Estudo de Caso 03: Comparação de desempenho de duas configurações de um algoritmo de otimização

Diego Pontes, Elias Vieira, Matheus Bitarães

Março, 2021

Descrição do problema

Retirado do enunciado do exercício

Suponha que um pesquisador está interessado em investigar o efeito de duas configurações distintas de um algoritmo em seu desempenho para uma dada classe de problemas de otimização. Como forma de análise deste problema, foi proposto a tarefa de efetuar a comparação experimental de duas configurações em uma classe de problemas, representada por um conjunto de instâncias de teste fornecida. O objetivo deste estudo é responder às seguintes perguntas:

- Há alguma diferença no desempenho médio do algoritmo quando equipado com estas diferentes configurações, para a classe de problemas de interesse?
- Caso haja, qual a melhor configuração em termos de desempenho médio (atenção: quanto menor o valor retornado, melhor o algoritmo), e qual a magnitude das diferenças encontradas?
- Há alguma configuração que deva ser recomendada em relação à outra?

Introdução

Retirado do enunciado do exercício

Algoritmos baseados em populações são uma alternativa comum para a solução de problemas de otimização em engenharia. Tais algoritmos normalmente consistem de um ciclo iterativo, no qual um conjunto de soluções-candidatas ao problema são repetidamente sujeitas a operadores de variação e seleção, de forma a promover uma exploração do espaço de variáveis do problema em busca de um ponto de ótimo (máximo ou mínimo) de uma dada função-objetivo. Dentre estes algoritmos, um método que tem sido bastante utilizado nos últimos anos é conhecido como evolução diferencial (DE, do inglês differential evolution)(Storn and Price, 1997).

Design do Experimento

A tarefa para este estudo de caso é a comparação experimental de duas configurações em uma classe de problemas, representada por um conjunto de instâncias de teste. As duas configurações são apresentadas a seguir:

```
## Configuração 1
recpars1 <- list(name = "recombination_blxAlphaBeta", alpha = 0, beta = 0)
mutpars1 <- list(name = "mutation_rand", f = 4)</pre>
```

```
## Configuração 2
recpars2 <- list(name = "recombination_linear")
mutpars2 <- list(name = "mutation_rand", f = 1.5)</pre>
```

Retirado do enunciado do exercício

Além disto, os seguintes parâmetros experimentais foram dados para este estudo:

- Mínima diferença de importância prática (padronizada): (d* = δ^*/σ) = 0.5
- Significância desejada: $\alpha = 0.05$
- Potência mínima desejada (para o caso d = d*): $\pi = 1$ $\beta = 0.8$

Para a execução dos experimentos, foram utilizados os pacotes ExpDE e smoof. A classe de funções de interesse para este teste é composta por funções Rosenbrock de dimensão entre 2 e 150 que podem ser geradas a partir de uma dada dimensão dim com o seguinte código:

Para a correta comparação entre duas configurações de algoritmos dentro de uma classe de problemas é necessario que se execute os algortimos em uma quantidade de dimensões representativas e também é necessário que se execute cada instância um numero de vezes suficiente para que se consiga alcançar a potência, significância e importância prática desejadas. Realizar um alto número de execuções em cada dimensão e realizar a coleta para todas as dimensões pode-se tornar computacionalmente pesado ou até infactível em alguns casos. Este é um desses casos. Portanto será utilizada a abordagem criada por Campelo e Takahashi, que propõe a estimativa do número mínimo de instancias (no nosso caso, dimensões) a serem avaliadas e também propõe uma estratégia para se obter o numero minimo de execuções em cada instância, através de uma avaliação iterativa, enquanto as execuções forem sendo coletadas [1].

Como primeiro passo, deve-se estimar o número de instâncias de acordo com o parâmetros experimentais fornecidos:

O método calc_instances do pacote CAISEr em linguagem R citar permite estimar o número de instâncias mínimas necessárias para se comparar múltiplos algoritmos, de modo que os requisitos experimentais sejam atingidos. O parâmetro número de comparações ncomparisons é dado pela seguinte equação, onde K é o número de algoritmos que se deseja comparar:

$$\texttt{ncomparisons} = \frac{K \times (K-1)}{2} \tag{1}$$

Como K=2, tem-se que ncomparisons = 1.

Número de instâncias necessárias: 34

Como pode-se concluir pelo resultado da execução do algoritmo, o número de instâncias necessárias para se realizar o experimento descrito é 34. Para que seja possível utilizar todo o intervalo de valores possíveis de D $(D \in [2, 150])$, espaçou-se uniformemente as 34 instâncias:

```
num_dims <- 34
dims = round(linspace(2, 150, num_dims), digits = 0)
print(dims)
## [1] 2 6 11 15 20 24 29 33 38 42 47 51 56 60 65 69 74 78 83</pre>
```

96 101 105 110 114 119 123 128 132 137 141 146 150

Seguindo o Algoritmo 2 proposto por Campelo e Takahashi (2018), deve-se realizar um conjunto de execuções piloto para que se possa obter os dados de média e variância das instâncias e, dessa forma, iniciar-se a execução iterativa até que se obtenha o erro padrão (a estimativa da diferença em performance entre os dois algoritmos) com a precisão pretendida (Algoritmo 1 proposto por Campelo e Takahashi (2018)) [1]

Execução piloto com escolha inicial de 10 execuções e com os 34 blocos, obtidos anteriormente.

[20]

```
suppressPackageStartupMessages(library(ExpDE))
suppressPackageStartupMessages(library(smoof))
file_name = "pilot_execution_backup.csv"
num_exec <- 10
if (file.exists(file_name)) {
  # se ja existir uma arquivo com o dados da execução, não é necessário executar novamente. Apenas será
  print("Arquivo de backup encontrado. Recuperando dados ao inves de realizar uma nova execução")
  initial_data <- read.csv(file=file_name, header = TRUE, sep=",")</pre>
  dims <- initial_data$dim</pre>
  mean_y1 <- initial_data$mean.instance1</pre>
  mean_y2 <- initial_data$mean.instance2</pre>
  sd_y1 <- initial_data$sd.instance1</pre>
  sd_y2 <- initial_data$sd.instance2</pre>
} else {
  # Função para execução de n funções de rosenbrock para determinada dimensao
  executeRosenbrock <- function(dim, num_exec) {</pre>
    # Função de ronsebrock para determinada dimensao
    fn <<- function(X) {</pre>
          if(!is.matrix(X)) X <- matrix(X, nrow = 1) # <- if a single vector is passed as X</pre>
          Y \leftarrow apply(X, MARGIN = 1,
          FUN = smoof::makeRosenbrockFunction(dimensions = dim))
          return(Y)
    }
    # definições dadas no enunciado
    selpars <- list(name = "selection_standard")</pre>
    stopcrit <- list(names = "stop_maxeval", maxevals = 5000*dim, maxiter = 100*dim)
    probpars <- list(name = "fn", xmin = rep(-5, dim), xmax = rep(10, dim))</pre>
    popsize <- 5*dim
    v1 <- vector(,num exec)</pre>
    y2 <- vector(,num_exec)
```

```
for (i in 1:num_exec){
    # rodando problema para instancia 1
    out <- ExpDE(mutpars = mutpars1,</pre>
            recpars = recpars1,
            popsize = popsize,
            selpars = selpars,
            stopcrit = stopcrit,
            probpars = probpars,
            showpars = list(show.iters = "dots", showevery = 20))
    y1[i] <- out$Fbest
    # rodando problema para instancia 2
    out <- ExpDE(mutpars = mutpars2,</pre>
            recpars = recpars2,
            popsize = popsize,
            selpars = selpars,
            stopcrit = stopcrit,
            probpars = probpars,
            showpars = list(show.iters = "dots", showevery = 20))
    y2[i] <- out$Fbest
    cat("\n y1", y1[i])
    cat("\n y2", y2[i])
 }
 return(
    data.frame(
     mean1 = mean(y1),
      mean2 = mean(y2),
      sd1 = sd(y1),
      sd2 = sd(y2))
}
# Função para execução de n funções de rosenbrock para uma lista de dimensões
executeRosenbrockForDims <- function(dims, num_exec){</pre>
 num_dims <- length(dims)</pre>
 mean_y1 <- vector(,num_dims)</pre>
 mean_y2 <- vector(,num_dims)</pre>
 sd_y1 <- vector(,num_dims)</pre>
 sd_y2 <- vector(,num_dims)</pre>
 for (d in 1:num_dims){
    dim <- dims[d]
    # multiplas execuções
    Y = executeRosenbrock(dim, num_exec)
    cat("dim:",dim, " \n")
    cat("mu1:",Y$mean1, " \n")
    cat("sd1:",Y$sd1, " \n")
    cat("mu2:",Y$mean2, " \n")
    cat("sd2:",Y$sd2, " \n")
```

```
mean_y1[d] <- Y$mean1
  mean_y2[d] <- Y$mean2
  sd_y1[d] <- Y$sd1
  sd_y2[d] <- Y$sd2
}

data <- data.frame(
  dim = dims,
  mean.instance1 = mean_y1,
  mean.instance2 = mean_y2,
  sd.instance1 = sd_y1,
  sd.instance2 = sd_y2)

return(data)
}

# execução das funções de rosenbrock
initial_data = executeRosenbrockForDims(dims, num_exec)

# escreve no arquivo de backup os resultados coletados
write.csv(initial_data, file = file_name)
}</pre>
```

[1] "Arquivo de backup encontrado. Recuperando dados ao inves de realizar uma nova execução"

```
initial_data$n1 <- rep(num_exec, num_dims)
initial_data$n2 <- rep(num_exec, num_dims)</pre>
```

Após esta execução, pode-se prosseguir com o Algoritmo 1, disponível em [1]. O algoritmo proposto irá executar as instâncias até que o limite de precisão se* seja atingido **ou** que o número máximo de execuções n_{max} seja alcançado. O valor de n_{max} foi definido como 50 (máximo de 25 execuções de cada instância a ser comparada).

```
file_name = "execution_backup.csv"
num_exec <- 10</pre>
if (file.exists(file_name)) {
  # se ja existir uma arquivo com o dados da execução, não é necessário executar novamente. Apenas será
  print("Arquivo de backup encontrado. Recuperando dados ao inves de realizar uma nova execução")
  data <- read.csv(file=file_name, header = TRUE, sep=",")</pre>
} else {
  data <- initial_data</pre>
  se_opt <- 0.05 # se pretendido</pre>
  n_max <- 50 # máximo número de execuções
  # loop de dimensões
  for (d in 1:num_dims) {
    dim <- data$dim[d]</pre>
    mu1 <- data$mean.instance1[d]</pre>
    mu2 <- data$mean.instance2[d]</pre>
    sd1 <- data$sd.instance1[d]</pre>
```

```
sd2 <- data$sd.instance2[d]</pre>
n1 <- 10 # número de execuções que já foram realizadas
n2 <- 10
# Função de ronsebrock para determinada dimensao
fn <- function(X) {</pre>
      if(!is.matrix(X)) X <- matrix(X, nrow = 1) # <- if a single vector is passed as X</pre>
      Y \leftarrow apply(X, MARGIN = 1,
      FUN = smoof::makeRosenbrockFunction(dimensions = dim))
      return(Y)
}
# definições dadas no enunciado
selpars <- list(name = "selection_standard")</pre>
stopcrit <- list(names = "stop_maxeval", maxevals = 5000*dim, maxiter = 100*dim)</pre>
probpars <- list(name = "fn", xmin = rep(-5, dim), xmax = rep(10, dim))</pre>
popsize <- 5*dim</pre>
# calculo do se
se \leftarrow sqrt(sd1^2/n1 + sd2^2/n2)
cat("\n se inicial:", se)
# loop de execuções
while (se > se opt && n1 + n2 < n \max){
  ropt <- sd1/sd2</pre>
  if (n1/n2 < ropt){
    # executa algoritmo 1
    out <- ExpDE(mutpars = mutpars1,</pre>
    recpars = recpars1,
    popsize = popsize,
    selpars = selpars,
    stopcrit = stopcrit,
    probpars = probpars,
    showpars = list(show.iters = "dots", showevery = 20))
    y1 <- out$Fbest
    # atualiza parâmetros
    mu_{-} \leftarrow (mu1*n1 + y1)/(n1+1)
    sd_ \leftarrow sqrt(((n1-1)*sd1^2 + (y1 - mu_)*(y1 - mu1))/n1)
    mu1 <- mu
    sd1 <- sd
    n1 < - n1 + 1
  } else {
    # executa algoritmo 2
    out <- ExpDE(mutpars = mutpars2,</pre>
    recpars = recpars2,
    popsize = popsize,
    selpars = selpars,
    stopcrit = stopcrit,
    probpars = probpars,
```

```
showpars = list(show.iters = "dots", showevery = 20))
      y2 <- out$Fbest
      # atualiza parâmetros
      mu_{-} \leftarrow (mu2*n2 + y2)/(n2+1)
      sd_ \leftarrow sqrt(((n2-1)*sd2^2 + (y2 - mu_)*(y2 - mu_2))/n2)
      mu2 <- mu_
      sd2 <- sd
      n2 < - n2 + 1
    }
    # atualiza se
    se \leftarrow sqrt(sd1<sup>2</sup>/n1 + sd2<sup>2</sup>/n2)
    cat("se:", se, " \n")
    cat("dim:",dim, " \n")
    cat("se:",se, " \n")
    cat("mu1:",mu1, " \n")
    cat("sd1:",sd1, " \n")
    cat("mu2:",mu2, " \n")
    cat("sd2:",sd2, " \n")
    cat("n1:",n1, " \n")
    cat("n2:",n2, " \n")
  }
  data$mean.instance1[d] <- mu1</pre>
  data$sd.instance1[d] <- sd1</pre>
  data$n1[d] <- n1
  data$mean.instance2[d] <- mu2</pre>
  data$sd.instance2[d] <- sd2</pre>
  data$n2[d] <- n2
# escreve dados no arquivo de backup
write.csv(data, file = file_name)
```

[1] "Arquivo de backup encontrado. Recuperando dados ao inves de realizar uma nova execução"

Abaixo podemos ver os dados coletados bem como o número de execuções de cada instância

data

```
##
      X dim mean.instance1 mean.instance2 sd.instance1 sd.instance2 n1 n2
              4.801098e-03
                            3.155444e-31 7.030550e-03 9.978389e-31 10 10
## 1
      1
## 2
      2
         6
              1.556532e+02
                            1.036112e-09 7.658966e+01 3.127060e-09 40 10
## 3
      3 11
              2.859544e+04
                            1.822307e+00 1.237948e+04 1.358104e+00 40 10
## 4
      4 15
             1.150719e+05
                            1.013441e+01 2.877621e+04 6.471559e-01 40 10
      5 20
                            2.590763e+01 4.312319e+04 2.147535e+00 40 10
## 5
              2.758080e+05
## 6
      6 24
             4.131276e+05
                            9.529037e+01 7.175148e+04 2.003774e+01 40 10
      7 29
## 7
             5.785252e+05
                            4.393029e+02 6.851799e+04 1.306340e+02 40 10
## 8 8 33
             7.468094e+05
                            1.507542e+03 7.125151e+04 3.606764e+02 40 10
## 9 9 38
                            5.266483e+03 9.524623e+04 1.343672e+03 40 10
              9.641466e+05
```

```
## 10 10
          42
               1.118477e+06
                              1.317862e+04 1.334866e+05 3.233785e+03 40 10
## 11 11
          47
                              3.173632e+04 1.344165e+05 8.002613e+03 40 10
               1.348605e+06
## 12 12
          51
               1.565964e+06
                              5.195229e+04 1.660361e+05 1.055687e+04 40 10
## 13 13
               2.214173e+06
                              8.669291e+04 6.134398e+05 2.023011e+04 40 10
          56
##
  14 14
          60
               2.649036e+06
                              1.655832e+05 6.822616e+05 6.491125e+04 40 10
## 15 15
          65
               3.588845e+06
                              2.408687e+05 6.535566e+05 7.678247e+04 40 10
## 16 16
          69
               3.975597e+06
                              2.937040e+05 4.908136e+05 6.173127e+04 40 10
## 17 17
          74
               4.546692e+06
                              4.720125e+05 5.415539e+05 7.663386e+04 40 10
## 18 18
          78
               4.942110e+06
                              5.920831e+05 4.598277e+05 1.381192e+05 38 12
## 19 19
          83
               5.281279e+06
                              9.235232e+05 4.327631e+05 1.645013e+05 35 15
## 20 20
          87
               5.854144e+06
                              9.874201e+05 5.183355e+05 2.241751e+05 35 15
## 21 21
                              1.256315e+06 5.544042e+05 2.842339e+05 33 17
          92
               6.198234e+06
## 22 22
          96
               6.707469e+06
                              1.709252e+06 6.013253e+05 2.142376e+05 37 13
## 23 23 101
               6.836463e+06
                              2.029101e+06 6.324840e+05 3.475469e+05 32 18
## 24 24 105
                              2.186746e+06 6.124760e+05 4.924547e+05 28 22
               7.311739e+06
## 25 25 110
               7.650827e+06
                              2.673647e+06 6.952003e+05 4.757902e+05 29 21
## 26 26 114
               7.992897e+06
                              2.930139e+06 7.183937e+05 6.979160e+05 25 25
## 27 27 119
               8.708038e+06
                              3.477332e+06 5.661883e+05 5.829719e+05 24 26
                              3.847995e+06 7.927956e+05 7.631544e+05 25 25
## 28 28 123
               8.719999e+06
## 29 29 128
               9.496021e+06
                              4.170314e+06 6.091188e+05 6.410488e+05 24 26
## 30 30 132
               9.748881e+06
                              4.467374e+06 7.536504e+05 7.263416e+05 26 24
## 31 31 137
                              5.102232e+06 7.409436e+05 7.697012e+05 24 26
               1.017978e+07
## 32 32 141
                              5.421776e+06 8.120632e+05 1.037953e+06 22 28
               1.040743e+07
## 33 33 146
                              5.986549e+06 6.043259e+05 6.611940e+05 25 25
               1.132399e+07
## 34 34 150
               1.164427e+07
                              5.917618e+06 8.842647e+05 1.077318e+06 23 27
```

Podemos perceber que a maioria dos blocos utilizou o orçamento máximo de execuções n_{max} , que era de 50 execuções. Mas a distribuição deste número de execuções é balanceada de uma forma que minimize o limite de precisão se.

A partir daqui, já teremos os dados para realizar o teste ANOVA.

falta: - coleta e tabulação dos dados - testes das hipoteses - estimacao da magnitude da diferença entre os metodos - verificação das premissas dos testes - conclusoes - possiveis limitações do estudo e sugestoes de melhoria

Atividades dos membros

Diego

Elias

Matheus

Todos

Referências Bibliográficas

[1] Felipe Campelo and Fernanda Takahashi. Sample size estimation for power and accuracy in the experimental comparison of algorithms. *Journal of Heuristics*, 25(2):305–338, 2019.