Point cloud generation w	with
1. With raw GAN	viui
2. With latent GAN (i.e	e., AE + GAN)
1. Raw GAN	
a) Architecture	
Generator (Decod	ler)
Innut 128	-> Linear 64 + ReLU> Linear 128 + ReLU> Linear 512 + ReLU
•	> Linear 1024 + ReLU> Linear 2048*3
Discoinsis et a (AE)	N
Discriminator (AE) Input 2048 x 3	
IIIput 2010 X 0	ENCODER
	Conv1D (2048, 64, kernel_size=1) + LeakyReLU>
	Conv1D (64, 128, kernel_size=1) + LeakyReLU>
	Conv1D (128, 256, kernel_size=1) + LeakyReLU>
	Conv1D (256, 256, kernel_size=1) + LeakyReLU>
	Conv1D (256, 512, kernel_size=1) + LeakyReLU>
	(output.shape = (512, 3)) > MaxPool(dim=-1) > (512,)
	DECODER
	> Linear(512, 128) + ReLU> Linear(128, 64) + ReLU>> Linear(64, 1) + Sigmoid
	(Fake or Real)
b) Loss	$J = -[t \log(y) + (1 - t) \log(1 - y)]$
For Discriminator	$J^D = -[sum_x (log(D(x)) + sum_z (log(1 - D(G(z))))],$
	where x real sample, z ~ p(z)

For Generator $ J^G = -J^D = [sum_x (log(D(x)) + sum_z (log(1 - D(G(z))))]] $	
d sum_x (log(D(x)) / d theta_G = 0	
A problem:	
If D is very good at distinguishing fake examples from real ones, D(G(z)) will be 0.	
Then sum_z (log(1 - D(G(z)))) = 0. Then the gradient d J^G / d theta_G = 0.	
Then the parameters will not be updated!	
That is, when Discriminator is too good, Generator has no chance to improve.	
Solution:	
The heuristic	
Let's try to minimize	
J^G = - sum_z (log(D(G(z)))), "non-saturating heuristics"	
i.e., Generator wants to make D(G(z)) = 1,	