

Hartree-Fock calculations of nuclei

Nuclear Physics Turtle Lecture Series 2025: Ab initio Hartree-Fock calculations of nuclei

Lecture 4

Matthias Heinz, ORNL

Work supported by:

Recap

- We have some $V_{NN},\,V_{3N}$
- We know how to solve Hartree-Fock to optimize our basis
 - Iteratively build density matrix, build Fock operator, and diagonalize
- We need to identify a suitable starting basis that is convenient for nuclear structure

Main messages

- Harmonic oscillator is a convenient starting point for nuclear structure
- Standard ordering of levels (Bohr-Mottelson) to identify trial state $|\Phi_{
 m trial}
 angle$
- ullet Nuclear A-body Hamiltonian has a few complications
 - Notably: Subtraction of center of mass
- Finite basis size can lead to shortcomings
 - Need to test basis truncation and frequency $\hbar\omega$

HF for nuclei on whiteboard

Summary

- Hartree-Fock for nuclei is same as before
- Choose basis of **HO** states: $|p\rangle = |n(ls)jm_jm_t\rangle$
 - Energy ordering of states given by HO with spin-orbit splitting
 - Test effect of finite basis size by increasing truncation and varying $\hbar\omega$
- Many-body Hamiltonian needs to have center of mass removed

•
$$H = T - T_{\text{CM}} + V_{NN} + V_{3N}$$