

UNIVERSITÀ DEGLI STUDI DI PADOVA

MOBILE ROBOT LOCOMOTION

Prof. Emanuele Menegatti
Intelligent Robotics Course

MOTION AND COORDINATE FRAMES

DEGREES OF MOTION FREEDOM

DEGREES OF MOTION FREEDOM

MOST COMMON WHEEL CONFIGURATION

Rack and Pinion

Differential drive

Skid-Steer

Synchro Drive

- Simple, reliable, robust mechanisms suitable for robots which essentially move in a plane.
- All of these robots are non-holonomic. For instance, a car-like robot can't instantaneously move sideways.
- All types use two motors, but very different kinematics.

A simple example of robot's kinematic

IAS-LAB

DIFFERENTIAL DRIVE PLATFORM

UNIVERSITÀ CIRCULAR PATH OF A DIFFERENTIAL DRIVE ROBOT

UNIVERSITÀ CIRCULAR PATH OF A DIFFERENTIAL DRIVE ROBOT

CAR / TRICYCLE / RACK AND PINION DRIVE

- Two motors: one to drive, one to steer.
- Cannot normally turn on the spot.
- With a fixed speed and steering angle, it will follow a circular path.
- With four wheels, need rear differential and variable ('Ackerman') linkage for steering wheels.

CIRCULAR PATH OF A CAR-LIKE TRICYCLE ROBOT

$$R = \frac{L}{\tan s} \ .$$

$$R_d = rac{L}{\sin s}$$
 .

CIRCULAR PATH OF A CAR-LIKE TRICYCLE ROBOT

IAS-LAB

In time Δt the distance along its circular arc moved by the drive wheel is $v\Delta t$, so the angle $\Delta \theta$ through which the robot rotates is:

$$\Delta \theta = \frac{v \Delta t}{R_d} = \frac{v \Delta t \sin s}{L} .$$

$$R = \frac{L}{\tan s} \qquad \Delta \theta = \frac{v \Delta t \sin s}{L}$$

ACTUATION OF DRIVING WHEELS: DC MOTORS

- Most common motors, available in all sizes and types.
- Simple control with voltage or Pulse Width Modulation (PWM).
- For precision, encoders and feedback can be used for servo control (the LEGO motors have built-in encoders).

IAS-LAB

DC motors tend to offer high speed and low torque, so gearing is nearly always required to drive a robot.

If Gear 1 is driven with torque t_1 , it exerts tangential force:

on Gear 2. The torque in Gear 2 is therefore:

IAS-LAB

The change in angular velocity between Gear 1 and Gear 2 is calculated by considering velocity at the point where they meet:

- When a small gear drives a bigger gear, the second gear has higher torque and lower angular velocity in proportion to the ratio of teeth.
- Gears can be chained together to achieve compound effects.