Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification

Poster ·	November 2020					
CITATIONS		READS				
0		33				
1 autho	1 author:					
8	Zhu Zhihui PINDUODUO 4 PUBLICATIONS 26 CITATIONS					
	SEE PROFILE					
Some of	Thu Zhihui PINDUODUO 4 PUBLICATIONS SEE PROFILE The of the authors of this publication are also working on these related projects:					
Project	Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification View project					

viewpoint-Aware Loss with Angular Regularization

for Person Re-Identification

Zhihui Zhu¹², Xinyang Jiang¹, Feng Zheng¹, Xiaowei Guo¹, Feiyue Huang¹, Weishi Zheng², Xing Sun¹

¹Tencent Youtu Lab, Shanghai, China

²Sun Yat-sen University, Shenzhen, China

²Southern University of Science and Technology, Shenzhen, China

Introduction

Fig.1 Comparisons of different methods

Motivation

- Viewpoint variations in this work, one of the most important and difficult challenges for Re-ID research and practical application.
- Existing methods treat viewpoint learning and identity discrimination as two separate progresses. In such a case, it is not a principle way to learn optimal identity classification under various viewpoint variations.
- Existing methods cast viewpoints of persons as hard labels, while in reality the viewpoint of probe image is ambiguous.

To address these issues, we in this paper

- propose a novel Viewpoint-Aware Loss with Angular Regularization(VA-reID), projects the feature from different viewpoints into a unified hyper-sphere and effectively models the distribution on both identity-level and viewpoint-level.
- introduce a soft label learning method called viewpoint-aware adaptive label smoothing method (VALSR) for obtaining adaptive soft label for identity-level and viewpoint-level feature representation.

Adaptive Label Smoothing

Given a training image with identity label y_i , the softmax loss of classification is

$$L_y = \frac{1}{K} \sum_{j}^{K} p_j log(q(j))$$

where p is the classification label,

$$p_j = \begin{cases} 1 & \text{if } i = y_i \\ 0 & \text{otherwise} \end{cases}$$

An improvement of labelling is LSR(label smoothing):

$$p_j = \begin{cases} 1 - \varepsilon & \text{if } j = y \\ \frac{\varepsilon}{K - 1} & \text{otherwise} \end{cases}$$

where ε is a manual value. However, this results in the same expected probability of ground-truth category for every input sample and so do other categories. A better idea is the adaptive label:

$$p_{j} = \begin{cases} 1 - \alpha(1 - q(j)) & \text{if } j = y\\ \frac{\alpha(1 - q(j))}{K - 1} & \text{otherwise} \end{cases}$$

The new smoothing parameter $\varepsilon = \alpha(1-q(j))$ is related to the prediction probability of network. α is a multiplicative scaling coefficient.

Framework

Fig.2 Framework of VA-reID

Viewpoint-Aware Adaptive Label Smoothing.

In order to model the distribution of different viewpoints, each identity class is further classified into 3 subclass, corresponding to 3 viewpoints (i.e., front, side and back viewpoint). The softmax loss of viewpoint classification is

classes

classes

$$L_v = \frac{1}{K} \sum_{j=1}^{K} \sum_{k=1}^{3} t_{j,k} log(r(j,k))$$

Similarly, we apply the Viewpoint-Aware Adaptive Label:

$$t_{jk} = \begin{cases} \frac{1-\varepsilon_1-\varepsilon_2}{\frac{\varepsilon_2}{2}} & \text{if } j=y_i, k=v_i \\ \frac{\varepsilon_2}{\frac{\varepsilon_1}{K-3}} & \text{otherwise} \end{cases}$$
 Fig.3 Illustration of adaptive soft label where $\varepsilon_1 = \alpha(1-\sum_{v=1}^3 r(y_i,v))$
$$\varepsilon_2 = \alpha(1-r(y_i,v_i)).$$

Overall loss.

We models the distribution on both identity-level and viewpoint-level. The overall loss:

$$L_{va} = L_y + \dot{L}_v + \beta L_R$$

Specifically, to maintain the visual similarity between features from the same person but with different viewpoints, we propose to add an extra regularization term to pull the 3 viewpoint centers W_{ii} closer to the corresponding identity center:

$$L_R = \sum_{k=1}^{K} \sum_{j=1}^{3} \frac{W_j^T \cdot U_{jk}}{||W_j|| \cdot ||U_{jk}||}$$

Results

Category	Method	Market-1501			DukeMTMC-reID		
Category		mAP	Rank-1	Rank-5	mAP	Rank-1	Rank-5
	PCB (Sun et al. 2018)	77.4	92.3	97.2	66.1	81.7	89.7
stripe based	PCB+RPP (Sun et al. 2018)	81.6	93.8	97.5	69.2	83.3	90.5
	MGN (Wang et al. 2018)	86.9	95.7	-	78.4	88.7	-
attention based	HA-CNN (Li, Zhu, and Gong 2018)	75.7	91.2	-	63.8	80.5	-
attention based	ABD-Net (Chen et al. 2019)	88.28	95.60	-	78.59	89.00	-
human parcina	SPReID (Kalayeh et al. 2018)	83.36	93.68	97.57	73.34	85.95	92.95
human parsing	DSA-reID (Zhang et al. 2019)	87.6	95.7	98.4	74.3	86.2	
	Pyramid (Zheng et al. 2019a)	88.2	95.7	98.4	79.0	89.0	-
metric learning	SRB(ResNet50) (Luo et al. 2019)	85.9	94.5	-	76.4	86.4	-
metric learning	SRB(SeResNext101) (Luo et al. 2019)	88.0	95.0	-	79.0	88.4	-
	HPM (Fu et al. 2019)	82.7	94.2	97.5	74.3	86.6	-
	OSCNN (Chen et al. 2018)	73.5	83.9	-	-	-	-
	PDC (Su et al. 2017b)	63.41	84.14	-	-	-	-
pose/view related	PN-GAN (Qian et al. 2018)	72.58	89.43	-	53.20	73.58	-
	PIE (Zheng et al. 2019b)	69.25	87.33	95.56	64.09	80.84	88.30
	PGR (Li et al. 2019)	77.21	93.87	97.74	65.98	83.63	91.66
This work	Ours	91.70	96.23	98.69	84.51	91.61	96.23
THIS WOLK	Ours+reranking	95.43	96.79	98.31	91.82	93.85	96.50

Tab.1 Performance comparisons to the SOTA results on Market-1501 and DukeMTMC-reID.

We evaluate our proposed VA-reID model with the state-of-the-art models based on deep learning. Our proposed VA-reID model outperforms the state-of-the-art methods.

Tab.2 Ablation Study

140.2 Holadon Staay									
Method	Market-1501		DukeMTMC-reID						
Method	mAP	Rank-1	mAP	Rank-1					
Xent	86.30	94.31	76.70	86.94					
LSR	86.72	94.35	77.47	87.43					
L_y (baseline)	86.97	94.7	77.99	87.39					
L_y + L_v	88.67	95.37	78.86	88.38					
L_y + L_R	88.25	95.25	78.25	87.84					
VA-reID	89.97	95.87	81.48	91.11					
VA-reID+RR	95.09	96.32	90.66	92.46					
VA-reID+local	91.70	96.23	84.51	91.61					
VA-reID+local+RR	95.43	96.79	91.82	93.85					

