Tabelle zur Laplace-Transformation

	F(s)	f(t)
1)	1	δ(t) (Dirac-Impuls)
2)	<u>1</u> s	$1 = \sigma(t)$ (Sprungfunktion)
3)	$ \frac{\frac{1}{s}}{\frac{1}{s^2}} $ $ \frac{1}{s^{n+1}} $	t
4)	$\frac{1}{s^{n+1}}$	t ⁿ n!
5)	1 s-a 1	e ^{at}
6)	$\frac{1}{(s-a)^2}$	t e ^{at}
7)	$\frac{1}{(s-a)^{n+1}}$	t ⁿ n! ∙ e ^{at}
8)	1 s(s-a) s	$\frac{1}{a}$ (e ^{at} – 1)
9)	$\frac{s}{(s-a)^2}$	(1 + at)e ^{at}
10)	$\frac{1}{(s-a)(s-b)}$	$\frac{1}{a-b}$ ($e^{at} - e^{bt}$)
11)	$\frac{1}{(s-a)(s-b)(s-c)}$	$\frac{(c-b)e^{at} + (a-c)e^{bt} + (b-a)e^{ct}}{(a-b)(b-c)(c-a)}$
12)	$\frac{\omega}{s^2 + \omega^2}$	sin (ωt)
13)	$\frac{s}{s^2 + \omega^2}$	cos (ωt)
14)	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sin (ωt)
15)	$\frac{s+a}{(s+a)^2+\omega^2}$	e ^{-at} cos (ωt)

Tabelle zur Laplace-Transformation

	F(s)	f(t)
16)	$\frac{ps+q}{s^2+bs+c}$ Der Nenner habe keine reellen Nullstellen, die komplexen Nullstellen sind $s_{1,2}=-a\pm j\omega$	$e^{-at} \cdot \left(p \cdot \cos \omega t + (q-ap) \cdot \frac{1}{\omega} \sin \omega t \right)$
17)	$\frac{ab}{(s^2 + a^2)(s^2 + b^2)}$	$\frac{a\sin(bt) - b\sin(at)}{a^2 - b^2}$
18)	$\frac{s}{(s^2 + a^2)(s^2 + b^2)}$	$\frac{\cos(bt) - \cos(at)}{a^2 - b^2}$
19)	$\frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$	asin(at) - bsin(bt) $a^2 - b^2$
20)	$\frac{s^3}{(s^2 + a^2)(s^2 + b^2)}$	$\frac{a^2\cos(at) - b^2\cos(bt)}{a^2 - b^2}$
21)	$\frac{b^3}{(s^2+b^2)^2}$	$\frac{1}{2}[\sin(bt) - bt\cos(bt)]$
22)	$\frac{bs}{(s^2+b^2)^2}$	$\frac{t}{2}\sin (bt)$
23)	$\frac{bs^2}{(s^2+b^2)^2}$	$\frac{1}{2}$ [sin (bt) + bt cos (bt)]
24)	$\frac{s^3}{(s^2+b^2)^2}$	$cos(bt) - \frac{b}{2}t sin(bt)$