

智能网联车路协同 城市大脑建设框架研究

文/常振廷 谢振东 董志国

随着V2X技术的逐步成熟,车路协同技术已初步具备车辆行驶状态下"车—路—网—云"安全、可靠、低延时的瞬间通信和应用交互能力,其对道路交通行业的影响将甚于GPS技术,持续推动与公交、出租等道路交通行业的深度融合,掀起智慧交通新一轮建设热潮。本文在概述V2X产业技术及应用现状的基础上,提出了智能网联车路协同城市大脑、建设框架及车路协同路侧设施布点原则和典型场景,并对下一步工作进行了展望。

V2X 产业技术及应用现状

V2X(Vehicle to Everything, 车路协同)是车与外界进行信息交 换的一种通信方式,包括车与车之 间的直接通信(V2V)、汽车与行 人通信(V2P)、汽车与道路基础 设施通信(V2I),以及车辆通过 移动网络与云端进行通信(V2N)。

利用 V2X 技术搭建的车辆网络属于车载自组织网络 (Vehicular Ad-hoc Network, VANET)。目前,世界上用于 V2X 通信的主流

技术包括专用短程通信(Dedicated Short Range Communication, DSRC)技术和基于蜂窝移动通信系统的C-V2X(Cellular Vehicle to Everything)技术(包括LTE-V2X和5GNR-V2X)。

C-V2X 技术基于蜂窝网络, 提供 Uu 接口(蜂窝通信接口)和 PC5 接口(直连通信接口)。蜂 窝方式是利用基站作为集中式的 控制中心和数据信息转发中心,由 基站完成集中式调度、拥塞控制和 干扰协调等,可以显著提高 LTE- V2X 的接入和组网效率,保证业务的连续性和可靠性。直通方式是车与车间直接通信,针对道路安全业务的低时延高可靠传输要求、节点高速运动、隐藏终端等挑战,进行了资源分配机制增强。C-V2X技术旨在将"人一车—路—云"等交通参与要素有机地联系在一起,不仅可以为交通安全和效率类应用提供通信基础,还可以将车辆与其他车辆、行人、路侧设施等交通元素有机结合,弥补了单车智能的不足,推动了协同式应用服务发

常振廷 广东省广州市公共交通集团有限公司、广州智慧公共交通联合创新研究院副院长

谢振东 国务院特殊津贴专家、教授级高级工程师、广州市公共交通集团有限公司大数据总监

董志国 广东省广州市公共交通集团有限公司科技信息部副部长、粤港澳大湾区自动驾驶产业联盟秘书长

展,且拥有清晰地、具有前向兼容性的 5G 演进路线,可以利用 5G 的低延时、高可靠性、高速率、大容量等网络特性。

车路协同产业是智能网联汽车、电子设备、信息通信、道路交通运输等行业深度融合的新型产业形态。

近年来,我国出台了一系列指导性文件,以推动 C-V2X 技术的快速发展。2018年1月,国家发展和改革委员会发布《智能汽车

创新发展战略》(征求意见稿), 将构建自主可控的智能汽车技术 创新体系、构建跨界融合的智能汽 车产业生态体系、构建先进完备的 智能汽车路网设施体系、构建系 统完善的智能汽车法规标准体系、 构建科学规范的智能汽车产品监 管体系、构建全面高效的智能汽车 信息安全体系这六大体系作为国 家战略任务。2018年12月,工业 和信息化部发布《车联网(智能网 联汽车)产业发展行动计划》,将 通过持续努力,推动车联网产业实现跨越发展,技术创新、标准体系、基础设施、应用服务和安全保障体系全面建成,高级别自动驾驶功能的智能网联汽车和5G-V2X逐步实现规模化商业应用,"人一车一路一云"实现高度协同。2019年9月,中共中央、国务院印发了《交通强国建设纲要》,要求加强智能网联汽车(智能汽车、自动驾驶、车路协同)研发,形成自主、可控、完整的产业链。

为促进我国 C-V2X 技术发展 和产业化加速,2018年10月工业 和信息化部发布《车联网(智能 网联汽车)直连通信使用5905-5925MHz 频段管理规定(暂行) 》, 规划 5905-5925MHz 作为 LTE-V2X 技术的车联网(智能网联汽 车)直连通信的工作频段,规定 了频率许可、无线电台执照、无 线电发射设备型号核准、对现有 合法业务保护准则、车联网(智 能网联汽车)直连通信无线电设 备技术要求(信道带宽 20MHz、 发射功率限值 EIRP、载频容限、 邻道抑制比、频谱发射模板等), 标志着我国 LTE-V2X 正式进入 产业化阶段。

目前,工业和信息化部支持无 锡创建全国首个车联网先导区。 无锡示范区已构建全球首个城市 级开放道路的示范环境,涉及240 个路口、170平方公里、5条快速 路、1段高速公路,全面开放40 余项交通管控信息,计划于2021 年实现 1000 个路口、500 平方公 里,到2023年实现2000个路口、 1200平方公里的交通管控信息开 放。国家发展和改革委员会在上海 实施了全国首个 2019 增强制造业 核心竞争力专项——基于智能汽车 云控基础平台的 "车路网云一体 化"综合示范建设项目,建设区域 覆盖 25 平方公里,智能化改造道 路 70 公里, 支持的智能网联车辆 规模达1万辆。此外,北京、广州、 天津、长沙、重庆、武汉、深圳等 "

车路协同技术已逐步具备车辆行驶状态 下"车一路一网一云"安全可靠、低延时的 瞬间诵信和应用交互能力。

地也都开展了 C-V2X 测试验证与 示范应用工作。

随着各地示范应用工作的开 展,产业界开始越来越多地关注车 路协同和智能网联汽车、道路交通 运输三者协同为驾驶安全、通行效 率以及新型出行服务带来的重大 影响,主要表现车路协同技术能提 高车辆对道路交通环境的信息感 知和实时双向交互能力,提升车辆 本身的协同控制能力。

随着 LTE-V2X 技术的逐渐成 熟及 5G NR-V2X 技术标准的逐 步完善,车路协同技术已逐步具 备车辆行驶状态下"车一路一网一 云"安全可靠、低延时的瞬间通信 和应用交互能力,其对道路交通运 输行业的影响将甚于 GPS 技术, 持续推动与公交、出租、货运等道 路交通行业的深度融合, 掀起智慧 交诵新一轮热潮。

智能网联车路协同城市大脑

智能网联车路协同城市大脑主 要是指利用 C-V2X 技术提供的低 延时通信能力、终端一边缘一区 域一中心的多级分布式 V2X 计算 能力,构建"人一车一路一云"高 度协同的大数据决策控制云平台, 实现智能网联汽车车载单元、路侧 单元、蜂窝网络、云平台和道路交 通的融合应用,逐步打造"协同感 知、协同控制、协同决策"的新一 代智慧交通管控体系,提升城市交 通行车安全和运行效率,促进城市 高质量可持续发展。

智能网联车路协同城市大脑主 要由车路协同路侧单元、车路协同 车载单元、决策控制云平台和道路 交通应用四部分组成。平台框架如 表 1 所示:

(一)车路协同路侧设施

车路协同路侧设施主要包括路 侧单元(RSU)、感知单元、边 缘计算单元和道路交通路侧设施 网联化改造。其中,路侧单元集成 C-V2X 技术,实现路与车、路与 人、路与云平台之间的全方位连 接,为车辆提供行车安全、交通 效率和信息服务,同时也为协同 控制、协同决策提供手段。感知 单元由一系列感知设备与处理设 备构成,实现对本地交通环境和 状态的实时感知, 交通环境信息

表1 智能网联车路协同城市大脑平台框架

包括信号灯信息、交通参与者信 息、交通事件信息、定位信息等, 传感器包括激光雷达、毫米波雷 达、图像采集器、环境传感器等。 边缘计算单元负责对本地或区域 的数据进行处理、存储以及应用、 服务的计算与发布,有多种实现 方式,可以融合到 RSU 终端内, 可以到边缘 MEC 单元,可以是区 域计算中心,也可以形成终端一 边缘一区域一中心的多级分布式 V2X 计算架构。道路交通路侧设 施网联化改造主要包含交通信号 控制、交通诱导信息发布等设施 网联化改造,将道路交通管理设 施数据直接给到路侧单元和边缘 计算单元。

(二)车路协同车载单元

车路协同车载单元(OBU,前装也叫"T-Box")是集成C-V2X技术,实现车与路、车与车、车与人、车与云平台之间的全方位连接,为车辆提供行车安全、交通效率和信息服务,主要包括通信芯片、通信模组、终端设备、V2X协议栈及V2X应用软件。应用过程中,要重点考虑车辆安全驾驶信息交互设计,以避免司机端信息过载及与自动驾驶车辆感知信息不互通。

(三)车路协同决策控制云平台

车路协同决策控制云平台主要 由地图(含场景化高精度地图),

路侧设施、车载单元的状态管理和数据交互,交通管理平台间信息交互,道路交通环境协同感知管理,行车安全协同控制策略管理,交通运行效率协同管理策略,交通信息服务协同发布策略,智能网联可视化应用分析和数据开放管理等组成,为智能网联汽车、C-V2X基础设施、通讯网络、交通运行指挥等提供平台侧服务,实现车路协同的全局管控和运行态势监测,保障车路协同体系运作的有序和高效。

(四)道路交通应用

车路协同技术只有同道路交通 应用进行深度融合,才能建立满足 道路交通安全行车与营运管理需

"

车路协同路侧设施布点既要充分考虑公 交、出租等有人驾驶智能网联汽车需求,又 要满足自动驾驶汽车行车需求。

求的一系列业务规则,赋予 V2X 技术行业生命力。道路交通应用主 要包括重点营运车辆管理系统(公 交、出租、客运、校车、公务、网 约、货运等)、特种车辆管理系统 (110、120、119等)、车企车联 网系统、自动驾驶汽车管理系统、 道路交通诱导系统、汽车电子网联 管理系统、导航地图应用系统及车 联网信息服务系统,不同应用对路 侧设施的布点及数据要求也不同。

车路协同典型场景

车路协同路侧设施布点既要充 分考虑公交、出租等有人驾驶智 能网联汽车需求,又要满足自动驾 驶汽车行车需求,在信号交叉口、 事故黑点、桥隧、学校行人过街等 进行布点,从而提升行驶安全、提 高交通效率。主要典型场景包括:

(一)行车安全场景

通过车路协同路侧设施的多源 感知融合,对道路环境实时状况进 行感知、分析和决策,在可能发生 危险或碰撞的情况下,向驾驶员提 供超视距安全信息、进行车辆碰撞 预警,提升驾驶员对驾驶环境、其 他交通参与者的感知能力,从而减 少交通事故或降低交通致伤亡率。

典型场景包括事故黑点碰撞预警、超视距会车信息提醒、学校门口行人过街提醒、桥隧限高及涉水情况提醒、复杂交叉路口全息交通环境预警、前方事故预警、盲区监测、道路突发危险情况提醒、车间距离预警与控制、弯道超速、侧翻事故预警等。

(二)交通效率场景

通过 C-V2X 技术增强道路交通的协同感知能力,将收集的道路信息发给车辆,驾驶员根据实时信息规划路线、动态控制车速,从而降低等待焦虑,提高出行舒适感。除此之外,它还为公共交通及特殊车辆提供优先通行,提高交通管理效率和区域化协同管控能力。

典型场景包括红绿灯信号播报、智能车速引导、限速限行、事故/施工占道、交通管制、特殊车辆优先通行、编队行驶等。

(三)出行信息场景

出行信息服务基于通信制式分

为两类,一是车联网应用,二是位置服务。车联网应用让车辆成为互联网组成部分,整车厂、互联网企业高度重视,位置服务主要是对周边小范围进行信息推送,如停车位引导、路侧商务推广等。

(四)自动驾驶场景

C-V2X 车路协同路侧设施可以为自动驾驶车辆提供增强交通环境信息,提升自动驾驶的安全性。典型应用场景包括车辆编队行驶、远程驾驶等。

发展展望

未来出行是"人一车一路一 云"高度协同的移动信息走廊, 是一个由"政产学研用"共同推 动持续迭代的过程。智能网联车 路协同设施既是广义上的智能网 联交通工程设施,又是狭义的智 能网联汽车电子设备,是目前产 业界承载"人一车一路一云"高 度协同的最可能技术路径。当然, 由于 C-V2X 技术仍处在研究与 小规模示范验证阶段。但随着城 市 C-V2X 网络大规模落地应用, 下一步车路协同建设框架需深入 开展协同感知、协同控制、协同 决策以及城市 C-V2X 网络运营主 体和运营机制研究,从而促进自 动驾驶与车路协同(智能网联汽 车)产业可持续发展。 ▮

责任编辑:郭文佳 guowenjia@ccidmedia.com