Zagadnienia obowiązujące na egzaminie wstępnym na studia drugiego stopnia na kierunek informatyka w Instytucie Informatyki i Matematyki Komputerowej od roku akademickiego 2017/18

Informacje wstępne

Zagadnienia pogrupowane są w cztery sekcje: Matematyczne podstawy informatyki, Teoretyczne podstawy informatyki, Wytwarzanie oprogramowania oraz Inżynieria systemów. Zestaw egzaminacyjny składa się z czterech pytań, po jednym z każdego działu.

W każdym pytaniu komisja może poprosić o podanie definicji występujących pojęć oraz przykłady praktycznych zastosowań, ew. rozwiązanie prostych zadań, podanie złożoności opisywanych algorytmów. Należy także umieć przedstawić istotę danych pojęć, metod, algorytmów, potrzebę ich stosowania, itp.

Zagadnienia

Matematyczne podstawy informatyki

- 1. Podstawy logiki i teorii mnogości. Metody dowodzenia twierdzeń, relacje równoważności, relacje porządku.
- 2. Metody numeryczne. Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa i metoda Gaussa-Seidla. Rozwiązywanie równań nieliniowych metodą Newtona. Wyznaczanie wartości własnych macierzy. Interpolacja wielomianowa.
- 3. Rachunek prawdopodobieństwa i statystyka. Zmienne losowe dyskretne i ciągłe (najważniejsze przykłady, zastosowania), prawdopodobieństwo warunkowe, łańcuchy Markowa. Testy statystyczne.
- 4. Algebra liniowa. Liniowa zależność i niezależność wektorów, iloczyn skalarny w przestrzeni Rⁿ.
- 5. Podstawy teorii liczb. Struktura algebraiczna (Z_m, +, *) w zależności od m. Twierdzenia Eulera i Fermata, funkcja Eulera.
- 6. Matematyka dyskretna. Konfiguracje i t-konfiguracje kombinatoryczne. Rozwiązywanie równań rekurencyjnych, funkcje tworzące.
- 7. Podstawy teorii grafów. Obwód Eulera, cykl Hamiltona, liczba chromatyczna. Wyznaczanie maksymalnego przepływu w sieci.
- 8. Analiza matematyczna ciągi liczbowe, funkcje jednej zmiennej. Granica, ciągłość i pochodna funkcji, ekstrema lokalne.
- 9. Analiza matematyczna funkcje wielu zmiennych. Pochodne cząstkowe, ekstrema lokalne.
- 10. Podstawy rachunku całkowego. Całka Riemanna, zmiana zmiennych w całce (współrzędne sferyczne i walcowe).

Teoretyczne podstawy informatyki

- 11. Złożoność obliczeniowa. Złożoność pesymistyczna i średnia; notacja O duże, Omega duże, Theta.
- 12. Modele obliczeń: maszyna Turinga, automat skończony, automat ze stosem.
- 13. Abstrakcyjne typy danych. Lista, kolejka, kolejka priorytetowa operacje i ich złożoność.
- 14. Metody programowania. Algorytmy zachłanne, metoda "dziel i zwyciężaj", programowanie dynamiczne.
- 15. Drzewa BST. Porządki przeglądania, algorytmy wyszukiwania, równoważenie drzewa.
- 16. Algorytmy sortowania przez porównania i pozycyjne ograniczenia i złożoność.
- 17. Algorytmy grafowe. Przeszukiwanie wszerz i w głąb, wyszukiwanie najkrótszej ścieżki.
- 18. Języki i wyrażenia regularne równoważne definicje, przykłady zastosowań, lemat o pompowaniu.
- 19. Problemy P, NP, NP-zupełne i zależności między tymi klasami. Hipoteza P vs NP.
- 20. Teoria języków formalnych. Problemy rozstrzygalne i nierozstrzygalne.

Wytwarzanie oprogramowania

- 21. Kompilacja, linkowanie i wykonanie programu. Biblioteki statyczne i dynamiczne.
- 22. Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych. Sposoby przekazywania parametrów do funkcji.
- 23. Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm. Sposoby ich realizacji w C++ i Javie.
- 24. Programowanie generyczne. Szablony, metody generyczne, polimorfizm statyczny. Różnice między klasami generycznymi w C++ i Javie.
- 25. Język UML. Diagramy sekwencji i przypadków użycia ich budowa i zastosowanie.
- 26. Testowanie oprogramowania. Testy jednostkowe, integracyjne, systemowe, akceptacyjne typowe sytuacje ich wykorPodstawy logiki i teorii mnogości. Metody dowodzenia twierdzeń, relacje równoważności, relacje porządku.zystania.
- 27. Testy pokrycia. Pokrycie instrukcji i gałęzi metryki, relacje między tymi podejściami.
- 28. Modele procesów wytwarzania oprogramowania. Model przyrostowy, spiralny, Scrum ich fazy, zalety i wady.
- 29. Wzorce projektowe w inżynierii oprogramowania definicje, klasyfikacja, przykłady.
- 30. Zarządzanie jakością oprogramowania. Metody planowania, zapewniania i kontroli jakości.

Inżynieria systemów

- 31. Relacyjny model danych. Algebra relacji i jej odzwierciedlenie w języku SQL. Normalizacja relacji.
- 32. Indeksowanie w bazach danych. Typy indeksów. Struktura drzew B+ i operacje na nich.
- 33. Transakcje w bazach danych. Podstawowe cechy transakcji (ACID), poziomy izolacji, metody sterowania współbieżnością.
- 34. Układy sekwencyjne i kombinacyjne. Schemat budowy procesora (rejestry, ALU, zegar).
- 35. Zarządzanie procesami w systemie operacyjnym stany procesu, algorytmy szeregowania z wywłaszczaniem. Narzędzia synchronizacji procesów: muteks, semafor, monitor.
- 36. Systemy plików organizacja fizyczna i logiczna.
- 37. Model OSI ISO. Przykłady protokołów w poszczególnych warstwach.
- 38. Adresowanie w protokołach IPv4 i IPv6. Przebieg połączenia internetowego od wpisania adresu strony w przeglądarce do jej wyświetlenia.
- 39. Rola routerów w infrastrukturze sieci. Podstawowe protokoły routingu klasyfikacja, zalety, wady.
- 40. Podpis cyfrowy. Algorytm RSA jako przykład szyfrowania asymetrycznego. Znaczenie certyfikatów w bezpieczeństwie sieciowym.