Elle Simonds

Dr. Rodriguez

Intro To Algorithms

Apr 23, 2025

Assignment 7

1)

Vertex	Distance	E	Intermediate	F
Ε	0	A -	→ D	1
Α	2	A -		1
В	4	В		1
С	1	C		1
D	1	D-		F
F	1	F-	→ A	F
G	3	G-	→ B	G
Н	7	H -	→ 7	Н

3) A* was the shortest path to H in fewer iterations than Dijkstra because it uses a heuristic to guide the search, allowing it to prioritize more promising paths. Dijkstra explores uniformly, while A* is more focused.

7) Problem 4:

- Time: $O(n^2)$, since we need to scan all elements in the adjacency matrix.
- **Space**: O(1) if input is pre-loaded; otherwise, $O(n^2)$ if matrix is stored.

Problem 5:

- **Time**: Potentially exponential in the number of nodes, due to recursive backtracking for simple paths.
- Space: O(p), where p is the number of paths stored in memory (can be large).

Problem 6:

- Time: O(n), where n is the number of vertices, as we iterate over the input array once.
- **Space**: O(n^2) for storing the adjacency matrix and potentially more for the image data (if rendered graphically).