Learning Neural Representations of Human Cognition across Many fMRI Studies

Arthur Mensch⁽¹⁾

Julien Mairal⁽²⁾

Danilo Bzdok⁽³⁾

Bertrand Thirion (1)

Gaël Varoquaux⁽¹⁾

 $^{(1)}$ Inria, CEA, Université Paris-Saclay, Gif-sur-Yvette, France $^{(2)}$ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France $^{(3)}$ Department of Psychiatry, RWTH, Aachen, Germany

Functional MRI decoding Time Time CStimuli) Relate brain activation to cognitive stimuli Many small studies with ≠ psychological paradigms A few large scale studies (1000s subjects)

How to aggregate heterogeneous fMRI data

into a common cognitive model?

Learning setting

- First level GLM \rightarrow **z-score maps**
- One map / record / base-condition
- Condition prediction on new subjects
- Baseline: Multinomial regression

Setting Performance

- **Dimension reduction** using resting state data is efficient regularization (and \downarrow train cost)
- Extra efficient latent layer + Dropout (explains green to red improvement)
- **Transfer learning** occurs, and is stronger with more datasets (red \rightarrow purple \rightarrow brown)

Transfer improves learning curves

Cognitive space visualization

Meaningful template images associated to multi-dataset predictions (one color per dataset)

Model

Dimension reduction W_{φ}

- Sparse dictionaries from HCP resting-state [2]
 - $\mathbf{X}_{rs} = \mathbf{D}\mathbf{A} \in \mathbb{R}^{p \times g} \times g \times n,$ \mathbf{D} sparse
- Orthogonal projection \rightarrow one time-serie / component
- Unsupervised setting \rightarrow : number of components ?
- → Multi-scale dictionaries

References

- [1] A. Mensch, J. Mairal, D. Bzdok, B. Thirion, and G. Varoquaux. Learning neural representations of human cognition across many fmri studies. In *Advances in Neural Information Processing Systems*.
- [2] A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Stochastic Subsampling for Factorizing Huge Matrices. *IEEE Transactions on Signal Processing*, 99(to appear), 2017.

Latent space embedding

- Finding a common representation of brain images
- Easy to classify for multiple datasets
- Factorized linear model (with 2 layers, I < g) $\forall d \in D$, $\mathbf{W}_d = \mathbf{W}_e \mathbf{W}_d' \in \mathbb{R}^{g \times I} \times \mathbb{R}^{I \times k_d}$
- Share parameter for tranfer learning

Regularization

- We allow l > k: not a reduced rank regression
- Trivial with ℓ_2 regularization: no transfer
- **Dropout** allows transfer despite **W**_d full rank:

(training) $\mathbf{y} = \mathbf{x} \mathbf{W}_e \mathbf{M} \mathbf{W}'_d$, \mathbf{M} masking matrix

Interpretability

Model \rightarrow Higher-level regions (e.g. FFA)

Conclusion and future work

- Scalable and paradigm-agnostic model
- With evidence of transfer learning
- Dictionaries + code available

Model to be tested on the whole **openFMRI** repository

github.com/arthurmensch/cogspaces