	VEETOR CALCULUS CW
	Find a and b such that the surfaces $ax^2 - by2 = (a+2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at $(1, -1, 2)$.
-	Find the equation of the tangent Plane and normal line to the surface $xyz = 4$ at the point it 2 j + 2 K.
	If Fis a Vector Print function, Prove that $\nabla \times (\nabla \times F) = \nabla (\nabla \cdot F) - \nabla^2 F$
2	First V. (+F) where == xityjtzk
	prove that diy (aure F)=0
,	Find f(r) if the Vector f(r)? is both Solenoidal and isrotational
	Prove that $\nabla^2 f(r) = f'(r) + (\frac{2}{r}) f'(r)$