The following table gives the values of a differentiable function f, and its derivative f' at given values of x.

x	f	f'
1	2	$\frac{1}{2}$
2	3	1
3	4	2
4	6	4

If g(x) is the inverse function of f(x), then what is the value of g'(4)?

			· ·	
(a) $\frac{1}{6}$	(b) $\frac{1}{4}$	(c) $\frac{1}{3}$	(d) $\frac{1}{2}$	(e) 2

If $f(x) = x^3 - 3x^2 + 8x + 5$ and $g(x) = f^{-1}(x)$, then g'(5) =

0 ()	0 () 0	(),		
(a) 8	(b) $\frac{1}{8}$	(c) 1	(d) $\frac{1}{53}$	(e) 5

The following table gives the values of a differentiable function f, and its derivative f' at given values of x.

х	f	f'
1	2	$\frac{1}{2}$
2	3	1
3	4	2
4	6	4

If g(x) is the inverse function of f(x), then what is the value of g'(4)?

$$g'(4) = (f^{-1})'(4)$$

$$= \frac{1}{f'(\begin{cases} \text{whatever makes} \\ f(x) = 4 \end{cases}}$$

$$f(x) = 4 \text{ when } x = 3$$

$$= \frac{1}{f'(3)}$$

$$= \frac{1}{\boxed{2}}$$

(a) $\frac{1}{6}$	(b) $\frac{1}{4}$	(c) $\frac{1}{3}$	(d) $\frac{1}{2}$	(e) 2
O	4	3	<u></u>	

If
$$f(x) = x^3 - 3x^2 + 8x + 5$$
 and $g(x) = f^{-1}(x)$, then $g'(5) = g'(5) = (f^{-1})'(5)$

$$= \frac{1}{f'\binom{\text{whatever makes}}}$$

$$f(x) = x^3 - 3x^2 + 8x + 5$$

$$5 = x^3 - 3x^2 + 8x + 5$$

$$0 = x^3 - 3x^2 + 8x$$

$$0 = x(x^2 - 3x + 8)$$

$$\downarrow \qquad \qquad f'(0) = 8$$

$$f'(x) = x^3 - 3x^2 + 8x + 5$$

$$f'(x) = 3x^2 - 6x + 8$$

$$f'(0) = 8$$

$$= \frac{1}{f'\binom{\text{whatever makes}}}$$

$$= \frac{1}{f'(0)}$$

$$= \frac{1}{f'(0)}$$

$$= \frac{1}{g'(0)}$$

(c) 1

(d) $\frac{1}{53}$

(e) 5

(b) $\frac{1}{8}$

(a) 8