Homework 4 Due: Friday, February 24h, 2023 by 7PM.

Note: In order to receive full credit, you must show your work and carefully justify your answers. The correct answer without any work will receive little or no credit.

- 1. For the circuit below:
 - A. Find the Thevenin equivalent resistance between nodes a and b.
 - B. Find the Thevenin equivalent voltage between nodes a and b.
 - C. Draw the Thevenin equivalent circuit.
 - D. Use your result on part C to find the Norton equivalent circuit.

$$V_D = 10 V$$

$$V_H = 10 V$$

- 2. For the circuit below:
 - A. Find the Norton equivalent circuit between nodes a and b. Assume the $2k\Omega$ resistor is the load.
 - B. Use your result from part A to find the voltage across the $2k\Omega$ resistor.

3. For the circuit below, determine the voltage across the capacitor Vc and the current through the inductor iL.

- 4. For the circuit below, determine:
 - A. Vo(0)
 - B. Vo(∞)
 - C. Vo(t) for $t \ge 0$
 - D. iC(t) for $t \ge 0$

D.
$$i_c(t) = 3 \cdot \frac{d(4e^{-\frac{t}{12}})}{dt} = \begin{bmatrix} -e^{-\frac{t}{12}} \end{bmatrix}$$

- 5. For the circuit below, determine:
 - A. iL(0)
 - B. iL(∞)
 - C. iL(t) for $t \ge 0$
 - D. vL(t) for $t \ge 0$

$$R_{TH} = \frac{1}{2 + 6} = \frac{15 \text{ sg}}{4.5}$$

$$t = 0$$

$$6 \Omega$$

B.
$$i_{L}(\infty) = \frac{qv}{3s^{2}} \sqrt{3A}$$

kcleb

$$i_3 = i_6 + i_2$$
 $V_3 = V_0$
 $\frac{V_3}{3} = \frac{V_6}{6} + \frac{V_1}{2}$ $V_2 = 10 - V_1$

$$2V_3 = V_6 + 3V_2$$

 $2V_5 = 24 - V_8 + 30 - 3V_8$
 $6V_6 = 54$
 $V_8 = 9V$