# 14. Componentes Lineares e Circuitos Lineares

Um *componente* que é atravessado por uma corrente **i** quando se encontra submetido a uma tensão **u** diz-se *linear* se a multiplicação de **i** por um valor constante **k** resultar na multiplicação de **u** pelo mesmo valor constante **k**.

• Uma **resistência** é um componente linear, uma vez que **u(t)** = **R** · **i(t)**. O gráfico de u(t) em função de i(t) é uma recta.

Um circuito linear é constituído por componentes destes três tipos:

#### 1. Componentes lineares passivos;

• Um componente diz-se *passivo* se não dispõe de energia própria que possa fornecer ao circuito. Há componentes passivos capazes de armazenar energia recebida do circuito durante um intervalo de tempo, podendo devolvê-la ao circuito num intervalo de tempo posterior.

#### 2. Fontes ideais independentes;

### 3. Fontes ideais dependentes lineares.





### 15. Teorema de Thévenin

Um **circuito I** e um **circuito II** estão ligados entre si por dois condutores ideais e isolados de outros circuitos, verificando-se as seguintes condições:

- O circuito I e o circuito II são lineares, podendo conter:
  - resistências;
  - o fontes ideais independentes;
  - o fontes ideais dependentes lineares.
- Se o circuito I tiver **fontes ideais dependentes lineares**, as tensões e correntes que controlam essas fontes pertencem todas ao circuito I.
- Se o circuito II tiver **fontes ideais dependentes lineares**, as tensões e correntes que controlam essas fontes pertencem todas ao circuito II.



Nestas circunstâncias, todas as tensões e correntes que existem no circuito II continuam a ser as mesmas se o circuito I for substituído pelo seu Equivalente de Thévenin.



### 15.1 Determinação de E<sub>TH</sub>

Se os dois condutores ideais que ligam o circuito I ao circuito II forem cortados, no circuito I formam-se dois terminais, A e B.

 $E_{TH}$  é a **tensão de circuito aberto** ( $U_{ca}$ ) existente entre A e B, ou seja, a tensão que existe entre A e B se nenhum componente exterior ao circuito I for ligado entre esses terminais.



# 15.2 Determinação de $R_{TH}$ com o circuito desactivado, por análise de associações de resistências

Este método não se pode aplicar quando o circuito possui fontes ideais dependentes.



# 15.3 Determinação de R<sub>TH</sub> sem desactivação do circuito



# 15.4 Determinação de $R_{TH}$ quando $E_{TH}$ é nulo, sem análise de associações de resistências

Quando  $E_{TH} = 0$ , não é possível calcular  $R_{TH}$  recorrendo à corrente de curto-circuito, uma vez que esta também é nula.



# 15.4.1 Recurso a uma fonte ideal de corrente



# 15.4.2 Recurso a uma fonte ideal de tensão



Exemplo: Recorrendo ao Teorema de Thévenin, determinar o valor da tensão presente nos terminais da resistência de  $2\Omega$ .



# Tópicos de Resolução:

1. Retirar a resistência de  $2\Omega$ .





2. Calcular  $\mathbf{E}_{TH}$ .



3. Calcular  $\mathbf{R}_{TH}$ .



4. Ligar a resistência de  $2\Omega$  ao circuito equivalente e calcular U.



Exemplo: Recorrendo ao Teorema de Thévenin, determinar o valor da potência em jogo na fonte ideal de tensão.



### Tópicos de Resolução:

1. Retirar a fonte ideal de tensão.



2. Calcular  $E_{TH}$ .



3. Calcular  $\mathbf{R}_{TH}$ .



4. Ligar a fonte ideal de tensão ao circuito equivalente, calcular I e determinar a potência em jogo na fonte ideal de tensão.



Exemplo: Recorrendo ao Teorema de Thévenin, determinar o valor da potência em jogo na resistência de  $2\Omega$ .



### Tópicos de Resolução:

1. Retirar a resistência de  $2\Omega$ .



2. Calcular  $\mathbf{E}_{TH}$ .



3. Calcular  $\mathbf{R}_{TH}$ .



4. Ligar a resistência de  $2\Omega$  ao circuito equivalente, calcular I e determinar a potência em jogo na resistência de  $2\Omega$ 



Exemplo: Determinar o equivalente de Thévenin do circuito representado, relativamente aos terminais A e B.



### Tópicos de Resolução:

1. Calcular  $\mathbf{E}_{TH}$ .



2. Calcular  $R_{TH}$  a partir da corrente de curto-circuito  $I_{cc}$ .



Exemplo: Determinar o equivalente de Thévenin do circuito representado, relativamente aos terminais A e B.



### Tópicos de Resolução:

1. Calcular  $\mathbf{E}_{TH}$ .



2. Calcular  $\mathbf{R}_{TH}$  recorrendo à fonte de corrente de 1A.

