EE160 Lab Assignment-4

Lab section 1A

Power Factor Correction in Electrical Power System

Karan Acharya 202251064 **Objectives:** Design and simulate a circuit in Simulink with an AC source connected to a series RLC branch and a series RLC load, and then convert the series RLC branch and RLC load to RL components for analysis.

Parameters for Circuit 1 (No Parallel capacitor):

Input voltage = 220V Frequency = 50Hz

Series RL branch-R = 1 Ω L = 10⁻³ H

Series RL Load-

Circuit 1:

Power Factor = $\cos \Phi$ = Real Power / Apparent Power = Real Power / ($V_{RMS} \times I_{RMS}$) = 0.6645

Power Loss (Real Power) = Source Power - Load Power = 3.247 W

Parameters for Circuit 2:

Circuit 2:

Power Factor = $\cos \Phi$ = Real Power / Apparent Power = 0.8294

Power Loss = 2.026 W

Parameters for Circuit 3:

Circuit 3:

Power Factor = $\cos \Phi$ = Real Power / Apparent Power = 1 Power Loss = 1.624 W

Formula:

KVAR (capacitance reactive power in kilo) = $2\pi f \times C \times V_{RMS} \times V_{RMS}$

 $V_{RMS} = 154.9 \text{ V}$, f = 50 Hz;

Observation (Capacitance and Capacitive load):

Q _c (Capacitive Reactive Power)	C (Capacitance)	Power Factor
100	1.327× 10 ⁻⁶	0.8294
200	2.654 × 10 ⁻⁶	1

For Q_c =200 VAR and Q_L = 200 VAR the load and capacitor compensate for each other's effect and power factor comes out to be 1.

Conclusions:

- 1. A capacitor can offset the reactive power in the circuit and improve the power factor, thus increasing the efficiency of the system.
- 2. As reactive power increases, I_load increases.
- 3. When power factor is nearly equal to 1, $C = 11.94 \times 10^{-6}$ C,Inductive reactive power must be equal to capacitive reactive power.