RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

SESSION ID: CRYP-R09

Another Look at Some Isogeny Hardness Assumptions

Simon-Philipp Merz¹, Romy Minko², Christophe Petit³

¹Royal Holloway, University of London

²University of Oxford

³University of Birmingham

Isogeny-based Cryptography

- post-quantum (PQ) secure key exchange [JF11]
- based on hardness of finding large-degree isogenies
- small keys, but relatively slow compared to other PQ proposals

Isogeny-based Cryptography

- post-quantum (PQ) secure key exchange [JF11]
- based on hardness of finding large-degree isogenies
- small keys, but relatively slow compared to other PQ proposals

This talk

- cryptanalysis of an isogeny-based hardness assumption
- attack on Jao-Soukharev undeniable signatures

Contents

- Preliminaries
- Supersingular Isogeny Diffie-Hellman
- Related Isogeny Hardness Assumptions
- Attack on Jao-Soukharev's Undeniable Signatures
- Conclusion

Elliptic Curves

– solutions (x,y) over some field to the equation

$$E: y^2 = x^3 + Ax + B$$

for fixed A,B and \mathcal{O}_E at infinity

Elliptic Curves

– solutions (x,y) over some field to the equation

$$E: y^2 = x^3 + Ax + B$$

for fixed A,B and \mathcal{O}_E at infinity

Elliptic Curves

– solutions (x,y) over some field to the equation

$$E: y^2 = x^3 + Ax + B$$

for fixed A,B and \mathcal{O}_E at infinity

advantage in Cryptography: small keys

Additive group structure on elliptic curves

Not quantum-resistant

Isogenies

Isogenies

Isogenies

- with kernel any finite subgroup $H \subset E$
- given by rational map of degree #H , i.e. $x\mapsto f(x)/g(x), y\mapsto y\big(f(x)/g(x)\big)'$

$$E': y^2 = x^3 + Cx + D$$

Isogeny Graphs of a Supersingular Curves

– an elliptic curve E defined over \mathbb{F}_{p^k} is called supersingular, if

$$\#E(\mathbb{F}_{p^k}) \equiv 1 \pmod{p}$$

– about $\frac{p}{12}$ supersingular elliptic curves, up to isomorphism

SIDH key exchange [JF11]

- fix prime p such that $p=\ell_A^n\ell_B^m-1$
- supersingular elliptic curve E defined over \mathbb{F}_{p^2}
- bases $\langle P_A, Q_A \rangle = E[\ell_A^n]$ $\langle P_B, Q_B \rangle = E[\ell_B^m]$

SIDH key exchange [JF11]

- fix prime p such that $p=\ell_A^n\ell_B^m-1$
- supersingular elliptic curve E defined over \mathbb{F}_{p^2}
- bases $\langle P_A, Q_A \rangle = E[\ell_A^n]$ $\langle P_B, Q_B \rangle = E[\ell_B^m]$
- Alice's secret $A = \langle P_A + [\operatorname{sk}_A]Q_A \rangle$
- Bob's secret $B = \langle P_B + [\mathsf{sk}_B]Q_B \rangle$

SIDH key exchange [JF11]

- fix prime p such that $p=\ell_A^n\ell_B^m-1$
- supersingular elliptic curve E defined over \mathbb{F}_{p^2}
- bases $\langle P_A,Q_A\rangle=E[\ell_A^n]$ $\langle P_B,Q_B\rangle=E[\ell_B^m]$
- Alice's secret $A = \langle P_A + [\operatorname{sk}_A]Q_A \rangle$
- Bob's secret $B = \langle P_B + [\mathsf{sk}_B]Q_B \rangle$
- shared secret is isomorphism class of $E/\langle A, B \rangle$

Modified SSCDH

Problem

Given E, E/A, E/B and φ_B .

Compute $E/\langle A, B \rangle$, up to isomorphism.

Application: Jao-Soukharev's Undeniable Signatures

This problem arises naturally in the security proof of Jao-Soukharev's undeniable signature scheme.

$$B' = \langle P_B + H[m']Q_B \rangle$$
$$B'' = \langle P_B + H[m'']Q_B \rangle$$

Lemma:

Let the notation be as before. If $\alpha, \beta < \ell^e$ are positive integers modulo ℓ^k for some $k \in \mathbb{Z}$, then the ℓ -isogeny paths from E_A to $E_{AB} := E_A/\langle P_B + [\alpha]Q_B \rangle$ and to $E_{AB'} := E_A/\langle P_B + [\beta]Q_B \rangle$ are equal up to the k-th step.

- find message m' such that H(m) - H(m') is divisible by a (large) power of ℓ_B

- find message m' such that H(m) H(m') is divisible by a (large) power of ℓ_B
- use signing oracle to obtain E_{AB^\prime} in signature of m^\prime
- brute-force isogeny $E_{AB'} \rightarrow E_{AB}$
- trade-off between the steps

Classical Cost

Quantum Cost

- $2^{\frac{4\lambda}{5}}$ instead of 2^{λ} for security parameter λ
- need to increase parameters by 25%

Classical Cost

– $2^{\frac{4\lambda}{5}}$ instead of 2^{λ} for security parameter λ

need to increase parametersby 25%

Quantum Cost

- $2^{\frac{6\lambda}{7}}$ instead of 2^{λ} for security parameter λ
- need to increase parameters by 17%

Conclusion and Takeaway

- raise parameters for Jao-Soukharev undeniable signatures
- the OMSSCDH hardness assumption is broken
- verification of security proofs is important
- try to reduce to standard hardness assumptions

Conclusion and Takeaway

- raise parameters for Jao-Soukharev undeniable signatures
- the OMSSCDH hardness assumption is broken
- verification of security proofs is important
- try to reduce to standard hardness assumptions

