ModEDI

An Extendable Software Architecture for Examining the Effects of Developmental Interactions on Evolutionary Trajectories

Background - Quantitative Genetics

Case Study -Models for Daphnia

Central Concept - Fitness Surface

Surface Distribution - Bivariate Normal

- x and y are normally distributed values
- The sum of x and y form the bivariate normal distribution

$$\rightarrow$$
 N($\langle x \rangle, \sigma_x$)+ N($\langle y \rangle, \sigma_y$)

Surface Distribution - Bivariate Normal

- Melanin and DVM are normally distributed trait values
- The sum of Melanin and DVM form the bivariate normal distribution

Central Concept - Fitness Surface

- Melanin and DVM are normally distributed trait values
- The sum of Melanin and DVM form the bivariate normal distribution

$$w = \underbrace{\frac{1}{\sqrt{v_m 2\pi}} e^{-\frac{(m-\omega_m)^2}{2v_m}}} + \underbrace{\frac{1}{\sqrt{v_d 2\pi}} e^{-\frac{(d-\omega_d)^2}{2v_d}}}_{}$$

Central Concept - Phenotype Surface

- prepresents a physical trait
- u₁ and u₂ represent underlying genetic factors

Phenotype Surface vs G-matrix

Classic Model - G-matrix

- h² is the diagonal values of the heritability matrix
- w̄ is the mean population fitness
- σ_d and σ_m are the DVM (\overline{d}) and Melanin (\overline{m}) phenotypic variances

Melanin development:

$$\bar{m}_{t+1} = \bar{m}_t + h^2 \frac{1}{\bar{w}} \frac{\partial w}{\partial m} \sigma_m$$

DVM development:

$$\bar{d}_{t+1} = \bar{d}_t + h^2 \frac{1}{\bar{w}} \frac{\partial w}{\partial d} \sigma_d$$

Recall - Phenotype Surface

- u₁ and u₂ represent underlying genetic factors

Tanning Model - Phenotype Surface

- u₁ and u₂ represent underlying genetic factors

Tanning Model - Phenotype Surface

- u₁ and u₂ represent underlying genetic factors, Average Daytime Depth and Sensitivity to UVB

Tanning Model - Phenotype Surface

$$m = z + pa$$

- z is the concentration of melanin produced in response to UV light
- p is the slope of the reaction norm indicating sensitivity to UVB
- a is the change in UVB exposure

Tanning Model - NDI

- d is DVM, treated as a quantitative genetic trait
- H is the heritability matrix
- U represents the change in DVM, simplified
- V represents the change in Melanin, simplified

Melanin production:

$$m = z + pa$$

Development of genetic factors:

$$\begin{pmatrix} \bar{z} \\ \bar{p} \\ \bar{d} \end{pmatrix}_{t+1} = \begin{pmatrix} \bar{z} \\ \bar{p} \\ \bar{d} \end{pmatrix}_{t} + H \frac{1}{\bar{w}} U V$$

Daphnia Species Objects

- States represent phenotypic traits, DVM and Melanin
- Behaviours represent the phenotypic functions of our models for *Daphnia*, Classic and Tanning

Daphnia Blueprint

Daphnia melanica

- DVM: int
- Melanin: int
- + setDVM
- + setMelanin

Daphnia Objects

 $https://t3.ftcdn.net/jpg/00/47/53/14/240_F_47531414_8Vj6iYmdowUNtgFrxmmtgPdT8gRTzCdy.jpg$

Software Architecture - Classic Model

Software Architecture - Tanning Model

Initial DVM Parameter Sweep

Sweep conclusions:

- Closer and Farther
- Little change in trajectory
- Classic model evolves more slowly than Tanning

Variance DVM Parameter Sweep

Sweep conclusion:

- Reasonable changes
 little effect
- Classic model evolves more slowly than Tanning
- Tanning model with simulation most reactive

Daphnia Case Study - Results

- Melanin evolves relatively quickly
- Trajectories are generally the same for different parameters

Conclusions

- Classic model evolves more slowly than Tanning model
- ModEDI predictions resistant to small parameter changes
- Modeled Daphnia populations evolve towards trait optima
- ModEDI as a powerful tool for analyzing the effects of multiple genes on physical traits

Future Work

- Increase generalization
- Add support for other fitness distributions and organisms
- Make available an easy to use interface

Acknowledgements

- CWU Science Honors Research Program, CWU
- College of the Sciences and Engineering, WWU