Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling

Helga Ingimundardottir & Thomas Philip Runarsson

School of Engineering and Natural Sciences, University of Iceland

20th of January, 2011

Overview

- 1 Introduction
- 2 Job Shop Scheduling Problem
 - Mathematical formulation
 - Dispatching rules
 - Features for JSSP
 - Data generation
 - Logistic regression
- 3 Experimental Study
 - Technical setup
 - Main conclusions
- 4 Future Work

Goal

- General goal is how to search for good solutions for an arbitrary problem domain.
- To automate the design of optimization algorithms.
- In this work we learn new dispatching rules for JSSP
- Using randomly sampled problem instances and their corresponding optimal solutions.

Previous work

Methods previously proposed for solving JSSP:

- Genetic programming, e.g. Tay & Ho (2008)
- Reinforcement learning, e.g. Zhang & Dietterich (1995)
- Regression trees, e.g. Li & Olafsson (2005)

- lacksquare Job shop scheduling consists of a set of n jobs that must be scheduled on a set of m machines.
- Each job has an indivisible operation time on machine
- The time in which machine is idle is called slack time,
- Each job must follow a predefined machine order
- Each machine can handle at most one job at a time
- Optimal schedule is the one where the time to complete all jobs is minimal (minimum makespan).

Example of Job Shop Scheduling

00

Figure: A schedule being built, the dashed boxes represent six different possible jobs that could be scheduled next using a dispatch rule.

Dispatching rules for solving JSSP

00

- Dispatching rules are of a construction heuristics, where one starts with an empty schedule and adds on one job at a time.
- When a machine is free the dispatching rule inspects the waiting jobs and selects the job with the highest priority.
- Most effective single priority based dispatch rules:
 - Most work remaining (MWRM)
 - Least work remaining (LWRM)
 - Shortest processing time (SPT)
 - Largest processing time (LPT)

00

Feature selection

feature	description
$\phi(1)$	processing time for job on machine
$\phi(2)$	work remaining
$\phi(3)$	start-time
$\phi(4)$	end-time
$\phi(5)$	when machine is next free
$\phi(6)$	current makespan
$\phi(7)$	slack time for this particular machine
$\phi(8)$	slack time for all machines
$\phi(9)$	slack time weighted w.r.t. number of
	operations already assigned

Table: Features for JSSP

Generating training data

- Determine the order (sequence) of jobs assigned, at the first available time slot (to the left)
- When job is assigned, new state occurs and features are updated
- At each time step, a good/bad ordinal data pair is only created if final makespan is different.
 - At least one or more optimal solution for each JSSP
 - Sequence representation is not uniquely determined.

Preference learning

- The preference learning problem is specified by a set of point/rank pairs:
 - lacksquare Optimal decision: $ec{z_o} = ec{\phi}^{(o)} ec{\phi}^{(n)}$, ranked +1
 - Non-optimal decision: $\vec{z_n} = \vec{\phi}^{(n)} \vec{\phi}^{(o)}$, ranked -1
 - In this study the training set is created from known optimal sequences of dispatch.

Logistic regression

- Mapping of points to ranks: $\{h(\cdot): \Phi \mapsto Y\}$
 - $\vec{\phi}_o \succ \vec{\phi}_s \quad \Leftrightarrow \quad h(\vec{\phi}_o) > h(\vec{\phi}_s)$
- Logistical regression: obtain function h^* that can for a given pair $(\vec{\phi}_i, y_i)$ and $(\vec{\phi}_j, y_j)$ distinguish between two different outcomes: $y_i > y_j$ and $y_j > y_i$.
- Problem of predicting the relative ordering of all possible pairs of examples

The surrogate considered may be defined by a linear function in the feature space:

$$h(\vec{\phi}) = \sum_{i=1}^{m} w_i \vec{\phi} = \langle \vec{w} \cdot \vec{\phi} \rangle.$$

Training size

Figure: Deviation from optimal makespan as a function of size of training set. Solid line represents model $lin_{U(1,100)}$ and dashed line represents model $lin_{U(50,100)}$.

Training accuracy

Figure: Training accuracy as a function of time. Solid line represents model $lin_{U(1,100)}$ and dashed line represents data distributions $lin_{U(50,100)}$

•00000

Comparing different dispatching rules

Figure: Histogram of deviation from optimal makespan for the dispatching rules $(lin_{U(R,100)})$, (SPT), (MWRM) and (LWRM). The figure on the left depicts model $lin_{U(1,100)}$, and the figure on the right is of model $lin_{U(50,100)}$.

Comparing different dispatching rules using ratio from optimality

U(1, 100)	mean	std	med	min	max
$lin_{U(1,100)}$	1.0842	0.0536	1.0785	1.0000	1.2722
SPT	1.6707	0.2160	1.6365	1.1654	2.2500
MWRM	1.2595	0.1307	1.2350	1.0000	1.7288
LWRM	1.8589	0.2292	1.8368	1.2907	2.6906

U(50, 100)	mean	std	med	min	max
$lin_{U(50,100)}$	1.0724	0.0446	1.0713	1.0000	1.2159
SPT	1.7689	0.2514	1.7526	1.2047	2.5367
MWRM	1.1835	0.0994	1.1699	1.0217	1.5561
LWRM	1.9422	0.2465	1.9210	1.3916	2.6642

Table: Mean value, standard deviation, median value, minimum and maximum values using the test sets corresponding to data distributions U(1,100) (above) and U(50,100) (below).

Robustness towards data distribution using ratio from optimality

	model	test set	mean	std	med	min	max
#1	$lin_{U(1,100)}$	U(1, 100)	1.0844	0.0535	1.0786	1.0000	1.2722
#2	$lin_{U(50,100)}$	U(1, 100)	1.0709	0.0497	1.0626	1.0000	1.2503
#3	$lin_{U(1,100)}$	U(50, 100)	1.1429	0.1115	1.1158	1.0000	1.5963
#4	$lin_{U(50,100)}$	U(50, 100)	1.0724	0.0446	1.0713	1.0000	1.2159

Table: Mean value, standard deviation, median value, minimum and maximum values for the test sets corresponding to data distributions U(1,100) and U(50,100), on both models $lin_{U(1,100)}$ and $lin_{U(50,100)}$.

Feature selection

weight	$lin_{U(1,100)}$	$lin_{U(50,100)}$	description
$\bar{w}(1)$	-0.6712	-0.2220	processing time for job on machine
$\bar{w}(2)$	-0.9785	-0.9195	work remaining
$\bar{w}(3)$	-1.0549	-0.9059	start-time
$\bar{w}(4)$	-0.7128	-0.6274	end-time
$\bar{w}(5)$	-0.3268	0.0103	when machine is next free
$\bar{w}(6)$	1.8678	1.3710	current makespan
$\bar{w}(7)$	-1.5607	-1.6290	slack time for this particular machine
$\bar{w}(8)$	-0.7511	-0.7607	slack time for all machines
$\bar{w}(9)$	-0.2664	-0.3639	slack time weighted w.r.t. number of
			operations already assigned

Table: Mean value, standard deviation, median value, minimum and maximum values for the test sets corresponding to data distributions U(1,100) and U(50,100), on both models $lin_{U(1,100)}$ and $lin_{U(50,100)}$.

Fixed weights vs. varied weights

Figure: Weights of features as a function of time, for data distribution U(1,100) (left) and U(50,100) (right).

Robustness towards data distribution using fixed weights using ratio from optimality

	model	test set	mean	std	med	min	max
#1	$l\bar{i}n_{U(1,100)}$	U(1, 100)	1.0862	0.0580	1.0785	1.0000	1.2722
#2	$l\bar{i}n_{U(50,100)}$	U(1, 100)	1.0706	0.0493	1.0597	1.0000	1.2204
#3	$l\bar{i}n_{U(1,100)}$	U(50, 100)	1.1356	0.0791	1.1296	1.0000	1.5284
#4	$l\bar{i}n_{U(50,100)}$	U(50, 100)	1.0695	0.0459	1.0658	1.0000	1.2201

Table: Mean value, standard deviation, median value, minimum and maximum values for the test sets corresponding to data distributions U(1,100) and U(50,100), on both fixed weight models $l\bar{i}n_{U(1,100)}$ and $l\bar{i}n_{U(50,100)}$.

Future work

- Overcome problems due to non unique sequence representation of JSSP
- Other learning methods,
 - supervised learning, e.g. decision trees;
 - unsupervised learning, e.g. reinforcement learning;
- Other data distributions and dimensions of JSSP
- Adding due dates to JSSP

