

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Sample Name: AJ

Tested for: Western Oregon Botanicals

Compliance - Usable

Laboratory ID: 19C0028-03 **Matrix:** Useable Marijuana

 Lot # 18-Feb
 License: 020-10021071D94

 Batch RFID: 1A40103000098BF000001501
 Date Sampled: 03/08/19 10:18

 Batch Size: 1362 (g)
 Date Accepted: 03/08/19

Potency Analysis

Date Extracted: 03/12/19

Analysis Method/SOP: Potency

* - ORELAP certified analyte

Cannabinoids % weight mg/g LOQ (%) **Cannabinoids Profile** Total THC ((THCA*0.877)+d9) 18.09 180.9 0.03 < LOQ < LOQ 0.03 Total CBD ((CBDA*0.877)+CBD) 1.95 d9-THC (d9-Tetrahydrocannabinol)* 0.22 2.2 0.04 d8-THC (d8-Tetrahydrocannabinol)* < LOQ < LOQ 0.04 THCA (d9-Tetrahydrocannabinolic Acid)* 20.38 203.8 0.06 CBD (Cannabidiol)* < LOQ < LOQ 0.03 CBDA (Cannabidiolic Acid)* < LOQ < LOQ 0.06 CBN (Cannabinol)* < LOQ < LOQ 0.03 20.38 CBG (Cannabigerol)* 0.07 0.7 0.04 THC 0.22 CBGA (Cannabigerolic Acid) 1.95 19.5 0.04 THCA 20.38 CBG 0.07 CBDV (Cannabidivarin)* < LOQ < LOQ 0.04 **CBGA** 1.95 Total: 22.61 CBDVA (Cannabidivarinic Acid) < LOQ < LOQ 0.04 CBC (Cannabichromene)* < LOQ < LOQ 0.04 THCV (Tetrahydrocannabivarin) < LOQ < LOQ 0.04 **Total Cannabinoids** 22.61 226.1 0.03

		Water	Activity an	d Moisture		
Analyte	Result	Limit	Units	LOQ	Analyzed	Method
Water Activity	0.469	0.65	AW	0.0300	03/13/2019	Water Activity
Percent Moisture	9.63	15	%	0.10	03/13/2019	Moisture
Cannabinoids reported as	dry weight (me	oisture corrected)		Results a	above the action le	evel are highlighted in red #.

<LOQ - Results below the Limit of Quantitation - Compound not detected</p>

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the written permission of SC Laboratories. Samples tested in accordance with Oregon Administrative Rules, TNI 2009 Standard and SC Laboratories quality assurance plan unless otherwise noted.

Brian Weigel Lab Director

12 Lalings

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Sample Name: AJ

Tested for: Western Oregon Botanicals

Compliance - Usable

Laboratory ID: 19C0028-03 Strain: AJ

Matrix: Useable Marijuana

Lot # 18-Feb

License: 020-10021071D94 Date Sampled: 03/08/19 10:18

Date Accepted: 03/08/19

Sample Metrc ID: 1A40103000098BF000001506

Batch RFID: 1A40103000098BF000001501

Batch Size: 1362 (g)

Terpene Analysis

Date Extracted: 03/12/19 Analysis Method/SOP: Potency

Date Analyzed: 03/12/19

			1		
Analyte	Result (%)	LOQ	Analyte	Result	LOQ
alpha Pinene	0.063	0.018	Myrcene	0.223	0.018
alpha Phellandrene	0.020	0.018	3-Carene	0.027	0.018
alpha Terpinene	< LOQ	0.018	Limonene	0.163	0.018
Terpinolene	0.330	0.018	Linalool	< LOQ	0.018
Fenchol	0.023	0.018	Borneol	< LOQ	0.018
Terpineol	0.034	0.018	Geraniol	0.035	0.018
alpha Humulene	0.038	0.018	beta Caryophyllene	0.091	0.018
Caryophyllene Oxide	0.019	0.018	alpha Bisabolol	< LOQ	0.018
Camphene	< LOQ	0.018	beta Pinene	0.101	0.018
Ocimene	< LOQ	0.018	Sabinene	< LOQ	0.018
Camphor	< LOQ	0.018	Isoborneol	< LOQ	0.018
Menthol	< LOQ	0.018	alpha Cedrene	< LOQ	0.018
Nerolidol	< LOQ	0.018	R-(+)-Pulegone	< LOQ	0.018
Eucalyptol	< LOQ	0.018	p-Cymene	< LOQ	0.018
(-)-Isopulegol	< LOQ	0.018	Geranyl Acetate	< LOQ	0.018
Guaiol	0.042	0.018	Valencene	0.042	0.018
Phytol	0.029	0.018	Citronellol	< LOQ	0.018
gamma-Terpinene	< LOQ	0.018			
			Total Terpenes	1.282 %	

<LOQ - Results below the Limit of Quantitation - Compound not detected Terpene Analysis is not ORELAP Accredited.

12 Lalingel

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Sample Name: AJ License: 020-10021071D94

Tested for: Western Oregon Botanicals Date Sampled: 03/08/19 10:18

Compliance - Usable Date Accepted: 03/08/19 11:28
Laboratory ID: 19C0028-03 Matrix: Useable Marijuana Client/Metrc ID: 1A40103000098BF000001506

Terpene Profile

%

Brian Weigel

Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Sample Name: AJ

Western Oregon Botanicals

Compliance - Usable

License: 020-10021071D94

Date Sampled: 03/08/19 10:18 Date Accepted: 03/08/19

Laboratory ID: 19C0028-03 Matrix: Useable Marijuana Strain: AJ

Sample Metrc ID: 1A40103000098BF000001506

Batch RFID: 1A40103000098BF000001501

Lot # 18-Feb

Date Analyzed:

Tested for:

Batch Size: 1362 (g)

Pesticide Analysis in ppm

Date Extracted: 03/12/19

03/13/19

Analysis Method/SOP: Pesticides

Results above the action levels are highlighed in red #.

Analyte	Result	Action Level	LOQ	Analyte	Result	Action Level	LOQ
Abamectin	< LOQ	0.5	0.23	Acephate	< LOQ	0.4	0.18
Acequinocyl	< LOQ	2	0.92	Acetamiprid	< LOQ	0.2	0.09
Aldicarb	< LOQ	0.4	0.18	Azoxystrobin	< LOQ	0.2	0.09
Bifenazate	< LOQ	0.2	0.09	Bifenthrin	< LOQ	0.2	0.09
Boscalid	< LOQ	0.4	0.18	Carbaryl	< LOQ	0.2	0.09
Carbofuran	< LOQ	0.2	0.09	Chlorantraniliprole	< LOQ	0.2	0.09
Chlorfenapyr	< LOQ	1	0.46	Chlorpyrifos	< LOQ	0.2	0.09
Clofentezine	< LOQ	0.2	0.09	Cyfluthrin	< LOQ	1	0.46
Cypermethrin	< LOQ	1	0.46	Daminozide	< LOQ	1	0.46
DDVP (Dichlorvos)	< LOQ	1	0.46	Diazinon	< LOQ	0.2	0.09
Dimethoate	< LOQ	0.2	0.09	Ethoprophos	< LOQ	0.2	0.09
Etofenprox	< LOQ	0.4	0.18	Etoxazole	< LOQ	0.2	0.09
Fenoxycarb	< LOQ	0.2	0.09	Fenpyroximate	< LOQ	0.4	0.18
Fipronil	< LOQ	0.4	0.18	Flonicamid	< LOQ	1	0.46
Fludioxonil	< LOQ	0.4	0.18	Hexythiazox	< LOQ	1	0.46
Imazalil	< LOQ	0.2	0.09	Imidacloprid	< LOQ	0.4	0.18
Kresoxim-methyl	< LOQ	0.4	0.18	Malathion	< LOQ	0.2	0.09
Metalaxyl	< LOQ	0.2	0.09	Methiocarb	< LOQ	0.2	0.09
Methomyl	< LOQ	0.4	0.18	Methyl parathion	< LOQ	0.2	0.09
MGK-264	< LOQ	0.2	0.09	Myclobutanil	< LOQ	0.2	0.09
Naled	< LOQ	0.5	0.23	Oxamyl	< LOQ	1	0.46
Paclobutrazol	< LOQ	0.4	0.18	Permethrins (total)	< LOQ	0.2	0.09
Phosmet	< LOQ	0.2	0.09	Piperonyl butoxide	< LOQ	2	0.46
Prallethrin	< LOQ	0.2	0.09	Propiconazole	< LOQ	0.4	0.18
Propoxur	< LOQ	0.2	0.09	Pyrethrins (total)	< LOQ	1	0.46
Pyridaben	< LOQ	0.2	0.09	Spinosad	< LOQ	0.2	0.09
Spiromesifen	< LOQ	0.2	0.09	Spirotetramat	< LOQ	0.2	0.09
Spiroxamine	< LOQ	0.4	0.18	Tebuconazole	< LOQ	0.4	0.18
Thiacloprid	< LOQ	0.2	0.09	Thiamethoxam	< LOQ	0.2	0.09
Trifloxystrobin	< LOQ	0.2	0.09				

<LOQ - Results below the Limit of Quantitation - Compound not detected

Brian Weigel Lab Director

12 Lalings

SC Laboratories Oregon LLC
ORELAP# 4133/OLCC# 1004748743D
15865 SW 74th Ave Suite 110, Tigard, OR
503-272-8830
www.sclabs.com

Case Narrative

Receiving - Samples: 19C0028-01 (1504) and 19C0028-02 (1505) composited for Pesticides, Moisture Content, and Water Activity. Samples: 19C0028-03 (1506), 19C0028-04 (1507) and 19C0028-05 (1508) composited for Pesticides, Moisture Content and Water Activity.

Quality Control Potency

Batch: B190398 - Potency/Terpenes

Blank(B190398-BLK1)	Extr	Extracted - 03/12/19 9:30 Analyzed - 03/12/19 15:56								
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit		
d9-THC (d9-Tetrahydrocannabinol)	< LOQ	%								
d8-THC (d8-Tetrahydrocannabinol)	< LOQ	%								
THCA (d9-Tetrahydrocannabinolic Acid)	< LOQ	%								
CBD (Cannabidiol)	< LOQ	%								
CBDA (Cannabidiolic Acid)	< LOQ	%								
CBN (Cannabinol)	< LOQ	%								
CBG (Cannabigerol)	< LOQ	%								
CBGA (Cannabigerolic Acid)	< LOQ	%								
CBDV (Cannabidivarin)	< LOQ	%								
CBDVA (Cannabidivarinic Acid)	< LOQ	%								
CBC (Cannabichromene)	< LOQ	%								
THCV (Tetrahydrocannabivarin)	< LOQ	%								

Duplicate(B190398-DUP1)		Extracted - 0	3/12/19 9:30 Analy	zed - 03/	12/19 22:	22	
Analyte	Result	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit
d9-THC (d9-Tetrahydrocannabinol)	1.21	%	1.27			4.34	20
d8-THC (d8-Tetrahydrocannabinol)	< LOQ	%	< LOQ				20
CBD (Cannabidiol)	< LOQ	%	< LOQ				20
CBDA (Cannabidiolic Acid)	0.04	%	0.04			2.72	20
CBN (Cannabinol)	< LOQ	%	< LOQ				20
CBG (Cannabigerol)	0.06	%	0.06			4.67	20
CBGA (Cannabigerolic Acid)	0.76	%	0.77			0.892	20
CBDV (Cannabidivarin)	< LOQ	%	< LOQ				20
CBDVA (Cannabidivarinic Acid)	< LOQ	%	< LOQ				20
CBC (Cannabichromene)	< LOQ	%	< LOQ				20
THCV (Tetrahydrocannabivarin)	< LOQ	%	< LOQ				20

LCS(B190398-BS1)	Extracted	I - 03/12/19 9:30) Analy	/zed - 03	3/12/19 1	5:47		
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Potency (Continued)

Batch: B190398 - Potency/Terpenes (Continued)

LCS(B190398-BS1)	Extract	ed - 03/12/1	Extracted - 03/12/19 9:30 Analyzed - 03/12/19 15:47										
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit					
d9-THC (d9-Tetrahydrocannabinol)	0.04	%	0.0400		108	80-120							
CBD (Cannabidiol)	0.04	%	0.0400		106	80-120							
CBDA (Cannabidiolic Acid)	0.04	%	0.0400		100	80-120							
CBN (Cannabinol)	0.04	%	0.0400		99.8	80-120							

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis

Batch: B190400 - Pesticide Prep

Blank(B190400-BLK1)	Extr	acted - 03/12	2/19 9:31 A	nalyzed	- 03/13/1	9 3:00		
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Abamectin	< LOQ	ppm						
Acephate	< LOQ	ppm						
Acequinocyl	< LOQ	ppm						
Acetamiprid	< LOQ	ppm						
Aldicarb	< LOQ	ppm						
Azoxystrobin	< LOQ	ppm						
Bifenazate	< LOQ	ppm						
Bifenthrin	< LOQ	ppm						
Boscalid	< LOQ	ppm						
Carbaryl	< LOQ	ppm						
Carbofuran	< LOQ	ppm						
Chlorantraniliprole	< LOQ	ppm						
Chlorfenapyr	< LOQ	ppm						
Chlorpyrifos	< LOQ	ppm						
Clofentezine	< LOQ	ppm						
Cyfluthrin	< LOQ	ppm						
Cypermethrin	< LOQ	ppm						
Daminozide	< LOQ	ppm						
DDVP (Dichlorvos)	< LOQ	ppm						
Diazinon	< LOQ	ppm						
Dimethoate	< LOQ	ppm						
Ethoprophos	< LOQ	ppm						
Etofenprox	< LOQ	ppm						
Etoxazole	< LOQ	ppm						
Fenoxycarb	< LOQ	ppm						
Fenpyroximate	< LOQ	ppm						
Fipronil	< LOQ	ppm						
Flonicamid	< LOQ	ppm						
Fludioxonil	< LOQ	ppm						
Hexythiazox	< LOQ	ppm						
Imazalil	< LOQ	ppm						
Imidacloprid	< LOQ	ppm						
Kresoxim-methyl	< LOQ	ppm						
Malathion	< LOQ	ppm						
Metalaxyl	< LOQ	ppm						

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis (Continued)

Batch: B190400 - Pesticide Prep (Continued)

Blank(B190400-BLK1)	Extr	acted - 03/12	2/19 9:31 A	nalyzed	- 03/13/1	9 3:00		
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Methiocarb	< LOQ	ppm						
Methomyl	< LOQ	ppm						
Methyl parathion	< LOQ	ppm						
MGK-264	< LOQ	ppm						
Myclobutanil	< LOQ	ppm						
Naled	< LOQ	ppm						
Oxamyl	< LOQ	ppm						
Paclobutrazol	< LOQ	ppm						
Permethrins (total)	< LOQ	ppm						
Phosmet	< LOQ	ppm						
Piperonyl butoxide	< LOQ	ppm						
Prallethrin	< LOQ	ppm						
Propiconazole	< LOQ	ppm						
Propoxur	< LOQ	ppm						
Pyrethrins (total)	< LOQ	ppm						
Pyridaben	< LOQ	ppm						
Spinosad	< LOQ	ppm						
Spiromesifen	< LOQ	ppm						
Spirotetramat	< LOQ	ppm						
Spiroxamine	< LOQ	ppm						
Tebuconazole	< LOQ	ppm						
Thiacloprid	< LOQ	ppm						
Thiamethoxam	< LOQ	ppm						
Trifloxystrobin	< LOQ	ppm						

LCS(B190400-BS1)	Extract	ed - 03/12/19	9:31 Anal	yzed - 03	3/13/19	3:16		
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Abamectin	0.96	ppm	0.980		97.5	29-150		
Acephate	1.01	ppm	1.00		101	48-133		
Acequinocyl	0.75	ppm	1.00		75.0	48-150		
Acetamiprid	0.84	ppm	1.00		83.8	45-150		
Aldicarb	0.91	ppm	1.00		91.1	58-134		
Azoxystrobin	0.89	ppm	1.00		89.1	25-150		
Bifenazate	1.18	ppm	1.00		118	46-141		
Bifenthrin	1.23	ppm	1.00		123	55-150		

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis (Continued)

Batch: B190400 - Pesticide Prep (Continued)

LCS(B190400-BS1)	Extract	ed - 03/12/19	9:31 Anal	yzed - 0	3/13/19	3:16		
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Boscalid	1.10	ppm	1.00		110	34-141		
Carbaryl	1.10	ppm	1.00		110	67-125		
Carbofuran	0.81	ppm	1.00		81.0	71-128		
Chlorantraniliprole	0.90	ppm	1.00		89.9	43-138		
Chlorfenapyr	1.18	ppm	1.00		118	45-150		
Chlorpyrifos	1.17	ppm	1.00		117	36-150		
Clofentezine	1.24	ppm	1.00		124	59-135		
Cyfluthrin	1.33	ppm	1.00		133	33-150		
Cypermethrin	1.12	ppm	1.00		112	47-148		
Daminozide	0.72	ppm	1.00		72.1	18-116		
DDVP (Dichlorvos)	1.16	ppm	1.00		116	65-150		
Diazinon	1.15	ppm	1.00		115	60-130		
Dimethoate	1.09	ppm	1.00		109	65-131		
Ethoprophos	1.04	ppm	1.00		104	52-150		
Etofenprox	0.81	ppm	1.00		81.2	60-139		
Etoxazole	0.94	ppm	1.00		94.2	59-122		
Fenoxycarb	1.23	ppm	1.00		123	39-146		
Fenpyroximate	0.85	ppm	1.00		84.9	44-147		
Fipronil	1.24	ppm	1.00		124	40-143		
Flonicamid	1.73	ppm	1.00		173	50-142		
Fludioxonil	0.54	ppm	1.00		54.0	49-150		
Hexythiazox	1.00	ppm	1.00		100	41-142		
Imazalil	1.16	ppm	1.00		116	61-127		
Imidacloprid	0.82	ppm	1.00		82.2	36-150		
Kresoxim-methyl	0.93	ppm	1.00		93.4	53-131		
Malathion	0.96	ppm	1.00		95.7	55-134		
Metalaxyl	1.06	ppm	1.00		106	64-127		
Methiocarb	0.98	ppm	1.00		98.5	53-144		
Methomyl	1.40	ppm	1.00		140	47-141		
Methyl parathion	1.09	ppm	1.00		109	48-142		
MGK-264	0.81	ppm	0.630		129	38-150		
Myclobutanil	1.23	ppm	1.00		123	45-146		
Naled	0.81	ppm	1.00		80.5	28-113		
Oxamyl	1.00	ppm	1.00		99.9	48-133		
Paclobutrazol	1.26	ppm	1.00		126	37-150		

12 Llevings

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis (Continued)

Batch: B190400 - Pesticide Prep (Continued)

LCS(B190400-BS1)	Extracted	- 03/12/19 9:3	Analyzed - (3/13/19	3:16		
Analyte	Result	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit
Permethrins (total)	1.24	ppm			46-150		
Phosmet	1.17	ppm	1.00	117	48-137		
Piperonyl butoxide	0.93	ppm	1.00	93.5	43-142		
Prallethrin	1.16	ppm	1.00	116	48-144		
Propiconazole	0.98	ppm	1.00	97.8	52-136		
Propoxur	0.83	ppm	1.00	83.4	61-131		
Pyrethrins (total)	0.88	ppm			24-150		
Pyridaben	0.90	ppm	1.00	89.8	40-150		
Spinosad	0.65	ppm	0.820	78.9	42-148		
Spiromesifen	0.98	ppm	1.00	97.5	38-150		
Spirotetramat	0.93	ppm	1.00	92.7	37-132		
Spiroxamine	0.58	ppm	0.550	105	49-136		
Tebuconazole	1.15	ppm	1.00	115	46-142		
Thiacloprid	0.84	ppm	1.00	83.9	48-150		
Thiamethoxam	1.51	ppm	1.00	151	46-138		
Trifloxystrobin	0.80	ppm	1.00	80.0	44-144		

Matrix Spike(B190400-MS1)		Extracted -	03/12/19 9:	31 Ana	lyzed - 0	3/13/19 3	:32	
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Abamectin	1.91	ppm	1.76	< LOQ	109	15-150		
Acephate	1.85	ppm	1.80	< LOQ	103	45-130		
Acequinocyl	1.00	ppm	1.80	< LOQ	55.8	31-146		
Acetamiprid	1.44	ppm	1.80	< LOQ	80.2	39-150		
Aldicarb	1.54	ppm	1.80	< LOQ	85.7	47-143		
Azoxystrobin	1.60	ppm	1.80	< LOQ	89.2	21-150		
Bifenazate	2.12	ppm	1.80	< LOQ	118	31-150		
Bifenthrin	0.85	ppm	1.80	< LOQ	47.1	23-132		
Boscalid	2.29	ppm	1.80	< LOQ	127	41-141		
Carbaryl	1.94	ppm	1.80	< LOQ	108	60-125		
Carbofuran	1.33	ppm	1.80	< LOQ	74.1	57-136		
Chlorantraniliprole	1.67	ppm	1.80	< LOQ	92.8	32-145		
Chlorfenapyr	2.04	ppm	1.80	< LOQ	114	29-150		
Chlorpyrifos	2.09	ppm	1.80	< LOQ	116	29-146		
Clofentezine	1.88	ppm	1.80	< LOQ	105	48-128		
Cyfluthrin	2.40	ppm	1.80	< LOQ	134	16-150		

M L Wings

These results relate only to the sample included on this report. The report may not be reproduced except in full, without the written permission of SC Laboratories. Samples tested in accordance with Oregon Administrative Rules, TNI 2009 Standard and SC Laboratories quality assurance plan unless otherwise noted.

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis (Continued)

Batch: B190400 - Pesticide Prep (Continued)

Matrix Spike(B190400-MS1)		Extracted -	03/12/19 9:	31 Ana	lyzed - 0	3/13/19 3	3:32	
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Cypermethrin	1.91	ppm	1.80	< LOQ	106	22-150		
Daminozide	2.27	ppm	1.80	< LOQ	126	34-150		
DDVP (Dichlorvos)	1.81	ppm	1.80	< LOQ	101	55-133		
Diazinon	1.94	ppm	1.80	< LOQ	108	54-126		
Dimethoate	1.95	ppm	1.80	< LOQ	109	60-129		
Ethoprophos	1.81	ppm	1.80	< LOQ	101	40-150		
Etofenprox	0.84	ppm	1.80	< LOQ	46.7	25-135		
Etoxazole	1.59	ppm	1.80	< LOQ	88.5	26-149		
Fenoxycarb	2.17	ppm	1.80	< LOQ	121	37-145		
Fenpyroximate	1.86	ppm	1.80	< LOQ	103	27-150		
Fipronil	1.82	ppm	1.80	< LOQ	101	27-150		
Flonicamid	3.21	ppm	1.80	< LOQ	178	46-139		
Fludioxonil	1.65	ppm	1.80	< LOQ	91.7	31-150		
Hexythiazox	2.17	ppm	1.80	< LOQ	121	32-150		
Imazalil	2.12	ppm	1.80	< LOQ	118	44-142		
Imidacloprid	1.51	ppm	1.80	< LOQ	83.9	23-150		
Kresoxim-methyl	1.63	ppm	1.80	< LOQ	90.7	49-130		
Malathion	1.70	ppm	1.80	< LOQ	94.6	25-150		
Metalaxyl	1.90	ppm	1.80	< LOQ	106	49-141		
Methiocarb	1.70	ppm	1.80	< LOQ	94.6	44-146		
Methomyl	2.52	ppm	1.80	< LOQ	140	44-136		
Methyl parathion	1.79	ppm	1.80	< LOQ	99.8	15-150		
MGK-264	1.34	ppm	1.13	< LOQ	118	22-150		
Myclobutanil	2.18	ppm	1.80	< LOQ	121	34-150		
Naled	1.70	ppm	1.80	< LOQ	94.5	38-142		
Oxamyl	1.80	ppm	1.80	< LOQ	100	40-132		
Paclobutrazol	2.13	ppm	1.80	< LOQ	118	29-147		
Permethrins (total)	1.46	ppm		< LOQ		27-104		
Phosmet	2.04	ppm	1.80	< LOQ	114	35-150		
Piperonyl butoxide	1.62	ppm	1.80	< LOQ	90.3	34-143		
Prallethrin	2.03	ppm	1.80	< LOQ	113	33-150		
Propiconazole	1.70	ppm	1.80	< LOQ	94.7	46-138		
Propoxur	1.40	ppm	1.80	< LOQ	78.1	50-138		
Pyrethrins (total)	1.32	ppm		< LOQ		21-150		
Pyridaben	1.24	ppm	1.80	< LOQ	69.1	39-150		

12 Lilings

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis (Continued)

Batch: B190400 - Pesticide Prep (Continued)

Matrix Spike(B190400-MS1)	Extracted - 03/12/19 9:31 Analyzed - 03/13/19 3:32								
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Spinosad	1.12	ppm	1.47	< LOQ	76.3	31-150			
Spiromesifen	1.72	ppm	1.80	< LOQ	95.4	27-141			
Spirotetramat	1.73	ppm	1.80	< LOQ	96.4	31-141			
Spiroxamine	1.10	ppm	0.989	< LOQ	112	57-139			
Tebuconazole	1.90	ppm	1.80	< LOQ	106	32-140			
Thiacloprid	1.44	ppm	1.80	< LOQ	80.0	45-150			
Thiamethoxam	2.71	ppm	1.80	< LOQ	151	40-141			
Trifloxystrobin	1.40	ppm	1.80	< LOQ	77.6	30-137			

Matrix Spike Dup(B190400-MSD1)		Extracted - 03/12/19 9:31 Analyzed - 03/13/19							
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Abamectin	1.81	ppm	1.79	< LOQ	101	15-150	7.35	40	
Acephate	1.89	ppm	1.83	< LOQ	103	45-130	0.224	26	
Acequinocyl	1.20	ppm	1.83	< LOQ	65.5	31-146	16.1	50	
Acetamiprid	1.59	ppm	1.83	< LOQ	86.9	39-150	8.07	21	
Aldicarb	1.68	ppm	1.83	< LOQ	91.7	47-143	6.81	30	
Azoxystrobin	1.50	ppm	1.83	< LOQ	81.7	21-150	8.67	21	
Bifenazate	2.06	ppm	1.83	< LOQ	112	31-150	4.64	20	
Bifenthrin	0.82	ppm	1.83	< LOQ	44.8	23-132	4.92	30	
Boscalid	2.09	ppm	1.83	< LOQ	114	41-141	10.8	20	
Carbaryl	1.93	ppm	1.83	< LOQ	105	60-125	2.57	20	
Carbofuran	1.46	ppm	1.83	< LOQ	79.6	57-136	7.17	24	
Chlorantraniliprole	1.56	ppm	1.83	< LOQ	85.0	32-145	8.77	20	
Chlorfenapyr	1.79	ppm	1.83	< LOQ	97.9	29-150	14.8	50	
Chlorpyrifos	2.05	ppm	1.83	< LOQ	112	29-146	3.43	24	
Clofentezine	1.92	ppm	1.83	< LOQ	105	48-128	0.302	20	
Cyfluthrin	2.33	ppm	1.83	< LOQ	127	16-150	4.86	50	
Cypermethrin	1.81	ppm	1.83	< LOQ	98.8	22-150	6.98	30	
Daminozide	2.39	ppm	1.83	< LOQ	131	34-150	3.53	30	
DDVP (Dichlorvos)	1.98	ppm	1.83	< LOQ	108	55-133	7.51	30	
Diazinon	2.02	ppm	1.83	< LOQ	110	54-126	1.93	20	
Dimethoate	1.99	ppm	1.83	< LOQ	108	60-129	0.126	20	
Ethoprophos	1.75	ppm	1.83	< LOQ	95.9	40-150	5.07	29	
Etofenprox	0.82	ppm	1.83	< LOQ	44.6	25-135	4.60	24	
Etoxazole	1.55	ppm	1.83	< LOQ	84.7	26-149	4.30	30	

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Pesticide Analysis (Continued)

Batch: B190400 - Pesticide Prep (Continued)

Matrix Spike Dup(B190400-MS	SD1) Extracted - 03/12/19 9:31 Analyzed - 03/13/19							
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Fenoxycarb	2.10	ppm	1.83	< LOQ	115	37-145	5.14	23
Fenpyroximate	1.75	ppm	1.83	< LOQ	95.9	27-150	7.45	20
Fipronil	1.74	ppm	1.83	< LOQ	94.9	27-150	6.69	28
Flonicamid	3.25	ppm	1.83	< LOQ	178	46-139	0.333	29
Fludioxonil	1.19	ppm	1.83	< LOQ	64.8	31-150	34.4	30
Hexythiazox	2.09	ppm	1.83	< LOQ	114	32-150	5.73	28
Imazalil	2.07	ppm	1.83	< LOQ	113	44-142	4.24	25
Imidacloprid	1.51	ppm	1.83	< LOQ	82.5	23-150	1.61	30
Kresoxim-methyl	1.66	ppm	1.83	< LOQ	90.5	49-130	0.192	20
Malathion	1.65	ppm	1.83	< LOQ	90.0	25-150	5.02	21
Metalaxyl	1.86	ppm	1.83	< LOQ	101	49-141	3.98	20
Methiocarb	1.63	ppm	1.83	< LOQ	89.0	44-146	6.08	20
Methomyl	2.58	ppm	1.83	< LOQ	141	44-136	0.490	30
Methyl parathion	1.84	ppm	1.83	< LOQ	100	15-150	0.541	50
MGK-264	1.31	ppm	1.15	< LOQ	113	22-150	4.44	24
Myclobutanil	2.12	ppm	1.83	< LOQ	116	34-150	4.33	23
Naled	1.64	ppm	1.83	< LOQ	89.4	38-142	5.53	25
Oxamyl	1.83	ppm	1.83	< LOQ	100	40-132	0.154	30
Paclobutrazol	2.05	ppm	1.83	< LOQ	112	29-147	5.10	20
Permethrins (total)	1.48	ppm		< LOQ		27-104		30
Phosmet	1.96	ppm	1.83	< LOQ	107	35-150	6.09	20
Piperonyl butoxide	1.53	ppm	1.83	< LOQ	83.5	34-143	7.79	21
Prallethrin	2.02	ppm	1.83	< LOQ	110	33-150	2.34	25
Propiconazole	1.73	ppm	1.83	< LOQ	94.7	46-138	0.0143	20
Propoxur	1.51	ppm	1.83	< LOQ	82.7	50-138	5.77	28
Pyrethrins (total)	1.27	ppm		< LOQ		21-150		28
Pyridaben	1.20	ppm	1.83	< LOQ	65.5	39-150	5.32	23
Spinosad	1.13	ppm	1.50	< LOQ	75.6	31-150	0.878	30
Spiromesifen	1.67	ppm	1.83	< LOQ	91.5	27-141	4.17	30
Spirotetramat	1.64	ppm	1.83	< LOQ	89.6	31-141	7.33	25
Spiroxamine	1.00	ppm	1.01	< LOQ	99.6	57-139	11.3	20
Tebuconazole	1.95	ppm	1.83	< LOQ	106	32-140	0.513	20
Thiacloprid	1.59	ppm	1.83	< LOQ	86.7	45-150	7.99	21
Thiamethoxam	2.75	ppm	1.83	< LOQ	150	40-141	0.249	30
Trifloxystrobin	1.37	ppm	1.83	< LOQ	74.9	30-137	3.51	29

M La liggel

Brian Weigel Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality Control Terpene Analysis

Batch: B190399 - Potency/Terpenes

Blank(B190399-BLK1)	Extr	acted - 03/12	2/19 9:30 A	nalyzed	- 03/12/1	9 14:11		
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
alpha Pinene	< LOQ	%						
Myrcene	< LOQ	%						
alpha Phellandrene	< LOQ	%						
3-Carene	< LOQ	%						
alpha Terpinene	< LOQ	%						
Limonene	< LOQ	%						
Terpinolene	< LOQ	%						
Linalool	< LOQ	%						
Fenchol	< LOQ	%						
Borneol	< LOQ	%						
Terpineol	< LOQ	%						
Geraniol	< LOQ	%						
alpha Humulene	< LOQ	%						
beta Caryophyllene	< LOQ	%						
Caryophyllene Oxide	< LOQ	%						
alpha Bisabolol	< LOQ	%						
Camphene	< LOQ	%						
beta Pinene	< LOQ	%						
Ocimene	< LOQ	%						
Sabinene	< LOQ	%						
Camphor	< LOQ	%						
Isoborneol	< LOQ	%						
Menthol	< LOQ	%						
alpha Cedrene	< LOQ	%						
Nerolidol	< LOQ	%						
R-(+)-Pulegone	< LOQ	%						
Eucalyptol	< LOQ	%						
p-Cymene	< LOQ	%						
(-)-Isopulegol	< LOQ	%						
Geranyl Acetate	< LOQ	%						
Guaiol	< LOQ	%						
Valencene	< LOQ	%						
Phytol	0.305	%						
Citronellol	< LOQ	%						
gamma-Terpinene	< LOQ	%						

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality ControlTerpene Analysis (Continued)

Batch: B190399 - Potency/Terpenes (Continued)

Duplicate(B190399-DUP1)	Extracted - 03/12/19 9:30 Analyzed - 03/12/19 14:11								
Analyte	Result	Units	Spike Source Level Result %RE	%REC C Limits RPD	RPD Limit				
alpha Ocimene	< LOQ	%	< LOQ		20				
alpha Terpineol	0.063	%	0.070	11.4	20				
beta Ocimene	< LOQ	%	< LOQ		20				
beta Terpineol	< LOQ	%	< LOQ		20				
cis-Nerolidol	0.040	%	0.044	8.96	20				
Phytol 1	< LOQ	%	< LOQ		20				
Phytol 2	0.044	%	0.053	18.3	20				
trans-Nerolidol	0.096	%	0.107	10.2	20				
alpha Pinene	0.059	%	0.065	10.3	20				
Myrcene	0.502	%	0.564	11.5	20				
alpha Phellandrene	< LOQ	%	< LOQ		20				
3-Carene	< LOQ	%	< LOQ		20				
alpha Terpinene	< LOQ	%	< LOQ		20				
Limonene	0.725	%	0.796	9.24	20				
Terpinolene	0.025	%	0.028	12.0	20				
Linalool	0.172	%	0.187	8.46	20				
Fenchol	0.062	%	0.068	9.20	20				
Borneol	0.023	%	0.026	11.4	20				
Terpineol	0.063	%	0.070	11.4	20				
Geraniol	0.042	%	0.048	12.2	20				
alpha Humulene	0.159	%	0.177	10.5	20				
beta Caryophyllene	0.480	%	0.536	11.0	20				
Caryophyllene Oxide	0.019	%	0.020	6.80	20				
alpha Bisabolol	0.044	%	0.050	12.4	20				
Camphene	0.019	%	0.020	4.68	20				
beta Pinene	0.109	%	0.121	10.1	20				
Ocimene	< LOQ	%	< LOQ		20				
Sabinene	< LOQ	%	< LOQ		20				
Camphor	< LOQ	%	< LOQ		20				
Isoborneol	< LOQ	%	< LOQ		20				
Menthol	< LOQ	%	< LOQ		20				
alpha Cedrene	< LOQ	%	< LOQ		20				
Nerolidol	0.137	%	0.151	9.86	20				
R-(+)-Pulegone	0.023	%	0.022	2.72	20				
Eucalyptol	< LOQ	%	< LOQ		20				

Lab Director

SC Laboratories Oregon LLC

ORELAP# 4133/OLCC# 1004748743D 15865 SW 74th Ave Suite 110, Tigard, OR 503-272-8830 www.sclabs.com

Quality ControlTerpene Analysis (Continued)

Batch: B190399 - Potency/Terpenes (Continued)

Duplicate(B190399-DUP1)	Extracted - 03/12/19 9:30 Analyzed - 03/12/19 14:11						
Analyte	Result	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit
p-Cymene	< LOQ	%	< LOQ				20
(-)-Isopulegol	< LOQ	%	< LOQ				20
Geranyl Acetate	0.021	%	0.022			6.41	20
Guaiol	< LOQ	%	< LOQ				20
Valencene	0.101	%	0.105			3.97	20
Phytol	0.044	%	0.053			18.3	20
Citronellol	< LOQ	%	< LOQ				20
gamma-Terpinene	< LOQ	%	< LOQ				20

Batch: B190401 - Gravimetric

Duplicate(B190401-DUP1)	Extracted - 03/13/19 11:33 Analyzed - 03/13/19 11:33							
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Percent Moisture	10.0	%		10.0			0.0996	20

Batch: B190402 - Water Activity

Duplicate(B190402-DUP1)	Extracted - 03/13/19 12:55 Analyzed - 03/13/19 12:55							
Analyte	Result	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Water Activity	0.544	AW		0.550			1.10	20

OREGON LIQUOR CONTROL COMMISSION CANNABIS TRANSPORTATION MANIFEST

19C0028

All sales transactions are to be completed prior to transportation of any CANNABIS. The receiving entity may reject product delivered, but amount delivered must be limited to amount agreed upon in prior sales transaction.

Manifest No.:	0001363328	Date Created:	3/8/2019 10:29 AM		
Originating Entity:	Western Oregon Botanicals	Lary News & Miles & Mile To T. Bill	For OLCC Use Only		
Originating License Number:	020-10021071D94		to print the Street North Street		
Address of Originating Entity:	18270 SW Belton Road Sherwood, OR 97140		American distribution ((American distribution)		
Phone No. of Originating Entity:	208-989-3449		TIVIPIDA		
Contact Phone No. for Inq	uiries: 208-989-3449				
Destination # 1	SC Laboratories	Destination Phone No.:	707-339-0050		
Destination License Number:	010-1004748743D	Date and Approx. Time of Departu	re: 3/8/2019 10:28 AM		
Address of Destination:	15865 SW 74th Avenue Ste 110 Tigard, OR 97224	Date and Approx. Time of Arrival:	3/8/2019 12:04 PM		
		Date/Time Received:	3/8/19 11:28		
Route to be Traveled: Google route		Notes: details for extenueting circumstance	ces (e.g., road closure, flat tire, etc.)		
Name of Person Transporting:	Scott Forster	Handler Permit No. of Driver:	N/A		
State Driver's License No.:	a625521	Signature of Person Transporting	Suff		
Make, Model, License Plate No.:	Nissan NV200 825KAT				
Package # 1	Production Batch No.	Item Name	Quantity		
1A40103000098BF000001504 Lab Test: SubmittedForTesting Status: Shipped		Super Glue (Buds (by strain))	Shp: 24,4699 g		
Harvests:	2/18 Super Glue	·····			
Package # 2	Production Batch No.	Item Name	Quantity		
1A40103000098BF000001505 Lab Test: SubmittedForTesting Status: Shipped		Platinum Cookies (Buds (by strain))	Shp: 12.8400 g		
Harvests:	2/18 pgsc				
Package # 3	Production Batch No.	Item Name	Quantity		
1A40103000098BF000001506 Lab Test: SubmittedForTesting Status: Shipped		Alien Jack (Buds (by strain))	Shp: 7.1400 g		
Harvests:	2/18 AJ				
Package # 4	Production Batch No.	Item Name	Quantity		
1A40103000098BF000001507 Lab Test: SubmittedForTesting Status: Shipped		9lb Hammer (Buds (by strain))	Shp: 15.4500 g		
Harvests:	2/18 9lb	55			
Package # 5	Production Batch No.	lo. Item Name Qua			
		Sirius Black (Buds (by strain))			
1A40103000098BF000001508 Lab Test: SubmittedForTesting Status: Shipped		(Buds (by strain))			

OREGON LIQUOR CONTROL COMMISSION CANNABIS TRANSPORTATION MANIFEST

19C0028

All sales transactions are to be completed prior to transportation of any CANNABIS. The receiving entity may reject product delivered, but amount delivered must be limited to amount agreed upon in prior sales transaction.

Manifest No.:	0001363328	Date Created:	3/8/2019 10:29 AM
PRODUC	CT REJECTION (if only a portion	n of shipment is rejected, circle that	portion above)
Name of Person Receiving o Rejecting Product:	r /	Ingelica Seir	
I confirm that the contents o	f this shipment match weight records en ircled above. Those portions circled we	ntered above, and I agree to take custody of the returned to the individual delivering this sh	those portions of this shipment <i>not</i> ipment.
Signature:		Qmof() Date:	3/8/19
Signature of individual takin of rejected portion of this sh	g receipt ipment:	PERMIT NAME OF THE PROPERTY OF	ware Process for the learnings
	The second second		11 dA x
			16 57 12 5
			3

Client: Western Oregon Botanicals Client License: 3/8/2019 Thermometer ID: T014 Sampler Signature Address Where 18270 SW Benton Rd Sherwood OR 19C0028 SAMP_BAL_02 Abdullah Naimi Event ID: Balance ID: Requestor: Sampled: Sampling SOP & Rev. $_{\mbox{SC-OR-SAMP-}003}$ Sampler: Scott Forster Transporter: Scott Forster Hygrometer ID: Anemometer_02 Acceptance Lab ORELAP ID: Weight used (g) Weight Set ID Initial Measured Final Measured Criteria Lab OLCC ID: 1004748743D 0.5 SAMP_CAL_02 ±2.5% 0.5 0.5 200 ±2.5% 200 200 Container Type METRC Harvest/Processing Lot ID #: Product Type Client Sample Name Product Date Batch Size (g) 43514 2/18/2019 storage tubs Usable Marijuan Super Glue 4540 Product Temp 1° Sample Size METRC Batch ID Humidity (%) # of Containers Sampling Media # Zones # of Inc. Sample Name (°C) (g) 1a40103000098bf000001499 44.9 mylar bag 2.7 Super Glue Primary Sampling Increment Lab Sample ID Container ID Increment Zone Wt. Inc+Media (g) Sample METRC ID# Media Wt. (g) Weight (g) 2.7 19C0028-01 Super Glue-1 A1 0 2.7 1504 2.7 19C0028-01 Super Glue-1 A1 5.4 2.7 1504 19C0028-01 Super Glue-1 5.4 8.1 2.7 1504 A2 8.1 10.8 19C0028-01 Super Glue-1 2.7 1504 19C0028-01 10.8 13.5 2.7 Super Glue-1 A2 1504 19C0028-01 Super Glue-1 А3 13.5 16.2 2.7 1504 A4 18.9 2.7 1504 19C0028-01 Super Glue-1 16.2 19C0028-01 18.9 21.6 2.7 1504 Super Glue-1 A4 19C0028-01 Super Glue-1 Α4 21.6 24.47 2.87 1504 Minimum Sample Size = 22.7g (Usable Totals: Total Sample Mass = 24.47 Batch # Equipment Cont. Types/Sizes Uniform Plant Colors Shape and Size Sampling Plan ID & Rev. Date

Container Type	METRC Harvest/Processing Lot ID #:				Product Type	Client Sample Name	Product Date	Batch Size (g)
storage tubs		43514			Usable Marijuana	PGSC	2/18/2019	2270
METRC Batch ID	Product Temp (°C)	Humidity (%)	Humidity (%) # of Containers		# Zones	# of Inc.	1° Sample Size (g)	Sample Name
1a40103000098bf000001500	16.3	44.9	4	mylar bag	4	8	1.6	PGSC Primary
Lab Sample ID		Container ID		Increment Zone	Sampling Media Wt. (g)	Wt. Inc+Media (g)	Increment Weight (g)	Sample METRC ID#
19C0028-02		PGSC-1		A2	0	1.6	1.6	1505
19C0028-02		PGSC-1		A2	1.6	3.2	1.6	1505
19C0028-02		PGSC-2		B2	3.2	4.8	1.6	1505
19C0028-02		PGSC-2		В3	4.8	6.4	1.6	1505
19C0028-02		PGSC-2		B4	6.4	8	1.6	1505
19C0028-02		PGSC-3		C2	8	9.6	1.6	1505
19C0028-02		PGSC-3		C4	9.6	11.2	1.6	1505
19C0028-02		PGS	C-4	D2	11.2	12.84	1.64	1505

Observations and Abnormalities:

Totals:	Minimum Sample Siz Marijuan		8		Total Sample Mass = 12.84		
	Batch #	Equipment	Cont. Types/Sizes	Uniform	Plant Colors	Shape and Size	Sampling Plan ID & Rev. Date
Observations and Abnormalities:							
		·		·		·	

Container Type		METRC Harvest/Processing Lot ID #:				Client Sample Name	Product Date	Batch Size (g)
storage tubs		435	514		Usable Marijuana	AJ	2/18/2019	1362
METRC Batch ID	Product Temp (°C)	Humidity (%)	# of Containers	Sampling Media	# Zones	# of Inc.	1° Sample Size (g)	Sample Name
1a40103000098bf000001501	16.3	44.9	1	mylar bag	4	7	1	AJ Primary
Lab Sample ID		Contair	Container ID		Sampling Media Wt. (g)	Wt. Inc+Media (g)	Increment Weight (g)	Sample METRC ID#
19C0028-03		AJ-	1	A1	0	1	1	1506
19C0028-03		AJ-	1	A2	1	2	1	1506
19C0028-03		AJ-	1	A2	2	3	1	1506
19C0028-03		AJ-	1	A2	3	4	1	1506
19C0028-03		AJ-1		A3	4	5	1	1506
19C0028-03		AJ-1		A4	5	6	1	1506
19C0028-03	19C0028-03		AJ-1		6	7.14	1.14	1506
Totals:		Minimum Sample S Marijuan		7	Total Sample Mass = 7.14			nss = 7.14
	Batch # Equipment			Cont. Types/Sizes	Uniform	Plant Colors	Shape and Size	Sampling Plan ID & Rev. Date
Observations and Abnormali	ties:							

Container Type	METRC Harvest/Processing Lot ID #:				Product Type	Client Sample Name	Product Date	Batch Size (g)
storage tubs	43514				Usable Marijuana	9lb Hammer	2/18/2019	2724
METRC Batch ID	Product Temp (°C)	' I Humidity (%) I # of Containers I Sampling Media I			# Zones	# of Inc.	1° Sample Size (g)	Sample Name

1a40103000098bf000001502	16.3	44.9	1	mylar bag	4	8	1.9	9lb Hammer Primary	
Lab Sample ID	Lab Sample ID		Container ID		Sampling Media Wt. (g)	Wt. Inc+Media (g)	Increment Weight (g)	Sample METRC ID#	
19C0028-04		9lb Ham	nmer-1	A1	0	1.9	1.9	1507	
19C0028-04		9lb Ham	nmer-1	A1	1.9	3.8	1.9	1507	
19C0028-04		9lb Ham	nmer-1	A2	3.8	5.7	1.9	1507	
19C0028-04		9lb Ham	nmer-1	A2	5.7	7.6	1.9	1507	
19C0028-04		9lb Ham	nmer-1	A3	7.6	9.5	1.9	1507	
19C0028-04		9lb Hammer-1		A4	9.5	11.4	1.9	1507	
19C0028-04	19C0028-04		9lb Hammer-1		11.4	13.3	1.9	1507	
19C0028-04	19C0028-04		9lb Hammer-1		13.3	15.45	2.15	1507	
Totals:		Minimum Sample Siz Marijuan		8		Total Sample Mass = 15,45			
		Batch #	Equipment	Cont. Types/Sizes	Uniform	Plant Colors	Shape and Size	Sampling Plan ID & Rev. Date	
Observations and Abnormaliti	ies:								

Container Type		METRC Harvest/Pr	ocessing Lot ID #:		Product Type	Client Sample Name	Product Date	Batch Size (g)
storage tubs		435	514		Usable Marijuana	Sirius Black	2/18/2019	2724
METRC Batch ID	Product Temp (°C)	Humidity (%)	# of Containers	Sampling Media	# Zones	# of Inc.	1° Sample Size (g)	Sample Name
1a40103000098bf000001503	16.3	44.9	1	mylar bag	4	8	1.9	Sirius Black Primary
Lab Sample ID		Container ID		Increment Zone	Sampling Media Wt. (g)	Wt. Inc+Media (g)	Increment Weight (g)	Sample METRC ID#
19C0028-05		Sirius B	lack-1	A1	0	1.9	1.9	1508
19C0028-05		Sirius B	lack-1	A1	1.9	3.8	1.9	1508
19C0028-05		Sirius B	lack-1	A1	3.8	5.7	1.9	1508
19C0028-05		Sirius Black-1		A1	5.7	7.6	1.9	1508
19C0028-05		Sirius Black-1		A1	7.6	9.5	1.9	1508
19C0028-05		Sirius Black-1		A2	9.5	11.4	1.9	1508
19C0028-05		Sirius Black-1		A3	11.4	13.3	1.9	1508
19C0028-05		Sirius Black-1		A4	13.3	15.44	2.14	1508
Totals:		Minimum Sample Siz Marijuan		8	Total Sample Mass = 15,44			ss = 15.44
		Batch #	Equipment	Cont. Types/Sizes	Uniform	Plant Colors	Shape and Size	Sampling Plan ID & Rev. Date

Observations and Abnormalities:				