计算机组成原理

第七讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

- 4.2 主存储器
- 一、概述
- 二、半导体芯片简介
- 三、随机存取存储器(RAM)
 - 1. 静态 RAM (SRAM)
 - 2. 动态 RAM (DRAM)
 - 3. 动态RAM和静态RAM的比较

3. 动态 RAM 和静态 RAM 的比较

主存	DRAM	SRAM	
存储原理	电容	触发器	缓存
集成度	高	低	
芯片引脚	少	多	
功耗	小	大	
价格	低	高	
速度	慢	快	
刷新	有	无	

4.2

四、只读存储器(ROM)

1. 掩模 ROM (MROM)

行列选择线交叉处有 MOS 管为"1" 行列选择线交叉处无 MOS 管为"0"

2. PROM (一次性编程)

熔丝断 为"0"

熔丝未断 为"1"

3. EPROM (多次性编程)

4.2

(1) N型沟道浮动栅 MOS 电路

G栅极

S 源

D 漏

紫外线全部擦洗

D端加正电压

D端不加正电压

形成浮动栅

不形成浮动栅

S与D不导通为"0"

S与D导通为"1"

(2) 2716 EPROM 的逻辑图和引脚

PD/Progr 功率下降 / 编程输入端 读出时 为 低电平

4. EEPROM (多次性编程)

4.2

电可擦写

局部擦写

全部擦写

5. Flash Memory (闪速型存储器)

EPROM

价格便宜 集成度高

EEPROM

电可擦洗重写

比 EEPROM快 具备 RAM 功能

五、存储器与 CPU 的连接

4.2

- 1. 存储器容量的扩展
- (1) 位扩展(增加存储字长)

10根地址线

用 2片 1K×4位 存储芯片组成 1K×8位 的存储器

8根数据线

(2)字扩展(增加存储字的数量)

4.2

11根地址线

用 2 片 1 K×8位 存储芯片组成 2 K×8位 的存储器

10

(3)字、位扩展

4.2

用 % 片 1 K × 4位 存储芯片组成 4 K × 8位 的存储器

12根地址线

8根数据线

4.2

2. 存储器与 CPU 的连接

- (1) 地址线的连接
- (2) 数据线的连接
- (3) 读/写命令线的连接
- (4) 片选线的连接
- (5) 合理选择存储芯片
- (6) 其他 时序、负载

例4.1 解:

4.2

(1) 写出对应的二进制地址码

1片 2K×8位 $A_{15}A_{14}A_{13}$ $A_{11}A_{10}$... A_{7} ... A_{4} A_{3} ... A_{0} 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1

(2) 确定芯片的数量及类型

2片1K×4位

(3) 分配地址线

4.2

A₁₀~A₀ 接 2K×8位 ROM 的地址线

A₉~A₀ 接 1K×4位 RAM 的地址线

(4) 确定片选信号

例 4.1 CPU 与存储器的连接图

4.2

