

Wahrscheinlichkeitstheorie

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

Anwesenheitsblatt

Aufgabe 1. Zeigen Sie: Sei $\mathscr{E} \subset \mathcal{P}(\Omega)$ ein \cap -stabiles Mengensystem. Dann gilt

$$\sigma(\varepsilon) = \delta(\varepsilon)$$
.

Lösung. Siehe Satz 1.19 in [1].

Aufgabe 2. Zeigen Sie, dass für einen Halbring ${\mathscr H}$ das Mengensystem

$$\mathcal{R}(\mathcal{H}) = \{\sum_{i=1}^{n} A_i | A_1, \dots, A_n \in \mathcal{H} \text{ p.w. disjunkt}, n \in \mathbb{N} \}$$

der kleinste Ring ist, welcher \mathcal{H} enthält.

Aufgabe 3. Zeigen Sie, dass für $\mu: \mathcal{H} \to [0, \infty]$ additiv, \mathcal{H} Halbring gilt, dass

 μ ist σ -additiv $\iff \mu$ ist σ -subadditiv

Hinweis: Mithilfe von Lemma A.13 können Sie μ auf einen Inhalt $\tilde{\mu}$ auf $\mathcal{R}(\mathcal{H})$ fortzusetzen. Verwenden Sie, dass dieser monoton ist.

Lösung. Nach Lemma A.10 folgt " \Rightarrow ". Für " \Leftarrow " sei μ ein σ -subadditiver Inhalt auf dem Halbring \mathscr{H} . Nach Lemma A.13 kann μ zu einem Inhalt $\tilde{\mu}$ auf $\mathscr{R}(\mathscr{H})$ fortgesetzt werden. Analog zu Lemma 10 ist $\tilde{\mu}$ monoton. Sei nun $A_1, A_2, \dots \in \mathscr{H}$ p.w. disjunkt und $\bigcup_{i=1}^{\infty} A_i \in \mathscr{H}$. Dann gilt

$$\sum_{i=1}^{\infty} \mu(A_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \tilde{\mu}(A_i) = \lim_{n \to \infty} \tilde{\mu}(\sum_{i=1}^{n} A_i) \le \tilde{\mu}(\sum_{i=1}^{\infty} A_i) = \mu(\sum_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i).$$

Vergewissern Sie sich, an welchen Stellen die Monotonie von $\tilde{\mu}$ und die σ -subadditivität von μ verwendet wurde.

Aufgabe 4. Sei Ω abzählbar unendlich und \mathscr{A} gegeben durch

$$\mathscr{A} := \{ A \subset \Omega \mid \#A < \infty \text{ oder } \#A^c < \infty \}.$$

Zeigen Sie, dass \mathscr{A} eine Algebra ist. Zeigen Sie weiter, dass die durch

$$\mu(A) = \begin{cases} \infty & , \text{ falls } A \text{ unendlich} \\ 0 & , \text{ falls } A \text{ endlich} \end{cases}$$

ein Inhalt aber kein Prämaß ist.

Aufgabe 5. Zeigen Sie, dass das Mengensystem $\mathcal{H} = \{\{1\}, \{2\}, \dots, \mathbb{N}, \emptyset\}$ kein Halbring ist.

Für einen Überblick über die Grundlagen und wichtige Sätze der Maßtheorie verwenden Sie zum Beispiel:

Definitionen und Sätzen aus [1]:

- Definition 1.1
- \bullet Definition $\sigma\textsc{-Algebra},$ Algebra, Ring, Semiring, Dynkin-System
- Satz 1.16
- Satz 1.18
- \bullet Definition Topologie, Borel'sche $\sigma\textsc{-}\mbox{Algebra}$
- Satz 1.23
- Definition Maß, Wahrscheinlichkeitsmaß
- Definition 1.35
- Satz 1.36
- Definition 1.38
- Satz 1.41 und Satz 1.53
- Lemma 1.42
- $\bullet\,$ Beispiel 1.44 und Beispiel 1.45

References

[1] Achim Klenke. Wahrscheinlichkeitstheorie. Vol. 1. Springer, 2006.