Lecture 3: Kernelization

Making linear models non-linear

Joaquin Vanschoren

Feature Maps

- Linear models: $\hat{y} = \mathbf{w}\mathbf{x} + w_0 = \sum_{i=1}^p w_i x_i + w_0 = w_0 + w_1 x_1 + \ldots + w_p x_p$
- When we cannot fit the data well, we can add non-linear transformations of the features
- ullet Feature map (or *basis expansion*) $\phi: X
 ightarrow \mathbb{R}^d$

$$y = \mathbf{w}^T \mathbf{x} o y = \mathbf{w}^T \phi(\mathbf{x})$$

ullet E.g. Polynomial feature map: all polynomials up to degree d and all products

$$[1,x_1,\ldots,x_p] \stackrel{\phi}{
ightarrow} [1,x_1,\ldots,x_p,x_1^2,\ldots,x_p^2,\ldots,x_p^d,x_1x_2,\ldots,x_{p-1}x_p]$$

• Example with p = 1, d = 3:

$$y=w_0+w_1x_1\stackrel{\phi}{ o} y=w_0+w_1x_1+w_2x_1^2+w_3x_1^3$$

Ridge regression example

- Add all polynomials \boldsymbol{x}^d up to degree 10 and fit again:
 - e.g. use sklearn PolynomialFeatures

	x0	x0^2	x0^3	x0^4	x0^5	x0^6	x0^7	x0^8	
0	-0.752759	0.566647	-0.426548	0.321088	-0.241702	0.181944	-0.136960	0.103098	
1	2.704286	7.313162	19.776880	53.482337	144.631526	391.124988	1057.713767	2860.360362	
2	1.391964	1.937563	2.697017	3.754150	5.225640	7.273901	10.125005	14.093639	
3	0.591951	0.350406	0.207423	0.122784	0.072682	0.043024	0.025468	0.015076	
4	-2.063888	4.259634	-8.791409	18.144485	-37.448187	77.288869	-159.515582	329.222321	_

Weights: [0.643 0.297 -0.69 -0.264 0.41 0.096 -0.076 -0.014 0.004 0.001]

How expensive is this?

- You may need MANY dimensions to fit the data
 - Memory and computational cost
 - More weights to learn, more likely overfitting
- Ridge has a closed-form solution which we can compute with linear algebra:

$$w^* = (X^T X + \alpha I)^{-1} X^T Y$$

- Since X has n rows (examples), and d columns (features), X^TX has dimensionality dxd
- Hence Ridge is quadratic in the number of features, $\mathcal{O}(d^2n)$
- After the feature map Φ , we get

$$w^* = (\Phi(X)^T \Phi(X) + \alpha I)^{-1} \Phi(X)^T Y$$

- Since Φ increases d a lot, $\Phi(X)^T\Phi(X)$ becomes huge

Linear SVM example (classification)

We can add a new feature by taking the squares of feature1 values

Now we can fit a linear model

As a function of the original features, the decision boundary is now a polynomial as well

$$y=w_0+w_1x_1+w_2x_2+w_3x_2^2>0$$

The kernel trick

- Computations in explicit, high-dimensional feature maps are expensive
- For some feature maps, we can, however, compute distances between points cheaply
 - Without explicitly constructing the high-dimensional space at all
- Example: quadratic feature map for $\mathbf{x}=(x_1,\ldots,x_p)$:

$$\Phi(\mathbf{x}) = (x_1, \dots, x_p, x_1^2, \dots, x_p^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{p-1}x_p)$$

• A kernel function exists for this feature map to compute dot products

$$k_{quad}(\mathbf{x_i}, \mathbf{x_j}) = \Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j}) = \mathbf{x_i} \cdot \mathbf{x_j} + (\mathbf{x_i} \cdot \mathbf{x_j})^2$$

• Skip computation of $\Phi(x_i)$ and $\Phi(x_j)$ and compute $k(x_i,x_j)$ directly

Kernelization

- Kernel k corresponding to a feature map Φ : $k(\mathbf{x_i},\mathbf{x_j}) = \Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j})$
- ullet Computes dot product between x_i, x_j in a high-dimensional space ${\mathcal H}$
 - Kernels are sometimes called generalized dot products
 - \mathcal{H} is called the *reproducing kernel Hilbert space* (RKHS)
- The dot product is a measure of the similarity between x_i, x_j
 - Hence, a kernel can be seen as a similarity measure for high-dimensional spaces
- If we have a loss function based on dot products $\mathbf{x_i} \cdot \mathbf{x_j}$ it can be \textit{kernelized}
 - Simply replace the dot products with $k(\mathbf{x_i}, \mathbf{x_j})$

Example: SVMs

• Linear SVMs (dual form, for l support vectors with dual coefficients a_i and classes y_i):

$$\mathcal{L}_{Dual}(a_i) = \sum_{i=1}^l a_i - rac{1}{2} \sum_{i,j=1}^l a_i a_j y_i y_j(\mathbf{x_i}.\,\mathbf{x_j})$$

• Kernelized SVM, using any existing kernel k we want:

$$\mathcal{L}_{Dual}(a_i,k) = \sum_{i=1}^l a_i - rac{1}{2} \sum_{i,j=1}^l a_i a_j y_i y_j k(\mathbf{x_i},\mathbf{x_j})$$

Which kernels exist?

- A (Mercer) kernel is any function $k: X imes X o \mathbb{R}$ with these properties:
 - ullet Symmetry: $k(\mathbf{x_1},\mathbf{x_2})=k(\mathbf{x_2},\mathbf{x_1}) \ \ \forall \mathbf{x_1},\mathbf{x_2} \in X$
 - ullet Positive definite: the kernel matrix K is positive semi-definite
 - \circ Intuitively, $k(\mathbf{x_1}, \mathbf{x_2}) \geq 0$
- The kernel matrix (or Gram matrix) for n points of $x_1,\ldots,x_n\in X$ is defined as:

$$K = XX^T = egin{bmatrix} k(\mathbf{x_1}, \mathbf{x_1}) & \dots & k(\mathbf{x_1}, \mathbf{x_n}) \ dots & \ddots & dots \ k(\mathbf{x_n}, \mathbf{x_1}) & \dots & k(\mathbf{x_n}, \mathbf{x_n}) \end{bmatrix}$$

- Once computed $(\mathcal{O}(n^2))$, simply lookup $k(\mathbf{x_1},\mathbf{x_2})$ for any two points
- In practice, you can either supply a kernel function or precompute the kernel matrix

Linear kernel

- Input space is same as output space: $X=\mathcal{H}=\mathbb{R}^d$
- Feature map $\Phi(\mathbf{x}) = \mathbf{x}$
- ullet Kernel: $k_{linear}(\mathbf{x_i}, \mathbf{x_j}) = \mathbf{x_i} \cdot \mathbf{x_j}$
- Geometrically, the dot product is the *projection* of $\mathbf{x_j}$ on hyperplane defined by $\mathbf{x_i}$
 - \blacksquare Becomes larger if $\mathbf{x_i}$ and $\mathbf{x_j}$ are in the same 'direction'

- ullet Linear kernel between point (0,1) and another unit vector an angle a (in radians)
 - Points with similar angles are deemed similar

Polynomial kernel

- If k_1 , k_2 are kernels, then $\lambda.$ k_1 ($\lambda \geq 0$), $k_1 + k_2$, and $k_1.$ k_2 are also kernels
- ullet The **polynomial kernel** (for degree $d\in\mathbb{N}$) reproduces the polynomial feature map
 - γ is a scaling hyperparameter (default $\frac{1}{p}$)
 - c_0 is a hyperparameter (default 1) to trade off influence of higher-order terms

$$k_{poly}(\mathbf{x_1}, \mathbf{x_2}) = (\gamma(\mathbf{x_1} \cdot \mathbf{x_2}) + c_0)^d$$

RBF (Gaussian) kernel

• The Radial Basis Function (RBF) feature map builds the Taylor series expansion of e^x

$$\Phi(x)=e^{-x^2/2\gamma^2}\Big[1,\sqrt{rac{1}{1!\gamma^2}}x,\sqrt{rac{1}{2!\gamma^4}}x^2,\sqrt{rac{1}{3!\gamma^6}}x^3,\ldots\Big]^T$$

• RBF (or Gaussian) kernel with kernel width $\gamma \geq 0$:

$$k_{RBF}(\mathbf{x_1}, \mathbf{x_2}) = exp(-\gamma ||\mathbf{x_1} - \mathbf{x_2}||^2)$$

- The RBF kernel $k_{RBF}(\mathbf{x_1},\mathbf{x_2}) = exp(-\gamma ||\mathbf{x_1}-\mathbf{x_2}||^2)$ does not use a dot product
 - It only considers the distance between x_1 and x_2
 - It's a *local kernel*: every data point only influences data points nearby
 - o linear and polynomial kernels are *global*: every point affects the whole space
 - Similarity depends on closeness of points and kernel width
 - value goes up for closer points and wider kernels (larger overlap)

Kernelized SVMs in practice

• You can use SVMs with any kernel to learn non-linear decision boundaries

SVM with RBF kernel

- Every support vector *locally* influences predictions, according to kernel width (γ)
- ullet The prediction for test point ${f u}$: sum of the remaining influence of each support vector

$$ullet f(x) = \sum_{i=1}^l a_i y_i k(\mathbf{x_i}, \mathbf{u})$$

Tuning RBF SVMs

- gamma (kernel width)
 - high values cause narrow Gaussians, more support vectors, overfitting
 - low values cause wide Gaussians, underfitting
- C (cost of margin violations)
 - high values punish margin violations, cause narrow margins, overfitting
 - low values cause wider margins, more support vectors, underfitting

kernel = rbf, γ =0.1, C=0.001

09.00

0.00

00.00

0.00

kernel = rbf, y=1, C=0.0010.00 **0**.00 0000

kernel = rbf, y=5, C=0.001

kernel = rbf, y=0.1, C=1

kernel = rbf, y=1, C=1

kernel = rbf, γ =5, C=1

kernel = rbf, y=0.1, C=100

kernel = rbf, y=1, C=100

kernel = rbf, γ =5, C=100

Kernel overview

SVMs in practice

- C and gamma always need to be tuned
 - Interacting regularizers. Find a good C, then finetune gamma
- SVMs expect all features to be approximately on the same scale
 - Data needs to be scaled beforehand
- Allow to learn complex decision boundaries, even with few features
 - Work well on both low- and high dimensional data
 - Especially good at small, high-dimensional data
- Hard to inspect, although support vectors can be inspected
- In sklearn, you can use SVC for classification with a range of kernels
 - SVR for regression

Other kernels

- There are many more possible kernels
- If no kernel function exists, we can still *precompute* the kernel matrix
 - All you need is some similarity measure, and you can use SVMs
- Text kernels:
 - Word kernels: build a bag-of-words representation of the text (e.g. TFIDF)
 - Kernel is the inner product between these vectors
 - Subsequence kernels: sequences are similar if they share many sub-sequences
 - Build a kernel matrix based on pairwise similarities
- Graph kernels: Same idea (e.g. find common subgraphs to measure similarity)
- These days, deep learning embeddings are more frequently used

The Representer Theorem

- We can kernelize many other loss functions as well
- ullet The Representer Theorem states that if we have a loss function \mathcal{L}' with
 - $\mathcal L$ an arbitrary loss function using some function f of the inputs $\mathbf x$
 - ullet ${\cal R}$ a (non-decreasing) regularization score (e.g. L1 or L2) and constant λ

$$\mathcal{L}'(\mathbf{w}) = \mathcal{L}(y, f(\mathbf{x})) + \lambda \mathcal{R}(||\mathbf{w}||)$$

• Then the weights w can be described as a linear combination of the training samples:

$$\mathbf{w} = \sum_{i=1}^n a_i y_i f(\mathbf{x_i})$$

- ullet Note that this is exactly what we found for SVMs: ${f w}=\sum_{i=1}^l a_i y_i {f x_i}$
- Hence, we can also kernelize Ridge regression, Logistic regression, Perceptrons, Support Vector Regression, ...

Kernelized Ridge regression

• The linear Ridge regression loss (with $\mathbf{x_0} = 1$):

$$\mathcal{L}_{Ridge}(\mathbf{w}) = \sum_{i=0}^{n} (y_i - \mathbf{w} \mathbf{x_i})^2 + \lambda \|w\|^2$$

• Filling in $\mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x_i}$ yields the dual formulation:

$$\mathcal{L}_{Ridge}(\mathbf{w}) = \sum_{i=1}^n (y_i - \sum_{j=1}^n lpha_j y_j \mathbf{x_i} \mathbf{x_j})^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y_i y_j \mathbf{x_i} \mathbf{x_j}$$

ullet Generalize $\mathbf{x_i} \cdot \mathbf{x_j}$ to $k(\mathbf{x_i}, \mathbf{x_j})$

$$\mathcal{L}_{KernelRidge}(lpha,k) = \sum_{i=1}^n (y_i - \sum_{j=1}^n lpha_j y_j k(\mathbf{x_i},\mathbf{x_n}))^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y_i y_j k(\mathbf{x_i},\mathbf{x_j})$$

Example of kernelized Ridge

- Prediction (red) is now a linear combination of kernels (blue): $y=\sum_{j=1}^n lpha_j y_j k(\mathbf{x},\mathbf{x_j})$
- We learn a dual coefficient for each point

• Fitting our regression data with KernelRidge

Other kernelized methods

- Same procedure can be done for logistic regression
- ullet For perceptrons, lpha
 ightarrow lpha + 1 after every misclassification

$$\mathcal{L}_{DualPerceptron}(x_i, k) = max(0, y_i \sum_{j=1}^n lpha_j y_j k(\mathbf{x_j}, \mathbf{x_i}))$$

• Support Vector Regression behaves similarly to Kernel Ridge

Summary

- ullet Feature maps $\Phi(x)$ transform features to create a higher-dimensional space
 - Allows learning non-linear functions or boundaries, but very expensive/slow
- ullet For some $\Phi(x)$, we can compute dot products without constructing this space
 - ullet Kernel trick: $k(\mathbf{x_i}, \mathbf{x_j}) = \Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j})$
 - Kernel k (generalized dot product) is a measure of similarity between $\mathbf{x_i}$ and $\mathbf{x_j}$
- There are many such kernels
 - ullet Polynomial kernel: $k_{poly}(\mathbf{x_1},\mathbf{x_2})=(\gamma(\mathbf{x_1}\cdot\mathbf{x_2})+c_0)^d$
 - lacksquare RBF (Gaussian) kernel: $k_{RBF}(\mathbf{x_1},\mathbf{x_2}) = exp(-\gamma ||\mathbf{x_1}-\mathbf{x_2}||^2)$
 - A kernel matrix can be precomputed using any similarity measure (e.g. for text, graphs,...)
- Any loss function where inputs appear only as dot products can be kernelized
 - E.g. Linear SVMs: simply replace the dot product with a kernel of choice
- The Representer theorem states which other loss functions can also be kernelized and how
 - Ridge regression, Logistic regression, Perceptrons,...