Dimostrazioni per l'esame orale di Analisi Matematica A

Filippo Troncana, dalle note della professoressa A. Defranceschi con l'aiuto del collega D. Borra ${\rm A.A.~2022/2023}$

Indice

1	Introduzione	2
Ι	Modulo 1	2
2	Irrazionalità di $\sqrt{2}$	2
3	Funzioni in generale	2
	3.1 Funzione	2
	3.2 Immagine di una funzione	2
	3.3 Grafico di una funzione	3
	3.4 Funzione iniettiva, suriettiva e bijettiva	3
4	Insiemi numerici	3
	4.1 Disuguaglianza di Bernoulli	3
	4.2 Densità di \mathbb{Q}	3
	4.3 Proprietà Archimedea	3
	4.4 Destra e sinistra	3
	4.5 Assioma di Dedekind	3
	4.6 Completezza di \mathbb{R}	3
	4.7 Caratterizzazione di sup e inf	4
5	Radici n -esime in $\mathbb C$	4
6	Proprietà locali di funzioni $\mathbb{R} o \mathbb{R}$	4
	6.1 Limite	4
	6.2 Unicità del limite	4
	6.3 Limitatezza locale	4
	6.4 Permanenza del segno	4
	6.5 Teorema del confronto	5
	6.6 Limite di funzioni composte	5
	6.7 Esistenza del limite per funzioni monotone	5
	6.8 Continuità	5
7	Teoremi fondamentali sui limiti	6
	7.1	6

II Modulo 2

1 Introduzione

Per l'esame orale di Analisi Matematica A è richiesta la conoscenza di tutti gli enunciati e tutte le definizioni visti a lezione, oltre che la capacità di dimostrare i teoremi più importanti.

In questa trattazione sono presenti tutte le definizioni e i teoremi richiesti, e nell'indice sono evidenziati i teoremi di cui è richiesta la dimostrazione, gli unici di cui essa è allegata per garantire una trattazione più snella e orientata allo studio per l'esame.

Parte I

Modulo 1

2 Irrazionalità di $\sqrt{2}$

Teorema. $\sqrt{2}$ è irrazionale, ovvero $\nexists m, n \in \mathbb{Z}$: $MCD(m, n) = 1 \land \frac{m}{n} = \sqrt{2}$.

Dimostrazione. Siano $m, n \in \mathbb{Z}$ tali che $MCD(m, n) = 1 \wedge \frac{m^2}{n^2} = 2$. Allora $m^2 = 2n^2$, dunque m^2 è pari e automaticamente m è pari.

Sia m = 2k, allora $4k^2 = 2n^2 \Rightarrow n^2 = 2k^2$, dunque anche n è pari.

Ma allora $MCD(m, n) \geq 2$, assurdo, dunque non esistono tali $m, n \in \mathbb{Z}$.

3 Funzioni in generale

3.1 Funzione

DEF (Funzione). Dati due insiemi X, Y, una **funzione** $f : X \to Y$ è una qualsiasi legge che ad ogni elemento $x \in X$ associa un unico elemento $y \in Y$, e scriviamo y = f(x). X si dice **dominio** di f, Y si dice **codominio** di f.

3.2 Immagine di una funzione

DEF (Immagine). Dati due insiemi X,Y e una funzione $f:X\to Y$, essa induce una **funzione** immagine che indichiamo con lo stesso nome:

$$f: \mathcal{P}(X) \to \mathcal{P}(Y)$$

$$A \to \{y \in Y: \exists x \in A: y = f(x)\}$$

3.3 Grafico di una funzione

DEF (Grafico). Dati due insiemi X, Y e una funzione $f: X \to Y$, il **grafico** di f è l'insieme:

$$G_f = \{(x, y) \in X \times Y : y = f(x)\}$$

3.4 Funzione iniettiva, suriettiva e bijettiva

DEF. (Iniettività, suriettività e bijettività) Dati due insiemi X,Y e una funzione $f:X\to Y$, essa si dice:

Iniettiva se $f(x) = f(y) \Rightarrow x = y$

Suriettiva se $\forall y \in Y \exists x \in X : y = f(x)$

Bijettiva se è sia iniettiva che suriettiva.

4 Insiemi numerici

4.1 Disuguaglianza di Bernoulli

Proposizione 4.1 (Disuguaglianza di Bernoulli). Sia $x \in \mathbb{R}$ tale che $x \ge -1$ e $n \in \mathbb{N}$. Allora vale:

$$x^n \ge 1 + n(x - 1)$$

4.2 Densità di \mathbb{Q}

Proposizione 4.2 (Densità di \mathbb{Q}). Siano $x, y \in \mathbb{R}$ tali che x < y. Allora $\exists z \in \mathbb{Q} : x < z < y$.

4.3 Proprietà Archimedea

Proposizione 4.3 (Proprietà Archimedea). Siano $x, y \in \mathbb{Q}_{\geq 0}$. Allora $\exists n \in \mathbb{N} : y \leq nx$.

4.4 Destra e sinistra

DEF (Destra e sinistra). Dati $A, B \subseteq \mathbb{R}$ si dice che A sta a sinistra di B se

$$\forall a \in A, \forall b \in B, a \leq b$$

Analogamente, diciamo che B sta **a destra** di A.

4.5 Assioma di Dedekind

Assioma 1. (Dedekind) Siano $A, B \subseteq \mathbb{R}$ non vuoi tali che A stia a sinistra di B. Allora esiste $c \in \mathbb{R}$ tale che:

$$\forall a \in A, \forall b \in B, a \leq c \leq b$$

•

4.6 Completezza di \mathbb{R}

Teorema (Completezza di \mathbb{R}). Sia $A \subseteq \mathbb{R}$ non vuoto. Se A è limitato superiormente, allora $\exists \sup A \in \mathbb{R}$. Se A è limitato inferiormente, allora $\exists \inf A \in \mathbb{R}$.

4.7 Caratterizzazione di sup e inf

Proposizione 4.4 (Caratterizzazione di sup e inf). Sia $A \subseteq \mathbb{R}$ non vuoto e limitato superiormente. Allora sup A è il più piccolo dei maggioranti di A.

Sia $A \subseteq \mathbb{R}$ non vuoto e limitato inferiormente. Allora inf A è il più grande dei minoranti di A.

5 Radici *n*-esime in \mathbb{C}

Teorema. Siano $w \in \mathbb{C}, n \in \mathbb{N}_{>1}$.

Se w = 0, l'unica radice di w di qualsiasi ordine è 0.

Altrimenti, w ha esattamente n radici n-esime distinte, ciascuna identificata da un numero naturale $k \in \{0, 1, ..., n-1\}$, e sono date da:

$$z_k = \sqrt[n]{|w|} \left[\cos\left(\frac{\arg w + 2k\pi}{n}\right) + i\sin\left(\frac{\arg w + 2k\pi}{n}\right)\right]$$

Dimostrazione. Se $w = 0 \Rightarrow z^n = 0 \Leftrightarrow |z|^n = 0 \Leftrightarrow |z| = 0 \Leftrightarrow z = 0$.

Altrimenti, supponiamo $w \neq 0$.

Riscriviamo z e w in forma trigonometrica:

$$\begin{split} z^n &= w \Leftrightarrow |z|^n [\cos(n\arg z) + i\sin(n\arg z)] = |w| [\cos(\arg w) + i\sin(\arg w)] \\ &\Leftrightarrow |z|^n = |w| \wedge n\arg z = \arg w + 2k\pi \\ &\Leftrightarrow |z| = \sqrt[n]{|w|} \wedge \arg z = \frac{\arg w + 2k\pi}{n} \end{split}$$

Prendendo $1 \le k < n$, abbiamo le n radici distinte.

QED

6 Proprietà locali di funzioni $\mathbb{R} \to \mathbb{R}$

6.1 Limite

DEF (Limite). Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ e $x_0 \in \mathbb{R}$ un punto di accumulazione per A. Allora $l \in \mathbb{R}$ è il **limite** di f per $x \to x_0$ se:

$$\forall I_l, \exists I_{x_0} : x \in I_{x_0} \Rightarrow f(x) \in I_l$$

6.2 Unicità del limite

Teorema (Unicità del limite). Se f ha limite l per $x \to x_0$, allora l è unico.

6.3 Limitatezza locale

Teorema (Limitatezza locale). Se f ha limite l per $x \to x_0$, allora $\exists I_{x_0} : f(I_{x_0})$ è limitato.

6.4 Permanenza del segno

Teorema (Permanenza del segno). Se $\lim_{x\to x_0} f(x) = l$, allora esiste un intorno di x_0 in cui f ha lo stesso segno di l.

6.5Teorema del confronto

Teorema (Teorema del confronto). Siano $f, g, h: X \subseteq \mathbb{R} \to \mathbb{R}$ tali che $\forall x \in I(x_0), f(x) \leq g(x) \leq g(x)$ h(x) e sia $x_0 \in \mathbb{R}$ un punto di accumulazione per X. Allora si ha che

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \Rightarrow \lim_{x \to x_0} g(x) = l$$

Limite di funzioni composte 6.6

Teorema (Limite di funzioni composte). Siano $f: X \subseteq \mathbb{R} \to \mathbb{R}$ e $g: Y \subseteq \mathbb{R} \to \mathbb{R}$ con $f(X) \subseteq Y$. Sia x_0 un punto di accumulazione per X. Allora se esistono i limiti

$$\lim_{x \to x_0} f(x) = y_0, \lim_{y \to y_0} g(y) = l$$

 $e f(x) \neq y_0$ in un intorno di x_0 (ipotesi non necessaria se $y_0 \in Y$ $e g(y_0) = l$), allora si ha $\lim_{x \to x_0} g(f(x)) = l.$

6.7 Esistenza del limite per funzioni monotone

Teorema. Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}$ monotona $e \ x_0 \in \mathbb{R}$.

Se f è crescente in X e x_0 è un punto di accumulazione sinistro per X, allora

$$\exists \lim_{x \to x_0} f(x) = \sup_{X \cap \mathbb{R}_{< x_0}} f$$

Se f è crescente in X e x_0 è un punto di accumulazione destro per X, allora

$$\exists \lim_{x \to x_0} f(x) = \sup_{X \cap \mathbb{R}_{>x_0}} f$$

Analogamente per f decrescente.

Dimostrazione. Basta dimostrare la prima proposizione, il resto è analogo.

Sia $l=\sup_{X\cap\mathbb{R}_{< x_0}}f$, che esiste per completezza di \mathbb{R} . Supponiamo $l\in\mathbb{R}$. Per definizione di sup si ha :

$$\forall x \in X \cap \mathbb{R}_{\leq x_0}, f(x) \leq l$$

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in X \cap \mathbb{R}_{\leq x_0} : l - \varepsilon < f(x_{\varepsilon})$$

Allora fissato $\varepsilon > 0$ qualsiasi, $\forall x \in]x_{\varepsilon}, x_0[\cap X, l - \varepsilon < f(x_{\varepsilon}) \le f(x) \le l \le l + \varepsilon.$

Abbiamo quindi che $\forall x \in]x_{\varepsilon}, x_0[\cap X, |f(x) - l| < \varepsilon$, ovvero la tesi.

Supponiamo ora $l=+\infty$. In tal caso f non è limitata superiormente su X e in quanto monotona crescente il suo limite è $+\infty = l$. QED

6.8 Continuità

DEF (Continuità). Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}, x_0 \in X$. Allora:

Se x_0 è un punto isolato, f è continua in x_0 ;

Se x_0 è un punto di accumulazione, f è continua in x_0 se e solo se $\lim_{x\to x_0} f(x) = f(x_0)$

Teorema (Ponte). Siano $f: X \subseteq \mathbb{R} \to \mathbb{R}, l \in \mathbb{R}^*$ con x_0 punto di accumulazione per X. Allora $\lim_{x \to x_0} f(x) = l$ se e solo se per ogni successione $(x_n)_n \subset X$ convergente a x_0 si ha $\lim_{n \to +\infty} f(x_n) = l$.

7 Teoremi fondamentali sui limiti

7.1

Parte II Modulo 2