⑲ 日本国特許庁(JP)

⑩ 特 許 出 願 公 開

⑩ 公 開 特 許 公 報 (A) 平2-50841

⑤Int.Cl.⁵

識別記号

庁内整理番号

❸公開 平成2年(1990)2月20日

B 41 J 2/045

7513-2C B 41 J 3/04

103 A

審査請求 未請求 請求項の数 1 (全5頁)

②特 願 昭63-202252

②出 願 昭63(1988) 8月12日

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

@発明者 松澤 正尚

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式

会社内

⑪出 願 人 セイコーエプソン株式

東京都新宿区西新宿2丁目4番1号

会社

四代 理 人 弁理士 鈴木 喜三郎 外1名

明 一概 一世

1. 発明の名称

インクジェットヘッド

2. 特許請求の範囲

少なくとも1つ以上のノズル関ロを有するノズル形成部材と、前記ノズル開口の各々に対向して対向して対応では、前記ノズル開口の各々に対向した対方のでは、10世間では、10世には、10世には、10世には、10世には、1

3. 発明の詳細な説明 (産業上の利用分野) 本発明はインク滴を飛翔させ記録紙等の媒体上にインク像を形成するプリンタ等インクジェット 記録装置に関し、さらに詳細にはインクジェット プリンタヘッドに関する。

〔従来の技術〕

-1

また、ノズル形成部材と振動子の間隔は、インク 吐出特性に大きな影響を与えるため微小な間隙を 保つように構成されている。

〔発明が解決しようとする課題〕

そこで本発明はこのような問題点を解決するもので、その目的とするところは製造上の歩留まりが良く、インク滴の吐出スピード、吐出量、吐出

-3-

ているため、接触の際に振動子の受ける衝撃は軟 構造部材によって吸収され、振動子の自由端はさ らにノズル形成部材側へ当接状態を続けながら変 位する。

(実施例)

以下本発明の詳細を具体例により図面を参照して説明する。

第1図は本発明におけるインクジェットへッドを搭載したブリンタの斜視図であって、記録線である。 記録の進行に従い矢印5の方向に接き回され、記録の進行に従い矢印5の方向に移動可能なキャリッジ8 火の軸に平行な方向に移動可能なキャリッシ8 上には、複数のノズルを有するインクジェットのはは、複数のノズルを有するインクジェットのでは、複数のノズルを有するで、矢印10の方向に移動はによりが搭載されており、矢印10の方向に移動はたいの人ズルからインク流を吐出して記録媒体上にインク像を形成する。

第2図は本発明によるインクジェットヘッドの 断面を示したものであって、複数のノズル13を 列設したノズル形成部材であるノズル板12とこ 安定性といった諸特性が各ノズル間で揃った性能 の優れたインクジェットヘッドを提供することに ある。

〔課題を解決するための手段〕

(作用)

本発明の上記様成によれば、片持ち梁状振動子の自由端がノズル形成部材側に変位した際、片持ち梁状振動子の自由端の反りのばらつきのためにノズル形成部材に接触するような振動子があっても、振動子の自由端近傍が軟構造部材で構成され

-4-

れらのノズル13に1対1に対向する複数の振動子14を有する圧電変換器11は、スペーサ19を介してフレーム20とサブフレーム21の間に一体的に取付けられている。またフレーム20とノズル板12およびサブフレーム21によっかのではインク(図示せず)がサブフレーム21の間後に配置されたノズルがクサザーバ(図示を省略)から供給され、ノズルの駆けを充たしている。22は圧電変換器11への駆動信号を供給するための配線である。

-5.

第4図(a),(b)はともにインク滴の吐出原理を説明するためのヘッド断面図である。振極18とパターン電極16の間に電圧を印加すると圧電効果により圧電電子17は収率を印加すると共通をでは、18のN1層として銀動子14はバターンでででは、18のN1層によりでは、14は、12の間では、18の側に出がるごとく、第4図(ないりに、3に振動子14のにででは、18に振動子14のにででは、18は、12の間にででは、18に振動子14の間にででいる。に変形をはは、200間にでででは、200間にででででは、200間にでででででででででである。ででででででででである。でででは、200間にででででは、200間にででででででででは、200間にででででででででででは、200間にでででででででででででででででででででででででででである。

ところで、振動子14の自由端には軟構造部材である弾性ゴム15が接合されており、振動子の反りのばらつきがあっても、電圧解除時には第4図(b)の如く弾性ゴム15がノズル板12に押圧・当接することにより、振動子とノズルとの問

-9-

ムが使われているが、 軟構造部材が弾性変形する 材料でありさえすれば、 どんな材質であってもよ いことは発明の主旨上明白である。

また上記実施例では待機時に信号電極に電圧を 印加しているが、待機時には非電圧印加状態にし ておいて、選択的に電圧を印加し解除することで ノズル近傍のインクを押圧しノズルから吐出させ ることも可能である。

(発明の効果)

隔を高精度に保つことが可能になる。 また、接触の際に振動子の受ける衝撃は軟構造部材である弾性ゴム15の変形によって吸収され、振動子の自由端は、 さらにノズル板側へ当接状態を続けながら変位する。 これらにより、振動子の反りのばらつきに対してノズル近傍のインクに発生する圧力及びインクの流れはほぼ一定となる。

第5 図は、本発明におけるインクジェットへッドに用いられる圧電変換器の他の実施例である可能性がある。この先端部は軟構造も可能である。この場合、振動子がノズル板に当接・接触した際、軟術造部材である。で、軟橋に当接・接触した際、軟橋に出するのでは、近極のほか、原のに大きくとれるため、振動子は、原のに大きなが、原動子は、原のになったが、大変位できる。このほか、呼性ゴムの加工度の大きされるため、元のはいに対する部分を円板形状にして振動子の振動エネルギーを効率よくインクに伝える構造にすることも本実施例の場合には可能である。

なお上記实施例では、軟構造部材として弾性ゴ

-8-

を掲正できるため、振動子とノズル板とのギャップマージンが大きくなりヘッド製造における歩留まりが向上するとともに、インク滴の吐出スピード・吐出量・吐出安定性といった諸特性が各ノズル関で揃った性能の優れたインクジェットヘッドが実現できる。

さらに本発明の上記構成によれば、振動子の自由端がノズル板側に変位した際、ノズル板に接触する振動子の受ける衝撃は軟構造部材によって吸収されるため、振動子に衝撃による応力集中が及ぶことなく耐久性に優れたインクジェットヘッドが実現できる。

4. 図面の簡単な説明

第1図は本発明による一実施例を示すインクジェットへッドを搭載したプリンタの斜視図。

第2図は本発明による一実施例におけるインク ジェットヘッドの断面図。

第3図は第2図に示された圧電変換器の構成を 説明するための斜視図。

-9-

1: 記錄媒体

9: インクジェットヘッド

第4図(a). (b)はインク海の吐出原理を説明するための第2図に示されたヘッドの断面拡大図。

第5図は本発明におけるインクジェットヘッド に用いられる圧電変換器の他の実施例を説明する ためのヘッド断面拡大図。

1…記録媒体

9…インクジェットヘッド

11…圧電変換器

12…ノズル板

13…ノズル

1 4 … 振動子

15…弾性ゴム

以上 株式会社

出願人 セイコーエプソン株式会社 代理人弁理士 鈴木客三郎 他1名

第 1 図

-11-

第 2 図

11 圧電変換器

12 ノズル板

B IXIL

4 振動子 15 弾性ゴム

. . .

THIS PAGE BLANK (USPTO)