Mathematics-II (MATH F112) Linear Algebra

Jitender Kumar

Department of Mathematics Birla Institute of Technology and Science Pilani Pilani-333031

Chapter: 4 (Finite Dimensional vector space)

- Introduction to Vector Spaces
- Subspaces
- Span
- Linear Independence
- Basis and Dimension
- Constructing Special Basis

 $\mathbf{0} \ \mathbf{u} \oplus \mathbf{v} \in \mathcal{V}$ (Closed under vector addition)

- $\mathbf{0} \ \mathbf{u} \oplus \mathbf{v} \in \mathcal{V}$ (Closed under vector addition)
- $\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ (Commutativity)

- $\mathbf{0} \ \mathbf{u} \oplus \mathbf{v} \in \mathcal{V}$ (Closed under vector addition)
- $\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ (Commutativity)

- $\mathbf{0} \ \mathbf{u} \oplus \mathbf{v} \in \mathcal{V}$ (Closed under vector addition)
- $\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ (Commutativity)
- There exists an element 0 ∈ V, called a zero vector, such that u ⊕ 0 = u (Existence of additive identity)

⑤ For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)

- **⑤** For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)
- **1** $a \odot \mathbf{u} \in \mathcal{V}$ (Closed under scalar multiplication)

- § For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)
- \bullet $a \odot \mathbf{u} \in \mathcal{V}$ (Closed under scalar multiplication)
- $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$ (Distributivity)

- **⑤** For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)
- **1** $a \odot \mathbf{u} \in \mathcal{V}$ (Closed under scalar multiplication)
- $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$ (Distributivity)
- (a + b) \odot **u** = $a \odot$ **u** \oplus $b \odot$ **u** (Distributivity)

- § For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)
- **1** $a \odot \mathbf{u} \in \mathcal{V}$ (Closed under scalar multiplication)
- $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$ (Distributivity)
- (a + b) \odot **u** = $a \odot$ **u** \oplus $b \odot$ **u** (Distributivity)

- § For each $\mathbf{u} \in \mathcal{V}$, there is an element $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u} \oplus (-\mathbf{u}) = 0$ (Existence of additive inverse)
- **1** $a \odot \mathbf{u} \in \mathcal{V}$ (Closed under scalar multiplication)
- $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$ (Distributivity)
- (a + b) \odot **u** = $a \odot$ **u** \oplus $b \odot$ **u** (Distributivity)
- $0 1 \odot u = u.$

Note that the set $\mathcal{V} = \{0\}$ is a vector space with respect to

Note that the set $V = \{0\}$ is a vector space with respect to

- vector addition $0 \oplus 0 = 0$
- scalar multiplication $a \odot 0 = 0$ for all $a \in \mathbb{R}$

Note that the set $V = \{0\}$ is a vector space with respect to

- vector addition $0 \oplus 0 = 0$
- scalar multiplication $a \odot 0 = 0$ for all $a \in \mathbb{R}$

The vector space $V = \{0\}$ is called the trivial vector space.

Example 1: The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

• $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v}$ (vector addition)

Example 1: The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v}$ (vector addition)
- $a \odot \mathbf{u} = a\mathbf{u}$ (scalar multiplication)

for all $a, \mathbf{u}, \mathbf{v} \in \mathbb{R}$.

Example 1: The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v}$ (vector addition)
- $a \odot \mathbf{u} = a\mathbf{u}$ (scalar multiplication)

for all $a, \mathbf{u}, \mathbf{v} \in \mathbb{R}$.

Question: Does the set \mathbb{R}^+ of positive real numbers form a vector space under the above defined vector addition and scalar multiplication?

Example 2: The set \mathbb{R}^+ of a positive real numbers is a vector space with respect to the following operations:

• $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$ (vector addition)

Example 2: The set \mathbb{R}^+ of a positive real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$ (vector addition)
- $a \odot \mathbf{u} = \mathbf{u}^a$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^+$.

 \bullet $[x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2]$ (vector addition)

- ullet $[x_1,x_2]\oplus [y_1,y_2]=[x_1+y_1,x_2+y_2]$ (vector addition)
- $a\odot[x_1,x_2]=[ax_1,ax_2]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$.

- ullet $[x_1,x_2]\oplus [y_1,y_2]=[x_1+y_1,x_2+y_2]$ (vector addition)
- ullet $a\odot[x_1,x_2]=[ax_1,ax_2]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$.

Question: Does \mathbb{R}^2 form a vector space under the above defined vector addition and

- ullet $[x_1,x_2]\oplus [y_1,y_2]=[x_1+y_1,x_2+y_2]$ (vector addition)
- $a\odot[x_1,x_2]=[ax_1,ax_2]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$.

Question: Does \mathbb{R}^2 form a vector space under the above defined vector addition and the following scalar multiplication

$$a \odot [x_1, x_2] = [0, ax_2]$$

for all $a \in \mathbb{R}$ and $[x_1, x_2] \in \mathbb{R}^2$.

 $\textbf{u} \oplus \textbf{v}$

 $\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2]$

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2]$$

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

• Closure Property: $\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2$.

Commutative Property:

 $\mathbf{u}\oplus\mathbf{v}$

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

$$\mathbf{u} \oplus \mathbf{v} = [x_1 + y_1, x_2 + y_2]$$

O Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

$$\mathbf{u} \oplus \mathbf{v} = [x_1 + y_1, x_2 + y_2] = [y_1 + x_1, y_2 + x_2]$$

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

$$\mathbf{u} \oplus \mathbf{v} = [x_1 + y_1, x_2 + y_2] = [y_1 + x_1, y_2 + x_2]$$
 (commutativity of \mathbb{R} under addition)

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

$$\mathbf{u} \oplus \mathbf{v} = [x_1 + y_1, x_2 + y_2] = [y_1 + x_1, y_2 + x_2]$$
(commutativity of \mathbb{R} under addition)
$$= [y_1, y_2] \oplus [x_1, x_2] =$$

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

$$\mathbf{u}\oplus\mathbf{v}=[x_1+y_1,x_2+y_2]=[y_1+x_1,y_2+x_2]$$
 (commutativity of $\mathbb R$ under addition)
$$=[y_1,y_2]\oplus[x_1,x_2]=\mathbf{v}\oplus\mathbf{u}$$

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

Commutative Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1 + y_1, x_2 + y_2] = [y_1 + x_1, y_2 + x_2]$$
 (commutativity of \mathbb{R} under addition)
$$= [y_1, y_2] \oplus [x_1, x_2] = \mathbf{v} \oplus \mathbf{u}$$

Associative Property:

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$$

Soln. of Example 3: Let $\mathbf{u} = [x_1, x_2]$, $\mathbf{v} = [y_1, y_2]$ and $\mathbf{w} = [z_1, z_2] \in \mathbb{R}^2$ and $a, b \in \mathbb{R}$.

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

Commutative Property:

$$\mathbf{u}\oplus\mathbf{v}=[x_1+y_1,x_2+y_2]=[y_1+x_1,y_2+x_2]$$
 (commutativity of $\mathbb R$ under addition)
$$=[y_1,y_2]\oplus[x_1,x_2]=\mathbf{v}\oplus\mathbf{u}$$

Associative Property:

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = [(x_1 + y_1) + z_1, (x_2 + y_2) + z_2]$$

Soln. of **Example 3:** Let $\mathbf{u} = [x_1, x_2], \mathbf{v} = [y_1, y_2]$ and $\mathbf{w} = [z_1, z_2] \in \mathbb{R}^2$ and $a, b \in \mathbb{R}$.

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

Commutative Property:

$$\mathbf{u}\oplus\mathbf{v}=[x_1+y_1,x_2+y_2]=[y_1+x_1,y_2+x_2]$$
 (commutativity of $\mathbb R$ under addition)
$$=[y_1,y_2]\oplus[x_1,x_2]=\mathbf{v}\oplus\mathbf{u}$$

Associative Property:

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = [(x_1 + y_1) + z_1, (x_2 + y_2) + z_2]$$

= $[x_1 + (y_1 + z_1), x_2 + (y_2 + z_2)]$

Soln. of Example 3: Let $\mathbf{u} = [x_1, x_2]$, $\mathbf{v} = [y_1, y_2]$ and $\mathbf{w} = [z_1, z_2] \in \mathbb{R}^2$ and $a, b \in \mathbb{R}$.

Closure Property:

$$\mathbf{u} \oplus \mathbf{v} = [x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1, x_2 + y_2] \in \mathbb{R}^2.$$

Commutative Property:

$$\mathbf{u}\oplus\mathbf{v}=[x_1+y_1,x_2+y_2]=[y_1+x_1,y_2+x_2]$$
 (commutativity of $\mathbb R$ under addition)
$$=[y_1,y_2]\oplus[x_1,x_2]=\mathbf{v}\oplus\mathbf{u}$$

Associative Property:

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = [(x_1 + y_1) + z_1, (x_2 + y_2) + z_2]$$

= $[x_1 + (y_1 + z_1), x_2 + (y_2 + z_2)]$
(associativity of \mathbb{R} under addition

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2] = [x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2]) = \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2] = [x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2]) = \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$$

Existence of additive identity (zero vector):

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2] = [x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2]) = \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0]$$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

u
$$\oplus$$
 0 = $[x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$
= $[x_1, x_2]$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

= $[x_1, x_2]$
= \mathbf{u}

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2]$$

$$= \mathbf{u}$$

Existence of additive inverse:

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2] = [x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2]) = \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2]$$

$$= \mathbf{u}$$

Solution Existence of additive inverse: For each $\mathbf{u} = [x_1, x_2] \in \mathbb{R}^2$ there exists $-\mathbf{u} = [-x_1, -x_2]$ in \mathbb{R}^2 such that

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2]$$

$$= \mathbf{u}$$

Existence of additive inverse: For each $\mathbf{u}=[x_1,x_2]\in\mathbb{R}^2$ there exists $-\mathbf{u}=[-x_1,-x_2]$ in \mathbb{R}^2 such that

$$\mathbf{u} \oplus (-\mathbf{u}) = [x_1, x_2] \oplus [-x_1, -x_2]$$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2]$$

$$= \mathbf{u}$$

Solution Existence of additive inverse: For each $\mathbf{u} = [x_1, x_2] \in \mathbb{R}^2$ there exists $-\mathbf{u} = [-x_1, -x_2]$ in \mathbb{R}^2 such that

$$\mathbf{u} \oplus (-\mathbf{u}) = [x_1, x_2] \oplus [-x_1, -x_2]$$

= $[x_1 + (-x_1), x_2 + (-x_2)]$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2]$$

$$= \mathbf{u}$$

Solution Existence of additive inverse: For each $\mathbf{u}=[x_1,x_2]\in\mathbb{R}^2$ there exists $-\mathbf{u}=[-x_1,-x_2]$ in \mathbb{R}^2 such that

$$\mathbf{u} \oplus (-\mathbf{u}) = [x_1, x_2] \oplus [-x_1, -x_2]$$

= $[x_1 + (-x_1), x_2 + (-x_2)] = [0, 0]$

$$= [x_1, x_2] \oplus [y_1 + z_1, y_2 + z_2]$$

= $[x_1, x_2] \oplus ([y_1, y_2] \oplus [z_1, z_2])$
= $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w})$

$$\mathbf{u} \oplus \mathbf{0} = [x_1, x_2] \oplus [0, 0] = [x_1 + 0, x_2 + 0]$$

$$= [x_1, x_2]$$

$$= \mathbf{u}$$

Existence of additive inverse: For each $\mathbf{u} = [x_1, x_2] \in \mathbb{R}^2$ there exists $-\mathbf{u} = [-x_1, -x_2]$ in \mathbb{R}^2 such that

$$\mathbf{u} \oplus (-\mathbf{u}) = [x_1, x_2] \oplus [-x_1, -x_2]$$

$$= [x_1 + (-x_1), x_2 + (-x_2)] = [0, 0] = \mathbf{u}$$

 $a\odot \mathbf{u}$

$$a\odot \mathbf{u}=a\odot [x_1,x_2]$$

$$a\odot \mathbf{u}=a\odot [x_1,x_2]=[ax_1,ax_2]$$

$$a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2.$$

 $a\odot \mathbf{u}=a\odot [x_1,x_2]=[ax_1,ax_2]\in \mathbb{R}^2.$ Thus, \mathbb{R}^2 is closed under scalar multiplication.

- Closure Property of scalar multiplication: $a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.
- Distributivity over vector addition:

- **Olympia** Closure Property of scalar multiplication: $a \odot \mathbf{U} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$ Thus \mathbb{R}^2
 - $a\odot \mathbf{u}=a\odot [x_1,x_2]=[ax_1,ax_2]\in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.
- Distributivity over vector addition:
 - $a\odot(\mathbf{u}\oplus\mathbf{v})$

- Olosure Property of scalar multiplication:
 - $a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.
- Distributivity over vector addition:

$$a\odot (\mathbf{u}\oplus \mathbf{v}) = a\odot ([x_1,x_2]\oplus [y_1,y_2])$$

- Closure Property of scalar multiplication:
 - $a\odot \mathbf{u}=a\odot [x_1,x_2]=[ax_1,ax_2]\in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.
- Distributivity over vector addition:

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = a \odot ([x_1, x_2] \oplus [y_1, y_2])$$

= $a \odot [x_1 + y_1, x_2 + y_2]$

 $a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = a \odot ([x_1, x_2] \oplus [y_1, y_2])$$

= $a \odot [x_1 + y_1, x_2 + y_2]$
= $[a(x_1 + y_1), a(x_2 + y_2)]$

$$a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$$
. Thus, \mathbb{R}^2 is closed under scalar multiplication.

$$\begin{array}{l} a\odot \left(\mathbf{u}\oplus \mathbf{v} \right) &= a\odot \left([x_{1},x_{2}]\oplus [y_{1},y_{2}] \right) \\ &= a\odot [x_{1}+y_{1},x_{2}+y_{2}] \\ &= [a(x_{1}+y_{1}),a(x_{2}+y_{2})] \\ &= [ax_{1}+ay_{1},ax_{2}+ay_{2}] \text{ (distributivity in } \mathbb{R} \text{)} \end{array}$$

 $a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = a \odot ([x_1, x_2] \oplus [y_1, y_2])$$

= $a \odot [x_1 + y_1, x_2 + y_2]$
= $[a(x_1 + y_1), a(x_2 + y_2)]$
= $[ax_1 + ay_1, ax_2 + ay_2]$ (distributivity in \mathbb{R})
= $[ax_1, ax_2] \oplus [ay_1, ay_2]$

 $a \odot \mathbf{u} = a \odot [x_1, x_2] = [ax_1, ax_2] \in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = a \odot ([x_1, x_2] \oplus [y_1, y_2])$$

$$= a \odot [x_1 + y_1, x_2 + y_2]$$

$$= [a(x_1 + y_1), a(x_2 + y_2)]$$

$$= [ax_1 + ay_1, ax_2 + ay_2] \text{ (distributivity in } \mathbb{R}\text{)}$$

$$= [ax_1, ax_2] \oplus [ay_1, ay_2]$$

$$= (a \odot [x_1, x_2]) \oplus (a \odot [y_1, y_2])$$

 $a\odot \mathbf{u}=a\odot [x_1,x_2]=[ax_1,ax_2]\in \mathbb{R}^2$. Thus, \mathbb{R}^2 is closed under scalar multiplication.

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = a \odot ([x_1, x_2] \oplus [y_1, y_2])$$

$$= a \odot [x_1 + y_1, x_2 + y_2]$$

$$= [a(x_1 + y_1), a(x_2 + y_2)]$$

$$= [ax_1 + ay_1, ax_2 + ay_2] \text{ (distributivity in } \mathbb{R}\text{)}$$

$$= [ax_1, ax_2] \oplus [ay_1, ay_2]$$

$$= (a \odot [x_1, x_2]) \oplus (a \odot [y_1, y_2])$$

$$= (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v})$$

Distributivity over scalar addition:

Distributivity over scalar addition:

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2]$$

$$(a+b) \odot \mathbf{u} = (a+b) \odot [x_1, x_2]$$

= $[(a+b)x_1, (a+b)x_2]$

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2]$$

= $[(a+b)x_1,(a+b)x_2]$
= $[ax_1+bx_1,ax_2+bx_2]$ (distributivity in \mathbb{R})

$$(a+b) \odot \mathbf{u} = (a+b) \odot [x_1, x_2]$$

= $[(a+b)x_1, (a+b)x_2]$
= $[ax_1 + bx_1, ax_2 + bx_2]$ (distributivity in \mathbb{R})
= $[ax_1, ax_2] \oplus [bx_1, bx_2]$

$$(a + b) \odot \mathbf{u} = (a + b) \odot [x_1, x_2]$$

= $[(a + b)x_1, (a + b)x_2]$
= $[ax_1 + bx_1, ax_2 + bx_2]$ (distributivity in \mathbb{R})
= $[ax_1, ax_2] \oplus [bx_1, bx_2]$
= $(a \odot [x_1, x_2]) \oplus (b \odot [x_1, x_2])$

$$(a+b) \odot \mathbf{u} = (a+b) \odot [x_1, x_2]$$

$$= [(a+b)x_1, (a+b)x_2]$$

$$= [ax_1 + bx_1, ax_2 + bx_2] \text{ (distributivity in } \mathbb{R}\text{)}$$

$$= [ax_1, ax_2] \oplus [bx_1, bx_2]$$

$$= (a \odot [x_1, x_2]) \oplus (b \odot [x_1, x_2])$$

$$= (a \odot \mathbf{u}) \oplus (b \odot \mathbf{u})$$

$$(a+b) \odot \mathbf{u} = (a+b) \odot [x_1, x_2] = [(a+b)x_1, (a+b)x_2] = [ax_1 + bx_1, ax_2 + bx_2]$$
(distributivity in \mathbb{R})
 = [ax_1, ax_2] \oplus [bx_1, bx_2]
 = (a \odot [x_1, x_2]) \oplus (b \odot [x_1, x_2])
 = (a \odot \mathbf{u}) \oplus (b \odot \mathbf{u})

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2]$$

$$= [(a+b)x_1,(a+b)x_2]$$

$$= [ax_1+bx_1,ax_2+bx_2] \text{ (distributivity in } \mathbb{R}\text{)}$$

$$= [ax_1,ax_2] \oplus [bx_1,bx_2]$$

$$= (a\odot [x_1,x_2]) \oplus (b\odot [x_1,x_2])$$

$$= (a\odot \mathbf{u}) \oplus (b\odot \mathbf{u})$$

$$= (ab)\odot [x_1,x_2]$$

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2] = [(a+b)x_1,(a+b)x_2] = [ax_1+bx_1,ax_2+bx_2] \text{ (distributivity in } \mathbb{R}\text{)} = [ax_1,ax_2] \oplus [bx_1,bx_2] = (a\odot [x_1,x_2]) \oplus (b\odot [x_1,x_2]) = (a\odot \mathbf{u}) \oplus (b\odot \mathbf{u}) = (ab)\odot [x_1,x_2] = [(ab)x_1,(ab)x_2]$$

$$(a+b) \odot \mathbf{u} = (a+b) \odot [x_1, x_2]$$

$$= [(a+b)x_1, (a+b)x_2]$$

$$= [ax_1 + bx_1, ax_2 + bx_2] \text{ (distributivity in } \mathbb{R}\text{)}$$

$$= [ax_1, ax_2] \oplus [bx_1, bx_2]$$

$$= (a \odot [x_1, x_2]) \oplus (b \odot [x_1, x_2])$$

$$= (a \odot \mathbf{u}) \oplus (b \odot \mathbf{u})$$

$$= (ab) \odot [x_1, x_2]$$

$$= [(ab)x_1, (ab)x_2]$$

$$= [a(bx_1), a(bx_2)]$$

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2]$$

$$= [(a+b)x_1,(a+b)x_2]$$

$$= [ax_1+bx_1,ax_2+bx_2] \text{ (distributivity in } \mathbb{R}\text{)}$$

$$= [ax_1,ax_2] \oplus [bx_1,bx_2]$$

$$= (a\odot [x_1,x_2]) \oplus (b\odot [x_1,x_2])$$

$$= (a\odot \mathbf{u}) \oplus (b\odot \mathbf{u})$$

$$= (ab)\odot [x_1,x_2]$$

$$= [(ab)x_1,(ab)x_2]$$

$$= [a(bx_1),a(bx_2)]$$
(associativity of \mathbb{R} under multiplication)

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2] = [(a+b)x_1, (a+b)x_2] = [ax_1 + bx_1, ax_2 + bx_2] \text{ (distributivity in } \mathbb{R}\text{)} = [ax_1, ax_2] \oplus [bx_1, bx_2] = (a\odot [x_1, x_2]) \oplus (b\odot [x_1, x_2]) = (a\odot \mathbf{u}) \oplus (b\odot \mathbf{u}) = (ab)\odot [x_1, x_2] = [(ab)x_1, (ab)x_2] = [a(bx_1), a(bx_2)]$$

(associativity of $\mathbb R$ under multiplication)

$$=a\odot[bx_1,bx_2]$$

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2] = [(a+b)x_1, (a+b)x_2] = [ax_1 + bx_1, ax_2 + bx_2] \text{ (distributivity in } \mathbb{R}\text{)} = [ax_1, ax_2] \oplus [bx_1, bx_2] = (a\odot [x_1, x_2]) \oplus (b\odot [x_1, x_2]) = (a\odot \mathbf{u}) \oplus (b\odot \mathbf{u}) = (ab)\odot [x_1, x_2] = [(ab)x_1, (ab)x_2]$$

$$= [(ab)x_1, (ab)x_2]$$

 $= [a(bx_1), a(bx_2)]$

(associativity of \mathbb{R} under multiplication)

$$= a \odot [bx_1, bx_2]$$

= $a \odot (b \odot [x_1, x_2])$

$$(a+b)\odot \mathbf{u} = (a+b)\odot [x_1,x_2] = [(a+b)x_1, (a+b)x_2] = [ax_1 + bx_1, ax_2 + bx_2] \text{ (distributivity in } \mathbb{R}\text{)} = [ax_1, ax_2] \oplus [bx_1, bx_2] = (a\odot [x_1, x_2]) \oplus (b\odot [x_1, x_2]) = (a\odot \mathbf{u}) \oplus (b\odot \mathbf{u}) = (ab)\odot [x_1, x_2] = [(ab)x_1, (ab)x_2]$$

$$= [a(bx_1), a(bx_2)]$$

(associativity of \mathbb{R} under multiplication)

$$= a \odot [bx_1, bx_2]$$

= $a \odot (b \odot [x_1, x_2])$
= $a \odot (b \odot \mathbf{u})$

$$\mathbf{0} \quad 1 \odot \mathbf{u} = 1 \odot [x_1, x_2] =$$

$$\mathbf{0} \quad 1 \odot \mathbf{u} = 1 \odot [x_1, x_2] = [1x_1, 1x_2] =$$

 $0 1 \odot \mathbf{u} = 1 \odot [x_1, x_2] = [1x_1, 1x_2] = [x_1, x_2] = [x_1, x_2]$

 $\mathbf{0} \quad 1 \odot \mathbf{u} = 1 \odot [x_1, x_2] = [1x_1, 1x_2] = [x_1, x_2] = \mathbf{u}$

 $0 1 \odot \mathbf{u} = 1 \odot [x_1, x_2] = [1x_1, 1x_2] = [x_1, x_2] = \mathbf{u}.$

Thus \mathbb{R}^2 is vector space under usual vector addition and scalar multiplication.

Example 4: The set $\mathbb{R}^n = \{[x_1, x_2, \dots, x_n] \mid x_i \in \mathbb{R}\}$ is a vector space with respect to the following operations:

•
$$[x_1, x_2, \dots, x_n] \oplus [y_1, y_2, \dots, y_n]$$

= $[x_1 + y_1, x_2 + y_2, \dots, x_n + y_n]$ (vector addition)

Example 4: The set $\mathbb{R}^n = \{[x_1, x_2, \dots, x_n] \mid x_i \in \mathbb{R}\}$ is a vector space with respect to the following operations:

$$[x_1,x_2,\ldots,x_n] \oplus [y_1,y_2,\ldots,y_n]$$

$$= [x_1+y_1,x_2+y_2,\ldots,x_n+y_n] \text{ (vector addition)}$$

• $a \odot [x_1, x_2, \dots, x_n] = [ax_1, ax_2, \dots, ax_n]$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n] \in \mathbb{R}^n$.

Example 5: The set

$$\mathcal{M}_{mn} = \{ [a_{ij}]_{m \times n} \mid a_{ij} \in \mathbb{R} \}$$

of all $m \times n$ matrices with real entries is a vector space with respect to the following operations:

- ullet $[a_{ij}]_{m imes n}\oplus [b_{ij}]_{m imes n}=[a_{ij}+b_{ij}]_{m imes n}$ (vector addition)
- $a\odot [a_{ij}]_{m imes n}=[aa_{ij}]_{m imes n}$ (scalar multiplication)

for all $a \in \mathbb{R}$ and $[a_{ij}]_{m \times n}, [b_{ij}]_{m \times n} \in \mathcal{M}_{mn}$.

$$\Phi = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$$

be the set of real-valued functions defined on \mathbb{R} . Define

$$f \oplus g = f + g$$
 (vector addition),

and
$$a \odot f = af$$
 (scalar multiplication),

$$\Phi = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$$

be the set of real-valued functions defined on \mathbb{R} . Define

$$f\oplus g=f+g \ \ \text{(vector addition)},$$
 where
$$(f+g)(x)=f(x)+g(x) \ \forall x\in\mathbb{R}.$$

and $a \odot f = af$ (scalar multiplication),

$$\Phi = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$$

be the set of real-valued functions defined on \mathbb{R} . Define

$$f \oplus g = f + g$$
 (vector addition),

where
$$(f+g)(x) = f(x) + g(x) \ \forall x \in \mathbb{R}$$
.

and
$$a \odot f = af$$
 (scalar multiplication),

where
$$(af)(x) = af(x) \ \forall x \in \mathbb{R}$$
.

$$\Phi = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$$

be the set of real-valued functions defined on $\ensuremath{\mathbb{R}}.$ Define

$$f\oplus g=f+g \ \ ({\sf vector}\ {\sf addition}),$$

where
$$(f+g)(x) = f(x) + g(x) \ \forall x \in \mathbb{R}$$
.

and
$$a \odot f = af$$
 (scalar multiplication),

where
$$(af)(x) = af(x) \ \forall x \in \mathbb{R}$$
.

Then Φ is a vector space with respect to above defined vector addition and scalar multiplication.

$$\mathcal{P}_2 = \{a_2 x^2 + a_1 x + a_0 \mid a_2, a_1, a_0 \in \mathbb{R}\}\$$

be the set of all polynomials of degree ≤ 2 with real coefficients. Define addition and scalar multiplication in usual way i.e. if

$$p(x) = a_2x^2 + a_1x + a_0$$
 and $q(x) = b_2x^2 + b_1x + b_0$

are in \mathcal{P}_2 , then

$$p(x) \oplus q(x) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

$$c \odot p(x) = ca_2 x^2 + ca_1 x + ca_0.$$

Show that \mathcal{P}_2 is a vector space.

In general, for any fixed natural number n, the set

$$\mathcal{P}_n = \{ a_n x^n + \dots + a_1 x + a_0 \mid a_n, \dots, a_1, a_0 \in \mathbb{R} \}$$

of all polynomials of degree less than or equal to n is a vector space. under the usual addition (term by term) and scalar multiplication of polynomials.

In general, for any fixed natural number n, the set

$$\mathcal{P}_n = \{ a_n x^n + \dots + a_1 x + a_0 \mid a_n, \dots, a_1, a_0 \in \mathbb{R} \}$$

of all polynomials of degree less than or equal to n is a vector space. under the usual addition (term by term) and scalar multiplication of polynomials.

Question: Does the set of all polynomials of degree 7 form a vector space under the usual operation of addition and scalar multiplication?

Example 8: The set \mathcal{P} of all polynomials with real coefficients is a vector space under the usual operation of polynomial (term by term) addition and scalar multiplication.

Theorem: Let V be a vector space. Then for every $\mathbf{v} \in V$ and $\alpha \in \mathbb{R}$, we have

- 0v = 0
- $(-1)\mathbf{v} = -\mathbf{v}$
- If $\alpha \mathbf{v} = \mathbf{0}$, then $\alpha = 0$ or $\mathbf{v} = \mathbf{0}$.

Subspace: A nonempty subset W of a vector space \mathcal{V} is said to be a subspace of \mathcal{V} if W is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of \mathcal{V} .

Subspace: A nonempty subset W of a vector space \mathcal{V} is said to be a subspace of \mathcal{V} if W is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of \mathcal{V} .

Note that every vector space $\mathcal V$ has at least two subspaces: $\{0\}$ and $\mathcal V$ itself.

Subspace: A nonempty subset W of a vector space $\mathcal V$ is said to be a subspace of $\mathcal V$ if W is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of $\mathcal V$.

Note that every vector space $\mathcal V$ has at least two subspaces: $\{0\}$ and $\mathcal V$ itself. The subspace $\{0\}$ is known as trivial subspace.

Example: The set

$$W = \left\{ [x, y] \in \mathbb{R}^2 \mid y = 0 \right\}$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^2 .

Example: The set

$$W = \left\{ [x, y] \in \mathbb{R}^2 \mid y = 0 \right\}$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^2 . Thus, W is a subspace of \mathbb{R}^2 .

Example: The set

$$W = \left\{ [x, y] \in \mathbb{R}^2 \mid y = 0 \right\}$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^2 . Thus, W is a subspace of \mathbb{R}^2 .

Question: Does the set

$$W = \left\{ [x, y] \in \mathbb{R}^2 \mid x \neq y \right\}$$

form a subspace of \mathbb{R}^2 ?

Theorem: A **nonempty** subset W of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if the following conditions hold:

Theorem: A **nonempty** subset W of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if the following conditions hold:

- $\mathbf{u} + \mathbf{v} \in W$ for all $\mathbf{u}, \mathbf{v} \in W$.
- $a\mathbf{u} \in W$ for all $a \in \mathbb{R}, \mathbf{u} \in W$.

Theorem: A **nonempty** subset W of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if the following conditions hold:

- \bullet $\mathbf{u} + \mathbf{v} \in W$ for all $\mathbf{u}, \mathbf{v} \in W$.
- $a\mathbf{u} \in W$ for all $a \in \mathbb{R}, \mathbf{u} \in W$.

Remark: If W is a subspace of a vector space V, then $0 \in W$.

•
$$W_1 = \{ [x, y, z] \in \mathbb{R}^3 \mid x \ge 0 \}.$$

•
$$W_1 = \{ [x, y, z] \in \mathbb{R}^3 \mid x \ge 0 \}.$$

•
$$W_2 = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y + z = 0 \}.$$

- $W_1 = \{ [x, y, z] \in \mathbb{R}^3 \mid x \ge 0 \}.$
- $W_2 = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y + z = 0 \}.$
- $W_3 = \{ [x, y, z] \in \mathbb{R}^3 \mid x = y^2 \}.$

- $W_1 = \{ [x, y, z] \in \mathbb{R}^3 \mid x \ge 0 \}.$
- $W_2 = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y + z = 0 \}.$
- $W_3 = \{[x, y, z] \in \mathbb{R}^3 \mid x = y^2\}.$
- $W_4 = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y + z = 2 \}.$

- $W_1 = \{ [x, y, z] \in \mathbb{R}^3 \mid x \ge 0 \}.$
- $W_2 = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y + z = 0 \}.$
- $W_3 = \{[x, y, z] \in \mathbb{R}^3 \mid x = y^2\}.$
- $W_4 = \{ [x, y, z] \in \mathbb{R}^3 \mid x + y + z = 2 \}.$
- $W_5 = \{[x, y, z] \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$

• $W_1 = \{A \in \mathcal{M}_{22} \mid A \text{ is singular}\}.$

- $W_1 = \{A \in \mathcal{M}_{22} \mid A \text{ is singular}\}.$
- $W_2 = \{A \in \mathcal{M}_{22} \mid A \text{ is nonsingular}\}.$

- $W_1 = \{A \in \mathcal{M}_{22} \mid A \text{ is singular}\}.$
- $W_2 = \{ A \in \mathcal{M}_{22} \mid A \text{ is nonsingular} \}.$
- $W_3 = \{A \in \mathcal{M}_{22} \mid A \text{ is in RREF}\}.$

- $W_1 = \{A \in \mathcal{M}_{22} \mid A \text{ is singular}\}.$
- $W_2 = \{A \in \mathcal{M}_{22} \mid A \text{ is nonsingular}\}.$
- $W_3 = \{A \in \mathcal{M}_{22} \mid A \text{ is in RREF}\}.$
- $W_4 = \{A \in \mathcal{M}_{22} \mid A \text{ is symmetric}\}.$

- $W_1 = \{A \in \mathcal{M}_{22} \mid A \text{ is singular}\}.$
- $W_2 = \{A \in \mathcal{M}_{22} \mid A \text{ is nonsingular}\}.$
- $W_3 = \{A \in \mathcal{M}_{22} \mid A \text{ is in RREF}\}.$
- $W_4 = \{A \in \mathcal{M}_{22} \mid A \text{ is symmetric}\}.$
- $W_5 = \{ A \in \mathcal{M}_{22} \mid A^2 = A \}.$

• $W_1 = \{ f \in \Phi \mid f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$

- $W_1 = \{ f \in \Phi \mid f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_2 = \{ f \in \Phi \mid f(-x) = -f(x) \text{ for all } x \in \mathbb{R} \}.$

- $W_1 = \{ f \in \Phi \mid f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_2 = \{ f \in \Phi \mid f(-x) = -f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_3 = \{ f \in \Phi \mid f(1) = 0 \}.$

- $W_1 = \{ f \in \Phi \mid f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_2 = \{ f \in \Phi \mid f(-x) = -f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_3 = \{ f \in \Phi \mid f(1) = 0 \}.$
- $W_4 = \{ f \in \Phi \mid f(\frac{1}{2}) = f(1) \}.$

- $W_1 = \{ f \in \Phi \mid f(-x) = f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_2 = \{ f \in \Phi \mid f(-x) = -f(x) \text{ for all } x \in \mathbb{R} \}.$
- $W_3 = \{ f \in \Phi \mid f(1) = 0 \}.$
- $W_4 = \{ f \in \Phi \mid f(\frac{1}{2}) = f(1) \}.$
- $W_5 = \{ f \in \Phi \mid f(1) = \frac{1}{2} \}.$

• their intersection i.e. $W_1 \cap W_2$ is a subspace of \mathcal{V} .

• their intersection i.e. $W_1 \cap W_2$ is a subspace of \mathcal{V} .

their sum, defined as

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\},\$$

is a subspace of V.

- their intersection i.e. $W_1 \cap W_2$ is a subspace of \mathcal{V} .
- their union $W_1 \cup W_2$ need not be a subspace of \mathcal{V} .

their sum, defined as

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\},\$$

is a subspace of V.

- their intersection i.e. $W_1 \cap W_2$ is a subspace of \mathcal{V} .
- their union $W_1 \cup W_2$ **need not** be a subspace of \mathcal{V} .
- $W_1 \cup W_2$ is subspace of \mathcal{V} if and only if either $W_1 \subset W_2$ or $W_2 \subset W_1$.
- their sum, defined as

$$W_1 + W_2 = \{ w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2 \},\$$

is a subspace of \mathcal{V} .

Section 4.3 (Span)

Question: Given a subset S of a vector space V, how to construct a subspace containing S?

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k; \ a_i (1 \le i \le k) \in \mathbb{R}$$

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k; \ a_i (1 \le i \le k) \in \mathbb{R}$$

Example: The vector [3,4] is a linear combination of [1,0] and [0,1] in \mathbb{R}^2 .

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k; \ a_i (1 \le i \le k) \in \mathbb{R}$$

Example: The vector [3,4] is a linear combination of [1,0] and [0,1] in \mathbb{R}^2 .

Note that

$$[3,4] = 2[1,1] + [1,2].$$

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k; \ a_i (1 \le i \le k) \in \mathbb{R}$$

Example: The vector [3,4] is a linear combination of [1,0] and [0,1] in \mathbb{R}^2 .

Note that

$$[3,4] = 2[1,1] + [1,2].$$

Thus, [3,4] is a linear combination of [1,1] and [1,2] also.

Span of a set: Let S be a nonempty subset of a vector space \mathcal{V} . Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e.

$$span(S) = \{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \mid \mathbf{v}_i \in S, a_i \in \mathbb{R}, 1 \le i \le k\}$$

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e.

$$span(S) = \{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \mid \mathbf{v}_i \in S, a_i \in \mathbb{R}, 1 \le i \le k\}$$

• For a subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 , we have $\mathrm{span}(S)$

Span of a set: Let S be a nonempty subset of a vector space \mathcal{V} . Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e.

$$span(S) = \{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \mid \mathbf{v}_i \in S, a_i \in \mathbb{R}, 1 \le i \le k\}$$

• For a subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 , we have $\operatorname{span}(S) = \mathbb{R}^2$.

Span of a set: Let S be a nonempty subset of a vector space \mathcal{V} . Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e.

$$span(S) = \{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \mid \mathbf{v}_i \in S, a_i \in \mathbb{R}, 1 \le i \le k\}$$

- For a subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 , we have $\operatorname{span}(S) = \mathbb{R}^2$.
- For a subset $S = \{[1,0,0],[0,1,0],[0,0,1]\}$ of \mathbb{R}^3 we have span(S)

Span of a set: Let S be a nonempty subset of a vector space \mathcal{V} . Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e.

$$span(S) = \{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k \mid \mathbf{v}_i \in S, a_i \in \mathbb{R}, 1 \le i \le k\}$$

- For a subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 , we have $\operatorname{span}(S) = \mathbb{R}^2$.
- For a subset $S = \{[1,0,0], [0,1,0], [0,0,1]\}$ of \mathbb{R}^3 we have span $(S) = \mathbb{R}^3$.

- Find span(S).
- Do [3, 2, 0] and [2, 5, 1] belong to span(S)?

- Find span(S).
- Do [3, 2, 0] and [2, 5, 1] belong to span(S)?

Solution:

$$\mathsf{span}(S) = \{ a[1,0,0] + b[0,1,0] \mid a,b \in \mathbb{R} \}$$

- Find span(S).
- Do [3, 2, 0] and [2, 5, 1] belong to span(S)?

Solution:

$$span(S) = \{a[1, 0, 0] + b[0, 1, 0] \mid a, b \in \mathbb{R}\}$$
$$= \{[a, b, 0] \mid a, b \in \mathbb{R}\}$$

- Find span(S).
- Do [3, 2, 0] and [2, 5, 1] belong to span(S)?

Solution:

$$span(S) = \{a[1, 0, 0] + b[0, 1, 0] \mid a, b \in \mathbb{R}\}$$
$$= \{[a, b, 0] \mid a, b \in \mathbb{R}\}$$

Clearly, $[3,2,0] \in \operatorname{span}(S)$ but $[2,5,1] \not\in \operatorname{span}(S)$.

- Find span(S).
- Do [3, 2, 0] and [2, 5, 1] belong to span(S)?

Solution:

$$\begin{aligned} \mathsf{span}(S) &= \{ a[1,0,0] + b[0,1,0] \mid a,b \in \mathbb{R} \} \\ &= \{ [a,b,0] \mid a,b \in \mathbb{R} \} \end{aligned}$$

Clearly, $[3, 2, 0] \in \operatorname{span}(S)$ but $[2, 5, 1] \not\in \operatorname{span}(S)$.

In this exercise **note that** span(S) is a subspace of \mathbb{R}^3 .

Exercise: Let $\mathbf{v}_1, \mathbf{v}_2$ be in a vector space \mathcal{V} . Then show that $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ is a subspace of \mathcal{V} .

Exercise: Let $\mathbf{v}_1, \mathbf{v}_2$ be in a vector space \mathcal{V} . Then show that $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ is a subspace of \mathcal{V} .

Theorem: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a nonempty subset of a vector space \mathcal{V} . Then

- span(S) is a subspace of \mathcal{V} .
- span(S) is the smallest subspace of V containing S.

Exercise: Let $\mathbf{v}_1, \mathbf{v}_2$ be in a vector space \mathcal{V} . Then show that $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ is a subspace of \mathcal{V} .

Theorem: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a nonempty subset of a vector space \mathcal{V} . Then

- span(S) is a subspace of V.
- span(S) is the smallest subspace of V containing S.

Convention: span(\emptyset) = {0}.

Row space of a matrix: Let A be an $m \times n$ matrix. The row space of A, denoted by row(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Row space of a matrix: Let A be an $m \times n$ matrix. The row space of A, denoted by row(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Theorem: Let B be any matrix that is row equivalent to a matrix A. Then row(B) = row(A).

Row space of a matrix: Let A be an $m \times n$ matrix. The row space of A, denoted by row(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Theorem: Let B be any matrix that is row equivalent to a matrix A. Then row(B) = row(A).

Corollary: For any matrix A, we have

$$row(A) = row(RREF(A))$$
.

$$S = \{[1, 3, -1], [2, 7, -3], [4, 8, -7]\}.$$

Then find span(S) in simplified form.

$$S = \{[1, 3, -1], [2, 7, -3], [4, 8, -7]\}.$$

Then find span(S) in simplified form.

Solution: To determine span(S) in simplified form consider

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & -3 \\ 4 & 8 & -7 \end{bmatrix}$$

$$S = \{[1, 3, -1], [2, 7, -3], [4, 8, -7]\}.$$

Then find span(S) in simplified form.

Solution: To determine span(S) in simplified form consider

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & -3 \\ 4 & 8 & -7 \end{bmatrix}$$

Note that span(S) = row(A) =

$$S = \{[1, 3, -1], [2, 7, -3], [4, 8, -7]\}.$$

Then find span(S) in simplified form.

Solution: To determine span(S) in simplified form consider

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & -3 \\ 4 & 8 & -7 \end{bmatrix}$$

Note that span(S) = row(A) = row(RREF(A)).

Note that

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathsf{row}\left(\mathsf{RREF}(A)\right)$$

$$= \{a[1,0,0] + b[0,1,0] + c[0,0,1] \mid a,b,c \in \mathbb{R}\}\$$

Note that

$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\mathsf{row}\left(\mathsf{RREF}(A)\right)$

$$= \{a[1,0,0] + b[0,1,0] + c[0,0,1] \mid a,b,c \in \mathbb{R}\}\$$

$$\mathsf{row}\left(\mathsf{RREF}(A)\right) = \mathsf{span}(S) = \{[a,b,c] \mid a,b,c \in \mathbb{R}\}$$

$$\mathsf{span}(S) = \mathbb{R}^3$$

Step 1: Construct a matrix A of order $k \times n$ by using the vectors in S as **the rows of** A.

Step 1: Construct a matrix A of order $k \times n$ by using the vectors in S as **the rows of** A. Then span(S) = row(A).

Step 1: Construct a matrix A of order $k \times n$ by using the vectors in S as **the rows of** A. Then span(S) = row(A).

Step 2: Find RREF(A).

Step 1: Construct a matrix A of order $k \times n$ by using the vectors in S as **the rows of** A. Then span(S) = row(A).

Step 2: Find RREF(A).

Step 3: Then, the set of all linear combinations of the **nonzero rows** of RREF(A) gives a simplified form for span(S).

$$\mathcal{V} = \mathbb{R}^3$$
, $S = \{[1, 1, 1], [2, 1, 1], [1, 1, 2]\}$.

$$\mathcal{V} = \mathbb{R}^3$$
, $S = \{[1, 1, 1], [2, 1, 1], [1, 1, 2]\}.$

$$\mathcal{V} = \mathcal{P}_2, S = \{x^2 + x + 1, x + 1, 1\}.$$

- $\mathcal{V} = \mathcal{P}_2$, $S = \{x^2 + x + 1, x + 1, 1\}$.

- $\mathcal{V} = \mathbb{R}^3$, $S = \{[1, 1, 1], [2, 1, 1], [1, 1, 2]\}$.
- $\mathcal{V} = \mathcal{P}_2$, $S = \{x^2 + x + 1, x + 1, 1\}$.

Definition: A subset $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of a vector space \mathcal{V} is said to be linearly dependent (LD) if there exist real numbers a_1, a_2, \dots, a_n not all zero such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{0}.$$

Definition: A subset $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of a vector space \mathcal{V} is said to be linearly dependent (LD) if there exist real numbers a_1, a_2, \dots, a_n not all zero such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{0}.$$

S is linearly independent (LI) if it is not linearly dependent

Definition: A subset $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of a vector space \mathcal{V} is said to be linearly dependent (LD) if there exist real numbers a_1, a_2, \dots, a_n not all zero such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{0}.$$

S is linearly independent (LI) if it is not linearly dependent i.e. if

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{0}$$

Then

$$a_1 = a_2 = \dots = a_n = 0.$$

Examples

• The subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 is linearly independent.

Examples

- The subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 is linearly independent.
- The subset $S = \{[1,2],[5,10]\}$ of \mathbb{R}^2 is linearly dependent.

Examples

- The subset $S = \{[1,0],[0,1]\}$ of \mathbb{R}^2 is linearly independent.
- The subset $S = \{[1, 2], [5, 10]\}$ of \mathbb{R}^2 is linearly dependent.
- The subset $S = \{[1,0,0],[0,1,0],[0,0,1]\}$ of \mathbb{R}^3 is linearly independent.

• The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$

• The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq \mathbf{0}$ of \mathcal{V} , the set $\{\mathbf{v}\}$

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq \mathbf{0}$ of \mathcal{V} , the set $\{\mathbf{v}\}$ is LI.

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq \mathbf{0}$ of \mathcal{V} , the set $\{\mathbf{v}\}$ is LI.
- Any set containing zero vector is

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq \mathbf{0}$ of \mathcal{V} , the set $\{\mathbf{v}\}$ is LI.
- Any set containing zero vector is LD.

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq \mathbf{0}$ of \mathcal{V} , the set $\{\mathbf{v}\}$ is LI.
- Any set containing zero vector is LD.
- Let S = {v₁, v₂} be a set of nonzero vectors of V. Then S is linearly dependent iff one vector is a scalar multiple of the other.

- The singleton set containing $0 \in \mathcal{V}$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq \mathbf{0}$ of \mathcal{V} , the set $\{\mathbf{v}\}$ is LI.
- Any set containing zero vector is LD.
- Let S = {v₁, v₂} be a set of nonzero vectors of V. Then S is linearly dependent iff one vector is a scalar multiple of the other.
- Let S be a finite set of nonzero vectors having at least two elements. Then S is LD if and only if some vector in S can be expressed as a linear combination of the other vectors in S.

Exercise: For a given vector space \mathcal{V} and a given subset S of \mathcal{V} , check the linear independence of S in the following:

Exercise: For a given vector space \mathcal{V} and a given subset S of \mathcal{V} , check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2$$
, $S = \{1 + x + x^2, 1 - x + 3x^2, 1 + 3x - x^2\}$.

$$\mathcal{V} = \mathcal{P}_2, S = \{1 + x, x + x^2, 1 + x^2\}.$$

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2, S = \{1 + x, x + x^2, 1 + x^2\}.$$

$$\mathcal{V} = \mathcal{P}_n, S = \{1, x, x^2, \dots, x^n\}.$$

Exercise: For a given vector space \mathcal{V} and a given subset S of \mathcal{V} , check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2$$
, $S = \{1 + x + x^2, 1 - x + 3x^2, 1 + 3x - x^2\}$.

$$\mathcal{V} = \mathcal{P}_2, S = \{1 + x, x + x^2, 1 + x^2\}.$$

$$\mathcal{V} = \mathcal{P}_n, S = \{1, x, x^2, \dots, x^n\}.$$

•
$$\mathcal{V} = \Phi$$
, $S = \{\sin^2 x, \cos^2 x, \cos 2x\}$.

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2$$
, $S = \{1 + x + x^2, 1 - x + 3x^2, 1 + 3x - x^2\}$.

$$\mathcal{V} = \mathcal{P}_2, S = \{1 + x, x + x^2, 1 + x^2\}.$$

$$\mathcal{V} = \mathcal{P}_n, S = \{1, x, x^2, \dots, x^n\}.$$

$$\mathcal{V} = \Phi, S = \{\sin^2 x, \cos^2 x, \cos 2x\}.$$

Exercise: For a given vector space \mathcal{V} and a given subset S of \mathcal{V} , check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2$$
, $S = \{1 + x + x^2, 1 - x + 3x^2, 1 + 3x - x^2\}$.

$$\mathcal{V} = \mathcal{P}_2, S = \{1 + x, x + x^2, 1 + x^2\}.$$

$$\mathcal{V} = \mathcal{P}_n, S = \{1, x, x^2, \dots, x^n\}.$$

•
$$\mathcal{V} = \Phi$$
, $S = \{\sin^2 x, \cos^2 x, \cos 2x\}$.

$$\mathcal{V} = \mathcal{M}_{22}, S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

Exercise: For a given vector space \mathcal{V} and a given subset S of \mathcal{V} , check the linear independence of S in the following:

$$\mathcal{V} = \mathcal{P}_2, S = \{1 + x, x + x^2, 1 + x^2\}.$$

$$\mathcal{V} = \mathcal{P}_n, S = \{1, x, x^2, \dots, x^n\}.$$

•
$$\mathcal{V} = \Phi$$
, $S = \{\sin^2 x, \cos^2 x, \cos 2x\}$.

5
$$V = \Phi, S = \{\sin x, \cos x\}.$$

$$\mathcal{V} = \mathcal{M}_{22}, S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \right\}.$$

$$S = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}$$

is linearly independent subset of \mathbb{R}^3 .

$$S = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}$$

is linearly independent subset of \mathbb{R}^3 .

Solution: Let $a, b, c \in \mathbb{R}$ such that

$$a[3,1,-1]+b[-5,-2,2]+c[2,2,-1]=\mathbf{0}$$

$$S = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}$$

is linearly independent subset of \mathbb{R}^3 .

Solution: Let $a, b, c \in \mathbb{R}$ such that

$$a[3,1,-1]+b[-5,-2,2]+c[2,2,-1]=\mathbf{0}$$

$$[3a,a,-a] + [-5b,-2b,2b] + [2c,2c,-c] = [0,0,0]$$

$$S = \{[3,1,-1], [-5,-2,2], [2,2,-1]\}$$

is linearly independent subset of \mathbb{R}^3 .

Solution: Let $a,b,c \in \mathbb{R}$ such that

$$a[3,1,-1]+b[-5,-2,2]+c[2,2,-1]=\mathbf{0}$$

$$[3a,a,-a] + [-5b,-2b,2b] + [2c,2c,-c] = [0,0,0]$$

$$[3a - 5b + 2c, a - 2b + 2c, -a + 2b - c] = [0, 0, 0]$$

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

$$3a - 5b + 2c = 0$$
$$a - 2b + 2c = 0$$
$$-a + 2b - c = 0$$

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

$$3a - 5b + 2c = 0$$
$$a - 2b + 2c = 0$$
$$-a + 2b - c = 0$$

To solve above homogenous system, write augmented matrix

$$[A|\mathbf{0}] = \begin{bmatrix} 3 & -5 & 2 & 0 \\ 1 & -2 & 2 & 0 \\ -1 & 2 & -1 & 0 \end{bmatrix}$$

reduced row echelon form of [A|0] is

$$\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array} \right]$$

Thus, we have a = 0, b = 0, c = 0.

reduced row echelon form of [A|0] is

$$\left[\begin{array}{cc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]$$

Thus, we have a=0,b=0,c=0. Hence, S is linearly independent subset of $\mathbb{R}^3.$

Step 1: Form a matrix A whose **columns** are the vectors in S.

Step 1: Form a matrix A whose **columns** are the vectors in S.

Step 2: Find RREF(A).

Step 1: Form a matrix A whose **columns** are the vectors in S.

Step 2: Find RREF(A).

Step 3: If there is a pivot in every column of RREF(A), then S is LI.

Step 1: Form a matrix A whose **columns** are the vectors in S.

Step 2: Find RREF(A).

Step 3: If there is a pivot in every column of RREF(A), then S is LI. Otherwise S is LD.

Theorem: If S is any subset of \mathbb{R}^n containing k distinct vectors, where k > n, then S is linearly dependent.

Theorem: If S is any subset of \mathbb{R}^n containing k distinct vectors, where k > n, then S is linearly dependent.

Exercise: Examine the linear independence of a subset $S = \{[2, -5, 1], [1, 1, -1], [0, 2, -3], [2, 2, 6]\}$ of \mathbb{R}^3 .

Theorem: If S is any subset of \mathbb{R}^n containing k distinct vectors, where k > n, then S is linearly dependent.

Exercise: Examine the linear independence of a subset $S = \{[2, -5, 1], [1, 1, -1], [0, 2, -3], [2, 2, 6]\}$ of \mathbb{R}^3 .

Result: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a linearly independent subset of a vector space \mathcal{V} . If $\mathbf{v} \in \mathcal{V}$ and $\mathbf{v} \not\in \operatorname{span}(S)$, then $S_1 = \{\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set.

Theorem: A nonempty finite subset S of a vector space \mathcal{V} is LI iff every vector $\mathbf{v} \in \operatorname{span}(S)$ can be expressed **uniquely** as a linear combination of the elements of S.

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly dependent if there is some finite subset T of S such that T is linearly dependent.

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly dependent if there is some finite subset T of S such that T is linearly dependent.

Example: The subset

$$S = \{ A \in \mathcal{M}_{22} \mid A \text{ is nonsingular} \}$$

of vector space \mathcal{M}_{22} is linearly dependent.

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly dependent if there is some finite subset T of S such that T is linearly dependent.

Example: The subset

$$S = \{ A \in \mathcal{M}_{22} \mid A \text{ is nonsingular} \}$$

of vector space \mathcal{M}_{22} is linearly dependent.

Solution: Note that the finite subset $T = \{I_2, 2I_2\}$ of S is linearly dependent

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly dependent if there is some finite subset T of S such that T is linearly dependent.

Example: The subset

$$S = \{ A \in \mathcal{M}_{22} \mid A \text{ is nonsingular} \}$$

of vector space \mathcal{M}_{22} is linearly dependent.

Solution: Note that the finite subset $T = \{I_2, 2I_2\}$ of S is linearly dependent as $2I_2$ is scalar multiple of I_2 .

Definition: An **infinite** subset S of a vector space \mathcal{V} is linearly dependent if there is some finite subset T of S such that T is linearly dependent.

Example: The subset

$$S = \{A \in \mathcal{M}_{22} \mid A \text{ is nonsingular}\}$$

of vector space \mathcal{M}_{22} is linearly dependent.

Solution: Note that the finite subset $T = \{I_2, 2I_2\}$ of S is linearly dependent as $2I_2$ is scalar multiple of I_2 . Hence, S is linearly dependent.

Result: An infinite subset S of a vector space \mathcal{V} is linearly independent if and only if no vector in S is a finite linear combination of other vector in S.

Result: An infinite subset S of a vector space \mathcal{V} is linearly independent if and only if no vector in S is a finite linear combination of other vector in S.

Example: The subset $S = \{1, x, x^2, x^3, x^4, \ldots\}$ of vector space \mathcal{P} is

Result: An infinite subset S of a vector space \mathcal{V} is linearly independent if and only if no vector in S is a finite linear combination of other vector in S.

Example: The subset $S = \{1, x, x^2, x^3, x^4, \ldots\}$ of vector space \mathcal{P} is linearly independent.

Section 4.5, Basis and Dimension

Section 4.5, Basis and Dimension

Basis: A subset B of a vector space \mathcal{V} is said to be a basis of \mathcal{V} if

- \bigcirc B is LI, and
- span $(B) = \mathcal{V}.$

• The subset $B=\{[1,0],[0,1]\}=\{e_1,e_2\}$ is a basis of \mathbb{R}^2 as B is LI and $\mathrm{span}(B)=\mathbb{R}^2$.

• The subset $B = \{[1,0],[0,1]\} = \{e_1,e_2\}$ is a basis of \mathbb{R}^2 as B is LI and span $(B) = \mathbb{R}^2$. The subset B is called the **standard basis** of \mathbb{R}^2 .

- The subset $B = \{[1,0],[0,1]\} = \{e_1,e_2\}$ is a basis of \mathbb{R}^2 as B is LI and span $(B) = \mathbb{R}^2$. The subset B is called the **standard basis** of \mathbb{R}^2 .
- The subset $B = \{[1,2], [3,4]\}$ is a basis of \mathbb{R}^2 as B is LI (verify!) and span $(B) = \mathbb{R}^2$ (verify!).

- The subset $B = \{[1,0],[0,1]\} = \{e_1,e_2\}$ is a basis of \mathbb{R}^2 as B is LI and span $(B) = \mathbb{R}^2$. The subset B is called the **standard basis** of \mathbb{R}^2 .
- The subset $B = \{[1,2],[3,4]\}$ is a basis of \mathbb{R}^2 as B is LI (verify!) and span $(B) = \mathbb{R}^2$ (verify!).
- The subset $B = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$, also denoted by $\{e_1, e_2, e_3\}$, is a basis of \mathbb{R}^3 as it is LI and span $(B) = \mathbb{R}^3$.

- The subset $B = \{[1,0],[0,1]\} = \{e_1,e_2\}$ is a basis of \mathbb{R}^2 as B is LI and span $(B) = \mathbb{R}^2$. The subset B is called the **standard basis** of \mathbb{R}^2 .
- The subset $B = \{[1,2],[3,4]\}$ is a basis of \mathbb{R}^2 as B is LI (verify!) and span $(B) = \mathbb{R}^2$ (verify!).
- The subset $B = \{[1,0,0], [0,1,0], [0,0,1]\}$, also denoted by $\{e_1,e_2,e_3\}$, is a basis of \mathbb{R}^3 as it is LI and span $(B) = \mathbb{R}^3$. The subset B is called the standard basis of \mathbb{R}^3 .

- The subset $B = \{[1,0],[0,1]\} = \{e_1,e_2\}$ is a basis of \mathbb{R}^2 as B is LI and span $(B) = \mathbb{R}^2$. The subset B is called the **standard basis** of \mathbb{R}^2 .
- The subset $B = \{[1,2],[3,4]\}$ is a basis of \mathbb{R}^2 as B is LI (verify!) and span $(B) = \mathbb{R}^2$ (verify!).
- The subset $B = \{[1,0,0],[0,1,0],[0,0,1]\}$, also denoted by $\{e_1,e_2,e_3\}$, is a basis of \mathbb{R}^3 as it is LI and span $(B) = \mathbb{R}^3$. The subset B is called the standard basis of \mathbb{R}^3 .

Think about some more basis of \mathbb{R}^2 and \mathbb{R}^3 .

• The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of \mathcal{P}_n as B is LI (verify!) and span $(B) = \mathcal{P}_n$ (verify!).

- The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of \mathcal{P}_n as B is LI (verify!) and span $(B) = \mathcal{P}_n$ (verify!).
- The subset

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is a basis of \mathcal{M}_{22} .

- The subset $B = \{1, x, x^2, \dots, x^n\}$ is a basis of \mathcal{P}_n as B is LI (verify!) and span $(B) = \mathcal{P}_n$ (verify!).
- The subset

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is a basis of \mathcal{M}_{22} .

Verify that B is LI and span $(B) = \mathcal{M}_{22}$.

Theorem: Every vector space has a basis.

Theorem: Every vector space has a basis.

Theorem: If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition: The dimension of a vector space $\mathcal V$ is the number of elements in a basis of $\mathcal V$

The dimension of the trivial vector space $\{0\}$ is defined to be zero.

The dimension of the trivial vector space $\{0\}$ is defined to be zero.

Definition: A vector space \mathcal{V} is said to be finite dimensional if it has a basis containing finite number of elements.

The dimension of the trivial vector space $\{0\}$ is defined to be zero.

Definition: A vector space \mathcal{V} is said to be finite dimensional if it has a basis containing finite number of elements. If a vector space \mathcal{V} has no finite basis then \mathcal{V} is called infinite dimensional.

 $\bullet \ \dim(\mathbb{R}^2) = 2.$

- $\bullet \ \dim(\mathbb{R}^2) = 2.$
- $\bullet \ \dim(\mathbb{R}^3) = 3.$

- $\dim(\mathbb{R}^2) = 2$.
- $\bullet \ \dim(\mathbb{R}^3) = 3.$
- \bullet dim $(\mathbb{R}^n) = n$.

- \bullet dim $(\mathbb{R}^2)=2$.
- $\dim(\mathbb{R}^3) = 3$.
- \bullet dim $(\mathbb{R}^n) = n$.
- $\dim(\mathcal{P}_n) = n + 1$.

- \bullet dim $(\mathbb{R}^2)=2$.
- $\dim(\mathbb{R}^3) = 3$.
- \bullet dim $(\mathbb{R}^n) = n$.
- \bullet dim $(\mathcal{P}_n) = n + 1$.
- $\dim(\mathcal{M}_{mn}) = mn$.

- $\dim(\mathbb{R}^2) = 2$.
- $\bullet \ \operatorname{dim}(\mathbb{R}^3) = 3.$
- \bullet dim $(\mathbb{R}^n) = n$.
- \bullet dim $(\mathcal{P}_n) = n + 1$.
- \bullet dim $(\mathcal{M}_{mn}) = mn$.
- Since $\{1, x, x^2, x^3, \ldots\}$ is a basis of \mathcal{P} (the vector space of all polynomials with real coefficients), thus the vector space \mathcal{P} is infinite dimensional.

$$W = \{ [x, y, z] \in \mathbb{R}^3 \mid x + 2z = 0 \}.$$

$$W = \{ [x, y, z] \in \mathbb{R}^3 \mid x + 2z = 0 \}.$$

Solution: The general solution of the equation x+2z=0 is given by $\{[-2s,t,s]\mid t,s\in\mathbb{R}\}$. Thus

$$W = \{ [-2s, t, s] \mid t, s \in \mathbb{R} \}$$

$$W = \{ [x, y, z] \in \mathbb{R}^3 \mid x + 2z = 0 \}.$$

Solution: The general solution of the equation x+2z=0 is given by $\{[-2s,t,s]\mid t,s\in\mathbb{R}\}$. Thus

$$W = \{ [-2s, t, s] \mid t, s \in \mathbb{R} \}$$

$$W = \{ s[-2, 0, 1] + t[0, 1, 0] \mid t, s \in \mathbb{R} \}$$

$$W = \{ [x, y, z] \in \mathbb{R}^3 \mid x + 2z = 0 \}.$$

Solution: The general solution of the equation x+2z=0 is given by $\{[-2s,t,s]\mid t,s\in\mathbb{R}\}$. Thus

$$\begin{split} W &= \{ [-2s,t,s] \mid t,s \in \mathbb{R} \} \\ W &= \{ s[-2,0,1] + t[0,1,0] \mid t,s \in \mathbb{R} \} \\ W &= \operatorname{span} \left(\{ [-2,0,1], [0,1,0] \} \right). \end{split}$$

$$W = \{ [x, y, z] \in \mathbb{R}^3 \mid x + 2z = 0 \}.$$

Solution: The general solution of the equation x+2z=0 is given by $\{[-2s,t,s]\mid t,s\in\mathbb{R}\}$. Thus

$$\begin{split} W &= \{ [-2s,t,s] \mid t,s \in \mathbb{R} \} \\ W &= \{ s[-2,0,1] + t[0,1,0] \mid t,s \in \mathbb{R} \} \\ W &= \operatorname{span} \left(\{ [-2,0,1], [0,1,0] \} \right). \end{split}$$

Note that the set $\{[-2,0,1],[0,1,0]\}$ is linearly independent (show it).

Hence, the subset $\{[-2,0,1],[0,1,0]\}$ is a basis of W and $\dim(W)=2$.

Hence, the subset $\{[-2,0,1],[0,1,0]\}$ is a basis of W and $\dim(W)=2$.

Exercise: Find a basis and the dimension of a subspace W of \mathcal{P}_3 , where

$$W = \{ \mathbf{p} \in \mathcal{P}_3 \mid \mathbf{p}(2) = 0 \}.$$

Theorem: Let W be a subspace of a finite dimensional vector space \mathcal{V} . Then

- W is also finite dimensional and $\dim W \leq \dim \mathcal{V}$.
- $\dim W = \dim \mathcal{V}$ if and only if $W = \mathcal{V}$.

Theorem: Let \mathcal{V} be a finite dimensional vector space such that $\dim(\mathcal{V}) = n$.

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$.

• Suppose S is a finite subset of $\mathcal V$ that spans $\mathcal V$. Then $|S| \geq n$.

Theorem: Let \mathcal{V} be a finite dimensional vector space such that $\dim(\mathcal{V}) = n$.

• Suppose S is a finite subset of $\mathcal V$ that spans $\mathcal V$. Then $|S| \geq n$. Moreover, |S| = n if and only if S is a basis of $\mathcal V$.

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$.

- Suppose S is a finite subset of $\mathcal V$ that spans $\mathcal V$. Then $|S| \geq n$. Moreover, |S| = n if and only if S is a basis of $\mathcal V$.
- Suppose T is a linearly independent subset of \mathcal{V} . Then T is finite and $|T| \leq n$.

Theorem: Let V be a finite dimensional vector space such that $\dim(V) = n$.

- Suppose S is a finite subset of $\mathcal V$ that spans $\mathcal V$. Then $|S| \geq n$. Moreover, |S| = n if and only if S is a basis of $\mathcal V$.
- Suppose T is a linearly independent subset of \mathcal{V} . Then T is finite and $|T| \leq n$. Moreover, |T| = n if and only if T is a basis for \mathcal{V} .

$$\mathcal{V} = \mathbb{R}^3$$
, $B = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}.$

$$\mathcal{V} = \mathbb{R}^3$$
, $B = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}.$

$$\mathcal{V} = \mathbb{R}^4$$
, $B = \{[7, 1, 2, 0], [8, 0, 1, -1], [1, 0, 0, -2]\}.$

- $\mathcal{V} = \mathbb{R}^3$, $B = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}$.
- $\mathcal{V} = \mathbb{R}^4$, $B = \{[7, 1, 2, 0], [8, 0, 1, -1], [1, 0, 0, -2]\}.$
- $\mathcal{V} = \mathcal{P}_2$, $B = \{1 + x, x + x^2, 1 + x^2\}$.

$$V = \mathbb{R}^3$$
, $B = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}.$

$$\mathcal{V} = \mathbb{R}^4$$
, $B = \{[7, 1, 2, 0], [8, 0, 1, -1], [1, 0, 0, -2]\}.$

$$\mathcal{V} = \mathcal{P}_2$$
, $B = \{1 + x, x + x^2, 1 + x^2\}$.

$$\mathcal{V} = \mathcal{P}_2, B = \{1 - x, x - x^2, 1 - x^2\}.$$

$$\mathcal{V} = \mathbb{R}^3$$
, $B = \{[3, 1, -1], [-5, -2, 2], [2, 2, -1]\}.$

$$\mathcal{V} = \mathbb{R}^4$$
, $B = \{[7, 1, 2, 0], [8, 0, 1, -1], [1, 0, 0, -2]\}.$

$$\mathcal{V} = \mathcal{P}_2$$
, $B = \{1 + x, x + x^2, 1 + x^2\}$.

$$\mathcal{V} = \mathcal{P}_2, B = \{1 - x, x - x^2, 1 - x^2\}.$$

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right\}.$$

Exercise: Let $S = \{[1, 2], [3, 0], [0, 2]\} \subseteq \mathbb{R}^2$.

Solution: In order to find a basis, we need a subset B of span(S) such that

- $\operatorname{span}(S) = \operatorname{span}(B);$
- B is LI.

Solution: In order to find a basis, we need a subset B of $\operatorname{span}(S)$ such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- B is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$

Solution: In order to find a basis, we need a subset B of $\operatorname{span}(S)$ such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- B is LI.

Since
$$[1,2] = \frac{1}{3}[3,0] + [0,2]$$
 implies

$$span(S) = span(B), where B = \{[3, 0], [0, 2]\}.$$

Solution: In order to find a basis, we need a subset B of $\operatorname{span}(S)$ such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- B is LI.

Since $[1,2] = \frac{1}{3}[3,0] + [0,2]$ implies

$$span(S) = span(B), where B = \{[3, 0], [0, 2]\}.$$

Also, B is LI (show it).

Solution: In order to find a basis, we need a subset B of $\operatorname{span}(S)$ such that

- $\operatorname{span}(S) = \operatorname{span}(B)$;
- B is LI.

Since $[1,2] = \frac{1}{3}[3,0] + [0,2]$ implies

$$span(S) = span(B), where B = \{[3, 0], [0, 2]\}.$$

Also, B is LI (show it). Hence, B is a basis of span(S).

Exercise: Let $W = \{X \in \mathbb{R}^5 : AX = \mathbf{0}\},$

Exercise: Let $W = \{X \in \mathbb{R}^5 : AX = \mathbf{0}\}$, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & -1 \\ 2 & -1 & 0 & 1 & 3 \\ 1 & -3 & -1 & 1 & 4 \\ 2 & 9 & 4 & -1 & -7 \end{bmatrix}.$$

Find a basis for W.

Exercise: Let $W = \{X \in \mathbb{R}^5 : AX = \mathbf{0}\}$, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & -1 \\ 2 & -1 & 0 & 1 & 3 \\ 1 & -3 & -1 & 1 & 4 \\ 2 & 9 & 4 & -1 & -7 \end{bmatrix}.$$

Find a basis for W.

Answer:

$$B = \left\{ \begin{bmatrix} -\frac{1}{5} \\ -\frac{2}{5} \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{2}{5} \\ \frac{1}{5} \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Exercise: Let $S = \{[4, 2, 1], [2, 6, -5], [1, -2, 3]\}$ be a subset of vector space \mathbb{R}^3 .

• Examine the linear independence of *S*.

Exercise: Let $S = \{[4, 2, 1], [2, 6, -5], [1, -2, 3]\}$ be a subset of vector space \mathbb{R}^3 .

- Examine the linear independence of S.
- Find dim(span(S)).

Exercise: Let $S = \{[4, 2, 1], [2, 6, -5], [1, -2, 3]\}$ be a subset of vector space \mathbb{R}^3 .

- Examine the linear independence of S.
- Find dim(span(S)).

Hint:

Let

$$a_1[4,2,1] + a_2[2,6,-5] + a_3[1,-2,3] = \mathbf{0} = [0,0,0]$$

On solving above system of equations, we get

$$a_1 = -1, a_2 = 1, a_3 = 2$$

implies S is not LI.

Note that

$$[2, 6, -5] = [4, 2, 1] - 2[1, -2, 3]$$

implies span(S) = span(B), where

$$B = \{[4, 2, 1], [1, -2, 3]\}.$$

Now, note that B is LI

Note that

$$[2, 6, -5] = [4, 2, 1] - 2[1, -2, 3]$$

implies span(S) = span(B), where

$$B = \{[4, 2, 1], [1, -2, 3]\}.$$

Now, note that B is LI (Show it). Thus B (a set of two elements) is a basis of $\operatorname{span}(S)$

Note that

$$[2, 6, -5] = [4, 2, 1] - 2[1, -2, 3]$$

implies span(S) = span(B), where

$$B = \{ [4, 2, 1], [1, -2, 3] \}.$$

Now, note that B is LI (Show it). Thus B (a set of two elements) is a basis of $\operatorname{span}(S)$ and

$$\dim(\operatorname{span}(S)) = 2$$

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $k \times n$ by using vectors of S

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $k \times n$ by using vectors of S as rows of A.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $k \times n$ by using vectors of S as rows of A.
- Compute $C = \mathsf{RREF}(A)$.

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $k \times n$ by using vectors of S as rows of A.
- Compute $C = \mathsf{RREF}(A)$.
- Nonzero rows of C forms a basis for span(S).

Example: Let $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \}$, where

$$\mathbf{v}_1 = [1, 2, 3, -1, 0], \ \mathbf{v}_2 = [3, 6, 8, -2, 0]$$

$$\mathbf{v}_3 = [-1, -1, -3, 1, 1], \ \mathbf{v}_4 = [-2, -3, -5, 1, 1]$$

be a subset of \mathbb{R}^5 .

Example: Let $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \}$, where

$$\mathbf{v}_1 = [1, 2, 3, -1, 0], \ \mathbf{v}_2 = [3, 6, 8, -2, 0]$$

$$\mathbf{v}_3 = [-1, -1, -3, 1, 1], \ \mathbf{v}_4 = [-2, -3, -5, 1, 1]$$

be a subset of \mathbb{R}^5 . Find a basis for span(S).

Example: Let $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \}$, where

$$\mathbf{v}_1 = [1, 2, 3, -1, 0], \ \mathbf{v}_2 = [3, 6, 8, -2, 0]$$

$$\mathbf{v}_3 = [-1, -1, -3, 1, 1], \ \mathbf{v}_4 = [-2, -3, -5, 1, 1]$$

be a subset of \mathbb{R}^5 . Find a basis for span(S).

Solution:

Step 1:

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 & 0 \\ 3 & 6 & 8 & -2 & 0 \\ -1 & -1 & -3 & 1 & 1 \\ -2 & -3 & -5 & 1 & 1 \end{bmatrix}$$

Step 2:

$$C = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 & 2 & -2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step 2:

$$C = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 & 2 & -2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Step 3:

$$B = \{[1, 0, 0, 2, -2], [0, 1, 0, 0, 1], [0, 0, 1, -1, 0]\}$$

is a basis for span(S).

Exercise: Let

$$S = \{x^3 - 3x^2 + 2, 2x^3 - 7x^2 + x - 3, 4x^3 - 13x^2 + x + 5\}$$

be a subset of \mathcal{P}_3 . Find a basis for span(S).

Exercise: Let

$$S = \{x^3 - 3x^2 + 2, 2x^3 - 7x^2 + x - 3, 4x^3 - 13x^2 + x + 5\}$$

be a subset of \mathcal{P}_3 . Find a basis for span(S).

Answer: $B = \{x^3 - 3x, x^2 - x, 1\}.$

Next is to reduce a spanning set to a basis

Next is to reduce a spanning set to a basis by eliminating redundant vectors

Next is to reduce a spanning set to a basis by eliminating redundant vectors **without changing the form** of the original vectors.

Next is to reduce a spanning set to a basis by eliminating redundant vectors without changing the form of the original vectors.

Theorem: If S is a spanning set for a finite dimensional vector space \mathcal{V} , then there is a set $B \subseteq S$ that is a basis for \mathcal{V} .

Independence Test Method to find a Basis for V = span(S)

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

Independence Test Method to find a Basis for $\mathcal{V} = \operatorname{span}(S)$

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $n \times k$ by using vectors of S

Independence Test Method to find a Basis for $V = \operatorname{span}(S)$

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

• Construct a matrix A of order $n \times k$ by using vectors of S as columns of A.

Independence Test Method to find a Basis for $\mathcal{V} = \operatorname{span}(S)$

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $n \times k$ by using vectors of S as columns of A.
- Compute $C = \mathsf{RREF}(A)$.

Independence Test Method to find a Basis for $\mathcal{V} = \operatorname{span}(S)$

Let $S \subseteq \mathbb{R}^n$ containing k vectors.

- Construct a matrix A of order $n \times k$ by using vectors of S as columns of A.
- Compute $C = \mathsf{RREF}(A)$.
- Column vectors in A corresponding to pivot columns of C forms a basis for span(S).

Example: Let $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5 \}$, where

$$\mathbf{v}_1 = [1, 2, -2, 1], \quad \mathbf{v}_2 = [-3, 0, -4, 3]$$
 $\mathbf{v}_3 = [2, 1, 1, -1], \quad \mathbf{v}_4 = [-3, 3, -9, 6]$ and $\mathbf{v}_5 = [9, 3, 7, -6]$

be a subset of \mathbb{R}^4 .

Example: Let $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5 \}$, where

$$\mathbf{v}_1 = [1, 2, -2, 1], \ \mathbf{v}_2 = [-3, 0, -4, 3]$$

$$\mathbf{v}_3 = [2,1,1,-1], \ \mathbf{v}_4 = [-3,3,-9,6]$$
 and $\mathbf{v}_5 = [9,3,7,-6]$

be a subset of \mathbb{R}^4 . Find a basis for span(S).

Example: Let $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5 \}$, where

$$\begin{aligned} \mathbf{v}_1 &= [1,2,-2,1], & \ \mathbf{v}_2 &= [-3,0,-4,3] \\ \mathbf{v}_3 &= [2,1,1,-1], & \ \mathbf{v}_4 &= [-3,3,-9,6] \\ & \ \text{and} & \ \mathbf{v}_5 &= [9,3,7,-6] \end{aligned}$$

be a subset of \mathbb{R}^4 . Find a basis for span(S).

Solution:

$$A = \begin{bmatrix} 1 & -3 & 2 & -3 & 9 \\ 2 & 0 & 1 & 3 & 3 \\ -2 & -4 & 1 & -9 & 7 \\ 1 & 3 & -1 & 6 & -6 \end{bmatrix}$$

implies

implies the set of vectors corresponding to pivot columns i.e.

$$B = \{[1, 2, -2, 1], [-3, 0, -4, 3]\}$$

implies the set of vectors corresponding to pivot columns i.e.

$$B = \{[1, 2, -2, 1], [-3, 0, -4, 3]\}$$

forms a basis for the subspace span(S).

Exercise: Let

$$S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$$

be a subset of \mathcal{P}_3 . Find a basis for span(S).

Exercise: Let

$$S = \{x^3 - 3x^2 + 1, 2x^2 + x, 2x^3 + 3x + 2, 4x - 5\}$$

be a subset of \mathcal{P}_3 . Find a basis for span(S).

Answer:
$$B = \{x^3 - 3x^2 + 1, 2x^2 + x, 4x - 5\}.$$

Example: Let $S = \{[1, 0, 1, 0], [-1, 1, -1, 0]\}$ be LI a subset of \mathbb{R}^4 .

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Solution:

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Solution: We know that $B' = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 .

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Solution: We know that $B' = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Consider

$$B_1 = \{[1, 0, 1, 0], [-1, 1, -1, 0], e_1, e_2, e_3, e_4\}.$$

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Solution: We know that $B' = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Consider

$$B_1 = \{[1, 0, 1, 0], [-1, 1, -1, 0], e_1, e_2, e_3, e_4\}.$$

Now B' spans \mathbb{R}^4 implies

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Solution: We know that $B' = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Consider

$$B_1 = \{[1, 0, 1, 0], [-1, 1, -1, 0], e_1, e_2, e_3, e_4\}.$$

Now B' spans \mathbb{R}^4 implies span $(B_1) = \mathbb{R}^4$.

Note that the set S is **NOT** a basis for \mathbb{R}^4 (Why?).

Solution: We know that $B' = \{e_1, e_2, e_3, e_4\}$ is a standard basis for \mathbb{R}^4 . Consider

$$B_1 = \{[1, 0, 1, 0], [-1, 1, -1, 0], e_1, e_2, e_3, e_4\}.$$

Now B' spans \mathbb{R}^4 implies span $(B_1) = \mathbb{R}^4$. Consider

$$A = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \mathsf{RREF}(A) = \begin{bmatrix} \mathbf{1} & 0 & 0 & 1 & 1 & 0 \\ 0 & \mathbf{1} & 0 & 1 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

$$C = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Using Independence Test Method, we have

$$C = \mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Using Independence Test Method, we have

$$B = \{[1, 0, 1, 0], [-1, 1, -1, 0], e_1, e_4\}$$

is a basis of \mathbb{R}^4 containing S.

Theorem: Every LI subset of a finite dimensional vector space \mathcal{V} can be extended to form a basis of \mathcal{V} .

Let $T = \{t_1, \dots, t_k\}$ be a LI subset of a finite dimensional vector space \mathcal{V} .

Let $T = \{t_1, \dots, t_k\}$ be a LI subset of a finite dimensional vector space \mathcal{V} .

• Find a spanning set $A = \{a_1, \ldots, a_n\}$ for \mathcal{V} .

Let $T = \{t_1, \dots, t_k\}$ be a LI subset of a finite dimensional vector space \mathcal{V} .

- Find a spanning set $A = \{a_1, \ldots, a_n\}$ for \mathcal{V} .
- Form the ordered spanning set

$$S = \{t_1, \dots, t_k, a_1, \dots, a_n\}$$

for \mathcal{V} .

Let $T = \{t_1, \dots, t_k\}$ be a LI subset of a finite dimensional vector space \mathcal{V} .

- Find a spanning set $A = \{a_1, \ldots, a_n\}$ for \mathcal{V} .
- Form the ordered spanning set

$$S = \{t_1, \dots, t_k, a_1, \dots, a_n\}$$

for \mathcal{V} .

 Use Independence Test Method to produce a subset B of S.

Let $T = \{t_1, \dots, t_k\}$ be a LI subset of a finite dimensional vector space \mathcal{V} .

- Find a spanning set $A = \{a_1, \ldots, a_n\}$ for \mathcal{V} .
- Form the ordered spanning set

$$S = \{t_1, \dots, t_k, a_1, \dots, a_n\}$$

for \mathcal{V} .

• Use Independence Test Method to produce a subset B of S. Then B is a basis for \mathcal{V} containing T.

$$T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$$

be a LI subset of \mathcal{P}_4 .

$$T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$$

be a LI subset of \mathcal{P}_4 . Extend T to form a basis for \mathcal{P}_4 .

$$T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$$

be a LI subset of \mathcal{P}_4 . Extend T to form a basis for \mathcal{P}_4 .

Solution: By considering the polynomials in T as vectors in \mathbb{R}^5 , note that

$$T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$$

be a LI subset of \mathcal{P}_4 . Extend T to form a basis for \mathcal{P}_4 .

Solution: By considering the polynomials in T as vectors in \mathbb{R}^5 , note that

$$T = \{\mathbf{v}_1, \mathbf{v}_2\},\$$

$$T = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x\}$$

be a LI subset of \mathcal{P}_4 . Extend T to form a basis for \mathcal{P}_4 .

Solution: By considering the polynomials in T as vectors in \mathbb{R}^5 , note that

$$T = \{\mathbf{v}_1, \mathbf{v}_2\},\$$

where $\mathbf{v}_1 = [0, 1, -1, 0, 0]$ and $\mathbf{v}_2 = [1, -3, 5, -1, 0]$.

Step 1: We know that $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 .

Step 1: We know that $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 .

Step 2: Now we form the spanning set

$$S = \{\mathbf{v}_1, \mathbf{v}_2, e_1, e_2, e_3, e_4, e_5\}.$$

of \mathbb{R}^5 .

Step 1: We know that $A = \{e_1, e_2, e_3, e_4, e_5\}$ is a standard basis for \mathbb{R}^5 .

Step 2: Now we form the spanning set

$$S = \{\mathbf{v}_1, \mathbf{v}_2, e_1, e_2, e_3, e_4, e_5\}.$$

of \mathbb{R}^5 .

Step 3:

$$C = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -3 & 0 & 1 & 0 & 0 & 0 \\ -1 & 5 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathsf{RREF}(C) = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & -1 & -5 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

$$\mathsf{RREF}(C) = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & -1 & -5 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

Since columns I, II, III, IV and VII are pivot columns, so by independent test method, the set

$$B = \{\mathbf{v}_1, \mathbf{v}_2, e_1, e_2, e_5\}$$

is a basis of span(S),

$$\mathsf{RREF}(C) = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & -1 & -5 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Since columns I, II, III, IV and VII are pivot columns, so by independent test method, the set

$$B = \{\mathbf{v}_1, \mathbf{v}_2, e_1, e_2, e_5\}$$

is a basis of span(S), i.e.

$$B = \{x^3 - x^2, x^4 - 3x^3 + 5x^2 - x, x^4, x^3, 1\}$$

is a basis of \mathcal{P}_4 containing T.

Exercise: Let

$$T = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$

be a LI subset of \mathcal{M}_{32} .

Exercise: Let

$$T = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$

be a LI subset of \mathcal{M}_{32} . Extend T to form a basis for \mathcal{M}_{32} .

Exercise: Let

$$T = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$

be a LI subset of \mathcal{M}_{32} . Extend T to form a basis for \mathcal{M}_{32} .

Answer:

$$B = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\$$

Thank You

