Page 2 of 17

Amendment and Response Serial No.: 10/734,717

Confirmation No.: 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

Amendments to the Claims

This listing of claims replaces all prior versions, and listings, of claims in the above-identified application:

1. (Currently Amended) A valved process chamber on a sample processing device, the valved process chamber comprising:

a process chamber comprising a process chamber volume located between opposing first and second major sides of the sample processing device, wherein the process chamber occupies a process chamber area on the sample processing device, and wherein the process chamber area comprises a length and a width transverse to the length, and further wherein the length is greater than the width;

a valve chamber located within the process chamber area, the valve chamber located between the process chamber volume and the second major side of the sample processing device, wherein the valve chamber is isolated from the process chamber by a valve septum separating the valve chamber and the process chamber, and wherein a portion of the process chamber volume lies between the valve septum and [[a]] the first major side of the sample processing device;

wherein at least a portion of the valve chamber is located within a valve lip extending into the process chamber area, and wherein the valve septum is formed in the valve lip; and

a detection window located within the process chamber area, wherein the detection window is transmissive to selected electromagnetic energy directed into and/or out of the process chamber volume.

2. (Original) A valved process chamber according to claim 1, wherein the detection window is coextensive along the length of the process chamber with the valve septum.

Serial No.: 10/734,717 Confirmation No.: 2357 Filed: 12 December 2003

For VARIABLE VALVE APPARATUS AND METHODS

Page 3 of 17

- 3. (Original) A valved process chamber according to claim 1, wherein the detection window is formed through the first major side of the sample processing device.
- 4. (Original) A valved process chamber according to claim 1, wherein the detection window is formed through the second major side of the sample processing device.
- 5. (Original) A valved process chamber according to claim 1, wherein the valve chamber and the detection window occupy mutually exclusive portions of the process chamber area.
- 6. (Original) A valved process chamber according to claim 1, wherein the detection window is formed through the second major side of the sample processing device, and wherein the valve chamber and the detection window occupy mutually exclusive portions of the process chamber area.
- 7. (Original) A valved process chamber according to claim 1, wherein the valve septum extends along the length of the process chamber area for 30% or more of a maximum length of the process chamber area.
- 8. (Original) A valved process chamber according to claim 1, wherein the valve septum extends for a length of 1 millimeter or more along the length of the process chamber.
- 9. (Original) A valved process chamber according to claim 1, wherein the sample processing device is opaque between the process chamber volume and the first major side of the sample processing device.
- 10. (Canceled)

Serial No.: 10/734,717 Confirmation No.: 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

Page 4 of 17

- 11. (Currently Amended) A valved process chamber according to claim [[10]] 1, wherein the valve lip occupies only a portion of the width of the process chamber area.
- 12. (Original) A valved process chamber according to claim 11, wherein the detection window occupies at least a portion of the width of the process chamber area that is not occupied by the valve lip.
- 13. (Previously Presented) A valved process chamber on a sample processing device, the valved process chamber comprising:

a process chamber comprising a process chamber volume located between opposing first and second major sides of the sample processing device, wherein the process chamber occupies a process chamber area on the sample processing device, and wherein the process chamber area comprises a length and a width transverse to the length, and further wherein the length is greater than the width;

a detection window located within the process chamber area, wherein the detection window is transmissive to selected electromagnetic energy directed into and/or out of the process chamber volume; and

a valve chamber located within the process chamber area, the valve chamber located between the process chamber volume and the second major side of the sample processing device, wherein the valve chamber is isolated from the process chamber by a valve septum separating the valve chamber and the process chamber, and wherein a portion of the process chamber volume lies between the valve septum and a first major side of the sample processing device, and further wherein the valve chamber and the detection window occupy mutually exclusive portions of the process chamber area, and still further wherein at least a portion of the valve chamber is located

Page 5 of 17

Amendment and Response Serial No.: 10/734,717

Confirmation No.; 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

within a valve lip extending into the process chamber area, and wherein the valve septum is formed in the valve lip.

14. (Original) A method of selectively removing sample material from a process chamber, the method comprising:

providing a sample processing device comprising:

a process chamber comprising a process chamber volume, wherein the process chamber occupies a process chamber area on the sample processing device, and wherein the process chamber area comprises a length and a width transverse to the length, and further wherein the length is greater than the width;

a valve chamber located within the process chamber area, wherein the valve chamber is isolated from the process chamber by a valve septum located between the valve chamber and the process chamber; and

a detection window located within the process chamber area, wherein the detection window is transmissive for selected electromagnetic energy,

providing sample material in the process chamber;

detecting a characteristic of the sample material in the process chamber through the detection window;

forming an opening in the valve septum at a selected location along the length of the process chamber, wherein the selected location is correlated to the detected characteristic of the sample material; and

moving only a portion of the sample material from the process chamber into the valve chamber through the opening formed in the valve septum.

Serial No.: 10/734,717 Confirmation No.: 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

Page 6 of 17

- 15. (Original) A method according to claim 14, wherein moving only a portion of the sample material from the process chamber into the valve chamber comprises rotating the sample processing device.
- 16. (Original) A method according to claim 14, wherein the process chamber area comprises a length and a width transverse to the length, and further wherein the length is greater than the width.
- 17. (Original) A method according to claim 14, wherein the detected characteristic comprises a free surface of the sample material, and wherein the portion of the sample material moved from the process chamber into the valve chamber comprises a selected volume of the sample material.
- 18. (Original) A method according to claim 14, further comprising rotating the sample processing device to separate components of the sample material in the process chamber.
- 19. (Original) A method according to claim 18, wherein the detected characteristic of the sample material comprises a boundary between the separated components of the sample material, and wherein the portion of the sample material moved from the process chamber into the valve chamber comprises a portion of a selected component of the sample material.
- 20. (Original) A method according to claim 14, wherein moving only a portion of the sample material from the process chamber into the valve chamber comprises moving a selected volume of the sample material from the process chamber into the valve chamber.
- 21. (Original) A method according to claim 14, wherein the sample material comprises blood.

Serial No.: 10/734,717 Confirmation No.: 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

Page 7 of 17

22. (Original) A method of sclectively removing sample material from a process chamber, the method comprising:

providing a sample processing device comprising:

a process chamber comprising a process chamber volume, wherein the process chamber occupies a process chamber area on the sample processing device, and wherein the process chamber area comprises a length and a width transverse to the length, and further wherein the length is greater than the width;

a valve chamber located within the process chamber area, wherein the valve chamber is isolated from the process chamber by a valve septum located between the valve chamber and the process chamber; and

a detection window located within the process chamber area, wherein the detection window is transmissive for selected electromagnetic energy;

providing sample material in the process chamber;

detecting a characteristic of the sample material in the process chamber through the detection window;

forming an opening in the valve septum at a selected location within the process chamber area, wherein the selected location is correlated to the detected characteristic of the sample material; and

moving only a portion of the sample material from the process chamber into the valve chamber through the opening formed in the valve septum by rotating the sample processing device.

- 23. (New) A sample processing device comprising a plurality of process arrays, wherein each process array of the plurality of process arrays comprises:
- a first process chamber that comprises a process chamber volume located between opposing first and second major sides of the sample processing device, wherein the first process

Serial No.: 10/734,717 Confirmation No.: 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

Page 8 of 17

chamber occupies a first process chamber area on the sample processing device, and wherein the first process chamber area comprises a length and a width transverse to the length, and further wherein the length is greater than the width;

a valve chamber located within the first process chamber area, the valve chamber located between the first process chamber volume and the second major side of the sample processing device, wherein the valve chamber is isolated from the first process chamber by a valve septum separating the valve chamber and the first process chamber, and wherein a portion of the first process chamber volume lies between the valve septum and the first major side of the sample processing device;

a detection window located within the first process chamber area, wherein the detection window is transmissive to selected electromagnetic energy directed into and/or out of the first process chamber volume;

- a conduit in fluid communication with the valve chamber; and
- a second process chamber in fluid communication with the valve chamber through the conduit; wherein an opening formed in the valve septum places the second process chamber in fluid communication with the first process chamber.
- 24. (New) A sample processing device according to claim 23, wherein each process array of the plurality of process arrays comprises a loading chamber in fluid communication with first process chamber.
- 25. (New) A sample processing device according to claim 23, wherein each process array of the plurality of process arrays comprises a loading chamber in fluid communication with first process chamber through a conduit.

Page 9 of 17

Amendment and Response Serial No.: 10/734,717 Confirmation No.: 2357 Filed: 12 December 2003

For: VARIABLE VALVE APPARATUS AND METHODS

- 26. (New) A sample processing device according to claim 23, wherein each process array of the plurality of process arrays extends from proximate a center of the sample processing device towards a periphery of the sample processing device such that the first process array is located closer to the center than the second process chamber for each process array of the plurality of process arrays.
- 27. (New) A sample processing device according to claim 23, wherein, for each process array of the plurality of process arrays, at least a portion of the valve chamber is located within a valve lip extending into the first process chamber area, and wherein the valve septum is formed in the valve lip.
- 28. (New) A sample processing device according to claim 27, wherein the valve lip occupies only a portion of the width of the first process chamber area.
- 29. (New) A sample processing device according to claim 28, wherein, for each process array of the plurality of process arrays, the detection window occupies at least a portion of the width of the first process chamber area that is not occupied by the valve lip.
- 30. (New) A sample processing device according to claim 23, wherein, for each process array of the plurality of process arrays, the valve chamber and the detection window occupy mutually exclusive portions of the first process chamber area.