UNIT- III &IV OPTIMIZATION TECHNIQUES

- 1. Minimize $f(x_1, x_2) = x_1^4 2x_1^2x_2 + x_1^2 + x_2^2 2x_1 + 3x_2 + 10$ with stating point $\begin{cases} 1.5 \\ -1.5 \end{cases}$ by Newton's method up to two iterations.
- 2. Minimize $f(x_1, x_2) = x_1^4 2x_1^2x_2 + x_1^2 + x_2^2 2x_1 + x_2 + 1$ with stating point $\begin{cases} 1.5 \\ -1.0 \end{cases}$ by Newton's method up to two iterations.
- 3. Minimize $f(x_1, x_2) = 3x_1^4 4x_1^2x_2 + 2x_1^2 + 2x_2^2 2x_1 + x_2 + 1$ with stating point $\begin{cases} 1.5 \\ -1.0 \end{cases}$ by Newton's method up to two iterations.
- 4. Minimize $f(x_1, x_2) = (10 x_1 + 6 x_2 9)^2 + (6 x_1 + 10 x_2 11)^2$ with starting point $\begin{cases} -1.0 \\ 1.0 \end{cases}$ by Newton's method up to two iterations.
- 5. Solve by Newton's method to *Minimize* $f(x_1, x_2) = (x_1 + 2x_2 7)^2 + (2x_1 + x_2 5)^2$ with the starting point $\begin{cases} -1.0 \\ 1.0 \end{cases}$.
- 6. Minimize $f(x_1, x_2) = (10 x_1 + 6 x_2 9)^2 + (6 x_1 + 10 x_2 11)^2$ with starting point ${-2.0 \brace 2.0}$ by Newton's method up to two iterations.
- 7. Minimize $f(x_1, x_2) = 2x_1 3x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ with starting point $\begin{Bmatrix} 1 \\ -1 \end{Bmatrix}$ by Steepest Descent method up to two iterations.
- 8. Minimize $f(x_1, x_2) = -3x_1 2x_2 + 2x_1^2 + 2x_1x_2 + \left(\frac{3}{2}\right)x_2^2$ with starting point $\left\{\frac{1}{-1}\right\}$ by Steepest Descent method up to two iterations.
- 9. Minimize $f(x_1, x_2) = 6x_1^2 + 2x_2^2 6x_1x_2 x_1 x_2$ by using the Steepest Descent method with starting point $\{1, 2\}$.
- 10. Minimize $f(x_1, x_2) = 4x_1^2 + 3x_2^2 5x_1x_2 8x_1$ with starting point $\begin{cases} 1.5 \\ -1.5 \end{cases}$ by Univariate method up to two iterations given that $\varepsilon = 0.01$.
- 11. Minimize $f(x_1, x_2) = 4x_1^2 + 3x_2^2 5x_1x_2 8x_1$ with starting point $\begin{cases} 2.5 \\ -2.5 \end{cases}$ by Univariate method up to two iterations given that $\varepsilon = 0.01$.
- 12. Minimize $f(x_1, x_2) = 2x_1^3 8x_1^2 x_2 + \left(\frac{1}{5}\right)x_2^2 5x_1 7Sin^{-1}\left(\frac{x_1}{x_2}\right)$ in the range $-5 \le x_1 \le 5$ and $-10 \le x_2 \le 10$ by using random search method up to 6 iterations given that set of values as $\{(r_1, r_2) = (.50, 0.60), (.25, .26), (.98, .97), (.45, .46), (.234, .235), (.63, .64)\}$.
- 13. Minimize $f(x_1, x_2) = 15x_1^2 18x_1x_2 + \left(\frac{13}{15}\right)x_2^2 \left(\frac{5}{3}\right)x_1 x_2 \tan^{-1}\left(\frac{1}{x_1}\right)$ in the range $-3 \le x_1 \le 4$ and $-5 \le x_2 \le 6$ by using random search method up to 10 iterations given the set of values as $\{(r_1, r_2) = (0.50, 0.60), (.25, .26), (.98, .97), (.45, .46), (.234, .235), (.63, .64), (.543, .544), (.712, 0.713), (.434, .435), (.782, .783)\}.$
 - 14. Minimize $f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 7x_3^2 2x_1x_2 + 3x_2x_3 7x_1 8x_2$ with starting point $\begin{cases} 1\\3\\4 \end{cases}$ by Univariate method up to three iterations given that $\varepsilon = 0.01$.
 - 15. Minimize $f(x_1, x_2) = x_1 2x_2 + 5x_1^2 + 10 x_1x_2 + 3x_2^2$ with starting point $\begin{Bmatrix} -2 \\ 1 \end{Bmatrix}$ by Steepest Descent method up to two iterations.

16. Minimize
$$f(X) = x_1^{-2} x_2^{-1} + \frac{1}{4} x_1^2 x_2^{-1} x_3^{-1} + x_1^{-1} x_3^2 x_4$$
 subject to

$$\frac{3}{4} x_1 x_2 + \frac{3}{8} x_2 x_3 x_4^{-3} \le 1 x_i \ge 0$$
, $i = 1,2,3$ by geometric programming method.

- $\frac{3}{4} x_1 x_2 + \frac{3}{8} x_2 x_3 x_4^{-3} \le 1 \quad x_i \ge 0, \quad i = 1,2,3 \text{ by geometric programming method.}$ 17. Minimize $f(X) = x_1 x_2 x_3^{-3} + 17 x_1^2 x_2^{-3} x_3 + 34 x_1^{-3} x_3 + 51 x_1 x_2, \quad x_i \ge 0, \quad i = 1,2,3$ by geometric programming method
- 18. Minimize x_1 subject to

$$-4x_1^3 + 6x_2^2 \le 1 \qquad x_1 + x_2 \ge 1$$

and
$$x_1 > 0, x_2 > 0$$

by procedure of complementary geometric programming method.

- 19. Derive the geometric dual of the problem : $f(X) = x_1^{-\frac{3}{4}}x_2 + x_1^{\frac{3}{2}}x_2^{-2}x_3^{-\frac{1}{3}} + x_1 x_2^{-3}x_3^{-1}$ subject to $\frac{7}{5}x_1^3x_2^{-1} + 6x_1^{-1}x_3^{-1/2} \le 1$.
 - 20. Minimize $f(X) = 2x_1x_2 + 2x_1x_2^{-1}x_3 + 4x_1^{-1}x_2^2x_3^{-1/2}$ subject to and $x_i \ge 0$, i = 1, 2, 3 by geometric programming method.

$$\sqrt{3} x_2^{-1} + 3x_1^{-1}x_3^{-1/2} \le 1$$

21. What is posynomial? Explain properly the procedure to solve the unconstrained Geometric minimization problem. Write the geometric dual of the given problem: Minimize f(X) =

$$x_1x_2^{-2}x_3^{-1} + 5x_1^{-1}x_2^{-3}x_3 + 2x_1x_3x_2 + 8x_1x_2^{-1/2} - x_1^{3/2}x_3$$
, $x_i \ge 0$, $i = 1,2,3$.

- 22. Derive the geometric dual of given problem: Min $f(X) = x_1^{-\frac{3}{4}} x_2 + x_1^{\frac{3}{2}} x_2^{-2} x_3^{-\frac{1}{3}} + x_1 x_2^{-3} x_3^{-1}$ $\frac{7}{5}x_1^3x_2^{-1} + 6x_1^{-1}x_3^{-1/2} \le 1.$
 - 23. Write constrained Geometric minimization problem with n variables and m constrained and its Geometric dual. Also find the solution of given Geometric minimization problem

Minimize
$$f(X) = x_1^{-2} + \frac{1}{4} x_2^2 x_3$$
 subject to $\frac{3}{4} x_1^2 x_2^{-2} + \frac{3}{8} x_2 x_3^{-2} \le 1$, $x_i \ge 0$, $i = 1,2,3$.

24. Minimize
$$f(X) = 10 x_2 x_3 x_4^4 + 40 x_1^2 x_3^{-1} + 5 x_2 x_3^2$$
 subject to $5 x_2^{-5} x_3^{-1} \le 1$,

$$10x_1^{-1}x_2^3 x_4^{-1} \le 1$$
, $x_i > 0$, $i = 1 \text{ to } 4$ by geometric programming method.

25. Minimize x_1 subject to $-4 x_1^2 + 7 x_2 \le 1$ procedure of complementary geometric programming method.

$$x_1 + x_2 \ge 1$$

$$x_1 + x_2 \ge 1$$
 and $x_1 > 0, x_2 > 0$ by

26. Minimize $f(X) = 20 x_2 x_3 x_4^4 + 20 x_1^2 x_3^{-1} + 5 x_2 x_3^2$ subject to

$$5 x_2^{-5} x_3^{-1} \le 1$$
 $10x_1^{-1} x_2^3 x_4^{-1} \le 1$ $x_i > 0, i = 1 \text{ to } 4$

by geometric programming method.

27. Minimize $f(X) = x_1^{-2} + \frac{1}{4} x_2^2 x_3$ subject to $\frac{3}{4} x_1^2 x_2^{-2} + \frac{3}{8} x_2 x_3^{-2} \le 1$ $x_i \ge 0, i = 1,2,3$ by geometric programming method.

 $-3x_1^2 + 7x_2 \le 1$, $x_1 + x_2 \ge 1$ and $x_1 > 0, x_2 > 0$ Minimize x_1 subject to

by procedure of complementary geometric programming method.

29. Derive the geometric dual of the problem : $(X) = 10 x_1 x_2 + 2 x_1 x_2^{-2} x_3^{-1} + 5 x_1^{-2} x_2^2 x_3^{-1/2}$ subject to $\frac{7}{5} x_1^3 x_2^{-1} + 6 x_1^{-1} x_3^{-1/2} \le 1$.

30. Derive the Geometric dual of the problem: Minimize $f(x_1, x_2) = x_1^{-3} x_2 + x_1^{3/2} x_3^{-1}$ subject to $x_1^2 x_2^{-1} + \frac{1}{2} x_1^{-2} x_3^{-3} \le 1$ and $x_1 > 0$, $x_2 > 0$, $x_3 > 0$.