A 3-player game theoretic model of a choice between two queueing systems with strategic managerial decision making

Michalis Panayides

THIS.

Supervisors:

Dr. Vince Knight, Prof. Paul Harper

Queues - Custom network of queues

Queues - Custom network of queues

Parameters:

 \blacktriangleright λ_1 : Arrival rate of type 1 individuals

 \triangleright λ_2 : Arrival rate of type 2 individuals

 \blacktriangleright μ : Service rate

C: Number of servers

► T: Threshold

Markov Chain - Custom network

Game - Definition

Game - Players and objectives

Game - Players and objectives

Performance Measures - Blocking time

$$B = \frac{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)} \ b(u,v)}{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)}}$$

Performance Measures - Proportion within target

$$P(W < t) = \frac{\lambda_1 P_{L'_1}}{\lambda_2 P_{L'_2} + \lambda_1 P_{L'_1}} P(W^{(1)} < t) + \frac{\lambda_2 P_{L'_2}}{\lambda_2 P_{L'_2} + \lambda_1 P_{L'_1}} P(W^{(2)} < t)$$

$$P(W^{(1)} < t) = \frac{\sum_{(u,v) \in S_A^{(1)}} P(W_{(u,v)}^{(1)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(1)}} \pi_{u,v}}$$

 $P(W^{(2)} < t) = \frac{\sum_{(u,v) \in S_A^{(2)}} P(W_{(u,v)}^{(2)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(2)}} \pi_{u,v}}$

Game - Players and objectives

Game - Strategies

 $p_A, p_B \in [0, 1]$ $p_A + p_B = 1$

$$T_A \in [1, N_A]$$

 $T_B \in [1, N_B]$

Game - Formulation

Hospital's utility

$$U_{T_A, T_B}^{(i)} = 1 - \left[(P(X^{(i)} < t) - 0.95)^2 \right]$$

Game - Payoff matrices

$$A = \begin{pmatrix} U_{1,1}^A & U_{1,2}^A & \dots & U_{1,N_B}^A \\ U_{2,1}^A & U_{2,2}^A & \dots & U_{2,N_B}^A \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^A & U_{N_A,2}^A & \dots & U_{N_A,N_B}^A \end{pmatrix}, \quad B = \begin{pmatrix} U_{1,1}^B & U_{1,2}^B & \dots & U_{1,N_B}^B \\ U_{2,1}^B & U_{2,2}^B & \dots & U_{2,N_B}^B \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^B & U_{N_A,2}^B & \dots & U_{N_A,N_B}^B \end{pmatrix}$$

$$R = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,N_B} \\ p_{2,1} & p_{2,2} & \dots & p_{2,N_B} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N_A,1} & p_{N_A,2} & \dots & p_{N_A,N_B} \end{pmatrix}$$

Asymmetric Replicator Dynamics

$$\frac{dx}{dt_i} = x_i((f_x)_i - \phi_x), \quad \text{for all } i$$

$$\frac{dy}{dt_i} = y_i((f_y)_i - \phi_y), \quad \text{for all } i$$

Learning algorithms - Asymmetric replicator dynamics

Inefficiencies can be learned and emerge naturally

Learning algorithms - Asymmetric replicator dynamics

Targeted incontinication of

Targeted incentivisation of behaviours can help escape

learned inefficiencies

Thank you!

\$ pip install ambulance_game
https://github.com/11michalis11/AmbulanceDecisionGame

PanayidesM@cardiff.ac.uk

☑ @Michalis_Pan

© @11michalis11