Breast Cancer Classification Using Machine Learning

Rajat Kumar Thakur (202211070)

Dataset:

The analysis will use the Breast Cancer Wisconsin (Diagnostic) Dataset (sourced from <u>Breast Cancer Wisconsin (Diagnostic)</u>). This dataset provides measurements of cell nuclei from breast tissue, which are used to classify tumors.

Objective:

To build a classification model to predict whether a tumor is malignant (cancerous) or benign (non-cancerous).

Input Variables:

Features derived from digitized images of fine needle aspirates (e.g., texture, area, smoothness, concavity, etc.).

Output Variable:

Tumor classification label: Malignant or Benign.

Methodology:

The project involves data cleaning, exploratory data analysis, data preprocessing (including feature extraction and handling of outliers), and applying machine learning models.

Dataset Overview:

1 j	id diagnosis	radius_mean	texture_mean	perimeter_mean ar	rea_mean	smoothness_me	compactness_m	concavity_mean	concave points_	symmetry_mean fracta	al_dimensio	radius_se	texture_se	perimeter
2	842302 M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	1.095	0.9053	
3	842517 M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	0.5435	0.7339	
4	84300903 M	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	0.7456	0.7869	
5	84348301 M	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	0.4956	1.156	
6	84358402 M	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	0.7572	0.7813	
7	843786 M	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	0.3345	0.8902	
8	844359 M	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	0.4467	0.7732	
9	84458202 M	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	0.5835	1.377	
10	844981 M	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	0.3063	1.002	
11	84501001 M	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	0.2976	1.599	
12	845636 M	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	0.3795	1.187	
13	84610002 M	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	0.5058	0.9849	
14	846226 M	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	0.9555	3.568	
15	846381 M	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	0.4033	1.078	
16	84667401 M	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	0.2121	1.169	
17	84799002 M	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	0.37	1.033	
18	848406 M	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	0.4727	1.24	
19	84862001 M	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	0.5692	1.073	
20	849014 M	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	0.7582	1.017	
21	8510426 B	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	0.2699	0.7886	
22	8510653 B	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	0.1852	0.7477	
23	8510824 B	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	0.2773	0.9768	
24	8511133 M	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	0.4388	0.7096	
25	851509 M	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	0.6917	1.127	
26	852552 M	16.65	21.38	110	904.6	0.1121	0.1457	0.1525	0.0917	0.1995	0.0633	0.8068	0.9017	
27	852631 M	17.14	16.4	116	912.7	0.1186	0.2276	0.2229	0.1401	0.304	0.07413	1.046	0.976	
8	852763 M	14.58	21.53	97.41	644.8	0.1054	0.1868	0.1425	0.08783	0.2252	0.06924	0.2545	0.9832	
9	852781 M	18.61	20.25	122.1	1094	0.0944	0.1066	0.149	0.07731	0.1697	0.05699	0.8529	1.849	
30	852973 M	15.3	25.27	102.4	732.4	0.1082	0.1697	0.1683	0.08751	0.1926	0.0654	0.439	1.012	
24	050004 **		45.05	***	000	0.00047	0.4457	0.00075	0.07050	0.4700	0.00440	0.0000	0.0005	4