

Attorney Docket No. 25-270
Patent

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant: Akiko NAGAHARA

Serial No.: (new) Art Unit:

Filed: March 25, 2004 Examiner:

For: ZOOM LENS AND PROJECTION DISPLAY
DEVICE WHICH USES SAME

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

March 25, 2004

Sir:

Under the provisions of 35 U.S.C. §119 and 37 C.F.R. § 1.55(a), the applicant hereby claims the right of priority based on the following application:

<u>Country</u>	<u>Application No.</u>	<u>Filed</u>
Japan	2003 - 084697	March 26, 2003

A certified copy of the above-noted application is attached hereto.

Please charge any fees under 37 C.F.R. § 1.16 - 1.21(h) or credit any overpayment to Deposit Account No. 01-2509.

Respectfully submitted,

ARNOLD INTERNATIONAL

By Bruce Y. Arnold
Bruce Y. Arnold
Reg. No. 28,493

(703) 759-2991

P.O. Box 129
Great Falls, VA 22066-0129

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 3月26日

出願番号 Application Number: 特願2003-084697

[ST. 10/C]: [JP2003-084697]

出願人 Applicant(s): 富士写真光機株式会社

2003年11月18日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 FK1039
【あて先】 特許庁長官殿
【国際特許分類】 G02B 15/20
【発明者】
【住所又は居所】 埼玉県さいたま市植竹町1丁目324番地 富士写真光機株式会社内
【氏名】 永原 曜子
【特許出願人】
【識別番号】 000005430
【氏名又は名称】 富士写真光機株式会社
【代理人】
【識別番号】 100097984
【弁理士】
【氏名又は名称】 川野 宏
【手数料の表示】
【予納台帳番号】 041597
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ズームレンズおよびこれを用いた投写型表示装置

【特許請求の範囲】

【請求項1】 拡大側より順に、変倍の際に固定でフォーカシングを行う負の屈折力を有する第1レンズ群と、

連続変倍およびその連続変倍によって生じる像面移動の補正を行い、相互に関係をもって移動する正の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群および負の屈折力を有する第4レンズ群と、

変倍の際に固定で正の屈折力を有する第5レンズ群とを配設してなることを特徴とするズームレンズ。

【請求項2】 前記第2レンズ群はズーミングの広角端位置に比べ望遠端位置の方がより拡大側に位置し、前記第4レンズ群はズーミングの広角端位置に比べ望遠端位置の方がより縮小側に位置することを特徴とする請求項1記載のズームレンズ。

【請求項3】 下記の各条件式(1)～(4)を満足することを特徴とする請求項1または2記載のズームレンズ。

$$-2.2 < F_1/F < -1.2 \quad \dots \dots (1)$$

$$0.8 < F_2/F < 1.1 \quad \dots \dots (2)$$

$$-2.2 < F_4/F < -1.0 \quad \dots \dots (3)$$

$$0.7 < F_5/F < 1.2 \quad \dots \dots (4)$$

ただし、

F：広角端におけるレンズ全系の焦点距離（拡大側の共役点位置が無限遠）

F_1 ：第1レンズ群の焦点距離

F_2 ：第2レンズ群の焦点距離

F_4 ：第4レンズ群の焦点距離

F_5 ：第5レンズ群の焦点距離

【請求項4】 光源、ライトバルブ、および該ライトバルブにより変調された光による光学像をスクリーン上に投映する投映レンズとして請求項1～3のうちいずれか1項記載のズームレンズを備えたことを特徴とする投写型表示装置。

【発明の詳細な説明】**【0001】****【発明の属する技術分野】**

本発明は、CCDや撮像管等の撮像素子あるいは銀塩フィルム等を用いたカメラの結像用ズームレンズ、さらには投映型テレビの投映用ズームレンズに関し、特に液晶を用いた投写型表示装置に用いられる投映用ズームレンズおよびこれを用いた投写型表示装置に関するものである。

【0002】**【従来の技術】**

従来のズームレンズとしては、例えば特許文献1および2に記載された、5群構成のものが知られている。これらは、物体側より順に、変倍の際に固定でフォーカシング機能を有する負の第1レンズ群、連続変倍のため、およびその連続変倍によって生じる像面移動の補正のため、相互に関係をもって移動する正の第2レンズ群、正の第3レンズ群および負の第4レンズ群、ならびに変倍の際に固定の正の第5レンズ群から構成され、さらに所定の条件式を満足するようにされたズームレンズである。

【0003】

従来よりこのタイプのズームレンズには、まず液晶プロジェクタに対応させるために明るさが要望され、さらに投写型表示装置の小型化の要望に応えるためコンパクト性が要望されている。また、液晶を用いた投映レンズに使用するために投映レンズの縮小側が略テレセントリックな光学系とされていることや、色分解あるいは色合成の光学系をレンズ系と結像面の間に挿入するために適量のバックフォーカスを備えていることも、このタイプのズームレンズの前提条件といえる。

また、近年このタイプのズームレンズには、特許文献1および2のように、投写型表示装置において大型スクリーンに近い距離から投映したいという要望に応えるため、より広画角でズーム比もある程度大きい投映レンズが数多く提案されている。例えば、100インチサイズに投映する場合に、2.5~3mの投映距離を想定するようなものがある。

【0004】**【特許文献1】**

特開2000-292701号公報

【特許文献2】

特開2001-4919号公報

【0005】**【発明が解決しようとする課題】**

しかしながら、投写型表示装置の普及に伴い、その設置位置も必ずしも観衆とスクリーンとの間に限られず、例えば観衆の後方に天井に吊るなどして設置して観衆の頭越しにスクリーンに投映するというような場合もあり、設置位置の自由度が求められている。このような場合、上記広画角なズームレンズよりも、むしろ焦点距離の長いテレ系のズームレンズが望ましく、上記と同様の100インチサイズに投映する場合に、5~10mの投映距離を想定するような光学性能の良好なズームレンズが要望されている。

【0006】

本発明は、このような事情に鑑みなされたものであり、3群移動の5群構成のズームレンズにおいて、液晶を用いた投写型表示装置に好適な、諸収差が良好に補正された焦点距離の長いテレ系のズームレンズを提供することを目的とするものである。また、本発明は、上記ズームレンズを用いた投写型表示装置を提供することを目的とするものである。

【0007】**【課題を解決するための手段】**

本発明のズームレンズは、拡大側より順に、変倍の際に固定でフォーカシングを行う負の屈折力を有する第1レンズ群と、

連続変倍およびその連続変倍によって生じる像面移動の補正を行い、相互に關係をもって移動する正の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群および負の屈折力を有する第4レンズ群と、

変倍の際に固定で正の屈折力を有する第5レンズ群とを配設してなることを特徴とするものである。

【0008】

また、前記第2レンズ群はズーミングの広角端位置に比べ望遠端位置の方がより拡大側に位置し、前記第4レンズ群はズーミングの広角端位置に比べ望遠端位置の方がより縮小側に位置することが好ましい。

【0009】

また、下記の各条件式（1）～（4）を満足することを特徴とすることが好ましい。

$$-2.2 < F_1 / F < -1.2 \quad \dots \dots (1)$$

$$0.8 < F_2 / F < 1.1 \quad \dots \dots (2)$$

$$-2.2 < F_4 / F < -1.0 \quad \dots \dots (3)$$

$$0.7 < F_5 / F < 1.2 \quad \dots \dots (4)$$

ただし、

F：広角端におけるレンズ全系の焦点距離（拡大側の共役点位置が無限遠）

F_1 ：第1レンズ群の焦点距離

F_2 ：第2レンズ群の焦点距離

F_4 ：第4レンズ群の焦点距離

F_5 ：第5レンズ群の焦点距離

【0010】

さらに、本発明の投写型表示装置は、光源、ライトバルブ、および該ライトバルブにより変調された光による光学像をスクリーン上に投映する投映レンズとして上記ズームレンズを備えたことを特徴とするものである。

【0011】**【発明の実施の形態】**

以下、本発明の実施形態について図面を用いて説明する。図1は本発明に係る後述する実施例1のズームレンズの基本構成を示すものであり、広角端におけるレンズ構成図(WIDE)および望遠端におけるレンズ構成図(TELE)である。このレンズを本実施形態の代表として、以下に説明する。

【0012】

すなわちこのズームレンズは、変倍の際に固定でフォーカシングを行うための

負の屈折力を有する第1レンズ群G₁と、連続変倍のため、およびその連続変倍によって生じる像面移動の補正のため、相互に関係をもって移動する正の屈折力を有する第2レンズ群G₂、負の屈折力を有する第3レンズ群G₃および負の屈折力を有する第4レンズ群G₄と、変倍の際に固定で正の屈折力を有するリレーレンズである第5レンズ群G₅とを拡大側より順に配設されてなる。なお、第5レンズ群G₅と液晶表示パネル1との間には、赤外線をカットするフィルタやローパスフィルタさらには色合成光学系（色分解光学系）に相当するガラスブロック2が配列されている。また、図中、Xは光軸を表している。

【0013】

また、第2レンズ群G₂は、ズーミングの広角端位置に比べ望遠端位置の方がより拡大側に位置するように構成されている。また、第4レンズ群G₄は、ズーミングの広角端位置に比べ望遠端位置の方がより縮小側に位置するように構成されている。

【0014】

さらに、このズームレンズは、下記条件式（1）～（4）を満足するように構成されている。

$$-2.2 < F_1 / F < -1.2 \quad \dots \dots (1)$$

$$0.8 < F_2 / F < 1.1 \quad \dots \dots (2)$$

$$-2.2 < F_4 / F < -1.0 \quad \dots \dots (3)$$

$$0.7 < F_5 / F < 1.2 \quad \dots \dots (4)$$

ただし、

F：広角端におけるレンズ全系の焦点距離（拡大側の共役点位置が無限遠）

F₁：第1レンズ群G₁の焦点距離

F₂：第2レンズ群G₂の焦点距離

F₄：第4レンズ群G₄の焦点距離

F₅：第5レンズ群G₅の焦点距離

【0015】

また、本発明に係る投写型表示装置は、光源、ライトバルブ、および上述した本発明に係るズームレンズを備えた装置である。この装置において本発明に係る

ズームレンズは、ライトバルブにより変調された光による光学像をスクリーン上に投映するための投映レンズとして機能する。例えば、図1に示すズームレンズを備えた液晶ビデオプロジェクタの場合は、紙面右側の光源部（図示せず）から略平行光束が入射され、液晶表示パネル1において映出された画像情報を担持したこの光束が、ガラスブロック2を介してこのズームレンズにより、紙面左側方向のスクリーン（図示せず）に拡大投写される。なお、液晶ビデオプロジェクタにおいて一般には、光源からの光束をダイクロイックミラーおよびレンズアレイからなる色分離光学系によりR、G、Bの3原色光に分離し、各原色光用に3つの液晶表示パネルを配設してフルカラー画像を表示可能な構成とされる。ガラスブロック2はこの3原色光を合成するダイクロイックプリズムとすることができる。

【0016】

以下、本実施形態によるズームレンズおよびこれを用いた投写型表示装置の作用効果について説明する。

【0017】

拡大側より順に、変倍の際に固定でフォーカシングを行うための負の屈折力を有する第1レンズ群G₁と、連続変倍のため、およびその連続変倍によって生じる像面移動の補正のため、相互に関係をもって移動する正の屈折力を有する第2レンズ群G₂と、負の屈折力を有する第3レンズ群G₃および負の屈折力を有する第4レンズ群G₄と、変倍の際に固定で正の屈折力を有するリレーレンズである第5レンズ群G₅とを配設された構成により、液晶を用いた投写型表示装置に好適な、諸収差が良好に補正された焦点距離の長いテレ系のズームレンズを得ることができる。

【0018】

テレ系のズームレンズを実現するためには、標準的なズームレンズに比べて負の屈折力を強くする必要がある。しかしながら、そのためにフォーカスを行う第1レンズ群G₁や固定の第5レンズ群G₅のパワーバランスを変更してしまうと、光学性能劣化の虞が大きい。良好な光学性能とするためには、パワーバランスの変更は移動群G₂～G₄において解決することが望ましい。ただし、移動群G₂～G₄においても、負レンズ群の屈折力を強くしすぎたり、正レンズ群の屈折

力を抑えすぎたりすることは光学性能上望ましくない。そこで、本実施形態に係るズームレンズは、負の屈折力を第3レンズ群G₃および第4レンズ群G₄の2つの群に分担させ、それぞれの群が強すぎる屈折力を持たないように構成されている。

【0019】

なお、第1レンズ群G₁は負の屈折力を有し光線を発散させているため、移動群G₂～G₄のうち、第2レンズ群G₂は正の屈折力を有する群とし、第3レンズ群G₃および第4レンズ群G₄に負の屈折力を分担させることが望ましい。このようにして3つの群G₂～G₄を相互に関係を持って移動させることで、テレ系のズームレンズを実現することができる。

【0020】

また、本実施形態に係るズームレンズは、第2レンズ群G₂はズーミングの広角端位置に比べ望遠端位置の方がより拡大側に位置し、第4レンズ群G₄はズーミングの広角端位置に比べ望遠端位置の方がより縮小側に位置することが好ましい。さらに、第2レンズ群G₂は広角端から望遠端への変倍の際に拡大側へ移動し、第4レンズ群G₄は広角端から望遠端への変倍の際に縮小側へ移動するよう構成することが好ましい。

【0021】

すなわち、第2レンズ群G₂における軸上光線の光束高は、広角側よりも望遠側の方で大きくなるので、第2レンズ群G₂はズーミングの広角端位置に比べ望遠端位置の方がより拡大側に位置する構成とする方が、第2レンズ群G₂の径を小さくすることができる。

【0022】

また、第4レンズ群G₄に関しても、ズーミングの広角端位置に比べ望遠端位置の方がより縮小側に位置する構成が、第1レンズ群G₁および第2レンズ群G₂のレンズ径のコンパクト化に寄与し得る。本実施形態に係るズームレンズでは、軸外の主光線が光軸と交差する仮想の絞り位置は、第5レンズ群G₅の屈折力に大きく依存し、広角端においてその位置はおよそ第3レンズ群G₃と第4レンズ群G₄との近辺に存在する。例えば、後述する実施例においては、第3レンズ

群G₃と第4レンズ群G₄の中間に存在している。仮に、第4レンズ群G₄がズーミングの広角端位置に比べ望遠端位置の方がより拡大側に位置する構成とし、上記仮想の絞り位置よりも拡大側に位置した場合、ともに負の屈折力を有する第3レンズ群G₃および第4レンズ群G₄が光線を跳ね上げことになる。この場合には、望遠端における明るさや周辺光量を確保しながら第1レンズ群G₁および第2レンズ群G₂のレンズ径を小さくすることが非常に困難となるので、第4レンズ群G₄は広角端から望遠端への変倍の際に縮小側へ移動するように構成し、上記各群G₁、G₂のレンズ径のコンパクト化を図ることが好ましい。

【0023】

次に、上記条件式（1）については、下限を超えて第1レンズ群G₁の負の屈折力が弱まると、F値の小さなレンズの収差補正が困難になったり、フォーカシングによる第1レンズ群G₁の移動量が増えてしまい収差変動が激しくなったりする。また上限を超えて負の屈折力が強まると、第1レンズ群G₁によって軸上光線が跳ね上げられすぎて、特に歪曲収差や球面収差等の収差の補正が困難となる。

【0024】

また、上記条件式（2）については、上限を超えて第2レンズ群G₂の正の屈折力が弱まると変倍に伴う移動量が大きくなりレンズサイズが大きくなってしまう。また下限を超えて第2レンズ群G₂の正の屈折力が強まると収差補正が困難となる。

【0025】

また、上記条件式（3）については、上限を超えて第4レンズ群G₄の負の屈折力が強まると、収差の発生量が大きくなり、収差補正が困難となる。また、下限を超えて第4レンズ群G₄の負の屈折力が弱まると、第4レンズ群G₄のズーミング時における移動量が過大となり、レンズ系のコンパクト化が困難となる。特に、第4レンズ群G₄が、ズーミングの広角端位置に比べ望遠端位置の方がより縮小側に位置するように構成されている場合、この移動量の増大は第4レンズ群G₄と第5レンズ群G₅との空気間隔の増大となり、レンズ全長への影響が極めて大きい。

【0026】

また、移動群G₂～G₄中の2つの負のレンズ群G₃、G₄のうち、一方が強い屈折力を持ち他方が弱い屈折力を持つことは、収差補正を困難にしたり、弱い屈折力のレンズ群の移動量が大きくなるためにコンパクト化の妨げとなる。2つの負のレンズ群G₃、G₄にはバランスよく負の屈折力を分担させて、光束を緩やかに発散させることが好ましい。

【0027】

また、上記条件式(4)については、下限を超えて第5レンズ群G₅の正の屈折力が強まると、バックフォーカスが短くなり、また縮小側を略テレセントリックの状態とすることが困難となる。この下限値を満足することにより、このズームレンズは所定のバックフォーカスを確保することができ、カラー画像を投映するために必要な色合成用のダイクロイックプリズムをガラスブロック2の位置に挿入することも可能となる。一方、その上限を超えて、第5レンズ群G₅の正の屈折力が弱まるとバックフォーカスが長くなりすぎ、レンズバックを含めたサイズが大きくなってしまう。さらに第5レンズ群G₅における軸上光線高が低くなりすぎ収差補正が困難となる。

【0028】

なお、本発明のズームレンズは透過型の液晶表示パネルを用いた投写型表示装置の投映レンズとしての使用態様に限られるものではなく、反射型の液晶表示パネルを用いた装置の投映レンズあるいはDMD等の他の光変調手段を用いた装置の投映レンズ等として用いることも可能であるほか、CCD、撮像管等の撮像手段、さらには銀塩フィルム等を用いたカメラに使用されるズーム機能を有する結像レンズとして用いることも可能である。

【0029】

また、投写型表示装置が、本発明に係るズームレンズと、別の例えば広画角な投映用レンズや標準的投映距離に好適なレンズとを、選択的に交換して装着できるように構成することにより、装置の設置場所の自由度を高めることができる。

【0030】

【実施例】

以下、各実施例についてデータを用いて具体的に説明する。なお、本発明のズ

ームレンズとしては下記実施例のものに限られるものではなく、例えば各レンズ群を構成するレンズの枚数および形状は適宜選択し得る。

【0031】

<実施例1>

この実施例1に係るズームレンズは、前述したように図1に示す如き構成とされている。すなわちこのレンズは拡大側より順に、第1レンズ群G₁が、拡大側に強い曲率の面を向けた両凸レンズよりなる第1レンズL₁と縮小側に強い曲率の面を向けた両凹レンズよりなる第2レンズL₂との接合レンズ、縮小側に強い曲率の面を向けた両凹レンズよりなる第3レンズL₃、および拡大側に凸面を向けた正メニスカスレンズよりなる第4レンズL₄からなり、第2レンズ群G₂が、縮小側に強い曲率の面を向けた両凸レンズよりなる第5レンズL₅、拡大側に強い曲率の面を向けた両凸レンズよりなる第6レンズL₆からなり、第3レンズ群G₃が、両面同曲率の両凸レンズよりなる第7レンズL₇と縮小側に強い曲率の面を向けた両凹レンズよりなる第8レンズL₈との接合レンズからなり、第4レンズ群G₄が、両面同曲率の両凹レンズよりなる第9レンズL₉と拡大側に凸面を向けた正メニスカスレンズよりなる第10レンズL₁₀との接合レンズからなり、第5レンズ群G₅が、拡大側に強い曲率の面を向けた両凹レンズよりなる第11レンズL₁₁、縮小側に凸面を向けた正メニスカスレンズよりなる第12レンズL₁₂、拡大側に強い曲率の面を向けた両凸レンズよりなる第13レンズL₁₃、拡大側に凸面を向けた平凸レンズよりなる第14レンズL₁₄からなる。

【0032】

また、このズームレンズにおいて、第2レンズ群G₂および第3レンズ群G₃はともに、広角端から望遠端への変倍の際に拡大側へ移動し、第4レンズ群G₄は広角端から望遠端への変倍の際に縮小側へ移動する。

【0033】

この実施例1における各レンズ面の曲率半径R（広角端における拡大側の共役点位置無限遠状態の焦点距離を1として規格化されている；以下の各表において同じ）、各レンズの中心厚および各レンズ間の空気間隔D（上記曲率半径Rと同

様の焦点距離で規格化されている；以下の各表において同じ）、各レンズのd線における屈折率Nおよびアッペ数 ν を表1に示す。なお、この表1および後述する表3、5および7において、各記号R、D、N、 ν に対応させた数字は拡大側から順次増加するようになっている。

【0034】

また下記表2に、実施例1における広角端（ズーム比1.00）、中間位置（ズーム比1.25）および望遠端（ズーム比1.50）における第1レンズ群G₁と第2レンズ群G₂の距離D₇（可変1）、第2レンズ群G₂と第3レンズ群G₃の距離D₁₁（可変2）、第3レンズ群G₃と第4レンズ群G₄の距離D₁₄（可変3）および第4レンズ群G₄と第5レンズ群G₅の距離D₁₇（可変4）、広角端における縮小倍率、ならびに、第1レンズ群G₁の焦点距離F₁、第2レンズ群G₂の焦点距離F₂、第4レンズ群G₄の焦点距離F₄および第5レンズ群G₅の焦点距離F₅を示す。

【0035】

【表1】

面No.	R	D	N _d	v _d
1	1.253	0.180	1.83400	37.2
2	-43.225	0.041	1.56384	60.7
3	0.764	0.403		
4	-1.335	0.038	1.62299	58.2
5	0.995	0.044		
6	1.088	0.060	1.83400	37.2
7	2.468	可変1		
8	3.415	0.064	1.80400	46.6
9	-2.568	0.064		
10	1.867	0.100	1.80400	46.6
11	-5.769	可変2		
12	1.021	0.207	1.80400	46.6
13	-1.021	0.032	1.84666	23.8
14	0.791	可変3		
15	-1.002	0.029	1.48749	70.2
16	1.002	0.050	1.80610	40.9
17	2.345	可変4		
18	-1.135	0.035	1.51742	52.4
19	1.707	0.039		
20	-5.159	0.081	1.61800	63.3
21	-0.882	0.005		
22	1.411	0.094	1.77250	49.6
23	-3.405	0.167		
24	1.448	0.081	1.71300	53.9
25	∞	0.117		
26	∞	0.549	1.51633	64.1
27	∞			

【0036】

【表2】

	可変1	可変2	可変3	可変4
ズーム比	D ₇	D ₁₁	D ₁₄	D ₁₇
1.00	0.395	0.005	0.277	0.234
1.25	0.189	0.030	0.479	0.214
1.50	0.040	0.043	0.735	0.093

縮小倍率

-0.0098

F ₁	-1.663
F ₂	0.923
F ₄	-1.945
F ₅	0.852

【0037】

図3は上記実施例1のズームレンズの縮小倍率-0.0098における広角端(WIDE)、ならびに同共役長における中間(MIDDLE)および望遠端(TELE)における諸収差(球面収差、非点収差、ディストーションおよび倍率色収差)を示す収差図である。なお、図3～6において、各非点収差図にはサジタル像面およびタンジエンシャル像面に対する収差が示されており、各倍率色収差図にはd線に対する収差が示されている。

【0038】

この図3および上記表1および2から明らかなように、実施例1のズームレンズは条件式(1)～(4)を全て満足し、ズーム領域の全体に亘って良好な収差補正がなされ、適切なバックフォーカス量と縮小側での略テレセントリック性とが達成された、コンパクトなテレ系のズームレンズとされている。

【0039】

<実施例2>

この実施例2に係るズームレンズは図2に示す如き構成とされ、実施例1のものと略同様の構成とされている。実施例1との主な相違点は、第1レンズ群G₁が拡大側より順に、拡大側に凸面を向けた平凸レンズよりなる第1レンズL₁、縮小側に強い曲率の面を向けた両凹レンズよりなる第2レンズL₂、拡大側に強い曲率の面を向けた両凹レンズよりなる第3レンズL₃、および拡大側に強い曲率の面を向けた両凸レンズよりなる第4レンズL₄からなる点である。この実施例2における各レンズ面の曲率半径R、各レンズの中心厚および各レンズ間の空気間隔D、各レンズのd線における屈折率Nおよびアッベ数vを表3に示す。

【0040】

また表4に、実施例2における広角端（ズーム比1.00）、中間位置（ズーム比1.25）および望遠端（ズーム比1.50）における第1レンズ群G₁と第2レンズ群G₂の距離D₈（可変1）、第2レンズ群G₂と第3レンズ群G₃の距離D₁₂（可変2）、第3レンズ群G₃と第4レンズ群G₄の距離D₁₅（可変3）および第4レンズ群G₄と第5レンズ群G₅の距離D₁₈（可変4）、広角端における縮小倍率、ならびに、第1レンズ群G₁の焦点距離F₁、第2レンズ群G₂の焦点距離F₂、第4レンズ群G₄の焦点距離F₄および第5レンズ群G₅の焦点距離F₅を示す。

【0041】

【表3】

面No.	R	D	N _d	v _d
1	1.892	0.109	1.83400	37.2
2	∞	0.291		
3	-17.355	0.041	1.49700	81.5
4	0.724	0.114		
5	-1.295	0.038	1.72047	34.7
6	1.408	0.100		
7	2.005	0.061	1.83400	37.2
8	-15.046	可変1		
9	2.084	0.107	1.72916	54.7
10	-2.084	0.148		
11	0.892	0.066	1.80400	46.6
12	3.452	可変2		
13	0.871	0.123	1.61800	63.3
14	-1.544	0.032	1.69895	30.1
15	0.529	可変3		
16	-1.593	0.029	1.56384	60.7
17	0.737	0.067	1.80100	39.5
18	5.369	可変4		
19	-0.848	0.035	1.68893	31.1
20	2.068	0.035		
21	-4.715	0.077	1.77250	49.6
22	-0.932	0.004		
23	1.430	0.097	1.80400	46.6
24	-3.025	0.154		
25	1.226	0.090	1.60311	60.6
26	∞	0.117		
27	∞	0.549	1.51633	64.1
28	∞			

【0042】

【表4】

	可変1 ズーム比 D ₈	可変2 D ₁₂	可変3 D ₁₅	可変4 D ₁₈
1.00	0.379	0.012	0.163	0.360
1.25	0.168	0.044	0.396	0.306
1.50	0.008	0.088	0.672	0.145

縮小倍率

-0.0098

F ₁	-1.542
F ₂	0.966
F ₄	-1.488
F ₅	0.919

【0043】

図4は上記実施例2のズームレンズの縮小倍率-0.0098における広角端（WIDE）、ならびに同共役長における中間（MIDDLE）および望遠端（TELE）における諸収差（球面収差、非点収差、ディストーションおよび倍率色収差）を示す収差図である。この図4および上記表3および4から明らかのように、実施例2のズームレンズは条件式（1）～（4）を全て満足し、ズーム領域の全体に亘って良好な収差補正がなされ、適切なバックフォーカス量と縮小側での略テレセントリック性とが達成された、コンパクトなテレ系のズームレンズとされている。

【0044】

<実施例3>

この実施例3に係るズームレンズは、実施例1のものと略同様の構成とされている。実施例1との主な相違点は、第1レンズ群G₁が拡大側より順に、拡大側に凸面を向けた正メニスカスレンズよりなる第1レンズL₁、拡大側に平面を向

けた平凹レンズよりなる第2レンズL₂、拡大側に強い曲率の面を向けた両凹レンズよりなる第3レンズL₃と拡大側に凸面を向けた平凸レンズよりなる第4レンズL₄との接合レンズからなる点である。この実施例3における各レンズ面の曲率半径R、各レンズの中心厚および各レンズ間の空気間隔D、各レンズのd線における屈折率Nおよびアッペ数vを表5に示す。

【0045】

また表6に、実施例3における広角端（ズーム比1.00）、中間位置（ズーム比1.20）および望遠端（ズーム比1.40）における第1レンズ群G₁と第2レンズ群G₂の距離D₇（可変1）、第2レンズ群G₂と第3レンズ群G₃の距離D₁₁（可変2）、第3レンズ群G₃と第4レンズ群G₄の距離D₁₄（可変3）および第4レンズ群G₄と第5レンズ群G₅の距離D₁₇（可変4）、広角端における縮小倍率、ならびに、第1レンズ群G₁の焦点距離F₁、第2レンズ群G₂の焦点距離F₂、第4レンズ群G₄の焦点距離F₄および第5レンズ群G₅の焦点距離F₅を示す。

【0046】

【表5】

面No.	R	D	N _d	v _d
1	1.991	0.092	1.83400	37.2
2	16.980	0.241		
3	∞	0.041	1.49700	81.5
4	0.719	0.242		
5	-1.261	0.038	1.64769	33.8
6	2.826	0.050	1.83481	42.7
7	∞	可変1		
8	2.265	0.105	1.75500	52.3
9	-2.265	0.157		
10	0.793	0.076	1.80400	46.6
11	3.239	可変2		
12	0.716	0.105	1.65160	58.6
13	-1.715	0.032	1.69895	30.1
14	0.434	可変3		
15	-1.305	0.029	1.65160	58.6
16	0.464	0.107	1.80100	39.5
17	-7.812	可変4		
18	-0.560	0.035	1.75520	25.7
19	6.234	0.021		
20	-4.621	0.103	1.80400	46.6
21	-0.693	0.004		
22	2.724	0.074	1.80400	46.6
23	-3.441	0.022		
24	1.059	0.154	1.61800	63.3
25	∞	0.117		
26	∞	0.550	1.51633	64.1
27	∞			

【0047】

【表6】

	可変1	可変2	可変3	可変4
ズーム比	D ₇	D ₁₁	D ₁₄	D ₁₇
1.00	0.419	0.004	0.168	0.417
1.20	0.251	0.033	0.303	0.422
1.40	0.117	0.077	0.425	0.390

縮小倍率

-0.0098

F ₁	-1.957
F ₂	0.950
F ₄	-1.177
F ₅	0.947

【0048】

図5は上記実施例3のズームレンズの縮小倍率-0.0098における広角端（WIDE）、ならびに同共役長における中間（MIDDLE）および望遠端（TELE）における諸収差（球面収差、非点収差、ディストーションおよび倍率色収差）を示す収差図である。この図5および上記表5および6から明らかのように、実施例3のズームレンズは条件式（1）～（4）を全て満足し、ズーム領域の全体に亘って良好な収差補正がなされ、適切なバックフォーカス量と縮小側での略テレセントリック性とが達成された、コンパクトなテレ系のズームレンズとされている。

【0049】

<実施例4>

この実施例4に係るズームレンズは、実施例1のものと略同様の構成とされている。実施例1との主な相違点は、第1レンズ群G₁～第5レンズ群G₅のいずれのレンズ群にも接合レンズが含まれていない点である。この実施例4における

各レンズ面の曲率半径R、各レンズの中心厚および各レンズ間の空気間隔D、各レンズのd線における屈折率Nおよびアッペ数vを表7に示す。

【0050】

また表8に、実施例4における広角端（ズーム比1.00）、中間位置（ズーム比1.20）および望遠端（ズーム比1.40）における第1レンズ群G₁と第2レンズ群G₂の距離D₈（可変1）、第2レンズ群G₂と第3レンズ群G₃の距離D₁₂（可変2）、第3レンズ群G₃と第4レンズ群G₄の距離D₁₆（可変3）および第4レンズ群G₄と第5レンズ群G₅の距離D₂₀（可変4）、広角端における縮小倍率、ならびに、第1レンズ群G₁の焦点距離F₁、第2レンズ群G₂の焦点距離F₂、第4レンズ群G₄の焦点距離F₄および第5レンズ群G₅の焦点距離F₅を示す。

【0051】

【表 7】

面No.	R	D	N _d	v _d
1	1.777	0.115	1.83400	37.2
2	-184.771	0.259		
3	21.826	0.041	1.49700	81.5
4	0.777	0.105		
5	-1.600	0.038	1.75520	27.5
6	1.140	0.109		
7	1.644	0.058	1.84666	23.8
8	10.341	可変1		
9	2.337	0.069	1.72916	54.7
10	-2.630	0.171		
11	0.900	0.067	1.77250	49.6
12	4.016	可変2		
13	0.851	0.112	1.69680	55.5
14	-2.875	0.015		
15	-2.289	0.032	1.69895	30.1
16	0.520	可変3		
17	-1.347	0.029	1.48749	70.2
18	0.756	0.015		
19	0.792	0.062	1.80100	39.5
20	2.527	可変4		
21	-1.391	0.035	1.76182	26.5
22	1.850	0.028		
23	74.750	0.078	1.77250	49.6
24	-1.128	0.004		
25	1.378	0.089	1.80400	46.6
26	-4.814	0.223		
27	1.199	0.098	1.62041	60.3
28	∞	0.117		
29	∞	0.549	1.51633	64.1
30	∞	0.024		
31	∞			

【0052】

【表8】

	可変1	可変2	可変3	可変4
ズーム比	D ₈	D ₁₂	D ₁₆	D ₂₀
1.00	0.388	0.009	0.169	0.312
1.20	0.213	0.031	0.375	0.257
1.40	0.077	0.064	0.580	0.156

縮小倍率

-0.0098

F ₁	-1.436
F ₂	0.986
F ₄	-1.934
F ₅	0.978

【0053】

図6は上記実施例4のズームレンズの縮小倍率-0.0098における広角端(WIDE)、ならびに同共役長における中間(MIDDLE)および望遠端(TELE)における諸収差(球面収差、非点収差、ディストーションおよび倍率色収差)を示す収差図である。この図6および上記表7および8から明らかのように、実施例4のズームレンズは条件式(1)～(4)を全て満足し、ズーム領域の全体に亘って良好な収差補正がなされ、適切なバックフォーカス量と縮小側での略テレセントリック性とが達成された、コンパクトなテレ系のズームレンズとされている。

【0054】

【発明の効果】

以上説明したように、本発明のズームレンズによれば、正の第2レンズ群、負の第3レンズ群および負の第4レンズ群が可動とされた5群タイプで、諸収差が良好に補正され、例えば100インチサイズに投映する場合に5～10mの投映距離を

想定するような焦点距離の長いテレ系のズームレンズを得ることができる。したがって、このズームレンズを投写型表示装置に用いた場合にも、これらの要望に応え得る装置とすることができます。

【図面の簡単な説明】

【図1】

実施例1に係るズームレンズの広角端と望遠端のレンズ構成図

【図2】

実施例2に係るズームレンズの広角端と望遠端のレンズ構成図

【図3】

実施例1に係るズームレンズの各収差図

【図4】

実施例2に係るズームレンズの各収差図

【図5】

実施例3に係るズームレンズの各収差図

【図6】

実施例4に係るズームレンズの各収差図

【符号の説明】

G₁～G₅ レンズ群

L₁～L₁₃ レンズ

R₁～R₂₈ レンズ面等の曲率半径

D₁～D₂₇ レンズ面間隔（レンズ厚）

X 光軸

1 液晶表示パネル

2 ガラスブロック

【書類名】

図面

【図1】

実施例 1

WIDE

TELE

【図2】

実施例2

WIDE

TELE

【図3】

実施例 1

【図4】

実施例2

【図5】

実施例3

【図6】

実施例4

【書類名】 要約書

【要約】

【目的】 変倍時に正の第2群、負の第3群、および負の第4群が可動とされた5群タイプとし、液晶を用いた投写型表示装置に好適な、諸収差が良好に補正され、焦点距離の長いテレ系のズームレンズおよびこれを用いた投写型表示装置を得る。

【構成】 変倍の際に固定でフォーカシングを行う負の第1レンズ群G₁と、連続変倍およびその連続変倍によって生じる像面移動の補正のため、相互に關係をもって移動する正の第2レンズ群G₂、負の第3レンズ群G₃および負の第4レンズ群G₄と、変倍の際に固定で正の第5レンズ群G₅とが拡大側より配設され、レンズ群G₂、G₃は広角端位置よりも望遠端位置の方が拡大側に、レンズ群G₄は広角端位置よりも望遠端位置の方が縮小側に位置する。各条件式（1） $-2.2 < F_1 / F < -1.2$ 、（2） $0.8 < F_2 / F < 1.1$ 、（3） $-2.2 < F_4 / F < -1.0$ 、（4） $0.7 < F_5 / F < 1.2$ を満足する。

【選択図】 図1

認定・付加情報

特許出願の番号	特願2003-084697
受付番号	50300490729
書類名	特許願
担当官	第一担当上席 0090
作成日	平成15年 3月27日

<認定情報・付加情報>

【提出日】	平成15年 3月26日
-------	-------------

次頁無

特願 2003-084697

出願人履歴情報

識別番号 [000005430]

1. 変更年月日 2001年 5月 1日
[変更理由] 住所変更
住 所 埼玉県さいたま市植竹町1丁目324番地
氏 名 富士写真光機株式会社
2. 変更年月日 2003年 4月 1日
[変更理由] 住所変更
住 所 埼玉県さいたま市北区植竹町1丁目324番地
氏 名 富士写真光機株式会社