ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Circuits i Sistemes Electrònics III Examen final Quadrimestre de primavera 05/06

Solució de l'examen final disponible al campus digital: 6 de Juny

Publicació de notes provisionals (mòdul C4 planta -1) : 13 de Juny a 15 h. Fi del termini d'al·legacions (secretaria B3): 20 de Juny a 16 h. Publicació de notes definitives (mòdul C4 planta -1): 21 de Juny a 12 h.

Cada problema s'ha de lliurar en fulles separades

Problema 1 (25%)

Donat el circuit de la figura.

Dades:

R = 1 kΩ. Els dos AOs tenen les mateixes especificacions: V_{os} = 10 mV, CMRR = 80 dB, I_{B} = 90 nA, I_{OS} = 10 nA

Es demana:

- a) L'expressió del corrent I_L en funció de V_1 i V_2 .
- b) Quina és la funció d'aquest circuit?

A continuació estudiarem com afecten les limitacions dels AOs a la resposta del circuit. Es demana que calculeu en el cas pitjor:

- c) L'efecte de la tensió d'offset dels AO sobre I_L .
- d) L'efecte dels corrents de polarització sobre I_L .

Suposant a partir d'ara que $V_1 = 20 + 5\sin(\omega t)$, $V_2 = 20 - 5\sin(\omega t)$ i $Z_L = 10 \text{ k}\Omega$. Es demana

- e) Les tensions en mode comú a l'AO1 i a l'AO2.
- f) L'efecte del CMRR dels AOs sobre I_L .

Circuits i Sistemes Electrònics III Examen final

Quadrimestre de primavera 05/06

Problema 2 (25%)

Donat el circuit de la figura es demana:

- a) Dibuixar V_{o1}(t), donant valors significatius de temps i amplitud.
- b) Dibuixar $V_{o2}(t)$, donant valors significatius de temps i amplitud, i calcular el cicle de treball.
- c) Indicar el valor màxim del cicle de treball del senyal V₀₂ si podem variar els valors de les resistències R₃ i R₄.

Dades:

 V_z (D1, D2) = 3 V, V_{on} (D1,D2,D3) = 0,6 V, R_1 = 1 k Ω , R_2 = 2 k Ω , R_3 = 3 k Ω , R_4 = 12 k Ω V_i és un senyal triangular de f = 100 Hz i 8 Vpp d'amplitud.

Circuits i Sistemes Electrònics III Examen final

Quadrimestre de primavera 05/06

Problema 3 (25%)

En el circuit de la figura següent, trobeu:

- a) La tensió de sortida de la primera etapa V_{s1} en funció de la tensió d'entrada (V_g) quan l'interruptor S està obert i tancat.
- b) La tensió de sortida de la segona etapa V_{s2} en el domini temporal.
- c) La característica sortida-entrada de l'última etapa V_s (V_{s2}). Dibuixeu-la.
- d) Les formes d'ona de V_{s2} i V_s si inicialment (en t=0 s) el condensador està descarregat i V_s és igual a 10 V. Dibuixeu-les.
- e) La frequència d'oscil·lació de la tensió de sortida V_s. Quina funció realitza el circuit?

Dades:

$$R_1 = 20 \text{ k}\Omega$$
, $R_2 = 40 \text{ k}\Omega$, $R_3 = 200 \text{ k}\Omega$, $R_4 = 2 \text{ k}\Omega$, $R_5 = 4 \text{ k}\Omega$, $R_6 = 100 \Omega$, $C = 500 \text{ pF}$, $V_{CESAT} = 0V$

L'interruptor S està obert quan $V_{ctrl} \le 1 \text{ V}$.

Circuits i Sistemes Electrònics III Examen final

Quadrimestre de primavera 05/06

Problema 4 (25%)

La figura A representa un circuit regulador de tensió realitzat amb un circuit integrat μA 723. Aquesta és la configuració típica per obtenir tensions de sortida altes.

Dades:

$$V_{in} = 15 \text{ V}$$

$$V_{ref} = 7,15V$$

$$R_2 = 5.6k\Omega$$

$$V_{BE,on} = 0.8V$$

Es demana:

- a) Trobar l'expressió de la tensió de sortida V_o per al circuit de la figura A, considerant l'AO ideal.
- b) ¿Quina és la tensió de sortida V_o mínima que es pot obtenir amb aquesta configuració?

Si se pretén obtenir una tensió de sortida de $V_0 = 10 \text{ V}$ amb un corrent nominal de $I_0 = 1 \text{ A}$:

- c) Calcula el valor de R_1 necessari per obtenir la tensió de sortida $V_0 = 10 \text{ V}$.
- **d**) Calcula el rendiment i la potència dissipada del regulador en condicions nominals de funcionament, considerant que la β dels transistors és molt més gran que la unitat.
- e) Calcula el valor de R_{sc} de forma que el corrent de sortida estigui limitat a 1,6 A.

Per poder obtenir tensions de sortida baixes (menors a uns 7 V) és necessari canviar la configuració de la figura A:

- f) ¿Com han de connectar-se en la figura B els terminals d'entrada de l'amplificador operacional NI i I amb V_{ref} i V_o, mitjançant el divisor de tensió i el curtcircuit per a que el circuit funcioni correctament?
- g) ¿Quina és l'expressió de la tensió de sortida V_o amb aquesta configuració?

ROBLEMA 1

$$\Gamma_{1} = \Gamma_{1} \Rightarrow I = \frac{R}{\Gamma_{1} - \Gamma_{1}} \Rightarrow$$

$$= \sum_{AOI} = \frac{5}{6} V_2 + \frac{1}{6} V_2 - 5V_1 \left(\frac{V_1 - \frac{5}{6} V_2 - \frac{1}{6} V_2}{V_2} \right) = \frac{5}{6} V_3 + \frac{1}{6} V_2 - 5V_1 + \frac{25}{6} V_2 + \frac{5}{6} V_2 = \frac{5}{6} V_2 + \frac{5}{6} V_2 = \frac{5}{6} V_3 + \frac{1}{6} V_4 - \frac{5}{6} V_4 + \frac{5}{6} V_4 = \frac{5}{6} V_4 + \frac{5}{6} V_4 + \frac{5}{6} V_5 = \frac{5}{6} V_6 + \frac{5}{6} V_6 = \frac{5}{6} V_6 + \frac{5}{6} V_6$$

$$=5V_{2}-5V_{1}+8V_{2})$$

$$=5V_{2}-5V_{1}+8V_{2})$$

$$=5V_{2}-5V_{1}+8V_{2})$$

$$\Rightarrow I_{L} = 5(V_2 - V_1) \text{ mA}$$

D'És un convertidor de tenuis diferential a corrent

c) Efecte de la ferris d'offret V-1 = V+1 I = V-1 => I = VH = 1 (Vosi + VL + Vosz) => VAOI = 6VOSI + VL + VOSZ VAOI = V-1+ SRI = 6RI | IL = VAOI - VL $I_{L} = \frac{6V_{051} + V_{052}}{R}$ Cas pitjor $I_{L} = \frac{+70mV}{1ka} + 70\mu A$ d) Ejecte dels corrents de volantzano \$5R J.P. V-1 = V+1 VAOT = 5R(I + In,) + V-1 PL 2de 4

$$\begin{aligned}
& V_{AO1} = SR \left(\frac{V_{-1}}{R} + I_{n_1} \right) + V_{-1} = 6V_{-1} + 5R I_{n_1} = \\
& = V_{AO2} - \frac{5}{6}RI_{P_1} \cdot 6 + 5RI_{n_1} = V_{L} + 5R \left(I_{n_1} - I_{P_1} \right) \\
& = I_{L} + I_{P_2} = \frac{V_{AO1} - V_{L}}{R} = \frac{SR \left(I_{n_1} - I_{P_1} \right)}{R} \Rightarrow I_{L} = 5(I_{n_1} - I_{P_1}) - I_{P_2} \\
& I_{n_1} = I_{B_1} + I_{OSV_2} \\
& I_{P_1} = I_{B_1} + I_{OSV_2} \\
& I_{P_2} = I_{B_2} + I_{OSV_2} \\
& = I_{B_2} + I_{OSV_2} \\
& I_{P_2} = I_{B_2} + I_{OSV_2} \\
& I_{P_3} = I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} \\
& = I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} \\
& I_{P_3} = I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} + I_{P_3} \\
& I_{P_3} = I_{P_3} + I_{P_3} \\
& I_{P_3} = I_{P_3} + I_{P_3} +$$

e) Tenions en mode comú.

A partir del circuit de l'apartat a):

$$V_{+2} = V_L = V_{-2} \Rightarrow V_{-2} = V_L = Z_L \cdot I_L = 5 \frac{Z_L}{R} (V_2 - V_1)$$

$$V_{+1} = \frac{5}{6}V_2 + \frac{1}{6}V_1 \Rightarrow V_{cm1} = \frac{5}{6}V_2 + \frac{1}{6} \cdot \frac{2}{6}I_L$$

$$\Rightarrow V_{cm_1} = \frac{5}{6}V_2 + \frac{1}{6}Z_L \cdot \frac{5}{8}(V_2 - V_1) = \frac{5}{6}(V_2 + \frac{2}{8}(V_2 - V_1))$$

Is pot calcular l'efecte del CMRR robre IL

approprient els càlculs fet a l'apportet e) i substituent

Vosi per
$$\frac{V_{emi}}{CMRR}$$
.

i V_{osi} per $\frac{V_{emi}}{CMRR}$.

Per tent $\frac{1}{CMRR}$ $\frac{1}$

Pl 4de4

TC = 2,75 MS

TH = 6,50 MS

TH = 6,50 MS

$$\Delta \xi_{1} = 2 \times 10^{-3}$$

71%

2.€ 2.€

9A ----

E

ompte s la

/p = -: /p = -: / qc Je:

1 rextil

$$\chi = 17. \frac{3k}{5k} = 3v.$$

$$\frac{4.}{2,5.6^{-3}}$$
 011 = 11875 ms

Problema 4

$$V_{ref} = V_{o} \frac{R_{2}}{R_{1}+R_{2}} \Rightarrow V_{o} = \left(1 + \frac{R_{1}}{R_{2}}\right) V_{ref}$$

C)
$$V_0 = (1 + \frac{R_1}{R^2}) \text{ Vref} = 10 \text{ V}$$

$$R_1 = (\frac{V_0}{V_{\text{ref}}} - 1) R_2 = 2^2 28 \text{ kg}$$

$$\eta = \frac{P_0}{P_1} \cdot 100 = \frac{V_0 \cdot I_0}{V_1 \cdot I_1} \cdot 100 = \frac{V_0}{V_0} \cdot 100 = \frac{666\%}{V_0}$$

Ao ideal

Ao realim. negativa = 7. lineal = WATCIRWIT

VIRTUAL

$$V_0 = \frac{R_2}{R_1 + R_2} V_{ref}$$