F21T3A1

Bestimmen Sie die Anzahl (gezählt mit Vielfachheit) von Nullstellen des Polynoms

$$f(z) = z^6 - z^3 + 1.$$

- a) in \mathbb{C}
- b) in \mathbb{R}
- c) im Kreisring $R = \left\{ z \in \mathbb{C} : \frac{1}{2} < |z| < 2 \right\}$.

Zu a)

In $\mathbb C$ hat das Polynom vom Grad 6 nach dem Fundamentalsatz der Algebra genau 6 Nullstellen (mit Vielfachheiten gezählt).

Zu b)

Ersetze $w := z^3$, dann erfüllen die Nullstellen von f die Gleichung $w^2-w+1=0$, was nur für $w_{1,2}=\frac{1\pm\sqrt{1^2-4*1}}{2}=\frac{1\pm i\sqrt{3}}{2}$ der Fall ist. Wegen $|z_k|^3=\left|z_k^3\right|=\left|w_{1,2}\right|=\left|\frac{1\pm i\sqrt{3}}{2}\right|=1$, liegen alle Nullstellen von f auf $\{z\in\mathbb{C}:|z|=1\}$.

Mit $f(1) = 1^6 - 1^3 + 1 = 1 \neq 0$ und $f(-1) = (-1)^6 - (-1)^3 + 1 = 3 \neq 0$ hat f keine reelle Nullstelle.

Zu c)

Nach (b) liegen alle Nullstellen von f in $\{z \in \mathbb{C} : |z| = 1\} \subseteq R$. Somit hat f in R 6 Nullstellen.