Лабораторна робота №3 Мінімізація ФАЛ методом невизначених коефіцієнтів для базису І-АБО-НЕ.

Теоретичні відомості

Згідно з теоремою Жегалкіна, будь-яку логічну функцію можна представити в нормальній формі, наприклад, в диз'юнктивній нормальній формі (ДНФ):

де k - невизначені коефіцієнти, що приймають значення 0 чи 1 і так, щоб одержана результатом ДНФ була мінімальною. Коефіцієнти k знаходяться із системи рівнянь, одержуваної шляхом підстановки значень $x_1, x_2 ..., x_n$ в наведену вище ДНФ.

Алгоритм пошуку невизначених коефіцієнтів k наступний:

- 1. Вибрати черговий рядок, у якому $F_i = 0$, і всі коефіцієнти цього рядка визначити нулем (викреслити).
 - 2. Якщо всі нульові рядки переглянуті, то перейти до п. 3, якщо ні, то до п. 1.
- 3. Переглянути рядки, в яких $F_i = 1$, та викреслити з них усі коефіцієнти, що зустрічаються в рядках, де $F_i = 0$.
 - 4. Переписати всі модифіковані рівняння.
- 5. Вибрати черговий рядок $F_i = 1$ і викреслити максимально можливу кількість коефіцієнтів так, щоб ранг членів, що залишаються, був мінімальним.

Метод невизначених коефіцієнтів найбільш застосовний для диз'юнктивної форми і практично непридатний для кон'юнктивної форми.

Розглянемо приклад: Знайти мінімальну форму для функції $F(x_1, x_2, x_3) = \sum (0,2,4,7)$ **Розв'язок:**

На підставі теореми Жегалкіна логічну функцію трьох змінних представимо в НДФ:

$$F(\mathbf{x}_{1},\,\mathbf{x}_{2},\,\mathbf{x}_{3}) = k_{1}^{1}\,\,\mathbf{x}_{1} + k_{1}^{0}\,\,\overline{\mathbf{x}}_{1} + k_{2}^{1}\,\,\mathbf{x}_{2} + k_{2}^{0}\,\,\overline{\mathbf{x}}_{2} + k_{3}^{1}\,\,\mathbf{x}_{3} + k_{3}^{0}\,\,\overline{\mathbf{x}}_{3} + k_{12}^{11}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2} + k_{12}^{10}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2} + k_{13}^{10}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2} + k_{13}^{10}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{3} + k_{13}^{01}\,\,\overline{\mathbf{x}}_{1}\,\,\mathbf{x}_{3} + k_{13}^{00}\,\,\overline{\mathbf{x}}_{1}\,\,\overline{\mathbf{x}}_{3} + k_{23}^{10}\,\,\mathbf{x}_{2}\,\,\overline{\mathbf{x}}_{3} + k_{23}^{10}\,\,\mathbf{x}_{2}\,\,\overline{\mathbf{x}}_{3} + k_{123}^{10}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{100}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{101}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{101}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{101}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{101}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{101}\,\,\mathbf{x}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{101}\,\,\overline{\mathbf{x}}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\overline{\mathbf{x}}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\overline{\mathbf{x}}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\overline{\mathbf{x}}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\overline{\mathbf{x}}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\overline{\mathbf{x}}_{1}\,\,\overline{\mathbf{x}}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\overline{\mathbf{x}}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,\mathbf{x}_{1}\,\,\mathbf{x}_{2}\,\,\mathbf{x}_{3} + k_{123}^{001}\,\,$$

Складемо систему рівнянь, і запишемо її у вигляді таблиці:

лидото	one remy	Piblimiib	, i Juiiii	demo ii	ם מולוגיות של	1 14031111	41.	
k_1^0	k_2^0	k_3^0	k_{12}^{00}	$k_{13}^{\ 00}$	k_{23}^{00}	k_{123}^{000}	F0	1
k_1^0	k_2^0	k_3^1	k_{12}^{00}	k_{13}^{01}	k_{23}^{01}	k_{123}^{001}	F1	0
k_1^0	k_2^1	k_3^0	k_{12}^{01}	$k_{13}^{\ 00}$	k_{23}^{10}	k_{123}^{010}	F2	1
k_1^0	k_2^1	k_3^1	k_{12}^{01}	k_{13}^{01}	k_{23}^{11}	k_{123}^{011}	F3	0
k_1^1	k_2^0	k_3^0	k_{12}^{10}	k_{13}^{10}	k_{23}^{00}	k_{123}^{100}	F4	1
k_1^1	k_2^0	k_3^1	k_{12}^{10}	k_{13}^{11}	k_{23}^{01}	k_{123}^{101}	F5	0

k_1^1	k_2^1	k_3^0	k_{12}^{11}	k_{13}^{10}	k_{23}^{10}	k_{123}^{110}	F6	0
k_1^1	k_2^1	k_3^1	k_{12}^{11}	k_{13}^{11}	k_{23}^{11}	k_{123}^{111}	F7	1

Згідно алгоритму викреслюємо коефіцієнти для $F_i = 0$. (\ нахил). Потім викреслюємо співпадаючі коефіцієнти для $F_i = 1$ (/ нахил). Отримуємо модифіковану систему рівнянь. Коефіцієнти, що задовольняють пункт 5, виділяємо, описавши їх по периметру стовщеною лінією.

Таким чином, маємо $k_{13}^{00}=1$ $k_{23}^{00}=1$, $k_{123}^{111}=1$, а всі інші коефіцієнти рівні 0.

У результаті мінімізації знаходимо шукану функцію:

$$F(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_3 + \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

Завдання

Згідно варіанту, мінімізувати ФАЛ $F(x_1, x_2, x_3, x_4)$ методом невизначених коефіцієнтів для базису І-АБО-НЕ.

ocq	ефіцієнтів для оазису і-АБО-НЕ.																			
	$N_{\overline{0}}$	***	***	***	***	$F(x_1, x_2, x_3, x_4)$ для варіанту:														
Н	абору	\mathbf{x}_1	X ₂	$X_2 \mid X_3$	X ₄	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	1	1	0	1	0
	1	0	0	0	1	1	1	1	0	1	1	0	1	0	0	1	1	0	0	1
	2	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0
	3	0	0	1	1	1	0	0	1	0	0	1	0	1	1	1	0	1	0	0
	4	0	1	0	0	0	1	1	0	1	1	0	0	1	0	1	1	0	1	1
	5	0	1	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0	1
	6	0	1	1	0	1	1	1	0	1	0	1	0	1	0	1	0	0	1	1
	7	0	1	1	1	1	0	1	0	1	1	0	1	0	1	0	1	0	0	0
	8	1	0	0	0	0	1	1	0	1	1	1	1	1	0	1	0	1	0	0
	9	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0
	10	1	0	1	0	0	1	1	0	1	1	0	1	0	1	0	1	1	0	1
	11	1	0	1	1	1	1	0	1	0	0	0	1	1	1	0	1	0	1	1
	12	1	1	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	1	0
	13	1	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	0	1
	14	1	1	1	0	1	1	0	1	1	0	1	0	1	1	1	1	0	1	0
	15	1	1	1	1	0	0	1	0	1	0	1	1	1	1	0	0	0	1	1

Примітка: Для функцій чотирьох змінних система рівнянь у вигляді таблиці наступна:

	Γ	r +	TJ	'								- ' '			
k_1^{0}	k_2^0	k_{3}^{0}	k_4^0	k_{12}^{00}	k_{13}^{00}	k_{14}^{00}	k_{23}^{00}	k_{24}^{00}	k_{34}^{00}	k_{123}^{000}	k_{124}^{000}	k_{134}^{000}	k_{234}^{000}	k_{1234}^{0000}	F0
k_1^{0}	k_{2}^{0}	k_3^0	k_{4}^{1}	k_{12}^{00}	k_{13}^{00}	k_{14}^{01}	k_{23}^{00}	k_{24}^{01}	k_{34}^{01}	k_{123}^{000}	k_{124}^{001}	k_{134}^{001}	k_{234}^{001}	k_{1234}^{0001}	F1
k_1^{0}	k_2^0	k_{3}^{1}	k_4^{0}	k_{12}^{00}	k_{13}^{01}	k_{14}^{00}	k_{23}^{01}	k_{24}^{00}	k_{34}^{10}	k_{123}^{001}	k_{124}^{000}	k_{134}^{010}	k_{234}^{010}	k_{1234}^{0010}	F2
k_1^{0}	k_{2}^{0}	k_{3}^{1}	k_4^{1}	k_{12}^{00}	k_{13}^{01}	k_{14}^{01}	k_{23}^{01}	k_{24}^{01}	k_{34}^{11}	k_{123}^{001}	k_{124}^{001}	k_{134}^{011}	k_{234}^{011}	k_{1234}^{0011}	F3
k_1^{0}	k_{2}^{1}	k_{3}^{0}	k_4^{0}	k_{12}^{01}	k_{13}^{00}	k_{14}^{00}	k_{23}^{10}	k_{24}^{10}	k_{34}^{00}	k_{123}^{010}	k_{124}^{010}	k_{134}^{000}	k_{234}^{100}	k_{1234}^{0100}	F4
k_1^{0}	k_{2}^{1}	k_{3}^{0}	k_4^1	k_{12}^{01}	k_{13}^{00}	k_{14}^{01}	k_{23}^{10}	k_{24}^{11}	k_{34}^{01}	k_{123}^{010}	k_{124}^{011}	k_{134}^{001}	k_{234}^{101}	k_{1234}^{0101}	F5
k_1^{0}	k_{2}^{1}	k_{3}^{1}	k_4^{0}	k_{12}^{01}	k_{13}^{01}	k_{14}^{00}	k_{23}^{11}	k_{24}^{10}	k_{34}^{10}	k_{123}^{011}	k_{124}^{010}	k_{134}^{010}	k_{234}^{110}	k_{1234}^{0110}	F6
k_1^{0}	k_{2}^{1}	k_{3}^{1}	k_4^1	k_{12}^{01}	k_{13}^{01}	k_{14}^{01}	k_{23}^{11}	k_{24}^{11}	k_{34}^{11}	k_{123}^{011}	k_{124}^{011}	k_{134}^{011}	k_{234}^{111}	k_{1234}^{0111}	F7
k_1^1	k_2^0	k_{3}^{0}	k_4^0	k_{12}^{10}	k_{13}^{10}	k_{14}^{10}	k_{23}^{00}	k_{24}^{00}	k_{34}^{00}	k_{123}^{100}	k_{124}^{100}	k_{134}^{100}	- 000	k_{1234}^{1000}	
k_1^{1}	k_{2}^{0}	k_{3}^{0}	k_4^1	k_{12}^{10}	k_{13}^{10}	k_{14}^{11}	k_{23}^{00}	k_{24}^{01}	k_{34}^{01}	k_{123}^{100}	k_{124}^{101}	k_{134}^{101}	k_{234}^{001}	k_{1234}^{1001}	F9

k_1^1	k_2^0	k_{3}^{1}	k_4^{0}	k_{12}^{10}	k_{13}^{11}	k_{14}^{10}	k_{23}^{01}	k_{24}^{00}	k_{34}^{10}	k_{123}^{101}	k_{124}^{100}	k_{134}^{110}	k_{234}^{010}	k_{1234}^{1010}	F10
k_1^1	k_2^0	k_{3}^{1}	k_4^1	k_{12}^{10}	k_{13}^{11}	k_{14}^{11}	k_{23}^{01}	k_{24}^{01}	k_{34}^{11}	k_{123}^{101}	k_{124}^{101}	k_{134}^{111}	k_{234}^{011}	k_{1234}^{1011}	F11
k_1^1	k_{2}^{1}	k_3^0	k_4^0	k_{12}^{11}	k_{13}^{10}	k_{14}^{10}	k_{23}^{10}	k_{24}^{10}	k_{34}^{00}	k_{123}^{110}	k_{124}^{110}	k_{134}^{100}	k_{234}^{100}	k_{1234}^{1100}	F12
k_1^1	k_{2}^{1}	k_3^0	k_4^{1}	k_{12}^{11}	k_{13}^{10}	k_{14}^{11}	k_{23}^{10}	k_{24}^{11}	k_{34}^{01}	k_{123}^{110}	k_{124}^{111}	k_{134}^{101}	k_{234}^{101}	k_{1234}^{1101}	F13
k_1^1	k_{2}^{1}	k_{3}^{1}	k_4^0	k_{12}^{11}	k_{13}^{11}	k_{14}^{10}	k_{23}^{11}	k_{24}^{10}	k_{34}^{10}	k_{123}^{111}	k_{124}^{110}	k_{134}^{110}	k_{234}^{110}	k_{1234}^{1110}	F14
k_1^1	k_{2}^{1}	k_{3}^{1}	k_4^1	k_{12}^{11}	k_{13}^{11}	k_{14}^{11}	k_{23}^{11}	k_{24}^{11}	k_{34}^{11}	k_{123}^{111}	k_{124}^{111}	k_{134}^{111}	k_{234}^{111}	k_{1234}^{1111}	F15

Контрольні питання:

- 1. Що називають базисом?
- 2. Сформулювати означення диз'юнктивної нормальної форми логічної функції.
- 3. Що називають рангом терма?
- 4. Сформулювати теорему Жегалкіна.
- 5. Сформулювати алгоритм методу невизначених коефіцієнтів для мінімізації логічної функції.