Signals and Communication Theory

Communication Theory and Signals and Systems

Alfonso Fernandez-Vazquez

Ingeniería en Sistemas Computacionales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Semestre Agosto-Diciembre 2021

Contents

Convolution

2 Convolution Application in Digital Communication

Stable Systems

Contents

Convolution

Convolution Application in Digital Communication

Stable Systems

Geometric sequence and geometric sum

A **geometric sequence** is a series in which consecutive elements differ by a constant ratio. Such sequence can be expressed as

$$x[n] = r^n$$

where r is constant.

The sum of finite-duration geometric sequence is given by

$$\sum_{n=0}^{N-1} r^n = \frac{1 - r^N}{1 - r}$$

By setting $N = \infty$ and |r| < 1 gives the sum of infinite-duration geometric sequence, i.e.,

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

Convolution in LTI systems

We first consider a unit-step sequence delayed by k at the input of the system. Since the considered system is **Time-Invariance**, the output is the impulse response delayed by k, h[n-k].

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \longrightarrow \text{LTI System} \qquad y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Now considering x[n] as superposition of unit-pulse sequences, $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$, and the **linearity** of the system, the output y[n] is expressed as

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k],$$

= $x[n] * h[n],$

which is the **convolution operation**.

Commutative Property

By definition we have

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k],$$

Using m = n - k, the following relation holds

$$\sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} x[n-m]h[m]$$

$$= \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

$$= h[n] * x[n]$$

Consequently

$$x[n] * h[n] = h[n] * x[n]$$

Example 1

Assume that $h[n] = a^n u[n]$ and $x[n] = b^n u[n]$. Compute the convolution.

Answer to Example 1: Analytic method

Substituting h[n] and x[n] into the definition of convolution, we have

$$y[n] = \sum_{k=-\infty}^{\infty} b^k u[k] a^{n-k} u[n-k]$$

$$= \sum_{k=0}^{\infty} b^k a^{n-k} u[n-k] \qquad \text{because } u[k] = 0 \text{ for } k < 0$$

$$= \sum_{k=0}^{n} b^k a^{n-k} \qquad \text{because } u[n-k] = 0 \text{ for } k > n$$

$$= a^n \sum_{k=0}^{n} \left(\frac{b}{a}\right)^k \qquad \text{applying geometric sum}$$

$$= a^n \frac{1 - \left(\frac{b}{a}\right)^{n+1}}{1 - \frac{b}{a}} \qquad \text{simplifying}$$

$$= \frac{a^{n+1} - b^{n+1}}{1 - b^{n+1}}$$

Answer to Example 1: Visual approach

Answer to Example 1: Visual approach, cont.

Answer to Example 1: Output

Example 2

Assume that $h[n] = a^n u[n]$ and $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$. Compute the convolution.

Answer to Example 2: Analytic method

Substituting h[n] and x[n] gives

$$y[n] = \sum_{k=-\infty}^{\infty} \left(\delta[k] + 2\delta[k-1] + 3\delta[k-2]\right) a^{n-k} u[n-k]$$

$$= \sum_{k=-\infty}^{\infty} \delta[k] a^{n-k} u[n-k] + 2 \sum_{k=-\infty}^{\infty} \delta[k-1] a^{n-k} u[n-k]$$

$$+ 3 \sum_{k=-\infty}^{\infty} \delta[k-2] a^{n-k} u[n-k]$$

$$= a^{n} u[n] + 2a^{n-1} u[n-1] + 3a^{n-2} u[n-2]$$

Answer to Example 2: Visual approach

Answer to Example 2: Visual approach, cont.

Answer to Example 2: Output

Example 3

Now let's consider

$$h[n] = x[n] = \begin{cases} 1, & n = -1, 0, 1 \\ 0, & \text{otherwise} \end{cases}$$

Compute the convolution.

Answer to Example 3

Answer to Example 3 cont.

Answer to Example 3: Output

Finite-duration sequences

If the sequence x(n) and h(n) contain N_x and N_h samples, respectively, then the output sequence y(n) contains $N_y = N_x + N_h - 1$ samples.

Convolution: Toeplitz Matrix

First assume that h[n], for $n = 0, ..., N_h - 1$, and x[n], for $n = 0, ..., N_x - 1$, are FIR sequences.

$$y[n] = \sum_{k=0}^{N_h} h[k]x[n-k]$$

Expanding for each value of n, we have

$$y[0] = h[0]x[0]$$

$$y[1] = h[1]x[0] + h[0]x[1]$$

$$y[2] = h[2]x[0] + h[1]x[1] + h[0]x[2]$$

$$\vdots \qquad \vdots$$

Convolution: Toeplitz Matrix cont.

$$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \\ y[4] \\ \vdots \\ y[N_x + N_h - 2] \end{bmatrix} = \begin{bmatrix} h[0] & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ h[1] & h[0] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ h[1] & h[0] & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ h[2] & h[1] & h[0] & 0 & 0 & 0 & 0 & \cdots & 0 \\ h[3] & h[2] & h[1] & h[0] & 0 & 0 & 0 & \cdots & 0 \\ h[4] & h[3] & h[2] & h[1] & h[0] & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ x[N_x - 1] \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ \vdots \\ x[N_x - 1] \end{bmatrix}$$

$$v = Hx$$

Ejemplo 4

Obtain the matrix \mathbf{H} if h[n] is defined as

$$h[n] = \begin{cases} 1, & n = 0, \\ 0.95, & n = 1, \\ 0, & \text{otherwise,} \end{cases}$$

and the input sequence is ranging from n = 0 to 9.

Answer to Example 4

	T 1	0	0	0	0	0	0	0	0	0
	0.95	1	0	0	0	0	0	0	0	0
	0	0.95	1	0	0	0	0	0	0	0
	0	0	0.95	1	0	0	0	0	0	0
	0	0	0	0.95	1	0	0	0	0	0
H =	0	0	0	0	0.95	1	0	0	0	0
	0	0	0	0	0	0.95	1	0	0	0
	0	0	0	0	0	0	0.95	1	0	0
	0	0	0	0	0	0	0	0.95	1	0
	0	0	0	0	0	0	0	0	0.95	1
	0	0	0	0	0	0	0	0	0	0.95

Contents

Convolution

2 Convolution Application in Digital Communication

Stable Systems

Digital Communication Application: Equalizer

$$\begin{array}{ccccc} 00 & 01 & 11 & 10 \\ \hline -3 & -1 & 1 & 3 \end{array} \rightarrow x[n] (\mathcal{E}_x = 5)$$

$$f = \boldsymbol{H}^{\mathrm{T}} \left(\boldsymbol{H} \boldsymbol{H}^{\mathrm{T}} + \frac{1}{\mathrm{SNR}} \boldsymbol{I} \right)^{-1} \mathbf{1}_{n_0}$$
$$\mathrm{SNR} = \frac{\mathcal{E}_x}{\mathcal{N}_0}$$

Computer Simulation

For this simulation the following parameters are involved.

- We consider SNR = 100.
- Considering SNR = 100 and $\mathcal{E}_x = 5$ gives $\mathcal{N}_0 = 0.05$.
- The noise signal v[n] is a white gaussian random process of zero mean and variance \mathcal{N}_0 .
- The discrete channel is $h[n] = \delta[n] + 0.95\delta[n-1]$ (see Example 4).
- The length of the considered system f[n] is $N_f = 10$.

Results

bits	x[n]	y[n]	v[n]	y[n] + v[n]	$\widehat{x}_1[n]$	$\widehat{b_1}$	w[n]	$\widehat{x}_{eq}[n]$	\widehat{b}
11	1	-1.85	0.08	-1.77	-1	01	1.58	1	11
10	3	3.95	0.16	4.11	3	10	2.46	3	10
01	-1	1.85	-0.29	1.56	1	1 1	-0.80	-1	01
10	3	2.05	-0.23	1.82	1	11	2.33	3	10
01	-1	1.85	0.18	2.03	3	10	-0.31	-1	01
10	3	2.05	-0.03	2.02	3	10	1.88	1	11
01	-1	1.85	0.12	1.97	1	11	0.45	1	11
01	-1	-1.95	-0.21	-2.16	-3	00	-2.20	-3	00
00	-3	-3.95	-0.37	-4.32	-3	00	-2.22	-3	00
00	-3	-5.85	0.17	-5.68	-3	00	-3.51	-3	00
01	-1	-3.85	0.27	-3.58	-3	00	-0.05	-1	01

```
bits \cdots 1110011001100101000001\cdots
without equalizer \cdots 0110111110101100000000\cdots
with equalizer \cdots 11100110011111100000001\cdots
```

Contents

Convolution

Convolution Application in Digital Communication

Stable Systems

Stability for LTI systems

An LTI system is BIBO stable if

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty.$$

Proof. Lets first consider a bounded input, i.e., $|x[n]| < B_x$. Now using the convolution operation, the following relation holds

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right| \le \sum_{k=-\infty}^{\infty} |h[k]||x[n-k]|$$

$$\le B_x \sum_{k=-\infty}^{\infty} |h[k]| < B_y$$

Consequently

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty.$$

Example 5

Assume that $h[n] = a^n u[n]$. Is the system stable?

Answer to Example 5

Using the geometric sum, we have

$$\sum_{n=-\infty}^{\infty} |h[n]| = \sum_{n=-\infty}^{\infty} |a^n u[n]|$$

$$= \sum_{n=0}^{\infty} |a|^n$$

$$= \frac{1}{1 - |a|}, \quad |a| < 1$$

The system is stable if |a| < 1.

Example 6

Is the Accumulator stable (h[n] = u[n])?

Example 7

Now let's consider

$$h[n] = \begin{cases} 1, & n = -1, 0, 1 \\ 0, & \text{otherwise} \end{cases}$$

Is the system stable?

Homework 1

- Problem 2.47 from [3]
- Problem 2.56 from [3]
- Problem 2.57 from [3]
- Problem 2.58 from [3]
- Problem 2.63 from [3]
- Problem 2.64 from [3]

[3] Hwei Hsu, Schaum's Outline of Signals and Systems, Second Edition, 2010, McGraw Hill