San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Mathematical Preliminaries

(Part 1)

Lecture 02 Day 02/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 02

- Waiting List Enrollment ...
- Announcement
- Summary of Lecture 01
- Lecture 02: Teaching ...
 - Mathematical Preliminaries (Part 1)

Announcement

- If you were absent last session, please talk to me right after the class.
- Otherwise, I might cancel your enrollment.

Summary of Lecture 01: We learned ...

Office Hours

- TR 7:15-9:15 pm
- By Appointment
- Tell me orally in this class.

OR

- Set an appointment via email.
- 24 hours before your requested time.
- I'll be in this class for my office hours.
- In some cases, I can set online office hours.

Examinations

- By default, every Thursday we'll have a short quiz!
 - So, it is not the case that I'd announce it again.
- All examinations are closed book (concepts).
- All examinations will cover everything we've covered from the beginning of the semester.
- I'll curve your final grade if it is not normal.

Summary of Lecture 01: We learned ...

Course Objective

- Dealing with the mathematical theory of computation.
- The theory of computation is divided into:
 - Formal languages
 - Automata theory
 - Computability
 - Complexity
- We'd discover the "atoms" and "molecules" of computing.

Classroom Protocol

- This is me if you use cell phone or laptop!
- For more info, please refer to the greensheet!

Any question?

Objective of This and Next Lecture

- Recap from Math 42 (discrete mathematics)
- We'll review:
 - Sets
 - Cartesian Products
 - Functions
 - Graphs
- Based on the prerequisite (Math42), we assume that:
 You are already familiar with them.
- So, we just review the most important concepts that we'd need in this course.
- There will be some questions from these topics in all tests.

Mathematical Preliminaries

Recap from Math 42

The Basic Concepts of Set Theory

Set Theory

- "Set theory" has a great role in mathematics and consequently in other sciences.
 - In this course, we use sets tremendously.
- Created by great German mathematician, George Cantor (1845-1918).

- He is famous for the set theory and his work on the infinities.
- Specially, his method to prove that the set of real numbers is bigger than the set of natural numbers.

Sets Definition

Definition

- A set is a collection of objects (aka elements, members).
 - The definition implicitly stating that the "order" of the elements does not matter.
 - All objects in this universe are "distinct".
 That's why all elements of a set must be "distinct".
 - Therefore, in a set, you might repeat an element but only one of them counts as the member.
- We can also define a "list" as:
 - A list is a collection of "ordered" objects.

Do you think the "distinction" matters in lists?

Sets Representation 1: Roster Method

- One way to represent a set is enumerating its members.
- We put the elements in a pair of curly-braces, like this:

Example 1

The set of lower-case English alphabet.

$$\{a, b, c, ..., z\}$$

- Sometimes we use ellipses (...) to bypass mentioning some elements if the general pattern of elements is obvious from the context.
- There are other set representations that will be covered shortly!

Sets Naming Convention

- To name a set, we usually use English capital letters such as A , B, C, etc., OR ...
- Greek capital letters such as Σ (sigma) , Γ (gamma), etc...

Example 2

The set of lower-case English alphabet.

$$\Sigma = \{a, b, c, ..., z\}$$

The set of natural numbers less than 100 and greater than 2.

$$\Gamma = \{3, 4, 5, \dots, 99\}$$

Sets Examples

- $N = \{1, 0, -5, 12, 5\}$
- V = {train, bike, airplane, bus}
- $\Gamma = \{x, y, z\}$
- $A = \{00, 01, 10, 11\}$
- Is Σ a set?
 Σ = {ab , aabb, aaabbb}
- The elements are meaningless!

- Is B a set?B = {5, train, apple, California}
- The elements are irrelevant!
- Is C a set?C = {1, 2, 3, 4}
- The elements are ordered!
- Is D a set?D = {1, 2, 2, 3}
- The elements are repeated!

Sets Representation 2: Venn Diagrams

- Another way to represent a set is putting all its elements in a geometrical figure such as circle, ellipse, etc.
- These diagrams are called "Venn diagram".

Example 4

• $A = \{1, 2, 3, 4\}$

This method is named after British mathematician,
 John Venn (1834 – 1923).

Sets Size

- Size of a set (aka cardinality) is the number of its elements.
- The size of the set A is denoted by |A|.

Example 5

- Let $A = \{1, 0, -5, 12, 5\}$; |A| = ?
- |A| = 5

- Let $B = \{1, 11, 7, -15, 2, 1, 7, 11\}$; |B| = ?
- |B| = 5 (careful! Duplicate members should be eliminated.)

Sets Membership and Not Membership

- The membership of the set's elements is represented by "∈".
- Its negation (not membership) is represented by "∉".

- Let C = {5, train, apple}
- train ∈ C
 (read: train belongs to C, or train is a member of C)
- bus ∉ C
 (read: bus does not belong to C, or bus is not a member of C)

Membership and Not Membership Note

- A set is known when its boundary is clearly defined.
 - We should be able to recognize clearly what belongs to a set and what does not.
 - Thus, "not membership" is as important as "membership".

Empty Set

Definition

- Empty set is a set that has no member.
- Empty set is denoted by { } or φ.
 - "φ" is pronounced "phi".
- What is the size of φ?
- $|\phi| = 0$

Example 8: An Empty Set

- The set of "F-Students of this class"!!!
- The 8th day of week!

Universal Set

- We usually need to specify the "universe of our discourse".
- This universe is all possible members that affect the problem under consideration.
- We call it universal set.

Definition

- Universal set of a set is the set containing all possible elements under consideration.
- Universal set is denoted by "U".

Universal Set Examples

Example 9

- Let $A = \{2, 3, 4\}$.
- The universal set of A could be:

$$-$$
 U = {0, 1, 2, 3, 4, 5, 6, 8}, or

$$- U = \{1, 2, 3, 4\}, or$$

$$- U = \{2, 3, 4\}, \text{ or } ...$$

But the universal set of A cannot be U = {2, 3}!

Universal Set Examples

- Let Z = {A-Students of this class}.
- Depends on the problem we want to solve, the universal set of Z could be:
 - U = {All students of this class}, or
 - U = {All students of SJSU}, or
 - U = {All students of the world}, or so forth.

Venn Diagram of Universal Set

We represent a universal set by a rectangle.

- $A = \{1, 2, 3, 4\}$
- $U = \{0, 1, 2, 3, 4, 5, 6, 8, 9\}$

Subsets

Definition

- Set A is subset of B iff every elements of A is also an element of B.
- Subset relationship is denoted by A ⊆ B.

Example 12

•
$$B = \{1, 2, 3, 4\}$$

•
$$A = \{2, 3\}$$

- A ⊆ B
 - Note that A is inside B.

 We did not mention the elements of U because our focus is on the relationship between A and B.

Proper Subsets

Definition

- Set A is proper subset of B iff all elements of A belong to B, and they are not equal.
- Proper subset relationship is denoted by A ⊂ B.
- In this relationship, B is called superset of A.

Example 12 (repeated)

- $B = \{1, 2, 3, 4\}$
- $A = \{2, 3\}$
- A ⊂ B

Equality of Two Sets

Definition

- Two sets A and B are equal iff both have the same elements.
- Equality of two sets A and B is denoted by A = B.
- There is another way to define equality of two sets:
- ① Equality of Two Sets by Using Subset Notation

 $A = B \text{ iff } A \subseteq B \text{ AND } B \subseteq A$

Finite Sets

Definition

- A set is called finite if its size is a natural number.
 - The set of natural numbers is denoted by \mathbb{N} and starts from 0. $\mathbb{N} = \{0, 1, 2, ...\}$
 - In some books, you might see it starts from 1 but we prefer in this course to start it from 0.

Example 13

- Let B = {a, b, c, ..., z}. Is this a finite set?
- Yes, because |B| = 26, and 26 is a natural number.

Is φ finite? Why?

Infinite Sets

Definition

A set is infinite, if we cannot express its size by a natural number.

Example 14: Infinite Sets

- $C = \{1, 2, 3, 4, ...\}$
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Integers
- $\mathbb{N} = \{0, 1, 2, ...\}$ Natural numbers

1

Sets Representation 3: Set Builder

- So far, we've reviewed two methods for set representation:
 - Roster method
 - 2. Venn diagram method
- There are another method that is more important than these two.
- It's called set builder method.

We use set builder method tremendously in this course.

Sets Representation 3: Set Builder

Set Builder Format

- { member variable : description of the elements' properties }
- Note that some books might use vertical bar "|" instead of colon ":".

- Represent the following set by a set builder.
 - "The set of all Natural numbers between 1 and 5 (both including)"
- $A = \{x : x \in \mathbb{N}, 1 \le x \le 5\}$
- This can be simulated by the following Java code:
 - for (int x = 1; x <= 5; x++) { //some code here }

(1)

Sets Representation 3: Set Builder

For simplifying the representation,
 we might put the universal set description before the colon.

Example 15 (repeated)

The set of all integers between 1 and 5 (both including)

Regular representation: $A = \{x : x \in \mathbb{N}, 1 \le x \le 5\}$

Simplified representation: $A = \{x \in \mathbb{N} : 1 \le x \le 5\}$

Sets Representation 3: Set Builder

 If the members of the set follow a pattern, we use the following format:

{ members pattern : description of the elements' properties }

Example 16

Represent the following set by a set builder.

$$B = \{0, 3, 6, 9, 12, 15, 18\}$$

Regular representation:

$$B = \{ x : x = 3k, k \in \mathbb{N}, 0 \le k \le 6 \}$$

Using pattern representation (preferred):

$$B = \{3k : k \in \mathbb{N}, 0 \le k \le 6\}$$

Set Builder Note

- Comma in the set builder description means "AND".
 - So, if you need "OR", you should explicitly put "OR" or "v".

Example 17

Represent the following real numbers intervals by set builder.

$$B = \{ x \in \mathbb{R} : x \le -1 \text{ OR } x \ge 2 \}$$

What would happen if we put comma or AND in the above set?

Sets Complement

Definition

• The complement of set A is called \overline{A} and is defined as:

$$\overline{A} = \{x : x \notin A\}$$

- Venn diagram of A:
- To find A, we'd need U.

- Let A = $\{3, 6\}$, and U = $\{1, 2, 3, 4, 5, 6\}$; \overline{A} = ?
- $\overline{A} = \{1, 2, \times, 4, 5, \times\} = \{1, 2, 4, 5\}$

Exercise

Example 18

Write all subsets of A = {a , b}.

Example 19

• Write all subsets of $B = \{1, 2, 3\}$

Power Set

Definition

- The set of all subsets of set A is called the power set of A.
 - The power set of A is denoted by 2^A.
 - Note that 2^A is just a symbol and not an algebraic power!
 - How can we define the powerset of A by set builder?

$$2^{A} = \{x : x \subseteq A\}$$

- Let A = {a, b}; 2^A = ?
- $2^A = \{\phi, \{a\}, \{b\}, \{a, b\}\}$

Power Set

Example 22

- Let $S = \{1, 2, 3\}$; $2^S = ?$
- $2^{S} = \{ \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$

Example 23

- In the previous example, what is the cardinality (size) of S and 2^S?
- |S| = 3
- $|2^{S}| = 8$

Do you see any relation between these two cardinalities?

Size of Power Set

If set S has n elements (i.e. |S| = n), then its power set has 2ⁿ elements.

 In other words, we have the following relationship between the size of a set and the size of its power set.

$$|2^{S}| = 2^{|S|}$$

- Let S = {a, b, c}; |2^S| = ?
- $|2^{S}| = 2^{|S|} = 2^{3} = 8$

Reading Assignment

Exercise

Concept	Notation
Empty set	
Universal set	
8 is member of A.	
6 is not member of B.	
A is subset of Σ.	
B is proper subset of Σ .	
Power set of A	
Size of A (aka Cardinality of A)	
Size of the power set of A	

Relationship Between Two Sets

Set Operations

Operator	Notation
Union	$A \cup B = \{x : x \in A \lor x \in B\}$
Intersection	$A \cap B = \{x : x \in A \land x \in B\}$
Minus	$A - B = \{x : x \in A \land x \notin B\}$
Complement	$\overline{A} = U - A = \{x : x \in U \land x \notin A\} = \{x : x \notin A\}$

Set Properties

Property	Name
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive

Set Identities

Identity	Result	Name
Αυφ=		Identify
A ∩ U =		Identity
A U U =		Domination
A ∩ φ =		Domination
A U A =		Idempotent
A ∩ A =		Idempotent
$A \cup \overline{A} =$		Complement
$A \cap \overline{A} =$		Complement
$\overline{(\overline{A})} =$		Complementation
$\overline{A \cap B} =$		De Morgan
AUB =		

Empty Set Representation

- How can we represent empty set by using set builder?
- $A A = \{ \}$
- $\bullet A A = \{x : x \in A \text{ AND } x \notin A\}$
- $\bullet \phi = \{x : F(alse)\}$
- So, to represent empty set,
 we can put anything false in the set builder description.
- For example, the following sets represent empty sets:
- {x : x is the 8th day of week}
- {x : x ∉ U}

Homework

- Note that the homework in the lecture notes are not mandatory but STRONGLY recommended.
- 1. Represent the set operations by Venn diagrams.
- 2. Prove that A \cup B = $\overline{\overline{A} \cap \overline{B}}$
- 3. What is the relationship between sets A and B in the following situations:
 - a) $A \cup B = A$
 - b) A B = A
 - c) $A \cap B = A$
 - d) A B = B A
 - e) $A \cap B = B \cap A$

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Sipser, Michael, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790