

ŽILINSKÁ UNIVERZITA V ŽILINE FAKULTA RIADENIA A INFORMATIKY

Analýza diferenčnej rovnice

Autori: Matejko Peter Mudrák Ľuboš Rehák Tomáš Zárecký Martin Boďa Michal Kapusta Peter

Obsah

1	$\acute{\mathbf{U}}\mathbf{vod}$	2
2	Zadanie	3
3	Definície 3.1 Pojem diferencia 3.2 Pojem diferenčná rovnica 3.2.1 Typy diferenčných rovníc	
4	Vypracovanie	4

1 Úvod

2 Zadanie

V závislosti od hodnôt a a b analyzujte riešenia danej diferenčnej rovnice $x_{n+1} = \left(a + \frac{b}{n}\right) x_n$ kde a a b sú reálne čísla, také, že a + b > 0. Výsledky ilustrujte na jednoduchých príkladoch.

3 Definície

3.1 Pojem diferencia

Definícia 3.1. Je daný bod x_0 a číslo h > 0. Nech funkcia y = f(x) je definovaná v bodoch x_0 a $x_0 + h$. Diferencia funkcie f(x) v bode x_0 je číslo $f(x_0 + h) - f(x_0)$. Značíme

$$\Delta f(x_0) = f(x_0 + h) - f(x_0)$$

3.2 Pojem diferenčná rovnica

3.2.1 Typy diferenčných rovníc

Definícia 3.2. (Diferenčné rovnice 1. typu) Nech pre všetky $x \in M$ je definovaná funkcia $f(x,y,\Delta y,\Delta^2 y,...,\Delta^k y)$. Rovnica tvaru

$$f(x, y, \Delta y, \Delta^2 y, ..., \Delta^k y) = 0 ,$$

v ktorej neznámou funkciou $y = \varphi(x)$, nazývame diferenčnú rovnicu k-teho rádu a 1. typu definovanú v M.

 $Partikulárnym \ riešením$ tejto rovnice v M nazveme každú funkciu $y=\varphi(x)$, ktorá pre všetky $x\in M$ spĺňa danú rovnicu.

Všeobecným riešením nazývame množinu všetkých partikulárnych riešení.

Definícia 3.3. (Diferenčné rovnice 2. typu) Nech je pre všetky $x \in M$ definovaná funkcia

$$g(x, y_x, y_{x+1}, ..., y_{x+k})$$
, kde $y_{x+j} = \varphi(x+j)j = 0, 1, 2, ..., k$.

Rovnicu tvaru

$$g(x, y_x, y_{x+1}, ..., y_{x+k}) = 0,$$

v ktorej neznáma funkcia $y_x = \varphi(x)$, nazývaná diferenčná rovnica 2.typu definovaná v M. Ak je závislosť g na y_x a y_{x+k} nekonštantná hovoríme, že rovnica je k-teho rádu. Riešenie rovnice v M nazývame každú funkciu $y_x = \varphi(x)$, ktorá pre všetky $x \in M$ spĺňa danú rovnicu. K tomu je nutné, aby definičný obor funkce $\varphi(x)$ obsahoval všetky $x \in M$ a taktiež body x + 1, x + 2, ..., x + k.

4 Vypracovanie

Literatúra

 $[1]\ {\it Prágerová},\ A.:$ Diferenční rovnice. Polytechnická knižnice, Praha 1971.