

Lista 7 - Mudança de Variáveis

1) Calcule a integral de $f(x,y)=(x+y)^2sen^2(x-y)$ sobre a região $D:|x|+|y|\leq \pi$ utilizando a mudança de variável u=x+y e v=x-y. O esboço da região D está representado na figura 1.

Dica: Utilize a relação trigonométrica $sen^2x = \frac{1-\cos 2x}{2}$.

R.: $\pi^4/3$.

- 2) Use a mudança de variáveis u = xy e v = y/x, e calcule a integral dupla $\iint_D (x^2 + 2y^2) dA$, sendo D a região do plano xy no primeiro quadrante, delimitada pelas curvas xy = 1; xy = 2; y = x e y = 2x. **R.:** 15/8.
- 3) Calcule $\iint_D xy^3 dA$ da região D do primeiro quadrante, limitada por y=x; y=3x; xy=1 e xy=4. O esboço da região D está representado na figura 2. Use a mudança de variáveis u=y/x e v=xy.

 R.: 21.

- 4) Use coordenadas polares para calcular as seguintes integrais duplas:
 - a) $\iint_D (x^2 + y^2)^2 dA$, onde D é a região dada por $x^2 + y^2 \le 4$, com $x \ge 0$; \mathbf{R} : $\frac{32\pi}{3}$.
 - b) $\iint_D \frac{1}{\sqrt{x^2+y^2}} dA$, sendo $D: 1 \le x \le 3$ e $0 \le y \le x$. R.: $3\ln(\sqrt{2}+1)$.
- 5) Determinar a integral dupla $\iint_D f(x,y) dx dy$ onde $D = \{(x,y) | x \ge 0; y \ge 0 \ e \ x^2 + y^2 \le 1\}$ e $f(x,y) = e^{-x^2 y^2}$. R.: $\frac{\pi}{4} \Big(1 \frac{1}{e} \Big)$.
- 6) Calcule $\iint_D \frac{y^2 \cos(xy)}{x} dA$, onde D é a região limitada pelas parábolas $\frac{x^2}{y} = 1$; $\frac{y^2}{x} = 1$; $x^2 = 4y \ e \ y^2 = 4x$.

 Utilize $u = \frac{x^2}{y} \ e \ v = \frac{y^2}{x}$. R.: $\frac{1}{12}$ (5 $\cos 4 4 \cos 1 \cos 16$)