CS 771A: Intro to Machine Learning, IIT Kanpur Midsem Exam (15 Jun 2024)									
Name				40 ma	rks				
Roll No		Dept.		Page 1	of 4				
1. This 2. Wri 3. Wri 4. Dor	te your te your n't over	on paper contains 2 pages (4 sides of paper). Please verify. name, roll number, department in block letters with ink on final answers neatly with a blue/black pen . Pencil marks m write/scratch answers especially in MCQ – ambiguous cases or F for True/False in the box . Also, give justificati	ay get smudged. will get 0 marks.	-+3) = 16 n	narks)				
1	All sta	ationary points of the function $f(x) \stackrel{\text{def}}{=} x^3 - x^5$ are cal/global maxima. Justify your answer using first an	either local/global	minima					
			def. G. 1. ()						
2	_	$\mathbb{R} o \mathbb{R}$ be a convex differentiable function. Let $g \mid x \in \mathbb{R}$. Then g can never be convex. Give either a particle g							
3		ptimum for $\mathop{\rm argmin}_{x\in\mathbb{R}}\exp(x-x_0)+(x-x_0)^2$ is alworking the ptimum. Note that $x_0\in\mathbb{R}$ is a constant. (<i>Hint</i> : using	-						

The dot product of two **Boolean** vectors $\mathbf{u}, \mathbf{v} \in \{0,1\}^3$ cannot be zero unless one of them is the zero vector. If true, give a brief proof, else give a counter example.

Q2. (Chessboard Classifier) Create a feature map $\phi \colon \mathbb{R}^2 \to \mathbb{R}^D$ for some D > 0 so that for any $\mathbf{z} = (x,y) \in \mathbb{R}^2$, $\operatorname{sign}(\mathbf{1}^T\phi(\mathbf{z}))$ takes value -1 if \mathbf{z} is in the dark cross-hatched region and +1 if \mathbf{z} is in the light dotted region (see fig). E.g., (0,0), (3,3), (-3,3) are all labelled +1 while (-3,0), (0,3), (3,0) are all labelled -1. The lines in the figure are x=2, x=-2 and y=2. We don't care what label is given to points lying on the three lines (these are the decision boundaries). $\mathbf{1} = (1,1,\ldots,1) \in \mathbb{R}^D$ is the all-ones vector. No need for derivation – give only the final map below. (5 marks)

 $\phi(x,y) =$

Q3 (Optimal Checkerboard DT) Melbo has received data for the problem in Q2. There are 10 datapoints (given in the table), each with a 2D feature vector (x, y). All 10 points are at the root of a decision tree. Melbo wants to learn a decision stump based on the entropy reduction principle to split the root into two children. Only 3 decision stumps are allowed which ask the questions $(x \le -2?)$, $(x \le 2?)$ and $(y \le 2?)$. All logs are to base 2, assume $\log_2 3 = 1.58$, $\log_2 5 = 2.32$ Give your answers correct to at least 2 decimal places. (11 x 1 = 11 marks)

	S.	Class	(x,y)	S.	Class	(x,y)	S.	Class	(x,y)	S.	Class	(x,y)	S.	Class	(x,y)
	1	1	(-3,0)	3	+	(1,1)	5	+	(-1,1)	7	Ι	(1,5)	9		(-1,5)
Ī	2	+	(3,3)	4	+	(1, -1)	6	+	(-1, -1)	8	_	(1,3)	10	_	(-1,3)

What is the entropy of the root node?

What is the entropy of the two child nodes (answers for the two nodes separately) if split is done using the question $x \le -2$? i.e., $x \le -2$ becomes the left child, x > -2 becomes right child)?

What is the reduction in entropy (i.e., $H_{\rm root} - H_{\rm children}$) if the split is done using the question $x \le -2$? as described above?

CS 771A:	Intro to Machine Le	Mids	Midsem Exam (15 Jun 2024)							
Name						40 marks				
Roll No		Dept.				Page 3 of 4				
What is the entropy of the two child nodes (answers for the two nodes separately) if split is done using the question $x \le 2$? i.e., $x \le 2$ becomes the left child, $x > 2$ becomes right child)? What is the reduction in entropy (i.e., $H_{\rm root} - H_{\rm children}$) if the split is done using the question $x \le 2$? as described above?										
two nodes	e entropy of the two cl s separately) if split is d becomes the left child									
What is the reduction in entropy (i.e., $H_{\rm root}-H_{\rm children}$) if the split is done using the question $y\leq 2$? as described above?										
To get the should we	most entropy reduction use?	on, which	n decision stump							
-	are turned). A curious		•	_						

Q4 (Tables are turned). A curious type of regularization is *Morozov regularization* which turns the loss function into a constraint (btw, SVMs & ridge regression use *Tikhonov regularization* instead). Consider the following regression problem where $X \in \mathbb{R}^{N \times d}$ gives us d-dimensional features for N data points and $\mathbf{y} \in \mathbb{R}^N$ gives the labels. Give a coordinate minimization algorithm (choose coordinates cyclically) to solve the primal. Give brief calculations on how you will create a simplified unidimensional problem for a chosen coordinate $i \in [d]$ and then show how to get the optimal value of w_i . Assume $\|\mathbf{y}\|_2^2 \leq 1$ so that the constraint set is not empty (e.g., $\mathbf{w} = \mathbf{0}$ satisfies the constraint). Feel free to define shorthand notation to simplify your answer. (8 marks)

$$\min_{\mathbf{w} \in \mathbb{R}^d} \qquad \frac{1}{2} \|\mathbf{w}\|_2^2$$
s. t.
$$\|X\mathbf{w} - \mathbf{y}\|_2^2 \le 1$$

