Пролог -2024/2025

Тодор Дуков

Задача 1. Нека $\mathcal{A} = \langle \{a, b\}, \{1, \dots, n\}, 1, \delta, F \rangle$ е детерминиран тотален краен автомат. Представяне на автомата \mathcal{A} в Пролог ще наричаме терма (Delta, FinalStates), където Delta е списък, който представя графиката на δ (тоест списъкът $[(1, a, \delta(1, a)), (1, b, \delta(1, b)), \dots, (n, a, \delta(n, a)), (n, b, \delta(n, b))])$ и FinalStates е списък с елементи измежду числата $1, \dots, n$.

 \mathcal{A} а се дефинира на Пролог предикат minimise_automaton(A, MinA), който при подадено представяне A на автомат \mathcal{A} генерира в MinA представяне на \mathcal{A}_{\min} , за който:

- \mathcal{A}_{\min} е минимален автомат;
- $\bullet \ \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_{\min}).$

 $\it Забележска.$ Можем да улесним съвсем малко задачата, като дадем еднобуквена азбука. Тогава и представянето на $\it \delta$ може да бъде масив с $\it n$ елемента, който съдържа числа измежду $\it 1$ и $\it n$.

Задача 2. Нека $G = \langle \{a, b\}, 1, \dots, n, 1, R \rangle$ е безконтекстна граматика без ε -правила, която има безкраен език. Представяне на граматиката G в Пролог ще наричаме всеки списък Rules, който е представя множеството R (тоест $i \to_G \alpha_1 \cdots \alpha_k \ m.c.m.\kappa$. $(\mathbf{i}, [\alpha_1, \dots, \alpha_k])$ е елемент на Rules).

Да се дефинира на Пролог предикат derive(Rules, Word), който при подадено представяне Rules на граматика G при преудовлетворяване генерира в Word всеки списък от вида:

$$[\alpha_1,\ldots,\alpha_k]$$
, κσδεπο $\alpha_1\cdots\alpha_k\in\mathcal{L}(G)$.

Забележка. Не е задължително граматиката да генерира безкраен език. Човек може да провери дали една граматика G има безкраен език алгоритмично, като провери дали съществува $\alpha \in \mathcal{L}(G)$, за която $p < |\alpha| < 2p$ (където p е числото от Бар-Хилел лемата), и след това може да ограничи дължината на извода на думата, в случай че езика е краен, иначе генерира всички изводи и филтрира думите. Мисля, че този детайл е най-добре да се спести в полза на студентите.

Задача 3. Нека $\mathcal{N} = \langle \{a, b\}, Q, S, \Delta, F \rangle$ е недетерминиран краен автомат. Представяне на автомата \mathcal{N} в Пролог ще наричаме терма (Q, S, D, F), където:

- Q е списък, който представя множеството Q;
- S е списък, който представя множеството S;
- D е списък, който представя множеството Δ ;
- \bullet F е списък, който представя множеството F.

 \mathcal{A} а се дефинира на Пролог предикат convert_nfa_to_total_dfa(N,A), който при подадено представяне N на автомат \mathcal{N} генерира в A представяне на \mathcal{A} , за който:

- А е детерминиран тотален краен автомат;
- $\mathcal{L}(\mathcal{N}) = \mathcal{L}(\mathcal{A})$.

Задача 4. Дефинираме представянето на регулярен израз r над азбуката $\{a,b\}$ в Пролог индуктивно:

- npedcmasянията на a, b, ε и \varnothing са съответно a, b, eps u nothing;
- представянията на (r_1+r_2) и $(r_1\cdot r_2)$ са съответно (R1+R2) и (R1*R2), където R1 и R2 са представянията на r_1 и r_2 ;
- \bullet представянето на r^* е star(R), където R е представянето на r.

 \mathcal{A} а се дефинира на Пролог предикат $\operatorname{regex}(R)$, който при преудовлетворяване генерира представянето на всеки регулярен израз.

Задача 5. Представяне на едно множество $\{a_1, \ldots, a_n\}$ в Пролог е масивът $[a_1, \ldots, a_n]$, където a_1, \ldots, a_n са представянията на обектите a_1, \ldots, a_n . Например можем да представим $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$ като списъка [[], [[]], [[]], [[]], []]. Дефинираме множествата V_n по рекурсия така:

$$V_0 = \emptyset$$
$$V_{n+1} = \mathcal{P}(V_n).$$

Да се дефинира на Пролог предикат hereditarily_finite_set(S), който при преудовлетворяване генерира в S представянето на всеки елемент на $\bigcup_{n < \omega} V_n$.

Забележка. Тази задача може малко да се усложни, ако поискаме допълнително да се махнат ординалите, или някой друг интересен клас от множества.

Задача 6. В Пролог ще представяме релациите като списъци от двойки. Например [(1,2),(2,2),(3,1)] представя релацията $\{\langle 1,2\rangle,\langle 2,2\rangle,\langle 3,1\rangle\}$. Да се дефинира на Пролог предикат topo_sort(PO,LO), който при подадено представяне на частична наредба PO при преудовлетворяване генерира в LO представянето на всяка линейна наредба, която разширява представяната от PO наредба над същото поле.

Задача 7. Нека $\langle P, \leq \rangle$ е ч.н.м. $F \subseteq P$ ще наричаме филтор в $\langle P, \leq \rangle$, ако:

- $F \neq \emptyset$;
- за всяко $x \in F$ и за всяко $y \in P$, ако $x \leq y$, то тогава $y \in F$;
- за всяко $x,y \in F$ съществува $z \in F$, за което $z \le x$ и $z \le y$.

Да се дефинира на Пролог предикат gen_filter(P, Leq, F), който при подадено представяне (P, Leq) на някоя частична наредба $\langle P, \leq \rangle$ при преудовлетворяване генерира в F представянето на всеки един филтър в $\langle P, \leq \rangle$.

Забележка. Тази задача може малко да се усложни, ако поискаме да генерират ултрафилтър вместо филтър.