Combo 4 de teoremas

Emanuel Nicolás Herrador - November 2024

Propiedades básicas de la deducción

Sea (Σ, τ) una teoría:

- 1. (Uso de Teoremas). Si $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$ y $(\Sigma \cup \{\varphi_1, \dots, \varphi_n\}, \tau) \vdash \varphi$, entonces $(\Sigma, \tau) \vdash \varphi$
- 2. Supongamos $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$. Si R es una regla distinta de GENERALIZACION y ELECCION, y φ se deduce de $\varphi_1, \dots, \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$
- 3. $(\Sigma, \tau) \vdash (\varphi \to \psi)$ sii $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$

Demostración

Vamos a usar los siguientes dos lemas en la demostración:

- Cambio de índice de hipótesis: Sea (φ, \mathbf{J}) una prueba formal de φ en (Σ, τ) . Sea $m \in N$ tal que $\mathbf{J}_i \neq$ HIPOTESIS \bar{m} para cada $i = 1, \dots, n(\varphi)$. Supongamos que $\mathbf{J}_i = \text{HIPOTESIS}\bar{k}$ y que $\mathbf{J}_j = \text{TESIS}\bar{k}\alpha$ con $[\alpha]_1 \notin Num$. Sea $\tilde{\mathbf{J}}$ el resultado de reemplazar en \mathbf{J} la justificación \mathbf{J}_i por HIPOTESIS \bar{m} y reemplazar la justificación \mathbf{J}_j por TESIS $\bar{m}\alpha$. Entonces $(\varphi, \tilde{\mathbf{J}})$ es una prueba formal de φ en (Σ, τ) .
- Cambio de constantes auxiliares: Sea (φ, \mathbf{J}) una prueba formal de φ en (Σ, τ) . Sea \mathcal{C}_1 el conjunto de nombres de constante que ocurren en φ y que no pertenecen a \mathcal{C} . Sea $e \in \mathcal{C}_1$. Sea $\tilde{e} \notin \mathcal{C} \cup \mathcal{C}_1$ tal que $(\mathcal{C} \cup (\mathcal{C}_1 \{e\}) \cup \{\tilde{e}\}, \mathcal{F}, \mathcal{R}, a)$ es un tipo. Sea $\tilde{\varphi}_i$ = resultado de reemplazar en φ_i cada ocurrencia de e por \tilde{e} . Entonces $(\tilde{\varphi}_1 \dots \tilde{\varphi}_{n(\varphi)}, \mathbf{J})$ es una prueba formal de φ en (Σ, τ) .

A continuación, demostraremos cada uno de los puntos por separado.

Punto (1)

Notemos que basta con hacer el caso n = 1, porque si $n \ge 2$, entonces se obtiene aplicando n veces el caso igual a 1.

Supongamos entonces que $(\Sigma, \tau) \vdash \varphi_1$ y que $(\Sigma \cup \{\varphi_1\}) \vdash \varphi$. Sea $(\alpha_1 \dots \alpha_h, I_1 \dots I_h)$ una prueba formal de φ_1 en (Σ, τ) ; y sea $(\psi_1 \dots \psi_m, J_1 \dots J_m)$ una prueba formal de φ en $(\Sigma \cup \{\varphi_1\}, \tau)$. Notemos que por los *lemas* anteriores podemos suponer que las pruebas no comparten ningún nombre de constante auxiliar y que tampoco comparten números asociados a hipótesis o tesis.

Por ello, para cada $i=1,\ldots,m$, definamos \tilde{J}_i de la siguiente manera:

- Si $J_i = \alpha \text{AXIOMAPROPIO con } \alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in N\} \text{ y } \psi_i = \varphi_1, \text{ entonces } \tilde{J}_i = \alpha \text{EVOCACION}(\bar{h})$
- Si $J_i = \alpha R(\bar{l}_1, \dots, \bar{l}_k)$ con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in N\}$, entonces $\tilde{J}_i = \alpha R(\bar{l}_1 + h, \dots, \bar{l}_k + h)$
- Sino, $\tilde{J}_i = J_i$

Luego, $(\alpha_1 \dots \alpha_h \psi_1 \dots \psi_m, I_1 \dots I_h \tilde{J}_1 \dots \tilde{J}_m)$ es una prueba formal de φ en (Σ, τ) , por lo que $(\Sigma, \tau) \vdash \varphi$ y se demuestra.

Punto (2)

Notemos que:

$$\begin{array}{cccc} 1. & \varphi_1 & & \text{AXIOMAPROPIO} \\ 2. & \varphi_2 & & \text{AXIOMAPROPIO} \\ & \vdots & \vdots & & \vdots \\ & n. & \varphi_n & & \text{AXIOMAPROPIO} \\ n+1. & \varphi & & R(1,\ldots,\bar{n}) \end{array}$$

es una prueba formal de φ en $(\Sigma \cup \{\varphi_1, \dots, \varphi_n\}, \tau)$, por lo que $(\Sigma \cup \{\varphi_1, \dots, \varphi_n\}, \tau) \vdash \varphi$. Como suponemos $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$, por el punto (1) tenemos que $(\Sigma, \tau) \vdash \varphi$ por lo que se demuestra.

Punto (3)

Veamos los dos casos:

- *Ida*: Supongamos $(\Sigma, \tau) \vdash (\varphi \to \psi)$. Luego, claramente $(\Sigma \cup \{\varphi\}, \tau) \vdash (\varphi \to \psi), \varphi$, por lo que por el punto (2) usando MODUSPONENS tenemos que $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$. Por ello, se demuestra la ida.
- Vuelta: Supongamos $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$. Sea $(\varphi_1 \dots \varphi_n, J_1 \dots J_n)$ una prueba formal de ψ en $(\Sigma \cup \{\varphi\}, \tau)$, entonces para cada $i = 1, \dots, n$ definamos \tilde{J}_i del siguiente modo:
 - $-\text{ Si }J_i = \alpha \text{AXIOMAPROPIO con }\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k}: k \in N\} \text{ y } \varphi_i = \varphi, \text{ entonces } \tilde{J}_i = \alpha \text{EVOCACION}(1)$
 - Si $J_i = \alpha R(\bar{l}_1, \dots, \bar{l}_k)$ con $\alpha \in \{\varepsilon\} \cup \{\text{TESIS}\bar{k} : k \in N\}$, entonces $\tilde{J}_i = \alpha R(\overline{l}_1 + 1, \dots, \overline{l}_k + 1)$
 - Sino, $\tilde{J}_i = J_i$

Sea m tal que ninguna J_i es igual a HIPOTESIS \bar{m} . Entonces

$$(\varphi\varphi_1\dots\varphi_n(\varphi\to\psi), \text{HIPOTESIS}\bar{m}\tilde{J}_1\dots\tilde{J}_{n-1}TESIS\bar{m}\tilde{J}_nCONCLUSION)$$

es una prueba formal de $(\varphi \to \psi)$ en (Σ, τ) . Luego, $(\Sigma, \tau) \vdash (\varphi \to \psi)$ y se demuestra la vuelta.

Por ello, se demuestra el punto (3).

Teorema

Sea $(L, s, i, {}^c, 0, 1)$ un álgebra de Boole y sean $a, b \in B$. Se tiene que:

- 1. $(a \ i \ b)^c = a^c \ s \ b^c$
- 2. $a i b = 0 \sin b \le a^c$

Demostración

Demostremos cada uno de los puntos por separado.

Punto (1)

Vamos a usar el lema que dice que: Si (L, s, i, 0, 1) es un reticulado acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento. Es decir, si x s u = x s v = 1 y x i u = x i v = 0, entonces u = v, cualesquiera sean $x, u, v \in L$.

Notemos que:

$$(a^c\ s\ b^c)\ s\ (a\ i\ b)=(a^c\ s\ b^c\ s\ a)\ i\ (a^c\ s\ b^c\ s\ b)$$
 distributividad
$$=(1\ s\ b^c)\ i\ (a^c\ s\ 1)$$

$$=1\ i\ 1$$

$$=1$$

$$(a^c \ s \ b^c) \ i \ (a \ i \ b) = (a^c \ i \ a \ i \ b) \ s \ (b^c \ i \ a \ i \ b)$$
 distributividad
$$= (0 \ i \ b) \ s \ (0 \ i \ a)$$
$$= 0 \ s \ 0$$
$$= 0$$

Luego, por def. tenemos que a^c s b^c es el complemento de a i b. Como (L, s, i, c, 0, 1) es un Álgebra de Boole, por def. es también un reticulado acotado y distributivo. Luego, por el anterior lema sabemos que es único el complemento.

Por ello, $(a \ i \ b)^c = a^c \ s \ b^c$ y se demuestra.

Punto (2)

Para demostrarlo, veamos ambos lados de la doble implicación:

• Ida: Supongamos $a \ i \ b = 0$. Con ello:

$$b = b i 1$$

 $= b i ((a i b) s (a i b)^c)$ def. complemento
 $= b i (0 s (a i b)^c)$ supuesto
 $= b i (a i b)^c$
 $= b i (a^c s b^c)$ punto (1)
 $= (b i a^c) s (b i b^c)$ distributividad
 $= (b i a^c) s 0$
 $= b i a^c$

Luego, como b=b i a^c , por def. alternativa del orden parcial \leq , tenemos que $b\leq a^c$ y se demuestra la ida.

• Vuelta: Supongamos $b \le a^c$. Por def. alternativa del orden parcial \le , tenemos que b i $a^c = b$. Con ello, veamos que:

$$a \ i \ b = a \ i \ (b \ i \ a^c)$$
 reemplazando
$$= (a \ i \ a^c) \ i \ b$$
$$= 0 \ i \ b$$
$$= 0$$

Luego, llegamos a que a i b = 0 y se demuestra la vuelta.

Por ello, se demuestra el punto (2).

Lema

Sean (L, s, i) y (L', s', i') reticulados terna y sean (L, \leq) y (L', \leq') los posets asociados. Sea $F: L \to L'$ una función. Entonces F es un isomorfismo de (L, s, i) en (L', s', i') sii F es un isomorfismo de (L, \leq) en (L', \leq')

Demostración

Para la demostración, vamos a usar el siguiente lema: Sean (P, \leq) y (P', \leq') posets y F un isomorfismo de (P, \leq) en (P', \leq') , entonces:

- $\forall x, y, z \in P, z = \sup\{x, y\} \iff F(z) = \sup\{F(x), F(y)\}$
- $\forall x, y, z \in P, \ z = \inf\{x, y\} \iff F(z) = \inf\{F(x), F(y)\}$

Vamos a demostrar cada uno de los lados de la doble implicación por separado:

• Ida: Supongamos F es un isomorfismo de (L, s, i) en (L', s', i'). Por def. de isomorfismo, F es biyectiva y F, F^{-1} son homomorfismos. Por ello, podemos ver que, sean $x, y \in L$:

$$x \leq y \overset{\text{def.}}{\Rightarrow} \overset{\leq}{y} = x \ s \ y \overset{\text{def. homomorfismo}}{\Rightarrow} F(y) = F(x \ s \ y) = F(x) \ s' \ F(y) \overset{\text{def. de}}{\Rightarrow} \overset{\leq}{\Rightarrow} F(x) \leq' F(y)$$

Con ello, llegamos a que F es un homomorfismo de (L, \leq) en (L', \leq') . Como F es biyectiva y de forma análoga a la anterior podemos ver que F^{-1} es un homomorfismo de (L', \leq') en (L, \leq) , entonces F es un isomorfismo de (L, \leq) en (L', \leq') y se demuestra la ida.

• Vuelta: Supongamos F es un isomorfismo de (L, \leq) en (L', \leq') . Por ello, tenemos que:

$$\forall x,y,z\in P,\ z=x\ s\ y\iff F(z)=F(x)\ s\ F(y)\qquad \text{por lema}$$

$$\forall x,y\in P,\ F(x\ s\ y)=F(x)\ s'\ F(y)\qquad \text{usando la prop. con }\Rightarrow$$

Análogamente, llegamos también a que $\forall x,y \in P, \ F(x\ i\ y) = F(x)\ i'\ F(y)$. Por ello, F es un homomorfismo de (L,s,i) en (L',s',i').

Ahora, como F es biyectiva y de forma análoga F^{-1} es un homomorfismo de (L', s', i') en (L, s, i), por def. F es un isomorfismo.

Con ello, se demuestra la vuelta.

Por todo ello, entonces, se demuestra el lema. ■