Công và năng lượng

Lê Quang Nguyên www4.hcmut.edu.vn/~leqnguyen nguyenquangle59@yahoo.com

Nội dung

- 1. Công và công suất
- 2. Động năng
- 3. Thế năng
- 4. Cơ năng

cuu duong than cong . com

1a. Công của lực không đổi

- Công là năng lượng cơ học do một lực tác động trao đổi với vât.
- Công do lực không đổi thực hiện trong dịch chuyển $\Delta \vec{r}$:

$$W = \vec{F} \cdot \Delta \vec{r} = F \left| \Delta r \right| \cos \theta$$

$$Joule(J) = N.m$$

 W = 0 khi lực vuông góc với độ dịch chuyển.

cuu duong

1b. Công của một lực thay đổi

- Trong dịch chuyển nhỏ lực \vec{F} coi như không đổi.
- Công do \vec{F} thực hiện trong dịch chuyển nhỏ: $dW = \vec{F} \cdot d\vec{r}$
- Công thực hiện trong dịch chuyển từ P_1 tới P_2 :

$$W = \int_{P_1}^{P_2} \vec{F} \cdot d\vec{r}$$

1c. Công suất

- Công suất là công thực hiện trong một giây.
- Công do một lực bất kỳ thực hiện trong một dich chuyển nhỏ:

$$dW = \vec{F} \cdot d\vec{r}$$

• Dịch chuyển diễn ra trong thời gian dt, do đó công suất của lực là:

$$P = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt}$$

$$Watt(W) = J/s$$

Bài tấp 1

Đưa vật m lên một mặt nghiêng độ cao h và góc nghiêng θ . Hê số ma sát trươt giữa vật và mặt nghiêng là μ .

Tìm công của trọng lực, phản lưc vuông góc và lưc ma sát khi quỹ đao là:

- (a) một đường thẳng.
- (b) một nửa đường tròn.

Nhìn trên xuống

cuu duong than cong . com

Trả lời bài tập 1 – 1

- Phản lưc vuông góc với mọi quỹ đạo trên mặt nghiêng: $W_N = 0$
- Công của trong lưc:

$$W_{mg} = \int_{P_1}^{P_2} m\vec{g} \cdot d\vec{r} = m\vec{g} \cdot \int_{P_1}^{P_2} d\vec{r}$$

• Trong mọi trường hợp:

$$\int_{P_1}^{P_2} d\vec{r} = \Delta \vec{r} \implies W_{mg} = m\vec{g} \cdot \Delta \vec{r}$$

 $W_{mq} = -mg\Delta y = -mgh < 0$: lực cản

$$\Delta \vec{r}$$

Trả lời bài tập 1 – 2

• Ma sát \vec{f} ngược chiều $d\vec{r}$:

$$dW_f = \vec{f} \cdot d\vec{r} = -f \left| d\vec{r} \right|$$

$$d_a = \frac{h}{\sin \theta}$$

$$d_b = \pi R$$
 $R = ?$

Bài tập 1 – Ghi nhớ

$$W_{N}=0$$

$$W_{mg}=-mg\Delta y \qquad \begin{array}{c} y \text{ hướng lên} \\ \text{Không phụ thuộc} \\ \text{đường đi} \end{array}$$

$$W_{ms}=-f_{ms}d \qquad \qquad d: \text{chiều dài} \\ \text{quãng đường} \end{array}$$

Bài tâp 2

Môt vật được đặt trên một mặt ngang không ma sát, nối với lò xo có đô đàn hồi k.

Kéo vật từ vị trí x_1 đến vị trí x_2 (so với khi lò xo không co dãn).

Tìm công do lưc đàn hồi thực hiên.

cuu duong than cong . com

Trả lời bài tập 2

· Công của lưc lò xo trong môt dich chuyển nhỏ:

$$dW = -k\vec{x} \cdot d\vec{x}$$

$$dW = -kxdx = -\frac{k}{2}d(x^2)$$

Do đó:

$$W = -\frac{k}{2} \int_{x_1}^{x_2} d(x^2) \qquad W = -\frac{k}{2} (x_2^2 - x_1^2)$$

$$W = -\frac{k}{2} \left(x_2^2 - x_1^2 \right)$$

Không phụ thuộc đường đi!!

Bài tập 3

Một trạm thăm dò khối lương *m* được phóng từ Trái Đất để đi vào quỹ đạo Sao cuu duong than corHoa. com

Khối lương Mặt Trời М.

 r_1 : khoảng cách MT - TĐ

 r_2 : khoảng cách MT - SH

Trả lời câu 3

• Công sơ cấp:

$$dW = \vec{F} \cdot d\vec{r}$$

$$dW = -Fdr = -G\frac{Mm}{r^2}dr$$

$$W = -GMm \int_{r_1}^{r_2} \frac{dr}{r^2}$$

Do đó:

$$W = GMm \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

Toa đô cưc r, θ

$$\vec{F} = -F\vec{u}_r$$

$$d\vec{r} = dr\vec{u}_r + rd\theta\vec{u}_\theta$$

cuu duong than cong . com

không phụ thuộc đường đi!!

1d. Lưc bảo toàn

- Lưc bảo toàn ⇔ công không phu thuộc đường đi.
 - Trong lưc đều, lưc hấp dẫn và lưc đàn hồi của lò xo là các lực bảo toàn.
 - Lực ma sát không phải là lực bảo toàn.
- Lưc bảo toàn $\Leftrightarrow W = 0$ khi đường đi khép kín.
 - đối với trọng lực chẳng hạn, khi quỹ đạo khép kín thì $y_1 = y_2$, $\Delta y = 0$, W = 0.

2a. Đông năng

- Động năng là dạng năng lượng gắn liền với chuyển đông.
- Đông năng của một chất điểm khối lượng *m* chuyển động với vận tốc *v* là:

$$K = \frac{1}{2}mv^2$$

Đơn vi Joule (1)

2b. Đinh lý động năng

$$\vec{v}dt \cdot m \frac{d\vec{v}}{dt} = \vec{F}_{tot} \cdot \vec{v}dt = d\vec{r}$$

$$m\vec{v} \cdot d\vec{v} = (\vec{F}_{tot} \cdot d\vec{r}) = dW_{to}$$

$$\vec{v}dt \cdot m \frac{d\vec{v}}{dt} = \vec{F}_{tot} \cdot \vec{v}dt = d\vec{r}$$

$$m\vec{v} \cdot d\vec{v} = \vec{F}_{tot} \cdot d\vec{r} = dW_{tot}$$

$$dv^2 = d\vec{v}^2 = 2\vec{v} \cdot d\vec{v}$$

$$\Rightarrow \vec{v} \cdot d\vec{v} = \frac{1}{2}dv^2$$

cuu duong than
$$con \frac{m}{2} dv^2 = d \left(\frac{mv^2}{2} \right) = dW_{tot}$$

Độ biến thiên động năng = công toàn phần

$$dK = dW_{tot}$$

$$\Delta K = W_{tot}$$

Bài tập 4

Một vật khối lượng *m* trượt không ma sát, vận tốc ban đầu bằng không, từ đỉnh một máng trượt như hình vẽ.

Tìm chiều cao tối thiểu h_{min} để vật không bị rơi khỏi máng trượt ở A.

Trả lời bài tập 4

 Định luật Newton 2 trên phương pháp tuyến tại A cho ta:

$$m\frac{v_A^2}{R} = mg + N_A$$

- Để vật không bị rơi khỏi máng trượt tại A ta phải có: $N_A \ge 0$
- Suy ra: $v_A^2 \ge gR \qquad (1)$

cuu duong than cong . com

Trả lời bài tập 4 (tt)

$$K_A - K_S = W_{mg}$$

$$\frac{1}{2}mv_A^2 - 0 = mg(h-2R)$$

$$v_A^2 = 2g(h-2R) \qquad (2)$$

$$v_A^2 \ge gR \tag{1}$$

Từ (1) và (2):

$$2g(h-2R) \ge gR$$
 $\Rightarrow 2gh \ge 5gR$ $h \ge \frac{5}{2}R$
 $h_{\min} = \frac{5}{2}R$

Bài tập 4 – mở rộng

- Khi $h = h_{min}$, tìm phản lực vuông góc tại C.
- Trả lời: $N_C = 6mg$
- N lớn như thế rất nguy hiểm.
 - Để giảm N, các máng trượt tròn thường được thiết kế lệch một chút khỏi mặt phẳng thẳng đứng.

3a. Thế năng - 1

• Công của lực bảo toàn:

$$W = mgy_1 - mgy_2$$

$$W = \frac{k}{2}x_1^2 - \frac{k}{2}x_2^2$$

$$W = -GMm\frac{1}{r_1} - \left(-GMm\frac{1}{r_2}\right)$$

• mgy, kx²/2, -GMm/r đều là các hàm của vi trí.

3a. Thế năng - 2

U: thế năng

Công của lực bảo toàn:
$$W_{1 o 2} = U_1 - U_2$$

Độ giảm thế năng

Công của lực bảo toàn = độ giảm thế năng

$$W_{b\dot{a}o\ to\dot{a}n} = -\Delta U$$

$$dW_{bao\ toan} = -dU$$

 $U_2 - U_1 = \Delta U$: độ biến thiên

 $U_1 - U_2 = -\Delta U$: độ giảm

đơn vị thế năng: J

cuu duong than cong'. com

3a. Thế năng - 3

$$W_{1\to 2} = U_1 - U_2 = (U + C)_1 - (U + C)_2$$

Nếu U là thế năng thì U + C cũng là thế năng

Thế năng được xác định sai khác một hằng số

$$U = mgy + C$$

trọng lực đều

$$U = -G\frac{Mm}{r} + C$$

lực hấp dẫn

$$U = \frac{1}{2}kx^2 + C$$

lực đàn hồi lò xo

3b. Tìm hằng số *C* - 1

U = mgy + C y hướng lên

Chọn gốc thế năng ở vị trí $y_0 \Leftrightarrow \text{Đặt } U(y_0) = 0$

g than cong .
$$com U(y_0) = mgy_0 + C \equiv 0$$

$$\Rightarrow C = -mgy_0$$

$$U = mgy - mgy_0$$

Nếu gốc thế năng ở vị trí $y_0 = 0 \implies C = 0$

3b. Tìm hằng số *C* - 2

$$U = -G\frac{Mm}{r} + C$$
 Đặt $U(r_0) = 0$

Chon gốc thế năng ở khoảng cách r_0

$$U(r_0) = -G\frac{Mm}{r_0} + C \equiv 0 \implies C = G\frac{Mm}{r_0}$$

$$U = -G\frac{Mm}{r} + G\frac{Mm}{r_0}$$

Nếu gốc thế năng ở $r_0 = \infty \implies C = 0$

3b. Tìm hằng số *C* - 3

$$U = \frac{1}{2}kx^2 + C$$

Chon gốc thế năng ở vi trí $x_0 \Leftrightarrow \text{Đặt } U(x_0) = 0$

$$U(x_0) = \frac{1}{2}kx_0^2 + C \equiv 0$$

$$\Rightarrow C = -\frac{1}{2}kx_0^2$$

$$U = \frac{1}{2}kx^2 - \frac{1}{2}kx_0^2$$

Nếu gốc thế năng ở vi trí $x_0 = 0 \implies C = 0$

cuu duong than cong . com

4a. Cơ năng - 1

Lực bảo toàn:
$$W_{tot} = -\Delta U$$

Định lý động năng:
$$W_{tot} = \Delta K$$

$$\Delta K = -\Delta U \Rightarrow \Delta (K+U) = 0$$

$$\Delta K = -\Delta U + W_{kh\hat{o}ng\ b\hat{d}o\ to\hat{a}n} \Rightarrow \Delta (K+U) = W_{kh\hat{o}ng\ b\hat{d}o\ to\hat{a}n}$$

$$\Delta E = \Delta (K+U) = W_{kh\hat{o}ng\ b\hat{d}o\ to\hat{a}n}$$

Khi lực là bảo toàn thì cơ năng cũng bảo toàn:

$$\Delta E = \Delta (K + U) = 0$$

4a. Cơ năng – 2

$$W_{tot} = W_{b\acute{a}o\ to\grave{a}n} + W_{kh\^{o}ng\ b\acute{a}o\ to\grave{a}n} = -\Delta U + W_{kh\^{o}ng\ b\acute{a}o\ to\grave{a}n}$$

Định lý động năng:
$$W_{tot} = \Delta K$$

$$\Delta K = -\Delta U + W_{kh\hat{o}ng\ b\hat{a}o\ to\hat{a}n} \Rightarrow \Delta (K + U) = W_{kh\hat{o}ng\ b\hat{a}o\ to\hat{a}n}$$

$$\Delta E = \Delta (K + U) = W_{kh\hat{o}ng\ b\hat{a}o\ to\hat{a}n}$$

Nếu mọi lực đều bảo toàn: $W_{không\ bảo\ toàn}$ = 0

thì cơ năng cũng bảo toàn: $\Delta E = 0$

Bài tập 7

Hai vận động viên trượt tuyết trượt không vận tốc đầu trên hai đường không ma sát.

Hãy so sánh vận tốc của họ ở vị trí A, B, và C.

Trả lời bài tập 7

- Không có ma sát ⇒ cơ năng bảo toàn.
- Cơ năng ban đầu:

$$E_0 = \frac{1}{2}m\overrightarrow{v_0} + mg\overrightarrow{v_0}$$

$$E_0 = 0$$

• và ở một vị trí bất kỳ y:

$$E = \frac{1}{2}mv^2 + mgy \qquad y < 0$$

cuu duong than cong . com

Trả lời bài tập 7 (tt)

- Cơ năng bảo toàn: $E_0 = E \Leftrightarrow 0 = \frac{1}{2}mv^2 + mgy$
- Vận tốc ở vị trí y: $v = \sqrt{2g|y|}$

• Ở A và C: $|y_1| = |y_2| = h$ $\Rightarrow v_1 = v_2$

- Ở vị trí B: $|y_1| = h$, $|y_2| = 2h \implies v_1 < v_2$
- Ai sẽ về đích trước? Minh họa

Bài tập 8

Một người trượt không vận tốc đầu xuống một dốc tuyết không ma sát có độ cao 20m. Ở cuối dốc là một mặt phẳng ngang có hệ số ma sát trượt 0,21.

Tìm quãng đường người ấy đi được trên mặt ngang cho đến khi dừng lại.

Trả lời bài tập 8

$$E_C - E_A = W_{ms}$$

$$E_C - E_A = W_{ms}$$
 $W_{ms} = -f_{ms}d = -\mu mgd$

$$-mgh = -\mu mgd$$
 $d = h/\mu = 95.2 \text{ m}$

$$d = h/\mu = 95,2 \text{ m}$$

Tóm tắt – Công và năng lượng

Công
$$dW = \vec{F} \cdot d\vec{r}$$
 $W = \int dW$

Động năng
$$dK = dW_{tot}$$

$$\Delta K = W_{tot}$$

Thế năng
$$dW_{bảo\ toàn} = -dU$$

$$W_{b \dot{a}o \ to \dot{a}n} = -\Delta U$$

Co năng
$$\Delta E = \Delta(K + U) = W_{không bảo toàn}$$

cuu duong than cong . com

Tóm tắt – Công của các loại lực

Ma sát:
$$W = -f_{ms}d$$

Lực bảo toàn:
$$W = -\Delta U$$

$$U=mgy+C$$
 trọng lực đều, $y\uparrow$

$$U = -G \frac{Mm}{r} + C$$
 lực hấp dẫn

$$U = \frac{1}{2}kx^2 + C$$
 lực đàn hồi lò xo