Review quizzes (1/2)

- Explain random forest algorithm
- Explain the goal of linear regression

• Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $\mathbf{f} = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

What is the shape of $\frac{\partial f}{\partial x}$?

If
$$f_1(\mathbf{x}) = 3\mathbf{x}^T\mathbf{x}$$
, $f_2(\mathbf{x}) = \mathbf{a}^T\mathbf{x}$, what is $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$?

$$\frac{d\mathbf{a}^{T}\mathbf{x}}{d\mathbf{x}} = ?$$

$$\frac{d\mathbf{x}^{T}\mathbf{x}}{d\mathbf{x}^{T}\mathbf{x}} = ?$$

Review quizzes (2/2)

Let
$$\begin{aligned}
&\text{Features } \boldsymbol{X} = \begin{bmatrix} \widehat{1} & x_{1,1} & \cdots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,d} \end{bmatrix}, \quad \begin{cases} \widehat{y_1} & \widehat{y_2} \\ \widehat{y_1} & \widehat{y_2} \\ \widehat{y_1} & \widehat{y_2} \\ \widehat{y_2} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_1} & \widehat{y_2} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_2} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} \\ \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} & \widehat{y_3} \\$$

- Why adding a column of 1s to \boldsymbol{X}
- If we use linear regression with parameters $oldsymbol{ heta} = egin{bmatrix} heta_0, \dots, heta_d \end{bmatrix}^T$, show the formula of prediction $\hat{oldsymbol{\hat{y}}}$
- Show the residual sum of square (RSS) objective function using y and \hat{y}
- •0/1Derive heta to minimize RSS

Exercise 2

- Requirement
 - Coding (90%)
 - Implement a decision tree classifier using Python.
 - You **cannot** use existing decision tree libraries (e.g., sklearn.tree.DecisionTreeClassifier)
 - Use your classifier to predict the class based on the Balance Scale Data Set (http://archive.ics.uci.edu/ml/datasets/Balance+Scale).
 - Separate the data into training (70%) and test (30%) datasets. Please make sure the dataset is split in a stratified fashion, i.e., the class distributions in the training and the test datasets are the same as the class distribution in the entire dataset.
 - Report both the training and the test error
 - A brief discussion of the results. (10%)
- Please submit your code and report to new ee-class
- Due date: 10/19 23:59:59

10/13/20

Today's schedule

• My lecture: 2:00 – 4:20

• Python introduction by TAs: 4:20 – 4:50

10/13/20