

Lecture 1: Introduction to Digital Systems

By
A. L. Jannat Tariq

Introduction to Digital Systems

- How does your phone work?
- You take a picture with your phone.
- The picture is converted into digital signals (0 and 1).
- The signals are transmitted over the network.
- Your friend receives and views the picture, unchanged.
- How are these data transformed and transmitted?

Why Study Digital Systems?

- Foundation of technology: Every electronic device relies on digital systems.
- Communication:
- Internet, smartphones
- Industry:
- Robotics, automated control
- Entertainment:
- Video games, streaming platforms
- What devices do you use daily that rely on digital systems?

Historical Background

Evolution of Digital Systems:

- 1854: George Boole established Boolean algebra.
- 1937: Claude Shannon applied Boolean algebra to electrical circuits.
- 1946: The first digital computer (ENIAC).
- 1960s: The invention of integrated circuits.

- What do you think the first computers looked like?

The Binary System

- What is it? A system based on two digits: 0 and 1.
- Represents two states: ON or OFF.
- Why use it?
- Simple and stable.
- Resistant to noise.

Example:

- The decimal number 5 in binary = 101.
- Why do we use the binary system instead of the decimal system?

Introduction to Digital Systems

Analog system

The physical quantities or signals may vary continuously over a specified range.

Digital system

The physical quantities or signals can assume only discrete

values.

Greater accuracy

Introduction to Digital Systems

- 1. **Analog Signal:** Represents continuous data, such as sound or light waves.
- Example: A sine wave from a microphone.
- 2. **Digital Conversion:** Sampling: Taking signal values at regular intervals.
- Quantization: Converting sampled values into binary (0s and 1s).
- 3. **Digital Signal:**Represents data using two levels (0 and 1).
- Resistant to noise, easy to store and process.
- **Importance:**
- Enables storage, processing, and transmission of data in digital systems.
- Used in MP3 audio, digital video, and modern communication systems.

Homework

- Choose a digital device you use daily.
- Research and explain in simple terms how it works.

- How does a smartphone process and display images?
- How does a remote control communicate with a TV?

ASCII

Symbol Dec Binar	y Hex
96 11000	00 60
a 97 11000	01 61
b 98 11000	10 62
c 99 11000	11 63
d 100 11001	00 64
e 101 110010	01 65
f 102 11001	10 66
g 103 11001	11 67
h 104 11010	00 68
i 105 11010	01 69
j 106 11010	10 6A
k 107 11010	11 6B
1 108 110110	00 6C
m 109 11011	01 6D
n 110 11011	10 6E
o 111 11011	11 6F

Symbol	Dec	Binary	Hex
p	112	1110000	70
q	113	1110001	71
r	114	1110010	72
S	115	1110011	73
t	116	1110100	74
u	117	1110101	75
v	118	1110110	76
w	119	1110111	77
X	120	1111000	78
y	121	1111001	79
Z	122	1111010	7A
{	123	1111011	7B
1	124	1111100	7C
}	125	1111101	7D
~	126	1111110	7E
Del	127	1111111	7F