FEUILLE D'EXERCICES N°2 Convexité

Exercices préparatoires

Les exercices de cette section ne seront pas traités en TD. Les étudiants sont encouragés à les travailler en autonomie avant la séance de TD.

Exercice 1 – Vrai/faux Les propositions suivantes sont-elles vraies ou fausses? Le cas échéant, fournir un contre-exemple.

- (a) L'intersection de deux ensembles convexes est convexe.
- (b) L'union de deux ensembles convexes est convexe.
- (c) L'intérieur et l'adhérence d'un ensemble convexe sont convexes.
- (d) Toute combinaison linéaire de fonctions convexes est convexe.
- (e) La composée de deux fonctions convexe est convexe.
- (f) Toute norme est convexe.
- (g) Le carré de toute norme est convexe.

Exercice 2 – Cas différentiable Soient $n \in \mathbb{N}$ et $\alpha \geq 0$. Déterminer si les fonctions suivantes sont (strictement) convexes sur leur domaine de définition.

(a)
$$f: \left\{ \begin{array}{ccc} (\mathbb{R}^+)^* & \to & \mathbb{R} \\ t & \mapsto & -\ln t \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & x^4 - 2x^2y + y^2 \end{array} \right.$$

Exercices fondamentaux

Exercice 3 – Fonctions quadratiques Soient $A \in \mathcal{M}_{n,n}(\mathbb{R}), b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. On considère les deux fonctions suivantes

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \left\langle A \, x, x \right\rangle + \left\langle b, x \right\rangle + c \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \left\| A \, x - b \right\|_2^2 \end{array} \right.$$

- (a) À quelle condition les fonctions f et g sont-elles convexes? strictement convexes?
- (b) Montrer que, si A est symétrique et si on note λ_1 sa plus petite valeur propre, alors

$$\forall x \in \mathbb{R}^n, \quad \langle Ax, x \rangle \ge \lambda_1 \|x\|_2^2$$

En déduire que f est fortement convexe si et seulement si A est définie positive, puis que g est fortement convexe si et seulement si A injective.

(c) Déterminer les points critiques de f et g.

Exercice 4 – Fonctions fortement convexes

(a) Premier exemple. Soit $x^0 \in \mathbb{R}^n$ et $\alpha > 0$. Montrer que

$$f_{\alpha}: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{\alpha}{2} \|x - x^0\|_2^2 \end{array} \right.$$

est fortement convexe.

(b) Soit $g: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe. Montrer que la fonction

$$\left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & g(x) + \frac{\alpha}{2} \|x - x^0\|_2^2 \end{array} \right.$$

est fortement convexe.

On considère à présent $f: \mathbb{R}^n \to \mathbb{R}$ une fonction fortement convexe de module α .

(c) Justifier que f est strictement convexe.

Soit $x^0 \in \mathbb{R}^n$. On introduit la fonction

$$g: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & f(x) - \frac{\alpha}{2} \|x - x^0\|_2^2 \end{array} \right.$$

- (d) Montrer que g est convexe. En déduire que toute fonction fortement convexe est la somme d'une fonction convexe de même domaine et d'une fonction quadratique.
- (e) En déduire que la somme d'une fonction convexe et d'une fonction fortement convexe, de module α , est fortement convexe, de module α .
- (f) On suppose que f est différentiable. Montrer que g admet une minorante affine, i.e. il existe $b \in \mathbb{R}^n$ et $c \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}^n, \qquad g(x) \ge \langle b, x \rangle + c$$

(g) En déduire que f est infinie à l'infini.

Exercice 5 – Projection sur un convexe Soit \mathcal{X} un espace de HILBERT, de produit scalaire noté $\langle \cdot, \cdot \rangle$ et de norme euclidienne notée $\| \cdot \|$. Soient $a \in \mathcal{X}$ et r > 0. Après avoir en avoir justifié l'existence, déterminer la projection sur la boule fermée de rayon non nul

$$\overline{\mathcal{B}(a,r)} = \left\{ x \in \mathcal{X} \mid ||x - a|| \le r \right\}$$

Compléments

* Exercice 6 – Fréchet-différentiabilité et Gateaux-différentiabilité Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe. Soit $a \in \mathbb{R}$.

- (a) On suppose que f est Fréchet-différentiable en a. Montrer que f est Gateaux-différentiable en a.
- (b) On suppose à partir de cette question que f est GATEAUX-différentiable en a. Notons S la sphère unité. Soit $\varepsilon > 0$. Justifier qu'il existe un recouvrement fini de boules de rayon ε :

$$\mathcal{S} \subset \bigcup_{i=1}^r \mathcal{B}(v_i, \varepsilon)$$

- (c) Soit $h \in \mathbb{R}^n$. Vérifier qu'il existe $v \in \mathcal{S}$ tel que $h = \|h\|_2 v$ et $i \in [1; r]$ tel que $\|v v_i\|_2 \le \varepsilon$.
- (d) Montrer que $|f(a+h) f(a) f'(a;h)| \le |f(a+\|h\|_2 v_i) f(a) \|h\|_2 f'(a;v_i)| + |f(a+\|h\|_2 v) f(a+\|h\|_2 v_i)| + \|h\|_2 |f'(a;v_i) f'(a;v)|$
- (e) On rappelle que, puisque f est convexe, elle est localement lipschitzienne. En déduire qu'il existe M>0 tel que

$$|f(a + ||h||_2 v) - f(a + ||h||_2 v_i)| \le M ||h||_2 \varepsilon$$

(f) Montrer qu'il existe également M' > 0 tel que

$$|f'(a; v_i) - f'(a; v)| \le M' ||v_i - v||_2 \le M' \varepsilon$$

(g) Justifier que, pour tout $i \in [1; r]$, il existe $\delta_i > 0$ tel que pour tout $h \in \mathcal{B}(0, \delta_i)$

$$\left| \frac{f(a + ||h||_2 v_i) - f(a) - ||h||_2 f'(a; v_i)}{||h||_2} \right| \le \varepsilon$$

Soit $\delta = \max\{\delta_i\}_{1 \leq i \leq r}$. En déduire que pour tout $i \in [1; r]$

$$\forall h \in \mathcal{B}(0,\delta), \qquad |f(a+\|h\|_2 v_i) - f(a) - \|h\|_2 f'(a;v_i)| \le \varepsilon \|h\|_2$$

(h) Vérifier que
$$|f(a+h) - f(a) - f'(a;h)| \le (1 + M + M') ||h||_2 \varepsilon$$

(i) En déduire que f est FRÉCHET-différentiable an a.

Exercice 7 – Séparation d'un point et d'un convexe fermé

Soit $\mathcal{C} \subset \mathcal{X}$ un ensemble convexe,

fermé et non vide. Soit $x^0 \in \mathcal{X} \setminus \mathcal{C}$. Considérons la fonction

$$f: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \langle x^0 - \mathrm{proj}_{\mathcal{C}}(x^0), x \rangle \end{array} \right.$$

(a) Montrer que $\forall x \in \mathcal{C}, \quad f(x) \leq f(\operatorname{proj}_{\mathcal{C}}(x^0))$

puis que $f(x^0) = ||x^0 - \text{proj}_{\mathcal{C}}(x^0)||^2 + f(\text{proj}_{\mathcal{C}}(x^0))$

(b) Justifier que $f(x^0) > f\left(\operatorname{proj}_{\mathcal{C}}(x^0)\right)$

En déduire que $\forall \, x \in \mathcal{C}, \qquad f(x^0) > f\big(\operatorname{proj}_{\mathcal{C}}(x^0)\big) \geq f(x)$

(c) Considérons le point $y=(x^0+\operatorname{proj}_{\mathcal{C}}(x^0))/2$. Justifier que $y\neq x^0$ et $y\neq\operatorname{proj}_{\mathcal{C}}(x^0)$. Montrer que

 $f(y) = \frac{1}{2} \left(f(x^0) + f(\operatorname{proj}_{\mathcal{C}}(x^0)) \right) \quad \text{et} \quad f(x^0) > f(y) > f\left(\operatorname{proj}_{\mathcal{C}}(x^0)\right)$

- (d) Montrer que l'ensemble $\mathcal{H} = \left\{ x \in \mathcal{X} \mid \langle x^0 \mathrm{proj}_{\mathcal{C}}(x^0), x \rangle = f(y) \right\}$ définit un hyperplan affine.
- (e) Montrer que $x^{0} \in \mathcal{H}^{+} = \left\{ x \in \mathcal{X} \mid \langle x^{0} \operatorname{proj}_{\mathcal{C}}(x^{0}), x \rangle > f(y) \right\}$ et que $\mathcal{C} \subset \mathcal{H}^{-} = \left\{ x \in \mathcal{X} \mid \langle x^{0} \operatorname{proj}_{\mathcal{C}}(x^{0}), x \rangle < f(y) \right\}$

On dit alors que l'hyperplan \mathcal{H} sépare strictement x^0 de \mathcal{C} .