#### 10.1.1 Logic gate symbols

Six different logic gates will be considered in this chapter:



▲ Figure 10.1 Logic gate symbols

#### Truth tables

**Truth tables** are used to trace the output from a logic gate or logic circuit. The NOT gate is the only logic gate with one input; the other five gates have two inputs (see Figure 10.1).

Although each logic gate can only have one or two inputs, the number of inputs to a logic circuit can be more than 2; for example, three inputs give a possible 2<sup>3</sup> (=8) binary combinations. And for four inputs, the number of possible binary combinations is 2<sup>4</sup> (=16). It is clear that the number of possible binary combinations is a multiple of the number 2 in every case. The possible inputs in a truth table can be summarised as shown in Table 10.1.

▼ Table 10.1 All possible inputs for truth tables with two, three and four inputs

| Inputs |   |  |  |  |
|--------|---|--|--|--|
| Α      | В |  |  |  |
| 0      | 0 |  |  |  |
| 0      | 1 |  |  |  |
| 1      | 0 |  |  |  |
| 1      | 1 |  |  |  |

| Inputs |   |   |  |  |  |
|--------|---|---|--|--|--|
| Α      | В | С |  |  |  |
| 0      | 0 | 0 |  |  |  |
| 0      | 0 | 1 |  |  |  |
| 0      | 1 | 0 |  |  |  |
| 0      | 1 | 1 |  |  |  |
| 1      | 0 | 0 |  |  |  |
| 1      | 0 | 1 |  |  |  |
| 1      | 1 | 0 |  |  |  |
| 1      | 1 | 1 |  |  |  |

|   | inputs |   |   |  |  |  |  |  |
|---|--------|---|---|--|--|--|--|--|
| Α | В      | С | D |  |  |  |  |  |
| 0 | 0      | 0 | 0 |  |  |  |  |  |
| 0 | 0      | 0 | 1 |  |  |  |  |  |
| 0 | 0      | 1 | 0 |  |  |  |  |  |
| 0 | 0      | 1 | 1 |  |  |  |  |  |
| 0 | 1      | 0 | 0 |  |  |  |  |  |
| 0 | 1      | 0 | 1 |  |  |  |  |  |
| 0 | 1      | 1 | 0 |  |  |  |  |  |
| 0 | 1      | 1 | 1 |  |  |  |  |  |
| 1 | 0      | 0 | 0 |  |  |  |  |  |
| 1 | 0      | 0 | 1 |  |  |  |  |  |
| 1 | 0      | 1 | 0 |  |  |  |  |  |
| 1 | 0      | 1 | 1 |  |  |  |  |  |
| 1 | 1      | 0 | 0 |  |  |  |  |  |
| 1 | 1      | 0 | 1 |  |  |  |  |  |
| 1 | 1      | 1 | 0 |  |  |  |  |  |
| 1 | 1      | 1 | 1 |  |  |  |  |  |
|   |        |   |   |  |  |  |  |  |

#### **10 BOOLEAN LOGIC**

As we can see, a truth table will also list the output for every possible combination of inputs.

# 10.2 The function of the six logic gates

### 10.2.1 NOT gate



| Description:            | Tru       | ıth table: | How to write th            |
|-------------------------|-----------|------------|----------------------------|
|                         | ▼ Table 1 | 10.2       |                            |
| The output, X, is 1 if: | Input     | Output     | X = NOT A (logic notation) |
|                         | Α         | Х          |                            |
| the input, A, is 0      | 0         | 1          | X = A (Boolean algebra)    |
|                         | 1         | 0          |                            |

10.2.2 AND gate

Note the use of Boolean algebra to represent logic gates. This is optional at IGCSE but many students may prefer to use this notation (see NOTE later).

# A \_\_\_\_\_X

▲ Figure 10.3

| Description:                                        |         | Truth tal | ble:    | How to write this:           |
|-----------------------------------------------------|---------|-----------|---------|------------------------------|
|                                                     | ▼ Table | 10.3      |         |                              |
|                                                     | Inp     | uts       | Outputs |                              |
| The output, X, is 1 if: both inputs, A and B, are 1 | Α       | В         | Х       | X = A AND B (logic notation) |
|                                                     | 0       | 0         | 0       |                              |
|                                                     | 0       | 1         | 0       | X = A . B (Boolean algebra)  |
|                                                     | 1       | 0         | 0       |                              |
|                                                     | 1       | 1         | 1       |                              |

## 10.2.3 OR gate



| Description:             |         | Truth tal | ole:   | How to write this:          |
|--------------------------|---------|-----------|--------|-----------------------------|
|                          | ▼ Table | 10.4      |        |                             |
|                          | Ing     | outs      | Output |                             |
| The output, X, is 1 if:  | Α       | В         | Х      | X = A OR B (logic notation) |
| either input, A or B, or | 0       | 0         | 0      |                             |
| both, are 1              | 0       | 1         | 1      | X = A + B (Boolean algebra) |
|                          | 1       | 0         | 1      |                             |
|                          | 1       | 1         | 1      |                             |

358

#### 10.2.4 NAND gate (NOT AND)



▲ Figure 10.5

| Description:                                               | Truth table: |      |        | How to write this:           |
|------------------------------------------------------------|--------------|------|--------|------------------------------|
| The output, X, is 1 if: input A AND input B are NOT both 1 | ▼ Table      | 10.5 |        |                              |
|                                                            | Inputs       |      | Output |                              |
|                                                            | Α            | В    | Х      | X = A NAND B (logic notation |
|                                                            | 0            | 0    | 1      |                              |
|                                                            | 0            | 1    | 1      | X = A . B (Boolean algebra)  |
|                                                            | 1            | 0    | 1      |                              |
|                                                            | 1            | 1    | 0      |                              |

# 10.2.5 NOR gate (NOT OR)



▲ Figure 10.6

| Description:                                                   | Truth table: |      |        | How to write this                        |
|----------------------------------------------------------------|--------------|------|--------|------------------------------------------|
|                                                                | ▼ Table      | 10.6 |        | -                                        |
|                                                                | Inputs       |      | Output |                                          |
| The output, X, is 1 if:<br>neither input A nor<br>input B is 1 | Α            | В    | Х      | X = A NOR B (logic notation              |
|                                                                | 0            | 0    | 1      | $X = \overline{A + B}$ (Boolean algebra) |
|                                                                | 0            | 1    | 0      | X = A + B (Bootean algebra)              |
|                                                                | 1            | 0    | 0      |                                          |
|                                                                | 1            | 1    | 0      |                                          |

## 10.2.6 XOR gate



▲ Figure 10.7

| Description:                    | Truth table: |      |        | How to write this:                                             |  |
|---------------------------------|--------------|------|--------|----------------------------------------------------------------|--|
| The output, X, is 1 if:         | ▼ Table      | 10.7 |        | X = A XOR B (logic notation)                                   |  |
|                                 | Inputs       |      | Output | (12 510 1100001011)                                            |  |
| (input A is 1 AND input B is 0) | A            | В    | Х      | $X = (A \cdot \overline{B}) + (\overline{A} \cdot B)$ (Boolean |  |
| ,                               | 0            | 0    | 0      | algebra)                                                       |  |
| or                              | 0            | 1    | 1      |                                                                |  |
| (input A is 0 AND input B is 1) | 1            | 0    | 1      | NOTE: this is sometimes written as                             |  |
| 2 .3 2/                         | 1            | 1    | 0      | (A + B) . (A . B)                                              |  |

#### **Activity 10.1**

Show why X = (A AND NOT B) OR (NOT A AND B) and

Y = (A OR B) AND (NOT (A AND B)) both represent the same logic gate.

359