Chapter 4 Solution of Electrostatic Problems

VE230 Summer 2021 Sung-Liang Chen

4-1 Introduction

- Electrostatic problems: **E**, V, ρ
- $\rho(r)$ known exactly everywhere \rightarrow E(r), V(r)
- In practical problems, $\rho(r)$ is not known everywhere (e.g., only partial $\rho(r)$ known). We need techniques:
 - Method of images
 - Boundary-value problems

4-2 Poisson's and Laplace's Equations

Maxwell's 1st and 2nd equations

$$\nabla \cdot \mathbf{D} = \rho.$$

$$\nabla \times \mathbf{E} = 0.$$

$$\nabla \times \mathbf{E} = 0. \qquad \qquad \mathbf{E} = -\nabla V.$$

$$\mathbf{\nabla \cdot D} = \rho.$$
In a linear medium
 $\mathbf{D} = \epsilon \mathbf{E},$
 $\mathbf{\nabla \cdot \epsilon E} = \rho.$

$$\mathbf{E} = -\mathbf{\nabla} V.$$

$$\mathbf{\nabla \cdot (\epsilon \nabla V)} = -\rho.$$

2

Poisson's Equations

$$\nabla \cdot (\epsilon \nabla V) = -\rho,$$

In a homogeneous medium ε is a constant over space

Poisson's equation

$$\nabla^2 V = \, -\frac{\rho}{\epsilon} \cdot$$

Laplacian operator: $\nabla^2 = \nabla \bullet \nabla$

Poisson's equation: ρ may be a function of space coordinates ε must be a constant over space

Poisson's Equation in Cartesian Coordinate

$$\nabla^2 V = \nabla \cdot \nabla V = \left(\mathbf{a}_x \frac{\partial}{\partial x} + \mathbf{a}_y \frac{\partial}{\partial y} + \mathbf{a}_z \frac{\partial}{\partial z} \right) \cdot \left(\mathbf{a}_x \frac{\partial V}{\partial x} + \mathbf{a}_y \frac{\partial V}{\partial y} + \mathbf{a}_z \frac{\partial V}{\partial z} \right);$$

$$\boxed{ \nabla^2 V = -\frac{\rho}{\epsilon} \cdot } \qquad \boxed{ \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon} \qquad (V/m^2). }$$

5

$abla^2$ in Cylindrical and Spherical Coordinates

• Cylindrical:

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}.$$

• Spherical:

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}.$$

6

Laplace's Equation

• In a simple medium where there is no free charge, ρ = 0

Laplace's Equation

$$\nabla^2 V = 0,$$

 Example to use Laplace's equation: a set of conductors at different potentials

```
Solve V by Laplace's equation \Rightarrow E = -\nabla V \Rightarrow \rho_s = \varepsilon E_n (see example 4-1)
```

EXAMPLE 4-2 Determine the **E** field both inside and outside a spherical cloud of electrons with a uniform volume charge density $\rho=-\rho_0$ (where ρ_0 is a positive quantity) for $0 \le R \le b$ and $\rho=0$ for R>b by solving Poisson's and Laplace's equations for V.

4-3 Uniqueness of Electrostatic Solutions

• Uniqueness theorem: a solution of Poisson's equation that satisfies the given boundary conditions is a unique solution.

 S_o : outer surface enclosing the volume τ S_1 , S_2 , ..., S_n : surfaces of **conducting bodies**

FIGURE 4-2 Surface S_o enclosing volume τ with conducting bodies.

- Volume τ is bounded (enclosed) by a surface S_o and surfaces S_1 , S_2 , ... S_n
- Inside S_o , many charged **conducting bodies** with surfaces S_1 , S_2 ,..., S_n at specified potentials.

 $S_{1,}$ S_{2} : Surface of a conducting body τ . Volume bounded by S_{o} , S_{1} , and S_{2}

- Uniqueness theorem: There is only one solution of potential V in τ
- To prove uniqueness theorem, we assume two solutions V_1 and V_2 in

$$abla^2 V_1 = -rac{
ho}{\epsilon},$$

$$abla^2 V_2 = -rac{
ho}{\epsilon}.$$

Also assume that V_1 and V_2 satisfy the same boundary conditions on S_1 , S_2 , ... S_n and S_o

• (i) Define a potential difference V_d : $V_d = V_1 - V_2$.

$$\nabla^2 V_1 = -\frac{\rho}{\epsilon}, \quad - \quad \nabla^2 V_2 = -\frac{\rho}{\epsilon}. \qquad \qquad \nabla^2 V_d = 0. \quad \text{in } \tau$$

• (ii) On conducting boundaries, the potentials are specified $\rightarrow V_d = 0$

Uniqueness theorem: a solution of Poisson's equation that satisfies the given boundary conditions (i.e., potentials are specified on surfaces of conducting bodies) is a unique solution.

$$\nabla \cdot (f\mathbf{A}) = f \nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f;$$
 letting $f = V_d$ and $\mathbf{A} = \nabla V_d;$
$$\nabla \cdot (V_d \nabla V_d) = V_d \nabla^2 V_d + |\nabla V_d|^2,$$
 Integration over τ
$$\nabla^2 V_d = 0. \quad \text{in } \tau \quad \text{Using (i)}$$

$$\oint_{\mathbf{S}} (V_d \nabla V_d) \cdot \mathbf{a}_n \, ds = \int_{\tau} |\nabla V_d|^2 \, dv,$$
 S: $S_1, S_2, ... S_d$ and S_0

$$\oint_{S} (\underline{V_d} \nabla V_d) \cdot \mathbf{a}_n \, ds = \int_{\tau} |\nabla V_d|^2 \, dv,$$

1. For S_1 , S_2 , ... S_n , $V_d = 0$ Using (ii) 2. For S_o Consider the surface of a sphere with radius $R \rightarrow \infty$ $V_d \sim 1/R$ $\nabla V_d \sim 1/R^2$ $S \sim R^2$ Thus, the integration $\sim 1/R$ As $R \rightarrow \infty$, Left side $\rightarrow 0$

$$\int_{\tau} |\nabla V_d|^2 \, dv = 0.$$

$$\int_{\tau} |\nabla V_d|^2 \, dv = 0.$$

 $|\nabla V_d|^2$ is nonnegative everywhere

$$|\nabla V_d|=0.$$
 everywhere in au

 V_d is a constant everywhere in τ

 \rightarrow " V_d in τ " = " V_d on surfaces" by the continuity of V_d

 $V_d = 0$ everywhere in τ

That is, $V_1 = V_2$ everywhere in τ , and there is only one possible solution!

Two Cases for the Uniqueness Theorem

- Known potentials of conducting bodies, which is just proved.
- Known charge distributions of conducting bodies:

 $\rho_{\rm S}$ is known on conducting bodies

 $\nabla V_d = 0$. on conducting body surfaces

Substitute
$$\nabla V_d = 0$$
. on S_1 , S_2 ,... S_n into $\oint_S (V_d \nabla V_d) \cdot \mathbf{a}_n \, ds = \int_\tau |\nabla V_d|^2 \, dv$,
$$\oint_S (V_d \nabla V_d) \cdot \mathbf{a}_n \, ds$$

$$= 0 \text{ over } S_1, S_2, \dots S_n.$$
Also, $\oint_{S_0} (V_d \nabla V_d) \cdot \mathbf{a}_n \, ds = 0 \text{ as } R \to \infty$

$$\int_\tau |\nabla V_d|^2 \, dv = 0.$$

The same conclusion can be obtained!

4-4 Methods of Images

- Methods of images: replacing boundaries by appropriate image charges in lieu of a formal solution of Poisson's or Laplace's equation
 - Condition on boundaries unchanged
 - V(R) can be determined easily

Point Charge and Grounded Plane Conductor (by Laplace Eq.)

FIGURE 4-3
Point charge and grounded plane conductor.

Why Not Laplace's Eq.

Solved by Laplace eq.:

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0,$$

Hold for y > 0 except at the point charge

- 4 Conditions should be satisfied:
- 1. V(x, 0, z) = 0.
- 2. for points very close to Q

$$V \to \frac{Q}{4\pi\epsilon_0 R}$$
, as $R \to 0$,

3. $V \rightarrow 0$ for points very far from Q

$$x \to \pm \infty, y \to +\infty, \text{ or } z \to \pm \infty$$

4. Even functions w.r.t. *x* and *z* coordinates

$$V(x, y, z) = V(-x, y, z)$$
 $V(x, y, z) = V(x, y, -z)$.

Difficult to solve...

• +Q \rightarrow induce ρ_s on conducting plane

- (a) Physical arrangement.
- $\rho_s(x, z)$ not easy to determine.
- Besides, 2nd term is difficult to evaluate.

4-4.1 Point Charge and Conducting Planes

- Image methods:
 - Remove the conductor
 - Replace with an image point charge -Q at y = -d

$$V(x, y, z) = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{R_+} - \frac{1}{R_-} \right),$$

$$R_{+} = [x^{2} + (y - d)^{2} + z^{2}]^{1/2},$$

$$R_{-} = [x^{2} + (y + d)^{2} + z^{2}]^{1/2}.$$

Solution
$$V(x, y, z) = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{R_+} - \frac{1}{R_-} \right),$$

- By direct substitution, we can verify:
 - Laplace's Eq. is satisfied
 - 4 conditions are satisfied
- In view of uniqueness theorem, the solution is the only solution.

Uniqueness theorem: a solution of Poisson's equation that satisfies the given boundary conditions is a unique solution.

•
$$\mathbf{E} = -\nabla V$$

Extremely simple!

Notes of Image Methods

- The solution cannot be used to calculate *V* or **E** in the y<**0** region.
- For y < 0 region, **E** = 0, V = 0.

4-4.2 Line Charge and Parallel Conducting Cylinder

FIGURE 4-5 Cross section of line charge and its image in a parallel, conducting, circular cylinder.

- 1. Cylinder surface is an equi-potential surface \rightarrow image must be a parallel line charge (ρ_i) inside the cylinder
- 2. By symmetry of line OP, ρ_i should be on line OP

Solid line: equipotential surface

FIGURE 3-15 Equipotential and electric field lines of an electric dipole (Example 3-8).

Assume

$$\rho_i = -\rho_\ell$$

(intelligent guess, also see figure 3-15)

• Voltage due to ho_{ℓ}

Voltage due to
$$\rho_r$$

$$V = -\int_{r_0}^r E_r dr = -\frac{\rho_{\ell}}{2\pi\epsilon_0} \int_{r_0}^r \frac{1}{r} dr$$

$$= \frac{\rho_{\ell}}{2\pi\epsilon_0} \ln \frac{r_0}{r}.$$
Reference point, $V = 0$

$$\rho_{01} = \frac{\rho_{\ell}}{2\pi\epsilon_0} \ln \frac{r_0}{r}$$
Point of interest
(b) Line charge and its image.

• Voltage due to ρ_i and ρ_i on cylindrical surface

$$\begin{split} V_{M} &= \frac{\rho_{\ell}}{2\pi\epsilon_{0}} \ln \frac{r_{01}}{r} - \frac{\rho_{\ell}}{2\pi\epsilon_{0}} \ln \frac{r_{02}}{r_{i}} \\ &= \frac{\rho_{\ell}}{2\pi\epsilon_{0}} \ln \frac{r_{i}}{r}. \end{split}$$

Choosing the same reference point with equidistance from ρ_i and ρ_i so that $r_{01} = r_{02}$.

• To make V_M = constant

$$\frac{r_i}{r}$$
 = Constant.

• To make M coincide with the cylindrical surface $(OM = \alpha)$, P_i should be chosen to make the two triangles OMP, and OPM similar. (Otherwise, r_i/r = constant over the cylindrical surface cannot be satisfied.)

$$\frac{\overline{P_i M}}{\overline{PM}} = \frac{\overline{OP_i}}{\overline{OM}} = \frac{\overline{OM}}{\overline{OP}}$$

$$\frac{r_i}{r} = \frac{d_i}{a} = \frac{a}{d} = \text{Constant.}$$

$$d_i = \frac{a^2}{r}$$

 P_i is called the **inverse point** of P

4-4.3 Point Charge and Conducting Sphere

(a) Point charge and grounded conducting sphere.

(b) Point charge and its image.

FIGURE 4-11
Point charge and its image in a grounded sphere.

Intelligent Guess

- By symmetry, Q_i
 - Negative
 - Inside the sphere
 - On line OQ

(b) Point charge and its image.

- $Q_i \neq -Q_i$; otherwise the equi-potential surface of V = 0 is a plane
- Thus, both Q_i and d_i should be solved

$$V_{M} = \frac{1}{4\pi\epsilon_{0}} \left(\frac{Q}{r} + \frac{Q_{i}}{r_{i}} \right) = 0,$$

$$\frac{r_i}{r} = -\frac{Q_i}{Q} = \text{Constant}.$$

Similar to the case in 4-4.2

$$\frac{r_i}{r} = \frac{d_i}{a} = \frac{a}{d} = \text{Constant}.$$

$$\frac{Q_i}{Q} = \frac{d}{d}$$

$$Q_i = -\frac{a}{d}Q$$

$$d_i = \frac{a^2}{d}$$
.

 Q_i is called the **inverse point** of Q

(b) Point charge and its image.

4-4.4 Charged Sphere and Grounded Plane

FIGURE 4-13 Charged sphere and grounded conducting plane.

- The sphere and the plane must be equi-potential surfaces.
- Method of images: The charged sphere and grounded plane can be replaced by charges.

(b) Two groups of image point charges.

$$Q_{1} = \left(\frac{a}{2c}\right)Q_{0} = \alpha Q_{0},$$

$$Q_{2} = \frac{a}{\left(2c - \frac{a^{2}}{2c}\right)}Q_{1} = \frac{\alpha^{2}}{1 - \alpha^{2}}Q_{0}, \qquad \alpha = \frac{a}{2c}.$$

$$Q_{3} = \frac{a}{2c - \frac{a^{2}}{\left(2c - \frac{a^{2}}{2c}\right)}}Q_{2} = \frac{\alpha^{3}}{(1 - \alpha^{2})\left(1 - \frac{\alpha^{3}}{1 - \alpha^{3}}\right)}Q_{0},$$

$$\vdots$$

$$Q_{0} \text{ to } Q_{1} \Rightarrow Q_{1} = (a/d_{1})Q_{0} \quad ; \quad d_{11} = a^{2}/d_{1}$$

$$Q_{1} \text{ to } Q_{2} \Rightarrow Q_{2} = (a/d_{2})Q_{1} \quad ; \quad d_{12} = a^{2}/d_{2}$$

$$Q_{2} \text{ to } Q_{3} \dots$$

$$Q_{0}Q_{1}Q_{2} \qquad d_{1} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{1} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{1} = \frac{a^{2}}{2c} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{1} = \frac{a^{2}}{2c} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{1} = \frac{a^{2}}{2c} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{2} = \frac{a^{2}}{2c - (a^{2}/2c)} \qquad d_{3} = \frac{a^{2}}{2c - (a^{2}$$

Total charge on the sphere

$$Q = Q_0 + Q_1 + Q_2 + \cdots = Q_0 \left(1 + \alpha + \frac{\alpha^2}{1 - \alpha^2} + \cdots \right).$$

• The V on the sphere

Pairs $(-Q_0, Q_1), (-Q_1, Q_2), \dots$ yield zero potential on the sphere

$$V_0 = \frac{Q_0}{4\pi\epsilon_0 a}.$$

• The C between the sphere and the conducting plane

$$C = \frac{Q}{V_0} = 4\pi\epsilon_0 a \left(1 + \alpha + \frac{\alpha^2}{1 - \alpha^2} + \cdots\right),$$

EXAMPLE 4-4 Determine the capacitance per unit length between two long, parallel, circular conducting wires of radius a. The axes of the wires are separated by a distance D.

4-5 Boundary-Value Problems in Cartesian Coordinates

- Method of images: useful for the case with isolated free charges (see 4-4.1 to 4-4.4)
- Laplace's equation: can be used to solve the case w/o isolated free charges (see Example 4-1: charges on conductors (= non-isolated))
 - Known boundary values (potential or its normal derivative specified)

Three Types of Boundary Conditions

• Dirichlet: *V* is specified on boundaries

• Neumann: dV/dn is specified on boundaries

 Mixed: V specified on some boundaries; dV/dn specified over the remaining boundaries.

Separation of Variables

Laplace's equation
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0.$$

By separation of variables V(x, y, z) = X(x)Y(y)Z(z),

$$V(x, y, z) = X(x)Y(y)Z(z),$$

$$Y(y)Z(z)\frac{d^{2}X(x)}{dx^{2}} + X(x)Z(z)\frac{d^{2}Y(y)}{dy^{2}} + X(x)Y(y)\frac{d^{2}Z(z)}{dz^{2}} = 0,$$

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} + \frac{1}{Z(z)} \frac{d^2 Z(z)}{dz^2} = 0.$$

$$f(x) + f(y) + f(z) = 0$$

f(x)+f(y)+f(z)=0 to be satisfied for all values of x, y, z

f(x): function of x only

f(y): function of y only f(z): function of z only

f(x), f(y), f(z) must be a constant

df(x)/dx=0, df(y)/dy=0, df(z)/dz=0

Possible Solutions of $X''(x) + k_x^2 X(x) = 0$

k_x^2	k _x	X(x)	Exponential forms [†] of $X(x)$
0	0	$A_0x + B_0$	
+	k	$A_1 \sin kx + B_1 \cos kx$	$C_1 e^{jkx} + D_1 e^{-jkx}$
-	jk	$A_2 \sinh kx + B_2 \cosh kx$	$C_2e^{kx}+D_2e^{-kx}$

$$\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0.$$

$$\frac{d^2Y(y)}{dy^2} + k_y^2Y(y) = 0$$

$$\frac{d^2Z(z)}{dz^2} + k_z^2Z(z) = 0,$$

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} + \frac{1}{Z(z)} \frac{d^2 Z(z)}{dz^2} = 0.$$

$$f(x) + f(y) + f(z) = 0$$

$$-k_x^2 - k_y^2 - k_z^2 = 0$$

$$k_x^2 + k_y^2 + k_z^2 = 0$$
., which should be satisfied.

Possible Solutions of $X''(x) + k_x^2 X(x) = 0$

A, B (or C, D) will be determined by boundary conditions

Hyperbolic and exponential functions.

FIGURE 4-14

EXAMPLE 4-6 Two grounded, semi-infinite, parallel-plane electrodes are separated by a distance b. A third electrode perpendicular to and insulated from both is maintained at a constant potential V_0 (see Fig. 4-15). Determine the potential distribution in the region enclosed by the electrodes.

4-6 Boundary-Value Problems in Cylindrical Coordinates

Laplace's equation
$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0.$$

General solution: Bessel functions

Assuming z independent $\partial^2 V/\partial z^2 = 0$

$$\partial^2 V/\partial z^2=0$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\partial \phi^2} = 0.$$

By separation of variables $V(r, \phi) = R(r)\Phi(\phi)$,

$$V(r, \phi) = R(r)\Phi(\phi),$$

$$\frac{r}{R(r)}\frac{d}{dr}\left[r\frac{dR(r)}{dr}\right] + \frac{1}{\Phi(\phi)}\frac{d^2\Phi(\phi)}{d\phi^2} = 0.$$

To hold for all values of r and ϕ

$$\left[\frac{r}{R(r)}\frac{d}{dr}\left[r\frac{dR(r)}{dr}\right] + \frac{1}{\Phi(\phi)}\frac{d^2\Phi(\phi)}{d\phi^2} = 0.\right]$$

$$\frac{r}{R(r)}\frac{d}{dr}\left[r\frac{dR(r)}{dr}\right] = k^2$$

$$\frac{1}{\Phi(\phi)} \frac{d^2 \Phi(\phi)}{d\phi^2} = -k^2, \quad \underset{\text{rewrite}}{\longrightarrow} \frac{d^2 \Phi(\phi)}{d\phi^2} + k^2 \Phi(\phi) = 0$$

$$V(r, \phi) = R(r)\Phi(\phi),$$

$$\frac{d^2\Phi(\phi)}{d\phi^2} + k^2\Phi(\phi) = 0.$$

For circular configurations, if ϕ is unrestricted, $\Phi(\phi)$ is **periodic over every 2** π (same values at a certain ϕ)

- k must be an integer $\rightarrow n$
- · sinh, cosh are not periodic!

Ve216:

$$e^{jk\phi} \neq e^{jk(\phi+2\pi)}$$

 $e^{jn\phi} = e^{jn(\phi+2\pi)}$

$$\Phi(\phi) = A_{\phi} \sin n\phi + B_{\phi} \cos n\phi,$$

$$V(r, \phi) = R(r)\Phi(\phi),$$

$$\frac{r}{R(r)} \frac{d}{dr} \left[r \frac{dR(r)}{dr} \right] = k^2$$

$$k \to n$$
Product rule in calculus
$$r^2 \frac{d^2 R(r)}{dr^2} + r \frac{dR(r)}{dr} - n^2 R(r) = 0,$$

Solution: $R(r) = A_r r^n + B_r r^{-n}$.

$$\Phi(\phi) = A_{\phi} \sin n\phi + B_{\phi} \cos n\phi,$$

$$R(r) = A_r r^n + B_r r^{-n}.$$

Combine the two solutions
$$V(r, \phi) = R(r)\Phi(\phi),$$

$$V_n(r,\phi) = r^n(A_n \sin n\phi + B_n \cos n\phi) + r^{-n}(A'_n \sin n\phi + B'_n \cos n\phi), \qquad n \neq 0.$$

where
$$A_n = A_r A_{\phi}$$
; $B_n = A_r B_{\phi}$; $A'_n = B_r A_{\phi}$; $B'_n = B_r B_{\phi}$;

If region of interest (ROI) includes r = 0, 2^{nd} term cannot exist. If ROI includes $r = \infty$, 1st term cannot exist

A Special Case: k = 0

$$\frac{d^2\Phi(\phi)}{d\phi^2} + k^2\Phi(\phi) = 0.$$

$$\frac{r}{R(r)} \frac{d}{dr} \left[r \frac{dR(r)}{dr} \right] = k^2$$
for k=0
$$\frac{d^2\Phi(\phi)}{d\phi^2} = 0.$$

$$\frac{d}{dr} \left[r \frac{dR(r)}{dr} \right] = 0,$$

$$\Phi(\phi) = A_0\phi + B_0$$

$$R(r) = C_0 \ln r + D_0,$$

EXAMPLE 4-8 Consider a very long coaxial cable. The inner conductor has a radius a and is maintained at a potential V_0 . The outer conductor has an inner radius b and is grounded. Determine the potential distribution in the space between the conductors.

FIGURE 4-18 Cross section of a coaxial cable (Example 4-8).

4-7 Boundary-Value Problems in Spherical Coordinates

Laplace's equation

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} = 0$$

Assuming φ independent

$$\frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) = 0.$$

By separation of variables $V(R, \theta) = \Gamma(R)\Theta(\theta)$.

$$V(R, \theta) = \Gamma(R)\Theta(\theta).$$

$$\frac{1}{\Gamma(R)}\frac{d}{dR}\left[R^2\frac{d\Gamma(R)}{dR}\right] + \frac{1}{\Theta(\theta)\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d\Theta(\theta)}{d\theta}\right] = 0.$$

To hold for all values of R and $\boldsymbol{\theta}$

$$\frac{1}{\Gamma(R)} \frac{d}{dR} \left[R^2 \frac{d\Gamma(R)}{dR} \right] = k^2$$

$$\frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right] = -k^2,$$

 $V(R, \theta) = \underline{\Gamma(R)}\Theta(\theta).$

$$\frac{1}{\Gamma(R)} \frac{d}{dR} \left[R^2 \frac{d\Gamma(R)}{dR} \right] = k^2$$

$$R^2 \frac{d^2\Gamma(R)}{dR^2} + 2R \frac{d\Gamma(R)}{dR} - k^2\Gamma(R) = 0,$$
Solution: $\Gamma_n(R) = A_n R^n + B_n R^{-(n+1)}$.

where $n(n+1) = k^2$,
 $n = 0,1,2...$ is a positive integer

(Verified by direct substitution)

$$V(R, \theta) = \Gamma(R)\Theta(\theta).$$

$$\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] = -k^2,$$

$$\frac{d}{d\theta} \left[\sin\theta \frac{d\Theta(\theta)}{d\theta} \right] + n(n+1)\Theta(\theta)\sin\theta = 0,$$
 Legendre's equation

Solution: $\Theta_n(\theta) = P_n(\cos \theta)$. Legendre's functions if involving full range of $\theta = [0, \pi]$

For integer values of n, Several Legendre Polynomials

n	$P_n(\cos \theta)$
0	1
1	$\cos \theta$
2	$\frac{1}{2}(3\cos^2\theta-1)$
3	$\frac{1}{2}(5\cos^3\theta-3\cos\theta)$

The Legendre polynomials are orthogonal