

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	77 of 98

BW 5M 64QAM Low

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	78 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	79 of 98

BW 15M 64QAM Low

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	80 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	81 of 98

Chain 2:

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	82 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	83 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	84 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	85 of 98

BW 5M 64QAM Low

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	86 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	87 of 98

BW 15M 64QAM Low

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	88 of 98

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	89 of 98

10.5 Radiated Spurious Emission below 1GHz

Requirement(s):

Spec	Item	Requirement			Applicable
47CFR27.53	-		s. The power of any emission outside anges must be attenuated below the 43 + 10 log(P) dB.		
Test Setup		Radio Absorbing Material	Semi Anechoic Chamber 3m Anter Ground Plane	1-4m	Spectrum Analyzer
Test Procedure	2. 3. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The EUT was switched on The test was carried out at emissions, was carried out the following manner: a. Vertical or horiz was chosen. b. The EUT was to Finally, the anterest frequency involved). The cof the transmitter. Feed the substitution anterest frequency sincolous frequency analyzer. Adjust the level of conditions is obtained.	and allowed to warm up to its normal oper the selected frequency points obtained fit by rotating the EUT, changing the antenional polarisation (whichever gave the higher rotated to the direction that gave the tenna height was adjusted to the height that replace it with a substitution antenna (the tenter of the substitution antenna should be the antennas at both ends horizontally poincy, raise and lower the test antenna to of the signal generator output until the pare next frequency point, until all selected for	rom the EUT characterisation applarization, and adjusting the polarization, and adjusting the emission level over a function of the emission. The emission is at gave the maximum emission and emission and emission is an emission of the emi	ing the antenna height in full rotation of the EUT) sion. vavelength for each the location as the center e antenna by means of a all generator tuned to a grat the spectrum turn reading for this set soured.
Test Date	01/13/2017	7 – 02/02/2017	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23°C 48% 1008mbar
Remark	case. Limit calculation line Emission line All differer	ation: mit = PdBm – [43+ 10 log nt modulation and band	Both horizontal and vertical polarities w g (PW)] = 10log(1000 x PW) - 43 - 10log(width configuration has been verified andwidth was presented in this repo	(PW) = 30 dBm - 43 = -13 d d and only the test data	dBm
Result	⊠ Pass	□ Fail			
	Yes (See be	elow) 🗆 N/A			

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	90 of 98

Test Plot ⊠ Yes (See below)

□ N/A

Test was done by Gary Chou at 10m chamber.

Radiated Emission Test Results for LTE band 4

Test specification	below 1GH	Z		
	Temp (°C):	21		
Environmental Conditions:	Humidity (%)	43		
	Atmospheric (mbar): 1019		Result	Pass
Mains Power:	56VDC		rtesuit	1 833
Tested by:	Gary Chou			
Test Date:	02/02/2017			
Remarks:	LTE band4-Mid CH-20MF	Hz BW, QPSK		

Internal Antenna:

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
125.89	236	165	V	125.89	-60.14	0	0.29	-60.43	-13	-47.43
125.89	167	176	Н	125.89	-61.07	0	0.29	-61.36	-13	-48.36
150.12	264	168	V	150.12	-57.94	0	0.31	-58.25	-13	-45.25
150.12	153	156	Н	150.12	-59.96	0	0.31	-60.27	-13	-47.27
404.25	269	169	V	404.25	-59.86	0	0.33	-60.19	-13	-47.19
404.25	147	161	Н	404.25	-62.92	0	0.33	-63.25	-13	-50.25

External Antenna:

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
125.89	212	155	V	125.89	-59.58	0	0.29	-59.87	-13	-46.87
125.89	125	157	Н	125.89	-59.27	0	0.29	-59.56	-13	-46.56
150.12	265	152	V	150.12	-57.69	0	0.31	-58.00	-13	-45.00
150.12	115	156	Н	150.12	-58.47	0	0.31	-58.78	-13	-45.78
404.25	257	160	V	404.25	-57.95	0	0.33	-58.28	-13	-45.28
404.25	69	155	Н	404.25	-61.54	0	0.33	-61.87	-13	-48.87

Note: Dipole antenna was used for substitution method.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	91 of 98

10.6 Radiated Spurious Emissions above 1GHz

Requirement(s):

Spec	Item Requirement	Applicable
47CFR27.53	Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P factor of at least 43 + 10 log(P) dB.) by a 🗵
Test Setup	Semi Anechoic Chamber Radio Absorbing Material 1.5m Antenna Ground Plane	Spectrum Analyzer
Test Procedure	Substitution method: 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT charar of the emissions, was carried out by rotating the EUT, changing the antenna polarization antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission level EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission c. Finally, the antenna height was adjusted to the height that gave the maximum each frequency involved). The center of the substitution antenna (the antenna should be each frequency involved). The center of the substitution antenna should be approximated as the center of the transmitter. 4. Feed the substitution antenna at the transmitter end with a signal generator connector means of a nonradiating cable. With the antennas at both ends horizontally polarized generator tuned to a particular spurious frequency, raise and lower the test antenna reading at the spectrum analyzer. Adjust the level of the signal generator output until maximum reading for this set of conditions is obtained. Steps 4 were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency point, until all selected frequency points were repeated for the next frequency poin	over a full rotation of the over a full rotation. Over half-wavelength for ely at the same location ed to the antenna by d, and with the signal to obtain a maximum of the previously recorded over emeasured.
Test Date	01/13/2017 – 02/02/2017 Environmental condition Relative Humidity Atmospheric Pressul	23°C 48% re 1008mbar
Remark	The EUT was scanned up to 25GHz. Both horizontal and vertical polarities were investigated. T worst case. Limit calculation: Emission limit = PdBm – [43+ 10 log (PW)] = 10log(1000 x PW) - 43 - 10log(PW) = 30 dBm - 4 All different modulation and bandwidth configuration has been verified and only the test with QPSK modulation and greatest bandwidth was presented in this report.	3 = -13 dBm
Result	⊠ Pass ☐ Fail	
est Data ⊠ Yes	(See below)	
est Plot	(See below) ⊠ N/A	

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	92 of 98

Radiated Emission Test Results (Above 1GHz) Internal Antenna:

LTE band 4 Low Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4240.68	120	150	V	4240.68	-40.86	9.82	0.31	-31.35	-13	-18.35
4240.68	156	153	Н	4240.68	-42.95	9.82	0.31	-33.44	-13	-20.44
6360.46	243	150	V	6360.46	-36.59	11.71	0.78	-25.66	-13	-12.66
6360.46	189	149	Н	6360.46	-40.96	11.71	0.78	-30.03	-13	-17.03

LTE band 4 Mid Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4265.60	120	150	V	4265.60	-39.82	9.82	0.31	-30.31	-13	-17.31
4265.60	156	153	Н	4265.60	-41.73	9.82	0.31	-32.22	-13	-19.22
6397.59	243	150	V	6397.59	-39.71	11.71	0.78	-28.78	-13	-15.78
6397.59	189	149	Н	6397.59	-41.46	11.71	0.78	-30.53	-13	-17.53

LTE band 4 High Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4290.48	49	154	V	4290.48	-39.94	9.82	0.31	-30.43	-13	-17.43
4290.48	64	161	Н	4290.48	-43.01	9.82	0.31	-33.50	-13	-20.50
6435.98	67	138	V	6435.98	-40.76	11.71	0.78	-29.83	-13	-16.83
6435.98	28	149	Н	6435.98	-43.53	11.71	0.78	-32.60	-13	-19.60

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	93 of 98

External Antenna:

LTE band 4 Low Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4240.68	120	150	V	4240.68	-41.48	9.82	0.31	-31.97	-13	-18.97
4240.68	156	153	Н	4240.68	-40.24	9.82	0.31	-30.73	-13	-17.73
6360.46	243	150	V	6360.46	-35.91	11.71	0.78	-24.98	-13	-11.98
6360.46	189	149	Н	6360.46	-40.19	11.71	0.78	-29.26	-13	-16.26

LTE band 4 Mid Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4265.60	120	150	V	4265.60	-38.49	9.82	0.31	-28.98	-13	-15.98
4265.60	156	153	Н	4265.60	-40.52	9.82	0.31	-31.01	-13	-18.01
6397.59	243	150	V	6397.59	-40.52	11.71	0.78	-29.59	-13	-16.59
6397.59	189	149	Н	6397.59	-40.69	11.71	0.78	-29.76	-13	-16.76

LTE band 4 High Channel, 20MHz BW, QPSK

Frequency (MHz)	Degree	Height	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolut e Level (dBm)	Limit (dBm)	Margin (dB)
4290.48	49	154	V	4290.48	-40.24	9.82	0.31	-30.73	-13	-17.73
4290.48	64	161	Н	4290.48	-42.36	9.82	0.31	-32.85	-13	-19.85
6435.98	67	138	V	6435.98	-41.58	11.71	0.78	-30.65	-13	-17.65
6435.98	28	149	Н	6435.98	-42.63	11.71	0.78	-31.70	-13	-18.70

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	94 of 98

10.7 Frequency Stability

Requirement(s):

Spec	Item	Requirement			Applicable			
47 CFR 2.1055, 47 CFR	-	percent (±1 ppm) of the c °Celsius to +50 °Celsius primary supply voltage of	The frequency stability of the transmitter shall be maintained within ±0.0001 ercent (±1 ppm) of the center frequency over a temperature variation of −30 Celsius to +50 °Celsius at normal supply voltage, and over a variation in the rimary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °Celsius.					
47 CFR 2.1055, 47 CFR 27.54	-		The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.					
Test Setup		Spectrum Analyzer		EUT				
Test Procedure	 The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference). The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half hour is provided to allow stabilization of the equipment at each temperature level. 							
Test Date	01/13/2	2017 – 02/02/2017	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23°C 48% 1008mbar			
Remark	NONE							
Result	⊠ Pa:	ss 🗆 Fail						

Test Data	⊠ Yes	□ N/A
Test Plot	\square Yes (See below)	⊠ N/A

Test was done by Chen Ge at RF Test Site.

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	95 of 98

Test Data for LTE Band 4:

Voltage (%)	Power (VDC)	Temp. (°)	Frequency (KHz)	Frequency Error (Hz)	Deviation (ppm)
100%		20	2132500.380	380	0.18
100%		0	2132500.400	400	0.19
100%	56	10	2132500.400	400	0.19
100%		30	2132500.420	420	0.20
100%		40	2132500.440	440	0.21
115%	64.4	20	2132500.400	400	0.19
85%	47.6	20	2132500.400	400	0.19

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	96 of 98

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions			ı		,	
EMI Test Receiver	ESIB 40	100179	06/03/2016	1 Year	06/03/2017	~
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	08/15/2016	1 Year	08/15/2017	~
Horn Antenna (1-18GHz)	3115	10SL0059	08/25/2016	1 Year	08/25/2017	~
Horn Antenna (18-40 GHz)	AH-840	101013	08/28/2016	1 Year	08/28/2017	~
Pre-Amplifier	LPA-6-30	11140711	02/19/2016	1 Year	02/19/2017	~
Microwave Preamplifier (18-40 GHz)	PA-840	181251	03/10/2016	1 Year	03/10/2017	V
10 Meters SAC	10M	N/A	09/05/2016	1 Year	09/05/2017	~
RF Conducted Measurement						
Spectrum Analyzer	N9010A	MY51440112	08/20/2016	1 Year	08/20/2017	~
EMI Test Receiver	ESIB 40	100179	06/03/2016	1 Year	06/03/2017	~
Agilent Signal Generator	MXG N5182A	MY47071065	04/06/2016	1 Year	04/06/2017	~

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	97 of 98

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)	7	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	7	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	Z	FCC Declaration of Conformity Accreditation
FCC Site Registration	7	3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	7	3 meter site
IC Site Registration	7	10 meter site
EU NB	Ī.	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
	ħ	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	22	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
HongKong OFCA	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
	7	(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB	7	Radio: Scope A – All Radio Standard Specification in Category I
	7	Telecom: CS-03 Part I, II, V, VI, VII, VIII

Test report No.	FCC_RF_SL16103101-SPC-006-LTE
Page	98 of 98

Japan Recognized Certification Body Designation	包包	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMIEMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation	\bar{\bar{\bar{\bar{\bar{\bar{\bar{	Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition		LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	7	CNS 13438
Japan VCCI	ħ	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet
Australia CAB Regocnition	₹3	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
		Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	₽	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2