Cours de 1ere Sciences math BIOF

FONCTIONS - Généralités

Leçon: FONCTIONS - Généralités

Présentation globale

- 1) Définitions d'une fonction et Domaine de définitions.
- 2) Fonctions paires et Fonctions impaires
- 3) Les variations d'une fonction numérique
- 4) Les variations d'une fonction et la parité d'une fonction
- 5) Les variations des deux fonctions : αf et $f+\alpha$
- 6) comparer deux fonctions (fonctions positives et négatives) Fonctions majorées ; minorées ;
- 7) Les extremums d'une fonction numérique
- 8) Etude et représentation graphique de la fonction polynôme du 2iem degré: $x \xrightarrow{f} ax^2 + bx + c$
- 9) Etude et représentation graphique de la fonction homographique : $x \xrightarrow{f} \frac{ax+b}{cx+d}$
- 10) Etude et représentation graphique de la fonction polynôme: $x \xrightarrow{f} ax^3$
- 11) Etude et représentation graphique de la fonction : $x \xrightarrow{f} \sqrt{x+a}$
- 12)La fonctions partie entière
- 13)La composée de deux fonctions
- 14) Fonctions périodiques

1) Définitions d'une fonction et Domaine de définitions

1-1) Définition :

Une **fonction** est un procédé qui à un nombre x appartenant à un ensemble D associe un

nombre y. On note : $x \mapsto y$

ou encore $f: x \mapsto y$

ou encore y = f(x)

- On dit que y est l'image de x par la fonction f
- On dit aussi que x est un antécédent de y par la fonction f

1-2) Exemples

Exemple1:

a)Les fonctions numériques sont, le plus souvent, définies par une expression mathématique, comme par exemple:

$$f(x) = x^2 + 2x - 5$$
 ou $g(x) = \frac{3x^3 + 2x^2 - 1}{5x^2 - 4}$.

Ou
$$h(x) = \frac{2x-1}{5x-4}$$
 ou $l(x) = \sqrt{x}$

$$R(x) = \frac{\sin x - \cos x}{\tan x}$$

- f S'appelle une fonction polynôme
- g S'appelle une fonction rationnelle
- h S'appelle une fonction rationnelle et s'appelle aussi une fonction homographique Une fonctions homographique s'écrit sous la

forme :
$$h(x) = \frac{ax+b}{cx+d}$$

- l S'appelle la fonction racine carré
- R S'appelle la fonction circulaire ou fonction trigonométrique

Exemple2:

Soit la fonction f définie par , $f(x) = 3x^2 - 1$

- 1) Calculer l'image de 1 et $\sqrt{2}$ et -1 par f.
- 2)Déterminer les antécédents éventuels de 2 par f,

Réponses: 1) $f(1) = 3 \times 1^2 - 1 = 3 - 1 = 2$ et

$$f(\sqrt{2}) = 3 \times (\sqrt{2})^2 - 1 = 6 - 1 = 4$$

 $f(-1) = 3 \times (-1)^2 - 1 = 3 - 1 = 2$

$$f(-1)=3\times(-1)^2-1=3-1=2$$

2)
$$f(x) = 2$$
 ssi $3 \times x^2 - 1 = 2$

ssi
$$3 \times x^2 = 2 + 1$$
 ssi $3 \times x^2 = 3$ ssi $x^2 = 1$

ssi
$$x = -1$$
 ou $x = 1$

donc les antécédents éventuels de 2 par f sont -1 et 1

1-3) Domaine de définitions activités

a. On considère la fonction définie

par:
$$x \stackrel{f}{\longmapsto} \frac{1}{x-3}$$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par f? 0; 2; -3; 3.

b. On considère la fonction définie

$$par: x \stackrel{g}{\longmapsto} \sqrt{x-3}$$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par g ? 0; 2; -3; 4.

c. On considère la fonction définie

$$par: x \stackrel{h}{\longmapsto} \frac{1}{\sqrt{7-x}}$$

Parmi les valeurs suivantes, laquelle/lesquelles n'a/ont pas d'image par h? 5; -6; 9; 7.

Définition

Pour une fonction f donnée, l'ensemble de tous les nombres réels qui ont une image calculable par cette fonction est appelé ensemble de définition de la fonction f, que l'on notera D f

Exemple 1

Déterminer l'ensemble de définition des fonctions suivantes définie par

1)
$$f(x) = 3x^2 - x + 1$$
. 2) $f(x) = \frac{x^3}{2x - 4}$.

3)
$$f(x) = \frac{2x^4}{x^2 - 4}$$
. 4) $f(x) = \frac{7x - 1}{x^3 - 2x}$.

5)
$$f(x) = \sqrt{-3x+6}$$
. 6) $f(x) = \frac{x-5}{2x^2-5x-3}$

7)
$$f(x) = \sqrt{x^2 - 3x + 2}$$
. 8) $f(x) = \sqrt{\frac{-3x + 9}{x + 1}}$

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2+x+3}}$$
. 10) $f(x) = \frac{|x-5|}{x^2+1}$.

11)
$$f(x) = \frac{\sqrt{|x|}}{x}$$
. 12) $f(x) = \frac{\sqrt{x+2}}{x-1}$

13)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$

13)
$$f(x) = 3x - \frac{1}{x} + \sqrt{-x}$$
.
14) $f(x) = \frac{x}{|2x - 4| - |x - 1|}$. 15) $f(x) = \frac{2\sin x}{2\cos x - 1}$. Donc $D_f =]-\infty; 2]$
16) $f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{2x^2 - 5x - 3}}$.

16)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$
.

Prof: atmani najib

17)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

18)
$$f(x) = \frac{|x-4|-|x-1|}{x^2+2|x|-3}$$

19)
$$f(x) = \sqrt{2x-1} + \sqrt{3-5x}$$
.

Solutions

1)
$$f(x) = 3x^2 - x + 1$$

f Est une fonction polynôme donc Un réel a toujours une image. Donc $D_f = \mathbb{R}$

2)
$$f(x) = \frac{x^3}{2x-4}$$
.

Pour les fonctions du type fractions rationnelles, l'ensemble de définition est l'ensemble des nombres pour lesquels le dénominateur est non nul.

$$D_f = \left\{ x \in \mathbb{R} / 2x - 4 \neq 0 \right\}$$

$$2x-4=0$$
 ssi $x=\frac{4}{2}=2$ Donc $D_f=\mathbb{R}-\{2\}$

On dira aussi que 2est une valeur interdite pour la fonction f

3)
$$f(x) = \frac{2x^4}{x^2 - 4}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 - 4 \neq 0 \right\}$$

$$x^2 - 4 = 0 \text{ ssi } x^2 - 2^2 = 0 \text{ ssi } (x - 2)(x + 2) = 0$$

$$\text{ssi } x - 2 = 0 \text{ ou } x + 2 = 0 \text{ ssi } x = 2 \text{ ou } x = -2$$

$$\text{donc } D_f = \mathbb{R} - \{-2; 2\}$$

4)
$$f(x) = \frac{7x-1}{x^3-2x}$$
.

$$D_{f} = \left\{ x \in \mathbb{R} / x^{3} - 2x \neq 0 \right\}$$

$$x^{3} - 2x = 0 \text{ ssi } x\left(x^{2} - 2\right) = 0 \text{ ssi } x = 0 \text{ ou}$$

$$x^{2} - 2 = 0 \text{ ssi } x = 0 \text{ ou } x^{2} = 2$$

$$\text{ssi } x = 0 \text{ ou } x = \sqrt{2} \text{ ou } x = -\sqrt{2}$$

$$\text{donc } D_{f} = \mathbb{R} - \left\{ -\sqrt{2}; 0; \sqrt{2} \right\}$$

5)
$$f(x) = \sqrt{-3x+6}$$
.

Pour les fonctions du type racine carrée, l'ensemble de définition est l'ensemble des nombres pour lesquels l'intérieur de la racine est positif

$$D_f = \left\{ x \in \mathbb{R} / -3x + 6 \ge 0 \right\}$$

$$-3x+6 \ge 0$$
 SSi $x \le 2$ SSi $x \le \frac{-6}{-3}$ SSi $-3x \ge -6$

Donc
$$D_f =]-\infty; 2]$$

6)
$$f(x) = \frac{x-5}{2x^2-5x-3}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 - 5x - 3 \neq 0 \right\}$$

$$2x^{2}-5x-3=0$$
 $a=2$ et $b=-5$ et $c=-3$
 $\Delta = b^{2}-4ac = (-5)^{2}-4\times2\times(-3)=25+24=49=(7)^{2}>0$
 $x_{1} = \frac{-b+\sqrt{\Delta}}{2a}$ et $x_{2} = \frac{-b-\sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-5) + \sqrt{49}}{2 \times 2} = \frac{7+5}{4} = \frac{12}{4} = 3$$
 et

$$x_2 = \frac{(-5) - \sqrt{49}}{2 \times 2} = \frac{5 - 7}{4} = \frac{-2}{4} = -\frac{1}{2}$$

Donc
$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}; 3 \right\}$$

7)
$$f(x) = \sqrt{2x^2 - 3x + 1}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 - 3x + 1 \ge 0 \right\} \text{ soit } \Delta \text{ son}$$

discriminant

a=2

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$$

$$x_1 = \frac{-(-3) + \sqrt{1}}{2 \times 2} = \frac{4}{4} = 1$$
 et $x_2 = \frac{-(-3) - \sqrt{1}}{2 \times 2} = \frac{2}{4} = \frac{1}{2}$

x	$-\infty$		1/2		1		$+\infty$
P(x)		+	0	_	0	+	

Donc
$$D_f = \left[-\infty, \frac{1}{2} \right] \cup \left[1, +\infty \right[$$

8)
$$f(x) = \sqrt{\frac{-9x+3}{x+1}}$$
.

$$D_f = \left\{ x \in \mathbb{R} / \frac{-9x + 3}{x + 1} \ge 0etx + 1 \ne 0 \right\}$$

$$-9x+3=0$$
 SSi $x=\frac{1}{3}$ SSi $-9x=-3$

$$x+1=0$$
 SSi $x=-1$

x	$-\infty$	-1		$\frac{1}{3}$	$+\infty$
-9x + 3	+		+	þ	_
x+1	_	0	+		+
$\frac{-9x+3}{x+1}$	_		+	Ó	_

Donc
$$D_f = \left[-1, \frac{1}{3} \right]$$

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2 + x + 3}}$$

$$D_f = \left\{ x \in \mathbb{R} / -2x^2 + x + 3 > 0 \right\}$$

$$-2x^2 + x + 3 = 0$$
 $a = -2$ et $b = 1$ et $c = 3$

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times (-2) \times 3 = 1 + 24 = 25 = (5)^2 > 0$$

Donc on a deux racines

$$x_1 = \frac{-1+5}{2 \times (-2)} = \frac{4}{-4} = -1$$
 et $x_2 = \frac{-1-5}{2 \times (-2)} = \frac{-6}{-4} = \frac{3}{2}$

x	$-\infty$	-1		3/2	$+\infty$
$-2x^2+x+3$	_	þ	+	þ	_

Donc
$$D_f = \left[-1, \frac{3}{2}\right]$$

10)
$$f(x) = \frac{|x-5|}{x^2+1}$$
. $D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$

$$x^2 + 1 = 0$$
 ssi $x^2 = -1$

Cette équation n'admet pas de solution dans \mathbb{R} Donc $D_f = \mathbb{R}$

11)
$$f(x) = \frac{\sqrt{|x|}}{x}.$$

$$f(x) \in \mathbb{R} \text{ ssi } \sqrt{|x|} \in \mathbb{R} \text{ et } x \neq 0$$

Or on sait que $|x| \ge 0$ pour tout $x \in \mathbb{R}$

Donc $f(x) \in \mathbb{R}$ ssi $x \neq 0$

 $\operatorname{Donc} D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$

12)
$$f(x) = \frac{\sqrt{x+2}}{x-1}$$
. $D_f = \{x \in \mathbb{R} / x + 2 \ge 0etx - 1 \ne 0\}$

$$D_f = \left\{ x \in \mathbb{R} / x \ge -2etx \ne 1 \right\}$$

$$D_f = \begin{bmatrix} -2, 1 \end{bmatrix} \cup \begin{bmatrix} 1, +\infty \end{bmatrix}$$

13)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$

$$D_f = \left\{ x \in \mathbb{R} / -x \ge 0 e t x \ne 0 \right\}$$

$$D_f = \left\{ x \in \mathbb{R} \, / \, x \le 0 etx \ne 0 \right\}$$

$$D_f =]-\infty,0[$$

14)
$$f(x) = \frac{x}{|2x-4|-|x-1|}$$
.

$$D_f = \{x \in \mathbb{R} / |2x - 4| - |x - 1| \neq 0\}$$

$$|2x-4|-|x-1|=0$$
 ssi $|2x-4|=|x-1|$

ssi
$$2x-4=x-1$$
 ou $2x-4=-(x-1)$

ssi
$$2x-x=4-1$$
 ou $2x-4=-x+1$

ssi
$$x = 3$$
 ou $2x + x = 4 + 1$

ssi
$$x = 3$$
 ou $3x = 5$ ssi $x = 3$ ou $x = \frac{5}{3}$

Donc:
$$D_f = \mathbb{R} - \left\{ \frac{5}{3}; 3 \right\}$$

15)
$$f(x) = \frac{2\sin x}{2\cos x - 1}$$
. $D_f = \{x \in \mathbb{R} / 2\cos x - 1 \neq 0\}$

$$2\cos x - 1 = 0 \quad \text{SSi} \quad \cos x = \frac{1}{2}$$

$$\cos x = \frac{1}{2} \quad \text{SSi} \quad \cos x = \cos\left(\frac{\pi}{3}\right)$$

$$x = \frac{\pi}{3} + 2k\pi$$
 ou $x = -\frac{\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

Donc:
$$D_f = \mathbb{R} - \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

16)
$$f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$$

$$D_f = \left\{ x \in \mathbb{R} / \frac{-2x^2 + 2x + 13}{x^2 - x - 6} \ge 0etx^2 - x - 6 \ne 0 \right\}$$

- On détermine les racines du trinôme

$$-2x^2 + 2x + 13$$
:

Le discriminant est $\Delta' = 2^2 - 4 \times (-2) \times 13 = 108$ et ses racines sont :

$$x_1 = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2}$$
 et $x_2 = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$

- On détermine les racines du trinôme $x^2 - x - 6$: Le discriminant est $\Delta = (-1)^2 - 4 \times (-6) \times 1 = 25$ et ses racines sont :

$$x_1' = \frac{-(-1)-\sqrt{25}}{2\times 1} = \frac{1-5}{2} = -2$$
 et

$$x_2' = \frac{-(-1) + \sqrt{25}}{2 \times 1} = \frac{1+5}{2} = 3$$

- On obtient le tableau de signe :

х	-∞	$\frac{1-3\sqrt{3}}{2}$		2	3	1_	+3√3 2	+∞
$-2x^2 + 2x + 13$	-	Ф	+		+	+	φ	-
$x^2 - x - 6$	+		+	0	-	(+		+
$\frac{-2x^2 + 2x + 13}{x^2 - x - 6}$	-	0	+		-	+	0	-

$$D_f = \left\lceil \frac{1 - 3\sqrt{3}}{2}; -2 \right\rceil \cup \left\lceil 3; \frac{1 + 3\sqrt{3}}{2} \right\rceil.$$

17)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + \left(2\sqrt{3} - \sqrt{2}\right)x - 2\sqrt{6} \ge 0 \right\}$$

$$\Delta = b^2 - 4ac = (2\sqrt{3} + \sqrt{2})^2 - 4 \times 1 \times 2\sqrt{6}$$

$$\Delta = 12 - 4\sqrt{6} + 2 + 8\sqrt{6} = 14 + 4\sqrt{6}$$

$$14 + 4\sqrt{6} = 14 + 2 \times 2\sqrt{3} \times \sqrt{2} = \left(2\sqrt{3}\right)^2 + 2 \times 2\sqrt{3} \times \sqrt{2} + \left(\sqrt{2}\right)^2$$

Prof: atmani najib

$$14 + 4\sqrt{6} = \left(2\sqrt{3} + \sqrt{2}\right)^2$$

On a $\Delta = 14 + 4\sqrt{6} > 0$ donc

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + \sqrt{14 + 4\sqrt{6}}}{2 \times 1} = \frac{-2\sqrt{3} + \sqrt{2} + \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1}$$

et
$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - |2\sqrt{3} + \sqrt{2}|}{2 \times 1}$$

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + 2\sqrt{3} + \sqrt{2}}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$
 et

$$x_2 = \frac{-2\sqrt{3} + \sqrt{2} - 2\sqrt{3} - \sqrt{2}}{2 \times 1} = \frac{-4\sqrt{3}}{2} = -2\sqrt{3}$$

X	-∞	-2√3	$\sqrt{2}$	+∞
$x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}$	+	0	- 0	+

On a donc :
$$D_f = \left] -\infty; -2\sqrt{3} \right] \cup \left[\sqrt{2}; +\infty \right[$$

18)
$$f(x) = \frac{|x-4|-|x-1|}{x^2+2|x|-3}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 2|x| - 3 \neq 0 \right\}$$

$$|x^{2}+2|x|-3=0 \Leftrightarrow |x|^{2}+2|x|-3=0$$
 on pose

|x| = X donc l'équation devient :

$$X^2 + 2X - 3 = 0$$

Le discriminant est $\Delta = 2^2 - 4 \times 1 \times (-3) = 16$ et ses solutions sont :

$$X_1 = \frac{-2 - \sqrt{16}}{2 \times 1} = -3$$
 et $X_2 = \frac{-2 + \sqrt{16}}{2 \times 1} = 1$

Donc on a : |x| = -3 et |x| = 1

|x| = -3 n'a pas de solution

 $|x|=1 \Leftrightarrow x=1 \text{ ou } x=-1 \text{ donc } D_f=\mathbb{R}-\{-1;1\}$

19)
$$f(x) = \sqrt{2x-1} + \sqrt{3-5x}$$
.

$$D_f = \{x \in \mathbb{R} / 2x - 1 \ge 0et3 - 5x \ge 0\}$$

$$D_f = \left\{ x \in \mathbb{R} \mid x \ge \frac{1}{2} etx \le \frac{3}{5} \right\}$$

Donc
$$D_f = \left[\frac{1}{2}, \frac{3}{5}\right]$$

2) Fonctions paires et Fonctions impaires

2.1 Définitions

a. Ensemble de définition centré

Soit f une fonction. Soit D_f son ensemble de définition : On dit que D_f est un ensemble de définition centré si et et seulement si :

Pour tout réel x, si $x \in D_f$, alors $-x \in D_f$.

Exemples	Exemples d'ensembles
d'ensembles centrés	non centrés
$]-\infty,+\infty[$]0,+∞[
°* (ou °-{0})	° -{1}
° -{-1; 1}	° -{-1; 2}
[-4; 4]	[-4; 3]

2.2. Fonction paire

On dit qu'une fonction f est paire si et seulement si:

- 1. Son ensemble de définition est centré
- 2. Pour tout réel x de D_f , on a : f(-x) = f(x)

Remarques:

- si n est un entier pair, positif ou négatif, la fonction définie par $f(x) = kx^n$ est paire.
- (c'est d'ailleurs de cet exemple que vient la dénomination de fonction paire)
- la fonction $x \mapsto |x|$ est une fonction paire,
- la fonction $x \mapsto \cos(x)$ est une fonction paire,
- l'opposée d'une fonction paire est une fonction paire.
- l'inverse d'une fonction paire est une fonction
- la somme de deux fonctions paires est une fonction paire.
- le produit de 2 fonctions paires ou de 2 fonctions impaires est une fonction paire.

2.3. Fonction impaire

On dit qu'une fonction f est impaire si et seulement si:

- 1. Son ensemble de définition est centré,
- 2. Pour tout réel x de D_f , on a : f(-x) = -f(x)

Remarques:

- -si *n* est un entier impair, positif ou négatif,
- la fonction $x \mapsto kx^n$ est impaire,
- -la fonction $x \mapsto \sin(x)$ est impaire,
- -la fonction $x \rightarrow \tan x$ est impaire,
- -l'opposée d'une fonction impaire est une Donc h est une fonction ni paire ni impaire, fonction impaire,
- -l'inverse d'une fonction impaire est une fonction
- -la somme de deux fonctions impaires est une fonction impaire,

- le produit d'une fonction paire et d'une fonction impaire est une fonction impaire.
- la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine.

2.4 le graphe et la parité de la fonction

- la courbe représentative d'une fonction paire est symétrique par à l'axe des ordonnées.
- la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine.

Fonction paire

Fonction impaire

Exemple 1:

1) Soit f une fonction tq : $f(x) = 3x^2 - 5$

Donc $D_f = \mathbb{R} \operatorname{car} f$ est une fonction polynôme

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$- f(-x) = 3(-x)^2 - 5 = 3x^2 - 5$$
$$f(-x) = f(x)$$

Donc f est une fonction paire,

2) Soit g une fonction tq : $g(x) = \frac{3}{x}$ on a $g(x) \in \mathbb{R}$ ssi $x \neq 0$

donc
$$D_g = \mathbb{R}^*$$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$g\left(-x\right) = \frac{3}{-x} = -\frac{3}{x}$$

$$g(-x) = -g(x)$$

Donc g est une fonction impaire,

3) Soit h une fonction tq: $h(x) = 2x^3 + x^2$

h est une fonction polynôme donc Un réel a toujours une image. Donc $D_{\iota} = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$h(-x) = 2(-x)^3 + (-x)^2 = -2x^3 + x^2$$

$$h(-x) = -(2x^3 - x^2) \neq -h(x)$$

4) Soit t une fonction tq : $t(x) = \frac{x}{x-2}$

on a
$$t(x) \in \mathbb{R}$$
 ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc
$$D_t = \mathbb{R} - \{2\}$$

on a $-2 \in D$, mais $-(-2) = 2 \notin D$,

Donc D, n'est pas symétrique par rapport a O Donc h est une fonction ni paire ni impaire,

Exemple 2:

Etudier la parité des fonctions suivantes définie

1)
$$f(x) = \frac{x^2 - 1}{x}$$
. 2) $f(x) = x^2 + \frac{1}{x}$.

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
. 4) $f(x) = \sqrt{1 - x^2}$

5)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
. 6) $f(x) = |x| - \sqrt{2x^2 + 4}$.

$$7) \quad f(x) = \frac{\sqrt{x}}{2}.$$

Solutions :1) $f(x) = \frac{x^2 - 1}{x}$

on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = \frac{(-x)^2 - 1}{-x} = -\frac{x^2 - 1}{x}$$
$$f(-x) = -f(x)$$

Donc f est une fonction impaire,

2)
$$f(x) = x^2 + \frac{1}{x}$$
 on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = (-x)^{2} + \frac{1}{-x} = x^{2} - \frac{1}{x} = \left(-x^{2} + \frac{1}{x}\right)$$
$$f(-x) \neq -f(x)$$

Donc f est une fonction ni paire ni impaire,

3)
$$f(x) = \frac{|x|}{x^2 - 1}$$
 on a $f(x) \in \mathbb{R}$ ssi $x^2 - 1 \neq 0$
 $x^2 - 1 = 0$ ssi $x^2 = 1$ ssi $x = 1$ ou $x = -1$
donc $D_f = \mathbb{R} - \{-1; 1\}$

- Pour tout réel x, si $x \in \mathbb{R} - \{-1,1\}$, alors $-x \in \mathbb{R} - \{-1,1\}$

$$f(-x) = \frac{|-x|}{(-x)^2 - 1} = \frac{|x|}{x^2 - 1}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

4)
$$f(x) = \sqrt{1 - x^2}$$
.
 $D_x = \{x \in \mathbb{R} / 1 - x^2 > 0\}$

$$D_f = \left\{ x \in \mathbb{R} / 1 - x^2 \ge 0 \right\}$$

 $1-x^2 = 0$ ssi $x^2 = 1$ ssi x = 1 ou x = -1

x	$-\infty$	-1		1	$+\infty$
$1-x^{2}$	_	þ	+	þ	_

Donc $D_f = [-1,1]$

- Pour tout réel x, si $x \in [-1,1]$, alors

$$-x \in [-1,1]$$

$$f(-x) = \sqrt{1 - (-x)^2} = \sqrt{1 - x^2}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

5)
$$f(x) = \frac{2x^3}{x^2 + 5}$$
.

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 5 \neq 0 \right\}$$

 $x^2 + 5 = 0$ ssi $x^2 = -5$ pas de solutions Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = \frac{2(-x)^3}{(-x)^2 + 5} = \frac{-2x^3}{x^2 + 5}$$

$$f\left(-x\right) = -f\left(x\right)$$

Donc f est une fonction impaire

6)
$$f(x) = |x| - \sqrt{2x^2 + 4}$$
.

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 + 4 \ge 0 \right\}$$

Or on sait que $2x^2 \ge 0$ Pour tout réel x, donc $2x^2 + 4 \ge 0 + 4$ donc $2x^2 + 4 \ge 4 \ge 0$

Donc $D_f = \mathbb{R}$

- Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$f(-x) = |-x| - \sqrt{2(-x)^2 + 4} = |x| - \sqrt{2x^2 + 4}$$
$$f(-x) = f(x)$$

Donc f est une fonction paire

7)
$$f(x) = \frac{\sqrt{x}}{2}$$
. $D_f = \{x \in \mathbb{R} / x \ge 0\}$ Donc $D_f = \mathbb{R}^+ = [0; +\infty[$

On a $2 \in \mathbb{R}^+$ mais $-2 \notin \mathbb{R}^+$ Donc f est une fonction ni paire ni impaire

Exemple 3 : Soit la fonction définie par :

$$5f(x) + f(-x) = 2x^3 - 3x$$
 Pour tout réel x

1)montrer que f est une fonction impaire

2)donner une expression de f(x) Pour tout réel x

Solution: soit $x \in \mathbb{R}$

On a $5f(x) + f(-x) = 2x^3 - 3x$ (1)

Pour tout réel x

On remplaçant x par -x on trouve :

$$5f(-x) + f(x) = 2(-x)^3 - 3(-x)$$

Donc: $5f(-x) + f(x) = -2x^3 + 3x$ (2)

(1)+ (2) donne: 6(f(-x)+f(x))=0 donc:

$$f(-x) + f(x) = 0$$

donc: $f(-x) = -f(x) \quad \forall x \in \mathbb{R}$

Donc f est une fonction impaire

2)on a:
$$5f(x) + f(-x) = 2x^3 - 3x$$

Et puisque f est une fonction impaire donc :

$$5f(x) - f(x) = 2x^3 - 3x$$

$$4f(x) = 2x^3 - 3x \Leftrightarrow f(x) = \frac{1}{2}x^3 - \frac{3}{4}$$

Exemple 4 : Soit la fonction définie par :

$$f(x) = \frac{|x|+1}{2|x|-3}$$
 et (C_f) la courbe de f Dans le

repère $\left(0; \overrightarrow{i}; \overrightarrow{j}\right)$ orthonormé

Montrer que (C_f) symétrique par rapport à l'axe des ordonnée

Solution:
$$D_f = \{x \in \mathbb{R} / 2 |x| - 3 \neq 0\} = \{x \in \mathbb{R} / |x| \neq \frac{3}{2}\}$$

Donc:
$$D_f = \mathbb{R} - \left\{ -\frac{3}{2}; \frac{3}{2} \right\}$$

Il suffit de montrer que f est une fonction paire

- Pour tout réel x, si $x \in \mathbb{R} - \left\{-\frac{3}{2}, \frac{3}{2}\right\}$ alors

$$-x \in \mathbb{R} - \left\{ -\frac{3}{2}; \frac{3}{2} \right\}$$

$$- f(-x) = \frac{|-x|+1}{2|-x|-3} = \frac{|x|+1}{2|x|-3} = f(x)$$

Donc f est une fonction paire

Par suite $la(C_f)$ symétrique par rapport à l'axe des ordonnée

3) Les variations d'une fonction numérique

3-1) Sens de variation d'une

fonction :fonction croissante -décroissante - fonction constantes

Définition : Soit f une fonction et D_f son

domaine de définition

Et soit I un intervalle inclus dans D_f

Prof: atmani najib

Dire f que est strictement croissante sur I (croissante sur I) signifie que :

Si $x_1 \in I$ et $x_2 \in I$ tq $x_1 \prec x_2$ alors

$$f(x_1) \prec f(x_2) \quad (f(x_1) \leq f(x_2))$$

Rq: Une fonction croissante « conserve l'ordre ».

- Dire f que est strictement décroissante sur *I* (décroissante sur *I*) signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors

$$f(x_1) \succ f(x_2) \quad (f(x_1) \ge f(x_2))$$

Rq: Une fonction décroissante « inverse l'ordre ».

- Dire f que est constante sur I signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$
alors $f(x_1) = f(x_2)$

- Une fonction définie sur un intervalle I est monotone sur cet intervalle si elle est : soit croissante sur I soit décroissante sur I

Illustration graphique:

Exemples: 1) Soit f une fonction tq: f(x) = 7x - 5

f est une fonction polynôme donc $D_f = \mathbb{R}$

Soit
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$ tq $x_1 \prec x_2$

Donc $7x_1 \prec 7x_2$ car $7 \succ 0$

Donc
$$7x_1 - 5 < 7x_2 - 5$$

Alors $f(x_1) \prec f(x_2)$ d'où f que est strictement croissante sur \mathbb{R}

2) Soit g une fonction tq : $g(x) = \frac{2}{x}$

$$g(x) \in \mathbb{R} \text{ ssi } x \neq 0 \text{ Donc } D_{e} = \mathbb{R} - \{0\} = \mathbb{R}^{*}$$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} > \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} > \frac{2}{x_2}$ car $2 > 0$

Alors $f(x_1) \succ f(x_2)$ d'où f que est strictement décroissante sur $[0; +\infty[$

b)Soit
$$x_1 \in]-\infty;0]$$
 et $x_2 \in]-\infty;0]$ tq $x_1 \prec x_2$

Donc
$$\frac{1}{x_1} > \frac{1}{x_2}$$
 Donc $\frac{2}{x_1} > \frac{2}{x_2}$ car $2 > 0$

Alors $f(x_1) \succ f(x_2)$ d'où f que est strictement décroissante sur $]-\infty;0]$

b)tableau de variation :

x	$-\infty$	0		$+\infty$
f(x)	\		\	

3)

х	-5	-2	2	5
f(x)	5 /	0,5	2	-2

Propriété: Soit f une fonction numérique définie sur un intervalle IOn dit que f est strictement constante sur I ssi il existe un réel k tq: f(x) = k pour tout $x \in I$

3-2) Le taux d'accroissement d'une fonction

a)Définition : Soit f une fonction et D_f son domaine de définition

Et soient $x_1 \in D_f$ et $x_2 \in D_f$ tq $x_1 \neq x_2$

On appelle Le taux d'accroissement (taux de variation) de la fonction f entre x_1 et x_2

Le réel noté $T(x_1;x_2)$ est tq :

$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

Exemple: Soit f une fonction tq:

$$f(x) = 3x^2 + 2$$

f est une fonction polynôme donc $D_{\!\scriptscriptstyle f}=\mathbb{R}$

soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$

$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(3x_1^2 + 2) - (3x_2^2 + 2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3x_1^2 - 3x_2^2 + 2 - 2}{x_1 - x_2} = \frac{3(x_1^2 - x_2^2)}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{3(x_1 - x_2)(x_1 + x_2)}{x_1 - x_2} = 3(x_1 + x_2)$$

b) Le taux d'accroissement d'une fonction et les variations :

Propriété : Soit f une fonction numérique définie sur un intervalle *I*

 On dit que f est strictement croissante(croissante) sur *I* ssi pour tout x₁ ∈ *I*

et
$$x_{\ell} \in I$$
 et $x_1 \neq x_2$ on a $\frac{f(x_1) - f(x_2)}{x_1 - x_2} \succ 0$

$$\left(\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}\geq0\right)$$

• On dit que f est strictement décroissante(décroissante) sur I ssi pour tout $x_1 \in I$ et $x_e \in I$ et $x_1 \neq x_2$ on a

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0 \quad \left(\frac{f(x_1) - f(x_2)}{x_1 - x_2} \le 0\right)$$

• On dit que f est constante sur I ssi pour tout $x_1 \in I$ et $x_{\ell} \in I$ et $x_1 \neq x_2$ on a

$$\frac{f\left(x_1\right) - f\left(x_2\right)}{x_1 - x_2} = 0$$

Exemples:

1)Soit f une fonction tq: $f(x) = 3x^2 + 2$

$$D_f = \mathbb{R}$$

soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 \neq x_2$ on a

$$T(x_1; x_2) = 3(x_1 + x_2)$$

a)Soit
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$

Prof: atmani najib

Donc $x_1 \ge 0$ et $x_2 \ge 0$ Donc $x_1 + x_2 \ge 0$

Donc $3(x_1 + x_2) \ge 0$ car 3 > 0

Donc $T(x_1; x_2) = 3(x_1 + x_2) \ge 0$

d'où f que est croissante sur $[0;+\infty[$

b)Soit $x_1 \in]-\infty;0]$ et $x_2 \in]-\infty;0]$

Donc $x_1 \le 0$ et $x_2 \le 0$ Donc $x_1 + x_2 \le 0$

Donc $3(x_1 + x_2) \le 0$ car 3 > 0

Donc $T(x_1; x_2) = 3(x_1 + x_2) \le 0$

d'où f que est décroissante sur $]-\infty;0]$

b) <u>résumé</u> : tableau de variation :

$$f(0) = 3 \times 0^2 + 2 = 2$$

2)Soit f une fonction tq : $g(x) = \frac{x}{x+1}$ on

a $f(x) \in \mathbb{R}$ ssi $x+1 \neq 0$ ssi $x \neq -1$

Donc $D_{\sigma} = \mathbb{R} - \{-1\}$

soient $x_1 \in D_g$ et $x_2 \in D_g$ tq $x_1 \neq x_2$ on a:

$$T(x_1; x_2) = \frac{g(x_1) - g(x_2)}{x_1 - x_2}$$

$$g(x_1) - g(x_2) = \frac{x_1}{x_1 + 1} - \frac{x_2}{x_2 + 1} = \frac{x_1(x_2 + 1) - x_2(x_1 + 1)}{(x_1 + 1)(x_2 + 1)}$$

$$T(x_1; x_2) = \frac{x_1 - x_2}{(x_1 + 1)(x_2 + 1)} \times \frac{1}{x_1 - x_2} = \frac{1}{(x_1 + 1)(x_2 + 1)}$$

a)sur $I =]-\infty; -1[$

Soit $x_1 \in]-\infty; -1[$ et $x_2 \in]-\infty; -1[$ $x_1 \neq x_2$

Donc $x_1 \prec -1$ et $x_2 \prec -1$ Donc $x_1 + 1 \prec 0$ et

 $x_2 + 1 < 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$

Donc $T(x_1; x_2) = \frac{1}{(x_1+1)(x_2+1)} > 0$ sur

 $I =]-\infty; -1[$

d'où g que est strictement croissante sur $I =]-\infty; -1[$

b)sur $J =]-1; +\infty[$

Soit $x_1 \in]-1; +\infty[$ et $x_2 \in]-1; +\infty[$ $x_1 \neq x_2$

 $\text{Donc} \quad x_1 \succ -1 \quad \text{et} \quad x_2 \succ -1 \quad \text{Donc} \quad x_1 + 1 \succ 0$

et $x_2 + 1 > 0$ Donc $(x_1 + 1)(x_2 + 1) > 0$

Prof: atmani najib

Donc
$$T(x_1; x_2) = \frac{1}{(x_1 + 1)(x_2 + 1)} > 0$$

 $\operatorname{sur} J =]-1; +\infty[$

d'où g que est strictement croissante sur $J =]-1; +\infty[$

c) résumé : tableau de variation :

x	$-\infty$ –	$1 + \infty$
f(x)	1	1

3-3) les variations et la parité :

Propriété : Soit f une fonction numérique définie sur un intervalle $I \subset \mathbb{R}^+$ et soit I' le symétrique de l'intervalle I

Si f est paire alors:

- ullet f est croissante sur I ssi f est décroissante sur I'
- ullet f est décroissante sur I ssi f est croissante sur I'

Si f est impaire alors:

- •f est croissante sur I ssi f est croissante sur I'
- f est décroissante sur *I* ssi f est décroissante sur *I'*

Conséquences:

Si f est paire ou impaire alors il suffit d'étudier ses variations sur $D_f \cap \mathbb{R}^+$ et en déduire ses variations sur D_f

Exemple : Soit f une fonction :tq : $f(x) = x + \frac{1}{x}$

- 1)Déterminer D_f et étudier la parité de f
- 2)Calculer Le taux d'accroissement $T(x_1; x_2)$ de f entre x_1 et x_2 deux éléments de D_f

tq $x_1 \neq x_2$

3)Étudier les variations de f sur I =]0;1] puis

 $\mathrm{sur}\ J=\begin{bmatrix}1;+\infty \begin{bmatrix}\\ \end{bmatrix}$

- 4)En déduire les variations de f sur D_f
- 5)Dresser le tableau de variations de f sur D_f

Réponses : 1) on a $f(x) \in \mathbb{R}$ ssi $x \neq 0$ Donc

 $D_f = \mathbb{R} - \{0\} = \mathbb{R}^*$

- Pour tout réel x, si $x \in \mathbb{R}^*$, alors $-x \in \mathbb{R}^*$

$$f(-x) = -x + \frac{1}{-x} = -x - \frac{1}{x} = -\left(x + \frac{1}{x}\right)$$

$$f\left(-x\right) = -f\left(x\right)$$

Donc f est une fonction impaire,

2)
$$f(x_1) - f(x_2) = \left(x_1 + \frac{1}{x_1}\right) - \left(x_2 + \frac{1}{x_2}\right) = x_1 + \frac{1}{x_1} - x_2 - \frac{1}{x_2}$$

= $\frac{x_1^2 \times x_2 + x_2 - x_2^2 \times x_1 - x_1}{x_1 \times x_2} = \frac{x_1 \times x_2 (x_1 - x_2) + x_2 - x_1}{x_1 \times x_2}$

$$= \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2}$$

$$T(x_1; x_2) = \frac{(x_1 - x_2)(x_1 \times x_2 - 1)}{x_1 \times x_2} \times \frac{1}{x_1 - x_2} = \frac{x_1 \times x_2 - 1}{x_1 \times x_2}$$

a)sur
$$I = [0;1]$$
 Soit $x_1 \in [0;1]$ et $x_2 \in [0;1]$

Donc
$$0 \prec x_1 \leq 1$$
 et $0 \prec x_2 \leq 1$ $x_2 + 1 \prec 0$

Donc
$$0 \prec x_1 x_2 \leq 1$$
 et $x_1 \neq x_2$ Donc $x_1 x_2 - 1 \prec 0$

et on a
$$0 < x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} < 0$

d'où f que est strictement décroissante sur I =]0;1]

$$\text{b)sur } J = \begin{bmatrix} 1; +\infty \begin{bmatrix} \text{ Soit } x_1 \in \begin{bmatrix} 1; +\infty \end{bmatrix} \text{ et } x_2 \in \begin{bmatrix} 1; +\infty \end{bmatrix} \end{bmatrix}$$

Donc
$$x_1 \ge 1$$
 et $x_2 \ge 1$ Donc $x_1 x_2 \ge 1$ et

$$x_1 \neq x_2$$
 Donc $x_1 x_2 \succ 1$ Donc $x_1 x_2 - 1 \succ 0$

et on a
$$0 < x_1 x_2$$
 Donc $T(x_1; x_2) = \frac{x_1 \times x_2 - 1}{x_1 \times x_2} > 0$

d'où f que est strictement croissante sur $J = \begin{bmatrix} 1; +\infty \end{bmatrix}$

3) f est impaire et le symétrique de I =]0;1] est

l'intervalle I' = [-1;0] et le symétrique de

$$J = [1; +\infty[$$
 est l'intervalle $J' =]-\infty; -1]$

Donc : f est strictement décroissante sur I Donc f est strictement décroissante sur I' f est strictement croissante sur J Donc f est strictement croissante sur J'

5) le tableau de variations de f sur D_f

$$f(x) = 1 + \frac{1}{1} = 2$$

x	$-\infty$ -1	0	1 +∞
Variations $\operatorname{de} f(x)$	-2	1	

$$f(-1) = -1 - \frac{1}{1} = -2$$

5) Les variations des deux fonctions : αf et $f+\alpha$

Propriété : Soit f une fonction numérique définie sur un intervalle I et $\alpha \in \mathbb{R}^*$

- Si $\alpha \in \mathbb{R}^{*+}$ alors les fonctions f et α f ont les mêmes variations sur I
- Si $\alpha \in \mathbb{R}^{*-}$ alors les fonctions f et α f ont des variation opposées sur I
- •f et α+f ont les mêmes variations sur *I* **Exemples :**

1)soit la fonction définie $sur[0; +\infty]$ par :

$$g\left(x\right) = \frac{6}{x}$$

On sait que la fonction $f: x \to \frac{1}{x}$ est

décroissante sur $[0;+\infty[$ et puisque $6 \succ 0$ donc la fonction g=6f est aussi décroissante sur $[0;+\infty[$

2)Soit f et g les fonction numérique :

$$f(x) = x^2$$
 et $g(x) = -\frac{1}{2}x^2$ $D_f = D_g = \mathbb{R}$

$$h(x) = -\frac{1}{2}x^2 + 5$$

On a $a = -\frac{1}{2} < 0$ Donc alors les fonctions f et

g ont des variation opposées sur \mathbb{R} g et h ont les mêmes variations sur \mathbb{R}

x	$-\infty$	0	$+\infty$
f(x)	$+\infty$		$+\infty$

x	$-\infty$ () +∞
g(x)		

6) comparaison deux

fonctions (fonctions positives et négatives) Fonctions majorées ; minorées et bornée :

6-1) Comparaison de fonctions

Définition 1: On dit que deux fonction f et g sont égales si et seulement

si : Elles ont même ensemble de définition :

$$D_f = D_g = \mathbb{R}$$

et Pour tout $x \in D_f$: f(x) = g(x) et On écrit: f = g

Exemple: Les fonction f et g définies respectivement par :

$$f(x) = \sqrt{\frac{x-1}{x+3}}$$
 et $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+3}}$

Sont-elles égales ?

Réponse :

Déterminons leur ensemble de définition :

Pour f, on doit avoir: $\frac{x-1}{x+3} \ge 0$ et $x-1 \ne 0$

 $\mathrm{donc}\;\mathrm{ce}\;\mathrm{qui}\;\mathrm{donne}\,D_{f}=\left]\!-\!\infty;-3\right[\,\cup\,\left[1;+\infty\right[$

Pour g, on doit avoir $x-1 \ge 0$ et x+3 > 0 ce qui donne $D_g = [1; +\infty]$

On a donc $D_f \neq D_g$. Les fonctions ne sont donc pas égales. On écrit : $f \neq g$

On remarquera cependant que sur $[1;+\infty[$ on a f (x) = g(x)

6-2) Définitions : Soit I un intervalle et soient f et g deux fonctions définies

Sur I. On dit que:

1)f est inférieure à g sur l lorsque : $f(x) \le g(x)$ pour tout $x \in I$. On note : $f \le g$ Sur l.

2)f est positive sur I lorsque : $f(x) \ge 0$ pour tout $x \in I$. On note : $f \ge 0$ sur I.

3)f est **majorée** sur l lorsqu'il existe un réel M tel que : $f(x) \le M$ pour tout $x \in I$

4)f est **minorée** sur l lorsqu'il existe un réel m tel que : $m \le f(x)$ pour tout $x \in I$

5)f est **bornée** sur l'Iorsqu'il existe des réels Met m tels que : $m \le f(x) \le M \ \forall x \in I$.

(f est majorée et minorée)

Interprétation graphique :

1) $f(x) \le g(x)$ pour tout $x \in I$ ssi La courbe (C_g) de la fonction g est au-dessus de La courbe (C_f) de f sur l'intervalle I

2) $f(x) \ge 0$ pour tout $x \in I$ ssi La courbe (C_f) de la fonction f est au-dessus de l'axe des abscisse sur l'intervalle I

6-3) Exemples:

Exemple1: Soit f et g les fonctions numériques tel que: f(x) = x+1 et $g(x) = x^2 + x + 2$

Comparer les fonctions f et q

Solution : $D_f = D_g = \mathbb{R}$

$$g(x)-f(x) = x^2 + x + 2 - (x+1) = x^2 + 1 > 0$$

 $\forall x \in \mathbb{R}$

Prof: atmani najib

Donc: $f(x) \prec g(x) \quad \forall x \in \mathbb{R} \text{ donc } f \prec g$

Exemple2 Soit f et g les fonctions numériques

tel que: f(x) = x et $g(x) = \frac{1}{x}$

Comparer les fonctions f et g **Exemple3** Soient les deux

fonctions: $f(x) = \frac{3x^2 + 1}{\sqrt{x^2}}$ et $g(x) = \frac{1 + 3x^2}{|x|}$

- on a $f(x) \in \mathbb{R}$ ssi $\sqrt{x^2} \in \mathbb{R}$ et $x \neq 0$

or on sait que $x^2 \ge 0$ donc $\sqrt{x^2} \in \mathbb{R}$ pour tout $x \in \mathbb{R}$

alors $f(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_f = \mathbb{R}^*$

- on a $g(x) \in \mathbb{R}$ ssi $|x| \neq 0$ ssi $x \neq 0$ donc $D_a = \mathbb{R}^*$

alors $D_f = D_g = \mathbb{R}^*$

on sait que $\sqrt{x^2} = |x|$ et $3x^2 + 1 = 1 + 3x^2$ donc f(x) = g(x)

donc finalement on a trouvé que : $D_f = D_g = \mathbb{R}^*$

et f(x)=g(x)Donc: f=g.

Exemple4 Soient les deux

fonctions: $h(x) = \frac{x^2 - x}{x}$ et t(x) = x - 1

on a $h(x) \in \mathbb{R}$ ssi $x \neq 0$ donc $D_h = \mathbb{R}^*$

- on a t(x) est un polynôme donc $D_t = \mathbb{R}$

Exemple5 Soit f la fonction numérique tel que:

$$f(x) = \frac{(3x+1)(2-x)}{4x^2-1}$$

Etudier le signe de le fonction f

Solution : $4x^2 - 1 \neq 0 \Leftrightarrow x \neq -\frac{1}{2}$ et $x \neq \frac{1}{2}$

Donc: $D_I = \mathbb{R} - \left\{ -\frac{1}{2}, \frac{1}{2} \right\}$

x	$-\infty$	<u>-1</u> =	<u>-1</u>	$\frac{1}{2}$	$2 + \infty$
3x+1	_	- () +	+	+
2-x	+	+	+	+ () –
2x-1	_	_	- () +	+
2x+1	- () +	+	+	+
$\frac{(3x+1)(2-x)}{4x^2-1}$	_	+ () –	+ () –

$$f(x) \ge 0 \quad \text{ssi } x \in \left] -\frac{1}{2}; -\frac{1}{3} \right] \cup \left] \frac{1}{2}; 2 \right] \text{ donc } f \ge 0$$

$$\forall x \in \left] -\frac{1}{2}; -\frac{1}{3} \right] \cup \left] \frac{1}{2}; 2 \right]$$

$$f(x) \le 0 \quad \text{ssi } x \in \left] -\infty; -\frac{1}{2} \right[\cup \left[-\frac{1}{3}; \frac{1}{2} \right] \cup \left[2; +\infty \right[-\infty; -\frac{1}{2} \right]$$

Exemple6 Soit f une fonction numérique

définie sur \mathbb{R} par : $f(x) = -x^2 + x$

Démontrer que f est majorée sur \mathbb{R} .

Solution : On met la fonction sous la forme canonique :

$$f(x) = -x^2 + x = -(x^2 - x) = -\left(\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right) = -\left(x - \frac{1}{2}\right)^2 + \frac{1}{4}$$

On a:
$$-\left(x - \frac{1}{2}\right)^2 \le 0$$
 donc $-\left(x - \frac{1}{2}\right)^2 + \frac{1}{4} \le \frac{1}{4}$

$$\operatorname{donc}: f\left(x\right) \leq \frac{1}{4} \quad \forall x \in \mathbb{R}$$

La fonction f est donc majorée sur \mathbb{R} par $M = \frac{1}{4}$

Exemple7 Montrer que la fonction g définie sur \mathbb{R} par $g(x) = 4\sin x - 3$ est Bornée.

Solution :On a $\forall x \in \mathbb{R} -1 \le \sin x \le 1$ donc $-4 \le 4 \sin x \le 4$

donc $-4-3 \le 4\sin x - 3 \le 4-3$

donc $-7 \le g(x) \le 1$ g est donc bornée sur \mathbb{R} .

Exemple8 Soit f une fonction numérique tq:

$$f\left(x\right) = \frac{1}{x^2 + 1}$$

- 1)Déterminer D_f
- 2) Démontrer que f est majorée sur $\ensuremath{\mathbb{R}}$.
- 3) Démontrer que f est minorée sur $\ensuremath{\mathbb{R}}$. Conclure

Solution :1) $D_f = \{x \in \mathbb{R}/x^2 + 1 \neq 0\}$

 $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$ pas de solution dans \mathbb{R} donc $D_f = \mathbb{R}$

2) On a $\forall x \in \mathbb{R}$ $x^2 \ge 0$ donc $x^2 + 1 \ge 0 + 1$

Donc
$$x^2 + 1 \ge 1$$
 donc $\frac{1}{x^2 + 1} \le 1$

donc $f(x) \le 1$ par suite f est donc majorée sur \mathbb{R} par M = 1

2) On a $\forall x \in \mathbb{R}$ $x^2 \ge 0$ donc $x^2 + 1 \ge 0 + 1$ Donc $x^2 + 1 \ge 1$ donc $x^2 + 1 \ge 0$

Donc: $0 \prec f(x)$

par suite f est donc minorée sur \mathbb{R} par m=0

Prof: atmani najib

conclusion : $0 \le f(x) \le 1 \quad \forall x \in \mathbb{R}$

f est donc bornée sur $\mathbb R$.

Exemple9 Soit f une fonction numérique tq:

$$f(x) = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3}$$

- 1)Déterminer D_f
- 2) Démontrer que f est minorée par 1.
- 3) Démontrer que f est majorée par $\frac{7}{3}$. Conclure

Solution :1) $D_f = \{x \in \mathbb{R} / x^2 + 3x + 3 \neq 0\}$

 $\Delta = -3 < 0$ pas de solution dans \mathbb{R} donc $D_f = \mathbb{R}$

2) soit $\forall x \in \mathbb{R}$

$$f(x)-1 = \frac{2x^2+7x+7}{x^2+3x+3} - 1 = \frac{2x^2+7x+7-1(x^2+3x+3)}{x^2+3x+3} = \frac{x^2+4x+4}{x^2+3x+3}$$

$$f(x)-1 = \frac{(x+2)^2}{x^2+3x+3}$$
 or $x^2+3x+3 > 0$ car $\Delta = -3 < 0$

(signe de a=1)

Et on a : $(x+2)^2 \ge 0$ donc $f(x) \ge 1$ $\forall x \in \mathbb{R}$

f est donc minorée sur \mathbb{R} par m=1

2) soit $\forall x \in \mathbb{R}$

$$f(x) - \frac{7}{3} = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3} - \frac{7}{3} = \frac{-x^2}{3(x^2 + 3x + 3)} \le 0$$

par suite f est majorée par $\frac{7}{3}$.

conclusion: $1 \prec f(x) \le \frac{7}{3} \quad \forall x \in \mathbb{R}$

f est donc bornée sur \mathbb{R} .

Exemple10 Soit f une fonction numérique tq:

$$f(x) = \frac{x-1}{x^2 + x + m} \quad \text{avec} \quad m \in \mathbb{R}$$

- 1) déterminer les valeurs de m pour que $D_f = \mathbb{R}$
- 2) Soit g la fonction numérique tq:

$$g(x) = \frac{1}{x+2}$$
 déterminer les valeurs de m pour

que $\forall x \in \{-2, 1\}$ on a : f(x) = g(x)

Solution:

1)
$$D_f = \mathbb{R} \iff \forall x \in \mathbb{R} : x^2 + x + m \neq 0$$

$$x^{2} + x + m \neq 0$$
 ssi $\Delta = b^{2} - 4ac = 1 - 4m < 0$

Ssi
$$m > \frac{1}{4}$$

2)
$$f(x) = g(x) \forall x \in \{-2,1\} \Leftrightarrow$$

$$\frac{x-1}{x^2 + x + m} = \frac{1}{x+2}$$

$$\Leftrightarrow (x-1)(x+2) = x^2 + x + m \Leftrightarrow$$

$$x^2 + x - 2 = x^2 + x + m$$

$$f(x) = g(x) \ \forall x \in \{-2, 1\} \Leftrightarrow -2 = m$$

7) Les extremums d'une fonction Numérique

7-1)) Définitions :

Soit f une fonction numérique définie sur un intervalle ouvert I et soit $a \in I$

- ➤ Dire que f(a) est une valeur maximale de f sur I (ou f(a) est un maximum de f sur I) ssi pour tout que $x \in I$: $f(x) \le f(a)$
- ightharpoonup Dire que $f\left(a\right)$ est une valeur minimale de f sur I (ou $f\left(a\right)$ est un minimum de f sur I) ssi pour tout $x\in I$: $f\left(x\right){\ge}f\left(a\right)$

7-2) Exemples d'applications :

1° Soit f une fonction numérique tq :

$$f(x) = 5x^2 + 3 \qquad D_f = \mathbb{R}$$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $5x^2 \ge 0$ car $5 \ge 0$

Par suite $5x^2 + 3 \ge 3$ et on a f(0) = 3

Donc pour tout $x \in \mathbb{R}$ $f(x) \ge f(0)$

d'où $f\left(0\right)$ =3 est un minimum absolue de f sur $\mathbb R$

2° Soit g une fonction numérique tq :

$$g(x) = -4x^2 + 1$$
 $D_g = \mathbb{R}$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $-4x^2 \le 0$ car -4 < 0

Par suite $-4x^2 + 1 \le 1$ et on a g(0) = 1

Donc pour tout $x \in \mathbb{R}$ $g(x) \le g(0)$

d'où $g\left(0\right)=1$ est un maximum absolue de g sur \mathbb{R}

7-3) Exemples:

Exemple1 : Soit f une fonction numérique tq : $f(x) = -4x^2 + 4x + 5$

1°a) montrer que $f(x) = 6 - (2x - 1)^2$ pour tout $x \in \mathbb{R}$

b) $f(x) \le 6$ pour tout $x \in \mathbb{R}$

2° calculer : $f\left(\frac{1}{2}\right)$ et en déduire les

extrémums de f sur $\,\mathbb{R}\,$

Réponses: 1°a) on a $D_f = \mathbb{R}$

$$6 - (2x - 1)^2 = 6 - (4x^2 - 4x + 1)$$

$$=6-4x^2+4x-1=-4x^2+4x+5$$

Donc: $f(x) = 6 - (2x - 1)^2$

b) Donc pour tout $x \in \mathbb{R}$ on a $(2x-1)^2 \ge 0$

Par suite $-(2x-1)^2 \le 0$ donc $6-(2x-1)^2 \le 6$

Donc pour tout $x \in \mathbb{R}$ $f(x) \le 6$

2° on a
$$f\left(\frac{1}{2}\right) = 6 - \left(2 \times \frac{1}{2} - 1\right)^2 = 6 - \left(1 - 1\right)^2 = 6$$

on a pour tout $x \in \mathbb{R}$ $6-(2x-1)^2 \le 6$ alors

$$f\left(x\right) \le f\left(\frac{1}{2}\right)$$

Donc $f\left(\frac{1}{2}\right) = 6$ est un maximum de f sur \mathbb{R}

Exemple2: Du tableau de variation on a :

Le nombre 2 est une valeur maximale de f au point $x_0 = 2$

Le nombre 0.5 est une valeur Minimale de f au point $x_0 = -2$

Exemple3:

Soit f une fonction numérique tq :

$$f(x) = -x^2 + 4x - 3$$

Montrer que 1 est le maximum absolu de f sur $\ensuremath{\mathbb{R}}$

Solution : $D_f = \mathbb{R}$

Montrons donc que : $f(x) \le 1$ et que l'équation

f(x)=1 admet une solution dans \mathbb{R}

$$f(x)-1=-x^2+4x-3-1=-x^2+4x-4$$

$$f(x)-1=-(x^2-4x+4)=-(x-2)^2 \le 0$$

Donc $f(x) \le 1 \ \forall x \in \mathbb{R}$ et on a :

$$f(x)=1 \Leftrightarrow f(x)-1=0 \Leftrightarrow -(x-2)^2=0 \Leftrightarrow x=2$$

Donc 'équation f(x)=1 admet une solution dans \mathbb{R}

Et on a: f(2)=1 donc: $f(x) \le f(2) \ \forall x \in \mathbb{R}$

que f(2)=1 est le maximum absolue de f sur \mathbb{R}

Exemple4: Soit f une fonction numérique tq:

$$f(x) = \frac{2x^2 + 3}{x^2 + 1}$$

- 1)Déterminer D_f
- 2) a) Démontrer que f est majorée par 3.
- b) est ce que 3 est une valeur maximale de f?
- 3) a) Démontrer que f est minorée par 2.
- b) est ce que 2 est une valeur minimale de f. ?

Solution:

1)
$$D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$$

 $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$ pas de solution dans \mathbb{R} donc $D_f = \mathbb{R}$

2) a)soit $\forall x \in \mathbb{R}$

$$f(x)-3=\frac{2x^2+3}{x^2+1}-3=\frac{2x^2+3-3(x^2+1)}{x^2+1}=\frac{2x^2+3-3x^2-3}{x^2+1}$$

Donc $f(x)-3=\frac{-x^2}{x^2+1} \le 0$ par suite $f(x) \le 3 \quad \forall x \in \mathbb{R}$

f est donc majorée sur \mathbb{R} par M=3

b) on remarque que : f(0)=3

donc $f(x) \le f(0) \quad \forall x \in \mathbb{R}$

Donc 3 est une valeur maximale de f

2) a)soit $\forall x \in \mathbb{R}$

$$f(x)-2=\frac{2x^2+3}{x^2+1}-2=\frac{2x^2+3-2(x^2+1)}{x^2+1}=\frac{2x^2+3-2x^2-2}{x^2+1}$$

Donc $f(x)-2=\frac{1}{x^2+1} > 0$ par suite :

$$0 < f(x) \quad \forall x \in \mathbb{R}$$

par suite f est donc minorée sur \mathbb{R} par m=2

b) on remarque que : $f(x) > 2 \ \forall x \in \mathbb{R}$

2 n'est pas donc une valeur minimale de f

conclusion: $2 \prec f(x) \leq 3 \quad \forall x \in \mathbb{R}$

f est donc bornée sur $\ensuremath{\mathbb{R}}$.

Exemple5: Soit f une fonction numérique définie

sur]1;+
$$\infty$$
[par : $f(x) = \frac{\sqrt{x+1} - \sqrt{2}}{x-1}$

1)étudier le signe de f

2) a)Démontrer que f est majorée par $\frac{\sqrt{2}}{4}$.

b) est ce que $\frac{\sqrt{2}}{4}$ est une valeur maximale de f?

Solution :1) soit $x \in]1; +\infty[$

$$f(x) = \frac{\sqrt{x+1} - \sqrt{2}}{x-1} = \frac{\left(\sqrt{x+1} - \sqrt{2}\right)\left(\sqrt{x+1} + \sqrt{2}\right)}{\left(x-1\right)\left(\sqrt{x+1} + \sqrt{2}\right)}$$

$$f(x) = \frac{x+1-2}{(x-1)(\sqrt{x+1}+\sqrt{2})} = \frac{x-1}{(x-1)(\sqrt{x+1}+\sqrt{2})}$$

$$f(x) = \frac{1}{\sqrt{x+1} + \sqrt{2}} > 0$$

Donc f(x) > 0 si $x \in]1; +\infty[$

2) a)
$$x \in]1; +\infty[$$
 montrons que $f(x) \le \frac{\sqrt{2}}{4}$

soit $x \in]1; +\infty[$ donc $x \succ 1$ cad $x+1 \succ 2$

donc $\sqrt{x+1} \succ \sqrt{2}$ donc $\sqrt{x+1} + \sqrt{2} \succ 2\sqrt{2}$

donc
$$\frac{1}{\sqrt{x+1}+\sqrt{2}} \prec \frac{1}{2\sqrt{2}}$$

donc
$$f(x) < \frac{\sqrt{2}}{4} \forall x \in]1; +\infty[$$

f est donc majorée sur \mathbb{R} par M = 3 conclusion : $2 \prec f(x) \leq 3 \quad \forall x \in \mathbb{R}$

b) on remarque que : f(0)=3

donc $f(x) \le f(0) \quad \forall x \in \mathbb{R}$

Donc 3 est une valeur maximale de f

f est donc bornée sur]1;+ ∞ [par $\frac{\sqrt{2}}{4}$

b) puisque
$$f(x) \neq \frac{\sqrt{2}}{4} \forall x \in]1; +\infty[$$

 $\frac{\sqrt{2}}{4}$ N'est pas une valeur maximale de f

Exemple6: Soit f une fonction numérique \sqrt{r}

définie sur]1;+
$$\infty$$
[par : $f(x) = \frac{\sqrt{x}-2}{\sqrt{x}+2}$

- 1))Déterminer D_f
- 2) Démontrer que -1 est la valeur minimal de f
- 3) Démontrer que f est majorée par 1 et est ce que 1 est une valeur maximale de f?

Solution :1)

$$D_{f} = \left\{ x \in \mathbb{R} / \sqrt{x} + 2 \neq 0 etx \ge 0 \right\} = \left\{ x \in \mathbb{R} / \sqrt{x} \neq -2 etx \ge 0 \right\}$$
$$D_{f} = \left[0; +\infty \right[$$

Prof : atmani najib

2) Montrons donc que : $f(x) \ge -1$ et que l'équation f(x) = -1 admet une solution dans \mathbb{R}^+

$$f(x)-(-1) = f(x)+1 = \frac{\sqrt{x}-2}{\sqrt{x}+2}+1 = \frac{2\sqrt{x}}{\sqrt{x}+2} \ge 0$$

Donc $f(x) \ge -1 \ \forall x \in \mathbb{R}^+$ et on a :

$$f(x) = -1 \Leftrightarrow f(x) + 1 = 0 \Leftrightarrow \frac{2\sqrt{x}}{\sqrt{x} + 2} = 0 \Leftrightarrow x = 0$$

Donc l'équation f(x) = -1 admet une solution dans \mathbb{R}^+

Et on a : f(0) = -1 donc : $f(x) \ge f(0) \ \forall x \in \mathbb{R}$ Ont dit que f(0) = -1 est le minimum absolue de f sur \mathbb{R}^+

3) soit
$$x \in \mathbb{R}^+$$
 $f(x)-1 = \frac{\sqrt{x}-2}{\sqrt{x}+2} - 1 = \frac{-4}{\sqrt{x}+2} < 0$

Donc $f(x) < 1 \quad \forall x \in \mathbb{R}^+$

Donc f est donc majorée sur \mathbb{R}^+ par M=1 Et puisque f(x)=1 n'admet pas de solution dans \mathbb{R}^+

Donc 1 n'est pas une valeur maximale de f

f est donc bornée sur]1; + ∞ [par $\frac{\sqrt{2}}{4}$

b) puisque
$$f(x) \neq \frac{\sqrt{2}}{4} \forall x \in]1; +\infty[$$

$$\frac{\sqrt{2}}{4}$$
 n'est pas une valeur maximale de f

Exemple7: Soit f une fonction numérique tel que : $f(x) = x^2 - 2x + 3$

- 1)a) Démontrer que f est minorée.
- b) est ce que f admet une valeur minimale?
- 2) Démontrer que f est non majorée.

Solution : $D_f = \mathbb{R}$

1)a)
$$f(x) = x^2 - 2x + 3 = (x^2 - 2x + 1) + 2 = (x - 1)^2 + 2$$

Donc
$$f(x)-2=(x-1)^2 \ge 0$$

donc: $f(x) \ge 2 \ \forall x \in \mathbb{R}$ donc que f est minorée par 2

et on a : f(1) = 2 donc : $f(x) \ge f(1) \forall x \in \mathbb{R}$

donc f admet une valeur minimale c'est 2

2) Démontrons que f est non majorée. Supposons f majorée donc :

$$\exists M \in \mathbb{R} : f(x) \leq M \quad \forall x \in \mathbb{R}$$

$$\Leftrightarrow \forall x \in \mathbb{R} : (x-1)^2 + 2 \le M$$

$$\Leftrightarrow \forall x \in \mathbb{R} : (x-1)^2 \le M-2$$

 $\Leftrightarrow \forall x \in \mathbb{R} : \sqrt{(x-1)^2} \le \sqrt{M-2}$ (on peut toujours supposer $M \ge 2$

$$\Leftrightarrow \forall x \in \mathbb{R} : |x-1| \le \sqrt{M-2}$$

Donc on a : $-\sqrt{M-2} \le x-1 \le \sqrt{M-2} \quad \forall x \in \mathbb{R}$

Donc on a : $-\sqrt{M-2}+1 \le x \le \sqrt{M-2}+1 \quad \forall x \in \mathbb{R}$ absurde

Donc f est non majorée

8) Etude et représentation graphique des fonctions $x \xrightarrow{f} ax^2 + bx + c$

8-1)Résumé : $f(x) = ax^2 + bx + c$ et $a \ne 0$

1° Dans le repére $\left(0;\vec{i}\;;\vec{j}\right)$ la courbe $\left(C_{f}\right)$ c'est une parabole de sommet $W\left(\alpha;\beta\right)$ et d'axe de symétrie la droite $x=\alpha$

2° Les variations de f

 $\underline{\text{Si}} a \succ 0$

<u>Si</u> *a* ≺ 0

2-2) Exemples:

1° Soit f une fonction numérique

$$tq: f(x) = 2x^2 - 4x - 2$$

on a f est une fonction polynôme donc $D_f = \mathbb{R}$

On a
$$a=2$$
 et $b=-4$ et $c=-2$

$$(f(x) = ax^2 + bx + c)$$

Donc
$$-\frac{b}{2a} = \frac{4}{2 \times 2} = 1$$
 et $(f(1) = 2 - 4 - 2 = -4)$

Pour tout réel $x \in \mathbb{R}$ on peut écrire sous la forme :

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 2(x-1)^2 - 4$$

Soit $W\left(1;-4\right)$ Donc dans le repére $\left(0;\vec{i}\;;\vec{j}\;\right)$ I

a $\operatorname{courbe}(C_f)$ c'est une parabole de sommet W (1;-4)

et d'axe de symétrie la droite x = 1

Tableau de variations de f

On a $a = 2 \succ 0$ donc :

2° Soit g une fonction numérique tq :

$$g(x) = -\frac{1}{2}x^2 + 2x + 1$$

on a g est une fonction polynôme donc $D_g = \mathbb{R}$

On a
$$a = -\frac{1}{2}$$
 et $b = 2$ et $c = 1$

$$\left(g\left(x\right) = ax^{2} + bx + c\right)$$

Donc
$$-\frac{b}{2a} = 2$$
 et $\beta = -\frac{\Delta}{4a} = -\frac{4+2}{-2} = 3$

Donc pour tout réel $x \in \mathbb{R}$ on peut écrire sous la

forme:
$$g(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = -\frac{1}{2}(x-2)^2 + 3$$

 $\left(g(2) = -\frac{1}{2}(2-2) + 3 = 3\right)$

Soit W (2;3) Donc dans le repére $(0;\vec{i};\vec{j})$ la courbe (C_g) c'est une parabole de sommet W (2;3) et d'axe de symétrie la droite x=2

Tableau de variations de f

On a
$$a = -\frac{1}{2} < 0$$
 donc:

x	$-\infty \ 2 + \infty$
f(x)	1 3

9) Etude et représentation graphique des fonctions homographique :

$$x \xrightarrow{f} \frac{ax+b}{cx+d}$$
 $a \neq 0$ et $c \neq 0$

$$a \neq 0$$
 et $c \neq 0$

9-1)Résumé et propriété :1)Soit f une fonction

tq:
$$f(x) = \frac{ax + b}{cx + d}$$
 on a $f(x) \in \mathbb{R}$ ssi $cx + d \neq 0$

ssi
$$x \neq -\frac{d}{c}$$

ssi
$$x \neq -\frac{d}{c}$$
 donc: $D_f = \mathbb{R} - \left\{ -\frac{d}{c} \right\}$

dans le repére $\left(O;\vec{i};\vec{j}\right)$ $\left(C_{f}\right)$ est l'hyperbole de

centre $W\left(-\frac{d}{c}; \frac{a}{c}\right)$ et d'asymptotes les droites

d'équations respectives $x = -\frac{d}{c}$ et $y = \frac{a}{c}$

1iér cas : si $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc > 0$

Tableau de variations de f :

\boldsymbol{x}	$-\infty$ $-$	$\frac{d}{c} + \infty$
f(x)		1

2iér cas : si $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc < 0$

Tableau de variations de f :

x	$-\infty$ -	$\frac{d}{c} + \infty$
f(x)	1	1

9-2) Exemples:

Exemple1: Soit f une fonction numérique tq :

$$f\left(x\right) = \frac{2x+1}{x-1}$$

on a $f(x) \in \mathbb{R}$ ssi $x-1 \neq 0$ ssi $x \neq 1$

Donc
$$D_f = \mathbb{R} - \{1\}$$
 $\Delta = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -2 - 1 = -3 < 0$

• Donc le tableau de variations de

$$x \longrightarrow \frac{2x+1}{x-1}$$

x	$-\infty$	1	$+\infty$
f(x)			_

Représentation graphique

-2	1-	0	1	2	3	4
1	$\frac{1}{2}$	-1		5	$\frac{7}{2}$	3

 $\left(C_{\scriptscriptstyle f}\right)$ est l'hyperbole de centre W(1;2) et d'asymptotes les droites d'équations respectives x = 1 et y = 2

Exemples2:

Soit g une fonction numérique

tq:
$$g(x) = \frac{-x}{x-2}$$

on a $g(x) \in \mathbb{R}$ ssi $x-2 \neq 0$ ssi $x \neq 2$

Donc
$$D_g = \mathbb{R} - \{2\}$$

$$\Delta = \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} = 2 \succ 0$$

Donc le tableau de variations

x	$-\infty$ 2	$2 + \infty$
f(x)	1	1

Représentation graphique

-1	0	1	2	3	4	5
-1/3	0	1		-3	-2	-5/3

 (C_{+}) est l'hyperbole de centre W(2;-1) et d'asymptotes les droites d'équations respectives x = 2 et y = -1

10) Etude et représentation graphique de la fonction polynôme: $x \xrightarrow{f} ax^3$

Exemple: Soit f une fonction numérique

définie par : $f(x) = \frac{1}{4}x^3$

1) Déterminer D_f

2)étudier les variations de f et dresser le tableau de variation

3)tracer la dans le repére $\left(O;\vec{i};\vec{j}\right)$ la courbe $\left(C_f\right)$ de f

Solutions: 1) $D_f = x \in \mathbb{R}$

2) soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tq $x_1 < x_2$

Donc: $x_1^3 < x_2^3$ Donc: $\frac{1}{4}x_1^3 < \frac{1}{4}x_2^3$

Donc: $f(x_1) < f(x_2)$

Donc f est strictement croissante

Tableau de variation

Х	-3	-2	-1	0	1	2	3
f(x)	6.5	-2	-1/4	0	1/4	2	6.5

11) Etude et représentation graphique de la fonction polynôme: $x \xrightarrow{f} \sqrt{a+x}$

Exemple: Soit f une fonction numérique

définie par : $f(x) = \sqrt{x+2}$

1) Déterminer D_f

2)étudier les variations de f et dresser le tableau de variation

3)tracer la dans le repére $(O; \vec{i}; \vec{j})$ la courbe (C_c) de f

 (C_f) de f **Solutions** : 1)

$$D_f = \{x \in \mathbb{R} / x + 2 \ge 0\} = \{x \in \mathbb{R} / x \ge -2\} = [-2, +\infty[$$
2) soient $x_1 \in [-2; +\infty[$ et $x_2 \in [-2; +\infty[$ tq $x_1 < x_2$

Donc: $x_1 + 2 < x_2 + 2$ Donc: $\sqrt{x_1 + 2} < \sqrt{x_2 + 2}$

Donc: $f(x_1) < f(x_2)$

Donc f est strictement croissante

Tableau de variation :

х	-2	-1	0	2	7
f(x)	0	1	$\sqrt{2}$	2	3

12) Fonction Partie entière

12-1)Définition : Soit $^{\mathcal{X}}$ un nombre réelle La partie entière de $^{\mathcal{X}}$ est le plus grand entier relatif inférieur ou égal à $^{\mathcal{X}}$.

Notation : La partie entière de $^{\chi}$ est

maintenant notée : E(x) ou [x]

Exemples: E(4,2)=4; E(-3,75)=-4;

$$E\left(\sqrt{3}\right) = 1$$
; $E\left(\frac{1}{2}\right) = 0$

12-2)Propriété :1) $\forall x \in \mathbb{R}$ $E(x) \leq x \prec E(x) + 1$

2)
$$\forall x \in \mathbb{Z}$$
 $E(x) = x$

Un nombre x est entier si et seulement si il est égal à sa partie entière

2)
$$\forall x \in \mathbb{R} \ \forall n \in \mathbb{Z} \ E(x+n) = n + E(x)$$

Exemples :déterminer: $E(\pi)$

et
$$E\left(3+\frac{1}{n}\right)_{\text{Si}} \forall n \in \mathbb{N}^* - \{1\}$$

Solutions: 1)on a: $3 \le \pi < 4$ donc $E(\pi) = 3$

2) on a:
$$E\left(3 + \frac{1}{n}\right) = 3 + E\left(\frac{1}{n}\right) \text{ or } 0 \le \frac{1}{n} < 1 \text{ donc}$$

$$E\left(3 + \frac{1}{n}\right) = 3 + E\left(\frac{1}{n}\right) = 3 + 2 + 2 = 3$$

$$E\left(\frac{1}{n}\right) = 0$$
 Par suite: $E\left(3 + \frac{1}{n}\right) = 3 + 0 = 3$

12-3) représentation graphique de la

fonction $x \to E(x)$:

 $\forall k \in \mathbb{Z}$ Si $k \leq x \prec k+1$ alors E(x)=k donc Voici la courbe représentative

De la fonction partie entière :

13)La composée de deux fonctions

13-1) Définition : Soit la fonction définie sur l'ensemble I et g la fonction définie sur

l'ensemble J tel que : $\forall x \in I \ f(x) \in J$

La composée des deux fonctions f et g est la fonction noté : $g \circ f$ définie sur l par :

$$(g \circ f)(x) = g(f(x)) \quad \forall x \in I$$

On peut alors faire le schéma suivant :

$$x \to f(x) = y \to g(f(x)) = z$$

13-2) Exemples

Exemple1: Soit les fonctions f et g

tel que :
$$f(x) = x^2 - 2x + 3$$
 et $g(x) = 2x + 1$

Déterminer : $g \circ f$ et $f \circ g$

Solution : on a : $D_f = \mathbb{R}$ et $D_g = \mathbb{R}$ donc

$$D_{g \circ f} = \mathbb{R}$$
 et $D_{f \circ g} = \mathbb{R}$

$$(g \circ f)(x) = g(f(x)) = g(x^2 - 2x + 3) = 2(x^2 - 2x + 3) + 1$$

$$(g \circ f)(x) = 2x^2 - 4x + 7$$

$$(f \circ g)(x) = f(g(x)) = f(2x+1) = (2x+1)^2 - 2(2x+1) + 3$$

$$(f \circ g)(x) = 4x^2 + 4x + 1 - 4x - 2 + 3 = 4x^2 + 2$$

Remarque:1)La composée de deux fonctions n'est pas commutative

c.-à-d.
$$g \circ f \neq f \circ g$$

2) Soit D_f et D_g les ensembles de définition des fonctions f et g.

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \, / \, x \in D_f etf(x) \in D_g \right\}$$

Exemple2: Soit les fonctions f et g définies

par:
$$f(x) = 3x + 4$$
 et $g(x) = \frac{1}{x+1}$

- 1) Déterminer $D_{g\circ f}$
- 2) déterminer : $(g \circ f)(x)$

Solution: 1) $D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f etf(x) \in D_g \right\}$

On a
$$D_f = \mathbb{R}$$
 et $D_g = \mathbb{R} - \{-1\}$ donc

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \mid x \in \mathbb{R} \text{ etf } (x) \neq -1 \right\}$$

$$f(x) = -1 \Leftrightarrow 3x + 4 = -1 \Leftrightarrow 3x = -5 \Leftrightarrow -\frac{5}{3} = x$$

$$\operatorname{donc}: D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3} \right\}$$

2) on a:
$$D_f = \mathbb{R}$$
 et $D_g = \mathbb{R} - \{-1\}$

et
$$D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3} \right\}$$

 $(g \circ f)(x) = g(f(x)) = g(3x+4) = \frac{1}{3x+4+1}$
 $(g \circ f)(x) = \frac{1}{3x+5}$

Exemple3: Soit les fonctions f et g définies

par:
$$g(x) = \frac{x}{x+2}$$
 et $f(x) = \frac{x+3}{x+1}$

On pose : $h(x) = (g \circ f)(x)$

1) Déterminer D_h 2) déterminer : h(x)

3) Soit la fonctions k définie par : $k(x) = \frac{x+3}{3x+5}$

Les fonctions h et k sont-elles égales ?

Solution : 1) on a : $D_f = \mathbb{R} - \{-1\}$ et

$$D_{g} = \mathbb{R} - \{-2\}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f etf(x) \in D_g \right\}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R} / x \neq -1etf(x) \neq -2 \right\}$$

$$f(x) = -2 \Leftrightarrow \frac{x+3}{x+1} = -2$$

$$\Leftrightarrow$$
 $-2(x+1) = x+3 \Leftrightarrow -3x = 5 \Leftrightarrow x = -\frac{5}{3}$

donc:
$$D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3}; -1 \right\}$$

$$h(x) = (g \circ f)(x) = g(f(x)) = g\left(\frac{x+3}{x+1}\right)$$

$$h(x) = \frac{\frac{x+3}{x+1}}{\frac{x+3}{x+1}+2} = \frac{\frac{x+3}{x+1}}{\frac{x+3+2x+2}{x+1}} = \frac{\frac{x+3}{x+1}}{\frac{3x+5}{x+1}} = \frac{x+3}{3x+5}$$

Donc:
$$h(x) = \frac{x+3}{3x+5}$$

3)Les fonctions h et k ne sont pas égales car ils n'ont pas le même ensemble de définition :

$$D_h = \mathbb{R} - \left\{ -\frac{5}{3}; -1 \right\}$$
 et $D_k = \mathbb{R} - \left\{ -\frac{5}{3} \right\}$

Exemple4 : exprimer les fonctions suivantes à l'aide de fonctions élémentaires :

1)
$$h_1(x) = \frac{1}{3x-1}$$
 2) $h_2(x) = \sqrt{x+3}$

3)
$$h_3(x) = 3\sqrt{x} + 4$$

Solution : 1)
$$h_1(x) = \frac{1}{3x-1}$$
 on a : $h_1(x) = (g \circ f)(x)$

avec
$$f(x) = 3x - 1$$
 et $g(x) = \frac{1}{x}$

2)
$$h_2(x) = \sqrt{x+3}$$
 on a: $h_2(x) = (g \circ f)(x)$

avec
$$f(x) = x + 3$$
 et $g(x) = \sqrt{x}$

3)
$$h_3(x) = 3\sqrt{x} + 4$$
 on a: $h_3(x) = (g \circ f)(x)$

avec
$$f(x) = \sqrt{x}$$
 et $g(x) = 3x + 4$

13-3) Variations d'une fonction composée

Théorème : Soit une fonction f définie sur un intervalle I et une fonction g définie sur f (I).

 \Rightarrow Si f et g ont même variation respectivement sur I et f (I) alors la fonction $g \circ f$ Est croissante sur I.

 \Rightarrow Si f et g ont des variations opposées respectivement sur I et f (I) alors là fonction $g \circ f$ est décroissante sur I.

Remarque :Il peut être intéressant de décomposer une fonction en fonctions élémentaire

La fonction g · f est décroissante sur l

Exemple1: Soit f la fonction f définie sur

un intervalle $[0; +\infty[$ tel que : $f(x) = -5x^2 + 7$

On va décomposer une fonction en fonctions élémentaire :

$$v(x) = -5x + 7$$
 et $u(x) = x^2$

La fonctions $f = v \circ u$

La fonction u est croissante sur $[0;+\infty[$ et

$$u(x) = x^2 \in [0; +\infty]$$
 et l

v est décroissante sur

 $[0;+\infty[$ Donc d'après le théorème des fonctions composées, $f=v\circ u$ est décroissante sur $[0;+\infty[$

Exemple2::Soit la fonction h définie sur $]-\infty;1]$ par $h(x) = \sqrt{1-x}$

1) Décomposer h en deux fonctions élémentaires.

2) Déterminer les variations de h.

Solution :1) La fonction h se décompose de cette façon $h = g \circ f$

on a alors : f(x) = 1 - x et $g(x) = \sqrt{x}$

2) On sait que :

⇒ f est décroissante sur]-∞;1]

 \Rightarrow g est croissante sur $f(]-\infty;1])=[0;+\infty[$

Donc La fonction h décroissante sur $]-\infty;1]$ On a alors le tableau de variation suivant

14) Fonctions périodiques :

Définition :On considère une fonction réelle f dont on note D l'ensemble de définition. On dit que f est périodique de période T si les deux conditions suivantes sont vérifiées :

- a) $\forall x \in D$ on a $x+T \in D$
- b) $\forall x \in D$ on a f(x+T) = f(x)

et la période de f c'est le plus petit réelle strictement positif qui vérifie les conditions **Exemple de fonctions périodiques :**

- 1. Une fonction constante sur \mathbb{R} est périodique ; tout réel non nul en est une période.
- 2. La fonction $x \rightarrow E(x)$ est périodique, 1 est une période ainsi que tout entier non nul.
- 3. les fonctions sinus et cosinus sont périodiques de période $T=2\pi$ et la fonction tangente est périodique de période $T=\pi$
- 4) La période des fonctions: $f: x \rightarrow \cos(ax)$ et

$$f: x \to \sin(ax)$$
 $a \ne 0$ est $T = \frac{2\pi}{a}$

Exemple1 : Montrer que la fonction $f: x \rightarrow x - E(x)$ est périodique de période 1.

Solution : $D_{\scriptscriptstyle f}=\mathbb{R}$

- a) $\forall x \in \mathbb{R}$ on a $x+1 \in \mathbb{R}$
- b) $\forall x \in \mathbb{R}$ on a:

$$f(x+1) = x+1-E(x+1) = x+1-E(x)-1 = f(x)$$

L'application f est donc périodique de période 1.

Exemple2 : Quelle est la période des fonctions suivantes :

- 1) $f: x \to \sin(4x-1)$ 2) $g: x \to \cos(5x)$
- 3) Trouver une fonction de période $T = \frac{3}{4}$

Solution :1)
$$T = \frac{2\pi}{a} = \frac{2\pi}{4} = \frac{\pi}{2}$$
 2) $T = \frac{2\pi}{5}$

3)Une fonction est. $h: x \to \cos(\frac{8\pi}{3}x)$

Remarque: La périodicité permet de réduire l'étude des variations d'une fonction à un intervalle de longueur égale à la période Donc pour tracer la représentation graphique d'une fonction T-périodique, il suffit donc de construire la courbe sur un intervalle de longueur T puis de translater autant de fois que nécessaire.

Exemple3: Observons une courbe représentative de la fonction cos on a $T=2\pi$ et sur $\left[-\pi;\pi\right]$ dont la longueur est égale à 2π La courbe se répète tous les $T=2\pi$

Exemple4 : courbe représentative de la fonction sin :

Exemple5: Soit f une fonction numérique définie sur \mathbb{R} et périodique de période T=2

tel que :
$$f(x) = 2x - x^2 \quad \forall x \in [0;2[$$

- 1)Tracer la représentation graphique de la fonction sur $\left[-2;8\right]$ dans un repére $\left(0;\vec{i}\;;\vec{j}\;\right)$
- 2) calculer : f(4.1) ; f(-3.5); f(265.11)
- 3) donner l'expression de : $f(x) = 2x x^2$ sur les intervalles : $I_k = \lceil 2k; 2(k+1) \rceil$ $k \in \mathbb{Z}$

Solution : dans l'intervalle $I_0 = [0;2[$

on a f est une fonction polynôme donc $D_f = \mathbb{R}$ On a a = -1 et b = 2 et c = 0

$$(f(x)=ax^2+bx+c)$$

Donc
$$-\frac{b}{2a} = -\frac{-2}{2 \times (-1)} = 1$$
 et $(f(1) = 2 - 1 = 1)$

Donc la courbe (C_f) c'est une portion parabole de sommet A(1;1) et d'axe de symétrie la droite x=1

Pour Tracer la représentation graphique de la fonction sur [-2;8] il suffit de Tracer la représentation graphique de la fonction sur $I_0 = [0;2[$

et utiliser les translation $2k\vec{i}$ avec $k \in \mathbb{Z}$

2) calculer:

$$f(4.1) = f(2+2.1) = f(2.1) = f(2+0.1) = f(0.1)$$

$$f(4.1) = 2(0.1) - (0.1)^{2} = 0.19$$

$$f(-3.5) = f(-4+0.5) = f(0.5)$$

$$f(-3.5) = 2(0.5) - (0.5)^{2} = 0.75$$

$$f(265.11) = f(2 \times 132 + 1.11) = f(1.11)$$

$$f(1.11) = 2(1.11) - (1.11)^{2} \approx 0.98$$

3) l'expression de :
$$f(x) = 2x - x^2$$
 sur les

intervalles :
$$I_k = \left[2k; 2(k+1)\right] k \in \mathbb{Z}$$

 $x \in I_k = \left[2k; 2(k+1)\right] \Leftrightarrow 2k \le x < 2(k+1)$
 $x \in I_k \Leftrightarrow 0 \le x - 2k < 2 \Leftrightarrow f(x-2k) = f(x)$
 $x \in I_k \Leftrightarrow f(x) = 2(x-2k) - (x-2k)^2$ avec
 $k \le \frac{x}{2} < k+1$ cad $k = E\left(\frac{x}{2}\right)$

15) Applications: Position relative de courbes, interprétation graphique d'équations et d'inéquations

Le but de ce chapitre est de pouvoir déterminer par le calcul, entre 2 courbes, quelle courbe se situe audessus de l'autre et sur quel(s) intervalle(s). Il te permettra d'interpréer ensuite, dans des problènes plus concrets, des situations liées `a la physique, la chimie, l''économie, ?

1) Position relative de deux courbes et intersection

Soient (C_f) la courbe représentative de f et (C_g) la courbe représentative de g.

On peut établir les relations suivantes :

$$M(x;y) \in (C_f)$$
 SSi $y = f(x)$

$$M(x;y) \in (C_g)$$
 SSi $y = g(x)$

Aux points d'intersection de (C_f) et de (C_g) , on a

$$M \in (C_f)$$
 et $M \in (C_g)$ donc

soit
$$f(x) = g(x)$$

A retenir:

- les solutions de l'équation f(x) = g(x) sont les abscisses des points D'intersection de (C_f) et de (C_n) .
- les solutions de l'inéquation $f(x) \ge g(x)$ sont les abscisses des points de (C_f) situées au-dessus $de(C_o)$.
- les solutions de l'inéquation $f(x) \le g(x)$ sont les abscisses des points de (C_f) situées au-dessous $\operatorname{de}\left(C_{o}\right)$.

Un cas particulier : équation f(x) = m et inéquation $f(x) \ge m$

• Les solutions de l'équation f(x) = m sont les abscisses des points d'intersection de (C_f) avec la droite d'équation y = m

• Les solutions de l'inéquation $f(x) \ge m$ sont les abscisses des points de (C_f) situés au-dessus de la droite d'équation y = m.

2) Quelques exercices d'application

Exercice1: Soit la courbe (C_f) représentative de f telle que $f(x) = x^3 - 4x^2 + 3$ et la droite (D) d'équation y = -x - 3

- 1- Résoudre graphiquement l'équation f(x) = 3puis l'inéquation $f(x) \prec 3$.
- 2- Résoudre graphiquement l'équation f(x) = 0puis l'inéquation $f(x) \ge 0$
- 3- Résoudre graphiquement l'équation f(x) = -x 3 puis l'inéquation $f(x) \le -x 3$

Réponses : 1) f(x) = 3 La solution est l'ensemble des antécédents de 3 : $S = \{0,4\}$

2- f(x) = 0 La solution est l'ensemble des antécédents de $0: S = \{a;1;b\}$ Avec $-1 \prec a \prec -0.5$ et $3.5 \prec b \prec 4$

$$f(x) \ge 0$$
 $S = [a;1] \cup [b;+\infty[$

3- f(x) = -x - 3 La solution l'ensemble des abscisses des points d'intersection de (C_f) et de D: y = -x - 3 donc $S = \{-1; 2; 3\}$

$$f(x) \le -x -3$$
 $S =]-\infty; -1] \cup [2;3]$

Exercice2: Soient f et g les deux fonctions définies sur R par: $f(x) = x^2 - 3x - 4$ et g(x) = 3x + 12

- 1) Tracer Les courbes (C_f) et (C_g)
- 2) Résoudre graphiquement et algébriquement l'équation f(x) = g(x)
- 3) Résoudre graphiquement et algébriquement l'inéquation $f(x) \ge g(x)$
- 4) Trouver les points d'intersection de la courbe (C_f) avec les axes du repére

Réponses : 1) Les courbes représentatives (C_f) (en rouge) et (C_g) (en bleu) sont données dans le repére ci-dessous

2) a) résolution graphique de l'équation f(x) = g(x)

Il suffit de chercher les abscisses des points d'intersection des courbes $\left(C_{f}\right)$ et $\left(C_{g}\right)$

On a donc x=-2 et x=8 donc $S=\{-2;8\}$ b) résolution algébrique de l'équation f(x)=g(x) f(x)=g(x) ssi $x^2-3x-4=3x+12$ ssi $x^2-6x-16=0$ a=1 et b=-6 et c=-16

$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times 1 \times (-16) = 36 + 64 = 100 = (10)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \quad \text{et} \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_1 = \frac{-(-6) + \sqrt{100}}{2 \times 1} = \frac{6 + 10}{2} = \frac{16}{2} = 8$$
 et
$$x_2 = \frac{-(-6) - \sqrt{100}}{2 \times 1} = \frac{6 - 10}{2} = \frac{-4}{2} = -2$$

donc $S = \{-2, 8\}$

3) a) résolution graphique de l'inéquation $f(x) \succ g(x)$

La courbe (C_f) est au-dessus de (C_g) si $x \in]-\infty; -2[\,\cup\,]8; +\infty[$

Donc $S =]-\infty; -2[\cup]8; +\infty[$

b) résolution algébrique de l'inéquation $f(x) \succ g(x)$

$$f(x) \succ g(x)$$
 ssi $x^2 - 3x - 4 \succ 3x + 12$ ssi $x^2 - 6x - 16 \succ 0$

Les racines sont : $x_1 = 8$ et $x_2 = -2$

x	$-\infty$	-2		8	$+\infty$
$x^2-6x-16$	+	þ	_	þ	+

Donc $S =]-\infty; -2[\cup]8; +\infty[$

5) a) Intersection de la courbe $\left(C_{f}\right)$ avec l'axe des abscisses

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l''équation f(x) = 0

$$f(x) = 0 \text{ ssi } x^2 - 3x - 4 = 0$$

$$a = 1 \text{ et } b = -3 \text{ et } c = -4$$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (-4) = 9 + 16 = 25 = (5)^2 > 0$$

$$x_1 = \frac{-(-3) + \sqrt{25}}{2 \times 1} = \frac{3+5}{2} = \frac{8}{2} = 4 \text{ et } x_2 = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{-2}{2} = -1$$

donc les points d'intersection de la courbe (C_f) avec l'axe des abscisses sont :

$$C(-1;0)$$
 et $D(4;0)$

b) Intersection de la courbe $\left(C_{f}\right)$ avec l'axe des ordonnées

le point d'intersection de la courbe (C_f) avec l'axe des ordonnées a une abscisse nulle et on a $f(0) = 0^2 - 3 \times 0 - 4 = -4$

donc le point d'intersection de la courbe (C_f) avec l'axe des ordonnées est : E(-4;0)

Exercice3: Soient f et g les deux fonctions définies sur R par : $f(x) = -x^2 - 2x + 3$ et

 $g(x) = \frac{x-1}{x+2}$ et (C_f) et (C_g) Les courbes représentatives de f et g

1) dresser le Tableau de variations de f et de g 2) a)Trouver les points d'intersection de la

2) a)Trouver les points d'intersection de la courbe (C_f) avec l'axes des abscisses

b)Trouver le point d'intersection de la courbe $\left(C_{g}\right)$ avec l' axes des abscisses

3) Tracer Les courbes représentatives (C_f) et (C_g) dans le même repère

4) a)Résoudre graphiquement l'équation f(x) = g(x)

b)Résoudre graphiquement l'inéquation $f(x) \ge g(x)$

Réponses : 1)a) $f(x) = -x^2 - 2x + 3$

on a f est une fonction polynôme donc $D_f = \mathbb{R}$

On a
$$a = -1$$
 et $b = -2$ et $c = 3$

$$(f(x) = ax^2 + bx + c)$$

Donc
$$-\frac{b}{2a} = -\frac{-2}{2 \times (-1)} = -1$$
 et $(f(-1) = 4)$

Donc la $\operatorname{courbe}(C_f)$ c'est une parabole de sommet A(-1;4)

et d'axe de symétrie la droite x = -1Donc le tableau de variations de f

1)b)
$$g(x) = \frac{x-1}{x+2}$$
 on a $g(x) \in \mathbb{R}$ ssi $x+2 \neq 0$

ssi
$$x \neq -2$$
 Donc $D_g = \mathbb{R} - \{-2\}$

$$\Delta = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 2 + 1 = 3 > 0$$

 $\left(C_{g}\right)$ est l'hyperbole de centre $W\left(-2;1\right)$ et d'asymptotes les droites d'équations respectives x=-2 et y=1

Donc le tableau de variations de g

x	$-\infty$ –	$2 + \infty$
g(x)	1	1

2)a) Intersection de la

courbe (C_f) avec l'axe des abscisses

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l''équation f(x) = 0

$$f(x) = 0$$
 ssi $-x^2 - 2x + 3 = 0$

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 11 = 16 > 0$$

$$x_1 = \frac{-(-2) + \sqrt{16}}{2 \times (-1)} = \frac{2+4}{-2} = \frac{6}{-2} = -3$$
 et

$$x_2 = \frac{-(-2) - \sqrt{16}}{2 \times (-1)} = 1$$
 donc les points d'intersection

de la courbe $\left(C_{f}\right)$ avec l'axe des abscisses sont :

$$A(-3;0)$$
 et $B(1;0)$

b) Intersection de la courbe $\left(C_{_g}\right)$ avec l'axe des abscisses

$$g(x) = 0$$
 ssi $\Leftrightarrow \frac{x-1}{x+2} = 0 \Leftrightarrow x-1 = 0 \Leftrightarrow x = 1$

le point d'intersection de la courbe (C_g) avec l'axe des abscisses est : C(1;0)

3)Représentation graphique

Les courbes représentatives (C_f) (en rouge) et (C_g) (en bleu) sont données dans le repére cidessous

4) a) résolution graphique de l'équation f(x) = g(x)

Il suffit de chercher les abscisses des points d'intersection des courbes (C_f) et (C_g)

On a donc x=1 donc $S=\{1\}$

4)b) résolution graphique de l'inéquation $f(x) \ge g(x)$

La courbe (C_f) est au-dessus de (C_g) si $x \in]-2;1]$

Donc S = [-2;1]

Exemple4: Soit f une fonction numérique tq:

$$f\left(x\right) = \sqrt{x + \sqrt{x}} - \sqrt{x}$$

- 1) Déterminer D_f
- 2) Démontrer que f est minorée.
- 3) Démontrer que f est majorée par $\frac{1}{2}$ Conclure

Solution :1) $D_f = \{x \in \mathbb{R} / x \ge 0\} = \mathbb{R}^+$

2) soit $x \in \mathbb{R}^+$ on a $x + \sqrt{x} \ge x$

Donc: $\sqrt{x+\sqrt{x}} \ge \sqrt{x}$ donc

$$f(x) = \sqrt{x + \sqrt{x}} - \sqrt{x} \ge 0$$

f est donc minorée sur \mathbb{R}^+ par m=0

2) soit $x \in \mathbb{R}^+$

$$f(x) = \sqrt{x + \sqrt{x}} - \sqrt{x} = \frac{\left(\sqrt{x + \sqrt{x}} - \sqrt{x}\right)\left(\sqrt{x + \sqrt{x}} + \sqrt{x}\right)}{\left(\sqrt{x + \sqrt{x}} + \sqrt{x}\right)} \ge 0$$

$$f(x) = \frac{x + \sqrt{x} - x}{\left(\sqrt{x + \sqrt{x}} + \sqrt{x}\right)} = \frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{\frac{x + \sqrt{x}}{x}} + 1\right)} = \frac{1}{\left(\sqrt{1 + \frac{1}{\sqrt{x}}} + 1\right)}$$

Si
$$x \in \mathbb{R}^{+}$$
: $\frac{1}{\sqrt{x}} > 0$ donc $1 + \frac{1}{\sqrt{x}} > 1$

donc
$$\sqrt{1+\frac{1}{\sqrt{x}}} > 1$$
 donc $\sqrt{1+\frac{1}{\sqrt{x}}} + 1 > 2$

donc
$$\frac{1}{\left(\sqrt{1+\frac{1}{\sqrt{x}}}+1\right)} < \frac{1}{2}$$
 donc $f(x) < \frac{1}{2}$

et on a :
$$f(0) = 0 < \frac{1}{2}$$
 donc $\forall x \in \mathbb{R}^+$ $f(x) < \frac{1}{2}$

par suite f est majorée par $\frac{1}{2}$.

conclusion: $0 < f(x) < \frac{1}{2} \quad \forall x \in \mathbb{R}^+$

f est donc bornée sur \mathbb{R}^+ .

Exemple5: Soit f une fonction numérique tq:

$$f(x) = x^2 + 2x\sqrt{x} + x - 4$$

1) Démontrer que f admet une valeur minimale

3) Démontrer que f n'est pas majorée

Solution: 1)
$$D_f = \{x \in \mathbb{R} / x \ge 0\} = \mathbb{R}^+$$

soit $x \in \mathbb{R}^+$

$$f(x) = x^2 + 2x\sqrt{x} + x - 4 = x^2 + 2x\sqrt{x} + (\sqrt{x})^2 - 4$$

$$f(x) = (x + \sqrt{x})^2 - 4$$
 donc

$$f(x) + 4 = \left(x + \sqrt{x}\right)^2 \ge 0$$

donc $f(x)+4 \ge 0$ donc $f(x) \ge -4$

et on a :
$$f(0) = -4$$
 donc $f(x) \ge f(0)$

donc f(0) = -4 est une valeur minimale de f au point $x_0 = 0$

2) Démontrons que f est non majorée.

Supposons f majorée donc :

$$\exists M \in \mathbb{R} : f(x) \leq M \quad \forall x \in \mathbb{R}^+$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : (x + \sqrt{x})^2 - 4 \le M$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : (x + \sqrt{x})^2 \le M + 4$$

 $\Leftrightarrow \forall x \in \mathbb{R}^+ : x + \sqrt{x} \le \sqrt{M+4}$ (on peut toujours supposer $M \ge 0$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : \left(\sqrt{x}\right)^2 + 2 \times \frac{1}{2}\sqrt{x} + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 \le \sqrt{M+4}$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : \left(\sqrt{x} + \frac{1}{2}\right)^2 \le \sqrt{M+4} + \frac{1}{4}$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : \sqrt{x} \le \sqrt{\sqrt{M+4} + \frac{1}{4}} - \frac{1}{2}$$

$$\Leftrightarrow \forall x \in \mathbb{R}^+ : x \le \left(\sqrt{\sqrt{M+4} + \frac{1}{4}} - \frac{1}{2}\right)^2$$
 Absurde

Donc f est non majorée

Exercice6: Soient f et g et h les trois fonctions définies par:

$$f(x) = \frac{6x^2 + 8x + 11}{(x-1)^2}$$
 et $g(x) = \frac{2x+3}{x-1}$ et

$$h(x) = x^2 + 2$$

1)a)Etudier les variations de g et de h

b)étudier le signe de la fonction g

Prof: atmani najib

2)montrer que : $\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$

3) Etudier les variations de f dans les intervalles :

$$]1;+\infty[; \left[-\frac{3}{2};1\right]; \left]-\infty;-\frac{3}{2}\right]$$

Réponses :1)a)
$$g(x) = \frac{2x+3}{x-1}$$

on a $g(x) \in \mathbb{R}$ ssi $x-1 \neq 0$ ssi $x \neq 1$

Donc
$$D_g = \mathbb{R} - \{1\}$$
 $\Delta = \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -5 < 0$

 $\left(C_{g}\right)$ est l'hyperbole de centre $W\left(1;2\right)$ et d'asymptotes les droites d'équations respectives x=1 et y=2

Donc le tableau de variations de q

x	$-\infty$]	l +∞
g(x)	/	/

TJaJon a n est une tonction polynôme donc $D_h = \mathbb{R}$

Donc le tableau de variations de h

x	$-\infty$ 0	$+\infty$
h(x)		1

b)étudions le signe de la fonction g sur_ \mathbb{R} -{1}

x	$-\infty$	$\frac{-3}{2}$]	l +∞
2x+3		þ	+	+
x-1	_		- () +
$\frac{2x+3}{x-1}$	+	þ	_	+

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \, / \, x \in D_f etf(x) \in D_g \right\}$$

2)montrons que: $\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$

$$(h \circ g)(x) = h(g(x)) = h\left(\frac{2x+3}{x-1}\right)$$

$$(h \circ g)(x) = \left(\frac{2x+3}{x-1}\right)^2 + 2 = \frac{4x^2 + 12x + 9 + 2x^2 - 4x + 2}{(x-1)^2}$$

$$(h \circ g)(x) = \frac{6x^2 + 8x + 11}{(x-1)^2}$$

Donc
$$\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$$

3) Etude des variations de f dans les intervalles :

a) sur
$$\left[-\infty; -\frac{3}{2}\right]$$
:

On a
$$\forall x \in \mathbb{R} - \{1\} : f(x) = (h \circ g)(x)$$

Puisque g est décroissante sur $\left]-\infty; -\frac{3}{2}\right]$ et

$$\forall x \in \left[-\infty; -\frac{3}{2} \right] : g(x) \in \left[0; +\infty \right[\text{ et h est } \right]$$

croissante sur $\left[0;+\infty\right[$ alors $f=h\circ g$ est décroissante sur $\left]-\infty;-\frac{3}{2}\right]$

b) sur
$$\left[-\frac{3}{2};1\right]$$

Puisque g est décroissante sur $\left[-\frac{3}{2};1\right]$ et

$$\forall x \in \left[-\frac{3}{2}; 1 \right[: g(x) \in] -\infty; 0 \right]$$
 et h est

décroissante sur $]-\infty;0]$ alors $f=h\circ g$ est croissante sur $\left[-\frac{3}{2};1\right[$

c) sur
$$]1;+\infty[$$
:

Puisque g est décroissante sur $]1;+\infty[$ et $\forall x\in]1;+\infty[$ $g(x)\in]0;+\infty[$ et h est croissante sur $]0;+\infty[$ alors $f=h\circ g$ est décroissante sur $]1;+\infty[$

Donc le tableau de variations de f :

x	$-\infty$ $-3/2$	1	$+\infty$
f(x)		7	/

http://abcmaths.e-monsite.com

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

prof: Atmani najib

