Functional Analysis Course Notes

Prof Kenneth Davidson Notes taken by Mengxue Yang

Sept 12, 2016

Chapter 1

Point set topology

Monday Sept 12

1.1 Review

Definition 1.1.1 (Topology). A topology on a set X is a collection τ of subsets of X such that

- 1. $\emptyset, X \in \tau$
- 2. $U, V \in \tau \implies U \cap V \in \tau$
- 3. $\{U_{\alpha}\}_{{\alpha}\in A}\subset \tau \implies \cup_{\alpha}U_{\alpha}\in \tau$

The elements of τ are called open sets.

Example 1.1.1. 1. Metric spaces

- 2. Discrete topology $\tau = \mathcal{P}(X)$, the power set of X
- 3. Trivial topology
- 4. Let (X, <) be a total order. $\tau = \{ \cup_{\alpha} (x_{\alpha}, y_{\alpha}) : x_{\alpha} < y_{\alpha} \}.$
- 5. Induced topology (subspace topology) of (X, τ) on $Y \subset X$ is $\sigma = \{U \cap Y : U \in \tau\}$.

Definition 1.1.2 (Complement, interior, closure notations). • Complement: $F^c = X \setminus F$

- Interior: $A^0 = \bigcup_{U \in \{U: U \in \tau, U \subset A\}} U$
- Closure: $\bar{A} = \bigcap_{F \in \{F: F^c \in \tau, A \subset F\}} F$

Proposition 1.1.1. • The collection of closed sets is closed under infinite intersection and finite union.

- $x \in \bar{A}$ iff every open $U \ni x, U \cap A \neq \emptyset$.
- $\bar{A} = ((A^c)^0)^c$

Proposition 1.1.2. Let $S \subset \mathcal{P}(X)$ be a subset of the power set on X. Then there exists a weakest topology τ that contains S, namely

$$\tau = \{ \cup_{\alpha} \left(S_{\alpha,1} \cap \dots \cap S_{\alpha,n_{\alpha}} \right) \}$$

Definition 1.1.3 (Base, sub-base). • S is a base of τ if every set $U \in \tau$ is the union of sets in S.

• S is a sub-base of τ if it generates τ as in the above proposition.

Example 1.1.2. 1. If (X, d) is a metric space, then $\{b_r(x) : x \in X, r > 0\}$ is a base for the topology.

- 2. $\{(r,s): r < s, r, s \in \mathbb{Q}\}$ is a base for the standard topology on \mathbb{R} .
- 3. Let X = C[0, 1]. For $\lambda \in \mathbb{C}, a \in [0, 1], r > 0$, let

$$U(\lambda, a, r) = \{g : |g(a) - \lambda| < r\}$$
$$V(\lambda_1, \dots, \lambda_n, a_1, \dots, a_n, r) = \{g : |g(a_i) - \lambda_i| < r \forall i\}.$$

Then the U's form a sub-base for X and the V's form a base for X.

Definition 1.1.4 (Strength of a topology). Let X be a set. Let σ, τ be topologies on X. We say σ is weaker than τ or τ is stronger than σ if $\sigma \subset \tau$.

Example 1.1.3. 1. $(\mathbb{R}, \text{trivial}) \subset (\mathbb{R}, d) \subset (\mathbb{R}, \text{discrete})$

2. $(C[0,1], \text{ pointwise topology}) \subset (C[0,1],d), d(f,g) = \sup_{x} |f(x) - g(x)| = ||f - g||_{\infty}$

Definition 1.1.5. (X,τ) is separable if there is a countable dense subset. ie $A = \{x_n\}_{n \in \mathbb{N}}$, $\bar{A} = X$. (X,τ) is first countable if for all $x \in X$, there is a countable neighbourhood base at x. ie $\exists B = \{U_n : x \in U_n \in \tau\}$ such that if $x \in U \in \tau$, then $\exists U_n \in B$ such that $U_n \subset U$. (X,τ) is second countable if there is a countable base.

Example 1.1.4. • Suppose (X, d) is a metric space, then X is first countable. Then $\{b_{1/n}(x) : n \in \mathbb{N}\}$ is a countable local base.

- For (X, discrete), a base must contain (be) $\{\{x\} : x \in X\}$. So X is second countable iff X is countable. Also X is separable iff X is countable.
- For a metric space, X is compact iff X is separable. Why?

Proposition 1.1.3. If X is a metric space, then being separable implies being second countable. (Is converse true?)

Proof. (\Rightarrow) Let $\{x_n\}_{n\in\mathbb{N}}$ be dense. Let $S=\{b_{1/k}(x_n): k,n\in\mathbb{N}\}$, which is countable. Let U be an open neighbourhood of $x\in X$. Then there is r>0 such that $b_r(x)\subset U$. Pick 1/n< r/2. Then $b_{2/n}(x)\subset b_r(x)\subset U$. Pick $x_k\in b_{1/n}(x)$, which is allowed because the x_k 's are dense. Then $x\in b_{1/n}(x_k)\subseteq b_{2/n}(x)\subset U$. Therefore $U=\cup\{b_{1/n}(x_k)\}$ implies S is a countable base.

Definition 1.1.6. $f:(X,\tau)\to (Y,\sigma)$ is continuous if for all $V\in\sigma$, $f^{-1}(V)\in\tau$. f is a homeomorphism if f is a bijection and f,f^{-1} are continuous.

Example 1.1.5. • Let $f:(\mathbb{R}, \text{discrete}) \to (\mathbb{R}, d), g:(\mathbb{R}, d) \to (\mathbb{R}, \text{trivial})$ be identity functions. Then f, g are both bijective and continuous, but f^{-1}, g^{-1} are not continuous.

- $f:(X, \text{discrete}) \to (Y, \sigma)$ is always continuous.
- $f:(X, \text{trivial}) \to (Y, d)$ is continuous iff f is constant.

Definition 1.1.7. (X, τ) is Hausdorff if $\forall x \neq y \in X$, there is an open neighbourhood of x, U, and an open neighbourhood of y, V, such that $U \cap V = \emptyset$.

Example 1.1.6. 1. Metric spaces are Hausdorff.

2. Let $X = \{0,1\}, \tau = \{\emptyset, \{0\}, X\}$. Cannot separate 0, 1, so not Hausdorff.

3. Let $X=[0,1)\cup\{a,b\}$. If $U\subseteq[0,1)$ is open in (X,d), then $U\in\tau$. Also $(r,1)\cup\{a\}$, $(r,1)\cup\{b\}$ are open. But

$$((r,1)\cup\{a\})\cap((s,1)\cup\{b\})=(\max(r,s),1)\neq\emptyset$$

means it is not Hausdorff.