ECE250: Signals and Systems Assignment 4

Issued on: Max Marks: 10 November 14,2023

November 3, 2023 (1:30 pm)

Guidelines for submission

- Use Matlab or python to solve the programming problems.
- For your solutions, you need to submit a zipped file on Google classroom with the following:
 - program files (.m) or (.ipynb) with all dependencies.
 - a report (.pdf) with your coding outputs and generated plots. The report should be self-complete with all your assumptions and inferences clearly specified.
- Before submission, please name your zipped file as: "A4 RollNo Name.zip". Codes/reports submitted without a zipped file or without following the naming convention will NOT be checked.
- **Important Note**: Do not use inbuilt functions in MATLAB or PYTHON. Use mathematical equations/derivations to solve the required.

Institute Plagiarism Policy: This will be subjected to a strict plagiarism check.

Programming Problems (10 points)

[CO4] **Q1.** Let $X(j\omega)$ be the Fourier transform of the signal x(t) given in Fig.2.

(a) Determine and Plot the frequency domain signal $X(j\omega)$. [1 Point]

Figure 2: Q1

- (b) Plot the magnitude spectrum of the frequency domain signal $X(j\omega)$. [1 Point]
- (c) Plot the phase spectrum of the frequency domain signal $X(j\omega)$. [1 Point]
- (d) Plot the inverse Fourier transform of real part of $\{X(j\omega)\}$. [1 Point]

Due by:

${\tt ECE250: Signals \ and \ Systems}$

Assignment 4

Issued on: Max Marks: 10 November 14,2023

November 3, 2023 (1:30 pm)

[CO4] **Q2.** Let x[n] be a discrete-time signal with Fourier Transform $X(e^{j\omega})$, which is the given Fig.3. Plot the frequency response, magnitude spectrum and phase spectrum of w[n] = x[n]p[n], for these p[n]

Figure 3: Q2

- (a) $p[n] = \cos(\pi n)$
- [2 Points]
- (b) $p[n] = \sin(\pi n/2)$
- [2 Points]
- (c) $p[n] = \sum_{k=-\infty}^{\infty} \delta(n-2k)$
- [2 Points]

Due by: