實驗二 wireshark

- User clicks on http://www.nytimes.com/
- URL contains Internet name of machine (<u>www.nytimes.com</u>), but not Internet address
- Internet needs Internet address to send information to a machine
- Browser software uses Domain Name System (DNS) protocol to send query for Internet address
- DNS system responds with Internet address

- Browser software uses HyperText Transfer Protocol (HTTP) to send request for document
- HTTP server waits for requests by listening to a well-known port number (80 for HTTP)
- HTTP client sends request messages through an "ephemeral port number," e.g. 1127
- HTTP needs a Transmission Control Protocol (TCP) connection between the HTTP client and the HTTP server to transfer messages reliably

Example: TCP

- TCP is a transport layer protocol
- Provides *reliable byte stream service* between two processes in two computers across the Internet
- Sequence numbers keep track of the bytes that have been transmitted and received
- Error detection and retransmission used to recover from transmission errors and losses
- TCP is connection-oriented: the sender and receiver must first establish an association and set initial sequence numbers before data is transferred
- Connection ID is specified uniquely by

(send port #, send IP address, receive port #, receiver IP address)

- HTTP client sends its request message: "GET ..."
- HTTP server sends a status response: "200 OK"
- HTTP server sends requested file
- Browser displays document
- Clicking a link sets off a chain of events across the Internet!
- Let's see how protocols & layers come into play...

Example: HTTP

- HTTP is an application layer protocol
- Retrieves documents on behalf of a browser application program
- HTTP specifies fields in request messages and response messages
 - Request types; Response codes
 - Content type, options, cookies, ...
- HTTP specifies actions to be taken upon receipt of certain messages

HTTP Protocol

- HTTP assumes messages can be exchanged directly between HTTP client and HTTP server
- In fact, HTTP client and server are processes running in two different machines across the Internet
- HTTP uses the reliable stream transfer service provided by TCP

HTTP uses service of TCP

HTTP Protocol

- HTTP servers use well-known port 80
- Client request / Server reply
- Stateless: server does not keep any information about client
- HTTP 1.0 new TCP connection per request/reply (non-persistent)
- HTTP 1.1 persistent operation is default

HTTP Typical Exchange

HTTP Message Formats

- HTTP messages written in ASCII text
- Request Message Format
 - Request Line (Each line ends with carriage return)
 - Method URL HTTP-Version \r\n
 - Method specifies action to apply to object
 - URL specifies object
 - Header Lines (Ea. line ends with carriage return)
 - Attribute Name: Attribute Value
 - E.g. type of client, content, identity of requester, ...
 - Last header line has extra carriage return)
 - Entity Body (Content)
 - Additional information to server

HTTP Request Methods

Request method	Meaning
GET	Retrieve information (object) identified by the URL.
HEAD	Retrieve meta-information about the object, but do not transfer the object; Can be used to find out if a document has changed.
POST	Send information to a URL (using the entity body) and retrieve result; used when a user fills out a form in a browser.
PUT	Store information in location named by URL
DELETE	Remove object identified by URL
TRACE	Trace HTTP forwarding through proxies, tunnels, etc.
OPTIONS	Used to determine the capabilities of the server, or characteristics of a named resource.

HTTP Request Message

HTTP Response Message

- Response Message Format
 - Status Line
 - HTTP-Version Status-Code Message
 - Status Code: 3-digit code indicating result
 - E.g. HTTP/1.0 200 OK
 - Headers Section
 - Information about object transferred to client
 - E.g. server type, content length, content type, ...
 - Content
 - Object (document)

HTTP Response Message

Example: DNS Protocol

- DNS protocol is an application layer protocol
- DNS is a distributed database that resides in multiple machines in the Internet
- DNS protocol different types's queries
 - iterated query
 - Recursive Queries
 - DNS usually involves short messages and so uses service provided by UDP
- Well-known port 53

Domain域名結構

比如 www.360.com,由點來區分成三個域名 www、360、com,其中 com 是頂級域名(TLD,Top Level Domain),360 是二級域名(SLD,Second Level Domain),www 是三級域名

nslookup介紹

- Nslookup 是用來做DNS測試的工具
- 在terminal 輸入 \$nslookup (\$sudo nslookup)
- >set vc (學校電腦無法使用,參考用)
- 設定 DNS query over TCP
- >set novc
- 設定 DNS query over UDP

🔞 🖨 😑 lab413@lab413: ~

lab413@lab413:~\$ nslookup

> baidu.com

Server: 127.0.1.1 Address: 127.0.1.1#53

Non-authoritative answer:

Name: baidu.com

Address: 220.181.57.216

Name: baidu.com

Address: 123.125.115.110

> set novc
> baidu.com

Server: 127.0.1.1 Address: 127.0.1.1#53

Non-authoritative answer:

Name: baidu.com

Address: 220.181.57.216

Name: baidu.com

Address: 123.125.115.110

> set vc
> baidu.com

Server: 127.0.1.1 Address: 127.0.1.1#53

Non-authoritative answer:

Name: baidu.com

Address: 220.181.57.216

Name: baidu.com

Address: 123.125.115.110

> set novc
> baidu.com

Server: 127.0.1.1 Address: 127.0.1.1#53

Non-authoritative answer:

Name: baidu.com

Address: 220.181.57.216

Name: baidu.com

Address: 123.125.115.110

>

ifconfig--觀察與修改網路介面的相關參數

```
lab413@lab413: ~
lab413@lab413:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 18:31:bf:92:83:5b
          inet addr:140.123.92.57 Bcast:140.123.92.255 Mask:255.255.255.0
          inet6 addr: fe80::f89:86c5:7eb4:c9f9/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:2150043 errors:0 dropped:92516 overruns:0 frame:0
          TX packets:71263 errors:119 dropped:0 overruns:0 carrier:119
          collisions:14819 txqueuelen:1000
          RX bytes:306690674 (306.6 MB) TX bytes:7166691 (7.1 MB)
          Interrupt:16 Memory:df200000-df220000
          Link encap:Local Loopback
lo
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:6525 errors:0 dropped:0 overruns:0 frame:0
          TX packets:6525 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:541443 (541.4 KB) TX bytes:541443 (541.4 KB)
          Link encap: Ethernet HWaddr 00:22:b0:5b:a5:d8
wlp5s0
          inet addr:140.123.92.57 Bcast:140.123.92.255 Mask:255.255.255.0
          inet6 addr: fe80::3956:227b:1e8d:5f6b/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:52778 errors:0 dropped:100 overruns:0 frame:0
          TX packets:3171 errors:0 dropped:0 overruns:0 carrier:0
```


UDP/TCP

- UDP的速度會較TCP快一些
- 用UDP的傳輸資料的可靠度較TCP來的低
- 掉了一些封包仍然可以正常運行的,這一類的服務我們就會運用 UDP服務來進行。像是DNS服務,我們就是要能夠快速的查詢到 網址所對應的IP才行。

LAB1 TCP \ UDP

• 課堂要求 找出TCP三向交握和UDP的封包。

•報告配合封包內容解釋TCP三向交握的原理。 (解釋SYN、ACK..等) 比較TCP和UDP。

LAB2 分析HTTP協議

課堂要求 打開使用HTTP的網站140.123.5.5 觀察HTTP協議中有哪些內容並截圖。 (找出request、response各一)

• 報告

配合封包內容解釋其中Host、accept、cookie...等。

LAB3 DNS分析

課堂要求學會使用nslookup學會用wireshark判斷連線是使用UDP還是TCP

• 報告

解釋為什麼DNS適合用UDP protocol 而不是TCP protocol。