- P3.1 Considere o circuito da figura 3.1 com: V_1 = 60 V, R_1 = 5 Ω , R_2 = 3 Ω , R_3 = 2 Ω , I_{R1} = 2 A e I_{R3} = 8 A.
 - a) Calcule V_{IN} e V_S.
 - b) Calcule a potência posta em jogo na fonte dependente $4I_X$.
 - c) Tendo em conta o resultado da alínea a): (i) calcule I_X usando o teorema da sobreposição; (ii) calcule I_X aplicando o método dos nós; e (iii) calcule I_X aplicando o método dos malhas.

Figura 3.1

- P3.2 Considere o circuito da figura 3.2 onde I_A = 4 mA, V_B = 1 V, R_1 = 1 k Ω e R_2 = 3 k Ω .
 - a) Utilizando o teorema da sobreposição, calcule as tensões V_1 e V_2 .
 - b) Calcule V_1 e V_2 com base no método das malhas.
 - c) Calcule V_1 e V_2 com base no método dos nós.
 - d) Determine a potência em cada um dos elementos do circuito e indique quais os que fornecem energia e quais os que a recebem.

Figura 3.2

P3.3 - Dado o circuito da figura 3.3 determine R_L de modo a obter a máxima transferência de potência do circuito à esquerda dos terminais xy para a resistência R_L . Nessa condição qual é o valor da potência transferida quando $V_F = 6V$.

Figura 3.3

- P3.4 Considere o circuito da figura 3.4 onde os terminais *ab* estão em vazio. V_G = 20V, I = 20mA, R_0 = 125 Ω , R_1 = 1.5K Ω , R_2 = 500 Ω .
 - a) Mostre que a corrente I_0 através de R_0 é nula.
 - b) Calcule a tensão V_{ab} .
 - c) Calcule os parâmetros do circuito equivalente de Thévenin visto dos terminais ab.

d) Qual seria a intensidade da corrente através de um fio que estabelecesse um curtocircuito entre a e b, l_{ab} .

Figura 3.4

P3.5 – Considere o circuito da figura 3.5 onde V_G = 30V, R = 6K Ω e k = 1/2.

- a) Calcule a tensão de circuito aberto e a corrente de curto-circuito I_{ab} e V_{ab} .
- b) Apresente esquema eléctrico dos circuitos equivalentes de Thévenin e de Norton, vistos dos terminais ab.

Figura 3.5

P-3.6 - No circuito da figura 3.6, $R_1 = 2 \Omega$, $R_2 = 5 \Omega$, $R_3 = R_4 = 2\Omega$, $R_5 = 10\Omega$, $I_0 = 1$ A e $g_m = 2\Omega$

- a) Escreva uma equação matricial correspondente à aplicação do método dos nós ao circuito da figura 3.6 (na forma literal simbólica e só depois substitua valores numéricos).
- Escreva uma equação matricial simbólica correspondente à aplicação do método das malhas ao circuito (considere as correntes de circulação mas malhas elementares no sentido horário).
- c) Calcule o valor da tensão aos terminais de R₅.
- d) Determine o circuito equivalente de Thévenin visto para a esquerda dos nós A e B,
- e) Obtenha o equivalente de Thevenin do subcircuito à direita dos pontos A e B. Desenhe o respectivo esquema equivalente não se esquecendo de indicar os nós relativos aos pontos A e B.
- f) Utilize os resultados das duas alíneas anteriores para calcular V_{AB} .

- P3.7 Considere o circuito da figura 3.7 com: R_1 = 1 Ω , R_2 = 2 Ω , R_3 = 3 Ω , R_4 = 4 Ω , V_G = 6V, V_{DC} = 8V.
 - a) Calcule as tensões nodais V_1 a V_4 usando o método dos nós.
 - b) Calcule novamente as tensões nodais usando o teorema da sobreposição.
 - c) Calcule a potência na fonte V_G .

Figura 3.7

- P3.8 Considere o circuito da figura 3.6.
 - a) Usar o método dos nós para calcular $V_1 = V_a$. Depois calcular a potência na fonte I_1 .
 - b) Usar o teorema da sobreposição para calcular $V_1 = V_a$. Depois calcular a potência na fonte I_1 .
 - c) Simplificar o circuito fazendo a conversão entre fontes reais de tensão e de corrente (equivalentes de Thévenin/Norton). Calcular V_1 = V_a e depois calcular a potência na fonte I_1 .

Figura 3.8

P3.9 - Considere o circuito da figura 3.9

Figura 3.9

- a) Escreva uma equação matricial simbólica correspondente à aplicação do método das malhas ao circuito (considere as correntes de circulação nas malhas elementares no sentido horário).
- b) Escreva uma equação matricial simbólica correspondente à aplicação do método dos nós ao circuito (numere os nós no sentido horário e começando em cima à

esquerda),

- c) Com base nos resultados das alíneas anteriores determine se a fonte dependente fornece ou recebe energia.
- d) Determine o circuito equivalente de Norton visto pela fonte dependente.
- e) Determine o circuito equivalente de Thévenin visto pela fonte de tensão.
- f) Determine V_X usando o teorema da sobreposição.

Soluções

Fornecem energia: Fonte de corrente I_A P = -12mW

Fonte de tensão dependente P = -6mW

Recebem energia: R_1 P = 4mW R_2 P = 12mW

Fonte de tensão V_B P = 2mW

P3.3 - 6 k
$$\Omega$$
; 2/3mW
P3.4 - a) I₀ = 0; b) V_{ab} = 5 V; c) V_{Th} = 5 V; R_{Th} = 1 k Ω ; d) I_{ab} =I_{CC}= 5 mA
P3.5 - a) V_{ab} = 10 V; I_{ab} = 2.5 mA; b) R_{Th} = 4 k Ω

$$\begin{bmatrix} \frac{1}{R_1} & -\frac{1}{R_1} & 0 & 0 \\ \frac{1}{R_1} & -\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) & 0 & \frac{1}{R_3} - g_m \\ 0 & 0 & \frac{1}{R_5} & -\frac{1}{R_5} - g_m \\ 0 & \frac{1}{R_3} & \frac{1}{R_5} & -\left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5}\right) \end{bmatrix} \times \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} I_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$b)$$

$$\downarrow I_E \ \circlearrowleft I_D \ \rightarrow \ \begin{bmatrix} 1 & 0 & 0 \\ -R_2 & R_2 + R_3 + R_4 & -R_3 \\ 0 & g_m R_4 & -1 \end{bmatrix} \times \begin{bmatrix} I_E \\ I_D \\ I_T \end{bmatrix} = \begin{bmatrix} I_0 \\ 0 \\ 0 \end{bmatrix}$$

c) 200V; d) Rth=5
$$\Omega$$
, V_{Th} = 5V e) R_{th}=-4 Ω , V_{Th} = 0V; f) V_{AB} = -20V

$$P3.8 - a$$
), b) e c)Va = -5.04V; Vb = -6.24V; P = -3.78mW $P3.9 - a$)

$$R_1 = 1k\Omega, R_2 = 200\Omega, R_4 = 400\Omega, R_5 = 500\Omega, R_6 = 600\Omega$$

 $V_4 = 4V, I_5 = 5mA, G_X = 2.5mS$

$$\circlearrowright I_E \qquad \circlearrowright I_D$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -G_X R_2 \\ R_1 + R_5 & -(R_1 + R_4) & R_2 + R_4 + R_6 \end{bmatrix} \times \begin{bmatrix} I_E \\ I_D \\ I_T \end{bmatrix} = \begin{bmatrix} I_5 \\ 0 \\ V_4 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{R_2} - \frac{1}{R_5} & \frac{1}{R_2} & 0 & 0 & \frac{1}{R_5} \\ \frac{1}{R_2} & -\left(\frac{1}{R_2} + \frac{1}{R_6}\right) & 0 & \frac{1}{R_6} & 0 \\ 0 & 0 & \frac{1}{R_1} + \frac{1}{R_4} & -\frac{1}{R_4} & 0 \\ G_X & -G_X - \frac{1}{R_6} & -\frac{1}{R_4} & \frac{1}{R_4} + \frac{1}{R_6} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \end{bmatrix} = \begin{bmatrix} I_5 \\ 0 \\ I_5 \\ 0 \\ V_4 \end{bmatrix}$$

c) -3.5mW fornece energia; f) $V_x = -0.35V$

Semana	1ª aula		2ª aula	
Semana 3 (11/10 - 15/10)	P3.1, E23, P3.4	E22, P3.3, E24	P3.7	Avaliação