Problem Set #2

MACS 40000, Dr. Evans

Due Tuesday, Oct. 11 at 10:30am

1. Checking feasibility in the steady-state (2 points). Using the calibration of the 3-period-lived agent model described in Section 5.6 of Chapter 5, write a Python function named feasible() that has the following form,

```
b_cnstr, c_cnstr, K_cnstr = feasible(f_params, bvec_guess)
```

where the inputs are a tuple f_params = (nvec, A, alpha, delta), and a guess for the steady-state savings vector bvec_guess = np.array([scalar, scalar]). The outputs should be Boolean (True or False, 1 or 0) vectors of lengths 2, 3, and 1, respectively. K_cnstr should be a singleton Boolean that equals True if $K \leq 0$ for the given f_params and bvec_guess. The object c_cnstr should be a length-3 Boolean vector in which the sth element equals True if $c_s \leq 0$ given f_params and bvec_guess. And b_cnstr is a length-2 Boolean vector that denotes which element of bvec_guess is likely responsible for any of the consumption nonnegativity constraint violations identified in c_cnstr. If the first element of c_cnstr is True, then the first element of b_cnstr are True. And if the last element of c_cnstr is True, then both elements element of b_cnstr is True.

- (a) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of bvec_guess = np.array([1.0, 1.2])?
- (b) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of bvec_guess = np.array([0.06, -0.001])?
- (c) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of bvec_guess = np.array([0.1, 0.1])?
- 2. Solve for the steady-state equilibrium (4 points). Use the calibration from Section 5.6 and the steady-state equilibrium Definition 5.1. Write a function named get_SS() that has the following form,

```
ss_output = get_SS(params, bvec_guess, SS_graphs)
```

where the inputs are a tuple of the parameters for the model params = ((beta, sigma, nvec, L, A, alpha, delta, SS_tol)), an initial guess of the steady-state savings bvec_guess, and a Boolean SS_graphs that generates a figure of the steady-state distribution of consumption and savings if it is set to True.

The output object ss_output is a Python dictionary with the steady-state solution values for the following endogenous objects.

```
ss_output = {
   'b_ss': b_ss, 'c_ss': c_ss, 'w_ss': w_ss, 'r_ss': r_ss,
   'K_ss': K_ss, 'Y_ss': Y_ss, 'C_ss': C_ss,
   'EulErr_ss': EulErr_ss, 'RCerr_ss': RCerr_ss,
   'ss_time': ss_time}
```

Let ss_time be the number of seconds it takes to run your steady-state program. You can time your program by importing the time library

```
import time
...
start_time = time.clock() # Place at beginning of get_SS()
...
ss_time = time.clock() - start_time # Place at end of get_SS()
```

And let the object EulErr_ss be a length-2 vector of the two Euler errors from the resulting steady-state solution given in ratio form $\frac{\beta(1+\bar{r})u'(\bar{c}_{s+1})}{u'(\bar{c}_s)}-1$. The object RCerr_ss is a resource constraint error which should be close to zero. It is given by $\bar{Y} - \bar{C} - \delta \bar{K}$.

- (a) Solve numerically for the steady-state equilibrium values of $\{\bar{c}_s\}_{s=1}^3$, $\{\bar{b}_s\}_{s=2}^3$, $\bar{w}, \bar{r}, \bar{K}, \bar{Y}, \bar{C}$, the two Euler errors and the resource constraint error. List those values. Time your function. How long did it take to compute the steady-state?
- (b) Generate a figure that shows the steady-state distribution of consumption and savings by age $\{\bar{c}_s\}_{s=1}^3$ and $\{\bar{b}_s\}_{s=2}^3$.
- (c) What happens to each of these steady-state values if all households become more patient $\beta \uparrow$ (an example would be $\beta = 0.55$)? That is, in what direction does $\beta \uparrow$ move each steady-state value $\{\bar{c}_s\}_{s=1}^3$, $\{\bar{b}_s\}_{s=2}^3$, \bar{w} , and \bar{r} ? What is the intuition?
- 3. Solve for the non-steady-state equilibrium time path (4 points). Use time path iteration (TPI) to solve for the non-steady state equilibrium transition path of the economy from $(b_{2,1}, b_{3,1}) = (0.8\bar{b}_2, 1.1\bar{b}_3)$ to the steady-state (\bar{b}_2, \bar{b}_3) . You'll have to choose a guess for T and a time path updating parameter $\xi \in (0,1)$, but I can assure you that T < 50. Use an L^2 norm for your distance measure (sum of squared percent deviations), and use a convergence parameter of $\varepsilon = 10^{-9}$. Use a linear initial guess for the time path of the aggregate capital stock from the initial state K_1^1 to the steady state K_T^1 at time T.
 - (a) Plot the equilibrium time paths of the aggregate capital stock $\{K_t\}_{t=1}^{T+5}$, wage $\{w_t\}_{t=1}^{T+5}$, and interest rate $\{r_t\}_{t=1}^{T+5}$.
 - (b) How many periods did it take for the economy to get within 0.00001 of the steady-state aggregate capital stock \bar{K} ? What is the period after which the aggregate capital stock never is again farther than 0.00001 away from the steady-state?