CSIT 558 DATA MINING

ASSIGNMENT 1: STATISTICAL ANALYSIS OF DATASET RAMY OTHMAN

Exploratory Data Analysis Steps

OBJECTIVE

- Choosing dataset from real world
- Load the dataset
- Cleaning the dataset
- Describe the dataset using Descriptive Statistics methods
- Using Data Aggregation
- Visualize the dataset

Dataset

- ▶ The dataset loaded in the assignment is COVID-19
- The dataset used has record of:
 - Total cases
 - Total deaths
 - new deaths
 - Countries population
 - Recorded Dates are between Feb. 24 2020 till Feb. 21 2023

Visualization Technique

- Using Matplotlib library to visualize the dataset:
 - Bar Chart
 - Pie Chart
 - Line Chart

Importing libraries and Loading the Dataset

```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sb
In [2]: df = pd.read_csv('covid_countries_data.csv')
In [3]: df.head(200)
Out[3]:
                          date total cases new cases total deaths new deaths population
                                                                      0 41128772
            O Afghanistan 2/24/20
            1 Afghanistan 2/25/20
                                                            0
                                                                      0 41128772
                                                                      0 41128772
            3 Afghanistan 2/27/20
                                                            0
                                                                      0 41128772
            4 Afghanistan 2/28/20
                                                                      0 41128772
                                                         1416
                                                                      3 41128772
          195 Afghanistan 9/6/20
                                    38484
                                                         1419
                                                                      3 41128772
          197 Afghanistan
                        9/8/20
                                    38606
                                                         1422
                                                                      3 41128772
          198 Afghanistan
                                    38630
                                                         1424
                                                                      2 41128772
                                                                      0 41128772
                                    38658
                                                         1424
          199 Afghanistan 9/10/20
         200 rows x 7 columns
```

Getting Statistical summary and Convert to Time Series

In [4]: # 1. At least two statistical summary (mean, sum, count, median etc)

In [5]: df.describe()

Out[5]:

	total_cases	new_cases	total_deaths	new_deaths	population
count	2.457250e+05	2.457250e+05	2.457250e+05	245725.000000	2.457250e+05
mean	1.262001e+06	2.794144e+03	1.756822e+04	27.880269	3.639720e+07
std	5.514956e+06	1.715704e+04	7.246697e+04	193.903385	1.407551e+08
min	0.000000e+00	0.000000e+00	0.000000e+00	0.000000	4.700000e+01
25%	2.717000e+03	0.000000e+00	2.800000e+01	0.000000	7.242720e+05
50%	3.759100e+04	1.600000e+01	5.510000e+02	0.000000	6.336393e+06
75%	4.049700e+05	4.710000e+02	6.030000e+03	5.000000	2.620798e+07
max	1.031685e+08	1.354500e+06	1.117820e+06	59895.000000	1.425887e+09

```
In [6]: # Since the figures are cumilative I choosed last date of record wich is 2023-02-21

df['date'] = pd.to_datetime(df['date'])
new_df = df[df['date'] == '2023-02-21']
new_df
```

Out[6]:

	location	date	total_cases	new_cases	total_deaths	new_deaths	population
1093	Afghanistan	2023-02-21	209181	28	7896	0	41128772
2186	Albania	2023-02-21	334336	21	3596	0	2842318
3279	Algeria	2023-02-21	271428	2	6881	0	44903228
4366	Andorra	2023-02-21	47866	0	165	0	79843
5435	Angola	2023-02-21	105184	0	1931	0	35588996
240626	Vietnam	2023-02-21	11526834	9	43186	0	98186856
242535	Wallis and Futuna	2023-02-21	3427	0	7	0	11596
243584	Yemen	2023-02-21	11945	0	2159	0	33696612
244655	Zambia	2023-02-21	342782	58	4055	1	20017670
245724	Zimbabwe	2023-02-21	263642	0	5662	0	16320539

219 rows × 7 columns

Working on US records

dtype: object

```
In [8]: # Getting .sum() for the United States:
        new_df[new_df['location'] == 'United States'].sum()
        /var/folders/rb/8k519z7935d2j5l0x1lztqx40000gn/T/ipykernel_93143/10759652.py:2: FutureWarning: Dropping of nuisance
        columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeE
        rror. Select only valid columns before calling the reduction.
          new_df[new_df['location'] == 'United States'].sum()
Out[8]: location
                        United States
                            103168534
        total_cases
        new_cases
                                43889
                              1117820
        total_deaths
        new deaths
        population
                            338289856
```

Visualize the dataset

```
In [46]: # Bar Chart for Top 10 Countries Death Cases:

# Create the bar chart
plt.bar(t10_deaths.index, t10_deaths.values)

# Add labels and title
plt.xlabel('Country')
plt.ylabel('Number of Deaths x 10^6')
plt.title('Number of Deaths by Country')

# Rotate the x-axis labels for readability
plt.xticks(rotation=90)

# Display the plot
plt.show()
```


Top 10 Countries for the cases

References

- Dataset source:
 - https://www.kaggle.com/datasets/imdevskp/corona-virus-report
- Software Tools:
 - Anaconda, Jupyter Notebook
- ► Text books:
 - ► Visualization Analysis and Design by Tamara Munzner ISBN-10: 9781466508910 ISBN-13: 978-1466508910 ©2014
 - Python for Data Analysis 2/E by Wes McKinney
 ISBN-10: 1491957662 ISBN-13: 1491957660 ©2018