3) Non-abelian duternal symmetrical
A theory of the form
$ \mathcal{L} = \sum_{\alpha=1}^{N} \left(\partial_{\mu} \phi_{\alpha} \right)^{2} \phi_{\alpha} - \frac{1}{2} \sum_{\alpha=1}^{N} \phi_{\alpha}^{2} - g\left(\sum_{\alpha=1}^{N} \phi_{\alpha}^{2} \right)^{2} $ $ \text{if inv't under } G = SO(N) \text{ or } U(N/2) \text{ if the Little unitably complete field.} $
i's i'mu't under G = SO(N) on U(N/2) if the field unitably complete feed.
50(3) in X-Lold way
I a trick to determine the current. Know that $\delta \mathcal{L} = 0$. Re-do the han farmation with $\alpha = \alpha(x)$. We'll find $\delta \mathcal{K} = (\partial_{\mu} \alpha(x)) h^{\mu}(\phi)$,
with $\alpha = \alpha(x)$. We'll find $\partial \mathcal{K} = (\partial_{\mu} \alpha(x)) h^{\mu}(\phi)$,
Since $\delta k = 0$ when $\alpha = count$, we must have $\delta S = \int \delta k = -\int \alpha k \partial_r h^r$
Since $\delta k = 0$ when $\alpha = count$, we must have $\delta S = \int \delta k = -\int \alpha x \partial_{\mu} h^{\dagger}$ which means that Eath one such yield (so $\delta S = 0$) I variations including $\delta \alpha = \alpha(x)\phi$).
We have du ht = 0, so identify ht = jt ,4 the conserved consert.
The Hamiltonian Formulation con also accommodate field through. Define the configete momentum $\pi(x) = \frac{\partial \mathcal{X}}{\partial y}$, not these configet with total momentum \mathcal{X} . The Hamiltonian lensely $\mathcal{X} = \pi(x) \dot{\phi}(x) - \mathcal{X}(x)$ where, as in channel mediances, we discovered in favorit of $\pi(x)$ averywhere see \mathcal{X} .
mouletum T(x) = 2 , not there confined with total monentum?
the Hamiltonian heracky $\mathcal{H} = \pi(x) \phi(x) - \mathcal{L}(x)$ where, as in channel mechanics,
we dissipate of infavore of $\pi(x)$ averywhere in \mathcal{X} .
$\mathcal{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}(\nabla\phi)^2 - V(\phi), \qquad \Rightarrow \pi = \dot{\phi}$
$\mathcal{J} = \frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + V(\phi)$
the Hamiltonian is the special possible $H = \int d^3x \mathcal{X} - agree with the total energy E from Neether's theorem. Hamiltonian formulation is not more firstly Larente l'av't. Of course, the physiss remain unchanged and so of must really be Larente l'av't.$
energy E from Norther's theorem. Hamelon's by ore of = 22/20 , TT = -02/100
give us to M of o(x). The Hamiltonian formulation is not monifichly Lorente low t.
of course, the physigs remain unchanged and so of must really be faller & 1/4 .
Canonical Quantization
Recall in QM, conomical quantitation rays to take generalized coards que and momenta pa and premote them to ops. We replace Portion brackets with commendations
[gripb] = i Sab. We will be the eased for da(x) and folk The (x).

 $H = \frac{\omega}{2}(aa^{\dagger} + a^{\dagger}a) = \omega(a^{\dagger}a + \frac{1}{2})$ $[H, at] = \omega at$ $[H, o] = -\omega a$ there armed that a, at take us between energy eightebel. Let H|E7 = E|E7 Hun $Hat|E7 = (E+\omega)at|E7$ and $Hat|E7 = (E-\omega)a|E7$. bret a ladde af energy excentatory with energy ..., E-2w, E-w, E, E+w, E+2w, ...

enter de la companya de la companya