

# אלגברה ב' (104168) חורף 2022-2023 רשימות תרגולים

אלן סורני

2022 בדצמבר ה־7 בתאריך לאחרונה לאחרונה בתאריך ה־7

# תוכן העניינים

| 1  | חלק ראשון - מרחבים שמורים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ι  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | מטריצות מייצגות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  |
| 2  | 1.1 הגדרות בסיסיות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 8  | 1.2 גרעין ותמונה ביעין ותמו |    |
| 12 | סכומים ישרים ולכסינות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2  |
| 12 | 2.1 סכומים ישרים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 14 | 2.2 לכסינות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 19 | צורת ז'ורדן                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  |
| 19 | 3.1 אופרטורים נילפוטנטיים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 20 | מציאת בסיס ז'ורדן עבור אופרטורים נילפוטנטיים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 22 | 3.2 משפט ז'ורדן הכללי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 23 | מציאת בסיס ז'ורדן עבור אופרטור כללי מציאת בסיס ז'ורדן עבור אופרטור כללי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 27 | 3.3 הפולינום המינימלי ופירוק פרימרי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 30 | תרגילי חזרה                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |
| 34 | חלק שני - מרחבי מכפלה פנימית ואלגברה מולטי־לינארית                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | II |
| 35 | מרחבי מכפלה פנימית                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  |
| 35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 35 | 5.2 הגדרות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 37 | 5.3 תכונות של מכפלות פנימיות, ונורמות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 30 | ב מארנהות ווערות                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

# חלק I חלק ראשון - מרחבים שמורים

# פרק 1

# מטריצות מייצגות

### 1.1 הגדרות בסיסיות

יהי V מרחב בסיס של  $B=(v_1,\ldots,v_n)$  יהי  $\mathbb F$ , יהי מעל שדה דוקטורי מרחב וקטורי יהי V יהי יהי V יהי ווקטור קואורדינטות).

עבורם 
$$(\alpha_1,\ldots,\alpha_n)$$
 באשר  $[v]_B=egin{pmatrix} lpha_1\\ \vdots\\ lpha_n \end{pmatrix}$  היחידים עבורם מבסיס  $B$  היחידים עבורם . $v\in V$ 

$$v = \sum_{i \in [n]} \alpha_i v_i := \alpha_1 v_1 + \ldots + \alpha_n v_n$$

הערה 1.1.2. ההעתקה

$$\rho_B \colon V \to \mathbb{F}^n$$
$$v \mapsto [v]_B$$

היא איזומורפיזם לינארי.

הגדרה 1.1.3 (מטריצה מייצגת). יהיו V,W מרחבים וקטורים סוף־מימדיים מעל אותו שדה  $\mathbb{F}$  עם בסיסים V,W הגדרה 1.1.3 (מטריצה מייצגת). ונסמן

$$B = (v_1, \ldots, v_n)$$

נגדיר  $T\in \operatorname{Hom}_{\mathbb{F}}(V,W)$  עבור  $m\coloneqq \dim{(W)}$ י וי $n\coloneqq \dim{(V)}$  נגדיר

$$.[T]_{C}^{B} = \begin{pmatrix} | & | & | \\ [T(v_{1})]_{C} & \cdots & [T(v_{n})]_{C} \end{pmatrix} \in \operatorname{Mat}_{m \times n} (\mathbb{F})$$

אז:.  $\mathbb{F}^n$  אז:  $E=(e_1,\ldots,e_m)$  ויהי ו $A\in \operatorname{Mat}_{m imes n}(\mathbb{F})$ . תהי משפט 1.1.4 (כפל מטריצות). תהי

 $Ae_i$  מתקיים כי מתקיים היז של  $i \in [m]$  לכל (i)

$$.AB = \begin{pmatrix} | & & | \\ Ab_1 & \cdots & Ab_\ell \\ | & & | \end{pmatrix}$$
אז  $B = \begin{pmatrix} | & & | \\ b_1 & \cdots & b_\ell \\ | & & | \end{pmatrix} \in \operatorname{Mat}_{n \times \ell} (\mathbb{F})$  לכל (ii)

תרגיל 1.1. הראו שניתן לשחזר את ההגדרה של כפל מטריצות משתי התכונות במשפט.

הערה 1.1.5. ההעתקה

$$\eta_C^B \colon \operatorname{Hom}_{\mathbb{F}}(V, B) \to \operatorname{Mat}_{m \times n}(\mathbb{F})$$

$$T \mapsto [T]_C^B$$

היא איזומורפיזם לינארי.

טענה W בסיס U בסיס של U בסיס  $B=(v_1,\ldots,v_n)$  ויהיי  $T\in\operatorname{Hom}_{\mathbb{F}}(V,W)$  תהי T בסיס של או

$$[T(v)]_C = [T]_C^B [v]_B$$

 $.v \in V$  לכל

. ההגדרה. עבור  $[T\left(v_i\right)]_C$  מתקיים  $[T]_C^B$  מתקיים וואת העמודה ה־i של  $[T]_C^B$  וואת העמודה  $[T]_C^B$  וואת מתקיים  $[T]_C^B$  מתקיים עבור  $[T]_C^B$  מתקיים של  $[T]_C^B$  מתקיים של  $[T]_C^B$  מתקיים של האריות של עבור מלינאריות של מתקיים של האריות של מתקיים עבור מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של האריות של מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של האריות של מתקיים של מתקיים של האריות של מתקיים של האריות של מתקיים של האריות של מתקיים של האריות של מתקיים של מתק

$$\begin{split} [T\left(v\right)]_{C} &= \left[T\left(\sum_{i\in[n]}\alpha_{i}v_{i}\right)\right]_{C} \\ &= \left[\sum_{i\in[n]}\alpha_{i}T\left(v_{i}\right)\right]_{C} \\ &= \sum_{i\in[n]}\alpha_{i}\left[T\left(v_{i}\right)\right]_{C} \\ &= \sum_{i\in[n]}\alpha_{i}\left[T\right]_{C}^{B}\left[v_{i}\right]_{B} \\ &= [T]_{C}^{B}\left(\sum_{i\in[n]}\alpha_{i}\left[v_{i}\right]_{B}\right) \\ &= [T]_{C}^{B}\left[\sum_{i\in[n]}\alpha_{i}v_{i}\right]_{B} \\ , &= [T]_{C}^{B}\left[v\right]_{B} \end{split}$$

כנדרש.

סימון ונקרא למטריצה (דו $[T]_B:=[T]_B^B$  נסמן המיין ואם עם החב וקטורי פוף־מימדי אות מרחב ונקרא לחטריצה אם המטריצה המייצגת של  $[T]_B:=[T]_B^B$  ונקרא למטריצה המייצגת של דו לפי הבסים המייצגת של דו לפים המייצגת של המייצגת של דו לפים המיי

 $M_C^B \coloneqq [\operatorname{Id}_V]_C^B$  נסמן נסמים א סוף סוף וקטורי מרחב ע מרחב והי 1.1.8. יהי 1.1.8. סימון

נסמן , $A\in\operatorname{Mat}_{n imes n}\left(\mathbb{F}
ight)$  אם וואסימון .1.1.9 אם

$$T_A \colon \mathbb{F}^n \to \mathbb{F}^n$$
  
.  $v \mapsto Av$ 

תהי א היותר ממשלה ממשיים הפולינום מרחב ע הרותר א היותר  $V=\mathbb{R}_3\left[x\right]$  יהי יהי תרגיל תרגיל מראים מרותר א מרחב הפולינום מרותר אינותר א מרחב היותר א

$$T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$$
  
 $p(x) \mapsto p(x+1)$ 

 $[T]_B$  את כיתבו V בסיס של  $B=\left(1,x,x^2,x^3
ight)$  ויהי

פתרון. לפי הגדרת המטריצה המייצגת, עמודות  $\left[T\left(x^i\right)
ight]_B$  הן המייצגת, עמודות המטריצה המייצגת, לפי הגדרת לפי

$$T(1) = 1$$

$$T(x) = x + 1 = 1 + x$$

$$T(x^{2}) = (x + 1)^{2} = 1 + 2x + x^{2}$$

$$T(x^{3}) = (x + 1)^{3} = 1 + 3x + 3x^{2} + x^{3}$$

ולכן

$$\begin{split} &[T(1)]_B = e_1 \\ &[T(x)]_B = e_1 + e_2 \\ &[T(x^2)]_B = e_1 + 2e_2 + e_3 \\ &[T(x^3)]_B = e_1 + 3e_2 + 3e_3 + e_4 \end{split}$$

ואז

$$.[T]_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

תהי א $V=\operatorname{Mat}_{2 imes 2}\left(\mathbb{C}
ight)$  תהי .1.3 תרגיל

$$T \colon V \to V$$
 
$$A \mapsto \frac{1}{2} \left( A - A^t \right)$$

ויהי

$$E = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}) := \left( \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

 $[T]_E$  את כיתבו V של של הסטנדרטי הסטנדרטי את

מתקיים . $[T]_E$  ממודות שאלו כיוון כיוון את מחשב את נחשב מחשב. כמו מקודם, מחכחה.

$$T(E_{1,1}) = \frac{1}{2} (E_{1,1} - E_{1,1}) = 0$$

$$T(E_{1,2}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{pmatrix} = \frac{1}{2} E_{1,2} - \frac{1}{2} E_{2,1}$$

$$T(E_{2,1}) = \frac{1}{2} (E_{2,1} - E_{1,2}) = \frac{1}{2} E_{2,1} - \frac{1}{2} E_{1,2}, T(E_{2,2}) = \frac{1}{2} (E_{2,2} - E_{2,2}) = 0$$

לכן

$$\begin{split} \left[T\left(E_{1,1}\right)\right]_{E} &= 0 \\ \left[T\left(E_{1,2}\right)\right]_{E} &= \frac{1}{2}e_{2} - \frac{1}{2}e_{3} \\ \left[T\left(E_{2,1}\right)\right]_{E} &= -\frac{1}{2}e_{2} + \frac{1}{2}e_{3} \\ \left[T\left(E_{2,2}\right)\right]_{E} &= 0 \end{split}$$

ואז

, 
$$[T]_E = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

כנדרש.

ראשר  $B=(f_1,f_2)$  עם הבסיס  $V=\operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}^2,\mathbb{R}\right)$  יהי יהי 1.4 תרגיל

$$f_1\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = x$$
, $f_2\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = y$ 

ותהי

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \operatorname{Mat}_{2 \times 2} (\mathbb{R})$$

 $\left. [T]_{B}=A\right.$ עבורו <br/>  $T\in\operatorname{End}_{\mathbb{R}}\left( V\right)$ מיצאו

פתרון. מתקיים

$$[T]_{B} = \begin{pmatrix} | & | \\ [T(f_{1})]_{B} & [T(f_{2})]_{B} \\ | & | \end{pmatrix}$$

לכן נדרוש

$$[T(f_1)]_B = \begin{pmatrix} 1\\2 \end{pmatrix}$$
$$.[T(f_2)]_B = \begin{pmatrix} 3\\4 \end{pmatrix}$$

אז

$$T(f_1) = f_1 + 2f_2$$
  
 $T(f_2) = 3f_1 + 4f_2$ 

לכן, אם  $f \in V$  איבר כללי, נכתוב

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \alpha x + \beta y$$

ונקבל כי

$$(T(f)) \begin{pmatrix} x \\ y \end{pmatrix} = (T(\alpha f_1 + \beta f_2)) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha T(f_1) \begin{pmatrix} x \\ y \end{pmatrix} + \beta T(f_2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha (f_1 + 2f_2) \begin{pmatrix} x \\ y \end{pmatrix} + \beta (3f_1 + 4f_2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha (x + 2y) + \beta (3x + 4y)$$

A=B או Av=Bv מתקיים  $v\in\mathbb{F}^n$  מענה כי לכל  $A,B\in\operatorname{Mat}_{m imes n}(\mathbb{F})$  או 1.1.10. טענה

.0-הוכחה. מהנתון, מתקיים  $e_i$  שהינה הוה לכל A-B לכל העמודה ה־ $v\in\mathbb{F}^n$  לכל לכל האינה (A-B) שווה ל-0. בפרט העמודה ה-A-B=0 לכן לכן האינה ה-A-B=0

טענה B,C,D בסיסים עם  $\mathbb F$  אותו שדה מעל סוף-מימדיים וקטוריים וקטוריים מרחבים U,V,W יהיי 1.1.11. מענה

$$S \in \operatorname{Hom}_{\mathbb{F}}(U, V)$$
  
 $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ 

Хĭ

, 
$$[T \circ S]_D^B = [T]_D^C [S]_C^B$$

הוכחה. לכל  $u \in U$  מתקיים

$$\begin{split} \left[T\right]_{D}^{C}\left[S\right]_{C}^{B}\left[u\right]_{B} &= \left[T\right]_{D}^{C}\left[S\left(u\right)\right]_{C} \\ &= \left[T\circ S\left(u\right)\right]_{D} \\ &= \left[T\circ S\right]_{D}^{B}\left[u\right]_{B} \end{split}$$

לכן

, 
$$\left[T\right]_{D}^{C}\left[S\right]_{C}^{B}=\left[T\circ S\right]_{D}^{B}$$

כנדרש

שענה  $T\in \mathrm{Hom}_{\mathbb{F}}\left(V,W\right)$  ותהי שדה  $\mathbb{F}$  ותהי מעל שדה דיחד וקטוריים וקטוריים מרחבים ערכית. 1.1.12. יהיו

$$B = (v_1, \dots, v_n)$$
$$C = (u_1, \dots, u_n)$$

בסיסים של V ויהיו

$$B' = (T(v_1), ..., T(v_n))$$
  
 $C' = (T(u_1), ..., T(u_n))$ 

 $M_{C}^{B}=M_{C'}^{B'}$  גם  $\mathrm{Im}\left(T
ight)=\left\{ T\left(v
ight)\mid v\in V
ight\}$  אז אז B',C' אז

פתרון. כיום שולח ערכית על התמונה, צמצום הטווח נותן איזומורפיזם  $T\colon V \xrightarrow{\sim} \mathrm{Im}\,(T)$  בסיסים. בסיסים. בסיסים. בסיסים.

כעת, לכל  $i \in [n]$  נכתוב

$$v_i = \sum_{j \in [n]} \alpha_{i,j} u_i$$

ואז

$$.M_C^B e_i = [v_i]_C = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,n} \end{pmatrix}$$

כמו כן,

$$T(v_i) = T\left(\sum_{i \in [n]} \alpha_{i,j} u_j\right)$$
$$= \sum_{i \in [n]} \alpha_{i,j} T(u_j)$$

ולכן גם

$$.M_{C'}^{B'}e_{i} = [T(v_{i})]_{C'} = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,n} \end{pmatrix}$$

קיבלנו כי כל עמודות המטריצות שוות, ולכן יש שוויון.

תרגיל  $A\in \mathrm{Mat}_{n imes n}\left(\mathbb{F}
ight)$  הפיכה. 1.5 תרגיל

- $A=M_E^B$  עבורו  $\mathbb{F}^n$  של בסיס מיצאו בסיס של  $\mathbb{F}^n$  של הבסיס הסטנדרטי .1
  - $A=M_C^E$  עבורו  $\mathbb{F}^n$  של C סיס.
  - $A=M_C^B$  עבורו  $\mathbb{F}^n$  של C בסיס מיצאו מיצאו  $\mathbb{F}^n$  מיצאו .3
- בסיס של  $B=(v_1,\dots,v_n)$  ויהי ויהי איזומורפיזם מעל  $T\in \mathrm{End}_{\mathbb F}(V)$ , יהי  $R\in \mathbb N_+$  מעל ממימד מימד איזומורפיזם ויהי  $T\in \mathrm{End}_{\mathbb F}(V)$ . מיצאו בסיס של עבורו T

פתרון. אם  $B=(v_1,\ldots,v_n)$  מתקיים מההגדרה כי

$$.M_E^B = \begin{pmatrix} | & & | \\ [v_1]_E & \cdots & [v_n]_E \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix}$$

. הסדר, A לפי להיות עמודות  $(v_1,\ldots,v_n)$  את לכן ניקח את

מתקיים  $v\in\mathbb{F}^n$  מתקיים.

$$M_E^C M_C^E v = M_E^C [v]_C = [v]_E = v$$

נקבל מהסעיף הקודם  $A^{-1}$  של  $i^-$ ה העמודה הי $i^-$  באשר כר באשר  $C=(u_1,\dots,u_n)$  אם ניקח  $M_C^E=\left(M_E^C\right)^{-1}$  ולכן הקודם  $M_C^E=\left(A^{-1}\right)^{-1}=A$  ולכן  $M_E^C=A^{-1}$ 

 $M_C^E=A\left(M_E^B
ight)^{-1}=AM_E^B$  או במילים או במילים שיתקיים שיתקיים לכן נרצה שיתקיים לכן נרצה או לכן נרצה שיתקיים  $M_C^B=M_C^EM_E^B$  או במילים אחרות  $M_C^B=M_C^BM_E^B$  כאשר היסעיף הקודם, נרצה ( $AM_E^B$ ) כאשר העמודה היש שית העמודה ביש לכן נרצה לכן נרצה בישר או העמודה ביש העמודה ביש לכן נרצה בישר או העמודה בישר הע

$$.u_i = M_E^B A^{-1} e_i$$

עבור כל בסיס C' מתקיים  $M_C^B[T]_B^B=A$  לכן נרצה  $[T]_{C'}^B=M_{C'}^B[T]_B^B$  מתקיים, המטריצה  $M_C^B=M_C^E$  לכן  $M_C^B=M_C^E$  כעת, אם  $M_C^B=M_C^E$  בקבל כי  $M_C^B=M_C^E$  כאשר  $M_C^B=M_C^E$  הפיכה, ולכן נרצה  $M_C^B=M_C^E=A\left[T\right]_B^B$  עבורו  $\hat{C}=(u_1,\ldots,u_n)$  לפי הסעיף השני, נרצה  $\hat{C}=([v_1]_B,\ldots,[v_n]_B)$  עבורו עבור

$$.u_i=\left(A\left[T\right]_B^{-1}
ight)^{-1}e_i=\left[T\right]_BA^{-1}e_i$$
לכן  $.v_i=
ho_B^{-1}\left(\left[T\right]_BA^{-1}e_i
ight)$ 

תהי , $V=\mathbb{C}_3\left[x
ight]$  יהי יהי 1.6. תרגיל

$$T\colon V\to V$$
 , 
$$p\left(x\right)\mapsto p\left(x+1\right)$$

 $A = [T]_C^E$ 

פתרון. לפי התרגיל הקודם,  $u_i = [T]_E\,A^{-1}e_i$  כאשר כא $\hat{C} = (u_1,\dots,u_4)$  פתרון. לפי התרגיל הקודם, נרצה קודם

$$[T]_E = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

וניתן לראות כי  $A^{-1}=A$  כלומר  $A^2=I$  נשים לב כי

$$Ae_1 = e_2$$

$$Ae_2 = e_1$$

$$Ae_3 = e_4$$

$$Ae_4 = e_3$$

ואז נקבל

$$u_{1} = [T]_{E} A^{-1}e_{1} = [T]_{E} e_{2} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

$$u_{2} = [T]_{E} A^{-1}e_{2} = [T]_{E} e_{1} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

$$u_{3} = [T]_{E} A^{-1}e_{3} = [T]_{E} e_{4} = \begin{pmatrix} 1\\3\\3\\1 \end{pmatrix}$$

$$u_{4} = [T]_{E} A^{-1}e_{4} = [T]_{E} e_{3} = \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}$$

כלומר

$$\hat{C} = \left( \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix} \right)$$

ולבסוף

$$C = (v_1, v_2, v_3, v_4) := (1 + x, 1, 1 + 3x + 3x^2 + x^3, 1 + 2x + x^2)$$

מתקיים A מתקיים הייצגת היא אכן ליתר ליתר מחון, נבדוק שהמטריצה ליתר

$$T(1) = 1 = v_2$$
  
 $T(x) = x + 1 = v_1$   
 $T(x^2) = (x+1)^2 = 1 + 2x + x^2 = v_4$   
 $T(x^3) = (x+1)^3 = 1 + 3x + 3x^2 + x^3 = v_3$ 

ולכן

$$[T]_{C}^{E} = \begin{pmatrix} | & | & | & | & | \\ [T(1)]_{C} & [T(x)]_{C} & [T(x^{2})]_{C} & [T(x^{3})]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | & | \\ [v_{2}]_{C} & [v_{1}]_{C} & [v_{4}]_{C} & [v_{3}]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [v_{2}]_{C} & [v_{1}]_{C} & [v_{4}]_{C} & [v_{3}]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ e_{2} & e_{1} & e_{4} & e_{3} \\ | & | & | & | & | \end{pmatrix}$$

$$= A$$

כנדרש.

### גרעין ותמונה 1.2

$$.\ker\left(T\right)\coloneqq\left\{ v\in V\mid T\left(v\right)=0\right\}$$

התמונה  $T \in \operatorname{Hom}(V,W)$  ותהי שדה ותהי מעל אותו מרחבים וקטורים V,W יהיו יהיו לנארית). הגדרה 1.2.2 (תמונה של העתקה לינארית). יהיו T

$$.\operatorname{Im}(T) := \{T(v) \mid v \in V\}$$

הדרגה  $T \in \mathrm{Hom}\,(V,W)$  ותהי שדה ותהי מעל אותו מרחבים וקטורים V,W יהיו יהיו לינארי). דרגה של 1.2.3 הדרגה של T היא

$$.\operatorname{rank}(T) := \dim(\operatorname{Im}(T))$$

הערה B,C בסיסים עם סוף־מימדיים V,W אם 1.2.4. הערה

$$\operatorname{.rank}(T) = \operatorname{rank}\left([T]_C^B\right)$$

משפט 1.2.5 (משפט המימדים). יהי V מרחב יהי (משפט המימדים) משפט 1.2.5 משפט

$$. \dim V = \dim \operatorname{Im} (T) + \dim \ker (T)$$

 $[v]_B = egin{pmatrix} 1 \ dots \ 1 \end{pmatrix}$  עבורו V של B בסיס A מיצאו ניהי V מיצאו ויהי סוף־מימדי ויהי V מרחב וקטורי סוף־מימדי ויהי ויהי V

תהי  $v_1=v$  כאשר V של  $B_0=(v_1,\ldots,v_n)$  לבסיס (v) את נשלים געורון. נשלים את

$$.A := \begin{pmatrix} 1 & & & & \\ 1 & 1 & & & 0 \\ \vdots & & \ddots & & \\ 1 & & & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \in M_n \left( \mathbb{F} \right)$$

נקבל גקבים עבורו עבורו עבורו של  $B=(u_1,\ldots,u_n)$  בסים קיים מתרגיל מתרגיל הפיכה, ולכן הפיכה A

$$[v]_{B} = [\operatorname{Id}_{V} v]_{B}$$

$$= [\operatorname{Id}_{V}]_{B}^{B_{0}} [v]_{B_{0}}$$

$$= A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$. = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

מפורשות, ראינו כי ניתן לקחת

$$.u_i = \rho_{B_0}^{-1} ([\mathrm{Id}]_B A^{-1} e_i) = \rho_{B_0}^{-1} (A^{-1} e_i)$$

אם יש  $\operatorname{rank} T=1$  כי הראו כי  $T=\operatorname{End}_{\mathbb{F}}(V)$  ותהי שדה  $\mathbb{F}$ , ותהי מעל שדה מער מרחב וקטורי סוף־מימדי מעל T=T. הראו כי T=T הם ורק אם יש בסיסים T=T הראו כי שכל מקדמי T=T הם ורק אם יש

 $\operatorname{rank} T = \operatorname{rank} \left[T\right]_C^B = 1$  בתרון. אז בסיסים B,C כמתואר. אז היש בסיסים לניח כי  $\operatorname{rank} T = \operatorname{rank} \left[T\right]_C^B = 1$  ממשפט המימדים מתקיים  $\operatorname{rank} T = 1$ . כלומר,  $\operatorname{rank} T = 1$  ממשפט המימדים מתקיים לכו

 $.\dim \ker T = \dim V - \dim \operatorname{Im} T = \dim V - 1$ 

יהי  $n\coloneqq \dim V$  ויהי

$$\tilde{B} \coloneqq (u_1, \dots, u_{n-1})$$

 $\ker T$  בסים של

יהי  $[w]_C = egin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$  כך שמתקיים V כך בסיס של C ויהי והערגיל הקודם. יהי  $[w]_C = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ 

 $B\coloneqq v$  אז גם של  $v\notin\ker T$  אז גם ביים לינארית, בלתי־תלויים אז בלתי-תלויים אז גם אז גע אז גם אז גע יינארית, אז גם בייס אז גע בייט אז גע בייט אז עריצה ( $v,u_1,\ldots,u_{n-1}$ ) אז גם בייס אז עריצה ( $v,v_1,\ldots,v_{n-1}$ ) בייס אז עריצה

$$\begin{pmatrix} | & & | \\ [v]_{\tilde{B}} & \cdots & [v+u_{n-1}]_{\tilde{B}} \\ | & & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & 1 & 0 \\ 0 & & \cdots & 0 & 1 \end{pmatrix}$$

הפיכה.

נסמן  $C=(w_1,\ldots,w_m)$  מתקיים

 $T\left(v\right) = w = w_1 + \ldots + w_m$ 

ולכל  $i \in [n-1]$  מתקיים

 $T(v + u_i) = T(v) + T(u_i)$  = T(v) + 0 = T(v)  $= w_1 + \dots + w_m$ 

.1 הם מסריצה שכל מקדמיה וכן  $\left[T\right]_{C}^{B}$ 

תרגיל 1.9. תהי

$$T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$$
  
 $p(x) \mapsto p(-1)$ 

עבורם  $\mathbb{R}_3\left[x\right]$  של B,C עבורם מיצאו

פתרון. ניקח בסיס לאשר זהו בסיס כי את ( $Ker\left(T\right)$  של  $ilde{B}=(b_1,b_2,b_3):=\left(x+1,x^2-1,x^3+1\right)$  בסיס כי את פתרון. ניקח בסיס לי את בסיס לי את בסיס לי את בסיס לי את בלתי-תלוייה לינארית מגודל מקסימלי (הגרעין לכל היותר T מימדי כי T מימדי כי לינארית מגודל מקסימלי (הגרעין לכל היותר בי אותר בי אותר בי אתרי-תלוייה לינארית מגודל מקסימלי (הגרעין לכל היותר בי אתרי-תלוייה לוותר בי אתרי-תלוייה בי אתרי-תלוייה בי אתרי-תלוייה בי אתרי-תלוייה בי אתרי-תלויה בי אתרי-תלי

$$.C_0 = (v_1, v_2, v_3, v_4) := (-1, x, x^2, x^3)$$

המטריצה

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

ביכה ולכן קיים בסיס  $[w]_C=egin{pmatrix}1\\1\\1\\1\end{pmatrix}$  כשראינו שאז  $M_C^{C_0}=X$  עבורו  $C=(u_1,u_2,u_3,u_4)$  כפי שראינו, ניתן לחשב הפיכה ולכן קיים בסיס

מתקיים . $u_i = 
ho_{C_0}^{-1}\left(X^{-1}e_i
ight)$  את לפי C את

$$X^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

ולכן

$$u_{1} = \rho_{C_{0}}^{-1} \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = -1 - x - x^{2} - x^{3}$$

$$u_{2} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = x$$

$$u_{3} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = x^{2}$$

$$u_{4} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = x^{3}$$

$$.C=\left(-1-x-x^2-x^3,x,x^2,x^3\right)$$
 כלומר, כלומר,  $T\left(v\right)=-1=w$ שיתקיים ער  $v=x\in V$ ואז ניקח

$$B = (v, v + b_1, v + b_2, v + b_3) = (x, 2x + 1, x^2 + x - 1, x^3 + x + 1)$$

כמו בתרגיל הקודם. אכן, מתקיים

$$T(x) = -1$$

$$T(2x+1) = -2 + 1 = -1$$

$$T(x^{2} + x - 1) = (-1)^{2} - 1 - 1 = 1 - 2 = -1$$

$$T(x^{3} + x + 1) = (-1)^{3} - 1 + 1 = -1$$

$$\left[-1
ight]_C = egin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 לכן

כפי שרצינו.

# פרק 2

# סכומים ישרים ולכסינות

### 2.1

הגדרה 2.1.1 (סכום ישר). יהי V מרחב וקטורי סוף-מימדי מעל  $\mathbb F$  ויהיו ויהי א מרחב וקטורי יהי V יהי יהי יהי  $V_1,\ldots,V_k\leq V$ 

$$V_1 + \ldots + V_k := \{v_1 + \ldots + v_k \mid \forall i \in [k] : v_i \in V_i\}$$

לכל  $v_i=0$  גורר עבור עבור  $v_i\in V_i$  עבור עבור אם ורק אם ורק אם ישר אישר אורר הסכום שקול, הסכום באופן באופן ישר  $v_i=0$  ישר אם ורק אורר  $v_i=0$  אורר באופן ישר אורר  $v_i=0$  ישר אורר באופן ישר אורר אורר וויך אורר אורר ישר אורר וויך אורר אורר וויך אורר וויך אורר אורר וויך אור

טענה  $\sum_{i \in [k]} V_i \coloneqq V_1 + \ldots + V_k$  ישר אם מענה 2.1.3. טענה

$$V_i \cap \left(\sum_{j \neq i} V_j\right) = \{0\}$$

 $i \in [k]$  לכל

את המקרה באינדוקציה, והטענה הכללית נובעת באינדוקציה. k=2

הגדרה 2.1.4 (שרשור קבוצות סדורות). תהיינה

$$A_{1} = (v_{1,1}, \dots, v_{1,\ell_{1}})$$

$$A_{2} = (v_{2,1}, \dots, v_{2,\ell_{2}})$$

$$\vdots$$

$$A_{k} = (v_{k,1}, \dots, v_{k,\ell_{k}})$$

קבוצות סדורות. נגדיר את השרשור שלהן

$$A_1 \cup \ldots \cup A_k := (v_{1,1}, \ldots, v_{1,\ell_1}, v_{2,1}, \ldots, v_{2,\ell_2}, \ldots, v_{k,1}, \ldots, v_{k,\ell_k})$$

הסדר. לפי הסדורה הסדורה איברי איברי שרשור איברי לפי הסדורה איברי אחרשור איברי לפי הסדורה איברי אות הסדורה שהיא

. מענה V יהי של הבאים של יויהיו ענה ויהיו ויהיו ויהיו ויהיו אחרב וקטורי יהי מרחב ענה יהי מענה  $V_1,\ldots,V_k$ 

- $V = V_1 \oplus \ldots \oplus V_k$  .1
- V של בסיסים היא בסיסים איז  $B_1 \cup \ldots \cup B_k$  הסדורה הקבוצה איז של פסיסים היא בסיסים.
- V של בסיס של  $B_i \cup \ldots \cup B_k$  הסדורה הסדורה על של של מיסים בסיסים. 3

וגם 
$$V = \sum_{i \in [k]} V_i$$
 .4

$$.\dim V = \sum_{i \in [k]} \dim (V_i)$$

 $P^2=P$  אם הטלה הטלה נקראת נקראת יהי  $P\in \mathrm{End}_{\mathbb{F}}(V)$  נוניכיר על שדה  $\mathbb{F}$ , ונוכיר מעל שדה על מרחב וקטורי סוף־מימדי מעל פאר

- $V=\ker\left(P
  ight)\oplus\operatorname{Im}\left(P
  ight)$  כי הראו הטלה.  $P\in\operatorname{End}_{\mathbb{F}}\left(V
  ight)$  .1
- עבורו V של B כיים בסיס אם ורק אם הטלה  $T\in \mathrm{End}_{\mathbb{F}}\left(V
  ight)$  .2

$$. [T]_B = \begin{pmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

בתרון.  $P\left(v
ight)\in\mathrm{Im}\left(P
ight)$  כאשר  $v=\left(v-P\left(v
ight)
ight)+P\left(v
ight)$  מתקיים  $v\in V$  כמו כן.

$$P(v - P(v)) = P(v) - P^{2}(v) = P(v) - P(v) = 0$$

 $V = \ker(P) + \operatorname{Im}(P)$  נקבל כי  $v - P(v) \in \ker(P)$  ולכן

עבורו  $u\in V$  שנורו  $v\in {
m Im}\,(P)$  בפרט  $v\in {
m ker}\,(P)\cap {
m Im}\,(P)$  אז אם כעת, אם

$$v = P(u) = P^{2}(u) = P(P(u)) = P(v) = 0$$

ישר. ישר ונקבל כי ונקבל  $\ker(P) \cap \operatorname{Im}(P) = 0$ 

עבור בסיסים . $V=\ker\left(T\right)\oplus\operatorname{Im}\left(T\right)$  זה במקרה הטלה. במקרה לניח כי T

$$C = (c_1, \dots, c_m)$$
$$D = (d_{m+1}, \dots, d_{\ell})$$

 $\dim\left(\ker\left(T
ight)
ight)$  לכן לכן התקיים  $c_i\in C$  מתקיים בסיס של כי בסיס על בהתאמה, נקבל כי בהתאמה, נקבל כי  $C\cup D$  בסיס של עבורו  $\ker\left(T
ight)$ , דעבורו אפסים. לכל  $u_i\in D$  של לכל הן עבורו אפסים אפסים ולכן הן עמודות של  $u_i\in D$  העמודות הראשונות של

$$\mathsf{,}d_{i}=T\left(u_{i}\right)=T^{2}\left(u_{i}\right)=T\left(T\left(u_{i}\right)\right)=T\left(d_{i}\right)$$

לכן

$$[T(d_i)]_{C \cup D} = [d_i]_{C \cup D} = e_i$$

. תבררש. עבור היז ונקבל את הנדרש. iים העמודה היiים עבור ולכן העמודה היו

. הטלה.  $T^2=T$  ולכן  $T^2=T$  ולכן ולכן  $T^2=T$  ונקבל כי אז הטלה. בסיס בייס  $B=(v_1,\dots,v_n)$  הטלה. להיפך, נניח

עבורו ער איז א הוא תת־מרחב של עבורו משלים שר משלים משלים ויהי עוברו ויהי עוקטורי ויהי עוקטורי ויהי עבורו משלים משלים משלים עבורו V מרחב וקטורי ויהי עבורו V מרחב וקטורי ויהי עבורו V מרחב ויהי עבורו V מרחב ויהי עבורו ויהי ע

V בסיס של C יהי B בסיס עם בחרמרחב עם תת־מרחב עו ויהי ויהי שדה  $\mathbb F$  ויהי מעל שדה  $U \leq V$  יהי

- C-מ וקטורים הוספת על ידי על על לבסיס את השלים את שניתן ההשלים .1
  - .Cים משלים של עם בסיס של של של W של משלים מקיים .2

m עבור אותה אותה ונוכיח אותה לכל נניח שהטענה נכונה עבור ולכן ולכן ולכן ולכן ווכיח אותה עבור עבור ו|B|=n

אם  $C \subseteq U$  אם

$$V = \operatorname{Span}_{\mathbb{F}}(C) \subseteq \operatorname{Span}_{\mathbb{F}}(U) = U$$

c כי בלתי־תלויה לינארית, כי  $B\cup(c)$  אז היפטועים. לכן, קיים שונים. לכן, קיים לכן, בסתירה לכך בסתירה לכך בסתירה לכן, אז אינו צירוף לינארי של הוקטורים הקודמים. נגדיר בערור אינו צירוף לינארי של הוקטורים הקודמים. נגדיר

$$n - \dim(U') = n - |B| - 1 = m - 1 < m$$

של  $(B\cup(c))\cup(c_2,\ldots,c_m)$  לבסיס לבסיס את האינדוקציה ולקבל שניתן השלים את האינדוקציה ולקבל האינדוקציה ולכן ניתן להשלים את  $C,c_2,\ldots,c_m\in C$  אז  $C,c_i\in C$  משלימים את לבסיס של  $C,c_i\in C$  אז אז אינדוקציה ולקבל של האינדוקציה ולקבל שניתן האינדוקציה ולקבל האינדוקציה ולקבל שניתן האינדוקציה ולקבל האינדוקציה ולקבל שניתן האינדוקציה ולקבל שניתן האינדוקציה ולקבל האי

 $W=\mathrm{Span}_{\mathbb{F}}(D)$  וגם  $D=(c,c_2,\ldots,c_m)$  נסמן  $B\cup(c,\ldots,c_m)$  וגם  $B\cup(c,\ldots,c_m)$  וגם .2 בסימונים של הסעיף הקודם,  $B\cup D$  אז  $B\cup D$  אז

$$V = \operatorname{Span}_{\mathbb{F}}(B) \oplus \operatorname{Span}_{\mathbb{F}}(D) = U \oplus W$$

כנדרש.

תרגיל 2.3. יהי $V=\mathbb{R}_3\left[x
ight]$  יהי ינה

$$B = (1 + x, x + x^{2})$$
$$C = (1, x, x^{2}, x^{3})$$

 $.U = \mathrm{Span}\,(B)$  יהי יהי וקטורים של קבוצות סדורות של

- .Cב מוקטורים שמורכב שמורכב עבור W של שלים שמורכב ב- .1
  - .1 הפריכו או הוכיחו איד? שמצאתם W .2
- $B'=\left(1+x,x+x^2,1
  ight)$  כדי לקבל (בסיס של V על ידי הוספת וקטורים מ-C. נוסיף את V על לבסיס של V על ידי הוספת וקטורים מ-V של  $B''=\left(1+x,x+x^2,1,x^3
  ight)$  בסיס על V כדי לקבל בסיס בסיס על V של V של V של V על ידי V בסיס, ולכן V על V בסיס, ולכן V בעדרש.
- במקרה זה היינו . $B''=\left(1+x,x+x^2,x^2,x^3
  ight)$  ואז ואז  $B'=\left(1+x,x+x^2,x^2
  ight)$  במקרה במקרה . $B''=\left(1+x,x+x^2,x^3
  ight)$  במקרה מקבלות משלים ישר הער משונה מ־ $B''=\left(1+x,x+x^2,x^3\right)$  במקרה זה היינו .

### 2.2 לכסינות

 $lpha_1,\dots,lpha_n\in\mathbb{F}$  נקרא לכסין של B פיים בסיס נקרא לכסין נקרא לבסין אופרטור וופרטור אופרטור לכסין). אופרטור  $T\in\mathrm{End}_{\mathbb{F}}(V)$  אופרטור לכסין). אופרטור לכסין

$$.[T]_B = \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_n \end{pmatrix}$$

. בסיס מלכסונית מטריצה  $[T]_B$  נקראת המטריצה עבור בסיס מלכסונית. לכסונית בסיס מלכסונית בסיס מלכסונית

 $T(v)=\lambda v$  נקרא עבורו אם קיים של T אם אם נקרא נקרא נקרא נקרא וקטור  $v\in V\setminus\{0\}$ . וקטור וקטור  $T\in \mathrm{End}_{\mathbb{F}}(V)$  יהי יהי 2.2.2. יהי במקרה זה T עבורו עצמי של T.

 $\operatorname{Span}_{\mathbb{F}}(v)=\{\lambda v\mid \lambda\in\mathbb{F}\}$  מתקיים T מתקיים עצמי של T אם ורק אם קיים אם עבורו T אם ורק אם קיים T אם ורק אם עבור באופן שקול עצמי של T אם ורק אם  $\operatorname{Span}_{\mathbb{F}}(v)$  הינו  $\operatorname{Span}_{\mathbb{F}}(v)$  הינו T-שמור.

T אופרטור עצמיים של שמורכב בסיס של אם ורק אם הינו לכסין הינו  $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$  אופרטור 2.2.4. אופרטור

הוא הערך עם הערך על המרחב העצמי של T ויהי  $\lambda$  ערך עוהר  $T \in \operatorname{End}_{\mathbb{F}}(V)$  הגדרה 2.2.5 (מרחב עצמי). היי

$$V_{\lambda} := \{v \in V \mid T(v) = \lambda v\} = \ker(\lambda \operatorname{Id}_V - T)$$

הגדרה 2.2.6 (פולינום אופייני של T הוא הגדרה  $T \in \operatorname{End}_{\mathbb{F}}(V)$  ההי יהי יהי של T הוא

$$p_T(x) := \det(x \operatorname{Id}_V - T)$$

הערה הדטרמיננטה. בפועל, נסתכל בדרך כלל על פולינום אופייני של מטריצה, כיוון שצריך לבחור בסיס כדי לחשב את הדטרמיננטה. בפועל, נסתכל בדרך כלל על פולינום אופייני של מטריצה, כיוון שצריך לכל בסיס אינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן  $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$  לכל בסיס אינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן  $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$  לכל בסיס כדי לחשב את הדטרמיננטה. כאינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן  $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$ 

 $p_T\left(\lambda
ight)=\det\left(\lambda\operatorname{Id}_V-T
ight)=$  אם ורק אם , $\ker\left(\lambda\operatorname{Id}_V-T
ight)
eq0$  אם ורק אם על T אם ערך עצמי של  $\lambda\in\mathbb{F}$  איבר 2.2.8. מסקנה .0

 $p_T$  של השורשים הם T של העצמיים של הערכים הערכים כלומר,

. יש ערך עצמי $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$  לכל שורש, לכל  $p\in\mathbb{C}\left[x
ight]$  יש ערך עצמי $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$  לכל

הגדרה 2.2.10 אלגברי שלו כשורש של הריבוי האלגברי של הריבוי הריבוי האלגברי. יהי ההיבוי שלו כשורש של  $\lambda\in\mathbb{F}$  הוא הריבוי שלו כשורש של  $T\in\mathrm{End}_{\mathbb{F}}(V)$ . יהי  $T_{a}\left(\lambda\right)$  הוא הריבוי שלו כשורש של הריבוי האלגברי.  $T_{a}\left(\lambda\right)$  הוא הריבוי שלו כשורש של

 $.r_g\left(\lambda
ight)\coloneqq \dim V_\lambda$  הוא  $\lambda\in\mathbb{F}$  עצמי של ערך עצמי הריבוי הריבוי  $.T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$  יהי הגדרה. יהוא  $.r_a\left(\lambda
ight)\le r_a\left(\lambda
ight)\le r_a\left(\lambda
ight)$  מתקיים תמיד ב2.2.12. מתקיים תמיד משלה.

הגדרה לכסין, אם T לכסין, ויהי T אופרטור האור (כלומר, T אופרטור אוורי, אם אופרטור אוורי אופרטור האורי אופרטור. אוורי אוורי אלכטונית. אז T אופרטורית. אז T אופרטורית. אז T אופרטורים אלכטונית.

$$\begin{split} A &= [T]_E \\ &= [\operatorname{Id} \circ T \circ \operatorname{Id}]_E \\ &= M_E^B \left[ T \right]_B M_B^E \\ &= M_E^B D \left( M_E^B \right)^{-1} \end{split}$$

. $P^{-1}AP=D$  נסמן מטריצה מטריצה נקבל כי זאת נסמן נקבל פי נקבל אלכסונית. אלכסונית. אלכסונית ואם אלכסונית ואם אלכסונית. הפיכה אם ריבה או $P^{-1}AP$ הפיכה אם הפיכה אם הפיכה או קיימת אלכסונית. אלכסונית

### מרחבים שמורים 2.3

נרצה להבין אופרטורים לינאריים דרך הבנה של צמצום שלהם לתת־מרחבים קטנים יותר. אם  $T\in \mathrm{End}_{\mathbb{F}}(V)$ , נוכל תמיד לרצמצם את המקור כדי לקבל העתקה לינארית  $T|_W:W\to V$ , אבל לא נוכל ללמוד מספיק כאשר הצמצום אינו אופרטור. לכן נרצה לצמצם גם את הטווח, מה שמוביל להגדרה הבאה.

 $T\left(U
ight)\subseteq$  אינווריאנטי אם "מרחב שמור". הינו T -שמור (או T -שמור). הידרה 1.3.1 מרחב שמור). היי $T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$  יהי $T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$  יהי  $T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$  .

 $T|_{W}\left(w
ight)=T$  שמוגדר על ידי שמוגדר שמוגדר שמוגדר על הסתכל על הסתכל נוכל להסתכל על מרחב  $T|_{W}:W o W$  במקרה במקרה על ידי  $T|_{W}$ 

הערה 2.3.3. שימו לב שהסימון הוא אותו סימון כמו הצמצום של המקור, אך במסגרת הקורס צמצום אופרטורים יתייחס לזה שבהגדרה אלא אם כן יצוין מפורשות אחרת.

 $W \leq V$  יהי איזומורפּיזם. איזומורפּיזם. פאשר  $P,T \in \mathrm{End}_{\mathbb{F}}(V)$  יהיו העל  $\mathbb{F}$ , יהיו על מעל מרחב איזומורפּיזם. יהיו איזומורפּיזם. יהיו אם ורק אם  $P^{-1} \circ T \circ P$  הינו הינו  $T^{-1} \circ T \circ T$ 

 $w\in W$  יהי  $P^{-1}\circ T\circ P\left(v
ight)\in P^{-1}\left(W
ight)$  כי מניח כי  $V\in P^{-1}\left(W
ight)$  יהי יהי  $V\in P^{-1}\left(W
ight)$  יהי יהי עבורו  $v\in P^{-1}\left(W
ight)$  אז

$$P^{-1} \circ T \circ P(v) = P^{-1} \circ T \circ P \circ P^{-1}(W)$$
$$= P^{-1} \circ T(w)$$

 $P^{-1}\circ T\circ P\left(v
ight)\in P^{-1}\left(W
ight)$  כאשר T הוא T-שמור. נקבל כי  $T\left(w
ight)\in W$  העם  $Q=P^{-1}$  הוב  $S=P^{-1}\circ T\circ P$  הינו  $T^{-1}\circ T\circ P$ -שמור. נגדיר  $T^{-1}\circ T\circ P$  הינו  $T^{-1}\circ T\circ P$  הינו  $T^{-1}\circ T\circ P$  אז  $T^{-1}\circ T\circ P$  הינו  $T^{-1}\circ T\circ P$  הינו  $T^{-1}\circ T\circ P$  אז  $T^{-1}\circ T\circ P$ -שמור, כלומר  $T^{-1}\circ T\circ P$ -שמור, כלומר  $T^{-1}\circ T\circ P$ 

תרגיל 2.5. יהי  $\mathbb C$  כמרחב וקטורי ממשי ויהי

$$T \colon \mathbb{C} \to \mathbb{C}$$
  
.  $z \mapsto iz$ 

 $\mathbb R$  מעל לכסין אינו כי והסיקו של של החת־שמורים ה-Tהכים התת־מתחבים מצאו את מצאו מצאו את

פתרון.  $\mathbb{C},\{0\}$  תת־מרחבים T-שמורים.  $W<\mathcal{C}$ 

נניח כי $W \leq \mathbb{C}$  מרחב T-שמור נוסף. אז  $W \leq \mathbb{C}$  ולכן יש

$$z_0 \in \mathbb{C}^\times \coloneqq \{z \in \mathbb{C} \mid z \neq 0\}$$

עבורו c=i גורר c=i גורר c=i גורר c=i גורר בסת גורר אבל c=i נקבל c=i נקבל c=i נקבל c=i עבור c=i עבור עצמי של c=i וקטורים עצמיים, ולכן עבור c=i אינו לכסין אינו ל"ד וקטורים עצמיים, ולכן אינו ל"ד וקטורים עצמיים, ולכן מעל c=i הוא אינו לכסין מעל c=i נקבל עבור אינו לכסין מעל c=i וועכורים עצמיים, ולכן אינו לכסין מעל c=i וועכורים עצמיים, ולכן אינו ליכטין מעל c=i אינו לכסין מעל c=i וועכורים עצמיים, ולכן אינו ליכטין מעל אינו ליכטין מעל c=i אינו ליכטין מעל אינו ליכטין אינו לי

נסמן  $A_1, \dots, A_k$  נסמן ריבועיות מטריצות עבור עבור 2.3.4.

$$A_1 \oplus \ldots \oplus A_k = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_k \end{pmatrix}$$

ותהי  $V=\mathbb{C}^n$  יהי יהי2.6 ותהי

$$T \colon V \to V$$

עם

$$[T]_E = \lambda_1 I_{m_1} \oplus \ldots \oplus \lambda_k I_{m_k}$$

V עבור T־שמורים ה־T־שמורים את את מצאו את הוא  $n_i=m_1+\ldots+m_{i-1}+1$  נסמן i
eq j לכל ל

$$T(v_1 + \ldots + v_k) = T(v_1) + \ldots + T(v_k)$$

כאשר שאלו כל האפשרויות לתת־מרחבים שמורים.  $T(v_i)\in W_i$  כלומר כל הערים,  $T(v_i)\in W_i$  נראה אלו כל האפשרויות לתת־מרחבים שמורים.  $T(v_i)\in W_i$  הינו לכסין. לכן, אז לכסין. לכן,  $T(v_i)\in W_i$  סכום ישר של המרחבים העצמיים של  $T|_W$  הוא החיתוך שעבור אופרטור לכסין עצמי ל, המרחב העצמי של המרחבים העצמיים, נקבל כי המרחב שווה לסכום ישר של המרחבים העצמיים, נקבל כי

, 
$$W = \bigoplus_{i \in [k]} W_{\lambda_i} = \bigoplus_{i \in [k]} W \cap V_{\lambda_i}$$

כנדרש.

בתור עצמי  $\lambda$  עם ערך עצמי m בתור בלוק ז'ורדן נגדיר גדיר יהי  $\lambda \in \mathbb{F}$  יהי ז'ורדן. יהי  $\lambda \in \mathbb{F}$ 

$$J_{m}(\lambda) := \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \operatorname{Mat}_{m}(\mathbb{F})$$

הגדרה 2.3.6 (אופרטור אי־פריד). אופרטור  $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$  אופרטור אי־פריד). אופרטור אי־פריד). אופרטור  $U,W\leq V$  או $U=V,W=\{0\}$  או אי־פריד אי־

 $\mathbb{F}^n$  שמורים של T- מיצאו את המרחבים ה־  $T=T_{J_n(0)}\in \mathrm{End}\left(\mathbb{F}^n
ight)$  יהי .1 .2.7 מרגיל

- - $\mathbb{F}^n$  של הסיקו ה- $S=T_{J_n(\lambda)}\in \mathrm{End}_{\mathbb{F}^n}$  הסיקו. 3
    - . הראו כי S הינו אי־פריד.

פתרון. 1. נשים לב כי

$$\{0\}$$

$$\ker(T) = \operatorname{Span}(e_1)$$

$$\operatorname{Im}(T) = \operatorname{Span}(e_1, \dots, e_{n-1})$$

$$V = \operatorname{Span}(e_1, \dots, e_n)$$

כולם T-שמורים, כיוון שמרחב האפס, הגרעין, התמונה, והמרחב כולו תמיד T-שמורים. גם, מתקיים

$$\forall i > 1 \colon T(e_i) = e_{i-1} \in \operatorname{Span}(e_1, \dots, e_i)$$
$$T(e_1) = 0$$

 יש כזה א כיוון אחת א המקסימלי עבורו א המקסימלי ויהי א האי ויהי ויהי א המקסימלי ויהי א המקסימלי עבורו ויהי א המקסימלי ויהי א המקסימלי ויהי א האות ביר א האות כיר א האות כיר א האות כיר און א נקבל א נקבל א נקבל א נקבל א נקבל א האות כיר ( $\{0\}\subseteq W$  ביר אות כיר און ויש כיוון ויש כיוון א נקבל א נקבל א נקבל א האות כיר אות ביר אות בי

אחרת, קיים וקטור  $e_i\in W$  נקבל כי עם  $e_i\in W$  עם אחרת, עם אחרת, עם עם אוגם עובר עם עם אוגם עובר עם אחרת, עם אחרת, אחרת, עם אוגם עם אוגם עם אחרת, עם אוני עם אחרת, עם אחרת, עם אחרת, עם אחרת, עם אוני עם אחרת, עם אחרת, עם אוני עם אוני

$$\alpha_{\ell} e_{\ell} = v - \sum_{i \in [\ell - 1]} \in W$$

 $\operatorname{Span}\left(e_1,\ldots,e_{k+1}
ight)\subseteq W$  ולכן שי $e_1,\ldots,e_{k+1}\in W$  זה במקרה הב $e_{k+1}=e_\ell\in W$  אז מ $e_\ell
eq 0$  אוריה להנוחה

כלומר ליי, מתקיים לו $\ell-i=k+1$  לכל ליי, מתקיים  $T^i\left(e_\ell\right)=e_{k+1}$  שיתקיים לכל לכל לכל ליי, מתקיים לכל ליי. גוו $i=\ell-(k+1)$ 

$$T^{\ell-(k+1)}\left(v\right) = \sum_{i \in [\ell]} \alpha_i T^{\ell-(k+1)}\left(e_i\right)$$
$$= \sum_{i=\ell-k}^{\ell} \alpha_i e_{i-\ell+k+1}$$
$$= \sum_{j=1}^{k+1} \alpha_{j+\ell-k-1} e_j \in W$$

 $\ell=k+1$  ונקבל את הנדרש מהמקרה הקודם

מתקיים  $w \in W$  מחקיים תרמרחב M < V מתקיים .2

$$(N + \lambda \operatorname{Id}_V)(w) = N(w) + \lambda w \in W$$

. כיוון ש־ $N+\lambda\operatorname{Id}_V$  הינו לכן  $N\left(w\right),\lambda w\in W$ שמור.

- $\operatorname{Span}_{\mathbb{F}}(e_1,\dots,e_i)$  מהסעיף הקודם, שהינם אלו המרחבים המרחבים שמורים שמורים ה־S שמורים נקבל כי המרחבים . $i\in\{0,\dots,n\}$  עבור
- $i,j\in\{0,\dots,n\}$  יש תת־מרחבים הקודם, שניח כי יש עבורם  $W_1,W_2$  עבורם  $W_1,W_2$  אבורם עבורם עבורם עבורם

$$W_1 = \operatorname{Span}(e_1, \dots, e_i)$$
  

$$.W_2 = \operatorname{Span}(e_1, \dots, e_i)$$

 $W_1=\mathbb{F}^n,W_2=\{0\}$ , בהקרה הראשון, j=n או i=n ולכן  $e_n\in W_1+W_2$  בהכרח בהכרח,  $W_1\oplus W_2=\mathbb{F}^n$  ביוון ש- $W_1=\{0\}$ , ובכל מקרה הפירוק הינו טריוויאלי.  $W_2=\mathbb{F}^n,W_1=\{0\}$ 

מכיל  $W \leq V$  יהי  $T = T_{J_4(0)} \in \operatorname{End}_{\mathbb{C}}(V)$ , ויהי  $V = \mathbb{C}^4$  יהי 2.3.7. דוגמה

תרמרחב שמור ממימד 1, יש לו תת־מרחב שמור לי אין תרמרחב לי או הוכיחו כי אם ל- הוכיחו הוכיחו  $A\in \mathrm{Mat}_n\left(\mathbb{R}\right)$  .1 .1 .2.8 .2

עצמי ערך אז אז  $\bar{\lambda}$  גם ערך עצמי של ערך אז ערך אז איז הוכיחו ממשיים. מסריצה מטריצה אז אז אז  $A\in \mathrm{Mat}_n\left(\mathbb{C}\right)$  .2 . $T_A$ 

נגדיר  $A=(a_{i,j})\in \mathrm{Mat}_{n,m}$  נגדיר מטריצה

$$\bar{A} = (\bar{a}_{i,i})$$

 $B\in$ ו־ב $A\in\mathrm{Mat}_{m,n}\left(\mathbb{C}
ight)$  מטריצה שמקדמיה הם המספרים הצמודים לאלו ב-A. נשים לב כי עבור שתי מטריצה המספרים הצמודים לאלו ב- $A\in\mathrm{Mat}_{m,n}\left(\mathbb{C}
ight)$ , מתקיים , $\mathrm{Mat}_{n,\ell}\left(\mathbb{C}
ight)$ 

$$(\overline{AB})_{i,j} = \overline{\sum_{k=1}^{n} a_{i,k} b_{k,j}}$$
$$= \sum_{k=1}^{n} \overline{a_{i,k}} \overline{b_{k,j}}$$
$$= (|A| |B|)_{i,j}$$

וקטורים אין ל- $T_A$  אין של  $T_A$  של עבור וקטור עצמי עבור אין אין ל- $\operatorname{Span}_{\mathbb{R}}(v)$  הוא ממימד ממימד הוא ממימד אין ל- $T_A$  וקטורים עצמיים.

אבל, אפשר לחשוב על  $T_{ ilde{A}}\in\mathrm{End}_{\mathbb{C}}\left(\mathbb{C}^n\right)$ א אז ל- $\widetilde{A}$  אנסמנה  $\mathrm{Mat}_n\left(\mathbb{C}\right)$ יש וקטור עצמי כאופרטור אפשר לחשוב על בעמי  $\lambda=\alpha+i\beta$  שנסמנה  $T_{\widetilde{A}}$  עם ערך עצמי של של  $T_{\widetilde{A}}$  עם ערך עצמי של מעל  $T_{\widetilde{A}}$  אונכתוב

$$v = \begin{pmatrix} u_1 + iw_1 \\ \vdots \\ u_n + iw_n \end{pmatrix} = u + iw$$

גא . $\mathbb{R}^n$ ים כחיים עליהם נוכל ממשיים. נוכל מקדמים עם וקטורים ע $u,w\in\mathbb{C}^n$  כאשר

$$Au + iAw = A (u + iw)$$

$$= Av$$

$$= \lambda v$$

$$= (\alpha + i\beta) (u + iw)$$

$$= \alpha u + \alpha iw + \beta iu - \beta w$$

$$= (\alpha u - \beta w) + i (\alpha w + \beta u)$$

כאשר מקדמים להשוות אז, נוכל  $Au,Aw\in\mathbb{R}^n$  כאשר

$$T_A(u) = Au = \alpha u - \beta w \in \text{Span}(u, w)$$
  
 $T_A(w) = Aw = \alpha w + \beta u \in \text{Span}(u, w)$ 

 $\mathbb{R}^n$  שמור של Span (u,w) לכן

עצמי v=u+iwנסמן ב-eta=0 עבור עבמי  $\lambda=\alpha+i\beta$ . נניח אם כן כי גניח אין מה להוכיח כי  $\lambda=\lambda=0$  עבור עבמי  $\lambda=0$  עם ערך עצמי  $\lambda$ , כאשר  $\lambda=0$  עם מקדמים ממשיים. אז עם ערך עצמי  $\lambda$ , כאשר  $\lambda=0$  עם ערך עצמי ערך עצמי אין מה להוכיח עבמים ממשיים.

$$\bar{A}\bar{v} = \overline{Av} = \overline{\lambda v} = \bar{\lambda}\bar{v}$$

. כנדרש,  $ar{\lambda}$  וקטור עצמי של A עם ערך עצמי  $ar{v}$  ולכן

# פרק 3

# צורת ז'ורדן

כדי לבצע חישובים על אופרטורים לינאריים, בדרך כלל יש לקחת בסיס ולערוך את החישובים על המטריצות המייצגות. נרצה לקחת בסיס שיתן לנו מטריצה שתאפשר חישובים פשוטים ככל הניתן: מטריצה אלכסונית. אין לכל אופרטור צורה אלכסונית, אבל, מעל שדה סגור אלגברית יש צורה ``כמעט אלכסונית'' שנקראת צורת ז'ורדן.

בתור  $\lambda$  עם ערך עצמי m בתור מגודל ז'ורדן נגדיר גגדיר גגדיר  $\lambda \in \mathbb{F}$  יהי 3.0.1. הגדרה

$$J_{m}(\lambda) := \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \operatorname{Mat}_{m}(\mathbb{F})$$

הגדרה 3.0.2 (מטריצה ז'ורדן). מטריצה מטריצה מטריצת מטריצת מטריצת מטריצה מטריצה מטריצה מטריצה מטריצה אלכסונית הגדרה הגדרה הבלוקים בה הם בלוקי ז'ורדן.

. מטריצת ז'ורדן מטריצת T מטריצת מטריצת מטריצת מטריצת ז'ורדן. בסיס  $T\in \mathrm{End}_{\mathbb{F}}(V)$  יהי  $T\in \mathrm{End}_{\mathbb{F}}(V)$  יהי מטריצת ז'ורדן.

. שורש. שדה סגור אלגברית). שדה  $\mathbb{F}$  נקרא סגור אלגברית שדה לכל פולינום  $p\in\mathbb{F}[x]$  שאינו קבוע שדה סגור אלגברית). שדה דה שורש.

משפט 3.0.5 (משפט ז'ורדן). יהי  $\mathbb F$  שדה סגור אלגברית, יהי V מרחב וקטורי סוף-מימדי מעל  $\mathbb F$  ויהי והי  $\mathbb F$  יהי משפט 3.0.5 משפט ז'ורדן עבור  $\mathbb F$  יחידה עד כדי שינוי סדר הבלוקים.

בהוכחת משפט ז'ורדן בהרצאה, הסתכלנו קודם כל על אופרטורים שעבורם הערך העצמי היחיד הוא 0, שהינם אופרטורים נילפוטנטיים. נדון תחילה במשפט ז'ורדן עבור אופרטורים אלו.

### 3.1 אופרטורים נילפוטנטיים

עבור עם תכונה אופרטורים לדבר אופן דומה נוכל גם  $T_A^n=0$  עבור לוכן אחקיים מתקיים אופרטורים אופרטורים נוכל באופן אופרטורים אופרטורים אופרטורים עם תכונה  $A^n=0$  מתקיים עם תכונה אופרטורים עם תכונה אופרטור

 $T^i=0$  עבורו  $i\in\mathbb{N}_+$  אופרטנטי אם נילפוטנטי לו נקרא נילפוטנטי). אופרטור אופרטור נילפוטנטי). אופרטור נילפוטנטיות אופרטור אינדקס אינ

.0 אותנו בדיוק האופרטורים שמעניינים אותנו כאשר אנו רוצות להתייחס רק לערך עצמי

תרגיל אם ורק אז T נילפוטנטי אז T נילפוטנטי אז ויהי  $\mathbb{F}$ , ויהי אלגברית  $\mathbb{F}$ , ויהי מעל שדה סגור מעל מימדי מעל מדה מורק אז T נילפוטנטי אם ורק אם T הוא הערך העצמי היחיד של T.

פתרון, נניח כי T נילפוטנטי מאינדקס  $\lambda$ , ויהי  $\lambda$  ערך עצמי של T עם וקטור עצמי אז ניח ניח ניח פתרון. או אינדקס  $\lambda$  ויהי ויהי  $\lambda$  ערך עצמי או  $\lambda^k=0$  נקבל  $v\neq 0$ 

עבורו V של של בסיס משפט ז'ורדן, קיים ממשפט א עבורו עבורן הערך העצמי הוא הערך העצמי היחיד.

$$.[T]_{B} = \begin{pmatrix} J_{m_{1}}(0) & & \\ & \ddots & \\ & & J_{m_{k}}(0) \end{pmatrix}$$

נקבל כי  $m=\max_{i\in[k]}m_i$  ניקח אם ניקח , $J_{m_i}\left(0\right)^{m_i}=0$  נקבל כי לכל

$$[T]_{B}^{m} = \begin{pmatrix} J_{m_{1}}(0)^{m} & & & \\ & \ddots & & \\ & & J_{m_{k}}(0)^{m} \end{pmatrix} = 0$$

 $T^m = 0$  ואז

תרגיל  $n_i\coloneqq \dim\ker\left(T^i\right)$  ונסמן k מאינדקס מאינדקס נילפוטנטי די לכל  $T\in\operatorname{End}_{\mathbb{F}}(V)$  יהי יהי 3.2. הראו כי

$$0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = n$$

 $\ker\left(T
ight)\subseteq\ker\left(T^{2}
ight)\subseteq\ldots\subseteq\ker\left(T^{k}
ight)=V$  ולכן  $T^{i+1}\left(v
ight)=0$  מתקיים  $v\in\ker\left(T^{i}
ight)$  מתקיים לכל אם (ניקח j הענימלי  $ker\left(T^{j}\right)$  ב $\ker\left(T^{i}\right)$  עבורו j>i עבורו j>i אחרת, יש j>i אחרת, ויש  $\ker\left(T^{i}\right)=\ker\left(T^{i+1}\right)$  אם ואז j=i+r נכתוב . $v\in\ker\left(T^{j}
ight)\setminus\ker\left(T^{i}
ight)$  ואז

$$\begin{split} T^{i+1}\left(T^{r-1}\left(v\right)\right) &= T^{i+r}\left(v\right) = T^{j}\left(v\right) = 0 \\ T^{i}\left(T^{r-1}\left(v\right)\right) &= T^{i+r-1}\left(v\right) = T^{j-1}\left(v\right) \neq 0 \end{split}$$

 $v\notin\ker\left(T^{i}
ight)=\ker\left(T^{j-1}
ight)$  כי  $T^{j-1}\left(v
ight)
eq0$  וכאשר  $T^{0}=\mathrm{Id}_{V}$ 

תרגיל מאינדס את ומצאו הפיכות ( $\operatorname{Id}_V\pm T$ ) הראו שהעתקות מאינדס k. הראו את נילפוטנטית מאינדס מהינדס ... הראו

$$\sum_{k \in \mathbb{N}} r^k = \frac{1}{1 - r}$$

עבור גול, אכן,  $\operatorname{Id}_V + T + \ldots + T^{k-1}$  תהיה תהים של של שההופכית של  $\operatorname{Id}_V - T$  עבור גרצה אם כן גרצה אם אם  $\operatorname{Id}_V - T$ 

$$\begin{split} \left(\operatorname{Id}_V - T\right)\left(\operatorname{Id}_V + T + \ldots + T^{k-1}\right) &= \sum_{i=0}^{k-1} T^i - \sum_{i=1}^k T) \\ &= \operatorname{Id}_V - T^k \\ &= \operatorname{Id}_V - 0 \\ &= \operatorname{Id}_V \end{split}$$

היא  $\mathrm{Id}_V + T = \mathrm{Id}_V - (-T)$  של לכן ההופכית מאינדקס k גם T גם בילפוטנטית גם T גם לכן היא גם דעת, אם די

$$.\operatorname{Id}_{V} - T + T^{2} - T^{3} + \ldots + (-1)^{k-1} T^{k-1}$$

#### מציאת בסיס ז'ורדן עבור אופרטורים נילפוטנטיים 3.1.1

הגדרה T. נגיד כי T נגיד כי T נגיד כי T נגיד (אופרטור הזזה). ויהי T מרחב וקטורי אוררה T מרחב (אופרטור T מרחב ויהי איז T מרחב וקטורי אוררה Tהוזה ביחס לבסיס B אם מתקיים  $T\left(v_i
ight)=egin{cases} v_{i-1} & i>1 \\ 0 & i=1 \end{cases}$ 

, 
$$T\left(v_{i}\right) = \begin{cases} v_{i-1} & i > 1\\ 0 & i = 1 \end{cases}$$

 $\left. \left[ T\right] _{B}=J_{n}\left( 0\right)$  או באופן שקול אם

כדי למצוא בסיס ז'ורדן עבור אופרטור הזזה, נרצה למצוא וקטור עבור  $v\in V$  עבורו וקטור אופרטור אופרטור אופרטור למצוא בסיס ז'ורדן. יהיה בסיס ז'ורדן. יהיה בסיס ז'ורדן עבור עבור עבור ווידן יהיה בסיס ז'ורדן.

### תרגיל 3.4. תהי

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & -2 & -1 \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{C})$$

T עבור צור בסיס ז'ורדן עבור . $T=T_A\in\operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^3
ight)$  ויהי

פתרון. מתקיים

$$A^{2} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$$
$$A^{3} = 0$$

$$.(T^{2}(e_{1}),T(e_{1}),e_{1})=(e_{1}-e_{3},e_{2}-e_{3},e_{1})$$

 $\ker\left(T^{k-1}\right)$  שמינם כאלה, נשלים כאופרטורי הזוה. באופן כללי, עבור אופרטורים נילפוטנטיים שאינם אופרטורי הזוה. באופן כללי, עבור אופרטורים בסיס של  $\ker\left(T^{k-1}\left(v\right),\ldots,T\left(v\right),v\right)$  השרשראות ונסתכל על השרשראות שאורך ששווה למימד של V, נקבל בסיס ז'ורדן

$$.(T^{k-1}(v_1),...,T(v_1),v_1,T^{k-1}(v_2),...,T(v_2),v_2,...,T^{k-1}(v_k),...,T(v_k),v_k)$$

 $v \in \ker\left(T^i\right) \setminus \ker\left(T^{i-1}\right)$  אבל, יתכן שזה לא המצב. במקרה זה, נחפש שרשראות קצרות יותר, שיתחילו בוקטורים באיזשהו במקרה זה, נחפש שרשראות הצרות יותר, שיתחילו מהצורה

$$.\left(T^{i-1}\left(v\right),\ldots,T\left(v\right),v\right)$$

נראה בהמשך נוסחא לחישוב מספר בלוקי ז'ורדן מכל גודל, וכיוון שכל שרשרת כזאת תתאים לבלוק ז'ורדן, נוכל לדעת בדיוק אילו ערכי i לבדוק.

תרגיל בסיס  $S=T^3$  יהי ויהי לבסיס הסטנדרטי, אופרטור אופרטור דוזה אופרטור איינע א

פתרון. נשים לב ראשית שמתקיים

$$.S(e_i) = \begin{cases} e_{i-3} & i > 3\\ 0 & i \le 3 \end{cases}$$

 $\ker\left(S^2\right)=$  מתקיים אם כן  $S^3$  ( $e_7$ ) ב $e_{7-2\cdot3}=e_{1}\neq0$  וגם מקיים אם כן  $S^3$  ( $e_7$ ) ב $e_{7-2\cdot3}=e_{1}\neq0$  מתקיים אם כן  $S^2$  ( $e_7$ ) ביקח ( $S^2$  ( $e_7$ ) S ( $e_7$ ) שיתאים לשרשרת ז'ורדן ( $S^2$  ( $e_7$ ) ביקח ( $S^2$ ) עורך השרשרת הוא S (איל) בישר ( $S^2$ ) ולכן יש למצוא עוד שרשראות ז'ורדן. S ( $S^2$ ) אורך השרשרת הוא S (איל) בישר ( $S^2$ ) ולכן יש למצוא עוד שרשראות ז'ורדן.

 $\ker\left(S^2\right)\setminus\ker\left(S^2\right)$  מתקיים (מרקיים ליידי וקטור יחיד לישני ( $\dim\ker\left(S^2\right)-\dim\ker\left(S^2\right)$  שיפתחו שיפתחו שרשראות נוספות. מתקיים ( $\exp\left(S^2\right)\setminus\ker\left(S^2\right)$  ושני וקטורים אלו יחד (בחפש עוד שני וקטורים כאן, שיפתחו שרשראות נוספות. מתקיים ( $\exp\left(S^2\right)\setminus\ker\left(S^2\right)$  ושני וקטורים אלו יחד ( $\exp\left(S^2\right)$ ,  $\exp\left(S^2\right)$ , שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ( $\exp\left(S^2\right)$ ,  $\exp\left(S^2\right)$ , שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ( $\exp\left(S^2\right)$ ,  $\exp\left(S^2\right)$ , שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ( $\exp\left(S^2\right)$ ,  $\exp\left(S^2\right)$ , שמצאנו. נשרשר את השרשרת שמצאנו עם השרשראות ( $\exp\left(S^2\right)$ ,  $\exp\left(S^2\right)$ ,

$$B = (e_1, e_4, e_7, e_2, e_5, e_3, e_6)$$

שעבורו

$$.[T]_{B} = \begin{pmatrix} J_{3}(0) & & \\ & J_{2}(0) & \\ & & J_{2}(0) \end{pmatrix}$$

נשים לב שהבלוק מגודל 3 מופיע ראשון בדיוק כי השרשרת מאורך 3 היא זאת שכתבנו ראשונה. אם היינו משנות את סדר השרשראות, היה משתנה סדר הבלוקים.

 $\mathbb{C}$  מעל , $J_{n}\left(\lambda
ight)^{t}\cong J_{n}\left(\lambda
ight)$  כי הראו כי .1. הראו 3.6

 $A \in \operatorname{Mat}_n\left(\mathbb{C}\right)$  לכל  $A \cong A^t$  .2

פתרון. גניח תחילה כי  $\lambda=0$  נניח תחילה כי  $T=T_{J_n(\lambda)^t}$  נניח תחילה כי  $T=T_{J_n(\lambda)^t}$  נניח תחילה כי מתקיים

$$.T\left(e_{i}\right) = \begin{cases} e_{i+1} & i < n \\ 0 & i = n \end{cases}$$

את הנדרש.  $B = (e_n, e_{n-1}, \dots, e_2, e_1)$  אז הבסיס

באופן כללי,

$$T = T_{J_n(0)^t + \lambda I} = T_{J_n(0)^t} + \lambda \operatorname{Id}_{\mathbb{C}^n}$$

ולכן

$$[T]_{B} = \left[T_{J_{n}(0)^{t}}\right]_{B} + \lambda \left[\operatorname{Id}_{\mathbb{C}^{n}}\right]_{B} = J_{n}\left(0\right) + \lambda I = J_{n}\left(\lambda\right)$$

ילכן הבסיס B עדיין עובד.

 $P^{-1}AP=\operatorname{diag} J_{m_1}\left(\lambda_1
ight),\ldots,J_{m_k}\left(\lambda_k
ight)$  עבורה עבורה פיכה הפיכה מטריצה הפיכה מטריצה אלכסונית בלוקים עם בלוקים בלוקים עם בלוקים עם בלוקים בלוקים בלוקים עם בלוקים בלוקים

$$P^{t} A^{t} \left(P^{t}\right)^{-1} = \operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right)^{t}, \dots, J_{m_{k}}\left(\lambda_{k}\right)^{t}\right)$$

 $Q_i^{-1}J_{m_i}\left(\lambda_i
ight)^tQ_i=$  בעת, הפיכות הפיכות מטריצות מטריצות מטריצות ולכן קיימות אפימות ולכן אפימות  $Q_i\in\mathrm{Mat}_n\left(\mathbb{C}
ight)$  ולכן אם נסמן  $J_{m_1}\left(\lambda_1
ight)^t\cong J_{m_1}\left(\lambda_1
ight)$  בקבל כי  $J_{m_i}\left(\lambda_i
ight)$ 

$$Q^{-1}\left(P^{t}A^{t}\left(P^{t}\right)^{-1}\right)Q = Q^{-1}\operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right)^{t}, \dots, J_{m_{k}}\left(\lambda_{k}\right)^{t}\right)Q$$

$$= \operatorname{diag}\left(Q_{1}^{-1}J_{m_{1}}\left(\lambda_{1}\right)^{t}Q_{1}, \dots, Q_{k}^{t}J_{m_{k}}\left(\lambda_{k}\right)^{t}Q_{k}\right)$$

$$= \operatorname{diag}\left(J_{m_{1}}\left(\lambda_{1}\right), \dots, J_{m_{k}}\left(\lambda_{k}\right)\right)$$

$$= P^{-1}AP$$

כלומר

$$A = (PQ^{-1}P^{t}) A^{t} ((P^{t})^{-1} QP^{-1}) = (PQ^{-1}P^{t}) A^{t} (PQ^{-1}P^{t})^{-1}$$

 $A\cong A^t$  ולכן

### 3.2 משפט ז'ורדן הכללי

 $\lambda_1,\dots,\lambda_k$  אם אם כיליים. אופרטורים על לדבר לדבר נוכל לדבר אופרטורים עבור אופרטורים עבור אופרטורים לאחר  $T\in \mathrm{End}_{\mathbb{F}}(V)$  הערכים העצמיים השונים של

$$V = V'_{\lambda_1} \oplus \ldots \oplus V'_{\lambda_k}$$

 $T|_{V'_{\lambda_i}}-\mathrm{Id}_{V'_{\lambda_i}}$  שהינם ללים, שהינם  $\lambda_i$  מרחבים עם ערך עדמי את הבלוקים. כדי למצוא שהינם דישמורים. מוכללים, שהינם למציאת בסיס ז'ורדן למקרה הנילפוטנטי. וניעזר באלגוריתם למציאת בסיס ז'ורדן למקרה הנילפוטנטי.

המרחב  $n:=\dim_{\mathbb{F}}(V)$  נסמן נסחב  $T\in \mathrm{End}_{\mathbb{F}}(V)$  המרחב וקטורי חוף מרחב וקטורי היי  $N:=\dim_{\mathbb{F}}(V)$  נסמן מרחב עצמי מוכלל). היי היי א מרחב וקטורי חוף מיים אות  $\lambda\in\mathbb{F}$  המוכלל של אות  $\lambda\in\mathbb{F}$ 

$$.V_{\lambda}' \coloneqq \ker\left(\left(T - \lambda \operatorname{Id}_{V}\right)^{n}\right)$$

$$V = \bigcup V'_{\lambda_i}$$

לפני שנתאר את האלגוריתם הכללי, נזכיר תכונות שראינו בהרצאה.

 $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$  יהי אלגברית, ויהי מעל שדה מעל סוף-מימדי סוף-מימדי מרחב V יהי 3.2.3. טענה

- הוא עבע ערך עצמי הבלוקים וסכום , $r_g\left(\lambda
  ight)$  הוא הוא בצורת ז'ורדן אב בצורת עצמי ערך הבלוקים עם הבלוקים אות הוא  $\lambda\in\mathbb{F}$  בצורת ג'ורדן עצמי אורדן או
- $V_\lambda'$  כאשר  $T|_{V_\lambda'}-\mathrm{Id}_{V_\lambda'}$  עם ערך המקסימלי הנילפוטנטיות שווה לאינדקס בצורת ז'ורדן של בצורת ג'ורדן בצורת אינדקס המרחב העצמי המוכלל של  $\lambda$  עבור  $\lambda$ 
  - הוא r הבלוקים מגודל שהינם שהינם ערך עצמי ער מספר .3

$$.\dim \ker \left( \left( T - \lambda \operatorname{Id}_{V} \right)^{r} \right) - \dim \ker \left( \left( T - \lambda \operatorname{Id}_{V} \right)^{r-1} \right)$$

הוא r מספר הבלוקים עם ערך עצמי אוחל מגודל מספר .4

$$.2 \operatorname{dim} \ker ((T - \lambda \operatorname{Id}_V)^r) - \operatorname{dim} \ker ((T - \lambda \operatorname{Id}_V)^{r+1}) - \operatorname{dim} \ker ((T - \lambda \operatorname{Id}_V)^{r-1})$$

### מציאת בסיס ז'ורדן עבור אופרטור כללי 3.2.1

תרגיל 3.7. ידוע כי כל הערכים העצמיים של

$$A := \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 3 & 1 & 0 \\ -1 & 0 & -1 & 0 & 4 & 0 \\ -1 & 0 & -1 & 0 & 2 & 2 \end{pmatrix} \in M_6(\mathbb{C})$$

A צורת ובסיס ז'ורדן עבור מצאו רציונליים.

 $V=\mathbb{C}^6$  נסמן.V

$$p_A(x) = \det(xI - A) = x^6 - 15x^5 + 93x^4 - 305x^3 + 558x^2 - 540x + 216x^4 + 216x^4 + 216x^2 + 216x^4 + 216x^2 + 216x^$$

ממשפט ניחוש השורש הרציונלי אפשר למצוא את השורשים ולקבל

$$p_A(x) = (x-2)^3 (x-3)^3$$

נסתכל על הערכים העצמיים 2,3 בנפרד.

מתקיים : $\lambda=3$ 

$$(A-3I) = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 2 & -1 \end{pmatrix}$$

ומרחב הפתרונות של המערכת ההומוגנית הוא

$$. \ker (T_A - 3 \operatorname{Id}_V) = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

חישוב ישיר נותן כי

$$\ker\left(\left(T_A - 3\operatorname{Id}_V\right)^2\right) = \operatorname{Span}\left\{\begin{pmatrix} 0\\0\\1\\1\\1\\1\end{pmatrix}, e_3\right\}$$

וגם

$$.\ker\left(\left(T_A - 3\operatorname{Id}_V\right)^3\right) = \operatorname{Span}\left\{\begin{pmatrix} 0\\0\\1\\1\\1\\1\\1\end{pmatrix}, e_3, e_4\right\}$$

אז,  $e_4$  פותח שרשרת ז'ורדן

$$.B_3 = \left( (A - 3I)^2 e_4, (A - 3I) e_4, e_4 \right) = \begin{pmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_3, e_4$$

מתקיים : $\lambda=2$ 

$$\ker (T_A - 2\operatorname{Id}_V) = \operatorname{Span} \left\{ egin{align*} e_6, & 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{array} \right\}$$

ולכן יש ל־2 ריבוי גיאומטרי 2. אז יש שני בלוקי ז'ורדן עבור הערך העצמי 2, ולכן השרשרת המקסימלית מגודל 2. אפשר לראות כי סכום העמודות של

$$A - 2I = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 & 1 & 0 \\ -1 & 0 & -1 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 & 2 & 0 \end{pmatrix}$$

שווה 0, ולכן  $e_1\in\ker\left(\left(T_A-\mathrm{Id}_V
ight)^2
ight)$  ונקבל

$$.\ker\left(\left(T_A - \operatorname{Id}_V\right)^2\right) = \operatorname{Span}\left\{ e_6, \begin{pmatrix} 1\\1\\1\\1\\0 \end{pmatrix}, e_1 \right\}$$

אז  $e_1$  מתחיל שרשרת ז'ורדן

$$.((A-2I)e_1,e_1) = \begin{pmatrix} -1\\-1\\-1\\-1\\-1\\-1 \end{pmatrix}, e_1$$

 $e_6$ , למשל,  $((A-2I)\,e_1,e_1)$ . היא וקטור עצמי של 2 שאינו תלוי בי $\lambda=2$  עבור 1 עבור  $\lambda=2$  אסרה היא כזה וקטור עצמי.

נקבל בסיס ז'ורדן

$$B_2 := \begin{pmatrix} \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_1, e_6 \\ \end{pmatrix}$$

 $T|_{V_2'}$  של

סיכום: נסדר את השרשראות השונות בבסיס ונקבל בסיס ז'ורדן

$$B = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_3, e_4, \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, e_1, e_6$$

לפיו

$$.\left[T_{A}\right]_{B}=\operatorname{diag}\left(J_{3}\left(3\right),J_{2}\left(2\right),J_{1}\left(2\right)\right)$$

נזכיר כי ראינו כיצד לחשב חזקות של בלוק ז'ורדן. המטריצה  $J_n\left(0\right)^r$  היא מטריצה של בלוק ז'ורדן. מעל האלכסון היr מעל האלכסון כמו כי ראינו כיצד לחשב האפס, אם  $r \geq n$  במו כן, כמו כן,

$$J_{n}(\lambda)^{r} = \begin{pmatrix} \lambda^{r} & \begin{pmatrix} r \\ 1 \end{pmatrix} \lambda^{r-1} & \begin{pmatrix} r \\ 2 \end{pmatrix} \lambda^{r-2} & \cdots \\ & \lambda^{r} & \ddots & & \vdots \\ & & \ddots & \ddots & \begin{pmatrix} r \\ 2 \end{pmatrix} \lambda^{r-2} \\ & & \lambda^{r} & \begin{pmatrix} r \\ 1 \end{pmatrix} \lambda^{r-1} \\ & & \lambda^{r} \end{pmatrix}$$

לכן, חישוב חזקות של מטריצות ז'ורדן הינו פשוט למדי. נוכל להיעזר בו כדי לחשב חזקות של מטריצות כלליות.

תרגיל 3.8. תהי

$$A := \begin{pmatrix} 2 & 4 & 0 \\ -1 & -2 & 0 \\ 8 & 7 & 9 \end{pmatrix} \in M_3 (\mathbb{C})$$

 $A^{2022}$  את חשבו

פתרון, ואז מטריצת מטריצת  $J\coloneqq PAP^{-1}$  עבורה  $P\in M_3\left(\mathbb{C}\right)$  אז נקבל עבור B עבור בסיס צורדן ונמצא נסמן עבור  $V=\mathbb{C}^3$ 

$$A^{2022} = \left(P^{-1}JP\right)^{2022} = P^{-1}J^{2022}P$$

 $J^{2022}$  את לחשב הנ"ל נדע הנ"ל הנ"ל מהחישוב כאשר

ערכים הנוספים הערכים את את ב־ב $\lambda_1,\lambda_2$ ב נסמן בי $Ae_3=9e_3$  כי על ערך עצמי עדמיים הערכים ניתן לראות לראות ערכים עדמיים:

$$\lambda_1 + \lambda_2 + 9 = \text{tr}(A) = 9$$
  
 $9\lambda_1\lambda_2 = \det(A) = 9(-4 + 4) = 0$ 

$$\lambda_1 = \lambda_2 = 0$$
 לכן

נקבל הערק עבור ז'ורדן עבור ז'ורדן עבור פרט, בפרט, בפרט מריבוי אלגברי 1 וכי 1 וכי אלגברי 1 וכי 9 ערך עצמי מריבוי אלגברי 9 ערך עצמי מריבוי אלגברי 1 וכי 9 ערך עצמי מריבוי אלגברי 9 ערך עצמי מריבוי אלגברי 1 וכי 9 ערך עצמי מריבוי ווכי 9 ערך עדר עדר ווכי 9 ערך עדר ווכי 9 ערך

נשים לב כי . $\dim\ker\left(T_A
ight)=1$  ולכן ו $r\left(A
ight)=2$  ניתן לראות גייורדן עבור  $\lambda=0$  ולכן ווערשרת  $\lambda=0$ 

$$2e_1 - e_2 - e_3 \in \ker\left(L_A\right)$$

ולכן

$$\ker(T_A) = \text{Span}(2e_1 - e_2 - e_3)$$

מתקיים

$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 81 & 81 & 81 \end{pmatrix}$$

לבסיס ( $2e_1-e_2-e_3$ ) את לכן נוכל להשלים לכן

$$(2e_1 - e_2 - e_3, e_1 - e_3)$$

של  $\ker\left(T_A^2\right)$  מתקיים

$$A(e_1 - e_3) = 2e_1 - e_2 - e_3$$

לכן נקבל שרשרת ז'ורדן

$$.(A(e_1 - e_3), e_1 - e_3) = (2e_1 - e_2 - e_3, e_1 - e_3)$$

מסקנה: קיבלנו

$$B := (2e_1 - e_2 - e_3, e_1 - e_3, e_3)$$

עבורו

$$[T_A]_B = J := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

ולכן

$$A = [T_A]_E = [\operatorname{Id}_V]_E^B [T_A]_B [\operatorname{Id}_V]_B^E$$

נסמן

$$P := [\mathrm{Id}_V]_E^B = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

שעמודותיה הן וקטורי הבסיס B, ונקבל

$$A = PJP^{-1}$$

אז

$$\begin{split} A^{2022} &= PJ^{2022}P^{-1} \\ &= \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9^{2022} \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \\ . &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 9^{2022} & 9^{2022} & 9^{2022} \end{pmatrix} \end{split}$$

## 3.3 הפולינום המינימלי ופירוק פרימרי

כאשר של מער ישר סכום פישר אינו כי V ראינו כי די הינו פרחבים העצמיים,  $T\in \mathrm{End}_{\mathbb{F}}(V)$ , וועברית אלגברית מעל שדה סגור מעל שדה סגור אלגברית  $T\in \mathrm{End}_{\mathbb{F}}(V)$ , המוכללים של די המוכלם של די המוכללים של די המוכ

$$V = V'_{\lambda_1} \oplus \ldots \oplus V'_{\lambda_k}$$

כאן

$$V_{\lambda}' = \ker\left( \left( T - \lambda \operatorname{Id}_{V} \right)^{r_{i}} \right)$$

q עבור ערכים שלמים  $p\left(T
ight)=0$  מתקיים  $p\left(x
ight)=(x-\lambda_1)^{r_1}\cdot\ldots\cdot(x-\lambda_k)^{r_k}$  וכי כל פולינום עבור ערכים שלמים  $p\left(T
ight)=0$  הוא כפולה של  $p\left(T
ight)=0$  הוא כפולה של עבורו

 $m_T \mid q$  אז  $q\left(T
ight) = 0$  טענה מינימלי המינימלי הפולינום מינימלי 3.3.2.

דוגמה (ממשל, הפולינום המינימלי יהיה בדיוק (למשל, אם השדה סגור אלגברית), הפולינום המינימלי יהיה בדיוק T

$$m_T(x) = \prod_{i \in [k]} (x - \lambda_i)^{r_i}$$

,T של ז'ורדן בצורת בצורת אכן, אם אכן, אכן, אכן עצמי עם המקסימלי הבלוק הבלוק בצורת בצורת אורדן אכן הערכים העצמיים, וודל הבלוק המקסימלי הוא הוא הוא הוא ידי הערכים העצמיים, וודל הבלוק המקסימלי בכפל הזה הוא הוא ידי הערכים הערכים הערכים הערכים בכפל הזה הוא

$$.(J_{m_i}(\lambda_i) - \lambda_i I_{m_i})^{r_i} = J_{m_i}(0)^{r_i} = 0$$

אם היה  $r_j < m_j$  היה מתקבל

$$m_T \left( J_{m_j} \left( \lambda_j \right) \right) = \prod_{i \in [k]} \left( J_{m_j} \left( \lambda_j \right) - \lambda_i I_{m_j} \right)^{r_i}$$

כאשר i כאשר היה מאנדקס היכה לכל  $j\neq i$  הפיכה לכל הפיכה לכל מאנדקס שגדול מיi במקרה היה הפיכה לכל הפיכה לכל  $J_{m_j}(\lambda_j)-\lambda_i I_{m_j}$  בלוק בצורת הירדן של  $J_{m_j}(\lambda_j)$  שתקבל העכן לא יתכן לא יתכן שיר $J_{m_j}(\lambda_j)$  בלוק בצורת הירדן של הירדן של הירדן אינון במקרה אינון במקרה הירדים במקרה אינון במקרה הירדים במקרה במקרה

. תרגיל Tי בורו הראו כי  $T^m=\mathrm{Id}_V$  עבורו  $m\in\mathbb{N}_+$  יהי יהי ותהי  $T\in\mathrm{End}_\mathbb{F}(V)$  ותהי יהי  $\mathbb{F}=\mathbb{C}$  יהי יהי

פתרון. כדי להראות ש־T לכסין מספיק להראות שכל שורשי  $m_T$  הינם מריבוי  $m_T$  מתקיים מספיק להראות שכל מריבוי  $m_T$  הם מריבוי  $m_T$  היים מריבוי  $m_T$  הם מריבוי  $m_T$  הם מריבוי  $m_T$  היים מריבוים מריבוי  $m_T$  היים מריבוי  $m_T$  היים מריבוי  $m_T$  היים מריבוים מריבוי  $m_T$  היים מריבוי מריבו

$$.\left\{e^{\frac{2\pi i k}{m}} \;\middle|\; k \in [m]\right\} = \left\{\operatorname{cis}\left(\frac{2\pi k}{m}\right) \;\middle|\; k \in [m]\right\}$$

תרגיל  $A,B\in M_{6}\left(\mathbb{C}\right)$  יהיו .1 .3.10 תרגיל

- $p_A = p_B$  (i)
- .5 וזהו ממעלה (ii) וזהו  $m_A=m_B$

 $A \sim B$  הראו כי

- שמתקיים וכך שמתקיים  $A,B\in M_{6}\left( \mathbb{C}
  ight)$  מצאו .2
  - $p_A = p_B$  (i)
  - .4 וזהו פולינום ממעלה  $m_A=m_B$  (ii)

ערך אז לכן של A לכן של העצמיים העצמיים של הערכים המקסימליים אל הבלוקים. 1. נתון לפון ,  $\deg m_A=5$  נתון גיאומטרי  $\lambda$  מריבוי גיאומטרי 2 ובלוק מגודל 1, וכל ערך עצמי אחר הוא מריבוי גיאומטרי 1. אז

$$.A \sim \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & J_m(\lambda_1) & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & & \vdots & & \vdots \\ & & & \ddots & 0 \\ 0 & & \cdots & 0 & J_{m_r}(\lambda_r) \end{pmatrix}$$

נתון אופן לכן  $m_A=m_B$  נתון

$$B \sim \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & J_m(\lambda_1) & \ddots & & \\ \vdots & \ddots & \ddots & & \vdots \\ & & \ddots & \ddots & 0 \\ 0 & & \cdots & 0 & J_{m_r}(\lambda_r) \end{pmatrix}$$

 $A \sim B$  ונסיק כי

2. נסתכל על

$$A := \begin{pmatrix} J_1(0) & & \\ & J_1(0) & \\ & & J_4(0) \end{pmatrix}$$
$$B := \begin{pmatrix} J_2(0) & & \\ & & J_4(0) \end{pmatrix}$$

ונקבל  $m_A=m_B=x^4$  כי יש להן צורת ז'ורדן שונה.

מעל שדה כללי, יתכן שלא תהיה צורת ז'ורדן. במקרה זה, במקום פירוק למרחבים עצמיים מוכללים, נקבל פירוק כללי היותר הנקרא פירוק פרימרי.

ויהי  $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ יהי פרימרי). (פירוק פרימרי) 3.3.4 משפט

$$m_T = \prod_{i \in [k]} p_i^{r_i}$$

לכל (כלומר, אחד מבין f,g של הפולינום המינימלי של הפריקים אי־פריקים אי־פריקים לגורמים של הפולינום המינימלי של אי־פריקים (כלומר, אם  $p_i=f\cdot g$  אי־יבין אי־פריקים על העקיים  $V_i\coloneqq\ker(p_i^{r_i}\left(T\right))$  יהי  $i\in[k]$ 

$$V = \bigoplus_{i \in [k]} V_i$$

Tנתונות על ידי בתונות על נתונות על נההטלות על נתונות ב-

הרבה תרגילים מעניינים על פירוק פרימרי מצריכים שימוש בפולינום מינימלי ביחס לוקטור, לכן נגדיר זאת לפני שנעבור לתרגיל.

v המינימלי של  $T\in \mathrm{End}_{\mathbb{F}}(V)$  היי היי  $T\in \mathrm{End}_{\mathbb{F}}(V)$ , יהי לוקטור. יהי מינימלי של 3.3.5 (פולינום מינימלי של T ביחס לוקטור המינימלית עבורו  $m_{T,v}\left(T\right)(v)=0$  היים המתוקן מהמעלה המינימלית עבורו

 $m_{T,v} \mid p$  אז  $p\left(T\right)\left(v\right) = 0$  אם  $m_{T,v} \mid p$  אז מוכדה 3.3.6. עובדה

 $m_{T,v}\mid m_{T}$  לכן , $m_{T}\left(T
ight)=0$  כי  $m_{T}\left(T
ight)\left(v
ight)=0$  מסקנה 3.3.7. תמיד מתקיים

 $m_T=\prod_{i\in[k]}g_i^{r_i}$  עם פולינום מינימלי היהי  $T\in\mathrm{End}_{\mathbb{F}}(V)$  יויהי " $\mathbb{F}$  מרחב וקטורי סוף־מימדי מעל שדה "F וייהי "F מרחב וקטורי סוף־מימדי מעל עבור "F אי־פריקים וזרים. יהי עבור F אי־פריקים וזרים. יהי עבור F אי־פריקים וזרים. יהי

$$V = \bigoplus_{i \in [k]} W_i = \bigoplus_{i \in [k]} \ker (g_i(T))^{r_i}$$

הפירוק הפרימרי של Vשמתאים ל-Tויהי של תת־מרחב הפירוק הפירוק הפרימרי שמתאים הראו שמתקיים

$$.W = \bigoplus_{i \in [k]} (W \cap W_i)$$

פתרון. מתקיים

$$m_T(T|_W) = m_T(T)|_W = 0$$

ולכן  $\left.m_{\left.T\right|_{W}}\mid m_{T}\right.$ נקבל כי

$$m_{T|_W} = \prod_{i \in [k]} g_i^{s_i}$$

עבור שלמים אי־פריקים של  $m_{T|_W}$  הפירוק לגורמים פירוק זהו זרים ולכן זהים  $g_i$  הפולינומים הפולינומים הפרימרי ומרל בי

$$.W = \bigoplus_{i \in [k]} \ker \left( p_i \left( \left. T \right|_W \right)^{s_i} \right)$$

. נדרש. את ונקבל את  $\ker\left(p_i\left(T|_W\right)^{s_i}\right)=W\cap W_i$  נראה כי

ומתקיים  $v \in W$  אז  $v \in \ker \left(g_i\left(T|_W\right)^{s_i}\right)$  יהי -

$$.g_{i}(T)^{r_{i}}(v) = g_{i}(T)^{r_{i}-s_{i}}\underbrace{g_{i}(T)^{s_{i}}(v)}_{=0} = 0$$

 $v \in W \cap W_i$  ולכן גם  $v \in \ker(g_i(T)^{r_i}) = W_i$  לכן גם

. לכן,  $m_{T|_{W},v}\mid g_{i}^{r_{i}}$  ומהנ"ל,  $m_{T|_{W},v}\mid m_{T|_{W}}$ , מתקיים תמיד  $g_{i}\left(T\right)^{r_{i}}\left(v\right)=0$  אז  $v\in W\cap W_{i}$  יהי  $v\in g_{i}\left(T|_{W}\right)^{s_{i}}$  כי זאת החזקה הכי גדולה של  $g_{i}\left(T|_{W}\right)^{s_{i}}\left(v\right)=0$  לכן,  $m_{T|_{W}}\mid g_{i}^{s_{i}}$ 

אם שונים. אם עבור  $[T]_B=\mathrm{diag}\left(J_{m_1}\left(\lambda_1\right),\ldots,J_{m_k}\left(\lambda_k\right)
ight)$  עבור ז'ורדן עבור  $T\in\mathrm{End}_{\mathbb{F}}\left(V\right)$  יהי יהינו  $W\leq V$ 

$$.W = \bigoplus_{i \in [k]} \left( W \cap V_{\lambda_i}' \right)$$

נכתוב בבסיס. אם לפי החלק לפי לפי לאופרטור וצורת וצורת חידו וצורת איז ערך עצמי  $T|_{V_{\lambda_+}'}$ לאופרטור לאופרטור אור אור יש

$$B = B_1 \cup \ldots \cup B_k$$

כאשר

$$B_{i} = (b_{i,1}, \dots, b_{i,r_{i}}) = ((T - \lambda_{i})^{r_{i}-1} (v_{i}), \dots, (T - \lambda_{i}) (v_{i}), v_{i})$$

 $\mathrm{Span}\left(b_{i,1},\dots,b_{i,m}
ight)$  הם אלו הם  $T|_{V'_{\lambda_i}}$  שם השמורים כי המרחבים בגיליון התרגילים) כי המראה בגיליון התרגילים אלו מהצורה  $M\in\{0,\dots,r_i\}$  עבור

כיוון ש־ $T|_{V_{\lambda_i}'}$  שמור, נקבל כי המרחבים השמורים הם הינו הינו  $\bigoplus_{i\in [k]} (W\cap W_i)$  שמור, נקבל כי המרחבים השמורים הם אלו מהצורה

Span 
$$(b_{1,1},\ldots,b_{1,m_1},b_{2,1},\ldots,b_{2,m_2},\ldots,b_{k,1},\ldots,b_{k,m_k})$$

 $m_i \in \{0, \dots, r_i\}$  עבור ערכים

# פרק 4

# תרגילי חזרה

 $T\left(p
ight)(x)=p\left(x+1
ight)$  ידי על ידי  $T\in\mathrm{End}_{\mathbb{C}}\left(V
ight)$  ויהי ויהי עודה  $V=\mathbb{C}_{n}\left[x
ight]$  יהי .4.1.

- .T של ז'ורדן של .1
- T עבור עבור בסיס מז'רדן עבור .n=3 נניח כי
- .Vשל שייון ה־Tהתרמרחבים את מיצאו מיצאו הי. n=3כי כי נניח נניח 3.
- פתרון. 1. כדי למצוא את צורת ז'ורדן נצטרך קודם כל למצוא ערכים עצמיים. נתחיל בחיפוש מטריצה מייצגת. יהי פתרון.  $[T\left(x^{i-1}\right)]_E$  היא  $[T]_E$  היא הבינום של  $[T\left(x^{i-1}\right)]_E$  הבסיס הסטנדרטי של  $[T\left(x^{i-1}\right)]_E$  היא ניוטוו מתקיים

$$.T(x^{i}) = (x+1)^{i} = \sum_{j=0}^{i} {i \choose j} x^{j}$$

זה וקטור מהצורה  $x^i+v$  הינה משולשת ליונה על המטריצה אכן. לכן, המטריצה עבור עבור עבור  $x^i+v$  עבור זה וקטור מהצמיים של מטריצה משולשת עליונה הם ערכי האלכסון, נקבל כי 1 ערך עצמי יחיד מריבוי אלגברי  $x^i+v$  אלגברי האלכסון.

כעת, המקדם  $(i)_E$  שונים מאפס בסכום הנ"ל ולכן כל האיברים מעל האלכסון במטריצה שונים מאפס. נקבל כי בעת, המקדם המדה שונים מאפס בסכום הנ"ל ולכן כל האיברים ולכן די הבלוקים בצורת ולכן ולכן ולכן באר הבלוקים בצורת ולכן ולכן ולכן ולכן אצלנו יש בלון יחיד ולרבוי הגיאומטרי של האילנו יש בלון יחיד ולרבוי הגיאומטרי של האילנו יש בלון יחיד ולכן אצלנו יש בלון יחיד ולרבוי הגיאומטרי של האילנו יש בלון יחיד ולכן אצלנו יש בלון יחיד וליבוי הגיאומטרי של האילנו יש בלון יחיד ולכן אצלנו יש בלון יחיד ולכן אצלנו ישר האילנו ישר ה

 $v\in V$  אופרטור הזזה, ונחפש וקטור אופרטור  $T-\mathrm{Id}_V$  לכן לכן עצמי 1. לכן ישי בלוק יש בלוק יש בלוק ישיד עם ערך עצמי 1. לכן  $T-\mathrm{Id}_V$  עצמי 1. כדי למצוא וקטור כזה, נשלים בסיס ג'ורדן  $\left(\left(T-\mathrm{Id}_V\right)^3\left(v\right),\left(T-\mathrm{Id}_V\right)^2\left(v\right),\left(T-\mathrm{Id}_V\right)\left(v\right),v\right)$  של לבסיס של  $\ker\left(T-\mathrm{Id}_V\right)^3$ 

$$[T - \mathrm{Id}_V]_E = \begin{pmatrix} 0 & \binom{1}{0} & \binom{2}{0} & \binom{3}{0} \\ 0 & 0 & \binom{2}{1} & \binom{3}{1} \\ 0 & 0 & 0 & \binom{3}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

ולכן

ולכן  $\mathrm{Span}\left(e_{1},e_{2},e_{3}\right)$  הוא  $\left[T-\mathrm{Id}_{V}\right]_{E}^{3}\vec{b}=0$  ההומוגנית המערכת המערכת פתרון המערכת החומוגנית החומוגנית המערכת החומוגנית המערכת החומוגנית המערכת החומוגנית המערכת החומוגנית החומוגנ

$$.\ker\left(T-\mathrm{Id}_{V}\right)=\rho_{B}^{-1}\left(\mathrm{Span}\,e_{1},e_{2},e_{3}\right)=\mathrm{Span}\left(1,x,x^{2}\right)$$

נשלים בסיס ונקבל הכסיס , $x^3$  הוספת על על על Vשל לבסיס העין אל גרעין של הרעין ונקבל (1,  $x^2$ 

$$.\left(\left(T-\mathrm{Id}_{V}\right)^{3}\left(x^{3}\right),\left(T-\mathrm{Id}_{V}\right)^{2}\left(x^{3}\right),\left(T-\mathrm{Id}_{V}\right)\left(x^{3}\right),x^{3}\right)$$

נחשב את כל הוקטורים בבסיס:

$$(T - id_V)(x^3) = (x+1)^3 - x^3 = 3x^2 + 3x + 1$$

$$(T - Id_V)^2(x^3) = (T - Id_V)(3x^2 + 3x + 1)$$

$$= 6x + 6$$

$$(T - Id_V)^3(x^3) = (T - Id_V)(6x + 6) = 6$$

 $\mathrm{Span}\,(b_1,\dots,b_i)$  המנורים הם הידשמורים המרחבים המתחבים בית שבמקרה בית בתרגיל בית האינו בתרגיל בית המנור . $[T]_B=J_4\,(1)$  ביור אשר  $i\in\{0,\dots,4\}$  עבור

הם בים השמורים הים אצלנו נקבל כי המרחבים הש

$$\{0\}$$

$$\mathrm{Span}(6) = \mathrm{Span}(1)$$

$$\mathrm{Span}(6, 6x + 6) = \mathrm{Span}(1, x)$$

$$\mathrm{Span}(6, 6x, 3x^2 + 3x + 1) = \mathrm{Span}(1, x, x^2)$$

$$. \mathrm{Span}(6, 6x, 3x^2 + 3x + 1, x^3) = V$$

תרגיל 4.2. 1. מיצאו את צורת ז'ורדן של האופרטור

$$T: \mathbb{C}_n[x] \mapsto \mathbb{C}_n[x]$$
  
.  $p(x) \mapsto p(x) + p''(x)$ 

יהי  $V=\mathbb{C}_5\left[x
ight]$  נסמן, n=5 כעת כי .2

$$S \colon V \to V$$
$$p(x) \mapsto p(x) + p''(x) + p'''(x)$$

. הוכיחו את תשובתכן אופרטור  $M^{-1}SM=T$  הפיך עבורו הפיך אופרטור  $M\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$  האם קיים אופרטור

אופרטור זה אופרטור ( $T-\mathrm{Id}_V$ ) (p) אונשים לב כי  $V=\mathbb{C}_n\left[x
ight]$  אופרטות. נילפוטנטי כי הנגזרת ה־n+1 מתאפסת. מתאפסת.

 $rac{\mathrm{d}}{\mathrm{d}x}x^n=n!
eq 0$  אבל,  $T-\mathrm{Id}_V$  בי הנגזרת ה־ $T-\mathrm{Id}_V$  כי הנגזרת אפסת, למשל ( $T-\mathrm{Id}_V$ ) אבל,  $T-\mathrm{Id}_V$  אבל,  $T-\mathrm{Id}_V$  בי הנגזרת ה־ $T-\mathrm{Id}_V$  לכן  $T-\mathrm{Id}_V$  נילפוטנטי מאינדקס  $T-\mathrm{Id}_V$ 

כיוון שאינדקס הנילפוטנטיות שווה לגודל הבלוק המקסימלי בצורת ז'ורדן, נקבל שיש בלוק מגודל  $\lceil\frac{n+1}{2}\rceil$  כעת, כיוון שאינדקס הנילפוטנטיות שווה לגודל הבלוק מספר הבלוקים בצורת ז'ורדן של  $\ker\left(T-\mathrm{Id}_V\right)=\mathrm{Span}\left(1,x\right)$  שווה  $\ker\left(T-\mathrm{Id}_V\right)$  במין ובסך הכל יש במקרה שלנו בדיוק שני בלוקים. לכן יש בלוק נוסף מגודל ו $r_g\left(\lambda\right)$ 

$$.egin{pmatrix} J_{\left\lceil rac{n+1}{2} 
ight
ceil} \ & J_{\left\lfloor rac{n+1}{2} 
ight
floor} \ \end{pmatrix}$$
 אורת ז'ורדן של  $T$  היא

מתקיים  $D\left(p
ight)=p'$  אם "חיד של ערך עצמי ולכן ולכן נילפוטנטי, אופרטור אופרטור אופרטור  $S-\mathrm{Id}_V$  מתקיים .2

$$(S - \mathrm{Id}_V)^2 = (D^2 + D^3)^2 = D^4 + 2D^5 + \mathcal{D}^{6^{-1}}$$

וזה שונה מאפס למשל כי

$$.\left(D^{4}+2D^{5}\right)\left(x^{5}\right)=5!\left(x+2\right)\neq0$$

אבל,

$$(S - Id_V)^3 = (D^2 + D^3)^3 = (D^4 + 2D^5)(D^2 + D^3) = D^6 + D^7 + 2(D^7 + D^8) = 0$$

כי  $D^6=0$  לכן  $S-\mathrm{Id}_V$  לכן המקסימלי הוא  $S-\mathrm{Id}_V$  נילפוטנטי מאינדקס  $S-\mathrm{Id}_V$  כי הבלוק כי  $\mathrm{color}(S-\mathrm{Id}_V)=\mathrm{Span}(1,x)$ , ונקבל כי צורת ז'ורדן הנילפוטנטיות. כמו מקודם, ל

$$.egin{pmatrix} J_{3}\left(1
ight) & & & \\ & J_{3}\left(1
ight) \end{pmatrix}$$
 של  $S$  היא

$$J = [T]_B = (M_E^B)^{-1} [T]_E M_E^B J = [S]_C = (M_E^C)^{-1} [S]_E M_E^C$$

ולכן מהשוואת האגפים הימנים מתקיים

$$[T]_E = (M_E^B) (M_E^C)^{-1} [S]_E M_E^C (M_E^B)^{-1}$$

ידוע כי  $\left(M_E^B
ight)^{-1}=M_B^E$  ולכן

$$\begin{split} .\left[T\right]_{E} &= \left(M_{B}^{E}\right)^{-1} \left(M_{E}^{C}\right)^{-1} \left[S\right]_{E} M_{E}^{C} M_{B}^{E} \\ &= \left(M_{E}^{C} M_{B}^{E}\right)^{-1} \left[S\right]_{E} \left(M_{E}^{C} M_{B}^{E}\right) \end{split}$$

נסמן P ביכה. אז הפיך הפיכה. אופרטור עבורו  $M\in \mathrm{End}\,(V)$  ויהי ויהי ויהי  $P=M_E^CM_B^E$  נסמן

$$\left[M^{-1}SM\right]_E = \left[M^{-1}\right]_E \left[S\right]_E \left[M\right]_E = P^{-1} \left[S\right]_E P = \left[T\right]_E$$

 $M^{-1}SM = T$  ולכז גם

תרגיל הפיכות, ומצאו את הפיכות, ומצאו את ההופכית והיים I-N,I+N כי הראו האינדקס  $N\in \mathrm{Mat}_n\left(\mathbb{C}\right)$  שתיהן הפיכות, ומצאו את ההופכית של כל אחת מהן.

Nב־מטריצות הינן פולינומים ב-רמז: המטריצות החופכיות הינן

מתקיים שתכול תחילה על |r|<1. כדי לנחש פולינום ב-N שיהיה המטריצה ההופכית, ניזכר שעבור I-N מתקיים . $(I-N)^{-1}=\sum_{i=0}^{k-1}N^i$  ננחש כי  $i\geq k$  לכל  $N^i=0$  ננחש כי נון שאצלנו (I-r) (זה טור גיאומטרי). כיוון שאצלנו  $N^i=0$  לכל אכז.

$$\begin{split} (I-N) \left( \sum_{i=0}^{k-1} N^i \right) &= \sum_{i=0}^{k-1} N^i - N \cdot \sum_{i=0}^{k-1} N^i \\ &= \sum_{i=0}^{k-1} N^i - \sum_{i=0}^{k-1} N^{i+1} \\ &= \sum_{i=0}^{k-1} N^i - \sum_{j=1}^k N^j \\ &= N^0 - N^k \\ &= N^0 \\ &= I \end{split}$$

כעת, N גם היא נילפוטנטית מאינדקס k. לכן נוכל להחליף את ב-N בביטוי של המטריצה ההופכית, כדי לקבל את החופכית, של I+N=I-(-N). נקבל כי

$$.(I+N)^{-1} = \sum_{i=0}^{k-1} (-1)^i N^i$$

מטריצה המטריצה לכל נסתכל לכל הערכים שלהן הערכים העצמים מטריצות מטריצות מטריצות אסריצות מטריצות מטריצות אסריצות מטריצות אסריצות אודי אסריצות אסריצות

$$f \colon [0,1] \to \mathbb{R}$$
  
.  $t \mapsto \det(X_t)$ 

יהיו עבורם  $a,b \in [0,1]$  יהיו

$$a < b$$

$$f(a) < 0$$

$$f(b) > 0$$

c>b לכל  $f\left( c\right) >0$  הראו כי

 $\det\left(A
ight)=\det\left(B
ight)>0$  מתקיים שלה, מתקיים העצמיים שווה למכפלת שווה מטריצה שווה למכפלת הערכים העצמיים  $\det\left(A
ight)=\det\left(B
ight)>0$  .  $f\left(0
ight)=f\left(1
ight)>0$ 

 וגם ,AB=BA=0 עבורן  $A,B\in\operatorname{Mat}_n\left(\mathbb{C}\right)$  וגם .4.5 תרגיל

$$\det (2A^{2} + B^{2}) = 2$$
$$\det (A^{2} - B^{2}) = 3$$
$$\det (2A^{3} - B^{3}) = 6$$

 $\det(A+B)$  חשבו את

 $(2A^2+B^2)=$  פתרון. ננסה להיעזר בתכונה  $(A+B)=\det(X)$  בתרון. ננסה להיעזר בתכונה  $(A+B)=\det(X)$  בתרון. מתקיים  $(A+B)\det(A+B)$  מתקיים  $\det(A+B)\det(A+B)=3$  וגם  $\det(A+B)\det(A+B)=3$  .  $\det(A+B)\det(A+B)=3$  .  $\det(A+B)\det(A+B)=\frac{2}{3}\det(2A+B)$  כלומר  $\det(A+B)=\frac{2}{3}\det(2A+B)=3$  .  $\det(A+B)=\frac{2}{3}\det(2A+B)$  כעת, (A+B)(A+B) (A+B) . נציב את הנ"ל ונקבל

$$6 = \det (2A^3 - B^3)$$

$$= \det (A + B) \det (A - B) \det (2A + B)$$

$$= \frac{2}{3} \det (A + B) \det (2A + B)^2$$

לכן

$$\det (A + B) \det (2A + B)^2 = \frac{3}{2} \cdot 6 = 9$$

אבל אז

$$9 = \det(A + B) \det(2A + B)^{2} = 3 \cdot \det(2A + B)$$

כי  $\det{(2A+B)}=3$  ומהצבת זאת בשוויון הקודם.  $\det{(A+B)}\det{(2A+B)}=3$  כי  $\det{(A+B)}\det{(2A+B)}=3$  נקבל בי  $\det{(A+B)}=\frac{3}{3}=1$ 

# חלק II

חלק שני - מרחבי מכפלה פנימית ואלגברה מולטי־לינארית

# פרק 5

# מרחבי מכפלה פנימית

### מוטיבציה 5.1

נסתכל תחילה על המרחב הוקטורי  $\mathbb{R}^n$ . כיוון שנוכל לחשוב על וקטורים ב $\mathbb{R}^n$  בתור נקודות במרחב, נוכל לחשוב על המרחק נסתכל תחילה על המרחב  $d\left(u,v\right)$  שנסמנו  $u,v\in\mathbb{R}^n$  בין שני וקטורים

כדי לחשב מרחק כזה, נסתכל על האורך של הקטע המחבר בין u,v, וזה אותו אורך כמו של הקטע המחבר בין u,v לכן, u,v לכן, נקרא למרחק למרחק (u,v) האורך של u,v האורך של u,v ביוון שזה האורך של הקו המחבר בין u,v, נקרא למרחק (u,v) של ערך מוחלט ב־v. נוכל להשתמש במשפט פיתגורס כדי לקבל כי u,v

$$\left\| \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \right\| = \sqrt{v_1^2 + \ldots + v_n^2}$$

$$\left\|egin{pmatrix} a \ b \end{pmatrix}
ight\| = \sqrt{a^2 + b^2} = |a+ib|$$
 ולמשל מתקיים

כשמדובר על גיאומטריה אוקלידית, מושג חשוב בנוסף למרחק ואורך הוא זה של זווית. נסתכל על שני וקטורים u,v באורך u,v שני וקטורים אווית מ־u לי $u,\ell_v$  שווה לאורך של הוקטור שהקצה שלו הוא v במקרה זה נקרא לו v לאנך מ־v לאנך מ־v לאנך מ"ע נסמן וקטור זה v נסמן וקטור זה v לי, v כיוון שהוא אכן כפולה של v מהיותו על v במקרה זה נקרא לו הטלה של v על v אז יתקיים

$$\cos\left(\alpha\right) = \langle v, u \rangle$$

ולכן

$$\alpha = \arccos(\langle v, u \rangle)$$

כדי להכליל את המושג של זווית, נכליל את הביטוי  $\langle v,u 
angle$  באמצעות ההגדרה הבאה, של מכפלה פנימית.

### 5.2 הגדרות

היא פונקציה V היא פנימית על מכפלה מכפלה  $\mathbb{F}\in\{\mathbb{R},\mathbb{C}\}$  מרחב וקטורי מעל היא פונקציה אורה V היא פונקציה.

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$$

המקיימת את התכונות הבאות.

 $\langle v,v
angle \geq 0$  מתקיים  $v\in V\setminus\{0\}$  מתקיים מיוביות:

 $\langle u,v 
angle = \overline{\langle v,u 
angle}$  מתקיים מאריות לכל לכל לכל הרמיטיות): לכל

מתקיים  $lpha \in \mathbb{F}$  ולכל ולכל לכל לכל הראשון: לכל מתקיים לינאריות ברכיב

$$.\left\langle \alpha u+v,w\right\rangle =\alpha\left\langle u,w\right\rangle +\left\langle v,w\right\rangle$$

מרחב מכפלה מכפלה מנימית ל $\langle \cdot, \cdot \rangle$ נקרא מכפלה מכפלה מכפלה מרחב מרחב מרחב מרחב עם יחד עם מכפלה מנימית

36

הערה בודגמא מהמרחב האוקלידי, ניתן לראות שנובע מהדרישה הגיאומטרית שלנו כי 5.2.2.

$$\langle u, v \rangle = \sum_{i \in [n]} u_i v_i$$

עבור אכן מקיים את מאורך לב כי הדבר כללי, ונשים לב כי הדבר אכן נוכל בעצם להגדיר את מאורך 1. נוכל בעצם להגדיר את עבור וקטור כללי, ונשים לב כי הדבר אכן מקיים את שלוש התכונות הדרושות, ולכן הינו מכפלה פנימית על  $\mathbb{R}^n$ .

 $u\cdot v \coloneqq \langle u,v
angle_{ ext{std}}$  אותה נסמן ולעתים על תרטית אסטנדרטית המכפלה המכפלה זאת נקראת מכפלה מכפלה מכפלה הפנימית המכפלה הפומית המכפלה הפנימית המכפלה המכפלה המכפלה הפנימית המכפלה המכפ

תרגיל 5.1. קיבעו אלו מההעתקות הבאות הן מכפלות פנימיות.

.1

$$f_1: \mathbb{R}^3 \times \mathbb{R}^3 \mathbb{R}$$

$$\left( \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) \mapsto ax + by + (cz)^2$$

.2

$$f_2 \colon \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$$

$$\begin{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \end{pmatrix} \mapsto ax + by + cz$$

.3

$$f_3 \colon \mathbb{C}^3 \times \mathbb{C}^3 \to \mathbb{C}$$

$$\left( \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) \mapsto ax + by + cz$$

.4

$$f_4 \colon \operatorname{Mat}_n(\mathbb{C}) \times \operatorname{Mat}_n(\mathbb{C}) \to \mathbb{C}$$
  
 $(A, B) \mapsto \operatorname{tr}(B^t A)$ 

פתרון. אף אחת מההעתקות אינה מכפלה פנימית.

כי הראשון, כי אינה לינארית ברכיב אינה  $f_1$  ההעתקה .1

$$f_1\left(\begin{pmatrix}0\\0\\1\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = 1$$

ואילו

$$.f_1\left(\begin{pmatrix}0\\0\\2\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = 2^2 = 4 \neq 2 = 2f_1\left(\begin{pmatrix}0\\0\\1\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right)$$

ים, חיובית, אינה אינה  $f_2$  ההעתקה.

$$.f_2\left(\begin{pmatrix}0\\0\\0\\1\end{pmatrix},\begin{pmatrix}0\\0\\0\\1\end{pmatrix}\right) = 0 \le 0$$

ים, הרמיטית, אינה הרמיטית, כי  $f_3$  ההעתקה.

$$f_3\left(\begin{pmatrix}0\\0\\1\end{pmatrix},\begin{pmatrix}0\\0\\i\end{pmatrix}\right) = i$$

ואילו

$$.f_3\left(\begin{pmatrix}0\\0\\i\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = i \neq -i = \overline{i} = f_3\left(\begin{pmatrix}0\\0\\1\end{pmatrix},\begin{pmatrix}0\\0\\i\end{pmatrix}\right)$$

ואילו  $f_4\left(I_n,iI_n
ight)=\mathrm{tr}\left(iI_n
ight)=in$  כי ההעתקה אינה הרמיטית, אינה הרמיטית, אינה הרמיטית

$$f_4(iI_n, I_n) = \operatorname{tr}(iI_n) = in \neq \overline{in} = \overline{f_4(I_n, iI_n)}$$

#### תכונות של מכפלות פנימיות. ונורמות 5.3

במרחב האוקלידי, כאשר v על על v על ההטלה לאורך שווה לאורך שהערך אמרנו שהערך  $\|u\|=\|v\|=1$  אמרנו  $\|u\|=\|v\|=1$ ההטלה ההטלה עב עם אם אם ורק שווה 1 אם היותר לכל היותר להיות לכל אורך אם עב עם הפנימית המטרית). בפרט, אורך זה יכול להיות לכל היותר 1, והינו שווה 1 אם ורק אם עב יכול להיות ההטלה

ניעזר מתקיים כלליים  $u,v\in\mathbb{R}\setminus\{0\}$  כי לוקטורים ונקבל המכפלה המכפלה בליים מתקיים ניעזר בלינאריות של

$$\begin{aligned} |\langle u, v \rangle| &= \left\langle \|u\| \, \frac{u}{\|u\|}, \|v\| \, \frac{v}{\|v\|} \right\rangle \\ &= \|u\| \, \|v\| \, \left| \left\langle \frac{u}{\|u\|}, \frac{v}{\|v\|} \right\rangle \right| \\ &\leq \|u\| \, \|v\| \end{aligned}$$

כאשר 1 כאשר  $\left|\left\langle \frac{u}{\|u\|}, \frac{v}{\|v\|} \right\rangle \right|$  כי הוקטורים כלי, פי שקובע אי־שוויון קושי־שוורץ, אך לשם כך עלינו להגדיר מושג של אי־שוויון כזה מתקבל גם במרחב מכפלה פנימית כללי, כפי שקובע אי־שוויון קושי־שוורץ, אך לשם כך עלינו להגדיר מושג של

המקיימת  $\|\cdot\|:V o\mathbb{R}$  היא פונקציה על נורמה.  $\mathbb{F}\in\{\mathbb{R},\mathbb{C}\}$  המקיימת מעל מכפלה מכפלה מרחב מכפלה מיהי היהי V היא פונקציה אזרה הגדרה 5.3.1 המקיימת את התכונות הבאות.

 $.\|v\|>0$  מתקיים  $v\in V\setminus\{0\}$  לכל חיוביות:

 $\|\alpha v\| = |\alpha| \, \|v\|$  מתקיים  $\alpha \in \mathbb{F}$  ולכל  $v \in V$  הומוגניות:

 $\|u+v\| \leq \|u\| + \|v\|$  מתקיים  $u,v \in V$  לכל אי־שוויון המשולש:

מרחב וקטורי עם נורמה נקרא מרחב נורמי.

משפט 5.3.2 (נורמה המושרית ממכפלה פנימית). יהי על מרחב מכפלה היא היא  $\|v\|=\sqrt{\langle v,v
angle}$  היא משפט 5.3.2 משפט  $\langle \cdot, \cdot 
angle$  הנורמה המושרית מהמכפלה הפנימית.V

מתקיים  $u,v\in V$  אז לכל מנימית. אז מרחב מכפלה יהי v יהי קושי־שוורץ). אז לכל משפט 5.3.3 משפט

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

ושוויון מתקיים אם ורק אם u,v תלויים לינארית.

תרגיל  $u_1,\ldots,u_n,v_1,\ldots,v_n\in V$  ויהיו פנימית, הראו מכפלה מכפלה מרחב v יהי

$$\sum_{i=1}^{n} \langle u_i, v_i \rangle \le \sqrt{\sum_{i=1}^{n} \|u_i\|^2} \cdot \sqrt{\sum_{i=1}^{n} \|v_i\|^2}$$

 $\mathbf{e}$ תרון. נרצה לפרש את אגף שמאל בתור מכפלה פנימית. כיוון שהוא מזכיר את המכפלה הפנימית על  $\mathbb{R}^n$ , רק עם וקטורים מ־V במקום מספרים ב־ $\mathbb{R}$ , נרצה להגדיר מכפלה זאת על המרחב

$$.V^n \coloneqq \{(v_1, \dots, v_n) \mid v_i \in V\}$$

זה אכן מרחב וקטורי עם חיבור וכפל בסקלר לפי כל קואורדינטה בנפרד, ונגדיר עליו מכפלה פנימית לפי

$$.ra{\langle (u_1,\dots,u_n)\,,(v_1,\dots,v_n)
angle}\coloneqq\sum_{i=1}^nra{\langle u_i,v_i
angle}$$
אם  $v_j
eq 0$  יש  $v_j:=(v_1,\dots,v_n)
eq (0,\dots,0)$  אם  $,\langle v,v
angle\geq\langle v_j,v_j
angle>0$ 

לכון מתקיימת חיוביות. סימטריה ולינאריות ברכיב הראשון מתקיימות בכל רכיב בנפרד, ולכן גם בסך הכל. כעת, אי־שוויון קושי־שוורץ על  $V^n$  אומר לנו כי

$$\begin{split} \sum_{i=1}^{n} \left\langle u_i, v_i \right\rangle &\leq \left| \sum_{i=1}^{n} \left\langle u_i, v_i \right\rangle \right| \\ &= \left| \left\langle u, v \right\rangle \right| \\ &\leq \left\| u \right\| \left\| v \right\| \\ &= \sqrt{\left\langle u, u \right\rangle} \cdot \sqrt{v, v} \\ &= \sqrt{\sum_{i=1}^{n} \left\langle u_i, u_i \right\rangle} \cdot \sqrt{\sum_{i=1}^{n} \left\langle v_i, v_i \right\rangle} \\ &= \sqrt{\sum_{i=1}^{n} \left\| u_i \right\|^2} \cdot \sqrt{\sum_{i=1}^{n} \left\| v_i \right\|^2} \end{split}$$

כנדרש.

ראינו שממכפלה פנימית ניתן לקבל נורמה המושרית ממנה. שאלה הגיונית לשאול היא האם כל נורמה מגיעה ממכפלה פנימית באופן זה. הטענה הבאה מתארת איך למצוא מכפלה פנימית כזאת, אם היא קיימת.

 $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$  מענה 2.3.4 פנימית מעל שדה V יהי יהי הפולריזציה). זהות הפולריזציה).

מתקיים  $u,v\in V$  לכל,  $\mathbb{F}=\mathbb{R}$  מתקיים.

$$.\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2)$$

מתקיים  $u,v\in V$  לכל " $\mathbb{F}=\mathbb{C}$  אם 2.

$$.\langle u, v \rangle = \frac{1}{4} \left( \|u + v\|^2 - \|u - v\|^2 + i \|u + iv\|^2 - i \|u - iv\|^2 \right)$$

. תרגיל המושרית ממכפלה אינה אינה האו כי נורמה וו $\|v\|_{\infty}=\max_{i\in[n]}|v_i|$  עם הנורמה עם  $V=\mathbb{R}^n$  יהי יהי. 5.3 ערגיל

בתרון. אם הנורמה מושרית ממכפלה פנימית,  $\langle\cdot,\cdot\rangle$ , מתקיים מזהות הפולריזציה כי

$$.\langle u, v \rangle = \frac{1}{4} \left( \left( \max_{i \in [n]} \left( u_i + v_i \right) \right)^2 + \left( \max_{i \in [n]} \left( u_i - v_i \right) \right)^2 \right)$$

אבל זאת לא מכפלה פנימית, למשל כי אינה לינארית. מתקיים

$$\left\langle \begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}, 0 \right\rangle = \frac{1}{4} \left( 1^2 + 1^2 \right) = \frac{1}{2}$$

ואילו

$$\left\langle \begin{pmatrix} 2 \\ \vdots \\ 2 \end{pmatrix}, 0 \right\rangle = \frac{1}{4} \left( 2^2 + 2^2 \right) = 2 \neq 2 \cdot \frac{1}{2}$$

יש לנו דךר נוספת לבדוק האם נורמה מושרית ממכפלה פנימית.

משפט 5.3.5 (זהות המקבילית). יהי  $(V,\|\cdot\|)$  מרחב נורמי. הנורמה  $\|\cdot\|$  מושרית ממכפלה פנימית אם ורק אם לכל  $(V,\|\cdot\|)$  מתקיים

$$.2 \|u\|^2 + 2 \|v\|^2 = \|u + v\|^2 + \|u - v\|^2$$

תרגיל 5.4. הראו שהנורמה

$$||p|| = p(0) + p(1) + p(2)$$

. אינה מושרית ממכפלה פנימית  $\mathbb{R}_2\left[x
ight]$ 

פתרון.  $q\left(x\right)=x^{2}$ ו  $p\left(x\right)=x$  בתרון. נסתכל על הפולינומים המקבילית. זהות המקבילית. נחתה שלא מתקיימת המקבילית.

$$||p||^2 = 3^2 = 9$$
  
 $||q||^2 = (1+4)^2 = 15$   
 $||p+q||^2 = (3+5)^2 = 64$ 

ולכן לא יתכן

$$2 \|p\|^2 + 2 \|q\|^2 = 48 = 64 + \|p - q\|^2 = \|p + q\|^2 + \|p - q\|^2$$

### 5.4 מטריקות וניצבות

ראינו שבמרחבי מכפלה פנימית יש מושג של אורך—נורמה. על מרחב נורמי יש גם מושג של מרחק.

הבאות. את התכונות את המקיימת  $d\colon X imes X o \mathbb{R}_{\geq 0}$  היא פונקציה על מטריקה. תהי קבוצה. מטריקה על 5.4.1 הגדרה 5.4.1 מטריקה.

x=y אם ורק אם  $d\left( x,y
ight) =0$  וגם וגם ורק אם חיוביות:

 $d\left( x,y\right) =d\left( y,x
ight)$  סימטריה:

 $d\left(x,z
ight) \leq d\left(x,y
ight) + d\left(y,z
ight)$  אי־שוויון המשולש:

קבוצה עם מטריקה נקראת מרחב מטרי.

 $d\left(x,y
ight)=\|x-y\|$  האושרית על V מטריקה המושרית נורמי. ההיה ( $V,\|\cdot\|$ ) מרחב ייהי ( $V,\|\cdot\|$ ) מרחב מעט מסובך וותר לחשב את המרחב כעת, את המרחק בין שני שני וקטורים קל בדרך כלל לחשב כאשר יש לנו נורמה נתונה. מעט מסובך יותר לחשב את המרחב מוקטור לקבוצה.

הגדרה מרחק של x מה מרחק מקבוצה).  $x \in X$  ותהי  $x \in X$  מרחב מטרי, יהי  $x \in X$  מרחב מרחק מקבוצה). הגדרה (גדיר את מרחק מקבוצה). יהי

$$d(x,S) := \inf \left\{ d(x,s) \mid s \in S \right\}$$

כדי לעשות דבר דומה במרחבי מכפלה פנימית כלליים, נצטרך לדבר קודם כל על ניצבות.

הגדרה u,v בין את הזווית במרחב u,v בין מרחב מכפלה פנימית ויהיו את הזווית במרחב מכפלה פנימית). יהי מרחב מכפלה מרחב מכפלה מרחב מכפלה פנימית ויהיו הגדרה 5.4.4 (זווית במרחב מכפלה פנימית).

$$\angle(u, v) = \arccos\left(\frac{\Re(\langle u, v \rangle)}{\|u\| \|v\|}\right)$$

במקרה בניבים אם  $u,v\in V$  נקראים  $u,v\in V$  מרחב מכפלה פנימית. יהי א מרחב מרחב עיבים אם 5.4.5 (וקטורים ניצבים). יהי וקטורים מכפלה פנימית. וקטורים עובים אם  $u,v\in V$  מרחב מכפלה פנימית. וקטורים במקרא

 $rac{\pi}{2}$  מעל  $\mathbb{R}$ , וקטורים ניצבים בדיוק כאשר הזווית בינם היא 5.4.6.

. שונים.  $s_1,s_2\in S$  לכל  $s_1\perp s_2$  אורתוגונלית פנימית נקראת מכפלה במרחב במרחב  $S\subseteq V$  קבוצה 5.4.7.

משפט 5.4.8 פימית מכפלה פנימית אורתוגונליים של וקטורים של סדרה ( $v_1,\ldots,v_n$ ) תהי תהי (סדרה של פנימית אורתוגונליים משפט 5.4.8 היים משפט אורתוגונליים מכפלה פנימית אורתוגונליים מכפלה פנימים מכפלה פנימית אורתוגונליים מכפלה פנימית מכפלה פנימית אורתוגונליים מכפלה פנימית אורתוגונלים מכפלה פנימית אורתוגונלים מכפלה פומית מכפלה פומית מכפלה פומית מכפלה פנימית מכפל

$$\|v_1 + \ldots + v_n\|^2 = \|v_1\|^2 + \ldots + \|v_n\|^2$$

. יהי V מרחב מכפלה פנימית. 5.5

$$v=0$$
 אז  $w\in V$  לכל לכל  $\langle v,w
angle =0$  אז .1

$$v=u$$
 אז  $w\in V$  לכל לכל  $\langle v,w
angle =\langle u,w
angle$  .2

$$T=S$$
 אז  $u,v\in V$  לכל לרע לכל לרע,  $T$  ו־  $T,S\in \mathrm{End}_{\mathbb{F}}(V)$  אז 3.

ניקח w=v ונקבל .1

$$.\langle v, v \rangle = 0$$

v=0 ולכן

2. נעביר אגף ונקבל

$$\langle v - u, w \rangle = 0$$

.v=u ולכן ולכן v-u=0 הקודם המסעיף אז מהסעיף . $w\in V$ 

3. נעביר אגף ונקבל

$$.\langle (T-S)(u), v\rangle = 0$$

$$T\left(u
ight)=S\left(u
ight)$$
, ולכן אז עבור כל  $u\in V$  מתקיים  $u\in V$  מתקיים . $u,v\in V$ 

תרגיל 5.6. יהי  $u \perp v$  מרחב מכפלה פנימית ויהיו  $u \perp v$  הראו כי  $u \perp v$  הראו הראו מרחב

$$||u|| \le ||u + av||$$

 $a \in \mathbb{F}$  לכל

פתרון. אם  $u \perp v$  ו־ $a \in \mathbb{F}$ , נקבל מפיתגורס

$$||u + av||^2 = ||u||^2 + |a|^2 ||v||^2 \ge ||u||^2$$

 $.\|u\| \leq \|u+av\| \ \text{ ולכן}$  נלכן  $\|v\| = 1$ ים כי  $\langle u,v \rangle \neq 0$ וננים נניח כי  $\langle u,v \rangle \neq 0$ וננים נניח כי

$$\langle\langle u, v \rangle v, v \rangle = \langle u, v \rangle \langle v, v \rangle = \langle u, v \rangle ||v||^2 = \langle u, v \rangle \neq 0$$

וגם

$$\langle u - \langle u, v \rangle v, v \rangle = \langle u, v \rangle - \langle \langle u, v \rangle v, v \rangle = 0$$

אז, ממשפט פיתגורס

$$\|u\|^{2} = \|u - \langle u, v \rangle v + \langle u, v \rangle v\|^{2}$$

$$= \|u - \langle u, v \rangle v\|^{2} + \|\langle u, v \rangle v\|^{2}$$

$$> \|u - \langle u, v \rangle v\|^{2}$$

 $\|u\| \leq \|u+av\|$  באשר האי־שוויון חזק כי  $a=\langle u,v \rangle$  מההנחה  $\langle u,v \rangle \neq 0$  מההנחה  $\langle u,v \rangle \neq 0$  כאשר האי־שוויון חזק כי כעת, אם v כללי, הוקטור  $u=rac{a'}{\|v\|}$  הינו מאורך u ולכן יש  $a'\in\mathbb{F}$  עבורו u'=a' אז ניקח v=a' הינו מאורך מער, אם v=a'

כעת, כאשר של שני וקטור ע בתור המרחק  $v \in V$  מתת־מרחב  $v \in V$  מתת־מרחק של שני וקטורים, כאשר  $v \in V$ אחד מהם מW והשני ניצב לW. נראה בהמשך שנוכל לכתוב את v ככה, ושהמרחק יצא, כמו במקרה האוקלידי, האורך של .Wהחלק הניצב ל-

הוא  $S\subseteq V$  הוא מרחב הניצב ל-S מרחב הניצב ל-S הוא מרחב הניצב ל-S הוא הגדרה 5.4.9 מרחב הניצב ל-

$$.S^{\perp} = \{ v \in V \mid \forall s \in S \colon v \perp s \}$$

עבור  $W^{\perp}$  את מצאו 5.7 תרגיל

$$W := \text{Span}(e_1 + e_2) < \mathbb{R}^2$$

לכן  $v_1=-v_2$  אם ורק אם  $v_1+v_2=0$  אם ורק אם ורק אם  $v_1+e_1+e_2$  אם ורק אם אם  $v\in W^\perp$  פתרון.

$$.W^{\perp} = \operatorname{Span}(e_1 - e_2)$$