

Do environmental interventions ameliorate gut dysbiosis in Huntington disease mice?

Data Analysis

Saritha Kodikara

October 11, 2021

Contents

E	kecut	ive Su	mmary	2
1	Dat	a prep	rocessing (Removing insufficient samples)	2
2	Effe	ct of H	Iousing, Genotype and Sex on Brain Weight	2
3	LM	M for	all interested variables	4
4	LM	M with	n Week as a covariate	12
5	Mod	delling	the variable clasping	13
6	Pos	t-Hoc	test for Clinical variables	17
	6.1	Linear	Mixed Model	17
		6.1.1	Brain weight	17
		6.1.2	Swing time forepaw	18
		6.1.3	Swing time hindpaw	18
		6.1.4	Stride length forepaw	19
		6.1.5	Stride length hindpaw	19
		6.1.6	Stance width forepaw	19
		6.1.7	Propel:brake ratio forepaw	20
		6.1.8	Butyrate	20
		6.1.9	Valerate	20
		6.1.10	Water Intake	20
			Weight	22
			Rotarod	23
	6.2		ative Link Mixed Model	24
	J	6.2.1	Clasping Score	24

References 24

R session information 24

Executive Summary

- The data were preprocessed to remove any samples with more than 80% missing data which resulted in removing four mice from the study.
- Except for the clinical variable clasping score, all other single time-point observations, such as Colon length, were modelled using Linear mixed models (LMMs). A LMM is an extension of a linear model to incorporate both fixed-effect terms and random effect terms. For repeated measures, time was added as covariate in the LMM. All two-way interactions between fixed effects were included in the LMM models.
- For the variable clasping score measured on an ordinal scale, we fitted a cumulative linear mixed model with Laplace approximation.
- For models with at least one significant effect, we performed a post-hoc contrast analysis on estimated marginal means to identify significant pairs using the emmeans R package (Lenth 2021). The emmeans method performs pairwise comparisons on the levels of significant main effects while controlling for other factors. For example, if genotype was significant in the LMM, a pairwise comparisons between two genotypes separately for each sex and housing type would be conducted. All the p-values from the pairwise comparisons were then adjusted for multiple comparisons using Tukey adjustment.

1 Data preprocessing (Removing insufficient samples)

Data from '210330_Gubert_EE-EX_Data_All.xlsx' were analysed by combining the male and female details from 'Female EEEX Data Final' and 'Male EEEX Data Final.'

First, the samples with more than 80% missing data} were removed from the analysis (insufficient data). As a result, 4 mice were removed from the analysis. These four samples did not have any clinical information (i.e. Colon Length, Gut Permeability, Fecal Water content at Week 12, Isobutyrate, 2-Methyl butyrate, Isovalerate). Those mice fell into the following combination of Sex, genotype and housing condition:

```
- Female/ HD/ EE - Female/ HD/ EX - Female/ WT/ SH - Male/ HD/ EX
```

After the preprocessing, the composition of the samples are as follows:

##			Sex	Female	Male
##	Genotype	Housing			
##	WT	SH		12	12
##		EE		12	12
##		EX		12	11
##	HD	SH		11	12
##		EE		11	12
##		EX		11	11

2 Effect of Housing, Genotype and Sex on Brain Weight

In this section, we use LMM to find the significant variables that are associated with the Brain weight of a mouse. LMM model considers both fixed and random effects. Fixed effects are variables that we expect

will have an impact on our response variable. For example, we expect Sex, genotype and housing would impact the brain weight of a mouse. Thus, those variables (i.e. Sex, genotype and housing) are considered fixed effects. Random effects are usually grouping factors that may have an impact on the response variable but we are not specifically interested in their impact. In this study, mice are housed within cages (random effect), while we are investigating the effect of sex (male, female); genotype (WT, HD) and housing (SH, EE, EX) (fixed effects).

##		
## ##		Dependent venichle.
##		Dependent variable:
##		Brain weight
##	GenotypeHD	-0.049**
##	denotypenb	p = 0.002
##		r
##	HousingEE	0.019
##		p = 0.205
##		
	HousingEX	0.021
##		p = 0.155
	SexMale	0.030*
##	DOMINIC	p = 0.039
##		r
##	GenotypeHD:SexMale	0.018
##		p = 0.211
##		
	HousingEE:SexMale	-0.026
##		p = 0.145
	HousingEX:SexMale	-0.010
##	noublingLX.bexnale	p = 0.553
##		1
##	GenotypeHD:HousingEE	0.008
##		p = 0.641
##		2.212
	GenotypeHD:HousingEX	0.013
##		p = 0.458
	Constant	0.435***
##		p = 0.000
##		•
##		
	Observations	138
	Log Likelihood	250.526
	Akaike Inf. Crit.	-477.051
	Bayesian Inf. Crit.	-442.827
	Note:	+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001
##		Constants are significant (p<0.001)

[•] Based on the LMM, significant variables are:

⁻ Sex - Genotype

##

• A significant parameter with a positive value (i.e > 0) indicates a positive effect on the average brain weight. For example, the average brain weight is higher for male mice than female mice.

3 LMM for all interested variables

##	=======================================	===========	===========		
## ##			Dependent var:	iable:	
## ##		Gut permeability (1)	Gut transit time (2)	Colon length (3)	Caecum weight (4)
## ## ##	GenotypeHD	-0.059 p = 0.818	-9.049 p = 0.658	-0.642+ p = 0.058	0.036 p = 0.232
## ## ##	HousingEE	-0.108 p = 0.692	-33.768 p = 0.121	-0.336 p = 0.329	-0.014 p = 0.650
## ## ##	HousingEX	-0.350 p = 0.273	-8.297 p = 0.720	-0.329 p = 0.339	0.036 p = 0.251
## ## ##	SexMale	-0.324 p = 0.216	12.907 p = 0.553	0.343 p = 0.292	0.011 p = 0.715
##	GenotypeHD:SexMale	0.341 p = 0.200	-0.489 p = 0.983	0.558+ p = 0.097	-0.044 p = 0.144
## ## ##	HousingEE:SexMale	0.098 p = 0.749	7.170 p = 0.786	-0.419 p = 0.299	0.042 p = 0.249
## ## ##	HousingEX:SexMale	0.096 p = 0.767	-0.412 p = 0.989	-0.288 p = 0.473	0.045 p = 0.219
## ## ##	GenotypeHD:HousingEE	0.097 p = 0.752	42.821 p = 0.111	0.504 p = 0.213	-0.024 p = 0.509
## ## ##	GenotypeHD:HousingEX	0.005 p = 0.988	5.793 p = 0.833	0.089 p = 0.825	-0.036 p = 0.324
## ## ##	Constant	0.757*** p = 0.001	141.487*** p = 0.000	8.249*** p = 0.000	0.300*** p = 0.000
## ## ## ##	Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	89 -63.266 150.532 178.965	110 -527.645 1079.290 1110.552	134 -152.068 328.136 361.980	138 152.118 -280.235 -246.011
	Note:		+ p<0.1; * p<0	.05; ** p<0.0	1; *** p<0.001 cant (p<0.001)

		Depende	ent variable:	
	Caecum length (1)	Swing time forepaw (2)	Swing time hind p	aw Stride time forepa (4)
GenotypeHD	0.219+	0.015*	0.011*	-0.017
	p = 0.097	p = 0.042	p = 0.049	p = 0.637
Harada aPP	0.100	0.004	0.004	0.004
HousingEE	-0.199	0.001	0.004	0.024
	p = 0.143	p = 0.930	p = 0.492	p = 0.526
HousingEX	0.023	0.006	-0.003	-0.003
U	p = 0.861		p = 0.623	p = 0.934
	•	•	-	•
SexMale	0.016	-0.002	-0.002	0.029
	p = 0.900	p = 0.752	p = 0.739	p = 0.429
GenotypeHD:SexMale	-0.218+	-0.006	0.001	-0.019
	p = 0.098	p = 0.358	p = 0.862	p = 0.599
HousingEE:SexMale	0.255	0.015+	0.005	-0.019
_	p = 0.113	p = 0.084	p = 0.400	p = 0.665
HousingEX:SexMale	0.095	0.002	0.004	-0.014
G	p = 0.544	p = 0.786	p = 0.500	p = 0.761
GenotypeHD:HousingEE	0.068	-0.004	-0.005	0.028
J1 0	p = 0.665	p = 0.632	p = 0.426	p = 0.524
GenotypeHD:HousingEX	-0.151	-0.002	-0.003	0.050
TOHOU, POHOL HOUSTINGEN	p = 0.338		p = 0.686	p = 0.271
	1	1	_	1
Constant	2.542***	0.106***	0.093***	0.306***
	p = 0.000	p = 0.000	p = 0.000	p = 0.000
Observations	134	133	133	133
Log Likelihood	-50.442	307.191	327.459	176.381
Akaike Inf. Crit.	124.884	-590.382	-630.918	-328.762
Bayesian Inf. Crit.	158.727	-556.636	-597.171	-295.016

##				Dependent variable:	
## ##		Stride	time hind paw	Stride length forepaw (2)	Stride length hindpaw (3)
## ##	GenotypeHD		-0.025	0.432*	0.357+
##	denotypenb	a	= 0.508	p = 0.043	p = 0.071
##		г		r	r
##	HousingEE		0.024	0.039	0.042
##		p	= 0.547	p = 0.856	p = 0.831
##					
##	HousingEX		-0.006	0.420+	0.445*
##		p	= 0.877	p = 0.063	p = 0.036
##	C W 7		0.000	0.425	0.404
	SexMale		0.029	-0.165	-0.161
## ##		р	= 0.445	p = 0.417	p = 0.397
	GenotypeHD:SexMale		-0.010	-0.368+	-0.236
##	denotypend.bexhare	n	= 0.802	p = 0.086	p = 0.230
##		Р	0.002	p 0.000	p 0.200
	HousingEE:SexMale		-0.017	0.366	0.406+
##	G	р	= 0.713	p = 0.153	p = 0.092
##					
##	<pre>HousingEX:SexMale</pre>		-0.011	-0.067	-0.077
##		р	= 0.809	p = 0.795	p = 0.748
##					
	GenotypeHD:HousingEE		0.035	-0.217	-0.171
##		р	= 0.462	p = 0.390	p = 0.469
##	Conotypo HD: Housing EY		0.049	-0.436+	-0.538*
##	GenotypeHD:HousingEX	n	= 0.298	p = 0.097	p = 0.031
##		Р	0.250	p 0.031	p 0.001
	Constant	().311***	4.889***	4.956***
##			= 0.000	p = 0.000	p = 0.000
##		r		•	•
##					
##	Observations		133	133	133
	Log Likelihood	1	178.083	-124.037	-115.346
	Akaike Inf. Crit.		-332.166	272.074	254.692
##	Bayesian Inf. Crit.		-298.420	305.820 ====================================	288.439

##		Dependent variable:				
##		(1)	Absolute paw angle hindpaw			
## ## ##	GenotypeHD	-0.604 p = 0.747	-0.352 p = 0.843			
## ## ##	HousingEE	-0.491 p = 0.803	-0.221 p = 0.905			
## ## ##	HousingEX	-1.221 $p = 0.541$	-2.144 p = 0.261			
##	SexMale	-1.687 p = 0.368	0.189 p = 0.914			
##	GenotypeHD:SexMale	2.140 $p = 0.263$	-2.151 p = 0.237			
## ## ##	HousingEE:SexMale	-0.216 p = 0.925	-1.872 p = 0.392			
	HousingEX:SexMale	2.653 p = 0.258	0.743 $p = 0.737$			
	GenotypeHD:HousingEE	0.232 $p = 0.920$	1.691 $p = 0.439$			
	GenotypeHD:HousingEX	-0.826 p = 0.722	0.387 p = 0.861			
	Constant	7.912*** p = 0.00000	13.897*** p = 0.000			
## ##	Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	133 -370.485 764.970 798.716	133 -383.695 791.391 825.137			

	Dependent	variable:
	Stance width forepaw (1)	Stance width hindpaw (2)
GenotypeHD	-0.258**	-0.145
	p = 0.009	p = 0.305
HousingEE	-0.099	-0.240
	p = 0.305	p = 0.110
HousingEX	0.011	-0.043
	p = 0.914	p = 0.773
SexMale	0.219*	0.134
	p = 0.022	p = 0.336
GenotypeHD:SexMale	-0.059	-0.161
	p = 0.528	p = 0.259
HousingEE:SexMale	-0.225+	-0.021
•	p = 0.054	p = 0.902
HousingEX:SexMale	-0.196+	-0.130
	p = 0.095	p = 0.456
GenotypeHD:HousingEE	0.189	0.082
	p = 0.102	p = 0.631
GenotypeHD:HousingEX	0.098	0.069
	p = 0.398	p = 0.692
Constant	1.628***	2.558***
	p = 0.000	p = 0.000
Observations	133	133
Log Likelihood Akaike Inf. Crit.	-25.147 74.295	-58.494 140.989
Bayesian Inf. Crit.	108.041	174.735
Note:	+ p<0.1; * p<0.05; *	

##		Dependent	Dependent variable: 		
## ## ## ##		propel:brake ratio forepaw (1)	propel:brake ratio hind par (2)		
## ##	GenotypeHD	0.895* p = 0.025	0.152 $p = 0.830$		
## ##] ## ##	HousingEE	0.738+ p = 0.070	0.580 $p = 0.434$		
	HousingEX	0.044 $p = 0.913$	-0.468 p = 0.535		
##	SexMale	-0.493 p = 0.195	-0.187 p = 0.790		
## ## ##	GenotypeHD:SexMale	0.088 $p = 0.820$	1.183 p = 0.108		
##] ## ##	HousingEE:SexMale	-0.355 p = 0.447	-0.632 $p = 0.468$		
##] ## ##	HousingEX:SexMale	0.153 $p = 0.745$	0.005 $p = 0.996$		
## ## ##	GenotypeHD:HousingEE	0.057 $p = 0.902$	0.002 $p = 0.999$		
## ## ##	GenotypeHD:HousingEX	-0.592 p = 0.216	-0.495 p = 0.576		
## ##	Constant	1.665*** p = 0.00000	4.222*** p = 0.000		
## : ## :	Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	133 -194.767 413.533 447.279	133 -276.369 576.739 610.485		

‡# ‡#		Dependent variable:						
‡# ‡#		Acetate (1)	Proprionate (2)	Isobutyrate (3)	Butyrate (4)			
# # # #	GenotypeHD	-8602.928 p = 0.822	-25145.620 p = 0.602	2277.939 p = 0.237	6972.407 p = 0.907			
	HousingEE	-1023.549 p = 0.980	-6400.128 p = 0.899	233.152 p = 0.906	58994.610 p = 0.352			
	HousingEX	4767.927 p = 0.906	-10673.920 p = 0.833	810.795 p = 0.683	53362.420 p = 0.401			
	SexMale	-21938.740 p = 0.566	-23584.870 p = 0.623	-130.173 p = 0.945	67812.740 p = 0.262			
:# :# :#	GenotypeHD:SexMale	23581.420 p = 0.539	2152.242 p = 0.965	-114.541 p = 0.952	-44907.600 p = 0.457			
###	HousingEE:SexMale	-26735.560 $p = 0.568$	-51662.690 p = 0.384	-1119.766 p = 0.626	-71501.210 p = 0.332			
###	HousingEX:SexMale	-32544.930 $p = 0.491$	-49029.750 p = 0.413	-2573.925 p = 0.277	-161105.800 p = 0.043			
###	GenotypeHD:HousingEE	14884.980 $p = 0.750$	51773.530 p = 0.383	-1296.484 p = 0.573	-23170.360 p = 0.750			
###	GenotypeHD:HousingEX	8195.979 p = 0.861	27804.550 p = 0.640	-2257.265 p = 0.338	83812.260 p = 0.265			
# # #	Constant	96084.230** p = 0.002	173487.900*** p = 0.00002	4510.105** p = 0.003	99543.590* p = 0.033			
#	Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	2002.896	2067.616 2096.201	1553.751 1582.335	2116.303 2144.888			

]	Dependent vai	riable: 	
	Methylbutyrate2 (1)	Isovalerate (2)	Valerate (3)	Caproat
GenotypeHD	1548.701+ p = 0.070	1747.519 p = 0.196	5361.005 p = 0.193	
HousingEE	389.604 $p = 0.643$	282.163 p = 0.838	1263.034 $p = 0.762$	-93.33 p = 0.7
HousingEX	891.358 p = 0.300	480.120 $p = 0.729$	6866.115 p = 0.117	156.96 p = 0.8
SexMale	276.116 p = 0.729	-428.799 p = 0.742	3540.237 p = 0.375	-111.60 p = 0.6
GenotypeHD:SexMale	-65.593 p = 0.936	75.254 p = 0.955	-2968.780 p = 0.463	149.45 p = 0.5
HousingEE:SexMale	-592.407 p = 0.546	-422.388 p = 0.792	-21.168 p = 0.997	-47.98 p = 0.8
HousingEX:SexMale	-1969.476+ p = 0.064	-1446.633 p = 0.378	-12036.940* p = 0.027	
GenotypeHD:HousingEE	-1553.430 p = 0.127	-1478.174 p = 0.362	-5598.832 p = 0.258	
GenotypeHD:HousingEX	-1053.377 $p = 0.300$	-1504.676 p = 0.360	20.468 $p = 0.997$	-179.3 p = 0.8
Constant	1924.892** p = 0.003	3195.218** p = 0.003	6791.438* p = 0.029	652.21 p = 0.0
Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	90 -716.723 1457.446	90 -737.957	90 -845.783 1715.565	90

4 LMM with Week as a covariate

##								
##]	Dependent va	riable:	=======	=======	
## ## ## ##			Water_Intake (2)		Rotarod (4)		FOutput (6)	
	GenotypeHD		0.166 p = 0.542					
## ## ##	HousingEE	-0.031 p = 0.872	-0.630+ p = 0.059		78.859* p = 0.021			
## ## ##	HousingEX		-0.797* p = 0.019					
## ## ##	SexMale		0.393 $p = 0.156$				2.498 p = 0.287	
## ## ##	Week		-0.031 p = 0.306	0.820*** p = 0.000				
## ## ##	GenotypeHD:SexMale		-0.313* p = 0.029				1.370 p = 0.336	
## ## ##	HousingEE:SexMale		0.297+ $p = 0.084$					
## ## ##	HousingEX:SexMale		0.280 $p = 0.102$	-1.824 p = 0.124				
## ## ##	GenotypeHD:Week		0.066* p = 0.017					
## ## ##	SexMale:Week		-0.084** $p = 0.003$					
## ## ##	HousingEE:Week	0.005 $p = 0.789$	0.074* $p = 0.029$		-4.354 p = 0.136		0.217 p = 0.354	
	HousingEX:Week		0.125*** p = 0.0003					
	GenotypeHD:HousingEE		-0.100 p = 0.549					
	GenotypeHD:HousingEX		-0.186 p = 0.271					
	Constant		1.685*** p = 0.000					

##							
##	Observations	215	216	973	834	803	834
##	Log Likelihood	-3.316	-108.975	-1991.683	-4559.335	-3089.079	-2495.876
##	Akaike Inf. Crit.	40.632	251.949	4017.366	9152.671	6212.158	5025.751
##	Bayesian Inf. Crit.	96.704	308.105	4100.068	9232.708	6291.539	5105.789
##		=======	========	========	-=======	=======	=======
##	Note:			+ p<0.1; *	* p<0.05; **	p<0.01; *	** p<0.001
##				Cons	stants are s	ignificant.	(p<0.001)

5 Modelling the variable clasping

```
## Clasping_Week6 123 7 9 0 0 0 ## Clasping_Week8 114 11 14 0 0 0 ## Clasping_Week9 98 17 21 2 1 ## Clasping_Week10 97 15 22 3 1 ## Clasping_Week11 90 17 26 3 3 ## Clasping_Week12 68 8 45 7 11
```


Figure 1: Bar plot for clasping over the 5 weeks

• Cumulative Link Mixed Models are used to model clasping variable

We will fit the following cumulative link mixed model to the Clasping variable (Y_i) :

```
logit(P(Y_i \leq j)) = \theta_j - \beta_1(Genotype_i) - \beta_2(Housing_i) - \beta_3(Sex_i) - \beta_4(Week_i) - u(Box_i) \setminus \text{ where } i = 1, ..., 973 \text{ and } j = 0, ..., 4.
```

```
## Cumulative Link Mixed Model fitted with the Laplace approximation
## formula: Clasping ~ Genotype + Housing + Sex + Week + (1 | Box)
            long_data_clasping_sorted
##
   link threshold nobs logLik AIC
##
                                          niter
                                                    max.grad cond.H
   logit flexible 972 -752.18 1524.36 618(2477) 7.67e-05 6.4e+03
##
## Random effects:
                       Variance Std.Dev.
##
   Groups Name
##
           (Intercept) 0.5998
                                0.7745
## Number of groups: Box 36
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## GenotypeHD
              0.804965
                          0.306927
                                      2.623
                                            0.00872 **
## HousingEE
             -0.161811
                          0.375274
                                     -0.431
                                            0.66634
## HousingEX
              -0.006249
                                     -0.017
                                             0.98661
                          0.372239
## SexMale
               0.611638
                          0.306046
                                      1.999
                                            0.04566 *
               0.413447
                          0.042902
                                      9.637
                                            < 2e-16 ***
## Week
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
  Threshold coefficients:
##
       Estimate Std. Error z value
## 0|1
         5.6206
                    0.5535
                             10.15
## 1|2
         6.2419
                             11.11
                    0.5617
## 2|3
         8.4128
                    0.6054
                             13.90
## 3|4
         9.1692
                    0.6350
                             14.44
## (1 observation deleted due to missingness)
```

The coefficients of Genotype HD, Male and Week are positive indicating that the clasping rate being higher is more likely for higher weeks, among males and for HD group. The odds ratio of clasping rate being in category j or above for male to female is 1.84.

Figure 2: Bar plot for clasping over the 5 weeks between sex $\,$

Figure 3: Bar plot for clasping over the 5 weeks between genotype

6 Post-Hoc test for Clinical variables

Except for the clasping score, we modelled all other clinical variables using Linear Mixed Models (LMMs). Since the clasping score was an ordinal response, a Cumulative Link Mixed Model was used instead of an LMM.

Example of interpretation for Table 1: Among different housing types, SH showed the highest number of significant pairwise differences in brain weight among different sex and genotype contrasts. With the exception of housing type EX, both the other housing types showed a significant increase in average brain weight in WT female mice compared to HD counterparts. In addition, HD male mice have greater brain weight than HD female mice on average in SH housing.

Figure 1 illustrates the pairwise comparisons. The blue bars are the confidence intervals for the estimated marginal means. However, pairwise comparisons are done using the red arrows, instead of using the confidence intervals directly. Pairwise comparison is considered to be significant if a red arrow from contrast does not overlap with another contrasts arrow. For instance in Figure 4, the two red arrows from WT male and HD female mice do not overlap in SH housing and are thus deemed significant.

6.1 Linear Mixed Model

6.1.1 Brain weight

Table 1: Post-hoc results for genotype and sex given housing type in variable brain weight

contrast	Housing	estimate	SE	df	t.ratio	p.value
WT Female - HD Female	SH	0.0487	0.0139	26	3.5109	0.0084
WT Female - WT Male	SH	-0.0300	0.0138	26	-2.1780	0.1560
WT Female - HD Male	SH	0.0008	0.0168	26	0.0496	1.0000
HD Female - WT Male	SH	-0.0787	0.0170	26	-4.6282	$\boldsymbol{0.0005}$
HD Female - HD Male	SH	-0.0479	0.0139	26	-3.4509	$\boldsymbol{0.0097}$
WT Male - HD Male	SH	0.0309	0.0138	26	2.2384	0.1394
WT Female - HD Female	EE	0.0407	0.0140	26	2.9098	0.0346
WT Female - WT Male	EE	-0.0045	0.0138	26	-0.3266	0.9877
WT Female - HD Male	EE	0.0183	0.0168	26	1.0904	0.6984
HD Female - WT Male	EE	-0.0452	0.0172	26	-2.6237	0.0646
HD Female - HD Male	EE	-0.0223	0.0140	26	-1.5985	0.3969
WT Male - HD Male	$\rm EE$	0.0228	0.0138	26	1.6541	0.3674
WT Female - HD Female	$\mathbf{E}\mathbf{X}$	0.0359	0.0139	26	2.5783	0.0710
WT Female - WT Male	$\mathbf{E}\mathbf{X}$	-0.0198	0.0139	26	-1.4236	0.4965
WT Female - HD Male	$\mathbf{E}\mathbf{X}$	-0.0018	0.0170	26	-0.1042	0.9996
HD Female - WT Male	$\mathbf{E}\mathbf{X}$	-0.0557	0.0172	26	-3.2347	0.0164
HD Female - HD Male	$\mathbf{E}\mathbf{X}$	-0.0376	0.0140	26	-2.6902	0.0561
WT Male - HD Male	EX	0.0180	0.0140	26	1.2887	0.5780

Figure 4: Graphical comparisons from emmeans method

6.1.2 Swing time forepaw

contrast	Housing	Sex	estimate	SE	$\mathrm{d}\mathrm{f}$	t.ratio	p.value
WT - HD	SH	Female	-0.0146	0.0068	26	-2.1486	0.0412
WT - HD	EE	Female	-0.0106	0.0068	26	-1.5506	0.1331
WT - HD	$\mathbf{E}\mathbf{X}$	Female	-0.0128	0.0070	26	-1.8284	0.0790
WT - HD	SH	Male	-0.0082	0.0068	26	-1.2020	0.2402
WT - HD	EE	Male	-0.0041	0.0069	26	-0.6007	0.5532
WT - HD	EX	Male	-0.0063	0.0070	26	-0.9068	0.3728

6.1.3 Swing time hindpaw

contrast	Housing	Sex	estimate	SE	df	t.ratio	p.value
WT - HD	SH	Female	-0.0107	0.0052	26	-2.0699	0.0485
WT - HD	EE	Female	-0.0056	0.0052	26	-1.0745	0.2925
WT - HD	$\mathbf{E}\mathbf{X}$	Female	-0.0080	0.0053	26	-1.5060	0.1441
WT - HD	SH	Male	-0.0116	0.0052	26	-2.2483	0.0333
WT - HD	EE	Male	-0.0065	0.0052	26	-1.2391	0.2264

/	, .	7)
1 cc	intinue a	1. 1

contrast	Housing	Sex	estimate	SE	df	t.ratio	p.value
WT - HD	EX	Male	-0.0090	0.0053	26	-1.6785	0.1052

6.1.4 Stride length forepaw

contrast	Housing	Sex	estimate	SE	df	t.ratio	p.value
WT - HD	SH	Female	-0.4323	0.2028	26	-2.1319	0.0426
WT - HD	EE	Female	-0.2148	0.2033	26	-1.0566	0.3004
WT - HD	$\mathbf{E}\mathbf{X}$	Female	0.0042	0.2099	26	0.0200	0.9842
WT - HD	SH	Male	-0.0643	0.2028	26	-0.3172	0.7536
WT - HD	EE	Male	0.1532	0.2055	26	0.7455	0.4627
WT - HD	$\mathbf{E}\mathbf{X}$	Male	0.3722	0.2099	26	1.7735	0.0879

6.1.5 Stride length hindpaw

contrast	Genotype	Sex	estimate	SE	df	t.ratio	p.value
SH - EE	WT	Female	-0.0424	0.1968	26	-0.2156	0.9747
SH - EX	WT	Female	-0.4451	0.2010	26	-2.2147	0.0874
EE - EX	WT	Female	-0.4027	0.2013	26	-2.0004	0.1322
SH - EE	$^{ m HD}$	Female	0.1281	0.2027	26	0.6322	0.8039
SH - EX	$^{ m HD}$	Female	0.0928	0.2072	26	0.4481	0.8957
EE - EX	$^{ m HD}$	Female	-0.0353	0.2076	26	-0.1699	0.9842
SH - EE	WT	Male	-0.4487	0.1998	26	-2.2454	0.0822
SH - EX	WT	Male	-0.3685	0.2010	26	-1.8337	0.1786
EE - EX	WT	Male	0.0801	0.2042	26	0.3923	0.9189
SH - EE	$^{ m HD}$	Male	-0.2781	0.2027	26	-1.3723	0.3696
SH - EX	$^{ m HD}$	Male	0.1694	0.2072	26	0.8177	0.6956
EE - EX	$_{ m HD}$	Male	0.4475	0.2076	26	2.1561	0.0981

contrast	Genotype	estimate	SE	df	t.ratio	p.value
SH - EE	WT	-0.2455	0.1611	26	-1.5246	0.2962
SH - EX	WT	-0.4068	0.1629	26	-2.4979	0.0486
EE - EX	WT	-0.1613	0.1646	26	-0.9798	0.5959
SH - EE	$^{ m HD}$	-0.0750	0.1664	26	-0.4508	0.8945
SH - EX	$^{ m HD}$	0.1311	0.1705	26	0.7692	0.7248
EE - EX	$^{ m HD}$	0.2061	0.1705	26	1.2092	0.4585

6.1.6 Stance width forepaw

contrast	Housing	Sex	estimate	SE	df	t.ratio	p.value
WT - HD	SH	Female	0.1446	0.1380	26	1.0480	0.3043
WT - HD	EE	Female	0.0624	0.1382	26	0.4515	0.6554
WT - HD	$\mathbf{E}\mathbf{X}$	Female	0.0758	0.1414	26	0.5360	0.5965
WT - HD	SH	Male	0.3054	0.1380	26	2.2140	0.0358

contrast	Housing	Sex	estimate	SE	df	t.ratio	p.value
WT - HD	EE	Male	0.2233	0.1393	26	1.6027	0.1211
WT - HD	$\mathbf{E}\mathbf{X}$	Male	0.2366	0.1414	26	1.6736	0.1062

6.1.7 Propel:brake ratio forepaw

contrast	Housing	Sex	estimate	SE	df	t.ratio	p.value
WT - HD	SH	Female	-0.8954	0.3743	26	-2.3923	0.0243
WT - HD	EE	Female	-0.9525	0.3751	26	-2.5391	0.0174
WT - HD	$\mathbf{E}\mathbf{X}$	Female	-0.3031	0.3863	26	-0.7847	0.4397
WT - HD	SH	Male	-0.9829	0.3743	26	-2.6261	0.0143
WT - HD	EE	Male	-1.0401	0.3789	26	-2.7449	0.0108
WT - HD	$\mathbf{E}\mathbf{X}$	Male	-0.3906	0.3863	26	-1.0112	0.3212

6.1.8 Butyrate

contrast	Housing	estimate	SE	df	t.ratio	p.value
Female - Male	SH	-45358.94	50238.70	14	-0.9029	0.3819
Female - Male	${ m EE}$	26142.26	50238.70	14	0.5204	0.6109
Female - Male	$\mathbf{E}\mathbf{X}$	115746.88	51709.47	14	2.2384	0.0420

6.1.9 Valerate

contrast	Housing	estimate	SE	df	t.ratio	p.value
Female - Male	SH	-2055.847	3354.713	14	-0.6128	0.5498
Female - Male	EE	-2034.679	3354.713	14	-0.6065	0.5539
Female - Male	$\mathbf{E}\mathbf{X}$	9981.096	3498.810	14	2.8527	0.0128

6.1.10 Water Intake

contrast	estimate	SE	df	t.ratio	p.value
WT SH Female - HD SH Female	-0.7278	0.1348	26	-5.3993	0.0006
WT SH Female - WT EE Female	0.0042	0.1430	26	0.0292	1.0000
WT SH Female - HD EE Female	-0.6233	0.1581	26	-3.9432	0.0218
WT SH Female - WT EX Female	-0.2646	0.1430	26	-1.8510	0.7767
WT SH Female - HD EX Female	-0.8068	0.1581	26	-5.1040	0.0013
WT SH Female - WT SH Male	0.3183	0.1348	26	2.3615	0.4627
WT SH Female - HD SH Male	-0.0968	0.1651	26	-0.5866	1.0000
WT SH Female - WT EE Male	0.0254	0.1581	26	0.1605	1.0000
WT SH Female - HD EE Male	-0.2894	0.1430	26	-2.0245	0.6745
WT SH Female - WT EX Male	-0.2262	0.1581	26	-1.4310	0.9461
WT SH Female - HD EX Male	-0.4557	0.1430	26	-3.1871	0.1145
HD SH Female - WT EE Female	0.7320	0.1581	26	4.6309	0.0041
HD SH Female - HD EE Female	0.1045	0.1430	26	0.7311	0.9998

(commaea)					
contrast	estimate	SE	df	t.ratio	p.value
HD SH Female - WT EX Female	0.4632	0.1581	26	2.9302	0.1876
HD SH Female - HD EX Female	-0.0790	0.1430	26	-0.5522	1.0000
HD SH Female - WT SH Male	1.0461	0.1651	26	6.3366	0.0001
HD SH Female - HD SH Male	0.6310	0.1348	26	4.6808	0.0036
HD SH Female - WT EE Male	0.7532	0.1430	26	5.2679	0.0008
HD SH Female - HD EE Male	0.4384	0.1581	26	2.7733	0.2477
HD SH Female - WT EX Male	0.5016	0.1430	26	3.5084	0.0583
HD SH Female - HD EX Male	0.2721	0.1581	26	1.7217	0.8427
WT EE Female - HD EE Female	-0.6274	0.1348	26	-4.6548	0.0039
WT EE Female - WT EX Female	-0.2688	0.1430	26	-1.8802	0.7604
WT EE Female - HD EX Female	-0.8109	0.1581	26	-5.1304	0.0012
WT EE Female - WT SH Male	0.3141	0.1581	26	1.9875	0.6972
WT EE Female - HD SH Male	-0.1010	0.1430	26	-0.7065	0.9998
WT EE Female - WT EE Male	0.0212	0.1348	26	0.1572	1.0000
WT EE Female - HD EE Male	-0.2936	0.1651	26	-1.7785	0.8150
WT EE Female - WT EX Male	-0.2304	0.1581	26	-1.4574	0.9394
WT EE Female - HD EX Male	-0.4598	0.1430	26	-3.2163	0.1079
HD EE Female - WT EX Female	0.3586	0.1581	26	2.2690	0.5199
HD EE Female - HD EX Female	-0.1835	0.1430	26	-1.2833	0.9742
HD EE Female - WT SH Male	0.9416	0.1430	26	6.5858	0.0000
HD EE Female - HD SH Male	0.5264	0.1581	26	3.3305	0.0853
HD EE Female - WT EE Male	0.6486	0.1651	26	3.9290	0.0225
HD EE Female - HD EE Male	0.3338	0.1348	26	2.4766	0.3952
HD EE Female - WT EX Male	0.3971	0.1430	26	2.7773	0.2460
HD EE Female - HD EX Male	0.1676	0.1581	26	1.0604	0.9940
WT EX Female - HD EX Female	-0.5421	0.1348	26	-4.0217	0.0181
WT EX Female - WT SH Male	0.5830	0.1581	26	3.6881	0.0392
WT EX Female - HD SH Male	0.1678	0.1430	26	1.1736	0.9867
WT EX Female - WT EE Male	0.2900	0.1581	26	1.8347	0.7855
WT EX Female - HD EE Male	-0.0248	0.1430	26	-0.1735	1.0000
WT EX Female - WT EX Male	0.0384	0.1348	26	0.2852	1.0000
WT EX Female - HD EX Male	-0.1910	0.1651	26	-1.1571	0.9881
HD EX Female - WT SH Male	1.1251	0.1430	26	7.8691	0.0000
HD EX Female - HD SH Male	0.7099	0.1581	26	4.4913	0.0058
HD EX Female - WT EE Male	0.8321	0.1430	26	5.8201	0.0002
HD EX Female - HD EE Male	0.5173	0.1581	26	3.2728	0.0962
HD EX Female - WT EX Male	0.5806	0.1651	26	3.5166	0.0573
HD EX Female - HD EX Male	0.3511	0.1348	26	2.6046	0.3263
WT SH Male - HD SH Male	-0.4152	0.1348	26	-3.0799	0.1414
WT SH Male - WT EE Male	-0.2930	0.1430	26	-2.0490	0.6592
WT SH Male - HD EE Male	-0.6078	0.1581	26	-3.8451	0.0274
WT SH Male - WT EX Male	-0.5445	0.1430	26	-3.8085	0.0298
WT SH Male - HD EX Male	-0.7740	0.1581	26	-4.8967	0.0021
HD SH Male - WT EE Male	0.1222	0.1581	26	0.7732	0.9996
HD SH Male - HD EE Male	-0.1926	0.1430	26	-1.3471	0.9639
HD SH Male - WT EX Male	-0.1293	0.1581	26	-0.8183	0.9994
HD SH Male - HD EX Male	-0.3588	0.1430	26	-2.5097	0.3766
WT EE Male - HD EE Male	-0.3148	0.1348	26	-2.3354	0.4786
WT EE Male - WT EX Male	-0.2516	0.1430	26	-1.7595	0.8245
WT EE Male - HD EX Male	-0.4810	0.1581	26	-3.0433	0.1518
HD EE Male - WT EX Male	0.0633	0.1581	26	0.4002	1.0000
	-				_

contrast	estimate	SE	df	t.ratio	p.value
HD EE Male - HD EX Male	-0.1662	0.1430	26	-1.1626	0.9876
WT EX Male - HD EX Male	-0.2295	0.1348	26	-1.7024	0.8515

6.1.11 Weight

contrast	estimate	SE	df	t.ratio	p.value
WT SH Female - HD SH Female	1.1150	0.9349	26	1.1927	0.9849
WT SH Female - WT EE Female	1.3180	0.9905	26	1.3306	0.9668
WT SH Female - HD EE Female	1.1430	1.0966	26	1.0423	0.9948
WT SH Female - WT EX Female	1.2805	0.9908	26	1.2923	0.9729
WT SH Female - HD EX Female	1.2416	1.0965	26	1.1324	0.9899
WT SH Female - WT SH Male	-7.2667	0.9341	26	-7.7790	0.0000
WT SH Female - HD SH Male	-6.4438	1.1435	26	-5.6353	0.0003
WT SH Female - WT EE Male	-4.6556	1.0950	26	-4.2517	0.0104
WT SH Female - HD EE Male	-5.1228	0.9905	26	-5.1717	0.0011
WT SH Female - WT EX Male	-4.1622	1.0965	26	-3.7960	0.0306
WT SH Female - HD EX Male	-4.4932	0.9919	26	-4.5301	0.0053
HD SH Female - WT EE Female	0.2030	1.0966	26	0.1851	1.0000
HD SH Female - HD EE Female	0.0279	0.9926	26	0.0281	1.0000
HD SH Female - WT EX Female	0.1654	1.0965	26	0.1509	1.0000
HD SH Female - HD EX Female	0.1266	0.9929	26	0.1275	1.0000
HD SH Female - WT SH Male	-8.3817	1.1453	26	-7.3184	0.0000
HD SH Female - HD SH Male	-7.5588	0.9349	26	-8.0854	0.0000
HD SH Female - WT EE Male	-5.7706	0.9916	26	-5.8195	0.0002
HD SH Female - HD EE Male	-6.2378	1.0966	26	-5.6886	0.0003
HD SH Female - WT EX Male	-5.2772	0.9929	26	-5.3150	0.0007
HD SH Female - HD EX Male	-5.6082	1.0981	26	-5.1074	0.0012
WT EE Female - HD EE Female	-0.1751	0.9349	26	-0.1873	1.0000
WT EE Female - WT EX Female	-0.0376	0.9908	26	-0.0379	1.0000
WT EE Female - HD EX Female	-0.0764	1.0965	26	-0.0697	1.0000
WT EE Female - WT SH Male	-8.5847	1.0950	26	-7.8401	0.0000
WT EE Female - HD SH Male	-7.7618	0.9905	26	-7.8360	0.0000
WT EE Female - WT EE Male	-5.9736	0.9341	26	-6.3948	0.0000
WT EE Female - HD EE Male	-6.4408	1.1435	26	-5.6327	0.0003
WT EE Female - WT EX Male	-5.4802	1.0965	26	-4.9980	0.0016
WT EE Female - HD EX Male	-5.8112	0.9919	26	-5.8590	0.0002
HD EE Female - WT EX Female	0.1375	1.0965	26	0.1254	1.0000
HD EE Female - HD EX Female HD EE Female - WT SH Male	0.0987 -8.4096	0.9929	26	0.0994	1.0000
HD EE Female - WT SH Male HD EE Female - HD SH Male	-8.4090 -7.5868	0.9916 1.0966	26 26	-8.4810 -6.9187	0.0000 0.0000
HD EE Female - HD SH Male HD EE Female - WT EE Male	-7.5000 -5.7985	1.0900 1.1453	26	-5.0629	0.0000 0.0014
HD EE Female - WT EE Male HD EE Female - HD EE Male	-6.2657		26	-5.0029 -6.7022	0.0014 0.0000
HD EE Female - WT EX Male	-5.3051	0.9349 0.9929	26	-5.3431	0.0007
HD EE Female - WT EX Male HD EE Female - HD EX Male	-5.6361	1.0981	26	-5.1328	0.0007 0.0012
WT EX Female - HD EX Female	-0.0388	0.9352	26	-0.0415	1.0000
WT EX Female - HD EX Female WT EX Female - WT SH Male	-8.5471	1.0949	26	-7.8063	0.0000
WT EX Female - WT SH Male WT EX Female - HD SH Male	-7.7243	0.9908	26	-7.7960	0.0000
WT EX Female - WT EE Male	-5.9360	1.0949	26	-5.4215	0.0006
WT EX Female - WT EE Male WT EX Female - HD EE Male	-6.4032	0.9908	26	-6.4627	0.0000
,, I LIT TOHANG - HD DD MANG	0.4002	0.0000	20	0.1021	0.0000

contrast	estimate	SE	df	t.ratio	p.value
WT EX Female - WT EX Male	-5.4426	0.9352	26	-5.8195	0.0002
WT EX Female - HD EX Male	-5.7736	1.1453	26	-5.0412	0.0015
HD EX Female - WT SH Male	-8.5083	0.9919	26	-8.5782	0.0000
HD EX Female - HD SH Male	-7.6854	1.0965	26	-7.0092	0.0000
HD EX Female - WT EE Male	-5.8972	0.9919	26	-5.9456	$\boldsymbol{0.0002}$
HD EX Female - HD EE Male	-6.3644	1.0965	26	-5.8044	$\boldsymbol{0.0002}$
HD EX Female - WT EX Male	-5.4038	1.1471	26	-4.7108	0.0034
HD EX Female - HD EX Male	-5.7348	0.9360	26	-6.1270	0.0001
WT SH Male - HD SH Male	0.8229	0.9341	26	0.8809	0.9988
WT SH Male - WT EE Male	2.6111	0.9905	26	2.6361	0.3106
WT SH Male - HD EE Male	2.1439	1.0950	26	1.9579	0.7151
WT SH Male - WT EX Male	3.1045	0.9919	26	3.1300	0.1282
WT SH Male - HD EX Male	2.7735	1.0965	26	2.5295	0.3658
HD SH Male - WT EE Male	1.7883	1.0950	26	1.6331	0.8811
HD SH Male - HD EE Male	1.3210	0.9905	26	1.3336	0.9663
HD SH Male - WT EX Male	2.2816	1.0965	26	2.0809	0.6392
HD SH Male - HD EX Male	1.9506	0.9919	26	1.9667	0.7098
WT EE Male - HD EE Male	-0.4672	0.9341	26	-0.5002	1.0000
WT EE Male - WT EX Male	0.4934	0.9919	26	0.4974	1.0000
WT EE Male - HD EX Male	0.1624	1.0965	26	0.1481	1.0000
HD EE Male - WT EX Male	0.9606	1.0965	26	0.8761	0.9988
HD EE Male - HD EX Male	0.6296	0.9919	26	0.6348	0.9999
WT EX Male - HD EX Male	-0.3310	0.9360	26	-0.3536	1.0000

6.1.12 Rotarod

contrast	Sex	estimate	SE	df	t.ratio	p.value
WT SH - HD SH	Female	69.0738	15.1751	26	4.5518	0.0014
$\mathrm{WT}\ \mathrm{SH}$ - $\mathrm{WT}\ \mathrm{EE}$	Female	-37.4977	16.0165	26	-2.3412	0.2141
$\mathrm{WT}\ \mathrm{SH}$ - $\mathrm{HD}\ \mathrm{EE}$	Female	44.1919	17.8178	26	2.4802	0.1668
$\mathrm{WT}\ \mathrm{SH}$ - $\mathrm{WT}\ \mathrm{EX}$	Female	21.3658	16.0359	26	1.3324	0.7648
WT SH - HD EX	Female	65.2560	17.8120	26	3.6636	0.0127
HD SH - WT EE	Female	-106.5715	17.8178	26	-5.9812	0.0000
HD SH - HD EE	Female	-24.8819	16.1731	26	-1.5385	0.6438
HD SH - WT EX	Female	-47.7080	17.8116	26	-2.6785	0.1141
HD SH - HD EX	Female	-3.8178	16.1934	26	-0.2358	0.9999
$\mathrm{WT}\;\mathrm{EE}$ - $\mathrm{HD}\;\mathrm{EE}$	Female	81.6896	15.1751	26	5.3831	$\boldsymbol{0.0002}$
$\mathrm{WT}\;\mathrm{EE}$ - $\mathrm{WT}\;\mathrm{EX}$	Female	58.8635	16.0359	26	3.6707	0.0125
WT EE - HD EX	Female	102.7537	17.8120	26	5.7688	0.0001
HD EE - WT EX	Female	-22.8261	17.8116	26	-1.2815	0.7921
HD EE - HD EX	Female	21.0641	16.1934	26	1.3008	0.7819
$\mathrm{WT}\ \mathrm{EX}$ - $\mathrm{HD}\ \mathrm{EX}$	Female	43.8902	15.2031	26	2.8869	0.0745
WT SH - HD SH	Male	78.1574	15.1189	26	5.1695	0.0003
WT SH - WT EE	Male	-73.7940	16.0165	26	-4.6074	$\boldsymbol{0.0012}$
$\mathrm{WT}\ \mathrm{SH}$ - $\mathrm{HD}\ \mathrm{EE}$	Male	16.9791	17.6989	26	0.9593	0.9266
WT SH - WT EX	Male	4.6670	16.1154	26	0.2896	0.9997
WT SH - HD EX	Male	57.6408	17.8120	26	3.2361	0.0347
HD SH - WT EE	Male	-151.9514	17.6989	26	-8.5854	0.0000
HD SH - HD EE	Male	-61.1782	16.0165	26	-3.8197	0.0087

(continu	PH I
COTTO	cu_{I}

contrast	Sex	estimate	SE	df	t.ratio	p.value
HD SH - WT EX	Male	-73.4904	17.8120	26	-4.1259	0.0041
HD SH - HD EX	Male	-20.5166	16.1154	26	-1.2731	0.7965
$\mathrm{WT}\ \mathrm{EE}$ - $\mathrm{HD}\ \mathrm{EE}$	Male	90.7731	15.1189	26	6.0039	0.0000
$\mathrm{WT}\;\mathrm{EE}$ - $\mathrm{WT}\;\mathrm{EX}$	Male	78.4610	16.1154	26	4.8687	0.0006
$\mathrm{WT}\ \mathrm{EE}$ - $\mathrm{HD}\ \mathrm{EX}$	Male	131.4347	17.8120	26	7.3790	0.0000
HD EE - WT EX	Male	-12.3121	17.8120	26	-0.6912	0.9814
HD EE - HD EX	Male	40.6616	16.1154	26	2.5231	0.1540
WT EX - HD EX	Male	52.9738	15.2581	26	3.4718	0.0201

6.2 Cumulative Link Mixed Model

6.2.1 Clasping Score

contrast	Housing	estimate	SE	df	z.ratio	p.value
WT Female - HD Female	SH	-0.8050	0.3069	Inf	-2.6227	0.0433
WT Female - WT Male	SH	-0.6116	0.3060	Inf	-1.9985	0.1885
WT Female - HD Male	SH	-1.4166	0.4382	Inf	-3.2325	$\boldsymbol{0.0067}$
HD Female - WT Male	SH	0.1933	0.4286	Inf	0.4511	0.9694
HD Female - HD Male	SH	-0.6116	0.3060	Inf	-1.9985	0.1885
WT Male - HD Male	SH	-0.8050	0.3069	Inf	-2.6227	0.0433
WT Female - HD Female	EE	-0.8050	0.3069	Inf	-2.6227	0.0433
WT Female - WT Male	EE	-0.6116	0.3060	Inf	-1.9985	0.1885
WT Female - HD Male	EE	-1.4166	0.4382	Inf	-3.2325	$\boldsymbol{0.0067}$
HD Female - WT Male	EE	0.1933	0.4286	Inf	0.4511	0.9694
HD Female - HD Male	EE	-0.6116	0.3060	Inf	-1.9985	0.1885
WT Male - HD Male	EE	-0.8050	0.3069	Inf	-2.6227	0.0433
WT Female - HD Female	$\mathbf{E}\mathbf{X}$	-0.8050	0.3069	Inf	-2.6227	0.0433
WT Female - WT Male	$\mathbf{E}\mathbf{X}$	-0.6116	0.3060	Inf	-1.9985	0.1885
WT Female - HD Male	$\mathbf{E}\mathbf{X}$	-1.4166	0.4382	Inf	-3.2325	$\boldsymbol{0.0067}$
HD Female - WT Male	$\mathbf{E}\mathbf{X}$	0.1933	0.4286	Inf	0.4511	0.9694
HD Female - HD Male	$\mathbf{E}\mathbf{X}$	-0.6116	0.3060	Inf	-1.9985	0.1885
WT Male - HD Male	$\mathbf{E}\mathbf{X}$	-0.8050	0.3069	Inf	-2.6227	0.0433

References

Lenth, Russell V. 2021. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans.

R session information

sessionInfo()

```
## R version 4.1.0 (2021-05-18)
```

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Big Sur 10.16


```
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
## attached base packages:
                 graphics grDevices utils
  [1] stats
                                                datasets methods
                                                                     base
##
## other attached packages:
   [1] kableExtra 1.3.4
                                               rstatix_0.7.0
##
                           patchwork_1.1.1
                                                                   lmerTest_3.1-3
##
    [5] lme4_1.1-27.1
                           Matrix_1.3-4
                                               viridis_0.6.1
                                                                   viridisLite_0.4.0
   [9] ordinal_2019.12-10 tidyr_1.1.4
                                               emmeans_1.7.0
                                                                   jtools_2.1.4
##
## [13] TSA_1.3
                           xtable_1.8-4
                                               sjPlot_2.8.9
                                                                   dotwhisker_0.7.4
                                               car_3.0-11
                                                                   carData_3.0-4
## [17] stargazer_5.2.2
                           nlme_3.1-153
  [21] ggpubr_0.4.0
                           ggplot2_3.3.5
                                               magrittr_2.0.1
                                                                   readxl_1.3.1
##
  [25] dplyr_1.0.7
                           knitr_1.36
##
## loaded via a namespace (and not attached):
    [1] TH.data_1.1-0
                            minqa_1.2.4
                                                 colorspace_2.0-2
##
    [4] ggsignif_0.6.3
                             ellipsis_0.3.2
                                                 rio_0.5.27
##
  [7] sjlabelled_1.1.8
                             estimability_1.3
                                                 ggstance_0.3.5
## [10] parameters 0.14.0
                            rstudioapi 0.13
                                                 farver 2.1.0
## [13] fansi_0.5.0
                            mvtnorm_1.1-2
                                                 xm12_1.3.2
## [16] codetools 0.2-18
                             splines_4.1.0
                                                 leaps_3.1
## [19] sjmisc_2.8.7
                            nloptr_1.2.2.2
                                                 ggeffects_1.1.1
## [22] broom 0.7.9
                             effectsize 0.5
                                                 compiler_4.1.0
                                                 backports_1.2.1
## [25] httr 1.4.2
                             sjstats_0.18.1
## [28] assertthat_0.2.1
                             fastmap_1.1.0
                                                 htmltools_0.5.2
## [31] tools_4.1.0
                             coda_0.19-4
                                                 gtable_0.3.0
## [34] glue_1.4.2
                             Rcpp_1.0.7
                                                 cellranger_1.1.0
## [37] vctrs_0.3.8
                             svglite_2.0.0
                                                 insight_0.14.4
## [40] xfun_0.26
                             stringr_1.4.0
                                                 openxlsx_4.2.4
## [43] rvest_1.0.1
                             lifecycle_1.0.1
                                                 MASS_7.3-54
## [46] zoo_1.8-9
                             scales_1.1.1
                                                 hms_1.1.1
## [49] sandwich_3.0-1
                             yaml_2.2.1
                                                 curl_4.3.2
                             pander_0.6.4
## [52] gridExtra_2.3
                                                 stringi_1.7.5
## [55] ucminf_1.1-4
                             bayestestR_0.11.0
                                                 boot_1.3-28
## [58] zip_2.2.0
                             rlang_0.4.11
                                                 pkgconfig_2.0.3
  [61] systemfonts 1.0.2
                             evaluate 0.14
                                                 lattice 0.20-45
## [64] purrr_0.3.4
                             labeling_0.4.2
                                                 tidyselect_1.1.1
## [67] R6 2.5.1
                             generics_0.1.0
                                                 multcomp_1.4-17
## [70] DBI_1.1.1
                            pillar_1.6.3
                                                 haven_2.4.3
                            withr_2.4.2
## [73] foreign_0.8-81
                                                 mgcv_1.8-37
## [76] survival 3.2-13
                             datawizard 0.2.1
                                                 abind 1.4-5
## [79] tibble_3.1.5
                             performance_0.8.0
                                                 modelr_0.1.8
## [82] crayon_1.4.1
                             utf8_1.2.2
                                                 rmarkdown_2.11
## [85] locfit_1.5-9.4
                             grid_4.1.0
                                                 data.table_1.14.2
## [88] forcats_0.5.1
                             digest_0.6.28
                                                 webshot_0.5.2
## [91] numDeriv_2016.8-1.1 munsell_0.5.0
```