COMP1942

Classification: More Concept

Prepared by Raymond Wong Presented by Raymond Wong raywong@cse

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

Accuracy

Given

- a classification model (e.g., decision tree)
- an arbitrary dataset where its target attribute is known
- the accuracy of a classification model is defined to be the proportion of the values in the target attribute correctly predicted.

e.g.1

Accuracy

e.g.1

e.g.1

Race	Income	Child	Insurance		
white	high	yes	yes		
white	low	yes	yes		
black	low	no	no		
black	low	no	no		
black	low	no	no		
white	high	no	no		
An arbitrary dataset					
The substituting distances					
COMP1942					

e.g.1

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

Precision

Precision

= Total no. of values in the target attribute correctly predicted as "Yes"

Total no. of values in the target attribute predicted as "Yes"

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

Recall

Total no. of values in the target attribute correctly predicted as "Yes"

Total no. of actual values in the target attribute equal to "Yes"

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

f-measure

- f-measure is also called "f1-score".
- f-measure is a measurement by considering precision and recall together

• f-measure =
$$\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

f-measure

COMP1942

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

Specificity (similar to Recall (reverse way))

Total no. of values in the target attribute correctly predicted as "No"

Total no. of actual values in the target attribute equal to "No"

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

False Positive/False Negative

True Positive

The value is predicted as "Yes" and the actual value is "Yes"

False Positive

The value is predicted as "Yes" but the actual value is "No"

True Negative

The value is predicted as "No" and the actual value is "No"

False Negative

The value is predicted as "No" but the actual value is "Yes"

4

False Positive/False Negative

■ E.g.1

Race	Income	Child	Insurance	Pred	icted
white	high	yes	yes	yes	
white	low	yes	yes	yes	
black	low	yes	yes	no	
black	low	yes	yes	no	
black	low	no	no	no	
white	high	no	no	yes	

No. of true positives = 2

No. of false positives = 1

No. of true negatives = 1

No. of false negatives = 2

False Positive/False Negative

• E.g.2

Race	Income	Child	Insurance	Pred	icted
white	high	yes	yes	yes	
white	low	yes	yes	no	•
black	low	yes	yes	no	
black	low	yes	yes	no	-
black	low	no	no	yes	
white	high	no	no	yes	

No. of true positives = ?

No. of false positives =?

No. of true negatives = ?

No. of false negatives = ?

- Other Five Measurements
 - Accuracy
 - Precision
 - Recall
 - f-measure
 - Specificity
- False Positive/False Negative
- Two Phases

Two Phases

- Two Phases
 - Training Phase
 - Training Set
 - Validation Set
 - Test Set
 - Prediction Phase
 - New Set

Training Phase

What we learnt is the following.

Training Phas

Training set

Original dataset

Race	Income	Child	Insurance
black	high	no	yes
white	high	yes	yes
white	low	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
black	low	no	no
black	low	no	no
white	high	yes	yes
black	low	no	no
			•••
white	low	no	no

	white	low	no	no	
•					
					Validation set

Child

yes

yes

yes

no

no

Insurance

yes

yes

yes

no

no

Income

high

high

low

low

low

low

low

white

white

white

black

black

black

Race	Income	Child	Insurance
white	high	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Race	Income	Child	Insurance
white	low	yes	yes
black	low	no	no
hlack	low	no	no

Test set

COMP1942

Two Phases

- Two Phases
 - Training Phase
 - Training Set
 - Validation Set
 - Test Set
 - Prediction Phase
 - New Set

Used to train or build a model

e.g.1

e.g.2

e.g.3

e.g.4

Two Phases

- Two Phases
 - Training Phase
 - Training Set
 - Validation Set
 - Test Set
 - Prediction Phase
 - New Set

Validation Set

We obtain a model from the training set.

- Validation set
 - Used to fine-tune the model
 - Different models have different ways of fine-tuning

Validation Set – Neural Network

e.g.1

Validation Set – Neural

Validation Set – Neural Network

Validation Set – Neural Network

Structure 2

COMP1942

Validation set

Validation Set – Neural Network

Validation Set – Neural Network

e.g.3

Structure 3

COMP1942

Validation Set – Neural Network

- •
- Which structure is the best?
- Why?

e.g.1

An operation to remove the whole subtree

Pruning

e.g.1

Race	Income	Child	Insurance
white	high	yes	yes
white	low	yes	yes
black	low	no	no
black	low	no	no
black	low	no	no
white	low	no	no

Accuracy = 95%

Validation set

COMP1942

Variation of the original tree

- Which tree is the best?
- Why?

Two Phases

- Two Phases
 - Training Phase
 - Training Set
 - Validation Set
 - Test Set
 - Prediction Phase
 - New Set

- The validation test is often used to fine-tune the model
- In such a case, when a model is finally chosen, its accuracy with the validation set is still an optimistic estimate of how it would perform with unseen data
- Thus, we use test set to evaluate the accuracy of the model on completely unseen data

Test set – Neural Network

Accuracy = 95%

Validation set

COMP1942

Structure 2

4

Test set – Neural Network

Test set – Decision Tree

Variation of the original tree

Test set – Decision Tree

Variation of the original tree

Two Phases

- Two Phases
 - Training Phase
 - Training Set
 - Validation Set
 - Test Set
 - Prediction Phase
 - New Set

New Set

