Станкевич Матвей

ProgressiveGAN

ProGAN overview

-Mapping network: наличие полносвязных слоёв помогает распутать пространство Z

- -Mapping network: наличие полносвязных слоёв помогает распутать пространство Z
- -Аффинное преобразование с обучаемыми весами

- -Mapping network: наличие полносвязных слоёв помогает распутать пространство Z
- -Аффинное преобразование с обучаемыми весами
- -Шум умножается на обучаемые веса и прибавляется к выходу свёрточных сетей.

- -Mapping network: наличие полносвязных слоёв помогает распутать пространство Z
- -Аффинное преобразование с обучаемыми весами
- -Шум умножается на обучаемые веса и прибавляется к выходу свёрточных сетей.
- -Adaptive Instance Normalization

AdaIN
$$(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

Смешение стилей

Функция потерь

В качестве функции потерь для генератора используется non-saturating loss с R_1 -регуляризацией:

$$L = -\mathbb{E}_z(log(D(G(z)))) + \frac{\gamma}{2}\mathbb{E}_{p_D(x)}(||\nabla D(x)||)$$

Метрики качества

Frechet Inception Distance:

FID =
$$|\mu_D - \mu_G|^2 + tr(\Sigma_D + \Sigma_G - 2(\Sigma_D \Sigma_G)^{1/2}),$$

где μ_D и μ_G - выборочные средние, а \sum_D и \sum_G - матрицы выборочной ковариации векторных представлений реальных и сгенерированных изображений соответственно.

Метрики качества

Perceptual path length:

$$PPL = \mathbb{E}\left[\frac{1}{\epsilon^2}d\left(G(slerp(z_1, z_2; t)), G(slerp(z_1, z_2; t + \epsilon))\right)\right],$$

где z_1 , $z_2 \sim P(z)$, $t \sim U[0, 1]$, slerp - сферическая интерполяция, G - генератор, d - Евклидово расстояние.

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

Проблемы StyleGan

Характерной проблемой StyleGan является появление "пузырей" или "капель", обычно находящихся на границе волос и заднего фона.

B StyleGan2 шум прибавляется к изображению после нормировки.

Также после этого оказывается достаточно приводить изображение к единичной дисперсии, оставляя ненулевое среднее.

Вместо умножения картинки можно умножать веса самих свёрточных слоёв:

$$w'_{ijk} = s_i \cdot w_{ijk},$$

После этого можно также нормировать веса вместо нормировки данных:

$$w_{ijk}'' = w_{ijk}' / \sqrt{\sum_{i,k} w_{ijk}'^2 + \epsilon},$$

Проблемы StyleGan

Ещё одной проблемой является фиксированное положение некоторых частей лица, таких как зубы или глаза.

FFHQ	D or	iginal	D inpu	ıt skips	D residual	
	FID	PPL	FID	PPL	FID	PPL
G original	4.32	265	4.18	235	3.58	269
G output skips	4.33	169	3.77	127	3.31	125
G residual	4.35	203	3.96	229	3.79	243

LSUN Car	D original		D input skips		D residual	
	FID	PPL	FID	PPL	FID	PPL
G original	3.75	905	3.23	758	3.25	802
G output skips	3.77	544	3.86	316	3.19	471
G residual	3.93	981	3.40	667	2.66	645

Регуляризация

Ленивая регуляризация:

Градиент регуляризационных слагаемых в функции потерь считается не каждый раз, тем самым уменьшая вычислительную сложность.

Path length регуляризация:

$$\mathbb{E}_{\mathbf{w},\mathbf{y}\sim\mathcal{N}(0,\mathbf{I})} \left(\left\| \mathbf{J}_{\mathbf{w}}^T \mathbf{y} \right\|_2 - a \right)^2,$$

где w ~ f(z), J_w - якобиан генератора, а - экспоненциальное скользящее среднее $||J_wy||$.

Configuration	FFHQ, 1024×1024				LSUN Car, 512×384			
Comiguration	FID ↓	Path length ↓	Precision ↑	Recall ↑	FID ↓	Path length ↓	Precision ↑	Recall ↑
A Baseline StyleGAN [24]	4.40	212.1	0.721	0.399	3.27	1484.5	0.701	0.435
B + Weight demodulation	4.39	175.4	0.702	0.425	3.04	862.4	0.685	0.488
C + Lazy regularization	4.38	158.0	0.719	0.427	2.83	981.6	0.688	0.493
D + Path length regularization	4.34	122.5	0.715	0.418	3.43	651.2	0.697	0.452
E + No growing, new G & D arch.	3.31	124.5	0.705	0.449	3.19	471.2	0.690	0.454
F + Large networks (StyleGAN2)	2.84	145.0	0.689	0.492	2.32	415.5	0.678	0.514
Config A with large networks	3.98	199.2	0.716	0.422	_	_	_	_

Dataset	Resolution	StyleGAN (A)		StyleGAN2 (F)	
		FID	PPL	FID	PPL
LSUN CAR	512×384	3.27	1485	2.32	416
LSUN CAT	256×256	8.53	924	6.93	439
LSUN CHURCH	256×256	4.21	742	3.86	342
LSUN HORSE	256×256	3.83	1405	3.43	338

Список источников

https://arxiv.org/pdf/1812.04948.pdf

https://arxiv.org/pdf/1912.04958.pdf

https://towardsdatascience.com/explained-a-style-based-generat or-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f 431