CS 230: Discrete Computational Structures

Fall Semester, 2023

Assignment #8

Due Date: Thursday, November 2

Suggested Reading: Rosen Sections 5.3; Lehman et al. Chapter 7

For the problems below, explain your answers and show your reasoning.

- 1. [12 Pts] Let S defined recursively by (1) $4 \in S$ and (2) if $s \in S$ and $t \in S$, then $st \in S$. Let $A = \{4^i \mid i \in \mathbf{Z}^+\}$. Prove that
 - (a) [6 Pts] $A \subseteq S$ by mathematical induction.

$$P(n) = 4^n \in S$$

Basis:

$$P(1) = 4^1 = 4 \Rightarrow 4 \in S$$
, so $P(1)$

Induction Step:

Inductive Hypothesis: Assume P(k): $4^k \in S$

Prove: $P(k + 1): 4^{k+1} \in S$

Since $x = 4^1 \in S$ (By Basis Step) and $y = 4^k \in S$ (By **IH**)

By rule, if $x, y \in S$, then $xy \in S$.

$$4^{k+1} = 4^k \cdot 4^1 = xy$$
, so $4^{k+1} \in S$.

Therefore P(k+1).

(b) [6 Pts] $S \subseteq A$ by structural induction.

Basis:

By Inductive Definition of S, $4 \in S$.

Since $4^1 = 4$ and $1 \in Z^+, 4 \in A$.

Induction Step

Consider $x, y \in S$. Assume $x, y \in A$. \leftarrow Inductive Hypothesis

Since $x, y \in S$, $xy \in S$ (via Inductive Definition of S)

Prove: $xy \in A$

Since $x, y \in S$, $x = 4^a$ and $y = 4^b$, $a, b \in Z^+$ because S contains multiples of 4.

Therefore, $xy = 4^a \cdot 4^b = 4^{a+b}$

Since $xy = 4^{a+b}$ and $a+b \in Z^+$, $xy \in A$ by definition of A.

Therefore, $xy \in A$.

2. [5 Pts] Give an inductive definition of the set of palindromes over the alphabet $\{a, b, c\}$. You do not need to prove that your construction is correct. *Note*: a, b, c, aa, cc, aba are all palindromes.

Let S be the set of palindromes.

Our set starts with all single characters, as any character by itself is a palindrome, and the empty set, ϵ .

Basis: Strings a, b, c, and $\epsilon \in S$

Induction Step: If string $x \in S$, Then: $axa \in S$ $bxb \in S$ $cxc \in S$

3. [5 Pts] Define the set $S = \{2^k 3^m \mid k, m \in \mathcal{Z}^+\}$ inductively. You do not need to prove that your construction is correct.

Basis: $6 \in S$ $(2^1 \cdot 3^1 = 6)$ Induction Step: If $x \in S$ Then: $2x \in S$ $3x \in S$

4. [8 Pts] Given the inductive definition of full binary trees (FBTs), define n(T), the number of vertices in tree T, and $\ell(T)$, the number of leaves in tree T, inductively. Then, use structural induction to prove that for all FBTs T, $n(T) = 2\ell(T) - 1$.

n(T): If the tree is one node, there is one vertex, so n(T) = 1. Otherwise, there are $1 + n(T_L) + n(T_R)$, one plus the number of vertices in the sub-trees.

 $\ell(T)$: If the tree is one node, there is one leaf, so $\ell(T)=1$. If there is more than one node, $\ell(T)=1+\ell(T_L)+\ell(T_R)$.

- 5. [15 Pts] Let $L = \{(a,b) \mid a,b \in \mathcal{Z}, (a-b) \mod 4 = 0\}$. We want to program a robot that can get to each point $(x,y) \in L$ starting at (0,0).
 - (a) [5 Pts] Give an inductive definition of L. This will describe the steps you want the robot to take to get to points in L starting at (0,0). Let L' be the set obtained by your inductive definition.

L':

Basis:
$$(0, 0), 0-0 = 0, 0/4 = 0, \text{ so } (0, 0) \in L'$$

Inductive Step: Given $(a, b) \in L'$, $(a + 4, b) \in L'$
 $(a, b + 4) \in L'$
 $(a + 1, b + 3) \in L'$
 $(a + 3, b + 1) \in L'$
 $(a + 2, b + 2) \in L'$

(b) [5 Pts] Prove inductively that $L' \subseteq L$, i.e., every point that the robot can get to is in L.

P(a, b) = (a - b) = 4m, (aka (a - b) is divisible by 4) = (a, b) is a reachable point

Basis:

$$P(0, 0) = 0 - 0 = 0, 0/4 = 0, \text{ so } P(0, 0).$$

Induction Step:

Assume P(a, b) is a reachable square.

Prove: (a - b) = 4m

(a + 4, b):
$$a + 4 - b = a - b + 4 = 4m + 4 = 4(m + 1)$$
, so $(a + 4, b) \in L'$
(a, b + 4): $a - b + 4 = 4m + 4 = 4(m + 1)$, so $(a, b + 4) \in L'$
(a + 1, b + 3): $a + 1 - b + 3 = a - b + 4 = 4m + 4 = 4(m + 1)$, so $(a + 1, b + 3) \in L'$
(a + 3, b + 1): $a + 3 - b + 1 = a - b + 4 = 4m + 4 = 4(m + 1)$, so $(a + 3, b + 1) \in L'$
(a + 2, b + 2): $a + 2 - b + 2 = a - b + 4 = 4m + 4 = 4(m + 1)$, so $(a + 2, b + 2) \in L'$

(c) [5 Pts] Extra Credit Prove that $L \subseteq L'$, i.e., the robot can get to every point in L. To prove this, you need to give the path the robot would take to get to every point in L from (0,0), following the steps defined by your inductive rules.

For more practice, you are encouraged to work on other problems in Rosen Sections 5.3 and in LLM Chapter 7.