# M-DG Seminar: Multinomial Processing Tree Modeling

**Basics of MPT Modeling** 

Summer semester 2020

Prof. Dr. Daniel Heck

## M-DG: Multinomial Processing Tree Modeling

| Part               | Date          | Торіс                                   | Literature                       |
|--------------------|---------------|-----------------------------------------|----------------------------------|
| (A)<br>Theory      | Self<br>study | A1) Introduction                        | Erdfelder et al. (2009)          |
|                    |               | A2) Basics of MPT modeling              | Batchelder & Riefer (1999)       |
|                    |               | A3) The software multiTree              | Moshagen (2010)                  |
|                    |               | A4) Hierarchical MPT modeling           | Lee (2011)<br>Heck et al. (2018) |
| (B)<br>Application | 15.5.*        | B1) Questions & Practice with multiTree | Batchelder & Riefer (1986)       |
|                    | 20.5.*        | B2) Workflow: Developing an MPT model   | Jung et al. (2019)               |

<sup>\*</sup> Web-Conference, 12:00 – 15:00, <a href="https://webconf.hrz.uni-marburg.de/b/dan-fvk-ha6">https://webconf.hrz.uni-marburg.de/b/dan-fvk-ha6</a>



# Basics of MPT Modeling

#### **Overview:**

- 1. Formal model structure
- 2. Identifiability
- 3. Parameter estimation
- 4. Model assessment & comparison
- 5. Appendix: The power divergence statistic



## **Binomial Models**

#### **Binomial model:**

- One variable with 2 categories
- Data: Observed response frequencies  $n = (n_1, n_2)$
- Parameters: Vector of category probabilities  $\mathbf{p} = (p_1, p_2)$
- Given independent sampling, the frequencies follow a binomial distribution:





#### **Binomial Distribution**

- N = 12 responses
- $p_1 = p_2 = 1/2$



## Multinomial Models

#### **Multinomial model:**

- One variable with J categories
- Data: Observed response frequencies  $\mathbf{n} = (n_1, n_2, ..., n_I)$
- Parameters: Vector of category probabilities  $\mathbf{p} = (p_1, p_2, ..., p_J)$
- Given independent sampling, the frequencies follow a multinomial distribution:

$$p(n_1, n_2, \dots, n_J) = \frac{N!}{n_1! n_2! \cdots n_J!} p_1^{n_1} p_2^{n_2} \cdots p_J^{n_J}$$



#### **Multinomial Distribution**

- N = 12 responses
- J = 3 categories
- $p_1 = p_2 = p_3 = 1/3$



## Parameterized Multinomial Models

#### **Parameterized Multinomial Model:**

- The category probabilities  $\mathbf{p} = (p_1, p_2, ..., p_J)$  are rewritten as functions of the latent parameters  $\mathbf{\theta} = (\theta_1, \theta_2, ..., \theta_S)$
- Based on the simple multinomial model, we define a set of model equations  $f(\theta)$ :
  - $p_1 = f_1(\theta_1, \theta_2, ..., \theta_S)$
  - $p_2 = f_2(\theta_1, \theta_2, ..., \theta_S)$
  - •
  - $p_J = f_J(\theta_1, \theta_2, ..., \theta_S)$
- The set of possible values of S latent parameters  $\theta_s$  is called parameter space  $\Omega$  of the model.



### Parameterized Multinomial Models

#### **Example:**

- Response categories in old-new recognition memory:
  - 1. hit = correct "old" response to old items
  - 2. miss = incorrect "new" response to old items
- Model equations of the 1-high threshold model (1HTM) of recognition memory

$$p(hit) = p("old" \mid old item) = r + (1 - r) g$$

$$p(miss) = p("new" \mid old item) = (1 - r) (1 - g)$$

$$p(n_{hit}, n_{miss} \mid r, g) = \frac{N!}{n_{hit}! n_{miss}!} [r + (1 - r)g]^{n_{hit}} [(1 - r)(1 - g)]^{n_{miss}}$$



### MPT Models

- What distinguishes MPT models from other multinomial models?
- MPT models assume a specific form of the model equations
- Branch probabilities of a binary probability tree





## Formal Definition of MPT Models

#### **MPT models:**

- A specific type of parameterized multinomial model
- Each parameter  $\theta_s$  is in the interval [0, 1] (= a probability)
- The structure of the model equations is given as:

$$p_{j} = \sum_{i=1}^{I(j)} c_{ij} \prod_{s=1}^{S} \theta_{s}^{a_{ijs}} \cdot (1 - \theta_{s})^{b_{ijs}}, \qquad \sum_{j=1}^{J} p_{j} = 1, \qquad \theta_{s} \in [0, 1]$$

where *s*: Parameter index

*j* : Category index

*i*: Branch index

 $c_{ii}$ : positive real number

 $a_{iis}$ ,  $b_{iis}$ : nonnegative integer number (often 0 or 1)



# Uniqueness of the "Tree"

- A binary probabilistic event tree uniquely determines a system of MPT model equations.
- However: it is not true that any system of MPT model equations uniquely determines a specific tree diagram.
- Counter Example 1: Level switching in independence models
  - $p(A1) = p_A p_1$
  - $p(A2) = p_A (1 p_1)$
  - $p(B1) = (1 p_{\Delta}) p_{1}$
  - $p(B2) = (1 p_A) (1 p_1)$







# Counter Example 2

$$p_{1}(\theta) = \theta^{3}$$

$$p_{2}(\theta) = \theta \cdot (1 - \theta)$$

$$p_{3}(\theta) = \theta \cdot (1 - \theta)$$

$$p_{4}(\theta) = \theta \cdot (1 - \theta)$$

$$p_{5}(\theta) = (1 - \theta)^{3}$$







# Basics of MPT Modeling

#### **Overview:**

- 1. Formal model structure
- 2. Identifiability
- 3. Parameter estimation
- 4. Model assessment & comparison
- 5. Appendix: The power divergence statistic



# Identifiability

- A MPT model defines a mapping  $f: \Omega \rightarrow P$ 
  - Parameter space  $\Omega$  = the set of all possible parameter vectors  $\boldsymbol{\theta}$
  - Data space P (more precisely: space of category probabilities)
     the set of all possible category probability vectors p
- Global identifiability:
  - A MPT model is globally identified if the mapping f is one-toone for all parameters  $\boldsymbol{\theta}$  in  $\Omega$ .
- Local identifiability:
  - A MPT model is locally identified if the mapping f is one-to-one in the neighborhood of a specific point  $\theta_0$  in  $\Omega$ .



## 1-High-Threshold Model (Blackwell, 1953)



r = probability of recognition

g = probability of guessing "old" given no recognition



# Example 1: Nonidentifiability

• 1-high-threshold model limited to old items:  $p(\text{"old"} \mid \text{old item}) = r + (1 - r) g$ 

The model is not identified





# Example 2: Identifiability

- 1-high-threshold model for old & new items
  - p("old" | old item) =  $r + (1 r) \cdot g$
  - p("old" | new item) = g
- The model is globally identified





# Identifiability: Two Important Theorems

#### Observable branches:

 A model is always globally identified if each of its branches terminates in a new empirical category (Hu & Batchelder, 1994).



#### Number of parameters:

- A model cannot have more parameters than degrees of freedom in the data.
- Hence, a necessary but not sufficient condition of identifiability for the number of parameters *S* is:

$$S \le \sum_{k=1}^{K} (J_k - 1) \qquad [J_k = \text{number of response categories in condition } k]$$



# Identifiability: Jacobian Matrix

#### Jacobian matrix

- Matrix of the first partial derivatives of all model equations with respect to all parameters  $\theta_s$
- r = maximum rank of the Jacobian matrix across  $\Omega$  (can be computed in multiTree)

- General rules:
  - If r < S, then the model is neither locally nor globally identified.
  - If r = S, then the model is locally identified (but not necessarily globally).



## Remedies for Nonidentifiable Models

### How to get an identifiable MPT model?

- a) Assume less parameters  $\rightarrow$  Parameter constraints
  - Parameter fixations  $\theta_s = c$  (with c = constant number)
  - Equality constraints  $\theta_s = \theta_t$  (for two parameters)
- b) Add more empirical categories
  - Additional conditions with no (or few) additional parameters
  - Selective manipulations of parameters



# Identifiability: Example

- 2-High Threshold Model
  - Parameters:  $S = 3 (d_o, d_n, g)$
  - Free categories: *df* = 2
  - → not identifiable!



- Solutions:
  - a) Constraints: Assume  $d_o = d_n$
  - b) More conditions: Base rate manipulation of response bias g



# Identifiability: More Empirical Categories

#### (A) Base rate: 30% targets



#### (B) Base rate: 70% targets



- $\rightarrow$  Two additional degrees of freedom (df = 4)
- $\rightarrow$  But only *one* additional free parameter (S = 4)
- → Model is identifiable.



# Basics of MPT Modeling

#### **Overview:**

- 1. Formal model structure
- 2. Identifiability
- 3. Parameter estimation
- 4. Model assessment & comparison
- 5. Appendix: The power divergence statistic



### Parameter Estimation

- Given the data  $n_1$ , ...,  $n_J$ , what is the "best" vector of parameter values  $\boldsymbol{\theta} = (\theta_1, ..., \theta_s, ..., \theta_s)$ 
  - → Find **0** that minimizes the distance between observed and expected category frequencies!

Distance measure: The likelihood ratio statistic G<sup>2</sup>

$$G^{2}(\theta) = -2\sum_{j=1}^{J} n_{j} \ln \left( \frac{n_{j}}{N \cdot p_{j}(\theta)} \right)$$
predicted frequencies



### Parameter Estimation

- Which are the best parameter values given the data?
- Aim: Minimization of the distance measure  $G^2$
- Example: MPT model with *S* = 1 parameter





### Parameter Estimation

• Minimization of  $G^2$  is equivalent to maximizing the likelihood of the data given the parameters:

$$L(\theta; n) = \prod_{k=1}^{K} p_{N(k), \pi(k)}(n_{1(k)}, n_{2(k)}, \dots, n_{J(k)})$$

 Example: MPT model with S = 2 parameters





## Expectation-Maximization-(EM) Algorithm

### 1. Choose a random start vector $\theta_i$

### 2. E(xpectation)-Step:

• Estimate the expected frequencies of the branches given  $\theta_i$  and the observed category frequencies  $n_{i(k)}$ 

### 3. M(aximization)-Step:

- Let i = i + 1
- Compute new  $G^2$  estimates  $\theta_i$  given the expected frequencies from step 2

#### 4. Convergence?

- if  $|\theta_i \theta_{i-1}| > \epsilon \rightarrow$  go back to Step 2 ( $\epsilon$  = convergence criterion)
- otherwise  $\rightarrow$  accept  $\theta_i$  as final parameter estimates



## EM Algorithm

- Graphical illustration of the EM algorithm applied to an MPT model with S = 2 parameters
  - Different path of the EM algorithm for five starting values





## Parameter Estimation: Local Minima

- Possible issue: Local minima of the likelihood function
- Solution: Fit model multiple times with random starting values





# Basics of MPT Modeling

#### **Overview:**

- 1. Formal model structure
- 2. Identifiability
- 3. Parameter estimation
- 4. Model assessment & comparison
- 5. Appendix: The power divergence statistic



## Model Assessment

Graphical illustration of model fit:





### Model Assessment

- Goodness-of-fit test: How can we test whether a model fits the data?
- Hypothesis: the data are generated by the model
- $H_0$ :  $\pi \in f(\Omega)$ 
  - $\rightarrow$  "the true category probabilities  $\pi$  are compatible with the model equations  $f(\Omega)$ "
- Test statistic: Under  $H_0$ , the statistic  $G^2$  is  $\chi^2$ -distributed with degrees of freedom:

$$df = \sum_{k=1}^{K} (J_k - 1) - S$$



## Model Comparisons: Nested Models

#### **Hierarchical model families:**

- Model M<sub>A</sub> is a nested model (= special case) of M<sub>B</sub>
- e.g., if M<sub>A</sub> is obtained from M<sub>B</sub> via parameter restrictions





## Model Comparisons: Hierarchical Model Families

- If model M<sub>A</sub> is nested in M<sub>B</sub> then
  - $G_A^2$  is  $\chi^2$ -distributed with  $df_A$
  - $G_B^2$  is  $\chi^2$ -distributed with  $df_B$
  - $\Delta G_{A-B}^2 = G_A^2 G_B^2$  is  $\chi^2$ -distributed  $df_{A-B} = df_A df_B$
- Hence, we can use  $\Delta G^2_{\text{A-B}}$  to compare nested models using  $\chi^2\text{-tests}$
- Unfortunately,  $\Delta G^2_{A-B}$  cannot be used for non-nested models
  - Solution: Information-theoretic measures (AIC, BIC)



#### Model Selection: Information-Theoretic Measures

- Core idea: Select the model that achieves the best tradeoff between model fit vs. model complexity
- Akaike Information Criterion (AIC)
  - AIC(M<sub>0</sub>) = -2 log(L( $\theta$ ;**n**)) + 2 S
- Bayesian Information Criterion (BIC)
  - BIC(M<sub>0</sub>) =  $-2 \log(L(\theta; \mathbf{n})) + S \log(N)$
- Application: Choose the model with the smallest AIC/BIC
- To assess model fit: Comparison to saturated model
  - $\Delta AIC(M_0) = AIC(M_0) AIC(saturated) = G^2(M_0) 2 df(M_0)$
  - $\Delta BIC(M_0) = BIC(M_0) BIC(saturated) = G^2(M_0) df(M_0) log(N)$
  - Model fit is good if ΔAIC < 0 or ΔBIC < 0



# Basics of MPT Modeling

#### **Overview:**

- 1. Formal model structure
- 2. Identifiability
- 3. Parameter estimation
- 4. Model assessment & comparison
- 5. Appendix: The power divergence statistic



## Power Divergence Statistic

• Alternative distance measure: Pearson X<sup>2</sup>

$$\chi^{2}(\theta) = \sum_{j=1}^{J} \frac{\left[n_{j} - N \cdot p_{j}(\theta)\right]^{2}}{N \cdot p_{j}(\theta)}$$

• Both types of distance measures ( $G^2$  and Pearson  $X^2$ ) are special cases of the Power-Divergence-family ( $PD_{\lambda}$  statistics) (Read & Cressie, 1988):

$$PD_{\lambda} = \frac{2}{\lambda(\lambda+1)} \sum_{k=1}^{k} \sum_{j=1}^{J(k)} n_{j(k)} * \left[ \left( \frac{n_{j(k)}}{e_{j(k)}} \right)^{\lambda} - 1 \right]$$

#### Note that:

- Pearson  $X^2 = PD_{\lambda = 1}$
- Likelihood-ratio statistic  $G^2 = \lim_{\lambda \to 0} PD_{\lambda}$



# What is the best goodness-of-fit statistic?

- In case of small sample sizes,  $PD_{\lambda=1}$  and  $PD_{\lambda=2/3}$  outperform other  $PD_{\lambda}$ -statistics in terms of accuracy of  $\chi^2$  approximation (cf. Read & Cressie, 1988).
  - However, small samples are typically less of a problem in MPT model applications (unless models are tested for single participants)
- Given the fact that  $G^2$  is a by-product of ML-parameter estimation,  $G^2$  (=  $PD_{\lambda=0}$ ) can be recommended for moderate to large sample sizes.
  - However, G<sup>2</sup> cannot be applied for samples with zero cells
  - Remedies:
    - a) Ignore zero cells
    - b) Add constant  $\epsilon$  to all counts

