Outline

- Introduction
- Background
 - → Relational database systems
 - → Computer networks
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
- Multidatabase Query Processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Distributed DBM9

M. T. Özsu & P. Valdurie

Ch.2/1

Relational Model

- Relation
 - → A relation R with attributes $A = \{A_1, A_2, ..., A_n\}$ defined over n domains $D = \{D_1, D_2, ..., D_n\}$ (not necessarily distinct) with values $\{Dom_1, Dom_2, ..., Dom_n\}$ is a finite, time varying set of n-tuples $\langle d_1, d_2, ..., d_n \rangle$ such that $d_1 \in Dom_1, d_2 \in Dom_2, ..., d_n \in Dom_n$, and $A_1 \subseteq D_1, A_2 \subseteq D_2, ..., A_n \subseteq D_n$.
 - → Notation: $R(A_1, A_2, ..., A_n)$ or $R(A_1; D_1, A_2; D_2, ..., A_n; D_n)$
 - → Alternatively, given *R* as defined above, an instance of it at a given time is a set of *n*-tuples:

 $\{\langle A_1:d_1,A_2:d_2,...,A_n:d_n\rangle \mid d_1\in Dom_1,d_2\in Dom_2,...,d_n\in Dom_n\}$

- Tabular structure of data where
 - → R is the table heading
 - → Attributes are table columns
 - → Each tuple is a row

Distributed DBMS

© M. T. Özsu & P. Valduriez

h.2/2

Relation Schemes and Instances

- Relational scheme
 - → A relation scheme is the definition; i.e., a set of attributes
 - → A relational database scheme is a set of relation schemes:
 - i.e., a set of sets of attributes
- Relation instance (simply *relation*)
 - → An relation is an instance of a relation scheme
 - → a relation **r** over a relation scheme $R = \{A_1, ..., A_n\}$ is a subset of the Cartesian product of the domains of all attributes, i.e.,

$$\mathbf{r} \subseteq Dom_1 \times Dom_2 \times \dots \times Dom_n$$

Distributed DBMS

© M. T. Özsu & P. Valdurie

Ch 2/3

Domains

- A domain is a *type* in the programming language sense
 - → Name: String
 - → Salary: Real
- Domain values is a set of acceptable values for a variable of a given type.
 - → Name: CdnNames = {...},
 - → Salary: ProfSalary = {45,000 150,000}
 - Simple/Composite domains
 - Address = Street name+street number+city+province+ postal code
- Domain compatibility
 - Binary operations (e.g., comparison to one another, addition, etc.) can be performed on them.
- Full support for domains is not provided in many current relational DBMSs

Distributed DBMS

© M. T. Özsu & P. Valduriez

Relation Schemes

EMP

ENO ENAME TITLE SAL **PNO** RESP DUR

PROJ

PNO PNAME BUDGET

EMP(ENO, ENAME, TITLE, SAL, PNO, RESP, DUR) PROJ (PNO, PNAME, BUDGET)

- Underlined attributes are relation keys (tuple identifiers).
- Tabular form

Example Relation Instances

_	E.W.							
	ENO	ENAME	TITLE	SAL	PNO	RESP	DUR	
	E1 E2 E2 E3 E3 E4 E5 E6 E7	J. Doe M. Smith M. Smith A. Lee A. Lee J. Miller B. Casey L. Chu R. Davis J. Jones	Elect. Eng. Analyst Analyst Mech. Eng. Mech. Eng. Programmer Syst. Anal. Elect. Eng. Mech. Eng. Syst. Anal.	40000 34000 27000 27000 24000 34000 40000 27000 34000	P1 P1 P2 P3 P4 P2 P2 P4 P3 P3	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager Engineer Manager	12 24 6 10 48 18 24 48 36	

PROJ

PNO	PNAME	BUDGET
P1 P2	Instrumentation Database Develop.	
P3 P4	CAD/CAM Maintenance	250000 310000

Repetition Anomaly

- The NAME, TITLE, SAL attribute values are repeated for each project that the employee is involved in.
 - → Waste of space
 - → Complicates updates

EMP						
<u>ENO</u>	ENAME	TITLE	SAL	PNO	RESP	DUR
E1	J. Doe	Elect. Eng.	40000	P1	Manager	12
E2	M. Smith	Analyst	34000	P1	Analyst	24
E2	M. Smith	Analyst	34000	P2	Analyst	6
E3	A. Lee	Mech. Eng.	27000	P3	Consultant	10
E3	A. Lee	Mech. Eng.	27000	P4	Engineer	48
E4	J. Miller	Programmer	24000	P2	Programmer	18
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24
E6	L. Chu	Elect. Eng.	40000	P4	Manager	48
E7	R. Davis	Mech. Eng.	27000	P3	Engineer	36
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40

Distributed DBMS

M. T. Özsu & P. Valdurie

Ch 2/7

Update Anomaly

• If any attribute of project (say SAL of an employee) is updated, multiple tuples have to be updated to reflect the change.

EMP							
<u>ENO</u>	ENAME	TITLE	SAL	PNO	RESP	DUR	
E1	J. Doe	Elect. Eng.	40000	P1	Manager	12	
E2	M. Smith	Analyst	34000	P1	Analyst	24	
E2	M. Smith	Analyst	34000	P2	Analyst	6	
E3	A. Lee	Mech. Eng.	27000	P3	Consultant	10	
E3	A. Lee	Mech. Eng.	27000	P4	Engineer	48	
E4	J. Miller	Programmer	24000	P2	Programmer	18	
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24	
E6	L. Chu	Elect. Eng.	40000	P4	Manager	48	
E7	R. Davis	Mech. Eng.	27000	P3	Engineer	36	
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40	

Distributed DBMS

© M. T. Özsu & P. Valduriez

Insertion Anomaly

• It may not be possible to store information about a new project until an employee is assigned to it.

EMP							
ENO	ENAME	TITLE	SAL	PNO	RESP	DUR	
E1	J. Doe	Elect. Eng.	40000	P1	Manager	12	
E2	M. Smith	Analyst	34000	P1	Analyst	24	
E2	M. Smith	Analyst	34000	P2	Analyst	6	
E3	A. Lee	Mech. Eng.	27000	P3	Consultant	10	
E3	A. Lee	Mech. Eng.	27000	P4	Engineer	48	
E4	J. Miller	Programmer	24000	P2	Programmer	18	
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24	
E6	L. Chu	Elect. Eng.	40000	P4	Manager	48	
E7	R. Davis	Mech. Eng.	27000	P3	Engineer	36	
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40	

Distributed DBMS © M. T. Özsu & P. Valduriez

Deletion Anomaly

- If an engineer, who is the only employee on a project, leaves the company, his personal information cannot be deleted, or the information about that project is lost.
- May have to delete many tuples.

EMP								
	<u>ENO</u>	ENAME	TITLE	SAL	<u>PNO</u>	RESP	DUR	
	E1 F2	J. Doe M. Smith	Elect. Eng. Analyst	40000 34000	P1 P1	Manager Analyst	12 24	
	E2	M. Smith	Analyst	34000	P2	Analyst	6	
	E3 E3	A. Lee A. Lee	Mech. Eng. Mech. Eng.	27000 27000	P3 P4	Consultant Engineer	10 48	
	E4	J. Miller	Programmer	24000	P2	Programmer	18	
	E5	B. Casey	Syst. Anal.	34000	P2	Manager	24	
	E6 E7	L. Chu R. Davis	Elect. Eng. Mech. Eng.	40000 27000	P4 P3	Manager Engineer	48 36	
	E8	J. Jones	Syst. Anal.	34000	P3	Manager	40	

Distributed DBMS

© M. T. Özsu & P. Valduriez

What to do?

- Take each relation individually and "improve" it in terms of the desired characteristics
 - → Normal forms
 - Atomic values (1NF)
 - Can be defined according to keys and dependencies.
 - ◆ Functional Dependencies (2NF, 3NF, BCNF)
 - → Multivalued dependencies (4NF)
 - → Normalization
 - Normalization is a process of concept separation which applies a top-down methodology for producing a schema by subsequent refinements and decompositions.
 - Do not combine unrelated sets of facts in one table; each relation should contain an independent set of facts.
 - Universal relation assumption
 - ◆ 1NF to 3NF; 1NF to BCNF

Distributed DBMS

© M. T. Özsu & P. Valduriez

Ch.2/11

Normalization Issues

- How do we decompose a schema into a desirable normal form?
- What criteria should the decomposed schemas follow in order to preserve the semantics of the original schema?
 - Reconstructability: recover the original relation ⇒ no spurious joins
 - Lossless decomposition: no information loss
 - → Dependency preservation: the constraints (i.e., dependencies) that hold on the original relation should be enforceable by means of the constraints (i.e., dependencies) defined on the decomposed relations.
- What happens to queries?
 - → Processing time may increase due to joins
 - → Denormalization

Distributed DBMS

© M. T. Özsu & P. Valduriez

Functional Dependence

• Given relation R defined over $U = \{A_1, A_2, ..., A_n\}$ where $X \subseteq U$, $Y \subseteq U$. If, for all pairs of tuples t_1 and t_2 in any legal instance of relation scheme R,

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y],$$

then the functional dependency $X \rightarrow Y$ holds in R.

- Example
 - In relation EMP
 - ◆ (ENO, PNO) → (ENAME, TITLE, SAL, DUR, RESP)
 - → In relation PROJ
 - ◆ PNO → (PNAME, BUDGET)

Distributed DBMS

© M. T. Özsu & P. Valdurie

Relational Algebra Operators

- Fundamental
 - → Selection
 - → Projection
 - → Union
 - → Set difference
 - → Cartesian product
- Additional
 - → Intersection
 - ⇒ θ-join
 - → Natural join
 - → Semijoin
 - → Division
- Union compatibility
 - → Same degree
 - → Corresponding attributes defined over the same domain

Distributed DBMS

© M. T. Özsu & P. Valdurie

Ch 2/17

Selection

- Produces a horizontal subset of the operand relation
- General form

 $\sigma_F(R) = \{t \mid t \in R \text{ and } F(t) \text{ is true} \}$

where

- ightharpoonup R is a relation, t is a tuple variable
- → *F* is a formula consisting of
 - operands that are constants or attributes
 - arithmetic comparison operators

$$<$$
, $>$, $=$, \neq , \leq , \geq

logical operators

 \land , \lor , \neg

Distributed DBMS

© M. T. Özsu & P. Valduriez

Selection Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

 $\sigma_{\text{TITLE='Elect. Eng.'}}(\text{EMP})$

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E6	L. Chu	Elect. Eng.

Distributed DBMS

M. T. Özsu & P. Valduri

Ch 2/19

Projection

- Produces a vertical slice of a relation
- General form

$$\Pi_{A_1,...,A_n}(R) = \{t[A_1,...,A_n] \mid t \in R\}$$

where

- \rightarrow *R* is a relation, *t* is a tuple variable
- \rightarrow { A_1 ,..., A_n } is a subset of the attributes of R over which the projection will be performed
- Note: projection can generate duplicate tuples. Commercial systems (and SQL) allow this and provide
 - → Projection with duplicate elimination
 - → Projection without duplicate elimination

Distributed DBM

© M. T. Özsu & P. Valduriez

Projection Example

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000

$\Pi_{\mathsf{PNO},\mathsf{BUDGET}}(\mathsf{PROJ})$

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000

Distributed DBMS

M. T. Özsu & P. Valdurie

Cl 2 (21

Union

- Similar to set union
- General form

$$R \cup S = \{t \mid t \in R \text{ or } t \in S\}$$

where R, S are relations, t is a tuple variable

- \rightarrow Result contains tuples that are in R or in S, but not both (duplicates removed)
- → *R*, *S* should be union-compatible

Distributed DBM

© M. T. Özsu & P. Valduriez

Set Difference

General Form

$$R - S = \{t \mid t \in R \text{ and } t \notin S\}$$

where *R* and *S* are relations, *t* is a tuple variable

- → Result contains all tuples that are in *R*, but not in *S*.
- $\rightarrow R S \neq S R$
- \rightarrow *R*, *S* union-compatible

Distributed DBMS

© M. T. Özsu & P. Valdurie

Ch.2/23

Cartesian (Cross) Product

- Given relations
 - \rightarrow *R* of degree k_{1} , cardinality n_{1}
 - \rightarrow *S* of degree k_2 cardinality n_2
- Cartesian (cross) product:

$$R \times S = \{t [A_1, ..., A_{k_1}, A_{k_1+1}, ..., A_{k_1+k_2}] \mid t[A_1, ..., A_{k_1}] \in R \text{ and } t[A_{k_1+1}, ..., A_{k_1+k_2}] \in S\}$$

The result of $R \times S$ is a relation of degree $(k_1 + k_2)$ and consists of all $(n_1 * n_2)$ -tuples where each tuple is a concatenation of one tuple of R with one tuple of S.

Distributed DBMS

© M. T. Özsu & P. Valduriez

	DIC	11 I		luc	t Ex	am	pie	
EMP				EMP × F	PAY			
ENO	ENA	ME	TITLE	ENO	ENAME	EMP.TITLE	PAY.TITLE	SALARY
E1	J. Do	oe	Elect. Eng	E1	J. Doe	Elect. Eng.	Elect. Eng.	55000
E2	M. S	mith	Syst. Anal.	E1	J. Doe	Elect. Eng.	Syst. Anal.	70000
E3	A. Le	ee	Mech. Eng	E1	J. Doe	Elect. Eng.	Mech. Eng.	45000
E4	J. Mi	iller	Programm	E1	J. Doe	Elect. Eng.	Programmer	60000
E5	B. C	asey	Syst. Anal.	E2	M. Smith	Syst. Anal.	Elect. Eng.	55000
E6	L. CI	hu	Elect. Eng.	E2	M. Smith	Syst. Anal.	Syst. Anal.	70000
E7	R. D	avis	Mech. Eng	E2	M. Smith	Syst. Anal.	Mech. Eng.	45000
E8	J. Jo	nes	Syst. Anal.	E2	M. Smith	Syst. Anal.	Programmer	60000
			i i i i i i i i i i i i i i i i i i i	E3	A. Lee	Mech. Eng.	Elect. Eng.	55000
DAY				E3	A. Lee	Mech. Eng.	Syst. Anal.	70000
PAY				E3	A. Lee	Mech. Eng.	Mech. Eng.	45000
TITL	.E	SAL	ARY	E3	A. Lee	Mech. Eng.	Programmer	60000
Elect. E	ng.	55	5000	E8	J. Jones	Syst. Anal.	Elect. Eng.	55000
Syst. Ar	nal.	70	0000	E8	J. Jones	Syst. Anal.	Syst. Anal.	70000
Mech. E	ng.	45	000	E8	J. Jones	Syst. Anal.	Mech. Eng.	45000
Progran	nmer	60	0000	E8	J. Jones	Syst. Anal.	Programmer	

Intersection

Typical set intersection

$$R \cap S = \{t \mid t \in R \text{ and } t \in S\}$$

= $R - (R - S)$

• *R*, *S* union-compatible

DBMS © M. T. Özsu & P. Valduriez

θ –Join

General form

$$R \bowtie_{F(R.A_{i'}S.B_{j'})} S = \{t[A_{1},...,A_{n'}B_{1},...,B_{m}] \mid t[A_{1},...,A_{n}] \in R \text{ and } t[B_{1},...,B_{m}] \in S$$

and $F(R.A_{i'},S.B_{i})$ is true}

where

- \rightarrow *R*, *S* are relations, *t* is a tuple variable
- \rightarrow $F(R.A_i, S.B_i)$ is a formula defined as that of selection.
- A derivative of Cartesian product

$$\rightarrow R \bowtie_F S = \sigma_F(R \times S)$$

Distributed DBMS

🖰 М. Т. Özsu & P. Valduri

Ch.2/2

Join Example

Ε	M	Ρ

ENO ENAME TITLE E1 J. Doe Elect. Eng E2 M. Smith Syst. Anal. E3 A. Lee Mech. Eng. E4 J. Miller Programme E5 B. Casey Syst. Anal. E6 L. Chu Elect. Eng.	
E2 M. Smith Syst. Anal. E3 A. Lee Mech. Eng. E4 J. Miller Programme E5 B. Casey Syst. Anal.	ENO
E7 R. Davis Mech. Eng. E8 J. Jones Syst. Anal. E9 A. Hsu Programme E10 T. Wong Syst. Anal.	E2 E3 E4 E5 E6 E7 E8 E9

EMP ► EMP.ENO=ASG.ENO ASG

ENO	ENAME	TITLE	PNO	RESP	DUR
E1	J. Doe	Elect. Eng.	P1	Manager	12
E2	M. Smith	Syst. Anal.	P1	Analyst	12
E2	M. Smith	Syst. Anal.	P2	Analyst	12
E3	A. Lee	Mech. Eng.	P3	Consultant	12
E3	A. Lee	Mech. Eng.	P4	Engineer	12
E4	J. Miller	Programmer	P2	Programmer	12
E5	J. Miller	Syst. Anal.	P2	Manager	12
E6	L. Chu	Elect. Eng.	P4	Manager	12
E7	R. Davis	Mech. Eng.	P3	Engineer	12
E8	J. Jones	Syst. Anal.	P3	Manager	12

(a)

(b)

Distributed DBM

Types of Join

- Equi-join
 - → The formula *F* only contains equality
 - $ightharpoonup R \bowtie_{R,A=S,B} S$
- Natural join
 - → Equi-join of two relations *R* and *S* over an attribute (or attributes) common to both *R* and *S* and projecting out one copy of those attributes
 - $ightharpoonup R \bowtie S = \prod_{R \cup S} \sigma_F(R \times S)$

Distributed DBMS

M. T. Özsu & P. Valdurie

Ch.2/29

Natural Join Example

EMP		
ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY					
TITLE	SALARY				
Elect. Eng.	55000				
Syst. Anal.	70000				
Mech. Eng.	45000				
Programmer	60000				

 $\mathsf{EMP} \bowtie \mathsf{PAY}$

		SALARY
J. Doe	Elect. Eng.	55000
M. Smith	Analyst	70000
A. Lee	Mech. Eng.	45000
J. Miller	Programmer	60000
B. Casey	Syst. Anal.	70000
Chu	Elect. Eng.	55000
R. Davis	Mech. Eng.	45000
J. Jones	Syst. Anal.	70000
	M. Smith A. Lee J. Miller B. Casey L. Chu R. Davis	M. Smith Analyst Mech. Eng. J. Miller Programmer J. Casey Syst. Anal. L. Chu Elect. Eng. R. Davis Mech. Eng.

Join is over the common attribute TITLE

Distributed DBM

© M. T. Özsu & P. Valduriez

Types of Join

- Outer-Join
 - → Ensures that tuples from one or both relations that do not satisfy the join condition still appear in the final result with other relation's attribute values set to NULL
 - → Left outer join
 - → Right outer join 🖂
 - → Full outer join ⊃

Distributed DBMS

© M. T. Özsu & P. Valduri

Ch.2/3

Outer Join Example

• Left outer join

EMP**™** ENO ASG

ENO	ENAME	TITLE	PNO	RESP	DUR
E1	J. Doe	Elect. Eng.	P1	Manager	12
E2	M. Smith	Syst. Anal.	P1	Analyst	12
E2	M. Smith	Syst. Anal.	P2	Analyst	12
E3	A. Lee	Mech. Eng.	P3	Consultant	12
E3	A. Lee	Mech. Eng.	P4	Engineer	12
E4	J. Miller	Programmer	P2	Programmer	12
E5	J. Miller	Syst. Anal.	P2	Manager	12
E6	L. Chu	Elect. Eng.	P4	Manager	12
E7	R. Davis	Mech. Eng.	P3	Engineer	12
E8	J. Jones	Syst. Anal.	P3	Manager	12
E9	A. Hsu	Programmer	Null	Null	Null
E10	T. Wong	Syst. Anal.	Null	Null	Null

Distributed DBM

© M. T. Özsu & P. Valduriez

Semijoin

Derivation

 $R \bowtie_F S = \Pi_A(R \bowtie_F S) = \Pi_A(R) \bowtie \Pi_{A \cap B}(S) = R \bowtie_F \Pi_{A \cap B}(S)$ where

- \rightarrow R, S are relations
- \rightarrow *A* is a set of attributes

Distributed DBMS

M. T. Özsu & P. Valdurie

Ch 2/33

Semijoin Example

EMP ► EMP.TITLE=PAY.TITLE PAY

	2001.111/22 1731.111/22				
ENO	ENAME	TITLE			
E1	J. Doe	Elect. Eng.			
E2	M. Smith	Analyst			
E3	A. Lee	Mech. Eng.			
E4	J. Miller	Programmer			
E5	B. Casey	Syst. Anal.			
E6	L. Chu	Elect. Eng.			
E7	R. Davis	Mech. Eng.			
E8	J. Jones	Syst. Anal.			

Distributed DBMS

© M. T. Özsu & P. Valduriez

Division (Quotient)

- Given relations
 - → *R* of degree k_1 (*R* = { $A_1,...,A_{k_1}$ })
 - ⇒ *S* of degree k_2 (*S* = { $B_1,...,B_{k_2}$ })

Let $A = \{A_1, ..., A_{k_1}\}$ [i.e., R(A)] and $B = \{B_1, ..., B_{k_2}\}$ [i.e., S(B)] and $B \subseteq A$.

Then, $T = R \div S$ gives T of degree k_1 - k_2 [i.e., T(Y) where Y = A-B] such that for a tuple t to appear in T, the values in t must appear in R in combination with *every tuple* in S.

Derivation

$$R \div S = \Pi_{Y}(R) - \Pi_{Y}((\Pi_{Y}(R) \times S) - R)$$

Distributed DBMS

🕽 M. T. Özsu & P. Valdurie

Ch.2/3

Division Example

ASG'			
ENO	PNO	PNAME	BUDGET
E1	P1	Instrumentation	150000
E2	P1	Instrumentation	150000
E2	P2	Database Develop.	135000
E3	P3	CAD/CAM	250000
E3	P4	Maintenance	310000
E4	P2	Database Develop.	135000
E5	P2	Database Develop.	135000
E6	P4	Maintenance	310000
E7	P3	CAD/CAM	250000
E8	P3	CAD/CAM	250000

PROJ'		
PNO	PNAME	BUDGET
P3 P4	CAD/CAM Maintenance	250000 310000

(ASG' ÷ PROJ')
ENO
E3

ated DBMS © M. T. Özsu & P. Vald

Relational Calculus

- Specify the properties that the result should hold
- Tuple relational calculus
- Domain relational calculus

Distributed DBMS

M. T. Özsu & P. Valdurie

Ch 2/37

Tuple Relational Calculus

- Query of the form $\{t \mid F\{t\}\}$ where
 - \rightarrow *t* is a tuple variable
 - \rightarrow *F* is a well-formed formula
- Atomic formula
 - → Tuple-variable membership expressions
 - R.t or R(t): tuple t belongs to relation R
 - → Conditions
 - $s[A] \theta t[B]$; s and t are tuple variables, A and B are components of s and t, respectively, $\theta \in \{<,>,=,\neq,\leq,\geq\}$; e.g., s[SAL] > t[SAL]
 - $s[A] \theta c$; s, A, and θ as defined above, c is a constant; e.g., s[ENAME] = 'Smith'
- SQL is an example of tuple relational calculus (at least in its simple form)

Distributed DBMS

© M. T. Özsu & P. Valduriez

Domain Relational Calculus

- Query of the form $x_1, x_2, ..., x_n | F(x_1, x_2, ..., x_n)$ where
 - → F is a well-formed formula in which $x_1, x_2, ..., x_n$ are the free variables
- QBE is an example

EMP	ENO	ENAME	TITLE	
	<u>E2</u>	P.		
ASG	ENO	PNO	RESP	DUR
	<u>E2</u>	<u>P3</u>		
PROJ	PNO	PNAME	BUDGET	
	<u>P3</u>	CAD/CAM		

stributed DBMS

alduriez

Types of Networks

- According to scale (geographic distribution)
 - → Wide are network (WAN)
 - ◆ Distance between any two nodes > 20km and can go as high as thousands of kms
 - ◆ Long delays due to distance traveled
 - Heterogeneity of transmission media
 - ◆ Speeds of 150Mbps to 10Gbps (OC192 on the backbone)
 - → Local area network (LAN)
 - ◆ Limited in geographic scope (usually < 2km)
 - ◆ Speeds 10-1000 Mbps
 - Short delays and low noise
 - Metropolitan area network (MAN)
 - In between LAN and WAN

Distributed DBM

© M. T. Özsu & P. Valduriez

Types of Networks (cont'd)

- Topology
 - → Irregular
 - ◆ No regularity in the interconnection e.g., Internet
 - → Bus
 - ◆ Typical in LANs Ethernet
 - Using Carrier Sense Medium Access with Collision Detection (CSMA/CD)
 - ✓ Listen before and while you transmit
 - → Star
 - → Ring
 - → Mesh

Distributed DBM

🕽 M. T. Özsu & P. Valduri

Communication Schemes

- Point-to-point (unicast)
 - → One or more (direct or indirect) links between each pair of nodes
 - → Communication always between two nodes
 - → Receiver and sender are identified by their addresses included in the message header
 - → Message may follow one of many links between the sender and receiver using switching or routing
- Broadcast (multi-point)
 - → Messages are transmitted over a shared channel and received by all the nodes
 - Each node checks the address and if it not the intended recipient, ignores
 - → Multi-cast: special case
 - Message is sent to a subset of the nodes

Distributed DBMS

© M. T. Özsu & P. Valdurie:

Ch.2/45

Communication Alternatives

- Twisted pair
- Coaxial
- Fiber optic cable
- Satellite
- Microwave
- Wireless

Distributed DBMS

© M. T. Özsu & P. Valduriez

Data Communication

- Hosts are connected by links, each of which can carry one or more channels
- Link: physical entity; channel: logical entity
- Digital signal versus analog signal
- Capacity bandwidth
 - → The amount of information that can be trasmitted over the channel in a given time unit
- Alternative messaging schemes
 - → Packet switching
 - Messages are divided into fixed size packets, each of which is routed from the source to the destination
 - → Circuit switching
 - A dedicated channel is established between the sender and receiver for the duration of the session

Distributed DBMS

© M. T. Özsu & P. Valdurie

Ch.2/47

Packet Format Header Text Block Error Check - Source address - Destination address - Message number - Packet number - Acknowledgment - Control information

Communication Protocols

- Software that ensures error-free, reliable and efficient communication between hosts
- Layered architecture hence protocol stack or protocol suite
- TCP/IP is the best-known one
 - → Used in the Internet

Distributed DBMS

M. T. Özsu & P. Valduri

Ch 2/49

