Time Series Modeling: Crude oil price prediction

Evgeniya Dontsova

October 24, 2019

Dataset: WTI (West Texas Intermediate) crude oil price

Daily data: 8501 observations, > 33 years, starting from 1986-03-01

Weekly data: 1762 observations

Using Facebook Prophet Model: Train size = 2 years, Test size = 1 month

Mean Average Percentage Error (MAPE): 31.8 % +/- 28.6 %

Using ARIMA Model: Train size = 2 years, Test size = 1 month

Mean Average Percentage Error (MAPE): 11.5 % +/- 16.0 %

A = Auto, R = Regressive, I = Integrated, M = Moving, A = Average

Long Short-Term Memory (LSTM) Neural Network (NN)

Regression Problem: Predict 5 days

input

Regression Problem: Predict 5 days (test data)

Date

Regression Problem: 5 LSTM models (test data)

1 LSTM model:

5 LSTM models:

How to predict behavior/trend more accurately?

Classification Problem: Generate uptrend and downtrend target

Classification Problem: Predict uptrend

Model: LSTM NN

Input:

- 1. smoothed price
- predicted probabilities (another model)

Hyper-parameters:

input window = **80**hidden size = 4
patience = 30

Model Stability:

10-fold slide-window CV: Train AUC = 0.855 +/- 0.051 Test AUC = 0.832 +/- 0.084

Rescaled confusion matrices:

Shift threshold probability by optimizing f1-score:

threshold = 0.56 accuracy = 0.80

Classification Problem: Predict downtrend

Model: LSTM NN

Input:

- 1. smoothed price
- 2. predicted probabilities (another model)

Hyper-parameters:

input window = **10** hidden size = 4 patience = 30

Model Stability:

10-fold slide-window CV: Train AUC = 0.825 +/- 0.039 Test AUC = 0.825 +/- 0.084

Rescaled confusion matrices:

Shift threshold probability by optimizing f1-score:

threshold = 0.24 accuracy = 0.76

Classification Problem: Combining uptrend and downtrend models

precision		recall	f1-score	support
up	0.53	0.73	0.62	63
sideways	0.66	0.47	0.55	118
down	0.59	0.68	0.63	60
accuracy			0.59	241

Classification Problem: Direct comparison for the test data

Model Assessment: use uptrend/downtrend signals to buy/sell

Contact information: Evgeniya Dontsova

Ph. D. in Mechanical Engineering

in https://www.linkedin.com/in/evgeniya-dontsova-98432b195/

