PARTIEL DE RATTRAPAGE EN STATISTIQUES **MASTER 1 INFO**

DUREE: 2H00

Exercice1

Un producteur d'engins de déneigement observe l'évolution suivante de son chiffre d'affaire trimestriel Yt (millions de francs).

Il cherche à mieux prévoir son besoin en personnel sur l'année (production saisonnière) et à plus long terme (diminution du CA) afin de connaître le personnel permanent et temporaire dont il a besoin pour chaque trimestre de l'année n+5 On admet que la série suit un modèle linéaire et additif.

Année No Ordre Trimestres CA

	<u>1 T Yt</u>		
n <u>2 1 90</u> <u>3 2 82.5</u>			
	<u>4 3 67.5</u>		
	<u>5 4 60</u>		
n+1 <u>6 1 77.5</u> <u>7 2 7</u>	<u>70</u>		
	<u>8 3 55</u>		
	<u>9 4 45</u>		
n+2 <u>10 1 57.5</u> <u>11</u>	<u>2 50</u>		
	<u>12 3 40</u>		
	<u>13 4 32.5</u>		
n+3 <u>14 1 40</u> <u>15 2</u>	<u>39</u>		
	<u>16 3 35</u>		
	<u>17 4 32</u>		
n+4 <u>18 1 36</u> <u>19 2</u>	<u>34</u>		
	20 3 30		
	T	4	25
	<u> </u>		

Travail à faire :

1. Etude graphique

Présenter graphiquement la tendance générale ; commenter le résultat obtenu.

Déterminer l'équation de trend (méthodes des moindres carrées) et présenter

la graphiquement. 2. Analyse prévisionnelle

Calculer les valeurs théoriques par la méthode de trend.

Calculer les coefficients saisonniers par la méthode de trend.

Etablir le CA prévisionnel de l'année n+5.

3. <u>Lissage du nuage de points</u>

Effectuer un lissage par la méthode des rapports au TREND et par la méthode des moyennes mobiles d'ordre 3 et 4.

Les représenter sur le graphique initial

sur un centre de <u>renseignement téléphonique sont consignés dans le</u>

tableau suivant

Temps d'attente en sec								
Le nombre de client	5	15	20	30	16	10	4	

1)Calculer la moyenne l'écart type de la durée d'attente de l'échantillon 2)Tester au seuil de 5% par un test de khi deux l'hypothèse selon laquelle, la durée d'attente des clients suit une loi normale.

NOTONS QUE SI
$$\stackrel{\checkmark}{\bullet}$$
 0,05 9,488 2 $\stackrel{?}{\Box}_{\checkmark}$ $\stackrel{\circ}{\circ}$

PartieB

On considère les variables aléatoires X et Y dont les lois sont les suivantes : Y suit une loi binomiale de paramètre 6 et 2/3. X suit une loi définie par :

- 1. Donner les fonctions génératrices des variables X et Y.
- 2. A l'aide de ces fonctions génératrices calculer les moments simples, centrés et factoriels d'ordre 1, 2, 3 et 4 de X et Y
- 3. En déduire V(X) et V(Y).

 $\begin{array}{c} \text{Page 2 sur 3} \\ \text{Fonction de répartition de la loi normale centrée réduite} \\ \text{(probabilité } F(z) \text{ de trouver une valeur inférieure à z)} \end{array}$

Z.	0,00	0,01	0.02	0,03	0,04	0,05	0,06	0.07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0.2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0.4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0.6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0.7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0.8	0,7881	0,7910	0,7939	0.7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1.0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0.8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1.2	0,8849	0,8869	0,8888	0.8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015

1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

Table pour les grandes valeurs de z

×	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
F(z)	0,998650	0,999032	0,999313	0,999517	0,999663	0,999767	0,999841	0,999892	0,999928	0,999952
x	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4.7	4,8	4,9
F(z)	0.999968	0.999979	0.999987	0.999991	0.999995	0.999997	0,999998	0.999999	0.999999	1.0000000

Nota. La table donne F(z) pour z positif. Pour z négatif, il faut prendre le complément à l'unité de la valeur lue dans la table. Exemple : F(-1,37) = 1 - F(1,37) = 1 - 0.9147 = 0.0853.