Obsah

18	Elek	strický proud v polovodičích	l
	18.1	Elektron-díra	1
	18.2	Vlastní vodivost	1
	18.3	Příměsová vodivost	1
	18.4	PN přechod – Dioda	1
		18.4.1 Závěrný směr	3
		18.4.2 Propustný směr	3
	18.5	Využití polovodičů	
	18.6	Tranzistory	3
		18.6.1 Bipolární tranzistory	3
		18.6.2 Unipolární tranzistory	

18 Elektrický proud v polovodičích

- materiály s větším el. odporem než vodiče, ale menším než izolanty
- klesající odpor s teplotou
- většina polovodičů krystalické látky polovodiče
 - prvky Si, Ge, Se
 - sloučeniny GaAs, PbS
- existence i amorfních polovodičů (některá skla)
- využití el. součástky

18.1 Elektron-díra

- pár elektronu a díry (prázdné místo nechané po odtržení elektronu od atomu)
- vznik generace přidání energie, odtržení elektronu z valenční vrstvy atomu, vznik elektron-díry
- zánik rekombinace elektron "spadne" zpět do díry

18.2 Vlastní vodivost

- u čistých polovodičů
- připojení ke zdroji
 - vznik elektron-díry
 - pohyb elektronů ke kladnému pólu
 - elektron spadne do jiné díry
 - vznik nové elektron-díry
 - ⇒ zdánlivý pohyb děr k zápornému pólu

18.3 Příměsová vodivost

- u příměsových polovodičů
- některé atomy nahradíme jiným prvkem s odlišným počtem valenční elektronů
 - do křemíku (4 valenční e^-) dáme fosfor (5 val. e^-)
 - * 1 elektron přebývá, malá potřebná energie k oddělení
 - * e^- vedou el. proud elektronová vodivost
 - * polovodiče type N (negative)
 - do křemíku (4 valenční e^-) dáme bór (3 val. e^-)
 - * 1 elektron chybí díra
 - \ast díry vedou el. proud $d\check{e}rov\acute{a}$ vodivost
 - * polovodiče type P (positive)

Obr. 18.1: Vlastní vodivost je spojena se vznikem párů elektron-díra, zatímco příměsi jiných prvků mohou způsobit přebytek nebo nedostatek elektronů.

18.4 PN přechod – Dioda

- spojení polovodiče typu P a typu N
- rozhraní polovodičů PN přechod
 - dochází zde k rekombinaci místo bez nositelů náboje
- propouští proud pouze jedním směrem
- el. součástka polovodičová dioda

Obr. 18.2: PN přechod a schématické zakreslení polovodičové diody

Obr. 18.3: Voltampérová charakteristika lavinové diody

18.4.1 Závěrný směr

- zapojení PN přechodu, kdy neprochází proud
- typ P připojen na záporný pól zdroje, typ N připojen ke kladnému pólu zdroje
- díry i elektrony tlačeny od PN přechodu
- zvětšení oblast bez nositelů náboje neprochází proud

18.4.2 Propustný směr

- PN přechodem prochází proud
- typ P připojen na kladný pól zdroje, typ N připojen k zápornému pólu zdroje
- díry a elektrony tlačeny směrem k PN přechodu
- pokles el. odporu, přecházení e^- přes PN přechod prochází proud

18.5 Využití polovodičů

- usměrnění proudu
- LED diody světlo
- fotovoltaické články výroba energie
- tranzistory boolenová algebra v počítačích

18.6 Tranzistory

- 2 PN přechody tranzistory typu NPN nebo PNP
- zesilovače, spínače, invertory, základ integrovaných obvodů (procesor, RAM...)
- dva typy bipolární a unipolární
- minimálně 3 elektrody

Obr. 18.4: Jednoduché zapojení bipolárního NPN tranzistoru jako spínače.

18.6.1 Bipolární tranzistory

- kolektor (C/K), báze (B), emitor (E)
- hlavní proud protéká z kolektoru do emitoru
- řízení proudem do báze

18.6.2 Unipolární tranzistory

- source (S), gate (G), drain (D)
- proud ze source do drainu
- řízení napětím na gate