TD 03: REVÊTEMENTS

► Cette feuille de TD 3 nous occupera deux semaines.

Première semaine

Exercices fondamentaux

1. EXEMPLES DE REVÊTEMENTS

Soit $n\geqslant 1$ un entier. Soit $p:\mathbf{T}^1\to\mathbf{T}^1$ définie par $p(x)=nx\ (\mathrm{mod}\ 1)$, qui est un revêtement à n feuillets de \mathbf{T}^1 par \mathbf{T}^1 .

- (a) Donner une condition sur le degré d'une application continue $f: \mathbf{T}^1 \to \mathbf{T}^1$ pour qu'elle admette un relèvement par le revêtement p.
- (b) Pour $k \in \mathbb{N}$, soit $f_k : \mathbb{T}^1 \to \mathbb{T}^1$ définie par $f_k(x) = kx \pmod 1$. Trouver tous les k tels que f_k se relève par p.

2. BOUTEILLE DE KLEIN

Soit \sim_K la relation d'équivalence sur \mathbf{R}^2 engendrée par $(x,y)\sim_K (x+1,-y)$ et $(x,y)\sim_K (x,y+1)$ pour tout $(x,y)\in\mathbf{R}^2$. Soit K l'espace quotient, et soit $\pi_K:\mathbf{R}^2\to K$ la projection canonique.

Soit \sim_T la relation d'équivalence sur \mathbf{R}^2 engendrée par $(x,y)\sim_T (x+2,y)$ et $(x,y)\sim_T (x,y+1)$ pour tout $(x,y)\in\mathbf{R}^2$. Soit T l'espace quotient, et soit $\pi_T:\mathbf{R}^2\to T$ la projection canonique.

- (a) Montrer que π_K est un revêtement. En déduire le groupe fondamental de K.
- (b) Montrer que T est homéomorphe au tore \mathbf{T}^2 .
- (c) Montrer qu'il existe un revêtement double $p: \mathbf{T}^2 \to K$ tel que $p \circ \pi_T = \pi_K$. Expliciter l'image de $\pi_1(\mathbf{T}^2)$ par p_* .

3. L'ANNEAU HAWAÏEN

Considérons le cercle C_n de centre $(\frac{1}{n+1},0)$ et de rayon $\frac{1}{n+1}$ dans \mathbf{R}^2 . Soit $B=\bigcup_{n\in\mathbf{N}}C_n$, muni de la topologie induite par celle de \mathbf{R}^2 , appellé l'anneau hawaïen.

- ie IC, appelle l'aimeau nawaien.
- (a) Montrer que ${\cal B}$ n'admet pas de revêtement simplement connexe.
- (b) On note $x\in {\bf R}^2$ l'intersection de tous les cercles C_n . Pour tout cercle C_n de B, on note X_n l'espace topologique obtenu par recollement en son point base d'une copie de $\overline{B-C_n}$ sur chaque point entier de ${\bf R}$. Montrer qu'il existe un revêtement $p_n:X_n\to B$ tel que la restriction de p_n à chaque copie de $\overline{B-C_n}$ soit un homéomorphisme sur son image, et la restriction de p_n à ${\bf R}$ soit un revêtement de C_n .
- (c) Soient X,Y,Z des espaces topologiques et $q:X\to Y$ et $p:Y\to Z$ des revêtements, tels que p soit fini. Montrer que $p\circ q:X\to Z$ est un revêtement.
- (d) Soit $n \in \mathbb{N}$. Construire un revêtement double $q:\widetilde{X_n} \to X_n$ tel que $p_n \circ q:\widetilde{X_n} \to B$ ne soit pas un revêtement.

Exercice complémentaire

- 1. Les groupes SU(2) et SO(3)
 - (a) Montrer que $SU(2) = \{x \in SL_2(\mathbf{C}) : {}^t\bar{x}x = \mathrm{Id}\}$ est homéomorphe à $\mathbf{S}^3 = \{(z, w) \in \mathbf{C}^2, |z|^2 + |w|^2 = 1\}$.
 - (b) Soit $V = \{x \in M_2(\mathbf{C}) : t\bar{x} = -x, \operatorname{Tr}(x) = 0\}$. Montrer que $\langle v, v' \rangle = \operatorname{Tr}(t\bar{v}v')/2$ est un produit scalaire sur V invariant par conjugaison de $\mathrm{SU}(2)$.
 - (c) En déduire l'existence d'un revêtement SU(2) o SO(3). Quel est le groupe fondamental de SO(3) ?

Deuxième semaine

Exercices fondamentaux

1. QUELQUES REVÊTEMENTS DU BOUQUET DE DEUX CERCLES

On considère les graphes orientés X et Y ci-dessous, respectivement à gauche et à droite.

- (a) Construire un revêtement $p:X\to Y$ en envoyant les arêtes pleines (resp. hachurées) de X sur les arêtes pleines (resp. hachurées) de Y par des homéomorphismes respectant l'orientation.
- (b) Ce revêtement est-il galoisien?
- (c) Construire un revêtement \overline{X} de X de degré 2, tel que \overline{X} soit un revêtement galoisien de Y.
- (d) Construire un revêtement \overline{Y} de Y de degré Y, tel que \overline{X} soit un revêtement galoisien de \overline{Y} de degré Y.
- (e) Calculer les groupes fondamentaux des quatre espaces topologiques en présence.
- (f) Décrire les morphismes et les sous-groupes en présence (générateurs et relations, indice, normalité).
- (g) En s'inspirant de ces revêtements, construire un sous-groupe de F_2 qui soit distingué et isomorphe à F_ω (le sous-groupe libre à une infinité dénombrable de générateurs). On en donnera les générateurs.

2. CLASSIFICATION DE REVÊTEMENTS

Décrire, à isomorphisme près, tous les revêtements connexes de S^1 , de $P_n(\mathbf{R})$, du ruban de Möbius M, et de \mathbf{T}^2 .

Exercices complémentaires

1. ESPACE DE CONFIGURATIONS

Soient (X, d) un espace métrique connexe et $n \ge 1$ un entier. On définit :

$$\begin{array}{lcl} C_n &:=& \left\{z=(z_k)_{1\leqslant k\leqslant n}\in X^n: z_j\neq z_k \ \forall j\neq k\right\},\\ P_n &:=& \left\{S\subset X: |S|=n\right\}. \end{array}$$

On équipe C_n et P_n des distances suivantes (d_{P_n} est la distance de Hausdorff) :

$$\begin{array}{lcl} d_{C_n}(S,T) & := & \max_{1 \leqslant i \leqslant n} d(S_i,T_i), \\ d_{P_n}(S,T) & := & \max \left\{ \max_{z \in S} \min_{z' \in T} d(z,z'), \max_{z' \in T} \min_{z \in S} d(z',z) \right\}. \end{array}$$

Soit $p_n:C_n\to P_n$ l'application qui envoie $(z_k)_{1\le k\le n}$ sur $\{z_k:1\le k\le n\}$. On supposera de plus que C_n est connexe.

- (a) Montrer que, pour tout $\mathcal{X}=\{x_1,\ldots,x_n\}\in P_n$, il existe $\varepsilon>0$ tel que $p:B_{C_n}((x_1,\ldots,x_n),\varepsilon)\to B_{P_n}(\mathcal{X},\varepsilon)$ soit bien définie, et soit une isométrie surjective.
- (b) En déduire que p_n est un revêtement. Quel est son degré? Quel est son groupe d'automorphismes? Est-il galoisien?
- (c) Décrire C_2 , P_2 et $p_2:C_2\to P_2$ quand X est le cercle.

2. REVÊTEMENT UNIVERSEL D'UN GROUPE TOPOLOGIQUE

Soit G un groupe topologique connexe par arcs, localement connexe par arcs et semi-localement simplement connexe, de revêtement universel (\widetilde{G},p) . Soient x,y dans \widetilde{G} , et $\widetilde{e}\in p^{-1}(e)$. Soient γ_x , γ_y des chemins de \widetilde{e} à x et y respectivement. Soit γ_{xy} le relèvement de $(p\circ\gamma_x)\cdot(p\circ\gamma_y)$ tel que $\gamma_{xy}(0)=\widetilde{e}$. On pose $x\cdot y:=\gamma_{xy}(1)$.

- (a) Vérifier que $x\cdot y$ ne dépend pas des chemins γ_x et γ_y choisis.
- (b) Montrer que, muni de cette loi de multiplication, \widetilde{G} est un groupe, et p est un morphisme de groupes.
- (c) Montrer que le noyau de p est un sous-groupe central de \tilde{G} .
- (d) Montrer que le noyau de p s'identifie au groupe fondamental de G.
- (e) Pour $n \in \{2,3\}$, calculer les groupes fondamentaux de $\operatorname{GL}_n(\mathbf{R}), \operatorname{SL}_n(\mathbf{R})$ et $\operatorname{PSL}_n(\mathbf{R})$. Remarque : pour n=2 les revêtement universels de ces groupes ne sont pas linéaires c'est-à-dire qu'ils ne peuvent pas être vus comme des groupes matriciels.