

What Is Pattern Discovery?

- Considering massive shopping transaction data, pattern discovery may help answer the following questions:
 - What groups of items are frequently bought together?
 - If a person buys diapers at night, what is the probability of this person buying beer as well?
 - □ If a customer buys an iPhone 5 or iPhone 7, what other electronic products will the customer be most likely to buy in the next 3 months?

The Value of Pattern Discovery

- What is the value of pattern discovery?
 - Pattern discovery helps you find hidden and inherent data patterns in massive data
 - □ Pattern mining will play a unique and critical role in mining massive data!
- What roles does pattern discovery play in the Data Mining Specialization?
 - ☐ You will learn scalable methods to find patterns (e.g., the set of data items strongly correlated to each other) from massive data
 - You will learn how to mine a large variety of patterns
 - ☐ You will also learn how to evaluate the value of patterns
 - □ Pattern discovery will help classification, clustering and other data mining tasks

Broad Applications of Pattern Discovery

- Predicting shopping transaction data:
 - For a customer who buys products A and B, what is the likelihood of the customer buying product C?
- □ Predicting webpage click streams:
 - Now, which webpage is most likely to be clicked next?
- ☐ Mining software bugs: Where is the likely bug in this program?
- Identifying objects or sub-structures in images, videos, and social media
- ☐ Finding quality phrases, entities, and attributes in massive text
- ☐ Finding repeating DNA and protein sequences in genomes
- ☐ Finding "hidden" communities in a massive social network

Major Reference Readings for the Course

Textbook

- Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed).
 Morgan Kaufmann
- Chapters most related to the course
 - Chapter 1: Introduction
 - Chapter 6: Mining Frequent Patterns,
 Associations, and Correlations: Basic Concepts
 and Methods
 - Chapter 7: Advanced Pattern Mining
- Other references will be listed at the end of each lecture video

What Is Pattern Discovery?

- What are patterns?
 - □ Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- □ Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- ☐ Finding inherent regularities in a data set
- □ Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: Frequent Itemsets (Patterns)

- ☐ Itemset: A set of one or more items
- \Box k-itemset: $X = \{x_1, ..., x_k\}$
- □ (absolute) support (count) of X: Frequency or the number of occurrences of an itemset X
- □ (relative) support, s: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- □ An itemset X is *frequent* if the support of X is no less than a *minsup* threshold (denoted as σ)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Let minsup = 50%
- ☐ Freq. 1-itemsets:
 - Beer: 3 (60%); Nuts: 3 (60%)
 - Diaper: 4 (80%); Eggs: 3 (60%)
- ☐ Freq. 2-itemsets:
 - □ {Beer, Diaper}: 3 (60%)

From Frequent Itemsets to Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: Itemset: $X \cup Y$, a subtle notation!

- \square Association rules: $X \rightarrow Y$ (s, c)
 - Support, s: The probability that a transaction contains X ∪ Y
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box c = sup(X \cup Y) / sup(X)
- □ **Association rule mining**: Find all of the rules, $X \rightarrow Y$, with minimum support and confidence
- ☐ Frequent itemsets: Let *minsup = 50%*
 - ☐ Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- ☐ Association rules: Let *minconf* = 50%
 - Beer → Diaper (60%, 100%)
 - Diaper \rightarrow Beer (60%, 75%) (Q: Are these all rules?)

Challenge: There Are Too Many Frequent Patterns!

- □ A long pattern contains a combinatorial number of sub-patterns
- □ How many frequent itemsets does the following TDB₁ contain?
 - \square TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: {a<sub>1</sub>}: 2, {a<sub>2</sub>}: 2, ..., {a<sub>50</sub>}: 2, {a<sub>51</sub>}: 1, ..., {a<sub>100</sub>}: 1, 2-itemsets: {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>50</sub>}: 2, {a<sub>1</sub>, a<sub>51</sub>}: 1 ..., ..., {a<sub>99</sub>, a<sub>100</sub>}: 1, ..., ..., ...
```

99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1

100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

□ In total: $\binom{100}{1} + \binom{100}{2} + \dots + \binom{1}{1} \binom{0}{0} = 2^{100} - 1$ sub-patterns!

A too huge set for any computer to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent*, and there exists *no super-pattern* Y ⊃ X, *with the same* support as X
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - □ Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - □ Two: P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - □ You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- □ Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - □ One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - \square We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

Recommended Readings

- □ R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- □ R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- □ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007