VUV AND EUV IRRADIATION OF CH₄ + NH₃ ICE MIXTURES

Lily Leung

Contents

- Motivation
- Methodology
 - Experimental setup
 - The spectrum of VUV (MDHL) energy source
 - Experimental Configurations
- Results
 - Production of CN
 - The relations between CN⁻ and C₂H₆
 - CN⁻ formation efficiency of EUV (40.8 eV) and VUV (9.27 eV)
- Astrophysical Implications
 - Understand CN⁻ formation after winter on Charon

Motivation

Ammonia on Organa Crater

- Ammonia
hydrate
(2.21μm) was
detected all over
the surfaces,
especially on
Organa Crater

from Grundy et al. (2016)

4

Surface temperatures at different latitudes

- Thermal model from Grundy et al. (2016) shows the pole position is below 25 K for 130 years
- Methane can condense on those positions where the temperature is below 25 K.

Quoted from Grundy et al. (2016)

What astrophysical environments are we demonstrating?

Production mechanism of CN-

Enthalpy of CH₃NH₂ formation

$$CH_3 + NH_2 \rightarrow CH_3NH_2 \Delta H = -3.64 \text{ eV}$$

Quoted from Kim and Kaiser (2011)

Production of CN-

- 2 steps/1 step?
- 2 steps rate equation:

$$[CN^-] = \left(1 + \frac{k_1 e^{-k_2 t}}{k_2 - k_1} - \frac{k_2 e^{-k_1 t}}{k_2 - k_1}\right) [A]_o$$

1 step rate equation:

$$[CN^-] = (1 - e^{-kt})[A]_o$$

Quoted from Kim and Kaiser (2011)

Production mechanism of CN-

- Different results from 2 e⁻ irradiating experiments
 - 5 keV e⁻ by Kim and Kaiser (2011):
 - The intermediate CH₃NH₂ was detected by TPD
 - 1-90 eV e⁻ experiment by Kundu et al.(2017)
 - The intermediate CH₃NH₂ cannot be detected by TPD

Experimental Protocol:

- 1. To compare with previous studies
 - Kim and Kaiser (CH₄:NH₃ 3:1) (5 keV e⁻)
 - Kundy et al. (CH₄:NH₃ 3:2) (1-90 eV e⁻)
 - We perform (CH₄:NH₃ 3:2) photon sources: VUV (9.27 eV) and EUV (40.8 eV)
- 2. To simulate the surface of Charon
 - Different relative proportion of CH₄:NH₃ 1:5, 1:10, 1:20

Methodology

Experimental Configurations

Energet ic	Constituent	Column Density (x10 ¹⁵ molecules cm ⁻²)			
Source		3:2	1:5	1:10	1:20
VUV	$\mathrm{CH_4}$	900	120	60	30
(MDHL)	NH_3	600	600	600	600
EUV (30.4 nm)	$\mathrm{CH_4}$	900	120		
	NH_3	600	600		

Different initial amount of CH₄ correspond to different ratio of CH₄:NH₃ ice mixtures

12

Experimental Procedure

The spectrum of VUV (MDHL) energy source

- H₂ 0.4 torr was adopted
- 19.1% is Ly-α
- average photon energy is 9.27eV
- EUV is 40.8 eV (30.4nm) provided by NSRRC

Quoted from Chen et al. (2014)

15

Results

Beer's Law

Absorbance $\tau(v)$:

$$\tau(v) = -lnT = -\ln\left(\frac{I(v)}{I_o(v)}\right) = nl\sigma(v)$$

n: number density (molecules cm⁻³)

l: path length (cm)

$$\sigma(v)$$
: cross-section (cm² molecules ⁻¹)

Column density *N*:

$$N = \frac{\int \tau(v)dv}{A(v)}$$

A(v): absorption strength (Avalue) (cm molecule⁻¹)

Infra-red spectra before (black lines) and after (coloured lines) VUV irradiation where CN^- , C_2H_6 and C_3H_8 are formed after VUV irradiation.

1. Production of CN-

1. Production of CN-

Ratio of CH ₄ +NH ₃	A (x10 ¹⁶ molecules cm ⁻²)	k ₁ (x10 ⁻¹⁸ photon ⁻¹)	k ₂ (photon ⁻¹)
1:20	4.75 ± 0.40	0.70 ± 0.09	>1
1:10	4.51 ± 0.18	1.33 ± 0.13	>1
1:5	4.61 ± 0.18	1.93 ± 0.19	>1
3:2	2.24 ± 0.03	8.21 ± 0.70	>1

1. Production of CN-

Methylamine
(CH₃NH₂) with
m/z=31 is detected
by QMS

CN- is formed via a

CN⁻ is formed via a 2 step mechanism.

2. The scenario for NH₃ dominating ice mixtures CH₄

Once CH₄ becomes CH₃ radical, CH₃NH₂ can be easily formed and hence become CN⁻.

A diagram of $CH_4:NH_3 = 1:5$

2. The scenario for CH₄ dominating ice mixtures

CH₃NH₂ (formed by CH₃ + NH₂) has a competing relationship with C₂H₆ (formed by 2 CH₃) and C₃H₈ (formed by CH₂ + C₂H₆ or C₂H₄ + CH₄)

C₂H₆ can form easier than NH₃ dominating case

A diagram of $CH_4+NH_3=3:2$

2. The relations between CN⁻ (NH₃ dominant) and C₂H₆ (CH₄ dominant)

CH ₄ :NH ₃	C ₂ H ₆ (ML)	CN- (ML)	Ratio of CN ⁻ to C ₂ H ₆
3:2 (CH ₄ dominant)	19.1	23	1.2
1:5 (NH ₃ dominant)	4.3	49	11.3

Concentration of CN⁻ is not proportional to initial amount of CH₄ when CH₄ is in excess.

3. Decay rate of reactants by EUV (40.1 eV) and VUV (9.27 eV)

■ Fitting with $y = Ae^{-kx} + C$

1.00

0.95

0.90

0.85

0.80

0.75

0.70

NH₃reduction_CH₄+NH₃_3:2_EUV

NH₂reduction_CH₄+NH₂_3:2_VUV

CH₄reduction_CH₄+NH₃_3:2_EUV CH_reduction_CH_+NH__3:2_VUV

5.0x10¹⁷1.0x10¹⁸1.5x10¹⁸2.0x10¹⁸2.5x10¹⁸3.0x10¹⁸

3. Formation rate of CN⁻ by EUV (40.1 eV) and VUV (9.27 eV)

CN ⁻ production rate k (photon ⁻¹ cm ²)	CH ₄ : NH ₃ 3:2 (x 10 ⁻¹⁸)	CH ₄ : NH ₃ 1:5 (x10 ⁻¹⁸)
VUV (MDHL)	8.21±0.70	1.93±0.19
EUV (30.4nm)	1.92±1.99	0.63±0.37
Ratio of k (VUV to EUV) (CN ⁻)	4.28	3.06

3. Energy needed for forming radicals by EUV (40.1 eV) and VUV (9.27 eV)

Radicals species	CH ₄	NH_3
- 1 H	4.55 eV	4.67 eV
-2 H	4.78 eV	4.38 eV
-3 H	9.19 eV	7.63 eV

Combined results

Ratio of k (VUV to EUV) (CN ⁻)	4.28	3.06
Ratio of k (VUV to EUV) (CH ₄)	6.06±0.07	5.52±0.07
Ratio of k (VUV to EUV) (NH ₃)	3.18±0.12	2.07±0.13

The reduced destruction cross-section of EUV (30.4nm) irradiation is the main factor of reducing the formation rate of CN⁻.

Astrophysical Implications

Estimate the column density of CN⁻ formed after winter on Charon (from result 2)

Ly-α flux: 1.9 x 10⁹ eV cm⁻² s⁻¹ (Grundy et al. 2016)

→photon dose after 1 Pluto winter 7.64 x 10 ¹⁷ photons cm⁻²

CH₄ after winter ~173 ML

Assume the column density of NH₃ is 600 ML

CH ₄ :NH ₃	CH ₄ (ML)	CN ⁻ (ML)
1:5	120	36.6
1:10	60	29.5
1:20	30	18.9
3:2	900	22.5

Ly-α is the main photon source to produce CN⁻ on Charon (from result 3)

- VUV(19.1% of which is Ly-α) will produce CN⁻ 3.06 4.28 times more efficient than EUV
- It is expected that Ly- α will produce CN⁻ more efficient than EUV
- Ly- α flux is 1 order of magnitude more intense than EUV irradiations at 39.1 A.U. (Grundy et al. 2016)
 - Ly- α flux: 1.9 x 10⁹ eV cm⁻² s⁻¹
 - EUV flux: $8.7 \times 10^7 \text{ eV cm}^{-2} \text{ s}^{-1}$

Conclusion

- 1. Detection of methylamine implies that CN⁻ is formed via a 2 step mechanism.
- 2. Formation of CN⁻ is not proportional to the initial column density of CH₄ when CH₄ is in excess.
 - This implies that we have to experimentally estimate the column density of CN⁻ after Charon winter for further investigations.
- 3. The reduced destruction cross-section of EUV (30.4nm) irradiation is the main factor of reducing the formation rate of CN⁻.
 - This implies that Ly-α (VUV) is the main photon source to produce CN⁻ on Charon.

Q & A

Production yield and production rates

- The yields should be correlated with initial limiting substances
- Fitting rates are the same

