POLI 205 Doing Research in Politics

Introducing Regression

Simple Regression

POLI 205 Doing Research in Politics

Fall 2015

POLI 205 Doing Research in Politics

Introducing Regression

Scatterplot

POLI 205 Doing Research in Politics

Introducing Regression

Fitting a Line

- The basic idea of two-variable regression is that we are fitting the "best" line through a scatterplot of data
- This line, which is defined by its slope and y-intercept, serves as a statistical model of reality
 - Y = mX + b
- Where b is the y-intercept and m is the slope or "rise-over-run"
- For a one-unit increase (run) in X, m is the corresponding amount of rise in Y (or fall in Y, if m is negative)

POLI 205 Doing Research in Politics

Introducing Regression

Best Fitting Line

- The best fitting line *minimizes the sum of the squared* residuals
 - $\sum_{i=1}^{n} \epsilon_i^2$
- Ordinary least-squares (OLS) regression
- OLS is the best linear unbiased estimator (BLUE)

POLI 205 Doing Research in Politics

Introducing Regression

Regression Model

Population

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

- Systematic component: $\alpha + \beta X_i$
 - $\alpha = y$ -intercept parameter; constant
 - $\beta = \text{slope parameter}$
- Stochastic component: ϵ_i
 - We do not expect all of our data points to line up perfectly on a straight line
 - Error term or residuals

POLI 205 Doing Research in Politics

Introducing Regression

Regression Model

Sample

$$Y = A + BX_i + E_i$$

- A represents the estimate of α
- B represents the estimate of β
- E represents the estimate of ϵ
 - Can also be written: $E_i = Y_i \hat{Y}_i$

POLI 205 Doing Research in Politics

Introducing Regression

Estimating α and β

$$B = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$
$$A = \bar{Y} - \hat{\beta}\bar{X}$$

POLI 205 Doing Research in Politics

Introducing Regression

Example: GDP Growth and Presidential Vote

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.860 0.882 58.82 < 2e-16 ***
GROWTH 0.654 0.161 4.07 0.00032 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
```

Residual standard error: 4.95 on 30 degrees of freedom Multiple R-squared: 0.356, Adjusted R-squared: 0.334 F-statistic: 16.6 on 1 and 30 DF, p-value: 0.000316

POLI 205 Doing Research in Politics

Introducing Regression

Example: GDP Growth and Presidential Vote

- Y = 51.86 + 0.654(X)
- Use to predict value of $Y(\hat{Y})$ for a given value of X
- With real GDP per capita growth of 2 (the rate in 2012) what would be the predicted presidential vote, \hat{Y} ?
- Y = 51.86 + 0.654(2) = 53.168

POLI 205 Doing Research in Politics

Introducing Regression

Example: GDP Growth and Presidential Vote

POLI 205 Doing Research in Politics

Introducing Regression

Uncertainty

Goodness-of-Fit: Model

- How well does the regression model explain the variance of Y?
- Root Mean-Squared Error
 - The overall average "miss"
- sqrt(deviance(ols1)/df.residual(ols1))
- ## [1] 4.955

POLI 205 Doing Research in Politics

Introducing Regression

Goodness-of-Fit: Model

- R²: Ranges from 0 to 1 and indicates the proportion of the variation in the dependent variable that is accounted by the model
- summary(ols1)\$r.squared
- ## [1] 0.3555

POLI 205 Doing Research in

Simple

Introducing Regression

Model Components: Standard Error

- σ^2 : variance of the population stochastic component
 - The spread of observations around the regression
 - Estimated using the sum of squared E divided by n-2
- Standard error of B
 - Square root of the variance of B
- Standard error of A
 - Square root of the variance of A

POLI 205 Doing Research in

Simple

Introducing Regression

Hypothesis Testing with OLS

- We specify a null hypothesis and working hypothesis usually about the slope parameter
 - Null hypothesis is that the slope of $\beta = 0$
- Same logic as bivariate hypothesis testing
 - Observe a sample slope parameter, which is an estimate of the population slope
 - Evaluate how likely we are to observe the sample slope if the true (population) slope is 0
 - If the probability is less than .05, then the estimate of β is said to be statistically significant
- Two-tailed vs. one-tailed test

POLI 205 Doing Research in Politics

Introducing Regression

Hypothesis Testing with OLS

- Null hypothesis $H_0: \beta = 0$
- Working hypothesis $H_1: \beta \neq 0$
- Directional hypothesis
 - $H_1: \beta < 0$
 - $H_1: \beta > 0$

The statistical test for regression is the t-test

•
$$t = \frac{B}{se(B)}$$

- 0.654 / 0.161
- t <- coef(ols1)[2] / coef(summary(ols1))[2,2] t
- GROWTH 4.068