Chapter 2

Differential Forms

2.1 Notes

4/18: • Office Hours on Wednesday, 4:00-5:00 PM.

- Plan:
 - An impressionistic overview of what (differential) forms do/are.
 - Tangent spaces.
 - Vector fields/integral curves.
 - 1-forms; a warm-up to k-forms.
- Impressionistic overview of the rest of Guillemin and Haine (2018).
 - An open subset $U \subset \mathbb{R}^n$; n=2 and n=3 are nice.
 - Sometimes, we'll have some functions $F: U \to V$; this is where pullbacks come into play.
 - At every point $p \in U$, we'll define a vector space (the tangent space $T_p\mathbb{R}^n$). Associated to that vector space you get our whole slew of associated spaces (the dual space $T_p^*\mathbb{R}^n$, and all of the higher exterior powers $\Lambda^k(T_p^*\mathbb{R}^n)$).
 - We let $\omega \in \Omega^k(U)$ be a k-form in the space of k-forms.
 - ω assigns (smoothly) to every point $p \in U$ an element of $\Lambda^k(T_p^*\mathbb{R}^n)$.
 - Question: What really is a k-form?
 - \blacksquare Answer: Something that can be integrated on k-dimensional subsets.
 - If k = 1, i.e., $\omega \in \Omega^1(U)$, then U can be integrated over curves.
 - If we take k=0, then $\Omega^0(U)=C^\infty(U)$, i.e., the set of all smooth functions $f:U\to\mathbb{R}$.
 - Guillemin and Haine (2018) doesn't, but Klug will and we should distinguish between functions $F: U \to V$ and $f: U \to \mathbb{R}$.
 - We will soon construct a map $d: \Omega^0(U) \to \Omega^1(U)$ (the **exterior derivative**) that is rather like the gradient but not quite.
 - \blacksquare d is linear.
 - Maps from vector spaces are heretofore assumed to be linear unless stated otherwise.
 - The 1-forms in $\operatorname{im}(d)$ are special: $\int_{\gamma} \mathrm{d}f = f(\gamma(b)) f(\gamma(a))$ only depends on the endpoints of $\gamma: [a,b] \to U!$ The integral is path-independent.
 - A generalization of this fact is that instead of integrating along the surface M, we can integrate along the boundary curve:

$$\int_{M} \mathrm{d}\omega = \int_{\partial M} \omega$$

This is Stokes' theorem.

- M is a k-dimensional subset of $U \subset \mathbb{R}^n$.
- Note that we have all manner of functions d that we could differentiate between (because they are functions) but nobody does.

$$0 \to \Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{d} \Omega^2(U) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(U) \xrightarrow{d} 0$$

- Theorem: $d^2 = d \circ d = 0$.
 - Corollary: $\operatorname{im}(d^{n-1}) \subset \ker(d^n)$.
- We'll define $H_{dR}^k(U) = \ker(d)/\operatorname{im}(d)$.
 - These will be finite dimensional, even though all the individual vector spaces will be infinite dimensional.
 - These will tell us about the shape of U; basically, if all of these equal zero, U is simply connected. If some are nonzero, U has some holes.
- For small values of n and k, this d will have some nice geometric interpretations (div, grad, curl, n'at).
- We'll have additional operations on forms such as the wedge product.
- Tangent space (of p): The following set. Denoted by $T_p \mathbb{R}^n$. Given by

$$T_p \mathbb{R}^n = \{ (p, v) : v \in \mathbb{R}^n \}$$

- This is naturally a vector space with addition and scalar multiplication defined as follows.

$$(p, v_1) + (p, v_2) = (p, v_1 + v_2)$$
 $\lambda(p, v) = (p, \lambda v)$

- The point is that

$$T_p\mathbb{R}^n \neq T_q\mathbb{R}^n$$

for $p \neq q$ even though the spaces are isomorphic.

- Aside: $F:U\to V$ differentiable and $p\in U$ induce a map $\mathrm{d} F_p:T_p\mathbb{R}^n\to T_{F(p)}\mathbb{R}^m$ called the "derivative at p."
 - We will see that the matrix of this map is the Jacobian.
- Chain rule: If $U \xrightarrow{F} V \xrightarrow{G} W$, then

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p$$

- \bullet This is round 1 of our discussion on tangent spaces.
- Round 2, later on, will be submanifolds such as T_pM : The tangent space to a point p of a manifold M.
- Vector field (on U): A function that assigns to each $p \in U$ an element of $T_p \mathbb{R}^n$.
 - A constant vector field would be $p \mapsto (p, v)$, visualized as a field of vectors at every p all pointing the same direction. For example, we could take v = (1, 1). picture
 - Special case: $v = e_1, e_2, \dots, e_n$. Here we use the notation $e_i = d/dx_i$.
 - Example: $n=2, U=\mathbb{R}^2\setminus\{(0,0)\}$. We could take a vector field that spins us around in circles.
 - Notice that for all p, $d/dx_1 \mid_p, \ldots, d/dx_n \mid_p \in T_p \mathbb{R}^n$ are a basis.
 - \blacksquare Thus, any vector field v on U can be written uniquely as

$$v = f_1 \frac{\mathrm{d}}{\mathrm{d}x_1} + \dots + f_n \frac{\mathrm{d}}{\mathrm{d}x_n}$$

where the f_1, \ldots, f_n are functions $f_i: U \to \mathbb{R}$.

4/20:

- Plan:
 - Vector fields and their integral curves.
 - Lie derivatives.
 - 1-forms and k-forms.
 - $-\Omega^0(U) \xrightarrow{d} \Omega^1(U).$
- Notation.
 - $-U\subset\mathbb{R}^n$.
 - -v denotes a vector field on U.
 - \blacksquare Note that the set of all vector fields on U constitute the vector space ??.
 - $-v_p \in T_p \mathbb{R}^n$.
 - $\omega_p \in \Lambda^k(T_p^* \mathbb{R}^n).$
 - $d/dx_i|_p = (p, e_i) \in T_p \mathbb{R}^n.$
- \bullet Recall that any vector field v on U can be written uniquely as

$$v = g_1 \frac{\mathrm{d}}{\mathrm{d}x_1} + \dots + g_n \frac{\mathrm{d}}{\mathrm{d}x_n}$$

where the $g_i: U \to \mathbb{R}$.

- Smooth (vector field): A vector field v for which all g_i are smooth.
- From now on, we assume unless stated otherwise that all vector fields are smooth.
- Lie derivative (of f wrt. v): The function $L_v f: U \to \mathbb{R}$ defined by $p \mapsto D_{v_p}(f)(p)$, where v is a vector field on U and $f: U \to \mathbb{R}$ (always smooth).
 - Recall that $D_{v_p}(f)(p)$ denotes the directional derivative of f in the direction v_p at p.
 - As some examples, we have

$$L_{\mathrm{d}/\mathrm{d}x_i} f = \frac{\mathrm{d}f}{\mathrm{d}x_i} \qquad \qquad L_{(g_1 \frac{\mathrm{d}}{\mathrm{d}x_1} + \dots + g_n \frac{\mathrm{d}}{\mathrm{d}x_n})} f = g_1 \frac{\mathrm{d}f}{\mathrm{d}x_1} + \dots + g_n \frac{\mathrm{d}f}{\mathrm{d}x_n}$$

- Property.
 - 1. Product rule: $L_v(f_1f_2) = (L_vf_1)f_2 + f_1(L_vf_2)$.
- Later: Geometric meaning to the expression $L_v f = 0$.
 - Satisfied iff f is constant on the integral curves of v. As if f "flows along" the vector field.
- We define $T_p^*\mathbb{R}^n = (T_p\mathbb{R}^n)^*$.
- 1-forms:
 - A (differential) 1-form on $U \subset \mathbb{R}^n$ is a function $\omega : p \mapsto \omega_p \in T_p^* \mathbb{R}^n$.
 - A "co-vector field"
- Notation: dx_i is the 1-form that at p is $(p, e_i^*) \in T_p^* \mathbb{R}^n$.
- For example, if $U = \mathbb{R}^2$ and $\omega = \mathrm{d}x_1$, then we have the vector field of "unit vectors pointing to the right at each point."

• Note: Given any 1-form ω on U, we can write ω uniquely as

$$\omega = g_1 \, \mathrm{d} x_1 + \dots + g_n \, \mathrm{d} x_n$$

for some set of smooth $g_i: U \to \mathbb{R}$.

- Notation:
 - $-\Omega^{1}(U)$ is the set of all smooth 1-forms.
 - Notice that $\Omega^1(U)$ is a vector space.
- Given $\omega \in \Omega^1(U)$ and a vector field v on U, we can define $\omega(v): U \to \mathbb{R}$ by $p \mapsto \omega_p(v_p)$.
- If $U = \mathbb{R}^2$, we have that

$$dx\left(\frac{d}{dx}\right) = 1 \qquad dx\left(\frac{d}{dy}\right) = 0$$

- Note that dx, dy are not a basis for $\Omega^1(U)$ since the latter is infinite dimensional.
- \bullet Exterior derivative for 0/1 forms.
 - Let $d: \Omega^0(U) \to \Omega^1(U)$ take $f: U \to \mathbb{R}$ to $\frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$.
 - This represents the gradient as a 1-form.
- Check:
 - 1. Linear.
 - 2. $dx_i = d(x_i)$, where $x_i : \mathbb{R}^n \to \mathbb{R}$ is the i^{th} coordinate function.