

VECTOR 的 GENY IL 接口调用接口生成工具使用说明

CT-ITC-OS

2017-11-12

惠州市和畅五路

目录

1	Т. Ј	具概况	. 2
		现状分析	
	1.2	设计思想	3
2	代码	码生成工具使用步骤	. 4

1 工具概况

RH850 系列芯片的 CAN 部分使用的是 VECTOR 公司的代码包,使用 GENy 工具根据 DBC 生成代码,生成面向信号的 API 接口供应用层使用。VECTOR 代码包中已经实现了大部分工作,但实际调用 API 的时候会存在一些问题,工具致力于解决这些问题(以下论述都是为解决发送的消息,接收的暂时没有完善)。

1.1 现状分析

根据 VECTOR 的帮助文档《TechnicalReference_GENy_InteractionLayer.pdf》的第 26 页说明,已经明确指出了 IL 层只做无符号数(原始值)的值的接口访问, DBC 中的有符号数、浮点数、因子等由应用层做解析。

Caution

All generated signal access only provides **unsigned integer** values. Signed, float and the scaling factors (as adjustable in CANdb++) are not supported and have to be interpreted by the application.

©2013, Vector Informatik GmbH

Version: 2.10.03

26 / 115

based on template version 3.7

这样如果有成千上万的信号的话,同时有符号(Signed)、无符号(Ungigned)、因子(Factor)、偏移(Offset)混在一起的时候,则需要写很多重复的代码,并且容易出错,更换 DBC 后有需要重复写一遍代码,违背了只维护一份 DBC 的初衷。

1.2 设计思想

认清数据的源头、CAN 的数据变化、报文封装都记录在 DBC 文件中,因此本着只维护 DBC 一份文件,代码中所有跟 DBC 相关的数据更改应该由代码生成工具来完成。只要工具完善,就能做到不容易出错、替换 DBC 方便、减少重复工作、提高开发效率。

信号长度、因子、偏移等这些信息都记录在 DBC 文件中,并且 GENy 工具没有对这些做解析,需要一种补充的工具来生成这些代码。

2 代码生成工具使用步骤

第一步

- 1、拷贝公司版本库代码 生成工具到 Windows,工 具包含一个 EXE 可执行 文件和 DLL 动态库。
- 2、也可从 github 版本库 下载源码,路径如下: https://github.com/Kuang Albert/GENy-IL-

第二步

- 1、DBC 中的 max 和 min 必须设置且设置正确。
- 2、单击 Name,把信号按 名字排序
- 2、在最上面一栏单击鼠标 右键选择 Customize columns
- 3、筛选值显示 Name Message Length Value Type Factor Offset Min Max Unit

ma	Message	Multiplexing/	Start	Leng	Byte Order	Value Type	Initial Value			Minimum	Maximum
Active_Versi	Obstacle_Status	-	24	2	Intel	Unsigned	0	Hide			В
Application			16	8	Intel	Unsigned	0		omize col	umns	255
₿ Binary_high	AHBC_high_low_b	-	0	2	Intel	Unsigned	0	Cate	gories		8
➡ Blinker_Info			34	3	Intel	Unsigned	0	Mini	mum widt	h	7
₿ Blinker_Info			34	3	Intel	Unsigned	0	Optimal width			7
	Obstacle_Data_G		34	3	Intel	Unsigned	0	All c	olumns	1	. 7
	Obstacle_Data_J	-	34	3	Intel	Unsigned	0	-	-	-	7
	Obstacle_Data_M		34	3	Intel	Unsigned	0	1	0	0	7
Blinker_Info Blinker_Info	Obstacle_Data_P Obstacle_Data_S		34 34	3	Intel Intel	Unsigned Unsigned	0	1	0	0	7
	Attribute Name Messag Length Value 1	[Bit]									
	Startbit Byte Or Initial V Value 1 Comme	um exing/Group der alue fable									

第三步

- 1、将信号全选、导出为 csv 格式的文件
- 2、用同样的方法导出消息和消息 ID 为 CSV 文件

第四步

1、新建一个 excel 空白文档,命名为 ESR_TX.xlsx

第五步

1、选择数据->自文本,选 择刚才的 csv 文件

2、单击下一布

第六步

1、选择分号

2、单击下一步

第七步

1、把常规都改成文本

- 2、点击完成
- 3、用同样的方法把另外一
- 份 csv 导入到 sheet2

第八步

1、双击 EXE 即可生成 dcanTx_gen.c 和 dcanTx_gen.h 的代码

狂暴风雷

2018年9月25日修改