Mead et al. in Bio/Technology 9, 657-663 (1991).

The oligonucleotide primers used in the PCR procedure can be prepared as known in the art and described e.g. in Sambrook et al., s.a.

Amplified DNA-sequences can than be used to screen DNA libraries by methods known in the art (Sambrook et al., s.a.) or as specifically described in Examples 1 and 2.

Once complete DNA-sequences of the present invention have been obtained they can be used as a quideline to define new PCR primers for the cloning of substantially homologous DNA sequences from other sources. In addition they and such homologous DNA sequences can be integrated into vectors by methods known in the art and described e.g. in Sambrook et al. (s.a.) to express or overexpress the encoded polypeptide(s) in appropriate host systems. However, a man skilled in the art knows that also the DNA-sequences themselves can be used to transform the suitable host systems of the invention to get overexpression of the encoded polypeptide. Appropriate host systems are for example Bacteria e.g. E. coli, Bacilli as, e.g. Bacillus subtilis or Flavobacter strains. E. coli, which could be used are E. coli K12 strains e.g. M15 [described as DZ 291 by Villarejo et al. in J. Bacteriol. 120, 466-474 (1974)], HB 101 [ATCC No. 33694] or E. coli SG13009 [Gottesman et al., J. Bacteriol. 148, 265-273 (1981)]. Suitable Flavobacter strains can be obtained from any of the culture collections known to the man skilled in the art and listed, e.g. in the journal "Industrial Property" (January 1994, pgs 29-40), like the American Type Culture Collection (ATCC) or the Centralbureau voor Schimmelkultures (CBS) and are, e.g. Flavobacterium sp. R 1534 (ATCC No. 21588, classified as unknown bacterium; or as CBS 519.67) or all Flavobacter strains listed as CBS 517.67 to CBS 521.67 and CBS 523.67 to CBS 525.67, especially R 1533 (which is CBS 523.67 or ATCC 21081, classified as unknown bacterium; see also USP 3,841,967). Further Flavobacter strains are also described in WO 91/03571. Suitable eukaryotic host systems are for example fungi, like Aspergilli e.g. Aspergillus niger [ATCC 9142] or yeasts, like Saccharomyces, e.g. Saccharomyces cerevisiae or Pichia,

like pastoris, all available from ATCC. Suitable vectors which can be used for expression in E. coli are mentioned, e.g. by Sambrook et al. [s. a.] or by Fiers Suitable vectors which can be used for expression in E. coli are mentioned, e.g. by Sambrook et al. [s. a.] or by Fiers at al. in Procd. 8th Int. Biotechnology Symposium" [Soc. Franc. de Microbiol., Paris (Durand et al., eds.), pp. 680-697 et al. in Immunological Methods, eds. Lefkovits and Pernis, Academic Press, Inc., Vol. IV. 121-152 (1990). Vectors which could be used for expression in Bacilli are known in the art and described, e.g. in EP 405-370, EP 635-572 Procd. Nat. Acad. Sci. USA <u>81</u>, 439 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 129-288 (1990) or EP 635-572 Procd. Nat. Acad. Sci. USA <u>81</u>, 439 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Yansura and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>185</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>186</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>186</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>186</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>186</u>, 169 (1984) by Henner and Henner, Meth. Enzym. <u>186</u>, 169 (1984) by Henner and Henner an

Once such DNA-sequences have been expressed in an appropriate host cell in a suitable medium the carotenoids can be isolated either from the medium in the case they are secreted into the medium or from the host organism and, if necessary separated from other carotenoids if present in case one specific carotenoid is desired by methods known in the art (see e.g. Carotenoids Vol IA: Isolation and Analysis, G. Britton, S. Liaaen-Jensen, H. Pfander; 1995, Birkhaluser Verlag, Basel).

The carotenoids of the present invention can be used in a process for the preparation of food or feeds. A man skilled in the art is familiar with such process. Such compound foods or feeds can further comprise additives or components generally used for such purpose and known in the state of the art.

After the invention has been described in general hereinbefore, the following figures and examples are intended to illustrate details of the invention, without thereby limiting it in any matter.

- Figure 1: The biosynthesis pathway for the formation or carotenoids of Flavobacterium sp. R1534 is illustrated explaining the enzymatic activities which are encoded by DNA sequences of the present invention.
- Figure 2: Southern blot of genomic Flavobacterium sp. R1534 DNA digested with the restriction enzymes shown on top of each lane and hybridized with Probe 46F. The arrow indicated the isolated 2.4 kb Xhol/Pstl fragment.
 - Figure 3: Southern blot of genomic Flavobacterium sp. R1534 DNA digested with Clal or double digested with Clal and HindIII. Blots shown in Panel A and B were hybridized to probe A or probe B, respectively (see examples). Both ClaUHindIII fragments of 1.8 kb and 9.2 kb are indicated.
 - Figure 4: Southern blot of genomic Flavobacterium sp. R1534 DNA digested with the restriction enzymes shown on top of each lane and hybridized to probe C. The isolated 2.8 kb Sa1/HindIII fragment is shown by the

5	Figure 5:	Southern blot of genomic <i>Flavobacterium</i> sp. R1534 DNA digested with the restriction enzymes shown on top of each lane and hybridized to probe D. The isolated BcIl/SphI fragment of approx. 3 kb is shown by the arrow.
10	Figure 6:	Physical map of the organization of the carotenoid biosynthesis cluster in Flavobacterium sp. R1534, deduced from the genomic clones obtained. The location of the probes used for the screening are shown as bars on the respective clones.
15	Figure 7:	Nucleotide sequence of the Flavobacterium sp. R1534 carotenoid biosynthesis cluster and its flanking regions. The nucleotide sequence is numbered from the first nucleotide shown (see BamHI site of Fig. 6). The deduced amino acid sequence of the ORF's (ort-5, orf-1, crtE, crtB, crtl, crtY, crtZ and orf-16) are shown with the single-letter amino acid code. Arrow (·->) indicate the direction of the transcription; asterisks, stop codons.
	Figure 8:	Protein sequence of the GGPP synthase (crtE) of Flavobacterium sp. R1534 with a MW of 31331 Da.
20	Figure 9:	Protein sequence of the prephytoene synthetase (crtB) of ${\it Flavobacterium}$ sp. R1534 with a MW of 32615 Da.
	Figure 10:	Protein sequence of the phytoene desaturase (crtl) of <i>Flavobacterium</i> sp. R1534 with a MW of 54411 Da.
25	Figure 11:	Protein sequence of the lycopene cyclase (crtY) of Flavobacterium sp. R1534 with a MW of 42368 Da.
	Figure 12:	Protein sequence of the β -carotene hydroxylase (crtZ) of Fiavobacterium sp. R1534 with a MW of 19282 Da.
30	Figure 13:	Recombinant plasmids containing deletions of the ${\it Flavobacterium}$ sp. R1534 carotenoid biosynthesis gene cluster.
35	Figure 14:	Primers used for PCR reactions. The underlined sequence is the recognition site of the indicated restriction enzyme. Small caps indicate nucleotides introduced by mutagenesis. Boxes show the artificial RBS which is recognized in B. subtilis. Small caps in bold show the location of the original adenine creating the translation start site (ATG) of the following gene (see original operon). All the ATG's of the original Flavobacter carotenoid biosynthetic genes had to be destroyed to not interfere with the rebuild transcription start site. Arrows indicate start and ends of the indicated Flavobacterium R1534 WT carotenoid genes.
40	Figure 15:	Linkers used for the different constructions. The underlined sequence is the recognition site of the indicated restriction enzyme. Small caps indicate nucleotides introduced by synthetic primers. Boxes show the artificial RBS which is recognized in B. subtilis. Arrow indicate start and ends of the indicated Flavobacterium carotenoid genes.
45	Figure 16:	Costruction of plasmids pBIIKS(+)-clone59-2, pLyco and pZea4.
	Figure 17:	Construction of plasmid p602CAR.
50	Figure 18:	Construction of plasmids pBIIKS(+)-CARVEG-E and p602 CARVEG-E.
	Figure 19:	Construction of plasmids pHP13-2CARZYIB-EINV and pHP13-2PN25ZYIB-EINV.
55	Figure 20:	Construction of plasmid pXI12-ZYIB-EINVMUTRBS2C.
33	Figure 21:	Norhern blot analysis of B. subtilis strain BS1012::ZYIB-EINV4. Panel A: Schematic representation of a reciprocal integration of plasmid pX112-ZYIB-EINV4 into the levan-sucrase gene of B-subtilis. Panel B: Northern blot obtained with probe A (PCR fragment which was obtained with CAR 51 and CAR 76 and

hybridizes to the 3' end of crtZ and the 5' end or crtY). Panel C: Northern blot obtained with probe B (BamHI-Xhol fragment isolated from plasmid pBIIKS(+)-crtE/2 and hybridizing to the 5' part of the crtE gene).

5 Figure 22: Schematic representation of the integration sites of three transformed Bacillus subtilis strains: BS1012::SFCO, BS1012::SFCOCAT1 and BA1012::SFCONEO1. Amplification of the synthetic Flavo-bacterium carotenoid operon (SFCO) can only be obtained in those strains having amplifiable structures. Probe A was used to determine the copy number of the integrated SFCO. Erythromycine resistance gene (ermAM), chloramphenicol resistance gene (cat), neomycine resistance gene (neo), terminator of the cryT gene of B. subtilis (cryT), levan-sucrase gene (sac-B 5' and sac-B 3), plasmaid sequences of pX112 (AXI12), promoter originating from site I of the veg promoter complex (PvedI).

Figure 23: Construction of plasmids pXI12-ZYIB-EINV4MUTRBS2CNEO and pXI12-ZYIB-EINV4MUTRBS2CCAT.

5 Figure 24: Complete nucleotide sequence of plasmid pZea4.

Figure 25: Synthetic crtW gene of Alcaligenes PC-1. The translated protein sequence is shown above the double stranded DNA sequence. The twelve oligonucleotides (crtW1-crtW12) used for the PCR synthesis are underlined

Figure 26: Construction of plasmid pBIIKS-crtEBIYZW. The HindIII-Pm11 fragment of pALTER-Ex2-crtW, carrying the synthetic crtW gene, was cloned into the HindIII and MIul (blunt) sites. Pvegl and Ptac are the promoters used for the transcription of the two opera. The CoIE1 replication origin of this plasmid is compatible with the o15A origin present in the pALTER-Ex2 constructs.

Figure 27: Relevant inserts of all plasmids constructed in Example 7. Disrupted genes are shown by //. Restriction sites: S=SacI. X=Xbal. H=HindIII, N=Nsil, Hp=Hpal, Nd=Ndel.

Figure 28: Reaction products (carotenoids) obtained from β-carotene by the process of the present invention.

Example 1

20

25

30

35

45

Materials and general methods used

Bacterial strains and plasmids: Flavobacterium sp. R1534 WT (ATCC 21588) was the DNA source for the genes cloned. Partial genomic libraries of Flavobacterium sp. R1534 WT DNA were constructed into the pBluescriptil+(KS) or (SN vector (Stratagene, La Jolla, LSA) and transformed into E. coli XL-1 blue (Stratagene) or JM102.

Media and growth conditions: Transformed *E. coli* were grown in Luria broth (LB) at 37° C with 100mg Ampicillin (Amp)/ml for selection. *Flavobacterium sp.* R1534 WT was grown at 27° C in medium containing 1% glucose, 1% tryptone (Difco Laboratories), 1% yeast extract (Difco), 0.5% MgSO₄ 7H₂O and 3% NaCl.

Colony screening: Screening of the *E. coli* transformants was done by PCR basically according to the method described by Zon et al. [Zon et al., BioTechniques 7, 696-698 (1989)] using the following primers:

Primer #7: 5'-CCTGGATGACGTGCTGGAATATTCC-3'

Primer #8: 5'-CAAGGCCCAGATCGCAGGCG-3'

Genomic DNA: A 50 ml overnight culture of Flavobacterium sp. R1534 was centifuged at 10,000 g for 10 minutes. The pellet was washed briefly with 10 ml of lysis buffer (50 mM EDTA, 0.1M NatCl pH7.5), resuspended in 4 ml of the same buffer sumplemented with 10 mg of lysozyme and incubated at 37°C for 15 minutes. After addition of 0.3 ml of N-Lauroyl sarcosine (20%) the incubation at 37°C was continued for another 15 minutes before the extraction of the DNA with phenol, phenol/chloroform and chloroform. The DNA was ethanol precipitated at room temperature for 20 minutes in the presence of 0.3 M sodium acetate (pH 5.2), followed by centrifugation at 10,000 g for 15 minutes. The pellet was rinsed with 70% ethanol, dried and resuspended in 1 ml of TE (10 mM Tris, 1mM EDTA, pH 8.0).

All genomic DNA used in the southern blot analysis and cloning experiments was dialysed against H₂O for 48 hours, using collodium bags (Sartorius, Germany), ethanol precipitated in the presence of 0.3 M sodium acetate and resuspended in H₂O.

Probe labelling: DNA probes were labeled with (a - ³²P) dGTP (Amersham) by random-priming according to (Sambrook et al., s.a.).

Probes used to screen the mini-libraries: Probe 46F is a 119 bp fragment obtained by PCR using primer #7 and #8 and Flavobacterium sp. R1534 genomic DNA as template. This probe was proposed to be a fragment of the Flavobacterium sp. R1534 phytoene synthase (crtB) gene, since it shows significant homology to the phytoene synthase genes from other species (e.g. E. uredovora, E. herbicola), Probe A is a BstXI - PstI fragment of 184 bp originating from the right arm of the insert of clone 85. Probe B is a 397 bp Xhol - Notl fragment obtained from the left end of the insert of clone 85. Probe B is a 376 bp KpnI - SstYl fragment to 185 Probe B is a 376 bp KpnI - SstYl fragment toglated from the insert of clone 59. The localization of the individual probes is shown in figure 6.

Oligonucleatide synthesis: The oligonucleatides used for PCR reactions or for sequencing were synthesized with an Applied Biosystems 392 DNA synthesizer.

Southern blot analysis: For hybridization experiments Flavobacterium sp. R1534 genomic DNA (3 mg) was digested with the appropiate restriction enzymes and electrophoresed on a 0.75% againsse gel. The transfer to Zeta-Probe blotting membranes (Blo-RAD), was done as described [Sourthern, E.M., J. Mol. Biol. 98, 503 (1975)]. Prehybridization and hybridization was in 7%SDS, 1% BSA (fraction V; Boehringer), 0.5M Na₂HPO₄, pH 7.2 at 65°C. After hybridization the membranes were washed twice for 5 minutes in 2x SSC, 1% SDS at room temperature and twice for 15 minutes in 0.1% SSC, 0.1% SDS at 65°C.

DNA sequence analysis: The sequence was determined by the dideoxy chain termination technique [Sanger et al., Proc. Natl. Acad. Sci. USA 74, 5463-5467 (1977)] using the Sequenase Kit (United States Biochemical). Both strands were completely sequenced and the sequence analyzed using the GCG sequence analysis software package (Version 8.0) by Genetics Computer, Inc. [Devereux et al., Nucleic Acids. Res. 12, 387-395 (1984)].

Analysis of carotenoids: E. coli XL-1 or JM109 cells (200 - 400 ml) carrying different plasmid constructs were grown for the times indicated in the text, usually 24 to 60 hours, in LB suplemented with 100mg Ampicillin/ml, in shake flasks at 37° C and 220 rpm.

The carotenoids present in the microorganisms were extracted with an adequate volume of acetone using a rotation homogenizer (Polytron, Kinematica AG, CH-Luzern). The homogenate was the filtered through the sintered glass of a suction filter into a round bottom flask. The filtrate was evaporated by means of a rotation evaporator at 50° C using a water-jet vacuum. For the zeaxanthin detection the residue was dissolved in n-hexane/acetone (86:14) before analysis with a normalphase HPLC as described in [Weber, S. in Analytical Methods for Vitamins and Carriordis in Feed, Keller, H.E., Editor, 83-85 (1988)]. For the detection of β-carotene and lycopene the evaporated extract was dissolved in n-hexane/acetone (99:1) and analysed by HPLC as described in [Hengartner et al., Helv. Chim. Acta 75, 1848-1865 (1992)].

Example 2

35

10

Cloning of the Flavobacterium sp. R1534 carotenoid biosynthetic genes.

To identify and isolate DNA fragments carrying the genes of the carotenoid biosynthesis pathway, we used the DNA fragment 46F (see methods) to probe a Southern Blot carrying chromosomal DNA of Flavobacterium sp. R1534 digested with different restriction enzymes Fig. 2. The 2.4 kb Xhol/Pstl fragment hybridizing to the probe seemed the most appropiate one to start with. Genomic Flavobacterium sp. R1534 DNA was digested with Xhol/Pstl and run on a 1% agarose gel. According to a comigrating DNA marker, the region of about 2.4 kb was cut out of the gel and the DNA isolated, A Xhol/PstI mini library of Flavobacterium sp. R1534 genomic DNA was constructed into Xhol - PstI sites of pBluescriptIISK(+). One hundred E. coli XL1 transformants were subsequentely screened by PCR with primer #7 and primer # 8, the same primers previously used to obtain the 119 bp fragment (46F). One positive transformant, named clone 85, was found. Sequencing of the insert revealed sequences not only homologous to the phytoene synthase (crtB) but also to the phytoene desaturase (crtI) of both Erwinia species herbicola and uredovora. Left and right hand genomic sequences of clone 85 were obtained by the same approach using probe A and probe B. Flavobacterium sp. R1534 genomic DNA was double digested with Clal and Hind III and subjected to Southern analysis with probe A and probe B. With probe A a Clal/HindIII fragment of aprox. 1.8 kb was identified (Fig. 3A), isolated and subcloned into the Clal/HindIII sites of pBluescriptIIKS (+), Screening of the E. coli XL1 transformants with probe A gave 6 positive clones. The insert of one of these positives, clone 43-3, was sequenced and showed homology to the N-terminus of crtl genes and to the C-terminus of crtY genes of both Erwinia species mentioned above. With probe B an approx. 9.2 kb Clal/HindIII fragment was detected (Fig. 3B), isolated and subcloned into pBluescriptIIKS (+).

A screening of the transformants gave one positive, done 51. Sequencing of the 5° and 3° of the insert, revealed that only the region close to the HindIII site showed relevant homology to genes of the carotenoid biosynthesis of the Erwinia species mentioned above (e.g. ortB gene and ortE gene). The sequence around the Clal site showed no homology to known genes of the carotenoid biosynthesis pathway. Based on this information and to facilitate further sequencing and construction work, the 4.2 kb BamHI/HindIII fragment of clone 51 was subcloned into the respective sites of pBluescriptIIKS(+) resulting in clone 2. Sequencing of the insert of this clone confirmed the presence of genes homology.

ogous to Erwinia sp. crtB and crtE genes. These genes were located within 1.8 kb from the HindIII site. The remaining 2.4 kb of this insert had no homology to known carotenoid biosynthesis genes.

Additional genomic sequences downstream of the Clal site were detected using probe C to hybridize to Flavobacterium sp. R1534 genomic DNA digested with different restriction enzymes (see figure 4).

A Sall/HindIIII fragment of 2.8 kb identified by Southern analysis was isolated and subcloned into the HindIII/Xhol sites of pBluescriptliKS (+). Screening of the *E. coli* XL1 transformants with probe A gave one positive one named done 59. The insert of this clone confirmed the sequence of clone 43-3 and contained in addition sequences homologous to the N-terminus of the crtY gene from other known lycopene cyclases. To obtain the putative missing crtZ gene a Sau3Al partial digestion library of *Flavobacterium sp. R1534* was constructed into the BamHI site of pBluescripti-IKS(+). Screening of this library with probe D gave several positive clones. One transformant designated, clone 6a, had an insert of 4.9 kb. Sequencing of the insert revealed besides the already known sequences coding for crtB, crtl and crtY also the missing crtZ gene. Clone 7g was isolated from a mini library carrying BcII/SphI fragments of R1534 (Fig. 5) and screened with probe D. The insert size of clone 7 is approx. 3 kb.

The six independent inserts of the clones described above covering approx. 14 kb of the Flavobacterium sp. R1534 genome are compiled in Figure 6.

The determined sequence spanning from the BamHI site (position 1) to base pair 8625 is shown figure 7.

Putative protein coding regions of the cloned R1534 sequence.

Computer analysis using the CodonPreference program of the GCG package, which recognizes protein coding regions by virtue of the similarity of their codon usage to a given codon frequency table, revealed eight open reading frames (ORFs) encoding putative proteins; a partial ORF from 1 to 1165 (ORF-5) coding for a polypeptide larger than 41382 Da; an ORF coding for a polypeptide with a molecular weight of 40081 Da from 1180 to 2352 (ORF-1); an ORF coding for a polypeptide with a molecular weight of 31331 Da from 2521 to 3405 (crtE); an ORF coding for a polypeptide with a molecular weight of 32615 Da from 4316 to 3408 (crtB); an ORF coding for a polypeptide with a molecular weight of 54411 Da from 5797 to 4316 (crtl); an ORF coding for a polypeptide with a molecular weight of 42368 Da from 6942 to 5797 (crtY); an ORF coding for a polypeptide with a molecular weight of 19282 Da from 7448 to 6942 (crtZ); and an ORF coding for a polypeptide with a molecular weight of 19368 Da from 8315 to 7770 (ORF-16); ORF-1 and crtE have the opposite transcriptional orientation from the others (Fig. 6). The translation start sites of the ORFs crtl, crtY and crtZ could clearly be determined based on the appropiately located sequences homologous to the Shine/Delgano (S/D) [Shine and Dalgarno, Proc. Natl. Acad. Sci. USA 71, 1342-1346 (1974)] consensus sequence AGG--6-9N--ATG (Fig. 10) and the homology to the N-terminal sequences of the respective enzymes of E. herbicola and E. uredovora. The translation of the ORF crtB could potentially start from three closely spaced codons ATG (4316), ATG (4241) and ATG (4211). The first one, although not having the best S/D sequence of the three, gives a translation product with the highest homology to the N-terminus of the E, herbicola and E, uredovora crtB protein, and is therefore the most likely translation start site. The translation of ORF crtE could potentially start from five different start codons found within 150 bo : ATG (2389), ATG (2446), ATG (2473), ATG (2497) and ATG (2521). We believe that based on the following observations, the ATG (2521) is the most likely transcription start site of crtE: this ATG start codon is preceeded by the best consensus S/D sequence of all five putative start sites mentioned; and the putative N-terminal amino acid sequence of the protein encoded has the highest homology to the N-terminus of the crtE enzymes of E. herbicola and E. uredovora;

Characteristics of the crt translational initiation sites and gene products.

The translational start sites of the five carotenoid biosynthesis genes are shown below and the possible ribosome binding sites are underlined. The genes crt2, crt7, crt1 and crt8 are grouped so tightly that the TGA stop codon of the anterior gene overlaps the ATG of the following gene. Only three of the five genes (crt1, crt7 and crt2) fit with the consensus for optimal SrD sequences. The boxed TGA sequence shows the stop condon of the anterior gene.

50

20 Amino acid sequences of individual crt genes of Flavobacterium sp. R1534.

All five ORFs of Flavobacterium sp. R1534 having homology to known carotenoid biosynthesis genes of other species are clustered in approx. 5.2 kb of the sequence (Fig. 7).

25 GGDP synthase (crtE)

5

10

15

45

The amino acid (aa) sequence of the geranylgeranyl pyrophosphate synthase (crtE gene product) consists of 295 aa and is shown in figure 8. This enzyme condenses farnesyl pyrophosphate and isopentenyl pyrophosphate in a 1'-4.

30 Phytoene synthase (crtB)

This enzyme catalyzes two enzymatic steps. First it condenses in a head to head reaction two geranylgeranyl pyrophosphates (C20) to the C40 caroteniod prephytoene. Second it rearranges the cyclopropylining of prephytoene to phytoene. The 303 as encoded by the crtB gene of Flavobacterium sp. R15341 is shown in figure 9.

Phytoene desaturase (crtl)

The phytoene desaturase of Flavobacterium sp. R1534 consisting of 494 aa, shown in figure 10, performs like the crtl enzyme of E. herbicola and E. uredovora, four desaturation steps, converting the non-coloured cardenoid phytoene to the red coloured lycopene. <u>Lycopene cyclase (crtf)</u>

The crtY gene product of Flavobacterium sp. R1534 is sufficient to introduce the b-innone rings at both sides of lyopoene to obtain β-carotene. The lyopoene cyclase of Flavobacterium sp. R1534 consists of 382 aa (Fig. 11). β-carotene hydroxylase (crtZ)

The gene product of crtZ consisting of 169 aa (Fig. 12) and hydroxylates β-carotene to the xanthophyll zeaxanthin.

Putative enzymatic functions of the ORF's (orf-1, orf-5 and orf-16)

The orf-1 has at the aa level over 40% identity to acetoacetyl-CoA thiolases of different organisms (e.g. Candida tropicalis, human, rat). This gene is therefore most likely a putative acetoacetyl-CoA thiolase (acetyl-CoA acetyltransferase), which condenses two molecules of acetyl-CoA to Acetoacetyl-CoA. Condensation of acetoacetyl-CoA with a third acetyl-CoA by the HMG-CoA synthase forms f-hydroxy-f-methylglutaryl-CoA (HMG-CoA). This compound is part of the mevalonate pathway which produces besides sterols also numerous kinds of isoprenoids with diverse cellular functions. In bacteria and plants, the isoprenoid pathway is also able to synthesize some unique products like carotenoids, growth regulators (e.g. in plants gibberellins and abcissic acid) and sencodary metabolites like phytoalexins (Riou et al., Gene 148, 293-297 (1994)).

The orf-5 has a low homology of approx. 30%, to the amino acid sequence of polyketide synthases from different streptomyces (e.g. S. violaceoruber, S. cinnamonensis). These antibiotic synthesizing enzymes (polyketide synthases), have been classified into two groups. Type-I polyketide synthases are large multifunctional proteins, whereas type-II

polyketide synthases are multiprotein complexes composed of several individual proteins involved in the subreactions of the polyketide synthesis [Bibb, et al. Gene 142, 31-39 (1994)].

The putative protein encoded by the orf-16 has at the aa level an identity of 42% when compared to the soluble hydrogenase subunit of Anabaena cylindrica.

Functional assignment of the ORF 's (crtE, crtB, crtI, crtY and crtZ) to enzymatic activities of the carotenoid biosynthesis pathway.

The biochemical assignment of the gene products of the different ORF's were revealed by analyzing carotenoid accumulation in *E. coii* host strains that were transformed with deleted variants of the *Flavobacterium sp.* gene cluster and thus expressed not all of the crt genes (Fig. 13).

Three different plasmid were constructed, pLyco, p59-2 and pZea4. Plasmid p59-2 was obtained by subcloning the Hindill/BamHI fragment of clone 2 into the Hindill/BamHI sites of clone 59, p59-2 carries the ORF's of the crtE, crtB, crtI and crtY gene and should lead to the production of β-carotene, pLyco was obtained by deleting the Kpnl/Kpnl frag15 ment, coding for approx. one half (N-terminus) of the crtY gene, from the p59-2 plasmid. E. coli cells transformed with pLyco, and therefore having a truncated non-functional crtY gene, should produce lycopene, the procursor of β-carotene, pZea4 was constructed by ligation of the Ascl-Spel fragment of p59-2, containing the crtE, crtB, crtI and most of the crtY gene with the Ascl/Xbal fragment of done 6a, containing the sequences to complete the crtY gene and the crt gene, pZea4 (for complete sequence see Fig. 24, nucleotides 1 to 683 result from pBluescriptIIKS(+), nucleotides 684 to 8961 from Flavobacterium R1534 WT genome, nucleotides 9962 to 11233 from pBluescriptIIKS(+) has therefore all five ORFs of the zeaxarthin biosynthesis pathway. Plasmid pZea4 has been deposited on May 25, 1995 at the DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Germany) under accession No. DSM 10012. E. coli cells transformed with this latter plasmid should therefore produce zeaxanthin. For the detection of the cardenod produced, transformants were grown for 48 hours in shake flasks and then subjected to carotenoid analysis as described in the cells of the cardenoid described above, and the main carotenoid detected in the cells.

As expected the pLyco carrying E. coli cells produced lycopene, those carrying p59-2 produced β -carotene (all-E,9-2,13-2) and the cells having the pZea4 construct produced zeaxanthin. This confirms that all the necessary genes of Flavobacterium sp. R1534 for the synthesis of zeaxanthin or their precursors (phytoene, lycopene and β -carotene) were doned.

Example 3

5

Materials and methods used for expression of carotenoid synthesizing enzymes

Bacterial strains and plasmids: The vectors pBluescriptiltS (+) or (-) (Stratagene, La Jolla, USA) and pUC18 (Vieira and Messing, Gene 19, 259-268 (1982); Norrander et al., Gene 26, 101-106 (1983)] were used for cloning in different *E. coli* strains, like XL-1 blue (Stratagene), TG1 or JM109. In all *B. subtilis* transformations, strain 1012 was used. Plasmids pHP13 [Haima et al., Mol. Gen. Genet. 209, 335-342 (1987)] and p602/22 [LeGrice, S.F.J. in Gene Expression Technology, Goeddel, D.V., Editor, 201-214 (1990)] are Gram (+)/(-) shuttle vectors able to replicate in *B. subtilis* and *E. coli* cells. Plasmid p205 contains the vegl promoter cloned into the Smal site of pUC18. Plasmid pX112 is an integration vector for the constitutive expression of genes in *B. subtilis* [Haiker et al., in 7th Int. Symposium on the Genetics of Industrial Microorganisms, June 26-July 1, 1994. Mongreal, Quebec, Canada (1994)]. Plasmid pBEST501 [Itaya et al., Nucleic Acids Res. 17 (11), 4410 (1989)] contains the neomycin resistance gene cassette originating from the plasmid 12, 83-84 (1987). This neomycin gene has been shown to work as a selection marker when present in a single copy in the genome of *B. subtilis*. Plasmid pC194 (ATCC 37034)(GenBank entry: L08860) originates from *S. aureus* [Horinouchi and Weisblaum, J. Bacteriol. 150, 815-825 (1982)] and contains the chloramphenicol acetyltransferase gene.

Media and growth conditions: E. coli were grown in Luria broth (LB) at 37° C with 100mg Ampicillin (Amp)/ml for selection. B. subtilis cells were grown in VY-medium supplemented with either erythromycin (1 mg/ml), neomycin (5-180 mg/ml) or chloramohenicol (10-80 mg/ml).

Transformation: E. coli transformations were done by electroporation using the Gene-pulser device of BIO-RAD (Hercules, CA, USA) with the following parameters (200 W, 250 mFD, 2.5V). B subtilis transformations were done basisally according to the standard procedure method 2.8 described by [Cutting and Vander Horn in Molecular Biological Methods for Bacillus, Harwood, C.R. and Cutting, S.M., Editor, John Wiley & Sons: Chichester, England. 61-74 (1990)]. Colony screening: Bacterial colony screening was done as described by [Zon et al., s.a.].

Oligonucleotide synthesis: The oligonucleotides used for PCR reactions or for sequencing were synthesized with

an Applied Biosystems 392 DNA synthesizer.

PCR reactions: The PCR reactions were performed using either the UITma DNA polymerase (Perkin Elmer Cetus) or the Pfu Verth polymerase (New England Biolabs) according to the manufacturers instructions. A typical 50 ml PCR reaction contained: 100ng of template DNA, 10 pM of each of the primers, all four dNTP's (final conc. 300 mM), MgCl₂ (when UITma polymerase was used; final conc. 2 mM), 1x UITma reaction buffer or 1x Pfu buffer (supplied by the manufacturer). All components of the reaction with the exception of the DNA polymerase were incubated 49°C for 2 min. followed by the cycles indicated in the respective section (see below). In all reactions a hot start was made, by adding the polymerase in the first round of the cycle during the 72°C elongation step. At the end of the PCR reaction an aliquot was analysed on 1% agarose gel, before extracting once with phenol/chloroform. The amplified fragment in the aqueous phase was precipitated with 1/10 of a 3M NaAcetate solution and two volumes of Ethanol. After centrifugation for 5 min. at 12000 rpm, the pellet was resuspended in an adequate volume of H₂O. Typically 40 ml, before digestion with the indicated restriction enzymes was performed. After the digestion the mixture was separated on a 1% low melting point agarose. The PCR product of the expected size were excised from the agarose and purified using the glass beads method (GENECLEAN KIT, Bio 101, Vista CA, USA) when the fragments were above 400 feecly or directly soun out of the new when the fragments were shorter than 400 bp as described by Herev et al. TIES 66 (6), 173 (1990).

Oligos used for gene amplification and site directed mutagenesis:

All PCR reactions performed to allow the construction of the different plasmids are described below. All the primers used are summarized in figure 14.

Primers #100 and #101 were used in a PCR reaction to amplify the complete crtE gene having a Spel restriction site and an artificial inbosomal binding site (R85) upstream of the transcription start site of this gene. At the 3' end of the amplified fragment, two unique restriction sites were introduced, an AvrII and a Small site, to facilitate the further cloning steps. The PCR reaction was done with UITma polymerase using the following conditions for the amplification: 5 cycles with the profile: 95°C, 1 min./ 60°C, 45 sec./ 72°C, 1 min. and 20 cycles with the profile: 95°C, 1 min./ 72°C, 1 min. PcB product was digested with Spel and Small and isolated using the GENECLEAN KIT. The size of the fragment was approx. 910 bp.

Primers #104 and #105 were used in a PCR reaction to amplify the crtZ gene from the translation start till the Sall restriction site, located in the coding sequence of this gene. At the 5' end of the crtZ gene an EcoRI, a synthetic RBS and a Ndel site was introduced. The PCR conditions were as described above. Plasmid pBIIKS(+)-clone 6a served as template DNA and the final PCR product was digested with EcoRI and Sall. Isolation of the fragment of approx. 480 bp was done with the GSNE/CLEAN KIT.

Primers MUT1 and MUT5 were used to amplify the complete crtY gene. At the 5' end, the last 23 nucleotides of the crtZ gene including the Sall site are present, followed by an artificial RBS preceding the translation start site of the crtY gene. The artificial RBS created includes a Pmill restriction site. The 5' end of the amplified fragment contains 22 nucleotides of the crtI gene, preceded by an newly created artifial RBS which contains a MunI restriction site. The conditions used for the PCB reaction were as described above using the following cycling profile: 5 rounds of \$95°C, 45 sec./ 60°C, 45

Primers MUT2 and MUT6 were used to amplify the complete crtl gene. At the 5' the last 23 nucleotides of the crtY gene are present, followed by an artificial RBS which precedes the translation start site of the crtl gene new RBS created, includes a Muni restriction site. The 3' end of the amplified fragment contains the artificial RBS upstream of the crtB gene including a BamHI restriction site. The conditions used for the PCR reaction were basically as described above including the following cycling profile: 5 rounds of 95°C, 30 sec. / 50°C, 30 sec. / 72°C, 75 sec., followed by 25 cycles with the profile: 95°C, 30 sec. / 66°C, 30 sec. / 72°C, 75 sec.. Plasmid pX112-ZYIB-EINV4 served as template for the Pfu Vent polymerase. For the further cloning steps the PCR product of 1541 by was digested with MunI and BamHI.

Primers MUT3 and CAR17 were used to amplify the N-terminus of the crtB gene. At the 5' the last 28 nucleotides of the crt gene are present followed by an artificial RBS, preceding the translation start site of the crtB gene. This new created RBS, includes a BamHI restriction site. The amplified fragment, named PCR-F contains also the HindIII restriction site located at the N-terminus of the crtB gene. The conditions used for the PCR reaction were as described elsewhere in the text, including the following cycling profile: 5 rounds of 95°C, 30 sec./ 56°C, 30 sec./ 72°C, 20 sec. followed by 25 cycles with the profile: 95°C, 30 sec./ 60°C, 30 sec./ 72°C, 20 sec. Plasmid pX112-ZYIB-EINV4 serve plate for the Pfu Vent polymerase. The PCR product of approx. 160 by was digested with BamHI and HindIII.

Olig s used to amplify the chloramphenicol resistance gene (cat):

Primers CAT3 and CAT4 were used to amplify the chloramphenical resistance gene of pC194 (ATCC 37034) (Hori-

nouchi and Weisblum, s.a.] a R-plasmid found in S. aureus. The conditions used for the PCR reaction were as described previously including the following cycling profile: 5 rounds of 95°C, 60 sec./ 50°C, 60 sec./ 72°C, 2 min. followed by 20 cycles with the profile: 95°C, 60 sec./ 60°C, 60 sec./ 72°C, 2 min. Plasmid pC198 served as template for the Pfu Vert polymerase. The PCR product of approx. 1050 bp was digested with EcoRI and Aatll.

Oligos used to generate linkers: Linkers were obtained by adding 90 ng of each of the two corresponding primers into an Eppendorf tube. The mixture was dried in a speed vac and the pellet resuspended in 1 x Ligation buffer (Boehringer, Mannheim, Germany). The solution was incubated at 50°C for 3 min. before cooling down to RT, to allow the primers to hybridize properly. The linker were now ready to be ligated into the appropriate sites. All the oligos used to generate linkers are shown in figure 15.

Primers CS1 and CS2 were used to form a linker containing the following restrictions sites HindIII, AfIII, Scal, Xbal, Pmel and EcoRI.

Primers MUT7 and MUT8 were used to form a linker containing the restriction sites Sall, Avril, Pmll, Mlul, Munl, BamHI, Sohl and Hindlil.

Primers MUT9 and MUT10 were used to introduce an artificial RBS upstream of crtY.

Primers MUT11 and MUT12 were used to introduce an artificial RBS upstream of crtE.

Isolation of RNA: Total RNA was prepared from log phase growing 8. subtilis according to the method described by [Maes and Messens, Nucleic Acids Res. 20 (16), 4374 (1992)].

Northern Blot analysis: For hybridization experiments up to 30 mg of *B. subtilis* RNA was electrophoreses on a 1% agarose gel made up in 1x MOPS and 0.66 M formaldehyde. Transfer to Zeta-Probe blotting membranes (BlO-RAD), UV cross-linking, pre-hybridization and hybridization was done as described elsewhere in [Farrell, J.R.E., RNA Methodologies. A laboratory Guide for isolation and characterization. San Diego, USA: Academic Press (1993)]. The washing conditions used were: 2 x 20 min. in 2xSSPE/0.1% SDS followed by 1 x 20 min. in 0.1% SSPE/0.1% SDS at 65°C. Northern blots were then analyzed either by a Phosphorimager (Molecular Dynamics) or by autoradiography on X-ray films from Kodak.

Isolation of genomic DNA: B. subtilis genomic DNA was isolated from 25 ml overnight cultures according to the standard procedure method 2.6 described by [13].

Southern blot analysis: For hybridization experiments *B. subtilis* genomic DNA (3 mg) was digested with the appropriate restriction enzymes and electrophoresed on a 0.75% agarose gel. The transfer to Zeta-Probe blotting embranes (BIO-RAD), was done as described [Southern, E.M., s.a.]. Prehybridization and hybridization was in 7%SDS, 1% BSA (fraction V; Boehringer), 0.5M Na₂HPO₄, pH 7.2 at 65°C. After hybridization the membranes were washed wice for 5 min. in 2x SSC, 1% SDS at 65°C. Southern blots were then analyzed either by a Phosphorimager (Molecular Dynamics) or by autoradiography on X-ray films from Kodak.

DNA sequence analysis: The sequence was determined by the dideoxy chain termination technique [Sanger et al., s.a.] using the Sequenase Kit Version 1.0 (United States Biochemical). Sequence analysis were done using the GCG sequence analysis software package (Version 8.0) by Genetics Computer, Inc. [Devereux et al., s.a.].

Gene amplification in *B. subtilis*: To amplify the copy number of the SFCO in *B. subtilis* transformants, a single colony was inoculated in 15 ml VY-medium supplemented with 1.5 % glucose and 0.02 mg chloramphenicol or neomy-cir/ml, dependend on the ambitiotic resistance gene present in the amplifiable structure (see results and discussion).

The next day 750 ml of this culture were used to inoculate 13 ml VY-medium containing 1.5% glucose supplemented with (60, 80, 120 and 150 mg/ml) for the cat resistant mutants, or 160 mg/ml and 180 mg/ml for the neomycin resistant mutants). The cultures were grown overnight and the next day 50 ml of different dilutions (1: 20, 1:400, 1: 8000, 1: 160'000) were plated on VY agar plates with the appropriate antibiotic concentration. Large single colonies were then further analyzed to determine the number of copies and the amount of carotenoids produced.

Analysis of carotenoids: E. coli or B. subtilis transformants (200 - 400 ml) were grown for the times indicated in the text, usually 24 to 72 hours, in LB-medium or VY-medium, respectively, supplemented with antibiotics, in shake flasks at 37° C and 220 rpm.

The carotenoids produced by the microorganisms were extracted with an adequate volume of acetone using a rotation homogenizer (Polytron, Kinematica AG, CH-Luzern). The homogenate was the filtered through the sintered glass of a suction filter into a round bottom flast. The filtrate was evaporated by means of a rotation evaporator at 50° C using a water-jet vacuum. For the zeaxanthin detection the residue was dissolved in n-hexane/acetone (86:14) before analysis with a normalphase HPLC as described in [Weber, S., s.a.]. For the detection of β-carotene and loopen the evaporated extract was dissolved in n-hexane/acetone (99-1) and analysed by HPLC as described in Hengartner et al., s.a.].

5

10

Example 4

6

30

35

45

50

55

Carotenoid production in E. coli

The biochemical assignment of the gene products of the different open reading frames (ORF's) of the carotenoid biosynthesis cluster of Flavobacterium sp. were revealed by analyzing the carotenoid accumulation in E. coli host strains, transformed with plasmids carrying deletions of the Flavobacterium sp. gene cluster, and thus ladding some of the crt gene products. Similar functional assays in E. coli have been described by other authors [Misawa et al., sa.; Perry et al., J. Bacteriol., 168, 607-612 (1986); Hundle, et al., Molecular and General Genetics 254 (4), 406-416 (1994)]. Three different plasmid pLyco, pBIIKS(+)-clone59-2 and pZea4 were constructed from the three genomic isolates pBI-IKS(+)-clone2, pBIIKS(+)-clone59 and pBIIKS(+)-clone6 (see figure 16).

Plasmid pBIIKS(+)-clone59-2 was obtained by subcloning the HindIII/BamHI fragment of pBIIKS(+)-clone 2 into the HindIII/BamHI sites of pBIIKS(+)-clone59-1 resulting plasmid pBIIKS(+)-clone59-2 carries the complete ORF's of the crtE, crtB, crtI and crtY gene and should lead to the production of Pcarotene, PLyco was obtained by deleting the KpnII/KpnI fragment, coding for approx. one half (N-terminus) of the crtY gene, from the plasmid pBIIKS(+)-clone59-2. E. coli cells transformed with pLyco, and therefore having a truncated non-functional crtY gene, should produce lycopene, the precursor of P-carotene, P2ea4 was constructed by ligation of the Ascl-SpeI fragment of plasmids (Kst)-clone59-2, containing the crtE, crtB, crtI and most of the crtY gene with the Ascl/XbaI fragment of clone 6a, containing the crtZ gene and sequences to complete the truncated crtY gene mentioned above. Dzea4 has therefore all five ORF's of the zeaxanthin biosynthesis pathway. E. coli Cells transformed with this latter plasmid should therefore produce zeaxanthin. For the detection of the carotenoid produced, transformants were grown for 43 hours in shake flasks and then subjected to carotenoid analysis as described in the methods section. Figure 16 summarizes the construction of the plasmids described above.

As expected the pLyco carrying $E.\ coli$ cells produced lycopene, those carrying pBIIKS(+)-clone59-2 produced β -carotene (all-E,9-Z, 13-Z) and the cells having the pZea4 construct produced zeaxanthin. This confirms that we have cloned all the necessary genes of $Flavobacterium\ sp.\ R1534$ for the synthesis of zeaxanthin or their precursors (phytoene, lycopene and β -carotene). The production levels obtained are shown in table 1.

plasmid	host	zeaxanthin	β-carotene	lycopene
pLyco	E. coli JM109	ND	ND	0.05%
pBIIKS(+)-clone59-2		ND	0.03%	ND
pZea4		0.033%	0.0009%	ND

Table 1: Carotenoid content of E. coli transformants, carrying the plasmids pLyco, pBIIKS(+)-clone59-2 and pZea4, after 43 hours of culture in shake flasks. The values indicated show the carotenoid content in % of the total dry cell mass (200 ml). ND = not detectable.

Examples 5

Carotenoid production in B. subtilis

In a first approach to produce carotenoids in *B. subtilis*, we cloned the carotenoid biosynthesis genes of Flavobacterium into the Gram (+)/(-) shuttle vectors p602/22, a derivative of p602/20 [LeGrice, S.F.J., s.a.]. The assembling of the final construct p602-CARVEG-E, begins with a triple ligation of fragments Pvull-Avril of pZead(cl654-

3028) and the AvrII-EcoRI fragment from plasmid pBIIKS(+)-clone6a, into the EcoRI and Scal sites of the vector p602/22. The plasmid pZea4(del654-3028) had been obtained by digesting pZea4 with Sacl and Espl. The protruding and recessed ends were made blunt with Klenow enzyme and religated. Construct pZea4(del654-3028) lacks most of the sequence upstream of crtE gene, which are not needed for the carotenoid biosynthesis. The plasmid p602-CAR has approx. 6.7 kb of genomic Flavobacterium R1534 DNA containing besides all five carotenoid genes (approx. 4.9 kb), additional genomic DNA of 1.2 kb, located upstream of the crtZ translation start site and further 200 bp, located upstream of crtE transcription start. The crtZ, crtY, crtI and crtB genes were cloned downstream of the P_{N2500} promoter, a regulatable E. coli bacteriophage T5 promoter derivative, fused to a lac operator element, which is functional in B. subtilis [LeGrice, S.F.J., s.a.]. It is obvious that in the p602CAR construct, the distance of over 1200 bp between the 10 PN250 promoter and the transcription start site of crtZ is not optimal and will be improved at a later stage. An outline of the p6/2CAB construction is shown in figure 17. To ensure transcription of the crtE gene in B. subtilis, the vegl promoter [Moran et al., Mol. Gen. Genet. 186, 339-346 (1982); LeGrice et al., Mol. Gen. Genet. 204, 229-236 (1986)] was introduced upstream of this gene, resulting in the plasmid construct p602-CARVEG-E. The vegl promoter, which originates from sitel of the yea promoter complex described by [LeGrice et al., s.a.] has been shown to be functional in E. 15 coli [Moran et al., s.a.]. To obtain this new construct, the plasmid p602CAR was digested with Sall and HindIII. and the fragment containing the complete crtE gene and most of the crtB coding sequence, was subcloned into the Xhol and Hind[II] sites of plasmid p205. The resulting plasmid p205CAR contains the crtE gene just downstream of the Pyegl promoter. To reconstitute the carotenoid gene cluster of Flavobacterium sp. the following three pieces were isolated: Pmel/HindIII fragment of p205CAB, the HincII/Xbal fragment and the EcoRI/HindIII fragment of p205CAB and ligated into the EcoRI and Xbal sites of pBluescriptIIKS(+), resulting in the construct pBIIKS(+)-CARVEG-E. Isolation of the FcoRI-Xhal fragment of this latter plasmid and ligation into the EcoRI and Xhal sites of p602/22 gives a plasmid similar to p602CAR but having the crtE gene driven by the PveqI promoter. All the construction steps to get the plasmid p602CARVEG-E are outlined in figure 18. E. coli TG1 cells transformed with this plasmid synthesized zeaxanthin. In contrast B. subtilis strain 1012 transformed with the same constructs did not produce any carotenoids. Analysis of several zeaxanthin negative B. subtilis transformants always revealed, that the transformed plasmids had undercone severe deletions. This instability could be due to the large size of the constructs.

In order to obtain a stable construct in B. subtilis, the carotenoid genes were cloned into the Gram (+)/(-) shuttle vector pHP13 constructed by [Haima et al., s.a.]. The stability problems were thought to be omitted by 1) reducing the size of the cloned insert which carries the carotenoid genes and 2) reversing the orientation of the crtE gene and thus 30 only requiring one promoter for the expression of all five genes, instead of two, like in the previous constructs. Furthermore, the ability of cells transformed by such a plasmid carrying the synthetic Flavobacterium carotenoid operon (SFCO), to produce carotenoids, would answer the question if a modular approach is feasible. Figure 19 summarizes all the construction steps and intermediate plasmids made to get the final construct pHP13-2PNZYIB-EINV. Briefly: To facilitate the following constructions, a vector pHP13-2 was made, by introducing a synthetic linker obtained with primer 35 CS1 and CS2, between the HindIII and EcoRI sites of the shuttle vector pHP13. The intermediate construct pHP13-2CARVEG-E was constructed by subcloning the AfIII-Xbal fragment of p602CARVEG-E into the AfIII and Xbal sites of pHP13-2. The next step consisted in the inversion of crtE gene, by removing Xbal and AvrII fragment containing the original crtE gene and replacing it with the Xbal-AvrII fragment of plasmid pBIIKS(+)-PCRRBScrtE. The resulting plasmid was named pHP13-2CARZYIB-EINV and represented the first construction with a functional SFCO. The interme-40 diate construct pBIIKS(+)-PCRRBScrtE mentioned above, was obtained by digesting the PCR product generated with primers #100 and #101 with Spel and Smal and ligating into the Spel and Smal sites of pBluescriptIIKS(+). In order to get the crtZ transcription start close to the promoter P_{N25/0} a triple ligation was done with the BamHI-Sall fragment of pHP13-2CARZYIB-EINV (contains four of the five carotenoid genes), the BamHI-EcoRI fragment of the same plasmid containing the PN25/0 promoter and the EcoRI-Sall fragment of pBIIKS(+)-PCRRBScrtZ, having most of the crtZ gene preceded by a synthetic RBS. The aforementioned plasmid pBIISK(+)-PCRRBScrtZ was obtained by digesting the PCR product amplified with primers #104 and #105 with EcoRI and Sall and ligating into the EcoRI and Sall sites of pBluescriptIISK(+). In the resulting vector pHP13-2PN25ZYIB-EINV, the SFCO is driven by the bacteriophage T5 promoter P_{N2500}, which should be constitutively expressed, due to the absence of a functional lac repressor in the construct [Peschke and Beuk, J. Mol. Biol. 186, 547-555 (1985)]. E. coli TG1 cells transformed with this construct produced zeaxanthin. Nevertheless, when this plasmid was transformed into B. subtilis, no carotenoid production could be detected. Analysis of the plasmids of these transformants showed severe deletions, pointing towards instability problems, similar to the observations made with the aforementioned plasmids.

Examples 6

55

Chromosome Integration Constructs

Due to the instability observed with the previous constructs we decided to integrate the carotenoid biosynthesis

genes of Flavobacterium sp. into the genome of B. subtilis using the integration/expression vector pX112. This vector allows the constitutive expression of whole operons after integration into the levan-sucrase gene (sacB) of the B. subtilis genome. The constitutive expression is driven by the vegl promoter and results in medium level expression. The plasmid pX112-ZYIB-EINV4 containing the synthetic Flavobacterium carotenoid operon (SFCO) was constructed as follows: the Ndel-Hincil fragment of pBIISK(+)-PCRRBScrtZ was cloned into the Ndel and Smal sites of pXI12 and the resulting plasmid was named pXI12-PCRcrtZ. In the next step, the BstEII-PmeI fragment of pHP13-2PN25ZYIB-EINV was ligated to the BstEll-Pmel fragment of pXI12-PCRcrtZ (see figure 20). B. subtilis transformed with the resulting construct pXI12-ZYIB-EINV4 can integrate the CAR genes either via a Campbell type reaction or via a reciprocal recombination. One transformant, BS1012::ZYIB-EINV4, having a reciprocal recombination of the carotenoid biosynthesis genes into the levan-sucrase gene was further analyzed (figure 21). Although this strain did not synthesize carotenoids, RNA analysis by Northern blots showed the presence of specific polycistronic mRNA's of 5.4 kb and 4.2 kb when hybridized to probe A (see figure 21, panel B). Whereas the larger mRNA has the expected message size, the origin of the shorter mRNA was unclear. Hybridization of the same Northern blot to probe B only detected the large mRNA fragment, pointing towards a premature termination of the transcription at the end of the crtB gene. The presence of a termination signal at this location would make sense, since in the original operon organisation in the Flavobacterium sp. R1534 genome, the crtE and the crtB genes are facing each other. With this constellation a transcription termination signal at the 5' end of crtB would make sense, in order to avoid the synthesis of anti-sense RNA which could interfere with the mRNA transcript of the crtE gene. Since this region has been changed considerably with respect to the wild type situation, the sequences constituting this terminator may also have been altered resulting in a "leaky" terminator. Western blot analysis using antisera against the different crt enzymes of the carotenoid pathway, pointed towards the possibility that the ribosomal binding sites might be responsible for the lack of carotenoid synthesis. Out of the five genes introduced only the product of crtZ, the β -carotene hydroxylase was detectable. This is the only gene preceded by a RBS site, originating from the pXI12 vector, known to be functional in B. subtilis. Base pairing interactions between a mRNA's Shine-Dalgarno sequence [Shine and Delagarno, s. a.] and the 16S rRNA, which permits the ribosome to select the proper initiation site, have been proposed by [McLaughlin et al., J. Biol. Chem. 256, 11283-11291 (1981)] to be much more stable in Gram-positive organisms (B. subtilis) than in Gram-negative organisms (E. coli). In order to obtain highly stable complexes we exchanged the RBS sites of the Gram-negative Flavobacterium sp., preceding each of the genes crtY, crtI, crtB and crtE, with synthetic RBS's which were designed complementary to the 3' end of the B. subtilis 16S rRNA (see table 2). This exchange should allow an effective translation initiation of the different carotenoid genes in B. subtilis. The strategy chosen to construct this pX112-ZYIB-EINV4MUTRBS2C, containing all four altered sites is summarized in figure 20. In order to facilitate the further cloning steps in pBluescriptIIKS(+), additional restriction sites were introduced using the linker obtained with primer MUT7 and MUT8, cloned between the Sall and HindIII sites of said vector. The new resulting construct pBIIKS(+)-LINKER78 had the following restriction sites introduced: Avril, Pmil, Mull, Muni, BamHi and Sphl. The general approach chosen to create the synthetic RBS's upstream of the different carotenoid genes, was done using a combination of PCR based mutagenesis, where the genes were reconstructed using defined primers carrying the modified RBS sites, or using synthetic linkers having such sequences. Reconstitution of the RBS preceding the crtl and crtB genes was done by amplifying the crtl gene with the primers MUT2 and MUT6, which include the appropriate altered RBS sites. The PCR-I fragment obtained was digested with MunI and BamHI and ligated into the MunI and BamHI sites of pBIIKS(+)-LINKER78. The resulting intermediate construct was named pBIIKS(+)-LINKER78PCRI. Reconstitution of the RBS preceding the crtB gene was done using a small PCR fragment obtained with primer MUT3, carrying the altered RBS site upstream of crtB, and primer CAR17. The amplified PCR-F fragment was digested with BamHI and HindIII and sub cloned into the BamHI and HindIII sites of pBIIKS(+)-LINKER78, resulting in the construct pBIIKS(+)-LINKER78PCRF. The PCR-I fragment was cut out of pBI-IKS(+)-LINKER78PCRI with BamHI and Sapl and ligated into the BamHI and Sapl sites of pBIIKS(+)-LINKER78PCRF. The resulting plasmid pBIIKS(+)-LINKER78PCRFI has the PCR-I fragment fused to the PCR-F fragment. This construct was cut with Sall and PmII and a synthetic linker obtained by annealing of primer MUT9 and MUT10 was introduced. This latter step was done to facilitate the upcoming replacement of the original Flavobacterium RBS in the above mentioned construct. The resulting plasmid was named pBIIKS(+)-LINKER78PCRFIA. Assembling of the synthetic RBS's preceding the crtY and crtI genes was done by PCR, using primers MUT1 and MUT5. The amplified fragment PCR-G was made blunt end before cloning into the Small site of pUC18, resulting in construct pUC18-PCR-G. The next step was the cloning of the PCR-G fragment between the PCR-A and PCR-I fragments. For this purpose the PCR-G was isolated from pUC18-PCR-G by digesting with MunI and PmII and ligated into the MunI and PmII sites of pBIIKS(+)-LINKER78PCRFIA. This construct contains all four fragments, PCR-F, PCR-I, PCR-G and PCR-A, assembled adjacent to each other and containing three of the four artificial RBS sites (crtY, crtI and crtB). The exchange of the Flavobacterium RBS's preceding the genes crtY, crtI and crtB by synthetic ones, was done by replacing the HindIII-Sall fragment of plasmid pXI12-ZYIB-EINV4 with the HindIII-Sall fragment of plasmid pBIIKS(+)-LINKER78PCRFIGA. The resulting plasmid pXI12-ZYIB-EINV4 MUTRBSC was subsequently transformed into E. coli TG1 cells and B. subtilis 1012. The production of zeaxanthin by these cells confirmed that the PCR amplified genes where functional. The B.

subtilis strain obtained was named BS1012::SFCO1. The last Flavobacterium RBS to be exchanged was the one preceding the ortE gene. This was done using a linker obtained using primer MUT11 and MUT12. The wild type RBS was removed from pX112-ZYIB-EINV4MUTRBS with Ndel and Spel and the above mentioned linker was inserted. In the construct pX112-ZYIB-EINV4MUTRBS2C all Flavobacterium RBS's have been replaced by synthetic RBS's of the consensus sequence AAAGGAGG-7-8 N-ATG (see table 2). E. coli TG1 cells transformed with this construct showed that also this last RBS replacement had not interferred

Table 2

	mRNA		ū	ucleotide sequence
	crtZ		A	AAAGGAGGUUUCAU <u>AUG</u> AGC
15	crtY		A	AAAGGAGGACACGUG <u>AUG</u> AGC
	crtI		P	AAAGGAGGCAAUUGAG <u>AUG</u> AGU
20	crtB		A	AAAGGAGGAUCCAAUC <u>AUG</u> ACC
	crtE		P	AAAGGAGGUUUCUU <u>AUG</u> ACG
25				
30	B. sub	tilis	16S rRNA	3'-UCUUUCCUCCACUAG
	E. coli		16S rRNA	3'- AUUCCUCCACUAG
35	Table 2:	sites in the	constructs p	of the synthetic ribosome binding SXI12-ZYIB-EINV4MUTRBS2C, IRBS2CCAT and pXI12-ZYIB-

sites in the constructs pX112-ZYIB-EINV4MUTRBS2C, pXI12-ZYIB-EINV4MUTRBS2CAT and pXI12-ZYIB-EINV4MUTRBS2CNEO. Nucleotides of the Shine-Dalgarno sequence preceding the individual carotenoid genes which are complementary to the 3' ends of the 16S rRNA of B. subtilis are shown in bold. The 3' ends of the 16S rRNA of E. coli is also shown as comparison. The underlined AUG is the translation start site of the mentioned gene.

with the ability to produce zeaxanthin. All the regions containing the newly introduced synthetic RBS's were confirmed by sequencing. B. subtilis cells were transformed with plasmid pX112-ZYIB-EINVAMUTRBS2 and one transformant having integrated the SFCO by reciprocal recombination, into the levan-sucrase gene of the chrossome, was selected. This strain was named BS1012:SFCO2. Analysis of the carotenoid production of this strain show that the amounts zeaxanthin produced is approx. 40% of the zeaxanthin produced by E. coli cells transformed with the plasmid used to get the B. subtilis transformant. Similar was the observation when comparing the BS1012:SFCO1 strain with its E. coli counter part (30%). Although the E. coli cells have 18 times more carotenoid genes, the carotenoid production

10

40

45

is only a factor of 2-3 times higher. More drastic was the difference observed in the carotenoid contents, between E. coli carrying the pZea4 construct in about 200 copies and the E. coli carrying the plasmid pX112-ZYIB-EINV4MUTRBS2C in 18 copies. The first transformant produced 48x more zeaxanthin than the latter one. This difference seen can not only be attributed to the roughly 11 times more carotenoid biosynthesis genes present in these transformants. Contributing to this difference is probably also the suboptimal performance of the newly constuded SFCO, in which the overlapping genes of the wild type Flavobacterium operon were separated to introduce the synthetic RBSs. This could have resulted in a lower translation efficiency of the rebuild synthetic operon (e.g. due to elimination of putative translational coupling effects, present in the wild type operon).

In order to increase the carotenoid production, two new constructs were made, pXI12-ZYIB-EINV4MUTRBS2CNEO and pXI12-ZYIB-EINV4 MUTRBS2CCAT, which after the integration of the SFCO into the levan-sucrase site of the chromosome, generate strains with an amplifiable structure as described by [Janniere et al., Gene 40, 47-55 (1985)). Plasmid pXI12-ZYIB-EINV4MUTRBS2CNEO has been deposited on May 25, 1995 at the DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Germany) under accession No. DSM 10013. Such amplifiable structures, when linked to a resistance marker (e.g. chloramphenicol, neomycin, tetracycline), can be amplified to 20-50 copies per chromosome. The amplifiable structure consist of the SFCO, the resistance gene and the pXI12 sequence, flanked by direct repeats of the sac-B 3' gene (see figure 22). New strains having elevated numbers of the SECO could now be obtained by selecting for transformants with increased level of resistance to the antibiotic. To construct plasmid pXI12-ZYIB-EINV4MUTRBS2CNEO, the neomycin resistance gene was isolated from plasmid pBEST501 with Pstl and Small and subcloned into the Pstl and EcoO1091 sites of the pUC18 vector. The resulting construct was named pUC18-Neo. To get the final construct, the Pmel - AatII fragment of plasmid pXI12-ZYIB-EINV4MUTRBS2C was replaced with the Smal-AatII fragment of pUC18-Neo, containing the neomycin resistance gene. Plasmid pXI12-ZYIB-EINV4MUTRBS2CCAT was obtained as follows: the chloramphenical resistance gene of pC194 was isolated by PCR using the primer pair cat3 and cat4. The fragment was digested with EcoRI and AatII and subcloned into the EcoRI and Aatil sites of pUC18. The resulting plasmid was named pUC18-CAT. The final vector was obtained by replacing the Pmel-AatII fragment of pXI12-ZYIB-EINV4MUTRBS2C with the EcoRI-AatII fragment of pUC18-CAT, carrying the chloramphenicol resistance gene. Figure 23 summarizes the different steps to obtain aforementioned constructs. Both plasmids were transformed into B. subtilis strain 1012, and transformants resulting from a Campbell-type integration were selected. Two strains BS1012::SFCONEO1 and BS1012::SFCOCAT1 were chosen for further amplification. Individual colonies of both strains were independently amplified by growing them in different concentrations of antibiotics as described in the methods section. For the cat gene carrying strain, the chloramphenicol concentrations were 60, 80, 120 and 150 mg/ml. For the neo gene carrying strain, the neomycin concentrations were 160 and 180 mg/ml. In both strains only strains with minor amplifications of the SFCO's were obtained. In daughter strains generated from strain BS1012::SFCONEO1, the resistance to higher neomycin concentrations correlated with the increase in the number of SFCO's in the chromosome and with higher levels of carotenoids produced by these cells. A different result was obtained with daughter strains obtained from strain BS1012::SFCOCAT1. In these strains an increase up to 150 mg chloramphenicol/ml resulted, as expected, in a higher number of SFCO copies in the chromosome.

Example 7

Construction of CrtW containing plasmids and use for carotenoid production

Polymerase chain reaction based gene synthesis. The nucleotide sequence of the artificial crtW gene, encoding the β-carotene β-4-oxygenase of Alcaligenes strain PC-1, was obtained by back translating the amino acid sequence outlined in [Misawa, 1995], using the BackTranslate program of the GCG Wiscornsin Sequence Analysis Package, Version 8.0 (Genetics Computer Group, Madison, WI, USA) and a codon frequency reference table of E. coli (supplied by the Bach Translate Program). The synthetic gene consisting of 726 nucleotides was constructed backglia eccording to the method described by [Ve, 1992]. The sequence of the 12 oligonucleotides (crtW1 - ατW12) required for the synthesis are shown in Figure 25. Briefly, the long oligonucleotides were designed to have short overlaps of 15-20 bases, serving as primers for the extension of the oligonucleotides. After four cycles a few copies of the full length gene should be present which is then amplified by the two terminal oligonucleotides crtW15 and crtW26. The sequences for these two short oligonucleotides are for the forward primer crtW15 (5-TATATCTAGAcatagtTCCGGTCGTAAA CCGG-3) and for the reverse primer crtW26 (5-TATAgaattcacgtTCA AGCACGACCACCGGTTTTTAC -3:4), where the sequences are constantly the DNA templates are underlined. Small cap letters show the introduced restriction sites (Wdel for the forward primer and EcoR1 and Pmll for the reverse primer crted to the contractions are constantly and Pmll for the reverse primer of the NATER-R25 expression vector.

Polymerase chain reaction. All welve long ofigonucleotides (crtW1-crtW12; 7 nM each) and both terminal primers crtW15 and crtW26; 0.1 mM each) were mixed and added to a PCR reaction mix containing Expand™ High Fidelity polymerase (Boehringer, Mannheim) (3.5 units) and dNTP's (100 nM each). The PCR reaction was run for 30 cycles

with the following profile: 94 °C for 1 min, 50 °C for 2 min and 72 °C for 3 min. The PCR reaction was separated on a 1% agarose gel, and the band of approx. 700 bp was excised and purified using the glass beads method (Geneclean Kit, Bio 101. Vista, CA, USA). The fragment was subsequentely cloned into the Smal site of plasmid pUC18, using the Sure-Clone Kit (Pharmacia, Uppsala, Sweden). The sequence of the resulting crtW synthetic gene was verified by sequencing with the Sequenase Kit Version 1.0 (United States Biochemical, Cleveland, OH, USA). The crtW gene constructed by this method was found to contain minor errors, which were subsequently corrected by site-directed muta-

Construction of plasmids. Plasmid pBIIKS(+)-CARVEG-E (see also Example 5) (Figure 26) contains the carotenoid biosynthesis genes (crtE, crtB, crtY, crtI and crtZ) of the Gram (-) bacterium Flavobacterium sp. strain R1534 WT (ATCC 21588) [Pasamontes, 1995 #732] cloned into a modified pBluescript II KS(+) vector (Stratagene, La Jolla, USA) carrying site I of the B. subtilis veg promoter [LeGrice, 1986 #806]. This constitutive promoter has been shown to be functional in E. coli. Transformants of E. coli strain TG1 carrying plasmid pBIIKS(+)-CARVEG-E synthesise zeaxanthin. Plasmid pALTER-Ex2-crtW was constructed by cloning the NdeI - EcoRI restricted fragment of the synthetic crtW gene into the corresponding sites of plasmid pALTER-Ex2 (Promega, Madison, WI). Plasmid pALTER-Ex2 is a low copy plasmid with the p15a origin of replication, which allows it to be maintained with CoIE1 vectors in the same host. Plasmid pBIIKS-crtEBIYZW (Figure 26) was obtained by cloning the HindIII-PmII fragment of pALTER-Ex2-crtW into the HindIII and the blunt end made Miul site obtained by a fill in reaction with Klenow enzyme, as described elsewhere in [Sambrook, 1989 #505]. Inactivation of the crtZ gene was done by deleting a 285 bp Nsil-Nsil fragment, followed by a fill in reaction and religation, resulting in plasmid pBIIKS-crtEBIY[DZ]W. Plasmid pBIIKS-crtEBIY[DZW] carrying the nonfunctional genes crtW and crtZ, was constructed by digesting the plasmid pBIIKS-crtEBIY[DZ]W with NdeI and HpaI, and subsequent self religation of the plasmid after filling in the sites with Klenow enzyme. E. coli transformed with this plasmid had a yellow-orange colour due to the accumulation of β-carotene. Plasmid pBIIKS-crtEBIYZ[DW] has a truncated crtW gene obtained by deleting the Ndel - Hpal fragment in plasmid pBIIKS-crtEBIYZW as outlined above. Plasmids pALTER-Ex2-crtEBIY[DZW] and pALTER-Ex2-crtEBIYZ[DW], were obtained by isolating the BamHI-Xbal fragment from pBIIKS-crtEBIY[DZW] and pBIIKS-crtEBIYZ[DW], respectively and cloning them into the BamHI and Xbal sites of pALTER-Ex2. The plasmid pBIIKS-crtW was constructed by digesting pBIIKS-crtEBIYZW with Nsil and Sacl, and self-religating the plasmid after recessing the DNA overhangs with Klenow enzyme. Figure 27 compiles the relevant inserts of all the plasmids used in this paper.

Carotenoid analysis. E. coli TG-1 transformants carrying the different plasmid constructs were grown for 20 hours in Luria-Broth medium supplemented with antibiotics (ampicillin 100 mg/ml, tetracyclin 12.5 mg/ml) in shake flasks at 37°C and 220 rpm. Carotenoids were extracted from the cells with acetone. The acetone was removed in vacuo and the residue was re dissolved in toluene. The coloured solutions were subjected to high-performance liquid chromatography (HPLC) analysis which was performed on a Hewlett-Packard series 1050 instrument. The carotenoids were separated on a silica column Nucleosil Si - 100, 200 x 4 mm, 3m. The solvent system included two solvents: hexane (A) and hexane/THF , 1:1 (B). A linear gradient was applied running from 13 to 50 % (B) within 15 minutes. The flow rate was 1.5 ml/min. Peaks were detected at 450 nm by a photo diode array detector. The individual carotenoid pigments were identified by their absorption spectra and typical retention times as compared to reference samples of chemically pure carotenoids, prepared by chemical synthesis and characterised by NMR, MS and UV-Spectra. HPLC analysis of the pigments isolated from E. coli cells transformed with plasmid pBIIKS-crtEBIYZW, carrying besides the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534, also the crtW gene encoding the β -carotene ketolase of Alcaligenes PC-1 [Misawa, 1995 #670] gave the following major peaks identified as: b-cryptoxanthin, astaxanthin, adonixanthin and zeaxanthin, based on the retention times and on the comparison of the absorbance spectra to given reference samples of chemically pure carotenoids. The relative amount (area percent) of the accumulated pigment in the E. coli transformant carrying pBIIKS-crtEBIYZW is shown in Table 3 ["CRX": cryptoxanthin; "ASX": astaxanthin; "ADX": adonixanthin, "ZXN": zeaxanthin; "ECM": echinenone; "MECH": 3-hydroxyechinenone, "CXN": cantaxanthin]. The Σ of the peak areas of all identified carotenoids was defined as 100%. Numbers shown in Table 3 represent the average value of four independent cultures for each transformant. In contrast to the aforementioned results, E. coli transformant ants carrying the same genes but on two plasmids namely, pBIIKS-crtEBIYZ[DW] and pALTER-Ex2-crtW, showed a drastical drop in adonixanthin and a complete lack of astaxanthin pigments (Table 3), whereas the relative amount of 50 zeaxanthin (%) had increased. Echinenone, hydroxyechinenone and canthaxanthin levels remained unchanged compared to the transformants carrying all the crt genes on the same plasmid (pBIIKS-crtEBIYZDW). Plasmid pBIIKS-crtE-BIYZ[DW] is a high copy plasmid carrying the functional genes of crtE, crtB, crtY, crtI, crtZ of Flavobacterium sp. strain R1534 and a truncated, non-functional version of the crtW gene, whereas the functional copy of the crtW gene is located on the low copy plasmid pALTER-Ex2-crtW. To analyze the effect of overexpression of the crtW gene with respect to the crtZ gene, E. coli cells were co-transformed with plasmid pBIIKS-crtW carrying the crtW gene on the high copy plasmid pBIIKS-crtW and the low copy construct pALTER-Ex2-crtEBIYZ[DW], encoding the Flavobacterium crt genes. Pigment analysis of these transformants by HPLC monitored the presence of β-carotene, cryptoxanthin, astaxanthin, adonixanthin, zeaxanthin, 3-hydroxyechine-none and minute traces of echinenone and canthaxanthin (Table 3).

Transformants harbouring the crtW gene on the low copy plasmid pALTER-Ex2-crtW and the genes crtE, crtB, crtY, and crtI on the high copy plasmid pBIIKS-crtEBIY[DZW] expressed only minor amounts of canthaxanthin (6 %) but high levels of echinenone (94%), whereas cells carrying the crtW gene on the high copy plasmid pBIIKS-crtW and the other crt genes on the low copy construct pALTER-Ex2-crtEBIY[DZW], had 76.6% and 21.4% of echinenone and canthaxanthin. respectively (Table 3).

Table 3

plasmids	CRX	ASX	ADX	ZXN	ECH	HECH	CXN
pBIIKS-crtEBIYZW	1.1	2.0	44.2	52.4	< 1	< 1	< 1
pBIIKS-crtEBIYZ[\Delta W] + pALTER-Ex2-crtW	2.2	-	25.4	72.4	< 1	<1	< 1
pBIIKS-crtEBIY[ΔZ]W	-	-	-	-	66.5	- 1	33.5
pBllKS-crtEBlY[\(\Delta\zerigmu\)] + pBllKS-crtW	-	-		- 1	94	-	6

Example 8

10

15

40

45

Selective carotenoid production by using the crtW and crtZ genes of the Gram negative bacterium E-396.

In this section we describe E. coli transformants which accumulate only one (canthaxanthin) or two main carotenoids (astaxanthin, adonixanthin) and minor amounts of adonirubin, rather than the complex variety of carotenoids seen
in most carotenoid producing bacteria (Yokoyama et al., Biosci. Biotechnol. Biochem. 58:1842-1844 (1994)] and some
of the E. coli transformants shown in Table 3. The ability to construct strains producing only one carotenoid is a major
step towards a successful biotechnological carotenoid production process. This increase in the accumulation of individual carotenoids accompanied by a decrease of the intermediates, was obtained by replacing the crit Zo ff-avobacterium
R1534 and/or the synthetic crtW gene (see example 5) by their homologous genes originating from the astaxanthin producing Gram negative bacterium E:398 (FERM BP-4283) [Tsubokura et al., EP-application 0 635 576 A1]. Both genes,
crtW_{FSSA} and ort ZE-26, were isolated and used to construct new plasmids as outlined below.

Isolation of a putative fragment of the crtW gen of strain E-396 by the polymerase chain reaction. Based on protein sequence comparison of the crtW enzymes of Agrobacterium aurantiacum. Acatigenes PC-1 (WO95/18220) [Mis-

crtW100: 5'-CA(C/T)GA(C/T)GC(A/C)ATGCA(C/T)GG-3'

crtW101: 5'-CA(C/T)GA(C/T)GC(G/T)ATGCA(C/T)GG-3'

The C-terminal peptide H(W/H)EHH(R/L) corresponding to region II was used design the two 17-mer degenerate primer with the antisense sequences crtW105 and crtW106:

crtW105: 5'-AG(G/A)TG(G/A)TG(T/C)TC(G/A)TG(G/A)TG-3'

crtW106: 5'-AG(G/A)TG(G/A)TG(T/C)TCCCA(G/A)TG-3'

Polymerase chain reaction. PCR was performed using the GeneAmp Kit (Perkin Elmer Cetus) according to the manufacturer's instructions. The different PCR reactions contained combinations of the degenerate primers (crtW100/crtW105 or crtW100/crtW105 or crtW101/crtW105 or crtW101/crtW105 at a final concentration of 50 pM each, together with genomic DNA of the bacterium E-396 (200 ng) and 2.5 units of Taq polymerase. In total 35 cycles of PCR were performed with the following cycle profile: 95 °C for 30 sec. 55 °C for 30 sec. 72 °C for 30 sec. PCR reactions made with the following primer combinations crtW100/crtW105 and crtW101/crtW105 gave PCR amplification products of approx. 500 bp which w re in accordance with the exp cted fragment size. The 500 bp fragment, JAPclone8, obtained in the PCR reaction using primers crtW101 and crtW105 was excised from an 1.5% agross get and purified using the GENECLEAN Kit and subsequently doned into the Smal site of pUC18 using the Sure-Clone Kit,

nUC18₂

according to the manufacturer's instructions. The resulting plasmid was named pUC18-JAPclone8 and the insert was sequenced. Comparison of the determined sequence to the crtW gene of Agrobacterium aurantiacum (GenBank accession n° D58420) published by Misawa et al. in 1995 (WO95/18220) showed 96% identity at the nucleotide sequence level, indicating that both organisms might be closely related.

Isolation of the crt cluster of the strain E. 396. Genomic DNA of E-396 was digested overnight with different combinations of restrictions enzymes and separated by agarose gel electrophoresis before transferring the resulting fragments by Southern blotting onto a nitrocellulose membrane. The blot was hybridised with a 3°P placelled 334 by tragment obtained by digesting the aforementioned PCR fragment JAPclone8 with BsSHII and MIUL An approx. 9,4kb ECCRIVBamHI fragment hybridizing to the probe was identified as the most appropiate for cloning since it is long enough ECCRIVBamHI fragment hybridizing to the probe was identified as the most appropiate for cloning since it is long enough PBUescriptifitS resulting in plasmid pJAPclo.44 (Fig. 29). Based on the sequence of the PCR fragment JAPclone8, PBUescriptifitS resulting in plasmid pJAPclo.44 (Fig. 29). Based on the sequence of the PCR fragment JAPclone8, two primers were synthesized to obtain more sequence information left and right hand of this fragment. Fig. 30 shows two primers were synthesized to obtain more sequence information left and right hand of this fragment. Fig. 30 shows two primers were synthesized to obtain more sequence internation left and right hand of this fragment. Fig. 30 shows two primers were synthesized to obtain more sequence in crtivages (from nucleotide 765 to 1253) the sequence obtained containing the crtivAges (from nucleotide 40 to 768) and crtZeges (from nucleotide 765 to 1253) the sequence of the crtZeges (from nucleotide 765 to 1253) the processor of the crtivages gene is shown in Fig. 31. The nucleotide sequence of the crtZeges gene is shown in Fig. 33 and the correspondamino acid sequence in Fig. 32. The nucleotide sequence of the crtZeges gene is shown in Fig. 38 and the correspondamino acid sequence in Fig. 34. Comparison to the crtWesse gene of E-396 to the crtW gene of A. aurantiacum showed 97 % identity at the nucleotide level and 99 % identity at the amino acid level. For the crtZ gene the values were 8% and 99% respective

98 % and 99 %, respectively.

Construction of plasmids: Both genes, crtWe₃₉₆ and crtZ_{E396}, which are adjacent in the genome of E-393, were Construction of plasmids: Both genes, crtWe₃₉₆ and the ExpandTM High Fidelity PCR system of Boehringer Manisolated by PCR using primer crtW107 and crtW108 and the ExpandTM High Fidelity PCR system of Boehringer Manison, according to the manufacturer's recommendations. To facilitate the subsequent cloning steps (see section rheim, according to the manufacturer's recommendations. To facilitate the subsequent cloning steps (see section rheim) according to the manufacturer's recommendations. To facilitate the subsequent cloning steps (see section rheim) according to the TCASTATCATATGACGCACATGCCCTGCGCCACGCACACGCC-3) contains an artificial Nade Istic (under-lined sequence) just downstream of the TCA stop CACGTGCGCTCCGCGCCC3) has an Xhol site (underlined sequence) just downstream of the TCA stop code of the crtZ gaage from the TCR according to the TcASTATCACGCCC-3 has an Xhol site (underlined sequence) just downstream of the TCA stop code of the crtZ gaage. The final PCR reaction mix had 10 pM of each primer, 2.5 mg genomic DNA of the bacterium E-396 and 3.5 units of the TaqDNA/Pwo DNA polymerase mix. In total 35 cycles were performed thin the following cycle profile: 95 °C, 1 min; 60 °C, 1 min; 7° °C 1 min 30 sec. The PCR product of approx. 1250bp was isolated from the cycle profile: 95 °C, 1 min; 60 °C, 1 min; 7° °C 1 min 30 sec. The PCR product of approx. 1250bp was isolated from the cycle profile: 95 °C, 1 min; 60 °C,

Plasmid pBIIKS-crtEBIY[E396W]DZ has a truncated non-functional crtZ gene. Fig. 37 outlines the construction of this plasmid. The PCR reaction was run as outlined elsewhere in the text using primers crtW113/crtW114 and 200 ng this plasmid pUC18-JAPdone8 as template using 20 cycles with the following protocol: 95 °C, 45 sec/ 62 °C, 20 sec/ 72 °C, 20 sec/

primer crtW113 (5'-ATATACATATGGTGTCCCCCTTGGTGCGGGTGC-3')

primer crtW114 (5'-TATGGATCCGACGCGTTCCCGGACCGCCACAATGC-3')

The resulting 150 bp fragment was digested with BamH and Ndel and cloned into the corresponding sites of pBI-ISK(+)-PCRRBScrtZ resulting in the construct pBIISK(+)-PCRRBScrtZ-2. The final plasmid carrying the genes crtE, crtB, crtI, crtY of Flavobacterium, the crtWgsse gene of E-396 and a truncated non-functional crtZ gene of Flavobacterium was obtained by isolating the MiuNFM Iragment (280 bp) of pBIISK(+)-PCRRBScrtZ-2 and cloning it, into the MiuNFMI sites of plasmid pBIIKS-crtEBIY[E396WZ]. E coli cells transformed with this plasmid produced 100% canthaxanthin (Table 4: "CRX" cryptoxanthin; "ASX", astaxanthin; "ADX", "admixanthin; "CNX"; zeaxanthin; "ECH": 5-Carrotection of the total carotenoids produced in the cell.).

Table 4

			lable	4						
	CRX	ASX	ADX	ZXN	ECH	HECH	CXN	BCA	ADR	l
plasmid	Chx			52.4	-1	<1	<1			l
pBIIKScrtEBIYZW	1.1	2.0	44.2	32.4					5.8	١
pBIIKS-crtEBIY[E396WZ]		74.4	19.8							J

40

Table 4 (continued)

plasmid	CRX	ASX	ADX	ZXN	ECH	HECH	CXN	BCA	ADR
pBIIKS-crtEBIY[E396W]\(\Delta Z\)							100		

The results of *E. coli* transformants carrying pBIIKScrtEBIYZW (see example 7) are also shown in Table 4 to indicate the dramatic effect of the new genes crtW_{E396} and crtZ_{E396} on the carotenoids produced in these new transformants.

Example 9

10

Cloning of the remaining crt genes of the Gram negative bacterium E-396.

TG1 E. coff transformants carrying the pJAPCL544 plasmid did not produce detectable quantities of carotenoids (results not shown). Sequence analysis and comparison of the 3' (BamH) site) of the insert of plasmid pJAPCL544, to the crt cluster of Flavobacterium R1534 showed that only part of the C-terminus of the crtE gene was present. This result explained the lack of carotenoid production in the aforementioned transformants. To isolate the missing N-termal part of the gene, genomic DNA of E-396 was digested by 6 restrictions enzymes in different combinations: EcoRI, BamHI, Pstl, Sacl, SphI and XbaI and transferred by the Southern blot technique to nitrocellulose. Hybridization of this membrane with the ²⁹P radio-labelled probe (a 463 bp Pstl-BamHI fragment originating from the 3' end of the insert of pJAPCL544 (Fig. 29) highlighted a –1300 b-jong Pstl-Fstl fragment. This fragment was isolated and cloned into the Pstl site of pBSIIKS(4) resulting in plasmid pBSIIKS-#1296. The sequence of the insert is shown in Fig. 38 (small cap letters refer to new sequence obtained. Capital letters show the sequence also present in the 3' of the insert of plasmid pJAPCL544). The complete crtE gene has therefore a length of 882 bp (see Fig. 39) and encodes a GGPP synthase of 294 amino acids (Fig. 40). The crtE enzyme has 38 % identity with the crtE amino acids sequence of Erwinia herbicola and 66 % with Flavobacterium R1534 WT.

Construction of plasmids. To have a plasmid carrying the complete crt cluster of E-396, the 4.7 kb MluVBamH1 fragment encoding the genes crtW, crtZ, crtY, crt1 and crtB was isolated from pJAPCL544 and cloned into the MluVBamH1 sites of pUC18-E396crtWZPCR (see example 8). The new construct was named pE396CARcrtW-B (Fig. 41) and lacked the N-terminus of the crtE gene. The missing C-terminal part of the crtE gene was then introduced by ligation of the aforementioned Pstl fragment of pBIKS-#1296 between the Pstl sites of pE396CARcrtW-B. The resulting plasmid was named pE396CARcrtW-E (Fig. 41). The carotenoid distribution of the £. col' transformants carrying aforementioned plasmid were: adonixanthin (65%), astaxanthin (8%) and zeaxanthin (3%). The % indicated reflects the proportion of the total amount of carotenoid produced in the cell.

35 Example 10

Astaxanthin and adonixanthin production in Flavobacterium R1534

Among bacteria Flavobacterium may represent the best source for the development of a fermentative production process for 3R, 3R zeasanthin. Derivatives of Flavobacterium sp. strain R1534, obtained by classical mutagenesis have attracted in the past two decades wide interest for the development of a large scale fermentative production of zeaxanthin, although with little success. Cloning of the carotenoid biosynthesis genes of this organism, as outlined in example 2, may allow replacement of the classical mutagenesis approach by a more rational one, using molecular tools to amplify the copy number of relevant genes, deregulate their expression and eliminate bottlenecks in the carotenoid biosynthesis pathway. Furthermore, the introduction of additional heterologous genes (e.g. crtfW) will result in the production of carotenoids normally not synthesised by this bacterium (astaxanthin, adonivathin, adonivathin, canthaxanthin, echinenone). The construction of such recombinant Flavobacterium R1534 strains producing astaxanthin and adonivanthin will be outlined below.

Gene transfer into Flavobacterium sp.

Plasmid transfer by conjugative mobilization. For the conjugational crosses we constructed plasmid pRSF1010-Amp', a derivative of the small (8.9 kb) broad host range plasmid RSF1010 (IncQ incompatibility group) (Sucrey et al., J. Bacteriol. 117:619-630 (1974)) and used E. coli S17-1 as the mobilizing strain (Priefer et al., J. Bacteriol. 163:324-330 (1985)]. In general any of the IncQ plasmids (e.g. RSF1010, R300B, R1162) may be mobilized into rifampicin resistant Flavboacterium if the transfer functions are provided by plasmids of the IncPT group (e.g. R1, 1974).

Rifampicin resistant (Riff) Flavobacterium R1534 cells were obtained by selection on 100 mg rifampicin/ml. One resistant colony was picked and a stock culture was made. The conjugation protocol was as follows:

Day 1:

- grow 3 ml culture of Flavobacterium R1534 Riff for 24 hours at 30 °C in Flavobacter medium (F-medium) (see example 1)
- grow 3 ml mobilizing E. coli strain carrying the mobilizable plasmid O/N at 37 °C in LB medium. (e.g E. coli S17-1 carrying pRSF1010-Amp' or E. coli TG-1 cells carrying R751 and pRSF1010-Amp')

Day 2:

- 10 pellet 1 ml of the Flavobacterium R1534 Riff cells and resuspend in 1ml of fresh F-medium.
 - pellet 1 ml of E, coli cells (see above) and resuspend in 1 ml of LB medium.
 - donor and recipient cells are then mixed in a ratio of 1:1 and 1: 10 in an Eppendorf tube and 30 ml are then applied onto a nitrocellulose filter plated on agar plates containing F-medium and incubated O/N at 30°C.

Day 3:

 the conjugational mixtures were washed off with F-medium and plated on F-medium containing 100 mg rifampicin and 100 mg ampicillin/ml for selection of transconjugants and inhibition of the donor cells.

Day 6-8:

25

30

40

55

- Arising clones are plated once more on F-medium containing 100 mgRif and 100 mg Amp/ml before analysis.

Plasmid transfer by electroporation. The protocol for the eletroporation is as follows:

- 1. add 10 ml of O/N culture of Flavobacterium sp. R1534 into 500 ml F-medium and incubate at 30°C until OD600=0.8-0.1
- 2. harvest cells by centrifugation at 4000g at 4°C for 10 min.
 - 3. wash cells in equal volume of ice-cold deionized water (2 times)
- 4. resuspend bacterial pellet in 1 ml ice-cold deionized water
 - 5. take 50 ml of cells for electroporation with 0.1 mg of plasmid DNA
 - 6. electroporation was done using field strengths between 15 and 25 kV/cm and 1-3 ms.

after electroporation cells were immediately diluted in 1 ml of F-medium and incubated for 2 hours at 30°C at 180
rpm before plating on F-medium plates containing the respective selective antibioticum.

Plasmid constructions: Plasmid pRSF101-Amp' was obtained by cloning the Amp' gene of pBR322 between the EcoRII/Not1 sites of RSF1010. The Amp' gene originates from pBR322 and was isolated by PCR using primers AmpR1 and AmpR2 as shown in Fig. 42.

AmpR1:

5-TATATCGGCCGACTAGTAAGCTTCAAAAAGGATCTTCACCTAG-3' the underlined sequence contains the intro-50 duced restriction sites for Eagl, Spel and HindIII to facilitate subsequent constructions.

AmpR2:

5'-ATATGAATTCAATAATATTGAAAAAGGAAG-3' the underlined sequence corresponds to an introduced EcoRI restriction site to facilitate cloning into RSF1010 (see Fig. 42).

The PCR reaction mix had 10 pM of each primer (AmpR1/AmpR2), 0.5 mg plasmid pBR322 and 3.5 units of the The PCR reaction mix had 10 pM of each primer (AmpR1/AmpR2), 0.5 mg plasmid pBR322 and 3.5 units of the \$4.5 mg pCR reaction of the PCR reac

M NaAcetate and 2 vol. Ethanol. The pellet was resuspended in H_2O and digested with EcoRI and Eagl O/N. The digestion was separated by electrophoresis and the fragment isolated from the 1% agarose gel and purified using GENECLEAN before ligation into the EcoRI and NotI sites of RSF1010. The resulting plasmid was named pRSF1010-Arm0' (Fig. 42).

Plasmid RSF1010-Ampr-cr11 was obtained by isolating the HindIIIW/orl fragment of pBIIKS-crtEBIY[E396WZ] and cloning it between the HindIIIWEagl sites of RSF1010-Ampr (Fig. 43). The resulting plasmid RSF1010-Ampr-cr11 carrivings of the crt1 gene (non-functional). Plasmid RSF1010-Ampr-cr12 carrying a complete crt cluster composed of the genes crtW_{E396}, and crtZ_{E396} of E-396 and the crtY, crtl, crtB and crtE of Flavobacterium R1534 was obtained by isolating the large HindIIIV/bal fragment of pBIIKS-crtEBIY[E396WZ] and cloning it into the SpellHindIII sites of RSF1010-Ampr (Fig. 43).

Flavobacterium R1534 transformants carrying either plasmid RSF1010-Ampf. Plasmid RSF1010-Ampf-crt1 or Plasmid RSF1010-Ampf-crt2 were obtained by conjugation as outlined above using £. colf S17-1 as mobilizing strain.
Comparison of the carotenoid production of two Flavobacterium transformants. Overnight cultures of the individual transformants were diluted into 20 ml fresh F-medium to have a final starting O'D600 of 0.4. Cells were harvested after growing for 48 hours at 30 °C and carotenoid contents were analysed as outlined in example 7. Table 5 shows the result of the three control cultures Flavobacterium [R1534 WT], [R1534 WT RiR] (rifimpioin resistant) and [R1534WT RF] (romaphe.crt2) and the two transformants [R1534 WT RSF1010-AmpR-crt1] and [R1534 WT RSF1010-AmpR-crt2]. Both latter transformants are able to synthesise astaxanthin and adonixanthin but little zeaxanthin. Most interesting is the [R1534 WT RSF1010-AmpR-crt2] flavobacterium transformant which proceed duces approx. 4 times more carotenoids than the R1534 WT. This increase in total caroneous for control of orductions in most likely due to the increase of the number of carotenoid biosynthesis clusters present in these cell (e.g. corresponds to the total coor number of plasmids in the cell).

Table E

Transformant	carotenoids % of total dry weight	total carotenoid con- tent in % of dry weight
R1534 WT	0.039% β-Carotin	0.06%
	0.001% β-Cryptoxanthin	
	0.018% Zeaxanthin	
R1534 Rif	0.036% β-Carotin	0.06%
	0.002% β-Cryptoxanthin	
	0.022% Zeaxanthin	
R1534 Rif ^f [RSF1010-Ampr]	0.021% β-Carotin	0.065%
	0.002% β-Cryptoxanthin	
	0.032% Zeaxanthin	
R1534 Rif' [RSF1010-Ampr-crt1]	0.022% Astaxanthin	0.1%
	0.075% Adonixanthin	
	0.004% Zeaxanthin	
R1534 Riff [RSF1010-Ampr-crt2]	0.132% β-Carotin	0.235%
	0.006% Echinenon	
	0.004% Hydroxyechinenon	
	0.003% β-Cryptoxanthin	
	0.044% Astaxanthin	
	0.039% Adonixanthin	
	0.007% Zeaxanthin	

25

30

35

46

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (ii) NAME: F.HOFFMANN-LA ROCHE AG (B) STREET: GREWACHERSTRASSE 124 (C) CITY: BASILE (D) STATE: BS (E) COUNTRY: SWITZERLAND (F) POSTAL CODE (ZIP): CH - 4002 (G) TELEPHONE: 061 - 688 2505 (H) TELEFAX: 061 688 1395 (I) TELEX: 962292795542 hir ch	
15	(ii) TITLE OF INVENTION: Improved fermentative carotenoid production	n
10	(iii) NUMBER OF SEQUENCES: 17	
20	(iv) COMPUTER READABLE FORM: (A) MEDIUM YPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)	
	(v) CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 97120324.5	
	(2) INFORMATION FOR SEQ ID NO: 1:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 729 base pairs (B) TTPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
35	ATGAGGGCAC ATGCCCTGCC CAAGGCAGAT CTGACCGCCA CCAGTTTGAT CGTCTCGGGC	60
	GGCATCATCG CCGCGTGGCT GGCCCTGCAT GTGCATGCGC TGTGGTTTCT GGACGCGGCG	120
	GCGCATCCCA TCCTGGCGGT CGCGAATTTC CTGGGGCTGA CCTGGCTGTC GGTCGGTCTG	180
	TTCATCATCG CGCATGACGC GATGCATGGG TCGGTCGTGC CGGGGCGCCC GCGCGCCAAT	240
40	GCGGCGATGG GCCAGCTTGT CCTGTGGCTG TATGCCGGAT TTTCCTGGCG CAAGATGATC	300
	GTCAAGCACA TGGCCCATCA TCGCCATGCC GGAACCGACG ACGACCCAGA TTTCGACCAT	360
	GGCGGCCCGG TCCGCTGGTA CGCCCGCTTC ATCGGCACCT ATTTCGGCTG GCGCGAGGGG	420
45	CTGCTGCTGC CCGTCATCGT GACGGTCTAT GCGCTGATGT TGGGGGATCG CTGGATGTAC	486
	GTGGTCTTCT GGCCGTTGCC GTCGATCCTG GCGTCGATCC AGCTGTTCGT GTTCGGCATC	540
	TGGCTGCCGC ACCGCCCCGG CCACGACGCG TTCCCGGACC GCCACAATGC GCGGTCGTCG	600
50	CGGATCAGCG ACCCCGTGTC GCTGCTGACC TGCTTTCACT TTGGCGGTTA TCATCACGAA	660
	CACCACCTGC ACCCGACGGT GCCTTGGTGG CGCCTGCCCA GCACCCGCAC CAAGGGGGAC	720
	ACCGCATGA	729

- (2) INFORMATION FOR SEO ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
 - Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
- Is Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30
 - Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 35 40
 - Asn phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 60
 - His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 80
 - Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp $85 \hspace{0.25cm} 90 \hspace{0.25cm} 95$
 - Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr $100 \ \ 105$

 - Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro 1330 240
 - Val Ile Val Thr Val Tyr Ala Leu Met Leu Gly Asp Arg Trp Met Tyr 145 \$150\$
 - Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175
 - Val Phe Gly Ile Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190 190 Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu 195 200 205 205 206
 - Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His
 - Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 \$230\$
 - Thr Ala
 - (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 486 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

10

20

25

30

35

40

45

50

(ii) MOLECULE TYPE: DNA (genomic)

5	(xi)	SEQUENC	E DESC	CRIPTIO	N: S	EQ I	NO:	3:							
	ATGACCAAT	T TCCTG	ATCGT	CGTCGC	CACC	GTG	TGGT	rga 1	rgga(GCTG/	AC G	GCCT!	ATTC	2	60
	GTCCACCGC	T GGATC	ATGCA	CGGCCC	CTTG	GGC	rggg	CT (GCAC	CAAG	rc co	CACCA	ACGAC	3	120
10	GAACACGAC	C ACGCG	CTGGA	AAAGAA	CGAC	CTG	racgo	scc :	rggro	CTTTC	GC G	GTGA?	rcgco	2	180
	ACGGTGCTG	T TCACGO	STGGG	CTGGAT	CTGG	GCA	CGGT	cc :	rgrgo	TGG	AT C	CCT	GGGG	2	240
	ATGACCGTC	T ACGGGG	CTGAT	CTATTT	CGTC	CTG	CATGA	CG (GCT	GTG	CA TO	CAGCO	CTG	3	300
	CCGTTCCGC	T ATATC	CTCG	CAAGGG	CTAT	GCC	AGACO	cc :	rgta?	CAGO	C C	CACCO	CCTC	3	360
15	CACCACGCG	G TCGAG	GGCG	CGACCA	TTGC	GTC	AGCTT	CG (CTT	ATC	ra To	GCGCC	GCCC	3	420
	GTCGACAAG	C TGAAGO	CAGGA	CCTGAA	GACG	TCG	GCG1	GC 1	rgcgc	GCCC	GA GO	GCGC	AGGAC	3	480
	CGCACG														486
20	(2) INFOR	MATION I	FOR SI	EQ ID N	0: 4:	:									
	(i)	SEQUENCE													
		(B) TY	PE: ar	162 am mino ac	id		•								
25				ONESS: f: line		Le									
25	(ii)	MOLECULI	TYPE	E: prot	ein										
	(xi)	SEQUENC	E DESC	CRIPTIO	N: SI	EQ II	NO:	4:							
30	Met	Thr Asn	Phe I	Leu Ile	Val	Val	Ala	Thr	Val	Leu	Val	Met	Glu 15	Leu	
	The	Ala Tyr		o Inlusia	250	Trans.	Tlo		Uio	Clu	Dwa	Lau	C111	Term	
	****	Alu Iyi	20	di mis	nry	119	25	1160		013		30	ULY	110	
35	Gly	Trp His	Lys S	Ser His	His	Glu 40	Glu	His	Asp	His	Ala 45	Leu	Glu	Lys	
	à en	Asp Leu	Tur (ilv Len	Va1		A)a	Val	rla	a l a		Val	F.em	Pho	
		50	.,	J1, 200	55			****		60		•	200		
40	Thr 65	Val Gly	Trp 1	le Trp	Ala	Pro	Val	Leu	Trp 75	Trp	Ile	Ala	Leu	Gly 80	
40		Thr Val	Tvr (Tle	Tvr	Phe	Val		His	Asp	Glv	Leu		
	1100			35	110	-,-		90	200		1100	017	95		
	His	Gln Arg	Trp E	Pro Phe	Arg	Tyr	Ile 105	Pro	Arg	Lys	Gly	Tyr	Ala	Arg	
45	Ara	Leu Tyr	Gln A	Ala His	Ara	Leu		His	Ala	Val	Glu	Glv	Ara	Asp	
	9	115	0111		112.5	120					125				
		Cys Val 130	Ser I	Phe Gly	Phe 135	Ile	Tyr	Ala	Pro	Pro 140	Val	Asp	Lys	Leu	
50		Gln Asp	Leu I	Lys Thr		Gly	Va1	Leu	Arg	Ala	Glu	Ala	Gln	Glu	
	145			150			-	-	155					160	
	Arg	Thr													

29

_	_	
	-	
	-	

(2)	INFORMATION	FOR	SEO	TD	NO:	5

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 882 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

15

20

25

30

5

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 5: ATGAGACGAG ACGTCAACCC GATCCACGCC ACCCTTCTGC AGACCAGACT TGAGGAGATC 60 GCCCAGGGAT TCGGTGCCGT GTCGCAGCCG CTCGGCCCGG CCATGAGCCA TGGCGCGCTG 120 TCGTCGGGCA AGCGTTTCCG CGGCATGCTG ATGCTGCTTG CGGCAGAAGC CTCGGGCGGG 180 GTCTGCGACA CGATCGTCGA CGCCGCCTGC GCGGTCGAGA TGGTGCATGC CGCATCGCTG 240 ATCTTCGACG ACCTGCCCTG CATGGACGAT GCCGGGCTGC GCCGCGGCCA GCCCGCGACC 300 CATGTGGCGC ATGGCGAAAG CCGCGCCGTG CTAGGCGGCA TCGCCCTGAT CACCGAGGCG 360 ATGCCCTGC TGGCCGTGC GCGCGCGCG TCGGGCACGG TGCGGCCGCA GCTGGTGCGG 420 ATCCTGTCGC GGTCCCTGGG GCCGCAGGGC CTGTGCGCCG GCCAGGACCT GGACCTGCAC 480 GCGGCCAAGA ACGGCGCGG GGTCGAACAG GAACAGGACC TGAAGACCGG CGTGCTGTTC 540 ATCGCCGGGC TGGAGATGCT GGCCGTGATC AAGGAGTTCG ACGCCGAGGA GCAGACTCAG 600 ATGATCGACT TTGGCCGTCA GCTGGGCCGG GTGTTCCAGT CCTATGACGA CCTGCTGGAC 660 GTTGTGGGCG ACCAGGCGGC GCTTGGCAAG GATACCGGTC GCGATGCGGC GGCCCCCGGC 720 CCGCGGCGCG GCCTTCTGGC CGTGTCAGAC CTGCAGAACG TGTCCCGTCA CTATGAGGCC 780 AGCCGCGCC AGCTGGACGC GATGCTGCGC AGCAAGCGCC TTCAGGCTCC GGAAATCGCG 840 GCCCTGCTGG AACGGGTTCT GCCCTACGCC GCGCGCGCCT AG 882

35

40

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 293 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Arg Arg Asp Yal Asn Pro Ile His Ala Thr Leu Leu Gln Thr Arg 1 10 15

Leu Glu Glu Ile Ala Gln Gly Phe Gly Ala Val Ser Gln Pro Leu Gly 20

Pro Ala Met Ser His Gly Ala Leu Ser Ser Gly Lys Arg Phe Arg Gly 35

50

Met Leu Met Leu Leu Ala Ala Glu Ala Ser Gly Gly Val Cys Asp Thr

		50				55					60				
	Ile 65	Val Asp	Ala	Ala	Cys 70	Ala	Va1	Glu	Met	Val 75	His	Ala	Ala	Ser	Leu 80
5	Ile	Phe Asp	Asp	Leu 85	Pro	Cys	Met	Asp	Asp 90	Ala	Gly	Leu	Arg	Arg 95	Gly
	Gln	Pro Ala	Thr 100	His	Val	Ala	His	Gly 105	Glu	Ser	Arg	Ala	Val 110	Leu	Gly
10	Gly	Ile Ala 115	Leu	Ile	Thr	Glu	Ala 120	Met	Ala	Leu	Leu	Ala 125	Gly	Ala	Arg
	Gly	Ala Ser 130	Gly	Thr	Val	Arg 135	Ala	Gln	Leu	Val	Arg 140	Ile	Leu	Ser	Arg
15	Ser 145	Leu Gly	Pro	Gln	Gly 150	Leu	Cys	Ala	Gly	Gl: 155	Asp	Leu	Asp	Leu	His 160
	Ala	Ala Lys	Asn	Gly 165	Ala	Gly	Val	Glu	Gln 170	Glu	Gln	Asp	Leu	Lys 175	Thr
20	Gly	Val Leu	Phe 180	Ile	Ala	Gly	Leu	Glu 185	Met	Leu	Ala	Val	Ile 190	Lys	Glu
	Phe	Asp Ala 195	Glu	Glu	Gln	Thr	Gln 200	Met	Ile	Asp	Phe	Gly 205	Arg	Gln	Leu
	Gly	Arg Val 210	Phe	Gln	Ser	Tyr 215	Asp	Asp	Leu	Leu	Asp 220	Val	Val	Gly	Asp
25	Gln 225	Ala Ala	Leu	Gly	Lys 230	Asp	Thr	Gly	Arg	Asp 235	Ala	Ala	Ala	Pro	Gly 240
	Pro	Arg Arg	Gly	Leu 245	Leu	Ala	Val	Ser	Asp 250	Leu	Gln	Asn	Val	Ser 255	Arg
30	His	Tyr Glu	Ala 260	Ser	Arg	Ala	Gln	Leu 265	Asp	Ala	Met	Leu	Arg 270	Ser	Lys
	Arg	Leu Gln 275	Ala	Pro	Glu	Ile	Ala 280	Ala	Leu	Leu	Glu	Arg 285	Val	Leu	Pro
35	Tyr	Ala Ala 290	Arg	Ala											
	(2) INFOR	MATION :	FOR S	SEQ :	ED NO	o: 7	:								
40	(i)	SEQUENC: (A) LEI (B) TYI (C) ST: (D) TO:	NGTH: PE: & RANDE	29: mino EDNE:	am: ac: SS: :	ino a id sing	acid	3							
	(ii)	MOLECUL	E TY	PE: 1	prote	ein									
45	(xi)	SEQUENC	E DES	SCRI	PTIO	N: S	EQ II	ON C	. 7:						
	Met 1	Thr Pro	Lys	Gln 5	Gln	Phe	Pro	Leu	Arg 10	Asp	Leu	Val	Glu	Ile 15	Arg
50	Leu	Ala Gln	Ile 20	Ser	Gly	Gln	Phe	Gly 25	Val	Val	Ser	Ala	Pro 30	Leu	Gly
	Ala	Ala Met 35	Ser	Asp	Ala	Ala	Leu 40	Ser	Pro	Gly	Lys	Arg 45	Phe	Arg	Ala

Val	Leu 50	Met	Leu	Met	Val	Ala 55	Glu	Ser	Ser	Gly	Gly 60	Val	Cys	Asp	Ala
Met 65	Val	Asp	Ala	Ala	Cys 70	Ala	Val	Glu	Met	Va1 75	His	Ala	Ala	Ser	Leu 80
Ile	Phe	Asp	Asp	Met 85	Pro	Cys	Met	Asp	Asp 90	Ala	Arg	Thr	Arg	Arg 95	Gly
Gln	Pro	Ala	Thr 100	His	Val	Ala	His	Gly 105	Glu	Gly	Arg	Ala	Val 110	Leu	Ala
Gly	Ile	Ala 115	Leu	Ile	Thr	Glu	Ala 120	Met	Arg	Ile	Leu	Gly 125	Glu	Ala	Arg
Gly	Ala 130	Thr	Pro	Asp	Gln	Arg 135	Ala	Arg	Leu	Val	Ala 140	Ser	Met	Ser	Arg
Ala 145	Met	Gly	Pro	Val	Gly 150	Leu	Cys	Ala	Gly	Gln 155	Asp	Leu	Asp	Leu	His 160
Ala	Pro	Lys	Asp	Ala 165	Ala	Gly	Ile	Glu	Arg 170	Glu	Gln	Asp	Leu	Lys 175	Thr
Gly	Val	Leu	Phe 180	Val	Ala	Gly	Leu	Glu 185	Met	Leu	Ser	Ile	11e 190	Lys	Gly
Leu	Asp	Lys 195	Ala	Glu	Thr	Glu	Gln 200	Leu	Met	Ala	Phe	Gly 205	Arg	Gln	Leu
G1y	Arg 210	Val	Phe	Gln	Ser	Tyr 215	Asp	Asp	Leu	Leu	Asp 220	Val	Ile	Gly	Asp
Lys 225	Ala	Ser	Thr	Gly	Lys 230	Asp	Thr	Ala	Arg	Asp 235	Thr	Ala	Ala	Pro	Gly 240
Pro	Lys	Gly	Gly	Leu 245	Met	Ala	Val	Gly	Gln 250	Met	Gly	Asp	Val	Ala 255	Gln
His	Tyr	Arg	Ala 260	Ser	Arg	Ala	Gln	Leu 265	Asp	Glu	Leu	Met	Arg 270	Thr	Arg
Leu	Phe	Arg 275	Gly	Gly	Gln	Ile	Ala 280	Asp	Leu	Leu	Ala	Arg 285	Val	Leu	Pro
His	Asp 290	Ile	Arg	Arg	Ser	Ala 295									

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 888 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

ATGACGCCCA	AGCAGCAATT	CCCCCTACGC	GATCTGGTCG	AGATCAGGCT	GGCGCAGATC	60
TCGGGCCAGT	TCGGCGTGGT	CTCGGCCCCG	CTCGGCGCGG	CCATGAGCGA	TGCCGCCCTG	120
TCCCCCGGCA	AACGCTTTCG	CGCCGTGCTG	ATGCTGATGG	TCGCCGAAAG	CTCGGGCGGG	180
GTCTGCGATG	CGATGGTCGA	TGCCGCCTGC	GCGGTCGAGA	TGGTCCATGC	CGCATCGCTG	240
ATCTTCGACG	ACATGCCCTG	CATGGACGAT	GCCAGGACCC	GTCGCGGTCA	GCCCGCCACC	300

	CATGTCGC	CC ATGG	CGAGG	G GC	GCGC	GGTG	CTTC	GCGGC	GCA ?	rcgco	CTG	AT C	ACCG/	AGGC	:
	ATGCGGAT	TT TGGG	CGAGG	C GCC	GCGGG	GCG	ACG	CGGI	ATC /	AGCGG	GCA	AG GO	TGGT	CGC2	A
5	TCCATGTC	GC GCGC	GATGG	G ACC	CGGT	GGG	CTG1	rgcgc	CAG	GCAC	GATO	T GO	ACC1	GCAC	:
	GCCCCCAA	GG ACGC	CGCCG	G GA	TCGA/	ACGT	GAA	AGG	ACC 1	CAAC	GACC	G C	TGC	GTT	2
	GTCGCGGG	CC TCGA	GATGC'	T GTO	CAT	TATT	AAG	GTCT	rgg I	CAAC	GCCC	GA GA	ACCGF	GCAC	;
10	CTCATGGC	CT TCGG	GCGTC.	A GC	TTGG1	rcgg	GTC:	TCC	AGT (CTAT	GAC	GA CC	TGC	GGAC	:
	GTGATCGG	CG ACAA	GCCA	G CAC	CCGG	CAAG	GAT	ACGGC	CGC C	CGAC	CACCO	c co	cccc	CGGC	:
	CCANAGGG	CC- CCCT	ENTCC	000	DEGG!	ACAG-	ADGO	ecc4	VCG- T	reco	CAGO	A. TI	ACCO	CGCC	:
	AGCCGCGC	GC AACT	GGACG.	A GC	TGATO	3CGC	ACC	GGC1	rgt 1	CCGC	GGGG	G GC	AGAT	cgc (5
15	GACCTGCT	GG CCCG	CGTGC	T GC	CGCAT	FGAC	ATC	GCCC	GCA (CGCC	TAG				
	(2) INFO	RMATION	FOR	SEQ :	ID NO): 9									
20	(i)	SEQUENO (A) L: (B) T' (C) S' (D) To	ENGTH YPE: TRAND	: 30: amino EDNE:	3 ami o aci SS: s	ino a id sing!	cid	3							
	(ii)	MOLECU	LE TY	PE: 1	prote	ein									
25															
	(xi)	SEQUEN	CE DE	SCRI	PTION	N: SI	EQ II	000	9:						
	Met 1	Thr As	p Leu	Thr 5	Ala	Thr	Ser	Glu	Ala 10	Ala	Ile	Ala	Gln	Gly 15	Ser
30	Glm	Ser Ph	e Ala 20	Gln	Ala	Ala	Lys	Leu 25	Met	Pro	Pro	Gly	Ile 30	Arg	Glu
	Asp	Thr Va	l Met	Leu	Tyr	Ala	Trp 40	Cys	Arg	His	Ala	Asp 45	Asp	Val	Ile
35	Asp	Gly Gl	n Val	Met	Gly	Ser 55	Ala	Pro	Glu	Ala	Gly 60	Gly	Asp	Pro	Gln
	Ala 65	Arg Le	u Gly	Ala	Leu 70	Arg	Ala	Asp	Thr	Leu 75	Ala	Ala	Leu	His	Glu 80
	Asp	Gly Pr	o Met	Ser 85	Pro	Pro	Phe	Ala	Ala 90	Leu	Arg	Gln	Val	Ala 95	Arg
10	Arg	His As	Phe 100	Pro	Asp	Leu	Trp	Pro 105	Met	Asp	Leu	Ile	Glu 110	Gly	Phe
	Ala	Met As		Ala	Asp	Arg	Glu 120	Tyr	Arg	Ser	Leu	Asp 125	Asp	Val	Leu
15	Glu	Tyr Se 130	r Tyr	His	Val	A1a 135	Gly	Va1	Va1	Gly	Val 140	Met	Met	Ala	Arg
	Val 145	Met Gl	y Val	Gln	Asp 150	Asp	Ala	Val	Leu	Asp 155	Arg	Ala	Cys	Asp	Leu 160
50	Gly	Leu Al	a Phe	Gln 165	Leu	Thr	Asn	Ile	Ala 170	Arg	Asp	Val	Ile	Asp 175	Asp
	Ala	Ala Il	e Gly 180	Arg	Cys	Tyr	Leu	Pro 185	Ala	Asp	Trp	Leu	Ala 190	Glu	Ala

					•												
	Gly	Ala	Thr 195	Val	Glu	Gly	Pro	Val 200	Pro	Ser	Asp	Ala	Leu 205	Tyr	Ser	Val	
5	Ile	11e 210	Arg	Leu	Leu	Asp	Ala 215	Ala	Glu	Pro	Tyr	Tyr 220	Ala	Ser	Ala	Arg	
	Gln 225	Gly	Leu	Pro	His	Leu 230	Pro	Pro	Arg	Суѕ	Ala 235	Trp	Ser	Ile	Ala	Ala 240	
10	Ala	Leu	Arg	Ile	Tyr 245	Arg	Ala	Ile	Gly	Thr 250	Arg	Ile	Arg	Gln	Gly 255	Gly	
	Pro	Glu	Ala	Tyr 260	Arg	Gln	Arg	Ile	Ser 265	Thr	Ser	Lys	Ala	Ala 270	Lys	Ile	
15	Gly	Leu	Leu 275	Ala	Arg	Gly	Gly	Leu 280	Asp	Ala	Ala	Ala	Ser 285	Arg	Leu	Arg	
	Gly	Gly 290	Glu	Ile	Ser	Arg	Asp 295	Gly	Leu	Trp	Thr	Arg 300	Pro	Arg	Ala		
	(2) INFO	RMAT	ION I	FOR S	EQ :	ID NO	: 10):									
20	(i)	(A) (B)	TY!	GTH: PE: T RANDE	900 ucle	reris B bas eic a SS: c linea	e pa cid loub	irs									
25	(ii)	MOL	ECULI	TYI	PE: !	ONA (geno	omic)									
	(xi)	SEQ	JENCI	DES	CRI	PTION	l: SI	EQ II	NO:	10	:						
30	ATGACCGA*	rc To	GACGO	CGAC	TTO	CCGA	GCG	GCC	ATCGC	GC I	AGGGT	TCG	A A	AGCT?	rcgcc	;	60
30	CAGGCGGC	CA AC	GCTG/	ATGCC	GCC	CCGGC	ATC	CGCC	GAGGA	TA (CGGT	ATGO	T C	CATGO	CTGC	}	120
	TGCAGGCA																180
	GGCGACCC																240
35	GACGGCCCC																300
	TACCGCAGG																360 420
	ATGATGGC																480
40	GGCCTTGCC																540
	CGCTGCTAT																600
	CCTTCGGAG																660
45	GCCTCGGC	GC GC	GCAG	GGC	TC	GCA1	CTG	CCG	cccc	CT (GCGCG	TGG	rc G	ATCG	CCCC	:	720

GCGCTGCGTA TCTATCGCGC AATCGGGACG CGCATCCGGC AGGGTGGCCC CGAGGCCTAT

CGCCAGCGGA TCAGCACGTC GAAGGCTGCC AAGATCGGGC TTCTGGCGCG CGGAGGCTTG

GACGCGGCCG CATCGCGCCT GCGCGGCGGC GAAATCAGCC GCGACGGCCT GTGGACCCGA

780

840

900

908

CCGCGCGC

50

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 494 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Ser Ser Ala Ile Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 1 5 10 15

Ala Ile Arg Leu Gln Ser Ala Gly Ile Ala Thr Thr Ile Val Glu Ala 20 25 30

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Trp Asn Asp Gln Gly His

Val Phe Asp Ala Gly Pro Thr Val Val Thr Asp Pro Asp Ser Leu Arg 50 S5 60

Glu Leu Trp Ala Leu Ser Gly Gln Pro Met Glu Arg Asp Val Thr Leu 65 70 75 80

Leu Pro Val Ser Pro Phe Tyr Arg Leu Thr Trp Ala Asp Gly Arg Ser 85 90 95

Phe Glu Tyr Val Asn Asp Asp Asp Glu Leu Ile Arg Gln Val Ala Ser

Phe Ban Ron Bla Ban Val Ban Cly Tyr Brg Brg Phe Vis Ban Tyr Bla 115 120 125

Glu Glu Val Tyr Arg Glu Gly Tyr Leu Lys Leu Gly Thr Thr Pro Phe 130 135 140 Leu Lys Leu Gly Gln Met Leu Asn Ala Ala Pro Ala Leu Met Arg Leu 145 150 160

Gln Ala Tyr Arg Ser Val His Ser Met Val Ala Arg Phe Ile Gln Asp 165 170 175

Pro His Leu Arg Gln Ala Phe Ser Phe His Thr Leu Leu Val Gly Gly 180 185 190

Asn Pro Phe Ser Thr Ser Ser Ile Tyr Ala Leu Ile His Ala Leu Glu 195 200 205

Arg Arg Gly Gly Val Trp Phe Ala Lys Gly Gly Thr Asn Gln Leu Val 210 215 220 His Wip Mar Wal his Lee Nos Tile her law Tile Tile The Law Law 225 230 235

Asn Ala Arg Val Thr Arg Ile Asp Thr Glu Gly Asp Arg Ala Thr Gly 245 250 255

Val Thr Leu Leu Asp Gly Arg Gln Leu Arg Ala Asp Thr Val Ala Ser 260 265 270

Asn Gly Asp Val Met His Ser Tyr Arg Asp Leu Leu Gly His Thr Arg 275 280 285

Arg Gly Arg Thr Lys Ala Ala Ile Leu Asn Arg Gln Arg Trp Ser Met 290 295 300

10

15

30

35

45

	Se: 30	r Leu	Phe	Val	Leu	His 310	Phe	Gly	Leu	Ser	Lys 315	Arg	Pro	Glu	Asn	Leu 320	
5	Ala	a His	His	Ser	Val 325	Ile	Phe	Gly	Pro	Arg 330	Tyr	Lys	Gly	Leu	Val 335	Asn	
	Gla	ı Ile	Phe	Asn 340	Gly	Pro	Arg	Leu	Pro 345	Asp	Asp	Phe	Ser	Met 350	Tyr	Leu	
10	His	s Ser	Pro 355	Cys	Val	Thr	Asp	Pro 360	Ser	Leu	Ala	Pro	Glu 365	Gly	Met	Ser	
	Thi	His 370		Val	Leu	Ala	Pro 375	Val	Pro	His	Leu	Gly 380	Arg	Ala	Asp	Val	
	Asi 385	Trp	Glu	Ala	Glu	Ala 390	Pro	Gly	Tyr	Ala	Glu 395	Arg	Ile	Phe	Glu	Glu 400	
15	Le	ı Glu	Arg	Arg	Ala 405	Ile	Pro	Asp	Leu	Arg 410	Lys	His	Leu	Thr	Val 415	Ser	
	Arg	; Ile	Phe	Ser 420	Pro	Ala	Asp	Phe	Ser 425	Thr	Glu	Leu	Ser	Ala 430	Hìs	His	
20	Gly	/ Ser	Ala 435	Phe	Ser	Val	Glu	Pro 440	Ile	Leu	Thr	Gln	Ser 445	Ala	Trp	Phe	
	Arg	Pro 450	His	Asn	Arg	Asp	Arg 455	Ala	Ile	Pro	Asn	Phe	Tyr	Ile	Val	Gly	
	Ala 465	Gly	Thr	His	Pro	Gly 470		Gly	Ile	Pro	Gly 475	Val	Val	Gly	Ser	Ala 480	
25		Ala	Thr	Ala	Gln 485		Met	Leu	Ser	Asp 490		Ala	Val	Ala		400	
	(2) INFO	חר אמם.	TOM:	EOB (TD N	. 1º	٠.		450							
		SEO															
30	(1)	(A) LE	NGTH	: 148	32 b	ase p		5								
		(C	ST	RANDI	EDNE:	SS: 4	duoi.	le									
	(ii)	MOL						omic									
35																	
	(xi)	SEQ	UENC	E DES	SCRI	PTIO	1: SI	EQ II	ON C	: 12	:						
	ATGAGTT	CCG C	CATC	GTCA:	r cg	GCGC	AGGT	TTCC	GCGC	GC 1	rtgc	CTT	SC C	ATCC	CCTC	;	60
	CAATCGG	CG G	CATC	GCGA	CAC	CAT	GTC	GAGO	SCCC	GCG A	ACAA	cccc	GG CC	GCC	GCGCC	:	120
40	TATGTCTC	GGA A	CGAT	CAGG	G CC	ACGT	CTTC	GATO	GCAGO	GCC (CGAC	GTC	GT GA	ACCG	ACCCC	:	180
	GAC AGCC	rgc g	AGAG	CTGT	G GGG	сст	CAGC	GGCC	CAACO	GA 1	rgga	CGT	GA CO	STGA	CGCTC	3	240
	CTGCCGG	ст о	GCCC'	TTCT	A CC	GCT	GACA	TGG	GC GG#	ACG (GCCG(CAGC1	rr co	GAAT	ACGTO	•	300
45	AACGACGA	ACG A	CGAG	CTGA'	CCC	GCCA	GTC	GCC	CCT?	CA i	ATCC	GCCC	GA TO	GTCG/	ATGGG	2	360
	TATCGCCC	CT T	CCAC	GATT	A CGG	CGA	GAG	GTC?	PATCO	GCG A	AGGG	STATO	CT G	AAGC:	rggg	3	420
	ACCACGC	CT T	CCTG.	AAGC:	r GGG	GCCA	SATG	CTG	AACGO	CCG (CGCC	GCGC	CT GA	ATGC	CCT	;	480
	CAGGCATA	ACC G	CTCG	GTCC	A CAG	CAT	GTG	GCGG	CGCT1	rca 1	rcca(GGACC	CC GC	CATC	rgcgo	;	540
50	CACCCCCC	nom o	~~~			noom.		0000	2002		2000	rmoc.					

CAGGCCTTCT CGTTCCACAC GCTGCTGGTC GGCGGGAACC CGTTTTCGAC CAGCTCGATC

TATGCGCTGA TCCATGCGCT GGAACGGCGC GGCGGCGTCT GGTTCGCCAA GGGCGGCACC

600

660

	AACCAGCT	G TO	GCGG	GCAT	GGT	CGCC	CTG	TTCC	AGC	TC 1	TTGG	GGCA	C GC	TGC	GCT	;	720
	AATGCCCG	G TO	CACGC	GGAT	CGF	CACC	GAG	GGC	SATC	CG (CAC	GGCC	T C	ACGC1	GCT	;	780
5	GACGGGCG	C AC	TTGC	GCGC	GGA	TACG	GTG	GCC	GCAA	ACG (CGAC	GTGA	T GC	CACAC	CTAT		840
	CGCGACCT	C TO	GGCC	ATAC	ccc	CCGC	GGG	CGC	CCAP	IGG (CGCC	ATC	T GF	ACCC	GCAC	;	900
	CGCTGGTC	A TO	STCGC	TGTT	CGT	GCT	CAT	TTC	GCCI	GT (CAAC	cccc	c co	GAGA	CCTC	;	960
10	GCCCACCA	A GO	GTCA	TCTT	CGG	cccc	CGC	TAC	AGGG	GC '	rGGT	AACC	A G	TCT?	CAAC	:	1020
	GGGCCACG	C TO	GCCGG	ACGA	TTT	CTC	ATG	TATO	CTGCA	TT.	CGCCC	TGCG	T G	CCG/	TCCC	:	1080
	AGCCTGGC	c co	GAGG	GGAT	GTC	CACO	CAT	TAC	TCCT	TG	GCC	GTTC	C GC	ATC	GGGC	:	1140
	KUUUUU	n v	וייאטנ	WUU	AGR	CURU	w	cca	CT	TC (CUGA	CCC	er ci	rcc	GGA.		7200
15	CTGGAGCG	C GC	GCCA	TCCC	CGF	CCT	CGC	AAG	CACCI	rga (CCGT	AGCC	G CA	TCT	CAGO	:	1260
	CCCGCCGA	T TO	CAGCA	CCGA	ACT	GTC	GCC	CATO	ACGG	CA (GCGCC	TTCT	C GC	TCG/	GCCC	;	1320
	ATCCTGAC	C A	ATCCG	CCTG	GTT	CCGC	CCG	CATA	ACCO	GCG A	ACCG	GCGA	T C	CGA	CTTC	:	1380
20	TACATCGT	G GC	GCGG	GCAC	GCA	TCCC	GGT	GCGG	GCAT	rcc (CGGG?	GTC	T TO	GCAC	CGC	:	1440
	AAGGCCAC	G C	GCAGG	TCAT	GC1	GTC	GAC	CTG	CCGT	rcg (CA						1482
	(2) INFO	(TAMS	ION F	OR S	EQ 1	D NO): 1:	3:									
25	(i)	(A) (B) (C)	JENCE LEN TYP STR TOP	GTH: E: a	382 mino DNES	ami aci	no a d ing	acids	3								
	(ii)	MOLE	ECULE	TYP	E: 1	rote	ein										
30																	
	(xi)	SEQU	JENCE	DES	CRI	OIT	: S	EQ II	NO:	13	:						
	Met	Ser	His	Asp	Leu	Leu	Ile	Ala	Gly	Ala	Gly	Leu	Ser	Gly	Ala	Leu	
35	1	*1-	T	310	o tra i		1 an) an	210	3 = 0	T10	13	Mot	
35	116	Ald	Leu	20	vai	ALG	ASD	Mrg	25	FIO	мар	ALG	wrd	30	vai	nec	
	Leu	Asp	Ala	Arg	Ser	Gly	Pro	Ser	Asp	Gln	His	Thr	Trp	Ser	Cys	His	
	Aen	Thr	Asp	I.eu	Ser	Pro	Glu		Leu	Ala	Ara	Len	Ser	Pro	Tle	Arc	
40		50	1100				55					60					
	Arg 65	Gly	Glu	Trp	Thr	Asp 70	Gln	Glu	Val	Ala	Phe 75	Pro	Asp	His	Ser	Arg 80	
	Arg	Leu	Thr	Thr	Gly	Tyr	Gly	Ser	Ile	Glu	Ala	Gly	Ala	Leu	Ile	Gly	
45	-				85					90					95		
	Leu	Leu	Gln	Gly 100	Val	Asp	Leu	Arg	Trp 105	Asn	Thr	His	Val	Ala 110	Thr	Leu	
	Asp	Asp	Thr 115	Gly	Ala	Thr	Leu	Thr 120	Asp	Gly	Ser	Arg	Ile 125	Glu	Ala	Ala	
50	Cys		Ile	Asp	Ala	Arg	Gly	Ala	Val	Glu	Thr		His	Leu	Thr	Val	
		130					135					140					

	149				150					155					160	
5	Gly	Val (Glu Ar	Pro 165	Met	Ile	Met	Asp	Ala 170	Thr	Val	Pro	Gln	Met 175	Asp	
	G1 ²	Tyr	Arg Phe		Tyr	Leu	Leu	Pro 185	Phe	Ser	Pro	Thr	Arg 190	Ile	Leu	
	Ile		Asp Thi	Arg	Tyr	Ser	Asp 200	Gly	Gly	Asp	Leu	Asp 205	Asp	Gly	Ala	
10	Leu	Ala (Gln Ala	Ser	Leu	Asp 215	Tyr	Ala	Ala	Arg	Arg 220	Gly	Trp	Thr	Gly	
	Glr 225	Glu	Met Ar	Arg	Glu 230	Arg	Gly	Ile	Leu	235	Ile	Ala	Leu	Ala	His 240	
15	Asg	Ala :	Ile Gl	Phe 245	Trp	Arg	Asp	His	A1a 250	Gln	Gly	Ala	Val	Pro 255	Val	
	Gly	Leu (Gly Ala 260		Leu	Phe	His	Pro 265	Val	Thr	Gly	Tyr	Ser 270	Leu	Pro	
20	Tyr	Ala	Ala Gli 275	val	Ala	Asp	Ala 280	Ile	Ala	Ala	Arg	Asp 285	Leu	Thr	Thr	
	Ala	Ser 2	Ala Arq	Arg	Ala	Val 295	Arg	GŢĀ	Trp	Ala	11e 300	Asp	Arg	Ala	Asp	
	Arg 305	Asp A	Arg Phe	e Leu	Arg 310	Leu	Leu	Asn	Arg	Met 315	Leu	Phe	Arg	Gly	320	
25			Asp Arq	325					330					335		
	Glr	Pro I	Leu Ile 340	Glu	Arg	Phe	Tyr	Ala 345	Gly	Arg	Leu	Thr	Leu 350	Ala	Asp	
30	Arg		Arg Ile	val	Thr	Gly	Arg 360	Pro	Pro	Ile	Pro	Leu 365	Ser	Gln	Ala	
	Val	Arg (Cys Let	Pro	Glu	Arg 375	Pro	Leu	Leu	Gln	Glu 380	Arg	Ala			
	(2) INFO			-												
35	(1)	(A) (B) (C)	ENCE CH LENGTH TYPE: STRANI TOPOLO	nucl	49 ba eic a SS: 0	se pacid	pair	3								
40	(ii)	MOLE	CULE TY	PE:	DNA	(gen	omic									
	(xi)	SEOU	ENCE DE	SCRT	PTIO	J. SI	70 TI	- אח	- 14							
	ATGAGCCA	_					-				GCTG#	AT CO	scgc1	rtgco	:	60
45	GTTCGCGA	CC GC	AGACCG	A TG	CGCGG	CATC	GTG	TGC1	rcg ;	CGC	GCGG"	ic co	GCCC	CTC	3	120
	GACCAGCA	CA CC1	rggtcc:	c cc.	ACGA	CACG	GAT	TTTC	CGC (CGA	ATGG	T GO	CGCC	CCT	3	180
	TCGCCCAT	TC GT	cgcggc	A AT	GGAC	GAT	CAG	SAGGT	rcg (GTT	rccc	GA CO	CATTO	cccc	2	240
	CGCCTGAC	GA CAG	GCTATO	G CT	CGAT	GAG	GCGG	GCGC	CGC 1	GAT	GGGG	CT GO	TGC	AGGG	r	300
50	GTCGATCT	GC GG1	rggaat <i>i</i>	C GC	ATGT	GCG	ACG	TGG	ACG /	TAC	GGCC	GC G	ACGC1	rgaco	3	360
	GACGGCTC	GC GGE	ATCGAGO	C TG	CCTG	GTG	ATC	ACG	cc c	STGG	rgcco	T C	GAGAC	ccc	3	420

	CACCTGACCG TGGGTTTCCA GAAATTCGTG GGCGTCGAGA TCGAGACCGA CGCCCCCCAT	480
	GGCGTCGAGC GCCCGATGAT CATGGACGCG ACCGTTCCGC AGATGGACGG GTACCGCTTC	540
5	ATCTATCTGC TGCCCTTCAG TCCCACCCGC ATCCTGATCG AGGATACGCG CTACAGCGAC	600
	GGCGGCGATC TGGACGATGG CGCGCTGGCG CAGGCGTCGC TGGACTATGC CGCCAGGCGG	660
	GGCTGGACCG GGCAGGAGAT GCGGCGCGAA AGGGGCATCC TGCCCATCGC GCTGGCCCAT	720
10	GACGCCATAG GCTTCTGGCG CGACCACGCG CAGGGGGCGG TGCCGGTTGG GCTGGGGGCA	780
	GGGCTGTTCC ACCCCGTCAC CGGATATTCG CTGCCCTATG CCGCGCAGGT CGCGGATGCC	840
	ATCGCGGCGC GCGACCTGAC GACCGCGTCC GCCCGTCGCG CGGTGCGCGG CTGGGCCATC	900
	GATCGCGCGG ATCGCGACCG CTTCCTGCGG CTGCTGAACC GGATGCTGTT CCGCGGCTGC	960
15	CCGCCCGACC GTCGCTATCG CCTGCTGCAG CGGTTCTACC GCCTGCCGCA GCCGCTGATC	1020
	GAGCGCTTCT ATGCCGGGCG CCTGACATTG GCCGACCGGC TTCGCATCGT CACCGGACGC	1080
	CCGCCCATTC CGCTGTCGCA GGCCGTGCGC TGCCTGCCCG AACGCCCCCT GCTGCAGGAG	1140
20	AGAGCATGA	1149
	(2) INFORMATION FOR SEQ ID NO: 15:	
25	(i) SEQUENCE CNARACTENISTICS: (ii) LENGTH: 169 amino acids (iii) TYPE: amino acid (iii) STRANDEDHESS: single (iii) TOPOLOGY: linear (iii) MOLECULE TYPE: protein	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	Met Ser Thr Trp Ala Ala Ile Leu Thr Val Ile Leu Thr Val Ala Ala 1 10	
35	Met Glu Leu Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro 20 25 30	
35	Leu Gly Trp Gly Trp His Lys Ser His His Asp Glu Asp His Asp His $35 \hspace{1cm} 40 \hspace{1cm} 45$	
	Ala Leu Glu Lys Asn Asp Leu Tyr Gly Val Ile Phe Ala Val Ile Ser 50 60	
40	The Val Leu Phe Ala The Gly Ala Met Gly Ser Asp Leu Ala Trp Trp 65 70 70 75 80	
	Leu Ala Val Gly Val Thr Cys Tyr Gly Leu Ile Tyr Tyr Phe Leu His 85 90 95	
45	Asp Gly Leu Val His Gly Arg Trp Pro Phe Arg Tyr Val Pro Lys Arg 100 105	
	Gly Tyr Leu Arg Arg Val Tyr Gln Ala His Arg Met His His Ala Val 115 120	
50	His Gly Arg Glu Asn Cys Val Ser Phe Gly Phe Ile Trp Ala Pro Ser 130 140	
	Val Asp Ser Leu Lys Ala Glu Leu Lys Arg Ser Gly Ala Leu Leu Lys 145 150 150 155	

Asp Arg Glu Gly Ala Asp Arg Asn Thr 165

5	(2) INFORMATION FOR SEQ ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 506 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY! linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
15	ATGAGCACTT GGGCCGCAAT CCTGACCGTC ATCCTGACCG TCGCCGCGAT GGAGCTGACG	60
	GCCTACTCCG TCCATCGGTG GATCATGCAT GGCCCCCTGG GCTGGGGCTG GCATAAATCG	120
	CACCACGACG AGGATCACGA CCACGCGCTC GAGAAGAACG ACCTCTATGG CGTCATCTTC	180
	GCGGTAATCT CGATCGTGCT GTTCGCGATC GGCGCGATGG GGTCGGATCT GGCCTGGTGG	240
20	CTGGCGGTGG GGGTCACCTG CTACGGGCTG ATCTACTATT TCCTGCATGA CGGCTTGGTG	300
	CATGGGCGCT GGCCGTTCCG CTATGTCCCC AAGCGCGGCT ATCTTCGTCG CGTCTACCAG	360
	GCACACAGGA TGCATCACGC GGTCCATGGC CGCGAGAACT GCGTCAGCTT CGGTTTCATC	420
25	TGGGCGCCCT CGGTCGACAG CCTCAAGGCA GAGCTGAAAC GCTCGGGCGC GCTGCTGAAG	480
	GACCGCGAAG GGGCGGATCG CAATAC	506
	(2) INFORMATION FOR SEQ ID NO: 17:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 726 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY! linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	ATGTCCGGTC GTAAACCGGG TACCACCGGT GACACCATCG TTAACCTGGG TCTGACCGCT	60
40	GCTATCCTGC TGTGCTGGCT GGTTCTGCAC GCTTTCACCC TGTGGCTGCT GGACGCTGCT	120
	GCTCACCCGC TGCTGGCTGT TCTGTGCCTG GCTGGTCTGA CCTGGCTGTC CGTTGGTCTG	180
	TTCATCATCG CTCACGACGC TATGCACGGT TCCGTTGTTC CGGGTCGTCC GCGGGCTAAC	240
	GCTGCTATCG GTCAGCTGGC TCTGTGGCTG TACGCTGGTT TCTCCTGGCC GAAACTGATC	300
45	GCTAAACACA TGACCCACCA CCGTCACGCT GGTACCGACA ACGACCCGGA CTTCGGTCAC	360
	GGTGGTCCGG TTCGTTGGTA CGGTTCCTTC GTTTCCACCT ACTTCGGTTG GCGTGAAGGT	420
	CTGCTGCTGC CGGTTATCGT TACCACCTAC GCTCTGATCC TGGGTGACCG TTGGATGTAC	480
50	GTTATCTTCT GGCCGGTTCC GGCTGTTCTG GCTTCCATCC AGATCTTCGT TTTCGGTACC	540
	TGGCTGCCGC ACCGTCCGGG TCACGACGAC TTCCCGGACC GTCACAACGC TCGTTCCACC	600
	The state of the s	

	CACCACCTGC	ACCCGCACGT	TCCGTGGTGG	CGTCTGCCGC	GTACCCGTAA	AACCGGTGGT	720
5	CGTGCT						726

Claims

10

15

26

30

40

- A process for the preparation of canthaxanthin by culturing under suitable culture conditions a cell which is transformed by a DNA sequence comprising the following DNA sequences:
 - a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous:
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous:
 - c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous:
 - d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous;
 - e) a DNA sequence which encodes the β-carotene β4-oxygenase of the microorganism E-396 (FERM BP-4283) [crtW_{E396}] or a DNA sequence which is substantially homologous;
 - or a cell which is transformed by a vector comprising DNA sequences specified above under a) to e) and by isolating canthaxanthin from such cells or the culture medium by methods known in the art.
- A process for the preparation of a mixture of adonixanthin and astaxanthin or adonixanthin or astaxanthin alone by
 a process as claimed in claim 1 characterized therein that in addition to the DNA sequences specified in claim 1
 under a to e) the following additional DNA sequence is present:
 - f) a DNA sequence which encodes the β -carotene hydroxylase of the microorganism E-396 (FERM BP-4283) [crtZ_{E396}] or a DNA sequence which is substantially homologous;
 - and the DNA sequence specified under e) of claim 1 is as specified in claim 1 or the following sequence:
 - g) a DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crtW) or a DNA sequence which is substantially homologous;
 - and isolating the desired mixture of adonixanthin and astaxanthin or adonixanthin or a astaxanthin alone from such cells of the culture medium and separating the desired mixture or carotenoids alone from other carotenoids which might be present by methods known in the art.
- 50 3. A process for the preparation of zeaxanthin by a process as claimed in claim 1 characterized therein that the DNA sequence as specified under e) is replaced by the DNA sequence as specified under f) in claim 2 and by isolating zeaxanthin from the culture medium and separating it from other carotenoids which might be present by methods known in the art.
- 4. A process for the production of adonixanthin by culturing under suitable culture conditions a cell which is transformed by a DNA sequence comprising the following heterologous DNA sequences:
 - a) a DNA sequence which encodes the GGPP synthase of the microorganism E-396 (FERM BP-4283)

[crtEspect or a DNA sequence which is substantially homologous:

- b) a DNA sequence which encodes the prephytoene synthase of the microorganism E-396 (FERM BP-4283) [crtBeage] or a DNA sequence which is substantially homologous:
- c) a DNA sequence which encodes the phytoene desaturase of the microorganism E-396 (FERM BP-4283) [crt[E396] or a DNA sequence which is substantially homologous;
- d) a DNA sequence which encodes the lycopene cyclase of the microorganism E-396 (FERM BP-4283) [crtY_{E30a}] or a DNA sequence which is substantially homologous:
- e) a DNA sequence which encodes the β -carotene hydroxylase of the microorganism E396 (FERM BP-4283) [crtZ_{E396}] or a DNA sequence which is substantially homologous; and
- f) a DNA sequence which encodes the β-carotene β4-oxygenase of the microorganism E396 (FERM BP-4283) [crtW_{E396}] or a DNA sequence which is substantially homologous;
- and isolating adonixanthin from the cell or the culture medium and separating it from other carotenoids which might be present by methods known in the art.
- A process for the preparation of a food or feed composition characterized therein that after a process as claimed in any one of claims 1 to 4 has been effected the carotenoid or carotenoid mixture is added to food or feed.
- A process as claimed in any one of claims 1 to 5 characterized therein that the transformed host cell is a prokaryotic host cell, like E. coli. Bacillus or Flavobacter.
- A process as claimed in any one of claims 1 to 5 characterized therein that the transformed host cell is a eukaryotice host cell, like yeast or a fungal cell.

10

15

25

30

35

40

45

50

Fig. 1

Fig. 5

350	9 •	\$	900	550	00
AMPRIATORIZA	TOTOCOCRAHOCOTTOTTCCANTOCOCCAGOOCTACATCCCCA	ACATCANGGOGGGAAGACACGAAAAACGACGACGTTTTGTCGTTTTGTCGTTTTGTCGTTTTGTCGTTGTT	CHCOGOCGCGCATCGGGTTGCGGCCGCGCGCGCGGGTGCTGCCCCG	AMOCOGOCOCIANOTTCOTCOTCOTCOTACTGOCOAAACCAAACCOCOCOCOCOCOCOCOCOCOCOCOCOC	COCCAMOCIOCOTENCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
301	351	ő ,	451	501	155
Fig. 7/1	100	150	200	250	300
Elg cancedectedecentocolyologycoccentegedatococcutocol centegecentocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoccutocologycoc	ACCATCATCCCCATCACCCCACCCCCCCCCCCCCCCCC	COCCCCTCCACACCCCATCACCCCATACCCCCCCCCCCC	AND CONTROL CO	ACCOUNTACCATCACACCACTACCOCCCCCACCOCC	COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
GGATCGG 1 CCTAGGG	AGCATCA 51 TOGTAGT H H	000000 101 000000	151 ACCCCG	TOGGGGG	251

Fig. 7/2

601	COLOROCATOSCOTOCACOSCOCATOSCOLOSCOCOCACOCACOCACOCACOCACOCACOCACOCACOCA	650 901	COTOCOGOACTACCCCCCCCCCCCCCCCCCCCCCCCCCCC	950
651	TTOTALACTIC DC GOGGLY TOCOCCOCCOCCALCOCCACCACCACCACCACCACCACCACCACCACCACCACC	700	TOCOGGGGATACCANGOCOCCOGGANTTTCCCGCACCCGATCGTCGAC	1000
701	OGGOGGATGACACTTTGCCCTGCGGTCACACTCACTCACTCACT	750 1001	cocaroccolocarorrelocaros corococococococoroccorocco	1050
751	COGCACTTCACATCOCCCCCCTTCACACCCACCCCCCCCCC	100 1051	CTCCCCCTCCCACACACCCTCCCACACACACACACACAC	1100
108	NECESTICOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	1101	TOGGLANCOCATGARGAGAGTCHTCCCCCTCGACCCCATTCACCCCCTCACACACCTCCCCCTTCACACACCTCCCCCTTCACACACCCCCC	1150
6 t t	COCCACACACACACACACACACACACACACACACACACA	0 1151	COCHOCOCCHACTCAACAACCTTTCATCACCACCCTCATCACC COCHOCOCCCTTCACTCACTCACTCACTCACTCACTCACTCACT	1200

		FIg. 7/3		
1201	COCCCCATCCCCCATCCCCCATTCCACCCCATCCTCCCCCAT	1250 1501	GTCGTCGCCGGCGGGATGGAGGATGTCGAACGCCCCCTACCTGCTCCCCCCCC	1550
	G		V V A G G M E S M S M A P Y L L P	
1251	COATOCCCCACCTTOOCCCACCCCATCCCCCCCCCCTAAACCCC	1300 1551	CANAGGOGGTCGGGGATGCGCATGGGCATGACCGTGTGCTGGATCACA	1600
	DAPTLGADAIRAALHGL		KARSGKRKGKDKVLDHK	
1301	TGTCGCCCACATGGTGA.CAGGTGCTGATGGGCTGGTCGTGGCCGC	1350 1601	TOTTCCTCANCACATTOCACACACATATACACAACACCCCTCATGCCC	1650
	SPDNVDEVLNGCVLRA		FLDGLEDAYDKGRLMG	
1321	GOCCA GOCCA GOCCA COTCA ACCOCATO GOCCO COCCA CT GOCC	1400 1651	ACCTTCGCCGAGANTGCGCGGCANTCAGGTTTCACCGCGAGGCGCA	1700
	C 0 C 0 A P A R 0 A A L C A C L P		TENEDCACDEGFTREAG	
1401	CCTCTCARCOCCACCACCACCACCACCACCACACACCACCATCACCATCACCATCACTACT	1450 1701	GANCANCTA POSOCTION CONDOCTION CONDOCCOCA AGAN COCCA POSOCIA CONTRACTOR CONTR	1750
1451	AGGCGCGATGCTGGGCCATGACTGATGCGCGGGAATGGCGGGAATTGCCGGGAATGGCCGGAATGCGCGAATGCGGGAATGGACTAAGCGGGGACTAGCGGCGTAGCGGCGTAG	1500 1751	GOOGT CCCT TO CO COCCA ANT CO COCC CCT A CCCT CA CCT CA CCT CA CCT CA CCCT CA CCT	1800
	AAHLGHDLIAAGSAGI		G A F A A E I A P V T V T A R R	

FIR. 7/4

1801	GTCATACALCACTCATACCACAACATCCCCGGGAAAACCCCCCCCCAACACCCCCCCC	1850 2101	TACCHOCTOTYCOMOGRACOMOGRACYCOCOCTOCTOCCATCANTOCC ATACCTCALAACTCCATCTCCTCCTTAACCCACCACCACCACCACCACC	2150
1851	CHARACCCCATCTGARGCCCCTTCCTGACGGTGCCGCGTCACGG CTTCTACGGGGTACATCCGGCGGAAGGCACTGCCACTGCCACTGCCAGTGCAGTGCCAGTGC	1900 2151	GATCH CORRECTED COCCACCA RECORDED A THE THE GATE OF A THE OF A THE COLUMN AT	2200
1901	COCCUMACIOCTOCATCACCACCACCACCACCACTCATCATCACCACCACTCATCA	1950 2201	CALGROCATEGGARCOARCOACCCCCCCCCARTACTCCCCCCCCCCCCCCCC	2250
1981	COCCANTOCANGECCANALATOCACCACANCOCCANTOCACCACANCACCACACACACACACACACACACACACACA	2000 2251	ACCTGCTGAACCGAACGCGCGCGCGCGCGCGCCCCGCGCCCCCCCC	2300
2001	CONTRATOCALCONICOCONOCCUTOTOCOCACOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	. 2050 2301	COTTOCATOGGGGGGGGGGGGGGGCATGGGGCTGGAACGGCTGAACGGCTGAACGGCTGAACGGGGGGGG	2350
2051	TCOCCCCATCCCATCCTCACCACCACCACCACCACT ACCCCCCTTCCACACTCCACCACTCCCCTTCCACCACTCCCCTTCCACCA	2100 2351	GCTIAIT CATTGOCOCAIA COCOCATTT COTCA CA TGCCCCAIA CCC CCATTA CTAAA COCOCCTTA GCCCCAIAAA CCA CCTCCTA CCCCCTTA CCCCTTA CCCCCTTA CCCCTTA CCCCCTTA CCCCCTTA CCCCCTTA CCCCCTTA CCCCCTTA CCCCCTTA CCCCCTTA CCCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCCCTTA CCCTTA CCCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCCTTA CCCTTA CCCCTTA CCCCTTA CCCTTA CCCCTTA CCCTTA CCTTA CCCTTA CCTTA CCTTA CCCTTA CCTTA CCCTTA CCCTTA CCCTTA CCCTTA CCCTTA CCCTTA CCCTTA CCCTTA CCTTA CCTT	2400

		Fig. 7/5		
2401	CALACGOCALCCCTCTTGTGTTGCGTCGACCTGTCTTGGGGCCATGCCCTTGCCCGTGCCGCCACCCCGACCACCACCGACACACAC	2450 2701	GTCTGCGATGCGATGCTCCATGCCGCCTGGGGGTCGAATGGTCCATGCGTCATGCGTCATGCATG	2750
			Усрамуралсауви уна	
2451	coracocarmocasacacaracacmocarcocarcocaraca quictocarmocascaracacaracacaracaracaraca	2500 2751	COCATOCCTGATCTTCGACGACGATCGCATGGACGATCCCAGGACCCCCGCCCCCCCC	2800
			A S L I F D D M P C M D D A R T R	
2501	CTALCACIA CANACECI CCA TRACCOCCIA CCACANTTCCCCCTACAC	2550 2801	areacarciaeceacaceartoraecearaecaaaaaaaaacacacacacacacacacacac	2850
	CITE> M T P K Q Q P P L R		ясреяти у анскоя в у	
2551	CINANCALOTICARIO COCO CONTRA COCO COLO CONTRA CONTRA CONTRA CONTRA COCO CONTRA CONTRA COCO CONTRA CONTRA COCO CONTRA CONTRA COCO CONTRA CONTR	2600 2851	CTTGCGGGGATGGCCTGATCACCGAAGCCATGCGGAATTTTGGGCGAAGCGGAGCGGAAGCGGAAGCCGGAACGGGAACTAGTGCTCGGGAACGTAAAACCGGTCGG	2900
	річкі в даря с ч ч		LAGIALITEANRILGEA	
2601	creacoccerteacocacchratocanaccaccratocacach aucceacataccecccacancrecthacacocachacacocat	2650 2901	GOGCGGGGGAACCAGGGAACCAGGAACCAGCAACCAACCA	2950
	8 A P L G R A M S D A A L S P G M		R G A T P D Q R A R L V A S K S R	
2651	AACGOTITICOCOCCOGCATANTGATACATACCAAACCAAAACTTCCAAAAACTTCCAAAAACAAC	2700 2951	acacanaca cocaracacanacacaca acacana reference cacacanacacacacacacacacacacacacacacacac	3000
	REBAULMINARBSGG		ANGPVGICAGGBLDLH	

BNSDOCID <EP__0872554A2_(_>

EIG GCCCCLAGACCCCGCCGCGCGCACCCGAACCCGAACCCGGACCCCCGCGCCGC	i⊒ ig	Fig. 7/6	ACCOCCCCAACTCCCCCCCCCCCCCCCCCCCCCCCCCCC	3350
3051	CONCENTION CONCENTRATION CONTENTS OF THE STATE OF THE STA	3100 3351	CONTENTACE CONTENTS C	3400
3101	ACALOGOCOAROCOACOACOACOACOACOACOACOACOACOACOACOACOA	3150 3401	COCCAN ACCOCCACCACACACACACACACACACACACACACACAC	3450
3151	GPCTTCOARCCTATAGCTCATCACAACTCAACACCACAAACCAAAACTCAAAACTCAAAACTCAAAACTCAAAACTCAAAACTCAAAACTCAAAAAA	3200 3451	COORCIA CONTROL CONTRO	3500
3201	COCCOCOACOATACCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO	3250 3501	Characotocaracteracteracteracteracteracteracterac	3550
3251	CONTRACTOR	3300 3551	COCCUTOCCARTOCCCARTOCCCARTOCCCARTOCCACCCCCCCCCC	3600

-

r v

E E

acana accoccanen rececementes and a second consecutation and a second conse CGCTTCCCGCCGCTGTAGCCCGGCAGGAGCACGTCGCCCGGTCGCACAG

1051

3800

1050

Δ

u

H

1 1

'A 'X

a >

4

_

œ

ഥ

6

>

R 1

a

7 0

YPEAA

,

~

TOGGCCAAAGGTCCGGGAAATCATGCCGCCGGGCGACCTGGCGCAGCGCC

GOGTOCTGGGGGCGCTGCACCATCCTTATAAGGTCGTGCAGTAGGTCCGA COCACGACCOCCGCGACGTGGAATATTCCAGCACGTCATCCAGGCT GOGGIATTCGCGATCGGGACATCCATCGCGAAACCCTCGATCAGGTCCA 4 V V G A V R Y S Y E L V D 3901 3650 CCCTACCTGGTGCGCGTCGCGCCGCCGTTACGCCTTCGGGGACGCCGCG OCCAT CONCONCIO CON CONTROCO C CONDOCATANTADOGCTOGGCGGCGCCAAGCAGCGGATGATGACGGAAT æ a o 4 a H n L ر به د 4 8 1 3601

AGCCGGTTTCCAGGCCCTTTAGTACGGCCCCCCCTGGACCGCGTCGCGG æ a > 4 æ × ۵ <u>_</u> a 0 u . 4 * 100 3750 * 4 G E V T A a > A & O 4 ... 3701

TOGGTCAGCCGTCCTATCGTCGCGGGCTACCGCCGTAGCAGCTAGTG

3751

GTCGCGAGCGATGTTCGTCAGCTGGAACGCAAAGGCCCAGATCGCAGGCGC ۵ ٥ < C I P œ ပ DAPLY *

CAGGGCTGGCTACAAGCAGTCGACCTTGCGTTCCGGGGTCTAGGGTCCGGG ۵ ч 0 0 F A L 1 z н 4 æ ۵

3601

1151 3900 ANT CEAGGA CCGCAT CCT CCT CCACCCCAT CACCGCCCAT CATCACG CTAGGTCGTGGCGTAGCAGGACCTGCGGGTAGTGGCCGCGGTAGTGC 0 V G M V R A M M ۵ _

Fig. 7/7

3950

000

.

CGCCATAAGGGCTAAGGCGTGTAGGTAGCGCTTTGGGAGCTAGTCCAGGT

3951

3700

GCTCCGTATTATCCCGAGCCGGCGCAGTTCGTCGCCTAGTACTGCCTTA

3651

AGA GCGC GTCCGA A GCCA CCGCA CCCT CAA CCGTCGCCCCCCCCTCGGCC

1150 COGOGOGOCOGOGOGOGOGOGOGOGOGOGOGOGOGOGOCOCCC GOCGCOCAGCCCCCA GCCGCGCCTGTGGGTCGCCGCCCCCCCTCGGGG CAGAACCCATCACCTGCCCGTCGATCACGTCATCCGCATGCCTGCACCAG 4 o ٠ ۵ a, r n

o

RLA

101

3850

GTCTTGGGTAGTGGACGGCAGCTAGTGCAGTAGGCGTACGGACGTGGTC æ × 4 ۵ ۵ ۸ I Q o o

1200

3851

N S C M

۲ > . ۵ æ

œ
\
. ٦
7
-
n.
ı
77

4201	COTRACOCRACICATACTOCOCOARCOCOCCOCOTRACTICATACC CSTATTOCOTACTOCOTRACTOCOCCCCCTACTCAACCC A Y L M V T D R R I G P B M L R A	4250 4501	COTATOGOCCACACTECCTCAAATCGOCGGGCTCAAATCGCGCGCTCAACACCGCCTTTAAGCGCCCCGCAACTCTACACC	4 550
4251	COCCTOCCCCAAACTTTCCCAAACCCCCCCCCCCATCCCCAAACTCCCCCC	4300 4551	CTALCONTOLOGIA OF CONTOCOCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	009
4301	CONTRABATION TO CONTRACT COMPANY TO THE	4350 4601	CTCCAAAATCCCCTCCCCTTCCCATCCCAACCTTCCCAACCTTCCCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCTCAACCTTACCAACCTTACACCAACCTTACACAACAACCAACAACCAACAACCAACCAACAACCAA	4650
4351	TOCOCTROCOACCOACCOCOATCOCOCACCOCOATCOCOCACCOCOATCOCOCACCOCOCACCOCCACCA	4400 4651	COGCOCCCCACATCCCCALACCACCALACCACCATATCCCTCCACATCCCCCCCC	4700
. 5	CONSCIONATION AND THE BURNESS OF THE BURN BY BURN BURN BURN BURN BURN BURN BURN BURN	4450 4701	COCTCOGGGGCCAOCTGGGTCGGTCGGTCGGTCGGTTGTTGTTGTTGTTGTTGT	4750
1653	COCTANCE ACCOUNT TO COT CA COAT COACT COACT COACT COACT COACT CA COACT C	4500 4751	COMMANTOSTICCECA OCCOTOCOCTICAMA INTEGRACIA CONTINUA CONT	. 00 8 ♦

	5150	5200	5250	2300	5350	9
	GATCHARACAGACATCOCOCCACACTCATCATCOCCCCTTC CAACTTOTCCCCCTCATACACACACACACACACACACACA	OCCHACALALOGOGOGOGOGOGOTOCANOGOCATACAN COCTEGETOCOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGO	COMPACTORALM CONTINUES CONCORCIACIMOS CONTINUES CONCORCIACION CONTINUES CONT	AGCCTGCCCAGARGCGCCTCCTGGATGAACCCCCCCACATGCTGCTCCTCCCCCACATGCTCCTCCCCCCCC	ACCARCOCATACCTCACACCACAACAACCACCACACCACCACCACCA	CTOCCCTOCATAGEOSTICATOCATCATACTACATACCCTCCC GACCOCATCATACTCCCCCCCCCCCCCCCCCCCCCCCCCC
7	5101	5151	5201	5251	5301	5351
Fig. 7/9	4850	4900	4 850	2000	5050	5100
	CCTTOTACCCCGCCGAAGTCACCCTGTCGCGCCACGCTTCTCGCGGGGGGGG	COZTUCALCUGOCCAAANTCALCAGGAAAQCGACATCGACCAGGCGTG CCAACCTGCCGCTTGCCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGCTGTACTCGTACTCGTACTCGTACTCGTACTCGTACT	COGGTTCHAMATCCCGGCCTTGGTTGGCCGCGCGGGGTTTGGCGCGCGCG	GOTOGOAN MACHOTICACAN CACACACACACACACACACACACACACACACACA	CCCANCTIC COCCCCCCCACALCCCCCCCCCCCCCCCCCCCCCCCCC	OCTOTICAL PERCENCIA COLOGOGO ANTICA COLOGOGO COLOGOGO ANTICA CALACTRACTO COLOGOGO CONTRACTOR COLOGOGO CONTRACTOR COLOGOGO COLOGO COLO
	4801	4851	1087	4951	\$001	5051

ie. 7/10

2401	CHATCHOCACCACCAAAACCACCAAAACCAACCACCAAAACCAACCACCACCAA	5450 5701	GORGECTECA COARTGECTAGT COCCAATTGCCGCCCAATTGCA GOCCAATTGCCA CCCCAACTGCCTACCTAGCCGCCTAACTCCGCCTACCTA CCCCAACTAACTCCACCTACCTACCTAACTCACCTACCT	5750
5451	ecocattaiscacacacteccaaractectectostostostas cocomactectoscacacosotaiscas	5500 5751	ACCOLAGCCCCCALALCTCCCCALTGACATCCCCATCATCCT	5800
	> * * * * * * * * * * * * * * * * * * *		> X 0 0 4 1 > 1 0 4 0 4 0 1 0 1 4 1	N < crtI
5501	GTATTCANGCTGCGGCCGTCGCCCATGTCTGCGGTAGAGGGCGAGA CATAACTTCGACGCGGCAGCGGGTACACTCGGCCATCTTCCCGCTCT	5550 5801	CTCTCTCCACACACACACACTCCACACACACACACACAC	5850
	00 04 04 04 04 04 04 04 04 04 04 04 04 0		REGLLPREFLCRVAGSL	
5551	codochoracoma contaconte em contracomo contracono con contracono contracon contracon recono contracon cont	5600 5851	COCAATGGGGGGGGGGGGGGGGGAAGCGAAGCGGGGGGGGGAATGGGA COCTTACCGGCGGGGGGGGGACTGCTAGGGTTCGGGCGGTTACAGT	2900
	V P L L T V D R R M P Q G S L A M		PIPPRGTVIRLRDALT	
5601	AGCTCTCGALGGCTCGGGGTCGGTCACGACCTCGGGCTGGATCGAA fromangortccatchaccobacchatchachaccocaacatcatactr	5650 5901	GOCCOCOGOLINGA AGOCT COAPT COCCOCOCOCO GCCCOTINOA C	5950
	LERIS DP DTV VTP GADF			
\$651	SCCTOATCGTTCCACACATAGCCCCCCCCCCCCCCCCCCCC	5700 5951	COCTOCACCACCATACCACCATCACCACCACCACCACACACA	0009
	* * * * * * * * * * * * * * * * * * * *			

_	
\subset	
r	
_	
ä	
Ή.	

6001	COGGTTCACCACACACACACACACCACACCCAATCCCAATCCCCCC	6050 6301	CLACCACCCCCCACCCCACCCCACCCCCACACACCCCCCC	6350
	RNLLPLFRDRDARDIA			
1509	Accordance contrates and accordance	6100 6351	Acceptation can ear an acceptage act can acceptation at the transfer and transfer a	9
	M G R V A R R A S A T T L D R A A			
6101	ATGCATCCCCCACCTCCCCCCATAGCCCAATATCCCCTCACCCCTACCCCTACCCCTCACCCCCC	6150 6401	ANGANGCOGFICCGFCCATTGCGGAACGFTCGGGTCGCGTCATGATGATCGG TACTFCGCCATGGGCGTGGTGGGCGTGCCATGCGGTGGTACTACTACCG	6450
	1 X D X C D X X D L G X C L			
6151	GTGGAACAGCCTGCCCCCAACCCAACGCACCGGCCCTGCGCCTGCT	6200 6451	GOCCTOALGCCATGGGGGGTCGGTCGATGTCGACGCCALGAATT CGCGAGGTGGGGATCGGGGGGGGGAGGGTAA	9059
	н г гологоурун		6 > 0 > M H M H G M G M M M M M M M M M M M M M	
6201	COCOCCACALACOCTATOGOCOSACOCOACOCOATOCOCOCOCOCOCOCOCOCOCOCOCOCOC	6250 6501	TCTGGALACCCACGGGGGGGGGGGGGGGGGGGGGGGGGGG	6550
	рвик старнагатргі с		N	
6251	CTTTCGCCCCGCATCTCCTGCCCGTCCACCCCCCCCTGCCGGCATAACTCCTGCCACCCTATAACACGCCCCCTACTCAACACGCCCCCACACCCCCTATAACACGCCCCCACACCCCCTATAACACGCCCCTATAACACGCCCCCAACACACAC	6300 6551	ATCHCCHACCHACCTCARTCCCCAGCCTCCCTCACCTCCCCCCCCCCCCTCCTCACCTCCCCCCC	0099

Fig. 7/12

BNSDOCID: <EP__0872554A2 | >

6601	ATTGTCCLGCATCGCGLGATACCTATTCCLCCGCGAAACGAACGCGTCGA	6650 6901	Accordance concentrate de la contrate de la contrat	0569
6651	D D L T A V H T N N R L D V G Q GOLOCOGANCHGCOCOCCOCCACACACACACACACACACACACACACACAC	6700 6951	0 8 1 0 0 8 8 M	1000
	LIGILAGARISGYGTTL		раскиркі івсяккі в	
6701	cacacathrateacathracatactectarcatecrtracacacacacacacactracacacacacacactracactracactacactracactracacacac	6750 7001	CCTTGAGGCTOTCGACGGGGGGCCCCAGATGAAACGAAGGTGACGAG 	7050
	RESHDPFAVEQUENTEGR		A K L S D V S P A K L F G F S V C	
6751	ACCIANTOCACIAC COCCACA TOCACA TOCACA AN LA TOCATA TOCATA TOCATA COCCACA CACA TOCATA COCCACA CACA	6800 7051	TYPTCGCGCGCAATGGACGCGCTGATGCATCCTOTTGCCTGCTTGCTGCGCGCGCGCGCGCAATGGACGCGCGCAACGGAACCATCTGCGCCAACGGAACCATCTGCGCCAACGGAACCATCTGCGCCAACGGAACCATCTGCGCCAACGGAACCAACGGAACCAACGGAACCAACGGAACCAACGGAACCAACGGAACCAACGGAACCAACGGAACCAA	7100
			иквенулния вилохув	
1089	condicia culoristricorisci acadececca acceperica acare	1101	ACGANGATA GCCGCGCTTGGCGCATA TA CCCGANGGCCATGCA TGCTTCTA TGGCCGCAACGCCTGATGCCTTGCCGGTGGCGGGGTAGGT	7150
	H C S H T H O D S P C S R N D L M		я 1 х с я х в у х я в в м я с м	
6851	ACANTEGGGGANCGGANGGGGANGGGGANGGGGANGGGGANGGGGANGGGGANGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGANGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGANGGANGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGGGANGAN	6900 7151	COLACCOTATORAGAMANACAGATACCOCATACOCATACCOCACACACACACACACACACAC	7200

accacar coorcra	NONCOLOCOLOGORANOCALCOCOCOLANGO 1739 TEGESTICATES	1501	NTANCOLOGOCATOGAGONANGGOS NOGCOTALOLICOS TACTOGAGOGOCALOGOTGATTOCOGNAGOGOACTGATAGOGOA	7550
CORTOGORIA CONTOCOCORROCOCORROCOCOCOCOCOCOCOCOCOCOCOCO	THE STATE OF THE S	7553	TO GOOGTO IN LOCACE HAT LANGUAGE CONTRACTOR	7600
CGTGGTGCGATTA CGCACCACGCTAAT D H H S K	COCCATCATCATCATCATCATCATATTATCATCACCCAACCC 1350 COCCATCATCATCATCATCATCATCATCATCATCATCATCAT	0 7601	oorancecerrecerecereaaanininarrecerreceaacane eccanoroceaacecerranaarrecaaacecerene	7650
CATGACGAGTAC	TOCCCGATACTACTACTACTACTACTACTACTACTACTACTACTAC	0 7651	TOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	7700
STEAGATTGGGGGCCAAAGTGCTC SAGTCCTAACGCGGGGTTCACGAG	COCOCCOLOCATOLOCATOCOCCOLOMACTOCATOC COCOCCOCCOCTOCATOCOCCOLOCATOCOCCO A A V T L I V T L I A A W T S M A GFEZ	0 7701	GCRICOLOGICOCOR LOCOCOCO DE COMBRETO DE COMPANDO DE CO	7750
CGGCCCTTGCTTGATATGACAGGAAACAGGCTACGCTGCCGCGGCGCGGTCCCGGCGCGCGC	SGCCCCTTGTTGATAGCAGGAACAGGTACGCTGCCCCGCGCCCGTGC TS00 CCCGGGAAACGAACTATATAGCAGCTTCCCAATCCCAACGGCGCCGCGCG	0 7751	CCGCCAAGGGAAAAGCTAGTGCCAGGCCAGGACCGCATTGTGCCCCAAG GCCGCTACGCTTGCAACAGCGCGCGCCGCGC	7800

Fig. 7/14

1601	CCCCCAACCCCAACCCCCCACCCCAACCCAACCAACCCAACCCC	7850 8101	COCCOCALONOCOCALONOCOCALONOCOCALOCOTALO COCOCOTALO COCOCOMANOCOCALONOC	8150
	N		H H I I I I I I I I I I I I I I I I I I	
1851	TOGGCOGCGA TTTCGA GALCAA CAGOGGTCGGGGTCGGGATCGCCGA AGGCGGGGCTAAACTCTGCTGTTGTCGGCCAAGCCCTAGGGGCT	7900 8151	COCACOGCTÁTCOACOA CAÁAACTOCOGGGGGGGATTCCACCGCGGGGGGGGGATTCCACCGGGGGGGG	8200
			A G T D V V I S G P A C R V A A	
1901	CCGCCGCCCCGGAATGGGCCTCTCGTCCAACGGGGCGCCCATTGCGGTGC	7950 8201	GOGGGGGGGGATCAGAACGCAAAAAAGGCTGGGGGCTTAATTGGGCGAACGGGGGGGG	8250
	X		A A A P M I V A I I A A A K S P M	
7951	ATGTGGGGGATGAGGGGGGTTTCATCGGAAAAGCCATGTCCAGGGGATTTCAGGGGTAGGGGGCTA	8000 8251	ATGGGGTAGATAGATCTGCTCGGCGCGAGATCCTGCTGACCCTGCGGTTTTACCGTTCTATCCTGACGCGCGCG	8300
	IHRIVGTEDAFVEDIPI		M P L I P S S P A S I R S V R R M	
8001	CASTOSTOSTOCOCATOCADA DO CACOGOCTOCOCOCATOCTA CATOCTA	8050 8301	CCTCSTTCCSGTCATGCCAGGGCCATGCCGCGATCTGCGGGGACCGGGACCGGGACCAGGGCGATCGCGGGATCGGGGGTAGGGGGTAGGGGGTAAACGCGCAAA	. 8350
	H > M 00 A > 00 A X X A A A		R T G T M < orf-16	
8051	ACACANTOCAGTOCCCCAGACACTCTTCCCAAACATCAGCCCTAC TOTCTAAGCCACCCCCTCCTCAACACCCTCTAACCCACCCTCC	8100 8351	ATCHOOCOGOGOGOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	9 400

FIR. 7/15

8401	accaccacanalaccearractanceacractanthrearractance erectocaccerractaccectractaccetoaracaccantaccaactactar	9450
8451	CGTCCTCGCGGTGCCGAAGATGTTGCGGAAAGGGGGGAAAGGCCTTGCGGGGAGGGGGGGG	8500
8501	CTTGTCBACCACTTGACGCGGGCGGCGCGCGCGCGCGCGCGCGCGCG	8550
8551	CTCGATCACCTCOGCATCCACATCGGGGATAGGGGGGGTGACATCTTTTTTTT	8600
8601	Chancestreatestestestes Chancestrestestestestestestestestestestestesteste	

Fig. 8

1	MTPKQQFPLR	DLVEIRLAQI	SGQFGVVSAP	LGAAMSDAAL	SPGKRFRAVI
51	MLMVAESSGG	VCDAMVDAAC	AVEMVHAASL	IFDDMPCMDD	ARTRRGQPAT
101	HVAHGEGRAV	LAGIALITEA	MRILGEARGA	TPDQRARLVA	SMSRAMGPVO
151	LCAGQDLDLH	APKDAAGIER	EQDLKTGVLF	VAGLEMLSII	KGLDKAETEO
201	LMAFGRQLGR	VFQSYDDLLD	VIGDKASTGK	DTARDTAAPG	PKGGLMAVGQ

251 MGDVAQHYRA SRAQLDELMR TRLFRGGQIA DLLARVLPHD IRRSA

1	MTDLTATSEA	AIAQGSQSFA	QAAKLMPPGI	REDTVMLYAW	CRHADDVIDG
51	QVMGSAPEAG	GDPQARLGAL	RADTLAALHE	DGPMSPPFAA	LRQVARRHDF
101	PDLWPMDLIE	GFAMDVADRE	YRSLDDVLEY	SYHVAGVVGV	MMARVMGVQD
151	DAVLDRACDL	GLAFQLTNIA	RDVIDDAAIG	RCYLPADWLA	EAGATVEGPV
201	PSDALYSVII	RLLDAAEPYY	ASARQGLPHL	PPRCAWSIAA	ALRIYRAIGT
251	RIRQGGPEAY	RQRISTSKAA	KIGLLARGGL	DAAASRLRGG	EISRDGLWTR
301	PRA				

1	MSSAIVIGAG	FGGLALAIRL	QSAGIATTIV	EARDKPGGRA	YVWNDQGHVF
51	DAGPTVVTDP	DSLRELWALS	GQPMERDVTL	LPVSPFYRLT	WADGRSFEYV
.01	NDDDELIRQV	ASFNPADVDG	YRRFHDYAEE	VYREGYLKLG	TTPFLKLGQM
51	LNAAPALMRL	QAYRSVHSMV	ARFIQDPHLR	QAFSFHTLLV	GGNPFSTSSI
201	YALIHALERR	GGVWFAKGGT	NQLVAGMVAL	FERLGGTLLL	NARVTRIDTE
251	GDRATGVTLL	DGRQLRADTV	ASNGDVMHSY	RDLLGHTRRG	RTKAAILNRQ
301	RWSMSLFVLH	FGLSKRPENL	AHHSVIFGPR	YKGLVNE IFN	GPRLPDDFSM
351	YLHSPCVTDP	SLAPEGMSTH	YVLAPVPHLG	RADVDWEAEA	PGYAERIFEE
101	LERRAIPDLR	KHLTVSRIFS	PADFSTELSA	HHGSAFSVEP	ILTQSAWFRP
151	HNRDRAIPNE	YIVGAGTHPG	AGIPGVVGSA	KATAQVMLSD	LAVA

1	MSHDLLIAGA	GLSGALIALA	VRDRRPDARI	VMLDARSGPS	DQHTWSCHD
51	DLSPEWLARL	SPIRRGEWTD	QEVAFPDHSR	RLTTGYGSIE	AGALIGLLQ
101	VDLRWNTHVA	TLDDTGATLT	DGSRIEAACV	IDARGAVETP	HLTVGFQKF
151	GVEIETDAPH	GVERPMIMDA	TVPQMDGYRF	IYLLPFSPTR	ILIEDTRYS
201	GGDLDDGALA	QASLDYAARR	GWTGQEMRRE	RGILPIALAH	DAIGFWRDH
251	QGAVPVGLGA	GLFHPVTGYS	LPYAAQVADA	IAARDLTTAS	ARRAVRGWA:
301	DRADRDRFLR	LLNRMLFRGC	PPDRRYRLLQ	RFYRLPQPLI	ERFYAGRLT
351	ADRLR IVTGR	PPIPLSQAVR	CLPERPLLQE	RA	

- 1 MSTWAAILTV ILTVAAMELT AYSVHRWIMH GPLGWGWHKS HHDEDHDHAL
- 51 EKNDLYGVIF AVISIVLFAI GAMGSDLAWW LAVGVTCYGL IYYFLHDGLV
- 101 HGRWPFRYVP KRGYLRRVYQ AHRMHHAVHG RENCVSFGFI WAPSVDSLKA
- 151 ELKRSGALLK DREGADRNT


```
Fig. 14
#100: 5' tatat<u>actact aaraggagaaa</u>tta<u>ca-a-tt</u>AcGCCCAAGCAGCAGCAATTC 3'
Nodi
#101: 5' TATATACCCGGGTCAGCCGCGACGGCCTGTGG 3'
#104: 5' tatatgaarrcaagagagaaattagarATGAGGACTTGGGCCGCAATCC 3'
#105 5'GTTTCAGCTCTGCCTTGAGGC 3'
MUTI: 5 · GCGAAGGGGCGGATCGCAATACgTGaaaggaggacacgtgaTGATGAGCCATGATCTGCTGATCG 3 · Pmll
MUTE: 5' GCCCCCTGCTGCAGGAGAGAGCETCGgaaagagggadtraagATGAGTTCCGCCATCGTCATCG 3'
MUTS: 5' GGTCATGCTGTCGGACCTGGCCGTCGC+TGaaaggaggat dcaatcATGACCGATCTGACGGCGACTTCC3'
MUTS: 5' ATATATECCAATTGCCCCCCTTCAAGCTCCTCCTGCAGCAGGG 3'
MUT6:5' atgattggatccccctttcaaGCGACGGCCAGGTCCGACAGC 3' . . . BamHI - eri
CARITS' CAGAACCCATCACCTGCCCGTC 3'
EmRi 5' CGCGAATTCTCGCCGGCAATAGTTACC 3'
==4: 5'GTCACATGCATGCTATCGAGCTCTATAAGCATGTGACCTCTTCAACTAACGGGGCAGG 3'Sphi Saci Aakii
```

3, Sall

Fig. 15

Hindill Alii Kaba Alii Egri C91: S ¹ ÄGCTIGGACCTTAAĞTACTCTAAACĞ 3 ¹ C82: 3 ¹ ACCTAGGAATTCATGAATTTGCTTAA 5 ¹ Sal	Sall Avril Miul BamHt Hindill MUT7: S' TCGACCCTGACGCGTCAATTGGATCCGCATGCAAGTT 3' MUT8: 3' GGGATCC <u>GTGCAGTGGAGTTCGAACTAG</u> 5' Muni	SAII MUT9: 5' of STCCECCET BLACGTATT GCGATC GGCCCCTTCGCGGTCCTTCAGCAGCGCGCCCGGGGGTTTCAGCTTCGCCTTGAGGCTG MUT10: 3' of CACAGAGGGGGATATGCGATCGCCCGGGGGGTCGCGCGGGGTTGCAGGCGTTCGCGTGGGGGTTGCGTCGCGGGGGTGGGGGGTTGGGGGG
CS1:	MUT7: 5' MUT8: 3'	илте: 51 Мите: 31
		× • •

71

TANGANACCCCCCLTA 3' TCTTTC99a9gaaa|GATC 5' RBS

MUT11:5' MUT12:3'

Fig. 20/1 Sall Avail Muli Sphi Hodili ligate PCR-I fragment into Mund-Band III

chromosome of BS1012::ZYIB-EINV4

Fig. 21/2

	CTANATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTC	10
1	GATTTAACATTCGCAATTATAAAACAATTTTAAGCGCAATTTAAAAACAATTTAGTCGAG	
61	ATTTTTTAACCAATAGGCGGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGA	20
٠.	TAAAAATTGGTTATCCGGGTTTTAGCGGTTTTAGGGAATATTTAGTTTTCTTATCTGGCT	
121	GATAGGGTTGAGTGTTGCTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTC	180
	CTATCCCAACTCACAACAAGGTCAAACCTTGTTCTCAGGTGATAATTTCTTGCACCTGAG	
181	CANOSTOLANGGGGGAAAAACCGTCTATCNGGGGGATGGCCCACTACGTGAACCATCACC	240
	GTTGCAGTTTCCCCGCTTTTTGGCAGATAGTCCCGGCTACCGGGTGATGCACTTGGTAGTGG	
241	CTAATCAAGTTTTTTGGGGTCGAGGTGCCCTAAAGCACTAAATCGGAACCCTAAAGGGAG	300
	GATTAGTTCAAAAAACCCCAGCTCCACGGCATTTCGTGATTTAGCCTTGGGATTTCCCTC	
301	CCCCCATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAAGGGAAGAA	360
	GGGGCTAAATCTCGAACTGCCCCTTTCGGCCGGCTTGCACCGCTCTTTCCTTCC	
361	AGGGAAAGGAGGGGGGCTAGGGGCTGGCAAGTGTAGCGGTCACGCTGGGGGTAACCAC	420
	${\tt TGGCTTTCCTCGCCGCGGATCCCGCGACCGTTCACATCGCCAGTGCGACGCGCATTGGTG}_{}$	
421	CACACCCCCCCCCTTAATGCCCCCCTACACGCCCCCATTCCCCATTCAGGCTGCC	480
•••	GTGTGGGCGGCGAATTACGCGGCGAATGTCCCGCGCAAGGGTAAGCGGTAAGTCCGACGC	
481	CAACTGTTGGGAAGGGGGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAAGG	540
	GTTGACAACCCTTCCCGCTAGCCACGCCCGGAGAAGCGATAATGCGGTCGACCGCTTTCC	
541	GGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTG	600
	CCCTACACGACGTTCCGCTAATTCAACCCATTGCGGTCCCAAAAGGGTCAGTGCTGCAAC	
601	TAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGGAATTGGAGCTCCA	660
	ATTTTGCTGCCGGTCACTCGCGCGCATTATGCTGAGTGATATCCCGCTTAACCTCGAGGT	
661	CCGCGGTGGCGGCCGTCTAGTGGATCCGCCCTGGCCGTTCGCGATCAGCAGCCGCCCT	720
	GGGGCGACCGCGGGGAGATCACCTAGGGGGGGACCGGCAAGGGCTAGTCGTCGGGGGGA	
721	TGGGGATGGGTCAGCATCATCCCCATGAACCGCAGGCGCACGAGGCGCGCGC	780
	ACCCCTACCCACTCCTACTACGGGTACTTCCCCTCCCTGCTCCCTCC	
781	†CGGGGGGGTCCAGCACGGCA†GGGGCCATCATCACGAAGGCCCCCGGGGGGCATGGGGCGC	840
	AGCCCCCCAGTCCTCCCCTACCCCCTAGTAGTAGCCCTCCCGCCGCCGTACCCCCCCTACCCCCCTACCCCCCCC	
843		900
	CACGGGTAAGGCTTCTTGAGCGTCGGACAGGCGTACGCGTTTCCAGCGGGGTCTAGCGGGGG	
90:		
	ATAAGGCTACGTCACTGCCCGGGCTACGCGGCGGGGGGGG	

	CALCULATION TO A STATE OF THE S	
961	CGTAGCGCGTGCTTGGGAAGGCTCTACTACACGACTAGGTACCGGGCAGTAACGTTTTGG	1020
1021	GATCACCGATCCTGTCGCGTGATGGCATTGTTTGCAATGCCCCGAGGGCTAGGATGGCGC	1080
	CTAGTGGCTAGGACAGCGCACTACCGTAACAAACGTTACGGGGCTCCCGATCGTACCGCG	1000
1081	GAAGGATCAAGGGGGGAAGACATGGAAATCGAGGGACGGGTCTTTGTCGTCACGGGCG	1140
	CTTCCTAGTTCCCCCCTCTCTGTACCTTTAGCTCCCTGCCCAGAAACAGCAGTGCCCGC	
1141	CCGCATCGGGTCTGGGGGGGGGCCTCGGCGCGGATGCTGGCCCAAGGCGGCGGAAGGTCG	1200
	GGGGTAGCCCAGACCCGGGGGGGGGGGGGGGGGGGGGGG	
1201		1260
	ACGTGACCGACGGGCGCTGCGCAGACGGCCATCGGGGTGGCGACCGAC	
1261	TGCACTGGCTGGCGACGCGTCTGCCGGTAGCGCGACGCTGGCTG	1320
	GGCTGGACGGCCTTGTGAACTGCGGGGGCATGGCGGCGGAACGGATGCTGGGCCGG	
1321	CCGACCTGCCGGAACACTTGACGCGCCCGTAGCGCGGCCTTGCCTACGACCCGGCGC	1380
1381	ACGGGCCGCATGGACTGGACAGCTTTGCCCGTGCGGTCACGATCAACCTGATCGGCAGCT	1440
	TGCCCGGCGTACCTGACCTGTCGAAACGGGCACGCCAGTGCTAGTTGGACTAGCCGTCGA	1440
1441	TCAACATGGCCGCCTTGCAGCCGAGGCGATGGCCCGGAACGAGCCCGTCCGGGGGGAGC	1500
	AGTTGTACCGGGGGAAACGTCGGCTCCGCTACCGGGGCCTTGCTCGGGCAGGCCCCGCTCG	
1501	GTGGCGTGATCGTCAACACGGCCTCGATCGCGGCGCAGGACGGAC	1560
	CACCGCACTAGCAGTTGTGCCGGAGCTAGCGCCGCGTCCTGCCTG	
1561	GGATACGCCGGTCGTTCCGCCCGCACGCCCGTACTGCGACGGCTACCGGGCGCTGGAAC	1620
	CGCGGCACGGCATCCGGGTCATGACCATCGCGCCCGGCATCTTCCGCACCCGGATGGTGG	
1621	GCGCCGTGCCGTAGGCGCAGTACTGGTAGCGCGGGCCGTAGAAGGCGTGGGGCTACGACC	1680
	AGGGGCTGCCGCAGGACGTTCAGGACAGCCTGGGCGGGGGGGG	
1681	TCCCCGACGGCGTCCTGCAAGTCCTGTCGGACCCGCGCGCG	1740
1741	TGGGAGAGCCGTCGGAATACGCGGGCCTGTTGCACCACATCATCGCGAACCCCATGCTGA	1800
• • • •	ACCCTCTCGGCAGCCTTATGCGCCGCGACAACGTGGTGTAGTAGCGCTTGGGGTACGACT	1000
1801	ACGGAGAGGTCATCCGCCTCGACGGGGCATTGCGCCATGGGCCCCAAGTGAAGGAGCGTTT	1360
	TGCCTCTCCAGTAGGCGGAGCTGCCGGGGTTAACGGGGGGTTCACTTCCTCGCAAA	
1861	CATGGACCCCATCGTCATCACCGGCGCGATGCGCACCCCGATGGGGCCATTCCAGGGCGA	1920
	GTACCTGGGTAGCAGTAGTGGCCGCGCTACGCGTAGGGCTACCCCGGTAAGGTCCCGCT	
1921	TCTTGCCGCGATGGATGCCCCGACCCTTGGCGGGGGGGGG	1980

1981	CCTGTCGCCCGACATGGTGGACGAGGTGCTGATGGGTCGTCGTCGCCGGGGGCCAGGG	2040
	GGACAGCGGGCTGTACCACGTGCTCCACGACTACCCGACGCAGGAGGGGGGGCCCGGTCCC	
2041	TCAGGCACCGGCACGTCAGGCGGCGCTTGGCGCGGACTGCCGCTGTCGACGGGCACGAC	2100
	**************************************	2100
2101	CACCATCAACGACATGTGCGGGATCGGGGCATGAAGGCCGCGATGCTGGGCCATGACCTGAT	
	GTGGTAGTTGCTCTACACGCCTAGCCCGTACTTCCGGCCGCTACGACCCGGTACTGGACTA	2160
2161	CGCCGCGGGATCGGCGGCATCGTCGTCGCCGGGGGATGGAGGATGTCGAACGCCCC	
	GCGGCGCCTAGCCGCCGTAGCAGCAGCGGCCGCCCTACCTCTCGTACAGCTTGCGGGG	2220
2221	CTACCTGCTGCCCAAGGCGCGGTCGGGGATGCGCATGGCCCATGACCGTGTGCTGGATCA	2280
	GATGGACGACGGCTTCCGCGCCAGCCCCTAGGCGTACCGGGTACTGGCACACGACCTAGT	2250
2281	CATGTTCCTCGACGGGTTGGAGGACGCCTATGACAAGGGCCGCCTGATGGGCACCTTCGC	2340
	GTACAAGGAGCTGCCCAACCTCCTGCGGATACTGTTCCCGGCGGACTACCCGTGGAAGCG	2340
2341	CGAGGATTGCGCCGGCGATCACGGTTTCACCCGCGAGGACGACGACGACTATGCGCTGAC	1400
	CCTCCTAACGCGCCCCTAGTGCCAAAGTGGGCGCTCCCGCGTCCTGCTGATACGCGACTG	2400
2401	CAGCCTGGCCGGCGCAGGACGCCATCGCCAGCGGTGCCTTCGCCGCCGAGATCGCGCC	2460
	GTCGGACCGGGCGCGCCTCCTGCGGTAGCGGTCGCCACGGAAGCGGCGGCTCTAGCGCGG	2400
2461	CSTGACCGTCACGGCACGCAAGGTGCAGACCACCGTCGATACCGGACGAGATGCCCGGGCAA	2520
	GCACTGGCAGTGCGTTCCACGTCTGGTGGCAGCTATGGCTGCTCTACGGGCCGTT	2320
2521	GGCCGGCCCGAGAAGATCCCCCATCTGAAGCCCGCCTTCCGTGACGGTGGCACGGTCAC	2580
	CCGGGCGGGCTCTTCTAGGGGGTAGACTTCGGGCGGAAGGCACTGCCACCGTGCCAGTG	2300
2581	GGGGGGAACAGCTCGTCGATCTCGGACGGGGGGGGGGGG	
	CCGCCGCTTGTCGAGCAGCTAGAGCCTGCCCCGCGCGCGC	2640
2641	GCAGGCCGAGAGCTGGCCCTGACGCCGATCGCGCGGATCATCGGTCATGCGACCCATGC	2700
	CGTCCGGCTCTTCGACCCGGACTGCGGCCTAGCGCGCCTAGTAGCCAGTACGCTGGGTACG	2,00
2701	CGACCGTCCCGGCCTGTTCCCGACGGCCCCCATCGGCGCGATGCGCAAGCTGCTGGACCG	2760
	GCTGGCAGGCCGGACAAGGGCTGCCGGGGTAGCCGCCTACGCGTTCGACGACCTGGC	2760
2761	CACGGACACCCGCCTTCGCGATTACGACCTGTTCGACGTGAACGAGGCATTCGCCGTCGT	2820
	GTGCCTGTGGGCGGAACCGCTAATGCTGGACAAGCTCCACTTGCTCCGTAAGCGGCAGCA	2020
2321	CGCCATGATCGCGATGAAGGAGCTTGGCCTGCCACACGATGCCACGAACATCAACGGCGG	2880
	GCGGTACTAGCGCTACTTCCTCGAACCGGACGGTGTGCTACGGTGCTTGTAGTTGCCGGCC	2550
2881	GGCCTGCGCGCTTGGGCATCCCATCGGCGCGTCGGGGGGGG	2940
	CCGGACGCGGAACCCGTAGGGTAGCCGGCGAGGCCCGCGCGCTAGTACCAGTGCGACGA	2940
2941	GAACGCGATGGCGGCGGGGGGGGGGGGGGGGGGGGGGGG	
2941	CTTGCGCTACCGCCGCCCCCCCCCCCCCCCCCCCTAGGCAGACGTAGCCGCCCCC	1000

3001	CGAGGCGACGGCCATCGCGCTGGAACGGCTGAGCTAATTCATTTGCGCGAAATCCGCGTTT	
	GCTCCGCTGCCGCTAGCGCGACCTTGCCGACTCGATTAAGTAAACGCGCCTTAGGCGCAAA	3060
3061	TTCGTGCACGATGGGGGAAACGGCAACGCCACTGTTGTGGTTGCGTCGACCTGTCT	3120
	${\tt AAGCACGTGTTACCCCCTTGGCCTTTGCCGGTGGGGACAACACCAACGCAGCTGGACAGA}$	
121	TEGGGECATGCCGGTGACGGATGTGGCAGGCGGATGGGGGTTGCCGATCCGGGTCGCAT	3180
	AGCCCGGTACGGGCACTGCGCTACACCGTCCGCTACCCCGCAACGGCTAGGCCAGCGTA	
181	GACTGACGCAGGCAGGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	3240
	CTGACTGCGTTGCTTCCGTGGCTACTGCGGGGTTCGTCGTTAAGGGGGATGCGCTAGACCA	
3241	CGAGATCAGGCTGGCGCAGATCTCGGCCCAGTTCGGCCTCGGCCCCGGTCGGCCC	3300
	GCTCTAGTCCGACCGCGTCTAGAGCCCGGTCAAGCCGCACCAGAGCCGGGGCGACCCGCG	
3301	GGCCATGAGCGATGCCGCCCTGTCCCCCGGCAAACGCTTTCGCGCCGTGCTGATGCTGAT	3360
	CCGGTACTCGCTACGGCGGGACAGGGGGCCGTTTGCGAAAGCGCGGCACGACTACGACTA	
3361	GGTCGCCGAAAGCTCGGGGGGGGGTCTGCGATGCGATGGTCGATGCCGCGCTCGA	3420
	CCAGCGGCTTTCGAGCCCGCCCCAGACGCTACGCTACCAGCTACGCCGGCCAGCT	3420
3421	GATGGTCCATGCCGCATCGCTGATCTTCGACGACATGCCCTGCATGGACGATGCCAGGAC	3480
	CTACCAGGTACGGCGTAGCGACTAGAAGCTGCTGTACGGGACGTACCTGCTACGGTCCTG	3400
3481	$\tt CCGTCGCGGTCAGCCCGCCATGTCGCCCATGGCGAGGGGGCGCGCGGTGCTTGCGGGG$	
3401	GGCAGCCCAGTCGGGGGGTACAGCGGGTACCGCTCCCCGGGGGCCACGAACGCCC	3540
3541	CATCGCCCTGATCACCGAGGCCATGCGGATTTTTGGGCGAGGCGCGGGGGGGG	3600
3341	GTAGCGGGACTAGTGGCTCCGGTACGCCTAAAACCCCGCTCCGCGCGCG	3600
3601	TCAGGGGGGAAGGCTGGTGGATCGATGTCGGGGGGGATGGGACCGGTGGGGCTGTGCGC	3660
	AGTCGCGCGTTCCGACCAGCGTAGGTACAGCGCGCGCTACCCTGGCCACCCCGACACGCG	3000
3661	AGGGCAGGATCTGGACCTGCACGCCCCCAAGGACGCCCGCGCATCGAACGTGAACAGGA	3720
	TCCCGTCCTAGACCTGGACGTGCGGGGGGTTCCTGCGGGGGGCCCTAGCTTGCACTTGTCCT	3/20
3721	CCTCAAGACCGGGGTGTCTTCGTCGGGGGCCTCGAGATGCTGTCCATTATTAAGGGTCT	3780
	GGAGTTCTGGCCGCACGACAAGCAGCGCCCGGAGCTCTACGACAGGTAATAATTCCCAGA	3,40
3781	GGACAAGGCCGAGACCGAGCTCATGCCTTTCGGGCGTCAGCTTGGTCGGGTCTTCCA	3840
	CCTGTTCCGGCTCTGGCTCGAGTACCGGAAGCCGCAGTCGAACCAGCCCAGAAGGT	3010
3841	GTCCTATGACGACCTGCTGGACGTGATCGGCGACAAGGCCAGCACCGCGAAGGATACGGC	3900
	CAGGATACTGCTGGACGACCTGCACTAGCCGCTGTTCCGGTCGTGGCCGTTCCTATGCCG	3,00
106	GCGCGACACCGCCGCCCCGGCCCAAAGGGCGGCCTGATGGCGGTCGGACAGATGGGCGA	1050
	CGCGCTGTGCCGCGGGGGCCGGGTTTCCCCGCGGACTACCGCCAGCCTGTCTACCCGCT	3960
1961	CGTGGCGCAGTATTACCGCGCGCAGCCGCGCGCAACTGGACGAGCTGATGCGCACCCGGCT	
. , 0 1	GEACCGCGTCGTAATGGEGCGGGGGGGGGGGGGGGTGACCTGETGACGTGGGGGGGGG	4020

4021	THE STATE OF THE S	
	CAAGGCGCCCCCGTCTAGCGCCTGGACGACGGCGCACGACGGCGTACTGTAGGCGGC	4080
4081	CAGCGCCTAGGCGCGGGTCGGGTCCACAGGCCGTCGCGGCTGATTTGGCCGCCGCGCAG	41 40
	GTCGCGGATCCGCGCGCCAGGTGTCCGGCAGCGCGCGACTAAAGCGGCGGCGCGTC	4140
4141	GCGCGATGCGGCCGGCGTCCAAGCCTCCGCGGCCAGAAGCCCGATCTTGGCAGCCTTCGA	4200
	CGCGCTACGCCGGCGCAGGTTCGGAGGCGCGCGGTCTTCGGGCTAGAACCGTCGGAAGCT	4200
4201	CGTGCTGATCCGCTGGCGATAGGCCTCGGGGCCACCCTGCCGGATGCGCGTCCCGATTGC	4260
	GCACGACTAGGCGACCGCTATCCGGAGCCCCGGTGGGACGGCCTACGCGCCTAACG	
4261	GCGATAGATACGCAGCGCGGCGGCGGCAATCGACCACGCCGCAGGCGGGCG	4320
	CGCTATCTATGCGTCGCCGCCGCCGCTAGCTGGTGCGCGGTCGCGCCGGTCTACGCCTTC	
4321	CCCCTGCCGCGCGGGGCATAATAGGGCTCGGCCGCGTCAAGCAGGCGGATGATGACGGA	4380
	GGGGACGGGGGGCGCGTATTATCCCGAGCCGGCGCAGTTCGTCCGCCTACTACTGCCT	
4381	ATAGAGCGCGTCCGGAAGGCACCCGGACCCTCAACCGTCGCCCCCGGCCTCGGCCAGCCA	4440
	TATCTCGCGCAGGCTTCCGTCGCCTGGGAGTTGGCAGCGGGGGGGG	
4441	GGCAGGCAGATAGCAGCGCCCGATGGCGGCATCGTCGATCACGTCGCGAGCGA	4500
	CCGTCCGTCTATCGTCGCGGGCTACCGCCGTAGCAGCTAGTGCAGCGCTCGCT	
4501	CAGCTGGAACGCAAGGCCCAGATCCAGGCCCCAATCCAGCACCGCATCGTGCTGCACGCC	4560
	GTCGACCTTGCGTTCCGGGTCTAGCGTCGCGCTAGGTCGTGCCGTAGCAGGACGTGCGG	1300
4561	CATCACCCCCCCCATCATCACCCCCCCCACGACCCCCCGCGACGTAGGAATATTTCCAGCAC	4620
	GTAGTGGGGGGGGTAGTAGTGGGGGGGGGGGGGGGGGGG	
4621	GTCATCCAGGCTGCGGTATTCGCGATCACGCGACATCCATC	4680
	CAGTAGGTCCGACGCCATAAGCGCTAGGCGCTGTAGGTAG	
4681	CATCGGCCAAAGGTCCGGGAAATCATCCCGCCGGCGGACCTGGCGCAGCGCCGCGAAGGG	4740
	GTAGCCGGTTTCCAGGCCCTTTAGTACGGCGGCCCGCTGGACCGCGTCGCGGCGCTTCCC	
4741	CGGCGACATCGGGCCGTCCTCGTGCAGCGGGCCAGCGTGTCGGGGGCGCAAGCGCCCCCAG	4800
	GCCGCTGTAGCCCGGCAGGAGCACGTCGCGCGGCGGTCGCACAGCCGCGCGTCGCGGGGGTC	
4801	CCGCGCCTGTGGGTCGCCGCCCGCCCGCCAGAACCCATCACCTGCCGGTCGATCAC	4860
	GGGGGGGACACCCAGCGGGGGGGGAAGCCCCCGTCTTGGGTAGTGGACGGGCAGCTAGTG	
4861	GTCATCCGCATGCCTGCACCAGGCATAGAGCATGACCGTATCCTCGCGGATGCCGGGGGG	4920
	CAGTAGGCGTACGGACGTCCGTATCTCGTACTGGCATAGGAGCGCCTACGGCCCGCC	
4921	CATCAGCTTGGCCGCCTGCGCGAAGCTTTGCGAACCCTGCGCGATGGCCGCTTCGGAAGT	4980
	GTAGTCGAACCGGCGGACGCGCTTCGAAACGCTTGGGACGCGCTACCGGCGAAGCCTTCA	
4981	CGCCGTCAGATCGGTCATGCGACGGCCAGGTCCGACAGCATGACCTGCGCCGTGGCCTTG	
	GEGGCAGTCTAGCCAGTACGCTGCCGGTCCAGGCTGTCGTACTGGACGCGGCACGGGAAC	3040

	GCGCTGCCAACGACACCCGGATGCCCGGATGCGTGCCCGCCC	
3041	CGCGACCGTTGCTGTGGGCCTACGGGCCTACGCCGGGGGGGG	5100
5101	AAGTTCGGGATCGCGCGGTCGCGGTTATGCGGGGGGAACCAGGGGGATTGCGTCAGGATC	5160
	TTCAAGCCCTAGCGCCCAGCCCAATACGCCCCCTTGGTCCCCCTAACGCAGTCCTAG	
5161	GGCTGGACGGAAAGGGCTGCGGTGATGGGCCGACAGTTCGGTGCTGAAATCGGCGGGG CGGAGCTGGCTCTTCCGCGACGGACTACCGGGCTGTCAAGCAACGACTTTAGCGGCGCCC	5220
	CTGAAGAFGCGGGTGACGGTCAGGTGCTTGCGCAGGTCGGGGATGGCGCGGGGGTCCAGT	
5221	GACTTCTACGCCGACTGCCACGACGCACGACGCCCTACGCGCGCG	5280
5281	TCCTCGAAGATGCGCTCGGCATAGCCCGGGGCCTCGGCTTCCCAATCGACATCGGCGCGG	5340
	AGGAGCTTCTACGCGAGCCGTATCGGGCCCCGGAGCCGAAGGGTTAGCTGTAGCCGCGCC	3340
5341	CCCAGATGCGGAACGGGCCAAGGACGTAATGCGTGGACATCCCCTCGGGGGCCAGGCTG	5400
	GGGTCTACGCCTTGCCGGGTTCCTGCATTACGCACCTGTAGGGGAGCCCCGGTCCGAC GGATCGGTCACGCAGGGCGAATGCAGATACATCGAGAAATCGTCCGGCAGGCGTGGCCCG	
5401	CCTAGCCAGTGCGTCCGCCTTACGTCTATGTAGCTCTTTAGCAGGCCGTCCGCACCGGGC	5460
5461	TTGAAGATCTCGTTCACCAGCCCCTTGTAGCGCGGGCCGAAGATGACGCTGTGGTGGGCC	
3491	AACTTCTAGAGCAAGTGGTCGGGAACATCGCGCCCGGGCTTCTACTGCGACACCACCGG	5520
5521	AGGTTCTCGGGGGGGTTGGACAGGGGAAATGGAGGACAGGACAGGACATGGACCAGGGG	5580
	TCCAAGAGCCCCGCGAACCTGTCCGGCTTTACGTCGTCGTTGTCGCTGTAGCTGGTCGCG	
5581	TGCCGGTTCAGGATCGGGGCTTGGTGCGCCCGCGGGGGTATGGCCCAGCAGGTCGCGA AGGGCCAAGTCCTAGCGCCGGAACCACGGGGGCCCGCCCATACCGGGTCGTCCAGCGGT	5640
	TAGCTGTGCATCACGTCGCCGTTGCTGGCCACCGTATCCGCGCGCAACTGCCGCCCGTCC	
5641	ATCGACACGTAGTGCAGCGGCAACGACCGGTGGCATAGGCGCGGGTTGACGGCGGGCAGG	5700
5701	AGCAGGGTGACGCCGGTGGGGGGATCGCCCTCGGTGTCGATCCGCGTGACGGGGCATTC	5760
	TCGTCGCACTGCGGGCACCGCGCTAGCGGGAGCCACAGCTAGGCGCACTGCGCCCGTAAG	
5761	AGCAGCAGGGTGCGGCAAGACGCTCGAACAGGGCGACCATGCCCGCGACCAGCTGGTTG TCGTCGTCGCACGACGGCTTCTGCGAGCATGTTGCCCGCTGGTTGACGAGCAGCTTGTTGCACCAACAAG	5820
	GTGCGGCCCTTGGCGAACCAGACGCCGCCCCGCCCGTTCCAGCGCATGGATCAGCGCATAG	
5821	CACGGCGGGAACGGCTTGGTCTGCGGGGGGGGGGGGAAGGTCGGGTACCTAGTCGCGTATC	5880
5881	ATCGAGCTGGTCGAAAACGGGTTCCCGCCGACCAGCAGCGTGTGGAACGAGAAGGCCTGC	5940
	TAGCTCGACCAGCTTTTGCCCAAGGGCGGCTGGTCGTCGCACACCTTGCTCTTCCGGACG	
5941	GGCAGATGGGGGTCCTGGATTAAAGGGGGCCACCATGCTGTGGACCGAGGGGTATGCCTGC GGGTCTACGCCCAGGACCTACTTCGCGCGGTGGTACGACACCTGGCTCGCCAATACGGACG	6000
	AGGCGCATCAGCGCGCGCGCGCGCCTTCAGCATCTGCCCAGCTTCAGCGAAGGCGTGCTC	
6001	TCCGCCTAGTCCCGGCCGCCCCAAAGTCCTAGACCGGGTCCAAGTCCTTCCCGCACCAG	6060

6061	CCCAGCTTCAGATACCCCTCGCGATAGACCTCCTCGGCGTAATCGTGGGAAGCGGCGATAG	
	GGGTCGAAGTCTATGGGGAGGGGTATCTGGAGGAGGCGGGATTAGGACGTTCGCCGCTATC	5120
5121	CCATCGACATCGGGGGGATTGAAGGAGGGGACGTGGCGGATCAGCTCGTCGTCGTTCTTC	
	GGTAGCTGTAGCCGCCTAACTTCCTCCCCCCCGCTAGTCCAGCAGCAGCAGCAGCAACCAAC	6190
6181	ACGTATTCGAAGCTGCGGCGTCCGCCCATGTCAGCCGGTAGAAGACGGCAAGACCGGCAGC	6240
	TGCATAAGCTTCGACGCCGGCAGGCGGGTACAGTCGGCCATCTTCCCGCCTCTGGCCGTCG	9240
6241	AGGGTCACGTCACGGTCGATCGGTTGGGCGGCTGAGGGCCCACAGGTTCTCGCAGGCTGTCG	6300
	${\tt TCSCAGTGCAGGGTAGCCAACCGGGGGACTCCGGGGTGTGGAGAGCGTCCGACAGC}$	
6301	GGGTCGGTCACGACGGTCGGGCCTGCATCGAAGACGTGGCCCTGATCGTTCCAGACATAG	6360
	CCCAGCCAGTGCTGGCAGCCGGACGTAGCTTCTGCACCGGGACTAGCAAGGTCTGTATC	
6361	GCGCGGCCGGGCCTTGTCGCGGGCCTCGACGATGGTGGTCGCGATGCCGGCCG	6420
	CGCGCCGGCCGGAACAGCGCCGGAGCTGCTACCACCAGCGCTACGGCCGGC	
6421	AGGCGGATGGCAAGCCCGACGAAACCTGCGCCGATGACGATGGCGGAACTCATG	6480
	TCCGCCTACCGTTCGGGCGGGCTTTGGACGCGGCTACTGCTACCGCCTTGAGTAC	
6481	CTCTCTCCTGCAGGAGGGGGGTTCGGGGCAGGCAGCGGTACGGCCTGGGACAGCGGAA1GG	6540
	GAGAGAGGAGGTCGTCCCCCCAAGCCCGTCCGTCGCGGGACGCTGTCGCCTTACC	
6541	GCGGGCGTCCGGTGACGATGCGAAGCGGTCGGCCAATGTCAGGCGCCCGGGCATAGAAGC	6600
	CGCCCGCAGGCCACTGCTACGCTTCGGCCAGCCGGTTACAGTCGGCGGGCG	
6601	GCTGGATCAGCGGCTGGGGCAGCGGGTAGAACCGGTGGAGCAGCGATAGCGACGGTCGG	6660
	CGAGCTAGTCGCCGACGCCGTCCGCCATCTTGGCGACGTCGTCCGCTATCGCTGCCAGCC	
6661	GCGGGCAGCCGCGGAACAGCATCCGGTTCAGCAGCAGCAGGAAGCGGTCGCGATCGCGCG	6720
	CGCCCGTCGGCGGTTGTCGTAGGCCAAGTCGTCGGCGTCCTTCGCCAGGGCTAGGCGCG	
6721	GATGGATGGCCCAGCCGCGCACCGCGACGGGGGACGCGGTCGTCAGGTCGCGCGCCG	6780
	CTAGCTACCGGTCGGCGCGTGGCGCGCTGCCGCCTGCGCAGCAGTCCAGCGCGCGC	
6781	CGATGGCATCCGGGGACCTGCGGGGGCATAGGGCAGCGAATATCCGGTGACGGGGTGGAACA	6840
	GCTACCGTAGGCGCTGGACGCGCGTATCCCGTTGGGTTATAGGCCACTGGCCGACCTTGT	
6841	GCCTGCCCCAGCCCAACIGGCACCGCCCCTGCGCCTGGTCGCGCCAGAAGCCTATGG	6900
	CGGGACGGGGTCGGGTTGGCCGTGGCGGGGGACGCACCAGCGGGGTCTTCGGATACC	
6901	CGTCATGGGCCAGGSCGATGGGCAGGATGCCCCTTTCGGGCCGGATCTCCTGCCGGGTCC	6960
	GCAGTACCCGGTCGCCCTACCCGTCCTACGGGGAAAGCGCGGCGTAGAGGACGGGCCAGG	
6961	AGCCCGGCTGGCGGCATAGTCCAGCGACGCACCCCACACGCCCACATCGTCCAGATCGC	7020
	TEGGGGGGACCGCGTATEAGGTCGCTGCGGACGCGGTCGCGGGGTAGCAGGTCTAGCG	

7021	CGCCGTCGCTGTAGCGCGTATCGTCGATCAGGATGGGGGTGGGACTGAAGGGCAGCAGAT	
7021	GCTGCAGCGACATCGGGGCATAGGAGCTAGTCGTACGCCGACCTTGACTTCCCGTTCGTCTA	7080
7081	AGATGAAGGGGTACGCGTCCATCTGCGGAACGGTCGATGATCATCATCAGGGCGCTCGA	••••
,,,,	TOTACTTCGCCATGGGCAGGTAGACGCCTTGCCAGGCACTACTAGTAGCCCGCGAGCT	7140
7141	CGCCATGGGGGGGGGTCGGTCTCGATCTCGACGCCCACGAATTTCTGGAAAACCCACGGTCA	
	GCGCTACCCCCGGAGCCAGAGCTAGAGCTGCGGGTGCTTAAAGACCTTTGGGTGCCAGT	7200
7201	GGTGGGGGTCTCGACGGCACCACGGGGCGTCGATCACGCAGCCAGC	
, 201	CCACGCCCAGAGCTGCCGTGGTGCCCGCAGCTAGTGCGTCCGTC	7260
7261	CGTCCGTCAGCGTCGCGCGGTATCGTCCAGCGTCGCGACATGCGTATTCCACCGCAGAT	7320
	GCAGGCAGTCGCAGCGCCATAGCAGGTCGCAGCGCTGTACGCATAAGGTGGCGTCTA	1320
7321	CGACACCCTGCAGCAGCCCGATCAGCGCGCCCCCCCCTCGATCGA	
1321	GETGTGGGACGTCGGGCTAGTCGCCCGGGGGGACCTAGCTCGGTATCGGACAGCAGT	7380
7381	GGGGGGGGAATGGTCGGGAAACGCGACCTCGTGATCCGTCCATTCGCCGGGACGAATGG	7440
, , , , ,	CCGCCGCGCTTACCAGCCCTTTGCCCTGGAGGACTAGGCAGGTAAGCGGCGCTGCTTACC	7440
7441	GEGACAGGCGCCAGCCAFTCGGGCGAAAGATCCGTGTCGTGGCAGGACCAGGTGTGCT	7500
	COCTOTCCGCGCGGTCGGTAAGCCCGCTTTCTAGGCACAGCACCGTCCTGGTCCACACGA	7300
7501	GGTCCGAGGGGCCGGACCGCGCTCGAGCATCACGATGCGCGCATCCGGTCGCGGTCGC	7560
	CCAGGCTCCCCGGCCTGGCGCGCAGCTCGTAGTGCTACGCCGTAGGCCAAGACGCCAGCG	
7561	GAACGGCAAGCGGGATCAGCGCACCGGACAGCCCCGCGCGCG	7620
	CTTGCCGTTCGCGCTAGTCGCGTGGCCTGTCGGGGCGCGCTAGTCGTCTAGTACCG	1024
7621	TCATGTATTGCGATCCGCCCCTTCGCGGTCCTTCAGCAGCGCCCCGAGCGTTTCAGCTC	7680
	${\tt AGTACATAACGCTAGGCGGGGAAGCGCCAGGAAGTCGTCGCGGGGGCTCGCAAAGTCGAG}$	
7681	TGCCTTGAGGCTGTCGACCGAGGGGGCCCCAGATGAAACCGAAGCTGACGCAGTTCTCGCG	7740
	${\tt ACGGAACTCCGACAGCTGCCTGCCGGGGTCTACTTTGGCTTCGACTGCGTCAAGAGGGGC}$	
7741	GCCATGGACCGCGTGATGCATCCTGTGTGCGTGGTAGACGACGAAGATAGCCGCGCTT	7900
	CGGTACCTGGCGCACTACGTAGGACACACGGCCATCTGCGCTGCTTCTATCGGCGCGAA	
7801	GGGGACATAGCGGAACGGCCCAGCGCCATGCACCAAGCCCTCATCCAGGAAATAGTAGAT	7860
	CCCCTGTATCSCCTTGCCGGGTCGCGGGTACGTGGTTCGGCAGTACGTCCTTTATCATCTA	
7361	CAGCCCOTAGCAGGTGACCCCCACCCCCACCAGGCCAGATCGGACCCCATCGCGC	7920
. 301	GTCGGGCATCGTCGACTGGGGTGGCGGTCGGGTCTAGGCTGGGGTAGCGCGG	,,,,,
7921	GATGGGGAACAGCACGATGGAGATTACCGCGAAGATGACGCCATAGAGGTCGTTCTTCTC	
	CTAGGGGTTGTCGTGCTAGCTCTAATGGGGCTTCTAGCGGGTATCTCGAGGAAGAAGAG	1980

7981	GAGCGCGTGGTGGTGGTGGTGGGATTTATGCCAGCCCAGCCCAGGGGGCC	
7 70 1	CTCGCGCACCAGCACTAGGAGCACCACGCTAAATACGGTCGGGTCGGGTCCCCCGG	8040
8041	ATGCATGATCGACGGATGGACGGACGTAGGCCGTCAGCTCCATCGCGGCGACGGTCAGGAT	8100
	TACGTACTAGGTGGCTACCTGCCTCATCGGGCAGTCGAGGTAGGGGCGGCTGCCAGTCCTA	
8101	GACGGTCAGGATTGCCGCCCAAGTGCTCATGCCGGCCCCTTGCTTG	8160
	CTGCCAGTCCTAACGCCGGGTTCACGAGTACGGCCGGGGAACGAAC	
8161	AGGCTACSCTGCGGGGGTGCATGACCAGCCCATCGGGGTGCGACCAAAGGGCATCGCG TCCGATGCGACGGCACGCTACTGCTCGGGTAGCCCCAGCCTGGTTTCCGGTAGCGC	8220
	TGACATCTGCGTTCAGGGCTCATAGGCGGATCATCCGTGACATTCGCCGCGAACGCGG	
8221	ACTGTAGACGCAAGTCCCGAGTATCCGCCTAGTAGGCACTGTAAGCGGCGGCTTGCGCCG	8280
	AGGGGCATCACGGGTTCCGTCGCTGGAAATATTAATGTTTTCCCGAAGATGGTCGGGGGG	
8281	TCCGCGTAGTGCGCAAGGCACCTTTATAATTACAAAAGGGCTTCTACCAGCCCGGC	8340
8341	AGAGGATTCGAACCTCCGACCTACGGTACCCAAAACCGTCGCGCTACCAGGCTGCGCTAC	8400
0341	TCTCCTAAGCTTGGAGGCTGGATGCCATGGGTTTTGGCAGCGCGATGGTCCGACGCGATG	5400
8401	GCCCCGACTGCGGAAGGCTTTAGCCGATTGTTCCGGCAAGGGAAAGACCTAGTCGCAGGC	8460
	CGGGGCTGACGCCTTCCGAAATCGGCTAACAAGGCCGTTCCCTTTCTGGATCAGCGTCCG	
8461	CAGGACCGCATTGTCGCCCATGCCCGGATGCGCCTGACCGGGCTTCAGGCCAAG	8520
	GTCCTGGCGTAACAGCGGGTACGGGGTAGCCGACTGGCCCGAAGTCGGGTTC	
8521	GCGATCCGCCTCTCCGCCCGCGATTTCGAGGACGACAGCGGGTCGGGGTCCGGATCGCC	8580
	CGCTAGGCGGAGAGGGGGGGCTAAAGCTCCTGCTTGTCGGCCAGCCCCAGGCCTAGCGG GACCGCCGCGCGGAATGGGCGTCTCGTCCAGCGGGCGCATTGCGGTGGATGTGGGG	
8581	CTGGCGGCGCGGGCCTTACCCGCAGAGCAGGTCGCCCGCGCGTAACGCCACCTACACCGC	8640
	GATGACGCCGGTTTCATCCGCAAAGACCATGTCCAGCGGGATCAGTGTGTTGCGCATCCA	
8641	CTACTGCGGCCAAAGTAGGCGTTTCTGGTACAGGTCGCCCTAGTCACACAACGCGTAGGT	8700
8701	GAAGGACACCGGCTGGGGCGATTCGTAGATGAACAGCATTCCGGTGCCCGGAGGCAGCTC	8760
9/01	CTTCCTGTGGCCGACCCCGCTAAGCATCTACTTGTCGTAAGGCCACGGGCGTCCGTC	8/60
8761	CTTGCGGAACATCAGGCCCTGGGGCCTCTTCGGGGCTGTCCGCGAACCTCGACCCGAAA	8820
	GAACGCCTTGTAGTCCGGGACGCGGCGAGAAGCCCCCGACAGGCGCTGGAGCTGGGCTTT	
8821	CCCGAGCGTTTCCGCACCTGTATCGACGACGACAGACTGCCGGGGGGGCATTCCAGCGGCGGC	8880
	GGGCTCGCAAAGGCGTGGCCATAGCTGCTGTTCTGACGGCCCGGGGTAAGGTGGCGGGG	
8881	CGCGGGGGGGATCAGGACCGCAAGAAGCGCTGGGGCCTTACTCGGCCACATGGGGAA	8940
	GCGCCGCCGCGGTAGTCCTGGGGTTCTTCGCGAGGCCGGAATGAGCCGGTGTACCCGTT GATAGGACTGCTCGGGGGAGATCCCCCGGGGCTGCAGGAATTCGATATCAAGCTTATCG	
8941	CHATCHTAIGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	

9001	ATACCGTCGACGTGGACGTGGGCCGGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTA	
	TATGCCAGCTGAGCTCCCCCCCCCCCCATCGCCAAAACAAGGGAAATCACTCCCAAT	9060
9061	ATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTC	9120
,,,,,	TAACGCGCGAACCGCATTAGTACCAGTATCGACAAAGGACACTTTAACAATAGGCGAG	9120
9121	ACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGA	41.44
	TGTTAAGGTGTGTTGTATGCTCGGGCCTTCGTATTTCACATTTCGGACCCCACGGATTACT	9180
9181	GTGAGCTAACTGACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTG	9240
,	$\verb"CACTGGATTGAGTGTAATTAACGCGAACGGGGGGAAAAGGTCAGCCCTTTGGAC"$	9240
9241	TCGTGCCAGCTGCATTAATGAATCGGCCAACGCGGGGGAGAGGCGGTTTGCGTATTGGG	9300
7241	AGCAGGGTCGACGTAATTACTTAGGGGGTTGGGGGGCGCCCTCTCGGCGAAACGCATAACCC	9300
9301	CGCTCTTCCGCTTCCTCGCTCACTGACTCGCTCGGTCGTTCGGCTGCGCGAGCG	9360
,,,,,	GCGAGAAGGCGAAGGAGCGAGTGACTGAGCGAGCGAGCCAGCAAGGCGAAGGCGACGCGCTTCGC	3360
9361	GTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGGATAACGCAGGA	9420
,,,,,	CATAGTCGAGTGAGTTTCCGGCCATTATGCCGAATAGGTGTCTTAGTCGCCCTATTGCGTCCT	9440
9421	AAGAACATGTGAGCAAAAGGGCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTG	9480
7421	TTCTTGTACACTCGTTTTCCGGTCGTTTTCCGGTCCTTGGCATTTTTCCGGCGCAACGAC	9480
9481	GCGTTTTTCCATAGGCTCCGCCGCGCTGACGACGATCACAAAAATCGACGCTCAAGTCAG	9540
	CGCAAAAAGGTATCCGAGGGGGGGGGGGGGTTGCTCGTAGTGTTTTTAGCTGCGAGTTCAGTC	9340
9541	AGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC	9600
7341	TCCACCGCTTTGGGCTGTCCTGATATTTCTATGGTCCGCAAAGGGGGACCTTCGAGGGAG	
9601	GTGGGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCG	9660
,,,,	CACGCGAGAGACAAGGCTGGGAGGGGGAATGGCCTATGGACAGGCGGAAAGAGAGGGAAAG	9660
9661	GGAAGCGTGGGGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTT	9720
3001	CCTTCGCACCGCGAAAGAGTATCGAGTGCGACATCCATAGAGTCAAGCCACATCCAGCAA	9/20
9721	CGCTCCAAGCTGGGCTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGGGCCTTATCC	9780
,,,,,	GCGAGGTTCGACCCGACACACGTGCTTGGGGGGCAAGTCGGGCTGGCGACGCGGAATAGG	,,,,,
9781	GGTAACTATCGTCTTGASTCCAACCCGCTAAGACAGGACTTATCGCCACTGGCAGCAGGC	9840
3/81	CCATTGATAGCAGAACTCAGGTTGGGGCZATTCTGTGCTGAATAGCGGTGACCGTCGTCGG	9540
9841	ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG	9900
	TGACCATTGTCCTAATCGTCTCGCTCCATACATCCGCCACGATGTCTCTCAAGAACTTCACC	3300
9901	TGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCA	
	ACCGGATTGATGEGGATGTGATETTCCTGTCATAAACCATAGACGCGAGACGACTTCGGT	9960

Pic. 24/11

9961	GTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA	
,,,,,		
10021	GGTGGTTTTTTTTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGAT	
	CCACCAAAAAACAAACGTTCGTCGTCTAATGCGCGTCTTTTTTTCCTAGAGTTCTTCTA	10080
10081	CCTTTGATCTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT	
	GGAAACTAGAAAAGATSCCCCAGACTGGGAGTCACCTTGCTTTTGAGTGCAATTCCCTAA	10140
10141	TTGGTCATGAGATTATCAAAAAGGATCTTCAGCTAGATCCTTTTAAATTAAAAATGAAGT	
	AACCAGTACTCTAATAGTTTTTCCTAGAAGTGGATCTAGGAAAATTTAATTTTTACTTCA	10200
10201		10260
	AAATTTAGTTAGATTTCATATATACTCATTTGAACCAGACTGTCAATGGTTACGAATTAG	10260
10261	AGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCC	
	TCACTCCGTGGATAGAGTCGCTAGACAGATAAAGCAAGTAGGTATCAACGGACTGAGGGG	10320
10321	GTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATA	10380
	CAGCACATCTATTGATGCTATGCCCTCCCGAATGGTAGACCGGGGTCACGACGTTACTAT	10380
10381	CCGCGAGACCCACGCTCACCGGTCCAGATTTATCAGCAATAAACCAGCCAG	
	GGCGCTCTGGGTGCGAGTCGAGGTCTAAATAGTCGTTATTTGGTCGGTC	10440
10441	GCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA	
	CGGCTCGCGTCTTCACCAGGACGTTGAAATAGCCGGAGGTAGGT	10500
10501	CGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCT	
	GCCCTTCGATCTCATCAACCGGTCAATTATCAAACGCGTTGCAACAACGGTAACGA	10560
10561	ACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCA	
	TGTCCGTAGCACCACGTGCGAGCAGCAAACCATACCGAAGTAAGT	10620
10621	CGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGT	
	GCTAGTTCCGCTCAATGTACTAGGGGGTACAACACGTTTTTTCGCCAATCGAGGAAGCCA	10680
10681	CCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCA	
	GGAGGCTAGCAACAGTCTTCATTCAACCGGGGTCACAATAGTGAGTACCAATACCGTCGT	10740
10741	CTGCATAATTCTCTTACTGTCATGCGATCCGTAAGATGCTTTTCTGTGACTGGTGAGTAC	10800
	GACGTATTAAGAGAATGAGAGTAGGGTTAGGGATTCTACGAAAAGACACTGACCACTCATG	
10801	TCAACCAAGTCATTGTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCA	
	agttogtteagtaagactettateacatacgectggeteaacgagaacgggegeact	10860
10861	ATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGT	
	TATGCCCTATTATGGCGCGGTGTATCGTCTTGAAATTTTCACGAGTAGTAACCTTTTGCA	10920
10921	TCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTfGAGATCCAGTTCGATGTAACCC	
10921	AGAAGCCCGGTTTTGAGAGATTCCTAGAATGGCGACAACTCTAGGTCAAGGTACATTCGG	10980

Fis. 24/12

10981	ACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCAGCAGCGTTTCTGGGTGAGCA	11040
10381	TGAGCACGTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCACTCGT	11040
11041	AAAACAGGAAGGCAAAATGCCGGAAAAAAGGGGAAATAAGGGGCGAAATGTTGAATA	11100
	THTTGTCCTTCCGTTTTACGGCGTTTTTTTCCCTTATTCCCGCTGTGCCTTTACAACTTAT	11100
1:101	CTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGC	11150
	GAGTATGAGAAGGAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACAGAGTACTCG	
11161	GGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGGGACATTTCCC	11220
	${\tt cotatotatatatatatatatatatatttatttatttatt$	
11221	CGAAAATGCCAC 11233	
	GCTTT*CACCGTG	

Ge, 25

-	Hets Bicky by propy this day part in the day part in the day and the day of the day a legal to the day and the day	130
121	ALTHI PY CHEN DOWN IVERTIFIED TO THE CHARGE THE TEACH THE CHARGE THE TEACH THE CHARGE TH	240
241	ALANIA LEGI-GI INBANTARAT DE ANTYA ALGERYNING TOP CHANTAR LEATHER THE HILL HILL HANDING TO CHANTAR AND ANTYA CHANTAR AND ANTARA CHANTARA CHANTAR AND ANTARA CHANTAR ANTARA CHANTARA CHANTAR ANTARA CHANTARA CHANTAR ANTARA CHANTARA CHANTAR ANTARA CHANTAR ANTARA CHANTAR ANTARA CHANTARA CHA	360
196	GISCIPP CONTRACTOR GLYSS PROVINGENER TO THE PROGENITION OF THE PROGENI	480
₩.	VILLEPHOTOP ON LP. AND LOAD AND ASSOCIATION OF THE PROPERTY PROPERTY OF THE PROPERTY CONTRACTOR OF THE PROPERTY OF THE PROPERT	009
109	CITEM I CONTROL CANDER CONTROL	120

ArgAla CGTGCT 721 ----- 726 GCACGA

Fig. 26

pBHKS-criEBIY[42W]

pBIIKS-crtEBIYZ[AW]

PBIIKS-criEBIY[AZ]W

pBIIKS-criEBIYZW

Fig. 29

Fig. 30/1

	ACTGTAGTCTGCGCGGATCGCCGGTCCGGGGGACAAGATATGAGGGCACATGCCCTGCCC	
1	TGACATCAGACGCGCCTAGCGGCCCCCTGTTCTATACTCGCGTGTACGGGACGGG	60
61	AAGGCAGAITCTGACCGCCACCAGTTTGATCGTCTCGGGGGGCATCATCGCCGCGTGGCTG TTCCGTCTAGACTGGCGGTGGTCAAACTAGCAGAGCCCGCGGTAGTAGGGGGGGCACCGAC	120
121	GCCCTGCATGTGCATGTGGTTTCTGGACGCGCCGCCATCCCATCCTGGCGGTC	180
	CGGGACGTACACGTACCGCACACCAAAGACTGCGCCGCGCGTAGGGTAGGACGGCCAG GCGAATTTCCTGGGGTGACCTGGCTGTCGGTCGGTCTGTTCATCATCGCGCATGACGCC	240
181	COCTTANAGGACCCCGACTGGACCGACAGCCAGCCAGACAGTAGTAGTAGCGCGTACTGCGC	240
241	ATGCATGGGTCGGTGCGGGGGGCCCGGGGGCCAATGCGGCGGTTGGGCCAGCTTGTC TACGTACCCAGCACGGCCCGGGGGGGGGG	300
301	CTGTSGCTGTATGCCGGATTTTCCTGGCGCAAGATGATCGTCAAGCACATGGCCCATCAT GACACCGACATACGGCCTAAAAGGACCGCGTTCTACTAGCAGTTGTGTGCCGGGTAGTA	360
361	CGCCATGCCGGAACCGACCACCACGATTTCGACCATGGCGGCCCGGTCCGCTGGTAC GCGGTACGGCCTTGGCTCCTGCGTCTAAAGCTGGTACCGCCGGGCCAGGCGACCATG	420
421	GCCGGCTYCATGGGCACCTATTTCGGCTGGCGGAGGGCTGCTGCTGCTGCCCGTCATCGTG	480
481	ACGGTCTATGGCTGATGTTGGGGGATCGCTGGATGTACGTCGTCTTCTGGGCGTTGCCG TGCCAGATACGCGACTACAACCCCCTAGGGACCTACATGCACCAGAAGACCGGGAACGGC	540
541	TOGATCOTGGGGTCGATCCAGCTGTTCGGGCATCTGGCGCACCGCCCGGC AGCTAGGACCGCAGCTAGGTGGACAAGCACAAGCGTTAGACCGACGGCGTGGCGGGGCCC	600
601	CACGACGCOTTTCCCGGACCGCCACAA TGCGCGGTCGTCGCGGATCAGCGACCCCGTCTCG	660
661	CTGCTGACCTGCTTTCACTTTCGCGGTTATCATCACGAACACCACCTGCACCGGACGGTG	720
721	CCTTGGTGGCGCTGCCCAGCACCCGCACCAGGGGGACACCCCATGACCAATTTCCTGA GGAACCACCGCGGACGGTTCGTGGGCGTGGTTCCCCCTGTGGCGTACTGGTTAAAGGACT	780
781	TOOTCOTCGCCACCGTGCTGATGGACCTGACGGCCTATTCCGTCCACCGCTGGATCA	840

Fig. 30/2

841	ACGGCGGGGAACCCGACCCGGACCGTGTTCAGGGTGGTGCTCCTTGTGCTGGTGCGGCG	900
901	TGGAAAGAACGACCTOTACGGCCTGTCTTTCCGGTGATCGCCACGGTGCTGTTCACGG ACCTTTTCTTGCTGGACATGCGGGACAGAAACGCCACTAGCGGTGCCACGACAAGTGCC	960
961	TGGGCTGGATCTGGGCACCGGTCCTGTGGATCGCCTTGGGCATGACCGTCTACGGGC ACCCGACCTAGACCCGTGGCCAGGACACCACCTAGCGGAACCCGTACTGGCAGATCCCGG	1020
1021	TGATCTATTTCGTCCTGCATGACGGGCTGGTGCATCAGCGGCTGGCCGTTATATCC	1080
1081	CTCGCAAGGGTTATGCCAGACGCCTGTATCAGGCCCACCGCCTGCACCACCACGCGGTCGAGG GAGGGTTCCCGGATACGGTCTGCGGCACATAGTCCGGGTGGGGGAGGTGGTGCGCCAGCTCC	1140
141	GGGGGACCATTGGGTCAGCTTCGGCTTCATCTATCGGCCGCCGGTCGACAAGCTGAAGC	1200
201	AGGACTTGAAGACGTCGGGGCGTGCTGCGGGCCGAGGGGCGAGGGCGACGTGACCCATGA	1260
1261	C - 1261 G	

	ATGAGCGCACATGCCCTGCCCAAGGCAGATCTGACCGCCACCAGTTTGATCGTCTCGGGC	
1		60
	TACTCGCGTGTACGGGACGGGTTCCGTCTAGACTGGCGGTGGTCAAACTAGCAGAGCCCG	
	GGCATCATCGCCGCGTGGCTGGCCCTGCATGTGCATGCGCTGTGGTTTCTGGACGCGGCG	
61		120
	CCGTAGTAGCGGCGCACCGACCGGGACGTACACGTACGCGACACCAAAGACCTGCGCCGC	
	${\tt GCGCATCCCATCCTGGCGGTCGCGAATTTCCTGGGGCTCACCTGGCTGTCGGTCG$	
.21		180
	CGCGTAGGGTAGGACCGCCAGCGCTTAAAGGACCCCGACTGGACCGACAGCCAGC	
	${\tt TTCATCATCGCGCATGACGCGATGCATGGGTCGTTCGCGGGGGGGG$	
81		240
	AAGTAGTAGCGCGTACTGCGCTACGTACCCAGCCAGCACGCCCCGCGGGCGCGCGGGTTA	
	${\tt GCGGCGATGGGCCAGCTTGTCCTGTGGCTGTATGCCGGATTTTCCTGGCGCAAGATGATC}$	
241		300
	CGCCGCTACCCGGTCGAACAGGACACCGACATACGGCCTAAAAGGACCGCGTTCTACTAG	
	$\tt GTCAAGCACATGGCCCATCATCGCCATGCCGGAACCGACGACGACGCAGATTTCGACCAT$	
301		360
	CAGTTCGTGTACCGGGTAGTAGCGGTACGGCCTTGGCTGCTGGTCTAAAGCTGGTA	
	GGCGGCCCGGTCCGCTGGTACGCCCGCTTCATCGGCACCTATTTCGGCTGGCGCGAGGGG	
361		420
	CCGCCGGGCCAGGCGACCATGCGGGGGAAGTAGCCGTGGATAAAGCCGACCGCGCTCCCC	
	$\tt CTGCTGCTCCCCGTCATCGTGACGGTCTATGCCGCTGATGTTGGGGGGATCGCTGGATGTAC$	
121		480
	GACGACGACGGCAGTAGCACTGCCAGATACGCGACTACAACCCCCTAGCGACCTACATG	
	GTGGTCTTCTGGCCGTTGCCGTCGATCCTGGCGTCGATCCAGCTGTTCGTGTTCGGCATC	
181		540
	CACCAGAAGACCGGCAACGGCAGCTAGGACCGCAGCTAGGTCGACAAGCACAAGCCGTAG	
	TGGCTGCCGCACCGCCCGGCCACGACGCGTTCCCCGGACCGCCACAATGCGGCGGTCGTCG	
541		600
	ACCGACGCCTTGCCGGGCCGGTGCTGCCGCAAGGGCCTTGCCGGTGTTTACGCGCCAGCAGC	
	CGGATCAGCGACCCCGTGTCGCTGCTGACCTGCTTTCACTTTGGCGGTTATCATCACGAA	
501		660
	GCCTAGTCCCTGGGGCACAGCGACGACGGACGAAAGTGAAACCGCCAATAGTAGTGCTT	
	CACCACCTGCACCCGACGGTGCCTTGGTGGGGCCTGCCCAGCACCGCACCAAGGGGGGAC	
561		720
	OTGGTGGACGTGGGCTGCCACGGAACCACCGCGGACGGGTCGTGGGCGTGGTTCCCCCTTG	
	ACCOCATGA	
721	729	
	TGGCGTACT	

- I MSAHALPKAD LTATSLIVSG GIIAAWLALH VHALWFLDAA AHPILAVANF
- 51 LGLTWLSVGL FIIAHDAMHG SVVPGRPRAN AAMGQLVLWL YAGFSWRKMI
- 101 VKHMAHHRHA GTDDDPDFDH GGPVRWYARF IGTYFGWREG LLLPVIVTVY
- 151 ALMLGDRWMY VVFWPLPSIL ASIQLFVFGI WLPHRPGHDA FPDRHNARSS
- 201 RISDPVSLLT CFHFGGYHHE HHLHPTVPWW RLPSTRTKGD TA*

1	ATGACCAATTTCCTGATCGTCGTCGCCACCGTGCTGATGGAGCTGACGGCCTATTCC	60
٠	TACTGGTTAAAGGACTAGCAGCAGCGGTGGCACGACCACTACCTCGACTGCCGGATAAGG	•••
61	GTCCACCGCTGGATCATGCACGGCCCCTTGGGCTGGGCACACACA	1.20
••	CAGGTGGCGACCTAGTACGTGCCGGGGAACCCGACCCGA	
121	GAACACGACCACGCGCTGGAAAAGAACGACCTGTACGGCCTGGTCTTTGCGGTGATCGCC	180
	CTTGTGCTGGTGCGCGACCTTTTCTTGCTGGACATGCCGGACCAGAAACGCCACTAGCGG	
181	ACGGTGCTGTTCACGGTGGGCTGGATCTGGGCACCGGTCCTGTGGATCGCCTTGGGC TGCCACGACAGTGCCACCGGACCTAGACCCGTGGCCAGGACACCACCTAGGGGAACCGG	240
241	ATGACOGTOTACGGGCTGATCTATTTCGTCCTGCATGACGGGCTGGTGCATCAGCGCTGG TACTGGCGAGTGCCCGACTAGTCGGGACCACTAGTCGGGACC	300
301	CCGTTCCGCTATATCCCTCGCAAGGGCTATGCCAGACGCCTGTATCAGGCCCACCGCCTG	360
36 L	CACCACGGGTCGAGGGGGGGGACCATTGGGTCAGCTTGGGTTCATCTATGGGCGGGGGGGG	420
421	GTCGACAAGCTGAAGCAGGACCTGAAGACGTCGGGCGTGCTGCGGCCCGAGGCGCAGGACCCGAGGACGACGACGACGACG	480
491	CGCACG 486 GCGTGC	

- 1 MINFLIVVAT VLVMELTAYS VHRWIMHGPL GWGWHKSHHE EHDHALEKND
- 51 LYGLVFAVIA TVLFTVGWIW APVLWWIALG MTVYGLIYFV LHDGLVHQRW
- 101 PFRYIPRKGY ARRLYQAHRL HHAVEGRDHC VSFGFIYAPP VDKLKQDLKT
- 151 SGVLRAEAQE RT

Fig. 35

Fig. 36

Fig. 37

EP 0 872 554 A2

Fig. 38/1

1	CTGCAGGTCTGACACGGCCAGAAGGCCGCGCGCGCGCGCG	60
61	GGTATCCTTGCCAAGCGCCGCCTGGTCGCCCACAACGTCCAGCAGGTCGTCATAGGACTG CCATAGGAACGGTTCGCGGCGGACCAGCGGGTGcTGCAGGAGTCGTCCAGCAGTATCCTGAC	120
121	GAACACCCGGCCCAGCTGACGCCCAAAGTCGATCATCTGAGTCTGCTCCTCGGCGTCGAA	180
181	CTCCTTGATCACGGCCAGCATCTCCAGCCCGGGGATGAACAGCACGCCGGTCTTCAGGTC	240
241	CTGTTCCTGTTCGACCCCCGCCGGTTCTTGGCCGCGTGCAGGTCCAGGTCCTGGCCGGG GACAAGGACAAGCTGGGGGCGCGGAAGAACCGGCCCACGTCCAGGTCCAGGACCGGCCG	300
301	GCACAGGCCCTGCGGCCCCAGGGACCGCGACAGGATCCgeaceagetgcgecegeacegt	360
361	gcccgacgcgcgcgcgcaccggccagcagggcatcgcctcggtgatcagggcgatgcc	420
421	qcctaqcacqqcqcqctttcqccatqcqcacatqqqtcqcqqqqcqcqqqqcqcaq 	480
481	cccqqcatcqtccatqcaqqqcaqqtcqtcqaqatcaqcqatqcqqqatqcaccatctc	540
541	qacogoqcaqqoqqcoqcaqacqtcqtqtcqcaqaccccqccqaaqqcttctqccqcaaq	600
601	cagcatcagcatgccgcqqaaaacgcttgcccgacgacagcgcgccatggctcatggccgq qtcqtagtcgtacggcctttqcqaacggctgctgtcqcgqtaccgagtaccgagtaccgqc	660
661	gccgagcggtcggacacggaccgaatccctgggcgatctcctcaagtctggtctgcag	720
721	aagggtqqqqtggatcgqqttqaoqtctoqtctcatcagtqccttcqqqcttqqgttctq	780
781	accaggogggaaggtcaggcggggggaccccgtgacccgtcatccagtcaacagt	840
841	ccccatgttggaaggcttcacgcccgattgcgagcttttcgacggcgacgcggggtcgc	900
901	gcggcaatttntccaacaaggtcaqtggaccggcgqcqatggccgcgcgcaggcaggc 	960
961	atecttggeeggaaacaccgegeegeateatgateggeeaggategteeggegegge	1020

Fig. 38/2

	caddaaccddccccdcddddddadaaccadccddccccadcad	
1021	qcqqqqcaqtcqqcqqtcaaccqqaattqtcaaqcaccaqqccatcqcqtcaqcqac	1080
1081	ctcqtccqcqtcqtccatqtcqacqatcaqqccqttctccatqtcqcqqaacaqttcqcq qaqcaqqcqcaqcaqqtacaqctqctaqtccqqcaaqaqqtacaqccqctqqtcaaqcqc	1140
1141	caccqgqqqqqtqttcqatcqatcaccaqqcatcqqqtqqqaccaccqccaqqaqacctqtccctq	1200
1201	caggaggtqacqaagggctcggtqaaatagacatgcgcgtgcqaqqcctqcaq 1253 qtcctccactgcttcccgagccactttatctqtacgqcacqctccqgacgtc	

Fig. 39

1	ATGAGACGAGACGTCAACCCGATCCACGCCACCCTTCTGCAGACCAGACTTGAGGAGAGAC	60	
	TACTCTGCTCTGCAGTTGGGCTAGGTGGGGAAGACGTCTGGTCTGAACTCCTCTAG		
61	GCCCAGGGATTCGGTGCCGTGTCGCAGCCGCTCGGCCGGC	120	
	CGGGTCCCTAAGCCACGGCACAGCGTCGGCGAGCCGGGCCGGTACTCGGTACCGCGCGAC		
121	TCGTCGGCCAAGCGTTTCCGCGGCATGCTGATGCTGCTTGCGGCAGAAGCCTCGGGCGGG	180	
	AGCAGCCGTTCGCAAAGGCGCCGTACGACTACGACGAACGCCGTCTTCGGAGCCCGCCC	100	
181	GTCTGCGACACGATCGTCGACGCCGCCTGCGGGGTCGAGATGGTGCATGCCGCATCGCTG	146	
	CAGACGCTGTGCTAGCAGCTGCGGCGGACGCCCAGCTCTACCACGTACGGCGTAGCGAC	240	
241	ATCTTCGACGACCTGCCCTGCATGGACGATGCCGGGCTGCGCGCGGCCAGCCCGCGACC	205	
	TAGAAGCTGCTGGACGGGACGTACCTGCTACGGCCCGACGCGGCGCCGGTCGGGCGCTGG	300	
301	CATGTGGCGCATGGCGAAAGCCGCGCCGTGCTAGGCGGCATCGCCCTGATCACCGAGGCG	360	
	GTACACCGCGTACCGCTTTCGGCGCGCACGATCCGCCGTAGCGGGACTAGTGGCTCCGC	360	
361	ATGGCCCTGCTGGCCGGTGCGCGCGCGCGCGCACGTGCGGGCGCACCTGGTGCGG	420	
301	TACCGGGACGACGGGCGACGCGCGCGCGCGCGCGCGCGCG	120	
421	ATCCTGTCGCGGTCCCTGGGGCCGCAGGGCCTGTGCGCCGGCCAGGACCTGGACCTGCAC	480	
421	TAGGACAGCGCCAGGACCCCGGCGTCCCGGACACGCGGCCGGTCCTGGACCTGGACGTG	400	
481	GCGGCCAAGAACGGCGCGGGGGTCGAACAGGAACAGGACCTGAAGACCGGCGTGCTGTTC	540	
101	CGCCGGTTCTTGCCGCGCCCCCAGCTTGTCCTTGTCCTGGACTTCTGGCCGCACGACAAG	310	
541	ATCGCCGGGCTGAGATGCTGGCCGTGATCAAGGAGTTCGACGCCGAGGAGCAGACTCAG	600	
341	TAGCGGCCCGACCTCTACGACCGGCACTAGTTCCTCAAGCTGCGGCTCCTCGTCTGAGTC	000	
	${\tt ATGATCGACTTTGGCCGTCAGCTGGGCCGGGTGTTCCAGTCCTATGACGACCTGCTGGACCTGGGACCTGGGACGTGGGACGTGGGACGGGGGGGG$		
601	TACTAGCTGAAACCGGCAGTCGACCCGGCCCACAAGGTCAGGATACTGCTGGACGACCTG	660	
	GTTGTGGGGACCAGGCGGCGCTTGGCAAGGATACCGGTCGCGATGCGGCGCCCCCGGC		
661	CAACACCGCTGGTCCGCCGCAACCGTTCCTATGGCCAGCGCTACGCCGCCGGGGGCCG	720	
721	$\tt CCGCGGCGCGCCTTCTGGCCGTGTCAGACCTGCAGAACGTGTCCCGTCACTATGAGGCC$		
	GCGCCGCGCGGAAGACCGGCACAGTCTGGACGTCTTGCACAGGGCAGTGATACTCCGG	780	
701	AGCCGCGCCCAGCTGGACGGGATGCTGCGCAGCAAGCGCCTTCAGGCTCCGGAAATCGCG	840	
781	TCGGCGGGGTCGACCTGCGCTACGACGCGTCGTTCGCGGAAGTCCGAGGCCTTTAGCGC	UPO	
841	GCCCTGCTGGAACGGGTTCTGCCCTACGCCCCGGGGGGGCGCTAG		
	CGGGACGACCTTGCCCAAGACGGGATGCGGCGCGCGCGCG		

Fig. 40

- 1 MRRDVNPIHA TLLOTRLEEI AQGFGAVSQP LGPAMSHGAL SSGKRFRGML
- 51 MLLAAEASGG VCDTIVDAAC AVEMVHAASL IFDDLPCMDD AGLRRGQPAT
- 101 HVAHGESRAV LGGIALITEA MALLAGARGA SGTVRAQLVR ILSRSLGPOG
- 151 LCAGQDLDLH AARNGAGVEQ EQDLKTGVLF IAGLEMLAVI KEFDAEEQTQ
- 201 MIDFGRQLGR VFQSYDDLLD VVGDQAALGK DTGRDAAAPG PRRGLLAVSD
- 251 LONVSRHYEA SRAQLDAMLR SKRLQAPEIA ALLERVLPYA ARA*

Fig. 41

Fig. 42

FP 0 872 554 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 07.06.2000 Bulletin 2000/23
- (43) Date of publication A2: 21.10.1998 Bulletin 1998/43
- (21) Application number: 97120324.5
- (22) Date of filing: 20.11.1997

AL LT LV MK RO SI

- (84) Designated Contracting States: AT BE CHIDE DK ES FI FR GB GR IE IT LI LU MC NI PTSE Designated Extension States:
- (30) Priority: 02.12.1996 EP 96810839
- (71) Applicant: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH)

(51) Int. Ct.7: C12N 15/52. C12P 23/00. A23K 1/16, A23L 1/275, C12N 1/21

(11)

- (72) Inventors: · Pasamontes, Luis 4632 Trimbach (CH) Tsvgankov, Yuri. State Scient, Cnt. of Russian Fed Moscow 113545 (RU)
- (74) Representative: Braun, Axel et al. F.Hoffmann-La Roche AG Patent Department (PLP). 124 Grenzacherstrasse 4070 Basel (CH)

(54) Improved fermentative carotenoid production

The present invention is directed to processes for the preparation of canthaxanthin, adonixanthin, astaxanthin, a mixture of adonixanthin and astaxanthin and zeaxanthin by a cell which has been transformed by DNA sequences encoding the respective biosynthetic enzymes of Flavobacterium and the gram negative bacterium E-396. Furthermore the present invention is directed to a food or feed composition comprising one or more of the aforementioned carotenoids.

EUROPEAN SEARCH REPORT

Application Number EP 97 12 0324

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with of relevant pas	ndication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)
D,A	EP 0 735 137 A (KII BIOTECH INST CO LTI 2 October 1996 (199 * page 5, line 55 * page 10 - page 11 * page 14 - page 2) (JP)) 96-10-02) - page 7, line 32 *	1-7	C12N15/52 C12P23/00 A23K1/16 A23L1/275 C12N1/21
A	EP 0 635 576 A (NIS 25 January 1995 (19 * examples *		1-7	
D,A	WO 91 13078 A (AMOO 5 September 1991 (* page 24 - page 40 * page 55 - page 60 * page 164 - page 1	1991-09-05) 3 *	3,5-7	
Р,Х	EP 0 747 483 A (HOI 11 December 1996 (1 * the whole documen	996-12-11)	2,3,5-7	
P,X	PASAMONTES L ET AL characterization of biosynthesis genes strain RI534" (ENE AN INTERNATION AND GENOMES, vol. 185, no. 1, 31 January 1997 (19 XP004093151 ISSN: 0378-1119 * the whole documents	3,6	TECHNICAL FIELDS SEARCHED (Int.CL6) C12N C12P	
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner

EPO FORM 1503 03.82 (P04C

X : particularly relevant if taken alone
Y : particularly relevant if combined with another
document of the same category
A : technological background
O : non-written disclosure
P : intermediate document

CATEGORY OF CITED DOCUMENTS

T: theory or principle underlying the invention E: earser patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons

[&]amp; : member of the same patent family, corresponding document

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 97 12 0324

This annex lists the patent family members relating to the patent documents cited in the above—mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way lable for these particulars which are merely given for the purpose of information.

19-04-2000

Patent document cited in search repo		Publication date		Patent family member(s)	Publicatio date
EP 0735137	A	02-10-1996	AU AU FI NO US CA WO US	702584 B 1281195 A 962633 A 962689 A 5811273 A 2180024 A 9518220 A 5972690 A	25-02-1* 17-07-1* 23-08-1* 27-08-1* 22-09-1* 06-07-1* 26-10-1*
EP 0635576	Α	25-01-1995	CA JP NO US US	2128549 A 7079796 A 942731 A 5607839 A 5858761 A	23-01-1 28-03-1 23-01-1 04-03-1 12-01-1
WO 9113078	A	05-09-1991	CA EP JP US US US US US	2055447 A 0471056 A 5504686 T 5545816 A 5530188 A 5530189 A 5684238 A 5618988 A 5656472 A	03-09-1: 19-02-1: 22-07-1: 13-08-1: 25-06-1: 04-11-1: 08-04-1: 12-08-1:
EP 0747483	Α	11-12-1996	JP	9023888 A	28-01-1

For more details about this annex :see Official Journal of the European Patent Office, No. 12/82

FORM

		3
		e