

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Teoria das probabilidades

1 Conjuntos

1.1 Cardinal de um conjunto

Ao número de elementos de um conjunto chama-se cardinal do conjunto e representa-se por #. Este símbolo lê-se "cardinal".

1.2 Conjunto vazio

Um conjunto diz-se vazio se não tem elementos. Representa-se por {} ou Ø.

1.3 Igualdade entre conjuntos

Sejam $A \in B$ dois conjuntos. Diz-se que A é igual a B, e escreve-se A = B, se e só se A e B têm os mesmos elementos:

$$(A = B) \Leftrightarrow (x \in A \Leftrightarrow x \in B)$$
.

1.4 Subconjunto de um conjunto

Sejam A e B dois conjuntos. Diz-se que A é subconjunto de B ou que A está contido em B, e escreve-se $A \subseteq B$, se e só se todo o elemento de A é também elemento de B:

$$(A \subset B) \Leftrightarrow (x \in A \Rightarrow x \in B)$$
.

1.5 Conjunto universo

O conjunto universo é o conjunto que é constituído por todos os elementos do universo que estamos a considerar em cada caso em concreto. O conjunto universo representa-se por U ou S. Qualquer subconjunto A está contido no universo:

$$A \subset S$$
.

Operações com conjuntos

Considere um conjunto universo S no qual estão contidos dois conjuntos quaisquer A e B, diferentes do vazio.

Teoria das probabilidades 1/29C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

2.1 Reunião de conjuntos

A reunião de A e de B, ou união de A com B, escreve-se $A \cup B$ e lê-se "A reunião com B" ou "A ou B". A reunião de A com B é constituída por todos os elementos que pertencem a A ou B:

$$A \cup B = \{ w \in S : w \in A \lor w \in B \}.$$

Propriedades:

- \bullet $A \cup A = A$:
- $A \cup B = B \cup A$:
- $A \cup \emptyset = A$:
- \bullet $A \cup S = S$.

Exemplo 2.1. $\{0,1,3\} \cup \{3,4,5\} = \{0,1,3,4,5\}.$

2.2 Intersecção de conjuntos

A intersecção de A com B escreve-se $A \cap B$ e lê-se "A intersecção com B" ou "A e B". A intersecção de A com B é constituída por todos os elementos comuns a $A \in B$:

$$A \cap B = \{ w \in S : w \in A \land w \in B \}.$$

Propriedades:

- \bullet $A \cap A = A$:
- $A \cap B = B \cap A$:
- $A \cap \emptyset = \emptyset$;
- $A \cap S = A$.

Exemplo 2.2. $\{0, 1, 3\} \cap \{3, 4, 5\} = \{3\}.$

São também importantes as seguintes propriedades:

- Propriedade distributiva: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
- Propriedade distributiva: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
- Lei da absorção: $A \cap (A \cup B) = A$;
- Lei da absorção: $A \cup (A \cap B) = A$.

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

2.3 Complementar de um conjunto

O complementar de \underline{A} em relação ao conjunto universo S é indicado pelo símbolo \overline{A} . O conjunto \overline{A} é formado por todos os elementos que não pertencem ao conjunto A. Assim:

$$\overline{A} = \{x : x \notin A\}$$
.

Propriedades:

- $A \cup \overline{A} = S$;
- $A \cap \overline{A} = \emptyset$;
- $\overline{\varnothing} = S$;
- $\overline{S} = \emptyset$.

2.4 Diferença ou complementar de um conjunto relativamente a outro

Os elementos da diferença são aqueles que pertencem ao primeiro conjunto mas não pertencem ao segundo. Assim:

$$A \backslash B = A - B = \{ w \in S : w \in A \land w \notin B \}$$
.

Propriedades:

- $A \backslash A = \emptyset$;
- A\B ≠ B\A, a diferença de conjuntos não é uma operação comutativa;
- $A \backslash \emptyset = A$;
- $\emptyset \backslash A = \emptyset$.

Exemplo 2.3. $\{0,5,7\} \setminus \{0,3,7\} = \{5\} \ e \{0,3,7\} \setminus \{0,5,7\} = \{3\}.$

2.5 Conjuntos disjuntos

Se dois conjuntos A e B não têm elementos em comum, isto é, se $A\cap B=\varnothing$ então A e B são chamados conjuntos disjuntos.

Teoria das probabilidades 3/29 C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

2.6 Número de elementos da reunião de dois conjuntos

Sejam A e B dois conjuntos, tais que o número de elementos de A, cardinal de A, seja $n\left(A\right)$ e o número de elementos de B, cardinal de B, seja $n\left(B\right)$. Representando o número de elementos da intersecção $A\cap B$ por $n\left(A\cap B\right)$ e o número de elementos da reunião $A\cup B$ por $n\left(A\cup B\right)$, tem-se: $n\left(A\cup B\right)=n\left(A\right)+n\left(B\right)-n\left(A\cap B\right)$.

Existe ainda uma importante operação entre os conjuntos, que tem interesse considerar num contexto de acontecimentos aleatórios.

Definição 2.1. Sejam A_1, A_2, \ldots, A_n , n conjuntos. Denominaremos produto cartesiano de A_1, A_2, \ldots, A_n , denotando-o por $A_1 \times A_2 \times \cdots \times A_n$, o conjunto $\{(a_1, a_2, \ldots, a_n) : a_i \in A_i, i = 1, \ldots, n\}$. Note que em geral o produto cartesiano não é comutativo pois os elementos do novo conjunto são vectores tais que, a componente j desse vector é um elemento do conjunto j no produto cartesiano, e não de outro qualquer.

3 Propriedades das operações com conjuntos

Propriedades	Reunião
Comutativa	$A \cup B = B \cup A$
Associativa	$A \cup (B \cup C) = (A \cup B) \cup C$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Idempotência	$A \cup A = A$
Lei do	$A \cup \overline{A} = S$
complemento	$A \cup A = S$
Lei de	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
De Morgan	$A \cup B = A \cap B$
Elemento	$A \cup \emptyset = A$
neutro	$A \cup \emptyset = A$
Elemento	$A \cup S = S$
absorvente	A O S = S

Teoria das probabilidades 4/29

C. Fernandes & P. Ramos

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Propriedades	Intersecção
Comutativa	$A \cap B = B \cap A$
Associativa	$A \cap (B \cap C) = (A \cap B) \cap C$
Distributiva	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotência	$A \cap A = A$
Lei do	$A \cap \overline{A} = \emptyset$
complemento	$A \cap A = \emptyset$
Lei de	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
De Morgan	$A \cap B = A \cup B$
Elemento	$A \cap S = A$
neutro	$II \cap D = II$
Elemento	$A \cap \emptyset = \emptyset$
absorvente	$A \cap \emptyset = \emptyset$

4 Definições básicas sobre teoria das probabilidades

Todos nós temos uma noção intuitiva de probabilidade. Por exemplo, se perguntarmos a alguém se chove ou não amanhã, muitos responderão que provavelmente irá chover ou que provavelmente não irá chover, em raras circunstâncias têm a certeza absoluta de que não chove ou de que chove. Se pedirmos a previsão de outros fenómenos em que intervém o acaso, tais como se vai ganhar o totoloto desta semana, as respostas serão idênticas. Chover ou ganhar o totoloto são exemplos de fenómenos (ou experiências) ditos aleatórios. Aos fenómenos naturais em que se supõe intervir o acaso, mas para os quais se podem encontrar taxas de realização constante que poderão permitir certas previsões de índole global, dá-se o nome de fenómenos (ou experiências) aleatórios.

A teoria das probabilidades é um conjunto de estruturas matemáticas que servem para formular modelos de fenómenos aleatórios, ditos modelos aleatórios, que nos permitem calcular as probabilidades de certos acontecimentos. Associados ao conceito de fenómeno (ou experiência) aleatório surgem outros conceitos fundamentais que iremos definir a seguir.

Teoria das probabilidades 5/29

.

C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

4.1 Experiência aleatória e espaço de resultados ou espaço amostral

Definição 4.1. Uma experiência aleatória é um procedimento que se pode repetir um grande número de vezes em condições uniformes, sobre o qual não se conhece à partida o resultado (fenómeno aleatório), conhecendo-se no entanto o conjunto de todos os resultados possíveis.

Definição 4.2. O espaço de resultados é o conjunto de todos os resultados possíveis de uma experiência aleatória. Representa-se por S, U ou Ω .

4.2 Acontecimentos e álgebra dos acontecimentos

Definição 4.3. *Um acontecimento é um subconjunto do espaço de resultados.*

- Acontecimento Elementar é um acontecimento que contém exactamente um dos resultados possíveis de uma experiência aleatória;
- Acontecimento Composto é um acontecimento que contém mais do que um dos resultados possíveis de uma experiência aleatória;
- Acontecimento Certo é um acontecimento que contém todos os resultados possíveis de uma experiência aleatória, denotado por S;
- Acontecimento Impossível é um acontecimento sem resultados, denotado por Ø, conjunto vazio.

Vamos agora introduzir o conceito de partes de um conjunto. Seja \mathcal{W} um conjunto não vazio e finito com n elementos. As partes do conjunto \mathcal{W} , $\mathscr{P}(\mathcal{W})$, é o conjunto cujos elementos são todos os subconjuntos de \mathcal{W} , incluindo o conjunto vazio e o próprio conjunto \mathcal{W} . Este conjunto coném 2^n elementos. Se \mathcal{W} é o conjunto $\mathcal{W} = \{a,b\}$ então os subconjuntos de \mathcal{W} são \varnothing , $\{a\}$, $\{b\}$ e $\{a,b\}$. Assim $\mathscr{P}(\mathcal{W}) = \{\varnothing,\{a\},\{b\},\{a,b\}\}$. No caso do conjunto ser o espaço de resultados S associado a uma determinada experiência aleatória, as partes de S contêm todos os acontecimentos associados à experiência em causa.

Considere-se um espaço de resultados S. É possível definir sobre os acontecimentos as mesmas operações que vimos para os conjuntos, uma vez que definimos acontecimento como um conjunto de elementos do conjunto de resultados S.

Teoria das probabilidades 6/29

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Diagrama de Venn:

O rectângulo representa o espaço resultados, ou seja, todos os acontecimentos elementares. As elipses representam os acontecimentos A e B.

Existe um paralelismo entre as operações com conjuntos e as operações com acontecimentos. No entanto, utiliza-se uma linguagem própria para os acontecimentos. Em seguida apresentam-se algumas operações com acontecimentos.

• A é subacontecimento de B, $A \subset B,$ se e só se a realização de A implica a realização de B;

 A e B são idênticos se e só se a ocorrência de um implica a ocorrência do outro, isto é, A ⊂ B e B ⊂ A. Escreve-se A = B;

Teoria das probabilidades 7/29 C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

• Acontecimento contrário a A, \overline{A} , \acute{e} o acontecimento constituído por todos os elementos de S que não pertencem a A. Observe-se que $\overline{\overline{A}} = A$:

 Acontecimento reunião de A e B, A ∪ B, é o acontecimento que se realiza se e só se A ou B se realizam;

 Acontecimento intersecção de A e B, A ∩ B, é o acontecimento que se realiza se e só se A e B se realizam simultaneamente;

Teoria das probabilidades 8/29 C. Fernandes & P. Ramos

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

 Acontecimento diferença de A e B, A\B ou A − B, é o acontecimento que se realiza se e só se A se realiza sem que B se realize;

• A e B dizem-se incompatíveis, disjuntos ou mutuamente exclusivos se e só se a ocorrência de um deles implica a não ocorrência do outro:

$$-A \cap B = \emptyset \ e \ A \cup B \neq S;$$

- $A \cap B = \varnothing$ e $A \cup B = S$ (acontecimentos incompatíveis e contrários);

Teoria das probabilidades 9/29 C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Generalizando, os acontecimentos A_1, A_2, \ldots, A_n dizem-se mutuamente exclusivos se e só se $A_i \cap A_j = \emptyset$, para $i \neq j$:

• $A_i \cap A_i = \emptyset$, para $i \neq j \in \bigcup_{i=1}^n A_i \neq S$;

• $A_i \cap A_j = \emptyset$, para $i \neq j \in \bigcup_{i=1}^n A_i = S$;

Exemplo 4.1. Considere-se a experiência aleatória que consiste no lançamento de dois dados e registo da soma dos pontos obtidos nas duas faces que ficaram voltadas para cima. Espaço de resultados: $S = \{2, 3, 4, \dots, 10, 11, 12\}$. Definam-se os seguintes acontecimentos:

- A "A soma das faces é um número par";
- B "A soma das faces é menor que 5".

Tem-se então:

- $A = \{2, 4, 6, 8, 10, 12\} \ e \ B = \{2, 3, 4\};$
- $A \cup B = \{2, 3, 4, 6, 8, 10, 12\} \ e \ A \cap B = \{2, 4\};$
- $A \setminus B = \{6, 8, 10, 12\} \ e \ \overline{A} = \{3, 5, 7, 9, 11\}.$

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Exemplo 4.2. Considere-se uma urna com m bolas, fisicamente idênticas, numeradas de 1 a m. A experiência aleatória que consiste em retirar ao acaso da urna N bolas, uma a uma sem reposição, 0 < N < m, tem espaço de resultados com

$${}^{m}A_{N} = m(m-1)(m-2)\cdots(m-N+1)$$

elementos, número de arranjos simples de m objectos tomados N a N. No caso particular em que N=m, o espaco de resultados tem

$$P_m = m! = m(m-1)(m-2)\cdots 1$$

elementos, número de permutações de m objectos. Se as N bolas são retiradas uma a uma com reposição o espaço de resultados tem

$${}^{m}A'_{N} = m^{N}$$

elementos, número de arranjos completos (com repetição) de m objectos tomados N a N. Se as N bolas são retiradas simultaneamente (não faz sentido falar em reposição ou não reposição e tem-se naturalmente 0 < N < m) o espaço de resultados tem

$${}^{m}C_{N} = \frac{m!}{N! (m-N)!}$$

elementos, número de combinações de m objectos tomados N a N.

Probabilidades

5.1 Conceito de probabilidade

A teoria das probabilidades diz respeito à maneira como se deve associar números aos acontecimentos de um espaço amostral S. Cada um desses números é a probabilidade do acontecimento a que ele está associado. Tal como dissemos no início, todos nós temos uma noção intuitiva de probabilidade. Com efeito, se considerarmos um lançamento de uma moeda, a possibilidade de sair face ou coroa é a mesma, desde que a moeda esteja equilibrada. A probabilidade associada a cada um desses acontecimentos é $\frac{1}{3}$. Podemos então escrever:

$$P[F] = P[C] = \frac{1}{2}.$$

Se pensarmos no lançamento de um dado perfeito, isto é, um dado em que todas as faces são igualmente possíveis, a probabilidade de qualquer face

Teoria das probabilidades

11/29

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

é $\frac{1}{c}$, bastando ter em atenção que temos 6 faces. Não será igualmente difícil concluir que a probabilidade do acontecimento A: "sair face par" é $\frac{1}{2}$, isto é, $P[A] = \frac{1}{2}$. Basta pensarmos que temos três possibilidades em seis. Do mesmo modo a probabilidade do acontecimento B: "sair face impar" é $\frac{1}{2}$.

A ideia de probabilidade subjacente ao nosso raciocínio foi a mesma de Laplace, um dos primeiros matemáticos que procuraram estabelecer uma teoria rigorosa das probabilidades. Na sua teoria, dita Teoria Clássica de Laplace, a probabilidade de um acontecimento é a razão entre o número de casos favoráveis a esse acontecimento e o número total de casos possíveis. desde que os resultados seiam igualmente prováveis. Esta teoria foi grandemente criticada na medida em que supõe existir uma probabilidade igual para os acontecimentos, o que nem sempre é possível.

Outras teorias se seguiram cada uma delas com a sua definição de probabilidade. Kolmogoroff, Cramer, Neyman e Frechet associaram o conceito de probabilidade à ideia de frequência com que ocorre um acontecimento e criaram a Teoria Frequencista da Probabilidade, à qual também se dá o nome de Teoria Clássica Moderna. A ideia básica é que as probabilidades são objectos matemáticos que satisfazem um certo número de axiomas. Como regra de interpretação dos axiomas, devemos entender a frequência como uma medição física de uma grandeza aleatória - a probabilidade - associada a um acontecimento.

Temos ainda o conceito subjectivo de probabilidade, em que a probabilidade de um acontecimento é entendida como uma medida pessoal (entre 0 e 1) do grau de crença sobre a ocorrência do acontecimento.

A perspectiva em que nos colocamos será a de termos por um lado a teoria abstracta das probabilidades e por outro as suas aplicações práticas. Em resumo temos que,

Definição 5.1. A probabilidade é uma medida da possibilidade de ocorrência de determinado acontecimento.

5.1.1 Conceito clássico de probabilidade

Se associada a uma experiência aleatória tivermos um espaço de resultados com N elementos, igualmente prováveis, e A for um acontecimento que contém N_A elementos do espaço de resultados, então

$$P[A] = \frac{N_A}{N},$$

onde N é o número de resultados possíveis e N_A é o número de resultados favoráveis a A.

Teoria das probabilidades 12/29

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Exemplo 5.1. De um saco com três bolas azuis e duas verdes retira-se, sem ver, uma bola. Qual é a probabilidade da bola ser azul?

Como cada uma das 5 bolas é um caso possível e cada uma das 3 bolas azuis é um caso favorável, tem-se,

$$p = \frac{n^o \ de \ casos \ favoráveis}{n^o \ de \ casos \ possíveis} = \frac{3}{5}.$$

 $Logo, \frac{3}{5} = 0,6$ é a probabilidade de retirar uma bola azul do saco.

5.1.2 Conceito frequencista de probabilidade

Este conceito de probabilidade atende ao facto de na realidade nem todos os acontecimentos serem equiprováveis. Assim, a probabilidade de um acontecimento é avaliada através da informação já existente, sendo igual à razão entre o número de vezes em que se verificou uma realização favorável ao acontecimento $A(N_A)$ e o número de vezes em que se efectuou a experiência aleatória (N), isto é,

$$P[A] = \lim_{N \to \infty} \frac{N_A}{N}.$$

Assim a probabilidade é vista como uma frequência relativa

Exemplo 5.2. O telefone toca. Qual é a probabilidade de ser engano?

Para responder à pergunta tem de se recorrer à experiência. Portanto. teríamos de atender o telefone muitas vezes e registar se foi engano ou não. Supondo que em 1000 chamadas, 6 foram engano, podemos afirmar que $\frac{6}{1000}$ ou 0.6% é um valor aproximado para a probabilidade de ser engano.

5.1.3 Conceito subjectivo de probabilidade

A probabilidade de um acontecimento A baseia-se na intuição e conhecimento pessoal sobre a ocorrência de A.

Exemplo 5.3. Um qeólogo afirma que numa dada região há 60% de hipótese de haver petróleo, baseando-se quer nas características do terreno, quer na sua semelhança com outras regiões com conhecida presença ou ausência de petróleo nos últimos anos.

5.2 Axiomas da teoria das probabilidades

Suponha-se uma função $P[\bullet]$ que associa a qualquer acontecimento definido em S um número compreendido no intervalo [0, 1], satisfazendo os seguintes axiomas:

Teoria das probabilidades 13/29C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

- (i) $P[A] \ge 0, \forall A \subseteq S$;
- (ii) P[S] = 1;
- (iii) Com A e B acontecimentos mutuamente exclusivos definidos em S, ou seja, $A \cap B = \emptyset$, tem-se:

$$P[A \cup B] = P[A] + P[B]$$
.

Pode generalizar-se para n acontecimentos mutuamente exclusivos, ficandose com:

$$P\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} P\left[A_i\right].$$

De acordo com a teoria frequencista, P[A] é a frequência limite com que o acontecimento A ocorre quando o número de experiências aleatórias correspondentes tende para infinito. O facto dos axiomas (i), (ii) e (iii) se verificarem para as frequências relativas, legitima a sua interpretação como uma probabilidade.

5.2.1 Consequências dos axiomas

• Dado um acontecimento A com probabilidade $P[A] \ge 0$, a probabilidade do seu complementar obtém-se por

$$P\left[\overline{A}\right] = 1 - P\left[A\right];$$

• A probabilidade do acontecimento impossível é zero, isto é,

$$P[\varnothing] = 0;$$

• Se $A \subseteq B$ então

$$P[A] \leq P[B]$$
.

Podemos ainda escrever que se $A \subseteq B$ então

$$P[B] = P[A] + P[B - A];$$

- $0 \le P[A] \le 1, \forall A \subseteq S$;
- Dados dois acontecimentos quaisquer A e B, a probabilidade do acontecimento diferença A-B obtém-se pela diferença entre a probabilidade de A e a probabilidade da intersecção de A com B, ou seja.

$$P[A - B] = P[A \cap \overline{B}] = P[A] - P[A \cap B];$$

14/29

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

• A probabilidade da união de dois acontecimentos quaisquer A e B, obtém-se somando as suas probabilidades e deduzindo a probabilidade da sua intersecção, isto é,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B].$$

Sendo A e B quaisquer dois acontecimentos.

$$P[A \cup B] \leq P[A] + P[B]$$

A probabilidades da união de três acontecimentos é dada por:

$$P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[A \cap B] - P[A \cap C] + -P[B \cap C] + P[A \cap B \cap C].$$

A probabilidade da união de quatro acontecimentos é dada por:

$$\begin{split} P\left[A \cup B \cup C \cup D\right] &= P\left[A\right] + P\left[B\right] + P\left[C\right] + P\left[D\right] - P\left[A \cap B\right] + \\ &- P\left[A \cap C\right] - P\left[A \cap D\right] - P\left[B \cap C\right] + \\ &- P\left[B \cap D\right] - P\left[C \cap D\right] + P\left[A \cap B \cap C\right] + \\ &+ P\left[A \cap B \cap D\right] + P\left[A \cap C \cap D\right] + \\ &+ P\left[B \cap C \cap D\right] - P\left[A \cap B \cap C \cap D\right]. \end{split}$$

Estas fórmulas podem ser generalizadas para n acontecimentos. Sejam A_1, A_2, \ldots, A_n acontecimentos quaisquer definidos em S. Então:

$$P[A_1 \cup A_2 \cup \ldots \cup A_n] = P\left[\bigcup_{i=1}^n A_i\right] =$$

$$= \sum_{i=1}^n P[A_i] - \sum_{i=1}^{n-1} \sum_{j=i+1}^n P[A_i \cap A_j] +$$

$$+ \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^n P[A_i \cap A_j \cap A_k] + \ldots +$$

$$+ \ldots + (-1)^{n+1} P[A_1 \cap A_2 \cap \ldots \cap A_n].$$

Exemplo 5.4. Do conjunto das grandes empresas que actuam num dado sector industrial, sabe-se que 60% dessas empresas têm departamento de controlo de qualidade, 40% têm departamento de recursos humanos e 20% têm ambos os departamentos. Escolhe-se ao acaso uma empresa do ficheiro das empresas do referido sector.

Teoria das probabilidades

15/29

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Considerando os acontecimentos:

- O "A empresa tem departamento de controlo da qualidade":
- R "A empresa tem departamento de recursos humanos".

Podemos calcular a probabilidade da empresa seleccionada se encontrar nas sequintes condições:

(a) Ter departamento de controlo da qualidade ou departamento de recursos

Pelos dados do problema sabemos que
$$P[Q] = 0,6$$
, $P[R] = 0,4$ e $P[Q \cap R] = 0,2$. Logo

$$P[Q \cup R] = P[Q] + P[R] - P[Q \cap R] = 0.6 + 0.4 - 0.2 = 0.8.$$

(b) Ter apenas um dos departamentos.

$$P\left[\left(Q \cap \overline{R}\right) \cup \left(\overline{Q} \cap R\right)\right] = P\left[Q \cap \overline{R}\right] + P\left[R \cap \overline{Q}\right] =$$

$$= P\left[Q\right] - P\left[Q \cap R\right] + P\left[R\right] - P\left[Q \cap R\right] =$$

$$= 0.6$$

Ou poderemos também fazer

$$P\left[\left(Q \cap \overline{R}\right) \cup \left(\overline{Q} \cap R\right)\right] = P\left[Q \cup R\right] - P\left[Q \cap R\right] = 0, 8 - 0, 2 = 0, 6.$$

(c) Não ter qualquer um destes departamentos.

$$P\left[\overline{Q} \cap \overline{R}\right] = P\left[\overline{Q \cup R}\right] = 1 - P\left[Q \cup R\right] = 1 - 0, 8 = 0, 2.$$

(d) Não ter departamento de controlo da qualidade e ter departamento de recursos humanos.

$$P\left[R\backslash Q\right] = P\left[\overline{Q}\cap R\right] = P\left[R\right] - P\left[Q\cap R\right] = 0, 4-0, 2=0, 2.$$

(e) Ter departamento de controlo da qualidade mas não ter departamento de recursos humanos.

$$P\left[Q \cap \overline{R}\right] = P\left[Q\right] - P\left[Q \cap R\right] = 0, 6 - 0, 2 = 0, 4.$$

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

5.3 Espaços de probabilidade finitos

5.3.1 Espaços de probabilidade finitos

Suponhamos que o espaço de resultados S é finito, $S = \{w_1, w_2, \dots, w_n\}$. Se fizermos corresponder a cada acontecimento elementar w_i , com $w_i \in S$, um número real p_i e se satisfizer as seguintes condições:

- $p_i \geqslant 0$;
- $p_1 + p_2 + \cdots + p_n = 1$.

Então estamos na presença de um espaço de probabilidade finito.

5.3.2 Espaços de probabilidade finitos equiprováveis

Se o espaço de resultados S for constituído por um número finito, n, de acontecimentos elementares e se todos os acontecimentos elementares estiverem nas mesmas condições de ocorrência, então todos os p_i serão iguais e terão o valor $\frac{1}{-}$.

Por exemplo, se tiver um acontecimento A constituído pelos acontecimentos elementares w_1 , w_3 , w_{x-1} , w_x temos que:

$$P[A] = \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} = \frac{4}{n}.$$

5.4 Probabilidades condicionadas

Desde que se conheça a probabilidade do acontecimento B, é possível calcular a probabilidade de qualquer outro acontecimento A se realizar, dado que o acontecimento B já se realizou:

$$P[A|B] = \frac{P[A \cap B]}{P[B]},$$

se P[B] > 0.

Observação 5.1. A probabilidade condicionada também se pode representar por P[A/B].

O facto de se saber que B ocorreu, faz com que B se torne o novo espaço amostral. A função $P\left[A|B\right]$, para cada B fixo, é uma nova forma de definir probabilidade no espaço amostral e, como tal, verifica os axiomas (i), (ii) e (iii) da teoria das probabilidades apresentados na subsecção 5.2.

Teoria das probabilidades 17/29

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

5.4.1 Axiomática das probabilidades condicionadas

- $P[A|B] \ge 0$;
- P[S|B] = 1;
- Se A_1 e A_2 são mutuamente exclusivos, $A_1 \cap A_2 = \emptyset$, então:

$$P[(A_1 \cup A_2)|B] = P[A_1|B] + P[A_2|B].$$

Pode generalizar-se para \boldsymbol{n} a contecimentos mutuamente exclusivos, ficandose com:

$$P\left[\left(\bigcup_{i=1}^{n} A_{i}\right) | B\right] = \sum_{i=1}^{n} P\left[A_{i} | B\right].$$

Exemplo 5.5. Considerem-se os seguintes acontecimentos e as respectivas probabilidades:

- C: "Chover"; P[C] = 0, 3;
- V: "Fazer vento"; P[V] = 0, 6;
- $C \cap V$: "Chover e fazer vento"; $P[C \cap V] = 0.25$.
- (a) Calcule a probabilidade de chover se estiver vento;

A probabilidade de chover se estiver vento é

$$P[C|V] = \frac{P[C \cap V]}{P[V]} = \frac{0.25}{0.6} = 0.412,$$

que, na verdade, significa que em 41,2% dos dias em que está vento também chove.

(b) Calcule a probabilidade de se verificar um dia de vento se estiver a chover.

A probabilidade de se verificar um dia de vento se estiver a chover é

$$P[V|C] = \frac{P[V \cap C]}{P[C]} = \frac{0.25}{0.3} = 0.833,$$

que, na verdade, significa que em 83,3% dos dias em que chove também há vento.

Observação 5.2. O acontecimento contrário de A|B é \overline{A} |B, pelo que.

$$P\left[\overline{A}|B\right] = 1 - P\left[A|B\right].$$

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Podemos sempre condicionar o acontecimento A por mais do que um acontecimento. Por exemplo, $P\left[A|\left(B\cap C\right)\right]$ ou simplesmente $P\left[A|B\cap C\right]$, tendo-se:

$$P[A|B \cap C] = \frac{P[A \cap B \cap C]}{P[B \cap C]}$$

se $P[B \cap C] > 0$.

5.5 Probabilidade da intersecção de acontecimentos

Da fórmula da probabilidade condicionada podemos escrever as igualdades:

$$P[A \cap B] = P[B] \times P[A|B]$$

е

$$P[A \cap B] = P[A] \times P[B|A].$$

Esta fórmula é conhecida por regra fundamental para o cálculo de probabilidades e pode ser usada no cálculo da probabilidade da intersecção de dois acontecimentos.

A probabilidade da intersecção de três acontecimentos é dada por:

$$\begin{split} P\left[A_{1} \cap A_{2} \cap A_{3}\right] &= P\left[\left(A_{1} \cap A_{2}\right) \cap A_{3}\right] = \\ &= P\left[A_{1} \cap A_{2}\right] \times P\left[A_{3} | A_{1} \cap A_{2}\right] = \\ &= P\left[A_{3} | A_{1} \cap A_{2}\right] \times P\left[A_{1}\right] \times P\left[A_{2} | A_{1}\right] = \\ &= P\left[A_{1}\right] \times P\left[A_{2} | A_{1}\right] \times P\left[A_{3} | A_{1} \cap A_{2}\right]. \end{split}$$

Estas fórmulas podem ser generalizadas para n acontecimentos. Sejam A_1,A_2,\ldots,A_n acontecimentos quaisquer definidos em S. Então:

$$P\left[\bigcap_{i=1}^{n} A_{i}\right] = P\left[A_{1}\right] \times P\left[A_{2}|A_{1}\right] \times P\left[A_{3}|A_{1} \cap A_{2}\right] \times \dots \times P\left[A_{n}|\bigcap_{i=1}^{n-1} A_{i}\right].$$

Podemos ainda definir a regra fundamental condicionada:

$$P[A \cap B|C] = P[B|C] \times P[A|B \cap C]. \tag{1}$$

Teoria das probabilidades 19/29

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

De facto, temos:

$$\begin{split} P\left[A \cap B|C\right] &= \frac{P\left[A \cap B \cap C\right]}{P\left[C\right]} = \\ &= \frac{P\left[B \cap C\right] \times P\left[A|B \cap C\right]}{P\left[C\right]} = \\ &= \frac{P\left[C\right] \times P\left[B|C\right] \times P\left[A|B \cap C\right]}{P\left[C\right]} = \\ &= P\left[B|C\right] \times P\left[A|B \cap C\right]. \end{split}$$

5.6 Acontecimentos independentes

Suponhamos dois acontecimentos A e B contidos no espaço S. Quando a ocorrência ou não de um deles não afecta a probabilidade do outro ocorrer, os acontecimentos dizem-se independentes, e nesse caso tem-se:

$$P[A|B] = P[A]$$

e

$$P[B|A] = P[B]$$

O que é equivalente a escrever-se:

$$P[A \cap B] = P[A] \times P[B]$$

5.6.1 Propriedades dos acontecimentos independentes

Se A e B são acontecimentos independentes então:

- $A \in \overline{B}$ também o são:
- \overline{A} e B também o são;
- \overline{A} e \overline{B} também o são.

Os acontecimentos $A,\,B$ eCsão mutuamente independentes se as condições:

- $P[A \cap B] = P[A] \times P[B];$
- $P[A \cap C] = P[A] \times P[C]$:
- $P[B \cap C] = P[B] \times P[C];$

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

•
$$P[A \cap B \cap C] = P[A] \times P[B] \times P[C];$$

se verificarem todas. Os acontecimentos $A,\,B\in C$ dir-se-ão independentes dois a dois se verificarem apenas as três primeiras condições. Observe-se que a última condição é necessária mas não suficiente para garantir que os três acontecimentos são mutuamente independentes.

Vejamos os exemplos seguintes.

Exemplo 5.6. Considere-se a experiência aleatória que consiste no lançamento de uma moeda regular três vezes e na observação da face obtida. O espaco de resultados associado a esta experiência é

$$S = \{(F, F, F), (F, F, C), (F, C, F), (F, C, C), (C, F, F), (C, F, C), (C, C, F), (C, C, C)\}.$$

Considerando os acontecimentos:

- $A {}^{"}\{(F, F, F), (F, C, C), (C, F, F), (C, C, C)\}$ ";
- $B {}^{"}\{(F, F, F), (F, F, C), (C, F, C), (C, C, F)\}$ ";
- $C "\{(F, F, F), (F, C, F), (C, F, C), (C, C, F)\}"$.

Facilmente se verifica que:

- $P[A] = \frac{1}{2}$;
- $P[B] = \frac{1}{2}$;
- $P[C] = \frac{1}{2}$;
- $P[A \cap B] = \frac{1}{9} \neq \frac{1}{4} = P[A] \times P[B]$;
- $P[A \cap C] = \frac{1}{9} \neq \frac{1}{4} = P[A] \times P[C];$
- $P[B \cap C] = \frac{1}{9} \neq \frac{3}{9} = P[B] \times P[C];$
- $P[A \cap B \cap C] = \frac{1}{9} = P[A] \times P[B] \times P[C]$

Embora a última condição se verifique, os acontecimentos A, B e C são não são mutuamente independentes porque não são independentes dois a dois.

Teoria das probabilidades 21/29 C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Exemplo 5.7. Considere-se a experiência aleatória que consiste no lançamento de um tetraedro e na observação da face obtida. O espaço de resultados associado a esta experiência é $S = \{1, 2, 3, 4\}$. Considerando os acontecimentos:

- A "sair a face 1 ou a face 2";
- B "sair a face 1 ou a face 3";
- C "sair a face 1 ou a face 4".

Facilmente se verifica que:

- $A = \{1, 2\}$;
- $B = \{1, 3\};$
- $C = \{1, 4\}$:
- $A \cap B = A \cap C = B \cap C = A \cap B \cap C = \{1\};$

e que:

- $P[A] = \frac{1}{9}$;
- $P[B] = \frac{1}{2}$;
- $P[C] = \frac{1}{2}$;
- $P[A \cap B] = \frac{1}{4} = P[A] \times P[B];$
- $P[A \cap C] = \frac{1}{4} = P[A] \times P[C]$:
- $P[B \cap C] = \frac{1}{4} = P[B] \times P[C]$

No entanto $P[A \cap B \cap C] = \frac{1}{4} \neq \frac{1}{8} = P[A] \times P[B] \times P[C]$, pelo que podemos concluir que os acontecimentos A, B e C são independentes dois a dois mas não são mutuamente independentes.

A definição de acontecimentos mutuamente independentes pode ser generalizada para quatro ou mais acontecimentos. Por exemplo, com quatro acontecimentos, deverá ter-se a independência dois a dois, três a três e

$$P[A \cap B \cap C \cap D] = P[A] \times P[B] \times P[C] \times P[D]$$

Em modelos probabilísticos de sistemas complexos envolvendo vários componentes, é muitas vezes conveniente assumir que o comportamento das componentes é independente. Isto tipicamente simplifica os cálculos e a análise, como se ilustra no exemplo seguinte.

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Exemplo 5.8. Uma rede de computadores liga dois módulos, A e B, através de módulos intermédios, C, D, E e F, como se representa na figura seguinte. Para cada par de módulos ligados directamente, digamos i e j, a probabilidade da ligação de i para j se verificar é a indicada nesta figura.

Suponhamos que as falhas das ligações são independentes umas das outras. Qual é a probabilidade da ligação entre A e B estar em funcionamento?

Este é um problema usual sobre avaliação da fiabilidade dum sistema composto por componentes que podem falhar independentemente. Tal sistema pode ser dividido em subsistemas, em que cada subsistema consiste em considerar vários componentes que estão ligados quer em série quer em paralelo, como se apresenta nas figuras seguintes.

Consideremos que um subsistema é um conjunto de componentes, 1, 2, ..., m, e que p_i é a probabilidade da componente i funcionar (sucesso). Assim, dizemos que um subsistema em série está em funcionamento se **todas** as suas componentes funcionarem, sendo a sua probabilidade de sucesso dada pelo produto das probabilidades de sucesso das componentes correspondentes, isto \acute{e} ,

$$P \begin{bmatrix} sucesso num \\ subsistema \\ em série \end{bmatrix} = p_1 \times p_2 \times \cdots \times p_m.$$

Um subsistema em paralelo está em funcionamento se **pelo menos uma** das suas componentes funcionar. Se o número de componentes for elevado, a

Teoria das probabilidades

23/29

)

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

fórmula usada no cálculo da probabilidade de sucesso será muito extensa, pelo que se poderá tornar mais fácil fazer este cálculo usando a probabilidade de insucesso dada pelo produto das probabilidades de insucesso das componentes correspondentes, isto é.

$$P\begin{bmatrix} sucesso \ num \\ subsistema \\ em \ paralelo \end{bmatrix} = 1 - P\begin{bmatrix} insucesso \ num \\ subsistema \\ em \ paralelo \end{bmatrix} =$$

$$= 1 - (1 - p_1) \times (1 - p_2) \times \cdots \times (1 - p_m).$$

Pensando agora no nosso caso, representado na primeira figura, queremos calcular a probabilidade de sucesso (a ligação entre A e B estar em funcionamento). Para representar a ligação entre o módulo A e o módulo B, usaremos a notação $A \to B$. Consideremos que X_i representa a existência da ligação i, com $i=1,\ldots,7$. A ligação entre A e B está em funcionamento se pelo menos um dos "caminhos" está em funcionamento. Então:

$$P[A \to B] = P[(X_1 \cap X_2 \cap X_3) \cup (X_1 \cap X_4 \cap X_5) \cup (X_6 \cap X_7)] =$$

$$= P[X_1 \cap X_2 \cap X_3] + P[X_1 \cap X_4 \cap X_5] + P[X_6 \cap X_7] +$$

$$-P[X_1 \cap X_2 \cap X_3 \cap X_4 \cap X_5] +$$

$$-P[X_1 \cap X_2 \cap X_3 \cap X_6 \cap X_7] +$$

$$-P[X_1 \cap X_2 \cap X_3 \cap X_6 \cap X_7] +$$

$$+P[X_1 \cap X_2 \cap X_3 \cap X_4 \cap X_5 \cap X_6 \cap X_7] =$$

$$= 0.9 \times 0.8 \times 0.9 + 0.9 \times 0.95 \times 0.85 + 0.75 \times 0.95 +$$

$$-0.9 \times 0.8 \times 0.9 \times 0.95 \times 0.85 +$$

$$-0.9 \times 0.8 \times 0.9 \times 0.75 \times 0.95 +$$

$$-0.9 \times 0.8 \times 0.9 \times 0.95 \times 0.85 \times 0.75 \times 0.95 = 0.957.$$

5.6.2 Independência condicional

Se a informação que detemos sobre um acontecimento B não se altera o que nós sabemos sobre um acontecimento A, quando já se conhece o acontecimento C, dizemos que A e B são dois acontecimentos condicionalmente independentes dado a um acontecimento C. Assim os acontecimentos A e B são condicionalmente independentes dado um acontecimento C se:

$$P[A|B \cap C] = P[A|C].$$

Teoria das probabilidades

24/29

C. Fernandes & P. Ramos

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Esta noção de independência condicional é simétrica, isto é, se A é condicionalmente independente de B dado um acontecimento C, então B é condicionalmente independente de A dado um acontecimento C e tem-se:

$$P[B|A \cap C] = P[B|C]$$
.

De facto, se A é condicionalmente independente de B dado um acontecimento C, ou seja, $P[A|B \cap C] = P[A|C]$, então:

$$P[B|A \cap C] = \frac{P[A \cap B \cap C]}{P[A \cap C]} =$$

$$= \frac{P[C] \times P[A \cap B|C]}{P[C] \times P[A|C]} =$$

$$= \frac{P[B|C] \times P[A|B \cap C]}{P[A|C]} =$$

$$= \frac{P[B|C] \times P[A|C]}{P[A|C]} =$$

$$= P[B|C].$$

Se dois acontecimentos Ae Bsão condicionalmente independentes dado um acontecimento Centão:

$$P[A \cap B|C] = P[A|C] \times P[B|C].$$

5.6.3 Acontecimentos incompatíveis ou mutuamente exclusivos e acontecimentos independentes

Considerem-se os acontecimentos A e B aos quais estão associadas probabilidades positivas:

- Se A e B são mutuamente exclusivos ou incompatíveis tem-se $A \cap B = \emptyset$ e consequentemente $P[A \cap B] = 0$, pelo que neste caso nunca poderão ser independentes, pois para isso, teríamos que ter $P[A \cap B] = P[A] \times P[B] > 0$, pois ambos os acontecimentos têm probabilidades não nulas;
- Se A e B são independentes tem-se $P[A \cap B] = P[A] \times P[B] > 0$, pois ambos os acontecimentos têm probabilidades não nulas, pelo que neste caso nunca poderão ser mutuamente exclusivos, pois teríamos $A \cap B = \emptyset$ e consequentemente $P[A \cap B] = 0$.

Teoria das probabilidades

C. Fernandes & P. Ramos

25/29

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Podemos assim concluir que dois acontecimentos com probabilidades não nulas, não podem ser simultaneamente, mutuamente exclusivos e independentes.

5.7 Partição

Os acontecimentos A_1, A_2, \ldots, A_n constituem uma partição do espaço amostral S, quando se verificam simultaneamente as seguintes condições:

- A união de todos os acontecimentos é o próprio espaço de resultados;
- Os acontecimentos são mutuamente exclusivos, dois a dois:
- Todos os acontecimentos têm probabilidade não nula.

5.8 Teorema da probabilidade total

Se os acontecimentos A_1, A_2, \ldots, A_n constituem uma partição do espaço amostral S, então para qualquer acontecimento B definido em S, tem-se:

Teoria das probabilidades 26/29 C. Fernandes & P. Ramos

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

$$P[B] = P[(A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B)] =$$

$$= P[A_1 \cap B] + P[A_2 \cap B] + \dots + P[A_n \cap B] =$$

$$= P[A_1] P[B|A_1] + P[A_2] P[B|A_2] + \dots + P[A_n] P[B|A_n] =$$

$$= \sum_{i=1}^{n} P[A_i] \times P[B|A_i].$$

5.9 Teorema de Bayes

Se os acontecimentos A_1, A_2, \ldots, A_n constituem uma partição do espaço amostral S, então para qualquer acontecimento B com probabilidade não nula, tem-se:

$$P[A_{j}|B] = \frac{P[A_{j} \cap B]}{P[B]} =$$

$$= \frac{P[A_{j}]P[B|A_{j}]}{P[A_{1}]P[B|A_{1}] + P[A_{2}]P[B|A_{2}] + \dots + P[A_{n}]P[B|A_{n}]} =$$

$$= \frac{P[A_{j}] \times P[B|A_{j}]}{\sum_{i=1}^{n} P[A_{i}] \times P[B|A_{i}]}, \quad j = 1, \dots, n.$$

Exemplo 5.9. A actual linha de produção de uma empresa gera uma incidência de pecas defeituosas na ordem dos 8%. Foi implementado um sistema de controlo da qualidade cuja probabilidade de rejeitar uma peca defeituosa é de 98%, e a probabilidade de rejeitar uma que de facto não é defeituosa é de 3%.

(a) Qual a probabilidade de uma peça defeituosa passar no sistema de con-

Consideremos os sequintes acontecimentos: D - "A peca produzida é defeituosa" e R - "A peca produzida é rejeitada pelo sistema de controlo". Sabe-se então que:

$$\begin{split} &-P\left[D\right]=0,08;\\ &-P\left[R|D\right]=0,98\Rightarrow P\left[\overline{R}|D\right]=0,02;\\ &-P\left[R|\overline{D}\right]=0,03\Rightarrow P\left[\overline{R}|\overline{D}\right]=0,97. \end{split}$$

C. Fernandes & P. Ramos

27/29Teoria das probabilidades

Instituto Superior de Engenharia de Lisboa

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

Assim a probabilidade pedida decorre de imediato dos dados do problema $e \ \acute{e} \ iqual \ a \ P\left[\overline{R}|D\right] = 0,02.$

(b) Qual a probabilidade de uma peça ser rejeitada por este sistema de

A probabilidade de uma peça ser rejeitada pelo sistema de controlo, isto é, ser identificada como peça defeituosa podendo de facto o ser ou não, obtém-se recorrendo ao teorema da probabilidade total e é dada por:

$$\begin{split} P\left[R\right] &= P\left[R \cap D\right] + P\left[R \cap \overline{D}\right] = \\ &= P\left[D\right] P\left[R|D\right] + P\left[\overline{D}\right] P\left[R|\overline{D}\right] = \\ &= 0.08 \times 0.98 + 0.92 \times 0.03 = 0.106. \end{split}$$

(c) No conjunto das peças rejeitadas por este sistema de controlo, qual a probabilidade de uma peça ser de facto defeituosa?

Agora temos apenas de considerar o universo das peças produzidas que foram rejeitadas pelo sistema de controlo. Como o sistema pode falhar na identificação da qualidade dessas peças, neste universo para além de peças defeituosas podem existir peças não defeituosas, obviamente

Teoria das probabilidades

Área Departamental de Matemática Resumos sobre Probabilidades e Estatística

em percentagem reduzida, caso o sistema de controlo esteja a funcionar devidamente, isto é, apenas com as avarias casuais inerentes a qualquer sistema. A probabilidade pedida é então $P\left[D|R\right]$ e obtém-se recorrendo ao teorema de Bayes. Assim temos:

$$\begin{split} P\left[D|R\right] &= \frac{P\left[D \cap R\right]}{P\left[R\right]} = \\ &= \frac{P\left[D\right]P\left[R|D\right]}{P\left[D\right]P\left[R|D\right] + P\left[\overline{D}\right]P\left[R|\overline{D}\right]} = \\ &= \frac{0,08 \times 0,98}{0,08 \times 0,98 + 0,92 \times 0,03} = 0,7396. \end{split}$$

Note-se que o resultado enunciado no teorema de Bayes se obtém aplicando primeiro a definição de probabilidade condicionada, e em seguida recorrendo ao teorema da probabilidade total. É de referir ainda que na expressão associada ao teorema de Bayes o numerador é uma das parcelas que aparecem no denominador.

5.9.1 Fórmula de Bayes condicionada

Tal como na regra fundamental para o cálculo de probabilidades também para a regra de Bayes temos a regra de Bayes condicionada:

$$P\left[A|B\cap C\right] = \frac{P\left[B|A\cap C\right]\times P\left[A|C\right]}{P\left[B|C\right]}.$$

De facto, temos:

$$P[A|B \cap C] = \frac{P[A \cap B \cap C]}{P[B \cap C]} =$$

$$= \frac{P[A] \times P[B \cap C|A]}{P[C] \times P[B|C]} =$$

$$(\text{usando (1)}) = \frac{P[A] \times P[C|A] \times P[B|C \cap A]}{P[C] \times P[B|C]} =$$

$$= \frac{P[A] \times \frac{P[C \cap A]}{P[A]} \times P[B|A \cap C]}{P[C] \times P[B|C]} =$$

$$= \frac{P[C] \times P[A|C] \times P[B|A \cap C]}{P[C] \times P[B|C]} =$$

$$= \frac{P[A|C] \times P[B|A \cap C]}{P[B|C]} =$$

$$= \frac{P[A|C] \times P[B|A \cap C]}{P[B|C]}.$$