

- 1. 这题估计是被某种神秘的力量所吞噬了,所以请自己猜猜这道题到底考了什么。
- 2. [10 points] In the questions below, describe each sequence recursively. Include intial conditions and assume that the sequences begin with a1.
- a) $a_n = 5^n$
- b) 1,101,10101,1010101
- c) a_n =the number of bit strings of length n with an even number of 0s.
- d) a_n =the number of ways to go down an n-step staircase if you go down 1,2,or 3 step at a time.

3. [10 points]Suppose A={2,3,6,9,10,12,14,18,20} and R is the partial order relation balabalaba(原谅我,这个地方我实在看不清).

A where xRy means x is a divisor of y.

- a) Draw the Hasse diagram for R.
- b) Find all maximal elements.
- c) Find all minimal elements.
- d) Find $lub({3,10})$
- e) Find glb({14,10})
- 4. [10 points] In the questions below give an example or else prove that there are none.
- a) A relation on {a,b,c} that is reflexive and transitive,but not antisymmetric.
- b) A relation on {1,2} that is symmetric and transitive,but not reflexive.
- c) A relation on {1,2,3} that is reflexive and transitive,but not symmetric.

5. [[10 points] In the questions below fill in the blanks.					
a)	W_n hasedges andvertices.					
b)	The adjacency matrix for K_n has1s and					
	0s.					
c)	If G is a connected graph with 12 regions and 20					
	edges,then G hasvertices.					
d)) The vertex-chromatic number for $K_{7,7} =$					
e)	If a regular graph G has 10 vertices and 45 edges,then					
	each vertex of G has degree					

- 6. [10 points] An old puzzle presents a house with 5 rooms and 16 doors, as shown in the following figure. The problem is to figure out how to begin in a room or outside and take a walk that goes through each door exactly once.
- a) Is such a walk possible? Explain.
- b) How does your answer change if the door "a" adjoining the two large rooms is closed?

7.[10 points] Use Dijkstra's Algorithm to find the shortest path length between the vertices a and z in this weighted graph.(Please give the process!)

8.[10 points] Find a minimal spanning tree for the relation given by the graph .

a) Use Prim's algorithm, star from node H.(Write down

the detail process)

b) Use Kruskal' s algorithm.List the edges in the order in which they are chosen.

9. [10 points] Let(S,*) be the semigroup whose operation table is given below.Let R be the equivalence relation on S defined by the partition $\{x,y\},\{z,w\}\}$. Show that R is a congruence relation on $\{S,*\}$, and construct the operation table for quotient semigroup $\{S/R, \odot\}$.

*	x	у	z	w	_
x	×	у	z	w	
у	у	z	w	z	
z	z	z	z	z	
w	w	w	w	w	