

Part 1 MCQ 30% (circle your choice)

(6pts)Problem 1

If β is the angle between the two planes

$$x - 2y + z = 1441$$
 and $2x + y - z = 2019$

then $\cos \beta$ is equal to

(a)
$$\frac{-1}{2}$$
 (b) $\frac{-1}{6}$ (c) $\frac{-2}{\sqrt{3}}$ (d) $\frac{-1}{\sqrt{3}}$ (e) -1

Solution

(6pts)Problem 2

Which of the following statement (s) is / are **TRUE.**

- (i) For any vectors \overrightarrow{a} and \overrightarrow{b} , $\|\overrightarrow{a} + \overrightarrow{b}\| = \|\overrightarrow{a}\| + \|\overrightarrow{b}\|$. (ii) For any vectors \overrightarrow{a} and \overrightarrow{b} , $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} = 0$. (iii) If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$.

- (a) (i) and (ii)
- (b) (i) only
- (c) (ii) and (iii) (d) (iii) only (e) (ii) only

Solution

(6pts)Problem 3

The sum of all the values of x for which the two vectors $\overrightarrow{a} = \langle 3, 2, x \rangle$ and $\overrightarrow{b} = \langle 2x, 4, x \rangle$ are orthogonal is

- (a) -6 (b) 6 (c) 4 (d) -9 (e) -8

Solution

Ans: (a)

(6pts)Problem 4

If $\langle a, b, c \rangle$ is a unit vector orthogonal to both vectors $\langle 1, -1, 1 \rangle$, $\langle 0, 4, 4 \rangle$, then |a| + |b| + |c|is equal to

(a) $\frac{2}{\sqrt{6}}$ (b) $\frac{8}{\sqrt{6}}$ (c) $\frac{10}{\sqrt{6}}$ (d) $\frac{4}{\sqrt{6}}$ (e) $\frac{1}{\sqrt{6}}$

Solution

Ans: (d)

(6pts)Problem 5

The distance between the planes (x-1)+(y-2)+2(z-5)=0 and x+y+2z=4 is equal to

(a) $\frac{9}{\sqrt{6}}$ (b) $\frac{4}{\sqrt{6}}$ (c) $\frac{2}{\sqrt{6}}$ (d) $\frac{13}{\sqrt{6}}$ (e) 9

Solution

Ans: (a)

Part 2 Written 70%

(10pts)Problem 1

Find the point where the line that passes through the points (1, 0, 1) and (4, -2, 2) intersect the plane 2x + 3y - 4z = 6.

Solution

A direction vector of the line is given by

$$\overrightarrow{u} = \langle 4-1, -2-0, 2-1 \rangle$$

= $\langle 3, -2, 1 \rangle$. (2pts)

A set of parametric equations of the line is

$$\begin{cases} x = 1 + 3t \\ y = 0 - 2t \\ z = 1 + t \end{cases}$$
 (3pts)

To find the point of intersection we do

$$2(1+3t) + 3(-2t) - 4(1+t) = 6$$

 \Leftrightarrow

$$-4t - 2 = 6 \Rightarrow t = -2.$$
 (2pts)

The point of intersection is given by

$$\begin{cases} x = 1 + 3(-2) \\ y = -2(-2) \\ z = 1 + (-2) \end{cases} \Leftrightarrow \begin{cases} x = -5 \\ y = 4 \\ z = -1 \end{cases}$$
 (3pts)

A) Find a direction vector of the line of intersection of the two planes

$$2x - y + 3z = 1$$
 and $-x + 3y + 3z = 5$

Solution

$$\overrightarrow{n_1} = \langle 2, -1, 3 \rangle$$
 and $\overrightarrow{n_2} = \langle -1, 3, 3 \rangle$. (2pts)

A direction vector of the line of interection is given by

$$\overrightarrow{u} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & -1 & 3 \\ -1 & 3 & 3 \end{vmatrix} = \langle -12, -9, 5 \rangle$$
 (4pts)

B) The angle between a unit vector \overrightarrow{a} and a vector \overrightarrow{b} is $\frac{\pi}{3}$. If $\|\overrightarrow{b}\| = 2$, then find the magnitude of the vector $\overrightarrow{a} + \overrightarrow{b}$.

Solution

$$\left\| \overrightarrow{a} + \overrightarrow{b} \right\|^{2} = \left\| \overrightarrow{a} \right\|^{2} + \left\| \overrightarrow{b} \right\|^{2} + 2 \overrightarrow{a} \cdot \overrightarrow{b} \qquad (\mathbf{2pts})$$

$$= \left\| \overrightarrow{a} \right\|^{2} + \left\| \overrightarrow{b} \right\|^{2} + 2 \left\| \overrightarrow{a} \right\| \left\| \overrightarrow{b} \right\| \cos \frac{\pi}{3} \qquad (\mathbf{2pts})$$

$$= 1 + 4 + 2 (1) (2) \left(\frac{1}{2} \right) = 7$$

$$\left\| \overrightarrow{a} + \overrightarrow{b} \right\| = \sqrt{7}. \qquad (\mathbf{2pts})$$

Use the Gauss elimination method to solve the linear system

$$\begin{cases} x+y+2z=9\\ 2x+4y-3z=1\\ 3x+6y-5z=0 \end{cases}$$
. (Show your work)

Solution

Augmented Matrix

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$

Add -2 times the first row to the second to obtain

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$

Add -3 times the first row to the third

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

Multiply the second row by $\frac{1}{2}$ to

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 3 & -11 & -27 \end{bmatrix}$$

Add -3 times the second row to the third to obtain

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{bmatrix}$$

Multiply the third row by -2 to obtain

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Add -1 times the second row to the first to obtain

$$\begin{bmatrix} 1 & 0 & \frac{11}{2} & \frac{35}{2} \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Add $-\frac{11}{2}$ times the third row to the first and $\frac{7}{2}$ times the third row to the second to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$x = 1$$

$$y = 2$$
(6pts)

z = 3

Consider the following matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$$

- (a) Use the **Gauss Jordan method** to find C^{-1} . (Do NOT use the formula and show your work)
- (b) Compute the following matrices, where possible.

1.
$$A + 2B^T$$
, 2. AC

Solution

(a) Put

$$\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 3 & -1
\end{array}\right]$$

and use the Gauss Jordan Method to obtain

$$C^{-1} = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} \quad (4pts)$$

(b) 1.

$$A + 2B^{T} = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 3 \\ 4 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 4 \\ 5 & 11 \end{bmatrix}$$
 (4pts)

2.

$$AC = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 5 & -2 \\ 4 & -1 \end{bmatrix}$$
 (4pts)

Use the cofactor expansion method to find the determinant of the matrix

$$A = \begin{bmatrix} 0 & -1 & 1 & 3 \\ 1 & 2 & -1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 1 & 8 & 0 \end{bmatrix}.$$
 (Show your work)

Solution

$$\det(A) = \begin{vmatrix} 0 & -1 & 1 & 3 \\ 1 & 2 & -1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 1 & 8 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} -1 & 1 & 3 \\ 0 & 3 & 3 \\ 1 & 8 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} -1 & 1 & 3 \\ 0 & 3 & 3 \\ 0 & 9 & 3 \end{vmatrix}$$

$$= -(-1)\begin{vmatrix} 3 & 3 \\ 9 & 3 \end{vmatrix}$$

$$\begin{bmatrix} \text{Cofactor expansion along the first row to the third row.} \end{bmatrix}$$

$$= -(-1)\begin{vmatrix} 3 & 3 \\ 9 & 3 \end{vmatrix}$$

$$\begin{bmatrix} \text{Cofactor expansion along the first row to the third row.} \end{bmatrix}$$

$$= -18$$

$$(6pts)$$

Given that
$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = -6$$
, find

1.
$$\det \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix}$$
, 2. $\det \begin{bmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{bmatrix}$, 3. $\det \begin{bmatrix} a+g & b+h & c+i \\ d & e & f \\ g & h & i \end{bmatrix}$

Solution

1. The matrix
$$\begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix}$$
 is obtained from $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ by swapping the first and second

rows and the second and third row. You pickup a negative sign in each swapping. The two negative signs cancel to give

$$\det \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix} = \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = -6$$
 (4pts)

2.

$$\det \begin{bmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{bmatrix} = (3)(-1)(4)\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
$$= (3)(-1)(4)(-6)$$
$$= 72 \quad (4\mathbf{pts})$$

3.

$$\det \begin{bmatrix} a+g & b+h & c+i \\ d & e & f \\ g & h & i \end{bmatrix} = \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = -6$$
 (4pts)