RS∧°Conference2016

San Francisco | February 29 – March 4 | Moscone Center

SESSION ID: MBS-R04

Mobile CA State of the Union

Connect **to** Protect

Andrew Blaich

Lead Security Analyst Bluebox Security @ablaich

Jeff Forristal

CTO
Bluebox Security
@j4istal

Objectives

- What are CAs and how do they secure your communications?
- How can CAs be classified?
- What are the top apps doing to verify trust?
- How can you apply what you've learned?

What is a CA?

- Certificate Authorities are the providers of trust for our communications over the Internet.
 - The Internet's security is built on top of trusted secure transactions
 - CAs provide assurance of the identity of a web server (trust chain)
 - Self-signed certs do not provide this assurance

RS∧°Conference2016

Trusted Certificate Chain

Verified == Trusted Chain

The root CA to verify this chain is installed on the device, thus making the chain verifiable and trusted.

Site Verification - Success

TRUSTED CONNECTION

Un-trusted Certificate Chain

Un-verified == Un-Trusted Chain

The root CA to verify this chain is missing from the device making the trust chain un-verifiable.

Site Verification - Failure

NOT A TRUSTED CONNECTION

Un-trusted Certificate Chain

RS∧°Conference2016

How many root certs?

OS (2015)	Cert Count	OS (2016) as of January 8, 2016	Cert Count
Android 5.*	162	Android 6.*	158
iOS 8.*	223	iOS 9.*	200
- iOS 8.* Trusted	210	- iOS 9.* Trusted	187
- iOS 8.* Always Ask	13	- iOS 9.* Always Ask	13
- iOS 8.* Blocked	17	- iOS 9.* Blocked	18

OS Version Distribution

iOS Versions

Android Versions

Root Cert Changes – Long Tail

Further Technical Details of Affected Root:

Friendly Name: Class 3 Public Primary Certification Authority

Subject: C=US, O=VeriSign, Inc., OU=Class 3 Public Primary Certification Authority

Public Key Hash (SHA-1): E2:7F:7B:D8:77:D5:DF:9E:0A:3F:9E:B4:CB:0E:2E:A9:EF:DB:69:77

Public Key Hash (SHA-256):

B1:12:41:42:A5:A1:A5:A2:88:19:C7:35:34:0E:FF:8C:9E:2F:81:68:FE:E3:BA:18:7F:25:3B:C1:A3:92:D7:E2

MD2 Version

Fingerprint (SHA-1): 74:2C:31:92:E6:07:E4:24:EB:45:49:54:2B:E1:BB:C5:3E:61:74:E2

Fingerprint (SHA-256):

E7:68:56:34:EF:AC:F6:9A:CE:93:9A:6B:25:5B:7B:4F:AB:EF:42:93:5B:50:A2:65:AC:B5:CB:60:27:E4:4E:70

SHA1 Version

Fingerprint (SHA-1): A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B

Fingerprint (SHA-256):

A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05

"...it will likely take years to reduce the number of users and devices at risk from certificates issued by Symantec from this root..." - Ryan Sleevi

Root Cert Changes - OEMs

- BlackBerry Priv (Android)
 - 17 Supplemental Certificates:
 - att_suplcert1_v0.der
 - SHA-1 Hash:

A1:DB:63:93:91:6F:17:E4:18:

55:09:40:04:15:C7:02:40:B0:

AE:6B

att_suplcert1_v0.der att_suplcert2_v0.der att_suplcert3_v0.der bell_mobility_suplcert1_v0.der bell_mobility_suplcert2_v0.der cmcc_suplcert1_v0.der google_suplcert1_v0.der mts_mobility_suplcert1_v0.der rogers_suplcert1_v0.der rs_cacertv1_v0.der rs_cacertv3_v0.der sasktel_suplcert1_v0.der t_mobile_us_suplcert1_v0.der telus_suplcert1_v0.der verisign_class3_v0.der verisign_spirent_interm_suplcert1_v0.der vodafone_suplcert1_v0.der

Root Cert Changes - Let's Encrypt

Source: https://letsencrypt.org/certificates/

How does your browser or device already trust Let's Encrypt?

ISRG Root X1 is not yet trusted in most browsers (or devices), e.g.

https://bugzilla.mozilla.org/show_bug.cgi?id=1204656 https://code.google.com/p/chromium/issues/detail?id=53 https://code.google.com/p/android/issues/detail?id=1863

SHA-1 Deprecation

- Community Controversy
- Among the mobile platforms, Android added SHA256 support in version 2.3. Earlier versions—still used in large numbers support only SHA1.
- Firefox 43 does not validate against new SHA-1 CAs from 1/1/2016 or after (reverted)
- When will mobile apps enforce the deprecation of SHA-1?

Microsoft Trusted Roots Removal

Original

	<u> </u>
CA Subject to Removal	Root
DanID	DanID
e-Tugra	EBG Elektronik Sertifika Hizmet Saglayicisi
e-Tugra	E-Tugra Certification Authority
LuxTrust	LuxTrust Global Root CA
Secom	SECOM Trust Systems Co Ltd.
Secom	SECOM Trust Systems CO LTD
Secom	SECOM Trust Systems CO LTD
Wells Fargo	WellsSecure Public Certificate Authority
Wells Fargo	WellsSecure Public Root Certification Authority 01 G2
CyberTrust	Japan Certification Services, Inc. SecureSign RootCA1
CyberTrust	Japan Certification Services, Inc. SecureSign RootCA2
CyberTrust	Japan Certification Services, Inc. SecureSign RootCA3
Certigna	Certigna
Ceska Posta	PostSignum Root QCA 2
E-Certchile	E-Certchile Root CA
Nova Ljubljanska	NLB Nova Ljubljanska Banka d.d. Ljubljana
Post.Trust	Post.Trust Root CA
Serasa	Serasa Certificate Authority I
Serasa	Serasa Certificate Authority II
Serasa	Serasa Certificate Authority III

Updated

	Danaan far	Do at Cubicat to Damaual
CA Subject to Removal	Reason for Removal	Root Subject to Removal
DanID	Audit	DanID
e-Tugra	Audit	EBG Elektronik Sertifika Hizmet Saglayicisi
e-Tugra	Audit	E-Tugra Certification Authority
Wells Fargo	Audit	WellsSecure Public Certificate Authority
Wells Fargo	Audit	WellsSecure Public Root Certification Authority
CyberTrust	Contract Compliance	Japan Certification Services, Inc. SecureSign Ro
CyberTrust	Contract Compliance	Japan Certification Services, Inc. SecureSign Re
CyberTrust	Contract Compliance	Japan Certification Services, Inc. SecureSign Re
E-Certchile	Contract Compliance	E-Certchile Root CA
Nova Ljubljanska	Contract Compliance	NLB Nova Ljubljanska Banka d.d. Ljubljana
Post.Trust	Contract Compliance	Post.Trust Root CA
Serasa	Contract Compliance	Serasa Certificate Authority I
Serasa	Contract Compliance	Serasa Certificate Authority II
Serasa	Contract Compliance	Serasa Certificate Authority III

 $\textbf{\textit{Source:}}\ http://social.technet.microsoft.com/wiki/contents/articles/31680.microsoft-trusted-root-certificate-program-updates.aspx$

RS∧°Conference2016

CA Classifications

- Known Failures in Keeping Trust
- Government-Based Roots of Trust
- Cause for Concern
- Artificial Constraints
- Everything else

Known Failures with CAs

Highlights in failures of trust:

- Symantec [2015]
- CNNIC/MCS Holdings [2015]
- Comodo [2011]
- DigiNotar [2011]
- GlobalSign [2011]
- India CCA [2014]
- RapidSSL (indirect) [2008]

Artificial Constraints

Cert Subject	Reason For Constraint
CN=IGC/A,OU=DCSSI,O=PM/SGDN,L=Paris,S T=France,C=FR	Issued several un-authorized certificates for Google domains. TLD restrictions: .fr (France), .gp (Guadeloupe), .gf (Guyane), .mq (Martinique), .re (Réunion), .yt (Mayotte), .pm (Saint-Pierre et Miquelon), .bl (Saint Barthélemy), .mf (Saint Martin), .wf (Wallis et Futuna), .pf (Polynésie française), .nc (Nouvelle Calédonie), .tf (Terres australes et antarctiques françaises)]

Artificial Constraints —cont'd.


```
/* Add name constraints to certain certs that do not include name constraints
       * This is the core of the implementation for bug 952572.
1561
1562
      static SECStatus
      getNameExtensionsBuiltIn(CERTCertificate *cert.
                                SECItem *extensions)
1565
1566
1567
        const char constraintFranceGov[] = "\x30\x5D" /* sequence len = 93*/
1568
                                             "\xA0\x5B" /* element len =91 */
                                             "\x30\x05" /* sequence len 5 */
1569
                                            "\x82\x03" /* entry len 3 */
1570
1571
                                             "\x30\x05\x82\x03" /* sequence len5, entry len 3 */
1572
1573
                                             "\x30\x05\x82\x03"
1574
1575
                                             ".af"
                                             "\x30\x05\x82\x03"
1576
1577
1578
                                             "\x30\x05\x82\x03"
                                             ".re"
1579
                                             "\x30\x05\x82\x03"
1581
                                             "\x30\x05\x82\x03"
1582
                                            ".pm"
1583
                                             "\x30\x05\x82\x03"
                                             ".b1"
1585
                                             "\x30\x05\x82\x03"
1586
                                            ".mf"
1588
                                             "\x30\x05\x82\x03"
1589
                                             "\x30\x05\x82\x03"
                                             ".pf"
1591
                                             "\x30\x05\x82\x03"
1592
1593
1594
                                             "\x30\x05\x82\x03"
                                            ".tf":
```

```
// static
bool CertVerifyProc:: HasNameConstraintsViolation(
    const HashValueVector& public key hashes,
    const std::string& common name.
    const std::vector<std::string>& dns names,
    const std::vector<std::string>& ip addrs) {
  static const char kDomainsANSSI[][kMaxDomainLength] = {
    "fr", // France
          // Guadeloupe
           // Guyane
           // Martinique
           // RÃ@union
          // Mayotte
           // Saint-Pierre et Miguelon
          // Saint BarthA@lemy
          // Saint Martin
       ". // Wallis et Futuna
    "pf", // Polynésie française
       ", // Nouvelle Calédonie
       ", // Terres australes et antarctiques franASaises
  };
  static const char kDomainsIndiaCCA[][kMaxDomainLength] = {
    "gov.in",
    "nic.in".
    "ac.in",
    "rbi.org.in",
    "bankofindia.co.in".
    "ncode.in",
    "tcs.co.in",
```


RSAConference2016

Public Key-Size

Key Type/Size	2015	2016	Notable Entities
RSA / 1024 bit	15	5	GTE CyberTrust, Equifax, VeriSign, ValiCert, Entrust
RSA / 2048 bit	101	96	N/A
RSA/ 4096 bit	14	46	N/A
Elliptic Curve	6	11	GeoTrust, VeriSign, COMODO, Thawte, Entrust, AffirmTrust

Hash Algorithm

Signature Algorithm	2015	2016	Notable Entities
md5WithRSAEncryption	6	2	GTE CyberTrust (expires 2018), NetLock (expires 2019)
sha1WithRSAEncryption	115	98	N/A
sha256WithRSAEncryption	28	43	N/A
sha384WithRSAEncryption	1	4	N/A
ecdsa-with-SHA256	0	1	GlobalSign
ecdsa-with-SHA384	6	10	GeoTrust, VeriSign, COMODO, Thawte, Entrust, AffirmTrust,

CA Consolidation

Symantec Owned Entity	2015	2016
GeoTrust	7	7
VeriSign	7	6
TC Trust Center	3	0
Thawte	5	3
Equifax	3	1
Total:	Symantec controls 24 of the total 156 certificates or ~15% ownership of the Android roots of trust	Symantec controls 17 of the total 158 certificates or ~11% ownership of the Android roots of trust

Source: https://bluebox.com/questioning-the-chain-of-trust-investigations-into-the-root-certificates-on-mobile-devices/

RSA*Conference2016

Case Study: Mobile Apps and Trust

Mobile apps and trust

- Who are the top Android apps trusting?
- Most apps trust the certificates on your device
 - Your browser may distrust the CNNIC root cert, but your mobile app may trust it
 - Some apps even disable hostname verifications (trusting everything)

Top Android Apps

X509HostnameVerifier	% of Apps
ALLOW_ALL_HOSTNAME	35% (29% 1 st party code; 86% 3 rd party code)
	e.g. Facebook, Baidu, Conviva, Comscore, Nielson,
STRICT_HOSTNAME	30.31%
BROWSER_COMPATIBLE_HOSTNAME	19.29%

Other Features	Number of Apps
Custom Trust Store	6.30%
	Average: 13 CAs; Min: 1 CA (8 apps); Max: 129 CAs (1 app)

RS∧°Conference2016

Protecting yourself

- Beware of government controlled root CAs, example: Kazakhstan (December 2015)
 - User installed (at this time)
 - http://www.zdnet.com/article/kazakhstan-forces-its-citizens-into-installing-internet-backdoors/
 - https://bugzilla.mozilla.org/show_bug.cgi?id=1232689

Kazakhstan will force its citizens to install internet backdoors

The poorly thought-out and crude surveillance technique could have a devastating effect on the country's internet security.

Managing your Security

- Traveling or worried about security?
 - Remove or disable any CAs that concern you (government, deprecated, or others)
 - Test that the sites you need access to work with your restricted CA list
 - Be wary of installing iOS profiles, device admin apps, or 3rd party certificates
 - Check your Security (Android) and Profile (iOS) settings
 - Some organizations use these to manage your device (check with your IT department)
 - Manage/disable root access when traveling (malware can exploit this)
 - Disable/remove apps you don't need (they're chatty and may be using insecure communications)
 - Beware of free / un-secured WiFi

Managing your CAs

Android:

- System Settings
 - Settings -> Security -> Trusted credentials
 - Disable or Enable each CA
- Programmatically or via shell
 - (requires root access)

■ iOS:

- No manual method on iOS
- Programmatically or via shell
 - (requires root access)

Bluebox Trust Managers

https://bluebox.com/technical/trust-managers/

Apply

Executive / Management Team

- Secure the apps and data your company and employees use
- Always use secure communications and apps; be aware of the trust chain

Developer

- Apply browser strategies for root certs to your app
- Check, Validate, and enforce the expected chain of trust to your servers

Consumer

- Review, disable, and remove certificates you don't trust
- Keep your trust store up to date

Summary

- CAs provide the trust for the internet's security model
- CAs are known to have failures in trust
- Mobile operating systems vary with their support for the vast number of CAs
- Mobile apps should not rely on the device (or CAs) to be trustable
- Users can take action to reduce the amount of 3rd parties they trust.
- Protect yourself

Q&A

Contact us

- Andrew Blaich
 - Lead Security Analyst at Bluebox Security
 - Twitter: @ablaich
 - Email: andrew@bluebox.com
- Jeff Forristal
 - CTO at Bluebox Security
 - Twitter: @j4istal
 - Email: jeff@bluebox.com

References

- https://bluebox.com/questioning-the-chain-of-trustinvestigations-into-the-root-certificates-on-mobile-devices/
- https://bluebox.com/technical/trust-managers/