CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa

Prof. Paulo André Castro pauloac@ita.br
www.comp.ita.br/~pauloac
IEC-ITA

Sala 110,

Sumário

- Busca Competitiva
 - Para Ambientes multiagentes...

- Busca de Melhoria Iterativa
 - Quando a solução é um ponto não um caminho....

Busca Competitiva

- Jogos com adversários
 - Formulação simples (ações bem definidas)
 - Totalmente observável (geralmente)
 - "Sinônimo" de inteligência
 - Primeiro algoritmo para jogar Xadrez criado em 1950 (Claude Shannon)
 - Problemas bastante complexos:
 - Tamanho + limitação (aprox. 35¹⁰⁰ nós em jogos de xadrez)
 - Incerteza devido as ações do oponente
 - Agente deve agir antes de completar a busca totalmente

Busca Competitiva

- 2 jogadores, revezam o lance, são adversários
- Formulação
 - Estado inicial: posições do tabuleiro + de quem é a vez
 - Estado final: posições em que o jogo acaba
 - · Operadores: jogadas legais
 - Função de utilidade: valor numérico do resultado (pontuação)
- Busca: algoritmo minimax
 - <u>Idéia</u>: maximizar a utilidade (ganho) supondo que o adversário vai tentar minimizá-la.
 - Minimax faz busca cega em profundidade.
 - O agente é MAX e o adversário é MIN.

Jogo da velha - Minimax

Minimax

Passos:

- Gera a árvore inteira até os estados terminais (ganha, perde ou empata).
- Aplica a função de utilidade nas folhas.
- Propaga os valores dessa função subindo a árvore através do minimax.
- Determinar qual a ação que será escolhida por MAX.

Resultado do algoritmo Minimax

Avaliação do Minimax

Problemas

- Tempo gasto para determinar a solução ótima pode ser impraticável para muitos problemas reais (percorrer a árvore inteira – todas as folhas)
- Complexidade: O(b^m) como em busca em profundidade
- Entretanto, Minimax traz solução ótima e pode ser modificado para gerar métodos mais eficientes
- Abordagens de Modificação
 - Substituir a função de utilidade por uma função de avaliação heurística, e assim limitar a profundidade

Abordagem 1: Função Heurística

$$\frac{0}{X}$$
 H = 5 - 4 = 1

Aplicação do Minimax

Poda Alpha-Beta

- Objetivo: Não expandir subárvores desnecessariamente durante a busca
- Idéia: Ninguém escolhe uma opção pior do que uma opção já disponível
- Manter dois parâmetros
 - α melhor valor para MAX
 - β melhor valor para MIN

Poda Alpha-Beta $(\alpha - \beta)$

- Teste de expansão MAX não aceita α pior e MIN não aceita β pior logo:
 - α não pode diminuir (não pode ser menor que um ancestral)
 - α já encontrado funciona como um limitante inferior
 - β não pode aumentar (não pode ser maior que um ancestral)
 - β já encontrado funciona como um limitante superior

Poda Alpha-Beta - Exemplo

Início: expande até 1ª. Folha e aplica função utilidade, atualizando o máximo valor que B pode ter (já que é um nó de MIN). Precisa continuar procurando para ver se B ainda é reduzido.

10

Poda Alpha-Beta – Continuação do Exemplo

Continua expansão de B: folha com 12 > 3 (B não muda seu máximo), depois folha com 8>3 (B não muda seu máximo). B não tem mais filhos, portanto $\beta_1 = 3$ e α do pai pode ser iniciado. Continua expansão, com α limitando a busca.

Poda Alpha-Beta – Continuação do Exemplo

Expande C: folha com 2, atualiza $\beta_2 \le 2$. Como 2 < α do nó pai, C não precisa mais ser expandido. Deve-se verificar se $\beta_3 > 3$ para mudar α . Justificativa: se novo filho tiver valor MAIOR que 2, como β_2 não pode aumentar, nada será mudado; se novo filho tiver valor MENOR que 2, β_2 reduzirá mas não afetará α , que só pode aumentar e já está com valor 3.

Poda Alpha-Beta – Continuação do Exemplo

Expande D: folha com 14, atualiza $\beta_3 \le 14$ e como 14 > α e β_3 ainda pode diminuir, continua a expansão de D. Folha com 5, reduz β_3 e como 5 > α e β_3 ainda pode diminuir, continua a expansão de D. Última folha tem 2: define valor de β_3 = 2 e verifica se atualiza α ; como α > 2, ele não muda e a busca termina, com escolha da jogada B.

Exercício

Decidir a jogada de MAX (A, B ou C) considerando as utilidades fornecidas nas folhas. Adotando a poda alfabeta, indicar quais arestas/subárvores serão podadas.

A tem β=3; B será podado por β, já que 5>3 D é podado por α, já que 0<3 E é podado por α, já que 2<3 C é 3.

Nem todos os jogos são determinísticos...

 Como tratar problemas onde a situação do ambiente não depende exclusivamente das decisões dos agentes? Ex. Gamão, War, poquêr, black jack, etc. ...

Pode-se modelar o fator aleatório como um terceiro jogador..Por exemplo, em jogos com dados, os dados seriam um terceiro jogador que age entr MAX

Algoritmo Expectminimax

EXPECTIMINIMAX proporciona jogo perfeito

Igual à MINIMAX, mas considerando-se nós fortuitos:

. . .

 $\mathbf{se}\;estado\;$ é um nó fortuito $\mathbf{ent}\mathbf{ ilde{a}o}$ uso

ExpectiMinimax-value de Successors(estado)

. .

expectmax
$$(C) = \sum_{i} P(d_i) \max_{s \in S(C,d_i)} (\text{utilidade}(s))$$
 (1)

expectmin
$$(C) = \sum_{i} P(d_i) \min_{s \in S(C,d_i)} (\text{utilidade}(s))$$
 (2)

Uma versão de poda alpha-beta é possível

Valores exatos das utilidades importam

- O comportamento não é mais preservado se utilizarmos um escalonamento que apenas preserve a ordem das utilidades dos nós folhas
- Para preservar o comportamento, deve-se utilizar uma transformação linear positiva (Teoria da decisão)

Algoritmos Expectminimax

- A introdução do elemento ao acaso, faz aumentar enormemente a árvore de busca e o tempo para analisá-la
- A poda alfa-beta pode ser usada, porém é muito menos efetiva
- Jogos com incerteza são muitas vezes tratados com outras técnicas tais como Teoria da decisão, Modelo decisório de Markov, e redes bayesianas que serão estudadas no segundo bimestre

Sumário

Busca Competitiva

Busca de Melhoria Iterativa

Algoritmos de Melhoria Iterativa

```
Em muitos problemas de otimização, a trajetória é irrelevante; o próprio estado-objetivo é a solução
```

```
Espaço de estados = conjunto de configurações "completas" ache configuração \acute{o}tima (e.g. PCV), ou ache configuração que satisfaz restrições (e.g. prob. das n-rainhas)
```

Em tais casos, pode-se usar um algoritmo de **melhoria iterativa**; mantém-se um único estado "atual", tentando-se melhorá-lo

Espaço constante, adequado para busca online ou offline

Exemplo: Estado Objetivo

Problema das n-rainhas: Ponha n rainhas em um tabuleiro $n \times n$, sem que duas rainhas fiquem na mesma linha, coluna, ou diagonal

Solução?

Subida de Encosta (Hill-Climbing) ou subida de gradiente

Dependendo do estado inicial, pode ficar preso em máximos locais

É como escalar uma montanha com amnésia e em névoa espessa....

Hill Climbing

- Determinar mínimos: basta encontrar os máximos da função objetiva negativada: -f(x)
- Subida de Encosta com reinicio aleatório: Ao encontrar um plateau ou um máximo local não satisfatório. Reinicie o algoritmo a partir de outro ponto inicial.
 - Abordagem: "Se não tiver sucesso na primeira vez, continue tentando."
- Subida de encosta estocástica: seleciona um movimento aleatório com certa probabilidade ao invés de sempre seguir a direção de subida. A probabilidade da seleção pode variar de com o grau de declividade.
 - Por exemplo, quanto menor a declividade maior a probabilidade de selecionar aleatoriamente

Busca de Têmpera Simulada (Simmulated Annealing)

Idéia: fuga de máximos locais permitindo-se alguns movimentos "ruins" mas gradualmente diminuindo-se o tamanho e frequência destes

```
function Simulated-Annealing (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                       next. a node
                        T, a "temperature" controlling the probability of downward steps
   current \leftarrow Make-Node(Initial-State[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T=0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Busca de Têmpera Simulada (Simmulated Annealing) - 2

Observe que $\Delta E < 0$ para os estados "ruins".

Tdiminuiu lentamente o bastante \Longrightarrow sempre atinge-se o melhor estado

esta é necessariamente uma garantia interessante??

Inventado por Metropolis em 1953, para modelamento de processos físicos

Extensivamente usado em projetos de VLSI, programação de rotas aéreas, etc.

Resumo

- Buscas de Melhoria Iterativa permitem resolver problemas onde o caminho não é relevante e apenas a configuração final importa
- Outras possíveis idéias para melhorar busca local:
 - Paralelizar : buscas a partir de diversos pontos simultâneamente
 - Mesclar pontos intermediários que aparentam ser "boas" configurações intermediárias, para criar novas configurações
 - Fazer pequenos desvios aleatórios na configuração...
 - Isso lembra algo?
 - Seleção Natural e algoritmos genéticos