Package 'GOF'

October 23, 2020

Title	Goodness-of-fit tests	with	estimated	parameters
1111	Obbuiless-of-fit tests	WILLI	Commanda	parameters

Version 0.0.0.9000

Description This package aims to simplify Goodness-of-Fit tests when the distributions are not entirely specified prior to the analysis. For the most frequent distributions, functions are given to calculate test statistics and obtain critical values that account for shifts introduced by estimation of parameters on the same dataset used for testing GOF.

License MIT

 ${\bf URL}\ {\tt https://github.com/alexanderlappe/GOF}$

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Index

R topics documented:

A GOF Package	2
A2	2
est_extreme	3
est_gamma	3
est_gpd	4
est_pareto	5
F_extreme	5
F_gpd	6
gof_exp	6
gof_extreme	7
gof_gamma	8
gof_gpd	8
gof_normal	9
gof_pareto	9
gof_uniform	10
gof_weibull	11
W2	11
	13

2 A2

A GOF Package

A_GOF package

Description

When dealing with a problem regarding Goodness-of-Fit, one must first check if the distribution under the null hypothesis is fully specified. If all parameters are known prior and need not be estimated, the standard EDF tests may be used. This package does not cover this case, so the reader is referred to the package 'goftest' (available on CRAN). If (some) parameters must be estimated, check if the distribution in question is listed in the table of contents. If so, the corresponding function can be used to estimate the unspecified parameters and subsequently calculate the desired test statistic. The null hypothesis of a sample belonging to the hypothesized distribution is rejected at some level if the test statistic does not lie in the interval given in the test output for that particular level. Some estimation functions and functions for calculating CVM and AD statistics are also documented and may be used, but are rather supplementary to the main test functions. Mathematical derivations of the methods used in this package are mostly given in D'Agostino, Stephens (1986).

Author(s)

Alexander Lappe

References

D'Agostino, Stephens (1986) Goodness-of-Fit Techniques

Choulakian, Stephens (2012) Goodness-of-Fit Tests for the Generalized Pareto Distribution

Α2

Anderson-Darling test statistic

Description

Computes the Anderson-Darling test statistic

$$A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1)(\log Z_{i} + \log(1 - Z_{n+1-i})),$$

for values Z_1, \ldots, Z_n where $Z_i = F(x_i)$, F is the assumed CDF and x is the ordered sample.

Usage

A2(x)

Arguments

Х

Vector of ordered real numbers

Value

Value of test statistic

est_extreme 3

Examples

A2(c(0.4, 0.5, 0.6))

est_extreme

Maximum Likelihood Estimator for a Gumbel distribution

Description

Computes Maximum Likelihood Estimators for any unknown parameters of a Gumbel distribution with CDF

$$F(x) = \exp\left(-\exp\left(-\frac{x-\alpha}{\beta}\right)\right),$$

for a sample x.

Usage

```
est_extreme(x, param = c(NA, NA))
```

Arguments

x Vector of real numbers

param

Vector of location α and scale $\beta>0$ of the distribution. For the unknown parameter(s), put NA.

Value

Vector of (estimated) parameters

Examples

```
est_extreme(c(0.5, 0.6, 1.1), c(NA, NA))
```

est_gamma

Maximum Likelihood Estimator for a Gamma distribution

Description

Computes Maximum Likelihood Estimators for any unknown parameters of a Gamma distribution with CDF

$$F(x) = \frac{1}{\beta \Gamma(m)} \left(\frac{x}{\beta}\right)^{m-1}$$

, for a sample x.

Usage

```
est_gamma(x, param = c(NA, NA))
```

4 est_gpd

Arguments

x Vector of real numbers

Param Vector of scale $\beta > 0$ and shape m > 0 of the distribution. For the unknown

parameter(s), put NA.

Value

Vector of (estimated) parameters

Examples

```
est_gamma(c(0.5, 0.6, 1.1), c(NA, NA))
#' @keywords internal
```

est_gpd

Maximum Likelihood Estimator for a Generalized Pareto distribution

Description

 $Computes\ Maximum\ Likelihood\ Estimators\ for\ any\ unknown\ parameters\ of\ a\ Generalized\ Pareto\ distribution\ with\ CDF$

$$F(x) = 1 - \left(1 - \frac{kx}{a}\right)^{\frac{1}{k}},$$

for a sample x.

Usage

```
est_gpd(x, param = c(NA, NA))
```

Arguments

x Vector of real numbers

param Vector of scale a>0 and shape k<1 of the distribution. For the unknown

parameter(s), put NA.

Value

Vector of (estimated) parameters

Examples

```
est\_gpd(c(0.5, 0.6, 1.1), c(NA, NA))
```

est_pareto 5

est_pareto

Maximum Likelihood Estimator for a Pareto distribution

Description

Computes Maximum Likelihood Estimators for any unknown parameters of a Pareto distribution with CDF

 $F(x) = 1 - \left(\frac{x_m}{x}\right)^{\alpha},$

for $(x > x_m)$, for a sample x.

Usage

```
est_pareto(x, param = c(NA, NA))
```

Arguments

x Vector of real numbers

param Vector of scale $x_m > 0$ and shape $\alpha > 0$ of the distribution. For the unknown

parameter(s), put NA.

Value

Vector of (estimated) parameters

Examples

```
est_epareto(c(0.5, 0.6, 1.1), c(NA, NA))
```

F_extreme

Cumulative distribution function of a Gumbel distribution

Description

Computes the CDF of a Gumbel distribution given as

$$F(x) = \exp\left(-\exp\left(-\frac{x-\alpha}{\beta}\right)\right).$$

Usage

F_extreme(x, location, scale)

Arguments

x Vector of real numbers

location location parameter α of the distribution scale scale parameter $\beta>0$ of the distribution

gof_exp

Value

Vector of values of the distribution function

Examples

```
F_extreme(0.5, 1, 1)
```

F_gpd

Cumulative distribution function of a Generalized Pareto distribution

Description

Computes the CDF of a generalized Pareto distribution given as

$$F(x) = 1 - \left(1 - \frac{kx}{a}\right)^{\frac{1}{k}}.$$

Usage

```
F_gpd(x, scale, shape)
```

Arguments

x Vector of real numbers

scale scale parameter a of the distribution shape shape parameter k of the distribution

Value

Vector of values of the distribution function at x

Examples

```
F_{extreme}(c(0.5, 0.6), 1, 1)
```

gof_exp

Goodness-of-fit Test for the exponential distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the exponential distribution for a sample x. Unknown parameters are first estimated. The CDF is given by

$$F(x) = 1 - \exp(-\lambda x).$$

Usage

```
gof_exp(x, statistic)
```

gof_extreme 7

Arguments

x Vector of real numbers

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

Value

Object of class gof_test

Examples

```
gof_exp(c(0.02, 0.03, 1.1), 'cvm')
```

gof_extreme

Goodness-of-fit Test for the Gumbel/Extreme value distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the Gumbel/Extreme value distribution for a sample x. Unknown parameters are first estimated. The CDF is given by

$$F(x) = \exp\left(-\exp\left(-\frac{x-\alpha}{\beta}\right)\right).$$

Usage

```
gof_extreme(x, statistic, param = c(NA, NA))
```

Arguments

x Vector of real numbers

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

param vector of location α and scale $\beta>0$ of the distribution. For the unknown

parameter(s), put NA.

Value

Object of class gof_test

Examples

```
gof_extremel(c(1, 2, 3), 'ad', c(NA, NA))
```

8 gof_gpd

gof_gamma

Goodness-of-fit Test for the Gamma distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the Gamma distribution for a sample x. Unknown parameters are first estimated. The CDF is given as

$$F(x) = \frac{1}{\beta \Gamma(m)} \left(\frac{x}{\beta}\right)^{m-1}.$$

Usage

```
gof_gamma(x, statistic, param = c(NA, NA))
```

Arguments

x Vector of real numbers

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

param vector of scale $\beta > 0$ and shape m > 0 of the distribution. For the unknown

parameter(s), put NA.

Value

Object of class gof_test

Examples

```
gof_gamma(c(1,2,3), 'ad', c(NA, NA))
```

gof_gpd

Goodness-of-fit Test for the Generalized Pareto distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the GPD for a sample x. Unknown parameters are first estimated. The CDF is given as

$$F(x) = 1 - \left(1 - \frac{kx}{a}\right)^{\frac{1}{k}}.$$

Usage

```
gof_gpd(x, statistic, param = c(NA, NA))
```

Arguments

x Vector of real numbers

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

param $\,$ vector of scale a>0 and shape k<1 of the distribution. For the unknown

parameter(s), put NA.

gof_normal 9

Value

Object of class gof_test

Examples

```
gof_gpd(c(1,2,3), 'ad', c(NA, NA))
```

gof_normal

Goodness-of-fit Test for the normal distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the normal distribution for a sample x. Unknown parameters are first estimated. The procedure accounts for shifts of critical values due to parameter estimation.

Usage

```
gof_normal(x, statistic, param = c(NA, NA))
```

Arguments

x Vector of real numbers

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

param vector of mean μ and variance σ^2 of the distribution. For the unknown parame-

ter(s), put NA.

Value

Object of class gof_test

Examples

```
sim <- rnorm(100, 0, 1)
gof_normal(sim, 'cvm', c(NA, NA))</pre>
```

gof_pareto

Goodness-of-fit Test for the Pareto distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the Pareto distribution for a sample x. The CDF is given as

$$F(x) = 1 - \left(\frac{x_m}{x}\right)^{\alpha},$$

 $(x>x_m)$. The only case that is implemented is the one of known scale x_m and unknown shape α .

gof_uniform

Usage

```
gof_pareto(x, param)
```

Arguments

x Vector of real numbers

param scale parameter x_m of the distribution

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

Value

Object of class gof_test

Examples

```
sim <- unif(100, 1, 1)
gof_pareto(sim, 'cvm', 1)</pre>
```

gof_uniform

Goodness-of-fit Test for the uniform distribution

Description

Computes the Cramér-von Mises test for Goodness-of-Fit of the uniform distribution for a sample \boldsymbol{x} .

Usage

```
gof_uniform(x)
```

Arguments

Χ

Vector of real numbers

Value

Object of class gof_test

Examples

```
sim <- runif(100, 0, 1)
gof_uniform(sim)</pre>
```

gof_weibull 11

gof_weibull

Goodness-of-fit Test for the Weibull distribution

Description

Computes either Cramér-von Mises or Anderson-Darling test for Goodness-of-Fit of the Weibull distribution for a sample x. Unknown parameters are first estimated. The CDF is given by

$$F(x) = 1 - \exp\left(\left(\frac{x}{\beta}\right)^m\right).$$

Usage

 $gof_weibull(x, statistic, param = c(NA, NA))$

Arguments

x Vector of real numbers

statistic Either 'cvm' or 'ad'. Specifies which of the two tests to compute

param vector of scale $\beta > 0$ and shape m > 1 of the distribution. For the unknown

parameter(s), put NA.

Value

Object of class gof_test

Examples

W2

Cramer-von Mises test statistic

Description

Computes the Cramér-von Mises test statistic

$$\sum_{i=1}^{n} \left(Z_i - \frac{2i-1}{2n} \right)^2 + \frac{1}{12n},$$

for values Z_1, \ldots, Z_n where $Z_i = F(x_i)$, F is the assumed CDF and x is the ordered sample.

Usage

W2(x)

Arguments

Vector of ordered real numbers

W2

Value

Value of test statistic

Examples

W2(c(0.4,0.5,0.6))

Index

```
A GOF Package, 2
A2, 2
est\_extreme, 3
\operatorname{est\_gamma}, 3
est_gpd, 4
{\sf est\_pareto}, {\sf 5}
F_extreme, 5
F_gpd, 6
gof_exp, 6
{\tt gof\_extreme}, {\tt 7}
{\tt gof\_gamma, 8}
gof\_gpd, 8
gof\_normal, 9
gof_pareto, 9
gof_uniform, 10
gof_weibull, 11
W2, 11
```