1.

Exercice 1:

Let (E, \leq) be a partially ordered set. Let \mathcal{C} be the set of well-founded chains of (E, \leq) . We define a binary relation R on \mathcal{C} as follows: for all $C_1, C_2 \in \mathcal{C}$ we put $C_1 R C_2$ if $C_1 \subseteq C_2$ and for all $x \in C_1$ and $y \in C_2 \setminus C_1$ we have $x \leq y$.

- (a) Which type of relation is R?
- (b) Show that all the chains $\{C_i\}_{i\in I}$ in (\mathcal{C},R) have a least upper bound in (\mathcal{C},R) .
- (c) Deduce that there is a chain of (E, \leq) which is a maximal element of (C, R).
- 2. Let (E, \leq) a lattice for which any well-founded chain has an upper bound.
 - (a) Show that (E, \leq) has a least element \perp .
 - (b) Let A be a subset of E. Let B be the set of all elements smaller that all elements in A. Show that if B has a maximum element b, then b is the greatest element of B.
 - (c) Show that B has a maximal element b. (you may use question 1.1.c)
 - (d) Show that (E, \leq) is a complete lattice.

Monoids.

Exercice 2:

- 1. Show that $(\mathcal{P}(E \times E), \circ, id_E)$, where $R \circ S := RS := \{(x, z) \in E \times E \mid \exists y \in E, xRySz\}$ is a monoid.
- 2. Under what condition a lattice is a monoid, if we take the superior of two elements as the rule of composition?
- 3. Show that the product of two monoids is a monoid, where the binary operation is just the operation on each of the elements separately.
- 4. $(\mathbb{Z}/6\mathbb{Z}, \cdot, 1)$ is a monoid. Show that $(\{0, 2, 4\}, \cdot, 4)$ is a monoid.

Exercice 3:

Prove the following statements:

- 1. The composition of two morphisms of monoid is a morphism.
- 2. The inverse of a bijective monoid morphism is a monoid morphism.
- 3. The image of a sub-monoid is a sub-monoid.
- 4. The inverse image of a sub-monoid is a sub-monoid.

Exercice 4:

An equivalence relation \sim on a monoid M is congruence $(x \sim y \text{ iff } uxv \sim uyv \ \forall v, u \in M)$ iff for all $x \sim x' \land y \sim y' \Rightarrow xy \sim x'y'$.

2. Let $f: M \to N$ be a monoid morphism. Show that if $x \sim y \Leftrightarrow f(x) = f(y)$, then \sim is a congruence.

Let Σ a finite alphabet.

Exercice 5:

Let u and v two words in Σ^* . show by induction on |u|+|v| that $uv=vu\Rightarrow \exists w\in \Sigma^*,\{u,v\}\subseteq w^*$.

1.

Exercice 6:

Let m and n natural numbers > 0. Solve in Σ^* the equation $u^m = v^n$.

Exercice 7:

Let u and v be two words in Σ^* , we say that they are conjugate if there exist x and y such that u = xy and v = yx. Show that the words u and v are conjugate iff there exists a word z such that uz = zv.

Exercice 8:

Consider the three words x, y, z in Σ^* such that $x^2y^2 = z^2$. Show that there exists a word w in Σ^* and numbers p and q such that $x = w^p$, $y = w^q$ and $z = w^{p+q}$.

Exercice 9:

Let M be a finite monoid and let $x \in M$.

- 1. Show that there two natural numbers m and n such that m < n and $x^m = x^n$.
- 2. We choose a minimal l from all the numbers n for which there exists m < n such that $x^m = x^n$.
 - (a) Show that $1, x, ..., x^{l-1}$ are all distinct.
 - (b) Show that the monoid $\langle x \rangle$ is of cardinality l.
 - (c) Let k < l such that $x^k = x^l$. Let r be the unique integer between k and l-1 divisible by l-k. Show that $x^k, ..., x^{l-1}$ is a cyclic group of order l-k where x^r is the natural element.
 - (d) Show that there exists n such that $x^n = (x^n)^2$ i.e. idempotent. Are there several?

Exercice 10 (Syntactic monoid):

Let $L \subset \Sigma^*$ be a language. This defines the equivalence relation on Σ^* :

$$w \sim_L w' \Leftrightarrow \forall u, v \in \Sigma^*, uwv \in L \Leftrightarrow uw'v \in L$$

Justify that \sim_L is a congruence on Σ^* . We define the Syntactic monoid M_L as the quotient $\Sigma^*|_{\sim_L}$.

Exercice 11 (Language recognized by a monoid):

Let $L \subset \Sigma^*$ a language. Let M be a monoid. We say that a language L is recognizable by M if there exists a monoid morphism φ of Σ^* to M and a set X of M such that $L = \varphi^{-1}(X)$.

- 1. Show that a language recognized by a finite monoid is regular.
- 2. Show that a language L is recognized by its syntactic monoid.
- 3. Show that a language L is recognised by a monoid M iff M_L is isomorphic to a submonoid of M.
- 4. Deduce the characterization of regular languages relating to their syntactic monoid.

Exercice 12 (12):

Let A be a set. We consider the free monoid (A^*, \cdot, ϵ) defined on the alphabet A by concatenation and the empty word. The set $C \subseteq A^*$ is a code if the following condition holds: for all $c_1, \ldots, c_n, d_1, \ldots, d_p \in C$, if $c_1 \ldots c_n = d_1 \ldots d_p$ then n = p and $c_i = d_i$ for all $i \in [1, n]$. Let $X \subseteq A^*$. Which of these assertion imply which assertions?

- 1. X is a code.
- 2. For all sets B and a morphisme $\varphi: B^* \to A^*$ such that $\varphi|_B: B \to X$ (i.e. the restriction of φ to B) is bijective, φ is injective.
- 3. there exists a set B and an injective morphism $\varphi: B^* \to A^*$ such that $\varphi[B] = X$.

2