

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

Research Report CCS 449

THE EXTREME POINT CHARACTERIZATIONS OF SEMI-INFINITE DUAL NON-ARCHIMEDEAN BALLS

by

A. Charnes T. Song

CENTER FOR CYBERNETIC STUDIES

The University of Texas Austin, Texas 78712

84 02 17 141

Research Report CCS 449

THE EXTREME POINT CHARACTERIZATIONS OF SEMI-INFINITE DUAL NON-ARCHIMEDEAN BALLS

by

A. Charnes T. Song

March 1983

This research was partly supported by ONR Contract NO0014-82-K-0295 and USARI Contract MDA-903-83-K-0312 with the Center for Cybernetic Studies, The University of Texas at Austin. Reproduction in whole or in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director Graduate School of Business, 4.138 The University of Texas at Austin Austin, Texas 78712 (512) 471-1821

This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT

The extreme point characterization of the (l')-ball of a generalized finite sequence space by Kortanek and Strojwas was accomplished only for real scalars and by continuity considerations. We shows that no topology or continuity is needed as in Kortanek-Strojwas and that the characterization extends to weighted (l')-balls with any ordered scalar field. We show a Chebyshev ball theorem is false since they have no extreme points. Via generalizing the LIEP theorem, useful projections of the ball are proved convex hulls of their extreme points.

KEY WORDS

Semi-infinite programming Non-Archimedean programming Weighted (ℓ') -balls Chebyshev balls

THE EXTREME POINT CHARACTERIZATIONS OF SEMI-INFINITE DUAL NON-ARCHIMEDEAN BALLS

A. Charnes and T. Song The University of Texas at Austin

1. Introduction

In 1951 Charnes introduced non-Archimedean field extensions into linear programming as part of his non-Archimedean Simplex method [1] which solved the degeneracy problem and thereby provided the first rigorous algorithm for solution of linear programming problems. Together with his LIEP Theorem and Opposite Sign Theorem it could be used to extend the major theorems of LP to vector spaces with scalars from any ordered field (e.g. [2] and [3]) without thereby requiring topological considerations as used in separation theorems for convex sets. Although the LIEP Theorem and Opposite Sign Theorem were extended to semi-infinite programming duals in [4], Kortanek and Strojwas in [5] succeeded only in the important case of the real field and by means of continuity considerations to characterize in a similar fashion the extreme points of dual constraints sets additionally constrained to lie in a (non-linear) "(&')-ball" of the generalized finite sequence space.

TOTATION OF THE PRODUCT OF THE PRODU

In this paper we show that no topological or continuity considerations are needed and that the Kortanek-Strojwas characterization holds for the extension to weighted (ℓ)-balls with vector entries from <u>any</u> ordered field. We also prove that the similar theorem for "Chebyshev-balls" is <u>false</u>. In fact the Chebyshev-balls have no extreme points. Via a generalization of the LIEP Theorem of semi-infinite programming, we obtain as corollaries characterization of useful subsets of the Chebyshev ball as convex hulls of their extreme points.

First we define the following sets

(1)
$$\Lambda \stackrel{\triangle}{=} \left\{ \lambda \in F^{(I)} : \sum_{i} P_{i} \lambda_{i} = Q, \lambda \geq 0 \right\}$$

(2)
$$\tilde{\Lambda} \triangleq \{ \lambda \in F^{(I)} : \sum_{i} P_{i} \lambda_{i} = Q, \lambda \geq 0, \sum_{i} \lambda_{i} \leq U \}$$

(3)
$$\hat{\Lambda} \triangleq \left\{ \lambda \in F^{(1)} : \sum_{i} P_{i} \lambda_{i} = Q, \sum_{i} |\lambda_{i}| \leq U \right\}$$

(4)
$$\Lambda^{C} \stackrel{\triangle}{=} \left\{ \lambda \in F^{(I)} : \sum_{i} P_{i} \lambda_{i} = Q, |\lambda_{i}| \leq U, i \in I \right\}$$

where F is any ordered field; P_i 's, Q are m-vector from F^m ; I is an index set; \sum_i means the summation is over all non-zero components of λ . $F^{(I)}$ is the generalized finite sequence space of vectors on F with |I| entries, alternately it is the space of functions from I to F with finitely many non-zero entries.

In the following section, we will show that sets Λ , Λ are all the convex hull of their extreme points and we will also discuss some properties of their extreme points. The fundamental theorems of this paper are the LIEP Theorem and OS Theorem:

Theorem 1.1 (Linear Independence with Extreme Points)

Assume Λ of (1) is non-empty. Then $\lambda \neq 0$ is an extreme point of Λ if and only if $\left\{ \begin{array}{c|c} P_i & i \in I \end{array} \right\}$ is linearly independent.

Theorem 1.2 (Opposite Sign Theorem)

Assume Λ is non-empty. Then the set of extreme points of Λ is non-empty and Λ is the convex hull of its extreme points if and only if $\{P_i \mid i \in I\}$ has the Opposite Sign Property, (OSP) namely, $\lambda \in F^{(I)}$, $\lambda \neq 0$ and $\sum_i P_i \lambda_i = 0$ imply that some λ_r and λ_s are of opposite sign.

2. The set Λ

Consider

(5)
$$\widetilde{\Lambda}^{"} \stackrel{\triangle}{\underline{\triangle}} \{(\lambda^{*}, \lambda) \in F' \times F^{(I)} : \lambda^{*} \binom{0}{1} + \sum_{i} \lambda_{i} \binom{P_{i}}{1} = \binom{Q}{U}, \lambda \geq 0, \lambda^{*} \geq 0\}$$
For any $\lambda \in \widetilde{\Lambda}$, let
$$\lambda^{*} = U - \sum_{i} \lambda_{i}$$

This defines the following mapping:

$$\varphi : \tilde{\Lambda} \longrightarrow \tilde{\Lambda}''$$
 where $\varphi(\lambda) = (\lambda^*, \lambda) = (U - \sum_i \lambda_i, \lambda)$

Evidently this mapping is 1-1 and of the first degree in λ .

Take λ^1 , $\lambda^2 \in \Lambda$ and $0 < \theta < 1$. Since

$$U - (\sum_{i} (\theta \lambda^{1} + (1 - \theta) \lambda_{i}^{2})) = \theta (U - \sum_{i} \lambda_{i}^{1}) + (1 - \theta)(U - \sum_{i} \lambda_{i}^{2}),$$

we have

DECESSED DECESSED OF SOME OF S

$$\varphi\left(\theta\lambda^{1}+\left(1-\theta\right)\lambda^{2}\right)=\theta\,\varphi(\lambda^{1})+\left(1-\theta\right)\varphi\left(\lambda^{2}\right)$$

Conversely,

$$\varphi^{-1}(\theta\,\varphi(\lambda^1)\,+\,\overline{1\,-\,\theta}\,\,\varphi(\lambda^2))\,=\,\varphi^{-1}[\varphi(\theta\lambda^1\,+\,\overline{1\,-\,\theta}\lambda^2)]\,=\,\theta\lambda^1\,+\,(1\,-\,\theta)\lambda^2$$

The following Lemmas are true.

Lemma 2.1

 λ is an extreme point of $\overset{\sim}{\Lambda}$ if and only if $\varphi(\lambda)$ is an extreme point of $\overset{\sim}{\Lambda}$ ".

Lemma 2.2

 $\stackrel{\sim}{\Lambda}$ is the convex hull of its extreme points if and only if $\stackrel{\sim}{\Lambda}"$ is the convex hull of its extreme points.

Theorem 2.1

If Λ is non-empty, then Λ is the convex hull of its extreme points.

<u>Proof</u>: Since $\{\begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} P_i\\1 \end{pmatrix} : i \in I \}$ has the opposite sign property and $\tilde{\Lambda}'' \neq \phi$ because $\tilde{\Lambda} \neq \phi$, by Theorem 1.2 $\tilde{\Lambda}''$ is the convex hull of its extreme points.

In accordance with Lemma 2.2, then $\tilde{\Lambda}$ is the convex hull of its extreme points.

Q.E.D.

Theorem 2.2

Suppose λ is an extreme point of Λ and $\lambda \neq 0$.

(i) If
$$\sum_{i} \lambda_{i} = U$$
, then $\{P_{i} : \lambda_{i} > 0\}$ is affinely independent.

(ii) If
$$\sum_{i} \lambda_{i} < U$$
, then $\{P_{i} : \lambda_{i} > 0\}$ is linearly independent.

<u>Proof</u>: Suppose λ is an extreme point of Λ . By Lemma 2.1 $\varphi(\lambda)$ is an extreme point of $\widetilde{\Lambda}$ ".

(i) If
$$\sum_{i} \lambda_{i} = U$$
, then $\lambda^* = U - \sum_{i} \lambda_{i} = 0$.

By Theorem 1.1,

$$\left\{ \begin{pmatrix} p_{i} \\ 1 \end{pmatrix} : \lambda_{i} > 0 \right\}$$
 is linearly independent,

i.e.,

$$\{P_i : \lambda_i > 0\}$$
 is affinely independent.

(ii) If
$$\sum_{i} \lambda_{i} < U$$
, then $\lambda^{*} = U - \sum_{i} \lambda_{i} > 0$.

By Theorem 1.1,

$$\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} P_i \\ 1 \end{pmatrix} : \lambda_i > 0 \right\}$$
 is linearly independent.

Hence the set $\binom{P_i}{0}$: $\lambda_i > 0$ is linearly independent and $\{P_i : \lambda_i > 0\}$ is linearly independent.

3. The set $\hat{\Lambda}$

Below we will first discuss the more general set $\hat{\boldsymbol{\Lambda}}_{\mathbf{W}}$ as follows:

(6)
$$\hat{\Lambda}_{\mathbf{W}} \triangleq \{\lambda \in F^{(I)} : \sum_{i} P_{i} \lambda_{i} = Q, \sum_{i} w_{i} |\lambda_{i}| \leq U \}$$

where $w_i>0$, for all $i\in I$, is called the "weight" of component i and $|\lambda_i| \triangleq \max(\lambda_i \ , \ -\lambda_i).$

Lemma 3.1

The function $g(\rho) \triangleq \sum_{i} w_{i} |\lambda_{i} + \rho \alpha_{i}|$,

where (i) $w_i > 0$, $\forall i \in I$, (ii) $\{i \in I : \alpha_i \neq 0, \text{ or } \lambda_i \neq 0\}$ is finite and $\alpha_i \neq 0$ for some i, is a non-negative piecewise linear function of $\rho \geq 0$, which takes on all values in F between any two values of $g(\rho)$ and takes on arbitrarily large positive values in F.

Proof:

Let

$$I_{0} \triangleq \{i : \lambda_{i} = 0, \alpha_{i} \neq 0\}$$

$$I_{00} \triangleq \{i : \lambda_{i} \neq 0, \alpha_{i} = 0\}$$

$$I_{S} \triangleq \{i : \lambda_{i}\alpha_{i} > 0\}$$

$$I_{d} \triangleq \{i : \lambda_{i}\alpha_{i} < 0\}$$

Thus $I_0 \cup I_{00} \cup I_s \cup I_d$ is a partition of $\{i \in I : \alpha_i \neq 0 \text{ or } \lambda_i \neq 0\}$.

Then

$$\begin{split} g(\rho) &= \sum_{i} w_{i} |\lambda_{i} + \rho \alpha_{i}| \\ &= \sum_{i \in I_{00}} w_{i} |\lambda_{i}| + \rho \sum_{i \in I_{0}} w_{i} |\alpha_{i}| + \sum_{i \in I_{S}} (|\lambda_{i}| + \rho |\alpha_{i}|) + \end{split}$$

+
$$\sum_{i \in I_d} w_i(|\lambda_i| - \rho|\alpha_i|) + \sum_{i \in I_d} w_i(\rho|\alpha_i| - |\lambda_i|)$$

 $\rho \leq |\lambda_i| / |\alpha_i|$ $\rho > |\lambda_i| / |\alpha_i|$

Let
$$\frac{|\lambda_{i_1}|}{|\alpha_{i_1}|} \leq \frac{|\lambda_{i_2}|}{|\alpha_{i_2}|} \leq \ldots \leq \frac{|\lambda_{i_n}|}{|\alpha_{i_n}|}$$

where $\{i_1,\ldots,i_n\}=I_d$. We designate these ratios as $\rho_1\leqslant\rho_2\leqslant\ldots\leqslant\rho_n$.

Thereby we obtain the following expressions for $g(\rho)$.

 $\rho_0 \triangleq 0 \leq \rho < \rho_1$:

$$g(\rho) = \sum_{I_{oo} \cup I_{s} \cup I_{d}} w_{i} |\lambda_{i}| + \rho \{\sum_{I_{o} \cup I_{s}} w_{i} |\alpha_{i}| - \sum_{I_{d}} w_{i} |\alpha_{i}| \}$$

For
$$\rho_k \leq \rho < \rho_{k+1}$$
 :

$$g(\rho) = \sum_{\substack{I \text{ of } I \\ \text{of } i_{k+1}, \dots, i_{m}}} w_{i} | \lambda_{i} | - \sum_{\substack{\{i_{1}, \dots, i_{k}\}}} w_{i} | \lambda_{i} |$$

$$+ \rho \left\{ \sum_{\substack{I \text{ of } i_{s} \cup \{i_{1}, \dots, i_{k}\}}} w_{i} | \alpha_{i} | - \sum_{\substack{\{i_{k+1}, \dots, i_{n}\}}} w_{i} | \alpha_{i} | \right\}$$

for k = 1, 2, ..., n-1.

$$g(\rho) = \sum_{I_{00} \cup I_{s}} w_{i} |\lambda_{i}| - \sum_{I_{d}} w_{i} |\lambda_{i}| + \sum_{I_{0} \cup I_{s} \cup I_{d}} w_{i} |\alpha_{i}|$$

Evidently $g(\rho)$ is linear in each interval $\rho_k \leq \rho < \rho_{k+1}$ (k=0,1,...,n-1) and $\rho \geqslant \rho_{\mathbf{n}}$ with increasing coefficient of ρ as ρ increases. I.e.,

$$g(\rho) = \begin{cases} t_k + s_k \rho , & \rho_k \leq \rho < \rho_{k+1} , & k = 0,..., n-1 \\ t_n + s_n \rho , & \rho \geqslant \rho_n \end{cases}$$

where $s_0 \le s_1 \le \dots \le s_{n-1} \le s_n$, $s_n = \sum_i w_i |\alpha_i| > 0$ and

$$g(\rho_{k+1}) = t_{k+1} + s_{k+1} \rho_{k+1} = t_k + s_k \rho_{k+1}$$

Let r be the least integer for which $s_r > 0$.

Then $g(\rho_0) \geq g(\rho_1) \geq \ldots \geq g(\rho_r)$ and $g(\rho_r) \leq g(\rho_{r+1}) \leq \ldots \leq g(\rho_n)$, i.e. $g(\rho_r)$ is the minimum of $g(\rho)$ for $\rho \geq 0$. For any $t \in F$, $t \geq g(\rho_r)$, either $g(\rho_k) \leq t \leq g(\rho_{k+1})$ for some $k \geq r$, or else $t \geq g(\rho_n)$. Thus, $g(\rho) = t$ for either $\rho = (t + t_k)/s_k$ or else for $\rho = (t - t_n)/s_n$.

Q.E.D.

From this lemma, it is easy to obtain the following theorem.

Theorem 3.1

Suppose $\hat{\Lambda}_{\mathbf{W}}$ has at least two points. If $\lambda \in \hat{\Lambda}_{\mathbf{W}}$ and $\sum_{\mathbf{i}}^{\mathbf{i}} w_{\mathbf{i}} |\lambda_{\mathbf{i}}| < \mathbf{U}$, then λ is a convex combination of λ^{1} , $\lambda^{2} \in \hat{\Lambda}_{\mathbf{W}}$ with $\sum_{\mathbf{i}}^{\mathbf{i}} w_{\mathbf{i}} |\lambda_{\mathbf{i}}^{1}|^{2} = \mathbf{U} = \sum_{\mathbf{i}}^{\mathbf{i}} w_{\mathbf{i}} |\lambda_{\mathbf{i}}^{2}|$.

Proof:

Suppose $\lambda' \in \hat{\Lambda}_{\mathbf{w}}$ and $\lambda' \neq \lambda$.

Let
$$\alpha = \lambda - \lambda' \neq 0$$
, $g_{\alpha}(\rho) = \sum_{i} w_{i} |\lambda_{i} + \rho \alpha_{i}|$.

By Lemma 3.1, there exists $\rho_1 > 0$, such that $\mathbf{g}_{\alpha}(\rho_1) = \mathbf{U} > \mathbf{g}_{\alpha}(0)$. Set

$$\lambda' = \lambda + \rho_1 \alpha .$$
Since $\sum_{i} P_i \lambda'_i = \sum_{i} P_i (\lambda_i + \rho_1 \alpha_i) =$

$$= \sum_{i} P_i (\lambda_i + \rho_1 (\lambda_i - \lambda'_i)) = Q + \rho_1 (Q - Q) = Q$$

and

$$\sum w_i |\lambda'_i| = g\alpha(\rho_i) = U,$$

therefore

$$\lambda' \in \hat{\Lambda}w$$

Similarly, there exists $\rho_2 > 0$ such that

$$g_{-\alpha}(\rho_2) = \sum_{i} w_i |\lambda_i + \rho_2 (-\alpha_i)| = 0$$

Now
$$\lambda^2 = \lambda + \rho_2 (-\alpha) = \lambda - \rho_2 \alpha \quad \hat{\lambda}_w$$
.

Thus
$$\lambda = \frac{\rho_2}{\rho_1 + \rho_2} \quad \lambda^1 + \frac{\rho_1}{\rho_1 + \rho_2}$$

Q.E.D.

Consider the following set

(7)
$$\Lambda_{W}^{+-} = \left\{ (\lambda^{+}, \lambda^{-}) \in F^{(I)} \times F^{(I)} : \sum_{i} P_{i} \lambda_{i}^{+} + \sum_{i} (-P_{i}) \lambda_{i}^{-} = Q_{i} \lambda_{i}^{+} \lambda_{i}^{-} \ge 0 \right.$$

$$\left. \sum_{i} w_{i} \lambda_{i}^{+} + \sum_{i} w_{i} \lambda_{i}^{-} = Q_{i} \lambda_{i}^{+} \lambda_{i}^{-} \ge 0 \right.$$

where $w_i > 0$, $\forall i \in I$.

Clearly,
$$\left\{ \begin{pmatrix} P_i \\ w_i \end{pmatrix} \right\}$$
, $\left\{ \begin{pmatrix} -P_i \\ w_i \end{pmatrix} \right\}$: $i \in I$ has the opposite sign property.

Hence, Λ_{W}^{+-} is the convex hull of its extreme points. Furthermore, we have the following:

Lemma 3.2

If (λ^+, λ^-) is an extreme point of $\Lambda_{\rm W}^{+-}$, and $\lambda_{\rm i}^+ \lambda_{\rm i}^- = 0$ holds for all $i \in I$, then $\lambda = \lambda^+ - \lambda^-$ is an extreme point of $\hat{\Lambda}_{\rm W}$.

Proof:

Since
$$\lambda_i^+ \lambda_i^- = 0$$
 and $\lambda_i^+ \ge 0$, $\lambda_i^- \ge 0$

(8)
$$\sum_{i} w_{i} |\lambda_{i}| = \sum_{i} w_{i} \lambda_{i}^{+} + \sum_{i} w_{i} \lambda_{i}^{-} = U$$

Also
$$\sum_{i} P_{i} \lambda_{i} = \sum_{i} P_{i} \lambda_{i}^{+} + \sum_{i} (-P_{i}) \lambda_{i}^{-} = Q$$

Thus, $\lambda \in \hat{\Lambda}_{\mathbf{W}}$, if there are λ^1 , $\lambda^2 \in \hat{\Lambda}_{\mathbf{W}}$ such that

$$\lambda = \theta \lambda' + (\overline{1-\theta}) \lambda^2$$
, where $1 > \theta > 0$.

If there exists an i_0 such that $sgn\lambda_i' \neq sgn\lambda_i^2$, then

$$|\lambda_{i_0}| = |\theta\lambda_{i_0}^1 + (1-\theta)\lambda_{i_0}^2| < \theta |\lambda_{i_0}^1| + (1-\theta)|\lambda_{i_0}^2|$$

Therefore $\sum_{i} w_{i} |\lambda_{i}| < \theta \sum_{i} w_{i} |\lambda_{i}^{1}| + (1-\theta) \sum_{i} w_{i} |\lambda_{i}^{2}| \leq U$

This is a contradiction to (8), so

$$sgn \lambda_i^1 = sgn \lambda_i^2$$

and

$$\sum_{i} w_{i} |\lambda_{i}^{1}| = U \quad , \quad \sum_{i} w_{i} |\lambda_{i}^{2}| = U$$

For k = 1,2, set
$$\lambda_{i}^{k+} = \begin{cases} \lambda_{i}^{k} & \text{if } \lambda_{i}^{k} \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\lambda_{i}^{k-} = \begin{cases} -\lambda_{i}^{k} & \text{if } \lambda_{i}^{k} \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Hence
$$(\lambda^+, \lambda^-) = \theta(\lambda^{1+}, \lambda^{1-}) + (1-\theta)(\lambda^{2+}, \lambda^{2-})$$

with
$$(\lambda^{k+}, \lambda^{k-}) \in \hat{\Lambda}_{W}^{+-}$$
, k=1,2

Recalling (λ^+, λ^-) is an extreme point of Λ_W^{+-} , there must hold

$$(\lambda^+, \lambda^-) = (\lambda^{1+}, \lambda^{1-}) = (\lambda^{2+}, \lambda^{2-}).$$

Thereby

$$\lambda = \lambda^1 = \lambda^2$$

Q.E.D.

Theorem 3.2

Every $\lambda \in \hat{\Lambda}_{\mathbf{W}}$ with $\sum_{\mathbf{i}} w_{\mathbf{i}} |\lambda_{\mathbf{i}}| = \mathbf{U}$ is a convex combination of extreme points of $\hat{\Lambda}_{\mathbf{W}}$.

Proof:

Let
$$\lambda^+, \lambda^- \in F^{\{I\}}$$
 such that
$$\lambda_i^+ = \begin{cases} \lambda_i & \lambda_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\lambda_i^- = \begin{cases} -\lambda_i & \lambda_i < 0 \\ 0 & \text{otherwise} \end{cases}$$

Since
$$\lambda \in \hat{\Lambda}_{W}$$
 with $\sum_{i} w_{i} |\lambda_{i}| = U$ and $\lambda = \lambda^{+} - \lambda^{-}$, $(\lambda^{+}, \lambda^{-}) \in \Lambda_{W}^{+-}$

If (λ^+,λ^-) is not an extreme point of Λ_W^{+-} , then it is the convex combination of extreme points of Λ_W^{+-} , i.e.

$$(\lambda^+, \lambda^-) = \sum_{k} \theta_k (\lambda^{+k}, \lambda^{-k})$$

where $\theta_k > 0$ $\sum_k \theta_k = 1$

Because $0 = \lambda_i^+ \lambda_i^- \ge \sum_k \theta_k^2 \lambda_i^{+k} \lambda_k^{-k} \ge 0$ these extreme points $(\lambda^{+k}, \lambda^{-k})$ must

have the property that

$$\lambda_i^{+k} \cdot \lambda_i^{-k} = 0$$

By lemma 3.2, they correspond via $\lambda^k = \lambda^{+k} - \lambda^{-k}$ to extreme points of $\hat{\Lambda}_w$ and

$$\lambda = \sum_{\mathbf{k}} \theta_{\mathbf{k}} \lambda^{\mathbf{k}} .$$

Q.E.D.

From theorem 3.1 and 3.2, the following corollary holds.

Corollary: $\hat{\Lambda}_{\mathbf{w}}$ is the convex hull of its extreme points.

Since $\hat{\Lambda}$ is a special case of $\hat{\Lambda}_{\mathbf{W}}$, $\hat{\Lambda}$ is also the convex hull of its extreme points. Furthermore, we have the following theorem that gives characteristic properties of the extreme points of $\hat{\Lambda}$.

Theorem 3.3

If $\hat{\Lambda}$ has at least two points and $\lambda \in \hat{\Lambda}$, then λ is an extreme point of $\hat{\Lambda}$ if and only if

i)
$$\sum_{i} |\lambda_{i}| = U$$

ii)
$$\{P_i : \lambda_i > 0\}$$
 U $\{-P_i : \lambda_i < 0\}$ is affinely independent.

Proof:

Suppose that λ is an extreme point of $\hat{\Lambda}$. By theorem 3.1 $\sum_{i} |\lambda_{i}| = U$.

Let
$$\lambda_{i}^{+} = \begin{cases} \lambda_{i} & \lambda_{i} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\lambda_{i}^{-} = \begin{cases} -\lambda_{i} & \lambda_{i} < 0 \\ 0 & \text{otherwise} \end{cases}$$

Thus
$$(\lambda^+, \lambda^-) \in \hat{\Lambda}^{+-}$$

$$\hat{\Lambda}^{+-} = \left\{ (\lambda^{+}, \lambda^{-}) \in F^{(I)} \times F^{(I)} : \sum_{i} P_{i} \lambda_{i}^{+} + \sum_{i} (-P_{i}) \lambda_{i}^{-} = Q, \lambda_{i}^{+}, \lambda_{i}^{-} \ge 0 \right\}$$

$$\sum_{i} \lambda_{i}^{+} + \sum_{i} \lambda_{i}^{-} = U$$

It is easy to verify that $(\lambda^+$, $\lambda^-)$ must be an extreme point of $\hat{\Lambda}^{+-}$. By theorem 1.1, the LIEP theorem,

$$\left\{ \begin{pmatrix} P_{\mathbf{i}} \\ 1 \end{pmatrix} : \lambda_{\mathbf{i}}^{+} > 0 \right\} \cup \left\{ \begin{pmatrix} -P_{\mathbf{i}} \\ 1 \end{pmatrix} : \lambda_{\mathbf{i}}^{-} > 0 \right\}$$

is linearly independent. In other words,

$$\left\{P_{i} : \lambda_{i} > 0\right\} \cup \left\{-P_{i} : \lambda_{i} < 0\right\}$$

is affinely independent.

Suppose that (i), (ii) hold for some $\lambda \in \hat{\Lambda}.$ By the same transformation, we have

$$\lambda = \lambda^{+} - \lambda^{-}$$

with
$$(\lambda^+, \lambda^-) \in \hat{\Lambda}^{+-}$$
 and $\lambda_{\hat{i}}^+, \lambda_{\hat{i}}^- = 0$, $\forall_{\hat{i}}$

By the LIEP theorem also, (λ^+, λ^-) is an extreme point of $\hat{\Lambda}^{+-}$. Finally, the lemma 3.2 ensures that λ is an extreme point of $\hat{\Lambda}$.

Q.E.D.

4. The set Λ^{C}

If I is an infinite index set, it is interesting to see following results.

Theorem 4.1

If I has an infinite number of elements, then $\boldsymbol{\Lambda}^{\boldsymbol{C}}$ has no extreme point at all.

<u>Proof</u>: We only need to show that for any $\lambda \in \Lambda^{\mathbb{C}}$, there exist λ^1 , $\lambda^2 \in \Lambda^{\mathbb{C}}$, $\lambda \neq \lambda_2$ such that

$$\lambda = \frac{1}{2}\lambda^1 + \frac{1}{2}\lambda^2$$

Since $\{i\in I:\lambda_i\neq 0\}$ only has a finite number of elements, we can select $i_1,\ldots,i_{m+1}\in I$, such that

$$\{i_1,\dots,i_{m+1}\}\cap\{i\in I\ :\ \lambda_i\neq 0\}=\emptyset$$

Because $\mathbf{P_i}$,..., $\mathbf{P_{i_{m+1}}} \in \mathbf{F^m}$, there exist $\alpha_1, \dots, \alpha_{m+1}$ not all zero, such that

$$\sum_{k=1}^{m+1} P_{ik} \alpha_k = 0$$

Let

$$\theta = \min \{ U/|\alpha_k| : \alpha_k \neq 0 \}$$

$$\lambda_{\hat{\mathbf{i}}}^{1} = \begin{cases} \lambda_{\hat{\mathbf{i}}} & \text{if } \lambda_{\hat{\mathbf{j}}} \neq 0 \\ \theta \alpha_{\hat{\mathbf{k}}} & \text{if } \mathbf{i} = \mathbf{i}_{\hat{\mathbf{k}}}, \ \mathbf{k} = 1, \dots, m+1 \ , \\ 0 & \text{otherwise.} \end{cases}$$

$$\lambda_{\mathbf{i}}^{2} = \begin{cases} \lambda_{\mathbf{i}} & \text{if } \lambda_{\mathbf{i}} \neq 0 \\ -\theta \alpha_{\mathbf{k}} & \text{if } \mathbf{i} = \mathbf{i}_{\mathbf{k}} \text{, } \mathbf{k} = 1, \dots, m+1 \text{,} \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to verify that

$$\lambda^1, \lambda^2 \in \Lambda^C$$

Clearly $\lambda^1 \neq \lambda^2$ and

$$\lambda = \frac{1}{2}\lambda^1 + \frac{1}{2}\lambda^2$$

Q.E.D.

The basis for this contrast with the " (ℓ_1) " results is that the latter involves only a finite number of additional constraints, whereas the Chebychev bounds involve the whole infinite cardinality of bounds corresponding to the totality of coordinates. However, every point in Λ^{C} has only a finite number of non-zero coordinates. And, for the projection of Λ^{C} onto the finite-dimensional subspace corresponding to these, we do have extreme point theorems of similar nature to the (ℓ_1) ball results as we now show.

We will now develop a generalization of the semi-infinite LIEP Theorem which perhaps shows why Λ^C has no extreme points at all. Actually Theorem 4.1 can be regarded as a corollary of the following Theorem 4.2.

Define the set

(9)
$$\Lambda' \underline{\Lambda} \{ \lambda \in F^{(I)} : \sum_{i} P_{i} \lambda_{i} = Q, \lambda_{i} \leq \lambda_{i} \leq u_{i}, \forall i \}$$

where $\ell_i \leq u_i$.

Note that since $\lambda \in F^{(I)}$, $\Lambda' = \phi$ unless $\ell_i \leq 0$, $\forall i \in I$.

Theorem 4.2

 $\lambda \in \Lambda' \neq \phi$ is an extreme point of Λ' if and only if $\{P_i : \ell_i < \lambda_i < u_i\}$ is linearly independent.

<u>Proof</u>: <u>"if"</u>: Suppose $\{P_i : \ell_i < \lambda_i < u_i\}$ is linearly independent and

$$(10) \qquad \lambda = \theta \lambda^1 + (1 - \theta) \lambda^2$$

where $0 < \theta < 1$, λ^1 , $\lambda^2 \in \Lambda^1$.

Let

$$\begin{split} & \mathbf{I}_{\ell} \triangleq \{\mathbf{i} \in \mathbf{I} : \lambda_{\mathbf{i}} = \ell_{\mathbf{i}} \} \\ & \mathbf{I}_{\mathbf{u}} \triangleq \{\mathbf{i} \in \mathbf{I} : \lambda_{\mathbf{i}} = \mathbf{u}_{\mathbf{i}} \} \\ & \mathbf{I}_{\mathbf{oo}} \triangleq \{\mathbf{i} \in \mathbf{I} : \ell_{\mathbf{i}} < \lambda_{\mathbf{i}} < \mathbf{u}_{\mathbf{i}} \} \end{split}$$

Clearly, from (10), we have

$$i \in I_{\ell} \Longrightarrow \lambda_{i}^{1} = \lambda_{i}^{2} = \ell_{i}$$

$$i \in I_{u} \Longrightarrow \lambda_{i}^{1} = \lambda_{i}^{2} = u_{i}$$

Thus,

$$\sum_{\mathbf{i} \in \mathbf{I}_{00}} \mathsf{P}_{\mathbf{i}} \lambda_{\mathbf{i}} = \mathsf{Q} - \sum_{\mathbf{i} \in \mathbf{I}} \mathsf{P}_{\mathbf{i}} \lambda_{\mathbf{i}} - \sum_{\mathbf{i} \in \mathbf{I}_{\mathbf{u}}} \mathsf{P}_{\mathbf{i}} u_{\mathbf{i}} = \sum_{\mathbf{i} \in \mathbf{I}_{00}} \mathsf{P}_{\mathbf{i}} \lambda_{\mathbf{i}}^{\mathbf{1}} = \sum_{\mathbf{i} \in \mathbf{I}_{00}} \mathsf{P}_{\mathbf{i}} \lambda_{\mathbf{i}}^{2}$$

But since $\{P_i:i\in I_{00}\}$ is linearly independent, the representation is unique. Hence

$$\lambda_{\mathbf{i}} = \lambda_{\mathbf{i}}^{1} = \lambda_{\mathbf{i}}^{2}$$

i.e., $\lambda = \lambda^1 = \lambda^2$ and λ is an extreme point.

"only if": Suppose $\{P_i : i \in I_{00}\}$ is linearly dependent, i.e.,

$$\sum_{\mathbf{i} \in \mathbf{I}_{00}} \mathsf{P}_{\mathbf{i}^{\alpha}\mathbf{i}} = 0$$

with not all $\alpha_1, \ldots, \alpha_n$ zero.

Take $\varepsilon > 0$ small enough so that

$$\ell_i < \lambda_i + \epsilon \alpha_i < u_i$$
 $\forall i \in I_{00}$

Let

$$\lambda_{\mathbf{i}}^{\mathbf{i}} \stackrel{\Delta}{\underline{\Delta}} \begin{cases} \lambda_{\mathbf{i}} + \epsilon \alpha_{\mathbf{i}}, & \mathbf{i} \in I_{00} \\ \lambda_{\mathbf{i}}, & \text{otherwise} \end{cases}$$

$$\lambda^{2} \triangleq \begin{cases} \lambda_{i} - \epsilon \alpha_{i}, i \in I_{oo} \\ \lambda_{i}, otherwise \end{cases}$$

Evidently, λ^1 , $\lambda^2 \in \Lambda'$ $\lambda^1 \neq \lambda^2$ and

$$\lambda = \frac{1}{2}\lambda^1 + \frac{1}{2}\lambda^2$$

Q.E.D.

Since Λ^C is a special case of Λ' with u_i = U , ℓ_i = -U, and Λ^C is in a generalized finite sequence space,

$$I_{00} = \{i \in I : -u_i < \lambda_i < U\} \supseteq \{i \in I : \lambda_i = 0\}$$

has an infinite number of elements. Thus $\{P_i: i \in I_{00}\}$ must be linearly dependent for any $\lambda \in \Lambda^{\mathbf{C}}$. By Theorem 4.2, there is no extreme point in $\Lambda^{\mathbf{C}}$.

However if all $\ell_i=0$, Λ' is the convex hull of its extreme points and we have the following Theorem 4.3.

First for simpler discourse, we shall call

$$I_{00} = \{i \in I : 0 < \lambda_i < u_i\}$$

the "active index set" from now on.

Theorem 4.3: Λ' is the convex hull of its extreme points, if all $\ell_i = 0$.

<u>Proof</u>: Take any $\lambda \in \Lambda'$. If λ is not an extreme point of Λ' , by Theorem 4.2, $\{P_i: i \in I_{00}\}$ is linearly dependent. Thus, there exist α_i , $i \in I_{00}$ not all zero such that

$$\sum_{i \in I_{00}} P_{i\alpha_i} = 0$$

Let

$$I_{00}^{+} = \{i \in I_{00} : \alpha_{i} > 0\}$$

$$I_{00}^- = \{i \in I_{00} : \alpha_i < 0\}$$

$$\rho_{1} = \min \left\{ \frac{u_{i} - \lambda_{j}}{\alpha_{i}} ; i \in I_{00}^{+}; \frac{\lambda_{i}}{|\alpha_{i}|}, i \in I_{00}^{-} \right\}$$

$$\rho_{2} = \min \left\{ \frac{\lambda_{i}}{\alpha_{i}}, i \in I_{00}^{+}; \frac{u_{i} - \lambda_{i}}{|\alpha_{i}|}, i \in I_{00}^{-} \right\}$$

Because $I_{00}^+ \cup I_{00}^- \neq \varphi$, ρ_1 and ρ_2 are well defined. Now let

$$\lambda_{i}^{1} \triangleq \begin{cases} \lambda_{i} & , i \notin I_{00}^{+} \cup I_{00}^{-} \\ \lambda_{i}^{-} + \rho_{1}\alpha_{i}^{-}, i \in I_{00}^{+} \cup I_{00}^{-} \end{cases}$$

$$\lambda_{i}^{2} \triangleq \begin{cases} \lambda_{i}^{-} - \rho_{2}\alpha_{i}^{-}, i \in I_{00}^{+} \cup I_{00}^{-} \\ \lambda_{i}^{-}, otherwise \end{cases}$$

It is easy to see that

$$\lambda^{1}$$
, $\lambda^{2} \in \Lambda^{1}$, $\lambda^{1} \neq \lambda^{2}$,
$$\lambda = \frac{\rho_{2}}{\rho_{1} + \rho_{2}} \lambda^{1} + \frac{\rho_{2}}{\rho_{1} + \rho_{2}} \lambda^{2}$$

and the active index set of λ^k (k=1,2) has at least one less element than the active index set of λ . If λ^1 and λ^2 are both extreme points of Λ' , we are done. Otherwise using the same method, we can present λ^k as a convex combination of two other points of Λ' which have at least one less element of the active index set than the λ^k 's. Therefore in at most 2^n steps (where n is the number of elements of I_{00}) we can get λ as a convex combination of extreme points of Λ' .

References

- [1] A. Charnes, "Optimality and Degeneracy in Linear Programming," Econometrica, 20, 2, April 1952, pp. 160-170.
- [2] A. Charnes and W.W. Cooper, "The Strong Minkowski-Farkas-Weyl Theorem for Vector Spaces over Ordered Fields," Proc. Natl. Acad. Sci., 44, 9, September 1958, pp. 914-916.
- [3] A. Charnes and W.W. Cooper, <u>Management Models and Industrial Applications of Linear Programming</u>, Volumes I and II, John Wiley and Sons, Inc., New York, 1961.
- [4] A. Charnes, W.W. Cooper, and K.O. Kortanek, "Duality, Haar Programs, and Finite Sequence Spaces," <u>Proc. Natl. Acad. Sci.</u>, 48, 5, May 1962, pp. 783-786.
- [5] K.O. Kortanek and H.M. Strojwas, "On Extreme Points of Bounded Sets of Generalized Finite Sequence Spaces," Mathematics Department Reports, Carnegie-Mellon University, September 1982.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	1	3. RECIPIENT'S CATALOG NUMBER
CCS 449	AD-A	138010
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
The Extreme Point Characterizations of Semi- Infinite Dual Non-Archimedean Balls		
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)
A. Charnes and T. Song		ONR N00014-82-K-0295
		MDA 903-83-K-0312
A 255545000 255000 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 2		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Center for Cybernetic Studies The University of Texas at Austin		
Austin, TX 78712		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office of Naval Research (Code 434)		March 1983
Washington, DC		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)		15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
	·-·	<u> </u>
16. DISTRIBUTION STATEMENT (of this Report)		
This report has been approved t	for public releas	se and sale; its
distribution is unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Semi-Infinite Programming Non-Archimedean Programming		
Weighted (L')-balls		
Chebyshev balls		
,		
The extreme point characterization of the (ℓ') -ball of a generalized finite		
sequence space by Kortanek and Strojwas was accomplished only for real scalars		
and by continuity considerations. We show that no topology or continuity is		
needed as in Kortanek-Strojwas and that the characterization extends to		
weighted (ℓ') -balls with any ordered field. We show a Chebyshev ball theorem is false since they have no extreme points. Via generalizing the		
LIEP theorem, useful projections of the ball are proved convex hulls of their		
extreme points.		
PORM 1479 CONTROLLED TO THE PORT OF THE PO		

S/N 0102-014-6601 :

READ INSTRUCTIONS

