Exercises on Chapter 4

Beau De Clercq October 2019

Question

Let $AP = \{a, b, c\}$. Consider the following LT properties:

- If a becomes valid, afterward b stays valid ad infinitum or until c holds.
- Between two neighboring occurrences of a, b always holds.
- Between two neighboring occurrences of a, b occurs more often than c.
- $a \wedge \neg b$ and $b \wedge \neg a$ are valid in alternation or until c becomes valid.

For each property $P_i(1 \le i \le 4)$, decide if it is a regular safety property (justify your answers) and if so, define the NFA A_i with $L(A_i) = \text{BadPref}(P_i)$.

Answer

• BadPref(P_1) = $((\neg a)^*ab^*(a)^+c^?)^\omega$

• BadPref(P_2) = $((\neg a)^* a (\neg b)^* a)^{\omega}$

- Not possible: counting is not possible.
- BadPref(P_4) = $((a \land \neg b)(b \land \neg a))^*(b \lor a)$

Question

Let $n \geq 1$. Consider the language $L_n \subseteq \Sigma^*$ over the alphabet $\Sigma = \{A, B\}$ that consists of all finite words where the symbol B is on position n from the right, i.e., L contains exactly the words $A_1A_2...A_k \in \{A, B\}^*$ where $k \geq n$ and $A_{kn+1} = B$. For instance, the word ABBAABAB is in L_3 .

- Construct an NFA A_n with at most n+1 states such that $L(A_n) = L_n$.
- \bullet Determinize this NFA A_n using the powerset construction algorithm.

Question

Let AP = $\{a,b,c\}$. Consider the following NFA A (over the alphabet 2^{AP}) and the following transition system TS:

Construct the product $TS \otimes A$ of the transition system and the NFA.

Question

Consider the following NBA A_1 and A_2 over the alphabet $\{A,B,C\}$:

Find ω -regular expressions for the languages accepted by A_1 and A_2 .

$$L = (((A(A \vee B \vee C)^*A)^* \vee (C(A \vee B \vee C \vee)^*C)^*)^* \\ ((B \vee C)^*((A((BC)^* \vee (BA^*)))))$$

Question

Consider the NFA A_1 and A_2 :

Construct an NBA for the language $L(A_1).L(A_2)^{\omega}$.

Question

Let AP = $\{a, b\}$. Give an NBA for the LT property consisting of the infinite words $A_0A_1A_2...(2^{AP})^{\omega}$ such that

$$\stackrel{\infty}{\exists} j \geqslant 0. \, (a \in A_j \wedge b \in A_j) \quad \text{and} \quad \exists j \geqslant 0. \, (a \in A_j \wedge b \notin A_j).$$

Provide an ω -regular expression for $L_{\omega}(A)$.

Answer

Ex. 4.15

Question

Let $AP = \{a, b, c\}$. Depict an NBA for the LT property consisting of the infinite words $A_0A_1A_2...(2^{AP})^\omega$ such that $\forall j \geq 0.A_{2j} \models (a \vee (b \wedge c))$. Recall that $A \models (a \vee (b \wedge c))$ means $a \in A$ or $\{b, c\} \subseteq A$, i.e., $A \in \{\{a\}, \{b, c\}, \{a, b, c\}\}$.

Question

Consider NBA A_1 and A_2 depicted in Figure 4.26. Show that the powerset construction applied to A_1 and A_2 (viewed as NFA) yields the same deterministic automaton, while $L_{\omega}(A_1) \neq L_{\omega}(A_2)$.

Answer

Both automatons have the same result of the powerset construction as de-

picted below.

Question

Consider the following NBA A with the alphabet $\Sigma = 2^{AP}$ where $AP = \{a1, ..., an\}$ for n > 0.

- Determine the accepted language $L_{\omega}(A)$.
- Show that there is no NBA A' with $L_{\omega}(A) = L_{\omega}(A')$ and less than n states.

- $L(A) = (true(\neg a_1)^*a_1(\neg a_2)^*a_2...)^{\omega}$ (the language where a_i occurs infinitely often)
- The automaton to represent this language can be constructed with a minimum of n states. If it would be possible to do so in less than n states, the automaton would have to include a loop somewhere which would render some part of the automaton redundant and thereby changing the accepted language.