

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2022

CLASA a XII-a – soluţii şi bareme

Problema 1. Fie e elementul neutru al monoidului (M, \cdot) și $a \in M$ un element inversabil. Arătați că:

- a) Mulţimea $M_a = \{x \in M \mid ax^2a = e\}$ este nevidă;
- b) Dacă $b \in M_a$ este inversabil, atunci $b^{-1} \in M_a$ dacă și numai dacă $a^4 = e$;
- c) Dacă (M_a, \cdot) este monoid, atunci $x^2 = e$, pentru orice $x \in M_a$.

Gazeta Matematică

Soluție. Deoarece a este un element inversabil, avem că $M_a = \{x \in M \mid x^2 = (a^{-1})^2\}.$

- a) Elementul a^{-1} are proprietatea că $(a^{-1})^2=(a^{-1})^2$, deci $a^{-1}\in M_a$ și $M_a\neq\emptyset\ldots$ $\mathbf{2p}$
- b) Fie $b \in M_a$ un element inversabil. Atunci

$$b^{-1} \in M_a \iff (b^{-1})^2 = (a^{-1})^2 \iff (b^2)^{-1} = (a^2)^{-1} \iff$$

$$\iff ((a^2)^{-1})^{-1} = (a^2)^{-1} \iff a^2 = (a^2)^{-1} \iff a^4 = e.$$

......2p

c) Fie
$$u \in M_a$$
 elementul neutru al monoidului M_a . Atunci $a^{-2} = u^2 = u \in M_a$, astfel că $a^{-4} = (a^{-2})^2 = a^{-2}$. Rezultă că $a^{-2} = e$ și $M_a = \{x \in M \mid x^2 = e\}$

Problema 2. Fie (G,\cdot) un grup și $H \neq G$ un subgrup cu proprietatea că $x^2 = y^2$, pentru orice $x,y \in G \setminus H$. Demonstrați că (H,\cdot) este grup comutativ.

$$h_1 h_2 = x(h_1 h_2)^{-1} x^{-1} = x h_2^{-1} h_1^{-1} x^{-1} = x h_2^{-1} x^{-1} \cdot x h_1^{-1} x^{-1} = h_2 h_1.$$

Problema 3. Pentru orice $n \in \mathbb{N}^*$ definim

$$I_n = \int_0^{\pi} \cos(x) \cdot \cos(2x) \cdot \ldots \cdot \cos(nx) dx.$$

Să se determine valorile lui n pentru care $I_n = 0$.

Soluție. Prin inducție după $n \in \mathbb{N}^*$ avem că

$$\cos(x)\cdot\cos(2x)\cdot\ldots\cdot\cos(nx) = \frac{1}{2^{n-1}}\sum\cos(x\pm 2x\pm\ldots\pm nx), \quad \text{pentru orice } x\in\mathbb{R}, \ n\in\mathbb{N}^*,$$

suma efectuându-se după toate alegerile semnelor $\pm \dots 2p$ Atunci

$$I_n = \int_0^{\pi} \cos(x) \cdot \cos(2x) \cdot \ldots \cdot \cos(nx) \, dx = \frac{1}{2^{n-1}} \sum_{n=1}^{\infty} \int_0^{\pi} \cos(x \cdot (1 \pm 2 \pm \ldots \pm n)) \, dx = \frac{k_n}{2^{n-1}} \cdot \pi,$$

unde k_n este numărul sumelor $1 \pm 2 \pm ... \pm n$ egale cu 0... **3p** Prin urmare, $I_n = 0 \iff k_n = 0$.

Orice sumă $1 \pm 2 \pm \ldots \pm n$ are aceeași paritate ca $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$.

Dacă $n \equiv 1 \pmod{4}$ sau $n \equiv 2 \pmod{4}$ aceasta este impară, și deci $k_n = 0$.

Pentru $n \equiv 3 \pmod{4}$ avem

$$(1+2-3)+(4-5-6+7)+\ldots+((n-3)-(n-2)-(n-1)+n)=0$$

astfel că $k_n \ge 1$.

Pentru $n \equiv 0 \pmod{4}$ avem

$$(1-2-3+4)+(5-6-7+8)+\ldots+((n-3)-(n-2)-(n-1)+n)=0,$$

$$S = 4N + \{1, 2\}.$$

.....1p

Problema 4. Fie $I \subseteq \mathbb{R}$ un interval deschis şi $f: I \longrightarrow \mathbb{R}$ o funcţie strict monotonă. Demonstraţi că pentru orice $c \in I$ există $a, b \in I$ astfel încât $c \in (a, b)$ şi

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a).$$

Soluție. Fără a restrânge generalitatea, putem presupune că funcția f este strict crescătoare(în caz contrar putem înlocui f cu $f_1=-f$). Egalitatea

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a).$$

se transcrie echivalent

$$\int_a^c f(x)\,dx + \int_c^b f(x)\,dx = f(c)\cdot(b-c+c-a) \Longleftrightarrow \int_c^b (f(x)-f(c))\,dx = \int_a^c (f(c)-f(x))\,dx.$$

......2p

Pentru $c \in I$ oarecare fixat considerăm funcțiile

$$g: (-\infty, c] \cap I \longrightarrow \mathbb{R}, \quad g(t) = \int_t^c (f(c) - f(x)) dx,$$

respectiv

$$h: [c, \infty) \cap I \longrightarrow \mathbb{R}, \quad h(t) = \int_{c}^{t} (f(x) - f(c)) dx.$$

Aceste funcții sunt continue, și datorită monotoniei funcției f , $Im(g)$, $Im(h) \subseteq [0, \infty)$.
$2 \mathrm{p}$
Deoarece intervalul I este deschis există $r>0$ astfel încât $[c-r,c+r]\subseteq I$. Atunci
g([c-r,c]) = [0,g(c-r)] şi $h([c,c+r]) = [0,h(c+r)]$ 1p
Ca funcții continue, g și h au proprietatea valorilor intermediare ("a lui Darboux" -
observație: termen folosit doar în România!), pentru un număr oarecare λ cu proprietatea
$\overline{\operatorname{ca} 0 < \lambda} < \min(g(c-r), h(c+r))$ există $a \in (c-r, c)$ și $b \in (c, c+r)$ astfel încât
$g(a) = \lambda = h(b)$, ceea ce demonstrează afirmația enunțată