- máme tři tyče: A, B a C.
- na tyči A je (podle velikosti)
 n kotoučů.
- úkol: přeskládat z A pomocí C na tyč B (zaps. n(A, B, C))
 bez porušení uspořádání

- máme tři tyče: A, B a C.
- na tyči A je (podle velikosti)
 n kotoučů.
- úkol: přeskládat z A pomocí C na tyč B (zaps. n(A, B, C))
 bez porušení uspořádání

Můžeme rozložit na fáze:

1. přeskládat n-1 kotoučů z **A** pomocí **B** na **C**.

- máme tři tyče: A, B a C.
- na tyči A je (podle velikosti)
 n kotoučů.
- úkol: přeskládat z A pomocí C na tyč B (zaps. n(A, B, C))
 bez porušení uspořádání

Můžeme rozložit na fáze:

- 1. přeskládat n-1 kotoučů z **A** pomocí **B** na **C**.
- 2. přeložit 1 kotouč z A na B

- máme tři tyče: A, B a C.
- na tyči A je (podle velikosti)
 n kotoučů.
- úkol: přeskládat z A pomocí C na tyč B (zaps. n(A, B, C))
 bez porušení uspořádání

Můžeme rozložit na fáze:

- 1. přeskládat n-1 kotoučů z **A** pomocí **B** na **C**.
- 2. přeložit 1 kotouč z A na B
- 3. přeskládat n-1 kotoučů z $\bf C$ pomocí $\bf A$ na $\bf B$

Příklad – Hanoiské věže – pokrač.

schéma celého řešení pro n=3:

Příklad – Hanoiské věže – pokrač.

schéma celého řešení pro n=3:

Příklad – Hanoiské věže – pokrač.

schéma celého řešení pro n=3:

Cesta mezi městy pomocí AND/OR grafů

města:

 $\mathbf{a}, \ldots, \mathbf{e} \ldots$ ve státě Sl a k ... hraniční přechody $\mathbf{u}, \ldots, \mathbf{z} \ldots$ ve státě T

hledáme cestu z a do z:

- cesta z a do hraničního přechodu
- cesta z hraničního přechodu do z

Cesta mezi městy pomocí AND/OR grafů – pokrač.

schéma řešení pomocí rozkladu na podproblémy = AND/OR graf

Celkové řešení = podgraf AND/OR grafu, který nevynechává žádného následníka AND-uzlu.

AND/OR graf a strom řešení

AND/OR graf = graf s 2 typy vnitřních uzlů – AND uzly a OR uzly

- AND uzel jako součást řešení vyžaduje průchod všech svých poduzlů
- OR uzel se chová jako bežný uzel klasického grafu

AND/OR graf a strom řešení

AND/OR graf = graf s 2 typy vnitřních uzlů – AND uzly a OR uzly

- AND uzel jako součást řešení vyžaduje průchod všech svých poduzlů
- OR uzel se chová jako bežný uzel klasického grafu

AND/OR graf a strom řešení

strom řešení T problému P s AND/OR grafem G:

- problém P je kořen stromu T
- ullet jestliže P je OR uzel grafu $G \Rightarrow právě jeden z jeho následníků se$ svým stromem řešení je v T
- jestliže P je AND uzel grafu $G \Rightarrow v$ šichni jeho následníci se svými stromy řešení jsou v T
- každý list stromu řešení T je cílovým uzlem v G