Численное моделирование по физике.

«Кольца Ньютона»

Условие:

Моделирование колец Ньютона для линзы заданного радиуса. Рассмотреть монохроматический и квазимонохроматический свет (задается середина и ширина спектра в нанометрах). Вывод цветного распределения интенсивности интерференционной картины и графика зависимости интенсивности от радиальной координаты.

Решение:

Кольца Ньютона возникают из-за интерференции света, отражённого от двух поверхностей: выпуклой линзы и стеклянной пластинки. Высота воздушного клина на расстоянии r от центра описывается формулой: $h(r) = \frac{r^2}{2R}$.

Для расчета интенсивности света в точке воспользуемся формулой интерференции двух волн $I=I_1+I_2+2\sqrt{I_1I_2}\cos\frac{2\pi\delta}{\lambda}$, где δ — разность хода, $\frac{2\pi\delta}{\lambda}$ — разность фаз, I_1,I_2 — интенсивности двух волн, λ — длина волны света. Возьмем $I_1=I_2$, тогда $I=2I_0\left(1+\cos\frac{2\pi\delta}{\lambda}\right)$. Максимальное значение получим при $\cos\frac{2\pi\delta}{\lambda}=1$: $I=2I_0(1+1)=4I_0$. Для удобства моделирования отнормируем I, чтобы она всегда лежала в диапазоне от 0 до 1, поделив на $4I_0$: I=0, $5\left(1+\cos\frac{2\pi\delta}{\lambda}\right)$.

Оптическая разность хода при отражении света от нижней поверхности линзы и верхней поверхности пластины через тонкий воздушный зазор толщины h(r) будет равен $\Delta = 2h(r) + \frac{\lambda}{2}$ (отражение стекло \rightarrow воздух - отражение от менее плотной среды и воздух \rightarrow стекло - отражение от более плотной среды - даст сдвиг на π). Так как сдвиг на π просто сдвинет фазы (максимум \leftrightarrow минимум), в формуле будем использовать геометрическую разность хода $\delta = 2h(r)$.

Тогда получим следующую формулу для расчета интенсивности света в точке:

$$I = 0.5 \left(1 + \cos \frac{4\pi h(r)}{\lambda} \right)$$

Для квазимонохроматического света ($\Delta\lambda>0$) воспользуемся формулой $I=\int SId\lambda$, где S – весовая спектральная функция (описывает, какую долю энергии излучения даёт каждая длина волны λ в свете). В качестве весовой спектральной функции возьмем гауссову функцию $S=\exp\left(-\frac{(\lambda-\lambda_0)^2}{2\sigma^2}\right)$, где $\sigma=\frac{\Delta\lambda}{2,355}$ (взяли полуширину). Для того, чтобы получить взвешенную сумму интенсивностей по спектру, вместо S возьмем нормализованные веса $w_i=\frac{S(\lambda_i)}{\sum S(\lambda_j)}$. Тогда интенсивность в случае квазимонохроматического света будет находиться по формуле:

$$I = 0.5 \sum w_i \left(1 + \cos \cos \frac{4\pi h(r)}{\lambda} \right)$$

Решим численно для данных значений.

Допустимые значения:

 $\lambda_0 \in [380;\ 780]$ нм – длина волны света

∆λ ∈ [0; 200] нм – ширина спектра

 $R \in [0,1;10]$ м – радиус кривизны линзы

Примеры работы программы:

