This document is a derivative of "The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20190608-Base-Ratified Editors Andrew Waterman and Krste Asanovi#, RISC-V Foundation, March 2019.

Table of Contents

1.	Base Instruction Formats		
	Base Instruction Formats		
2.	Integer Register-Immediate Instructions		2
	Integer Register-Immediate Instructions		
3.	Integer Computational Instructions		
	Integer Computational Instructions		
4.	Alphabetical List of RV32I Instructions		
	LUI		
	AUIPC	4	4
	JAL		4
	JALR		5
	BEQ		5
	BNE		5
	BLT		6
	BGE		6
	BLTU		6
	BGEU		6
	LB		6
	LH		6
	LW		7
	LBU		7
	LHU		7
	SB		7
	SH		7
	SW		7
	ADDI		8
	SLTI		
	SLTIU		
	XORI		
	ORI		
	ANDI		
	SLLI		
	SRLI		
	SRAI		
	ADD		
	SUB		
	SLL		
	SLT		
	SLTU	_	
	XOR		
	SRL		
	SRA		
	OR		
	AND		
	FENCE		
	ECALL		
	EBREAK		
_	RV32I Opcode map		
Э.	Alphabetical List of RV32C Instructions		
	Illegal instruction		12 12
	Keservea		. /

C.ADDI4SPN	12
C.LW	12
C.SW	
C.NOP	
C.ADDI	13
C.JAL	
CII	

List of Tables

1.1. R-type
1.2. I-type
1.3. S-type
1.4. U-type
2.1. Integer Register-Immediate Instructions
3.1. Integer Computational Instructions
4.1. LUI
4.2. AUIPC
4.3. JAL
4.4. JALR
4.5. BEQ.
4.6. BNE
4.7. BLT
4.8. BGE
4.9. BLTU
4.10. BGEU
4.11. LB
4.12. LH
4.13. LW
4.14. LBU
4.15. LHU
4.16. SB
4.17. SH
4.18. SW
4.19. ADDI
4.20. SLTI
4.21. SLTIU
4.22. XORI
4.23. ORI
4.24. ANDI
4.25. SLLI
4.26. SRLI
4.20. SRAI
4.28. ADD
4.29. SUB
4.30. SLL
4.31. SLT
4.32. SLTU
4.33. XOR
4.34. SRL
4.35. SRA
4.36. OR
4.37. AND
4.38. FENCE
4.39. ECALL1
4.40. EBREAK
4.41. RV32I Base Instruction Set
5.1. Illegal instruction
5.2. Reserved
5.3. C.ADDI4SPN (nzuimm !=0)
5.4. C.LW

5.5.	C.SW	12
5.6.	C.NOP	12
	C.ADDI (nzimm != 0)(rs1/rd != 0)	
	C.JAL	
59	CLI (rd = 0)	13

Chapter 1. Base Instruction Formats

Base Instruction Formats

Table 1.1. R-type

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
funct7									rs2					rs1			fı	inci	t3			rd					or	СО	de		

Table 1.2. I-type

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
imm[11:0]													rs1			fı	ıncı	t3			rd					or	oco	de			

Table 1.3. S-type

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
imm[11:5]									rs2					rs1			fı	inct	t3		imı	m[4	:0]				or	co	de		

Table 1.4. U-type

31 30 29 2	8 27 26	25	24	23 2	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	imm[31:12]																rd					op	oco	de		

Chapter 2. Integer Register-Immediate Instructions

Integer Register-Immediate Instructions

Table 2.1. Integer Register-Immediate Instructions

Instruction	Description
ADDI	Add Signed Immediate
ANDI	And Signed Immediate
SLTI	Set Less Than Signed Immediate
SLTIU	SLTIU
ORI	Or Signed Immediate
XORI	Exclusive Or Signed Immediate

Chapter 3. Integer Computational Instructions

Integer Computational Instructions

Table 3.1. Integer Computational Instructions

Instruction	Description
LUI	Load Upper Immediate
AUIPC	Add Upper Immediate

Chapter 4. Alphabetical List of RV32l Instructions

alphabetize later

LUI

Table 4.1. LUI

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
imm[31:12]																rd			0	1	1	0	1	1	1							

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest 12 bits with zeros.

AUIPC

Table 4.2. AUIPC

[31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
									im	m[3	31:1	[2]											rd			0	0	1	0	1	1	1	

AUIPC description AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with zeros, adds this offset to the address of the AUIPC instruction, then places the result in register rd.

The AUIPC instruction supports two-instruction sequences to access arbitrary offsets from the PC for both control-flow transfers and data accesses. The combination of an AUIPC and the 12-bit immediate in a JALR can transfer control to any 32-bit PC-relative address, while an AUIPC plus the 12-bit immediate offset in regular load or store instructions can access any 32-bit PC-relative data address.

The current PC can be obtained by setting the U-immediate to 0. Although a JAL +4 instruction could also be used to obtain the local PC (of the instruction following the JAL), it might cause pipeline breaks in simpler microarchitectures or pollute BTB structures in more complex microarchitectures.

JAL

Table 4.3. JAL

31 30 29 28 27 26 25 24 23	22 21 20 19 1	18 17 16	15 14	13	12	11 10	9	8	7	6	5	4	3	2	1	0
imm[20	10:1 11 19:12]	j					rd			1	1	0	1	1	1	1

JAL rd,label

J label (pseudo)

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a signed offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the jump instruction to

form the jump target address. Jumps can therefore target a ± 1 MiB range. JAL stores the address of the instruction following the jump (pc+4) into register rd. The standard software calling convention uses x1 as the return address register and x5 as an alternate link register.

Plain unconditional jumps (assembler pseudoinstruction J) are encoded as a JAL with rd=x0.

JALR

Table 4.4. JALR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				in	nm[11:	[0]							rs1			0	0	0			rd			1	1	0	0	1	1	1	

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then setting the least-significant bit of the result to zero. The address of the instruction following the jump (pc+4) is written to register rd. Register x0 can be used as the destination if the result is not required.

BEQ

Table 4.5. BEQ

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	iı	mm	[12	10:	5]				rs2					rs1			0	0	0	iı	mm	[4:	1 11]	1	1	0	0	0	1	1

BEQ rs1,rs2,label

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes signed offsets in multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to give the target address. The conditional branch range is ± 4 KiB.

Branch instructions compare two registers.

BEQ takes the branch if registers rs1 and rs2 are equal.

BNE

Table 4.6. BNE

31 30 29 28 27 26 25	24 23 22 21 20	19 18 17 16 15	14 13 12	11 10 9 8 7	6 5	4 3	2 1	0
imm[12 10:5]	rs2	rs1	0 0 1	imm[4:1 11]	1 1	0 0	0 1	1

BNE rs1,rs2,label

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes signed offsets in multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to give the target address. The conditional branch range is ± 4 KiB.

Branch instructions compare two registers.

BNE takes the branch if registers rs1 and rs2 are not equal.

BLT

Table 4.7. BLT

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	in	ım[12	10:	5]				rs2					rs1			1	0	0	iı	nm	[4:	1 11	[]	1	1	0	0	0	1	1	

BGE

Table 4.8. BGE

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	in	nm[12	10:	5]				rs2					rs1			1	0	1	iı	nm	[4:	1 11	[]	1	1	0	0	0	1	1

BLTU

Table 4.9. BLTU

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ir	nm	[12	10:	5]				rs2					rs1			1	1	0	iı	nm	[4:	1 11]	1	1	0	0	0	1	1

BGEU

Table 4.10. BGEU

31 30 29 28 27 26	25 24 23 22 21 20	19 18 17 16 15	14 13	12	11 10 9	8 7	6	5	4	3	2	1	0
imm[12 10:5]	rs2	rs1	1 1	1	imm[4:	1 11]	1	1	0	0	0	1	1

LB

Table 4.11. LB

3	1 3) 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				in	nm[11:	[0]							rs1			0	0	0			rd			0	0	0	0	0	1	1

LH

Table 4.12. LH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				in	ım[11:	0]							rs1			0	0	1			rd			0	0	0	0	0	1	1

LW

Table 4.13. LW

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				in	nm[11:	[0]							rs1			0	1	0			rd			0	0	0	0	0	1	1

LBU

Table 4.14. LBU

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				in	nm[11:	[0]							rs1			1	0	0			rd			0	0	0	0	0	1	1

LHU

Table 4.15. LHU

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				in	nm[11:	[0:							rs1			1	0	1			rd			0	0	0	0	0	1	1	

SB

Table 4.16. SB

31 30 29 28 27 26 25	24 23 22 21 20	19 18 17 16 15	14 13 12	11 10 9 8 7	6 5	4 3	2 1	0
imm[11:5]	rs2	rs1	0 0 0	imm[4:0]	0 1	0 0	0 1	1

SH

Table 4.17. SH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	i	imn	n[1	1:5]				rs2					rs1			0	0	1		im	m[4	:0]		0	1	0	0	0	1	1

SW

Table 4.18. SW

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	i	imn	n[1	1:5]				rs2					rs1			0	1	0		imı	m[4	:0]		0	1	0	0	0	1	1	

ADDI

Table 4.19. ADDI

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				in	nm[11:	0]							rs1			0	0	0			rd			0	0	1	0	0	1	1

SLTI

Table 4.20. SLTI

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				in	nm[11:	[0]							rs1			0	1	0			rd			0	0	1	0	0	1	1	

SLTIU

Table 4.21. SLTIU

31 30	29 2	28 2	27 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			im	m[11:	0]							rs1			0	1	1			rd			0	0	1	0	0	1	1	

XORI

Table 4.22. XORI

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15	14 13 12 11 10 9 8 7	6 5 4 3	2 1 0
imm[11:0]	rs1	1 0 0 rd (0 0 1 0	0 1 1

ORI

Table 4.23. ORI

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15	14 13 12 11 10 9 8 7	6 5 4 3 2 1 0
imm[11:0]	rs1	1 1 0 rd	0 0 1 0 0 1 1

ANDI

Table 4.24. ANDI

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15	14 13 12 11 10 9 8 7	6 5 4 3 2	1 0
imm[11:0]	rs1	1 1 1 rd	0 0 1 0 0	1 1

SLLI

Table 4.25. SLLI

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
)	0	0	0	0	0	0		s	han	nt				rs1			0	0	1			rd			0	0	1	0	0	1	1

SRLI

Table 4.26. SRLI

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
()	0	0	0	0	0	0		S	han	nt				rs1			1	0	1			rd			0	0	1	0	0	1	1

SRAI

Table 4.27. SRAI

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	0	0	0	0		sl	han	nt				rs1			1	0	1			rd			0	0	1	0	0	1	1	

ADD

Table 4.28. ADD

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0			rs2					rs1			0	0	0			rd			0	1	1	0	0	1	1

SUB

Table 4.29. SUB

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0			rs2					rs1			0	0	0			rd			0	1	1	0	0	1	1

SLL

Table 4.30. SLL

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0			rs2					rs1			0	0	1			rd			0	1	1	0	0	1	1

SLT

Table 4.31. SLT

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	0			rs2					rs1			0	1	0			rd			0	1	1	0	0	1	1

SLTU

Table 4.32. SLTU

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0			rs2					rs1			0	1	1			rd			0	1	1	0	0	1	1	

XOR

Table 4.33. XOR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0			rs2					rs1			1	0	0			rd			0	1	1	0	0	1	1	

SRL

Table 4.34. SRL

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0			rs2					rs1			1	0	1			rd			0	1	1	0	0	1	1

SRA

Table 4.35. SRA

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0			rs2					rs1			1	0	1			rd			0	1	1	0	0	1	1

OR

Table 4.36. OR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0			rs2					rs1			1	1	0			rd			0	1	1	0	0	1	1

AND

Table 4.37. AND

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(О	0	0	0	0	0	0			rs2					rs1			1	1	1			rd			0	1	1	0	0	1	1

FENCE

Table 4.38. FENCE

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		fm			1	orec	1		su	сс				rs1			0	0	0			rd			0	0	0	1	1	1	1	

ECALL

Table 4.39. ECALL

3	1 3	0 2	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(() (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1

EBREAK

Table 4.40. EBREAK

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1

RV32I Opcode map

Table 4.41. RV32I Base Instruction Set

31 30 29 28 27 26 25	24 23 22 21 20	19 18 17 16 15	14 13 12	11 10 9 8 7	6 5	4 3 2	1 0	inst
funct7	rs2	rs1	funct3	rd		opcode		R-Type
imm[11	:0]	rs1	funct3	rd		opcode		I-Type
imm[11:5]	rs2	rs1	funct3	imm[4:0]		opcode		S-Type
imm[12 10:5]	rs2	rs1	funct3	imm[4:1 11]		opcode		B-Type
	imm[31:12]		rd		opcode		U-Type
im	m[20 10:1 11	19:12]		rd		opcode		J-Type
	imm[31:12]		rd	0 1	1 0 1	1 1	LUI
	imm[31:12]		rd	0 0	1 0 1	1 1	AUIPC
im	m[20 10:1 11	19:12]		rd	1 1	0 1 1	1 1	JAL
imm[11	:0]	rs1	0 0 0	rd	1 1	0 0 1	1 1	JALR

Chapter 5. Alphabetical List of RV32C Instructions

alphabetize later

Illegal instruction

Table 5.1. Illegal instruction

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved

Table 5.2. Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0						-						0	0

C.ADDI4SPN

Table 5.3. C.ADDI4SPN (nzuimm !=0)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0			nzu	imm[5	:4 9:6	2 3]				rd'		0	0	

C.LW

Table 5.4. C.LW

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	ui	mm[5:	3]		rs1'		uimn	n[2 6]		rd'		0	0

C.SW

Table 5.5. C.SW

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	ui	mm[5:	3]		rs1'		uimn	n[2 6]		rs2'		0	0

C.NOP

Table 5.6. C.NOP

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

C.ADDI

Table 5.7. C.ADDI (nzimm != 0)(rs1/rd != 0)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	nz- imm[5]]		rs1/rd				nz	imm[4	:0]		0	1

C.JAL

Table 5.8. C.JAL

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1				imı	m[11 4	9:8 10	6 7 3:1	1 5]				0	1

C.JAL is an RV32C-only instruction that performs the same operation as C.J, but additionally writes the address of the instruction following the jump (pc+2) to the link register, x1. C.JAL expands to jal x1, offset[11:1].

C.LI

Table 5.9. C.LI (rd != 0)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	mm[5]]		rd			imm[4:0]				0	1		