Introduction to the Theory of Computation

CSC236H

Recursively Defined Sets – An Analogy

```
# Pre-condition: n is a natural number greater than 0. def f(n): if n==1 or n==2: return 1 return f(n-1)+f(n-2)
```

$$f(n) = \begin{cases} 1 & n = 1 \text{ or } n = 2\\ f(n-1) + f(n-2) & n \ge 3 \end{cases}$$

Recursively Defined Sets

Recursive Definition of a Set

- 1. Indicate the <u>smallest</u> or simplest objects. \rightarrow Base Rule or the Basis
- 2. Indicate how <u>larger</u> or <u>more complex</u> objects can be built out of the <u>smaller</u> or simpler ones. → Recursive Rule or Inductive Rule

Example: A recursive definition for \mathbb{N} :

- $0 \in \mathbb{N}$;
- if $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$;
- \bullet nothing else belongs to $\mathbb{N}.$

Recursively Defined Sets

Recursive Definition of a Set

- 1. Indicate the <u>smallest</u> or simplest objects.
- 2. Indicate how <u>larger</u> or <u>more complex</u> objects can be built out of the <u>smaller</u> or simpler ones.

Example: A recursive definition for **non-empty binary trees**:

- a single node is a non-empty binary tree;
- if T_1 , T_2 are two disjoint non-empty binary trees, then the tree with a new root r connected to the roots of T_1 and T_2 is a non-empty binary tree;
- if T_1 is a non-empty binary tree, then the tree with a new root r connected to the root of T_1 is a non-empty binary tree;
- nothing else is a binary tree.

Structural Induction

Recursive Definition of a Set:

- 1. Indicate the smallest or simplest objects.
- 2. Indicate how larger or more complex objects can be built out of the smaller or simpler ones.

Structural Induction: Prove ${\bf P}$ holds for all elements of a recursively defined set ${\bf X}$:

- 1. Base Case: Prove that every smallest or simplest element of X satisfies P.
- 2. Induction Step: Assume that ${\bf P}$ holds for smaller or simpler elements. [IH]

Prove that every element that is constructed following each of the (finitely many) ways of constructing larger or more complex elements out of the smaller or simpler ones satisfies ${\bf P}$.

Structural Induction

Structural Induction: Prove P holds for all elements of a recursively defined set X:

- 1. Base Case: Prove that every smallest or simplest element of X satisfies P.
- 2. Induction Step: Assume that P holds for smaller or simpler elements. [IH]

Prove that every element that is constructed following each of the (finitely many) ways of constructing larger or more complex elements out of the smaller or simpler ones satisfies \mathbf{P} .

Example: A recursive definition for \mathbb{N} :

- $0 \in \mathbb{N}$;
- if $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$;
- nothing else belongs to \mathbb{N} .

Structural Induction

Structural Induction: Prove \mathbf{P} holds for all elements of a recursively defined set \mathbf{X} :

- 1. Base Case: Prove that every smallest or simplest element of Xsatisfies P.
- 2. Induction Step: Assume that ${f P}$ holds for smaller or simpler elements. [IH]

Prove that every element that is constructed following each of the (finitely many) ways of constructing larger or more complex elements out of the smaller or simpler ones satisfies \mathbf{P} .

A recursive definition for **non-empty binary trees**:

- a single node is a non-empty binary tree;
- if T_1 , T_2 are two disjoint non-empty binary trees, then the tree with a new root r connected to the roots of T_1 and T_2 is a non-empty binary tree;
- if T_1 is a non-empty binary tree, then the tree with a new root r connected to the root of T_1 is a non-empty binary tree;
- nothing else is a binary tree.

Prove that every non-empty binary tree has one more node than edge.

Solution: Recall the recursive definition for the set of **non-empty binary trees**:

- a single node is a non-empty binary tree;
- if T_1 , T_2 are two disjoint non-empty binary trees, then the tree with a new root r connected to the roots of T_1 and T_2 is a non-empty binary tree;
- if T_1 is a non-empty binary tree, then the tree with a new root r connected to the root of T_1 is a non-empty binary tree;
- nothing else is a binary tree.

Consider the following recursively defined set $S \subseteq \mathbb{N}^2$:

- $(0,0) \in S$;
- if $(a,b) \in S$, then so are (a+1,b+1) and (a+3,b);
- \bullet nothing else belongs to S.

Consider the following recursively defined set $S \subseteq \mathbb{N}^2$:

- $(0,0) \in S$;
- if $(a,b) \in S$, then so are (a+1,b+1) and (a+3,b);
- \bullet nothing else belongs to S.

Show that for all $(x,y) \in S$, $x \ge y$ and 3 divides x - y.

Consider the following recursively defined set E

- $x, y, z \in E$;
- if $e_1, e_2 \in E$ then the following four expressions are also in E:

$$(e_1 + e_2), (e_1 - e_2), (e_1 \times e_2), (e_1 \div e_2)$$

 \bullet nothing else belongs to E.

Consider the following recursively defined set E

- $x, y, z \in E$;
- if $e_1, e_2 \in E$ then the following four expressions are also in E:

$$(e_1 + e_2), (e_1 - e_2), (e_1 \times e_2), (e_1 \div e_2)$$

 \bullet nothing else belongs to E.

If e is a string, vr(e) denotes the number of variable (i.e., x, y, z) occurrences, and op(e) denotes the number of operator (i.e., $+, -, \times, \div$) occurrences in e.

Consider the following recursively defined set E

- $x, y, z \in E$;
- if $e_1, e_2 \in E$ then the following four expressions are also in E:

$$(e_1 + e_2), (e_1 - e_2), (e_1 \times e_2), (e_1 \div e_2)$$

 \bullet nothing else belongs to E.

If e is a string, vr(e) denotes the number of variable (i.e., x,y,z) occurrences, and op(e) denotes the number of operator (i.e., $+,-,\times,\div$) occurrences in e.

Prove that for any $e \in E$, vr(e) = op(e) + 1.