The Price of Tolerance in Distribution Testing

Clément Canonne (U Sydney)

WALD(O) 2021

(Joint work with Ayush Jain (UCSD), Gautam Kamath (U Waterloo), and Jerry Li (MSR))

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameter ϵ , distinguish between

- Completeness: p = q
- Soundness: TV(p,q) ≥ ε

with probability at least 1/10, where

$$TV(p,q) := \sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameter ϵ , distinguish between

- Completeness: p = q
- Soundness: TV(p,q) ≥ ε

with probability at least 1/10, where

$$TV(p,q) := sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Identity testing/one-sample goodness-of-fit

[GR00, BFFKRW01, Pan08, VV14, DKN15, ADK15, DGPP18...]

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameter ϵ , distinguish between

- Completeness: p = q
- Soundness: TV(p,q) ≥ ε

$$m = \Theta(\sqrt{n/\epsilon^2})$$

with probability at least 1/10, where

$$TV(p,q) := sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Identity testing/one-sample goodness-of-fit

[GR00, BFFKRW01, Pan08, VV14, DKN15, ADK15, DGPP18...]

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameter ϵ , distinguish between

- Completeness: TV(p,q) = 0
- Soundness: TV(p,q) ≥ ε

with probability at least 1/10, where

$$TV(p,q) := \sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameters ε_1 , ε_2 , distinguish between

- Completeness: TV(p,q) ≤ ε₁
- Soundness: $TV(p,q) \ge \epsilon_2$

with probability at least 1/10, where

$$TV(p,q) := \sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameters ε_1 , ε_2 , distinguish between

- Completeness: TV(p,q) ≤ ε₁
- Soundness: TV(p,q) ≥ ε₂

with probability at least 1/10, where

$$TV(p,q) := sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Tolerant identity testing

[PRR06,VV10,VV11,HJW16,JVHW17,JHW18...]

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameters ε_1 , ε_2 , distinguish between

- Completeness: TV(p,q) ≤ ε₁
- Soundness: TV(p,q) ≥ ε₂

 $m = \Theta(n/\log n)$

with probability at least 1/10, where

$$TV(p,q) := sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

Tolerant identity testing

[PRR06,VV10,VV11,HJW16,JVHW17,JHW18...]

Given m i.i.d. samples from some unknown p over [n], a reference q, and distance parameters ε_1 , ε_2 , distinguish between

- Completeness: TV(p,q) ≤ ε₁
- Soundness: TV(p,q) ≥ ε₂

with probability at least 1/10, where

$$TV(p,q) := \sup(p(S) - q(S)) = \frac{1}{2} \ell_1(p,q)$$

$$m = \Theta(n/\log n)$$

Tolerant identity testing

[PRR06,VV10,VV11,HJW16,JVHW17,JHW18...]

Not quite.

$$O(n/((\epsilon_2-\epsilon_1)^2\log n))$$

 $\Theta(n/\log n)$ for constant $\varepsilon_1 < \varepsilon_2$

 $\Omega(n/((\epsilon_2-\epsilon_1)^2\log n))$ for distance estimation

 $\Omega(\sqrt{n/\epsilon_2^2})$ always

$$O(\sqrt{n/\epsilon_2^2})$$

for $\epsilon_1 \le \epsilon_2/\sqrt{n}$

$$O(n/((\epsilon_2-\epsilon_1)^2\log n))$$

 $\Theta(n/\log n)$ for **constant** $\varepsilon_1 < \varepsilon_2$

 $\Omega(n/((\epsilon_2-\epsilon_1)^2\log n))$ for distance estimation

 $\Omega(\sqrt{n/\epsilon_2^2})$ always

$$O(\sqrt{n/\epsilon_2^2})$$

for $\epsilon_1 \le \epsilon_2/\sqrt{n}$

 $O(n/((\epsilon_2-\epsilon_1)^2\log n))$

 $\Theta(n/\log n)$ for constant $\varepsilon_1 < \varepsilon_2$

 $\Omega(n/((\epsilon_2-\epsilon_1)^2\log n))$ for distance estimation

 $\Omega(\sqrt{n/\epsilon_2^2})$ always

$$O(\sqrt{n/\epsilon_2^2})$$

for $\epsilon_1 \le \epsilon_2/\sqrt{n}$

Tight sample complexity* as a function of n, ε_2 , ε_1 , in all parameter regimes.

Tight sample complexity* as a function of n, ε_2 , ε_1 , in all parameter regimes.

$$\tilde{\Theta}\left(\frac{\sqrt{n}}{\varepsilon_2^2} + \frac{n}{\log n} \cdot \max\left\{\frac{\varepsilon_1}{\varepsilon_2^2}, \left(\frac{\varepsilon_1}{\varepsilon_2^2}\right)^2\right\}\right)$$

Tight sample complexity* as a function of n, ε_2 , ε_1 , in all parameter regimes.

$$\tilde{\Theta}\left(\frac{\sqrt{n}}{\varepsilon_2^2} + \frac{n}{\log n} \cdot \max\left\{\frac{\varepsilon_1}{\varepsilon_2^2}, \left(\frac{\varepsilon_1}{\varepsilon_2^2}\right)^2\right\}\right)$$

Tight sample complexity* as a function of n, ε_2 , ε_1 , in all parameter regimes.

$$\tilde{\Theta}\left(\frac{\sqrt{n}}{\varepsilon_2^2} + \frac{n}{\log n} \cdot \max\left\{\frac{\varepsilon_1}{\varepsilon_2^2}, \left(\frac{\varepsilon_1}{\varepsilon_2^2}\right)^2\right\}\right)$$

Some remarks

New result even in the "low tolerance" regime: Cauchy— Schwarz wasn't tight!

$$\Theta(\sqrt{n/\epsilon_2}^2)$$
 $\Theta(\sqrt{n/\epsilon_2}^2)$ for $\epsilon_1 \le \epsilon_2/\sqrt{n}$ for $\epsilon_1 \le 1/\sqrt{n}$

Some remarks

New result even in the "low tolerance" regime: Cauchy— Schwarz wasn't tight!

$$\Theta(\sqrt{n/\epsilon_2}^2)$$
 $\Theta(\sqrt{n/\epsilon_2}^2)$ for $\epsilon_1 \le \epsilon_2/\sqrt{n}$ for $\epsilon_1 \le 1/\sqrt{n}$

Some remarks

New result even in the "low tolerance" regime: Cauchy—Schwarz wasn't tight! •••

$$\Theta(\sqrt{n/\epsilon_2}^2)$$
 $\Theta(\sqrt{n/\epsilon_2}^2)$ for $\epsilon_1 \le \epsilon_2/\sqrt{n}$ for $\epsilon_1 \le 1/\sqrt{n}$

Some remarks plots

Some remarks plots

Some remarks plots

More remarks

Can use our results on tolerant **identity** and **closeness** to obtain tolerant testing for/under **structure**:

- Monotonicity, unimodality, log-concavity, independence
- Under structural assumptions ("A_k distances")
- Instance-optimal tolerant testing
- (insert favourite property here)

Upper bounds via carefully **rescaled** χ^2/ℓ_2 -type tester

Upper bounds via carefully **rescaled** χ²/ℓ₂-type tester

Algorithm 1 Tolerant testing algorithm.

Require: $0 \le \varepsilon_1 < \varepsilon_2 \le 1$, m, n, two sets of Poi(m) samples from both p and q Set the threshold

$$\tau \leftarrow c \cdot \min\left(\frac{m^{3/2}\varepsilon_2}{n^{1/2}}, \frac{m^2\varepsilon_2^2}{n}\right)$$

Compute Z from the sets of samples, as per (1). if $Z \ge \tau$ then return $||p - q||_1 \ge \varepsilon_2$ else return $||p - q||_1 \le \varepsilon_1$ end if

Upper bounds via carefully **rescaled** χ²/θ₂-type tester

Algorithm 1 Tolerant testing algorithm.

Require: $0 \le \varepsilon_1 < \varepsilon_2 \le 1$, m, n, two sets of Poi(m) samples from both p and q

Set the threshold

$$Z \coloneqq \sum_{i=1}^{n} \frac{Z_i}{\widehat{f}_i}.$$

$$\tau \leftarrow c \cdot \min\left(\frac{m^{3/2}\varepsilon_2}{n^{1/2}}, \frac{m^2\varepsilon_2^2}{n}\right)$$

Compute \mathbb{Z} from the sets of samples, as per (1).

if
$$Z \geq \tau$$
 then return $||p - q||_1 \geq \varepsilon_2$

else return
$$||p-q||_1 \leq \varepsilon_1$$

end if

$$\widehat{f_i} := \begin{cases} \max \left\{ \frac{|\tilde{X}_i - \tilde{Y}_i|}{\sqrt{m/n}}, \frac{\tilde{X}_i + \tilde{Y}_i}{m/n}, 1 \right\} & \text{if } m \ge n \\ \max \{\tilde{X}_i + \tilde{Y}_i, 1\} & \text{if } m < n. \end{cases}$$

 $Z_i := (X_i - Y_i)^2 - X_i - Y_i$

Upper bounds via carefully **rescaled** χ²/θ₂-type tester

Algorithm 1 Tolerant testing algorithm.

Require: $0 \le \varepsilon_1 < \varepsilon_2 \le 1$, m, n, two sets of Poi(m) samples from both p and q Set the threshold

$$Z \coloneqq \sum_{i=1}^{n} \frac{Z_i}{\widehat{f_i}}. \qquad \qquad \tau \leftarrow c \cdot \min\left(\frac{m^{3/2}\varepsilon_2}{n^{1/2}}, \frac{m^2\varepsilon_2^2}{n}\right)$$

 $Z_i := (X_i - Y_i)^2 - X_i - Y_i$

Compute Z from the sets of samples, as per (1). if
$$Z \ge \tau$$
 then return $||p - q||_1 \ge \varepsilon_2$ else return $||p - q||_1 \le \varepsilon_1$ end if

$$\widehat{f}_i := \begin{cases} \max \left\{ \frac{|\tilde{X}_i - \tilde{Y}_i|}{\sqrt{m/n}}, \frac{\tilde{X}_i + \tilde{Y}_i}{m/n}, 1 \right\} & \text{if } m \ge n \\ \max \{\tilde{X}_i + \tilde{Y}_i, 1\} & \text{if } m < n. \end{cases}$$

Does not require knowledge of ε_1 !

Lower bounds via moment-matching technique à la Wu—Yang

Lower bounds via moment-matching technique à la Wu—Yang

- Reduce the problem to designing 2 r.v.'s U,U' with matching moments
- Write this as an LP
 \(\mathbb{C} \): need to lower bound its optimal value
- Try to lower bound the dual's optimal value
 - Weep (i), as the asymmetry (testing, not estimation!) rules out using the same polynomial uniform approximation results as in [WY]
 - Obtain the lower bound without this machinery T

Lower bounds via moment-matching technique à la Wu—Yang

- Reduce the problem to designing 2 r.v.'s U,U' with matching moments
- Write this as an LP : need to lower bound its optimal value
- Massage this LP, take the dual X
- Try to lower bound the dual's optimal value
 - Weep (i), as the asymmetry (testing, not estimation!) rules out using the same polynomial uniform approximation results as in [WY]
 - Obtain the lower bound without this machinery T

Tight sample complexity* for tolerant identity** testing as a function of n, ε_2 , ε_1 , in all parameter regimes.

$$\tilde{\Theta}\left(\frac{\sqrt{n}}{\varepsilon_2^2} + \frac{n}{\log n} \cdot \max\left\{\frac{\varepsilon_1}{\varepsilon_2^2}, \left(\frac{\varepsilon_1}{\varepsilon_2^2}\right)^2\right\}\right)$$

Up to a log n in the upper bound.

^{**} And closeness.

Tight sample complexity* for tolerant identity** testing as a function of n, ε_2 , ε_1 , in all parameter regimes.

$$\tilde{\Theta}\left(\frac{\sqrt{n}}{\varepsilon_2^2} + \frac{n}{\log n} \cdot \max\left\{\frac{\varepsilon_1}{\varepsilon_2^2}, \left(\frac{\varepsilon_1}{\varepsilon_2^2}\right)^2\right\}\right)$$

^{*} Up to a log n in the upper bound.

^{**} And closeness.