Feuille d'exercices 18. Calcul asymptotique

Exercice 18.1 : (niveau 1)

Développement limité à l'ordre 3 au voisinage de 0 de $e^{\sin t}$.

Exercice 18.2 : (niveau 1)

Donner un équivalent simple de $\sum_{k=1}^{n} \frac{1}{k + \sqrt{k}}$ lorsque n tend vers l'infini.

Exercice 18.3: (niveau 1)

Donnez des équivalents de

$$\diamond \frac{1}{\sqrt[3]{1+t^3}}$$
 au voisinage de -1 .

$$\Rightarrow \frac{1}{\sqrt[3]{1+t^3}} \text{ au voisinage de } -1.$$

$$\Rightarrow \frac{chx - \cos x}{(e^x - 1)^{\frac{5}{2}}} \text{ au voisinage de } 0 \text{ et de } +\infty.$$

$$\Rightarrow \frac{\ln t}{\sqrt{1-t}}$$
 au voisinage de 0 et de 1.

Exercice 18.4: (niveau 1)

Nature de
$$\sum_{n\geq 1} a_n$$
, où $a_n = \frac{1}{\sum_{k=1}^n \sqrt[k]{k}}$.

Exercice 18.5 : (niveau 1)

Calculer le développement limité à l'ordre 3 au voisinage de 0 de $\cos(\sqrt{t+t^2})$: on attend des calculs précis et justifiés.

Exercice 18.6: (niveau 1)

Soit
$$a \in \mathbb{R}$$
. Déterminer la nature de $\sum a_n$ où $a_n = n^a \sum_{k=1}^n \sqrt{k}$.

Exercice 18.7 : (niveau 1)

Calculer la limite en 0, si elle existe, de
$$(\sin x)\sin\left(\frac{1}{x^2}\right)$$
, $(1+\tan x)^{\frac{1}{\sin x}}$, $\frac{\tan x - \sin x}{x^3}$, et $\frac{\sin(x\ln x)}{x}$.

Exercice 18.8 : (niveau 1)

Nature de la série de terme général $a_n = \cos\left(\frac{\pi n^2}{2n^2 + an + 1}\right)$ où $a \in \mathbb{R}$.

Exercice 18.9 : (niveau 1)___

 $DL_3(0) \text{ de } f(x) = xe^{\sin x} - \sqrt{1+x}.$

Exercice 18.10 : (niveau 1)

Déterminer la nature de la série de terme général $u_n = \cos(\pi\sqrt{n^2 + n})$.

Exercice 18.11 : (niveau 1)

Donner un équivalent simple en 0 et en $+\infty$ de $\frac{1}{x} - \frac{1}{x^2}$ et de $\ln(4x^4 - 2\cos x + 3)$, .

Exercice 18.12 : (niveau 1)

Nature de $\sum u_n$ où $u_n = \ln \left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}} \right)$, avec $a \in \mathbb{R}$.

Exercice 18.13 : (niveau 1)

Déterminer la limite lorsque x tend vers 1 de $\frac{x^x - x}{1 - x + \ln x}$.

Exercice 18.14: (niveau 1)

Nature de la série de terme général $u_n = \frac{(-1)^n \sqrt{n} \sin\left(\frac{1}{\sqrt{n}}\right)}{\sqrt{n} + (-1)^n}$.

Exercice 18.15 : (niveau 2)

Donnez des équivalents de

 $f(x) = \frac{\ln x}{\sqrt{x}(1-x)^{\frac{3}{2}}} au voisinage de 0 et de 1.$

 $\Rightarrow f(x) = \frac{\sin(ax)}{e^x - 1} \text{ au voisinage de } 0.$

 $\Rightarrow f(x) = \frac{e^x - 1}{th3x - th2x} \text{ au voisinage de 0 et de } +\infty.$

Exercice 18.16: (niveau 2)

Donnez des équivalents au voisinage de $+\infty$ de

 $\diamond u_n = \left(\frac{\ln(n+a)}{\ln(n+b)}\right)^{n\ln(n)}.$

 $\Rightarrow a_n = \arccos(\frac{2}{\pi}\arctan(n^2)).$

Exercice 18.17 : (niveau 2)

Calculer la limite lorsque n tend vers $+\infty$ de $\sum_{k=1}^{n} \sin(\frac{k}{n^2})$.

Exercice 18.18: (niveau 2)

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sin(u_n)$.

- 1°) Montrer que $u_n \xrightarrow[n \to +\infty]{} 0$.
- **2**°) Déterminer $\alpha \in \mathbb{Z}$ tel que $u_{n+1}^{\alpha} u_n^{\alpha} \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+^*$.
- 3°) Donner un équivalent de u_n .

Exercice 18.19: (niveau 2)

Calculer la limite en $+\infty$, si elle existe, de $x \sin(\frac{1}{x})$, $\left(\frac{x^4}{x-1}\right)^{\frac{1}{3}} - x$, $\cos\sqrt{x+1} - \cos\sqrt{x}$, et $\frac{\sinh\sqrt{x^2+2}}{e^x}$.

Exercice 18.20: (niveau 2)

Etudier la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par : $u_1\in\mathbb{R}_+^*$ et, pour tout $n\in\mathbb{N}^*$, $u_{n+1}=u_n+\frac{1}{nu_n}$ et déterminer un équivalent de u_n lorsque n tend vers $+\infty$.

Exercice 18.21 : (niveau 2)

$$DL_{100}(0) \text{ de } f(x) = \ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right).$$

Exercice 18.22: (niveau 2)

$$DL_2(1)$$
 de $f(x) = \sqrt{x + \sqrt{x}}$.

Exercice 18.23: (niveau 2)

Pour tout $x \in \mathbb{R}$, on pose $f(x) = e^x + \arctan x - 1$.

Montrer que f^{-1} est définie au voisinage de 0 et déterminer son $\mathrm{DL}_2(0)$.

Exercice 18.24 : (niveau 2)

Soit $\alpha \in \mathbb{R}$. On pose $u_n = \frac{1}{\ln(n) + (-1)^n n^{\alpha}}$. Déterminer la nature de $\sum u_n$.

Exercice 18.25 : (niveau 2)

Soit $\alpha \in \mathbb{R}$. Déterminer la nature de la série de terme général

$$a_n = \frac{1}{n^{\alpha}}((n+1)^{1+\frac{1}{n}} - (n-1)^{1-\frac{1}{n}}).$$

Exercice 18.26: (niveau 2)

Nature de $\sum a_n$ où $a_n = \arccos(\frac{2}{\pi}\arctan(n^2))$.

Exercice 18.27 : (niveau 2)

Déterminer la nature de $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt[n]{n!}}$.

Exercice 18.28 : (niveau 3)

- 1°) Pour tout $n \in \mathbb{N}^*$, montrer que l'équation $\sum_{k=1}^n x^k = 1$ admet une unique solution sur [0,1] notée a_n .
- 2°) Montrer que la suite (a_n) est strictement décroissante.
- 3°) Montrer que la suite (a_n) converge vers une limite l que l'on calculera.
- $\mathbf{4}^{\circ}$) Donner un équivalent de $a_n l$.

Exercice 18.29 : (niveau 3)

- 1°) Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique $x_n \in \mathbb{R}_+^*$ tel que $\ln(x_n) + nx_n = 0$.
- $\mathbf{2}^{\circ}$) Montrer que $x_n \xrightarrow[n \to +\infty]{} 0$.
- 3°) Donner un équivalent de x_n .

Exercices supplémentaires

Exercice 18.30 : (niveau 1)

Développement limité à l'ordre 4 au voisinage de 0 de $\frac{1}{\cos t}$.

Exercice 18.31 : (niveau 1)

On fixe deux réels a et b. Déterminer la nature de la série $\sum u_n$

où
$$u_n = \sin(\frac{1}{n}) + a\tan(\frac{1}{n}) + b\ln(\frac{n+1}{n-1}).$$

Exercice 18.32: (niveau 1)

Développement limité à l'ordre 4 au voisinage de 0 de $\ln^2(1+t)$.

Exercice 18.33: (niveau 1)

Développement limité à l'ordre 6 au voisinage de 0 de $\ln(\cos t)$.

Exercice 18.34 : (niveau 1)

Nature de la série $\sum a_n$ où $a_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$.

Exercice 18.35 : (niveau 1)

Développement limité à l'ordre 6 au voisinage de 0 de $\arcsin^2 t$.

Exercice 18.36: (niveau 1)

Calculez la limite de $(x\cot a(x))^{\cot an(x)}$ lorsque x tend vers 0 par valeurs supérieures.

Exercice 18.37: (niveau 1)

Calculer les limites à gauche et à droite en 0, si elles existent,

de
$$f(x) = x|1 + \frac{1}{x}|$$
 et $g(x) = \frac{\sin x}{\sqrt{1 - \cos x}}$.

Exercice 18.38: (niveau 1)

Déterminer la nature de la série de terme général $u_n = \frac{\sum_{k=1}^n \ln(k)}{n^{\alpha}}$, où $\alpha \in \mathbb{R}$.

Exercice 18.39 : (niveau 1)

Déterminer la limite lorsque x tend vers 0 de $\frac{x^x - (\sin x)^{\sin x}}{x^3}$.

Exercice 18.40 : (niveau 1)

- 1°) $f(x) = \frac{x \sin x}{x+3}$ possède-t-elle une limite en $+\infty$?
- $\mathbf{2}^{\circ}$) $g(x) = (\sin x) \ln(1+x)$ possède-t-elle une limite en $+\infty$?
- 3°) $h(x) = \frac{\sin \frac{1}{x}}{e^{\frac{1}{x}} + 1}$ possède-t-elle une limite en 0?

Exercice 18.41 : (niveau 1)

- $\mathbf{1}^{\circ}$) Développement limité de $(sint)^{15}$ à l'ordre 17 au voisinage de 0.
- $\mathbf{2}^{\circ}$) Développement limité de $e^{\cos t}$ au voisinage de 0 à l'ordre 4.

Exercice 18.42: (niveau 1)

Soient a, b et c trois réels. Déterminez la nature de la série $\sum a_n$ où $a_n = \sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + an^2 + bn + c}$.

Exercice 18.43 : (niveau 1)

Donnez le développement limité de $(1+sint)^{\frac{1}{t}}$ à l'ordre 4 au voisinage de 0.

Exercice 18.44 : (niveau 2)

Donner un équivalent de $u_n = \sum_{k=n+1}^{2n} \frac{k}{\ln k}$.

Exercice 18.45 : (niveau 2)

Natures de $\sum_{n\geq 1} (\operatorname{ch}(\sqrt{\ln n}))^{-2}$, $\sum_{n\geq 1} \operatorname{argch}\left(\frac{n+1}{n}\right)$ et $\sum \left(\left(\frac{\pi}{2}\right)^{\frac{3}{5}} - (\arctan n)^{\frac{3}{5}}\right)$.

Exercice 18.46: (niveau 2)

Donnez un équivalent au voisinage de 0 de $\operatorname{sh}(\sin t) - \sin(\operatorname{sh} t)$.

Exercice 18.47 : (niveau 2)

Donnez des équivalents au voisinage de $+\infty$ de

$$\diamond \quad \frac{n+i}{n^3+i}.$$

$$\Rightarrow u_n = \frac{1}{\ln(n) + (-1)^n n^{\alpha}}.$$

$$a_n = \frac{1}{n^{\alpha}} ((n+1)^{1+\frac{1}{n}} - (n-1)^{1-\frac{1}{n}}).$$

Exercice 18.48 : (niveau 2)

Déterminez la nature de la série $\sum a_n$ où $a_n = \sin(\pi\sqrt{n^2+1})$.

Exercice 18.49 : (niveau 2)

Soit
$$(\alpha, \beta) \in \mathbb{R}^2$$
. Déterminer la nature de $\sum u_n$ où $u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}}$.

Exercice 18.50 : (niveau 2)

Soit $\alpha \in \mathbb{R}_+^*$ Calculer lorsqu'elle existe la limite l de (a_n) où :

$$\forall n \in \mathbb{N}^* \ a_n = \cos^n \left(\frac{1}{n^{\alpha}}\right)$$
. Etudier la nature de $\sum_{n \geq 1} (a_n - l)$.

Exercice 18.51 : (niveau 2)

Calculer le développement limité à l'ordre 2 au voisinage de $\frac{\pi}{2}$ de $f(x) = (1 + \sin x)^x$.

Exercice 18.52 : (niveau 2)

Nature de la série de terme général
$$u_n = (-1)^n \left((1 + \frac{1}{n})^{-n} - \frac{1}{e} \right)$$
.

Exercice 18.53 : (niveau 2)

Donner un développement asymptotique en
$$o(\frac{1}{n^3})$$
 de $u_n = \frac{1}{n!} \sum_{k=0}^n k!$.

Exercice 18.54 : (niveau 2)

On pose $f(x) = xe^{(x^2)}$.

- 1°) Montrer que f est un C^{∞} -difféomorphisme de \mathbb{R} sur \mathbb{R} .
- 2°) Déterminer un développement limité de f^{-1} au voisinage de 0 à l'ordre 6.

Exercice 18.55: (niveau 2)

Soient
$$c \in \mathbb{R}_{+}^{*}$$
. On note $f: \mathbb{R} \longrightarrow \mathbb{R}$
 $x \longmapsto x \sin(x) - c \cos(x)$.

- 1°) Pour $n \in \mathbb{N}$, montrer que f possède un seul zéro x_n dans l'intervalle $]n\pi, n\pi + \frac{\pi}{2}$ [.
- **2**°) Déterminer un équivalent de $x_n n\pi$ quand n tend vers $+\infty$.

Exercice 18.56: (niveau 2)

Soit
$$(a,b) \in (\mathbb{R}_+^*)^2$$
. Pour tout $n \in \mathbb{N}^*$, on note $u_n = \left(\frac{\ln(n+a)}{\ln(n+b)}\right)^{n\ln(n)}$.

- 1°) Montrer que u_n tend vers une limite l lorsque n tend vers $+\infty$.
- **2**°) Déterminer la nature de la série $\sum (u_n l)$.

Exercice 18.57 : (niveau 2)

On note (u_n) la suite définie par $u_1 = 1$ et, pour tout $n \ge 1$, $u_{n+1} = (n + u_n^{n-1})^{\frac{1}{n}}$.

- 1°) Déterminer la limite de u_n .
- 2°) Donner un développement de u_n en $o(\frac{1}{n})$.

Exercice 18.58: (niveau 2)

Soit $f: I \longrightarrow \mathbb{R}$ de classe C^3 , où I est un intervalle ouvert contenant 0.

On suppose qu'au voisinage de 0, $f(x) = x + x^2 + x^3 + o(x^3)$.

- 1°) Montrer que f^{-1} est définie et de classe C^3 sur un intervalle ouvert contenant 0.
- 2°) Donner un développement limité de $f^{-1}(x)$ au voisinage de 0 à l'ordre 3.
- 3°) On suppose maintenant que f est de classe C^n , où $n \in \mathbb{N}^*$, et qu'au voisinage de

$$0, f(x) = \sum_{k=1}^{n} x^k + o(x^n).$$

Donner un développement limité de f^{-1} au voisinage de 0 à l'ordre n.

Exercice 18.59: (niveau 2)

Déterminer une application $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ telle qu'au voisinage de $+\infty$, pour tout $n \in \mathbb{N}^*$, $\ln^n x = o(f(x))$ et $f(x) = o(x^{\frac{1}{n}})$.

Exercice 18.60: (niveau 2)

Soit (a_n) une suite de réels positifs ou nuls.

Montrer que
$$\left[\frac{a_n}{\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 0\right] \iff \left[e^{a_n} \sim \left(1 + \frac{a_n}{n}\right)^n\right].$$

Exercice 18.61: (niveau 3)

Exercice 18.61 : (niveau 3)

On pose
$$f(x) = \frac{e^{(x^2)} - 1}{x}$$
 lorsque $x \in \mathbb{R}^*$ et $f(0) = 0$.

On admet que f réalise un C^{∞} -difféomorphisme de \mathbb{R}

On admet que f réalise un C^{∞} -difféomorphisme de $\mathbb R$ dans $\mathbb R$.

Déterminer un développement limité de f^{-1} au voisinage de 0 à l'ordre 6.

Exercice 18.62 : (niveau 3)

Soit
$$(a_n)$$
 une suite de réels telle que $a_n \sum_{k=1}^n a_k^2 \underset{n \to +\infty}{\longrightarrow} 1$.

Déterminer la nature de $\sum a_n$.

Exercice 18.63: (niveau 3)

Soit
$$f: x \longmapsto \tan x - \frac{x^2}{x+1}$$
.

Pour $n \in \mathbb{N}^*$, montrer que f a un seul zéro noté x_n dans $]n\pi, n\pi + \frac{\pi}{2}[$.

Donner un développement de x_n lorsque n tend vers $+\infty$, à la précision $o\left(\frac{1}{n^3}\right)$.

Exercice 18.64: (niveau 3)

1°) Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un unique réel $x_n \in \mathbb{R}_+^*$

tel que
$$\int_0^{x_n} \frac{t^n}{1+t} dt = \ln(1+x_n)$$
.

2°) Montrer qu'à partir d'un certain rang, $x_n \in [1, 2]$.

- **3°)** Montrer que la suite (x_n) converge et calculer sa limite α .
- **4**°) Donner un équivalent de $x_n \alpha$ lorsque n tend vers $+\infty$.

Exercice 18.65 : (niveau 3)

- 1°) On note U l'ensemble des suites réelles décroissantes (u_n) telles que $u_n + u_{n+1} \sim \frac{1}{n}$. Montrez que les éléments de U sont tous équivalents.
- 2°) Même question avec l'ensemble V des suites réelles positives telles que $v_n + v_{2n} \sim \frac{1}{n}$.

Exercice 18.66: (niveau 3)

Soit $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites d'applications de \mathbb{R}_+ dans \mathbb{R}_+ telles que, pour tout $n\in\mathbb{N}$ et $x\in\mathbb{R}, f_n(x)\leq f_{n+1}(x)$ et $g_{n+1}(x)\leq g_n(x)$.

On suppose de plus que, pour tout $n \in \mathbb{N}$, $f_n(x) = o(g_n(x))$.

Montrer qu'il existe une application H de \mathbb{R}_+ dans \mathbb{R}_+ telle que, pour tout $n \in \mathbb{N}$, $f_n(x) = o(H(x))$ et $H(x) = o(g_n(x))$ lorsque x tend vers $+\infty$.