Vibracións e ondas

Método e recomendacións

PROBLEMAS

• Ecuación de onda

- 1. Unha onda propágase no sentido positivo do eixo X cunha velocidade de 20 m s⁻¹, unha amplitude de 0,02 m e unha frecuencia de 10 Hz. Determina:
 - a) O período e a lonxitude de onda.
 - b) A expresión matemática da onda se en t = 0 s a partícula situada na orixe está na posición de máxima elongación positiva.

(A.B.A.U. extr. 23)

Rta.: a) T = 0.100 s; $\lambda = 2.00 \text{ m}$; b) $\gamma = 0.0200 \text{ sen}(20 \pi t - \pi x + \pi/2) \text{ m}$

Datos Velocidade de propagación Frecuencia Amplitude Elongación en $x = 0$ para $t = 0$	Cifras significativas: 3 $v_p = 20.0 \text{ m/s}$ $f = 10.0 \text{ Hz} = 10.0 \text{ s}^{-1}$ A = 0.0200 m y = A = 0.0200 m
Incógnitas	_
Período	T
Lonxitude de onda	λ
Ecuación da onda (frecuencia angular e número de onda)	ω , k
Outros símbolos	
Posición do punto (distancia ao foco)	x
Ecuacións	
Relación entre a frecuencia e o período	f = 1 / T
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$
Número de onda	$k = 2 \pi / \lambda$
Frecuencia angular	ω = 2 $\pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Calcúlase o período a partir da frecuencia:

$$f = \frac{1}{T} \Rightarrow T = \frac{1}{f} = \frac{1}{10.0 \text{ s}^{-1}} = 0.100 \text{ s}$$

Calcúlase a lonxitude de onda a partir da velocidade de propagación da onda e da frecuencia:

$$v_p = \lambda \cdot f \Longrightarrow \lambda = \frac{v_p}{f} = \frac{20.0 \text{ [m} \cdot \text{s}^{-1}]}{10.0 \text{ [s}^{-1}]} = 2.00 \text{ m}$$

b) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 10.0 \text{ [s}^{-1}] = 20.0 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}] = 62.8 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{2.00 \text{ [m]}} = \pi \text{ rad/m} = 3,14 \text{ rad/m}$$

Calcúlase a fase inicial a partir da elongación en x = 0 para t = 0.

$$y(x, t) = 0.0200 \cdot \text{sen}(20 \pi t - \pi x + \varphi_0) \text{ [m]}$$

0,0200 [m] = 0,0200 · sen(20
$$\pi$$
 $t - \pi$ $x + \varphi_0$) [m] = 0,0200 · sen(φ_0)
sen(φ_0) = 0,0200 / 0,0200 = 1,00
 φ_0 = arcsen 1,00 = π / 2 rad

A ecuación de onda queda:

$$y(x, t) = 0.0200 \text{ sen}(20 \pi t - \pi x + \pi/2) \text{ [m]}$$

- 2. A expresión matemática dunha onda harmónica transversal que se propaga por unha corda tensa orientada segundo o eixe x é: y = 0.5 sen $[2\pi (3t x)]$ (unidades no SI). Determine:
 - a) Os valores da lonxitude de onda, velocidade de propagación, velocidade e aceleración máximas de vibración dos puntos da corda.
 - b) A distancia mínima que separa dous puntos da corda que nun mesmo instante vibran desfasados 2π radiáns.

(A.B.A.U. ord. 22)

Rta.: a) $\lambda = 1$ m; $v_p = 3{,}00 \text{ m} \cdot \text{s}^{-1}$; $v_m = 9{,}42 \text{ m/s}$; $a_m = 177 \text{ m/s}^2$; b) $\Delta x = \lambda = 1 \text{ m}$.

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.500 \cdot \text{sen}[2 \pi (3.00 \cdot t - x)] \text{ [m]}$
Incógnitas	
Lonxitude de onda	λ
Velocidade de propagación	$ u_{ m p}$
Velocidade máxima	$ u_{ m m}$
Aceleración máxima	$a_{ m m}$
Distancia mínima entre dous puntos desfasados 2π radiáns	Δx
Outros símbolos	
Posición do punto (distancia ao foco)	x
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 0.500 \cdot \text{sen}[2 \pi (3.00 \cdot t - x)] = 0.500 \cdot \text{sen}(6.00 \pi \cdot t - 2 \pi x)$$

Frecuencia angular: $\omega = 6,00 \; \pi = 18,8 \; \mathrm{rad \cdot s^{-1}}$ Número de onda: $k = 2,00 \; \pi = 6,28 \; \mathrm{rad \cdot m^{-1}}$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{2,00 \cdot 3,14 \text{ [rad·m}^{-1]}} = 1,00 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{18.8 \, [\text{rad} \cdot \text{s}^{-1}]}{2 \cdot 3.14 \, [\text{rad}]} = 0,100 \, \text{s}^{-1} = 3,00 \, \text{Hz}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 1,00 \text{ [m]} \cdot 3,00 \text{ [s}^{-1}] = 3,00 \text{ m} \cdot \text{s}^{-1}$$

O signo oposto dos termos en x e t indica que a onda propágase en sentido positivo do eixe X.

A velocidade de vibración dos puntos da corda obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d[0,050 \text{ } 0 \text{sen } 2\pi(3,00 \cdot t - x)]}{dt} = 0,050 \text{ } 02 \cdot \pi \cdot (3,00) \cdot \cos 2\pi(3,00 \cdot t - x) \text{ [m/s]}$$

$$v = 3.00 \cdot \pi \cdot \cos 2 \pi [2 \pi (3.00 \cdot t - x)] = 9.42 \cdot \cos (6.00 \pi \cdot t - 2 \pi x) [\text{m/s}]$$

A velocidade é máxima cando $cos(\varphi) = 1$

$$v_{\rm m} = 9{,}42 \text{ m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[3,00 \cdot \pi \cdot \cos 2\pi \left(3,00 \cdot t - x \right) \right]}{\mathrm{d} t} = 3,00 \cdot \pi \cdot (2\pi) \cdot (3,00) \cdot \left(-\sin 2\pi \left(3,00 \cdot t - x \right) \right) \left[\, \mathrm{m/s^2} \right]$$

$$a = -18,00 \cdot \pi^2 \cdot \sin \left[2\pi \left(3,00 \cdot t - x \right) \right] = -177 \cdot \sin \left(6,00 \, \pi \cdot t - 2\pi \, x \right) \left[\mathrm{m/s^2} \right]$$

A aceleración é máxima cando sen(φ) = -1

$$a_{\rm m} = 177 \, {\rm m/s^2}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = (6,00 \ \pi \cdot t - 2 \ \pi \cdot x_2) - (6,00 \ \pi \cdot t - 2 \ \pi \cdot x_1) = 2 \ \pi \cdot \Delta x$$

Se a diferenza de fase é 2π rad

$$2 \pi [rad/m] \cdot \Delta x = 2 \pi rad$$

$$\Delta x = \frac{2\pi [\text{rad}]}{2\pi [\text{rad/m}]} = 1,00 \text{ m}$$

Análise: Unha diferenza de fase de 2 π rad, corresponde a unha distancia entre os puntos igual á lonxitude de onda λ = 1,00 m.

- 3. Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm, propágase por unha corda no sentido positivo do eixe X. No intre t=0, a elongación no punto x=0 é y=2,83 cm.
 - a) Expresa matematicamente a onda e represéntaa graficamente en (t = 0; 0 < x < 40 cm).
 - b) Calcula a velocidade de propagación da onda e determina, en función do tempo, a velocidade de oscilación transversal da partícula situada en x = 5 cm.

(A.B.A.U. extr. 21)

Rta.: a) $y = 0.0400 \text{ sen}(4 \pi t - 10 \pi x + \pi / 4) \text{ [m]}$; b) $v_p = 0.400 \text{ m/s}$; $v = 0.503 \cos(4 \pi t - \pi / 4) \text{ [m/s]}$

Datos	Cifras significativas: 3
Frecuencia	$f = 2,00 \text{ Hz} = 2,00 \text{ s}^{-1}$
Lonxitude de onda	$\lambda = 20.0 \text{ cm} = 0.200 \text{ m}$
Amplitude	A = 0.0400 m = 0.0400 m
Elongación en $x = 0$ para $t = 0$	y = 2.83 cm = 0.0283 m
Incógnitas	
Ecuación da onda (frecuencia angular e número de onda)	ω , k
Velocidade de propagación	$ u_{ m p}$
Velocidade da partícula en $x = 5$ cm en función do tempo	ν
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$
Número de onda	$k = 2 \pi / \lambda$
Frecuencia angular	ω = 2 $\pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{ m p} = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 2.00 \text{ [s}^{-1}] = 4.00 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}] = 12.6 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0,200 \text{ [m]}} = 10 \pi \text{ rad/m} = 31,4 \text{ rad/m}$$

Calcúlase a fase inicial a partir da elongación en x = 0 para t = 0.

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + \varphi_0) \text{ [m]}$$

$$0.0283 \text{ [m]} = 0.0400 \cdot \text{sen}(12.6 \cdot 0 - 31.4 \cdot 0 + \varphi_0) \text{ [m]} = 0.0400 \cdot \text{sen}(\varphi_0)$$

$$\text{sen}(\varphi_0) = 0.0283 / 0.0400 = 0.721$$

$$\varphi_0 = \text{arcsen } 0.721 = 0.786 \text{ rad} = \pi / 4 \text{ rad}$$

A ecuación de onda queda:

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + 0.786) \text{ [m]} = 0.0400 \cdot \text{sen}(4 \pi \cdot t - 10 \pi \cdot x + \pi / 4) \text{ [m]}$$

A representación gráfica é a da figura:

b) Calcúlase a velocidade de propagación a partir da lonxitude de onda e a frecuencia:

$$v_p = \lambda \cdot f = 0,200 \text{ [m]} \cdot 2,00 \text{ [s}^{-1}] = 0,400 \text{ m/s}$$

A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d[0,040 \text{ } 0\text{sen}(12,6 \cdot t - 31,4 \cdot x + 0,786)]}{dt} = 0,040 \text{ } 012,6 \cos(12,6 \cdot t - 31,4 \cdot x + 0,786) \text{ [m/s]}$$

$$v = 0,503 \cdot \cos(12,6 \cdot t - 31,4 \cdot x + 0,786) \text{ [m/s]}$$

Para x = 5 cm (=0,05 m), a expresión queda:

$$v = 0.503 \cdot \cos(12.6 \cdot t - 31.4 \cdot 0.0500 + 0.786) = 0.503 \cdot \cos(12.6 \cdot t - 0.786) = 0.503 \cdot \cos(4 \pi \cdot t - \pi / 4) \text{ [m/s]}$$

- 4. Unha onda harmónica transversal de lonxitude de onda $\lambda = 60$ cm propágase no sentido positivo do eixe x. Na gráfica amósase a elongación (y) do punto de coordenada x = 0 en función do tempo. Determina:
 - a) A expresión matemática que describe esta onda, indicando o desfase inicial, a frecuencia e a amplitude da onda.
 - b) A velocidade de propagación da onda.

Rta.: a)
$$y(x, t) = 0.80 \cdot \text{sen}(2.1 \cdot t - 10 \cdot x)$$
 [m]; $\varphi_0 = 0$; $f = 0.33 \text{ s}^{-1}$; $A = 0.80 \text{ m}$; b) $v_0 = 0.20 \text{ m} \cdot \text{s}^{-1}$

Datos

Lonxitude de onda Gráfica

Cifras significativas: 2 $\lambda = 60 \text{ cm} = 0.60 \text{ m}$

Datos	Cifras significativas: 2
Incógnitas	
Ecuación da onda (amplitude, frecuencia angular e número de onda)	A, ω, k
Velocidade de propagación	$ u_{ m p}$
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia e o período	f = 1 / T
Frecuencia angular	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$
Velocidade de propagación	$v_{\rm p} = \Delta x / \Delta t$

Solución:

a) A ecuación dunha onda harmónica é:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Podemos observar na gráfica:

O tempo dunha oscilación completa é T = 3.0 s

 \Rightarrow período: T = 3.0 s.

A elongación máxima vale A = 0.80 m

 \Rightarrow amplitude: A = 0.80 m.

Cando o tempo é cero a elongación do punto x = 0 vale y = 0.

$$0 = \operatorname{sen} \varphi_0 \Longrightarrow \varphi_0 = 0 \text{ ou } \varphi_0 = \pi$$

Para t = T/4 = 0.75 s, a elongación do punto x = 0 vale y = 0.80 m = A > 0.

$$y = A \cdot \text{sen}((2 \cdot \pi / T) \cdot (T/4) + \varphi_0) = A \cdot \text{sen}(\pi/2 + \varphi_0) = A \Rightarrow \text{sen}(\pi/2 + \varphi_0) = 1 \Rightarrow \varphi_0 = 0$$

O desfase inicial vale 0. $\Rightarrow \varphi_0 = 0$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0.60 \text{ [m]}} = 10 \text{ rad/m}$$

Calcúlase a frecuencia a partir do período:

$$f = \frac{1}{T} = \frac{1}{3.0 \text{ s}} = 0.33 \text{ s}^{-1}$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 0.33 \, [s^{-1}] = 2.1 \, \text{rad} \cdot s^{-1}$$

A ecuación de onda queda:

$$y(x, t) = 0.80 \cdot \text{sen}(2.1 \cdot t - 10 \cdot x) \text{ [m]}$$

b) Calcúlase a velocidade de propagación a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.60 \text{ [m]} \cdot 0.33 \text{ [s}^{-1}\text{]} = 0.20 \text{ m} \cdot \text{s}^{-1}$$

- 5. Nunha corda propágase unha onda dada pola ecuación y(x, t) = 0.04 sen 2π (2 x 4 t), onde as lonxitudes exprésanse en metros e o tempo en segundos. Calcula:
 - a) A frecuencia, o número de onda, a lonxitude de onda e a velocidade de propagación da onda.
 - b) A diferenza de fase, nun instante determinado, entre dous puntos da corda separados 1 m e comproba se devanditos puntos están en fase ou en oposición.
 - c) Os módulos da velocidade e aceleración máximas de vibración dos puntos da corda.

(A.B.A.U. ord. 20, extr. 19)

Rta.: a) f = 4 Hz; k = 12.5 m⁻¹; $\lambda = 0.5$ m; $v_p = 2$ m/s; b) $\Delta \varphi = 4$ π rad; c) v = 1.01 m/s; a = 25.3 m/s²

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.0400 \text{ sen } 2\pi (2.00 x - 4.00 t) \text{ [m]}$
Distancia entre os puntos	$\Delta x = 1,00 \text{ m}$
Incógnitas	
Velocidade de propagación	$ u_{ m p}$
Diferenza de fase entre dous puntos separados 1 m	$\Delta arphi$
Outros símbolos	
Pulsación (frecuencia angular)	ω
Frecuencia	f
Lonxitude de onda	λ
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 0.0400 \text{ sen } 2\pi (2.00 \ x - 4.00 \ t) = 0.0400 \cdot \text{sen}(-8.00 \cdot \pi \cdot t + 4.00 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular: Número de onda: $\omega = 8,00 \cdot \pi \text{ [rad/s]} = 25,1 \text{ rad/s}$ $k = 4,00 \cdot \pi \text{ [rad/m]} = 12,6 \text{ rad/m}$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{8,00 \cdot \pi \,[\,\text{rad} \cdot \text{s}^{-1}\,]}{2\pi \,[\,\text{rad}\,]} = 4,00 \,\text{s}^{-1} = 4,00 \,\text{Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi \text{ [rad]}}{4,00 \cdot \pi \text{ [rad \cdot m}^{-1]}} = 0,500 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.500 \text{ [m]} \cdot 4.00 \text{ [s}^{-1}\text{]} = 2.00 \text{ m} \cdot \text{s}^{-1}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = [2 \pi (-4,00 \cdot t + 2,00 \cdot x_2)] - [4 \pi (2 \pi (-4,00 \cdot t + 2,00 \cdot x_1)] = 2 \pi \cdot 2,00 \cdot (x_1 - x_2) = 2 \pi \cdot 2,00 \cdot \Delta x$$
$$\Delta \varphi = 2 \pi \cdot 2,00 \cdot 1,00 = 4,00 \pi \text{ rad}$$

Análise: A distancia entre os puntos é 1,00 m que é o dobre da lonxitude de onda. Como os puntos que están en fase ou cuxa diferencia de fase é múltiplo de 2π atópanse a unha distancia que é múltiplo da lonxitude de onda, unha distancia de dúas veces a lonxitude de onda corresponde a unha diferenza de fase dobre de 2π , ou sexa, 4π rad.

Os dous puntos atópanse en fase.

c) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[0.040 \ (3 + 2\pi)(2.00 \cdot x - 4.00 \cdot t)\right]}{\mathrm{d}t} = 0.040 \cdot 2\pi \cdot (-4.00) \cdot \cos(2\pi(2.00 \cdot x - 4.00 \cdot t)) \left[\,\mathrm{m/s}\,\right]$$

$$v = -1.01 \cos 2\pi (2.00 x - 4.00 t) [m/s]$$

A velocidade é máxima cando $cos(\varphi) = -1$

$$v_{\rm m} = 1.01 \; {\rm m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[-1,01\cos 2\pi (2,00\cdot x - 4,00\cdot t) \right]}{\mathrm{d} t} = -1,01\cdot 2\pi \cdot (-4,00)\cdot \mathrm{sen} \left(2\pi (2,00\cdot x - 4,00\cdot t) \right) \left[\mathrm{m/s}^2 \right]$$

$$a = 25,3\cdot \mathrm{sen} \left(-3,00\cdot t + 2,00\cdot x \right) \left[\mathrm{m/s}^2 \right]$$

A aceleración é máxima cando sen(φ) = 1

$$a_{\rm m} = 25.3 \text{ m/s}^2$$

- 6. A ecuación dunha onda transversal que se propaga nunha corda é y(x, t) = 10 sen $\pi(x 0.2 t)$, onde as lonxitudes se expresan en metros e o tempo en segundos. Calcula:
 - a) A amplitude, lonxitude de onda e frecuencia da onda.
 - b) A velocidade de propagación da onda e indica en que sentido se propaga.
 - c) Os valores máximos da velocidade e aceleración das partículas da corda.

(A.B.A.U. extr. 17)

Rta.: a) A = 10 m; $\lambda = 2,00$ m; f = 0,100 Hz; b) $\nu = 0,200$ m/s; sentido +X; c) $\nu_{\rm m} = 6,28$ m/s; $a_{\rm m} = 3,95$ m/s²

Datos	Cifras significativas: 3
Ecuación da onda	$y = 10.0 \cdot \text{sen } \pi(x - 0.200 \cdot t) \text{ [m]}$
Incógnitas	
Amplitude	A
Lonxitude de onda	λ
Frecuencia	f
Velocidade de propagación	$ u_{ m p}$
Velocidade máxima	$ u_{ m m}$
Aceleración máxima	$a_{ m m}$
Outros símbolos	
Posición do punto (distancia ao foco)	x
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) Obtéñense a amplitude, a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 10.0 \cdot \text{sen } \pi(x - 0.200 \cdot t) \text{ [m]}$$

Amplitude: A = 10,0 m

Frecuencia angular: $\omega = 0,200 \text{ } \pi = 0,628 \text{ rad} \cdot \text{s}^{-1}$

Número de onda: $k = \pi = 3,14 \text{ rad} \cdot \text{m}^{-1}$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{3,14 \text{ [rad \cdot m}^{-1}]} = 2,00 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{0.628 \,[\,\text{rad} \cdot \text{s}^{-1}\,]}{2 \cdot 3.14 \,[\,\text{rad}\,]} = 0.100 \,\text{s}^{-1} = 0.100 \,\text{Hz}$$

b) Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 2,00 \text{ [m]} \cdot 0,100 \text{ [s}^{-1}] = 0,200 \text{ m} \cdot \text{s}^{-1}$$

O signo oposto dos termos en x e t indica que a onda propágase en sentido positivo do eixe X.

c) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[10,0 \cdot \sin \pi(x - 0,200 \cdot t)\right]}{\mathrm{d}t} = 10,0 \cdot \pi \cdot (-0,200) \cdot \cos \pi(x - 0,200 \cdot t) \text{ [m/s]}$$

$$v = -2,00 \cdot \pi \cdot \cos \pi(x - 0,200 \cdot t) = -6,28 \cdot \cos \pi(x - 0,200 \cdot t) \text{ [m/s]}$$

A velocidade é máxima cando $cos(\varphi) = -1$

$$v_{\rm m} = 6,28 \; {\rm m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[-2,00 \cdot \pi \cdot \cos \pi (x - 0,200 \cdot t) \right]}{\mathrm{d} t} = -2,00 \cdot \pi \cdot \pi \cdot (-0,200) \cdot (-\sin \pi (x - 0,200 \cdot t)) \left[\mathrm{m/s}^2 \right]$$

$$a = -0,400 \cdot \pi^2 \cdot \sin \pi (x - 0,200 \cdot t) = -3,95 \cdot \sin \pi (x - 0,200 \cdot t) \left[\mathrm{m/s}^2 \right]$$

A aceleración é máxima cando sen(φ) = -1

$$a_{\rm m} = 3.95 \text{ m/s}^2$$

- A función de onda dunha onda harmónica que se move nunha corda é
 y(x, t)= 0,03 sen(2,2 x 3,5 t), onde as lonxitudes exprésanse en metros e o tempo en segundos. Determina:
 - a) A lonxitude de onda e o período desta onda.
 - b) A velocidade de propagación.
 - c) A velocidade máxima de calquera segmento da corda.

(A.B.A.U. ord. 17)

Rta.: a) $\lambda = 2,86 \text{ m}$; T = 1,80 s; b) $v_p = 1,59 \text{ m} \cdot \text{s}^{-1}$; c) $v_m = 0,105 \text{ m/s}$

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.0300 \cdot \text{sen} (2.20 \cdot x - 3.50 \cdot t) \text{ [m]}$
Incógnitas	
Lonxitude de onda	λ
Período	T
Velocidade de propagación	$ u_{ m p}$
Velocidade máxima	$ u_{ m m}$
Outros símbolos	
Posición do punto (distancia ao foco)	X
Amplitude	A
Frecuencia	f
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \text{sen} (\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a frecuencia e o período	f = 1 / T
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen} (\omega \cdot t \pm k \cdot x)$$
$$y = 0.0300 \cdot \text{sen} (-3.50 \cdot t + 2.20 \cdot x) \text{ [m]}$$

Frecuencia angular: $\omega = 3,50 \text{ rad} \cdot \text{s}^{-1}$ Número de onda: $k = 2,20 \text{ rad} \cdot \text{m}^{-1}$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{2,20 \text{ [rad·m}^{-1]}} = 2,86 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{3,50 \text{ [rad \cdot s}^{-1}]}{2 \cdot 3,14 \text{ [rad]}} = 0,557 \text{ s}^{-1} = 0,557 \text{ Hz}$$

Calcúlase o período a partir da frecuencia:

$$f = \frac{1}{T} \Rightarrow T = \frac{1}{f} = \frac{1}{0,557 \text{ s}^{-1}} = 1,80 \text{ s}$$

b) Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 2,86 \text{ [m]} \cdot 0,557 \text{ [s}^{-1}\text{]} = 1,59 \text{ m} \cdot \text{s}^{-1}$$

c) A velocidade dun punto obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d[0,030 \text{ } 0 \text{sen}(-3,50 \cdot t + 2,20 \cdot x)]}{dt} = 0,030 \text{ } 0(-3,50) \cdot \cos(-3,50 \cdot t + 2,20 \cdot x) \text{ [m/s]}$$

$$v = -0.105 \cdot \cos(-3.50 \cdot t + 2,20 \cdot x) \text{ [m/s]}$$

A velocidade é máxima cando $cos(\varphi) = -1$

$$v_{\rm m} = 0.105 \; {\rm m/s}$$

Intensidade sonora.

- Un altofalante emite ondas sonoras esféricas cunha potencia de 200 W. Determina:
 - a) A enerxía emitida en media hora.
 - b) O nivel de intensidade sonora, en dB, a 4 m do altofalante.

Dato:
$$I_0 = 10^{-12} \text{ W} \cdot \text{m}^2$$
.
Rta.: a) $E = 3.6 \cdot 10^5 \text{ l} \cdot \text{ h}$) $S = 120 \text{ dB}$

(A.B.A.U. extr. 22)

Rta.: a) $E = 3.6 \cdot 10^5$ J; b) S = 120 dB.

Datos	Cifras significativas: 2
Potencia das ondas	P = 200 W
Nivel limiar de intensidade sonora	$I_0 = 10^{-12} \text{ W} \cdot \text{m}^2$
Incógnitas	
Enerxía emitida en media hora	E
Nivel de intensidade sonora, en dB, a 4 m do altofalante	S
Ecuacións	
Potencia	P = E / t
Intensidade dunha onda	$I = P / \left(4 \pi r^2 \right)$
Nivel de intensidade sonora en dB	$S = 10 \log(I/I_0)$

Solución:

a) Como a potencia é a enerxía emitida na unidade de tempo, a enerxía emitida en media hora será:

$$E = P \cdot t = 200 \text{ [W]} \cdot 1800 \text{ [s]} = 3,6 \cdot 10^5 \text{ J}$$

b) A 4 m do altofalante, a intensidade sonora é:

$$I = \frac{P}{4 \pi r^2} = \frac{200 \text{ [W]}}{4 \cdot 3,14 \cdot (4,0 \text{ [m]})^2} = 0,99 \text{ W/m}^2$$

O nivel de intensidade sonora, en decibelios é:

$$S = 10 \log \frac{I}{I_0} = 10 \log \frac{0.99}{10^{-12}} = 120 \text{ dB}$$

Dioptrio plano

- Unha lámina de vidro de caras planas e paralelas, de índice de refracción 1,4, está no aire, de índice de refracción 1,0. Un raio de luz monocromática de frecuencia 4,3·10¹⁴ Hz incide na lámina desde o aire cun ángulo de 30° respecto á normal á superficie de separación dos dous medios. Calcula:
 - a) A lonxitude de onda do raio refractado.

b) O ángulo de refracción.

Dato: $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$.

(A.B.A.U. ord. 21)

Rta.: a) $\lambda_2 = 498 \text{ nm}$; b) $\theta_r = 20.9^\circ$

Datos	Cifras significativas: 3
Frecuencia do feixe de luz	$f = 4.30 \cdot 10^{14} \text{ Hz}$
Índice de refracción do aire	$n_1 = 1,00$
Índice de refracción do vidro	$n_2 = 1,40$
Ángulo de incidencia	$\theta_{\rm i}=30,0^{\circ}$
Velocidade da luz no baleiro	$c = 3.00 \cdot 10^8 \text{ m/s}$
Incógnitas	
Lonxitude de onda da luz no vidro	λ_1
Ángulo de refracción	$ heta_{ m r}$
Ecuacións	
Índice de refracción dun medio «i» no que a luz se despraza á velocidade $\nu_{\rm i}$	$n_{\rm i} = \frac{c}{v_{\rm i}}$

Relación entre a velocidade v, a lonxitude de onda λ e a frecuencia fLei de Snell da refracción

$$n_{i} = \frac{c}{v_{i}}$$

$$v = \lambda \cdot f$$

$$n_{i} \cdot \text{sen } \theta_{i} = n_{r} \cdot \text{sen } \theta_{r}$$

Solución:

a) A velocidade da luz no vidro é:

$$v_2 = \frac{c}{n_2} = \frac{3,00 \cdot 10^8 \text{ m/s}}{1,40} = 2,14 \cdot 10^8 \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no vidro é:

$$\lambda_2 = \frac{v_2}{f} = \frac{2.14 \cdot 10^8 \text{ m/s}}{4.30 \cdot 10^{14} \text{ s}^{-1}} = 4.98 \cdot 10^{-7} \text{ m} = 498 \text{ nm}$$

b) O ángulo de refracción θ_r pódese calcular aplicando a lei de Snell

1,00 · sen 30° = 1,40 · sen
$$\theta_{\rm r}$$

sen $\theta_{\rm r} = \frac{1,00 \cdot \text{sen } 30°}{1,40} = 0,357$
 $\theta_{\rm r} = \text{arcsen } 0,357 = 20,9°$

- Un mergullador acende unha lanterna dentro da auga e enfócaa cara á superficie formando un ángulo de 30° coa normal.
 - a) Con que ángulo emerxerá a luz da auga?
 - b) Cal é o ángulo de incidencia a partir do cal a luz non sairá da auga?

Datos: n(auga) = 4/3; n(aire) = 1.

(A.B.A.U. extr. 20)

Rta.: a) $\theta_r = 41.8^\circ$; b) $\lambda = 48.6^\circ$

Datos Índice de refracción do aire Cifras significativas: 3 n = 1.00

Datos

Índice de refracción da auga Ángulo de incidencia na auga

Incógnitas

Ángulo de refracción Ángulo límite

Ecuacións

Lei de Snell da refracción

Cifras significativas: 3

$$n_{\rm a} = 4 / 3 = 1,33$$

 $\theta_{\rm i} = 30,0^{\circ}$

 $\theta_{\rm r}$ λ

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

a) Aplicando a lei de Snell da refracción:

$$n_{\rm i} \cdot {\rm sen} \; \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \; \theta_{\rm r}$$

 $1,33 \cdot {\rm sen} \; 30,0 = 1,00 \cdot {\rm sen} \; \theta_{\rm r}$
 ${\rm sen} \; \theta_{\rm r} = 1,33 \cdot {\rm sen} \; 30,0 = 1,33 \cdot 0,500 = 0,667$
 $\theta_{\rm r} = {\rm arcsen} \; 0,667 = 41,8^{\circ}$

b) Ángulo límite λ é o ángulo de incidencia que produce un ángulo de refracción de 90°

$$1,33 \cdot \text{sen } \lambda = 1,00 \cdot \text{sen } 90,0^{\circ}$$

 $\text{sen } \lambda = 1,00 / 1,33 = 0,75$
 $\lambda = \text{arcsen } 0,75 = 48,6^{\circ}$

- Un feixe de luz de frecuencia $4,30\cdot10^{14}$ Hz incide desde un medio 1 de índice de refracción $n_1 = 1,50$ sobre outro medio 2 de índice de refracción $n_2 = 1,30$. O ángulo de incidencia é de 50° . Determina:
 - a) A lonxitude de onda do feixe no medio 1.
 - b) O ángulo de refracción.
 - c) A partir de que ángulo de incidencia se produce a reflexión total do feixe incidente?

Dato: $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$ (A.B.A.U. ord. 19)

Rta.: a) $\lambda_1 = 465 \text{ nm}$; b) $\theta_r = 62.1^\circ$; c) $\theta_{il} = 60.0^\circ$

Datos

Frecuencia do feixe de luz Índice de refracción do medio 1 Índice de refracción do medio 2 Ángulo de incidencia Velocidade da luz no baleiro

Incógnitas

Lonxitude de onda da luz no medio	1
Ángulo de refracción	
λ 1 1/ ··	

Ángulo límite

Ecuacións

Índice de refracción dun medio «i» no que a luz se despraza á velocidade v_i

Relación entre a velocidade v, a lonxitude de onda λ e a frecuencia fLei de Snell da refracción

Cifras significativas: 3

$$f = 4,30 \cdot 10^{14} \text{ Hz}$$

 $n_1 = 1,50$
 $n_2 = 1,30$
 $\theta_i = 50,0^\circ$
 $c = 3,00 \cdot 10^8 \text{ m/s}$

 λ_1 $\theta_{\rm r}$

 $\theta_{\!\scriptscriptstyle 1}$

 $v = \lambda \cdot f$

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

a) A velocidade da luz no medio 1 é:

$$v_1 = \frac{c}{n_s} = \frac{3,00 \cdot 10^8 \text{ m/s}}{1.50} = 2,00 \cdot 10^8 \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no medio 1 é:

$$\lambda_1 = \frac{v_1}{f} = \frac{2,00 \cdot 10^8 \text{ m/s}}{4,30 \cdot 10^{14} \text{ s}^{-1}} = 4,65 \cdot 10^{-7} \text{ m} = 465 \text{ nm}$$

b) O ángulo de refracción $\theta_{\rm r}$ pódese calcular aplicando a lei de Snell

$$1,50 \cdot \text{sen } 50^{\circ} = 1,30 \cdot \text{sen } \theta_{\text{r}}$$

$$\theta_{\rm r} = {\rm arcsen} \ 0.884 = 62.1^{\circ}$$

c) O ángulo límite é o ángulo de incidencia que corresponde a un ángulo de refracción de 90°. Aplicando de novo a lei de Snell

$$1,50 \cdot \text{sen } \theta_1 = 1,30 \cdot \text{sen } 90^\circ$$

$$\theta_1 = \arcsin 0.867 = 60.0^{\circ}$$

♦ CUESTIÓNS

Características e ecuacións das ondas

- 1. Dous focos de ondas sonoras emiten sons de 1,7 kHz de frecuencia coa mesma fase inicial. Un observador que se encontra a 8 m dun dos focos e a 10 m do outro percibe nesa posición:
 - A) Un mínimo de intensidade.
 - B) Un máximo de intensidade.
 - C) Unha intensidade intermedia entre a máxima e a mínima.

DATO: velocidade do son =
$$340 \text{ m s}^{-1}$$
.

(A.B.A.U. ord. 23)

Solución: B

Cando dúas ondas sonoras coherentes (da mesma frecuencia e fase inicial) superpóñense, producen un fenómeno chamado interferencia. A interferencia pode ser construtiva (cando as ondas están en fase e producen unha intensidade máxima) ou destrutiva (cando as ondas están en oposición de fase e producen unha intensidade mínima).

A diferenza de camiño entre as dúas ondas é de:

$$\Delta s = 10 \text{ m} - 8 \text{ m} = 2 \text{ m}$$

A lonxitude de onda das ondas de son pódese calcular como $\lambda = v/f$, onde v é a velocidade do son e f é a frecuencia. Substituíndo os valores coñecidos, temos:

$$\lambda = \frac{340 \text{ [m/s]}}{1,7 \cdot 10^3 \text{ [Hz]}} = 0.2 \text{ m}$$

A diferenza de camiño entre as dúas ondas é igual a 10 veces a lonxitude de onda:

$$\frac{\Delta s}{\lambda} = \frac{2 [m]}{0.2 [m]} = 10$$

As dúas ondas chegan á posición do observador en fase. Por tanto, a interferencia é construtiva e o observador percibe un máximo de intensidade na súa posición.

2. Cando unha onda harmónica plana propágase no espazo, a súa enerxía é proporcional: A) A 1/f(f é a frecuencia)

- B) Ao cadrado da amplitude A^2 .
- C) Inversamente proporcional ao cadrado da distancia ao foco emisor.

(A.B.A.U. ord. 22)

Solución: B

A enerxía que transporta unha onda material harmónica unidimensional é a suma da cinética e de potencial:

$$E = (E_c + E_p) = \frac{1}{2} m \cdot v^2 + \frac{1}{2} k \cdot x^2 = \frac{1}{2} m \cdot v^2_m = \frac{1}{2} k \cdot A^2$$

A ecuación da onda harmónica unidimensional é: $y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$

 $v = d y / d t = -A \cdot \omega \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$ Derivando con respecto ao tempo:

É máxima cando $-\text{sen}(\omega \cdot t \pm k \cdot x) = 1$, $v_{\rm m} = A \cdot \omega$

 $E = \frac{1}{2} m \cdot v_{\mathrm{m}}^2 = \frac{1}{2} m \cdot A^2 \cdot \omega^2$ Substituíndo na ecuación da enerxía:

Como a pulsación ω ou frecuencia angular é proporcional á frecuencia f: $\omega = 2 \pi \cdot f$

$$E = \frac{1}{2} m \cdot A^2 \cdot \omega^2 = \frac{1}{2} m \cdot A^2 (2 \pi \cdot f)^2 = 2 \pi^2 m \cdot A^2 \cdot f^2$$

A enerxía que transporta unha onda é proporcional aos cadrados da frecuencia e da amplitude.

- Unha onda transversal propágase no sentido positivo do eixe X cunha velocidade de 300 m·s⁻¹, sendo o período de oscilación de 2×10⁻² s. Dous puntos que se encontran, respectivamente, a distancias de 20 m e 38 m do centro de vibración estarán:
 - A) En fase.
 - B) En oposición de fase.
 - C) Nunha situación distinta das anteriores.

(A.B.A.U. ord. 21)

Solución: A

Datos Velocidade de propagación da onda	Cifras significativas: 2 $v = 3.0 \cdot 10^2 \text{ m} \cdot \text{s}^{-1}$
Período de oscilación	$T = 2.0 \cdot 10^{-2} \text{ s}$
Distancia entre os puntos	$\Delta x = 38 - 20 = 18 \text{ m}$
Incógnitas	
Diferenza de fase entre dous puntos separados 18 m	$\Delta arphi$
Outros símbolos	
Pulsación (frecuencia angular)	ω
Frecuencia	f
Lonxitude de onda	λ
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) A diferencia de fase entre os dous puntos é:

$$\Delta \varphi = (k \cdot x_2 - \omega \cdot t_2) - (k \cdot x_1 - \omega \cdot t_1)$$

Para o mesmo instante, $t_1 = t_2$.

$$\Delta \varphi = k \cdot x_2 - k \cdot x_1 = k (x_2 - x_1) = k \cdot \Delta x$$

Para obter o número de onda hai que calcular a lonxitude de onda a partir da frecuencia e a velocidade de propagación:

Frecuencia: $f = \frac{1}{T} = \frac{1}{2 \cdot 10^{-2}}$

 $f = \frac{1}{T} = \frac{1}{2 \cdot 10^{-2} \, [s]} = 50 \, \text{s}^{-1}$

Lonxitude de onda: $v_p = \lambda \cdot f \Longrightarrow \lambda = \frac{v_p}{f} = \frac{300 \text{ [m/s]}}{50 \text{ [s}^{-1}\text{]}} = 6.0 \text{ m}$

Número de onda: $k = \frac{2\pi}{\lambda} = \frac{2 \cdot \pi \text{ [rad]}}{6.0 \text{ [m]}} = \frac{\pi}{3} \text{ rad/m}$

A diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = \pi / 3 \text{ [rad/m]} \cdot (38 - 20) \text{ [m]} = 6 \pi \text{ rad}$$

Como a diferencia de fase é múltiplo de 2π , os puntos atópanse en fase.

Análise: A distancia entre os puntos é 18 m que é o triplo da lonxitude de onda. Como os puntos que están en fase ou cuxa diferencia de fase é múltiplo de 2 π atópanse a unha distancia que é múltiplo da lonxitude de onda, unha distancia de tres veces a lonxitude de onda corresponde a unha diferenza de fase triplo de 2 π , ou sexa, 6 π rad.

- 4. Cal debería ser a distancia entre dous puntos dun medio polo que se propaga unha onda harmónica, con velocidade de fase de 100 m/s e 200 Hz de frecuencia, para que estean no mesmo estado de vibración?:
 - A) 2 n
 - B) 0.5 n
 - C) n

sendo n = 0, 1, 2, 3... e medido no S.I.

(A.B.A.U. ord. 19)

Solución: B

A lonxitude de onde λ é a distancia mínima entre dous puntos dunha onda que se atopan en fase, ou sexa, no mesmo estado de vibración.

A lonxitude de onde λ está relacionada coa frecuencia f e coa velocidade de propagación v_p da onda pola relación

$$v_{p} = \lambda \cdot f \Rightarrow \lambda = \frac{100 \text{ m} \cdot \text{s}^{-1}}{200 \text{ s}^{-1}} = 0,500 \text{ m}$$

Todos os puntos que se atopen a unha distancia que sexa un múltiplo da lonxitude de onda, estarán en fase con el.

$$d = n \cdot 0.500 \text{ [m]}$$

- 5. A luz incidente, a reflectida e a refractada na superficie de separación de dous medios de distinto índice de refracción ten:
 - A) Igual frecuencia, lonxitude de onda e velocidade.
 - B) Distinta frecuencia, lonxitude de onda e velocidade.
 - C) Igual frecuencia e distintas lonxitudes de onda e velocidade.

(A.B.A.U. ord. 19)

Solución: C

O índice de refracción dun medio respecto ao baleiro $n_{\rm m}$ é o cociente entre a velocidade da luz no baleiro c e a velocidade da luz no medio $v_{\rm m}$.

$$n_{\rm m} = c / v_{\rm m}$$

A luz refractada cambia a súa velocidade mentres que a reflectida non.

Como a frecuencia da luz é característica (non varía ao cambiar de medio) e está relacionada coa velocidade de propagación da luz nese medio por:

$$v_{\rm m} = \lambda_{\rm m} \cdot f$$

Ao variar a velocidade, ten que variar a lonxitude de onda.

- 6. Nun mesmo medio:
 - A) A lonxitude de onda dun son grave é maior que a dun agudo.
 - B) A lonxitude de onda dun son grave é menor que a dun agudo.
 - C) Ambos os sons teñen a mesma lonxitude de onda.

(A.B.A.U. extr. 18)

Solución: A

a) Un son grave é un son de baixa frecuencia. A frecuencia f está relacionada coa lonxitude de onda λ e coa velocidade de propagación v_p do son no medio pola relación:

$$v_p = \lambda \cdot f$$

Nun mesmo medio, a velocidade de propagación é constante, polo que a frecuencia é inversamente proporcional á lonxitude de onda. Canto menor sexa frecuencia maior será a lonxitude de onda.

- 7. Unha onda harmónica de frecuencia 100 Hz propágase a unha velocidade de 300 m·s⁻¹. A distancia mínima entre dous puntos que se atopan en fase é:
 - A) 1,50 m.
 - B) 3,00 m.
 - C) 1,00 m.

(A.B.A.U. extr. 18)

Solución: B

A lonxitude de onde λ é a distancia mínima entre dous puntos dunha onda que se atopan en fase. A lonxitude de onde λ está relacionada coa frecuencia f e coa velocidade de propagación v_p da onda pola relación

$$v_{\rm p} = \lambda \cdot f$$

$$\lambda = \frac{v_{\rm p}}{f} = \frac{300 \text{ m} \cdot \text{s}^{-1}}{100 \text{ s}^{-1}} = 3,00 \text{ m}$$

- 8. Para as ondas sonoras, cal das seguintes afirmacións é certa?:
 - A) Propáganse no baleiro.
 - B) Non se poden polarizar.
 - C) Non se poden reflectir.

(A.B.A.U. ord. 18)

Solución: B

As ondas sonoras son lonxitudinais porque a dirección na que se propaga o son é a mesma que a dirección na que oscilan as partículas do medio.

Se pensamos no son producido por unha superficie plana (a pel dun tambor, a pantalla dun altofalante), a vibración da superficie empuxa ás partículas do medio (moléculas de aire) que se desprazan ata chocar con outras veciñas e rebotar, na dirección na que oscila a superficie e na que se despraza o son.

A polarización é unha característica das ondas transversais. Unha onda é transversal cando a dirección de oscilación é perpendicular á dirección de propagación da onda. A polarización consiste en que a oscilación da onda ocorre nun único plano.

As ondas sonoras, ao ser lonxitudinais e non transversais, non poden polarizarse.

As outras opcións:

A. Falsa. Non se propagan no baleiro. Un dispositivo que o confirma é un espertador colocado dentro dun recipiente no que se fai o baleiro. Faise soar e vai facéndose o baleiro no recipiente. Vese como o timbre do

espertador segue golpeando a campá, pero o son vaise facendo máis débil ata desaparecer.

C. Falsa. Un exemplo é o eco, que consiste no son que ouvimos con atraso respecto ao emitido, porque as ondas sonoras reflectiuse nunha parede ou muro.

- 9. Un movemento ondulatorio transporta:
 - A) Materia.
 - B) Enerxía.
 - C) Depende do tipo de onda.

(A.B.A.U. extr. 17)

Solución: B

Unha onda é unha forma de transporte de enerxía sen desprazamento neto de materia.

Nunha onda material, as partículas do medio oscilan arredor do punto de equilibrio. É a enerxía a que se vai desprazando dunha partícula á seguinte.

Nas ondas electromagnéticas o que se despraza é un campo magnético perpendicular a un campo eléctrico.

- 10. A propagación na dirección x da onda dunha explosión nun certo medio pode describirse pola onda harmónica $y(x, t) = 5 \operatorname{sen}(12 \ x \pm 7680 \ t)$, onde as lonxitudes exprésanse en metros e o tempo en segundos. Ao cabo dun segundo de producirse a explosión, o seu son alcanza unha distancia de:
 - A) 640 m
 - B) 1536 m
 - C) 38 km

(A.B.A.U. ord. 17)

Solución: B

Para calcular a distancia alcanzada polo son nun segundo, necesitamos determinar a súa velocidade a partir da ecuación de onda-

A ecuación dunha onda harmónica unidimensional pode escribirse como:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$

Na que

y é a elongación do punto que oscila (separación da posición de equilibrio)

A é a amplitude (elongación máxima)

 ω é a frecuencia angular que está relacionada coa frecuencia f por $\omega = 2 \pi \cdot f$.

t é o tempo

k é o número de onda, a cantidade de ondas que entran nunha lonxitude de 2 π metros. Está relacionada coa lonxitude de onda λ por k = 2 π / λ

x é a distancia do punto ao foco emisor.

O signo \pm entre $\omega \cdot t$ e $k \cdot x$ é negativo si a onda propágase en sentido positivo do eixo X, e positivo se o fai en sentido contrario.

Comparando a ecuación xeral coa do problema obtemos:

A = 5 m

 $\omega = 7680 \text{ rad/s}$

k = 12 rad/m

A velocidade de propagación dunha onda nun medio pode calcularse da expresión:

$$u = \lambda \cdot f = \frac{2\pi}{k} \cdot \frac{\omega}{2\pi} = \frac{\omega}{k} = \frac{7689 \text{ rad/s}}{12 \text{ rad/m}} = 641 \text{ m/s}$$

Por tanto, a distancia percorrida en 1 s é 641 m.

Efecto Doppler

- 1. Un ciclista desprázase en liña recta por unha estrada a velocidade constante. Nesta estrada hai dous coches parados, un diante, C1, e outro detrás, C2, do ciclista. Os coches teñen bucinas idénticas pero o ciclista sentirá que a frecuencia das bucinas é:
 - A) Maior a de C1.
 - B) A mesma.
 - C) Maior a de C2.

(A.B.A.U. ord. 21)

Solución: A

A ecuación do efecto Doppler é:

$$f(\text{obs}) = f(\text{em}) \frac{v(\text{son}) \pm v(\text{obs})}{v(\text{son}) \pm v(\text{em})}$$

Na que

f(obs) é a frecuencia que percibe o observador.

f(em) é a frecuencia emitida pola fonte.

v(son) é a velocidade do son.

ν(obs) é a velocidade do observador.

v(em) é a velocidade do emisor da frecuencia.

Para un observador dirixíndose cara a unha fonte a ecuación anterior queda:

$$f(obs) = f(em) \frac{v(son)}{v(son) - v(obs)}$$

A frecuencia percibida polo observador é maior que a emitida.

A situación é equivalente á dun observador en repouso e unha fonte dirixíndose cara a el.

Isto pódese comprobar escoitando o chifre dun tren que pasa cerca de nos. Cando pasa xunto a nos o son tórnase máis grave. É máis agudo cando se está a achegar e tórnase máis grave cando se afasta.

- 2. O chifre dunha locomotora emite un son de 435 Hz de frecuencia. Se a locomotora se move achegándose a un observador en repouso, a frecuencia percibida polo observador é:
 - A) 435 Hz.
 - B) Maior ca 435 Hz.
 - C) Menor ca 435 Hz.

(A.B.A.U. extr. 20)

Solución: B

A ecuación do efecto Doppler é:

$$f(\text{obs}) = f(\text{em}) \frac{v(\text{son}) \pm v(\text{obs})}{v(\text{son}) \pm v(\text{em})}$$

Na que

f(obs) é a frecuencia que percibe o observador.

f(em) é a frecuencia emitida pola fonte.

ν(son) é a velocidade do son.

ν(obs) é a velocidade do observador.

v(em) é a velocidade do emisor da frecuencia.

Para un observador en repouso e unha fonte dirixíndose cara a el a ecuación anterior queda:

$$f(\text{obs}) = f(\text{em}) \frac{v(\text{son})}{v(\text{son}) - v(\text{em})}$$

A frecuencia percibida polo observador é maior que a emitida.

Isto pódese comprobar escoitando o chifre dun tren que pasa cerca de nos. Cando pasa xunto a nos o son tórnase máis grave. É máis agudo cando se está a achegar e tórnase máis grave cando se afasta.

Intensidade sonora

- 1. Un motor produce un nivel de intensidade sonora de 80 dB. A potencia que ten o ruído do motor se está situado a 2 m é:
 - A) 500 mW
 - B) 50 mW
 - C) 5 mW

DATO:
$$I_0 = 10^{-12} \text{ W m}^{-2}$$
. (A.B.A.U. extr. 23)

Solución: C

Para resolver esta cuestión, pódese utilizar a fórmula para calcular a intensidade sonora en decibelios (dB) a partir da intensidade sonora en vatios por metro cadrado (W/m²):

$$S = 10 \log \frac{I}{I_0}$$

Onde S é o nivel de intensidade sonora en dB, I é a intensidade sonora e I_0 é a intensidade de referencia. Substituíndo os valores na fórmula:

$$80 = 10 \log \frac{I}{10^{-12}}$$

Despexando I:

$$I = 10^{-12} \cdot 10^8 = 10^{-4} \text{ W/m}^2$$

A potencia do ruído do motor a unha distancia de 2 m é igual á intensidade sonora multiplicada pola área da esfera de radio 2 m:

$$P = I \cdot A = I \cdot 4 \pi r^2 = 10^{-4} [W/m^2] \cdot 4 \pi (2 [m])^2 = 0,005 W = 5 mW$$

Dioptrio plano

- 1. No fondo dun recipiente cheo de auga atópase un tesouro. A distancia aparente entre o tesouro e a superficie é de 30 cm. Cal é a profundidade do recipiente?:
 - A) 30 cm.
 - B) Maior de 30 cm.
 - C) Menor de 30 cm.

Datos:
$$n(aire) = 1$$
; $n(auga) = 1,33$.

(A.B.A.U. extr. 21)

Solución: B

Aplicando a lei de Snell da refracción:

$$1,33 \cdot \text{sen } \theta_i = 1,00 \cdot \text{sen } \theta_r$$

Por tanto:

$$sen \ \theta_i < sen \ \theta_r$$

$$\theta_{\rm i} < \theta_{\rm r}$$

Á vista do debuxo debe cumprirse que: $h > h_a$

- 2. Unha superficie plana separa dous medios de índices de refracción distintos n_1 e n_2 . Un raio de luz incide desde o medio de índice n_1 . Razoa cal das afirmacións seguintes é verdadeira:
 - A) O ángulo de incidencia é maior que o ángulo de reflexión.
 - B) Os ángulos de incidencia e de refracción son sempre iguais.
 - C) Se $n_1 < n_2$ non se produce reflexión total.

(A.B.A.U. extr. 19)

Solución: C

Para que exista reflexión total a luz debe pasar dun medio máis denso opticamente (con maior índice de refracción) a un menos denso.

Pola lei de Snell

$$n_1 \cdot \text{sen } \theta_1 = n_2 \cdot \text{sen } \theta_2$$

O ángulo límite é o ángulo de incidencia para o que o ángulo de refracción vale 90°.

$$n_1 \cdot \text{sen } \lambda_1 = n_2 \cdot \text{sen } 90^\circ = n_2$$

Se $n_2 > n_1$ entón:

sen
$$\lambda_1 = n_2 / n_1 > 1$$

É imposible. O seno dun ángulo non pode ser maior que uno.

- 3. Unha onda incide sobre a superficie de separación de dous medios. As velocidades de propagación da onda no primeiro e segundo medio son, respectivamente, 1750 m·s⁻¹ e 2300 m·s⁻¹. Se o ángulo de reflexión é 45°, o de refracción será:
 - A) 68°
 - B) 22°
 - $C) 45^{\circ}$

Velocidade da onda no primeiro medio

(A.B.A.U. ord. 18)

Cifras significativas: 3

 $v_1 = 1750 \text{ m} \cdot \text{s}^{-1}$

Solución: A

Datos

Velocidade da onda no segundo medio	$v_2 = 2300 \text{ m} \cdot \text{s}^{-1}$
Ángulo de reflexión	$\theta_{\rm rx} = 45.0^{\circ}$
Incógnitas	
Ángulo de refracción	$ heta_{ m r}$
Ecuacións	
Índice de refracción dun medio i no que a luz se despraza á velocidade $\nu_{\rm i}$	$n_{\rm i} = \frac{c}{v_{\rm i}}$
Lei de Snell da refracción	$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

Para calcular o ángulo de refracción haberá que aplicar a lei de Snell da refracción:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

Como os datos son as velocidades de propagación da onda en ambos os medios, reescribimos esta ecuación en función das velocidades, tendo en conta que:

$$n_{i} = \frac{c}{v_{i}}$$

$$\frac{\sin \theta_{1}}{v_{1}} = \frac{\sin \theta_{2}}{v_{2}}$$

A lei de Snell da reflexión di que os ángulos de incidencia e de reflexión son iguais. Por tanto o ángulo de incidencia vale $\theta_i = 45,0^{\circ}$.

A ecuación anterior queda:

$$\frac{\sin 45.0^{\circ}}{1750} = \frac{\sin \theta_2}{2300}$$

$$\operatorname{sen} \theta_r = 0.929$$

$$\theta_i = \operatorname{arcsen} 0.929 = 68.3^{\circ}$$

- 4. Cando a luz pasa dun medio a outro de distinto índice de refracción, o ángulo de refracción é:
 - A) Sempre maior que o de incidencia.
 - B) Sempre menor que o de incidencia.
 - C) Depende dos valores dos índices de refracción. Xustifica a resposta facendo un esquema da marcha dos raios.

(A.B.A.U. extr. 17)

Solución: B

Cando a luz pasa dun medio máis denso opticamente (con maior índice de refracción) a outro menos denso (por exemplo da auga ao aire) o raio refractado afástase da normal. Pola segunda lei de Snell da refracción:

$$n_i \cdot \text{sen } \theta_i = n_r \cdot \text{sen } \theta_r$$

Se $n_i > n_r$, entón sen $\theta_r > \text{sen } \theta_i$, e $\theta_r > \theta_i$

- 5. Faise incidir desde o aire (índice de refracción n = 1) un feixe de luz láser sobre a superficie dunha lámina de vidro de 2 cm de espesor, cuxo índice de refracción é n = 1,5, cun ángulo de incidencia de 60°. O ángulo de refracción despois de atravesar a lámina é:
 - A) 35°
 - B) 90°
 - C) 60°

Fai un breve esquema da marcha dos raios.

(A.B.A.U. ord. 17)

Solución: A

DatosCifras significativas: 2Ángulo de incidencia $\theta_{i1} = 60^{\circ}$ Espesor da lámina de vidroe = 2,0 cm = 0,020 mÍndice de refracción do vidro $n_v = 1,50$ Índice de refracción do aire $n_a = 1,00$ Incógnitas θ_{r2}

Ecuacións

Índice de refracción dun medio $_{\rm i}$ no que a luz se despraza á velocidade $v_{\rm i}$ Lei de Snell da refracción

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

As leis de Snell da refracción son:

1ª O raio incidente, o raio refractado e a normal están no mesmo plano.

 2^{a} A relación matemática entre os índices de refracción n_{i} e n_{r} dos medios incidente e refractado e os ángulos de incidencia e refracción θ_{i} e θ_{r} , é:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

Na figura represéntase a traxectoria da luz. O raio incidente no punto A con un ángulo de incidencia $\theta_{i1}=30^\circ$ pasa do aire ao vidro dando un raio refractado que forma o primeiro ángulo de refracción θ_{r1} e o segundo ángulo de incidencia θ_{i2} entre o vidro e o aire. Finalmente, sae da lámina de vidro polo punto B co segundo ángulo de refracción θ_{r2} .

Como o espesor da lámina é de 10 cm, a lonxitude percorrida polo raio é a hipotenusa L do triángulo ABC.

O primeiro ángulo de refracción θ_{r_1} pódese calcular aplicando a lei de Snell

$$1,00 \cdot \text{sen } 60^\circ = 1,50 \cdot \text{sen } \theta_{r1}$$

$$\text{sen } \% ithet a_{r1} = \frac{1,0 \cdot \text{sen } 60^\circ}{1,5} = 0,58$$

$$\theta_{r1} = \text{arcsen } 0,58 = 35^\circ$$

Por tanto a hipotenusa L vale

$$L = \frac{e}{\cos \% i t h e t a_{r1}} = \frac{2.0 \text{ [cm]}}{\cos 35^{\circ}} = 1.6 \text{ cm}$$

Como a lámina de vidro é de caras paralelas, o segundo ángulo de incidencia a_{i2} é igual ao primeiro ángulo de refracción:

$$\theta_{i2} = \theta_{r1} = 35^{\circ}$$

Para calcular o ángulo co que sae da lámina, vólvese a aplicar a lei de Snell entre o vidro (que agora é o medio incidente) e o aire (que é o medio refractado):

1,50 · sen 35° = 1,00 · sen
$$\theta_{r2}$$

sen %ithet $a_{r2} = \frac{1,5 \cdot \text{sen 35}^{\circ}}{1,0} = 0,87$
 $\theta_{r2} = \text{arcsen } 0.87 = 60^{\circ}$

Análise: Este resultado é correcto porque o raio sae paralelo ao raio incidente orixinal.

♦ LABORATORIO

• Interferencias, difracción e polarización

1. Describe o procedemento que seguirías no laboratorio para determinar se a luz é unha onda transversal ou lonxitudinal, así como o material que debes utilizar.

(A.B.A.U. ord. 19)

Solución:

As ondas transversais polarízanse.

<u>POLARIZACIÓN</u> en <u>Prácticas: Orientacións xerais</u> do *Grupo de Traballo*.

2. Fai un esquema da montaxe experimental necesaria para medir a lonxitude de onda dunha luz monocromática e describe o procedemento. Explica que sucede se cambias a rede de difracción por outra co dobre número de liñas por milímetro.

(A.B.A.U. ord. 18)

<u>INTERFERENCIA E DIFRACCIÓN</u> en <u>Prácticas: Orientacións xerais</u> do *Grupo de Traballo*. A separación entre máximos faise o dobre.

• Dioptrio plano

1. a) Describe o procedemento $\theta_1(^{\circ})$ 15,0 20,0 25,0 30,0 35,0 utilizado no laboratorio para $\theta_2(^{\circ})$ 12,0 15,8 20,1 23,6 27,5 determinar o índice de re-

fracción cun dispositivo como o da figura.

b) Determina o índice de refracción a partir dos datos da táboa. DATO: n(aire) = 1. θ_1 : ángulo de incidencia; θ_2 : ángulo de refracción (A.B.A.U. ord. 23)

Rta.: $n_{\rm r} = 1,24$

Solución:

- 1. Colocar o emisor de luz, a lente converxente e a pantalla nunha superficie plana e nivelada, asegurándose de que estean ben suxeitos e aliñados.
- 2. Acender o emisor de luz e axustar a súa posición para que o raio de luz incida sobre a lente converxente.
- 3. Observar a imaxe formada pola lente converxente na pantalla e axustar a súa posición até obter unha imaxe nítida.
- 4. Medir o ángulo de incidencia do raio de luz que entra na lente converxente utilizando o círculo graduado.
- 5. Medir o ángulo de refracción do raio de luz que salgue da lente converxente utilizando o círculo graduado.
- 6. Utilizar a lei de Snell para calcular o índice de refracción da lente a partir dos ángulos de incidencia e refracción medidos. A lei de Snell establece que n₁ · sen(θ₁) = n₂ · sen(θ₂), onde n₁ é o índice de refracción do medio no que incide o raio de luz, θ₁ é o ángulo de incidencia, n₂ é o índice de refracción do medio no que se refracta o raio de luz e θ₂ é o ángulo de refracción.
- 7. Repetir as medidas catro ou cinco veces, variando a posición do emisor de luz para que o ángulo de incidencia sexa distinto de cada vez.
- 8. Construír unha táboa cos ángulos de incidencia e refracción, os seus seos e o cociente entre eles e calcular o valor medio do cociente.

<u>DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO</u> en <u>Prácticas</u>: <u>Orientacións xerais</u> do *Grupo de Traballo*.

b) A lei de Snell pode resumirse na ecuación:

$$n_{\rm i} \cdot {\rm sen} \ \varphi_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \varphi_{\rm r}$$

Se o medio de incidente é o aire, n_i = 1, o índice de refracción do vidro será:

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}}$$

Faise unha táboa calculando os seos dos ángulos de incidente e refracción.

N.º exp.	$arphi_{ extsf{i}}/^{\circ}$	$arphi_{ m r}/^\circ$	sen $arphi_{ ext{i}}$	sen $arphi_{r}$	$n_{\rm r} = \frac{{\rm sen}\varphi_{\rm i}}{{\rm sen}\varphi_{\rm r}}$
1	15	12,0	0,26	0,21	1,24
2	20	15,8	0,34	0,27	1,26
3	25	20,1	0,42	0,34	1,23
4	30	23,6	0,5	0,4	1,25
5	35	27,5	0,57	0,46	1,24

O valor medio dos índices de refracción é:

$$n_{\rm r} = 1,24$$

- No laboratorio de física móntase un experimento para determinar o $\theta_1(^{\circ})$ 18 50 24 32 40 índice de refracción dunha lámina de vidro facendo incidir raios de $\theta_2(^\circ)$ 12 15 20 25 30 luz con distintos ángulos de incidencia θ_1 e medindo en cada caso o ángulo de refracción θ_2 .
 - a) En que lei física nos basearemos para facelo?
 - b) Determine o índice de refracción da lámina a partir dos datos experimentais amosados na táboa.

(A.B.A.U. ord. 22)

Rta.: b) $n_{\rm r} = 1,53$.

Solución:

<u>DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO</u> en <u>Prácticas: Orientacións xerais</u> do *Grupo de Traballo*.

a) A lei de Snell pode resumirse na ecuación:

$$n_{\rm i} \cdot {\rm sen} \ \varphi_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \varphi_{\rm r}$$

Se o medio de incidencia é o aire, $n_i = 1$, o índice de refracción do vidro será

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}}$$

b) Faise unha táboa calculando os senos dos ángulos de incidencia e refracción.

N.º exp.	$arphi_{ extsf{i}}/^{\circ}$	$arphi_{ m r}/^\circ$	sen $arphi_{ ext{i}}$	sen $arphi_{r}$	$n_{\rm r} = \frac{{\rm sen}\varphi_{\rm i}}{{\rm sen}\varphi_{\rm r}}$
1	18	12	0,309	0,208	1,49
2	24	15	0,407	0,259	1,57
3	32	20	0,530	0,342	1,55
4	40	25	0,643	0,423	1,52
5	50	30	0,766	0,500	1,53

O valor medio dos índices de refracción é:

$$n_{\rm r} = 1,53$$

 Estudando o fenómeno da refracción nunha lámina de vidro faise incidir un raio de luz con distintos ángulos sobre a superficie. Na táboa da marxe aparecen os ángulos de incidencia e os ángulos de refracción.

i (°) r (°) 27 16

- a) Calcula o índice de refracción do material a partir dos datos da táboa.
- 36 21
- b) Indica en que condicións se produciría reflexión total. DATOS: n(aire) = 1; $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$.
 - (A.B.A.U. ord. 20) 48 27

Rta.: a) $n_r = 1.6$; b) $\varphi > 38^\circ$

57 31

Solución:

<u>DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO</u> en <u>Prácticas</u>: <u>Orientacións xerais</u> do *Grupo de Traballo*.

a) A lei de Snell pode resumirse na ecuación:

Se o medio de incidencia é o aire, $n_i = 1$, o índice de refracción do vidro será

$$n_{\rm r} = \frac{{\rm sen}\,i}{{\rm sen}\,r}$$

Se se fai unha representación gráfica de sen r fronte a sen i, a pendente da gráfica será a inversa do índice de refracción.

$$sen r = (1 / n_r) \cdot sen i$$

Faise unha táboa calculando os senos dos ángulos de incidencia e refracción.

i (°)	r (°)	sen i	sen r	sen i / sen r
27	16	0,454	0,276	1,647
36	21	0,588	0,358	1,640
48	27	0,743	0,454	1,637
57	31	0,839	0,515	1,628

Nunha folla de cálculo represéntanse nunha gráfica sen r fronte a sen i e trázase a liña de tendencia que pasa pola orixe de coordenadas.

A inversa da pendente será o índice de refracción:

$$n_{\rm r} = \frac{{\rm sen}\,i}{{\rm sen}\,r} = \frac{1}{0.611} = 1,64$$

Se non se ten unha folla de cálculo trázase a ollo a recta polos puntos. Nese caso a incerteza vai ser moito maior.

$$n_{\rm r} = 1.6 \pm 0.1$$

A falta de papel milimetrado, o valor do índice de refracción pode calcularse como a media aritmética dos cocientes sen i/sen r

 $n_{\rm r} = \frac{1,647 + 1,640 + 1,637 + 1,628}{4} = 1,64$

0.6 0.4 0,2

0,6

sen i

0,7

8,0

0,9

Índice de refracción

$$n_{\rm r} = \frac{1,647 + 1,640 + 1,637 + 1,628}{4} = 1,64$$

0

0,4

0,5

b) A reflexión total dun raio de luz ocorre cando pasa dun medio dun determinado índice de refracción a outro que ten un índice maior se o ángulo de incidencia fose maior que o ángulo límite. Neste caso podería ocorrer para o raio de luz no interior do vidro ao chegar á superficie de separación do aire. O ángulo límite entre este vidro e o aire é o ángulo de incidencia ao que correspondería un ángulo de refracción de 90°.

$$n_{\rm i} \cdot \text{sen } \lambda = n_{\rm r} \cdot \text{sen } 90^{\circ}$$

$$\lambda = \arcsin \frac{n_{\rm r}}{n_{\rm i}} = \arcsin \frac{1}{1,64} = 38^{\circ}$$

Determina graficamente o índice de refracción dun vidro a partir da se-2 guinte táboa de valores dos ángulos de incidencia, φ_i , e de refracción, φ_r , $\varphi_i/^\circ$ 10,0 20,0 30,0 40,0 da luz. Estima a súa incerteza. 6,5 13,5 20,3 25,5 (A.B.A.U. extr. 19)

Rta.: $n_{\rm r} = 1,47$.

Solución:

DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO en Prácticas: Orientacións xerais do Grupo de Traballo.

A lei de Snell pode resumirse na ecuación:

$$n_{\rm i} \cdot {\rm sen} \ \varphi_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \varphi_{\rm r}$$

Se o medio de incidencia é o aire, $n_i = 1$, o índice de refracción do vidro será

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}}$$

Se se fai unha representación gráfica de sen φ_r fronte a sen φ_i , a pendente da gráfica será a inversa do índice de refracción.

sen
$$\varphi_r = (1 / n_r) \cdot \text{sen } \varphi_i$$

Faise unha táboa calculando os senos dos ángulos de incidencia e refracción.

N.º exp.	$arphi_{i}/^{\circ}$	$arphi_{ m r}/^\circ$	sen $arphi_{ extsf{i}}$	sen $arphi_{ m r}$
1	10	6,5	0,174	0,113
2	20	13,5	0,342	0,233
3	30	20,3	0,500	0,347
4	40	25,5	0,643	0,431

Nunha folla de cálculo represéntanse nunha gráfica sen φ_r fronte a sen φ_i e trázase a liña de tendencia que pasa pola orixe de coordenadas.

A inversa da pendente será o índice de refracción:

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}} = \frac{1}{0.678} = 1.47$$

A incerteza depende da incerteza das medidas (medio grao?) e do cálculo. O máis sinxelo é poñelo en función das cifras significativas.

$$n_{\rm r} = 1.47 \pm 0.01$$

Se non se ten unha folla de cálculo trázase a ollo a recta polos puntos. Nese caso a incerteza vai ser moito maior.

$$n_{\rm r} = 1.5 \pm 0.1$$

Actualizado: 05/03/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Sumario

VIBRACIÓNS E ONDAS	
PROBLEMAS	1
Ecuación de onda	
Intensidade sonora	
Dioptrio plano	
CUESTIÓNS	
Características e ecuacións das ondas	
Efecto Doppler	
Intensidade sonora	
Dioptrio plano	
LABORATORIO	21
Interferencias, difracción e polarización	21
Dioptrio plano	
Indice de probas A.B.A.U. 2017	
2. (extr.)	
2018	
1. (ord.)	
2. (extr.)	
2019	
1. (ord.)	
2. (extr.)	
2020	
1. (ord.)	
2. (exti.)	
1. (ord.)	
2. (extr.)	
2022	•
1. (ord.)	
2. (extr.)	
2023	
1. (ord.)	
2. (extr.)	•