Online appendix for "Estimating high-dimensional Markov-switching VARs"

By Kenwin Maung

1. Proofs

This section contains the proofs for the following results in the main text.

1.1. Proof for Lemma 1

Proof. (A.2) follows from taking the derivative of (A.1), so it suffices to show the latter. First, write $\nabla^1 \log \mathcal{L}_T(\phi_T^*) = \sum_{t=p_T+1}^T \nabla^1 \log \mathcal{L}(y_t | \mathcal{I}_{t-p_T}^{t-1}; \phi_T^*)$. By the Louis missing information principle (Louis, 1982)¹, we can express the first derivative with respect to the i^{th} element in ϕ_T^* as

$$\nabla_{i}^{1} \log \mathcal{L}(y_{t} | \mathcal{I}_{t-p_{T}}^{t-1}; \phi_{T}^{*}) = \sum_{k=t-p_{T}}^{t-1} \left\{ E \left[\nabla_{i}^{1} \log p_{(S_{k-1})(S_{k})}(\phi_{T}^{*}) + \nabla_{i}^{1} \log g(y_{k} | \mathcal{I}_{k-p_{T}}^{t-1}; \Phi_{S_{k}, T}^{*}) \middle| \mathcal{I}_{t-p_{T}}^{t} \right] - E \left[\nabla_{i}^{1} \log p_{(S_{k-1})(S_{k})}(\phi_{T}^{*}) + \nabla_{i}^{1} \log g(y_{k} | \mathcal{I}_{k-p_{T}}^{t-1}; \Phi_{S_{k}, T}^{*}) \middle| \mathcal{I}_{t-p_{T}}^{t-1} \right] \right\} + E \left[\nabla_{i}^{1} \log g(y_{t} | \mathcal{I}_{t-p_{T}}^{t-1}; \Phi_{S_{t}, T}^{*}) \middle| \mathcal{I}_{t-p_{T}}^{t} \right] + E \left[\nabla_{i}^{1} \log p_{t-p_{T}}(\phi_{T}^{*}) \middle| \mathcal{I}_{t-p_{T}}^{t} \right] - E \left[\nabla_{i}^{1} \log p_{t-p_{T}}(\phi_{T}^{*}) \middle| \mathcal{I}_{t-p_{T}}^{t-1} \right]. \tag{1}$$

Then, using (1), the law of iterated expectation, and the assumption that $g(y_t|\cdot)$ is a valid probability density function, we have that $E[\nabla_i^1 \log \mathcal{L}(y_t|\mathcal{I}_{t-p_T}^{t-1};\phi_T^*)|\mathcal{I}_{t-p_T}^{t-1}] = 0$, and therefore (A.1) follows.

1.2. Proof for Lemma 2

Proof. Under assumptions (A1)-(A4), we can employ Lemmas 3-6 from Bickel et al. (1998), with some modification to the conditional density, to show that $\nabla_j^1 \mathcal{L}_T(\phi_T^*) \to 0$ in L_2 . Likewise, Lemmas 7-9 of Bickel et al. (1998) also imply that $\nabla_{j,k}^2 \mathcal{L}_T(\phi_T^*)$ is bounded in L_1 . However, from the proofs of Lemmas 7-9, we can see that this result will extend to L_2 .

¹See, for example, equation (5) in Bickel et al. (1998)

Hence, here we show the result for the third derivative. Similar to what we did in Lemma 1, write $\nabla^3 \log \mathcal{L}_T(\phi_T) = \sum_{t=p_T+1}^T \nabla^3 \log \mathcal{L}(y_t | \mathcal{I}_{t-p_T}^{t-1}; \phi_T)$. Again, by the Louis missing information principle, we can get

$$\nabla_{j,k,l}^{3} \log \mathcal{L}(y_{t}|\mathcal{I}_{t-p_{T}}^{t-1};\phi_{T})$$

$$= \nabla_{j,k,l}^{3} \log \mathcal{L}(\underbrace{y_{t-p_{T}},\ldots,y_{t}}_{\equiv y_{t-p_{T}}^{t}}|\mathcal{X}_{t-p_{T}}^{t-1};\phi_{T}) - \nabla_{j,k,l}^{3} \log \mathcal{L}(\underbrace{y_{t-p_{T}},\ldots,y_{t-1}}_{\equiv y_{t-p_{T}}^{t-1}}|\mathcal{X}_{t-p_{T}}^{t-1};\phi_{T}), \tag{2}$$

where $\mathcal{X}_{t-p_T}^{t-1} = (x_{t-q_T}, \dots, x_{t-1}),$

$$\nabla_{j,k,l}^{3} \log \mathcal{L}(y_{t-p_{T}}^{t} | \mathcal{X}_{t-p_{T}}^{t-1}; \phi_{T})
= E[\nabla_{j,k,l}^{3} \log \mathcal{L}(y_{t-p_{T}}^{t}, S_{t-p_{T}}^{t} | \mathcal{X}_{t-p_{T}}^{t-1}; \phi_{T}) | \mathcal{I}_{t-p_{T}}^{t}]
+ 2E[\nabla_{j,k}^{2} \log \mathcal{L}(y_{t-p_{T}}^{t}, S_{t-p_{T}}^{t} | \mathcal{X}_{t-p_{T}}^{t-1}; \phi_{T}) | \mathcal{I}_{t-p_{T}}^{t}]
- 2E[\nabla_{j}^{1} \log \mathcal{L}(y_{t-p_{T}}^{t}, S_{t-p_{T}}^{t} | \mathcal{X}_{t-p_{T}}^{t-1}; \phi_{T}) | \mathcal{I}_{t-p_{T}}^{t}] \times E[\nabla_{j,k}^{2} \log \mathcal{L}(y_{t-p_{T}}^{t}, S_{t-p_{T}}^{t} | \mathcal{X}_{t-p_{T}}^{t-1}; \phi_{T}) | \mathcal{I}_{t-p_{T}}^{t}],$$
(3)

and $S_a^b = (S_a \dots, S_b)$. Note that the last two terms are bounded in L_2 because $\nabla_{j,k}^2 \mathcal{L}_T(\phi_T)$ can be expressed as a function of the conditional expectations of first and second derivatives similar to (3) (see (14) in Kasahara and Shimotsu, 2019), and it is bounded in L_2 . So we only have to show for the first term (label this $E[\nabla^3 | \mathcal{I}_{t-p_T}^t]$). Fortunately, this term results in a similar expression to (1). From (2),

$$E[\nabla^{3} | \mathcal{I}_{t-p_{T}}^{t}] - E[\nabla^{3} | \mathcal{I}_{t-p_{T}}^{t-1}]$$

$$= \sum_{n=t-p_{T}}^{t-1} \left\{ E\left[\nabla_{j,k,l}^{3} \log p_{(S_{n-1})(S_{n})}(\phi_{T}) + \nabla_{j,k,l}^{3} \log g(y_{n} | \mathcal{I}_{n-p_{T}}^{n-1}; \Phi_{S_{n},T}) \middle| \mathcal{I}_{t-p_{T}}^{t} \right] - E\left[\nabla_{j,k,l}^{3} \log p_{(S_{n-1})(S_{n})}(\phi_{T}) + \nabla_{j,k,l}^{3} \log g(y_{n} | \mathcal{I}_{n-p_{T}}^{n-1}; \Phi_{S_{n},T}) \middle| \mathcal{I}_{t-p_{T}}^{t-1} \right] \right\}$$

$$+ E\left[\nabla_{j,k,l}^{3} \log g(y_{t} | \mathcal{I}_{t-p_{T}}^{t-1}; \Phi_{S_{t},T}) \middle| \mathcal{I}_{t-p_{T}}^{t} \right] - E\left[\nabla_{j,k,l}^{3} \log p_{t-p_{T}}(\phi_{T}) \middle| \mathcal{I}_{t-p_{T}}^{t-1} \right]. \tag{4}$$

With this expression, the proof is completed if we can show the following:

(i)
$$\|E[\nabla_{j,k,l}^3 \log g(y_n | \mathcal{I}_{n-p_T}^{n-1}; \Phi_{S_n,T}) | \mathcal{I}_{t-p_T}^t] - E[\nabla_{j,k,l}^3 \log g(y_n | \mathcal{I}_{n-p_T}^{n-1}; \Phi_{S_n,T}) | \mathcal{I}_{t-p_T}^{t-1}] \|_2 \le K\beta^T$$
,

(ii)
$$\|E[\nabla_{i,k,l}^3 \log p_{(S_{n-1})(S_n)}(\phi_T)|\mathcal{I}_{t-p_T}^t] - E[\nabla_{i,k,l}^3 \log p_{(S_{n-1})(S_n)}(\phi_T)|\mathcal{I}_{t-p_T}^{t-1}]\|_2 \le K\beta^T$$
,

(iii)
$$\|E[\nabla_{j,k,l}^3 \log p_{t-p_T}(\phi_T)|\mathcal{I}_{t-p_T}^t] - E[\nabla_{j,k,l}^3 \log p_{t-p_T}(\phi_T)|\mathcal{I}_{t-p_T}^{t-1}]\|_2 \le K\beta^T$$
,

where K > 0 is constant, and $\beta \in [0, 1)$.

This can be shown with a similar approach to that of lemma 6 in Bickel et al. (1998). Under (A1) and (A2), there exists a constant $\nu > 0$ such that $\inf\{p_{(s)(s')}(\phi_T)|s, s', \phi_T \in \Theta_T\} \ge \nu$ and $\inf\{p_s(\phi_T)|s, \phi_T \in \Theta_T\} \ge \nu$. Define $\mu(y_t) = [1 + (M-1)\nu^{-2}\rho(y_t)]^{-1}$ where $\rho(\cdot)$ is defined in (A4). We show the result for (i) only, while the rest follow similarly.

$$|E[\nabla_{j,k,l}^{3} \log g(y_{n} | \mathcal{I}_{n-p_{T}}^{n-1}; \Phi_{S_{n},T}) | \mathcal{I}_{t-p_{T}}^{t}] - E[\nabla_{j,k,l}^{3} \log g(y_{n} | \mathcal{I}_{n-p_{T}}^{n-1}; \Phi_{S_{n},T}) | \mathcal{I}_{t-p_{T}}^{t-1}]|$$

$$= \left| \sum_{s=1}^{M} \nabla_{j,k,l}^{3} \log g(y_{n} | \mathcal{I}_{n-p_{T}}^{n-1}; \Phi_{s,T}) \{ P(S_{n} = s | \mathcal{I}_{t-p_{T}}^{t}) - P(S_{n} = s | \mathcal{I}_{t-p_{T}}^{t-1}) \} \right|$$

$$\leq \max_{s} |\nabla_{j,k,l}^{3} \log g(y_{n} | \mathcal{I}_{n-p_{T}}^{n-1}; \Phi_{s,T}) | K \prod_{i=n+1}^{t-1} \exp(-2\mu(y_{i})),$$

for some constant K, and the last inequality follows from lemma 5 in Bickel et al. (1998). Then, observe that

$$\begin{split} &\|E[\nabla_{j,k,l}^{3}\log g(y_{n}|\mathcal{I}_{n-p_{T}}^{n-1};\Phi_{S_{n},T})|\mathcal{I}_{t-p_{T}}^{t}] - E[\nabla_{j,k,l}^{3}\log g(y_{n}|\mathcal{I}_{n-p_{T}}^{n-1};\Phi_{S_{n},T})|\mathcal{I}_{t-p_{T}}^{t-1}]\|_{2}^{2} \\ &\leq KE\left[\max_{s}|\nabla_{j,k,l}^{3}\log g(y_{n}|\mathcal{I}_{n-p_{T}}^{n-1};\Phi_{s,T})|^{2}\prod_{i=n+1}^{t-1}\exp(-4\mu(y_{i}))\right] \\ &= KE\left[E\left[\max_{s}|\nabla_{j,k,l}^{3}\log g(y_{n}|\mathcal{I}_{n-p_{T}}^{n-1};\Phi_{s,T})|^{2}\prod_{i=n+1}^{t-1}\exp(-4\mu(y_{i}))\left|S_{t-p_{T}+1}^{n}\right|\right]\right] \\ &= KE\left[E\left[\max_{s}|\nabla_{j,k,l}^{3}\log g(y_{n}|\mathcal{I}_{n-p_{T}}^{n-1};\Phi_{s,T})|^{2}|S_{n}\prod_{i=n+1}^{t-1}E\left[\exp(-4\mu(y_{i}))|S_{i}\right]\right] \\ &\leq K\max_{s'}E\left[\max_{s}|\nabla_{j,k,l}^{3}\log g(y_{n}|\mathcal{I}_{n-p_{T}}^{n-1};\Phi_{s,T})|^{2}|S_{n}=s']\beta^{t-n-1} \end{split}$$

where we have used the fact that $0 < \mu(\cdot) < 1$ and the property of the exponential to bind it with $\beta \in [0, 1)$. Together with (A3), we get the result in (i).

1.3. Proof for Corollary 1

Proof. The proof is similar to the proof of Lemma A.1 in Kwon and Kim (2012).

For notational convenience, let $(A)_{ij}$ indicate the element in the i^{th} row and j^{th} column of A, $\nabla^1 \log \mathcal{L}_T(\phi_T^*) \equiv \nabla^1 \mathcal{L}$, and $\nabla^2 \mathcal{L}_T(\phi_T^*) - E[\nabla^2 \mathcal{L}_T(\phi_T^*)] \equiv \nabla^2 \mathcal{L}$. For (1),

$$E[\|\nabla^1 \mathcal{L}\|^2] = \sum_{i=1}^{K_T^*} E[(\nabla^1 \mathcal{L})_i^2] = O(TK_T^*),$$

where the last equality is an application of Cauchy-Schwarz, and the L_2 bound in Lemma 2. Then, (2) follows from Chebyshev's inequality.

The proof of (2) is almost identical except for the fact that we are dealing with a matrix so that

$$E[\|\nabla^2 \mathcal{L}\|_1^2] = \sum_{i=1}^{K_T^*} \sum_{j=1}^{K_T^*} E[(\nabla^2 \mathcal{L})_{ij}^2] = O(TK_T^{*2}).$$

(3) follows similarly from (2) since it it just the coordinate-wise version. Likewise, the proof for (4) is identical but with a triple sum instead, and (5) follows. \Box

References

- Bickel, P.J., Ritov, Y., Ryden, T., 1998. Asymptotic normality of the maximum-likelihood estimator for general hidden markov models. The Annals of Statistics 26, 1614–1635.
- Kasahara, H., Shimotsu, K., 2019. Asymptotic properties of the maximum likelihood estimator in regime switching econometric models. Journal of econometrics 208, 442–467.
- Kwon, S., Kim, Y., 2012. Large sample properties of the scad-penalized maximum likelihood estimation on high dimensions. Statistica Sinica, 629–653.
- Louis, T.A., 1982. Finding the observed information matrix when using the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 44, 226–233.