LWLP5000-5XD 版本 1.0

LWLP5000-5XD

产品简介

LWLP5000-5XD 集成式超低压高精度压力传感器,将高性能 MEMS 压力敏感芯片和专用调理芯片封装在双气嘴 SOP14 的管壳内,两个气路结构中压力互为参考,降低环境对输出的影响。LWLP5000-5XD 采用独有算法实现对传感器进行多阶温度补偿,并以数字 IIC 的形式输出。提供表压或差压进气方式的产品。

产品特点

- ▶ 量程: -500Pa~500Pa, 0Pa~500Pa
- ▶ 压力类型:表压、差压
- ▶ 输出形式: IIC
- ▶ 精确度高
- ▶ 己校准补偿

应用领域

- ▶ 工业控制
- ▶ 健身器材
- ▶ 医疗监测
- > 汽车应用
- > 家用电器

1.性能参数

表1 性能参数

参数	最小值	典型值	最大值	单位	备注
量程 ⁽¹⁾	-500~500, 0~500			ра	
供电电压	1.8	3.3	3.6	V	
工作电流		1		mA	
休眠电流		20		nA	
ADC		24		bit	
精确度 (2)			±1.5	%FS	
响应时间		5	30	ms	
补偿温度	-5		65	°C	
工作温度	-40		85	°C	
温度输出区间	-40		85	°C	
温度精度(3)		1	_	°C	@-5~65°C
如无特别说明,本表所有数值均在电压 3.3Vdc,温度 25℃条件下测试					

注:

- (1) 分为表压和差压两种形式;
- (2) 精度指补偿温度范围内, 洁净气体环境下, 产品的输出精度; 精确度由产品的线性度、重复性和迟滞等参数决定;
- (3) 传感器处于恒定的温度场内,对环境温度的检测精度;

2.管脚定义

图 2.1 管脚定义(正视图)

表 2.1 脚位定义

脚位编号	脚位定义	说明
5	GND	地
6	VDD	电源正
9	SDA	输出端
10	SCL	时钟
1,2,3,4,7,8, 11,12,13,14	NC	空

3. 功能描述

3.1 推荐电路

图 3.1 推荐电路

注意事项:

- (1) 四个信号端(VDD/GND/SDA/SCL)必须同时上电,同时下电。避免数据非完整传输,导致传感器进入 BUSY 状态。传感器一旦处于 BUSY 状态,则不处理任何新命令,产品输出异常。
 - (2) VDD 与 GND 之间滤波电容 C1 可不用;如使用,C1≤100nf。
 - (3) 传感器断电 30ms 以内, MCU 禁止与传感器数据通讯。

3.2 I²C接口

3.2.1 LWLP5000-5XD 芯片地址描述

表 3.1 LWLP5000-5XD I²C 地址

A7	A6	A5	A4	A3	A2	A1	W/R
0	0	0	0	0	0	0	0/1

LWLP5000-5XD 的地址位信息如表 3.1 所示, A1~A7 为地址位, W/R 为方向位。

写寄存器的地址命令: 00000000 (0x00)

读寄存器的地址命令: 00000001 (0x01)

3.2.2 I²C 通信时序

参数	符号	I ² C		单位		
		条件	最小	标准	最大	
时钟频率	Fscl	Pull-up=10kΩ	0		400	KHz
新的发送开始前总线空闲时间	tBUF		1.5			μs
起始信号保持时间	tHD.STA		0.6			μs
起始信号建立时间	tSU.STA		0.6			μs
停止信号建立时间	tSU.STO		0.6			μs
数据输入保持时间	tHD.DAT		100			ns
数据输入建立时间	tSU.DAT		100			ns
时钟低电平周期	tLOW		1.5			μs
时钟高电平周期	tHIGH		0.6			μs
SDA及SCL 上升时间	tR		30		500	ns
SDA及SCL 下降时间	tF		30		500	ns

表 3.2 I^2C 通信的时序值

图 3.2 I²C 通信时序图

3.2.3 I²C 读写时序

主机首先发送芯片地址,然后才能与芯片通信。从机地址字节由 7 个地址位和一个方向位组成,方向位确定让从机接受还是发送。芯片的 I^2 C 地址为 0000000,芯片写地址为 0x00,芯片读地址为 0x01。

图 3.3 为主机写芯片寄存器配置的时序图。图 3.4 中(a)为读芯片所需配置的时序图,(b)读芯片压力和温度数据的时序图。SlaveAddr:从机地址,Command:控制命令地址。

图 3.3 I²C 命令请求

图 3.4 I²C 读数据

3.2.4 压力寄存器

压力采用如下计算公式:

$$P(pa) = \left(\frac{Pmax - Pmin}{2^{14}}\right) * P1 + Pmin$$

P-产品压力输出值,单位 pa;

P1 - 该压力点压力的 IIC 数据;

Pmax - 该产品压力上限值,单位 pa;

Pmin - 该产品压力下限值,单位 pa;

表 3.3 压力寄存器的描述

名称	位	描述
压力	[23:10] 压力	压力检测(只读)
	[09:00] 保留	保留,恒为0(只读)

表 3.4 产品型号与参数对应关系表 (程序配套使用)

规格型号	Pmin (pa)	Pmax (pa)
LWLP5000-5GD	-100	+ 600
LWLP5000-5DD	-600	+600

3.2.5 温度寄存器

温度采用如下计算公式:

$$T(^{\circ}C) = \left(\frac{85 + 40}{2^{16}}\right) * T1 - 40$$

T - 产品温度输出值,单位℃;

T1 - 该温度点温度的 IIC 数据;

表 3.5 温度寄存器的描述

名称	位	描述
温度	[23:08] 温度	温度检测(只读)
	[07:00] 保留	保留,恒为0(只读)

3.2.6 LWLP5000-5XD 芯片读写操作

(1) 配置寄存器

- a. 启动 I²C;
- b. 发送写寄存器命令 0x00,等待回应;
- c. 向芯片写配置寄存器地址 OXAA,等待回应;
- d. 向芯片发送配置参数 0X00, 0X80, 等待回应;
- e. 关闭 I²C 通信,延时(≥30ms),芯片采集转换数据。

(2) 写读数据的地址,向芯片要数据

- a. 启动 I²C;
- b. 发送读寄存器命令 0x01,等待回应;
- c. 接收芯片输出数据状态,读取三个字节压力数据,三个字节温度数据(压力在前,温度在后);
- d. 关闭 I²C 通信;
- e. 保存和处理数据。

4.尺寸图 (mm)

图 4.1 尺寸图

说明:

- (1) 所有尺寸单位为mm,未标注公差位置,尺寸公差为±0.05mm,
- (2) B是连接到传感器底部的气管, T是连接到传感器顶部的气管。顶部气管T定义为高压力接口。

5.订单标识

系列号:

龙微科技无锡有限公司

7

表 5.1 选型表

规格型号	P _B (pa)	P _T (pa)
LWLP5000-5GD	0	0 to +500
LWLP5000-5DD	-500 to 500	-500 to +500

6.使用注意事项

6.1 回流焊要求

LWLP5000-5XD系列产品最高焊接温度不高于235℃,焊接温度可参考图6.1设置。

图5.1 焊接温度曲线

5.2 气路要求

LWLP5000-5XD系列产品推荐使用硅胶软管作为进气管,不建议使用硬质PVC等材质气管。

公司地址及销售联系方式

地址: 江苏省无锡市新区菱湖大道 200 号中国传感网国际创新园 G5 栋

网址: www.longwaytec.com

邮箱: <u>longwaywuxi@longwaytec.com</u>

电话: 18018358010

传真: 0510-85333088