latex-math Macros

compiled: 2021-10-17

Latex macros lik	te \frac{#1}{#2	with argu	ments are	displayed	d as $\frac{\#1}{\#2}$.			
Note that macro	declarations ma	v only span	a single l	ine to be	displayed	correctly in	the below	tables

Contents

basic-math	2
basic-ml	4

basic-math

Macro	Notation	Comment
\N	IN	N, naturals
\Z	${\mathbb Z}$	Z, integers
\ Q	$\mathbb Q$	Q, rationals
\R	\mathbb{R}	R, reals
\C	\mathbb{C}	C, complex
\continuous	\mathcal{C}	C, space of continuous functions
\M	\mathcal{M}	machine numbers
\epsm	ϵ_m	maximum error
\xt	$ ilde{x}$	x tilde
\argmax	argmax	argmax
\argmin	$rg \min$	argmin
\argminlim	$rg \min$	argmax with limits
\argmaxlim	argmax	argmin with limits
\sign	sign	sign, signum
\I	\mathbb{I}	I, indicator
\order	\mathcal{O}	O, order
\fp	$\frac{\partial \cdot}{\partial \cdot}$	partial derivative
\pd	$\frac{\partial \cdot}{\partial \cdot}$	partial derivative
\sumin	$\sum_{i=1}^{n}$	summation from $i=1$ to n
\sumim	$\sum_{i=1}^{m}$	summation from $i=1$ to m
\sumjp	$\begin{array}{l} \frac{\partial \cdot}{\partial \overline{\cdot}} \\ \frac{\partial \cdot}{\partial \overline{\cdot}} \\ \frac{\partial \cdot}{\partial \overline{\cdot}} \\ \sum_{i=1}^{n} \sum_{p=1}^{m} \\ \sum_{i=1}^{k} \sum_{g=1}^{k} \\ \sum_{j=1}^{g} \\ j=1 \end{array}$	summation from $j=1$ to p
\sumik	$\sum_{i=1}^{k}$	summation from $i=1$ to k
\sumkg	$\sum_{k=1}^{g}$	summation from $k=1$ to g
\sumjg	$\sum_{j=1}^{g}$	summation from j=1 to g
\meanin	$\frac{1}{n} \sum_{i=1}^{n}$	mean from $i=1$ to n
\meankg	$\frac{1}{g} \sum_{k=1}^{g}$	mean from k=1 to g
\prodin	$\prod_{i=1}^{n}$	product from $i=1$ to n
\prodkg	$\prod_{k=1}^{g}$	product from $k=1$ to g
\prodjp	$\prod_{j=1}^{p}$	product from $j=1$ to p
\one	1	1, unit vector
\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle \cdot, \cdot \rangle$	<.,.>, scalarproduct
\mat	(\cdot)	short pmatrix command
\Amat	A	matrix A
\xv	X	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)

\yv	\mathbf{y}	vector y (bold)
\Deltab	Δ	error term for vectors
∖ E	${ m I\!E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	$\mathcal N$	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	$\stackrel{\cdot}{\sim}$	is distributed as

Back to contents

basic-ml

Macro	Notation	Comment
\Xspace	\mathcal{X}	X, input space
\Yspace	\mathcal{Y}	Y, output space
\nset	$\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
\xy	(\mathbf{x}, y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^T$	(x1,, xp)
\Xmat	X	Design matrix
\allDatasets	\mathbb{D}	The set of all datasets
\D	${\cal D}$	D, data
\obsi	$\left(\mathbf{x}^{(\cdot)}, y^{(\cdot)}\right)$	observation $(x^{(i)}, y^{(i)})$
\Dn	\mathcal{D}_n	D_n, data of size n
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\defAllDatasetsn	$(\mathcal{X} \times \mathcal{Y})^n$	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\overset{{}_\circ}{\mathcal{X}}\times\mathcal{Y})^n$	Def. of the set of all datasets
\ydat		y (bold), vector of outcomes
\yvec	$egin{aligned} \mathbf{y} \ & \left(y^{(1)}, \dots, y^{(n)} ight)^T \ & y^{(\cdot)} \end{aligned}$	(y1,, yn), vector of outcomes
=	$(g^{(\cdot)}, \dots, g^{(\cdot)})$	y^i, i-th observed value of y
\yi \i	$(\mathbf{x}^{(\cdot)}, y^{(\cdot)})$	(x^i, y^i), i-th observation
\xyi	$(\mathbf{X}^{\vee}, y^{\vee})$	
\xivec	$\left(x_1^{(i)},\ldots,x_p^{(i)}\right)^T$	(x1 ⁱ ,, xp ⁱ), i-th observation vector
\xj	\mathbf{X}_j	x_j, j-th feature
\xjvec	$\left(x_j^{(1)},\ldots,x_j^{(n)}\right)^T$	$(x^1_j,, x^n_j)$, j-th feature vector
\Dtrain	$\hat{\mathcal{D}}_{ ext{train}}$	D_train, training set
\Dtest	$\mathcal{D}_{ ext{test}}$	D_test, test set
\phiv	ϕ	Basis transformation function phi
\phixi	$\phi^{(i)}$	Basis transformation of xi: $phi^i := phi(xi)$
\lamv	λ	lambda vector, hyperconfiguration vector
\Lam	Λ	Lambda, space of all hpos
\preimageInducer	$\left(\bigcup_{n\in\mathbb{N}}(\mathcal{X} imes\mathcal{Y})^n ight) imesoldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
\preimageInducerShort	$\mathbb{D} imes \mathbf{\Lambda}$	Set of all datasets times the hyperparameter space
\inducer	${\mathcal I}$	Inducer, inducing algorithm, learning algorithm
\ftrue	$f_{ m true}$	True underlying function (if a statistical model is assumed)
\ftruex	$f_{ m true}({f x})$	True underlying function (if a statistical model is assumed)
\fx	$f(\mathbf{x})$	f(x), continuous prediction function
\Hspace	${\cal H}$	hypothesis space where f is from
\fix	$f_i(\mathbf{x})$	f_i(x), discriminant component function
\fjx	$f_j(\mathbf{x})$	f_j(x), discriminant component function
\fkx	$f_k(\mathbf{x})$	$f_k(x)$, discriminant component function
\fgx	$f_g(\mathbf{x})$	$f_g(x)$, discriminant component function
\fh	$\hat{\hat{f}}$	f hat, estimated prediction function
\fxh	$\hat{f}(\mathbf{x})$	fhat(x)
\fxt	$f(\mathbf{x} \mid \boldsymbol{\theta})$	$f(x \mid theta)$
\fxi	$f\left(\mathbf{x}^{(i)}\right)$	$f(x \cap bicox)$
\fxih	$\hat{f}\left(\mathbf{x}^{(i)}\right)$	$f(x^{-1})$
	$f\left(\mathbf{x}^{(i)}\mid\boldsymbol{ heta} ight)$	
\fxit		$f(x^{(i)} \mid \text{theta})$
\fhD	$\hat{f}_{\mathcal{D}}$	fhat_D, estimate of f based on D
\fhDtrain	$\hat{f}_{\mathcal{D}_{ ext{train}}}$	fhat_Dtrain, estimate of f based on D

```
\hat{f}_{\mathcal{D}_n, \boldsymbol{\lambda}}
\fhDnlambda
                                                                                   model learned on Dn with hp lambda
\fhDlambda
                                            f_{\mathcal{D},\boldsymbol{\lambda}}
                                                                                   model learned on D with hp lambda
\fhDnlambdastar
                                            \hat{f}_{\mathcal{D}_n, \boldsymbol{\lambda}^*}
                                                                                   model learned on Dn with optimal hp lambda
\fhDlambdastar
                                                                                   model learned on D with optimal hp lambda
                                            f_{\mathcal{D},\boldsymbol{\lambda}^*}
                                                                                   h(x), discrete prediction function
\hx
                                            h(\mathbf{x})
\hxv
                                            h(\mathbf{x})
                                                                                   h(x), discrete prediction function with x (vector) as input
                                            \hat{h}
                                                                                   h hat
\hh
                                            \hat{h}(\mathbf{x})
\hxh
                                                                                   hhat(x)
\hxt
                                            h(\mathbf{x}|\boldsymbol{\theta})
                                                                                   h(x \mid theta)
                                            h\left(\mathbf{x}^{(i)}\right)
\hxi
                                                                                   h(x^{(i)})
                                            h\left(\mathbf{x}^{(i)'} | \boldsymbol{\theta}\right)
                                                                                   h(x^(i) \mid theta)
\hxit
                                                                                   yhat for prediction of target
\yh
                                            \hat{y}
                                            \hat{y}^{(i)}
\yih
                                                                                   yhat<sup>(i)</sup> for prediction of ith targiet
                                            \hat{\theta}
                                                                                   theta hat
\thetah
                                            \boldsymbol{\theta}
\thetab
                                                                                   theta vector
                                            \hat{\boldsymbol{\theta}}
\thetabh
                                                                                   theta vector hat
                                            \boldsymbol{\theta}^{[t]}
\thetat
                                                                                   theta<sup>[t]</sup> in optimization
                                            \boldsymbol{\theta}^{[t+1]}
                                                                                   theta[t+1] in optimization
\thetatn
                                            \hat{m{	heta}}_{\mathcal{D}_n,m{\lambda}}
                                                                                   theta learned on Dn with hp lambda
\thetahDnlambda
\thetahDlambda
                                            \hat{m{	heta}}_{\mathcal{D}.m{\lambda}}
                                                                                   theta learned on D with hp lambda
\pdf
\pdfx
                                            p(\mathbf{x})
                                                                                   p(x)
                                            \pi(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                   pi(x|theta), pdf of x given theta
\pixt
                                            \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)
\pixit
                                                                                   pi(x^i|theta), pdf of x given theta
                                            \pi\left(\mathbf{x}^{(i)}\right)
                                                                                   pi(x^i), pdf of i-th x
\pixii
\pdfxy
                                            p(\mathbf{x}, y)
                                                                                   p(x, y)
                                            p(\mathbf{x}, y \mid \boldsymbol{\theta})
\pdfxyt
                                                                                   p(x, y \mid theta)
                                            p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)
\pdfxyit
                                                                                   p(x^(i), y^(i) \mid theta)
\pdfxyk
                                            p(\mathbf{x}|y=k)
                                                                                   p(x \mid y = k)
                                            p(\mathbf{x}|y=j)
                                                                                   p(x \mid y = j)
\pdfxyj
                                            \log p(\mathbf{x}|y=k)
                                                                                   \log p(x \mid y = k)
\lpdfxyk
                                            p\left(\mathbf{x}^{(i)}|y=k\right)
                                                                                   p(x^i \mid y = k)
\pdfxiyk
                                                                                   pi_k, prior
\pik
                                            \pi_k
\lpik
                                            \log \pi_k
                                                                                   log pi k, log of the prior
                                            \pi(\boldsymbol{\theta})
                                                                                   Prior probability of parameter theta
\pit
                                            \mathbb{P}(y = 1 \mid \mathbf{x})
\post
                                                                                   P(y = 1 \mid x), post. prob for y=1
                                                                                   pi(x), P(y = 1 \mid x)
\pix
                                            \pi(\mathbf{x})
                                            \mathbb{P}(y = k \mid \mathbf{x})
                                                                                   P(y = k \mid y), post. prob for y=k
\postk
                                                                                   pi k(x), P(y = k \mid x)
                                            \pi_k(\mathbf{x})
\pikx
                                            \pi_k(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                   pi k(x \mid theta), P(y = k \mid x, theta)
\pikxt
                                                                                   pi_j(x), P(y = j \mid x)
\pijx
                                            \pi_i(\mathbf{x})
                                                                                   pi\_g(x), P(y = g \mid x)
\pigx
                                            \pi_q(\mathbf{x})
                                            p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                   p(y \mid x, theta)
\pdfygxt
                                            p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})
\pdfyigxit
                                                                                   p(y^i | x^i, theta)
\lpdfygxt
                                            \log p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                   \log p(y \mid x, \text{ theta})
                                            \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
                                                                                   \log p(y^i | x^i, theta)
\lpdfyigxit
\pixh
                                            \hat{\pi}(\mathbf{x})
                                                                                   pi(x) hat, P(y = 1 \mid x) hat
                                            \hat{\pi}_k(\mathbf{x})
                                                                                   pi k(x) hat, P(y = k \mid x) hat
\pikxh
                                            \hat{\pi}(\mathbf{x}^{(i)})
\pixih
                                                                                   pi(x^{(i)}) with hat
                                            \hat{\pi}_k(\mathbf{x}^{(i)})
                                                                                   pi k(x^{(i)}) with hat
\pikxih
\eps
                                                                                   residual, stochastic
                                            \epsilon^{(i)}
\epsi
                                                                                   epsilon<sup>i</sup>, residual, stochastic
```

\epsh	$\hat{\epsilon}$	residual, estimated
\yf	$yf(\mathbf{x})$	y f(x), margin
\yfi	$y^{(i)}f(\mathbf{x}^{(i)})$	y^i f(x^i), margin
\Sigmah	$y^{(i)}f(\mathbf{x}^{(i)})$ $\hat{\Sigma}$ $\hat{\Sigma}_{j}$	estimated covariance matrix
\Sigmahj	$\hat{\hat{\Sigma}}_{\vec{s}}$	estimated covariance matrix for the j-th class
\Lyf	L(y,f)	L(y, f), loss function
\Lxy	$L(y, f(\mathbf{x}))$	L(y, f(x)), loss function
\Lxyi	$L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$	loss of observation
\Lxyt	$L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))$	loss with f parameterized
\Lxyit	$L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with f parameterized
\Lxym	$L\left(y^{(i)}, f\left(\tilde{\boldsymbol{x}}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with f parameterized
\Lpixy	$L(y,\pi(\mathbf{x}))$	loss in classification
\Lpixyi	$L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)$	loss of observation in classification
\Lpixyt	$L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))'$	loss with pi parameterized
\Lpixyit	$L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with pi parameterized
\Lhxy	$L(y, h(\mathbf{x}))$	L(y, h(x)), loss function on discrete classes
\Lr	$L\left(r\right)$	L(r), loss defined on residual (reg) / margin (classif)
\risk	$\mathcal R$	R, risk
\riskf	$\mathcal{R}(f)$	R(f), risk
\riskt	$\mathcal{R}(oldsymbol{ heta})$	R(theta), risk
\riske	$\mathcal{R}_{ ext{emp}}$	R_emp, empirical risk w/o factor 1 / n
\riskeb	$ar{\mathcal{R}}_{ ext{emp}}$	R_emp, empirical risk w/ factor 1 / n
\riskef	$\mathcal{R}_{ ext{emp}}(f)$	$R_{\underline{\hspace{0.1cm}}}emp(f)$
\risket	$\mathcal{R}_{ ext{emp}}(oldsymbol{ heta})$	$R_{\underline{\hspace{0.5cm}}}emp(theta)$
\riskr	$\mathcal{R}_{ ext{reg}}$	R_reg, regularized risk
\riskrt	$\mathcal{R}_{ ext{reg}}(oldsymbol{ heta})$	R_reg(theta)
\riskrf	$\mathcal{R}_{ ext{reg}}(f)$	$R_{reg}(f)$
\riskrth	$\hat{\mathcal{R}}_{ ext{reg}}(oldsymbol{ heta})$	$hat R_reg(theta)$
\risketh	$\hat{\mathcal{R}}_{ ext{emp}}(oldsymbol{ heta})$	hat R_emp(theta)
\LL	$\mathcal L$	L, likelihood
\LLt	$\mathcal{L}(oldsymbol{ heta})$	L(theta), likelihood
\log1	ℓ	l, log-likelihood
\loglt	$\ell(oldsymbol{ heta})$	l(theta), log-likelihood
\LS	L T	??????????
\TS		????????????
\errtrain	$\mathrm{err}_{\mathrm{train}}$	training error
\errtest	$\frac{\text{err}_{\text{test}}}{}$	training error
\errexp	err _{test}	training error

Back to contents