Neural Networks In CALIFA

Gabriel García Jiménez

- 1. The R3B Experiment
- 2. The CALIFA Detector
- 3. R3BRoot & C++ TensorFlow
- 4. NN In CALIFA
 - 4.1 Multiplicity
 - 4.2 Energy Reconstruction
- 5. Future Improvements

The R3B Experiment

- **–** High Energy Beam: Up to 1000 AMeV (|p| \sim 400 GeV/c for 238U)
- Inverse Kinematics
- Measurements in a Complete Kinematic Regime
- -Topics: Nuclear Structure (p2p, p2pn, fission processes, exotic nuclei structure)

The CALIFA Detector

- 2432 CsI(Tl) Crystals
- **-** Barrel : 1952 Crystals, covering $\theta = [43^{\circ}, 140^{\circ}]$
- Iphos: 480 Crystals, covering $\theta = [20^{\circ}, 43^{\circ}]$
- Gamma Energy Resolution: R $\sim 5\%$ 6% (1 MeV)
- Light Particles Resolution: 1 % (protons @330 MeV)

R3BRoot Highlights

- Written in C++ (Object Oriented)
- Based on Root
- Uses Geant4 as particle transport engine
- Every operation involving any kind of data is performed in Tasks
- Framework manages both simulations and real data

Data Levels in CALIFA

C ++ TensorFlow

As R3BRoot is written entirely in C++, our NN framework must be developed in the same language!

- Not needed for a later analysis of data.
- Needed for a built-in tool, merged with the current set of algorithms of R3BRoot.

Comparison with common high-end frameworks in Python (ie Keras, Pytorch...)

- Faster. Very low level models + Intrinsic speed of C++
- Highly customizable models. You can do whatever you want with weights and biases at any point during training, validation or test
- More dificult to develop than its Python counterparts. Less resources!!
- Raw TF has its own types and syntax (very different from Std C++)
- Very tricky installation (for anyone interested: https://github.com/gabrigarjim/TensorFlowCMake/wiki)

NN in CALIFA: Standard Inputs

Raw Inputs

- Matrix form: Tensor with shape {batch,m,n}. Difficult to implement, but spatial correlations are intrisincally defined.

-Vector form: Tensor with shape {batch,1, 2432}. Spatial correlations are not very clear (or lost). Very easy to translate events into NN inputs.

"Manufactured Inputs"

Each Event has *m* characteristics. Some examples:

- Calorimetric Sum
- Number of Hits
- Angular and energy dispersion, Angular distance
- Mixing with Clusters
- Fast and Slow components of light
- Every combination of the previous variables

NN in CALIFA: Standard Inputs

For each nuclear reaction, several particles can be generated **Multiplicity**

$e_{i,j}$	$e_{i,j+1}$		
$e_{i+1,j}$			
	$e_{i+3,j+1}$		

Some problems! One primary + Compton? Two primaries?? Four???

Color Code: M1 - Black, M2 - Red, M3 - Green, M4 - Blue, M5 - Yellow

| Gabriel García Jiménez | NN in Califa |

Model Example with 190 parameters.

| Gabriel García Jiménez | NN in Califa |

	M1	M2	M3	M4	M5
M0	11.20 %	1.96 %	0.32 %	0.07 %	0.00 %
M1	82.42 %	22.00 %	4.38 %	0.96 %	0.14 %
M2	6.10 %	61.32 %	22.46 %	6.20 %	1.16 %
М3	0.28 %	13.58 %	51.40 %	24.21 %	6.94 %
M4	0.00 %	1.06 %	19.00 %	43.24 %	24.5 %
M5	0.00 %	0.08 %	2.44 %	25.32 %	67.26 %

Reconstructed

3780 Parameters, Two Hidden Layers

← Neural Network

Simulated

M1	M2	M3	M4	M 5
9.88 %	1.22 %	0.28 %	2.40 %	0.25 %
81.14 %	18.76 %	3.18 %	0.52 %	0.31 %
7.18 %	67.54 %	23.18 %	5.90 %	0.54 %
0.48 %	11.16 %	57.94 %	27.98 %	12.50 %
1.22 %	1.22 %	13.36 %	49.9 %	35.81 %
0.0 %	0.1 %	2.06 %	13.30 %	50.59 %
	9.88 % 81.14 % 7.18 % 0.48 % 1.22 %	9.88 % 1.22 % 81.14 % 18.76 % 7.18 % 67.54 % 0.48 % 11.16 % 1.22 %	9.88 % 1.22 % 0.28 % 81.14 % 18.76 % 3.18 % 7.18 % 67.54 % 23.18 % 0.48 % 11.16 % 57.94 % 1.22 % 13.36 %	9.88 % 1.22 % 0.28 % 2.40 % 81.14 % 18.76 % 3.18 % 0.52 % 7.18 % 67.54 % 23.18 % 5.90 % 0.48 % 11.16 % 57.94 % 27.98 % 1.22 % 1.22 % 13.36 % 49.9 %

Classic Algorithm (Cluster)

| Gabriel García Jiménez | NN in Califa

Reconstructed

NN in CALIFA: Energy

- Input: Raw Crystal Array
- 12.186 Parameters, One Hidden Layer
- Three Discrete Energies as Testing sample: 1 MeV, 2 MeV and 4 MeV

To be Done....

Natural Background in CALIFA

To be Done....

- Real Thresholds + Resolutions + Background = Hyper Realistic Sim Events for our NN Models
- A lot of features of Python TF are not implemented yet in TF C++
- Convolutional Layers
- PID

Thanks for your Attention!!