Matemática Discreta l Clase 6 - Conteo

FAMAF / UNC

7 de abril de 2020

Cardinal de un conjunto

Un conjunto A es finito si podemos contar la cantidad de elementos que tiene. En ese caso denotaremos |A| la cantidad de elementos de A y la llamaremos el cardinal de A

Por ejemplo, los conjuntos

$$A = \{a, b, z, x, 1\}, \qquad B = \{1, 2, 3, 4, 5\}$$

tienen 5 elementos cada uno. Es decir |A| = 5 y |B| = 5.

Conjuntos como \mathbb{Z} , \mathbb{N} o \mathbb{R} son infinitos y por lo tanto no tiene sentido hablar de la cantidad de elementos de estos conjuntos.

El principio de adición

Dadas dos actividades X e Y, si se puede realizar X de n formas distintas o, alternativamente, se puede realizar Y de m formas distintas. Entonces el número de formas de realizar "X o Y" es n+m.

Ejemplo

Supongamos que una persona va a salir a pasear y puede ir al cine donde hay 3 películas en cartel o al teatro donde hay 4 obras posibles. Entonces, tendrá un total de 3+4=7 formas distintas de elegir el paseo.

Este principio, el principio de adición, es el más básico del conteo y más formalmente dice que si A y B son conjuntos finitos disjuntos, entonces

$$|A \cup B| = |A| + |B|.$$

Se generaliza fácilmente: Sean A_1, \ldots, A_n conjuntos finitos tal que $A_i \cap A_j = \emptyset$ cuando $i \neq j$, entonces

$$|A_1 \cup \cdots \cup A_n| = |A_1| + \cdots + |A_n|.$$

Remarcamos que para aplicar el principio de adición es necesario que los eventos se **excluyan mutuamente**. El caso general es

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

El principio de multiplicación

Suponga que una actividad consiste de 2 etapas y la primera etapa puede ser realizada de n_1 maneras y la etapa 2 puede realizarse de n_2 maneras, independientemente de como se ha hecho la etapa 1.

Principio de multiplicación: la actividad puede ser realizada de $n_1 \cdot n_2$ formas distintas.

Ejemplo

Supongamos que la persona del ejemplo anterior tiene suficiente tiempo y dinero para ir primero al cine (3 posibilidades) y luego al teatro (4 posibilidades).

Entonces tendrá $3 \cdot 4 = 12$ formas distintas de hacer el paseo.

Formalmente, si A,B conjuntos y definimos el *producto cartesiano* entre A y B por

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

Entonces si A y B son conjuntos finitos se cumple que

$$|A \times B| = |A| \cdot |B|.$$

Caso especial: A = B.

Ejemplo

¿Cuántas palabras de dos letras hay? (26 letras, no importa si tienen significado)

Respuesta: 26 · 26.

Selecciones ordenadas con repetición

Ejemplo

Sea $X = \{1, 2, 3\}$.

¿De cuántas formas se pueden elegir dos de estos números en forma ordenada?

Notación: si elegimos a y b en forma ordenada, denotamos ab.

Entonces, las posibilidades son

11	12	13
21	22	23
31	32	33

Es decir, hay $9 = 3^2$ formas posibles.

¿Cómo justificamos esto? Por el principio de multiplicación

Avancemos un poco más y ahora elijamos en forma ordenada 3 elementos de 1,2,3, es claro que estas elecciones son

111	211	311
112	212	312
113	213	313
121	221	321
122	222	322
123	223	323
131	231	331
132	232	332
133	233	333.

El total de elecciones posibles $27 = 3^3$.

Un diagrama arbolado ayuda a pensar.

El razonamiento anterior se puede extender:

Proposición

Sean $m, n \in \mathbb{N}$. Hay n^m formas posibles de elegir ordenadamente m elementos de un conjunto de n elementos.

Idea de la prueba.

La prueba de esta proposición se basa en aplicar el principio de multiplicación m-1 veces,

A nivel formal, debemos hacer inducción sobre m y usar el principio de multiplicación en el paso inductivo.

Ejemplo

 \hat{A}_i Cuántos números de cuatro dígitos pueden formarse con los dígitos 1,2,3,4,5,6?

Por la proposición anterior es claro que hay 6⁴ números posibles.

Ejemplo

¿Cuántos números de 5 dígitos y capicúas pueden formarse con los dígitos 1,2,3,4,5,6,7,8?

Un número capicúa de cinco dígitos es de la forma

xyzyx

Se reduce a ver cuántos números de tres dígitos pueden formarse con aquéllos dígitos. Exactamente 8³.

Ejemplo

Sea X un conjunto de n elementos. Â $\mathop{\dot{\epsilon}}$ Cuántos subconjuntos tiene este conjunto?

Por ejemplo, si $X = \{a, b, c\}$ los subconjuntos de X son:

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$.

Es decir, si X es un conjunto de 3 elementos, entonces tiene 8 subconjuntos.

Sea
$$A \subseteq X \rightarrow a \in A$$
 o $a \notin A$ (2 posibilidades)
 $\rightarrow b \in A$ o $b \notin A$ (2 posibilidades)

$$\rightarrow$$
 $c \in A \text{ o } c \notin A \text{ (2 posibilidades)}$

Luego hay

$$2 \cdot 2 \cdot 2 = 2^3 = 8$$

posibles subconjuntos de X.

Razonando de manera análoga

Proposición

La cantidad de subconjuntos de un conjunto de n elementos es 2ⁿ.

Dado X un conjunto, denotamos $\mathcal{P}(X)$ el conjunto formado por todos los subconjuntos de X, por ejemplo

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Si X es un conjunto finito la proposición anterior nos dice que

$$|P(X)| = 2^{|X|}$$

13 / 1