Einführung in die Stochastik

13. Juni 2017

Inhaltsverzeichnis

1	Grundlagen	2
	2. Urnenmodelle mit Reihenfolge, mit Zurücklegen	Ć
	2.A Urnenmodelle, ohne Reihenfolge, mit Zurücklegen	1(
3	Bedingte Wahrscheinlichkeit, Unabhängigkeit	
	3. A Galton-Watson-Prozesse und Wahrscheinlichkeitsbäume 	15
4	Erwartungswert und Varianz	2 4

1 Grundlagen

Erinnerung 1.1. Naive Grundidee der Modellierung des Zufalls:

Konzept	mathematisches Objekt	Symbol
"Alle denkbaren Ergebnisse eines zufäl-	Menge	Ω
ligen Geschehens"		
$Wahrscheinlichkeit, dass\ \omega \in \Omega\ beobach-$	Abbildung $\Omega \to [0,1]$	
tet wird		
Alle denkbaren Ja-Nein-Fragen, die	$Potenzmenge\ von\ \Omega$	$\mathscr{P}(\Omega)$
zum zufälligen Geschehen gestellt wer-		
den können		
$Wahrscheinlichkeit, dass die zu a \in$	Abbildung $\mathscr{P}(\Omega) \to [0,1]$	\mathbb{P}
$\mathscr{P}(\Omega)$ gehörige Frage mit "ja" beant-		
wortet wird.		

Beispiel 1.2.1 (6-Seitiger Würfel). $\Omega = \{1, 2, 3, 4, 5, 6\}$ und p(1) = p(2) = p(3) = 1 $p(4) = p(5) = p(6) = \frac{1}{6}$.

Ein Beispiel für eine Ja-Nein-Frage: "Ist die gewürfelte Zahl durch 3 teilbar?" dann ist $A \in \mathcal{P}(\Omega)$: $A = \{3, 6\}$ und $\mathbb{P}(A) = \frac{1}{3}$.

Beispiel 1.2.2. Speziell zufälllige natürliche Zahl: $\Omega = \mathbb{N}, p(1) = \frac{1}{2}, p(2) = \frac{1}{2}$ $\frac{1}{4}, \dots, p(n) = 2^{-n}.$ Dann gilt $\sum_{\omega=1}^{\infty} p(\omega) = 1.$

a) Ja-Nein-Frage: "Ist die Zahl gerade?" Zugelassenen Menge: $A = \{2, 3, 6, ...\}$

$$\mathbb{P}(A) = \sum_{j=1}^{\infty} p(2j) = \sum_{j=1}^{\infty} 2^{-2j} = \frac{1}{1 - \frac{1}{4}} - 1 = \frac{1}{3}$$

b) Ja-Nein-Frage: "Ist die Zahl Primzahl?" Zugelassene Menge: $B = \{n \in \mathbb{N} \mid n \text{ ist prim}\}\$

$$\mathbb{P}(B) = \sum_{j \in B} p(j) = ????$$

Abschätzung $\mathbb{P}(B) \le 1 - \mathbb{P}(A) + \mathbb{P}(\{2\}) \le \frac{2}{3} + \frac{1}{4}$

Definition 1.3. Sei Ω eine abzählbare Menge.

Eine Abbildung $p:\Omega\to [0,1]$ mit $\sum_{\omega\in\Omega}p(\omega)=1$ heißt **Zähldichte** oder Wahrscheinlichkeitsdichte auf Ω .

 Definition 1.4. Man nennt dann Ω den "Ergebnisraum", die "Grundmenge" oder "Grundgesamtheit".

Ein spezielles $A \in \mathscr{P}(\Omega)$ nennt man "Ergebnis" und falls $A = \{\omega\}$ Elementarereignis.

Definition 1.5. Sei Ω eine abzählbare Menge und $\mathscr{P}(\Omega)$ die Potenzmenge, p sei eine Zähldichte.

Dann heißt die Abbildung

$$\mathbb{P}:\mathscr{P}(\Omega)\to [0,1], A\mapsto \sum_{\omega\in A}p(\omega)$$

das von p erzeugte **Wahrscheinlichkeitsmaß** (kurz W-Maß).

Bemerkung 1.6. Beachte: p wird in der Notation unterdrückt. Alternativ schreibe \mathbb{P}_p .

Außerdem: Statt $\mathbb{P}(\{\omega\})$ wird oft $\mathbb{P}(\omega)$ geschrieben.

Lemma 1.7. Sei p eine Zähldichte auf Ω . Das von p erzeugte Wahrscheinlichkeitsmaß hat folgende Eigenschaften:

- a) $\mathbb{P}(\Omega) = 1$
- b) Falls $(A_n)_{n\in\mathbb{N}}$ eine Folge von paarweise disjunkten Ereignissen ist, dann ist $\mathbb{P}(\bigcap_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mathbb{P}(A_n)$.

Beweis. Sei p Zähldichte auf Ω .

- a) Nach Definition ??: $\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1$
- b) Es gilt:

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty}A_{n}\right) = \mathbb{P}\left(\left\{\omega \in \Omega : \exists n \in \mathbb{N} \text{ mit } \omega \in A_{n}\right\}\right) = \sum_{\left\{\omega \in \Omega : \exists n \in \mathbb{N} \text{ mit } \omega \in A_{n}\right\}} p(\omega)$$
(1)

Sei nun $N(\omega) = \sum_{n=1}^{\infty} \chi_{A_n}(\omega) =$ "Anzahl der A_n die ω enthalten". Dann ist

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} \sum_{\omega \in A_n} p(\omega) = \sum_{\{\omega \in \Omega: \exists n \in \mathbb{N} \text{ mit } \omega \in A_n\}} p(\omega) N(\omega)$$
 (2)

Da aber die A_n paarweise disjunkt sind ist $N(\omega) = 1$ für alle $\omega \in \{\omega \in \Omega : \exists n \in \mathbb{N} \text{ mit } \omega \in A_n\}$, ist ist (1)=(2).

Definition 1.8. Für $A \subseteq \Omega$ heißt

$$\chi_A: \Omega \to \{0,1\}, \quad \omega \mapsto \begin{cases} 1 & \omega \in A \\ 0 & \text{sonst} \end{cases}$$

die Charakteristische Funktion oder Indikator von A. Man schreibt auch $\mathbb{1}_A$.

Beispiel 1.9. Sei $\Omega = \mathbb{N}$, $(a_n)_{n \in \mathbb{N}}$ eine Folge mit $a_n \geq 0$, $a := \sum_{n=1}^{\infty} a_n \leq \infty$ und a > 0.

Dann ist $p:\Omega \to [0,1],\, n\mapsto p(n):=\frac{a_n}{a}$ eine Zähldichte.

Es gilt sogar die Isomorphie:

 $\{Z\ddot{a}hldichte auf \mathbb{N}\}\cong \{Nicht negative Folgen mit \sum_{n=1}^{\infty} a_n = 1\}\cong \{Nichtnegative summierbare Folgen \neq 0\}$

Bemerkung1.10 (Notation). Sei Ω eine Menge . |
 $|\Omega|\leq\infty$ bezeichne t
die Anzahl der Elemente von Ω "Mächtigkeit der Menge".

Beispiel 1.11.1 (Einfache Irrfahrt). Dimension d, N Schritte. $\Omega = \{(x_0, x_1, ..., x_N) : X_j \in \mathbb{Z}^d \forall j, x_0 = 0, |x_{j+1} - x_j| = 1 \forall j\}.$ Also ist $|\Omega_N| = (2d)^N$, Setze $p(\omega = \frac{1}{(2d)^N}) \forall \omega \in \Omega$.

Man kann nu folgende Fragestellungen formulieren:

a) $A_N := \{(x_1, ..., x_N)\} \in \Omega_N : \exists j > 0 \text{ mit } x_j = 0\}.$ ("Rückkehr zum Startpunkt").

Es ist klar, dass $\mathbb{P}(A_N) \geq \frac{1}{2d} > 0$, falls $N \geq 2$. Es ist leicht zu zeigen, dass $N \mapsto \mathbb{P}(A_N)$ wächst monoton.

Knifflig: Was ist $\lim_{N \to \infty} ? < 1? = 1?$

Antwort: = 1 für $d \le 2$, < 1 für $d \ge 3$.

b) $B_n, \alpha := \{ \omega = (x_0, x_1, ..., x_N) \in \Omega_N : |x_N| \ge N^{\alpha} \}$ für $0 < \alpha \le 1$

Frage: $\lim_{N\to\infty} \mathbb{P}(B_{n,\alpha})$?

 $\begin{array}{c} \textbf{Antwort:} \ \ 0, \ \text{falls} \ \alpha > \frac{1}{2} \\ 1, \ \text{falls} \ \alpha < \frac{1}{2} \\ \text{Für} \ \alpha = \frac{1}{2} \ \text{gilt} \end{array}$

$$\lim_{N\to\infty} \mathbb{P}(B_{n,\alpha}) = \frac{V_k(d)}{(2\pi)^{\frac{d}{2}}} \int_1^\infty r^{d-1} \exp(\frac{1}{2}r^2) dr$$

(dabei ist $V_k(d)$ das Volumen der d-Dimensionalen Einheitskugel).

Beispiel 1.11.2 (Selbstvermeidende Irrfahrt). Dimension d, N Schritte.

a) $\Omega_N^0 = \{(x_0, x_1, ..., x_N) \in \Omega_N : x_i \neq x_j \text{ falls } i \neq j\}$ Dann gilt für die Anzahl der Pfade:

$$|\Omega_N^0| = \begin{cases} 2, & \text{falls } d = 1\\ ??, & \text{falls } d > 1 \end{cases}$$

und es ist $p(\omega) = \frac{1}{|\Omega_N^0| \forall \omega \in \Omega_N^0}$.

b) Wie in a)2.

Frage Was ist $\lim_{N\to\infty} \mathbb{P}(B_{N,\alpha}^0)$.

Bekannt $\exists \alpha_c > 0 \text{ mit}$

$$\lim_{N \to \infty} \mathbb{P}(\mathbb{B}_{\kappa,\alpha}^{\vee}) = \begin{cases} 0, & \text{falls } \alpha > \alpha_c \\ 1, & \text{falls } \alpha < \alpha_c \end{cases}$$

Bekannte Werte: d = 1 $\alpha_c = 1$

d=2 $\alpha_c=\frac{3}{4}$, falls SLE-Conjecture stimmt

 $d = 3 \ \alpha_c \approx 0,5876 \ (Numerik)$

 $d \ge 4 \ \alpha_c = \frac{1}{2}$

Beispiel 1.12. Auswählen einer Zufälligen reellen Zahl in [0, 1], alle Zahlen sollen di gleich Wahrscheinlichkeit haben:

- [0,1] ist nicht endlich, also ist Gleiche Wahrscheinlichkeit für alle Zahlen unmöglich.
- [0, 1) ist nicht abzählbar, also scheitert der bisherige Ansatz mit der Zähldichte.

Ein möglicher Ausweg Definiere $\mathbb{P}([a,b]) = \mathbb{P}((a,b)) = \mathbb{P}([a,b]) = \mathbb{P}((a,b])$. Die Erweiterung, sodass $\forall A \in \mathscr{P}([0,1]) \ \mathbb{P}(A)$ definiert ist, ist nicht möglich.

Lösung Definiere \mathbb{P} nicht auf allen Mengen $\mathscr{P}([0,1])$.

Definition 1.13. Sei Ω eine nichtleere Menge.

Ein Mengensystem $\mathscr{F} \subset \mathscr{P}(\Omega)$ heißt σ -Algebra, falls

- a) $\Omega \in \mathscr{F}$
- b) Falls $A \in \mathscr{F}$, dann auch $A^C \in \mathscr{F}$.
- c) Falls $A_1, A_2, ... \in \mathscr{F}$, dann auch $\bigcap A_i \in \mathscr{F}$.
- (Ω, \mathscr{F}) heißt dann **messbarer Raum** oder **Ereignisraum**.

Bemerkung 1.14. \mathscr{F} ist "die Menge aller Teilmengen von Ω , für die die zugehörige Ja-Nein-Frage beantwortbar ist".

Daher meint

- a) "Ist $\omega \in \Omega$ " muss beantwortbar sein.
- b) Falls "Ist $\omega \in A$?" beantwortbar, so ist auch "Ist $\omega \notin A$?" beantwortbar.
- c) Falls "Ist $\omega \in A_i$?" beantwortbar für alle i, dann ist auch "Ist ω in irgendeinem A_i ?" beantwortbar.

Beispiel 1.15. Sei $\Omega = [0, 1)$, dann ist

- a) $\mathscr{F}_0 := \{\emptyset, \Omega\}$
- b) $\mathscr{F}_1 := \{\emptyset, [0, \frac{1}{3}), [\frac{1}{3}, 1), \Omega\}.$ Die Frage "Ist $\omega \geq \frac{1}{2}$ " ist hier <u>nicht</u> beantwortbar!
- c) $A_{j,n} := \left[\frac{j}{n}, \frac{j+1}{n}\right), n \text{ ist fest, } j \geq n.$ $\mathscr{F}_2 = \left\{\bigcup_{k=1}^n B_{k,n} : B_{k,n} \in \{\emptyset, A_{k,n}\}\right\}$
- d) $\mathscr{F}_3 = \mathscr{P}(\Omega)$ ist ebenfalls eine σ -Algebra.

Satz 1.16. Sei $\mathscr{G} \subset \mathscr{P}(\Omega)$ ein Mengensystem. Sei $\Sigma := \{\mathscr{A} \subset \mathscr{P}(\Omega) : \mathscr{A} \text{ ist } \sigma\text{-Algebra und } \mathscr{G} \subset \mathscr{A}.$

Dann ist auch $\bigcap_{\mathscr{A}\in\Sigma}\mathscr{A}$ eine σ -Algebra.

Definition 1.16. $\sigma(\mathscr{G}) := \bigcap_{\mathscr{A} \in \Sigma} \mathscr{A}$ heißt die von \mathscr{G} erzeugt σ -Algebra.

Definition 1.17. Sei
$$\Omega = \mathbb{R}$$
, $\mathscr{G} := \{[a,b] : a,b \in \mathbb{R}, a < b\}$. $\mathscr{B} := \sigma(\mathscr{G})$ heiß **Borel**- σ -**Algebra**.

Bemerkung 1.18. a) \mathcal{B} enthält alle offenen Mengen, alle abbgeschlossen Mengen und alle halboffenen Intervalle.

- b) $\mathscr{B} \subsetneq \mathscr{P}(\Omega)$.
- c) Bkann nicht abzählbar konstruiert werden.
- d) $\mathscr{B} = \sigma(\{(-\infty, c]\}) : c \in \mathbb{R}$.

e) Falls $\Omega_o 0 \subset \mathbb{R}$, $\Omega_0 \neq \emptyset$, dann ist

$$\mathscr{B}_{\Omega_0} := \{ A \cap \Omega_0 : A \in \mathscr{B}(\mathbb{R}) \}$$

eine σ -Algebra, die **Einschränkung** von \mathscr{B} auf Ω_0 .

Definition 1.19. Seien $E_1, E_2, ..., E_N$ Mengen, $N \leq \infty$. \mathscr{E}_i seien σ -Algebren auf E_i und es sei

$$\Omega = \sum_{i=1}^{N} E_i = \{(e_1, ..., e_N) : e_i \in E_i \forall i \leq N\}$$

Eine Menge der Form

$$A_{j,B_j} = \{(e_1, ..., e_N) : e_j \in B_j, \text{ andere } e_k \text{ beliebig}\}$$

mit $B_j \in \mathcal{E}_j, j \leq N$ heißt **Zylindermenge**.

Definition 1.19. Die σ-Algebra in Ω die von allen Zylindermengen Erzeugt wird heißt **Produkt-**σ-**Algebra**. Man nennt \mathscr{Z} das System der Zylindermenge und $\mathscr{E}_1 \otimes \mathscr{E}_2 \otimes ... \otimes \mathscr{E}_N := \sigma(\mathscr{Z})$.

Definition 1.20. Sei Ω , \mathscr{F} ein messabere Raum. Eine Abbildung $\mathbb{P}: \mathscr{F} \to [0,1]$ heiß **Wahrscheinlichkeitsmaß** (W-Maß) auf \mathscr{F} (teilweise auch "auf Ω "), falls

- a) $\mathbb{P}(\Omega) = 1$
- b) Für paarweise disjunkte $A_n \in \mathscr{F}$ gilt $\mathbb{P}(\bigcap_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ (" σ -Additivität").

Dann heißt $\Omega, \mathcal{F}, \mathbb{P}$ Wahrscheinlichkeitsraum.

Beispiel 1.21. Sei
$$(\Omega, \mathscr{F}, \P) = (\mathbb{R}, \mathscr{B}(\mathbb{R}), \delta_x)$$
. Dabei ist $\mathbb{P}(A) = \begin{cases} 1; & \text{falls } x \in A \\ 0, & \text{sonst.} \end{cases}$

ein Wahrscheinlichkeitsmaß auf $\mathscr{B}(\mathbb{R})$.

Es Modelliert ein "Zufalls"-Experiment, welches sicher x ergibt.

Satz 1.22 (Eigenschaften von Wahrscheinlichkeitsmaßen). Sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $A, B, A_1, A_2, ... \in \mathscr{F}$. Dann ist

- a) $\mathbb{P}(\emptyset) = 0$
- b) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ $insbesondere \ \mathbb{P}(A) + \mathbb{P}(A^C) = 1$
- c) Falls $A \subseteq B$, dann ist $\mathbb{P}(A) \leq \mathbb{P}(B)$ ("Monotonie")
- d) $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mathbb{P}(A_i) \ (\sigma\text{-Subadditivität})$
- e) Falls $A_n \nearrow A_n$ (d.h. $A_1 \subseteq A_2 \subseteq ...$ und $\bigcap_{n=1}^{\infty} A_n = A$), dann ist $\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(A)$ (" σ -Stetigkeit") Falls $A_n \searrow A_n$ (d.h. $A_1 \supseteq A_2 \supseteq ...$ und $\bigcup_{n=1}^{\infty} A_n = A$), dann ist $\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(A)$

Beweis. a)
$$\mathbb{P}(\emptyset) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} \emptyset\right) = \sum_{n=1}^{\infty} \mathbb{P}(\infty)$$
. Also $\mathbb{P}(\emptyset) = 0$

b) Falls $A \cap B = \emptyset$, dann ist $\Phi(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(\emptyset) = \mathbb{P}(A) + \mathbb{P}(B)$. Sei nun $A \cap B \neq \emptyset$.

Definition 1.27. Die Abbildung $\lambda: \mathscr{B}(\mathbb{R}^n) \to [0,\infty], A \mapsto \int_{\mathbb{R}^n} \chi_A(x) \ dx =$ $\lambda(A)$ heißt Lebesgue-Maß

Beispiel 1.28. Sei $\varrho: \mathbb{R}^n \to [0, \infty)$ Borel-messbar und $\int \varrho(x) dx = 1$. Dann ist die Abbildung $\mathbb{P}_p \varrho : \mathscr{B}(\mathbb{R}^n) \to [0,1], A \mapsto \int_A \varrho(x) \ dx = \int \chi_A(y) \varrho(x) \ dx$ ein Wahrscheinlichkeitsmaß.

Definition 1.29. Sei $\varrho : \mathbb{R}^n \to [0, \infty)$ Borel-messbar und $\int \varrho(x) dx = 1$, (=1.28) dann heißt ϱ **Dichte** von $\mathbb{P}_p\varrho$.

Beispiel 1.30. Sei ϱ eine Dichte, $x \in \mathbb{R}$. Dann hat $\mathbb{P} := \frac{1}{3} \mathbb{P}_p \varrho + \frac{2}{3} \delta_x$ keine Dichte (siehe??)

Bemerkung. Wenn ϱ Dichte ist schreibt man auch $\mathbb{P}_{\varrho} \varrho \equiv \varrho(x) dx$

Definition 1.31. Sei $\Omega \in \mathcal{B}(\mathbb{R}^n)$ mit $\lambda(\Omega) < \infty$. Das Wahrscheinlichkeitsmaß auf Ω mit Dichte $\varrho(y) = \frac{1}{\lambda(\Omega)}$ heißt **Gleichverteilung** auf Ω . Man fasst dann $\tilde{\varrho}(x) = \frac{1}{\lambda(\Omega)} \chi_A \Omega(x)$ als Einbettung in den \mathbb{R}^n auf.

Erinnerung (Zufallsvariable). Der Begriff "Zufallsvariable" ist historisch gewachsen. (Keine Variable einer Funktion).

Problemstellung Von einem komplizierten Zufälligen Geschehen will man nur qewisse Aspekte betrachten.

Beispiel 1.32.1 (2 mal Würfeln, Würfelsumme). Sei $\Omega: \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 4, 5, 6\}$. $\omega = (\omega_1, \omega_2)$. Der zu betrachtende Aspekt: $S(\omega_1, \omega_2) = \omega_1 + \omega_2 \in \{2, 3, ..., 12\} \neq 0$

Beispiel 1.32.2. Sei $\Omega = \Omega_N$ (siehe ??, einfache Irrfahrt). $\omega = (\omega_1, \omega_2, ... \omega_N) \in (\mathbb{Z}^d)^N.$

Aspekt 1 Position nach N Schritten. Modell: $X_N((\omega_1,...,\omega_N)) = \omega_N \in \mathbb{Z}^d \neq \Omega$

Aspekt 2 Maximaler Abstand vom Ursprung bis zum Schritt N. Modell $M_N((\omega_1, ..., \omega_N)) = \max\{|\omega_j|, j \leq N\}.$

Beispiel 1.32.3. Sei $\Omega = [0, 1], \mathcal{F} \in \mathcal{B}([0, 1]), \omega = x \in [0, 1].$

Aspekt 1 Erste Ziffer nach dem Komma? Modell: $y_1(x) = |10x|$

Aspekt 2 Fläche des Quadrates mit Kantenlänge xModell: $Q(x) = x^2 \in [0, 1]$.

Fazit: Modellierung durch Abbildungen.

Definition 1.33. Seine (Ω, \mathcal{F}) und (Ω', \mathcal{F}') Ereignisräume. eine Abbildung $X: \Omega \to \Omega'$ heißt **Zufallsvariable** (ZV) [oder messbare Abbildung, zufälliges Element von Ω'], falls gilt: $\forall A' \in \mathscr{F}' \text{ ist } X^{-1}(A') \in \mathscr{F}.$ Hierbei ist X^{-1} das Urbild von A' unter X.

Bemerkung 1.34. Die Urbild-Abbildung bilte Mengen in \mathscr{F}' (d.h.erlaube Ja-Nein-Fragen) auf Mengen in $\mathscr{P}(\Omega)$ (d.h. Ja-Nein-Fragen) ab.

Beispiel. In 1.32.1 ?? ist $S^{-1}(\{4\})=\{(1,3),(2,2),(3,1)\}.$ In 1.32.1 ?? ist $Y_1^{-1}(\{3,7\})=[0,3,0,4)\cup[0,7,0,8)$

Bemerkung. Die Bedingung (*) bedeutet, dass für alle durch $A \in \mathscr{F}'$ erzeugte erlaubten Ja-Nein-Fragen auch die Frage "Liegt $X(\omega)$ in A'?" erlaubt ist.

Bemerkung. Oft nimmar man nur Ω und (Ω', \mathcal{F}') als gegeben.

Dann ist $X^{-1}(\mathscr{F}'):=\{X^{-1}(A')\mid A'\in\mathscr{F}'\}$ die von X erzeugt σ -Algebra.

Bemerkung. Falls $\mathscr{F} = \mathscr{P}(\Omega)$, dann ist jede Abbildung eine Zufallsvariable.

Lemma 1.35. Seine (Ω, \mathcal{F}) und (Ω', \mathcal{F}') Ereignisräume, $X : \Omega \to \Omega'$ und sei \mathcal{G}' ein Mengensystem mit $\mathcal{F}' = \sigma(G')$. Dann ist X genau dann Zufallsvariable, wenn $X^{-1}(A') \in \mathcal{F} \forall A' \in \mathcal{G}'$.

Beweis. " \Rightarrow " ist klar, da $\mathscr{G}' \subset \mathscr{F}'$

" " Sei $\mathscr{A}':=\{A'\in\Omega'\mid X^{-1}(A')\in\mathscr{F}\}$ ist eine σ -Algebra und $\mathscr{A}'\supset\mathscr{G}'$ nach Annahme.

Daher ist $\mathscr{F}' = \sigma(\mathscr{G}') \subset \mathscr{A}'$, sodass $X^{-1}(A') \in \mathscr{F} \forall A \in \mathscr{F}$.

Beispiel 1.36.1. Sei $(\Omega', \mathscr{F}') = (\mathbb{R}, \mathbb{R})$. Nach 1.35 gilt:

 $X:\Omega\to\Omega'$ ist genau dann Zufallsvariable, wenn $X^{-1}\big((-\infty,c)\big)\in\mathscr{F}\forall c\in\mathbb{R}$ Für $\Omega'=\mathbb{R}$ heißt X reelle Zufallsvariable

Beispiel 1.36.2. Es ist $\overline{\mathbb{R}} := [-\infty, \infty]$ mit σ -Algebra $\mathscr{B}(\overline{\mathbb{R}}) = \sigma(\{[-\infty - c] : c \in \overline{\mathbb{R}}\})$.

Die Abbildung $X: \Omega \to \overline{\mathbb{R}}$ ist genau dann Zufallsvariable, wenn $X^{-1}([-\infty, c]) \in \mathscr{F} \forall c$.

Dann heißt X numerische Zufallsvariable

Theorem 1.37. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, (Ω', \mathcal{F}') ein Ereignisraum, $X : \Omega \to \Omega'$ eine Zufallsvariable. Dann ist die Abbildung

$$\mathbb{P}': \mathscr{F}' \to [0,1], \quad A' \mapsto \mathbb{P}'(A') := \mathbb{P}(X^{-1}('A))$$

ein Wahrscheinlichkeitsmaß auf (Ω', \mathscr{F}') .

Definition 1.38. \mathbb{P}' heißt Bildmaß von \mathbb{P} unter X oder Verteilung von X unter \mathbb{P} .

Man schreibt $\mathbb{P}' = \mathbb{P} \circ X^{-1}$ oder $\mathbb{P}' = \mathbb{P}_X$

Beweis. Da X eine Zufallsvariable ist, ist $X^{-1}(A') \in \mathscr{F} \forall A' \in \mathscr{F}'$, daher im Definitionsbereich von \mathbb{P} .

Also ist \mathbb{P}' wohldefiniert. Prüfe Definition 1.20 ??.

a)
$$\mathbb{P}'(\Omega') = \mathbb{P}(X^{-1}(\Omega')) = \mathbb{P}(\Omega) = 1$$

b) $A'_1, A'_2, \dots \in \mathscr{F}'$ seien paarweise disjunkt. Dann sind $X^{-1}(A'_1), X^{-1}(A'_2), \dots$ auch paarweise disjunkt.

$$\begin{split} \mathbb{P}'\left(\bigcup_{i=1}^{\infty}A_i'\right) &= \mathbb{P}\left(X^{-1}\left(\bigcup_{i=1}^{\infty}A_i'\right)\right) \\ &= \mathbb{P}\left(\bigcup_{i=1}^{\infty}X^{-1}(A_i')\right) \\ &= \sum_{i=1}^{\infty}\mathbb{P}(X^{-1}(A_i')) \\ &= \sum_{i=1}^{\infty}\mathbb{P}'(A_i') \end{split}$$

Definition 1.39. Seien $(\Omega_1, \mathscr{F}_1, \mathbb{P}_1)$ und $(\Omega_2, \mathscr{F}_2, \mathbb{P}_2)$ Wahrscheinlichkeitsräume, $X_1:\Omega_1\to\Omega_1',\ X_2:\Omega_2\to\Omega_2'$ Zufallsvariablen. Falls $\mathbb{P}_1(X_1^{-1}(A'))=\mathbb{P}_2(X_2^{-1}(A'))\forall A'\in\mathscr{F}'$, dann heißen X_1 und X_2 identisch

Bemerkung 1.40 (Notation). Man schreibt oft:

- $\{X \in A'\}$ statt $X^{-1}(A')$
- $\mathbb{P}(\{X \in A'\})$ oder $\mathbb{P}(X \in A')$ statt $\mathbb{P}(X^{-1}(A'))$
- \mathbb{P}_X statt $\mathbb{P} \circ X^{-1}$.

Urnenmodelle mit Reihenfolge, mit Zurücklegen

Beispiel 2.5.1 (Einmal zeihen:). Bsp: Tulpenzwiebeln, N Stück: k_r rote, k_q gelbe, k_o orange.

Dann ist $\mathbb{P}(\text{rot}) = \frac{k_r}{N},...$

Allgemein: Menge der Merkmale $A = (a_1, ..., a_m)$ mit p_i =Bruchteil der "Kugeln" mit Merkmal a_i , sodass $\mathbb{P}(\{a_i\}) = p_i$. Dann ist ¶ eine Zähldichte mit $\sum_{i=1}^m p_i = 1$.

Beispiel 2.5.2 (N-Mal ziehen). Anzahl der Ziehungen $N \in \mathbb{N}, \Omega = A^N, \P((a_{i_1}, ..., a_{i_N})) :=$ $p_{j_1} \cdot ... \cdot p_{j_N}$, für $j_1, ..., j_N \in \{1, ..., m\}$ mit $p_1, ..., p_m$ wie in 1.

Modelliert N-mal "unabhängig" (siehe Kapitel 3) ziehen mit Zurücklegen.

Definition 2.6. Spezialfall von 2.: $A = \{0, 1\}, p_1 = p, p_0 = 1 - p$.

1 = "Erfolg", p_1 = "Erfolgswahrscheinlichkeit".

Dann kann für $\omega \in A^N$, $\omega = (\omega_1, ..., \omega_N)$ schreiben:

$$\mathbb{P}(\{\omega\}) = p^{\sum_{i=1}^{N} \omega_i} (1-p)^{\sum_{i=1}^{N} (1-\omega_i)}$$

Man nennt dies die Bernoulli-Verteilung für N Versuche mit Erfolgswahrscheinlichkeit p.

Definition 2.7. Die Zähldichte $\overline{p}: A \times ... \times A \to [0,1], \overline{p}(a_1,...,a_n) \mapsto \mathbb{P}(\{a_1\})$ $\dots \cdot \mathbb{P}(\{a_n\}) = p_1 \cdot \dots \cdot p_n$ aus 2.5.2 heißt N-fache **Produktdichte** der Zähldichte $p: A \to [0,1], a_i \mapsto p(a_i) = p_i.$

Das zugehörige Wahrscheinlichkeitsmaß heißt N-faches **Produktmaß** von \P .

2.A Urnenmodelle, ohne Reihenfolge, mit Zurücklegen

Beispiel. In Situation Das ist ein "Aspekt" des Experiments, daher eine Zufallsvariable:

$$C: A^N \mapsto \mathbb{N}_0^m, \quad (a_{j_1}, ..., a_{j_N}) \mapsto \left(\sum_{k=1}^N \chi_{\{a_1\}}(a_{j_k}), \sum_{k=1}^N \chi_{\{a_2\}}(a_{j_k}), ..., \sum_{k=1}^N \chi_{\{a_m\}}(a_{j_k})\right)$$

und

Definition 2.8. Sei $\lambda > 0$. Das Wahrscheinlichkeitsmaß auf \mathbb{N}_0 mit Zähldichte $p_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ heißt **Poisson-Verteilung** zum Parameter λ . Schreibe $\operatorname{Poi}(\{k\}) := \mathbb{P}_{p_k}(\{k\})$.

Bemerkung (Bedeutung der Poisson-Verteilung). Modelliert die Anzahl der Erfolge, wenn N =Anzahl der Versuche $\to \infty$, $\mathbb{P}(\text{Erfolg pro Versuch}) \xrightarrow{N \to \infty} 0$, sodass $N\mathbb{P}(\text{Erfolg}) \xrightarrow{N \to \infty} \lambda$.

Definition 2.16. Seien $(a_n),(b_n)\subseteq\mathbb{R}^+$ Folgen, dann heißen $(a_n),(b_n)$ zueinander **asymptotisch äquivalent**, falls $\lim_{n\to\infty}\frac{a_n}{b_n}=1$.

Lemma 2.17. Sei \sim die Asymptotische Äquivalenz. Dann gilt

- a) \sim ist Äquivalenzrelation (reflexiv, symmetrisch, transitiv)
- b) Falls $\lim_{n\to\infty} a_n = a \le \infty$ und $(a_n) \sim (b_n)$, dann ist $\lim_{n\to\infty} b_n = a$.

Satz 2.15 (Poisson-Approximation). Set $\lambda > 0$ und $(p_n) \subset [0,1]$ eine Folge, mit $\lim_{n \to \infty} p_n = \lambda$. Set B_{n,p_n} Binomialverteilung, dann gilt $\forall k \in \mathbb{N}$:

$$\lim_{n \to \infty} B_{n,p_n}(\{k\}) = \operatorname{Poi}_{\lambda}(\{k\})$$

Beweis. Es gilt für den Binomialkoeffizienten:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{1}{k!}n(n-1)...(n-k+1) \sim \frac{1}{k!}n^k$$

denn für festes $k \in \mathbb{N}$ ist $(n-k) \sim n$ und \sim ist transitiv. Es folgt, dass

$$B_{n,p_n}(\{k\}) = \binom{n}{k} p_n^k (a - p_n)^{n-k} \sim \frac{1}{k!} n^k p_n^k (1 - p_n)^{n-k}$$

$$\sim \frac{\lambda^k}{k!} \left(1 - n \frac{1}{n} p_n n \right)^n \underbrace{(1 - p_n)^{-k}}_{\sim 1}$$

$$\sim \frac{\lambda^k}{k!} \left(1 - \frac{1}{n} (p_n n) \right)^n \xrightarrow{n \to \infty} \frac{\lambda^k}{k!} e^{-\lambda}$$

denn falls $\lim_{n\to\infty} a_n = a > 0$, dann $\lim_{n\to\infty} \left(1 - \frac{1}{n}a_n\right)^n e^{-a}$.

Bemerkung 2.18. Sei α die "Rate des Eintreffens" eiens Ereignisses E, d.h.

$$\lim_{\delta \to 0} \mathbb{P}(E \text{ tritt in } [0, \delta] \text{ ein}) \frac{1}{\delta} = \alpha$$

Sei [0,t] der Beobachtungszeitraum. Teile [0,t] in n Intervalle der Länge t/n. Zusätzlich nehmen wir an

- (i) Ob E in einem gewissen Teilintervall auftritt beeinflusst die anderen Teilintervalle nicht.
- (ii) Zwei Ereignisse in einem Teilintervall sind verschwindend unwahrscheinlich.

Dann ist

 $\mathbb{P}(E \text{ passiert } k\text{-mal in } [0,t]) \overset{(ii)}{\approx} \mathbb{P}(E \text{ passiert in } k \text{ Intervallen}) \overset{(i)}{\approx} B_{n,p_n}(k) \xrightarrow{n \to \infty} \mathrm{Poi}_{\alpha t}(k)$

Also beschreibt der Parameter λ der Verteilung Poi $_{\lambda}$ beschreibt "Rate mal Zeit".

Definition 2.19. Für $0 heißt das Wahrscheinlichkeitsmaß <math>\mathcal{G}_p$ auf \mathbb{N}_0 mit Zähldichte $g(k) = p(1-p)^k$ die **geometrische Verteilung** zur Erfolgswahrscheinlichkeit p.

 $\mathscr{G}(\{k\}) =$ "Wahrscheinlichkeit bei Erfolgswahrscheinlichkeit p pro Versuch genau k Fehlversuche vor dem Ersten Erfolg zu sehen".

Allgemein: Da Wahrscheinlichkeitsmaß $\overline{\mathscr{B}}_{r,p}$ auf \mathbb{N}_0 mir $r \in \mathbb{N}$ und 0 mit

$$\overline{\mathscr{B}}(\{k\}) = \frac{r(r+1)...(r+k-1)}{k!}p^r(1-p)^k$$

heißt **negative Binomialverteilung** und modelliert die Wahrscheinlichkeit vor dem r—ten Erfolg genau k Misserfolge zu haben.

Definition 2.20. Das Wahrscheinlichkeitsmaß $\operatorname{Exp}_{\alpha}$ auf $(\mathbb{R}_0^+, \mathscr{B}(\mathbb{R}_0^+))$ mit Dichte $\rho_{\alpha}(x) := \alpha e^{-\alpha x}$ heißst **Exponentialverteilung** zum Parameter $\alpha > 0$

Definition 2.20. Das Wahrscheinlichkeitsmaß $\operatorname{Exp}_{\alpha}$ auf $(\mathbb{R}_0^+, \mathscr{B}(\mathbb{R}_0^+))$ mit $\alpha > 0, r \geq 1$ und Dichte

$$\gamma_{\alpha,r} := \frac{\alpha^r}{(r-1)!} x^{r-1} e^{-\alpha x} = \frac{\alpha^r}{\Gamma(r)} x^{r-1} e^{-\alpha x}$$

heißt Gammaverteilung zu den Parametern α, r .

Bemerkung 2.21. a) $\int \gamma_{\alpha,r}(x) = 1$

b)

$$\begin{split} \operatorname{Exp}_{\alpha}([0,t]) &= \alpha \int_{0}^{t} e^{-\alpha x} \ dx = \alpha \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_{0}^{t} = 1 - e^{-\alpha t} = e^{-\alpha t} \sum_{k=1}^{\infty} \frac{\alpha^{k}}{k!} t^{k} \\ &= \operatorname{Poi}_{\alpha,t}(\{\mathbb{N}\}) = \operatorname{Poi}_{\alpha t}(\text{"Midestens ein Erfolg vor Zeit } t \text{ bei Rate } \alpha") \\ &= \mathbb{P}(\text{"Wartezeit auf ersten Erfolg} \leq t") \end{split}$$

c) Es gilt

$$\mathbb{P}_{\gamma_{\alpha,r}}([0,t]) = \frac{\alpha^r}{(r-1)!} \int_0^t x^{r-1} e^{-\alpha x} dx = e^{-\alpha t} \sum_{k=r}^{\infty} \frac{(\alpha t)^k}{k!} \tag{*}$$

denn

$$\frac{d}{dt}(\star) = -\alpha e^{-\alpha t} \sum_{k=r}^{\infty} \frac{(\alpha t)^k}{k!} + e^{-\alpha t} \sum_{k=r}^{\infty} \frac{\alpha^k}{k!} k t^{k-1}$$

$$= e^{-\alpha t} \left(-\alpha \sum_{k=r}^{\infty} \frac{(\alpha t)^k}{k!} + \alpha \sum_{k=r}^{\infty} \frac{(\alpha t)^k}{(k-1)!} \right)$$

$$= e^{-\alpha t} \alpha \frac{(\alpha t)^{r-1}}{(r-1)!} = \frac{\alpha^r}{(r-1)!} \frac{d}{dt} \int_0^t x^{r-1} e^{-\alpha x} dx$$

Somit ist also

$$(\star) = \mathrm{Poi}_{\alpha,t}(\{r,r+1,...,\}) = \mathbb{P}(\text{Wartezeit bis zum }r\text{-ten Erfolg ist} \leq t)$$

Daher heißt $\operatorname{Exp}_{\alpha} \alpha$ und $\mathbb{P}_{\gamma_{\alpha,r}}$ Wartezeitverteilungen.

Definition 2.22. Das Wahrscheinlichkeitsmaß \mathcal{N} auf $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ mit Dichte $\phi_{0,1(x)} = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$ heißst **Standard-Normalverteilung**. Das Wahrscheinlichkeitsmaß $\mathcal{N}_{m,v}$ auf $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ mit Dichte $\phi_{m,v}(x) = \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{(x-m)^2}{2v}\right)$ heißst Normalverteilung (oder Gaußverteilung/Gaußmaß) mit Mittelwert m und Varianz v.

Proposition 2.23. $\phi_{m,v}(x) = \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{(x-m)^2}{2v}\right)$ ist eine Dichte auf \mathbb{R} .

Beweis. Es gilt

$$\frac{1}{\sqrt{2\pi v}} \int_{-\infty}^{\infty} e^{-\frac{(x-m)^2}{2v}} \stackrel{y=x-m}{=} \frac{1}{\sqrt{2\pi v}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2v}} dy$$

$$\stackrel{z=\frac{y}{\sqrt{v}}}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{z}} dz$$

Berechne dann stattdessen

$$\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right) = \left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy\right) = \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2}} dx dy$$
$$= \int_0^{\infty} \int_0^{2\pi} e^{-\frac{r^2}{2}} r d\theta dr$$
$$= 2\pi \int_0^{\infty} e^{-\frac{r^2}{2}} r dr$$

mit $s = -\frac{r^2}{2}$

$$= 2\pi \int_{-\infty}^{0} e^{s} ds$$
$$= 2\pi (e^{0} - e^{-\infty}) = 2\pi$$

Es folgt, dass $\int_{-\infty}^{\infty} e^{-\frac{(x-m)^2}{2v}} = \sqrt{2\pi}$.

Bemerkung 2.24. a) Bedeutung der Normalverteilung:

"universeller" Grenzwert unabhängiger Summen in der "einzig sinnvollen" Skalierung: $\frac{1}{n} \sum_{i=1}^{\infty} X_i \to m$. Es folgt, dass $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - m) \sim \mathcal{N}(0, v)$.

b) Geometrische Bedeutung: $\mathcal{N}_{0,v}$ ist die erste Koordinate der sogenannte "Gleichverteilung auf \mathbb{R}^{∞} ".

Satz 2.25. Sei $B_N(r):=\{x\in\mathbb{R}^N:|x|\leq r\}$ Kugel mit Radius rim \mathbb{R}^N , sei \mathbb{P}_N die Gelichverteilung auf $B_N(r)$ und sei $X_1:B_N(r)\to\mathbb{R}, x=(x_1,...,x_N)\mapsto x_1$ die Zufallsvariable "Projektion auf die erste Koordinate". Dann gilt

$$\lim_{N\to\infty} \mathbb{P}_{N,r_N}(a\leq X_1\leq b) = \begin{cases} 0, & falls \lim_{n\to\infty} \frac{r_N}{\sqrt{N-1}} = \infty\\ \delta_0([a,b]), & falls \lim_{N\to\infty} \frac{r_N}{\sqrt{N-1}} = 0 \ und \ a,b\neq 0\\ \frac{1}{\sqrt{2\pi v}} \int_a^b e^{-\frac{x^2}{2v}} \ ^dx, & falls \lim_{N\to\infty} \frac{r_N}{\sqrt{N_1}} = \sqrt{v} > 0 \end{cases}$$

Beweis. (nur Fall $a,b\neq 0$ im Fall 2) Integration einer Kugel durch Zerlegen in "Kreisscheiben".

$$\begin{split} h_r(a,b) &:= \int_{\mathbb{R}^N} \chi_{x_1^2 + \ldots + x_N^2 \le r^2}(x) \chi_{\{a \le x_1 \le b\}} \ dx \\ &= \int_a^b dz \int_{\mathbb{R}^{N-1}} \chi_{x_1^2 + \ldots + x_N^2 \le r^2 - z^2}(x) \ dx \\ &= \int_a^b \int_{B_{N-1}(\sqrt{r^2 - z^2})} \ dx = \int_a^b (r^2 - z^2)^{N-1/2} \ dz \underbrace{\int_{B_{N-1}} (1) \ dx}_{=V_1(N-1)} \\ &= r^{N-1} V_1(N_1) \int_a^b \left(1 - \frac{z^2}{r^2}\right)^{\frac{N-1}{2}} \ dz \end{split}$$

Durch Subtitution $y = \frac{z}{r}\sqrt{N-1}$

$$= r^{N-1}V_1(N-1)\frac{r}{\sqrt{N-1}}\int_{\frac{\sqrt{N-1}}{r}b}^{\frac{-1}{r}b} \underbrace{\left(1 - \frac{1}{N-1}y^2\right)}_{} dy$$

Da $\mathbb{P}_{N,r_N}(a\leq x_1\leq b)=\frac{h_{r_N}(a,b)}{h_{r_N}(-r_n,r_N)}$ ist kürzen sich die Faktoren vor den Integralen.

Außerdem ist $\lim_{N\to\infty} f_N(y) = \exp(-y^2)^{1/2} = e^{-\frac{1}{2}y^2}$ gleichmäßig auf Kompakta.

(d.h.
$$\lim_{N \to \infty} \sup \left\{ \left| f_N(y) - e^{-\frac{y^2}{2}} \right| : |y| \le C \right\} = 0 \right\}$$

Mit dieser Information kann man relativ leicht zeigen, dass für $a_{\infty} = \lim_{N \to \infty} \frac{\sqrt{N-1}}{r_N} a$, $b_{\infty} = \lim_{N \to \infty} \frac{\sqrt{N-1}}{r_N} b$ gilt

$$\lim_{N\to\infty}\int_{\frac{\sqrt{N-1}}{r_N}a}^{\frac{\sqrt{N-1}}{r_N}b}f_N(x)dy = \begin{cases} \int_{a_\infty}^{b_\infty}e^{-\frac{y^2}{2}}\ dy, & \text{falls } -\infty \leq a_\infty b_\infty \leq \infty \\ 0, & \text{falls } a_\infty = b_\infty \in \{-\infty, 0, \infty\} \end{cases}$$

Aus ?? für $h_{r_N}(-r_n, r_N)$ folgt die Behauptung in allen Fällen.

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

Definition 3.1. Sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $A \in \mathscr{F}$ mit $\mathbb{P}(A) > 0$. Dann heißt die Abbildung

$$\mathbb{P}_A: \mathscr{F} \to [0,1], \quad B \mapsto \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

bedingtes Wahrscheinlichkeitsmaß unter der Bedingung A. Für festes $B \in \mathscr{F}$ heißt die Zahl $\mathbb{P}(B|A) := \mathbb{P}_A(B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$ die bedingte Wahrscheinlichkeit von B unter der Bedingung A.

Proposition 3.2. \mathbb{P}_A ist das eindeutige Wahrscheinlichkeitsmaß auf (Ω, \mathscr{F}) mit den Eigenschaften

- (i) $\mathbb{P}_A(A) = 1$
- (ii) $\exists c > 0 \text{ mit } \mathbb{P}_A(B) = c\mathbb{P}(B) \forall B \in \mathscr{F} \text{ mit } B \subseteq A.$

Beweis. a) \mathbb{P}_A ist ein Wahrscheinlichkeitsmaß und erfüllt (i),(ii).

b) \mathbb{P} ist eindeutig:

Sei \mathbb{P}_A ein Wahrscheinlichkeitsmaß mit den Eigenschaften (i),(ii).

Dann gilt $\mathbb{P}_A(B) = \mathbb{P}_A(A \cap B) + \mathbb{P}_A(B \setminus A = c\mathbb{P}(A \cap B)).$

Mit B = A folgt $1 = \tilde{\mathbb{P}}_A(A) = c\mathbb{P}(A)$, also $\frac{1}{\mathbb{P}(A)}$. Also ist

$$\widetilde{\mathbb{P}}_A(B) = \frac{1}{\mathbb{P}(A)} \mathbb{P}(A \cap B) = \mathbb{P}_A(B)$$

Bemerkung 3.3. \mathbb{P}_A modelliert die Situation, dass wir wissen, dass A sicher eintritt. \mathbb{P}_A beschreibt das Modell welches diese Information berücksichtigt (??(i)), aber sonst möglichst wenig ändert (??(ii)).

Beispiel. 2-Mal Würfeln, Information ,Summe wird 10 sein'. (In der Praxis: alle Würfe mit $X_1+X_2\neq 10$ werden ungültig gemacht.)

$$\begin{split} \mathbb{P}_{A}(\underbrace{X_{1} = 5}_{B}) &= \mathbb{P}\big(\underbrace{\{(5, x) : 1 \leq x \leq 6\}}_{B} \cap \underbrace{\{(x, y) : x + y = 10\}}_{A}\big) / \mathbb{P}\big(\underbrace{\{(x, y) : x + y = 10\}}_{A}\big) \\ &= \frac{\mathbb{P}(\{(5, 5)\})}{\mathbb{P}(\{(4, 6), (5, 5), (6, 4)\})} = \frac{1}{3} \end{split}$$

Satz 3.4. Sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $N \leq \infty$, $(B_i)_{i=1,...,N}$ mit paarweise disjunkten $B_i \in \mathscr{F}$ und $\bigcap_{i=1}^N B_i = \Omega$ (eine abzählbare Partition von Ω)

a) Fallunterscheidungsformel:

$$\forall A \in \mathscr{F} \ ist \ \mathbb{P}(A) = \sum_{i=1}^{N} \mathbb{P}(B_a) \mathbb{P}(A|B_i)$$

(Konvention: $\mathbb{P}(A|B_i) = 0$, falls $\mathbb{P}(B_i) = 0$)

b) Formal von Bayes: $\forall k \leq N \text{ ist}$

$$\mathbb{P}(B_k|A) = \frac{\mathbb{P}(B_k)\mathbb{P}(A|B_k)}{\sum_{i=1}^{N} \mathbb{P}(B_i)\mathbb{P}(A|B_i)} \tag{*}$$

Beweis. a) $\sum_{i=1}^{N} \mathbb{P}(B_i)\mathbb{P}(A|B_i) = \sum_{i=1}^{N} \mathbb{P}(B_i \cap A) = \mathbb{P}\left(\bigcup_{i=1}^{N} B_i \cap A\right) = \mathbb{P}(A)$

b)
$$\mathbb{P}(B_k|A) = \frac{\mathbb{P}(B_k \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_k)\mathbb{P}(B_k|A)}{\mathbb{P}(A)} = (\star)$$

Beispiel 3.5 (Bayes Formel in der Medizin, False-Positive beim HIV-Test). Sei $B_1 = \{\text{Menschn mit HIV}\}, B_2 = \Omega \setminus B_1 = \{\text{gesundeMenschen}\}.$ Empirisch Bekannt $\mathbb{P}(B_1) = 0.02$ (2% infizierte), $\mathbb{P}(A|B_1) = 0.95$ (Sensitivität 95%), $\mathbb{P}(A|B_2) = 0.1$ (Spezifität 10%).

Angenommen "Test ist Positiv":

$$\mathbb{P}(B_1|A) = \frac{\mathbb{P}(B_1)\mathbb{P}(A|B_1)}{\mathbb{P}(B_1)\mathbb{P}(A|B_1) + \mathbb{P}(B_2)\mathbb{P}(A|B_2)} = \frac{0.02 \cdot 0.95}{0.02 \cdot 0.95 + 0.98 \cdot 0.1} \approx \frac{1}{6}$$

Viel kleiner als die naiv vermuteten 0.9.

3.A Galton-Watson-Prozesse und Wahrscheinlichkeitsbäume

Beispiel 3.6 (Mehrstufiges Modell).

- a) 1 Lebewesen bekommt $X_{1,1} \in \mathbb{N}_0$ Nachkommen und stirbt danach. $X_{1,1}$ ist Zufallsvariable.
- b) Die $X_{1,1}$ Nachkommen bekommen jeweils $X_{2,1}, X_{2,2}, ..., X_{2,X_{1,1}}$ Nachkommen und stirbt. Nun leben

$$Y_2 = \sum_{i=1}^{X_{1,1}} X_{2,i}$$

Lebewesen.

c) Die Y_2 Lebewesen bekommen jeweils $X_{3,1}, X_{3,2}, ..., X_{3,Y_2}$ Nachkommen.

Proposition 3.7. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $A_1, ..., A_n \in \mathcal{F}$. Dann gilt

$$\mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 \cap A_2) \cdot \dots \cdot \mathbb{P}(A_1 | A_1 \cap \dots \cap A_{n-1})$$

Beweis. Falls $\mathbb{P}(A_1 \cap ... \cap A_n) = 0$, dann (Konvention) ist auch $\mathbb{P}(A_n | A_1 \cap ... \cap A_{n-1}) = 0$. Sonst

$$\begin{split} & \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 \cap A_2) \cdot \ldots \cdot \mathbb{P}(A_1 | A_1 \cap \ldots \cap A_{n-1}) \\ & = \mathbb{P}(A_1) \frac{\mathbb{P}(A_2 \cap A_1)}{\mathbb{P}(A_1)} \frac{\mathbb{P}(A - 1 \cap A_2 \cap A_{n-1})}{\mathbb{P}(A_1 \cap A_2)} \cdots \frac{\mathbb{P}(A_1 \cap \ldots \cap A_n)}{\mathbb{P}(A - 1 \cap \ldots \cap A_{n-1})} \\ & = \mathbb{P}(A - 1 \cap \ldots \cap A_n). \end{split}$$

Satz 3.8. Sei $N \leq \infty$ und seien $(\Omega_i, \mathscr{F}_i)$ Messräume und die Ω_i abzählbar. Sei ρ_1 Zähldichte auf Ω_1 und

 $\forall k < N, \omega_i \in \Omega_i, i \leq k \text{ sei } \rho_{k+1|\omega_1,...,\omega_k} \text{ Zähldichte auf } \Omega_{k+1}.$

Sei
$$\Omega = \underset{i=1}{\overset{N}{\times}} \Omega_i$$
 und $X_o : \Omega \to \Omega_i$, $\omega = (\omega_1, ...,) \mapsto \omega_i$ die i-te Projektion.

Dann esxistiert genau ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\Omega, \bigotimes_{i=1}^{N} \mathscr{F}_i)$ mit den Eigenschaften

- a) $\mathbb{P}(X_1 = \omega_1) = \rho_1(\omega_1)$ für alle $\omega_1 \in \Omega_1$.
- b) $\forall k < N, \omega \in \Omega$ und falls $\mathbb{P}(X_1 = \omega_1, ..., X_k = \omega_k) \neq 0$, dann ist

$$\mathbb{P}(X_{k+1} = \omega_{k+1} \mid X_j = \omega_j \forall j \le k) = \rho_{\omega_{k+1} \mid \omega_1, \dots, \omega_k}(\omega_{k+1})$$

Bemerkung 3.9. a) Insbesondere osz $\mathbb{P}(A_1 = \omega_1, ..., X_{k+1} = \omega_{k+1}) = \rho_1(\omega_1)$... $\rho_{k+1|\omega_1,...,\omega_k}(\omega_{k+1})$. ("Produkt entlang der Äste")

- b) Falls $N < \infty$ dann hat $\mathbb P$ die Zähldichte $\rho : \omega = (\omega_1,...,\omega_k) \mapsto \rho_1(\omega_1) \cdot ... \cdot$ $\rho_{N|\omega_1,\ldots,\omega_{N+1}}(\omega_N).$
- c) Falls $N=\infty$, dann hat \mathbb{P} im Allgemeinen keine Zähldichte

Beweis. a) Falls $N < \infty$: Nachrechnen

b) Falls $N = \infty$ Bilde $[0,1] \to \Omega$ mittels $x \mapsto (\omega_1(x),...)$ mit $\omega_i(x) =$ dasjenige $\omega_i \in \Omega_i$, sodass x im zu ω_i gehörigen Intervall liegt, in Stufe i. Zeige dann $X: x \mapsto \omega(x)$ ist Zufallsvariable von $([0,1], \mathcal{B}([0,1]))$ nach (Ω, \mathcal{F}) . \mathbb{P} ist dann das Bildmaß.

Beispiel3.10.1 (unendlich oft wiederholter Münzwurf). Sei $\Omega = \{-1,1\}^N$ und $\mathscr{F} = \bigotimes_{i=1}^{\infty} \mathscr{P}(-1,1).$ (F wird also von den Mengen

$$\{\{\omega \in \Omega : \omega_1 = k_1, ..., \omega_n = k_n\} : K_i \in \{-1, 1\} \forall i \le nnn \in \mathbb{N}\}$$

erzeugt. und $\mathbb{P}(\omega_1 = k_1, ..., \omega_n = k_n) = 2^{-n}$.

Im Fall von Satz 3.8 bedeutet das $\rho_1(\omega_1) = \frac{1}{2}$, $\rho_{2,\omega_1}(\omega_2) = \frac{1}{2}$.

Beispiel 3.10.2 (Unendlich oft wiederholtes würfeln, 10-Seitiger Würfel). Sei $\Omega = \{0, 1, ..., 9\}$. Die Abbildung X aus 3.8 ist hier:

$$X: [0,1) \mapsto \Omega = \underset{i=1}{\overset{\infty}{\times}} \Omega_i, x \mapsto \omega(x)$$

Definition 3.11. Sei $(\Omega, \mathscr{F}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum, $A, B \in \mathscr{F}$. A, B heißen unabhängig (oder unabhängige Ereignisse), falls $\mathbb{P}(A \cap B) =$ $\mathbb{P}(A)\mathbb{P}(B)$. Man schreibt $A \perp \!\!\!\perp B$.

a) Falls $A \perp \!\!\!\perp B$, dann ist Bemerkung.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

- b) Beachte: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \text{ ("additiv"), falls } A, B$ $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \text{ ("multiplikativ"), falls } A, B \text{ unabhängig (per Definition).}$
- c) Aussage b) gilt zwar für $A_1,A_1,A_3\mathscr{F}$ falls $\mathbb{P}(A_i\cup A_j)=\mathbb{P}(A_i)+\mathbb{P}(A_j)$ für $i,j\in\{1,2,3\}$ und $i\neq j$. Dann gilt auch

$$\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}(A_1) + \mathbb{P}(A_2)\mathbb{P}(A_3)$$

Aber: gilt nicht für Unabhängigkeit.

Unabhängigkeit ist eine algebraische Eigenschafte von Mengen und Wahrscheinlichkeitsmaßen.

Die Interpretation "A beeinflusst B nicht" ist nicht immer richtig.

- d) Unabhängigkeit trotz Kausalität: $\Omega = \{1, 2, 3, 4, 5, 6\}^2$, $\mathbb{P}(A \cap B)\mathbb{P}(\{6, 1\}) = \frac{1}{36} = \mathbb{P}(A)\mathbb{P}(B)$. Geht nicht wenn man 7 durch 8 ersetzt!
- e) $\mathbb{P}(A) \in \{0, 1\}$, es folgt $A \perp \!\!\!\perp A$
- f) Im wichtigen Fall der Produktmaße sind jedoch c) bis e) nicht relevant

Definition 3.12. Sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $I \neq 0$ eine Indexmenge. $(A_i)_{i \in I}$ heißt **unabhängige** Familie von Mengen, wenn $\forall J \subseteq$, mit $|J| < \infty$

$$\mathbb{P}\left(\bigcap_{j\in J}A_j\right)\prod_{j\in J}\mathbb{P}(A_j)$$

(d.h. Multiplikativ für alle Kombinationen von endlich vielen Mengen) gilt.

Definition 3.13. Sei $(\Omega, \mathscr{F}, \mathbb{P})$ Wahrscheinlichkeitsraum, $I \neq 0$ sei Indexmenge und $\forall i \in I$ seien $(\Omega_i, \mathscr{F}_i)$ Ereignisräume. Seien $Y_i : \Omega \to \Omega_i$ Zufallsvariablen. Die Familie $(Y_i)_{i \in I}$ heißt **unabhängig** (oder **unabhängige Familie von Zufallsvariablen**), wenn $\forall J \subseteq$, mit $|J| < \infty$ und für alle $(B_j)_{j \in J}$ mit $B_j \in \mathscr{F}_j$

$$\mathbb{P}\left(\bigcap_{j\in J} Y_j^{-1}(B_j)\right) = \prod_{j\in J} \mathbb{P}\left(Y_j^{-1}(B_j)\right)$$

gilt.

Definition 3.13. Eien Familie $(\mathscr{A}_i)_{i\in I}$ von **Megensystemen** heißst **unabhängig** (oder auch unabhänguge Famile von Mengensystemen), wenn $\forall J\subseteq$, mit $|J|<\infty$, für alle $(A_j)_{j\in J}$ mit $A_j\in\mathscr{A}_j$ sind die Mengen $(A_j)_{j\in J}$ unabhängig.

(Dabei darf aus jedem \mathscr{A}_j höchstens ein A_j gewählt werden.) Daher $X \perp \!\!\!\perp Y \Leftrightarrow \sigma(A) \perp \!\!\!\perp \sigma(Y)$.

Satz 3.14. In 3.13 sei \mathscr{G}_i ein Schnitt-stabiler Erzeuger von \mathscr{F}_i . Dann

??
$$qilt \ \forall B_i \in \mathscr{G}_i \Leftrightarrow ?? \ qilt \ \forall B_i \in \mathscr{F}_i$$

Beweis. " \Leftarrow " klar, da $\mathscr{G}_i \subseteq \mathscr{F}_i$

 $,\Rightarrow$ " Durch Induktion nach $n:=|\{i\in J: B_i\in\mathscr{F}-i\setminus\mathscr{G}_i\}|:$

n = 0 bedeutet $B_i \in \mathcal{G}_i \forall i \in J$.

 $n \to n+1$ Seien $(B_i)_{i \in J}$ mit $B_i \in \mathscr{F}_i \forall i \in J$ und $B_i \in \mathscr{F}_i \setminus \mathscr{G}_i$ (n+1)-mal. Wähle $j \in J$ und setze $J' = J \setminus \{j\}$, dann folgt aus der Induktionsannahme, dass für

$$A: \bigcap_{i \in J'} Y_i^{-1}(B_i)$$

$$\mathbb{P}(A) = \prod_{i \in J'} \mathbb{P}(Y_i^{-1}(B_i)) \tag{*}$$

gilt

Falls $\mathbb{P}(A) = 0$, dann ist auch $\mathbb{P}(A \cap Y^{-1}(B_i)) = 0$.

Falls $\mathbb{P}(A) > 0$, dann definiere die Wahrscheinlichkeitsmaße

$$\mathbb{P}_{i}: \mathscr{F}_{j} \to [0,1],$$

$$\tilde{B}_{i} \mapsto \mathbb{P}(Y_{j}^{-1}(\tilde{B}_{j})|A) = \frac{\mathbb{P}(Y_{j}^{-1}(\tilde{B}_{j}) \cap A)}{\mathbb{P}(A)} \qquad (\star\star)$$

$$\mathbb{P}_{2}: \mathscr{F}: i \to [0,1],$$

$$\tilde{B}_{j} \mapsto \mathbb{P}(Y_{i}^{-1}(\tilde{B}_{j}))$$

Da ?? für n gilt ist $\forall \tilde{B}_j \in \tilde{\mathscr{G}}_j$, also

$$\mathbb{P}_1(\tilde{B}_j) = \frac{\mathbb{P}(Y_j^{-1}(\tilde{B}_j)) \cdot \prod_{i \in J'} \mathbb{P}(Y_i^{-1}(B_i))}{\mathbb{P}(A)} \stackrel{(\star)}{=} \mathbb{P}(Y_j^{-1}(\tilde{B}_j)) = \mathbb{P}_2(\tilde{B}_j)$$

Es folgt, dass $\mathbb{P}_1(\tilde{B})=\mathbb{P}_2(\tilde{B}) \forall \tilde{B}\in \mathscr{G}_j$, sodass aus ?? folgt, dass $\mathbb{P}_1=\mathbb{P}_2$. Dann

$$\begin{split} \prod_{i \in J} \mathbb{P}\big(Y_i^{-1}(B_i)\big) &\stackrel{(\star)}{=} \mathbb{P}\big(Y_j^{-1}(b_i)\big) \mathbb{P}(A) = \mathbb{P}_2(B_j) \mathbb{P}(A) \\ &= \mathbb{P}_1(B_j) \mathbb{P}(A) = \mathbb{P}\big(Y_j^{-1}(B_j) \cap A\big) = \mathbb{P}\left(\bigcap_{i \in J} Y_i^{-1}(B_i)\right) \end{split}$$

für alle $B_i \in \mathscr{F}_i$. Es folgt die Behauptung.

Korollar 3.15. Seien $(Y_i)_{i=1,...,n}$ Zufallsvariablen auf dem Wahrscheinlichkeitsraum $(\Omega, \mathscr{F}, \mathbb{P})$, dann gilt

a) Falls $Y_i: \Omega \to E_i$ mit E_i abzählbar, dann

$$(Y_i) \ \textit{ist unabhängig} \Leftrightarrow \mathbb{P}(Y_1 = e_1, ..., Y_n = e_n) = \prod_{i=1}^n \mathbb{P}(Y_i = e_i)$$

für alle $e_1 \in E_1, ..., e_n \in E_n$.

b) Falls $Y_i: \Omega \to \mathbb{R}$, dann ist

$$(Y_i)$$
 ist unabhängig $\Leftrightarrow \mathbb{P}(Y_1 \leq c_1, ..., Y_n \leq c_n) = \prod_{i=1}^n \mathbb{P}(Y_i \leq c_i)$

für alle $c_1,...,c_n \in \mathbb{R}$.

Korollar 3.16. Sei (Ω, \mathscr{FP}) ein Wahrscheinlichkeitsraum, I eine Menge und für alle $i \in I$ sei $A_i \in \mathscr{F}$. Dann gilt

- a) $(A_i)_{i\in I}$ sind unabhängige Mengen $\Leftrightarrow (\chi_{A_i})_{i\in I}$ unabhängige Zufallsvariablen sind.
- b) Insbesondere: Falls $(A_i)_{i\in I}$ unabhängig und $C_i \in \{\emptyset, \Omega, A_i, A_i^C\}$ für alle $i \in I$, dann sind auch $(C_i)_{i\in I}$ unabhängig.

Beweis. Für $a \in \mathscr{F}$ ist $\chi_A : \Omega \to \{0,1\}, \omega \mapsto \chi_A(\omega)$ eine Zufallsvariable und das einelementige Mengensystem $\{\}$ ist ein Schnitt-stabiler Erzeuger von $\mathscr{P}(\{0,1\})$ und $\chi_a^{-1}(\{1\}) = A$.

Daher gilt, dass (A_i) unabhängig \Leftrightarrow ?? gilt falls $B_i = \{1\} \stackrel{3.14}{\Leftrightarrow} \chi_{A_i}$ ist unabhängig. Also gilt 1.

Für 2. Setze

$$B_i = \begin{cases} \{1\} & \text{falls } c_i = A \\ \{0\} & \text{falls } c_i = A^c \\ \emptyset & \text{falls } c_i = \emptyset \\ \{0, 1\} & \text{falls } c_i = \Omega \end{cases}$$

Dann folgt 2 aus der Unabhängigkeit der χ_{A_i} und aus ?? mit den so gewählten R.

Beispiel 3.17. Punkt auf Kreisscheibe: Winkel und Radius unabhängig

Satz 3.18. Seien $(Y_i)_{i=1}^{\infty}$ unabhängige Zufallsvariable, mit $Y_i:(\Omega,\mathscr{F})\to (\Omega_i\mathscr{F}_i)$. Dann gilt

- a) Falls $\phi_i: (\Omega_i \mathscr{F}_i) \to (E_i \mathscr{E}_i)$ messbar und $Z_i: \Omega \to E_i, \omega \mapsto \phi_i(Y_i(\omega)),$ dann sind auch $(Z_i)_{i \in \mathbb{N}}$ unabhängig. ("Stabilität unter einsetzen in Funktionen")
- b) Seien $J_1, J_2, ...,$ paarweise disjunkte Teilmengen von \mathbb{N} . Für jedes $k \in \mathbb{N}$ definiere

$$W_k(\omega) = (X_i(\omega))_{i \in J_k} \in \underset{i \in J_k}{\times} \Omega_i$$

Dann sind die Zufallsvariablen $(W_k)_{k\in\mathbb{N}}$ unabhängig: ("Stabilität gegenüber Zusammenfassen in disjunkte Blöcke")

Beweis. a) Sei $I \subset \mathbb{N}$ endlich. Dann ist (für $A_i \in \mathcal{E}_i$)

$$\mathbb{P}\left(\bigcap_{i\in I}Z_i^{-1}(A_i)\right)=\mathbb{P}\left(\bigcap_{i\in I}Y_i^{-1}(A_i)\right)\overset{Y_i\text{ unahängig}}{=}\prod\mathbb{P}(Y_i^{-1}(\phi^{-1}(A_i)))$$

b) Es gilt $\times_{i=1}^n A_i$) = $\{(\omega_1,...,\omega_n): \omega_1 \in A_1,...,\omega_n \in A_n\} \subset \times_{i=1}^n \Omega_i$. Für $k \in \mathbb{N}$ setze

$$\mathscr{G}_k := \left\{ \underset{i \in J_k}{\times} A_i^{(k)} : A^{(k)} \in \mathscr{F}_i \forall i \in J_k \, A_i^{(k)} \neq \Omega_i \text{ nur endlich oft} \right\}$$

 \mathscr{G}_k ist Schnitt-stabiler Erzeuger von $\bigotimes_{i\in J_k}\mathscr{F}_i$, also miss ?? nur auf $(G_k)_{k\in\mathbb{N}}$ geprüft werden.

Seien also $B_{k_1}\in \mathcal{G}_{k_1},...,B_{k_n}\in \mathcal{G}_{k_n}.$ Da $W_{k_j}\in B_{k_j}$ genau dann wenn $X_i\in A_i^{k_j}$ ist

$$\begin{split} \mathbb{P}(W_{k_1} \in B_{k_1}, ..., W_{k_n \in P_{k_n}}) &= \mathbb{P}(X_i \in A_i^{(k)} \forall i \in J_{k_1,, X_i} \in A_i^{(k)} \forall i \in J_k) \\ &= \prod_{l=1}^n \prod_{i \in J_{k_l}} \mathbb{P}(X_i \in A_i^{(k_l)}) = \prod_{l=1}^n \mathbb{P}(W_{k_l} \in B_{k_l}) \end{split}$$

Bemerkung. Unabhängigkeit ist eng verwandt mit dem Produktmaß:

Definition 3.19. Sei $(\Omega, \mathscr{F}_i, \mathbb{P}_i)$ ein Wahrscheinlichkeitsraum für $i \in \mathbb{N}$. Jedes Maß \mathbb{P} auf $(\Omega, \mathscr{F}) := (\times_{i=1}^{\infty} \Omega_i, \bigotimes_{i=1}^{\infty} \mathscr{F}_i)$ $(\bigotimes_{i=1}^{\infty} \mathscr{F}_i \text{ erzeugt durch Zylindermengen})$ mit der Eigenschaft

$$\mathbb{P}\left(\left\{\omega = (\omega_i)_{i \in \mathbb{N}} \in \Omega : \omega_{j_i} \in A_{j_i}, ..., \omega_{j_m} \in A_{j_m}\right\}\right) = \prod_{k=1}^m \mathbb{P}_{jk}(A_{jk})$$
(3.2)

für alle $j_1 < j_2 < \ldots < j_m$, mit $j_i \in \mathbb{N}$ und $A_{ji} \in \mathscr{F}_{ji}$ heißt **Produktmaß** der Maße \mathbb{P}_i . Schreibweise $\mathbb{P} = \bigotimes_{i=1}^{\infty} \mathbb{P}_i$

Bemerkung 3.20. a) In 3.19existiert immer genau ein Produktmaß. (Eindeutigkeit nach Satz ??, Existenz aus dem Maßfortsetzungssatz)

- b) Wichtiger Spezialfall:
 - (i) Sei $\Omega_i = \{0,1\}$, $\mathbb{P}_i(0) = \mathbb{P}_i(1) = \frac{1}{2}$ für alle i (unendlich oft wiederholter Münzwurf)
 - (ii) Sei $\Omega_i = \mathbb{R}$, $\mathscr{F}_i\mathscr{B}(\mathbb{R})$, $\mathbb{P}_i = \rho(x) \ dx$ für alle i. (Zufällige Folge mit Gliedern die gemäß $\rho(x) \ dx$ verteilt sind.)

Proposition 3.21. a) Seien $(X_i)_{i\in\mathbb{N}}$ Zufallsvariablen, $X_i:(\Omega,\mathscr{F})\to(\Omega_i\mathscr{F}_i)$, dann gilt

 (X_i) ist unabhängig \Leftrightarrow Das Bildmaß der Zufallsvariablen $X:\Omega \to \underset{i=1}{\overset{\infty}{\times}} \Omega_i, \omega \mapsto (X_i(\omega))_{i\in\mathbb{N}}$ ist ein Pro

b) Seien $(\Omega_i \mathscr{F}_i)_{i \in \mathbb{N}}$ seien Maßräume, $\Omega = \times_{i=1}^{\infty}, \mathscr{F} = \bigotimes_{i=1}^{\infty} \mathscr{F}_i$. \mathbb{P} sei ein beliebiges Wahrscheinlichkeitsmaß auf (Ω, \mathscr{F}) . Dann gilt:

 \mathbb{P} ist Produktmaß \Leftrightarrow Die Projektionenn $X_i:\Omega\to\Omega_i,\,\omega=(\omega_1,\omega_2,\ldots)\mapsto\omega_i$ sin unabhängige Zufallsvar

Bemerkung 3.22. In 3.21a) heißt der Wahrscheinlichkeitsraum $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathbb{P}}) := (\times_{i=1}^{\infty} \Omega_i, \bigotimes_{i=1}^{\infty}, \mathbb{P}_X)$ mit $X = (X_i)_{i \in N}$ der kanonische Wahrscheinlichkeitsraum der Zufallsvariablen X_i . Die *i*-te Koordinatenabbildung $Y_i : \tilde{\Omega} \to \Omega_i$ entspricht dann jeweis X_i , d.h. $(Y_{i_1}, ..., Y_{i_n})$ hat die gleiche Verteilung wie $(X_{i_1}, ..., X_{i_n})$.

Definition 3.23. Seien $\Pr_1, ..., \mathbb{P}_n$ Wahrscheinlichkeitsmaße auf \mathbb{R} mit der Dichte $\rho_1, ..., \rho_n$. Dann heißt

$$\rho: \mathbb{R}^n \to \mathbb{R}_0^+, (x_1, ..., x_n) \mapsto \rho(x_1, ..., x_n) = \rho_1(x_1) ... \rho_n(x_n)$$

die Produktdichte.

Satz 3.23. Die Produktdichte ist die Dichte des Produktmaßes.

Beweis. Es gilt

$$\mathbb{P}\big((-\infty,c_1]\times(-\infty,x_2]\times\ldots\times(-\infty,c_1]\big) = \mathbb{P}(X_1\leq c_1,\ldots,X_n\leq c_n)$$

$$\stackrel{??b}{=} \mathbb{P}(X_1\leq c)...\mathbb{P}(X_n\leq n)$$

$$= \int_{-\infty}^{c_1} \rho_1(x_1)\ dx_1\cdot\ldots\cdot\int_{-\infty}^{c_n} \rho_n(x_n)\ dx_n$$

$$= \stackrel{\text{Satz von}}{=} \int_{(-\infty,c_1]\times\ldots\times(-\infty,c_n]} \rho_1(x_1)...\rho_n(x_n)\ dx_1...\ dx_n$$

$$= \int_{(-\infty,c_1]\times(-\infty,x_2]\times\ldots\times(-\infty,c_n]} \rho(x)\ dx$$

Dann folgt mit ??, dass \mathbb{P} die Dichte ρ hat.

Bemerkung. Für unabhängige Zufallsvariablen X, Y kann man die Dichte X+Y mittels Faltungsprodukt berechnen.

Satz 3.24. Seien $X, Y: \Omega \to \Omega'$ unabhängige Zufallsvariablen

a) Falls $\Omega' = \mathbb{Z}$ und falls \mathbb{P}_X (bzw \mathbb{P}_Y) Zähldichte ρ_1 (bzw. ρ_2), dann hat \mathbb{P}_{X+Y} die Zähldichte

$$\rho_1 * \rho_2 : \mathbb{Z} \to [0, 1], z \mapsto \rho_1 * \rho_2(z) = \sum_{k \in \mathbb{Z}} \rho_1(k) \rho_2(z - k)$$

b) Falls $\Omega' = \mathbb{R}$ und falls \mathbb{P}_X (bzw \mathbb{P}_Y) die Dichte ρ_1 (bzw. ρ_2), dann hat \mathbb{P}_{X+Y} die Dichte

$$\rho_1 * \rho_2 : \mathbb{R} \to \mathbb{R}_0^+, x \mapsto \rho_1 * \rho_2(x) = \int_{\mathbb{R}} \rho_1(y) \rho_2(x-y) \ dy$$

Beweis. a) Da nur $\mathbb{P}_X, \mathbb{P}_Y, \mathbb{P}_{X+Y}$ untersucht werden kann $\operatorname{man}\Omega = \mathbb{Z} \times \mathbb{Z}$, $X((z_1, z_2)) = z_1$ und $Y((z_1, z_2)) = z_2$ wählen und $\mathbb{P}_{(X,Y)}$ hat die Produkt-Zähldichte $(z_1, z_2) \mapsto \rho_1(z_1)\rho_2(z_2)$.

Dann gilt $X + Y = w \in \mathbb{Z}$, genau dann wenn $z_1 + z_2 = w$, bzw. $z = 1 = w - z_2$

Also
$$(X + y)^{-1}(\{w\}) = \{(z_1, z_2) : z_1 = w - z_2\}$$
, es folgt

$$\mathbb{P}_{X+Y}(\{w\}) = \mathbb{P}_{(X,Y)}((X+Y)^{-1}(\{w\})) = \sum_{\substack{z_1 \in \mathbb{Z} \\ z_2 \in \mathbb{Z} \\ z_1 + z_2 = w}} \rho(z_1)\rho(z_2) = \sum_{z \in Z} \rho_1(z)\rho_2(w-z)$$

b) Setze
$$\Omega = \mathbb{R}^2$$
, $X((x_1, x_2)) = x_1$, $Y((x_1, x_2)) = x_2$, $\mathbb{P}([a, b] \times [c, d]) = \int_{[a,b] \times [b,c]} \rho_1(x_1) \rho_2(x_2) dx_1 dx_2$. Dann ist

$$\mathbb{P}(X+Y \le c) = \mathbb{P}\left(\{(x,y) \in \Omega\} : x+y \le c\right)$$

$$= \int_{-\infty}^{\infty} \rho_1 \int_{-\infty}^{c-x} \rho_2(y) \ dy \ dx$$

$$= \int_{-\infty}^{\infty} \rho_1 \int_{-\infty}^{c} \rho_2(\tilde{y}-x) \ d\tilde{y} \ dx$$

$$= \int_{-\infty}^{c} \underbrace{\int_{-\infty}^{\infty} \rho_1(x) \rho_2(\tilde{y}-x) \ dx}_{=a_1*o_2(\tilde{y})} \ d\tilde{y}$$

Dann folgt mit ??, dass \mathbb{P}_{X+Y} die Dichte $\rho_1 * \rho_2$ hat.

Beispiel 3.25.1.

Beispiel 3.28. Sei $\Omega = \mathbb{R}^n$, $\mathscr{F} = \bigotimes_{r=1}^{\infty} \mathscr{B}(\mathbb{R})$, $X_i(\omega) = \omega_i$ Projektionen. Sei

$$A_{1} = \left\{ \omega \in \Omega : \lim_{n \to \infty} X_{n}(\omega) = \lim_{n \to \infty} \omega_{n} \text{ exitsiert} \right\}$$

$$A_{2} = \left\{ \omega \in \Omega : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_{n}(\omega) = 0 \right\}$$

$$A_{3} = \left\{ \omega \in \Omega : \lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{n}(\omega) = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \omega_{n} \text{ exitsiert} \right\}$$

Für A_1, A_2, A_3 gilt: Sei $\omega \in A_j$. Wenn $\tilde{\omega}_i = \omega_i$ für alle außer endlich viele $i \in \mathbb{N}$ gilt, dann ist $\tilde{\omega} \in A_j$. Ebenso wenn $\omega \in A_j^C$, dann $\omega \in A_j^C$.

Definition 3.29. Sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und seien $X_i: (\Omega, \mathscr{F}) \to (\Omega_i, \mathscr{F}_i)$ seien Zufallsvariablen. Setze

$$\mathscr{F}_{\{i\}} = \sigma(X_i) = \{X_i^{-1}(B) : B \in \mathscr{F}_i\} \qquad \text{ ("von X_i erzeugte σ-Algebra")}$$

Setze für $K \subseteq \mathbb{N}$

$$\begin{split} \mathscr{F}_K := \sigma(\{X_i: i \in K\}) = \sigma(\mathscr{F}_{\{i\}}: i \in K) \\ \quad (\text{,von } (X_i)_{i \in K} \text{ erzeugte } \sigma\text{-Algebra"}) \end{split}$$

Schreibe für $n \in \mathbb{N}$

$$\begin{split} \mathscr{F}_n &:= \mathscr{F}_{\{1,\dots,n\}} & (,\sigma\text{-Algebra bis zur ,Zeit' } n") \\ \tau_n &:= \mathscr{F}_{n+1,n+2,\dots} & (,\sigma\text{-Algebra nach der Zeit } n") \\ \tau &:= \bigcap_{n \in \mathbb{N}} \tau_n & (,\text{terminale/asymptotische } \sigma\text{-Algebra"}) \end{split}$$

Beispiel 3.30. Für $\Omega = \mathbb{R}^N$, $\mathscr{F} = \mathscr{B}(\mathbb{R}^N)$, X_i ist *i*-te Projektion. Dann ist

$$\mathscr{F}_{\{1,....,n\}} = \left\{ \left\{ x \in \mathbb{R}^N : (x_1,...,x_n) \in B, x_{n+1} \text{ beliebig}, x_{n+1} \text{ beliebig}, ... \right\} : B \in \mathscr{B}(\mathbb{R}^n) \right\}$$

sind Zylindermengen.

Für $|K| = \infty$ (insbesondere für τ_n) kann man \mathscr{F}_K nicht explizit angeben. Stattdessen: τ_n =kleinste σ -Algebra, die $\mathscr{F}_{n+1,n+2,\dots,m}$ enthält für alle m > n.

Definition 3.31. Sei (Ω, \mathscr{F}) Messraum, $A_i \in \mathscr{F}$ für alle $\in \mathbb{N}$. Definiere

$$\limsup_{n\to\infty}A_n:=\bigcap_{m=1}^\infty\bigcup_{k=m}A_k=\{\omega,\in\Omega:\omega\in A_i\text{ für unendlich viele }i\}$$

$$\liminf_{n\to\infty}A_n:=\bigcup_{m=1}^\infty\bigcap_{k=m}A_k=\{\omega,\in\Omega:\omega\in A_i\text{ für alle außer endlich viele viele }i\}$$

Proposition 3.32. a) Die Gleichheiten in 3.31 gelten

- b) $\bigcap_{n=1}^{\infty} A_n \subseteq \liminf_{n \to \infty} A_n \subseteq \limsup_{n \to \infty} A n \subseteq \bigcap_{n=1}^{\infty} A_n$
- c) Für alle $\omega \in \Omega$ gilt

$$\liminf_{n \to \infty} \chi_{A_i}(\omega) = \chi_{\lim \inf_{n \to \infty} A_i}(\omega)$$

$$\limsup_{n \to \infty} \chi_{A_i}(\omega) = \chi_{\lim \sup_{n \to \infty} A_i}(\omega)$$

d) Falls $X_i:(\Omega,\mathscr{F})\to (\Omega_i\mathscr{G}_i)$ Zufallsvariablen sind uns $A_i=X^{-1}(B_i)$ mit $B_i\mathscr{G}_i$, dann sind $\limsup_{n\to\infty}A_n\in\tau$ und $\liminf_{n\to\infty}A_n\in\tau$. (Nicht aber $\bigcap_{n=1}^\infty A_n$ oder $\bigcup_{n=1}^\infty !$)

Beispiel 3.33. In der Situation von 3.29 mit $\Omega_i = \mathbb{R}$ ist

$$A = \left\{ \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} X_i \text{ exitsiert und liegt in } [a, b] \right\} \in \tau$$

für alle $a \leq b$.

Satz 3.34.

Bemerkung. In der Sitation von ?? können also nur Wahrscheinlichkeiten $\{0,1\}$ auftreten, wenn die X_i unabhängig sind. Welche der beiden Möglichkeiten trifft zu?

Diese frage is i.A. schwierig zu beantworten, aber im Fall $\limsup_{n\to\infty}A_n$ gibt es folgenden Satz:

Satz 3.35 (Lemma von Boreal-Cantelli). $Sei(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $A_j \in \mathcal{F}$, für alle $j \in \mathbb{N}$. Dann

- a) Falls $\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty$, dann ist $\mathbb{P}(\limsup_{n \to \infty} A_n) = 0$
- b) Falls $(A_k)_{k\in\mathbb{N}}$ unabhängig dun $\sum_{k=1}^{\infty} \mathbb{P}(A_k) = \infty$, dann ist $\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$.

Beweis. a) Für alle m ist $A \subseteq \bigcap_{k=1}^{\infty} A_k$. Also ist $\mathbb{P}(A) \leq \sum_{k=m}^{\infty} \mathbb{P}(A_k)$. Da $\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty$ gilt, muss $\lim_{n \to \infty} \sum_{k=m}^{\infty} \mathbb{P}(A_k) = 0$ gelten. Da die Mengenfolge $(\bigcup_{k=m}^{\infty})_{m \in \mathbb{N}}$ absteigend ist gilt

$$\mathbb{P}\left(\bigcap_{m=1}^{\infty}\bigcup_{k=m}^{\infty}A_{k}\right)=\lim_{n\to\infty}\mathbb{P}\left(\bigcup_{k=m}^{\infty}A_{k}\right)\leq\lim_{m\to\infty}\sum_{k=m}^{\infty}\mathbb{P}(A_{k})=0$$

b) Es gilt für das Komplement:

$$A^C = \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty}$$

Also ist

$$\mathbb{P}(A^C) \leq \sum_{m=1}^{\infty} \mathbb{P}\left(\bigcap_{k=m}^{\infty} A_K^C\right) \stackrel{\text{Satz ?? c}}{=} \sum_{\substack{\text{absteigende} \\ \text{Mengefolge}}}^{\infty} \sum_{m=1}^{\infty} \lim_{m \to \infty} \mathbb{P}\left(\bigcap_{k=m}^{\infty} A_K^C\right)$$

$$\stackrel{\text{unabh.}}{=} \sum_{m=1}^{\infty} \lim_{n \to \infty} \prod_{k=m}^{n} (1 - \mathbb{P}(A_k))$$

$$= \sum_{m=1}^{\infty} \lim_{n \to \infty} e^{-\sum_{k=m}^{\mathbb{P}(A_k)}}$$

$$= \sum_{m=1}^{\infty} 0 = 0$$

4 Erwartungswert und Varianz

Bemerkung 4.1 (Motivation). Sei $(\Omega, \mathscr{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $(X_i)_{i\in\mathbb{N}}$ mit $X_i:\Omega\to\mathbb{Z},\,\mathbb{P}(X_i=k)=p_k$ seien unabhängige Zufallsvariablen. (d.h. (p_k) ist zähldichte für jedes X_i)

Wenn man nun N-mal mit (X_i) "würfelt", erhält man N zufällige ganze Zahlen $X_1(\omega),...,X_n(\omega)$.

("Realisierung von $(X_1, ..., X_n)$ ")

Frage Wie groß ist der (zufällige) Mittelwert für $\frac{1}{N} \sum_{i=1}^{n} X_i$ typischerweise wenn n groß (unendlich groß) wird?

Beispiel $\mathbb{P}(X_i = k) = \frac{1}{6}$, falls $k \in \{1, ..., 6\}$. Dann ist der Mittelwert ≈ 3.5 . Es ist aber auch (1, 1, 1, ..., 1) möglich.

Überlegung p_k modelliert die "relative Häufigkeit" mit der der Wert k auftritt.

D.h. für große n sollte man c
s $p_k \cdot n$ -mal den Wert k erhalten.

Wähle z.B. (-4, 2, 1, 2, -4, 0, 1, 3, 2, -3, 1, 0):

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega) &= \frac{1}{n} \left(0 | \{ i \leq n : X_{i}(\omega = 0) \} | + 1 | \{ i \leq n : X_{i}(\omega) = 1 \} | + (-1) | \{ i \leq n : X_{i}(\omega = -1) \} | + \ldots \right) \\ &= \sum_{k \in \mathbb{Z}} \frac{k}{n} | \{ i \leq n : X_{i}(\omega) = k \} | \\ &\stackrel{?}{\approx} \sum_{k \in \mathbb{Z}} k p_{k} \end{split} \tag{\star}$$

Beobachtung Das letzte \approx stimmt sicher nicht immer, sollte aber "meistens" richtig sein.

Siehe dazu ?? (Gesetze der großen Zahlen)

Betrachte nun die rechte Seite von (\star) :

Definition 4.2. Eine reelle Zufallsvariable $X : \Omega \to \mathbb{R}$ heißt **diskret** wenn die Menge $X(\Omega)$ höchstens abzählbar ist

Definition 4.3. Sei X eine diskrete Zufallsvariable. X heißt **integrierbar** (bzw "Erwartungswert existiert"), falls

$$\sum_{y \in X(\Omega)} |y| \mathbb{P}(X = y) < \infty$$

Man schreibt $X \in \mathcal{L}^1$ bzw. $X \in \mathcal{L}^1(\mathbb{P})$.

Definition 4.3. Für $X \in \mathcal{L}^1$ heißt

$$\mathbb{E}(X) = \mathbb{E}_{\mathbb{P}}(X) := \sum_{y \in X(\Omega)} \mathbb{P}(X = y) \in \mathbb{R}$$

der Erwartungswert von X.

Beispiel 4.4.1. Sei $X: \Omega \to \{a,b\}, \ a,b \in \mathbb{R} \text{ und } \mathbb{P}(X=a) = p = 1 - \mathbb{P}(X=b).$ Dann ist $\mathbb{E}(X=p\cdot 0 + (1-p)b = b + p(a-b).$

a = 1, b = 0 Dann ist $\mathbb{E}(X = p \text{ (Münzwurf)})$

 $a=1,\ b=-1$ Dann ist $\mathbb{E}(X=1-2p \text{ (Schrittweise Irrfahrt)})$

Beispiel 4.4.2. Sei T geometrisch verteilt, also $\mathbb{P}(T=k)=p(1-p)^{k-1}$, dann ist

$$\mathbb{E}(X = \sum_{k=1}^{\infty} p(1-p))^{k-1} = p \sum_{k=1}^{\infty} kq^{k-1} = (\star)$$

Für die Funktion f(q) gilt

$$f(q) = \frac{d}{dq} \sum_{k=0}^{\infty} q^k = \frac{d}{dy} \frac{1}{1-q}$$
$$= \frac{1}{(1-q)^2} = \frac{1}{p^2}$$

Also ist $(\star) = \frac{p}{p^2} = p$.

Satz 4.5. Seien $X, Y \in \mathcal{L}^1$ diskrete Zufallsvariablen.

- a) Falls $X \geq Y$, dann ist $\mathbb{E}(X) \geq \mathbb{E}(Y)$
- b) (i) Sei $c \in \mathbb{R}$, dann ist auch $cX \in \mathcal{L}^1$ und $\mathbb{E}(cX) = c\mathbb{E}(X)$.
 - (ii) Es ist auch $X + Y \in \mathcal{L}^1$ und $\mathbb{E}(X + Y) = \mathbb{E}(X) + E(Y)$

Beweis. Aus der Maßtheoreie, da $\mathbb{E}(X)$ das (elementare) Integral ist.

Definition 4.6. Sei X reelle Zufallsvariable. Dann heißt $X_{(n)}$ für alle $n \in \mathbb{N}$

$$X_{(n)}(\omega := \frac{1}{n}) \lfloor nX(\omega) \rfloor$$

die $\frac{1}{n}$ -Approximation.

(Dabei ist | · | die Abrunden-Funktion.)

Satz 4.7. Sei X reelle Zufallsvariable, $X_{(n)}$ aus 4.6.

- a) Für alle $n \in \mathbb{N}$ ist $X_{(n)} \leq X \leq X_{(n)} + \frac{1}{n}$
- b) Falls $X(N_0) \in \mathcal{L}^1$ für ein $n_0 \in \mathbb{N}$, dann ist $X(n) \in \mathcal{L}^1$ für alle n.
- c) Falls b) gilt, so ist $(\mathbb{E}(X_{(n)}))_{n\in\mathbb{N}}$ eine Cauchyfolge.

Beweis.

- a) ist klar.
- b) Aus a) folgt, dass $|X_{(n)}(\omega)| \leq |X_{(m)}| + \max\{\frac{1}{n}, \frac{1}{m}\}$. Da insbesondere $1 \in \mathscr{L}^1(\mathbb{P})$ folgt die Behauptung.
- c) Aus b) folgt, dass $|\mathbb{E}(X_{(n)}) \mathbb{E}(X_{(m)})| \le \max\{\frac{1}{n}, \frac{1}{m}\} \xrightarrow{n,m\to\infty} 0$. Ist Cauchyfolge.

Satz 4.8. Die Aussagen von Satz 4.5 (Linearität und Monotonie) gelten auch für Reelle Zufallsvariablen.

Beweis. Durch Grenzwertsätze der Maßtheorie:

Satz 4.10 (Monotonen Konvergenz). Seien $(X_n)_{n\in\mathbb{N}}$, X relle Zufallsvariablen mit punktweise $X_n(\omega) \leq X_{n+1}(\omega)$ für alle $\omega \in \Omega$ und $\lim_{n\to\infty} X_n(\omega) = \sup_{n\in\mathbb{N}} X_n(\omega) = X(\omega)$.

Dann gilt

$$\lim_{n \to \infty} \mathbb{E}(X_n) = \mathbb{E}(X)$$

Satz 4.11 (Majorisierte Konvergenz). Seien $(X_n)_{n\in\mathbb{N}}, X$ relle Zufallsvariablen und es existiert $Y \in \mathcal{L}^1$, $mit |X_n(\omega)| \leq |Y(\omega)|$ für alle $\omega \in \Omega$ und $\lim_{n\to\infty} X_n(\omega) = X(n)$ für alle $\omega \in \Omega \setminus \Omega_0$, $mit \ \Omega_0$ Nullmenge. Dann ist

$$\lim \lim_{n \to \infty} \inf \mathbb{E}(X_n) = E(X)$$

Definition 4.12. Sei $A:=\{\omega\in\Omega\mid\omega\text{ hat Eigenschaft }E\}\in\mathscr{F}.$ Falls $\mathbb{P}(A^c)=0$, dann sagen wir "die Eiegnschaft E gilt \mathbb{P} -fast sicher".

Beispiel 4.13.1. Sei $\mathbb{P}=U[0,1]=\lambda_{[0,1]},\,X(\omega)=\omega$.. Dann ist $X\notin\mathbb{Q}$ \mathbb{P} fast sicher, denn $\lambda(\mathbb{Q}\cap[0,1])=0$

Beispiel 4.13.2. Sei $\mathbb{P} = U[-1,1], X_n(y) = \sin\left(\frac{1}{|y|+\frac{1}{n}}\right)$, dann konvergiert $X_n(y)$ \mathbb{P} fast sicher.

Bemerkung 4.14. Falls $X \ge 0$, dann erlauben wir auch $\mathbb{E}(X) = \infty$. Wir definieren dann $\mathbb{E}(X) = \lim_{n \to \infty} \mathbb{E}(\min\{X, n\})$.

Satz 4.8a),b) und 4.10 gilt weiterhin, falls $X, Y \ge 0$ und $c \ge 0$.

Satz 4.15. Seien (X_n) reele Zufallsvariable und $X_n \geq 0$, dann ist

$$\mathbb{E}(\liminf_{n\to\infty} X_n) \le \liminf_{n\to\infty} \mathbb{E}(X_n)$$

Beispiel 4.16. Sei $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}((0,1)), \lambda_{(0,1)})$ und $X_n = n\chi_{0,\frac{1}{n}}$. Dann ist $\mathbb{E}(X_n) = 1 \forall n$, aber $\lim\inf_{n\to\infty} X_n(\omega) = 0$. Also kann die Ungleichung in Satz 4.15 kann also Strikt sein.

Satz 4.17 (Integration bezüglich des Bildmaßes). Sei $X:\Omega\to\Omega'$ Zufallsvariable, $f:\Omega'\to\mathbb{R}$ messbar.

Es gelte entweder $f(\omega') \ge 0 \forall \omega' \in \Omega'$ oder

$$\mathbb{E}\left(|f(X)|\right) = \int_{\Omega} |f(X(\omega))| \mathbb{P}(d\omega) < \infty$$

Dann gilt:

$$\mathbb{E}(f(X)) = \int_{\Omega'} f(\omega') \mathbb{P}_X(d\omega') = \mathbb{E}_{\mathbb{P}_X}(f) = \int_{\Omega'} f(\omega') \mathbb{P} \circ X^{-1}(d\omega')$$

Beweis. (i) Sei $f(\omega') = \chi_B(\omega')$ mit $B \in \mathscr{F}'$. Dann ist $\mathbb{E}(f(X)) = \mathbb{E}(\chi_B(X)) = \mathbb{P}(X \in B) = \mathbb{P}(X^{-1(B)}) = \mathbb{P}_X(B)$ nach Definition von \mathbb{P}_X . Dann gilt die Gleichung aus 4.17.

(ii) Sei nun $f(\omega') = \sum_{n=1}^m c_n \chi_{B_n}(\omega')$, mit $C_n \in \mathbb{R}, B_n \in \mathscr{F}'$. Dann ist

$$\mathbb{E}(f(X)) \stackrel{4.8}{=} \sum_{n=1}^{m} c_n \mathbb{E}(\chi_{B_n}(X)) \stackrel{(i)}{=} \sum_{n=1}^{m} c_n \mathbb{E}_{\mathbb{P}_X}(\chi_{B_n}) \stackrel{4.8b}{=} \mathbb{E}_{\mathbb{P}_X} \left(\sum_{n=1}^{m} c_n \chi_{B_n} \right) = \mathbb{E}_{\mathbb{P}_X}(f)$$

(iii) Sei nun $f(\omega') \geq 0 \forall \omega \in \Omega$. Setze

$$f_n(\omega') := \sup \left\{ \frac{1}{n} \lfloor f(\omega') \rfloor, n \right\}$$

(Abgeschnittene $\frac{1}{n}$ Approximation.)

Dann folgt aus (ii), dass $\mathbb{E}(f_n(X)) = \mathbb{E}_{\mathbb{P}_X}(f_n)$. Dann folgt aus der monotonen Konvergenz, dass im Grenzwert $n \to \infty$ gilt: $\mathbb{E}(f(X)) = \mathbb{E}_{\mathbb{P}_X}(f)$. Dann gilt die Gleichung aus 4.17.

(iv) Sei $\mathbb{E}(|f(X)|) < \infty$. Da $|f(X(\omega))| = f_+(X(\omega)) + f_-(\omega')$ ist auch $\mathbb{E}(f_-(X)) < \infty$ und $\mathbb{E}(f_+(X)) < \infty$. Da $f(\omega') = f_+(\omega') - f_-(\omega')$ gilt ist

$$\mathbb{E}(f(X)) = \mathbb{E}(f_+(X)) - \mathbb{E}(f_-(X)) \stackrel{(iii)}{=} \mathbb{E}_{\mathbb{P}_X}(f_+) - \mathbb{E}_{\mathbb{P}_X}(f_-) = \mathbb{E}_{\mathbb{P}_X}(f)$$

Bemerkung 4.18. Sei $H:[a,b]\to\mathbb{R}$ streng monoton wachsend und $h\in C^1$. Sei $\Omega=[a,b], \mathscr{FB}([a,b]), \mu(dx)=h'(x)\ dx$.

Dann ist $\mu([a,b]) = \int_a^b h'(x) dx = h(b) - h(a)$ das Bildmaß von μ unter h.

$$\mu \circ h^{-1} \big((-\infty, x] \big) = \mu \big(\{ y \in [a, b] : -\infty \le h(y) \le x \} \big) = \mu \big([a, b] \cap (-\infty, h^{-1}(x)) \big)$$
$$= \int_a^{h^{-1}(x)} h'(y) \ dy = [h(y)]_a^{h^{-1}(x)} = h(h^{-1}(x)) - h(a) = x - h(a)$$

falls $h(a) \le x \le h(b)$. Dann ist

$$\mu \circ h^{-1} = \lambda_{[h(a), h[b]]}$$

Dann folgt aus 4.17

$$\int_{a}^{b} f(h(x))h'(x) \ dx = \mathbb{E}_{\mu}(f(h)) = \mathbb{E}_{\mathbb{P}_{n}}(f) = \int_{h(a)}^{h(b)} f(y) \ dy$$

Korollar 4.19. Seien $X: \Omega_1 \to \Omega', Y: \Omega_2 \to \Omega'$ Zufallsvariablen mit $\mathbb{P}_X = \mathbb{P}_Y$. Dann gilt $\mathbb{E}(f(x)) = \mathbb{E}(f(Y))$ für alle $f: \Omega' \to \mathbb{R}$ mit $\mathbb{E}(|f(x)|) < \infty$ oder f > 0.

Umgekehrt: sei $\mathbb{E}(f(X)) = \mathbb{E}(f(Y))$ für alle f messbar, beschränkt, dann gilt $\mathbb{P}_X = \mathbb{P}_Y$.

Beweis. \Rightarrow Folgt aus 4.17.

$$, \Leftarrow$$
 " $\mathbb{P}_X(A) = \mathbb{E}(\chi_A(X)) = \mathbb{E}(\chi_A(X)) = \mathbb{P}_Y(A).$

Beispiel 4.20.1. Sei $X \sim \text{Exp}(\alpha)$, d.h. $\mathbb{P}_X(dx) = \alpha e^{-\alpha x} dx$. Dann ist

$$\mathbb{E}(X^k) = \alpha \int_0^\infty x^k e^{-\alpha x} \ dx = \frac{k!}{\alpha^k}$$

Beispiel 4.20.2. Sei $X \sim \mathcal{N}(m, v)$, dann ist $\mathbb{E}(X) = m$ und $\mathbb{E}((X - m)^2) = v$

Korollar 4.21. a) Sei X reelle Zufallsvariable. \mathbb{P}_X habe dichte ρ bezüglich des Lebesgue-Maß. Dann ist

$$\mathbb{E}(f(X)) = \int_{-\infty}^{\infty} \rho(x)f(x) \ dx$$

(falls $\int \rho(x)|f(x)| dx < \infty$). Inesbesondere

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \rho(x) \ dx$$

b) Sei $\Omega = \mathbb{R}$, $\mathbb{P}(dy) = \rho(y)$ dy (ρ ist Dichte von \mathbb{P}). Sei X reelle Zufallsvariable . Dann gilt:

$$\mathbb{E}(f(X)) = \int_{-\infty}^{\infty} f(X(y))\rho(y) \ dy$$

Insbesondere $\mathbb{E}(X = \int_{-\infty}^{\infty} X(y)\rho(y) \ dy$

Definition 4.22. Sei X reelle Zufallsvariable

- a) Falls $|X^n| \in \mathcal{L}^1$ für $n \in \mathbb{N}$, so heißst $\mathbb{E}(X^n)$ das n-te Moment von X.
- b) Falls $|X^p| \in \mathcal{L}^1$, für p > 0, so schreibt man $X \in \mathcal{L}^p$.
- c) Die Zahl $\mathbb{V}(X) := \mathbb{E}\left((X \mathbb{E}(X))^2\right)$ heißt die **Varianz** von X (bezüglich \mathbb{P}). $\sqrt{\mathbb{V}(X)}$ heißt **Standardabweichung** von X.

Bemerkung 4.23. a) Für die Varianz gilt

$$\mathbb{V}(X) = \mathbb{E}(X^2 - E\mathbb{E}(X)X + \mathbb{E}(X)^2) = \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2 = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

b) Da $|X|^p \le 1 + |X|^q$, falls $p \le q$ ist

$$\mathcal{L}^q < \mathcal{L}^p$$

falls $p \leq q$.

Definition 4.24. Sei $X, Y \in \mathcal{L}^2$, dann heißt

$$Cov(X,Y) := \mathbb{E}(X - \mathbb{E}(X))(Y - \mathbb{E}(Y)) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

die **Kovarianz** von X und Y.

Man nennt X und Y

positiv korreliert falls Cov(X, Y) > 0

unkorreliert falls Cov(X, Y) = 0

negtaiv korreliert falls Cov(X, Y) < 0

Beispiel 4.25. Sei $\Omega=[0,1]$ mit Lebesgue-Maß, sei $X(\omega)=\omega,Y(\omega)=\omega^2$ und $Z(\omega)=\frac{1}{2}\sin(\pi\omega)$. Dann ist

$$\mathbb{E}(X) = \int_0^1 d \ dx = \frac{1}{2}$$

$$\mathbb{E}(Y) = \int_0^1 x^2 \ dx = \frac{1}{3}$$

$$\mathbb{E}(Z) = \int_0^1 \frac{\sin(\pi\omega)}{2} \ dx = \frac{1}{2\pi}$$

Dann folgt für die Kovarianz:

$$\begin{aligned} &\operatorname{Cov}(X,Y) = \mathbb{E}\left(\left(X - \frac{1}{2}\right)\left(Y - \frac{1}{3}\right)\right) = \frac{1}{12} \\ &\operatorname{Cov}(X,Z) = \int_0^1 \left(x - \frac{1}{2}\right)\left(\sin(\pi x) - \frac{1}{2\pi}\right) \ dx = 0 \\ &\operatorname{Zum Vergleich: } \operatorname{Cov}(X,X) = \mathbb{V}(X) = \frac{1}{12} \end{aligned}$$

Daher eigenen sich die Korrelationskoeffizienten besser al Maß

Definition 4.26. Für $X, Y \in \mathcal{L}^2$ heißt

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$$

Korrelationskoeffizient von X und Y.

Beispiel 4.27. In Beispiel 4.25 gilt

$$\rho(X,Y) = \frac{\sqrt{15}}{4} \approx 0.968$$

$$\rho(X,X) = 1$$

Satz 4.28 (Ungleichungen für Integrale). a) Jensen-Ungleichung Sei X reelle Zufallsvariable, $\phi(\mathbb{R} \to \mathbb{R})$ sei konvex. Sei zusätzlich noch $\mathbb{E}(|X|) < \infty$ und $\mathbb{E}(|\phi(X)|) < \infty$. Dann gilt

$$\mathbb{E}(\phi(X)) > \phi(\mathbb{E}(X))$$

b) Hölder Ungleichung Seine X,Y reelle Zufallsvariablen. Dann gilt für alle $p,q\in[1,\infty]$ mit $\frac{1}{p}+\frac{1}{q}=1$, dass

$$\mathbb{E}(|XY|) \le |X|_p |Y|_q$$

dabei ist

$$\left|A\right|_p := \begin{cases} \mathbb{E}(|X|^p)^{\frac{1}{p}} & p \leq \infty \\ \sup\{|X(\omega)| : \omega \in \Omega\} & p = \infty \end{cases}$$

c) Cauchy-Schwarz-Ungleichung Seien $X,Y\in\mathcal{L}^2$. Dann ist $XY\in\mathcal{L}^2$ und

$$\mathbb{E}(|XY|)^2 \le \mathbb{E}(|X|^2)\mathbb{E}(|Y|^2)$$

(Spezialfall von b) mit p = q = 2)

d) Chebyshev-Markov-Ungleichung Sei X reelle Zufallsvariable, $f:[0,\infty) \to [0,\infty)$ sei monoton wachsend. Dann gilt $\forall c>0$ mit f(c)>0, dass

$$\mathbb{P}(|X| \ge c) \le \frac{\mathbb{E}(f(|X|))}{f(c)}$$

Insbesondere gilt für $f(x) = x^2$

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge c) \le \frac{\mathbb{V}(X)}{c^2}$$

Beweis. a) Inhalt...

Abbildung 1: ...

Abbildung 2: ...