Outline

• What is UML and why we use UML?

 How to use UML diagrams to design software system?

What UML Modeling tools we use today?

- UML → "Unified Modeling Language"
- Language: express idea, not a methodology
- Modeling: Describing a software system at a high level of abstraction
- Unified: UML has become a world standard
 Object Management Group (OMG): www.omg.org

More description about UML:

- It is a industry-standard graphical language for specifying, visualizing, constructing, and documenting the artifacts of software systems
- The UML uses mostly graphical notations to express the OO analysis and design of software projects.
- Simplifies the complex process of software design

• Why we use UML?

- Use graphical notation: more clearly than natural language (imprecise) and code (too detailed).
- Help acquire an overall view of a system.
- UML is not dependent on any one language or technology.
- UML moves us from fragmentation to standardization.

Year Version

2003: UML 2.0

2001: UML 1.4

1999: UML 1.3

1997: UML 1.0, 1.1

1996: UML 0.9 & 0.91

1995: Unified Method 0.8

How to use UML diagrams to design software system?

Types of UML Diagrams:

- Use Case Diagram
- Class Diagram
- Sequence Diagram
- Collaboration Diagram
- State Diagram

This is only a subset of diagrams ... but are most widely used

- A use-case diagram is a set of use cases
- A use case is a model of the interaction between
- External users of a software product (actors) and
- The software product itself
- More precisely, an actor is a user playing a specific role
- describing a set of user scenarios
- capturing user requirements
- contract between end user and software developers

- Actors: A role that a user plays with respect to the system, including human users and other systems. e.g., inanimate physical objects (e.g. robot); an external system that needs some information from the current system.
- <u>Use case:</u> A set of scenarios that describing an interaction between a user and a system, including alternatives.
- System boundary: rectangle diagram representing the boundary between the actors and the system.

Association:

communication between an actor and a use case; Represented by a solid line.

 Generalization: relationship between one general use case and a special use case (used for defining special alternatives) Represented by a line with a triangular arrow head toward the parent use case.

Include: a dotted line labeled <<include>> beginning at base use case and ending with an arrows pointing to the include use case. The include relationship occurs when a chunk of behavior is similar across more than one use case. Use "include" in stead of copying the description of that behavior.

<<include>>

<u>Extend</u>: a dotted line labeled <<extend>> with an arrow toward the base case. The extending use case may add behavior to the base use case. The base class declares "extension points".

<<extend>>

Figure 16.12

- Both Make Appointment and Request Medication include Check Patient Record as a subtask (include)
- The extension point is written inside the base case Pay bill; the extending class Defer payment adds the behavior of this extension point. (extend)
- Pay Bill is a parent use case and Bill Insurance is the child use case. (generalization)

(TogetherSoft, Inc)