HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF FAKULTÄT FÜR MATHEMATIK

Kursmaterial

BEGLEITEND ZUM TUTORIUM

Miniskript zur Analysis II

Inhaltsverzeichnis

1 Differential- und Integral $\operatorname{rechnung\ im\ }\mathbb{R}^n$				
1.1	Grundlagen	1		
1.2	Totale Differenzierbarkeit	3		
1.3	Satz von Taylor	4		
1.4	Lokale Extrema	4		
1.5	Satz über implizite Funktionen	5		
1.6	Minimierung unter Nebenbedingungen	5		
1.7	Parameterabhängige Integrale	6		
	1.1 1.2 1.3 1.4 1.5 1.6	Differential- und Integralrechnung im \mathbb{R}^n 1.1 Grundlagen1.2 Totale Differenzierbarkeit1.3 Satz von Taylor1.4 Lokale Extrema1.5 Satz über implizite Funktionen1.6 Minimierung unter Nebenbedingungen1.7 Parameterabhängige Integrale		

Das vorliegende Miniskript entsteht im Rahmen des Tutoriums zur Analysis II, zum Ende des Sommersemesters 2021/2022 an der Heinrich Heine Universität Düsseldorf. Inhaltlich ist es an [2] orientiert, viele Schreibweisen kommen von Wikipedia und sind mit monospace verlinkt.

1 Differential- und Integralrechnung im \mathbb{R}^n

1.1 Grundlagen

Definition 1.1.1 (Metrik). Eine Abbildung $d: X \times X \to \mathbb{R}$ heißt Metrik auf einer Menge X wenn für alle $x, y, z \in X$ gilt:

- i) d(x,y) = 0 genau dann, wenn x = y (Definitheit).
- ii) d(x, y) = d(y, x) (Symmetrie).
- iii) $d(x, z) \leq d(x, y) + d(y, z)$ (Dreieckungleichung)

Das Paar (X, d) heißt metrischer Raum.

Auf jeder Menge X ist eine triviale "gleichmäßig diskrete" Metrik gegeben durch:

$$d(x,y) := \begin{cases} 0 & x = y \\ 1 & \text{sonst} \end{cases}$$
 (1)

Definition 1.1.2 (Norm). Eine Abbildung $|| \ || : V \to \mathbb{R}_0^+$ heißt Norm auf einem Vektorraum V über den Körper \mathbb{K} , wenn für alle $x, y \in V$ und $\lambda \in \mathbb{K}$ gilt:

- i) ||x|| = 0 genau dann, wenn x = 0, (Definitheit).
- ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$, (absolute Homogenität).
- iii) $||x + y|| \le ||x|| + ||y||$, (Dreieckungleichung).

Das Paar (V, || ||) heißt Vektorraum.

Sei $p \geq 1$, $I = [a, b] \subset \mathbb{R}$ und f stetig von I nach \mathbb{R} (oder \mathbb{C}), dann ist

$$f \mapsto ||f||_p := \left(\int_a^b |f(x)|^p \,\mathrm{d}x\right)^{\frac{1}{p}}$$

eine Norm.

Eine Norm induziert durch die Festlegung d(x,y) := ||x-y|| eine Metrik auf $V \times V$.

Bemerkung 1.1.3 (Skalarprodukt). Eine positiv definite symmetrische Bilinearform $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}_+$, auf einem reellen Vektorraum V heißt Skalarprodukt. Das bedeutet für alle $x, y, w, z \in V$ und $\lambda \in K$ gilt:

- i) $\langle x, x \rangle = 0$ genau dann, wenn x = 0 (Definietheit).
- ii) $\langle x, y \rangle = \langle y, x \rangle$ (Symmetrie).
- iii) $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ sowie $\langle x,y+z\rangle=\langle x,y\rangle+\langle x,z\rangle$ (linear in beiden Argumenten).

Der Zusammenhang zwischen Skalarprodukt, Norm und Metrik ist:

$$\text{Skalarprodukt} \quad \xrightarrow{||x|| := \sqrt{\langle x, x \rangle}} \quad \text{Norm} \quad \xrightarrow{d(x, y) := ||x - y||} \quad \text{Metrik}.$$

Andersherum induziert eine Metrik im Allgemeinen keine Norm und eine Norm im Allgemeinen kein Skalarprodukt.

zuletzt aktualisiert am 5. September 2022

kontakt: jonathan.busse@hhu.de

Definition und Satz 1.1.4. Seien (X, d_X) und (Y, d_Y) metrische Räume. Dann heißt f stetig auf X genau dann, wenn alle offenen $V \subseteq Y$ ein offenes Urbild $f^{-1}(V)$ in X besitzen. Dies ist äquivalent zum Folgenkriterium: Für alle $a \in X$ gilt $\lim_{x\to a} f(x) = f(a)$, was bedeutet

$$\forall a \ \forall \epsilon \ \exists \delta \quad \forall x \in X : \qquad d_X(x,a) < \delta \ \Rightarrow \ d_Y(f(x),f(a)) < \epsilon.$$

Ferner heißt f gleichmäßig stetig genau dann, wenn

$$\forall \epsilon \; \exists \delta \; \forall a, x \in X : \qquad d_X(x, a) < \delta \; \Rightarrow \; d_Y(f(x), f(a)) < \epsilon.$$

Zuletzt heißt f Lipschitz stetig, wenn eine Konstante L existiert, sodass

$$\forall a, x \in X:$$
 $d_X(f(x), f(a)) \leq L \cdot d_Y(x, y)$

Lemma 1.1.5. Seien X, Y und Z metrische Räume und $f, g \colon X \to \mathbb{R}$ sowie $h \colon Y \to X$ stetige Funktionen.

- i) Dann sind f + g und $f \cdot g$ stetig.
- ii) Sei ferner $g(x) \neq 0$ für $x \in X$, dann ist f/g stetig.
- iii) Die Verkettung $f \circ h \colon Y \to \mathbb{R}$ ist stetig.
- iv) Gleichmäßig stetige Funktionen sind stetig.
- v) Lipschitz stetige Funktionen sind stetig¹.

Definition und Satz 1.1.6. Definition. Eine Teilmenge K eines metrischen Raumes X heißt kompakt, wenn jede offene Überdeckung $(U_i)_{i \in I}$ von K eine endliche Teilüberdeckung besitzt, d.h. es existieren $i_1, \ldots, i_k \in I$, so dass

$$K \subset U_{i_1} \cup U_{i_2} \cup \ldots \cup U_{i_k}$$
.

Sei $K \subseteq \mathbb{R}^n$, dann ist K genau dann kompakt wenn eine der folgenden Eigenschaften gelten:

- i) K ist beschränkt und abgeschlossen.
- ii) Jeder Folge $(a_n)_{i\in\mathbb{N}}$ mit $a_i\in K$ für $n\in\mathbb{N}$ besitzt eine in K konvergente Teilfolge.

Sei $f: K \to X$ stetig, dann gilt:

- i) f ist gleichmäßig stetig.
- ii) f(K) ist kompakt.
- iii) f nimmt auf K Maximum und Minimum an.

Definition und Satz 1.1.7 (Kurve). Sei I ein Intervall, dann heißt $\varphi \colon I \to \mathbb{R}^n$ Weg² stetig differenzierbar, falls für $1 \le i \le n$ die reelle Funktion $I \ni x \mapsto \varphi_i(x)$ stetig³ differenzierbar ist. In diesem Fall ist die Weglänge gegeben durch

$$\int_{I} ||f'(x)|| \, \mathrm{d}x.$$

Definition 1.1.8 (partiell differenzierbar). Sei $U \subseteq \mathbb{R}^n$ offen, dann heißt $f: U \to \mathbb{R}$ partiell differenzierbar, wenn für alle $x \in U$ und der Grenzwert

$$\frac{\partial f}{\partial x_i} := \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}, \quad (1 \le i \le n)$$

existiert, wobei $e_i \in \mathbb{R}^n$ den *i*-ten Einheitsvektor bezeichnet. Wir sagen, f ist *stetig* partiell Differenzierbar, falls alle partiellen Ableitungen stetig sind.

Zu partiell differenzierbaren f ist der Gradient ∇f von f gegeben durch:

$$\nabla f(x) := \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

 $^{^3\}mathrm{Und}$ nur differenzierbar, wenn die Ableitung nicht stetig ist.

¹Lineare stetige Funktionen sind Lipschitz stetig.

²Das Bild $\varphi(I)$ heißt Kurve.

Für ein partiell differenzierbares Vektorfeld $v: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ setzen wir die Divergenz "div v" von v:

$$\operatorname{div} v := \langle \nabla, v \rangle := \sum_{k=i}^{n} \frac{\partial}{\partial x_{i}} v_{i}.$$

Sei f zudem zwei Mal stetig differenzierbar, dann ist das Laplace Operator " Δf " von f gegeben durch:

$$\Delta f := \langle \nabla, \nabla \rangle f = \text{div } \nabla f = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} f.$$

Satz 1.1.9 (von Schwarz). Sei $U \subseteq \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ k-Mal stetig partiell differenzierbar, dann gilt für alle $i_1, \ldots, i_k \in \{1, \ldots, n\}$ und Permutationen π von $1, \ldots, k$:

$$\frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial}{\partial x_{i_k}} f(x) = \frac{\partial}{\partial x_{i_{\pi(1)}}} \cdots \frac{\partial}{\partial x_{i_{\pi(k)}}} f(x).$$

1.2 Totale Differenzierbarkeit

Definition 1.2.1. Sei $U \subseteq \mathbb{R}^n$ offen, dann heißt $f: U \to \mathbb{R}^m$ in $x \in U$ (total) differenzierbar, wenn eine Matrix $A \in \mathbb{R}^{n \times m}$ existiert, sodass für ζ in einer Umgebung der Null

$$f(x + \zeta) = f(x) + A\zeta + ||\zeta|| \cdot \varphi(\zeta),$$

und $\varphi(\zeta)$ für $\zeta \to 0$ stetig gegen Null konvergiert⁴.

Definition 1.2.2. Sei $U \subseteq \mathbb{R}^n$ offen, dann ist die Richtunsableitung von $f: U \to \mathbb{R}^m$ im Punkt $x \in U$ in Richtung $v \in S^{n-1}$ (bei Existenz) gegeben durch

$$D_v f(x) := \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} f(x+tv) \Big|_{t=0}$$

Bezüglich des Zusammenhang zwischen den Differenzierbarkeitsbegriffen gelten die Implikationen

stetig part. diff'bar \Rightarrow total diff'bar \Rightarrow Richtungsabl. existieren \Rightarrow part. diff'bar.

Die Richtungsableitung von f im Punkt x in Richtung des kanonischen i-ten Einheitsvektors e_i entspricht der partiellen Ableitung

$$D_{e_i}f(x) := D_i f(x) := \frac{\partial f}{\partial x_i}(x).$$

Zusammen rechtfertigt dies die identifizierung von A aus Definition 1.2.1 mit der Funktionalmatrix Df, auch "Jakobi-Matrix" J_f oder auch einfach Ableitung f' im Punkt x,

$$\mathrm{D}f(x) \coloneqq J_f(x) \coloneqq \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}},$$

welche sich aus den partiellen Ableitungen zusammensetzt. Auch für die mehrdimensionale Ableitung gilt die Kettenregel:

Abbildung 1: Größe der Matrizen in der mehrdimensionalen Kettenregel.

⁴Das bedeutet $r(\zeta) := ||\zeta|| \cdot \varphi(\zeta)$ ist eine Fehlerfunktion, welche welche asymptotisch gegenüber $||\zeta||$ vernachlässigbar ist, auch $r(\zeta) = o(||\zeta|)$ ".

Satz 1.2.3 (Kettenregel). Seien $U \in \mathbb{R}^n$, $V \in \mathbb{R}^m$ offene Mengen mit wohldefinierter Komposition

$$(g: V \to \mathbb{R}^k) \circ (f: U \to V): U \to \mathbb{R}^k$$

differenzierbarer Abbildungen f, g. Dann ist $g \circ f$ differenzierbar und für das Differential⁵ gilt

$$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x).$$

1.3 Satz von Taylor

Definition 1.3.1 (Multiinidex). Für ein Tupel $\alpha := (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ und $x \in \mathbb{R}^n$ sei

$$|\alpha| \coloneqq \sum_{k=1}^n \alpha_k, \qquad \alpha! \coloneqq \prod_{k=1}^n \alpha_k!, \qquad x^{\alpha} \coloneqq \prod_{k=1}^n x_k^{\alpha_k}.$$

Für eine $|\alpha|$ -mal stetig differenzierbare Funktion f und Differentialoperator D sei

$$\mathbf{D}^{\alpha} \coloneqq \mathbf{D}_1^{\alpha_1} \mathbf{D}_2^{\alpha_2} \dots \mathbf{D}_n^{\alpha_n} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}, \qquad \text{wobei} \qquad \mathbf{D}_k^{\alpha_k} \coloneqq \underbrace{\mathbf{D}_k \circ \mathbf{D}_k \circ \dots \circ \mathbf{D}_k}_{\alpha_k \text{-Mal}}.$$

Satz 1.3.2 (Taylorsche Formel). Sei $U \subseteq \mathbb{R}^n$ offen und $x, \zeta \in \mathbb{R}^n$ sodass $\{x + t\zeta : 0 \le t \le q\} \subset U$. Dann existiert für alle n + 1-mal stetig differenzierbaren $f : U \to \mathbb{R}$ ein $t \in [0, 1]$ sodass

$$f(x+\zeta) = \underbrace{\sum_{|\alpha| \le n} \frac{\mathrm{D}^{\alpha} f(x)}{\alpha!} \zeta^{\alpha}}_{:=T_n f(\zeta;x)} + \underbrace{\sum_{|\alpha| = n+1} \frac{\mathrm{D}^{\alpha} f(x+t\zeta)}{\alpha!} \zeta^{\alpha}}_{:=R_n f(\zeta;x)}.$$

Polynom 1. Ordnung

Polynom 2. Ordnung

Polynom 3. Ordnung

Polynom 5. Ordnung

Abbildung 2: Taylorpolynome von $(x,y)^T \mapsto \sin(x) - y^2/2$ (in grau hinterlegt) auf der Einheitskreisscheibe [Animation].

1.4 Lokale Extrema

Definition 1.4.1 (Definitheit, Hessematrix). Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt

positiv [negativ] definit also $A \succ 0$ [$A \prec 0$] wenn $x^T A x > 0$ [$x^T A x < 0$] positiv [negativ] semidefinit also $A \succeq 0$ [$A \preceq 0$] wenn $x^T A x \ge 0$ [$x^T A x \le 0$]

für alle $x \in \mathbb{R}^n \setminus \{0\}$ und indefinit sonst. Betrachte hierzu die Eigenwerten oder Hauptminoren von A. Bei der Bestimmung von Extrema spielt die Definitheit der Hessematrix

$$H_f(x) := \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

von zweimal stetig differenzierbaren f auf offenem $U\subseteq\mathbb{R}^n$ im Punkt $x\in U$ eine entscheidende Rolle.

 $^{^5}$ Klarer wird die Kettenregel Möglicherweise mit der Jakobi-Matrix: $J_{g \circ f}(x) = J_g(f(x)) \cdot J_f(x)$.

Satz 1.4.2 (Notwendige Bedingung für Extremum). Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ partiell Differenzierbar. Besitzt f in $x \in U$ ein lokales Extremum, dann gilt

$$\nabla f(x) = 0$$

Satz 1.4.3 (Hinreichende Bedingung für Extremum). Zweimal stetig differenzierbares $f: U \to \mathbb{R}^n$ hat für offenes U in $x \in U$ ein striktes lokales Maximum [respektive Minimum], wenn

$$\nabla f(x) = 0$$
 sowie $H_f(x) \prec 0$, [respektive $H_f(x) \succ 0$].

1.5 Satz über implizite Funktionen

Satz 1.5.1 (Banachscher Fixpunktsatz). Auf der abgeschlossenen, nicht leeren Teilmenge A eines vollständig normierter Raumes $(X, ||\cdot||)$ besitzt eine "Kontraktion" $\Phi: A \to A$,

$$||\Phi(y) - \Phi(z)|| < ||y - z||, \quad (y, z \in A)$$

genau einen Fixpunkt. Das bedeutet für einen beliebigen Startwert $x_0 \in A$ konvergiert die Folge $x_{i+1} := \Phi(x_i)$ gegen einen Fixpunkt x

$$\lim_{n \to \infty} x_n = x = \Phi(x).$$

Satz 1.5.2 (über implizite Funktionen). Seien $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$ offen und $F: U \times V \to \mathbb{R}^n$ stetig differenzierbar mit Jakobi-Matrix

$$DF(x,y) := \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_m} & \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_n} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_m} & \frac{\partial F_n}{\partial y_1} & \cdots & \frac{\partial F_n}{\partial y_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial y}(x,y) \end{bmatrix}.$$

Sei $F(x_0, y_0) = 0$ und $\frac{\partial}{\partial y} F(x_0, y_0)$ invertierbar. Dann existieren offene Umgebungen $U_0 \subseteq U$ von x_0 und $V_0 \subseteq V$ von y_0 sowie stetig differenzierbares $f: U_0 \to V_0$ sodass $f(x_0) = y_0$ und für alle $(x, y) \in (U_0 \times V_0)$:

$$F(x,y) = 0 \qquad \Leftrightarrow \qquad y = f(x).$$

Insbesondere können wir f "implizit differenzieren, also die Jakobi-Matrix angeben

$$Df(x) = -\left(\frac{\partial F}{\partial y}(x, f(x))\right)^{-1} \cdot \frac{\partial F}{\partial x}(x, f(x))$$
 (2)

auch ohne die Abbildungsvorschrift $x \mapsto f(x)$ zu kennen.

1.6 Minimierung unter Nebenbedingungen

Definition 1.6.1. (Untermannigfaltigkeit) Eine Teilmenge $M \subseteq \mathbb{R}^n$ heißt k-dimensionale Untermannigfaltigkeit des \mathbb{R}^n , wenn für alle $a \in M$ eine offene Umgebung U von a existiert sodass eine folgenden Eigenschaften erfüllt ist:

	∃ offene Mengen	$\exists C^p$ -Abbildung	Rang	
i)	$U \subseteq \mathbb{R}^n, \ V = \mathbb{R}^{n-k}$	$f:U\to V,$	n-k	$U \cap M = \{x \in U \mid f(x) = 0\}$
ii)	$U \subseteq \mathbb{R}^n, \ V \subset \mathbb{R}^n$	h:U o V diffeomorph	n	$h(U \cap M) = V \cap (\mathbb{R}^k \times \{0_{\mathbb{R}^{n-k}}\})$
iii)	$U \subseteq M, \ V \subset \mathbb{R}^k$	$arphi^{-1}:V o U$ homöomorph 6	k	

Wir nennen (das implizit gegebene) φ Karte und φ^{-1} lokale Parametrisierung.

⁶Praktisches Kriterium: Wenn φ auf offenem $V \subseteq \mathbb{R}^k$ stetig differenzierbar und der Rang D φ in jedem Punkt gleich k, existiert für jedes $t \in V$ eine offene Umgebung V_t , sodass $\varphi|_{V_t} \to \varphi(V_t)$ homöomorph.

Abbildung 3: Urbild und Bild der C^p -Abbildungen von Untermannigfaltigkeiten.

Satz 1.6.2 (Lagrange Multiplikatoren). Sei $U \subset \mathbb{R}^n$ offen und induziert $f = (f_1, \dots, f_{n-k}) \colon U \to \mathbb{R}^{n-k}$ eine k-dimensionale Untermannigfaltigkeit

$$M = \{x \in U \mid f(x) = 0\}$$

dann existieren für differenzierbares $F:U\to\mathbb{R}$ mit lokalem Extremum a von $F|_M$ "lagrangsche Multiplikatoren" $\lambda_1,\ldots,\lambda_{n-k}\in\mathbb{R}$, so dass

$$\nabla F(a) + \sum_{i=1}^{n-k} \lambda_i \nabla f_i(a) = 0.$$

1.7 Parameterabhängige Integrale

Satz 1.7.1 (Differentation unterm Integral). Seien I, J kompakt und $f: I \times J \to \mathbb{R}$ stetig und in der y Variablen stetig differenzierbar, dann ist $y \mapsto \int_I f(x,y) \, \mathrm{d}x$ stetig differenzierbar und

$$\frac{\mathrm{d}}{\mathrm{d}y} \int_{I} f(x,y) \, \mathrm{d}x = \int_{I} \frac{\partial f(x,y)}{\partial y} \, \mathrm{d}x.$$

Literatur

- [1] Erné, Marcel (2008). Lineare Gleichungssysteme. Kapitel 4.3 in Mathematik I für Bauingenieure. http://www2.iazd.uni-hannover.de/erne/Mathematik1/dateien/maple/MB_4_3.html (05.02.2021).
- [2] Forster, Otto (2017). Differentialrechnung im Rn, gewöhnliche Differentialgleichungen. 11. erweiterte Auflage. Springer Fachmedien Wiesbaden.
 - $\label{linear_$
- [3] Furlan, Peter (1995): Eigenwerte und Eigenvektoren. In: Das gelbe Rechenbuch, S 101 112. http://www.das-gelbe-rechenbuch.de/download/Eigenwerte.pdf (04.02.2021).
- [4] Potpara, Tibor Djurica (2013): How to calculate Jordan's normal form (the hard way). https://ojdip.net/2013/06/how-to-calculate-jordans-normal-form-the-hard-way/ (05.02.2021).
- [5] Winkler, David (2011): Kochen mit Jordan. https://www.danielwinkler.de/la/jnfkochrezept.pdf (04.02.2021).