Capstone Project - Credit Card Default Prediction

Data scientist Nanodegree

1. Project Overview

Credit default is important for credit card bank to manage users. In this project, I use a dataset

detailing personal and payment information of credit card owners to predict whether someone will

default in the future. The dataset is from a foreign bank that experiences a high level of credit card

defaults.

2. Problem Statement

The goal of this project is to use a dataset detailing personal and payment information of credit

card owners to predict whether someone will default in the future. I explored the dataset and

applied 4 different models to build a binary classifier in Python.

In this report, I first describe the dataset, how I preprocess and analyze it. Then, I use

hyperparameter optimization to configure the best model from logistic regression, decision tree,

neural network, and random forest. At the end, I test the results by 70/30 training/validation split.

3. Metrics

Accuracy is a common metric for binary classifiers; it takes into account both true positive and

true negatives with equal weight.

 $accuracy = \frac{true\ positives + true\ negatives}{dataset\ size}$

Precision - Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations. The question that this metric answer is of all passengers that labeled as

survived, how many actually survived? High precision relates to the low false positive rate. We

have got 0.788 precision which is pretty good.

Precision = TP/TP+FP

Recall (Sensitivity) - Recall is the ratio of correctly predicted positive observations to the all observations in actual class - yes. The question recall answers is: Of all the passengers that truly survived, how many did we label? We have got recall of 0.631 which is good for this model as it's above 0.5.

F1 score - F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both false positives and false negatives into account. Intuitively it is not as easy to understand as accuracy, but F1 is usually more useful than accuracy, especially if you have an uneven class distribution. Accuracy works best if false positives and false negatives have similar cost. If the cost of false positives and false negatives are very different, it's better to look at both Precision and Recall. In our case, F1 score is 0.701.

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

4. Analysis

4.1 Data Exploration

The credit Card default dataset contains 30000 rows and 32 columns, with the first column as customer ID. A binary variable, account default (1=yes, 0=no) in the second column is used here as the target. Therefore, there are 30000 observations with 30 input attributes, including 1 binary, 3 nominal, and 26 interval attributes. The data dictionary is shown in Figure 1.

ATTRIBUTE	Туре	DESCRIPTION
Default	Binary	Account Default? (1=yes, 0=no)
Gender	Binary	Male or Female? (1=female, 2=male)
Education	Nominal	Education level :0, 1, 2, 3, 4, 5, 6
Marital_Status	Nominal	Martial Status: 0, 1, 2, 3
Card_Class	Nominal	Class 1, 2 or 3
Age	Interval	Age from 20 to 80
Credit_Limit	Interval	Credit limit from 100 to 80,000
Jun_Status	Interval	Months Behind Payment : from -2 to +8
May_Status	Interval	Months Behind Payment: from -2 to +8
Apr_Status	Interval	Months Behind Payment: from -2 to +8
Mar_Status	Interval	Months Behind Payment: from -2 to +8
Feb_Status	Interval	Months Behind Payment: from -2 to +8
Jan_Status	Interval	Months Behind Payment: from -2 to +8
Jun_Bill	Interval	Monthly Bill: -12,000 to +32,000
May_Bill	Interval	Monthly Bill: -12,000 to +32,000
Apr_Bill	Interval	Monthly Bill: -12,000 to +32,000
Mar_Bill	Interval	Monthly Bill: -12,000 to +32,000
Feb_Bill	Interval	Monthly Bill: -12,000 to +32,000
Jan_Bill	Interval	Monthly Bill: -12,000 to +32,000
Jun_ Payment	Interval	Payment for the month: 0 to 60,000
May_Payment	Interval	Payment for the month: 0 to 60,000
Apr_Payment	Interval	Payment for the month: 0 to 60,000
Mar_ Payment	Interval	Payment for the month: 0 to 60,000
Feb_Payment	Interval	Payment for the month: 0 to 60,000
Jan_ Payment	Interval	Payment for the month: 0 to 60,000
Jun_ PayPercent	Interval	Ratio - f(payment/bill) from 0 to 1
May_PayPercent	Interval	Ratio - f(payment/bill) from 0 to 1
Apr_PayPercent	Interval	Ratio - f(payment/bill) from 0 to 1
Mar_ PayPercent	Interval	Ratio - f(payment/bill) from 0 to 1
Feb_PayPercent	Interval	Ratio - f(payment/bill) from 0 to 1
Jan_PayPercent	Interval	Ratio - f(payment/bill) from 0 to 1

Figure 1. Data dictionary

4.2 Exploratory Visualization

The plot below shows the distribution of credit default in dataset. As we can see from the Figure 2, the dataset is highly skewed; most users are credit default. This will help us to set parameter of our model.

Figure 2. Credit Default Distribution

Fig. 3 The following plot shows the relationship between gender and credit default. This information can be helpful when we validate the influence of feature toward the response variable. As we can see, the male (Gender = 2) takes large proportion in the dataset and female (Gender = 1) is more prefer not set credit default.

Figure 3. Credit Default Distribution by Gender

5. Model

5.1 Preprocessing

Data preprocessing is first needed for applying following machine learning models. There are some missing values and outliers in the dataset. I first identify the outliers, replace them with missing value.

In Python, i first created a data map to describe the attributes in Credit Card data, their level (interval, binary or nominal), and the characteristics of the attributes, in which the 0 represents the interval, the 1 represents binary and 2 represents the nominal. Also, I impute the lower limit and upper limit for the interval attributes and categories for the binary and nominal attributes. The data map is shown in Figure 4:

```
attribute map = {
    'Default':[1,(1,0),[0,0]],
    'Gender':[1,(1,2),[0,0]],
    'Education':[2,(0,1,2,3,4,5,6),[0,0]],
    'Marital_Status':[2,(0,1,2,3),[0,0]],
    'card_class':[2,(1,2,3),[0,0]],
    'Age':[0,(20,80),[0,0]],
    'Credit_Limit':[0,(100,80000),[0,0]],
    'Jun_Status':[0,(-2,8),[0,0]],
    'May_Status':[0,(-2,8),[0,0]],
    'Apr_Status':[0,(-2,8),[0,0]],
    'Mar_Status':[0,(-2,8),[0,0]],
    'Feb_Status':[0,(-2,8),[0,0]],
    'Jan_Status':[0,(-2,8),[0,0]],
    'Jun_Bill':[0,(-12000,32000),[0,0]],
    'May_Bill':[0,(-12000,32000),[0,0]],
    'Apr_Bill':[0,(-12000,32000),[0,0]],
    'Mar_Bill':[0,(-12000,32000),[0,0]],
    'Feb_Bill':[0,(-12000,32000),[0,0]],
    'Jan_Bill':[0,(-12000,32000),[0,0]],
    'Jun_Payment':[0,(0,60000),[0,0]],
    'May_Payment':[0,(0,60000),[0,0]],
    'Apr_Payment':[0,(0,60000),[0,0]],
    'Mar_Payment':[0,(0,60000),[0,0]],
    'Feb_Payment':[0,(0,60000),[0,0]],
    'Jan_Payment':[0,(0,60000),[0,0]],
    'Jun PayPercent':[0,(0,1),[0,0]],
    'May_PayPercent':[0,(0,1),[0,0]],
    'Apr_PayPercent':[0,(0,1),[0,0]],
    'Mar_PayPercent':[0,(0,1),[0,0]],
    'Feb_PayPercent':[0,(0,1),[0,0]],
    'Jan_PayPercent':[0,(0,1),[0,0]]}
```

Figure 4. Data map

After creating the data map, we use it with an algorithm to identify the outliers and missing values in each attribute. For interval variables, the value outside the limits will be marked as an outlier; for categorical variables (binary and nominal), the value that does not match the categories will be marked as an outlier.

Then, in this case, we set all the outliers as missing value and impute these values along with all other missing values. In Python, "mean" is used for interval attributes and "mode" for categorical ones in the 'sklearn' package.

Besides, the machine learning attributes in sklearn work best if the interval variables are scales. The StandardScaler method in the sklearn preprocessing package is used to do it. Next, one-hot (SAS) encoding is applied for nominal attributes in Python by sklearn OneHotEncoder. At last, we combined scaled imputed interval variables, one-hot encoded nominal variables and imputed binary variable together and drop the last column of the one-hot encoded nominal variables for logistic regression and the data frame without dropping last column for rest of solution model. The data frames are shown as following respectively,

Ιm	iputed & Sca									
							Apr_Status			
0	-1.391899	-1.131883	1.7	794564	1.7823	48	-0.696663	-0	.666599	
1	-1.149700	-0.366111	-0.8	874991	1.7823	48	0.138865	0	.188746	
2	-0.180901	-0.591338	0.0	014861	0.1117	36	0.138865	0	.188746	
3	0.182399	-0.906656	0.0	014861	0.1117	36	0.138865	0	.188746	
4	2.604397	-0.906656	-0.8	874991	0.1117	36	-0.696663	0	.188746	
	Feb_Status	Jan_Status	Jun_E	Bill Ma	ay_Bill		Educatio	n3	Education4	١
0	-1.530046	-1.486041	-0.64	3742 -0	648829		0	0.0	0.0	
1	0.234917	1.992316	-0.660	0503 -0	668231		0	.0	0.0	
	0.234917						0	.0	0.0	
3	0.234917	0.253137	-0.057	7224 -0	012891		0	.0	0.0	
4	0.234917	0.253137	-0.579	9693 -0	612646	• • • •	0	.0	0.0	
	Education5	Marital_St	atus0	Marita:	l_Status1	Ма	rital_Status	2 (card_class0	١
0	0.0		0.0		1.0		0.	0	1.0	
1	0.0		0.0		0.0		1.	0	0.0	
2	0.0		0.0		0.0		1.	0	0.0	
3	0.0		0.0		1.0		0.	0	1.0	
4	0.0		0.0		1.0		0.	0	1.0	
	card_class	1 Default	Gender							
0	0.0	0 1.0	2.0							
1	1.0	0.0	2.0							
2	1.0	0.0	2.0							

Figure 5. The data frame for logistic regression

5.1.2 Logistic Regression

The response variable in this case is a binary variable. We can create logistic regression model for prediction. we use the Logistic Regression in sklearn.linear_model package to fit the logistic regression model for the whole data. Before the fitting process, we create the features (X) as the predictor variable and target (y) as the response variable for building logistic regression model. At last, we used the logre in Class_regression package to display the coefficients of all the variable and metrics in Figure 6 and Figure 7:

Logistic Regression	Model	using	Entire	Dataset
Coefficients:				
Intercept		6860		
Age		0646		
Credit_Limit		2967		
Jun_Status		7535		
May_Status		3222		
Apr_Status		1002		
Mar_Status		.0978		
Feb_Status		1419		
Jan_Status		1726		
Jun_Bill		2220		
May_Bill		.3994		
Apr_Bill		1362		
Mar_Bill		.1415		
Feb_Bill		.0504		
Jan_Bill		.0429		
Jun_Payment	-0.	2446		
May_Payment		1746		
Apr_Payment	-0.	.0686		
Mar_Payment	-0.	0492		
Feb_Payment	-0.	1571		
Jan_Payment		.0350		
Jun_PayPercent.	0.	2483		
May_PayPercent.	0.	1631		
Apr_PayPercent.		.0018		
Mar_PayPercent.	0.	1200		
Feb_PayPercent.	0.	1878		
Jan_PayPercent.	0.	0613		
Education0	-0.	5484		
Education1	0.	2830		
Education2	0.	2176		
Education3	0.	1845		
Education4	-0.	6777		
Education5	-0.	8414		
Education6	-1.	6177		
Marital_Status0	-0.	0497		
Marital Status1	-0.	2392		
Marital_Status2	-0.	2713		
Marital Status3	-0.	3653		
card class0	-0.	0944		

Figure 6. Coefficients of the logistic regression model

Model Metrics		
Observations		30000
Coefficients		39
DF Error		29961
Mean Absolute Er	ror	0.2100
Avg Squared Erro	r	0.1036
Accuracy		
Precision		0.6761
Recall (Sensitiv	/ity)	0.2851
F1-Score		0.4011
MISC (Misclassif	ication)	13.8%
class 0		2.6%
class 1		71.5%
Confusion		
	c1 0	Cl 1
Matrix	Class 0	
Class 0	24483	663
Class 1	3470	1384

Figure 7. Metrics of the logistic regression model

5.1.3 Decision Tree

Python created a decision tree with the maximum depth of the tree chose from the parameter list.

The DecisionTreeClassifier from sklearn used the cleaned data set to fit the decision tree.

Parameters:

The function to measure the quality of a split is default as "gini".

Set up a list of parameters for "max depth" (3, 4, 5, 6, 7, 8, 10, 15, 25, 30, 35)

We set the minimum number of samples required to be at a leaf nodes and the minimum number of samples required to split an internal node to 5. Others use the default values.

Cross validation:

Evaluate and compare different models using 10-folds cross validation. Import cross_validate from sklearn.model_selection to calculate recall, accuracy, precision and F1 score.

After running the program, the results are shown in Figure 9.

The metrics created are based upon 10 folds, and we get the mean and standard deviation calculated from each of cv folds, each validation data consisting of 10% of the data randomly selected, in this case, it's 3000 observations.

	Maximum Tree Depth:	3		
	Metric Mean	Std. Dev.		
	accuracy 0.8750			
	recall 0.4156			
	precision 0.6894	0.0402		
	f1 0.5178	0.0291		
	Maximum Tree Depth:	4	Maximum Tree Depth:	10
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev.
	accuracy 0.8748		accuracy 0.8702	0.0080
	recall 0.4565	7 7 7 7 F F F F F F F F F F F F F F F F	recall 0.4434	0.0361
	precision 0.6663	CONT. CO. CO. CO.	precision 0.6461	0.0456
	f1 0.5410		f1 0.5246	0.0301
	Maximum Tree Depth:	5	Maximum Tree Depth:	15
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev.
	accuracy 0.8740		accuracy 0.8551	0.0098
	recall 0.4477		recall 0.4481	0.0291
	precision 0.6674		precision 0.5681	0.0429
	f1 0.5342	0.0300	f1 0.5002	0.0276
/	Maximum Tree Depth:	6	Maximum Tree Depth:	25
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev.
	accuracy 0.8751	0.0067	accuracy 0.8407	0.0104
	recall 0.4516		recall 0.4541	0.0225
	precision 0.6709	0.0372	precision 0.5106	0.0379
-	f1 0.5386		f1 0.4801	0.0243
	Maximum Tree Depth:	7	Maximum Tree Depth:	30
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev.
	accuracy 0.8737		accuracy 0.8396	0.0102
	recall 0.4442		recall 0.4565	0.0237
	precision 0.6662		precision 0.5061	0.0366
	f1 0.5317	0.0273	f1 0.4796	0.0259
	Maximum Tree Depth:	8	Maximum Tree Depth:	35
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev.
	accuracy 0.8722		accuracy 0.8410	0.0098
	recall 0.4427		recall 0.4578	0.0299
	precision 0.6569	0.0370	precision 0.5110	0.0353

Figure 9. Decision tree metrics

Results:

From the metrics, as the tree depth increased, the measurements get worse, e.g. lower recall and F1 score. The best result comes from the model with maximum depth of 6 comparing to others with highest precision. Comparing to the model with tree depth 4, although the latter has a little bit higher recall, yet its precision is lower. Using a simple cross validation with training and validation part consisting of 70% and 30% of the data to compare these two models, the model have better classification result using the one with max depth set to 6.

5.1.4 Neural Network

For building neural network, we first create the features (X) and target (y) for building decision tree. Then we set network sizes of (3), (4), (5), (6), (7), (8), (9), (11) in one hidden layer and (3,2), (4,3), (5,4), (6,5), (7,6), (8,7), (9,8), (10,10) in two layers. We build a for loop to fit every network size for our neural network model by MLPClassifier from sklearn. At last, we calculate the metrics MISC, recall, accuracy, precision and F1 from the 10 cross-validation folds for each model to compare neural network with a different number of hidden layers and number of neurons and use Class_FNN to print the result, as shown following:

1						
1	Network: 3		Network: 6			
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev	· .	
	accuracy 0.8713	0.0069	accuracy 0.8714	4 0.0075		
	recall 0.4073	0.0459	recall 0.427	0.0274		
	precision 0.6708	0.0434	precision 0.660	0.0438		
	f1 0.5048	0.0352	f1 0.518	0.0256		
	Network: 4		Network: 7		Network: 9	
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev	, Metric Mean	Std. Dev.
	accuracy 0.8727	0.0087	accuracy 0.8719		accuracy 0.8702	0.0085
	recall 0.4415	0.0399	recall 0.434		recall 0.4343	0.0344
	precision 0.6616	0.0480	precision 0.6598		precision 0.6499	0.0482
	f1 0.5284	0.0345	f1 0.523		f1 0.5195	0.0315
	11 0.3264	0.0343	11 6.525	0.0297		
	Network: 5		Network: 8		Network: 11	
	Metric Mean	Std. Dev.	Metric Mean	Std. Dev	. Metric Mean	Std. Dev.
	accuracy 0.8736	0.0074	accuracy 0.8724	4 0.0077	accuracy 0.8694	0.0073
	recall 0.4463	0.0343	recall 0.440		recall 0.4417	0.0358
	precision 0.6641	0.0409	precision 0.6604		precision 0.6415	0.0389
	f1 0.5329	0.0293	f1 0.527		f1 0.5221	0.0288
	.2	0.0255			111111111111111111111111111111111111111	0.0200
	Network: (3, 2)		Network: (6, 5)			
	Metric Mean		Metric Mean	Std. Dev.		
	accuracy 0.8730		accuracy 0.8712	0.0065		
(recall 0.4541					
1			recall 0.4429	0.0386		
	precision 0.6573	0.0417	precision 0.6517	0.0364	Network: (9.8)	
/		0.0417		0.0364 0.0291	Network: (9, 8)	Std Day
	precision 0.6573 f1 0.5359	0.0417 0.029	precision 0.6517 f1 0.5261	0.0364 0.0291	Metric Mean	Std. Dev.
	precision 0.6573 f1 0.5359 Network: (4, 5)	0.0417 0.0297	precision 0.6517 f1 0.5261 Network: (7, 6)	0.0364 0.0291	Metric Mean accuracy 0.8668	0.0092
	precision 0.6573 f1 0.5359 Network: (4, 3) Metric Mean	0.0417 0.0297 Std. Dev.	orecision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean	0.0364 0.0291 Std. Dev.	Metric Mean accuracy 0.8668 recall 0.4411	0.0092 0.0264
	precision 0.6573 f1 0.5359 Network: (4, 3) Metric Mean accuracy 0.8743	0.0417 0.0297 Std. Dev. 0.0072	precision 0.6517 f1 0.5261 Network: (7, 6) Metric Mean accuracy 0.8711	0.0364 0.0291 Std. Dev. 0.0075	Metric Mean accuracy 0.8668	0.0092
	precision 0.6573 f1 0.5359 Network: (4, 3) Metric Mean accuracy 0.8743 recall 0.4384	0.0417 0.029 Std. Dev. 0.0072 0.0396	precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520	0.0364 0.0291 Std. Dev. 0.0075 0.0290	Metric Mean accuracy 0.8668 recall 0.4411	0.0092 0.0264
	precision 0.6573 f1 0.5359 Network: (4, 5) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724	0.0417 0.0297 Std. Dev. 0.0072 0.0396 0.0421	precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 precision 0.6465	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270	0.0092 0.0264 0.0450
	precision 0.6573 f1 0.5359 Network: (4, 3) Metric Mean accuracy 0.8743 recall 0.4384	0.0417 0.0297 Std. Dev. 0.0072 0.0396 0.0421	precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270 f1 0.5174	0.0092 0.0264 0.0450
	precision 0.6573 f1 0.5359 Network: (4, 3) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724 f1 0.5295	0.0417 0.0297 Std. Dev. 0.0072 0.0396 0.0421 0.0323	Precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 precision 0.6465 f1 0.5315	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270 f1 0.5174 Network: (10, 10)	0.0092 0.0264 0.0450 0.0294
	precision 0.6573 f1 0.5359 Network: (4, 5) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724	0.0417 0.0297 Std. Dev. 0.0072 0.0396 0.0421 0.0323	precision 0.6517 f1 0.5261 Network: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 precision 0.6465 f1 0.5315 Network: (8, 7)	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270 f1 0.5174 Network: (10, 10) Metric Mean	0.0092 0.0264 0.0450 0.0294 Std. Dev.
	precision 0.6573 f1 0.5359 Network: (4, 5) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724 f1 0.5295 Network: (5, 4) Metric Mean	0.0417 0.0297 1 Std. Dev. 0.0072 0.0396 0.0421 0.0323	precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 precision 0.6465 f1 0.5315 Wetwork: (8, 7) Metric Mean	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274 Std. Dev.	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270 f1 0.5174 Network: (10, 10)	0.0092 0.0264 0.0450 0.0294
	precision 0.6573 f1 0.5359 Network: (4, 5) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724 f1 0.5295 Network: (5, 4) Metric Mean accuracy 0.8720	0.0417 0.029 Std. Dev. N 0.0072 0.0396 0.0421 0.0323 Std. Dev. N 0.0075	precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 orecision 0.6465 f1 0.5315 Wetwork: (8, 7) Metric Mean accuracy 0.8682	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274 Std. Dev. 0.0071	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270 f1 0.5174 Network: (10, 10) Metric Mean	0.0092 0.0264 0.0450 0.0294 Std. Dev.
	precision 0.6573 f1 0.5359 Network: (4, 3) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724 f1 0.5295 Network: (5, 4) Metric Mean accuracy 0.8720 recall 0.4502	0.0417 0.029 1 0.0072 0.0396 0.0421 0.0323 5td. Dev. N 0.0075 0.0366	precision 0.6517 f1 0.5261 Network: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 precision 0.6465 f1 0.5315 Network: (8, 7) Metric Mean accuracy 0.8682 recall 0.4413	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274 Std. Dev. 0.0071 0.0412	Metric	0.0092 0.0264 0.0450 0.0294 Std. Dev. 0.0080 0.0433
	precision 0.6573 f1 0.5359 Network: (4, 5) Metric Mean accuracy 0.8743 recall 0.4384 precision 0.6724 f1 0.5295 Network: (5, 4) Metric Mean accuracy 0.8720	0.0417 0.029 5td. Dev. 0.0072 0.0396 0.0421 0.0323 5td. Dev. 0.0075 0.0366 0.0426	precision 0.6517 f1 0.5261 Wetwork: (7, 6) Metric Mean accuracy 0.8711 recall 0.4520 orecision 0.6465 f1 0.5315 Wetwork: (8, 7) Metric Mean accuracy 0.8682	0.0364 0.0291 Std. Dev. 0.0075 0.0290 0.0383 0.0274 Std. Dev. 0.0071 0.0412 0.0431	Metric Mean accuracy 0.8668 recall 0.4411 precision 0.6270 f1 0.5174 Network: (10, 10) Metric Mean accuracy 0.8654	0.0092 0.0264 0.0450 0.0294 Std. Dev. 0.0080

Figure 10. Neural network metrics

As shown in Figure 9, the best model with highest F1 score is the model with two hidden layers, the first layer with 3 perceptrons and the second layer with 2 perceptrons. Later, it will be used to compare with other model by using 70/30 training/validation split with calculating the same metrics MISC, recall, accuracy, precision and F1 from the validation results.

5.1.5 Random Forest

Use the RandomForestClassifier from sklearn module to construct a random forest solution. Select the parameters from the list of "n_estimators" (the number of trees constructed in the random forest) and the "max_features" (the maximum number of features allowed in each tree) shown below to build up different models.

Parameter:

- The list of the number of estimators is (27, 35, 45, 55, 60, 65, 70, 75, 80).
- The list of maximum features is ('auto', 0.3, 0.5, 0.8).
- > The function to measure the quality of a split is set to 'gini'.
- > The maximum depth of the tree is default as None, which means nodes are expanded until all leaves are expanded until all leaves contain less than min_samples_split samples.

In this case, the minimum samples split is set to 2.

Metrics displaying the cross-validation results:

```
Best based on F1-Score
Best Number of Estimators (trees) = 75
Best Maximum Features = 0.8
```

Figure 11. Best random forest model

Result:

The best solution is defined by the one with maximum F1-Score and the best result can be produced from the code.

From the 10-fold cross-validation it appears that the solution using 75 trees and 80% features produced the highest F1-score. In this case, there are 41 features including the encoding nominal variables, so it means our model allows for no more than 33 features in each tree.

5.1.6 70/30 Model Comparison

After we fit the data set with 4 different models (logistic regression, decision tree, neural network and decision tree, we need compare these four solutions and select the best one. In this case,

we use 70/30 training/validation split to fit each solution with 70% data set and calculate the same metrics MISC, recall, accuracy, precision and F1 from the validation results, shown as following: Logistic Regression:

Training Data Random Selection of 70% of	Original Data	
Model Metrics	Training 21001 42 20959 0.2099 0.1035 0.8630 0.6811 0.2958 0.4124	Validation 9001 42 8959 0.2094 0.1036 0.8643 0.6657 0.3044 0.4177

Figure 12. Logistic regression 70/30 metrics

Decision Tree: (max_depth = 6)

Model Metrics	Training	Validation
Observations	21001	9001
Features	41	41
Maximum Tree Depth	6	6
Minimum Leaf Size	5	5
Minimum split Size	5	5
Mean Absolute Error	0.1856	0.1903
Avg Squared Error	0.0928	0.0971
Accuracy	0.8811	0.8756
Precision	0.6911	0.6547
Recall (Sensitivity)	0.4855	0.4691
F1-score	0.5703	0.5466
MISC (Misclassification)	11.9%	12.4%
class 0		4.7%
class 1	51.4%	53.1%
Training		
Confusion Matrix Class 0	Class 1	
Class 0 16845	741	
Class 1 1757	1658	
Validation		
Confusion Matrix Class 0	Class 1	
Class 0 7206	356	
Class 1 764	675	

Figure 13. Decision tree 70/30 metrics

Neural Network:

****** NEURAL NETWORK	*****
Model Metrics	
Observations	21001
Features	41
Number of Layers	2
Number of Outputs	1
Number of Weights	137
Activation Function	logistic
Loss	0.0476
R-Squared	0.3010
Mean Absolute Error	0.1905
Median Absolute Error	0.0761
Avg Squared Error	0.0952
Square Root ASE	0.3085

Figure 14. Neural network 70/30 metrics

Random Forest: (n_estimator = 75, max_features = 0.8)

			FEATURE	
			FEATURE	IMPORTANC
			Jun_Status	0.2016
			May_Status	0.0596
			Age	0.0520
Random forest: Training Data			Jun_Bill	0.0457
Random Selection of 70% of Original	inal Data		Credit_Limit	0.0448
Traindom Secretarion of 700 of orag	ina e pa ca		Jan_Payment	0.0342
			Jan_Bill	0.0322
			May_Bill	0.0315
	raining	Validation	May_Payment	0.0310
Observations	21001	9001	Apr_Payment	0.0307
Features	41	41	Mar_Bill	0.0304
Maximum Tree Depth	None	None	May_PayPercent Feb Bill	0.0301 0.0296
Minimum Leaf Size	1	1	Jun_Payment	0.0296
Minimum split Size	2	2	Apr_PayPercent	0.0293
	_	_	Mar_PayPercent	0.0291
Mean Absolute Error	0.0695	0.1883	Mar_Payment	0.0290
Avg Squared Error	0.0130	0.0907	Apr_Bill	0.0289
Accuracy	0.9999	0.8835	Feb Payment	0.0283
Precision	1.0000	0.6958	Feb_PayPercent	0.0282
Recall (Sensitivity)	0.9994	0.4816	Jun_PayPercent	0.0279
F1-score	0.9997	0.5692	Jan_PayPercent	0.0272
MISC (Misclassification)	0.0%	11.7%	Mar_Status	0.0130
			Apr_Status	0.0119
class 0	0.0%	4.0%	Jan_Status	0.0110
class 1	0.1%	51.8%	Feb_Status	0.0095
			Default	0.0077
			Education2	0.0058
Training			Education1	0.0050
	ss 1		Marital_Status2.	0.0050 0.0049
	0		Marital_Status1. Education3	0.0049
	-		card class1	0.0047
Class 1 2 3413	3		Marital_Status3.	0.0034
			card_class0	0.0021
			card_class2	0.0013
Validation			Education5	0.0008
Confusion Matrix Class 0 Class	ss 1		Education6	0.0004
Class 0 7259 300			Marital_Status0.	0.0004
Class 1 746 693			Education4	0.0003
Class 1 /40 69.	•		Education0	0.0000

Figure 15. Random Forest 70/30 metrics

From the simple cross validation (70/30), the logistic regression, decision tree and neutral networks fit to these data using our parameter settings have a much higher misclassification rate than the random forest. It also has much higher F1 score than others. Therefore, we conclude that the random forest is the best model among four, even though all of these F1 scores are not so good. It is possible that we need do more data processing before create the model, like feature selection.

6. Reflection & Improvement

Up to now, we have already got the best models. Obviously, the random forest performs best in Python on the validation data, except a lower specificity. As we have discussed before, what we care most in this problem is the recall rate, so that we can choose the model that is able to find as many potential default behaviors as possible.

Two possible reasons might limit the performance of random forest in Python. The first one is overfitting. As we can see from the confusion matrices of training and validation data in 70/30 split, the false positive and false negative number are almost zero. With the training set fit being overwhelmingly good, the F1 score of the validation drops drastically below 0.6. This is typical overfitting, usually caused by fitting too many variables in the model. Secondly, we still need variable selection before running the model. By looking at the names of all the attributes, we should notice the potential collinearity among them. For example, as a function of payment divided by bill, monthly paypercent should have some correlation with those two kinds of attributes. Therefore, dropping them from the very beginning is probably a good way to simplify our model and make it more explainable.

However, the metrics are not good enough for prediction or further application. We tried to drop some variables due to Gini reduction before running the random forest, but the results were still not good enough. More effective variable selection is needed before fitting any model for the dataset. Besides, when the model metrics like F1 score can't meet our requirement, we should also consider adjusting criterion for choosing the best model. Using ROC curve in this case is a more robust way to judge the performance of different models.