Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 4.7.2

по курсу общей физики на тему: «Эффект Поккельса»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет исследована интерференция рассеянного света, прошедшего кристалл. Проведено наблюдение изменения характера поляризации света при наложении на кристалл электрического поля.

2 Теоретические сведения

Эффектом Поккельса называется изменение показателя преломления света в кристалле под действием электрического поля, причем это изменение пропорционально напряженности электрического поля. Вследствие эффекта Поккельса в кристалле либо появляется двойное лучепреломление, либо меняется его величина, либо, как в данной работе, одноосный кристалл становится двуосным.

Рассмотрим сначала кристалл в отсутствие внешнего электрического поля. Кристалл ниобата лития является одноосным кристаллом, то есть кристаллом, оптические свойства которого обладают симметрией вращения относительно некоторого одного направления, называемого оптической осью z кристалла. Для световой волны, вектор электрического поля \overrightarrow{E} которой перпендикулярен оси z, показатель преломления равен $n_o = \sqrt{\varepsilon_\perp}$, а для волны, вектор \overrightarrow{E} которой располагается вдоль оси z, он равен $n_e = \sqrt{\varepsilon_\parallel}$, причем $n_e < n_o$, т.е. LiNbO₃ - «отрицательный кристалл».

Рис. 1. Схема для наблюдения интерференционной картины

В общем случае, когда луч света распространяется под углом θ к оптической оси z ($puc.\ 1$), существует два собственных значения показателя преломления n_1 и n_2 : в обыкновенной волне (если световой вектор \overrightarrow{E} перпендикулярен плоскости ($\overrightarrow{k}, \overrightarrow{e}_z$), где \overrightarrow{k} — волновой вектор луча, \overrightarrow{e}_z — орт по оси z) показатель $n_1 = n_o$, а в необыкновенной (когда световой вектор \overrightarrow{E} лежит в плоскости ($\overrightarrow{k}, \overrightarrow{e}_z$)) показатель преломления n_2 зависит от угла θ :

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2} \tag{1}$$

Для m-го темного кольца $\Delta \varphi = 2\pi m$ или $\Delta \varphi = 2\pi/\lambda \cdot l(n_o - n_e)\theta^2 = 2\pi m$. Если L — расстояние от центра кристалла до экрана, то, учитывая закон преломления на границе кристалла, при малых углах $\theta_{\text{внешн}} = n_o \theta$ (рис. 1) получаем выражение для радиуса кольца:

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{(n_o - n_e)} m \tag{2}$$

Оборудование

Измеряя радиусы колец, можно найти разность $(n_o - n_e)$ — двулучепреломление кристалла. Свойства симметрии кристалла и его электрооптический тензор таковы, что в результате линейного электрооптического эффекта в плоскости (xy) возникают два главных направления ξ и η под углами 45° к осям x и y (рис. 2) с показателями преломления $(n_o - \Delta n)$ и $(n_o + \Delta n)$, то есть появляются «медленная» и «быстрая» оси, причем $\Delta n = A \cdot E_{\mathfrak{n}}$ (A — некая константа, зависящая только от типа кристалла).

Интенсивность света пропорциональна квадрату модуля вектора электрического поля в волне:

$$n + \Delta n$$

$$n - \Delta n$$

Рис. 2. Эффект Поккельса — появление новых главных направлений при наложении электрического поля

$$I_{\text{вых}} \sim EE^* = E_0^2 \sin^2\left(\frac{\Delta\varphi}{2}\right),$$

поэтому

$$I_{\text{\tiny BMX}} = I_0 \sin^2 \left(\frac{\Delta \varphi}{2}\right) = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}}\right) \tag{3}$$

Здесь

$$U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l} \tag{4}$$

— так называемое полуволновое напряжение — имеет тот смысл, что при $U=U_{\lambda/2}$ сдвиг фаз между двумя волнами, соответствующими двум собственным поляризациям, $\Delta \varphi = \pi$ (разность хода равна $\lambda/2$), и интенсивность света на выходе анализатора, как следует из (3), достигаем максимума.

При параллельных поляризациях лазера и анализатора

$$I_{\text{вых}} = I_0 \cos^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right) \tag{5}$$

Напряжение $U_{\lambda/2}$ называют также управляющим напряжением. Оно уменьшается, как видно из (4), с уменьшением длины волны света λ и с увеличением отношения λ/d кристалла. Характерная величина полуволнового напряжения в ниобате лития для видимого света составляет несколько сотен вольт.

3 Оборудование

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

Рис. 3. Схема для изучения двойного лучепреломления в электрическом поле

Оптическая часть установки представлена на *рис.* 1. Свет гелий-неонового лазера, поляризованный в вертикальной плоскости, проходя сквозь матовую пластинку, рассеивается и падает на двоякопреломляющий кристалл под различными углами. На экране, расположенном за скрещенным поляроидом, видна интерференционная картина.

Заменив экран фотодиодом (рис. 3) и подав на кристалл перменное напряжение, можно исследовать поляризацию луча с помощью осциллографа.

4 Результаты измерений и обработка результатов

Длина волны гелий-неонового лазера

$$\lambda = 0.63 \text{ MKM}$$

Показатель преломления n_o :

$$n_o = 2,29$$

Размеры кристалла:

$$3 \times 3 \times 26 \text{ mm} \Rightarrow l = 26 \text{ mm}$$

Измерим радиусы темных колец r(m) и расстояние L от середины кристалла до экрана.

	m	1	2	3	4	5	6	7
L = 915 mm	r, mm	33	47	58	65	74	88	93
	r, MM	30	43	55	65	72	88	
L = 460 mm	r, MM	17	25	30	36	40	44	46
L = 400 MM	r, MM	16	24	30	35	38	42	46

Таблица 1. Радиусы темных колец r(m) и расстояние L от середины кристалла до экрана

Погрешности измерений равны: $\sigma_L=10$ мм, $\sigma_r=5$ мм. Основной вклад в погрешность вносит систематическая погрешность измерения линейкой.

Построим график $r^2 = f(m)$.

Рис. 4. График зависимости квадрата радиуса колец r^2 от номера темных полос m

Аппроксимация прямой графика на *рис.* 4 подтверждает верность формулы (2). По углу наклона прямой определим двулучепреломление $(n_o - n_e)$ ниобата лития, пользуясь формулой (2):

$$n_o - n_e = \frac{\lambda}{kl} (n_o L)^2$$

Усредняя по двум прямым:

$$n_o - n_e = 0,089 \pm 0,006$$

Для скрещенных поляризаций при напряжениях $U=(2k-1)U_{\lambda/2}$ наблюдается максимум интенсивности, при $U=2kU_{\lambda/2}$ — минимум, здесь k — натуральное число. Для параллельных поляризаций ситуация противоположная.

	Скрещенные поляризации	Параллельные поляризации
$U_{\lambda/2}, B$	390	390
U_{λ} , B	900	870
$U_{3\lambda/2}, B$	1440	1470

Таблица 2. Напряжения соответствующие последовательным экстремума интенсивности для различных поляризаций

Усредняя, получим:

$$U_{\lambda/2} = 439 \pm 39 \text{ B}$$

Установим вместо экрана фотодиод (рис. 3) и подключим его y - входу осциллографа. Убрав напряжение до нуля, переключим разъем с постоянного на переменное напряжение. С трехвольтового выхода блока питания подаем сигнал на вход x осциллографа. Отклонение луча осциллографа по оси x будет пропорционально напряжению U на кристалле, а по оси y — интенсивности прошедшего через анализатор сигнала $I_{\text{вых}}$.

Постепенно повышая напряжение на кристалле, наблюдаем на экране осциллографа фигуры Лиссажу, соответствующие зависимости $I_{\text{вых}}(U)$ для скрещенных поляризаций лазера и анализатора.

Слегка поворачивая кристалл, сделаем фигуры Лиссажу симметричными. Определим по фигурам Лиссажу полуволновое напряжение $U_{\lambda/2}$ как ΔU , соответствующее переходу от максимума к минимуму сигнала на осциллограмме:

$U_{\lambda/2}, \ \mathrm{B}$	U_{λ} , B	$U_{3\lambda/2}, B$		
420	870	1380		

Таблица 3. Напряжение, соответствующее переходу от максимума к минимуму сигнала на осциллограмме

Определим полуволновое напряжение:

$$U_{\lambda/2}^* = 438 \pm 17 \text{ B}$$

5 Обсуждение результатов и выводы

В работе изучена интерференция рассеянного света, прошедшего кристалл ниобата лития: получена зависимость квадрата радиуса темного кольца интерференционной картины от номера минимума $r_m^2(m)$, с хорошей точностью являющаяся линейной (рис. 4), что согласуется с теорией при малых углах отклонения луча от оптической оси кристалла и близких значениях показателей преломления для обыкновенной и необыкновенной волн. Действительно, двулучепреломление кристалла $n_o - n_e$ составляет

$$n_o - n_e = 0,089 \pm 0,006$$

Это значение соответствует литиевым кристаллам.

Рассмотрен эффект Поккельса: несколькими способами определено полуволновое напряжение, оно совпадает в пределах погрешности и равно

$$U_{\lambda/2} = 439 \pm 39 \text{ B}$$

 $U_{\lambda/2}^* = 438 \pm 17 \text{ B}$ (6)

Получены фигуры Лиссажу, отражающие зависимость интенсивности выходного сигнала от подаваемой амплитуды напряжения I(U) при скрещенных и параллельных поляризациях. Картинки для поляризаций отличаются по фазе на $\pi/2$.