GENERAL CHEMISTRY CHEM F111 Compre Exam. Model Solution Duration: 120 minutes Max. Marks: 87 **Date: May 14, 2018**

Q1. (i) For
$${}^{3}H^{35}Cl$$
, $\mu = \frac{3.016 \times 35.45}{(3.016 + 35.45)} \times 1.66 \times 10^{-27} = 4.61 \times 10^{-27} kg$

- (a) Energy difference between ground rotational level and first excited state
- (i) $=\frac{\hbar^2}{I}=h\vartheta$, where $\vartheta=218.5~GHz$ 1 M $r = 1.29 \times 10^{-10} \text{ m}$ For ${}^{2}\text{H}^{35}\text{Cl}$, $\mu = \frac{2.015 \times 35.45}{(2.015 + 35.45)} \times 1.66 \times 10^{-27} = 3.165 \times 10^{-27} kg$ Energy of first excited rotational level = $\frac{\hbar^2}{I}$ = 2.114 × 10⁻²² J

Alternate solution:

Frequency required for rotational excitation in ³H³⁵Cl is 218.5 GHz, so frequency required for rotational excitation in ${}^{2}H^{35}Cl$ is $\frac{218.5 \times 3}{2} = 327.75$ GHz

2 M

Energy of the first excited state in ${}^{2}H^{35}Cl = hv = 2.17 \times 10^{-22} J$

- No. The energy difference between the ground rotational level and first excited level in ²H³⁵Cl is more than (ii) ³H³⁵Cl. So the photon of frequency 218.5 GHz will not result in rotational excitation in ²H³⁵Cl. 1 M+1 M
- $\left(6 \frac{r}{a_0}\right) = 0$ (b) **(i)** 1 M Radial distribution function = $R^2(r) r^2$
- (ii) Radial part of the wavefunction $R(r) = \frac{2\sqrt{2}}{81\sqrt{3}} \left(\frac{1}{a_0}\right)^{5/2} r \left(6 - \frac{r}{a_0}\right) e^{-\frac{r}{3a_0}}$ 1 M

Radial distribution function = $\left(\frac{2\sqrt{2}}{81\sqrt{3}}\left(\frac{1}{a_0}\right)^{5/2}r\left(6 - \frac{r}{a_0}\right)e^{-\frac{r}{3a_0}}\right)^2r^2$

(iii)
$$= \frac{8}{19683} \left(\frac{1}{a_0}\right)^5 \left(6 - \frac{r}{a_0}\right)^2 e^{-\frac{2r}{3a_0}} r^4$$

$$P = \frac{8}{19683} \left(\frac{1}{a_0}\right)^5 \left(6 - \frac{r}{a_0}\right)^2 e^{-\frac{2r}{3a_0}} r^4$$

$$\frac{dP}{dr} = \frac{8}{19683} \left(\frac{1}{a_0}\right)^5 \left[\frac{-2}{a_0} \left(6 - \frac{r}{a_0}\right) e^{-\frac{2r}{3a_0}} r^4 + 4 \left(6 - \frac{r}{a_0}\right)^2 e^{-\frac{2r}{3a_0}} r^3$$

$$-\frac{-2}{3a_0} \left(6 - \frac{r}{a_0}\right)^2 e^{-\frac{2r}{3a_0}} r^4 \right]$$

$$\frac{dP}{dr} = \frac{8}{19683} \left(\frac{1}{a_0}\right)^5 \left(6 - \frac{r}{a_0}\right) r^3 e^{-\frac{2r}{3a_0}} \left[\frac{-2}{a_0} r + 4 \left(6 - \frac{r}{a_0}\right) - \frac{-2}{3a_0} \left(6 - \frac{r}{a_0}\right) r \right]$$

$$\frac{dP}{dr} = \frac{8}{19683} \left(\frac{1}{a_0}\right)^5 \left(6 - \frac{r}{a_0}\right) r^3 e^{-\frac{2r}{3a_0}} \left[\frac{2}{3} \left(\frac{r}{a_0}\right)^2 - 10 \left(\frac{r}{a_0}\right) + 24\right] = 0$$

$$1 M$$

$$\left[\frac{2}{3} \left(\frac{r}{a_0}\right)^2 - 10 \left(\frac{r}{a_0}\right) + 24\right] = 0$$

$$1 M$$

$$r = 12a_0 \text{ and } 3a_0$$

$$1 M$$

$$Most probable radius = 12a_0$$

$$1 M$$

$$Most probable radius = 12a_0$$

$$1 M$$

CHEM F111

Duration: 120 minutes

Compre Exam. Model Solution

Date: May 14, 2018

GENERAL CHEMISTRY

Max. Marks: 87

	Max. Marks: 87	Duration: 120 minutes	Date: May 14, 2018
Q2. (a)	$6B = 364.99 \text{ cm}^{-1}$. Therefore We have, $B = h/(8\pi^2(\mu r^2)c)$	$B = 60.83 \text{ cm}^{-1}$	1 M
• •	$\begin{split} \mu &= m_H/2 = 1.0079 \times 10^{\text{3}} kg \ / 6.023 \times 10^{23} \times 2 = 8.367 \times 10^{\text{28}} \ kg \\ \text{Therefore, } B &= 60.83 \ \text{cm}^{\text{1}} = 6083 \ \text{m}^{\text{1}} = 6.626 \times 10^{\text{34}} \ \text{Js/8} \times (3.14)^2 \times (8.367 \times 10^{\text{28}} \ \text{kg}) \ \times \text{r}^2 \times 3 \times 10^8 \ \text{ms}^{\text{1}} \\ \text{So, } r^2 &= 5.50165 \times 10^{\text{21}} \ \text{m}^2. \end{split}$		
(b)	Therefore $r = 7.417 \times 10^{-11} \text{m} = \epsilon_v = [v+(1/2)]\omega_e - [v+(1/2)]^2$	$\omega_{ m eXe}$	2 M
		$\Delta v = +1$ and transition is from $v = 0$ to $v = 1$ $\omega_e - [1+(1/2)]^2 \omega_e x_e - (1/2)\omega_e + (1/2)^2 \omega_e x_e$ (1)	2 M
		nd transition is from $v = 0$ to $v = 2$ ω_e - $[2+(1/2)]^2\omega_e x_e - (1/2)\omega_e + (1/2)^2\omega_e x_e$ (2)	2 M
(c)	The exact chemical shift pos	v_e , $ω_e = 2990$ cm ⁻¹ and $x_e = 0.0174$ ition of uncoupled nucleus A, $δ_A = (5.80+5.70)/2 = 5.75$ ition of uncoupled nucleus X, $δ_A = (1.10+1.00)/2 = 1.05$ 100×10^6 Hz)/ $10^6 = 580$ Hz	
	For second line, $v - v_0 = (5.7)$ Therefore, $J_{AX} = (580 - 570)$	$0 \times 100 \times 10^6 \text{Hz}$)/ $10^6 = 570 \text{ Hz}$ Hz = 10 Hz	2 M
Q3. (a)	(i) CFSE		
	So, octahedral geometry is fa (ii) As the NH ₃ ligand is ve	ectronic configuration is $e^4 t_2^3$ CFSE = -1.2 Δ_t =- 0.53 Δ_o avoured. ery strong ligand, the single electron at the e_g orbital list making the oxidation state of cobalt as +3. So the co-	0.5 M es very high in energy.
	strong roddonig agont.	# AYA	

the constant of the crystal field splitting Δ_0 , Δ_0 of $[Co(NH_3)_5(NO_2)]^{2+}$ is red in colour as it absorbs the green region. λ (dark blue range) λ (green range) So, in terms of crystal field splitting Δ_0 of $[Co(NH_3)_5(NO_2)]^{2+}$ which is

Page **2** of **5**

3 M

justified with observed colours of the complexes.

GENERAL CHEMISTRY CHEM F111 Compre Exam. Model Solution

Max. Marks: 87 Duration: 120 minutes Date: May 14, 2018

sp hybridization

So the complex ion $[Ag(NH_3)_2]^+$ is sp hybridized.

1.5 M

The geometry of the complex is linear.

0.5 M

(without hybridization, if only structure is written correctly, only 0.5 M will be awarded)

(ii)

2 M

- **Q4.** Tetragonal elongation is expected in $[Fe(phen)_3]^{3+}$ complex.
- (a) Based on CFSE value we can identify elongation or compression.

Here, "phen" is a strong ligand field. It is a d^5 low-spin system. The configuration is $t_{2g}{}^5e_g{}^0$ system.

The CFSE for elongation is $\{(-4\times1/3) + (1\times2/3)\}\delta_2 = -2/3\delta_2$

1 M

The CFSE for compression is $\{(-2\times2/3) + (3\times1/3)\}\delta_2 = -1/3\delta_2$

1 M

Therefore, tetragonal elongation is possible for [Fe(phen)₃]³⁺ complex.

1 M

(without CFSE calculation 0 M will be awarded)

 $[Fe(phen)_3]^{3+}$ complex is more stable than $[Cu(phen)_3]^{2+}$ complex.

In $[Fe(phen)_3]^{3+}$ complex, $t_{2g}^5e_g^0$ configuration is possible and t_{2g} is unsymmetrical. So, mild distortion is possible.

Whereas, in $[Cu(phen)_3]^{2+}$ complex, $t_{2g}^{6}e_{g}^{3}$ configuration is possible and e_{g} is unsymmetrical. So, strong distortion is possible. Ligands which are approaching through z direction will be repelled more, which leads instability in $[Cu(phen)_3]^{2+}$ complex.

(answer without mentioning distortion $0\,M$ will be awarded)

(b) The equation is $-2.303 \text{ RT } \log_{10}\beta = \Delta H^{\circ} - T\Delta S^{\circ}$

or,
$$\Delta H^{\circ} = -2.303 RT \log_{10} \beta + T \Delta S^{\circ} = (-2.303 \times 8.314 \times 300 \times 14.6) + (300 \times 90)$$

1 M

$$=$$
 - 83864.48 + 27000 $=$ -56864.48 J/mol $=$ -56.86 kJ/mol

1 M

(no marks will be awarded for the formula only)

The difference in ΔH° values is due to chelate effect of "phen" ligand. With the increase in chelation the change in ΔH° is more negative.

(c) $[Fe(H_2O)_6]^{3+}$ complex is pale color as its electronic configuration is $t_{eg}^3 e_g^2$. According to spin selection rule for electronic transition, during transitions between energy levels, an electron does not change its spin, i.e., $\Delta S = 0$. There should not be any change in the spin of the states and their multiplicities should be the same

GENERAL CHEMISTRY CHEM F111 Compre Exam. Model Solution

Max. Marks: 87 Duration: 120 minutes Date: May 14, 2018

during the transition of electrons. But, in case of $t_{eg}^3 e_g^2$ (high-spin), $\Delta S \neq 0$, so, spin forbidden. Therefore, the pale color and lower absorptivity are observed.

- (d) To calculate E^0 the formula is E = (nE+n'E'+n''E'')/(n+n'+n''). Therefore, $E^0 = [3 \times 2.2 + 1 \times 0.77 + 2 \times (-0.47)] / 6 = [7.37 - 0.94] / 6 = 1.07 V$ The species liable to undergo oxidation is Fe.
- (e) Only one band is expected based on the ground state term.

 [CuCl₄]²⁻ is a tetrahedral complex. Cu²⁺ is a d⁹ system and the ground state term is ²D. Therefore, the Mulliken symbols for splitting in a tetrahedral environment for D term is E and T₂. So, the electronic transition is ²T₂ to ²E.

 (1M)

(If the notations are in small letters, e_g and t_{2g} are used then 0 M will be awarded)

Q5. (a)

3 M+3 M

(b)

enantiomeric excess (ee) = 97.5 - 2.5 = 95% 1M

enantiomeric excess (ee) =
$$\frac{\text{observed roration}}{\text{rotation of pure enantiomer}} \times 100$$

rotation of pure enantiomer =
$$\frac{\text{observed roration}}{\text{enantiomeric excess (ee)}} \times 100$$

rotation of pure enantiomer =
$$\frac{90.5 \times 100}{95}$$
 = -95.26° 2M

(d)

2 M

GENERAL CHEMISTRY

CHEM F111

Compre Exam. Model Solution

Max. Marks: 87 Duration: 120 minutes Date: May 14, 2018

Q6. cycloheptatrienyl anion is more unstable as it has 8π electrons and is not aromatic. [1M]

(a)

— — LUMO

1 1 HOMO

Drawing 1M + explanation 1M

[1M]

(b) (i)

(ii)

осоон

[1M]

(iv)

(c)

осоон

`SH

The material obtained after the reaction is

(d)

1 M for each product shown