- 1. Определите наибольшую вместимость цилиндрического бака, если площадь его поверхности (без крышки) равна 30 м².
- 2. Найдите локальные минимумы и максимумы следующих функций:

a.
$$f(x) = (x-3)^6$$
.

b.
$$f(x) = \ln \sqrt{1 + x^2} + arctg(x)$$
.

c.
$$f(x,y) = x^2y^2 + \frac{x^2 + y^2}{2} + xy + 1$$
.
d. $f(x,y) = x^3 + y^3 - 3xy$.

d.
$$f(x,y) = x^3 + y^3 - 3xy$$

e.
$$f(x,y) = e^{2x}(x + y^2 - 2y)$$
.

3. Найдите максимум и минимум функции на отрезке:

а.
$$f(x) = |4x - x^2| - \frac{2}{x-2}$$
 на отрезке $[-1; 1]$.

b.
$$f(x,y) = xy - x^2y - \frac{xy^2}{2} - 3$$
, если $0 \le x \le 1$ и $0 \le y \le 2$.

4. С помощью МНК (метод наименьших квадратов) найдите лучшую аппроксимирующую функцию, имеющую форму параболы, для точек:

x	0	1	2	3	4	5
f(x)	-100	-90	-76	-52	-12	50

Примечание. Формулу для параболы можно вывести как мы делали это на занятии для парной регрессии, но тут параметров больше. За функцию параболы взять $f(x) = ax^2 + bx + c$, где параметры a, b и c надо найти.