

Lecture 9

Vincent Tan vtan@nus.edu.sg

Electrical and Computer Engineering Department
National University of Singapore

Acknowledgement: EE2211 development team Thomas, Helen, Xinchao, Kar-Ann, Chen Khong, Robby and Haizhou

Course Contents

- Introduction and Preliminaries (Xinchao)
 - Introduction
 - Data Engineering
 - Introduction to Probability and Statistics
- Fundamental Machine Learning Algorithms I (Vincent)
 - Systems of linear equations
 - Least squares, Linear regression
 - Ridge regression, Polynomial regression
- Fundamental Machine Learning Algorithms II (Vincent)
 - Over-fitting, bias/variance trade-off
 - Optimization, Gradient descent
 - Decision Trees, Random Forest
- Performance and More Algorithms (Xinchao)
 - Performance Issues
 - K-means Clustering
 - Neural Networks

Fundamental ML Algorithms: Decision Trees, Random Forest

Module III Contents

- Overfitting, underfitting and model complexity
- Bias-variance trade-off
- Regularization
- Loss function
- Optimization
- Gradient descent
- Decision trees
- Random forest

Review

- Supervised learning: given feature(s) x, we want to predict target y to be some f(x)
 - If y is continuous, problem is called "regression"
 - If y is discrete, problem is called "classification"

Review

- Supervised learning: given feature(s) x, we want to predict target y to be some f(x)
 - If y is continuous, problem is called "regression"
 - If y is discrete, problem is called "classification"
- Previous lectures used linear models for regression (and classification)
 - Nonlinearity added by using polynomial regression or other learning models

Review

- Supervised learning: given feature(s) x, we want to predict target y to be some f(x)
 - If y is continuous, problem is called "regression"
 - If y is discrete, problem is called "classification"
- Previous lectures used linear models for regression (and classification)
 - Nonlinearity added by using polynomial regression or other learning models
- New approach today: trees

• Goal: predict class labels using two features $x_1 \& x_2$

• Goal: predict class labels using two features $x_1 \& x_2$

• Goal: predict class labels using two features $x_1 \& x_2$

• In our test set, we observe datapoint \triangle shown below. How would the decision tree classify this point?

Questions?

A-B-C forms a **sub-tree** or **branch**.

A-B-C forms a **sub-tree** or **branch**.

A is parent node of B and C; B and C are children nodes of A.

A-B-C forms a **sub-tree** or **branch**. A is **parent node** of B and C; B and C are **children nodes** of A.

Questions?

 Classification tree learning (or tree induction or tree growing) is the construction of a classification tree given training data

- Classification tree learning (or tree induction or tree growing) is the construction of a classification tree given training data
- For a given training set, there can be many trees with 0 training error, so we prefer less "complex" trees

- Classification tree learning (or tree induction or tree growing) is the construction of a classification tree given training data
- For a given training set, there can be many trees with 0 training error, so we prefer less "complex" trees
- Complexity can be defined as number of nodes in the tree

- Classification tree learning (or tree induction or tree growing) is the construction of a classification tree given training data
- For a given training set, there can be many trees with 0 training error, so we prefer less "complex" trees
- Complexity can be defined as number of nodes in the tree
- Finding smallest tree is computationally hard, so we typically use some greedy algorithm not guaranteed to find the best tree

- Classification tree learning (or tree induction or tree growing) is the construction of a classification tree given training data
- For a given training set, there can be many trees with 0 training error, so we prefer less "complex" trees
- Complexity can be defined as number of nodes in the tree
- Finding smallest tree is computationally hard, so we typically use some greedy algorithm not guaranteed to find the best tree
- We need to first define the concept of node impurity

 "Purity" is desirable because if a node contains only training data from one class, then prediction for training data in the node is perfect

• Let • be class 1 & • be class 2

- Let
 be class 1 &
 be class 2
- For particular node m, let p_i be the fraction (or probability) of data samples in node m belonging to class i

- Let
 be class 1 &
 be class 2
- For particular node m, let p_i be the fraction (or probability) of data samples in node m belonging to class i

- Let
 be class 1 &
 be class 2
- For particular node m, let p_i be the fraction (or probability) of data samples in node m belonging to class i

- Let
 be class 1 &
 be class 2
- For particular node m, let p_i be the fraction (or probability) of data samples in node m belonging to class i
- Let Q_m be impurity of node m
- 3 impurity measures: Gini, entropy, misclassification rate

• Let K = # classes, define $Q_m = 1 - \sum_{i=1}^K p_i^2$

• Let K = # classes, define $Q_m = 1 - \sum_{i=1}^K p_i^2 = 1 - p_1^2 - p_2^2$

- Let K=# classes, define $Q_m=1-\Sigma_{i=1}^K~p_i^2=1~-p_1^2-p_2^2$ Node A: $Q_{\rm A}=1-(8/13)^2-(5/13)^2=0.4734$

- Let K = # classes, define $Q_m = 1 \sum_{i=1}^K p_i^2 = 1 p_1^2 p_2^2$
- Node A: $Q_A = 1 (8/13)^2 (5/13)^2 = 0.4734$
- Node B: $Q_B = 1 (2/7)^2 (5/7)^2 = 0.4082$

- Let K = # classes, define $Q_m = 1 \sum_{i=1}^K p_i^2 = 1 p_1^2 p_2^2$
- Node A: $Q_A = 1 (8/13)^2 (5/13)^2 = 0.4734$
- Node B: $Q_{\rm B} = 1 (2/7)^2 (5/7)^2 = 0.4082$ Node C: $Q_{\rm C} = 1 1^2 0^2 = 0$

- Let K = # classes, define $Q_m = 1 \sum_{i=1}^K p_i^2 = 1 p_1^2 p_2^2$
- Node A: $Q_A = 1 (8/13)^2 (5/13)^2 = 0.4734$
- Node B: $Q_B = 1 (2/7)^2 (5/7)^2 = 0.4082$
- Node C: $Q_C = 1 1^2 0^2 = 0$
- Overall Gini (depth 1) = fraction of data samples in node B x $Q_{\rm B}$ + fraction of data samples in node C x $Q_{\rm C}$

- Let K = # classes, define $Q_m = 1 \sum_{i=1}^K p_i^2 = 1 p_1^2 p_2^2$
- Node A: $Q_A = 1 (8/13)^2 (5/13)^2 = 0.4734$
- Node B: $Q_B = 1 (2/7)^2 (5/7)^2 = 0.4082$
- Node C: $Q_C = 1 1^2 0^2 = 0$
- Overall Gini (depth 1) = fraction of data samples in node B x $Q_{\rm B}$ + fraction of data samples in node C x $Q_{\rm C}$
 - $\left(\frac{7}{13}\right) \times 0.4082 + \left(\frac{6}{13}\right) \times 0 = 0.2198$

- Let K = # classes, define $Q_m = 1 \sum_{i=1}^K p_i^2 = 1 p_1^2 p_2^2$
- Node A: $Q_A = 1 (8/13)^2 (5/13)^2 = (0.4734)^2$
- Node B: $Q_B = 1 (2/7)^2 (5/7)^2 = 0.4082$
- Node C: $Q_C = 1 1^2 0^2 = 0$
- Overall Gini (depth 1) = fraction of data samples in node B x $Q_{\rm B}$ + fraction of data samples in node C x $Q_{\rm C}$
 - $\left(\frac{7}{13}\right) \times 0.4082 + \left(\frac{6}{13}\right) \times 0 \neq 0.2198$
- Observe lower impurity at depth 1 compared with root

- Let K = # classes, define $Q_m = 1 \sum_{i=1}^K p_i^2 = 1 p_1^2 p_2^2$
- Node A: $Q_A = 1 (8/13)^2 (5/13)^2 = 0.4734$
- Node B: $Q_B = 1 (2/7)^2 (5/7)^2 = 0.4082$
- Node C: $Q_C = 1 1^2 0^2 = 0$
- Overall Gini (depth 1) = fraction of data samples in node B x $Q_{\rm B}$ + fraction of data samples in node C x $Q_{\rm C}$

•
$$\left(\frac{7}{13}\right) \times 0.4082 + \left(\frac{6}{13}\right) \times 0 = 0.2198$$

- Observe lower impurity at depth 1 compared with root
- Same Gini formula for more than 2 classes:

$$Q_m = 1 - \sum_{i=1}^K p_i^2$$

• Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i$

• Let K=# classes, define $Q_m=-\Sigma_{i=1}^K \ p_i\log_2 \ p_i=-p_1\log_2 p_1-p_2\log_2 p_2$

- Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Node A: $Q_A = -(8/13)\log_2(8/13) (5/13)\log_2(5/13) = 0.9612$

- Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Node A: $Q_A = -(8/13)\log_2(8/13) (5/13)\log_2(5/13) = 0.9612$
- Node B: $Q_B = -(2/7)\log(2/7) (5/7)\log(5/7) = 0.8631$

- Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Node A: $Q_A = -(8/13)\log_2(8/13) (5/13)\log_2(5/13) = 0.9612$
- Node B: $Q_B = -(2/7)\log_2(2/7) (5/7)\log_2(5/7) = 0.8631$
- Node C: $Q_C = -1 \log_2 1 0 \log_2 0 = 0$

- Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Node A: $Q_A = -(8/13)\log_2(8/13) (5/13)\log_2(5/13) = 0.9612$
- Node B: $Q_B = -(2/7)\log_2(2/7) (5/7)\log_2(5/7) = (0.8631)$
- Node C: $Q_C = -1 \log_2 1 0 \log_2 0 = 0$
- Overall entropy (depth 1) = fraction of data samples in node B x $Q_{\rm B}$
 - + fraction of data samples in node C x $Q_{\rm C}$
 - $\left(\frac{7}{13}\right) \times 0.8631 + \left(\frac{6}{13}\right) \times 0 = 0.4648$

- Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Node A: $Q_A = -(8/13)\log_2(8/13) (5/13)\log_2(5/13) = 0.9612$
- Node B: $Q_B = -(2/7)\log_2(2/7) (5/7)\log_2(5/7) = 0.8631$
- Node C: $Q_C = -1 \log_2 1 0 \log_2 0 = 0$
- Overall entropy (depth 1) = fraction of data samples in node B x $Q_{\rm B}$
 - + fraction of data samples in node C x $Q_{\rm C}$

•
$$\left(\frac{7}{13}\right) \times 0.8631 + \left(\frac{6}{13}\right) \times 0 = 0.4648$$

 Observe lower impurity at depth 1 compared with root

- Let K = # classes, define $Q_m = -\sum_{i=1}^K p_i \log_2 p_i = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Node A: $Q_A = -(8/13)\log_2(8/13) (5/13)\log_2(5/13) = 0.9612$
- Node B: $Q_B = -(2/7)\log_2(2/7) (5/7)\log_2(5/7) = 0.8631$
- Node C: $Q_C = -1 \log_2 1 0 \log_2 0 = 0$
- Overall entropy (depth 1) = fraction of data samples in node B x $Q_{\rm B}$
 - + fraction of data samples in node C x $Q_{\rm C}$

•
$$\left(\frac{7}{13}\right) \times 0.8631 + \left(\frac{6}{13}\right) \times 0 = 0.4648$$

- Observe lower impurity at depth 1 compared with root
- Same entropy formula for more than 2 classes:

$$Q_m = -\Sigma_{i=1}^K p_i \log_2 p_i$$

• Let K = # classes, define $Q_m = 1 - \max_i p_i$

• Let K = # classes, define $Q_m = 1 - \max_i p_i = 1 - \max_i (p_1, p_2)$

- Let K = # classes, define $Q_m = 1 \max_i p_i = 1 \max(p_1, p_2)$
- Node A: $p_1 > p_2$, so best classification = class 1 => $Q_A = 1 8/13 = 5/13$

- Let K = # classes, define $Q_m = 1 \max_i p_i = 1 \max(p_1, p_2)$
- Node A: $p_1 > p_2$, so best classification = class 1 => $Q_{\rm A} = 1 8/13 = 5/13$
- Node B: $p_2 > p_1$, so best classification = class 2 => $Q_{\rm B} = 1 5/7 = 2/7$

- Let K = # classes, define $Q_m = 1 \max_i p_i = 1 \max(p_1, p_2)$
- Node A: $p_1 > p_2$, so best classification = class 1 => $Q_{\rm A} = 1 8/13 = 5/13$
- Node B: $p_2 > p_1$, so best classification = class 2 => $Q_{\rm B} = 1 5/7 = 2/7$
- Node C: $p_1 > p_2$, so best classification = class 1 => $Q_C = 1 1 = 0$

- Let K = # classes, define $Q_m = 1 \max_i p_i = 1 \max(p_1, p_2)$
- Node A: $p_1 > p_2$, so best classification = class 1 => $Q_{\rm A} = 1 8/13 = 5/13$
- Node B: $p_2 > p_1$, so best classification = class 2 => $Q_{\rm B} = 1 5/7 = 2/7$
- Node C: $p_1 > p_2$, so best classification = class 1 => $Q_C = 1 1 = 0$
- Overall misclassification rate (depth 1) = fraction of data samples in node B x Q_R + fraction of data samples in node C x Q_C

$$\bullet \left(\frac{7}{13}\right) \times \left(\frac{2}{7}\right) + \left(\frac{6}{13}\right) \times 0 = 0.1538$$

- Let K = # classes, define $Q_m = 1 \max_i p_i = 1 \max(p_1, p_2)$
- Node A: $p_1 > p_2$, so best classification = class 1 => $Q_{\rm A} = 1 8/13 = 5/13$
- Node B: $p_2 > p_1$, so best classification = class 2 => $Q_{\rm B} = 1 5/7 = 2/7$
- Node C: $p_1 > p_2$, so best classification = class 1 => $Q_C = 1 1 = 0$
- Overall misclassification rate (depth 1) = fraction of data samples in node B x $Q_{\rm B}$ + fraction of data samples in node C x $Q_{\rm C}$

$$\bullet \left(\frac{7}{13}\right) \times \left(\frac{2}{7}\right) + \left(\frac{6}{13}\right) \times 0 = 0.1538$$

 Observe lower impurity at depth 1 compared with root

- Let K = # classes, define $Q_m = 1 \max_i p_i = 1 \max(p_1, p_2)$
- Node A: $p_1 > p_2$, so best classification = class 1 => $Q_{\rm A} = 1 8/13 = 5/13$
- Node B: $p_2 > p_1$, so best classification = class 2 => $Q_{\rm B} = 1 5/7 = 2/7$
- Node C: $p_1 > p_2$, so best classification = class 1 => $Q_C = 1 1 = 0$
- Overall misclassification rate (depth 1) = fraction of data samples in node B x $Q_{\rm B}$ + fraction of data samples in node C x $Q_{\rm C}$

•
$$\left(\frac{7}{13}\right) \times \left(\frac{2}{7}\right) + \left(\frac{6}{13}\right) \times 0 = 0.1538$$

- Observe lower impurity at depth 1 compared with root
- Same misclassification rate formula for more than 2 classes: $Q_m = 1 \max_i p_i$

Questions?

Algorithm: Classification Tree Learning

Input: Impurity measure Q, parameter max_depth &

training set

Output: Tree

66

Algorithm: Classification Tree Learning

Input: Impurity measure Q, parameter $max_depth \&$

training set

Output: Tree

1 root \leftarrow all training samples

1


```
Algorithm: Classification Tree Learning
```

Input: Impurity measure Q, parameter $max_depth \& training set$

training set

Output: Tree

1 root \leftarrow all training samples

2 for $d \leftarrow 1$ to max_depth do

3

4

5

6 return tree


```
Algorithm: Classification Tree Learning
```

Input: Impurity measure Q, parameter $max_depth \& training set$

Output: Tree

- 1 root \leftarrow all training samples
- 2 for $d \leftarrow 1$ to max_depth do
- $\mathbf{3}$ | \mathbf{for} each leaf node m at depth d-1 \mathbf{do}

4

5

6 return tree


```
Algorithm: Classification Tree Learning
```

Input: Impurity measure Q, parameter $max_depth \& training set$

Output: Tree

- 1 root \leftarrow all training samples
- 2 for $d \leftarrow 1$ to max_depth do
- **3** | **for** each leaf node m at depth d-1 **do**

Find best feature & best threshold, so splitting node m into two reduces the most impurity

6 return tree

5

Algorithm: Classification Tree Learning

Input: Impurity measure Q, parameter $max_depth \& training set$

Output: Tree

- 1 root \leftarrow all training samples
- 2 for $d \leftarrow 1$ to max_depth do
- **3** | **for** each leaf node m at depth d-1 **do**

Find best feature & best threshold, so splitting node m into two reduces the most impurity

Use decision rule to distribute training samples from node m across two new leaf nodes

6 return tree

5

Questions?

Advantages

Easy to visualize & understand tree

Advantages

- Easy to visualize & understand tree
- Can work with a mix of continuous and discrete data
- Less data cleaning required (i.e., less affected by outliers)

Advantages

- Easy to visualize & understand tree
- Can work with a mix of continuous and discrete data
- Less data cleaning required (i.e., less affected by outliers)
- Makes less assumptions about the relationship between features & target

Advantages

- Easy to visualize & understand tree
- Can work with a mix of continuous and discrete data
- Less data cleaning required
- Makes less assumptions about the relationship between features & target

Disadvantages

Trees can become overly complex resulting in overfitting

Advantages

- Easy to visualize & understand tree
- Can work with a mix of continuous and discrete data
- Less data cleaning required
- Makes less assumptions about the relationship between features & target

Disadvantages

- Trees can become overly complex resulting in overfitting
- Trees can be unstable, e.g., small changes in training data can result in very different trees

- One or more of the following can help reduce overfitting
 - Set maximum depth for the tree

- One or more of the following can help reduce overfitting
 - Set maximum depth for the tree
 - Set minimum number of samples for splitting a leaf node, e.g., if leaf node has less than 10 samples, then do not split node

- One or more of the following can help reduce overfitting
 - Set maximum depth for the tree
 - Set minimum number of samples for splitting a leaf node, e.g., if leaf node has less than 10 samples, then do not split node
 - Set minimum decrease in impurity, e.g., if selecting the best feature & threshold does not improve impurity by at least 1%, then do not split the leaf node

- One or more of the following can help reduce overfitting
 - Set maximum depth for the tree
 - Set minimum number of samples for splitting a leaf node, e.g., if leaf node has less than 10 samples, then do not split node
 - Set minimum decrease in impurity, e.g., if selecting the best feature & threshold does not improve impurity by at least 1%, then do not split the leaf node
 - Instead of looking at all features when considering how to split a leaf node, we can randomly look at a subset (e.g., square root of the total number of features)

Questions?

- Classification trees seek to predict discrete variables (i.e., classification)
- Regression trees seek to predict continuous variables (i.e., regression)

- Classification trees seek to predict discrete variables (i.e., classification)
- Regression trees seek to predict continuous variables (i.e., regression)
- Can use same approach as before, but instead of minimizing impurity, we can try to minimize mean square error (MSE)

- Classification trees seek to predict discrete variables (i.e., classification)
- Regression trees seek to predict continuous variables (i.e., regression)
- Can use same approach as before, but instead of minimizing impurity, we can try to minimize mean square error (MSE)
- Suppose there are J_m training samples in a leaf node m of the regression tree with target values $y_1, y_2, \cdots, y_{I_m}$

- Classification trees seek to predict discrete variables (i.e., classification)
- Regression trees seek to predict continuous variables (i.e., regression)
- Can use same approach as before, but instead of minimizing impurity, we can try to minimize mean square error (MSE)
- Suppose there are J_m training samples in a leaf node m of the regression tree with target values y_1, y_2, \dots, y_{l_m}
 - We can predict $\hat{y}_m = \frac{1}{J_m} \sum_{j=1}^{J_m} y_j$

- Classification trees seek to predict discrete variables (i.e., classification)
- Regression trees seek to predict continuous variables (i.e., regression)
- Can use same approach as before, but instead of minimizing impurity, we can try to minimize mean square error (MSE)
- Suppose there are J_m training samples in a leaf node m of the regression tree with target values y_1, y_2, \dots, y_{l_m}
 - We can predict $\hat{y}_m = \frac{1}{J_m} \sum_{j=1}^{J_m} y_j$
 - Then MSE of node m is given by $S_m = \frac{1}{J_m} \sum_{j=1}^{J_m} (y_j \hat{y}_m)^2$

- Classification trees seek to predict discrete variables (i.e., classification)
- Regression trees seek to predict continuous variables (i.e., regression)
- Can use same approach as before, but instead of minimizing impurity, we can try to minimize mean square error (MSE)
- Suppose there are J_m training samples in a leaf node m of the regression tree with target values $y_1, y_2, \cdots, y_{I_m}$
 - We can predict $\hat{y}_m = \frac{1}{J_m} \sum_{j=1}^{J_m} y_j$
 - Then MSE of node m is given by $S_m = \frac{1}{J_m} \sum_{j=1}^{J_m} (y_j \hat{y}_m)^2$
- Across all leaf nodes, total MSE $S = \sum_{m} \frac{J_m}{N} S_m$, where N is the total number of data samples

Regression Tree Learning

Algorithm is basically the same as classification tree learning

```
Algorithm: Regression Tree Learning
  Input: parameter max\_depth \& training set
  Output: Tree
1 root \leftarrow all training samples
 for d \leftarrow 1 to max_depth do
     for each leaf node m at depth d-1 do
3
         Find best feature & best threshold, so splitting
4
          node m into two reduces MSE the most
         Use decision rule to distribute training samples
5
          from node m across two new leaf nodes
6 return tree
```

Regression Tree Learning

- Algorithm is basically the same as classification tree learning
- Various approaches to reduce overfitting also apply here

```
Algorithm: Regression Tree Learning
  Input: parameter max\_depth \& training set
  Output: Tree
1 root \leftarrow all training samples
 for d \leftarrow 1 to max_depth do
     for each leaf node m at depth d-1 do
3
         Find best feature & best threshold, so splitting
4
          node m into two reduces MSE the most
         Use decision rule to distribute training samples
5
          from node m across two new leaf nodes
6 return tree
```


Questions?

Example of Regression Tree

- Consider house prices in Singapore.
- Target variable is Price P.
- Attributes are House Size S and Number of Rooms R.

	House Size ('000 sq ft)	Num of Rooms	Price ('000,000 SGD)
1	0.5	2	0.19
2	0.6	1	0.23
3	1.0	3	0.28
4	2.0	5	0.42
5	3.0	4	0.53
6	3.2	6	0.75
7	3.8	7	0.80

Note that I have arranged the data points in increasing order of P, which so happens to be increasing order of S as well. However, this is not the same order as that of R.

Mean Squared Error (MSE)

■ The MSE for a node m with samples $\{y_i : 1 \le i \le J_m\}$ is

$$ext{MSE}_m = rac{1}{J_m} \sum_{i=1}^{J_m} (y_i - \hat{\mu}_m)^2 \quad ext{where} \quad \hat{\mu}_m = rac{1}{J_m} \sum_{i=1}^{J_m} y_i.$$

■ The overall MSE is $MSE_P = 0.0520$.

Calculation of MSE for House Size Split

Focus first on the House Size attribute S. If we set the threshold at $\tau = 0.75$, then the targets of the two classes are $\{0.19, 0.23\}$ and $\{0.28, 0.42, 0.53, 0.75, 0.80\}$. The individual conditional MSEs are

$$MSE_{P|S<0.75} = 4 \times 10^{-4}$$
 and $MSE_{P|S\geq0.75} = 0.0385$.

Thus, the averaged conditional MSE with a split of S at 0.75 is

$$MSE_{P|S(0.75)} = \frac{2}{7}MSE_{P|S<0.75} + \frac{5}{7}MSE_{P|S\geq0.75} = 0.0276.$$

■ Sweep through all possible thresholds τ to determine the best threshold for attribute S.

$MSE_{P S(0.55)}$	$MSE_{P S(0.75)}$	$MSE_{P S(1.5)}$	$MSE_{P S(2.5)}$	$MSE_{P S(3.1)}$	$MSE_{P S(3.5)}$
0.0402	0.0276	0.0145	0.0102	0.0116	0.0325

Calculation of MSE for # Rooms Split

- Rearrange the target variables in order of the house sizes. Doing so we get (0.23, 0.19, 0.28, 0.53, 0.42, 0.75, 0.80). Now we sweep through all possible thresholds τ for R to get the following averaged conditional MSEs.
- We get the following table.

$MSE_{P R(1.5)}$	$MSE_{P R(2.5)}$	$MSE_{P R(3.5)}$	$MSE_{P R(4.5)}$	$MSE_{P R(5.5)}$	$MSE_{P R(6.5)}$
0.0435	0.0276	0.0145	0.0222	0.0116	0.0325

Where is the First Split?

- Minima of the split of the S and R variables at different thresholds \(\tau \) are shaded.
- Choose the minimum MSE as doing so and keeping in mind that MSE_P is the same throughout.
- Gain which is

$$Gain(S(\tau); P) = MSE_P - MSE_{P|S(\tau)}$$

or

$$Gain(R(\tau); P) = MSE_P - MSE_{P|R(\tau)}$$

for various τ .

■ Minimum MSE is attained for the split of the S attribute at $\tau = 2.5$.

Where is the First Split?

- We should first split the dataset into two branches, the left branch indicating S < 2.5 and the right with $S \ge 2.5$.
- Split the dataset into two sub-datasets and we may decide to stop or split the R feature.
- If we decide to stop, then for any new/test house with a house size of < 2.5, we will predict that its price is the average of the houses in our training set whose size is < 2.5, i.e.,</p>

$$(0.19 + 0.23 + 0.28 + 0.42)/4 = 0.28.$$

For a new/test house with a house size of ≥ 2.5, we will predict that its price is the average of the houses in our training set whose size is ≥ 2.5, i.e.,

$$(0.53 + 0.75 + 0.80)/3 = 0.6933.$$

Questions?

To reduce instability...

 For both classification & regression trees, small perturbations to data can result in very different trees => low bias, high variance

To reduce instability...

- For both classification & regression trees, small perturbations to data can result in very different trees => low bias, high variance
- To reduce variance, we can perturb training set to generate M perturbed training sets
 - Train one tree for each perturbed training set
 - Average predictions across the M trees?

To reduce instability...

- For both classification & regression trees, small perturbations to data can result in very different trees => low bias, high variance
- To reduce variance, we can perturb training set to generate M perturbed training sets
 - Train one tree for each perturbed training set
 - Average predictions across the M trees?
- For example, if we have 100 regression trees (trained from 100 perturbed training sets)
 - Given features x from new test sample, the i-th tree predicts $f_i(x)$
 - Then final prediction is $\frac{1}{100}\sum_{i=1}^{100}f_i(x)$

To reduce instability...

- For both classification & regression trees, small perturbations to data can result in very different trees => low bias, high variance
- To reduce variance, we can perturb training set to generate M perturbed training sets
 - Train one tree for each perturbed training set
 - Average predictions across the M trees?
- For example, if we have 100 regression trees (trained from 100 perturbed training sets)
 - Given features x from new test sample, the i-th tree predicts $f_i(x)$
 - Then final prediction is $\frac{1}{100}\sum_{i=1}^{100}f_i(x)$
- For example, if we have 100 classification trees (trained from 100 perturbed training sets)
 - Given features x from new test sample, the i-th tree predicts $g_i(x)$
 - Then final prediction is the most frequent class among 100 predictions $g_1(x), g_2(x), \cdots, g_{100}(x)$

• To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> <u>replacement</u>

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$,

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$, a bootstrapped training set might comprise sample 1 $\{x_2, y_2\}$,

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$, a bootstrapped training set might comprise sample 1 $\{x_2, y_2\}$, sample 2 $\{x_2, y_2\}$

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$, a bootstrapped training set might comprise sample 1 $\{x_2, y_2\}$, sample 2 $\{x_2, y_2\}$ and sample 3 $\{x_1, y_1\}$

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$, a bootstrapped training set might comprise sample 1 $\{x_2, y_2\}$, sample 2 $\{x_2, y_2\}$ and sample 3 $\{x_1, y_1\}$
 - Bootstrapped dataset is the same size as original dataset

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$, a bootstrapped training set might comprise sample 1 $\{x_2, y_2\}$, sample 2 $\{x_2, y_2\}$ and sample 3 $\{x_1, y_1\}$
 - Bootstrapped dataset is the same size as original dataset
 - Bootstrapped dataset might contain repeated samples

- To perturb data, we can apply "bootstrapping" to the training set to create a new "bootstrapped" dataset
- Bootstrapping is procedure in which we <u>sample data with</u> replacement
 - For example, given training set with 3 data samples $\{x_1, y_1\}$, $\{x_2, y_2\}$, $\{x_3, y_3\}$, a bootstrapped training set might comprise sample 1 $\{x_2, y_2\}$, sample 2 $\{x_2, y_2\}$ and sample 3 $\{x_1, y_1\}$
 - Bootstrapped dataset is the same size as original dataset
 - Bootstrapped dataset might contain repeated samples
 - Bootstrapped dataset might not contain some samples from original dataset

Algorithm: Random Forest Learning

Input: parameter $max_trees \& N$ training samples

Output: Forest

1

2

3

4

5


```
Algorithm: Random Forest Learning
```

Input: parameter $max_trees \& N$ training samples

Output: Forest

```
1 for t \leftarrow 1 to max_trees do
```

2 dataset \leftarrow bootstrap(N training samples)

3

4

5

Algorithm: Random Forest Learning

Input: parameter $max_trees \& N$ training samples

Output: Forest

```
1 for t \leftarrow 1 to max_trees do
```

2 | dataset \leftarrow bootstrap(N training samples)

 $\mathbf{3} \mid \text{trees}[t] \leftarrow \text{TreeLearning}(\text{dataset})$

4

5

Algorithm: Random Forest Learning

Input: parameter $max_trees \& N$ training samples

Output: Forest

- 1 for $t \leftarrow 1$ to max_trees do
- 2 dataset \leftarrow bootstrap(N training samples)
- $\mathbf{3} \mid \text{trees}[t] \leftarrow \text{TreeLearning}(\text{dataset})$
- 4 forest \leftarrow average(trees)
- 5 return forest

Algorithm: Random Forest Learning

Input: parameter $max_trees \& N$ training samples

Output: Forest

- 1 for $t \leftarrow 1$ to max_trees do
- 2 dataset \leftarrow bootstrap(N training samples)
- $\mathbf{3} \mid \text{trees}[t] \leftarrow \text{TreeLearning}(\text{dataset})$
- 4 forest \leftarrow average(trees)
- 5 return forest
- To increase randomness, when training the trees, instead of looking at all features when considering how to split a node, we can randomly look at a subset (e.g., square root of the total number of features)

Questions?

 Decision tree: series of binary decisions to arrive at prediction of target variable

- Decision tree: series of binary decisions to arrive at prediction of target variable
- Classification tree predicts discrete target class

- Decision tree: series of binary decisions to arrive at prediction of target variable
- Classification tree predicts discrete target class
- Classification tree learning
 - Impurity measures: Gini, Entropy, Misclassification rate
 - For each leaf node, find best feature and threshold to split node to minimize impurity

- Decision tree: series of binary decisions to arrive at prediction of target variable
- Classification tree predicts discrete target class
- Classification tree learning
 - Impurity measures: Gini, Entropy, Misclassification rate
 - For each leaf node, find best feature and threshold to split node to minimize impurity
- Regression tree predicts continuous target
 - Minimize MSE instead of impurity

- Decision tree: series of binary decisions to arrive at prediction of target variable
- Classification tree predicts discrete target class
- Classification tree learning
 - Impurity measures: Gini, Entropy, Misclassification rate
 - For each leaf node, find best feature and threshold to split node to minimize impurity
- Regression tree predicts continuous target
 - Minimize MSE instead of impurity
- Random forest
 - Generate multiple bootstrapped training sets
 - Train on each bootstrapped training set & average