k-Means Clustering

Problem: The following table gives the locations of data points (P_i) on a flat, 2-D coordinate surface. It also provides the initial random locations of two centroids (C_k) .

Name	X	y
\mathbf{P}_1	2	2
P_2	4	3
P_3	8	8
P_4	9	4
P_5	10	6
C_1	6	7
C_2	7	2

The goal is to find k=2 clusters, using the Manhattan distance metric.

<u>k-Means Algorithm:</u>

Initialize: select k random centroids

Repeat

1. Assign all points to nearest centroid m using the error metric b:

$$b_i^t \leftarrow \begin{cases} 1 \text{ if } ||x^t - m_i|| = \min_j ||x^t - m_j|| \\ 0 \text{ otherwise} \end{cases}$$

2. Re-compute centroid *m* of each cluster:

$$m_i \leftarrow \frac{\sum_t b_i^t x^t}{\sum_t b_i^t}$$

Until centroids are stable

where the x are data points, and the m are centroids.

Manhattan Distance metric

$$d(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$$

1a) Assign points to nearest centroid. Points P_1 , P_2 , and P_4 (shaded circles) are closer to centroid C_2 (7, 2). Points P_3 and P_5 (clear circles) are closer to centroid C_1 (6, 7):

Name	d (P _i , C ₁)	d(Pi,C2)
\mathbf{P}_1	9	5
P ₂	6	4
P ₃	3	7
P ₄	6	4
P ₅	5	7

1b) Re-compute centroid locations based on center of mass of the two clusters:

$$C_1: (6,7) \rightarrow (9,7)$$
 $C_2: (7,2) \rightarrow (5,3)$

2a) Re-assign points to nearest centroid. Points P₁ and P₂ (shaded circles) are still closer to centroid C₂; points P₃, P₅ and now P₄ (clear circles) are closer to centroid C₁:

Name	d (P _i , C ₁)	d(Pi,C2)
\mathbf{P}_1	12	4
P ₂	9	1
P ₃	2	8
P ₄	3	5
P ₅	2	8

2b) Re-compute centroid locations based on center of mass of the two clusters:

$$C_1: (9,7) \rightarrow (9,6)$$
 $C_2: (5,3) \rightarrow (3,2.5)$

No points will change clusters ⇒ the centroids are stable.