Palythoa tuberculosa - Hawaii

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 4.4.4(git:) [June-1-2019]

Compiled for PARALLEL computer architectures

One master and 31 compute nodes are available.

Program started at Sun Jan 23 11:46:22 2022

Program finished at Sun Jan 23 13:25:05 2022 [Runtime:0000:01:38:43]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3611595333

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population	1	2	3	4	5	6	7	8	9	10
1 Pop_Kure	*	*	0	0	0	0	0	0	0	0
2 Pop_P&H	*	*	*	0	0	0	0	0	0	0
3 Pop_Pbanks	0	*	*	*	0	0	0	0	0	0
4 Pop_MaroReef	0	0	*	*	*	0	0	0	0	0
5 Pop_Maui	0	0	0	*	*	*	0	0	0	0
6 Pop_FFS	0	0	0	0	*	*	*	0	0	0
7 Pop_Kauai	0	0	0	0	0	*	*	*	0	0

8 Pop_Oahu	0 0)	0	0	0	0	*	*	*	0	
	0 0		0	0	0	0	0	*	*	*	
1	0 0		0	0	0	0	0	0	*	*	
To the part of t						•					
Order of parameters:											
1 Θ_1							<d< th=""><th>ispla</th><th>yed></th><th>></th><th></th></d<>	ispla	yed>	>	
Θ_{2}							<d< th=""><th>ispla</th><th>yed:</th><th>></th><th></th></d<>	ispla	yed:	>	
Θ_3							<d< th=""><th>ispla</th><th>yed></th><th>></th><th></th></d<>	ispla	yed>	>	
Θ_4							<d< th=""><th>ispla</th><th>yed:</th><th>></th><th></th></d<>	ispla	yed:	>	
Θ_5								-	yed>		
Θ_6								-	yed:		
$\mid 7 \qquad \Theta_7$									yed:		
8 $\Theta_{8}^{'}$								-	yed>		
Θ_9								-	yed:		
10 Θ_{10}									yed>		
11 M _{2->} 12 M ₁	- 1								yed>		
1->								-	yed: yed:		
3->								-	yed>		
15 M									yed>		
4->									yed>		
) 17 M								-	yed:		
17 M 5-> M 4->								-	yed>		
19 M _{6->}									yed:		
20 $M_{5->}^{0->}$							<d< th=""><th>ispla</th><th>yed:</th><th>></th><th></th></d<>	ispla	yed:	>	
21 M _{7->}							<d< th=""><th>ispla</th><th>yed:</th><th>></th><th></th></d<>	ispla	yed:	>	
22 M _{6->}							<d< th=""><th>ispla</th><th>yed:</th><th>></th><th></th></d<>	ispla	yed:	>	
23 M _{8->}									yed>		
24 M _{7->}	-8								yed:		
25 M _{9->}	-8							-	yed>		
26 IVI _{8->}	-9							-	yed>		
1 27								-	yed:		
28 M _{9->}	- 10						< d	ıspla	yed>	>	
Mutation rate among loci	j.										Mutation rate is constant for all loci
Matation rate among look											Matalier rate is constant for all loor
Analysis strategy:											Bayesian inference
-Population size estimat	tion:										Exponential Distribution
-Geneflow estimation:											Exponential Distribution
Proposal distributions for parameter											
Parameter						ropo					
Theta			Met	ropo	lis s	amp	ling				

М			Slice sam	pling					
Divergend	ce	N	Metropolis sampling						
_	ce Spread	N	Metropolis sampling						
Genealog	•		Metropolis-Hastings						
Prior dis	tribution fo	r parameter							
Paramete	er	Prior	Minimum	MeanM	aximum	Delta	Bins	UpdateFreq	
1	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
2	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
3	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
4	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
5	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
6	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
7	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
8	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
9	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
10	Theta	*Exp window	0.000000	0.001	0.100	0.010	500	0.01190	
11	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
12	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
13	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
14	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
15	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
16	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
17	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
18	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
19	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
20	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
21	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
22	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
23	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
24	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
25	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
26	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
27	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
28	М	*Exp window	0.000100	1000.	10000	100.0	500	0.01190	
[* * mea	ns priors w	ere set globally							
Markov chain settings: Long chain									
Number of chains 1									
Recorded steps [a] 10000									
Increment (record every x step [b] 100									
	Number of concurrent chains (replicates) [c] 1								
	Visited (sampled) parameter values [a*b*c] 1000000								
Numb	er of disca	rd trees per cha	in (burn-in)					2000	

Multiple Markov chains:		
Static heating scheme		4 chains with temperatures
	1000000.00	3.00 1.50 1.00
		Swapping interval is 1
Print options:		
Data file:		//ptuberculosa.mig
Haplotyping is turned on:	YES: NO re	eport of haplotype probabilities
Output file:		outfile.txt
Posterior distribution raw histogram file:		bayesfile
Raw data from the MCMC run:		bayesallfile
Print data:		No
Print genealogies [only some for some data type]:		None
· ······ genealogies (s····) seine lei seine data 1, poj.		

Data summary

Data file: ../../ptuberculosa.mig
Datatype: Sequence data

Number of loci: 109

[Bf:0.22 0.22 0.22 0.34, kappa=1.000]

Mutationmodel:		
Locus Sublocus	Mutationmodel	Mutationmodel parameters

1	1	HKY	[Bf:0.31 0.21 0.18 0.29, kappa=1.000]
2	1	HKY	[Bf:0.29 0.20 0.23 0.28, kappa=1.000]
3	1	HKY	[Bf:0.26 0.29 0.23 0.22, kappa=1.000]
4	1	HKY	[Bf:0.32 0.22 0.21 0.25, kappa=1.000]
5	1	HKY	[Bf:0.33 0.19 0.23 0.24, kappa=1.000]
6	1	HKY	[Bf:0.26 0.20 0.19 0.35, kappa=1.000]
7	1	HKY	[Bf:0.25 0.18 0.22 0.35, kappa=1.000]
8	1	HKY	[Bf:0.27 0.19 0.18 0.36, kappa=1.000]
9	1	HKY	[Bf:0.30 0.24 0.24 0.22, kappa=1.000]
10	1	HKY	[Bf:0.31 0.23 0.23 0.24, kappa=1.000]
11	1	HKY	[Bf:0.33 0.20 0.23 0.24, kappa=1.000]
12	1	HKY	[Bf:0.21 0.24 0.22 0.32, kappa=1.000]
13	1	HKY	[Bf:0.28 0.17 0.21 0.35, kappa=1.000]
14	1	HKY	[Bf:0.22 0.23 0.27 0.29, kappa=1.000]
15	1	HKY	[Bf:0.29 0.23 0.28 0.21, kappa=1.000]
16	1	HKY	[Bf:0.32 0.14 0.27 0.27, kappa=1.000]
17	1	HKY	[Bf:0.35 0.21 0.13 0.31, kappa=1.000]
18	1	HKY	[Bf:0.27 0.25 0.25 0.23, kappa=1.000]
19	1	HKY	[Bf:0.32 0.19 0.27 0.22, kappa=1.000]
20	1	HKY	[Bf:0.25 0.21 0.21 0.33, kappa=1.000]
21	1	HKY	[Bf:0.20 0.31 0.23 0.26, kappa=1.000]
22	1	HKY	[Bf:0.32 0.18 0.18 0.31, kappa=1.000]
23	1	HKY	[Bf:0.28 0.16 0.14 0.42, kappa=1.000]
24	1	HKY	[Bf:0.28 0.26 0.24 0.23, kappa=1.000]
25	1	HKY	[Bf:0.32 0.21 0.24 0.23, kappa=1.000]
26	1	HKY	[Bf:0.35 0.22 0.27 0.16, kappa=1.000]
27	1	HKY	[Bf:0.26 0.27 0.16 0.31, kappa=1.000]
28	1	HKY	[Bf:0.33 0.26 0.21 0.19, kappa=1.000]
29	1	HKY	[Bf:0.36 0.23 0.19 0.22, kappa=1.000]
30	1	HKY	[Bf:0.32 0.14 0.25 0.28, kappa=1.000]
31	1	HKY	[Bf:0.29 0.27 0.23 0.22, kappa=1.000]
32	1	HKY	[Bf:0.28 0.22 0.17 0.33, kappa=1.000]
33	1	HKY	[Bf:0.35 0.15 0.20 0.30, kappa=1.000]

HKY

1

35	1	HKY	[Bf:0.35 0.14 0.17 0.33, kappa=1.000]
36	1	HKY	[Bf:0.31 0.19 0.28 0.23, kappa=1.000]
37	1	HKY	[Bf:0.27 0.18 0.27 0.28, kappa=1.000]
38	1	HKY	[Bf:0.40 0.21 0.24 0.14, kappa=1.000]
39	1	HKY	[Bf:0.37 0.22 0.20 0.21, kappa=1.000]
40	1	HKY	[Bf:0.30 0.19 0.18 0.32, kappa=1.000]
41	1	HKY	[Bf:0.27 0.24 0.20 0.29, kappa=1.000]
42	1	HKY	[Bf:0.34 0.19 0.15 0.32, kappa=1.000]
43	1	HKY	[Bf:0.29 0.15 0.25 0.31, kappa=1.000]
44	1	HKY	[Bf:0.27 0.18 0.18 0.37, kappa=1.000]
45	1	HKY	[Bf:0.30 0.19 0.22 0.28, kappa=1.000]
46	1	HKY	[Bf:0.38 0.19 0.30 0.13, kappa=1.000]
47	1	HKY	[Bf:0.18 0.28 0.21 0.32, kappa=1.000]
48	1	HKY	[Bf:0.24 0.28 0.33 0.15, kappa=1.000]
49	1	HKY	[Bf:0.27 0.21 0.21 0.31, kappa=1.000]
50	1	HKY	[Bf:0.27 0.20 0.21 0.32, kappa=1.000]
51	1	HKY	[Bf:0.29 0.16 0.25 0.29, kappa=1.000]
52	1	HKY	[Bf:0.32 0.12 0.24 0.32, kappa=1.000]
53	1	HKY	[Bf:0.19 0.27 0.21 0.33, kappa=1.000]
54	1	HKY	[Bf:0.28 0.21 0.21 0.30, kappa=1.000]
55	1	HKY	[Bf:0.36 0.18 0.27 0.19, kappa=1.000]
56	1	HKY	[Bf:0.31 0.23 0.25 0.21, kappa=1.000]
57	1	HKY	[Bf:0.20 0.23 0.18 0.39, kappa=1.000]
58	1	HKY	[Bf:0.28 0.23 0.26 0.24, kappa=1.000]
59	1	HKY	[Bf:0.28 0.20 0.17 0.36, kappa=1.000]
60	1	HKY	[Bf:0.36 0.21 0.16 0.28, kappa=1.000]
61	1	HKY	[Bf:0.35 0.22 0.18 0.25, kappa=1.000]
62	1	HKY	[Bf:0.27 0.24 0.20 0.29, kappa=1.000]
63	1	HKY	[Bf:0.28 0.23 0.24 0.25, kappa=1.000]
64	1	HKY	[Bf:0.29 0.25 0.22 0.23, kappa=1.000]
65	1	HKY	[Bf:0.28 0.22 0.22 0.28, kappa=1.000]
66	1	HKY	[Bf:0.24 0.26 0.21 0.30, kappa=1.000]
67	1	HKY	[Bf:0.24 0.25 0.24 0.28, kappa=1.000]
68	1	HKY	[Bf:0.21 0.21 0.25 0.33, kappa=1.000]
69	1	HKY	[Bf:0.20 0.22 0.21 0.37, kappa=1.000]
70	1	HKY	[Bf:0.21 0.19 0.22 0.38, kappa=1.000]
71	1	HKY	[Bf:0.30 0.23 0.14 0.33, kappa=1.000]
72	1	HKY	[Bf:0.30 0.24 0.23 0.24, kappa=1.000]
73	1	HKY	[Bf:0.31 0.23 0.22 0.25, kappa=1.000]
74	1	HKY	[Bf:0.31 0.18 0.25 0.25, kappa=1.000]
75	1	HKY	[Bf:0.25 0.27 0.22 0.26, kappa=1.000]
76	1	HKY	[Bf:0.32 0.22 0.25 0.20, kappa=1.000]
77	1	HKY	[Bf:0.30 0.19 0.23 0.28, kappa=1.000]
78	1	HKY	[Bf:0.25 0.20 0.24 0.30, kappa=1.000]
79	1	HKY	[Bf:0.30 0.20 0.21 0.29, kappa=1.000]
L			

			2
80	1	HKY	[Bf:0.32 0.20 0.22 0.27, kappa=1.000]
81	1	HKY	[Bf:0.20 0.23 0.33 0.24, kappa=1.000]
82	1	HKY	[Bf:0.29 0.22 0.26 0.23, kappa=1.000]
83	1	HKY	[Bf:0.27 0.27 0.21 0.25, kappa=1.000]
84	1	HKY	[Bf:0.34 0.19 0.16 0.31, kappa=1.000]
85	1	HKY	[Bf:0.28 0.24 0.18 0.30, kappa=1.000]
86	1	HKY	[Bf:0.22 0.33 0.25 0.20, kappa=1.000]
87	1	HKY	[Bf:0.30 0.18 0.19 0.32, kappa=1.000]
88	1	HKY	[Bf:0.33 0.22 0.24 0.21, kappa=1.000]
89	1	HKY	[Bf:0.35 0.18 0.13 0.34, kappa=1.000]
90	1	HKY	[Bf:0.31 0.21 0.23 0.26, kappa=1.000]
91	1	HKY	[Bf:0.21 0.22 0.25 0.32, kappa=1.000]
92	1	HKY	[Bf:0.22 0.20 0.22 0.36, kappa=1.000]
93	1	HKY	[Bf:0.32 0.27 0.20 0.21, kappa=1.000]
94	1	HKY	[Bf:0.22 0.27 0.25 0.25, kappa=1.000]
95	1	HKY	[Bf:0.25 0.21 0.20 0.35, kappa=1.000]
96	1	HKY	[Bf:0.28 0.22 0.19 0.32, kappa=1.000]
97	1	HKY	[Bf:0.23 0.23 0.23 0.30, kappa=1.000]
98	1	HKY	[Bf:0.20 0.23 0.22 0.34, kappa=1.000]
99	1	HKY	[Bf:0.25 0.20 0.24 0.31, kappa=1.000]
100	1	HKY	[Bf:0.33 0.22 0.26 0.19, kappa=1.000]
101	1	HKY	[Bf:0.30 0.18 0.20 0.32, kappa=1.000]
102	1	HKY	[Bf:0.32 0.15 0.24 0.29, kappa=1.000]
103	1	HKY	[Bf:0.29 0.25 0.17 0.29, kappa=1.000]
104	1	HKY	[Bf:0.29 0.17 0.24 0.30, kappa=1.000]
105	1	HKY	[Bf:0.27 0.23 0.26 0.25, kappa=1.000]
106	1	HKY	[Bf:0.32 0.21 0.28 0.19, kappa=1.000]
107	1	HKY	[Bf:0.26 0.24 0.20 0.30, kappa=1.000]
108	1	HKY	[Bf:0.39 0.19 0.12 0.30, kappa=1.000]
109	1	HKY	[Bf:0.33 0.22 0.22 0.23, kappa=1.000]
Sites per	locus		
Locus		Sites	
1		411	
2		388	
3		472	
4		468	
5		499	
6		516	
7		496	
8		337	
9		512	
10		618	
11		387	

12	394	
13	500	
14	726	
15	479	
16	338	
17	382	
18	316	
19	659	
20	478	
21	446	
22	353	
23	397	
24	729	
25	269	
26	413	
27	463	
28	741	
29	701	
30	370	
31	725	
32	470	
33	335	
34	261	
35	433	
36	328	
37	313	
38	314	
39	678	
40	455	
41	338	
42	462	
43	784	
44	325	
45	489	
46	370	
47	316	
48	505	
49	437	
50	264	
51	340	
52 52	345	
53	369	
54 55	433	
55 56	273 469	
30	403	

57	275
58	409
59	471
60	379
61	621
62	473
63	579
64	302
65	634
66	782
67	454
68	541
69	411
70	534
71	349
72	399
73	242
74	505
75	398
76	308
77	469
78	338
79	429
80	433
81	395
82	376
83	473
84	524
85	427
86	650
87	428
88	419
89	194
90	699
91	621
92	515
93	494
94	502
95	305
96	382
97	338
98	572
99	324
100	439
101	596

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D\ l\ thisModel) - ln(\ Prob(\ D\ l\ otherModel)) \\ or as \ LBF = 2\ (ln(Prob(D\ l\ thisModel) - ln(\ Prob(\ D\ l\ otherModel))) \\ shows the support for thisModel]$

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-585.38	-579.53	-587.95
2	-627.54	-620.81	-628.03
3	-708.78	-701.60	-713.50
4	-682.26	-675.42	-686.59
5	-767.60	-759.76	-770.53
6	-726.19	-718.94	-731.08
7	-757.37	-749.20	-761.03
8	-486.21	-481.28	-489.80
9	-899.65	-828.59	-794.55
10	-885.11	-876.30	-890.33
11	-588.48	-582.21	-594.07
12	-586.21	-580.25	-588.03
13	-743.04	-735.39	-745.81
14	-1027.71	-1017.51	-1036.33
15	-698.87	-691.85	-702.30
16	-488.85	-483.84	-490.81
17	-540.27	-534.82	-543.57
18	-500.52	-495.28	-502.46
19	-926.85	-917.65	-930.01
20	-692.12	-685.19	-696.76
21	-679.35	-672.19	-681.49
22	-619.78	-611.15	-611.90
23	-537.02	-531.64	-540.17
24	-1066.82	-1056.14	-1075.25
25	-379.28	-375.52	-381.60
26	-631.87	-621.27	-620.57
27	-744.16	-732.33	-724.18
28	-1058.29	-1047.72	-1066.45
29	-986.11	-976.30	-990.63

30	-537.97	-532.14	-541.51
31	-1026.07	-1015.88	-1032.31
32	-664.96	-658.32	-667.22
33	-557.02	-549.60	-543.82
34	-378.05	-374.25	-379.00
35	-584.76	-578.95	-587.41
36	-510.06	-504.75	-514.84
37	-462.29	-457.61	-463.68
38	-510.58	-499.89	-486.30
39	-961.35	-951.74	-967.89
40	-654.17	-647.60	-657.63
41	-535.87	-528.62	-533.10
42	-746.81	-737.31	-732.20
43	-1107.08	-1095.98	-1111.17
44	-468.28	-463.55	-470.85
45	-771.41	-760.53	-755.27
46	-507.25	-502.19	-509.22
47	-463.69	-458.99	-465.62
48	-707.92	-700.85	-709.63
49	-627.20	-620.94	-629.82
50	-394.90	-390.68	-395.74
51	-486.21	-481.35	-488.45
52	-470.94	-466.27	-473.28
53	-597.02	-589.54	-585.98
54	-706.14	-698.54	-708.56
55	-473.22	-468.08	-460.58
56	-692.45	-685.47	-697.80
57	-402.70	-398.41	-405.31
58	-602.54	-596.48	-606.49
59	-691.64	-684.31	-691.34
60	-534.32	-528.98	-537.04
61	-898.69	-889.66	-903.52
62	-710.03	-702.82	-714.85
63	-1066.68	-1033.74	-968.64
64	-477.81	-472.66	-478.32
65	-957.07	-947.26	-961.98
66	-1105.55	-1094.57	-1109.58
67	-654.76	-648.22	-658.85
68	-757.84	-750.32	-762.14
69	-568.92	-563.28	-572.86
70	-769.81	-761.33	-770.71
71	-538.00	-531.29	-535.60
72	-762.88	-752.61	-733.80
73	-400.77	-393.46	-379.79
74	-735.37	-727.89	-739.94
<u></u>	ttp://popgen.sc.fsu.edu) [program run on 11:46:22]		

All	-65831.15	-64972.23	-65660.69
109	-518.61	-513.33	-521.09
108	-453.46	-448.91	-455.17
107	-563.35	-557.77	-566.77
106	-482.10	-476.98	-485.14
105	-519.84	-514.68	-521.90
104	-825.90	-815.96	-815.44
103	-535.02	-529.67	-536.70
102	-477.00	-472.23	-479.28
101	-830.15	-821.91	-835.53
100	-683.71	-676.74	-685.66
99	-518.78	-508.78	-493.54
98	-833.32	-824.93	-836.38
97	-519.78	-514.37	-521.65
96	-597.47	-591.19	-600.58
95	-425.02	-420.80	-426.90
94	-723.71	-716.49	-728.94
93	-695.45	-688.55	-699.83
92	-727.69	-720.42	-731.16
91	-897.02	-888.04	-904.14
90	-1025.28	-1014.98	-1031.10
89	-282.80	-279.89	-283.47
88	-681.45	-673.55	-678.01
87	-606.45	-600.39	-608.53
86	-913.55	-904.47	-920.04
85	-736.61	-727.92	-720.24
84	-764.25	-756.30	-767.59
83	-691.53	-684.57	-693.38
82	-609.27	-602.75	-607.96
81	-655.50	-647.86	-638.47
80	-650.99	-644.34	-654.57
79 79	-614.09	-607.96	-616.09
78	-488.71	-483.82	-491.01
77	-660.18	-653.63	-664.51
76 76	-484.67	-479.56	-484.90
75	-576.16	-570.41	-578.04

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = 6298.471288]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among				
multiple sampling locations, Genetics, 185: 313-326.				

Acceptance ratios for all parameters and the genealogies

$egin{array}{c} \Theta_1 \ \Theta_2 \ \Theta_3 \end{array}$	328648/1296377 471007/1298611	0.25351
Θ_2 Θ_3		0.000=0
		0.36270
	507867/1295359	0.39207
Θ_4	483565/1298556	0.37239
Θ_5	256379/1295098	0.19796
Θ_6°	239063/1298020	0.18418
Θ_7	149012/1295786	0.11500
$\Theta_8^{'}$	269392/1298384	0.20748
Θ_9	248916/1297400	0.19186
Θ_{10}	161284/1296350	0.12441
M 2->1	1299340/1299340	1.00000
M _{1->2}	1298321/1298321	1.00000
$M_{3->2}$	1297564/1297564	1.00000
$M_{2->3}$	1297381/1297381	1.00000
$M_{4->3}$	1296743/1296743	1.00000
$M_{3->4}$	1297976/1297976	1.00000
$M_{5->4}$	1297056/1297056	1.00000
M _{4->5}	1298153/1298153	1.00000
M _{6->5}	1296900/1296900	1.00000
M _{5->6}	1297508/1297508	1.00000
M _{7->6}	1299116/1299116	1.00000
M _{6->7}	1299410/1299410	1.00000
M _{8->7}	1297622/1297622	1.00000
M _{7->8}	1296394/1296394	1.00000
$M_{9->8}$	1299687/1299687	1.00000
M _{8->9}	1298109/1298109	1.00000
M _{10->9}	1297210/1297210	1.00000
M $_{9->10}^{10->9}$	1298255/1298255	1.00000
Genealogies	28812889/36331610	0.79305

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.79628	456240.45
$\Theta_2^{^1}$	0.71684	663498.52
Θ_3^2	0.67793	767915.38
Θ_4^3	0.71603	664643.31
Θ_5^{τ}	0.84072	348373.31
Θ_6°	0.84480	337752.76
Θ_7°	0.90066	210412.47
$\Theta_{8}^{'}$	0.83205	368273.85
Θ_9°	0.84383	341294.06
Θ_{10}	0.89250	227957.40
M 2->1	0.59445	1016569.94
M _{1->2}	0.62452	916993.15
$M_{3->2}^{1->2}$	0.63692	889013.66
$M_{2->3}^{3->2}$	0.67193	782575.54
$M_{4->3}^{2->3}$	0.64915	850004.81
M _{3->4}	0.67393	773163.49
M _{5->4}	0.61843	942431.27
M _{4->5}	0.65974	817487.77
M _{6->5}	0.65657	831870.37
VI 5->6	0.67439	778938.16
M _{7->6}	0.67236	786061.61
M _{6->7}	0.68066	766771.69
M _{8->7}	0.67930	768327.35
M _{7->8}	0.69275	732784.04
M _{9->8}	0.71906	652477.54
M _{8->9}	0.74318	590302.01
M _{10->9}	0.62524	914305.88
M _{9->10}	0.63591	890415.63
Genealogies	0.78531	494706.05

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.					
No warning was recorded during the run					