Adult

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df = pd.read_csv('adult.csv')
df.head()
```

Out[2]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hou p we
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	
4	18	?	103497	Some- college	10	Never- married	?	Own-child	White	Female	0	0	
4													▶

Pre-process the dataset. Remove those observations containing missing values

```
In [3]:
```

df = df.replace('?', np.nan)

```
df.isnull().sum()
Out[3]:
                    0
age
workclass
                    0
fnlwgt
                    0
education
                    0
educational-num
                    0
marital-status
                    0
occupation
                    0
relationship
race
                    0
gender
capital-gain
                    0
capital-loss
                    0
hours-per-week
                    0
                    0
native-country
income
dtype: int64
In [4]:
```

```
In [5]:
df.isnull().sum()
Out[5]:
                      0
age
workclass
                   2799
fnlwgt
                      0
                      0
education
educational-num
                      0
marital-status
                      0
                   2809
occupation
relationship
                    0
                      0
race
gender
                      0
capital-gain
                     0
capital-loss
                     0
                     0
hours-per-week
native-country
                    857
income
                      0
dtype: int64
In [6]:
df.dropna(inplace = True)
In [7]:
df.isnull().sum()
Out[7]:
                   0
age
                   0
workclass
                   0
fnlwgt
                   0
education
educational-num
marital-status
occupation
relationship
race
gender
capital-gain
capital-loss
                   0
                   0
hours-per-week
                   0
native-country
income
                   0
dtype: int64
```

MinMaxScaler and StandardScaler

```
In [8]:
```

```
('mm', minmax_transformer , cols[3:])

minmax = preprocessor.fit_transform(df)
df_minmax = preprocessor.transform(df)
df_minmax = pd.DataFrame(df_minmax, columns = df.columns)
df_minmax.head()
```

['age', 'fnlwgt', 'educational-num', 'capital-gain', 'capital-loss', 'hours-per-week']
Out[8]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain
0	-1.02498	0.350889	-1.22156	0	0	0.397959	Private	11th	Never- married	Machine- op-inspct	Own- child
1	- 0.041455	-0.945878	- 0.438122	0	0	0.5	Private	HS-grad	Married- civ- spouse	Farming- fishing	Husband
2	- 0.798015	1.39359	0.737034	0	0	0.397959	Local-gov	Assoc- acdm	Married- civ- spouse	Protective- serv	Husband
3	0.412481	-0.27842	0.046403	0.0768808	0	0.397959	Private	Some- college	Married- civ- spouse	Machine- op-inspct	Husband
4	0.344079	0.0848015	-1.61328	0	0	0.295918	Private	10th	Never- married	Other- service	Not-in- family
4											Þ

Transform the non-numeric columns into numeric using label encoding and one-hot encoding.

Label Encoding

```
In [9]:
```

```
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(df['marital-status'])
df['marital-status'] = le.transform(df['marital-status'])
df.head()
```

Out[9]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	houi pe we
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	
5	34	Private	198693	10th	6	Never- married	Other- service	Not-in- family	White	Male	0	0	

In []: In [10]: le = LabelEncoder() le.fit(df['workclass']) df['workclass'] = le.transform(df['workclass']) df.head() Out[10]: capital- capitaleducationalmaritalage workclass fnlwgt education occupation relationship race gender gain status num loss we Never-Machine-25 2 226802 11th 7 Own-child Black Male 0 0 married op-inspct Married-Farming-0 **Husband White** 0 38 89814 HS-grad civ-Male fishing spouse Married-Protective-Assoc-2 28 1 336951 12 civ-**Husband White** Male 0 0 acdm serv spouse Married-Some-Machine-**Husband Black** 2 160323 10 7688 0 civ-Male college op-inspct spouse Other-Never-Not-in-5 34 2 198693 10th White Male 0 0 married service family In [11]: le = LabelEncoder() le.fit(df['native-country']) df['native-country'] = le.transform(df['native-country']) natives = dict(zip(le.classes , le.transform(le.classes))) print(natives) df.head() # one hot = pd.get dummies(df['native-country']) # df = df.drop('native-country',axis = 1) # df = df.join(one_hot) # df.head() {'Cambodia': 0, 'Canada': 1, 'China': 2, 'Columbia': 3, 'Cuba': 4, 'Dominican-Republic': 'Ecuador': 6, 'El-Salvador': 7, 'England': 8, 'France': 9, 'Germany': 10, 'Greece': 11 'Guatemala': 12, 'Haiti': 13, 'Holand-Netherlands': 14, 'Honduras': 15, 'Hong': 16, 'Hu ngary': 17, 'India': 18, 'Iran': 19, 'Ireland': 20, 'Italy': 21, 'Jamaica': 22, 'Japan': 23, 'Laos': 24, 'Mexico': 25, 'Nicaragua': 26, 'Outlying-US(Guam-USVI-etc)': 27, 'Peru': 28, 'Philippines': 29, 'Poland': 30, 'Portugal': 31, 'Puerto-Rico': 32, 'Scotland': 33, ' South': 34, 'Taiwan': 35, 'Thailand': 36, 'Trinadad&Tobago': 37, 'United-States': 38, 'Vi etnam': 39, 'Yugoslavia': 40} Out[11]: hou educationalmaritalcapitalcapitalfnlwgt education occupation relationship race gender рe gain num status loss we Never-Machine-2 226802 0 0 25 11th 7 Own-child Black Male married op-inspct Married-Farming-38 89814 **HS-grad Husband White** Male 0 0 civfishing spouse

Married-

Drotostivo

```
MOSUU-
                                                             FIOLECTIVE-
2 28
                1 336951
                                                                            Husband White
                                                                                                           0
                                                12
                                                        civ-
                                                                                               Male
                                                                                                                    0
                                                                                                                      hou
                               acdm
                                                                    serv
                                                                                                     capital-
                                                                                                              capital-
                                      educational-
                                                    ng pritale
   age workclass fnlwgt education
                                                             occupation relationship
                                                                                      race gender
                                                                                                        gain
                                                      status
                                                                                                                 loss
                                             num
                                                                                                                        we
                                                    Married-
                                                               Machine
                                                                                                        7688
                                                                                                                    0
3
    44
                2 160323
                                                10
                                                                            Husband Black
                                                                                               Male
                                                        civ-
                              college
                                                               op-inspct
                                                     spouse
                                                     Never-
                                                                 Other-
                                                                              Not-in-
    34
                2 198693
                                10th
                                                                                      White
                                                                                               Male
                                                                                                           0
                                                                                                                    0
                                                    married
                                                                              family
                                                                 service
```

In [12]:

```
le = LabelEncoder()
le.fit(df['marital-status'])
df['marital-status'] = le.transform(df['marital-status'])
df.head()
```

Out[12]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hour pe wee
0	25	2	226802	11th	7	4	Machine- op-inspct	Own-child	Black	Male	0	0	4
1	38	2	89814	HS-grad	9	2	Farming- fishing	Husband	White	Male	0	0	ŧ
2	28	1	336951	Assoc- acdm	12	2	Protective- serv	Husband	White	Male	0	0	2
3	44	2	160323	Some- college	10	2	Machine- op-inspct	Husband	Black	Male	7688	0	4
5	34	2	198693	10th	6	4	Other- service	Not-in- family	White	Male	0	0	:
4)

In [13]:

```
le = LabelEncoder()
le.fit(df['education'])
df['education'] = le.transform(df['education'])
df.head()
```

Out[13]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hour: pe wee
0	25	2	226802	1	7	4	Machine- op-inspct	Own-child	Black	Male	0	0	2
1	38	2	89814	11	9	2	Farming- fishing	Husband	White	Male	0	0	Ę
2	28	1	336951	7	12	2	Protective- serv	Husband	White	Male	0	0	4
3	44	2	160323	15	10	2	Machine- op-inspct	Husband	Black	Male	7688	0	2
5	34	2	198693	0	6	4	Other- service	Not-in- family	White	Male	0	0	\$
4													Þ

In [14]:

```
le = LabelEncoder()
le.fit(df['relationship'])
df['relationship'] = le.transform(df['relationship'])
df.head()
```

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain		hour: pe wee
0	25	2	226802	1	7	4	Machine- op-inspct	3	Black	Male	0	0	4
1	38	2	89814	11	9	2	Farming- fishing	0	White	Male	0	0	ţ
2	28	1	336951	7	12	2	Protective- serv	0	White	Male	0	0	4
3	44	2	160323	15	10	2	Machine- op-inspct	0	Black	Male	7688	0	4
5	34	2	198693	0	6	4	Other- service	1	White	Male	0	0	\$
4													Þ

```
In [15]:
```

```
le = LabelEncoder()
le.fit(df['race'])
df['race'] = le.transform(df['race'])
df.head()
```

Out[15]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week
0	25	2	226802	1	7	4	Machine- op-inspct	3	2	Male	0	0	40
1	38	2	89814	11	9	2	Farming- fishing	0	4	Male	0	0	50
2	28	1	336951	7	12	2	Protective- serv	0	4	Male	0	0	40
3	44	2	160323	15	10	2	Machine- op-inspct	0	2	Male	7688	0	40
5	34	2	198693	0	6	4	Other- service	1	4	Male	0	0	30
4													Þ

In [16]:

```
le = LabelEncoder()
le.fit(df['occupation'])
df['occupation'] = le.transform(df['occupation'])
df.head()
```

Out[16]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week
0	25	2	226802	1	7	4	6	3	2	Male	0	0	40
1	38	2	89814	11	9	2	4	0	4	Male	0	0	50
2	28	1	336951	7	12	2	10	0	4	Male	0	0	40
3	44	2	160323	15	10	2	6	0	2	Male	7688	0	40
5	34	2	198693	0	6	4	7	1	4	Male	0	0	30
4													Þ

```
le = LabelEncoder()
le.fit(df['income'])
df['income'] = le.transform(df['income'])
income = dict(zip(le.classes_, le.transform(le.classes_)))
print(income)
df.head()

{'<=50K': 0, '>50K': 1}
Out[17]:
```

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week
0	25	2	226802	1	7	4	6	3	2	Male	0	0	40
1	38	2	89814	11	9	2	4	0	4	Male	0	0	50
2	28	1	336951	7	12	2	10	0	4	Male	0	0	40
3	44	2	160323	15	10	2	6	0	2	Male	7688	0	40
5	34	2	198693	0	6	4	7	1	4	Male	0	0	30
4													·······································

OneHot Encoding

```
In [18]:
```

```
# le = LabelEncoder()
# le.fit(df['gender'])
# df['gender'] = le.transform(df['gender'])
# df.head()
one_hot = pd.get_dummies(df['gender'])
df = df.drop('gender',axis = 1)
df = df.join(one_hot)
df.head()
```

Out[18]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	capital- gain	capital- loss	hours- per- week	native countr
0	25	2	226802	1	7	4	6	3	2	0	0	40	3
1	38	2	89814	11	9	2	4	0	4	0	0	50	3
2	28	1	336951	7	12	2	10	0	4	0	0	40	3
3	44	2	160323	15	10	2	6	0	2	7688	0	40	3
5	34	2	198693	0	6	4	7	1	4	0	0	30	3
4)

Sort the data frame in the descending order of "Hours-per-week"

```
In [19]:
```

```
sorted_df = df.sort_values(by=['hours-per-week'], ascending=False)
sorted_df.head()
```

Out[19]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	capital- gain		hours- per- week	n cc
20722	43	3	286750	14	15	2	9	0	2	0	0	99	
21741	27	2	941174	۵	12	၁	۵	n	1	n	n	۵۵	

91771	0,	_	471117	9	10	_	9	U	-	U	U	. 99	
2078	aĝ€	workclas§	1627795	education	educational ₀	marital ₀	occupation 7	relationship	rac e	capital ₀	capital ₀	per per .	n
34884	33	4	67482	8	11	0	7	4	4	0	0	week 99	
41994	32	2	183304	8	11	2	13	0	4	0	0	99	
4													F

Show all the information whose native country is "US"

```
In [20]:
```

```
US_df = df.loc[df['native-country'] == natives["United-States"]]
print(len(US_df))
US_df.head()
```

41292

Out[20]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	capital- gain	capital- loss	hours- per- week	native countr
0	25	2	226802	1	7	4	6	3	2	0	0	40	3
1	38	2	89814	11	9	2	4	0	4	0	0	50	3
2	28	1	336951	7	12	2	10	0	4	0	0	40	3
3	44	2	160323	15	10	2	6	0	2	7688	0	40	3
5	34	2	198693	0	6	4	7	1	4	0	0	30	3
4										1)

Subset the dataset based on male and female belonging to the column "sex"

```
In [21]:
```

```
male = df.loc[df['Male'] == 1]
male.drop(['Male','Female'], axis = 1, inplace = True)
print(len(male))
female = df.loc[df['Female'] == 1]
female.drop(['Male','Female'], axis = 1, inplace = True)
print(len(female))
```

30527 14695

In [22]:

male.head()

Out[22]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	capital- gain	capital- loss	hours- per- week	native countr
0	25	2	226802	1	7	4	6	3	2	0	0	40	3
1	38	2	89814	11	9	2	4	0	4	0	0	50	3
2	28	1	336951	7	12	2	10	0	4	0	0	40	3
3	44	2	160323	15	10	2	6	0	2	7688	0	40	3
5	34	2	198693	0	6	4	7	1	4	0	0	30	3
4													····

In [23]:

```
# from sklearn.preprocessing import MinMaxScaler
# mm_scaler = MinMaxScaler()
# minmax = mm_scaler.fit_transform(df)
# df_minmax = mm_scaler.transform(df)
# df_minmax = pd.DataFrame(df_minmax, columns = df.columns)
```

In [24]:

```
# df_minmax.head()
```

In [25]:

```
male = df.loc[df['Male'] == 1]
male.drop(['Male','Female'], axis = 1, inplace = True)
print(len(male))
female = df.loc[df['Female'] == 1]
female.drop(['Male','Female'], axis = 1, inplace = True)
```

30527

Find the number of records, the number of individuals making more than 50k, the number of individuals making less than 50k

```
In [26]:
```

```
LessIncome = df.loc[df['income'] == income["<=50K"]]
print(len(LessIncome))</pre>
```

34014

In [27]:

```
MoreIncome = df.loc[df['income'] == income[">50K"]]
print(len(MoreIncome))
```

11208

Compute the proportion of data points from each category of "native.country." Combine all the categories except for the one with maximum proportion into the "Other" category

```
In [28]:
```

```
proportion = (df['native-country'].value_counts()/df['native-country'].count())*100

keys = []
key_list = list(natives.keys())
val_list = list(natives.values())

for i in proportion.index:
    keys.append(key_list[val_list.index(i)])
keys = np.asarray(keys)
proportion.index = keys
pd.DataFrame(proportion).head()
```

Out[28]:

native-country

United-States	91.309540
Mexico	1.996816
Philippines	0.625802
Germany	0.426783
Puerto-Rico	0.386980

In [29]:

```
propDf = df.copy()
propDf.loc[propDf['native-country'] != natives["United-States"], 'native-country'] = "Oth
ers"
propDf.loc[(propDf['native-country'] == natives["United-States"]), 'native-country'] = "U
nited-States"
propDf['native-country'].unique()

Out[29]:
array(['United-States', 'Others'], dtype=object)

In [30]:
propDf.head()
```

Out[30]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	capital- gain	capital- loss	hours- per- week	native countr
0	25	2	226802	1	7	4	6	3	2	0	0	40	United State
1	38	2	89814	11	9	2	4	0	4	0	0	50	United State
2	28	1	336951	7	12	2	10	0	4	0	0	40	United State
3	44	2	160323	15	10	2	6	0	2	7688	0	40	United State
5	34	2	198693	0	6	4	7	1	4	0	0	30	United State
4)

Convert the categories of the outcome variable "income" to 0s (for less than 50K) and 1s (for greater than 50K)

```
In [31]:

print(propDf['income'].unique())
propDf.loc[(propDf['income'] == income["<=50K"]), 'income'] = 0
propDf.loc[(propDf['income'] == income[">50K"]), 'income'] = 1

[0 1]

In []:
In []:
```