Transformer (Attention is All You Need)

Transformer (A High-Level Look)

Transformer (A High-Level Look)

The encoders are all identical in structure. Each one is broken down into two sub-layers:

The encoders are all identical in structure. Each one is broken down into two sub-layers:

Each word is embedded into a vector of size 512. We'll represent those vectors with these simple boxes.

The animal didn't cross the street because it was too tired"

Thinking Machines Input **Embedding** X_1 X_2 WQ Queries WK k_2 Keys W۷ **Values**

Input

Thinking

Machines

Embedding

X1

X2

Queries

q₁

q₂

Keys

k₁

k₂

Values

V₁

V₂

Score

 $q_1 \cdot k_1 = 112$

 $q_1 \cdot k_2 = 96$

Input

Thinking

Machines

Embedding

X1

X₂

Queries

q₁

q₂

Keys

k₁

k₂

Values

V₁

V₂

Score

 $q_1 \cdot k_1 = 112$

 $q_1 \cdot k_2 = 96$

Divide by 8 ($\sqrt{d_k}\,$)

14

12

Softmax

0.88

0.12

Input	Thinking	Machines		
Embedding	X1	X ₂		
Queries	q ₁	q ₂		
Keys	k ₁	k ₂		
Values	V ₁	V ₂		
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96		
Divide by 8 ($\sqrt{d_k}$)	14	12		
Softmax	0.88	0.12		
Softmax X Value	V ₁	V ₂		
Sum	Z ₁	Z ₂		

The self-attention calculation in matrix form

The Beast With Many Heads Multi Head Attention

• It expands the model's ability to focus on different positions

• It gives the attention layer multiple "representation subspaces"

ATTENTION HEAD #0

 $\mathbf{W_0}^{\mathbf{Q}}$

ATTENTION HEAD #1

 W_0^{K}

 $W_1{}^{\mathsf{K}}$

W₀V

 $W_1{}^{\text{V}}$

Calculating attention separately in eight different attention heads

...

ATTENTION HEAD #0 ATTENTION HEAD #1 ATTENTION HEAD #7

 Z_0

 Z_1

 \mathbb{Z}_7

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

Thinking Machines

W₀Q W₀K W₀V

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

R

Multi Head Attention

Multi Head Attention

Representing The Order of The Sequence Using Positional Encoding

Representing The Order of The Sequence Using Positional Encoding

Positional Embedding

$$e_w' = e_w + \left[sin\left(rac{pos}{10000^0}
ight), cos\left(rac{pos}{10000^0}
ight), sin\left(rac{pos}{10000^{2/4}}
ight), cos\left(rac{pos}{10000^{2/4}}
ight)
ight] = e_w + \left[sin\left(pos
ight), cos\left(pos
ight), sin\left(rac{pos}{100}
ight), cos\left(rac{pos}{100}
ight)
ight]$$

$$ext{PE}(pos, 2i) = sin\left(rac{pos}{10000^{2i/d_{model}}}
ight),$$

$$ext{PE}(pos, 2i+1) = cos\left(rac{pos}{10000^{2i/d_{model}}}
ight).$$

Positional Embedding

Positional Embedding

The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT

Attention in Decoder

- The self attention layers in the decoder operate in a slightly different way than the one in the encoder
- In the decoder, the self-attention layer is only allowed to attend to earlier positions in the output sequence. This is done by masking future positions (setting them to -inf) before the softmax step in the self-attention calculation
- The "Encoder-Decoder Attention" layer works just like multiheaded self-attention, except it creates its Queries matrix from the layer below it, and takes the Keys and Values matrix from the output of the encoder stack

The Final Linear and Softmax Layer

Recap Of Training

Output Vocabulary

WORD	а	am	l	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

Untrained Model Output

Correct and desired output

The Loss Function

- Each probability distribution is represented by a vector of width vocab_size (6 in our toy example, but more realistically a number like 3,000 or 10,000)
- The first probability distribution has the highest probability at the cell associated with the word "i"
- The second probability distribution has the highest probability at the cell associated with the word "am"
- And so on, until the fifth output distribution indicates

Target Model Outputs

Trained Model Outputs

Beam Search

0.4

0.0

-0.4

0.8

References

• Jay Alammar https://jalammar.github.io/illustrated-transformer/

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
 Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17),