Machine Learning Introduction to Neural Networks

Faculty:

Farshid Alizadeh-Shabdiz, PhD, MBA

Sept 2021

How Does Brain Work?

Why Study Brain?

- Brain does many complex tasks extremely well, like
 - Vision and object detection
 - Speech recognition
- Human mind learns new things by observation and combining different data sets
- Brain inferences based on evidence and reasoning, which inspires new novel learning algorithms
- Brain parallel computation and adaptive learning would inspire new designs
- Note that human mind is not good in everything
 - Like multiplication of multi-digit numbers

Cortical Neuron Structure

- Body of the cell
- Dendrites: extension of the cell with many branches to receive signals
- Axon: very long extension of the neuron body, which carries electric signal spike to other cells
- Telodendria: branching extensions at the end of Axon to connect to Dandrites
- Synapses, where axon meet dendrites.
- Neurotransmitters: chemical signals released by signals at the end of an Axon

https://en.wikipedia.org/wiki/Neuron

How Cortical Neurons Work

- Axon is an arm of a neural cell which transfers electricity from the cell to the next
 - A spike is transferred at 0.5 2.0 m/s (or 1.1 4.5 miles/hour)
 - Average length of cortical axon: 86.8 mm
- A spike of an axon injects charge into the postsynaptic neuron at synapse
- When enough charges get injected into the post synaptic neuron, it depolarizes the cell membrane and generates outgoing spike

Synapsis Structure

- Injection of charges by axon, causes vesicles (a liquid enclosed by a lipid bilayer) of transmitter chemical to be released. There are positive and negative transmitter vesicles.
- The transmitter molecules diffuse across the synaptic cliff
- After moving to the other side, they bind to receptor molecules of the post synaptic neuron
- By binding with receptor molecules, it changes their shape and creates holes for positive and/or negative ions to cross to the post-synapsis.
- After accumulation of enough charges, the electric spike get generated
- Synapsis stats
 - 10¹¹ cortical neurons
 - 10⁴ average synaptic connections

https://en.wikipedia.org/wiki/Neuron

Synapsis Adapt

- Learning occurs by changing synapsis
- The synapsis learn by changing
 - Number of vesicles
 - Number of receptor molecules
 - Also long term number of neurons connections
- Synapsis are slow but they are also very low power compare to our technology, but they adapt
 - Synapsis adapt to locally available signals

Brain as a System

- Neurons
 - Send messages with electric spikes
 - 10⁴ weights that adapt
 - Many neurons provide input to Dendritic tree
 - Small number of neurons connect to receptors
- Brain learns to be modular. Each function is concentrated in a region
- Early age damage might relocate a function
- All the neurons are the same, but they become specialized in action

History of Neural Network

History of Neural Networks

- 1943: McCulloch & Pitts created a computer model based on neural networks of brain
- 1949: Hebb's Rule Hebb suggested how biological neurons work
- 1957: Perceptron invented by Frank Rosenblatt
- "The stuff promised in this video still not really around" (1961). https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
- 1969: M Minsky & S. Papert showed limitation of perceptron
- 1970's: the first winter of Al
- 1986: D. Rumelhart, G. Hinton, and R. Williams that introduced backpropagation (introduced in 60's first) algorithm to train MLP.
- 1985-1990: the 2nd winter of Al
- 1996: IBM Deep Blue beat Kasparov, world chess champion
- 1997: LSTM (long-short term memory) for recurrent NN was developed
- 1999-2001: GPU and processing data were developed
- 2000 : Winter of Al
- 2006: Prof Hinton trained a network to read handwritten numbers
- 2012: AlexNet CNN architecture won the ImageNet challenge with a large margin (17% error vs next best 26%)
 - 2009: Fei-Fei Li, AI prof at Stanford launched ImageNet (14 million labeled images).

When to Use Neural Network

- Need lot of data
- Need training data
- It takes time
- No model needed
- Hard to verify
- Hard to interpret
- Learn complex problems

Simple Models of Neurons

Linear Regression - overview

 Linear Regression Model fit to Income vs Education & Seniority

$$f = \beta_0 + \beta_1 \times Education + \beta_2 \times Seniority$$

Linear Neurons

 Simple and easy to analyze

$$y = w_0 + \sum_i w_i x_i$$

Binary Threshold Neurons

• Based McCulloch-Pitts (1943)

$$z = w_0 + \sum_i w_i x_i$$

 This is based on the logical paradigm

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ Otherwise} \end{cases}$$

Rectified Linear Neurons (ReLU)

Non-linear output

$$z = w_0 + \sum_i w_i x_i$$

 Linear property above zero + being able to make a decision

$$y = \begin{cases} z \text{ if } z \ge 0 \\ 0 \text{ Otherwise} \end{cases}$$

$$y = \max(0, z)$$

$$y = \max(0, z)$$

Logistic Regression

 Weighted sum of inputs same as Linear Regression + logistic function (Sigmoid function)

Sigmoid Neurons

- The most common neuron
- Nice derivative, which makes learning easy

 $z = w_0 + \sum_i w_i x_i$

$$y = \frac{1}{1 + e^{-Z}}$$

Note: also common in logistic regression

Sigmoid Derivative

$$y = f(z) = \frac{1}{1 + e^{-z}}$$

Derivative =
$$\frac{df(z)}{d(z)} = \frac{d}{d(z)}[(1+e^{-z})^{-1}]$$

$$\frac{df(z)}{d(z)} = \frac{e^{-Z}}{(1+e^{-Z})^2} = \frac{1+e^{-Z}-1}{(1+e^{-Z})^2}$$

$$\frac{df(z)}{d(z)} = \frac{1}{1 + e^{-Z}} - \frac{1}{(1 + e^{-Z})^2} = f(z)[1 - f(z)]$$

Logistic Neuron Learning

To apply a learning algorithm, derivative of output with respect to weights has to get calculated : $\frac{\partial y}{\partial w_i}$

• Using the chain rule, we can find

$$\frac{\partial y}{\partial w_i} = \frac{\partial y}{\partial z} \times \frac{\partial z}{\partial w_i} = xiy(1 - y)$$

$$\frac{\partial E}{\partial w_i} = \sum_{j=1}^n \frac{\partial yj}{\partial wi} \frac{\partial E}{\partial yj} = \sum_{j=1}^n x_{ij}y_j(1 - yj)(tj - yj)$$

In which, parameters index is *i* and training index is *j*.

- w_i is the weight of parameter i
- x_{ij} is the input parameter *i* associated to training point *j*.
- y_i is the output associated to training point j
- t_j is the expected output associated to training j

Sigmoid Derivative

Stochastic Binary Neurons

• Use sigmoid function as $z = w_0 + \sum w_i x_i$ a probability function to generate 0/1 output

$$z = w_0 + \sum_i w_i x$$

$$p(y=1) = \frac{1}{1 + e^{-Z}}$$

Tanh - Activation Function

$$Tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

 Makes the output vary around zero at the beginning

ReLU Stochastic Neurons

- The ReLU output is used as the rate of generating spikes, but the spikes are generated randomly. So ReLU output is the average rate of spikes.
 - Therefore the spikes follow Poisson distribution with average of ReLU output
 - Or time difference between spikes follow exponential distribution

Leaky ReLU

- Why ReLU
 - It doesn't saturate
 - It is easy to compute
 - But it suffers from "dying" issue
- To solve dying issue use variations of ReLU, like "Leaky-ReLU"

$$y = \max(az, z)$$

• The hyper-parameter *a* can be set to [0.005, 0.2]

Leaky ReLU Options

 Option: Randomized Leaky-ReLU

 Option: Parametric Leaky-ReLU

• Softplus: $ln(1 + e^x)$

• Option: Exponential LU (ELU) $y = \begin{cases} z, & \text{if } z \ge 0 \\ a(e^z - 1), & \text{if } z < 0 \end{cases}$

Softplus

ELU

Perceptron or Binary Threshold Neurons

Linear model

$$z = w_0 + \sum_i w_i x_i$$

Identical to Logistic
 Regression without class
 probability

 $y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{Otherwise} \end{cases}$

NN Architecture

- Dense layer or fully connected layer
- Bias Neuron
- Linear Algebra and NN

Perceptron output using linear algebra

$$Y = f(XW + b), f: activation function$$

Perceptron learning

$$W = W + \varepsilon (\widehat{Y} - Y)X \text{ or}$$

$$w_i(t+1) = w_i(t) + \sum_{j \in Training \ Set} \varepsilon_i (\widehat{y_{ij}} - yij) x_{ij}$$

- Multi-layer perceptron
 - > Pros: non-linear model
 - > Cons: didn't know how to train until 1986 with backpropagation
 - Changing step function with sigmoid or Tanh functions
 - > Initialize weights randomly. Otherwise, no variation in the network

TensorFlow Playground

https://playground.tensorflow.org/

Playground

- 1. Choose activation function "linear"
 - 1. Try to learn classifying two simple separate classes

 Try to learn classifying X-OR model – change anything that feel appropriate

- 3. Try to learn other input models
- Set activation function to ReLu
 - 1. Set to one hidden layer with two neurons and try to learn X-OR model
 - 2. Change to Sigmoid activation and Tanh and try again
- 3. Set activation to ReLU with one hidden layer and 6 neurons Try to trains the model with following learning rates
 - 1. Set to 10
 - 2. Set to 3
 - Set to 1
 - 4. Set to 0.001
- 4. Try item 3 with different activation function and learning rate 0.03