

LOW DROPOUT VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

■ PACKAGE OUTLINE

The NJM2880 is a low dropout voltage regulator. Advanced Bipolar technology achieves low noise, high ripple rejection and low quiescent current.

■ FEATURES

◆ High Ripple Rejection
 ◆ Output Noise Voltage
 TodB typ. (f=1kHz,Vo=3V Version)
 Vno=30µVrms typ.(Cp=0.01µF)

Output capacitor with 1.0µF ceramic capacitor
 Output Current Io(max.)=300mA

● High Precision Output Vo±1.0%

● Low Dropout Voltage 0.10V typ. (Io=100mA)

ON/OFF Control (Active High)Internal Short Circuit Current Limit

Internal Thermal Overload Protection

Bipolar Technology

Package Outline SOT-89-5

■ PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

■ OUTPUT VOLTAGE RANK LIST

Device Name	Vout	Device Name	Vout	Device Name	Vout
NJM2880U/U1-15	1.5V	NJM2880U/U1-28	2.8V	NJM2880U/U1-44	4.4V
NJM2880U/U1-16	1.6V	NJM2880U/U1-285	2.85V	NJM2880U/U1-45	4.5V
NJM2880U/U1-18	1.8V	NJM2880U/U1-03	3.0V	NJM2880U/U1-48	4.8V
NJM2880U/U1-21	2.1V	NJM2880U/U1-32	3.2V	NJM2880U/U1-05	5.0V
NJM2880U/U1-25	2.5V	NJM2880U/U1-33	3.3V		
NJM2880U/U1-26	2.6V	NJM2880U/U1-38	3.8V		
NJM2880U/U1-27	2.7V	NJM2880U/U1-04	4.0V		

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	YMBOL RATINGS	
Input Voltage	V_{IN}	+14	V
Control Voltage	V_{CONT}	+14(*1)	V
Power Dissipation	P_{D}	350	mW
Operating Temperature	Topr	-40 ~ +85	°C
Storage Temperature	Tstg	-40 ~ +125	°C

^(*1) When input voltage is less than +14V, the absolute maximum control voltage is equal to the input voltage.

■ Operating voltage

 V_{IN} =+2.3 ~ +14V (In case of Vo<2.1V version)

■ ELECTRICAL CHARACTERISTICS

(Vo>2.0V version:

 V_{IN} =Vo+1V, Co=0.1 μ F: Vo \geq 2.7V (Co=2.2 μ F: Vo \leq 2.6V), Cp=0.01 μ F, Ta=25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	lo=30mA	-1.0%	-	+1.0%	V
Quiescent Current	I_{Q}	Io=0mA, expect Icont	-	120	180	μA
Quiescent Current at Control OFF	I _{Q(OFF)}	V _{CONT} =0V	-	-	100	nA
Output Current	lo	Vo-0.3V	300	400	-	mA
Line Regulation	$\Delta Vo/\Delta V_{IN}$	V _{IN} =Vo+1V ~ Vo+6V, Io=30mA	-	-	0.10	%/V
Load Regulation	ΔVο/ΔΙο	lo=0 ~ 300mA	-	-	0.03	%/mA
Dropout Voltage	$\Delta V_{I^{-}O}$	Io=100mA	-	0.10	0.18	V
Ripple Rejection	RR	ein=200mVrms,f=1kHz, Io=10mA Vo=3V Version	-	70	-	dB
Average Temperature Coefficient of Output Voltage	ΔVο/∆Τα	Ta=0~85°C, lo=10mA	-	±50	-	ppm/°C
Output Noise Voltage	V _{NO}	f=10Hz~80kHz, Io=10mA, Vo=3V Version	-	30	-	μVrms
Control Voltage for ON-state	V _{CONT(ON)}		1.6	-	_	V
Control Voltage for OFF-state	V _{CONT(OFF)}		-	-	0.6	V

(Vo≤2.0V version:

 $V_{IN}=Vo+1V$, $C_{IN}=0.1\mu F$, $Co=2.2\mu F$: $Vo\geq1.9V$ ($Co=4.7\mu F$: $Vo\leq1.8V$), $Cp=0.01\mu F$, $Ta=25^{\circ}C$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	lo=30mA	-1.0%	-	+1.0%	V
Quiescent Current	I_Q	Io=0mA, expect Icont	ı	120	180	μΑ
Quiescent Current at Control OFF	I _{Q(OFF)}	V _{CONT} =0V	-	ı	100	nA
Output Current	lo	Vo-0.3V	300	400	-	mA
Line Regulation	$\Delta Vo/\Delta V_{IN}$	V _{IN} =Vo+1V ~ Vo+6V, Io=30mA	-	-	0.10	%/V
Load Regulation	ΔVο/ΔΙο	Io=0 ~ 300mA	-	-	0.03	%/mA
Ripple Rejection	RR	ein=200mVrms,f=1kHz, Io=10mA Vo=1.8V Version	-	74	-	dB
Average Temperature Coefficient of Output Voltage	ΔVο/∆Τα	Ta=0~85°C, lo=10mA	-	±50	-	ppm/°C
Output Noise Voltage	V _{NO}	f=10Hz~80kHz, Io=10mA, Vo=1.8V Version	-	18	-	μVrms
Control Voltage for ON-state	V _{CONT(ON)}		1.6	-	_	V
Control Voltage for OFF-state	V _{CONT(OFF)}		-	-	0.6	V

The above specification is a common specification for all output voltages.

Therefore, it may be different from the individual specification for a specific output voltage.

■ TEST CIRCUIT

*2 1.9V≤Vo≤2.6V version : Co=2.2μF(ceramic) Vo≤1.8V version : Co=4.7μF(ceramic)

■ TYPICAL APPLICATION

① In the case where ON/OFF Control is not required:

*3 1.9V≤Vo≤2.6V version : Co=2.2μF Vo≤1.8V version : Co=4.7μF

Connect control terminal to V_{IN} terminal

② In use of ON/OFF CONTROL:

3 1.9V≤Vo≤2.6V version : Co=2.2μF Vo≤1.8V version : Co=4.7μF

State of control terminal:

- "H"→ output is enabled.
- "L" or "open" → output is disabled.

★Noise bypass Capacitance Cp

Noise bypass capacitance Cp reduces noise generated by band-gap reference circuit. Noise level and ripple rejection will be improved when larger Cp is used. Use of smaller Cp value may cause oscillation. Use the Cp value of $0.01\mu F$ greater to avoid the problem.

★In the case of using a resistance "R" between V_{IN} and control.

The current flow into the control terminal while the IC is ON state (I_{CONT}) can be reduced when a pull up resistance "R" is inserted between V_{IN} and the control terminal.

The minimum control voltage for ON state $(V_{CONT\ (ON)})$ is increased due to the voltage drop caused by I_{CONT} and the resistance "R". The I_{CONT} is temperature dependence as shown in the "Control Current vs. Temperature" characteristics. Therefore, the resistance "R" should be carefully selected to ensure the control voltage exceeds the $V_{CONT\ (ON)}$ over the required temperature range.

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.