Дельта-метод

Нормальное распределение возникает, если суммируется большое количество независимых одинаково распределенных случайных величин. Однако оно возникает и в других ситуациях! Дельта-метод основан на том факте, что даже нелинейная функция от нормально распределенной случайной величины иногда имеет распределение близкое к нормальному.

Дельта-метод на практике

Если функция f дифференциируема, то в окрестности точки μ функция f похожа на прямую, то есть $f(x) \approx f(\mu) + f'(mu)(x-\mu)$. Линейное преобразование нормально распределенной случайной величины оставляет её нормально распределенной, если угловой коэффициент отличен от нуля, т.е. $f'(\mu) \neq 0$. Если $X \approx N(\mu, \sigma^2)$ и дисперсия X мала, то X практически всегда попадает в небольшую окрестность μ , а в ней f похожа на линейную функцию и $f(X) \approx N(\mu, \sigma^2(f'(\mu))^2$.

Получаем практическую версию дельта-метода.

Если: f — дифференциируема, $f'(\mu) \neq 0$, $X \approx N(\mu, \sigma^2)$ и дисперсия σ^2 мала, то $f(X) \approx N(f(\mu), \sigma^2(f'(\mu))^2)$.

Дельта-метод в теории

Естественно, строгая формулировка идеи «дисперсия σ^2 мала» использует понятие предела и последовательностей случайных величин.

Если: f-f- дифференциируема, $f'(\mu)\neq 0$, и последовательность случайных величин $\{X_n\}$ удовлетворяет условию:

$$\sqrt{n}(X_n - \mu) \to N(0, \sigma^2)$$

То: последовательность $f(X_n)$ удовлетворяет условию:

$$\sqrt{n}(f(X_n) - f(\mu)) \to N(0, \sigma^2(f'(\mu))^2)$$

Примеры задач

- 1. Известно, что X_i независимы и одинаково распределены со средним 5 и дисперсией 4^2 . Найдите примерный закон распределения величины $(1+\bar{X})/(\bar{X}^2+5)$ при большом n.
- 2. Величина X имеет биномиальное распределение Bin(n,p) и n велико. Какое распределение примерно имеют величины $\ln(X/n)$? X/(n-X)?