

Extracting Social Events for Learning Better Information Diffusion Models

Shuyang Lin¹ Fengjiao Wang¹ Qingbo Hu¹ Philip S. Yu^{1,2}

¹Department of Computer Science, University of Illinois at Chicago ²Computer Science Department, King Abdulaziz University

Highlights

Idea

- Distinguish the two different sources of events
 - socially sourced and externally sourced
- Learning information diffusion models from socially sourced events.

Model

- Use a mixture model framework to combine the social and the external influence.
- An EM-based inference algorithm to overcome the problem of inference dependency

Information diffusion model and events

Events	Actions
	$(Y, t_{Y1}), (X, t_{X1}), (Z, t_{Z1}), (U, t_{U1})$
	$(W, t_{W2}), (U, t_{U2}), (Z, t_{Z2})$

Observed data: Social network and events

Social Influence vs. External Influence

Example: two trending Twitter hashtags in 2011.

#DidYouKnow

 This hashtag was used in tweets where people talked about surprising facts. It became popular because of social influence among users in the Twitter network.

#JapanEarthquake

 This hashtag mainly reflects the external event of 2011 Tōhoku earthquake and tsunami.

Challenge 1: How do we define the sources of influence?

We may define the sources of influence on different levels:

- On the user level
 - Not good. We know it is depend on the events.
- On the event level
 - Not good. Typically each event has multiple sources.
- On the document level
 - Not good enough.

We define the sources of influence on the action level (roughly, every time a user talks about an event).

Challenge 2: Inference dependency

- How can we distinguish the socially sourced actions from the externally sourced actions?
 - Using the information diffusion model and the external trend model.
- How can we accurately learn the information diffusion model and the external trend model?
 - By distinguishing the socially sourced actions from externally sourced actions

We adopt a mixture model framework, and use a EM-based iterative algorithm for the inference. 10

Definitions: data stream, event, and actions

Data Stream

Events	Positive actions	Negative actions
	$(D_1, t_1) (D_2, t_2) (D_4, t_2)$	$(D_3, t_2) (D_5, t_3)$
	$(D_2, t_2) (D_5, t_3)$	$(D_1, t_1) (D_3, t_2) (D_4, t_2)$

The Latent Action Diffusion Path (LADP) Model

The LADP Model

 $X_{i,l}$

whether the action (i, l) is positive or negative.

 $Z_{i,l}$

whether action (i, I) is drawn from the information diffusion component.

$$x_{i,l} \sim \begin{cases} Bernoulli(q_{l,t_{d_i},v_{d_i}}) & \text{if } z_{i,l} = 1 \\ Bernoulli(\mu_{l,t_{d_i}}) & \text{if } z_{i,l} = 0. \end{cases}$$

The LADP Model

Information Diffusion Model

$$q_{l,t,v} = 1 - \prod_{d_i \in \mathcal{C}_{t-1}, z_{i,l} = 1} (1 - p_{v_{d_i},v})$$

Similar to the Independent Cascade (IC) Model.

 $p_{u,v}$ - Diffusion probability with edge (u, v)

External Trend Model

$$\mu_{l,t} \sim Beta(\beta_{l,1}, \beta_{l,0})$$

 $\beta_{l,1}$ - The average number of positive actions for the term l over all the time steps.

 $\beta_{l,0}$ - The average number of negative actions for the term l over all the steps.

EM-based inference algorithm

E-step

 Calculate the conditional probability of z based on current estimations of parameters.

M-step

- Update the estimations of parameters ϑ , μ , $p_{\mu\nu}$
- We use approximate estimation of p_{uv} .

Experiment Setup

- Datasets
 - Twitter datasets
 - semi-synthetic dataset
 - Real network with synthetic data stream.
 - Twitter-UIC dataset
 - Real network with real data stream.
 - DBLP datasets
 - 2 communities in the network (data mining and machine learning) and mixture of them.
- Baselines
 - PCB (Goyal 2010)
 - Saito (Saito 2008)

Twitter semi-synthetic Dataset

 How accurate is the inference of diffusion probabilities?

Twitter semi-synthetic Dataset

 How accurate is the inference of sociallysourced portion of events?

Real Datasets

- How accurate is the inference of information diffusion models?
 - Use the inferred model to decide the most influential nodes in the network.
 - Then evaluate the most influential nodes by known criteria (number of retweets in Twitter, Hindex and number of citations in DBLP network)

Twitter network

Evaluation on the most influential nodes.

DBLP Datasets

Evaluation on the most influential nodes.

Inferred socially-sourced portion

	All	Inferred socially-sourced potion
1	Chicago	Chicago (-)
2	FF	UIC (个)
3	UIC	FF (↓)
4	energy	higherEd (个)
5	higherEd	Illinois (个)

	All	Inferred socially- sourced potion
1	Data mining	Data stream (个)
2	Data streams	Time series (个)
3	Time series	Data mining (\downarrow)
4	Query processing	Association rules (个)
5	Association rules	Query processing (↓)

Twitter UIC community

DBLP data mining community

Keywords with higher rankings in the second list are more likely to be related to events in the community.

Case study: two events in Twitter UIC community

The fraction of the event "UIC" that is socially sourced, is larger than that fraction of the event "FF".

Conclusion

- Extract social sourced portion of events to improve the learning of information diffusion models.
- EM-based iterative algorithm to solve the problem of inference dependency.
- Future work:
 - more sophisticated model for the external trends
 - topic modeling, instead of considering each keyword independently.

Thank you!