

Linear Regression and Logistic Regression

Venkata Reddy Konasani

Contents

- Simple Regression
- R-Squared
- Multiple Regression
- Logistic Regression
- Accuracy
- Multiple Logistic Regression

X Vs Y

Prediction

Prediction

Line Equation

Straight Line equation

$$y = mx + c$$

Regression terminology

$$y = \beta_0 + \beta_1 x$$

What is Regression

- •A regression line is a mathematical formula that quantifies the general relation between a predictor/independent (or known variable x) and the target/dependent (or the unknown variable y)
- •Below is the regression line. If we have the data of x and y then we can build a model to generalize their relation
- What is the best fit for our data?
- The one which goes through the core of the data
- The one which minimizes the error

$$\mathbf{y} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}$$

Regression Line fitting-Least Squares Estimation

Regression Line fitting

Regression Line fitting

Regression Line fitting

Minimizing the error

- The best line will have the minimum error
- Some errors are positive and some errors are negative. Taking their sum is not a good idea
- We can either minimize the squared sum of errors Or we can minimize the absolute sum of errors
- Squared sum of errors is mathematically convenient to minimize
- The method of minimizing squared sum of errors is called least squared method of regression

Least Squares Estimation

- •X: x1, x2, x3, x4, x5, x6, x7,.....
- •Y:y1, y2, y3, y4, y5, y6, y7......
- Imagine a line through all the points
- Deviation from each point (residual or error)
- Square of the deviation
- Minimizing sum of squares of deviation

$$\sum e^2 = \sum (y - \hat{y})^2$$

$$= \sum (y - (\beta_0 + \beta_1 x))^2$$

 β_0 and β_1 are obtained by minimize the sum of the squared residuals

LAB: Regression Line Fitting

- Dataset: Air Travel Data\Air_travel.csv
- •Fit a regression line between Promotion_Budget and Passengers

Code: sklearn vs statsmodels

- Several package options for building regression lines in python
- •sklearn and statsmodels are two most widely used options
- •sklean is first choice. But gives limited summary statistics
- •But statmodels gives well formatted (R-like) summary and model statistics.
- You can use any one of them. Use sklearn of you are not interested in model statistics. Use stastmodels when you are at learning phase.
- We will use both

Code: Regression Line Fitting

```
import statsmodels.formula.api as sm
model = sm.ols(formula='Passengers ~ Promotion_Budget', data=air)
fitted1 = model.fit()
fitted1.summary()
```


How good is my regression line?

Two models

- Model-1: Passengers vs. Promo budget
- Model-2: Passengers vs. inter metro flight ratio

•Model-1 vs Model-2 to predict the same target. Which model to pick?

How good is my regression line?

Model-1

X1	Y Actual	Y Pred
	30K	31K
	40K	39K
	35K	35K
	27K	26K
	32K	32K
	33K	35K
	28K	26K

Model-2

X2	Y Actual	Y Pred
	30K	42K
	40K	49K
	35K	15K
	27K	20K
	32K	32K
	33K	38K
	28K	20K

X1	Y Actual	Y Pred	Error
	30K	31K	
	40K	39K	
	35K	35K	
	27K	26K	1K
	32K	32K	
	33K	35K	
	28K	26K	

X1	Y Actual	Y Pred	Error
	30K	31K	-1K
	40K	39K	1K
	35K	35K	0K
	27K	26K	1K
	32K	32K	0K
	33K	35K	-2K
	28K	26K	2K

X1	Y Actual	Y Pred	Error	Squared Error
	30K	31K	-1K	
	40K	39K	1K	
	35K	35K	0K	
	27K	26K	1K	
	32K	32K	0K	
	33K	35K	-2K	
	28K	26K	2K	
				SSE

SSE, SSR and SST

X 1	Y Actual	Y Pred	Error	Squared Error
	30K	31K	-1K	
	40K	39K	1K	
	35K	35K	0K	
	27K	26K	1K	
	32K	32K	0K	
	33K	35K	-2K	
	28K	26K	2K	
	SST	SSR		SSE

How good is my regression line?

- Take an (x,y) point from data.
- •Imagine that we submitted x in the regression line, we got a prediction as y_{pred}
- •If the regression line is a good fit then the we expect $y_{pred}=y$ or $(y-y_{pred})=0$
- •At every point of x, if we repeat the same, then we will get multiple error values $(y-y_{pred})$ values
- •Some of them might be positive, some of them may be negative, so we can take the square of all such errors

$$SSE = \sum (y - \hat{y})^2$$

- For a good model we need SSE to be zero or near to zero
- •Standalone SSE will not make any sense, For example SSE= 100, is very less when y is varying in terms of 1000's. Same value is is very high when y is varying in terms of decimals.
- We have to consider variance of y while calculating the regression line accuracy

$$SSE = \sum (y - \hat{y})^2$$

How good is my regression line?

- Error Sum of squares (SSE- Sum of Squares of error)
 - $SSE = \sum (y \hat{y})^2$
- Total Variance in Y (SST- Sum of Squares of Total)
 - $SST = \sum (y \overline{y})^2$
 - $SST = \sum (y \hat{y} + \hat{y} \overline{y})^2$
 - $SST = \sum (y \hat{y} + \hat{y} \overline{y})^2$
 - $SST = \sum (y \hat{y})^2 + \sum (\hat{y} \bar{y})^2$
 - SST = SSE + $\sum (\hat{y} \bar{y})^2$
 - SST = SSE + SSR
- So, total variance in Y is divided into two parts,
 - Variance that can't be explained by x (error)
 - Variance that can be explained by x, using regression

Explained and Unexplained Variation

How good is my regression line?

- •So, total variance in Y is divided into two parts,
 - Variance that can be explained by x, using regression
 - Variance that can't be explained by x

 Total sum of Squares

$$SST = \sum (y - \overline{y})^2$$

Sum of Squares Error

$$SSE = \sum (y - \hat{y})^2$$

Sum of Squares Regression

$$|SSR = \sum (\hat{y} - \overline{y})^2|$$

R-Squared

R-Squared

- A good fit will have
 - SSE (Minimum or Maximum?)
 - SSR (Minimum or Maximum?)
 - And we know SST= SSE + SSR
 - SSE/SST(Minimum or Maximum?)
 - SSR/SST(Minimum or Maximum?)
- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R²

$$R^2 = \frac{SSR}{SST}$$
 where $0 \le R^2 \le 1$

Lab: R- Square

- •What is the R-square value of Passengers vs Promotion_Budget model?
- •What is the R-square value of Passengers vs Inter_metro_flight_ratio

Code: R- Square

```
#What is the R-square value of Passengers vs Promotion_Budget model?
fitted1.summary()

#What is the R-square value of Passengers vs Inter_metro_flight_ratio
fitted2.summary()
```


Multiple Regression

Multiple Regression

- Using multiple predictor variables instead of single variable
- We need to find a perfect plane here

Code-Multiple Regression

```
import statsmodels.formula.api as sm

model = sm.ols(formula='Passengers ~ Promotion_Budget +
Inter_metro_flight_ratio + Service_Quality_Score ', data=air)

fitted = model.fit()
fitted.summary()
```


Logistic Regression

Venkat Reddy

What is the need of non-linear regression?

LAB: Need of logistic regression?

- Dataset: Product Sales Data/Product_sales.csv
- •What are the variables in the dataset?
- Build a predictive model for Bought vs Age
- •What is R-Square?
- •If Age is 4 then will that customer buy the product?
- •If Age is 105 then will that customer buy the product?

Code: Need of logistic regression?

```
import sklearn as sk
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(sales[["Age"]], sales[["Bought"]])
d1=pd.DataFrame({"age1":[4]})
predict1=lr.predict(d1)
predict1
d2=pd.DataFrame({"age1":[105]})
predict1=lr.predict(d2)
predict1
```


Something wrong

- The model that we built above is not right.
- •There is certain issues with the type of dependent variable
- The dependent variable is not continuous it is binary
- •We can't fit a linear regression line to this data

Why not linear?

- Consider Product sales data. The dataset has two columns.
 - Age continuous variable between 6-80
 - Buy(0- Yes; 1-No)

Why not linear?

Real-life examples

- Sales Buying vs. Not buying
- Marketing Response vs. No Response
- Credit card & Loans Default vs. Non Default
- Operations Attrition vs. Retention
- Websites Click vs. No click
- Fraud identification -Fraud vs. Non Fraud
- Healthcare -Cure vs. No Cure

Some Nonlinear functions

A Logistic Function

The Logistic function

- We want a model that predicts probabilities between 0 and 1, that is,
 S-shaped.
- •There are lots of s-shaped curves. We use the logistic model:

$$y = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Logistic Regression Output

- In logistic regression, we try to predict the probability instead of direct values
- •Y is binary, it takes only two values 1 and 0 instead of predicting 1 or 0 we predict the probability of 1 and probability of zero
- This suits aptly for the binary categorical outputs like YES vs NO; WIN vs LOSS; Fraud vs Non Fraud

Logistic Regression Line

Lab: Logistic Regression

- Dataset: Product Sales Data/Product_sales.csv
- Build a logistic Regression line between Age and buying
- •A 4 years old customer, will he buy the product?
- If Age is 105 then will that customer buy the product?

Code: Logistic Regression

```
from sklearn.linear_model import LogisticRegression
logistic = LogisticRegression()
logistic.fit(sales[["Age"]],sales["Bought"])
logistic.coef
logistic.intercept_
#A 4 years old customer, will he buy the product?
#age1=4
predict_age1=logistic.predict(d1)
print(predict_age1)
#If Age is 105 then will that customer buy the product?
#age2=105
predict_age2=logistic.predict(d2)
print(predict_age2)
```


Linear Regression vs Logistic Regression

- 1. Predicting loss percentage
- 2. Predicting Buying vs. Not buying
- 3. Predicting number of customers
- 4. Predicting Response vs. No Response
- 5. Predicting revenue
- 6. Predicting the product price
- 7. Predicting Attrition vs. Retention
- 8. Predicting Click vs. No click
- 9. Predicting-Fraud vs. Non Fraud
- 10. Predicting the amount of fraud

Multiple Logistic Regression

Multiple Logistic Regression

$$y = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k}}$$

Multiple Logistic Regression

- The dependent variable is binary
- Instead of single independent/predictor variable, we have multiple predictors
- Like buying / non-buying depends on customer attributes like age, gender, place, income etc.,

LAB: Multiple Logistic Regression

- Dataset: Fiberbits/Fiberbits.csv
 - Active_cust variable indicates whether the customer is active or already left the network.
- •Build a model to predict the chance of attrition for a given customer using all the features.

Code: Multiple Logistic Regression

```
Fiber=pd.read csv("D:\\Google
Drive\\Training\\Datasets\\Fiberbits\\Fiberbits.csv")
list(Fiber.columns.values) ###to get variables list
#Build a model to predict the chance of attrition for a given customer using
all the features.
from sklearn.linear model import LogisticRegression
logistic1= LogisticRegression()
###fitting logistic regression for active customer on rest of the
variables######
logistic1.fit(Fiber[["income"]+['months_on_network']+['Num_complaints']+['numbe
r_plan_changes']+['relocated']+['monthly_bill']+['technical_issues_per_month']+
['Speed test result']], Fiber[['active cust']])
```


Goodness of fit for a logistic regression

Actual vs Predicted

x1	x2	x3	••	Y actual	Y pred
•	•	•	•	0	0
				0	1
				0	0
				1	0
				1	1
				1	1
				0	1
				1	1
				0	0
	4	2		0	0
	1	2			

Actual vs Predicted

Y actual	Y pred
0	0
0	1
0	0
1	0
1	1
1	1
0	1
1	1
0	0
0	0

	Y Predicted		
		0	1
Y Actual	0		
	1		

Classification Table & Accuracy

Predicted

	0	1
0	True positive (TP) Zero Predicted as Zero	False Negatives(FN) Zero Predicted as One
1	False positive (FP) One Predicted as Zero	True Negatives(TN) One Predicted as One

Also known as confusion matrix

Actual

Accuracy=(TP+TN)/(TP+FN+FP+TN)

LAB: Confusion Matrix & Accuracy

- Create confusion matrix for Fiber bits model
- •Find the accuracy value for fiber bits model
- Change try three different threshold values and note down the changes in accuracy value

Code: Confusion Matrix & Accuracy

```
from sklearn. cross validation import train test split
from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix###for using confusion matrix###
predict1=logistic1.predict(Fiber[["income"]+['months_on_network']+['Num_complaints']+['nu
mber plan changes']+['relocated']+['monthly bill']+['technical issues per month']+['Speed
_test_result']])
predict1
cm1 = confusion matrix(Fiber[['active cust']],predict1)
print(cm1)
#####from confusion matrix calculate accuracy
total1=sum(sum(cm1))
print(total1)
accuracy1=(cm1[0,0]+cm1[1,1])/total1
accuracy1
```


Cross Validation

The Training Error

- •The accuracy of our best model is 95%. Is the 5% error model really good?
- The error on the training data is known as training error.
- •A low error rate on training data may not always mean the model is good.
- •What really matters is how the model is going to perform on unknown data or test data.
- •We need to find out a way to get an idea on error rate of test data.
- •We may have to keep aside a part of the data and use it for validation.
- There are two types of datasets and two types of errors

Two types of datasets

- There are two types of datasets
 - Training set: This is used in model building. The input data
 - Test set: The unknown dataset. This dataset is gives the accuracy of the final model
- •We may not have access to these two datasets for all machine learning problems. In some cases, we can take 90% of the available data and use it as training data and rest 10% can be treated as validation data

Types of errors

- The training error
 - The error on training dataset
 - In-time error
 - Error on the known data
 - Can be reduced while building the model
- The test error
 - The error that matters
 - Out-of-time error
 - The error on unknown/new dataset.

"A good model will have both training and test error very near to each other and close to zero"

The problem of over-fitting

- •The model is made really complicated, that it is very sensitive to minimal changes
- By complicating the model the variance of the parameters estimates inflates
- Model tries to fit the irrelevant characteristics in the data
- Over fitting
 - The model is super good on training data but not so good on test data
 - Less training error, high testing error
 - The model is over complicated with too many predictors
 - Model need to be simplified
 - A model with lot of variance

LAB: Cross Validation

```
from sklearn import model_selection
train_data,test_data = model_selection.train_test_split(Fiber, test_size=0.2)

print("train Data Shape ",train_data.shape)
print("test Data Shape ",test_data.shape)

train Data Shape (80000, 9)
test Data Shape (20000, 9)
```


LAB: Cross Validation

```
logistic2= LogisticRegression(max iter=200)
###fitting logistic regression for active customer on rest of the variables#######
logistic2.fit(train_data[["income"]+['months_on_network']+['Num_complaints']+['number_plan_changes']+['rel
ocated']+['monthly bill']+['technical issues per month']+['Speed test result'],train data[['active cust']
predict=logistic2.predict(train_data[["income"]+['months_on_network']+['Num_complaints']+['number_plan_cha
nges']+['relocated']+['monthly bill']+['technical issues per month']+['Speed test result']])
cm train = confusion matrix(train data[['active cust']],predict)
accuracy train=(cm train[0,0]+cm train[1,1])/sum(sum(cm train))
print("accuracy on train data" , accuracy train)
predict=logistic2.predict(test_data[["income"]+['months_on_network']+['Num_complaints']+['number_plan_chan
ges']+['relocated']+['monthly bill']+['technical issues per month']+['Speed test result']])
cm_test = confusion_matrix(test_data[['active_cust']],predict)
accuracy_test=(cm_test[0,0]+cm_test[1,1])/sum(sum(cm test))
print("accuracy on test data" , accuracy test)
                            accuracy on train data 0.8663125
                             accuracy on test data 0.8601
```


Thank you