

Varianta 98

Subjectul I

a) 5. b) 2. c)
$$(-1, -1)$$
, $(1, 1)$. d) $\vec{v} + \vec{w} = 12\vec{j}$. e) 20-30i; f) $9\sqrt{3}$.

Subjectul II

1. a) 0. b) -1. c)
$$\lg 10=1 \in N$$
. d) $x = 3$. e) $\frac{13}{26} = \frac{1}{2}$.

2. a)
$$f'(x) = 2007x^{2006}$$
, $x \in \mathbb{R}$. b) 0 puncte de extreme. c) 1 punct de inflexiume.

d)
$$f'(1) = 2007$$
. e) $\frac{1}{2008}$.

Subiectul III

a)
$$x, y \in \mathbb{Z}\left[\sqrt{2}\right]$$
, deci $x = a + b\sqrt{2}$, $y = c + d\sqrt{2}$, a, b, c, $d \in \mathbb{Z}$. Atunci

$$x \cdot y = ac + 2bd + (ad + bc)\sqrt{2}$$
, deci

$$f(xy) = (ac + 2bd)^{2} - 2(ad + bc)^{2} = a^{2}c^{2} + 4abcd + 4b^{2}d^{2} - 2a^{2}d^{2} - 4abcd - 2b^{2}c^{2} = (a^{2} - 2b^{2})(c^{2} - 2d^{2}) = f(x)f(y).$$

b) Fie
$$x = a + b\sqrt{2}$$
, a, b \in **Z**. Atunci $f(x) = 0 \Leftrightarrow a^2 - 2b^2 = 0$, adică $a^2 = 2b^2$.

Presupunem $a \ne 0$, fie (a, b) = d, deci a = dm, b = dn, (m, n) = 1 si din $a^2 = 2b^2$ avem $m^2 = 2n^2$ și obținem că 2 este divizor comun pentru m, n, deci cotradicție. Atunci $a^2 = 2b^2$, a, $b \in \mathbb{Z}$ dacă și numai dacă a = b = 0, adică x = 0.

c)
$$f(1+\sqrt{2})=1^2-2\cdot 1^2=-1$$
.

d) Pentru
$$a = 3$$
, $b = 2$ avem $x = a + b\sqrt{2} = 3 + 2\sqrt{2}$ si $a^2 - 2b^2 = 1$, deci $x \in \mathbb{Z}\left[\sqrt{2}\right]$. Dar dacă $x = a + b\sqrt{2}$, $y = c + d\sqrt{2}$, a , b , c , $d \in \mathbb{Z}$ avem $x \cdot y \in \mathbb{Z}\left[\sqrt{2}\right]$, deci $x^n \in \mathbb{Z}\left[\sqrt{2}\right]$, $n \in \mathbb{N}^*$. Adică x , x^2 , x^3 , ... $\in \mathbb{Z}\left[\sqrt{2}\right]$, şir crescător, deci cu elemente distincte.

e) Se arată asemănător cu d) pentru
$$a=b=1, \ \left(1+\sqrt{2}\right)^{2^{n+1}}=a_n+b_n\sqrt{2}$$
, $a_n^2-2b_n^2=\left(-1\right)^{2^{n+1}}=-1$.

f) Calcul direct.

g) "
$$\subset$$
" Dacă $z \in U(\mathbf{Z}[\sqrt{2}])$ și $z' \in \mathbf{Z}[\sqrt{2}]$ este inversul său, atunci $z \cdot z' = 1$, deci $f(z \cdot z') = f(1)$, adică $1 = f(z) \cdot f(z')$.

Deoarece f(z), $f(z') \in \mathbb{Z}$, obținem că $f(z) \in \{-1, 1\}$, deci $z \in A \cup B$. Aşadar $U(\mathbb{Z}[\sqrt{2}]) \subset A \cup B$.

"
$$\supset$$
" Dacă $z = a + b\sqrt{2} \in A \cup B$, atunci $f(z) \in \{-1, 1\}$.

I.
$$f(z)=1 \iff a^2-2b^2=1 \iff (a+b\sqrt{2})\cdot(a-b\sqrt{2})=1$$
, deci z este inversabil, inversul său fiind

$$z' = a - b\sqrt{2} \in \mathbf{Z} | \sqrt{2} |.$$

II. $f(z) = -1 \iff a^2 - 2b^2 = -1 \iff (a + b\sqrt{2}) \cdot (a - b\sqrt{2}) = -1$, deci z este inversabil, inversul său fiind $z' = -a + b\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$. În ambele cazuri obținem că $z \in U(\mathbf{Z}[\sqrt{2}])$, așadar $A \cup B \subset U(\mathbf{Z}[\sqrt{2}])$. În concluzie, $U(\mathbf{Z}[\sqrt{2}]) = A \cup B$.

Subjectul IV

a)
$$f'(x) = \frac{1}{x}, x \in (0, \infty);$$

b) Din f continuă și derivabilă obținem f continuă pe [k, k+1] și derivabilă pe (k, k+1) , $\forall k \in (0, \infty)$, putem aplica teorema lui Lagrange pe [k, k+1]și obținem ca $\exists c \in (k, k+1)$ astfel incat $f'(c) = \ln(k+1) - \ln(k)$. Din $f''(x) = -\frac{1}{x^2} < 0 \ \forall x \in (0, \infty)$ obținem f strict descrescătoare pe $(0, \infty)$ deci din k < c < k+1 avem f'(k) > f'(c) > f'(k+1), adică

$$\frac{1}{k+1} < \ln(k+1) - \ln k < \frac{1}{k}, \forall k \in (0, \infty).$$

c) Notam t = nx și avem dt = ndx, iar pentru $x = \pi$, $t = n\pi$ și pentru $x = 2\pi$, $t = 2n\pi$,

$$\operatorname{deci} x_n = \int_{\pi}^{2\pi} \frac{\left| \sin(nx) \right|}{x} dx = \int_{n\pi}^{2n\pi} \frac{\left| \sin t \right|}{\frac{t}{n}} \cdot \frac{1}{n} dt = \int_{n\pi}^{2n\pi} \frac{\left| \sin t \right|}{t} dt, \, \forall x \ge 1;$$

d) Scriem relatia de la punctual b) pentru k de la n+1 până la 2n.

e)
$$x_n = \sum_{k=n}^{2n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} dt = \sum_{k=n}^{2n+1} I_k$$
, unde $I_k = \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} dt$. In I_k facem substituția $t = k\pi + y$ și obținem $I_k = \int_0^{\pi} \frac{\sin y}{k\pi + y} dy$;

f)
$$\frac{\sin y}{k\pi + \pi} \le \frac{\sin y}{k\pi + y} \le \frac{\sin y}{k\pi}$$
, $y \in [0, \pi] \Rightarrow \frac{1}{(k+1)\pi} \int_0^{\pi} \sin y dy \le I_k \le \frac{1}{k\pi} \int_0^{\pi} \sin y dy$, deci $\frac{2}{\pi(k+1)} \le I_k \le \frac{2}{\pi \cdot k}$. Prin sumare de la $k = n$ la $k = 2n-1$ obținem rezultatul.

g) Dacă trecem la limită in d) rezultă:

$$\lim_{k \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1} \right) = \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2. \text{ Obținem din f}$$

$$\lim_{k \to \infty} x_n = \frac{2}{\pi} \ln 2.$$