Proofs for "Expertise and knowledge: a modal logic perspective"

Anonymous Author¹

 1 Anonymous Institution .

Appendix A Proofs

Proof of Lemma 7 We first show that R is reflexive and has the Euclidean property (xRy and xRz implies yRz). For reflexivity, let $\Gamma \in X_L$. Suppose $A\varphi \in \Gamma$. By (T_A) and closure of maximally consistent sets under modus ponens, $\varphi \in \Gamma$. Hence $\Gamma R\Gamma$.

For the Euclidean property, suppose $\Gamma R\Delta$ and $\Gamma R\Lambda$. We show $\Delta R\Lambda$ by contraposition. Suppose $\varphi \notin \Lambda$. Since $\Gamma R\Lambda$, this means $\mathsf{A}\varphi \notin \Gamma$. Hence $\neg \mathsf{A}\varphi \in \Gamma$, and by (5_A) we get $\mathsf{A}\neg \mathsf{A}\varphi \in \Gamma$. Now $\Gamma R\Delta$ gives $\neg \mathsf{A}\varphi \in \Delta$, so $\mathsf{A}\varphi \notin \Delta$.

To conclude we need to show R is symmetric and transitive. For symmetry, suppose $\Gamma R\Delta$. By reflexivity, $\Gamma R\Gamma$. The Euclidean property therefore gives $\Delta R\Gamma$. For transitivity, suppose $\Gamma R\Delta$ and $\Delta R\Lambda$. By symmetry, $\Delta R\Gamma$. The Euclidean property again gives $\Gamma R\Lambda$.

Proof of Lemma 8 Part (1) was shown in the main text. For (2), note that by (1) we have

$$\begin{split} \mathsf{A}(\varphi \to \psi) \in \Sigma &\iff |\varphi \to \psi|_{\Sigma} = X_{\Sigma} \\ &\iff \forall \Gamma \in X_{\Sigma} : \varphi \to \psi \in \Gamma \end{split}$$

Suppose $A(\varphi \to \psi) \in \Sigma$. Take $\Gamma \in |\varphi|_{\Sigma}$. Then we have $\varphi, \varphi \to \psi \in \Gamma$, so $\psi \in \Gamma$. This shows $|\varphi|_{\Sigma} \subseteq |\psi|_{\Sigma}$. Conversely, suppose $|\varphi|_{\Sigma} \subseteq |\psi|_{\Sigma}$. Take $\Gamma \in X_{\Sigma}$. If $\varphi \notin \Gamma$ then $\neg \varphi \in \Gamma$, so $\neg \varphi \lor \psi \in \Gamma$ and thus $\varphi \to \psi \in \Gamma$. If $\varphi \in \Gamma$ then $\Gamma \in |\varphi|_{\Sigma} \subseteq |\psi|_{\Sigma}$, so $\psi \in \Gamma$. Thus $\varphi \to \psi \in \Gamma$ in this case too. Hence $A(\varphi \to \psi) \in \Sigma$.

For (3) first note that $A(\alpha \wedge \beta) \in \Sigma$ iff both $A\alpha \in \Sigma$ and $A\beta \in \Sigma$. This can be shown using (K_A) , (MP) and instances of the propositional tautologies $(p \wedge q) \to p$ (for the left-to-right implication) and $p \to q \to (p \wedge q)$) (for the right-to-left implication). Recalling that $\varphi \leftrightarrow \psi$ is an abbreviation for $(\varphi \to \psi) \wedge (\psi \to \varphi)$, we get

$$\mathsf{A}(\varphi \leftrightarrow \psi) \in \Sigma \iff \mathsf{A}(\varphi \to \psi) \in \Sigma \text{ and } \mathsf{A}(\psi \to \varphi) \in \Sigma$$
$$\iff |\varphi|_{\Sigma} \subseteq |\psi|_{\Sigma} \text{ and } |\psi|_{\Sigma} \subseteq |\varphi|_{\Sigma}$$
$$\iff |\varphi|_{\Sigma} = |\psi|_{\Sigma}$$

as required.

Proof of Theorem 5 Soundness was shown in the main text. For completeness, we adopt a roughly similar approach to the general case. Let consistency, maximal consistency and other standard notions and notation be defined as before, but now for $\mathsf{L}_{\mathsf{int}}$ instead of L . Let $X_{\mathsf{L}_{\mathsf{int}}}$ be the set of maximally $\mathsf{L}_{\mathsf{int}}$ -consistent sets. Define the relation R on $X_{\mathsf{L}_{\mathsf{int}}}$ in exactly the same way. Since $\mathsf{L}_{\mathsf{int}}$ extends L , R is again an equivalence relation, and we have the analogues of Lemma 8 and Corollary 1.

This time, however, the construction of the canonical model for a given $\Sigma \in X_{\mathsf{L}_{\mathsf{int}}}$ is much more straightforward. The set of states is simply X_{Σ} , i.e. the equivalence class of Σ in R. Overriding earlier terminology, say $A \subseteq X_{\Sigma}$ is S-closed iff $|\varphi|_{\Sigma} \subseteq A$ implies $|\mathsf{S}\varphi|_{\Sigma} \subseteq A$ for all $\varphi \in \mathcal{L}$. Then set

$$P_{\Sigma} = \{ A \subseteq X_{\Sigma} \mid A \text{ is S-closed} \}.$$

Finally, set $V_{\Sigma}(p) = |p|_{\Sigma}$, and write $M_{\Sigma} = (X_{\Sigma}, P_{\Sigma}, V_{\Sigma})$.

First, we have $M_{\Sigma} \in \mathbb{M}_{\text{int}}$, i.e. intersections of S-closed sets are S-closed. Indeed, suppose $\{A_i\}_{i\in I}$ is a collection of S-closed sets, and suppose $|\varphi|_{\Sigma} \subseteq \bigcap_{i\in I} A_i$. Then $|\varphi|_{\Sigma} \subseteq A_i$ for each i, so S-closure gives $|\mathsf{S}\varphi|_{\Sigma} \subseteq A_i$. Hence $|\mathsf{S}\varphi|_{\Sigma} \subseteq \bigcap_{i\in I} A_i$.

Importantly, we have the truth lemma for M_{Σ} : for all $\Gamma \in X_{\Sigma}$ and $\varphi \in \mathcal{L}$,

$$M_{\Sigma}, \Gamma \models \varphi \iff \varphi \in \Gamma,$$

i.e. $\|\varphi\|_{M_{\Sigma}} = |\varphi|_{\Sigma}$.

As usual, the proof is by induction on formulas. The case for atomic propositions follows from the definition of V_{Σ} , the cases for conjunctions and negations hold by properties of maximally consistent sets, and the case for $A\varphi$ holds by an argument identical to the one used in the general case (Lemma 9). The only interesting cases are therefore for $E\varphi$ and $S\varphi$ formulas:

(E): First suppose $\mathsf{E}\varphi \in \Gamma$. We claim $|\varphi|_{\Sigma}$ is S-closed. This will give $||\varphi||_{M_{\Sigma}} \in P_{\Sigma}$ by the induction hypothesis and definition of P_{Σ} , and therefore M_{Σ} , $\Gamma \models \mathsf{E}\varphi$.

So, suppose $|\psi|_{\Sigma} \subseteq |\varphi|_{\Sigma}$. Then $A(\psi \to \varphi) \in \Sigma$. Let $\Delta \in |S\psi|_{\Sigma}$. Since $\Delta, \Gamma, \Sigma \in X_{\Sigma}$, we have $E\varphi \in \Delta$ and $A(\psi \to \varphi) \in \Delta$ too. By (W_E) , $S\psi \wedge E\varphi \to \varphi \in \Delta$. But $S\psi \in \Delta$, so $S\psi \wedge E\varphi \in \Delta$ and thus $\varphi \in \Delta$, i.e. $\Delta \in |\varphi|_{\Sigma}$. This shows $|S\psi|_{\Sigma} \subseteq |\varphi|_{\Sigma}$, so $|\varphi|_{\Sigma}$ is S-closed as required.

Now suppose M_{Σ} , $\Gamma \models \mathsf{E}\varphi$. Then, by the induction hypothesis, $|\varphi|_{\Sigma}$ is S-closed. Since $|\varphi|_{\Sigma} \subseteq |\varphi|_{\Sigma}$ clearly holds, we get $|\mathsf{S}\varphi|_{\Sigma} \subseteq |\varphi|_{\Sigma}$. This implies $\mathsf{A}(\mathsf{S}\varphi \to \varphi) \in \Sigma$, and $(\mathsf{Red}_{\mathsf{E}})$ gives $\mathsf{E}\varphi \in \Sigma$. Since $\Gamma \in X_{\Sigma}$, we get $\mathsf{E}\varphi \in \Gamma$ as required.

(\$): Suppose $\mathsf{S}\varphi\in\Gamma$. Take any $A\in P_\Sigma$ such that $\|\varphi\|_{M_\Sigma}\subseteq A$. By the induction hypothesis, $|\varphi|_\Sigma\subseteq A$. By S-closure of A, $|\mathsf{S}\varphi|_\Sigma\subseteq A$. Hence $\Gamma\in|\mathsf{S}\varphi|_\Sigma\subseteq A$. This shows $M_\Sigma,\Gamma\models\mathsf{S}\varphi$.

For the other direction we show the contrapositive. Suppose $\mathsf{S}\varphi \notin \Gamma$. First, we claim $|\mathsf{S}\varphi|_{\Sigma}$ is S-closed. Indeed, suppose $|\psi|_{\Sigma} \subseteq |\mathsf{S}\varphi|_{\Sigma}$. Then $\mathsf{A}(\psi \to \mathsf{S}\varphi) \in \Sigma$. Take any $\Delta \in |\mathsf{S}\psi|_{\Sigma}$. Since $\Delta \in X_{\Sigma}$, $\mathsf{A}(\psi \to \mathsf{S}\varphi) \in \Delta$ also. By $(\mathsf{W}_{\mathsf{S}})$, $\mathsf{S}\psi \to \mathsf{S}\mathsf{S}\varphi \in \Delta$. Now $\mathsf{S}\psi \in \Delta$ implies $\mathsf{SS}\varphi \in \Delta$, and $(\mathsf{4}_{\mathsf{S}})$ gives $\mathsf{S}\varphi \in \Delta$, i.e. $\Delta \in |\mathsf{S}\varphi|_{\Sigma}$. This shows $|\mathsf{S}\psi|_{\Sigma} \subseteq |\mathsf{S}\varphi|_{\Sigma}$, and thus $|\mathsf{S}\varphi|_{\Sigma}$ is S-closed.

Hence $|\mathsf{S}\varphi|_{\Sigma}$ is a set in P_{Σ} not containing Γ . Moreover, $\|\varphi\|_{M_{\Sigma}} \subseteq |\mathsf{S}\varphi|_{\Sigma}$ by the induction hypothesis and $(\mathsf{T}_{\mathsf{S}})$. Hence $M_{\Sigma}, \Gamma \not\models \mathsf{S}\varphi$.

Strong completeness now follows. If $\Gamma \not\vdash_{\mathsf{L}_{\mathsf{int}}} \varphi$, then $\Gamma \cup \{\neg \varphi\}$ is consistent, so by Lindenbaum's Lemma there is $\Sigma \in X_{\mathsf{L}_{\mathsf{int}}}$ with $\Sigma \supseteq \Gamma \cup \{\neg \varphi\}$. Considering the

Proofs for "Expertise and knowledge: a modal logic perspective"

model $M_{\Sigma} \in \mathbb{M}_{int}$, we have $M_{\Sigma}, \Sigma \models \Gamma$ and $M_{\Sigma}, \Sigma \not\models \varphi$ by the truth lemma. Hence $\Gamma \not\models_{\mathbb{M}_{int}} \varphi$.

Proof of Theorem 6 Soundness was shown in the main text. For completeness, we go via relational semantics using the translation $t: \mathcal{L} \to \mathcal{L}_{KA}$ and Theorem 3. First, let L_{S4A} be the logic of \mathcal{L}_{KA} formulas formed by the axioms and inference rules shown in Table A1. It is well known that L_{S4A} is strongly complete with respect to \mathbb{M}_{S4}^* (Blackburn, De Rijke, & Venema, 2002, Theorem 7.2).

Table A1 Axioms and inference rules for L_{S4A} .

$\begin{array}{c} K(\varphi \to \psi) \to (K\varphi \to K\psi) \\ K\varphi \to \varphi \\ K\varphi \to KK\varphi \end{array}$	(K _K) (T _K) (4 _K)
$ \begin{array}{c} A(\varphi \to \psi) \to (A\varphi \to A\psi) \\ A\varphi \to \varphi \\ \neg A\varphi \to A\neg A\varphi \end{array} $	(K _A) (T _A) (5 _A)
Aarphi o Karphi	(Inc_{K})
From φ infer $A\varphi$ From $\varphi \to \psi$ and φ infer ψ	$_{\rm (MP)}^{\rm (Nec_A)}$

Now, define a translation $u: \mathcal{L}_{\mathsf{KA}} \to \mathcal{L}$ as follows:

$$\begin{array}{ll} u(p) &= p \\ u(\varphi \wedge \psi) &= u(\varphi) \wedge u(\psi) \\ u(\neg \varphi) &= \neg u(\varphi) \\ u(\mathsf{K}\varphi) &= \neg \mathsf{S} \neg u(\varphi) \\ u(\mathsf{A}\varphi) &= \mathsf{A} u(\varphi). \end{array}$$

Recall the translation $t: \mathcal{L} \to \mathcal{L}_{\mathsf{KA}}$ from Section 4. While u is not the inverse of t (for instance, there is no $\psi \in \mathcal{L}_{\mathsf{KA}}$ with $u(\psi) = \mathsf{E} p$), for any $\varphi \in \mathcal{L}$ we have that φ is $\mathsf{L}_{\mathsf{top}}$ -provably equivalent to $u(t(\varphi))$.

Claim 1 Let $\varphi \in \mathcal{L}$. Then $\vdash_{\mathsf{L}_{\mathsf{top}}} \varphi \leftrightarrow u(t(\varphi))$.

Proof By induction on \mathcal{L} formulas. The cases of atomic propositions and propositional connectives are straightforward. For the other cases, first note that the "replacement of equivalents" rule is derivable in L (and thus in L_{top}) for S, E and A:

From
$$\varphi \leftrightarrow \psi$$
 infer $\bigcirc \varphi \leftrightarrow \bigcirc \psi$ ($\bigcirc \in \{S, E, A\}$).

For S this follows from (Nec_A) and (W_S); for E from (Nec_A) and (RE_E), and for A from (Nec_A) and (K_A). Now for the inductive step, suppose $\vdash_{\mathsf{L}_{\mathsf{too}}} \varphi \leftrightarrow u(t(\varphi))$.

- 4 Proofs for "Expertise and knowledge: a modal logic perspective"
- S: Note that

$$u(t(S\varphi)) = u(\neg K \neg t(\varphi)) = \neg \neg S \neg \neg u(t(\varphi)).$$

By the inductive hypothesis, propositional logic and replacement of equivalents, $\vdash_{\mathsf{L}_\mathsf{too}} \mathsf{S}\varphi \leftrightarrow u(t(\mathsf{S}\varphi)).$

• E: We have

$$\begin{split} u(t(\mathsf{E}\varphi)) &= u(\mathsf{A}(\neg t(\varphi) \to \mathsf{K} \neg t(\varphi))) \\ &= \mathsf{A}u(\neg t(\varphi) \to \mathsf{K} \neg t(\varphi)) \\ &= \mathsf{A}(u(\neg t(\varphi)) \to u(\mathsf{K} \neg t(\varphi))) \\ &= \mathsf{A}(\neg u(t(\varphi)) \to \neg \mathsf{S} \neg u(\neg t(\varphi))) \\ &= \mathsf{A}(\neg u(t(\varphi)) \to \neg \mathsf{S} \neg \neg u(t(\varphi))). \end{split}$$

Taking the contrapositive of the implication, and using replacement of equivalents together with the inductive hypothesis, we get

$$\vdash_{\mathsf{L}_\mathsf{top}} u(t(\mathsf{E}\varphi)) \leftrightarrow \mathsf{A}(\mathsf{S}\varphi \to \varphi).$$

But we have already seen that $\vdash_{\mathsf{L}_{\mathsf{int}}} \mathsf{E}\varphi \leftrightarrow \mathsf{A}(\mathsf{S}\varphi \to \varphi)$; since $\mathsf{L}_{\mathsf{top}}$ extends $\mathsf{L}_{\mathsf{int}}$, we get $\vdash_{\mathsf{L}_{\mathsf{top}}} \mathsf{E}\varphi \leftrightarrow u(t(\mathsf{E}\varphi))$.

• A: This case is straightforward by the inductive hypothesis and replacement of equivalents, since $u(t(A\varphi)) = Au(t(\varphi))$.

Next we show that if $\varphi \in \mathcal{L}_{\mathsf{KA}}$ is a theorem of $\mathsf{L}_{\mathsf{S4A}}$, then $u(\varphi)$ is a theorem of $\mathsf{L}_{\mathsf{top}}$.

Claim 2 Let $\varphi \in \mathcal{L}_{KA}$. Then $\vdash_{\mathsf{L}_{\mathsf{S4A}}} \varphi \text{ implies } \vdash_{\mathsf{L}_{\mathsf{ton}}} u(\varphi)$.

Proof By induction on the length of $\mathsf{L}_{\mathsf{S4A}}$ proofs. The base case consists of showing that if φ is an instance of an $\mathsf{L}_{\mathsf{S4A}}$ axiom or a subtitution instance of a propositional tautology, then $\vdash_{\mathsf{L}_{\mathsf{top}}} u(\varphi)$. The case for instances of tautologies is straightforward, since u does not affect the structure of a propositional formula. We take the axioms of $\mathsf{L}_{\mathsf{S4A}}$ in turn.

• (K_K): We have

$$\begin{split} u(\mathsf{K}(\varphi \to \psi) &\to (\mathsf{K}\varphi \to \mathsf{K}\psi)) \\ &= \neg \mathsf{S} \neg (u(\varphi) \to u(\psi)) \to (\neg \mathsf{S} \neg u(\varphi) \to \neg \mathsf{S} \neg u(\psi)) \\ &= \hat{\mathsf{S}}(u(\varphi) \to u(\psi)) \to (\hat{\mathsf{S}}u(\varphi) \to \hat{\mathsf{S}}u(\psi)) \end{split}$$

which is an instance of (K_5) .

• (T_K): We have

$$u(\mathsf{K}\varphi \to \varphi) = \neg \mathsf{S} \neg u(\varphi) \to u(\varphi)$$

Taking the contrapositive, this is L_{top} -provably equivalent to $\neg u(\varphi) \rightarrow S \neg u(\varphi)$, which is an instance of (T_S) .

• (4_{K}) : We have

$$u(\mathsf{K}\varphi \to \mathsf{K}\mathsf{K}\varphi) = \neg \mathsf{S} \neg u(\varphi) \to \neg \mathsf{S} \neg \neg \mathsf{S} \neg u(\varphi)$$

This is provably equivalent to $SS \neg u(\varphi) \rightarrow S \neg u(\varphi)$, which is an instance of (4s).

• (K_A): We have

$$u(\mathsf{A}(\varphi \to \psi) \to (\mathsf{A}\varphi \to \mathsf{A}\psi)) = \mathsf{A}(u(\varphi) \to u(\psi)) \to (\mathsf{A}u(\varphi) \to \mathsf{A}u(\psi))$$

which is an instance of (K_A) in L_{top} .

Proofs for "Expertise and knowledge: a modal logic perspective"

• (T_A): We have

$$u(\mathsf{A}\varphi \to \varphi) = \mathsf{A}u(\varphi) \to u(\varphi)$$

which is an instance of (T_A) in L_{top} .

• (5_A) : We have

$$u(\neg \mathsf{A}\varphi \to \mathsf{A}\neg \mathsf{A}\varphi) = \neg \mathsf{A}u(\varphi) \to \mathsf{A}\neg \mathsf{A}u(\varphi)$$

which is an instance of (5_A) in L_{top} .

• (Inc_K): We have

$$u(\mathsf{A}\varphi \to \mathsf{K}\varphi) = \mathsf{A}u(\varphi) \to \neg \mathsf{S}\neg u(\varphi) = \mathsf{A}u(\varphi) \to \hat{\mathsf{S}}u(\varphi)$$

which is an instance of (Inc).

For the inductive step, we show that for each inference rule $\frac{\psi_1,...,\psi_n}{\varphi}$, if $\vdash_{\mathsf{L}_\mathsf{top}} u(\psi_i)$ for each i then $\vdash_{\mathsf{L}_\mathsf{top}} u(\varphi)$.

- (Nec_A): If $\vdash_{\mathsf{Ltop}} u(\varphi)$, then from (Nec_A) in Ltop we get $\vdash_{\mathsf{Ltop}} \mathsf{A}u(\varphi)$. But $\mathsf{A}u(\varphi) = u(\mathsf{A}\varphi)$, so we are done.
- (MP): Similarly, this clear from (MP) for L_{top} and the fact that $u(\varphi \to \psi) = u(\varphi) \to u(\psi)$.

Claims 1 and 2 easily imply the following.

Claim 3 Let $\varphi \in \mathcal{L}$. Then $\vdash_{\mathsf{L}_{\mathsf{S4A}}} t(\varphi)$ implies $\vdash_{\mathsf{L}_{\mathsf{top}}} \varphi$.

Proof Suppose $\vdash_{\mathsf{L}_{\mathsf{S4A}}} t(\varphi)$. By Claim 2, $\vdash_{\mathsf{L}_{\mathsf{top}}} u(t(\varphi))$. By Claim 1, $\vdash_{\mathsf{L}_{\mathsf{top}}} \varphi \leftrightarrow u(t(\varphi))$. By (MP), $\vdash_{\mathsf{L}_{\mathsf{top}}} \varphi$.

We can now show strong completeness. Suppose $\Gamma \subseteq \mathcal{L}$, $\varphi \in \mathcal{L}$ and $\Gamma \models_{\mathbb{M}_{\mathsf{top}}} \varphi$. We claim $t(\Gamma) \models_{\mathbb{M}_{\mathsf{54}}^*} t(\varphi)$. Indeed, if $M^* \in \mathbb{M}_{\mathsf{54}}^*$ and x is a state in M^* with $M^*, x \models t(\psi)$ for all $\psi \in \Gamma$, then with f as in Theorem 3 we have $f^{-1}(M^*), x \models \psi$ for all $\psi \in \Gamma$. Since $f^{-1}(M^*) \in \mathbb{M}_{\mathsf{int}} \cap \mathbb{M}_{\mathsf{unions}} \subseteq \mathbb{M}_{\mathsf{top}}$, $\Gamma \models_{\mathbb{M}_{\mathsf{top}}} \varphi$ gives $f^{-1}(M^*), x \models \varphi$, and thus $M^*, x \models t(\varphi)$.

By (strong) completeness of L_{S4A} for $\mathbb{M}_{\mathsf{S4}}^*$, we get $t(\Gamma) \vdash_{\mathsf{L}_{\mathsf{S4A}}} t(\varphi)$. That is, there are $\psi_0, \dots, \psi_n \in \Gamma$ such that $\vdash_{\mathsf{L}_{\mathsf{S4A}}} t(\psi_0) \land \dots \land t(\psi_n) \to t(\varphi)$. Since t passes over conjunctions and implications, this means $\vdash_{\mathsf{L}_{\mathsf{S4A}}} t(\psi_0 \land \dots \land \psi_n \to \varphi)$. By Claim 3, $\vdash_{\mathsf{L}_{\mathsf{top}}} \psi_0 \land \dots \land \psi_n \to \varphi$. Hence $\Gamma \vdash_{\mathsf{L}_{\mathsf{top}}} \varphi$, and we are done.

Proof of Theorem 7 For soundness, we need to check that (5_S) is valid on $\mathbb{M}_{\text{int}} \cap \mathbb{M}_{\text{compl}}$. Let M = (X, P, V) be closed under intersections and complements, and suppose $M, x \models S \neg S \varphi$. Note that $\|S\varphi\|_M = \bigcap \{A \in P \mid \|\varphi\|_M \subseteq A\}$ is an intersection from P, so $\|S\varphi\|_M \in P$. By closure under complements, $\|\neg S\varphi\|_M \in P$ too. Hence $M, x \models S \neg S \varphi \land E \neg S \varphi$. By Proposition 1 (4), we get $M, x \models S \neg S \varphi$.

The completeness proof goes in exactly the same way as Theorem 6. Letting L_{S5A} be the extension of L_{S4A} with the (5_K) axiom $\neg K\varphi \to K\neg K\varphi$, it can be shown that L_{S5A} is strongly complete with respect to \mathbb{M}_{S5}^* . With u as in the proof of Theorem 6, we have that $\vdash_{L_{S5A}} \varphi$ implies $\vdash_{L_{int-complet}} u(\varphi)$, for $\varphi \in \mathcal{L}_{KA}$ (the only new part to

check there is that $u(\neg \mathsf{K}\varphi \to \mathsf{K}\neg \mathsf{K}\varphi)$ is a theorem of $\mathsf{L}_{\mathsf{int-compl}}$, but this follows from (5_S)). The remainder of the proof goes through as before, this time appealing to the bijection $g: \mathbb{M}_{\mathsf{int}} \cap \mathbb{M}_{\mathsf{compl}} \to \mathbb{M}_{\mathsf{S5}}^*$.

П

Proof of Proposition 5 Let $M^* = (X, \{R_j\}_{j \in \mathcal{J}}, V)$ be a multi-source relational model. Since $\mathsf{K}_J^{\mathsf{com}} \psi \to \mathsf{K}_J^{\mathsf{sh}} \psi$ is valid for any ψ , the left-to-right implication of the above equivalence is straightforward.

For the right-to-left implication, suppose $M^*, x \models \mathsf{A}(\neg \varphi \to \mathsf{K}^{\mathsf{sh}}_J \neg \varphi)$. We show by induction that $M^*, x \models \mathsf{A}(\neg \varphi \to \mathsf{K}^n_J \neg \varphi)$ for all $n \in \mathbb{N}$, from which the result follows.

The base case n=1 is given, since $\mathsf{K}^1_J\neg\varphi=\mathsf{K}^{\mathsf{sh}}_J\neg\varphi$. For the inductive step, suppose $M^*,x\models \mathsf{A}(\neg\varphi\to\mathsf{K}^n_J\neg\varphi)$. Take $y\in X$ such that $M^*,y\models\neg\varphi$. Let $j\in J$. Take $z\in X$ such that yR_jz . From the initial assumption we have $M^*,y\models\mathsf{K}^{\mathsf{sh}}_J\neg\varphi$, so $M^*,y\models\mathsf{K}_j\neg\varphi$ and thus $M^*,z\models\neg\varphi$. By the inductive hypothesis, $M^*,z\models\mathsf{K}^n_J\neg\varphi$. This shows that $M^*,y\models\mathsf{K}^*_J\neg\varphi$ for all $j\in J$, and thus $M^*,y\models\mathsf{K}^{n+1}_J\neg\varphi$. Hence $M^*,x\models\mathsf{A}(\neg\varphi\to\mathsf{K}^{n+1}_J\neg\varphi)$ as required.

References

Blackburn, P., De Rijke, M., Venema, Y. (2002). *Modal logic* (Vol. 53). Cambridge University Press.