Recitation 8

True or False: There exists matrices $M\in\mathbb{R}^{2 imes 3}$ such that $\dim({\rm Ker}(M))=1$ and ${\rm rank}(M)=2.$

Let n>m and $A\in\mathbb{R}^{n\times m}$. Assume that A has "full rank", meaning that ${\rm rank}(A)=\min(n,m)=m$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example).
- 2. Do there exist two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Let n>m and $A\in\mathbb{R}^{n\times m}$. Assume that A has "full rank", meaning that ${\rm rank}(A)=\min(n,m)=m$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example).
- 2. Do there exist two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Let n>m and $A\in\mathbb{R}^{n\times m}$. Assume that A has "full rank", meaning that ${\rm rank}(A)=\min(n,m)=m$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example).
- 2. Do there exist two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

True or False: The matrix of an orthogonal projection is orthogonal.

True or False: The matrix of an orthogonal projection is orthogonal.

Let S be a subspace of \mathbb{R}^n and let P_S be the orthogonal projection onto S. Show that $\dim(S)=\operatorname{Tr}(P_S)$.

Let S be a subspace of \mathbb{R}^n and let P_S be the orthogonal projection onto S. Show that $\dim(S)=\operatorname{Tr}(P_S)$.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, that satisfies $A^2 = Id$. Show that the matrix

$$M = \frac{1}{2}(A + Id)$$

is the matrix of an orthogonal projection.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, that satisfies $A^2 = Id$. Show that the matrix

$$M = \frac{1}{2}(A + Id)$$

is the matrix of an orthogonal projection.

Let
$$ho\in(0,1).$$
 Let $v_1,\dots,v_k\in\mathbb{R}^n$ such that
$$\|v_i\|=1 \ {\rm and}\ \langle v_i,v_j\rangle=\rho \ {\rm for\ all}\ i\neq j$$

Show that $k \leq n$.

Let
$$ho\in(0,1).$$
 Let $v_1,\dots,v_k\in\mathbb{R}^n$ such that
$$\|v_i\|=1 \ {\rm and}\ \langle v_i,v_j\rangle=\rho \ {\rm for\ all}\ i\neq j$$

Show that $k \leq n$.

Extra: 2019 Midterm Problem 6

Let $A \in R^{n \times m}$. Show that AA^{\top} is invertible if and only if $\operatorname{rank}(A) = n$.

Extra: 2019 Midterm Problem 6

Let $A \in R^{n \times m}$. Show that AA^{\top} is invertible if and only if $\operatorname{rank}(A) = n$.