Chapitre 1. CELLULE PROCARYOTE

I. DEFINITION

Les procaryotes sont des microorganismes généralement unicellulaires, sauf pour une majorité de Cyanobactéries (microorganismes pluricellulaires). Ils sont subdivisés en deux domaines, les eubactéries (*Eubacteria*) et les archaebactéries (*archaea*). Ces derniers diffèrent des Eubactéries par certaines caractéristiques. Les deux domaines ont la particularité de se reproduire par scissiparité (absence de mitose et de méiose).

II. STRUCTURE ET ULTRASTRUCTURE

1. Au Microscope Photonique

Les procaryotes présentent différentes formes (**figure 1**): cylindrique, pédonculée, spiralée, ou filamenteuse, toutefois deux formes prédominent: sphérique (ou cocci) et bâtonnet (ou bacille). Les archaebactéries ont une taille plus importante que celle des eubactéries.

Figure 1 : Différentes formes de bactéries.

2. Au Microscope électronique à Transmission (MET)

Ils présentent des éléments essentiels et des éléments facultatifs (**figure 2**) et sont caractérisés par l'absence de l'enveloppe nucléaire, du système endomembranaire (réticulum endoplasmique, appareil de Golgi ...), du cytosquelette et de mitochondries.

Figure 2 : Organisation de la cellule procaryote.

2.1. Eléments essentiels

Les éléments essentiels sont des éléments communs à toutes les cellules procaryotes : la paroi bactérienne, la membrane plasmique, l'appareil nucléaire (Nucléoïde) et le cytoplasme riche en ribosomes et polyribosomes.

2.1.1. Paroi bactérienne

C'est une structure externe, rigide et résistante qui détermine la forme et assure la protection. Chez les eubactéries elle est en générale constituée de polymères de s u c r e s (essentiellement l'acide N-acéthyl muranique et le N-acéthyl glucosamine) reliés entre eux par des ponts peptidiques: les peptidoglycanes (PG). La technique de coloration de Gram, basée sur la composition chimique de la paroi a permis de mettre en évidence l'existence de 2 types de bactéries :

- Les bactéries Gram positive (+), ayant une paroi épaisse constituée essentiellement de PG (20 à 80nm) et de peu de lipides (acide lipoteichoïque lié aux PG et aux lipides de la membrane plasmique).
- Les bactéries Gram négative (-), ont une paroi constituée d'une fine couche de PG (1 à 3nm) associés à une lipoprotéine abondante. Cette lipoprotéine est aussi liée à une membrane supplémentaire externe, riche en lipopolysaccharides (LPS). L'espace entre les 2 membranes, dans lequel baignent les PG est un gel aqueux appelé périplasme.

La **figure 3a** représente la proposition de modèles d'architecture moléculaire pour ces deux types de paroi, très schématisés dans la **figure 3b**. Les parois des archaebactéries ne contiennent pas de PG et ont une organisation et une composition chimique différentes de celles des eubactéries.

1- cytoplasme, 2- membrane plasmique, 3- peptydoglycannes (PG), 4- lipoprotéines associées aux PG, 5- membrane externe, 3 et 4- (Gram -) périplasme.

Figure 3: Architecture moléculaire (a) et représentation schématique (b) des parois des eubactéries Gram (+) et Gram (-).

2.1.2. Membrane plasmique

2.1.3. Cytoplasme

2.1.4. Nucléoïde ou Appareil nucléaire

Appelé aussi chromosome (**figure 4**), il est diffus dans le cytoplasme et il est formé d'une seule molécule d'ADN bicaténaire (double brin), circulaire, super enroulée et formant plusieurs boucles grâce à des enzymes et à son association avec des protéines (histone like) semblables aux histones des cellules eucaryotes.

Le Nucléoïde complètement déroulé a une longueur d'environ 1,4mm, alors que la cellule procaryote a une taille qui varie selon les espèces de 0,1 μ m à $10\,\mu m$. Les gènes des procaryotes sont dépourvus d'introns (à l'exception de certains gènes d'archaebactéries), contrairement aux gènes des cellules eucaryotes.

Figure 4 : Organisation de la cellule procaryote.

2.2. Elements facultatifs

Les éléments facultatifs sont des éléments propres à certaines espèces de procaryotes et absents chez d'autres :

le plasmide, la capsule, le flagelle, le pilus, le chromatophore et la vacuole à gaz.

Pour en savoir plus

- 1. Allieet et Lalegerie P. 1997- Cytobiologie, cours du PCEM Edit Ellipse.
- 2. Bornens M. Luovard D. et Thiery J.P. 1993- Penser la cellule en 1991 Médecine-Science, 2:198-202.
- 3. Campbell N.A. et Reece J.B. 2904- Biologie, 2ème éd. Deboeck, 1364p.
- **4.** Gourret J.P. 1987- Bactérie. Documents de microscopie électronique tome 3, université de Rennes, 2ème éd. Document INRAP, Dijon France.
- 5. Leclerc H., Izard D., Husson M.O. et Jakubczak W. 1983- Microbiologie générale, nouvelle éd.
- **6.** Nicklin J., Graeme Cook K., Paget T. et Killington R. 2000- L'Essentiel en microbiologie, traduit par Parwani A., éd. Bern, Port Royal livres, 362p.
- 7. Prescott L., Harley J.P. et Klein D.A. 1995- Microbiologie, traduit de l'anglais par Bacq-Calberg C.M., Coyette J., Hohet P. et Nguyen-Distèche M., éd. Deboeck université 1014p.
- 8. Raven P.H. and Johnson G.B. 1999-BIOLOGY, 5ème éd. WCB/Mcgraw-hill, 1264p.