Ingeniería de Software

Silvia Guardati

Objetivo de la Ingeniería de Software

Construir productos de software de calidad

- ¿Qué es calidad?
- ¿Cómo conseguirla?

Características deseables del SW

- Correcto
- Confiable
- Robusto
- Desempeño
- Amigable (usability)
- Verificable

Características deseables del SW (cont.)

- •Mantenible \rightarrow evolución
 - Reparable
 - Evolucionable
- Reusable
- Portable
- Comprensible
- Interoperable
- Escalable

Características deseables del Proceso de SW

•Productividad: eficiencia + desempeño.

 Puntualidad: entregar productos en el tiempo estimado.

•Visibilidad: todas las etapas, actividades, productos, roles, etc. están documentados.

Lectura

Fundamentals of Software Engineering. Ghezzi, Carlo et al. 2nd. Edition, 2003, Pearson. Cap. 2, Sección 2.2 (hasta pág. 33)

http://thetesteye.com/posters/TheTestEye SoftwareQualit
yCharacteristics.pdf

Otras lecturas

http://spectrum.ieee.org/cars-that-think/transportation/self-driving/fatal-tesla-autopilot-crash-reminds-us-that-robots-arent-perfect

http://spectrum.ieee.org/geek-life/history/when-technology-hates-us

http://spectrum.ieee.org/view-from-the-valley/computing/software/software-engineers-are-the-heroes-of-new-computer-history-museum-exhibit

Conceptos (1)

•Proceso: secuencia de pasos ejecutados con un propósito determinado (IEEE).

•Proceso de software: conjunto de actividades, métodos, prácticas y transformaciones que se utiliza para desarrollar y mantener software y los productos asociados (CMM/SEI).

Conceptos (2)

- Proceso de desarrollo de software

 ciclo de vida del software.
- Ciclo de vida del software : idea, desarrollo, liberación, operación y mantenimiento.

(Fuente: Software Engineering, S. Pfleeger)

Conceptos (3)

Proceso concepto más reciente que Ciclo de Vida.

- Primeros modelos ofrecen poco nivel de detalle y surgen originalmente como modelos de Ciclo de Vida.
- Representación formal de los procesos (objetivos, actividades, entradas/salidas, productos, etc).
- Procesos pueden dividirse en subprocesos.

¿Metodologías = Procesos?

Metodologías

- Existen diversas metodologías para el desarrollo de sw.
- Es importante conocer las principales características de cada una para elegir la más conveniente, de acuerdo a cada caso (proyecto, equipo, contexto, etc.)

Modelo Desarrolla y Modifica

Modelo en Cascada

Modelo en Cascada

- Derivado de otros procesos de ingeniería en los 70's.
- Es el proceso de desarrollo más estructurado.
- La interacción se da hacia la fase subsecuente.
- El modelo original es estrictamente secuencial (2 fases no pueden coincidir en el tiempo).
- No establece retroalimentación entre fases, ni redefinición de fases anteriores.

¿Qué ventajas tiene el Modelo en Cascada? ¿Qué desventajas tiene el Modelo en Cascada? ¿Qué le modificarían al Modelo en Cascada?

Modelo en Cascada Modificado

Modelo en Cascada con Prototipos

Modelo V

- Modelo en Cascada + Verificación & Validación
- Lado izquierdo: desarrollo
- Lado derecho: verificación y validación
- Vínculo entre los lados: planes de pruebas
- P. Unitarias -> integración
- P. Integración y sistema → liberación
- P. Aceptación > operación

Modelo V

Modelo de Prototipos

 Se recolectan los requisitos del cliente: se identifican los objetivos globales, principales requisitos y áreas de posibles riesgos.

Se desarrolla y revisa el prototipo.

• El cliente prueba el prototipo y lo utiliza para refinar los requisitos del sistema.

Modelo de Prototipos

Se recomienda usar:

- El cliente tiene dificultades para identificar los requisitos completos.
- El responsable del desarrollo necesita probar uno o más elementos (algoritmo, tecnología, interface hombremáquina, etc.)

Modelo de Prototipos - Desventajas

• Relación con el cliente: el producto final NO es el prototipo.

 Generalmente se debe volver a escribir gran parte del código para hacerlo funcional.

• Puede suceder que el prototipo sea lento, que haya sido desarrollado en un lenguaje que no sea el definitivo, etc.

Modelo Espiral

- Este modelo considera explícitamente el riesgo → administración del proyecto.
- Combina los elementos controlados y sistemáticos del modelo en cascada con la filosofía interactiva de construcción de prototipos.
- Proporciona el potencial para el desarrollo rápido de versiones incrementales del software: se desarrolla en distintas versiones incrementales.
- En las primeras iteraciones se pueden generar versiones en papel o un prototipo.
- En las últimas iteraciones se producen versiones cada vez más completas del sistema.

Modelo Espiral

- El primer circuito de la espiral produce una especificación de productos.
- Posteriormente se puede desarrollar un prototipo y progresivamente versiones más sofisticadas del software.
- Cada paso por la región de planificación produce ajustes al plan del proyecto.
- El costo y la planificación se ajustan según la reacción ante la evaluación del cliente.

Modelo Espiral

Ventajas: el análisis del riesgo se hace de forma explícita y clara, lo cual implica:

- Reducción de los riesgos del proyecto.
- Incorporación de objetivos de calidad.
- · Integración del desarrollo con el mantenimiento, etc.

Desventajas:

- Puede resultar difícil convencer a algunos clientes que el proceso es controlable.
- Consume mucho tiempo el desarrollo del sistema.

Modelo Iterativo-Incremental RAD (Rapid Application Development)

- Desarrollar software de forma gradual.
- El grupo de trabajo aprovecha lo aprendido en el ciclo anterior.
- Si es posible, lo implementado se usa.
- Es clave comenzar con una implementación simple de los requisitos del sistema, e iterativamente, evolucionar las versiones hasta que el sistema completo esté implementado.
- En cada iteración se realizan cambios en el diseño y se agregan nuevas funcionalidades al sistema.

Etapa de Inicialización (1)

Se crea la primera versión del sistema.

• El objetivo es crear un producto con el que el cliente pueda interactuar y, en consecuencia, retroalimentar el proceso.

Se muestran los aspectos claves del problema.

• Se debe proveer una solución simple para ser comprendida e implementada fácilmente.

Etapa de Inicialización (2)

•Se elabora una lista de control del proyecto para controlar las iteraciones: tareas a realizar, nuevas funcionalidades y áreas de rediseño de la solución ya existente.

•La lista de control se revisa periódicamente como resultado de la fase de análisis de las sucesivas iteraciones.

Etapa de Iteración (1)

• Incluye el rediseño, implementación, prueba e integración de una tarea de la lista de control (incremento).

 Se busca que el diseño y la implementación sea simple, directa y modular.

Se analiza el resultado de cada iteración.

Etapa de Iteración (2)

 Se utiliza la retroalimentación del cliente y las funcionalidades disponibles del software.

• Se valida la estructura, modularidad, usabilidad, confiabilidad, eficiencia y eficacia del incremento/sistema.

 La lista de control del proyecto se modifica como consecuencia del análisis.

Modelo Iterativo - Incremental

Modelo Iterativo – Incremental

Ventajas:

- Los clientes pueden usar el sistema desde el primer incremento.
- Retroalimentación: las dudas se resuelven a medida que se hacen las entregas del sistema.
- Se disminuye el riesgo de fracaso de todo el proyecto, ya que se puede distribuir en cada incremento.
- Las partes más importantes (MUST) del sistema son entregadas primero, por lo cual se realizan más pruebas en estos módulos y se disminuye el riesgo de fallas.

Modelo Iterativo – Incremental

Desventajas:

- No siempre resulta fácil establecer la correspondencia entre requisitos e incrementos.
- Se dificulta identificar las unidades o servicios genéricos para todo el sistema.
- Se dificulta el desarrollo de componentes reusables.

Modelos Ágiles

- EXtreme Programming (XP)
- •Scrum
- Agile Unified Process (AUP)

• • • •

Preguntas

1. ¿Por qué es necesario adoptar y seguir una metodología de desarrollo?

2. De todas las metodologías vistas, ¿con cuál se identificaron? ¿Por qué?