October 7, 2024

exoplanet exploration

galaxies paper - update figure 9

Differentiate HZ and non-HZ exoplanets using color codes

Single Host Star Mass vs. Host Habitable Zone Inner & Outer Boundaries and Exoplanet Semi-Major Axes per Confirmed NASA

Exoplanet Archive (03-10-2024)

galaxies paper - HZ limits used in figure 9

• the inner and outer boundaries of HZ in figure 9 are computed based on the equation (1) in the galaxies paper.

$$HZ_{inner} = \frac{R_{\odot} \times T_{\odot}^2 \times k^2 \times (1 - A)^{0.5}}{2 \times T_{surf,high}^2} \qquad T_{surf,high} = 100 + 273.5$$

$$HZ_{outer} = rac{R_{\odot} \times T_{\odot}^2 \times k^2 \times (1-A)^{0.5}}{2 \times T_{surf,low}^2}$$
 $T_{surf,low} = 0 + 273.5$

galaxies paper - try with ML

- join NASA 03-10-2024 data with <u>HWC data</u> from PHL.
- <u>HWC data</u> has a "P_HABITABLE" data field that can be used as label
- training data preprocessing:
 - remove data fields that are not relevant to training
 - drop data fields with too much missing values
 - for categorical data fields:
 - filling missing values with mode
 - encode with <u>LabelEncoder</u>
 - o for numeric data fields:
 - filling missing values with <u>MICE imputation</u>
 - use <u>SMOTEENN</u> to oversample and downsample to overcome sample imbalances
 hz_label=0, count=4520 (98.798%)
 hz_label=1, count=55 (1.202%)

galaxies paper - feature correlation analysis

correlation analysis. remove highly correlated features:

- pl_orbeccen
- pl insol
- sy_gaiamag

end up with 18 features in the training data

galaxies paper - training data features

Data #	columns (tota Column		columns): Null Count	Dtype
0	sy_pnum	8924	non-null	int64
1	pl_orbper	8924	non-null	float64
2	pl_orbsmax	8924	non-null	float64
3	pl_rade	8924	non-null	float64
4	pl_bmasse	8924	non-null	float64
5	pl_bmassprov	8924	non-null	int64
6	pl_eqt		non-null	float64
7	st_teff	8924	non-null	float64
8	st_rad	8924	non-null	float64
9	st_mass	8924	non-null	float64
10	st_met	8924	non-null	float64
11	st_metratio	8924	non-null	int64
12	st_logg	8924	non-null	float64
13	ra	8924	non-null	float64
14	dec	8924	non-null	float64
15	sy_dist	8924	non-null	float64
16	sy_vmag	8924	non-null	float64
17	sy_kmag		non-null	
18	hz_label			
dtype	es: float64(15			

galaxies paper - KNN classifier

1	orecision	recall	f1-score
0	0.74	0.99	0.84
1	0.98	0.64	0.77
accuracy			0.81

