Homework Quiz 7

Due 10 Nov at 6:00

Points 180

Questions 18

Available 3 Nov at 6:00 - 10 Nov at 6:00

Time limit None

This quiz was locked 10 Nov at 6:00.

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	5,807 minutes	170 out of 180

Score for this quiz: 170 out of 180

Submitted 9 Nov at 1:30

This attempt took 5,807 minutes.

	Question 1 10 / 10 pts	
	If the columns of an $n imes n$ matrix A are linearly independent, then the columns of A span \mathbb{R}^n .	
Correct!	True	
	○ False	

Question 2

10 / 10 pts

If the equation Ax = b has at least one solution for each b in \mathbb{R}^n , then the solution is unique for each b.

Note: The matrix A is $n \times n$.

Correct!	True	
	False	
	Question 3	10 / 10 pts
	If the linear transformation $x o Ax$ maps has n pivot positions.	\mathbb{R}^n to \mathbb{R}^n , then A always
	Note: The matrix $m{A}$ is $m{n} imes m{n}$.	
	True	
Correct!	False	

Question 4 $10 / 10 ext{ pts}$ If there is a b in \mathbb{R}^n such that the equation Ax = b is inconsistent (i.e. has no solution), then the transformation $x \to Ax$ is not one-to-one.

Note: The matrix A is $n \times n$.

Question 5 10 / 10 pts

The inverse of the matrix: $egin{bmatrix} 4 & 3 \\ 7 & 5 \end{bmatrix}$ is $egin{bmatrix} -5 & x \\ 7 & -4 \end{bmatrix}$

What is x?

(Write your answer as an integer, no spaces or decimals.)

Correct!

3

orrect Answers

3

Question 6

10 / 10 pts

The inverse of the matrix: $\begin{bmatrix} 1 & -1 & 2 \\ 2 & -1 & 0 \\ 3 & 0 & -5 \end{bmatrix}$

is:
$$\begin{bmatrix} 5 & -5 & 2 \\ 10 & -11 & 4 \\ 3 & -3 & x \end{bmatrix}$$

What is x?

(Write your answer as an integer. No spaces or decimals.)

Correct!

1

orrect Answers

1

	Question 7	10 / 10 pts
	A product of invertible $n imes n$ matrices is invertible, and the inverse of the product is the product of their inverses in the same order.	
	○ True	
Correct!	False	
	Question 8	10 / 10 pts
	If a matrix $m{A}$ is invertible, then the inverse of $m{A}^{-1}$ is $m{A}$ itself.	

Correct!

True

False

Question 9 10 / 10 pts

If $A = egin{bmatrix} a & b \ c & d \end{bmatrix}$ and ad = bc, then A is invertible.

True

Correct!

False

Question 10

10 / 10 pts

If a matrix $oldsymbol{A}$ can be row reduced to the identity matrix, then $oldsymbol{A}$ must be invertible. Correct! True False 0 / 10 pts **Question 11** If a matrix A is invertible, then the same elementary row operations that reduce A to the identity I also reduce A^{-1} to I. ou Answered True orrect answer False See Theorem 7 10 / 10 pts **Question 12** Suppose A, B, and C are invertible n imes n matrices and $C^{-1}(A+X)B^{-1} = I$. What is X?

Correct!

 $X = C^{-1}X^{-1} - A$

X = CB - A

$$X = B^{-1}C^{-1} - A$$

$$X = BC - A$$

igcup This equation does not have a solution for X.

Question 13

10 / 10 pts

Which of the following are invertible?

(You should first determine if they are invertible by hand--and find the inverse where applicable. You can check your work with MATLAB.)

$$\begin{bmatrix} 1 & -2 & -4 \\ 0 & 3 & 6 \end{bmatrix}$$

Correct!

$$\begin{bmatrix}
1 & 6 & 1 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

Correct!

$$lacksquare egin{bmatrix} -2 & 2 \ -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 8 \\
0 & 1 & -1 \\
0 & 3 & 7
\end{bmatrix}$$

Question 14

10 / 10 pts

If there is an $n \times n$ matrix D such that AD = I, then DA = I.

Note: The matrix A is $n \times n$.

Correct!

True

	○ False	
	Question 15	10 / 10 pts
	In order for the linear system, $A\mathbf{x} = \mathbf{b}$ to have a smust be in the null space.	solution, the vector ${f b}$
	O True	
Correct!	False	

	Question 16 10 / 10 pts
	The difference between a set of vectors spanning a subspace in \mathbb{R}^n , and a basis for the same subspace in \mathbb{R}^n , is
	a basis will always contain more vectors than the span.
	There is no difference between a span and a basis.
Correct!	a basis will always contain linearly independent vectors.
	a basis will contain the zero vector, a span will not.

Question 17 10 / 10 pts

Which one of the following is true for a matrix A having column vectors

 $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}, \mathbf{v_5}$ and row echelon form

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Correct!

- v1, v3, and v5 form a basis for the column space of A.
- v1, v3, and v4 form a basis for the column space of A.
- v1, v2, and v4 form a basis for the column space of A.
- Cannot be determined without knowing the entries of A
- v2, v3, and v4 form a basis for the column space of A.

Question 18

10 / 10 pts

Does the vector $\begin{bmatrix} 2\\4\\1 \end{bmatrix}$ belong to the null space of the matrix $\begin{bmatrix} -2&3&-8 \end{bmatrix}$

Correct!

- Yes
- O No

Quiz score: 170 out of 180