Tema 3. ESPACIOS VECTORIALES

Ejercicio 1. En \mathbb{R}^2 se definen las siguientes operaciones:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
 $y \alpha \star (x, y) = (\alpha x, y)$

Determina si es o no un espacio vectorial.

Ejercicio 2. Determina cúales de los siguientes subconjuntos, de \mathbb{R}^3 o $\mathcal{P}_3(\mathbb{R})$, son subespacios vectoriales.

- $\begin{array}{ll} (a) \ S = \{(x,y,z): y=0\} & (e) \ S = \{(x,y,z): x+z \leq 0\} \\ (b) \ S = \{(x,y,z): x+y+z=0\} & (f) \ S = \{(x,y,z): xy=0\} \end{array}$
- (c) $S = \{(x, y, z) : x + z = 1\}$ (g) $S = \{p(x) = x^3 + ax + b : a, b \in \mathbb{R}\}$ (h) $S = \{p(x) = ax^3 + b : a, b \in \mathbb{R}\}$

Ejercicio 3. Estudia la dependencia o independencia lineal de los siguientes conjuntos de vectores en \mathbb{R}^3 .

- (a) $\{(0,1,0),(1,1,-1),(-1,0,1)\}\$ (c) $\{(1,0,0),(a,1,0),(a,a,0)\}\$
- (b) $\{(0,0,1),(1,1,0),(1,0,0)\}\$ (d) $\{(1,0,a),(a,1,0),(a,0,1)\}\$

Ejercicio 4. Estudia la dependencia o independencia lineal de los siguientes conjuntos de vectores en $\mathcal{P}_2(\mathbb{R})$.

- (a) $\{1, 1+x, 1+x+x^2\}$ (c) $\{1-x^2, 1+x, x^2-x, x+x^2\}$ (b) $\{x, x^2, x+x^2\}$ (d) $\{1+x^2, 2+x^2\}$

Ejercicio 5. Sean $f, g, h: \{a, b, c\} \longrightarrow \mathbb{R}$ definidas como: f(a) = 0, f(b) = f(c) = 01; q(a) = q(c) = 1, q(b) = 0; h(a) = h(b) = 1, h(c) = 0. Estudia la dependencia o independencia lineal del conjunto $\{f, g, h\}$.

Ejercicio 6. Determina si los siguientes conjuntos de vectores son linealmente dependientes o independientes. En el primer caso, encuentra una combinación lineal entre ellos y un subconjunto con un número máximo de vectores linealmente independientes.

- $(a) \{(3,5,1),(2,1,3)\}$ $(c) \{(1,0,1,0),(2,1,3,1),(0,1,1,1),(2,2,4,2)\}$
- (b) $\{(1,2,3),(1,3,2),(0,-1,1)\}$ (d) $\{1+3x+4x^2,4+x^2,3+x+2x^2\}\subset\mathcal{P}_2(\mathbb{R})$

Ejercicio 7. Hallar los valores de a para que el conjunto $B = \{(a, 1, 0), (1, a, 1), (0, 1, a)\}$ sea base de \mathbb{R}^3 . Para a=2 calcula las coordenadas del vector v=(-1,1,3) respecto de dicha base.

Ejercicio 8. En $\mathcal{P}_3(\mathbb{R})$ se considera la base $B = \{1, 1-x, (1-x)^2, (1-x)^3\}$. Halla las coordenadas del polinomio $p = 2 - 3x + x^2 + 2x^3$ respecto de dicha base.

Ejercicio 9. En $\mathcal{P}_2(\mathbb{R})$ se considera el conjunto $B = \{1, x+3, (x+3)^2\}$. Prueba que es una base, y halla las coordenadas del polinomio $p = a + bx + cx^2$ respecto de dicha base.

Ejercicio 10. Averigua si los vectores u = (1, -1, 0) y w = (2, -3, 1) pertenecen al espacio vectorial generado por el conjunto de vectores $\{v_1 = (2, 5, 1), v_2 = (3, 4, 1), v_3 = (5, 9, 2)\}.$

Ejercicio 11. Determina a y b para que el vector (2, a, 3, -b) pertenezca al subespacio generado por los vectores (2, 3, 1, -5) y (0, 2, -1, 3).

Ejercicio 12. Sean los conjuntos: $A = \{(1,0,-1), (1,1,0), (0,1,1)\}, B = \{(2,1,-1), (1,2,1)\}$ y $C = \{(2,1,-1), (1,-1,0)\}$. Demuestra que A y B generan el mismo subespacio, y que éste no coincide con el generado por C.

Ejercicio 13. Halla una base del espacio vectorial generado por el conjunto de vectores:

$$\{v_1 = (3, 2, 0, 5), v_2 = (-1, 0, 3, -4), v_3 = (2, 2, 3, 1), v_4 = (0, 2, -9, 17)\}$$

Ejercicio 14. Se consideran los vectores de \mathbb{R}^4 : (1+a,1,1,1), (1,1+a,1,1), (1,1,1+a,1,1), (1,1,1,1), (1,1,1,1), (1,1,1,1), (1,1,1,1), (1,1,1,1), (1,1,1,1), (1,1,1,1)

Ejercicio 15. Halla la dimensión y una base del espacio vectorial

$$M = \left\{ \begin{pmatrix} a+b+3c & 2a-b \\ -a-c & a+2b+5c \end{pmatrix} : a,b,c \in \mathbb{R} \right\}$$

Ejercicio 16. Estudia si es subespacio vectorial de \mathbb{R}^4 el conjunto de soluciones de cada uno de los siguientes sistemas:

(a)
$$\begin{cases} x_1 + x_2 = 0 \\ x_3 + x_4 = 0 \end{cases}$$
 (b)
$$\begin{cases} x_1 + x_2 = 1 \\ x_3 + x_4 = 1 \end{cases}$$

En caso afirmativo, determina una base.

Ejercicio 17. Encuentra un sistema de generadores, una base y la dimensión del subespacio vectorial de soluciones del sistema:

$$\begin{cases} x_1 + 2x_2 - 3x_4 + x_5 = 0 \\ x_1 + 2x_2 + x_3 - 4x_4 - x_5 = 0 \\ x_2 + x_3 - 2x_4 - x_5 = 0 \\ x_1 + x_3 - 2x_4 - 3x_5 = 0 \end{cases}$$

Ejercicio 18. Si $A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$, determina la dimensión y una base del espacio vectorial generado $\{A^n : n \geq 0\}$.

Ejercicio 19. En \mathbb{R}^3 se consideran

$$S = \{(x, y, z) : x = -z\}$$

$$T = \{(x, y, z) : x = z - y\}$$

- (a) Prueba que S y T son subespacios vectoriales de \mathbb{R}^3 .
- (b) Encuentra una base de S, y halla las coordenadas de un vector arbitrario de S respecto de dicha base.
- (c) Prueba que $B_T = \{(0,1,1), (-1,1,0)\}$ es una base de T, y encuentra las coordenadas de $(-2,1,-1) \in T$ respecto de dicha base.

Ejercicio 20. En \mathbb{R}^4 se consideran los subespacios vectoriales:

$$S = L(\{(1,0,1,1), (1,-1,-1,0), (0,1,2,1)\})$$

$$T = \{(x_1, x_2, x_3, x_4) : x_1 - x_3 - x_4 = 0, x_2 + x_3 = 0\}$$

Obtén las ecuaciones paramétricas e implícitas y una base de S+T y de $S\cap T$.

Ejercicio 21. En $\mathcal{P}_3(\mathbb{R})$ se consideran los conjuntos

$$S = \{p(x) : p(-1) = 0\} \text{ y } T = \{p(x) = ax^3 + bx^2 + (a+b)x + 2b : a, b \in \mathbb{R}\}\$$

- (a) Prueba que S y T son subespacios vectoriales.
- (b) Obtén las ecuaciones paramétricas e implícitas y una base de S y de T.
- (c) Calcula $S \cap T$ y S + T.

Ejercicio 22. En $\mathcal{M}_{2\times 2}(\mathbb{R})$ se consideran los subespacios vectoriales

$$V_1 = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \quad V_2 = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

Halla la dimensión y una base de los subespacios V_1 , V_2 , $V_1 + V_2$ y $V_1 \cap V_2$.

Ejercicio 23. En \mathbb{R}^4 se consideran los subespacios vectoriales:

$$S \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 - x_2 + 2x_3 - x_4 = 0 \\ 4x_1 + x_2 + 4x_3 + x_4 = 0 \end{cases} T \equiv \begin{cases} x_1 = \alpha + \beta + 2\gamma \\ x_2 = \beta + \gamma \\ x_3 = -\alpha + \beta \\ x_4 = 3\beta + 3\gamma \end{cases} ; \alpha, \beta, \gamma \in \mathbb{R}$$

Halla la dimensión y una base de los subespacios $S, T, S + T y S \cap T$.

Ejercicio 24. En \mathbb{R}^5 se consideran los subespacios vectoriales:

$$U = \{(1, 0, -1, 0, 0), (2, 1, 0, 1, -1), (4, 1, -2, 1, -1)\}$$

$$W = \{(1, -1, 1, -1, 1), (-2, 0, 0, 0, 3), (0, 1, 2, 1, -1), (0, -2, 2, -2, 5)\}$$

Halla bases de $U, W, U + W y U \cap W$.

Ejercicio 25. En \mathbb{R}^3 se consideran los subespacios vectoriales:

$$U = \{(x, y, z) : z = 0\}$$

$$W = L(\{(0, 1, 1), (2, 0, 1), (2, 1, 2)\})$$

Halla un sistema de generadores y las dimensiones de los subespacios $U,\,W,\,U+W$ y $U\cap W.$

Ejercicio 26. En \mathbb{R}^4 se consideran los subespacios vectoriales:

$$S = L(\{(1,0,2,-1), (0,-1,2,0), (2,-1,6,-2)\})$$

$$T = L(\{(1,-1,4,-1), (1,0,0,1), (-1,-2,2,1)\})$$

Demuestra que dim(S+T)=3 y que $dim(S\cap T)=2$.

Ejercicio 27. En \mathbb{R}^3 se consideran los subespacios:

$$U = \{(a, b, c) : a = c, a, b, c \in \mathbb{R}\}\$$

$$V = \{(0, 0, c) : c \in \mathbb{R}\}\$$

$$W = \{(a, b, c) : a + b + c = 0, a, b, c \in \mathbb{R}\}\$$

Prueba que $\mathbb{R}^3 = U + V = U + W = V + W$. Determina si alguna de las sumas anteriores es directa.

Ejercicio 28. En \mathbb{R}^3 se consideran los subespacios vectoriales:

$$S = L(\{(1,0,1),(1,1,-1),(2,1,0)\}) \quad T = L(\{(1,0,1),(0,0,1),(3,0,-1)\})$$

Halla un subespacio U tal que $\mathbb{R}^3 = S \oplus U$, y T + U no sea suma directa.

Ejercicio 29. En \mathbb{R}^4 se consideran los subespacios vectoriales:

$$S_1 = L(\{(1,0,1,0), (2,1,0,2), (0,-1,2,-2)\})$$

$$S_2 = L(\{(1,1,1,0), (-1,-1,1,-2)\})$$

Determina si la suma $S_1 + S_2$ es directa. Halla una base de dicha suma.

Ejercicio 30. Determina $a, b \in \mathbb{R}$ para que el vector v = (2, a, b, 1) pertenezca al subespacio vectorial $S = L(\{(1, 0, 2, 0), (0, -1, 1, 1)\})$. Obtén un subespacio suplementario de S en \mathbb{R}^4 .

Ejercicio 31. En $\mathcal{P}_3(\mathbb{R})$ se consideran los subespacios vectoriales:

$$V = L(\{1 + x^3, 1 + x + x^2, 2x - x^2, 2 + 3x^2\})$$

$$W = L(\{1 + 3x^2 - x^3, 1 + 4x + x^2 - x^3, 2x - x^2\})$$

Demuestra que $W \subset V$, y halla un suplementario de W en V.

Ejercicio 32. En $\mathcal{P}_3(\mathbb{R})$ se consideran los subespacios vectoriales:

$$V = L(\{x + x^2, x - x^2, 2x + x^2\})$$

$$W = \{a + bx + cx^2 + dx^3 : b + c = 0, 2b - c = 0\}$$

$$T = \{a + bx + cx^2 + dx^3 : a = 0, b = -\mu, c = 0, d = \lambda + \mu, \lambda, \mu \in \mathbb{R}\}$$

- (a) Halla $V \cap W$ y V + W. Determina si V y W son suplementarios.
- (b) Halla una base de $W \cap T$ y las ecuaciones implícitas de V + T.