MATHEMATICS FROM EXAMPLES, SPRING 2023

INSTRUCTOR: YU-WEI FAN

Course Description. Examples in mathematics are like phenomena in physics. They play a vital role in the historical development of mathematics and are the driving force behind profound mathematical concepts and methods. Important theorems in modern mathematics often come from the understanding and research of some basic examples. The goal of this course is to provide the motivation and intuition behind abstract mathematical concepts by introducing some interesting examples.

Contents

1. Overview of the course	3
2. Measure theory and ergodic theory	8
2.1. An outlook	9
2.2. σ -algebras, measures, probability spaces	10
2.3. Measure-preserving functions	13
2.4. Recurrence	15
2.5. Lebesgue integral	16
2.6. Ergodicity	18
2.7. Ergodic theorems	21
2.8. Back to continued fractions	23
3. Topology	28
3.1. The Borsuk–Ulam theorem	28
3.2. Fundamental groups	31
3.3. Fundamental group of a circle and applications	34
3.4. The rectangular peg problem	37
4. Algebra	38
4.1. Rings	38
4.2. Ring of Gaussian integers	42
4.3. Applications	44
5. Complex analysis, elliptic functions, and modular forms	47
5.1. Some applications of modular forms	47

5.2. A crash course on complex analysis	50
5.3. Elliptic functions	59
5.4. Modular functions and modular forms	67
5.5. Sum of four squares	79
6. Knot invariants and categorification	82
6.1. Jones polynomial	82
6.2. Categorification	87
7. Calculus of variations	97
7.1. Brachistochrone problem	98
7.2. Isoperimetric problem	101
7.3. Minimal surface of revolution	105
8. Analytic number theory	106
8.1. Prime number theorem	106
8.2. Dirichlet series	114
8.3. Dirichlet characters	116
8.4. Density and Dirichlet theorem	119
8.5. The functional equation for the zeta function	123
9. Model theory and first-order logic	125
9.1. Preliminary on Fields	126
9.2. Model theory	128
10. Conway's topograph	133
10.1. Topograph and definite forms: The well	133
10.2. Indefinite forms not representing 0: The river	139
10.3. Semidefinite forms: The lake	140
10.4. Indefinite forms representing 0	141
11. Miscellaneous Topics	142
11.1. The ambiguous clock	142
11.2. Kontsevich's four polynomial theorem	142
11.3. The Poncelet problem	145
11.4. Dilogarithm function and its five-term relation	147
11.5. Quantum dilogarithm, stability conditions, and wall-crossing	
formula	151
11.6. Borel summation and resurgence	159
11.7. Stokes phenomenon of irregular singularities	163
Bibliography	165