Theoretische Mechanik Sommersemester 2023

Prof. Dr. W. Strunz, Dr. R. Hartmann, Institut für Theoretische Physik, TU Dresden https://tu-dresden.de/mn/physik/itp/tqo/studium/lehre

2. Übung (Besprechung 17.4. - 21.4.)

1. Eigenschaften der Galilei-Raumzeit

In einer 2-dimensionalen Galileischen Raumzeit wird ein (Welt-)Ereignis A bezüglich eines Inertialsystems Σ durch die Angabe einer Zeit- und einer Ortskoordinate (t_A, x_A) charakterisiert. Die t-Achse von Σ wird durch die Menge aller Ereignisse (t, x = 0) eines im Koordinatenursprung ruhenden Beobachters repräsentiert. Entsprechend wird die x-Achse (t = 0, x) durch die Menge aller für den Beobachter im Koordinatenursprung von Σ gleichzeitigen Ereignisse (t = 0) repräsentiert.

- a) Wie lassen sich die t'- und die x'-Achse eines Inertialsystems Σ' anhand eines Raumzeitdiagramms verdeutlichen (Skizze), welches sich gegenüber Σ mit einer konstanten Relativgeschwindigkeit v bewegt (Galilei-Transformation)?
- b) Bezüglich des Bezugssystems Σ seien zwei räumlich und zeitlich getrennte Weltereignisse (t_A, x_A) und (t_B, x_B) gegeben, d.h. es gelte $\Delta x = x_B x_A > 0$, $\Delta t = t_B t_A > 0$. Zeigen Sie, dass es immer ein aus einer Galilei-Transformation hervorgehendes Bezugssystem Σ' gibt in dem die Ereignisse am selben Ort stattfinden, d.h. der räumliche Abstand $\Delta x' = x'_B x'_A$ verschwindet (uneingeschränkte Relativität der "Gleichortigkeit").
- c) Dagegen kommt in der Galilei-Raumzeit der Gleichzeitigkeit zweier Weltereignisse A, B eine absolute Bedeutung zu $(t_A = t_B \to t'_A = t'_B)$. Zeigen Sie, dass für gleichzeitige Ereignisse der räumliche Abstand eine Galilei-Invariante ist.

2. Eigenschaften der Minkowski-Raumzeit

Betrachten Sie analog zur Galilei-Raumzeit nun eine 2-dimensionalen Minkowski-Raumzeit, so dass zwischen den Koordinaten in Σ' und Σ die Lorentz-Transformation gilt

$$t' = \gamma \left(t - \frac{v}{c^2} x \right), \quad x' = \gamma \left(x - vt \right) \quad \text{mit} \quad \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}.$$

- a) Wie lassen sich die t'- und die x'-Achse des Inertialsystems Σ' anhand eines Raumzeitdiagramms darstellen (Skizze), welches sich gegenüber Σ mit einer konstanten Relativgeschwindigkeit v bewegt?
- b) Bezüglich des Lorentz-Systems Σ seien zwei räumlich und zeitlich getrennte Weltereignisse (t_A, x_A) und (t_B, x_B) gegeben, d.h. es gelte $\Delta x = x_B x_A > 0$, $\Delta t = t_B t_A > 0$. Zeigen Sie, dass sofern $\Delta x < c\Delta t$ gilt, ein Lorentz-System Σ' auffindbar ist in dem die Ereignisse am selben Ort stattfinden (eingeschränkte Relativität der Gleichortigkeit). Zeigen Sie ferner, dass für $\Delta x > c\Delta t$ ein Lorentz-System Σ' auffindbar ist in dem die Ereignisse gleichzeitig stattfinden (Relativität der Gleichzeitigkeit).
- c) Zeigen Sie, dass in der Minkowski-Raumzeit der Aussage "Zwei Weltereignisse A und B sind kausal verknüpft" eine absolute Bedeutung zukommt.

3. Zweiteilchensysteme und Galilei-Transformationen

Bezüglich eines Laborsystems (Inertialsystem) Σ bewegen sich zwei Punktteilchen mit Massen m_1 und m_2 entlang ihrer Trajektorien $\vec{r}_1(t)$ und $\vec{r}_2(t)$. Der Schwerpunkt $\vec{R}_s(t)$ eines Zweiteilchensystems ist definiert als $\vec{R}_s(t) = (m_1 \vec{r}_1(t) + m_2 \vec{r}_2(t))/(m_1 + m_2)$. Der Relativabstand lautet $\vec{r}(t) = \vec{r}_2(t) - \vec{r}_1(t)$.

- a) Zeigen Sie, dass der Relativabstand $\vec{r}(t)$ sowie die Relativgeschwindigkeit $\vec{v}(t)$ der Teilchen invariant unter Galilei-Transformationen sind.
- b) Geben Sie die Ortsvektoren $\vec{r}_1'(t)$, $\vec{r}_2'(t)$ sowie die Geschwindigkeitsvektoren $\vec{v}_1'(t)$, $\vec{v}_2'(t)$ der beiden Teilchen bezüglich des Schwerpunktsystems an. Unter welcher Bedingung entspricht die Transformation vom Laborsystem Σ in das Schwerpunktsystem einer Galilei-Transformation?
- c) Entlang der Verbindungslinie zwischen den Teilchen wirke eine nur vom Betrag des Relativabstands abhängige (instantane) Wechselwirkungskraft $\vec{f}_{12} = \vec{f}(|\vec{r}_2 \vec{r}_1|) = f(r) \frac{\vec{r}}{r}$.

Zeigen Sie, dass \vec{f}_{12} Galilei-invariant ist und zugleich das 3. Newtonsche Axiom $\vec{f}_{12} = -\vec{f}_{21}$ erfüllt.

4. Schräger Wurf mit Reibung

Ein Massenpunkt m bewege sich auf einer Trajektorie $\vec{r}(t)$ unter dem Einfluss der homogenen Schwerkraft $\vec{F}_g = -mg\vec{e}_z$ und der phänomenologischen Reibungskraft $\vec{F}_R = -\alpha \vec{v}(t)$ mit Reibungskoeffizient $\alpha > 0$.

- a) Stellen Sie die Newtonsche Bewegungsgleichung für $\vec{r}(t)$ auf und bestimmen Sie die Komponenten der Geschwindigkeit $\vec{v}(t)$ sowie die Position $\vec{r}(t)$ des Massenpunkts durch lösen der Bewegungsgleichungen mit den Anfangsbedingungen $\vec{r}(t_0) = 0$ und $\vec{v}(t_0) = \vec{v}_0$ zum Zeitpunkt $t_0 = 0$.
- b) Bestimmen Sie den Scheitelpunkt $(x_s = x(t_s), z_s = z(t_s))$ der Bahnkurve. Welche Energie besitzt dort der Massenpunkt und wieviel Energie hat er aufgrund der Reibung verloren?
- c) Leiten Sie für das Bewegungsproblem eines Massenpunkts im homogenen Schwerefeld unter dem Einfluss einer phänomenologischen Reibungskraft $\vec{F}_R(\vec{v}) = -f(v) \vec{v}$ einen allgemeinen Ausdruck für die zeitliche Änderung der mechanischen Energie des Massenpunkts her.