Benchmarking Large Language Models for Bio-Image Analysis Code Generation

Paper #363

Abstract. In the computational age, life-scientists often solve scientific bio-image analysis (BIA) questions using Python code, even though many of them are not trained in programming. As a common use-case for Large Language Models (LLMs) is code-generation, we see potential in using LLMs for BIA. We present a quantitative benchmark to estimate the capability of LLMs to generate code for solving common BIA tasks. Our benchmark consists of 55 humanwritten prompts, corresponding reference solutions written in Python and unit-tests to evaluate functional correctness of potential solutions. We demonstrate the benchmark by comparing 7 LLMs. We propose mid-/long-term efforts in maintaining and extending the benchmark by the BIA open-source community to ensure community needs are covered properly. This way we can support users when deciding for an LLM and also guide LLM developers in moving the frontier of current capabilities of LLMs towards more advanced applications in BIA.

2 1 Introduction

Many projects in biology involve state-of-the-art microscopy and quantitative bio-image analysis (BIA), which often requires programming skills. As programming is commonly not taught to lifescientists, we see a potential in using large language models for this task. Since modern Large Language Models (LLMs) such as chat-GPT (OpenAI et al. 2023) were introduced, they change how humans interact with computers. LLMs were originally developed to solve natural language processing tasks such as text classification, language translation, or question answering. Interestingly, these models are also capable of translating human languages, such as English, into programming languages, such as Python. Moreover, they can produce executable code that solves tasks defined by human natural language input [4]. This capability has huge potential for interdisciplinary research areas such as microscopy image analysis [16]. LLMs can fill a gap where scientists with limited programming skills meet 17 image analysis tasks which often require knowledge of programming languages such as Python. LLMs are indeed capable of writing BIA code as demonstrated in [17], but it is yet unclear where the limita-20 tions of this technology are in the BIA context. Multiple LLM code 21 generation benchmarks have been proposed [5, 2, 13, 21, 9]. Thus, we think the bioimaging community urgently needs an openly accessible, quantitative way to measure those capabilities in particular given that LLM technology is also developing rapidly. We present such a benchmark, based on HumanEval [5], an established codegeneration benchmark but ours is tailored for scientific questions in the Bio-Image Analysis context.

2 Methods

Our proposed benchmark consists of 55 human-written Python functions which contain documentation about what the function is supposed to do. An example is shown in Figure 1. We kept the documentation intentionally short, because we intend to use LLMs to facilitate coding for bio-image analysts. This short documentation, the docstring, together with the function signature is passed to an LLM as part of a prompt asking to complete the code. The human-written implementation function body is not passed to the LLM, and just serves as a reference solution. Additionally, our benchmark provides unittests for these python functions to evaluate their functional correctness. If the code generated by the language model is executable and produces results which pass the unit-tests, this LLM is considered to be able to solve the problem described in the documentation of our function. Every prompt is sent multiple times to the LLM and we measure how often the generated code passes the tests. Here, we follow the established standard pass@k [5], which estimates the probability that, if asked k times, the LLM will at least once give the correct answer. We particularly focus on the practically most relevant special case pass@1, i.e. we want to know how likely it is that the first generated solution works. Our selected prompts range from basic image analysis tasks, such as applying an edge-preserving denoising filter to an image, over intermediate tasks such as labeling objects in a binary image and counting them ??, to challenging workflows including image processing steps, descriptive statistics, tabular data wrangling and dimensionality reduction. There is also a positive-control test-case, called return_hello_world, which is intentionally kept very simple to test if a specific LLM model is capable of solving a trivial base task at all. A list of all test-cases and corresponding docstrings is given in Supplementary List 1. To enable future extension and reproducing our benchmark, we provide the necessary infrastructure to turn the list of test-case Jupyter Notebooks into a JSONL file that has the same format as the evaluation framework of HumanEval. We also did minor modifications to this framework to be able to execute the benchmark. The modifications are explained in our github repository. Together, the JSONL file and our modified HumanEval framework allow reproducing the entire benchmark starting from converting the test-case notebooks to the JSONL file, including collecting samples, evaluating functional correctness, and plotting of the figures in this manuscript. We demonstrate the benchmark by comparing the capabilities of a range of state-of-the-art LLMs (covering commercial and freely available or open source models): gpt-3.5-turbo-1106, gpt-4-1106-preview, gpt-4-2024-04-09, codellama [18], claude-3-opus-20240229 [1], gemini-pro [19], Mistral-7B-Instruct-v0.2 [12]. Code for benchmarking gemini-1.5-pro and gemini-ultra are available as well, but could not be executed due to rate limits. For benchmarking the models, we generated 10 code samples of the 47 test-cases of the

30

45

68

72

74

6 models. Benchmarking was done on a Windows 10 Laptop with an AMD Ryzen 9 6900 CPU, 32 GB of RAM and a NVidia RTX 3050 TI GPU with 4 GB of RAM. Codellama, the only locally executed model in our selection, was accessed via ollama version 0.1.29 [15]. The gemini-pro model was accessed via the Google Vertex API [10], which did not support specifying a version. Thus, we document here that the benchmark was executed on April 6th and 7th 2024. The Mistral model was accessed via the blablador infrastructure at the Jülich Supercomputing Centre in Germany. We also summarize used libraries in the generated code and resulting error messages by counting libraries names and common error messages observed in the results of the code evaluation step. All test-cases, benchmarking code, generated samples and data analysis/visualization notebooks are available open-source in the github repository of the project. All respective software versions are documented in the environment.yml file in the Github repository.

Figure 1. The example test-case label_binary_image_and_count_labels is implemented as Jupyter Notebook consisting of a function signature consuming a binary image and a docstring describing what the function is supposed to do. These two serve as part of a prompt to the LLM asking to complete the code. The function body serves as a reference solution (sometimes referred to as canonical solution), which allows writing a unit test. If the unit test passes for the code generated by an LLM, indicating functional correctness, the LLM is defined as capable of solving the prompted task. An updated list of all test-cases is available online: https://github.com/haesleinhuepf/human-eval-bia/blob/main/test_cases/readme.md

3 Results

93

94

95

96

97 98

99

100

101

102

103

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

Execution of the sampling notebook took approximately 18 hours. The models gpt-3.5-turbo-1106, gpt4-1106-preview and claude-3-opus-20240229 caused costs of \$0.23, \$5.10 and \$20.49, respectively. All other models did not cause direct costs as their API usage was free. Comparing the pass@k measurements reveals that the leading model, gpt-4-1106-preview, managed to answer 42% of the prompts with code that passed the unit tests. It is followed by claude-4-opus-20240229 and gpt-3.5-turbo-1106, with 40% and 28%, respectively. These numbers correspond to pass@1 counting the success rate from drawn examples. Detailed pass@k rates with k=1, k=5 and k=10 are shown in Supplementary Figure 1. Detailed pass rates@1 analysis of the test-cases, shown in Figure 3, highlights that

most of the test-cases were solvable by at least one LLM. The positive control, return_hello_world, was solved successfully in almost all cases, expressed with a pass-rate of 1.0. Only the codellama model failed in 30% of the test runs for this particular test-case. Details about which LLM used which Python libraries how often are given in Figure 4. Common error messages and corresponding counts how often these were observed when evaluating the generated code are given in Table 1.

105

106

107

108

109

110

111

112

113

114

115

116

117

118

121

122

123

124

125

126

131

132

133

134

135

136

Figure 2. Quantitative pass rate comparison of all tested LLMs and, as a sanity check, the human reference solution: Measured fraction of passed tests visualized as box plot summarizing measurements from 47 test-cases. The corresponding, updated notebook is available online: https://github.com/haesleinhuepf/human-eval-bia/blob/main/demo/summarize_by_case.ipynb

4 Discussion

We presented a benchmark for comparing code generation capabilities of LLMs in the Bio-Image Analysis context. Such benchmarks are crucial to decide, e.g. if and how to apply this technology in routine projects, training or advanced applications. It shall be mentioned that we did not use any code-completion tools, such as github co-pilot, to write the test-cases. It is necessary to not use such LLM-based tools while writing the test-cases, because otherwise we might introduce a bias towards underlying LLMs. For example, github-copilot is based on chatGPT. If the test-cases were written using it, the benchmark might misleadingly reveal better performance of chatGPT. Inspecting the detailed reports for which test-cases were not solved by any LLM also revealed a couple of cases, which are considered simple, but still were not solvable. Examples are list_files_in_folder, open_image_return_dimensions and rgb_to_grey_transform. Modifying such test-cases now, after a first benchmark has been executed, must be done carefully. A peer-review scheme, e.g. using github pull-requests, is recommended to make sure good scientific practice is maintained. Additionally, we provide tools that enable to detect if the LLMs are attempting to use Python libraries which are not installed yet. These can be added and the evaluation step can be repeated. As we encourage to only add test-cases that can be implemented with common Python libraries, the manual effort for this quality assurance step is limited. When

Figure 3. Test-cases and corresponding pass@1 for each LLM. Pass@1 reports the probability that a generated solution works if a user asks the LLM just a single time. The corresponding, updated notebook is available online: https://github.com/haesleinhuepf/human-eval-bia/blob/main/demo/summarize_by_case.ipynb

maintaining this benchmark mid-/long-term modifications should be done with care, to not give advantages to specific LLMs. We limited sample generation for the benchmarking to 10 samples per LLM per test-case. pass@k analysis was done using k=1, k=5 and k=10. The established standard set by [5] is 200 samples and k=1, k=10 and k=100. As our benchmark is in early development (you are reading a preprint), we considered drawing 200 samples as not well-invested compute time and unnecessary costs. Once the benchmark contains more test-cases and models, this decision may be revised. The measured costs also demonstrate the potential of the technology. Requested code is commonly served within seconds, and drawing 300

samples from the 3 paid-per-prompt models causes minimal costs depending on the used model. When using LLMs on a daily basis, it appears unreasonable to draw hundreds of samples. Hence, using LLMs for BIA code generation is affordable and cost-efficient. Our benchmark is a single-shot benchmark presenting the prompt to the LLM with no history of a former conversation. In daily use, one can interact with LLMs using chat-interfaces and iteratively engineer a prompt. Thus, the tested LLMs may be more capable than measured in our experiment, when used in a chat scenario. The test-case selection may introduce a certain bias of the sub-discipline we work in. We mostly work with fluorescence microscopy imaging data, show-

ing nuclei and membranes. Most test-cases are derived from practical 159 situations we come across often. Mid-/long-term we hope that com-160 munity contributions to the benchmarks github repository will allow 161 us to reflect the field more broadly. For example, algorithms pro-162 cessing histological, hyperspectral, or super-resolution imaging data, 163 would be welcome in our test-case collection. On the other hand, we 164 consider test-cases without practical relevance in bio-image analysis 165 should not be part of the benchmark. For example, an algorithm im-166 plementing image-reconstruction techniques for computed tomogra-167 phy, or image-classification algorithms for natural images, showing cats and dogs, should not be included even though they might fit 169 technically in an image-processing benchmark. Also intentionally, 170 we included test-case and prompts which we presume are currently not solvable by any LLM. With this, the benchmark could serve to 172 guide LLM developers in this field. In our selection of tested LLMs 173 we see two groups of models, and one group seems more capable 174 than the other, expressed by twice as high pass rates. There might 175 be multiple reasons for this: 1) The tested open-source models are 176 much smaller than the tested commercial models, e.g. codellama has 177 7B parameters and the GPT models are about two orders of magni-178 tude larger. Obviously, model size limits LLM capabilities. 2) In Bioimage Analysis, we use some specific Python libraries, such as aic-180 simageio [3], vedo [14] or pyclesperanto_prototype [8], which might 181 not be mentioned in the training data of some models. On the other 182 hand, in natural image processing other libraries such as OpenCV 183 [11] are used more often than in our field, where scikit-image [20] is 184 more often used for similar purposes. As natural image processing is 185 also a vivid research field, the LLMs training data may contain more 186 use-cases from that field. Also the DS-1000 benchmark [13], focus-187 ing on general data-science use-cases, does not cover scikit-image 188 189 or opency. Hence, the test-cases in our benchmark may enable the LLM community to train models covering our BIA use-cases and the libraries established in our field better. We aim at developing this benchmark further, together with the support by the bio-image analysis community, by adding more test-cases. Furthermore, with the 193 development of the models, we also will adapt the benchmark de-194 pending on how LLMs develop. For example, currently upcoming 195 vision-models, LLMs that can take images as input, need to be con-196 sidered for benchmarking too. The benchmark we presented does not 197 have the capability to test vision-models. Another angle of further de-198 velopment could be efficiency of generated code as proposed earlier 199 [6]. In particular in the context of processing 3D+t fluorescence mi-200 croscopy imaging data, accelerated image processing techniques can 201 by key [7]. 202

5 Conclusion

203

205

207

208

209

210

211

212

213

214

215

216

We developed a benchmark for measuring LLM performance in generating code for solving BIA tasks. It can guide end-users to decide which LLM to use and potentially to pay for when using them for bio-image analysis coding tasks. We also consider this benchmark for LLM-developers in our domain as a metric to guide further development. Last but not least: We encourage the community to send pull-requests with new test-cases to the above-mentioned github repository to ensure the benchmark is covering needs in our field widely. This way, we wish to establish a community-driven approach to benchmarking LLMs for BIA.

References

[1] Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/claude-3-family, 2024.

[2] J. Austin, A. Odena, M. I. Nye, M. Bosma, H. Michalewski, et al. Program synthesis with large language models. *CoRR*, abs/2108.07732, 2021. URL https://arxiv.org/abs/2108.07732.

217

218

219

220

221

222

224

225

227

228

229

230

231

232

233

234

235

236

237

238

239

240

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

262

265

266

267

268

269

270

271

- [3] E. M. Brown, D. Toloudis, J. Sherman, M. Swain-Bowden, T. Lambert, and AICSImageIO Contributors. Aicsimageio: Image reading, metadata conversion, and image writing for microscopy images in pure python, 2021. URL https://github.com/AllenCellModeling/aicsimageio.
- [4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, et al. Language models are few-shot learners. *CoRR*, abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.
- [5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, et al. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.
- [6] M. Du, A. T. Luu, B. Ji, and S.-K. Ng. Mercury: An efficiency benchmark for llm code synthesis, 2024.
- [7] R. Haase, L. A. Royer, P. Steinbach, D. Schmidt, A. Dibrov, et al. Clij: Gpu-accelerated image processing for everyone. *Nature Methods*, 17 (1):5–6, 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0650-1. URL https://doi.org/10.1038/s41592-019-0650-1.
- [8] R. Haase, P. Rajasekhar, T. Lambert, grahamross123, J. Nunez-Iglesias, et al. clesperanto/pyclesperanto_prototype: 0.24.2, Dec. 2023. URL https://doi.org/10.5281/zenodo.10432619.
- [9] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, and A. Arora. Measuring coding challenge competence with apps, 2021.
- [10] G. Inc. Introduction to the vertex ai sdk for python. https://cloud.google.com/vertex-ai/docs/python-sdk/use-vertex-ai-python-sdk, 2024.
- [11] Itseez. Open source computer vision library. https://github.com/itseez/ opency, 2015.
- [12] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, et al. Mistral 7b, 2023.
- [13] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, S. W. tau Yih, D. Fried, S. Wang, and T. Yu. Ds-1000: A natural and reliable benchmark for data science code generation, 2022.
- [14] M. Musy et al. vedo, a python module for scientific analysis and visualization of 3d objects and point clouds. URL https://doi.org/10.5281/zenodo.2561401.
- [15] Ollama. Windows preview. https://ollama.com/blog/windows-preview, 2024.
- [16] L. A. Royer. The future of bioimage analysis: a dialog between mind and machine. *Nature Methods*, 20(7):951–952, 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-01930-y. URL https://doi.org/10.1038/ s41592-023-01930-y.
- [17] L. A. Royer. Omega harnessing the power of large language models for bioimage analysis. https://doi.org/10.5281/zenodo.8240289, 2023.
- [18] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, et al. Code llama: Open foundation models for code, 2024.
- [19] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, et al. Gemini: A family of highly capable multimodal models, 2024.
- [20] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors. scikit-image: image processing in python. *PeerJ*, 2:e453, jun 2014. ISSN 2167-8359. doi: 10.7717/peerj.453. URL https://doi.org/10.7717/peerj.453.
- [21] A. Yadav and M. Singh. Pythonsaga: Redefining the benchmark to evaluate code generating llm, 2024.