Chapitre 3: ENSEMBLES-APPLICATIONS

I Ensembles

I.1 Appartenance - Description

• Ensemble et appartenance (notions intuitives (premières)) :

Un ensemble E est une collection d'objets, et ces objets sont ses éléments. Si un objet x appartient à E, on note : $x \in E$, et sinon $x \notin E$.

L'ensemble qui ne contient aucun élément s'appelle l'ensemble vide : noté \varnothing .

- Égalité : deux ensembles sont identiques (ou égaux) si leurs éléments sont les mêmes.
- Descriptions d'un ensemble :
- * en extension : en donnant tous ses éléments (cas finis), sans répétition, en ordre quelconque.

$$E = \{2; 5; 3\}$$
 $E = \{\frac{1}{2}\}$ (un singleton) $E = \{\mathbb{R}; 2; \varnothing\}$

* en compréhension : $\{x \in E \mid P(x)\}$ est l'ensemble des éléments x de l'ensemble E tels que la propriété P(x) soit vraie (où P est un prédicat sur E).

Définir $E = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N}, \ n = 2k\}$ équivaut à dire que E est l'ensemble des naturels pairs. Autre notation possible : $E = \{2k\}_{k \in \mathbb{N}}$

Pratique 1:

- 1. Donner en extension et en compréhension l'ensemble des racines carrées de l'unité (1).
- 2. Même chose avec l'ensemble des naturels qui sont des carrés.
- **3.** Soit $E = \{x \in \mathbb{R} \mid (x-1)(x-3) < 0\}$ (lire à haute voix). A-t-on : $2 \in E$? Décrire E différemment.

I.2 Inclusion, ensemble des parties d'une ensemble

• F est une **partie de** E (on dit aussi : E contient F, ou : F est inclus dans E) si tous les éléments de F sont aussi des éléments de E.

Notation : $F \subset E$, qui signifie : $\forall x \in F, x \in E$ (Négation : $F \not\subset E$)

Pour montrer $F \subset E$, on écrit : «Soit x appartenant à F... finalement : x appartient à E».

• Égalité : E = F équivaut donc à $E \subset F$ et $F \subset E$ (double inclusion).

Pratique 2:

- **1.** Choisir le ou les bons symboles (remplacer *) : $\mathbb{N} * \mathbb{Z}, \frac{2}{3} * \mathbb{Q}, i * \mathbb{R}, \mathbb{Z} * \mathbb{N}$
- **2.** Soit $E = \{\mathbb{R}; 3; \{3; 4\}\}$. A-t-on $\emptyset \subset E$? $\emptyset \in E$? $4 \in E$? $\{3\} \in E$? $3 \in E$? $\{3; 4\} \subset E$? $\{3; 4\} \in E$?
- $\mathfrak{P}(E)$ désigne l'ensemble des parties de $E: F \in \mathfrak{P}(E) \Longleftrightarrow F \subset E$.

En particulier, E et \emptyset sont toujours des parties de E donc des éléments de $\mathcal{P}(E)$.

2▶

Pratique 3:

- 1. Donner $\mathcal{P}(\{1;2;3\})$.
- **2.** Posons $E = \emptyset$. Donner $\mathfrak{P}(E)$, $\mathfrak{P}(\mathfrak{P}(E))$ et $\mathfrak{P}(\mathfrak{P}(\mathfrak{P}(E)))$.

I.3 Opérations sur les ensembles

F et G désignent deux ensembles.

• Réunion (ou union) : $F \cup G = \{x \mid x \in F \text{ ou } x \in G\}.$

 $F \cup G$ est l'ensemble des éléments qui sont dans F ou dans G (ou les deux!)

- Intersection : $F \cap G = \{x \mid x \in F \text{ et } x \in G\}$. Quand $F \cap G = \emptyset$, F et G sont <u>disjoints</u>. $F \cap G$ est l'ensemble des éléments qui sont dans F et dans G.
- Différence ou Complémentaire : $F \setminus G = \mathcal{C}_F G = \{x \in F \mid x \notin G\}.$

 $F \setminus G = \mathcal{C}_F G$ est l'ensemble des éléments de F qui ne sont pas dans G.

Si E est l'ensemble dans lequel on travaille implicitement, et $F \subset E$, on note $\mathcal{C}_E F = \overline{F}$.

• Différence symétrique :

$$F\Delta\,G = (F \smallsetminus G) \cup (G \smallsetminus F) = (F \cup G) \smallsetminus (F \cap G) = \{x \mid x \in F \text{ (ou exclusif) } x \in G\}.$$

 $F\Delta G$ est l'ensemble des éléments qui sont dans F ou dans G mais pas les deux!

• Produit cartésien : $F \times G = \{(x, y) \mid x \in F \text{ et } y \in G\}.$

 $F \times G$ est donc l'**ensemble des couples** de première composante un élément de F, de seconde composante un élément de G.

Si G = F, on note : $F^2 = F \times F$

Pratique 4:

- **1.** Donner $A \cup B$ et $A \cap B$ pour les couples (A, B) d'ensembles :
- a) ({2; 3; 6}, {2; 5; 9}) b)(ens. des naturels pairs, ens. des naturels multiples de 4)
- c) (ens. des fonctions impaires sur \mathbb{R} , ens. des fonctions paires sur \mathbb{R})
- d) (une droite du plan, une droite du plan)
- **2.** Donner $\bigcap_{n\in\mathbb{N}^*}]-\frac{1}{n}, \frac{1}{n}[$ et $\bigcup_{n\in\mathbb{N}} [0,n].$
- 3. Donner le complémentaire dans N de l'ensemble :
- a) des pairs b) des multiples de 2 et de 3
- **4.** Décrire le produit cartésien $F \times G$ pour les couples (F, G) suivants :
- (a) $(\{1; 2\}, \{a; b; c\})$ (b) (\emptyset, \emptyset) (c) $(\mathbb{R}_+, \mathbb{R}_+)$ (d) ([0, 1], [0, 2])

Propriétés

Soit A_i des parties d'un ensemble E, pour i parcourant un ensemble I, et B un ensemble.

1) Distributivités :
$$\left(\bigcup_{i\in I}A_i\right)\cap B=\bigcup_{i\in I}(A_i\cap B)$$
 et $\left(\bigcap_{i\in I}A_i\right)\cup B=\bigcap_{i\in I}(A_i\cup B)$

2) Complémentation :
$$C_E\left(\bigcup_{i\in I}A_i\right) = \bigcap_{i\in I}C_EA_i$$
 et $C_E\left(\bigcap_{i\in I}A_i\right) = \bigcup_{i\in I}C_EA_i$

3)
$$C_E(C_EB) = B$$
.

4▶

II Applications

II.1 Définitions

Une relation \Re est donnée par un ensemble de départ E, un ensemble d'arrivée F, et un **graphe** G qui est une partie de $E \times F$, au sens où :

un élément x de E est en relation avec un élement y de F par la relation \mathcal{R} , et on note $x \mathcal{R} y$, quand (x,y) appartient au graphe G. On dit alors que y est une **image par** \mathcal{R} de x et que x est un antécédent par \mathcal{R} de y.

Si tout élément x de E a une et une seule image y par \mathcal{R} dans F, on dit que \mathcal{R} est une **application** de E vers F, et on peut alors noter : $y = \Re(x)$.

Ensemble des applications de E vers F: noté F^E ou encore $\mathcal{F}(E,F)$.

Notation usuelle d'une application : $\begin{vmatrix} f: E \longrightarrow F \\ x \longmapsto f(x) \end{vmatrix}$

Regardez bien les différentes flèches utilisées!

Exemples:

- * Identité sur un ensemble $E: \mid \operatorname{Id}_E : E \longrightarrow E$ $x \longmapsto x$

Pour vérifier l'égalité entre deux fonctions f et g, on montre qu'elles ont :

- a) même ensemble de départ E
- b) même ensemble d'arrivée F
- c) même graphe : $\forall x \in E, f(x) = g(x)$

5▶

Pratique 5:

1.
$$\begin{vmatrix} f : \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto \sqrt{x^2} \end{vmatrix}$$
 et $\begin{vmatrix} g : \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto x \end{vmatrix}$ sont elles égales?

Que pourrait-on changer pour avoir égalité?

2. A et B désignent deux parties de E. Calculer $\mathbb{I}_{A\cap B}$, $\mathbb{I}_{A\cup B}$ et $\mathbb{I}_{\overline{A}}$ en fonction de \mathbb{I}_A et \mathbb{I}_B .

II.2 Image directe, image réciproque

Soit $f: E \to F$ une application de E vers F.

• Image directe d'une partie A de E par f:

c'est la partie de $F : f(A) = \{ f(x) \mid x \in A \} = \{ y \in F \mid (\exists x \in A, y = f(x)) \}.$

En particulier : f(E) = Im f s'appelle l'**image de** f.

6▶

Pratique 6:

- **1.** Soit f définie de $E = \{1; 2; 3\}$ vers \mathbb{N} par f(1) = f(2) = 5 et f(3) = 6. Donner Im(f) et $f(\{2; 3\})$.
- 2. La fonction exponentielle exp est définie de \mathbb{R} vers \mathbb{R} . Donner son image. Donner $\exp([0,1])$.
- **3.** Donner l'image de \mathbb{N} par f définie sur \mathbb{N} par : $f(n) \mapsto \lfloor n/2 \rfloor$.
- Image réciproque d'une partie B de F par f:

C'est la partie de $E: f^{-1}(B) = \{x \in E \mid f(x) \in B\}, \text{ ou encore}: x \in f^{-1}(B) \iff f(x) \in B\}$

Notation «ensembliste» : la fonction f^{-1} est définie sur les parties de F, pas sur ses éléments!

Pratique 7:

- **1.** Soit f définie de $E = \{1, 2, 3\}$ vers \mathbb{N} par f(1) = f(2) = 5 et f(3) = 6. Donner $f^{-1}(\{5\}), f^{-1}(\{6\}) \text{ et } f^{-1}(\mathbb{N}).$
- **2.** Donner $\exp^{-1}(\mathbb{R})$ et $\exp^{-1}(\mathbb{R}_+)$.
- **3.** Soit f définie de E vers F, A une partie de E, et B une partie de F. Comparer $f^{-1}(f(A))$ à A, et comparer $f(f^{-1}(B))$ à B.

DÉFINITION

Soit f une application de E vers F. Soit A une partie de E et B une partie de F.

- * Restriction de f à A : c'est l'application $\left|\begin{array}{ccc} f_{|_A} & : & A \longrightarrow F \\ & x \longmapsto f(x) \end{array}\right|$
- * g est un prolongement de f si f est une restriction de g
- $*\ \textit{Si}\ f(E) \subset B, \ \textit{la}\ \textbf{corestriction}\ \textbf{de}\ f\ \grave{\textbf{a}}\ B\ \textit{est}\ \textit{l'application}\ \bigg|\ \begin{array}{c} f_{|^B}\ :\ E\ \longrightarrow\ B\\ x\ \longmapsto\ f(x) \end{array}$
- $*\ \mathit{Si}\ f(A) \subset B, \ \mathit{on\ note}\ f_{|_A}\ \mathit{l'application\ de}\ A\ \mathit{vers}\ B\ \mathit{qui\ est\ la\ corestriction\ de}\ f_{|_A}\ \grave{\mathsf{a}}\ B$

Pratique 8:

La valeur absolue est définie de \mathbb{R} dans \mathbb{R} . Quelle est son image? sa restriction à \mathbb{R}_+ ? sa restriction à \mathbb{R}_+ corestreinte à \mathbb{R}_+ ?

II.3 Composition

DÉFINITION

Soit E, F et G trois ensembles, et soit $f: E \to F$ et $g: F \to G$, deux applications. La composée $g \circ f$ de f par g est définie de E vers G par : $\forall x \in E$, $(g \circ f)(x) = g(f(x))$

Même dans le cas où $f \circ g$ a un sens, on n'a pas en général $f \circ g = g \circ f!!$

Proposition: La composition est toujours associative.

8▶

Pratique 9:

- **1.** Soit $f: E \to F$. Que sont $f \circ \mathrm{Id}_E$ et $\mathrm{Id}_F \circ f$?
- **2.** Soit f définie de \mathbb{R} vers \mathbb{R} par $x \mapsto x + 1$.

Pour tout naturel n, calculer f^n (au sens de la composition).

- 3. Écrire $\begin{vmatrix} f : [0,1] \longrightarrow \mathbb{R} \\ x \longmapsto \exp(\sqrt{1-x^2}) \end{vmatrix}$ comme la composée de trois applications. 4. Même chose avec : $\begin{vmatrix} f : \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x} + \frac{1}{x} \end{vmatrix}$ puis avec : $\begin{vmatrix} f : \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{\sqrt{1+x^2}} \end{vmatrix}$

II.4 Injectivité

DÉFINITION

Soit $f: E \to F$. f est **injective** si tout élément de F a <u>au plus un antécédent</u> dans E par f. Ainsi: pour tout g de F, l'équation g = f(x) d'inconnue g a au plus une solution dans g.

Exemple:

Si
$$A \subset E$$
, $\begin{vmatrix} f: A \longrightarrow E \\ x \longmapsto x \end{vmatrix}$ s'appelle l'injection canonique de A dans E .

Proposition

 $f: E \to F$ est injective si, et seulement si, $: \forall (x_1, x_2) \in E^2, \ [f(x_1) = f(x_2) \Longrightarrow x_1 = x_2]$ Ou par contraposée $: \forall (x_1, x_2) \in E^2, \ [x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)].$

9▶

Proposition

- (1) La composée de deux injections est une injection.
- (2) Inversement, si $g \circ f$ est injective, alors f est injective.

10▶

Pratique 10:

- 1. Dessiner trois applications de $E = \{1; 2; 3\}$ vers $F = \{1; 2; 3; 4\}$, deux injectives, l'autre pas. Peut-on faire de même avec $F = \{1; 2\}$?
- 2. Parmi les fonctions définies de \mathbb{R} vers \mathbb{R} , dire lesquelles sont injectives :

(a)
$$x \mapsto x^2$$
 (b) $x \mapsto x^3$ (c) $x \mapsto e^{x+2}$ (d) $x \mapsto \cos(x+1)$

Comment le «voir » à partir de leurs graphes?

II.5 Surjectivité

DÉFINITION

Soit $f: E \to F$. f est surjective si tout élément de F a <u>au moins un antécédent</u> dans E par f. Ainsi: pour tout g de F, l'équation g = f(x) d'inconnue g a au moins une solution dans E.

PROPOSITION: $f: E \to F$ est surjective si, et seulement si, f(E) = F.

| f induit ainsi toujours une surjection de E sur f(E) (regarder $f_{|f(E)}$).

PROPOSITION

- (1) La composée de deux surjections est une surjection.
- (2) Inversement, si $g \circ f$ est surjective, alors g est surjective.

12▶

Pratique 11:

- 1. Dessiner trois applications de $E = \{1; 2; 3\}$ vers $F = \{1; 2\}$, deux surjectives , l'autre pas. Peut-on faire de même avec $F = \{1; 2; 3; 4\}$?
- 2. Parmi les fonctions définies de \mathbb{R} vers \mathbb{R} , dire lesquelles sont surjectives :
- (a) $x \mapsto x^2$ (b) $x \mapsto x^3$ (c) $x \mapsto \ln((x^2 + 1)e^x)$ (d) $x \mapsto x \cos x$

Comment le «voir » à partir du graphe?

II.6 Bijectivité

DÉFINITION

Soit $f: E \to F$

f est bijective (ou est une bijection) si tout élément de F a un et un seul antécédent dans E par f.

Autrement dit : f est bijective si, et seulement si, f est injective et surjective.

Ainsi, pour tout y de F, l'équation y=f(x) d'inconnue x a exactement une solution dans E. On peut alors poser : $x=f^{-1}(y)$, ce qui définit l'application f^{-1} de F vers E, appelée application réciproque (ou inverse) de f. Enfin : $f \circ f^{-1} = \operatorname{Id}_F$ et $f^{-1} \circ f = \operatorname{Id}_E$

| Si f est injective de E vers F, alors f induit une bijection de E sur f(E).

13▶

PROPOSITION

- (1) La composée $g\circ f$ de deux bijections est une bijection ; dans ce cas : $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$
- (2) Si $g \circ f$ est bijective, alors f est injective et g est surjective.
- (3) Soit $f: E \to F$ et $g: F \to E$.

Si $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$, alors f et g sont bijectives, $f^{-1} = g$ et $g^{-1} = f$.

On retrouve ainsi que si f est bijective, alors f^{-1} l'est aussi et son inverse est $f:(f^{-1})^{-1}=f$

14▶

Pratique 12:

- 1. Donner trois applications de $E = \{1; 2; 3\}$ vers $F = \{2; 3; 4\}$, deux bijectives, l'autre pas. Peut-on faire de même avec $F = \{1; 2; 3; 4\}$ ou $F = \{2; 3\}$?
- 2. Parmi les fonctions définies de \mathbb{R} vers \mathbb{R} , dire lesquelles sont bijectives :
- (a) $x \mapsto x^2$ (b) $x \mapsto x^3$ (c) $x \mapsto x \cos x$

Comment le «voir » à partir de leurs graphes?

III Relation binaire sur un ensemble

III.1 Définitions

• Une relation binaire \mathcal{R} sur E est une relation qui admet E pour ensemble de départ et ensemble d'arrivée; elle est caractérisée par son graphe : $G_{\mathcal{R}} = \{(x, y) \in E^2 \mid x \mathcal{R} y\}$.

Exemples:

- $* \leq, >, =$ sont des relations binaires sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
- * La divisibilité est une relation binaire sur \mathbb{N} .
- * L'orthogonalité $\bot,$ le parallélisme $\|$ définissent des relations binaires sur l'ensemble des droites du plan.
- * L'inclusion définit une relation binaire sur $\mathcal{P}(E)$.

Une relation binaire \Re sur E est dite :

- réflexive si : $\forall x \in E, x \Re x$ (tout élément de E est en relation avec lui-même)
- symétrique si : $\forall (x,y) \in E^2$, $[x \mathcal{R} y \Longrightarrow y \mathcal{R} x]$ (graphe symétrique)
- antisymétrique si : $\forall (x,y) \in E^2$, $[(x \mathcal{R} y \text{ et } y \mathcal{R} x) \Longrightarrow x = y]$
- transitive si : $\forall (x, y, z) \in E^3$, $[(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z]$.

Seule l'égalité sur E est à la fois symétrique et antisymétrique!

III.2 Relation d'équivalence

DÉFINITION

- * Une relation binaire \Re sur E est une relation d'équivalence si elle est :
 - 1) réflexive, 2) symétrique, 3) transitive.
- * Si $x \mathcal{R} y$, on dit que x est y sont équivalents modulo \mathcal{R} . On écrit aussi : $x \equiv y$ $[\mathcal{R}]$
- * Soit x un élément de E : la classe d'équivalence de x (modulo \mathbb{R}) est l'ensemble des y en relation avec x. On la note : $Cl(x) = \bar{x} = \{ y \in E \mid x \, \mathbb{R} \, y \}$

Pratique 13:

- 1. Parmi les relations binaires données en exemples, donner les relations d'équivalence.
- **2.** Donner les classes d'équivalence pour l'égalité sur un ensemble E.
- 3. On définit sur $\mathbb N$ la relation de congruence modulo 2 par :

$$p \equiv q$$
 [2] si, et seulement si, $p - q$ est multiple de deux.

Vérifier qu'il s'agit d'une relation d'équivalence.

Quelle est la classe d'équivalence de 0, de 1? Y en-a-t-il d'autres?

4. Même chose avec la congruence modulo 3.

Théorème

Soit \Re une relation d'équivalence sur E.

L'ensemble des classes d'équivalence modulo ${\mathfrak R}$ forme une partition de E :

- a) aucune classe d'équivalence n'est vide
- b) deux classes d'équivalence sont disjointes ou égales
- c) leur réunion est égale à E.

Ainsi, chaque élément x d'une classe d'équivalence C en est un représentant : C = Cl(x)

15▶

III.3 Relation d'ordre

- DÉFINITION
 - * Une relation binaire \Re sur E est une relation d'ordre si elle est :
 - 1) réflexive, 2) <u>antisymétrique</u>, 3) transitive.
 - * le couple (E, \mathbb{R}) est alors dit : ensemble ordonné.
 - * x est y sont dits comparables (suivant \mathbb{R}) si $x \mathbb{R} y$ ou $y \mathbb{R} x$; sinon, ils sont non comparables.
 - * Si tous les éléments de E sont comparables, \Re est une relation d'ordre total; sinon, c'est une relation d'ordre partiel.

Pratique 14:

- 1. Parmi les relations binaires données en exemples, donner celles qui sont des relations d'ordre. Préciser si l'ordre est partiel ou total.
- **2.** Montrer que si \mathcal{R} est une relation d'ordre sur E, alors \mathcal{R}' , obtenue en symétrisant le graphe de \mathcal{R} , est aussi une relation d'ordre sur E.
- Relation d'ordre et parties :

THÉORÈME DÉFINITION:

Soit F une partie d'un ensemble ordonné (E, \leq) .

- * F est majorée s'il existe a dans E tel que : $\forall x \in F$, $x \leq a$. (a est un majorant de F)
- * F est minorée s'il existe a dans E tel que : $\forall x \in F$, $x \geqslant a$. (a est un minorant de F)
- *F est bornée si F est majorée et minorée.
- * F admet un \max imum s'il existe un majorant de F qui appartient à F. Il est alors unique, noté $\max F$.
- * F admet un minimum s'il existe un minorant de F qui appartient à F.

 Il est alors unique, noté $\min F$.
- * F admet une **borne** supérieure si l'ensemble de ses majorants admet un plus petit élément. C'est alors la borne supérieure de F, notée $\sup F$. Si $\max F$ existe alors $\max F = \sup F$.
- * F admet une **borne inférieure** si l'ensemble de ses minorants admet un plus grand élément. C'est alors la borne inférieure de F, notée $\inf F$. Si $\min F$ existe alors $\min F = \inf F$.

Pratique 15:

- 1. Dans (\mathbb{Z}, \leq) , éléments remarquables de $F_1 = \{2; 3; 4\}$? de $F_2 = \mathbb{N}^*$? de $F_3 = \{3k\}_{k \in \mathbb{Z}}$?
- **2.** Dans (\mathbb{R}, \leq) , idem avec $F_1 = [0, 1]$? $F_2 = [0, 2] \cup [3, +\infty[$? $F_3 = [-\infty, \pi[$? $F_4 = [0, 1] \cap \mathbb{Q}$?
- **3.** Dans $(\mathcal{P}(\{1;2;3\}),\subset)$, idem avec $F_1 = \{\emptyset\}$? $F_2 = \{\{1\}\}$? $F_3 = \{\{1\};\{2\}\}$?
- Relation d'ordre et applications :

DÉFINITION

* Soit (E, \leq) un ensemble ordonné.

On appelle relation d'ordre strict sur E associée à \leq la relation < définie par :

$$\forall (x,y) \in E^2, [x < y \iff (x \leqslant y \text{ et } x \neq y)].$$

* Soit (E, \leq) et (F, \leq) deux ensembles ordonnés, et f une fonction de E vers F.

f est croissante si: $\forall (x,y) \in E^2$, $[x \leq y \Longrightarrow f(x) \leq f(y)]$

f est décroissante $si: \forall (x,y) \in E^2$, $[x \leq y \Longrightarrow f(x) \succeq f(y)]$

f est monotone si f est croissante ou décroissante.

On obtient les définitions de stricte croissance, stricte décroissance et stricte monotonie en remplaçant toutes les inégalités par les inégalités strictes correspondantes.

Exemple:

Une fonction définie sur un intervalle de \mathbb{R} , à valeurs réelles, et strictement monotone, est injective.

La réciproque est fausse!

PROPOSITION

Soit E un ensemble et (F, \leqslant) un ensemble ordonné.

Sur $F^E = \mathfrak{F}(E,F)$, la relation \leq définie par : $[f \leq g \text{ si, et seulement si, } \forall x \in E, f(x) \leqslant g(x)]$ est une relation d'ordre.

Pratique 16:

- 1. Le vérifier. L'ordre est-il total ou partiel?
- 2. On aura des inégalités classiques entre fonctions à connaître par cœur. Notamment :
- $(1) \ \forall x \in]-1, +\infty[, \ln(1+x) \le x,$
- $(2) \ \forall x \in \mathbb{R}, \ |\sin x| \leqslant |x|,$
- (3) $\forall x \in [0, \pi/2], \frac{2}{\pi}x \leqslant \sin(x) \leqslant x.$

Comment démontre-t-on cela?

SAVOIR...

- (1) ... manipuler les opérations ensemblistes
- (2) ... démarrer une preuve :
 - pour montrer $A \subset B$, écrire « soit $x \in A...$ » et terminer par « ... $x \in B$ »
 - pour montrer une propriété qui commence par $\forall x \in A..., \ écrire \ \ (soit \ x \in A...)$
 - pour montrer une égalité entre ensembles, procéder par double inclusion
 - pour traduire $x \in f(A)$, écrire « il existe $a \in A$ tel que x = f(a) »
 - pour traduire $x \in f^{-1}(B)$, écrire $f(x) \in B$
 - pour montrer f injective sur E, écrire « soit $(x,y) \in E^2$ tel que f(x) = f(y) » et terminer par « ... x = y »
 - pour montrer $f: E \to F$ surjective, écrire « soit $y \in E$ » et terminer par « ... y = f(x) » pour un x à construire
- (3) ... les définitions d'injectivité, surjectivité et bijectivité
- (4) ... utiliser sans confusion la notation f^{-1}
- (5) ... ce qu'est une relation d'équivalence, savoir qu'elle sert à grouper les éléments d'un ensemble suivant un critère, et avoir en tête les différents exemples
- (6) ... ce qu'est une relation d'ordre, partiel ou total, et avoir en tête les différents exemples

THÉORÈMES et PROPOSITIONS

... outils pour ...

Injections (caractérisation, composée d'injections, composée injective) $problèmes\ d' (unicit\'e)$ Surjections (idem) $problèmes\ d' (existence)$ Bijections (idem) $problèmes\ d' (existence)$ Théorème des classes d'équivalence (existence) (existence)