L Number	Hits	Search Text	DB	Time stamp
2	286	(("711/103,136,160").CCLS.) and ((flash or eeprom or eprom)	USPAT;	2004/08/11 09:55
		same ((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	
		(table\$1 or block\$4 or director\$4)))		
3	52	((("711/103,136,160").CCLS.) and ((flash or eeprom or	USPAT;	2004/08/11 09:47
		eprom) same ((time\$1 or timestamp\$4 or date\$1 or	US-PGPUB	
		duration\$1) near8 (table\$1 or block\$4 or director\$4)))) and		
		@pd>=20031001		
4	4	((("711/103,136,160").CCLS.) and ((flash or eeprom or	USPAT;	2004/08/11 10:17
		eprom) same ((time\$1 or timestamp\$4 or date\$1 or	US-PGPUB	
		duration\$1) near8 (table\$1 or block\$4 or director\$4)))) and		
		@pd>=20031001 and @ad<20000606	_	
6	14	((711/\$).CCLS.) and bank\$2 and ((flash or eeprom or eprom)	USPAT;	2004/08/11 10:17
		same ((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	
_		(table\$1 or director\$4)))		
5	124	((711/\$).CCLS.) and ((flash or eeprom or eprom) same	USPAT;	2004/08/11 10:16
		((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	
_	62	(table\$1 or director\$4)))	LICOAT	2004/20/44 40 40
7	62	(((711/\$).CCLS.) and ((flash or eeprom or eprom) same	USPAT;	2004/08/11 10:18
		((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	
8	117	(table\$1 or director\$4)))) and @ad<20000606 ((365/\$).CCLS.) and ((flash or eeprom or eprom) same	USPAT;	2004/09/11 10:17
0	117	((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	2004/08/11 10:17
		(table\$1 or director\$4)))	US-PGPUB	
11	48	(((365/\$).CCLS.) and ((flash or eeprom or eprom) same	USPAT;	2004/08/11 10:24
11	70	((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	2004/06/11 10.24
		(table\$1 or director\$4)))) and @ad<20000606	03-10100	
12	30	((((365/\$).CCLS.) and ((flash or eeprom or eprom) same	USPAT;	2004/08/11 10:18
	30	(((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8	US-PGPUB	2001/00/11 10:10
		(table\$1 or director\$4)))) and @ad<20000606) not	05 1 01 05	
		((((711/\$).CCLS.) and ((flash or eeprom or eprom) same		
		((time\$1 or timestamp\$4 or date\$1 or duration\$1) near8		
		(table\$1 or director\$4)))) and @ad<20000606)		
9	100	((flash or eeprom or eprom) same ((time\$1 or timestamp\$4 or	EPO; JPO;	2004/08/11 10:20
_		date\$1 or duration\$1) near8 (table\$1 or director\$4)))	DERWENT;	
		(IBM_TDB	

Publications/Services Standards Conferences Careers/Jobs

Welcome **United States Patent and Trademark Office**

4

Help	FAQ	Terms	IEEE Peer Review
Welco	me to	IEEE Xpl	ores
\circ	- Home	Your sea	
\circ	- What	A maxim	

Tables of Contents

I Access? O- Log-out

O- Journals & Magazines

()- Conference **Proceedings**

O- Standards

Search

O- By Author C Basic — Advanced

Member Services

O Join IEEE)- Establish IEEE Web Account

O- Access the **IEEE Member Digital Library**

IEEE Enterprise

()- Access the **IEEE Enterprise** File Cabinet

Print Format

our search matched 4 of 1060766 documents.

maximum of 500 results are displayed, 15 to a page, sorted by Relevance Descending order.

Refine This Search:

You may refine your search by editing the current search expression or enteri new one in the text box.

((flash or eeprom or eprom) <paragraph> ((time* or time) Search

Check to search within this result set

Quick Links

Results Key:

JNL = Journal or Magazine **CNF** = Conference **STD** = Standard

1 Self-calibration/compensation technique for microcontroller-based sensor arrays

Kolen, P.T.;

Instrumentation and Measurement, IEEE Transactions on , Volume: 43 , Issue 4, Aug. 1994

Pages:620 - 623

[Abstract] [PDF Full-Text (396 KB)]

2 Performance comparison of logical-address-to-physical-address algorithms for non-volatile memory

Yang Jan-Ti; Sheng-Zhong Shieh; Jun-Ming Yu;

ASIC, 2003. Proceedings. 5th International Conference on , Volume: 1 , 21-2 2003

Pages:482 - 485 Vol.1

[Abstract] [PDF Full-Text (302 KB)] **IEEE CNF**

3 A reprogrammable hardware fuzzy controller for the battery charging process

Sepulveda C, R.; Montiel R, O.; Castillo, O.; Melin, P.;

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference

on , Volume: 2 , 25-28 May 2003

Pages: 1008 - 1013 vol.2

[Abstract] [PDF Full-Text (415 KB)] **IEEE CNF**

4 Real time speech processing to eliminate slamdowns in digital voice systems

Harrison, C.G.M.; Javed, M.A.; Wolanski, P.;

Artificial Neural Networks, 1995., Fourth International Conference on , 26-28 1995

Pages: 19 - 23

Rest Available Copy

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

US Patent & Trademark Office

((flash or eeprom or eprom) <paragraph> ((time* or timestam)

HERITEE.

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used	Found
Terms used	10 of
flash or eeprom or eprom paragraph time or timestamp or date or duration near/8 table or director	440.000
	140,980

Sort results Display

results

relevance expanded form

Save results to a Binder Search Tips

Open results in a new

window

Try an Advanced Search Try this search in The ACM Guide

Results 1 - 10 of 10

Relevance scale

1 Pen computing: a technology overview and a vision

André Meyer

July 1995 ACM SIGCHI Bulletin, Volume 27 Issue 3

Full text available: pdf(5.14 MB)

Additional Information: full citation, abstract, citings, index terms

This work gives an overview of a new technology that is attracting growing interest in public as well as in the computer industry itself. The visible difference from other technologies is in the use of a pen or pencil as the primary means of interaction between a user and a machine, picking up the familiar pen and paper interface metaphor. From this follows a set of consequences that will be analyzed and put into context with other emerging technologies and visions. Starting with a short historic ...

Practical byzantine fault tolerance and proactive recovery

Miguel Castro, Barbara Liskov

November 2002 ACM Transactions on Computer Systems (TOCS), Volume 20 Issue 4

Full text available: pdf(1.63 MB)

Additional Information: full citation, abstract, references, citings, index terms, review

Our growing reliance on online services accessible on the Internet demands highly available systems that provide correct service without interruptions. Software bugs, operator mistakes, and malicious attacks are a major cause of service interruptions and they can cause arbitrary behavior, that is, Byzantine faults. This article describes a new replication algorithm, BFT, that can be used to build highly available systems that tolerate Byzantine faults. BFT can be used in practice to implement re ...

Keywords: Byzantine fault tolerance, asynchronous systems, proactive recovery, state machine replication, state transfer

3 Memory hierarchy: Compiler-decided dynamic memory allocation for scratch-pad based embedded systems

Sumesh Udayakumaran, Rajeev Barua

October 2003 Proceedings of the international conference on Compilers, architectures and synthesis for embedded systems

Full text available: pdf(213.48 KB) Additional Information: full citation, abstract, references, index terms

This paper presents a highly predictable, low overhead and yet dynamic, memory allocation strategy for embedded systems with scratch-pad memory. A scratch-pad is a fast compilermanaged SRAM memory that replaces the hardware-managed cache. It is motivated by its better real-time guarantees vs cache and by its significantly lower overheads in energy

Best Available Copy

	of 3
consumption, area and overall runtime, even with a simple allocation scheme [4]. Existing scratch-pad allocation methods are of two types. Firs	
Keywords: compiler, embedded systems, memory allocation, scratch-pad	
4 Integrating performance monitoring and communication in parallel computers Margaret Martonosi, David Ofelt, Mark Heinrich May 1996 ACM SIGMETRICS Performance Evaluation Review, Proceedings of the 1996 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, Volume 24 Issue 1	
Full text available: pdf(1.49 MB) Additional Information: full citation, abstract, references, citings, index terms	
A large and increasing gap exists between processor and memory speeds in scalable cache-coherent multiprocessors. To cope with this situation, programmers and compiler writers must increasingly be aware of the memory hierarchy as they implement software. Tools to support memory performance tuning have, however, been hobbled by the fact that it is difficult to observe the caching behavior of a running program. Little hardware support exists specifically for observing caching behavior; furthermore	
5 Security as a new dimension in embedded system design: Security as a new	
dimension in embedded system design Srivaths Ravi, Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan June 2004 Proceedings of the 41st annual conference on Design automation	
Full text available: pdf(209.10 KB) Additional Information: full citation, abstract, references, index terms	
The growing number of instances of breaches in information security in the last few years has created a compelling case for efforts towards secure electronic systems. Embedded systems, which will be ubiquitously used to capture, store, manipulate, and access data of a sensitive nature, pose several unique and interesting security challenges. Security has been the subject of intensive research in the areas of cryptography, computing, and networking. However, despite these efforts, security is	
Keywords : PDAs, architectures, battery life, cryptography, design, design methodologies, digital rights management, embedded systems, performance, security, security processing, security protocols, sensors, software attacks, tamper resistance, trusted computing, viruses	
6 Constraint-based tools for building user interfaces Alan Borning, Robert Duisberg October 1986 ACM Transactions on Graphics (TOG), Volume 5 Issue 4	
Full text available: pdf(2.31 MB) Additional Information: full citation, abstract, references, citings, index terms	
A constraint describes a relation that must be maintained. Constraints provide a useful mechanism to aid in the construction of interactive graphical user interfaces. They can be used to maintain consistency between data and a view of the data, to maintain consistency among multiple views, to specify layout, and to specify relations between events and responses for describing animations of interactive systems and event-driven simulations. Object-oriented techniques for constraint representa	
Session 7: Squirrel: a decentralized peer-to-peer web cache Sitaram Iyer, Antony Rowstron, Peter Druschel July 2002 Proceedings of the twenty-first annual symposium on Principles of distributed computing	
Full text available: pdf(1.22 MB) Additional Information: full citation, abstract, references, citings	
This paper presents a decentralized, peer-to-peer web cache called Squirrel. The key idea is to enable web browsers on desktop machines to share their local caches, to form an efficient	

Best Available Copy

Re	sults (page 1): ((flash or eeprom or eprom) <pre> paragraph> ((time* or timestamp* or date Page 3 of 3</pre>
	and scalable web cache, without the need for dedicated hardware and the associated administrative cost. We propose and evaluate decentralized web caching algorithms for Squirrel, and discover that it exhibits performance comparable to a centralized web cache in terms of hit ratio, bandwidth usage and latency. It
8	Performance monitoring in a Myrinet-connected SHRIMP cluster Cheng Liao, Margaret Martonosi, Douglas W. Clark August 1998 Proceedings of the SIGMETRICS symposium on Parallel and distributed tools Full text available: pdf(1.26 MB) Additional Information: full citation, references, citings, index terms
	Additional mioritation, references, sittings, index terms
9	Articles: The cougar approach to in-network query processing in sensor networks Yong Yao, Johannes Gehrke September 2002 ACM SIGMOD Record, Volume 31 Issue 3
	Full text available: pdf(988.47 KB) Additional Information: full citation, abstract, references, citings
	The widespread distribution and availability of small-scale sensors, actuators, and embedded processors is transforming the physical world into a computing platform. One such example is a sensor network consisting of a large number of sensor nodes that combine physical sensing capabilities such as temperature, light, or seismic sensors with networking and computation capabilities. Applications range from environmental control, warehouse inventory, and health care to military environments. Existi
10	Reflection as a mechanism for software integrity verification Diomidis Spinellis February 2000 ACM Transactions on Information and System Security (TISSEC), Volume 3
	Issue 1
	Full text available: pdf(85.99 KB) Additional Information: full citation, abstract, references, index terms, review
	The integrity verification of a device's controlling software is an important aspect of many emerging information appliances. We propose the use of reflection, whereby the software is able to examine its own operation, in conjunction with cryptographic hashes as a basis for developing a suitable software verification protocol. For more demanding applications meta-reflective techniques can be used to thwart attacks based on device emulation strategies. We demonstrate how our approach can be
	Keywords: cryptographic hash function, embedded device, message digest
Re	esults 1 - 10 of 10
	The ACM Portal is published by the Association for Computing Machinery. Copyright © 2004 ACM, Inc. <u>Terms of Usage Privacy Policy Code of Ethics Contact Us</u>
	Useful downloads: Adobe Acrobat QuickTime Windows Media Player

Best Available Copy