Benchmark Guide for mTCP with DSA

Benchmark Guide for mTCP with DSA

- 1. Hardware Environmental Preparation
- 2. Software Environmental Preparation

Configure demo machine(spr machine run demo)

Modify The Configuration File

Configure DSA (Reconfiguration is required when restart)

Build Test Program "Epping"

Configure pktgen machine(machine run pktgen to send packets)

Run Demo

4. Start Test

Sample Run

benchmark with CPU

benchmark with DSA

5.Measurement

PPS Measurement

CPU Usage

CPU Usage with DSA

Bandwidth Measurement

- 1. Peak value measurement
- 2. Perf measurement

1. Hardware Environmental Preparation

- 1. Two machines directly connected via 100G network card.
- 2. One of the two must be a SPR machine, and this SPR machine kernel(v5.13) support DSA
 - 1. To compile the kernel, you can refer to this document:
 - "**kernel_build_and_iax_enable_v1.0**.pdf" (The steps for compiling the kernel are universal)
 - 2. Read the **README**.md in the **dsa_userlib** directory to install the necessary libraries.

Tips:

- 1. when you clone: https://github.com/intel/idxd-config.git, you should switch the version, do not use the latest version: you can
 - git checkout 6bd68e68;
- 2. Modify config file: /etc/ld.so.conf, add a new line: "./", and then run command "ldconfig", Configure the current directory./ to the library search path.
- 3. Then follow the readme to continue.
- 3. SPR machine BIOS Setting

BIOS Setting

EDKII Menu > Socket Configuration > Uncore Configuration > Uncore Dfx Configuration: Cache entries for non-atomics = 120

EDKII Menu > Socket Configuration > Uncore Configuration > Uncore Dfx Configuration: Cache entries for atomics = 8

EDKII Menu > Socket Configuration > Uncore Configuration > Uncore Dfx Configuration: CTAG entry avail mask = 255

EDKII Menu-> "Socket Configuration" -> "IIO Configuration" -> "Intel VT for directed IO (VT -d)" \rightarrow Intel VT for directed IO \rightarrow Enable

EDKII Menu-> "Socket Configuration" -> "IIO Configuration" -> "PCI ENQCMD/ENQCMDS" \rightarrow Enable**

2. Software Environmental Preparation

Configure demo machine(spr machine run demo)

1. Record Information

View and record the information of the directly connected network card

Suppose, you are directly connected as follows:

192.168.1.1 (pktgen machine) NIC: ens5f1 <----- NIC direct connection-----> **192.168.1.2** (demo machine) **NIC: ens66(0000:29:00.0)**

You should record these information, for example:

```
[root@SPR06 mtcp_merge_virtq]# ethtool -i ens66
driver: ice
version: 5.13.0+
firmware-version: 2.40 0x80007063 1.2898.0
expansion-rom-version:
bus-info: 0000:29:00.0
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: yes
```

```
[root@SPR06 mtcp_merge_virtq]# cat /sys/class/net/ens66/address
40:a6:b7:67:19:f0
```

or enter "ifconfig":

```
ens66: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.111.234 netmask 255.255.255.0 broadcast 192.168.111.255
    inet6 fe80::afe:2bf7:ac5e:33a prefixlen 64 scopeid 0x20<link>
    ether 40:a6:b7:67:19:f0 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 45 bytes 4753 (4.6 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

NIC: ens66

```
ens66 bus-info:0000:29:00.0
```

ens66 mac address: 40:A6:B7:67:19:F0

then, uninstall an existing drive

```
ifconfig ens66 down
```

2. Download Source Code

```
# repo: https://github.com/intel-collab/libraries.performance.accelerators.data-
streaming.dsa-share-memory-framework
# Source Code Main Directory Structure
   dsa_userlib # DSA library
   —config_dsa # config file is used to dsa
   |-include # dsa library headfile
   ⊢src # dsa library source code
   Hest # dsa test program, you can read dsa readme.md to learn how to run it
   mtcp_merge_virtq # mtcp source folder
   |—apps
   | ⊢example # mtcp app example folder
     ├─mtcp # mtcp lib source code
   ├─dpdk # dpdk lib souce code
   . . .
git clone git@github.com:intel-collab/libraries.performance.accelerators.data-
streaming.dsa-share-memory-framework.git
# Get into source code path
cd /dsa-accelerated-mtcp/mtcp_merge_virtq
# Run prepare shell (only need run once)
./compile_prepare.sh
```

Bind NIC with igb_uio Driver (Need to reconfigure after reboot)

```
# https://doc.dpdk.org/dts/gsg/usr_guide/igb_uio.html
1. Igb_uio driver can build by dpdk
2. Bind nic with igb_uio driver. This network card is directly connected to
another machine.
TIPS:
1. If you need to use a lasted version of dpdk to compile IGB_ UIO driver,
please refer to: https://doc.dpdk.org/dts/gsg/usr_guide/igb_uio.html
2. You can also use default dpdk(Not the latest version) follow the steps below
(after unzip /dsa-accelerated-mtcp/mtcp_merge_virtq/dpdk/x86_64-native-linuxapp-
gcc.tar.gz):
cd /dsa-accelerated-mtcp/mtcp_merge_virtq/
export RTE_SDK=`echo $PWD`/dpdk
export RTE_TARGET=x86_64-native-linuxapp-gcc
./setup_mtcp_dpdk_env.sh $RTE_SDK
1. build x86_64-native-linuxapp-gcc (for this dpdk version , enter 38 to build
If there is an error in this step, you can download a separate dpdk kmod repo
and compile it)
```

[root@SPR06 mtcp_merge_virtq]# ./setup_mtcp_dpdk_env.sh \$RTE_SDK

```
[36] x86 64-native-freebsd-gcc
 37] x86 64-native-linuxapp-clang
 [38] x86 64-native-linuxapp-gcc
 [39] x86 64-native-linuxapp-icc
 [40] x86<sup>_</sup>64-native-linux-clang
 [41] x86_64-native-linux-gcc
 [42] x86_64-native-linux-icc
[43] x86_x32-native-linuxapp-gcc
[44] x86_x32-native-linux-gcc
 Step 2: Setup linux environment
[45] Insert IGB UIO module
[46] Insert VFIO module
[47] Insert KNI module
[48] Setup hugepage mappings for non-NUMA systems
[49] Setup hugepage mappings for NUMA systems
 50] Display current Ethernet/Baseband/Crypto device settings
 [51] Bind Ethernet/Baseband/Crypto device to IGB UIO module
 52] Bind Ethernet/Baseband/Crypto device to VFIO module
 [53] Setup VFIO permissions
 Step 3: Run test application for linux environment
 [54] Run test application ($RTE_TARGET/app/test)
[55] Run testpmd application in interactive mode ($RTE_TARGET/app/testpmd)
 Step 4: Other tools
 [56] List hugepage info from /proc/meminfo
 Step 5: Uninstall and system cleanup
 [57] Unbind devices from IGB UIO or VFIO driver
[58] Remove IGB UIO module
 [59] Remove VFIO module
 [60] Remove KNI module
 [61] Remove hugepage mappings
 [62] Exit Script
Option: 38
                        export RTE_SDK=/root/dpdk-stable-18.11.11
== Build drivers/raw/dpaa2 gdma
== Build drivers/raw/ifpga rawdev
== Build app
== Build app/test-pmd
== Build app/proc-info

== Build app/pdump

== Build app/test-bbdev

== Build app/test-crypto-perf
== Build app/test-eventdev
Build complete [x86 64-native-linuxapp-gcc]
Installation cannot run with T defined and DESTDIR undefined
 RTE_TARGET exported as x86_64-native-linuxapp-gcc
Press enter to continue ...
```

2. Insert IGB UIO module (for this dpdk version , enter 45 to build it)

```
___________
 Step 2: Setup linux environment
[45] Insert IGB UIO module
[46] Insert VFIO module
[47] Insert KNI module
[48] Setup hugepage mappings for non-NUMA systems
[49] Setup hugepage mappings for NUMA systems
 50] Display current Ethernet/Baseband/Crypto device settings
 51] Bind Ethernet/Baseband/Crypto device to IGB UIO module
 52] Bind Ethernet/Baseband/Crypto device to VFIO module
[53] Setup VFIO permissions
Step 3: Run test application for linux environment
[54] Run test application ($RTE_TARGET/app/test)
[55] Run testpmd application in interactive mode ($RTE TARGET/app/testpmd)
Step 4: Other tools
[56] List hugepage info from /proc/meminfo
Step 5: Uninstall and system cleanup
[57] Unbind devices from IGB UIO or VFIO driver
   ] Remove IGB UIO module
[59] Remove VFIO module
[60] Remove KNI module
[61] Remove hugepage mappings
[62] Exit Script
Option: 45
```

Option: 45
Unloading any existing DPDK UIO module
Loading DPDK UIO module
Press enter to continue ...

3. Bind Ethernet/Baseband/Crypto device to IGB UIO module (for this dpdk version , enter 51 to build it, Please enter the bus information of the network card that directly connected to the test machine, such as : 0000:29:00.0)

```
Option: 51
Network devices using kernel driver
0000:16:00.0 'Ethernet Controller X710 for 10GBASE-T 15ff' if=ens1f0 drv=i40e unused=igb_uio *Active* 0000:16:00.1 'Ethernet Controller X710 for 10GBASE-T 15ff' if=ens1f1 drv=i40e unused=igb_uio 0000:29:00.0 'Ethernet Controller E810-C for QSFP 1592' if=ens66 drv=ice unused=igb_uio
No 'Baseband' devices detected
Other Crypto devices
0000:6b:00.0 'Device 4940' unused=igb_uio
0000:6d:00.0 'Device 2710' unused=igb_uio
0000:70:00.0 'Device 4940' unused=igb_uio
0000:72:00.0 'Device 2710' unused=igb_uio
0000:75:00.0 'Device 4940' unused=igb_uio
0000:77:00.0 Device 4940 unused=igb_uio
0000:7a:00.0 'Device 4940' unused=igb_uio
0000:7c:00.0 'Device 2710' unused=igb uio
0000:e8:00.0 'Device 4940' unused=igb uio
0000:ea:00.0 'Device 2710' unused=igb_uio
0000:ed:00.0 'Device 4940' unused=igb_uio
0000:ef:00.0 'Device 2710' unused=igb_uio
0000:f2:00.0 'Device 4940' unused=igb_uio
0000:f7:00.0 Device 4940 unused=igb_uio
0000:f7:00.0 'Device 4940' unused=igb_uio
0000:f9:00.0 'Device 2710' unused=igb_uio
No 'Eventdev' devices detected
No 'Mempool' devices detected
No 'Compress' devices detected
No 'Misc (rawdev)' devices detected
Enter PCI address of device to bind to IGB UIO driver: 0000:29:00.0
```

4. Setup hugepage mappings for NUMA systems (for this dpdk version , enter 49 to build it, Set 4G size for each node)

```
Option: 49

Removing currently reserved hugepages
Unmounting /mnt/huge and removing directory

Input the number of 1048576kB hugepages for each node
Example: to have 128MB of hugepages available per node in a 2MB huge page system,
enter '64' to reserve 64 * 2MB pages on each node
Number of pages for node0: 4
Number of pages for node1: 4
Reserving hugepages
Creating /mnt/huge and mounting as hugetlbfs
```

Modify The Configuration File

```
Enter the path where the epping program is locate:
cd /dsa-accelerated-mtcp/mtcp_merge_virtq/apps/example/
vim epping.conf
    # modify port(line 51) to your NIC PCIE number, for example:
    port = 0000:29:00.0 (your NIC PCIE number)
    # moidfy stat_print(line 105), for example:
    stat_print = 0000:29:00.0
```

Configure DSA (Reconfiguration is required when restart)

You can read README in:

```
/dsa-accelerated-mtcp/dsa_userlib/README.md

# Configure dsa
# Make sure you have installed accel-config library and tools before doing this step
cd config_dsa
```

```
[root@SPR06 dsa_userlib]# cd config_dsa
[root@SPR06 config_dsa]# ./setup_dsa.sh configs/4e1w-d.conf
enabled 1 device(s) out of 1
enabled 1 wq(s) out of 1
```

Build Test Program "Epping"

./setup_dsa.sh configs/4e1w-d.conf

```
# make test programe: epping
# epping : /mtcp_merge_virtq//app/examples/epping
cd /dsa-accelerated-mtcp/mtcp_merge_virtq/
export RTE_SDK=`echo $PWD`/dpdk
export RTE_TARGET=x86_64-native-linuxapp-gcc
make -j32
```

Configure pktgen machine(machine run pktgen to send packets)

Pktgen-DPDK/INSTALL.md at dev · pktgen/Pktgen-DPDK (github.com)

- 1. compile DPDK:
 - 1. Install DPDK

```
git clone https://dpdk.org/git/dpdk
sudo rm -fr /usr/local/lib/x86_64-linux-gnu # DPDK changed a number of
lib names and need to clean up
cd dpdk
meson build
ninja -C build
sudo ninja -C build install
sudo ldconfig # make sure ld.so is pointing new DPDK libraries
```

2. Compile Pktgen

```
git clone http://dpdk.org/git/apps/pktgen-dpdk
cd pktgen-dpdk
make
or
make build  # Same as 'make'
or
make rebuild # Rebuild Pktgen, which removes the Builddir then builds
it again via meson/ninja
```

Run Demo

pktgen machine send packets ---->----->-----> demo spr machine receive packets

1. pktgen machine run "pktgen-dpdk" to send packets:

```
cd /pktgen-dpdk
# start pktgen
./usr/local/bin/pktgen -c 0x3 -n 2 -- -P -m "1.0" # if the prompt "Pktgen
got a Segment Fault", try again, which may be a bug of pktgen, Until the
following interface appears
```

```
<Main Page> Copyright(c) <2010-2021>, Intel Corporation
  Ports 0-0 of 1
  Flags:Port
                         : P-----Sngl
                                                   :0
Link Štate
                                  <UP-100000-FD>
                                                            ---Total Rate---
Pkts/s Rx
                                                    Θ
                                                                               Θ
                                                    0
                                                                               Θ
MBits/s Rx/Tx
                                                  0/0
                                                                             0/0
Pkts/s Rx Max
                                                    Θ
                                                                               Θ
        Tx Max
                                                                               Θ
Broadcast
                                                    Θ
Multicast
                                                    Θ
Sizes 64
                                                    Θ
       65-127
                                                    Θ
       128-255
                                                    Θ
       256-511
       512-1023
                                                   Θ
       1024-1518
                                                   Θ
Runts/Jumbos
                                                  0/0
ARP/ICMP Pkts
                                                  0/0
Errors Rx/Tx
Total Rx Pkts
                                                  0/0
                                                   Θ
       Tx Pkts
                                                   0
       Rx/Tx MBs
                                                 0/0
Pattern Type
Tx Count/% Rate
                                            abcd...
                                   Forever /100%
Pkt Size/Tx Burst
TTL/Port Src/Dest
                                  64 / 32
64/ 1234/ 5678
Pkt Type:VLAN ID
                                IPv4 / TCP:0001
                               0/ 0/ 0

0000/ 0/ 0

192.168.1.1

192.168.0.1/24

00:00:00:00:00:00

b4:96:91:ad:85:b0
802.1p CoS/DSCP/IPP:
VxLAN Flg/Grp/vid:
IP Destination
     Source
MAC Destination
Source : b4:96:91:ad:85:b0
PCI Vendor/Addr : 8086:1592/31:00.0
-- Pktgen 21.03.0 (DPDK 21.05.0) Powered by DPDK (pid:9275)
** Version: DPDK 21.05.0, Command Line Interface without timers
Pktgen:/>
```

Enter the following command to send packets:

```
# this mac address is SPR NIC mac address, which had previously recorded
set 0 dst mac 40:A6:B7:67:19:F0
set 0 proto tcp
set 0 size 9000
start 0 rate 0.01
# if you want pause, you can enter:
stop 0
```

```
Ports 0-0 of 1 <Main Page> Copyright(c) <2010-2021>, Intel Corporation
    Flags:Port : P-----Sngl
                                                                  :0
 Link State
                                          <UP-100000-FD>
                                                                            ---Total Rate---
Pkts/s Rx
                                                                   Θ
                                                    8,246,017
0/100,271
                                                                                          8,246,017
            Tx
MBits/s Rx/Tx
Pkts/s Rx Max
Tx Max
                                                       0/100,271
                                                                                          0/100,271
                                                                    Θ
                                                        8,246,017
                                                                                        8,246,017
Broadcast
                                                                     Θ
 Multicast
                                                                     Θ
 Sizes 64
                                                                     Θ
          65-127
                                                                     Θ
          128-255
                                                                     Θ
           256-511
                                                                     Θ
           512-1023
                                                                     Θ
           1024-1518
                                                                     Θ
                                                                  0/0
 Runts/Jumbos
 ARP/ICMP Pkts
                                                                  0/0
Total Rx Pkts : 0/0

Total Rx Pkts : 22,244,070

Rx/Tx MBs : 0/270,487

Pattern Type : abcd...

Tx Count/% Rate : Forever /100%

Pkt Size/Tx Burst : 1500 / 32

TTL/Port Src/Dest : 64/ 1234/ 5678

Pkt Type:VLAN ID : IPv4 / TCP:0001

802.1p CoS/DSCP/IPP : 0/ 0/ 0

VxLAN Flg/Grp/vid : 0000/ 0/ 0

IP Destination : 192.168.1.1

Source : 192.168.0.1/24

MAC Destination : 49:a6:b7:67:19:f0
         s Rx/Tx
                                                                  0/0
MAC Destination : 40:a6:b7:67:19:f0
    Source : b4:96:91:ad:85:b0
PCI Vendor/Addr : 8086:1592/31:00.0
 -- Pktgen 21.03.0 (DPDK 21.05.0) Powered by DPDK (pid:9379) ---
** Version: DPDK 21.05.0, Command Line Interface without timers Pktgen:/> set 0 dst mac 40:A6:B7:67:19:F0
Pktgen:/> set 0 proto tcp
Pktgen:/> set 0 size 1500
Pktgen:/> start 0
Pktgen:/>
```

2. demo machine:

```
# start test produce
cd /dsa-accelerated-mtcp/mtcp_merge_virtq/apps/example
./epping -f epping.conf
```

Then observe whether pktgen and Epping have data flow.

```
Loading ARP table from : config/arp.conf
ARP Table:
IP addr: 192.168.18.124, dst_hwaddr: B4:96:91:AD:85:B1
Initializing port 0... done:
[dpdk_load_module: 686] Failed to get flow control info!
[dpdk_load_module: 693] Failed to set flow control info!: errno: -95
Checking link statusdone
[ info] alloc wg 0 shared 0 size 128 addr 0x7ffa2ab80000 batch sz 0x400 xfer sz 0x80000000
         CPU 0: initialization finished.
dsa check count : 0
[mtcp_create_context:1448] CPU 0 is now the master thread.
dsa check count: 10000000
dsa check count: 20000000
dsa check count: 30000000
dsa check count: 40000000
dsa check count: 50000000
dsa check count: 60000000
TCP recved PPS:139.91
write cnt 521402
failed cnt 513000
dsa check count : 70000000
cpu memcpy len :1048576 cost 162826 cycles
dsa check count : 80000000
write cnt 561574
failed cnt 552655
TCP recved PPS:138.21
cpu memcpy len :1048576 cost 149142 cycles
dsa check count: 90000000
write cnt 561153
failed cnt 552240
```

4. Start Test

You must start epping first. and then start pktgen.

Sample Run

```
# Use memmove transfer size of 1m with 128 descriptors
./epping -f epping.conf -1 1m -n 128
```

The different **-n** parameter is mainly to not enter the cache when test specific transfer size(**-l** parameter).

benchmark with CPU

```
cd /dsa-accelerated-mtcp/mtcp_merge_virtq/apps/example
# 4K
./epping -f epping.conf -l 4k -n 32768
# 8K
./epping -f epping.conf -l 8k -n 16384
# 16K
./epping -f epping.conf -l 16k -n 8192
# 32K
./epping -f epping.conf -l 32k -n 4096
# 64K
./epping -f epping.conf -l 64k -n 2048
# 128K
./epping -f epping.conf -l 128k -n 1024
# 256K
./epping -f epping.conf -l 256k -n 512
```

```
# 512K
./epping -f epping.conf -l 512k -n 256
# 1M
./epping -f epping.conf -l 1m -n 128
```

benchmark with DSA

```
# The performance of different parameters is different. The following is a
combination of parameters with better performance
cd /dsa-accelerated-mtcp/mtcp_merge_virtq/apps/example
# 4K
./epping -f epping.conf -1 4k -n 32768 -d
./epping -f epping.conf -l 8k -n 16384 -d
# 16K
./epping -f epping.conf -l 16k -n 8192 -d
./epping -f epping.conf -1 32k -n 4096 -d
# 64K
./epping -f epping.conf -1 64k -n 2048 -d
./epping -f epping.conf -l 128k -n 1024 -d
# 256K
./epping -f epping.conf -l 256k -n 512 -d
# 512K
./epping -f epping.conf -l 512k -n 256 -d
./epping -f epping.conf -l 1m -n 128 -d
```

5.Measurement

PPS Measurement

```
# You can observe PPS in PKTGEN
```

```
Ports 0-0 of 1 <Main Page> Copyright(c) <2010-2021>, Intel Corporation
    Flags:Port : P-----Sngl
                                                             :0
Link State
                                         <UP-100000-FD>
                                                                         ---Total Rate---
Pkts/s Rx
                                                   571,324
                                                                                     571,324
                                                            160
                                                                                           160
           Tx
MBits/s Rx/Tx
                                                   37,563/11
                                                                                   37,563/11
Pkts/s Rx Max
                                                                                    583,994
                                                   583,994
           Tx Max
                                                          160
                                                                                             160
Broadcast
                                                               0
Multicast
                                                               0
Sizes 64
                                                               0
          65-127
          128-255
                                                               0
          256-511
                                                               0
          512-1023
                                                               0
          1024-1518
                                                               0
                                          0/62,138,033
Runts/Jumbos
ARP/ICMP Pkts
                                                            0/0
Errors Rx/Tx
Total Rx Pkts
                                                             0/0
                                            61,567,071
Tx Pkts : 10,688
Rx/Tx MBs : 4,048,712/771
Pattern Type : abcd...
Tx Count/% Rate : Forever /0.01%
Pkt Size/Tx Burst : 9000 / 32
TTL/Port Src/Dest : 64/ 1234/ 5678
Pkt Type:VLAN ID : IPv4 / TCP:0001
802.1p Cos/DSCP/IPP : 0/ 0/ 0
VxLAN Flg/Grp/vid : 0000/ 0/ 0
IP Destination : 192.168.1.1
Source : 192.168.0.1/24
MAC Destination : 40:a6:b7:67:19:f0
Source : b4:96:91:ad:85:b0
PCI Vendor/Addr : 8086:1592/31:00.0
-- Pktgen 21.03.0 (DPDK 21.05.0) Powered b
          Tx Pkts
                                                      10,688
 -- Pktgen 21.03.0 (DPDK 21.05.0) Powered by DPDK (pid:21903) ------
Pktgen:/> stop 0
Pktgen:/> start 0
Pktgen:/> stop 0
Pktgen:/> start 0
```

CPU Usage

```
# Copy the CPU occupied by the actual operation without DSA
perf record -C 7
perf report -i perf.data
```

```
47.87% epping libpthread-2.28.so [.] pthread_spin_lock
37.58% epping libc-2.28.so [.] __memmove_avx_unaligned_erms
  3.41% epping
3.34% epping
                                                               stito_out
                          epping
                                                               mtcp_write
                          epping
                                                               sfifo_in
   3.11% epping
                           epping
                                                               __vdso_gettimeofday
write_thread_func
   3.07% epping
                           [vdso]
            epping
                           epp ing
                          epping [.]
libpthread-2.28.so [.]
  0.31% epping
                                                               SBPut
                                                               __errno_location
pthread_spin_lock@plt
gettimeofday@plt
  0.10% epping
0.08% epping
                          epping
  0.08% epping
                           epping
  0.07% epping
                                                                pthread_spin_unlock@plt
                           epping
                                                               pthread_spin_unlock
_errno_location@plt
                           libpthread-2.28.so
  0.05% epping
                          tupthread-2.20.sepping
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
  0.03% epping
                                                               sync_regs
hrtimer_active
perf_event_task_tick
  0.03% epping
  0.03% epping
  0.02% epping
  0.02%
           epping
                                                                   _intel_pmu_enable_all.constprop.48
                                                               ktime_get
  0.01% epping
                                                               __sysvec_apic_timer_interrupt
lapic_next_deadline
  0.01% epping
  0.01% epping
                          [kernel.vmlinux]
perf
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
  0.01% perf
                                                                cmd record
  0.01%
            epping
                                                               rb next
                                                               trigger_load_balance
scheduler_tick
__update_load_avg_cfs_rq
  0.01% epping
  0.01% epping
  0.01% epping
                                                               __acct_update_integrals
account_user_time
ktime_get_update_offsets_now
calc_global_load_tick
  0.01% epping
  0.01% epping
  0.01%
            epping
  0.01%
            epping
                                                               _perf_ioctl
native_apic_msr_write
smp_call_function_single
  0.00%
                           [kernel.vmlinux]
            perf
  0.00%
             perf
                            [kernel.vmlinux]
  0.00%
             perf
                           [kernel.vmlinux]
```

CPU Usage with DSA

The CPU occupied by actually initiating the DSA copy (sum of three values)

```
libpthread-2.28.so
                                                                  pthread_spin_lock
            epping
                           [vdso]
                                                                     _vdso_gettimeofday
                           epping
           epping
                                                                  write thread func
                           epping
           epping
                                                                  mtcp_write_async
           epping
                           epping
                                                                  sfifo_in
           epping
                           epping
                                                                  sfifo_out
                                                                  gettimeofday@plt
            epping
                           epping
0.14% epping
                           libdsa userlib.so
                                                             .] movdir64b
 0.13%
                           [kernel.vmlinux]
                                                            [k] trigger_load_balance
           epping
0.06% epping
                                                                  SBPut_async
                           epping
                                                            [k] ktime_get_update_offsets_now
[k] lapic_next_deadline
0.06% epping
                           [kernel.vmlinux]
0.05% epping
                           [kernel.vmlinux]
                                                            [k] lapic_next_deadline
[k] idle_cpu
[k] ktime_get
[k] native_irq_return_iret
[k] hrtimer_active
[k] arch_scale_freq_tick
[k] send_call_function_single_ipi
[k] native_apic_msr_eoi_write
[.] pthread_spin_unlock@plt
[k] sync_rens
0.05%
                           [kernel.vmlinux]
           epping
0.04% epping
                           [kernel.vmlinux]
0.03% epping
0.03% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
                           [kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
0.03% epping
0.02% epping
0.02% epping
0.02% epping
                           epp ing
                                                            [k] sync_regs
[k] native_sched_clock
0.02% epping
0.01% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
                                                            [k] _raw_spin_lock
[k] read_tsc
[k] update_irq_load_avg
[k] llist_add_batch
0.01% epping
0.01% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
0.01% epping 0.01% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
0.01% epping
                                                                 pthread_spin_lock@plt
                           epping
                                                                  __update_load_avg_cfs_rq
_sysvec_apic_timer_interrupt
_x2apic_send_IPI_dest
                           [kernel.vmlinux]
0.01% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
                                                            [k]
[k]
0.01% epping
0.01% epping
0.01% epping
0.01% epping
                                                            [.] dsa_prep_desc_common
[.] dsa_prep_memcpy
                           libdsa userlib.so
                           libdsa_userlib.so
                                                            [k] swapps_restore_regs_and_return_to_usermode
[k] _update_load_avg_se
[k] calc_global_load_tick
[k] __intel_pmu_enable_all.constprop.48
[k] _raw_spin_lock_irq
0.01% epping
0.01% epping
0.01% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
                           [kernel.vmlinux]
                                                                  __intel_pmu_enable_all.constprop.48
_raw_spin_lock_irq
                           [kernel.vmlinux]
[kernel.vmlinux]
0.01% epping
0.01% epping
                           [kernel.vmlinux]
[kernel.vmlinux]
                                                                 __count_memcg_events.part.73
hrtimer update next event
0.00%
           perf
```

Bandwidth Measurement

1. Peak value measurement

```
peakValue = sizeof ( Total packets sent) / latency
```

2. Perf measurement

```
perf stat -e
dsa0/event=0x1,event_category=0x1/,dsa0/event=0x2,event_category=0x1/ -a -I 1000
```

The final result is the counts value * 32 = 195405108 * 32