# APPM4058A&COMS7238A: Digital Image Processing

#### Hairong Wang

School of Computer Science & Applied Mathematics University of the Witwatersrand, Johannesburg

2019-2-13



#### Contents

Some basic gray level transformations

2 Histogram processing



#### Outline

Some basic gray level transformations

2 Histogram processing



• Image negatives: for an image with gray levels in the range [0, L-1],

$$s = L - 1 - r \tag{1}$$

Log transformations: general form

$$s = c \log(r+1), \tag{2}$$

where  $r \ge 0$  and c is a constant. It maps a narrow range of low gray levels to a wider range of output levels.

• What does an inverse log transformations do?





Figure: Some basic intensity transformations functions.



Power-law transformations:

$$s = cr^{\gamma},$$
 (3)

where c and  $\gamma$  are positive constants.



Figure: Plots of the equation  $s=cr^{\gamma}$  for various values of  $\gamma$  (c  $\Rightarrow$   $\gamma$ ) r









#### Outline

Some basic gray level transformations

2 Histogram processing



#### Histogram processing (1)

• The histogram of a digital image with gray levels in [0, L-1] is a discrete function

$$h(r_k) = n_k, (4)$$

where  $r_k$  is the kth gray level and  $n_k$  is the number of pixels in the image having gray level  $r_k$ .

A normalized histogram is

$$p(r_k) = n_k/n, (5)$$

where n is the total number of pixels.

• Loosely speaking,  $p(r_k)$  is an estimate of the probability of occurrence of  $r_k$ ;



#### Histogram Processing (2)

- Histograms are the basis of numerous spatial domain processing techniques.
- Can be effectively used for image enhancement.
- Provides useful statistics.
- Useful in other image processing tasks such as segmentation and compression.
- Matlab function for dealing with histogram is h=imhist(f,b), where f is the input image, h is its histogram, and b is the number of bins used in forming the histogram. the default of b is 256.



# Histogram Processing (3)









#### Histogram Equalization (1)

- Consider the example below which has 16 elements and dynamic range [0,7]  $(2^3 1 = 7)$ .
- Note the number of appearance of each distinctive value.

| 7 | 7 | 0 | 1 |
|---|---|---|---|
| 0 | 6 | 1 | 0 |
| 7 | 1 | 0 | 1 |
| 0 | 7 | 2 | 0 |



#### Histogram Equalization (2)

- We wish to equalise the histogram so that all 8 values are used equally often i.e. TWICE.
- It is important to preserve the ORDER from brightest to darkest.
- One possible solution to this is shown below.

| 7 | 7 | 0 | 1 |
|---|---|---|---|
| 0 | 6 | 1 | 0 |
| 7 | 1 | 0 | 1 |
| 0 | 7 | 2 | 0 |

| 7 | 7 | 2 | 4 |
|---|---|---|---|
| 2 | 5 | 4 | 1 |
| 6 | 3 | 1 | 3 |
| 0 | 6 | 5 | 0 |



#### Histogram Equalization (3)

- The concept is to modify the picture so that all brightness values are equally likely.
- The point is to allow all brightness values similar contrast.
- In principle this requires that the histogram of all the pixel values occurring is a straight line.
- This can only be approximately achieved in a real picture.



#### Histogram Equalization (4)

• The probablity of occurrence of gray level  $r_k$  in an image is approximated by

$$p_r(r_k) = \frac{n_k}{n}, \quad k = 0, 1, \dots, L - 1.$$
 (6)

A transformation function

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_k) = \sum_{j=0}^k \frac{n_j}{n}, \quad k = 0, 1, \dots, L-1.$$
 (7)

• Thus, a processed image is obtained by mapping each pixel with level  $r_k$  in the input image to a corresponding pixel with level  $s_k$  in the output image.



#### Histogram Equalization (5)

- (7) is called histogram equalization.
- (7) satisfies the following two conditions.
  - $\bullet$  T(r) is single-valued and monotonically increasing;
  - **2**  $0 \le T(r) \le 1$ .
- (7) has the tendency of spreading the histogram of the input image so that the levels of the histogram-equalized image will span a fuller range of the gray scale.

Matlab function for histogram equalization: g=histeq(f,nlev), where f is the input image and nlev is the number of intensity levels specified for the output image. The default is 64.



# Histogram Equalization Example (1)





# Histogram Equalization Example (2)





#### Histogram specification

- Histogram matching (or histogram specification): A method used to generate an image that has a specified histogram.
- Given an input image, we perform a histogram equalization as

$$s_k = T(r_k) = \sum_{j=0}^k \rho_r(r_j) = \sum_{j=0}^k \frac{n_j}{n} \quad k = 0, 1, 2, \dots, L-1.$$
 (8)

Suppose we desire an ouput image with histogram with property

$$v_k = G(z_k) = \sum_{i=0}^k p_z(z_i) = s_k \quad k = 0, 1, 2, \dots, L - 1.$$
 (9)

The problem is to seek z<sub>k</sub> that satisfies

$$z_k = G^{-1}(T(r_k)) = G^{-1}(s_k)$$
  $k = 0, 1, 2, ..., L - 1$ . Wildersity

#### Histogram specification cont.

- Since v = s, from (9) we need to find z's that satisfy G(z) = s or G(z) s = 0.
- Thus, we can find the value of z that corresponds to s by iterating on the values of z such that G(z) s = 0 for k = 0, 1, 2, ..., L 1
- The closest we can get to satisfying G(z) s = 0 is to let  $z = \hat{z}$  where  $\hat{z}$  is the smallest integer in [0, L 1] such that

$$G(\hat{z}) - s_k \ge 0 \quad k = 0, 1, \dots, L - 1$$
 (11)



Table: Intensity distribution and histogram for a 3-bit ( $L=2^3-1$ ) 64  $\times$  64 digital image.

| $r_k$ | Original $(p_r(r_k))$ | $CDF\left(T(r_k)\right)$ | CDF * (L-1) |
|-------|-----------------------|--------------------------|-------------|
| 0     | 0.19                  | 0.19                     | 1           |
| 1     | 0.25                  | 0.44                     | 3           |
| 2     | 0.21                  | 0.65                     | 5           |
| 3     | 0.16                  | 0.81                     | 6           |
| 4     | 0.08                  | 0.89                     | 6           |
| 5     | 0.06                  | 0.95                     | 7           |
| 6     | 0.03                  | 0.98                     | 7           |
| _7    | 0.02                  | 1                        | 7           |



Table: The specified histogram

| $Z_k$ | Specified $(p_z(z_k))$ | $CDF\left(G(z_k)\right)$ | CDF * (L-1) |
|-------|------------------------|--------------------------|-------------|
| 0     | 0                      | 0                        | 0           |
| 1     | 0                      | 0                        | 0           |
| 2     | 0                      | 0                        | 0           |
| 3     | 0.15                   | 0.15                     | 1           |
| 4     | 0.20                   | 0.35                     | 2           |
| 5     | 0.30                   | 0.65                     | 5           |
| 6     | 0.20                   | 0.85                     | 6           |
| _7    | 0.15                   | 1                        | 7           |



Table: The mappings of all possible values of  $s_k$  to  $z_k$ 

| $r_k$ | $s_k$ | $v_k$ | Map $(z_k)$ |
|-------|-------|-------|-------------|
| 0     | 1     | 0     | 3           |
| 1     | 3     | 0     | 4           |
| 2     | 5     | 0     | 5           |
| 3     | 6     | 1     | 6           |
| 4     | 6     | 2     | 6           |
| 5     | 7     | 5     | 7           |
| 6     | 7     | 6     | 7           |
| 7     | 7     | 7     | 7           |



Table: The specified and actual histogram

| $r_k$ | Specified | Actual |
|-------|-----------|--------|
| 0     | 0         | 0      |
| 1     | 0         | 0      |
| 2     | 0         | 0      |
| 3     | 0.15      | 0.19   |
| 4     | 0.20      | 0.25   |
| 5     | 0.30      | 0.21   |
| 6     | 0.20      | 0.24   |
| 7     | 0.15      | 0.11   |
|       |           |        |



## Histogram specification cont.

The histogram matching method can be summarized as follows.

- Obtain the histogram of the input image
- ② Use (8) to precompute a mapped level  $s_k$  for each level  $r_k$
- **3** Obtain the transformation function G from  $p_z(z_k)$  using (9)
- Precompute  $z_k$  for each value of  $s_k$  using the iterative scheme defined in connection with (11)
- **⑤** For each pixel in the original image, if the values of that pixel is  $r_k$ , map this value to its corresponding level  $s_k$ , then map level  $s_k$  to its final level  $z_k$ . Use the precomputed values in the previous steps 2 and 4.





Figure: A Mars moon image and its histogram





Figure: (a) The original histogram; (b) A specified histogram





Figure: (a) The original image; (b) Histogram equalized image; (c) The resulting image from histogram matching



Figure: (a) The original histogram; (b) the histogram for histogram equalized image; (c) The specified histogram; (d) The histogram of the image from histogram matching

WITS

#### Adaptive histogram equalization

- Local enhancement: to devise transformation function based on the gray-level distribution in the neighbourhood of every pixel in the image.
- We can adapt the global techniques to local enhancement.
- The procedure is to define a square or rectangular neighbourhood and move the center of this area from pixel to pixel.
  - At each location, the histogram of the points in the neighbourhood is computed and either a histogram equalization or histogram specification transformation function is obtained.
  - The transformation function is applied to map the gray level of the pixel centered in the neighbourhood.
  - The center of the neighbourhood is then moved to an adjacent pixel location
  - Repeat steps 1 to 3.

