EXPERIMENTAL HINGELESS ROTOR CHARACTERISTICS AT LOW ADVANCE RATIO WITH THRUST

by R. J. London, G. A. Watts, and G. J. Sissingh December 1973

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS2-7245,

LOCKHEED-CALLFORNIA COMPANY

Robany Wing Division Burbank, California

POP

U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT TABOLITORY
AMES DIFFERENCES

and.

NATIONAL APROMUNITOS AND SPACE ADMINISTRATION
AND RESPARCE CENTER

(NASA-CR-114684) EXPERIMENTAL HINGELESS ROTOR CHARACTERISTICS AT LOW ADVANCE RATIO WITH THRUST (Lockheed-California Co.) 210 p HC \$13.50 CSCL 010 N74-16721

Unclas G3/02 30154

EXPERIMENTAL HINGELESS ROTOR CHARACTERISTICS AT LOW ADVANCE RATIO WITH THRUST

by R. J. London, G. A. Watts, and G. J. Sissingh December 1973

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS2-7245, by LOCKHEED-CALIFORNIA COMPANY

Rotary Wing Division Burbank, California

for

U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY
AMES DIRECTORATE

and

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER

SUMMARY

An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel by the Lockheed-California Company for the Ames Directorate of the U.S. Army Air Mobility Research and Development Laboratory.

The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with non-dimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime, $\mu = 0.00$ to 0.10, and rotor response at high lift is shown to be generally nonlinear in this region.

As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shaft-transmitted vibratory forces.

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

	Page
UMMARY	iii
NTRODUCTION	1
YMBOLS	3
ODEL DESCRIPTION	5
IBRATION MODES	11
Rotor Modes	11
Body Modes	12
Modal Damping	13
ATA ACQUISITION	1,8
Instrumentation	18
Data Recording Equipment	19
TEADY-STATE RESPONSE TESTS	22
REQUENCY-RESPONSE TESTS	28
ONCLUDING REMARKS	32
EFERENCES	34
PPENDIXES	35
A. Rotor Steady-State Response Data	35
B. Rotor Frequency Response Data	73
C. Hingeless Rotor Vibration Reduction by Oscillatory Collective and Cyclic	
Control Applications	174

PRECEDING PAGE BLANK NOT FRAMED

INTRODUCTION

This report presents data obtained in the fourth of a series of related tests of a 7.5-foot-diameter, four-bladed hingeless rotor, conducted in the Army-Ames 7×10 -foot wind tunnel. These tests have ranged over conditions applicable to conventional helicopters as well as to slowed-rotor, compound vehicles. The objective of the latest test was to expand the data bank to high-rotor lift levels at low advance ratios.

The objectives of the first two tests of the series were to experimentally determine the stability and response characteristics of a conventionally-controlled hingeless rotor at high advance ratios and low lift levels, and to evaluate the applicability of an existing mathematical model by correlation with the test results. In the first test, the rotor response to steady swash-plate and rotor angle-of-attack inputs was determined in hover and up to an advance ratio of 2.15. Several hub configurations, with varying Lock numbers and first-flap frequency ratios, were used; however, many of the configurations employed the high flap stiffness meant for application to slowed-rotor vehicles. The results of the investigation are reported in Reference 1.

Rotor frequency responses to swashplate cyclic and collective oscillations were obtained in the second phase of investigation (Reference 2) at the test conditions of the first phase. The test objectives were also extended to include the investigation of the dynamic characteristics of hingeless rotors with hub moment feedback control. Steady-state and frequency-response characteristics were determined during the program.

The objectives of the third phase of testing (Reference 3) were similar to those of the first two with emphasis on adding to the existing rotor data bank. Test conditions of the first two phases were again duplicated while obtaining the rotor frequency-response characteristics to shaft pitch and roll oscillations. A reduced flexure stiffness configuration, more applicable to conventional helicopers, was also initially tested for both steady-state and frequency-response characteristics at low lift levels.

The fourth test, reported herein, expanded the data bank to include test points at higher lift levels at low advance ratio, using the reduced stiffness configuration (Configuration 5) introduced in the third phase. Again, both steady-state and frequency-response tests were performed.

The effects of higher harmonic control as a method of vibration attenuation was studied by G. J. Sissingh and are presented in Appendic C. Both theoretical and experimental results are included.

Many pertinent discussions contained in the documentation of the prior test phases have been repeated herein in abbreviated form or merely referenced. These earlier reports thus form valuable adjuncts of the present report.

SYMBOLS

blade lift curve slope а number of rotor blades ъ c blade chord $^{\mathtt{C}}_{\mathtt{l}}$ roll moment coefficient, about center of rotation, $C_1 = kC_{L_{3.3}}$ $^{\mathtt{C}}\mathbf{L}_{\mathtt{s}}$ shaft rolling moment coefficient $C_{L_s} = L_s / \pi R^3 \rho (\Omega R)^2$ $^{\rm C}{}_{\rm m}$ pitch moment coefficient, about center of rotation, shaft pitching moment coefficient $^{\rm C}_{\rm M_{\rm S}}$ $C_{M_s} = M_s / \pi R^3 \rho (\Omega R)^2$ hub rolling moment coefficient, at blade station 3.3 inches $^{\mathrm{C}}_{\mathrm{L}_{3,3}} = \mathrm{L}_{3,3}/\pi\mathrm{R}^{3}\rho(\Omega\mathrm{R})^{2}$ hub pitching moment coefficient, at blade station 3.3 inches $^{\text{C}}_{\text{M}_{3.3}} = ^{\text{M}}_{3.3}^{/\pi R^3 \rho (\Omega R)^2}$ \mathbf{c}_{T} rotor thrust coefficient $C_{qq} = T/\pi R^2 \rho (\Omega R)^2$ modulus of elasticity in bending, psi E modulus of elasticity in shear, psi G total rotor hub moment, in-lb HM $HM = \left[(M_{3.3})^2 + (L_{3.3})^2 \right]^{1/2}$

moment of inertia, in.4

polar moment of inertia, in.4

Ι

J

SYMBOLS - Continued

```
k
              ratio of blade first-flap mode bending moment at r = 0 in. to
              blade first-flap mode bending moment at r = 3.3 in.
              shaft rolling moment measured 2 in. below rotor plane, + left up, in-lb
 L_{a}
 L<sub>3.3</sub>
              hub rolling moment measured at r = 3.3 in., + left up, in-lb
              shaft pitching moment measured 2 in. below rotor plane, + nose up, in-1b
 M_{5}
 M_{3.3}
              hub pitching moment measured at r = 3.3 in., + nose up, in-lb
- P
              ratio of blade first flap mode frequency to rotor frequency of
              revolution
 ର
              rotor torque
              blade radial station, ft
 r
 R
              blade radius, ft
 \mathbf{T}
              rotor thrust, 1b
              shaft pitch angle, + nose up, deg
 \alpha
              perturbation of a load coefficient from a least-squares fitted
 Δ
              linear curve
  ζ
              fraction of critical damping
              blade lateral cyclic pitch angle, + up at \Psi = 0^{\circ}, deg
 \theta_{c}
              blade longitudinal cyclic pitch angle, + up at \Psi= 90°, deg
 \theta_{\rm s}
              blade collective pitch angle, + up, deg
              advance ratio, V/2R
              air density, lb sec<sup>2</sup>/ft<sup>4</sup>
              rotor solidity
              shaft roll angle, + left up, deg
              rotor azimuth angle, deg
              oscillator excitation frequency, rad/sec
              rotor rotational frequency, rad/sec
 Ω
```

MODEL DESCRIPTION

The Lockheed CL-1080 7.5-foot model rotor, pictured in Figure 1, is relatively simple in design. It is a hingeless rotor with no twist or forward sweep. The conventional swashplate is controlled by hydraulic actuators. Pitch and roll of the body are also controlled by hydraulic actuators.

The stiffness of the hub may be varied by using flexures of different stiffnesses, by which the blades are attached to the hub. Two stiffness configurations were used during these tests. The majority of the testing was done with Configuration 5 ("supersoft" flexure), with the inclusion of 1.75 degrees precone to enhance fatigue life. Configuration 1 ("soft" flexure), which was also tested, did not require precone.

The geometric parameters of the two rotor configurations are listed in Table I. The blade mass and stiffness properties are illustrated in Figures 2 through 8.

TABLE I. MODEL PHYSICAL PARAMETERS

Number of Blades	4
Radius, R	45 in.
Chord, C	4.5 in.
Solidity, σ	0.127
Blade Twist	O deg
Blade Forward Sweep	0 deg
Blade Precone, Config. 1	O deg
Blade Precone, Config. 5	1.75 deg
Lock Number (a = 2π)	5.0
Airfoil Section	NACA 0012
Blade Root Cutout	11.9 in.
Blade Feathering Axis	0.25c
Body Roll Pivot Location	11.25 in. below rotor plane
Body Pitch Pivot Location	11.25 in. below rotor plane

Figure 1. Hingeless Rotor Model in 7 x 10 Foot Wind Tunnel.

Figure 2. Blade Weight Distribution vs. Rotor Station.

Figure 3. Blade Mass Centroid Relative to Feathering Axis vs. Rotor Station.

Figure 4. Blade Shear Center and Neutral Axis Relative to Feathering Axis vs. Rotor Station.

Figure 5. Blade Flapping Stiffness vs. Rotor Station.

Figure 6. Inverse of Blade Flapping Stiffness vs. Rotor Station.

Figure 7. Blade Inplane Stiffness vs. Rotor Station.

Figure 8. Blade Torsional Stiffness vs. Rotor Station.

VIBRATION MODES

The natural modes of vibration of the rotor, stopped and rotating, were found by analysis and checked by experiment. In addition, the fundamental cantilever modes of the model body supported by its pylon were found by experiment. For some of the modes, structural damping coefficients were determined by examination of the decay of free vibration.

These data are of interest in the interpretation of the rotor transfer functions and for verifying the adequacy of the mathematical representation of the rotor system. Transfer function advancing and regressing flapping-mode peaks, for example, depend on the rotating blade first flap natural frequency. Irregularities in the transfer functions are caused by the body modes at their natural frequencies. The need for checking the adequacy of the mathematical representation of the rotor is indicated by the poor agreement with the experiment of the second-flap and first-inplane mode frequency variations with collective pitch.

Rotor Modes

Rotor blade vibratory mode shapes and associated frequencies were calculated employing the mass, stiffness, and geometric data of the previous section. The theoretical variation of modal frequency with rotor speed and collective pitch for Configurations 5 and 1 is shown in Figures 9 and 10, respectively. Experimental values of the natural frequency of the first-flap, second-flap, and first-inplane modes are presented in Table II for Configuration 5 and are shown in Figure 9.

Calculated nondimensional vibration mode shapes for the first-flap, second-flap and first-inplane modes are shown in Figures 11, 12, and 13 for the nonrotating rotor at zero collective pitch. Experimental values, non-dimensionalized to the theoretical at 90 percent radius, are also shown for comparison.

TABLE II. BLADE NATURAL FREQUENCIES, CONFIGURATION 5

		MODAL FREQUENCY, Hz					
	COLLECTIVE	1ST FLAP		2ND FLAP		1ST INPLANE	
R P M	PITCH, DEG.	THEO.	EXP.	THEO.	EXP.	THEO.	EXP.
0	0	6.8	6.9	39.8	40.3	43.0	24.1
	8	6.8	6.9	43.8	40.9	35.0	25.5
	16	6.8	7.1	54.0	43.6	30.0	25.8
550	0	_	_	-	_	43.2	30.0
850	0	-	-	-	-	43.5	33.0
	16	-	-		-	35.0	30.8

The major components of the vibration modes changed very little with collective pitch and rpm, at least up to 850 rpm. The theoretical and experimental minor (or coupled) components of the vibration modes (that is, the inplane components of the flap modes and the flapping components of the inplane mode) did not correlate well at high values of collective pitch. The coupled components of the untwisted blades were, of course, zero at zero collective pitch.

Body Modes

The rotor and its drive system were housed in a body as shown in Figure 1. The body was gimballed to the top of its support pylon and restrained from pitching and rolling by hydraulic actuators. The tubular support pylon, containing the lift balance, therefore controlled the lateral and fore-aft fundamental vibration modes of the body.

In the whirl tests, conducted in the model preparation area, the rotor and body were supported by the pylon in one of three stiffened configurations. The first (Pylon 1) was the normal or unrestrained configuration similar to that shown in Figure 1. In the second (Pylon 2), the pylon was braced by steel angles radiating from the pylon below the gimbals and bolted to the floor. In the third configuration (Pylon 3), the body was braced to restrain

rotation about its gimbals, in addition to the bracing of the previous configuration.

The fundamental natural frequencies of the body on the pylon with the rotor not rotating are presented in Table III. The modes are the cantilever lateral or rolling mode and the cantilever fore-aft or pitching mode.

BRACING CONFIG. TYPE OF MODE	PYLON 1 (UNBRACED) Hz	PYLON 2 (PYLON ONLY BRACED) Hz	PYLON 3 (PYLON AND BODY BRACED) Hz
LATERAL (ROLL)	7.2	10.2	15.2
FORE-AFT (PITCH)	8,2	11.8	20.8

TABLE III. BODY NATURAL FREQUENCIES

It should be noted that there were body-pylon modes of somewhat higher frequencies than the fundamentals noted above that were not fully defined in the vibration test. There were, of course, no natural body-pylon modes of frequency lower than the fundamentals.

Modal Damping

Damping coefficients as a fraction of critical were determined experimentally by observing the decay of the free vibration of some of the nonrotating rotor blade and body modes. The damping measured was consistent with that typically measured in similar structures.

There was a trend toward higher damping in the flapping modes with higher collective pitch. This appeared to be due to an increased coupling with the first-inplane mode, which in itself had much higher damping than the flapping modes in this model.

The damping coefficients as a fraction of critical are defined by:

$$\zeta = \frac{1}{2} \frac{\log_e^2}{\pi \Delta n_{1/2}}$$

and are presented in Table IV, where $\Delta n_{\mbox{\scriptsize 1/2}}$ is the number of cycles to half amplitude.

TABLE IV. MODAL DAMPING

MODE DESCRIPTION	COLLECTIVE PITCH, DEG.	ζ, DAMPING COEFFICIENT
First Flap	1 ₄ 8	.009 .014
	-	
Second Flap	\frac{\frac{1}{4}}{8}	.005
	16	.013
First Inplane	0	.028
	8	.019
	16	.022
Body Lateral	-	.016

Blade vibration modes were found by reading accelerations normal to blade surfaces with miniature piezoelectric crystal transducers. Blade resonance was excited by a small electromagnetic shaker attached either to the rotor hub or to the blade root just outboard of the stiffness controlling flexures where the increase in blade mode generalized mass, due to armature weight, was negligible.

Figure 9. Configuration 5, Blade Natural Frequencies vs. Rotor Speed.

Figure 10. Configuration 1, Blade Natural Frequencies vs. Rotor Speed.

Figure 11. Configuration 5, Nonrotating First Flap Mode vs. Rotor Station. $\theta_{\rm O}$ = 0 $^{\rm O}$.

Figure 12. Configuration 5, Nonrotating Second Flap Mode vs. Rotor Station. $\theta_{\rm O}$ = 0 .

Figure 13. Configuration 5, Nonrotating First Inplane Mode vs. Rotor Station. $\theta_{\rm O}$ = 0°.

DATA ACQUISITION

The instrumentation and recording equipment were used together to provide a record of system behavior, to facilitate control, and to permit online monitoring of critical system loads.

Instrumentation

The rotating instrumentation consisted of shaft- and blade-mounted strain gages and a position potentiometer for measuring blade feathering angle. The resultant signals were transferred to the stationary system by means of a slip ring assembly.

Flap-bending signals from strain gage bridges on each blade at station 3.3 were resolved into rotor pitching and rolling moments (as measured at station 3.3) in stationary coordinates and recorded. This was accomplished by passing the signal through a shaft-mounted potentiometer which continuously generated sine and cosine functions of the rotor azimuth. The flap-bending signals were also summed to give an indication of rotor collective bending or thrust.

Model-mounted, stationary measurement devices included linear potentions of the collective and cyclic pitch actuators. Rotor speed was measured by means of a magnetic pickup that was triggered as blade 1 passed zero azimuth, ψ = 0. Accelerometers measured the lateral and longitudinal vibration of the body. A six-component strain gage balance in the model support strut produced measurements of body forces and moments.

Wind tunnel instrumentation included the tunnel balance which was used as a backup to the strain gage balance. Total head and temperature were measured in the settling chamber, while a pitot-static tube in the test section yielded dynamic pressure. Barometric pressure and ambient temperature measurements were also available during the hover tests in the preparation area.

Data Recording Equipment

A Honeywell magnetic tape system, a Honeywell oscillograph, and a Datex analog to digital converter were the primary means of recording data. The oscillograph was used to monitor critical loads. The Datex system was mainly used for obtaining mean data and tunnel conditions. The data recorded on magnetic tape was the basis for all of the steady-state and frequency response data in this report.

A transfer-function analyzer was used, in addition to the above devices, during the frequency-response tests. X-Y-Y plotters displayed the analyzer gain and phase signals produced by the input control and blade flapping response. The on-line availability of the transfer functions in graphical form aided in the selection of excitation frequencies.

A summary of the parameters measured and how they were measured is given in Table V.

TABLE V. DATA ACQUISITION SYSTEM

DATUM	INSTRUMENTATION	OSCILLO- GRAPH	ANALOG TAPE	DATEX
Flap- Bending Moment at Sta. 22.3	Flap-Bending Strain Gage at Sta. 22.3 on Blade 1	Х		
Flap-Bending Moment at Sta. 13.15	Flap-Bending Strain Gage at Sta. 13.15 on Blade 1	х	Х	
Flap-Bending Moment at Sta. 3.3	Flap-Bending Strain Gage at Sta. 3.3 on Blade 1	х	х	
Rotor Stationary Pitching and Rolling Moments at Sta. 3.3	Flap-Bending Strain Gages at Sta. 3.3 on all Blades	Х	х	Х
Summed Blade-Bending Moments at Sta. 3.3	Flap-Bending Strain Gages at Sta. 3.3 on all Blades	Х	Х	
Chord-Bending Moment at Sta. 13.15	Chord-Bending Strain Gage at Sta. 13.15 on Blade 1	х		
Chord-Bending Moment at Sta. 2.4	Chord-Bending Strain Gage at Sta. 2.4 on Blade 1	х	х	
Blade Torsional Moment at Sta. 9.28	Torsional Strain Gage at Sta. 9.28 on Blade 1	Х	Х	
Shaft Rotating Bending Moment	Shaft Strain Gages 2 in below rotor plane at $\psi = 0^{\circ}$ and 180°	х	х	
Blade-Pitch Angle	Blade-Feathering Position Potenti- ometer on Blade 1	Х	Х	
Collective Pitch Angle	Collective Pitch Actuator Position Potentiometer	Х	1	х
Longitudinal Cyclic Pitch Angle	Longitudinal Cyclic Pitch Actuator Position Potentiometer	Х	1	х
Lateral Cyclic Pitch Angle	Lateral Cyclic Pitch Actuator Posi- tion Potentiometer	х	ı	х
Shaft Pitch Angle	Body Pitch Actuator Linear Position Potentiometer	х	1	Х

TABLE V. DATA ACQUISITION SYSTEM (CONT'D)

DATUM	INSTRUMENTATION	OSCILLO- GRAPH	ANALOG TAPE	DATEX
Shaft Roll Angle	Body Roll Actuator Linear Position Potentiometer	х	1	. X
Oscillator Input	Direct-Voltage Measurement	Х	2.	
Body Fore-Aft Acceleration	Body Fore-Aft Accelerometer	Х	•	•
Body Lateral Acceleration	Body Lateral Accelerometer	Х		
Rotor Rotational Speed	One-Per-Rev Magnetic Pickup	x	X	x
Body Forces and Moments	Body-Mounted Strain Gage Balance	3	3	14
Body Forces and Moments	Wind Tunnel Balance			x
Total Temperature	Probe in Wind Tunnel Settling Chamber		•	х
Total Pressure	Probe in Wind Tunnel Settling Chamber			Х
Dynamic Pressure	Probe in Wind Tunnel Test Section		II	х

- 1. Collective or shaft pitch recorded during steady-state tests. Two selected angles recorded during frequency-response tests.
- 2. During frequency-response tests.
- 3. Thrust and torque measured during steady-state tests. No measurements during frequency-response tests.
- 4. Measured during steady-state tests.

STEADY-STATE RESPONSE TESTS

The primary purpose of steady-state response tests was the determination of blade and rotor loads resulting from steady inputs from the swashplate or from shaft tilt. The emphasis was upon obtaining data over a broad range of collective pitch angles while operating the rotor at representative helicopter advance ratios.

The test procedure was to initially trim the rotor to near zero mean hub moment for a given preselected advance ratio and collective pitch. The excitation, either collective pitch, lateral or longitudinal cyclic pitch or rotor shaft angle, was then varied in approximately equal increments in both directions from trim, while holding the other controls fixed. The type of data recorded at each interval, is listed in Table V. The test conditions are summarized in Table VI.

The resultant data on analog tape were digitized, scaled, and harmonically analyzed up to the fifth harmonic of the rotor angular frequency for more than 40 revolutions of the rotor. The response loads as well as the control excitations were harmonically analyzed in this manner. Blade cyclic angles were obtained from the blade feathering in the rotating system.

From each series of test points, linearized derivatives were formed by the method of least squares. In general, the derivatives were formed from 3 or 4 dimensional arrays, since it proved difficult to maintain identical cyclic angles from test point to test point. In particular, it was difficult to perturb cyclic inputs about one axis without disturbing the other.

Nondimensionalized derivatives of shaft moment, hub moment (at r = 3.3), thrust, and torque were evaluated. Blade loads derivatives, however, were not. The test points and the calculated derivatives are tabulated in Appendix A.

Some of the linearized derivatives are shown in Figures 14 through 22. Thrust and hub moments due to unit values of blade cyclic, collective, and rotor angle of attack are shown as functions of advance ratio. In some cases, the data used to evaluate the derivatives was found to be quite non-linear, and consequently linearized derivatives are unavailable. In Appendix A, several of the test-point loads are plotted versus the primary input angle to demonstrate the degree of linearity present. In general, there appears to be the expected trend toward linearity with increasing advance ratio.

TABLE VI. STEADY-STATE RESPONSE TEST CONDITIONS

CONFIG.	RPM	P	μ	α	θ_{O}	EXCITATIONS
5	850	1.15	0.0	0	0-20	$\theta_{_{\mathbf{S}}}$
	·				0-12	θ_{c}
				0		$ heta_{\circ}$
·			0.05		1-4	$\theta_{\mathtt{S}}$, $\theta_{\mathtt{C}}$
			0.10		1-8	$\theta_{s}, \theta_{c}, \theta_{o}, \alpha$
			0.15 0.20		1-12	
			0.26	·		$\theta_{ m s}$, $\theta_{ m c}$
:		:			4-12	α
			0.36	÷	•	θ_{s} , θ_{c}
					4-8	θ_{\circ} , α
:				3	8	$ heta_{\mathtt{g}}$
				-5	·	
			0.50	- 3		
	550	1.28	0.0	0	0-12	$ heta_{ t s}$
1.	800	1.33	0.0	0	0-20	hetas
					4	$ heta_{ extsf{c}}$

As previously stated, both the shaft moment, as measured at 2 inches below the rotor plane, and the hub moment, as measured at r = 3.3 inches have been reduced to derivatives. Based on the first-flap mode, the ratios between blade root (or center of rotation) moments and moments at r = 3.3 inches at the rotor speeds used, are (from References 1 and 3) shown in Table VII.

TABLE VII. RATIO OF ROOT MOMENT TO MOMENT AT r = 3.3 INCHES

CONFIGURATION	RPM	k
5	850	1.785
5	550	1.430
1	800	1.235

The above ratios are not completely applicable for comparing the shaft moment measurement with that at r=3.3 inches. Since the shaft gage was 2 inches below the rotor plane, moments due to thrust vector tilt and drag forces are reflected in this measurement.

The shaft moment derivatives displayed somewhat more scatter than hub derivatives, due in part to the inplane forces. Other contributing factors could be that the shaft rotating measurement reflected loads on blades 1 and 3 only, whereas the hub loads were based on the resolution of measurements on all 4 blades. A slight error, present in all of the rotating loads and displacements, is caused by the requirement to digitize the continuous analog signal (.001 second-step size was used). None of the shaft moment derivatives, nor any of the torque derivatives, are shown in the form of plots.

In summary, the hub moments at the center of rotation (C₁, C_m) may be obtained from the hub moments measured at radial station 3.3 inches (C_L, C_M) by application at the factor k. 3.3 3 .3

$$C_{1} = k C_{L_{3,3}}$$

$$C_{m} = k C_{M_{3,3}}$$

Figure 14. Configuration 5, Hub Pitch Moment Due to Unit Lateral Cyclic Angle vs. Advance Ratio (P = 1.15).

Figure 15. Configuration 5, Hub Roll Moment Due to Unit Longitudinal Cyclic Angle vs. Advance Ratio. (P = 1.15).

Figure 16. Configuration 5, Thrust Due to Unit Longitudinal Cyclic Angle vs. Advance Ratio. (P = 1.15).

Figure 17. Configuration 5, Hub Pitch Moment Due to Unit Lateral Cyclic Angle vs. Advance Ratio (P = 1.15).

Figure 18. Configuration 5, Hub Roll Moment Due to Unit Lateral Cyclic Angle vs. Advance Ratio (P = 1.15).

Figure 19. Configuration 5, Thrust Due to Unit Lateral Cyclic Angle vs. Advance Ratio (P = 1.15).

Figure 20. Configuration 5, Hub Pitch Moment Due to Unit Collective Angle vs. Advance Ratio (P = 1.15).

Figure 21. Configuration 5, Thrust Due to Unit Collective Angle vs. Advance Ratio (P = 1.15).

Figure 22. Configuration 5, Thrust Due to Unit Rotor Angle of Attack vs. Advance Ratio (P = 1.15).

FREQUENCY RESPONSE TESTS

Hub pitch and roll moment responses to swashplate and shaft oscillations were determined from the frequency-response tests. The conditions established for the frequency-response tests were generally similar to those for the steady-state response tests. That is, data was taken at low to high collectives over similar advance ratios. A summary of the conditions tested is shown in Table VIII.

In order to raise the model support modal frequencies, the model was externally braced. During swashplate excitation tests, both the model body and pylon were braced (see Pylon 3 in VIBRATION MODES Section). During the shaft pitch and roll tests, the pylon only could be braced (see Pylon 2). Just one test was conducted with no bracing (Figures B-5 and B-6).

The test procedure was to input discrete frequencies, beginning with the lowest frequency and proceeding to the highest, with the rotor initially trimmed to zero mean hub moments. Higher input frequencies were attained with the model in the more heavily braced configuration (Pylon 3). In general, the peak-to-peak amplitudes of the input angles ranged from 1 to 6 degrees.

Sufficient data record lengths were taken to allow at least 3 cycles of data to be harmonically analyzed to the period of the lower-frequency oscillator inputs. For the inputs of higher frequency, up to 100 cycles of data were harmonically analyzed to the period of the oscillator. The digitizing step size was .002 seconds except for the oscillator periods of 5 and 10 seconds, where .005 seconds was used. A summary of the measurements taken is shown in Table V.

The nonrotating, hub flapping moment output at rotor station 3.3 inches, transferred to the shaft centerline were used in conjunction with either blade cyclic, blade collective, shaft pitch or shaft roll to form the rotor

TABLE VIII. FREQUENCY RESPONSE TEST CONDITIONS, CONFIGURATION 5

RPM	Р	μ	θο	EXCITATIONS	EXCITATION FREQ., Hz
850	1.15	0.0	0-16	$ heta_{ t s}$	0-32
[O-4	$\theta_{ m c}$	·
	-		0-8	α	0-10
			0-16	φ	
		0.05	1	$\theta_{\rm s},\theta_{\rm c}$	0-16
	<u>.</u>	,	2	$ heta_{\circ}$	
,			12	α	0-12
		0.10	1, 12	$ heta_{ t s}$, $ heta_{ t c}$	0-16
			2, 12	θ_{\circ}	
			1, 12	α, φ	0-12
		0.15	1 ·	$ heta_{ extsf{s}}$	0-16
	:	0.20	1, 12	- -	
		0.26	·	θ_s , θ_o	
			12	θ_{c}	
			1, 12	α, φ	0-12
550	1.28	0.0	0-16	$ heta_{ t s}$	0-40

transfer functions. These are presented in Appendix B in both tabular and graphical form.

As in prior frequency response tests with this model, coupling was present between the two cyclic control angles. That is, when one cyclic control was oscillated, a portion of the excitation was gyroscopically fed into the other cyclic control. The effect was rather pronounced at high input frequencies. The magnitudes of cross-coupling present at the various frequency ratios for the rotor speeds used are shown in Figure 23. (Note that at 550 rpm, no oscillations were applied to the lateral cyclic control.)

The effect of swashplate cross-coupling was eliminated (as in Reference 3) by pairing test points of opposing cyclic oscillation inputs, all other conditions being identical. This resulted in two complex equations of the form:

$$HM = \left(\frac{\partial HM}{\partial \theta_{s}}\right) \theta_{s} + \left(\frac{\partial HM}{\partial \theta_{c}}\right) \theta_{c}$$

which could be simultaneously solved for the moment derivatives.

The testing was concentrated upon obtaining longitudinal cyclic response transfer functions, to the exclusion of the lateral cyclic response conditions. In hover, symmetry was simply assumed where there were no lateral cyclic response cases available for pairing.

Lateral cyclic response cases were also unavailable for some of the forward flight conditions. However, the rotor frequency response to lateral cyclic appeared to vary little over the limited range of advance ratios at which tests were conducted. (Compare Figures B-33 and B-34 with Figures B-35 and B-36, respectively.) Therefore, some of the frequency-response conditions due to longitudinal cyclic were decoupled by lateral cyclic input conditions with slightly different advance ratios, other parameters being identical.

As noted in the Model Description Section, the shaft (or body) pitch and roll pivot points are located 11.25 inches below the rotor plane of rotation. The pitch pivot is also located 12.0 inches aft of the shaft. The transfer function due to roll is thus influenced by lateral hub acceleration; and the shaft pitch generated value includes the effects of both longitudinal and vertical accelerations at the hub.

Many of the rotor transfer functions were influenced by the body/pylon modal frequencies, which are listed in Table III. These values were obtained from the shake tests in the model preparation area, where the hover tests were conducted. In the wind tunnel the model was braced in nearly the same way as it was in the hover tests; however, shake tests were not performed. The apparent shift in body/pylon resonant frequencies from those of Table III for the wind tunnel tests, were thought to be due in part to the pylon mounting.

Figure 23. Amplitude of Cyclic Pitch Coupling vs. Nondimensional Excitation Frequency.

CONCLUDING REMARKS

A large volume of experimental rotor transfer function data, due to both steady and oscillating swashplate and shaft inputs, has been gathered in the low-advance ratio region over a broad range of lift levels. The data presented herein, together with that obtained in the prior-related tests of various configurations at widely varying conditions, form a valuable bank of information for research purposes. With the exception of the vibration reduction study in Appendix C, this document presents experimental data, without theoretical correlation, intended for further study.

Several remarks concerning the experimental data are in order. Relative to the rotor response to steady inputs, some of the resultant mean derivatives have been shown to be linear over portions of the range of advance ratios investigated, namely from $\mu=0$ to 0.36. The derivatives were more linear at high lift level and high advance ratio. Tunnel wall interference effects were quite evident below $\mu=0.10$, and influenced both the steady and frequency-response test results.

The rotor transfer functions due to 4/revolution inputs to the swashplate of the four-bladed rotor were investigated experimentally. The present report includes a preliminary evaluation of the concept of vibration reduction by properly selected oscillatory collective and cyclic control applications. The investigations are based on experimental frequency response data covering advance ratios from approximately 0.2 to 0.85.

As there was no instrumentation for the measurement of the pitch- and roll-vibrations, these values were obtained by properly adding up the

flap-bending moments at 3.3 inches. Needless to say, in the same fashion any other quantity representing pitch/roll vibrations can be compensated.

The calculated control inputs required for vibration reduction stay within acceptable limits. For four of the five conditions tested they are smaller than the values used for the frequency response tests. The blade pitch variations required for vibration alleviation vary, depending on the advance ratio, from 0.2 to 3 degrees.

As to be expected, the compensating controls affect the blade loads, i.e., torsion, flap and chordwise bending. With regard to flap bending at 3.3 inches (root flexure), the following statements can be made:

3 and 5P flap moments were greatly reduced

2P flap moments were affected very little

In this particular case, chordwise bending and blade torsion increased with advance ratio. Indications are that the 4P chordwise and 5P torsion moments may be the limiting factors for extreme high advance ratios. At lower μ -values the loads are not critical. It is therefore concluded that the concept investigated will work for low and medium advance ratios, i.e., for the speed-range of present day rotary wing aircraft. This application appears to be promising and further studies and tests are suggested. The system appears to be capable of reducing helicopter vibration greatly in transition flight, including the large values that occur in the autorotation flare maneuver.

REFERENCES

- 1. Kuczynski, W. A., and Sissingh, G. J., "Research Program to Determine Rotor Response Characteristics at High Advance Ratios", NASA CR 114290, LR 24122, February 1971.
- 2. Kuczynski, W. A., and Sissingh, G. J., "Characteristics of Hingeless Rotors with Hub Moment Feedback Controls Including Experimental Rotor Frequency Response", NASA CR 114427 (Vol. I) and NASA CR 114428 (Vol. II), LR 25048, January 1972.
- 3. Kuczynski, W. A., "Experimental Hingeless Rotor Characteristics at Full Scale First Flap Mode Frequencies", NASA CR 114519, LR 25491, October 1972.
- 4. Shaw, J., Higher Harmonic Blade Pitch Control for Helicopter Vibration Reduction, MIT Report ASRL TR 150-1, December 1968.
- 5. Sissingh, G. J., Rotor Induced Flow Calculation by Combined Momentum and Blade Element Lift Theory, Part I, Loaded Disc. (In preparation)

APPENDIX A

ROTOR STEADY-STATE RESPONSE DATA

The steady-state response rotor data for Configurations 5 and 1 are shown in Tables A-I and A-II, respectively. All of the loads data are nondimensional and divided by blade section lift curve slope (a = 5.73). Four types of information are presented:

- Input parameters and loads at each test point. (Note that rotor incidence angle and blade collective pitch should be considered as nominal.)
- The deviation of each test-point load from the linear function formed by a least-squares, 3- or 4-dimensional analysis (listed under the Δ headings).
- The standard deviation of each load.
- The derivatives (and residual) due to each of the input variables.
 (Derivatives are per degree of angular input.) In each set of derivatives, only those due to the primary input variable are of importance.

Figures A-1 through A-18 are plots of hub moment or thrust due to blade cyclic, blade collective, or rotor angle of attack. Nondimensional loads are presented at advance ratios of 0, 0.20, and 0.36 for cyclic inputs, at 0.20 and 0.36 for collective inputs (while holding cyclic pitch constant), and at 0.36 for shaft angle-of-attack variations. Although the changes in loads are influenced somewhat by unintentional variations in cyclic angles, the character of the curves should not change. Thus, they are suitable for judging the linearity of the data.

The figures indicate that the assumption of linearity is not adequate for many of the test conditions. However, to aid in understanding the data, all of the linearizations have been carried along in Tables A-I and A-II.

TABLE A-I. CONFIGURATION 5, ROTOR STEADY STATE RESPONSE DATA.

1950	RPM	μĹ	ρ	во	$\theta_{\rm i}$	θ_{c}	α	C _{M3.3} /an	ΔC _{M3.3} /οσ	С _{13.3} /от	ΔC _{L3.3} /οσ	C _M /aσ	ΔC _{Me} /ασ	C _L /oσ	ΔCL	Cy/00	ΔС-γ/ασ	c ⁰ /60	ΔC _Q /6σ
B31	85C.	0.0	.002397	0-07	5.59	-0.49	0.0	3-850E~04	2-576-05	-8-191E-04	1.586-05	4.920E-04	5.20E-05	-1.527E-03	2-358-05	-1.1266-04	-4.638-05	1.879E-04	4.98E-05
Standard Division Color 1,18 Color C								2-412E-05	-4.57E-C5	2.086E-05	2.63E-05	4.690E-05	-6.94E-05	7.772E-05	5.39E-05	1.0106-05	5.94F-05	1.0286-04	-2-26E-05
STANDARD DIVITIONS								-4-551E-05	4-2/E-05	4-3748-04	-3.45E-05	1.5596-05	9-116-05	8.356E-04	-5.50E-05	-5.130E-Q6	-4.96E-07	1.361E-04	-1.278-05
Section Control Cont	852.	0.0	.002397	O. 0B	-5.09	-0.14	0.0	-L-932E-04	-1.llE-05	7.9066-04	3.89E-05	-2.143E-04	-2.738-05	1.468E-03	6.30E-05	-2.981E-05	-2.996-05	2.0186-04	4.37E-05
1.427F-04 -1.518F-05 -1.5	STAN	ARD DE	VIATIONS						4.328-05		4.07E-05		7.866-05		7.13E-05		4.31E-05		++81E-05
1.786-04 1.786-04						•													
Dec. 0.02237 0.47 0.41 0.62 0.0 0.599E-05 -1.14E-05 0.277E-05 -1.27E-05 1.286E-06 0.2025F-05 0.2025F			LIC PITCH	DEKIVAL	I AF 2														
Dec. 0.02237 0.47 0.41 0.62 0.0 0.599E-05 -1.14E-05 0.277E-05 -1.27E-05 1.286E-06 0.2025F-05 0.2025F	PAR.	0-0	-002397	D. SA	-0.02	-0.15	0.0	3-075F-05	-4.54F-05	1.2266~06	2.41E-05	7.981E-05	-3.81E-05	3.709E-10	1.41E-05	1.643E-04	-2.59E-04	1-0165-04	-2-90E-05
84. 0.C. 002377						~0+42		6_599F+05	-1-14F-05	-8.9376-05	-1.75E-05	1.284E-04	8.06E-06	-2.091E-04	-2.20E-U5	2.815E-04	-2-47E-04	1.063E-04	-3.406-05
840 O.C. 002297 0.46 5.53 0.01 0.02997 0.48 0.01 0.00 0.								9-5766-05	-1-688-05	-1.8106-04	9.80E-07	1.546E-04	-1.01E-05	-4-190E-04	1.60€-06	4.207E-04	-1.36E-04	1.1046-04	-3.198-05
850. 0.0 .002397								4-060E-04	5.59E-C5	- B. 223E-94	-2.50E-05	5.369E-04	7.53E-05	-1.558E-03	-2.786-05	7.314E-04	2.82E-04	1 9366 -04	6. 56 E-D5
850. 0.0 0.02337 0.99 -3.22 -0.00 0.0 -5.23F-05 4.5FE-05 4.22FE-05 2.48FE-05 7.59E-05 8.47FE-04 -2.15E-05 7.45E-04 1.47FE-04 2.15E-05 3.28E-05 7.45E-04 3.80E-05 7.45E-04 7.45E-04 4.58E-05 9.20FE-05 3.30E-05 7.45E-04 7.45E-04 7.45E-05 7.45E-04 7.45E-05 7.4	850.	0.0	.002397	0.99	-0-44	-0.03	0+0	2.298E-05	-4-17E-05	5-076E-05	3.21E-05	4.523E-05	-5.81E-05	1.4356-04	6.08E-05	2.250E-04	-1.76E-04	1.013E-04	-2.74E-D5
STAMDARD DEVIATIONS CONCITUDINAL CYCLIC PITCH DERIVATIVES LAGE-OS LAG								2-0678-05	1.726-05	1-3236-94	-4.50E-05	4.256E-05	1.585-05	3-1136-04	-5.75E-C5	3.6846-04	-6.03E-05	1.097E-04	~2.27E~05
STANDARD DEVIATIONS 1,198-05 3,39E-05 5,76E-05 4,76E-05 2,59E-04 -7,20E-05								-2.051E-05	4.5/E-05	7.7878-04	2.156-05	-2.595E-04	-1.08E-05	1-469E-03	3.6ZE-05	7. 458E-Q4	2.40E-04	2.040E-04	6.05E-05
1.48E-04 -2.082E-05 -2.08E-05 -2.0	STANO	ARD DE	VIATIONS																
RESIDUAL 9.499E-09 -5.725E-05 1.405E-04 -5.208E-05 3.650E-04 1.22FE-04 894. 0.C .003357 1.90 0.04 -0.15 0.0 4.638E-05 -7.33E-05 -7.33E-05 2.15E-05 2.76E-00 -7.83E-05 -4.23E-05 -4.23E-05 1.12E-05 -7.83E-05 2.000E-04 -7.85E-05 1.12E-05 -7.80E-06 1.12E-06 1.12	LONG	TUD I NA	L CYCLIC P	I TCH DE	REVATIVES			5.9196-05		-1.573E-04									
849. 0.0 .002397 1.96 1.75 -0.74 0.0 1.2016-04 4.546-06 -1.208-06 8.926-07 2.518-05 -2.5046-07 4.1016-08 6.238-07 1.97 1.97 1.75 -0.74 0.0 1.2016-06 -2.208-06 8.926-07 2.618-05 2.5046-07 4.1016-08 8.208-07 1.09 3.60 -0.59 0.0 2.3146-06 -3.076-05 -5.208-06 8.926-07 1.208-04 1.008-07 1.09 3.60 -0.59 0.0 2.3146-06 -3.076-05 -5.208-05 8.926-07 1.208-04 1.008-07 1.09 3.00 1.00 3.00 1.09 3.00 1.00 3.00 1.09 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			LIC PITCH	DERIVATI	T VES														
849. 0.0 .002397 1.96 1.75 -0.74 0.0 1.2016-04 4.546-06 -1.208-06 8.926-07 2.518-05 -2.5046-07 4.1016-08 6.238-07 1.97 1.97 1.75 -0.74 0.0 1.2016-06 -2.208-06 8.926-07 2.618-05 2.5046-07 4.1016-08 8.208-07 1.09 3.60 -0.59 0.0 2.3146-06 -3.076-05 -5.208-06 8.926-07 1.208-04 1.008-07 1.09 3.60 -0.59 0.0 2.3146-06 -3.076-05 -5.208-05 8.926-07 1.208-04 1.008-07 1.09 3.00 1.00 3.00 1.09 3.00 1.00 3.00 1.09 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	054		002367	1 40	r. 04	∞ 0.15	0.0	4 4385+05	_6 76E=06	-2 8376-05	-2-33E-05	9-3515-05	2 - 76F-ON	-7-8846-05	-9-57F-05	6-250F-04	-2-43F-04	1.1225-04	-2-54E-05
880. 0.0 .002397 1.98 1.75 -0.74 0.0 1.634F-09 -2.11E-05 -2.524E-04 8.92E-07 2.671E-04 -2.11E-05 -3.044E-05 -1.06E-05 1.10E-05 1.10E-05 1.29E-04 -4.5EE-04 1.10E-05 1.10E-05 1.39E-03 2.79E-04 1.20E-04 1.10E-05 1.10E-05 1.39E-03 2.79E-04 1.20E-04 1.20E-05 1.10E-05 1.39E-03 2.79E-04 1.20E-05 1								1.2615-04	4.54E-06	-1.284E-04	-1.07E-05	2.106E-04	1.38E-05	-3.049E-04	-4-23E-05	6-244E-04	-5.09E-04	1.119E-04	-5.29E-05
850. 0.C .002367 1.98 5.49 -0.77 0.0 4,153E-04 4.22E-05 -0.59E-04 6.49E-06 6.298E-04 1.00E-04 -1.594E-03 4.42E-05 6.31IE-04 1.10E-04 -1.10E-05 6.31IE-04 1.10EE-04 1.10EE-04 1.10EE-05 6.31IE-04 1.10EE-04 1.10EE-04 1.10EE-05 6.31IE-04 1.10EE-04 1.10EE-04 1.10EE-05 6.31IE-04 1.10EE-05 1.10EE-05 6.31IE-04 1.10EE-05 1.1								L.634F-04	-2.116-05	-2.524E-04	8.92E-07	2.671E-04	-2.14E-05	-5.644E-04	- 4.10E-06	8-253E-04	-4.54E-04	1.285E-04	-4.90E-05
833. 0.C . 0.02397 1.97 -0.41								2-3146-04	-3-678-05	~5.291E~04	2.81E-05	2.594E-04	-1.28E-04	-1-069E-03	1+16E-05	1-359E-03	2+ 12E-04	2.184F-04	7-07E-05
852. G. G. O.02397 1.97 -1.31 -0.05 0.0 -3.503t-05 -1.32t-05 5.02t-05 4.04-05-05 -1.25t-05 8.05t-05 -0.05t-05 9.02t-05 8.05t-05 9.02t-05 9								1.481E-05	-3.88E-Cc	7-0286-05	1.05E-05	2.565E-05	-1.32E-05	1.873E-C4	2.086-05	6.311E-C4	-1.29E-04	1.164E-04	-1-07E-05
STANDARD DEVIATIONS 3.31E-C5 2.96E-05 8.07E-05 8.07E								- 3-503E-05	-1.321-05	2.182E-04	1.48E-05	-L-269E-05	-3.16E-06	4./58E-04	5.86E-05	6-312E-04	-2.11E-04	1.217E-04	-L-87E-05
STANDARD DEVIATIONS 3.31E-C5 2.96E-05 8.07E-05 6.19F-05 6.19F-05 4.58E-04 5.003E-05 -1.500E-04 -7.504E-05 -7.614E-05 -7.614E-05								-5.929E-05	5-02E-05	4.469E-04	~4.66E=05	-2.065E-05	9.76E-05	8.884E-04	-4-856-05 6-035-05	1+182E-03	2.27E-04	2.389E-04	5.45E-05
LATERAL CYCLIC PITCH DERIVATIVES -7.614E-05 -4.055E-05					1413	0.00	0-0	-241010-04		010316								•	
## A STENDAL ##	LONG	THEFRA	I CACLIC E	PETCH DE	RIVATIVES			5-003F-05		-1-560F-04		6.361F-05		-2.8666-04		-3.664E-J5		-8.504E-06	
845. C.C .0C242C 3.05 0.01 -0.13 0.0 2.118E-05 -3.13E-06 8.615E-06 -6.71E-06 9.266E-05 3.48E-05 -7.434E-06 -9.50E-05 1.28E-03 -7.30E-05 1.578E-04 -1.75E-05 851. 0.0 .0C242D 3.05 0.79 -0.52 0.0 1.545E-04 1.22E-05 -1.28E-04 -1.10E-05 2.395E-04 -8.20E-06 -3.461E-05 1.31E-03 -3.90E-04 1.31E-03 -4.39E-04 1.73E-05 853. 0.C .0C242C 3.05 2.70 -0.85 0.0 3.061E-04 -8.19E-07 -7.434E-06 4.02E-04 3.75E-00 4.02E-05 854. 0.C .0C242C 3.05 3.64 -0.94 0.0 3.585E-04 -1.47E-05 9.594E-06 6.386E-04 -4.48E-06 -1.10E-03 5.18E-05 1.755E-03 -9.75E-00 4.02E-05 854. 0.C .0C242C 3.05 3.64 -0.94 0.0 3.585E-04 -1.47E-05 9.594E-06 6.386E-04 -4.48E-06 -1.10E-03 5.18E-05 1.755E-03 -9.75E-00 6.2149E-04 -9.18E-06 854. 0.C .0C242C 3.05 3.05 4.48 0.077 0.0 3.841E-05 9.594E-04 9.50E-06 6.093E-04 -4.48E-06 -1.10FE-03 5.18E-05 1.755E-03 -9.75E-00 6.093E-04 4.48E-06 -1.10FE-03 5.18E-05 1.755E-03 -9.75E-00 6.2149E-04 -9.18E-06 855. 0.C .0C242C 3.05 5.42 0.91 0.0 4.606E-04 -1.31E-05 9.75E-06 6.093E-04 5.49E-06 1.10FE-03 5.05E-04 2.380E-04 4.09E-05 855. 0.C .0C242C 3.05 5.42 0.91 0.0 4.606E-04 -1.31E-05 9.594E-04 1.55E-05 1.755E-03 5.50E-04 6.236E-05 9.594E-04 1.55E-05 1.755E-03 5.50E-04 6.236E-05 5.258E-04 9.236E-04 4.76E-05 5.394E-04 1.55E-05 1.537E-03 5.30E-04 4.09E-05 845. 0.C .0C242C 3.05 5.42 0.01 0.0 4.855E-06 6.2578E-05 5.594E-04 4.75E-06 5.599E-04 4.76E-05 1.237E-03 1.33E-04 1.633E-04 -1.77E-05 845. 0.C .0C242C 3.06 -1.38 0.05 0.0 5.0 5.741E-05 6.57E-06 2.556E-04 5.58E-05 5.256E-04 4.76E-05 1.037E-04 4.76E-05 1.237E-03 1.33E-04 1.633E-04 -1.77E-05 845. 0.C .0C242C 3.06 -1.38 0.00 0.0 1.238E-04 6.2556E-04 5.38E-06 1.037E-04 4.75E-06 5.599E-04 4.76E-05 1.50E-05 1.50E-0												-1.4798-04		1.347E-04		-7-504E-Q4			
851. 0.0 0.02420 3.04 1.73 -0.75 0.0 2.477E-D4 1.18E-C5 -1.28EE-O4 -1.10E-D5 2.395E-D4 -8.20E-D6 -3.48IE-C4 -1.17E-D5 1.33IE-D3 -3.90E-D4 1.737E-D6 1.757E-D7 1.757E-D	RESIG	UAL						4.012E-05		-4.055E-C6		6-673E-05		4.740E-05		7.543E-04		1.247E-04	
853. C. C. 022420 3.05 2.70 -0.05 0.0 3.0616-04 -8.19E-07 -4.194F-09 2.57E-05 5.009E-04 4.83E-05 4.212E-05 1.31EE-03 -4.39E-05 854. C. C. 022420 3.05 3.04 -0.94 0.0 3.081E-04 -1.9EE-05 5.04E-06 6.386E-04 -4.48E-06 -1.106E-03 5.18E-05 1.755E-03 -4.755E-03 -4.755E-0	845.	C.C	.002420	3.05	0.01	-0-13	0.0												
854. C.C																			
854. 0.C																			
854. C.C. 002420 3.05 4.48 -0.77 0.0 3.841E-04 1.51E-07 -7.342E-04 5.70E-06 6.693E-04 -5.48E-06 -1.53E-03 4.60E-05 2.178E-03 5.50E-04 6.89E-05 85.0 0.002420 3.05 5.42 -0.91 0.0 4.60E-04 -1.31E-06 -9.183E-05 -5.51E-06 1.506E-06 -0.88E-05 2.394E-04 1.55E-05 1.237E-03 -1.33E-04 1.51E-05 8.28E-05 2.578E-05 5.50E-04 5.58EE-05 -2.55E-06 5.50E-04 5.80E-05 5.49E-05 1.237E-03 -1.33E-03 -1.33E-04 1.51E-05 8.28E-05 8.50E-04 5.58E-05 1.003E-04 -4.75E-06 5.599E-04 4.76E-05 1.237E-03 -1.33E-04 1.50E-05 845. C.C. 0.002420 3.06 -1.38 -0.05 0.0 -1.234E-05 6.57E-06 4.230E-04 4.75E-06 5.599E-04 4.76E-05 1.259E-03 -1.23E-03 -1.33E-04 -1.50E-05 848. D.O. 0.002420 3.06 -2.18 -0.02 0.0 -1.234E-04 -6.87E-06 4.230E-04 -2.50E-06 5.225E-04 3.21E-05 8.07E-04 4.76E-05 1.338E-03 -8.33E-05 1.80E-04 -7.77E-06 848. D.O. 0.002420 3.06 -3.18 -0.04 0.0 -1.782E-04 -1.73E-05 5.48E-04 -4.99E-05 -2.258E-04 3.24E-05 1.042E-03 -1.17E-06 1.504E-03 1.50E-04 2.124E-04 3.29E-05 849. D.O. 0.002420 3.06 -4.14 -0.14 0.0 -1.87E-04 -1.73E-05 5.48E-07 -7.05E-06 -2.08E-04 -1.18E-05 1.042E-03 -1.17E-06 1.504E-03 1.50E-07 2.24E-04 3.29E-05 85C. 0.C. 0.002420 3.06 -4.91 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0								3.585E-04	-1.47E-C5	-5-9346-04	5-04E-06	6.386E-04	-4.48E-06	-1.106E-G3	5.18E-C5	1.7656-03	-9-75E-06	2-149E-04	-9-188-06
857. 0.0 .002420 3.05 -0.44 -0.11 0.0 4.855E-06 8.24E-C6 8.578E-05 -5.51E-06 1.566E-06 -6.88E-06 2.334E-C4 1.555E-05 1.237E-03 -1.33E-04 1.613E-04 -1.77E-05 645. C.C .002420 3.06 -1.38 -0.05 C.D -5.741E-05 6.57E-C6 2.556E-04 5.88E-06 -1.037E-04 -4.75E-06 5.59E-C6 4.76E-05 1.259E-03 -1.38E-04 1.701E-05 6.57E-06 845. C.C .002420 3.06 -2.25 -0.02 0.D -1.234E-04 -6.87E-C6 4.230E-04 -2.254E-04 -3.21E-05 8.407E-C4 (.34E-C5 1.338E-03 -8.33E-03 -8.33E-04 -7.27E-06 845. C.C .002420 3.06 -3.18 -0.04 0.D -1.73E-05 5.484E-04 -4.99E-06 -2.2881E-04 -1.18E-05 1.042E-03 -1.17E-06 1.504E-07 8.92E-07 2.124E-04 3.29E-05 85C. 0.C .002420 3.05 -4.14 -0.14 0.D -1.897E-04 -7.056E-06 -5.139E-04 2.43E-05 1.324E-03 2.40E-05 1.090E-03 2.42E-04 2.515E-05 2.59E-05 85C. 0.C .002420 3.06 -4.91 -0.07 0.D -2.414E-04 4.41E-06 8.389E-04 -7.17E-06 -4.260E-06 8.45E-06 1.547E-03 2.40E-05 2.42E-04 2.515E-05 2.59E-05 85C. 0.C .002420 3.06 -4.91 -0.07 0.D -2.414E-04 4.41E-06 8.389E-04 -7.17E-06 -4.260E-06 8.45E-06 1.547E-03 2.70E-06 2.070E-03 4.19E-04 2.959E-05 5.83E-05 1.44E-05 1.44E-05 1.44E-05 1.547E-03 2.70E-06 2.070E-03 4.19E-04 2.959E-05 5.83E-05 1.44E-05 1.44E-05 1.547E-03 2.70E-06 2.070E-03 4.19E-04 2.959E-05 5.83E-05 1.44E-05 1.44E-05 1.547E-03 2.70E-06 2.070E-03 4.19E-04 2.959E-05 5.83E-05 1.44E-05 1						-0-77	0.0	3-841F-04	1.576-07	-7.342E-C4	5.70E-06	6.693E-04	-5.48E-06	-1-3576-03	9.186-06	1.5366-03	3.616-04	2-380E-04	4.69E-05
845. C.								4-606E-04	-1-31E-C6	-9.1836-04	-1-84E-05	8.288E-04	2.076-05	-1-6316-03	4.60E-05	2-1786-03	5.508-04	2-745E-04	7-68E-05
845. G.C . 002420 3-06 -2-25 -0-02 0.0 -1-234E-04 -6.87E-C6 4.230E-05 -2-254E-05 -3-21E-05 8.407E-C5 (-34E-C5 1.338E-03 -8.33E-05 1.802E-04 -7.77E-06 849. D.O . 002420 3-06 -3-18 -0-04 0.0 -1-1782E-04 -1.73E-C5 5.484E-C4 -4-99E-06 -2.881E-04 -1.18E-05 1.042E-03 -1.17E-06 1.504E-03 H.92E-07 2.124E-04 3.29E-05 85C. D.C . 002420 3-05 -4-14 0.0 D -1.897E-05 -8.88E-C7 7.056E-06 -5.139E-05 2.43E-05 1.324E-03 2.40E-05 1.900E-03 2.42E-05 2.59E-05 2								-5.761F-05	6.29E-CE	2-5565-04	5-84F-0A	-1-001F=04	-4-75E-06	5.5996-04	4. 76E- 05	1.2598-03	-1.28E-04	1.7016-04	-1.50E-05
848. 0.0 .002420 3.06 -3.18 -0.04 0.0 -1.878-04 -1.78-05 5.484E-04 -4.99E-06 -2.881E-04 -1.18E-05 1.042E-03 -1.17E-08 1.504E-07 2.124E-04 3.29E-05 848. 0.0 .002420 3.05 -4.14 -0.14 0.0 -1.877E-04 5.88E-07 7.056E-04 -5.08E-06 -3.139E-04 2.43E-05 1.324E-03 2.40E-05 1.906E-03 2.42E-04 2.59E-05 85C. 0.C .002420 3.06 -4.91 -0.07 0.0 -2.44E-04 4.41E-06 8.389E-04 -7.17E-06 -4.260E-04 8.45E-06 1.547E-03 2.70E-06 2.070E-03 4.19E-04 2.959E-04 5.83E-05								-1-234E-04	-6.876-66	4.230E-04	2.50E-05	-2.254E-04	-3.21E-05	8.407E-C4	6.34E-C5	1.338E-OJ	-8.336-05	1-8-2E-04	-7.27E-06
85C. Q.C .CC242C 3.06 -4.91 -0.07 Q.D -2.+14E-04 4.41E-C6 8.38E-04 -7.17E-06 -4.260E-04 8.45E-06 1.547E-03 2.70E-06 2.070E-03 4.19E-04 2.959E-04 5.83E-05 STANDARD DEVIATIONS 5.94E-C6 1.44E-05 2.00E-05 . 6.31E-C5 3.41E-04 4.55E-05 LONGITUDINAL CYCLIC PITCH DERIVATIVES 5.239E-05 -1.68EE-04 9.631E-05 -2.930E-04 -7.030E-05 -1.419E-05 LATERAL CYCLIC PITCH DERIVATIVES -1.972E-04 3.874E-06 -2.931E-04 2.284E-04 -8.256E-04 -1.244E-05	848.	0.0	.002420	3-06	-3.18	-0-04	0.0	-L-782E-04	-1.736-05	5.484E-04	-4-99E-06	-2.881E-04	-1.18E-05	1.0426-03	-1.17E-06	1-504E-07	8.92E-07	2.124E-04	3.29E-06
STANDARD DEVIATIONS 9.94E-C6 1.44E-05 2.00E-05 6.31E-C5 3.41E-04 4.55E-05 LONGITUDINAL CYCLIC PITCH DERIVATIVES 5.239E-05 -1.68cE-04 9.631E-05 -2.930E-04 -7.030E-05 -1.419E-05 LATERAL CYCLIC PITCH DERIVATIVES -1.972E-04 3.874E-06 -2.931E-04 2.289E-04 -8.256E-04 -1.244E-04								-1-897E-04 -2-414E-04	9-88E-07 4-41E-08	8.389E-04	-5.08E-06	-3.139E-04	2.43E-05 B.45E-06	1.324E-03 1.547E-03	2.40E-05 2.70E-06	2.070E-03	4-19E-04	2.959E-04	2.7YE-05 5.83E-05
LATERAL CYCLIC PITCH DERIVATIVES -1.972E-04 3.874E-06 -2.931E-04 2.284E-04 -8.256E-04 -1.244E-04					••••			27.2.2											
LATERAL CYCLIC PITCH DERIVATIVES -1.972E-04 3.874E-06 -2.931E-04 2.284E-04 -8.256E-04 -1.244E-04	Langi	TUDENA	L CYCLIC F	TETCH DE	RIVATIVES	.		5.239E-05		-1.68cE-04		9.631E-05		-2.930E-04		-7.030E-05		-1.419E-05	
	LATER	AL CYC								3.874E-06		-2.931E-04 1.772E-05		2.284E-04 1.214E-04		-8.356E-04 1.246E-03		-1.244E-04 1.589E-04	

TABLE A-I. CONTINUED.

RPA	A	μ	P	80	$\theta_{\rm S}$	$\theta_{\mathbf{c}}$	a	C _{M3.3} /90	ΔC _{M3.3} /6σ	C ^{13.3} /00	ΔC _{L3.3} /0σ	C _M /aσ	ΔC _{Ms} /od	C L Jaor	ΔC _L /0σ	Cy/ao	ΔСτ/ασ	C 0/90	ΔC Q/0σ
844		0.C 0.C	.002397	3.95 3.96 3.96	-0.03 1.84 3.75	-0:15 -0:58 -0:51	0.0 - 0.0 0.0	2 . 8 5 O E - 04	-1.19E-06	-3.393E-04	-2.17E-05	4.066E-04	-2.48E-05	-1.203E-05 -7.344E-04 -1.327E-03	~7.60E-05	2.531E-03	-4.17E-04	2 - 263E -04	-6.18E-05
		0.0	.002397	3.96	5.58	-0.23	0.0	5.592E-04	-1.7ZE-05	-1-011E-03	2.65E-85	7.508E-04	-1-81E-05	-1.41HE-03	0.64E-05	3.4586-03	5+82E-04	3.245E-04	7.92E-05
		0.0	.002397	3-95 3-96	-1.32 -3.15	-0.09 -0.27	0.0	-1.135E-04	-3.62E-06	2.5886-04	-1.75E-05	-1.465E-04	-1.87E-05	5.559E-04 1.297E-03	-1-29E-05	2.335E-03	-1.51E-04	2.2596-04	-1-77E-05
		0.0	.002397	3.97	-4.92	-0-63	0.0	-3.5928-04	-8.05E-06	9.124E-04	-6.32E-07	-3.608E-04	2.716-06	1-334E-03	1.606-05	3.0866-03	3.986-04	3.5756-04	5-21E-05
			VIATIONS		•			•											
LON LAT RES	ERAI EDU	UDINA L CYE AL	L CYCLIC LIC PITCH	PITCH DE DERIVAT	RIVATIVES IVES	.	•	9.567E-05 -1.922E-04 -8.687E-07		-1.906E-04 -1.512E-05 2.211E-05		1.231E-04 -3.492E-04 3.033E-06		-3.671E-04 1.354E-04 9.524E-05		4.344E-05 -6.678E-04 2.482E-03		-1.764£-06 -1.031E-04 2.318E-04	
		C - C	002397	5.98 5.97	0.05	-0.20 -0.59	0.0	7.3206-05	2.566-05	-4.087E-05	-3.91E-05	1.443E-04	8.25E-05	-9.0931-05 -8.466E-04	-1.026-04	4.670E-03	~1.49E+04	3.913E-04	-4.95E-05
649		0.0	.002397	5.98	3.82	-0.38	0.0	6 153E-04	-1.C4E-05	-7.612E-04	- 2 - 00E-05	8.985E-04	-3.56E-05	-1.517E-03	2.596-05	5.075E-03	-3.29E-05	4.4436~04	-6.92E-06
		0.C	.002357	5.98 5.98	5.59 -1.35	-0.12 -0.15	0.0	8-354E-04	3.635-06	-1.152E-03	4-69E-05	1-2156-03	1.07E-05	-2.203E-03 5.460E-04	1 - 1 3E - 04	5.425E-03	2.48E-04	5.027E-04	7.91E-05
		0.0		5.98	-3-19	-0.28	0.0							1.4286-03					
850		0.0	.002397	5.98	-+-82	-0.79		-5.4526-04											
			VIATIONS																
LON	I 1 D	AM I GU	L CYCLIC	PITCH DE	RIVATIVES			1 449E-04		-2-13BE-04		2.117E-04		-4.180E-04		6.7248-05		-1.771E-06	
KES	IDU	L CYC		DERIVAT	1 462			1.449E-04 -1.917E-04 -1.702E-06		-1.500E-04 -2.151E-05		-3.988E-04 -2.811E-05		4.777E-06		-1.876E-04 4.779E-03		-9.344E-U5 4.2216-04	
		0. D	.002373	10.06	0.17	-0-44 -0-70	0.0	1-594E-04	3.01E-05	~2.646E-05	-6-25E-05	2.9348-04	3.208-05	-5.671E-05	-1.41E-04	1.108E-02	-1.27E-04	L-034E-03	-6.59E-05
		0.C	.002373	10.08	3.92	-0.55		\$-664E-04	2.50E-05	-7.825E-04	-1.85E-06	1.5116-03	2-68E-05	-7.8786-04 -1.4856-03	- 7. 79E-05	1.115E-02	-1.03E-04	1.025E-03	~6.08E~05
		0.0	.002373	10-08		-0.40	0.0	1.130E-03	-4.84E-C5	-1.121E-03	5.79E-05	1.935E-03	-8-27E-05	-2.086E-03	1.186-04	1.133E-02	1.485-04	1.0H2E-03	8.43E-05
		0.0	.002373	10.08 10.08	-1.35 -3.32	-0.29 -0.50	0.0	-1.663E-04 -5.169E-04	5.81E-06	3.756E-04	4-56E-06	-2.16dE-04	2.938-05	7.466E-04	1-81E-05	1.115E-02	-3.03E-05	1.097E-03	-1.906-05
850	١. ١	0+¢	+002373	10.09	-4.70		0.0	-7.756E-04	-3.COE-C5	1-116E-03	5-29E-05	-1.234E-03	-3-46E-05	2.086E-03	1.02E-04	1.1375-02	9.836-05	1-262E-03	5.83E-05
			VEATECNS						3.616-05		5.506-05		5.98E-05		1.13E-04		1.246-04		6.968-05
LUN	GIT	UD I NA	L CYCLIC	PITCH DE	RIVATIVES			1.866F-04		-2.155E-C4		3.125E-04		-4.074E-04		-2.258E-06		-1.749E-05	
RES	IDU	F CAC	LIC PIICH	DERIVAT	I VE S			1.866F-04 -1.171F-04 4.612E-05		1.622E-05		-2.139E-04 1.142E-04		2.943E-04 2.83LE-04		-2.C19E-04		~6.593E~05 1.073E-03	
	- (0.0	.002373	12.09 12.09	0.08 1.92	-0.39	0.0	1.468E-04	1.57E-C5	3.020€-05	-8.70E-06	3-128E-04	6-42E-05	5.5248-05	~6.67E+05	1-4556-02	1.416-05	1.548E-03	-4-02E-05
		0.0	.CO2373	12.09	3.96	-1.03	0.0	8-3206-04	-P-C16-05	-1.864E-U4	71.40E-05	1.0398-03	4.916-05	-7.112E-04 -1.246E-03	-1.46E-04	1.4616-02	4.55E-05	1.5078-03	-6-276-05
850	. (0.0	.002373	12-10	5.40	-0.92	0.0	1.2136-03	5.44E-05	-1.087E-03	8-166-06	2.242E-03	6.82E-05	-1.8166-03	5-20E-05	1.453E-02	1.81E-05	1.5346-03	7.55E-05
	- 9		+002373	12.09	-1.47	-0.20	0.0	-2.145E-04	-4.11E-C5	3.6456-04	-2.39E-06	-4.021E-04	-8.02E-05	7-106F-04	8.90F~06	1.453F-02	-1-82F-05	1.609E-03	-1-346-05
	. (.002373		-3.37 -4.82	-0.30 -0.35	0.0	-5.012E-04 -7.420E-04	2.77E-C6	7.953E-04	3.59E~06	-9.560E-04	-1.44E-05	1.435E-03	1.98E-05	1-4596-02	1.26E-06	1.6966~03	3-65E-06
STA	NCAF	O DE							5.616-05		3.436-05		9.12E-05		y. 78E-05	224016 05	3.92E-05		5.94E-05
1.08	G F T :	ID T MÁI	CVCLTC 1	D1 1(H DE4	DILATIVES			1 0045-04		- 3 15 BE- 05		3 1015 64		3 7/15 2:		1 1205 25		3 3316	
LAT	ERAL	CYCI	LIC PITCH	DERIVATI	IVES	.*		1.806E-04 -1.283E-04 6.580E-05		-2-1-0E-04 -6.426E-05 3.132E-05		3.392E-04 -2.339E-04 1.287€-04		-3.746E-04 -2.347E-06 1.514E-04		-1.539E+05 -9.567E-03 1.450E-02		-3.2346-05 -8.0806-05 1.5596-03	

RPM	μ	p	θα	$\theta_{\mathtt{S}}$	$\theta_{\mathbf{c}}$	α	CM3.3/00	ΔC _{M3.3} /ασ	CL3.3/00	ΔC _{L3.3} /οσ	CM, OO	ΔC _{Ms} /oσ	CL /00	$\Delta C_{l_{1}}/a\sigma$	C ₁ /00	$\Delta C_{\overline{I}}/6\sigma$	C0/00	acg/ar
851. 853. 850. 855. 851. 849.	0.0 0.0 0.0 0.0	.002357 .002357 .002357 .002357 .002357 .002357	12.11 12.11 12.10 12.11 12.11 12.11	1.96 2.88 3.72 4.66 -1.33 -3.17 -5.09	-0.33 -0.33 -0.37 -0.28 0.09 0.23 -0.04	0.0 0.0 0.0 0.0 0.0	7.123E-04 8.769E-04 1.032E-03 -1.598E-04 -4.785E-04	1.15E-06 7.59E-07 -6.19E-06 -2.35E-05 2.29E-05	-5.588E-04 -7.530E-04 -9.725E-04 2.354E-04 6.551E-04	2.156-05 2.096-06 -3.226-06 -2.526-05 1.956-05	1.711E-03 1.711E-03 1.961E-03 -3.658E-04 -1.010E-03	-3.98E-05 4.47E-05 9.82E-06 -3.95E-05 2.84E-05	-7.631E-04 -1.033E-03 -1.308E-C3 -1.685E-C3 4.984E-C4 1.167E-03 1.917E-03	3.38E-06 3.84E-05 1.30E-05 -1.67E-06 -8.69E-06	1.354E-02 1.346E-02 1.356E-02 1.351E-02	5.39E-05 2.26E-06 -2.36E-05 3.87E-05 -2.73E-05	1.242E-03 1.212E-03 1.243E+03 1.315E-03 1.389E-03	-5.92E-06 -1.37E-05 5.43E-05 -2.86E-05 1.91E-07
STAND	ARD DE	YEATIONS						1.516-05		2.06E-05		3.94E-05		4.C#E-05		4.386-05		3.93E-05
LONG E LATER RESID	TUDINA AL CYC UAL	L CYGLIC A LIG PITCH	PITCH DEF DERIVAT	RIVATIVES IVES	S		1.881E-04 -1.345E-04 1.258E-04		-2-140E+04 -1-382E-04 -1-014E-05		3.5036-04 -4.8056-04 1.834E-04		-3.693E-04 -3.656E-05 1.390E-05		6.5666-07 1.0066-04 1.3516-02		-3.1226-05 -8.518E-05 1.3106-03	
850. 850. 850. 850. 852. 851.	G.C G.C G.C G.C G.C	.002357 .002357 .002357 .002357 .002357 .002357 .002357	14.13 14.14 14.14 14.14 14.14 14.14	0.09 1.91 2.93 3.75 4.66 -1.25 -3.08 -5.02	-0.02 -0.35 -0.23 -0.31 -0.27 0.09 0.06	0.0	6.022E-04 7.360E-04 9.363E-04 1.094E-03 -1.030E-04	5.57E-06 -2.47E-05 3.78E-06 1.13E-06 -5.87E-06	-3.580E-C4 +6.110E-04 -7.586E-04 -1.034E-03 2.153E-04	-6.09E+06 2.24E-05 4.99E-06 -1.12E-05 8.59E-06	1.147E-03 1.38HE-03 1.756E-03 1.998E-03 -2.289E-04 -8.673E-04	1.46E-05 -2.67E-05 1.12E-05 -3.34E-05 -1.89E-05	-1.487E-C4 -6.754E-C4 -1.152E-C3 -1.411E-C3 -1.813E-C3 5.036E-C4 1.172E-O3 1.947E-O3	8.40E-06 -1.87E-05 2.60E-05 6.14E-06 6.86E-05 -9.80E-06	1.674E-02 1.700E-02 1.679E-02 1.692E-02 1.681E-02 1.672E-02	-3.17E-05 1.33E-04 -6.48E-05 1.41E-05 -5.08E-05 -6.09E-05	1.773F-03 1.775E-03 1.739E-03 1.770E-03 1.858E-03 1.942E-03	-4.04E-05 9.70E-06 -2.52E-06 6.69E-05 -3.49E-05 -2.18E-05 7.18E-05
STAND	ARD DE	VIATIONS						1.986-05		2.05E-C5		5.36E-05		5.15E-05		8.47E-05		5.55E-05
LONGI LATER RESID	AL CYC	L CYCLIC (LIC PITCH	PERIVAT	RIVATIVES IVES	5		1.875E-04 -2.152E-04 1.618E-04		-2.3[5E+04 -3.712E-04 -4.370E+05		3.447E-04 -5.635E-04 2.745E-04		-4.014E-04 -3.350E-04 -3.605E-05		3.422E-05 4.348E-04 1.686E-02		~3.738E-05 -8.734E-05 1.854E-03	
852. 850. 850. 847. 852.	0.C 0.C 0.O	.002357 .002357 .002357 .002397 .002357	16.17 16.17 16.17 16.16 16.15	0.22 1.96 2.96 3.68 -1.2D -3.13	-D-10 -D-39 -O-46 -O-48 0-15 0-13	0.0 0.0 0.0 0.0	6.931E-04 8.774E-04 1.037E-03	2.14E-05 1.43E-07 -1.52E-05	-4.2726-04 -5.6656-04 -8.6886-04	-2.53E-05 5.97E-05 -3.53E-05	1.227E-03 1.571E-03 1.836E-03	2.66E-05 4.34E-06 -3.96E-05 7.40E-07	-1.1486-05 -7.0966-04 -9.7966-04 -1.4936-03 6.9986-04 1.4076-03	-6.98E-05 1.22E-04 -3.52E-C5 3.13E-C5	2.C02E-02 2.C02E-02 2.C26E-02 1.999E-02	-1.50E-04 -1.14E-04 1.83E-04 -1.35E-04	2.428E-03 2.473E-03 2.516E-03 2.504E-03	-7.58E-05 -2.24E-06 7.62E-05 -2.10E-05
STAND	ARD DE	VIATIONS						1.876-05		4.326-05		3.715-05		9.286-05		1.93E-04		7.16E+05
LONG! LATER RESID	AL CYC	E CACFIC I	PITCH DE Derivat	RIVATIVE: IVES			1.892E-04 -2.255E-04 2.131E-04		-2.2556-C4 -7.320E-06 3.144E-05		3.207E-04 -6.275E-04 3.277E-04		-3.798E-04 3.113E-04 1.657E-04		-7.451E-05 -5.481E-04 2.612E-02		-4.414E-05 -2.166E-04 2.506E-03	
	0.0 0.0 0.0 0.0 0.0	.002397 .002357 .002357 .002357 .002397 .002357 .002357 .002397	18.25 18.22 18.22 18.21 18.20 18.20 18.23 18.20	0.21 1.00 2.10 3.06 4.13 4.79 -1.24 -2.34 -3.35	-0.11 -0.44 -0.39 -0.68 -0.50 -0.80 0.24 0.17	0.0 0.0 0.0 0.0 0.0 0.0	3.651E-04 5.736E-04 7.467E-04 8.766E-04 9.780E-04 -3.830E-05	-4.83E-C6 2.57E-C5 2.38E-05 -1.27E-C5 -3.45E-05 7.62E-C6	-3.9196-04 -6.0576-04 -8.9516-04 -1.1016-03 -1.3406-03 1.4926-04 4.8196-04	-7.916-06 3.826-05 -4.236-06 3.766-05 -2.906-05 -3.966-05 3.186-05	7.618E-04 9.992E-04 1.390E-03 1.565E-03 1.799E-03 -1.159c-04 -4.611E-04	4.70E-05 7.41E-06 2.79E-05 -2.02E-05 -7.86E-05 3.69E-05 -3.51E-09	-2-953E-C4 -5-963E-C4 -1-066E-03 -1-351E-03 -1-737E-C3 -1-919E-03 3-534E-C4 9-285E-04 1-227E-03	-6.36E-C5 -1.07E-C4 -4.96E-08 2.44E-C5 1.12E-04 -2.24E-C5 1.23E-04	2.3546-02 2.335E-02 2.3036-02 2.296E-02 2.240E-02 2.332E-02 2.366E-02	1.75E-04 1.71E-04 -1.69E-04 -8.62E-05 -1.23E-04 1.04E-05 1.54E-04	3.352E-03 3.374E-03 3.373E-03 3.434E-03 3.510E-03 3.335E-03 3.500E-03	-8-00E-05 -3-64E-05 -4-17E-05 5-04E-05 1-16E-04 -8-54E-05 5-60E-05
STAND	ARD DE	VEATECHS						2.60E-05		3-67E-05		6.62E-05		9-37E-C5		2.35E-04		1.036-04
	AL CYC	LIC PITCH			S		1.626E-04 -7.591E-05 1.734E-04		-2.348E-04 5.259E-05 -1.206E-04		2.7116-04 -3.8136-04 2.7376-04		-3.914E-C4 4.706E-C5 -1.200E-C4		-1.439E-04 -5.516E-04 2.327E-02		-1.676E-05 -7.246E-05 3.417E-03	

TABLE A-I. CONTINUED.

RPM	μ	ρ	ė _o	θ3	θ _C	æ	C _{M3.3} /ao	ΔC _{M3.3} /ασ	С _{13.3} /0σ	ΔC _{L3.3} /σα	- C _M /00	ΔC _{Mg} /ac	ح راٍ√مح	ΔC _{L \$} /0σ	. Cylor	ΔC ₁ /0σ	, c ^d /00	ΔC _G /6σ
848	. 0.C . 0.C . C.C	.002373 .002373 .002373	0.05 0.04 0.05 0.06	0.04 0.23 0.51 0.50	-0-24 0-16 1-08	0.0 0.0	+1+395E-05 -7+797E-05	3.56E-C6 -1.53E-05	-7.784F-06 -3.147k-05	3.03E-05 7.62E-06	-5.1206-05 -2.1406-04	-1.70E-05	-2-5466-05 -1-9526-05 -3-8596-05	3.84E-05 4.92E-06	1.3306-04 6.885E-05	6.22E-05 7.02E-05	1.150E-04 1.123E-04	-2.20E-05
845 851	. 0.0 . 0.0	.002373 .002373	0.05 0.08	0.42 -0.02	3.04 4.92 -1.03	0.0	-6.999E-04 7.134E-05	-1.34E-C5	-2.988E-04 -1.332E-05	-4.75E-C5	-1.373E-03 2.142E-04	-1.17E-05 5.31E-06	-1.032E-04 -3.407E-04 -3.015E-05	-7.384-05 2.216-05	-9.1466-05 1.5256-04	-9.34E-05	1.9216-04 1.1046-04	5-61E-05 -8-77E-06
85 C	. C.C	.002373 .002373 .002373	0.08 0.07 0.07	-0.04 0.15 0.26	~1.99 -3.06 -5.79	0.0	2-009E-04 5-421E-04	-1.466-05 -3.406-05	2.934E-06 1.056E-04	-2.37E-05	4_784E-04 1.060E-03	-5.00E-06	-3.805E-C5 4.805E-C5 2.870E-C4	-3-16E-C5	1.450E-04 3.258E-05	-2.66E-06	L-149E-04	-5.88E-06
STA	YÇARD C	EVIATIONS						2.65E-C5		3.696-05		3-24E-05		e.056-05		6.736-05	117070 01	3.50E-05
LAT		AL CYCLIC CLIC PITCH			S		3.634E-04 -1.544E-04 -7.820E-05		1.656E-C4 -5.111E-05 -6.386E-05		4.2936-04 -2.9526-04 -8.766(-05		2.2546-04 -5.2501-05 -1.0256-04		-2.410E-04 -5.200t-06 1.202E-04		8.761E-05 -3.546E-06 1.170E-04	
650	. 0.0	.002373 .002373 .002373	1.04 1.05 1.05	0.04 0.22 0.54	-0.21 0.13 0.99	0.0 0.0	-6.458E-06	2.27E-C5	-3.0278-05	3.21E-05	-5-379E-05	-4.13E-06	-4.786E-C5 -8.415E-05 -9.700E-C5	2.78E-05	3. 697E-04	-2.22F-04	1.0915-04	-2-10F-05
845	0.0	C02373 - C02373	1.05 1.06	0.70 0.47	2.98 4.94	0.0	-3.577E-04	-2.60E-06	-1-2926-04	1.436-05	-7-687E-04	1.58E-05	-1.755E-04 -4.494E-04	1.926-05	7-562E-04	3.28E-05	1.293€-04	-2.32E-05
845	. 0.0 . 0.0	.002373 .002373 .002373	1.07 1.07 1.06	0.05 0.03 0.09	-1.07 -1.98 -3.83	0.0 0.0	1.0568-04	-1.C2E-C5	-2.3C9E-05 -6.0C6E-06	1.15E-07 -3.28E-05	2.103E-04 4.561E-04	2.01E-06 -7.83E-05	-5.146E-05	1.80E-C5	5.147E-04 6.603E-04	-6.37E-05	1-132E-0+ 1-117E-04	-1.02E-05 -1.88E-05
	. 0.0	+002373	1-08	0.25	-5.83	0.0	9.3226-04	2.57E-C5	3.009F-04	1.22E-05	1.7658-03	3.77E-05	7.705E-C5 3.773E-C4	-7.10E-05 3.45E-65	8.624E-04 1.005E-03	1.40E-04 1.10E-04	1-556E-04 - 2-364E-04	1.41E-06 4.80E-05
		EVIATIONS						3.61E-C5		4.10E-05		5-116-05		6.01E-05		1-99E-04		4-20E-05
LAT		AL CYCLIC CLIC PITCH			5		2.428E+04 -1.557E-04 -6.225E-05		1.746E-04 -5.60BE-05 -5.349E-05		2.266E-04 -2.967E-04 -6.015E-05		2-714E-04 -7.504E-05 -1.624E-04		4.578E-04 -4.518E-05 5.071E-04		1.037E-04 -9.670E-06 1.063E-04	
	0.0	.002373 .002373	2.01 2.02	0.07	-0.22 0.09	0+0	3.465E-05	2.34E-05	-1.663E-05	3.14E-05	1-012E-04	3.59E-05	-5.730E-C5	4.398-05	8. 3346-04	-6.55E-05	1.0838-04	-3.19E-07
851	0.0	.002373	2.02	0.49	0.99 2.99	0.0	-2.732E-05 -1.340E-04 -4.085E-04	-1.12E-05	-1.250ë-04	-2.19E-05	-3.358E-04	-0+59E-05	-1.269E-04 -2.113E-04 -2.745E-04	- 3. 74E-05	9.0572-04	-4.76F-04	1.196E-04	-4-21F-05
851	0.C	.002373	2.03	0.62	4.92	0.0	-7.428E-04	- 3. +66- ((-3.3446-04	-1.325-05	-1.4426-03	2.956-05	-4.826E-04	-2.55E-C5	1.68SE-03	4.50E-04	L. 788E-04	5.55F-05
85C	. 0.0	.002373	2.04 2.03 2.03	-0.01 0.19 0.38	-2.05 -3.93 -5.85	0.0 0.0	2.8D0E-04 6.050E-04	-1.10E-C5	2.458E-05 1.225E-04	-2.82E-05	6.071E-04 1.151E-03	-1.53E-05 -2.91E-05	-1.0936-05 1.0756-04	-4.05E-05	1.168E-03	2.13E-04 2.05E-04	1.348E-04 1.864F-04	1-18E-05 6-69E-07
		EVIATIONS	2.03	0.38	-7.05	0.0	A-815E-04	1.866-05	3.0561-04	2-60E-05 3-12E-05	1.866E-03	3.67E-05 5.12E-05	3.597E-C4	3.19E-C5 5.25E-05	1.9516-03	8.44E-05 3.30E-04	2-710E-04	2.24E-05 3.28E-05
		AL CYCLIC			S		1-490E-04		3-2176-05		9.272E-05	31111 03	3.8076-05	32276-03	1.4442-03		1.7386-04	31206-03
	IDUAL	GLIC PITCH	DERIVATI	I VES			-1.616E-04 -3.568E-05		-5.650F-05 -6.252F+05		-1.009E-05		-7.314E-05 -1.202E-04		-9.409E-05 7.712E-64		-1-549E-05 9-235E-05	
	0.0	.02373 .002373	4-13 4-13	0.19	-0.35 0.31	0-0	6.903E-05 -6.792E-05	-2.73E-C5	-2-254E-05	-1.50E-C5	1.46[F-04 -1.199E-04	-7.52E-05	-3.897E-05	-1-72E-05	2.620E-03	-1.76E-04	2-2846-04	-1.10E-05
	C.C	.002373 .002373	4-13 4-13	0.50	1+05 3-10	0.0	-2.058E-04 -5.168E-04	-3.81E-05	-2-1131-04	-l.94E-05	-4.229E-04	-6-10E-05	-4-06HE-C4	-5.54E-C5	2.609E-03	-4.60E-04	2.125E-04	~5_69F-05
	C.C	.002373	4-12	0.53	5.07	0.0	-8.829E-D4	2.526-05	~5-1486-04	2.40E-05	-1.654E-03	3.32E-05	-8.3716-64	6-14E-C5	3.536E-03	1.50E-04	2.6546-04	9-046-05
	0.0	.002373 .002373	4-12 4-12	0.19 0.16	-1.08 -2.06	0.0 U.0	2.213E-04 4.536E-04	-8-89E-C6	4.732E-05 L.667E-04	-9-29E-06	4.823E-04 6.828E-04	L.88E~Q5	7.665E-C5 2.648E-04	-1.28E-05	2-687E-03	-1.58E-04	2.3426-04	-2-08E-05
	0.0	.002373 C02373	4.12 4.12	0.30 0.21	-4.05 -5.95	0.0 C.0	7.748E-04	-6.50E-C7	3.4598-04	4.79E-05	L-448E-03	3.46E-05	5.755E-C4 8.166E-04	6.94E-C5	3.151E-03	-2.33E-05	3.312E-04	-8-24E-06
		EVIATIONS		, -				3.566-05		2.83E-05	112001 03	4.8CE-05	4.1007.204	5-206-C5	3,6026-03	4.75E-04	414145-04	5+7LE-05
LATE		AL CYCLIC I			3		-1.821F-05 -1.843F-04 3.535E-05		-1./126-04 -8./616-05 -4.7816-06		-3.300E-04 -3.320E-04 1.695E-04	ė	-3.132E-C4 -1.519E-C4 -1.388E-C5	•	1.0346-03 -7.2346-05 2.5696-03		1.687E-04 -2.218E-05 1.987E-04	

RPM	μ	ρ	θ_0	$\theta_{\mathbf{S}}$	∂ c	α	C _{M3.3} /aσ	ΔC _{M3.3} /06	CL3.3/00	ΔC _{L3.3} /ασ	C _{My} /aσ	ACM /od	~ ℃√∞	ΔC _{L 1} /ασ	C _T /ao	ΔC γ/ασ	Cq/90	AC O POO
845. 848. 850.	C.C	.002373 .002373 .002373	6.09 6.08 6.09	0.17 0.61 0.64	-0.33 1.17 3.16	0.0 0.0	-1.440E-04	2-55E-06 -4-82E-06	-2-743E-04 -5-573E-04	1.52E-05 -2.88E-05	2.374E-04 -3.239E-04 -1.023E-03 -1.689E-03	9.04E-06 -1.83E-05	-5-298E-04 -1-005E-03	2.37E-05 -4.48E-05	5.079E-03 5.166E-03	3-96E-05 -7-50E-05	3.518E-04 3.405E-04	5.58E-06 -1.06E-05
845.		.002373	6.08	0.65	5.21	0.0	-9-2481-04	2-356-CC	- 1.5851-69	3.556-05	-1.6896-03	2.25E-05	-1.3536-03	5.526-05	3.4896-03	9.24E-05	3-6236-04	1.30E-05
												2.27. 03						
	AL CYC	AL CYCEIC I			•		1.033E-04 -1.960E-04 2.082E-05		-2.117E-04 -1.173E-04 -2.368E-05		-1.4826-04 -3.3646-04 1.5096-04		-4.3246-C4 -1.4836-04 -5.6736-C5		-3.603E-04 1.068E-04 5.133E-03		-8.952E-05 3.783E-06 3.961E-04	
851. 854. 854. 856. 854. 854. 854.	0.C 0.C 0.C 0.C 0.C	.002420 .002420 .002420 .002420 .002420 .002420 .002420 .002420	6-08 6-07 6-07 6-07 6-08 6-08 6-08	0.32 0.53 0.76 0.55 0.12 0.10 0.11 -0.01	0.25 1.09 3.04 5.10 -1.09 -2.11 -4.05 -5.99	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-1.326E-04 -5.257E-04 -8.765E-04 2.524E-04 4.875E-04 8.130E-04	2.04E-06 -2.11E-05 7.14E-06 -3.23E-05 1.34E-05 -2.29E-05	-2.916F-C4 -5.651E+04 -8.056E-04 7.365E-05 2.243E-04 4.647E-04	-1.42E-05 1.12E-05 -3.30E-06 -9.79E-08 1.60E-05 9.16E-06 -1.36E-05	1-170E-04 -2.943E-04 -9.594E-04 -1.635E-03 5.288E-04 9.394E-04 1.502E-03 2.129E-03 2.216E-03	-2.63E-05 2.37E-06 -3.03E-05 -1.25E-05 5.69E-05 -2.32E-05 -6.82E-05	-5.306E-04 -1.026E-03 -1.383E-03 1.186E-C4 3.763E-04 8.182E-C4 1.274E-03	-1.59E-C5 1.12E-C5 2.14E-C5 -1.51E-C5 1.01E-C5 3.03E-C5 6.36E-06	4.0186-03 3.9176-03 4.320F-03 3.9566-03 4.1526-03 4.3096-03	-9.33E-05 -1.11E-04 3.84E-04 -2.47E-04 -9.52E-05 -2.34E-05 2.24E-04	3.789E-04 3.567E-04 3.755E-04 4.247E-04 4.759E-04 5.745E-04 7.127E-04	-4.64E-05 -1.43E-05 1.06E-04 -4.66E-05 -3.27E-05 -1.15E-05 6.26E-05
STAND	ARD DE	VIATIONS						2.68E-C5		1.23E-05		5-10E-05		2.52E-05		2.33E-04		6.48E-05
LONGI	AL CYC	L CYCLIC I			5		-2.988E-05 -1.865E-04 8.436E-05		-1.dele-04 -1.285E-04 -4.3536-05		-2.066E-04 -3.322E-04 2.035E-04		-4.142E-C4 -2.198E-C4 -5.543E-05		1.171E-05 -4.394E-05 4.153L-03		9.745E-05 -3.924E-05 4.163E-04	
	0.C 0.C	.002420 .002420 .002420 .002420 .002420 .002420	8.04 8.05 8.05 8.05 8.05 8.06 8.06	0.04 0.19 0.51 0.60 0.43 0.14 0.05	-0.23 0.16 1.08 3.18 5.25 -2.11 -4.18	0.0 0.0 0.0 0.0 0.0	-3.177E-05	-0.476-05 -0.20E-07 7.046-06 2.046-05	-1.480E-C4 -3.452E-C4 -6.651E-C4 -5.570E-C4 2.507E-04	-2.27E-05 -1.97E-05 1.09E-05 1.44E-05	3.118E-04 -1.085E-04 -2.628E-04 -9.685E-04 -1.700E-03 9.93UE-04 1.669E-03	-2.08E-04 -1.59E-05 3.21E-05 3.37E-05 8.08E-05	-3.055E-C4 -6.323E-04 -1.187E-C3 -1.651E-C3 4.115E-04	-7.67E-05 -3.78E-05 1.24E-05 5.66E-05 1.29E-06	6.122E-03 6.360E-03 6.352E-03 6.403E-03 6.449E-03	-2.25E-04 -4.15E-05 -1.20E-05 1.41E-04 5.68E-05	6.461E-04 6.274E-04 5.800E-04 5.602E-04 7.874E-04	-4.83E-05 -3.05E-05 -7.15E-07
STAND.	ARD DE	VIATIONS						4.70E-C5		2.03E-05		1.196-04		6.32E-C5		1.526-04		5.15E-05
LONG (LATER RESID	AL CYC	NL CYCLIC F LIC PITCH	PITCH DEA DERIVATI	RIVATIVES VES	i		5.3016-05 -1.9536-04 7.3576-05		- L. 851E-04 - L. 575E-C4 - 6. 474E-05		-5.1146-05 -3.5766-04 1.6616-04		-3.556E-04 -2.736E-04 -1.169E-04		2.5236-04 -2.6356-05 0.3036-03		-9.152E-06 -3.643E-05 7.019E-04	
845. 852. 853. 853. 853. 851.	0.C 0.C 0.C	.002420 .002420 .002420 .002420 .002420 .002420	10.06 10.06 10.07 10.07 10.07 10.08	0.18 0.52 0.59 0.74 0.22 0.13	-0.29 1.11 3.21 5.33 -2.16 -4.25 -0.36	0.0 0.0 0.0 0.0 0.0	-5.912E-05 -5.039E-04 -8.888E-04 5.80CE-04	1-126-05 -2-236-05 3-336-06 2-326-05 1-246-05	-3.7675-04 +7.4505-04 -1.1225-03 2.655F-04 6.0155-04	-1.14E-06 -1.12E-05 6.23E-06 2.00E-05 -7.74E-06	3.893E-04 -2.021E-04 -9.894E-04 -1.587E-03 1.111E-03 1.701E-03 2.351E-03	-1.55E-05 -9.69E-05 5.73E-05 1.08E-04 6.76E+05	-6.843E+04 -1.319E+03 -1.980E+03 4.749E+04 1.084E+03	-2.186-05 -1.226-05 1.596-05 4.326-05 3.736-06	8.8208-03 8.8208-03 8.8648-03 8.9488-03 9.1788-03	-1.44E-04 -5.49E-06 1.10E-04 -6.24E-05 6.42E-05	9.675E-04 8.980E-04 8.425E-04 1.196E-03 1.370E-03	-8.106-05 -4.806-06 6.586-05 -2.806-05 5.616-06
STANU	ARD DE	VIATIONS						2.156-05		1.276-05		9.69E-05		2.82E-C5		1-066-04		5.85E-05
	AL CYC	AL CYCLIC I			5		8.030E~05 -1.990E-04 1.089E-04		-3.3591-04 -1.5586-04 -2.4676-05		-4.923E-04 -3.193E-04 4.229E-04		-4.4226-04 -2.9016+04 -8.5466-05		2.306E-04 -5.G196-05 8.85CE-03		2.882E-04 -7.963E-05 9.876E-04	
849- 849- 852- 852- 853- 856- 853-	0.C 0.C 0.C 0.C	.002420 .002420 .002420 .002420 .002420 .002420	12.04 12.05 12.05 12.05 12.05 12.06	0.17 0.55 0.62 0.81 0.09 0.14 -0.13	-0.38 1.20 3.38 5.49 -2.36 -4.48 -6.09	0.0 0.0 0.0 0.0 0.0	-8.918E-05 -4.686E-04 -8.383E-04 6.070E-04 1.022E-03	-3.10E-C5 -5.30E-C6 1.56E-C5 1.13E-05 2.84E-C5	-3.959t-64 -7.797t-04 -1.265t-03 2.969t-64 7.073t-04	-6.23E-06 6.73E-06 -2.00E-05 4.95E-06 3.75E-05	4.441E-04 -2.234E-04 -8.826E-04 -1.430E-03 1.180E-03 1.847E-03 2.148E-03	-1.02E-04 -7.36E-05 7.32E-05 1.05E-04 1.24E-04	-7.264E-04 -1.380E-03 -2.117E-03 5.166E-04 1.265E-C3	-3.75E-C5 1.41E-05 -1.30E-C5 -1.29E-05 6.74E-C5	1 149E-02	-1.40E-05 -1.82E-04 1.94E-04 -1.81E-05 -8.26E-05	1.396E-03 1.267E-03 1.185E-03 1.704E-03 1.890E-03	-6.26E-05 -8.63E-06 7.13E-05 -1.02E-05 -1.63E-05
STANO	ARO DE	VEATIONS						2.546-65		3.40E-05		1.26E-04		5.378-09		1.586-04		6.18E-05
LONG 1 LATER RESID	AL CYE	NL CYCLIC F ILIC PITCH	PITCH DER Derivati	R [VAT I VES	i		3.140E-05 -1.876E-04 1.455E-04		-5.046E-05 -1.758E-04 -1.234E-04		-1.898E-04 -3.107E-04 3.571E-04		-1.680E-04 -3.196E-04 -2.117E-04		-1.061E+04 -1.577E+05 1.179E-02		1-265E-04 -8-797E-05 1-495E-03	

TABLE A-I. CONTINUED.

RPM µ	p	θ ₀	θ_{\S}	θc	α	C _{M3.3} /00	ΔC _{M3.3} /ασ	C _{L3.3} /00	ΔC _{L3.3} /ασ	C _M /ar	ΔC _{Ms} /an	C ^L vaa	ΔC _{L,} /σσ	С т /а <i>о</i>	ΔΟ γ/ασ	с _{о/а}	AC 0/00
550. 0.0 555. 0.0 555. 0.0 553. 0.0 552. 0.0 554. 0.0	.002373 .002373 .002373 .002373	0.09 0.09 0.10 0.10 0.11	0.01 1.09 2.10 4.10 5.79 -0.65	-0.32 -0.64 -0.72 -0.69 -1.02 -0.23	0.0 0.0 0.0 0.0 0.0	5.070E-05 6.894E-05 1.792E-06 3.329E-04	-5.64F-05 -6.58E-05 4.11E-01 5.66E-05 -2.13E-05	+1.336F+04 -2.677E-04 -7.358E-04 -1.330E-03	3.49E-05 1.12E-04 1.58E-04 -1.94E-04 -2.48E-05	7.055E-05 6.964E-05 1.696E-04 4.698E-04 6.829E-05	-7.84E-05 -1.10E-04 -6.27E-05 1.75E-04 -1.29E-05	-1.9926-04 -3.8706-04 -1.0536-03 -1.8726-03 5.6616-05	3.60E-05 1.51E-04 2.13E-04 -2.51E-C4 -2.10E-C5	1.783E-04 1.743E-04 7.282E-05 -1.116E-05 2.662E-04	5.59E-05 6.55E-05 -5.07E-05 -6.51E-05 5.58E-05	-7.710E-05 -7.598E-05 -7.690E-05 -3.896E-05 3.532E-05 -8.190E-05	-4.97E-05 -4.95E-05 1.78E-05 6.33E-05 -1.53E-05
551. 0.0 557. 0.0 553. 0.0	.002373	0-11 0-10 0-11	-1.64 -3.49 -5.24	-0-12 -0-12 -0-01	0.0 0.0	4.121E-05	2.68E-05 5.86E-05	1.3678-04 5.7346-04	-8.016-05 -1.126-04	9.236E-05 7.835E-05	4.37F-05 7.94E-05	2.331E-04 8.523E-04	-1.07E-04 -1.45E-04	2.360E-04 1.975E-04	2.18E-06 -2.84E-05	-8.161E-05 -4.765E-05 1.459E-05	-9.69E-06 9.01E-07
STANCARD	CEVIATIONS						6.58E-C5		1-30E-04		1.04E-04		1.71E-C4		6+166-05		4-69E-05
	NAL CYCLIC F NCLIC PITCH			3		2.295E-05 -5.687E-05 4.544E-05		-2.505E-04 -5.61CE-04 -2.573E-04		2.6916-05 -5.0666-05 d.6956-05		-3.535E-04 -7.382E-04 -3.260E-04	,	3. E14E-U6 2. 304E-04 2. 668E-04		-1.239E-05 -1.506E-04 -1.099E-04	. •
552- C.C 552- G.C 554- G.C 553- G.C 552- O.C 553- O.C 553- O.C 553- C.C	.002373 .002373 .002373 .002373 .002373 .002373	1-03 1-03 1-64 1-04 1-05 1-05 1-06	0.20 1.04 2.05 3.97 5.82 -0.60 -1.57 -3.48	-0.27 -0.64 -0.76 -0.76 -0.95 -0.17 -0.17 -0.06 0.03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.914E-05 6.085E-09 1.579E-04 2.763E-04 2.506E-05 3.444E-05 2.459E-05	-3.226+05 -4.326+05 -2.586+06 7.246+05 -3.366+05 3.756+06 4.376+05	-1.456E-04 -3.087E-04 -7.445E-04 -1.315E-03 6.591E-05 1.855E-04 6.156E-04	5.30E-06 4.00E-05 8.81E+05 -1.12E-04 3.08E+05 -8.90E-05 -8.43E-05	6.468E-05 7.626E-05 1.919E-04 4.974E-04 7.510E-05 7.913E-05 5.208E-05	+5.94E-05 -7.93E-05 -6.28E-05 1.80E-04 -4.04E-05 1.22E-05 6.49E-05	-2.382E-C4 -4.506E-O4 -1.078E-O3 -1.857E-C3 1.350E-O4 3.144E-C4 9.204E-C4	-1.376-05 5.68E-05 1.13E-04 -1.28E-04 5.75E-05 -1.02E-04 -1.05E-04	6.547E-04 7.141E-04 8.874E-04 9.573E-04 5.152E-04 6.354E-04 9.616E-04	-2.23E-04 -1.77E-04 1.47E-04 2.56E-04 -1.46E-04 -9.61E-05 1.64E-04	-9.899E-05 -7.075E-05 -7.123E-05 -3.435E-05 3.113E-05 -8.777E-05 -8.835E-05 -3.911E-05 2.058E-05	-4.68E-05 -4.34E-05 1.34E-05 7.49E-05 -1.85E-05 -2.81E-05 1.45E-05
STANDARD	DEVIATIONS						4.716-05		8.75E-05		1.026-04		1.046-04		2.21E-04		5.31E-05
	NAL CYCLIC YCLIC PITCH			s		2.902F-05 5.275E-05 8.505E-05		-2.4876-04 -4.6156-04 -1.4296-04		5.064E+05 1.579E-04 1.727E-04		-3.520E-04 -5.832E-04 -2.333E-04		-7.517E-05 -7.208E-04 4.538E-04		-9.6026-06 -1.1336-04 -9.4406-05	
554. 0.0 554. 0.0 552. 0.0 552. 0.0 553. 0.0 554. 0.0 555. 0.0	.002373 .002373 .002373 .002373 .002373 .002373 .002373	2.02 2.02 2.01 2.01 2.01 2.01 2.02 2.01 2.00	0.08 1.03 2.03 3.99 5.82 -0.64 -1.52 -3.46 -5.25	-0.32 -0.58 -0.70 -0.73 -0.95 -0.16 -0.12 -0.16	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.299E-04 1.260E-04 1.667E-04 3.543E-04 3.253E-05 1.772E-05 2.449E-05	1.58F-C6 -4.01E-05 -5.03E-05 6.84E-05 -6.36E-06 2.61E-06 5.29E-05	-2.217E-C4 -3.743E-O4 -7.879E-O4 -1.368E-O3 1.248E-O4 3.302E-04 6.367E-04	5.02E-07 5.66E-05 8.66E-05 -1.09E-04 2.43E-05 5.28E-06 -1.03E-04	1.763E-04 1.593E-04 1.984E-04 5.116E-04 7.571E-05 5.452E-05 8.139E-05	-2.71E-05 -8.95E-05 -8.97E-05 1.40E-04 1.19E-06 3.93E-06 5.45E-05	-3.354E-04 -5.605E-04 -1.158E-03 -1.938E-03 2.096E-04 4.674E-04 9.606E-04	-1.86E-C5 6.22E-05 1.04E-04 -1.13E-04 4.26E-C5 1.90E-05 -1.26E-04	1.0966-03 1.331E-03 1.847E-03 2.119E-03 9.530E-04 1.158E-03 1.609E-03	-5.35E-04 -4.11E-04 2.90E-04 3.64E-04 -4.83E-05 8.59E-05 2.42E-04	-8.284E-05 -7.183E-05 -0.710E-05 -3.801E-05 -3.509E-05 -9.204E-05 -8.082E-05 -4.856E-05 -3.133E-05	-4.35E-05 -5.08E-05 2.50E-06 5.42E-05 4.61E-06 1.11E-05 6.04E-06
STANDARD	DEVIATIONS						4.48E-05	•	7.626-05		8.12E-05		8.99£-05		3.65E-04		3.736-05
	NAL CYCLIC YCLIC PITCH			5.		2.445E-05 -1.101E-04 3.878E-05		-2.273E-04 -1.355E-04 -6.825E-05		1.656E-05 -2.403E-04 4.623E-05		-3.270E-C4 -1.541E-04 -6.824E-05		-1.185E-04 -1.872E-03 6.618E-04		-1.525E-05 -2.230E-04 -1.426E-04	
590. 0.0 545. 0.0 550. 0.0 550. 0.0 550. 0.0 550. 0.0 550. 0.0 550. 0.0	.002373 .002373 .002373 .002373 .002373 .002373 .002373	4.00 4.01 4.01 4.00 4.01 4.00 4.00	0.13 1.08 2.07 3.97 5.89 -0.60 -1.58 -3.39	-0.33 -0.54 -0.71 -0.86 -0.87 -0.20 -0.16 -0.13 -0.03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.171E-04 2.665E-04 4.000E-04 4.353E-04 1.608E-05 -1.220E-05 -1.153E-04	2-31E-05 -1-76E-C5 1.09E-05 -1.09E-C5 -6.22E-06 5-74E-C6 -1.65E-C5 1.70E-C5	-3.226E-04 -6.167E-04 -1.054E-03 -1.053E-03 1.758E-04 4.856E-04 9.830E-04 1.384E-03	-3.25E-05 +4.02E-05 3.34E-05 2.22E-05 -2.92E-05 2.38E-05 5.80E-05	3-1246-04 3-9296-04 5-9726-04 6-4086-04 5-8206-05 8-2736-06 -1-3476-04	1.8 9E-05 -2.27E-05 2.66E-05 -2.33E-05 -6.18E-06 7.70E-06 -3.33E-05 9.58E-06	-4.736E-G4 +8.728E-04 -1.478E-03 -2.151E-C3 2.774E-04 7.099E-04 1.404E-03 1.975E-03	-7.386-C5 -6.22E-05 5.16E-05 5.53E-C5 -3.65E-05 3.75E-05 8.81E-C5 -4.28E-C6	2.584E-03 3.037E-03 3.396E-03 4.195E-03 2.940E-03 3.035E-03 3.275E-03	-3.90E-04 -4.42E-04 -8.91E-05 B.47E-04 -1.99E-04 *1.42E-04 -1.CTE+05 7.04E-04	-1.867E-05 -1.224E-05 5.756E-06 5.539E-05 1.376E-04 -4.928E-06 4.468E-06 6.318E-05 1.539E-04	-6.26E-05 -5.98E-05 -3.38E-06 1.12E-04 -1.93E-05 -2.10E-05 1.06E-05 8.82E-05
STANDARD	DEVIATIONS						2-23E-05		4.03E-05		2.565-05		6-91E-05		5-33E-04		7-15E-05
	NAL GYCLIC YCLIC PITCH			S		2.737E-05 -3.681E-04 -3.459E-05		-2.527E-04 2.104E-04 9.573E-05		4.902E-05 -4.300E-04 8.136E-06		-3.497E-04 3.753E-04 1.795E-04		-7.816E-05 -1.070E-03 2.679E-03	•	-1.838E-05 -1.953E-04 -3.552E-05	

RPM #	p	θο	θ_3	θ¢	α	С _{М3.3} /от	ΔC _{M3.3} /ασ	C _{L3.3} /00	ΔC _{L3.3} /ασ	C _{Ms} /ar	ΔC _M /oσ	C _L /oσ	ΔC _L /0σ	C _I /ar	ΔC _T /oσ	C ^Q /ar	ΔC _Q /ασ
552- 0-0 551- 0-0 551- 0-0 551- 0-0 551- 0-0 551- 0-0	.002373 .002373 .002373 .002373 .002373 .002373	6.04 6.03 6.04 6.04 6.03 6.04 6.03	0.17 1.10 2.08 4.03 5.79 -1.56 -3.45	-0.39 -0.60 -0.75 -0.79 -0.92 -0.18 -0.16	0.0 0.0 0.0 0.0 0.0	2.659E-04 3.829E-04 6.171E-04 7.388E-04 -1.401E-04 -2.009E-04	-1.23E-05 -3.44E-05 5.10E-05 -5.66E-06 -3.53E-05 3.58E-05	-4.346E-04 -7.456E-04 -1.360E-03 -1.857E-03 5.490E-04 1.210E-03	-3.726-05 -5.806-06 -8.106-07 4.396-05 9.486-00 7.656-05	2.409E-04 4.112E-04 5.845E-04 9.254E-04 1.170E-03 -2.014E-04 -2.036E-04	-2.32E-05 -5.31E-05 4.34E-05 7.27E-06 -8.28E-05 8.18E-05	-6.106E-04 -1.048E-03 -1.886E-03 -2.624E-03 8.224E-04 1.746E-03	-7.02E-05 -1.17E-05 2.16E-06 8.23E-05 2.07E-05 1.25E-04	5.392E-03 5.500E-03 5.716E-03 6.130E-03 5.368E-03 5.663E-03	-2.87E-04 -2.29E-04 3.01E-05 4.28E-04 -1.52E-04 7.16E-05	1.6436-04 1.906E-04 2.327E-04 3.248L-04 1.946E-04 2.589E-04	-7.62E-05 -5.62E-05 1.09E-05 1.11E-04 -2.81E-05 9.34E-06
55Q. 0.0 STANDARD DI	.002373	6-05	-5.23	-0+05	0.0	-4.075E-04	4.72E-G7 3.73E-C5	1.6965-03	-1.77E-05 5.35E-05	-6.2526-04	-1.25E-05		9.46E-05	5.5276-05	3.37E-04 3.16E-04	3.551E-04	9.33E-05 8.39E-05
LONGITUDINA		DITCH NE	PIVATIVES			6.637E-05		-3.106E-04		1.130E-04	04410-07	-4.2726-04		-3.364E-05		-1.582E-05	
LATERAL CYI RESIDUAL						-4.911E-04 -8.794E-05		2.680E-C4 1.039E-04		-6.121E-04 -5.531E-05		4.981E-C4 2.265E-04		-5.562E-04 5.384E-03		-1.455E-04 1.711E-04	
550. 0.0 550. 0.0 552. 0.0 552. 0.0 551. 0.0 552. 0.0 552. 0.0	.002373 .002373 .002373 .002373 .002373 .002373 .002373	8.01 8.00 8.00 8.01 8.01 8.01 8.01	0.14 1.14 2.14 4.07 5.99 ~1.57 ~3.36 ~5.23	*0.36 -0.55 -0.58 -0.45 -0.42 *0.33 -0.46 -0.46	0.0 0.0 0.0 0.0 0.0 0.0	3.431E-04 4.980E-04 7.867E-04 8.360E-04 -6.134E-05 -3.885E-04	1.62E-05 3.26E-05 7.77E-05 -1.29E-04 -1.34E-05 -5.67E-05	-4.673E-04 -7.789E-04 -1.524E-03 -2.196E-03 6.453E-04 1.310E-03	-3.43E-05 3.59E-05 -2.90E-05 8.50E-06 -2.66E-06 3.56E-05	4.154E-04 4.602E-04 6.812E-04 1.061E-03 1.142E-03 -3.203E-05 -4.526E-04 -8.224E-04	3.27E-05 6.57E-05 8.06E-05 -1.96E-04 1.79E-05 -6.36E-05	-7.1566-04 -1.1676-03 -2.2316-03 -3.1486-03 9.5916-04 1.9236-03	-6.22E-05 4.45E-05 -5.57E-05 4.89E-05 8.68E-06 8.86E-05	8.322E-03 6.158E-03 8.270E-03 8.673E-03 8.388E-03 8.478E-03	-6.37E-05 -2.05E-04 5.77E-06 3.38E-04 -9.65E-05 +5.57E-06		-6-53E-05 -5-41E-05 1.28E-05 1.25E-04 -5.11E-05 1.65E-05 1.19E-04
STANDARD DI	EVIATIONS						9.638-05		3.34E-05		1.316-04		6.64E-05		2.696-04		1-01E-04
LONGITUDINA LATERAL CYC RESIDUAL				5		1.348E-04 -1.289E-04 1.019E-04		-3.7316-04 2.0446-04 1.6686-04		1-843E-04 7-873E-05 2-663E-04		-5.402E-04 6.154E-04 3.027E-04		-1.679E-05 2.373E-04 8.536E-03		-1.150E-05 7.622E-05 5.423E-04	
550. 0.0 549. 0.0 545. 0.0 552. 0.0 551. 0.0 551. 0.0	-002373 -002373 -002373 -002373 -002373 -002373	10.02 10.03 10.02 10.01 10.01	0+16 1+16 2+19 6+09 -1+52 -3+50 -5+30	-0.41 -0.57 -0.58 -0.45 -0.33 -0.47 -0.49	0.0	3.545E-04 6.057E-04 1.079E-03 5.525E-06 -2.995E-04	-3.42E-C5 6.42E+C5 -4.58E-C5 1.34E-O5 5.44E-C6	-4.793E-04 -8.531E-04 -2.286E-03 6.161E-04 1.274E-03	-1.33E-05 6.30E-06 7.42E-06 -2.58E-06 -5.26E-05	4.246E-04 4.675E-04 8.212E-04 1.456E-03 4.237E-05 -3.837E-04 -8.581E-04	-4.81E-05 1.01E-04 -8.46E-05 1.67E-05 2.24E-05	-7.479E-C4 -1.295E-03 -3.283E-C3 9.317E-04 1.885E-03	-3.13E-05 -2.63E-06 4.44E-05 -3.45E-06 -3.25E-05	1.150E-02 1.145E-02 1.163E-02 1.146E-02 1.155E-02	-4.89E-05 -9.21E-05 1.69E-04 -5.64E-05 -2.62E-05	8.404E-04 8.312E-04 9.15LE-04 8.609E-04 9.413E-04	-5.116-05 -4.716-05 1.106-04 -4.296-05 -7.486-06
STANCARD DE	EVIATIONS						5.146-05		3.57E-C5		9.108-05		4.93E-C5		1.49E-04		9.576-05
LONGITUDINA EATERAL CYC RESIOUAL	AL CYCLIC I CLIC PITCH	PLTCH DE DERIVAT	R (VAT VES I VES	i.		1-490E-04 1-330E-05 2-232E-04		-3.78LE-04 2.955E-04 1.408E-04		2.0256-04 2.2236-04 4.0686-04		-5.485F-C4 7.564E-04 3.498E-04		-1.069E-05 -2.687E-04 1.14GE-02		-1-477E-05 -1.144E-04 8.436E-04	
550.	.002373 .002373 .002373 .002373 .002373 .002373	12.03 12.04 12.05 12.04 12.04 12.04 12.04	0.26 2.23 4.27 6.25 -1.61 -3.56 -5.44	-0.43 -0.61 -0.46 -0.44 -0.39 -0.65 -0.59	0.0 0.0 0.0 0.0 0.0	6-156E-04 8-502E-04 1-194E-03 -4-924E-05 -2-967E-04	5.61E-C6 -2.14E-05 3.09E-05 -1.13E-05 -4.47E-05	-9.328E-04 -1.653E-03 -2.335E-03 6.813E-04 1.539E-03	-8.37E-05 -3.28E-05 5.05E-05 1.66E-06	3.886E-04 8.953E-04 1.201E-03 1.661E-03 -5.543E-05 -3.453E-04 -7.144E-04	1.22E-05 -3.34E-05 2.15E-05 -1.49E-05 -2.98E-05	-1.3566-03 -2.3726+03 -3.2666-03 1.0086-03 2.2096-03	-1.40E-04 -6.28E-05 1.15E-04 2.96E-05 2.17E-04	1.467E-02 1.484E-02 1.458E-02 1.478E-02 1.498E-02	-7.16E-05 1.12E-04 -1.22E-04 -7.73E-05 1.45E-04	1.282E-03 1.302E-03 1.400E-03 1.382E-03 1.521E-03	-1.03E-04 -1.97E-05 1.17E-04 -3.41E-05 2.42E-05
STANDARD DE	EVIATIONS						4.C4E-C5		9.976-05		3-126-05		I . 60E-04		L-63E-04		9-23E-05
LUNGITUDINA LATERAL CY(RESIDUAL				.		1.512E-04 -3.147E-04 B.159E-05		-3.8528-04 1.5508-04 1.1438-04		2.109E-04 -5.315E-04 8.966E-05		-5.5LCE-C4 2.711E-04 1.906E-04		-1.856E-05 2.155E-04 1.491E-02		-1.7928-05 -1.8158-04 1.3166-03	
850. 0.0 852. 0.0 850. 0.0 849. 0.0 845. 0.0	-302420 -802420 -602420 -602420 -802420	1.01 2.00 3.01 3.99 6.01	0.71 0.74 0.81 0.83 0.82	-0.41 -0.44 -0.48 -0.52 -0.55	0.0 0.3 0.0 0.0	9.970F-05 L-525E-04 L-795E-09	6.58E-C7 3.(1E-C7 4.C2E-C7	-1.067E-04 -1.320E-04 -1.373E-04	-5.79E-06 1.51E-06 -3.32E-07	1.269E-04 2.317E-04 3.231E-04 3.738E-04 5.404E-04	1.386-05 2.086-06 5.42E-06	-2.7598-04 -3.0868-04 -3.2128-04	-9.05E-06 -1.33E+C6 -3.55E+G6	5.714E-04 1.171E-03 1.959E-03	-2-25E-04 5-78E-05 -1-53E-05	1.415E-04 1.691E-04 2.219E-04	-2.09E-05 4.28E-06 -2.25E-06
STANUARD DE	EVIATIONS						13-383.3		T. 766-06		1.576-05		1.036-05		2.598-04		2.66E-05
COLLECTIVE LONGITUDINA LATERAL CYC RESIDUAL	L CYCLIC P	ITCH DEF				6.878E-05 3.633E-04 1.187E-03 2.167E-04		-2.760E+05 -4.455E-04 -7.820E-04 -6.163E-05		1.270E-04 7.915E-04 2.300E-03 3.939E+04		-1.866E-05 -4.921E-04 -4.005E-04 -4.292E-05		9.308E-04 -9.378E-03 -2.151E-03 4.905E-03		8.976E-05 -1.008E-03 3.614E-04 8.860E-04	

TABLE A-I. CONTINUED.

RPM μ ρ $\theta_{\rm D}$ $\theta_{\rm S}$ $\theta_{\rm C}$	α C _{M3.3} /οσ ΔC _{M3.3} /ο	σ C _{L3.3} /οσ ΔC _{L3.3} /οσ C _{M4} /οσ	ΔC _M /οσ C _L /οσ ΔC _L /ο	σ C _T /οσ ΔC _T /οσ C _Q /οσ ΔC _Q /οσ
851. C.C6 .002334	0.0 9.239E-05 2.74E-C	5 -1.650f-C4 -5.59E-06 -6.961E-05	-2.83E-05 -3.986E-C4 -1.C8E-C	5 1.002E-03 -3.03E-05 3.70E-04 -9.52E-06 4 1.008E-03 -8.17E-06 3.444E-04 -6.17E-06 5 9.508E-04 -1.49E-05 3.342E-04 1.06E-05
851. G.C6 .002336	0.0 2.056E-04 -2.82E-C	5 -4.257E-04 -8.17E-06 2.340E-04	. 1.36E-05 -8.806E-04 -3.74E-0	5 9.865E-04 1.43E-05 3.223E-04 2.64E-05 5 1.652E-03 1.96E-05 3.658E-04 -1.25E-05
85C. C.CE .002335	Q+0 -1.184E-04 -4.40E-0	5 2.710E-05 2.65E-06 -3.285E-04	-8.40E-05 2.381E-04 1.35 C -0	4 1.102E-03 3.63E-03 3.864E-04 -4.48E-06 5 1.144E-03 -5.81E-06 4.027E-04 -1.45E-05
849. 0.C6 .002339	0.0 +3.106E-04 5.14E-C	6 2.166E-04 5.29E-07 -5.25TE-04	- 2.35E-05 5.739E-04 3.35E-0	5 1.181E-03 -2.11E-05 4.285E-04 -1.34E-05 6 1.269E-03 2.31E-05 4.628E-04 -6.44E-06
846. 0.66 .002337 0.96 -4.68 1.17	0.0 -6.122E-04 -1.20E-0	5 6.428E-04 -7.88E-06 -9.925E-04	-8.75E-06 1.354E-C3 -1.03E-0	4 1.27EE-03 -5.05E-06 5.627E-04 3.02E-05
STANDARD DEVIATIONS	3.C8E-C		5.03E-05 8.1St-0	5 2.59E-05 1.87E-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	9.085E-05 -1.718E-04 2.670E-05	-1-570E-04 1.472E-04 -5-314E-05 -1.225E-04 2.523E-05 -1.507E-04	-3.282E-C4 -1.329E-C4	-1.774E-05
85C. 0.05 .00235C 3.89 0.24 1.22 85C. C.05 .00235C 3.89 0.62 1.17	0.0 7.144E-06 -1.06E-09 0.0 5.899E-05 -8.87E-06	5 -1.562E-C5 1.13E-05 -1.524E-04	-1.51E-06 -5.065E-05 2.37E-0	5 3.969E-03 -2.83E-04 4.278E-04 8.65E-06
851- 0-05 -002350 3-89 1-28 1-21 845- 0-05 -002350 3-89 1-97 1-20	0.0 1.685E-04 2.56E-C	5 - 1.980E-04 2.26E-05 1.395E-04	5.89E-05 -5.159E-C4 7.45E-0	5 4.064E-03 -1.48E-04 4.092E-04 8.07E-06 6 4.618E-03 4.04E-04 3.78LE-04 -2.56E-05
848. 0.05 .002350 3.89 2.71 L.25	0.0 2.955E-04 -1.33E-C	5 -5.1e5E-04 -5.54E-06 3.755E-04	-2.22E-05 -1.21LE-03 -2.21E-0	5 4.505E-03 3.17E-04 3.702E-04 -2.50E-05 5 4.075E-03 -1.23E-04 4.043E-04 4.67E-06
847. C.05 .CC235C 3.89 3.53 1.21 849. C.05 .CC239C 3.87 -0.44 1.28 850. C.05 .CC235C 3.87 -1.95 1.55	U-0 -6-309E-05 5.24E-C	£ 8.408E-05 4.45E-06 -3.587E-04	-5-668-05 2-142E-04 3-55E-C	6 4.0536-03 -4.276-05 4.2076-04 4.326-05 5 4.2206-03 -8.676-05 4.4376-04 1.026-06
851. 0.C5 .CC235C 3.89 +3.65 1.79	C-D -4-844E-04 1-66E-C!	5 5.2176-C4 2.016-05 -1.0656-03	-3.596-05 l.2366-03 2.36E-0	5 4.476E-03 -3.18E-05 4.914E-04 -4.12E-05 4.586E-03 -1.12E-04 5.991E-04 -1.78E-05
845. G.C5 .C02350 3.88 -5.20 1.75 STANDARD DEVEATIONS				5 4.682E-03 1.60E-04 6.694E-04 4.52E-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES	2.56E-C		4.65E-05 4.94E-0	
LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	1.191E-04 -9.618E-05 1.065E-04	-1.9CZE-C4	-7.435E-04	-3.051E-05 -1.175E-05 5.697E-04 2.654E-04 3.566E-03 9.871E-05
845. C.CE .002339 0.96 0.08 0.32 850. C.CE .002339 0.97 0.24 0.82	0.0 -1.229E-05 -4.08E-0	£ -2.374E-C6 -1.62E-06 -1.174E-04	-4.486-05 4.711E-05 -1.84E-0	5 1.050E-03 3.79E-05 3.690E-04 -3.38E-06
845. 0.06 .002339 0.97 0.35 1.64	0.0 -3.922E-04 -1.42E-0	± -1.571E-04 -1.99E-06 -8.735E-04	-3-52E-05 -1.371E-04 2.21E-0	6 1.214E-03 -6.20E-05 3.649E-04 -5.40E-06 5 1.530E-03 -3.23E-06 3.664E-04 3.14E-06
85C. O.CE .00234C 0.97 0.59 3.47	0.0 -8.022E-04 -5.18E-C	£ -2.270E-C4 7.73E-08 -1.620E-03	-8-07E-06 -4.391E-04 1.36E-0	6 1.883E-03 2.80E-05 3.614E-04 4.48E-06 5 2.108E-03 2.32E-05 3.530E-04 5.75E-06
851. 0.06 .00233\$ 0.97 -0.02 0.02 850. 0.06 .00233\$ 0.96 -0.14 -0.25 852. 0.06 .00233\$ 0.96 -0.34 -0.81	0.0 2.433E-04 2.36E-0!	5 E.951E-C5 -7.08E+G6 S.270E-04	5.76E-05 1.815E-C4 6.81E-0	5 8.384E-04 -9.85E-06 3.660E-04 -7.51E-06 6 6.169E-04 -4.68E-05 3.661E-04 -7.74E-06
852. 0.CE .002339 0.96 -0.34 -0.81 85C. 0.CE .002340 0.97 -0.55 -2.55	0.0 4.131E-04 -1.52E-09 0.0 8.308E-04 -5.58E-04	5 1.834E-04 -3.83E-06 9.172E-04 6 3.67CE-C4 1.27E-C5 1.713E-03	-5.20E-05 2.643E-04 -1.48E-0 7.11E-06 6.007E-04 2.81E-0	5 3.234E-04 -L.72E-05 3.731E-04 -Z.41E-06 5 -1.405E-04 4.99E-05 4.052E-04 1.31E-05
STANDARD DEVIATIONS	2.166-69	5 1.146-05	5.236-05 2.186-0	
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES	-6.740E-04 -1.41BE-04	+3.033E-04	-1.2156-04	1.225E-03 2.487E-05
RESIDUAL	9.132E-05	-5.469E-05 -1.529E-04 4.115E-05 1.448E-04		1.431E-04 -1.196E-05 E-679E-04 3.742E-04
85C- 0-C5 -CC235C 3-89 0-22 1-20 85C- 0-C5 -CC235C 3-89 0-31 2-99	0.0 1.123E-05 -1.83E-C6	6 -3.138E-C6 5.46E-O6 -1.673E-Q4	-1.13E-06 -2.496E-05 2.55E-0	5 4.199E-03 1.16E-04 4.214E-04 7.47E-07
853. C.C5 .C0235C 3.89 C.55 4.59 845. C.C5 .00235O 3.88 0.23 2.21	0.0 -7.770E-04 1.53E-C	5 -4.4C7E-04 -1.89E-05 -1.720E-03	6.32E-05 -8.730E-C4 -2.74E-C	5 4.666-03 8.66E-05 4.293E-04 1.48E-05 5.273E-03 1.89E-04 4.043E-04 -1.12E-05
85C. C.O5 .0C235C 3.88 -0.00 0.30 85C. C.C5 .6C235C 3.88 -0.04 0.04	0.0 2.371E-04 -5.08E-06	6 1.D14F-C4 -1.37E-05 3.277E-04	-2-65E-05 1-684E-04 -3-26E-0	5 3.786E-03 -5.63E-04 4.176E-04 2.00E-06 5 3.781E-03 1.71E-05 4.205E-04 4.07E-06
851. 0.05 .002350 3.89 -0.43 -1.00 850. 0.05 .002350 3.89 0.27 1.19	0.0 5.936E+04 -5.32E+C	€ 3.058E-G4 l.15E-Q6 l.1736-Q3	8.46E-07 6.045E-04 1.04E-0	5 3.676E-03 -\$.23E-06 4.112E-04 -5.35E-06 5 3.364E-03 1.00E-04 4.037E-04 -3.06E-04
STANDARD DEVIATIONS	2.12E-C		-1.14t-05 -5.699E-C5 5.51E-0 6.01t-05 2.84E-G	6 4.163E-03 6.37E-05 4.205E-04 -2.04E-06 5 2.78E-04 9.03E-06
LONGITUDINAL CYCLIC PITCH-DERIVATIVES	-1-412E-04	~1-017E-04 -6.583E-04		3.862k-04 3.988E-05
LATERAL CYCLIC PLICH DERIVATIVES RESIDUAL	-2.239E-04 3.137E-04	-1.120E-04 -4.131E-04 1.4E8E-04 4.769E-04	-2.061E-04	

RPM /	, p	θ_0	θ_{3}	e _c	α	C _{M3.3} /acr	ΔC _{M3.3} /οσ	C _{L3.3} /ao	ΔC _{L3.3} /οσ	С _{М₂} /аσ	ΔC _{Mg} /ασ	C _{L پ} /مه	$\Delta C_{L_{\frac{1}{2}}}$ or	C _₹ /ασ	ΔC ₇ /0σ	C 9/00	sc ₀ /00
852. 0.	10 .002405 10 .002405	0.88 0.88	-0.25 0.22 0.80	0.44 0.20 0.06	0.0 0.0	2.604E-05 1.814E-04	-1.95E-05 -6.97E-06	-J.1296-34 -2.2536-05	-1.90E-05 1.73E-07	1-001E-05 2-614E-04	~4.45E-05	5.883E-C5 -2.798E-C5	4.806-06 2.996-05	1.192E-03 1.165E-03	7.10E-05 4.15E-05 -8.04E-05	3.387E-04 3.181E-04 2.965E-04	-3.49E-06 -5.21E-06 -8.08E-06
857. 0.	1C .002405	0.88	0.79	0.06	0.0	3.058E-04	1.12E-C6	- 8. 1C2E-C5	-6.05€-07	5.0316-04	-2.24E-05	-2.003E-C4	-3-41E-06	1.1645-03	-2.05E-05	2.840E-04	4-00E-06
	1C .002405	0.88 0.87	L.70 2.63	-0.04 -0.17	0.0												
	1C .0024C4 1C .0024C2	0-87 0-87	3.56 4.35	-0.23 -0.39	0.0	6.846E-04	5.21E-C6	-4.334E-04	1.076-05	1.2216-03	9-14E-07	-1.127F-03	1.60E-C5	1-3246-03	L- 93E-05	2.2256-04	1-745-05
845. 0.	10 .002401	0.87	-0-91	0.96	0.0	-2.6476-04	-3.11E-05	5.3996-05	3.716-06	-6.370E-04	-1.58E-04	4.743E-04	-2-75F+C7	1-1076-03	1.24E-05	3.9456-04	-1-83E-05
	10 .002400 10 .002355	0.67 0.67	-2.01 -3.41	1-34 1-59	0.0							9.437E-04 1.226E-03					
850. 0.	10 .002401	0.87	-4.77	1.71	0.0	-9.086E-04	-7.55E-C6	5.353E-04	2.456-05	-1.5621-03				40 3636-04		,,,,,,,	
STANDARD	DEVIATIONS						1.716-05		1.436-05		8.13E-05		2.156-05		4.53E-05		L-46E-05
	INAL CYCLIC			s		9.074E-05		-1.41CE+C4		1.290E-04		-2.725E-04 -6.694E-05		5-398E-05 7-692E-05		-2.408E-05	
RESIDUAL	CYCLIC PITCH	DERIVAT	IVES			-4.240E-04		-1-135E-04 3-136E-05		-8.664E-04 4.721E-04		1.625E-C5		1.100E-03		3.2228-04	
851. 0	LC .00239E	3.86	-0.38	1.62	0.0							7.839E-05 -2.168E-04					
	10 .002358	3.86 3.86	0.45 L.66	1.41 1.21	0.0												
845. C.	10 -002356	3.86 3.86	3.30 5.32	1.07 0.65	0.0	5-882E-04	1.521-05	-5-U54E-04	2.14E-05	8-3556-04	-1.34E-05	-1.6446-63	5.80E-05	6.157E-03	7.97E-05	2.3896-04	1.93E-05
845. C.	C +002395	3.86	-1-03	1.78	0.0							4-076E-C4 6-422E-C4					
	LC .002396 LC .002395	3.86 3.86	-2-20 -4-09	2.03	0.0												
	10 -002394	3.86	-4.82	2.96	0.0	-9-200E-04	1.556-05	5.0676-04	2.94E-C5	-1.8256-03	3-136-05	1-1946-03	1.016-05	5.413E-03	-2.21E-05	5.900E-04	2.50E-06
STANCARD	CEVIATIONS						2.9CE-C5		3.27E-05		8.69E-05		6.76E-C5		5. 59E-05		1.35E-05
LONGITUD	INAL CYCLIC	PETCH DE	REVATIVE	5		1-201E-04		-1.9126~04 -2.9106-04		2.925E-U4 -1.732E-04		-3-972E-C4		1.506E-04 3.835E-04		-1.660E-05	
RESTOUAL	CYCLIC PITCH	DERIVAT	I AF 2			-2-795E-04 4-717E-04		4.1608-04		6.819E-05		7.367E-04		5.027E-03		2.5176-04	
850. 0.	10 -002396	7.82	-0.59	2.07	0.0							5.549E-G5 -2.825E-G4					
	002393 10 002394	7.82 7.82	0.4Z 0.69	2.66 2.58	C.0												
855. C.	16 .005341	7.81	4.28	2.06	0.0	1-019E-03	2.C2E-C5	-7.48/6-04	-3.476-05	1.479E-03	3-136-05	2.983F-C6	1-05E-04	1.239E-02	-2.92E-05	6.756L-04	4.74E-06
	16 .002391 55 .002391	7.81 7.80	-1.51 -2.61	2.98 3.11	0.0												
848. C.	10 .002351	7.81	-4.54	3-60	0.0							9.400E-04 1.366E-03					
854. C.	10 .002392	7.80	-6.31	4.31	0.0	-1-01-6-03				4112 12 02			1.34E-04		4.33E-04		1.676-05
STANDARD	DEVIATIONS						2.956-05		4.41E-05		5.566-05						11011
	INAL CYCLIC			5		1.716F-04 -8.671F-05		-1.533E-Q4 -5.322E-05		3.400E-04 1.764E-05		-3.9336-04 -5.439E-04		9.125E-05		-2.368E-05	
RESIDUAL	CACFIC BIACH	UERIVAI	1 46 2			4-427E-04		1.352F-C4		-4.542E-05		1.2236-03		1.1836-02		2-371E-04	
845. 0.	LC .002368	0-87	Q-05 Q-15	0.38 1.30	0.0							-2.144E-05 -2.798E-04					
845. C.	1C .C02365	0.87 0.86	0.15	2.24	0.0	4 0105 01	7 445 05	- 1 OEGE - C.A.	_1 316-06	#1 L10F-03	- T- 04F-05		- 1. 136-13	1.1002-03	0.116-03	Z41Z3E-U4	0.075-00
849. 0.	10 -002367	0.86	0.11	4.23	0.0	-1-0146-03	-2.376-06	-5-9656-04	4.966-06	-2.017E-03	3.7HE-U6	-9.894E+U4	2.61E-05	2-110E-U3	3.496-06	2.728E-04	1-78E-07
	1C .002365	0.87 0.86	0.03 -0.02	5.12 0.02	0.0												
849. C.	10 .002363	0.86	-0.13	-0.09	0.0	2.229E-04	6-44E-C5	1.460E-04	2-846-05	4.34BE-04	2.09E-04	3.9266-04	2.255-05	4-112E-04	- A. 116-05	4.041E-04	-1-60E-05
	10 .002367 10 .002367	0.86 0.86	-1.00 -1.21	-1.84 -3.69	0.0	1.1166-03	-t-195-09	E. 725E-04	5.856-06	2.280E-03	-4.76E-05	1.555€-€3	-5.3GE-C5	3.633E-04	8. C2E-05	4.675t-04	1.366-05
	CEVIATIONS						3.6CE-C5		1.576-05		1.10E-04		7.776-05		6.276-05		1-06E-05
LONGITUD	INAL GYCLIC	PETCH DE	RIVATIVE	s		1.158E-05		-L.703F-04		-2.052E-04		-4.256E-04		1.3688-04		-9-256E-05	
	CYCLIC PETCH					-2.712E-04 1.341E-04		-1.570E-C4 8.138E-05		-9.222E-04 1.509E-04		-2.537E-C4 1.573E-04		2.088E-Q4 1.220E-03		-7.587E-06 3.138E-04	

TABLE A-I. CONTINUED.

RPM µ p	θ_{D} θ_{A}	$\theta_{\mathtt{s}}$	e c	х С _{М3.3} /еσ	ΔC _{M3.3} /00	C _{L3.3} /ao	ΔC _{L3.3} /•σ	C _M /oσ	ΔC _{Ms} /•0	C _L /aσ	ΔC _L /0σ	C _T /00	ΔC _T /aσ	C ^Q /907	ΔC _Q /ασ
845. C.C9 .002366 647. C.1C .002367 848. C.1C .002366 848. C.1C .002366 852. C.C5 .002366	3.84 0. 3.85 0. 3.85 0. 3.84 -0.	0.03 0.27 0.24 -0.00	2.55 0 3.42 0 5.32 0	-2.409E-00 -4.676E-04 -9.510E-04	5.03E-06 -1.43E-06	-1.7346-04 -3.5276-04 -6.6326-04 1.5416-04	7.36E-06 -1.87E-06 -3.96E-06 -7.69E-06	-8.4876-04 -1.2946-03 -2.1796-03 1.0576-04	1.05E-05 2.46E-05 -1.12F-04	-2.876E-C5 -3-033E-04 -6.366E-04 -1.130E-C3 2-290E-04	-1.95E-C5 -4.23E-06 B.32E-06	5.486E-03 6.164E-03 6.510E-03	7.96E-05 -4.11E-06 -4.19E-05	3.528E-04 3.335E-04 3.229E-04	-7-69E-06 4-46E-07 4-33E-06
85C. 0.1C .002364 STANCARO DEVIATIONS	3.63 -0.	-0-08	0.07 0	.0 4+181E-G4	2.37E-05 2.39E-05	2.367F-04	-1-90E-06 8-19E-06	5.6428-04	1.15E-04	4.980E-04	5.10E-05 5.31E-05	5.2826-03	-7.176-05	3.961E-04	4-04E-06
LONGITUDINAL CYCLIC P		1 UATENEC		-6.633E-05		1 1255 0			1.011-04		3.316-63		6.83E-05		6.44E-06
LATERAL CYCLIC PITCH RESIDUAL				-2.516F-04		-1.135E-04 -1.636E-C4 2.4C0E-04		-4.155E-04 -4.784E-04 4.45ZE-04		-4.613E-C4 -2.723E-C4 4.242E-04		3.426E-04 2.060E-04 5.370E-03		-8+226E-05 -8-709E-06 3+851E-04	÷
85C. G.1C .002361 85C. G.5 .002361 84E. G.1C .002362 841. G.1C .002363 85C. G.1C .002363 85C. G.1C .002364 85C. G.1C .002366 85C. G.1C .002366 85C. G.1C .002366	7.80 -1. 7.80 -0. 7.79 +0. 7.82 -0. 7.82 -0. 7.82 -0. 7.81 -0. 7.81 -0.	-1.28 -0.96 +0.86 -0.66 -0.52 -0.39 -0.51 -0.82	3.85 0 4.99 0 7.02 0 3.04 0 1.91 0 2.02 0 1.09 0	-2.849E-04 0 -4.854E-04 0 -9.469E-02 0 -2.131E-02 0 2.354E-04 0 4.745E-04 0 7.457E-04	7.46E-06 4.3E-05 -5.59E-05 -5.69E-05 -1.68E-05 -1.68E-05 -1.7FE-05	-1.080E-C4 -2.855E-C4 -6.611E-C4 -5.863E-O7 1.680E-O4 1.318E-C4 2.927E-O4 4.754E-C4 4.623E-O4	6.33E-06 2.35E-05 -2.44E-05 9.27E-06 4.43E-06 -8.76E-06 -1.98E-06 1.98E-06	-9.265E-04 -1.323E-03 -2.140E-03 -4.097E-04 2.459E-05 8.749E-05 4.808E-04 1.158E-03	-2.40£-04 -1.34E-05 1.98E-04 -2.56E-05 -1.29E-05 -8.27E-05 6.68E-05 6.66E-05	-2.617E-05 -1.864E-C4 -5.859E-04 -1.211E-03 -8.089E-06 3.576E-04 2.759E-C4 6.212E-04 1.002E-03	-1.42E-05 -3.54E-06 3.95E-C5 -1.79E-C5 2.87E-06 -2.58E-C5 1.40E-06 3.84E-C5	1.094E-02 1.165E-02 1.233E-02 1.146E-02 1.120E-02 1.136E-02 1.097E-02 1.069E-02	-3.73E-04 -3.56E-05 1.71E-04 6.83E-05 -9.86E-06 7.14E-05 -6.66E-05 -7.25E-06	6-055E-04 5-863E-04 5-429E-04 6-190E-04 6-315E-04 6-442E-04 7-172E-04	-3-26E-05 4.20E-06 2.97E-05 -3.19E-06 -1.64E-05 8.62E-06 2.07E-06 -6.29E-06
STANDARD CEVIATIONS	7.82 -1.	-1-30 -	1.65 0	O 1.166E-03	2.73E-05	7.497E-04	-1.43E-05	2-164E-03	1.00E-04	1.595E-03	-1.27E-05	1.048E-02	3.49E-04	8.333E-04	2.506-05
LONGITUDINAL CYCLIG P LATERAL CYCLIG PITCH RESIDUAL				3.905E-05 -2.476E-04 7.809E-04		-4.0868-65 -1.595E-C4 4.475E-C4		-1.674E-04 -4.993E-04 1.022E-03		-1.301E-04 -3.230E-04 9.051E-04	3.076-05	4.010E-04 2.135E-04 1.101E-02		~6.553@-05 -3.068@-05 6.722E-04	1.4996-05
855. 0.10 .002386 855. 0.10 .002386 852. 0.10 .002386 854. C.5 .002384 857. C.10 .002386	1.88 -0. 2.85 -0. 4.82 -0.	-0.08 -0.09 -0.01	0.42 U 0.48 O 0.53 O	·O L.681E-04 ·O Z.763E-04 ·O 4.653E-04	7.54E-C6 -4.13E-C6 2.55E-C6	4.2C0E-05 7.667E-05 1.258E-04	8.94E-06 -5.03E-06 3.14E-06	1.3726-04 3.2076-04 6.1926-04	1.92E-05 -1.14E-05 6.42E-06	2.0786-C5 1.1226-04 1.4706-04 2.2856-04 2.9626-C4	1.86E-05 -1.05E-05 6-51E-06	2. 226E-03 4.164E-03 6.7046-03	-2.526-05 1.16E-05	3-5746-04	-1.29E-05 6.55E-06
STANDARD DEVIATIONS					1.066-05		1.20E-05		2.64E-05		2.51E-C5		3.53€-05		1-68E-05
COLLECTIVE PATCH DERI LONGITUDINAL CYCLIC P LATERAL CYCLAC PITCH RESIDUAL	VATIVES LICH DERIVAT DERIVATIVES	IVATIVES VES		6.360E-05 3.397E-05 1.082E-03 -4.153E-06		2.957E-05 -3.481E-C4 2.368E-04 -1.501E-C4		1.007E-04 -2.178E-04 2.046E-03 -9.553E-04		3.188E-C5 -2.714E-C4 5.059E-C4 -2.014E-Q4		7.845E-04 5.167E-03 1.155E-02 -3.125E-03		-4.709E-06 9.196E-04 5.035E-04 2.104E-04	
845. C.1C .002355 845. Q.1C .002355 845. C.1C .002355 85C. C.C.5 .002345 845. C.1C .002345 845. C.1C .002345 845. C.1C .002347 847. C.1C .002347	4.92 -0.1 5.92 -0.6 7.96 -0.1 9.96 -0.1 2.93 -0.2 1.96 -0.3	-0.15 -0.08 -0.12 -0.12 -0.20 -0.24	1.56 0 1.49 C 1.47 C 1.51 0 1.71 0 1.47 0 1.45 0	0 1.059E-04 0 2.059E-04 0 3.687E-04 0 6.033E-04 0 -1.282E-04 0 -2.487E-04	3.236-C5 6.546-C6 -2.786-05 -1.486-C5 1.526-05 1.346-C5	2.9156~05 6.9776+05 1.0216-04 1.1256-04 -2.5376-05 7.3156-05	8-76E-06 3-14E-07 -6-63E-06 -1-14E-05 1-82E-C5 5-00E-07	-1.126E-04 5.093E-06 2.984E-04 7.011E-04 -4.827E-04 -6.862E-04	6.02E-05 -2.84E-06 -3.15E-05 -3.15E-05 3.01E-05 8.26E-06	+2.002E+05 4.868E-05 9.773E+C5 1.264E-04 1.443E-C5 -1.905E-C5 -5.829E-05 -2.051E-C4	2.02E-05 4.56E-C6 -2.11E-05 -1.42E-05 3.52E-C5 -1.34E-C6	7.375E-03 8.752E-03 1.096E-02 1.420E-02 4.558E-03 3.141E-01	1.87E-04 1.04E-04 -2.55E-04 4.61E-05 8.46E-05	4.876E-04 5.398E-04 6.910E-04 9.142E-04 4.000E-04 3.883E-06	-3.99E-05 4.12E-06 1.79E-05 5.20E-05 -4.60E-05
COLLECTIVE PITCH DERI LONGITUDINAL CYCLIC. P 1.ATERAL CYCLIC PITCH I RESIDUAL	VATIVES ITCH DERIVATI DERIVATIVES	VES VES		1.018E-04 3.434E-04 9.739E-05 -5.202E-04	-	2.803E-05 2.302E-04 -2.087E-04 2.287E-04		1.574E-04 4.211E-04 4.579E-04 -1.565E-03		3.891E-C5 2.744E-04 -3.417E-C4 3.873E-C4		1-276E-03 2-587E-03 2-658E-03 -1-701E-03		4.899E-05 -4.405E-04 4.691E-04 -4.791E-04	. * 40 E -02

TABLE A-I. CONTINUED.

RPM	μ	P	60	$\theta_{\rm S}$	∂ c	α	C _{M3.3} /aσ	ΔC _{M3.3} /ασ	C _{L3.3} /ασ	ΔC _{L3.3} /οσ	CM /oo	ΔC _{Ms} /aσ	C _L /oσ	۵C _{L پ} /هه	C _T /00	ΔС1/0σ	c ₀ /~	ΔC _Q /οσ
		.002346	7.96	-0.73	2-66	0.0					-3.8336-04							
850	0-10	-002346 -002347	8.97 9.95	-0.72 -0.68	2.74	0.0					-2.5586-04 -6.6136-05							
		.002344	12.00	-0.69	3-24	C.O	3.593E-04	-4.51E-67	-3.674E-05	-9.6ZE-06	3.071E-04	-3.84E-06	-9.008E-C5	1.50E-C5	1.705E-02	1.89E-05	1-228F-03	2+66E-05
		.002347	6.96 5.94	-0.61 -0.52	2.52	0.0 0.0	-1.347E-04	-2.876-05	2.101E-05	6.366-06	-6.965E-04 -8.112E-04	-5.93E-05	6.445E-C5	2.47E-05	1.002E-02	-1.24E-U4	6.3766-04 5.845E-04	2.86E-05
		.002346	3.93	-0.63	2.44	0.0	-4.543E-04	-1.83E-C6	-6.740E-05	-1-44E-C5	-1.149E-03	2.36E-05	5.6436-05	6-45E-05	5-944F-03	-4.65E-05	4.773E-04	2-708-05
		-C02341	1.94	-0.69	2.59	0.0	-7.158E-04	-5.10E-C6	-1.350E-C4	7.98E-06	-1.5236-03	-1.85E-05	-1.345E-04	-1.956-05	3-2516-03	-1.32E-05	4.2776-04	-9.25E-06
-		VIATIONS						2.41E-C5		1.35E-05		4.16€-05		4.80E-05		1-43E-04		3.27E-05
COLLI	ECTIVE	PITCH DER L CYCLIC	IVATIVES	O I LATIVES			1.184E-04 -6.996E-05		2.559t-05 8.324E-05		1.774E-04 -2.277E-04		1.621E-05 6.196E-04		1.272E-03 -1.287E-04		3.971 E-05 2.934E-04	
		LIC PITCH					-1.814E-04		-2.217E-04		4.900E-05		-2.4638-04		-4.101E-05		5.564E-04	
RESI	BU≜L						-5-200E-04		4. 3 72E-04		-2.133E-03		9.1746-04		6.123E-04		-8.770E-04	
850.	0.05	.002321	1.00	0.11	0.58	0.07	1.295E-05	-5.59f-06	-3.6836-06	1.366-06	-1.466E-05	-9.72E-06	-7.340E-05	2-016-06	1.697E-03	-8.10E-05	4.032E-04	2-036-06
		.002327	1.00	0.13	Q.54 Q.66	-1.16	-3.313E-06 -6.476E-05	1-56E-C&	-1.069E-05	2.256-08	-3.856E-05	6.42E-06	-8.476E-05	2.246-07	1.512E-03	-3.19E-05	3.949E-04	-1-64E-04
		.002327	1.00	0.13	0.54	-5.27	-3-297E-05	3.766-06	-2-124E-05	-1.21t-06	-1.101E-04	4-16E-06	-1.093E-04	-2.43E-D6	8.566E-04	9.48E-05	3.904E-04	-7.88E-07
848.	0.69	.00232€	1.00	0.16	0.69	1.16	1.507E-05	2-10E-C5	-1.541E-05	-3.64E-06	-6.648E-06	3.50E-05	-1.105E-04	-8.63E-06	2.189E-03	1.246-04	4.103E-04	7.55E-06
		.002328	1.00	0-13 0-17	0.72	3.11 5.23	2.552E-05	-9.65E-06	-5.715E-07	1.02E-06	1.690E-05	-1.9ZE-05	-7.978E-05	2.9et-C6	2.698E-03	2.86E-05	4. GBLE-04	-5.21E-06
STANE	ARD DE	2MOITALV						1.60E-C5		2-816-06		2.78E-05		6.626-06		1.20E-04		5.78E-06
LONGI	TUDINA	L CYCLIC	PITCH DEI	RIVATIVES			-8.778E-05		1.7106-05		1.958E-05		7.716E-05		-1-114E-03		-1.272E-04	
LATER	IAL CYC	LIC PITCH	DERIVAT				-3.174E-04 1.316E-05		-1.01ZE-04 3.357E-06		~5.816E-04 2.424E-05		-3.362E-04 7.454E-06		1-161E-03 1-50 9E -04		4.047E-05 2.567E-06	
RESIG		DER [VAT [AF 2				2-103E-04		5-110E-05		3.261E-04		1.095E-C4		1-551E-03		3.920E-04	
850.	0-16	.002343	4.00	-0.15	1.40	0.08	-3.279E-06	1.88E-05	3-655E-06	1.45E-05	-2.357E-04	4-80E-05	1.950E-05	3.636-05	6.2776-03	-5.54E-05	4.235E-04	-1.896-06
85 C.	0.10	.002342	4-00	-0-21	1-39	1.17	1 - 268F-05	6-58F-C6	1.0826-05	1.60E-05	-2.164E-04 -1.934E-04	2-22E-05	2.413E-05	2.926-05	6.480E-03	-1.72E-0+	4.445E-04	1.34t-05
		.002344	4.00	-0.22 -0.22	1.36	2.13	5-439F-05	1.106-05	-2.347E+06	-2-18E-05	-1-419E-04	2.526-05	1.1076-05	-3.60E-05	7.140E-03	L-65E-05	4.4276-04	1-62E-04
		.002341	4.00	-0.24	1-46	5.26	3.876E-05	-1.84E-C5	6.6876-06	-1.47E-05	-1.642E-04	-5.12E-05	1.2956-05	-3.156-05	8.193E-03	2-12E-0+	4.401£-04	-1.90E-06
		.002342	4.00	-0.23 -0.12	1.35	-0.89	-2-501E-06	1.016-05	-9.2446-06	1.54E-C5	-2-669E-04	1.766-05	-1.113E-05	2.876-05	5.575E-03	8-03F-05	4-2528-04	2-26E-06
		.002342 .002342	4-00	-0.12 -0.19	1.31	-2.86	-4-745F-05	-5-44F-1F	+ 3.825F-05	-7.03E-06	-3.599E-04	-2.68E-05	-5.726E-05	-1.01E-C5	5.445E-03	1.59E-0+	4-2226-04	-1.48E-07
		-002344	4.00	-0.18	1.36	-4.95	-8.787E-05	-4.33E-C&	-7.798E-05	-1.50E-05	-4-254E-04	-6.926-06	-1-461E-04	-2.976-05	4.0938-03	4.26E-05	4-0936-04	-2.596-07
STAN	CARO CE	VIATIONS						1.56E-05		1-59E-05		4.046-05		3.636-05		1.526-04		6.386-06
		L CYCLIC					-1.432E-04		1.5816-04		-1.121E-04 -3.963E-04		3.335E-04 -5.414E-04		-8.869E-04 3.089E-03		-5.066E-06	
LA166	RAL CYE Pottch	LIC FITCH DERIVATI	OER [VAT	I AF 2			-2.454E-04 1.532E-05		1.1416-05		3.114E-05		2.2916-05		2.714E-04		4.016E-06	
RE\$1		- CENTINAL I	•••				2.999E-04		3.064E-04		2.536E-04		7.9136-04		1.846E-03		5.512E-04	
		.C023C7	8.00	-0.75	3.54	0.10	2.227E-05	6.17E-07	-8.877E-07	L+12E-C6	-1.017E-04	7.39E-06	-2.211E-04	9.72E-C6	1-130E-02	-1.94E-04	7-239E-04	-8.77E-07
840.	C-10	.C023C6	8.00	-1.01	3.73	1.26	4-963E-05	4.72E-C6	-1-017F-05	1-25E-05	-1.131E-04 -8.840E-05	1.85E-05	-2.963E-04	2.90E-05	L-190E-02	-3.40E-04	7-467F-04	4.01t-06 2.28f-04
		.002307	8.00	-0.93 -0.90	3.72 3.83	3.17 5.29	1.021F-04	6.396-07	4.H51E-C5	-L-67E-05	-3.509E-05	-6.06E-06	-2.110E-C4	- 3.59E-C5	1.332E-02	1.37E-04	7.566E-04	-3.246-06
856.	C-10	.002306	8.00	-0.79	3.61	0 0 0	1 7446-06	4 335-04	_3 334E_AS	1 105-05	-1-404E-04	8-65E-06	-1-323F-04	6- SOF-06	1 - 133E-02	-8.43E-05	7.319E-04	1.07E-05
		-00Z3C6	8.00	~l+03	3.47	-2.82	-8.937E-06	4.05E-06	-7.246E-05	-2.42f-08	-1.999E-04	3.43E-06	-3-612E-C4	-8.631-04	1.097E-02	6.82E-05	6-875E-04	-5.65E-06
		.002304	8.00	-0.90	3.48	-9.48	-5./45E-05								1002.05	2.50E-04	220,32 04	8.13E-06
		VIATIONS						E.45E-C6		1.62E-05		1.886-05		3.10E-C5	-7.639E-04	2 + DUE-U4	1-693E-05	0-135-00
		L CYCLIC					-3.148E-05 -1.232E-05		3.104E-05 -2.303E-04		9.643E-05 -1.503E-04		5.323E-05 -7.563F-04		1.587E-03		3.338E-05	
		DERIVATI		. 463			1.517E-05		2.682E+C5		2.668E-05		5.494E-C5		2.134E-04		5.364E-06	
RESI							3.98EE-C5		E-324E-04		4.925E-04		2.4798-63	•	5.28CE-C3		6-189E-04	

TABLE A-I. CONTINUED.

RPM	μ	P	00	θ_3	θς	α	С _{М3.3} /аσ	ΔC _{M3.3} /00	C _{L3.3} /ασ	ΔC _{L3.3} /σσ	C _M /oσ	ΔC _{Ms} /ασ	C _L /oσ	ΔC _{L,} /ασ	C _¶ ∕ασ	ΔC _y /aσ	C 0/00	ΔC _Q /60
848.	Q-15	.002323 .002323	0.93 0.93 0.92	-0.10 0.22 0.49	0+41 0+27 0+30	0.0	1.464E-04 2.459E-04	-7.93E-06 4.26E-05	-8.645E-05	6.85€-06 -2.04€-05	1.328E-04 3.074E-04	-2.21E-06 7.91E-05	1.391E-05 -2.200E-04 -4.707E-04	1.42E-05	1.910E-03 1.966E-03	1.47E-05 8.89E-05	3-947E-04 3-877E-04	-5.20E-06 -5.19E+07
		-C02323 .	0.93 0.93	2.08 3.79	0-14	0.0	9.712E-04	3.766-05	- t. 459F-04	2.02F-06	1.615E-03	5.50E-05	-9.406E-04	-7-046-05	2.5CLE-03	-2.52E-05	2.483E~04	7.74E-06
85C.	0.15	- C02315	0.93 0.93	-0.64 -1.46	1.04	0.0	-3.4778-04	-9.37E-05	2.9C4E+05	2.696-05	-6.561E-04	-1.34E-04	3-129E-04 5-008E-04	2.05E-04	L.407E~03	-5.15E-05	4.579E-04	1.43E-05
845.	0.15	-002316	0.93	-3.18	1.76	0.0	-9.862E-04	2-825-05	3.766E-04	L-44E-05	-1.789E-03	4.02E-05	5.650E-C4	-7.6CE-C5	6-851E-04	9.2HE-05	5+482F-04	-1.39f-05
844.	G-15	.02314	C-93	-4.19	1-77	0-0							1.288E-03					
		VIATIONS						5.396-(5		2.296-05		9.876-05						1.27E-05
L ONG L A TER R E S I (ITUDINA IAL CYC DUAL	FIE BIACH	PITCH DE DERIVAT	RIVATIVES IVES			2.181E-04 -2.874E-04 1.845E-04		-1.551E-04 -4.487E-05 -4.568E-05		3.986E-04 -4.092E-04 1.586E-04		+3,506E-04 5,692E-05 -1,752E-04	-	3.163E-04 -8.545E-05 1.749E-03		-4-456E-05 -7-067E-06 4-078E-04	
		.002312	3.94	-0.76	1.52		-2.1226-05	-1.51E-05	2.7946-05	6.11E-05	-4.129E-04	-9.64E-05	1.980 é- C4	2.30E-04	6.534E-03	-1.56E-04	5.097E-04	1.538-05
		.002312 .002310	3.93	0.02	1.0+ 0.86	0.0	4.154E-04	2+C4E-C5	-1-5556-04	8.36E-07	3.7656-04	2.44E-05	-1.385E-C4 -5.642E-C4	-1.34E-05	7.293E-03	1.11E-05	4-228E-04	6.96E-06
		.002311 .002312	3.93	1.28 2.76	0.78 0.85	0.0							-1-019E-03 -1-682E-03					
85C.	0-15	002313	3.93	-1.48	1-65	0.0	-2.209E-04	-1.6ZE-05	7.728E-05	4-09E-06	-7.933E-04	-1.216-04	3.714E-04 6.527E-04	1.01t-04	6.2516-03	~8.68E-Q5	5-430E-04	5.95E-06
845.	C-15	.CG23C4	3.93 3.94	-2.29 -3.97	2.07	0.0	-8.605E-04	2.64E-05	4.1csE-04	-3.04E-C5	-1.8126-03	8-67E-05	I-172F-C3	~1.47E-C4	5+552E-03	1 - 27E-05	6.807E-04	-3-58E-06
845.	C. 15	.002361	3.93	-4.70	2.22	0.0	-1-099E-03	-7.39E-06	5.4C4E-04	~1.26£~C5	-2.213E-03	4.94E-05	1.5236-03	-1.03E-04	5.464E-03	1.476-04	7.244E-04	-3.53E-06
STAN	CARD CE	VIATIONS						2-406-05		3.72E-C5		1.17E-04		1.77E-C4		L-30E-04		9.80E-06
L DNG L A TEI R E S EI	ITUDINA RÅL CYC DUAL	AL CYCLIC CLIC PITCH	PLTCH DE DERIVAT	RIVATIVES IVES	•		2.557E-04 -1.116E-04 3.587E-04		-1.749E-04 -1.470E-C4 5.7C0E-05		4.795E-04 -8.182E-05 1.739E-04		-4.2908-04 -4.686E-05 -2.876E-04	ż	2.887E+04 -3.378E-04 7.424E-03	•	-5.827E-05 5.756E-06 4.411E-04	÷
		.002304 .002304	7.56 7.95	-1.60 -0.82	2.77	0.0	1.4946-04	-5.42E-05	-1.019E-04	3.33E-05	-1.820E-04	-6.81E-05	9.939E-05 -1.398E-04	1.346~04 1.876-04	1.317E-02 1.347E-02	-3.98E-05	7.393E-04 6.749E-04	-5.646-06
		.002304	7.95 7.94	-0-00 1-27	2.31	0.0	3.761E-04	-2.28E-05	-2.381E-04	1.59E-05 3.27E-06	1.56 LE-04 7.515E-04	-5.53E-05 2.45E-05	-5.362E-C4 -1.146E-C3	8.866-C5 -5.436-C5	1.390E-02 1.438E-02	1.32E-05 -3.56E-06	6-163E-04 5-298E-04	-3.74E-06
85C.	0.15	. C G 2 3 C C	7.99	2.26	2.04	0.0	9.728F-04	6 - 84E- C5	-6.420E-04	-6.30E-05	1.289E-03	1.69E-04	-1.744E-03 4.111E-04	-3.00E-C4	1.485E-02	1.59E-04	4.599E-04	3.02E-06
		.0023Cl	7.95 7.95	+2+39 -3+38	2.70 2.79	0.0	-3.447E-04	2.42E-05	2.319E-04	-1-07E-06	-1.163E-03	-1.64E-05	6.801E-04	8.01E-05	1.2566-62	-9.92E-05	8.6268-04	-2-69E-06
		.002302 .002301	7.95 7.95	-5.13. -6.26	.3-22 3-31	0.0 Ç.0	-7.765E-04 -1.024E-03	2.18F-C5 1.70E-C5	4.923E-04 6.025E-04	2.79E-06 -4.74E-05	-1.817E-03 -2.172E-03	3.53E-05 1.31E-04	1.151E-C3 1.435E-C3	-9.06E-05	1.186E-02	-8.07E-05	1.002E-03 1.076E-03	5.33E-06 -6.32 E- 07
		VIATIONS						4.256-05		3.96E-05		1.18E-04						
LONG	E TUD I NA	L CYCLIC	PLTCH DE	RIVATIVES			2.005E-04		-1.401E-C4		3.978E-04		-3.553E-C4		3.C23E-04		-6.898E-05	
RES1	NAL EVE	CLIC PITCH	DERIVAT	1 VE \$			2.005E-04 -1.869E-04 8.321E-04		-1.401E-04 2.867E-05 -3.155E-04		-2.712E-05 2.757E-04		4.947E-05 -7.406E-C4		-4.330E+04 1.489E-02		2.497E-05 5.620E-04	
		.002345		-0+31	1.99	0.0	1.588E-05	-2.85E-05	2.315F-C5	1.82E-05	-1-155E-04	-6-11E-05	-9.116F-05	1.506-05	B. 264E-03	-7.67E-05	7.066E-04	-4.64E-06
		.00234F	8.00	0.64 1.13	1.97	0.0	2.717E-D4	£.81E-C¢	-2.5C4E-C4	-6.41E-06	4.1186-04	2.20E-05	-4.313E-04 -5.917E-04	-3.77E-06	8.366E-03	1-266-04	6.428E-04	-2.856-05
851-	C:18	002348	8.00 8.00	2.69 -1.11	1.67	0.0	5.181E-04	1.68E-C5	-5.388E-04	-2.35E~05	8.842E-04	1+016-05	-1.144E-C3 3.206E-C4	-4.90E-05	7.911E-03	-2-158-04	6.606F-04	3.22E-05
853-	0.16	.002343	8.00	-1.95	1.95	0.0	-2.100E-04	5.64E+C€	2.774E-C4	-3.28E+05	-54899E-04	L-80E-05	4.942E-04	-4.615-05	8.568E-03	-3-876-05	7-2156-04	-2.02E-05
851.	0+1 +	.002341	8.00	-3.69	2+53	0.0	-4.469E-04	1.126-05	5.6556-04				9.441t-04	-6-82E-C6	8.392E-03			
		VIATIONS"	•					1.59E-C5		2.94E-05		3.485-05		3.02E-05		1.79E-04		2.898-05
LONG LATEI RESI	TUDINA RAL CYC	L CYCLIC	PETCH DE Derivat	RIVATIVES IVES	:		1.593E-04 6.483E-05 -3.497E-05		-1.836E-04 -5.497E-05 1.367E-04		3.319E-04 2.103E-04 -3.692E-04		-3.825E-04 -4.351E-04 6.404E-04		-1.441E-04 -6.835E-04 9.656E-03		-2.041E-05 6.813E-05 5.693E+04	

and the second s

RPM # P	θ_{0}	θ_{5}	θc	α	с _{м3.3} /от	ΔC _{M3.3} /ασ	C _{L3.3} /6σ	ΔC _{L3.3} /ασ	C _{Ms} /aσ	ΔC _{Ms} /oσ	C ^L /00°	ΔC _L _/σσ	C _{y} /ασ	ΔC _T /οσ	C 9/20	ΔC 9/0σ
850. 0.1% .002359 849. 0.15 .002358 850. 0.1% .002358 850. 0.1% .002356 850. 0.14 .002355 849. 0.15 .002355 849. 0.15 .002355 850. 0.14 .002355		-4.75 -3.56 -2.34 0.26 1.21 -5.61 -6.65 -8.84 -10.35	5.58 5.68 5.71 5.57 5.47 5.45 5.77 6.03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.768E-04 2.784E-04 6.587E-04 7.886E-04 -1.986E-04 -3.332E-04 -7.129E-04	6.72E-05 +8.93E+06 -1.70E-05 +3.09E-05 -3.53E-06 1.53E-05 -3.08E-05	-1.3C9E-04 -2.514E-04 -5.544E-04 -6.728E-04 1.771E-04 3.064E-04 5.804E-04	-3.86E-05 -1.00E-05 1.37E-05 1.66E-05 1.32E-05 1.37E-05 6.48E-06	-8.580E-05 1.601E-04 1.082E-03 1.348E-03 -8.477E-04 -1.123E-03 -1.907E-03	7.37E-05 -4.24E-05 3.24E-05 -2.03E-05 -3.32E-05 1.67E-05 -4.53E-06	-2.2466-04 -5.6216-04 -8.1396-04 -1.3386-03 -1.5676-03 3.1196-05 2.6206-04 7.1186-04 1.1036-03	-/.31E-05 -3.82E-05 3.30E-05 1.66E-05 4.80E-05 3.84E-05 -3.39E-06	1.592E-02 2.000E-02 2.095E-02 2.102E-02 1.697E-02 1.657E-02	2.97E-04 -2.73E-05 2.72E-05 -2.31E-04 3.54E-05 -1.67E-05 -1.41E-04	1.374E-03 1.284E-03 1.106E-03 1.048E-03 1.588E-03 1.682E-03 1.878E-03	-3.81E-05 -2.46E-05 1.60E-05 3.65E-05 2.73E-06 6.98E-06 2.33E-05
STANDARD DEVIATIONS						3.716-05		2-216-05		4-20E-05		4.53E-05		1-776-04		3-21E-05
LONGITUDINAL CYCLIC LATERAL CYCLIC PITC RESIDUAL					1.467E-04 -4.749E-05 9.020E-04		-1.232E-04 4.435E-05 -7.830E-04		3.061E-04 -3.568E-04 2.957E-03		-2.326E-04 -6.926E-05 -9.248E-04		3.341E-04 -1.335E-04 2.158E-02		-8.469E-05 -1.365E-05 1.188E-03	
85C- 0.16 .002358 85C- 0.16 .002353 845- 0.16 .002357 845- C.16 .002353 853- C.16 .002352 85C- C.16 .002348 85C- 0.16 .002346	0.94 0.94 0.94 0.94 0.98 0.98	-0.23 -0.22 -0.19 -0.09 -0.16 -0.30 -0.93 -1.17	0.50 1.23 2.06 3.88 0.11 -0.12 -1.60 -2.49	0.0 0.0 0.0 0.0 0.0 0.0	-4-953E-04 -1.037E-03 1.523E-04 2.522E-04 6.677E-04	-4.45E-C5 -5.83E-G6 2.43E-C5 1.61E-G5 4.60E-G5 1.36E-CE	-1.6296-04 -3.3506-04 -6.9266-04 1.0096-04 2.0566-04 6.3156-04	-3.146-05 -2.206-05 2.486-05 9.596-06 3.886-05 1.526-05	-7.161E-04 -1.158E-03 -2.086E-03 1.392E-04 4.502E-04 1.405E-03	-1.50E-04 -8.30E-05 1.08E-04 5.07E-05 1.83E-04 8.43E-05	7.178E+C5 -2.589E-C4 -6.157E-04 -1.279E-C3 3.064E-04 5.632E-C4 1.271E-C3 1.686E-C3	-8.416-05 -7.336-05 7.616-05 1.706-05 1.326-04 2.186-05	1.574E-03 1.702E-03 1.617E-05 1.441E-03 1.345E-03 1.120E-03	3.C1E-05 6.17E-05 -3.50E-05 2.28E-05 -4.22E-05 -7.58E-05	3.266E-04 3.044E-04 2.927E-04 3.671E-04 3.767E-04 4.600E-04	-1.20E-05 -1.66E-05 1.48E-05 1.46E-05 4.97E-06 -5.52E-06
STANDARD DEVIATIONS						3.64E-C5		3-046-05		1.45E-04		5+15E-C5		6. L4E-05		1.406-05
LONGITUDINAL CYCLIC LATERAL CYCLIC PITC RESIDUAL					3.704F-05 -3.184E-04 1.781E-04		-2.1246-04 -2.1086-04 8.1146-05		-2.615E-04 -6.010E-04 1.145E-04		-2.864E-04 -4.313E-04 2.923E-04		2.892E-05 1.145E-04 1.410E-03		-1.071E-04 -1.790E-05 3.374E-04	
85C- C-16 -002345 851- 0-16 -002342 851- C-16 -002342 85C- 0-16 -002342 851- C-16 -002344 845- C-15 -002304 85C- 0-15 -002304 845- C-15 -002304 845- C-15 -002304	3.91 3.92 3.92 3.91 3.92 3.89 3.89 3.90 3.90	-0.71 -0.75 -0.83 -0.86 -0.84 -0.76 -0.72 -1.00 -1.26	1.53 2.27 3.03 3.79 4.57 0.81 0.70 0.31 -0.92 -1.65	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-2.398E-04 -5.093E-04 -7.845E-04 -1.015E-03 1.234E-04 2.202E-04 3.658E-04 7.741E-04	3.15E-C5 9.56E-06 -1.86E-C5 4.44E-C6 -7.52E-C5 -1.45E-C5 2.38E-06 2.09E-05	-1.793E-C4 -3.453E-C4 -5.145E-C4 -7.257E-C4 6.247E-C5 1.56E-C4 2.456E-C4 5.750E-C4	2-10E-05 1-29E-05 1-08E-05 -1.72E-05 -8.31E-05 -5.98E-06 8.36E-06 1.27E-05	-8.155E-04 -1.3826+03 -1.953E-03 -2.397E-03 2.410E-04 2.385E-04 5.563E-04 1.603E-03	1.40E-05 -2.12E-05 -5.34E-05 6.71E-05 1.60E-05 -5.44E-05 -8.19E-06	1.651E-C4 -2.277E-O4 -5.297E-O4 -8.276E-C4 -1.200E-O3 4.277E-C4 5.006E-O4 6.809E-O4 1.170E+C3 1.547E-C3	-3.66E-05 -6.91E-06 2.41E-05 -5.01E-06 -1.94E-05 6.62E-06 1.84E-05 -3.23E-05	6.560E-03 6.613E-03 6.714E-03 6.711E-03 6.536E-03 6.691E-03 6.787E-03 6.462E-03	-9.876-05 -2.646-05 7.116-05 3.786-05 -5.216-05 0.846-05 1.556-04 -1.206-05	3-954E-04 3-720E-04 3-443E-04 3-312E-04 4-499E-04 4-816E-04 4-951E-04 5-617E-04	-6.50E-06 -6.15E-06 -5.16E-06 1.72E-05 -2.09E-05 1.40E-05 1.53E-05 3.26E-06
STANDARO CEVEATIONS						3.596-05		3.64E-05		6.53E-05		2.756-05		9+84E-05		1.43E-05
LONGITUDINAL CYCLIC Lateral cyclic pitci Residual					3.084E-05 -3.235E-04 4.862F-04		-1.7676-04 -2.2636-04 1.8068-04		-1-344E-04 -7-138E-04 6-898E-04		-1-452E-05 -4-359E-04 7-876E-04		4.640E-J4 2.146E-U5 6.559E-03		-9.7766-05 -4.1386-05 4.2236-04	
845. C.15 .CC23CC 84E. O.15 .CC23CC 85C. O.15 .OC229C 845. O.15 .OC229S 845. C.15 .OC229S 845. C.15 .OC23C2 85C. C.15 .OC229S 85C. C.15 .OC229S 84C. C.15 .OC23C2 STANCARD CEVIATIONS	7-92 7-90 7-91 7-91 7-91 7-91 7-90 7-90 7-91	-1.85 -2.01 -2.05 -1.88 -1.76 -1.70 -1.68 -1.85	2-69 3-51 4-40 5-38 6-22 1-87 1-23 0-71 0-09	0.0 0.0 0.0 0.0 0.0 0.0 0.0	4-571E-04 6-271E-04 8-659E-04	-4-118-05 -4-338-06 3-298-05 2-538-05 -4-538-05 -3-248-06 1-018-05	-1.624E-04 -3.414E-C4 -5.176E-64 -6.964E-04 1.613E-04 3.121E-04 4.3C6E-04 5.890E-04	-1.30E-05 -8.76E-06 2.29E-05 8.93E-06 3.52E-07 -1.21E-05 -9.32E-07	-7.599E-04 -1.198E-03 -1.625E-03 -2.111E-03 2.629E-04 7.639E-04 1.060E-03 1.476E-03	-9.64E-05 -1.38E-05 4.88E-05 B.04E-05 -9.94E-05 1.53E-05 6.91E-06	-1.091E-C4 -4.578E-C4 -7.875E-C4 -1.060E-C3 6.121E-04 8.234E-C4 1.068E-03 1.392E-C3	-4.52E-05 -3.50E-05 7.50E-06 7.61E-05 1.03E-05 -3.73E-05 -6.83E-07 8.95E-05 6.15E-05	1.325E-02 1.335E-02 1.335E-02 1.344E-02 1.317E-02 1.301E-02 1.202E-02	3.67E-06 -1.C5E-04 6.65E-05 1.70E-05 5.66E-05 -1.24E-06 -1.56E-04 5.53E-05	6.704E-04 6.549E-04 6.349E-04 6.026E-04 7.595E-04 8.029E-04 9.085E-04	-3.31E-05 -7.40E-06 1_78E-05 2.45E-05 -1.98E-05 -6.16E-06 -1.03E-06
LONGITUDINAL CYCLIC LATERAL CYCLIC PITC> RESIDUAL					-1.691E-05 -3.012E-04 8.012F-04		1.3546-05 -2.0546-04 6.JCIE-04		3.782E-04 -5.678E-04 2.090E-03		6.1496-05 +3.9656-04 1.4526-03		-2.663E-04 6.746E-05 1.248E-02		-2.012E-07 -4.628E-05 8.655E-04	

TABLE A-I. CONTINUED.

RPM	μ	P	80	$\theta_{\mathbf{a}}$	e _c	α	C _{M3.3} /60	ΔC _{M3.3} /ασ	^С С _{13.3} ∕аσ	ΔC _{L3.3} /ασ	C _M /as	ΔC _{Ms} /ao	C C OUT	ΔC _L /ασ	Cy/ao	ΔСτ/ασ	C0/00	ΔC _Q /9σ
		.002339	8+00	-0.25	2.07	0.0	-8.119E-05 -2.167E-04	-4-23E-C5	-1-0216-05	3-596-06	-3.031E-04	-5.79E-05	-1-407E-C4	6.80E-C6	8.194E+03	-1.4GE-04	6-920E-04	3-93E-06
		.002336 .002339	8.00 8.00	-0.32 -0.27	3.02 3.90	C.O	-3-817F-04	3.655-05	-2-114F-04	-1.57f-C5	-8-711F-04	7.14E-05	-6.676E-C4	-3.326-65	8.5256-03	2-566-04	6.5696-04	-2.13E-05
		.002331	6-00	-0.15	4.76	0.0	-6 AD2E-04	-1 50E-C5	- 7 285E-C4	h. 025-0h	-1.372F-03	-2-A4F-05	+7-640E-C4	1.276-05	8.397E-03	- L - COE-04	7-434E-04	8.14E-06
		-002330	8.00	-0.17	1-07	C.0	1-6376-04	2.38E-C5	1.351E-04	-3.70E-C6	L.285E-04	3.516-05	1.011E-04	-7.08E-06	8.0576-03	5.50E-05	7.247E-04	-4.33E-06
STAIND	ARD DE	VIATIONS						4.43E-65		1.426-05		7.326-05		2-45t-05		2.42E-04		1.92E-05
LONGI	TUDINA	L CYCLIC (PLICH DE	RIVATIVES			-3.880E-04		2.356E-04		-5.8326~04		6.432E-C4		-2.504E-03		4.717E-0+	
LATER	AL CYC	LIC PLICH	DERIVAT	IVES			-2.115E-04 3.012E-04		-1-3196-04		-3.H14E-04 4.099E-04		-2-584t-C4 5-506E-04		1.535E-04 7.382E-03		1.490E-08 8.073E-04	
RESID	IUAL						3.0126-04		3-1666-04		420775-04		3.3000 04		745020 03		0.0132 04	
867	0.15	.002337	12.00	-4.00	5.78	0.0	4-4695-07	2 . 09F - 05	-2-2716-05	1.635-05	-4.007F-04	1.21E-05	-3.394E-04	1.246-05	1-547E-02	3. 72E-05	1.445E-03	-3.16E-05
		.002336	12.00	-3.62	7.05	0.0	-2.454E-04	-1.71E-05	-1.664E-04	2.26E-05	-7.782E-04	-4.19E-05	-7.1998-04	2.616-05	1.937E-02	~1 = 16E ~ 04	1.394E-03	-9.34E-07
849.	0.15	-002337	12.00	-3.67	b-11	0.0	-4-5926-04	-4.616-06	-3.443E-04	-5-206-06	-1.097E-03	4.59E-06	-1.082E-03	2+36E-06	1.9476-02	-0.49E-Q6	1+340E-03	7-616-07
		.002337	12.00	-4.04	9.08	0.0	-7.340E-04	-1.92E-05	-5.043E-04	-1.635-06	-1.554E-03	-2-26E-05	-1.406E-03	3-215-06	1.935E-02	-7.90E-05	1.316E-03 1.517E-03	-5-A16-06
		.002336	12.00 12.00	-3.87	4.83 3.07	0.0	2.9396-04	3.646-05	2. A LAE = 0A	-2.31F-06	3.0516-04	-2.26E-05	7-1249E-04	-3-RRE-06	1. 928F+02	-1-64F-04	1.5776-03	-9.29E-06
		.002338	12.00	-3.89	2.69	0.0	6-N35E-04	-3.40E-C5	4-192F-04	2.07E-05	5.845E-04	-6.40E-05	6.835E-04	4.67E-05	1-528E-02	-1.53E-04	1.667t-03	2-736-05
STAND	DARD DE	VIATIONS						5.436-05		3.06E-05		7.93E-05		4-96E-05		2.496-04		2.33E-05
LONG	TUDINA	L' CYCLIC I	PI TCH DE	REVATIVES			1.526E-04 -2.082E-04		7.35LE-05		2.746E-04		3.519E-05		1.371E-04		-3.325E-05	
LATER	AL CYC	LIC PITCH	DERIVAT	I VES			-2.082E-04		-1.354E-04		-3.349E-04		-3-194E-04		2-205E-06 1-997E-02		-5.425E-05	
₹E\$ [0	DUAL						1.7936-03		1-060E-C3		2.621E-03		1.6346-03		1.4416-05		1.03/6-03	
0.6		.002337	C= 90	-0.31	0.43	e.o	1 1525-06	-1.406-04	4 USE-04	4. 74F-CA	-1-364F-04	-2. 15F=0A	1.3066-04	7-176-06	1.659E-03	4.30F-0n	3.751E-04	7-42E-06
		.002337	L. 92	-0.16	0.44	0.0	1.8876-04	-1.96£-C5	1.563E-05	-1.64E-C5	1.778E-04	~5.88E-05	1-104E-04	-5.51t-C6	3.4826-03	-9.09E-06	3.779E-04	6.60E-06
		-002333	2.93	-0.17	0.45	0.0	3.462E+04	1.74E-05	5.0586-05	-3.72E-C6	4.716E-04	4-848-05	1.2836-04	-2.C4E-C5	5.260E-03	-8.87E-06	3.878€-04	~2.77E-05
		.002336	4.94	-0.07	0.50	0.0	6.547E-04	7.18E-Ce	1.055E-04	1.53E-05	9.898E-04	2.38E-05	1-6716-04	1.496-05	8.7986-03	1.10E-05	4.579E-04	8.48E-06
		.002337	6.98 -0.09	-0.10 -0.21	0.49 0.32	0.0	8.630E-04	-6.89E-CC	1.502E-04	-5.30E-06	1.276E-D3	-2-U5E-U5	2.0186-04	-1.32E-06	1.1896-04	3-20E~0D	5.738E-04 3.821E-04	2-195-06 2-256-06
851.	C-15	± C02336	-6.09	-0.21	0.32	0.0	-1.2121-04	3.C0E-CC	2+9546-65	3.30E-EC	-342166-04						300210 54	
STAND	ARD CE	VEATIONS						2.COE-C5		L.73E-05		5.87E-05		1.546-65		1.286-05		2-186-05
COLLE	CTIVE	PITCH DER	IVATIVES.				1.184E-04 5.356E-04 5.855E-04 -1.892E-04		2.8146-05		1.826E-04		4.443E-05		1.788E-03		5.1498-05	
LONGI	TUDINA	L CYCLIC I	PETCH DE	RIVATIVES			5.396E-04		3-177E-05		1.163E-03		-3.046E-C4		2.326E-04		-2.905£-04	
LATER	AL CYC	LIC PLTCH	DERIVAT	I VE S			5.855E-04 -1.892E-04		-4.1CBE-04		1.291E-03 -4.938E-04		-1-167E-03 4-932E-C4		-2.C17E-03		-8.547E-04 6.008E-04	
R & \$ 10	IŲAL						-1.0126-04		1.0:10-04		-4-1300-04		4.7326-64		722472 34		080000-04	
451	6-15	.002346	3.93	-0.56	1.38	0.0	-1.804E-06	-9.44E-F7	-8.9796-CA	-4.92E-C6	-6.755t-05	1.916-06	2-151E-04	-2.08E-05	6.724E-03	5-30E-05	4.582E-04	-4.78E-06
		.002346	4.92	~0.56	1.44	0.0	1.38ZE-04	-2.73E-C6	2.080E-C5	6.44E-06	1.616E-04	-1-136-05	2-866t-04	3.49E-C5	8.3846-03	-2-156-05	5 - 0305 -04	3-11E-05
		.C02346	5.93	-0.67	1.50	0.0	2.618E-04	6.C1E-C8	3.4C4b-C5	-1.18E-C6	3.756E-04	1-10E-05	2.6796-04	-2.01E-05	1.0026-02	-4.7GE-05	5.531E-04	-3.03E-05
		.002346	7.93	-0.77	1.49	0.0											6.904t -04 9.7396 -04	
		.CO2346	9.91 2.93	-1.02 -0.52	1.67	0.0	f = 40 4t - U4	- 5-03E-06	-1:1445-05	9.836-00	-3-512F-04	-2.30F-06	2.2426+04	7. 78E-06	4.E89E-01	-6.36F-05	4.272E-04	1.08E-05
		.002344	1.95	-0.52	1.21	0.0	~2.821E-04	-3.26E-C6	-5.2686-05	-1.28E-C5	-5.63DE-04	5-32E-06	1.9266-04	-1.01E-C5	3.25CE-03	1-656-05	4-051E-04	-2-18E-05
		.CO2345	-0.02	~0.5l	1.19	C.0	-5.508E-04	6.14F-Ce	~7.3546-05	4.53€-06	-1.010E-03	-2.96E-06	1.742E-04	7.16E-06	-1.6676-04	1.40E-05	4.096E-J4	1-03E-05
STAND	ARO DE	VIATIONS	•					€ • L7E ~ C &		9.778-04		8.788-06		2.45E-C5	· .	6.30E-05		2-62E-05
COLLE	CTIVE	PITCH DER	[VATIVES				1.438E-04 2.312E-04 -1.479E-06 -4.347E-04		1.9206-05		2.240E-04		1.6046-05		1.744E-03		2.205E-06	
LONG	TUDINA	T CACTIC	PITCH DE	RIVATIVES			2-312E-04		-2.444E-C5		5.945E-04		-2-100E-04 -2-694E-05		6.485E-05		-1.046E-03 7.689E-06	
RESID	IAL CYC	TAC BIJCH	UERIVAT	1 452			-1.4/4E-06		-2.444E-05 -1.567E-05 -7.146E-05		4.1156-04 -1.1896-03		9.2748-05		2.7476-04		-1.413E-04	
KESIL	, OHE						103171-01											

RPM	щ	ρ	₽ _o	θ_{5}	$\theta_{\mathbf{C}}$	α	C _{M3.3} /or	ΔC _{M3.3} /00	r C _{13.3} /ar	ΔC _{L3.3} /ασ	C _M /oσ	ΔC _{Ms} /ασ	C _L /ar	ΔC _{L,} /ασ	C _Ţ /aσ	ΔСγοσ	CO/40	ΔC _Q /οσ
849. 849. 849. 850. 849.	0-15 0-15 0-15 0-15 0-15	.002345 .002345 .002344 .002344 .002345 .002342 .002343	7.93 7.92 8.91 9.89 13.95 6.93 5.90	-1.76 -1.70 -1.62 -1.76 -1.87 -1.45 -1.33 -1.22	2.73 2.74 2.76 2.78 3.42 2.69 2.65 2.49	0.0 0.0 0.0 0.0 0.0 0.0	-1.617E-07 1.664E-04 2.907F-04 8.175E-04 -1.635E-04 -2.853E-04	-1.49E-C6 1.60E-05 -6.24E-C6 5.57E-C7 -2.29E-C5 5.36E-C6	-2.556E-05 -2.748E-05 -3.6C0F-C5 -5.254E-05 -4.446E-05 -7.486E-05	1.20E-05 1.18E-05 -2.02E-05 -7.11E-06 2.42E-05 1.29E-05	-2.9166-04 -1.1786-05 2.5726-04 1.1676-03 -5.2366-04 -6.8236-04	-1.47E-05 -1.74E-05 2.88E-05 6.02E-06 -5.54E+05 2.10E-05	1.330E-C4 1.457E-C4 1.350E-C4 1.351E-04 1.333E-04 1.123E-C4	9.42E-06 7.6EE-06 -9.7BE-06 -1.92E-06 9.76E-06 -5.37E-06	1.314E-02 1.494E-02 1.666E-02 2.279E-02 1.153E-02 9.66CE-03	6.68E-05 -1.11E-05 4.08E-05 1.74E-05 -2.03E-06 5.63E-05	7.153E-04 7.179E-04 8.111E-04 9.250E-04 1.99E-03 6.347E-04 5.692E-04	-2.70E-05 -3.19E-05 4.10E-05 2.58E-05 -7.15E-05 -7.39E-05
STAND	AND DE	VIATIONS						1.506-05		2.46E-05		3.7CE-05		1.056-05		5.C3E-05		8.69E-05
LONGI	TUDINA AL CYC	PETCH DER! L CYCLIC (LIC PITCH	PLTCH DE	REVATIVES			1+533E-04 9-317E-06 -1-591E-04 -7-613E-04		1.380E-05 -1.053E-04 -1.337E-04 6.366E-05		2.673E-04 2.551E-04 -1.943E-04 -1.428E-03		1.344E-G5 3.476E-C5 -9.155E-C5 3.273E-G4		1.875E-03 8.678E-04 -2.161E-03 5.615E-03		4.029E-05 3.017E-04 1.525E-03 -3.242E-03	
851. 850. 845. 848.	0.14 0.14 0.14 0.15 0.15	.002327 .002327 .002328 .002327 .002327 .002326	1.00 1.00 1.00 1.00 1.00 1.00	-0.22 -0.16 -0.18 -0.17 -0.18 -0.19	0.80 0.76 0.79 0.85 0.76 0.73	-2-82	3.024E-05	-7.51E-C6 1.04E-05 -3.31E-C6 -2.17E-06 6.19E-06	-4.488E-06 2.131E-05 5.288E-05 -2.722E-05 -5.543E-05	-4.11 £-06 -6.30 E-06 1.10 E-05 4.92 E-06 1.42 E-06	4.099E-06 8.783E-05 1.306E-04 -8.120E-05 -1.383E-04	-6.49E-06 1.83E-05 -1.11E-05 -7.30E-06 7.68E-06	-8.282E-05 -3.185E-05 1.057E-05 -1.267E-04 -1.684E-04	-8.93E-06 -1.03E-05 1.76E-05 5.26E-06 6.00E-06	2.588E-03 3.291E-03 4.103E-03 1.825E-03 8.671E-04	4.49E-05 -3.68E-05 -2.95E-05 8.76E-05 -1.05E-04	4.361E-04	3.05E-06 8.09E-06 -1.87E-05 1.36E-05 -1.85E-05
STAND	ARD DE	VIATIONS						8.66E-0¢		1.048-05		1.476-05		1.65E-05		9.00E-05		1.926-05
LATER	AL CYC PITCH	L CYCLIC I LIC PITCH DERIVATION	DERIVAT				8.814E-05 5.013E-05 1.896E-05 -8.162E-06		-4-225E-04 -5-673E-04 2-108E-05 3-386E-04		4.084E-04 -1.775E-04 3.733E-05 1.667E-04		-8.585E-04 -1.222E-03 3.969E-05 6.710E-04		-1.050E-03 -1.302E-03 4.120E-04 2.890E-03		3.977E-04 3.624E-04 -8.050E-06 2.415E-04	
848. 851. 851. 85C. 849.	C.15 0.15 0.15 C.15 C.15	.002342 .002339 .002342 .002341 .002341	4.00 4.00 4.00 4.00 4.00 4.00	-0.69 -0.65 -0.68 -0.62 -0.63 -0.66 -0.75	1.39 1.40 1.43 1.37 1.18 1.22	0.07 1.17 3.11 5.27 -0.89 -2.66 -4.96	1.741E-05 3.727E-05 6.013E-05	-1.34E-05 7.80E-06 -E.18E-06 8.21E-06 1.33E-07	-2.955E-05 -1.529E-05 2.619E-05 2.961E-06 -1.647E+05	-3.15E-06 -2.91E-06 3.25E-06 -4.17E-06 5.16E-06	-2.715E-04 -2.191E-04 -1.925E-04 -2.719E-04 -3.435E-04	-2.94E-05 2.44E-05 -2.18E-05 1.88E-05 3.44E-06	2.751E-05 4.842E-C5 1.183E-04 1.118E-C4 6.202E-05	+2-90E-06 -5-12E-06 2-80E-06 -6-27E-07 -5-64E-07	7.940E-03 8.672E-03 1.007E-02 6.812E-03 5.930E-03	4.05E-05 -9.26E-05 7.26E-05 -6.89E-05 1.08E-05	4.268E-04 4.174E-04 3.995E-04 3.608E-04 4.190E-04 4.224E-04 4.082E-04	-8.96E-06 1.03E-05 -1.09E-05 1.08E-05 -4.37E-06
STANC	ARD DE	VIATIONS						1-456-05		5.31E-06		3.33E-05		5-44E-06		8.60E-05		1.35E-05
LATER	AL CYC	L CYCLIC I LIC PITCH DERIVATIO	DERIVAT				5.245E-04 1.241E-04 7.031E-06 1.882E-04		-1.746E-C5 -2.476E-C4 1.0C5E-05 2.978E-C4		9.324E-04 1.913E-04 1.340E-05 7.778E-05		-9.1946-05 -5.324E-C4 1.660E-05 6.989E-C4		-1.952E-03 -4.168E-04 5.192E-04 6.614E-03		4.740E-04 2.599E-04 -1.392E-05 3.849E-04	
85G. 849. 849. 848. 850.	C-15 C-15 C-16 E-16 O-15	.002305 .002305 .002306 .002307 .002308 .002311	8.00 8.00 8.00 8.00 8.00 8.00	-2.69 -2.66 -2.74 -2.89 -2.58 -2.57 -2.47	3.86 3.94 3.89 3.91 3.97 3.63	1.21 3.13 5.30 -0.86	-6.584E-06 2.140E-05 2.440E-05 5.302E-05 -1.102E-05 -5.177E-05 -1.484E-04	1.C1E-C5 -7.86E-C6 -1.32E-C5 4.51E-C6 3.32E-C5	3.0376-05 1.682f-05 3.3826-05 -2.9676-05 -3.9508-05	2.376-05 -6.826-06 -8.786-06 -1.726-05 3.016-06	-3.333E-04 -3.419E-04 -3.016E-04 -3.920E-04 -3.960E-04	2.57E-05 -1.60E-05 -1.81E-05 4.40E-06 5.35E-05	-2.226E-04 -2.288E-C4 -2.071E-C4 -3.398E-04 -2.981E-C4	4.24E-C5 -6.84E-C6 -1.91E-C5 -3.28E-C5 4.85E-C6	1.398E-02 1.502E-02 1.636E-02 1.279E-02 1.209E-02	2.21E-04 1.61E-04 2.74E-04 1.55E-04 8.02E-05	7.643E-04 7.327E-04 7.186E-04 7.578E-04 7.512E-04	2.58E-05 1.12E-05 3.57E-06 4.61E-06 2.23E-05
STAND	ARD DE	VIATIONS						3.C6E-C5		1.985-05		4.88E-U5		3.81E-C5		3.10€-04		2.57E-05
LATER	AL EYC PLTCK	L CYCLIC A LIC PITCH CERIVATION	DERIVAT				-1.553E-06 1.180E-04 1.425E-05 -4.758E-04		3.331F-05 2.384F-05 1.085E-05 -1.165E-05		-8.523E-06 5.162E-05 1.836E-05 -6.075E-04		4.834E-05 -1.323E-04 2.057E-05 3.605E-04		+1.297E-03 -1.101E-03 4.854E-04 1.407E-02		-4.367E-05 1.132E-04 -7.391E-06 1.841E-04	

TABLE A-I. CONTINUED.

RPM μ	ρ	θο	$\theta_{\rm s}$	θ_{c}	α	C _{M3.3} /aσ	ΔC _{M3.3} /ασ	C	ΔC _{L3.3} /60	. С _{М.} /аσ	ΔC _{Ms} /an	C _L /arr	ΔC _{L,} /ασ	C _y /aσ	ΔC _T /air	c ₉ /60	ΔCQ/00
848. C.15 85C. C.15 85C. O.15 85C. O.15 851. O.15 852. O.16 845. C.16	.002332 .002333 .002334 .002333	12.00 12.00 12.00 12.00 12.00 12.00 12.00	-4.36 -4.38 -4.07 -4.55 -4.27 -4.41 -4.27	5.58 5.80 6.06 5.70 5.62 5.44 5.54	1.21 3.15 5.28 -0.88 -2.86	6.902E-05	3.39E-05 -3.89E-06 -3.53E-05 1.54E-05 2.56E-05	-1.3176-05 1.9176-05 5.0506-05 -1.4466-05 -8.7146-05	1.85E-05 -1.09E-05 -1.69E-05 1.26E-05 -1.63E-05	-3.808E-04 -3.622E-04 -3.780E-04 -4.583E-04 -5.426E-04	7.816-05 -6.286-06 -6.086-05 3.286-05 2.836-05	-3.2241-04 -2.673E-04 -1.861E-04 -2.8656-04 -4.012E-04	2.67E-05 -1.41E-05 -1.79E-05 2.64E-05 -2.62E-05	2.018E-02 2.128E-02 2.224E-02 1.507E-02 1.793E-02	-2.79E-04 -2.37E-04 -2.02E-04 -2.64E-04 -3.41E-04	1.483E-03 1.518E-03 1.512E-03 1.412E-03	2.55E-05 -1.86E-05 -4.30E-05 4.68E-06 -1.15E-05
STANDARD DE	VIATIONS						4.44E-C5		2.62E-05		8.57E-05		3.67E-05		3.72E-04		4-40E-05
LONGITUDINA LATERAL CYC ROTOR PITCH RESIDUAL	L CYCLIC LIC PITCH DERIVATI	PITCH DEI Derivat Ves	RIVATIVES IVES			5.434E-05 +1.441E-05 2.728E-05 2.897E-04		2.067E-04 -2.228E-04 2.765E-05 2.141E-03		2.098E-04 -1.560E-04 3.972E-05 1.317E-03		4-308E-04 -5-260E-04 4-980E-05 4-528E-03		-6.104E-05 4.73CE-04 4.559E-04 1.685E-02		7.629E-05 8.583E-06 2.730E-05 1.709E-03	
851. 0.20 851. 0.20 850. 0.20 850. 0.20 850. 0.20 845. 0.20 845. 0.20	.002331 .002331 .002332 .002331 .002332	0.69 C.89 C.89 C.89 C.89 C.89 C.89	-0.19 0.18 0.51 1.11 1.95 -0.74 -1.43 -2.26	0.44 0.42 0.45 0.42 0.43 0.66 0.96	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.724E-04 3.158E-04 4.686E-04 6.543E-04 -2.181E-04 -4.647E-04	9.93E-06 6.22E-05 2.76E-05 -3.68E-05 -3.85E-05 1.02E-06	-6.911E-05 -1.557E-04 -2.742E-04 -4.017E-04 6.109E-05 1.757E-04	1.18E-05 -1.39E-05 -1.82E-05 1.22E-05 9.89E-06 4.51E-06	1.535E-04 2.989E-04 5.527E-04 8.854E-04 -5.072E-04 -8.768E-04	4.986-05 5.566-05 2.046-05 -3.196-05 -7.956-05 -2.686-06	1.372E-04 -1.213E-04 -3.572E-64 -6.233E-04 -6.810E-04 3.847E-64 5.658E-04 8.478E-04	-2.67E-05 +9.44E-05 -7.85E-05 6.96E-05 1.00E-04 2.82E-05	2.2896-03 2.1556-03 2.5756-03 3.4706-03 1.5466-03	2.826-05 5.566-05 5.206-05 -4.526-05 -5.066-05 -1.326-05	3.406E-04 3.062E-04 2.641E-04 2.259E-04 3.964E-04 4.323E-04	6.45E-06 -6.06E-06 -1.04E-05 5.15E-06 8.71E-06
STANDARD DE	PADITAIV						4 • 2 7E-C5	•	1.40E-05		5.668-05		8.75E-C5		5.676-05		9-18E-06
LONGITUDINAI LATERAL CYCO RESIDUAL						2-994E-04 -2-672E-04 2-203E-04		-1.874E-04 -8.495E-05 -1.138E-05		4.608E-04 -4.310E-04 2.009E-04		-4.816E-04 -2.656E-04 1.038E-04		7.1016-04 -3.7136-05 2.1486-03		-6.387E-05 -2.202E-05 3.549E-04	
851. C.2C 853. D.2C 85C. O.2C 85C. O.2C 848. O.2C 85C. C.2C	.002338 .002338 .002338 .002338 .002339	3.92 3.93 3.92 3.93 3.93 3.93	-0.98 -0.24 0.23 1.10 -1.84 -2.55 -4.42	1.26 1.10 0.94 1.05 1.48 1.72	0.0 0.0 0.0 0.0 0.0 0.0	2.843E-04 4.283E-04 6.974E-04 -2.424F-04 -4.819E-04	5.43E-C6 -1.74E-C6 3.63E-05 -2.51E-05 -4.23E-C5	-1.146F-04 -2.043F-04 -3.813E-04 8.753E-05 2.062E-04	1+65E-05 -1-65E-05 -2+12E-05 -3+74E-06 2+28E-05	1.782E-04 4.106E-04 8.668E-04 ~5.829E-04 -9.890E-04	-1.07E-05 -7.11E-06 4.39E-05 -1.96E-06 -6.49E-05	2.544E-04 -1.150E-04 -3.262E-04 -8.780E-04 4.931E-04 6.898E-04 1.202E-03	2.14E-C5 -6.74E-05 -1.16E-04 8.94E-05 9.96E-05	7.6376-03 8.1596-03 8.7776-03 6.2296-03 6.2376-03	-9-46E-06 7-88E-06 1-02E-04 -4-47E-07 -1-36E-04	3-436E-04 2-951E-04 2-321E-04 4-581E-04 5-091E-04	7.24E-06 -7.36E-06 -9.29E-06 7.20E-06 7.37E-06
STANDARD DE	VIATIONS						4.10E-C5		Z+67E-05		4.78E-05		1.406-64		1.146-04		1.116-05
LUNGITUDI NAL LATERAL EYCL RESIDUAL	L CYCLIC I	PETCH DEF DERIVATI	HVATEVES IVES			2.799E-04 -1.174E-04 4.762E-04		-1.769E-04 -1.628E-04 5.726E-06		4.704E-04 -4.387E-05 3.512E-04		-4.919E-04 -6.664E-04 4.803E-04		6.129E-04 -9.632E-05 8.101E-03		-7.059E-05 3.934E-06 3.150E-04	
849. 0.2C 849. 0.2C 852. 0.2C 85C. 0.2C 85C. 0.2C 848. 0.2C 845. 0.2C 845. 0.2C	.002335 .002336 .002336 .002336 .002336 .002337	7.31 7.31 7.30 7.31 7.31 7.31 7.31 7.31	-3.16 -2.11 +1.02 -0.10 0.50 -3.65 +4.61 -5.56 -6.35	2.64 2.64 2.57 2.44 2.23 2.76 2.82 2.89 3.41	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.762E-04 4.439E-04 6.322E-04 7.651E-04 -1.838E-04 -4.297E-04 -6.744E-04	6.66E-C6 2.26E-05 -1.38E-05 -4.18E-05 8.56E-06 -1.64E-05 -3.78E-05	-1.334E-04 -2.922E-04 -4.305E-04 -5.473E-04 1.212E-04 2.516E-04 3.724E-04	-2.79E-07 2.78E-06 6.52E-06 -1.27E-05 2.23E-05 1.64E-05 -1.20E-05	7.517E-05 5.274E-04 8.720E-04 1.086E-03 -5.539E-04 -9.203E-04 -1.254E-03	-8.09E-06 2.67E-05 2.99E-06 -3.852-05 -3.82E-05 -3.76E-05 -1.88E-06	2-4036-C4 -5-435E-05 -3-742E-04 -6-408E-C4 -8-571E-C4 4-765E-C4 7-833E-04 1-020E-03 1-171E-C3	-5-50E-C6 1-49E-05 2-65E-05 -3-43E-C5 4-31E-05 4-85E-05 -1-38E-05	1.44%E-02 1.519E-02 1.554E-02 1.601E-02 1.207E-02 1.253E-02	1.52E-04 1.26E-04 +1.58E-04 -9.79E-05 -2.20E-04 -1.20E-04 -2.02E-05	5.6876-04 4.7746-04 4.0216-04 3.3416-04 7.5916-04 8.3966-04 9.0226-04	-1.81E-05 -6.61E-06 8.19E-06 1.65E-06 2.50E-05 1.51E-05 -1.33E-05
STANDARD DEV	VIATIONS						4.286-65		1.53€-05		4.94E-05		4.14E-05		1.916-04		L-67E-05
L DNG I TUD I MAL LATERAL CYCL RESIDUAL						2.239E-04 -1.294E-04 9.833E-04		-1.463E-04 4.855E-05 -5.656E-04		3.757E-04 -1.507E-04 1.273E-03		-3.272E-04 -1.894E-04 -2.379E-04		6.701E-04 -6.66E-05 1.593E-02		-9.307E-05 2.849E-05 3.154E-04	

RPM µ	ρ	₿ _o	$\theta_{\mathbf{s}}$	θ_{C}	α	C _{M3.3} /aσ	ΔC _{M3.3} /ασ	Cl3.3/60	ΔC _{L3.3} /οσ	C _{Ms} /oσ	ΔC _{Ms} /aσ	С _{L,} /оо	۵۵ م	C _V /ao	ΔCy/aσ	CO/60	ΔCQ/Gσ
845. 0.15	.002335 .002335 .002335 .002336	0.89 0.90 0.90 0.89 0.89	-0.16 -0.08 -0.09 -0.07 -0.16 -0.20	0.46 0.96 1.74 3.09 0.11 -0.18	0.0 0.0 0.0 0.0 0.0	2.125E-05 -2.183E-04 -4.485E-04 -8.390E-04 1.462E-04	6.50E-C6 +5.48E-05 +3.11E-C5 2.55E-05 1.79E-C5	-1.642E-05 -1.884E-04 -3.816E-04 -6.867E-04 1.288E-C4	-3.426-05 -3.706-05 -3.176-05 3.246-05 1.996-05 6.156-05	-1.131E-04 -6.074E-04 -1.072E-03 -1.786E-03 2.044E-04 5.696E-04	-4.09E-05 -1.52E-04 -1.05E-04 1.03E-04 4.54E-05 1.90E-04	1.211E-04 -1.509E+04 -4.751E-04 -9.231E-04 3.240E-04 5.460E-04	-4.16E-05 -4.42E-05 -6.61E-05 5.45E-05 2.17E-05 9.14E-05	2.054E-03 2.069E-03 2.025E-03 2.015E-03 1.663E-03 1.660E-03	9.22E-05 8.28E-05 1.47E-05 -4.16E-05 -8.80E-05 -7.62E-05	3.646E-04 3.303E-04 3.254E-04 2.995E-04 3.854E-04 4.021E-04	-4.06E-06 -1.64E+05 -3.77E-06 6.73E-06 8.20E-06 1.28E-05
848. C.2C .		0.89	-0.58	-1.40	0.0	0.1326-04	4+30E-05	210232 04	4.716-05	11,5000 05	1.47E-04		7.09E-05		8.82E-05		1.21E-05
LONGITUDINAL LATERAL CYCL! RESIDUAL	CYCLIC PE	TCH DER	[VAT] VES VES			-1.396E-04 -3.304E-04 1.432E-04		4-539E-04 -2-641E-04 		-5.663E-04 -6.7026+04 1.436E-04		-8.256E-C4 -4.044E-C4 2.151E-C4		1.077E-04 3.241E-05 1.564E-03		-1-208E-04 -2-463E-05 3-605E-04	
852. 0.20 851. 0.20 850. 0.20 850. 0.20 845. 0.20 845. 0.20 845. 0.20	.002337 .002336 .002337 .002336	3.31 3.30 3.30 3.30 3.30 3.30	-1.22 -1.20 -1.11 -1.22 -1.20 -1.07 -1.33	1.51 2.26 3.00 3.80 0.80 0.49 -0.69	C.0 C.0 C.0 C.0 O.0	-2.540E-04 -4.96EE-04 -7.513E-04 1.984E-04	3.C2E-C6 1.76E-C6 1.68E-06 -1.75E-C5	-1.767E-04 -3.82e6-04 -5.701E-04 1.591E-04 2.826F-04	3.13E-06 7.10E-06 1.33E-05 -4.42E-05 2.04E-05	-7.334E-04 -1.211E-03 -1.712E-03 2.806E-04 4.996E-04	-3.13E-05 3.09E-06 3.22E-05 -1.23E-05 1.96E-05	-1.120E-C4 -4.653E-04 -8.042E+04 5.176E-C4 7.451E-04	-8.94E-06 1.28E-G5 2.87E-05 -7.90E-C5 3.79E-05	6.840E-03 6.573E-03 6.751E-03 6.547E-03 7.032E-03	-1.79E-05 7.31E-05 -1.34E-05 1.65E-05 -2.57E-05	4.224E-04 3.985E-04 3.626E-04 3.478E-04 4.382E-04 4.644E-04 5.340E-04	-2.76E-07 2.96E-07 6.69E-06 -1.71E-05
STANDARD CEVI	TATIONS						1.01E-05		3.08E-05		3.13E-05		5-45E-C5		5.516-05		1.17E-05
LONGITUDINAL LATERAL CYCL! RESIDUAL						-4.822E-05 -3.225E-04 4.150E-04		-1.64LE-04 -2.63LE-04 2.165E-04		-1.531E-04 -6.788E-04 6.500E-04		-2.706E-C4 -4.719E-C4 6.533E-04		8.739E-04 -4.670E-05 8.013E-03		-9-055E-05 -3-882F-05 3-779E-04	
85C. Q.2C 845. Q.2C 845. Q.2C 845. Q.2C 845. Q.2C 845. Q.2C 85C. Q.2C 85C. Q.2C	.002336 .002336 .002335 .002334 .002336	7.30 7.31 7.31 7.31 7.30 7.30 7.30 7.30	-2.66 -2.47 -2.52 -2.39 -2.49 -2.52 -2.55	2.68 3.63 4.36 5.33 1.89 1.13 0.74	0.J 0.0 0.0 0.0 0.0	-2-195E-04 -4-680E-04 -7-411E-04 2-313E-04 4-564E-04 6-62E-04	2.48E-05 6.53E-06 -1.02E-05 -3.37E-05 -2.73E-05	-2.118E-04 -4.039E-04 -6.050E-04 1.879E-04 3.545E-04	3.83E-06 -1.16E-05 7.35E-06 -7.24E-06 -1.95E-05	-6.722E-04 -1.133E-03 -1.603E-03 2.390E-04 7.150E-04 9.951E-04	1.03E-05 5.71E-06 1.15E-05 -6.37E-05 -7.77E-06	-1.638E-04 -4.747E-04 -8.588E-04 6.346E-04 9.533E-04 1.227E-03	-3.43E-05 3.73E-C6 1.12E-05 -1.02E-05 -2.41E-05 5.55E-05	1.366E-02 1.368E-02 1.341E-02 1.339E-02 1.353E-02 1.364E-02	1.32E-04 1.55E-04 -3.66E-05 -2.03E-04 -9.58E-05 2.43E-05	6.621E-04 6.133E-04 5.690E-04 7.685E-04 7.678E-04 8.245E-04 8.989E-04	-1.586-05 -1.93E-06 2.846-05 -3.186-05 -1.806-05 3.666-06
STANDARD CEVI							2.73E-C5		1.34E-05		3.326-05		3.448-05		1.69E-04		2.78E-05
LONGITUDINAL LATERAL CYCLI RESIONAL						2.585E-04 -2.968E-04 1.470E-03		5.273E-C5 -2-371E-C4 1.743E-04		6.716E-04 -5.765E-04 3.066E-03		3.702E-C4 -4.506E-04 2.419E-03		-3.449E-04 -3.106E-05 1.279E-02		1.882E-04 -6.668E-05 1.335E-03	٠
851. G.2C 850. 0.2C 851. G.2C 851. G.2C 848. G.2C	.002335 .002332 .002332	0.91 1.92 2.93 4.95 6.98	-0.22 -0.20 -0.14 -0.00 -0.13	0.54 0.53 0.57 0.60 0.63	0.0 0.0 0.0 0.0	2.068E-04 4.155E-04 7.365E-04	-4.00E-08 3.15E-05 -1.15E-05	-1.317E-C5 5.614E-U6 -3.856E-06	5.53E-07 1.62E-05 -5.17E-06	1.978E-04 5.509E-04 1.077E-03	2.89E-06 7.07E-05 -2.15E-05	8.205E-05 3.463E-05 5.343E-06	-1.59E-06 5.25E-07	3.427E-03 6.063E-03 9.943E-03	-1.56E-05 5.36E-05 -4.78E-05	3.634E-04 3.639E-04 3.434E-04 3.705E-04 4.480E-04	-6.39E-07
STANDARD CEV	1AT ICNS						3.556-05		1.96E-05		8.456-05		1.94E-06		L-C5E-04		2.71E-05
COLLECTIVE PE LONGITUDINAL LATERAL CYCLE RESIDUAL	CYCLIC PI	TCH DER				1.570E-04 3.843E-04 -1.688E-04 7.439E-05		1.242E-06 5.229E-05 -1.062E-04 5.946E-05		2.629E-04 8.462E-04 -9.155E-04 3.529E-04		-4.356E-06 1.182E-04 -1.290E-03 8.0446-04		1.8996-03 4.5366-04 2.9456-03 -1.1756-03		1.960E-05 -3.200E-04 4.768E-05 2.365E-04	
85C. C.2C . 847. G.2C . 845. C.2C . 845. £.2C . 856. G.2G . 856. G.2C .	.002373 .002373 .002372 .002373	4.33 5.31 7.29 8.30 2.29 1.30	-1-43 -1-32 -1-48 -1-41 -1-33 -1-34	1.48 1.68 1.81 1.97 1.40	0.0 0.0 0.0 0.0 0.0 0.0	3.099E-04 6.348E-04 8.101E-04	-1.38E-05 -6.33E-06 1.26E-05	-1.05CE-05 -4.654E-05 -6.810E-05 -1.665E-05	1.12E-05 5.35E-06 -9.84E-06 -1.02E-05	3.247E-04 8.694E-04 1.168E-03 -4.405E-04	-2.61E-05 -1.47E-05 2.37E-05 2.13E-05	1.438E-C4 6.400E-C5 6.288E-G5 1.741E-G4	6.61E-07 -9.22E-07 2.76E-07 -1.68E-C6	1.163E-02 1.533E-02 1.743E-02 5.779E-03	-3.82E-06 -2.03E-05 8.04E-05 2.79E-05	4.4446-04 4.7006-04 5.8686-04 7.0236-04 4.0696-04 4.0586-04	-3.54E-05 -2.18E-05 3.65E-05 2.93E-05
STANDARD DEVI	LATIONS						1.69E-C5		1.358-05		3.13E-05		1.856-06		8.166-05		4.47E-05
COLLECTIVE PI LONGITUDINAL LATERAL CYCLI RESIDUAL	CYCLIC PI	TCH DER				1.758E- 04 5.955E- 05 -1.611E- 04 -2.601E- 04		1.655E-C5 2.020E-04 -2.364E-04 5.545E-04		2.9806-04 1.035E-04 -3.066E-04 -5.7876-04		2.315E-05 4.607E-04 -3.772E-04 1.262E-03		2.0096-03 1.0196-03 -6.5906-04 3.4196-03		-9.723E-06 -3.101E-04 5.631E-04 -8.000E-04	

TABLE A-I. CONTINUED.

RPM .	μ	P	<i>8</i> ₀	θ ₃	$\theta_{\mathbf{C}}$	α	C _{M3.3} /00	ΔC _{M3.3} /0σ	CL3.3/00	$\Delta C_{L_3,3}/\omega$	C _M	ΔC _{Ms} /90	C _L /arr	ΔC _L /00	C _I /aσ	ΔC ₇ /0σ	C ^O /ou	ΔC ₉ /ασ
852.	C+2C	+002369	7.26	-2.88	2.96	0.0	2.753E-05	-1.17E-05	+2.291f +05	8-27F-06	-2.21 TE-04	-2-61F-05	1-2395-04	6-48F-C6	1-6276-02	- L. 03E-04	6.733E-04	-3.456-05
850.	0.20	-002368	8.31	-3.01	2.98	0.0	1.763E-04	-5.35E-05	-2.159E-05	3-186-05	3-479E-05	-8-43E-05	1-255E-04	2.31E-05	1.629E-02	8- SOF-05	7-620E-04	~2.22F-04
		-C05362	9.30	-2.98	3.06	C.O	4.086E~04	1.60E-05	-4.349E-C5	-1.12E-C5	4-161E-04	3.30E-05	9.9656-05	-8.18E-06	1.E28E-02	1.30E-04	9-242E-04	4-78E-05
		.002363	11.31	-3.19	3-20	0.0	7.811E-04	3.23E-05	- 6.4586-05	-1.91E-05	1.027E-03	4.97E+05	5.304E-05	-1.35E-05	2.1798-02	-5.10E-05	1.394E-03	1.32E-04
		.0023 e €	3.30	-2-63	2-38	0.0	-6.039E-04	-2.72E-C6	-6.182E-06	L-69E-06	~1.287E-03	-5.81E-06	2-312E-04	1.45E-06	6.134E-03	-1.06E-05	5.048E-04	-9.66E-06
B49.	6-20	-002365	1.31	-2.60	2.46	0.0	-9.557E~04	1.586-05	-4.426E-C5	-L-24E-05	-1.839E-03	3+39E-05	1.735E-04	- 8.85E-C6	3.C70E-03	3.38E-05	4.645E-04	7.31E-05
STAN	DARD C	EVIĄTICNS					1.805E-04 -7.215E-05 -1.666E-04 +9.909E-04	4.85E-C5		2.94E-C5		7.928-05		2.13E-05		1-40E-04	•	1-94E-04
COLL	ECALAE	PLTCH DE	RIVATIVES	·			1.805E-04		1.517E-05		2.875E-04		1.801E-05		1.8966-03		6.255E-06	
LONG	ITUDIA	AL GYCLIC	PLTCH DE	RIVATIVES			-7.215E-05		2.92ZE-04		-1.889E-04		2.228F-C4		9.708E-04		-2.221E-03	
1111	KAL LY	CLIC PITC	H DENTANI	IAE2			-1-666t-04		~1.740E~05		-1.847E-04		-2.217E-C4		5-560E-04		-6-781E-04	
4631	DOME						+4.4045-04		7.517E-C4		-2.286E-03		1.283E-C3		1.7096-03		-3.732E-03	
852.	0.20	.002365	11.31	-5.21	4.79	C. D	2-747E-06	-2.10E-CE	-1.2046-05	6.34F-06	-3-122F-04	R-96F-07	2-0405-04	6-505-06	2. C09E-02	1. 34F~05	L-450F-03	-2-20F-05
		-0023£3	12.30	-5.27	4.86	0.0	2.185E-04	4.57E-06	-4.7436-05	-2.19E-05	4.383E-05	2.15E-05	1.660E-C4	-4.86E-C5	2.174E-02	2. C3E-04	1.727E-03	~2.23E-05
		+002365	13-32	-5.23	5.05	0.0											2.092E-03	
		.C02363	10-31	-5.24	4.50	0.0	-2.159E-04	4.30E-07	-1.077E-C5	7-00E-06	-6.648E-04	1.56E-05	2.393E-04	1.65E-05	1-845E-02	1-25E-04	1.222E-03	6.36E-06
		.002356		-5.01	4.61	0.0	-4.3511-04	4.38E-06	-7.5446-06	-6.94E-07	-1.026E-03	2.66E-05	2.038E-C4	2.97E-07	1 - 675E-02	L.73E-04	1.0426-03	4-246-06
871.	6.50	.C0236C	7.27	-4.72	4.33	0.0	-8-990E-04	2.92E-07	-2.7C1E-06	-1-27E-06	-1.842E-03	9+68E-06	2.744E-04	-4.02E-06	L-287E-02	1.23E-04	7-963E-04	-8.84E-06
		EVIATIONS					1.943E-04 -1.271E-04 1.221E-04 -3.441E-03	4.936-06		1 - 86 E-05		2.95E-05		4.10E-05		2.45E-04	,	2.51E-05
COLL	ECTIVE	PITCH DEF	RIVATIVES	•			1.9436-04		-1.111E-C5		2.981E-04		6.336E-05		1.2266-03		4-091E-04	
LONG	[TUOIN	AL CYCLIC	PITCH DE	RIVATIVES			-1-271 1- 04	·	-1.981E-05		-4.4426-04		3.446E-04		-2-823E-03		1.301E-03	
LATE	RAL CY	CLIC PITCH	OERIYAT	IVES			1-221E-04		3.941E-05		3.376E-04		-3-633E-C4		L+999E-03		-7-496E-04	
RE ST	DUAL.						-3.441E-03		-1.848E-04		-7.506E-03		3.017E-03		-L.616E-02		7.217E-03	
								-										
		.002325	1.00	-0.41	0.48	0.11	-1.934E-05	1-09E-05	5.159E-06	-4.06E-06	-8.748E-05	3+06E-05	-2.114E-05	-3.25E-06	2.419E-03	5.736-05	4-262F-D4	1-536-06
		.002328	1.00	-0.33	0.92	1.18	~2.333E-05	-3.COE-05	2-230E-05	6.64E-06	-L.003E-04	-4.946-05	-3.2256-05	5.36F-06	2.980E-03	-7-60F-05	3_847F-06	-3.326-06
		.002325	1.00	-0.30	1-D1	3.14	6.702E-05	-3.67E-05	6.151E-05	L.15E-05	5.428E-05	-5.73E-05	3.207E-05	1.236-05	4.291E-03	-3.16E-05	3.6356-04	5.50E-06
		.002325	1.00	-0.24	1-03	5.25	1.980E-04	3-48E-05	6.863E-05	-1.09E-05	2-693E-04	5.36E-05	5.037E-05	-1.18E-05	5.627E-03	3.746-85	3.137E-04	-6-676-06
850.		-002326 -002325	1.00	-0.32	0.95	-0.67	-2-106E-05	2.54E-C6	-2.598E-05	2.94E-06	-1.143E-04	7-08E-06	~1-291E-04	5.50E-06	1+991E-03	7.716-05	4-101E-04	9-70E-06
			1.00	-0.37	0.94		-6-665E-05										4.258E-04	-9.556-06
		EVIATIONS								1.33E-05		7.00E-05		1.46E-05		9.58E-05		1-176-05
LONG	TUDENI	AL CYCLIC	PITCH DE	RIVATIVES			-2.086E-05 5.216E-04 2.403E-05 -5.075E-04		-2.572E-C4		-1.806E-04		-8.077E-04		3.C42E-04		-3.268E-04	
LATER	TAL CYC	LIC PITCH	DERIVAT	I VE S			5-216E-04		2.7156-05		7.800E-04		4-232E-06		1.221E-03		-2.742E-05	
ROTO	PITCH	1 DERIVATI	VE S		•		2+4036-05		2.047E-05		4.716E-05		4.183E-05		5.808E-04		-8.7756-06	
RESIG	UAL						-5.075E-04		-1.18BE-04		-8-826E-04		-3.591E-04		1.350E-03		3-1516-04	
		.002341	4.00	-1.14	1.30	C-07	-4.746E-06	-5.17E-CE	-3.560E-06	-6.74E-06	~Z-905E-04	-1.05E-05	1.604E-04	40-396-1-	7.005E-03	1.45E-05	4-007E-04	6-19E-06
		-C02341	4+00	-1.16	1-41	1.18	4.196F-05	9.42E-Ca	-1-347E-06	2.84E-06	-Z.220E-04	1.33E-05	1.455E-C4	5.77E-07	8.588E-03	-1-33E-06	3.8166-04	-5-18E-06
		.002341	4.00	-1.08	1.33	3.10	7-137E-05	-2.268-05	6.851E-05	1.01E-05	-1.478E-04	-4.02E-05	2.5866-C4	-6.8CE-07	9. 120E-03	-8-83E-05	3.3665-04	4-57F-06
		.002341	4-00	-1:01	1.35	5.26	1.411E-04	1-226-05	e.578E-05	-4.74E-06	-2.031E-05	2.22E-05	3.4748-04	L-40F+06	1_119F-02	4-10F-05	2.735E-04	-3 .03F-06
		+002342	4.00	-1-12	1.27	-C-88	1.2066-05	E.99E-06	2.076E-05	-4-67E-Co	-2.566E-04	1.286-05	2.0341-04	-8.93£-06	7.3006-03	2.55E-05	4.042E-04	-2-64E-06
		.002345	4-00	-1.13	1.26	-2.85	-5-1926-05	4.30E-C6	7.848E-06	1.09E-06	-3.673E-04	1-03E-05	1.9066-04	9.56E-06	6.C03E-03	6.26E-06	4.331F-04	-1.55F-06
09.5	(.26	+C02345	4-00	-1.10	1-28	-4.91	- L-6C2E-04	-3.166-66	- 0.852E-06	2. 06 E-06	-5.713E-04	-6.91E-06	1-3846-64	-2.67E-C6	4.5508-63	~2.C5E-05	4.376E-04	-2-61E-08
		EVIATIONS						1.776-05		8.27E-06		3.016-05		7.81E-C6		6. COE-05		5.90E-06
LONG	TUDINA	L CYCLIC	PLICH DE	REVATIVES			-5.030E-04		2.598E-04		-8.752E-04		3.375E-04		-5.880E-05		-5.019E-04	
LATER	AL CYC	LIC PITCH	DERIVAT	l ve s			-4.315E-04 -3.475E-05		-2.691E-C4		-9-191E-04		-6.208E-C4		-4-883E-04		-1.227E-04	
ROTOR	PITCH	← DER LVATI	v€ \$				3.4756-05		9.498E-06		6.390E-05		1-7276-05		6.54ZE-04		-1.091E-05	
RESIG	UAL	• *					1.6946-05		6.663E-C4		-9.1916-04 6.3906-05 -2.885E-05		1.3936-C3		7.361E-03		-9.835F-06	

TABLE A-I. CONTINUED.

N PM	μ	ρ	80	$\dot{\theta_{\mathbf{a}}}$	θ _c	α	C _{M3.3} /or	ΔC _{M3.3} /ασ	CL3.3/00	ΔC _{L3.3} /οσ	C _{Ms} /aσ	ΔC _{Mg} /ασ	C _{L,} √aσ	ΔϹ _L	C _y /oσ	ACy/or	c ^o /••	ΔC _Q /οσ
845. 851. 850. 851. 85C.	0.20 0.20 0.20 0.20 0.20	.0023C9 .0023C9 .0023C9 .002311 .002313 .002315 .002314	8.00 8.00 8.00 8.00 8.00 8.00	-3.89 -3.83 -3.63 -3.89 -3.78 -3.72 -3.46	3-10 3-69 3-97 3-67 3-74 3-52 3-58	-2.87	2.677E-05 3.786E-05 9.105E-05 -3.310E-05	1.18E-C5 -3.C1E-C6 -3.C5E-C6 -3.44E-C0	-5.822F-06 1.414E-05 6.793E-05 -2.107E-05 -5.169F-05	-7.96E-06 -3.04E-06 3.86E-06 9.85E-06 -2.71E-06	-4.104E-04 -4.32BE-04 -3.140E-04 -5.173E-04 -5.380E-04	1.95E-05 -4.45E-06 -5.93E-06 -1.60E-05 -1.44E-05	-2-565E-04 -2-408E-04 -2-423E-04 -1-099E-04 -2-593E-04 -2-746E-04 -3-385E-04	-1.926-05 -3.026-06 8.336-06 2.246-05 1.586-06	1.490E-02 1.607E-02 1.755E-02 1.350E-02 1.248E-02	-2.46E-06 6.35E-05 8.55E-06 -5.11E-05 8.13E-05	7.131E-04 6.690E-04 6.208E-04 7.177E-04 7.067E-04	2.74E-05 -8.74E-06 -5.90E-06 1.94E-06 -1.39E-05
STAND	ARD DE	VIATIONS						8.606-06		8.00E-06		1.916-05		1.816-05		6.72E-05		1.898-05
LONGI LATER ROTOR RESIDO	PITCH	L CYCLIC LIC PITCH DERIVATI	PITCH DE DERIVAT VES	RIVATIVES IVES			-2.141E-04 -2.114E-05 1.584E-05 -7.452E-04		1.1816-05 -4.9456-05 1.4546-05 2.1186-04		-1.932E-04 -1.777E-04 2.555E-05 -5.440E-04		2.305E-C5 -2.326E-C4 2.402E-C5 6.965E-C4		4.615E-04 -4.873E-04 6.452E-04 1.768E-02		+1.636E-04 8.202E-05 +1.634E-05 -2.235E-04	
850. 850. 850. 850.	0-20 0-20 0-15 0-20 0-20	.002334 .002335 .002336 .002336 .002336 .002336	12.00 12.00 12.00 12.00 12.00 12.00	-6.41 -6.36 -6.19 -6.09 -6.14 -6.30 -6.32	5.62 5.79 6.01 5.90 5.80 5.50 5.41	1.19 3.12 5.25 -0.87 -2.85	9-66ZE-06 4-469E-05 5-268E-05 -3-954E-05 -1-557E-04	-1.23E-06 -3.52E-05 -1.06E-05 4.90E-05 3.13E-05	6-594E-06 4-327E-05 1-275E-04 -5-373E-06 -2-0346-05	-1.92E-06 5.00E-06 2.46E-06 -6.25E-06 -7.76E-06	-5.931E-04 -5.694E-04 -5.499E-04 -6.441E-04 -8.072E-04	1.906-06 -6.806-05 -2.016-05 8.246-05 5.416-05	-1.928E-04 -1.973E-04 -1.316E-04 2.310E-05 -2.391E-04 -2.490E-04 -2.910E-04	-6.64E-06 1.23E-05 2.67E-06 -1.39E-05 -8.236-06	2.051E-02 2.176E-02 2.168E-02 1.827E-02 1.693E-02	1.30E-04 4.23E-04 2.51E-04 2.18E-04 2.51E-04	1.566E-03 1.598E-03 1.654E-03 1.484E-03 1.405E-03	2.49E-05 3.24E-08 1.62E-05 3.45E-05 2.31E-05
STANDA	ARD DE	VIATIONS						5.52E-C5		9.19F-06		9-686-05		1+576-05		4.57E-04		3.21E-05
LONG! LATERI ROTOR RESIDI	TUDINA AL CYC: PITCH WAL	L CYCLIC I LIC PITCH DERIVATI	PITCH DE DERIVAT VES	RIYATIVES IVES			-2.74ZE-04 3.439E-04 2.065E-05 -3.747E-03		1.868E-04 -2.081E-04 2.265E-05 2.374E-03		-3.741E-04 4.839E-04 2.621E-05 -5.805E-03		2.856 E-04 -4.052 E-05 4.526 E-05 3.916 E-03		-5.453E-03 4.486E-03 5.133E-04 -4.404E-02		-1.434E-04 1.068E-04 2.986E-05 -2.384E-05	
85C. 85C. 85C. 85C. 848. 848. 848.	0.26 0.27 0.27 0.26 0.26 0.26 0.26 0.26	.002359 .002358 .002358 .002358 .002355 .002355 .002358 .002358 .002354 .002345	1.17 1.16 1.17 1.16 1.17 1.17 1.16 1.16	-0.41 0.25 0.79 2.40 3.39 -1.39 -2.26 -3.31 -4.10	1.04 0.76 0.77 0.86 0.63 1.41 1.49 1.64 1.60	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.514E-04 4.168E-04 7.694E-04 1.016E-03 -3.268E-04 -5.822E-04 -7.895E-04	3.93E-06 3.55E-05 +1.13E-06 -9.89E-06 -2.03E-05 -3.58E-05 4.83E-05	+8.8C4E-05 -1.982E-04 -4.535E-04 -6.154E-04 1.175E-04 2.741E-04 4.266E-04	1.93E-05 -7.31E-06 -6.52E-06 -1.90E-05 -5.25E-06 1.90E-05 1.51E-05	3.611E-04 6.531E-04 1.350E-03 1.816E-03 -6.321E-04 -1.063E-03 -1.492E-03	-1.16E-05 3.86E-05 2.63E-05 3.32E-05 -4.89E-05 -5.91E-05 3.47E-05	7.042E-C5 -1.691E-04 +3.960E-04 -8.441E-04 -1.087E-C3 2.516E-04 5.085E-04 7.078E-C4 9.093E-C4 1.345E-C3	-5.83E-06 -7.34E-05 -2.68E-05 2.03E-05 3.16E-05 -4.31E-05 -4.25E-05	3.3226-03 3.5116-03 5.1056-03 5.9056-03 1.6996-03 1.0476-03 1.9176-04	-1.05E-04 7.17E-05 5.48E-05 6.95E-05 -5.27E-05 -2.61E-05 1.25E-05 8.36E-06	2.4670E-04 2.288E-04 8.416E-05 8.979E-06 3.842E-04 4.197E-04 4.685E-04 5.043E-04	1.88E-05 1.41E-05 -2.83E-05 -4.17E-05 3.83E-05 2.01E-05 4.74E-06 -7.52E-06
STANDA	IRO DE	VIAT1DNS						3.15E-05		1.96E-05		5.34E-05		5.45E-05		8.79E-05		3.70E-05
	L CICE	L CYCLIE (LIC PITCH					2-522E-04 -2-134E-04 3-469E-04		-1.501E-04 -4.200E-05 -3.574E-05		4.953E-04 -3.170E-04 5.000E-04		-2.971E-64 -1.640E-64 3.736E-05		7.778E-04 -5.449E-04 3.647E-03		-6.2726-05 -8.810E-06 2.7086-04	
847. 847. 848. 851. 845. 845.	0.26 0.26 C.27 0.27 0.27 0.26 G.26 G.26	. CO2328 . OO2326 . OO2327 . CO2328 . OO2326 . OO2326 . OO2326 . OO2326 . OO2326 . OO2326	4-08 4-05 4-16 4-16 4-15 4-14 4-15 4-14	-1.94 -0.98 -0.07 0.63 1.12 1.91 -3.00 -3.99 -5.08 -5.93	2-11 1-64 1-48 1-39 1-35 1-37 2-14 2-14 2-34	C-0 O-0 O-0 O-0 O-0 O-0 O-0 O-0 O-0	3.312E-04 6.275E-04 7.645E-04 9.151E-04 1.115E-03 -1.907E-04 -4.088E-04	-3.85E-C5 L.61E-C5 -2.41E+C5 7.22E-C6 3.39E-C5 5.53E-C6 4.C4E-C6 -6.46E-C6	-1.261E-04 -2.623E-04 -3.471E-04 -4.354E-04 -5.646E-04 1.725E-04 3.166E-04 4.757E-04	-2+25E-Ch -4.60E-06 1.49E-05 -1.91E-07 -7.46E-06 5.53E-06 -2.41E-06 -6.64E-06	4.4016-04 9.5836-04 1.2456-03 1.5196-03 1.9116-03 -5.8146-04 -1.0116-03 -1.4446-03	-5.71E-05 7.65E-06 -3.87E-05 1.12E-05 7.82E-05 -1.71E-05 -3.94E-05 -3.27E-06	-2.160E-C5 -1.525E-C4 -3.924F-C4 -6.443E-C4 -E.497E-C4 -1.110E-O3 2.598E-C4 5.363E-O4 8.508E-O4	7.99E-05 7.48E-05 1.21E-05 -5.75E-05 -7.64E-06 -1.75E-05 -2.72E-05	8.598E-03 9.697E-03 1.014E-02 1.070E-02 1.132E-02 7.301E-03 6.328E-03 5.460E-03	-2.46E-04 7.93E-05 -6.53E-05 9.C1E-05 7.41E-05 1.55E-04 1.44E-05 3.46E-05 -1.04E-05	2.757E-04 1.802E-04 1.146E-04 6.768E-05 -4.146E-05 4.390E-04 5.100E-04 6.042E-04	2.73E-05 1.15E-05 6.12E-06 8.58E-07 -4.28E-05 1.16E-05 9.01E-07 3.49E-06 -3.10E-05
		VIATIONS						2.546-05		7.62E-06		5.21E-05		5.87E-05		1-44E-04		2.40E-05
LONG (1 LATERA RESIDU	IUDI NAI	L CYCLIC F LIC PITCH	PLTCH DEF DERIVATI	IT VATIVES IVES			2.249E-04 -2.226E-04 9.559E-04		-1.534E-C4 -3.752E-05 -2.127E-04		4.231E-04 -4.119E-04 1.589E-03		-2.993E-C4 -2.355E-C4 -1.393E-C4		8.C88E-04 -2.101E-04 9.983E-03		-8.343E-05 2.097E-05 1.321E-04	

TABLE A-I. CONTINUED.

RPM	μ	ρ	€ 0.	$\theta_{\mathbf{s}}$	θc	α	C _{M3.3} /ao	ΔC _{M3.3} /ασ	C _{L3.3} /οσ	ΔC _{L3.3} /00	C _M /aσ	ΔC _{Ms} /σσ	C _L /oσ	ΔC _{L,} /ασ	C _I /ao	ΔCŢ/ασ	C9/00	ΔC _Q /0σ
		.00236C	7.99 7.99	-5-03 -3.70	3.48 3.75	0.0	-6-361E-05	2.376-05	4.610F-05	1.44E-05	-2-659E-04	7.075-05	9-4261-05	-3.55E-C5	1+410E-02	1-10E-04	6-668F-04	1.22E-05
		.C02356	7.99	-2.80	3.48	0.0	3.782F-04	-6.32F-C6	-1.1166-04	-4.51F-C6	5.6696-04	3.81E-05	-1.711E-04 -4.274E-04	2-751-05	1.4956-02	2-80E-05	5.4398-04	-6.84E-06
845.,	0-2e	.002353	7.99	-1.66	3.33	C.0	6.087E-04	-3.81E-C5	-4.255E-04	1.556-06	9+754E-04	-3.39E-05	-6.552E-04	3.90E-05	1.653E-02		3-554E-04	
		.002355	7.99	-0.63	3.08	U - 0	9.174E-04	1.59E-C5	- 6. 0476-G4	-1.61E-05	1-425E-03	-4.515-05	-5.607E-C4	-L.73E-C5	1.7476-02	-1.56E-05	2-2408-04	-1.73E-05
		-002357 -002359	7.99 7.98	-5.91 -6.75	3.64 3.99	C. 0	-2.648F-04	3.C6E-C5	1.8C9E-04	1.96E-05	-7-0166-04	1.32E-05	3-275E-C4	-L.586-CS	1.323E-02			
		.002351	7. 98	-8.04	3.57	0-0 C-0	-7-587F-04	-2-39E-C5	4.3555-04	4.94E-06	-1-1/5t-03	~4.68E-05	5-182E-04 8-979E-04	-2.71E-C5	1-242E-02	-8-68E-05	8-453E-04	1-05E-05
		.00235e	7.99	-8.68	4.11	C-0	-1.0126-03	-1.666-05	5.7696-04	-2.04E-05	-2-004E-03	-1.68E-D5	1.075E-03	7.69E-06	1.C87E-D2	3.55E-05	1.0126-03	-1-05E-05 -1-98E-05
STAND	ARD CE	VIATIONS						2.12E-C5		1-516-05		4.80E-05		3-18E-C5		8.C3E-05		1-806-05
		L CYCLIC					2-105E-04		-1.336E-04		3.8746-04		-2-446E-04		7.6586-04		-8.8998-05	
		LIC PITCH	DERTVAT	1 vES			-1.514E-04		8-114E-C5		-2.4976-04		-8.397E-C6		-3.233E-04		5.4486-05	
RESID	UAL	•					1.501E-03		-9.230E-C4		2.4856-03		-1-072E-C3		1-8976-02		1.717E-05	
		-002347	11.94	-7.55	5.77	0.0	7.9896-08	-1.246-05	2.916E-C6	2.74E-06	-3-077E-04	6.57E-05	-4.662E-05	-2.106-05	1.5926-02	-1.10E-04	1.604E-03	-7-736-06
		-002345 -002345	11.94	-6.50 -5.41	5.69 5.62	0.0	2-2036-04	6.85E-C6	-1.708E-04	-2.61E-06	3-8398-05	3.38E-05	-3.339E-C4	-4.35E-05	2.C86E~02	-3-16E-05	1.481E-03	-1.786-05
		.002347	11.99	-4.06	5.71	0.0	6.496E-04	6-82F-06	-5.365E-04	-3.29E-06	3.483E-04	1.926-06	-5.9456-C4 -8.2566-04	-2-96E-C5	2-183E-02	5.66E-05	1.382E-03	-6-00E-07
		.002345	11.99	-8.52	5.86	0.0	-1.584E-04	2.67E-Cb	1.6246-04	4. 02E-07	-7-692E-04	-4-LDE-05	2.356F-04	1-20F-05	1.929E-02	7-586-05	1.7266-03	8-46F-06
		-002345	11.99	-9.96	5.57	0.0	-3-887E-04	3.54E-C£	3.0116-04	-1.88E-06	-1.215E-03	-2.16E-05	5-687E-C4	2.78E-05	1.6456-02	2. C8E-05	1.814E-03	9.06E-06
		VIATIENS						1.10E-C5		4.09E-06		5.496-05		4.85E-05		8.70E-05		1-606-05
		L CYCLIC			1	·	1+ 780E-04		-1.+40E~C4		3.508E-04		-2.443E-04		7.4488-04		-9.4586-05	
RES 10		LIC PETCH	DERIVAT	1462			-8.339E-05		2.243E-04 -2.38LE-03		-1.320E-04 3.036E-03		1-1376-04		-9.86 LE-04	•	1.780E-04	
							140432 03		-4.3016-63		3.0366-03		-2.5256-03		3.1346-02		-1.287E-04	
		-C02355	1.13	-0.46	1.00	0.0	8.987E-06	-1.42E-C5	7.0356-07	-8.63E-06	-1.3156-04	-6.21E-05	7.7298-05	-3.22E-C5	2.556E-03	7-10E-06	3.447E-04	-1.47E-05
		.002352 .002350	1.12	-0.45	1.65	0.0	-2.410E-04	-2.69E-C5	-2.034E-C4	-1.02E-05	-5.759F-04	-6.54E-05	-2.627E-04	-1.34E-05	2.406E-03	-8.87E-DL	3.243E-04	-1-30f-05
		.CD2326	1-12 1-13	-0.46 -0.32	2.80 0.96	0.0	7 2146-06	5.456-06	-4-150t-04	3-12E-06	-9.959E-04	1.79E-05	-6.410E-04 7.642E-05	6.1LE-06	2-244E-03	-8.39E-06	3-1950-04	0-68E-06
		.C02326	1-11	-0.32	0.43	0.0	2.118E-04	-1.H9E-C&	1.3785-06	1-02F-05	2.9525+04	2-20F=05	3.1306-04	-2.05E-05	2.1/GE=03	1-166-04	3 64 9E - 04	6-496-06
		-002328	1-12	-0.50	-0.05	0.0	3-178E-04	7.38E-0e	2.658F-C4	2-27E-06	4.9956-04	3.246-05	6-083E-C4	4.82E-C5	2.563E-03	-1-27E-04	4.043E-04	1.72E-05
		-0C233C	1-12	-0.96	-0.71	0.0	4.717E-04	7.23E-C5	5.0056-04	2.56E-C5	8+3646-04	1-68E-04	1.011E-G3	6.92E-C5	2.507E-03	4-246-05	4.250E-04	1.416-05
		.C02327	1.10	-1.15 -1.31	-1.78 -2.66	0.0	6.257E-04	-3.78E-05	7.5436-04	6.47E~0B	1-1366-03	-3.70E-05	1-404E-03	-3.54E-C5	2.362E-03	-1.39E-04	4.474E-04	5-69E-06
		PIATICAS	1101	-11.31	-2.00		0.0076-04	3.626-05	7.6300-04	1.43E-05	1.5156-03	8.61E-U5	1-823E-C3	4:16E-05	2.645E-03	1.03E-04	4.5236-04	
		L CYCLIC	Dr. 1611 D.C.							11432 03				4.102-03				1.45E-05
		LIC PITCH					2-1176-04 -2-826E-04		-1.181E-04 -2.378E-04		3.144E-04 -5.245E-04		-2.254E-04 -4.209E-04		7.228E-04		-1.491E-05	
RESID				723		٠	4.033E-04		1.935E-04		6.0016-04		4-280E-C4		-1.636E-04 3.C43E-03		-2.585E-05 3.784E-04	
851.	0.27	.002360	4.05	-1-92	1.97	0.0	4.103E-05	-4-66E-07	-5-170F-Do	9-096-06	1-522E-06	2.04F=05	1.139E-G4	5-005-06	7. F75F-03	1.51E-05	3 6075-04	-1 40E-04
		.QCZ361	4.05	-1.98	1.14	0.0	2-394E-04	- 6.76E-C6	1-656E-04	-1.185-05	3-1546-04	-3-26E-05	4-672L-C4	-5.83E-C6	7-634E-G3	-5.27E-05	3 - 924E - 04	3-45E-07
		-C0236C	4-04	-1.95	0.47	0.0	4-434E-04	2.186-05	3.271E-C4	-2.35E-06	6.657E-04	2-288-05	7.919L-04	-7.88E-C6	7.583E-03	L. 10E-04	4.077E-D4	2-10E-06
		.002363	4-04 4-04	-2.05 -2.18	-0.42 -1.30	0.0 0.0	6-150E-04	-2-30E-05	5.409E-04	2-71E-C6	1.012E-03	~2.0 HE-05	1.178E-C3	1-1CE-C6	7.177E-03	-1-41E-04	4.455E-04	3-286-06
		-002361	4-04	-2.39	-2.24	G. D	1.0926-03	7.198-06	5-634E-04	-8.26E-07	1-944E-03	1.72t-05	1.539E-03 1.869E-03	0.85E-06 -4.64E-06	0.025E-03 0.080E-03	4.93E-05 7.25E-06	4.750E-04 5.382E-04	-7.45E-06 2.70E-06
STANC	ARD DE	PLATIONS					*	2.19E-C5		9.05E+06		3.176-05		7.57E-06		L. 12E-04		5.215-06
L DNG1	FUOINAL	. CYCLIC F	ITCH DER	1 VAT EVES			2-782E-05		-2.5C7E-05		2-0946-05		4.8008-04		-4.665E-04		-1.366E-04	
		IC PITCH	DERIVATI	VES			-2.514E-04		-2.302E-04		-4-441E-04	-	-4.740E-Q4		1.929E-06		-2.578£-05	
RESIC	JAŁ						5-891E-04		3.856E-C4		8.943E-04		1.964E-03		0.961E-03		1.508E-04	•

TABLE A-I. CONTINUED.

RPM	μ	ρ	ê _φ	θ_1	θc	α	C _{M3.3} /aσ	ΔC _{M3.3} /σσ	С _{13.3} /аσ	ΔC _{L3.3} /οσ	C _M /qσ	ΔC _{Mg} /aσ	C _L /oσ	∆۵ر ر∕مه	C _y /aσ	ΔCŢ/aσ	CQ/00	ΔC _Q /0σ
841. 848. 841. 850. 850. 850.	C.26 G.26 G.26 G.26 C.26 G.26	.002346 .002344 .002345 .002346 .002347 .002347 .002347	7.98 8.01 7.94 7.96 7.97 7.97 7.97 7.97	-4.39 -4.23 -4.12 -4.27 -4.49 -4.50 -4.31 -4.29	3.64 4.49 5.41 6.32 2.83 2.12 1.78 1.81 0.80	0.0 0.0 0.0 0.0 0.0 0.0	-2.296E-04 -5.196E-04 -7.589E-04 2.501E-04 4.736E-04 5.24CE-04 5.014E-04	2-11E-05 -5-40E-C7 -1-77E-C5 7-62E-06 3-70E-C5 2-81E-C5 1-71E-05	-1.865E-04 -3.686E-04 -5.961E-04 2.031E-04 3.876E-04 3.534E-04 3.720E-04	8.27E-06 3.59E-05 -5.72E-05 2.53E-06 4.56E-05 -1.56E-06 2.85E-05	-2.502E-04 -5.005E-04 -1.033E-03 -1.500E-03 2.057E-04 6.083E-04 6.129E-04 1.102E-03	9.82E-05 8.12E-06 -5.94E-05 6.07E-07 7.38E-05 2.16E-05 -3.27E-05	-3.1866-04 -6.4086-04 -1.0326-03 5.0616-04 8.9226-04 7.7716-04	7.43E-05 -7.32E-05 4.87E-06 1.17E-04 5.24E-05	1.501E-02 1.514E-02 1.528E-02 1.540E-02 1.565E-02 1.557E-02	-1.58E-04 1.91E-04 -4.66E-05 -2.21E-05 -2.20E-05 -2.47E-05	6.170E-04 5.660E-04 7.7986-04 8.619E-04 8.201E-04 8.653E-04	1.40E-05 1.73E-05 -1.16E-05 2.26E-05 -2.73E-05 1.49E-05
		.002347	7.96	-4.39	-0+13	0.0	9.875E-04	-4.20E-05	7.2096-04	-3-21E-05	1.530E-03	-2.976-05	1.4 1/6+63	-1.276-05	1+3105-05	- 3.236-03	1.0116-03	2.556-05
-		VIATIONS						3.176-05									-4.3216-05	
L DNG I L A TER R E S I D	TUDINA AL CYC	L CYCLIC F LIC PITCH	PITCH DEI DERIVATI	VES			-1.651E-04 -2.711E-04 2.678E-04		-2.705E-04 -1.954E-04 -4.620E-04		-1.433E-04 -4.618E-04 8.679E-04		-6.6216-04 -3.760E-04 -1.410E-03		5 * 613E-04 -1 * 443E-04 1 * 835E-02		-6.672E-05 7.861E-04	
851. 851. 850. 847. 845. 852.	0.26 0.26 0.26 0.26 0.26 0.26	.002334 .002332 .002333 .002330 .002331 .002329 .002330	12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03	-7.98 -8.13 -8.18 -8.18 -7.67 -7.73 -7.97 -7.87	5.96 6.66 7.93 8.79 9.96 5.09 4.04 2.49 1.69	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-2.256E-04 -4.84LE-04 -7.556E-04 -9.888E-04 2.621E-04 4.149E-04	4.56E-C5 -1.89E-C5 -4.18E-C5 -5.45E-C6 L-C4E-O5 -1.82E-C5	-1.7788-04 -3.3528-04 -5.3018-04 -6.1088-04 1.6548-04 3.1898-04	-3.52E-C5 -2.11E-05 -2.80E-05 5.18E-05 -1.28E-06 -1.57E-06	-3.744E-04 -7.069E-04 -1.146E-03 -1.608E-03 -2.043E-03 7.015E-05 3.625E-04 7.665E-04 1.051E-03	7.90E-05 +2.54E-06 -5.59E-05 -3.19E-05 1.04E-05 -2.28E-05	-4.769E-04 -8.347E-04 -1.143E-03 -1.493E-03 3.257E-04 6.693E-04	-7.10E-05 -5.03E-05 -5.53E-06 8.65E-05 4.45E-06	1.969E-02 1.969E-02 1.948E-02 1.994E-02 1.998E-02	7+50E-05 -2-60E-05 -8-05E-05 4-36E-06 -2-85E-05	1.463E-03 1.369E-03 1.365E-03 1.779E-03 1.916E-03	-1.62E-05 -3.92E-05 1.04E-04 -5.55E-06 1.28E-05 -4.86E-05
STANC	ARD DE	VIATIONS						3-776-05		3-65E-05		5.53E-05		6.41E-05		7.07E-05	•	6-83E-05
LONGI LATER RESIO	TUDINA AL ÇYC UAL	L CYCLIC F	PITCH DEA DERIVATI	VES			4.676E+04 -1.970E-04 4.844F-03		1.635E-04 +1.508E-04 2.232E-03		6.684E-04 -3.443E-04 6.944E-03		4.279E-04 -3.388E-04 5.331E-03		2.458E+04 -8.105E+05 2.223E+02		-2.727E-05 -1.110E-04 2.140E-03	
850. 845. 845. 850. 851.	0.26 0.26 C.26 C.26 0.26	.002342 .002342 .002342 .002342 .002342 .002342	4.00 4.00 4.00 4.00 4.00 4.00 4.00	-1.65 -1.60 -1.64 -1.53 -1.64 -1.59	1.54 1.71 1.58 1.69 1.48 1.46		1.880F-05 1.562E-04 2.524E-04 -3.43EE-05	-6.C3E-06 -1.C8E-05 3.68E-06 -6.55E-06 1.24E-06 -3.25E-06	-3.628E-05 2.474E-05 5.360E-05 -1.055E+05 -1.526E-05 -4.444E-05	3.05E-07 4.15E-06 5.66E-07 -2.11E-06 -2.73E-06 5.17E-08	-2.2586-04 -2.5606-04 6.9726-06 1.6476-04 -3.4726-04 -5.0216-04	-1.016-05 -1.166-05 4.746-06 -2.316-05 4.686-06 -2.796-06	2.273E-04 2.273E-04 2.672E-04 1.783E-04 1.888E-04 1.595E-04	1.12t-05 3.64E-06 -1.16E-05 -9.49E-06 1.80E-05	1.064E-02 1.234E-02 7.236E-03 5.418E-03 3.523E-03	-5.55E-05 3.61E-06 5.55E-05 5.86E-05 -7.41E-05	2.343E-04 1.140E-04 3.754E-04 4.260E-04 4.428E-04	-9.26E-06 -1.55E-05 1.48E-05 3.70E-05
		VIATIONS								5.31E-0a								3.176-07
LONGI LATER ROTOR RESIO	TUDINA AL CYC Pitch UAL	L CYCLIC F LIC PITCH DERIVATION	PITCH DER DERIVATI VES	VES			-1.163E-05 -2.691E-04 5.434E-05 4.019E-04		3.450E-C4 -3.273E-C4 1.506E-05 1.G55E-C3		-1.413E-05 -5.465E-04 9.818E-05 5.492E-04		6.826E-C4 -6.489E-C4 2.189E-C5 2.290E-C3		-1.493E-03 -3.634E-04 8.829E-04 6.083E-03		-6.210E-04 2.584E-04 -3.523E-05 -1.072E-03	
845. 845. 845. 845.	0.26 C.26 C.26 0.26	.002314 .002315 .002314 .002316 .002318 .002320	8.00 8.00 8.00 8.00	-5.11 -5.22 -5.19 -5.15 -5.35 -5.00 -5.15	3.47 3.76 3.99 3.97 3.68 3.88 3.55	1.16 3.11 5.27 -0.88	4.9586-05 1.5906-04 3.1756-04 -4.2066-05	-2.02E-05 -5.51E-06 1.57E-05 1.56E-05	2.749E-05 4.443E-05 6.859E-05 ~2.287E-05	1-12E-05 4-89E-06 -7-61E-06 -5-42E-06 2-44E-07 -1-59E-06	-6.006 E-04 -5.191 E-04 -3.587 E-04 -6.123 E-05 -6.526 E-04 -7.023 E-04 -9.403 E-04	-1.99E-05 4.38E-05 5.05E-05 4.26E-05	-1.525E-C4 -8.310E-G5 -2.213E-O4 -2.651E-C4 -2.537E-O4	4.31E-06 -4.36E-C6 -7.00E-06 -5.78E-C6 3.30E-06	1.645E-02 i.802E-02 1.305E-02 1.144E-02 9.578E-03	7.66E-05 -1.00E-04 -1.47E-04 -1.33E-04 5.60E-05	7.038E-04 6.820E-04 7.391E-04 7.662E-04	-1.92E-06 -8.12E-06 -1.04E-05 -9.95E-06 -1.02E-06
STAND	ARD DE	VIATIONS						2.39E-05		9.00E-06		6.03E-05				1.406-04		9.63E-06
LONGI Later Rotor Resid	TUDINA AL CYC PITCH	L CYCLIC (LIC PITCH DERIVATION	PITCH DEI DERIVAT: VES	PIVATIVES VES			1.589E-04 -8.235E-05 5.793E-05 1.142E-03		3.225E-05 +3.152E-05 1.615E-05 3.162E-04		5.873E-04 -3.218E-04 9.364E-05 3.706E-03		1.975E-C4 -2.888E-C4 2.931E-C5 1.931E-03		-7.625E-06 -1.363E-04 6.074E-04 1.437E-02		5.5616-05 -5.370E-05 -8.926E-06 1.237E-03	

TABLE A-I. CONTINUED.

RPM μ P θ ₀ θ ₃ θ _C	α C _{M3.3} /οσ ΔC _{M3.3} /οσ C _{L3}	3.3/ao AC _{L3.3} /ao C _{M,} /ao AC _{M,} /ao C _{L,} /	$_{\rm loc}$ $_{\rm L_{\rm l}}$ /οσ $_{\rm L_{\rm l}}$ /οσ $_{\rm L_{\rm l}}$ /οσ $_{\rm L_{\rm l}}$	ļασ
848. C.36 .0C2321 4.12 -3.16 2.40 852. 0.26 .0C2322 4.12 -2.24 2.31 852. 0.36 .0C2312 4.12 -0.06 1.83 852. 0.36 .0C2312 4.12 -0.06 1.83 852. 0.36 .0C2312 4.12 -0.06 1.83 851. 0.36 .0C2312 4.12 -0.0 1.83 851. 0.36 .0C2312 4.11 -3.98 2.53 851. 0.26 .0C2312 4.11 -3.98 2.53 851. 0.36 .0C2402 4.15 -3.00 2.30 851. 0.36 .0C2402 4.15 -3.05 2.15 848. 0.36 .0C2402 4.15 -5.95 2.24	0.0 -4.257E-05 -5.C9E-06 La 0.0 3.005E-04 1.25E-05 -1.4 0.0 6.818E-04 -1.10E-05 -2.4 0.0 1.067E-03 2.45E-05 -3.7 0.0 1.328E-03 -2.76E-05 -3.1 0.0 -2.784E-04 4.50E-05 1.4 0.0 -5.199E-06 -1.4E-05 -1.4 0.0 -3.492E-04 3.75E-05 9.1 0.0 -7.546E-04 -7.38E-05 9.1	140E-0> 3.86E-06 -3.831E-04 1.45E-05 1.382(453E-04 -3.98E-05 1.193E-04 -1.45E-05 -1.225(454E-04 -9.97E-05 7.012E-04 7.42E-05 -4.590(472E-04 2.32E-0 1.502E-03 -5.42E-05 -8.230(402E-04 -1.58E-00 2.106E-03 8.66E-05 -1.096(3.38E-04 3.01E-05 -8.879E-04 7.16E-06 4.011(3.99E-05 2.51E-06 -2.203E-04 3.38E-05 5.778(4.65E-08 4.45E-00 -7.054E-04 -7.50E-06 3.449(4.46E-08 4.45E-00 -1.270E-03 7.77E-06 3.449(-C4 - 5.66E-06	-05 -05 -06 -05 -05 -05 -05
STANDARD DEVIATIONS	4 - COE - C 5	2-106-05 5-026-05	1-74E-C5 . 1-27E-04 L-86E-	-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	9-444E-05 5.0	224t-04 5.149t-04 -2.810t 775f-05 -6.285f-04 1.832t 012f-04 2.740f-03 -1.184t	04 -2.602E-04 1.716E-04	
85C. 0.36 .002379 8.01 -6.27 3.96 85C. 0.36 .002379 8.02 -5.31 3.81 85C. 0.36 .002379 8.01 -4.13 3.86 851. 0.36 .002382 8.01 -3.21 1.61 85C. 0.36 .002384 8.02 -2.01 3.59 84S. 0.36 .002378 8.02 -7.05 3.83 851. 0.26 .002378 8.02 -7.92 4.03 84S. 0.36 .002383 8.01 -8.92 4.17	0.0 6.5056-04 -2.076-05 -2.6 0.0 1.0716-03 1.236-06 -3.7 0.0 1.4566-03 -2.606-06 -4.7 0.0 -3.1726-04 -1.076-05 1.0 0.0 -6.8246-04 -1.316-05 1.9	1868-04 -2-49-20	05 - 8.50E-C5	-05 -06 -05 -05 -05
STANDARD DEVIATIONS	4.33E-C5	2.L1E-05 8.04E-05	6.66E-05 1.33E-04 2.05E-0	-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	-3.47ZE-04 -5.8	19e-04 5.118E-04 -2.7598 15e6-05 -3.419e-04 -2.8638 C1E-C4 4.132E-03 -1.5458	05 -6.170E-04 -1.197E-04	
845. 0.36 .002315 8.00 -7.40 4.90 850. 0.36 .002316 8.00 -4.89 4.72 849. 0.36 .002315 8.00 -4.21 4.32 848. 0.36 .002315 8.00 -8.13 4.39 850. 0.36 .002316 8.00 -9.12 4.26	3-10 8-726E-04 J-98E-05 -5-2 3-10 -2-672E-04 -4-67E-06 5-2	1906-04	04 -5.03E-05 1.539E-02 1.52E-04 7.697E-04 -7.63E-0 04 7.66E-05 1.795E-02 -2.23E-04 4.939E-04 1.05E-0 03 -4.73E-05 1.508E-02 1.42E-04 3.79E-04 -6.97E-0 05 -6.16E-06 1.435E-02 -1.15E-05 8.394E-04 3.70E-0 04 2.69E-05 1.314E-02 -5.81E-05 9.425E-04 7.07E-0	-05 -06
STANDARD DEVIATIONS	£.16E-05	2-616-05 5-026-05	7.55E-05 2.20E-04 1.07E-0	-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	4+870E-05 -3.2	62E-04 5.387E-04 -3.107E 17F-05 -6.07EE-05 -1.869E 25E-03 3.524E-03 -2.355E	05 5.245E-05 4.840E-05	
848. 0.36 .002316 8.00 -5.44 2.69 648. 0.36 .002317 8.00 -4.30 3.05 851. 0.36 .002318 8.00 -2.78 2.98 849. 0.36 .002318 8.00 -7.22 2.89 850. 0.36 .002318 8.00 -7.22 2.89	-4-89 7-224E-04 -4-01E-05 -4-1 -4-86 -3-106E-04 -5-506-07 1-3	100-04 -1.715-05 1.5735-04 7.245-05 -3.9035 545-04 1.435-05 9.5666-04 -5.675-05 -8.6495 215-04 -2.815-06 -1.0835-03 -1.955-05 2.1445	C5 6.66E-07 8.417E-03 7.C9E-05 8.246E-04 -7.47E-C 04 1.40E-06 9.696E-03 1.81E-04 7.227E-04 1.69E-C 04 -1.25E-06 1.140E-02 -1.51E-04 5.280E-04 -1.66E-C 04 -6.12E-07 7.09E-03 -8.94E-08 9.433E-04 2.68E-C 04 -6.12E-07 5.768E-03 -1.69E-04 9.861E-04 -2.68E-C	-05 -05
STANDARD DEVIATIONS	5.126-05	1.85E-05 7.39E-05	1.536-06 1.406-04 3.156-0	-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	- 1-693t-04 9.5	36E-C4 5.974E-D4 -3.072E 15F-O5 -2.378E-O4 4.195E 66E-O3 3.381E-O3 -1.842E	C5 -8.345E-04 8.345E-07	
849. 0.5C .002311 8.00 -7.16 3.37 851. 0.51 .002310 8.00 -8.18 3.16 850. 0.5C .002311 8.00 -8.83 3.23 845. 0.51 .0023C7 8.00 -7.94 3.40 850. 0.51 .0023C7 8.00 -6.22 3.43 850. 0.50 .0023C6 8.00 -5.20 3.40	-2-87 -7.819E-04 -4.78E-05 3.41 -2-86 -4.451E-04 -3.23E-05 1.81 -2-83 4.297E-04 2.36E-05 -2.00	21E-04 -0-41E-05 -1-332E-03 5.17E-06 2.446E COE-04 1.31E-05 -2.024E-03 -2.13E-05 5.98E 87E-04 1.06E-05 -1.493E-03 -7.93E-05 2.935E 88E-04 -1.18E-05 1.20TE-04 2.71E-05 -4.336E	05 - 2.22E-05	-05 -05 -06
STANDARD DEVIATIONS	6.75E-C5	1.976-05 9.116-05	1-45E-05 1-48E-04 2-15E-0	-05
LONGIFUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	-6.797E-04 3.01	40E-04 8.936E-04 -4.284E TTE-04 -1.224E-03 4.018E 23E-03 9.842E-03 -4.484E	04 -2.557E-03 2.072E-04	

TABLE A-I. CONTINUED.

RPM μ ρ θ ₀ θ ₃ θ _C	α C _{M3.3} /οσ ΔC _{M3.3} /ασ	C _{L3,3} /ασ ΔC _{L3,3} /ασ C _M /ασ	$\Delta C_{M_{\downarrow}} / \sigma \sigma = C_{L_{\downarrow}} / \sigma \sigma = \Delta C_{L_{\downarrow}} / \sigma \sigma$	Cylar ACylar	caper acaper
845. C.36 .002373	0.0 3.053E-04 -2.31E-05 0.0 6.686E-04 1.15E-05 0.0 9.757E-04 -2.85E-06	4.582E-C6 -2.78E-07 -3.138E-04 -1.252E-04 -7.39E-06 1.226E-04 -2.518E-04 4.95E-06 6.378E-04 -3.602E-04 2.08E-07 1.076E-03	-8.22E-06 -2.290E-04 -2.12E-05 -3.03E-06 -4.925E-04 1.41E-05 2.33E-06 -7.297E-04 3.89E-06	1.921E-02 -1.32E-04 2.028E-02 -2.57E-04 2.150E-02 -2.17E-04	1.467E-03 -1.28E-05 1.369E-03 -1.54E-05 1.271E-03 -1.33E-05
845. C.36 .CO23/4 11.99 -10.99 5.15 STANDARD DEVIATIONS		5.352E-05 3.62E-06 -6.414E-04 - 6.79E-06		1.732E-02 -2.18E-04 3.49E-04	1.607E-03 -1.58E-05
					-9-370E-05
LONGITUDIAAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	~1.690E-04 4.082E-03	-1.017E-C4	-1.200E-C4	-6.714E-0+ 3.340E-02	7.915E-05 1.850E-04
853. 0.36 .002405 4.14 ~3.06 2.44 853. 0.36 .002400 4.14 ~2.84 3.19		-4.820t-05 8.27E-06 -4.353E-04 - -2.415E-04 -5.43E-06 -7.334E-04 -			
847. 0.36 .002397 4-14 -2-93 3-97	0.0 -3.832E-04 1.35E-C5	-4-H80E-C4 -2-55E-C5 -1-165E-03	-9.82E-06 -6.331E-04 -3.83E-06	7.290F-03 7.206-05	2.802E-04 -6.98E-06
853. C.36 .002397 4.13 -2.81 4.96 848. C.36 .002356 4.13 -1.84 6.17	0.0 -8.715E-04 1.64E-06	-7.026F-04 2.06E-05 -1.595E-03 -9.385E-04 -6.16E-07 -1.670E-03	6.08E-06 -1.649E-C3 -2.86E-C6	6.8908-03 2.216-06	2.858E-04 3.49E-06
849. 0.37 .002380 4.06 -2.95 2.32 850. 0.36 .002377 4.06 -2.90 1.71	0.0 [.158E-05 -2.65E-05 - 0.0 2-197E-04 1.40E-05	-1.446E-05 -5.05E-06 -2.359E-04 1.764E-04 1.00E-05 1.110E-04	4.84E-05 6.222E-05 -6.72E-05 3.79E-05 4.178E-04 4.9EE-06	7.2486-03 -1.126-04 7.2736-03 -3.466-05	3.565E-04 1.89E-05 3.692E-04 9.80E-06
845. 0.36 .002383 4.06 -2.89 0.80 850. 0.36 .002381 4.05 +2.91 0.04	0.0 4.1356-04 -3.286-05	4.141E-04 -3.33E-06 5.057E-04 6.247E-04 -2.67E-06 9.312E-04	-5.61E-05 8.385E-C4 8.52E-C6	7.409E-03 -7.42E-05	3.596E-04 -2.85E-05
846. C.36 .C02376 4.05 -3.03 -C.80		8.486E-C4 3.68E-O6 1.389E-O3			
STANDARD CEVIATIONS	2.92E-C5	1.38E-C5	4.41E-05 2.89E-05	8.286-05	2.46E-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES	9.863E-05	1.226E-04	-1.451E-C¢ -4.609E-04	-1.299E-04 -8.531E-05	5.845E-05 -3.122E-05
RESIDUAL	9-445E-04	9.943E-04 2.740E-03	1.195E-C3	7.1766-03	5.823E-04
849. C.36 .002381 8.01 -5.94 3.76 85C. C.36 .00238C 8.01 -6.27 4.26	0.0 -2.580E-04 -5.39E-05 -	-E.718E-07 2.19E-05 -2.302E-04 -2.358E-04 -3.62E-05 -6.393E-04 -	-4.80E-05 -3.704E-C4 -1.CCE-04	1-267E-02 -6-09E-05	6.016E-04 -3.44E-05
851. G.36 .002379 8.01 -6.01 5.73 85C. G.36 .002376 8.00 -5.58 6.96	0.0 -4.727F-04 9.48E-05 - 0.0 -8.012F-04 -4.16E-05 -	-4.85[E-C4	1.21E-04 ~7.707E-04 ~2.29E-05	1.2766-02 1.596-04	5.3686-04 -3.226-05 5.3176-04 3.376-04
845. 0.35 .CC238C 8.00 -6.06 7.88	0.0 -1.0778-03 1.146-05	-5.7036-04 2.576-05 -2.0306-03 ·	-3.24E-05 -1.512E-03 9.97E-05	1.2186-02 -7.486-05	4.918E-04 5.51E-05
85C. 0.36 .002375 8.00 -5.95 2.97 852. 0.36 .002377 8.00 -6.05 1.61		1.832E-C4 2.52E-C5 1.140E-04 4.234E-04 -3.03E-05 4.978E-04			
852. G.36 .002375 8.00 -6.08 0.94	0.0 6.489F-04 1.26E-05	6.224F-04 1.88E-05 8.953E-04	3.74E-05 1.194E-03 8.69E-05	1.322E-02 -1.04E-05	9.001E-04 5.05E-05
STANCARD DEVIATIONS LONGITUDINAL CYCLIC PITCH DERIVATIVES LATERAL CYCLIC PITCH DERIVATIVES RESIDUAL	5.216-05	3.16E-05	8.07E-05 8.70E-05	1.14F-04	4.54E-05
LONGITUDINAL CYCLIC PITCH DERIVATIVES	1.997E-04	1.836E-04 4.035E-04	3.732E-Q4 -3.929E-C4	5.532E-05 -1.410E-04	7.799E-05 -5.972E-05
RESIDUAL	2.1406+03	1.836E-C4	3.7446-03		1.380E-03
845. C.36 .002391 12.00 -9.74 5.58 85C. C.36 .0C239C 12.00 -10.02 6.20		-1.430E-05			
845. 0.36 .002386 12.00 -10.03 7.29	0.0 -4-673E-04 -6.23E-C6 -	-3.868E-C4 +6.93E-06 +1.159E-03 -	-2-90E-05 -7-311E-04 -2-17E-05	1.7506-02 -1.506-06	1.309E-03
845. C.36 .002386 12.00 -10.45 7.97 848. C.36 .002386 12.00 -9.62 4.72		-5.865E-04 1.07E-05 -1.726E-03 1.569E-04 2.29E-06 7.547E-05 -			
85C- C.36 .002386 12-00 -9-78 3-37	C.O 3.989E-04 -4.07E-05	3.250E-04 -L-08E-05 2.927E-04 -	-6.44E-05 7.622E-C4 -8.C4E-06	1.796E-02 -1.C7E-04	1.7746-03 -2.88E-05
85C- C.36 .002386 12-90 -9-65 2-64		4.974E-04 9.03E-06 7.566E-04			
STANDARD DEVIATIONS	2.556-05	1.296-05	4.48E-05 3.5EE-C5	1.C7E-04	3.37E-05
LONGITUDINAL CYCLIC PITCH DEKIVATIVES Lateral cyclic pitch derivatives Residual	3,959E-04	2.378E+C4 9.565E-04 -1.670E+C4 -3.166E+04	3.36[E-04 -3.555E-04	4.632E-04 -1.124E-04	4.537E-06 -1.290E-04
RESIDUAL	4.998E-03	2.378E+C4 9.565E-O4 -1.670E+C4 -3.166E+O4 3.224E+C3 1.076E+O2	5.255E+C3		2.282F-03

TABLE A-I. CONCLUDED.

RPM	μ	ρ	во	θ_{5}	θe	. α	с _{М3.3} /чо	ΔC _{M3.3} /0σ	CL3.3/40	ΔC _{1,3,3} /οσ	C _M /aσ	ΔC _{Ms} /aσ	C _L /aσ	۵۵ م	C _T /aσ	DCy/00	CO/ou	ΔC _Q /ασ
854. 852. 849.	0+36 0+36	.002384 .002363 .002364 .002383		-2.63 -2.83 -2.81 -2.87 -2.33	2.30 2.51 2.72 2.87 2.00	0.0 0.0 0.0 0.0	5-674E-04 8-184E-04 1-198E-03	1-58E-C5 -5-44E-05 3-92E-C5	-1.361E-04 -2.126E-04 -2.9C7E-04	-9.95E-06 5.03E-06 -3.54E-06	8.132E-04 1.269E-03 1.762E-03	4.01E-05 -2.25E-05 1.53E-05	6.378E-C5 -1.963E-C4 -2.838E-C4 -3.892E-C4 3.359E-04	-7.15E-06 -2.18E-06 1.75E-C6	1.169E-02 1.397E-02 1.629E-02	1-38E-05 3-13E-05 3-55E-05	2.605E-04 2.839E-04 3.744E-04	1.60E-05 -4.89E-05 3.56E-05
		.002375 VIATICAS	0-16	-2.28	1-98	0.0	-1-0296-03	5.90E-06	1.953E-04.	-3.30E-06	-1.881E-03	1. J3E-05 5.21E-05	4.907E-04	-2.44E-06	-2-409E-03	2.33E-05 5.98E-05	5.039E-04	4.77E-06
		PITCH DERI L CYCLIC & LIC PITCH	VATIVES PITCH DEF DERIVAT	RIVATIVES IVES			2.928E-04 3.812E-04 1.299E-04 -4.708E-04		-4.616E-C5 -9.6C1E-C5 -2.022E-04 3.882E-C4		4.3356-04 1.6116-04 3.9116-04 -2.3726-03	,	-6.893E-05 3.734E-04 -1.378E-04 1.628E-03		2.457E-03 -1.C23E-04 -7.E58E-04 -1.5C0E-03		-8.7286-06 7.4396-04 3.9076-04 1.4206-03	4.446-03
851- 85C- 85C- 85C- 85C- 85C-	C.36 0.36 0.36 0.36 C.36 C.36	.002382 .002381 .002378 .002380 .002372 .002371 .002371	8.02 10.02 11.03 12.02 6.01 7.02 6.03 5.06	-6.16 -6.13 -6.12 -6.34 -6.17 -5.97 -5.93	3.48 4.16 4.25 4.14 3.52 3.51 3.19 3.50	0.0	4.068E-04 1.274E-03 -2.032E-05 -2.912E-04 -6.474E-04	5.44E-C6 -3.75E-C9 3.49E-C5 -1.55E-05 1.72E-C9 -7.11E-C6 1.08E-05	-1.492E-04 -2.411E-04 -2.959E-04 5.039E-07 5.363E-05 1.2(2t-04 1.553(-04	-1.43E-06 -5.02E-07 1.05E-06 2.94E-06 3.47E-06 -8.83E-07 -5.12E-07	8.435E-04 1.251E-03 1.650E-03 -2.890E-04 -7.279E-04	5.51E-00 -0.58E-05 6.72E-05 -5.17E-05 2.19E-06	7.342E-05 -1.523E-04 -2.190E-04 -3.426E-04 3.926E-05 1.191E-04 2.775E-04 2.927E-04	1.46E-05 1.92E-05 -2.19E-05 -1.02E-05 -2.08E-05	1.742E-02 1.569E-02 2.198E+02 1.248E-02 1.441E-02	-8.62E-05 -1.17E-04 -6.46E-05 -1.93E-04 4.36E-05	9.0716-04 1.1106-03 1.3996-03 6.4986-04 5.7996-04	-2.46E-05 -1.26E-04 1.40E+04 1.79E-06 -7.07E-05
STAND COLLE LONGI LATER RESID	CTIVE TUDINA AL CYC	VIATIONS PITCH DERI L CYCLIC F LIC PITCH	VATIVES LITCH DEF DERIVATI	RIYATIVES IVES			2-809E-04 -1-480E-04 1-428E-04 -3-667E-03	2.58€-05	-5.712E-C5 -2.231E-C5 -4.722E-C5 4.839E-04		4.488E-04 -2.411E-04 2.873E-04 -6.332E-03		-5.7316~C5 1.705E-C4 -1.670E-C4 2.147E-03		2.217E-03 -5.398E-04 -6.409E-04 -1.068E-02		3.352E-04 1.716E-03 -6.889E-04 1.057E-02	1.14E-04
845. 85C. 85C. 85C.	0.36 0.36 0.36 0.36	.002336 .002336 .002339 .002337 .002336 .002338	4-00 4-00 4-00 4-00 4-00 4-00	-2.21 -2.20 -2.25 -2.10 -2.11 -2.18 -2.36	1.79 1.84 1.79 1.94 1.71 1.62	-2-85	1.260E-04 3.117E-04	8.87E-C6 -4.18E-06 4.92E-C6 -1.(6E-C5 1.(3E-05	-1.083E-05 -3.539E-06 -1.38LE-05 E.357F-06 E.659E-06	1.04E-05 7.67E-07 -2.4LE-06 2.69E-06 -1.10E-06	-4.539E-05 2.965E-04 7.257E-04 -3.368E-04 -6.338E-04	1.44E-05 -1.50E-05 1.56E-05 -2.67E-05 2.11E-05	2.9326-04	2.32E-C5 -2.33E-05 1.29E-C5 7.99E-C6 -2.31E-C5	8.717E-03 1.106E-02 1.365E-02 6.410E-03 3.766E-03	-1.COE-05 8.82E-05 -4.24E-05 1.66E-04 -8.89E-05	2.067E-04 5.085E-05 -9.125E-05 3.514E-04 4.375E-04	-1.74E-05 3.51E-05 -2.39E-05 2.15E-05 2.16E-06
STAND	ARC CE	VIATIONS						1.20E-05	•	8.856-06		2.60E-05		2.66E-C5		1.32E-04		3.04E-05
LUNGI LATER ROTOR RESID	TUDINAL AL CYCI PITCH WAL	L CYCLIC P LIC PITCH CERIVATIV	LTCH DEA DERIVATI ES	RIVATIVES IVES			3.281E-04 -2.670E-04 1.033E-04 1.211E-03		1.051F-C4- -2.22E-C4 5.251E-06 4.135E-C4		5.997E-04 -6.580E-04 1.885E-04 2.254E-03		1.650E-C4 -6.404E-C4 1.084E-C5 1.743E-C3		3-1666-04 6-1806-04 1-1816-03 6-9146-03		7.027E-05 6.505E-04 -8.830E-05 -7.169E-04	
850. 845. 845. 84E. 847.	0.36 0.36 0.36 C.36 C.37	.002315 .002313 .002313 .002315 .002315 .002316	8.00 8.00 8.00 8.00 8.00 8.00	-7.32 -6.86 -6.82 -6.96 -6.73 -6.68	3.12 4.02 4.41 4.01 3.83 3.86 3.65	5.26 -C.88 -2.86		5.138-07 -1.41E-05 5.36E-06 1.23E-05 1.52E-05	-7.159k-06 -4.473E-C5 -4.762k-05 -1.67kE-C5 -3.792k-C5	2.33E-C5 -6.57E-C6 -4.17E-O6 2.08E-O6 -1.58E-C5	-4.976E-04 -2.057E-04 -2.102E-04 -8.045E-04 -1.088E-03	-1.18E-05 -5.10E-06 1.63E-05 2.10E-05 2.66E-05	-1.978£-C4 -1.320E-C4 -1.656E-C4	3.88E-05 5.79E-06 -1.41E-05 -1.16E-05 -4.08E-05	1.367E-02 1.593E-02 1.861E-02 1.157E-02 9.157E-03	-1.39E-04 -5.37E-05 2.85E-05 8.15E-05 2.32E-05	7.405E-04 6.933E-04 6.729E-04 8.060E-04 8.328E-04	-9.48E-06 -5.17E-06 5.29E-06 1.38E-05 -7.22E-06
STAND	ARD DE	VIATIONS						1.68E-05	*	1.73E-05		2.35E-05		3.696-05		1.28E+04		1.196-05
LONG IT LATERA ROTOR RESIDA	TUDINAL AL CYCU PETCH Wal	L CYCLIC P LIC PITCH GERIVATIY	ITCH DER Derivati Es	ITVATEVES VES			+1.239E-04 4.401E-05 9.394E-05 -1.018E-03		-6.052E-C5 9.850E-C6 -4.430E-C6 -4.8C4E-04		2.803E-04 -1.655E-04 1.721E-04 1.904E-03		-1-0265-04 -4.769E-05 -9-271E-06 -6-583E-04		-2.661E-04 -1.687E-04 1.158E-03 1.108E-02		5.728E-05 -4.38IE-05 -1.883E-05 1.341E-03	

TABLE A-II. CONFIGURATION 1, ROTOR STEADY STATE RESPONSE DATA.

КРМ	μ	ρ	e _o	θ_{3}	θ_{C}	α	С _{М3.3} /от	ΔC _{M3.3} /0σ	CL3.3/00	ΔC _{L3.3} /οσ	. С _{М.} /от	ΔC _{Ms} /oσ	C _L /oσ	ΔC _L /ασ	С т/о о	, ΔC _I /aσ	c ^o /~	ΔC _Q /6σ
802.	0.0	.002373	0.00	0.06	-0.15	0.0	-4.630E-06	-2.49E-05	-1.1696-05	-4.45E-05	2.2946-05	-1-01E-05	-8-6388-06	-3.91E-C5	-3.36ZE-04	3.59E-05	5.623E-04	-3.23E-05
811.	0 - C	.002373	0.00	Q.73	-0.28	0.0									-2.861E-04 -3.504E-04			
8C3.		.002373	-0-00	1.67	-0.37	0.0												
806. 802.		.002373	-0.00 -0.00	2.57 3.41	-0.24 -0.59	0.0												
8C£.		.002373	-0.00	4,31	0.13	0.0												
804.	0.C	-002373	-0+01	5.23	-0.35	0.0									-3.666E-04 -2.742E-04			
BC7.		.002373	-0.00	-0.47	0.09	0+0 0+0												
806. 8C6.		.CO2373	-0.01 -0.00	-1.34 -2.26	0.23	0.0	3 41 / 5 7/	1 /er nc	3 6 6 3 7 - 0 6	-1 GBC-C4	2 1026-05	5 25F=05	6.030F-06	- [_ / / F = [] 4	- 3. /D/L-U9	4.775-07	2.1446_04	-4492C-U3
806.		.CQ2373	0.0	-3.10	0.27	0-0												
802.	0.0	.002373	0.00	4-00	0-12	0.0	-7.336E-05	1.27E-05	9.30°E-04	1.21E-05	-3.997E-05	8.835-06	1.370E-C3	3-14E-06	-4.8C8E-04	-4-6VE-UD	6.3290-04	7.64F-05
800-	0.0	.002373	0-00	-4.92	0.10	0.0	-1.235E-04	-4.56E-C6	1.266E-03	1.165-04	-[.0556-04	-4.401-07	1.0535-03	1.236-04	-426001-04			
STAND	ARD DE	VIATIONS						3.05E-C5		9.59E-05		6.31E-05		9.14E-05		6.21E-05	-9.354E-07	4.48E-05
		IL CYCLIC I			5		3.346E-05		-2.413E-04		1.508E-05		-3.507E~04 -3.152E-04		6.237E-06 3.612E-05		5.5176-06	
		LIC PITCH	DERIVAT	1 V E S			1.096E-04 3.525E-05		-3.409E-04 -6.227E-06		-7.543E-05 2.059E-05		1.5396-06		-3-666E-04		5.955E-04	
RESID	UAL																	
867.		.002373	1.01	0.02	-0.03	0.0	-2-259F-06	-2.43E-05	1.964E-00	-L.4LE-06	1.358E-05	-9.27E-06	-1.277E-05	-1.78E-05	-1.835E-04	-2.89E-04	5.552E-04	-4.00E-05
864.		.002373	1.00	0.71	-0-28	0.0												
804.	0 • C	.002373	1.00	1.65	-0.40	0.0	2.88EE-05	-3.55E-C6	-2.320E-04	1.37E-05	-1.023E-05	-3.83E-05	-4.316E-04	7.09F=05	2.985E-05 1.553E-04	2.23F-05	5795F-04	-1.20E-05
804-		-002373	1.00	2.57	-0.50 -0.48	0.0												
802. 8C1.		.002373	1.00	3.32 4.22	-0.39	0.0	1 4055 64	1 975 04	C 044E 74	2 005-06	1 7476-04	-2 OAE-OA	-1.467F-03	1 - 0 - 1 - 1 - 1	1.1376-09	1 435-01	0.2905709	3+246-03
755.		.002373	1.00	5.10	-0.40	0.0	2 1475 4/	2 COF CE	1 2076-02	_ 1 Q4 E _ A E	7 5075-04	3 67F-05	-L.867C3	- 3- 41 F~ C5	1-44/5-04	Z = U / E = U =	0.0046744	0.005-03
802.		.002373	1.00	-0.43	0.14	0.0	-8.7L6E-06	-4.C4E-C5	7-814E-05	5.21E-05	-3.377E-05	-7.23E-05	1.8851-04	3 615-05	-1.626E-04 -4.881E-05	-1-44F-04	5.588E-04	-3.87E-05
AC3.		.002373	0.99	-1.26 -2.18	0.27	0.0	4 1315 04	1 GAT OF	7 4436-06	_4 00E_0E	3 36AE-176	1.50E-A5	6.137F-06	-6-6-13	9.00/E-U0	L. 30E-U2	2 • 1225 707	-2.000-00
802. 802.		.002373	1.00	-3.06	0.39	0.0	2 ACTE- OF	4 705-04	6 IAOE-04	_3.09F-05	-1.787F-05	1.34F-05	9.384E-G4	-6. (06-07	1.3900~04	0.070-07	J. 701 C ~V7	~2.736~00
8C2+		.002373	1.00	-3.89	0.39	0.0	3 4415 00	1 505 64	C 1745 06	2 04 E 0E	-0 4415-05	2 245-04	1.354F-C3	1-916-05	2. E97F-04	1-606-09	0-3176-04	3*316-03
755.	0.C	.002373	1.00	-4.80	0.31	0.0	- L+240E-04	1.27E-C5	1.227E-03	1.70E-05	-1.537E-04	1.35E-05	1.7856-63	3.77E-UD	2.660F-04	24300-04	0.1736-04	91106-07
STAND	ARD DE	PADITALV						1.58E-C5		3.28E-05		3.29E-05		5.80E-C5		L.96E-04		4-51E-05
LONGI	TUDINA	L CYCLIC	PITCH DE	RIVATIVES	5		4.557E-05		-2.571E-C4		5.670E-05		-4-018E-04		1.575E-05 4.596E-05		-1.505E-07 7.006E-06	
LATER	AL CYC	LLC PITCH					L-746E-04		-6,436E-04		2.385E-04 2.994E-05		-5.618E-04		1.070E-04		5.954E-04	
RESID	UAL						2.714E-05		-1.3166-05		2.7746-03		017712 00					
										. 205 25	3 1175 55	6 3DE_07	_2 4505_45	_2 375_76	1.866E-04	-4.68E-04	5_658F-04	-4.26E-05
80C.		.002373	1.99	0.06 0.70	-0.05 -0.25	0.0	DE	7 615 06	- 1 4415-04	_4 IOE_AS	A 443F-05	2 . 2 3F-05	-1.3635-04	- L - U > E - U -	14/435-04	- >. 12C~V+	3.0376-04	-2401#-UJ
80C.		.002373	1.99 1.99	1.58	-0.40	0.0	/ 311F AF	1 635 06	2 1245-06	-I E4E-06	6 714E-15	-1.925-05	-5.713F-C4	-2.261-05	1.41131-04	-3.722-04	J. 173E-V1	~5%016~03
801.		.C02373	2.04	2.52	-0.41	0.0	0 / 345 05	3 307 05	- E 1476-A4	2 27E-06	4 71 I E _05	-6 63F-05	-8.070F-06	9.556-05	7. CD4t-04	1.415-00	9"OT1E-04	~1.4235~02
80C.	0 - C	.002373	1.58	3.34	-0.47	0.0	1-021E-04	-3.51E-C5	-7.445E-04	4-01E-05	1.212E-04	-5.49E-05	-1.124E-03	8,10E-05	9.862E-04 1.661E-03	3.10E-04	6-426F-04	3.50E-05
799.		.002373	1.98	4.14 5.07	+0.56 -0.57	0.0			1 1975 02	4 + 2C - AE	3 4005-04	7 D16-05	-1.915E-03	-7-C1F-05	1.2241-01	5 . 1 HE - US	0 - (82 E~U*	0.27E-U2
8CC. EC3.		.002373	1.98 1.99	-0.44	0.13	0.0	2 4 4 2 2 4 4 5	3 445 65	1 1046 - 04	C 64C_05	^ ^^1	-8 476-05	2.463E-06	8-911-05	1 a E 311E - D4	-3.73E-U4	2 • 203 E ~U4	~~. ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~
803.		.002373	1.98	-1.22	0.23	0.0												
803.		.002371	1.99	-2.07	0.39	0.0									5.077E-04 7.834E-04			
803.		-002373	1.99	-3.03	0.33	0.0												
8C2. 8C3.		.002373	1.99	-3.82 -4.80	0.40	0.0	-1.672E-04	-1.24E-C5	1.267E-03	4.44E-05	-2.184E-04	-1.07E-05	1.859E-C3	8.42E-05	1.1296-03	4. 87E-04	7-067E-04	7.93E-05
		VIATIONS		,				3.CZE-C5		5.54E-05		5.58E-05		6.19E-05		4.20E-04		5.116-05
	#D # 1: *			011.4TEVC5	. '		4.072E-05		-2.8888-04		6.2286-05		-3.776F-04		-5.335E-05		-1.390E-05	
		L CYCLIC I			•		4.069E-05		-3.7¢8E-C4		1.405E-04		-1.0786-04		-6.056E-04		-1-079E-04	
RESID							2.4268-05		-1.456E-05		3.45 LE-05		6.083E-C6		6.297E-04		6.043E-04	

TABLE A-II. CONTINUED.

RPM	μ	ρ	θο	θ.	∂ c	α	C _{M3.3} /ao	ΔC _{M3.3} /ασ	CL3.3/00	ΔC _{L3.3} /ασ	C _M /or	∆C _{Ms} /aa	C _L /oσ	ΔC _{L3} /0σ	C _V /or	ΔC _T /oσ	CQ/40	ΔC ₉ /6σ
804- 802- 801- 799- 804- 804-	0.0 0.0 0.0 0.0 0.0 0.0	.002373 .002373 .002373 .002373 .002373 .002373 .002373	2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98	0.04 0.62 1.52 3.26 4.14 5.09 -0.47 -1.23	-0.03 -0.27 -0.38 -0.40 -0.58 -0.47 0.11 0.22 0.25	0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.712E-05 1.497E-04 1.912E-04 1.968E-04 2.859E-05 -7.377E-05 -9.010E-05	5-74E-0: 1-63E-05 5-286-06 -4-64E-05 3-68E-05 -2-04E-05 -1-58E-05 2-30E-05	~2.2C0E-04 ~4.6C9E+04 ~8.514E-64 ~1.050E-03 1.385E-03 1.522E-04 3.6C7E-04 7.846E-04	-3.15E-05 -2.60E-05 3.06E-05 4.17E-05 -2.70E-05 7.72E-06 6.70E-06 -2.69E-05	1.303E-04 1.665E-04 1.93TE-04 2.782E-04 3.485E-04 -6.987E-05 -1.146E-04 -9.425E-05	1.80E-05 -3.84E-06 -3.23E-05 -2.72E-05 5.15E-05 -2.77E-05 -2.79E-05	-4.427E-05 -4.181E-04 -7.589E-C4 -1.295E-03 -1.606E-C3 -2.022E-03 3.005E-04 6.154E-04	-7.67E-05 -4.28E-05 2.17E-05 1.21E-04 -4.68E-05 3.04E-05 1.86E-05	8,584E-04 9,193E-04 1,506E-03 1,920E-03 2,156E-03 7,E11E-04 8,635E-04 1,337E-03	-5.21E-04 -5.11E-04 6.10E-05 3.91E-04 6.77E-04 -4.24E-04 -2.90E-04 2.02E-04	5-886E-04 5-908E-04 6-452E-04 6-838E-04 7-228E-04 5-924E-04 6-528E-04	-5.93E-05 -5.19E-05 2.75E-06 3.73E-05 8.52E-05 -4.41E-05 -3.42E-05 1.18E-05
	Q_C CARD D	-002373 EVIATIONS	2.99	-4-79	0.33	0+0	-1.750E-04	-1-05E-0E		3.02E-05	-2.3126-04	-1.10E-05	1.9176-03	4.87E-05	1.5496-03	8.55E-04 5.83E-04	7.508E-04	1.06E-04 6.78E-05
	RAL CY	AL CYCLIC A CLIC PITCH			s		2.764E~05 ~1.940E~04 1.786E~05		-2.549E-04 1.474E-04 5.315E-06		2.801E-05 -3.030E-04 1.308E-05		-3.365E-04 6.518E-04 4.316E-05		2.480E-GL -4.54ZE-04 1.255E-03		-4.161E-06 -4.251E-05 6.390E-04	•
802. 801. 801. 797. 804. 802. 800.	0.0 0.0 0.0 0.0 0.0 0.0 0.0	.002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373	4-00 4-00 4-01 4-01 4-01 4-01 4-01 4-01	0.76 1.66 2.55 3.42 4.23 5.21 -0.53 -1.38 -3.16	-0.24 -0.28 -0.27 -0.15 -0.21 -0.08 0.09 0.15 0.06	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2-132E-0+ 2-632E-0+ 3-059E-04 3-180E-04 3-346E-04 -3-808E-05 -9-897E-05	1-186-06 4-046-06 3-546-05 -2-116-05 -1-786-05 2-346-06 1-166-05	-5.788E-04 -8.345E-04 -1.058E-03 -1.283E-03 -1.516E-03 1.571E-04 4.382E-04 9.555E-04	-1.46E-05 -1.57E-05 -1.79E-05 1.30E-05 -2.90E-05 -2.37E-05 -7.72E-06 1.97E-05	1.925E-04 2.580£-04 2.773E-04 2.898E-04 3.322E-04 -8.009E-05 -1.197E-04	+2.57E-05 6.27E-07 2.68E-05 -2.94E-05 2.00E-05 -2.46E-05 5.88E-06 -2.03E-06	-4.948E-04 -9.076E-C4 -1.253E-03 -1.592E-03 -1.869E-03 -2.207E-03 3.065E-C4 7.273E-C6 1.446E-03 2.089E-03	-2.99E-C5 -6.05E-06 -5.74E-C5 6.01E-05 -6.68E-05 -2.27E-05 -5.47E-06 1.33E-05	1.440E-03 1.545E+03 1.651E-03 2.173E-03 2.275E-03 9.569E-04 1.666E-03 1.351E-03	-4.43E-04 -3.39E-04 1.10E-04 3.28E-04 5.87E-04 -3.70E-04 -1.58E-04 4.22E-05	6.703E-04 6.913E-04 7.198E-04 7.554E-04 7.953E-04 6.567E-04 6.687E-04 7.268E-04	-6.01E-05 -3.52E-05 6.56E-06 3.91E-05 9.38E-05 -4.71E-05 -3.23E-05
STAN	DARD C	EVIATIONS		,				1.87E-C5	, i	2.06E-05		2.30E-05		4.38E-05		4.635-04		6.776-05
	RAL CYC	AL CYCLIC F CLIC PITCH			•		5-854E-05 -3-300E-04 2-060E-05	· .	-2.922E-04 2.738E-04 -1.875E-07		5.119E-05 -4.297E-04 1.056E-05		-4.285E-04 7.066E-04 3.634E-05		2.2766-05 -1.3506-03 1.460E-03		-3.047E-06 -8.873E-05 7.102E-04	
801. 801. 801. 795. 798. 802. 802.	0-0 0-0 0-0	.002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373	6.04 6.03 6.04 6.04 6.04 6.04 6.04 6.05	0.01 0.73 1.68 3.50 4.40 5.30 -0.47 -1.41 -3.29	-0.01 -0.28 -0.31 -0.25 -0.20 -0.16 0.12 0.11 0.06 -0.22	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.073E-04 3.283E-04 5.052E-04 5.586E-04 6.292E-04 -7.421E-05 -1.501E-04 -2.994E-04	5.676-06 1.706-05 1.566-05 +5.886-06 -2.166-05 -2.286-05 3.126-07 3.526-05	-3.481E-04 -6.983E-04 -1.356E-03 -1.657E-03 -1.952E-03 1.219E-04 4.896E-04 1.223E-03	-2.09E-06 -4.87E-C6 -1.66E-05 5.36E-06 3.07E-05 -3.11E-05 -8.96E-06 5.27E-05	2.804E-04 4.039E-04 5.846E-04 6.276E-04 6.82E-04 -1.401E-04 -1.856E-04 +3.297E-04	4.88E-06 7.47E-06 2.55E-05 -5.25E-06 -2.32E-05 -4.59E-05 1.02E-05 4.00E-05	+8.170E-C5 -5.708E-C4 -1.096E-C3 -2.008E-03 -2.401E-03 +2.781E-03 2.804E-C4 8.010E-04 1.818E-C3 2.526E-03	-2.54E-C5 -3.EEE-C5 -3.42E-C5 2.18E-O5 8.94E-O5 -3.5CE-C5 -3.55E-C5	3.407E-03 3.334E-03 3.633E-03 3.849E-03 4.227E-03 3.362E-03 3.424E-03 3.455E-03	-3.05E-04 -3.57E-04 -7.51E-05 1.60E-04 5.57E-04 -1.29E-04 -6.35E-05 1.47E-04	8.158E-04 8.155E-04 8.647E-04 9.048E-04 9.574E-04 8.110E-04 8.333E-04 9.020E-04	-7.86E-05 -7.77E-05 -9.59E-06 4.16E-05 1.06E-04 -3.35E-05 -1.67E-05 3.37E-05
STAR	DARD C	EVIATIONS						2.41E-C5		2.80E-05		3.0€h-05		5.766-05		3.65E-04		7.48E-05
	RAL CY	AL CYCLIC F GLIC PITCH			s.		1.069E-04 -3.107E-04 3.531E-05		-3.627E-04 1.67EE-04 -3.233E-05		1.104E-04 -5.424E-04 2.680E-05		-5.2456-04 5.6956-04 7.4046-07		5.655E-06 -5.355E-04 3.556E-03		-5.432E-06 -1.415E-04 8.584E-04	
801. 800. 801. 803. 803. 803. 801.	LTUDINA	.002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373			-0.01 -0.30 -0.28 -0.30 -0.12 0.13 0.15 0.06 -0.12	0.0 0.0 0.0 0.0 0.0 0.0	2.906E-04 4.645E-04 6.110E-04 6.881E-04 -3.950E-05	-4.41E-C5 2.58E-C6 1.06E-05 3.66E-05 -7.66E-C6 -2.74E-06 -4.58E-C6 2.92E-C5	-4.236E-04 -8.585E-04 -1.1556-03 -1.546E-03 1.608E-04 4.632E-04 1.317E-03	2.00E-05 -3.51E-05 1.45E-05 8.16E-06 1.89E-05 -5.45E-05 -6.68E-05 -2.41E-05	4.265E-04 5.463E-04 7.620E-04 7.366E-04 -1.263E-04 -2.661E-04 -4.985E-04	-2.95E-05 +3.68E-05 2.78E-05 2.73E-05 -1.21E-05 5.51E-06 +3.70E-05		4.226-05 -5.73E-05 5.02E-05 -1.77E-05 7.19E-05 -5.16E-05 5.79E-05 -2.17E-05 6.38E-05	6.143E-03 6.182E-03 6.242E-03 6.336E-03 6.127E-03 6.147E-03 6.229E-03	-1.40E-04 -6.17E-05 2-57E-05 2-32E-04 +1.61E-05 -1.81E-05 -4-C3E-05 1.63E-04	1.060E-03 1.072E-03 1.086E-03 1.115E-03 1.070E-03 1.087E-03 1.172E-03	-6.12E-05 -2.39E-05 1.21E-05 9.17E-05 -1.73E-05 -1.90E-05 5.58E-06
				-				*.	•							•		

RPM μ P 6	h θs θc	α C _{M3.3} /ασ	ΔC _{M3.3} /οσ C _{L3.3} /οσ	ΔC _{L3.3} /ασ C _{Ms} /ασ	ΔC _M ,/ασ C _L /ασ	ΔC _L ,/οσ C _T /οσ ΔC	τ ^{/ασ C} Q/οσ ΔC _Q /οσ
802. C.C .002373 10.	.08 -0.34 0.02 .09 -1.29 0.13 .09 -3.21 0.04	0+0 3+451E-04 0+0 5-539E-04 0+0 8+383E-04 0+0 8+066F-06 0+0 -2+125E-04 0+0 -5+058E-04	- 7.42E-C6 -4.858E-C4 - 1.C5E-C5 -8.986E-C4 - 4.50E-C6 +1.659E-C3 - 1.C8E-C5 4.284E-C5 6.53E-C6 4.565E-C4 6.66E-C5 1.267E-C3	-1.63E-05	-3.19E-06 -8.129E-04 5.22E-06 -1.396E-03 -7.74E-06 -2.470E-03 -3.81E-05 2.127E-04 -6.43E-06 7.949E-04 -4.89E-05 1.907E-03	-1.20E-04 9.370E-03 -2.85 -6.50E-05 9.536E-03 -3.58 -2.19E-05 9.611E-03 1.45 9.07E-05 9.554E-03 -2.59 0.55E-05 9.347E-03 -3.98 1.68E-05 9.381E-03 -4.02 -1.06E-05 9.536E-03 -1.12	E-05 1.435E-03 -5.30E-05 E-05 1.435E-03 -3.18E-05 E-05 1.463E-03 8.10E-05 E-05 1.469E-03 -1.99E-05 E-05 1.572E-03 -1.71E-05
STANDARD DEVIATIONS			3.436-05	3.45E-05	4.39E-05	8.246-05 3.88	E-G5 5.25E-05
LONGITUDINAL CYCLIC PITCH LATERAL CYCLIC PITCH DERI RESIGUAL		1.512E-04 -5.577E-04 6.325E-05	-1.518F-04	-1-018E-03	-6.148E-C4 4.365E-04 -7.513E-C5	-4.309E-05 -7.563E-04 9.392E-03	-4.665E-05 -2.852E-04 1.451E-03
80C. C.C .002373 12. 80C. C.C .002373 12. 801. O.C .002373 12. 801. O.C .002373 12. 802. O.O .002373 12. 802. O.O .002373 12. 802. O.O .002373 12. 80C. O.O .002373 12.	11 0.89 -0.31 11 1.93 -0.42 11 3.83 -0.36 10 -0.35 0.02 11 -1.29 0.07 10 -3.20 -0.07	0.0 4.061E-04 0.0 6.396E-04 0.0 9.815E-04 0.0 7.369E-05 0.0 -8.058E-05 0.0 -4.588E-05	-7.15E-06 -5.423E-04 1.21E-06 -9.461E-04 1.15E-05 -1.817E-03 1-5.59E-05 3.606F-05 2.50E-05 5.375E-04 -4.43E-05 1.293E-03	-2.48E-05 5.582E-04 3.91E-05 8.005E-04 1.93E-05 1.179E-03 -1.33E-05 -1.860E-05 6.93E-05 -1.287E-04 -3.09E-05 -4.594E-04	8.36E-06 -9.156E-04 -3.63E-05 -1.523E-03 1.06E-05 -2.690E-03 -8.16E-05 2.031E-04 3.43E-05 9.175E-04 -2.26E-05 2.023E-03	-1.82E-C4 1.275E-02 -5.77 -9.21E-05 1.290E-02 7.20 4.98E-C5 1.294E-02 8.20 4.97E-05 1.276E-02 -1.18 5.00E-C6 1.281E-02 3.00 7.41E-05 1.278E-02 5.20 1.56E-C5 1.262E-02 6.80 4.02E-05 1.263E-02 -5.19	E-05 1.902E-03 -3.73E-05 E-05 1.888E-03 -2.81E-05 E-04 1.894E-03 7.14E-05 E-05 1.517E-03 -1.10E-05 E-05 1.970E-03 1.32E-05 E-05 2.058E-03 -9.71E-06
STANCARD DEVIATIONS			2.15E-C5	5. 76E-05	5.726-05	1.09E-04 9.30	E-05 4-6LE-05
LONGITUDINAL CYCLIC PITCH LATERAL CYCLIC PITCH DERI RESIDUAL		1.8396-04 -3.1016-04 1.5426-04	2.563E-05	-7.413E-04	-6.542E-04 6.357E-04 -4.556E-05	1.469E-05 -8.512E-05 1.279E-02	-4.322E-05 -2.008E-04 1.916E-03
792. C.C .002373 l4- 79C. G.C .002373 l4- 8C2. G.C .002373 l4- 8C1. G.C .002373 l4- 8C1. G.C .002373 l4- 8C1. G.C .002373 l4- 8C1. G.C .002373 l4- 8C2. G.C .002373 l4- 8C2. G.C .002373 l4- 8C2. G.C .002373 l4-	14 0.93 -0.38 14 1.96 -0.50 14 2.99 -0.57 14 3.93 -0.63 13 -0.28 0.09 15 -1.27 0.23 14 -2.24 0.30	0.0 4.524E-04 0.0 6.615E-04 0.0 8.227E-04 0.0 1.000E-03 0.0 6.315E-05 0.0 -1.616E-04 0.0 -3.019E-04	-1.90E-05 -E.134E-04 -3.16E-06 -1.013E-03 -1.08E-05 -1.903E-03 1.02E-05 -1.903E-03 -2.39E-06 -4.856E-04 -5.66E-06 5.359E-04	-2.32E-C5 7.022E-O+ 3.99E-O5 9.720E-O4 -1.78E-O5 1.208E-O3 7.72E-O6 1.483E-O3 1.58E-C5 -5.383E-O5 -9.01E-O6 -3.712E-O4 1.84E-C5 -5.523E-O4	-9.94E-06 -9.752E-04 -3.12E-05 -1.560E-03 -3.51E-05 -2.265E-03 3.31E-05 -2.756E-03 -4.75E-05 2.680E-04 -5.68E-05 8.659E-04 -1.28E-05 1.485E-03	-1.40E-04 1.627E-02 -2.79 -3.32E-05 1.669E-02 4.48 5.44E-05 1.669E-02 6.14 -2.74E-05 1.658E-02 4.30 4.07E-05 1.664E-02 6.53 6.73E-05 1.664E-02 1.24 -7.10E-06 1.660E-02 6.65 2.55E-05 1.668E-02 -5.72	E-05 2.508E-03 -2.96E-05 E-05 2.474E-03 -2.70E-05 E-05 2.463E-03 2.61E-06 E-05 2.492E-03 7.02E-05 E-04 2.526E-03 -2.03E-05 E-05 2.573E-03 -5.04E-06 E-05 2.538E-03 2.11E-05
STANDARD CEVIATIONS			2.376-05	2.63E-05	7.01E-05	7.256-05 1.399	E-04 4.43E-05
LONGITUDINAL CYCLIC PITCH LATERAL CYCLIC PITCH DERI RESIDUAL		1-234E+04 -5-488E-04 1-494E-04	2.768E-G4	-1.1556-03	-5-255E-04 1-083E-03 -4-498E-05	-1.025E-04 -5.424E-04 1.653E-02	-4-735E-05 -1-045E-04 2-542E-03
785- 0.0 .002373 16- 790. 0.0 .002373 16- 785- 0.0 .002373 16- 80C- 0.0 .002373 16- 795. 0.0 .002373 16- 80C- 0.0 .002373 16- 80C- 0.0 .002373 16- 795. 0.0 .002373 16- 795. 0.0 .002373 16- STANDARD GEVIATICAS	20 0.93 -0.36 19 2.00 -0.52 19 2.98 -0.54 19 3.97 -0.60 20 3.85 -0.84 19 -0.31 0.07 20 -1.24 0.31	0.0 4.069E-04 0.0 6.935E-04 0.0 8.010E-04 0.0 8.316E-04 0.0 8.971E-04 0.0 3.017E-05 0.0 -1.080E-04	-2.C3E-05 -6.2C8E-04 7.58E-C5 -1.0F7E-03 7.84E-05 -1.464E-03 -2.C1E-05 -1.949E-03 -6.80E-05 -1.9C9E-03 -5.52E-05 -7.419E-05 2.42E-C5 3.617E-C4	-4.95E-05 6.419E-04 -3.66E-05 1.057E-03 6.50E-05 1.203E-03 5.66E-05 1.224E-03 -1.38E-05 1.477E-03 -2.94E-05 -2.930E-05 4.07E-06 -2.344E-04	-1.42E-05 -9.191E-C4 9.50E-05 -1.554E-C3 9.14E-05 -2.094F-C3 -8.22E-05 -2.753E-C3 -5.00E-05 -2.645E-C3 -1.01E-04 -780E-C5 5.89E-05 7.420E-C4	-1.53E-04 2.104E-02 2.95i -1.05E-04 2.090E-02 4.53i -3.77E-05 2.053E-02 5.59i 4.16E-05 2.060E-02 -1.04i 1.84E-05 2.035E-02 -3.71i 2.84E-05 2.035E-02 -1.21i 2.84E-05 2.035E-02 9.10i 7.47E-05 2.035E-02 -2.26i 4.65E-05 2.005E-02 -2.60i 5.46E-05 3.05E	=-04 3.207E-03 -1.13E-04 =-05 3.199E-03 -8.11E-05 =-05 3.236F-03 4.81E-05 =-04 3.236E-03 1.43E-04 =-04 3.239E-03 1.14E-05 =-05 3.197E-03 -6.99E-05 =-04 3.21E-03 9.59E-05
LONGITUDINAL CYCLIC PITCH LATERAL CYCLIC PITCH DERU RESIDUAL		9.757E-05 -5.208E-04 1.509E-04	-1.7216-04	-9.8626-04	-6.293E-C4 1.708E-C4 -1.668E-04	2.6576-04 1.430E-03 2.6776-02	-1.017E-04 -4.204E-04 3.264E-03

TABLE A-II. CONCLUDED.

RPM	щ	ρ	θο.	$\theta_{\mathtt{S}}$	e _c	α	C _{M3.3} /or	ΔC _{M3.3} /οσ	C _{13.3} /00	$\Delta C_{L_{3.3}/a\sigma}$	C _{M,} /00	ΔC _{Ms} /ασ	د _{ا پ} ⁄هم	ΔC _{L,} /ασ	C _T /00	ΔC _I /ασ	C9/00	ΔC 9/aσ
803. C	3.C 3.C	.002373 .002373 .002373 .002373	18.21 18.20 18.20 18.20	0.12 0.99 2.05 4.07	-0.04 -0.40 -0.62 -0.73	0.0 0.0 0.0	3.176E-04 4.153E-04 5.937E-04	7.41E-CE -2.13E-C5 3.12E-C6	-7.213E-04 -1.152E-03 -2.032E-03	1.96E-05 3.07E-05 -3.77E-05	6-631E-04 7-860E-04 1-083E-03	6.59E-05 -6.98E-05 -2.42E-05	-1.005E-C3 -1.686E-C3 -2.733E-03	2.996-05 3.426-05	2.441E-02 2.420E-02 2.395E-02 2.308E-02	4.56E-04 2.37E-04 5.31E-04	4.057E-03 4.067E-03 4.174E-03	-1.16E-04 -5.92E-05 1.98E-04
803. 0 801. 0 805. 0	0-C	.002373 .002373 .002373	18.20 18.19 18.20	-1.07 -3.31 -5.30	0.42 0.56 0.69	0-0 0-0 0-0	-2-008E-04	2.10E-05 -1.18E-05	1.3226-03	7.17E-05 -5.80E-05	-5.169E-04 -7.889E-04	-1.37E-05 -1.70E-05	1.9466-03	1-27E-04 -9-25E-05	2-429E-02 2-345E-02 2-300E-02	2.42E-04 4.27E-04	4.357E-03	5.34E-06
LONGITU LATERAL RESTOUA	JDINA CYC	LIC PITCH	PETCH DER DEREVATE	RIVATIVES IVES	i		6-230E-05 -2.728E-04 1-388E-04		-3.584E-04 4.623E-04 -1.968E-04		8.568E-05 -7.570E-04 2.084E-04		-4.240E-04 1.065E-03 -1.867E-04		1-864E-04 8-210E-04 2-385E-02		-8.374E-05 -1.884E-04 4.180E-03	
807. (0 805. (0 803. (0 801. (0 799. (0 807. (0 805. (0	0.0 0.0 0.0 0.0	.002373 .002373 .002373 .002373 .002373 .002373 .002373	20.26 20.26 20.26 20.26 20.26 20.26 20.26 20.26	0.07 1.00 2.04 3.29 4.30 -1.28 -3.43 -5.30	-0.04 -0.38 -0.54 -0.63 -0.87 0.35 0.36	0.0 0.0 0.0 0.0 0.0 0.0	1.151E-04 1.475E-04 1.452E-04 1.461E-04 4.324E-05 2.298E-05	-1.28E-C5 1.59E-C5 3.54E-Q5 1.37E-05 3.37E-C5	-e.7606-04 -1.1086-03 -1.3916-03 -1.6496-03 1.9286-04	-5.276-05 -8.56E-C5 1.23E-04 4.53E-05 -1.38E-05 -6.32E-05	3.657E-04 4.089E-04 6.327E-04 8.112E-04 -1.550E-04 -3.659E-04	3.63E-05 -6.64E-05 2.98E-05 2.79E-05 7.93E-06 -4.84E-05	-9.957E-04 -1.633E-03 -2.003E-03 -2.575E-03 4.629E-04 1.590E-03	-1.06E-C4 -1.62E-04 1.48E-C4 1.52E-C4 1.86E-C5 1.01E-06	2+415F-02 2-713E-02 2-601E-02 2-636E-02 - 2-515E-02 - 2-656E-02 2-614E-02 2-487E-02 -	5.10E-04 2.73E-04 2.50E-04 8.57E-04 2.26E-05 3.16E-04	5.232E-03 5.219E-03 5.325E-03 5.442E-03 5.307E-03 5.489E-03	-1.70E-04 -1.30E-04 1.02E-04 2.19E-04 1.42E-05 -1.04E-04
LONGITU	JO 1 N A	VIATIONS L CYCLIC (LIC PITCH	PITCH DEF DERIVATI	TIVATIVES IVES			-4.156E-05 -2.936E-04 5.606E-05		-4.3CBE-04 -1.13LE-04 -2.065E-04		6.905f-05 -4.625f-04 8.530f-05		-5.309E-84 1.740E-04 -2.945E-04		3-119E-04 1-331E-03 2-642E-02		-1.431E-04 -5.996E-04 5.317E-03	1.94E-04
803. 0 801. 0 800. 0 804. 0 804. 0 804. 0	0-0 C-C C-C 0-C 0-C 0-C 0-C 0-C	.002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373 .002373	4.06 4.06 4.12 4.07 4.07 4.07 4.06 4.06 4.06 4.06 4.06	0.01 0.42 0.52 0.65 0.51 0.68 0.63 0.69 -0.02 -0.15 -0.15 -0.28 -0.25	-0.01 0.49 1.39 2.24 3.13 4.07 5.03 5.89 -0.55 -1.37 -2.23 -3.11 -5.04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-1.361E-04 -4.361E-04 -7.202E-04 -9.524E-04 -1.194E-03 -1.461E-03 2.223E-04 4.849E-04 7.635E-04 1.038E-04	2.05E-C6 -1.67E-C5 -2.89E-05 1.43E-05 3.39E-05 3.39E-05 -7.17E-06 -4.40E-06 2.24E-05 2.31E-C5 3.69E-C5	-1.682F-C4 -2.831F-O4 -3.3C8E-O4 -3.482F-O4 -3.750E-O4 -3.750E-O4 -4.628E-O4 -4.628E-O5 1.677E-O4 2.127E-O4 2.3C9E-O4 3.719E-O4	-1.89E-C5 -4.47E-05 -1.91E-05 -6.10E-05 1.12E-05 3.63E-05 -7.01E-05 -1.70E-05 -4.00E-06 4.36E-05 1.37E-05 -2.46E-05 5.12E-05	-2.892E-O4 -7.661E-O3 -1.524E-O3 -1.524E-O3 -1.870E-O3 -2.2346-O3 -2.611E-O3 4.153E-O4 8.447E-O4 1.618E-O3 2.322E-O3 3.022E-O3	-4.20E-06 -5.09E-05 -4.68E-05 -1.03E-04 -2.53E-05 1.60E-05 1.60E-05 3.60E-05 3.60E-05 2.57E-05 -2.75E-05 3.94E-05	-2.82E-04 -3.673E-C4 -4.717E-04 -4.398E-C4 -4.691L-C4 -7.125E-04 4.588E-05 1.607E-04 1.435E-C4 2.527E-04 2.527E-04 4.990E-04	-3.216-05 -2.46E-05 -2.876-05 -2.79E-05 1.73E-05 1.44E-05 2.176-05 3.38E-05 -1.25E-05 -1.25E-05	2-C67t-03 - 2-107t-03 - 2-105t-03 - 2-281t-03 - 2-531t-03 - 2-531t-03 - 2-531t-03 - 2-52t-03 - 2-52t-03 - 2-202t-03 - 2-281t-03 - 2-281t-03 - 2-281t-03 - 2-50t-03 - 3-437t-03 - 3-532t-03 - 3-532t-03 - 2-50t-03 - 3-532t-03	8.84E-U4 7.90E-O4 6.54E-U6 8.04E-U6 8.03E-O4 6.03E-O4 6.74E-O4 3.71E-O4 2.92E-O4 9.69E-O5 5.81E-O4 8.61E-O4	6.906E-04 6.985E-04 7.189E-04 7.394E-04 8.017E-04 8.436L-04 7.095E-04 7.296E-04 7.621E-04 8.436L-04 9.419E-04	-1.31E-04 -1.12E-04 -8.73E-05 -8.73E-05 -9.59E-07 5.43E-05 1.09E-04 1.22E-04 -4.64E-05 -3.01E-05 -3.17E-05 6.10E-06 5.59E-05 1.39E-04
STANDAR LONGITU LATERAL RESIDUA	RD CE UDIAA L CYC	VIATIONS L CYCLIC I LIC PITCH	PLTCH DET DERLVATI	REVATIVES IVES	\$		-1.455E-04 -2.917E-04 6.647E-05	3.C8E-C5	-3.319E-04 -3.82UE-05 -1.140E-G5		-5-841E-04 -4-087E-04 1-590E-04		-5.195E-C4 -4.272E-C5 -1.113E-C5		1.3916-03 -1.555E-04		2.339E-04 -3.894E-05 7.421E-04	9-33E-05

Figure A-1. Configuration 5, Hub Pitch Moment vs. Longitudinal Cyclic Pitch. $\mu = 0$, P = 1.15.

Figure A-2. Configuration 5, Hub Roll Moment vs. Longitudinal Cyclic Pitch. $\mu = 0$, P = 1.15.

Figure A-3. Configuration 5, Hub Pitch Moment vs. Longitudinal Cyclic Pitch. $\mu = 0.20$, P = 1.15.

Figure A-4. Configuration 5, Hub Roll Moment vs. Longitudinal Cyclic Pitch. $\mu = 0.20$, P = 1.15.

Figure A-5. Configuration 5, Hub Pitch Moment vs. Longitudinal Cyclic Pitch. μ = 0.36, P = 1.15.

Figure A-6. Configuration 5, Hub Roll Moment vs. Longitudinal Cyclic Pitch. $\mu = 0.36$, P = 1.15.

Figure A-7. Configuration 5, Hub Pitch Moment vs. Lateral Cyclic Pitch. $\mu=$ 0, P = 1.15.

Figure A-8. Configuration 5, Hub Roll Moment vs. Lateral Cyclic Pitch. $\mu=$ 0, P = 1.15.

Figure A-9. Configuration 5, Hub Pitch Moment vs. Lateral Cyclic Pitch. μ = 0.20, P = 1.15.

Figure A-10. Configuration 5, Hub Roll Moment vs. Lateral Cyclic Pitch. μ = 0.20, P = 1.15.

Figure A-11. Configuration 5, Hub Pitch Moment vs. Lateral Cyclic Pitch. $\mu = 0.36$, P = 1.15.

Cyclic Pitch. $\mu = 0.36$, P = 1.15.

Figure A-13. Configuration 5, Hub Pitch Moment vs. Collective Pitch. μ = 0.20, P = 1.15.

Figure A-14. Configuration 5, Hub Roll Moment vs. Collective Pitch. μ = 0.20, P = 1.15.

Figure A-15. Configuration 5, Hub Pitch Moment vs. Collective Pitch. μ = 0.36, P = 1.15.

Figure A-16. Configuration 5, Hub Roll Moment vs. Collective Pitch. μ = 0.36, P = 1.15.

Figure A-17. Configuration 5, Hub Pitch Moment vs. Shaft Pitch. μ = 0.36, P = 1.15.

Figure A-18. Configuration 5. Hub Roll Moment vs. Shaft Pitch. μ = 0.36, P = 1.15.

APPENDIX B

ROTOR FREQUENCY RESPONSE DATA

Nondimensionalized frequency response hub moments, factored from measurements at r=3.3 inches, due to blade cyclics, blade collective, or shaft pitch or roll, are shown in Table B-I. The factors of Table VII were used to transfer the moments to the hub centerline. Configuration 5 only was used. Most of the tests were run at 850 revolutions per minute, with a few in hover at 550 revolutions per minute. In these analyses air density in hover was set at 0.002396 and in forward flight at 0.002361. Evidence of stand resonance appears in some of the plotted data. The phase and magnitude of the transfer function are in degrees and per degree, respectively. The tabulated values fit the equation:

The magnitude and phase of the transfer functions have also been plotted in Figures B-1 through B-80. However, for ease of comparison with similar figures in Reference 3, the magnitudes have been plotted in decibels $(dB = 20 \log_{10} (amplitude \ ratio))$, where the amplitude ratio is in in-lb/deg.

The figures are arranged, lowest advance ratio first, as follows:

 $\theta_{\rm s}$ inputs - Figures B-1 through B-30.

 θ_{o} inputs - Figures B-31 through B-36.

 $\theta_{\rm o}$ inputs - Figures B-37 through B-46.

 α inputs - Figures B-47 through B-62.

 ϕ inputs - Figures B-63 through B-80.

As in Reference 3 hub centerline pitching and rolling moment coefficients are defined as follows:

$$C_m = k C_{M3.3}$$
 and $C_1 = k C_{L3.3}$

TABLE B-I. CONFIGURATION 5 ROTOR FREQUENCY RESPONSE DATA.

RPM	μ	θο	ω	ω/Ω	9C [™] /c	ıσ 1	∂C _{1′}	/ασ 1
KLIAI	•	°o		,	$\frac{m}{\partial \theta_{s}}$	Deg.	30	Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
			٠.		•			
850.	0.	0.	1.94	0.022	0.000041	31.99	0.000177	-176.26
			3.18	0.036	0.000066	52 - 89	0.000201	-173.93
			5.08	0.057	0.000177	99.22	0.000290	-151.89 -170.25
			6.67	C.075 C.144	0.000327 0.000352	81.81 3.45	0.000415 0.000246	119.54
			12.85 15.43	0.218	0.000332	-17.21	0.000248	104.91
			32.13	C-360	0.000232	-35.02	0.000059	102.85
			38.39	C.429	0.000210	-41.19	0.000039	110.11
			5°C.22	0.561	0.000195	-50.03	0.000033	129.12
			62.59	C.7C1	0.000186	-56.84	0.000034	143.89
			75.61	C.846	C.000179	-63.43	0.000041	160.25
			£7.34	C-576	0.000166	-67.78	0.000051	164.07
			58.92	1.106	0.000181	-71.20	0.000061	161.12
			112.04	1.254	0.000213	-78 - 85	0.000053	144.82
			123.88	1.388	0.000190	-86.39	0.000082	154.69
			148.82	1.667	0.000237	-101.49	0.000130	148.34
			173.38	1.942	0.000288	-128.55	0.000207	121.83
			200.87	2.248	0.000301	-177.86	0.000278	56.60
0	_		1 05	0.000	0.000071	20 (0	0.000316	177 64
850.	0.	2.	1.95 3.15	0.022 0.035	0.000061 0.000076	29.69 51.57	0.000215 0.000218	-177.96 -176.81
			4.88	C. 055	0.000134	59.64	0.000218	-179.15
			6.50	0.073	0.000208	55.15	0.000301	173.46
			12.76	C. 143	0.000346	-1.38	0.000269	112.78
			19.36	0.217	0.000281	-23.54	0.000135	90.73
			25.51	C-285	0.000248	-31.15	0.000082	87.48
			32.06	0.359	0.000230	-36.88	0.000055	90.59
			38-27	C.429	C.000215	-41.34	0.000037	98.50
			43.98	0.493	0.000209	-45.25	0.000032	109.99
			50.11	0.562	0.000202	-49.40		126.32
			62.61	0.702	C.000191	-56.77	0.000033	156.29
			75.54	C. 847	0.000187	-63.64	0.000046	164.80
			87.24	C.979	0.000173	-69 . 32	0.000059	165.97
			95.45	1.114	0.000191	-71.42	0.000065	166.79
			111.68	1.252	0.000202	-83.22 -00.33	0.000076	173.12
			123.20	1.383	0.000194	-89.33 -94.00	0.000093	160.79 159.02
			135.77 148.54	1.526	0.000215 0.000233	-102.96	0.000112	150.02
			173.09	1.940	0.000279	-102.90	0.000208	126.10
			199.48	2.241	0.000275	-167.07	0.000288	72.10
			137070	C # C. 7 L	0000217	10101	J = 0 J O E 10	, 20,40

TABLE B-I. CONTINUED.

D DV 4			w 6	∂C _m /a	σ 1	9C1/6	
RPM	μ θ	ω	ω/Ω	$\frac{\partial \theta_{s}}{\partial \theta_{s}}$	Deg.	$\partial \theta_{s}$	Deg.
	:	rad/sec		Mag.	Phs.	Mag.	Phs.
						•	•
850.	0. 4.	0-64	0.067	0.000170	2.48	0-000274	178.98
	• • , .	1.27	0.014	0.000174	6.17	0.000275	176-47
•	=	1.93	0.022	0.000182	9.51	0.000278	175.07
		3.18	0-036	0.000197	13.27	0.000280	169-95
		4.89	0.055	0-000229	16.53	0.000284	163-31
		6.53	0.073	0-000266	16.54	0-000296	155-26
		9.71	0.109	0-000339	4.95	0-000290	134.88
		12.85	0.145	0.000363	-11-06	0.000240	113-41
÷		19.48	0.219	0.000302	-33.28	0.000110	83.22
		25.82	0.290	0.000252	-40.76	0.000051	78.11
	•	32.43	0.365	0.000223	-45.25	0.000023	94.58
		38.78	0.435	0.000201	-49-13	0.000015	160.37 162.04
		44.13	0.494 0.564	0.000182	-51.48 -46.73	0.000020 0.000024	165.17
		50.39 63.12	0.708	0.000208 0.000172	-59.46	0.000024	-165.36
		75.94	0.852	0.000172	-47.34	0.000048	-169.18
		88.00	0.552	0.000199	-62.27	0.000058	-173.21
		100.44	1.125	0.000194	-73.68	0.000070	179.05
		112.60	1.262	0.000204	-80.26	0.000092	171.82
:		125.12	1.404	0.000214	-86.37	0.000110	165.59
		149.89	1.681	0-000254	-104-15	0.000161	149.12
	•	•					
850.	o. 1 6.	3.19	0.036	0.000309	-1.61	0.000281	169.10
		4.89	0.055	0.000325	-3.79	0.000260	159.64
		6.48	0.073	0.000334	-4.53	0.000277	152.77
		12.76	C.143	0.000391	-17-47	0.000245	123.22
		15.24	C.215	0.000361	-34.48	0.000167	93.10
		25.53	C-286	0-000314	-46.48	0.000100	67.52
		31.88	0.357	0.000277	-55.42	0.000058	52.04
		37.96	0.426	0.000244	-59.74	0.000030	34.68
-		50-17	0.561	0.000215	-66 . 95	0.000007	16.59
		62.51	0.699	0.000196	-72.30	0.000011	-138.45
		75.39	0.842 C.970	0.000179 0.000171	-77.84 -87.30	0.000025	-141.79
	,	86.88 98.70	1.103	0.000216	-87.30 -85.56	0.000033 0.000020	-137.37 -96.25
		105.42	1.178	0.000218	-129.04	0.000020	-114.18
		111.09	1.255	0.000200	-139.36	0.000198	-152.51
		122.77	1.376	0.000130	-97 . 20	0.000130	-178.31
		135.42	1.518	0.000176	-97.62	0.000145	178.54
		147.70	1.655	0.000216	-104.79	0.000181	165.34

TABLE B-I. CONTINUED.

RPM	μ	θ_{o}	ω	ω/Ω	∂C/	ασ 1 Deg.	3C ₁ /ac	Deg.
					$\partial \theta_{s}$	Deg.	$\overline{\partial \theta_{s}}$	Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
_		- 6	. 71 77	1 000	0.00000	-132.39	0.000274	136.26
850.	0.	16.	171.77	1.922 2.053	0.000290 0.000330	-165.98	0.000318	96.20
			199.47	2.234	0.000290	171.66	0.000272	73.73
550.	0.	0.	0.62	0.011	0.000005	127.50	0.000168	-176.77
			1.25	C. 022	0.000014	122.68	0.000161	-170.57
			1.88	0.032	0.000026	132.81	0.000154	-156.41
			3.1C	0.054	0.000064	131.46	0.000213	-142.00
			4.88	0.085	0.000170	121.46	0.000354	-138.36
			6.48	0-112	0.000276	107.56	0.000483	-148.80
			9.54	C.166	0.000527	63.43	0.000642	175-43
			12.60	0.218	0.000616	25.67	0.000589	140.82
			19.10	C.330	0.000506	-14.56	0.000331	106.63
			25.25	0.438	0.000416	-31.44	0.000196	96.32 97.30
			31.57 37.61	0.546 0.651	0.000355 0.000333	-42.15 -49.84	0.000122 0.000088	103.01
			44.00	C.761	0.000333	-55.92		116.69
			45.55	C.867	0.000310	-61.12	0.000072	132.54
			62.50	1.087	0.000301	-70.55	0.000090	155.30
			75.19	1.294	0.000297	-79.50	0.000122	161.15
			91.62	1.575	0.000278	-91.35	0.000181	155.97
			110.82	1.908	0.000381	-110-66	0.000283	144.34
			134.72	2.339	0.000491	-171.94	0.000490	86.88
			159.07	2.766	C.000199	127-14	0.000268	22.94
			198.46	3-455	0.000022	153.12	0.000117	-21.45
					•			
550.	0.	8.	1.89	0.033	0.000209	11.07	0.000472	177.45
•			3.13	0.054	0.000235	17.39	0.000469	174.44
				C-113			0-000502	166.05
			12.65	0-220	0.000587	9.88	0.000581	136-23
			19.17	0.333	0.000636	-27.67	0.000394	93.27
•			25.30	C-440	0.000520	-44.58	0.000213	77.19
			31.83	0.554	0.000437	-53.22	0.000114	78.30
•			37.84	C•658	0.000393	-58.53 -63.06	0.000070	92.79
			43.98 50.23	C.763	0.000365	-63.06 -67.02	0.000052 0.000060	122.85 149.94
			62.80	0.871 1.092	0.000347 0.000329	-74.65	0.000080	167.14
•			75.78	1.315	0.000329	-82.57	0.000098	166.23
			98.86	1.715	0.000332	-97 . 57	0.000142	154.10
			,0.00	14:12	0# 0000 / L	71421	3 TO 3 O C 13	1010

TABLE B-I. CONTINUED.

RPM	μ	$\theta_{\mathbf{o}}$	ω	ω/Ω	$\frac{\partial C_{m}}{\partial \theta_{s}}$	σσ 1 Deg.	$\frac{\partial C_{1}/\alpha\sigma}{\partial \theta_{s}}$	1 Deg.
٠,			rad/sec		Mag.	Phs.	Mag.	Phs.
550.	0.	8.	111.40 123.20	1.932 2.133	0.000462 0.000561	-116.21 -142.62	0.000354 0.000465	138-81 112-34
		,	16C-53	2.784	The second secon	131.33	0.000270	18.59
			199.98	3.454	0.000081	-129-63	0.000174	4.62
•		•						
550.	0.	16.	1.89	0.033	0.000231	9.59	0.000542	174.86
	•		3.12	0.054	0.000244	16.21	0.000538	174.17
			4.85	C• 084	0.000275	19.46	0.000552	169.48
			6.45	0-112	0.000330	20.08	0.000554	164-07
			9.54	0.165	0.000431	19.18	0.000595	153.33
			12.66	0.215	0.000549	8.59	0.000603	137.40
			.19.15	0.331	0.000654	-25.43	0.000475	97.62
	•	•	25.38	0.438	0.000530	-47.20	0.000270	76.55
			31.99	0.552	0.000420	-58.69	0.000137	70-44
			37.7C	0.650	0.000367	-64.26	0.000081	77-87
		, ,	44.14	0.767	0.000337	-68.11	0.000060	101.36
			50.20	C-869	0.000310	-70.93	0.000052	129.75
•			62.40 75.30	1.303	0.000281	-75.89	0.000070	153.83
	,		86.83	1.302 1.505	0.000287 0.000306	-81.61 -80.04	0.000106	162.77
		:	99.07	1.716	0.000308	-89.06 -90.33	0.000146	163.10
-	-		111.01	1.926	0.000572	-107.76	0.000203 0.000279	157.26
. (123.06	2-131	0.000528	-149.37	0.000219	147.89
	•	-	148.19	2.566	0.000287	142.93	0.000438	124.23
			140017	2. 300	0.000201	172.73	0.000319	42.57
		٠.						
850.	0.05	1.	C-63	0.0C7	0.000189	0.17	0.000113	-179.20
		-	1.26	0.014	0.000204	-1-84	0.000094	-179.91
	,		2.30	0.026	0.000193	3.90	0.000098	-179.18
			3.22	0-036	0.000178	-3.57	0.000101	-177.96
•			4.88	0.055	0.000175	-1.38	0-000117	-179.55
			6.48	0.073	0.000162	2-97	0.000130	177.68
• • •		-	9.75	0.109	0.000192	11-19	0.000172	157-53
			12.68	0-143	0.000241	-2.07	0.000158	127-84
• •			19.14	0.216	0.000223	-23.31	0.000097	96-99
			25.45	0-286	0.000190	-34.74	0.000053	74-65
٠,			31.75	C-357	0.000175	-39-30	0.000025	70.10
			37.88 44.07	0.426 0.496	C.000167 O.000185	-42.54 -50.23	0.000014	58.45 -49.88
•			49.92	0.562	0.000174	-54 . 19	0.000022	
•			77474	.0+ 702	41 1000 00	ベンマッエブ	0.000023	-70.87

TABLE B-I. CONTINUED.

RPM	μ	θ_{o}	ω	ω/Ω	$\frac{\partial C_{m}/a\sigma}{\partial \theta_{s}}$	Deg.	$\frac{\partial C_{\parallel}/a\sigma}{\partial \theta_{\rm s}}$	l Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.05	1.	56.78 62.31 75.18 86.98 99.04	0.639 C.700 0.845 0.978 1.114	0.000142 0.000171 0.000197 0.000194 C.000202	-58.79 -34.55 -66.11 -76.99 -82.38	0.000037 0.000025 0.000028 0.000044 0.000036	-96.55 -156.58 -95.22 -103.88 -119.94
850.	0.1	1.	0.64 1.24 1.89 3.09 5.03 6.57 5.69 12.58 18.99 25.23 31.50 37.26 44.07 45.89 56.73 61.99 74.69 86.45 98.02	0.007 0.014 0.021 0.035 0.056 0.074 0.109 0.141 0.213 0.213 0.354 0.495 0.559 0.637 0.656 0.838 0.971	0.000266 0.000258 0.000263 0.000251 0.000243 0.000248 0.000246 0.000249 0.000249 0.000228 0.000205 0.000188 0.000173 0.000166 0.000149 0.000188 0.000188 0.000186 0.000186	0.40 -1.41 -1.96 -4.21 -4.75 -7.06 -11.31 -15.24 -28.72 -37.80 -44.80 -46.97 -51.50 -53.72 -57.95 -35.01 -56.04 -66.33 -76.94	0.000147 0.000137 0.000139 0.000137 0.000139 0.000140 0.000135 0.000104 0.000072 0.000043 0.000022 0.00004 0.000030 0.000028 0.000040 0.000052	179.74 175.39 173.53 169.92 166.32 160.59 147.87 138.53 106.28 90.85 77.62 70.56 32.13 -102.45 -122.15 -163.02 -170.89 -157.83 -163.20
850.	0.1	12.	C.63 1.35 3.52 3.13 4.99 6.46 9.51 12.63 15.09 25.26 31.75 37.70 43.97	0.007 0.015 0.040 0.035 0.056 0.073 0.107 0.142 0.214 0.283 0.356 0.423 0.493	0.000312 0.000312 0.000293 0.000313 0.000318 0.000347 0.000347 0.000375 0.000388 0.000339 0.000303 0.000261 0.000244	0.92 1.17 12.27 0.02 -1.01 -3.15 -6.03 -10.09 -25.01 -36.92 -44.49 -48.69 -51.94	0.000284 0.000258 0.000234 0.000266 0.000267 0.000275 0.000262 0.000263 0.000215 0.000147 0.000101 0.000073	175.95 177.06 178.78 170.85 164.74 157.92 145.53 131.71 102.93 83.34 72.02 64.49 66.33

TABLE B-I. CONTINUED.

R P M	μ	θ_{o}	ω	ω/Ω	∂C _m /a∂	7 · 1	$\frac{\partial C_{\parallel}/a\sigma}{\partial \theta_{s}}$	Deg.
		•	rad/sec		Mag.	Phs.	5 Mag.	Phs.
0=0						e		2 3 0 F
850.			45.72	C-558	0.000227	-56.54	0.000031	63.85
	•		56.63 62.56	0.635 C.7C3	0.000181 · 0.00192	-61.33 -27.08	0.000014	93.46 110.60
			74.55	C. 836	0.000192	-51.48	0.000038	92.29
	•		87.15	0.577	0.000248	-66.96	0.000023	119.22
			\$8.18	1.102	0.000237	-75 . 96	0.000016	87.32
			, 10.10	1.102	,0.000231	130,0	0000010	0.432
850.	0.15	1.	0.63	0.007	0.000340	-4.30	0-000149	175.94
	****		1.25	0.014	0.000353	-3.07	0.000151	173-98
			2.06	0.023	0.000339	-1.54	0.000150	173.63
			3.24	0.036	0.000368	-5.75	0-000156	166-54
			4-90	0.055	0.000379	-8.65	0.000158	158-04
			6.47	0.073	0-000361	-11.07	0.000158	151-75
			9.55	0.167	0.000371	-16.44	0-000159	139-59
			12.60	0.141	0.000389	-23.02	0.000154	125.89
			19-21	0-216	0-000346	-35-46	0.000112	87.37
1			25.35	0.284	0.000306	-44.64	0.000073	54.54
			31.85	C-357	0.000258	-49.24	0.000035	33.49
		,	37.89	0.425	0-000240	-51.95	0.000023	-1.92
	•		44.12	0.497	0.000225	-55.40	0.000025	-46.81
		٠.	49.81	C.560	0.000206	-59.94	0.000033	-65.81
			56.77	0.638	0.000156	+61.57	0.000044	-100-15
			62.25	0.699	0.000205	-37.07	0.000025	-137-88
			74.71	C-840	0.000221 0.000211	-64.35 -75.61	0.000038	-93.72 -102.11
			86.45 58.82	0.970 1.109	0.000211	-83.01	0.000047	-102-11
•			70.02	1.169	0.000203	-03.01	0.000040	-127440
850.	0.2	1.	C.63	C-C(7	0.000356	-1:44	0.000152	176.76
•					0.000363		0.000162	174.87
		•	2.34		C.000340	-7.36	0.000152	162.33
			3.09	0.035	0.000385	-5-61	0.000172	166-89
			4.87	0.055	0-000,392	-8.66	0.000166	160.00
			6.65	0-075	0.000387	-10.71	0.000172	153.88
,			9.59	C-108	0.000389	-16.47	0.000169	141.79
			12.66	0-142	0-000386	-22.31	0.000161	129.60
		• . •	19.07	C-214	0.000351	-35.01	0.000118	99.67
			25.19	0.282	0.000313	-44.07	0-000082	77.16
•,*	•	.: •	31.66	0-355	0.000273	-50-59	0-000047	54.91
			37.71	0.423	0.000251	-55.45	0.000026	19.46

TABLE B-I. CONTINUED.

RPM	μ	$\theta_{\mathbf{a}}$	ω	ω/Ω	$\frac{\partial C_{m}/\alpha\sigma}{\partial \theta_{s}}$, Dea	<u> θC]/ασ</u>	1 Dog
		0		•	°s	Deg.	oo _s	Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.2	1.	44.43	0.497	0.000222	-59.24	0.000027	-57.17
			49.76	C-558	0.000205	-63.41	0.000034	-75.61
			56.61	0-635	0.000153	-63.36	0.000045	-113.50 -149.25
			62.41	C-7CO	0.000218 0.000221	-41.47 -63.59	0.000021	-124.09
			74.8C 66.88	0.838 0.977	0.000221	-73.71	0.000057	-130.77
			98.64	1.108	0-000218	-83.58	0.000060	-136.28
			70.04	1.100	0.000200	03030	01000000	
850.	0.0	12.	1.25	0.014	0.000341	-0.29	0.000264	175.88
0,00.	0,2	12.	2.50	0.028	0.000354	0.30	0.000261	174.90
			3.36	0.038	0.000339	-2.30	0.000265	169.63
			5.03	0.056	0.000344	-2.35	0.000258	161.95
			6-67	0-075	0.000351	-3.80	0.000263	15 6.6 6
			9.73	C.110	0.000368	-7.42	0.000256	141.81
			12.62	0.142	0-000381	-13.49	0.000240	129.31
			16.98	0.214	0.000366	-28.63	0.000174	101.65
			25.18	0.283	0.000317	-39.37	0.000110	92.89
			31.75	C. 357	0.000280	-46.61	0.000081	82.43
			37.49	0.422	0.000257	-50.43	0.000066	82 . 84 85.70
			44.05	0.495	0.000233	-55.63 -60.34	0.000046	89.06
			49.55	0.557	0.000213 0.000172	-68-12	0.000029	100.09
			56.53 62.30	0.636 0.701	0.000179	-26.59	0.000054	111.01
			74.57	0.838	0.000222	-51.48	0.000039	94.97
			86.81	C-974	0.000204	-65.87	0.000043	78.95
			58.39	1.104	0.000208	-71.87	0.000034	37.82
850.	0.26	1.	C-62	0.007	0.000464	-0.31	0.000143	178.50
-/-	• •		1.24	0.014	0.000500	-3.54	0.000143	172.25
			1-88	C. 021	0.000508	-4.21	0.000134	168.99
			3.33	C. 037	0.000554	-6.18	0.000128	161.49
			5.05	0.057	0.000616	-10.25	0.000086	134.31
			6-57	C-074	0.000662	-15.66	0.000088	94.04
			12.73	C-143	0.000552	-26.11	0.000126	89.04
			19.09	0.215	0-000495	-40-44 -49-41	0.000122	46.66 30.04
			25-16	C-283 C-354	0.000412 0.000340	-49.41 -55.30	0.000086	39.04 24.22
			31.55 37.47	0.421	0.000340	-58.81	0.000034	-24.98
			43.83	C.492	0.000326	-62.63	0.000049	-59.18
				4- · / L			,	

TABLE B-I. CONTINUED.

DDM					∂C _m /a	σ 1	∂C /aσ	1
RPM	μ	θ_{o}	ω .	ω/Ω	$\frac{\partial \theta_{s}}{\partial \theta_{s}}$	Deg.	$\frac{1}{\partial \theta_{s}}$	Deg.
		·	rad/sec	٠.	Mag.	Phs.	Mag.	Phs.
850. (0.26	1.	49.76 56.84 62.42 74.89 86.14	C.559 C.638 O.701 G.842 G.966	0.000242 0.000192 0.000195 0.000246 0.000227	-65.70 -69.34 -37.10 -62.96 -72.33	0.000049 0.000064 0.000055 0.000057 0.000082	-88.93 -116.13 -148.80 -122.43 -107.85
850. (0.26	12.	C.76 1.25 2.33 3.13 4.87 6.47 9.51 12.62 18.95 25.09 31.58 37.60 43.66	C. CC9 0. 014 C. C26 0. 035 C. 055 0. 073 0. 1C7 C. 142 G. 211 C. 282 0. 355 C. 423 C. 494	0.000384 0.000394 0.000399 0.000410 0.000402 0.000422 0.000438 0.000432 0.000394 0.000337 0.000290 0.000258	1.63 -0.46 -2.98 -2.90 -4.58 -5.06 -9.68 -15.56 -30.92 -43.97 -51.92 -58.90 -63.07	0.000295 0.000297 0.000274 0.000300 0.000300 0.000299 0.000290 0.000276 0.000219 0.000149 0.000100 0.000060 0.000038	178.99 176.35 172.65 169.66 163.15 157.49 145.72 133.04 106.66 87.71 72.82 67.91
			45.82 56.92 62.14 74.62 86.48 58.24	0.558 0.639 0.699 0.841 0.973	0.000231 0.000176 0.000142 0.000232 0.000222 0.000221	-67.38 -73.95 -30.69 -54.95 -64.23 -71.50	0.000025 0.000018 0.000043 0.000022 0.000005 0.000012	74.73 120.82 126.88 105.41 135.45 -17.18

TABLE B-I. CONTINUED.

R PM	$oldsymbol{\mu}_{_{\! -}}$	$\theta_{\mathbf{o}}$	$\boldsymbol{\omega}_{\parallel}$	ω/Ω	$\frac{\partial C_{m}}{\partial \theta_{c}}$	Deg.	$\frac{\partial C_{I}/a}{\partial \theta_{c}}$	$\frac{\sigma}{Deg.}$
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.1	1.	0.63 1.24 1.58 2.33 5.01 6.45 9.54 12.56 18.98 25.08 37.43 43.96 56.64 62.45 75.19 86.57 98.39	0.007 0.014 0.022 0.037 0.057 0.072 0.107 0.141 0.213 0.282 0.354 0.419 0.494 0.558 0.637 0.702 0.843 0.971 1.104	0.000329 0.000329 0.000323 0.000326 0.000327 0.000298 0.000265 0.000150 0.000091 0.000063 0.000041 0.000027 0.000021 0.000018 0.000016 0.000016 0.000015 0.000015	176.85 174.09 170.51 165.93 158.80 149.22 133.54 116.20 89.77 84.71 82.96 89.88 95.91 107.15 176.13 135.24 144.85 163.86 162.75	0.000185 0.000189 0.000200 0.000200 0.000255 0.000310 0.000294 0.000236 0.000218 0.000218 0.000202 0.000179 0.000170 0.000171 0.000159 0.000172	-177.06 -175.59 -173.40 -171.75 -168.21 -168.53 -176.30 169.57 144.05 136.81 134.19 129.04 123.77 121.46 117.65 116.85 109.21 102.24 90.78
850.	0.1	12.	0.63 1.24 2.24 3.25 4.84 6.44 5.50 12.55 16.97 25.02 31.36 37.61 43.86 49.74 56.52 62.14 74.91 86.29 57.87	G. CC7 0. 014 0. 025 0. 037 0. 054 0. 072 0. 141 0. 213 0. 281 0. 353 0. 422 0. 492 0. 558 0. 635 0. 637 0. 842 0. 970 1. 104	C.000360 C.000359 O.000367 O.000359 C.000359 O.000323 O.000215 O.000129 O.000057 O.000049 O.000043 C.000048 O.000048 O.000047 O.000047 O.000047	177.85 175.09 173.23 166.94 160.96 154.29 139.45 123.46 95.59 84.66 87.72 95.68 102.97 106.58 105.39 -172.25 122.41 113.10 95.29	0.000271 0.000276 0.000284 0.000277 0.000387 0.000352 0.000394 0.000387 0.000334 0.000292 0.000265 0.000241 0.000228 0.000215 0.000194 0.000192 0.000209	179.30 179.28 179.23 -178.28 -177.18 -176.55 179.02 170.22 148.43 136.12 129.00 123.19 119.21 115.94 111.36 108.27 108.61 104.34 102.89

TABLE B-I. CONTINUED.

RPM μ	θ ο , , ,	ω	ω/Ω	$\frac{\partial C_{\dot{m}}/ac}{\partial \theta_{c}}$	Deg.	$\frac{\partial C_{1}/a\sigma}{\partial \theta_{c}}$	Deg.
	, 8 °	rad/sec		Mag.	Phs.	Mag.	Phs.
850. 0.26	12.	C+63	0.007	0.000417	178.68	0.000310	179.38
•		1.35	0.015	0.000416	175.76	0.000307	-179.77
		2.14	G. C24	0.000427	172.87	0.000308	-179.42
		3.24	0.036	0.000408	168.23	0.000316	-179.60
		4.88	0.055	0.000413	162.90	0.000330	-178.79
		6.74	C. 076	0.000403	156.67	0.000342	179.94
		9.51	0.107	0.000400	145-11	0.000380	175.97
		12.59	C-141	0.000377	131.83	0.000409	168.52
		19.01	0.213	0.000290	105.89	0.000428	149.20
		25.05	0.281	0.000197	. 90-94	0.000385	133.69
•		31.43	0.353	0.000127	81.34	0.000336	120.17
		37.15	C-418	0.000091	86.99	0.000286	113.57
	·	43.78	0.493	0.000071	92.87	0.000245	108.70
		49.97	C.562	0.000061	95.14	0.000226	106.63
		56.82	0.638	0.000045	95.18	0.000211	102.28
		62.25	C.700	0+,000044	169.77	0.000188	97.39
•		74.8C	.C. 841	0.000088.	108-55	0.000180	102.65
		86.57	C. 971	0.000057	91.75	0.000191	100.50
		COAD	1 102	0.000063	60 66	0.000105	04.43

TABLE B-I. CONTINUED.

RPM	μ	θ_{0}	ω	ω/Ω	<u>∂C _/</u> ∂	Dea.	$\frac{\partial C_{\parallel}/a\sigma}{\partial \theta_{o}}$	l Deg.
			4/					Phs.
			rad/sec		Mag.	Phs.	Mag.	Fils.
850.	0.05	2.	0.63	0.007	0.000122	-9.72	0.000049	-2.49
			1.25	0-014	0.000128	-16.15	0.000057	-6.10
			1.39	0.021	0.000135	-23-17	0.000058	-7.65
			3-13	0.035	0.000129	-39.96	0.000069	-11.76
			4.88	0.055	0.000124	-61.95	0.000079	-23.68
			6.45	0-073	0.000121 0.000093	-81.51 -133.64	0.000092 0.000114	-38.66 -82.72
			9.59 12.62	C.1C8 O.142	0.000043	178.35	0.000114	-121.52
			19.14	0.215	0.000001	84.98	0.000073	-167.97
			25.28	C. 284	0.000019	22.72	0.000055	168.42
			31.69	0.356	0.000012	-16.36	0.000035	150.88
			37.69	C-423	0.000018	-24.29	0.000029	146.78
			44.04	C-494	G-000018	-71.98	0.000022	145.67
			49.92	0.560	0.000025	-120.24	0.000013	161.36
			56.60	0.636	0.000062	164.20	0.000024	-156.42
			62.33	0.701	0.000106	61.07	0.000039	158.86
			75.07	0.844	C.000063	-6.51	0.000020	139.98
			82.24	0.925	0.000055	-25.21	0.000016	165.35
			58.64	1.111	0.000057	-51.54	0.000030	178.56
850.	0.1	2.	0.63	0.007	0.000179	-8.39	0.000056	1.00
0,00	~~	•	1.24	0.014	0.000163	-11-20	0.000056	-3.35
			1.88	0.021	0.000168	-15.33	0.000061	-2.85
			3.33	0.037	0.000158	-22.60	0.000067	-6.16
			4.86	C. 055	0.000159	-37.39	0.000077	-13.62
			6.43	C.072	0.000145	-50.83	0.000082	-25.25
			9.55	C.1C7	0.00120	-77.72	0.000099	-52.93
			12.56	0.141	0.000085	-105.41	0.000118	-81.28
			18.95	0.213	0.000006	119.63	0.000103	-146.17
			24.97	0.281	0.000025	-9.83	0.000063	-176.16
			31.35	0.353	0.000025	+26.72 -39.03	0.000040 0.000033	178.19 171.68
			37.34 44.09	0.419	0.000032 C.000032	-38.92 -62.22	0.000031	165.33
			49.92	C.495 O.560	0.000032	-02•22 -95•98	0.000031	-176.34
			56.33	0.633	0.000055	-179.20	0.000032	-153.66
			62.36	C. 700	0.000104	49.90	0.000047	169.36
			74.55	0.836	0.000085	-14.69	0.000024	161.41
			86.38	0.969	0.000079	-40.87	0.000028	-172.16
			98.18	1.103	0.000072	-58.45	0.000040	-167.16

TABLE B-I. CONTINUED.

RPM .	μ	θ_{0}	ω	ω/Ω	<u>∂</u> C _m /	$\frac{\sqrt{a\sigma}}{\sigma} \frac{1}{\text{Deg.}}$	$\frac{\partial C_{\parallel}/\alpha\sigma}{\partial \theta_{0}}$	1 Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.1	12.	0.75	0.008	.0.000180	-0.48	0.000018	179.08
•	V.1		1.24	0.014	0-000207	-4.81	0.000020	167.15
			1.87	C. 021	C.000186	-10.46	0.000015	163.39
			3.10	0.035	0.000190	-14-95	0.000014	156.59
		•	4.85	C. 054	C.000192	-20-28	0.000027	176.45
		٠.	6.47	0.073	0.000178	-27.97	0.000009	172.06
			9.49	C.1C7	0.000160	-39.82	0.000010	-158-60
		-	12.72	C.143	0.000137	-47.18	0.000009	-138.93
			18.83	0.211	0.000106	-50.07	0.000013	169.81
			25.18	0.282	0.000076	-47.00	0.000021	123.29
•			31.45	0.353	0.000083	-51.84	0.000002	-139.35
			37.09	C-416	C.000077	-44.33	0.000019	-131.45
			44-10	0.495	0.000080	-55.27	0.000022	-139.02
			49.91 56.42	0.559 0.633	0.000076	-67.48	0.000029	-137.81
			62.38	0.659	0.000049 0.000069	-117.92	0.000038	-141.04
			74.78	0.837	0.000089	41.12 -32.19	0.000048 0.000041	-179-89
	•		86.64	C. 971	0.000084	-58.10	0-000041	-171.99 157.95
			58.05	1.101	0.000073	-74.66	0.000037	123.78
		-	:	1-1-01	0000013	. , ,	0.00000	123010
850.	0.26	1.	0.63	0.007	0.000304	-2.09	0.000031	177.97
			1.25	C. 014	6.000299	-4.34	0.000033	171.68
			2.00	0.022	0.000297	-2.27	0.000036	179.28
			2.15	C.035	C-000300	-7.72	0.000028	160.16
			4.87	0-055	0.000312	-12.76	0.000026	140.31
			6.44	0.072	0.000313	-16.94	0.000026	128.55
			9.74	C.109	0.000301	-25.26	0.000023	88.21
			12.65	0.142	0.000285	-32.57	0.000021	44.94
			19.34	0-217	0.000240	-47.74	0.000031	-33.45
			25.30	0.284	0.000200	-56.22	0.000048	-72.62
			31.62 37.66	0.355	0.000161	-60.32	0.000057	-100.79
			43.95	C.423	0.000141 0.000129	-59.53	0.000058	-121.90
			45.88	0.559	0.000129	-65.96 -76.02	0.000061	-132.42
			56.86	C-638	0.000117	-106.95	0.000083	-139.61 -148.48
			62.31	0.699	0.000031	-4.86	0.000073	-148.48
			75.12	C. 843	C.000125	-50.15	0.000049	-160.03
			£6.83	C. 974	0.000138	-64-41	0.000049	-155.94
			58.76	1.108	0.000131	-71.82	0.000094	-163.87

TABLE B-I. CONTINUED.

RPM µ	θ_{o}	ω	ω/Ω	$\frac{\partial C_{m}}{\partial \theta_{o}}$	$\frac{\sigma}{\text{Deg.}}$	$\frac{\partial C_{\parallel}/\alpha\sigma}{\partial \theta_{o}}$	T Deg.
		rad/sec		Mag.	Phs.	Mag.	Phs.
850. 0.26	12.	G.75	C. CC8	0.000466	-1.22 -3.43	0.000095 0.000089	170.48 167.88
		1.24 1.90 3.28	0.014 C.021 C.037	0.000474 0.000473 0.000465	-4.65 -6.18	0.000087	164.92 151.30
		5.07 6.43	0.057 0.072	0.000465 0.000467	-11.17 -14.83	0.000073 0.000076	142.65 127.45
		9.65 12.64	0.108 0.142	0.000463 0.000451	-22.41 -31.20	0.000075	94.16 65.20
		18.95 25.18 31.52	C.213 C.283 C.354	0.000393 0.000327 0.000267	-47.90 -57.04 -69.78	0.000080 0.000077 0.000103	3.44 -36.78 -70.77
		37.52 44.00	C.421 C.493	0.000207 0.000210 0.000186	-69.55 -72.62	0.000095	-96.31 -112.73
		45.87 56.50	0.560 0.635	0.000171 0.000140	-76.10 -86.57	0.000096 0.000099	-122.98 -132.00
	•	62.09 74.89	6.697 C.839	C.000094 0.000164	-37.28 -65.01	0.000095 0.000088	-157.36 -153.96
		80.51 58.33	0.903 1.104	0.000161 0.000120	-70.42 -82.36	0.000096 0.000077	-164.05 175.47

TABLE B-I. CONTINUED.

R PM	μ	θ_{o}	ω	ω/Ω	∂C _m /ac∂a	Deg.	$\frac{C_1/\alpha\sigma}{\partial\alpha}$	1 Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
050			• 6•	0 033	0.00000	14.2 00	0.00000	-95.68
850.	0.	0.	1.91 3.22	0.022 0.036	0.000028 0.000078	143.89 145.54	0.000090	-102.41
			4.93	0.055	0.000078	131.07	0.000309	-118.19
			6.49	0.073	0.000421	108.26	0.000455	-142.38
		. `	9.59	0.108	0.000639	62.19	0.000507	169.46
	-		12.72	C.143	0.000620	42.69	0.000398	148.37
			15.34	0.217	0.000616	28.14	0.000285	131-62
		:	25.60	0.287	0.000648	21.96	0.000241	123.23
	-	•	31.99	0.358	0.000748	17.62	0.000236	117.56
			38.20	0-428	0.000923	14.19	0.000256	112.69
			44.15	0.495	0.001346	8.56	0.000340	105.78
			5C.34	C.564	0.002147	0.50	0.000499	95.00
			•					
850.	0.	4.	1.91	0.022	0.000040	-80.50	0.000066	78.69
			3.14	0.035	0-000072	-77.66	0-000111	72-90
			4.89	C-055	0.000133	-78-58	0.000181	63.37
•		,	6.48	0.073	0.000201	-80.89 -94.28	0.000241	53.58 30.75
			9.60	0.108	0.000367 0.000520	-112.90	0.000339	6.11
	,		12.73 19.29	C-143 C-216	0.000520	-141-11	0.000375	-30.12
			25.41	0.216	C-000658	-152.49	0.000314	-45.79
		-	32.06	G-359	0.000722	-158.33	0.000290	-54.87
	•		38-09	0.427	0-000824	-161-20	0.000292	-60-51
,			44.31	C-458	0.001030	-165.09	0.000329	-67.88
		•	57.25	0.642	0.002370	-179.74	0.000631	-92-20
•			62.91	0.705	0.002737	54.07	0.000701	138-64
		٠.	, ,					
					•			
850.	0.	8.	2.06	C-023	0.000055	98.74	0.000049	-100.40
			3.25	0.037		99. 95	0.000091	-107.54
			4.89	0.055	0.000131	93.72	0.000129	-115.47
	-		6.65	0.075	0.000185	95.31	0.000165	-126-10
			9.60	0.108	0.000302	83.63	0.000251	-142.32
			12.74	0.144	0.000434	72.91	0.000314	-159.38
	e.		19.34	C+218	0.000636	48.85	0.000358	163.97
		, *	25.52	0.286	0.000725	33.58	0.000330	141-51
	_	•	32.11	0.359	0.000840	23.58 16.79	0.000318	126.00
	•		38.32	0.429	0.001057	10.19	0.0000001	115.05

TABLE B-I. CONTINUED.

RPM	μ	θ_{o}	ω	ω/Ω	$\frac{\partial C_{m}}{\partial a}$	σσ 1 Deg.	$\frac{C_1/a\sigma}{\partial a}$	1 Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.05	12.	4.85	C. 055	C.000149	-96.24	0.000170	64.32
-			6.41	0.072	C-000209	-95.65	0.000230	55.42
			12-69	0-143	0.000576	-123-45	0.000444	-2.68
			18.72	0.210	0.000663	-147.60	0.000390	-37.97 -57.85
			25.19	C.283	0.000747	-157.40	0.000342 0.000347	-75.57
			31.53	0.355	0.000884 0.001354	-170.03 -170.90	0.000347	-79.45
		-	37.37	C.420 C.638	0.001937	42.96	0.000479	126.51
			56.79 62.26	0.700	0.001337	33.08	0.000292	114.47
			74.39	C. 837	0.000751	26.79	0.000173	102.09
					0.0004.7	73.00	0.000036	72 61
850.	0.1	l.	1.26	0.014	0.000047	-73.09	0.000034	73.61 60.81
			2-15	0.024	C. 000047	-86.72 -90.38	0.000041 0.000078	66.18
			3.12	0.035 0.057	0.000097 0.000147	-96.20	0.000121	60.65
			5.07 6.51	0.073	0.000147	-99.28	0.000161	54.42
			5.58	C-1C8	0.000303	-106.34	0.000241	39.94
			12.84	C-144	0.000425	-115.06	0.000327	21.75
			19.22	0.216	0.000649	-136.55	0.000413	-19.22
			25.33	C. 284	0.000778	-151.24	0.000385	-46.97
			31.73	C.355	0.000880	-164.43	0.000350	-66.53
			37.64	C-421	0.001317	-170-27	0.000456	-75.11
			44.24	C-454	0.002877	168-82	0.000910	-99 . 95
			49.91	0.560	0.004572	92.03	0.001323	-179.07
			56.89	C.638	0.001840	42.31	0.000487	127.94
			62-41	0.658	0.001158	34.41 27.51	0.000312	119.45 106.17
			74.82	0.839	0.000672	21.01	0.000100	100.11
850.	0.1	12.	C.63	G. CC7	0.000097	-10-22	0.000034	-1.76
			1.25	0.014	0.000096	-27.85	0.000052	38.67
			1.88	0.021	C-000113	-37.81	0.000069	49.17
			3.10	0.035	0.000139	-55.86	0.000102	52-36
			4.89	C.055	0.000186	-72.50	0.000152	48-17
			€.62	0.014	0.000245	-80.76 -97.04	0.000196	44.76 27.73
			5.63	0.108	0.000342 0.000462	-110.81	0.000348	11.41
			12.61 19.03	0.141 0.214	0.000482	-131.91	0.000406	-20.89
			25.16	0.282	0.000784	-146.61	0.000410	-42.28
			31-46	C.352	0.001031	-164.56	0.000477	-64.61

TABLE B-I. CONTINUED.

•	-		•			•		,
RPM	1.0		ω:	ω/Ω	9C [™] /«	aσ 1	C ₁ /aσ	ĭ
KEM	μ	θ_{o}	w.	٠, ١٥	$\frac{m}{\partial a}$	Deg.	$\frac{1}{\partial a}$	Deg.
	-					_		
		•	rad/sec		Mag.	· Phs.	Mag.	Phs.
				٠				
850.	0.1	12.	37.38	C-420	0-001432	-170.19	0 000500	_74 13
0,00	0.1	12.	44.75	C. 5C2	0.001432	-168-18	0.000589 0.001081	-76.13 -67.98
			50.32	C.567	0.004005	84.76	0.001321	171-43
			56.57	0.637	0.001740	46.74	0.000534	132-41
			62.10	C. 7CC	0-001193	38.11	0.000344	121.56
			74.46	C.837	0.000697	32.53	0.000217	116.39

			-		• •	•		
.850.	0.26	1.	0.63	0.007	0.000077	-24.15	0.000036	21.13
			1.24.	0.014	0.000097	-33.36	0.000033	40-65
			1.87	0-021	0.000080	-45.29	0.000049	40.75
			3.09	0.035	0.000123	-58-23	0.000060	50.78
		-	4 - 84.	0.054	0.000165	-66.50	0-000084	53.18
			6-46	0.073	0.000212	-79-66	0.000115	49.47
			9.45	0.106	0.000305	-92.39	0.000166	40.71
			12.58	0-141	0.000399	-103.65	0.000213	28.61
			18.94	0.213	0.000611	-122-88	0.000307	3.70
			25-12	0-282	0-000819	-138.66	0.000387	-20.13
			31.39	0.353	0.000986	+157-22	0.000423	-47.19
			37.31	0.419	0.001392	-161-46	0.000562	~58.59
		•	43.65 50.04	0.490 0.561	0.002828 0.004346	177.46 107.55	0.001059 0.001455	-86.32
	•		56.61	0.635	0.004548	58.25	0.000789	-161.68 143.28
			62.26	0.659	0.001250	38.75	0.000379	121.73
			74-64	0.837	0.000734	30.59	0.000232	106.61
				0000,	0.000131	30437	04000232	100101
				•				
850.	0.26	12.	1.24	C. 014	0.000130	-14.60	0.000068	35.75
			1.94	0.022	0.000142	-24.89	0.000045	40-01
			3.12	C. C35	0.000164	-36.20	0.000098	42.57
			4.95	0.056	0.000197	-51.06	0.000140	45.97
			6.61	0.074	C.000246	-63.35	0.000195	40.24
	•		9.54	C-107	0.000335	-79.04	0.000264	34.44
			12.54	C-141	0.000454	-92.93	0.000323	21.86
	•				0.000687	-119-20	0.000488	-7.55
		· ·	25.25	C-283	0.000924	-136.17	0.000548	-32.12
			31.54	0.354	0.001077	-159.57	0.000569	-64.75
÷	-	•	37.41	0.419	0.001541	-167.33	0.000720	-76.64
			46.40	C-520	0.005736	130.79	0.004063	-148.82
			51.32	0.576	0.004312	71.29	0.003593	170.96
			56.73	C. 635	0.001769	46.51	0.000631	131.75
			62-17 74-76	C-697	0.001190	38.07 30.99	0.000430 0.000261	120.54
			01 • 10	C.838	0.00009	30.44	0.000201	114.90

TABLE B-I. CONTINUED.

RPM	μ	θ_{o}	ω	ω/Ω	$\frac{C_{m}}{\delta \phi}$	<u>lσ</u> <u>l</u> Deg.	C ₁ /ασ	1 Deg.
					υψ		•	
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.	0.	1.91	0-021	0.000097	-96.71	0.000029	-36.17
•			3.19	0.036	0.000172	-103.85	0-000081	-38-23
			4.93	C- 055	0.000325	-118.69	0.000237 0.000439	-51.06 -76.08
			6.50	C-073 O-108	0.000465 0.000482	-145.17 168.19	0.000627	-120.19
			9.60 12.69	0.143	0.000402	149.35	0.000617	-138.54
			19.43	0.218	0.000286	134.23	0.000585	-151.39
			25-48	0.286	0.000247	127-12	0.000596	-155.79
			31-81	0.358	0.000221	121.95	0.000619	-157.94
			37.83	0.425	0.000206	118.76	0.000643	-159.10
			44.20	0.456	0.000203	115.39	0.000674	-160.40
			50-08	0.562	0.000216	110.09 90.39	0.000711	-161.31 -163.53
			56.96 62.79	0.640 0.705	0.000284 0.000228	48.84	0.000791	-166.36
			02417	0.103	0.000220	10001	00000171	
850.	0.	2.	1.92	0.022	0.000149	-96.40	0.000064	-70.52
			3-34	0.037	0.000244	-105.00	0.000123	-62.88
			5.02	0.056	0.000427	-113.73	0.000267	-61.50
			6.60	0.074	0.000661	-126.02	0.000482	-66.62 -98.82
			5.75	0.110	0.001125 0.000930	-166.99 160.30	0.001141	-128.93
			12.78 15.31	0.143 0.216	0.000430	134.89	0.001076	-150.95
			25.55	0.286	0.000484	126.18	0.001043	-156.94
			32.03	0.359	C.000232	121.60	0.000579	-159.02
			36-15	0.427	C-000218	117.78	0.000597	-159.96
			44.36	0.497	0.000217	115.28	0.000628	-160.70
			5C.17	0.563	0.000228	109-47	0.000659	-161-32
			56.98	0.639	0.000284	85.66	0.000711	-163.62 -165.46
			62.82	C.7C3	C-000199	50.33	0.000129	-105.40
850.	0.	4.	1.93	0.022	0.000068	-97-38	0.000045	-83.32
		• •	3.18	0.036	0-000115	-104-67	0.000080	-76.05
			4.91	0.055	0.000179	-114.40	0.000138	-76.53
			6.50	0.073	0-000246	-123.65	0.000216	-79.43
			9.57	C-1C7	0.000369	-146.44	0-000399	-91-46
			12.80	C. 143	0.000432	-174.65	0.000577	-113.19 -141.05
			19.40	0.218	0.000371 0.000300	149+31 133-26	0.000669	-151.73
			25.56 32.16	G-287 G-360	0.000253	123.69	0.000672	-156.52
			32.10	0.300	02000233	163447	#######	-

TABLE B-I. CONTINUED.

RPM	μ	$\theta_{\mathbf{o}}$	ω	ω/Ω	C _m /α	o 1 Deg.	$\frac{9\phi}{C^{1/a\alpha}}$	l Deg.
•			rad/sec	•	Mag.	Phs.	Mag.	Phs.
	,			-	•			
850.	0.	4.	38.25	C-428	0.000230	117-47	0.000686	-158.82
			44-14	0.492	0.000219	112.72	0.000705	-160.11
			50.35	0.567	0.000227	108-10	0.000755	-160.76
			57.05	C-641	0-000246	101-87	0.000807	-161.64 -163.81
			62.54	G-703	0.000316	89.41	0.000870	-169.50
		• •	68.70	0.772	0.000267	36.91 28.34	0.000847	-175.11
			75-83	C.852	0-000136	20.54	04000041	112011
			•					
850.	0.	8.	1.93	0.022	0.000052	-95.13	0.000048	-72.81
,			3.14	0.035	0.000090	-104.92	0.000078	-80.18
2.3		•	5.10	0.057	0.000144	-113.81	0.000136	-84.39
			6.52	0.073	0.000182	-120.73	0.000190	-84.86
		•	9.62	0.108	0.000257	-138.58	0.000310	-93.35
		. •	12.72	0.143	0.000332	-157.45	0.000449	-103.79
			19.33	0.217	0.000368	166.43	0.000643	-128.73
			25.49	0.287	0.000322	144.71	0.000690	-143.44 -151.24
	-		31.93	0.359	0.000282	131.44	0.000707 0.000720	-155.37
			38.18	0.429 0.496	0.000254 0.000243	122.76 117.56	0.000720	-157.70
		•	44.12 50.28	0.564	0.000243	111.71	0.000769	-159.14
			56.94	0.638	0.000233	92.74	0.000821	-161-87
			63.00	0.707	0.000223	53.11	0.000836	-164.82
•			03.00		000000			
850	0.	16.	1.92	0-022	0.000035	-96.80	0.000061	-78.27
•/•			3-20	0.036	0.000072	-104.67	0.000077	-73.79
			4.89	0.055	0.000115	-108.61	0.000138	-81.29
			6.54	C.073.	0.000153	-119-22	0.000192	-82.91
			9.69	0.109	0.000226	-133.50	0.000295	-93.24
			12.91	0.145	0.000280	-151.83	0.000426	-104.39
			19.33	0.217	0.000336	175.46	0.000622	-123.09
			25.60	0.288	0.000333	154.43	0.000722	-136.96
•			32.03	0.360	0.000302	138.54	0.000763	-146.27
			38.25	0.430	0.000275	128.68	0.000786	-151.59
			44.11	0.495	0.000270	122.54	0.000807	-154.51
			50.35	0.566	0.000287	111.33	0.000857	-156.83 -161.32
			57.12	C. 7C6	0.000316 0.000193	76.63 60.49	0.000905	-162.96
			62.79	C. ILO	0.000173	50.47	0.000721	-102.70

TABLE B-I. CONTINUED.

RPM	μ	$\theta_{\mathbf{o}}$	ω	ω/Ω	<u>∂C</u>	$\frac{\sqrt{a\sigma}}{\phi} \frac{1}{\text{Deg.}}$	$\frac{9 \phi}{C^{1/\alpha a}}$	Deg.
	·		rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.1	1.	0.63 1.26 2.25 3.40 5.09 6.80 9.79 12.97 15.35 25.35 31.58 37.77 44.25 45.90 56.83 62.45 74.66	0.007 0.014 0.025 0.038 0.057 0.076 0.110 0.146 0.217 0.284 0.354 0.423 0.497 0.561 0.639 0.701 0.837	0.000014 0.000026 0.000040 0.000077 0.000118 0.000142 0.000227 0.000299 0.000344 0.000253 0.000234 0.000250 0.000161 0.000155 0.000170	-80.91 -89.27 -91.64 -99.30 -110.58 -119.51 -137.11 -157.13 161.38 136.38 122.40 114.81 105.79 78.83 60.24 76.76 68.12	0.000010 0.000024 0.000035 0.000060 0.000107 0.000144 0.000269 0.000413 0.000669 0.000711 0.000705 0.000714 0.000740 0.000782 0.000824 0.000841 0.000981	-102.80 -92.16 -70.20 -80.61 -80.84 -79.79 -84.27 -95.14 -126.23 -144.74 -153.56 -157.26 -159.49 -162.75 -164.81 -169.73 -165.53
850.	0.1	12.	C.63 1.35 2.12 3.20 4.87 6.50 9.51 12.65 19.13 25.13 31.62 37.19 44.09 49.93 56.47 62.24 74.75	0.007 0.015 0.024 0.036 0.055 0.073 0.107 0.142 0.214 0.282 0.354 0.417 0.494 0.559 0.632 0.658 0.839	0.000012 0.000033 C.000044 0.000079 0.000124 C.000161 0.000242 0.000307 0.000337 0.000311 0.000269 0.000241 0.000231 0.000204 0.00098 0.000113 0.000106	-93.66 -82.67 -98.33 -103.48 -111.42 -119.34 -137.81 -159.62 164.13 142.48 122.26 112.89 103.00 70.74 64.19 90.32 110.44	0.000022 0.000033 0.000037 0.000081 0.000126 0.000177 0.000302 0.000453 0.000666 0.000734 0.000763 0.000763 0.000784 0.000810 0.000843 0.000946 0.001098	-79.87 -96.58 -91.49 -89.67 -88.55 -88.27 -93.43 -103.70 -127.79 -141.27 -151.68 -155.75 -159.35 -162.83 -163.99 -170.14 -164.16

TABLE B-I. CONCLUDED.

RPM	μ	$ heta_{f o}$.	ω	ω/Ω	C _m /	σσ 1 Deg.	<u>C</u> ∕ασ ∂φ	l Deg.
			rad/sec		Mag.	Phs.	Mag.	Phs.
850.	0.26	1.	0.64 1.24 1.89 3.10 4.95 6.65 9.67 12.61 18.96 25.05 31.27 37.10 43.97 45.86 56.53 62.17 74.78	0.007 0.014 0.021 0.035 0.056 0.075 0.109 0.142 0.282 0.416 0.494 0.560 0.635 0.699 0.840	0.000012 0.000034 0.000057 0.000087 0.000107 0.000165 0.000209 0.000274 0.000287 0.000270 0.000259 0.000269 0.000151 0.000172 0.000180	23.04 -81.77 -71.62 -99.96 -108.58 -114.76 -132.22 -145.59 -175.04 160.66 139.52 126.15 110.16 94.15 78.25 77.63 64.21	0.000019 0.000022 0.000039 0.000060 0.000098 0.000122 0.000206 0.000295 0.000479 0.000624 0.000727 0.000782 0.000886 0.000912 0.000904 0.001057	-101.36 -104.63 -99.01 -91.16 -89.19 -89.79 -94.55 -97.32 -110.48 -124.16 -135.78 -143.90 -151.85 -157.20 -160.84 -167.05 -165.96
850.	0.26	12.	1.12 1.24 1.94 3.25 4.89 6.40 5.67 12.60 15.26 25.09 31.65 37.68 44.02 45.88 56.65 62.21 74.57	C. C13 O. O14 C. O22 O. C37 O. O55 O. C72 O. 1C9 O. 142 C. 217 C. 282 C. 357 O. 424 O. 496 C. 562 O. 638 O. 702 C. 840	0.000091 0.000025 0.000038 0.000072 0.000115 0.000146 0.000220 0.000278 0.000354 0.000376 C.000333 0.000290 0.000278 0.000289 0.000289 0.000118 0.000097 0.000097	178.13 -78.80 -92.25 -97.40 -108.86 -115.17 -131.86 -147.07 179.82 154.52 129.29 116.66 103.92 86.37 58.84 90.74 123.98	0.000061 0.000035 0.000043 0.000084 0.000126 0.000161 0.000273 0.000397 0.000654 0.000867 0.000867 0.000881 0.000925 0.000974 0.001011 0.001060 0.001198	-69.69 -89.07 -111.60 -91.87 -89.71 -93.04 -96.03 -100.45 -117.90 -133.14 -146.84 -153.09 -159.40 -162.77 -165.20 -172.83 -166.50

Figure B-1. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ_{0} = 0°.

Figure B-2. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ_0 = 0°.

Figure B-3. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, $\theta_{_{\rm O}}$ = 2°.

Figure B-4. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ_0 = 2°.

Figure B-5. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ_0 = μ^0 .

Figure B-6. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ = μ 0.

Figure B-7. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ_0 = 16°.

Figure B-8. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0, θ_0 = 16°.

Figure B-9. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0, θ_0 = 0°.

Figure B-10. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0, θ_0 = 0°.

Figure B-11. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0, θ_0 = 8°.

Figure B-12. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0, θ_0 = 8° .

Figure B-13. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0, θ_0 = 6° .

Figure B-14. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0, θ_0 = 6°.

Figure B-15. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.05, θ_0 = 1°.

Figure B-16. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.05, θ_0 = 1°.

Figure B-17. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.1, θ_0 = 1°.

Figure B-18. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.1, θ_0 = 1°.

Figure B-19. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0.1, θ = 12.

Figure B-20. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 550 RPM, μ = 0.1, θ_0 = 12°.

Figure B-21. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.15, θ_0 = 1°.

Figure B-22. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.15, θ_0 = 1°.

Figure B-23. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.2, θ_0 = 1°.

Figure B-24. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.2, θ_0 = 1°.

Figure B-25. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cycle Pitch. 850 RPM, μ = 0.2, θ_{0} = 12°.

Figure B-26. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.2, θ_0 = 12°.

Figure B-27. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.26, θ_{\odot} = 1°.

Figure B-28. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.26, θ_0 = 1°.

Figure B-29. Configuration 5, Hub Pitch Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.26, θ_{\odot} = 12°.

Figure B-30. Configuration 5, Hub Roll Moment Frequency Response to Longitudinal Cyclic Pitch. 850 RPM, μ = 0.26, θ_{0} = 12°.

Figure B-31. Configuration 5, Hub Pitch Moment Frequency Response to Lateral Cyclic Pitch. 850 RPM, μ = 0.1, θ_{0} = 1°.

Figure B-32. Configuration 5, Hub Roll Moment Frequency Response to Lateral Cyclic Pitch. 850 RPM, μ = 0.1, θ = 1°.

Figure B-33. Configuration 5, Hub Pitch Moment Frequency Response to Lateral Cyclic Pitch. 850 RPM, μ = 0.1, θ_0 = 12°.

.

Figure B-34. Configuration 5, Hub Roll Moment Frequency Response to Lateral Cyclic Pitch. 850 RPM, μ = 0.1, $\theta_{\rm O}$ = 12°.

Figure B-35. Configuration 5, Hub Pitch Moment Frequency Response to Lateral Cyclic Pitch. 850 RPM, μ = 0.26, $\theta_{\rm O}$ = 12°.

Figure B-36. Configuration 5, Hub Roll Moment Frequency Response to Lateral Cyclic Pitch. 850 RPM, μ = 0.26, $\theta_{\rm O}$ = 12°.

Figure B-37. Configuration 5, Hub Pitch Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.05, Nominal $\theta_{\rm o}$ = 2°.

Figure B-38. Configuration 5, Hub Roll Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.05, Nominal θ_{0} = 2°.

Figure B-39. Configuration 5, Hub Pitch Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.1, Nominal θ_{o} = 2°.

Figure B-40. Configuration 5, Hub Roll Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.1, Nominal θ_{0} = 2°.

Figure B-41. Configuration 5, Hub Pitch Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.1, Nominal θ_0 = 12°.

Figure B- μ 2. Configuration 5, Hub Roll Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.1, Nominal θ_0 = 12°.

Figure B-43. Configuration 5, Hub Pitch Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.26, Nominal θ_{o} = 1.

Figure B- μ 4. Configuration 5, Hub Roll Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.26, Nominal θ = 1°.

Figure B-45. Configuration 5, Hub Pitch Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.26, Nominal θ_0 = 12°.

Figure B-46. Configuration 5, Hub Roll Moment Frequency Response to Collective Pitch. 850 RPM, μ = 0.26, Nominal θ_0 = 12°.

Figure B-47. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0, $\theta_{\rm O}$ = 0°.

Figure B-48. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0, θ_{0} = 0°.

Figure B-49. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0, θ_{o} = μ^{o} .

Figure B-50. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0, $\theta_{_{\rm O}}$ = 4°.

Figure B-51. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, $\mu=0$, $\theta_0=8^\circ$.

Figure B-52. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0, θ = 8°.

Figure B-53. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.05, θ_0 = 12°.

Figure B-54. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.05, θ_{0} = 12°.

Figure B-55. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.1, θ_0 = 1°.

Figure B-56. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.1, θ_0 = 1°.

Figure B-57. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RFM, μ = 0.1, θ_{\odot} = 12°.

Figure B-58. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.1, $\theta_{_{\rm O}}$ = 12 $^{\rm O}$.

Figure B-59. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.26, θ_{0} = 1.

Figure B-60. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.26, θ_0 = 1°.

Figure B-61. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.26, θ_{0} = 12°.

Figure B-62. Configuration 5, Hub Roll Moment Frequency Response to Shaft Pitch. 850 RPM, μ = 0.26, θ_{0} = 12°.

Figure B-63. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{0} = 0°.

Figure B-64. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{o} = 0°.

Figure B-65. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{\odot} = 2°.

Figure B-66. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{0} = 2°.

Figure B-67. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, $\theta_{_{\odot}}$ = 40.

Figure B-68. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{o} = 4^{o} .

Figure B-69. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{o} = 8°.

Figure B-70. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ = 8°.

Figure B-71. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_o = 16°.

Figure B-72. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0, θ_{o} = 16 $^{\circ}$.

Figure B-73. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.1, θ_{0} = 1 $^{\circ}$.

Figure B-74. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.1, θ_{0} = 1 $^{\circ}$.

Figure B-75. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.1, θ_{o} = 12°.

Figure B-76. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, $\mu = 0.1$, $\theta_0 = 12^{\circ}$.

Figure B-77. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.26, θ_0 = 1°.

Figure B-78. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.26, θ_{o} = 1°.

Figure B-79. Configuration 5, Hub Pitch Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.26, θ_{0} = 120.

Figure B-80. Configuration 5, Hub Roll Moment Frequency Response to Shaft Roll. 850 RPM, μ = 0.26, θ_{\odot} = 12°.

APPENDIX C

HINGELESS ROTOR VIBRATION REDUCTION BY OSCILLATORY COLLECTIVE AND CYCLIC CONTROL APPLICATIONS

Summary

This appendix deals with the concept of vibration reduction by periodic variations of the primary controls. More specifically, it deals with the elimination of the 4P pitch, roll, and vertical vibration by 4P variations of collective and cyclic pitch. The investigations are based on experimental response data. As the tests were part of and added on to a larger hingeless rotor research program, the tunnel time available was rather limited, and only a few operating conditions with essentially zero tip path plane tilt were investigated. Some of them do not represent realistic flight conditions.

The following subjects are treated:

- Extraction of gain and lag characteristics.
- Calculation of control inputs required.
- Effect of vibration reduction on blade loads.

Altogether, five different trimmed operating conditions are investigated. They cover the advance ratio range from approximately μ = 0.2 to μ = 0.85. Generally speaking, the control inputs required for vibration elimination are smaller or of about the same magnitude as those used for the frequency-response tests. The resulting pitch chanbes vary from approximately 0.2 to 3 degrees.

With the exception of the μ = 0.851 case, for which the results are somewhat in doubt (the response tests to lateral cyclic pitch oscillations were run with a 0.3-degree different collective pitch than the reference nonoscillating case), the control inputs required for vibration reduction drastically

reduce the 3 and 5P and have only a minor effect on the 2P flexure flap bending moments. On the other hand, chord bending moments and blade torsion generally increase.

Evaluation of the test data revealed two types of shortcomings which should be avoided in future tests. First, the data given are based on a single test and have not been verified. Secondly, in some cases, the base-line and frequency-response tests were not run successively. In these cases, the steady-state collective and/or cyclic pitch used in both tests deviated slightly, resulting in an error of the calculated K- and τ -values. Numerical checks conducted for $\mu = 0.239$ indicate that the errors introduced are smaller than eight percent for K and less than ten degrees for τ . In spite of these shortcomings, it is believed that the results obtained accurately predict the general trends and that conclusions reached are valid.

From the limited data available, it appears that the approach is promising, especially for the low and medium advance ratio range. At the higher advance ratio ($\mu \sim 0.8$), the control inputs required for vibration reduction became larger. Further studies and tests covering both trimmed and partially trimmed flight conditions are suggested. The theoretical studies refer to the prediction of the rotor response characteristics; i.e., of the 18 gains and lag angles involved. The experiments would be an extension of the previous tests where attempts should be made to actually reduce the vibrations.

SYMBOLS

A, B quantities describing $\cos 4\Psi$ and $\sin 4\Psi$ components of actuator input for frequency response tests, volt, see Table C-II and Equation (1)

C, D quantities describing responses to A and B, in.-lb and lb, respectively, see Equation (1)

E, F, G, H blade loads due to unit actuator input, in.-lb/ volt, see Equation (13)

 K_1 . . . K_{18} gains of rotor response, see Table C-I

m calculated flapbending moment at 3.3 in., in.-lb,

 $m = m_0 + \Sigma m_{ns} \sin n\psi + \Sigma m_{nc} \cos n\psi$

M, L, T 4P vibratory pitching moments, rolling moments and thrust variations, in.-lb and lb, respectively; subscript e denotes existing vibrations to be compensated, subscript control describes effects of oscillatory control inputs.

 $M_e = M_s \sin 4\psi + M_c \cos 4\psi$

 $L_{e} = L_{s} \sin 4\psi + L_{c} \cos 4\psi$

 $T_e = T_s \sin 4\psi + T_c \cos 4\psi$

nominal collective pitch, degrees

 Θ_{o} , Θ_{c} , Θ_{c} oscillator inputs for collective, longitudinal and lateral cyclic pitch, volt

 $\Theta_{o} = \Theta_{os} \sin 4\Psi + \Theta_{oc} \cos 4\Psi$

 $\Theta_{s} = \Theta_{ss} \sin 4\Psi + \Theta_{sc} \cos 4\Psi$

 $\Theta_{c} = \Theta_{cs} \sin 4\Psi + \Theta_{cc} \cos 4\Psi$

 τ_1 . . . τ_{18} lag angles of response, degrees, see Table C-I

rotor angular velocity, sec-1

ψ

 Ω

azimuth position of master blade, rad

"Compensating Control Inputs" define those which reduce the existing 4P pitching moments, rolling moments and vertical forces of a given flight condition to zero.

INTRODUCTION

TABLE C-I

GAINS AND LAG ANGLES OF RESPONSE
TO OSCILLATORY CONTROL APPLICATIONS

	0 os	Θос	Θ ss	^Θ sc	Θ cs	Өсс
М	$K_1 \tau_1$	$K_2^{\tau_2}$	^K 3 ^τ 3	К ₄ т ₄	K ₅ τ ₅	^К 6 ^т 6
L	К ₇ τ ₇	^K 8 ^τ 8	^K 9 ^τ 9	K ₁₀ τ ₁₀	K _{ll} τ _{ll}	K ₁₂ τ ₁₂
Т	^K 13 ^τ 13	^K 14 ^τ 14	^K 15 ^τ 15	^K 16 ^τ 16	^K 17 ^τ 17	^K 18 ^τ 18

As indicated, K_3 is defined as the amplitude ratio M/Θ_{ss} and τ_3 is the lag angle of M with respect to Θ_{ss} . For convenience, the dimensions used are identical with those of the computer output, i.e., oscillator voltage for input, in-lb for M and L, lb for the thrust variation T. This means the dimensions of K_p are

^{*}After completion of the program the author learned that the concept investigated is not new and has been previously suggested for a three-bladed rotor. See Reference 4 which is a broad feasibility study on this subject.

K₁ through K₁₂

in.-lb/volt

K₁₃ through K₁₈

lb/volt

The phase angles τ_p are given in degrees, τ_p is positive if the response lags.

Although the investigations deal exclusively with 4P control variations, some general remarks may be in order. The general case involves sinusoidal collective and cyclic control variations with the frequency $n\Omega$ where n can be any positive number.

If n is an integer, the rotor excitations repeat themselves after each rotor revolution which means that the responses of each revolution are identical. This is true for any number of rotor blades but does not necessarily mean that all blades execute identical flapping motions. The latter is true only if n equals the number of rotor blades or is a multiple of the blade number. Only for these cases does a truly time independent response with invariable amplitude ratios K and lag angles τ exist.

CALCULATION OF GAINS AND LAG ANGLES

As for all response tests conducted, the oscillator input contained both $\sin 4\psi$ and $\cos 4\psi$ -components, always two amplitude ratios K and two lag angles τ are involved. Therefore, each time a set of two tests has to be evaluated. According to Table C-II, the input is characterized by the quantities A_1 B_1 A_2 B_2 and the response by C_1 D_1 C_2 D_2 .

If the rotor responds to cos $4\psi-excitations$ with the gain K_j and the lag angle τ_j (j = even number) and to sin $4\psi-excitations$ with K_i and τ_i (i = odd number), in- and output are related by the equations

TABLE C-II

INPUT AND OUTPUT NOTATIONS

Test	Input	Response
#1	$A_1 \cos 4\psi + B_1 \sin 4\psi$	$C_1 \cos 4\Psi + D_1 \sin 4\Psi$
#2	A ₂ cos 4Ψ + B ₂ sin 4Ψ	C ₂ cos 44 + D ₂ sin 44

In order to calculate the unknowns K $_i$ K $_j$ $^\tau{}_i$ and $^\tau{}_j$, a component analysis is used. The gains K $_i$ K are expressed as

$$K_{j} = \left(R_{j}^{2} + I_{j}^{2}\right)^{\nu_{2}}$$

$$K_{j} = \left(R_{j}^{2} + I_{j}^{2}\right)^{\nu_{2}}$$

$$(2)$$

Figure 1 shows the oscillatory pitching moments due to combined θ_{ss} and θ_{sc} control applications. The moments generated are presented by rotating vectors where $\cos 4\psi$ is positive to the right and $\sin 4\psi$ positive down. This means, that the vector positions shown refer to $\psi=0$. By definition, the quantities $R_{i,j}$ characterize the responses in phase with the excitation and $I_{i,j}$ those out of phase. The latter are positive if the response leads. As indicated, there are altogether four responses involved which are combined to the resultant M.

Inserting Equation (2) into Equation (1) leads to

$$R_{i} = \frac{A_{1}D_{2} - A_{2}D_{1}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$I_{i} = \frac{A_{1}C_{2} - A_{2}C_{1}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$\tan \bar{\tau}_{i} = |I_{i}/R_{i}| \quad 0 < \bar{\tau}_{i} < \pi/2$$
(3)

and

$$R_{j} = \frac{C_{1}B_{2} - B_{1}C_{2}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$I_{j} = \frac{B_{1}D_{2} - B_{2}D_{1}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$\tan \bar{\tau}_{j} = |I_{j}/R_{j}| \quad 0 < \bar{\tau}_{j} < \pi/2$$
(4)

In both cases

$$\tau = + \bar{\tau}$$
 for R > 0 I < 0

= $-\bar{\tau}$ R > 0 I > 0

= $\pi + \bar{\tau}$ R < 0 I > 0

= $\pi - \bar{\tau}$ R < 0 I < 0

Check of Calculated K $_{i}$ K $_{j}$ τ_{i} and $\tau_{j}\text{-Values}$

If so desired, Equation (1) can be used to check the calculated values of K_i K_j τ_i and τ_j . Splitting up these equations into $\sin 4\psi$ - and $\cos 4\psi$ -components leads to the following four expressions which must be satisfied

OSCILLATORY CONTROL INPUTS REQUIRED

The six oscillator inputs available have to be selected such that their responses satisfy the requirements, whatever they may be. By definition, the vibratory control inputs result in the following pitching moments, rolling moments and vertical forces $(n = \frac{1}{4})$:

$$M_{\text{control}} = + \Theta_{\text{os}} K_{1} \sin (n\Psi - \tau_{1}) + \Theta_{\text{oc}} K_{2} \cos (n\Psi - \tau_{2})$$

$$+ \Theta_{\text{ss}} K_{3} \sin (n\Psi - \tau_{3}) + \Theta_{\text{sc}} K_{4} \cos (n\Psi - \tau_{4}) \qquad (6)$$

$$+ \Theta_{\text{cs}} K_{5} \sin (n\Psi - \tau_{5}) + \Theta_{\text{cc}} K_{6} \cos (n\Psi - \tau_{6})$$

$$L_{\text{control}} = + \Theta_{\text{os}} K_{7} \sin (n\Psi - \tau_{7}) + \Theta_{\text{oc}} K_{8} \cos (n\Psi - \tau_{8})$$

$$+ \Theta_{\text{ss}} K_{9} \sin (n\Psi - \tau_{9}) + \Theta_{\text{sc}} K_{10} \cos (n\Psi - \tau_{10}) \qquad (7)$$

$$+ \Theta_{\text{cs}} K_{11} \sin (n\Psi - \tau_{11}) + \Theta_{\text{cc}} K_{12} \cos (n\Psi - \tau_{12})$$

$$T_{\text{control}} = + \Theta_{\text{os}} K_{13} \sin (n\Psi - \tau_{13}) + \Theta_{\text{oc}} K_{14} \cos (n\Psi - \tau_{14})$$

$$+ \Theta_{\text{ss}} K_{15} \sin (n\Psi - \tau_{15}) + \Theta_{\text{sc}} K_{16} \cos (n\Psi - \tau_{16}) \qquad (8)$$

$$+ \Theta_{\text{cs}} K_{17} \sin (n\Psi - \tau_{17}) + \Theta_{\text{cc}} K_{18} \cos (n\Psi - \tau_{18})$$

To reduce the existing vibrations, the moments and forces generated must counteract $M_{\rm e}$, $L_{\rm e}$ and $T_{\rm e}$, i.e.,

$$M_{\text{control}} = -M_{\text{s}} \sin 4\Psi - M_{\text{c}} \cos 4\Psi$$

$$L_{\text{control}} = -L_{\text{s}} \sin 4\Psi - L_{\text{c}} \cos 4\Psi$$

$$T_{\text{control}} = -T_{\text{s}} \sin 4\Psi - T_{\text{c}} \cos 4\Psi$$

$$(9)$$

Equations 6 through 10 lead to the following six linear equations for the unknowns θ_{os} , θ_{oc} , θ_{ss} , θ_{cs} and θ_{cc} .

$$\begin{bmatrix} +K_{1} \cos \tau_{1} & +K_{2} \sin \tau_{2} & +K_{3} \cos \tau_{3} & +K_{4} \sin \tau_{4} & +K_{5} \cos \tau_{5} & +K_{6} \sin \tau_{6} \\ -K_{1} \sin \tau_{1} & +K_{2} \cos \tau_{2} & -K_{3} \sin \tau_{3} & +K_{4} \cos \tau_{4} & -K_{5} \sin \tau_{5} & +K_{6} \cos \tau_{6} \\ +K_{7} \cos \tau_{7} & +K_{8} \sin \tau_{8} & +K_{9} \cos \tau_{9} & +K_{10} \sin \tau_{10} & +K_{11} \cos \tau_{11} & +K_{12} \sin \tau_{12} \\ -K_{7} \sin \tau_{7} & +K_{8} \cos \tau_{8} & -K_{9} \sin \tau_{9} & +K_{10} \cos \tau_{10} & -K_{11} \sin \tau_{11} & +K_{12} \cos \tau_{12} \\ +K_{13} \cos \tau_{13} & +K_{14} \sin \tau_{14} & +K_{15} \cos \tau_{15} & +K_{16} \sin \tau_{16} & +K_{17} \cos \tau_{17} & +K_{18} \sin \tau_{18} \\ -K_{13} \sin \tau_{13} & +K_{14} \cos \tau_{14} & -K_{15} \sin \tau_{15} & +K_{16} \cos \tau_{16} & -K_{17} \sin \tau_{17} & +K_{18} \cos \tau_{18} \end{bmatrix} \begin{bmatrix} \Theta_{os} \\ \Theta_{oc} \\ \Theta_{oc} \\ \Theta_{cs} \\ -T_{s} \\ \Theta_{cs} \\ -T_{c} \end{bmatrix}$$

EFFECT ON BLADE LOADS

The objective of the following investigations is to determine the effect of the compensating control input on the blade loads, i.e., on

- flapbending at 3.3 in.
- flapbending at 13.15 in.
- chordbending at 2.4 in.
- torsion at 9.28 in.

In all cases the 2 to 5P content of the loads is of interest. The first task is to determine, from the response tests, the contribution of each of the six possible 4P control inputs to these loads. Again, two sets of data are required. The vibratory control applications used and the resulting nth harmonic of the load considered are written as follows:

If nonlinear effects are excluded, the n per rev load variation due to unit control application in phase with

(a)
$$\cos 4\Psi$$
 amounts to $(E_n \cos n\Psi + F_n \sin n\Psi)$
(b) $\sin 4\Psi$ $(G_n \cos n\Psi + H_n \sin n\Psi)$ (12)

In these expressions

$$E_{n} = \frac{B_{2}C_{n1} - B_{1}C_{n2}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$F_{n} = \frac{B_{2}D_{n1} - B_{1}D_{n2}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$G_{n} = \frac{A_{1}C_{n2} - A_{2}C_{n1}}{A_{1}B_{2} - A_{2}B_{1}}$$

$$H_{n} = \frac{A_{1}D_{n2} - A_{2}D_{n1}}{A_{1}B_{2} - A_{2}B_{1}}$$
(13)

If $\theta_{\xi s}$, $\theta_{\xi c}$ (ξ = o, s, c) denote the vibratory control inputs used, the increments of the n harmonic of the load considered are

NUMERICAL INVESTIGATIONS

General

The methods outlined in the previous sections are applied to the following five operating conditions for which test data were available

TABLE C-III. OPERATING CONDITIONS INVESTIGATED

μ	θ nominal	α	c _T /σ
0.191	12°	- 5°	0.102
0.239	14	- 5	0.028
0.443	<u>)</u>	- 5	0.011
0.849	10	- 5	-0.005
0.851	4	- 5	-0.013

In all cases the shaft angle of attack is $\alpha=-5^\circ$ and the rotor is trimmed so that essentially $a_1=b_1=0$. As can be seen, the tests cover the advance ratio range from approximately $\mu=0.2$ to $\mu=0.85$. The case $\mu=0.191$ is characterised by $\theta_{nominal}=12^\circ$ and $C_1/\sigma=0.102$, the latter figure indicates a relatively high specific loading. In contrast, at the advance ratios $\mu=0.849$ and 0.851 the rotor is practically unloaded, i.e., no steady lifting force is generated. The 4P-vibrations associated with the various test conditions are listed in Table C-IV. The moments are given in in.-1b and the vibratory forces in 1b.

It should be noted that there was no instrumentation to measure the vibratory pitching and rolling moments. These moments were obtained by properly adding up the flapbending moments of the four blades at 3.3 in. which were measured separately. This means, the effects of the in-plane forces, vertical shear forces and blade torsion have been ignored.

TABLE C-IV. VIBRATORY MOMENTS AND FORCES TO BE COMPENSATED

ц	0.191	0.239	0.443	0.849	0.851
Ms	0.3805	-1.7207	2.6149	20.0483	3.5349
M _c	-0.5301	-0.4113	-0.5208	-4.5724	-6.4341
Ls	12.2080 1.3725 -6.7626 9.4647		9.4647	-10.5154	
L _c	2.2180	-1.9145	-3.7399	-31.1214	-17.2626
Ts	0.1979	-0.1089	0.0304	1.9247	0.8838
T _c	-0.2013	-0.0865	0.0556 -0.0048		-0.8626

Gains and Lag Angles

The rotor response characteristics were calculated by applying equations (2, 3, 4) to the test data available. The results obtained are listed in Table C-V. As pointed out previously, the values given include the effect of the actuator used, and no effort was made to compare the experiments with theory. Nevertheless, some general statements can be made. It is obvious that for μ = 0, the gain and lag angle of the responses to $\sin 4\psi$ - and $\cos 4\psi$ -type control applications must be the same. For $\mu \neq 0$ this is no longer true, and one would expect that the spread between K.K. and T.T. (see equations (3), (4)) widens with increasing advance ratio. Further, according to classical rotor theory which neglects blade stall, the nominal collective pitch setting has no effect on the frequency response characteristics.

Generally speaking, the K K and $\tau_i \tau_j$ values of Table C-V differ not very much. It appears, however, that at higher advance ratios (compare columns for μ = 0.849 and 0.851) the collective pitch has a larger effect than anticipated. It is also possible that the error of the baseline data described in the Critique section may play a role.

Oscillator Inputs Required

Equation (10) was used to calculate the inputs required to

- (a) generate unit amplitudes of pure pitching moments, rolling moments and vertical forces and
- (b) compensate the existing vibrations

The results are given in Tables C-VI and C-VII. Inspection of these tables shows that, as to be expected, the oscillatory inputs required for vibration reductions generally increase with increasing advance ratio. Surprisingly, the rotor collective pitch setting seems to play a larger role than the steady lift generated. See also Table C-VIII which summarizes the results obtained and lists the operating conditions investigated in the order of decreasing vibrations. The first column shows the relative magnitude of the vibratory moments generated and the last column the approximate amplitude of the blade pitch variation required to compensate the vibrations. The amplitude of the pitch variation produced per volt oscillator input changes with the control loads and the type of control $(\theta_{_{\rm O}}, \, \theta_{_{\rm S}}, \, \theta_{_{\rm C}})$ used. Therefore, the conversion factor varies and the last column of Table C-VIII is given only to indicate the approximate amplitudes involved.

With one exception, the vibratory control applications required are smaller than those used for the frequency response tests. The exception is the case with the highest vibration level encountered for which the compensating controls required are approximately 15 to 20% higher than the inputs used for the 4P frequency response tests. It should be kept in mind, however, that this operating condition is somewhat unrealistic in that at μ = 0.849 an unloaded rotor will normally not be operated with 10° collective pitch.

Blade Loads

The calculation of the effect of the compensating control inputs on the blade loads is based on equations (13) and (14) and the figures listed in Table C-VII. The first step is to calculate, for each specific case, the quantities E_n through H_n (n = 2, 3, 4, 5). See Tables C-IX and C-X which refer to μ = 0.191 and μ = 0.849, respectively. They list the sin n Ψ - and cos n Ψ -components of the various loads due to unit control application. The tables show, for instance, that at the advance ratio μ = 0.191, a +1 volt variation of E_n produces 3P chordwise bending moments of the magnimagnitude

$(-89.576 \sin 3\psi + 38.1540 \cos 3\psi) \text{ in-lb}$

As the control inputs required for vibration reduction have been previously calculated, see Table C-VII, their effects on the blade loads can be determined by adding up the various contributions. The reader is referred to Table C-XI which applies to the flapbending moment at 3.3 in. for the case $\mu=0.849$. Given are the original loads without vibratory control application, the individual contributions and the sum. The last column shows the amplitudes without and with compensating control input. A summary of the loads is represented in Table C-XII. Generally speaking, chordbending, blade torsion and the 4P flapbending moments of the root flexure increase with increasing advance ratio. The 3 and 5P flapbending moments of the flexure are, by nature, reduced and the 2P flapbending moments are least affected. From the limited data available, it appears that the 4P chordwise-and 5P torsion moments may be the critical loads.

As mentioned previously, for simplicity it was assumed that the pitching and rolling moments are solely caused by the flapbending moment of the root flexure which were individually measured and properly combined by a sincos-potentiometer. This means, the only source for the troublesome 4P moments in the nonrotating system are the 3 and 5P flapbending moments at 3.3 in. For four identical blades it follows that elimination of the 4P pitching and rolling moments requires that the sin 3Ψ -, cos 3Ψ -, sin 5Ψ - and cos 5Ψ -components of the flapbending moments at 3.3 in. are reduced to zero. As the four blades behave differently, this ideal condition will practically never be fulfilled.

In the preceding paragraphs the flapbending moment of a specific blade with consideration of the compensating control input has been calculated. To a certain extent, these predicted loads can be used as an independent check. As an example, the case $\mu=0.849$ is treated. According to Table C-IV the amplitudes of the 4P pitching and rolling moments to be compensated are

$$M = 20.56 \text{ in-lb}$$
 (15)
 $L = 32.52 \text{ in-lb}$

The calculated 3 and 5P flapbending moments with consideration of the compensating control input amount to (see Table C-XI),

$$m_{3s} = 0.6233 \text{ in-lb}$$
 $m_{3c} = -1.1833$
 $m_{5s} = -1.9266$
 $m_{5c} = 0.3099$

(16)

The amplitudes of the resulting 4P pitching and rolling moments are

$$M = 3.14 \text{ in-lb}$$

 $L = 5.91 \text{ in-lb}$ (17)

Comparison of equations (15) and (17) shows that the vibratory pitching moment is reduced to approximately 15% and the rolling moment to approximately 18% of its original value. This indicates that the various blades behave differently and that the goal of zero 4P pitch-roll and vertical vibrations is achieved by cancellation of the effects of the four blades.

EXPLORATORY INVESTIGATIONS ON THE ORIGIN OF THE 3P AND 5P VIBRATIONS

For the lowest advance ratio investigated, i.e., for the operating condition*

$$\mu = 0.191$$

$$\theta_{0} = 12^{0}$$

$$\theta_{s} = -6.7^{0}$$

$$\theta_{c} = 4.2^{0}$$

$$\alpha = -5^{0}$$
(18)

without oscillatory control input, numerical studies have been conducted to determine whether the amplitudes of the 3P and 5P flapbending moments at 3.3 inches can be predicted without elaborate wake calculations. The case under consideration has a relatively high 5P vibration level. As the classical rotor theory with uniform induced flow gives, for low advance ratios, no appreciable 5P flapping excitations, the consideration of nonuniform induced flow becomes mandatory. The induced flow data used for the present investigation are based on a combined momentum and blade element lift theory which was developed under a Lockheed-sponsored research program. It is based on a loaded disc, i.e., on an infinite number of blades, and was originally devised for performance and control investigations at low advance ratios. The theory has been successfully applied to control studies, but its use for vibration investigations is new and unproven.

In principle, the theory follows the air masses as they travel across the rotor disc. At each point of the disc the change in the induced flow is calculated, taking into account both the original loading and the reduction of this loading by the induced flow. A computer program developed gives for the

^{*}The quantities $\theta_{\rm o}$, $\theta_{\rm s}$, $\theta_{\rm c}$ denote here the conventional collective and cyclic pitch.

various aerodynamic loads, such as those due to angle of attack, collective or cyclic pitch, a closed form solution for the induced flow. The program calculates the flapping moments generated by the induced flow and the work done on mode shapes for flapbending. The results are Fourier-analyzed (see Reference 5).

The reader is referred to Figures C-2 and C-3 which show the induced flow due to collective pitch, longitudinal and lateral cyclic pitch, and shaft angle-of-attack for μ = .191. Figure C-2 gives the fore-aft distribution at the rotor center (ψ = 0, 180°), and Figure C-3 gives the lateral distribution at the center (ψ = 90, 270°). The graphs shown present the inflow ratio λ due to the induced flow; λ is positive up. All data presented refer to unit radian angles.

Using an existing computer program*, which takes into account the basic loading of the operating condition investigated and the effects of the non-uniform induced flow, the vibratory flap-bending moments at 3.3 inches have been calculated. The theory, which takes into account two flap-bending modes and uses steady-state aerodynamics, predicts fairly well the amplitude of the 5P moment (measured value ±3.5 in-lb, calculated value ±4.7 in-lb), but grossly overestimates the 3P moment (measured value ±4.4 in-lb, calculated value ±27 in-lb). Part of the difference may be explained by looseness in the control system. The following pitch variations in the rotating system were measured:

However, this effect is probably not large enough to account for the discrepancy. It appears, therefore, that the theory used exaggerates the 3P excitations of the induced flow.

^{*}The author gratefully acknowledges the assistance of R. E. Donham who developed the program used and conducted the numerical investigations.

TABLE C-V

GAINS AND LAG ANGLES DERIVED FROM EXPERIMENTS

	μ = 0	.191	μ = (1.239	μ = ().443	μ = 0.849		μ = 0.851	
P	K p	τp	K	τ p	K P	τ	K p	τp	K	τ p
1	5.617	42.3	1.099	125.6	2.236	120.5	4.798	72.0	4.094	116.5
2	6.126	44.0	1.141	149.1	2.791	129.3	4.787	72.6	3.487	135.6
3	17.571	-9.6	52.416	-30.1	42.237	- 28.7	18.537	- 19.8	43.319	-5.1
λ ₄	26.019	-45.4	47.991	- 37.3	40.073	-30.1	20.329	-41.5	37.081	12.7
5	30.696	155.7	59.416	182.9	45.186	188.4	33.002	183.4	26.170	214.2
6	32.505	181.7	77.408	193.2	61.144	180.8 "	21.085	180.0	38.661	184.5
7	2.856	136.0	4.246	81.9	8.166	86.5	2.472	102.1	10.097	93.1
8	1.507	98.4	5.083	67.1	8.077	66.9	3.412	144.7	7.979	62.9
9	35.384	213.4	59.420	198.8	43.846	181.4	44.506	200.5	48.081	176.2
10	41.674	185.8	51.280	198.6	39.383	195.7	48.473	201.0	40.850	187.7
11	45.953	116.6	76.875	108.3	78.512	101.8	67.268	134.4	88.540	94.7
12	61.589	131.5	86.361	99.3	80.995	95.7	61.288	141.5	90.934	95.3
13	6.879	45.6	5.420	51.4	8.928	39.2	8,188	35.8	9.340	38.5
14	7.211	43.7	6.195	46.4	8.999	35.9	8.906	36.1	9.651	35.6
15	6.635	245.2	4.275	205.9	2.571	195.2	5.976	215.0	3.623	184.0
16	6.033	218.3	3.962	208.1	3.123	188.7	4.775	229.5	1.977	185.4
17	13.000	127.3	7.596	94.3	7.632	76.7	13.261	133.1	11.188	86.9
18	10.057	128.6	8.176	97.4	8.381	92.2	7.953	126.3	11.101	90.7

TABLE C-VI
OSCILLATOR INPUTS REQUIRED (VOLT) TO GENERATE PURE sin 44- AND cos 44- COMPONENTS
OF PITCHING MOMENTS, ROLLING MOMENTS AND VERTICAL FORCES

μ	M control	θos	θ _{oc}	θ s s	θ sc	θ cs	θ. cc
0.191	Ms, control = 1 Mc, control = 1 Ls, control = 1 Cc, control = 1 Ts, control = 1 Tc, control = 1	+0.0143 +0.0117 -0.0177 +0.0042 +0.0922 -0.1044	-0.0485 -0.0123 -0.0236 -0.0071 +0.1380 +0.1164	+0.0508 -0.0055 -0.0113 -0.0209 -0.0490 +0.0123	+0.0290 +0.0283 +0.0052 -0.0200 -0.0302 -0.0210	-0.0296 -0.0219 -0.0169 +0.0003 +0.0252 +0.0235	+0.0241 -0.0098 +0.0073 -0.0147 -0.0232 +0.0081
0.239	Ms, control = 1 Mc, control = 1 Ls, control = 1 Lc, control = 1 Ts, control = 1 Tc, control = 1	+0.0028 +0.0109 -0.0023 +0.0128 +0.1356 -0.1436	-0.0069 +0.0028 -0.0108 -0.0029 +0.1337 +0.1085	+0.0299 -0.0096 -0.0056 -0.0245 -0.0053 +0.0168	+0.0219 +0.0206 +0.0203 -0.0243 -0.0155 +0.0070	-0.0111 -0.0154 -0.0167 -0.0008 +0.0072 +0.0091	+0.0211 -0.0070 +0.0078 -0.0210 -0.0128 +0.0100
0.443	Ms, control = 1 Mc, control = 1 Ls, control = 1 Lc, control = 1 Ts, control = 1 Tc, control = 1	-0.0019 +0.0053 -0.0057 +0.0120 +0.1020 -0.0714	-0.0053 +0.0011 -0.0067 -0.0028 +0.0732 +0.0941	+0.0255 -0.0023 -0.0021 -0.0155 -0.0088 +0.0071	+0.0116 +0.0331 +0.0253 -0.0084 -0.0094 -0.0108	-0.0069 -0.0168 -0.0135 -0.0093 -0.0018 +0.0171	+0.0145 -0.0004 +0.0126 -0.0112 -0.0138 -0.0024

TABLE C-VI

OSCILLATOR INPUTS REQUIRED (VOLT) TO GENERATE PURE sin 44- AND cos 44- COMPONENTS

OF PITCHING MOMENTS, ROLLING MOMENTS AND VERTICAL FORCES (Continued)

μ	$^{ m M}_{ m control}$	e _{os}	θ _{oc}	θ _{ss}	^θ sc	θ cs	θ cc
0.849	Ms, control = 1 Mc, control = 1 Ls, control = 1 Lc, control = 1 Ts, control = 1 Tc, control = 1	+0.0049 +0.0149 -0.0124 +0.0052 +0.1050 -0.0772	-0.0240 -0.0149 -0.0137 -0.0056 +0.0698 +0.1079	+0.0338 -0.0109 -0.0120 -0.0072 -0.0211 -0.0034	+0.0179 +0.0487 +0.0074 -0.0121 +0.0037 -0.0305	-0.0229 -0.0271 -0.0118 +0.0006 +0.0017 +0.0221	+0.0182 -0.0222 +0.0024 -0.0123 -0.0214 +0.0031
0.851	Ms, control = 1 Mc, control = 1 Ls, control = 1 C, control = 1 Ts, control = 1 Tc, control = 1	+0.0001 +0.0082 -0.0080 +0.0113 +0.1016 -0.0682	-0.0081 -0.0055 -0.0107 -0.0102 +0.0599 +0.0998	+0.0191 -0.0126 -0.0043 -0.0069 -0.0087 +0.0034	+0.0122 +0.0290 +0.0117 +0.0028 +0.0109 -0.0143	-0.0077 -0.0135 -0.0057 -0.0137 -0.0130 +0.0189	+0.0109 -0.0055 +0.0098 -0.0037 -0.0091 -0.0058

TABLE C-VII

OSCILLATOR INPUT REQUIRED (VOLT) TO COMPENSATE EXISTING 4P- VIBRATIONS

ļТ	0.191	0.239	0.443	0.849	0.851
θos	0.1683	0.0394	0.0146	0.0457	0.0300
θ _{οc}	0.3121	0.0224	-0.0490	0.2354	-0.2726
θ ss	0.1746	0.0090	-0.1400	-0.7980	- 0.3275
θsc	-0.0133	-0.0293	0.1273	-0.5881	0.3498
θ _{cs}	0.2052	-0.0026	-0.1176	0.4610	- 0.3549
всс	-0.0651	-0.0180	0.0056	-0.8308	-0.0428

TABLE C-VIII
VIBRATION SUMMARY

Rel. Vibration Level	μ	0 nominal	C _T /σ	Ampl. of Pitch Variation
1	0.849	10°	-0.005	√3.0°, 1. C
0.58	0.851	<i>j</i> t	-0.013	2.0
0.32	0.191	12	0.102	0.8
0.21	0.443	4	0.011	0.5
0.08	0.239	4	0.028	0.2

Decreasing Vibration Level

ELLECTO Of									
μ = 0.191	Input	sin 2Ψ	cos 2Ψ	sin 3Ψ	cos 3Ψ	sin 4Ψ	cos 4Ψ	sin 5Ψ	cos 5Ψ
	θos	- 0.3732	0.9727	- 1.7330	2.8297	0.5884	1.3219	- 0.8755	- 0.0181
	θος	0.6605	0.3153	- 1.6473	- 1.8176	- 1.5598	0.6031	- 0.4063	- 0.9808
	θ	-10.6961	- 1.2822	2.0571	7.4429	4.0126	- 4.9230	-13.2025	- 8.4941
Flapbending 3.3 in.	θ _{sc}	1.9075	2,4495	- 7.1607	- 1.5046	3.6520	5.4705	16.2352	- 6.8083
J.J	θ _{cs}	-14.1317	- 0.7444	- 4.0295	13.5666	4.8735	8.5207	21.5007	- 3.6205
	θсс	- 5.1742	- 6.4399	- 13.8885	- 2.1978	- 7.2511	2.4465	15.6010	21.0344
	θ _{os}	- 1.9186	- 0.4614	- 0.6867	- 6.5606	- 1.5001	- 4.8396	- 2.0445	- 2.6920
	θoc	1.6104	- 1.8246	7.2836	- 0.1708	5.7483	- 1.1691	3.5061	- 2.3027
	θ ss	- 5.7613	2.9513	- 8.3289	9.3671	- 2.1708	7.5778	27.1720	20.4354
Flapbending	θsc	- 2.7539	- 3.2486	- 1.2320	- 13.5790	- 7.8128	- 2.8441	-34.3703	11.9524
113.17 111.	θcs	- 9.4182	- 0.3077	- 10.4959	- 16.3593	-13.4772	-10.6060	-51.8562	4.4935
	θας	0.6383	- 8.0975	22.2180	- 6.4321	9.1711	- 0.5946	-29.4691	-49.2371
							<u> </u>	<u> </u>	

TABLE C-IX EFFECTS OF UNIT 4P OSCILLATOR INPUT ON BLADE BENDING AND TORSION MOMENTS (in-1b). μ = 0.191 (Continued)

μ = 0.191	Input	sin 2Ψ	cos 2Ψ	sin 3Ψ	. сов 3Ψ	sin 4Ψ	cos 44	sin 5Ψ	cos 5Ψ
	θ os	- 0.1722	1.5960	8.2350	- 58.3582	8,4551	4.7643	12.0548	4.7015
	θ oc	- 0.5554	- 1.9287	61.6575	13.2018	- 0.9949	5.2212	- 7.0784	14.2534
d	θ s s	- 7.0075	11.5854	- 89.5760	38.1540	3.2585	8.1847	-63.4133	-38.7459
Chordbending 2.4 in.	θ _{sc}	9.9071	- 0.0388	25.2326	-130.9533	-25.2420	1.3678	71.9836	-45.2782
	θ _{cs}	-17.3833	20.4928	0.2991	-117.7886	- 4.6116	-13.9074	92.1914	-50.9290
	θсс	- 5.9458	-11.0118	155.9907	26.1001	37.5880	49.6477	91.3875	63.7195
	θ _{o,s}	- 0.0854	0.0591	- 0.0999	- 0.2262	- 0.8905	0.2661	- 0.1276	- 0.2163
·	θ _{oc}	0.1356	- 0.0977	0.2233	- 0.1390	- 0.2430	- 1.0266	0.3094	0.0139
	θ _{ss}	- 0.5359	0.3624	- 0.4745	- 1.5522	0.5805	0.5692	15.8582	6.5678
Torsion 9.28 in.	Θ s c	- 0.1426	- 0.1260	1.1926	0.0700	- 1.3022	- 0.1040	-14.3401	11.1612
	θ _{cs}	- 0.7923	0.1791	- 2.1637	- 3.4956	- 1.1513	- 1.1340	-25.2376	12.7451
	θсс	0.0075	- 1.0066	3.3472	- 2.8017	- 0.6015	- 1.0076	-21.2855	-21.3175

TABLE C-X EFFECTS OF UNIT 4P OSCILLATOR INPUT ON BLADE BENDING AND TORSION MOMENTS (in-1b). μ = 0.849

μ = 0.849	Input	sin 2Ψ	cos 2Ψ	sin 3Ψ	cos 3Ψ	sin 44	cos 44	sin 5Ψ	cos 5Ψ
	θos	0.3815	2.6028	- 1,1212	+ 1.9467	+ 0.0022	1.6252	- 0.4640	+ 0.2286
	θος	- 0.7265	- 0.7428	- 2.1170	- 0.9082	- 1.7646	0.1744	+ 0.4336	- 0.2014
	θ	-20.1796	- 7.1252	0.4843	10.9746	9.2290	- 1.4705	-12.1221	-16.4408
Flapbending 3.3 in.	θsc	1.4455	-18.6069	-11.8793	0.8771	1.9670	9.2946	+18.4710	-13.1116
	θ _{cs}	-15.0717	19.2091	- 1.7568	+ 13.3006	4.4390	13.0827	24.2022	-18.4700
	θсс	-11.0041	-12.5052	-12.2451	- 3.9250	-11.5818	6.8481	17.1269	+18.2863
	θ _{os}	- 3.1446	0.01156	+ 0.0644	- 6.4289	0.5673	- 5.5966	- 2.6912	- 5.2806
	θос	0.4488	- 3.3139	+ 5.7587	- 0.6033	7.2213	1.7289	4.4109	- 1.9638
	θ _{ss}	-13.1131	- 1.6401	- 9.4439	11.4718	2.7493	1.6368	20.3552	30.4485
Flapbending 13.15 in.	θ	- 3.1093	-10.4663	-13.7168	- 7.3647	- 0.7250	4.6008	-31.6355	23.4534
	θcs	-15.3541	3.9011	-20.8842	- 14.1583	- 4.0272	- 4.6816	-53.1766	36.9531
	θας	- 3.7738	-10.2279	7.2742	- 11.8491	2.4534	1.0036	-30.9619	-33.3918

TABLE C-X EFFECTS OF UNIT 4P OSCILLATOR INPUT ON BLADE BENDING AND TORSION MOMENTS (in-lb). μ = 0.849 (Continued)

μ = 0.849	Input	sin 2Ψ	cos 2Ψ	sin 3Ψ	cos 3Ψ	sin 4Ψ	cos 4Ψ	sin 5Ψ	cos 5Ψ
	θos	- 5.2318	5.1653	18.4997	- 66.4765	8.5046	- 2.0555	6.0027	8.6689
	θoc	- 0.3311	2.6008	55.9170	15.3823	8.5503	12.5308	-10.1401	4.6381
	θ ss	- 23.2604	3.6649	- 91.7693	7.1537	-12.9172	- 5.1116	-13.8450	7.4174
Chordbending 2.4 in.	θ. sc	4.7043	- 8.0015	-37.9514	- 71.7419	6.5301	-16.8130	- 4.2184	-12.8505
	θœs	-25.0714	15.3009	-59.7492	-177.5673	41.5059	-80.7110	- 5.8153	-27.4052
	θ cc	- 2.0059	- 7.7253	77.1483	- 7.0902	68.5358	26.5134	7.7451	-28.5566
	θ _{os}	0.1891	0.0544	- 0.2460	0.5652	- 1.0733	0.2665	0.1925	0.0465
	θ _{oc}	0.0788	- 0.1531	- 0.1960	- 0.2328	- 0.6076	- 1.0110	0.0102	0.01822
	θ ss	0.4975	0.2685	- 0.9271	- 1.5838	- 0.0498	1.4606	15.6374	13.1496
Torsion 9.28 in.	θ sc	- 0.6976	- 0.7498	3.0700	- 1.4345	- 1.0039	0.9952	-11.8807	15.1709
	θ _{cs}	0.8756	- 0.0250	- 1.5421	- 0.9968	- 1.9762	1.0423	-14.6088	21.3914
	θcc	- 0.8745	- 0.9375	2.1226	- 2.5792	- 1.3255	- 1.2713	-17.9657	-13.8937

n		cos nΨ	sin nΨ	Amplitude
2	W/O Vibration Control Contribution of θ	- 92.7652 - 0.0559	17.2338 - 0.1536	94.35
: :	θ _s	16.6165	15.2507	
	θ _c	19.2393	2.2002	
	TOTAL	-56.9653	34.5311	66.61
3	W/O Vibration Control Contribution of θ	- 1.1732 - 0.1248	-14.7883 - 0.5496	14.83
1	θ s	- 9.2715	6.5928	
	θ _c	9.3862	9,3684	
	TOTAL	- 1.1833	0.6233	1.34
14	W/O Vibration Control Contribution of θ	- 0.1403 0.1153	- 3.5448 - 0.4152	3,55
	θ _s	- 4.2868	- 8.5191	
	$\theta_{\mathbf{c}}$	0.3317	11.6713	
	TOTAL	- 3.9801	- 0.8078	4.06
5	W/O Vibration Control Contribution of θ_0	3.2312 - 0.0370	2.2658	3.95
	e _s	20.8199	- 1.1807	
	θ _c	-23.7042	- 3.0926	
	TOTAL	0.3099	- 1.9266	1.95

TABLE C-XII

SUMMARY OF OSCILLATORY BLADE LOADS (IN-LB) WITHOUT AND WITH VIBRATION COMPENSATION

Operating Condition		р.	Flapbending at 3.3 in.				Flapbending at 13.15 in.			Chordbending at 2.4 in.				Torsion at 9.28 in.				
			n = 2	n = 3	n = 4	n = 5	n = 2	n = 3	n = 4	n = 5	n = 2	n = 3	n = 4	n = 5	n = 2	n = 3	n = 4	n = 5
Without Oscillatory Control Input	ſ	0.191	30.1	4.4	1.6	3.5	16.0	1.9	3.0	4.3	21.0	2.2	8.3	19.4	1.2	0.7	0.4	0.6
	- 1	0.239	10.5	0.6	0.2	0.9	5.3	1.7	0.9	1.2	4.6	2.0	11.0	2.6	0.5	0.2	0.3	0.2
	┥	0.443	16.4	2.7	0.1	1.6	9.2	3.2	0.4	3-5	. 9.4	1.7	10.5	7.7	0.9	0.6	0.3	0.2
		0.849	94.4	14.8	3.6	4.0	55.9	3.6	9.5	5.9	31.5	31.4	13.1	14.6	6.6	4.1	0.9	0.3
	l	0.851	18.9	8.6	1.5	3.1	17.7	4.6	3.4	5.8	17.4	10.9	18.9	10.7	3.3	2.4.	0.7	0.4
	ſ	0.191	29.6	1.1	2.9	0.4	16.1	4.4	5.0	3.0	19.2	22.7	10.9	3.9	1.0	1.2	0.4	4.5
		0.239	10.3	0.4	0.3	0.7	5.3	1.9	0.8	1.5	4.7	3.0	11.5	2.1	0.5	0.3	0.3	1,2
With Oscillatory Control Input	₹	0.443	12.3	1.3	1.3	1.1	7.5	2.7	0.5	1.3	7.7	3.5	13.6	8.7	0.8	1.4	1.4	1.7
		0.849	66.6	1.3	4.1	2.0	41.7	1.3	2.4	2.1	15.7	68.8	38.9	22.3	6.5	4.4	0.8	3.1
	Ĺ	0.851	20₁2	2.4	6.5	4.1	16.5	3.8	7.0	2.5	.17.5	13.6	75.6	7.0	2.3	4.0	0.7	3.5
		<u> </u>	<u> </u>					L					1		•			

Figure C-1. Vector Diagram Showing Pitching Moment Due to $\theta_{\rm ss}$ and $\theta_{\rm sc}$ Control Applications.

Figure C-2. Fore-Aft Distribution of Induced Flow per Unit Radian. μ = 0.191.

Figure C-3. Lateral Distribution of Induced Flow per Unit Radian. μ = 0.191.