	<pre>median_Fare = titanic1['Fare'].median() print("Median fare: \${:.2f} ".format(median_Fare)) Median fare: \$14.45</pre> #2
[5]:	<pre>mean_Age_Of_Male = titanic1.loc[titanic1['Sex'] == 'male', 'Age'].mean() print("Mean age: {:.2f} years".format(mean_Age_Of_Male)) Mean age: 30.27 years</pre>
	<pre>mode_No_Of_Siblings = titanic1['SibSp'].mode()[0] print("Mode of the no. of siblings/spouses aboard: {}".format(mode_No_Of_Siblings)) Mode of the no. of siblings/spouses aboard: 0</pre>
	<pre>ticket_Price_Range = titanic1['Fare'].max() - titanic1['Fare'].min() print("Range of ticket prices was: \${:.2f}".format(ticket_Price_Range)) Range of ticket prices was: \$512.33</pre>
	<pre>#5 cheapest_Ticket_Cost = titanic1['Fare'].min() print("Cost of cheapest ticket: \${:.2f}".format(cheapest_Ticket_Cost)) Cost of cheapest ticket: \$0.00</pre>
	#6 correlation_Sex_Survival = titanic1['Sex'].astype('category').cat.codes.corr(titanic1['Survived']) print("Correlation between Sex and Survival is: {:.2f}".format(correlation_Sex_Survival)) Correlation between Sex and Survival is: -1.00
	<pre>#7 variance_Passenger_Class = titanic1['Pclass'].var() std_Dev_Passenger_Class = titanic1['Pclass'].std() print("Variance: {:.2f}".format(variance_Passenger_Class)) print("Standard Deviation: {:.2f}".format(std_Dev_Passenger_Class))</pre>
	Variance: 0.71 Standard Deviation: 0.84
	 Clearly displays the average age of male passengers
	 Demonstrates the most frequently occuring number of siblings/spouses aboard Displays the spread between the cheapest and the most expensive tickets This indicates the least ticket price
	5. This demonstrates whether there is a connection between gender and survival6. This measures the degree of the passenger class values' dispersion. More spread is
[15]:	indicated by a bigger variance
[15]:	titanic1['Age'].fillna(titanic1['Age'].mean()) 0
	4 22.00000 413 30.27259 414 39.00000 415 38.50000
[16]:	416 30.27259 417 30.27259 Name: Age, Length: 418, dtype: float64
	#Deleting rows with missing data titanic1.dropna(axis=0) Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked 12 904 1 1 Snyder, Mrs. John Pillsbury (Nelle Stevenson) female 23.0 1 0 21228 82.2667 B45 S
	14 906 1 1 Chaffee, Mrs. Herbert Fuller (Carrie Constance female 47.0 1 0 W.E.P. 5734 61.1750 E31 S 24 916 1 1 Ryerson, Mrs. Arthur Larned (Emily Maria Borie) female 48.0 1 3 PC 17608 262.3750 B57 B59 B63 B66 C 26 918 1 1 Ostby, Miss. Helene Ragnhild female 22.0 0 1 113509 61.9792 B36 C
	28 920 0 1 Brady, Mr. John Bertram male 41.0 0 0 113054 30.5000 A21 S
	405 1297 0 2 Nourney, Mr. Alfred (Baron von Drachstedt")" male 20.0 0 0 SC/PARIS 2166 13.8625 D38 C 407 1299 0 1 Widener, Mr. George Dunton male 50.0 1 1 113503 211.5000 C80 C 411 1303 1 1 Minahan, Mrs. William Edward (Lillian E Thorpe) female 37.0 1 0 19928 90.0000 C78 Q 414 1306 1 1 Oliva y Ocana, Dona. Fermina female 39.0 0 PC 17758 108.9000 C105 C
[10]:	87 rows × 12 columns #11 #Identifying outliers in the dataset
	#Identifying outliers in the dataset Q1 = titanic1.quantile(0.25) Q3 = titanic1.quantile(0.75) #computing interquartile range interquartileRange = Q3 - Q1
	<pre>#Defining lower bounds and upper bounds to identify outliers lowerBound = Q1 - 1.5 * interquartileRange upperBound = Q3 + 1.5 * interquartileRange #Identifying outliers</pre>
	<pre>#Identifying outliers outliers = ((titanic1 < lowerBound) (titanic1 > upperBound)).any(axis=1) #Displaying rows containing outliers print(titanic1[outliers]) PassengerId Survived Pclass \</pre>
	4 896 1 3 7 899 0 2 12 12 904 1 1 1 21 21 913 0 3 23 915 0 1
	407 1299 0 1 409 1301 1 3 411 1303 1 1 414 1306 1 1 417 1300 0 0
	Name Sex Age SibSp \ Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0 1 Caldwell, Mr. Albert Francis male 26.0 1 Snyder, Mrs. John Pillsbury (Nelle Stevenson) female 23.0 1
	Olsen, Master. Artur Karl male 9.0 0 Williams, Mr. Richard Norris II male 21.0 0 Widener, Mr. George Dunton male 50.0 1 Peacock, Miss. Treasteall female 3.0 1
	411 Minahan, Mrs. William Edward (Lillian E Thorpe) female 37.0 1 414 Oliva y Ocana, Dona. Fermina female 39.0 0 417 Peter, Master. Michael J male NaN 1 Parch Ticket Fare Cabin Embarked 4 1 3101298 12.2875 NaN S
	7 1 248738 29.0000 NaN S 12 0 21228 82.2667 B45 S 21 1 C 17368 3.1708 NaN S 23 1 PC 17597 61.3792 NaN C
	407
	[126 rows x 12 columns] C:\Users\Samuel\AppData\Local\Temp\ipykernel_19136\2375327813.py:2: FutureWarning: The default value of numeric_only in DataFrame.quantile is deprecated. future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. Q1 = titanic1.quantile(0.25) C:\Users\Samuel\AppData\Local\Temp\ipykernel_19136\2375327813.py:3: FutureWarning: The default value of numeric_only in DataFrame.quantile is deprecated.
	<pre>future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. Q3 = titanic1.quantile(0.75) C:\Users\Samuel\AppData\Local\Temp\ipykernel_19136\2375327813.py:13: FutureWarning: Automatic reindexing on DataFrame vs Series comparisons is deprecated will raise ValueError in a future version. Do `left, right = left.align(right, axis=1, copy=False)` before e.g. `left == right` outliers = ((titanic1 < lowerBound) (titanic1 > upperBound)).any(axis=1)</pre>
	<pre>#10 #Checking for missing values missing_values = titanic1.isnull().sum() print("Missing values are:\n", missing_values)</pre> Missing values are:
	PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0
	Age 86 SibSp 0 Parch 0 Ticket 0 Fare 1 Cabin 327
[12]:	Embarked 0 dtype: int64 #11 #Using scatter plot to visualize the data
	<pre>import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(8, 6)) sns.scatterplot(x='Age', y='Fare', data=titanic1) plt.title("Scatterplot for Age and Fare") plt.show()</pre>
	Scatterplot for Age and Fare 500 -
	400 -
	300 -
	200 -
	100 -
	0 10 20 30 40 50 60 70
	Age Scatter plots highlight the relationships between continuous variables, identifying outliers as data points deviationg significantly from the entire pattern, which assists in the provision of valuable insight into correlation between variables. Based on where they are in relation to other data points, scatter plots can be used to identify outliers. By observing points that are far from the primary
[13]:	<pre>#11 #Using boxplot to visualize the data plt.figure(figsize=(8, 6))</pre>
	sns.boxplot(data=titanic1[['Age', 'Fare']]) plt.title("Box Plot For Age and Fare") plt.show() Box Plot For Age and Fare
	500 -
	400 -
	300 -
	200 -
	Age Fare Box plots examine the spread of features and locate outliers in each category to depict the data distribution and identify outliers within the Interquartile Range. They give a clear picture of the
	distribution of the data, making it easy to spot outliers and compare features such as 'age' and 'fare'.
[14]:	#Using histogram to visualize the data
[14]:	<pre>plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.histplot(titanic1['Age'], bins=30, kde=True) plt.title("Age Distribution") plt.subplot(1, 2, 2)</pre>
[14]:	plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.histplot(titanic1['Age'], bins=30, kde=True) plt.title("Age Distribution") plt.subplot(1, 2, 2) sns.histplot(titanic1['Fare'], bins=30, kde=True) plt.title("Fare Distrbution") plt.show() Age Distribution Fare Distrbution
[14]:	plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.histplot(titanic1['Age'], bins=30, kde=True) plt.title("Age Distribution") plt.subplot(1, 2, 2) sns.histplot(titanic1['Fare'], bins=30, kde=True) plt.title("Fare Distrbution") plt.show() Age Distribution Fare Distrbution 40 40 40 200
[14]:	plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.histplot(titanic1['Age'], bins=30, kde=True) plt.title("Age Distribution") plt.subplot(1, 2, 2) sns.histplot(titanic1['Fare'], bins=30, kde=True) plt.title("Fare Distrbution") plt.show() Age Distribution Fare Distrbution Fare Distrbution
[14]:	plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.histplot(titanic1['Age'], bins=30, kde=True) plt.title("Age Distribution") plt.subplot(1, 2, 2) sns.histplot(titanic1['Fare'], bins=30, kde=True) plt.title("Fare Distribution") plt.show() Age Distribution Fare Distribution Fare Distribution

In [1]: import pandas as pd
import numpy as np

In [2]: #Reading the CSV file

titanic1 = pd.read_csv("TITANIC.csv")