Law of Large Numbers

Suppose we have $x_i: \Omega \to \mathbb{R}^d \quad i = 1, ..., \infty$ variables.

<u>Definition</u> (Identically distributed)

(a) The law of x_i is the measure

$$\mu_i := law(x_i) \ defined \ on \ \mathbb{R}^d \ by \mu_i[B] = \mathbb{P}\{x_i \ \epsilon \ B\} \ \forall \ B \ \subset \mathbb{R}^d$$

(b) x_i and x_j are identically distributed if

$$law(x_i) = law(x_i)$$

<u>Definition</u> (Independence) $(x_i)_i^{\infty}$ are independent for every $i_1,...,i_k$ and every $A_1,...,A_k \subset \mathbb{R}^d$ Borel

$$P(x_{i1} \epsilon A_1, ..., x_{ik} \epsilon A_k) = P(x_{i1} \epsilon A_1) \cdots P(x_{ik} \epsilon A_k)$$

Theorem (Law of Large Numbers) Let $(Z_n)_{n=1}^{\infty}$ be a random variable, we say that $(z)_n$ converges to z in probability if $\forall \varepsilon > 0$

(weak law)

$$\lim_{n \to \infty} \mathbb{P}\{|z_n - z| \ge \varepsilon\} = 0$$

(strong law)

$$\lim_{n \to \infty} z_n = z \ a.e$$

Proof

If $\lim_{n\to\infty} \mathbb{E}[z_n-z] \implies z_{nk}\to z$ a.e for a subsequence $(z_{nk})_k$ Assume we have convergence in probability,

$$\mathbb{E}[z_n - z] = \int_{\Omega} |z_n - z| d\mathbb{P}$$

$$\implies \mathbb{E}[z_n - z] = \int_{|z_n - z| < \varepsilon} |z_n - z| d\mathbb{P} + \int_{|z_n - z| \ge \varepsilon} |z_n - z| d\mathbb{P} \ \le \ \varepsilon \ \mathbb{P}|z_n - z| < \varepsilon + \dots (missed \ what \ was \ written \ here)$$

$$\implies \mathbb{E}[z_n-z] = \int_{|z_n-z| < \varepsilon} |z_n-z| d\mathbb{P} + \int_{\Omega} |z_n-z| \chi_{A_n^{\varepsilon}}^2 d\mathbb{P} \le \varepsilon \ \mu\{|z_n-z| \le \varepsilon\} + (\int_{\Omega} |z_n-z|^2 d\mathbb{P})^{\frac{1}{2}} (\int_{\Omega} \chi_{A_n^{\varepsilon}}^2 d\mathbb{P})^{\frac{1}{2}} d\mathbb{P} \le \varepsilon \|f\|_{L^{\infty}}^2 \|f\|_{L^{\infty$$

We get this from Holder's inequality, which says

$$\int_{\Omega} |fg| d\mathbb{P} \ \leq \ \sqrt{\int_{\Omega} f^2 d\mathbb{P}} \sqrt{\int_{\Omega} g^2 d\mathbb{P}}$$

Now going back to our equation

$$\leq \varepsilon \mathbb{P}(\Omega) + \sqrt{\int_n |z_n - z|^2 d\mathbb{P}} \sqrt{\mathbb{P}[A_n^{\varepsilon}]}$$

$$\leq \varepsilon + \sqrt{2var(z_n) + 2var(z)} \sqrt{\mathbb{P}[A_n^{\varepsilon}]}$$

From this we can conclude that if $var(z_n) \leq C$ and $z_n \xrightarrow{p} z$, then

$$\mathbb{E}[z_n - z] \le \varepsilon + \sqrt{4C} \cdot \mathbb{P}$$

and so,

$$\overline{\lim_{n \to \infty}} |z_n - z| \le \varepsilon \,\forall \,\varepsilon$$

Thus,

$$\overline{\lim_{n \to \infty}} \mathbb{E}[|z_n - z|] = 0$$

Corollary If $z_n \stackrel{p}{\to} z$ the there exists a subsequence $(z_{nk})_{k=1}^{\infty}$ which converges to z in probability a.e.

It is important to note that we don't know if the whole sequence converges in probability a.e, so that is why we consider the subsequence.

If $x_i: \Omega \to \mathbb{R}^d$ $i = 1, ..., \infty$ are independent and identically distributed (iid) then,

$$\frac{x_1 + \ldots + x_n}{n} \cong E(X)$$
 for n large enough

Additionally, for any two points, w and a,

$$\frac{x_1(w)+\ldots+x_n(w)}{n}-\frac{x_1(a)+\ldots+x_n(a)}{n}\to 0 \quad when \ n\to\infty$$

except when $a, w \in N$ and P(N) = 0

Essentially, for n large enough if we know the expectation at one point we know the expectation at any other point.

The Law of Large numbers is often used in conjunction with the Central Limit theorem.

Theorem (Central Limit Theorem) (CLT) If $x_1,...,x_n$ is a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$ then the limiting distribution of

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma}$$

is the standard normal, $Z_n \xrightarrow{d} Z \sim N(0,1)$ as $n \to \infty$.

The key idea behind the CLT is that is can be used to approximate a distribution in cases where the exact distribution is unknown or intractable.

Remarks

- \bullet n = 30 is sufficiently large for the approximations using the CLT.
- The average of the sample means and standard deviations will equal the population mean and standard deviation.