ROUTING: PATH DETERMINATION, IOS CONFIGS Checking Int Settings (recap): Several show cmds

IPv4

show ip int br	Summary all ints including IPv4's on int: Status			
show ip route	 Contents of IPv4 routing table stored in RAM IOS15: Active ints should appear/2 related entries C: Connected L: Local Local host route: Admin distance 0: Routes on router of IP IPv4 /32 mask IPv6 /128 mask Allows router to process packets to destination 			
show running-config int	Display cmds config'd on specific int			
show int	Int info: Packet flow count for all ints on device			
show ip int	IPv4 info: All ints on router			

IPv6

show ipv6 int br	 Summary for each int [up/up] same line as int name: L1/L2 int state Display 2 config'd IPv6's per int Manual entry: 1 global unicast address 		
	• Auto added on global unicast assignment: FE80: 1 link-local		
show ipv6 int gigabitethernet 0/0	 Display int status of all IPv6 belonging to int (link-local/global to Includes multicasts assigned to int: FF02 		
show ipv6 route	 Verify IPv6 network/ints installed in r-table Only IPv6 networks Config'd w/global unicast: [up/up] IPv6 prefix/length added to r-table as connected route Local route: /128 prefix 		
ping	Verify L3 connectivity		
show int			
show ipv6 routers			

Filter Show

terminal length [number] Specify # of lines displayed (0 prevents router from pausing bet screens) enables filtering after show/params/expressions

section	Entire section: Starts w/filter expression	
include	Match filter expression	
exclude	Match filtering expression	
begin	Outtput from certain point	

show running-config | section line vty

show ip int br | include up

show ip int br | exclude unassigned show ip route | begin Gateway

History

- Ctrl+P/Up Arrow: cmds in history buffer
- Ctrl+N/Down Arrow: down history buffer
- History enabled: Default
- show history :priv EXEC: Display contents of buffer
- terminal history size [size] :usr EXEC: Increase/decrease buffer size

Router Switching functions

Switching: Moving packets from source to destination (not L2 switch functions)

Routers fwd packets to destination and use a switching function.

Switching function: Process used by router to accept packet on 1 int/fwd it out another int

- Key role: Encapsulating packets in right data link frame for outward link
- After exit int known using path determination function:
- Router encapsulates packet into data link frame of outgoing int

When a packet is received from 1 network/destined for another:

- 1. De-encapsulates L2 frame header/trailer to expose L3 packet
- 2. Examines destination IP to find best path via routing table
- 3. If finds path: Encapsulates L3 packet into new L2 frame: Fwds frame out exit int
 - May require different L2 frame encapsulation (eth0 int > process > serial int)
 - Serial links are point-to-point connections: Use different L2 frames: Doesn't require MAC address

Sending Packets

- **Send packet** Source determines packet w/**AND** operation on IPv4 address/mask
 - Same AND operation uses packet destination IPv4 address/mask
 - If destination same as source: Doesn't use gateway
 - Refers to ARP cache for MAC to complete packet/send destination
 - If destination address on different network: Packet fwded to gateway
 - To determine MAC gateway: Source checks ARP table for address of gateway/associated MAC
 - No ARP entry exists in table? > ARP request sent > Router sends back ARP reply
 - Packet fwded to MAC gateway

IPv6

• Similar for ipv6 packets

Instead of ARP:

 IPv6 address resolution uses: ICMPv6 neighbor solicitation/neighbor advertisement msgs IPv6-to-MAC mapping kept in table like ARP [AKA] neighbor cache

Fwd to Next Hop

Router receives an Ethernet frame from PC:

- 1. Examines destination MAC: Matches MAC of receiving int: Copies frame into buffer
- 2. Router ID's eth0 type field as 0x800: IPv4 packet is in data portion of frame
- 3. De-encapsulates frame
- 4. Destination IPv6 address of packet doesn't match any directly connected networks of router:
 - a. Consults routing table to route packet
 - b. Searches table for network address: Includes IPv4 destination of packet w/in network
- 5. Packet encapsulated w/new eth0 frame: Destination MAC of IPv4: Next hop

If exit int on eth0 network: Router resolves next-hop IPv4 w/destination MAC using ARP

- 1. Router looks up next-hop IPv4 address in ARP cache
 - a. If entry not there: Sends ARP request out of int > Another router send back ARP reply
 - b. 1st router updates ARP cache w/an entry for associated MAC address
- 2. IPv4 packet encapsulated into new eth0 frame/fwded out original int

Packet Routing

- 1. Router examines destination MAC: Matches MAC on receiving int: Copies frame into buffer
- Router ID's eth0's type field: 0x800: eth0 contains IPv4 packet in data!
- De-encapsulates frame

0x00

Ox8F

If destination IPv4 packet doesn't match int of router: Router consults table to route packet: Searches for other table

- 1. If finds route: Next-hop IPv4/exit int of serial used B/C exit NOT eth0: Doesn't resolve next-hop w/destination MAC
- 2. IPv4 packet encapsulated into new data link frame: Sent out serial exit int
- Int is P2P serial? Router encapsulates IPv4 packet into data link frame by exit int (HDLC/PPP/etc...)
- No MAC addresses on serial ints: Data link destination is equivalent to broadcast

Decisions: Table searches result in 1 of 3 path determinations

Path determinations

Directly connected network	If destination IP of packet: • Belongs to device on network directly connected to int of router • Packet fwded directly to destination device
Remote Network	If destination IP of packet: • Belongs to remote network • Packet is fwded to another router • Remote networks can only be reached by fwding packets to another router
No route determined	 If destination IP of packet: Doesn't belong to connected/remote Router determines if Gateway of Last Resort available Gateway of Last Resort: Router usually config'd w/own gateway If default route: Packet fwded to Gateway of Last Resort If no default route: Packet dropped

Best Path

- Shortest/optimum path ideal
- When multiple paths to same network exist: Each uses different exit int on router to reach it
- Selected by r-protocol based on value/metric used to determine distance reached

Metric: Quantitative value used to measure distance

- Best path: Lowest metric
- Dynamic routing protocols: Use own rules/metrics to build/update tables
- Algorithm generates value/metric for each path: Can be based on single/multiple chars of path
- Some protocols base selection on multiple metrics combined as 1

Dynamic protocols/metrics used

RIP	• Routing Information Protocol • Hop count
OSPF	 Open Shortest Path First Cisco: Based on cumulative BW from source-to-destination
EIGRP	Enhanced Interior Gateway Routing ProtocolBW: Delay: Load: Reliability

Load Balancing

If routing table has 2/more paths w/identical metrics to same destination:

- Load balancing: Router fwds packets using both paths equally
- Table contains single destination network, but multiple exit ints: 1 for each equal cost path
- Fwds packets using multiple exit ints listed in table
- Can increase effectiveness/performance
- Can be config'd to use both dynamic protocols/static routes

EIGRP: Supports unequal cost load balancing

Administrative Distance

- Config router w/multiple routing protocols/static routes
- R-table: May have more than 1 route source for same destination
- · Each r-protocol may decide on different path to reach destination, based on metrics

<u>Example:</u> RIP/EIGRP are config'd on router: Both may learn of same destination: Use different paths based on metrics

Administrative distance: AD: Cisco IOS: Used to determine route to install into IP table

- Represents "trustworthiness" of route: Lower AD: More trustworthy source
- Example: Static route = AD 1 || EIGRP-discovered route = AD 90
- Given 2 separate routes, router chooses 1 w/lowest AD

Default AD's

Connected	0	Static	1
EIGRP summary route	5	External BGP	20
Internal EIGRP	90	IGRP	100
OSPF	110	IS-IS	115
RIP	120	External EIGRP	170
Internal BGP	200		