Canny Muller 25092222 1) h(x) = F.g = (f(x) g(x-x)dx in disrete linit = EFCZIG(x-2) L(x) = E 7 EF(N)e^{2πεκχ}/ν 12 ((h')e^{2πεκχ}/ν - 2) = 1 Z F(h) G(h') e 2Tihx Z e 2Ti(H-h) x - In & FCh) GCM e 27 inhore fourier transform L(X) = IFT (FXG) if h= F&19, H= FG let fbe the gassian, y be a delty function contral around 1 2) fxg= SFCx1-g(x14)dx = ift (dft(f) # conjldft(g))) 3) The function shifts as expected, as can be seen it will be central when hold to shift by bulk the array legth. When Shirter by full legth it returns buch to its original spot 4. The array is 1182 length us the inputs of loso for Fand lool day

S) Show Z e	-2TiKX
N-1 - ztill x	1-e-24.4/N = Z X where Z = e-ZTik x=0
X=0	x=0 Where $x=0$
Sun de geombie	Sejw
$S = \begin{cases} X^2 & \text{if } C \\ X^2 & \text{otherwise} \end{cases}$	$\lambda + \lambda^2 \dots + \lambda^{N-1}$
S-42=1-0,	
S((-2) = 1-2^	J _ 2 a ih
S = 1- x	$= \frac{1-e^{-2\pi i h}}{1-e^{-2\pi i h/N}}$
b) S= E e = 27) + e-2Tih/N(1) + e-2Tih/N(2) + -+ e-2Tih/N(N-1)
	=> => => N
n-> 0	16 IM
Since h not a	1 later 1-17,10 of N-274 727
1- e- 2tisk	= 1- (05(771h) +isin(271h) =0
- e-2TiN/N	nem nem
Nute e-27	with not eggs I for any h so
the deraminas	to will not eggs I for any h so

C) $f(h) = \frac{1}{2\pi i} e^{-2\pi i h y/h} = 1 - e^{-2\pi i h/h}$ where $f(x) = 1$ $1 - e^{-2\pi i h/h}$
for non-intyer sin wate :
$F(H) = \frac{\sin(2\pi t h \times / N)}{\sin(2\pi t h \times / N)} = \frac{\sin(2\pi t h \times / N)}{\sin(2\pi t h \times / N)} = \frac{\sin(2\pi t h \times / N)}{\sin(2\pi t h \times / N)}$ $F(H) = \frac{\sin(2\pi t h \times / N)}{\sin(2\pi t h \times / N)} = \frac{\sin(2\pi t h \times / N)}{\sin(2\pi t h \times / N)} = \frac{\sin(2\pi t h \times / N)}{\sin(2\pi t h \times / N)}$
$f(k) = \underbrace{f(\lambda)}_{X} e^{-2\pi i k x/N} \qquad h = 2\pi \qquad \Im = 2\pi$ $= \underbrace{\underbrace{\int_{X}^{N-1} (2\pi k x/N)}_{X} e^{-2\pi i k x/N}}_{X} e^{-2\pi i k x/N} e^{-2\pi i k x/N}$
$= \frac{2}{2} \left(\frac{2\pi i h \times i N}{2i} - \frac{2\pi i h \times i N}{2i} \right) = \frac{2\pi i h \times i N}{2i}$
$= \frac{1}{2!} = \frac{2\pi i (\ln \ln \pi) \times \ln \pi}{(2\pi i \ln \ln \pi) \times \ln \pi}$
$= \frac{1}{2!} \underbrace{Z = 2\pi i (h-h') \times h}_{= 2\pi i (h'-h') \times h}_{= 2\pi i (h'-h') \times h}_{= 2\pi i (h'-h') \times h}_{= 2\pi i (h'+h) \times h}_{= 2\pi i$
$= \frac{1}{2i} \left[\left(1 - e^{-2\pi i (\ln \ln $
de unfortments, potentially due to a boy, it does not improve domatically
e) 4ft=[2-2-2-2-2-14] 1/1 window= = = + = Cos (211×10)
As can be seen in the Figure "window-us snooth, py"
the window Scales as (= -4-4).

6,																	
α) ra	ndor	r ()	alh:													
	<	(f61)	- 4	CX10	(۲)	2>	= n	dχ									
	na	!x =	∠.	fcz)	2 - 7	2 fc4) f(;	X d ds	ړ (پ	+(x f d	لا) ²	>				
						Cor	relat	ion									
2	44	fo	X) 2	<i>-</i> 4	[4]	d2)	٤	N									
	1.	1 x =	2,	N -	- 2	<4c	*) f	CX+ d	¥1)>								
	۷٠	f (L)	f(x	† Y×)	>	= 1	V –	no	<u>/y</u>	= 0	y(dx)						
<i>(</i> ,			ſ	2π;.V	X/AI			,								ettikx, M dx u=271	
46	K)	=)	ر د در	, /V	gcx	() 0	/X									
		=	ح (271 CM 		(<i>/</i>	- <u>NX</u> Z) d	X,	27 i No	(/N	1.			2	ettihx,	(N
		2	JΛ	1e ²¹	27il1;	~ d: «IN	X ~	72	χe	, '2π'	M4/w	d X	u:	x d	V=C	m .	
		= ~ <u>;</u>	<u>N</u>	2 e				72[- <u>in</u> 2111	<u>Xe</u> 1	_	. \ .	271	1		JX	
			-11	rı								<i>u</i> -	27	-: h.	_ ,	- 27	T.14
	•		2TT	ne N		_	2	271	h H		+ <u>= = = = = = = = = = = = = = = = = = =</u>	$\frac{1}{2} \left(\frac{1}{2} \right)$	-114	e			
	=	- i,	NZ	eti	iux//	ر - د	1 (-	iN.	27 X _ ZT	TiMAA	, L	NZ	0	2TI	HX/N	17	
		2	πh			-	ŹĹ	-, - 211	h		(211	- 2 1)2		hx/n -lax/1 -lax/1		
	. .	ر ز	<u>,</u> z .	27	TC 11/	n + i	n	1Xe ²	Till	Y/N	n	NZ	e "	ZTTi	(1X)	v	
		2.	Th			_	47	īh			_	87	T2H	2			
Vdx) =	(Nn	271	ihx	_	N2	h .	- N	247	TLH)	e ²	ti i Vi	(/ _/ //	\sim	1		
J					8	T2	42								HZ		