Contador de Geiger-Müller

Alejandro Bellón Brañas

8 de mayo de 2020

1. Introducción

La radioactividad es el fenómeno físico por el cual los núcleos de ciertos elementos químicos que son inestables (sustancias radiactivas) emiten espontáneamente radiación para pasar de un estado excitado a otro estado más estable, perdiendo energía en el proceso y convirtiéndose en sustancias diferentes. En las desintegraciones radiactivas se tienen varios tipos de radiación, siendo las principales: alfa (α) , beta (β) y gamma (γ) :

Radiación α : Son núcleos formados por dos protones y dos neutrones, es decir, son núcleos de Helio. Por lo tanto, tienen carga y en consecuencia interaccionan con campos eléctricos y magnéticos. Esta propiedad les permite ionizar átomos al colisionar con los electrones de estos. Precisamente esta alta tasa de interacción con la materia hace que tengan un escaso poder de penetración; unos pocos centímetros de aire pueden detener esta radiación.

Radiación β : Consiste en la emisión de electrones. Al igual que las partículas α , al estar cargadas interaccionan fuertemente con los campos electromagnéticos y con la materia, ionizando los átomos. La diferencia con la radiación α es que son mucho mas energéticos, de forma que el poder de penetración es superior, se necesitan varios milímetros de Plomo para detenerlos.

Radiación γ : Se trata de ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos (partículas sin masa y sin carga). No se desvían por campos eléctricos ni magnéticos.

Debido a la aleatoriedad de los procesos de desintegración nuclear, tan solo podemos aspirar a dar una descripción probabilística de los mismos, de forma que no es posible predecir con exactitud cuándo se van a producir. Estadísticamente, podemos modelar los procesos de desintegración nuclear mediante la llamada distribución de Poisson, $f(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, donde $\lambda = \langle k \rangle$. Para nuestro caso, si observamos un promedio de n cuentas en un tiempo Δt , es decir, $n = \langle N \rangle = \frac{N}{\Delta t}$, la probabilidad de observar n cuentas en este mismo intervalo será:

$$P(N) = \frac{n^N}{N!}e^{-n} \tag{1}$$

2. Materiales y métodos

Dadas las circunstancias vividas a causa del confinamiento por el COVID-19 no pudimos realizar las prácticas en el laboratorio, por lo que no tiene mucho sentido comentar los materiales utilizados. Sobre los métodos que se comentan en el guion de prácticas podemos hablar del ruido de fondo, que si pudimos medir en la única práctica que se pudo hacer en el laboratorio.

2.1 Material

Los materiales utilizados tendrían que haber sido los siguientes:

- Tubo contador y aparato contador de Geiger-Müller con altavoz.
- Soporte para el tubo contador y filtros.
- Materiales radiactivos: cloruro potásico, fuente radiactiva de Radio 226.
- Láminas de plomo, aluminio y papel.
- Tubo de plástico relleno de perdigones.
- Imanes.
- Cronómetro

2.2 Método

Sobre el método de medida si que puedo comentar algo, ya que llegamos a tener una sesión de prácticas y pudimos comprobar como funciona el ruido de fondo. El resto los mencionaré brevemente.

Lo primero que debemos tener en cuenta al entrar en el laboratorio es medir cual es el ruido de fondo, es decir, medir cuánta radiación hay en el entorno en el que estemos trabajando y cuánto puede influir ésta a nuestras medidas. Para medir el ruido de fondo debemos tener el medidor encendido un intervalo de tiempo lo suficientemente largo en ausencia de la fuente radiactiva y tomar medida del número de cuentas que tenemos en ese intervalo. Tenemos entonces la medida de nuestro ruido de fondo, n, que se calcula como $n = \frac{N}{r}$.

El resto de la experimentación en el laboratorio se basaba en varios puntos, el primero comprobar el carácter probabilístico del experimento y comprobar que sigue una distribución de Poisson; comprobar el poder de penetración de la radiación, colocando hojas de papel y de aluminio para frenarla; comprobar la tasa de recuento en función de la distancia y por último comprobar las propiedades electromagnéticas de las radiaciones β y γ . Para ello, habría que colimar el haz y medir la radiación en función del ángulo de desviación.

3. Resultados

3.1 Incertidumbres

Por las circunstancias especiales en las que nos encontramos, tuvimos que trabajar en base a unos datos que no fueron tomados por nosotros, así que, en el Excel del que tomé

los datos para esta memoria las incertidumbres no estaban indicadas. Para el número de cuentas la incertidumbre de medida está clara y bien definida, $\sigma_N = \sqrt{N}$. Debemos tener en cuenta ahora cuáles son las incertidumbres de medida de las distancias, tiempos y ángulos.

Para los tiempos tomaremos una incertidumbre $\sigma_t=1$ s, ya que, teniendo en cuenta que, para hacer la medida habría que parar simultáneamente el contador y el cronómetro, podemos suponer que para la precisión al parar el cronómetro en el tiempo y el desfase entre cronómetro y contador usar una incertidumbre de un segundo es suficientemente razonable. $\sigma_t=1$ s

Para las distancias suponemos la precisión de una regla, por lo que $\sigma_d=0.1$ cm, que es la incertidumbre habitual.

En el caso de los ángulos, no tenemos ninguna información, pero una vez estudiados los datos que nos dieron, no es muy importante ya que son pocas las medidas de ángulos y espaciadas entre si, y, a pesar de no tener información, podemos suponer que es baja.

3.2 Ruido de fondo

Los datos del ruido se encuentran en la tabla siguiente. El resto de tablas se encontrarán en un anexo al final del documento. Los resultados son:

Tabla 1: Ruido de fondo						
Tiempo (s) N (cuentas) n_r (cuentas · s ⁻¹)						
480 ± 1	227 ± 15	$0,473 \pm 0,031$				

A partir de ahora todos los datos de cuentas por segundo serán corregidos con este valor n_r, la radiación de fondo, teniendo en cuenta su incertidumbre.

3.3 Distribución estadística

Según indica el guion y como está en los datos utilizados, se toman medidas de cuentas cada 5 segundos. Presentamos los resultados en el siguiente histograma:

Imagen 1: Histograma y distribución de Poisson

La distribución estadística de las cuentas debería ser la de una distribución de Poisson. En la misma gráfica, como se puede ver en la Imagen 1, encontramos una curva que se corresponde a la distribución de Poisson. Para realizar esta curva, hicimos un ajuste a la función

$$P(k) = 150 \cdot \frac{\lambda^k}{k!} e^{-\lambda}$$

donde, k es la frecuencia de cada barra del histograma y multiplicamos por 150 ya que es el número de eventos que tenemos. El parámetro λ devuelto por el ajuste fue:

$$\lambda = 25,37 \pm 0,39$$

3.4 Estudio del poder de penetración de la radiación

Según se indica el guion, en este apartado se van colocando hojas de papel entre la fuente radiactiva y el detector que irán frenando la radiación α ya que es la más débil de todas. En la siguiente gráfica se encuentran los puntos obtenidos ajustados a una función exponencial:

Imagen 2: Ajuste a una exponencial

El ajuste de la gráfica es a una curva $y = a + b \cdot e^{-cx}$, siendo los parámetros obtenidos los siguientes:

$$a = (11,49 \pm 0,92)s^{-1}$$
; $b = (86,9 \pm 4,2)s^{-1}$; $c = (0,188 \pm 0,013)s$

Si ahora tomamos logaritmos en el eje y, teóricamente deberíamos obtener una expresión lineal de los puntos, por lo que realizamos un ajuste a una recta. La ecuación es de la forma y = a + bx, con la que obtuvimos:

Siendo sus parámetros:

$$a = (4,360 \pm 0,056); b = (-0,1012 \pm 0,0052); r^2 = 0,95$$

Como podemos ver en la Imagen 3, la tendencia es rectilínea, pero el ajuste dista bastante de ser perfecto. Podemos intentar mejorar el ajuste realizándolo a un polinomio de mayor grado. La función a la que ajustamos es $y = a + bx + cx^2 + dx^3$:

Imagen 4: Ajuste a un polinomio de orden 3

Cuyos parámetros fueron:

$$a = (4,780 \pm 0,029);$$
 $b = (-0,270 \pm 0,012)$ $c = (0,0152 \pm 0,0014);$ $d = (-0,000374 \pm 0,000046)$

Al comprobar que las medidas que nos dieron, una vez tomados logaritmos, no se ajustan perfectamente a una recta y tuvimos que realizar un ajuste a un polinomio. Teniendo esto en cuenta, podemos buscar una función que corrija a la exponencial y ajuste mejor nuestros puntos.

Probando correcciones llegamos a la función $y=a+b\cdot e^{-cx}+dx$, cuyos parámetros fueron:

$$a = (34.5 \pm 1.3)s^{-1}; b = (86.1 \pm 3.3)s^{-1};$$

$$c = (0.366 \pm 0.022)s; d = (-1.134 \pm 0.075)s^{-2}$$

Imagen 5: Ajuste a una exponencial con correcciones

Según el guion, tras colocar las 20 hojas de papel, habría que colocar láminas de aluminio, para tratar de obtener una medida de la radiación γ que entra al detector, ya que las láminas frenan, prácticamente en su totalidad, la radiación β emitida. Los resultados están en la siguiente tabla. El resto de tablas se incluirán en el anexo final. Recuerdo que todas las medidas de cuentas por segundo están corregidas para el ruido de fondo dado en las mediciones que nos fueron entregadas.

Tabla 2: Cuentas medidas con láminas de aluminio

Láminas Al	Tiempo (s)	N	N/s
1 lámina	30 ± 1	113 ± 11	$3,77 \pm 0,38$
2 láminas	45 ± 1	100 ± 10	$2,22 \pm 0,23$

3.5 Variación de la tasa de recuento con la distancia

Según el guion en este apartado simplemente se va variando la distancia a la que se coloca la fuente radiactiva frente al contador Geiger-Müller en intervalos de 0,5 cm.

El ajuste se realizó a una función que tuviese un decaimiento cuadrado con la distancia $y = \frac{a}{(x+b)^2}$, aunque se podría haber probado también un decaimiento exponencial. Para la función elegida, la representación gráfica es la siguiente:

Imagen 6: Variación del número de cuentas con la distancia

Los resultados para el ajuste mostrado fueron los siguientes:

$$a = (348 \pm 11) cm^2 s^{-1}; b = (0.650 \pm 0.044) s^{-1}$$

3.5 Comportamiento de la radiación β y γ bajo la acción de un campo electromagnético

En este apartado, se tendría que haber colimado el haz con una lámina de plomo. Además, se tendría que colocar también un papel para frenar la radiación de partículas α , por lo que las medidas tomadas serían solamente de radiación β y γ combinadas. Se realizaron dos medidas, una con un imán colocado y otra sin el imán, para ver la diferencia de las medidas en presencia y ausencia de un campo electromagnético. Después para medir las partículas γ que llegaban, se colocaron dos láminas de aluminio. Éstas se colocan para frenar el avance de las partículas β , que, presumiblemente, no son capaces de atravesarlo, o, al menos, el aluminio es capaz de frenar la mayoría de ellas. Estas últimas medidas no deberían variar frente al campo magnético, ya que los fotones no se desvían. Los resultados fueron:

Imagen 7: Cuentas con una hoja de papel

Imagen 8: Cuentas con dos láminas de Al

4. Discusión de los resultados

El primer resultado que tenemos es el correspondiente a la Imagen 1, en la que pretendíamos observar que nuestras cuentas medidas seguían una distribución de Poisson. En la gráfica podemos ver que el comportamiento, aunque parece que ajusta bien a la curva, no es exacto, ya que se puede ver un "valle" en las medidas, que parece indicar que hay algún

motivo por el cual hay una frecuencia baja en ese valor, por lo que el resultado no es del todo satisfactorio.

En el siguiente apartado, estudiamos la penetración de la radiación, haciéndola atravesar cada vez un mayor número de hojas de papel. El resultado esperable es una función exponencial decreciente $y=a+be^{-cx}$, ya que conforme aumentan las hojas se espera que decaiga el número de partículas α que detecta el contador y a sería el número de partículas β y γ detectadas, ya que no serían frenadas por el papel. Se espera que el decaimiento sea rápido, ya que pocas hojas de papel frenan la mayoría de los núcleos de He y se llegaría a una zona prácticamente lineal.

Para los datos que nos proporcionaron el ajuste, en la Imagen 2, es razonablemente bueno, pero cuando tomamos logaritmos en el eje *y* podemos comprobar que el ajuste rectilíneo no es bueno, por lo cuál añadimos una corrección lineal a la función, que, por lo que podemos ver en la Imagen 5 predice de manera casi ideal el comportamiento de las medidas.

Ahora bien, la función exponencial corregida funciona bien en el entorno de las medidas, pero comienza a devolver valores negativos a partir de un determinado número de hojas. Podemos suponer que el número de hojas que se usaron en el laboratorio no fueron suficientes para llegar a la zona plana, por lo que la función exponencial corregida devuelve una buena predicción en el rango de las medidas, pero si se comprobara para un mayor número de hojas sería realmente la exponencial normal la mejor curva para el ajuste.

Retomando algo que comenté antes, cuando tomamos logaritmos en el eje y, habría que pensar por que el ajuste de la Imagen 4, que debería ser lineal no es lo suficientemente bueno. Uno de los problemas es que la función tiene un término independiente, por lo que cuando se toman logaritmos de la función obtenemos $\log(a+be^{-cx})$, que se convertiría en un polinomio haciendo su desarrollo en serie de Taylor. Lo que nos dice esto es que el desarrollo de orden 1 no es suficiente para ajustar nuestros puntos, por lo que el ajuste de la Imagen 5 no es más que el desarrollo en serie de Taylor de orden 3 de la función en la región.

Para el registro de cuentas en función de la distancia mostrado en la Imagen 6, tomamos como modelo una función que disminuye cuadráticamente con la distancia, que funciona bien para distancias a partir de 2 cm. Para distancias inferiores, hay una caída significativa de cuentas, de 0,5 cm a 1 cm, por lo que es difícil encontrar una función que ajuste bien en esa región, además, los puntos alejados son puntos de menor incertidumbre. Podemos considerar que el resultado del ajuste es bueno, ya que, aunque no sea exacta, predice bien el que el número de cuentas sufre una caída abrupta en las distancias cortas y ajusta muy bien conforme aumenta la distancia.

Por último, está la medida de las partículas de radiación sometidas radiación electromagnética. Lo esperado es que en el caso de solamente haya una hoja de papel, las partículas se desvíen ya que el contador recibe en su mayoría partículas β , que están cargadas. En la Imagen 7 se puede ver el resultado esperado, que en ausencia de campo las cuentas sean máximas a 0° y vayan decreciendo rápidamente, de manera más o menos simétrica.

En los datos que se nos dieron, con el imán activado, se establece un campo magnético que desvía los electrones hacia los ángulos negativos, que provoca que la medida en los ángulos positivos sea casi nula. Puede verse que el número de partículas registradas se redujo. Esto se debe a que los fotones no se desvían por efecto del imán, solamente lo hacen los electrones.

Por último, podemos ver en la Imagen 8 las medidas para cuando se colocan dos láminas de aluminio, cuyo objetivo es frenar la radiación β . Lo primero, es que las medidas proporcionadas tienen una incertidumbre muy alta, ya que prácticamente todo lo medido era ruido de fondo. Las medidas eran de alrededor de 0,7 cuentas cada segundo y el ruido de fondo era de casi 0,5 cuentas cada segundo, por lo que casi todo lo que medido era ruido, así que no es sorprendente que las incertidumbres sean tan altas.

Observando la gráfica podemos ver dos cosas, la primera es que a 0° la medida es prácticamente idéntica, siendo ligeramente mayor en ausencia de campo y que, a pesar de las incertidumbres son altas, hay un punto que no es compatible en - 30° . Es curioso porque, de manera cualitativa y teniendo en cuenta que las incertidumbres son muy altas, una de las posibles explicaciones de lo que se ve en la gráfica es que la lámina no frene toda la radiación y que el campo magnético haga variar las medidas, pero, en - 30° , observamos más medidas sin campo que con el y, además, a la derecha de 0° las medidas con campo son mayores que si él. Como no conozco como se desarrolló el experimento, cabría pensar que tal vez en las medidas de las láminas de aluminio colocaron el imán "al revés".

5. Cuestiones

$5.1\,Suponiendo$ que el tiempo muerto del contador Geiger-Müller es de $200~\mu s$, calcula su ineficiencia para una incidencia de $10^3~partículas~por$ segundo

El tiempo muerto de un sistema de conteo está definido como el tiempo mínimo que transcurre cuando se leen partículas adyacentes y son reconocidas como dos pulsos independientes. En un detector existe la posibilidad de que un evento verdadero sea perdido por la ocurrencia rápida de dos eventos consecutivos, lo que se traduce en una pérdida de eficiencia.

La ecuación que rige este comportamiento es la de un sistema no paralizable (este modelo asume que los tiempos muertos tienen siempre la misma duración)

$$n = \frac{m}{1 - m\tau} \tag{2}$$

donde n es el número de partículas incidentes por unidad de tiempo, m el número de partículas detectadas por unidad de tiempo y τ el tiempo muerto.

Por otro lado, la eficiencia del detector se puede medir como $\eta=\frac{m}{n}$, por lo que, la ineficiencia sería $1-\eta=1-\frac{m}{n}$. Aplicándole la ecuación 2 y despejando obtenemos:

$$1 - \eta = 1 - \frac{m}{n} = 1 - \frac{m(1 - m\tau)}{m} = m\tau = \frac{n\tau}{1 + n\tau}$$
 (3)

Sustituyendo por los datos dados, obtenemos una ineficiencia del 16,7%.

5.2 Calcula cuál tendría que ser su tiempo muerto para que pudiera aceptar una tasa de recuento de 10^4 partículas por segundo con una pérdida de eficiencia menor del $1\,\%$

El objetivo es que la pérdida de eficiencia no supere el 1%, es decir, que la eficiencia sea superior al 99% ($\eta > 0.99$):

$$\eta = \frac{m}{n} = 1 - m\tau \tag{4}$$

$$\eta > 0.99 \to 1 - m\tau > 0.99 \to \tau < \frac{1 - 0.99}{m}$$
(5)

Para $m=10^4$ sustituyendo en la ecuación 5, tenemos que el tiempo muerto debe ser $\tau < 1 \mu s$.

5.3 Cuando queremos medir la radiactividad de una muestra, medimos su señal más el fondo ambiente. Si tenemos bien medida la tasa de fondo estable de 50 ± 0,2 c.p.m. (cuentas por minuto), determina durante cuánto tiempo hay que medir para obtener una incertidumbre estadística del 5 % en la determinación de la señal en los casos en los que se obtienen los siguientes resultados: 60 c.p.m., 100 c.p.m., 500 c.p.m. ¿Qué hubiera sucedido si el resultado de la medida del fondo hubiera tenido una incertidumbre estadística menor de, por ejemplo, 50 ± 1 c.p.m.?

Suponemos que detectamos n cuentas por minuto con una incertidumbre σ_n . Sabemos que el ruido de fondo es precisamente $n_r=(50\pm0,2)$ c.p.m.. Por lo tanto, si la incertidumbre del número real de cuentas es $\sigma_t=0.05\cdot n_t$, tendremos la siguiente ecuación:

$$(n \pm \sigma_n) - (n_r \pm \sigma_r) = \left(\frac{N}{\Delta t} \pm \sigma_n\right) - (n_r \pm \sigma_r) = (n \pm \sigma_n) - (50 \pm 0.2) \tag{6}$$

La incertidumbre del número total de cuentas, σ_t , se calcula de la siguiente forma por propagación de incertidumbres:

$$\sigma_t = \sqrt{\sigma_n^2 + \sigma_r^2} = \sqrt{\left(\frac{\sigma_N}{\Delta t}\right)^2 + \sigma_r^2} = \sqrt{\left(\frac{N}{(\Delta t)^2}\right) + \sigma_r^2} = 0.5$$
 (7)

Despejando:

$$(\Delta t)^2 = \frac{N}{\sigma_t^2 - \sigma_r^2} = \frac{n\Delta t}{\sigma_t^2 - \sigma_r^2} \Rightarrow \Delta t = \frac{n}{\sigma_t^2 - \sigma_r^2}$$
(8)

Ahora evaluamos para los tres parámetros que nos han dado:

a)
$$n = 60 \text{ c. p. m.} \Rightarrow n_t = 60 - 50$$
, $\Delta t = \frac{60}{(0.05 \cdot 10)^2 - 0.2^2} = 285.7 \text{ min}$
b) $n = 100 \text{ c. p. m.} \Rightarrow n_t = 100 - 50$, $\Delta t = \frac{100}{(0.05 \cdot 50)^2 - 0.2^2} = 16.10 \text{ min}$
c) $n = 500 \text{ c. p. m.} \Rightarrow n_t = 500 - 50$, $\Delta t = \frac{500}{(0.05 \cdot 450)^2 - 0.2^2} = 0.987 \text{ min}$

En caso de que $\sigma_r = 1$, tendremos:

a)
$$n = 60 \text{ c. p. m.} \Rightarrow n_t = 60 - 50$$
, $\Delta t = \frac{60}{(0.05 \cdot 10)^2 - 1^2} < 0$
b) $n = 60 \text{ c. p. m.} \Rightarrow n_t = 100 - 50$, $\Delta t = \frac{100}{(0.05 \cdot 50)^2 - 1^2} = 19.04 \text{ min}$
c) $n = 60 \text{ c. p. m.} \Rightarrow n_t = 500 - 50$, $\Delta t = \frac{500}{(0.05 \cdot 450)^2 - 1^2} = 0.989 \text{ min}$

Vemos que es imposible obtener 60 cuentas por minuto, ya que daría un tiempo negativo.

5.4 En una de las medidas realizadas con la fuente colimada y el detector a una determinada distancia, has determinado una tasa de recuento que corresponde a la suma de rayos β , más γ , más el fondo. ¿Qué procedimiento se te ocurre para separar la contribución de cada uno de ellos?

Pues como se vio anteriormente, lo que se hacía era interponer dos láminas de aluminio que frenaban los rayos β y permitían únicamente el paso de rayos γ . Viendo los resultados a partir de las medidas que nos dieron, en el Excel dicen que usan dos láminas de aluminio, por lo que, viendo los resultados, y viendo que con los datos que nos dieron aún cabe alguna duda de que pueda haber partículas β que atravesasen las láminas, simplemente poner más de dos láminas de aluminio. A esa medida restaríamos el ruido de fondo y tendríamos una medida de rayos γ únicamente.

Anexo: Tablas

Tabla 3: Comprobación de la distribución estadística

Medida	Tiempo (s)	$N_{\text{acumulado}}$	s(N _{acumulado})	ΔΝ	s(ΔN)
1	5	27,0	5,2	27,0	5,2
2	10	55,0	7,4	28,0	9,1
3	15	81,0	9,0	26	12
4	20	112	11	31	14
5	25	134	12	22	16
6	30	167	13	33	17
7	35	191	14	24	19
8	40	221	15	30	20
9	45	252	16	31	22
10	50	279	17	27	23
11	55	309	18	30	24
12	60	333	18	24	25
13	65	360	19	27	26
14	70	376	19	16	27
15	75	409	20	33	28
16	80	432	21	23	29
17	85	457	21	25	30
18	90	487	22	30	31
19	95	504	22	17	31
20	100	534	23	30	32
21	105	566	24	32	33
22	110	592	24	26	34
23	115	630	25	38	35
24	120	652	26	22	36
25	125	672	26	20	36
26	130	696	26	24	37
27	135	717	27	21	38
28	140	740	27	23	38
29	145	769	28	29	39
30	150	787	28	18	39
31	155	813	29	26	40
32	160	835	29	22	41
33	165	876	30	41	41
34	170	901	30	25	42
35	175	922	30	21	43
36	180	942	31	20	43
37	185	967	31	25	44
38	190	999	32	32	44
39	195	1017	32	18	45
40	200	1045	32	28	45
41	205	1064	33	19	46
42	210	1090	33	26	46
43	215	1119	33	29	47
44	220	1140	34	21	48
45	225	1163	34	23	48
46	230	1182	34	19	48

		1000			
47	235	1228	35	46	49
48	240	1248	35	20	50
49	245	1276	36	28	50
50	250	1296	36	20	51
51	255	1321	36	25	51
52	260	1350	37	29	52
53	265	1376	37	26	52
54	270	1408	38	32	53
55	275	1436	38	28	53
56	280	1465	38	29	54
57	285	1487	39	22	54
58	290	1511	39	24	55
59	295	1541	39	30	55
60	300	1567	40	26	56
61	305	1593	40	26	56
62	310	1613	40	20	57
63	315	1632	40	19	57
64	320	1656	41	24	57
65	325	1692	41	36	58
66	330	1721	41	29	58
67	335	1742	42	21	59
68	340	1765	42	23	59
69	345	1782	42	17	60
70	350	1799	42	17	60
71	355	1818	43	19	60
72	360	1841	43	23	60
73	365	1862	43	21	61
74	370	1892	43	30	61
75	375	1913	44	21	62
76	380	1940	44	27	62
77	385	1969	44	29	63
78	390	1992	45	23	63
79	395	2020	45	28	63
80	400	2045	45	25	64
81	405	2070	45	25	64
82	410	2098	46	28	65
83	415	2125	46	27	65
84	420	2151	46	26	65
85	425	2169	47	18	66
86	430	2189	47	20	66
87	435	2207	47	18	66
88	440	2230	47	23	67
89	445	2261	48	31	67
90	450	2278	48	17	67
91	455	2307	48	29	68
92	460	2322	48	15	68
93	465	2344	48	22	68
94	470	2364	49	20	69
95	475	2398	49	34	69
96	480	2421	49	23	69
97	485	2445	49	24	70
98	490	2470	50	25	70
70	170	21,0	50		, ,

99	495	2498	50	28	70
100	500	2530	50	32	71
101	505	2544	50	14	71
102	510	2570	51	26	72
103	515	2593	51	23	72
104	520	2630	51	37	72
105	525	2646	51	16	73
106	530	2667	52	21	73
107	535	2686	52	19	73
108	540	2708	52	22	73
109	545	2734	52	26	74
110	550	2763	53	29	74
111	555	2788	53	25	75
112	560	2821	53	33	75
113	565	2839	53	18	75
114	570	2871	54	32	76
115	575	2897	54	26	76
116	580	2921	54	24	76
117	585	2941	54	20	77
118	590	2970	54	29	77
119	595	2995	55	25	77
120	600	3025	55	30	78
121	605	3051	55	26	78
122	610	3076	55	25	78
123	615	3104	56	28	79
124	620	3127	56	23	79
125	625	3156	56	29	79
126	630	3180	56	24	80
127	635	3214	57	34	80
128	640	3241	57	27	80
129	645	3262	57	21	81
130	650	3280	57	18	81
131	655	3320	58	40	81
132	660	3344	58	24	82
133	665	3367	58	23	82
134	670	3395	58	28	82
135	675	3418	58	23	83
136	680	3440	59	22	83
137	685	3457	59	17	83
138	690	3481	59	24	83
139	695	3499	59	18	84
140	700	3525	59	26	84
141	705	3552	60	27	84
142	710	3582	60	30	84
143	715	3606	60	24	85
144	720	3635	60	29	85
145	725	3657	60	22	85
146	723	3674	61	17	86
147	735	3704	61	30	86
148	740	3740	61	36	86
149	745	3771	61	31	87
150	750	3771	62	22	
120	/50	3/93	02	L L	87

Tabla 4: Datos poder de penetración de la radiación

Hojas	t (s)	N	s(N)	$n\left(\frac{cuentas}{s}\right)$	$s(n)\left(\frac{cuentas}{s}\right)$	log(n)	s(log(n))
1	20	1903	44	94,7	5,2	4,550	0,055
2	20	1470	38	73,0	4,1	4,291	0,057
3	20	1170	34	58,0	3,4	4,061	0,058
4	22	1130	34	50,9	2,8	3,930	0,055
5	20	841	29	41,6	2,6	3,728	0,061
6	20	775	28	38,3	2,4	3,645	0,062
7	20	684	26	33,7	2,2	3,518	0,064
8	20	597	24	29,4	1,9	3,380	0,066
9	20	591	24	29,1	1,9	3,370	0,066
10	20	519	23	25,5	1,7	3,238	0,068
11	20	457	21	22,4	1,6	3,108	0,070
12	20	448	21	21,9	1,5	3,088	0,070
13	20	423	21	20,7	1,5	3,029	0,071
14	20	386	20	18,8	1,4	2,935	0,073
15	20	379	19	18,5	1,4	2,917	0,074
16	20	336	18	16,3	1,2	2,793	0,076
17	20	312	18	15,1	1,2	2,716	0,078
18	20	287	17	13,9	1,1	2,630	0,080
19	20	277	17	13,4	1,1	2,594	0,081
20	20	248	16	11,9	1,0	2,479	0,084

Tabla 5: Datos para la variación de distancias

Distancia(cm)	t(s)	N	s(N)	$n\left(\frac{cuentas}{s}\right)$	$s(n)\left(\frac{cuentas}{s}\right)$
0,5	20	6186	79	309	16
1	20	2224	47	110,7	6,0
1,5	20	1373	37	68,2	3,9
2	20	995	32	49,3	2,9
2,5	20	707	27	34,9	2,2
3	20	594	24	29,2	1,9
3,5	20	434	21	21,2	1,5
4	25	421	21	16,4	1,1
4,5	25	379	19	14,7	1,0
5	40	465	22	11,15	0,61
5,5	45	438	21	9,26	0,51
6	45	382	20	8,02	0,47
6,5	45	305	17	6,30	0,42
7	45	283	17	5,82	0,40
7,5	41	231	15	5,16	0,40
8	45	236	15	4,77	0,36
8,5	45	226	15	4,55	0,35
9	45	190	14	3,75	0,32
9,5	45	180	13	3,53	0,31
10	80	267	16	2,86	0,21

Tabla 6: Partículas β sin imán

Ángulo(º)	t(s)	N	s(N)	$n\left(\frac{cuentas}{s}\right)$	$s(n)\left(\frac{cuentas}{s}\right)$
0	45	167	13	3,24	0,30
15	60	82,0	9,1	0,89	0,16
30	90	71,0	8,4	0,32	0,10
45	180	111	11	0,14	0,07
-15	60	120	11	1,53	0,19
-30	90	67,0	8,2	0,272	0,097
-45	200	149	12	0,272	0,069

Tabla 7: Partículas β con imán

Ángulo(º)	t(s)	N	s(N)	$n\left(\frac{cuentas}{s}\right)$	$s(n)\left(\frac{cuentas}{s}\right)$
0	90	79,0	8,9	0,40	0,10
15	120	75,0	8,7	0,152	0,079
30	210	136	12	0,175	0,064
45	245	170	13	0,221	0,062
-15	120	215	15	1,32	0,13
-30	105	264	16	2,04	0,16
-45	90	200	8,9	1,75	0,16

Tabla 8: Partículas γ sin imán

Ángulo(º)	t(s)	N	s(N)	$n\left(\frac{cuentas}{s}\right)$	$s(n)\left(\frac{cuentas}{s}\right)$
0	165	121	11	0,260	0,074
15	180	119	11	0,188	0,068
30	210	127	11	0,132	0,062
45	300	186	14	0,147	0,055
-15	180	121	11	0,199	0,069
-30	210	155	12	0,265	0,067
-45	300	185	14	0,144	0,055

Tabla 9: Partículas γ con imán

Ángulo(º)	t(s)	N	s(N)	$n\left(\frac{cuentas}{s}\right)$	$s(n)\left(\frac{cuentas}{s}\right)$
0	100	73,0	8,5	0,257	0,091
15	120	84,0	9,2	0,227	0,083
30	150	106	10	0,234	0,076
45	210	148	12	0,232	0,066
-15	150	96,0	9,8	0,167	0,073
-30	150	88,0	9,4	0,114	0,070
-45	180	133	12	0,266	0,071