ГОСУДАРСТВЕННЫЙ КОМИТЕТ по изобретениям и открытиям ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4721422/03

(22) 25.07.89

(46) 15.07.91. Бюл. № 26

(71) Азербайджанский государственный научно-исследовательский и проектный институт нефтяной промышленности

(72) Н.Г.Сафаров, Р.Г.Муфид-Заде, Т.К.Аливерди-Заде, Р.Г. Кулиев и В.Н. Акимова (53) 622.245.4(088.8)

(56) Авторское свидетельство СССР № 905425, кл. E 21 B 29/10, 1982.

Авторское свидетельство СССР № 467994, кл. Е 21 В 29/10, 1975.

(54) УСТРОЙСТВО ДЛЯ ВЫПРАВЛЕНИЯ ОБСАДНОЙ КОЛОННЫ

(57) Изобретение относится к нефтяной и газовой пром-сти и предназначено для выправления обсадной колонны (ОК). Цель повышение надежности работы устр-ва за счет предотвращения его заклинивания в скважине при одновременной экономии энергоресурсов за счет обеспечения возможности уменьшения крутящего момента. Для этого корпус (К) 1 устр-ва имеет конические прямую и обратные направляющие, а на его наружной поверхности выполнены

1663180

кольцевой паз 2 и радиальные пазы 10. Последние имеют в поперечном сечении К 1 равномерно изменяющуюся глубину для радиального перемещения роликов (Р) 5 и 6. которые размещены в пазах 10 с возможностью радиального перемещения. В кольце-2 пазу последовательно возможностью вращения относительно продольной оси К 1 установлены кольца 3, 4 и 8 с пазами 9 на обращенных друг к другу по-

верхностях, где расположены выступы. Длина пазов колец 3, 4 и 8 в поперечной плоскости К 1 равна величине радиального перемещения Р 5 и 6. Между кольцами 3, 4 и 8 с возможностью вращения вокруг своей оси размещен второй ряд Р 5 и 6. В случае смятия ОК на каком-то ее участке по всему периметру выправление ОК будет осуществляться непосредственно всеми четырьмя Р 5 и 6. 4 ил.

Изобретение относится к нефтяной и газовой промышленности, а именно к устройствам для выправления обсадной колон-

Целью изобретения является повышение надежности работы устройства за счет предотаращения его заклинивания в скважине при одновременной экономии энергоресурсов за счет обеспечения уменьшения крутящего момента.

На фиг. 1 схематично изображено предлагаемое устройство; на фиг. 2 - разрез А-А на фиг. 1; на фиг. 3 - разрез Б-Б на фиг. 1; на фиг. 4 - траектории перемещений осей 15 вращения роликов, перекатывающихся по .смятой и несмятой стенкам обсадной колон-

Устройство состоит из цилиндрического имеющего коническую прямую и обратную 20 направляющую корпуса 1, на наружной поверхности которого выполнен кольцевой паз 2, где последовательно размещены цилиндрические кольца, верхнее 3 и нижнее ностью вращения вокруг своей оси верхний ряд роликов 5 и нижний ряд роликов 6, снабженных размещенными в верхней и нижней частях на их торцовых поверхностях выступами 7. Между верхним и нижним рядами 30 роликов установлено среднее цилиндрическое кольцо 8. Верхнее 3, среднее 8 и нижнее 4 цилиндрические кольца выполнены с пазами 9 на обращенных друг к другу поверхностях, где расположены выступы 7 роли- 35 ков. Ролики 5 и 6 установлены в пазу 2 и радиальных пазах 10 корпуса. Пазы 10 корпуса имеют в поперечном сечении корпуса равномерно изменяющуюся глубину от выступов 11 к впадинам 12 для радиального 40 перемещения роликов. Кольца 3, 4 и 8 установлены с возможностью вращения относительно продольной оси корпуса, а длина пазов 9 колец в поперечной плоскости корпуса равна радиальному перемещению ро- 45 ликов. В корпусе выполнен осевой канал 13.

Устройство работает следующим обра-30M.

Устройство на колонне бурильных труб спускают в скважину и при достижении им верхней границы смятого участка обсадной колонны спуск прекращают. Затем очень медленно вращают колонну бурильных труб. Если колонна труб свободно вращается это указывает на то, что ряды роликов 10 верхний 5 и нижний 6 (фиг. 1-4) еще не взаимодействуют со смятым участком обсадной колонны. Незначительно увеличив глубину спуска устройства, вновь вращают колонну бурильных труб. Дальнейший спуск устройства прекращают в том случае, если при вращении колонны труб возникает сопротивление ее вращению, что свидетельствует об упоре роликов устройства в смятый участок обсадной колонны. После этого создают циркуляцию промывочной жидкости в скважине, которая проходит через осевой канал 13 корпуса 1 и после выхода из него омывает ролики и способствует их охлаждению. При вращении колонны бурильных 4, между которыми установлены с возмож- 25 труб вращается корпус 1 устройства, при этом ролик, находящийся во впадине 12 радиального паза 10 корпуса (фиг. 4), оказывается прижатым одновременно к смятой стенке обсадной колонны и дну радиального паза корпуса. В результате чего происходит перекатывание ролика по упомянутым поверхностям обсадной колонны и корпуса устройства. В то же время ролик, расположенный с противоположной стороны корпуса 1, упирается в несмятую стенку обсадной колонны и перекатывается одновременно по этой поверхности и дну радиального паза корпуса. При этом направление перекатывания роликов и вращение, связанных с ними верхнего, среднего и нижнего цилиндрических колец 3, 8 и 4, совпадает с направлением вращения корпуса 1 устройства. В процессе перекатывания роликов по дну радиального паза 10 они из впадины 12 перемещаются на вершину 11, что сопровождается принудительным вы-

движением роликов из корпуса под действием возникающего бокового (выправляющего) усилия. При выдвижении роликов их выступы 7 перемещаются по пазам 9, которые предусмотрены в кольцах 3, 4 и 8. При 5 этом траектория перемещения оси вращения ролика, перекатывающегося по несмятой стенке обсадной колонны, будет иметь вид окружности, показанной на фиг. 4 сплошной линией, центр которой совпадает 10 с центром обсадной колонны. Ось же вращения ролика, перекатывающегося по смятой стенке колонны и выправляющего ее. будет перемещаться по параболической траектории, которая показана на той же фи- 15 гуре пунктирной линией. Это происходит из-за того, что усилие, необходимое для выправления смятого участка обсадной колонны всегда меньше усилия, необходимого для первичной деформации той же колонны. 20 Ролик, перекатывающийся по несмятой стенке обсадной колонны, перемещаясь из впадины 12 на вершину 11 дна радиального паза, отодвигает корпус 1 устройства от несмятой стенки в сторону смятой. Выдвиже- 25 ние роликов из корпуса прекращается после достижения ими вершин 11 дна радиального паза. Максимальное расстояние, на которое перемещается ролик, выправляющий смятую стенку обсадной колонны, бу- 30 дет равно сумме расстояний, на которые выдвигаются из корпуса упомянутый и противолежащий ему ролики. В случае смятия обсадной колонны на каком-то ее участке по всему периметру выправление колонны бу- 35 дет осуществляться непосредственно всеми четырьмя роликами. Таким образом, в процессе одного оборота корпуса 1 устройства выправляется участок обсадной колонны, равный по длине суммарной высоте 40 верхнего и нижнего рядов роликов. Для выправления нижележащих смятых участков обсадной колонны устройство допускают и повторяют описанные операции.

Пример. Допустим обсадная колонна диаметром 299 мм (марка стали К, толщина стенки 12 мм) смята на глубине 3000 м. Для труб такой прочности наружное давление, при котором напряжение в теле трубы достигает предела текучести, равно 130 кГс/см². Это значит, что для смятия обсадных колонн указанной прочности достаточно наружное давление порядка 130 кГс/см². Для выправления таких колонн требуется также давление (или боковое выправляющее усилие) в пределах 130 кГс на каждый квадратный сантиметр контакта рабочего элемента (в данном случае роликов устройства со смятой стенкой обсадной колонны.

Устройство спускается на глубину 3000 м на бурильной колонне диаметром 140 мм (марка стали К. толщина стенки 10 мм). Приведенный вес 1 пог. м такой колонны равен $P_{np}=38.8~\text{кГс/м}$. предел текучести $\sigma_{\text{тек}}=5000~\text{кгс/см}^2$.

Вес всей бурильной колонны будет

$$P = 38.8 \cdot 3000 = 116400 \ \kappa \Gamma c.$$

При коэффициенте запаса прочности K = 1,3

$$σ_{\text{доп.}} = \frac{σ_{\text{тек.}}}{K} = \frac{5000}{1.3} = 3846 \text{ κΓc/cm}^2$$

$$σ_{\text{пр}} = \sqrt{\sigma_{\text{H}}^2 + 3 \tau_{\text{кас}}^2} : \qquad (1)$$

$$σ_{\text{H}} = \frac{P}{S_{\text{сеч.трубы}}}$$

$$S_{\text{сеч.трубы}} = 40.7 \text{cm}^2 :$$

$$σ_{\text{H}} = \frac{116400}{40.7} = 2860 \text{ κΓc/cm}^2$$

Момент сопротивления кручению

$$W = \frac{\pi \cdot D^{3}}{16} \cdot (1 - \alpha^{4}):$$

$$\alpha = \frac{d}{D} = \frac{0.12}{0.14} = 0.86.$$

где D и d – соответственно наружный и внутренний диаметры бурильной колонны, м:

$$W = \frac{3.14 \cdot 0.14^{3}}{16} (1 - 0.86^{4}) =$$

$$= 0.000244 \text{ m}^{3} = 244 \text{ cm}^{3}.$$

$$\text{M3 (1)}$$

$$3 \tau_{\text{kac}}^2 = \sigma_{\text{np}}^2 - \sigma_{\text{H}}^2;$$

$$\tau_{\text{kac}} = \sqrt{\frac{\sigma_{\text{np}}^2 - \sigma_{\text{H}}^2}{3}};$$

$$\tau_{\text{kac}} = \frac{M}{W} = \sqrt{\frac{\sigma_{\text{np}}^2 - \sigma_{\text{H}}^2}{3}};$$

45

Откуда допустимый момент, с которым 55 можно скручивать бурильную колонну для приведения ее во вращение, будет

$$M = W \sqrt{\frac{\sigma_{np}^2 \sigma_{M}^2}{3}} = 244 \sqrt{\frac{3846^2 - 2860^2}{3}}$$
$$= 361120 \text{ k} \Gamma^3 \cdot \text{cm} = 3611 \text{ k} \Gamma \cdot \text{m}.$$

Тогда усилие, возникающее от этого момента, составит

7

$$Q = \frac{M}{\frac{D_1}{2}} = \frac{3611}{0.089} = 40573 \text{ kfc.}$$

где D1 - наружный диаметр корпуса устройства (изготавливается из УБТ диаметром 178 мм), м.

При высоте одного ролика 100 мм, диаметре 40 мм и выдвижении каждого ролика из корпуса устройства на 5 мм площадь контакта Ѕкон, роликов со смятой стенкой об-145 cm².

Боковое выправляющее усилие, создаваемое устройством, равно

$$Q_{\text{BMR}} = \frac{Q}{S_{\text{KOH}}} \, .$$

Это усилие по мере выдвижения роликов из канавки корпуса устройства будет 25 изменяться от 40573 до 280 кГс/см², что значительно превосходит усилие, необходимое для выправления рассматриваемой смятой обсадной колонны.

Формула изобретения

Устройство для выправления обсадной колонны, включающее корпус с коническими прямой и обратной направляющими и кольцевым пазом на наружной поверхности, последовательно установленные в кольцевом пазу корпуса кольца с пазами на взаимно обращенных поверхностях, установленные на корпусе между кольцами с 10 возможностью вращения ролики с выступами в верхней и нижней частях, расположенными в пазах колец, отличающееся тем, что, с целью повышения надежности работы устройства за счет предотвращения садной колонны будет изменяться от 1 до 15 его заклинивания в скважине при одновременной экономии энергоресурсов за счет обеспечения уменьшения крутящего момента, на наружной поверхности корпуса выполнены радиальные пазы, имеющие в 20 поперечном сечении корпуса равномерно изменяющуюся глубину для радиального перемещения роликов, причем ролики размещены в радиальных пазах корпуса с возможностью радиального перемещения, кольца установлены с возможностью вращения относительно продольной оси корпуса, а длина пазов колец в поперечной плоскости корпуса равна величине радиального перемещения роликов. 30

Редактор Ю.Середа

Составитель И.Левкоева Техред М.Моргентал

Корректор И.Муска

Заказ 2245

Тираж 359

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5