

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo B.

Profesor Miguel Ortega Titos.

Descripción Parcial 1.

Fecha 30 de octubre de 2023.

En \mathbb{R} , se considera la topología de Sorgenfrey, \mathcal{T}_S . En \mathbb{R}^2 , se considera la topología producto $\mathcal{T} = \mathcal{T}_S \times \mathcal{T}_S$.

Ejercicio 1. Dado el conjunto $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, x + y \leq 0\}$, calcula:

1. (2 puntos) El interior de A.

Representemos en primer lugar el conjunto A:

Figura 1: Representación de A.

Tenemos que, dado $(x,y) \in \mathbb{R}^2$, una base de entornos de (x,y) en $(\mathbb{R}^2,\mathcal{T})$ es:

$$\beta_{(x,y)} = \left\{ [x, x + \varepsilon[\times [y, y + \varepsilon'[\mid \varepsilon, \varepsilon' \in \mathbb{R}^+] \right] \right\}$$

Por tanto, demostraremos que $A^{\circ} = \widetilde{A}$, con:

$$\widetilde{A} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, x + y < 0\}$$

 \supset) Veamos en primer lugar que $\mathcal{T}_u \subset \mathcal{T}$. Una base de \mathcal{T} es:

$$\mathcal{B}_S = \{ [a, b[\times [c, d[\mid a, b, c, d \in \mathbb{R}, a < b, c < d] \}$$

Una base de $(\mathbb{R}^2, \mathcal{T}_u)$ es:

$$\mathcal{B}_u = \{]a, b[\times]c, d[\mid a, b, c, d \in \mathbb{R}, a < b, c < d \}$$

Sea $]a,b[\times]c,d[\in \mathcal{B}_u, \text{ y sea }(x,y)\in]a,b[\times]c,d[$. Entonces, como $\mathcal{T}_u\subset\mathcal{T}_S, \exists [a',b'[,[c',d'[\text{tal que }x\in[a',b'[\subset]a,b[\text{ y }y\in[c',d'[\subset]c,d[\text{. Por tanto, }(x,y)\in[a',b'[\times[c',d'[\subset]a,b[\times]c,d[\text{. Por tanto, }\mathcal{T}_u\subset\mathcal{T}.$

Como $\widetilde{A} \in \mathcal{T}_u$ por ser intersección de dos abiertos, $\widetilde{A} \in \mathcal{T}$. Además, como $\widetilde{A} \subset A$, tenemos que $\widetilde{A} \subset A^{\circ}$.

 \supset) Veremos que, dado $(x,y) \in A \setminus \widetilde{A}$, entonces $(x,y) \notin A^{\circ}$. Como $(x,y) \in A \setminus \widetilde{A}$, entonces $x^2 + y^2 < 1$ y x + y = 0, es decir, y = -x. Veamos que $(x, -x) \notin A^{\circ}$.

Supongamos que $\exists V \in \beta_{(x,y)}$ tal que $V \subset A$. Entonces, $\exists \varepsilon, \varepsilon' \in \mathbb{R}^+$ tal que:

$$V = [x, x + \varepsilon[\times [y, y + \varepsilon'] = [x, x + \varepsilon[\times [-x, -x + \varepsilon'] \subset A])$$

De esta forma, $\left(x+\frac{\varepsilon}{2},-x+\frac{\varepsilon'}{2}\right)\in V\subset A$, pero:

$$x + \frac{\varepsilon}{2} + \left(-x + \frac{\varepsilon'}{2}\right) = \frac{\varepsilon + \varepsilon'}{2} > 0$$

Por tanto, llegamos a una contradicción, y $(x,y) \notin A^{\circ}$. De esta forma, $A^{\circ} \subset \widetilde{A}$.

2. (2 puntos) La frontera de A.

Para calcular la frontera de A, calcularemos primero el cierre de A. Para ello, veremos que $\overline{A} = \widehat{A}$, con:

$$\widehat{A} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1, x + y \leqslant 0\}$$

- C) Veamos que $\overline{A} \subset \widehat{A}$. Como $\widehat{A} \in C_{\mathcal{T}_u}$ y $\mathcal{T}_u \subset \mathcal{T}$, entonces $\widehat{A} \in C_{\mathcal{T}}$. Por tanto, como además $A \subset \widehat{A}$, se tiene que $\overline{A} \subset \widehat{A}$.
- ⊃) Veamos que $\widehat{A} \subset \overline{A}$. Dado $(x,y) \in \widehat{A}$, veremos que $\forall V \in \beta_{(x,y)}, V \cap A \neq \emptyset$. Como $A \subset \widehat{A}$, tomaremos $(x,y) \in \widehat{A} \setminus A$, ya que en el primer caso es trivial que $(x,y) \in V \cap A \neq \emptyset$. Por tanto, sea $(x,y) \in \widehat{A} \setminus A$. Entonces, $x^2 + y^2 = 1$ y x + y < 0. Veamos que $(x,y) \in \overline{A}$. Sea $V \in \beta_{(x,y)}$, por lo que $V = [x, x + \varepsilon[\times [y, y + \varepsilon'[\subset \mathbb{R}^2 \text{ con } \varepsilon, \varepsilon' \in \mathbb{R}^+]$. Sea $\delta = \frac{\min\{\varepsilon, \varepsilon'\}}{2}$. Veamos que $(x,y) \delta(x,y) \in A \cap V$.
 - a) Como $\delta \leqslant \varepsilon, \varepsilon'$, tenemos que pertenece a V.
 - b) Veamos que pertenece a A. Veamos primero que $x + y \leq 0$:

$$x - x \cdot (x, y) + y - y(x, y) = (x + y) (1 - (x, y))$$

a) Supongamos y < 0. Entonces, veamos que $\exists \delta \in \mathbb{R}^+, 0 < \delta < \varepsilon'$ tal que $(x, y + \delta) \in V \cap A$. Veamos que pertenece a A:

$$x^{2} + (y + \delta)^{2} = x^{2} + y^{2} + 2y\delta + \delta^{2} = 1 + 2y\delta + \delta^{2} < 1 \iff \delta(2y + \delta) < 0 \iff \delta < -2y$$
$$x + y + \delta \leqslant 0 \iff \delta \leqslant -x - y = -(x + y)$$

Como y < 0, entonces -2y > 0, y como x + y < 0, entonces sea $\delta = \min\{-2y, -(x + y)\}$, y sin pérdida de generalidad suponemos $\delta < \varepsilon$, que en caso contrario tomaríamos $0 < \delta' < \delta$ y se tendría.

b) Supongamos $y \ge 0$. Entonces, veamos que $\exists \delta \in \mathbb{R}^+, \ 0 < \delta < \varepsilon'$ tal que $(x + \delta, y) \in V \cap A$. Como x + y < 0 e $y \ge 0$, entonces x < 0. Entonces, para que pertenezca a A:

$$(x+\delta)^2 + y^2 = x^2 + y^2 + 2x\delta + \delta^2 = 1 + 2x\delta + \delta^2 < 1 \iff \delta(2x+\delta) < 0 \iff \delta < -2x$$
$$x+y+\delta \leqslant 0 \iff \delta \leqslant -x-y = -(x+y)$$

De manera análoga, tomando $\delta = \min\{-2x, -(x+y)\}$ y suponiendo $\delta < \varepsilon$, tenemos que pertenece a $A \cap V$.

Ejercicio 2 (1 punto). Estudia si el espacio topológico $(\mathbb{R}^2, \mathcal{T})$ es o no T2.

Ejercicio 3 (1.5 puntos). Encuentra un subconjunto $B \subset \mathbb{R}^2$ tal que la topología inducida \mathcal{T}_B sea la discreta en B, pero la topología $(\mathcal{T}_u^2)_B$ no sea la discreta.

Ejercicio 4. Estudia si el espacio topológico es:

- 1. (1 punto) 1AN.
- 2. (1 punto) 2AN.

Ejercicio 5 (1.5 puntos). Un subconjunto C se dice frontera si $C \subset \partial C$. Encuentra un subconjunto $C \subset \mathbb{R}^2$ que sea frontera, infinito y que no esté incluido en B.