Modeling Temporal Dependencies in High-Dimensional Sequences

Application to Polyphonic Music Generation and Transcription

Nicolas Boulanger-Lewandowsk, Yoshua Bengio, Pascal Vincent

Presented By
Patrick Gray
Chinmaya Naguri

Recurrent Temporal RBM Sutskever et al. []

Time step (t+2) is conditionally independent of time step (t+1) given r_{t+1}

 Convey temporal dependencies in the hidden units over T time steps

$$r_t = \begin{cases} \sigma(\mathbf{W}\mathbf{v}_t + \mathbf{C} + \mathbf{U}\mathbf{r}_{t-1}), & t > 1 \\ \sigma(\mathbf{W}\mathbf{v}_t + \mathbf{C}_{init}), & t = 1 \end{cases} \qquad p(\mathbf{h}|\mathbf{v}) = \sigma(\mathbf{W}\mathbf{v} + \mathbf{C})$$

RT-RBM Joint Probability Distribution

Joint probability is a product of the RBMs at each time step

$$p(\{v_t, h_t\}_{t=1}^T | \{r_t\}_{t=1}^{T-1}) = \prod_{t=1}^T \frac{exp(-G(v_t, h_t | r_t))}{Z_{r_t}}$$

The new energy function is written as follows

$$-Energy(\{v_t, h_t\}_{t=1}^T | \{r_t\}_{t=1}^{T-1}) = -G(\{v_t, h_t\}_{t=1}^T | \{r_t\}_{t=1}^{T-1})$$

$$= h_1^T W v_1 + B^T v_1 + C_{init}^T h_1 + \sum_{t=2}^T (h_t^T W v_t + B^T v_t + C^T h_t + h_t^T U r_{t-1})$$

Let us now split it up and find the gradients

$$G^{(1)} = \boldsymbol{h}_{1}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{v}_{1} + \boldsymbol{B}^{\mathrm{T}} \boldsymbol{v}_{1} + \boldsymbol{C}_{init}^{\mathrm{T}} \boldsymbol{h}_{1} + \sum_{t=2}^{T} (\boldsymbol{h}_{t}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{v}_{t} + \boldsymbol{B}^{\mathrm{T}} \boldsymbol{v}_{t} + \boldsymbol{C}^{\mathrm{T}} \boldsymbol{h}_{t})$$

$$G^{(2)} = \sum_{t=2}^{T} (\boldsymbol{h}_{t}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{r}_{t-1})$$

Defining the Energy Recursively

$$G^{(2)} = \sum_{t=2}^{T} (\boldsymbol{h}_t^{\mathrm{T}} \boldsymbol{U} \boldsymbol{r}_{t-1})$$

• Define $G^{(2)}$ in terms of successive time steps

$$G_t^{(2)} = \sum_{\tau=t}^T (\boldsymbol{h}_{\tau}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{r}_{\tau-1}) = G_{t+1}^{(2)} + \boldsymbol{h}_{t}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{r}_{t-1}$$

- We can now get the derivative started by taking the gradient with respect to r_t and performing backpropagation through time
- Just remember the chain rule

$$\nabla_{r_{t}}G_{t+1}^{(2)} = \nabla_{r_{t+1}}G_{t+2}^{(2)} \circ r_{t+1}^{\circ} (1 - r_{t+1})U + h_{t+1}^{T}U \qquad r_{t} = \begin{cases} \sigma(Wv_{t} + C + Ur_{t-1}), & t > 1 \\ \sigma(Wv_{t} + C_{init}), & t = 1 \end{cases}$$

Parameter Updates

$$\frac{\partial -\ln p(\theta|v)}{\partial \theta} = \sum_{h} p(h|v) \left[\frac{\partial Energy(v,h)}{\partial \theta} \right] - \sum_{v,h} p(v,h) \left[\frac{\partial Energy(v,h)}{\partial \theta} \right]$$

$$G_t^{(2)} = \sum_{\tau=t}^T (\boldsymbol{h}_{\tau}^T \boldsymbol{U} \boldsymbol{r}_{\tau-1}) = G_{t+1}^{(2)} + \boldsymbol{h}_{t}^T \boldsymbol{U} \boldsymbol{r}_{t-1}$$

$$r_t = \begin{cases} \sigma(Wv_t + C + Ur_{t-1}), & t > 1 \\ \sigma(Wv_t + C_{init}), & t = 1 \end{cases}$$

•
$$\nabla_U^{G^{(2)}} = \sum_{t=2}^T (D_{t+1} \circ r_t \circ (1 - r_t) + E_{h_t \mid v_t, r_{t-1}}[h_t] - E_{v'_t, h_t \mid r_{t-1}}[h_t]) r_{t-1}^T$$

•
$$\nabla_W^{G^{(2)}} = \sum_{t=1}^{T-1} (D_{t+1} \circ r_t \circ (1 - r_t)) v_t^T$$

•
$$\nabla_C^{G^{(2)}} = \sum_{t=2}^T (D_{t+1}^{\circ} r_t^{\circ} (1 - r_t))$$

•
$$\nabla_{C_{init}}^{G^{(2)}} = D_2 {}^{\circ} r_1 {}^{\circ} (1 - r_1)$$

$$D_{t} = E_{(h_{t},\dots,h_{T}|v_{t},\dots,v_{T},r_{1},\dots,r_{T-1})} [\nabla_{r_{t-1}} G_{t}^{(2)}] - E_{(h_{t},\dots,h_{T},v'_{t},\dots,v'_{T}|r_{1},\dots,r_{T-1})} [\nabla_{r_{t-1}} G_{t}^{(2)}]$$

 Employ contrastive divergence to find approximated expectations and update the gradients

Inference

- Perform a feed forward pass through the network as if a normal neural network
- Given the recurrent inputs r_t , ... r_{T-1} , the RBMs are conditionally independent

•
$$p(h_{t,i}|\boldsymbol{v}_t,\boldsymbol{r}_{t-1}) = \sigma(\boldsymbol{W}_i\boldsymbol{v}_t + C_i + \boldsymbol{U}_i\boldsymbol{r}_{t-1})$$

•
$$p(v_{t,j}|\boldsymbol{h}_t,\boldsymbol{r}_{t-1}) = \sigma(\boldsymbol{h}_t^{\mathrm{T}}\boldsymbol{W}_j + B_j)$$

Generating Bouncing Balls

- Video of 3 balls bouncing in a box
- Resolution 30 x 30
- 400 hidden units in RBM

Evaluation metric is qualitative since computing the log probability on a test set is infeasible

Training Sequence

 \mathbf{v}_t

T-RBM

 \mathbf{v}_{t+1}

Learned Features

Figure 3: This figure shows the receptive fields of the first 36 hidden units of the RTRBM on the left, and the corresponding hidden-to-hidden weights between these units on the right: the *i*th row on the right corresponds to the *i*th receptive field on the left, when counted left-to-right. Hidden units 18 and 19 exhibit unusually strong hidden-to-hidden connections; they are also the ones with the weakest visible-hidden connections, which effectively makes them belong to another hidden layer.

Recurrent Neural Network RBM

Boulanger-Lewandowski et al. []

 Combine full RNN with RT-RBM to convey temporal information in distinct hidden units

$$\boldsymbol{r}_t = \begin{cases} \sigma(\boldsymbol{W}'\boldsymbol{v}_t + \boldsymbol{D} + \boldsymbol{U}_r\boldsymbol{r}_{t-1}), & t > 1 \\ \sigma(\boldsymbol{W}'\boldsymbol{v}_t + \boldsymbol{D}_{init}), & t = 1 \end{cases}$$

RNN-RBM Joint Probability Distribution

Joint probability is a product of the RBMs at each time step

$$p(\{\boldsymbol{v}_t, \boldsymbol{h}_t\}_{t=1}^T | \{\boldsymbol{r}_t\}_{t=1}^{T-1}) = \prod_{t=1}^T \frac{exp(-G(\boldsymbol{v}_t, \boldsymbol{h}_t | \boldsymbol{r}_t))}{Z_{r_t}}$$

The new energy function is written as follows

$$-Energy(\{v_{t}, h_{t}\}_{t=1}^{T} | \{r_{t}\}_{t=1}^{T-1}) = G(\{v_{t}, h_{t}\}_{t=1}^{T} | \{r_{t}\}_{t=1}^{T-1})$$

$$= h_{1}^{T} W v_{1} + B_{init}^{T} v_{1} + C_{init}^{T} h_{1}$$

$$+ \sum_{t=2}^{T} (h_{t}^{T} W v_{t} + B^{T} v_{t} + C^{T} h_{t} + v_{t}^{T} U_{v} r_{t-1} + h_{t}^{T} U_{h} r_{t-1})$$

Let us now split it up and find the gradients

$$G^{(1)} = \boldsymbol{h}_{1}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{v}_{1} + \boldsymbol{B}_{init}^{\mathrm{T}} \boldsymbol{v}_{1} + \boldsymbol{C}_{init}^{\mathrm{T}} \boldsymbol{h}_{1} + \sum_{t=2}^{T} (\boldsymbol{h}_{t}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{v}_{t} + \boldsymbol{B}^{\mathrm{T}} \boldsymbol{v}_{t} + \boldsymbol{C}^{\mathrm{T}} \boldsymbol{h}_{t})$$

$$G^{(2)} = \sum_{t=2}^{T} (\boldsymbol{v}_{t}^{\mathrm{T}} \boldsymbol{U}_{v} \boldsymbol{r}_{t-1} + \boldsymbol{h}_{t}^{\mathrm{T}} \boldsymbol{U}_{h} \boldsymbol{r}_{t-1})$$

Defining the Energy Recursively

$$G^{(2)} = \sum_{t=2}^{T} (\boldsymbol{v}_{t}^{\mathrm{T}} \boldsymbol{U}_{v} \boldsymbol{r}_{t-1} + \boldsymbol{h}_{t}^{\mathrm{T}} \boldsymbol{U}_{h} \boldsymbol{r}_{t-1})$$

• Define $G^{(2)}$ in terms of successive time steps

$$G_{t}^{(2)} = \sum_{\tau=t}^{T} (\boldsymbol{v}_{\tau}^{T} \boldsymbol{U}_{v} \boldsymbol{r}_{\tau-1} + \boldsymbol{h}_{\tau}^{T} \boldsymbol{U}_{h} \boldsymbol{r}_{\tau-1}) = G_{t+1}^{(2)} + \boldsymbol{v}_{t}^{T} \boldsymbol{U}_{v} \boldsymbol{r}_{t-1} + \boldsymbol{h}_{t}^{T} \boldsymbol{U}_{h} \boldsymbol{r}_{t-1}$$

- We can now get the derivative started by taking the gradient with respect to $r_{\rm t}$ and performing backpropagation through time
- Just remember the chain rule

$$\nabla_{\boldsymbol{r}_{t}}G_{t+1}^{(2)} = \nabla_{\boldsymbol{r}_{t+1}}G_{t+2}^{(2)} {\boldsymbol{r}_{t+1}}^{\circ} (1 - \boldsymbol{r}_{t+1})\boldsymbol{U}_{r} + \boldsymbol{v}_{t+1}^{\mathrm{T}}\boldsymbol{U}_{v} + \boldsymbol{h}_{t+1}^{\mathrm{T}}\boldsymbol{U}_{h}$$

$$\boldsymbol{r}_{t} = \begin{cases} \sigma(\boldsymbol{W}'\boldsymbol{v}_{t} + \boldsymbol{D} + \boldsymbol{U}_{r}\boldsymbol{r}_{t-1}), & t > 1 \\ \sigma(\boldsymbol{W}'\boldsymbol{v}_{t} + \boldsymbol{D}_{init}), & t = 1 \end{cases}$$

Parameter Updates

$$G_{t}^{(2)} = \sum_{\tau=t}^{T} (\boldsymbol{v}_{\tau}^{T} \boldsymbol{U}_{v} \boldsymbol{r}_{\tau-1} + \boldsymbol{h}_{\tau}^{T} \boldsymbol{U}_{h} \boldsymbol{r}_{\tau-1}) = G_{t+1}^{(2)} + \boldsymbol{v}_{t}^{T} \boldsymbol{U}_{v} \boldsymbol{r}_{t-1} + \boldsymbol{h}_{t}^{T} \boldsymbol{U}_{h} \boldsymbol{r}_{t-1} \qquad \boldsymbol{r}_{t} = \begin{cases} \sigma(\boldsymbol{W}' \boldsymbol{v}_{t} + \boldsymbol{D} + \boldsymbol{U}_{r} \boldsymbol{r}_{t-1}), & t > 1 \\ \sigma(\boldsymbol{W}' \boldsymbol{v}_{t} + \boldsymbol{D}_{init}), & t = 1 \end{cases}$$

•
$$\nabla_{W'}^{G^{(2)}} = \sum_{t=1}^{T-1} (D_{t+1} \circ r_t \circ (1 - r_t)) v_t^T$$

•
$$\nabla_{U_h}^{G^{(2)}} = \sum_{t=2}^{T} (E_{h_t|v_t,r_{t-1}}[h_t] - E_{v_t',h_t|r_{t-1}}[h_t]) r_{t-1}^{T}$$
 • $\nabla_{U_v}^{G^{(2)}} = \sum_{t=2}^{T} r_{t-1}^{T} v_t$

•
$$\nabla_D^{G^{(2)}} = \sum_{t=2}^T (D_{t+1} \circ r_t \circ (1 - r_t))$$

•
$$\nabla_B^{G^{(2)}} = 0$$
 • $\nabla_C^{G^{(2)}} = 0$

$$\nabla_C^{G^{(2)}} = 0$$

• $\nabla_{U_r}^{G^{(2)}} = \sum_{t=2}^{T} (D_{t+1} \circ r_t \circ (1 - r_t)) r_{t-1}^{T}$

• $\nabla_{D_{i_{m+1}}}^{G^{(2)}} = D_2 {}^{\circ} r_1 {}^{\circ} (1 - r_1)$

$$D_{t} = E_{(h_{t},\dots,h_{T}|v_{t},\dots,v_{T},r_{1},\dots,r_{T-1})} [\nabla_{r_{t-1}} G_{t}^{(2)}] - E_{(h_{t},\dots,h_{T},v'_{t},\dots,v'_{T}|r_{1},\dots,r_{T-1})} [\nabla_{r_{t-1}} G_{t}^{(2)}]$$

Employ contrastive divergence to find approximated expectations and update the gradients

RT-RBM VS RNN-RBM Baseline Experiments

- Bouncing Balls
 - Video of 3 balls bouncing in a box
 - Resolution 15 x 15
 - 300 hidden units in RBM
 - 50 steps of Gibbs sampling
 - Mean frame-level squared prediction error
 - RT-RBM − 2.11 MSE
 - RNN-RBM 0.96 MSE

W

Figure 3. Receptive fields of 48 hidden units of an RNN-RBM trained on the bouncing balls dataset. Each square shows the input weights of a hidden unit as an image.

RT-RBM VS RNN-RBM Baseline Experiments

- Human Motion Capture
 - Sequence of joint angles, translations, and rotations of the base of the spine
 - 450 hidden units in RBM
 - Mean frame-level squared prediction error
 - RT-RBM − 20.1 MSE
 - RNN-RBM 16.2 MSE

Polyphonic Music Transcription

- Create perceptually independent streams of music (poly-phonic = many sounds)
- Make it sound beautiful

Excerpt from The Well-Tempered Clavier, Fugue 1 by Johann Bach

- Need to design a musical language model
 - Similar to natural language models

Difficulties in Polyphonic Music Transcription

- The occurrence of a particular note at a particular time modifies considerably the probability with which other notes may occur at the same time
- Notes appear together in correlated patterns, or simultaneities
- Need to consider both harmony and melody

Solution: RNN-RBM

Benefit of capturing both chordal and temporal dependencies

Data

- Symbolic music of varying complexity
 - Piano-midi.de is a classical piano MIDI archive that was split according to Poliner & Ellis
 - Nottingham is a collection of 1200 folk tunes with chords instantiated from the ABC format
 - MuseData is an electronic library of orchestral and piano classical music from Center for Computer Assisted Research in the Humanities
 - **JSB chorales** refers to the entire corpus of 382 four part harmonized chorales by J. S. Bach with the split of Allan & Williams
- Each dataset contains at least 7 hours of polyphonic music and the total duration is approximately 67 hours

Preprocessing and Features

- Utilize input vector of 88 binary visible units that span the whole range of piano from A0 to C8
- Temporally aligned on an integer fraction of the beat (quarter note)
- Notes are transposed to a common tonality (e.g. C major/minor)

The log-likelihood (LL) and expected frame-level accuracy (ACC)

Table 1. Log-likelihood and expected accuracy for various musical models in the symbolic prediction task. The double line separates frame-level models (above) and models with a temporal component (below).

Model	Piano-midi.de		Nottingham		MuseData		JSB chorales	
	$_{ m LL}$	ACC %	$_{ m LL}$	ACC %	$_{ m LL}$	ACC %	$_{ m LL}$	ACC %
RANDOM	-61.00	3.35	-61.00	4.53	-61.00	3.74	-61.00	4.42
1-Gram (Add- p)	-27.64	4.85	-5.94	22.76	-19.03	6.67	-12.22	16.80
1-Gram (Gaussian)	-10.79	6.04	-5.30	21.31	-10.15	7.87	-7.56	17.41
Note 1-Gram	-11.05	5.80	-10.25	19.87	-11.51	7.72	-11.06	15.25
Note 1-Gram (IID)	-12.90	2.51	-16.24	3.56	-14.06	2.82	-15.93	3.51
GMM	-15.84	5.08	-7.87	22.62	-12.20	7.37	-11.90	15.84
RBM	-10.17	5.63	-5.25	5.81	-9.56	8.19	-7.43	4.47
NADE	-10.28	5.82	-5.48	22.67	-10.06	7.65	-7.19	17.88
Previous + Gaussian	-12.48	25.50	-8.41	55.69	-12.90	25.93	-19.00	18.36
N-Gram (Add-p)	-46.04	7.42	-6.50	63.45	-35.22	10.47	-29.98	24.20
N-Gram (Gaussian)	-12.22	10.01	-3.16	65.97	-10.59	16.15	-9.74	28.79
Note N-Gram	-7.50	26.80	-4.54	62.49	-7.91	26.35	-10.26	20.34
GMM + HMM	-15.30	7.91	-6.17	59.27	-11.17	13.93	-11.89	19.24
(Allan & Williams, 2005)	-	_	-	_	-	-	-9.24	16.32
(Lavrenko & Pickens, 2003)	-9.05	18.37	-5.44	55.34	-9.87	18.39	-8.78	22.93
MLP	-8.13	20.29	-4.38	63.46	-7.94	25.68	-8.70	30.41
RNN	-8.37	19.33	-4.46	62.93	-8.13	23.25	-8.71	28.46
RNN (HF)	-7.66	23.34	-3.89	66.64	-7.19	30.49	-8.58	29.41
RTRBM	-7.36	22.99	-2.62	75.01	-6.35	30.85	-6.35	30.17
RNN-RBM	-7.09	28.92	-2.39	75.40	-6.01	34.02	-6.27	33.12
RNN-NADE	-7.48	20.69	-2.91	64.95	-6.74	24.91	-5.83	32.11
RNN-NADE (HF)	-7.05	23.42	-2.31	71.50	-5.60	32.60	-5.56	32.50

Estimated the partition function of each conditional RBM by 100 runs of annealed importance sampling

Qualitative Evaluation

Generation of sample sequences

- RBM
 - Frame based
- RNN
 - Temporal dependencies captured
 - Note by note generation
- RNN-RBM
 - Temporal and chordal dependencies captured

Visualizing the Results

- Mean field samples $p(\boldsymbol{v}|\boldsymbol{h}^*)$
- $h^* \sim p(h)$

Figure 1. Mean-field samples of an RBM trained on the Piano-midi (top) and JSB chorales (bottom) datasets. Each column is a sample vector of notes, with a chord label where the analysis is unambiguous.

Polyphonic Music Transcription of Audio Signals

- Determine the underlying notes of a polyphonic audio signal without access to its score
- Most existing transcription algorithms are frame-based and rely exclusively on the audio signal.

• Want to support a frame-based, state of the art transcription algorithm from Nam et al.

Acoustic Model Support Breakdown

- Acoustic Model Format: $P_a(v_t)$
 - Outputs independent probabilities that each note in v_t is present
 - Reports the notes with $P \ge 0.5$
 - Estimates the audible note pitches in a signal at 10 ms intervals
- Incorporation of Symbolic Model Prediction: $P_s(v_t|A_t)$
 - A_t denotes the sequence history
 - Consider the k most promising note estimates (k = 7) from the acoustic model
 - Jointly evaluate all combinations of notes (power set of k notes)
- Evaluation Cost Function
 - $C = -\log P_a(\boldsymbol{v}_t) \alpha \log P_s(\boldsymbol{v}_t | \boldsymbol{A}_t^{\sim})$
 - α is the confidence coefficient
 - A_t^{\sim} is approximate sequence history constructed from the notes estimated so far in at least half the audio frames corresponding to each past symbolic time step

Results

Figure 5. Frame-level transcription accuracy of the Nam et al. (2011) model either alone, after HMM smoothing or with our best performing model as a symbolic prior.

Questions?

References

- [1] Sutskever, I., Hinton, G. E., and Graham, T. W. The recurrent temporal restricted Boltzmann machine. In NIPS, 2008.
- [2] R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured recurrent temporal restricted Boltzmann machines. In ICML, 2014.
- N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In Proceedings of the Twenty-nine International Conference on Machine Learning (ICML'12), 2012.