

Fig. 15. 6.

b sin φ' , 0), iar $H(a \cos \varphi, b \sin \varphi, h)$. Dreapta EH are equatible $\frac{x}{a} = \frac{z}{h} \cos \varphi - \frac{z-h}{h} \cos \varphi'$, **R.** Avem (fig. 6; s-a luat a=3, b=2, b=4, $POQ=150^{\circ}$) $D(a\cos\varphi, b\sin\varphi, 0)$, $E(a\cos\varphi', b\cos\varphi')$ Dacă se ia originea în punctul $\Omega\left(0,0,\frac{h}{2}\right)$, această ecuație devine- $\frac{y}{a} = \frac{z}{h} \sin \varphi - \frac{z - h}{h} \sin \varphi'.$ Ridicînd la pătrat și adunîndu-le, obținem $\frac{x^3}{a^2} + \frac{y^3}{b^3} - \frac{y^3}{a^2} + \frac{y^3}{a^2} - \frac{y^3}{a^2}$ $-\frac{4z(z-h)}{h^2}\sin^2\frac{\theta}{2}-1=0, \ (\theta=\varphi-\varphi').$ $a^2\cos^2\frac{\theta}{2}$ $b^2 \cos^3 \frac{\theta}{2}$

31. Fie dreptele d: 2x-1=0, y-z=0 și $d_2: 2x+z=0$, y-1=0. Se cere:

 $\frac{1}{4}h^2\cot^2\frac{\theta}{2} - 1 = 0, \text{ reprezentind un hiperboloid cu o pinză raportat la axele sale.}$

237

este un cumuru ue axa (x). Finza dacă ap+bq=0. Aplicație. Sîntem în cazul observației, Hiperboloidul are centrul în origine, dacă ap+bq=0. Aplicație. Sîntem în cazul observației, condiția ca centrul să fie în origine fiind satisfăcută. Se găsește hiperboloidul cu o pînză caz contrar, suprafața este un con cu viriul in origine) $q_1 p_1 p_2 p_3 p_4 p_4$ caz contrar, suprafața este un hiperboloid cu o pînză, este un cilindru de axă Oz). Dacă $aq \neq bp$, atunci suprafața este un hiperboloid cu o pînză.

 $\frac{x^2+y^2}{25}-z^2-1=0.$

și Q se coboară perpendiculare pe axa mare a elipsei, care perpendiculare două raze OP și OQ făcînd între ele un unghi constant. Din punctele P stant POQ se rotește în jurul vîrfului său. tatea H cu E. Să se găsească locul descris de dreapta EH cînd unghiul conculara la planul elipsei un segment de lungime DH=h. Se unește extremiintersectează elipsa în punctele D și E. Din punctul D se duce pe perpendi-30. Pe axa mare a unei elipse, ca diametru, se duce un cerc în care se iau