#### **HW#1**

- Razavi, 2<sup>nd</sup> edition
  - P2.3
  - P2.5
  - P2.9
  - (Problems will be uploaded.)
- Due: March 16, 2016 (next Wednesday)
  - Submit your HW to Mr. Junsung Park ("quasarp at gist.ac.kr", SIC Building, C-411)
  - No delayed submission is accepted.

# Lecture3: Basic physics of semiconductor (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

## Intrinsic carrier density

- At higher temperatures,
  - There will be a certain amount of electrons and holes.
  - How many "free" electrons? (Assume the intrinsic material.)
  - It is the meaning of the intrinsic carrier density,  $n_i$ .
- Expression of n<sub>i</sub>

$$n_i = 5.2 \times 10^{15} \, T^{1.5} \exp \frac{-E_g}{2k_B T} \, [electrons/cm^3]$$

- Boltzmann constant,  $k_B$
- At 300K,  $n_i$  is roughly  $10^{10}$  [electrons/cm<sup>3</sup>].

#### **Impurity atom**

- The phosphorus atom has 5 valence electrons.
  - Additional electron (e in the right figure) serves as a charge carrier.



Silicon with "impurity" atom (For example, phosphorus)

## **Impurity atoms**

- One impurity atom contributes a "free" electron.
  - If 2 (, 3, 4, 5, ...) phosphorus atoms are introduced?
  - 2 (, 3, 4, 5, ...) additional electrons will be generated!
- More specifically,
  - When the density of the phosphorus atom is  $N [atoms/cm^3]$ ,
  - The electron density becomes N [electrons/cm<sup>3</sup>].
- Typical value? (Feeling about the numbers)
  - $10^{15} [atoms/cm^3]$ : Almost no impurity
  - $10^{17} [atoms/cm^3]$ : Low (or moderate) impurity density
  - $10^{19} [atoms/cm^3]$ : High impurity density (Not extremely high)
- What is it good for?
  - Conductivity can be changed drastically.

# n-type? p-type?

- Phosphorus has 5 valence electrons.
  - Therefore, it contributes an electron. (n-type)
- Boron has 3 valence electrons.
  - It cannot provide 4 valence electrons to complete 4 bonds.
  - Instead, it contributes a hole. (p-type)



# Minority carrier density

- Majority vs. minority
  - In the n-type semiconductor, electrons are majority carriers.
  - On the other hand, holes are minority carriers.
  - At equilibrium,

$$np = n_i^2$$

- Example)
- Consider a case of 10<sup>15</sup> cm<sup>-3</sup>.

## **Equilibrium properties**

- Intrinsic semiconductor @ finite T
  - Small amount of "free" electron/hole,  $n_i$
  - At 300K,  $n_i$  of silicon is about  $10^{10} cm^{-3}$
- Extrinsic semiconductor @ finite T
  - n-type dopants (P, As) provide electrons.
  - p-type dopants (B) provide holes.
- A relation valid at equilibrium,  $np = n_i^2$
- Nonequilibrium
  - Various ways to generate the nonequilibrium case
  - Flow of charged particles!

### **Electron current density**

Electron current density

$$\mathbf{J}_n = -qn\mathbf{v}_n = \rho\mathbf{v}_n$$

- $J_n$ : A vector point function in [A/cm<sup>2</sup>]
- $\mathbf{v}_n$ : An average electron velocity in [cm/sec]
- Amount of charge passing through the unit area (which is normal to  $a_n$ ) in the unit time is given by  $J_n \cdot a_n$

 $J_n$ 

Unit area

#### **Current densities**

Electron current density

$$\mathbf{J}_n = -qn\mathbf{v}_n$$

- Hole current density
  - Similarly,

$$\mathbf{J}_p = qp\mathbf{v}_p$$

- Particle current density
  - Sum of these two terms
- Anything else?
  - You know what it is.
  - For a capacitor,  $I = C \frac{dV}{dt}$ . How?

#### **Drift**

#### Caused by an electric field

- Since electrons/holes are charged particles, they are accelerated by an electric field, E. (Unit: [V/cm])
- For electrons,  $\mathbf{F} = -q\mathbf{E}$  (For holes, the sign is the opposite.)
- Then, the average velocity satisfies  $\frac{d\mathbf{v}_n}{dt} = -\frac{q\mathbf{E}}{m_n}$
- Here,  $m_n$  is the effective mass of electrons.
- Of course,  $\mathbf{v}_n(t) = -\frac{q\mathbf{E}}{m_n}t$  (Obviously wrong...)



Velocity as a function of time. Initially, zero velocity.

## Terminal velocity of skydiver

#### Terminal velocity

- For a skydiver, the gravity is the driving force.
- For electrons, the electric field is the driving force.
- Then, which mechanism plays a similar role of "air resistance"?



# **Scattering**

- The velocity of the carriers...
  - Does not increase indefinitely under the field acceleration. Why?
  - They are scattered frequently and lose their momentum after each collision.
  - (Representative scatters are lattice vibration (phonon) and ionized impurities.)
  - Therefore, it would be better to write  $\frac{d\mathbf{v}_n}{dt} = -\frac{q\mathbf{E}}{m_n} \frac{\mathbf{v}_n}{\tau}$
  - Here,  $\tau$  is the momentum relaxation time.





Velocity of an electron as a function of time.
When scattering is considered.

### Steady-state solution

- The average velocity at the steady-state condition
  - Can be obtained by setting the time derivative to be zero.
  - Therefore,  $\mathbf{v}_n = -\frac{q\tau}{m_n}\mathbf{E}$  for electrons. (For holes, the opposite sign)
  - Proportional coefficient is called as mobility,  $\mathbf{u} = -\mu_n \mathbf{E}$

$$\mu_n = \frac{q\tau}{m_n}$$
 (Unit: [cm<sup>2</sup>/V/sec])

- The mobility is proportional to the momentum relaxation time (less frequent collision) and is inversely proportional to the effective mass (heavy particle).
- When the electron density per unit volume is given by n (Unit: [/cm³]), the electron current density due to the drift is  $\mathbf{J}_n = qn\mu_n\mathbf{E}$ . (Drift only)

#### Two cars, two roads

- With which car, on which road
  - Can you drive faster?
  - Which one is the mass? Which one is the relaxation time?



MATER & LIGHTNING McQUEEN

"CARS 2" (L-R) Mater (voice by Larry The Cable Guy), Lightning McQueen (voice by Owen Wilson) @Disney/Pixar. All Rights Reserved.

A sport car and a towing car (Google image)



Good road and bad road (Google image)

### Velocity vs. electric field

- Directly affects the DC current
  - At low electric fields, the linear relationship is valid.
  - At high electric fields, the velocity saturation starts to occur. The saturation velocity of Si is about 10<sup>7</sup> [cm/sec].



Velocity-field relationship in Si at 300K

(Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices)

GIST Lecture on March 9, 2016 (Internal use only)

# **Velocity saturation**

- A simple expression
  - A field-dependent mobility

$$\mu = \frac{\mu_0}{1 + bE}$$

- Real expression used
  - An additional parameter

$$\mu = \frac{\mu_0}{(1 + (bE)^{\beta})^{1/\beta}}$$

#### **Diffusion**

#### Another mechanism

- "A drop of ink falls into a glass of water."
- The density gradient,  $\nabla n$ , will be relaxed by the diffusion.

$$J_n \propto \nabla n$$

- Diffusion constant as the proportional coefficient (actually,  $qD_n$ )

#### Drift and diffusion

$$\mathbf{J}_n = q n \mu_n \mathbf{E} + q D_n \nabla n$$

- Consider the temperature dependence of  $\mu_n$  and  $D_n$ .

#### **Einstein relation**

- Valid at equilibrium
  - Mobility and diffusion constant

$$D = \frac{k_B T}{q} \mu$$

- (Useful number:  $\frac{k_BT}{q} \approx 25.85 \ mV$  at 300K)

Why do we have relations valid at equilibrium only?