Mid-Term: Question 4, Part 1

Ian Dover

March 2023

1 Part 1-1

For each of the following functions, determine whether it is convex, concave, or neither. Support your argument.

1.1 Part A

The equation we are analyzing is:

$$f(x) = e^{x^2}$$
 on dom $f = R$

Let us take the second derivative of this equation:

$$\frac{\partial^2 f(x)}{\partial x} = 2e^{x^2}(1+2x^2)$$

To determine if this equation is convex, we must determine if this second derivative is positive (and non-zero) on all values of the domain. This can be conditionally expressed as:

$$2e^{x^2}(1+2x^2) \ge 0$$

To prove this conditional statements holds true, we must show that each individual factor is positive for all values of the domain:

$$2e^{x^2} \ge 0$$

$$(1+2x^2) \ge 0$$

From simple inspection, we can show that any real number squared is positive and greater than zero. Therefore, both factors are positive (and non-zero) on all values of the domain. If all factors are positive, then their product must also be positive. This means that the equation satisfies the second derivative condition for convexity.

1.2 Part B

The equation we are analyzing is:

$$f(x) = log(1 + e^x)$$
 on dom $f = R$

Let us take the second derivative of this equation:

$$\frac{\partial^2 f(x)}{\partial x} = \frac{e^x}{(1+e^x)^2}$$

To determine if this equation is convex, we must determine if this second derivative is positive (and non-zero) on all values of the domain. This can be conditionally expressed as:

$$\frac{e^x}{(1+e^x)^2} \ge 0$$

From inspection, we can see that all factors containing x are positive and non-zero on all values of the domain. Additionally, as the domain approaches ∞ , the product approaches 0 from the positive direction. This can be expressed as:

$$\lim_{x \to \infty} \frac{e^x}{(1+e^x)^2} = 0_+$$

Conversely, as the domain approaches $-\infty$, it also converges to 0 from the positive direction as expressed below:

$$\lim_{x \to -\infty} \frac{e^x}{(1+e^x)^2} = 0_+$$

This proves that the second-order derivative is positive at all values of the domain. Therefore, this equation satisfies the second-order condition for convexity.

1.3 Part C

The equation we are analyzing is:

$$f(x_1, x_2) = \frac{x_1}{x_2}$$
 on dom $f = R_{++}^2$

To determine if this equation is convex or concave, we must evaluate the determinant of the Hessian and determine if it it positive at all points in the domain of x_1 and x_2 ; next, we must determine if the equation is either concave or convex by the value of $\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2}$.

To construct the Hessian of the equation, we must first derive the second-order partial derivatives with respect to both variables in the domain of the function.

The Hessian can be expressed as:

$$H|f(x_1, x_2)| = \begin{bmatrix} \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} & \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \\ \\ \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} \end{bmatrix}$$

Now we must evaluate the Hessian at each element:

$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = 0$$

$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} = -\frac{1}{x_2^2}$$

$$\frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} = -\frac{1}{x_2^2}$$

$$\frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} = \frac{2x_1}{x_2^3}$$

This allows us to construct the Hessian:

$$H|f(x_1, x_2)| = \begin{bmatrix} 0 & -\frac{1}{x_2^2} \\ -\frac{1}{x_2^2} & \frac{2x_1}{x_2^3} \end{bmatrix}$$

Because then Hessian is 0 at $\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2}$, we can deduce that the equation is neither convex nor concave. Therefore, the equation does not satisfy the conditions for convexity nor concavity.

2 Part 1-2

2.1 Part A

Given that $f_1(x)$ and $f_2(x)$, prove that $f(x) = max\{f_1(x), f_2(x)\}$ is convex.

Use the equation for convexity given that t is in [0, 1] and for all x, y:

$$f(z) = f(tx + (1-t)y) \le t * f(x) + (1-t) * f(y)$$

Since $f(x) = max\{f_1(x), f_2(x)\}\$, then we must solve these two inequalities:

$$f_1(z) = f_1(tx + (1-t)y) \le t * f_1(x) + (1-t) * f_1(y)$$

$$f_2(z) = f_2(tx + (1-t)y) \le t * f_2(x) + (1-t) * f_2(y)$$

Since we know these two inequalities are true due to the convexity of each, we can hereby show that the maximum of the two is convex.

2.2 Part B

It is not necessarily true that the $f(x) = min\{f_1(x), f_2(x)\}$ is convex. In fact, this is ONLY true when one convex function is fully encompassed by the other convex function. This is shown in the visual proof below:

Figure 1: Visual proof showing that the minimum of two convex functions is not necessarily convex.