

Scalable Data Science

Lecture 13b: Data Dependent LSH

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Locality Sensitive Hashing

Given input data, radius r, approx factor c and confident δ

Output: if there is any point at distance $\leq r$ then w.p. $1 - \delta$ return one at distance $\leq cr$

Algo: Choose (k, L).

do L times

iid hash functions: {h_{i1} h_{ik}}

Create hash table H_i by putting each x in bucket $H_i(x) = (h_{i1}(x), ... h_{ik}(x))$

Store non-empty buckets in normal hash table

Picture courtesy Slaney et al.

Issues

- Parameters k, L need to be tuned for each domain
- Random directions are meant to create a random partitioning of the dataset

 While useful to guard against "worst case datasets", we do not exploit the dataset structure

Hashing as binary codes

Assume points are in Euclidean space

 How can we get binary vectors so that Hamming distance approximates Euclidean distance

Properties of a binary code

Should be easily computable

Should preserve distances approximately

- Should have small number of bits
 - the bits should be independent and unbiased

Optimization

• $W_{ij} = \text{similarity between } i \text{ and } j$

$$-\operatorname{Say} W_{ij} = \exp\left(-\frac{|x_i - x_j|^2}{s}\right)$$

- y_i = codeword for point i
- $|y_i y_j|^2$ also equals $\operatorname{Hamming}(i, j)$

Learning codes

• Average hamming distance = $\sum_{ij} W_{ij} |y_i - y_j|^2$

•
$$y_i \in \{-1, +1\}^k$$

• Each bit should be unbiased: $\sum_i y_i = 0$

• Bits should be uncorrelated $\sum_i y_i y_i^t = I$

Casting as optimization problem

[Waiss et al.]

- Can we solve : minimize $\sum_{ij} W_{ij} |y_i y_j|^2$
- subject to

$$-y_i \in \{-1, +1\}^k$$

$$-\sum_{i}y_{i}=0$$

$$-\sum_{i} y_{i} y_{i}^{t} = I$$

Hardness

• Unfortunately, no!, even for single bit

• Graph partitioning problem: For graph G partition V(G) into two sets A and B such that |A| = |B| and

$$minimize \sum_{i \in A, j \in B} W_{ij}$$

Spectral Relaxation

- $Y = n \times k$ code matrix
- Diagonal D, $D_{ii} = \sum_{j} W_{ij}$
- minimize $\sum_{ij} W_{ij} |y_i y_j|^2 = trace(Y^t(D W)Y)$
 - $-Y^t \cdot 1 = 0$
 - $-Y^tY=I$
 - Drop the constraint that Y are in $\{-1, +1\}$

Spectral codes

- The above problem is solved by Y = smallest k eigenvectors of D W
 - After dropping the one with value 0

- To get codes,
 - We could threshold eigenvectors, but then hard to extend it for query

Eigenvectors

- Assume that the data is coming from some distribution in R^d
 - But estimating this distribution is hard also
 - We could try to interpolate the eigenvectors to query points, under above assumptions, but is computationally expensive (Nystrom extension)

Eigenvectors

- Assume that the data is coming from some distribution in R^d
 - But estimating this distribution is hard also
 - We could try to interpolate the eigenvectors to query points, under above assumptions, but is computationally expensive (Nystrom extension)
- Assume data distribution is product of uniform distributions
 - Use PCA to find the axes

Eigenfunctions

- Take limit of eigenvectors as $n \to \infty$, and consider the "normalized" similarity matrix (Laplacian)
- Analytical form of Eigenfunctions exists for certain distributions (uniform, Gaussian)
- For uniform

$$\Phi_k(x) = \sin(\frac{\pi}{2} + \frac{k\pi}{b-a}x)$$

$$\lambda_k = 1 - e^{-\frac{\epsilon^2}{2} \left|\frac{k\pi}{b-a}\right|^2}$$

[Image from Waiss et al]

Constant time calculation for any new point

Input: Data $\{x_i\}$, target dimensionality k

Create top k PCA of D = W

Gives us top k axes Find the $[a_i,b_i]$ for each axes and create $\phi_1(x) \dots \phi_k(x)$ for each direction

Create top k PCA of D - W

Gives us top k axes Find the $[a_i,b_i]$ for each axes and create $\phi_{i1}(x) \dots \phi_{ik}(x)$ and $\lambda_{i1} \dots \lambda_{ik}$ for each direction

Total dk eigenvalues \rightarrow sort and take the top k eigenvalues and corresponding functions

Threshold chosen Eigenfunctions

Results

Shown to have better properties than naïve LSH on large datasets

[Image from Waiss et al]

Summary

- Large literature on learning the hash codes rather than use random projection
 - many many ways to learn from data
- Unfortunately, theoretical guarantees are not available for such datadependent version
 - time to calculate projections might also be higher
- Recent papers point to analysis techniques that can bridge theory and practice

References:

- Primary references for this lecture
 - Spectral Hashing, Yair Weiss, Antonio Torralba and Rob Fergus. [NIPS], 2008

Thank You!!

