Conway's Life

It's a Wonderful Day in the Neighborhood

An introduction to cellular automata

Topic Outline

- Cellular Automata
- Conway's Game of Life
- Game of Life Rules
- Classification of Patterns
- Golly App
- Epic Conway video
- Resources for further study

What is Cellular Automata?

- A discrete modeling process
- Studied in computer science, mathematics, physics, complexity science, theoretical biology and microstructure modeling
- Concept originally discovered in 1940's by Stanislaw Ulam and John von Neumann
- Sometimes considered the biggest waste of time in computer science

A Cellular Automation Consists of

- A regular, n-dimensional grid of cells
- A finite set of cell states (on/off, alive/dead, red/green/blue, etc.)
- A set of rules for determining a cell's next generation state
- Next state determined by present state and the state of the surrounding neighborhood

Conway's Game of Life

- Computationally universal Turing complete
- Played on infinite, orthogonal 2 dimensional grid
- 2 possible cell states: alive or dead
- Martin Gardner first published Game of Life in October 1970 issue of Scientific American

Game of Life Rules

A living cell dies if it has

- fewer than two live neighbors (underpopulation), or
- more than three live neighbors (overpopulation)

A dead (unoccupied) cell comes alive if it has

 exactly three live neighbors (reproduction)

Elucidation of Rules

- Under-population
- Reproduction
- Stable Neighborhoods
- Over-population

Under-populated Neighborhoods

One living cell by itself gets lonely and dies

and...

Two living cells still get lonely and die

Reproductive Neighborhoods

Living cells that each have two neighbors are happy and survive

and furthermore...

This happy neighborhood gives birth to yet another happy cell

which results in...

Stable vs Over-populated Neighborhoods

A stable neighborhood where everyone has three happy neighbors

however...

This unhappy cell has too many neighbors and dies

Catagories of Patterns

Pattern	~# known
Still Life	213
Oscillator	440
Spaceship	108
Puffer	22
Gun	35
Methuselah	37
Switch Engine	3

Still Lifes

- Stay the same from generation to generation
- Considered stable neighborhoods
- Have period one (when viewed as an Oscillator)
- At least 213 listed patterns

Still Lifes - Block

Apply rules:

- Under-population: NONE
- Over-population: NONE
- Reproduction: NONE

Therefore this neighborhood stays the same.

Still Lifes - Tub

Apply rules:

- Under-population: NONE
- Over-population: NONE
- Reproduction: NONE

Therefore this neighborhood stays the same.

Still Life Examples

Oscillators

- A sequence of patterns which repeat after a finite number of generations
- Considered a stable neighborhood
- Have a finite period greater than one
- At least 440 listed patterns

Oscillators - Blinker

Apply rules:

- Under-population: red cells die
- Over-population: NONE
- Reproduction: green cells become alive

Therefore this neighborhood morphs to...

Oscillators - Blinker

Apply rules:

- Under-population: red cells die
- Over-population: NONE
- Reproduction: green cells become alive

Therefore this neighborhood morphs back to the previous neighborhood.

(And so on to viscosity...)

Oscillator Examples

- Simple Oscillators
 with a period of 2
 - Blinker
 - Toad
 - Beacon
- Curious Oscillators

Curious Oscillators

Spaceships

- A sequence of patterns which, like oscillators, repeat after a finite number of generations
- Unlike oscillators, migrate across the grid
- Have finite period greater than one
- At least 108 listed patterns

Spaceships - Glider

Apply rules:

- Under-population: red cells die
- Over-population: NONE
- Reproduction: green cells become alive

Therefore this neighborhood morphs to...

Spaceships - Glider

Apply rules:

- Under-population: one
 red cell dies
- Over-population: one red cell dies
- Reproduction: green cells become alive

Therefore this neighborhood morphs to...

Spaceships - Glider

Apply rules:

- Under-population: red cells die
- Over-population: NONE
- Reproduction: green cells become alive

This neighborhood, after 2 more generations, morphs back to the original neighborhood,

EXCEPT...translated one cell diagonally to the upper right.

Spaceship Example

Fish

- Elementary spaceship
- Period of 4

Puffers

- Similar to spaceships
- Migrate across the grid leaving a trail of debris
- Have a finite period greater than one
- At least 22 listed patterns

Puffer Example

- Named "Puffer I"
- First puffer pattern discovered
- Period of 32
- Discovered by Bill Gosper in 1971

Guns

- Behave similar to an oscillator
- Produce spaceships
- Have a finite period greater than one
- At least 35 listed patterns

Gun Example

- Named "Gosper Glider Gun"
- First gun pattern discovered
- Period of 30
- Discovered by Bill Gosper in 1971

Methuselahs

- Morph through many, many generations
- Eventually die out or stabilize into constellations of still lifes and oscillators
- At least 37 listed patterns

Methuselah Examples

- R-pentamino stabilizes after 1103 generations
- Acorn stabilizes after
 5206 generations

Switch Engines

- Behave similar to puffers
- Migrate across the grid
- Lay down a pattern of blocks as they migrate
- At least 2 listed patterns

Switch Engine Example

- Simple, I0 cell switch engine predecessor
- Begins laying blocks after 354 generations

Golly App

- Open Source Desktop Application
- Available for Ubuntu and Mint
- Includes Extensive Library of Patterns
- Uses Efficient Hashlife Algorithm
- Official Website: golly.sourceforge.net

Epic Game of Life Video

- Video made by Emanuele Ascani
- Shows Turing complete simulations
- Demonstrates the artistic side of cellular automata
- Watch on YouTube www.youtube.com/watch?v=C2vgICfQawE

Resources for Further Study

- Wikipedia Cellular Automata wikipedia.org/wiki/Cellular_automaton
- Wikipedia Conway's Game of Life wikipedia.org/wiki/Conway's_Game_of_Life
- Game of Life Wiki conwaylife.com/wiki/Main_Page
- Javascript Game of Life Web App intravisions.com/games/conway

Game of Life Side Show

(This presentation)

ConwaysLife.pdf

@

github.com/fractalxaos/barcamp