

Introduction

- Digital circuits are frequently used for arithmetic operations
- Fundamental arithmetic operations on binary numbers and digital circuits which perform arithmetic operations will be examined.

Binary Addition

- · Binary numbers are added like decimal numbers.
- In decimal, when numbers sum more than 9 a carry results.
- In binary when numbers sum more than 1 a carry takes place.
- Addition is the basic arithmetic operation used by digital devices to perform subtraction, multiplication, and division.

Binary Addition

- 0 + 0 = 0
- 1 + 0 = 1
- 1 + 1 = 0 + carry 1
- 1 + 1 + 1 = 1 + carry 1
- E.g.:

1010 001 (1) (10)+1100 (12)+101 (5) 10110

(22)+111 (7)

1101 (13)

Representing Signed Numbers

- Since it is only possible to show magnitude with a binary number, the sign (+ or -) is shown by adding an extra "sign" bit.
- A sign bit of 0 indicates a positive number.
- A sign bit of 1 indicates a negative number.
- The 2's complement system is the most commonly used way to represent signed numbers.

Representing Signed Numbers

- Solution 3: Two's complement represent negative numbers by taking its magnitude, invert all bits and add one:
 - Positive number
- +27 = 0001 1011b
- Invert all bits
- 1110 0100b

Add 1

- -27 = 1110 0101b
- Unsigned number

- -2⁷ 2⁶ 20
- Signed 2's complement

Representing Signed Numbers

- So far, numbers are assumed to be unsigned (i.e. positive)
- How to represent signed numbers?
- Solution 1: Sign-magnitude Use one bit to represent the sign, the remain bits to represent magnitude

+27 = 0001 1011 b

magnitude

- -27 = 1001 1011 b
- Problem: need to handle sign and magnitude separately.
- Solution 2: One's complement If the number is negative, invert each bits in the magnitude

+27 = 0001 1011 b

-27 = 1110 0100 b

- Not convenient for arithmetic add 27 to -27 results in 1111 1111_h
 - Two zero values

Examples of 2's Complement

- A common method to represent -ve numbers:
 - use half the possibilities for positive numbers and half for negative numbers
 - to achieve this, let the MSB have a negative weighting
- Construction of 2's Complement Numbers
 - 4-bit example

Decimal	2's Complement (Signed Binary)			
	-8	+4	+2	+1
5	0	1	0	1
-5	1	0	1	1
7	0	1	1	1
-3	1	1	0	1

dce	Sign Extension				
•	How to translate an 8-bit 2's complement number to a 16-bit 2's complement number?				
		-2 ⁷	26	20	
	-2 ¹⁵ duplicate sign bit		2 ⁶	20	
	s	S			
ВК триси	This operation is known	a	s sign e	extensi	on.

dce 2018	Comparison Table						
	Note the "wrap-	Unsigned	Binary	2' comp			
	•	7	0111	7			
	around" effect	6	0110	6			
	of the binary	5	0101	5			
	•	4	0100	4			
	representation	3	0011	3			
	: a The ten of the	2	0010	2			
	i.e. The top of the	1	0001	1			
	table wraps	0	0000	0			
	around to the	15	1111	-1			
		14	1110	-2			
	bottom of the	13	1101	-3			
	table	12	1100	-4			
		11	1011	-5			
		10	1010	-6 -			
		9	1001	-7			
		8	1000	-8			
ВК трисм				10			

Sign Extension

- Sometimes we need to extend a number into more bits
- Decimal
 - converting 12 into a 4 digit number gives 0012
 - we add 0's to the left-hand side
- Unsigned binary
 - converting 0011 into an 8 bit number gives 00000011
 - we add 0's to the left-hand side
- For signed numbers we duplicate the sign bit (MSB)
- Signed binary
 - converting 0011 into 8 bits gives 00000011 (duplicate the 0 MSB)
 - converting 1011 into 8 bits gives 11111011 (duplicate the 1 MSB)
 - Called "Sign Extension"

12

dce

Representing Signed Numbers

- In order to change a binary number to 2's complement it must first be changed to 1's complement.
 - To convert to 1's complement, simply change each bit to its complement (opposite).
 - To convert 1's complement to 2's complement add 1 to the 1's complement.
- A positive number is true binary with 0 in the sign bit.
- A negative number is in 2's complement form with 1 in the sign bit.
- A number is negated when converted to the opposite sign.
- A binary number can be negated by taking the 2's complement of it.

13

ice

Addition in the 2's Complement System

- Perform normal binary addition of magnitudes.
- The sign bits are added with the magnitude bits.
- If addition results in a carry of the sign bit, the carry bit is ignored.
- If the result is positive it is in pure binary form.
- If the result is negative it is in 2's complement form.

15

Signed Addition

- The same hardware can be used for 2's complement signed numbers as for unsigned numbers
 - this is the main advantage of 2's complement form
- Consider 4 bit numbers:
 - the Adder circuitry will "think" the negative numbers are 16 greater than they are in fact
 - but if we take only the 4 LSBs of the result (i.e. ignore the carry out of the MSB) then the answer will be correct providing it is with the range: -8 to +7.
- To add 2 n-bit signed numbers without possibility of overflow we need to:
 - sign extend to n+1 bits

use an n+1 bit adder

1

Addition in the 2's Complement System

· Perform normal binary addition of magnitudes.

Subtraction in the 2's Complement System

- The number subtracted (subtrahend) is negated.
- The result is added to the minuend.
- The answer represents the difference.
- If the answer exceeds the number of magnitude bits an overflow results.

+9	\rightarrow	0 1001	
+8	\rightarrow	0 1000	
		1 0001	
		Sign bit	

Multiplication of Binary Numbers

- This is similar to multiplication of decimal numbers.
- Each bit in the multiplier is multiplied by the multiplicand.
- The results are shifted as we move from LSB to MSB in the multiplier.
- All of the results are added to obtain the final product. 1001 (9)

1001	(9)
<u>x</u> 1011	(11)
1001	
1001	
0000	
1001	
1100011	(99)

dc

Multiplication and Division by 2^N

- In decimal, multiplying by 10 can be achieved by
 - shifting the number left by one digit adding a zero at the LS digit
- In binary, this operation multiplies by 2
- In general, left shifting by N bits multiplies by 2^N
 - zeros are always brought in from the right-hand end
 - E.g.

Decimal	
13	
26	
52	

18

Binary Division

- · This is similar to decimal long division.
- It is simpler because only 1 or 0 are possible.
- The subtraction part of the operation is done using 2's complement subtraction.
- If the signs of the dividend and divisor are the same the answer will be positive.
- If the signs of the dividend and divisor are different the answer will be negative.

Unsigned	Signed
MSB has a positive value (e.g. +8 for	MSB has a negative value (e.g8 for
a 4-bit system)	a 4-bit system)
The carry-out from the MSB of an adder can be used as an extra bit of the answer to avoid overflow	To avoid overflow in an adder, need to sign extend and use an adder with one more bit than the numbers to be added
To increase the number of bits, add zeros to the left-hand side	To increase the number of bits, sign extend by duplicating the MSB
Complementing and adding 1 converts X to (2N - X)	Complementing and adding 1 converts X to -X

dce 2018	lexadecimal Arithmetic			
	Hex addition:			
	 Add the hex digits in decimal. 			
	 If the sum is 15 or less express it directly in hex digits. 			
	 If the sum is greater than 15, subtract 16 and carry 1 to the next position. 			
•	Hex subtraction – use the same method as for binary numbers.			
•	When the MSD in a hex number is 8 or greater, the number is negative. When the MSD is 7 or less, the number is positive.			
	3AF +23C $592_{(16)} - 3A5_{(16)}$ FFF - 3A5 = C5A C5A + 1 = C5B is 2's complement of 3A5			
	5EB 592			
	+ C5B			
BK TPHON	λ 1ED			
	23			

BCD Addition • When the sum of each decimal digit is less than 9, the operation is the same as normal binary addition. • When the sum of each decimal digit is greater than 9, a binary 6 is added. This will always cause a carry. 47 BCD 47 0111 0100 $\frac{+35}{82}$ 35 BCD + 00110101 1100 0111 invalid + 6 0110 1000 0010 valid

Arithmetic Circuits

- Typical sequence of operations:
 - Control unit is instructed to add a specific number from a memory location to a number stored in the accumulator register.
 - The number is transferred from memory to the B
 - Number in B register and accumulator register are added in the logic circuit, with sum sent to accumulator for storage.
 - The new number remains in the accumulator for further operations or can be transferred to memory for storage.

Parallel Binary Adder The A and B variables represent 2 binary numbers to be added. The C variables are the carries. The S variables are the sum bits. Addend bits from B register Augend bits Sum appears at S4, S3, S2, S1, S0 outputs.

Binary Addition

- Recall the binary addition process
 - A 1 0 0 1
 - + B0011
 - S1100
- LS Column has 2 inputs 2 outputs
 - Inputs:
- Outputs:
- Other Columns have 3 inputs, 2 outputs
- C1
- Inputs: Cn
- Outputs:
- Sn Cn+1

B0

- We use a "half adder" to implement the LS column
- We use a "full adder" to implement the other columns
- Each column feeds the next-most-significant column.

Half Adder

Truth Table

Α	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Boolean Equations $S = \overline{A}B + A\overline{B} = A \oplus B$
 - C = AB
- **Implementation**


```
module Add_full Add_half or

module Add_full(c_out, sum, a, b, c_in);
output sum, c_out;
input a, b, c_in;
wire w1, w2, w3;

Add_half AH1(.sum(w1), .c_out(w2), .a(a), .b(b));
Add_half AH2(.sum(sum), .c_out(w3), .a(c_in), .b(w1));
or carry_bit(c_out, w2, w3);
endmodule
```

```
module fa_rtl (A, B, CI, S, CO);

input A, B, CI;
output S, CO;

// use continuous assignments
assign S = A ^ B ^ CI;
assign CO = (A & B) | (A & CI) | (B & CI);
endmodule
```

```
Can Mix Styles In Hierarchy!
module Add_half_bhv(c_out, sum, a, b);
  output reg sum, c_out;
  input a, b;
  always @(a, b) begin
     sum = a \wedge b;
     c_out = a \& b;
  end
endmodule
       module Add_full_mix(c_out, sum, a, b, c_in);
          output sum, c out;
          input a, b, c_in;
          wire w1, w2, w3;
          Add_half_bhv AH1(.sum(w1), .c_out(w2), .a(a), .b(b));
          Add_half_bhv AH2(.sum(sum), .c_out(w3),.a(c_in), .b(w1));
          assign c_out = w2 | w3;
       endmodule
```

```
• Circuit "reacts" to given events (for simulation)
• Actually list of signal changes that affect output

module fa_bhv (A, B, CI, S, CO);

input A, B, CI;
output S, CO;
reg S, CO; // explained in later lecture – "holds" values

// use procedural assignments
always@(A or B or CI)
begin
S = A ^ B ^ CI;
CO = (A & B) | (A & CI) | (B & CI);
end
endmodule
```


dce

Complete Parallel Adder With Registers

 Register notation – to indicate the contents of a register we use brackets:

[A]=1011 is the same as $A_3=1$, $A_2=0$, $A_1=1$, $A_0=1$

- A transfer of data to or from a register is indicated with an arrow
 - [B]→[A] means the contents of register B have been transferred to register A.
- Eg.: 1001 + 0101 using the parallel adder:
 - t1 : A CLR pulse is applied
 - t2:1001 from mem-> B
 - t3:1001 + 0000 -> A
 - t4:0101 from mem-> B
 - t5: The sum outputs -> A
 - The sum of the two numbers is now present in the accumulator.

42

Carry Propagation

- Parallel adder speed is limited by carry propagation (also called carry ripple).
- Carry propagation results from having to wait for the carry bits to "ripple" through the device.
- Additional bits will introduce more delay.
- Various techniques have been developed to reduce the delay. The look-ahead carry scheme is commonly used in high speed devices.

44

