Something something

Jonas Bruun Hubrechts

Kongens Lyngby 2024

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The goal of the thesis is to \dots

Summary (Danish)

Målet for denne afhandling er at \dots

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for acquiring an M.Sc. in Engineering.

The thesis deals with ...

The thesis consists of ...

Lyngby, 01-July-2024

Not Real

Jonas Bruun Hubrechts

Acknowledgements

I would like to thank my....

Contents

Sτ	ummary (English)	1
Summary (Danish)		iii
Pı	reface	\mathbf{v}
A	cknowledgements	vii
1		1
	1.1 Project plan	2
	1.2 The "separate document"	2
	1.3 Arrivals of batches	3
	1.3.1 Joint distribution of Brownian and its running maximu	$_{\rm im}$ 4
	1.3.2 Joint distribution with drift and arbitrary variance	5
	1.3.3 Distribution of maximum of Brownian motion with dri	ft . 6
	1.3.4 Cumulative distribution of maximum	6
	1.3.5 Distribution of time to level	7
2	Ideer til hvad der skal laves	9
A	Stuff	11
Bi	Bibliography	

x CONTENTS

Chapter 1

Introduction By Jonas

The following text is a message to the student and should be removed during the writing process.

Please note the following instructions regarding an M.Sc. thesis outlined in the study handbook:

"During the first month, the student is to submit a project plan outlining the objective of the thesis and justification for same to his/her supervisor. In the project plan, the student is also to take into account the overarching learning objectives listed above. When submitting the thesis, the student is to enclose a separate document presenting the original project plan and a revision of same, where appropriate. In addition, the document is to include a brief auto-evaluation of the project process."

To learn more about the rules for an M.Sc. thesis, please consult the rules for your own M.Sc. program at http://sdb.dtu.dk.

1.1 Project plan

We note that the contents of the project plan is also something we would like to see in the introductory chapter of your thesis. In fact, you can reuse your final project plan (possibly extended) as the introduction. If you prefer to write an introduction from scratch, it is, of course, important that it is consistent with the final project plan.

1.2 The "separate document"

It is also important to note that the separate document containing

- original project plan
- possibly revised project plan.
- Brief self-evaluation

mentioned above will be passed on to the external examiner and since it contains the learning goals and the objectives for your thesis, it will be taken into account when your thesis is assessed.

[Hoa83]

[CK01]

1.3 Arrivals of batches

Assuming that the in-flow from the previous section in the production obeys the following SDE

$$dS_t = rdt + \sigma dB_t$$

I.e. Brownian motion with drift. And assuming that every time the accumulated mass hits a level l, the batch is ready to be processed by the next step, we wish to first find the distribution for these times. Note that the above model allows for negative flow and thus also negative accumulated mass. However, for $\sigma << r$ this becomes very unlikely as

$$\mathbb{P}\left(S_t \le 0\right) = \Phi\left(\frac{-r\sqrt{t}}{\sigma}\right)$$

and thus only for small t this is probable, as otherwise it is dominated by $\frac{r}{\sigma}$ which is large and thus the probability very low.

To derive the distribution for the between batch times, T, we shall use the Girsanov Theorem as well as the joint distribution of the maximum of a standard Brownian motion and is running maximum. Thus, let B_t be a standard Brownian motion, and M_t the running maximum defined as

$$M_t := \sup_{s \in [0,t]} \{B_s\}$$

- Udledning af joint fordeling mellem M og B
- Change of measure for at opnå med drift og sigma
- Marginal fordeling for M

1.3.1 Joint distribution of Brownian and its running maximum

To derive the joint density of a standard Brownian motion and its running maximum, consider the following probability

$$\mathbb{P}\left(M_t \geq m, B_t \leq w\right)$$

Let T_m be defined as the first time B_t hits the level m, i.e. $T_m := \inf_t (B_t = m)$. Then $M_t \ge m \iff T_m \le t$. Thus, the above probability is reexpressed as

$$\mathbb{P}\left(M_{t} \geq m, B_{t} \leq w\right) = \mathbb{P}\left(T_{m} \leq t, B_{t} \leq w\right)$$

To proceed, we use the principle of reflection which is admissible due to B_t being a martingale. In particular, we define \tilde{B}_t as follows

$$\tilde{B}_t := \begin{cases} B_t & t \le T_m \\ 2m - B_t & t > T_m \end{cases}$$

It follows that \tilde{B}_t is also a standard Brownian motion. By the definition of \tilde{B}_t , we then have that

$$\mathbb{P}\left(T_{m} \leq t, B_{t} \leq w\right) = \mathbb{P}\left(T_{m} \leq t, 2m - w \leq \tilde{B}_{t}\right)$$

Notice that the original expression is only sensible for $m \geq w$ as w > m is a contradiction to the definition of M_t . Thus, $2m - w \geq m$ hence $\tilde{B}_t \geq 2m - w$ implies that the original Brownian motion B_t has hit the level m and thus $T_m \leq t$. This means that

$$\mathbb{P}\left(T_m \le t, 2m - w \le \tilde{B}_t\right) = \mathbb{P}\left(2m - w \le \tilde{B}_t\right) = 1 - \Phi\left(\frac{2m - w}{\sqrt{t}}\right)$$

Thus, in total we have found that

$$\mathbb{P}\left(M_t \ge m, B_t \le w\right) = 1 - \Phi\left(\frac{2m - w}{\sqrt{t}}\right)$$

And thus, the joint distribution is obtained by differentiation

$$\begin{split} f_{M_t,B_t}(m,w) &= \frac{\partial^2}{\partial m \, \partial w} \mathbb{P} \left(M_t \leq m, B_t \leq w \right) \\ &= \frac{\partial^2}{\partial m \, \partial w} \left(\mathbb{P} \left(B_t \leq w \right) - \mathbb{P} \left(M_t \geq m, B_t \leq w \right) \right) \\ &= \frac{\partial^2}{\partial m \, \partial w} \Phi \left(\frac{2m-w}{\sqrt{t}} \right) \\ &= \frac{2(2m-w)}{t^{3/2}} \phi \left(\frac{2m-w}{\sqrt{t}} \right) \quad , m \leq w, \ m \geq 0 \end{split}$$

Note:

Now, define instead $\tilde{B}_t = \sigma B_t$. We then find a similar expression for the joint density of ... and its running maximum. Namely, as

$$\mathbb{P}\left(\tilde{M}_{t} \geq m, \tilde{B}_{t} \leq w\right) = \mathbb{P}\left(\sigma M_{t} \geq m, \sigma B_{t} \leq w\right)$$

Same formula, but with m and w divided by σ

1.3.2 Joint distribution with drift and arbitrary variance

То

In a given probability space, $(\Omega, \mathcal{F}, \mathbb{P})$, let B_t be a standard Brownian motion, then define

$$\tilde{B}_t := \tilde{\mu}t + B_t$$

It is clear that with the measure \mathbb{P} , \tilde{B}_t is a Brownian motion with drift. To derive the joint density of \tilde{B}_t and its running maximum \tilde{M}_t , we shall use Girsanov theorem. In particular,

The Radon-Nikodym derivative, Z_t ,

$$Z_t = \exp\left(-\int_0^t \theta_u dB_u - \frac{1}{2} \int_0^t \theta_u^2 du\right)$$

It then follows that \tilde{B}_t is a \tilde{P} Brownian motion.

Thus, the joint distribution is given by

$$f_{\tilde{M}_{t},\tilde{B}_{t}}(m,w) = \frac{2(2m-w)}{t^{3/2}} e^{\tilde{\mu}w - \frac{1}{2}\tilde{\mu}^{2}t} \phi\left(\frac{2m-w}{\sqrt{t}}\right)$$

To introduce the standard deviation σ , first define $\tilde{\mu} = \mu/\sigma$ and $\hat{B}_t = \sigma \tilde{B}_t$. Then, \hat{B}_t is also a Brownian with drift, μ , but with variance $\sigma^2 t$. Furthermore, the joint distribution is

$$f_{\hat{M}_t, \hat{B}_t}(m, w) = \frac{2(2m - w)}{\sigma^3 t^{3/2}} e^{\frac{1}{\sigma^2} (\mu w - \frac{1}{2}\mu^2 t)} \phi\left(\frac{2m - w}{\sigma\sqrt{t}}\right)$$

1.3.3 Distribution of maximum of Brownian motion with drift

The distribution of the running maximum \hat{M}_t is given by the marginal of the above, namely

$$f_{\hat{M}_t}(m) = \int_{-\infty}^{m} f_{\hat{M}_t, \hat{B}_t}(m, w) dw$$

Integration by parts admits

$$f_{\hat{M}_t}(m) = \int_{-\infty}^{m} f_{\hat{M}_t, \hat{B}_t}(m, w) \, dw = \begin{bmatrix} m \\ -\infty \end{bmatrix}$$

$$=\frac{2}{\sigma\sqrt{t}}\phi\left(\frac{m-\mu t}{\sigma\sqrt{t}}\right)-\frac{2\mu}{\sigma^2}e^{\frac{2m\mu}{\sigma^2}}\Phi\left(-\frac{m+\mu t}{\sigma\sqrt{t}}\right)$$

1.3.4 Cumulative distribution of maximum

As we shall later need the survival function of \hat{M}_t , we first compute the cumulative distribution. Namely

$$\mathbb{P}\left(\hat{M}_t \leq m\right) = \int_0^m \int_{-\infty}^{\eta} f_{\hat{M}_t, \hat{B}_t}(\eta, w) \, dw \, d\eta$$

To compute the above, we split the inner integral over the line w=0 in the η, w plane and reformulate

$$\mathbb{P}\left(\hat{M}_t \leq m\right) = \underbrace{\int_0^m \int_w^m f_{\hat{M}_t, \hat{B}_t}(\eta, w) \, d\eta \, dw}_{I_1} + \underbrace{\int_{-\infty}^0 \int_0^m f_{\hat{M}_t, \hat{B}_t}(\eta, w) \, d\eta \, dw}_{I_2}$$

The antiderivative of $f_{\hat{M}_t,\hat{B}_t}(m,w)$ w.r.t. m is simple and calculated to be

$$\int f_{\hat{M}_t, \hat{B}_t}(m, w) \, dm = -\frac{1}{\sigma \sqrt{2\pi t}} e^{\frac{1}{\sigma^2} (\mu w - \frac{1}{2}\mu^2 t)} e^{-\frac{1}{2} (\frac{2m - w}{\sigma \sqrt{t}})^2}$$

The first of the above integrals, I_1 , is then

$$I_{1} = -\frac{1}{\sigma\sqrt{2\pi t}}e^{-\frac{1}{2\sigma^{2}}\mu^{2}t}\int_{0}^{m}e^{\frac{\mu w}{\sigma^{2}}-\frac{1}{2}\left(\frac{2m-w}{\sigma\sqrt{t}}\right)^{2}} - e^{\frac{\mu w}{\sigma^{2}}-\frac{1}{2}\left(\frac{w}{\sigma\sqrt{t}}\right)^{2}}dw$$

And similar for the second integral I_2

$$I_{2} = -\frac{1}{\sigma\sqrt{2\pi t}}e^{-\frac{1}{2\sigma^{2}}\mu^{2}t} \int_{-\infty}^{0} e^{\frac{\mu w}{\sigma^{2}} - \frac{1}{2}\left(\frac{2m-w}{\sigma\sqrt{t}}\right)^{2}} - e^{\frac{\mu w}{\sigma^{2}} - \frac{1}{2}\left(\frac{w}{\sigma\sqrt{t}}\right)^{2}} dw$$

It is observed that the integrands are the same, thus

$$\mathbb{P}\left(\hat{M}_t \le m\right) = -\frac{1}{\sigma\sqrt{2\pi t}}e^{-\frac{1}{2\sigma^2}\mu^2 t} \int_{-\infty}^m e^{\frac{\mu w}{\sigma^2} - \frac{1}{2}\left(\frac{2m-w}{\sigma\sqrt{t}}\right)^2} - e^{\frac{\mu w}{\sigma^2} - \frac{1}{2}\left(\frac{w}{\sigma\sqrt{t}}\right)^2} dw$$

From simple substitution, and a few calculations, on gets that

$$\mathbb{P}\left(\hat{M}_t \le m\right) = \Phi\left(\frac{m - \mu t}{\sigma\sqrt{t}}\right) - e^{\frac{2m\mu}{\sigma^2}}\Phi\left(-\frac{m + \mu t}{\sigma\sqrt{t}}\right)$$

1.3.5 Distribution of time to level

As $\mathbb{P}(M_t \geq l) = \mathbb{P}(T_l \leq t)$. It thus follows that $f_{T_l}(t) = \frac{d}{dt}\mathbb{P}(M_t \geq l)$ which is easily calculated from the above. Namely

$$f_{T_l}(t) = \frac{d}{dt} \left(1 - \mathbb{P} \left(M_t \le l \right) \right)$$

$$= -\frac{d}{dt} \left(\Phi \left(\frac{l - \mu t}{\sigma \sqrt{t}} \right) - e^{\frac{2l\mu}{\sigma^2}} \Phi \left(-\frac{l + \mu t}{\sigma \sqrt{t}} \right) \right)$$

$$= \frac{\mu t + l}{2\sigma t^{3/2}} \phi \left(\frac{l - \mu t}{\sigma \sqrt{t}} \right) + \frac{l - \mu t}{2\sigma t^{3/2}} e^{\frac{2\mu l}{\sigma^2}} \phi \left(-\frac{\mu t + l}{\sigma \sqrt{t}} \right)$$

Note that although the distribution above is parameterized by 3 parameters, it can be completely specified by $\tilde{\mu} = \mu/\sigma$ and $\tilde{l} = l/\sigma$ which is clear also from the following

Let $Z_t = \mu t + \sigma B_t$ and similarly $\tilde{Z}_t = Z_t/\sigma = \tilde{\mu} + B_t$. Then $\mathbb{P}(T_l \leq t) = \mathbb{P}(M_t \geq l) = \mathbb{P}(\tilde{M}_t \geq \tilde{l}) = \mathbb{P}(\tilde{T}_{\tilde{l}} \leq t)$ where \tilde{M}_t and $\tilde{T}_{\tilde{l}}$ are the running maximum and time to level of \tilde{Z}_t . Thus, equivalent to a probability of non-scaled Brownian motion with drift.

To verify the above probability distribution, a Monte-Carlo simulation is carried out for 100.000 simulations with parameters $l=10, \mu=0.1, \sigma=0.5$. As the shape resembles a gamma distribution, a simple fit, matching the mean and variance is also plotted. Although the gamma family of probability distributions is also a two-parameter family, they do not quite overlap as can be seen in the following plot.

Figure 1.1: Example of simulation and actual distribution. The marked $\sigma = 0$ shows the limit as $\sigma \to 0$ corresponding to no noise on the input flow

Chapter 2

Ideer til hvad der skal laves

Overall model for throughput of system. I.e. model the system as e.g. a system of queues and how much is produced at each step and this propagate. The important aspect is breakdown (extra processing time) and possibility of having to trowing out some production along the way, either due to error or some other (unforeseen) causes.

Need to investigate different ways of modelling this (starting with a simple system with no queuing, i.e. a single batch; this is what is done above). Discuss the pros and cons and how much information they preserve (aggregation models etc. may need to model so'me part of the system by throwing away)

Appendix A

Stuff

This appendix is full of stuff \dots

12 Stuff

Bibliography

- [CK01] Janet Carmenates and Matthew R. Keith. Impact of automation on pharmacist interventions and medication errors in a correctional health care system. *American Journal of Health-System Pharmacy*, 59(9):779–783, May 2001.
- [Hoa83] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 26(1):100-106, 1983.