1-20 (cancelled).

- 21. (currently amended): A method of use of a softener composition for imparting hydrophilicity to textile fibre materials in domestic applications, which comprises treating washed textile fibre materials with a softener composition which comprises:
- A) a fabric softener;
- B) at least one additive selected from the group consisting of
 - a) a polyethylene, or a mixture thereof,
 - b) a fatty acid alkanolamido, or a mixture thereof,
 - c) a polysilicic acid, or a mixture thereof, and
 - d) a polyurethane, or a mixture thereof; and
- C) a dispersed polyorganosiloxane of formula (1)

(1)
$$R^{1}$$
 S_{1} C_{1} C_{3} C_{1} C_{2} C_{3} C_{3} C_{4} C_{3} C_{5} C_{7} C_{7}

wherein

R¹ is OH, OR² or CH₃,

R² is CH₃ or CH₂CH₃,

R³ is C₁-C₂₀alkoxy, CH₃, CH₂CHR⁴CH₂NHR⁵, or CH₂CHR⁴CH₂N(COCH₃)R⁵,

or (4)
$$(CH_2)_3 \longrightarrow N$$
 NR^8

R⁴ is H or CH₃,

 R^5 is H, $CH_2CH_2NHR^6$, $C(=O)-R^7$ or $(CH_2)_Z-CH_3$, z is 0 to 7, R^6 is H or $\dot{C}(=O)-\dot{R}^7$, R^7 is CH_3 , CH_2CH_3 or $CH_2CH_2CH_2OH$, R^8 is H or CH_3 , and the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5)

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

R⁹ is CH₃, CH₃CH₂ or phenyl,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

 $A = -CH_2CH(R^{11})(CH_2)_K$

 $B = -NR^{12}((CH_2)_I-NH)_mR^{12}$ or

n is 0 or 1,

when n is 0, U1 is N, when n is 1, U1 is CH,

I is 2 to 8,

k is 0 to 6,

m is 0 to 3,

R¹¹ is H or CH₃,

 R^{12} is H, C(=0)- R^{16} , $CH_2(CH_2)_pCH_3$ or

10/089,852 - 3 - HF/5-22102/A/PCT

p is 0 to 6,

R¹³ is NH, O, OCH₂CH(OH)CH₂N(butyl), OOCN(butyl)

R¹⁴ is H, linear or branched C₁-C₄alkyl, phenyl or CH₂CH(OH)CH₃,

R¹⁵ is H or linear or branched C₁-C₄alkyl,

R¹⁶ is CH₃, CH₂CH₃ or (CH₂)_aOH,

g is 1 to 6, and

U² is N or CH;

or a dispersed polyorganosiloxane of the formula (8)

(8)
$$R^{17} - Si - O = CH_3 - CH_3 -$$

wherein

R³ is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R¹⁸ is CH₃ or CH₂CH₃,

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21} ,

m is 3 to 25.

n is 0 to 10,

 R^{20} is the direct bond or $CH_2CH(R^{22})(CH_2)_pR^{23}$,

p is 1 to 4,

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂,

R²² is H or CH₃,

R²³ is O or NH,

 R^{24} is linear or branched C_1 - C_8 alkyl or $Si(R^{25})_3$,

 R^{25} is R^{24} , OCH₃ or OCH₂CH₃,

EO is -CH₂CH₂O-,

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and the sum of X₁,Y₁ and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9)

wherein

R²⁶ is linear or branched C₁-C₂₀alkoxy or CH₂CH(R⁴)R²⁹,

R4 is as previously defined,

R²⁹ is linear or branched C₁-C₂₀alkyl,

 R^{27} is aryl, aryl substituted by linear or branched C_1 - C_{10} alkyl, linear or branched C_1 - C_{20} alkyl substituted by aryl or aryl substituted by linear or branched C_1 - C_{10} alkyl, R^{28} is

(10)
$$(CH_2)_3$$
— O — CH_2 — CH_2 — CH_2 , and

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof,

in which the nitrogen content of the aqueous emulsion due to the polyorganosiloxane is from 0.001 to 0.25 % with respect to the silicon content.

22. (currently amended): A method of use according to claim 21 wherein the polyorganosiloxane is of formula (1):

(1)
$$R^{1} - S_{1} - O_{1} - C_{1} -$$

wherein

10/089,852 - 5 - HF/5-22102/A/PCT

 R^1 is OH, OR^2 or CH_3 R^2 is CH_3 or CH_2CH_3 R^3 is C_1 - C_{20} alkoxy, CH_3 , $CH_2CHR^4CH_2NHR^5$, or

(2)
$$(CH_2)_3O$$
 NR⁸
or (3) $(CH_2)_3NH$ CH

R⁴ is H or CH₃, R⁵ is H, CH₂CH₂NHR⁶, C(=O)-R⁷, R⁶ is H or C(=O)-R⁷, R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH, R⁸ is H or CH₃, and the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5);

(5)
$$(R^9)_V (R^{10})_W \text{ Si-A-B}$$

wherein

R⁹ is CH₃ or CH₃CH₂,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

 $A = -CH_2CH(R^{11})(CH_2)_K$

B=

(6)
$$-(R^{13})_{n}U^{1}$$
 $U^{2}-R^{14}$ $CH_{2}-C$ R^{15} R^{15}

n is 1, $U^{1} \text{ is CH,}$ k is 0 to 6, $R^{11} \text{ is H or CH}_{3},$ $R^{13} \text{ is OOCN(butyl),}$ $R^{14} \text{ is H, linear C}_{1}\text{-C}_{4}\text{alkyl, phenyl,}$ $R^{15} \text{ is H or linear C}_{1}\text{-C}_{4}\text{alkyl, and}$ $U^{2} \text{ is N:}$

or a dispersed polyorganosiloxane of the formula (8);

(8)
$$R^{17} - S_{i} - O = \begin{bmatrix} CH_{3} \\ S_{i} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ S_{i} -$$

wherein

R³ is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R¹⁸ is CH₃ or CH₂CH₃,

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21} ,

m is 3 to 25,

n is 0 to 10,

 R^{20} is the direct bond or $CH_2CH(R^{22})(CH_2)_pR^{23}$,

p is 1 to 4,

10/089,852 - 7 - HF/5-22102/A/PCT

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂,

R²² is H or CH₃.

R²³ is O or NH,

R²⁴ is linear or branched C₁-C₃alkyl or Si(R²⁵)₃,

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,

EO is -CH2CH2O-,

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and

the sum of X_1, Y_1 and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9);

$$(9) \quad H_{3}C - Si - O = \begin{bmatrix} CH_{3} \\ | \\ Si - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ Si$$

wherein

R²⁶ is linear C₁-C₂₀alkoxy,

R⁴ is as previously defined,

R²⁹ is linear C₁-C₂₀alkyl,

R²⁷ is CH₂CH(R⁴)phenylpenyl,

R²⁸ is

(10)
$$(CH_2)_3$$
 $-CH_2$ $-CH_2$ $-CH_2$, and

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

23. (previously presented): A method of use according to claim 21 wherein a polyorganosiloxane of formula (1) is used, wherein

R¹ is OH or CH₃,

R³ is CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵,

R⁴ is H.

R⁵ is H or CH₂CH₂NHR⁶, R⁶ is H or C(=O)-R⁷, and R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH.

24. (previously presented): A method of use according to claim 1 wherein a polyorganosiloxane of formula (8) is used, wherein

 R^3 is CH_3 , C_{10} - C_{20} alkoxy or $CH_2CHR^4CH_2NHR^5$,

R⁴ is H.

R⁵ is H or CH₂CH₂NHR⁶,

 R^6 is H or C(=0)- R^7 ,

R⁷ is CH₂CH₃, CH₂CH₂CH₂OH or CH₃, and

R₁₇ is CH₃ or OH.

25. (previously presented): A method of use according to claim 21 wherein a polyorganosiloxane of formula (9) is used, wherein

R²⁶ is CH₂CH(R⁴)R²⁹,

R⁴ is H, and

R²⁷ is 2-phenylpropyl.

- 26. (previously presented): A method of use according to claim 21 wherein the composition is a liquid aqueous composition.
- 27. (previously presented): A method of use according to claim 21 wherein the composition is used in a tumble dryer sheet composition.
- 28. (previously presented): A method of use according to claim 21 in which the polyorganosiloxane is nonionic or cationic.
- 29. (previously presented): A method of use according to claim 21 in which the composition has a solids content of 5 to 70 % at a temperature of 120°C.
- 30. (previously presented): A method of use according to claim 21 in which the composition contains a water content of 25 to 90 % by weight based on the total weight of the composition.

10/089,852 - 9 - HF/5-22102/A/PCT

- 31. (previously presented): A method of use according to claim 21 in which the composition has a pH value from 2 to 7.
- 32-36. (cancelled).
- 37. (previously presented): A method of use according to claim 21 wherein the composition is prepared by mixing a preformulated fabric softener with an emulsion comprising the polyorganosiloxane and the additive.
- 38. (previously presented): A method of use according to claim 21 wherein composition has a clear appearance.
- 39. (cancelled).
- 40. (previously presented): A tumble dryer sheet comprising a composition as defined in claim 21.

10/089,852 - 10 - HF/5-22102/A/PCT