

BSc (Hons) in Information Technology

Year 2

Data Structures and Algorithms – IT2070

Tutorial 8 – Divide and Conquer

Semester 2, 2023

Question1

The pseudo codes for the *merge sort* are given below

MERGESORT (A, l, r)1. if l < r

2. **then** $q = \lfloor (l+r)/2 \rfloor$

3. **MERGESORT** (A,l,q)

4. **MERGESORT** (A,q+1, r)

5. **MERGE** (A, l, q, r)

MERGE (A, l, q, r)

```
1. i = 1
```

2.
$$j = q+1$$

3.
$$k = 0$$

4. while
$$(i \le q)$$
 and $(j \le r)$ do

5.
$$k = k+1$$

6. **if**
$$A[i] \le A[j]$$
 then

7.
$$TEMP[k] = A[i]$$

8.
$$i = i + 1$$

9. **else**

10.
$$TEMP[k] = A[j]$$

11.
$$j = j + 1$$

12. if j > r then

13. **for**
$$t = 0$$
 to $q - i$ do

14.
$$A[r-t] = A[q-t]$$

15. **for** t = 0 **to** k-1 do

16. A
$$[l+t] = TEMP[t+1]$$

- a) Illustrate operation of *merge sort* on the array A=(6,4,8,1,7,2,5,3).
- b) What is the purpose of the Temp array in the *merge sort* algorithm?
- c) Why do it execute line no 13 and 14?
- d) Modify the above **MERGESORT** (*A*, *l*, *r*) algorithm to sort the numbers in descending order. [Only the modified line should be described]

2. Two algorithms for the Maximum Sub Sequence Sum Problem are given below. Which algorithm will be the faster one? Justify your answer with Big O notation.

Algorithm 01

Algorithm 02

3. Fill the table entries giving the time complexity in Big O notation.

Algorithm	Time Complexity	
	Best Case	Worst Case
Insertion sorting		
Quick sort		
Merge sort		