Data repository materials for "Rapid emplacement of massive Duluth Complex intrusions within the Midcontinent Rift"

Figure DR1. U-Pb concordia plots for the new zircon dates. The grey region illustrates uncertainty on concordia due to decay constant uncertainties. Ellipses represent 2σ analytical uncertainty on individual zircon dates. Red ellipses are analyses included in the $^{206}\text{Pb}/^{238}\text{U}$ weighted mean dates while the grey ellipses are those that were excluded. The scale is the same for PRI, BEI, FC1 and FC4b and zoomed out for HCT and WLFG due to data that we interpret to have unmitigated Pb loss. Zircon dates for WLFG without chemical abrasion or with short abrasion duration included in Table DR1 are not shown.

CA-TIMS U-Pb Geochronology Methods

U-Pb dates were obtained by the chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-TIMS) method from analyses composed of single zircon grains in the Boise State Isotope Geology Laboratory (Table DR1). Chemical abrasion was modified after Mattinson (2005). Zircon was separated from rocks using standard techniques, and placed in a muffle furnace at 900°C for 60 hours in quartz beakers. Following this thermal annealing, the zircon was chemically abraded. For this step, zircon was put into 3 ml Teflon PFA beakers and loaded into 300 μ l Teflon PFA microcapsules. Fifteen microcapsules were placed in a large-capacity Parr vessel and the zircon partially dissolved in 120 μ l of 29 M HF for 12 hours at 180°C with the exception of some WLFG zircon that either did not undergo this chemical abrasion step, for which a temperature of 160°C was used, or for which there was a shorter duration. The zircon data for which these method variants were applied are noted in Table DR1. Zircon was returned to 3 ml Teflon PFA beakers, HF was removed, and zircon was immersed in 3.5 M HNO₃, ultrasonically cleaned for an hour, and fluxed on a hotplate at 80°C for an hour. The HNO₃ was removed and zircon was rinsed twice in ultrapure H_2O before being reloaded into the 300 μ l Teflon PFA microcapsules (rinsed and fluxed in 6 M HCl during sonication and washing of the zircon) and spiked with the EARTHTIME mixed ²³³U-²³⁵U-²⁰⁵Pb tracer solution (ET535). Zircon was dissolved in Parr vessels in 120 μl of 29 M HF with a trace of 3.5 M HNO₃ at 220°C for 48 hours, dried to fluorides, and re-dissolved in 6 M HCl at 180°C overnight. U and Pb were separated from the zircon matrix using an HCl-based anion-exchange chromatographic procedure (Krogh, 1973), eluted together and dried with 2 μl of 0.05 N H₃PO₄.

Pb and U were loaded on a single outgassed Re filament in 5 μ l of a silica-gel/phosphoric acid mixture (Gerstenberger and Haase, 1997), and U and Pb isotopic measurements made on a GV Isoprobe-T multicollector thermal ionization mass spectrometer equipped with an ion-counting Daly detector. Pb isotopes were measured by one of two routines depending upon beam intensities: a) by peak-jumping all isotopes on the Daly detector for 160 cycles, with a mass bias correction of $0.18 \pm 0.03\%$ /a.m.u. (1σ) ; or b) by a two-sequence dynamic routine, with high mass Faraday cups at unit Pb spacing, alternating mass 204 and 205 onto the axial Daly detector, with the Faraday-Daly gain calibrated for each cycle with mass 205, and a mass-bias correction of 0.10 $\pm 0.03\%$ /a.m.u. (1 σ) for Faraday cup signals. Transitory isobaric interferences due to high-molecular weight organics, particularly on ²⁰⁴Pb and ²⁰⁷Pb, disappeared within approximately 30 cycles, while ionization efficiency averaged 10⁴ cps/pg of each Pb isotope. Linearity (to $\geq 1.4 \times 10^6$ cps) and the associated deadtime correction of the Daly detector were determined by analysis of NBS982. Uranium was analyzed as UO_2^+ ions in static Faraday mode on 10¹¹ ohm resistors for 300 cycles, and corrected for isobaric interference of ²³³U¹⁸O¹⁶O on $^{235}\mathrm{U}^{16}\mathrm{O}^{16}\mathrm{O}$ with an $^{18}\mathrm{O}/^{16}\mathrm{O}$ of 0.00206. Ionization efficiency averaged 20 mV/ng of each U isotope. U mass fractionation was corrected using the ²³³U/²³⁵U ratio of the ET535 tracer.

CA-TIMS U-Pb dates and uncertainties were calculated using the algorithms of Schmitz and Schoene (2007), ET535 tracer solution (Condon et al., 2015) with calibration of $^{235}\text{U}/^{205}\text{Pb} = 100.233$, $^{233}\text{U}/^{235}\text{U} = 0.99506$, and $^{205}\text{Pb}/^{204}\text{Pb} = 11268$, and U decay constants recommended by Jaffey et al. (1971), including $^{238U}/^{235}\text{U}$ of 137.88. $^{206}\text{Pb}/^{238}\text{U}$ ratios and dates were corrected for initial ^{230}Th disequilibrium using as a Th/U [magma] value of 3. All common Pb in analyses was attributed to laboratory blank and subtracted based on the measured laboratory Pb isotopic composition and associated uncertainty. U blanks are estimated at 0.013 pg.

i abie D	K1. ZIr	con chemi Compos				U-PD ISO	торіс аа	ita	Radio	ogenic Isc	tope R	atios					Isotopic	Ages		
•	Th	²⁰⁶ Pb*	mol %	Ph*	Pbc	²⁰⁶ Pb	²⁰⁸ Pb	²⁰⁷ Pb		²⁰⁷ Pb		²⁰⁶ Pb		corr.	²⁰⁷ Pb		²⁰⁷ Pb		²⁰⁶ Pb	
Sample	U	x10 ⁻¹³ mol		Pbc	(pq)	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁶ Pb	% err	235LI	% err	238[]	% err	coef.	²⁰⁶ Pb	±	²³⁵ U	±	238 _L I	±
(a)	(b)	(c)	(c)	(c)	(c)	(d)	(e)	(e)	(f)	(e)	(f)	(e)	(f)		(g)	(f)	(g)	(f)	(g)	(f)
PRI Pari	tridge R	iver intrusi	on (Dulu	th Com	plex la	yered sei	ries)													
z2	0.665	20.7388	0.9995	599	0.91	34763	0.201		0.042	1.94565	0.084	0.185393		0.967					1096.37	
z5	0.795	15.3708	0.9993	470	0.89	26480	0.241		0.042	1.94489	0.084	0.185388		0.974	1097.37					
z1	0.714	21.4970	0.9992	415	1.38	23809	0.216	0.0760841	0.043	1.94467	0.085	0.185375		0.959					1096.27	
z6 z4	0.624	12.4836 11.0228	0.9992	392 272	0.83 1.05	22979 15998	0.189 0.185	0.0760958	0.039	1.94459 1.94483	0.083	0.185339 0.185336	0.045	0.991					1096.08 1096.06	
z3	0.610	4.5808	0.9983	192	0.63	11152			0.045	1.94463	0.087	0.185329		0.952	1097.87				1096.00	
23	0.005	4.5000	0.5505	1,72	0.05	11152	0.203	0.0701323	0.055			206Pb/238U								
												d mean 207F								
FC-4b F	orest C	enter anort	hosite (l	Duluth (Comple	ex anortho	sitic ser	ies)												
z10	0.732	8.7414	0.9986			13304		0.0760627	0.047	1.94330	0.089	0.185297	0.047	0.946	1096.72	0.94	1096.14	0.60	1095.85	0.47
z2	0.686	30.2158	0.9996	721	1.11	41626	0.208	0.0761076	0.041	1.94443	0.084	0.185295	0.046	0.968					1095.84	
z4	0.705	20.9839	0.9995	610	0.92	35079			0.042	1.94413	0.085	0.185277	0.047	0.963	1097.79				1095.74	
z11 z3	0.716	11.7511 48.5088	0.9989	288 1280	1.09	16503 74775	0.217		0.045 0.040	1.94376 1.94431	0.087 0.086	0.185266 0.185265	0.046 0.051	0.954 0.957					1095.68 1095.68	
23 21	0.637	18.1802	0.9998	548	0.99	32063	0.193			1.94431		0.185251		0.957					1095.60	
z6	0.659	12.0405	0.9992	397	0.80	23077		0.0760863		1.94314		0.185223			1097.34					
z5	0.467	9.6852	0.9988	256	0.95	15587		0.0761585		1.94327		0.185060		0.952	1099.24				1094.56	
										weighte	d mean	206Pb/238U	age = 1	1095.69	± 0.18 (0.3	35) [1.1	.4] Ma (2s); MSV	ND = 0.34	(n=7)
											weighted	d mean 207F	b/206Pb	age =	1097.51 ±	0.32 [5.	.1] Ma (2s); MSV	ND = 1.20	(n=7)
		nter anorth																		
z21	0.347							0.0761142				0.185375			1098.08					
z23 z22	1.362 0.614	38.6752 135.1333	0.9998	1969 8332	0.60	97907 489236	0.412	0.0761283 0.0760948	0.040 0.040	1.94564 1.94434	0.086	0.185360 0.185317	0.050 0.051	0.959 0.958	1098.45 1097.56		1096.95 1096.50		1096.19 1095.96	
z26	1.443	63.5688	0.9999	4620	0.42	225979	0.437	0.0760948	0.040	1.94485	0.084	0.185317	0.031	0.956	1097.56				1095.96	
720	1.508	98 5654	0.9999	4740	0.43	228892	0.457	0.0761149	0.040	1.94529	0.093	0.185317	0.048	0.903	1098.56				1095.95	
z25	0.684	41.1099	0.9998	2139	0.51	123514	0.207	0.0761295	0.040	1.94493	0.083	0.185289	0.046	0.970	1098.48				1095.81	
z19	0.715	125.9011	0.9999	5523	0.61	316609	0.217	0.0761253	0.040	1.94446	0.085	0.185255	0.049	0.961	1098.37	0.80	1096.54	0.57	1095.62	0.50
z27	0.547	56.2585	0.9998	1614	0.89	96360	0.166	0.0761425	0.040	1.94490	0.084	0.185254	0.047	0.968					1095.62	
z18	1.414	46.2410	0.9998	1865	0.77	91792	0.428	0.0761037	0.040	1.94366	0.084	0.185230	0.048	0.965					1095.49	
z24	1.439	92.3175	0.9999	6768	0.43	331313	0.436	0.0761075	0.040	1.94349	0.085	0.185206 206Pb/238U	0.049	0.962	0.16 (0.3		1096.20		1095.35	
												mean 207Pt								
REI Rale	d Faale	intrusion (Duluth C	ompley	lavore	nd cariac)							,	-9		[., (==,	,		/
74	0.681	16.1663	0.9991			19772	0.206	0.0760969	0.044	1.94481	0.085	0.185357	0.044	0.966	1097.62	0.87	1096.66	0.57	1096.17	0.45
z6a	0.649	30.1146	0.9997	914	0.86	53261	0.197	0.0760783	0.045	1.94407	0.085	0.185332	0.045	0.942	1097.13		1096.40		1096.04	
z6b	0.841	24.9060	0.9996	803	0.85	44740	0.255	0.0760813	0.039	1.94401	0.084	0.185319	0.048	0.974	1097.21				1095.97	
z5	0.652	4.7525	0.9983	186	0.67	10867	0.197	0.0760617	0.050	1.94340	0.090	0.185308		0.942	1096.70				1095.91	
z3	0.576	6.7271	0.9982	178	0.97	10592	0.174		0.052	1.94433	0.091	0.185294			1097.81					
z1	0.523	5.9782	0.9981	159	0.96	9575	0.158	0.0761187	0.054	1.94367		0.185195 206Pb/238U			1098.19 + 0.19 (0.19					
												d mean 207F								
HCT Ho	uahtalir	ng Creek tro	octolite I	Reaver	· Bay C	omnley)												,,		,
z7	0.765	11.6934			2.12	8437	0.232	0.0761478	0.055	1.94513	0.094	0.185263	0.046	0.920	1098.96	1.10	1096.77	0.63	1095.66	0.47
z6	0.666	4.7620	0.9968	101	1.24	5877		0.0760881		1.94350		0.185254		0.870					1095.61	
z1	0.396	3.7022	0.9945	54	1.68	3382	0.120			1.94086	0.139	0.185196	0.060	0.784	1095.29				1095.30	
z10	0.719	3.5063	0.9965	94	1.00	5380	0.218	0.0761151	0.069	1.94320	0.108	0.185159	0.051	0.865	1098.10				1095.10	
z4	1.566	1.3175	0.9876	31	1.36	1502	0.474	0.0760216	0.210	1.93975	0.256	0.185058	0.083	0.671	1095.64			1.71	1094.55	0.83
z9 z12	1.053	4.8694 4.7973	0.9980	173 167	0.81	9209 8245	0.319	0.0760857 0.0760778	0.054 0.057	1.94068 1.93986	0.094	0.184991 0.184932	0.048	0.920	1097.33 1097.12		1095.23		1094.18 1093.86	0.48
z11	0.687	2.1862	0.9947	61	0.05	3536	0.208	0.0760543	0.096	1.93912	0.135	0.184918	0.056	0.792	1096.50			0.90	1093.79	0.50
z14	0.404	1.0610	0.9951	61	0.43	3817	0.122	0.0760529	0.086	1.93884	0.233	0.184895	0.202	0.932	1096.46				1093.66	2.04
z8	2.079	1.5846	0.9926	57	0.97	2508	0.630	0.0761335	0.128	1.94009	0.247	0.184818		0.858	1098.58		1095.03		1093.24	1.92
z5	1.078	2.7707	0.9909	39	2.08	2053	0.327	0.0760109	0.152	1.93692		0.184814		0.724	1095.36		1093.94		1093.22	0.67
												206Pb/238U								
											weignted	d mean 207F	/D/ 206PD	age =	1097.63 =	0.46 [5.	1] Ma (25); MSV	WD = 1.62	(11=6)
	Vilson L 1 225	ake ferroga 3.6441			Bay Cor 0.98	nplex) 5701	0.271	0.0750660	0.066	1 02216	0.105	0.104563	0.040	0.000	1004 20	1 22	1002.62	0.70	1001 05	0.40
z2 z9	1.225	1.2015	0.9967 0.9806	111 18	1.96	958	0.371	0.0759668 0.0760828	0.066	1.93316	0.105	0.184562 0.184555	0.049	0.880 0.651	1094.20 1097.25				1091.85	
z16	1.209	0.7717	0.9872	28	0.82	1452	0.366	0.0750928	0.205	1.93352	0.365	0.184521	0.134	0.685	1097.23		1093.03		1091.62	
z26*	1.115	1.3194	0.9923	45	0.85	2401	0.338	0.0759428	0.131	1.93161	0.171	0.184473	0.064	0.743					1091.36	
z19	2.350	0.3987	0.9715	15	0.96	652	0.712	0.0,00013		1.93313	0.517	0.184353	0.155	0.724	1096.44				1090.71	
z27*	2.410	0.7114	0.9816	24	1.10	1010	0.730			1.92711	0.351	0.183859	0.110	0.666	1095.56				1088.02	
z21^ z28*	0.864 1.613	0.7751	0.9872	26 21	0.82	1456	0.262	0.0761744	0.207	1.92984	0.268	0.183743	0.116	0.681	1099.66		1091.48		1087.39 1086.40	1.16
z28* z18	1.613	0.4676 0.2411	0.9820 0.9586	21 8	0.71	1031 450	0.489	0.0758794	0.298	1.92047 1.91505	0.393	0.183562 0.183513	0.194	0.676 0.620	1091.89 1086.76		1088.23 1086.35		1086.40	1.94 2.66
722†	2.049	8.4437	0.9366	118	2.51	5108	0.367	0.0750055	0.066	1.91303	0.826	0.183513	0.266	0.867	1095.48	1.33	1085.97	0.70	1081.24	0.50
z25†	2.317	7.1459	0.9920	54	4.83	2211	0.702	0.0758945	0.000	1.90443	0.119	0.181993	0.056	0.830	1093.40	1.57	1082.64		1077.85	0.55
z24†	2.234	5.9767	0.9911	48	4.51	1984	0.677	0.0759124	0.086	1.89255	0.127	0.180815	0.058	0.816	1092.76	1.72	1078.48	0.84	1071.42	0.57
z23†	2.428	18.5179	0.9956	100	6.93	3953	0.737	0.0759089	0.053	1.88488	0.097	0.180090	0.052	0.914	1092.67	1.07	1075.78	0.64	1067.47	0.51
										weighte	d mean	206Pb/238U	age = 1	1091.63	± 0.35 (0.4	46) [1.1	.8] Ma (2s); MSV	ND = 0.74	(n=5)
											weigh	ted mean 20	17PD/206	ru aye	- 1094.3 ±	. 1.1 [5.	. 2 j Ma (25), MSV	w = 0.36	(11=0)

⁽a) z1, z2 etc. are labels for single zircon fragments annealed and chemically abraded in a single 180°C step for 12 hours modified from Mattinson (2005), with the exception of WLFG

⁽a) z1, z2 etc. are labels for single zircon fragments annealed and chemically abraded in a single 180°C step for 12 hours modified from Mattinson (2005), with the exception of WLFG analyses marked as * (160°C for 12 hours), ^ (180°C for 6 hours), and † (no chemical abrasion). Bold indicates analyses used in weighted mean calculations.

(b) Model Th/U ratio iteratively calculated from the radiogenic 208Pb/206Pb ratio and 206Pb/238U age.

(c) Pt* and Pbc represent radiogenic and common Pb, respectively; mol % ²⁰⁶Pb* with respect to radiogenic, blank and initial common Pb.

(d) Measured ratio corrected for spike and fractionation only. Fractionation estimated at 0.18 (Daly) or 0.10 (Faraday) ± 0.02 %/a.m.u. based on analysis of NBS-981 & 982.

(e) Corrected for fractionation, spike, and common Pb; all common Pb was assumed to be procedural blank: 206Pb/204Pb = 18.60 ± 0.72%; 207Pb/204Pb = 15.69 ± 0.62%; 208Pb/204Pb = 38.51 ± 0.74% (all uncertainties 1-sigma). Isotope dilution measurements made with the ET535 spike (Condon et al., 2015).

(f) Errors are 2-sigma, propagated using the algorithms of Schemitz and Schoene (2007). Uncertainties for single grain dates, that are propagated into the weighted means, are based upon nonsystematic analytical errors, including counting statistics, instrumental fractionation, tracer subtraction, and blank subtraction. The first weighted mean daten uncertainty is based on propagation of this analytical uncertainty. The second uncertainty (in parentheses) is the combined analytical and tracer uncertainty. The third uncertainty [in brackets] is

Table DR2. 207 Pb/ 206 Pb dates for the Midcontinent Rift intrusion dates discussed in the paper using both the Steiger and Jäger (1977) and Hiess et al. (2012) 238 U/ 235 U ratios

G 1	207 D1 /206 D1 1 / /1/	207 D1 /206 D1 1 + /3 (1)	TT .	(0.)	MOTETO	/n.T
Sample	²⁰⁷ Pb/ ²⁰⁶ Pb date (Ma)	²⁰⁷ Pb/ ²⁰⁶ Pb date (Ma)	Uncerta	ainty (2σ)	MSWD	n/N
	238 U/ 235 U = 137.818	$^{238}\text{U}/^{235}\text{U} = 137.88$	X	${f Z}$		
	Hiess et al. (2012)	Steiger and Jäger (1977)				
PRI Partridge River	1096.83	1097.73	0.36	5.1	1.00	6/6
intrusion						
BEI Bald Eagle in-	1096.50	1097.40	0.38	5.1	1.14	6/6
trusion						
AS3 Duluth	1097.69	1098.59	0.33	5.1	0.37	8/8
an orthosite						
FC1 Forest Center	1097.31	1098.21	0.25	5.1	0.94	10/10
an orthosite						
FC4b Forest Center	1096.63	1097.53	0.32	5.1	1.20	7/8
an orthosite						
HCT Houghtaling	1096.73	1097.63	0.48	5.1	1.62	8/11
Creek troctolite						
WLFG Wilson Lake	1093.42	1094.32	1.09	5.2	0.36	6/13
ferrogabbro						
BBC-SBA1 Silver	1093.10	1094.00	0.51	5.1	0.84	6/6
Bay aplite						

Notes: X-internal (analytical) uncertainty in the absence of external or systematic uncertainties; Z-uncertainty including X, as well as decay constant uncertainty (Jaffey et al., 1971)). This Z uncertainty needs to be utilized when comparing to dates developed using other decay systems (e.g., 40 Ar/ 39 Ar, 187 Re- 187 Os); MSWD-mean square of weighted deviates; n-number of individual zircon dates included in the calculated sample mean date; N-number of individual zircons analyzed for the sample. All dates are from this study with the exceptions of AS3 which was published in Schoene et al. (2006) and BBC-SBA1 which was published in Fairchild et al. (2017). Most 207 Pb/ 206 Pb dates in the literature for the Midcontinent Rift use the 238 U/ 235 U = 137.88 of Steiger and Jäger (1977).

Table DR3. Site level paleomagnetic data

site	site lat	site lon	n	$\frac{\mathrm{dec}_{is}}{}$	inc_{is}	dec_{tc}	inc_{tc}	k	α_{95}	VGP lat	VGP lon
FC1 (AF)	47.7826	-91.3265	9	301.6	40.5	297.1	52.4	32	$\frac{\alpha_{95}}{9.3}$	41.3	185.0
FC1 (thermal)	47.7826	-91.3265	9	289.7	34.4	284.1	45.1	64	6.5	28.6	187.8
FC4 (AF)	47.7625	-91.3827	7	296.0	26.8	292.6	38.3	59	7.9	30.8	177.4
HCT1 (AF)	47.6008	-91.1495	7	287.2	35.6	281.0	46.0	54	8.3	26.9	190.8
HCT1 (thermal)	47.6008	-91.1495	6	285.7	45.3	276.3	55.3	144	5.6	29.5	201.0
1 (Beck layered)	46.68	-92.24	4	279.5	47.5	287.7	64.4	51	9.8	42.0	205.2
3 (Beck layered)	46.68	-92.24	4	292.0	26.5	298.0	41.9	17	17.2	36.3	175.6
4 (Beck layered)	46.68	-92.24	3	279.5	36.0	284.5	53.0	20	18.0	33.0	193.5
5 (Beck layered)	46.68	-92.24	3	279.5	55.0	291.8	71.7	14	22.0	48.4	217.4
6 (Beck layered)	46.68	-92.24	1	280.5	32.0	285.0	48.9	1.1	22.0	31.1	189.7
7 (Beck layered)	46.68	-92.24	5	278.0	33.0	282.0	50.1	85	6.8	29.7	192.7
8 (Beck layered)	46.68	-92.24	7	290.5	43.0	301.6	58.3	345	2.8	47.5	189.4
9 (Beck layered)	46.68	-92.23	3	281.5	42.0	288.7	58.7	35	13.6	39.2	197.0
10 (Beck layered)	46.70	-92.23	3	297.5	30.5	305.6	44.9	15	21.2	43.0	172.0
11 (Beck layered)	46.70	-92.22	1	284.0	30.5	289.2	47.0	10		32.9	185.6
12 (Beck layered)	46.72	-92.21	5	284.5	36.0	291.1	52.4	43	9.6	37.1	188.9
13 (Beck layered)	46.69	-92.24	6	281.5	28.0	285.6	44.8	437	2.7	29.3	186.4
14 (Beck layered)	46.72	-92.20	7	287.0	35.0	294.1	51.1	334	2.9	38.4	185.8
15 (Beck layered)	46.73	-92.21	2	290.0	31.5	296.9	47.2			38.2	180.4
17 (Beck layered)	46.74	-92.19	3	279.5	37.0	284.7	54.0	80	9.1	33.8	194.3
19 (Beck layered)	46.75	-92.19	4	288.0	35.0	295.3	50.9	51	9.8	39.2	184.8
20 (Beck layered)	46.77	-92.15	3	282.0	33.0	287.1	49.7	444	3.8	33.0	189.1
25 (Beck layered)	46.78	-92.12	1	273.5	18.5	274.9	36.0			17.7	188.5
27 (Beck layered)	46.77	-92.15	1	310.0	40.5	324.6	51.6			59.4	162.2
30 (Beck layered)	46.77	-92.14	1	284.0	36.5	290.6	53.0			37.1	189.8
32 (Beck layered)	46.77	-92.14	1	290.0	36.0	298.2	51.6			41.5	183.5
33 (Beck layered)	46.77	-92.15	2	288.0	32.0	294.5	48.0			37.0	182.7
35 (Beck layered)	46.79	-92.23	8	290.0	23.5	294.9	39.3	194	3.6	32.9	176.1
36 (Beck layered)	46.78	-92.21	2	276.0	27.0	278.6	44.3			24.3	190.6
37 (Beck layered)	46.79	-92.25	2	273.0	29.0	275.0	46.5			23.1	194.3
92 (Beck layered)	46.81	-92.10	3	290.0	41.5	300.2	57.0	16	20.1	45.9	188.3
93 (Beck layered)	46.83	-92.18	5	284.5	24.5	288.6	41.0	151	5.1	29.4	181.7
94 (Beck layered)	46.85	-92.04	4	291.0	36.5	299.6	51.9	107	6.8	42.7	182.9
97 (Beck layered)	46.78	-92.12	2	281.0	28.5	285.0	45.4			29.2	187.2
98 (Beck layered)	46.77	-92.13	6	288.5	34.0	295.7	49.9	115	5.3	38.8	183.6
99 (Beck layered)	46.77	-92.12	3	287.0	35.0	294.1	51.1	39	13.0	38.4	185.8
103 (Beck layered)	46.75	-92.18	2	276.0	29.0	278.8	46.3			25.5	191.8
215 (Beck layered)	48.08	-90.77	2	281.0	48.0	290.2	64.7			44.4	204.8
217 (Beck layered)	46.79	-92.20	5	287.0	41.0	296.0	57.0	53	8.6	43.0	190.8
218 (Beck layered)	46.79	-92.18	6	284.5	27.5	289.2	44.0	62	7.3	31.3	183.3
219 (Beck layered)	46.79	-92.17	5	284.5	33.5	290.5	49.9	10	19.7	35.3	187.1
220 (Beck layered)	46.80	-92.15	5	284.0	30.5	289.2	47.0	291	3.7	32.9	185.6
221 (Beck layered)	46.79	-92.14	5	290.5	27.5	296.4	43.2	1433	1.7	35.8	177.6
18 (Beck anorthosite)	46.75	-92.17	7	279.0	37.5	284.1	54.5	91	5.5	33.7	195.2
21 (Beck anorthosite)	46.77	-92.15	2	290.0	42.0	300.5	57.5			46.3	188.8
22 (Beck anorthosite)	46.78	-92.12	6	275.0	40.5	279.1	57.8	10	17.8	32.6	201.4
23 (Beck anorthosite)	46.78	-92.12	2	295.5	39.5	306.5	54.0			48.5	180.6
26 (Beck anorthosite)	46.77	-92.15	2	309.5	43.5	325.8	54.5			61.9	165.6
31 (Beck anorthosite)	46.77	-92.14	1	278.0	33.0	282.0	50.1			29.7	192.7
38 (Beck anorthosite)	46.83	-92.11	2	262.0	33.0	260.9	50.6			16.7	206.2
40 (Beck anorthosite)	46.83	-92.09	2	309.0	35.0	320.7	46.6			54.0	160.2
40 (Beck anorthosite) 101 (Beck anorthosite)	46.83 46.76	-92.16	2	296.5	37.5	306.9	51.9			47.6	177.7
40 (Beck anorthosite)	46.83							75	7.3		

Notes: n-number of samples analyzed and included in the site mean; decr mean declination for the site (is = insitu; tc = tilt-corrected); inc-mean inclination for the site; k-Fisher precision parameter; α_{95} -95% confidence limit in degrees; VGP lat-latitude of the virtual geomagnetic pole for the site; VGP lon-longitude of the virtual geomagnetic pole for the site. Sites in **bold** were included in the calculation of the mean pole (filtered for $\alpha_{95} < 15^{\circ}$ and so that only one site for FC1 and HCT). The resulting mean pole is: 188.7°E, 35.6°N, N=24, A₉₅=3.1, k=92.

References

- Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R., 2015, Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I): Geochimica et Cosmochimica Acta, vol. 164, pp. 464–480, doi:10.1016/j.gca.2015.05.026.
- Fairchild, L. M., Swanson-Hysell, N. L., Ramezani, J., Sprain, C. J., and Bowring, S. A., 2017, The end of Midcontinent Rift magmatism and the paleogeography of Laurentia: Lithosphere, vol. 9, pp. 117–133, doi:10.1130/L580.1.
- Gerstenberger, H. and Haase, G., 1997, A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations: Chemical Geology, vol. 136, pp. 309–312.
- Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012, ²³⁸U/²³⁵U systematics in terrestrial uranium-bearing minerals: Science, vol. 335, pp. 1610–1614, doi:10.1126/science.1215507.
- Jaffey, A., Flynn, K., Glendenin, L., Bentley, W., and Essling, A., 1971, Precision measurement of half-lives and specific activities of ²³⁵U and ²³⁸U: Physical Review, vol. C4, pp. 1889–1906, doi:10.1103/PhysRevC.4.1889.
- Krogh, T., 1973, A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations: Geochimica Cosmochimicha Acta, vol. 37, pp. 485–494, doi:10.1016/0016-7037(73)90213-5.
- Mattinson, J. M., 2005, Zircon U/Pb chemical abrasion (CA-TIMS) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages: Chemical Geology, vol. 220, pp. 47–66, doi:10.1016/j.chemgeo.2005.03.011.
- Schmitz, M. D. and Schoene, B., 2007, Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using ²⁰⁵Pb-²³⁵U-(²³³U)-spiked isotope dilution thermal ionization mass spectrometric data: Geochem. Geophys. Geosyst., vol. 8, p. Q08,006, doi:10.1029/2006GC001492.
- Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A., 2006, Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data: Geochimica et Cosmochimica Acta, vol. 70, pp. 426–445, doi:10.1016/j.gca.2005.09.007.
- Steiger, R. and Jäger, E., 1977, Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, vol. 36, pp. 359–362.