Examen de Análisis II.

Alumno	 Curso
Fecha	

- Para comenzar a realizar el examen una vez recibido el enlace de Zoom.
- deberás:
- Copiar unos de los temas elegido en la hoja donde realizarás el mismo y desarrollar en forma completa.
- En el escritorio o mesa donde desarrolles el examen deberán contar solo con los elementos que van a utilizar para rendir, el celular se utilizará únicamente para recibir el archivo, en el caso de no contar con PC, si podrán utilizar el celular para la conexión en Zoom.
- Solo se aceptarán preguntas con respecto a las consignas.
- Una vez terminado el examen deberás enviar el archivo de fotos al grupo de whatsapp, para ser corregido.
- La calificación del mismo será enviado nuevamente a cada alumno para conocer el resultado.
- En la calificación final se tendrá en cuenta:
 - La participación en clase virtual, o por grupo de whatsapp.
 - Entregas de trabajos obligatorios en tiempo y forma.
 - Examen realizado para promocionar la materia.

1- Derivadas.

• Derivar las siguientes funciones, utilizando tabla de derivadas.

a)
$$f(x) = x^3$$

b)
$$f(x) = 2x^4$$

c)
$$f(x) = senx + cosx$$
.

d)
$$f(x) = 3x^4 + 2x$$

e)
$$f(x) = x^3 - 3x^2 + 2x - 5$$

• Derivar las siguientes multiplicaciones y divisiones.

a)
$$f(x) = (2x + 3) \cdot (x^2 + 1)$$

b) f(x) =
$$\frac{x^2 5x + 6}{x + 3}$$

2- Calculo de máximo y mínimo.

Sea la función:

 $Y = f(x) = x^3 - 3x$, hallar analíticamente los puntos de máximos y mínimos.

3- Punto de Inflexión.

Sea la siguiente función, obtener el punto de inflexión.

$$Y = 0.5x^3 - 3x^2 + 6x.$$

4 -Recta Normal y Tangente.

Aplicaciones de la derivada: Hallar analíticamente la ecuación de la recta normal y tangente a la curva f (x)= $\frac{1}{4}$ x 2 en el punto P (2, 1). Graficar las tres funciones.