Test-1-version A

No work = No credit!

- 1. Given $\overrightarrow{a} = \langle 0, -1, 1 \rangle$ and $\overrightarrow{b} = \langle 1, 0, 1 \rangle$. Find (i) the angle between $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$; (ii) the area of parallelogram determined by \overrightarrow{a} and \overrightarrow{b} . (7+8=15 pt)
- 2. Given O(0,0,0), P(0,1,1), Q(1,0,1), R(1,1,0), and plane S_1 contains O, P and Q. Find (i) equation of plane S_1 (ii) equation of plane S_2 which is parallel to S_1 and contains R; (iii) $d(S_1, S_2)$. (8+8+4=20 pt)
- 3. Given A(2,2,1), P(0,1,1), Q(1,0,1), R(1,1,0), line ℓ_1 contains P and Q, and ℓ_2 contains A and R. Find (i) equations of ℓ_1 and ℓ_2 ; (ii) $d(\ell_1,\ell_2)$ (12+8=20 pt)
- 4. Reparametrize the curve $\overrightarrow{r}(t) = \langle \sin(t) t \cos(t), \cos(t) + t \sin(t) \rangle$ with respect to arc length measured from the point $\overrightarrow{r}(0) = \langle 0, 1 \rangle$ in the direction of increasing t. (20 pt)
- 5. For curve $\overrightarrow{r}(t) = \langle t, t, t^2 \rangle$, find \widehat{T} , \widehat{N} , \widehat{B} , curvature κ and torsion τ . (4+4+4+4+4=20 pt)
- 6. A particle starts at $\overrightarrow{r}(0) = \langle 1, 2, 3 \rangle$ with initial velocity $\overrightarrow{v}(0) = \langle 4, 5, 6 \rangle$. Its acceleration is $\overrightarrow{a}(t) = \langle \sin(t), \cos(t), e^t \rangle$. Find its position function $\overrightarrow{r}(t)$. (15 pt)

Test-1-version B

No work = No credit!

- 1. Given $\overrightarrow{a} = \langle -1, 0, 1 \rangle$ and $\overrightarrow{b} = \langle 0, 1, 1 \rangle$. Find (i) the angle between $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$; (ii) the area of parallelogram determined by \overrightarrow{a} and \overrightarrow{b} . (7+8=15 pt)
- 2. Given O(0,0,0), P(0,1,1), Q(1,0,1), R(1,1,0), and plane S_1 contains O, P and R. Find (i) equation of plane S_1 (ii) equation of plane S_2 which is parallel to S_1 and contains Q; (iii) $d(S_1, S_2)$. (8+8+4=20 pt)
- 3. Given A(0,0,-1), P(0,1,1), Q(1,0,1), R(1,1,0), line ℓ_1 contains P and Q, and ℓ_2 contains A and R. Find (i) equations of ℓ_1 and ℓ_2 ; (ii) $d(\ell_1,\ell_2)$ (12+8=20 pt)
- 4. Reparametrize the curve $\overrightarrow{r}(t) = \langle \sin(t) t \cos(t), \cos(t) + t \sin(t) \rangle$ with respect to arc length measured from the point $\overrightarrow{r}(0) = \langle 0, 1 \rangle$ in the direction of increasing t. (20 pt)
- 5. For curve $\overrightarrow{r}(t) = \langle t, t, t^2 \rangle$, find \widehat{T} , \widehat{N} , \widehat{B} , curvature κ and torsion τ . (4+4+4+4+4=20 pt)
- 6. A particle starts at $\overrightarrow{r}(0) = \langle 4, 5, 6 \rangle$ with initial velocity $\overrightarrow{v}(0) = \langle 1, 2, 3 \rangle$. Its acceleration is $\overrightarrow{a}(t) = \langle \sin(t), \cos(t), e^t \rangle$. Find its position function $\overrightarrow{r}(t)$. (15 pt)