रसायन विज्ञान (CHEMISTRY)

वैज्ञानिक परिवर्तन (Scientific Changes)

- भौतिक परिवर्तन (Physical Changes)—िकसी पदार्थ का वह अस्थायी परिवर्तन, जिसके परिणाम स्वरूप पदार्थ के सिर्फ भौतिक गुण में परिवर्तन होता है और कोई नया पदार्थ नहीं बनता है तथा पदार्थ पुन: अपनी पूर्वावस्था को प्राप्त कर सकता है, तो पदार्थ में इस प्रकार होनेवाली घटना को पदार्थ का भौतिक परिवर्तन कहा जाता है। उदाहरण—पानी से वर्फ बनना तथा बर्फ से पानी बनाना आदि।
- 2. रासायनिक परिवर्तन (Chemical Changes)—यह परिवर्तन भौतिक परिवर्तन से भिन्न होता है, क्योंकि इससे ऐसा परिवर्तन जिसके फलस्वरूप पदार्थ के भौतिक और रासायनिक गुणों में स्थायी परिवर्तन होता है और नये गुणवाले पदार्थ बनते हैं। लेकिन परिवर्तन के बाद वे पुन: पूर्वावस्था को प्राप्त नहीं कर सकते हैं। इसे ही रासायनिक परिवर्तन कहते हैं। जैसे-दूध से दही बनना, किरासन तेल का जलना आदि।

तत्व, यौगिक तथा मिश्रण (Element, Compounds & Mixture)

तत्व (Element)—

- तत्व एक शुद्ध पदार्थ है, जिसे किसी भी भौतिक या रासायनिक विधि द्वारा दो भिन्न गुण वाले पदार्थों में न तो विभाजित किया जा सकता है और नहीं उसे भिन्न गुण वाले पदार्थों से बनाया जा सकता है, जैसे —सोना, चाँदी, ऑक्सीजन आदि।
- आधुनिक सिद्धांत के अनुसार, तत्व वे शुद्ध पदार्थ हैं, जिसके प्रत्येक परमाणु का परमाणु-क्रमांक समान होता है। अतः इसके प्रत्येक परमाणु में प्रोटॉनों की संख्या समान होती है।

Note : तत्व ही वह मूल पदार्थ है, जिसके अन्य सभी वस्तुएँ बनी हैं।

- अब तक कुल 119 तत्व ज्ञात हो चुके हैं, जिसमें 92 प्रकृति में पाये जाते हैं, शेष को संश्लेषित किया गया है।
- लेबोजीयर के अनुसार तत्व को दो भागों में विभाजित किया गया है— घातु (Metal) तथा अधातु (Non-metal) ।

घातु तथा अघातु में अंतर

अधातु (Non-Metal)

- (i) अधातु के परमाणु की ऑतिम कक्षा में प्राय: 4, 5, 6 या 7 इलेक्ट्रॉन होते हैं।
- (ii) ये प्राय: कठोर तथा भंगर होते हैं।
- (iii) ये विद्युत के कुचालक होते हैं, (अपवाद-ग्रेफाइट)।
- (iv) इसमें घातुई चमक (Metallic lusture) नहीं होती है।
- (v) ये ठोस या गैसीय अवस्था में पाये जाते हैं (अपवाद-ब्रोमीन; यह द्रव अवस्था में पाया जाता है)।
- (vi) ये प्राय: ऑक्सीकारक पदार्थ होते हैं।
- (vii) ये प्राय: इलेक्ट्रॉन ग्रहण कर ऋणायन बनाते हैं।
- (viii) इनके ऑक्साइड प्राय: अम्लीय होते हैं।
- (ix) यह अम्ल से अभिक्रिया कर लवण एवं हाइड्रोजन नहीं बनाता है।

घातु (Metal)

- (i) धातु के परमाणु की ऑतिम कक्षा में प्राय: 1, 2 या 3 इलेक्ट्रॉन होते हैं।
- (ii) ये प्रात: प्रत्यास्थ, तन्य (Ductile) तथा आघातवर्धनीय (malleable) होते हैं।
- (iii) ये विद्युत के सुचालक होते हैं, (अपवाद-शीशा Pb)।
- (iv) इसमें घातुई चमक (Metallic lusture) होती है।

- (v) ये ठोस अयस्था में पाये जाते हैं। अपवाद-पात (Hg) यह द्रव अयस्था में पाया जाता है।
- (vi) ये प्राय: अवकारक पदार्थ होते हैं।
- (vii) ये इलेक्ट्रॉन त्याग कर धनायन बनाते हैं।
- (viii) इनके ऑक्साइड ग्राय: क्षारीय होते हैं।
- (ix) यह अम्ल से अभिक्रिया कर लवण हाइड्रोजन बनाता है।

यौगिक (Compound)—

- वे शुद्ध पदार्थ जो दो से अधिक मिन्न प्रकार के तत्वों के एक निश्चित भार अनुपात में रासायनिक संयोग से बनते हैं तथा जिन्हें दो या दो से अधिक भिन्न प्रकार के तत्वों में अपयटित किया जा सकता है, यौगिक कहलाता है।
- इसके गुण अवयवी तत्वों के गुण से भिन्न होते हैं।
- यौगिक को उपयुक्त रासायनिक विधियों से सरल पदार्थों में अपघटित भी किया जा सकता हैं जैसे—जल तथा कार्बन-डाई-ऑक्साइड यौगिक हैं।
- जल में विद्युत प्रवाहित करने से उसका अपघटन हो जाता है तथा हाइड्रोजन और ऑक्सीजन गैस की प्राप्ति होती हैं क्योंकि जल हाइड्रोजन तथा ऑक्सीजन के संयोग से बने होते हैं।
- यहाँ पर हाइड्रोजन स्वत: जलता है तथा ऑक्सीजन उसे जलने में मदद करती है लेकिन जल अग्निशमन का कार्य करता है। जिसका गुण बिल्कुल दोनों तत्वों के गुण से भिन्न होते हैं। अत: जल एक यौगिक है।

कुछ प्रमुख यौगिक के उदाहरण तथा उनके सुत्र

	साधारण नमक (टेबुल सॉल	P) NaCl
	धोनेवाला सोडा	Na ₂ CO ₃ .10H ₂ O
	ग्लोबर सॉल्ट	Na ₂ SO ₄ .10H ₂ O
	बेकिंग सोडा (खाने वाला)	NaHCO ₃
	चीली सॉल्टपीटर	NaNO ₃
	हाइ पो	Na ₂ S ₂ O ₃ . 5H ₂ O
	कॉस्टिक सोडा	NaoH
	कॉस्टिक पोटारा	KOH
	कली चूना	CaO
	्र बुझा हुआ चुना	Ca(OH) ₂
	जिप्स म	CaSO ₄ .2H ₂ O
	हाइड्रोलिथ	CaH ₂
	ब्लीचिंग पाठडर	Ca(OCI)CI
	सुपर फॉस्फेट	Ca (H ₂ PO ₄) ₂
	इप्सम लवणMgSO ₄ .7H	0
8000	फिटकिरी	
	हेयर सॉल्ट	K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O
•	बाध सॉल्ट	Al ₂ (SO ₄) ₃ .18H ₂ O) Na ₂ CO ₃
	114 (1166)	Nauco du o
	साल सोडा या सोडा ऐश	NaHCO ₃ .2H ₂ O
•	जल काँच	Na ₂ CO ₃ Na ₂ SiO ₃
	मस्टर्ड गैस	CLCA CA CA CA CA
•	गेमैक्सिन	CI-CH ₂ CH ₂ -S-CH ₂ -CH ₂ -CI
	गमाक्सन पायरीन	C ₆ H ₆ Cl ₆ CCl ₄
		CC/4
	माइक्रोकॉस्मिक सॉल्ट	NaNH ₄ .HPO ₄ .4H ₂ O
•	सिन्द्र (vermillion)	HgS
	कैलोमेल	Hq.Cla

THE PLATFORM

Join online test series : www.platformonlinetest.com

कोरोसिव सब्लिमेंट

नीला थोथा

GENERAL SCIENCE ■ 108

CuSO₄.5H

हरा थोथा		
सफंद थोथा		FeSO ₄ .7H ₂ O
नाइटर (शोरा) सोडामाइड प्रोक चॉक СаСО- नौसादर हास्य गैस गंधक अम्ल (सल्फ्यूरिक अम्ल) सुष्क वर्ष लाल दवा नाइट्रिक अम्ल या हाइड्रो क्लोरिक अम्ल फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिथेन लुनर कॉस्टिक मोहर सॉल्ट क्लोरोफार्म कार्नालाइट मारोलस् अम्ल नेसलरस अभिकारक फिट्रीयू- किलॉस्फर का ऊन सहागा (बोरेक्स) NayB4O7.10H2O	🗽 सफेद थोथा	ZnSO ₄ .7H ₂ O
सोडामाइड		10003
चौंक		NaNHa
नौसादर NH4C हास्य गैस N2C गंधक अम्ल (सल्पयूरिक अम्ल) H2SO4 गंधक अम्ल (सल्पयूरिक अम्ल) H2SO4 गंधक अम्ल (सल्पयूरिक अम्ल) HNC2 नाइट्रिक अम्ल माइड्डो क्लोरिक अम्ल HCC फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिधेन CF2Cl2 लुनर कॉस्टिक महर महर्थे स्लोरिक अम्ल HCC क्तारोप्तम पडाइक्लोरो डाइफ्लोरो मिधेन CF2Cl2 लुनर कॉस्टिक महर महर्थे स्लोरिक अम्ल HCC लुनर कॉस्टिक महर्थे स्लोरिक अम्ल HCC एनर कॉस्टिक महर्थे स्लोरिक अम्ल HCC क्तारोप्तम पटित्व क्तारोप्तम सिल्ट FeSO4.(NH4)2SO4.6H2CC क्तारोप्तम सिल्ट KCI.MgCl2.6H2CC मारोलस् अम्ल H2S2C6 नेसलरस अभिकारक K2Hgl4 फिलॉस्फर का ऊन ZnCC सहागा (बोरेक्स) Na2B4O7.10H2CC		CaCO
हास्य गैस गंधक अम्ल (सल्पयूरिक अम्ल) शुष्क बर्फ लाल दवा नाइट्रिक अम्ल मुरेटिक अम्ल या हाइड्रो क्लोरिक अम्ल फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिथेन लुनर कॉस्टिक मोहर सॉल्ट क्लोरोफार्म कार्नालाइट मारोलस् अम्ल नेसलरस अभिकारक फिलॉस्फर का ऊन सहागा (बोरेक्स) Na2B4O7.10H2O		NHAC
सुष्क बर्फ लाल दवा नाइट्रिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल पा हाइड्रो क्लोरिक अम्ल फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिधेन लुनर कॉस्टिक मोहर सॉल्ट क्लोरोफार्म कार्नालाइट मारोलस् अम्ल नेसलरस अभिकारक फिलॉस्फर का ऊन सुहागा (बोरेक्स)		N _o O
सुष्क बर्फ लाल दवा नाइट्रिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल पा हाइड्रो क्लोरिक अम्ल फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिधेन लुनर कॉस्टिक मोहर सॉल्ट क्लोरोफार्म कार्नालाइट मारोलस् अम्ल नेसलरस अभिकारक फिलॉस्फर का ऊन सुहागा (बोरेक्स)		H-SO.
लाल दवा नाइट्रिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल मुरेटिक अम्ल मां डाइक्लोरो डाइफ्लोरो मिथेन स्तुNO- मांहर सॉल्ट मांहर सॉल्ट न्स्तोरोफार्म स्तारीफार्म स्तारीलाइट मारोलस् अम्ल नेसलरस अभिकारक फ्लॉस्फर का ऊन स्हागा (बोरेक्स) NapB4O7.10H2O	ज्ञान वर्ष	CO
नाइट्रिक अम्ल HNO- मुरेटिक अम्ल या हाइड्रो क्लोरिक अम्ल HC फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिथेन CF ₂ Cl ₂ लुनर कॉस्टिक AgNO- मोहर सॉल्ट FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O क्लोरोफार्म CHCl ₂ कार्नालाइट KCI.MgCl ₂ .6H ₂ O मारोलस् अम्ल H ₂ S ₂ O ₆ नेसलरस अभिकारक K ₂ Hgl ₄ फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O		KMnO.
मुरेटिक अम्ल या हाइड्रो क्लोरिक अम्ल HCC [फ्रंडॉन या डाइक्लोरो डाइफ्लोरो मिथेन CF ₂ Cl ₂ लुनर कॉस्टिक AgNO ₃ मोहर सॉल्ट FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ CO क्लोरोफार्म CHCl ₂ कार्नालाइट KCI.MgCl ₂ .6H ₂ CO मारोलस् अम्ल H ₂ S ₂ O ₈ नेसलरस अभिकारक K ₂ Hgl ₄ फिलॉस्फर का ऊन सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ CO		
फ्रिऑन या डाइक्लोरो डाइफ्लोरो मिथेन CF ₂ Cl ₂ लुनर कॉस्टिक AgNO ₃ मोहर सॉल्ट FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O क्लोरोफार्म CHCl ₃ कार्नालाइट KCI.MgCl ₂ .6H ₂ O मारोलस् अम्ल H ₂ S ₂ O ₈ नेसलरस अभिकारक K ₂ Hgl ₄ फिलॉस्फर का ऊन सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O		
लुगर कॉस्टिक AgÑO- मोहर सॉल्ट FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O क्लोरोफार्म CHCl ₂ कार्नालाइट KCI.MgCl ₂ .6H ₂ O मारोलस् अम्ल H ₂ S ₂ O ₈ नेसलरस अभिकारक K ₂ Hgl ₄ फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O	• मुराटक अम्ल या हाइड्रा क्लार्क	
मोहर सॉल्ट FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O क्लोरोफार्म CHCl ₂ कार्नालाइट KCl.MgCl ₂ .6H ₂ O मारोलस् अम्ल H ₂ S ₂ O ₆ नेसलरस अभिकारक K ₂ Hgl ₄ फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O	• फ्रिओन या डाइक्लारा डाइफ्लारा	मधन CF ₂ CI ₂
क्लोरोफार्म CHCl ₂ कार्नालाइट KCl.MgCl ₂ .6H ₂ O मारोलस् अम्ल H ₂ S ₂ O ₈ नेसलरस अभिकारक K ₂ Hgl ₄ फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O	• लुनर कॉस्टिक	AgNO ₃
स्तारोफाम CHC/3 कार्नालाइट KCI.MgCl/2.6H ₂ O मारोलस् अम्ल H ₂ S ₂ O ₈ नेसलरस अभिकारक K ₂ Hg/ ₄ फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O	• मोहर सॉल्ट	FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O
नेसलरस अभिकारक K2Hg/4 फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O	• क्लोरोफार्म	CHCI
नेसलरस अभिकारक K2Hg/4 फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O	• कार्नालाइट	KCI.MgCl ₂ .6H ₂ O
नेसलरस अभिकारक K2Hg/4 फिलॉस्फर का ऊन ZnO सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O		H ₂ S ₂ O ₈
 फिलॉस्फर का ऊन सहागा (बोरेक्स) Na₂B₄O₇.10H₂O 	• नेसलरस अभिकारक	K.Hg/
• सहागा (बोरेक्स) Na ₂ B ₄ O ₇ .10H ₂ O		ZnÖ
• अश्रु गैस या ट्राईक्लोरो नाइट्रो मिथेन CCl ₃ NO ₂		
• जितु गत्त या प्रश्नताच गर्द्र । नया	अस रीम या टाईक्लोगे चाहरो पिर	CCI-NO
	• अञ्च गत्ता पा ट्राइनसाय नाइट्रा । नन	31.02

यौगिक के प्रकार

(i) कार्बनिक यौगिक (Organic Compound)—

के से यौगिक जिसमें वनस्पति एवं जंतुओं से प्राप्त होता है। उसे कार्बनिक यौगिक कहते हैं। जैसे—एसीटिक एसिड, प्रोटीन तथा चीनी आदि।

आधुनिक विचारघारा के अनुसार, वैसे यौगिक जिनमें कार्बन, उपस्थित

रहता हो कार्बनिक यौगिक कहलाता है।

 इसमें कार्बन डाइऑक्साइड, कार्बन मोनोऑक्साइड कार्बोनेट और बाइकार्बोनेट को छोड़कर।

(ii) अकार्वनिक यौगिक (Inorganic Compound)—

के वैसे यौगिक जो भू-पर्पटी तथा भूमि से प्राप्त होते हैं, उन्हें अकार्वनिक यौगिक कहते हैं। जैसे— सोडियम सल्फेट, कैल्सियम सल्फेट

रसायन विज्ञान के अध्ययन को आसान बनाने के लिए यौगिकों को

दो भागों में वर्गीकृत किया जाता है—

(i) कार्बनिक योगिक (Organic Compound)

(ii) अकार्बनिक यौगिक (Inorganic Compound)

कार्वनिक यौगिक तथा अकार्वनिक यौगिक में अंतर

कार्बनिक यौगिक-

- (i) कार्वनिक यौगिक कुछ ही तत्व जैसे—C, H, O, N, S, P और हैलोजन से बनते हैं।
- (ii) ये सहसंयोजनक यौगिक है।

(iii) ये प्राय: दहनशील होते हैं।

- (iv) ये प्राय: जल में अपुलनशील होते हैं। कार्बनिक अम्ल अल्कोहल जल में पुलनशील होता है।
- (v) ये कार्बनिक घोल में घुलनशील होते हैं।
- (vi) इनके घोल विद्युत् के कुचालक होते हैं।(vii) इनके द्रवणांक एवं क्वथनांक कम होते हैं।
- (viii) ये घीरे-घीरे अभिक्रिया करते हैं।

अकार्यनिक यौगिक-

- सभी तत्व इस प्रकार के यौगिकों का निर्माण करते हैं।
- (ii) ये प्राय: आयनिक यौगिक है।

- (iii) ये प्राय: अदहनशील होते हैं।
- (iv) ये प्राय: जल में मुलनशील होते हैं।
- (v) ये प्राय: कार्वनिक घोल में अघुलनशील होते हैं।
- (vi) इनके घोल द्रयित या जलीय अवस्था में विद्युत् के स्चालक होत हैं।
- (vii) इनके द्रवणांक एवं क्वथनांक अधिक होते हैं।
- (viii) ये तेजी से अभिक्रिया करते हैं।

मिश्रण (Mixture)—

 वह पदार्थ जो दो या दो से अधिक तत्वों या यौगिकों के किसी भी अनुपात में मिलाने से प्राप्त होता है, मिश्रण कहलाता है।

इसे साधारण विधि द्वारा पुन: प्रारोभिक अवयवों से प्राप्त किया जा सकता है। जैसे— हवा के मिश्रण के गुण अपने प्राथमिक अवयवों के सदश होते हैं।

क्छ महत्वपूर्ण मिश्रण के उदाहरण-

- 1. वारूद (Gun powder)— यह सल्फर, चारकोल तथा पोटैशियम नाइटेट का मिश्रण है।
- पावर अल्कोहल (Power Alcohol)— यह चार माग पेट्रोल तथा एक माग अल्कोहल C₂H₅OH का मिश्रण है, जिसे ईंथन के रूप में उपयोग किया जाता है।
- 3. बोर्डियक्स मिश्रण (Bordeaux Mixture)— यह कॉपर सल्फेट का घोल तथा चूना का मिश्रण है, जिसे कवकनाशी के रूप में प्रयोग किया जाता है।
- 4. तिथोपोन (Lithopone)— यह ZnS तथा BaSO4 का मिश्रण यह Zns तथा BaSO4 का मिश्रण है जिसका उपयोग सफेद पेन्ट (white paint) के रूप में किया जाता है।
- 5. नाइट्रोलिम (Nitrolim)—यह कैल्सियम साइनामाइड तथा ग्रेफाइट का मिश्रण है। इसका उपयोग खाद (Fertilizer) के रूप में किया जाता है।
- 6. कार्बोजेन (Carbogen)— यह O2 तथा CO2 का मिश्रण है तथा इसका उपयोग कृत्रिम श्वसन में किया जाता है।
- सोडा लाइम (Soda Lime)— यह NaOH तथा CaO का मिश्रण है तथा इसका उपयोग विभिन्न गैसों को अवशोषण करने के लिए किया जाता है।
- 8. लुकास अभिकारक (Lucas reagent)— सान्द्र HCl तथा शुष्क ZnCl₂ के मिश्रण को लुकास अभिकारक कहते हैं, इसका उपयोग 1° ऐल्कोहॉल, 2° ऐल्कोहॉल तथा 3° अल्कोहॉल को पहचानने के लिए किया जाता है।

मिश्रण दो प्रकार के होते हैं—

- (i) समांग मिश्रण (Homogeneous Mixture)— वैसे मिश्रण जिसके सभी भागों में उसके अवयवों का अनुपात एक सा रहता है समांग मिश्रण कहलाता है। जैसे— सीमेंट, दूध आदि।
- (ii) विषमांग मिश्रण (Hetrogeneous Mixture)— वैसे मिश्रण जिसके प्रत्येक भाग के गुण और उसके संघटन में भिन्तता होती है। विषमांग मिश्रण कहलाता है।
- सामान्य पदार्थ का द्रवणांक एवं हिमांक का मान बराबर होता है,
 जैसे—बर्फ का द्रवणांक एवं हिमांक 0°C होता है।
- किसी विशेष दाब पर वह नियत ताप जिस पर कोई द्रव जमता है हिमांक कहलाता है।
- पदार्थ में अशुद्धियाँ मिलाने से पदार्थ का हिमांक एवं द्रवणांक दोनों कम हो जाता है।
- जिस न्यूनतम ताप पर कोई पदार्थ ठोस अवस्था से द्रव अवस्था में बदलता है, तो उसे ताप को उस ठोस का गलनांक या द्रवणांक कहलाता है, यदि विशेष दाब नियत रहे।

मिश्रण का पृथक्करण (Separation of Mixture)

1. आसवन (Distillation)—

 किसी वाष्पशील द्रव को उसमें घुलित अवाष्पशील अशुद्धियों से जिस विधि द्वारा पृथक् किया जाता है, आसवन कहलाता है।

GENERAL SCIENCE ■ 109

 इस प्रक्रिया के तहत वाष्पशील द्रव को गर्म कर वाष्प में बदला जाता है तथा पुन: ठंडा कर इसे द्रव अवस्था में पुरिणत कर दिया जाता है।

इससे अवाष्पशील अशुद्धियाँ दूर हो जाती हैं।

अशुद्ध जल से आसुत जल का निर्माण इसी विधि से किया जाता है।

2. रवाकरण (Crystallization)—

 इस विधि का प्रयोग किसी खेदार (Crystal) ठोस पदार्थ को उसके घोल से अलग करने के लिए किया जाता है।

इस विधि में रवेदार ठोस पदार्थ के घोल को उसके क्वथनांक तक

गर्म किया जाता है।

 इसके बाद गर्म घोल को छानकर घीरे-घीरे कमरे के ताप तक ठंडा होने के लिए छोड़ दिया जाता है।

इससे शुद्ध ठोस रवाकृत होकर अलग हो जाता है।

 कॉपर सल्फेट के विलयन से कॉपर सल्फेट को या जिंक सल्फेट के विलयन से जिंक सल्फेट को इसी विधि द्वारा अलग किया जाता है।

3. आंशिक आसवन (Fractional Distillation)—

 दो या दो से अधिक द्रवों का मिश्रण जिनके क्वथनांक अलग-अलग होते हैं, उन्हें पृथक् करने के लिए इस विधि का उपयोग किया जाता है।

 इस विधि में मिश्रण को एक ऊँचा प्रभाजी स्तंभ (Fractionating Column) में लेकर उच्च ताप पर गर्म किया जाता है।

इससे यह वाष्पित होकर ऊपर की ओर जाता है।

• उच्च क्वथनांक वाले पदार्थ निचले भाग में तथा निम्न क्वथनांक वाले पंदार्थ कपरी भाग में संघनित होकर अलग हो जाते हैं।

4. ऑशिक खाकरण (Fractional Crystallisation)—

 जब किन्हीं दो ठोस पदार्थों की किसी विलायक में घुलनशीलता अलग-अलग हों, तब उन्हें उसके घोल से अलग करने के लिए इस विधि का प्रयोग किया जाता है।

इस विधि में पदार्थों को मिश्रण से अलग करने के लिए इनके घोल

को गर्म करने के बाद धीरे-धीरे ठंडा किया जाता है।

इससे कम घुलनशील पदार्थ पहले खाकृत होकर अलग हो जाता है
तथा अधिक घुनलशील पदार्थ बाद में खाकृत होता है। जैसे KCl
तथा KCIO3 के मिश्रण को पृथक् किया जाता है।

इसमें KClO3 KCl की अपेक्षा तथा Na2SO4Na2Cr2O7 की

अपेक्षा जल में कम घुनलशील होता है।

5. उर्ध्वपातन (Sublimation)—

 जब दो टोस पदार्थों के मिश्रण में एक पदार्थ उर्ध्वपाती (Sublimable) तथा दूसरा अनुर्ध्वपाती (Non-Sublimable) हो, तो इस विधि द्वारा अलग किया जा सकता है।

ऐसे पदार्थ, जिन्हें ठोस अवस्था से सीधे गैसीय अवस्था में परिवर्तित किया जा सके, उन्हें उर्ध्वपाती पदार्थ कहते हैं, जैसे — कपूर (Camphor), नेपथलीन (Naphthalene), अमोनियम क्लोसइड, ऐंश्रासीन, आयोडीन इत्यादि।

6. अवसादन और निस्तारण (Sedimentation and

Decentation)—

• यह विधि द्रव में निलंबित कर्णों को अलग करने के लिए उपयोग की जाती है।

 इस विधि में निलंबन को बिना हिलाए कुछ देर के लिए छोड़ देने पर निलंबित कण नीचे बैठ जाता है और ऊपर का द्रव साफ हो जाता है।

 इसी प्रक्रिया को अवसादन कहते हैं। साफ द्रव को सावधानीपूर्वक दूसरे बीकर में स्थानांतरित कर शुद्ध द्रव प्राप्त कर लिया जाता है।
 इसे निस्तारण कहते हैं।

7. वर्णलेखन (Chromatography)—

चूँिक किसी मिश्रण के विभिन्न अवयवों की किसी अधिशोषक
पदार्थ (Adsorbient) में अवशोषण क्षमता अलग-अलग होती है।

 इसलिए जब किसी द्रव या गैसीय मिश्रण को किसी अवशोपक वस्तु से गुजारा जाता है तब विभिन्न अवयव विभिन्न दूरी तक चलकर पृथक् हो जाते हैं। 8. एटमोलाइसिस (Atmolysis)—

 दो या दो से अधिक गैसों के मिश्रण को इस विधि द्वारा अलग किया जाता है।

 यह विधि इस बात पर आधारित है कि मिन-भिन अणुमार वाले गैसों का विसरण दर (Rate of diffusion) अलग-अलग होते हैं।

9. चुम्बकीय विधि (Magnetic Method)—

 जब दो या दो से अधिक ठोस पदार्थों के मिश्रण में एक पदार्थ चुम्बकीय हो, तब चुम्बकीय पदार्थ को इस विधि द्वारा अलग कर लिया जाता है।

लौह चूर्ण तथा बालू के मिश्रण को इसी विधि द्वारा अलग किया जाता है।

10. निस्पंदन (Filteration)—

 जब किसी द्रव में कोई अधुलनशील पदार्थ हो, तब इसे निस्पंदन विधि के द्वारा पृथक किया जाता है।

 इस विधि में मिश्रण को एक निस्पंदक (छना) से गुजरने दिया जाता है, जिससे अमुलनशील पदार्थ छानकर अलग हो जाता है।

 BaSO₄ के जलीय घोल से BaSO₄ को या AgCl के जलीय घोल से AgCl को इसी विधि द्वारा अलग किया जाता है।

परमाणु संरचना (Atomic Structure)

परमाणु (Atom)—

 परमाणु पदार्थ का वह सूक्ष्मतम कण है, जिसमें पदार्थ के सभी गुण विद्यमान रहता है तथा जो रासायनिक अभिक्रिया में भाग लेता है।

परमाणु, स्वतंत्र अवस्था में भी रह सकता है और नहीं भी रह सकता है।

परमाणुओं का आकार अतिसूक्ष्म और द्रव्यमान बहुत कम होता है।
 परमाणुओं में हाइड्रोजन-परमाणु सबसे छोटा एवं हल्का होता है।

परमाणुओं में हाइड्रोजन-परमाणु सबसे छोटा एवं हल्का हाता है इसकी त्रिज्या लगभग 0.3×10⁻¹⁰ सेमी के बराबर होता है।

परमाणु की त्रिज्या को नैनोमीटर (nm) में मापा जाता है।

10⁻⁹m=1nm या 1m=10⁹nm

प्रोटॉन एवं इलेक्ट्रॉन की संख्या बराबर होती है लेकिन इनके आवेश
 विपरीत होने के कारण परमाणु उदासीन होता है।

 परमाणु संरचना के सिद्धांत का प्रतिपादन 1803 ई. में जॉन डाल्टन ने किया था।

डाल्टन के अनुसार परमाणु अविभाज्य है।

 परमाणु मुख्यतः तीन प्रकार के कणों से मिलकर बना है; इलेक्ट्रॉन, प्रोटॉन तथा न्यूट्रॉन

(i) इलेक्ट्रॉन (Electron)—

यह परमाणु में विभिन्न कर्जा स्तरों वाली कक्षा में चक्कर काटते रहता है।

 इसकी खोज जे.जे. थामसन ने 1897 ई. में किया था। इसका आवेश एक इकाई ऋणावेशित होता है। इसका द्रव्यमान 9.10×10⁻³¹ kg होता है। या 9.1 × 10⁻²⁸ g

(ii) प्रोटॉन (Proton)—

यह परमाणु के नाभिक में उपस्थित एक सूक्ष्मतम कण है।

इसकी खोज गोल्डस्टीन ने 1911 ई. में किया था।

 प्रोटॉन का द्रव्यमान 1.67×10⁻²⁷kg होता है। जो लगभग हाइड्रोजन के द्रव्यमान के बराबर होता है, प्रोटॉन पर एक इकाई धनावेशित होता है।

(iii) न्यूद्रॉन (Neutron)—
यह परमाणु के नाभिक के अंदर उपस्थित एक सूक्ष्मतम कण है।
इसकी खोज जैम्स चैडविक ने 1932 ई. में की थी।

इसका द्रव्यमान 1.67×10-27 kg होता है। यह उदासीन होता है,
 इस पर कोई आवेश नहीं होता है।

डॉल्टन का परमाणु सिद्धांत (Dalton's Atomic Theory)—

 डॉल्टन के अनुसार परमाणु का न तो निर्माण किया जा सकता है और न विनाश। परमाणु का विभाजन भी नहीं किया जा सकता है, लेकिन आज ये सब संभव है।

द्याँमसन की परमाणु संरचना (Thomsan's Atomic model)—

 जे० जे० धॉमसन के अनुसार परमाणु एक धनावेशित गोला है।
 ऋणावेशित कण इस प्रकार से व्यवस्थित रहते हैं कि पूरा परमाणु उदासीन हो जाता है।

रदरफोर्ड का नाभिकीय सिद्धांत (Rutherford's Nuclear Theory)—

- 1911 ई० में रदरफोर्ड ने एक अति महत्वपूर्ण तथ्य प्रयोग करके परमाणु की आंतरिक व्यवस्था से संबंधित एक आश्चर्यजनक तथ्य पता लगाया।
- रदरफोर्ड द्वारा किए गए इस प्रयोग को रदरफोर्ड का प्रकीर्णन प्रयोग कहा जाता है।
- थॉमसन द्वारा प्रस्तुत परमाणु के स्वरूप को 'रदरफोर्ड' द्वारा अस्वीकृत होकर हुए निम्न सिद्धांत प्रतिपादित किया गया और वह रदरफोर्ड का नाभिकीय सिद्धांत कहलाता है-
 - परमाणु में इलेक्ट्रॉनों से घिरे केन्द्र में प्रोटॉन (Proton) का एक छोटा-सा किन्तु भारी नाभिक होता है।
 - (ii) परमाणु के अंदर का अधिकांश भाग खाली होता है।

(iii) परमाणु गोलीय (spherical) होता है।

- (iv) परमाणु के नाभिक का आकार परमाणु की तुलना में अत्यन्त छोटा होता है।
- (v) परमाणु के स्थायित्व की व्याख्या के लिए रदरफोर्ड ने अनुमान लगाया कि परमाणु, सौर-मंडल के समान होता है।
- परमाणु के नामिक के चारों ओर वृत्ताकार पथों में इलेक्ट्रॉन (Electron) ठीक उसी तरह घूमते हैं, जिस तरह सूर्य के चारों ओर विभिन्न ग्रह घूमते हैं।
- परमाणु के जिन वृताकार पर्थों में इलेक्ट्रॉन परिक्रमा करता है उसे कक्षाएँ (orbits) कहते हैं।
- ऐसा होने से नाभिक तथा इलेक्ट्रॉन के बीच कार्यरत स्थिर विद्युत आकर्षण बल इलेक्ट्रॉन के वेग से उत्पन्न केन्द्राभिसारी बल (Centrifugal force) के बराबर होता है।
- परमाणु में उपस्थित इलेक्ट्रॉन अपनी कक्षाओं में अनवरत् गतिशील रहते हुए परमाणु को स्थायित्व प्रदान करते हैं।
- रदरफोर्ड के उपर्युक्त मॉडल को रदरफोर्ड का परमाणु मॉडल (Rutherford's Model of Atom) कहते हैं।
- रदरफोर्ड के परमाणु मॉडल के निम्न दोष (defects) हैं-
 - (i) रदरफोर्ड का मॉडल यह स्पष्ट नहीं करता कि इलेक्ट्रॉन नाभिक के चारों ओर एक निश्चित कक्षा में चक्कर लगाता है या यत्र-तत्र।
 - (ii) रदरफोर्ड के परमाणु मॉडल से 'परमाणु स्पेक्ट्रम' की स्पष्ट रेखाओं के निर्माण की व्याख्या संभव नहीं है।

प्लेंक का क्वांटम सिद्धांत (Planck's Quantum Theory)—

- 1901 ई॰ में प्लैंक ने तप्त काली वस्तुओं से उत्सर्जित होने वाली वस्तुओं से उत्सर्जित विभिन्न कंपन-आवृत्तियों वाली प्रकाश कर्जा के अध्ययन से एक सिद्धांत का प्रतिपादन किया।
- इसके अनुसार किसी वस्तु से प्रकाश और कष्मा जैसी विकिरण कर्जा का उत्सर्जन या अवशोषण सतत् नहीं होता।
- उपयुक्त उत्सर्जन या अवशोषण असतत रूप से छोटे-छोटे पैकेट (Packets) के रूप में होता है।
- उपयुर्वत छोटे पैकेट क्वांटम (Quantum) या फोटोन (Photon) कहलाते हैं।
- एक क्वांटम की कर्जा को निम्न समीकरण के द्वारा व्यक्ति किया जाता है—

E = hv जहाँ h→प्लैंक स्थिरांक, u→ विकिरण की कम्पनावृत्ति, E = क्वांटम की कर्जा।

बोर का परमाणु माँडल (Bohr's Atomic Model)—

- रदरफोर्ड मॉडल की कमियों का दूर करने तथा हाइड्रोजन-परमाणु की स्पेक्ट्रम को समझने के लिए नील खोर ने 1913 में मैक्स प्लैंक के क्यांटम सिद्धांत को आधार मानकर एक सिद्धांत प्रतिपादित किया, जिनके अनुसार-
- इलेक्ट्रॉन मुख चुनी हुई सुनिश्चित कक्षाओं में नामिक के चारों ओर चक्कर काटते रहते हैं।
- इन इलेक्ट्रानों कं साथ कर्जा की एक निश्चित मात्रा होती है।
- इसलिए, इलेक्ट्रॉन की इन कक्षाओं को कर्जा-स्तर (Energy level)
 या कर्जा-शेल (Energy shell) भी कहा जाता है।
- इन कर्जा स्तरों को K, L, M, N, O, P आदि अक्षरों से निरूपित किये जाते हैं।
- जब तक कोई इलेक्ट्रॉन किसी निश्चित कक्षा में रहता है, तब तक उसकी कर्जा स्थिर रहती है।
- जब इलेक्ट्रॉन किसी दूर वाली कक्षा से निकट वाली कक्षा में आता
 है, तो ऊर्जा का उत्सर्जन होता है।
- जब इलेक्ट्रॉन नाभिक के निकट वाली कक्षा से दूर वाली कथा में जाता है, तो वह ऊर्जा का अवशोषण करता है।
- बोर सिद्धांत की सहायता से हाइड्रोजन-परमाणु तथा इसी की तरह एक इलेक्ट्रॉन वाले परमाणुओं (He+, Li++) आदि की स्पेक्ट्रमी रेखाओं की व्याख्या अच्छी तरह से हो सकती है।
- बोर सिद्धांत के आधार पर ही क्वांटम संख्याओं के सिद्धांत
 की नींव पड़ी।
- इस सिद्धांत ने प्रमाणित कर दिया कि परमाणु स्थायी होते हैं।

परमाणु क्रमांक (Atomic number)—

किसी तत्व के परमाणु के नाभिक में उपस्थित प्रोटॉनों की संख्या को उस तत्व का परमाणु क्रमांक कहते हैं, इसे z से सूचित किया जाता है। जब परमाणु आवेशित अवस्था में रहता है—

जब परमाणु उदासीन अवस्था में रहता है।

परमाणु क्रमांक = प्रोटॉनों की संख्या = इलेक्ट्रॉन की संख्या

द्रव्यमान संख्या (Mass number)—

- िकसी तत्व के परमाणु के नाभिक में उपस्थित प्रोटॉन एवं न्यूट्रॉन की संख्या का योग उसे परमाणु की द्रव्यमान संख्या कहते हैं।
- नाभिक में उपस्थित प्रोटॉन तथा न्यूट्रॉन को न्यूक्लिऑन के नाम से भी जाना जाता है।
- इसे A से सूचित किया जाता है।
- दूसरी भाषा में द्रव्यमान संख्या = प्रोटॉन की संख्या + न्यूटॉन की संख्या

अत:
$$A = P + n$$
 या $A = Z + n$

परमाणु द्रव्यमान (Atomic Mass)—

- सभी तत्वों का परमाणु द्रव्यमान एक संख्या है।
- इससे ज्ञात होता है कि वहीं तत्व के एक परमाणु का द्रव्यमान कार्बन-12 परमाणु के द्रव्यमान के 12 वें भाग से कितना गुणा भारी है।

अतः परमाणु द्रव्यमान =
$$\frac{\pi ca}{1} + \frac{\pi}{12} \times C^{12}$$
परमाणु का द्रव्यमान

- अणु भार (Molecular weight) किसी पदार्थ का अणुभार वह संख्या है जिससे ज्ञात होता है कि उस पदार्थ का एक अणु कार्बन-12 के एक परमाणु के 12वें भाग से कितना गुणा भारी है।
- ग्राम परमाणु-द्रव्यमान (Gram-atomic mass) जब तत्वों के परमाणु द्रव्यमान को ग्राम में व्यक्ति किया जाता है। तो. उसे ग्राम-परमाणु द्रव्यमान कहते हैं।

- परमाणु-द्रव्यमान इकाई (Atomic mass unit)—जब परमाणु
 द्रव्यमान 12 होता है तो कार्बन के एक परमाणु के द्रव्यमान के
 - 1 12 भाग को परमाणु-द्रव्यमान इकाई कहते हैं।
- परमाणु द्रव्यमान इकाई को छोटी रूप में amu (atomic mass unit) द्वारा सूचित किया जाता है।

परमाण्विक प्रतीक का निरूपण (Representation of Atomic Symbol)—

- एक उदासीन परमाणु में नाभिक के बाहर इलेक्ट्रानों की संख्या नाभिक में उपस्थित धन आवेशों के इकाइयों की संख्या के बराबर होती है।
 - किसी उदासीन परमाणु X के प्रतीक का निरूपण निम्न प्रकार से होता है—

_zX^A, जहाँ; A ⇒ द्रव्यमान संख्या (Mass number) Z ⇒ परमाणु संख्या (Atomic number)

बोर-बरी स्कीम (Bohr Burry Scheme)-

- 1914 में नील बोर ने रदरफोर्ड की परमाणु रचना को दोषपूर्ण बताते हुए कहा कि ग्रहीय इलेक्ट्रॉनों की कर्जा केंद्रक (Nucleus) के विद्युतीय क्षेत्र में बराबर घूमते रहने के कारण धीरे-धीरे कम होती जाएगी और उनके कक्षा छोटे होते जाएँगे। इस प्रकार, अंतत: ये इलेक्ट्रॉन, केंद्रक में गिर पड़ेंगे।
- बोर का मानना था कि ये इलेक्ट्रॉन केंद्रक के चारों ओर अनियमित कक्षों (Indefinite Orbits) में नहीं, बल्कि कुछ विशिष्ट चक्रों में ही घूम सकते हैं।

किसी विशिष्ट कक्षा में घूमते समय इलेक्ट्रानों की कर्जा का क्षय (Dissipation) नहीं हो पाता।

जब इलेक्ट्रॉन एक कक्षा से दूसरे कक्षा में जाता है, तभी उसकी कर्जा में परिवर्तन होता है।

किसी कक्षा में घूमने वाले इलेक्ट्रॉनों की व्यवस्था ही बोर-बरी स्कीम कहलाती है। इसके अनुसार

 (i) किसी कक्षा में इलेक्ट्रॉनों की अधिकतम संख्या 2n² जहाँ n = कक्षा संख्या = क्वांटम संख्या। उदाहरणार्थ;

- पहली कक्षा में इलेक्ट्रानों की संख्या = 2×1² = 2
- दूसरी कक्षा में इलेक्ट्रानों की संख्या = 2×2² = 8
- तीसरी कक्षा में इलेक्ट्रानों की संख्या = 2×3² = 18
- चौथी कक्षा में इलेक्य्रनों की संख्या = 2×42 = 32
- अतिम कक्षा में, चाहे उसकी कक्षा संख्या कुछ भी हो, 8 से अधिक इलेक्ट्रॉन नहीं रह सकते। अतः तीसरी कक्षा में 18 इलेक्ट्रॉन तभी होंगे, जब चौथी कक्षा में भी इलेक्ट्रॉन उपस्थित हो। यदि तीसरी कक्षा परमाणु की बाह्यतम कक्षा है, तो उसमें इलेक्ट्रानों की संख्या अधिक से अधिक 8 ही होगी, 18 नहीं।
- (iii) बाह्यतम कथा के टीक पहले वाली कथा में इलेक्ट्रॉनों की उच्चतम संख्या 18 से अधिक नहीं हो सकती, चाहे उसकी कथा संख्या कुछ भी हो। उदाहरणार्थ, चौथी कथा में 32 इलेक्ट्रॉन तभी रह सकते हैं, जब 5वीं एवं 6वीं कथा में भी इलेक्ट्रॉन उपस्थित हो। यदि छठी कथा में इलेक्ट्रॉन नहीं है, तो चौथी कथा में इलेक्ट्रॉन अधिकतम संख्या 18 होगी, बशतें कि 5वीं कथा में भी इलेक्ट्रॉन उपस्थित हों।
 - परमाणु के इलेक्ट्रॉन, केंद्रक के चारों ओर कुछ खास ऊर्जा स्तरों (Definite Energy Levels) अथवा कक्षाओं (Orbits) में वितरित रहते हैं, जिन्हें शेल (Shell) कहते हैं। इस प्रकार, n=1 को K से, n=2 को L से, n=3 को M से,, n=7 को Q से सूचित किया जाता है।

. प्रत्येक सब-शेल में कई सब-शेल (Sub-Shells) अथवा ऑर्बिटल (Orbitals) होते हैं, जिन्हें s, p, d एवं f से सूचित किया जाता है।

- प्रत्येक सब-शेल में इलेक्ट्रॉन एक निश्चित उच्चतम संख्या में ही रह सकते हैं, जिनकी संख्या 2(2n - 1) = 4n - 2 द्वारा प्राप्त की जाती है, जहाँ n = कक्षा संख्या।
- उपरोक्त सूत्र से s में 2, p में 6, d में 10 तथा f सब-शेल में अधिकतम 14 इलेक्ट्रॉन हो सकते हैं।

संयोजी इलेक्ट्रॉन (Valence Electrons)—

 किसी भी परमाणु की याद्यातम कक्षा (Outermost Orbit) के इलेक्ट्रॉन संयोजी इलेक्ट्रॉन कहलाते हैं, जबिक इनकी भीतरी कक्षाओं को इलेक्ट्रॉन कोर इलेक्ट्रॉन (Core Electrons) कहलाते हैं, उदाहरणार्थ, सोडियम (Na) परमाणु में 1 संयोजी इलेक्ट्रॉन तथा 10 कोर इलेक्ट्रॉन होते हैं-

 $Na_{(11)}-1s^2 2s^2 2p^6 3s^1 \leftarrow Outermost Orbit$

 किसी परमाणु के संयोजी इलेक्ट्रॉनों द्वारा उस तत्व की संयोजकता (Valency) निर्धारित होती है।

 परमाणु में संयोजी इलेक्ट्रॉनों की कर्जा अन्य इलेक्ट्रॉनों की अपेक्षा उच्चतम होती है, अत: रासायनिक प्रतिक्रियाओं में यही इलेक्ट्रॉन भाग लेते हैं।

 िकसी तत्व की रासायनिक प्रकृति उसके परमाणु में उपस्थित संयोजी इलेक्ट्रॉनों की संख्या पर ही निर्भर करती है।

क्वार्क (Quark)—

पदार्थ के मूल कणों को बनाने वाले कणों को क्वार्क कहते हैं।

अभी तक क्वार्क में एक काल्पनिक कण है।

कुछ वैज्ञानिक का मत है कि क्वार्क का अस्तित्व है, क्योंकि क्वार्कों के मिलने से दूसरे कण बनते हैं।

क्वार्क कणों पर आशिक आवेश होता है।

• इनके अस्तित्व के विषय में सर्वप्रथम अमेरिका के भौतिकशास्त्रियों मुरेगेलमान और जॉर्ज ज्वीग ने 1964 में कल्पना की थी।

अणु (Atom)—

- इसका सबसे महत्वपूर्ण गुण है कि यह पदार्थ की सभी विशेषताओं को प्रकट करता है।
- अत: किसी पदार्थ का वह छोटे-से-छोटे कण जो स्वतंत्र अवस्या में रह सकता है अणु कहलाता है।

अणु एक ही परमाणुओं से मिलकर बना होता है।

- यह एक परमाणुक, द्वि-परमाणुक या बहु-परमाणुक भी हो सकता है।
 अणु दो प्रकार का होता है।
- 1. तत्व के अणु (तात्विक अणु) (Molecule of element)— यह सिर्फ एक प्रकार की परमाणु से मिलर बना होता है, जैसे नाहुट्रोजन का अणु (N_2) , ऑक्सोजन का अणु (O_2) ।

 यौगिक के अणु (Molecule of compound)— यह दो से अधिक परमाणु से मिलकर बना होता है। जैसे-कार्बन-डाई-ऑक्साइड का अणु (CO₂)।

परमाणुकता (Atomicity)—

- किसी तत्व या यौगिक के एक अणु में उपस्थित परमाणुओं की संख्या को परमाणुकता कहते हैं।
- नाइट्रोजन की परमाणुकता N₂ में 2 होती है।
 मोल (Mole)—
- मोल पदार्थ की वह राशि है जिसका निश्चित सूत्र हो तथा पदार्थ के इकाई सूत्र की संख्या उतनी हो जिनको शुद्ध कार्बन-12 आइसोटोप के ठीक 12 ग्राम में परमाणुओं की संख्या है।

मोल की संख्या 6.022×10²³ होती है। अत: 6.022×10²³ हो मोल को प्रकट करती है। जिसे एवोगाड़ो संख्या कहते हैं।

- मोल को इकाई रूप में 1967 ईं में स्वीकार किया गया, जो मोल संख्या एवं द्रव्यमान दोनों का प्रतीक है।
- यह कार्बन के 12 ग्राम या एक मोल में 6.022×10²³ परमाणु होता है।
- सामान्यतः ताप व दाब पर किसी गैस के 22.4 लीटर या 22400 ml में 6.022×10²³ अणु रहता है।

(ii)

क्वांटम संख्या (Quantum Numbers)—

- क्वांटम संख्या से केवल इलेक्ट्रॉन की स्थिति तथा उसकी कर्जा का
- क्वांटम संख्या मुख्यत: चार हैं-
- मुख्यत क्यांटम संख्या (Principle Quantum No.)— इसे n से सूचित किया जाता है। इससे इलेक्ट्रॉन ऑर्थिटल की औसत दूरी तथा इलेक्ट्रॉन की औसत ऊर्जा को प्रदर्शित किया जाता है। "जिसका शून्य मान नहीं होता है तथा अन्य धनात्मक पूर्णांक (1, 2, 3,)
- दिंगशी क्वाटम् संख्या (Azimuthai Quantum No.)— यह 2. इलेक्ट्रॉन के कोणीय संवेग को प्रकट करता है। इसे / से सूचित किया जाता है। यह n के किसी मान के लिए t का मान 0 से लेकर (n-1) तक कुछ भी हो सकता है।
- चुम्बकीय क्वांटम संख्या (Magnetic Quantum No.)— इस 'm' से सूचित किया जाता है। इससे इलेक्ट्रॉन का उप कर्जा 3. स्तरों के कक्षकों को प्रदर्शित करता है। इसमें m का मान / के मान पर ही निर्भर करता है।
- इसका मान शून्य सहित कुछ भी हो सकता है।
- चक्रण क्वांटम संख्या (Spin Quantum No.)— यह घूमते इलेक्ट्रॉन के दिशा को बदलता है। इसे 's' से सूचित किया जाता है।
- इसके केवल दो ही मान होते हैं $-\frac{1}{2}$ तथा $-\frac{1}{2}$ ।
- एक ही परमाणु में उपस्थित दो इलेक्ट्रॉनों को चारों क्वाटम संख्याएं समान नहीं हो सकती। यह नियम पाऊली का अपवर्जक सिद्धांत कहलाता है।
- इसके अनुसार यदि दो इलेक्ट्रॉन n, l तथा m के मान एक ही हों तो उनमें से एक के लिए s का मात्र $+\frac{1}{2}$ तथा दूसरे के लिए $-\frac{1}{2}$
- नाभिक (Nucleus)- परमाणु का केन्द्रीय भाग नाभिक कहलाता है। नाभिक की त्रिज्या 10⁻¹³ cm तथा परमाणु की त्रिज्या 10⁻⁸ cm होती है। नाभिक में परमाणु का सम्पूर्ण द्रव्यमान एवं धन आवेश होता है।
- समभारिक (Isobars)— समान परमाणु द्रव्यमान परन्तु भिन्न परमाणु क्रमांक के परमाणुओं को समभारिक कहते हैं। जैसे– $_{18}$ Ar 40 , $_{19}$ K 40 आदि।
- समस्थानिक (Isotope)— एक तत्व के विभिन्न परमाणुओं को जिनकी परमाणु संख्या समान हों, परन्तु परमाणु द्रव्यमान भिन्न हो समस्थानिक कहलाता है। $_1H^1$ -प्रोटियम, $_1H^2$ -ह्यूटेरियम, $_1H^3$ -
- समान न्यूट्रॉनों वाले परमाणु को समन्यूट्रॉनिक Na⁺, Mg⁺² तथा समान इलेक्ट्रॉन विन्यास वाले परमाणु एवं आयन को समइलेक्ट्रॉनिक कहते हैं। जैसे $-_1H^3$, $_2^1He^4$
- आइसोडायफर (Isodiapher)— भिन-भिन तत्वों के ऐसे परमाणु, जिनमें न्यूट्रॉन और प्रोटॉन की संख्या का अंतर समान हों, उन्हें आइसोडायफर कहते हैं। जैसे— $92^{0.235}$ तथा $90^{0.231}$ इनमें से प्रत्येक परमाणु में न्यूट्रॉन और प्रोटॉन की संख्या का अंतर 51 है।

- आइसो इलेक्ट्रॉनिक (Iso-electronic)— परमाणु आयन या यौगिक, जिनमें इलेक्ट्रॉन की संख्या समान होती है, आइसो इलेक्ट्रॉनिक कहलाते हैं। जैसे—Na⁺, Mg²⁺ तथा Al³⁺ इनमें से प्रत्येक में 10 इलेक्ट्रॉन हैं।
- आइसोइस्टर (Isoester)— ऐसे आइसो इलेक्ट्रॉनिक हैं, जिन्में परमाणुओं की संख्या भी समान होती हैं. उन्हें आइसोइस्टर कहते हैं। जैसे- NH4+ तथा CH4+

IMPORTANT FACTS

- परमाणु की क्रिन्या 1 × 10-8 सेमी कोटि की होती है।
- नामिक की क्रिन्या 1 × 10-2 सेमी कोटि की होती है। इलेक्ट्रॉन पर आवेश का परिमाण 1.602×10^{-19} कूलॉम अथवा 4.0822×10^{-10} amu होता है।
- इलेक्ट्रॉन का भार ग्राम में 9.1083 × 10-28 ग्राम होता है।
- इलेक्ट्रॉन की त्रिज्या 2.8 × 10-23 सेमी की कोटि की होती है।
- इलेक्ट्रॉन के आयेशों के द्रव्यमानों का अनुपात 1.76 × 108 क्लॉम प्रति ग्राम होता है।
- इलेक्ट्रॉन का द्रव्यमान हाइड्रोजन के परमाणु के द्रव्यमान का वाँ भाग होता है।
- प्रोटॉन पर इकाई धन-आवेश 1.602×10^{-19} कुलॉम होता है. प्रोटॉन का द्रव्यमान 1.672 × 10⁻²⁴ ग्राम अथवा 1.008 amu
- प्रोटॉन की क्रिज्या 1 × 10-18 सेमी कोटि की होती है। हाइड्रोजन आयन (H+) को प्रोटॉन कहते हैं।
- न्युट्रॉन का द्रव्यमान प्रोटॉन के द्रव्यमान के बराबर होता है।

परमाणु संरचना : महत्वपूर्ण तथ्य एक नजर में

- पदार्थ का सृक्ष्मतम कण है —परमाणु (Atom) परमाणु स्वतंत्र अवस्था में नहीं रह सकता है, परंतु भाग लेता है –रासायनिक अभिक्रिया में
- एक से अधिक परमाणु मिलकर बनाते हैं —अणु (Molecule)
- अनेक अणु मिलकर बनाते हैं —पुदार्थ (Matter)
- दुनियाँ की सभी वस्तुएं कहलाती हैं पदार्थ
- पदार्थ की अवस्थायें होती हैं —ठोस, द्रव तथा गैस परमाणु के नाभिक में दो तत्व होते हैं —प्रोटॉन एवं न्यूट्रॉन
- तत्व का परमाणु क्रमांक है —नाभिक में प्रोटॉनों की संख्या
- प्रोटॉन की वेधन क्षमता कम होती है —इलेक्ट्रॉन से
- इलेक्ट्रॉन में आवेश होता है —एक इकाई ऋणात्मक आवेश
- उदासीन परमाणु का धनायन उत्पन्न होता है —इलेक्ट्रॉन के निकलने से
- इलेक्ट्रॉन, प्रोटॉन एवं न्यूट्रॉन में से सबसे हल्का कण है —प्रोटॉन
- दो परमाणुओं की द्रव्यमान संख्याएं समान हों, परन्तु परमाणु संख्याएं भिन्न हों तो ऐसे दो परमाणुओं को कहा जाता है —समभारिक
- किसी परमाणु के वृतीय कक्ष में नाभिक का चक्कर लगाता है
- हाइड्रोजन के समस्थानिकों की संख्या होती है —तीन
- इलेक्ट्रॉन का द्रव्यमान हाइडोजन परमाण के द्रव्यमान का होता है —1/ 1837वां भाग
- एक विद्युत आवेशिक परमाणु या परमाणुओं का समूह कहलाता है

मुल कण (Fundamental Particles)

	प्रोटॉन (p)	इलेक्ट्रॉन (e)	न्यूट्रॉन (n)
आवेश (Charge)आवेश संख्या(सापेक्षिक आवेश)	+ 1.602 × 10 ⁻¹⁹ कूलंब + 1	−1.602× 10 ⁻¹⁹ कूलंब −1	0
निरपेश्च द्रव्यमानसापेश्च द्रव्यमान	1.673 × 10 ⁻²⁷ (1.672× 10 ⁻³¹ किग्रा 1	1.675 × 10 ⁻²⁷ किग्रा 1839

तत्य	संकेत	परमाणु संख्या	समस्थानिकों की संख्या	खोजकर्ता (यर्ष)
एल्युमिनियम आर्गन बेरियम बेरीलियम बिस्मिथ	Al Ar Ba Be Bi	13 18 56 4 83	8 8 25 6 19	वोहलर (1827) रैले एवं रैप्से (1894) डेवी (1808) वैकलिन (1798) ज्योफ्रे यंगर (1753)
बोरॉन ब्रोमीन कैडमियम कैल्सियम	Br Cd	5 35 48 20	6 19 22 14	ग्रे-लुसक एवं थेनार्ड (1808) बलार्ड (1826) स्टॉमेयर (1817) डेवी (1808)
कार्बन सीजियम क्लोरीन	3 3 2 3 3 5 5	6 55 17	7 22 11	पूर्व ऐतिहासिक बुंसेन एवं किरचॉफ (1860)
क्रोमियम कोबाल्ट तांबा फ्लोरीन फ्रोशियम	0488F#	24 27 29 9 87	9 14 11 6 21	शीले (1774) वैकलिन (1797) ब्रैंट (1735) पूर्व ऐतिहासिक म्योसन (1886)
जर्मेनियम सोना होलियम हाइड्रोजन आयोडीन	Ge Au He H	32 79 2 1	17 21 5 3	पेरी (1939) विकलर (1886) पूर्व ऐतिहासिक जान्सेन (1868) केवेडिश (1766)
आयाडान लोहा क्रिप्टॉन सीसा (लेड) मैग्नेशियम मैंगनीज	I Fe Kr Pb Mg Mn	53 26 36 82 12 25	24 10 23 29 8 11	कोर्येइस (1811) पूर्व ऐतिहासिक रैम्से एवं ट्रेवर्स (1898) पूर्व ऐतिहासिक ब्लैक (1755) गैन, शीले एवं बर्गमैन
पाय (मरकरी) निऑन निकेल नाइट्रोजन ओस्मियम ऑक्सीजन फॉस्फोरस प्लैटिनम पोलोनियम	HR N N N O O P F P	80 10 28 7 76 8 15 78 84	26 8 11 8 19 8 7 32	(1774) पूर्व ऐतिहासिक रैम्से एवं ट्रेवर्स (1898) क्रॉन्सटेट (1751) रदरफोर्ड (1772) टीनेंट (1803) प्रिस्टले (1774) एच ब्रैण्ड (1803) डलोआ एवं वुड (1735) क्युंग्री (1898)
प्लुटोनियम पॉटेशियम रेडियम	Pu K Ra	94 19 88	(सर्विधिक) 16 10 15	सीबर्ग (1940) डेवी (1807) पेरी एवं मैडम क्यूरी
रेडॉन सेलेनियम सिलिकॉन चांदी (सिल्चर) सोडियम सल्फर (गंधक) धोरियम टिन टिटेनियम टंग्स्टन यूरेनियम	おいいかがらればいる	86 34 14 47 11 16 90 50 22 74 92	20 20 8 27 7 10 12 28 9 22 15	(1898) डॉर्न (1900) बर्जीलियस (1817) बर्जीलियस (1824) पूर्व-ऐतिहासिक डेवी (1807) पूर्व-ऐतिहासिक बर्जीलियस (1828) पूर्व ऐतिहासिक प्रगोर (1791) एल्डेयर (1783) बलाप्रोट (1789)
र्वनेडियम जेनॉन जस्ता जिकॉनियम	V Xe Zn Zr	23 54 30 40	9 31 15 20	डेलरिओ (1801) रैम्से एवं ट्रेवर्स (1898) पूर्व-ऐतिहासिक क्लेप्रोय (1789)

- तत्य की परमाणिक संख्या किसी सेल में संख्या दर्शांती है —इलेक्ट्रॉन की
- एक परमाणु में इलेक्ट्रानों की संख्या आर्थिटलों की संख्या के —बरावर होती है
- 'एक परमाणु के दो इलेक्ट्रॉनों की चारों क्याण्टम संख्याएं समान नहीं हो सकतीं'' —पाउली एक्सक्लजन सिद्धांत
- द्रव्यमान संरक्षण के नियम की खोज की —लंबोजियर ने
- गुणात्मक समानुपात का नियम खोजा गया था —जॉन डॉल्टन द्वाग
- अनिश्चित सिद्धांत का प्रतिपादन किया गया —ग्दरफोर्ड द्वाग
- इलेक्ट्रॉन की तरंग प्रकृति सर्वप्रथम बतायी गयी —हाइजेनवर्ग द्वाग
- परमाणु द्रव्यमान य द्रव्यमान संख्या का अंतर कहलाता है —द्रव्यमान श्रति
- समान संख्या वाले न्यूबिलऑन को कहा जाता है आइमोटान
- "कैथोड किरणें इलेक्ट्रॉनों से निर्मित होती हैं" यह सिद्ध किया सर विलयम क्रुक्स ने
- धनात्मक कणों का स्वभाव निर्भर करते हैं अविशय गैम के द्वाव पर
- किसी परमाण के गुण निर्मर करते हैं —इलंक्ट्रॉनिक संस्वत पर
- कार्बन परमाणु में अयुग्मित इलेक्ट्रॉनों की संख्या होती है —तीन

रासायनिक बंधन (Chemical Bonding)

- जब कोई तत्व किसी अन्य तत्व के साथ संयुक्त होने की जो क्षमता
 प्रदान करता है वह उसकी संयोजकता कहलाती है।
- अक्रिय गैसों का इलेक्ट्रॉनिक विन्यास (Electronic Configuration of Inert Gases)—
- अक्रिय गैसें छ: हैं- हीलियम (He), निऑन (Ne), आर्गन (Ar), क्रिप्टन (Kr), जेनॉन (Xe) तथा रेडॉन (Rn)।
- ये न तो किसी आविष्कारक से अभिक्रिया करते हैं न हो किसी रासायनिक यौगिक का निर्माण हो करते हैं।
- यदि इन तत्वों के इलेक्ट्रॉनिक विनयास पर गौर किया जाय तो पाया जाता है कि हीलियम को छोड़कर शेष अक्रिय गैसों के बाह्यतम कक्षा में 8 इलेक्ट्रॉन होते हैं।
- यही कारण है कि अक्रिय गैस किसी अन्य तत्व से या आपस में भी संयोग नहीं करती है।
- िलविस एवं कोसेल के अनुसार यदि किसी तत्व के परमाणु की बाह्यतम कक्षा पहली कक्षा हो तो, वह हीलियम की तरह दो इलेक्ट्रॉन में ही स्थायी संरचना प्राप्त करते हैं अन्य तत्वों के परमाणु भी अपने सबसे निकटतम निष्क्रिय गैसों की तरह इलेक्ट्रॉनिक विन्यास प्राप्त करना चाहते हैं।
- अन्य तत्वों के परमाणु द्वारा अपने बाह्यतम कक्षा में 8 इलेक्ट्रॉन पूर्ण कर स्थायी संरचना इलेक्ट्रॉनिक विन्यास प्राप्त करने की प्रवृति को अष्टक सिद्धान्त (Rule of Octet) कहा जाता है।
- अगर K- कक्षा संयोगी कक्षा हों, तो इलेक्ट्रॉन प्राप्त कर स्थायी इलेक्ट्रॉनिक विन्यास प्राप्त करने का सिद्धान्त द्विक,-सिद्धान्त कहा जाता है।

अक्रिय गैसों के इलेक्ट्रॉनिक विन्यास

अक्रिय गैसें	परमाणु संख्या	इलेक्ट्रॉनिक विन्यास	संयोजी इलेक्ट्रॉन
He	2	1s²	2
Ne	10	1st 2st 2pt	8
Ar	18	1s ² 2s ² 2p ⁴ 3s ² 3p ⁴	8
Kr	36	1s² 2s² 2p⁴ 3s² 3p⁴ 3d¹⁰4s² 4p⁴	8
Xe	54	1s² 2s² 2p⁴ 3s² 3p⁴ 3d¹° 4s² 4p⁴ 4d¹° 5d² 5p⁴	8
Rn	86	1s² 2s² 2p⁵ 3s² 3p⁵ 3d¹° 4s² 4p⁵ 4d¹° 5d² 5p⁵ 5d¹° 6s² 6p⁵	8

रासायनिक संयोग के कारण (Cause of Chemical Combi

 अक्रिय गैसों को छोड़कर अन्य जितने भी तत्व हैं, उनके परमाणुओं की बाहातम कक्षाएँ अस्थायी होती हैं, क्योंकि उनमें आउ से कम इलेक्ट्रॉन होते हैं।

 ये अपनी बाह्यतम कक्षा में अपने निकटतम अक्रिय गैसों की भौति इलेक्ट्रॉन प्राप्त कर लेने की प्रवृति रखते हैं, ताकि ये स्थायी बन

जाएँ।

यही कारण है कि तत्वों के बीच रासायिनक संयोग होता है।

अध्यक नियम (Octet Rule)-

किसी परमाणु के बाह्यतम कक्षा में अधिकतम आठ इलेक्ट्रॉन होने के नियम को 'अष्टक नियम' कहते हैं।

• इस नियम के आधार पर कोसेल (Kossel) तथा लेविस (Lewis) ने 1916 ई॰ में रासायनिक बंधन के इलेक्ट्रॉनिक सिद्धान्त (Electronic Theory of Chemical Combination) को विकसित किया।

अध्दक पूर्ण करने की विधि (Method of Completion of Octet)—

 कोई भी परमाणु अक्रिय गैस-जैसी इलेक्ट्रॉनिक व्यवस्था तीन प्रकार कर सकती है-

(i) किसी दूसरे परमाणु को एक या एक से अधिक इलेक्ट्रॉनों का त्याग करके।

(ii) किसी दूसरे परमाणु से एक या एक से अधिक इलेक्ट्रॉनों को ग्रहण करके।

(iii) किसी दूसरे परमाणु के साथ एक या एक से अधिक इलेक्ट्रॉनों को साझा करके।

आयन (Ion)—

परमाणु या परमाणुओं का वैसा समूह, जो विद्युत-आवेशयुक्त हो,
 'आयन' कहलाता है।

• जैसे-सोडियम आयन (Na⁺), मैग्नेशियम आयन (Mg⁺⁺) या (Mg²⁺), क्लोग्रइड आयन (CI), सल्फेट आयन (SO₄²⁻), कार्बोनेट आयन (CO₃²⁻) आदि।

आयन दो प्रकार के होते हैं —

(i) धनायन (Cation) तथा (ii) ऋणायन (Anion)।

धनायन (Cation)—

जिस आयन पर धन-आवेश रहता है, उसे धनायन कहते हैं।
 जैसे– Na⁺, Mg²⁺ धनायन हैं।

 किसी परमाणु में से एक या अधिक इलेक्ट्रॉनों (e) के निकल जाने से धनायन बनता है।

 $Na \xrightarrow{-e} Na$ $Ma \xrightarrow{-2e} Ma$

 सभी घातु-तत्वों के आयन घनायन होते हैं, लेकिन सिर्फ हाइड्रोजन आयन (H⁺) तथा अमोनियम आयन (NH₄⁺) अघातु तत्वों के बने होते हैं।

ऋणायन (Anion)—

जिस आयन पर ऋण-आवेश रहता है, उसे ऋणायन कहते हैं।
 जैसे-Cl-, O²⁻ आदि।

किसी परमाणु द्वारा इलेक्ट्रॉन ग्रहण करने से वह ऋणायन बनता है।

Cl + e → Cl सभी अधातु-तत्वों के आयन ऋणायन होते हैं।

संयोजकता (Valency)—

 इसकी उत्पत्ति लैटिन माषा के शब्द Valentia से हुई है, जिसका अर्थ है—क्षमता अर्थात् तत्वों के परमाणुओं के परस्पर संयोजन-क्षमता को 'संयोजकता' कहते हैं। दूसरे शब्दों में, कोई परमाणु अपने निकटस्थ अक्रिय गैस-जैसी इलेक्ट्रॉनिक व्यवस्था को प्राप्त करने के लिए इलेक्ट्रॉनों का त्याग अथवा ग्रहण करता है, तो इन्हें त्यक्त अथवा ग्रहीत इलेक्ट्रॉनों की कुल संख्या को उस परमाणु की संयोजकता कहते हैं।

जैसे-सोडियम (Na) परमाणु 1 इलेक्ट्रॉन त्याम कर निम्नांकित रूपों में गैस निऑन (Ne)- जैसी इलेक्ट्रॉनिक व्यवस्था प्राप्त करती है।

Na
$$\frac{-1e}{2,8,1}$$
 Na' 2,8 1 2,8 1 $1s^2 2s^2 2p^6 3s^1$ $1s^2 2s^2 2p^6$ (Ne की इलेक्ट्रॉनिक व्यवस्था)

अत: Na की संयोजकता 1 होती है। इसी प्रकार क्लोरीन (Cl) इलेक्ट्रॉन ग्रहण कर आर्गन (Ar) जैसी इलेक्ट्रॉनिक व्यवस्था ग्राप्त करती है।

अतः Cl की संयोजकता –1 होती है। इसी प्रकार ब्रोमाइड (Br),
 आयोडाइड (I) आदि की संयोजकता –1 होती है।

विद्युत-धनात्मक तत्व (Electropositive Elements)—

बैसे तत्वों के परमाणु, जो इलेक्ट्रॉन त्याग कर घनायन में परिवर्तित हो जाने की प्रवृति रखते हैं, 'विद्युत-धनात्मक तत्व' कहलाते हैं। जैसे– अधिकांश घातुएँ विद्युत-धनात्मक ही होती है।

विध्त-ऋणात्मक तत्व (Electronegative Elements)—

वैसे तत्वों के परमाणु, जो इलेक्ट्रॉन त्याग कर धनायन में परिवर्तित हो जाने की प्रवृति रखते हैं, 'विद्युत-ऋणात्मक तत्व' कहलाते हैं। जैसे-कुछ अधातुएँ तथा हैलोजन (Cl, Br, I आदि) के तत्व विद्युत-ऋणात्मक हैं।

इलेक्ट्रॉनिक सह-संयोजक बंधन —

 जो तत्वों के बाह्य-कोष में इलेक्ट्रॉन उपस्थित होते हैं उसे संयोजी इलेक्ट्रॉन कहते हैं।

कुछ सामान्य आयनों के नाम, सूत्र तथा संयोजकता

नाम	आयन Symb	(Ion) ol Valency
एक-संय	जिक (Monovalent)	
सोडियम	Na ⁺	+1
सिल्वर	Ag ⁺	+1
क्यूप्रस	Cu+	+1
पौटेशियम	K+	+1
- हाइड्रोजन	H ⁺	+1
अमोनियम	NH ₄ +	+1
क्लोराइड	Cl-	-1
ब्रोमाइड	Br	-1
आयोडाइड	1- 1-	-1
. फ्लुओराइड	F-	-1
हाइड्रोक्साइड	OH-	-1
नाइट्रो	NO ₂ -	-1
नाइट्राइट	NO ₂ -	1
परमैंगनेट	NO ₂ - MnO ₄ -	-1
एसिटेट	CH ₂ COO-	-1
बाईकार्बोनेट	HCO ₂ -	555-1
बाईसल्फेट	HSO ₄ -	-1

many the state of	संयोजक (Divalent)	
Western Street		+2
कैल्सियम	Cd2+	+2
कैडमियम	Ca ² +	+2
क्यूप्रिक फेरस	Cuz	+2
फेरस	Fe ²	+2
जिंक	ZnZ+	+2
निकेल	Ni ²⁺	+2
मै ग्नेशियम	Mg ²⁺	+2 +2
बेरियम	Ba ²⁺	+2
ऑक्साइड	Ca ²⁺ Cd ²⁺ Cu ²⁺ Fe ²⁺ Zn ²⁺ Ni ²⁺ Ni ²⁺ Mg ²⁺ Ba ²⁺ O ²⁻ SO ₄ ²⁻ S ²⁻	-2 -2 -2
	SO.2-	-2
सल्फेट	C2-	-2
सल्फाइड	CO 2-	2
सल्फाइट	503-	-2 -2
धायोसल्फेट	$S_2 O_{3_2}^2$	-2
क्रोमेट	CrO ₄ ²	-2
कार्बोनेट	CO ₂ 2-	-2
fa.	SO ₃ - S ₂ O ₃ 2- CrO ₄ 2- CO ₃ 2- संयोजक (Trivalent) Cr ³⁺	
क्रोमियम	Cr3+	+3
201144	Fe ³⁺	+3
फेरिक	in the second second	- White or a si
औरिक (Auric)	Shirela 3a baca	
(Gold)	Aust	+3
ऐलुमिनियम	Al3+	+3
नाइट्राइड	Au ³ + Al ³ + N ³ -	-3
, फॉस्फेट	PO-3-	-3
बोरेट	BO ₃ 3-	-3

 संयोजकता के इलेक्ट्रॉनिक सिद्धांत के आधार पर किसी तत्व की संयोजकता उसके परमाणु के संयोजकता कोष में उपस्थित इलेक्ट्रॉनों की संख्या पर निर्मर करती है।

रासायनिक बंधन का संबंध किसी पदार्थ के अणुओं में उपस्थित

अवयवीं परमाणुओं के संयोजन से है।

अक्रिय गैसों की अभिक्रियाशीलता उसके बाह्यतम कक्ष में उपस्थित 8 इलेक्ट्रॉन (हीलियम को छोड़कर) की उपस्थिति के कारण होती है।

अतः सभी परमाणु अपने निकटतम अक्रिय गैस के इलेक्ट्रॉनिक विन्यास को प्राप्त करने की प्रवृत्ति रखते हैं ताकि स्यापित्व प्राप्त किया जा सके।

परमाणुओं के बीच इलेक्ट्रॉनों के स्थानांतरण या साझेदारी के द्वारा बंधन का निर्माण होता है।

परमाणु बंधन (Atomic Bonding)—

• इलेक्ट्रॉनों के स्थानांतरण के फलस्वरूप जो बंधन बनते हैं उसे परमाणु-बंधन कहते हैं।

परमाणु-बंधन मुख्यतः तीन प्रकार के होते हैं।

वैद्युत संयोजी बंधन (Electrovalent Bond)—

यौगिक बनाने में तत्व की परमाणु जितने इलेक्ट्रॉन का त्याग करता अथवा ग्रहण करता है वह संख्या उस तत्व का विद्युत संयोजी बंधन या वैद्युत संयोजकता कहलाता है।

यह बंधन प्राय: विद्युत ऋणात्मक परमाणु तथा विद्युत धनात्मक

परमाणु के बीच बनता है।

, वैद्युत संयोजी बंधन यौगिकों का गलनांक तथा क्वथनांक उच्च होता है।

ये यौगिक अकार्बनिक घोलों, जैसे-जल में घुलनशील, जबकि

कार्बनिक घोलकों में अघुनलशील होता है।

सोडियम क्लोग्रइड (NaCl), मैंग्नीशियम सल्फेट (MgSO₄) सोडियम कार्बोनेट (Na₂CO₃), एल्युमिनियम क्लोग्रइड (AlCl₃) आदि में बनने वाला बंधन वैद्युत संयोजी बंधन होता है।

इसके आयनन की मात्रा प्राय: उच्च होती है।

• जब किसी रवा के आयनों को एक-दूसरे से अनंत दूरी तक अलग करने में जो कर्जा की आवश्यकता होती है। उसे जालक कर्जा कहते हैं। स्थिर-विद्युत् आकर्षण यल (Electrostatic Force of Attraction)—

दो विपरीत आवेश वाले आयनों के बीच स्थिर-विद्युत् आकर्पण बल

को निम्नलिखित सत्र से व्यक्त किया जाता है-

$$F = \frac{1}{K} \cdot \frac{q^1 q^2}{c^2}$$

जहाँ K माध्यम का पराविद्युत् स्थितंक (Dielectric Constant) है। हवा में K का मान एकांक होता है। यह यल प्राय: कमजोर होता है।

विद्युत्-संयोजक यौगिकों के गुण (Properties of Electrovalent Compounds)—

विद्युत्-संयोजक या आयनिक यौगिकों के निम्नलिखित गुण हैं—
 (i) विद्युत्-संयोजनक यौगिक दो विपरीत आयेश वाले आयनों के कारण स्थिर-विद्युत् आकर्पण बल द्वारा आपस में दुढता से जुड़े होते हैं। फलत: उनका क्वथनांक (Boiling Point) और द्रयनांक (Melting

Point) काफी उच्च होता है।

(ii) जल के साथ शीघ्रता से घुलकर ये आयनों में टूटते हैं। स्पष्ट है कि ये यौगिक द्रवित अथवा जलीय घोल की अवस्था में विद्युत् के सुचालक होंगे।

(iii) इन यौगिकों की अभिक्रियाएं प्राय: तेज हुआ करती है। (iv) विद्युत्-संयोजक यौगिक समावयवता (Isomerism) प्रदर्शित नहीं करते।

(iv) ये यौगिक बड़े आकार वाले टोस रवा बनाते हैं, जिसमें आयन नियमित रूप से त्रिविम में फैले होते हैं।

(vi) ये ठोस-अवस्था में विद्युत् के कुचालक होते हैं।

विद्युत्-संयोजक अथवा आयनिक यौगिकों के कुछ उदाहरण

यौगिक	सूत्र	उपस्थित आयन
सोडियम क्लोराइड	NaCl	Na ⁺ एवं Cl ⁻
सोडियम सल्फाइड	Na ₂ S	2Na ⁺ एवं S ² -
सोडियम हाइड्रॉक्साइड	NaOH	Na ⁺ एवं OH ⁻
कैल्सियम क्लोराइड	CaCl ₂	Ca ² + एवं 2Cl ⁻
पोटैशियम क्लोराइड	KCI	K ⁺ एवं Cl ⁻
अमोनियम क्लोराइड	NH ₄ Cl	NH ₄ ⁺ एवं Cl ⁻
कैल्सियम ऑक्साइड	CaO	Ca ² + एवं O ² -

2. सह-संयोजक बंधन (Covalent Bond)—

 किसी तत्व के एक परमाणु द्वारा दूसरे परमाणुओं के साथ साझा करके इलेक्ट्रॉन युग्मों की संख्या उस तत्व की सहसंयोजक बंधन कहलाता है।

सह-संयोजक यौगिक की प्रकृति प्राय: दिशात्मक होती है।

ब यह बंधन लगभग बराबर विद्युत ऋणात्मक परमाणुओं के बीच बनता है।

यह एक प्रबल बंधन होता है।

 ये यौगिक कार्बनिक घोलकों तथा क्लोरोफार्म एसीटोन बेन्जीन इत्यादि में घुलनशील लेकिन अकार्बनिक घोलकों जैसे जल में अघलनशील होते हैं।

 समान परमाणु से बने अणु (H₂, O₂, N₂, Cl₂),कार्बनिक यौगिक (एल्केन, एल्कीन, बेन्जीन आदि) अमीनिया जल आदि में सहसंयोजक

बंधन का निर्माण करता है।

सह संयोजक यौगिकों का गलनांक तथा क्वथनांक निम्न होता है।

 एक-एक इलेक्ट्रॉनों की साझेदारी होने पर एकल बंधन जैसे हाइड्रोजन अणु का निर्माण (H..H→H-H) दो-दो इलेक्ट्रॉनों की साझेदारी होने पर द्विक बंधन जैसे ऑक्सीजन अणु का निर्माण (O::O→O=O) तथा तीन इलेक्ट्रॉन की साझेदारी होने पर त्रिक बंधन, जैसे-नाइट्रोजन का निर्माण (N::N→N=N)का निर्माण होता है। ताप, दाब की सामान्य अवस्था में ये प्राय: गैस वाणशील द्रव एवं मुलायम ठोस पदार्थ होते हैं।

सहसंयोजक बंधन तीन प्रकार के होते हैं-

एकल-सहसंयोजक बंधन (Single Covalent Bond)—य परमाणुओं के बीच एक-एक इलेक्ट्रॉन के साझे से बने बंधन की 'एकल-सहसंयोजक बंधन' कहते हैं। जैसे-H₂ के अणु में हाइड्रोजन के दो परमाणुओं के यीच एक-एक इलेक्ट्रॉन का साझा निम्नाकित प्रकार से दर्शाया गया है-

H ○ H→H-H (एकल-सहसंयोजक वंधन)

- द्वि-सहसंयोजक यंधन (Double Covalent Bond)—दो (ii) परमाणुओं के बीच दो-दो इलेक्ट्रॉनों के साझा से बने बंधन को 'द्वि-सहसंयोजक बंधन' कहते हैं। जैसे-ऑक्सीजन (O2) का बनना। :Ö∷Ö → O =O (द्वि-सहसंयोजक बंधन)
- त्रि-सहसंयोजक बंधन (Triple Covalent Bond)— दो (iii) परमाणुओं के बीच तीन-तीन इलेक्ट्रॉनों के साझा से बने बंधन की त्रि-सहसंयोजक बंधन कहते हैं। जैसे- No अणु का बनना ।

 \ddot{N} $\stackrel{..}{ ... }$ \ddot{N} → N $\equiv N$ (π -सहसंयोजक बंधन)

सह-संयोजकता (Co-valency)-किसी सह-संयोजक यौगिक में एक परमाणु की सह-संयोजकता इलेक्ट्रॉनों की वह संख्या है, जिसे वह परमाणु साझेदारी (sharing) में भाग लेने के लिए प्रदान करता है। उदाहरण के लिए H₂, O₂, No तथा CH4 में हाइड्रोजन, ऑक्सीजन, नाइट्रोजन तथा कार्बन की सह-संयोजकता क्रमश: 1, 2, 3 और 4 है। सह-संयोजकता = किसी अणु में परमाणु द्वारा निर्मित सहसंयोजक बंधनों की संख्या है।

सह-संयोजक अणुओं का बनना (Formation of Covalent Molecules)

तात्त्विक अणुओं का बनना-

क्लोरीन-अणुओं का निर्माण-क्लोरीन अणुओं का इलेक्ट्रॉनिक विन्यास निम्नलिखित है- CI(17) - 1s² 2s² 3s² 3p⁵ अत: क्लोरीन-परमाणु एक-एक इलेक्ट्रॉन साझा करके अपना अध्टक पूर्ण करता है तथा क्लोरोन अणु Cl₂ का निर्माण करता है।

:CI + CI = (CIQCI) = CI - CI

इन यौगिकों की प्रतिक्रियाएँ प्राय: मंद हुआ करती है।

उदासीन अणुओं के बने होने के कारण सहसंयोजक यौगिक घोल में आयन नहीं बनाते हैं अर्थात् ये आयनों में नहीं टूटते हैं, फलत: सहसंयोजक यौगिक विद्युत् के कुचालक और जल में अधुलनशील होते हैं, जबिक ये यौगिक बेंजीन, ईधर, क्लोरोफॉर्मा जैसे कार्बनिक घोलकों में घुलनशील होते हैं।

उपर्युक्त गुणों के अलावे असदृश परमाणुओं के बीच बनने वाले ध्रवीय सहसंयोजक बंधनों में आशिक आयनिक अथवा ध्रवीय गुण

(प्रवृत्ति) भी पाए जाते हैं।

उदाहरण के लिए HCI और H2O को लिया जा सकता है।

इलेक्ट्रॉनों की निर्जन जोड़ी (Lone pair of Electrons)—

सहसंयोजक बंधन के क्रम में परमाणु की बाह्यतम कक्षा के सभी इलेक्ट्रॉन भाग नहीं लेते हैं।

संयोजकता कोश के इलेक्ट्रॉनों की ऐसी जोड़ी, जो बंधन-निर्माण में भाग नहीं लेती, इलेक्ट्रॉनों की निर्जन जोडी कहलाती है।

उदाहरणार्थ-जल तथा अमोनिया के निर्माण को लिया जा सकता

उप-संयोजक यंधन (Co-ordinate Bond)— 3.

इस बंधन में इलेक्ट्रॉन-युग्म एक ही परमाण से प्राप्त होता है अर्थात् दूसरा परमाणु ग्राही का कार्य करता है।

$$\begin{array}{c} H \\ H - N : + H \longrightarrow \begin{bmatrix} H \\ H - N \longrightarrow H \end{bmatrix}^{+} \\ H & H \end{array}$$

परिवर्तनशील संयोजकता (Variable Valency)—

- कुछ तत्वों की संयोजकताएँ स्थिर न होकर परिवर्तनशील हुआ करती है। उदाहरण के लिए, फॉस्कोरस के तीन एवं पाँच (PCI₃, PCI₅) ताँबा के एक एवं दो (CuCl एवं CuCl2), लोहा के दा एवं तीन 💮 तथा मैंगनीज के 2 से लेकर 7 तक की सर्योजकताओं को लिया जा सकता है। न्यून संख्या वाली संयोजकता 'अस' (Ous) से तथा अधि क संख्यावाली संयोजकता 'इक' (ic) से अंत होती है।
- उपसहसंयोजी बंधन (Coordinate Bond)— दाता द्वारा ग्राही को एकाकी इलेक्ट्रॉन युग्म दान से उपसहसंयोजक बंधन बनता है। अथवा, इस बंधन का निर्माण इलेक्ट्रॉनों की साझेदारी से होता है, 'किन साझे से इलेक्ट्रॉनों की जोडी एक परमाणु द्वारा प्रदान किया जाता है।

यौगिक अणुओं का निर्माण

जल के अणु का निर्माण— (i)

कार्बन डाइऑक्साइड के अणु का निर्माण— (11)

(iii) एसीटिलीन अणु (C2H2) का निर्माण-

सह-संयोजक यौगिकों के गुण (Properties of Covalent Bond)—

- सह-संयोजक यौगिकों में अंतराण्विक बल (Intermolecular forces) विद्युत्-संयोजक अथवा आयनिक यौगिकों में स्थिर-विद्युत् आकर्षण बल के सापेक्ष कमजोर होते हैं। यही कारण है कि सह-संयोजक यौगिकों के द्रवणांक एवं क्वधनांक निम्न होते हैं।
- इस बंधन की खोज लेविस तथा कौशेल ने 1923 ई० में किया था।
- अमोनियम क्लोराइड (NH₄Cl) तथा ओजोन (O₃) में भी उपसहसंयोजक बंधन पाया जाता है।
- साझे के इलेक्ट्रॉन देने वाले परमाणु को दाता तथा ग्रहण करनेवाले परमाणु को ग्राही कहते हैं।
- सोडियम हाइड्रोक्साइड (NaOH), हाइड्रोजन सायनाइड (HCN), सल्पयूरिक अम्ल (H2SO4) कैल्सियम कार्बोनेट (CaCO2) आदि में सहसंयोजक एवं वैद्युत संयोजक दोनों बंधन पाया जाता है।

उपसहसंयोजी बंधन के यौगिकों का गुण वैद्युत संयोजक तथा सहसंयोजक यौगिकों के बीच में होता हैं

THE PLATFORM

Join online test series: www.platformonlinetest.com

GENERAL SCIENCE ■ 117