Activité : introduction du nombre dérivé

1 ere STI2D- Mathématiques

On observe la distance parcourue par une voiture en accélération pendant les premières secondes après un démarrage. Celle-ci suit la fonction $d(t) = t^2$ reproduite sur le graphique ci-dessous.

distance (en mètres)_↑ 10temps (en secondes)

- Le trajet dure 10 secondes.
- 2. La distance parcourue est de 100 mètres.
- 3. Sur l'ensemble du trajet, la vitesse moyenne est de $\frac{1}{10}$ = 10 m/s
- 4. La vitesse moyenne entre les secondes 0 et 5 est : $\frac{25}{5} = 5$ m/s
- 5. La vitesse moyenne entre les secondes 5 et 10 est : $\frac{75}{5} = 15$ m/s
 6. La vitesse moyenne entre les secondes 1 et 3 est : $\frac{8}{2} = 4$ m/s

Activité : introduction du nombre dérivé

On observe la distance parcourue par une voiture en accélération pendant les premières secondes après un démarrage. Celle-ci suit la fonction $d(t) = t^2$ reproduite sur le graphique ci-dessous.

- 1. Le trajet dure 10 secondes.
- 2. La distance parcourue est de 100 mètres.
- 3. Sur l'ensemble du trajet, la vitesse moyenne est de $\frac{10}{10} = 10 \text{ m/s}$
- 4. La vitesse moyenne entre les secondes 0 et 5 est : $\frac{25}{5}$ = 5 m/s
- 5. La vitesse moyenne entre les secondes 5 et 10 est : $\frac{75}{5}$ = 15 m/s 6. La vitesse moyenne entre les secondes 1 et 3 est : $\frac{8}{2}$ = 4 m/s