Pose-Guided Photorealistic Face Rotation

Yibo Hu^{1,2}, Xiang Wu¹, Bing Yu³, Ran He^{1,2}, Zhenan Sun^{1,2}

¹CRIPAC & NLPR & CEBSIT, CASIA

²University of Chinese Academy of Sciences

³Noah's Ark Laboratory, Huawei Technologies Co., Ltd.

Background

Goal: Rotating a normalized face to arbitrary poses, where only yaw is considered.

Application: Face rotation provides a cheap but effective way for data augmentation and representation learning of face recognition.

Background

Input

Ours

Others

GT

- > Photo-realistic
- > High-resolution
- > Identity preserving
- > Ill-posed problem

frontalize a face try to lateralize a face

CPF DR-GAN FF-GAN DA-GAN CAPG-GAN (Ours)

CVPR15 CVPR17 ICCV17 NIPS17 NOW

frontalize a photorealistic face **TP-GAN** FF-GAN CAPG-GAN (Ours) **DA-GAN**

frontalize a face

CPF

CVPR15

try to lateralize a face

DR-GAN

CVPR17

ICCV17

NIPS17

NOW

frontalize a photorealistic face

frontalize a face try to lateralize a face **TP-GAN**

try to lateralize a face in the wild

CPF

DR-GAN

FF-GAN

DA-GAN

CAPG-GAN (Ours)

CVPR15

CVPR17

ICCV17

NIPS17

NOW

frontalize a photorealistic face

frontalize a face

try to lateralize a face **TP-GAN**

try to lateralize a face in the wild

frontalize/lateralize
a face in the
control/wild

CPF

DR-GAN

FF-GAN

DA-GAN

CAPG-GAN (Ours)

CVPR15

CVPR17

ICCV17

NIPS17

NOW

Framework — Couple-Agent Pose-Guided GAN

Contributions:

➤ We propose Couple-Agent Pose-Guided GAN (CAPG-GAN) for face rotation in 2D space.

Framework — Couple-Agent Pose-Guided GAN

Contributions:

The Pose-guided generator uses landmark heatmaps as controllable signals to synthesize arbitrary poses.

Framework — Couple-Agent Pose-Guided GAN

Contributions:

The Couple-agent discriminator combines prior domain knowledge of poses and topological structure of faces to reinforce the realism.

Losses

> Conditional Adversarial Loss (Coupel-Agent Discriminator)

$$L_{adv}^{ii} = E_{I^{b} \sim P(I^{b})} \left[\log D_{\theta_{ii}} \left(I^{b}, I^{a} \right) \right] + E_{\hat{I}^{b} \sim P(\hat{I}^{b})} \left[\log \left(1 - D_{\theta_{ii}} \left(\hat{I}^{b}, I^{a} \right) \right) \right]$$

$$L_{adv}^{pe} = E_{I^{b} \sim P(I^{b})} \left[\log D_{\theta_{pe}} \left(I^{b}, P^{b} \right) \right] + E_{\hat{I}^{b} \sim P(\hat{I}^{b})} \left[\log \left(1 - D_{\theta_{pe}} \left(\hat{I}^{b}, P^{b} \right) \right) \right]$$

➤ Multi-Scale Pixel-Wise Loss

$$L_{pix} = \frac{1}{S} \sum_{s=1}^{S} \frac{1}{W_s H_s C} \sum_{w,h,c=1}^{W_s,H_s,C} \left| \hat{I}_{s,w,h,c}^b - I_{s,w,h,c}^b \right|$$

➤ Identity Preserving Loss

$$L_{ip} = \left\| D_{ip}^{p}(\hat{I}^{b}) - D_{ip}^{p}(I^{b}) \right\|_{F}^{2} + \left\| D_{ip}^{fc}(\hat{I}^{b}) - D_{ip}^{fc}(I^{b}) \right\|_{2}^{2}$$

> Total Variation Regularization

$$L_{tv} = \sum_{c=1}^{C} \sum_{w,h=1}^{W,H} \left| \hat{I}_{w+1,h,c}^{b} - \hat{I}_{w,h,c}^{b} \right| + \left| \hat{I}_{w,h+1,c}^{b} - \hat{I}_{w,h,c}^{b} \right|$$

Results — Multi-PIE Frontalization

Results — Multi-PIE Frontalization

Results — Multi-PIE Frontalization

Table 2. Rank-1 recognition rates (%) across views, illuminations and sessions under Setting 2.

Method	±90°	±75°	$\pm 60^{\circ}$	±45°	±30°	±15°
FIP+LDA[40]	-	-	45.9	64.1	80.7	90.7
MVP+LDA[41]	-	-	60.1	72.9	83.7	92.8
CPF[34]	-	-	61.9	79.9	88.5	95.0
DR-GAN[28]	-	-	83.2	86.2	90.1	94.0
FF-GAN[35]	61.2	77.2	85.2	89.7	92.5	94.6
TP-GAN[14]	64.64	77.43	87.72	95.38	98.06	98.68
Light CNN 29	5.51	24.18	62.09	92.13	97.38	98.59
CAPG-GAN	66.05	83.05	90.63	97.33	99.56	99.82
	†60.54	†58.87	†28.54	†5.2	†2.18	†1.23

Results — Multi-PIE Rotation

Results — Multi-PIE Rotation

Results — Multi-PIE Rotation

Results — LFW

Input

CAPG-GAN

TP-GAN

HPEN

LFW-3D

