Shallow Neural Network

Sidharth Baskaran

July 2021

Overview

- Superscript [l] refers to l-th layer
- Right-to-left propagation allows for computing derivative at each step

Neural Network Representation

- Hidden layers are in between output and input layers
 - True values not observed, only I/O
- Notation $\to a^{[0]} = x$, $a^{[1]}$ represents the activation unit **vectors** of dimension being number of nodes in
 - Also contain $w^{[l]}$ and $b^{[l]}$
- Counting layers \rightarrow input layer not counted, so indexed by 0

Computing Neural Network Output

Figure 1: Neural net node

- Single node takes in all elements of a feature
- Notation $\rightarrow a_i^{(l)}$ is the ith node of the lth layer Want to vectorize $z_i^{[l]} = w_i^{[l]T}x + b_i^{[l]}, a_i^{[l]} = \sigma(z_i^{[l]})$
- $w_i^{[l]T}$ is a row-vector, so results in a matrix when vectorized, with the row vectors stacked. Then just multiply by x, i.e. vector

$$z^{[l]} = W^{[l]}x^{[l]} + b^{[l]}$$

• Then, $a^{[l]} = \sigma(z^{[l]})$

Vectorizing across multiple examples

$$x^{(i)} \to a^{[l](i)} = \hat{y}^{(i)}$$

For $i \in [1, m]$, this accounts for m training examples.

$$\begin{array}{l} \text{for } i=1 \text{ to } m: \\ z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]} \\ a^{[1](i)} = \sigma \left(z^{[1](i)}\right) \\ z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]} \\ a^{[2](i)} = \sigma \left(z^{[2](i)}\right) \end{array}$$

Vectorize:

$$Z^{[l]} = W^{[l]}X + b^{[l]}A^{[l]} = \sigma(Z^{[l]})$$

Closer look:

$$z^{[l]} = \left[z^{[l](1)} \ z^{[l]2)} \ \cdots \ z^{[l](m)} \right]$$

Activation Functions

- $\tanh(z)$ is better than $\sigma(z)$ and has range [-1,1]
 - Formula $\rightarrow a = \tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$ Represent of $g^{[l]}(z^{[l]})$

Figure 2: tanh

- Formula for ReLU function is $a = \max(0, z) \implies \frac{d}{dz}a = \max(0, 1)$, is a good default choice
 - Is faster than tanh and σ
 - * Less effect of slope approaching 0, since it is rectified
- Only use sigmoid for binary, always use tanh, but ReLU is most commonly used, or the leaky ReLU $(a = \max(0.001z, z))$

Reason for nonlinear activation functions

- Say g(z) = z, so an identity activation function
- A linear function of input is the output, which results in no point for hidden layers
 - The output layer can use a linear function to give output $\in \mathbb{R}$

Figure 3: ReLU

Figure 4: Leakly ReLU

Derivatives of Activation Functions

• Sigmoid function
$$-g'(z)=\frac{d}{dz}\frac{1}{1+e^{-z}}(1-\frac{1}{1+e^{-z}})=g(z)(1-g(z))$$
 • Tanh function
$$-g'(z)=\frac{d}{dz}g(z)=1-(\tanh(z))^2$$
 • ReLU function

$$-g'(z) = \frac{d}{dz}g(z) = 1 - (\tanh(z))^2$$

• Leaky ReLU
$$-g(z) = \max(0, z)$$

$$-g'(z) = \begin{cases} 0, z < 0 \\ 1, z \ge 0 \\ \text{DNE}, z = 0 \end{cases}$$

$$-g(z) = \max(0.01z, z)$$

$$-g'(z) = \begin{cases} 0.01, z < 0 \\ 1, z > 0 \\ \text{DNE}, z = 0 \end{cases}$$

Gradient Descent for Neural Networks