Sections 7-7 and 9.2; Approximate me thools Fundamental thm. $\int f(x) dx = F(b) - F(a)$ of Colembs: This formule can be difficult to use, Issue: recoll for example (e-x2 dx To circumvent this problem, recall $\int_{\alpha} f(x) dx = \lim_{n \to \infty} \int_{\alpha}^{n} f(xi^{*}) \cdot \Delta x$ $\Delta x = \frac{b-a}{a}$ $\Delta x = \frac{b-a}{\mu}$ $x_{i-1} \leq x_i^* \leq x_i$ $x_i = a + i \cdot \Delta x$ 2-th subin terval $\int_{-\infty}^{\infty} f(x) dx \approx \int_{-\infty}^{\infty} f(x; x) dx$

Approximate integration rules

Midpoint vule

$$\Delta \chi = \frac{b-a}{\mu}$$

$$x = a + \Delta x - i$$

$$\int f(x) dx \approx$$

$$\int_{\alpha}^{b} f(x) dx \approx M_{n} = \sum_{i=1}^{n} f(\overline{x_{i}}) \Delta x =$$

here
$$\overline{x}_i = \frac{x_{i-1} + x_i}{2} = \alpha + (i - \frac{1}{2}) \Delta x$$

$$= \Delta \chi \left(f(\overline{x_1}) + f(\overline{x_2}) + \dots + f(\overline{x_n}) \right)$$

Trape Zoidel vule

$$\Delta \chi = \frac{b - a}{u}$$

$$\chi = a + \Delta \chi$$

Avec of the i-th trapezoid.

$$A_{i} = \frac{f(x_{i-1}) + f(x_{i})}{2}. \Delta x$$

$$f(x_{i})$$

$$f(x_{i})$$

$$f(x_{i})$$

$$f(x_{i})$$

$$f(x_{i-1}) + f(x_{i})$$

$$f(x_{i-1}) + f(x_{i-1})$$

 $T_{n} = \frac{\Delta x}{2} \left(f(x_{0}) + 2 f(x_{1}) + 2 f(x_{1}) + ... + 2 f(x_{n-1}) + f(x_{n}) \right)$

Comparison of midpoint and trapezoidal rules
$$\frac{7}{1} = \frac{1}{2} \frac{da}{da} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$

$$\frac{11}{12} \frac{13}{14} \frac{13}{16} \frac{13}{18} \frac{13}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$

$$\frac{11}{12} \frac{13}{14} \frac{13}{16} \frac{13}{18} \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$

$$\frac{11}{12} \frac{13}{14} \frac{13}{16} \frac{13}{18} \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$

$$\frac{11}{12} \frac{13}{14} \frac{13}{16} \frac{13}{18} \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$

$$\frac{11}{12} \frac{13}{14} \frac{13}{16} \frac{13}{16} \frac{2}{18} = \frac{2}{2} = \frac{2}{2}$$

$$T_{5} = \frac{12-1}{2} \left(f(1) + 2 f(1.2) + 2 f(1.4) + 2 f(1.6) + 2 f(1.8) + f(2) \right)$$

$$= 0.1 \left(\frac{1}{1} + \frac{2}{1.2} + \frac{2}{1.4} + \frac{2}{1.6} + \frac{1}{2} \right) \approx$$

$$\approx 0.6956$$

b)
$$M_{5} = \Delta \times \left(f(\overline{\chi}_{1}) + ... + f(\overline{\chi}_{5}) \right)$$

$$= 0.2 \left(\frac{1}{1.1} + \frac{1}{1.3} + \frac{1}{1.5} + \frac{1}{1.7} \cdot \frac{1}{1.9} \right) \approx$$

$$\approx 0.6919$$

$$E_T = I - T_5 = -0.0025$$

 $E_M = I - M_S = 0.0012$

Simpson's rule $S_{2n} = \frac{T_n + 2M_n}{3}$

Ervor bounds for
$$T_n$$
, M_n

Suppose $|f''(x)| \le K$, $a \le x \le b$;

for E_T and E_M defined by

$$E_T = \int f(x) dx - T_n$$

$$E_M = \int f(x) dx - M_n,$$

there holds

$$|E_T| \le \frac{K(b-a)^3}{12n^2} \qquad |E_M| \le \frac{K(b-a)^3}{24n^2}$$

These estimates can be used to answer, how large the n must be in order to E_T or E_M be smaller than a cartain number?

$$E_T = \int f(x) dx - T_n$$

$$|E_M| \le \frac{K(b-a)^3}{24n^2}$$

$$|E_M| \le \frac{K(b-a)^3}{24n^2}$$

These estimates can be used to answer, how large the n must be in order to

E.g. for
$$|E_{T}| < 15^{-5}$$
 In $\int_{-\infty}^{\infty} dx$

$$f'(x) = -\frac{1}{x^{2}}$$

$$f''(x) = +\frac{2}{x^{3}} \int_{-\infty}^{\infty} decreasing on [1, 2]$$

$$= \int_{-\infty}^{\infty} f''(x) | = f''(x) \le f''(x) = 2$$

$$\frac{2-1^3}{12n^2}$$
 < 10^{-5} => Solve for n

$$n^{2} > \frac{2 \cdot 10^{5}}{12} = \frac{1}{6} \cdot 10^{5}$$

$$n > \sqrt{\frac{10^{5}}{6}} \approx 129.01$$

$$n > \sqrt{\frac{10^5}{6}} \approx 129.01$$

Simpson's vule

$$\Delta x = \frac{b-a}{v}$$

$$\int_{a}^{b} f(x)dx \approx S_{n} = \frac{\Delta x}{3} \left(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right)$$

$$1 \quad 4 \quad 2 \quad 4 \quad 2 \quad 4 \quad 1$$

Error bound for
$$S_n$$
:

if $|f^{(y)}(x)| \le K$, $0 \le x \le b$, then

 $|E_S| \le \frac{K(b-a)^S}{180 n^y}$

Where $E_S = \int f(x) dx - S_n$.

Euler's method

 $|dy| = F(+1,y)$
 $|dy| = y$
 $|dy| = y$

This gives a way to approximate solutions to (*) as follows:

Suppose on initial condition is given: if (x0) = 40 Fix DX>0 - smill step Construct on opproximate solution to (X) by replating the procedure. Given a point (xx, yx) on y = y(o), solution to (x), construct the hex't point on the graph as follows: (xx,yk) -> (xkm, yk+1) $\chi_{K+1} = \chi_K + \Delta \chi$ $\chi_{K+1} = \chi_K + F(\chi_{K}, \chi_{K}) \Delta \chi$ The obtained sequence of points (xx,yx) approximates the graph of a solution y(x) We are using that y'(x) = F(xx, yx),

 $\Delta y = y_{KL} - y_K \approx y'(x_K) \cdot \Delta x = F(x_K, y_K) \Delta x$ This approximation becomes precise for $\Delta x \rightarrow 0$

(x1,y2) (x1,y1) (x0,y6)

 $\chi_{k+1} = \chi_k + \Delta \chi$ $\chi_{k+1} = \chi_k + F(\chi_k, \chi_k) \cdot \Delta \chi$