Math 104 Homework 3 Solutions

UC Berkeley, Summer 2021

1. Let (s_n) be a sequence of real numbers and let $s \in \mathbb{R}$. Prove that every subsequence of (s_n) has a subsequence that converges to s if and only if (s_n) converges to s.

Solution. If (s_n) converges to s, then every subsequence of (s_n) converges to s, and consequently every subsequence of every subsequence of (s_n) converges to s. For the converse, we prove the contrapositive: suppose that (s_n) does not converges to s. Then for some $\varepsilon > 0$, the set $\{n : |s_n - s| \ge \varepsilon\}$ has infinitely many elements, so we can construct a subsequence (s_{n_k}) of (s_n) such that $|s_{n_k} - s| \ge \varepsilon$ for all k; hence no subsequence of (s_{n_k}) converges to s.

2. Let (s_n) and (t_n) be two bounded sequences of real numbers. Prove that

$$\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n.$$

(*Hint*: First show that $\sup\{s_m + t_m : m \ge n\} \le \sup\{s_m : m \ge n\} + \sup\{t_m : m \ge n\}$.)

Solution. For any $n \in \mathbb{N}$ and $M \ge n$, $s_M \le \sup\{s_m : m \ge n\}$ and $t_M \le \sup\{t_m : m \ge n\}$, so $s_M + t_M \le \sup\{s_m : m \ge n\} + \sup\{t_m : m \ge n\}$. Therefore $\sup\{s_m : m \ge n\} + \sup\{t_m : m \ge n\}$ is an upper bound for the set $\{s_m + t_m : m \ge n\}$, so

$$\sup\{s_m + t_m : m \ge n\} \le \sup\{s_m : m \ge n\} + \sup\{t_m : m \ge n\}.$$

Since the limits on both sides exist as $n \to \infty$, it follows that

$$\lim \sup (s_n + t_n) \le \lim \sup s_n + \lim \sup t_n.$$

- **3.** Let (s_n) be a bounded sequence of real numbers, and let $k \in \mathbb{R}$.
- (a) Let S be a bounded set of real numbers, and define the set

$$-S:=\{-s:s\in S\}.$$

Prove that $\sup(-S) = -\inf S$.

- (b) Prove that if $k \geq 0$, then $\limsup(ks_n) = k \cdot \limsup(s_n)$.
- (c) Prove that if k < 0, then $\limsup(ks_n) = k \cdot \liminf(s_n)$.

Solution. (a) Let $\varepsilon > 0$. There exists $s \in S$ such that $s < \inf S + \varepsilon$. Then $-s \in -S$, so $\sup(-S) \ge -s > -\inf S - \varepsilon$. On the other hand, there exists $s \in S$ such that $-s > \sup(-S) - \varepsilon$. Since $s \ge \inf S$, it follows that $\inf S \le s < -\sup(-S) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, it follows that $\sup(-S) \ge -\inf S$ and $\inf S \le -\sup(-S)$ (or rearranging, $\sup(-S) \le -\inf S$), and hence $\sup(-S) = -\inf S$.

(b) The case k=0 is trivial. For k>0, it suffices to show that for any $n\in\mathbb{N}$, $\sup\{ks_m:m\geq n\}=k\cdot\sup\{s_m:m\geq n\}$. Since $ks_m\leq k\cdot\sup\{s_m:m\geq n\}$ for all $m\geq n$, it follows that $\sup\{ks_m:m\geq n\}\leq k\cdot\sup\{s_m:m\geq n\}$. For the opposite inequality, let $\varepsilon>0$. There exists $M\geq n$ such that $s_M>\sup\{s_m:m\geq n\}-\varepsilon/k$. Then

 $\sup\{ks_m: m \geq n\} \geq ks_M > k(\sup\{s_m: m \geq n\} - \varepsilon/k) = k \cdot \sup\{s_m: m \geq n\} - \varepsilon$, and since this holds for any $\varepsilon > 0$ it follows that $\sup\{ks_m: m \geq n\} \geq k \cdot \sup\{s_m: m \geq n\}$. Therefore $\sup\{ks_m: m \geq n\} = k \cdot \sup\{s_m: m \geq n\}$, and taking limits yields $\limsup(ks_n) = k \cdot \limsup(s_n)$.

(c) If k < 0 then $-\frac{1}{k} > 0$, so by parts (a) and (b) we have

$$\lim\inf(s_n) = \lim_{n \to \infty} \left(\inf\left\{ \frac{1}{k} \cdot ks_m : m \ge n \right\} \right) = -\lim_{n \to \infty} \left(\sup\left\{ -\frac{1}{k} \cdot ks_m : m \ge n \right\} \right)$$
$$= -\lim\sup\left(-\frac{1}{k} \cdot ks_n \right) = \frac{1}{k}\lim\sup(ks_n).$$

4. (a) (Ross 12.8) Let (s_n) and (t_n) be two bounded sequences of nonnegative real numbers. Prove that

$$\limsup s_n t_n \le (\limsup s_n)(\limsup t_n).$$

(b) Show that the inequality in part (a) fails if the nonnegativity restriction is removed.

Solution. (a) For any $n \in \mathbb{N}$ and $M \ge n$, $s_M t_M \le \sup\{s_m : m \ge n\} \cdot \sup\{t_m : m \ge n\}$, and hence $\sup\{s_m t_m : m \ge n\} \le \sup\{s_m : m \ge n\} \cdot \sup\{t_m : m \ge n\}$. Since the limits exist on both sides as $n \to \infty$, it follows that $\limsup s_n t_n \le (\limsup s_n)(\limsup t_n)$.

(b) Let $s_n = t_n = (-1)^n - 1$. Then $\limsup s_n t_n = 4$, but $\limsup s_n = \limsup t_n = 0$.

5. Let (s_n) be a sequence of real numbers, and for each n define

$$\bar{s}_n := \frac{s_1 + s_2 + \ldots + s_n}{n}.$$

(a) Prove that $\limsup \bar{s}_n \leq \limsup s_n$ and $\liminf \bar{s}_n \geq \liminf s_n$.

(*Hint*: For the first inequality, the case $\limsup s_n = \infty$ is trivial. The case $\limsup s_n = -\infty$ needs to be considered separately from the case $\limsup s_n = \alpha \in \mathbb{R}$. For the latter case, let $\varepsilon > 0$ and show that $\limsup \bar{s}_n \leq \alpha + \varepsilon$. To show this, observe that if $N \in \mathbb{N}$ and $v_N = \sup\{s_n : n \geq N\}$, then for $n \geq N$,

$$\bar{s}_n \leq \frac{s_1 + \ldots + s_{N-1}}{n} + \frac{(n-N+1)v_N}{n} = \frac{s_1 + \ldots + s_{N-1} - (N-1)v_N}{n} + v_N.$$

The proof of the second inequality mirrors the proof of the first.)

- (b) Prove that if $\lim s_n$ exists, then $\lim \bar{s}_n$ exists and $\lim \bar{s}_n = \lim s_n$.
- (c) Give an example of a sequence (s_n) such that $\lim s_n$ does not exist but $\lim \bar{s}_n = 0$.
- (d) Describe an example of a bounded sequence (s_n) such that (\bar{s}_n) diverges.

Solution. (a) The case $\limsup s_n = \infty$ is trivial. Consider the case $\limsup s_n = -\infty$; this happens if and only if $\lim s_n = -\infty$. Observe that if $N \in \mathbb{N}$ and $v_N = \sup\{s_n : n \geq N\}$, then for $n \geq N$,

$$\bar{s}_n \le \frac{s_1 + \ldots + s_{N-1}}{n} + \frac{(n-N+1)v_N}{n} = \frac{s_1 + \ldots + s_{N-1} - (N-1)v_N}{n} + v_N.$$

Case 1: $\limsup s_n = -\infty$. Let $M \in \mathbb{R}$. There exists $N_1 \in \mathbb{N}$ such that $v_{N_1} < M - 1$. Then

$$\frac{s_1 + \ldots + s_{N_1 - 1} - (N_1 - 1)v_{N_1}}{n} =: \varphi_{N_1}(n) \longrightarrow 0$$

as $n \to \infty$, so there exists $N_2 \ge N_1$ such that $\varphi_{N_1}(n) < 1$ for all $n \ge N_2$. Then for all $n \ge N_2$,

$$\bar{s}_n \le \varphi_{N_1}(n) + v_{N_1} < 1 + M - 1 = M.$$

Therefore, $\limsup \bar{s}_n = \lim \bar{s}_n = -\infty$.

Case 2: $\limsup s_n = \alpha \in \mathbb{R}$. Let $\varepsilon > 0$. There exists $N_1 \in \mathbb{N}$ such that $|v_{N_1} - \alpha| < \varepsilon/2$, so $v_{N_1} < \alpha + \varepsilon/2$. Since $\varphi_{N_1}(n) \to 0$ as $n \to \infty$, there exists $N_2 \ge N_1$ such that for all $n \ge N_2$, $|\varphi_{N_1}(n)| < \varepsilon/2$, so $\varphi_{N_1}(n) < \varepsilon/2$ for $n \ge N_2$. Then for $n \ge N_2$,

$$\bar{s}_n \le \varphi_{N_1}(n) + v_{N_1} < \varepsilon/2 + \alpha + \varepsilon/2 = \alpha + \varepsilon.$$

Therefore, $\limsup \bar{s}_n \leq \alpha = \limsup s_n$.

The proof for the corresponding result for \liminf mirrors the proof for \limsup .

(b) $s_n = (-1)^n$.

(c) Define s_n as follows: $s_1=1$; $s_n=0$ for $2\leq n\leq 10$; $s_n=1$ for $11\leq n\leq 100$; $s_n=0$ for $101\leq n\leq 1000$; $s_n=1$ for $1001\leq n\leq 10000$; $s_n=0$ for $10001\leq n\leq 100000$; and so on. Then we see that $\bar{s}_1=1$, $\bar{s}_{10}=0.1$, $\bar{s}_{100}\geq 0.9$, $\bar{s}_{1000}\leq 0.1$, $\bar{s}_{10000}\geq 0.9$, $\bar{s}_{100000}\leq 0.1$, and so on. The sequence (\bar{s}_n) exceeds 0.9 infinitely often and dips below 0.1 infinitely often, and therefore diverges. More compactly, we can write down a formula for the sequence as

$$s_n = \begin{cases} 1 & \text{if } \lceil \log_{10} n \rceil \text{ is even;} \\ 0 & \text{if } \lceil \log_{10} n \rceil \text{ is odd.} \end{cases}$$

6. Define $d: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ by

$$d(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{k} |y_j - x_j|.$$

- (a) Show that d is a metric on \mathbb{R}^k .
- (b) Show that (\mathbb{R}^k, d) is a complete metric space.

Solution. (a) (i) If $\mathbf{x} = \mathbf{y}$, then $x_j = y_j$ for all j and hence $d(\mathbf{x}, \mathbf{y}) = 0$. If $\mathbf{x} \neq \mathbf{y}$, then there exists j such that $x_j \neq y_j$, so $|y_j - x_j| > 0$ and hence $d(\mathbf{x}, \mathbf{y}) > 0$. (ii) Symmetry is trivial. (iii) For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$,

$$d(\mathbf{x}, \mathbf{z}) = \sum_{j=1}^{k} |z_j - x_j| \le \sum_{j=1}^{k} (|x_j - y_j| + |y_j - z_j|) = d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}).$$

- (b) Let $(\mathbf{x}^{(n)})$ be a Cauchy sequence in \mathbb{R}^k . Let $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that for all $m, n \geq N$, $d(\mathbf{x}^{(m)}, \mathbf{x}^{(n)}) < \varepsilon$. Then for each $1 \leq j \leq k$, $|x_j^{(m)} x_j^{(n)}| \leq d(\mathbf{x}^{(m)}, \mathbf{x}^{(n)}) < \varepsilon$, so each of the sequences $(x_k^{(n)})$ in \mathbb{R} is Cauchy, and hence $(x_j^{(n)})$ converges to some x_j for each $1 \leq j \leq k$. Let $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$. Let $\varepsilon' > 0$. For each $1 \leq j \leq k$, there exists $N_j \in \mathbb{N}$ such that $|x_j^{(n)} x_j| < \varepsilon'/k$ for all $n \geq N_j$. Let $N = \max\{N_1, \dots, N_k\}$. Then for $n \geq N$, $d(\mathbf{x}^{(n)}, \mathbf{x}) = \sum_{j=1}^k |x_j^{(n)} x_j| < \sum_{j=1}^k \frac{\varepsilon'}{k} = \varepsilon'$. Hence $(\mathbf{x}^{(n)})$ converges, so (\mathbb{R}^k, d) with d as defined is complete.
- 7. Let (X,d) be a metric space and let $E \subseteq X$. Prove that x is a limit point of E if and only if there exists a sequence (x_n) of points in $E \setminus \{x\}$ such that (x_n) converges to x.
- **Solution.** Suppose that x is a limit point of E. There exists $x_1 \in B_1(x) \setminus \{x\}$. Having already found x_1, \ldots, x_{k-1} , we can find x_k such that $x_k \in B_{1/k}(x) \setminus \{x\}$. By construction, the sequence (x_n) converges to x. For the converse, if (x_n) is a sequence of points in $E \setminus \{x\}$ which converges to x, then for any r > 0, there exists $N \in \mathbb{N}$ such that $x_n \in B_r(x)$ for all $n \geq N$, and since $x_n \in E \setminus \{x\}$ for all n, it follows that x is a limit point of E.
- **8.** Let (X,d) be a metric space and suppose $E \subseteq F \subseteq X$. Prove that $E' \subseteq F'$. (Notation: E' denotes the set of limit points of E.)

Solution. Let $x \in E'$. Then for any r > 0, there exists $y \in E \subseteq F$ such that $y \in B_r(x)$, so $x \in F'$.

- **9.** Let (X,d) be a metric space and let $E \subseteq X$. Let $\overline{E} = E \cup E'$.
- (a) Prove that \overline{E} is closed.
- (b) Prove that $E = \overline{E}$ if and only if E is closed.
- (c) Prove that if F is a closed set such that $E \subseteq F$, then $\overline{E} \subseteq F$.
- **Solution.** (a) We will show that $(\overline{E})^c$ is open. Let $x \in (\overline{E})^c$. Then $x \notin E$ and $x \notin E'$, so there exists r > 0 such that $B_r(x) \cap E = \emptyset$. I claim that also $B_r(x) \cap E' = \emptyset$. If not, then there exists $y \in B_r(x) \cap E'$, so for s := r d(x, y) > 0, there exists $z \in B_s(y) \cap E$; but then $d(x, z) \leq d(x, y) + d(y, z) < d(x, y) + s = r$, so $z \in B_r(x) \cap E$ which contradicts $B_r(x) \cap E = \emptyset$. Hence $B_r(x) \cap \overline{E} = \emptyset$, so $B_r(x) \subseteq (\overline{E})^c$. Therefore $(\overline{E})^c$ is open.
- (b) If E is closed, then $E' \subseteq E$ so $E = \overline{E}$. The other direction follows from part (a).
- (c) Suppose F is a closed set and $E \subseteq F$. By Problem 8, $E' \subseteq F' \subseteq F$, so $\overline{E} = E \cup E' \subseteq F$.
- **10.** Let (X,d) be a metric space and let $E \subseteq X$. Let E° denote the set of all interior points of E.
- (a) Prove that E° is open.
- (b) Prove that $E = E^{\circ}$ if and only if E is open.
- (c) Prove that if F is an open set such that $F \subseteq E$, then $F \subseteq E^{\circ}$.

Solution. (a) Let $x \in E^{\circ}$. There exists r > 0 such that $B_{2r}(x) \subseteq E$. Let $y \in B_r(x)$. Then for any $z \in B_r(y)$, $d(z,x) \le d(z,y) + d(y,x) < 2r$, so $z \in B_{2r}(x) \subseteq E$ and hence $B_r(y) \subseteq E$. Therefore, $B_r(x) \subseteq E^{\circ}$.

- (b) If E is open, then $E = E^{\circ}$ by definition. The other direction follows from part (a).
- (c) Suppose F is an open set and $F \subseteq E$. Then for any $x \in F$, there exists r > 0 such that $B_r(x) \subseteq F \subseteq E$, so $x \in E^{\circ}$.