Study & design of the control architecture of an UAV-based additive manufacturing of architectural structures

Alexis PAQUES & Nabil NEHRI

Specifications

The UAV must be able to autonomously fly in a rectangular room of 10x10 meters with a precision of 5 centimeters (2 inches).

Typical requirements

Our architecture

Regulation module

Flight controller:

- Motor management
- Position control
- Stabilization

Onboard computer:

- Brain
- Manage modules
- Tasks list

Control module

Localization module

Measure system:

- 6 fixed lasers
- Localization algorithm

Autonomous multirotor

Communication module

ROS Linux software overlay

Regulation module Flight controller

Measure

IMU = Inertial Measurement
Unit, consisting of a
magnetometer, an
accelerometer, a gyroscope
and a barometer

Motor control

- Regulate motor power
- Stabilize the UAV
- Navigate to the setpoint

Communication

- Mavlink
- Serial
- GPS
- PWM
- USB

« A flight controller for a multirotor is a printed circuit consisting in a microprocessor, captors and I/O. »

• 200\$

- Open source
- Open hardware

Pixhawk

Can be updated with our regulation loops

Control module Onboard computer

Odroid XU4

- Operating system: Linux Ubuntu (linaro)
- Open hardware/Open source
- Able to compute CV algorithms
- Possible graphic interface
- 2GB RAM
- Exynos 5422, octocore (LITTLE.big)
- Price: 79\$ (without TVA nor shipping)

- Used as an onboard computer
- The differences between models are mainly about performances

Control process

Real time user-friendly interface

User selection

Setpoint

Communication module ROS

66

ROS is a software overlay under Linux. The purpose of ROS is to provide common robotic libraries and a simplification of the inter process communication and hardware abstraction layers.

Advantages:

- Specialized in robotics
- Lots of libraries
- Provide modularity to any project
- Simplify any type of communications
- Community driven
- Open-source
- Can be used even for commercial use for most of components
- Plug'n'play

Figure: ROS communication philosophy

Example of ROS: Laser acquisition

Localization module

Fixed laser method

6 lasers pointing 3 reference walls

Actual prototype

- Yaw dependant
- Risk to loss the reference walls
- No room evolution
- No obstacle avoidance
- Faster to develop

Lasers

Lidar Lite v2:

• Precision: 2.5 cm, 1 inch

Maximal acquisition frequency: 500 Hz

• Weight: 22 gr

• Range: 1- 40 m, 44 yards

Class 1: Not hazardous for eyes

Acquisition though a microcontroller

Protocols: I2C, PWM

• Price: 100\$

Localization algorithm

X position = Laser 2 measure Y position = Laser 1 measure

Localization algorithm

X position = Laser 2 measure * cos(a) Y position = Laser 1 measure * cos(a)

Localization algorithm

3D

- Same logic
- More complex equations
- 100Hz to filter afterwards

Localization output filter

Changing gains, we can choose between an « instant position », using the prediction and the feedforward or the « mean position » to achieve a better positioning when we have a low dynamic.

There are additional low pass filters on laser inputs (one pole IIR filter)

Global architecture

Performances

Static, algorithm

Angular precision:

Pitch & Roll: $\sigma = 0.05^{\circ}$

Yaw: $\sigma = 0.5^{\circ}$

Linear precision:

 $\sigma = 0.82$ cm (0.3 in)

Dynamic, flying

Angular precision:

Yaw: $\sigma = 2.1^{\circ}$

Linear precision:

 $\sigma = 2.8$ cm (1.1 in)

PID needs better tuning

PID: Proportional, Integral, Derivative control loop, with optional Feedforward gain. This represents about 20 parameters because of the 6 degrees of liberty of the UAV

Final results of the system

Pros

- Ready to use for next year
- Pretty fast to install
- 2 inches precision with fine PID tuning
- Modular architecture
- Development workspace
- Friendly user interface

Cons

- Rectangular room
- No environment evolution
- Not enough robust for production
- No security (third party with malicious intent)
- No PID tuning
- No obstacle avoidance
- Overweight of the prototype

Perspectives

- 1. Increase the prototype size
- 2. PID tuning
- 3. Sensor fusion
 - a) Delay compensation
 - b) RTK
 - c) Camera
- 4. Mapping of the environnement

