Chapitre 25

Comparaison locale des fonctions

25 Comparaison locale des fonctions	1
25.6 Caractérisation séquentielle	2

25.6 Caractérisation séquentielle

Théorème 25.6

Soit f et g deux fonctions sur X et $a \in \overline{X}$. Alors :

- 1. $f =_a O(g)$ si et seulement si pour toute suite $(u_n) \xrightarrow[n \to +\infty]{} a$ à valeurs dans X, alors $f(u_n) = O(g(u_n))$.
- 2. $f =_a o(g)$ si et seulement si pour toute suite $(u_n) \xrightarrow[n \to +\infty]{} a$ à valeurs dans X, alors $f(u_n) = o(g(u_n))$.

1.

```
f =_a O(g) ssi il existe h bornée au voisinage de a tel que f = g \cdot h
ssi Pour toute suite (u_n) \in X^{\mathbb{N}} avec u_n \to a, f(u_n) = g(u_n) \times w_n où (w_n) est une suite bornée. \Rightarrow w_n = h(u_n) ssi bornée \Leftarrow Par l'absurde avec (25.5).
ssi Pour toute suite (u_n) \in X^{\mathbb{N}} avec u_n \to a, f(u_n) = O(g(u_n)).
```

2. On utilise la caractérisation séquentielle de la limite (nulle).