

BHAAIT COMPETITION	Insertion Sort
Insertion Insertion Insertion Basic A Repe	

Insertion Sort Cont...

Sort: 34 8 64 51 32 21

- 34 8 64 51 32 21
 - Pull out 8 into Temp
- 34 8 64 51 32 21
 - Compare 34 and 8 move 34 up a spot
- 34 34 64 51 32 21
 - Spot is found for 8 place it where it belongs
- 8 34 64 51 32 21

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Insertion Sort Cont...

Sort: 34 8 64 51 32 21

- 8 34 64 51 32 21
 - Pull out 64 into Temp
- 8 34 64 51 32 21
 - Compare 64 and 34 place 64 back into slot 2
- 8 34 64 51 32 21

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Insertion Sort Cont...

Sort: 34 8 64 51 32 21

- 8 34 64 51 32 21
 - Pull out 51 into Temp
- 8 34 64 51 32 21
 - Compare 51 and 64 move 64 to the right
- 8 34 64 64 32 21
 - Compare 51 and 34 place 51 into slot 2
- 8 34 51 64 32 21

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

BAAATI C RESPECTO	Insertion Sort Cont		
 Pull 8 34 5 Con 8 34 5 Con 8 34 5 Con 8 34 3 Con 	Sort: 34 8 64 51 32 21 1 64 32 21 out 32 into Temp 1 64 32 21 apare 32 and 64 - move 64 to the right 1 64 64 21 apare 32 and 51 - move 51 to the right 1 51 64 21 apare 32 and 34 - move 34 to the right 4 51 64 21 mpare 32 and 8 - place 32 in slot 1 4 51 64 21 What comes next?		
© Bharati Vidyapeet	Ys Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel .	U2. 7	

BRAARII C ERWEITH	Sequential Search
• (Unor	dered)
Get th While Get	e search criterion (key) e first element ((element != key) and (still more elements)) the next element
End_v	vhile

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

SHAATI COMMERCIA	Sequential Search Cont	
• Seque	ential Search(ordered)	
Basic al	gorithm:	
Get th	ne search criterion (key)	
Get th	ne first element	
While	((element < key) and (still more elements))	
Get	the next element	
End_	while	
If (el	ement = key)	
The	en success	
Els	e there is no match in the file	
End_	else	
© Bharati Vidvapeet	's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.	U2. 9

Binary Search

- · Binary Search
 - Binary search algorithm assumes that the items in the array being searched are sorted
 - The algorithm begins at the middle of the array in a binary search
 - If the item for which we are searching is less than the item in the middle, we know that the item won't be in the second half of the array
 - Once again we examine the "middle" element
 - The process continues with each comparison cutting in half the portion of the array where the item might be

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

U2. 10

Balanced Search Trees

Balanced Search trees

 AVL trees and Red-black trees balance a binary search tree so it more nearly resembles a complete tree.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel

Balanced Search Trees Cont...

AVL Trees.

- a BST where each node has a balance factor
 - balance factor of a leaf node is 0
 - balance factor of a node:
 - ✓ height of left subtree height of right subtree
- insertions or deletions change the balance factor of one or more nodes
- if a balance factor becomes 2 or -2 the AVL tree must be rebalanced
 - done by rotating nodes

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Balanced Search Trees Cont	
Server search free	•
© Bharati VidyapeetlY sinstitute of Computer Applications and Management, New Delbi 43, by Shivendra Goel.	U2

Balanced Search Trees Cont...

Red Black Tree(RB Tree):

- A red black tree is an extended binary search tree which meets the following red black properties.
- 1. Every node is either red or black.
- 2. No, red node can have a red child.
- 3. A simple path from any node to a descendent leaf always contain the same number of black nodes (the number of black nodes which appear in this simple path from the root node is termed as the black height of the tree).
- 4. The root node is always black.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

U2. 16

	BHARIT C HEAVETH
--	------------------

Balanced Search Trees Cont...

If uncle is red

{

Set uncle to black Set parent to black

Set grand parent to red

Set x to grand parent

}

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel

Hash Table(Hashing)

- Hashing is used when the universe of keys is very large but at any given point of time very small number of keys is to be stored.
- Under this technique a Data structure known as the Hash
 Table is taken. An arithmetic function termed as a hash
 function is used to translate a given key to its index in
 the hash table.
- A hash function is chosen keeping in mind the following three factors:
- 1. Size of the hash table.
- 2. It must ensure a uniform distribution
- 3. It should ensure minimal collisions.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel

© Bharati Vidyapeeth's Institute of Cor	mputer Applications and I	Management, New Delhi-63,	By Shivendra Goel.
---	---------------------------	---------------------------	--------------------

	Hash Table(Hashing) Cont	
Hash Functions: 1. Division method:		
h(k)=k mod m		-
	Where m is the size of hash table. 2. Mid square method.	,
	h(k)= Any sequence of digits from the mid k^2. The length of the sequence is determined by hash table	
	3. Folding method. The index is obtain by breaking the given key into equal fragments,	
	adding the fragment and ignoring the last carry(the size of each fragment is determined by the size of the hash table).	
	© Bharati Vidyapeetif s institute of Computer Applications and Management, New Delhi 43, by Shivendra Gosl.	<u>-</u>
	Hash Table(Hashing) Cont	٦
	Hash Table(Hashing) Cont	
	4.Multiplication Method: h(k)=(kA mod 1) mod m	
	n(x)-(x/r mod 1) mod m	
	Here A- is a constant	-
	0 <a<1 a="" and="" distribution="" ensure="" is="" of="" taken="" td="" the<="" to="" uniform=""><td></td></a<1>	
	keys across the hash table.	
		-
	© Bharsti Vidyapeeti's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel. U. 2.	·
		_
	Data structures for Disjoint Sets	
	Disjoint Set:	
	• A disjoint set data structure maintains a collection	-
	S={s1,s2,sk} of disjoint dynamic sets. Each set is identified by a representative, which is some members of the set.	
	 In dynamic implementations each element of a set is represented by an object. 	
	represented by an object.	

SHAME OF THE PROPERTY.	Data structures for Disjoint Sets Cont
• Linke	ed-List representation of Disjoint Sets
pointing each n	In give linked list implementation graphically by ng one node representing one vertex to another and node pointing back to first node which is entation.

BRANT THE REPORTS	Data structures for Disjoint Sets Cont	
Ee	b={e,g,h,f} (b) g h f	
© Bharati Vidyapeeth	s Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .	U2. 2

Divide and Conquer Paradigm of Problem Solving

 A divide-and-conquer algorithm divides the problem instance into a number of subinstances (in most cases 2), recursively solves each subinstance separately, and then combines the solutions to the subinstances to obtain the solution to the original problem instance.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Divide and Conquer Paradigm Cont...

In terms or algorithms, this method has three distinct steps:

- Divide: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint subsets.
- Recursion: Use divide and conquer to solve the subproblems associated with the data subsets.
- Conquer Take the solutions to the sub-problems and "merge" these solutions into a solution for the original problem.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel

U2. 2F

Complexity Analysis

• The subject of the analysis of algorithms consists of the study of their efficiency.

Two aspects of the algorithm efficiency are:

- 1. The amount of time required to execute the algorithm
- 2. The memory space it consumes.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

U2. 28

Complexity Analysis Cont...

• The following main operations are used in the algorithms

Assignment(?)

Comparison(=, ?, <, >, =, =) Arithmetic operation(+, \cdot , \times , \div) Logical operations(and, or, not)

• How long does each of these operations take to execute?

In general, assignments are very fast ,while other operations are slower. Multiplication and division are often slower than addition and subtraction.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Complexity Analysis Cont...

Time Complexity

- •The running time of an algorithm is defined to be an estimate of the number of operations performed by it given a particular number of input values.
- •Let T(n) be a measure of the time required to execute an algorithm of problem size n. We call T(n) the time complexity function of the algorithm.
- •If *n* is sufficiently small then the algorithm will not have a long running time.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Complexity Analysis Cont	
Note: In our time analysis we will restrict ourselves to the worst case behavior of an algorithm; that is, the largest running time for any input of size n	
longest running time for any input of size n.	
© Bharati Vidy apeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
Complexity Analysis Cont	
Example What is the run-time complexity based on <i>n for</i>	
the following algorithm segment: 1. for $i = 1$ to n do 1.1 for $j = 1$ to n do	
1.1.1 A(i,j)? x	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel. Uz. 32	
Complexity Analysis Cont	
Solution The inner loop 1.1 is executed n	
times and the outer loop 1. is also executed n times. Hence, $T(n) = n^2$ so that the	
growth is of order n^2 .	

Complexity Analysis Cont...

Estimate the time complexity of the following algorithm:

1. i ? 1 2. p? 1 3. **for** j = 1 to n **do** 3.1 p? p × i 3.2 i? i + 1

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel

Complexity Analysis Cont...

- **Solution** It takes two assignment statements 1. and 2. to initialize the variables i *and* p.
- The loop 3. is executed n times, and each time it executes two assignment statements and two arithmetic operations 3.1 and 3.2.
- Thus, the time complexity of the algorithm is given by

T(n) = 4n + 2 so the growth is of order n.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Binary Search Tree

- A binary search tree (BST), which may sometimes also be called an ordered or sorted binary tree.
- It is a node-based binary tree data structure which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.

S Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Binary Search Tree Cont	
Full binary Tree or Strictly Binary Tree: A Full binary tree is a binary tree where each parent node has a degree of two.	
2. Complete binary tree: It is a full binary tree in which all the leaf nodes appear at the	
same level. 3. Almost complete binary tree: It is a binary tree in which if the height of the tree is 'h' than	
till 'h-1' height it is a complete binary tree. 4. Extended binary tree or 2-tree: An Extended binary tree is a binary tree in which special	
square nodes are drawn to make each nodes having a degree 2. Such square nodes are termed as the External nodes while the original nodes of the binary tree are termed as the internal	
nodes. © Bharati Vidyapeeth's institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel . □ 27.7	
Statistics	
Statistics	
Medians and Order statistics	
Medians and Order statistics	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel. U.2.3	

-
(4920).
100 200
. BHARATI WOOD REMPETEL
A PERSON

Medians and Order Statistics

Order Statistics:

- ith order statistics of a set of n elements is ith smallest element.
- the minimum of a set of elements is the first order statistic(i=1)
- And the maximum is the nth order statistic (i=n).

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, By Shivendra Goel.

Medians and Order Statistics Cont	
For example	
Let Y is a set of 6 element.	
n=6 V=(3.4.6.2.1.8)	
$Y={3,4,6,2,1,8}$ ith order statistics of set Y is 5 th	
Because at the fifth place the element is	
smallest i.e.1	
© Bharati Vidyappeeth's institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
M. I. LO. L. G. C. C.	
Medians and Order Statistics Cont	
Medians	
• It is the middle element in the set of	_
'n' elements such that if 'n' is odd	
median is	
• $[(n+1)/2]$ th element, other wise if n is	
even then middle element lies at $[n/2]$ th and $[n/2+1]$ th elements.	-
[II/2]til and [II/2+1]til elements.	
Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel. Uz. 4	
Medians and Order Statistics Cont	
Variable Control of Co	
Q. Write an algorithm MEDIAN(S) to get	
the median element from the sequences of	
n elements Using ceiling and floor?	-

SAMPLE ENDETHAL	Co
The greedy met algorithm that we time. At each whether a particular	orks in stage stage, a d
Dynamic Progra that can be used viewed as the res	when the so
© Bharati Vidyapeeth's Institute of Compute	r Applications and Manage
MANIN S ENVENY	Reviev
usum Annua surum 7	
1. Optimal BST is the 2. Elements of D	
	ne one which Dynamic Pr an example deadline is now as

nclusion

- ts that one can devise an s, considering one input at a ecision is made regarding in an optimal solution.
- n algorithm design method olution to a problem can be ence of decisions.

BHAAIT ENWEITH		Rev	iew Questio	ons
2. Elemen	nts of		0 0	search cost. are,
3. Huffm 4. The ta	an Codes sks who	s is an exam	ple of	codes. hey are not been
only to		ne an order		cation problem is matrices that has

	M.	
SHARATI	100	enverny/

Review Questions Cont...

- 6.The complexity of linear search algorith
- a. O(n)
- b. O(log n)
- c. O(n2)
- d. O(n log n)
- 7. The complexity of Binary search algorit
- a. O(n)
- b. O(log)
- c. O(n2)
- d. O(n log n)

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

nm is		
IIII IS		
	-	
hm is		

Review Questions Cont	
8. The complexity of Bubble sort algorithm is a. O(n) b. O(log n) c. O(n2) d.O(n log n) 9. The complexity of merge sort algorithm is a. O(n) b. O(log n) c. O(n2) d. O(n log n) c. O(n2) d. O(n log n)	
Review Questions Cont 10.The complexity of the average case of an algorithm is a. Much more complicated to analyze than that of worst case b. Much more simpler to analyze than that of worst case c. Sometimes more complicated and some other times simpler than that of worst case d. None or above	
Review Questions Cont 1. Explain Huffman codes and fixed length codes 2. What do you mean by activity selection problem explain with the help of an example? 3. Write short notes on Memoization 4. Explain Optimal Binary Search tree with the help of an example. 5. What the elements of Dynamic Programming?	

Review Questions Cont...

- 6. Prove that time complexity of binary search is logn
- Explain various hashing functions with the help of an example. Also explain what you can do in the event of collision in hash table.
- 8. Explain Divide and conquer Paradigm of Problem solving with the help of an example.
- 9. w.r.t BST Prove that E=I+2N.
- 10. what is Quick sort? Explain with the help of Example?

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

U2. 49

Review Questions Cont..

- Explain Matrix Chain Multiplication with the help of an example.
- What do you mean by a task scheduling algorithm? Also define late and early tasks.
- 3. Find the longest common subsequence of

X=<A, B, C, D, A, B>

Y=<B, D, C, A, B, A>

- 4. Let n=5, (P1,P2,...P5)=(20,15,10,5,1) and (d1-d5)=(2,2,1,3,3). Find the optimal Schedule.
- Suppose the dimensions of matrixes A,B,C,D are 20*2,2*15, 15*40 and 40*4 respectively. What will be the optimal number of scalar multiplications.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel .

Review Questions Cont..

- 6. Explain ASP with activites? explain with the help of an example?
- 7. Explain Memoization concept?
- 8. Explain OBST tree with the help of an example.
- 9. What the elements of DP?
- 10. Create the RB Tree with the following nodes. 12,9,23,17,29,76,65

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel

SHAAII ENWEIN	Suggested Reading/References
	I. Cormen, C. E. Leiserson, R. L. Rivest, Clifford n, "Introduction to Algorithms", 2nd Ed., PHI, 4.
and	7. Aho, J. E. Hopcroft, J. D. Ullman, "The Design Analysis of Computer Algorithms", Addition sley, 1998.
Algo	s Horowitz and Sartaz Sahani, "Computer orithms", Galgotia Publications,1999.
	E. Knuth, "The Art of Computer Programming", 2nd Addison Wesley, 1998