

COMP809 Data Mining and Machine Learning

LECTURER: DR AKBAR GHOBAKHLOU

SCHOOL OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES

Convolutional Neural Networks (CNN)

Fully Connected NeuralNetwork

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Why not simply more FC Layers?

We cannot make networks arbitrarily complex

- Why not just go deeper and get better?
 - No structure!!
 - It is just brute force!
 - Optimization becomes hard
 - Performance plateaus / drops!

Better Way than FC?

- We want to restrict the degrees of freedom
 - We want a layer with structure
 - Weight sharing → using the same weights for different parts of the image

Using CNNs in Computer Vision

Convolutional NN

In 1995, Yann LeCun and Yoshua Bengio introduced the concept of convolutional neural networks.

Convolutional Neural Networks is extension of traditional Multilayer Perceptron, based on 3 ideas:

- Local receive fields
- 2. Shared weights
- Spatial / temporal sub-sampling

See LeCun paper (1998) on text recognition:

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

About CNN's

- CNN's were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.
- They designed a network structure that implicitly extracts relevant features.
- Convolutional Neural Networks are a special kind of multi-layer neural networks.

About CNN's

- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.
- They can recognize patterns with extreme variability (such as handwritten characters).

Discrete case: box filter

4	3	2	-5	3	5	2	5	5	6
1/3	1/3	1/3							

'Slide' filter kernel from left to right; at each position, compute a single value in the output data

$$4*(1/3)+3*(1/3)+2*(1/3)=3$$

$$3*(1/3)+2*(1/3)+(-5)*(1/3)=0$$

$$2*(1/3)+(-5)*(1/3)+3*(1/3)=0$$

$$-5*(1/3)+3*(1/3)+5*(1/3)=1$$

$$3*(1/3) + 5*(1/3) + 2*(1/3) = 10/3$$

$$5*(1/3)+2*(1/3)+5*(1/3)=4$$

$$2*(1/3) + 5*(1/3) + 5*(1/3) = 4$$

$$5*(1/3) + 5*(1/3) + 6*(1/3) = 16/3$$

Discrete case: box filter

What to do at boundaries?

Discrete case: box filter

What to do at boundaries?

Option 1:Shrink

3 0	0	1	10/3	4	4	16/3
-----	---	---	------	---	---	------

$$\frac{1}{3} + 4 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} = \frac{7}{3}$$
 What to do at boundaries? Option 2: Pad (often 0's)

7/3	3	0	0	1	10/3	4	4	16/3	11/3
-----	---	---	---	---	------	---	---	------	------

	-5	3	2	-5	3
×5	4	3	2	1	-3
e 5	1	0	3	3	5
Image 5×5	-2	0	1	4	4
Z	-	6	7	7	-1

× 3	0	-1	0
el 3	-1	5	-1
(ernel 3×3	0	-1	0

×3	6	
utput 3×3		
utp		

$$3*(-1)+4*(-1)+3*(5)+2*(-1)+0*(-1)$$

= 15 - 9 = 6

	-5	3	2	-5	3
5×5	4	3	2	1	-3
e 5	1	0	3	3	5
Image	-2	0	1	4	4
Z	5	6	7	9	-1

3×3	0	-1	0
el 3	-1	5	-1
(erne l	0	-1	0

×3	6	1	
utput 3×3			
)utp			

$$2^* (-1) + 3^* (-1) + 2^* (5) + 1^* (-1) + 3^* (-1)$$

= $10 - 9 = 1$

	-5	3	2	-5	3
×5	4	3	2	1	-3
2	1	0	3	3	5
Image	-2	0	1	4	4
Ź	5	3	7	9	1

3×3	0	-1	0
el 3	-1	5	-1
(ernel	0	-1	0

×3	6	1	8
utput 3×3			
)utp			

$$-5*(-1) + 2*(-1) + 1*(5) + (-3)*(-1) + 3*(-1)$$

= 5 + 3 = 8

	-5	3	2	-5	3
5×5	4	3	2	1	-3
3e 5	1	0	3	3	5
mage	-2	0	1	4	4
Z	5	6	7	9	-1

3×3	0	-1	0
el 3	-1	5	-1
(ernel	0	-1	0

×3	6	1	8
utput 3×3	-7		
Jutp			

$$3*(-1)+1*(-1)+0*(5)+3*(-1)+0*(-1)$$

= 0 - 7 = -7

	-5	3	2	-5	3
5×5	4	3	2	1	-3
	1	0	3	3	5
Image	-2	0	1	4	4
X	5	6	7	9	-1

3×3	0	-1	0
	-1	5	-1
(ernel	0	-1	0

×3	6	1	8
utput 3×3	-7	9	
Jutp			

$$2^* (-1) + 0^* (-1) + 3^* (5) + 3^* (-1) + 1^* (-1)$$

= $15 - 6 = 9$

	-5	3	2	-5	3
5×5	4	3	2	1	-3
	1	0	3	3	5
Image	-2	0	1	4	4
X	5	6	7	9	-1

3×3	0	-1	0
rnel 3	-1	5	-1
ırn	0	-1	0

×3	6	1	8
$0 \times 3 \times $	-7	9	2
utp			

$$=1*(-1)+3*(-1)+3*(5)+5*(-1)+4*(-1)$$

= 15 - 13 = 2

	-5	3	2	-5	3
×5	4	3	2	1	-3
3e 5	1	0	3	3	5
Image !	-2	0	1	4	4
Z	5	6	7	9	-1

×3	6	1	8
$utput 3 \times 3$	-7	9	2
)utp	-5		

$$0^* (-1) + (-2)^* (-1) + 0^* (5) + 1^* (-1) + 6^* (-1)$$

=2-7 = -5

	-5	3	2	-5	3
5×5	4	3	2	1	-3
	1	0	3	3	5
Image	-2	0	1	4	4
X	5	6	7	9	-1

Kernel 3×3

0

-1

0

-1	0
5	-1
-1	0

×3	6	1	8
ut 3	-7	9	2
3×3	-5	-9	

$$3*(-1)+0*(-1)+1*(5)+4*(-1)+7*(-1)$$

= 5 - 14 = -9

	-5	3	2	-5	3
×5	4	3	2	1	-3
3e 5	1	0	3	3	5
Image	-2	0	1	4	4
X	5	6	7	9	-1

×	J	-1	ט
el 3	-1	5	-1
ernel 3×	0	-1	0

×3	6	1	8
$0 \times 3 \times $	-7	9	2
utp	-5	-9	3

$$3*(-1)+1*(-1)+4*(5)+4*(-1)+9*(-1)$$

= 20 - 17 = 3

Image Filters

Each kernel gives us a different image filter

Input

Edge detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Sharpen

$$\left[egin{matrix} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{matrix}
ight]$$

Gaussian blur

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Convolutions on RGBImages

Convolutions on RGBImages

Convolutions on RGBImages

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

82×32×3 image

- A basic layer is defined by
 - Filter width and height (depth is implicitly given)
 - Number of different filter banks (#weightsets)

Each filter captures a different image characteristic

Different Filters

- Each filter captures different image characteristics:
 - Horizontal edges
 - Vertical edges
 - Circles
 - Squares
 - **—** ...

[Zeiler & Fergus, ECCV'14] Visualizing and Understanding Convolutional Networks

Dimensions of a Convolution Layer

Input: 7×7 Filter: 3×3 Stride: 1Output: 5×5

Stride of *S*: apply filter every *S*-th spatial location; i.e. subsample the image

Image 7×7

Input: 7×7

Filter: 3×3

Stride: 2

Output: 3×3

Image 7×7

Input: 7×7

Filter: 3×3

Stride: 2

Output: 3×3

Image 7×7

Input: 7×7 Filter: 3×3

Stride: 2

Output: 3×3

Input: 7×7 Filter: 3×3 Stride: 3Output: $? \times ?$

Input: 7×7 Filter: 3×3 Stride: 3Output: $? \times ?$

Input: 7×7
Filter: 3×3
Stride: 3
Output: ?×?

Does not really fit (remainder left)

→ Illegal stride for input & filtersize!

Input width of N

					_
			of F		
			eight		
			Filter height of F		7×7
Filter	width	of F	H		Image 7×7
					lma

Input:
$$N \times N$$

Filter: $F \times F$

Stride: S

Output: $\left(\frac{N-F}{S}+1\right) \times \left(\frac{N-F}{S}+1\right)$

$$N = 7, F = 3, S = 1$$
: $\frac{7-3}{1} + 1 = 5$
 $N = 7, F = 3, S = 2$: $\frac{7-3}{2} + 1 = 3$
 $N = 7, F = 3, S = 3$: $\frac{7-3}{3} + 1 = 2.3$

Fractions are illegal

Shrinking down so quickly $(32 \rightarrow 28 \rightarrow 24 \rightarrow 20)$ is typically not a good idea...

Why padding?

- Sizes get small too quickly
- Corner pixel is only used once

									_	
0	0	0	0	0	0	0	0	0	00	
0								0	din	
0								0	pad	
0								0	7×7 +zero padding	
0								0	+ Z(
0								0	7×7	
0								0	ge	
0								0	Image	
 0	0	0	0	0	0	0	0	0		

Why padding?

- Sizes get small too quickly
- Corner pixel is only used once

1										_
100	0	0	0	0	0	0	0	0	0	ດຕ
	0								0	din
	0								0	pad
	0								0	mage 7×7 +zero padding
	0								0)Z +
	0								0	7×7
	0								0	ge
	0								0	lma
	0	0	0	0	0	0	0	0	0	
	G									

Input $(N \times N)$: 7×7 Filter $(F \times F)$: 3×3 Padding (P): 1Stride (S): 1Output 7×7

Most common is 'zero' padding

Output Size:

$$\left(\left\lfloor \frac{N+2*P-F}{S} \right\rfloor + 1\right) \times \left(\left\lfloor \frac{N+2*P-F}{S} \right\rfloor + 1\right)$$

denotes the floor operator (as in practice an integer division is performed)

Types of convolutions:

- Valid convolution: using no padding
- Same convolution: output=input size

Set padding to
$$P = \frac{F-1}{2}$$

Example

Input image: $32 \times 32 \times 3$

10 filters 5×5

Stride 1

Pad 2

Depth of 3 is implicitly given

Output size is:

$$\frac{32 + 2 \cdot 2 - 5}{1} + 1 = 32$$

i.e.
$$32 \times 32 \times 10$$

Output:
$$\left(\left[\frac{N+2*P-F}{S}\right]+1\right) \times \left(\left[\frac{N+2*P-F}{S}\right]+1\right)$$

Example

Input image: $32 \times 32 \times 3$

10 filters **5**×5

Stride 1

Pad 2

Output size is:

$$\frac{32 + 2 \cdot 2 - 5}{1} + 1 = 32$$

i.e. $32\times32\times10$

Remember

Output:
$$\left(\left[\frac{N+2*P-F}{S}\right]+1\right) \times \left(\left[\frac{N+2*P-F}{S}\right]+1\right)$$

Example

Input image: 32×32×<mark>3</mark>

10 filters 5×5

Stride 1

Pad 2

Number of parameters (weights):

Each filter has $5 \times 5 \times 3 + 1 = 76$ params (+1 for bias)

-> 76* 10 = 760 parameters in layer

Example

- You are given a convolutional layer with 4 filters, kernel size 5, stride 1, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?
 - **□** A1: (3, 4, 5, 5)
 - □ A2: (4, 5, 5)
 - □ A3: depends on the width and height of the image

Example

- You are given a convolutional layer with 4 filters, kernel size 5, stride 1, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?

A1:
$$(3, 4, 5, 5)$$
Input

Filter size = 5×5
channels
(RGB = 3)

4 filters

Convolutional Neural Network (CNN)

CNN Prototype

ConvNet is concatenation of Conv Layers and activations

CNN Learned Filters

[Zeiler & Fergus, ECCV'14] Visualizing and Understanding Convolutional Networks

Pooling

[Li et al., CS231n Course Slides] Lecture 5: Convolutional Neural Networks

Pooling Layer: Max Pooling

Single depthslice of input

3	1	3	5
6	0	7	9
3	2	1	4
0	2	4	3

Max pool with 2×2 filters and stride 2

'Pooled' output

6	9
3	4

- Conv Layer = 'Feature Extraction'
 - Computes a feature in a given region
- Pooling Layer = 'Feature Selection'
 - Picks the strongestactivation in a region

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Two hyperparameters
 - Spatial filter extent F
 Filter count K and padding P
 - Stride S

Filter count *K* and padding *P* make no sensehere

Output volume is of size $W_{\text{out}} \times H_{\text{out}} \times D_{\text{out}}$

$$-W_{\text{out}} = \frac{W_{\text{in}} - F}{S} + 1$$

$$- H_{\text{out}} = \frac{H_{\text{in}} - F}{S} + 1$$

$$-D_{\text{out}} = D_{\text{in}}$$

Does not contain parameters; e.g. it's fixed function

- Input is a volume of size $W_{\rm in} \times H_{\rm in} \times D_{\rm in}$
 - Two hyperparameters

 - Stride S

 Spatial filter extent F
 Filter count K and padding P make no sensehere

Output volume is of size $W_{out} \times H_{out} \times D_{out}$

$$- W_{\text{out}} = \frac{W_{\text{in}} - F}{S} + 1$$

$$- H_{\text{out}} = \frac{H_{\text{in}} - F}{S} + 1$$

$$-D_{\text{out}} = D_{\text{in}}$$

Does not contain parameters; e.g. it's fixed function

Common settings:

F = 2, S = 2F = 3, S = 2

Pooling Layer: Average Pooling

Single depthslice of input

3	1	3	5
6	0	7	9
3	2	1	4
0	2	4	3

Average pool with 2×2 filters and stride 2

2 filters and stride

'Pooled' output

2.5	6
1.75	3

Typically used deeper in the network

CNN Prototype

Final Fully-Connected Layer

- Same as what we had in 'ordinary' neural networks
 - Make the final decision with the extracted features from the convolutions
 - One or two FC layers typically

Convolutions vs Fully-Connected

- In contrast to fully-connected layers, we want to restrict the degrees of freedom
 - FC is somewhat brute force
 - Convolutions are structured
- Sliding window to with the same filter parameters to extract image features
 - Concept of weight sharing
 - Extract same features independent of location

Spatial extent of the connectivity of aconvolutional filter

5x5 input

Spatial extent of the connectivity of aconvolutional filter

3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of aconvolutional filter

3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of aconvolutional filter

Spatial extent of the connectivity of aconvolutional filter

3x3 receptive field = 1 output pixel is connected to 9 input pixels

7x7 input

Spatial extent of the connectivity of aconvolutional filter

5x5 receptive field on the original input: one output value is connected to 25 input pixels

The whole CNN

CNN in speech recognition

Count Fur Seal Population from Drone Images

A lot of buzz about Deep Learning

References

- Goodfellow et al. "Deep Learning" (2016),
 - Chapter 9: Convolutional Networks
- http://cs231n.github.io/convolutional-networks/

Acknowledgments

Most slides adapted from Visual Computing Group