Jméno a příjmení:

Podpis:

1. Množina všech řešení rovnice $x-1-\sqrt{3-x}=0$ v oboru reálných čísel je

a) $\{-1\}$

b) {1}

(30)- 6

c) {2}

d) $\{-1,2\}$

e) $\{-2,1\}$

2. Rovnice kružnice se středem S = [2, 1] a poloměrem r = 3 je

- a) $x^2 4x + y^2 2y 4 = 0$
- b) $x^2 4x + y^2 2y 3 = 0$

(30)

- c) $x^2 4x + y^2 2y + 2 = 0$
- e) $x^2 + 4x + y^2 + 2y + 2 = 0$
- d) $x^2 + 4x + y^2 + 2y 4 = 0$

- 6

3. Vyjádřete y z rovnice $x = \frac{1-2y}{y+3}$.

a) $y = \frac{1-3x}{x+2}$

(30)- 6

4. Máme 28 lahví vody o objemu 1,5 litru. Kdyby voda byla v lahvích o objemu 2 litry, kolik lahví by bylo naplněno?

a) 15

b) 18

- 6

c) 20

d) 21

- e) 24
- 5. Množina všech řešení nerovnice $\left|\frac{2x-3}{4}\right| \ge 1$ je
 - a) $\left\langle \frac{7}{2}, \infty \right)$

(30)- 6

c) $\langle -1, 7 \rangle$ e) $(-\infty, -\frac{1}{2}) \cup \langle \frac{7}{2}, \infty)$

b) $(-\infty, -1\rangle \cup \langle 7, \infty)$ d) $(-\infty, \frac{1}{2}\rangle \cup \langle \frac{7}{2}, \infty)$

- 6. Mezi čísly a, b, c, d, e, f platí nerovnosti: a > b, b < c, d < e, e > a, f < a. Který z následujících vztahů může platit?
 - a) b = e

(40)

c) c = f

- d) Může platit kterýkoli z předchozích vztahů.
- 8

- e) Nemůže platit ani jeden z předchozích vztahů.
- 7. Obor hodnot funkce $f: y = 4\sin(2x) 3, x \in \mathbf{R}$, je
 - a) $\langle -11, 5 \rangle$

b) $\langle -7, 1 \rangle$

(40)

c) (-5, -1)

e) $\langle -1, 1 \rangle$

d) $\langle -4, -2 \rangle$

- 8
- 8. V trojúhelníku ABC známe úhly $\gamma = 90^{\circ}$ a $\alpha = 35^{\circ}$ a délku strany c = |AB| = 4. Délka strany b = |AC| je
 - a) $4 \sin 35^{\circ}$

b) $4\cos 35^{\circ}$

(40)

c) $0.25 \sin 35^{\circ}$

d) $0.25 \cos 35^{\circ}$

- 8

- e) žádná z předchozích odpovědí není správná
- 9. Množina všech řešení nerovnice $(3x+2)(x-2) \ge 0$ je
 - a) $\langle -2, 2/3 \rangle$

b) $\langle -2/3, 2 \rangle$

(40)

c) $(-\infty, -2) \cup \langle 2/3, \infty \rangle$

d) $(-\infty, -2/3) \cup (2, \infty)$

- 8

- e) žádná z předchozích odpovědí není správná
- 10. Množina všech řešení nerovnice $\log_3(1-x) < 2$ je
 - a) (-8,1)

b) $(-8, \infty)$

(40)- 8

c) (-7,1)

d) $(-7,\infty)$

e) $(-1, \infty)$

11.	Je dána funkce $f(x) = (x+1)^2$. Pak $f(2t) + f(-t) =$		
	a) $5t^2 + 2t + 2$	b) $5t^2 + 2$	(50)
	c) $3t^2 + 2t + 2$	d) $3t^2 - 2t$	- 10
ī	e) $t^2 + 2t + 1$	2, 3, 2,	
2.	Určete všechny hodnoty parametru a , pro které jsou přímky $p: 2x - (a+1)y + 5 = 0$ a $q: ax - 6y - 1 = 0$ kolme		
	a) $a = 3$	b) $a \in \{3, -4\}$	(50)
	c) $a = \{-3, 4\}$	d) $a = -3/4$	- 10
ı	e) $a \in \{-3/4, 4/3\}$		
3.	Odečteme-li totéž číslo od čísel 6, 10, 22, dostaneme první tři členy geometrické posloupnosti. Určete pátý čle éto posloupnosti.		
	a) 60	b) 81	(50)
	c) 154	d) 162	- 10
ı	e) 486	,	
	Ve třídě je 15 chlapců a 10 dívek. Kolika způsoby z nich můžeme vybrat trojici složenou z jednoho chlapce dvou dívek? (Na pořadí výběru nezáleží.)		
	a) $15 \cdot 10^2$	b) 15 · 10 · 9	(50)
	c) $\binom{25}{3}$	d) $\binom{15}{1} + \binom{10}{2}$	- 10
ı	e) $15 \cdot \binom{10}{2}$, (1) (2)	
	Koule má poloměr R a válec má poloměr podstavy $r=R/2$. Jaká je výška válce, je-li jeho objem roven jedrtřetině objemu koule?		
	a) $R/9$	b) 8R/9	(50)
	c) $16R/9$	d) $9/R$	- 10
	e) $16/(9R)$		
	Když bylo Anně, kolik je dnes Báře, byla Bára dvakrát mladší, než je Anna teď. Za 10 let bude Anna dvakra tarší, než je Bára teď. O kolik let je Anna starší než Bára?		
	a) 4	b) 5	<u>(80)</u>
	c) 6	d) 7	- 16
ı	e) 8	,	
	Řešením rovnice $2\sin^2 x + 7\cos x - 5 = 0$ v oboru reálných čísel jsou právě ta $x \in \mathbf{R}$, pro která platí (k je ce íslo)		
	a) $x = \frac{\pi}{4} + k\pi$	b) $x = \frac{\pi}{3} + 2k\pi$ nebo $x = \frac{5\pi}{3} + 2k\pi$	(80)
	c) $x = \frac{\pi}{2} + 2k\pi$ nebo $x = \frac{-\pi}{2} + 2k\pi$	$d) x = k\pi$	- 16
ı	c) $x = \frac{\pi}{2} + 2k\pi$ nebo $x = \frac{-\pi}{2} + 2k\pi$ e) $x = \frac{\pi}{6} + 2k\pi$ nebo $x = \frac{5\pi}{6} + 2k\pi$		
	V krabici jsou předměty různých vlastností. Víme, že všechny krychle jsou modré a že v krabici není žádn nodrý předmět s drsným povrchem. Jaký závěr ohledně předmětů v krabici z těchto informací můžeme vyvodit		
	a) Všechny krychle mají drsný povrch.	b) Některé krychle mají drsný povrch.	(80)
	c) Žádná krychle nemá drsný povrch.	d) Všechny modré předměty mají tvar krychle.	- 16
	e) Žádné z předchozích tvrzení z uvedených		
	předpokladů neplyne.		
١.	Operace \ominus je definována jako $a\ominus b=ab+3b.$ Určete $x,$ víme-li, že $(3\ominus x)\ominus 2=-6.$		
	a) 0	b) -1	(80)
	c) -2	d) -3	- 16
	e) -4		

Kolik procent z celkového počtu kuřat je ve třetím kontejneru?

a) 30

b) 35

c) 40 e) 50 d) 45

80 - 16