

BANDTEC – DIGITAL SCHOOL CURSO DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

NOME DOS AUTORES:

BRUNO LEITÃO DONATELLI
ESTER PAIXÃO DE AQUINO
MAYARA BORGES MASCARENHAS
LUCAS GABRIEL CASTRO DE MELO
VITOR ALMEIDA BAPTISTA DE SOUZA

PESQUISA E INOVAÇÃO: SOLUÇÃO DE IOT PARA AQUISIÇÃO E GRAVAÇÃO DE REGISTRO DE TEMPERATURA E UMIDADE PARA CASAS DE REPOUSO

SÃO PAULO 2018 SUMÁRIO

1	VISÃO DO PROJETO	5
1.1	APRESENTAÇÃO DO GRUPO	5
1.2	PROBLEMA / JUSTIFICATIVA DO PROJETO	5
1.3	CONTEXTO	5
1.4	OBJETIVO DA SOLUÇÃO	7
1.5	DIAGRAMA DA SOLUÇÃO	7
2		
2.1	DEFINIÇÃO DA EQUIPE DO PROJETO	9
2.2	PROCESSO E FERRAMENTA DE GESTÃO DE PROJETOS	9
2.3	GESTÃO DOS RISCOS DO PROJETO	9
2.4	REQUISITOS	9
2.5	SPRINT BACKLOG	10
3	DESENVOLVIMENTO DO PROJETO	12
3.1	SOLUÇÃO TÉCNICA – AQUISIÇÃO DE DADOS VIA ARDUINO	12
3.2	SOLUÇÃO TÉCNICA - APLICAÇÃO	13
3.3	BANCO DE DADOS	15
3.4	PROTÓTIPO DAS TELAS, LÓGICA E USABILIDADE	16
4	IMPLANTAÇÃO DO PROJETO	20
4.1	MANUAL DE INSTALAÇÃO DA SOLUÇÃO	20
4.2	PROCESSO DE ATENDIMENTO E SUPORTE	20
5	CONCLUSÕES	23
5.1	RESULTADOS	23
5.2	PROCESSO DE APRENDIZADO COM O PROJETO	23
5.3	CONSIDERAÇÕES FINAIS SOBRE A EVOLUÇÃO DA SOLUÇÃO	23
RE	FERÊNCIAS	24

VISÃO DO PROJETO

APRESENTAÇÃO DO GRUPO 1.1

Apresentação:

SETION

Participantes:

Bruno, Ester, Lucas, Mayara, Vitor.

Logomarca:

A Setion é uma empresa de tecnologia que atua na área da saúde, tem como foco solucionar/evitar a causa de doenças crônicas (respiratórias).

1.2 PROBLEMA / JUSTIFICATIVA DO PROJETO

O projeto visa melhorar a qualidade de vida de idosos que moram em casas de repouso tendo um melhor controle da temperatura e umidade do local.

- 1- Evitar manifestação de doenças crônicas (respiratórias) rinite, sinusite etc.
- 2- Evitar ploriferação de mofo.

1.3 **CONTEXTO**

MERCADO DE IOT

Com o desafio mundial do aumento dos gastos com a saúde, a loT vem como uma importante ferramenta que contribui tanto para a qualidade de vida dos pacientes quanto como apoio para o aumento da eficiência na gestão. Com o passar dos anos, o Mercado de Saúde não conseguiu equacionar os principais desafios, que são o controle das doenças crônicas, que é a principal causa de morte no Brasil, e a satisfação dos pacientes, que está bem abaixo da média mundial, para manter a sustentabilidade do sistema de saúde.

A loT segue promissora para tentar resolver esses dois grandes desafios, por meio do uso de wearables e conectando diversos dispositivos. Dessa forma, são geradas informações valiosas, tanto para a prevenção e tratamento de doenças crônicas quanto para melhorar a eficiência operacional dos hospitais.

Segundo a consultoria "Grand Vi ew Research", o mercado global de saúde investiu US\$ 58,9 bilhões em dispositivos, softwares e serviços de IoT em 2014 e o montante pode atingir cerca de US\$ 410 bilhões até 2022. Segundo estudo do BNDES, o ganho potencial com o uso de IoT na saúde pode chegar a U\$ 1,6 trilhão no mundo e U\$ 39 bilhões no Brasil até 2025.

CASAS DE REPOUSO

Foi criado pelo **Estatuto do Idoso**, a Lei Federal n°10.741/2003. Este estatuto estabelece qual o papel da família, sociedade e comunidade na manutenção dos direitos do idoso e como asseguradores do bem-estar deste grupo em especial.

O papel das instituições que atendem os idosos é citado no Título IV da **Política de Atendimento ao Idoso**, ele dispõe que este tipo de lugar está sujeito às verificações de dois órgãos competentes.

São eles o Conselho Estadual ou Nacional da Pessoa Idosa e a Vigilância Sanitária.

As Casas de Repouso podem ser governamentais ou não governamentais; Apresentam regime de internato;

Atendem **idosos** com idade superior a 60 anos de idade que necessitam de acompanhamento médico; disponíveis para **idosos** dependentes e independentes; Especializadas para oferecer amparo especial;

Devem oferecer o controle e acompanhamento adequados;

Necessitam da presença constante de profissionais habilitados na área de saúde.

O faturamento de uma casa de repouso é de aproximadamente 20.000,00 mensais, sendo geralmente cobrado em média o valor de R\$ 100,00 podendo chegar á R\$ 5.000,00 per capita, dependendo da infraestrutura e dos serviços prestados.

1.4 OBJETIVO DA SOLUÇÃO

Usar o arduino uno para monitorar a temperatura e umidade dos quartos de uma casa de repouso, para que assim o local fique em condições habitáveis e evitar a manifestação de doenças respiratórias.

1.5 DIAGRAMA DA SOLUÇÃO

2 PLANEJAMENTO DO PROJETO

DEFINIÇÃO DA EQUIPE DO PROJETO 2.1

A equipe é formada por:

Bruno

Ester

Lucas

front-end, back-end.

front-end, back-end.

front-end, back-end.

front-end, back-end.

Documentação, Documentação, Documentação, Documentação, front-end, back-end.

PROCESSO E FERRAMENTA DE GESTÃO DE PROJETOS 2.2

O grupo Setion faz a gestão do projeto com rotatividade das tarefas, reuniões semanais.

Ferramentas utilizadas: Trello, Project, GitHub.

GESTÃO DOS RISCOS DO PROJETO 2.3

Integrantes do grupo saírem, Arduino queimar, Banco de dados do Azure estar offline, sensor queimar.

2.4 **REQUISITOS**

Requisitos							
Essencial	Importante	Desejável					
Registro de temperatura	Cadastro do sintoma	Tabela de doenças respiratórias e inflamações					
Registro de umidade	Redefinição de senha	Tabela de doeliças respiratorias e ilitialitações					
Gráfico com dados	Fale conosco						
Cadastro de funcionário	Quem somos						
Cadastro de residente							
Cadastro de ambiente							
Banco de dados							
Exclusão de residente							

2.5 **SPRINT BACKLOG**

Product Backlog

Área	† Atividade ▼	ltem ▼	Importância
Aplicação Web	Desenvolvimento	Criar pagina web com cadastro de usuario e graficos de temp e umidade	100
Aplicação Web	Gerenciamento de Temperatura	Emitir alerta caso a temperatura ou a umidade se exceda	90
Arduino	Gerenciamento de Temperatura	∕ledir a temperatura e a umidade de uma sala com impressoras de sublimaçã	100
Banco de dados	Gerenciamento de Temperatura	Armazenar as medições diárias e deixá-las visiveis no site	80
Governanças	Segurança	Suporte ao treinamento do usuário	100

Sprint Backlog

				Esforço			
ltem	Importância	Tempo	ltem	Estimado	Realizado	Status	Impedimento
	100	8	Adquirir o arduino e os demais componentes	2	2	REALIZADO	
Medir a temperatura e a umidade			Programar o arduino para medir a temperatura	9	9	REALIZADO	
			Testar os componentes	10	10	REALIZADO	
	90	4	Definição dos limites de temp/umidade	2	0	EM PROGRESSO	
Emitir alerta caso a temperatura ou a umidade se exceda			Programação do alerta	2	0	PENDENTE	
			Teste	1	0	PENDENTE	
Aprender a mexer no Azure	100	4	Aprender a mexer na ferramenta Azure	2	2	REALIZADO	
Medir a temperatura e a umidade de quarto	100	3	Programar o arduino para medir a temperatura	5	0	PENDENTE	
	70	1	Criação/modelagem do banco de dados	1	1	REALIZADO	
Armazenar as medições diárias e deixá-las visiveis no site			Integração c/aplicação web	2	0	PENDENTE	
			Exibir dados na aplicação por meio de gráficos	2	0	PENDENTE	
Suporte ao treinamento do usuário	100	2	Prepararação da nossa equipe para treinar usuário	5	0	PENDENTE	

3 DESENVOLVIMENTO DO PROJETO

3.1 SOLUÇÃO TÉCNICA – AQUISIÇÃO DE DADOS VIA ARDUINO

O Arduino está conectado ao computador via USB com o servidor local node e ao sensor DHT11 para que o mesmo possa capturar a temperatura e umidade do ambiente, enviando os dados para o servidor node local, que transmitirá as informações ao banco de dados que está na Microsoft azure.

Detalhamento dos componentes utilizados, diagramas de arquitetura, etc.

Arduino uno é uma plataforma de prototipagem eletrônica open-source que se baseia em hardware e software flexíveis e fáceis de usar.

Protoboard (breadboard em inglês) é uma placa com furos (ou orifícios) e conexões condutoras para montagem de circuitos elétricos experimentais.

DHT11 é um sensor de temperatura e umidade com um sinal digital em sua saída. Este sensor inclui um elemento resistivo do tipo NTC que faz a medição da temperatura e umidade.

uma plataforma para desenvolvimento de aplicações, podemos criar uma variedade de aplicações Web utilizando apenas código em JavaScript.

SQL Server Banco de dados são conjuntos de informações organizadas e relacionadas, formados por colunas e linhas.

O Microsoft

Azure serve para que os desenvolvedores de software enviem suas aplicações e possam rodá-las direto pela plataforma. O software é especialmente programado para executar aplicativos e outros serviços, funcionando como sistema de nuvem.

3.2 SOLUÇÃO TÉCNICA - APLICAÇÃO

A aplicação estará hospedada na Microsoft azure e vai nescessitar de um login para ser acessada. Após o usuário logar ele terá acesso aos gráficos de temperatura e humidade. O usuário poderá cadastrar novos usuários, residentes e ambientes. A aplicação só será acessada pela internet na azure.

Detalhamento dos componentes utilizados, camadas (rede local/nuvem), diagramas de arquitetura

O **Microsoft Azure** serve para que os desenvolvedores de software enviem suas aplicações e possam rodá-las direto pela plataforma. O software é especialmente programado para executar aplicativos e outros serviços, funcionando como sistema de nuvem.

A tela de Login é utilizada para que o usuário, através de um cadastro possa ter acesso as suas informações, como seu gráfico, de uma forma mais segura.

O gráfico mostra a temperatura e a umidade do ambiente que o usuário instalou o Arduino Uno.

3.3 BANCO DE DADOS

Modelo Conceitual, Lógico e Físico do Banco de Dados

3.4 PROTÓTIPO DAS TELAS, LÓGICA E USABILIDADE

Index:

Para efetuar cadastro, basta clicar em "Cadastrar":

Para efetuar login, basta clicar em "Login", na página inicial:

Para pedir suporte, basta clicar na caixa de "Atendimento" no canto inferior direito.

A página de quando o login é efetuado:

20

4 IMPLANTAÇÃO DO PROJETO

4.1 MANUAL DE INSTALAÇÃO DA SOLUÇÃO

Conectar o sensor DHT11 na protoboard, e fazer as conexões com a placa Arduino. Em seguida, conecte o cabo USB ao computador.

Após ter feito a conexão da placa Arduino no computador, inicie um programa chamado "leitura-temp&humi". Instale todos os módulos que o programa pede, e depois inicie a leitura, que fará com que o programa capte a temperatura e umidade do ambiente.

4.2 PROCESSO DE ATENDIMENTO E SUPORTE

Ferramenta de Help-Desk: TOMTICKET.

23

CONCLUSÕES

5.1 **RESULTADOS**

Performance: conforme o esperado, porém o CSS dispôs muitos recursos

visuais, fazendo o sistema carregar mais devagar.

Cumprimento dos requisitos: Todos nossos requisitos essenciais e importantes foram

feitos.

Usabilidade: Intuitiva e fácil.

PROCESSO DE APRENDIZADO COM O PROJETO 5.2

Aprendemos a ter uma noção de como serão os projetos que as empresas nos darão, a dar feedback em tempos necessários, dividir tarefas e encontrar erros em

códigos.

CONSIDERAÇÕES FINAIS SOBRE A EVOLUÇÃO DA SOLUÇÃO 5.3

Considerações individuais:

Vitor: Gratificante ver o projeto ter chego ao fim, apesar de muitas dificuldades

que enfrentamos.

Ester: Gratidão por termos vencido as dificuldades e desavenças, e

conseguido realizar o projeto juntos.

Bruno: Foi algo que colocamos pouco empenho em um tempo de projeto, e

de repente, após alguns feedbacks, colocamos o máximo de empenho que tínhamos

e conseguimos fazê-lo funcionar.

Mayara: Nada a declarar.

Lucas: Nada a declarar.

REFERÊNCIAS

AHMAD, C. S. et al. Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. **Am J Sports Med,** v. 32, n. 3, p. 635-40, Apr-May 2004. ISSN 0363-5465 (Print). Disponível em: < http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15090378 >.

DONAHUE, T. et al. Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. **Journal of biomechanical engineering**, v. 123, p. 162, 2001.

ENDO, V. T. et al. Investigação de Métodos de Fixação de Ligamentos e Tendões em Ensaios de Tração Uniaxial. Primeiro Encontro de Engenharia Biomecânica (ENEBI). Petrópolis UFSC: 2 p. 2007.

GOODSHIP, A.; BIRCH, H. Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non-destructive technique. **Journal of biomechanics**, v. 38, n. 3, p. 605-608, 2005.

NOYES, F. et al. Biomechanical analysis of human ligament grafts used in kneeligament repairs and reconstructions: JBJS. 66: 344-352 p. 1984.

NOYES, F. R. et al. Intra-articular cruciate reconstruction. I: Perspectives on graft strength, vascularization, and immediate motion after replacement. **Clin Orthop Relat Res**, n. 172, p. 71-7, Jan-Feb 1983. ISSN 0009-921X (Print). Disponível em: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6337002>.