Союз Советских С циалистических Республик

Государственный комитет СССР по делам изобретений и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву

(22) Заявлено 07.07.78. (21) 2639371/25-06

с присоединением заявки № -

(23) Приоритет -

Опубликовано 23,08.80. Бюллетень № 31

Дата опубликования описания 250880

(II) **757749**

(51) М. Кл.³

F 01 0 11/08 F 04 0 27/00

(53) УДК_{621.438}: :621.515 (088.8)

(72) Авторы изобретения

О.Н. Антонов, Ф.Ш. Гельмедов, Л.Е.-М. Ольштейн и В.П. Максимов

(71) Заявитель

(54). ТУРБОМАШИНА

Изобретение относится к области турбостроения.

Известна турбомашина, содержащая корпус и установленный на нем дат-чик замера радиального зазора между лопатками ротора и корпусом, связанный с системой подачи холодного и горячего воздуха во внутренюю полость корпуса [1].

Однако надежность такого выполнения турбомашины относительно невысока из-за значительной инерционности тепловых процессов, особенно на переходных режимах.

Известна также турбомашина, наиболее близкая к предложенной по технической сущности, содержащая конический корпус и установленный на нем
датчик замера радиального зазора
между лопатками ротора и корпусом,
связанный с преобразователем сигнала, подключенным к приводу осевого
перемешения [2].

Однако надежность и такого выполнения турбомашины остается относительно невысокой из-за возможности перекосов и заклинивания, что обусловлено неравномерностью температурного поля корпуса. Целью изобретения является повышение надежности турбомашины.

Это достигается тем, что турбомашина дополнительно содержит гидростатический подпятник, соединенный с. ротором и служащий приводом осевого перемещения, а преобразователь выполнен в виде электрогидравлического сервомеханизма со струйной турбкой и распределительным органом, имеющим осевое перемещение.

Преобразователь может быть снабжен командным блоком автоматического управления, а на внутренней поверхности корпуса установлен датчик обратной связи, подключенный к преобразователю.

На корпусе установлен датчик аварийного контроля минимального зазора, выполненный в виде по меньшей мере одного выступающего в зазор изолированного проводника, вырабатывающего командный сигнал при его разрыве.

На фиг. 1 схематически изображен турбокомпрессор с предложенными турбомашинами (компрессором и турбиноя), продольный разрез; на фиг. 2 — узел I

2

A

на фиг. 1; на фиг. 3 — узел II на фиг. 1.

Турбомашина, в частности компрессор, содержит конический корпус 1 и установленный на нем датчик 2 замера радиального зазора между лопатками 3 ротора 4 и корпусом 1, связанный с преобразователем 5 сигнала, подключенным к приводу осевого перемещения, выполненному в виде гидростатического подпятника, соединенного с ротором 4. Преобразователь 5 выполнен в виде электрогидравлического сервомеханизма с подпружиненной струйной трубкой 6, связанной с электромагнитом 7, и распределительным органом 8, имеющим осевое перемещение. Поршень 9 сервомеханизма соединен с пальцем 10 распределительного органа 8. В распределительном органе выполнены сливные и напорная проточки 11, 12 и 13 соответственно. Пята 14 подпятника делит пространство в корпусе 15 подпятника на полости 16, 17, соединенные каналами 18, 19 с проточками 20, 21. Напорная проточка 13 сообщена с напорной масляной магистралью. 22, к которой подключена каналом 23 с дросселем 24 струйная трубка 6. Преобразователь 5 снабжен командным блоком 25 автоматического управления и визирным устройством 26, а на внутренней поверхности корпуса 1 установлен датчик обратной связи (не показан), подключенный к преобразователю 5.

Для зашиты лопаток 3 ротора 4 от касания корпуса 1 на последнем установлен датчик 27 аварийного контроляминимального зазора, выполненный в виде по меньшей мере одного выступающего в зазор изолированного проводника, вырабатывающего командный сигнал при его разрыве.

До работы турбомашины при невращающемся роторе 4 подачей масла под давлением в магистраль 22 и при помощи регулировки командного блока 25 смещают ротор 4 в осевом направлении по касания лопаток 3 корпуса 1. Момент контакта фиксируют по визирному устройству 26 и затем отводят ротор 4 в обратном направлении, обеспечивая потребную величину зазора между лопат- \$0 ками 3 и корпусом, после чего регулировочные элементы командного блока 25 контрят. При работе турбомашины в случае ютклонения величины зазора от установленного сигнал рассогласования поступает в командный блок 25, где усиливается и обрабатывается и далее поступает в преобразователь 5. При этом включается электромагнит 7, который отклоняет струйную трубку 6 от нейтрального положения, соответствующего установленному зазору между лопатками 3 и корпусом 1. При отклонении трубки 6 смещается поршень 9 и

вместе с ним палец 10 распределительного органа 8. При этом напорная проточка 13 совмещается либо с проточкой 20, либо с проточкой 21, и масло из магистрали 22 поступает либо по каналу 18 в полость 16, либо по каналу 19— в полость 17, что вызывает осевое перемещение ротора 4 под действием перепада давлений на пяте 14, соответственно вправо и влево от нейтрального положения. Перемещение ротора 4 происходит до тех пор, пока не исчезнет сигнал рассогласования, т.е. пока зазор между лопатками 3 и корпусом 1 не достигнет установленного значения.

Повышение надежности турбомашины обусловлено тем, что при перемещении ротора (а не корпуса) при регулировании величины зазора между лопатками 3 и корпусом пректически исключается возможность перекоса и заклинивания из-за неравномерности температурного поля корпуса турбомашины.

Формула изобретения

1. Турбомашина, содержащая конический корпус и установленный на нем датчик замера радиального зазора между лопатками ротора и корпусом, связанный с преобразователем сигнала, подключенным к приводу осевого перемещения, отличаю щаяся тем, что, с целью повышения надежности, она дополнительно содержит гидростатический подпятник, соединенный с ротором и служащий приводом осевого перемещения, а преобразователь выполнен в виде электрогидравлического сервомеханизма со струйной трубкой и распределительным органом, имеющим осевое перемещение.

2. Турбомашина по п. 1, о т л и - ч а ю д а я с я тем, что преобразователь снабжен командным блоком автоматического управления, а на внутренней поверхности корпуса установлен датчик обратной связи, подключенный к преобразователю.

3. Турбомашина по п, 1, о т л и - ч а ю ц а я с я тем, что, с целью защиты лопаток ротора от касания корпуса, на последнем установлен датчик аварийного контроля минимального зазора, выголненный в виде по меньшей мере одного выступающего в зазор изолированного проводника, вырабатывающего командный сигнал при его разрыве.

Источники информации, принятые во внимание при экспертизе 1. Патент Великобритании № 1248198, кл. F | Т, опублик. 1960. 2. Авторское свидетельство СССР № 318729, кл. F 04 D 27/00, 1970.

DEP000C/EP0

2000

SU757749 A 19800823

1980-08-23

SU19782639371 19780707

1978-07-07

TURBOMACHINE

OPO

GELMEDOV FAGIM SHAKSIMOV VIKTOR PANTONOV OLEG NOLSHTEJN LEVE

GELMEDOV FAGIM SHMAKSIMOV VIKTOR POLSHTEJN LEV EANTONOV OLEG N (SU) Æ

F01D11/08; F04D27/00 ರ

Gas turbine rotor hydrostatic support - has electro hydraulic converter and distributor to control and maintain safe clearance between blades and case

SU19782639371 19780707 ፎ

SU757749 B 19800825 DW198119 000pp Ą.

(ANTO-I) ANTONOV O N Α

F01D11/08;F04D27/00 ೦

GELMEDOV F S H; OLSHTEIN L E M Z

SU-757749 The gas turbine has hydrostatic support for axial positioning of the rotor and

The transmitter which measures the radial clearance between the rotors (4) blades and connected to the distributor finger (10). The support (15) is divided (14) into two spaces the electrohydraulic converter, with axially moved distributor, to increase its efficiency. connected tothe electromagnet (7) and the distributor (8). The cylinder's piston (9) is (16,17) connected to the distributor control system. The transmiter \$7) signals the support connected to the rotor and made as a cylinder with spring-loaded tube (6) the case (2) is connected to the converter (5). The latter operates the hydrostatic critical clearance.

the converter. The electromagnet displaces the tube (i) and together with it the piston (ii) set back, through visually controlled distance, to obtain the required clearance. During Using the control block (25) the rotor (4) is moved axially to contact the case and then the operation, when the clearance is changed, the signal from the transmitter goes to pressure differential across the support flange (14) and moving the rotor back to its with the finger (10). The distributor's flow channels are realigned, changing the designed position. Bul.32/30.8.80

OPO

- 1981-E3098D [19]

Pork Loftus

47 492

Редактор Е. Кравцова Техред М. Петко Корректор Н. Григорук

Заказ 5589/23 Тираж 583 Подписное

ЦНИИПИ Государственного комитета СССР
по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

CLAIMS

- l. A rotor system comprising a rotary assembly (4) within a casing (3) with a gap between a tip edge of the rotary assembly (4) and the casing (3), means (24, 35, 56) to close the gap until rub contact between the tip edge and the casing (3) and means (2) to detect vibration due to rub contact whereupon control means (21) act to open the gap to a desired value.
- 2. A system as claimed in claim 1 wherein the rotary assembly (4) is formed from compressor or turbine blades secured about a rotary bearing (18, 20).
- 3. A system as claimed in claim 2 wherein the fan blades are formed into a cascade of blade rows in order to provide the rotary assembly (4).
- 4. A system as claimed in claim 1, 2 or 3 wherein the means (24, 35, 44, 55, 56) to close the gap between the rotary assembly (4) and the casing (3) is by constriction of the casing (3).

2

- . A system as claimed in claim 4 wherein the constriction is radial.
- 6. A system as claimed in claim 4 wherein the constriction is by tangential displacement towards the centre of the casing (3).

53

- 7. A system as claimed in any of claims 4, 5 or 6 wherein the constriction is through a single cuff (34).
- 30 83 A system as claimed in claim 1, 2 or 3 wherein the means to close the gap between the rotary assembly (4) and the casing (3) is by selective cooling of the rotary assembly (4) whereby relative constriction or expansion of that rotary assembly dependent upon the selective cooling adjusts the position of the tip edge as required in order to achieve the desire value of the gap.

Figure t

\$

35

AB

© EPODOC / EPO

PN - SU757749 A 19800823

PD - 1980-08-23

PR - SU19782639371 19780707

OPD - 1978-07-07

TI - TURBOMACHINE

IN - GELMEDOV FAGIM SHMAKSIMOV VIKTOR PANTONOV OLEG NOLSHTEJN LEV E

PA - GELMEDOV FAGIM SHMAKSIMOV VIKTOR POLSHTEJN LEV EANTONOV OLEG N

(SU)

IC - F01D11/08; F04D27/00

© WPI / DERWENT

 Gas turbine rotor hydrostatic support - has electro hydraulic converter and distributor to control and maintain safe clearance between blades and case

PR - SU19782639371 19780707

PN - SU757749 B 19800825 DW198119 000pp

PA - (ANTO-I) ANTONOV O N

IC - F01D11/08 ;F04D27/00

IN - GELMEDOV F S H; OLSHTEIN L E M

 SU-757749 The gas turbine has hydrostatic support for axial positioning of the rotor and the electrohydraulic converter, with axially moved distributor, to increase its efficiency.

- The transmitter which measures the radial clearance between the rotors (4) blades and the case (2) is connected to the converter (5). The latter operates the hydrostatic support connected to the rotor and made as a cylinder with spring-loaded tube (6) connected to the electromagnet (7) and the distributor (8). The cylinder's piston (9) is connected to the distributor finger (10). The support (15) is divided (14) into two spaces (16,17) connected to the distributor control system. The transmitter 27) signals the critical clearance.
- Using the control block (25) the rotor (4) is moved axially to contact the case and then set back, through visually controlled distance, to obtain the required clearance. During the operation, when the clearance is changed, the signal from the transmitter goes to the converter. The electromagnet displaces the tube (5) and together with it the piston (9) with the finger (10). The distributor's flow channels are realigned, changing the pressure differential across the support flange (14) and moving the rotor back to its designed position. Bul.32/30.8.80

OPD - 1978-07-07

AN - 1981-E3098D [19]

Pete Loftus

47492

none

none