Projekt Transformatory

CEL

Celem projektu jest wskazanie efektywnej polityki konserwacji transformatorów średniego napięcia przy zastosowaniu metodyki nauki o danych.

DANE

- Zbiór danych awarie_transf_hist.xlsx
- Zbiór danych awarie transf new.xlsx

PROBLEM BIZNESOWY

Awaria sprzętu jest nieuniknioną rzeczywistością wszystkich przedsiębiorstw świadczących usługi z wykorzystaniem infrastruktury technicznej. Konserwacja zapobiegawcza jest najlepszym sposobem na uniknięcie awarii i związanych z nimi opóźnień w obsłudze klienta, kosztownych napraw, kar umownych. Taka konserwacja może być przeprowadzana regularnie w przypadku wszystkich urządzeń, ale może to nie być rozwiązanie efektywne kosztowo. Konserwacja "predykcyjna" określa, które urządzenia mogą ulec awarii przy danym zestawie ograniczeń (takich jak okres czasu, zdarzenie i obciążenie).

Opis otoczenia biznesowego

Przedsiębiorstwo E (operator sieci elektroenergetycznej) dysponuje zestawem danych historycznych dotyczących awarii transformatorów w stanie Georgia w określonym czasie (por. opis danych). Wiadomo, że konserwacja zapobiegawcza jednego transformatora kosztuje 30 tys. USD. Dodatkowo wiadomo, że w przypadku zaistnienia awarii przeciętny koszt wynikający z utraconych przychodów, kar umownych oraz naprawy awaryjnej transformatora wynosi 100 tys. USD. Dysponując danymi historycznymi oraz danymi dotyczącymi zbioru urządzeń, które nie były objęte monitoringiem, przedsiębiorstwo chce zrealizować następujące cele biznesowe:

Cele biznesowe:

- wskazanie najważniejszych czynników zwiększających prawdopodobieństwo zaistnienia awarii transformatora,
- ustalenie progu dotarcia (odsetka populacji transformatorów), przy którym wykorzystanie predykcji awarii jest opłacalne (lepsze niż objęcie konserwacją zapobiegawczą całej populacji),
- określenie optymalnej ze względu na koszty polityki konserwacji dla 20 kolejnych urządzeń w stanie Georgia (dane *awarie transf new.xls*).

Opis danych

cecha	znaczenie
Status	czy transformator uległa awarii (target)
PMLate	czy konserwacja była opóźniona w relacji do resursu urządzenia
Overloads	liczba przeciążeń urządzenia
MilesFromOcean	odległość od linii brzegowej
Manufacturer	producent
WaterExposure	czy urządzenie jest narażone na działanie wody
MultipleConnects	czy urządzenie jest hubem
Storm	czy urządzenie narażone było na gwałtowne zjawisko atmosferyczne
AssetType	typ urządzenia
Repairs	naprawy (czy i jakie)
AssetId	identyfikator urządzenia
AssetLocation	lokalizacja urządzenia - ulica
AssetCity	lokalizacja urządzenia - miasto
AssetState	lokalizacja urządzenia - stan
AssetZip	kod pocztowy lokalizacji
Lat	szerokość geograficzna
Long	długość geograficzna
AvgRepairCost	przeciętny koszt naprawy po awarii
Age	wiek urządzenia

NARZĘDZIA

W zakresie EDA (wstępne badanie danych), przygotowania danych, wizualizacji – dowolne poznane narzędzie.

W zakresie budowy, szacowania i aplikacji właściwego mechanizmu uczącego się – sugerowane narzędzie SAP Predictive Analytics Automated Mode lub inne poznane.

EFEKT PRACY NAD PROJEKTEM

Efektem pracy nad projektem będzie raport z wykonania projektu.

W projekcie należy wykorzystać wiedzę z zakresu organizacji procesu eksploracji danych (schemat procesu CRISP-DM). Działania wykonane dla etapów należy dokumentować. Do raportu należy załączyć:

- opracowany zbiór (zbiory) danych użyte na etapie modelowania,
- kody źródłowe (np. notebooki Jupyter) lub zapisane skrypty wykonywalne SAP PA,
 umożliwiające replikację wyników.

Format pliku głównego raportu – .pdf. Całość raportu tj. plik główny oraz załączniki należy scalić w archiwum .zip.