PCC104 - Projeto e Análise de Algoritmos

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

- Classe NP-Completo
 - Redutibilidade em Tempo Polinomial
 - Teorema de Cook
- Reduções Entre Problemas
 - 3-SAT \leq_p Clique
 - Clique≤_pCobertura de Vértices
 - Ciclo Hamiltoniano \leq_p Caixeiro Viajante
 - Cobertura de Vértices \leq_p Ciclo Hamiltoniano
 - 3-SAT \leq_p Soma de Subconjuntos

Projeto e Análise de Algoritmos

Fonte

Este material é baseado nos livros

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. The MIT Press, 3rd edition, 2009.
- S. Halim. Competitive Programming. 3rd Edition, 2013.
- ▶ Ian Parberry and William Gasarch. *Problems on Algorithms*. Second Edition, 2002.
- ▶ Ian Parberry Lecture Notes on Algorithm Analysis and Complexity Theory. Fourth Edition, 2001.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Definição Informal

Informalmente, se um problema está na classe NP-Completo, ele está em NP e é "tão difícil" quanto qualquer problema em NP.

Os problemas da classe NPC possuem uma estreita relação entre si, de modo que se um deles for resolvido em tempo polinomial, todos o serão, e consequentemente, P=NP.

Complexidade

Existe uma forte corrente de pensamento que acredita que os problemas NP-Completos são intratáveis, uma vez que não existe avanço significativo na direção contrária.

Desta forma, P e NP seriam diferentes, mas não é possível concluir nada.

Em certo sentido, os problemas NP-Completos são os mais difíceis em NP.

Uma forma de comparar a dificuldade relativa entre problemas é a redutibilidade em tempo polinomial.

Definição Formal

Um problema de decisão Q é NP-Completo se:

- $Q \in \mathsf{NP};$
- ② Q' é polinomialmente redutível a Q para todo $Q' \in NP$.

Se é descoberto um algoritmo determinístico polinomial para um problema NP-Completo, ele se torna um problema P, e de acordo com as propriedades acima, todos os outros problemas em NPC também o serão.

As pesquisas sobre P vs. NP se concentram nos problemas NP-Completos por esse motivo.

NP-Difícil

Se um problema satisfaz a propriedade 2, mas não necessariamente a propriedade 1, este pertence à classe NP-Difícil.

Uma possível relação entre P, NP e NP-Completo. P e NPC seriam contidas em NP, e $P \land NPC = \emptyset$.

Redutibilidade em Tempo Polinomial

Um problema π_1 pode ser reduzido a um problema π_2 se qualquer instância de π_1 puder ser "facilmente reformulada" como uma instância de π_2 : a resposta obtida por π_2 deve ser idêntica à que seria obtida por π_1 .

O algoritmo de redução deve ser polinomial.

Se um problema π_1 é redutível a um problema π_2 , então π_1 não é mais difícil que π_2 .

Com efeito, π_2 é considerado pelo menos tão difícil quanto o π_1 , dentro de um fator polinomial.

Redutibilidade em Tempo Polinomial

Redutibilidade em Tempo Polinomial

Por exemplo, o problema de resolver uma equação linear se reduz ao problema de resolver uma equação quadrática:

As instâncias do tipo ax + b = 0 são transformadas em $0x^2 + ax + b = 0$.

Quando um problema π_1 é polinomialmente reduzível a um problema π_2 denotamos por $\pi_1 \leq_p \pi_2$.

Redutibilidade e Linguagens

Os mesmos conceitos se aplicam à linguagens:

- lacktriangle Uma linguagem L_1 pode ser transformada em uma linguagem L_2 ;
- A redução deve ser computada por uma máquina de Turing polinomial;
- ightharpoonup Cadeias de símbolos só pertencem a L_1 se pertencerem a L_2 ;
- Consequentemente L_1 e L_2 pertencem à mesma classe de complexidade.

Stephen Arthur Cook

- Matemático;
 - Cientista da Computação;
- Professor da Universidade de Toronto;
- Pai da Teoria da Complexidade Computacional
 - Formalizou a noção de redução em tempo polinomial;
 - Formalizou o conceito de NP-Completo;
 - Identificou o primeiro problema NP-Completo;
 - Autor do Teorema de Cook.
- Pelo teorema, recebeu o Prêmio Turing em 1982.

Definição

A definição de problemas NP-Completos é de certa forma "recursiva". Então qual é o caso base? Qual é o problema NP-Completo original?

SAT

O Problema de Satisfabilidade Booleana (SAT) foi o primeiro problema caracterizado como NP-Completo.

Dada uma expressão lógica com n variáveis booleanas e m conectivos lógicos NOT (¬), AND (\land) e OR (\lor), é necessário determinar se há uma atribuição satisfatória de valores às variáveis, ou seja, que resulte em valor 1 (ou verdadeiro).

O **Teorema de Cook** nos diz que este problema de decisão é NP-Completo.

Histórico

O Teorema de Cook (1971) também é conhecido como Teorema de Cook-Levin, por também ser atribuído independentemente ao russo/americano Leonid Levin.

Levin publicou em 1973 um artigo que considerava problemas de busca, provando haver 6 **problemas universais** (equivalentes aos NP-Completos), embora existam menções em anos anteriores a este trabalho.

O Teorema de Cook, descrito em um artigo de pouco mais do que 7 páginas, define o primeiro problema NP-Completo: o problema de satisfabilidade booleana.

Definição

Resumidamente, Cook definiu uma linguagem L_{SAT} e também uma linguagem geral de problemas NP, reconhecida por uma Máquina de Turing não determinística polinomial genérica.

Posteriormente, foi provado que todas as linguagens L de problemas NP se reduzem a L_{SAT} , logo, a Máquina de Turing não determinística polinomial reconhece L_{SAT} .

Satisfazendo-se as propriedades exigidas, provou que SAT é o primeiro problema NP-Completo.

Problemas Intratáveis

NP-Completo

Em 1971, Richard Karp identificou os primeiros 21 problemas da classe e contribuiu para o desenvolvimento da teoria da NP-Completude.

Posteriormente, centenas de outros problemas foram identificados por outros pesquisadores.

Esquema da prova dos problemas NP-Completos.

Problemas Intratáveis

O livro da capa preta

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of Np-Completeness. W. H. Freeman & Co., New York, NY, USA.

Foi o primeiro livro a tratar exclusivamente de NP-completude e intratabilidade computacional. Apresenta um apêndice fornecendo um compêndio exaustivo dos problemas NP-completos.

Considerado como um clássico: em um estudo de 2006, o CiteSeer listou o livro como a referência mais citada na literatura de ciência da computação.

3-SAT

O 3-SAT é um caso especial do SAT, em que cada cláusula contém exatamente 3 literais:

Adicionalmente, a expressão está na Forma Normal Conjuntiva (CNF): grupamentos AND de cláusulas, cada uma sendo um OR de um ou mais literais.

$$E = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_4)$$

O 3-SAT é um problema NP-Completo, uma vez que SAT \leq_p 3-SAT.

Clique

Um Clique em um grafo não orientado G=(V,E) é um subgrafo completo, ou seja, cada vértice está conectado a todos os demais.

O problema de Clique Máximo consiste em detectar um clique de tamanho máximo em ${\cal G}.$

A versão de decisão deste problema pergunta se existe um clique de tamanho k no grafo G.

 $\label{eq:Grafo} \mbox{Grafo } G \mbox{ e um clique de tamanho } k=4 \mbox{ no mesmo grafo}.$

Verificação da Propriedade 1

Dado um grafo G=(V, E), e um conjunto V' de vértices da solução, verificamos se cada par de vértices u, v de V' também pertence a V, e se a aresta $\{u, v\}$ pertence a E.

Esta verificação pode ser feita em tempo polinomial, e se de fato todos os vértices e arestas existirem, a solução é válida.

Portanto, Clique \in NP.

Verificação da Propriedade 2

Como vimos anteriormente, uma instância 3-SAT é uma expressão booleana ϕ em que cada cláusula possui exatamente 3 literais distintos.

Para a redução, construímos um grafo G=(V,E), tal que para cada cláusula $C_r=\{l_1^r\cup l_2^r\cup l_3^r\}$ em ϕ inserimos uma tripla de vértices v_1^r , v_2^r e v_3^r em V.

Arestas são inseridas entre dois vértices v_i^r e v_j^s de acordo com os seguintes critérios:

- $ightharpoonup v_i^r$ e v_j^s estão em diferentes triplas (r \neq s);
- ▶ Seus literais correspondentes são coerentes ($i.~e.,~l_i^r$ não é a negação de l_i^s).

O grafo pode ser construído em tempo polinomial.

Exemplo de construção do grafo.

Verificação da Propriedade 2

Suponha que ϕ possui uma atribuição satisfatória: toda cláusula deve ter pelo menos um literal com valor 1 para que a atribuição seja satisfatória.

Podemos escolher o vértice "verdadeiro" de cada cláusula/tripla, pois eles serão adjacentes entre si – um literal e sua negação não são adjacentes.

Formarão um Clique, portanto.

Uma atribuição que satisfaz a fórmula é $x_2 = 0$, $x_3 = 1$ e x_1 pode ser 0 ou 1. O clique de tamanho 3 corresponde às variáveis principais.

Verificação da Propriedade 2

3-SAT e Clique obtêm as mesmas respostas para a mesma instância: se ϕ não possuir uma atribuição satisfatória, não haverá clique em G.

O caso do grafo apresentado é restrito, dada a sua estrutura em triplas, mas é suficiente.

Se houver um algoritmo de tempo polinomial que resolva Clique em grafos gerais, ele também resolverá em grafos restritos.

Como o algoritmo é polinomial, Clique ∈ NP-Completo.

Clique≤_pCobertura de Vértices

Cobertura de Vértices

Uma Cobertura de Vértices (ou Conjunto Dominante) em um grafo não orientado G=(V, E) é um subconjunto V' de V tal que para cada aresta $\{u, v\}$ do grafo G, u ou v pertencem a V'.

O problema de Cobertura de Vértices Mínima (ou Conjunto Dominante Mínimo) consiste em encontrar a cobertura de vértices de um grafo que requer o menor número de vértices.

A versão de decisão do problema de cobertura de vértices pergunta se existe em um grafo G uma cobertura de vértices (ou conjunto dominante) de tamanho k.

Clique \leq_p Cobertura de Vértices

Grafo de exemplo e uma possível cobertura de vértices (não mínima).

Clique≤_pCobertura de Vértices de Vértic

Verificação da Propriedade 1

Para um grafo G=(V, E), uma solução consiste em um conjunto V' de vértices e um inteiro k.

Inicialmente, conferimos se |V'| = k.

Posteriormente, conferimos para cada aresta $\{u, v\}$ de G, se u ou v pertencem a V'.

Caso todos os testes sejam satisfeitos, temos uma solução válida.

A verificação pode ser realizada em tempo polinomial.

Portanto, Cobertura de Vértices ∈ NP.

Clique≤_pCobertura de Vértices

Verificação da Propriedade 2

A redução se baseia na noção de grafo complementar.

Para um grafo simples G=(V, E), o seu grafo complementar é $\overline{G}=(V, \overline{E})$, em que as arestas de \overline{E} são todas as que não pertencem a E.

Tomamos como entrada o grafo G e a cardinalidade do clique k.

Calculamos o complemento \overline{G} .

O resultado é o grafo \overline{G} e a cardinalidade da cobertura |V|-k.

O grafo G tem um clique de tamanho k se e somente se o grafo \overline{G} tem uma cobertura de vértices de tamanho |V|-k.

Clique \leq_p Cobertura de Vértices

Clique V' em G e cobertura de vértices V-V' em \overline{G} .

Clique \leq_p Cobertura de Vértices

Verificação da Propriedade 2

- ightharpoonup Todos os pares de vértices em V' são adjacentes, pois trata-se de um clique;
- ▶ Uma aresta qualquer $\{u, v\}$ pertencente a \overline{E} não pertence a E, logo, u ou v não pertencem a V'.
- Equivalentemente, pelo menos um entre u e v está em V V'
 Portanto, a aresta {u, v} está coberta por V-V'.
- ▶ Todas as arestas de E são cobertas por V V', implicando em uma cobertura de tamanho |V| k em \overline{G} .

Logo, Clique e Cobertura de Vértices obtêm as mesmas respostas para a mesma instância, e desta forma, Cobertura de Vértices ∈ NP-Completo.

Ciclo Hamiltoniano

Um ciclo hamiltoniano em um grafo não ponderado G=(V,E) consiste em decidir se existe um caminho fechado, ou seja, uma sequência de visitação de vértices e arestas tal que todos os vértices são visitados uma única vez e que ao final retorne ao vértice inicial.

Problema do Caixeiro Viajante

O problema do Caixeiro Viajante (PCV) em um grafo ponderado completo $G{=}(V,\,E)$ consiste em encontrar um ciclo Hamiltoniano em G tal que a soma dos pesos das arestas utilizadas seja minimizada.

A versão de decisão deste problema pergunta se existe um ciclo Hamiltoniano em G cuja soma dos pesos das arestas utilizadas seja k.

Exemplo de instância do Problema do Caixeiro Viajante e solução correspondente.

Verificação da Propriedade 1

A solução para o problema é uma sequência de $\left|V\right|$ vértices.

A verificação determina se cada vértice foi visitado exatamente um vez e se a totalização dos pesos das arestas utilizadas é no máximo k.

A verificação pode ser realizada em tempo polinomial, portanto, Caixeiro Viajante \in NP.

Verificação da Propriedade 2

Um grafo G=(V, E) é uma instância para o ciclo Hamiltoniano.

A partir dele construímos uma instância para o Caixeiro Viajante como a seguir.

Seja G'=(V', E') um grafo completo, definimos a função de custo como:

- c(i,j)=0, se $\{i,j\} \in E$;
- c(i,j)=1, se $\{i,j\} \ni E$.

Como G' não é orientado e não possui laços, c(i,i)=1.

Ciclo Hamiltoniano \leq_p Caixeiro Viajante

Grafo G original e grafo ponderado G^\prime construído a partir de G.

Ciclo Hamiltoniano \leq_p Caixeiro Viajante

Verificação da Propriedade 2

A construção do grafo G' pode ser feita em tempo polinomial.

O grafo G possui um ciclo Hamiltoniano se e somente se G' possui uma viagem do caixeiro viajante com custo 0.

Suponha que G tem um ciclo Hamiltoniano, então todas as arestas do ciclo existem em G' e possuem custo 0, formando uma viagem em G' com custo 0.

Reciprocamente, se G^\prime possui uma viagem com custo zero, as respectivas arestas existem em G, formando um ciclo.

Ciclo Hamiltoniano e Caixeiro Viajante obtêm as mesmas respostas para a mesma instância.

Logo, o Problema do Caixeiro Viajante ∈ NP-Completo.

Dúvidas?

3-SAT

Definição

O 3-SAT é um caso especial do SAT, em que cada cláusula contém exatamente 3 literais.

Adicionalmente, a expressão está na Forma Normal Conjuntiva (CNF): grupamentos AND de cláusulas, cada uma sendo um OR de um ou mais literais.

$$E = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_4)$$

O 3-SAT é um problema NP-Completo, uma vez que SAT \leq_p 3-SAT.

Verificação da Propriedade 1

A solução consiste no conjunto de valores a serem atribuídos às variáveis.

Para verificar uma solução para o 3-SAT, simplesmente substituímos as variáveis pelos valores dados na solução e avaliamos o resultado, o que pode ser feito em tempo polinomial.

Se a atribuição é satisfatória, a solução é válida, portanto, 3-SAT∈NP.

Verificação da Propriedade 2

A redução é feita em três etapas: progressivamente, cada passo transforma a entrada ϕ , deixando-a próxima da 3-CNF.

O primeiro passo consiste em construir a árvore binária de análise para a expressão ϕ (a associatividade pode ser utilizada para garantir que cada nó terá apenas dois filhos).

Os nós internos são os conectivos lógicos e as folhas são os literais.

Adicionamos uma variável y_i para a saída de cada nó interno.

$$\phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

Descrição

Descrição

$$\phi^1 = y_1 \wedge (y_1 \leftrightarrow (y_2 \wedge \neg x_2))$$

Descrição

$$\phi^1 = y_1 \wedge (y_1 \leftrightarrow (y_2 \wedge \neg x_2))$$
$$\wedge (y_2 \leftrightarrow y_3 \vee y_4)$$

Descrição

$$\phi^{1} = y_{1} \wedge (y_{1} \leftrightarrow (y_{2} \wedge \neg x_{2}))$$
$$\wedge (y_{2} \leftrightarrow y_{3} \vee y_{4})$$
$$\wedge (y_{3} \leftrightarrow (x_{1} \rightarrow x_{2}))$$

Descrição

$$\phi^{1} = y_{1} \wedge (y_{1} \leftrightarrow (y_{2} \wedge \neg x_{2}))$$
$$\wedge (y_{2} \leftrightarrow y_{3} \vee y_{4})$$
$$\wedge (y_{3} \leftrightarrow (x_{1} \rightarrow x_{2}))$$
$$\wedge (y_{4} \leftrightarrow \neg y_{5})$$

Descrição

$$\phi^{1} = y_{1} \wedge (y_{1} \leftrightarrow (y_{2} \wedge \neg x_{2}))$$
$$\wedge (y_{2} \leftrightarrow y_{3} \vee y_{4})$$
$$\wedge (y_{3} \leftrightarrow (x_{1} \rightarrow x_{2}))$$
$$\wedge (y_{4} \leftrightarrow \neg y_{5})$$
$$\wedge (y_{5} \leftrightarrow (y_{6} \vee x_{4}))$$

Descrição

$$\phi^{1} = y_{1} \wedge (y_{1} \leftrightarrow (y_{2} \wedge \neg x_{2}))$$

$$\wedge (y_{2} \leftrightarrow y_{3} \vee y_{4})$$

$$\wedge (y_{3} \leftrightarrow (x_{1} \rightarrow x_{2}))$$

$$\wedge (y_{4} \leftrightarrow \neg y_{5})$$

$$\wedge (y_{5} \leftrightarrow (y_{6} \vee x_{4}))$$

$$\wedge (y_{6} \leftrightarrow (\neg x_{1} \leftrightarrow x_{3}))$$

Verificação da Propriedade 2

A expressão ϕ^1 obtida é uma conjunção de cláusulas ϕ^1_i cada qual com 3 literais.

O único requisito adicional é que cada cláusula seja um OR de literais.

Verificação da Propriedade 2

O segundo passo consiste em converter ϕ^1 para a forma normal conjuntiva.

Constrói-se a tabela verdade para cada cláusula, avaliando-se cada combinação de atribuições possível.

Usando as entradas da tabela avaliadas como 0, construímos uma expressão na forma normal disjuntiva — um OR de ANDs, equivalente a $\neg\phi_i^1$.

y ₁	y ₂	X ₂	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

$$(y_{\scriptscriptstyle 1} \land y_{\scriptscriptstyle 2} \land x_{\scriptscriptstyle 2}) \lor (y_{\scriptscriptstyle 1} \land \neg y_{\scriptscriptstyle 2} \land x_{\scriptscriptstyle 2}) \lor (y_{\scriptscriptstyle 1} \land \neg y_{\scriptscriptstyle 2} \land \neg x_{\scriptscriptstyle 2}) \lor (\neg y_{\scriptscriptstyle 1} \land y_{\scriptscriptstyle 2} \land \neg x_{\scriptscriptstyle 2})$$

Tabela verdade para uma das cláusulas do exemplo.

Verificação da Propriedade 2

Aplicando as leis de DeMorgan, obtemos a expressão na fórmula normal conjuntiva, que é equivalente a ϕ_i^1 original:

$$(\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2)$$

Convertemos cada cláusula ϕ_i^1 de ϕ^1 para a CNF, gerando ϕ^2 .

Verificação da Propriedade 2

O **terceiro passo** certifica que cada cláusula possui exatamente 3 literais distintos.

A partir de ϕ^2 criamos ϕ^3 utilizando variáveis auxiliares p e q.

Para cada cláusula C_i de ϕ^2 , incluímos as seguintes cláusulas em ϕ^3 :

- Se C_i tem 3 literais distintos, inclua como está;
- ▶ Se C_i tem dois literais $(l_1 \lor l_2)$, inclua $(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$;
- Se C_i tem apenas um literal (l_1) , inclua $(l_1 \lor p \lor q) \land (l_1 \lor p \lor \neg q) \land (l_1 \lor \neg p \lor q) \land (l_1 \lor \neg p \lor \neg q).$

Verificação da Propriedade 2

O número de variáveis e cláusulas adicionadas é polinomial, o tamanho de ϕ^3 é polinomial no tamanho de ϕ e cada um dos passos pode ser realizado em tempo polinomial.

As expressões ϕ^1 , ϕ^2 e ϕ^3 são equivalentes entre si.

SAT e 3-SAT obtêm as mesmas respostas para uma instância.

Logo, 3-SAT é um problema NP-Completo.

Cobertura de Vértices

Uma Cobertura de Vértices (ou Conjunto Dominante) em um grafo não orientado G=(V, E) é um subconjunto V' de V tal que para cada aresta $\{u, v\}$ do grafo G, u ou v pertencem a V'.

A versão de decisão do problema de cobertura de vértices pergunta se existe em um grafo G uma cobertura de vértices (ou conjunto dominante) de tamanho k.

Ciclo Hamiltoniano

Um ciclo hamiltoniano em um grafo não ponderado G=(V,E) consiste em decidir se existe um caminho fechado, ou seja, uma sequência de visitação de vértices e arestas tal que todos os vértices são visitados uma única vez e que ao final retorne ao vértice inicial.

Verificação da Propriedade 1

A solução para o problema é a sequência de $\left|V\right|$ vértices.

A verificação determina se de fato existe uma aresta entre cada par de vértices consecutivos e entre o vértice final e o inicial.

Caso todas as adjacências existam, a solução é válida.

A verificação pode ser realizada em tempo polinomial, portanto, Ciclo Hamiltoniano \in NP.

Cobertura de Vértices≤_pCiclo Hamiltoniano

Verificação da Propriedade 2

A partir de um grafo G=(V, E) e um inteiro k, construiremos um grafo G'=(V', E') que contem um ciclo Hamiltoniano somente se G possuir uma cobertura de vértices de tamanho k.

Para isso, usaremos um dispositivo que é um fragmento de grafo que impõe algumas propriedades.

Descrição

Para cada aresta $\{u, v\}$ do grafo G, o grafo G' conterá uma cópia deste dispositivo, denotada por w_{uv} .

Cada aresta em w_{uv} é denotada por $[u,\ v,\ i]$ ou $[v,\ u,\ i]$ em que $1{\le}{\rm i}{\le}6$

Cada dispositivo w_{uv} contém 12 vértices e 14 arestas.

Cobertura de Vértices≤_pCiclo Hamiltoniano

Verificação da Propriedade 2

A relação entre o dispositivo e o grafo G' é pré-determinada

- Apenas os vértices [u, v, 1], [u, v, 6], [v, u, 1], [v, u, 6] possuem arestas externas ao dispositivo;
- Qualquer ciclo Hamiltoniano em G' percorrerá as arestas do dispositivo;
- Só existem 3 casos.

Se o ciclo passar pelo vértice [u, v, 1], ele deve sair pelo vértice [u, v, 6] e visitar todos os vértices do dispositivo.

Ou visitar apenas os 6 vértices de [u, v, 1] a [u, v, 6].

Neste caso, o ciclo deverá entrar novamente no dispositivo para visitar os demais vértices.

De forma semelhante, se o ciclo entrar pelo vértice [v, u, 1], deverá sair pelo vértice [v, u, 6] e visitar todos os 12 vértices do dispositivo.

Ou os 6 vértices, de [v, u, 1] a [v, u, 6], conforme a figura anterior.

Verificação da Propriedade 2

Além dos vértices dos dispositivos, adicionamos a V' vértices seletores $s_1, s_2, s_3, \ldots, s_k$.

As arestas incidentes a vértices seletores serão utilizadas para selecionar os \boldsymbol{k} vértices da cobertura.

Cobertura de Vértices≤_pCiclo Hamiltoniano

Verificação da Propriedade 2

Existem ainda dois outros tipos de arestas em E'.

Para cada vértice \boldsymbol{u} pertencente a V, são arestas que unem pares de dispositivos.

Formando um caminho que possui todos os dispositivos correspondentes a arestas incidentes sobre u.

Os vértices incidentes a u são arbitrariamente ordenadas e então criamos um caminho passando por todos os dispositivos relacionados, adicionando os vértices a E'.

Verificação da Propriedade 2

Suponha que ordenamos os vizinhos de w como x, y e z.

Adicionamos as arestas $\{[w, x, 6], [w, y, 1]\}$ e $([w, y, 6], [w, z, 1]\}$.

Verificação da Propriedade 2

A idéia é: se selecionarmos um vértice u de G na cobertura de vértices, podemos "cobrir" todos os dispositivos relacionados às arestas incidentes a u através de um caminho em G.

Verificação da Propriedade 2

O segundo tipo de aresta une o primeiro e o último vértices de cada um desses caminhos a cada um dos vértices seletores.

Verificação da Propriedade 2

Pode ser provado que o tamanho de G' é polinomial no tamanho de G.

Consequentemente, G' pode ser construído em tempo polinomial.

São adicionados

- $ightharpoonup \leq 12|E|+|V|$ vértices;
- ightharpoonup 2|E|-|V| arestas;
- lacksquare O número total de arestas em G' é então \leq 16|E|+(2|V|-1)|V|.

Verificação da Propriedade 2

Por que funciona?

Suponha que G=(V, E) possui uma cobertura de vértices de tamanho k.

Formamos um ciclo Hamiltoniano em G incluindo as arestas a seguir para cada vértice u_i da cobertura de vértices

- ▶ Seja s_j um vértice seletor com $1 \le j \le k$.
- Sejam ainda u^i_j os vértices vizinhos de u_j , em uma ordenação arbitrária, com $1 \le i \le d(uj)$ e $1 \le j \le k$.

$$\{s_j, [u_j, u_j^{(i)}, 1] : 1 \le j \le k\}$$

$$\cup \{s_{j+1}, [u_j, u_j^{d(u_j)}, 6] : 11 \le j \le k - 1\}$$

$$\cup \{s_1, [u_j, u_k^{d(u_k)}, 6]\}.$$

Cobertura de Vértices≤_pCiclo Hamiltoniano

Verificação da Propriedade 2

Incluímos as arestas da forma $\{([u_j, u_j^{(i)}, 6], [u_j, u_j^{(i+1)}, 6]): 1 \le i \le d(j)\}$ que conectam os dispositivos.

Também incluímos as arestas dos dispositivos, de acordo com um dos 3 casos de visitação e se a aresta é coberta mais de uma vez.

O slide a seguite apresenta o que temos para o grafo de exemplo.

Cobertura de Vértices≤_pCiclo Hamiltoniano

- \triangleright (S₁, [w, x, 1]);
- \triangleright (S₁, [y, w, 6]);
- \triangleright (S₂, [y, x, 1]);
- \triangleright (S₂, [w, z, 6]);
- \triangleright ([y, x, 6], [y, w, 1]);
- \blacktriangleright ([w, y, 6], [w, z, 1]);
- \blacktriangleright ([w, x, 6], [w, y, 1]).

Cobertura de Vértices≤_pCiclo Hamiltoniano

Cobertura de Vértices \leq_p Ciclo Hamiltoniano

3-SAT

O 3-SAT é um caso especial do SAT, em que cada cláusula contém exatamente 3 literais. Adicionalmente, a expressão está na Forma Normal Conjuntiva (CNF): grupamentos AND de cláusulas, cada uma sendo um OR de um ou mais literais.

O 3-SAT é um problema NP-Completo, uma vez que SAT \leq_p 3-SAT.

Subset Sum

Dado um conjunto (ou multiconjunto) de números inteiros, determinar se há um subconjunto não vazio cuja soma seja exatamente s.

Verificação da Propriedade 1

A solução para o problema é um conjunto S, subconjunto de S.

Caso S' seja de fato um subconjunto de S, e a soma dos elementos de S' seja igual a t, a solução é válida.

A verificação pode ser realizada em tempo polinomial, portanto, Soma de Subconjuntos \in NP.

Verificação da Propriedade 2

Para transformarmos uma instância do 3-SAT, fazemos duas suposições simplificadoras sobre Φ :

- Nenhuma cláusula contém ao mesmo tempo uma variável e sua negação.
- Cada variável aparece em pelo menos uma cláusula. Caso contrário seria inútil uma atribuição para ela.

Verificação da Propriedade 2

Para cada variável x_i , são criados dois números em S.

Para cada cláusula C_j , são criados dois números em S.

Os números são representados na base 10, e cada um contém n+k dígitos.

Cada dígito corresponde a uma variável ou cláusula.

A base 10 impede o transporte de dígitos mais baixos para dígitos mais altos.

Cada dígito corresponde a uma variável ou cláusula.

Os k dígitos menos significativos são representam as cláusulas.

Os k dígitos mais significativos representam as variáveis.

O destino t tem valor 1 em cada dígito referente uma variável e valor 4 em cada dígito referente a uma cláusula.

		X ₁	x_2	X 3	C_1	C_2	C_3	C_4
V ₁	=	1	0	0	1	0	0	1
V'1	=	1	0	0	0	1	1	0
V ₂	=	0	1	0	0	0	0	1
v' ₂	=	0	1	0	1	1	1	0
V ₃	=	0	0	1	0	0	1	1
v'3	=	0	0	1	1	1	0	0
t	=	1	1	1	4	4	4	4

Para cada variável x_i , existem dois inteiros, v_i e v_i' em S.

Cada um tem valor 1 no dígito referente à variável correspondente e 0 nos dígitos de outras variáveis.

Se o literal x_i aparece na cláusula C_j , então o dígito que identifica C_j em v_i tem valor 1.

		X ₁	x_2	X 3	C_1	C_2	C_3	C_4
V ₁	=	1	0	0	1	0	0	1
V'1	=	1	0	0	0	1	1	0
V ₂	=	0	1	0	0	0	0	1
v'2	=	0	1	0	1	1	1	0
V ₃	=	0	0	1	0	0	1	1
V'3	=	0	0	1	1	1	0	0
t	=	1	1	1	4	4	4	4

Se o literal $\neg x_i$ aparecer na cláusula C_j , então o dígito identificado por C_j em x_i' tem valor 1.

Em todas os outros dígitos identificados por cláusulas, v_i e v_i' têm valor 0.

Todos os valores v_i e v_i' são diferentes.

Bits menos significativos são diferentes.

		X ₁	<i>x</i> ₂	X 3	C_1	C_2	C_3	C_4
V ₁	=	1	0	0	1	0	0	1
V'1	=	1	0	0	0	1	1	0
V ₂	=	0	1	0	0	0	0	1
v' ₂	=	0	1	0	1	1	1	0
V ₃	=	0	0	1	0	0	1	1
v'3	=	0	0	1	1	1	0	0
t	=	1	1	1	4	4	4	4

Para cada cláusula C_j , existem dois inteiros s_j e s_j' em S.

Cada s_j possui valor 1 no dígito identificado por C_i .

Cada s'_j possui valor 2 no dígito identificado por C_j .

Possuem valor 0 em todos os dígitos além do dígito identificado por C_j .

		X ₁	x ₂	X 3	C_1	C_2	C ₃	C_4
V ₁	=	1	0	0	1	0	0	1
V '1	=	1	0	0	0	1	1	0
V ₂	=	0	1	0	0	0	0	1
V'2	=	0	1	0	1	1	1	0
V 3	=	0	0	1	0	0	1	1
V'3	=	0	0	1	1	1	0	0
S ₁	=	0	0	0	1	0	0	0
S'1	=	0	0	0	2	0	0	0
S ₂	=	0	0	0	0	1	0	0
s'2	=	0	0	0	0	2	0	0
S ₃	=	0	0	0	0	0	1	0
s′ ₃	=	0	0	0	0	0	2	0
S ₄	=	0	0	0	0	0	0	1
s' ₄	=	0	0	0	0	0	0	2
	=	1	1	1	4	4	4	4

 $S=\{$ 1001001,1000110, 0100001, 0101110, 0010011, 0011100, 0001000, 0002000, 0000100, 0000200, 0000010, 0000020, 0000001, 0000002 $\}$ t=1114444.

			X ₁	<i>x</i> ₂	X 3	C_1	C_2	C_3	C_4
		=	1	0	0	1	0	0	1
	V'1	=	1	0	0	0	1	1	0
Ĺ	V ₂	=	0	1	0	0	0	0	1
I	v' ₂	=	0	1	0	1	1	1	0
ı	V 3	=	0	0	1	0	0	1	1
ı	V'3	=	0	0	1	1	1	0	0
ı	S ₁	=	0	0	0	1	0	0	0
ı	S'1	=	0	0	0	2	0	0	0
ı	S ₂	=	0	0	0	0	1	0	0
ı	s'2	=	0	0	0	0	2	0	0
ı	S 3	=	0	0	0	0	0	1	0
J	s′ ₃	=	0	0	0	0	0	2	0
	S ₄	=	0	0	0	0	0	0	1
	s' ₄	=	0	0	0	0	0	0	2
	t	=	1	1	1	4	4	4	4

$S=\{1001001,1000110,$
0100001, 0101110,
0010011, 0011100,
0001000, 0002000,
0000100, 0000200,
0000010, 0000020,
0000001, 0000002}
t = 1114444.
S' = v'1, v'2, v3;
Adiciona-se o valor das variáveis s_i e
s_i' para totalizar o valor 4 em cada
coluna.

		X ₁	x_2	X 3	C_1	C_2	C_3	C_4
V ₁	=	1	0	0	1	0	0	1
V '1	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
V '2	=	0	1	0	1	1	1	0
V 3	=	0	0	1	0	0	1	1
V'3	=	0	0	1	1	1	0	0
S ₁	=	0	0	0	1	0	0	0
s' ₁	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s′ ₂	=	0	0	0	0	2	0	0
S 3	=	0	0	0	0	0	1	0
s′3	=	0	0	0	0	0	2	0
S ₄	=	0	0	0	0	0	0	1
s' ₄	=	0	0	0	0	0	0	2

Verificação da Propriedade 2

Por que funciona?

Suponha que Φ possua uma atribuição satisfatória

Para cada variável x_i =1, incluímos, v_i em S', caso contrário incluímos v_i' ;

Em outras palavras, incluímos em S' os literais com valor 1.

Desta forma, teremos o valor 1 na soma de cada dígito referente às variáveis

Correspondendo ao valor dos dígitos de t.

Como cada cláusula é satisfeita, a soma de cada dígito correspondente é pelo menos 1;

Completamos a soma até quatro usando o valor das variáveis s_i e s_i' correspondentes.

Verificação da Propriedade 2

A transformação pode ser realizada em tempo polinomial.

O conjunto S possui 2n + 2k valores, cada qual com n + k dígitos.

Cada valor pode ser construído em tempo polinomial de n + k.

O destino t tem n+k dígitos, e é produzido em tempo constante.

Verificação da Propriedade 2

Se G possuir uma atribuição satisfatória, então Soma de Subconjuntos possui um subconjunto cuja soma seja t.

3-SAT e Soma de Subconjuntos obtêm as mesmas respostas para a mesma instância, logo, Soma de Subconjuntos \in NP-Completo.