- (1) What are the solutions to the equation $x^2 + 12x = 10$?
- (1) $x = 6 \pm 1\sqrt{26}$
- (1) $x = -6 \pm 1\sqrt{26}$ (2) $x = -6 \pm 1\sqrt{26}$ (3) $x = -6 \pm -\sqrt{46}$ (4) $x = 6 \pm -\sqrt{46}$

- (2) Which equation has the same solution as $x^2 6x + 4 = 0$

- $(1) (x-3)^2 = 13$ $(2) (x+3)^2 = 5$ $(3) (x+3)^2 = 13$ $(4) (x-3)^2 = 5$

(3) The method of completing the square was used to solve the equation $4x^2 + 40x + 92 = 0$. Which equation is a correct step when using this method?

$$(1) (x-5)^2 = -2$$

$$(2) (x-5)^2 = 67$$

$$(3) (x+5)^2 = -67$$

$$(4) (x+5)^2 = 2$$

$$(2) (x-5)^2 = 67$$

$$(3)(x+5)^2 = -67$$

$$(4) (x+5)^2 = 2$$

(4) When directed to solve a quadratic equation by completing the square, Sam arrived at the equation $(x-\frac{1}{2})^2=\frac{61}{4}$. Which equation could have been the original equation given to Sam?

$$(1) x^2 - x - 15 = 0$$

(2)
$$x^2 + x + 1 = 0$$

(3)
$$x^2 + x - 15 = 0$$

(1)
$$x^2 + x + 1 = 0$$

(2) $x^2 + x + 1 = 0$
(3) $x^2 + x - 15 = 0$
(4) $x^2 - x + 1 = 0$