Solutions of Assignment 12

1. Find i(t) and $v_x(t)$ in the circuit below. Assume $I_0 = i(0^-) = 12 A$.

Answer: $i(t) = 12e^{-2t} A$, $v_x(t) = -12e^{-2t} V$ for t > 0.

2. The switch in the following circuit has been in position **b** for a long time. It is moved to position **a** at t = 0. Determine v(t) for t > 0.

Answer: $v(t) = (V_0 - I_0 R)e^{-\frac{t}{\tau}} + I_0 R$, t > 0, where $\tau = RC$.

3. Assume there is no initial energy stored in the circuit below at t=0 and that $i_{\rm S}=10~u(t)~A$.

a. Use Thevenin's theorem to find $V_o(s)$.

(Hints: Remove 5 Ω resistor and find $V_{Th}=V_{oc}$. Short 5 Ω resistor to find I_{sc} by using the node-voltage method, then $Z_{Th}=\frac{V_{Th}}{I_{sc}}$.

- b. Find the transfer function of $H(s) = \frac{V_o(s)}{I_s(s)}$
- c. Applying the initial- and final- value theorems to find $v_0(0^+)$ and $v_o(\infty)$.

- d. Determine $v_o(t)$.
- e. If $i_s = 20\cos(4t + 30^0) u(t)$ A, determine the steady-state response $v_{oss}(t)$.

Answer:
$$v_o(t) = 31.25(1-e^{-4t})u(t)$$
 V; $v_{oss}(t) = 31.25\sqrt{2}\cos(4t-15^0)$ V

- 4. In the op-amp circuit below, $v_s(t)=10u(t)$. Assume that $R_1=R_2=10~k\Omega$, $C_1=20~\mu F$, and $C_2=100~\mu F$. The op-amp in the circuit is ideal. The initial anergy stored in the circuit is zero.
 - a. Find the transfer function $H(s) = \frac{V_o(s)}{V_s(s)}$.
 - b. Determine the type of the circuit response based on the transfer function.
 - c. Determine $v_o(t)$ for t > 0.

Answer: $v_o(t) = \left(10 - 12.5e^{-t} + 2.5e^{-5t}\right)\!u(t)\,V$