

Artificial Intelligence in Biotechnology

By Vignesh Lal and Delia Moreno

Table of contents

0000

01

AI

What it is and its basics

04

Softwares

What software is used for each field

02

Possible uses

How Al can be used to help biotechnology

05

Future

The possible future of Al and biotechnology

03

Current

Fields and how they use them currently

06

References

What it is and its basics

- Artifical Intelligence
 - Machine learning
- Generative Adversarial Networks
 - Deep learning
- Artificial neural networks
 - Convolutional Neural Network
 - Recurrent Neural Networks

0000

How Al can be used to help biotechnology

Possible Uses

- Advance biotechnology by recognizing hidden patterns that are missed
- Aids in problem solving using various data
- Possibility of reducing trial and error time which allocates human energy to other areas
- Can take up multiple parameters for thinking with strict outlines

Fields and how they use them currently

Drug Discovery and Development

Expedite the confirmation of the drug target, and optimize the Design of the drug structure

Personalized Medicine

Individualized treatment strategies and identifying possible negative reactions

Bio-molecular Engineering and Design

Evaluate complicated bioprocess data in real-time and provide feedback for automated control systems **Docking Simulations**

Bioprocessing and Manufacturing

Determine the ideal values for variables like pH, temperature, and nutrient concentrations Packaging Boosting efficiency

Fields and how they use them currently

Genomics

understanding of gene expression patterns, gene function prediction, and the identification of genetic variants associated with disease.

Proteomics and Protein Structure Prediction

functional annotation, and protein-protein interaction detection.

Transcriptomic and Gene Expression Analysis

examination of extensive RNA-seq data, forecasting RNA structures, and comprehending the regulatory mechanisms governing gene expression

Metabolomics and Metabolic Pathway Optimization

detection of metabolites and the enhancement of metabolic pathways

CRISPR Technology and Genome Editing analyze vast genetic datasets to predict highly effective guide RNA sequences with greater accuracy

What software is used for each field

SN	Machine Learning	Function	Application in Biotechnology	Reference
1.	XGBoost	Efficient Prediction	Drug Discovery and Development	[16]
2.	Random Forest	Pattern Recognition	Drug Discovery and Development	[17]
3.	Artificial Neural Network	Precise Diagnoses	Personalized Medicine	[23]
4.	SignatraX	Drug Target Identification	Transcriptomic	[49]
5.	CRISPR-P	Design High-fidelity guide RNAs	CRISPR Technology	[55]
	Deep Learning			
6.	Generative Deep Neural Networks [GDNN]	Molecule Design	Drug Design	[19]
7.	Alpha Fold	Protein Structure Prediction	Drug Discovery and Development	[20]
8.	Deep Chem	Molecular Property Prediction	Drug Design	[21]
9.	Soft Sensors	Estimate Bioprocess Parameters	Bioprocessing	[58]
10.	Deep Variant	Genomic Variation Analysis	Genomics	[43]
11.	Convolutional Neural Networks [CNN]	Protein Structure Prediction	Proteomics	[45]
12.	DeepCpfR	Predicting off-target effects of guide RNA sequences	CRISPR Technology	[56]
13.	Docking Simulations	Computer-aided Drug Discovery	Bio-molecular Engineering	[32]
14.	Lifecycle Analysis	Assess the Environmental Impacts	Bioplastics	[59]

Software

https://nepjb.com/index.php/NJB/article/view/312/205

Table 2: How AI has transform	d numerous sectors within the field of biotechnology
-------------------------------	--

	Example	AI-based medical imaging for disease diagnosis	
Medical Biotechnology	AI Tools	Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Natural Language Processing (NLP)	
	Future Prospects	Personalized medicine, drug discovery acceleration, precision diagnostics	
	Example	AI-driven breeding programs for livestock improvement	
Animal Biotechnology	AI Tools	Machine Learning models for genotype-phenotype prediction, Genetic Algorithms fo optimization [60]	
	Future Prospects	Disease-resistant animal breeds, enhanced productivity, conservation efforts	
	Example	AI-guided crop breeding and optimization for climate resilience	
Plant Biotechnology	AI Tools	Deep Learning for crop disease detection, Reinforcement Learning for optimizing cro growth conditions (61]	
	Future Prospects	Climate-smart crops, increased crop yields, sustainable agriculture	
	Example	AI-driven process optimization in bio manufacturing	
Industrial Biotechnology	AI Tools	Reinforcement Learning for process optimization, Genetic Algorithms for strain engineering [62]	
	Future Prospects	Enhanced bio production efficiency, greener manufacturing processes, novel bioproduc	
	Example	AI-based food safety monitoring and quality control	
Food Biotechnology	AI Tools	Machine Learning for food fraud detection, Deep Learning for food image analysis [63	
rood biotecinology	Future Prospects	Improved food safety, personalized nutrition, sustainable food production	
	Example	AI-driven predictive analytics for disease prevention and management	
Health Biotechnology	AI Tools	Machine Learning for patient risk stratification, Natural Language Processing for electronic health record analysis	
	Future Prospects	Precision health interventions, remote patient monitoring, early disease detection	
	Example	AI-enabled precision agriculture for optimized resource utilization	
Agriculture Biotechnology	AI Tools	IoT sensors and drones for data collection [64], Machine Learning for decision suppor systems	
	Future Prospects	Sustainable farming practices, reduced environmental impact, increased food security	
	Example	AI-driven pollution monitoring and remediation strategies	
Environmental Biotechnology	AI Tools	Machine Learning for environmental data analysis, Reinforcement Learning for autonomous monitoring systems	
	Future Prospects	Cleaner ecosystems, sustainable waste management, biodiversity conservation	
	Example	AI-guided marine resource exploration and conservation efforts	
Marine Biotechnology	AI Tools	Machine Learning for marine species identification, Deep Learning for oceanographi data analysis [65]	
	Future Prospects	Sustainable fisheries management, marine biodiversity preservation, ocean health monitoring	
	Example	AI-driven drug delivery systems using nanoparticles	
Nano Biotechnology	AI Tools	Quantum Machine Learning for nanomaterial design, Deep Learning for nanoscal imaging [66]	
	Future Prospects	Targeted drug delivery, nanosensors for disease detection, advanced biomaterials	

Software

The possible future of Al and biotechnology Future

Reproducibility
Biases
Ethical considerations
Discrimination
In Vitro Diagnostic Regulation (IVDR)

Human-in-the-loop model (HITL)

Thank you!

References

- Ali, M. (n.d.). A New Era of Discovery: How Artificial Intelligence has Revolutionized the Biotechnology. A New Era of Discovery: How Artificial Intelligence has Revolutionized the Biotechnology| Nepal Journal of Biotechnology. https://nepjb.com/index.php/NJB/article/view/312/205
- Borisa , P. (n.d.). *Impact of Artificial Intelligence on Pharma Industry* . Impressions Manipal.
 - https://impressions.manipal.edu/cgi/viewcontent.cgi?article=1 080&context=mjps
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, R. (n.d.). *In vivo identification of angle dysgenesis and its relation ... : Indian Journal of Ophthalmology.* LWW. https://journals.lww.com/ijo/fulltext/2024/72030/in_vivo_identification_of_angle_dysgenesis_and_its.9.aspx
- Holzinger, A. (2023, February 6). *Al for Life: Trends in Artificial Intelligence for Biotechnology*. New Biotechnology. https://www.sciencedirect.com/science/article/pii/S187167842 3000031

