Olimpiada Básica de Matemáticas en Guanajuato

@OBMGuanajuato | 11 de septiembre del 2022

Caminos

Eduardo Jaziel Juárez Martínez

Veremos una aplicación de las combinaciones.

Comenzamos con un problema:

¿Cuantos caminos posibles existen de A a B, si solo se pueden seguir las lineas de la cuadricula y solo se puede avanzar hacia arriba y hacia la derecha?

¿Como podemos resolver éste problema? Una posible solución y muy intuitiva es ver que para cada intersección, un camino solo puede llegar del vértice de abajo o del vértice de la izquierda como se muestra en la figura.

Entonces podemos ir rellenando la cantidad de caminos de cada intersección sabiendo que en toda la base del rectángulo y todo el lado izquierdo hay un solo camino para llegar desde A.

Ahora rellenamos los demás utilizando la regla anterior, es decir, sumando la cantidad de caminos de abajo y el de la izquierda para encontrar los de cada intersección:

Al final nos queda la siguiente cuadricula:

					В
1	4	10	20	35	
1	3	6	10	15	
1	2	3	4	5	
Α	1	1	1	1	

Entonces hay 35 caminos para llegar de A a B.

Ahora, ¿cómo podemos hacer un método para cualquier tamaño de cuadricula? Podemos ver cada camino como una sucesión de flechas, por ejemplo, el siguiente camino se puede escribir como la sucesión \rightarrow , \uparrow , \uparrow , \rightarrow , \rightarrow , \uparrow :

Ahora, para contar todos los caminos vemos que siempre tenemos que subir 3 veces y avanzar hacia la derecha 4 veces. Entonces el total de caminos es la cantidad de reordenamientos de \rightarrow , \rightarrow , \rightarrow , \rightarrow , \uparrow , \uparrow .

Para contar los reordenamientos basta contemplar 3+4=7 espacios y elegir los 3 que correspondan a las 3 flechas hacia arriba (los demás quedan definidos). Entonces hay $\binom{7}{3}=35$ caminos posibles.

Entonces podemos crear una fórmula para cualquier cuadrícula de $m \times n$.

Tenemos $m \to y$ $n \uparrow$, entonces hay m + n espacios y elegimos n flechas hacia abajo. Obtenemos que hay $\binom{m+n}{n}$ posibles caminos. **Ejercicios**:

1. Encuentra la cantidad de caminos que hay de A a B.

2. Encuentra la cantidad de caminos que hay de A a B.

3. Demuestra que

$$\binom{m}{n} + \binom{m}{n+1} = \binom{m+1}{n+1}.$$