Sprawozdanie nr 5

Układy Elektroniczne – Laboratoria

Temat:

C-4. Logika sekwencyjna

WFiIS AGH

11.06.2021

Łukasz Wajda

1. Cel ćwiczenia

Celem ćwiczenia jest zaprojektowanie układów sekwencyjnych oraz sprawdzenie ich działania w praktyce za pomocą matrycy logicznej zasilanej napięciem pojedynczym +5[V] względem masy.

2. Przebieg ćwiczenia

- A. Zaprojektowanie 4-bitowego licznika synchronicznego modulo 14 liczącego w górę.
- B. Zaprojektowanie 3-bitowego licznika synchronicznego z wejściem sterującym A.

3. Wyniki opracowanie

3.1.Licznik modulo 11 (4-bitowy)

Korzystając z 4 wyjść matrycy zaprojektowano licznik synchroniczny modulo 14 liczący w górę. Licznik liczy w kodzie Gray'a. Do jego budowy wykorzystano wyjścia O₄– O₁ matrycy pracujące w trybie sekwencyjnym z przerzutnikiem typu D na wyjściu. Wszystkie stany poza zakresem licznika (14 i 15) potraktowano jako nadmiarowe – nie wystąpią nigdy więc stany następne, do których one prowadzą mogą być dowolne (w Tabeli 1 oznaczone jako x). Licznik zmontowano na matrycy logicznej, której schemat przedstawiono na poniższym rysunku.

Rys.1. Budowa programowalnej matrycy logicznej

Matryca umożliwia bezpośrednią implementację funkcji logicznych w postaci sumy iloczynów. Na każde wyjście przypada 8 bramek AND, których wyjścia są podpięte do jednej bramki OR. Każdy kolejny wiersz symbolizuje jedną bramkę AND, a jej wejścia zaznaczono zworkami w odpowiednich miejscach. Jeżeli w danym bloku logicznym któraś bramka AND powinna pozostać wyłączona należy wpiąć w tym rzędzie zworkę w kolumnie oznaczonej GND – powoduje to wyłączenie bramki AND.

W tabeli prawdy zapisano wszystkie stany licznika $(O_1 - O_4)$ oraz odpowiadające im stany następne $(O_1' - O_4')$.

Tabela 1. Tabela prawdy (stanów)

Stan	O ₄	O ₃	O ₂	O ₁	O4'	O3'	O2'	O ₁ '
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	1
2	0	0	1	1	0	0	1	0
3	0	0	1	0	0	1	1	0
4	0	1	1	0	0	1	1	1
5	0	1	1	1	0	1	0	1
6	0	1	0	1	0	1	0	0
7	0	1	0	0	1	1	0	0
8	1	1	0	0	1	1	0	1
9	1	1	0	1	1	1	1	1
10	1	1	1	1	1	1	1	0
11	1	1	1	0	1	0	1	0
12	1	0	1	0	1	0	1	1
13	1	0	1	1	0	0	0	0
14	1	0	0	1	X	X	X	X
15	1	0	0	0	X	X	X	X

Jak widać licznik zależy tylko od swojego poprzedniego stanu. Stany przechodzą cyklicznie od 0 do 13 (0→13), a stany 14 i 15 nigdy nie występują.

Następnie dokonano minimalizacji funkcji logicznych dla każdego z wyjść $O_1' - O_4'$ wykorzystując metodę tablic Karnaugh'a. Gdy pomagało to w minimalizacji, znaki x traktowane były jako "1", w przeciwnym wypadku reprezentowały "0".

I. Tablica Karnaugh'a i funkcja logiczna dla O₁'

$O_4O_3 \backslash O_2O_1$	00	01	11	10
00	1	1	0	0
01	0	0	\bigcirc 1	1
11	1	1	0	0
10	X	X	0	(1)

Zatem
$$O'_1 = O_4 \bar{O}_3 O_2 \bar{O}_1 + \bar{O}_4 O_3 O_2 + O_4 \bar{O}_2 + \bar{O}_3 \bar{O}_2$$
.

II. Tablica Karnaugh'a i funkcja logiczna dla O2'

00	01	11	10
0	1)	(\neg)	
0	0	0	1
0	(1)	1	1
X	(\mathbf{x})	0	$\backslash 1/$
	00 0 0 0 x	00 01 0 1 0 0 0 0 1 x x	00 01 11 0 1 1 0 0 0 0 1 1 x x 0

Zatem
$$O_2' = O_2 \bar{O}_1 + \bar{O}_4 \bar{O}_3 O_2 + O_4 O_3 O_2 + \bar{O}_3 \bar{O}_2 O_1 + O_4 \bar{O}_2 O_1$$
.

III. Tablica Karnaugh'a i funkcja logiczna dla O3'

$0_40_3 \backslash 0_20_1$	00	01	11	10
00	0	0	0	1
01	1	1	(1)	1
11	Y	_1/	$\langle 1 \rangle$	0
10	X	X	0	0

Zatem
$$O_3' = O_3 \bar{O}_2 + O_3 O_2 O_1 + \bar{O}_4 O_2 \bar{O}_1$$
.

IV. Tablica Karnaugh'a i funkcja logiczna dla O₄'

$O_4O_3 \backslash O_2O_1$	00	01	11	10
00	(1)	0	0	0
01	$\backslash 1$	0	0	0
11		1	1	
10	X	X	0	$\backslash 1$

Zatem
$$O_4' = O_3 \bar{O}_2 \bar{O}_1 + O_4 O_3 + O_4 O_2 \bar{O}_1$$
.

Poniżej przedstawiono schemat realizacji licznika na programowalnej matrycy logicznej. Na rysunku schematycznych kolorem niebieskim zaznaczono miejsca gdzie wpinano zworki.

4

Rys.2a) Programowalna matryca logiczna z przedstawieniem implementacji licznika modulo 14 liczącego w górę.

Rys.2b)Rysunek schematyczny programowalnej matrycy logicznej z przedstawieniem licznika modulo 14 liczącego w górę.

Po zaprojektowaniu licznika został on przetestowany i wyjścia były zgodne z Tabela1 co wskazuje na poprawność wykonanego ćwiczenia.

3.2.Licznik binarny 3-bitowy ze sterowaniem zewnętrznym

W kolejnym etapie zajęć laboratoryjnych zaprojektowano licznik synchroniczny z wejściem sterującym A, liczący w kodzie binarnym. Zgodnie ze szczegółami wersji nr 3 licznik dla wartości stanu wejściowego A równego 0 przechodził kolejno po wartościach parzystych 0→2→4→6. Wszystkie stany nadmiarowe prowadziły do 0. W przypadku stanu wejściowego A równego 1, licznik przechodził kolejno po wartościach nieparzystych 1→3→5→7. Wszystkie stany nadmiarowe prowadziły do 1. Użyto jednego wejścia A matrycy jako wejścia sterującego oraz wyjść O1 − O3 pracujących w trybie sekwencyjnym z przerzutnikiem typu D na wyjściu.

Na początku zaprojektowano tabelę stanów (Tabela 2), gdzie dla każdego z 16 stanów słowa wejściowego AO₃O₂O₁ przypisano jednoznaczną wartość wszystkich 8 wyjść dekodera związanych z wyświetlaczem.

Tabela 2. Tabela prawdy (stanów)

Stan	A	O ₃	O ₂	01	O ₃ '	O2'	O ₁ '
0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	0
2	0	0	1	0	1	0	0
3	0	0	1	1	0	0	0
4	0	1	0	0	1	1	0
5	0	1	0	1	0	0	0
6	0	1	1	0	0	0	0
7	0	1	1	1	0	0	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	1	1
10	1	0	1	0	0	0	1
11	1	0	1	1	1	0	1
12	1	1	0	0	0	0	1
13	1	1	0	1	1	1	1
14	1	1	1	0	0	0	1
15	1	1	1	1	0	0	1

Tym razem licznik zależy zarówno od swojego stanu poprzedniego jaki i od wejścia sterującego A.

Następnie dokonano minimalizacji funkcji logicznych dla każdego z wyjść $O_1' - O_3'$ wykorzystując metodę tablic Karnaugh'a. Gdy pomagało to w minimalizacji, znaki x traktowane były jako "1", w przeciwnym wypadku reprezentowały "0".

I. Tablica Karnaugh'a i funkcja logiczna dla O₁'

$AO_3 \backslash O_2O_1$	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	J	1	1	1

Zatem $O'_1 = A$.

II. Tablica Karnaugh'a i funkcja logiczna dla O2'

$AO_3 \backslash O_2O_1$	00	01	11	10
00	$\overline{1}$	0	0	0
01	$\langle 1 \rangle$	0	0	0
11	0	(1)	0	0
10	0	$\langle 1 \rangle$	0	0

Zatem $O_2' = \bar{A}\bar{O}_2\bar{O}_1 + A\bar{O}_2O_1$.

III. Tablica Karnaugh'a i funkcja logiczna dla O₃'

$AO_3 \backslash O_2O_1$	00	01	11	10
00	0	0	0	(1)
01	(1)	0	0	0
11	0	(1)	0	0
10	0	0	(1)	0

 ${\rm Zatem}\ \, O_3' = \bar{A}O_3\bar{O}_2\bar{O}_1 + AO_3\bar{O}_2O_1 + A\bar{O}_3O_2O_1 + \bar{A}\bar{O}_3O_2\bar{O}_1.$

Rys.7a) Programowalna matryca logiczna z wpiętymi zworkami dla licznika binarnego 3-bitowego ze sterowaniem zewnętrznym.

Rys.7b)Rysunek schematyczny programowalnej matrycy logicznej z połączeniem zworek dla licznika binarnego 3-bitowego ze sterowaniem zewnętrznym.

Po zaprojektowaniu licznika został on przetestowany. Przełączając w dowolnym momencie na tryb 1 licznik zaczyna zawsze liczyć od 000, podobnie w trybie 2 zaczyna liczyć od 001. Wyjścia były zgodne z Tabela 2 co wskazuje na poprawność wykonanego ćwiczenia.