Matematická olympiáda - 48. ročník (1998/1999)

Komentáře k úlohám třetího kola pro kategorii Z9

Zadání úloh

Z9-III-1

Rovnost $x^2 + y^2 = \overline{aaa}$ můžeme zapsat ve tvaru $x^2 + y^2 = a.111$. Pravá strana této rovnosti je dělitelná číslem 3, proto také součet $x^2 + y^2$ na levé straně rovnosti musí být dělitelný číslem 3. Vypíšeme-li všechny mocniny přirozených čísel menší než 999 (viz tab.), zjistíme, že uvedenou podmínku splňují pouze mocniny s ciferným součtem 9 (tj. mocniny 9, 36, 81, 144, 225, 324, 441, 576, 729, 900). Proto i číslo \overline{aaa} bude násobkem čísla 9 (tj. 333, 666, 999). Poté již snadno zjistíme, že platí: $3^2 + 18^2 = 9 + 324 = 333$ a $15^2 + 21^2 = 225 + 441 = 666$.

Úloha má tedy dvě řešení; hledanými čísly x, y jsou čísla 3, 18 a 15, 21.

1	4	9	16	25	36	49	64	81	100
121	144	169	196	225	256	289	324	361	400
441	484	529	576	625	676	729	784	841	900
961	-	-	-	-	-	-	-	-	-

Poznámka: Úlohu lze řešit rovněž metodou "pokus – omyl" bez nalezení uvedené zákonitosti dělitelnosti 3 resp. 9.

Hodnocení:

maximum 6 bodů (nalezení jednoho řešení 3 body)

Z9-III-2

V lichoběžníku MNCD plati |DM| = |NC| = 5 cm (1/5 z 25 cm), |XD| = 4 cm (1/5 z 20 cm) a |MX| = 3 cm (podle Pythagorovy věty). Trojúhelníky KLS a CDS $(kde\ S\ je\ pr$ ůsečík úseček KC, LD, MN) jsou podobné (podle věty uu) a plati |KL| : |CD| = 3 : 1, tedy |KL| = 3.|CD| $(viz\ obr.\ 1)$.

Pro délky základen lichoběžníku ABCD platí zároveň následující vztahy: |AB| = |KL| + 2.|MX|= 3.|CD| + 6 a |AB| = |CD| + 10.|MX| = |CD| + 30. Ze vztahů dostaneme |CD| = 12 cm a |AB| = 42

1 of 3

Komentáře 3. kola 48.r. MO, kat. Z9

cm.

Obvod a obsah lichoběžníku *ABCD* vypočteme podle známých vztahů, tedy o = a + b + c + d = 42 + 25 + 12 + 25 = 104 cm,

 $S = 1/2(a+c) \cdot v = (42+12) \cdot 10 = 540 \text{ cm}^2$.

Hodnocení:

maximum 6 bodů
objevení podobnosti trojúhelníků 2 body
výpočet délek základen lichoběžníku 2 body
výpočet obvodu a obsahu lichoběžníku 2 body

Z9-III-3

Označme hledaná čísla písmeny a, b, c, d, e, f, g, h (viz obr. 2). Pro hledaná čísla platí rovnosti a = h, b = g, c = f, d = e (lze odvodit ze vztahů mezi hledanými čísly, popř. ze symetrie obrázku).

Podle pravidla uvedeného v zadání sestavíme vztahy mezi neznámými: c = a + b + d + g (resp. c = a + 2b + d), a = 12 + c, d = 8 + c, b = 5 + 2c.

Po dosazení do prvního vztahu dostaneme c = 12 + c + 2(5 + 2c) + 8 + c a odtud vypočteme c = -6.

Tedy
$$a = h = 6$$
, $b = g = -7$, $c = f = -6$, $d = e = 2$.

Řešení je znázorněno na obr. 3.

Obr. 2

Obr. 3

Hodnocení:

maximum 6 bodů objevení rovností některých neznámých 2 body

sestavení rovnosti pro neznámou c 2 body výpočet neznámých 2 body

Z9-III-4

Součet vnitřních úhlů ve čtyřúhelníku je 360°, tedy platí $\alpha + \beta + \gamma + \delta = 360°$. Úpravou tohoto vztahu dostaneme $\frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} + \frac{\delta}{2} = 180°$. To znamená, že součet dvou protilehlých vnitřních úhlů čtyřúhelníku KLMN (viz obr. 4) je 180°. Mají-li být velikosti vnitřních úhlů čtyřúhelníků ABCD a KLMN shodné, pak musí nastat jedna z těchto tří možností:

$$_{1}$$
 $\alpha + \beta = 180^{\circ} \land \gamma + \delta = 180^{\circ}$

$$_2$$
 $\alpha + \gamma = 180^{\circ} \wedge \gamma + \delta = 180^{\circ}$

3.
$$\alpha + \delta = 180^{\circ} \wedge \beta + \gamma = 180^{\circ}$$

Úpravou těchto vztahů dospějeme k závěru, že součty úhlů při vrcholech čtyřúhelníku KLMN jsou rovny 90° (např. $\alpha/2 + \delta/2 = 90^\circ$, $\gamma/2 + \delta/2 = 90^\circ$). Úloha má tedy řešení v případě, že čtyřúhelník ABCD je čtverec, tj. $\alpha = \beta = \gamma = \delta = 90^\circ$.

Obr. 4 ???

Hodnocení:

maximum 6 bodů

objevení vztahu
$$\frac{\alpha'}{2} + \frac{\beta'}{2} + \frac{y}{2} + \frac{\delta'}{2} = 180^{\circ}$$
 2 body

nalezení tří možností 2 body vyvození závěru, že řešením je čtverec 2 body

Zadání úloh

3 of 3