Intro to Algorithms - Honework 2
J
Q I .
Assume $n = 3$; and $2^{2^3} = 2^8 = 256$
when $n=0$, $=2$
= 1 , = 4
= 2, = 16
= 3, = 266
In this case, we can see a pattern that the program only run a time
to get the answer of 2^{2^n} .
code: result = 2 7. At first, we set the variable
for i in range (v, n): [to 2, then we nor n-time
result *= result \{ to get 22^n answer.
print (result)

(a) Base on the factorial rule, the running time is U(n), Because suppose
we need to get $4!$, it is equal to $4! = 4 \times 3 \times 2 \times 1$. Heree,
It is O(n) time.
Then, if N is a n-bit number, we can do it by giving
example base on the by rule. Suppose we have N is 7.
it is 11/2 = 7,0, it is 3-bit number, So the n is 3.
Then, we try it by using log rule, log_ 7 = 2.8 \approx 3. Therefore,
, , , , , , , , , , , , , , , , , , , ,

the running time in this will be $O(\log N)$ By combining N! and n-bit together, we can get $O(N\log N)$ as our answer.

(b) result = 1:

for i in range(1, n+1): The running time is O(n)result = result * i Because we all the way multiply from 1 to the number n.

 $7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7$ 7 - times.

Which is U(n) running time.

Q3.

(a)

Prime factorization.

1492 : 1492 ÷ 2 = 746

746 + 2 = 373

 $1492 = 2 \times 2 \times 373 = 2^2 \times 373$

 $1776 : 1776 \div 2 = 888$

838 +2 = 444

444 +2 = 222

222 +2 = 11]

111 + 3 = 37

1776 = 2 x 2 x 2 x 2 x 3 x 37 = 24 x 3 x 37

GCD(1492, 1776) = 22 = 4

Euclid's method:

1776 = 1492 × 1 + 284

1492 = 284 x5 + 72

284 = 72 × 3 + 68

72 = 68 X1 + 4

68 = 4 XIZ

aco(1492, 1776) = 4

(b) From what we just wrote from part (a),
In linear combination of the two inputs, we can get
it from the bottom to top.
4 = 72 - (68 x1)
= 72 - (284 - 72×3)
= 72 - 284 + 72 × 3
= 72×4 - 284
= (1492 - 284 x5) x4 - 284
z 1492 x4 - 284 x20 - 284
= 1492 ×4 - 284 ×21
= 1492 x 4 - (1776 - 1492) x 21
= 1492 x4 - 1776 x21 + 1492 x21
= 1776 x -21 + 1492 x 25