Linear Systems Matrix Inverses

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

Consider the vector space \mathbb{R}^n with basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$. Any vector in $\mathbf{b} \in \mathbb{R}^n$ can be representated as a linear combination of \mathbf{v}_i s,

$$\mathbf{b} = \sum_{i=1}^{n} \mathbf{v}_i \mathbf{a}_i = \mathbf{V} \mathbf{a}; \ \mathbf{a} \in \mathbb{R}^n, \ \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

 $\{\mathbf{v}_1, \mathbf{v}_2\}$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\{\mathbf{e}_1, \mathbf{e}_2\}$ are valid basis for \mathbb{R}^2 , and the presentation for \mathbf{b} in each one of them is different.

► Finding out a is easiest when we are dealing with an orthonormal basis U, in which case a is given by,

$$\mathbf{a} = egin{bmatrix} \mathbf{u}_1^T b \ \mathbf{u}_2^T b \ dots \ \mathbf{u}_n^T b \end{bmatrix} = \mathbf{U}^T \mathbf{b} = \mathbf{b}_U$$

Consider a vector \mathbf{b} whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

• Consider a basis
$$V = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$
. Find out \mathbf{b}_V .

Consider a vector \mathbf{b} whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

•
$$U = \left\{ \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right\}$$
. Find out \mathbf{b}_U .

Consider a vector \mathbf{b} whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

•
$$W = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \frac{1}{2} \end{bmatrix} \right\}$$
. Find out \mathbf{b}_W .

Left Inverse

▶ Consider a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exists no inverse \mathbf{A}^{-1} for this matrix.

lackbox But, there exist two matrices $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{n imes m}$, such that,

$$\mathbf{C}\mathbf{A} = \mathbf{I}_n$$
 or $\mathbf{A}\mathbf{B} = \mathbf{I}_m$

▶ Both cannot be true for a rectangular matrix, only one can be true when the matrix is full rank.

▶ A rectangular matrix can only have either a left or a right inverse.

Left Inverse

Consider a matrix
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Let $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{2 \times 3}$. Can you explain why only $\mathbf{C}\mathbf{A} = \mathbf{I}_2$ can be true and not $\mathbf{A}\mathbf{B} = \mathbf{I}_3$?

Can you also explain why C is not unique?

Left Inverse

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Find a complete solution for the left inverse of \mathbf{A} such that $\left(\mathbf{C} + \hat{\mathbf{C}}\right) = \mathbf{I}_n$.

• Consider the system, $\mathbf{A}\mathbf{x} = \mathbf{b}$. $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

• What happens when $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. What is \mathbf{x} ?

▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.

▶ Right inverse of **A** exists only if the rows of **A** are independent, i.e. $rank(\mathbf{A}) = m \longrightarrow \mathbf{A}^T \mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$

 $ightharpoonup \mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved for any \mathbf{b} . $\mathbf{x} = \mathbf{B}\mathbf{b} \implies \mathbf{A}(\mathbf{B}\mathbf{b}) = \mathbf{b}$.

ightharpoonup There are an infinite number of Bs \implies an infinite number of solutions x.

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$
. Find a complete solution for the right inverse of \mathbf{A} .

Solve $\mathbf{A}\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$. Compare the solutions from Gauss-Jordan method and the ones obtained using right-inverses.

Let $C \in \mathbb{R}^{n \times m}$ be the left inverse of A, such that $CA = I_n$. What is rank(C)?

Pseudo Inverse

Consider a tall matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A} = \mathbf{I}_n; \quad (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$$
 is a left inverse.

 $lackbox{A}^{\dagger} = \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.

For the case of a fat, wide matrix, we have $\mathbf{A}^{\dagger} = \mathbf{A}^T \left(\mathbf{A} \mathbf{A}^T \right)^{-1}$.

▶ When **A** is square and invertible, $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.

Pseudo Inverse

• Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ using the \mathbf{A}^{\dagger} . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

• Compare \mathbf{A}^{\dagger} with that of the general left inverse \mathbf{C} . Calculate $\|\mathbf{C}\|^2$ and find out the $\min \|\mathbf{C}\|^2$. What is $\|\mathbf{A}^{\dagger}\|^2$?

Pseudo Inverse

• Solve Ax = b using the A^{\dagger} . $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$, and $b = \begin{bmatrix} 3 \end{bmatrix}$. Find x.

• Write down all the possible solution ${\bf x}$. What is the ${\bf x}$ with the smallest length? What is ${\bf A}^\dagger {\bf b}$?

Matrix Inverse and Pseudo Inverse through QR factorization

▶ Consider an invertible, square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \implies \mathbf{A}^{-1} = (\mathbf{Q}\mathbf{R})^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

where, $\mathbf{R}, \mathbf{Q} \in \mathbb{R}^{n \times n}$. \mathbf{R} is upper triangular, and \mathbf{Q} is an orthogonal matrix.

▶ In the case of a left invertible rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we can factorize $\mathbf{A} = \mathbf{Q}\mathbf{R}$, with $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\mathbf{R} \in \mathbb{R}^{m \times m}$.

$$\mathbf{A}^{\dagger} = \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T} = \left(\mathbf{R}^{T}\mathbf{Q}^{T}\mathbf{Q}\mathbf{R}\right)^{-1}\mathbf{R}^{T}\mathbf{Q}^{T} = \left(\mathbf{R}^{T}\mathbf{R}\right)^{-1}\mathbf{R}^{T}\mathbf{Q}^{T} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

Matrix Inverse and Pseudo Inverse through QR factorization

For a right invertible wide, fat matrix, we can find out the pseudo-inverse of A^T , and then take the transpose of the pseudo-inverse.

$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{I} \implies \left(\mathbf{A}^{\dagger}\right)^{T}\mathbf{A}^{T} = \left(\mathbf{A}^{T}\right)^{\dagger}\mathbf{A}^{T} = \mathbf{I}$$

$$\mathbf{A}^{T} = \mathbf{Q}\mathbf{R} \implies \left(\mathbf{A}^{T}\right)^{\dagger} = \mathbf{R}^{-1}\mathbf{Q}^{T} = \left(\mathbf{A}^{\dagger}\right)^{T} \implies \mathbf{A}^{\dagger} = \mathbf{Q}\mathbf{R}^{-T}$$