Algorithmen und Datenstrukturen (ADS VO)	schriftliche Einzelprüfung	27.09.2013		1
--	-------------------------------	------------	--	---

		35		16		19		21		32		26		33
	+		+		+		+		+		+		+	
18														
z_1	2	\mathbf{z}_2		\mathbf{z}_3		z_4		z ₅		z ₆		Z 7		Z 8

Aufgabe 1 [2]

Fügen Sie in obiger Tabelle in den leeren Kästchen, vor denen das Pluszeichen steht, die Ziffern Ihrer Matrikelnummer ein. Führen Sie die Additionen durch und ermitteln Sie die Zahlen z_2 bis z_8 . (z_1 ist bereits mit dem fixen Wert 18 belegt.)

Aufgabe 2 [18]

- a. [9] Schreiben Sie <u>eine</u> Funktion in C++ mit einem Parameter n (vom Typ int), deren Laufzeitkomplexität <u>gleichzeitig</u> die Ordnungen $O(n^3)$, $\Omega(n)$ und $\Theta(n^2)$ hat.
- b. [9] Fügen Sie in nachfolgender Tabelle Kreuze an den Positionen ein, wo die in der Zeile angeführte Funktion von der in der Spalte angegebenen Ordnung ist.

f(n)	0(n)	$O(n^{3})$	$O(\log n)$	$O(\log^2 n)$	$\Omega(n^2)$	$\Omega(\log n)$	$\Omega(\log^3 n)$	$\Theta(n^2)$	$\Theta(\log n)$	$\Theta(\log^3 n)$
n										
n^2										
n^3										
$\log n$										
$\log^2 n$										
$\log^3 n$										

Anmerkung: $\log^2 n = (\log n)(\log n)$

Aufgabe 3 [20]

Die Werte z_1 bis z_8 . (aus Aufgabe 1) seien in dieser Reihenfolge von links nach rechts in einem Array gespeichert. Sortieren Sie die Werte aufsteigend mit

- a. [8] Quicksort
- b. [4] Mergesort
- c. [8] Heapsort

Aufgabe 4 [20]

- a. [9] Fügen Sie die Werte z_2 bis z_8 aus Aufgabe 1 (in dieser Reihenfolge) in eine zu Beginn leere Hashtabelle der Länge 7 ein. Verwenden Sie als Hashfunktion h(k) = k%7 und double hashing zur Kollisionsbehandlung. Die zweite Hashfunktion ist g(k) = k%5 + 1.
 - Skizzieren Sie den Zustand der Hashtabelle nach jedem Einfügeschritt.
 - (Anmerkung: Werte können mehrfach in der Tabelle gespeichert werden. Die Tabelle ist statisch, wird also nicht vergrößert!)
- b. [1] Löschen Sie den Wert $\mathbf{z_3}$ aus der Tabelle und skizzieren Sie den Zustand der Hashtabelle.
- c. [5] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert z_8 an.
- d. [5] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert 50 an.

Algorithmen und Datenstrukturen (ADS VO)	schriftliche Einzelprüfung	27.09.2013		2
--	-------------------------------	------------	--	---

Aufgabe 5 [20]

- a. [8] Fügen Sie die Werte z₂ bis z₈ aus Aufgabe 1 (in dieser Reihenfolge) in einen zu Beginn leeren binären Suchbaum ein.
 Skizzieren Sie den Zustand des Baums nach jedem Einfügeschritt.
 (Anmerkung: Werte können mehrfach im Baum gespeichert werden.)
- b. [4] Geben Sie in C++ ähnlicher Notation die Definition einer Datenstruktur für einen binären Suchbaum an.
- c. [4] Geben Sie in C++ ähnlicher Notation eine Definition einer Funktion an, die den binären Suchbaum depth first traversiert und alle gespeicherten Werte ausgibt.
- d. [4] Bestimmen Sie die Laufzeitkomplexität Ihrer Traversierungsfunktion abhängig von der Anzahl n der im Suchbaum gespeicherten Werte in Θ-Notation.

Aufgabe 6 [20]

Gegeben ist der folgende gerichtete Graph (die Werte $\mathbf{z_1}$ bis $\mathbf{z_6}$. sind aus Aufgabe 1 zu übernehmen):

- a. [3] Geben Sie die Adjazenzmatrix des Graphen an.
- b. [3] Skizzieren Sie die Adjazenzliste des Graphen.
- c. [10] Bestimmen Sie mit dem Algorithmus von Dijkstra die jeweils kürzesten Wege vom Knoten 1 zu allen anderen Knoten des Graphen.
- d. [4] Ist für den Dijkstra-Algorithmus eher die Verwendung einer Adjazenzmatrix oder einer Adjazenzliste vorteilhaft? Begründen Sie Ihre Aussage.