Desigualdades Fundamentais para Espaços Normados

Def. (Espaço Vetorial). Um **espaço vetorial** é um conjunto não vazio V sobre um corpo K ($K = \mathbb{R}$ ou \mathbb{C}) munido de duas operações, adição $(+: V \times V \to V)$ e multiplicação por escalar $(\cdot: \mathbb{R} \times V \to V)$, que satisfaz as seguintes propriedades: (a) u + (v + w) = (u + v) + w (associativa), (b) u + v = v + u (comutativa), (c) Existe $0 \in V$ tal que 0 + u = u para todo $u \in V$, (d) Para cada $v \in V$ existe $-v \in V$ tal que v + (-v) = 0, (e) $\alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot v$, para todo $\alpha, \beta \in K$ e $u \in V$, (f) $1 \cdot u = u$, para todo $y \in V$, (g) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$, para todo $\alpha, \beta \in K$ e $v \in V$, (h) $(\alpha + \beta)u = \alpha \cdot u + \beta \cdot v$, para todo $\alpha, \beta \in K$ e $v \in V$.

Def. (Norma). Seja V um espaço vetorial sobre o corpo K ($K = \mathbb{R}$ ou \mathbb{C}). Uma **norma** em V é uma função $\|\cdot\|_V:V\to\mathbb{R}^+$ que satisfaz as seguintes propriedades: $||v||_V = 0 \Leftrightarrow v = 0$, $||\lambda v||_V = |\lambda|||v||_V$ $\|v + w\|_V < \|v\|_V + \|w\|_V$, para todo $v, w \in V$.

Def. (Espaço Vetorial Normado). Um espaço

vetorial V munido de uma norma é chamado **espaço vetorial normado**, isto é, um espaço vetorial normado é um par $(V, \|\cdot\|_V)$ onde $\|\cdot\|_V : V \to \mathbb{R}^+$ é uma norma.

Def. (Métrica de Espaço Métrico). Seja Xum conjunto não vazio. Uma **métrica** ou **distância** em X é uma função $\rho: X \times X \to [0, \infty)$ satisfazendo: $\rho(x,y) = 0 \Leftrightarrow x = y, \ \rho(x,y) = \rho(y,x),$ para todo $x, y \in X$, $\rho(x, z) < \rho(x, y) + \rho(y, z)$, para todo $x, y, z \in X$. O conjunto X munido da métrica ρ é chamado **espaço métrico** e é denotado por (X, ρ) .

Essas desigualdades são ferramentas essenciais para provar a desigualdade triangular para as pnormas, garantindo a validade dessas normas.

Lema (Designaldade de Young) Se $p \in (1, \infty)$, $q \in (1, \infty)$ é tal que $\frac{1}{n} + \frac{1}{q} = 1$ e $a, b \in [0, \infty)$, então $a^{1/p}b^{1/q} \leq \frac{a}{p} + \frac{b}{q}$.

Lema (Desigualdade de Hölder) Se $p \in (1, \infty)$ e $q \in (1, \infty)$ é tal que $\frac{1}{n} + \frac{1}{q} = 1$, então

$$\sum_{i=1}^{N} |x_i y_i| \le \left[\sum_{i=1}^{N} |x_i|^p \right]^{1/p} \left[\sum_{i=1}^{N} |y_i|^q \right]^{1/q}$$

para todo $x = (x_1, ..., x_N), y = (y_1, ..., y_N) \in \mathbb{R}^N$.

Lema (Desigualdade de Minkowski) Se $p \in$ $[1,\infty]$, então

$$\left[\sum_{i=1}^{N} |x_i + y_i|^p\right]^{1/p} \le \left[\sum_{i=1}^{N} |x_i|^p\right]^{1/p} + \left[\sum_{i=1}^{N} |y_i|^p\right]^{1/p}$$

ou, em outras palavras, $||x+y||_p \le ||x||_p + ||y||_p$ para todo $x = (x_1, ..., x_N), y = (y_1, ..., y_N) \in \mathbb{R}^N$.

Essas desigualdades ajudam a estabelecer as propriedades fundamentais dos espaços normados, o que leva naturalmente ao estudo de sua completude e do comportamento das transformações entre eles.

Completude e Transformações Lineares

Def. (Espaço de Banach). Um espaço vetorial normado que é **completo** com a métrica induzida pela norma é dito um **espaço de Banach**.

Def. (Normas Equivalentes). Duas normas em $X, \|\cdot\|_1 \in \|\cdot\|_2$, são **equivalentes** se existem constantes positivas c_1 e c_2 tal que $c_1||x||_1 \le ||x||_2 \le$ $c_2||x||_1 \forall x \in X.$

Def. (Série Convergente e Abs. Convergente). Uma série $\sum_{j=1}^{\infty} x_j$ é dita **convergente** em X se a sequência de somas parciais $\sum_{i=1}^{n} x_i$ converge para

convergente** se a série das normas $\sum_{j=1}^{\infty} \|x_j\|$ é a existir c > 0 tal que $\|Tx\|_Y \ge c\|x\|_X$. convergente.

Def. (Transformação Linear Limitada).

Uma transformação linear $T: X \to Y$ entre dois espacos vetoriais normados é **limitada** se existe uma constante $c \geq 0$ tal que $||Tx||_Y \leq c||x||_X$, para todo $x \in X$.

Def. (Transformação Linear Inversível). $T \in L(X,Y)$ é **inversível** ou um **isomorfismo**

x quando $n \to \infty$. Uma série é dita **absolutamente se T é bijetora e $T^{-1} \in L(Y,X)$, o que é equivalente

Def. (Isometria (Transformação Linear)). T é uma **isometria** se $||Tx||_Y = ||x||_X$, para todo $x \in X$.

Teorema (1 Condição para a Completude)

Um espaço vetorial normado é completo se, e somente se, toda série absolutamente convergente é convergente.

Prop. (Equiv. p. Transf. Lineares Contínuas)

Se X, Y são espaços vetoriais normados e $T: X \to Y$ é linear, as seguintes afirmações são equivalentes:

- (a) T é contínua;
- (b) T é contínua em 0;

(c) T é limitada.

Prop. (Completude de L(X,Y)) Se Y é completo, então L(X,Y) é completo.

O conceito de transformações lineares limitadas

entre espaços completos (espaços de Banach) leva diretamente ao estudo mais detalhado de funcionais lineares, que são centrais para os teoremas de Hahn-Banach.

3 Os Teoremas de Hahn-Banach e Suas Consequências

Def. (Funcional Linear). Seja X um espaço vetorial sobre K. Uma função linear $f: X \to K$ é chamada um **funcional linear**.

Def. (Espaço Dual (X^*)). Se X é um espaço vetorial normado, L(X,K) é um espaço de Banach que é chamado **espaço dual de X^{**} e denotado por X^* .

Def. (Funcional Sublinear). Se X é normado, um **funcional sublinear** é uma função $p: X \to \mathbb{R}$ tal que $p(x+y) \le p(x) + p(y)$ e $p(\lambda x) = \lambda p(x)$, para todo $x, y \in X$ e $\lambda > 0$.

Def. (Espaço Reflexivo). Para espaços de dimensão infinita, quando a imagem isométrica \hat{X} é igual ao bidual X^{**} , X é dito **reflexivo**. A reflexividade passa a ser entendida como $X = X^{**}$ quando X é identificado com seu subespaço \hat{X} no bidual X^{**} .

Def. (Hiperplano Afim). Um **hiperplano (afim)** é um conjunto da forma $H = \{x \in X : f(x) = \alpha\}$ onde $f : X \to \mathbb{R}$ é um funcional linear não identicamente nulo e $\alpha \in \mathbb{R}$. Diremos que H é o hiperplano de equação $[f = \alpha]$.

Def. (Conjunto Convexo). Seja X um espaço vetorial sobre K. Diremos que $C \subset X$ é **convexo** se $tx + (1 - t)y \in C$ sempre que $t \in e$ $x, y \in C$.

Def. (Separação Fraca) . Se $A, B \subset X$ dizemos

que o hiperplano de equação $[f = \alpha]$ separa $A \in B$ no **sentido fraco** se $f(x) \leq \alpha$ para todo $x \in A$ e $f(x) \geq \alpha$ para todo $x \in B$.

Def. (Separação Forte). Diremos que o hiperplano de equação $[f = \alpha]$ separa $A \in B$ no **sentido forte** se existe $\varepsilon > 0$ tal que $f(x) \le \alpha - \varepsilon$ para todo $x \in A$ e $f(x) \ge \alpha + \varepsilon$ para todo $x \in B$.

Def. (Func. de Minkowski de um Convexo). Seja X um espaço vetorial normado sobre \mathbb{R} e $C \subset X$ um aberto convexo com $0 \in C$. Para todo $x \in X$, o **funcional de Minkowski de C^{**} , p(x), é definido como $p(x) = \inf\{\alpha > 0; \alpha^{-1}x \in C\}$.

Def. (Complexificação de X ($X^{\#}$)). Seja X um espaço vetorial sobre \mathbb{R} . A **complexificação de X^{**} estende X a um espaço vetorial $X^{\#}$ sobre \mathbb{C} e é feita da seguinte forma: $X^{\#} = \{(x,y) : x,y \in X\}$ com a operação de adição coordenada a coordenada e com a operação de multiplicação por escalar dada por $(\alpha + i\beta)(x,y) = (\alpha x - \beta y, \beta x + \alpha y)$.

Prop. (Relação entre Func. Lineares \mathbb{R} e \mathbb{C}) Seja X um espaço vetorial sobre \mathbb{C} . Se $f: X \to \mathbb{C}$ é um funcional linear e u = Re(f), então u é um funcional linear real e f(x) = u(x) - iu(ix) para todo $x \in X$. Reciprocamente, se $u: X \to \mathbb{R}$ é um funcional linear real e $f: X \to \mathbb{C}$ é definido por f(x) = u(x) - iu(ix), então f é um funcional linear complexo. Se X é normado, f é limitado se e somente se u é limitado, e neste caso ||f|| = ||u||.

Teorema (Hahn-Banach (E.V. \mathbb{R})) Sejam X um espaço vetorial real, p um funcional sublinear em X, M um subespaço vetorial de X e f um funcional linear em M tal que $f(x) \leq p(x)$ para todo $x \in M$. Então existe um funcional linear F em X tal que $F(x) \leq p(x)$ para todo $x \in X$ e $F|_M = f$.

Teorema (Hahn-Banach (E.V.C)) Sejam X um espaço vetorial complexo, p uma seminorma em X, M um subespaço vetorial de X e $f: M \to \mathbb{C}$ um funcional linear com $|f(x)| \leq p(x)$ para $x \in M$. Então existe $F: X \to \mathbb{C}$, um funcional linear, tal que $|F(x)| \leq p(x)$ para todo $x \in X$ e $F|_M = f$.

Cor. (de Hahn-Banach) Seja X um espaço vetorial normado.

- 1. Se M é um subespaço vetorial fechado de X e $x \in X \setminus M$, existe $f \in X^*$ tal que $f(x) \neq 0$ e $f|_M = 0$. Na verdade, se $\delta = \inf_{y \in M} \|x y\|$, f pode ser escolhido tal que $\|f\| = 1$ e $f(x) = \delta$.
- 2. Se $x \neq 0$, existe $f \in X^*$ tal que ||f|| = 1 e f(x) = ||x||.
- 3. Os funcionais lineares limitados em X separam pontos.
- 4. Se $x \in X$, defina $\hat{x}: X^* \to \mathbb{C}$ por $\hat{x}(f) = f(x)$, $\forall f \in X^*$. Então a transformação $x \to \hat{x}$ é uma isometria linear de X em X^{**} .

Prop. (Hiperplanos Fechados) O hiperplano com equação $[f = \alpha]$ é fechado se e somente se f é contínuo.

Lema (O Funcional de Minkowski) Seja X um espaço vetorial normado sobre \mathbb{R} e $C \subset X$ um conjunto convexo aberto com $0 \in C$. Para cada $x \in X$ defina $p(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\}$ (p é o funcional de Minkowski de C). Então, p é um funcional sublinear e existe M tal que $0 \le p(x) \le M||x||$, $\forall x \in X$, e $C = \{x \in X : p(x) < 1\}$.

Lema (Separação Ponto de um Convexo)

Sejam $C \subset X$ um conjunto convexo aberto e não vazio e $x_0 \in X \setminus C$. Então existe $f \in X^*$ tal que $f(x) < f(x_0)$ para todo $x \in C$. Em particular, o hiperplano fechado com equação $[f = f(x_0)]$ separa fracamente C de x_0 .

Teorema (1 Forma Geométrica Hahn-Banach) Sejam X um espaço vetorial normado real e $A, B \subset X$ dois conjuntos convexos, não vazios e disjuntos. Se A é aberto, existe um hiperplano fechado que separa fracamente A e B.

Teorema (2 Forma Geométrica Hahn-Banach)

Sejam X um espaço vetorial normado real, e A e B conjuntos convexos, não vazios e disjuntos em X. Suponha que A é fechado e B é compacto. Então existe um hiperplano fechado que separa fortemente A e B.

Cor. (Anuladores para Subespaços Próprios)

Sejam X um espaço vetorial normado sobre \mathbb{K} e $F \subset X$ um subespaço vetorial próprio de X ($\bar{F} \neq X$). Então, existe $f \in X^*$, $f \neq 0$ tal que f(x) = 0, $\forall x \in F$.

4 Consequências do Teorema da Categoria de Baire

Def. (Auto-valor e Auto-vetor). Considere um espaço vetorial X sobre o corpo K e uma transformação linear $A:X\to X$. Se a transformação linear $\lambda I-A$ (para cada escalar $\lambda\in K$) não é injetiva, existe $0\neq x\in X$ tal que $(\lambda I-A)x=0$. Neste caso, diremos que λ é um **auto-valor de A** e que x é um **auto-vetor de A associado ao auto-valor λ **.

Def. (Produto Escalar (Produto Interno)).

Seja H um espaço vetorial sobre K. Um **produto escalar** em H é uma função $\langle \cdot, \cdot \rangle : H \times H \to K$ tal que: (a) $\langle u, v \rangle = \overline{\langle v, u \rangle}$ para todo $u, v \in H$, (b) $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$, para todo $u, v, w \in H, \alpha, \beta \in K$, (c) $\langle u, u \rangle \geq 0$ e $\langle u, u \rangle = 0$ se, e somente se, u = 0.

Def. (Vetores Ortogonais) Dois vetores u, v em um espaço com produto interno H são ditos **ortogonais** (escrevemos $u \perp v$) se $\langle u, v \rangle = 0$.

Def. (Projeção sobre o Convexo (P_K)). Se K é um subconjunto fechado e convexo de um es-

paço de Hilbert H e $u_0 \in H$, existe um único $v_0 \in K$ tal que $||u_0 - v_0|| = \inf_{v \in K} ||u_0 - v||$. Escrevemos $v_0 = P_K u_0$ e dizemos que P_K é a **projeção sobre o convexo K^{**} .

Def. (Projeção (Transformação Linear)).

Uma transformação linear $P: H \to M$ é dita uma **projeção** se $P^2 = P$.

Def. (Projeção Ortogonal). Se $P \in L(H)$ é uma projeção, M = Im(P) e $M^{\perp} = N(P)$ dizemos que P é uma **projeção ortogonal sobre M^{**} .

Def. (Conjunto Ortonormal). Um subconjunto $\{u_{\alpha}\}_{{\alpha}\in A}$ de H é chamado um **conjunto ortonormal** se $||u_{\alpha}|| = 1$ para todo ${\alpha}\in A$ e $u_{\alpha}\perp u_{\beta}$ para ${\alpha}\neq {\beta}$.

Def. (Base Ortonormal). Um conjunto ortonormal tendo as propriedades (a-c) do Teorema 6 (ou Teorema 2), que são Completamento, Identidade de Parseval e Convergência de Série, é chamado uma **base ortonormal de H^{**} .

Def. (Transformação Unitária). Se H_1 e H_2 são espaços de Hilbert com produtos escalares $\langle \cdot, \cdot \rangle_1, \langle \cdot, \cdot \rangle_2$, uma **transformação unitária** de H_1 sobre H_2 é uma transformação linear sobrejetora $U: H_1 \to H_2$ que preserva produto escalar; isto é, $\langle Ux, Uy \rangle_2 = \langle x, y \rangle_1$.

Def. (T.L. Densamente Definida) . Se D(A) (o domínio de A) é denso em X, dizemos que A é **densamente definida**.

Def. ((Domínio, Gráfico, Imagem, Núcleo)). Seja $A:D(A)\subset X\to Y$ uma transformação linear. Então, D(A) é o **domínio de A^{**} ; $G(A)=\{(x,Ax)\in X\times Y:u\in D(A)\}\subset X\times Y$ é o **Gráfico de A^{**} ; $Im(A)=\{Ax\in Y:x\in D(A)\}\subset Y$ é a **Imagem de A^{**} ; e $N(A)=\{x\in D(A):Ax=0\}$ é o **Núcleo de A^{**} .

Def. (Transformação Linear Fechada). Diremos que uma transformação linear T é **fechada** se o seu gráfico $G(T) = \{(x, Tx) : x \in X\}$ for fechado em $X \times Y$. É equivalente a dizer que, para toda seqüência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ que é contra sequência $\{(u_n, Au_n)\}$ en $\{(u_n, Au_n)\}$ em $\{(u_n, Au_n)\}$ en $\{(u_n, Au_n)\}$ en $\{(u_n, Au_n)\}$ expressed expressed

vergente em $X \times Y$ para $(u, v) \in X \times Y$, temos que $u \in D(A)$ e Au = v.

Def. (Transformação Linear Fechável). Diremos que uma transformação linear A é **fechável** se $G(\overline{A})$ é gráfico de uma transformação linear. É equivalente a dizer que, sempre que uma seqüência $\{(u_n, Au_n)\}$ em $D(A) \times Y$ converge, em $X \times Y$, para $(0, v) \in X \times Y$, temos que v = 0.

Def. (Conjunto Nunca Denso (ou Raro)).

Se (X, ρ) for um espaço métrico, um conjunto $A \subset X$ será **nunca denso** ou **raro** se o seu fecho tiver interior vazio.

Def. (Conjunto de Primeira Categoria).

Um conjunto $A \subset X$ será de **Primeira Categoria** em X se for união enumerável de conjuntos nunca densos.

Def. (Conjunto de Segunda Categoria). Um conjunto será de **Segunda Categoria** em X se não for de Primeira Categoria.

Def. (Aplicação Aberta). Sejam X, Y espaços vetoriais normados e $T: X \to Y$ uma transformação linear. Diremos que T será **aberta** se T(U) for aberto em Y, sempre que U for aberto em X.

Prop. (Propriedade de Esp. de 2 Categoria)

Um espaço (X, ρ) será de segunda categoria em si mesmo se, e somente se, em qualquer representação de X como uma união contável de conjuntos fechados, pelo menos um deles contém uma bola aberta. Teorema (Categoria de Baire) Todo espaço métrico completo é de segunda categoria em si mesmo.

Cor. (Esp. de Banach são de 2 Categoria)

Todo espaço de Banach é de segunda categoria em si mesmo.

Teorema (Mapeamento Aberto) Seja X um espaço de Banach e Y um espaço vetorial normado. Se $T \in L(X,Y)$ e T(X) é de segunda categoria em Y, então:

- (a) T será sobrejetor;
- (b) T será um mapeamento aberto; e
- (c) Y será de segunda categoria.

Lema (Equivalência de Mapeamento Aberto) Sejam X, Y espaços vetoriais normados e $T: X \to Y$ uma transformação linear. As seguintes afirmações são equivalentes:

- (a) T é um mapeamento aberto;
- (b) Existe r > 0 tal que $T(B_1^X(0)) \supset B_r^Y(0)$.

Lema (Condição p. Inclusão da Imagem) Se X é um espaço de Banach, Y é um espaço vetorial normado e $T \in L(X,Y)$ é tal que, para algum r > 0, $B_r^Y(0) \subset [T(B_1^X(0))]^-$, então $B_{r/2}^Y(0) \subset T(B_1^X(0))$.

Cor. (do Teorema do Mapeamento Aberto) Sejam X e Y espaços de Banach.

- (a) Se $T \in L(X, Y)$ é sobrejetor, então T é aberto.
- (b) Se $T \in L(X, Y)$ é bijetor, então T é um isomorfismo.

Teorema (Princípio da Limitação Uniforme) Sejam X e Y espaços vetoriais normados e $A \subset L(X,Y)$.

- (a) Se $\{x \in X : \sup\{\|Tx\| : T \in A\} < \infty\}$ é de segunda categoria, então $\sup\{\|T\| : T \in A\} < \infty$.
- (b) Se X é um espaço de Banach e $\{x \in X: \sup\{\|Tx\|: T \in A\} < \infty\} = X$, então $\sup\{\|T\|: T \in A\} < \infty$.
- (c) Se X é um espaço de Banach, $\{T_n : n \in \mathbb{N}\} \subset L(X,Y), \{T_nx\}$ é convergente para cada $x \in X$, e $T: X \to Y$ é definido por $Tx = \lim_{n \to \infty} T_n x$, então $T \in L(X,Y)$ e $||T|| \le \liminf ||T_n||$.

Cor. (Limitação de Subconjuntos em X) Se X é um espaço de Banach, $B \subset X$, e $f(B) = \{f(b) : b \in B\}$ é limitado para todo $f \in X^*$, então B é limitado.

Cor. (Limitação de Subconjuntos em X^*)

Seja X um espaço de Banach e $B^* \subset X^*$. Suponha que para todo $x \in X$ o conjunto $B^*(x) = \{b^*(x) : b^* \in B^*\}$ é limitado. Então B^* é limitado.

Teorema (Gráfico Fechado) Se X e Y são espaços de Banach e $T: X \to Y$ é fechada, então T é limitada.

5 Espaços de Hilbert: Projeções, Representação e Bases

Def. (Espaço com Produto Interno). Um espaço vetorial H juntamente com um produto interno é dito um **espaço com produto interno**.

Def. (Espaço de Hilbert). Se um espaço com produto interno H é completo dizemos que H é um **espaço de Hilbert**.

Lema (Projeção em um Convexo Fechado)

Se K é um subconjunto fechado e convexo de um espaço de Hilbert H e $u_0 \in H$, existe um único $v_0 \in K$ tal que $||u_0 - v_0|| = \inf_{v \in K} ||u_0 - v||$.

Prop. (Caract. do Operação de Projeção)

Seja H um espaço de Hilbert, $K \subset H$ fechado e convexo, e $u_0 \in H$. Então $\operatorname{Re}\langle u_0 - P_K u_0, w - P_K u_0 \rangle \leq 0$, para todo $w \in K$.

Prop. (Caract. Conversa da Projeção) Seja H um espaço de Hilbert e $K \subset H$ um conjunto convexo fechado e não vazio. Se, dado $u_0 \in H$, existe $v_0 \in K$ tal que $\text{Re}\langle u_0 - v_0, w - v_0 \rangle \leq 0$ para todo $w \in K$, então $v_0 = P_K u_0$.

Cor. (Caract. e Linearidade da Projeção)

Se H é um espaço de Hilbert e M é um subespaço vetorial fechado de H, então $P_M: H \to H$ é caracterizado por $v = P_M u$ se, e somente se, $\langle u - v, w \rangle = 0$,

para todo $w \in M$. Disso se segue que P_M é linear e $P_M^2 = P_M$.

Teorema (Propriedades do Op. de Projeção)

Se H é um espaço de Hilbert e $K \subset H$ é um conjunto convexo fechado, então $||P_K u_1 - P_K u_2|| \le ||u_1 - u_2||$, para todos $u_1, u_2 \in H$.

Teorema (Decomposição Ortogonal) Seja H um espaço de Hilbert e M um subespaço vetorial fechado de H. Então $M \oplus M^{\perp} = H$; ou seja, cada $u \in H$ pode ser unicamente expresso como u = w + v, onde $w \in M$ e $v \in M^{\perp}$.

Teorema (Representação de Riesz) Se $f \in H^*$, existe um único $y \in H$ tal que $f(x) = \langle x, y \rangle$ para todo $x \in H$.

Teorema (A Desigualdade de Bessel) Se $\{u_{\alpha}\}_{{\alpha}\in A}$ é um conjunto ortonormal em H, então para $u\in H$,

$$\sum_{\alpha \in A} |\langle u, u_{\alpha} \rangle|^2 \le ||u||^2.$$

Em particular, $\{\alpha \in A : \langle u, u_{\alpha} \rangle \neq 0\}$ é enumerável.

Teorema (Equiv. p. Base Ortonormal) Se $\{u_{\alpha}\}_{{\alpha}\in A}$ é um conjunto ortonormal em H, as seguintes afirmações são equivalentes:

- (a) (Completude) Se $\langle u, u_{\alpha} \rangle = 0$ para todo $\alpha \in A$, então u = 0.
- (b) (Identidade de Parseval) Para todo $u \in H$,

$$||u||^2 = \sum_{\alpha \in A} |\langle u, u_\alpha \rangle|^2.$$

(c) Para cada $u \in H$,

$$u = \sum_{\alpha \in A} \langle u, u_{\alpha} \rangle u_{\alpha},$$

onde a soma tem apenas um número contável de termos não nulos e converge independentemente da ordem dos termos.

Prop. (Existência de uma Base Ortonormal)
Todo espaço de Hilbert tem uma base ortonormal.

Teorema (Separabilidade e Bases) Um espaço de Hilbert H é separável se e somente se ele tem uma base ortonormal enumerável, e neste caso, toda base ortonormal de H é enumerável.

Prop. (Transformação Unitária para $l^2(A)$)

Seja $\{u_{\alpha}\}_{{\alpha}\in A}$ uma base ortonormal de H. Então a correspondência $x\to \hat{x}$ definida por $\hat{x}(\alpha)=\langle x,u_{\alpha}\rangle$ é uma transformação unitária de H para $l^2(A)$.