Colin Pham

Professor Brooks

Foundations of AI

13 November 2024

Assignment 5: Working with Uncertainty

Problem 1: Decision Trees in scikit-learn

Run RandomForestClassifer on your dataset with 10, 25, and 50 estimators using both gini and entropy as separators

Legend: N = n_estimators. S = Separators. Can be G for Gino or E for Entropy

N:10 S:G	N:10 S:E	N:25 S:G	N:25 S:E	N:50 S:G	N:50 S:E
0.908333333	0.888888888	0.93333333	0.9111111111	0.93055555	0.95
3333333	8888888	3333333	111111	5555556	
0.841666666	0.908333333	0.902777777	0.883333333	0.9111111111	0.908333333
6666667	3333333	7777778	3333333	111111	3333333
0.930362116	0.930362116	0.952646239	0.961002785	0.963788300	0.952646239
9916435	9916435	5543176	5153204	8356546	5543176
0.935933147	0.933147632	0.958217270	0.969359331	0.961002785	0.969359331
632312	3119777	194986	4763231	5153204	4763231
0.894150417	0.891364902	0.905292479	0.922005571	0.919220055	0.935933147
8272981	5069638	1086351	0306406	7103064	632312

Doing hyperparameter search by hand is annoying. Sklearn makes it easy for us with the GridSearchCV class. This lets us provide a list of models and hyperparameters, and it does cross-validation for each model and parameter combination and summarizes the result. Very handy!

Speed-score trade-off of tree-based ensembles Train time vs score Predict time vs score 0.99 0.98 Test R2 score - higher is better 0.97 0.96 0.95 0.94 0.93 Random Forest Hist Gradient Boosting 0.92 0 0.5 1 0.002 0.004 0.006 Train time (s) - lower is better Predict time (s) - lower is better

Woah! Look at that forest go (you can't because it's so fast)!

Problem 4: Utility

Rocky 2km/hr. Sandy 3km/hr. Smooth 5km/hr.	Min/km 20 min/km X · · · 20 min/km A · · · 12 min/km	
Routes 1: 5km 20% sandy 30% smooth 50% rocky		3:6km 50% Sandy 30% Smooth 10% Rocky
Which? Route 1: (0.2 × 160) (0.3 × 60) + (0.5 × 150) 20+18 + 75 = 113 min.	2: (0.4×140) (0.2×81) (0.4×210) 56 + 16.8 + 84 = 156.8 min.	3: (0.5×120) $(0.3 \times 72) +$ (0.1×180) 60 + 21.6 + 18 = 99.6 min.
	Choose w/2 99.6 min	-Colin Phan

Which route should we pick?

- Route 3's odds outputted a calculated time of 99.6 minutes, which is less than the other routes of time 113 minutes and 156.8 minutes. **Route 3 is the best**

Now which route seems best?

- With the crater and the bridge cases for routes 1 and 3 respectively, Route 1's time decreased by 9.5 minutes and route 3's time increased by 24 minutes. Route 1 became the more favorable route with a time of 103.5 minutes

First: If the satellite said that route 2 was not rocky, how long would we expect it to take?

- If route 2 is NOT rocky, it can either be smooth or sandy. A smooth path gives us an 84 minutes of travel while a sandy path gives us 140 minutes of travel

Second: What's the probability that the satellite will tell us this?

- A satellite telling us the path is NOT rocky would be the probability of smooth (20) plus the probability of sandy (40) equalling to 60%

Third: If the satellite tells us route 2 is in fact rocky, what do we do? How long will that take?

- If route 2 IS rocky, then the travel time will be **210 minutes**. How awful! Literally any other route would be a better choice at this point. **I would take route 1 at that point**

Last: given all of this, how long should we wait for the satellite?

- The satellite telling us it is NOT rocky and taking our chances to get a smooth path, our travel time would be 84 minutes. Taking that time and subtracting it from the next best path, route 1, of time 103.5, we would have to wait **no more than 19.5 minutes for a satellite response**. If the time exceeds, take route 1.
- However, there is STILL a possibility that the path can be sandy, making it still slower than route 1. Some more math has to be done here. After the 19.5 minute wait time: $(0.66666 \times 140) + (0.3333333 \times 84) = 121.332$ minutes. ($\frac{2}{3}$ chance for sandy and $\frac{1}{3}$ chance for smooth) Wow! **Route 1 is still technically better**. Man. I would take route 1.