

The 3rd European Workshop on Human-Computer Interaction and Information Retrieval

Dublin, Ireland - 1st August 2013 - at SIGIR2013

UNIVERSITY OF COPENHAGEN, DENMARK

Comparative Study of Search Engine Result Visualization: Ranked Lists Versus Graphs

Casper Petersen, Department of Computer Science, University of Copenhagen, Denmark Christina Lioma, Department of Computer Science, University of Copenhagen, Denmark Jakob Grue Simonsen, Department of Computer Science, University of Copenhagen, Denmark

1. Motivation

Search Engine Results (SER) ranked lists show only a limited view of the information space, do not show how similar the retrieved documents are and/or how the retrieved documents relate to each other [1,2].

2. Objective

SER graphs could present at a glance an overview of any clusters or isolated documents among the SERs.

<u>Aim</u>

Compare SER ranked lists to SER graphs: Which of the two improves retrieval effectiveness and decreases time spent?

3. Search Settings

- Data: Clueweb09 Subset B. No spam filtering.
- Queries: 200 TREC queries (Web Track 2009-2012) and relevance assessments.
- Snippet: TF-IDF weighted document extract of query terms.
- Visualisation: Top 20 ranked documents with their hyperlinks.

Figure 1: SER ranked list (centre-back), SER graph (right-front) and clicked SER snippet (left-front). In the graph, nodes (webpages) are scaled by degree and edges are hyperlinks between webpages.

4. User Study

- "Assess how many of the documents shown in these interfaces are, in your opinion, relevant to the query".
- 10 users (Avg. age = 33.05, 9 males, 1 female).
- 30 minute session pr. user.

5. Results

Retrieval effectiveness per interface						
Ranked List			Graph			
MAP@20	MRR	RECALL@20	MAP@20	MRR	RECALL@20	
0.4195	0.4698	0.0067	0.3211	0.3948	0.0069	

Table 1: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR) and RECALL of the top-20 retrieved results.

Time spent on interface (sec)							
Ranked List			Graph				
MIN	MAX	MEAN	σ	MIN	MAX	MEAN	σ
1.39	25.78	8.23	4.37	3.32	20.96	9.70	3.70

Table 2: Time (seconds) spent on each interface.

Figure 2: Click-order and participant relevance assessments for (left) the graph interface and (right) the ranked list.

Mean rater agreement (Krippendorff's α)						
Inter-part (our us	cicipant sers)	Inter-rater (our users vs. TREC)				
Ranked List	Graph	Ranked List	Graph			
0.198	0.044	-0.075	-0.072			

Table 3: Mean rater agreement for queries assessed by more than one participant.

6. Finding

Ranked lists result in faster and more precise search sessions than graph-based SER visualisations.

7. Future work

- Address limitations (population size, HTML extraction, connectivity sparsity, relevance to pre-typed queries).
- Scale up to large displays.

References: