Devoir à la maison n°10 : corrigé

Solution 1

- 1. C'est du calcul.
- **2. a.** Supposons que x et y admettent un diviseur premier commun p. Alors p divise x^2 et y^2 . Puisque $z^2 = x^2 + y^2$, p divise z^2 . Puisque p est premier, p divise p. Ainsi p est un diviseur premier commun de p, p et p, ce qui est absurde puisque p, p et p sont premiers entre eux dans leur ensemble. Ainsi p et p ne possèdent pas de diviseur premier commun : ils sont premiers entre eux.

On prouve de même que x et z d'une part et y et z d'autre part sont premiers entre eux.

- b. Comme x et y sont premiers entre eux, ils ne peuvent pas être tous deux pairs.
 Remarquons maintenant que le carré d'un entier pair est congru à 0 modulo 4 tandis que le carré d'un entier impair est congru à 1 modulo 4. Supposons x et y impairs. Alors z² ≡ 2[4], ce qui est impossible puisque le carré d'un entier est congru à 0 ou 1 modulo 4.
 - Finalement x et y sont de parités distinctes. Dans ce cas, $z^2 \equiv 1[4]$, ce qui signifie que z est impair.
- 3. a. Notons δ le pgcd de z x et z + x. Tout d'abord, z et x étant impairs, z x et z + x sont pairs donc 2 divise δ . De plus, 2x = (z + x) (z x) et 2z = (z + x) + (z x) donc δ divise 2x et 2z. Par conséquent, δ divise $2x \wedge 2z = 2(x \wedge z) = 2$. Finalement $\delta = 2$.
 - **b.** Puisque le pgcd de z x et z + x est 2, b et c sont premiers entre eux. De plus, $y^2 = z^2 x^2 = (z x)(z + x)$ i.e. $a^2 = bc$.

Puisque x, y, z sont strictement positifs, a > 0 et b > 0. Puisque $a^2 = bc$, on a également c > 0. On peut donc considérer les valuations p-adiques de a, b, c.

Soit alors p un nombre premier. Alors $\nu_p(a^2) = \nu_p(bc)$ i.e. $2\nu_p(a) = \nu_p(b) + \nu_p(c)$. Puisque b et c sont premiers entre eux, l'une des deux valuations $\nu_p(b)$ ou $\nu_p(c)$ est nulle tandis que l'autre vaut $2\nu_p(a)$. Quoi qu'il en soit, les deux valuations $\nu_p(b)$ et $\nu_p(c)$ sont paires. Ceci étant vrai pour tout nombre premier p, b et c sont des carrés d'entiers.

- **4.** Soit (x, y, z) un triplet solution.
 - Si l'un des deux réels x et y est nul, on peut supposer que y = 0 quitte à permuter x et y. Alors $x^2 = z^2$. Si x et z sont de même signe, on a bien $x = d(u^2 v^2)$, y = 2duv et $z = d(u^2 + v^2)$ avec d = x = z, u = 1 et v = 0. Sinon, il suffit de poser d = z = -x, u = 0 et v = 1.
 - Si z = 0, alors x = y = 0 et on a bien $x = d(u^2 v^2)$, y = 2duv et $z = d(u^2 + v^2)$ avec d = 0 et u, v quelconques.

On suppose donc maintenant que x, y, z sont non nuls et même strictement positifs. Notons d le pgcd de x, y et z. Alors $\left(\frac{x}{d}, \frac{y}{d}, \frac{z}{d}\right)$ est encore un triplet solution formé d'entiers naturels non nuls premiers entre eux dans leur ensemble.

D'après ce qu'il précède, quitte à échanger x et y, il existe des entiers b et c tels que $\frac{z+x}{d}=2b$ et $\frac{z-x}{d}=2c$ avec b et c des carrés d'entiers naturels non nuls que l'on peut noter u et v. On a alors $z+x=2du^2$ et $z-x=2dv^2$ puis, par somme et différence, $z=d(u^2+v^2)$ et $x=d(u^2-v^2)$. Enfin, $y^2=(z-x)(z+x)=4d^2u^2v^2$ puis y=2duv puisque y,d,u,v sont positifs.

Enfin, si x, y, z sont non nuls mais pas forcément positifs, (|x|, |y|, |z|) est encore solution de (E) de sorte que, quitte à permuter x et y, il existe $(d, u, v) \in (\mathbb{N}^*)^3$ tels que $|x| = d(u^2 - v^2)$, |y| = 2duv et $|z| = d(u^2 + v^2)$. On a quand même (x, y, z) de la forme voulue quitte à

- échanger u et v si x < 0, y > 0 et z > 0;
- changer u en -u si x > 0, y < 0 et z > 0;
- changer d en -d, u en -v et v en u si x > 0, y > 0 et z < 0;
- changer u en -v et v en u si x < 0, y < 0 et z > 0;
- changer d en -d et échanger u et v si x > 0, y < 0 et z < 0;
- changer d en -d et u en -u si x < 0, y > 0 et z < 0;
- changer d en -d si x < 0, y < 0 et z < 0.

La première question permet donc de conclure que l'ensemble des solutions de (E) est

$$\left\{ (d(u^2 - v^2), 2duv, d(u^2 + v^2)), \ (d, u, v) \in \mathbb{Z}^3 \right\} \cup \left\{ (2duv, d(u^2 - v^2), d(u^2 + v^2)), \ (d, u, v) \in \mathbb{Z}^3 \right\}$$

Problème 1 — Polynômes de Tchebychev

Partie I - Cas particulier

- 1. $f_0 = g_0$ donc $f_0 \in G_2$. De même, $f_1 = g_1$ donc $f_1 \in G_2$. Enfin, $f_2 = 2g_2 g_1$ donc $f_2 \in G_2$. Puisque G_2 est un sous-espace vectoriel, il est stable par combinaison linéaire. Ainsi $F_2 = \text{vect}(f_0, f_1, f_2) \subset G_2$.
- **2.** Soit $(\lambda_0, \lambda_1, \lambda_2) \in \mathbb{R}^3$ tel que $\lambda_0 f_0 + \lambda_1 f_1 + \lambda_2 f_2 = 0$. En particulier,

$$\begin{cases} \lambda_0 f_0(0) + \lambda_1 f_1(0) + \lambda_2 f_2(0) = 0 \\ \lambda_0 f_0\left(\frac{\pi}{2}\right) + \lambda_1 f_1\left(\frac{\pi}{2}\right) + \lambda_2 f_2\left(\frac{\pi}{2}\right) = 0 \\ \lambda_0 f_0(\pi) + \lambda_1 f_1(\pi) + \lambda_2 f_2(\pi) = 0 \end{cases}$$

ou encore

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 0 \\ \lambda_0 - \lambda_2 = 0 \\ \lambda_0 - \lambda_1 + \lambda_2 = 0 \end{cases}$$

On en déduit sans peine que $\lambda_0 = \lambda_1 = \lambda_2 = 0$. La famille (f_0, f_1, f_2) est donc libre. Puisqu'elle engendre F_2 , c'est une base de F_2 et dim $F_2 = 3$.

3. Soit $(\lambda_0,\lambda_1,\lambda_2)\in\mathbb{R}^3$ tel que $\lambda_0g_0+\lambda_1g_1+\lambda_2g_2=0$. En particulier,

$$\begin{cases} \lambda_0 g_0(0) + \lambda_1 g_1(0) + \lambda_2 g_2(0) = 0 \\ \lambda_0 g_0\left(\frac{\pi}{2}\right) + \lambda_1 g_1\left(\frac{\pi}{2}\right) + \lambda_2 g_2\left(\frac{\pi}{2}\right) = 0 \\ \lambda_0 g_0(\pi) + \lambda_1 g_1(\pi) + \lambda_2 g_2(\pi) = 0 \end{cases}$$

ou encore

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 0 \\ \lambda_0 = 0 \\ \lambda_0 - \lambda_1 + \lambda_2 = 0 \end{cases}$$

On en déduit sans peine que $\lambda_0 = \lambda_1 = \lambda_2 = 0$. La famille (g_0, g_1, g_2) est donc libre. Puisqu'elle engendre G_2 , c'est une base de G_2 et dim $G_2 = 3$.

4. Puisque $F_2 \subset G_2$ et dim $F_2 = \dim G_2$, $F_2 = G_2$.

Partie II - Une inclusion

1. Soit $n \in \mathbb{N}$. Pour tout $x \in \mathbb{R}$

$$\cos((n+2)x) + \cos(nx) = 2\cos\frac{(n+2)x + nx}{2}\cos\frac{(n+2)x - nx}{2} = 2\cos((n+1)x)\cos x$$

Ainsi $f_{n+2} + f_n = 2f_{n+1}f_1$ ou encore $f_{n+2} = 2f_{n+1}f_1 - f_n$.

2. Tout d'abord, $f_0 \in G_0$ puisque $f_0 = g_0$ et $f_1 \in G_1$ puisque $f_1 = g_1$. Supposons que $f_n \in G_n$ et $f_{n+1} \in G_{n+1}$ pour un certain $n \in \mathbb{N}$. A fortiori, $f_n \in G_{n+2}$ puisque $G_n \subset G_{n+2}$. De plus, $f_{n+1} \in G_{n+1} = \text{vect}(g_0, \dots, g_{n+1})$ donc

$$f_{n+1}f_1 = \in \text{vect}(g_0 \cos, \dots, g_{n+1} \cos) = \text{vect}(g_1, \dots, g_{n+2}) \subset G_{n+2}$$

Donc $f_{n+2} = 2f_{n+1}f_1 - f_n \in G_{n+2}$.

Par récurrence double, $f_n \in G_n$ pour tout $n \in \mathbb{N}$.

3. Soit $n \in \mathbb{N}$. Pour tout $k \in [0, n]$, $f_k \in G_k$ et a fortiori, $f_k \in G_n$. G_n étant stable par combinaison linéaire,

$$F_n = \text{vect}(f_0, \dots, f_n) \subset G_n$$

Partie III - Utilisation de la dimension

- **1.** Par linéarisation, on trouve $I_{k,l}=0$ si $k\neq l$ et $I_{k,l}=\pi$ si $k=l\neq 0$ et $I_{0,0}=2\pi$.
- 2. Soit $n \in \mathbb{N}$. On se donne $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ tel que $\sum_{k=0}^n \lambda_k f_k = 0$. Soit $l \in [0, n]$. On a donc $\sum_{k=0}^n \lambda_k f_k f_l = 0$. En intégrant sur $[0, 2\pi]$, on obtient par linéarité de l'intégrale $\sum_{k=0}^n \lambda_k I_{k,l} = 0$ ou encore $\lambda_l = 0$ d'après la question précédente. Ainsi $\lambda_l = 0$ pour tout $l \in [0, n]$. La famille (f_0, \dots, f_n) est donc libre.
- **3.** Puisque (f_0, \dots, f_n) est libre et engendre F_n , c'est une base de F_n . Il s'ensuit que dim $F_n = n + 1$.
- **4.** (g_0, \dots, g_n) est une famille de n+1 éléments engendrant G_n . On a donc nécessairement dim $G_n \le n+1$.
- **5.** Puisque $F_n \subset G_n$, dim $F_n \leq G_n$. Or dim $F_n = n+1$ et dim $G_n \leq n+1$ donc dim $G_n = \dim F_n = n+1$. Ainsi $F_n \subset G_n$ et dim $F_n = \dim G_n$ donc $F_n = G_n$.