Course 2 - Task 2: Prepare & Explore Data for Credit One Customer Loan Defaults

Author: Jason Rodriguez

Course Objectives

1. Continued learning focus on Exploratory Data Analysis & PreProcessing Data

Business Problems

- Credit One is experiencing an *increase* in customer defaults which ultimately can lead to lost in clients and business
- 2. Credit One does not have an reliable method for identifying which customer may default and how to predict credit balance.

Business Goals

1. Credit One seeking solution to *predict the right amount of credit* to extend to customers so it does not over extend themselves and reduce risks with customers defaulting.

Purpose of Remaining Sections

The following sections are broken into sections that step through the process of understanding and making inferences of the available Credit One data. The sections are as follows

- 1. Setting Up the Environment
- 2. PreProcessing & Initial Data Analysis
- 3. EDA: Univariate Analysis
- 4. EDA: Bivariate Analysis
- 5. EDA: Multi-variate Analysis
- 6. EDA: Correlation / Covariance Analysis

1.0 - Setting Up The Environment

```
In [1]: #IMPORTING LIBRARIES
   import numpy as np
   import pandas as pd
   from pandas import Series, DataFrame
   import pandas_profiling
   import matplotlib as mpl
   %matplotlib inline
   import matplotlib.pyplot as plt
   import matplotlib.patches as mpatches
   import seaborn as sns
   import pylab as pylab
   from math import sqrt

#Set Default MatPlot Figure Size
   pylab.rcParams['figure.figsize']=(10.0,8.0)

from sklearn import preprocessing
```

```
In [2]: #SKLearn Components
    from sklearn.pipeline import Pipeline
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, LabelEncoder, MinMaxS
    caler
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn.metrics import mean_squared_error, r2_score, accuracy_sco
    re
    from sklearn.ensemble import RandomForestRegressor, RandomForestClassi
    fier, GradientBoostingRegressor
    from sklearn.linear_model import LinearRegression
    from sklearn.svm import SVR, SVC
```

Data Load

```
In [3]: #Read Data Source File
    credit = pd.read_csv("/Users/JasonRodriguez/Documents/UT-Data-Analytic
    s-Program/2020-Cohort/C2-T2/Source-Data/default of credit card clients
    .csv")
```

Out[4]:

	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	 В
0	1	20000	female	university	1	24	2	2	-1	-1	
1	2	120000	female	university	2	26	-1	2	0	0	
2	3	90000	female	university	2	34	0	0	0	0	
3	4	50000	female	university	1	37	0	0	0	0	
4	5	50000	male	university	1	57	-1	0	-1	0	
5 rows × 25 columns											

OBSERVATION: 25 columns (features) within dataframe

2.0 - Pre-Processing & Initial Data Analysis

In [5]: #High-level and basic statistical details of the dataframe
 credit.describe()

Out[5]:

	ID	LIMIT_BAL	MARRIAGE	AGE	PAY_0	PAY_2
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000
mean	15000.500000	167484.322667	1.551867	35.485500	-0.016700	-0.133767
std	8660.398374	129747.661567	0.521970	9.217904	1.123802	1.197186
min	1.000000	10000.000000	0.000000	21.000000	-2.000000	-2.000000
25%	7500.750000	50000.000000	1.000000	28.000000	-1.000000	-1.000000
50%	15000.500000	140000.000000	2.000000	34.000000	0.000000	0.000000
75%	22500.250000	240000.000000	2.000000	41.000000	0.000000	0.000000
max	30000.000000	1000000.000000	3.000000	79.000000	8.000000	8.000000

8 rows × 22 columns

Data Inferences:

- 1. 30k records
- 2. STD is low among all features except age which could be expected
- 3. 3 object columns (Sex, Education, and Default status) did not display which are nominal values all others are numeric

```
In [6]: #Dataframe information - list of featurs, type, non-null count
credit.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	ID	30000 non-null	int64
1	LIMIT BAL	30000 non-null	int64
2	SEX	30000 non-null	object
3	EDUCATION	30000 non-null	object
4	MARRIAGE	30000 non-null	int64
5	AGE	30000 non-null	int64
6	PAY_0	30000 non-null	int64
7	PAY_2	30000 non-null	int64
8	PAY_3	30000 non-null	int64
9	PAY_4	30000 non-null	int64
10	PAY_5	30000 non-null	int64
11	PAY_6	30000 non-null	int64
12	BILL_AMT1	30000 non-null	int64
13	BILL_AMT2	30000 non-null	int64
14	BILL_AMT3	30000 non-null	int64
15	BILL_AMT4	30000 non-null	int64
16	BILL_AMT5	30000 non-null	int64
17	BILL_AMT6	30000 non-null	int64
18	PAY_AMT1	30000 non-null	int64
19	PAY_AMT2	30000 non-null	int64
20	PAY_AMT3	30000 non-null	int64
21	PAY_AMT4	30000 non-null	int64
22	PAY_AMT5	30000 non-null	int64
23	PAY_AMT6	30000 non-null	int64
24	default payment next month	30000 non-null	object
dtype	es: int64(22), object(3)		
memoi	ry usage: 5.7+ MB		

OBSERVATION: All columns are non-null, 3 object types, 22 integer types

```
In [8]:
        #Check for Missing Values
         print(credit.isnull().sum())
         ID
                                           0
                                           0
         LIMIT BAL
         SEX
                                           0
         EDUCATION
                                           0
                                           0
         MARRIAGE
                                           0
         AGE
         PAY 0
                                           0
         PAY 2
                                           0
         PAY 3
                                           0
         PAY 4
                                           0
                                           0
         PAY 5
         PAY 6
                                           0
         BILL AMT1
                                           0
         BILL AMT2
                                           0
         BILL AMT3
                                           0
         BILL AMT4
                                           0
         BILL AMT5
                                           0
                                           0
         BILL AMT6
                                           0
         PAY AMT1
         PAY AMT2
                                           0
         PAY AMT3
                                           0
```

0

0

OBSERVATION: no features contain null values

dtype: int64

default payment next month

PAY AMT4

PAY AMT5

PAY AMT6

```
In [10]:
         #Rename Columns to drive consistency within dateframe
         credit = credit.rename(columns={'default payment next month': 'Default
          Status', 'PAY 0': 'PAY 1'})
In [11]: #validation check to see if PAY 0 and Default Payment Next Month were
         changed
         credit.columns
Out[11]: Index(['ID', 'LIMIT BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PA
         Y 1',
                 'PAY 2', 'PAY 3', 'PAY 4', 'PAY 5', 'PAY 6', 'BILL AMT1', 'BI
         LL AMT2',
                 'BILL AMT3', 'BILL AMT4', 'BILL AMT5', 'BILL AMT6', 'PAY AMT1
                'PAY AMT2', 'PAY AMT3', 'PAY AMT4', 'PAY AMT5', 'PAY AMT6',
                 'Default Status'],
               dtype='object')
In [12]: | #Drop Un-needed columns
         credit = credit.drop(['ID'], axis=1)
```

Note dropping ID feature is a good practice given it does not add value in Machine learning it would give the ID column more strength b/c it so linear

Data Transformation Replace -2, -1 value in all Payment Status columns (PAY_1 to PAY_6) to zero (0). From a business perspective, -2 (no consumption); -1 (paid in full); 0 (use of revolving credit) are all considered good/same and can be changed to zero (0). Otherwise, Machine Learning may consider -2, -1 as bad values. Values 1 to 8 are payment delays and need not be changed.

```
In [17]: Columns = ['PAY_1', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6']

for i in range(len(Columns)):
    credit[Columns[i]] = credit[Columns[i]].replace(-2, 0)
    credit[Columns[i]] = credit[Columns[i]].replace(-1, 0)
    i = i+1
```

3.0 - EDA: UNIVARIATE ANALYSIS

Objective to explore data distribution of each feature individually within the dataframe

Categorical Features:

- 1. Sex
- 2. Education
- 3. Marriage
- 4. Default Status
- 5. Pay 1-6

Continuous Featurse:

- 1. Credit Limit
- 2. Age
- 3. Bill Amt 1-6
- 4. Payment Amt 1-6

--Feature: Gender--

```
In [18]: # Using Seaborn Countplot to Visualize the Sex distribution

sns.set(style="darkgrid")
gender = sns.countplot(x="SEX",data =credit, palette = 'deep')

# Configure X and Y axis
gender.set_xticklabels(['Male', 'Female'])
gender.set_xlabel("Gender", fontsize=10)
gender.set_ylabel("# of Clients", fontsize=10)

#Set title
plt.title('# of Clients by Gender', fontsize=15)
```

Out[18]: Text(0.5, 1.0, '# of Clients by Gender')

OBSERVATION:

- 1. Females are largest population at 60% (18091)
- 2. Males make up 40% (11874)

--Feature: Education--

```
In [19]:
         #Understand quick count of education across categories
         credit['EDUCATION'].value_counts()
Out[19]: 2
              14019
              10563
         1
         3
               4915
         0
                468
         Name: EDUCATION, dtype: int64
In [20]: # Countplot to Visualize the Education distribution
         sns.set(style="darkgrid")
         education = sns.countplot(x="EDUCATION", data = credit, palette = 'deep'
         # Configure X and Y axis
         education.set xticklabels(['Other', 'Grad School', 'University', 'High
         School'])
         education.set xlabel("Education Level", fontsize=12)
         education.set_ylabel("# of Clients", fontsize=12)
         #Set title
         plt.title('# of Clients by Education Level', fontsize=15)
Out[20]: Text(0.5, 1.0, '# of Clients by Education Level')
```


- 1. 82% of clients have post secondary education 47% (University) & 35% (Grad School)
- 2. 16% have high school
- 3. 2% have other

--Feature: Marriage--

```
0 - Other; 1 - Married; 2 - Single; 3 - Divorce
```

- 1. Other 0.2% of population
- 2. Married 45.5% of population
- 3. Single 53.2% of population
- 4. Divorce 1.1% of population

```
In [22]: # Countplot to Visualize the Marriage distribution

sns.set(style="darkgrid")
marriage = sns.countplot(x="MARRIAGE",data =credit, palette = 'deep')

# Configure X and Y axis
marriage.set_xticklabels(['Other','Married', 'Single', 'Divorce'])
marriage.set_xlabel("Marriage Status", fontsize=12)
marriage.set_ylabel("# of Clients", fontsize=12)

#Set title
plt.title('# of Clients by Marriage Status', fontsize=15)
```

Out[22]: Text(0.5, 1.0, '# of Clients by Marriage Status')

- 1. Over half of the population base are **SINGLE** at 53.2%
- 2. Second higher concentration are married cliented at 45.5%

--Feature: Default Status--

Name: Default_Status, dtype: int64

```
In [24]: # Countplot to Visualize the Default Status distribution

sns.set(style="darkgrid")
default = sns.countplot(x="Default_Status",data =credit, palette = 'de ep')

# Configure X and Y axis
default.set_xticklabels(['Not Defaulted','Defaulted'])
default.set_xlabel("Default Status", fontsize=12)
default.set_ylabel("# of Clients", fontsize=12)

#Set title
plt.title('# of Clients by Default Status', fontsize=15)
```

Out[24]: Text(0.5, 1.0, '# of Clients by Default Status')

- 1. 22% of customers **DEFAULTED** (6630 clients defaulted)
- 2. 78% of customers did **NOT DEFAULT** (23335 clients did not default)

--Feature: Pay Status--

```
In [25]: #Set up chart for 6 subplots for 6 columns

fig,ax = plt.subplots(2,3,figsize=(20,20))
sns.set(font_scale=1, style="darkgrid")

#Creating subplots
sns.countplot(x='PAY_1', data=credit, ax=ax[0,0], color='g')
sns.countplot(x='PAY_2', data=credit, ax=ax[0,1], color='g')
sns.countplot(x='PAY_3', data=credit, ax=ax[0,2], color='g')
sns.countplot(x='PAY_4', data=credit, ax=ax[1,0], color='g')
sns.countplot(x='PAY_5', data=credit, ax=ax[1,1], color='g')
sns.countplot(x='PAY_6', data=credit, ax=ax[1,2], color='g')
```

Out[25]: <matplotlib.axes. subplots.AxesSubplot at 0x11a26b400>

OBSERVATION: For payment the highest value is set at 0 (zero) across Pay_0 to Pay_6

--Feature: Credit Limit--

```
In [26]: plt.figure(figsize=(8,8))

# Plot the graph
plt.hist(credit['LIMIT_BAL'],color="c",bins=40)

# Configure X and Y axis
plt.xlabel('Credit limit', fontsize=14)
plt.ylabel('Number of Clients', fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

# Set the title
plt.title("Number of Clients by Credit limit", fontsize=16)
```

Out[26]: Text(0.5, 1.0, 'Number of Clients by Credit limit')

Out[27]: Text(0.5, 1.0, 'Distribution of Credit Limit')

In []:

--Feature: Age--

- 1. Youngest client is about 21 years old
- 2. Oldest client is about 77 years old
- 3. Largest client age is about 28 years old
- 4. Most client is age range from 24 to 38 years old
- 5. Appears some age groups have spikes in the number of clients

```
In [29]:
         #Counting Age Bin
         credit['AGE_BIN2'].value_counts()
Out[29]: 20-30
                  10997
         30-40
                  10702
         40-50
                   5997
         50-60
                   1997
         60-70
                    257
         70+
                     15
         Name: AGE_BIN2, dtype: int64
In [30]: # Countplot to Visualize the Age Bin distribution
         sns.set(style="darkgrid")
         AgeBin = sns.countplot(x="AGE BIN2", data =credit, palette = 'deep')
         # Configure X and Y axis
         AgeBin.set_xlabel("Age Groupings", fontsize=12)
         AgeBin.set ylabel("# of Clients", fontsize=12)
         #Set title
         plt.title('# of Clients by Age Groups', fontsize=15)
Out[30]: Text(0.5, 1.0, '# of Clients by Age Groups')
```


OBSERVATIONS: 20-30 make up 37% of the client population; while 30-40 make up 36% of the client population

--Feature: Bill Amt--

In [31]: #Set up chart for 6 subplots for 6 columns fig,ax = plt.subplots(2,3,figsize=(20,20)) sns.set(font scale=1, style="darkgrid") #Creating subplots sns.distplot(credit['BILL AMT1'], bins=8, kde=False, rug=False, ax=ax[0,0], color='g', hist kws={'log':True}) sns.distplot(credit['BILL_AMT2'], bins=8, kde=False, rug=False, ax=ax[0,1], color='g', hist kws={'log':True}) sns.distplot(credit['BILL AMT3'], bins=8, kde=False, rug=False, ax=ax[0,2], color='g', hist kws={'log':True}) sns.distplot(credit['BILL AMT4'], bins=8, kde=False, rug=False, ax=ax[1,0], color='g', hist kws={'log':True}) sns.distplot(credit['BILL AMT5'], bins=8, kde=False, rug=False, ax=ax[1,1], color='g', hist kws={'log':True}) sns.distplot(credit['BILL AMT6'], bins=8, kde=False, rug=False, ax=ax[1,2], color='g', hist kws={'log':True})

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x11b4ebc70>

In [32]: #Set up chart for 6 subplots for 6 columns fig,ax = plt.subplots(2,3,figsize=(20,20)) sns.set(font scale=1, style="darkgrid") #Creating subplots sns.distplot(credit['PAY_AMT1'], bins=8, kde=False, rug=False, ax=ax[0 ,0], color='q', hist kws={'log':True}) sns.distplot(credit['PAY_AMT2'], bins=8, kde=False, rug=False, ax=ax[0 ,1], color='g', hist kws={'log':True}) sns.distplot(credit['PAY AMT3'], bins=8, kde=False, rug=False, ax=ax[0 ,2], color='g', hist kws={'log':True}) sns.distplot(credit['PAY AMT4'], bins=8, kde=False, rug=False, ax=ax[1 ,0], color='g', hist kws={'log':True}) sns.distplot(credit['PAY AMT5'], bins=8, kde=False, rug=False, ax=ax[1 ,1], color='g', hist kws={'log':True}) sns.distplot(credit['PAY AMT6'], bins=8, kde=False, rug=False, ax=ax[1 ,2], color='g', hist kws={'log':True})

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x11c236b50>

4.0 - EDA: BIVARIATE ANALYSIS

Objective is to explore the relationship of various features to each other. Primary focus will be on Default Status

- Default Status & Gender
- 2. Default Status & Education
- 3. Default Status & Marriage
- 4. Default Status & Age
- 5. Default Status & Credit Limit
- 6. Default Status & Payment
- 7. Default Status & Bill Amount
- 8. Default Status & Pay Amount

4.1 - Default Status vs Gender

```
In [33]:
         #Default vs Sex
         sns.set(rc={'figure.figsize':(7,7)})
         sns.set context("talk", font scale=0.9)
         #Set x and y axis labels
         genderdefault = sns.countplot(x='SEX', hue='Default Status', data=cred
         it)
         genderdefault.set xticklabels(['male', 'female'])
         genderdefault.set ylabel('# of Clients', fontsize=10)
         genderdefault.set xlabel('Gender', fontsize=10)
         #Set Title
         plt.title("# of Defaulted / Not Defaulted Clients by Gender", fontsize
         =16)
         #Set Legend
         legend_labels, _=genderdefault.get_legend_handles_labels()
         genderdefault.legend(legend labels, ['Not Defaulted', 'Defaulted'], bb
         ox to anchor=(1,1)
         plt.show()
```


Out[34]: <matplotlib.legend.Legend at 0x11c60c280>

In [35]: #Default count by gender default0 = credit.groupby(credit['SEX'][credit['Default Status']==0]). size().reset index(name='Not Default') default1 = credit.groupby(credit['SEX'][credit['Default Status']==1]). size().reset index(name='Default') total = credit.groupby('SEX').size().reset_index(name='Total') percent default = round((default1['Default']/total['Total'])*100,2).re set index(name='% Defaulted') percent not default = round((default0['Not Default']/total['Total'])*1 00,2).reset index(name='% Not Defaulted') sexTable = default0.join(default1['Default']).join(total['Total']).joi n(percent default['% Defaulted']).join(percent not default['% Not Defa ulted']) sexTable['SEX'] = ['Male', 'Female'] sexTable

Out[35]:

	SEX	Not Default	Default	Total	% Defaulted	% Not Defaulted
0	Male	9005	2869	11874	24.16	75.84
1	Female	14330	3761	18091	20.79	79.21

In [36]: #Grouped by Education fig = sns.FacetGrid(credit, hue='SEX', aspect=5) fig.map(sns.kdeplot, 'AGE', shade=True) older=credit['AGE'].max() fig.set(xlim=(0,older)) fig.set(title='Distro of Age Grouped by Gender') fig.add_legend()

Out[36]: <seaborn.axisgrid.FacetGrid at 0x11cb8e970>

- 1. 20.79% of Females Default -vs- 24.16% of Males Defaulting
- 2. Males typically default more often than females by nearly 4% more.
- 3. Females are largest population at 60% (18091), especially under the age of 30
- 4. Males make up 40% (11874) and have higher population starting about 35 years of age
- 5. Nearly 80% of the females population does not default

4.2 - Default Status & Education

```
In [37]:
         #Default vs Education
         sns.set(rc={'figure.figsize':(10,7)})
         sns.set context("talk", font scale=0.9)
         #Set x and y axis labels
         EduDefault = sns.countplot(x='EDUCATION', hue='Default Status', data=c
         redit)
         EduDefault.set xticklabels(['Other', 'Grad School', 'University', 'Hig
         h School'])
         EduDefault.set ylabel('# of Clients', fontsize=10)
         EduDefault.set xlabel('Education', fontsize=10)
         #Set Title
         plt.title("# of Defaulted / Not Defaulted Clients by Education", fonts
         ize=16)
         #Set Legend
         legend labels, =EduDefault.get legend_handles_labels()
         EduDefault.legend(legend labels, ['Not Defaulted', 'Defaulted'], bbox
         to anchor=(1,1)
         plt.show()
```


- 1. "Other" category appears to be 100% not defaulted but very limit clients in this group
- 2. Client with 'University' degrees have greatest amount of defaulted & not defaulted but also have the largest population base

```
In [38]:
         #Default count by Education level
         default0 = credit.groupby(credit['EDUCATION'][credit['Default_Status']
         ==0]).size().reset index(name='Not Default')
         default1 = credit.groupby(credit['EDUCATION'][credit['Default Status']
         ==1]).size().reset index(name='Default')
         total = credit.groupby('EDUCATION').size().reset index(name='Total')
         percent default = round((default1['Default']/total['Total'])*100,2).re
         set index(name='Percent Defaulted')
         percent not default = round((default0['Not Default']/total['Total'])*1
         00,2).reset index(name='Percent Not Defaulted')
         eduTable = default0.join(default1['Default']).join(total['Total']).joi
         n(percent default['Percent Defaulted']).join(percent not default['Perc
         ent Not Defaulted'])
         eduTable['EDUCATION'] = ['Other', 'Grad School', 'University', 'High S
         chool'1
         eduTable
```

Out[38]:

	EDUCATION	Not Default	Default	Total	Percent_Defaulted	Percent_Not_Defaulted
0	Other	435	33	468	7.05	92.95
1	Grad School	8531	2032	10563	19.24	80.76
2	University	10691	3328	14019	23.74	76.26
3	High School	3678	1237	4915	25.17	74.83

OBSERVATION:

- 1. High School clients have a lower count compare to Grad School and University but *has higher percentage* of defaults at 25.17%
- 2. Other has the lowest count but highest percentage of not defaulting question: is this due to lower count or something else?
- 3. 19.24% of Grad clients & 23.73% of University clients default

```
In [39]: #Grouped by Education
    fig = sns.FacetGrid(credit, hue='EDUCATION', aspect=5)
    fig.map(sns.kdeplot, 'AGE', shade=True)
    older=credit['AGE'].max()
    fig.set(xlim=(0,older))
    fig.set(title='Distro of Age Grouped by Education')
    fig.add_legend()
```

Out[39]: <seaborn.axisgrid.FacetGrid at 0x11944cc10>

- 1. Grad School has largest volume between 25 and 35 year old when compare to other education categories
- 2. High School has largest volume after age 39 years old when compare to other education categories

```
In [ ]:
```

4.3 - Default Status & Marriage

```
In [40]:
         #Default vs Marriage
         sns.set(rc={'figure.figsize':(10,7)})
         sns.set context("talk", font scale=0.9)
         #Set x and y axis labels
         MarriageDefault = sns.countplot(x='MARRIAGE', hue='Default Status', da
         ta=credit)
         MarriageDefault.set xticklabels(['Other', 'Married', 'Single', 'Divorc
         e'])
         MarriageDefault.set ylabel('# of Clients', fontsize=10)
         MarriageDefault.set xlabel('Marriage Status', fontsize=10)
         #Set Title
         plt.title("# of Defaulted / Not Defaulted Clients by Marriage Status",
         fontsize=16)
         #Set Legend
         legend labels, =MarriageDefault.get legend handles labels()
         MarriageDefault.legend(legend labels, ['Not Defaulted', 'Defaulted'],
         bbox to anchor=(1,1)
         plt.show()
```


In [41]: #Default count by marriage default0 = credit.groupby(credit['MARRIAGE'][credit['Default Status']= =0]).size().reset index(name='Not Default') default1 = credit.groupby(credit['MARRIAGE'][credit['Default Status']= =1]).size().reset index(name='Default') total = credit.groupby('MARRIAGE').size().reset_index(name='Total') percent default = round((default1['Default']/total['Total'])*100,2).re set index(name='% Defaulted') percent not default = round((default0['Not Default']/total['Total'])*1 00,2).reset index(name='% Not Defaulted') marryTable = default0.join(default1['Default']).join(total['Total']).j oin(percent default['% Defaulted']).join(percent not default['% Not De faulted']) marryTable['MARRIAGE'] = ['Other', 'Married', 'Single', 'Divorce'] marryTable

Out[41]:

	MARRIAGE	Not Default	Default	Total	% Defaulted	% Not Defaulted
0	Other	49	5	54	9.26	90.74
1	Married	10442	3201	13643	23.46	76.54
2	Single	12605	3340	15945	20.95	79.05
3	Divorce	239	84	323	26.01	73.99

OBSERVATION:

- 1. Divorce clients have *higher default percentage* compare to any other marriage status
- 2. "Other" clients have highest percentage of not defaulting on loans
- 3. Married and Single client are fairly distributed and % of defaults are tight (23%-Married & 20%-Singles)

4.4 - Default Status & Age

```
In [42]:
         ## Plot distribution of Age data with default, not default count
         sns.set(style="whitegrid")
         plt.figure(figsize=(15,5))
         # Plot the graph
         total = credit['AGE'].value counts()
         default = credit['AGE'][(credit['Default Status']==1)].value counts()
         plt.bar(total.index, total, align='center', color='c')
         plt.bar(default.index, default, align='center', color='gray', alpha=0.
         9)
         # Set X and y axis labels
         plt.xlabel("Age", fontsize=14)
         plt.ylabel('Number of Customers', fontsize=14)
         plt.xlim([20,70])
         plt.xticks(fontsize=14)
         plt.yticks(fontsize=14)
         # Set the legend
         gray_patch = mpatches.Patch(color='gray', label='Default')
         c patch=mpatches.Patch(color='c', label='Not Default')
         plt.legend(handles=[gray patch,c patch],loc=1)
         # Set the title
         plt.title ("Number of default Customers by Age", fontsize=16)
```

Out[42]: Text(0.5, 1.0, 'Number of default Customers by Age')


```
In [43]: #AGe by Default
fig, (ax2, ax3) = plt.subplots(1, 2, figsize=(14,5))

#ax1.set_title('All Clients', fontsize=14)
ax2.set_title('Defaulted Clients', fontsize=14)
ax3.set_title('Non-Defaulted Clients', fontsize=14)

#sns.distplot(credit['AGE'], norm_hist=False, kde=False, ax=ax1);
sns.distplot(credit['AGE'][credit['Default_Status']==0], norm_hist=False, kde=False, ax=ax3);
sns.distplot(credit['AGE'][credit['Default_Status']==1], norm_hist=False, kde=False, ax=ax2);
```


In [44]: #Default Percentage by Age default0 = credit.groupby(credit['AGE'][credit['Default Status'] == 0]).size().reset index(name='NOT DEFAULT') default0 = default0.fillna(0) default1 = credit.groupby(credit['AGE'][credit['Default Status'] == 1]).size().reset index(name='DEFAULT') default1 = default1.fillna(0) total = credit.groupby('AGE').size().reset index(name='TOTAL') ageTable = total.join(default0.set index('AGE'),on='AGE').join(default 1.set index('AGE'), on='AGE') ageTable = ageTable[['AGE', 'NOT DEFAULT', 'DEFAULT', 'TOTAL']] ageTable = ageTable.fillna(0) ageTable ageTable['NOT DEFAULT'] = round((ageTable['NOT DEFAULT']/ageTable['TOT AL'])*100,2) ageTable['DEFAULT'] = round((ageTable['DEFAULT']/ageTable['TOTAL'])*10 0,2)agePct = ageTable.iloc[:,0:3] agePct = agePct.rename(columns={'NOT DEFAULT': 'NOT DEFAULT(%)', 'DEFA ULT': 'DEFAULT(%)'}) agePct sns.set(rc={'figure.figsize':(9,10)}) sns.set context("talk", font scale=0.5) ax = agePct.sort index(ascending=False).plot(x='AGE', kind='barh', sta cked=True, title='% of Defaults by Age') ax.set xlabel('PERCENT') ax.get legend().set bbox to anchor((1, 0.98)) plt.show()

OBSERVATION:

- 1. 73 year old clients have the have % of defaults
- 2. Rest of the distribution on % defaulted is fairly consistent with all the other ages

```
In [45]: #Default vs Age Bin
    sns.set(rc={'figure.figsize':(15,8)})
    sns.set_context("talk", font_scale=0.9)

ageBin = sns.countplot(x='AGE_BIN2', hue='Default_Status', data=credit)
    plt.show()
```


Out[46]:

AGE_BIN2	20-30	30-40	40-50	50-60	60-70	70+
Default_Status						
0	8527	8514	4602	1493	189	10
1	2470	2188	1395	504	68	5

Observation:

- 1. 20-30 year olds make up 36.7% of population
- 2. 30-40 year olds make up 35.7% of population
- 3. 70+ year olds default **33**% of the time compare to other groups which there is a slighted incremental decrase with every age group going working down from 70+
- 20-30: 22% default
- 30-40: 20% default
- 40-50: 23% default
- 50-60: 25% default
- 60-70: 26% default

4.5 - Default Status & Credit Limit

```
In [47]:
         ## Plot distribution of Credit Limit data with default, not default co
         unt
         sns.set(style="whitegrid")
         plt.figure(figsize=(20,10))
         # Plot the graph
         plt.hist(credit['LIMIT BAL'], sorted(credit['LIMIT BAL'].unique()), co
         lor='c')
         plt.hist(credit['LIMIT_BAL'][(credit['Default_Status']==1)], sorted(cr
         edit['LIMIT BAL'].unique()), color='grey', alpha=0.7)
         # Set X and y axis labels
         plt.xlabel('Credit Balance', fontsize=14)
         plt.ylabel('# of Customers', fontsize=14)
         plt.xlim([0,600000])
         plt.xticks(fontsize=14)
         plt.yticks(fontsize=14)
         # Set the legend
         gray patch = mpatches.Patch(color='gray', label='Default')
         c patch=mpatches.Patch(color='c', label='Not Default')
         plt.legend(handles=[gray patch,c patch],loc=1)
         # Set the title
         plt.title ("Number of default Customers by Credit Limit", fontsize=16)
```

Out[47]: Text(0.5, 1.0, 'Number of default Customers by Credit Limit')

4.6 - Default Status & Payment

```
# List of all 6 columns
In [48]:
         pay status columns =['PAY 1','PAY 2','PAY 3','PAY 4','PAY 5','PAY 6']
         # Set up subplots
         figure, ax = plt.subplots(2,3)
         figure.set size inches(18,8)
         # Get each column and plot in subplots (0,0),(0,1),(0,2) first and the
         n(1,0)(1,1)(1,2) using (i/3) and (i%3)
         for i in range(len(pay status columns)):
             row,col = int(i/3), i%3
             d = credit[pay status columns[i]].value counts()
             x = credit[pay status columns[i]][(credit['Default Status']==1)].v
         alue counts()
             ax[row,col].bar(d.index, d, align='center', color='c')
             ax[row,col].bar(x.index, x, align='center', color='gray', alpha=0.
         7)
             ax[row,col].set ylabel("Number of Customers")
             ax[row,col].set title(pay status columns[i])
             # Set the legend
             gray patch = mpatches.Patch(color='gray', label='Default')
             c_patch=mpatches.Patch(color='c', label='Not Default')
             ax[row,col].legend(handles=[gray_patch,c_patch],loc=1)
```



```
In [49]: # List of all 6 columns
         pay status columns =['PAY 1','PAY 2','PAY 3','PAY 4','PAY 5','PAY 6']
         # Set up subplots
         figure, ax = plt.subplots(2,3)
         figure.set size inches(18,8)
         # Get each column and plot in subplots (0,0),(0,1),(0,2) first and the
         n(1,0)(1,1)(1,2) using (i/3) and (i%3)
         for i in range(len(pay status columns)):
             row, col = int(i/3), i%3
             filter = credit[pay status columns[i]][(credit['Default Status']==
         0)].unique()
             x= credit[pay status columns[i]][(credit['Default Status']==0)].va
         lue counts()
             d = credit[pay status columns[i]][credit[pay status columns[i]].i
         sin (filter)].value counts()
             percent=x/d*100
             ax[row,col].bar(d.index, 100, align='center', color='c')
             ax[row,col].bar(percent.index, percent, align='center', color='gra
         y', alpha=0.7)
             # Set X and Y axis labels, title
             ax[row,col].set ylabel("Percentage of Customers")
             ax[row,col].set title(pay status columns[i])
             # Set the legend
         gray patch = mpatches.Patch(color='gray', label='Default')
         c patch=mpatches.Patch(color='c', label='Not Default')
         plt.legend(handles=[gray patch,c patch],bbox to anchor=(1.05, 1))
```

Out[49]: <matplotlib.legend.Legend at 0x11d34f730>

4.7 - Default Status & Bill Amount

```
In [50]:
         # List of all 6 columns
         bill amt columns =['BILL AMT1', 'BILL AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BI
         LL AMT5', 'BILL AMT6']
         # Set up subplots
         figure, ax = plt.subplots(3,2)
         figure.set size inches(10,10)
         # Get each column and plot in subplots (0,0),(0,1),(0,2) first and the
         n(1,0)(1,1)(1,2) using (i/3) and (i%3)
         for i in range(len(bill amt columns)):
             row,col = i%3, int(i/3)
             ax[row,col].hist(credit[bill amt columns[i]], bins=20, color = 'c',
         alpha=.9)
             ax[row,col].hist(credit[bill amt columns[i]][(credit['Default Stat
         us']==1)],bins=20,color='gray',alpha = 0.7)
             ax[row,col].set title(bill amt columns[i])
             #adding scaling to make the graph more helpful
             ax[row,col].set_yscale('log', nonposy='clip')
             # Set the legend
             gray patch = mpatches.Patch(color='gray', label='Default')
             c patch=mpatches.Patch(color='c', label='Not Default')
             ax[row,col].legend(handles=[gray patch,c patch],loc=1)
         plt.tight_layout()
```


4.8 - Default Status & Pay Amount

```
In [51]: # List of all 6 columns
         pay amt columns = ['PAY AMT1', 'PAY AMT2', 'PAY AMT3', 'PAY AMT4', 'PAY AMT
         5', 'PAY AMT6']
         # Set up subplots
         figure, ax = plt.subplots(3,2)
         figure.set size inches(10,10)
         # Get each column and plot in subplots (0,0),(0,1),(0,2) first and the
         n(1,0)(1,1)(1,2) using (i/3) and (i%3)
         for i in range(len(pay amt columns)):
             row, col = i%3, int(i/3)
             ax[row,col].hist(credit[pay_amt_columns[i]], bins=20, color ='c',
         alpha=.9)
             ax[row,col].hist(credit[pay amt columns[i]][(credit['Default Statu
         s']==1)],bins=20,color='gray',alpha = 0.7)
             ax[row,col].set title(pay amt columns[i])
             #adding scaling to make the graph more helpful
             ax[row,col].set yscale('log', nonposy='clip')
             # Set the legend
             gray patch = mpatches.Patch(color='gray', label='Default')
             c patch=mpatches.Patch(color='c', label='Not Default')
             ax[row,col].legend(handles=[gray patch,c patch],loc=1)
         plt.tight layout()
```


5.0 - Multivariate Analysis of Defaulting or Not

Explore and analyze data information cross multiple features using Default Status as constant

- 1. Default Status -vs- Gender by Age
- 2. Default Status -vs- Gender by Education
- 3. Default Status -vs- Gender by Marriage Status

5.1 - Default Status by Gender by Age

<Figure size 1080x1080 with 0 Axes>

Out[53]:

AGE_BIN2	20-30		30-40		40-50		50-6	0	60-7	0	70)+
SEX	1	2	1	2	1	2	1	2	1	2	1	2
Default_Status												
	2022	5605	3347	5167	1030	2663	686	9 07	105	Ω/Ι	6	1

1 912 1558 1013 1175 645 750 261 243 35 33 3 2

OBSERVATION:

- 1. Female has highest credit limit balance associated with it in age group 40-50
- 2. High % of **NOT DEFAULTING** are females within the 30-40 age range at 81%
- 3. both Males and Females over 70 have a 33% chance of defaulting

ADDITIONAL:

- 1. 20-30 65% Female population with a 22% Defaulted -vs- 35% Male population w/ 24% Defaulted
- 2. 30-40 59% Females pop. w/ 19% Defaulted -vs- 41% Male pol w/ 23% Defaulted
- 3. 40-50 57% Female pop. w/ 22% Defaulted -vs- 43% Male w/ 25% Defaulted
- 4. 50-60 53% Female pop. w/ 23% Defaulted -vs- 44% Male w/ 28% Defaulted
- 5. 60-70 46% Female pop. w/ 28% Defaulted -vs- 54% Male w/ 25% Defaulted
- 6. 70+ 40% Female pop. w/ 33% Defaulted -vs- 60% Male w/ 33% Defaulted

Take Away: Females have better record for not defaulting across the age group

Default Status by Gender and Education


```
In [56]:
          table gender edu = pd.crosstab(index=[credit.Default Status,credit.SEX
           ], columns=[credit.EDUCATION])
          table gender edu.unstack()
Out[56]:
           EDUCATION
                                                      3
           SEX
                            2
                                      2
                                                           2
           Default Status
                        156
                            279
                                3442
                                      5089
                                           3962
                                                6729
                                                      1445
                                                           2233
                                 904 1128 1406 1922
                                                      545
                                                            692
                         14
                             19
```

OBSERVATION

1. female continue to show better percentate at not defaulting when compare to males across education level

Default Status by Gender and Marriage

```
In [58]:
            #Cat Plot: credit balance distributed by Marriage and Sex
            sns.catplot(x="SEX", y="LIMIT BAL", hue="Default Status", kind="swarm"
                            col="MARRIAGE", aspect=.6, data=credit);
                        MARRIAGE = 0
                                           MARRIAGE = 1
                                                              MARRIAGE = 2
                                                                                  MARRIAGE = 3
              1000000
               800000
               600000
             LIMIT_BAL
                                                                                                Default_Status
              400000
               200000
                       ::-
                  0
                                               SEX
                                                                 SEX
                                                                                     SEX
                           SEX
```

OBSERVATION:

1. Distribution of credit limit is fairly symmetric

```
In [59]:
          table age = pd.crosstab(index=[credit.Default Status,credit.SEX], colu
          mns=[credit.MARRIAGE])
          table age.unstack()
Out[59]:
           MARRIAGE
                                                   3
           SEX
                           2
                                    2
                                         1
                                                   1
                                                       2
           Default Status
                        12
                           37
                               3841
                                    6601
                                         5061
                                              7544
                                                       148
                              1343 1858 1484 1856
                                                        44
```

OBSERVATION: Single Males & Females did not default as much compare to Married counterparts.

- Not Defaulting %: Single Female (80%) -vs- Married Female (78%)
- Not Defaulting %: Single Male (77%) -vs- Married Male (74%)

Divorce females and males had highest default percentages at 23% (female) and 31% (males)

Default Status by Age and Education

```
In [61]: #Cat Plot: Education by Age Categories by Default Status
sns.catplot(x="EDUCATION", y="LIMIT_BAL", hue="Default_Status",
col="AGE_BIN2", aspect=.6,
kind="swarm", data=credit);

AGE_BIN2-20-30

AGE_BIN2-30-40

AGE_BIN2-50-60

AGE_BIN2-60-70

AGE_BIN2-60-70

AGE_BIN2-60-70

AGE_BIN2-70-

Default_Status

Default_Status

Col="AGE_BIN2", aspect=.6,
kind="swarm", data=credit);
```

OBSERVATION:

- 1. distribution of credit limit among education categories by age seem consistent
- 2. distribution of default status seems equally distributed

Out[62]:

AGE_BIN2	20-3	0			30-4	0			40-	50	 50-6	0	60	-70
EDUCATION	0	1	2	3	0	1	2	3	0	1	 2	3	0	1
Default_Status	Default_Status													
0	151	3496	4093	787	156	3344	3945	1069	95	1275	 518	584	3	52
1	9	799	1369	293	8	782	1087	311	12	323	 192	196	0	15

2 rows × 24 columns

Observation:

- 1. Millennials (27% of pop) 24% Defaulted; 76% Not Defaulted
- 2. Adults (26% of pop) 19% Defaulted; 81% Not Defaulted
- 3. Early Boomers (23% of pop) 21% Defaulted; 79% Not Defaulted
- 4. Late Boomers (25% of pop) 24% Defaulted; 76% Not Defaults

Out[63]: <seaborn.axisgrid.FacetGrid at 0x1189fbee0>

OBSERVATION

- 1. High School clients typically have lower defaults
- 2. Grad school clients have higher defaults percentage with higher credit balances

Features Transformation

```
In [64]: #Label Encode SEX & Default Status, 2 class variable

le = LabelEncoder()
le.fit(credit['SEX'])
credit['SEX']=le.transform(credit['SEX'])
```

OBSERVATION/EXPECTATION:

- 1. Marriage split into 4 units Marriage_Married, Marriage_Single,...
- 2. Education split into 4 units Education_grad school, Education_university, ...

CORRELATION

```
In [68]: ## Visualize the Correlation matrix

# Configure x and y axis
corrMat=credit.corr()
sns.set()
plt.figure(figsize=(70,70))
plt.xticks(fontsize=48)
plt.yticks(fontsize=48)
plt.yticks(fontsize=48)
plt.title('Pearson Correlation of Features', size =48)

# Plotting the data using heatmap
g = sns.heatmap(corrMat,annot=True,cmap="seismic",annot_kws={"size": 35},fmt=".2f")
```


OBSERVATION:

- Payment Status (PAY0-Pay6) is highly correlated to each other
- 2. Bill Amount (Bill_Amt1-Bill_Amt6) is highly correlated to each other
- 3. Default Status have strong correlation to Payment status
- Pay1-6, Default Status, Education_1-3, and Marriage_Single have low or negative correlation to LIMIT_Bal (target var)

In [69]: #Covariance

#Covariance is often used to gauge the linear degree of change between
two variables. This is important when studying
#the impact features might have on default rates
covMat=credit.cov()
print(covMat)

	LIMIT_BAL	SEX	AGE	
PAY_1 \				
LIMIT_BAL	1.683769e+10	1587.661442	173039.339301	-16877.8
73897				
SEX	1.587661e+03	0.239246	-0.410621	-0.0
12879	4			
AGE	1.730393e+05	-0.410621	84.998429	-0.0
09829	1 607707-104	0 012070	0 000000	0 5
PAY_1 78744	-1.687787e+04	-0.012879	-0.009829	0.5
PAY 2	-2.050707e+04	-0.017530	-0.064945	0.4
26370	-2:0307076104	-0.017330	-0.004943	0.4
PAY 3	-1.961575e+04	-0.015882	-0.103301	0.3
11113	1.3013736104	0.013002	0.103301	0.5
PAY 4	-1.782781e+04	-0.014731	-0.050299	0.2
 66606				
PAY 5	-1.582440e+04	-0.013464	-0.086958	0.2
31846				
PAY_6	-1.556707e+04	-0.011153	-0.110926	0.2
03506				
BILL_AMT1	2.732380e+09	-1213.254869	38091.519524	-27.9
82760				
BILL_AMT2	2.575221e+09	-1086.999787	35534.308472	512.4
19937	0 550505 .00	004 005400	24050 560100	710 1
BILL_AMT3	2.553507e+09	-834.307489	34258.762123	719.1
89774	2.458630e+09	-689.404217	30382.357043	1097.7
BILL_AMT4 85070	2.4380300+09	-009.404217	30362.337043	1097.7
BILL AMT5	2.335917e+09	-506.382574	27587.344198	1436.8
43369	2.3337176.03	300.302374	27507.544190	1430.0
BILL AMT6	2.248110e+09	-488.090781	26072.712836	1383.1
8077 8				
PAY_AMT1	4.202977e+08	-1.946093	3982.705240	-996.6
06751				
PAY_AMT2	5.342208e+08	-15.674467	4617.629754	-1001.2
71004				
PAY_AMT3	4.808967e+08	-74.098910	4739.452137	-837.7
00166				
PAY_AMT4	4.138037e+08	-17.075936	3079.001455	-736 . 5
45768	4 210605 : 22	10 440101	2200 040115	604.6
PAY_AMT5	4.312685e+08	-12.449121	3209.948117	-624.0
06623				

PAY_AMT6	5.073244e+08	-24.057555	3182.740556	-657.8
	-8.288039e+03	-0.008069	0.052121	0.1
-	2.166981e+02	0.000516	0.010233	-0.0
02396 EDUCATION_1	1.602623e+04	-0.005349	-0.442245	-0.0
-	-9.535892e+03	0.006248	-0.357724	0.0
_	-6.707041e+03	-0.001414	0.789735	0.0
11855 MARRIAGE_Divorced	-7.476895e+02	-0.000100	0.078807	0.0
00330 MARRIAGE_Married	6.697394e+03	0.007416	2.062329	0.0
04953 MARRIAGE_Others	-6.213684e+01	0.000247	0.004193	0.0
00025 MARRIAGE_Single	-5.887568e+03	-0.007562	-2.145330	-0.0
05308				
F \	PAY_2	PAY_3	PAY_4	
-	-20507.068684	-19615.745616	-17827.810601	-15824.4
01123 SEX	-0.017530	-0.015882	-0.014731	-0.0
13464 AGE	-0.064945	-0.103301	-0.050299	-0.0
86958 PAY_1	0.426370	0.311113	0.266606	0.2
31846 PAY_2	0.643307	0.420743	0.312958	0.2
66274 PAY_3	0.420743	0.625200	0.408458	0.3
12716 PAY_4	0.312958	0.408458	0.579426	0.4
07136 PAY_5	0.266274	0.312716	0.407136	0.5
15191 PAY_6	0.233478	0.278533	0.328129	0.3
80073 BILL_AMT1	674.772832	-1211.367179	-1421.933883	-989.7
66117 BILL_AMT2	895.005705	-65.609193	-690.181086	-446.9
01100 BILL_AMT3	1262.955502	123.702252	132.972942	162.1
92177 BILL_AMT4	1663.136812	834.448475	710.895055	1110.2
55314 BILL_AMT5	1960.146349	1251.483515	1254.912344	1576.8

82369 BILL AMT6	2006.289685	1357.222101	1497.048682	1818.6
19258	2000.209003	1337.222101	1497.040002	1010.0
PAY AMT1	-1297.613781	-517.188011	-688.592497	-639.7
11873				
PAY_AMT2	-1015.972218	-1344.808758	-648.431501	-656.1
07906				
PAY_AMT3	-847.609136	-805.275491	-994.536800	-472.1
59310		660 550006		5 40.0
PAY_AMT4	-680.239986	-668.772926	-660.998893	-742.9
02567 PAY AMT5	-598.840967	-615.414039	-614.691102	-569.4
26788	-370.040707	-013.414037	-014.071102	-307.4
PAY AMT6	-616.561188	-682.766950	-662.304969	-589.6
43850				
Default_Status	0.108902	0.094165	0.084977	0.0
77681				
EDUCATION_0	-0.003802	-0.004052	-0.003444	-0.0
03128				
EDUCATION_1	-0.031930	-0.026972	-0.024701	-0.0
19558 EDUCATION 2	0.022732	0.018795	0.017053	0.0
14919	0.022/32	0.010793	0.017033	0.0
EDUCATION 3	0.013000	0.012229	0.011091	0.0
07766				
MARRIAGE_Divorced	-0.000016	0.000358	0.000346	-0.0
00353				
MARRIAGE_Married	0.003991	-0.000381	0.001747	0.0
00680	0 00000	0.00050	0 000104	0 0
MARRIAGE_Others 00034	0.000090	0.000253	0.000134	0.0
MARRIAGE Single	-0.004066	-0.000230	-0.002227	-0.0
00361	-0.004000	-0.000230	-0.002227	-0.0
00001				
	PAY_6	BILL_AMT1	PAY_A	AMT6 \
LIMIT_BAL	-15567.065145	2.732380e+09	5.0732446	e+08
SEX	-0.011153	-1.213255e+03	2.4057556	e+01
AGE	-0.110926	3.809152e+04	3.1827416	
PAY_1	0.203506	-2.798276e+01	6.5784956	e+02
PAY_2	0.233478	6.747728e+02	6.1656126	e+02
PAY_3	0.278533	-1.211367e+03	6.827670	e+02
PAY_4	0.328129	-1.421934e+03	6.6230506	e+02
PAY_5	0.380073	-9.897661e+02	5.8964386	e+02
PAY_6	0.511916	-1.039695e+03	5.7823486	e+02
BILL_AMT1	-1039.694681	5.425520e+09	2.3473566	e+08
BILL_AMT2	-505.744101	4.989564e+09	2.2044756	e+08
BILL_AMT3	77.628559	4.559032e+09	2.2476286	
BILL_AMT4	943.301698	4.077469e+09	2.0313736	e+08
BILL_AMT5	1814.164614	3.716733e+09	1.7741976	e+08
BILL_AMT6	1957.451127	3.521673e+09	1.2218636	e+08

PAY_AMT1	-567.859620 1	.709557e+08	5.4720636	e+07
PAY AMT2	-567.859620 1 -658.715050 1	.684171e+08	6.4608446	e+07
PAY AMT3		2.033350e+08	5.0967346	e+07
PAY AMT4	-342.409537 1	.825462e+08	4.3980266	e+07
<u>—</u>	-732.446757 1	.878467e+08	4.2091856	
PAY AMT6	-578.234782 2		3.1637656	
Default Status	0.072554 -6		3.9316706	
	-0.003074 3		3.5213996	
_	-0.016006 -8		4.2809376	
EDUCATION 2	0.013781 1		2.3460516	
EDUCATION 3	0.005299 -6		2.2870266	
MARRIAGE Divorced			1.9538146	
MARRIAGE Married			5.2923966	
 -			5.3760486	
MARRIAGE_Others MARRIAGE Single	0.000544 -7		2.8009776	
MARKIAGE_SINGLE	0.000344 -/	•6400/3e+02	2.0009//6	ST01
	Default_Status	EDUCATION_0	EDUCATION_1	EDUCAT
ION_2 \				
	-8288.039420	216.698093	16026.234853	-9535.8
92010				
SEX	-0.008069	0.000516	-0.005349	0.0
06248				
AGE	0.052121	0.010233	-0.442245	-0.3
57724				
PAY_1	0.125116	-0.002396	-0.024924	0.0
15465				
PAY 2	0.108902	-0.003802	-0.031930	0.0
22732				
PAY_3	0.094165	-0.004052	-0.026972	0.0
 18795				
PAY_4	0.084977	-0.003444	-0.024701	0.0
PAY_5	0.077681	-0.003128	-0.019558	0.0
14919				
PAY 6	0.072554	-0.003074	-0.016006	0.0
13781	010,2001	010000, 1	0.02000	
BILL AMT1	-604.098379	331.285023	-830.524506	1106.1
82049	0011030013	0011100010	3001321333	
BILL AMT2	-422.662880	270.884647	-676.485488	1012.1
22545	122.002000	270.001017	0,01103100	1012.1
BILL AMT3	-408.384846	248.250076	-419.833047	763.6
33782	100.301010	240.250070	417.033047	703.0
BILL AMT4	-274.056305	166.461641	-103.258529	687.9
02795	-2/4.030303	100.401041	-103.230323	007.5
	172 164564	00 25///2	40.404079	590.7
BILL_AMT5 29081	-1/3.104304	00.334442	40.4040/9	J3U•/
	125 225462	24 542202	EO 207122	722 5
BILL_AMT6 04466	-135.235463	24.542393	-59.387122	723.5
	502 260504	0 022522	206 551202	-274.0
PAY_AMT1	-502.268504	9.032523	396.551292	-2/4.0
64254				

PAY_AMT2	-561.18840	34.208346	491.344602	-382.4
28087				
PAY_AMT3	-411.83927	48.559726	473.261608	-314.1
42998				
PAY_AMT4	-370.20707	72 2.042319	347.226400	-211.9
07625				
PAY_AMT5	-350.22885	13.930756	346.753554	-163.2
16149				
PAY_AMT6	-393.16702	28 35.213988	428.093695	-234.6
05082	0 1700	0.00054	0 010104	0 0
Default_Status	0.17230	09 -0.002354	-0.010184	0.0
07548	0 00225	0 015375	0 005506	0 0
EDUCATION_0	-0.00235	0.015375	-0.005506	-0.0
07307	-0.01018	34 -0.005506	0.228255	-0.1
EDUCATION_1 64926	-0.01016	-0.005500	0.220233	-0.1
EDUCATION 2	0.00754	18 -0.007307	-0.164926	0.2
48974	0.0075	-0.007307	-0.104720	0.2
EDUCATION 3	0.00499	00 -0.002562	-0.057822	-0.0
76741	0.001		0100,011	
MARRIAGE Divorced	0.00041	18 0.000099	-0.002131	0.0
00363				
MARRIAGE Married	0.00608	0.000698	-0.036588	0.0
15124				
MARRIAGE_Others	-0.00023	-0.000028	-0.000502	-0.0
00643				
MARRIAGE_Single	-0.00627	73 -0.000769	0.039221	-0.0
14845				
	EDUCATION_3	MARRIAGE_Divorced	MARRIAGE_M	arried
\				
LIMIT_BAL	-6707.040936	-747.689481		394397
SEX	-0.001414	-0.000100		007416
AGE	0.789735	0.078807		062329
PAY_1	0.011855	0.000330		004953
PAY_2	0.013000	-0.000016		003991
PAY_3	0.012229	0.000358		000381
PAY_4	0.011091 0.007766	0.000346 -0.000353		001747 000680
PAY_5 PAY 6	0.007788	0.000126		000762
BILL_AMT1	-606.942566	-87.390207		652636
BILL AMT2	-606.521704	-99.038557		006363
BILL_AMT3	-592.050810	-106.236881		227909
BILL AMT4	-751 . 105907	-130.250252		594393
BILL AMT5	-719.487603	-130.315512		474633
BILL_AMT6	-688.659737	-111.399812		648894
PAY AMT1	-131.519561	13.370609		482847
PAY AMT2	-143.124861	20.881739		684938
PAY AMT3	-207.678335	9.899963		837612
PAY_AMT4	-137.361093	3.121364		862271

PAY_AMT5		-2.597642	16.692618
PAY_AMT6		-19.538141	
Default_Status	0.004990	0.000418	0.006086
EDUCATION_0	-0.002562	0.000099	0.000698
EDUCATION_1		-0.002131	-0.036588
EDUCATION_2	-0.076741	0.000363	0.015124
EDUCATION_2 EDUCATION_3	0.137125	0.001669	0.020765
MARRIAGE_Divorced	0.001669	0.010663	-0.004908
MARRIAGE_Married		-0.004908	0.248010
MARRIAGE_Others MARRIAGE_Single	0.001173	-0.000019	-0.000821
MARRIAGE_Single	-0.023607	-0.005736	-0.242282
	MARRIAGE_Others	MARRIAGE_Single	
LIMIT_BAL	-62.136840	-5887.568076	
SEX	0.000247	-0.007562	
AGE	0.004193	-2.145330	
PAY_1	0.000025	-0.005308	
PAY_2	0.000090	-0.004066	
PAY_3	0.000253	-0.000230	
PAY_4	0.000134	-0.002227	
PAY_5		-0.000361	
PAY_6	0.000092	0.000544	
BILL_AMT1	-55.655104	0.000544 -784.607326	
BILL_AMT2		-651.424294	
BILL_AMT3	-50.126334	-740.864695	
BILL_AMT4	-43.803558	-568.540583	
BILL_AMT5		-587.359727	
BILL_AMT6		-477.418429	
PAY_AMT1	3.829617	-74.683073	
PAY_AMT2	-5.669673	-144.897003	
PAY_AMT3	-2.169343	-54.568232	
PAY_AMT4	-3.545566	-113.438069	
PAY_AMT5	-4.830478	-9.264498	
PAY_AMT6	-5.376048	-28.009773	
Default_Status	-0.000232	-0.006273	
EDUCATION_0	-0.000028	-0.000769	
EDUCATION_1	-0.000502	0.039221	
EDUCATION_2	-0.000643	-0.014845	
EDUCATION_3	0.001173	-0.023607	
MARRIAGE_Divorced	-0.000019	-0.005736	
MARRIAGE_Married	-0.000821	-0.242282	
MARRIAGE_Others	0.001799	-0.000959	
MARRIAGE Single	-0.000959	0.248977	

In []: