Math 351 Assignment I

Mario L. Gutierrez Abed

Let $A, B \subset \mathbb{R}$ be nonempty.

(1) Define $A + B = \{x + y : x \in A, y \in B\}$. Compute $\sup(A + B)$ in terms of $\sup A$ and $\sup B$. Repeat exercise for $\inf(A + B)$. Justify your answer.

Solution:

We know that \mathbb{R} has the least upper bound property, according to the existence theorem. In addition, the sets A and B are both defined to be nonempty proper subsets of \mathbb{R} . Thus, we are guaranteed that there is some element $\alpha \in \mathbb{R}$ that satisfies $x \le \alpha \ \forall \ x \in A$, i.e. $\alpha = \sup A$. Similarly, there must be some $\beta \in \mathbb{R}$ such that $y \le \beta \ \forall \ y \in B$, that is $\beta = \sup B$. It follows then, that $\sup A + \sup B = \alpha + \beta$ is an upper bound for $\sup(A + B)$. That is, for any $x \in A$, $y \in B$, we have $x + y \le \alpha + \beta$.

Now, if we choose any $\varepsilon > 0$, we have

$$\alpha + \beta - \varepsilon = (\alpha - \frac{\varepsilon}{2}) + (\beta - \frac{\varepsilon}{2})$$

Thus, since $\alpha - \frac{\varepsilon}{2}$ is not an upper bound for A and $\beta - \frac{\varepsilon}{2}$ is not an upper bound for B, it must be true that $\alpha + \beta - \varepsilon$ is not an upper bound for A + B. Thus, we have proven that $\alpha + \beta$ is in fact the least upper bound for A + B.

That is, $\sup A + \sup B = \alpha + \beta = \sup(A + B)$.

Now let inf $A = \gamma$, inf $B = \lambda$ for γ , $\lambda \in \mathbb{R}$.

Then, for any $\varepsilon > 0$ we have

$$\gamma + \lambda + \varepsilon = \left(\gamma + \frac{\varepsilon}{2}\right) + \left(\lambda + \frac{\varepsilon}{2}\right)$$

Thus, since $\gamma + \frac{\varepsilon}{2}$ is not a lower bound for A and $\lambda + \frac{\varepsilon}{2}$ is not a lower bound for B, then $\gamma + \lambda + \varepsilon$ cannot be a lower bound for A + B. Thus, we have shown that $\gamma + \lambda$ is in fact the greatest lower bound for A + B. That is, inf $A + \inf B = \gamma + \lambda = \inf(A + B)$.

(2) Let c > 0. Define $c A = \{c : x \in A\}$. Compute $\sup c A$ in terms of $\sup A$. What happens if c < 0? Repeat exercise for $\inf c A$.

Solution:

We have that c is a positive scalar. As shown on part (1), A is bounded above and has a least upper

bound, call it α . It follows that $x \le \alpha \ \forall x \in A$. This in turn implies $c x \le c \alpha$ for every positive c, meaning that $c \alpha$ is an upper bound of c A.

Now, for any $\varepsilon > 0$ we have

$$c \alpha - \varepsilon = c \left(\alpha - \frac{\varepsilon}{c} \right)$$

Thus, since $\alpha - \frac{\varepsilon}{\epsilon}$ is not an upper bound of A, it follows that $\epsilon \alpha - \varepsilon$ cannot be an upper bound of cA. This in turn implies that $c\alpha$ is in fact the least upper bound of cA. In other words, $\sup c A = c \alpha = c \sup A$.

In the case that c < 0, we have a different result. That is, $x \le \alpha \implies c \ x \ge c \ \alpha \ \forall \ x \in A$ if c is negative. As a consequence, $c \alpha$ turns out to be a lower bound of c A when c is negative.

Now, assuming that c is positive, we want to find inf cA. Let β be the greatest lower bound of A. Then we have $x \ge \beta$ \forall $x \in A$, which implies $c \ x \ge c \ \beta$ for every positive c. Thus, $c \ \beta$ is a lower bound of cA.

For any $\varepsilon > 0$ we have

$$c \beta + \varepsilon = c \left(\beta + \frac{\varepsilon}{c} \right)$$

Thus, since $\beta + \frac{\varepsilon}{c}$ is not a lower bound of A, it follows that $c\beta + \varepsilon$ cannot be a lower bound of cA. This in turn implies that $c \beta$ is in fact the greatest lower bound of c A. In other words, $\inf c A = c \beta = c \inf A$.

Once again, if we let c < 0, we get a different result. That is, $x \ge \beta \implies c x \le c \beta \quad \forall x \in A$ if c is negative. As a consequence, $c \beta$ is an upper bound of c A when c is negative.

(3) Define $AB = \{x \ y : x \in A, \ y \in B\}$. Assuming that the elements of A and the elements of B are nonnegative, compute $\sup AB$ in terms of $\sup A$ and $\sup B$. Is your answer still true if we drop the assumption that A and B are nonnegative?

Solution:

As shown on part (1), both A and B are bounded above and each has a least upper bound, call them α and β , respectively, i.e. $\sup A = \alpha$, $\sup B = \beta$. Thus, since $x \le \alpha$ and $y \le \beta \ \forall \ x \in A$, $y \in B$, by the properties of fields it must be true that $x y \le \alpha \beta$ (since x and y are elements of A and B, respectively, both of which reside in \mathbb{R} . Therefore x and y are both field elements of \mathbb{R}). Using this information we have that $\alpha \beta$ is an upper bound of A B.

Now, for any $\varepsilon > 0$ we have

$$\alpha \beta - \varepsilon = \alpha \left(\beta - \frac{\varepsilon}{\alpha}\right)$$
$$= \beta \left(\alpha - \frac{\varepsilon}{\beta}\right)$$

Thus, since $\alpha - \frac{\varepsilon}{\beta}$ is not an upper bound of A and $\beta - \frac{\varepsilon}{\alpha}$ is not an upper bound of B, it follows that $\alpha \beta - \varepsilon$ cannot be an upper bound of AB. This in turn implies that $\alpha \beta$ is in fact the least upper bound of AB. In other words, sup $AB = \alpha \beta = \sup A \sup B$.

Without assuming that A and B are nonnegative however, our previous result is no longer valid. Assume for instance, that the elements of A and B are nonpositive with least upper bounds ϕ and λ , respectively, i.e. $\sup A = \phi$ and $\sup B = \lambda$. Note that ϕ , $\lambda \leq 0$, otherwise our assumption that the elements of A and B are strictly nonpositive wouldn't be valid. It follows that $x \le \phi$ and $y \le \lambda$ $\forall x \in A, y \in B$. But then, according to the properties of fields, we have that each $xy \in AB$ must be nonnegative if both x and y are nonpositive. This indicates that $\phi \lambda \le x y \ \forall x y \in AB$. This in turn implies that $\phi \lambda$ is a lower bound of AB, which is obviously a different result from the one obtained when assuming that the elements of A and B are nonnegative. \checkmark

(4) Suppose $f: A \longrightarrow \mathbb{R}$ and $g: A \longrightarrow \mathbb{R}$ are real valued functions. Define $f(A) \oplus g(A) = \{ f(x) + g(x) : x \in A \}$ and $f(A) + g(A) = \{ f(x) + g(y) : x, y \in A \}.$ What is the relationship between $\sup(f(A) \oplus g(A))$ and $\sup(f(A) + g(A))$? Repeat exercise for $\inf(f(A) \oplus g(A)).$

Solution:

Since A is a proper subset of \mathbb{R} , it is finite and bounded above. So we have that the collection of all images of the elements of A under f, denoted f(A), is also finite and bounded above. This also applies to the set of all images of the elements of A under g, denoted g(A).

Since the sets of images under f and g are bounded above, for all $s \in A$ we must have $f(s) \le \alpha$ and $g(s) \le \beta$, for some $\alpha, \beta \in \mathbb{R}$. That is, $\sup(f(A)) = \alpha$ and $\sup(g(A)) = \beta$. Thus, $\alpha + \beta$ is an upper bound for f(A) + g(A) (note that $f(A) \oplus g(A)$ is a subset of f(A) + g(A)). Hence, for any $\varepsilon > 0$ we have

$$\alpha + \beta - \varepsilon = (\alpha - \frac{\varepsilon}{2}) + (\beta - \frac{\varepsilon}{2})$$

Thus, since $\alpha - \frac{\varepsilon}{2}$ is not an upper bound for f(A), and $\beta - \frac{\varepsilon}{2}$ is not an upper bound for g(A), it must be true that $\alpha + \beta - \varepsilon$ is not an upper bound for f(A) + g(A). Thus, we have shown that $\alpha + \beta$ is in fact the least upper bound for f(A) + g(A).

Hence, since $f(A) \oplus g(A) \subset f(A) + g(A)$, it follows that

$$\sup(f(A) \oplus g(A)) \leq \alpha + \beta = \sup(f(A) + g(A)) \qquad \checkmark$$

Now, let $\inf(f(A)) = \eta$ and $\inf(g(A)) = \psi$, for $\eta, \psi \in \mathbb{R}$. Thus, $\eta + \psi$ is a lower bound for f(A) + g(A).

Hence, for any $\varepsilon > 0$ we have

$$\eta + \psi + \varepsilon = \left(\eta + \frac{\varepsilon}{2}\right) + \left(\psi + \frac{\varepsilon}{2}\right)$$

Thus, since $\eta + \frac{\varepsilon}{2}$ is not a lower bound for f(A), and $\psi + \frac{\varepsilon}{2}$ is not a lower bound for g(A), it must be true that $\eta + \psi + \varepsilon$ is not a lower bound for f(A) + g(A). Thus, we have shown that $\eta + \psi$ is in fact the greatest lower bound for f(A) + g(A).

Hence, since
$$f(A) \oplus g(A) \subset f(A) + g(A)$$
, it follows that

$$\inf(f(A) \oplus g(A)) \ge \eta + \psi = \inf(f(A) + g(A))$$