Robot Teklonolojilerine Giriş Keşif Algoritmaları

Mehmet Fatih Amasyalı

Robot Gezinimi

- Bilinen bir ortamda hareket
 - Lokalizasyon (neredeyim)
 - Navigasyon (şuraya nasıl giderim)
- Bilinmeyen bir ortamda hareket
 - Keşif (nereye gideyim)
 - Haritalama (nasıl bir ortamdayım)
 - Navigasyon (şuraya nasıl giderim)

Neden Keşif

- Arama kurtarma
- H₁Z
- Güvenlik
- Daha keşfedecek çok yer var
 - Uzay, okyanuslar

Basit keşif algoritmaları

- Duvar takibi
- En uzağa git

- Haritalama gerektirmezler
- Ama ortamın tamamını gezemezler

Her yeri gezmek için

- Gezilen ve gezilmeyen yerleri bilmek gerekir (Harita)
- Grid/hücre tabanlı yaklaşım:

Örnek hücreler. Beyaz hücreler keşfedilmemiş, gri hücreler keşfedilmiş ve boş, siyah hücreler ise keşfedilmiş ve doludur. Ortadaki hücre sadece (a) durumda Frontier (öncül) olarak belirlenmektedir.

Öncül: kendisi keşfedilmiş ve boş ve en az bir keşfedilmemiş komşusu olan hücre

Haritada birçok öncül hücre olabilir. Hangisine gitmeliyim?

- (xi,xj) koordinatındaki bir hücrenin iyiliği nasıl ölçülür:
- (ri,rj) koordinatındaki robota en yakın en iyi:
- U(xi,xj) = C((ri,rj),(xi,xj))
- C? öklid? A*?
- min U değerine sahip hücre hedef

A* maliyet

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Öncülleri kümelemek

- A* pahalı ama lazım,
- Çok fazla hesaplamamak lazım
- Her öncül hücre için hesaplamak yerine
- Hücreleri bağımlı bileşenler ile kümeleyelim. Her küme için hesaplayalım.

Öncülleri kümelemek

- (xi,xj) koordinatındaki bir hücre kümesinin iyiliği nasıl ölçülür:
- U(xi,xj) = P(xi,xj) + C((ri,rj),(xi,xj))
- P? Kümenin büyüklüğü? Küçüklüğü?
- Kümenin koordinatı?
 - İçerdiği öncüllerin ortası (öncül olmayabilir)
 - İçerdiği öncüllerden robota en yakını (pahalı)
 - Kümenin ortasına en yakın öncül (az pahalı)

Beyond frontiers

- Hedef seçmek için bir başka yol
- Lazer range in belirli bir aralığının içinde kalan ve boş olan hücreler beyond frontier hücreler olarak belirlenir. Bu hücrelere CCL uygulanarak kümelenirler. Her kümenin merkezine en yakın hücreler hedeftir.

Beyond frontiers

Tek robotla keşif algoritması

- Hedefleri belirle
- Hedeflerin iyiliğini hesapla
- Hedefi seç
- Robot-hedef için yol bul
- Robotu hedefine doğru ilerlet
- Robot hedefine varınca başa dön

Çok robotla keşif algoritması

- Hedefleri belirle
- Hedeflerin her bir robot için iyiliklerini hesapla
- Robot-hedef eşlemesi yap
- Eşlenmiş robot-hedef ikilileri için yolları bul
- Robotları hedeflerine doğru ilerlet
- Robotlardan biri hedefine varınca başa dön

Robot hedef eşlemesi

- R robot, H hedef olsun
- U: R*H boyutlu bir matris
- Her bir hücre için A* hesapla (çok pahalı)
- R kez
 - U matrisinin en küçük elemanını bul U(i,j)
 - − i. robota j. hedefi ata
 - i. satırı ve j. sütunu U matrisinden sil
- R*H kez A* çağrılıyor

Hızlandıralım

- U: R*H boyutlu bir matris
- Her bir hücre için Öklid hesapla (çok ucuz)
- R kez
 - U matrisinin en küçük elemanını bul U(i,j)
 - i. satırdaki tüm elemanlar için A* hesapla. En küçüğünü (j) bul. i. robota j. hedefi ata
 - i. satırı ve j. sütunu U matrisinden sil
- Faydası? her bir adımda hesaplanan A* path sayısı birer birer azalmakta

Daha da hızlandır Salih Marangoz ©

- U: R*H boyutlu bir matris
- Her bir hücre için Öklid hesapla (çok ucuz)
- R kez
 - 1- U matrisinin en küçük elemanını bul U(i,j)
 - 2- U(i,j) için A* hesapla. Bu değerden büyük tüm U elemanlarını sil
 - İşlenmemiş eleman kalmayıncaya kadar 1 ve 2 yi tekrar et
 - U'nun en küçüğünü bul U(k,t). k. robota t. hedefi ata
 - k. satırı ve t. sütunu U matrisinden sil

Daha da hızlandır Salih Marangoz ©

Step	U matrix					
1.step						
	T1	T2	Т3	T4	T5	Т6
R1	7	3	8	9	12	20
R2	8	9	4	15	20	23
2.step						
	T1	T2	Т3	T4	T5	Т6
R1	7	7	inf	inf	inf	inf
R2	inf	inf	4	inf	inf	inf
3.step						
	T1	T2	Т3	T4	T5	Т6
R1	inf	inf	inf	inf	inf	inf
R2	inf	inf	6	inf	inf	inf
4.step						
	T1	T2	T4	T5	T6	
R1	7	3	9	12	20	
5.step						
	T1	T2	T4	T5	T6	
R1	7	7	inf	inf	inf	
6.step						
	T1	T2	T4	T5	Т6	
R1	8	7	inf	inf	inf	

Process					
[r,h]=min(U), r=1, h=2					
Calculate Path_size(Rs(1,:),Ts(2,:))					
Assume path_size=7					
[r,h]=min(U), r=2, h=3					
Calculate Path_size(Rs(2,:),Ts(3,:))					
Assume path_size=6					
All cells of U is processed					
Assign T3 to R2					
Exclude assigned robot and target from U					
[r,h]=min(U), r=1, h=2					
Path_size(Rs(1,:),Ts(2,:)) is aldready					
calculated. path_size=7					
[r,h]=min(U), r=1, h=1					
Calculate Path_size(Rs(1,:),Ts(1,:))					
Assume path_size=8					
All cells of U is processed					

Assign T2 to R1

Daha da hızlandır Salih Marangoz ©

Sonuçları görelim

- Matlab uygulaması (multi kesif v7.m)
- Önce VI
- Sonra SA

Gazebo uygulaması

Kısıtlı iletişim durumu Teşekkürler Attila Akıncı ©

Robotun kapsama alanını terk edişi

Robotun kapsama alanına topladığı bilgilerle dönüşü

3 boyutlu keşif

- 3 boyutlu hareket, drone
- 3 boyutlu hedef belirleme
- 3 boyutlu A*
- Teşekkürler Salih Marangoz ve Ezgi Ekin Ergün ©

DILUISATAK MUHENDISLIGI DOLUMU

Kaynaklar

- http://robotfrontier.com
- Visser, Arnoud, and Bayu A. Slamet. "Including communication success in the estimation of information gain for multi-robot exploration.", WiOPT 2008.
- http://www.kostasalexis.com/rotors-simulator.html
- https://www.youtube.com/channel/UCd_EolndK WCPKJ1KQprSb3g

