Data modification

Data after modification: a small step for modification of data is done where number of features are reduced manullay as per our convinent for better performance. Concatenation of wifi_ascii number and ip_ascii is done with '00' integer in between to differentiate .

example	
IPAddress	192.168.1.8
ip_ascii	558
wifi_name	"B5_1201"
wifi_ascii	478
wifiip	47800558

Concatenation of "start time" number and "usage Time", first 6 digits represent time

StartTime	105247
UsageTime	1
start usagetime	1052471

Battery , batterystauts and batterychargingsource are added

Battery is converted to tens i.e.

battery value	after conversion
34%	30
68%	70
Adapter/AC	2
USB	4
No Charging	0

Battery status :

Charging	1
Not Charging	0

Battery charging source

Battery	50
BatteryChargingSource	2
BatteryStatus	1
BBB	53

To find out the little details about the behaviour of the battery, more constants are put to use. Using the constants BATTERY_STATUS_CHARGING and BATTERY_STATUS_CHARGING, we can find out if the battery is charging or not. If the battery is charging, *BStatus* is set to 1 which is otherwise 0. To find the power source, if the battery is charging, tow more constants are used. They are BATTERY_PLUGGED_AC and BATTERY_PLUGGED_USB. So, if the device is being charged through an

adapter, *BattPowerSource* is set to 2 and if it's being charged through USB, *BattPowerSouce* is set to 4. If the battery isn't being charged, then the default value of *BattPowerSource* is 0. The end results helps us In easy break down to figure out all the 3 features.

Data Representation

Data read from json file: Data has been read from the json file and data frames created this is a small example of how the data looks under following circumstances .

0 1 2 3 4 5 6 7 8 9	Acc_x 0.693868 0.693868 0.693868 0.693868 0.693868 0.693868 0.693868 0.223644 0.184751 0.184751 0.351918	Acc_y 0.726671 0.726671 0.726671 0.726671 0.726671 0.726671 1.520575 1.218227 1.218227 0.965198	Acc_z 0.7202 0.7202 0.7202 0.7202 0.7202 0.7202 0.7202 3.4917 4.8057 4.8057	40 40 40 40 40 40 40 40 40 25 25	BatteryCharg 17 17 17 17 17 17 17 17 93 93 93	ingSource 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Baa 0 1 2 3 4 5 6 7 8 9 10	atteryStatus	0 0 0 0 0 0 0 0	[Internal	. storage,	[Play [Play [Play [Play [Play [Play	video] video] video] video] video] video] video] video] Store] NaN Files]
0 1 2 3 4 5 6 7 8 9 10	6513506 00: 6513506 00: 6513506 00: 6513506 00: 6513506 00: 1 16: 6132948 16: 2 16:	StartTime: :10:15	35 35 35 35 35 35 0 96	TapCount 0 0 0 0 0 0 0 0 0 4 3 1 0	NoOfClickEvent 1 1 1 1 1 1 1 1 1 1 3	1544208226110 1544208226110 1544208226110 1544208226110 1544208226110 1544208226110 1544208226110 1544181754889 1544181758184 1544181759915
Usag 0 1 2 3 4 5 6 7 8	25 1 25 1 25 1 25 1 25 1 25 1 0 1	12.922172 77 12.922172 77 12.922172 77 12.922172 77 12.922172 77 12.922172 77 12.922172 77 12.922172 77 12.920037 77 12.920037 77	de meanAc 7.492920 7.492920 7.492920 7.492920 7.492920 7.492920 7.492920 7.683395 7.683395 7.683395	cc_x mean 0.007397 0.007397 0.007397 0.007397 0.007397 0.007397 0.007397 0.158140 0.102990 0.102990	Acc_y means -0.008721 -0.008721 -0.008721 -0.008721 -0.008721 -0.008721 -0.008721 -1.075209 -0.744553 -0.744553	Acc_z \ 9.811530 9.811530 9.811530 9.811530 9.811530 9.811530 9.811530 2.469071 4.849455 4.849455

Data Preprocessing

Data after modification: a small step for modification of data is done where number of features are reduced manullay as per our convinent for better performance.

Acc x Acc y Acc z Battery BatteryChargingSource

0 1 2 3 4 10 796 797 798 799	0.693868 0.693868 0.693868 0.693868 0.351918	Acc_y 0.726671 0.726671 0.726671 0.726671 0.726671 0.965198 75.244381 26.610375 53.228362 53.236510	67445.67662 142788.43202	0 20.0 0 20.0 0 20.0 0 20.0 0 20.0 0 90.0 6 70.0 9 70.0 4 70.0	BatteryCh	0 0 0 0 0 0 4 4 4 4 4
0 1 2 3 4 5 9 10 797 798 799	BatteryStat	us 0 0 0 0 0 0 0 0 0 0	[Internal	storage, 35.4	_	video] video] video] video] video] video] Files]
[800 0 1 2 10 796 797 798 799	6513506 6513506 6513506 6132950 1 9 1 4113329 1 9 1	artTime 1015.0 46 1015.0 46 1015.0 46 65239.0 44 43253.0	1335 1335 6098 1	0 0 0 0 0 4 9 4	ClickEvents 1 1 3 1 0 3	
0 1 2 3 798 799	U 15442082261 15442082261 15442082261 15442082261	10 10 10 10 10 	me latitude 25 12.922172 25 12.922172 25 12.922172 13 12.920036 11 12.920036	77.492920 77.492920 77.492920 77.492920 77.683361 77.683361	43.994694	
0	• • •		Orien_y mean .345741 1	.221795	kage_ascii 1876.0	ip_ascii \ 653

```
-17.345741
                                          1.221795
                                                             1876.0
1
                                                                            653
2
                          -17.345741
                                          1.221795
                                                             1876.0
          . . .
                                                                            653
                                          1.221795
                                                             1876.0
3
                          -17.345741
                                                                            653
          . . .
                        -17.345741 1.221795
-17.345741 1.221795
-17.345741 1.221795
-3.789785
                                                             1876.0
4
                                                                            653
          . . .
                                                             1876.0
5
          . . .
                                                                            653
                                                             1876.0
6
          . . .
                                                                            653
                                                            2452.0
7
          . . .
                                                                            648
                          -25.782839
                                                             1351.0
8
          . . .
                                         -2.346300
                                                                            648
                                                            2581.0
1901.0
                          -25.782839
                                        -2.346300
9
          . . .
                     -25.782839 -2.346300

-27.219486 1.669745

...

-56011.417969 -8164.063477

-12459.999023 -1812.444214
                                                                            648
10
          . . .
                                                                            648
          . . .
. .
                                                                . . .
                                                                            . . .
                                                            2581.0
796
                                                                            648
          . . .
                                                             1699.0
797
                                                                            648
          . . .
798
                      -37401.636719 -5432.669434
                                                             3015.0
                                                                            648
           . . .
799
                      -37427.093750 -5434.396484
                                                              1901.0
                                                                            648
           . . .
     Network Provider NetworkProvider ascii BBB
                                                            wifiip
                                                                            UKB
        "Xiaomi_3C74"
"Xiaomi_3C74"
"Xiaomi_3C74"
                                           843.0 20.0 843.000653 6052171.0
843.0 20.0 843.000653 6052171.0
843.0 20.0 843.000653 6052171.0
0
1
2
3
        "Xiaomi_3C74"
                                           843.0 20.0 843.000653 6052171.0
        "Xiaomi_3C74"
4
                                           843.0 20.0 843.000653 6052171.0
5
         "Xiaomi_3C74"
                                          843.0 20.0 843.000653 6052171.0
        "Xiaomi_3C74"
                                         843.0 20.0 843.000653 6052171.0
6
7
                   -3
                                           96.0 94.0 96.000648 1.0
        "SYMC-MyWiFi"
                                         898.0 94.0 898.000648 5686852.0
8
9
        "SYMC-MyWiFi"
                                         898.0 94.0 898.000648 2.0
        "SYMC-MyWiFi"
                                         898.0 94.0 898.000648 5686852.0
10
                                            . . .
                                                   . . .
                                                            96.0 75.0 96.000648
796
                     -3
                                                                            0.0
797
                     -3
                                           96.0 74.0 96.000648 3825164.0
798
                     -3
                                           96.0 74.0 96.000648 0.0
799
                     -3
                                            96.0 74.0 96.000648
                                                                            0.0
     start usagetime
0
      1015.0250
1
           1015.0250
2
          1015.0250
3
          1015.0250
          1015.0250
5
          1015.0250
          1015.0250
6
        165225.0000
7
8
        165234.0000
       165238.0100
165239.0140
9
10
795 143217.0260
796 143253.0900
797 143303.0410
798 143346.0130
799 143402.0110
```

Data after conversion to numbers: Local outlier factor works with numbers only hence its essential to convent all the features to appropriate numbers:

```
start_usagetime package_ascii UsageTime StartTime DayOfTheWeek \

      1015.025
      1876.0
      25.0
      1015.0
      7.0

      1015.025
      1876.0
      25.0
      1015.0
      7.0

      1015.025
      1876.0
      25.0
      1015.0

      1015.025
      1876.0
      25.0
      1015.0

      1015.025
      1876.0
      25.0
      1015.0

      1015.025
      1876.0
      25.0
      1015.0

      1015.025
      1876.0
      25.0
      1015.0

      1015.025
      1876.0
      25.0
      1015.0

      165225.000
      2452.0
      0.0
      165225.0

      165234.000
      1351.0
      0.0
      165234.0

      165238.010
      2581.0
      1.0
      165238.0

1
                                                                                                                                                                    7.0
2
                                                                                                                                                                    7.0
3
                                                                                                                                                                    7.0
 4
5
                                                                                                                                                                    7.0
 6
                                                                                                                                                                    7.0
7
                                                                                                                                                                    6.0
8
                                                                                                                                                                    6.0
9
                                                                                                                                                                    6.0

        wifiip
        BBB
        latitude
        longitude
        TapCount
        ...
        Network

        0
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        1
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        2
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        4
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        5
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        6
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        6
        843.000653
        20.0
        12.922172
        77.492920
        0.0
        ...
        1.0

        7
        96.000648
        94.0
        12.920037
        77.683395
        4.0
        ...
        1.0

        8
        898.000648
        94.0
        12.920037
        77.683395
        3.0
        ...
        1.0

       meanAcc_x meanAcc_z meanGyro_x meanGyro_y meanGryo_z \
       0.0073\overline{97} - 0.0087\overline{21} \quad 9.8115\overline{30} \quad 0.9915\overline{65} \quad -0.0169\overline{73} \quad 0.0110\overline{61}
0
         0.007397 -0.008721 9.811530 0.991565 -0.016973 0.011061
1
         0.007397 -0.008721 9.811530 0.991565 -0.016973 0.011061
2
3
        0.007397 -0.008721 9.811530 0.991565 -0.016973 0.011061
         0.007397 -0.008721 9.811530 0.991565 -0.016973 0.011061
4
5
         0.007397 - 0.008721 9.811530 0.991565 - 0.016973 0.011061
         0.007397 - 0.008721 9.811530 0.991565 - 0.016973 0.011061
 6
7
         0.158140 -1.075209 2.469071 1.000000 0.000000 0.000000
8
        0.102990 -0.744553 4.849455 1.000000 0.000000 0.000000
       0.102990 -0.744553 4.849455 1.000000 0.000000 0.000000
9
       meanOrien x meanOrien y meanOrien z
0
      1.263105 -17.345741 1.221795
      1.263105 -17.345741 1.221795

1.263105 -17.345741 1.221795

1.263105 -17.345741 1.221795

1.263105 -17.345741 1.221795

1.263105 -17.345741 1.221795

1.263105 -17.345741 1.221795

-68.047508 -25.223969 -3.789785
1
2
3
 4
5
 6
7
      -77.375458 -25.782839 -2.346300
8
       -77.375458 -25.782839 -2.346300
```

Data segregated:

Data is now being segregated with respect to one characteristic for easy better understanding and efficient working of the algorithm

2 10 12 170	start_usag 140848. 141424. 161142.	04000 07036 00000	3.0 4.0 7036.0 0.0 1.0	14 14 16	artTime 0848.0 1424.0 1142.0	wifiip 898.000659 898.000659 898.000648	BBB 55.0 44.0 44.0	latitu 12.92002 12.92003 12.92003	7 6 6
172	153034.		91.0		3034.0	898.000648	70.0	12.92003	
217	204230.		2320.0		4230.0	579.000650	40.0	13.02734	
224 229	62729. 114558.		3.0 4113.0		2729.0 4558.0	579.000650 898.000648	20.0	13.02733 12.92003	
229	114558.	04113	4113.0	ΤŢ	4558.0	898.000648	25.0	12.92003	/
	longitude	TapCount		UKB	Network	meanAcc_:		eanAcc_y	\
2	77.683363	5.0	127	7.0	1.0	-3.00000		3.000000	
10	77.683348	650.0	5400		1.0	0.01864		0.027941	
12	77.683348	0.0	5400	0.0	1.0	1.64603	3 –2	2.319430	
202 206	77.683363 77.622356	10.0	28805 405955		1.0	30.96927 -3.00000		3.572598 3.000000	
214	77.622356	36.0	406479	2.0	1.0	-2.41212	3 -:	1.355919	
217	77.622377	107.0	4727	8.0	1.0	-0.19047	1 -0	0.012298	
224	77.622355	9.0	1571		1.0	-3.00000	0 -3	3.000000	
229	77.683421	711230.0	19745	7.0	1.0	-1.38997	2 2	2.836159	
2 10 12	meanAcc -3.0000 10.4530 884.9520		Gyro_x 000000 795230 031052	-3. -0.	Gyro_y 000000 114234 726879	meanOrien_: -3.00000 -104.49622 -8940.84472	0 - 2 3 - 2	anOrien_y -3.000000 24.085508 66.784912	
202 206 214 217 224 229	5416.6235 -3.0000 718.7029 49.0558 -3.0000 8.6084	00 -3.0 42 63.3 82 4.4 00 -3.0	266876 000000 706146 408081 000000	-3. -3. -0.	685883 000000 076397 205122 000000 112540	-65242.31250 -3.00000 4665.31054 357.11084 -3.00000 -144.14396	0 129 0 129 0 129	68.722168 -3.000000 99.573853 82.503586 -3.000000 -5.640756	

Feature scaling

Feature scaling can vary your results a lot while using certain algorithms and have a minimal or no effect in others. To understand this, let's look why features need to be scaled, varieties of scaling methods and when we should scale our features.

The transformation is given by:

```
class sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min
where min, max = feature_range.
```

This transformation is often used as an alternative to zero mean, unit variance scaling.we haved scaled it from 0 to 9 this example for 50 entires , some of which is illustrated below

```
[[5.41659147 1.00454804 5.4165907 6.7737557 4.83561644 8.93409781
                                     1. 8.66075404
8.99999402 1.00005624 1.09347315 9.
           1.
                     8.92304205 8.85383069 9.
                                                       1.1560556
8.8419982 ]
                     5.44915584 6.7737557 3.63013699 8.9341031
[5.44915833 9.
8.99999243 1.00731128 1.19605818 9.
                                            1.01832578 8.68338479
1.00519997 1.01912341 8.99974755 8.85065275 8.99251198 1.15617168
8.9959794 ]
[6.56394512 1.
                      6.56394654 6.7737557 3.63013699 8.9341031
8.99999243 1.
                      1.19605818 9.
                                            1.02820539 8.66593625
1.34321647 1.35287258 8.74423733 8.57397814 8.26709572 1.14991412
8.84116564]
[5.99767572 1.45252985 5.99767493 6.7737555 7.57534247 8.93410279
8.99999407 1.00465672 8.04071136 9.
                                            1.01880678 8.68489764
1.02034874 1.03549193 8.99149485 8.83552223 8.96776704 1.1547206
8.975911851
[6.05986453 1.13757817 6.0598653 6.7737555 6.47945205 8.93410279
                                           1.02171211 8.68811959
8.99999407 1.00064114 1.30231093 9.
1.07712339 1.0959217 8.95765089 8.7792554 8.88873639 1.15091103
8.90456104]
[8.89263605 1.00113701 8.8926368 1. 3.19178082 8.9999914 8.99371141 1.00004499 8.98980824 9. 1 8.66075404
8.99371141 1.00004499 8.98980824 9.
                                            1. 8.66075404
1.
          1. 8.92304205 8.85383069 9.
                                                       1.1560556
8.8419982 ]
9. 3.63786242 9. 1.
8.99371355 1.00120355 1.18297895 9.
                                           3.19178082 8.99999951
[9.
                                           1.01705624 8.6835039
1.02012095 1.03732785 8.99733168 8.86510611 8.97176619 1.15356721
8.99983307]
```

Featuring Extraction:

PCA for Data Visualization

For a lot of machine learning applications it helps to be able to visualize your data. Visualizing 2 or 3 dimensional data is not that challenging. However, even the Iris dataset used in this part of the tutorial is 4 dimensional. You can use PCA to reduce that 4 dimensional data into 2 or 3 dimensions so that you can plot and hopefully understand the data better.

```
1506.0
[[-0.39091245 -0.59880565]
 [-0.53553262 -0.67791003]
 [-0.38956116 -0.42892372]
  1.80910667 -0.93189361]
 [ 2.17668607 -0.7356885 ]
 [ 1.9818238 -1.05886989]
 [ 1.98182425 -1.0588727 ]
 [ 2.41818572 -0.33480851]
 [ 1.99992724 -0.7383986 ]
 [ 3.70877667 1.92837814]
 [-0.24357631 1.76721875]
 [-0.59810462 0.69472954]
 [-0.54254008 0.72577948]
 [-0.64609398 - 0.21630954]
 [-0.3760541 2.10260188]
```

```
[-0.38087724 \quad 0.12801085]
[-0.14665919]
              3.88930045]
[-0.64733916 - 0.21635887]
[-0.40256771 0.18479626]
[-0.11136838 \quad 0.62282912]
[-0.1102928]
              0.624752891
[-0.27905212 -0.65981529]
[-0.27922263 - 0.6595777]
[-0.43607342 - 0.34924367]
              2.53317384]
[-0.04728905]
[-0.41817669 -0.05462201]
[-0.23509184 - 0.57242086]
[-0.23970603 - 0.68664102]
[-0.23699935 - 0.72695564]
[-0.28112989 -0.68872038]
[-0.28165521 - 0.68996281]
[-0.28504527 -0.69192157]
[-0.28603554 - 0.69681711]
[-0.53524728 -0.27074571]
[-0.32106032 -0.62430377]
[ 0.01835934  0.22671321]
[-1.09440816 - 0.11555654]
[-1.07969448 - 0.04235109]
[-0.84319857 - 0.64167154]
[-0.93238208 -0.42392199]
[-0.64833008 - 0.58125121]]
```

Data score:

Local outlier factor calculates a very important value known as score of each point, this score helps in differentiation outlier among the inliers, the higher the negative score value of the point more are the chances of it being an outlier .below are the scores of the points from the package "1560" with 50 entry points

```
1506.0

50

[-0.99888308 -0.99921298 -0.98817922 -3.27746669 -3.47861466 -3.48327372 -3.48327481 -3.31947388 -3.30439962 -2.77629132 -2.05528399 -1.36506608 -1.38598143 -1.00454219 -2.25514521 -1.14675324 -3.8210073 -1.00487158 -1.15514457 -1.46410796 -1.46561711 -0.98763381 -0.9876221 -0.97355144 -2.69035957 -1.03020815 -0.9826561 -0.99653548 -1.00893756 -0.99153814 -0.99174075 -0.9920486 -0.9932756 -0.96773261 -0.9826561 -1.34265013 -0.98406169 -0.96253383 -0.99942793 -0.98635177 -1.70530382 -1.78087875 -1.33926742 -1.03747595 -1.31207525 -1.30115298 -1.27745589 -1.01274697 -1.12270884 -0.9943141 ]
```

The decided as outliers are finally marked as -1 and rest of the inliers are marked as 1, below is the example for same.

In the above example its clear we have one point that is away from the clusters formed at (2,4) which is an outlier in this case

MORE EXAMPLES


```
1467.0

13

[-1.01456096 -1.00589109 -1.00568361 -1.01086961 -0.98345281 -0.99186262

-0.99547572 -0.98345281 -1.01394016 -0.99632194 -0.99179927 -1.00032105

-1.00763052]
```


1604.0

36

[-1.59688766 -1.61441973 -1.59207572 -1.56649541 -1.79853341 -1.6049325 -1.52504853 -0.99282872 -1.04680351 -1.2010669 -0.9902614 -0.982243 -1.02540672 -1.04112186 -0.98502389 -1.13502463 -0.98473675 -0.9941025 -2.57722725 -1.08806702 -1.85707811 -0.96678827 -0.98913972 -0.98619318 -0.98970255 -0.99063679 -0.98900619 -0.99411555 -0.99745667 -0.99101345 -0.9910651 -1.00260642 -0.9930226 -0.9856916 -1.12092636 -0.98784328]

Roc curve:

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

one such graph is shown which has :12 entries having

- 1 True positive (last entry was used by a different user)
- 1 True negative (last but one)
- 0 False positive

1506

Conclusion:

Once the data was retrieved from the local storage or the cloud, the algorithm was put to use, and outliers were identified. The precision and accuracy of the algorithm depended on the usage of the applications in question. Below is an statistical study of the results .

How was It done: Application was used by the owner for two days and later was used by us about few apps for sometime and then data was projected as below .

USER1:

Analysis True Positive: 97.69%

Fasle positive: 3.68%

USER2:

Analysis True Positive: 99.43%

Fasle positive: 0.56%

True Negative: 33%

Disclaimer: Data collected and used is limited and the percentage is w.r.t only this data.