1. Terminology

(a) Linear independence: a set of vectors $\{\vec{v_1},...,\vec{v_n}\}$ is linearly independent if

$$\sum_{i=1}^{n} a_i \vec{v_i} = 0 \leftrightarrow \forall i [a_i = 0]$$

- (b) Subspace: a subspace $S \subset V$ is a space that is closed under addition and scalar multiplication—i.e. if $x, y \in S$, so is ax + by for any $a, b \in \mathbb{R}$
 - i. Is the set of points (x, y) s.t. x + y = 0 a subspace? Prove that it is, or give a counterexample.
 - ii. Is the set of points (x, y) s.t. x + y = 1 a subspace? Prove that it is, or give a counterexample.
 - iii. Is the set of points (x, y) s.t. $y = \sin(x)$ a subspace? Prove that it is, or give a counterexample.
- (c) Span: the span of a set of vectors is the space of all vectors that can be expressed as linear combinations of those vectors, i.e. the set of all \vec{w} s.t. $\exists [a_1,...,a_n]$ s.t. $\sum_{i=1}^n a_i \vec{v}_i = \vec{w}$
- (d) Basis: a basis for a vector space V is a set of linearly independent vectors that span V
- (e) Dimension of a vector space: the number of vectors in any basis for that space (this well-defined!)
- (f) Orthonormal basis: a basis in which all the vectors are unit vectors, and each basis vector is orthogonal to all the other basis vectors
- (g) Image: the subspace of vectors that are possible outputs of a matrix T (a subspace of the **codomain**)
- (h) Rank: the rank of a matrix is the dimension of the image
 - i. Can calculate the rank as either the number of independent rows or the number of independent columns! $(rank(A) = rank(A^T))$
- (i) Kernel: the "zero space" of a matrix, the subspace of vectors that T maps to the zero vector (a subspace of the **domain**)
- (j) Nullity: the dimension of the kernel
 - i. THE KERNEL IS NEVER EMPTY!
- 2. Find a basis for the image and kernel of matrix A below.

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 & 0 \\ 3 & 6 & 0 & 3 & -3 \\ 0 & 0 & 2 & 2 & 2 \end{bmatrix}$$

- 3. True/false about images and kernels and ranks and functions
 - (a) If A is an $n \times n$ matrix and $A\vec{x} = \vec{0}$, then $x = \vec{0}$.
 - (b) If $A\vec{v} = A\vec{w}$, then $\vec{v} \vec{w} \in ker(A)$.
 - (c) If m > n, a function $f: \mathbb{R}^m \to \mathbb{R}^n$ cannot be one-to-one.
 - (d) If n > m, a function $f : \mathbb{R}^m \to \mathbb{R}^n$ cannot be onto.
 - (e) A function $f: \mathbb{R}^m \to \mathbb{R}^n$ is onto \mathbb{R}^n if every vector in \mathbb{R}^m maps onto some vector in \mathbb{R}^n .
 - (f) All functions $f: \mathbb{R}^m \to \mathbb{R}^n$ map linearly independent vectors in \mathbb{R}^m to linearly independent vectors in \mathbb{R}^n .
 - (g) There exists a 2×2 matrix A such that rank(A) = 0.

September 30, 2018

- (h) Let A and B be $n \times n$ matrices. If \vec{v} is in ker(B), then \vec{v} is in ker(AB).
- (i) Let A and B be $n \times n$ matrices. If \vec{v} is in ker(A), then \vec{v} is in ker(AB).
- (j) If a square matrix has two equal rows, then it is not invertible.
- 4. Using elementary matrices, find a vector not in the span of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- 5. Walk through how Gram-Schmidt works in the 2-dimensional case

September 30, 2018 Page 2