Discrete Computational Structures – graph

อ. ภูริวัจน์ วรวิชัยพัฒน์

กราฟ หรือ graph

นิยามกราฟ

ให้ G เป็นกราฟ ซึ่งจะประกอบด้วย เซตของจุดยอด (vertex) ที่ไม่เป็นเซตว่าง จะให้ชื่อว่า V และเส้นเชื่อม (edge) ที่เชื่อมจุดยอดสองจุดเข้าด้วยกัน เซตของเส้น เชื่อมอาจจะเป็นเซตว่างได้ซึ่งมีชื่อว่า E ข้อมูลในเซต E จะ เขียนอยู่ในรูปแบบของ $\{uv\}$ เมื่อ v และ u เป็นจุดยอดใน V ซึ่งสามารถเขียนสัญลักษณ์แทนได้ว่า G(V,E)

$$V = \{A, B, C, D, E, F, G\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}$$

เส้นเชื่อม - edge

เส้นเชื่อม e = {uv} ในที่นี้ใช้ตัวแปร e ย่อมาจาก edge สามารถกล่าวได้ว่า

การประชิด, adjacent

- 1. จุดยอด u ประชิดกับ v
- 2. จุดยอด v ประชิดกับ u

การตกกระทบ, incident

- 1. จุดยอด *u* ตกกระทบกับเส้นเชื่อม e
- 2. จุดยอด v ตกกระทบกับเส้นเชื่อม e

เส้นเชื่อม – edge

จุดยอด A และ B ตกกระทบกับเส้นเชื่อม e_1 เขียนแทนด้วยคู่ลำดับ {AB} จุดยอด B และ E ตกกระทบกับเส้นเชื่อม e_2 เขียนแทนด้วยคู่ลำดับ {AC} จุดยอด C และ D ตกกระทบกับเส้นเชื่อม e_3 เขียนแทนด้วยคู่ลำดับ {CD} จุดยอด D และ E ตกกระทบกับเส้นเชื่อม e_4 เขียนแทนด้วยคู่ลำดับ {DE} จุดยอด B และ E ตกกระทบกับเส้นเชื่อม e_5 เขียนแทนด้วยคู่ลำดับ {BE}

• • •

จุดยอด G และ E ตกกระทบกับเส้นเชื่อม $e_{\scriptscriptstyle 9}$ เขียนแทนด้วยคู่ลำดับ {GE}

ชนิดของเส้นเชื่อม - type of edge

เส้นเชื่อมขนาน (parallel edges หรือ multiple edges) คือเส้นเชื่อมตั้งแต่สองเส้นขึ้นไปที่มีจุดยอดปลาย เหมือนกัน

เส้นเชื่อมบ่วง (loop) คือเส้นเชื่อมที่มีจุดยอดปลายทางทั้งสองเป็นจุดยอดเดียวกัน

ชนิดเส้นเชื่อมสองแบบนี้มีผลทำให้เกิดชนิดของกราฟที่ไม่เหมือนกัน

ชนิดของกราฟ - graph types

1. กราฟเชิงเดี่ยว (<u>simple</u> graph)

แต่ละคู่ u และ v มีเพียงเส้นเชื่อมแค่เส้นเดียวจาก u ไป v และ ไม่มีเส้นเชื่อมที่เริ่มจากจุดยอด u แล้ววนกลับมาหาตัวเอง

โดยสรุปแล้วคือ <mark>ไม่มี</mark> เส้นเชื่อม<u>ขนาน</u> และ เส้นเชื่อมบ่วง

- 2. กราฟหลายเชิง (multigraph) กราฟที่สามารถมีเส้นเชื่อมทิศทาง<u>ขนาน</u>
- 3. กราฟเทียม (<u>pseudo</u>graph)
 กราฟที่สามารถมีเส้นเชื่อม<u>ขนาน</u> และ เส้นเชื่อม<u>บ่วง</u>ได้

แบบฝึกหัด - ชนิดของกราฟทิศทาง

จงบอกว่ากราฟด้านล่างเป็นกราฟทิศทางชนิดใด พร้อมคำอธิบายสั้นๆ

ดีกรี - degree

ดีกรี (degree) ของจุดยอด v คือจำนวนของเส้นเชื่อมที่มา<u>ตกกระทบ</u>กับจุดยอดนี้ เขียนแทนด้วย deg(v)

ทฤษฎี:

 ผลรวมของดีกรีของทุกจุดยอดในกราฟมีค่าเป็นสองเท่าของจำนวนเส้นเชื่อมในกราฟ ซึ่งสามารถเขียนเป็นสมการ ได้ดังนี้

$$\sum_{i=1}^{n} deg(v_i) = 2 e$$

• เนื่องจากเส้นเชื่อม 1 เส้น ประกอบด้วยจุดยอดสวองจุดเสมอ ดังนั้นจำนวนดีกรีของเส้นแต่ละเส้นคือ 2 ซึ่งเมื่อนับ รวมทั้งหมดในกราฟจึงได้ตามสมการ

ดีกรี - degree

กำหนดให้จำนวนดีกรีของจุดยอดเป็นดังต่อไปนี้ อยากทราบว่าสามารถสร้างกราฟได้ไหม

- ° 1, 2, 3, 4, 4
- ° 1, 1, 2, 3, 4, 6, 8
- ° 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- ° 1, 1, 1, 2, 3, 3, 5, 5

ทางเดิน - walk

ทางเดิน (walk) ในกราฟ G(V, E) คือลำดับที่เขียนสลับกันของจุดยอดและเส้นเชื่อม

$$W = V_1 e_1 V_2 e_2 ... V_n e_n V_{n+1}$$

โดยที่ v_1 เป็นจุดเริ่มต้น (initial vertex) และ v_{n+1} เป็นจุดยอดปลายทาง (terminal vertex) เมื่อเส้น เชื่อม e_i ที่มีจุดปลายเป็นจุดยอด v_i และ v_{i+1} ส่วนจำนวนเส้นเชื่อม n นั้น จะถูกเรียกว่าความยาวของ ทางเดิน W

ยกตัวอย่างเช่นจากกราฟด้านขวา ทางเดินจาก x ไป z คือ

$$W_1 = xe_1ye_2z$$
 (แบบเต็ม)
 $W_1 = xyz$ (แบบย่อ, sequence)

**แบบย่อจะเขียนได้ก็ต่อเมื่อไม่มีความสับสนเรื่องเส้นเชื่อม

ชนิดทางเดิน - types of walk

รอยเดิน (trail) คือ ทางเดิน W = $v_1 e_1 v_2 e_2 ... v_n e_n v_{n+1}$ โดยที่เส้นเชื่อม e_i ต่างกันทั้งหมด เมื่อ $1 \le i \le n$ เช่น W = $xe_1 ye_3 we_4 z$

วิถี (path) คือทางเดิน W = $v_1 e_1 v_2 e_2 ... v_n e_n v_{n+1}$ โดยที่จุดยอด v_j แตกต่างกันทั้งหมด เมื่อ $1 \le j \le n+1$

วงจร (circuit) คือ วิถีที่จุดยอดเริ่มต้นและจุดปลายทาง เป็นจุดยอดเดียวกัน **ขัดกับนิยามของวิถีนิดหน่อยที่ยอม ให้จุดยอดซ้ำกันได้ระหว่าง จุดเริ่มต้นกับปลายทาง

แบบฝึกหัด - ทางเดิน

จงเขียนทางเดินจำนวน 2 ทางเดินถ้าเป็นไปได้ของทางเดินทิศทางต่อไปนี้

1. ทางเดินทิศทาง x ไป z

2. ทางเดินทิศทาง z ไป y

3. ทางเดินทิศทาง y ไป w

การฟพ้องรูป – isomorphism

กราฟ $G_1(V_1,E_1)$ และ $G_2(V_2,E_2)$ จะเรียกว่ากราฟ G_1 เป็นกราฟพ้องรูป (isomorphic graph) กับ G_2 ถ้ามีฟังก์ชัน f ที่เป็นหนึ่งต่อหนึ่งจาก V_1 ไป V_2 และให้เส้นเชื่อม e_1 ใน G_1 ที่จาก u_1 ไป v_1 ก็จะ สอดคล้องกับเส้นเชื่อมทิศทาง e_2 ใน G_2 ที่เชื่อมจาก $f(u_1)$ ไป $f(v_2)$ ด้วย

การฟพ้องรูป – isomorphism

ฟังก์ชันหนึ่งต่อหนึ่ง

$$f(v_1) = u_4$$
, $f(v_2) = u_2$, $f(v_3) = u_6$, $f(v_4) = u_3$, $f(v_5) = u_5$, $f(v_6) = u_1$

การฟพ้องรูป – isomorphism

ซึ่งจะได้ว่า

เส้นเชื่อม (v_1, v_2) สอดคล้องกับเส้นเชื่อม (u_a, u_2) เส้นเชื่อม (V_{3} , V_{2}) สอดคล้องกับเส้นเชื่อม (U_{6} , U_{2}) เส้นเชื่อม (v_a, v_a) สอดคล้องกับเส้นเชื่อม (u_a, u_b) เส้นเชื่อม (V_5 , V_4) สอดคล้องกับเส้นเชื่อม (U_5 , U_4) เส้นเชื่อม (v_5 , v_s) สอดคล้องกับเส้นเชื่อม (u_5 , u_1) เส้นเชื่อม (V_{e} , V_{1}) สอดคล้องกับเส้นเชื่อม (u_{1} , u_{n}) เส้นเชื่อม (v_a, v_1) สอดคล้องกับเส้นเชื่อม (u_3, u_4) เส้นเชื่อม (v_{2}, v_{5}) สอดคล้องกับเส้นเชื่อม (u_{2}, u_{5}) เส้นเชื่อม (v_a, v_a) สอดคล้องกับเส้นเชื่อม (u_a, u_a)

สรุปได้ว่า กราฟ \mathbf{G}_1 และ กราฟ \mathbf{G}_2 เป็นกราฟพ้องรูปกัน

การเก็บกราฟด้วยเมทริกซ์

ในทางคอมพิวเตอร์เพื่อให้คอมพิวเตอร์สามารถเก็บข้อมูลของกราฟและนำไปใช้ต่อได้ กราจะถูกเก็บอยู่ในรูป ของเมทริกซ์ ซึ่งเมทริกซ์นั้นจะสามารถเก็บได้อยู่ 2 รูปแบบ

- 1. เมทริกซ์ประชิดสำหรับกราฟ (adjacent matrix)
- 2. เมทริกซ์อุบัติการณ์สำหรับกราฟ (incident matrix)

	а	Ь	С	d
а	[0	1	0	1]
Ь	1	0	1	1 1 1 0
C	0	1	0	1
d	<u>l</u> 1	1	1	0]

เมทริกซ์ประชิดสำหรับกราฟทิศทาง

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง

เมทริกซ์ประชิดสำหรับกราฟทิศทาง (adjacent matrix of directed graph)

ถ้าให้ G เป็นกราฟที่มี n จุดยอด ให้ Q เป็นเมทริกซ์ขนาด n x n ซึ่งเรียกว่าเมทริกซ์ประชิดของกราฟ (adjacent matrix) D โดยที่ สมาชิก q_{ij} ในเมทริกซ์จะแทนด้วยจำนวนเส้นเชื่อมระหว่าง v_i และ v_j

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง (incidence matrix of directed graph)

ถ้าให้ G เป็นกราฟที่มี n จุดยอด แทนด้วย v_1 , ..., v_n และมีจำนวนเส้นเชื่อมเป็น m เส้น แล้วให้ R เป็นเมทริกซ์ อุบัติการณ์ (incidence matrix) G ขนาด n x m โดยที่ สมาชิก $r_{_{II}}$ ในเมทริกซ์จะแทนด้วยค่าดังต่อไปนี้

$$r_{ij} = egin{dcases} 0$$
, เมื่อ v_i ไม่ได้เป็นจุดยอดปลายของเส้นเชื่อม e_j แบบเส้นเชื่อมปกติ z , เมื่อ v_i เป็นจุดยอดปลายของเส้นเชื่อมเข้าหาตัวเอง e_j a $\begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$ c z

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง G

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง (incidence matrix of directed graph)

ถ้าให้ G เป็นกราฟที่มี n จุดยอด แทนด้วย v_1 , ..., v_n และมีจำนวนเส้นเชื่อมเป็น m เส้น แล้วให้ R เป็นเมทริกซ์ อุบัติการณ์ (incidence matrix) G ขนาด n x m โดยที่ สมาชิก r_{ij} ในเมทริกซ์จะแทนด้วยค่าดังต่อไปนี้

เมทริกซ์อุบัติการณ์ R สำหรับกราฟ G

แบบฝึกหัด - เมทริกซ์ประชิด/อุบัติการณ์สำหรับกราฟ

จงเขียนเมทริกซ์ประชิดและเมทริกซ์อุบัติการณ์ของกราฟต่อไปนี้

แบบฝึกหัด - เมทริกซ์ประชิด/อุบัติการณ์สำหรับกราฟ

จงเขียนเมทริกซ์ประชิดและเมทริกซ์อุบัติการณ์ของกราฟต่อไปนี้

