

DDR V_{TT} Power Solutions: A Competitive Analysis

Qian Chen

ABSTRACT

This application report describes the series stub termination logic (SSTL) and tracking termination voltage (V_{TT}) in DDR applications. It analyzes and compares the power loss and voltage deviation of passive and active V_{TT} terminations, and highlights the advantages of active termination.

	Contents							
1	Introduction	1						
2	Series Stub Termination Logic (SSTL) Used in DDR Design							
3	Power Dissipation of Passive Termination	2						
4	Passive Termination vs. Active Termination	4						
5	V_{TT} Power Solution Offered By TI	5						
6	Summary	5						
7	References	5						
	List of Figures							
1	Series Stub Termination Logic (SSTL)	2						
2	High Bit Line With Passive Termination	3						
3	Low Bit Line With Passive Termination	3						
List of Tables								
1	DC Input Logic Levels of SSTL_18							
2	Power Loss of Passive Termination	4						
3	Comparison Between Passive Termination and Active Termination	2						
4	TI V _{TT} Power Solutions	5						

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

Double data rate (DDR) memory is the most popular type of dynamic RAM (DRAM). Computer, laptop, servers, and other electronic devices use DDR memory.

DDR memory power requires two power rails: V_{DDQ} (drain-to-drain core voltage) and V_{TT} . Typically the switching power supply provides power to the V_{DDQ} rail because of the high current requirement. Depending on the current requirement, the V_{TT} rail can be powered by either passive termination or by active termination. This application report explains how V_{DDQ} and V_{TT} provide power for DDR memory. It analyzes and compares the power loss and voltage deviation of two types of V_{TT} terminations, summarizes the advantages of active termination. This application report also describes some V_{TT} power solutions offered by Texas Instruments.

2 Series Stub Termination Logic (SSTL) Used in DDR Design

Figure 1 shows the series stub termination logicl (SSTL) used in DDR design. It uses one series resistor (R_s) connected from the output buffer (driver) to the memory (receiver) and one termination resistor (R_T) connected to the termination rail (V_{TT}). The typical V_{TT} voltage and V_{REF} are equal to $V_{DDQ}/2$.

When the output buffer is in a high state, the Q1 switch is on and Q2 swtich is off. Also, the current flows from V_{DDQ} to V_{TT} through resistors R_S and R_T . Because the V_{TT} termination then sinks the current, the receiver input voltage (V_{IN}) is higher than V_{REF} . When the output buffer is in a low state, Q1 is off and Q2 is on, the current flows from V_{TT} to ground thru R_T and R_S , V_{TT} termination sources current, consequently V_{IN} is lower than V_{REF} .

Figure 1. Series Stub Termination Logic (SSTL)

To avoid a data read/write error, the value of V_{IN} must be within the specification window. For example for SSTL_18 (DDR2), V_{IN} must be higher than V_{REF} + 125 mV in order for receiver to interpret the high bit signal correctly. V_{IN} must be lower than (V_{REF} – 125 mV) in order for the receiver to interpret the low bit signal correctly. If the value of V_{IN} is outside of the specification window, a data read/write error may occur.

 SYMBOL
 PARAMETER
 MIN
 MAX

 $V_{IH(dc)}$ dc input logic high
 $V_{REF} + 125 \text{ mV}$ $V_{DDQ} + 300 \text{ mV}$
 $V_{IL(dc)}$ dc input logic low
 -300 mV $V_{REF} - 125 \text{ mV}$

Table 1. DC Input Logic Levels of SSTL_18

3 Power Dissipation of Passive Termination

The simplified circuit shown in Figure 2 illustrates a high bit line of SSTL_18 (DDR2) with passive termination. The simplified circuit shown in Figure 3 illustrates a low bit line with passive V_{TT} termination. In these examples, V_{DDQ} voltage is 1.8 V and V_{REF} is 0.9 V. The on-resistance R_{ON} of Q1 and Q2 and its typical value 20 Ω is used in the following calculation. The typical values of R_S and R_T are 20 Ω and 25 Ω , respectively. Two resistors (R_P) with the same value act as passive termination.

Figure 2. High Bit Line With Passive Termination

Figure 3. Low Bit Line With Passive Termination

In DDR memory, multiple bit lines share one V_{TT} voltage. The output buffer is either in a high state for the high bit or in a low state for the low bit. If the number of high bit lines and low bit lines is exactly equal, the V_{TT} sink current (current goes into termination) from high bit lines is equal to the source current (current goes out of termination) from low bit lines. As a result, the net V_{TT} current is zero. In this example, the V_{TT} voltage is exactly $V_{DDO}/2$.

If the number of high bit lines and low bit lines are not equal (which is the typical case in the application) the V_{TT} voltage does not equal $V_{DDQ}/2$. The net V_{TT} current and the R_P resistor value determines the actual V_{TT} voltage.

Assuming the number of low bit lines is larger than that of high bit lines, the net V_{TT} current goes out of termination and V_{TT} voltage is lower than $V_{DDQ}/2$. Based on calculation, to make V_{IN} at high bit line higher than logic high threshold (V_{REF} + 125 mV = 1.025 V), V_{TT} voltage must be higher than 0.54 V.

For a DDR2 memory application with 32 data lines and 10 address lines, there are total 42 lines. Assuming V_{TT} termination sources current and the V_{TT} voltage is 0.54 V, use Table 2 to determine the required R_P resistor value and the total power loss on two resistors. As calculated, if all lines are low bit, this application requires two 2.07- Ω resistors. These resistors yield a total power loss of 0.91 W. In order to make the V_{TT} voltage higher than 0.54 V (for the purpose of increasing the margin), the R_P resistor value must be smaller and the power loss on two resistors increases.

Table 2. Power Loss of Passive Termination

BIT LINE	YTITMAUÇ			
HIGH	LOW	I _{VTT} (A)	R _P (Ω)	P _{LOSS} (W)
0	42	0.35	2.07	0.91
1	41	0.32	2.24	0.84
2	40	0.29	2.46	0.77
3	39	0.27	2.71	0.69
4	38	0.24	3.03	0.62
5	37	0.21	3.43	0.55
6	36	0.18	3.95	0.48
7	35	0.15	4.65	0.40
8	34	0.13	5.67	0.33
9	33	0.10	7.25	0.26
10	32	0.07	10.06	0.19
11	31	0.04	16.40	0.11
12	30	0.02	44.44	0.04

4 Passive Termination vs. Active Termination

Compared to passive termination operation, active termination operation offers a smaller amount of V_T voltage deviation and lower power loss. Using the TPS51200 device as an example, the voltage deviation is below 25 mV when the V_T current is 2 A.

Table 3 compares passive termination and active terminations in DDR2 applications. In this table, two 2- Ω resistors act as passive termination. The TPS51200 device is used as active termination. Because the V_{TT} voltage with active termination is very close to 0.9 V, use 0.9 V to calculate across the current range. This table lists the V_{TT} voltage deviation and power loss of two types of terminations at different V_{TT} current conditions.

As the calculations listed in Table 3 shows, the V_{TT} voltage during passive termination operation drops significantly when the current increases. When the current level is 0.35 A, the V_{TT} voltage drops from 0.9 V to 0.55 V. If the current is higher than 0.35 A, V_{TT} voltage drops below 0.54 V, and the V_{IN} voltage in a high-bit line no longer remains within the specification window. As a result of this change, a read/write error may occur.

Table 3. Comparison Between Passive Termination and Active Termination

V _{TT} Source	PASSIVE TE	RMINATION	ACTIVE TE	RMINATION
Current (A)	ν _π (V)	P _{LOSS} (W)	ν _π (۷)	P _{LOSS} (W)
0.00	0.90	0.81	0.9	0
0.05	0.85	0.81	0.9	0.045
0.10	0.80	0.82	0.9	0.09
0.15	0.75	0.83	0.9	0.135
0.20	0.70	0.85	0.9	0.18
0.25	0.65	0.87	0.9	0.225
0.30	0.60	0.90	0.9	0.27
0.35	0.55	0.93	0.9	0.315

In addition to the smaller voltage deviation, the power loss during active termination operation is much lower than that during passive termination operation. When V_{TT} current is 0 A, the power loss during active termination operation is nearly 0 W, whereas it is 0.81 W during passive termination operation. The effect of this difference is that passive termination consumes much more power than active termination when V_{TT} current is very small in standby mode. When V_{TT} current is 0.35 A, the power loss of active termination is 0.315 W. This amount of power loss is only one-third of 0.93-W power loss of passive termination.

Use similar calculations to determine DDR3, DDR3L and DDR4 application comparisons.

5 V_{ττ} Power Solution Offered By TI

Because of the advantages of small voltage deviation and low power loss, most DDR applications now use active V_{TT} terminations. Table 4 lists the V_{TT} power solutions offered by TI. Both the TPS51206 device and the TPS51200 device are sink/source LDO regulators requiring small output capacitance and minimum external components count. The TPS51206 device supports 2 A and the TPS51200 supports 3 A. The TPS53317A is a 6-A switching regulator which is suitable for high-current applications. TPS7H3301-SP is radiation-hardened 3-A regulator qualified to Total Ionizing Dose (TID) 100 krad (Si) for radiation and military application.

TI also provides V_{DDQ} and V_{TT} integrated power solutions such as the TPS51116 and TPS51916 devices. See the TI website and device data sheets for more information.

DEVICE	TPS51200, TPS51200-Q1	TPS51206	LP2996	LP2997	LP2998, LP2998-Q1	TPS53317A	TPS7H3301-SP
MEMORY TYPE	DDR, DDR2, DDR3, DDR3L, LPDDR3, DDR4,	DDR2, DDR3, DDR3L, LPDDR3, DDR4,	DDR, DDR2	DDR2	DDR, DDR2, DDR3, DDR3L	DDR, DDR2, DDR3, DDR3L, LPDDR3, DDR4	DDR, DDR2, DDR3, LPDDR3, DDR4
I _{OUT} (A)	3	2	1.5	0.5	1.5	6	3
V _{IN} (V)	1.1 to 3.5	1 to 3.5	1.8 to 5.5	1.8 to 5.5	1.35 to 5.5	0.9 to 6	0.9 to 3.5

Table 4. TI V_{TT} Power Solutions

6 Summary

In a passive termination application, a low-value resistor helps to reduce V_{TT} voltage deviation and helps avoid read/write error, but results in high power loss. A high-value resistor helps to reduce power loss but it increases the chance of bit errors.

Compared to passive termination, the active termination solution brings much lower power loss and smaller V_{TT} voltage deviation, hence, improves data read/write accuracy and integrity.

Because an application typically converts V_{TT} power from V_{DDQ} power, the active V_{TT} termination demands a lower amount of current from the V_{DDQ} rail. Therefore, the V_{DDQ} current rating can be reduced when the application uses active termination.

7 References

- Jim Aliberti, "How To Match The DDR Memory Power Solution To The Application," Texas Instruments, 2013
- 2. Peter James Miller, "Powering DDR Memory and SSTL," Texas Instruments, 2011
- 3. JEDEC Standard, JESD8-15A
- 4. TPS51200 datasheet

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (April 2018) to A Revision

Page

Added support for TPS7H3301-SP in Section 5 and Table 4.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated