

Assignment 2: Model Explanations

Group: Sigma X Giovanni Filomeno, Moritz Riedl, Verena Szojak & Aaron Zettler

JOHANNES KEPLER UNIVERSITÄTUNZ-Altenberger Straße 9 4040 Linz, Österreich jku.at

CIFAR-10 Dataset.

- 32x32 RGB images
- 10 classes
- 6000 images per class
- 50000 train & 10000 test images

CNN Model.

- 6 convolutional layers
- 3 linear layers
- ReLU activation function
- Trained for 120 epochs
- Overall test accuracy: 82.59%
 - Highest for means of transportation
 - Automobile 92.00%
 - Lowest for animals
 - Cat 64.30%

Research Questions.

- What image parts are important for classification?
- What patterns/structures has the model learned?
- What difficulties does the model have?

Goal: Use 4 different XAI methods to explore various angles of these questions.

XAI Methods

Instance Flow.

- Visualizing the flow of instances over epochs
- Sankey diagram for the "cat" class for the first epochs

Prediction distribution shows bumps for cats misclassified as dogs and frogs

Instance Flow.

- Flow of cats images after epoch #4 to dogs
 (1)
- Flow of cats images after epoch #5 to frogs (2-5)
- Cat images might be ambiguous (dataset limitation)

Saliency Maps.

Highlighting image parts important for model prediction

True: deer, Pred: deer

True: airplane, Pred: airplane

Saliency Map

Saliency Map

Saliency Maps.

True: dog, Pred: cat

True: frog, Pred: cat

Saliency Map

Saliency Map

- Model focuses on objects itself, not on surroundings
- Attention on color than on shapes

SHAP - SHapley Additive exPlanations.

Highlighting pixel-level contributions for each prediction

- Specific object parts contribute positively to prediction
- Surrounding also important

Invertible Concept-based Explanations.

Using activation maps for unsupervised extraction of concepts (CAVs)

Invertible Concept-based Explanations.

- Model learned concepts for locations, shapes, colors
- Fine-grained concepts for higher-accuracy classes

Images for Concept 1

High 1 - truck

Images for Concept 2

High 1 - truck

Invertible Concept-based Explanations.

- Concepts too coarse for lower-accuracy classes
- Model has not learned discriminative concepts

Images for Concept 6

Findings

Answers to Research Questions.

- What image parts are important for classification?
 - Object itself & its surroundings
- What patterns/structures has the model learned?
 - Mostly colors, also shapes
- What difficulties does the model have?
 - Ambiguous images lead to confusion (cats)
 - Learned too simple concepts

Questions

