Exercice 1 7pt

On va démontrer le résultat suivant : si x > 0, alors $e^x > 1 + x + \frac{x^2}{2}$.

- 1. On considère la fonction g définie sur \mathbb{R} par $g(x) = e^x (1+x)$.
 - (a) Calculez g' et étudiez son signe.
 - (b) Faites un tableau de variations et justifiez que g(x) atteint son minimum en x=0.
 - (c) Étudiez le signe de g(x) en fonction de x.
- 2. On considère désormais la fonction $f(x) = e^x (1 + x + \frac{x^2}{2})$.
 - (a) Montrez que f'(x) = g(x).
 - (b) Faire un tableau de variations pour f.
 - (c) Calculez f(0) et en déduire le résultat énoncé au début de l'exercice.
- 3. On considère la fonction h définie sur \mathbb{R}^* par $h(x) = \frac{e^x}{x}$. Montrez que si x > 0, alors $h(x) > \frac{x}{2}$; en déduire que $h(x) \xrightarrow[x \to +\infty]{} +\infty$.
- 4. On considère la fonction i définie sur \mathbb{R} par $i(x) = x e^x$. Montrez que si x > 0, alors $i(x) < -1 - \frac{x^2}{2}$; en déduire que $i(x) \xrightarrow[x \to +\infty]{} -\infty$.

Exercice 2, tiré d'un sujet de bac 2022.

10pt

On considère les deux fonctions f et g définies sur l'intervalle $[0; +\infty[$ par

$$f(x) = 0.06(-x^2 + 13.7x)$$
 et $g(x) = (-0.15x + 2.2)e^{0.2x} - 2.2$.

On admet que les fonctions f et g sont dérivables et on note f' et g' leurs fonctions dérivées respectives.

1. On donne le tableau de variations complet de la fonction f sur l'intervalle $[0; +\infty[$.

x	0 6,85	$+\infty$
f(x)	f(6,85)	$-\infty$

- (a) Justifier la limite de f en $+\infty$.
- (b) Justifier les variations de la fonction f.
- (c) Résoudre l'équation f(x) = 0.

2.

- (a) Déterminer la limite de g en $+\infty$.
- (b) Démontrer que, pour tout réel x appartenant à $[0; +\infty]$ on a

$$g'(x) = (-0.03x + 0.29)e^{0.2x}.$$

- (c) Étudier les variations de la fonction g et dresser son tableau de variations sur $[0; +\infty[$. Préciser une valeur approchée à 10^{-2} près du maximum de g.
- (d) Montrer que l'équation g(x) = 0 admet une unique solution non nulle et déterminer, à 10^{-2} près, une valeur approchée de cette solution.

Exercice 3 3pt

Soient a et b deux réels. Si $e^a=4$ et $e^b=5$, combien valent e^{a+b} , e^{2a} et e^{-b} ?