Including the following:

	U	
	Content	page
	What are vectors?	2
$\overline{2}$	Tilling cockers	4
2	Finding magnitude of a veltor	5
(4)	Finding Junit vectors	6
(5)	Adding vectors	コ
<u>(6)</u>	Subtracting vectors	8
4507	Multiplying vectors	٩
8	Finding vectors Finding unit vectors Adding vectors Subtracting vectors Multiplying vectors Perpendicular vectors	(0
	Parallel vectors	11
9	Parallel vectors Magnitude-direction form	12
	From magnitude-direction form to component form	13
_	component form	
(12)	From component form to	14
	magnitude - direction form	
(13)	Equal vectors	15
	Pasition Mitors	16
(13)	The angle between two vectors (scalar product) Positive and negative vectors (quick note)	19
	(scalar product)	
(Tb)	Positive and negative rectors	20
	(quick note)	
	Ý	

- D Vectors have MAGNITUDE (length Idistance) and direction
- 2 SCALARS Only have magnitude
- To write: typed a vector

a or oa

handwritten: a OR OR OR GR

The length | magnitude | modulus of a vector

(an be written as

a or 1al

- S rectors in the directions x,y,2 on the cartesian plane are written i, j,k.
- magnitud-direction form: (r;0)

 length angle

General rule:

* for 20

$$\begin{pmatrix} x \\ y \end{pmatrix} = x + y + z$$

* 3D

origin joins point p

to find use: [al. 16]

where
$$a.b = a_1b_1 + a_2b_2 \times 2D$$

= $a_1b_1 + a_2b_2 + a_3b_3 \times 3D$

direction matters

Magnitude of a Vector:
$$|a| = \sqrt{\chi^2 + y^2} \times 2D$$

 $|b| = \sqrt{\chi^2 + y^2 + z^2} \times 3D$

* 2D

FINDING VECTORS

& x and y show the movement on the x and y axis

Example 1

Find AB, where A(1;4) and B(3;7)

Answer:

$$\frac{1}{40}$$
: $\frac{1}{3}$

Example 2

find
$$\overrightarrow{DE}$$
 where \overrightarrow{P} $\left(\frac{3}{7}\right)$ $\not\in$ $\left(\frac{2}{5}\right)$

$$DE : 1C: 2-1$$
 $y: -s-3 = |-8|$
 $2: 6-7$
 $|-7|$

Use
$$|9| = \sqrt{2+y^2}$$

$$|b| = \sqrt{x^2+y^2+2^2}$$

Example 3

Find the magnitude of
$$\overrightarrow{AB}$$
 if $\overrightarrow{AB} = \begin{pmatrix} 6 \\ 9 \end{pmatrix}$

Answer

$$|\overline{AB}| = \sqrt{b^2 + 9^2}$$

$$= \sqrt{36 + 81}$$

$$= 3\sqrt{13}$$

Example 4

$$|AB| = \sqrt{6^2 + 2^2 + 4^2}$$

$$= \sqrt{36 + 4 + 16}$$

$$= \sqrt{56}$$

$$= 2\sqrt{14}$$

FINDING UNIT VECTORS

- * Unit vectors have a magnitude of 1
- Steps 1) find the magnitude of the vector of the vector by the magnitude

Example 5

Answer

$$=\sqrt{16+8}$$

& divide by V97

$$= \left(\frac{1}{\sqrt{97}} \times 4\right) = \left(\frac{4\sqrt{97}}{97}\right)$$

$$= \left(\frac{1}{\sqrt{97}} \times 9\right) = \left(\frac{1}{\sqrt{97}} \times 9\right)$$

$$= \left(\frac{1}$$

Steps: 1) Add x-values and y-values

Example 6

find ob

Answer:
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

$$= \binom{8}{2} + \binom{4}{-6} = \binom{8+4}{12-6} = \binom{12}{6}$$

Subtracting vectors is adding the negative of a vector, or, reversing the direction

.. BA is negative (reversed) OB plus OA

note that direction matters

BA + AB

Example 7

A (2,4) and B (7,6) on the cartesian plane find \overrightarrow{AB}

Answer

AB = OB - OA

$$= \begin{pmatrix} 7 \\ 6 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 - 2 \\ 6 - 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

MULTIPLYING VECTORS

Multiplying two vectors is known as the 'dot product'

General rule:
$$\tilde{a} \times \tilde{b} = (a_x \times b_x) + (a_y \times b_y)$$

$$\widetilde{a} \times \widetilde{b} = (a_x \times b_x) + (a_y \times b_y) + (a_2 \times b_z)$$

Example 7

$$\widetilde{a} = \begin{pmatrix} 4 \\ 7 \\ q \end{pmatrix} \qquad \begin{array}{c} anb \\ \widetilde{b} = \begin{pmatrix} 3 \\ 2 \\ 10 \end{pmatrix}$$

find the dot product.

$$\widetilde{a} \times \widetilde{b} = (4 \times 3) + (7 \times 2) + (9 \times 10)$$

If two vectors are perpendicular,

the dot product = 0

Example 8

Prove that & is perpendicular to b.

$$\tilde{a}\begin{pmatrix} -6 \\ 12 \end{pmatrix}$$
 $\tilde{b}\begin{pmatrix} 6 \\ 3 \end{pmatrix}$

Answer

 $\widetilde{a} \times b = (-6 \times 6) + (12 \times 3)$

$$=-36+36$$

= 0

$$\tilde{a} h \tilde{b}$$

For parallel vectors, there is a constant scalar

then all b

Steps: (i) attempt to find a potential constant Scalar by dividing by x-value by a x-value

2 Test the scalar on the y-value and 2-value.

If the scalar gets all be values of by then allb.

Example 8

Prove that
$$\tilde{a}$$
 ($\frac{2}{4}$) is parallel to \tilde{b} ($\frac{4}{8}$)

Answer:

$$4 \div 2 = 2$$

 $8 \div 4 = 2$
 $6 \div 3 = 2$

: 2 is a constant scalar : 0115 because 2 q = 6 General rule: (r;o) = (rcoso) = (rcoso)i + (rsino)j

Steps:

Combining

The magnitude | modulus | length of a vector is the absolute value of the length lal This is done using Pythagoru

The direction of a vector can be deduced using the angle between the vector and the x-axis This is done using tand = m SACATA

Example 9

Write the vector a in magnitude direction form

Answer

$$|\tilde{a}| = |\sqrt{2^2 + 4^2}|$$

o length of

= + \(\(\) 20 $0: \ \ \, \tan \theta = \frac{4}{2}$

(using Pyth.)

 $\theta = \tan^{-1}(2) = 63,435$

 $(r, 0) \sim (\sqrt{20, 63, 435})$

FROM MAGNITUDG-DIRECTION TO COMPONENT FORM

13

Example 10

Write the vector (5;45°) in component form.

Answer:

$$O = 45^{\circ}$$

Example 11

Write the vector (5; 285°) in component form

$$0 \ v = 5$$
 $0 = 285^{\circ}$
 $0 = 285^{\circ}$
 $0 = 285^{\circ}$
 $0 = 290^{\circ}$

$$(5,285) = 5\cos 285$$

 $5\sin 285^{\circ} = 1.294i - 4.83j$

	FROM COMPONENT FORM TO MAGNITUDE-PIKECTION FORM 14
	Heps () sketch
	find r using distanceformula Ji2+j2
	I find o Using tano = $\frac{1}{A}$
	Ind r using distance formula $\sqrt{12+j^2}$ Ind O Using tano = $\frac{0}{4}$ Check quadrant for final O
	Example 12
	Write the vector - 7i + 3j in magnitude - direction form.
	MITECION JOIM.
	Answer
	7.3)
2	+3
)	+3 0 -7
	-7
	$-\frac{1}{7}$
	$-\frac{1}{7}$
	$r = \sqrt{(-7)^2 + (3)^2}$ = $\sqrt{58}$
	$r = \sqrt{(-7)^2 + (3)^2}$
	$r = \sqrt{(-7)^2 + (3)^2}$ $= \sqrt{58}$ $\tan \Theta = \frac{3}{7}$ $= \sqrt{3}$ $\tan \Theta = \frac{3}{7}$ $= \sqrt{3}$
	$r = \sqrt{(-7)^2 + (3)^2}$ = $\sqrt{58}$
	$r = \sqrt{(-7)^2 + (3)^2}$ $= \sqrt{58}$ $\tan \Theta = \frac{3}{7}$ $= \sqrt{3}$ $\tan \Theta = \frac{3}{7}$ $= \sqrt{3}$

$$(r; 0) = (58; 156.8^{\circ})$$

Equal vectors have equal length and direction.

$$: if \alpha = b$$

then

à/ b/

(same direction)

and

 $\widetilde{q} / \widetilde{b} /$

(same length)

Position rectors join a point to the origin eq. OA

Component form does not give the position of the vector.

Example 13

Given

L(4;4); M(-2;-1) and N(2;3)

(i) Write the position vector of L in component form

Answer

Position rector of L is OL

1.0L = (4) = 4itly

(11) Write MB in component form

Answer

 $\overline{MN} = \frac{2}{\sqrt{Mn}}$ $\frac{\sqrt{N}}{\sqrt{N}}$ $\frac{\sqrt{N}$

Answer

OF and MN are equal in length and direction.
40 (parellel)

PROOF OF 11 (CHECK)

R(4.4)

 $|\overline{00}| = \sqrt{4^2 + 4^2} = 452$

 $tan \Theta = \frac{4}{4}$

 $\theta = \tan^{-1}(1) = 45^{\circ}$

 $|MN| = \sqrt{2+4^2} = 4\sqrt{2}$

tan0 = ?

M(2;3) M(-2;-1)+4Some distance

: tan 0 = 4 = 45°

EXTRA NOTE ON POSITION VECTORS

A vector that is the line segment between two points can be found by subtracting the position vectors of those points.

Example 14

find AB

$$\frac{1}{AB} = -\left(\frac{3}{1}\right) + \left(\frac{4}{5}\right) = \left(\frac{1}{4}\right)$$

THE ANGLE BETWEEN TWO VECTORS (SCALAR PRODUCT)

$$\frac{\cos \theta = \frac{0A^2 + 0B^2 - AB^2}{20A \times 08}$$

$$\frac{1}{2} \left(\frac{1}{00} \right)^{2} + \left(\frac{1}{00} \right)^{2} - \left(\frac{1}{AB} \right)^{2}$$

and

