Out[1]:

	Nachname	Vorname	Geburtsjahr	Todesjahr	Lebensspanne
0	Abraham	Peter	1936	2015	79
1	Aichner	Fridolin	1912	1987	75
2	Alexander-Burgh	Eberhard	1929	2004	75

Barplot Lebensspanne

..der Autoren aus dem eigenen Datensatz

In [2]: ger_childrens_book_authors.sort_values(by = "Lebensspanne").plot.bar(figsize=(20,5), x = "Nachname"
, y = "Lebensspanne", color = "blue", title = "Lebensspannen der Autoren")

Out[2]: <matplotlib.axes. subplots.AxesSubplot at 0x200a6ec5128>

Dazugehöriges Histogramm

Out[3]: <matplotlib.axes. subplots.AxesSubplot at 0x200a9246080>

In [4]: sns.distplot(ger childrens book authors['Lebensspanne'], bins=25, kde=True)

d:\languages\python\python3.6.3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been "

Out[4]: <matplotlib.axes. subplots.AxesSubplot at 0x200a9051668>

Die Lebensspannen sind annähernd Normalverteilt, die Daten sind kontinuerlich.

```
In [5]: ayl_speaker_data = pd.read_csv(r"D:/cravi/Documents/Uni/DH/Statistik/Data/AYLSpeakerData.csv", sep=
    ";")
    ayl_speaker_data.head(3)
```

Out[5]:

	ID	label	gender	per_ms_sps	role	importance
0	0	orlando	male	120	protagonist	primary
1	1	oliver	male	40	antagonist	primary
2	2	second brother	male	2	other	minor

Barplot der per_ms_sps

```
In [6]: ayl_speaker_data.sort_values(by = "per_ms_sps", ascending = False).plot.bar(figsize=(20,5), x = "la bel", y = "per_ms_sps", color = "blue", title = "Redebeiträge pro Charakter")
    plt.xlabel("Character Label")
    plt.ylabel("Occurence of Speech")
```

Out[6]: Text(0,0.5,'Occurence of Speech')


```
In [7]: ayl_speaker_data["per_ms_sps"].plot.box()
Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x200a925fe48>
```


Der Barplot folgt der Zipf-Verteilung. Die gezählten Ereignisse sind nicht unabhängig voneinander, deswegen liegt keine Poisson-Verteilung vor.