

COSI 129a

Introduction to Big Data Analysis Fall 2016

Map Reduce - Implementation

The Google Cluster

- Single Google query reads 100s MBs, consumes 109s CPU cycles
- Peak workload: 1000s queries/sec
- Need for large supercomputer installations
- Google's alternative solution: 1000s of commodity PCs + fault-tolerant software

Google Cluster Architecture Overview

Single-thread performance doesn't matter

 For large problems, total throughput/\$ is more important than peak performance per computer.

Stuff breaks

- If you have 1 server, it may stay up three years (1,000 days).
- o If you have 10,000 servers, expect to lose 10 per day.

"Ultra-reliable" hardware doesn't really help

- At large scales, the most reliable hardware still fails
 - Software still needs to be fault-tolerant
 - Commodity machines without fancy hardware give better performance/\$

Google Cluster Design Principles

- Have a reliable software-based computing infrastructure from clusters of unreliable commodity PCs.
- Replicate services across many machines to increase request throughput and availability.
 - > Automatically detect and handle failures
- > Favor price/performance over peak performance.

Back to the MR Framework...

COSI 129a

Automatic Parallel Execution in MR

Map Reduce Implementation

Many different implementations are possible

Today: Implementation @ Google

Next class: Hadoop implementation

Google Environment

- PCs with 2-core processors 2-4GB memory
- Cluster of 1000s of PCs
- Inexpensive IDE disks

- User submit jobs to a scheduler
- Job consists of set of tasks
- Tasks are assigned by the scheduler to available machines

Output Data

- Output of the execution is available on R files
 - One files per reduce tasks
- You can combine these files into one file
- Typically users pass these files to another MR call

MapReduce Scheduling Overview

- One master, many workers
 - Input data split into M map tasks (typically 64 MB in size)
 - Reduce phase partitioned into R reduce tasks (hash(k) mod R)
 - Tasks are assigned to workers dynamically
- Master assigns each map task to a free worker
 - Considers locality of data to worker when assigning a task
 - Mapper reads task input (often from local disk)
 - Mapper produces R local files containing intermediate k/v pairs
 - Mapper sends the location of intermediate data to Master
- Master assigns each reduce task to a free worker
 - Reducer reads intermediate k/v pairs from locations of k/v pairs
 - Reducer sorts & applies user's reduce function to produce the output
- When all tasks are completed, master wakes up the user program

Master Data Structures

- For each map & reduce task stores its state
 - Idle, in-progress or completed
- Also stores the id of the workers that are running some tasks
- For each complete map task, stores the location and the sizes of the R intermediate files regions produced by the map task
 - Updates on location & size are sent incrementally to in-progress reducers

MapReduce Fault Tolerance

- MR library is designed to tolerate failures gracefully
- On worker failure:
 - Master detects failure via periodic heartbeats sent to workers.
 - Mapper: Completed and in-progress map tasks on failed worker should be re-executed (→ output stored on local disk).
 - Reducer: Only in-progress reduce tasks on failed worker should be re-executed (→ output stored in global file system).
- On master failure:
 - State is check-pointed to the file system: new master recovers & continues.
- Robustness:
 - Example: Lost 1600 of 1800 machines once, but finished fine.

MapReduce Data Locality

- Goal: To conserve network bandwidth input data are stored on the same machines the process the data (e.g., on the cluster)
- In GFS (Google File System), data files are divided into 64 MB blocks and 3 copies of each are stored on different machines.
 - HDFS (Hadoop Distributed File System) has a similar structure
- Master program schedules map() tasks based on the location of these replicas:
 - Put map() tasks physically on the same machine as one of the input replicas (or, at least on the same rack / network switch).
- This way, thousands of machines can read input at local disk speed.
 Otherwise, rack switches would limit read rate.

Task Granularity

- Map phase is divided into M pieces (tasks)
- Reduce phase is divided into R pieces (tasks)
- Ideally we want M >> R
 - improves load balancing (a worker can executed many tasks)
 - speeds up recovery when a worker fails
 - Practical bounds on M,R since master keeps O(M*R) state
- R is often constrained since it produces R output files
- Practical rules
 - choose M so that each task is 64MB of input data
 - choose R to be small multiple of # machines you will use
 - Often M=200,000 and R=5,000 and # workers=2,000

Redundant Execution

- Slow workers significantly delay completion time
 - Other jobs consuming resources on machine
 - Bad disks w/ soft errors transfer data slowly
 - Weird things: processor caches disabled (!!)
- Solution: Near end of phase, spawn backup tasks
 - Whichever one finishes first "wins"

Dramatically shortens job completion time

Refinement: Partitioning Function

- Partitioning function
 - Output keys of map function are partitioned to R tasks
 - Divides up key space for parallel reduce operations

```
map(in_key, in_value) → list(out_key, intermediate value)
```

partition (out_key, number of partitions) → partition for out_key

- Often a simple hash of the key, e.g., hash(out_key) mod R
- User can change this function:
 - hash(hostname(URL) mod R: all URLs from same host will be in the same output file

Automatic Parallel Execution in MR

Partitioning for Distributed Word Count

Partitioning for Distributed Word Count

h(sun)=1

VALUE

KEY

web	1
green	1
green	1
	1
КЕУ	VALUE

Refinement: Combiner Function

- Mini reducers that run in memory after the map phase
 - Can be used when reduce function is commutative and associative
- Applies partial merging of map output
 - E.g. instead of sending pairs of <word, 1> sum all the "1" for the same word before you send it to the reducer
- Executes on each mapper
- Typically similar to the reduce function but outputs to an intermediate file
- It reduces network traffic and speeds up some MR operations

MapReduce with Combiner Function

Refinements: Input/Output Types

- MapReduce library offers support for multiple formats
 - Supports predefined and user-defined input/output formats
 - Each input type implementation knows how to split the data to separate map tasks
- E.g., "Text"input: each line is a (key, value) pair
 - Key: offset of the file
 - Value: contents of the line
- E.g., read tuples from a database
- Each input type implementation should know how to split itself into meaningful ranges to generate splits for the map tasks

Refinement: Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs
 - Best solution is to debug & fix
 - Not always possible ~ third-party source libraries
 - On segmentation fault:
 - Send UDP packet to master from signal handler
 - Include sequence number of record being processed
 - If master sees two failures for same record:
 - Next worker is told to skip the record

Other Refinements

- Sorting guarantees
 - Within each reduce partition keys are sorted
- Local execution for debugging/testing
 - Sequentially executes all the work of the MR operation on the local machine
- User-defined counters in map/reduce functions
 - E.g., count # words processed, # of documents indexed,...
 - Master aggregate counter values from different mapper/ reducers

<u>Performance</u>

Tests run on cluster of 1800 machines:

- 4 GB of memory
- Dual-processor 2 GHz Xeons with Hyperthreading
- Dual 160 GB IDE disks
- Gigabit Ethernet per machine
- Bisection bandwidth approximately 100 Gbps

Two benchmarks:

MR_GrepScan 10¹⁰ 100-byte records to extract records

matching a rare pattern (92K matching records)

MR_SortSort 10¹⁰ 100-byte

<u>Grep</u>

Data scanning rate: It increases as we increase # machines

Locality optimization helps:

- 1800 machines read 1 TB at peak ~31 GB/s (@1,700 workers)
- W/out this, rack switches would limit to 10 GB/s
- Startup overhead is significant for short jobs: about a minute of startup overhead (~150secs for the whole job)
 - Overhead due to propagating programs to workers, opening 100 input files, getting locality information

Sort

- Backup tasks reduce job completion time a lot!
- System deals well with failures

MapReduce Summary

- MapReduce has proven to be a useful abstraction.
 - greatly simplifies large-scale computations at Google
- Functional programming paradigm can be applied to large-scale applications.
- MapReduce seems easy to use.
 - focus on the problem, let the MapReduce library deal with any messy details