${\it Math 40003~Linear~Algebra~and~Groups}$

Problem Sheet 2

1. You should now be able to do questions 2 and 6 on PS1

2. Describe the solution sets to the following sets of simultaneous equations in \mathbb{R}^2 :

(a)
$$x + 2y = 3$$

 $-4x + \frac{1}{2}y = 5$
(b) $x + 2y = 3$
(c) $-4x + \frac{1}{2}y = 5$
 $x + 4y = 6$

3. Describe the solution sets to the following sets of simultaneous equations in \mathbb{R}^3 :

(a)
$$x + 2y = 3$$

 $-4x + \frac{1}{2}y - 2z = 5$
(b) $x + 2y = 3$
(c) $-4x + \frac{1}{2}y - 2z = 5$
 $x + 4y + z = 6$

4.* For which $a, b \in \mathbb{R}$ does the system of equations

$$x_1 + x_2 + x_3 = -1$$

$$2x_1 + x_2 + ax_3 = 1$$

$$3x_1 + x_2 + x_3 = b$$

have (i) no solutions, (ii) exactly one solution, (iii) infinitely many solutions?

What about the system
$$x_1 + x_2 + x_3 + x_4 = 0$$

 $x_1 - x_2 + ax_3 + x_4 = 1$
 $2x_1 + ax_2 + x_3 + 2x_4 = b$?

5. Which of the following are possible, find examples if possible:

(a) Two simultaneous equations in two unknowns which defines a line in \mathbb{R}^2 .

(b) Two simultaneous equations in two unknowns which defines the empty set in \mathbb{R}^2 .

(c) One equation in no unknowns which defines the empty set.

(d) Two simultaneous equations in three unknowns which defines a point in \mathbb{R}^3 .

6. (a) Let M_{θ} be the reflection in the line $L_{\theta} = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 = x_1 \tan \theta\}$. Using any school geometry or trigonometry you like, show that the matrix representing M_{θ} is

$$\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}.$$

(b) Let R_{α} be a rotation about the origin, and let M_{β} be the reflection in a line through the origin. Prove that $M_{\beta}R_{\alpha}$ is a reflection.

(c) Let M_{α} and M_{β} be reflections in straight lines through the origin. Prove that $M_{\alpha}M_{\beta}$ is a rotation.