Augmented prediction of a true class for Positive Unlabeled data under selection bias – supplementary materials

Jan Mielniczuk^{a,b,*,1} and Adam Wawrzeńczyk^{a,1}

^aInstitute of Computer Science, Polish Academy of Sciences

^bFaculty of Mathematics and Information Science, Warsaw University of Technology

ORCID (Jan Mielniczuk): https://orcid.org/0000-0003-2621-2303, ORCID (Adam Wawrzeńczyk):

https://orcid.org/0000-0002-6202-7829

A Example 1 – full derivation

Example 1. Let $y(x) = \Phi(x), X \sim N(0,1)$, and $x \in \mathbb{R}$ (univariate probit model with standard normal predictor), and let propensity score $e_a(x) = \mathbb{I}\{x > a\}$ i.e. above threshold $a \in \mathbb{R}$ all positive observations are labeled. It is easy to check that

$$P(Y = 1) = \int P(Y = 1|X = x)f(x) \, dx = \int_{-\infty}^{\infty} \Phi(x)\phi(x) \, dx$$
$$= \int_{0}^{1} z \, dz = \frac{1}{2}.$$

and Bayes risk of $d_B(x)$ equals

$$L^* = \int_{-\infty}^{\infty} \min \left(\Phi(x), 1 - \Phi(x) \right) \phi(x) dx$$
$$= \int_{-\infty}^{0} \Phi(x) \phi(x) dx + \int_{0}^{\infty} (1 - \Phi(x)) \phi(x) dx = \frac{1}{4}.$$

As $s(x) = y(x)\mathbb{I}\{x > a\}$, probability of labeling equals

$$P(S = 1) = \int_{-\infty}^{\infty} P(S = 1|X = x)f(x) \, dx = \int_{-\infty}^{\infty} s(x)\phi(x) \, dx$$
$$= \int_{-\infty}^{\infty} \Phi(x)\phi(x) \, dx = \frac{1}{2}(1 - \Phi^{2}(a))$$

and $P(S=0)=\frac{1}{2}(1+\Phi^2(a))$. Moreover, $L_{PU}^*=L_{PU}^*(a)$ equals for a>0

$$\begin{split} L_{PU}^*(a) &= \mathbb{E}_{X,S=0} \min \left(\tilde{y}(X,0), 1 - \tilde{y}(X,0) \right) \\ &= \left\{ \int_{-\infty}^0 \Phi(x) \phi(x) \ \mathrm{d}x + \int_0^a (1 - \Phi(x)) \phi(x) \ \mathrm{d}x \right\} \\ &= \Phi(a) - \frac{\Phi^2(a)}{2} - \frac{1}{4}. \end{split}$$

and analogous calculation for $a \leq 0$ yields $L_{PU}^*(a) = \Phi^2(a)/2$.

Thus the excess risk of $d_B(x)$ defined in (3) for a > 0 equals

$$\begin{split} &\mathbb{E}_{X}\left[\min\left(y(X), 1 - y(X)\right)\right] \\ &- \mathbb{E}_{X,S}\left[\min\left(\tilde{y}(X,S), 1 - \tilde{y}(X,S)\right)\right] \\ &= \frac{1}{2} - \Phi(a) + \frac{\Phi^{2}(a)}{2} = \frac{1}{2}(\Phi(a) - 1)^{2} \ge 0, \end{split}$$

and for a<0 equals $\frac{1}{4}-\frac{\Phi^2(a)}{2}\geq 0$. Note that for $a\to\infty$ excess risk tends to 0 as $P_{X,S=0}$ approaches P_X in this case and $d_B^{PU}(x,0)$ tends to $d_B(x)$. For $a\to-\infty$ the excess risk tends to 1/4 (risk of $d_B(x)$) as the risk of $d_B^{PU}(x,s)$ tends to 0.

B Experiment dataset statistics

Table A1 summarized the properties of all datasets used in the experiment section of the paper.

Table A1. Dataset statistics

Name	Samples	Features	Class prior π
MNIST 3v5	13454	784	0.53
MNIST OvE	70000	784	0.51
CIFAR CarTruck	12000	512	0.50
CIFAR MachineAnimal	60000	512	0.40
STL MachineAnimal	13000	512	0.40
CDC Diabetes	148458	38	0.50

C Balanced accuracy results

Tables A2 through A5 correspond to tables 2-5 in the main paper and present U-balanced accuracy for all the performed experiments. This is an important metric, as U-metrics introduce imbalance into the measurements, which might impact accuracy negatively. We can see, however, that the obtained results are close to results presented in the main paper – while VP-B+S does not have as overwhelming of an advantage, it still clearly is the best method overall.

^{*} Corresponding Author. Email: jan.mielniczuk@ipipan.waw.pl.

¹ Equal contribution.

c	Method	Synth. 1	Synth. 2	Synth. 3	Synth. SCAR
	VP+S	61.29 ± 2.27	59.43 ± 2.66	60.53 ± 2.30	63.52 ± 1.77
0.02	VP-B+S	61.04 ± 2.33	59.32 ± 2.61	60.40 ± 2.25	63.33 ± 1.73
	LBE+S	49.70 ± 0.35	50.01 ± 0.35	49.93 ± 0.32	49.69 ± 0.33
	VP+S	67.67 ± 0.52	66.72 ± 0.60	67.47 ± 0.61	68.49 ± 0.47
0.10	VP-B+S	67.71 ± 0.52	66.45 ± 0.54	67.43 ± 0.58	68.26 ± 0.47
	LBE+S	50.03 ± 0.33	50.83 ± 0.36	50.22 ± 0.32	49.66 ± 0.37
	VP+S	67.49 ± 0.58	65.39 ± 0.59	66.24 ± 0.50	70.33 ± 0.56
0.30	VP-B+S	67.74 ± 0.56	65.61 ± 0.63	66.35 ± 0.52	70.17 ± 0.55
	LBE+S	52.86 ± 0.18	52.88 ± 0.33	52.68 ± 0.22	50.00 ± 0.32
	VP+S	64.11 ± 0.54	61.68 ± 0.62	63.18 ± 0.67	69.30 ± 0.43
0.50	VP-B+S	64.09 ± 0.53	61.65 ± 0.61	63.27 ± 0.70	69.21 ± 0.44
	LBE+S	55.57 ± 0.49	54.62 ± 0.47	54.96 ± 0.50	56.69 ± 0.44
	VP+S	59.40 ± 0.78	58.33 ± 0.73	58.51 ± 0.65	65.79 ± 0.56
0.70	VP-B+S	59.40 ± 0.79	58.42 ± 0.69	58.35 ± 0.60	65.49 ± 0.71
	LBE+S	58.33 ± 0.65	56.61 ± 0.77	56.60 ± 0.66	67.87 ± 0.59
	VP+S	52.19 ± 0.57	52.48 ± 0.58	52.33 ± 0.51	59.52 ± 0.98
0.90	VP-B+S	52.19 ± 0.55	52.41 ± 0.57	52.48 ± 0.60	58.64 ± 0.85
	LBE+S	57.42 ± 0.86	56.47 ± 0.92	54.63 ± 1.01	71.37 ± 1.02

Table A3. U-Balanced accuracy values – Method comparison – Real-world datasets

c	Method	MNIST 3v5	MNIST OVE	CIFAR CT	CIFAR MA	STL MA	CDC-Diabetes
	VP+S	76.89 ± 1.14	68.32 ± 1.19	87.28 ± 0.49	91.24 ± 0.21	82.13 ± 0.64	50.00 ± 1.48
0.02	VP-B+S	78.37 ± 1.53	74.88 ± 1.51	92.46 ± 0.43	94.03 ± 0.09	83.42 ± 0.69	51.16 ± 1.74
	LBE+S	49.95 ± 0.34	50.14 ± 0.14	50.00 ± 0.40	50.16 ± 0.18	50.17 ± 0.24	49.97 ± 0.20
	VP+S	80.06 ± 0.61	74.69 ± 1.38	91.64 ± 0.32	92.75 ± 0.24	87.19 ± 0.32	57.91 ± 0.78
0.10	VP-B+S	84.29 ± 0.76	83.22 ± 1.23	93.46 ± 0.19	94.28 ± 0.13	88.24 ± 0.30	60.93 ± 0.68
	LBE+S	50.25 ± 0.34	49.79 ± 0.15	50.61 ± 0.38	50.34 ± 0.28	50.78 ± 0.28	49.93 ± 0.19
	VP+S	82.31 ± 0.67	80.74 ± 0.86	93.20 ± 0.26	94.06 ± 0.10	88.65 ± 0.28	57.47 ± 0.84
0.30	VP-B+S	86.95 ± 0.51	87.99 ± 0.64	94.20 ± 0.16	94.78 ± 0.09	88.32 ± 0.35	61.60 ± 0.92
	LBE+S	50.77 ± 0.31	49.79 ± 0.18	55.32 ± 1.30	60.51 ± 4.24	55.90 ± 1.85	49.93 ± 0.17
	VP+S	85.05 ± 0.70	84.64 ± 0.78	94.24 ± 0.24	94.52 ± 0.12	89.34 ± 0.47	59.37 ± 0.56
0.50	VP-B+S	88.49 ± 0.83	89.86 ± 0.59	94.73 ± 0.24	94.43 ± 0.15	88.60 ± 0.53	62.98 ± 0.41
	LBE+S	51.80 ± 0.34	52.90 ± 1.30	72.38 ± 2.72	73.44 ± 2.77	70.34 ± 2.07	62.39 ± 1.83
	VP+S	88.28 ± 0.67	89.25 ± 0.54	94.35 ± 0.32	94.23 ± 0.17	88.63 ± 0.54	60.07 ± 0.73
0.70	VP-B+S	90.09 ± 0.64	91.30 ± 0.55	94.66 ± 0.27	93.51 ± 0.26	87.97 ± 0.51	62.31 ± 0.62
	LBE+S	54.66 ± 0.65	60.61 ± 1.00	91.25 ± 1.47	90.31 ± 1.01	83.02 ± 1.48	69.67 ± 1.02
	VP+S	87.14 ± 0.74	92.30 ± 0.40	91.97 ± 0.55	92.77 ± 0.45	82.75 ± 1.47	63.01 ± 0.71
0.90	VP-B+S	86.15 ± 0.70	91.84 ± 0.60	92.00 ± 0.55	89.65 ± 0.34	82.43 ± 1.45	58.52 ± 0.53
	LBE+S	67.77 ± 0.98	83.49 ± 0.79	93.50 ± 0.46	93.68 ± 0.46	88.35 ± 0.70	72.88 ± 0.38

Table A4. U-Balanced accuracy values – Decision rule comparison – Synthetic datasets

c	Method	Synth. 1	Synth. 2	Synth. 3	Synth. SCAR
0.02	S-Prophet	73.29 ± 0.35	73.25 ± 0.36	71.37 ± 0.35	73.48 ± 0.35
	Y-Prophet	73.32 ± 0.36	73.25 ± 0.36	71.40 ± 0.36	73.51 ± 0.35
	VP-B	60.94 ± 2.39	59.42 ± 2.55	60.14 ± 2.31	63.33 ± 1.68
	VP-B+S	61.04 ± 2.33	59.32 ± 2.61	60.40 ± 2.25	63.33 ± 1.73
	VP-B+S + true s(x)	60.81 ± 2.36	59.16 ± 2.68	60.18 ± 2.29	63.23 ± 1.70
	VP-B+S + true y(x)	73.29 ± 0.37	73.22 ± 0.36	71.43 ± 0.36	73.46 ± 0.34
	S-Prophet	72.52 ± 0.31	72.06 ± 0.35	70.49 ± 0.31	73.61 ± 0.35
	Y-Prophet	72.60 ± 0.35	72.13 ± 0.38	70.65 ± 0.37	73.69 ± 0.33
0.10	VP-B	68.02 ± 0.46	66.65 ± 0.57	67.62 ± 0.59	68.16 ± 0.38
0.10	VP-B+S	67.71 ± 0.52	66.45 ± 0.54	67.43 ± 0.58	68.26 ± 0.47
	VP-B+S + true s(x)	67.80 ± 0.52	66.57 ± 0.49	67.30 ± 0.62	68.20 ± 0.46
	VP-B+S + true y(x)	72.53 ± 0.35	71.75 ± 0.41	70.42 ± 0.36	73.55 ± 0.33
	S-Prophet	69.91 ± 0.47	69.02 ± 0.52	67.65 ± 0.42	72.69 ± 0.48
	Y-Prophet	70.57 ± 0.43	69.37 ± 0.42	68.49 ± 0.39	73.60 ± 0.35
0.30	VP-B	68.08 ± 0.52	65.85 ± 0.58	67.19 ± 0.52	70.53 ± 0.49
0.50	VP-B+S	67.74 ± 0.56	65.61 ± 0.63	66.35 ± 0.52	70.17 ± 0.55
	VP-B+S + true s(x)	67.67 ± 0.57	65.70 ± 0.64	66.48 ± 0.55	70.14 ± 0.51
	VP-B+S + true y(x)	69.30 ± 0.47	68.33 ± 0.52	67.14 ± 0.43	72.61 ± 0.50
	S-Prophet	65.33 ± 0.70	63.89 ± 0.56	63.25 ± 0.71	71.13 ± 0.62
	Y-Prophet	68.13 ± 0.49	66.56 ± 0.48	66.02 ± 0.50	73.18 ± 0.36
0.50	VP-B	64.95 ± 0.45	62.65 ± 0.56	64.12 ± 0.70	70.31 ± 0.49
0.50	VP-B+S	64.09 ± 0.53	61.65 ± 0.61	63.27 ± 0.70	69.21 ± 0.44
	VP-B+S + true s(x)	64.08 ± 0.48	61.58 ± 0.60	63.15 ± 0.67	69.30 ± 0.46
	VP-B+S + true y(x)	64.44 ± 0.62	62.68 ± 0.60	62.03 ± 0.82	70.47 ± 0.69
	S-Prophet	57.88 ± 0.51	56.62 ± 0.38	56.71 ± 0.61	66.39 ± 0.48
	Y-Prophet	64.64 ± 0.70	63.34 ± 0.70	62.71 ± 0.73	73.39 ± 0.41
0.70	VP-B	61.12 ± 0.65	59.53 ± 0.68	59.84 ± 0.68	68.95 ± 0.68
0.70	VP-B+S	59.40 ± 0.79	58.42 ± 0.69	58.35 ± 0.60	65.49 ± 0.71
	VP-B+S + true s(x)	59.33 ± 0.61	58.45 ± 0.61	58.31 ± 0.70	65.01 ± 0.78
	VP-B+S + true y(x)	57.07 ± 0.73	56.58 ± 0.52	56.44 ± 0.64	65.76 ± 0.39
	S-Prophet	50.38 ± 0.19	50.35 ± 0.21	50.47 ± 0.16	55.62 ± 0.55
	Y-Prophet	61.12 ± 1.16	60.29 ± 1.07	58.82 ± 1.08	72.72 ± 1.00
0.90	VP-B	58.85 ± 0.62	57.12 ± 0.69	55.19 ± 0.99	71.61 ± 0.91
0.90	VP-B+S	52.19 ± 0.55	52.41 ± 0.57	52.48 ± 0.60	58.64 ± 0.85
	VP-B+S + true s(x)	52.99 ± 0.40	52.90 ± 0.41	51.86 ± 0.67	60.43 ± 0.93
	VP-B+S + true y(x)	50.94 ± 0.53	51.03 ± 0.41	52.25 ± 0.50	54.80 ± 0.55

Table A5. U-Balanced accuracy values – Decision rule comparison – Real-world datasets

c	Method	MNIST 3v5	MNIST OVE	CIFAR CT	CIFAR MA	STL MA	CDC-Diabetes
0.02	VP-B	78.32 ± 1.45	74.49 ± 1.49	92.42 ± 0.41	93.91 ± 0.09	83.46 ± 0.68	51.12 ± 1.76
0.02	VP-B+S	78.37 ± 1.53	74.88 ± 1.51	92.46 ± 0.43	94.03 ± 0.09	83.42 ± 0.69	51.16 ± 1.74
0.10	VP-B	84.10 ± 0.65	82.80 ± 1.28	93.35 ± 0.19	94.28 ± 0.12	88.27 ± 0.29	61.38 ± 0.77
0.10	VP-B+S	84.29 ± 0.76	83.22 ± 1.23	93.46 ± 0.19	94.28 ± 0.13	88.24 ± 0.30	60.93 ± 0.68
0.30	VP-B	86.75 ± 0.55	88.04 ± 0.65	94.12 ± 0.18	94.85 ± 0.08	89.11 ± 0.28	63.78 ± 0.78
0.30	VP-B+S	86.95 ± 0.51	87.99 ± 0.64	94.20 ± 0.16	94.78 ± 0.09	88.32 ± 0.35	61.60 ± 0.92
0.50	VP-B	88.33 ± 0.88	90.09 ± 0.57	94.69 ± 0.25	94.72 ± 0.10	89.81 ± 0.34	67.36 ± 0.25
0.50	VP-B+S	88.49 ± 0.83	89.86 ± 0.59	94.73 ± 0.24	94.43 ± 0.15	88.60 ± 0.53	62.98 ± 0.41
0.70	VP-B	90.23 ± 0.66	92.15 ± 0.47	94.81 ± 0.26	94.65 ± 0.15	90.82 ± 0.36	68.93 ± 0.40
0.70	VP-B+S	90.09 ± 0.64	91.30 ± 0.55	94.66 ± 0.27	93.51 ± 0.26	87.97 ± 0.51	62.31 ± 0.62
0.90	VP-B	87.31 ± 0.72	93.55 ± 0.45	94.07 ± 0.33	94.89 ± 0.19	90.03 ± 0.73	71.38 ± 0.37
	VP-B+S	86.15 ± 0.70	91.84 ± 0.60	92.00 ± 0.55	89.65 ± 0.34	82.43 ± 1.45	58.52 ± 0.53