Álgebra Linear e Geometria Analítica

Vetores, Retas e Planos

Departamento de Matemática Universidade de Aveiro

Vetores. Retas e Planos

Produto interno em \mathbb{R}^n

Dados os vetores $X=(x_1,\ldots,x_n)$ e $Y=(y_1,\ldots,y_n)\in\mathbb{R}^n$

ullet o produto interno (ou produto escalar) de X e Y é o escalar real

$$X \cdot Y = X^T Y = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

= $x_1 y_1 + \cdots + x_n y_n$

Nota: Pode também utilizar-se a notação X|Y ou $\langle X,Y\rangle$.

ullet o comprimento ou norma de X é

$$\|X\| = \sqrt{X \cdot X} = \sqrt{x_1^2 + \dots + x_n^2}$$

Propriedades do produto interno em \mathbb{R}^n

Dados $X, Y, Z \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$,

- **1.** $X \cdot X \ge 0$;
- $2. X \cdot X = 0 \iff X = 0;$
- 3. $X \cdot Y = Y \cdot X$;
- 4. i. $(X + Y) \cdot Z = X \cdot Z + Y \cdot Z$,
 - ii. $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$;
- **5.** $(\alpha X) \cdot Y = \alpha (X \cdot Y) = X \cdot (\alpha Y)$;
- **6.** $\|\alpha X\| = |\alpha| \|X\|$.

Desigualdade de Cauchy-Schwarz e desigualdade triangular

Teorema (Desigualdade de Cauchy-Schwarz)

Dados $X, Y \in \mathbb{R}^n$,

$$|X\cdot Y|\leq \|X\|\|Y\|.$$

Teorema (Desigualdade Triangular)

Dados
$$X, Y \in \mathbb{R}^n$$
,

$$||X + Y|| \le ||X|| + ||Y||.$$

Vetores. Retas e Planos

Ângulo entre vetores

Em
$$\mathbb{R}^2$$
, sejam $X = (x, 0)$, $x > 0$

e
$$Y = (a, b) \neq (0, 0)$$

vetores não nulos. Temos:

•
$$X \cdot Y = xa$$
 e $||X|| = x$

$$\bullet \ \frac{X \cdot Y}{\|X\|} = a = \|Y\| \cos(\theta)$$

Logo,
$$cos(\theta) = \frac{X \cdot Y}{\|X\| \|Y\|}, \ \theta \in [0, \pi]$$

Em geral, para $X, Y \in \mathbb{R}^n$, $X, Y \neq 0$, o ângulo entre os vetores X e Y é

$$\theta = \angle(X,Y) = \arccos \frac{X \cdot Y}{\|X\| \ \|Y\|} = \arccos (\frac{X}{\|X\|} \cdot \frac{Y}{\|Y\|}).$$

Nota: pela desigualdade de Cauchy-Schwarz $\left|\frac{X \cdot Y}{\|X\| \|Y\|}\right| \leq 1$ e $\theta \in [0, \pi]$.

ALGA 🛱

Vetores ortogonais, colineares, com mesmo sentido e unitários

- Dados os vetores $X, Y \in \mathbb{R}^n$, $X, Y \neq 0$
 - ► X e Y são ortogonais ou perpendiculares, $X \perp Y$, se $\theta = \frac{\pi}{2}$, i.e. se $X \cdot Y = 0$.
 - ▶ X e Y são colineares ou paralelos ou têm a mesma direção, se $\theta = 0$ ou $\theta = \pi$, i.e. se $|X \cdot Y| = ||X|| ||Y||$.
 - ► X e Y têm o mesmo sentido, se $\theta = 0$, i.e. se $X \cdot Y = ||X|| ||Y||$.
 - ► X e Y têm sentido oposto ou contrário, se $\theta = \pi$, i.e. se $X \cdot Y = -\|X\| \|Y\|$.

Por convenção, se X=0 ou Y=0, então X e Y são colineares e ortogonais.

• Um vetor unitário é um vetor de norma igual a 1.

Se $X \neq 0$, o vetor

$$U = \frac{1}{\|X\|}X$$

é um vetor unitário com a mesma direção e sentido de X.

Produto externo em \mathbb{R}^3

Dados os vetores $X = (x_1, x_2, x_3)$ e $Y = (y_1, y_2, y_3) \in \mathbb{R}^3$,

• o produto externo (ou produto vetorial) de X e Y é o vetor de \mathbb{R}^3

$$X \times Y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Nota: Para determinar o produto externo pode utilizar-se COMO AUXILIAR DE CÁLCULO o seguinte "determinante simbólico"

$$X \times Y \iff \begin{vmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$
 $com \quad i = (1,0,0)$
 $j = (0,1,0)$
 $k = (0,0,1)$

fazendo o seu desenvolvimento pela primeira linha.

Propriedades do produto externo em \mathbb{R}^3

Dados $X, Y, Z \in \mathbb{R}^3$, $\alpha \in \mathbb{R}$, e O o vetor nulo de \mathbb{R}^3

1.
$$X \times Y = -(Y \times X)$$
;

$$2. \quad i. \ X \times (Y+Z) = X \times Y + X \times Z,$$

ii.
$$(X + Y) \times Z = X \times Z + Y \times Z$$
;

3.
$$\alpha(X \times Y) = (\alpha X) \times Y = X \times (\alpha Y);$$

4.
$$X \times X = 0$$
;

5.
$$X \times O = O \times X = O$$
;

6. Fórmulas de Lagrange

i.
$$(X \times Y) \times Z = (Z \cdot X)Y - (Z \cdot Y)X$$
,

ii.
$$X \times (Y \times Z) = (X \cdot Z)Y - (X \cdot Y)Z$$
.

7. Identidade de Jacobi

$$X \times (Y \times Z) + Y \times (Z \times X) + Z \times (X \times Y) = 0.$$

Produto misto e consequências das propriedades do produto interno em \mathbb{R}^3

Se
$$X=(x_1,x_2,x_3),\ Y=(y_1,y_2,y_3),\ Z=(z_1,z_2,z_3)\in\mathbb{R}^3$$
, então

$$(X \times Y) \cdot Z = X \cdot (Y \times Z) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

diz-se o produto misto de X, Y e Z.

Consequências das propriedades do produto interno em \mathbb{R}^3

- 1. Como $(X \times Y) \cdot X = (X \times Y) \cdot Y = 0$, então
 - $X \times Y$ é um vetor ortogonal a X e a Y.
- 2. $\|X \times Y\| = \|X\| \|Y\| \sin(\theta)$, onde θ é o ângulo entre $X \in Y$.

Exercício: Mostre que $Y \cdot (Z \times X) = (X \times Y) \cdot Z$.

Aplicações do produto externo e do produto misto

Sejam $X, Y, Z \in \mathbb{R}^3$, então

 \bullet a área do paralelogramo com lados correspondentes aos vetores X, Y é

$$A_{\diamondsuit} = ||X \times Y||$$

ullet a área do triangulo com dois dos seus lados correspondentes aos vetores $X,\ Y$ é

$$A_{\triangle} = \frac{\|X \times Y\|}{2}$$

 \bullet o volume do paralelepípedo com arestas correspondentes aos vetores X, Y, Z é

$$V = |(X \times Y) \cdot Z|$$

Exercício: Verifique os exercícios 7 e 9 da Folha de exercícios nº3.

Retas em \mathbb{R}^3

Dada uma reta \mathcal{R} em \mathbb{R}^3 que passa pelo ponto P e tem vetor diretor v, temos

$$X \in \mathcal{R} \iff \exists \alpha \in \mathbb{R} : \overrightarrow{OX} = \overrightarrow{OP} + \alpha v.$$

Uma equação vetorial da reta \mathcal{R} é $\overrightarrow{OX} = \overrightarrow{OP} + \alpha v$, $\alpha \in \mathbb{R}$, a partir da qual se obtêm as equações paramétricas de \mathcal{R} :

$$\begin{cases} x = x_0 + \alpha v_1 \\ y = y_0 + \alpha v_2 \\ z = z_0 + \alpha v_3 \end{cases} \quad \alpha \in \mathbb{R},$$

sendo
$$X(x, y, z)$$
, $P(x_0, y_0, z_0)$ e $v = (v_1, v_2, v_3)$.

Eliminando o parâmetro α do anterior sistema, obtém-se um sistema de grau 1 com 3 incógnitas e 2 equações, ditas as equações cartesianas de \mathcal{R} .

Planos em \mathbb{R}^3 – Equações vetoriais e paramétricas

Dado um plano \mathcal{P} em \mathbb{R}^3 que passa pelo ponto P e tem vetores diretores u e v (não colineares),

$$X \in \mathcal{P} \iff \exists \alpha, \beta \in \mathbb{R} : \overrightarrow{OX} = \overrightarrow{OP} + \alpha u + \beta v.$$

Uma equação vetorial do plano \mathcal{P} é

$$\overrightarrow{OX} = \overrightarrow{OP} + \alpha u + \beta v, \quad \alpha, \beta \in \mathbb{R},$$

a partir da qual se obtêm as equações paramétricas de \mathcal{P} :

$$\begin{cases} x = x_0 + \alpha u_1 + \beta v_1 \\ y = y_0 + \alpha u_2 + \beta v_2 \\ z = z_0 + \alpha u_3 + \beta v_3 \end{cases} \quad \alpha, \beta \in \mathbb{R},$$

com
$$X(x, y, z)$$
, $P(x_0, y_0, z_0)$, $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$.

Planos em \mathbb{R}^3 – Equações cartesianas

Eliminando os parâmetros α e β do anterior sistema, obtém-se uma equação

$$ax + by + cz + d = 0$$
,

dita equação (cartesiana) geral do plano \mathcal{P} .

Verifica-se que w = (a, b, c) é um vetor não nulo ortogonal a \mathcal{P} . De facto, dois pontos arbitrários deste plano, $P_i(x_i, y_i, z_i)$, i = 0, 1, satisfazem

$$ax_i + by_i + cz_i + d = 0, \quad i = 0, 1,$$

donde

$$a(x_1-x_0)+b(y_1-y_0)+c(z_1-z_0)=0,$$

ou seja, para qualquer vetor $\overrightarrow{P_0P_1}$ do plano \mathcal{P} , tem-se

$$\mathbf{w} \cdot \overrightarrow{P_0 P_1} = 0.$$

Posição relativa de dois planos

Seja [A|B] a matriz ampliada 2×4 do sistema constituído pelas equações gerais dos planos \mathcal{P} e \mathcal{P}' de \mathbb{R}^3 .

Então os planos \mathcal{P} e \mathcal{P}' são:

- ightharpoonup coincidentes, se car $([A|B])=\operatorname{car}(A)=1$, a sua interseção é o plano $\mathcal P$ (ou $\mathcal P'$);
- ▶ concorrentes, se car ([A|B]) = car(A) = 2, intersectam-se numa reta;
- ightharpoonup estritamente paralelos, se car([A|B]) > car(A) = 1, a sua interseção é o conjunto vazio.

Posição relativa de uma reta e um plano

Seja [A|B] a matriz ampliada 3×4 do sistema constituído pelas equações cartesianas da reta \mathcal{R} e pela equação geral do plano \mathcal{P} de \mathbb{R}^3 .

Então a reta \mathcal{R} e o plano \mathcal{P} são:

- ▶ tais que $\mathcal{R} \subset \mathcal{P}$, se car([A|B]) = car(A) = 2, a sua interseção é a reta \mathcal{R} ;
- ▶ concorrentes, se car ([A|B]) = car(A) = 3, intersetam-se num ponto;
- estritamente paralelos, se car ([A|B]) > car(A) = 2, a sua interseção é o conjunto vazio.

Posição relativa de duas retas

Seja [A|B] a matriz ampliada 4×4 do sistema constituído pelas equações cartesianas das retas \mathcal{R} e \mathcal{R}' de \mathbb{R}^3 .

Então as retas \mathcal{R} e \mathcal{R}' são:

- ▶ coincidentes, se car([A|B]) = car(A) = 2, a sua interseção é a reta \mathcal{R} (ou \mathcal{R}');
- ▶ concorrentes, se car([A|B]) = car(A) = 3, intersectam-se num ponto;
- estritamente paralelas, se car ([A|B]) = 3 > car(A) = 2, a sua interseção é o conjunto vazio e as retas são complanares;
- enviezadas, se car ([A|B]) = 4 > car(A) = 3, a sua interseção é o conjunto vazio e as retas são não complanares.

Distâncias

A distância entre dois pontos P e Q de \mathbb{R}^n é

$$d(P,Q) = \|\overrightarrow{PQ}\|.$$

Em particular, para $Q(x_1, ..., x_n)$ e $P(y_1, ..., y_n)$, tem-se

$$d(P,Q) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}.$$

Dados um ponto, reta ou plano $\mathcal F$ e um ponto, reta ou plano $\mathcal G$ de $\mathbb R^3$, a distância entre $\mathcal F$ e $\mathcal G$ é

$$d(\mathcal{F},\mathcal{G}) = \min \{ d(P,Q) : P \in \mathcal{F}, Q \in \mathcal{G} \}.$$

Nota: Se $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, então $d(\mathcal{F}, \mathcal{G}) = 0$. De seguida, analisamos os casos em que \mathcal{F} e \mathcal{G} são disjuntos.

Distância de um ponto a um plano

Dados um plano \mathcal{P} e um ponto $P \notin \mathcal{P}$, existe uma única reta \mathcal{R} perpendicular ao plano \mathcal{P} e contendo o ponto P.

A distância do ponto P ao plano \mathcal{P} é

$$d(P, \mathcal{P}) = d(P, \mathbf{Q}),$$

em que Q é o ponto de interseção da reta \mathcal{R} com o plano \mathcal{P} .

Distância de um ponto a um plano (equação geral)

Dados um plano \mathcal{P} e um ponto $P \notin \mathcal{P}$, sejam $Q \in \mathcal{P}$ e w um vetor não nulo ortogonal ao plano \mathcal{P} . Então,

$$d(P,\mathcal{P}) = \frac{|\overrightarrow{QP} \cdot w|}{\|w\|}.$$

Sendo $P(x_0, y_0, z_0)$ e ax + by + cz + d = 0 uma equação geral do plano \mathcal{P} , tem-se

$$d(P,P) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Aplicação: Distância de uma reta a um plano

Uma reta $\mathcal R$ e um plano $\mathcal P$ disjuntos são estritamente paralelos.

Nesse caso, a distância da reta $\mathcal R$ ao plano $\mathcal P$ é

$$d(\mathcal{R}, \mathcal{P}) = d(\mathcal{P}, \mathcal{P}),$$
 para qualquer $\mathcal{P} \in \mathcal{R}$.

Vetores. Retas e Planos

Aplicação: Distância entre planos

Dois planos \mathcal{P} e \mathcal{P}' disjuntos são estritamente paralelos.

A distância entre os planos \mathcal{P} e \mathcal{P}' é

$$d(\mathcal{P}',\mathcal{P}) = d(\mathcal{P},\mathcal{P}),$$
 para qualquer $\mathcal{P} \in \mathcal{P}'.$

Nota: Nos dois casos antes descritos, distância reta/plano ou plano/plano, o estudo reduz-se ao cálculo da distância de um ponto a um plano.

Distância de um ponto a uma reta

Dada uma reta \mathcal{R} e um ponto $P \notin \mathcal{R}$, existe um único plano \mathcal{P} perpendicular a \mathcal{R} e que contém P.

A distância do ponto P à reta \mathcal{R} é

$$d(P, \mathcal{R}) = d(P, \mathcal{Q}),$$

em que Q é o ponto de interseção da reta \mathcal{R} com o plano \mathcal{P} .

Distância de um ponto a uma reta (equação vetorial)

Dada uma reta R que passa pelo ponto Q e que tem vetor diretor u,

e um ponto $P \notin \mathcal{R}$, tem-se que

$$d(P,\mathcal{R}) = \|\overrightarrow{QP}\| |\sin(\theta)| = \frac{\|u \times \overrightarrow{QP}\|}{\|u\|},$$

sendo θ o ângulo entre os vetores $u \in \overrightarrow{QP}$.

Aplicação: Distância entre retas paralelas

Duas retas disjuntas de \mathbb{R}^3 são estritamente paralelas ou enviezadas.

A distância entre retas estritamente paralelas \mathcal{R} e \mathcal{R}' é

$$d(\mathcal{R}',\mathcal{R}) = d(P,\mathcal{R}),$$
 para qualquer $P \in \mathcal{R}'$.

Vetores. Retas e Planos

Aplicação: Distância entre retas enviezadas

Dadas retas enviezadas \mathcal{R} e \mathcal{R}' , existe um único plano \mathcal{P} estritamente paralelo a \mathcal{R} e que contém \mathcal{R}' .

A distância entre retas enviezadas \mathcal{R} e \mathcal{R}' é

$$d(\mathcal{R}, \mathcal{R}') = d(\mathcal{R}, \mathcal{P}) = d(\mathcal{P}, \mathcal{P}),$$
 para qualquer $\mathcal{P} \in \mathcal{R}$.

Aplicação: Ângulo entre retas

Dadas duas retas \mathcal{R} e \mathcal{R}' de vetores diretores u e u', respetivamente,

o ângulo entre as retas \mathcal{R} e \mathcal{R}' é

$$\angle(\mathcal{R}, \mathcal{R}') = \theta = \arccos \frac{|u \cdot u'|}{\|u\| \|u'\|}$$

com $\theta \in \left[0, \frac{\pi}{2}\right]$ e $\theta = 0$ se e só se as retas são paralelas.

Aplicação: Ângulo entre planos

O ângulo entre os planos \mathcal{P} e \mathcal{P}' é

$$\angle(\mathcal{P}, \mathcal{P}') = \theta = \angle(\mathcal{R}, \mathcal{R}'),$$

sendo \mathcal{R} e \mathcal{R}' retas perpendiculares aos planos \mathcal{P} e \mathcal{P}' , respetivamente.

Vetores. Retas e Planos

Aplicação: Ângulo entre uma reta e um plano

O ângulo entre uma reta $\mathcal R$ e um plano $\mathcal P$ é

$$\angle(\mathcal{R}, \mathcal{P}) = \theta = \frac{\pi}{2} - \angle(\mathcal{R}, \mathcal{R}') = \arcsin \frac{|u \cdot w|}{\|u\| \|w\|} \in \left[0, \frac{\pi}{2}\right],$$

onde \mathcal{R}' é uma reta ortogonal ao plano \mathcal{P} , u um vetor diretor da reta \mathcal{R} e w um vetor ortogonal ao plano \mathcal{P} .