koningj@oregonstate.edu

CS 514

HW1

```
def factors(num):
if(num == 1):
  return []
if(num%2 == 0):
  return [2] + factors(int(num/2))
# find all prime numbers that could be factors
# Only have to search up to sqrt(num) because any number higher will not be a factor
i = 3
while(i*i <= num):
                                               #sqrt(num)/2 times
  isprime = 0
  #check if i is prime
  # To determine if a number is prime, we only have to have to search
  # until the sqrt of the number because all other numbers will be a multiple
  # of a value already checked
  j = 3
  while (j*j \le i):
                                               #sqrt(sqrt(n))/2 * sqrt(n)/2 times
    #Check if i is a multiple of j
                                               #sqrt(sqrt(n))/2 * sqrt(n)/2 times
    if(i\%j == 0):
      isprime = 1
      #breaks when i is not prime
      break
                                               #sqrt(sqrt(n))/2 * sqrt(n)/2 times
    j+=2
  #if i is prime, check if it is a factor of num
  if(isprime == 0):
    if(num%i == 0):
                                               #sqrt(num)/2 times
       return [i] + factors(int(num/i))
  i+=2
                                               #sqrt(num)/2 times
#if num is prime, return
return [int(num)]
```

2)

2. a) Derivation of the running time assuming that multiplications and additions take constant time

$$\mathsf{T}(\mathsf{n}) = \sum_{x=0}^{\log_2 n} c * \sqrt{n} / 2 + c * \left(\sqrt{\sqrt{n}} \right) / 2 * \sqrt{n} / 2$$

$$\mathsf{T}(\mathsf{n}) = c * \left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * \log_2 n$$

$$O(n) = \left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * log_2 n$$

2. b) Derivation of the running time assuming multiplication and division of n-bit numbers take $O(n^2)$ time and additions and subtractions take O(n) time

$$T(n) = T(n/2) + O(n^2) + O(n$$

$$T(n) = T(n/2) + 5O(n^2) + 2O(n)$$

$$T(n) = (5n^2 + 2n)log_2 n$$

3) Give a table T(n) vs n

n	T(n)
1	0:00:00.000002
11	0:00:00.000002
111	0:00:00.000006
1111	0:00:00.000004
11111	0:00:00.000007
111111	0:00:00.000005
1111111	0:00:00.000034
11111111	0:00:00.000018
11111111	0:00:00.000078
111111111	0:00:00.000045
1111111111	0:00:00.009810
11111111111	0:00:00.000026
111111111111	0:00:00.006192
1111111111111	0:00:00.001302
11111111111111	0:00:00.000342
11111111111111	0:00:00.000515
111111111111111	0:00:05.288088
1111111111111111	0:00:00.127748
11111111111111111	0:00:00.165751
11111111111111111	Over 16 minutes before I gave up
11111111111111111	0:00:00.166283
22222222222222222	0:00:00.000167
1	0:00:00.000001
2	0:00:00.000003
1369	0:00:00.000004
2209	0:00:00.000005
2614	0:00:00.000006
4946	0:00:00.000008

9769	0:00:00.000009
10609	0:00:00.000010
10623	0:00:00.000012
18144	0:00:00.000016
19543	0:00:00.000017
20147	0:00:00.000019
36241	0:00:00.000020
36749	0:00:00.000021
37253	0:00:00.000022
44563	0:00:00.000031
77317	0:00:00.000032
85831	0:00:00.000033
85849	0:00:00.000034
86171	0:00:00.000035
86857	0:00:00.000035
94201	0:00:00.000047
94249	0:00:00.000049
94513	0:00:00.000049
97117	0:00:00.000053
101009	0:00:00.000054
102259	0:00:00.000055
108541	0:00:00.000055
109741	0:00:00.000057
145441	0:00:00.000065
146519	0:00:00.000066
146521	0:00:00.000068
166043	0:00:00.000071
167311	0:00:00.000073
184153	0:00:00.000076
185069	0:00:00.000080
202567	0:00:00.000082
203761	0:00:00.000085
214603	0:00:00.000086
216217	0:00:00.000089
232381	0:00:00.000095
243517	0:00:00.000096
250073	0:00:00.000097
347981	0:00:00.000104
348709	0:00:00.000119
513829	0:00:00.000147
513833	0:00:00.000151
513839	0:00:00.000157
624607	0:00:00.000160
864757	0:00:00.000181
864855	0:00:00.000219
880699	0:00:00.000456

881357	0:00:00.000504
896669	0:00:00.000584
1019399	0:00:00.000697
1188287	0:00:00.000721
3347768	0:00:00.000750
3386191	0:00:00.000943
3431933	0:00:00.000960
3632054	0:00:00.001019
3777601	0:00:00.001151
3925541	0:00:00.001154
7216151	0:00:00.001185
8160043	0:00:00.001319
8891093	0:00:00.001332
9426383	0:00:00.001393
9492827	0:00:00.001395
9859693	0:00:00.002396
20503429	0:00:00.002439
21652513	0:00:00.002553
23210263	0:00:00.002567
	·

$$T(n) = c * \left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * log_2 n$$

$$\mathsf{T}(377601) = 0.001151 = c * \left(\sqrt{377601} / 2 + \sqrt{\sqrt{377601}} / 2 * \sqrt{377601} / 2 \right) * \log_2 377601$$

$$= c * (307 + 12 * 307) * 18.5 = c * 73833.5$$

$$C = \frac{0.001151}{73833.5}$$

For 5 seconds T(n) = 5

$$5 = \frac{0.001151}{73833.5} * \left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * log_2 n$$

321015217.4 =
$$\left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * log_2 n$$

$$n = 5.474$$

For 5 minutes T(n) = 300

$$300 = \frac{0.001151}{73833.5} * \left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * log_2 n$$

321015217.4 =
$$\left(\sqrt{n}/2 + \sqrt{\sqrt{n}}/2 * \sqrt{n}/2\right) * log_2 n$$

For 5 hours T(n) = 18000

$$18000 = \frac{0.001151}{73833.5} * \left(\sqrt{n} / 2 + \sqrt{\sqrt{n}} / 2 * \sqrt{n} / 2 \right) * log_2 n$$

n = 4.3365*10^14

For 5 days T(n) = 432000

n = 2.5783*10^16

For > 10 years T(n) = 2.024707179*10^16

n = 1.2925 * 10^20