Fubini's Theorem

Note taken by 89hao

March 16, 2020

Definition 1. Let μ and ν be outer measures on the non-empty sets X and Y respectively. We define the product measure of μ and ν on the product set $X \times Y$ as, for $E \subset X \times Y$,

$$(\mu \times \nu)(E)$$

$$= \inf \left\{ \sum_{j=1}^{\infty} \mu(A_j) \nu(B_j) : E \subset \bigcup_{j=1}^{\infty} A_j \times B_j, A_j \ \mu\text{-measurable}, B_j \ \nu\text{-measurable} \right\}.$$

To evaluate $\mu \times \nu$ in terms of μ and ν , we introduce the following notations:

$$\mathcal{P}_{0} = \left\{ A \times B : A \text{ μ-measurable and } B \text{ ν-measurable} \right\}$$

$$\mathcal{P}_{1} = \left\{ R : R = \bigcup_{j=1}^{n} A_{j} \times B_{j}, 1 \leq n \leq \infty, A_{j} \times B_{j} \in \mathcal{P}_{0} \right\}$$

$$\mathcal{P}_{2} = \left\{ R : R = \bigcap_{j=1}^{n} R_{j}, 1 \leq n \leq \infty, R_{j} \in \mathcal{P}_{1} \right\}.$$

Elements in \mathcal{P}_0 are called measurable rectangles. We also set

$$\mathcal{F} = \{R : \text{ For } \nu\text{-a.e. } y, x \mapsto \chi_R(x, y) \text{ is } \mu\text{-measurable and}$$
$$y \mapsto \int \chi_R(x, y) \mathrm{d}\mu(x) \text{ is } \nu\text{-measurable} \}$$

Note that the map

$$y \mapsto \int \chi_R(x, y) \mathrm{d}\mu(x)$$

is defined almost everywhere in Y.

For $R \in \mathcal{F}$, we can define

$$\rho(R) = \int_{Y} \left(\int_{X} \chi_{R}(x, y) d\mu(x) \right) d\nu(y).$$

The following lemmas show that \mathcal{P}_0 , \mathcal{P}_1 and $\mathcal{P}_2 \subset \mathcal{F}$ and they are $\mu \times \nu$ -measurable. Moreover,

$$(\mu \times \nu)(R) = \rho(R),$$

for $R \in \mathcal{P}_1$ or $R \in \mathcal{P}_2$ provided in the latter R satisfies $\rho(R) < \infty$.

Lemma 1. $YP_0 \subset \mathcal{F}$ and

$$\rho(A \times B) = \mu(A)\nu(B), A \times B \in \mathcal{P}_0.$$

Lemma 2. $\mathcal{P}_1 \subset \mathcal{F}$ and

$$\rho(R) = \sum_{1}^{\infty} \mu(A_j) \nu(B_j), \text{ whenever } R = \bigcup_{1}^{\circ} A_j \times B_j, A_j \times B_j \in \mathcal{P}_0.$$

We have put a circle on top of the union sign to indicate that this is a union of pairwise disjoint sets.

Lemma 3. For $E \subset X \times Y$,

$$(\mu \times \nu)(E) = \inf \left\{ \rho(R) : E \subset R, R \in \mathcal{P}_1 \right\}.$$

In particular, for $A \times B \in \mathcal{P}_0$,

$$(\mu \times \nu)(A \times B) = \mu(A)\nu(B) = \rho(A \times B).$$

Lemma 4. \mathcal{P}_1 and \mathcal{P}_2 consist of $\mu \times \nu$ -measurable sets. For $R \in \mathcal{P}_1$,

$$(\mu \times \nu)(R) = \sum_{j} \mu(A_j)\nu(B_j) = \rho(R).$$

Lemma 5. Let $R \in \mathcal{P}_2$. Suppose that $R = \bigcap_{j=1}^{\infty} R_j$, $R_j \in \mathcal{P}_1$, and $\rho(R_1) < \infty$. Then $R \in \mathcal{F}$ and

$$(\mu \times \nu)(R) = \rho(R).$$

Lemma 6. For $E \subset X \times Y$, $\exists R \in \mathcal{P}_2, E \subset R$ such that

$$(\mu \times \nu)(E) = (\mu \times \nu)(R).$$

Theorem 1 (Fubini's Theorem). Let μ and ν be σ -finite outer measures on X and Y respectively.

a. For any non-negative $\mu \times \nu$ -measurable function f,

 $x \mapsto f(x,y)$ is μ -measurable for ν -a.e. y, and

 $y \mapsto \int_X f(x,y) d\mu(x)$ is ν -measurable.

Moreover,

$$\int_{X\times Y} f(x,y) d(\mu \times \nu) = \int_{Y} \left(\int_{X} f(x,y) d\mu(x) \right) d\nu(y).$$

b. (a) holds for $f \in L^1(\mu \times \nu)$.

Part (b) was first formulated by Tobelli and is also called Tonelli's theorem.