Name:	

Roll No.:

Section:

A

ESC201A: Introduction to Electronics Ouiz -3

Date: 03.11.2016

1. (a) Convert (153)10 to octal number system.

(1 marks)

$$\frac{1}{8} = 0.125$$

$$(153)_0 = (231)_8$$

(b) Convert (0.8125)10 to binary number.

$$(0.8125)_{10} = (.1101)_2$$

2. Given two binary numbers X=1010100 and Y=1000011, perform the subtraction (a) X-Y and (b) Y-X using 2's compliment. (3 marks)

$$2's complement gy = \overline{Y} + 1$$

$$= 0111101$$

$$Sum = \frac{1010100}{0111101}$$

$$\Rightarrow \text{Discard carry.} \\ X - Y = 0010001$$

(b)
$$\overline{X} = 0101011$$

2's complement $9X = 0101100$

$$Sum = \frac{1000011}{0101100}$$

No end carry means regative number.

$$Y - X = -001000$$

3. Obtain the minimized PoS by suitably using don't care terms.

(3 marks)

WX	00	01	11	10
00	1	X	0	1
01	1	0	1	1
11	0	X	1	1
10	1	×	1	X

$$f = (\omega + \chi + \overline{\chi})(\overline{\omega} + \overline{\chi} + \overline{\chi})(y + \overline{\chi})$$

4. For a binary half-subtractor, having two inputs A and B, (a) find logical expressions for the outputs D (= A minus B) and X (= borrow), (b) implement the functions with minimum number of NOR Gates.

(4 marks)

5. What is the logic realized by the circuit shown in Figure below?

(3 marks)

A	B	F	
0	0	CZ	F=AC
0		C	
	0	C7	F=AC
1		100	r - AC

Thus $F = \overline{A} C + A \overline{C} = A \theta C$

N T		
Name:		

Roll	No.
11011	140

Section:

B

ESC201A: Introduction to Electronics Ouiz -3

Date: 03.11.2016

1. (a) Convert (151)₁₀ to octal number system.

(1 marks)

(1 marks)

$$(151)_{10} = (227)_8$$

(b) Convert $(0.125)_{10}$ to binary number.

$$(0.125)_{10} = (.001)_2$$

2. Given two binary numbers A=1010100 and B=1000011, perform the subtraction (a) A-B and (b) B-A using 2's compliment. (3 marks)

(a)
$$\overline{Y} = 0111100$$

2's complement
$$gy = \overline{Y} + 1$$

= 0111101

$$X - Y = 0010001$$

(b)
$$\overline{X} = 0101011$$

$$Sum = \frac{1000011}{0101111}$$

2's complement $g_X = 0|0|100$ Sum = $\frac{0|0|100}{1|0|11}$ No end carry means negative number 2's complement $g_X = 0|0|000|$

$$X - X = -00 |000|$$

3. Obtain the minimized PoS.

(3 marks)

WX VZ	00	01	11	10
00	(0)	1	(0)	1
01	1	1	1	1
11	1	0	1	1
10	0	0	0	0

$$f = (x+y+z).(x+y+\overline{z}).(x+y+\overline{z}).$$

4. For a binary half-subtractor, having two inputs B and C, (a) find logical expressions for the outputs D (= B minus C) and X (= borrow), (b) implement the functions with minimum number of NOR Gates.

(4 marks)

$$X = \overline{B}C$$

5. What is the logic realized by the circuit shown in Figure below?

(3 marks)

$$\begin{array}{c|c} B & C & F \\ \hline 0 & 0 & A \\ 1 & A \\ \hline \end{array}$$

$$\begin{array}{c|c} F = BA \\ \hline A \\ \hline \end{array}$$

$$\begin{array}{c|c} F = BA \\ \hline \end{array}$$

$$\begin{array}{c|c} F = BA \\ \hline \end{array}$$