Eqn Ideal_Bandpass_N5_Cheby = dB("Low_Pass_1.5GHz_Filter"..S(6,5))

Eqn Real_Bandpass_N5_Cheby = dB(S(2,1))

Eqn Real_Bandpass_bw3dB = bandwidth_func(db(S21),0)
Eqn Ideal_Bandpass_bw3dB = bandwidth_func(dB("Low_Pass_1.5GHz_Filter"..S(6,5)),0)

Real_Bandpass_bw3dB 2.862E6

Ideal_Bandpass_bw3dB 3.891E6

Eqn Real_Bandpass_center_f = center_freq(dB(S21), 3)

Eqn Ideal_Bandpass_center_f=center_freq(dB("Low_Pass_1.5GHz_Filter"..S(6,5)), 3)

Real_Bandpass_center_f 1.554E8 ...eal_Bandpass_center_f
1.553E8

Insertion Loss (The more positive the more loss)

Eqn Ideal_IL_dB = -10*log10(1-pow(mag("Low_Pass_1.5GHz_Filter"..S(5,5)),2))

Power_RF = 0 dB Here

