Vysoké učení technické v Brně

Fakulta informačních technologií

Elektrotechnika pro informační technologie 2022/2023

Semestrální projekt

Obsah

Příklad 1	3
Příklad 2	7
Příklad 3	9
Příklad 4	11
Příklad 5	14
Tabukla výsledků	16

Stanovte napětí U_{R2} a proud I_{R2} Použijte metodu postupného zjednodušování obvodu.

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
В	95	115	650	730	340	330	410	830	340	220

1. spojíme sériové napětí U_1 a U_2 a odpor R_6 a R_8 a paralelní odpor R_2 a R_3 :

$$U_{12} = U_1 + U_2 = 210V$$

$$R_{68} = R_6 + R_8 = 1050\Omega$$

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3} = 231,9626\Omega$$

2. Použijeme metodu trojúhelník -> hvězda

$$R_A = \frac{R_{23}R_4}{R_{23} + R_4 + R_5} = \frac{231,9626 \cdot 330}{231,9626 + 330 + 410} = 78,756\Omega$$

$$R_B = \frac{R_{23}R_5}{R_{23} + R_4 + R_5} = \frac{231,9626 \cdot 410}{231,9626 + 330 + 410} = 97,848\Omega$$

$$R_C = \frac{R_4R_5}{R_{23} + R_4 + R_5} = \frac{410 \cdot 330}{231,9626 + 330 + 410} = 139,203\Omega$$

3. Spojíme R_1 a R_A , R_B a R_{68} , R_C a R_7 :

$$R_{A1} = R_A + R_1 = 78,756 + 650 = 728,756\Omega$$

 $R_{B68} = R_B + R_{68} = 97,848 + 1050 = 1147,848\Omega$
 $R_{C7} = R_C + R_7 = 139,203 + 340 = 479,203\Omega$

4. Spojíme paralelní odpor R_{B68} a R_{C7}

$$R_{BC678} = \frac{R_{B68}R_{C7}}{R_{B68} + R_{C7}} = \frac{1147,848 \cdot 479,203}{1147,848 + 479,203} = 338,067\Omega$$

5. Dopočítáme R_{EKV} a celkový proud

$$R_{EKV} = R_{A1} + R_{BC678} = 338,067 + 728,756 = 1066,823\Omega$$

$$I = \frac{U}{R_{EKV}} = 0,1968A$$

6. Zpětným skládáním obvodu dopočítáme napětí a proud na rezistoru R2:

(1)
$$U_{RA1} = 0.1968 \cdot 728,756 = 143,419V$$

$$U_{RBC678} = 0.1968 \cdot 338,067 = 66,532V$$

$$U_{RA} = 0.1968 \cdot 78,756 = 15.499V$$

$$U_{R1} = 0.1968 \cdot 650 = 127,92V$$

(2) Napětí U_{RBC678} je stejné na rezistorech R_{B68} a R_{C7} , proto musíme vypočítat proud

$$I_{RB68} = \frac{66,532}{1147,848} = 0,058A$$

5

(3) Pomocí proudu dopočítáme napětí U_{RB}

$$U_{RB} = 0.058 \cdot 97.848 = 5.675V$$

(4) Napětí na rezistoru R_{23} je rovné součtu napětí na R_A a R_B

$$U_{R23} = U_{RA} + U_{RB} = 5,675 + 15,499 = 21,174V = U_{R2}$$

(5) Nyní již dopočítáme proud na rezistoru R₂

$$I_{R2} = \frac{U_{R23}}{R_2} = \frac{21,174}{730} = \mathbf{0}, \mathbf{029A}$$

 $\label{eq:priklad2} {\mbox{\bf P\'iklad 2}}$ Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

sk.	U[V]	R1 [Ω]	R2 [Ω]	R3 [Ω]	R4 [Ω]	R5 [Ω]
Н	220	190	360	580	205	560

Nejprve si vytvořím náhradní obvod pro R_5 a vyjádřím proud I_{R5} a napětí U_{R5} :

Dále překreslím obvod bez rezistoru R5, zkratuji zdroj a zjednoduším:

$$R_{123} = R_1 + R_2 + R_3 = 190 + 360 + 580 = 1130\Omega$$

$$R_i = \frac{R_{123}R_4}{R_{123} + R_4} = \frac{1130 \cdot 205}{1130 + 205} = 173,521\Omega$$

Dále je zapotřebí vypočítat hodnotu R_{EKV}:

$$R_{EKV} = R_1 + R_2 + R_3 + R_4 = 1335\Omega$$

Pomocí R_{EKV} a U vypočítáme hodnotu celkového proudu:

$$I = \frac{U}{R_{EKV}} = \frac{220}{1335} = 0,1648A$$

Víme, že napětí $U_i = U_{R4}$, sestavíme rovnici podle Kirchhoffova zákona a vypočítáme U_i :

$$U = U_{R13} + U_{R4} + U_{R2}$$

$$U = R_{13} \cdot I + U_i + R_2 \cdot I$$

$$U_i = U - R_{13} \cdot I - R_2 \cdot I = 220 - 770 \cdot 0,1648 - 360 \cdot 0,1648 = 33,776V$$

Dosadíme do vzorečku vyjádřeného na začátku:

$$I_{R5} = \frac{33,776}{173,521 + 560} = \mathbf{0}, \mathbf{046A}$$

$$U_{R5} = 560 \cdot 0,046 = \mathbf{25},786V$$

Stanovte napětí U_{R4} a I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

Sk.	U [V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	$R_5[\Omega]$
Е	135	0.55	0.65	52	42	52	42	21

Nejdříve si sestavíme rovnici pro každý uzel podle Kirchhoffova zákona:

$$A: I_{R1} - I_{R3} - I_{R2} = 0$$

$$B: I_{R2} - I_{R4} - I_{2} = 0$$

$$C: I_{R4} + I_{2} - I_{R5} - I_{1} = 0$$

Poté si vyjádříme proudy pomocí uzlových napětí:

$$I_{R1} = \frac{U - U_A}{R_1}$$
, $I_{R2} = \frac{U_A - U_B}{R_2}$, $I_{R3} = \frac{U_A}{R_3}$, $I_{R4} = \frac{U_B - U_A}{R_4}$, $I_{R5} = \frac{U_C}{R_5}$

Proudy dosadíme do sestavených rovnic a dosadíme hodnoty:

$$\frac{135 - U_A}{52} - \frac{U_A}{52} - \frac{U_A - U_B}{42} = 0$$

$$\frac{U_A - U_B}{42} - \frac{U_B - U_C}{42} - 0,65 = 0$$

$$\frac{U_B - U_C}{42} + 0,65 - 0,55 - \frac{U_C}{21} = 0$$

Zbavíme se zlomků a přepíšeme do matice:

$$A = \begin{pmatrix} -68 & 26 & 0 & -2835 \\ 1 & -2 & 1 & 27,3 \\ 0 & 1 & -3 & -4,2 \end{pmatrix}$$

Spočítáme determinant a pomocí cramerova pravidla dopočítáme napětí U_{B} a U_{C}

$$|A| = \begin{vmatrix} -68 & 26 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -3 \end{vmatrix} = -262$$

$$|U_B'| = \begin{vmatrix} -68 & -2835 & 0 \\ 1 & 27,3 & 1 \\ 0 & -4,2 & -3 \end{vmatrix} = -3221,4$$

$$|U_C'| = \begin{vmatrix} -68 & 26 & -2835 \\ 1 & -2 & 27,3 \\ 0 & 1 & -4,2 \end{vmatrix} = -1440,6$$

$$U_B = \frac{-3221,4}{-262} = 12,295V$$

$$U_C = \frac{-1440,6}{-262} = 5,498V$$

Nakonec dopočítáme U_{R4} a I_{R4}:

$$U_{R4} = U_B - U_C = \mathbf{6,797V}$$
 $I_{R4} = \frac{U_{R4}}{R_4} = \mathbf{0,1618A}$

Pro napájecí napětí platí: $u_1 = U_1 \cdot sin(2\pi ft)$, $u_2 = U_2 \cdot sin(2\pi ft)$.

Ve vztahu pro napětí $u_{\rm C2}=U_{\rm C2}\cdot sin(2\pi ft+\varphi_{\rm C2})$ určete |UL2| a $\varphi_{\rm C2}$. Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik ($t = \frac{\pi}{2\omega}$).

Sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	$R_2 [\Omega]$	L ₁ [mH]	L ₂ [mH]	$C_1[\mu F]$	$C_2[\mu F]$	f [Hz]
В	2	4	11	15	100	85	220	95	80

Jako první vypočteme úhlovou rychlost ω :

$$\omega = 2\pi f = 2\pi \cdot 80 = 502,655 \, rad \cdot s^{-1}$$

Následně vypočítáme impedanci:

$$Z_{c} = -\frac{j}{\omega C}$$

$$Z_{C1} = -\frac{j}{502,655 \cdot 2,2 \cdot 10^{-4}} = -9,043j \Omega$$

$$Z_{C2} = -\frac{j}{502,655 \cdot 9,5 \cdot 10^{-5}} = -20,941j \Omega$$

$$Z_L = j \cdot \omega \cdot L$$

$$Z_{L1} = j \cdot 502,655 \cdot 0,1 = 50,266j \Omega$$

$$Z_{L2} = j \cdot 502,655 \cdot 0,085 = 42,726j \Omega$$

Sestavíme rovnice smyčkových proudů:

$$i_A: Z_{L1}(I_A - I_B) + u_1 + R_1I_A + R_2(I_A - I_B) + Z_{L2}(I_A - I_C) = 0$$

$$i_B: R_2 \cdot (I_B - I_A) + Z_{L1} \cdot (I_B - I_A) + Z_{C2} \cdot I_B + Z_{C1}(I_B - I_C) = 0$$

$$i_C: u_2 + Z_{C1}(I_C - I_B) + Z_{L2}(I_C - I_A) = 0$$

Vytvoříme matici s hodnotami I_A, I_B, I_C ve sloupcích:

$$A = (Z_{L1} + R_1 + R_2 + Z_{L2} - Z_{L1} - R_2 - Z_{L2} - Z_{L1} - R_2 R_2 + Z_{L1} + Z_{C2} + Z_{C1} - Z_{C1} - Z_{C1} - Z_{C1} Z_{C1} + Z_{L2} - u_1 0 - u_2)$$

Dosadíme hodnoty a vypočítáme determinant:

$$|A||50,266j + 11 + 15 + 42,726j - 50,266j - 15 - 42,726j - 50,266j - 15 15 + 50,266j - 9,043j - 20,941j 9,043j - 42,726j 9,043j - 9,043j + 42,726j | = 3965,125 + 32922,105j$$

Dále pomocí cramerova pravidla dopočítáme determinant smyčkového proud I_B:

$$|I_B| = |26 + 92,992i - 2 - 42,726j - 50,266j - 15 0 9,043j - 42,726j - 4 33,683i| = 7840,43076 - 2633,578j$$

$$I_B = \frac{7840,43076 - 2633,578j}{3965,125 + 32922,105j} = (-0,0505777 - 0,2442425i)A$$

Vypočítáme napětí na kondenzátoru a fázový posun:

$$I_{C2} = I_B = (-0.0505777 - 0.2442425i)A$$

$$U_{C2} = I_{C2}Z_{C2} = (-0.0505777 - 0.2442425i) \cdot (-20.941j)$$
$$= -5.1146822 + 1.0591476i$$

$$|U_{C2}| = \sqrt{5,1146822^2 + 1,0591476^2} = 5,2232V$$

$$\varphi' = \arctan\left(\frac{1,0591476}{-5,1146822}\right) = -0.20707 \, rad = -11.8648^{\circ}$$
$$\varphi = -11.8648^{\circ} + 180^{\circ} = \mathbf{168.1352^{\circ}}$$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chovaní obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu vypočtu dosazením do sestavené diferenciální rovnice.

Sk.	U [V]	L [H]	R [Ω]	i _L (0) [A]
Н	8	50	40	4

1. Vyjádříme si vztahy v obvodu

$$I = \frac{U_R}{R} \to U_R = I \cdot R$$

$$U = u_L + u_R \to u_L = U - I \cdot R$$

$$I' = \frac{U - I \cdot R}{L}$$

2. Očekávané řešení:

$$I(t) = K(t) \cdot e^{\lambda t} = K(t) \cdot e^{-\frac{R}{L}t}$$

3. Charakteristická rovníce:

$$R + L \cdot \lambda = 0 \rightarrow \lambda = -\frac{R}{L}$$

4. Derivujeme:

$$I'(t) = K'(t) \cdot e^{-\frac{R}{L}t} + K(t) \cdot (-\frac{R}{L}) \cdot e^{-\frac{R}{L}t}$$

5. Dosadíme do rovnice:

$$U = L \cdot I' + R \cdot I$$

$$L \cdot \left(K'(t) \cdot e^{-\frac{R}{L}t} + K(t) \cdot \left(-\frac{R}{L} \right) \cdot e^{-\frac{R}{L}t} \right) + R \cdot K(t) \cdot e^{-\frac{R}{L}t} = U$$

$$L \cdot K'(t) \cdot e^{-\frac{R}{L}t} - R \cdot K(t) \cdot e^{-\frac{R}{L}t} + R \cdot K(t) \cdot e^{-\frac{R}{L}t} = U$$

$$L \cdot K'(t) \cdot e^{-\frac{R}{L}t} = U$$

$$K'(t) = \frac{U}{L} \cdot e^{\frac{R}{L}t}$$

6. Rovnici integrujeme:

$$K(t) = \frac{\frac{U}{L}}{\frac{L}{R}} \cdot e^{\frac{R}{L}t} = \frac{U}{R} \cdot e^{\frac{R}{L}t} + k$$

7. K(t) dosadíme do očekávaného řešení:

$$I(t) = \left(\frac{U}{R} \cdot e^{\frac{R}{L}t} + k\right) \cdot e^{-\frac{R}{L}t} = \frac{U}{R} + k \cdot e^{-\frac{R}{L}t}$$

8. Dosadíme i_L(0) a vypočteme k:

$$4 = \frac{8}{40} + k \cdot e^{-\frac{4}{5}t}$$
$$k = \frac{19}{5}$$

9. Dosadíme hodnoty do předchozí rovnice:

$$I(t) = \frac{U}{R} + k \cdot e^{-\frac{R}{L}t} = \frac{1}{5} + \frac{19}{5} \cdot e^{-\frac{4}{5}t}$$

15

Tabukla výsledků

Příklad	Skupina	Výsledek
1	В	$I_{R2} = 0.029A, U_{R2} = 21.174V$
2	Н	$I_{R5} = 0.046A, U_{R5} = 25.786V$
3	Е	$U_{R4} = 6,797V, I_{R4} = 0,1618A$
4	В	$ U_{C2} = 5,2232V, \varphi' = 168.1352^{\circ}$
5	Н	$I(t) = \frac{1}{5} + \frac{19}{5} \cdot e^{-\frac{4}{5}t}$