

3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems

Sobhan Niknam*, Yixian Shen*, Anuj Pathania, Andy D Pimentel

Outline

- Research background
- Dynamic Thermal management
- The key designs of our approach
- Experimental results
- Conclusion

R-C thermal model

Thermal behavior is dual to electronic circuit.

R-C thermal model

Thermal behavior is dual to electronic circuit.

$$\mathbf{AT'} + \mathbf{BT} = \mathbf{P} + T_{amb}\mathbf{G}$$

➤ Block Mode: Thermal resistance and specific heat of each layer (i.e., silicon, TIM, package) is uniform.

3D-stacked Processors

Core and Memory stacked together

- ☐ Through-Silicon Vias (TSVs) are composed of uniform material
- Non-uniform Thermal Conducting Sheets

3D-stacked Processors

Core and Memory stacked together

3D-stacked processors require the grid model for thermal modelling.

N_g=64

N_g=256

Outline

- Research background
- Dynamic Thermal management
- The key designs of our approach
- Experimental results
- Conclusion.

A motivational example

- Experimental platform: simulated 9-layer 16-core 3D-stacked system
- Experimental configuration
- Thermal threshold 70(°C)

A motivational example

(a) Peak Temperature per Layer

(b) Power Consumption per Core

(c) Frequency per Core

- □ DTM Passively reduces the frequency of cores
- □ Thermal transfer takes time from the bottom layer to the top layer

Outline

- Research background
- Dynamic Thermal management
- The key designs of our approach
- Experimental results
- Conclusion.

Grid Model Challenges in Power Budgeting

$$AT' + BT = P + T_{amb}G$$

- ☐ The data structure of block model is not applicable
- DVFS operates per-core, not per-grid

Power Budgeting Solutions for 3D-stacked Processors.

- ☐ Establish a data structure to track **per-grid-node thermal RC values** instead of per-layer RC
- ☐ Ingest per-block thermal resistance, specific heat conductance, and geometric data from the .flp file
- Calculate per-grid-node thermal RC based on the provided block-level thermal properties
- ☐ Solve the **heterogeneous** RC network

Power Budgeting Solutions for 3D Processors.

■ New data structure for tracking per-grid-node thermal RC values

$$AT'_g + BT_g = P_g + T_{amb}G$$

□ All grid nodes belonged to a certain block should have the same power budget

$$P_g = Occupancy \times P_b$$

Case Study

- Experimental platform: simulated 9-layer 16-core 3D-stacked system
- Experimental configuration
- Thermal threshold 70(°C)

Case Study

Case Study

■ 10% faster due to less performance loss compared with DTM

Outline

- Research background
- Dynamic Thermal management
- The key designs of our approach
- Experimental results
- Conclusion.

The experimental configuration

Table 1: Parameters for the simulated 3D-stacked system.

Core Parameters	
Number of Cores	16, 1 layer
Core Model	x86, 4.0 GHz, 22 nm, out-of-order
Core Area	$2.89 \ mm^2$
L1 I/D cache	32/32 KB, 4/4-way,64 B block
L2 cache	private,512 KB, 8-way, 64 B block
L3 cache	512 KB, 16-way, 64B-block
M	emory Parameters
3D-stacked Memory	8 G, 8 layers, 16 channels, 128 banks
Memory Bank Area	$2.89 \ mm^2$
Memory Bandwidth	25.6 GB/s

The experimental results

Comparison on PARSEC benchmark suite

The experimental results

Comparison on SPLASH-2 benchmark suite

Outline

- Research background
- Dynamic Thermal management
- The key designs of our approach
- Experimental results
- Conclusion

The conclusion.

- Developed a linear algebra-based method for power budgeting in 3D systems.
- Introduced a transient temperature-aware power budgeting technique.
- Employed a grid-level RC-thermal model for accurate power budgeting in 3D systems.
- Integrated and evaluated 3D-TTP with the CoMeT thermal simulator using SPLASH and PARSEC benchmarks.

Thanks for your attention

y.shen@uva.nl
Questions