DSD PROJECT

TEAM MEMBERS

P N UTTUNGA - PES1UG21EC175

PRAJWAL P KULKARNI - PES1UG21EC186

PRANAV J P - PES1UG21EC189

GUIDE - Prof. ANUROS THOMAS

CONTENTS

- PROBLEM STATEMENT
- BLOCK DIAGRAM
- FLOWCHART
- DESIGN CODE
- TESTBENCH CODE
- COVERAGE
- SIMULATION
- RESULT
- SYNTHESIS
- SCHEMATIC

PROBLEM STATEMENT

WASHING MACHINE CONTROLLER

FLOW CHART

STATE DIAGRAM


```
module washing_machine_controller (
   input clk, // System clock
   input rst, // System reset
   input start, // Start signal to begin the washing process
   input cancel, // Cancel signal to stop the washing process
   input lid open, // Signal indicating whether the lid is open
   input mode1, // Mode 1 selection signal
   input mode2, // Mode 2 selection signal
   input mode3, // Mode 3 selection signal
   output reg water_inlet, // Water intake control signal
   output reg idle_op, // Idle state signal
   output reg ready_op, // Ready state signal
   output reg soak_op, // Soaking operation signal
   output reg wash_op, // Washing operation signal
   output reg rinse_op, // Rinsing operation signal
   output reg spin_op, // Spinning operation signal
   output reg coin_rtrn // Coin return signal
);
```

```
// Declare the states as parameters
parameter IDLE = 3'b000;
parameter READY = 3'b001;
parameter SOAK = 3'b010;
parameter WASH = 3'b011;
parameter RINSE = 3'b100;
parameter SPIN = 3'b101;
 // Declare the state register
 reg [2:0] state, next_state;
 // Default values
always @ (posedge clk or posedge rst) begin
    if (rst) begin
        state <= IDLE;</pre>
    end else begin
        state <= next_state;</pre>
    end
```

```
always @ (*) begin
   case (state)
       IDLE: begin
           if (start) begin
               next_state = READY;
           end else begin
               next_state = IDLE;
       READY: begin
           if (cancel) begin
               coin_rtrn = 1'b1;
               next_state = IDLE;
           end else if (mode1) begin
               // Set timing for mode 1
               next_state = SOAK;
           end else if (mode2) begin
               // Set timing for mode 2
               next_state = WASH;
           end else if (mode3) begin
               // Set timing for mode 3
               next_state = RINSE;
           end else begin
               next_state = READY;
           end
```

```
SOAK: begin
       // Add logic for SOAK state
       if (lid_open) begin
          // Pause the washing process
          next_state = IDLE;
       end else begin
          // Continue with the current state
           next state = WASH; // Transition to the next state
       end
   end
   WASH: begin
       // Add logic for WASH state
       // Transition to RINSE state
       next_state = RINSE;
   RINSE: begin
       // Add logic for RINSE state
       // Transition to SPIN state
       next_state = SPIN;
   end
   SPIN: begin
       // Add logic for SPIN state
       // Transition back to IDLE state
       next_state = IDLE;
   end
   default: next_state = IDLE;
endcase
```

```
always @ (state) begin
    case (state)
        IDLE: begin
           idle_op = 1'b1;
           ready_op = 1'b0;
           soak_op = 1'b0;
           wash_op = 1'b0;
           rinse_op = 1'b0;
           spin_op = 1'b0;
           water_inlet = 1'b0;
           coin_rtrn = 1'b0;
        READY: begin
           idle_op = 1'b0;
           ready_op = 1'b1;
           soak_op = 1'b0;
           wash_op = 1'b0;
           rinse_op = 1'b0;
           spin_op = 1'b0;
           water_inlet = 1'b0;
           coin_rtrn = 1'b0;
        end
```

```
SOAK: begin
    idle_op = 1'b0;
   ready_op = 1'b0;
   soak_op = 1'b1;
   wash_op = 1'b0;
   rinse_op = 1'b0;
    spin_op = 1'b0;
   water_inlet = 1'b1; // Activate water inlet during soak state
   coin_rtrn = 1'b0;
WASH: begin
    idle_op = 1'b0;
   ready_op = 1'b0;
    soak_op = 1'b0;
   wash_op = 1'b1;
   rinse_op = 1'b0;
   spin_op = 1'b0;
   water_inlet = 1'b0;
   coin_rtrn = 1'b0;
RINSE: begin
    idle_op = 1'b0;
   ready_op = 1'b0;
    soak_op = 1'b0;
   wash_op = 1'b0;
   rinse_op = 1'b1;
    spin_op = 1'b0;
   water_inlet = 1'b1; // Activate water inlet during rinse state
   coin_rtrn = 1'b0;
```

```
SPIN: begin
       idle_op = 1'b0;
       ready_op = 1'b0;
       soak_op = 1'b0;
       wash_op = 1'b0;
       rinse_op = 1'b0;
       spin_op = 1'b1;
       water_inlet = 1'b0;
       coin_rtrn = 1'b0;
   default: begin
       idle_op = 1'b0;
       ready_op = 1'b0;
       soak_op = 1'b0;
       wash_op = 1'b0;
       rinse_op = 1'b0;
       spin_op = 1'b0;
       water_inlet = 1'b0;
       coin_rtrn = 1'b0;
   end
endcase
```

```
module washing_machine_tb;
 // Parameters
 reg clk;
 reg rst;
 reg start;
 reg cancel;
 reg lid_open;
 reg mode1;
 reg mode2;
 reg mode3;
wire water inlet;
 wire idle_op;
 wire ready_op;
 wire soak_op;
 wire wash_op;
 wire rinse_op;
 wire spin_op;
 wire coin_rtrn;
```

```
// Instantiate the washing machine controller module
washing machine controller dut (
 .clk(clk),
 .rst(rst),
 .start(start),
 .cancel(cancel),
  .lid_open(lid_open),
  .mode1(mode1),
  .mode2(mode2),
  .mode3(mode3),
 .water_inlet(water_inlet),
  .idle_op(idle_op),
  .ready_op(ready_op),
  .soak_op(soak_op),
  .wash_op(wash_op),
  .rinse_op(rinse_op),
 .spin_op(spin_op),
 .coin_rtrn(coin_rtrn)
```

```
// Clock generation
always #5 clk = ~clk;
initial begin
$dumpfile("dump.vcd");
$dumpvars(0,washing_machine_tb);
 clk = 0;
  rst = 1;
  start = 0;
  cancel = 0;
  lid_open = 0;
  mode1 = 0;
  mode2 = 0;
  mode3 = 0;
  // Reset the system
  #10 \text{ rst} = 0;
  // Test a complete wash cycle with mode1
  #20 start = 1;
  #5 cancel = 1;
  #10 cancel = 0;
  #10 lid_open = 1;
  #15 lid_open = 0;
  #5 mode1 = 1;
  #100 \text{ start} = 0;
```

```
// Test a complete wash cycle with mode1
#20 start = 1;
#5 cancel = 1;
#10 cancel = 0;
#10 lid open = 1;
#15 lid open = 0;
\#5 \mod 21 = 1;
#100 start = 0;
// Test a complete wash cycle with mode2
#20 start = 1;
#5 cancel = 1;
#10 cancel = 0;
#10 lid_open = 1;
#15 lid_open = 0;
#5 \mod 2 = 1;
#100 \text{ start} = 0;
```

```
// Test a complete wash cycle with mode3
#20 start = 1;
#5 cancel = 1;
#10 cancel = 0;
#10 lid_open = 1;
#15 lid_open = 0;
#5 mode3 = 1;
#100 start = 0;
// Test cancellation during different states
#20 start = 1;
#5 cancel = 1;
#10 cancel = 0;
#100 start = 0;
```

```
#150 $finish; // End the simulation after 150 time units
end

// Display outputs
always @(posedge clk) begin
$display("Time = %0t, Water Inlet = %b, Idle Op = %b, Ready Op = %b, Soak Op = %b, Wash Op = %b, Rinse Op = %b, Spin Op = %b, Coin Return = %b", $time, water_inlet, idle_op, ready_op, soak_op, wash_op,
inse_op, spin_op, coin_rtrn);
end
```

SIMULATION RESULT

CODE COVERAGE

SYNTHESIS SCHEMATIC

POWER REPORT

				stim#0/frame#0	DB Frames: /s
Row%	Total	Switching	Internal	Leakage	Category
0.00%	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	memory
30.81%	5.03189e-05	9.31668e-06	4.10002e-05	2.02172e-09	register
0.00%	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	latch
67.90%	1.10878e-04	5.79685e-05	5.28993e-05	1.05535e-08	logic
0.00%	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	bbox
1.29%	2.09952e-06	2.09952e-06	0.00000e+00	0.00000e+00	clock
0.00%	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	pad
0.00%	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	pm
100.00%	1.63297e-04	6.93847e-05	9.38995e-05	1.25753e-08	Subtotal
100.00%	100.00%	42.49%	57.50%	0.01%	Percentage

GATES REPORT

Gate	Instances	Area	Library
AND2X6	1	3.762	gpdk045bc
A0I21X4	3	15.390	gpdk045bc
BUFX2	4	6.840	gpdk045bc
BUFX6	3	9.234	gpdk045bc
DFFRHQX8	3	33.858	gpdk045bc
INVX1	2	1.385	gpdk045bc
INVX16	1	5.250	gpdk045bc
INVX2	1	1.043	gpdk045bc
INVX4	2	3.488	gpdk045bc
INVX6	1	2.095	gpdk045bc
NAND2BX4	1	3.497	gpdk045bc
NAND2X2	1	1.744	gpdk045bc
NAND2X6	2	9.576	gpdk045bc
NAND2X8	2	10.944	gpdk045bc
NAND3BX2	1	3.078	gpdk045bc
NAND3X8	1	8.208	gpdk045bc
NOR2BX4	3	11.286	gpdk045bc
NOR2X2	1	2.052	gpdk045bc
NOR2X4	2	6.840	gpdk045bc
NOR2X6	2	8.892	gpdk045bc
NOR2X8	3	16.416	gpdk045bc
NOR2XL	2	2.052	gpdk045bc
NOR3X2	1	2.736	gpdk045bc
NOR3X6	1	7.182	gpdk045bc
0AI21X4	1	4.788	gpdk045bc
total	45	181.636	

Туре	Instances	Area	Area %
sequential	3	33.858	18.6
inverter	7	13.261	7.3
buffer	7	16.074	8.8
logic	28	118.443	65.2
physical_cells	0	0.000	0.0
total	45	181.636	100.0

AREA REPORT

Generated by: Genus(TM) Synthesis Solution 20.11-s111_1

Generated on: Oct 20 2023 02:53:12 pm

Module: washing_machine_controller

Technology libraries: gpdk045bc

physical_cells

Operating conditions: slow

Interconnect mode: global

Area mode: physical library

Instance Module Cell Count Cell Area Net Area Total Area

washing_machine_controller 45 181.636 44.120 225.756

AREA REPORT

Generated by: Genus(TM) Synthesis Solution 20.11-s111_1

Generated on: Oct 20 2023 02:53:12 pm

Module: washing_machine_controller

Technology libraries: gpdk045bc

physical_cells

Operating conditions: slow

Interconnect mode: global

Area mode: physical library

Instance Module Cell Count Cell Area Net Area Total Area

washing_machine_controller 45 181.636 44.120 225.756

TIMING REPORT


```
Timing Point Flags Arc Edge Cell
                                  Fanout Load Trans Delay Arrival Instance
                                                       (ps) Location
                           (arrival)
state_reg[1]/CK -
                                                              (-,-)
                           DFFRHQX8
state_reg[1]/Q - CK->Q F
                                                              (-,-)
                                      7 28.5
                                                 348
g1811/Y
        - A->Y R
                           INVX4
                                      1 8.3
                                                             (-,-)
                           NAND2X6
                                                             (-,-)
g1805__2883/Y - B->Y F
                                      1 6.9 70 56
                                                        455
g1820__1847/Y - A1->Y R
                           A0I21X4
                                      1 3.8 62 67
                                                        522
                                                             (-,-)
water_inlet <<<
                           (port)
                                                        522
                                                              (-,-)
```

PHYSICAL DESIGN

THANKYOU