Lecture 2, Sept. 12

Mathematics Contest

Big Contests

- Small C
- Big E/Special K
- Putnam
- Bernoulli Trials

Students Run

- Integration Bee
- over 6000

Others

• Recreational Problem Sessions

ZFC Axioms

- Empty Set: there exist a set, denoted by ∅, with no elements.
- Equality: two sets are equal when they have the same elements. A = B when for every set $x, x \in A \iff x \in B$
- Pair Axiom: if A and B are sets then so is $\{A, B\}$. In particular, taking A = B shows that $\{A\}$ is a set.
- Union Axiom: if S is a set of sets then $\cup_S = \bigcup_{A \in S} A = \{x \mid x \in A \text{ for some } A \in S\}$. If A and B are sets, then so is $\{A, B\}$ hence so is $A \cup B = \bigcup_{\{A, B\}}$
- Power Set Axiom: if A is a set, then so is its Power Set P(A). $P(A) = \{X \mid X \subseteq A\}$. In particular, $\emptyset \subseteq X$, $X \subseteq X$
- Axiom of Infinity: if we define

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$$

$$\vdots$$

$$n + 1 = n \cup \{n\}$$

Then $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ is a set (called the set of natural numbers)