Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Uranium(IV)

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$					
	Baes and Mesmer, 1976	Thoenen et al., 2014	Brown and Ekberg, 2016	Grenthe et al., 2020		
$U^{4+} + H_2O \rightleftharpoons UOH^{3+} + H^+$	-0.65	- 0.54 ± 0.06	-0.58 ± 0.08	-0.54 ± 0.06		
$U^{4+} + 2 H_2O \rightleftharpoons U(OH)_2^{2+} + 2 H^+$	(-2.6)	-1.1 ± 1.0	-1.4 ± 0.2	-1.9 ± 0.2		
$U^{4+} + 3 H_2O \rightleftharpoons U(OH)_3^+ + 3 H^+$	(-5.8)	-4.7 ± 1.0	-5.1 ± 0.3	-5.2 ± 0.4		
$U^{4+} + 4 H_2O \rightleftharpoons U(OH)_4 + 4 H^+$	(-10.3)	-10.0 ± 1.4	-10.4 ± 0.5	-10.0 ± 1.4		
$U^{4+} + 5 H_2O \rightleftharpoons U(OH)_5^- + 5 H^+$	-16.0					
$UO_2(am, hyd) + 4 H^+ \rightleftharpoons U^{4+} + 2 H_2O$		1.5 ± 1.0				
$UO_2(am,hyd) + 2 H_2O \rightleftharpoons U^{4+} + 4 OH^-$			-54.500 ± 1.000	-54.500 ± 1.000		
$UO_2(c) + 4 H^+ \rightleftharpoons U^{4+} + 2 H_2O$	-1.8					
$UO_2(c) + 2 H_2O \rightleftharpoons U^{4+} + 4 OH^-$				-60.860 ± 1.000		

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 181.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 336–349.
- I. Grenthe, X. Gaona, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith and E.E. Moore, Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, OECD Pub., 2020.
- T. Thoenen, W. Hummel, U. Berner and E. Curti, The PSI/Nagra Chemical Thermodynamic Database 12/07, Villigen: Paul Scherrer Institut PSI, 2014.

Distribution diagrams

These diagrams have been computed at two U(IV) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Uranium(VI)

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$					
	Baes and Mesmer, 1976	Grenthe et al., 1992	NIST46	Brown and Ekberg, 2016	Grenthe et al., 2020	
$UO_2^{2+} + H_2O \rightleftharpoons UO_2(OH)^+ + H^+$	-5.8	-5.2 ± 0.3	-5.9 ± 0.1	-5.13 ± 0.04	$-5.2_5 \pm 0.2_4$	
$UO_2^{2+} + 2 H_2O \rightleftharpoons UO_2(OH)_2 + 2 H^+$		≤ -10.3		$-12.1_5 \pm 0.2_0$	-12.15 ± 0.07	
$UO_2^{2+} + 3 H_2O \rightleftharpoons UO_2(OH)_3^- + 3 H^+$		-19.2 ± 0.4		-20.2 ₅ ± 0.4 ₂	-20.2 ₅ ± 0.4 ₂	
$UO_2^{2+} + 4 H_2O \rightleftharpoons UO_2(OH)_4^{2-} + 4 H^+$		-33 ± 2		$-32.4_0 \pm 0.6_8$	$-32.4_0 \pm 0.6_8$	
$2 \text{ UO}_2^{2^+} + 2 \text{ H}_2\text{O} \rightleftharpoons (\text{UO}_2)_2(\text{OH})_2^{2^+} + 2 \text{ H}^+$	-5.62	-5.62 ± 0.04	-5.58 ± 0.04	-5.68 ± 0.05	-5.62 ± 0.08	
$3 \text{ UO}_2^{2+} + 5 \text{ H}_2\text{O} \rightleftharpoons (\text{UO}_2)_3(\text{OH})_5^+ + 5 \text{ H}^+$	-15.63	-15.5 ₅ ± 0.1 ₂	-15.6	-15.7 ₅ ± 0.1 ₂	-15.5 ₅ ± 0.1 ₂	

$3 \text{ UO}_2^{2^+} + 4 \text{ H}_2\text{O} \rightleftharpoons (\text{UO}_2)_3(\text{OH})_4^{2^+} + 4 \text{ H}^+$	(-11.75)	-11.9 ± 0.3		-11.78 ± 0.05	-11.9 ± 0.3
$3 \text{ UO}_2^{2^+} + 7 \text{ H}_2\text{O} \rightleftharpoons (\text{UO}_2)_3(\text{OH})_7^- + 7 \text{ H}^+$		-31 ± 2.0		-32.2 ± 0.8	-32.2± 0.8
$4 \text{ UO}_2^{2^+} + 7 \text{ H}_2\text{O} \rightleftharpoons (\text{UO}_2)_4(\text{OH})_7^+ + 7 \text{ H}^+$		-21.9 ± 1.0		-22.1 ± 0.2	-21.9 ± 1.0
$2 UO_2^{2+} + H_2O \rightleftharpoons (UO_2)_2(OH)^{3+} + H^+$		-2.7 ± 1.0			-2.7 ± 1.0
$UO_2(OH)_2(s) + 2H^+ \rightleftharpoons UO_2^{2+} + 2 H_2O$	5.6		6.0	4.81 ± 0.20	
$UO_3 \cdot 2H_2O(cr) + 2H^+ \rightleftharpoons UO_2^{2+} + 3 H_2O$					5.350 ± 0.130

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 182.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 350–379.
- I. Grenthe, J. Fuger, R.J.M. Konings, R.J. Lemire, A.B. Muller, C. Nguyen-Trung and H. Wanner, Chemical Thermodynamics of Uranium, Chemical Vol 1, OECD Publishing, Paris, 1992.
- I. Grenthe, X. Gaona, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith and E.E. Moore, Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, OECD Publishing, Paris, 2020.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

Distribution diagrams

These diagrams have been computed at two U(VI) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

