Forecast daily sales at the product (SKU)/store level

An accurate sales forecasting model will help reduce storage costs, minimize losses from unsold products and improve product availability in stores.

Problem

- The retail chain faces challenges in efficient inventory management due to the variability in product sales, which is influenced by multiple factors:
 - o promotions,
 - seasonality
 - o and special events.

Solutions Pipeline

Data Explorations and Cleaning

Dependencies

- Pandas, Numpy, Seaborn, and Matplotlib libraries were utilized for exploratory analysis
- Sklearn, statsmodels, calendar, LinearRegresor, SDG, XGBoost
- o rmse, mape, r2, mae

Data Ingestion and Cleaning

- csv files:
 - holidays
 - dtypes: bool(1), object(5), 350 entries
 - o items
 - dtypes: bool(1), float64(1), int64(3),
 object(1), 67029200 entries
 - sample_submission
 - stores
 - dtypes: int64(2), object(3), 54entries

- transactions
 - dtypes: int64(2), object(1),83488 entries
- o train
 - dtypes: bool(1), float64(1), int64(3), object(1),125497040 entries
- o test
 - dtypes: bool(1), float64(1), int64(3), object(1), 67029280 entries

Exploratory Analysis - dataset

The Training dataset:

- The record starts from 2013-01-01 to 2017-08-15
- The onpromotion column contains:
 21657651 null data
- There are 36810109 items that do not contain a record from the beginning of the period.

The Holidays dataset:

- The record starts from 2012-03-02 to 2017-12-26
- Holiday types: Holiday, Event, Additonal,
 Transfer, Bridge, Work Day
- Classification: National, Local or Regional

Exploratory Analysis - features

 The training dataset contains the features: id, date, store_nbr, item_nbr, unit_sales, onpromotion. New features added to the training dataset: 'family', 'perishable', 'type_store', 'cluster', 'type_holiday', 'transferred', weekday, year, month, day, payday, is_weekend, sales_lag_7, sales_lag_30, sales_roll_mean_7, sales_roll_mean_30, sales_ewm_alpha_095_lag_7, sales_ewm_alpha_095_lag_30, sales_ewm_alpha_09_lag_7, sales_ewm_alpha_09_lag_30, sales_ewm_alpha_08_lag_7, sales_ewm_alpha_08_lag_30

Exploratory Analysis

Exploratory Analysis

Seasonality Analysis

Trend Analysis

Data Preparation

The data frame has been divided into two 90-10 sets:

- train: 24 columns and 61029280
- test: 23 columns and 6029562 data

Feature Selection


```
Features with low correlation to 'sales':

cluster 0.002603

type_holiday 0.007006

month 0.008667

payday 0.000055

Name: unit sales, dtype: float64
```

Model architecture

 Linear Regressor Model: Linear regression is a type of supervised machine learning algorithm that computes the linear relationship between the dependent variable and one or more independent features by fitting a linear equation to observed data.

 SVG Model: Predicting a continuous output variable, also known as the dependent variable, from one or more input data, also known as independent variables

XGBoost Regressor: Is a powerful approach for building supervised regression models

Model results

	Metric	Train Set	Test Set	Model
0	RMSE	133566.23	133566.23	LinearRegression - time step features
1	MAPE (%)	31.40	31.40	LinearRegression - time step features
2	R2 Score	0.00	0.00	LinearRegression - time step features
3	MAE	92617.52	92617.52	LinearRegression - time step features
4	Relative Error to Mean (%)	30.00	30.00	LinearRegression - time step features

	Metric	Train Set	Test Set	Model
0	RMSE	21.98	18.58	SGDRegressor
1	MAPE (%)	222.80	222.70	SGDRegressor
2	R2 Score	0.01	0.02	SGDRegressor
3	MAE	7.02	7.01	SGDRegressor
4	Relative Error to Mean (%)	274.50	232.30	SGDRegressor

	Metric	Train Set	Test Set	Model
0	RMSE	109468.83	164024.87	LinearRegression - lags
1	MAPE (%)	22.80	15.60	LinearRegression - lags
2	R2 Score	0.30	0.11	LinearRegression - lags
3	MAE	63023.09	76463.14	LinearRegression - lags
4	Relative Error to Mean (%)	24.60	37.60	LinearRegression - lags

Model results

Model results

