CS 188: Artificial Intelligence

Bayes' Nets

Instructors: Sergey Levine --- University of California, Berkeley

Reminders

- A probability model specifies a probability for every possible world
 - Typically, possible worlds are defined by assignments to a set of variables X_1, \dots, X_n
 - In that case, the probability model is a joint distribution $P(X_1, ..., X_n)$
 - Written as a table, this would be exponential in n
- Independence: joint distribution = product of marginal distributions
 - $P(x,y) = P(x)P(y) \text{ or } P(x) = P(x \mid y)$
 - E.g., probability model for n coins represented by n numbers instead of 2^n
- Independence is rare in practice: within a domain, most variables correlated
- Conditional independence is much more common:
 - Toothache and Catch are conditionally independent given Cavity
 - Traffic and Umbrella are conditionally independent given Rain
 - Alarm and Fire are conditionally independent given Smoke
 - Reading1 and Reading2 are conditionally independent given Ghost location

Ghostbusters, Revisited

- What about two readings? What is $P(r_1,r_2 | g)$?
- Readings are conditionally independent given the ghost location!
- $P(r_1,r_2 | g) = P(r_1 | g) P(r_2 | g)$
- Applying Bayes' rule in full:
- $P(g | r_1, r_2) \propto P(r_1, r_2 | g) P(g)$ $= P(g) P(r_1 | g) P(r_2 | g)$
- Bayesian updating using low-dimensional conditional distributions!!

Bayes Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - A subset of the general class of graphical models
- Take advantage of local causality:
 - the world is composed of many variables,
 - each interacting locally with a few others
- For about 10 min, we'll be vague about how these interactions are specified

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

Variables:

• T: There is traffic

U: I'm holding my umbrella

• R: It rains

Example: Smoke alarm

Variables:

• F: There is fire

• S: There is smoke

• A: Alarm sounds

Example: Ghostbusters

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Can we build it?

Variables

T: Traffic

• R: It rains

L: Low pressure

D: Roof drips

■ B: Ballgame

• C: Cavity

Can we build it?

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

J: John calls

• E: Earthquake!

Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its *parent variables* in the graph
 - CPT: conditional probability table: each row is a distribution for child given a configuration of its parents
 - Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

Number of free parameters in each CPT:

Parent domain sizes d₁,...,d_k

Child domain size d

Each table row must sum to 1

 $(d-1) \Pi_i d_i$

General formula for sparse BNs

- Suppose
 - n variables
 - Maximum domain size is d
 - Maximum number of parents is k
- Full joint distribution has size $O(d^n)$
- Bayes net has size $O(n \cdot d^k)$
 - Linear scaling with n as long as causal structure is local

Bayes net global semantics

 Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

Example

false

0.01

0.95

 $P(b, \neg e, a, \neg j, \neg m) =$ P(b) P(\neg e) P($a|b,\neg$ e) P(\neg j|a) P(\neg m|a)

=.001x.998x.94x.1x.3=.000028

20

0.99

Probabilities in BNs

Why are we guaranteed that setting

$$P(X_1,..,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(X_1,...,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$
- Assume conditional independences: P(X_i | X₁,...,X_{i-1}) = P(X_i | Parents(X_i))
 When adding node X_i, ensure parents "shield" it from other predecessors
- \square Consequence: $P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$
- So the topology implies that certain conditional independencies hold

Example: Burglary

Example: Burglary

- Alarm
- Burglary
- Earthquake

А	В	P(E A,B)	
		true	false
true	true		
true	false		
false	true		
false	false		

Causality?

When Bayes nets reflect the true causal patterns:

- Often simpler (fewer parents, fewer parameters)
- Often easier to assess probabilities
- Often more robust: e.g., changes in frequency of burglaries should not affect the rest of the model!

BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Umbrella*
- End up with arrows that reflect correlation, not causation

What do the arrows really mean?

- Topology may happen to encode causal structure
- Topology really encodes conditional independence: $P(X_i \mid X_1,...,X_{i-1}) = P(X_i \mid Parents(X_i))$

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Example

- JohnCalls independent of Burglary given Alarm?
 - Yes
- JohnCalls independent of MaryCalls given Alarm?
 - Yes
- Burglary independent of Earthquake?
 - Yes
- Burglary independent of Earthquake given Alarm?
 - NO!
 - Given that the alarm has sounded, both burglary and earthquake become more likely
 - But if we then learn that a burglary has happened, the alarm is *explained away* and the probability of earthquake drops back

V-structure

Markov blanket

- A variable's Markov blanket consists of parents, children, children's other parents
- Every variable is conditionally independent of all other variables given its Markov blanket

Bayes Nets

- So far: how a Bayes net encodes a joint distribution
- Next: how to answer queries, i.e., compute conditional probabilities of queries given evidence

