Complicated and Important-Sounding Thesis Title

by

© Yunxiao Wang

A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Physics
University of Virginia

November 2016

Abstract

Historically, ³He targets for electron scattering experiments have been polarized through spin-exchange optical pumping (SEOP). Polarized laser light passes its circular polarization to alkali metal vapor, which then transfers its polarization to ³He through spin-exchange collisions.

This thesis discusses the basics of SEOP and the polarimetry techniques used in our lab. Narrowband laser and alkali-hybrid SEOP have improved the performance of targets significantly. In alkali-hybrid SEOP, potassium is used together with rubidium for transferring polarization to ³He nuclei. We discussed the data collected over many pure-rubidium targets and alkali-hybrid targets. In the course of analyzing the data, we also studied the "X factor" which limits the highest achievable polarization of ³He.

Because the experiments planned for the 12GeV era in Jefferson National Laboratory (JLAB) will use much higher electron beam current, we are exploring the possibility of using metal (instead of glass) as the entry points (commonly referred to as "end windows") for future targets. We established the metal composition and developed the techniques to incorporate metal to targets without introducing significant spin-relaxation rates. We have successfully demonstrated that future targets can be constructed with metal end windows and are very close to making such targets.

Acknowledgements

Put your acknowledgements here...

"Intellectual and practical assistance, advice, encouragement and sources of monetary support should be acknowledged. It is appropriate to acknowledge the prior publication of any material included in the thesis either in this section or in the introductory chapter of the thesis."

— MUN School of Graduate Studies

Contents

\mathbf{A}	bstra	ct		ii
A	ckno	wledger	nents	iii
Li	${ m st}$ of	Tables		viii
Li	${ m st}$ of	Figure	s	xi
1	Intr	oductio	on	1
	1.1	Overvie	ew of Recent Target Development	1
	1.2	New G	eneration Target Cells	3
	1.3	Structu	are of This Thesis	5
2	Spin	n-Excha	ange Optical Pumping	7
	2.1	Overvie	ew	7
	2.2	Optical	l pumping	8
		2.2.1	Rb for SEOP	8
		2.2.2	Vapor Pressure Curves	9
		2.2.3	Energy Levels of Alkali Metal in External Magnetic Field	9

		2.2.4	Optical Pumping Process Overview	11
		2.2.5	Optical Pumping Rate	13
		2.2.6	Polarization Time Evolution	17
		2.2.7	Rb Spin Destruction Rate	19
	2.3	Spin E	Exchange	20
		2.3.1	Spin-Dependent Interactions	20
		2.3.2	Spin Exchange Rate	25
	2.4	³ He S ₁	pinup and Relaxation	26
	2.5	X Fac	tor	27
3	3 He	Polar	imetry	29
	3.1	Overv	iew	29
	3.2	Adiab	atic Fast Passage	30
		3.2.1	Nuclear Magnetic Resonance	30
		3.2.2	The Rotating Coordinate System	31
			3.2.2.1 Classical Formulation	31
			3.2.2.2 Quantum Mechanical Formulation	32
		3.2.3	Adiabatic Fast Passage	33
		3.2.4	AFP Loss	38
	3.3	Electr	on Paramagnetic Resonance	40
		3.3.1	Overview	40
		3.3.2	The Breit-Rabi Equation	42
		3.3.3	Shift of Zeeman Frequency	43
		3.3.4	Experimental Methods	4.5

		3.3.4.1 Overview	45
		3.3.4.2 Locating Zeeman Transition Frequency	46
		3.3.4.3 EPR Spin Flip Process	47
	3.4	Pulsed Nuclear Magnetic Resonance	50
		3.4.1 The Rotating Coordinate System	51
		3.4.2 Free Induction Decay	52
		3.4.3 Experimental Methods	55
4	Dev	velopment of Hybrid Targets	59
	4.1	Overview	59
	4.2	Development of Hybrid Targets	60
		4.2.1 Experimental Methods	62
		4.2.1.1 The 3 He Targets	62
		4.2.1.2 Target Cell Polarization Dynamics	64
		4.2.1.3 Initial Spinup	69
	4.3	The K- ³ He Spin-Exchange Rate Constant	73
	4.4	The X Factor	76
5	Dev	velopment of Cells with Metal End Windows	87
	5.1	Overview	87
	5.2	Wall Relaxation of ${}^{3}\mathrm{He}$	89
		5.2.1 Relaxation on Glass Surfaces	89
		5.2.2 Relaxation on Metal Surfaces	93
	5.3	Test Cell Fabrication	95
		5.3.1 Overview	O.F

	5.3.2	Glass-Metal Seal	97
	5.3.3	Mechanical Polishing and Electropolishing	98
	5.3.4	Electroplating	100
	5.3.5	Final Assembly of the Cell	100
5.4	Cell Fi	ill Procedure	102
	5.4.1	Cell Fill Preparation	102
	5.4.2	Cell Fill	104
5.5	Experi	mental Setup and Procedure	106
	5.5.1	Pickup Coils	106
	5.5.2	Gradient Coils	107
	5.5.3	Laser Setup	109
	5.5.4	PNMR Losses and Corrected Lifetime	110
5.6	Relaxa	ation Measurement Results and Discussion	116
	5.6.1	Gold Coated Spherical Cell	117
	5.6.2	Gold Coated Spool Pieces	119
	5.6.3	Vertical Cells	120
	5.6.4	Horizontal Cells	124
	5.6.5	GE180 Cells	126
	5.6.6	Titanium Tubes	128
Bibliog	raphy		129

List of Tables

2.1	Pressure broadening of Rb D_1 lines by ${}^{3}\mathrm{He},{}^{4}\mathrm{He}$ and $\mathrm{N}_2.$ The broaden-	
	ing and shifting density coefficients are listed. The 4th and 6th columns	
	are the temperature dependence for He and N_2 , respectively. All co-	
	efficients are given for 353 K, values for different temperatures can be	
	calculated with the temperature dependence	14
4.1	The table contains the names, total and pumping chamber volumes,	
	fill densities and target chamber lengths of the 24 target cells. The fill	
	densities are the average of the results from gas system measurements	
	and pressure broadening measurements	6.5

4.2	Cell Performance for three sets of experiments: saGDH (top), GEN	
	(middle), and Transversity & d_2^n (bottom). Within each experiment	
	grouping, data is grouped by type of laser used (B = Broadband, N	
	= Narrowband). I_0 is the nominal incident laser intensity at the cen-	
	ter of the pumping chamber. T_{pc}^{set} is the oven set temperature. P_{pc}^{∞}	
	is the equilibrium polarization in the pumping chamber and Γ_s is the	
	slow time constant extracted from the five parameter fit to the po-	
	larization build up curve. Γ_c is the cell-averaged room temperature	
	spin relaxation rate. $\langle P_A \rangle/P_A^l$ is the volume averaged to line averaged	
	alkali polarizaiton ratio determined from the optical pumping simula-	
	tion. P_A^l is the measured line averaged alkali polarization. $D_{fr}\&D_{pb}$	
	are the K to Rb density ratios determined from Faraday rotation and	
	pressure broadening measurements. $[Rb]_{fr}$ is the Rb number density	
	measured from Faraday rotation. ΔT_{He} is the temperature of Rb in-	
	ferred from the number density relative to the oven set temperature.	
	ΔT_{He} is the temperature of ³ He inferred from temperature tests rela-	
	tive to the oven set temperature. X is the best combined value for the	
	X-factor. * indicates X was measured using only spinup, alkali polar-	
	ization, and Faraday rotation data. † indicates X was also measured	
	using the early-time behavior of the spinup	78
4.3	Shown are the values of the X factor at the indicated over set tempera-	
	tures. The last column is a weighted average of results from either the	
	first two methods or all four methods. A † indicates combined values	
	computed with all 4 methods	84

5.1	Shown are the fill information, design and maximum measured lifetime	
	of the test cells. Fill type is the method used to clean the gas. †	
	indicates the maximum lifetime was obtained at an elevated position.	
	Although canary glass is not metal, it is listed in the column of metal	
	for Tweety and Sylvester for the sake of keeping the structure of the	
	table simple	118

List of Figures

1.1	A schematic representation of a target cell. The dimensions of different	
	parts of the cell are not to scale	3
1.2	A diagram of convection style target cell with metal end windows	5
2.1	Rb And K Number Density Curves	10
2.2	Level Diagram of $^{87}\mathrm{Rb}$. The splittings are not to scale. Adapted from	
	Dolph's PhD thesis	12
2.3	The interaction of alkali-metal atoms with left-circularly (σ^+) polar-	
	ized light. (from Ref. [67])	13
2.4	Absorption cross section for Rb D_1 line in the presence of three dif-	
	ferent densities of ³ He. (from Ref. [56])	15
2.5	The shift and the broadening due to presence of ${}^3\mathrm{He}$ for Rb D_1 and	
	D_2 lines. (from Ref. [56])	16
2.6	A. Formation and breakup of alkali-metal/noble-gas van der Waals	
	molecule. B. Binary collision between an alkali-metal atom and a	
	noble-gas atom. (from Ref. [67])	22
2.7	Strengths of various spin-dependent interactions as functions of sepa-	
	ration(from Ref. [67])	23

3.1	EPR (left) and AFP (right) setup. Adapted from Dolph's PhD thesis.	33
3.2	Effective field in the rotating frame during an Adiabatic Fast Passage	
	measurement. The $^3\mathrm{He}$ spins follow the direction of the effective field.	
	B_{1} is exaggerated to show different components of effective field clearly.	36
3.3	A typical AFP signal. y axis is in arbitrary unit	37
3.4	Fractional AFP loss (single flip) as a function of field gradient	40
3.5	A typical FM sweep on a hybrid cell. The central region between the	
	minimum and maximum is fitted to a line. The zero crossing point	
	corresponds to the Zeeman transition frequency	48
3.6	The same P.I. circuit that was first used by Romalis in our lab. The	
	drawing was then corrected by Peter Dolph.[5]	49
3.7	An EPR measurement for a hybrid cell at 235°C	50
3.8	PNMR setup	52
3.9	A PNMR signal taken with gold coated test cell	57
4.1	Shown are two figures of merit (FOM) for targets built for the indicated	
	experiments. The circles (left axis) indicate the luminosity weighted	
	by the square of polarization. The bars (right axis) represent the total	
	number of spins being polarized per second weighted by the square	
	of polarization. While the right FOM is an indication of the poten-	
	tial of the polarization technique, the left FOM indicates performance	
	achieved during an experiment. The scales have been normalized so	
	that the two FOMs have the same height for the cell marked E142	62

4.2	A target cell. The dimensions of different parts of the cell are not to	
	scale	63
4.3	(a) Shown is a spinup of the target Brady. The spinup data has been	
	fit with a 3-parameter and a 5-parameter formalism. (b) The residuals	
	of the two fits. The error for 3-parameter fit is larger because it does	
	not account for diffusion between two chambers	66
4.4	³ He polarization as a function of time for both the pumping chamber	
	and the target chamber. The top curve is the pumping chamber and	
	the bottom curve is the target chamber. Data was taken at a fast pace	
	so there would be enough points to demonstrate the initial behavior.	70
4.5	Plotted is the ratio $\mathbf{m}_{pc}^F/\mathbf{m}_{pc}^s$ for eight separate measurements. The	
	numbers above the cell names are the oven set temperatures at which	
	the measurements were made. Difference between open and closed	
	points is discussed in the text	76
4.6	The cell-averaged spin-exchange rate $\langle \gamma_{se} \rangle$ is calculated using data from	
	Faraday rotation and the spin-exchange constants k_{se}^{Rb} and k_{se}^{K} . The	
	three linear fits shown here are constrained to go through zero. The	
	errors quoted in values of X factor include the uncertainty in our de-	
	termination of k_{se}^K	81
4.7	Shown are the combined values for X factor (either X_{12} or X_{1234} de-	
	pending on the availability of data) versus temperature for the cell	
	Sosa, Simone and Antoinette.	85

5.1	Shown on the left is a glass-to-metal-to-glass seal. The metal tube is	
	5" long by 1" outer diameter. The glass is wetted onto the knife-edge	
	of copper on both ends. Shown on the right is a finished cell with the	
	glass-to-metal-to-glass tube attached	96
5.2	Glass-to-metal seals survived pressure higher than 20 atm	97
5.3	Electropolishing [30]	99
5.4	Shown left is the inner surface of a gold coated OFHC copper tube.	
	Shown right is a OFHC copper tube without coating	101
5.5	Ultrasonic cleaner with 3 tubes being cleaned	101
5.6	Shown is the design of a typical string for our test cells	103
5.7	A diagram of a Pyrex string with a cell and a retort attached while con-	
	nected to the gas system through the bellows. Adapted from Matyas [47].	104
5.8	Diagram of the coils. Adapted from Zheng [71]	108
5.9	Optics for spin-exchange optical pumping. Adapted from Zheng [71].	111
5.10	PNMR setup	112
5.11	A PNMR signal taken with gold coated test cell	114
5.12	$3~{\rm spindowns}$ of the cell Golden Vec1 each with a different sampling rate.	115
5.13	A linear fit to extract lifetime corrected for relaxation due to PNMR	
	losses.	116
5.14	A diagram of target cell with metal end windows	117
5.15	A picture of Gold Maiden, generally referred to as the "spool piece".	119
5.16	Design and picture of Goldfinger	121

5.17	The observed degradation of lifetime for Goldfinger (left) and Cupid	
	(right). Shown in each of the two plots were several spindowns at	
	different stage during the tests. The initial amplitude of the spindowns	
	were scaled to 1 for better comparison of lifetime	122
5.18	A picture of Golden Eye, the only test cell made with a valve	123
5.19	Four spindowns of Goldrush before elevating the cell. All four mea-	
	surements display similar lifetime with no obvious sign of degradation.	124
5.20	Shown on the right is the inhomogeneities vs. vertical distance from	
	the center of the field. Shown on the left is the cell Goldrush with	
	relaxation time due to field inhomogeneities as displayed on the right.	125
5.21	Design of the horizontal cell GoldenVec	125

Bibliography

- Nuclear relaxation of ³he gas on various solid surfaces. Canadian Journal of Physics, 1971.
- [2] Physics of practical spin-exchange optical pumping. *PhD thesis, University of Wisconsin-Madison*, 2001.
- [3] Spin-exchange optical pumping with alkali-metal vapors. *PhD thesis, University of Wisconsin-Madison*, 2005.
- [4] Alkali-hybrid spin-exchange optically-pumped polarized ³he targets used for studying neutron structure. *PhD thesis, University of Virginia*, 2010.
- [5] High-performance nuclear-polarized ³He targets for electron scattering based on spin-exchange optical pumping. *PhD thesis, University of Virginia*, 2010.
- [6] A. Abragam. Principles of Nuclear Magnetism.
- [7] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer, and A. Wishnia. Biological magnetic resonance imaging using laser-polarized ¹²⁹xe. *Nature*, 370.

- [8] M. Amarian, L. Auerbach, T. Averett, J. Berthot, P. Bertin, W. Bertozzi, T. Black, E. Brash, D. Brown, E. Burtin, J. R. Calarco, G. D. Cates, Z. Chai, J.-P. Chen, S. Choi, E. Chudakov, E. Cisbani, C. W. de Jager, A. Deur, R. DiSalvo, S. Dieterich, P. Djawotho, M. Finn, K. Fissum, H. Fonvieille, S. Frullani, H. Gao, J. Gao, F. Garibaldi, A. Gasparian, S. Gilad, R. Gilman, A. Glamazdin, C. Glashausser, E. Goldberg, J. Gomez, V. Gorbenko, J.-O. Hansen, F. W. Hersman, R. Holmes, G. M. Huber, E. W. Hughes, T. B. Humensky, S. Incerti, M. Iodice, S. Jensen, X. Jiang, C. Jones, G. M. Jones, M. Jones, C. Jutier, A. Ketikyan, I. Kominis, W. Korsch, K. Kramer, K. S. Kumar, G. Kumbartzki, M. Kuss, E. Lakuriqi, G. Laveissiere, J. Lerose, M. Liang, N. Liyanage, G. Lolos, S. Malov, J. Marroncle, K. McCormick, R. McKeown, Z.-E. Meziani, R. Michaels, J. Mitchell, Z. Papandreou, T. Pavlin, G. G. Petratos, D. Pripstein, D. Prout, R. Ransome, Y. Roblin, D. Rowntree, M. Rvachev, F. Sabatie, A. Saha, K. Slifer, P. A. Souder, T. Saito, S. Strauch, R. Suleiman, K. Takahashi, S. Teijiro, L. Todor, H. Tsubota, H. Ueno, G. Urciuoli, R. Van der Meer, P. Vernin, H. Voskanian, B. Wojtsekhowski, F. Xiong, W. Xu, J.-C. Yang, B. Zhang, and P. Zolnierczuk. Q^2 evolution of the generalized gerasimov-drell-hearn integral for the neutron using a ³He target. Phys. Rev. Lett., 89:242301, Nov 2002.
- [9] P. L. Anthony, R. G. Arnold, H. R. Band, H. Borel, P. E. Bosted, V. Breton, G. D. Cates, T. E. Chupp, F. S. Dietrich, J. Dunne, R. Erbacher, J. Fellbaum, H. Fonvieille, R. Gearhart, R. Holmes, E. W. Hughes, J. R. Johnson, D. Kawall, C. Keppel, S. E. Kuhn, R. M. Lombard-Nelsen, J. Marroncle, T. Maruyama, W. Meyer, Z.-E. Meziani, H. Middleton, J. Morgenstern, N. R. Newbury, G. G.

- Petratos, R. Pitthan, R. Prepost, Y. Roblin, S. E. Rock, S. H. Rokni, G. Shapiro, T. Smith, P. A. Souder, M. Spengos, F. Staley, L. M. Stuart, Z. M. Szalata, Y. Terrien, A. K. Thompson, J. L. White, M. Woods, J. Xu, C. C. Young, and G. Zapalac. Determination of the neutron spin structure function. *Phys. Rev. Lett.*, 71:959–962, Aug 1993.
- [10] S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer. Theory of spin-exchange optical pumping of ³He and ¹²⁹Xe. *Phys. Rev. A*, 58:1412–1439, Aug 1998.
- [11] E. Babcock, B. Chann, T. G. Walker, W. C. Chen, and T. R. Gentile. Limits to the polarization for spin-exchange optical pumping of ³He. *Phys. Rev. Lett.*, 96:083003, Mar 2006.
- [12] E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker. Hybrid spin-exchange optical pumping of ³He. *Phys. Rev. Lett.*, 91:123003, Sep 2003.
- [13] E. Babcock, I. A. Nelson, S. Kadlecek, and T. G. Walker. ³He polarization-dependent epr frequency shifts of alkali-metal ³He pairs. *Phys. Rev. A*, 71:013414, Jan 2005.
- [14] R. M. Barrer. Diffusion in and through Solids.
- [15] A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer. Polarization of ³He by spin exchange with optically pumped rb and k vapors. *Phys. Rev. Lett.*, 80:2801–2804, Mar 1998.

- [16] F. Bloch. Nuclear induction. Phys. Rev., 70:460–474, Oct 1946.
- [17] M. A. Bouchiat, T. R. Carver, and C. M. Varnum. Nuclear polarization in he³ gas induced by optical pumping and dipolar exchange. *Phys. Rev. Lett.*, 5:373–375, Oct 1960.
- [18] G. Breit and I. I. Rabi. Measurement of nuclear spin. Phys. Rev., 38:2082–2083, Dec 1931.
- [19] A. C., V. Itkin, and H. M.K. Candadian Metallurgial Quarterly, 23, 1984.
- [20] P. Callaghan. Principles of Nuclear Magnetic Resonance Microscopy.
- [21] G. D. Cates. Polarized targets in high energy physics. Proceedings of the 1993 Summer Institute on Particle Physics: Spin Structure in High Energy Processes (SSI93), SLAC-R-444:185–207, 1993.
- [22] G. D. Cates, S. R. Schaefer, and W. Happer. Relaxation of spins due to field inhomogeneities in gaseous samples at low magnetic fields and low pressures. *Phys. Rev. A*, 37:2877–2885, Apr 1988.
- [23] G. D. Cates, D. J. White, T.-R. Chien, S. R. Schaefer, and W. Happer. Spin relaxation in gases due to inhomogeneous static and oscillating magnetic fields. *Phys. Rev. A*, 38:5092–5106, Nov 1988.
- [24] B. Chann, E. Babcock, L. Anderson, T. Walker, W. Chen, T. Smith, A. Thompson, and T. Gentile. Production of highly polarized ³he using spectrally narrowed diode laser array bars. *Journal of applied physcis*, 94:6908–6914.

- [25] B. Chann, E. Babcock, L. W. Anderson, and T. G. Walker. Measurements of ³He spin-exchange rates. *Phys. Rev. A*, 66:032703, Sep 2002.
- [26] W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock. Spin-exchange optical pumping of ³He with rb-k mixtures and pure k. *Phys. Rev. A*, 75:013416, Jan 2007.
- [27] T. E. Chupp, M. E. Wagshul, K. P. Coulter, A. B. McDonald, and W. Happer. Polarized, high-density, gaseous ³He targets. *Phys. Rev. C*, 36:2244–2251, Dec 1987.
- [28] F. D. Colegrove, L. D. Schearer, and G. K. Walters. Polarization of he³ gas by optical pumping. *Phys. Rev.*, 132:2561–2572, Dec 1963.
- [29] K. Coulter, A. McDonald, W. Happer, T. Chupp, and M. Wagshul. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 270:90–94, 1988.
- [30] I. Delstar Metal Finishing. https://www.delstar.com/electropolishing.
- [31] A. Deninger, W. Heil, W. E. Otten, M. Wolf, K. R. Kremer, and A. Simon. Paramagnetic relaxation of spin polarized 3he at coated glass walls. *The European Physical Journal D Atomic, Molecular, Optical and Plasma Physics*, 38(3):439–443, 2006.
- [32] P. A. M. Dolph, J. Singh, T. Averett, A. Kelleher, K. E. Mooney, V. Nelyubin, W. A. Tobias, B. Wojtsekhowski, and G. D. Cates. Gas dynamics in high-

- luminosity polarized ³he targets using diffusion and convection. *Phys. Rev. C*, 84:065201, Dec 2011.
- [33] W. A. Fitzsimmons, L. L. Tankersley, and G. K. Walters. Nature of surface-induced nuclear-spin relaxation of gaseous he³. Phys. Rev., 179:156–165, Mar 1969.
- [34] J. Frenkel. Kinetic Theory of Liquids.
- [35] R. L. Gamblin and T. R. Carver. Polarization and relaxation processes in he³ gas. Phys. Rev., 138:A946–A960, May 1965.
- [36] L. E. Glass. http://www.larsonelectronicglass.com.
- [37] W. Happer, G. Cates, M. Romalis, and C. Erickson. U.s. patent no. 6318092.
 2001.
- [38] W. Heil, H. Humblot, E. Otten, M. Schafer, R. Sarkau, and M. Leduc. Very long nuclear relaxation times of spin-polarized ³he in metal coated cells. *Phys. Rev.* A, 201:337–343, May 1995.
- [39] W. G. Houskeeper. The art of sealing base metals through glass. Transactions of the American Institute of Electrical Engineers, XLII:870–877, 1923.
- [40] M. F. Hsu, G. D. Cates, I. Kominis, I. A. Aksay, and D. M. Dabbs. Sol-gel coated glass cells for spin-exchange polarized 3he. Applied Physics Letters, 77(13):2069– 2071, 2000.

- [41] M. G. Huber, M. Arif, T. C. Black, W. C. Chen, T. R. Gentile, D. S. Hussey, D. A. Pushin, F. E. Wietfeldt, and L. Yang. Precision measurement of the n-3he incoherent scattering length using neutron interferometry. 102, 2009.
- [42] E. T. Inc. http://www.epner.com.
- [43] J. Jackson. Classical Electrodynamics.
- [44] C. Kittel. Introduction to Solid State Physics.
- [45] J. Korringa. Nuclear magnetic relaxation and resonance line shift in metals. *Physica*, 16, 1950.
- [46] B. Larson, O. Hausser, P. P. J. Delheij, D. M. Whittal, and D. Thiessen. Optical pumping of rb in the presence of high-pressure ³He buffer gas. *Phys. Rev. A*, 44:3108–3118, Sep 1991.
- [47] D. Matyas. Characterizing ³he nuclear spin relaxation in vessels of glass and metal. *Master thesis, University of Virginia*, 2016.
- [48] E. Merzbacher. Quantum Mechanics. 1998.
- [49] N. R. Newbury, A. S. Barton, P. Bogorad, G. D. Cates, M. Gatzke, B. Saam, L. Han, R. Holmes, P. A. Souder, J. Xu, and D. Benton. Laser polarized muonic helium. *Phys. Rev. Lett.*, 67:3219–3222, Dec 1991.
- [50] N. R. Newbury, A. S. Barton, G. D. Cates, W. Happer, and H. Middleton. Gaseous ³-³he magnetic dipolar spin relaxation. *Phys. Rev. A*, 48:4411–4420, Dec 1993.

- [51] X. Qian, K. Allada, C. Dutta, J. Huang, J. Katich, Y. Wang, Y. Zhang, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J.-P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H.-J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z.-E. Meziani, R. Michaels, B. Moffit, C. Muñoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Sirca, S. Stepanyan, R. Subedi, V. Sulkosky, L.-G. Tang, A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y.-W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, and X. Zong. Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized ³He target at $Q^2 = 1.4$ [~]2.7 gev². Phys. Rev. Lett., 107:072003, Aug 2011.
- [52] I. I. Rabi, N. F. Ramsey, and J. Schwinger. Use of rotating coordinates in magnetic resonance problems. Rev. Mod. Phys., 26:167–171, Apr 1954.

- [53] M. L. R.Barbe and F. Laloe. Experimental verifications measurement of the he3 self-diffusion coefficient. 35:935–951, 1974.
- [54] S. Riordan, S. Abrahamyan, B. Craver, A. Kelleher, A. Kolarkar, J. Miller, G. D. Cates, N. Liyanage, B. Wojtsekhowski, A. Acha, K. Allada, B. Anderson, K. A. Aniol, J. R. M. Annand, J. Arrington, T. Averett, A. Beck, M. Bellis, W. Boeglin, H. Breuer, J. R. Calarco, A. Camsonne, J. P. Chen, E. Chudakov, L. Coman, B. Crowe, F. Cusanno, D. Day, P. Degtyarenko, P. A. M. Dolph, C. Dutta, C. Ferdi, C. Fernández-Ramírez, R. Feuerbach, L. M. Fraile, G. Franklin, S. Frullani, S. Fuchs, F. Garibaldi, N. Gevorgyan, R. Gilman, A. Glamazdin, J. Gomez, K. Grimm, J.-O. Hansen, J. L. Herraiz, D. W. Higinbotham, R. Holmes, T. Holmstrom, D. Howell, C. W. de Jager, X. Jiang, M. K. Jones, J. Katich, L. J. Kaufman, M. Khandaker, J. J. Kelly, D. Kiselev, W. Korsch, J. LeRose, R. Lindgren, P. Markowitz, D. J. Margaziotis, S. M.-T. Beck, S. Mayilyan, K. McCormick, Z.-E. Meziani, R. Michaels, B. Moffit, S. Nanda, V. Nelyubin, T. Ngo, D. M. Nikolenko, B. Norum, L. Pentchev, C. F. Perdrisat, E. Piasetzky, R. Pomatsalyuk, D. Protopopescu, A. J. R. Puckett, V. A. Punjabi, X. Qian, Y. Qiang, B. Quinn, I. Rachek, R. D. Ransome, P. E. Reimer, B. Reitz, J. Roche, G. Ron, O. Rondon, G. Rosner, A. Saha, M. M. Sargsian, B. Sawatzky, J. Segal, M. Shabestari, A. Shahinyan, Y. Shestakov, J. Singh, S. Sirca, P. Souder, S. Stepanyan, V. Stibunov, V. Sulkosky, S. Tajima, W. A. Tobias, J. M. Udias, G. M. Urciuoli, B. Vlahovic, H. Voskanyan, K. Wang, F. R. Wesselmann, J. R. Vignote, S. A. Wood, J. Wright, H. Yao, and X. Zhu. Measurements of the electric form factor of the neutron up to $Q^2 = 3.4~{\rm gev}^2$ using

- the reaction $\stackrel{3}{\text{he}} \stackrel{\rightarrow}{(e,e'n)}pp$. Phys. Rev. Lett., 105:262302, Dec 2010.
- [55] M. V. Romalis and G. D. Cates. Accurate ³He polarimetry using the rb zeeman frequency shift due to the Rb-³He spin-exchange collisions. *Phys. Rev. A*, 58:3004–3011, Oct 1998.
- [56] M. V. Romalis, E. Miron, and G. D. Cates. Pressure broadening of rb d₁ and d₂ lines by ³he, ⁴he, n₂, and xe: line cores and near wings. *Phys. Rev. A*, 56(6), 1997.
- [57] L. D. Schearer, F. D. Colegrove, and G. K. Walters. Large he³ nuclear polarization. *Phys. Rev. Lett.*, 10:108–110, Feb 1963.
- [58] L. D. Schearer and G. K. Walters. Nuclear spin-lattice relaxation in the presence of magnetic-field gradients. *Phys. Rev.*, 139:A1398–A1402, Aug 1965.
- [59] J. Schmiedeskamp, W. Heil, W. E. Otten, K. R. Kremer, A. Simon, and J. Zimmer. Paramagnetic relaxation of spin polarized 3he at bare glass surfaces. The European Physical Journal D Atomic, Molecular, Optical and Plasma Physics, 38(3):427–438, 2006.
- [60] J. T. Singh, P. A. M. Dolph, W. A. Tobias, T. D. Averett, A. Kelleher, K. E. Mooney, V. V. Nelyubin, Y. Wang, Y. Zheng, and G. D. Cates. Development of high-performance alkali-hybrid polarized ³He targets for electron scattering. *Phys. Rev. C*, 91:055205, May 2015.
- [61] C. P. Slichter. Principles of Magnetic Resonance.
- [62] W. Smythe. Static and Dynamic Electricity.

- [63] A. E. A. M. I. Technologies. http://www.ableelectropolishing.com.
- [64] T. V. Tscherbul, P. Zhang, H. R. Sadeghpour, and A. Dalgarno. Anisotropic hyperfine interactions limit the efficiency of spin-exchange optical pumping of ³He nuclei. *Phys. Rev. Lett.*, 107:023204, Jul 2011.
- [65] M. Wagshul and T. Chupp. Optical pumping of high-density rb with a broadband dye laser and gaalas diode laser arrays: Application to ³he polarization. *Phys. Rev. A.*, 40, 1989.
- [66] M. Wagshul and T. Chupp. Laser optical pumping of high-density rb in polarized 3he targets. Phys. Rev. A, 49:3854–3869, 1994.
- [67] T. G. Walker and W. Happer. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys., 69:629–642, Apr 1997.
- [68] T. G. Walker, I. A. Nelson, and S. Kadlecek. Method for deducing anisotropic spin-exchange rates. Phys. Rev. A, 81:032709, Mar 2010.
- [69] T. G. Walker, J. H. Thywissen, and W. Happer. Spin-rotation interaction of alkali-metal he-atom pairs. Phys. Rev. A, 56:2090–2094, Sep 1997.
- [70] D. K. Walter, W. Happer, and T. G. Walker. Estimates of the relative magnitudes of the isotropic and anisotropic magnetic-dipole hyperfine interactions in alkalimetal noble-gas systems. *Phys. Rev. A*, 58:3642–3653, Nov 1998.
- [71] Y. Zheng. Low field mri and the development of polarized nuclear imaging (pni)-a new imaging modality, 2015.