مسائل ارضای محدودیت

Constraint Satisfaction Problems (CSP)

مثال: مسئله N-وزیر- راه اول

$$D = \{0,1\}$$
 : Laurence \Box

- ضمنى 1. تعداد وزيرها بايد دقيقاً برابر N باشد.
- 2. هیچ دو وزیری نباید همدیگر را تهدید کنند.

$$N=N=1$$
 مجموع تعداد وزير ها $X_{i,j}=N$

در هر سطر حداکثر ۱ وزیر
$$orall i,j,k \quad (X_{ij},X_{ik}) \in ig\{(0,0),(0,1),(1,0)ig\}$$

در هر ستون حداکثر ۱ وزیر
$$orall i,j,k \quad (X_{ij},X_{kj}) \in ig\{(0,0),(0,1),(1,0)ig\}$$

در هر قطر حداکثر ۱ وزیر
$$orall i,j,k \quad (X_{ij},X_{i+k,j+k}) \in ig\{(0,0),(0,1),(1,0)ig\}$$

در هر قطر حداکثر ۱ وزیر
$$orall i,j,k$$
 در $(X_{ij},X_{i+k,j-k})\inig\{(0,0),(0,1),(1,0)ig\}$

مثال: مسئله N-وزیر- راه دوم

متغیرها:
$$\{Q_1,Q_2,\ldots,Q_N\}$$
 هر متغیرنشان دهنده ی وزیر یک سطر است $\{Q_1,Q_2,\ldots,Q_N\}$

دامنه
$$D = \{1, 2, 3, ..., N\}$$
 دامنه (مقدار متغیر) ستون وزیر را نشان میدهد

□محدودیتها:

برای هر دو وزیر
$$Q_i$$
 باید اطمینان حاصل کنیم که این دو همدیگر را تهدید نمیکنند. $\forall i,j \text{ non-threatening}(Q_i,Q_j)$

$$(Q_1,Q_2) \in \{(1,3),(1,4),\dots\}$$
 صریح:

$$\{Q_1 = 2, Q_2 = 4, Q_3 = 1, Q_4 = 3\}$$
 :...

مثال: سودوكو

- 🔲 متغیرها:
- خانههای خالی
 - 🔲 دامنهها:
 - {1,2,...,9}
 - 🔲 محدودیتها:
- نه مقدار مختلف در هر سطر
- نُه مقدار مختلف در هر ستون
- نه مقدار مختلف در هر ناحیه

انواع مختلف CSPs و محدودیتها

انواع مختلف CSPs

- دامنه متناهی. [مانند مقادیر بولی]
- انتساب کامل است $O(d^n)$ انتساب کامل است
 - مثال: CSPدودویی، رنگ آمیزی نقشه و n-وزیر
 - دامنه نامتناهی. [اعداد صحیح، رشتهها و غیره]
 - مثال: زمان شروع و پایان کارها در مسئله زمانبندی
- محدودیتهای خطی قابل حل، محدودیتهای غیر خطی تصمیم ناپذیر

□متغیرهای پیوسته

- مانند زمان شروع و پایان مشاهدات برای تلسکوپ Hubble
 - محدودیتهای خطی قابل حل در زمان چندجملهای

انواع مختلف محدوديتها

- انواع مختلف محدوديتها
- محدودیتهای یکانی شامل یک متغیر
 - $SA \neq green$ مانند •
- محدودیتهای دودویی شامل یک زوج از متغیرها
 - $SA \neq WA$ مانند •
- محدودیتهای مرتبه بالاتر شامل ۳ متغیر یا بیشتر
 - مانند محدودیتهای نه مقدار مختلف در سودوکو
 - 🗖 محدودیتهای نرم (اولویتها)
 - مثلا ترجیح رنگ قرمز به سبز
- اغلب برای انتساب مقدار به متغیر هزینه در نظر می گیرد
 - مسائل بهینهسازی دارای محدودیت

چند مثال از CSPها در دنیای واقعی

- 🗖 مسائل انتسابی: انتساب کلاس به اساتید
- □ مسائل تعیین جدول زمانبندی: کدام درس چه زمانی و در کجا ارائه میشود؟
 - 🗖 پیکربندی سختافزار
 - ازمانبندی حمل و نقل
 - 🗖 زمانبندي كارخانه
 - 🗖 طراحی مدار
 - 🗖 تشخيص خطا
 - 🗖

🖵 توجه: بسیاری از مسائل دنیای واقعی شامل متغیرهایی با مقادیر حقیقی هستند. [گسسته سازی قبل از حل]

حل مسائل CSP

فرمولهسازي استاندارد جستجو

CSP فرموله سازی استاندارد جستجو برای مسائل \Box

- حالت شروع: انتساب تهي {}
- تابع جانشین: انتساب مقدار به یک متغیر بدون مقدار
- تست هدف: انتساب کنونی باید کامل و سازگار باشد.

روشهای جستجو

 \square جستجوی سطحی (BFS)

■ در هر سطح یک متغیر مقدار می گیرد

■ با توجه به اینکه در سطح اخر (سطح n)، تمام متغیرها مقدار می گیرند

■ تمامی گرههای هدف در این سطح هستند (پیچیدگی زمانی و حافظه - نمایی)

■ برای یافتن راه حل باید تمامی درخت جستجو را تولید کنیم

{}

 $\{WA = g\}$ $\{WA = r\}$... $\{NT = g\}$...

 $\{WA = g, NT = r\} \quad \{WA = g, NT = g\} \quad \{WA = r, NT = g\}$

 \square جستجوی عمقی (DFS)

■ انتخاب بهتری است. (پیچیدگی زمانی -نمایی و پیچیدگی حافظه - خطی)

عمق درخت جستجو: n (تعداد متغیرها) \blacksquare

معمقترین راه حل: در عمق n (همه متغیرها مقدار دارند) \blacksquare

 $\sum_{i=1}^{n}|Di|$ فاکتور انشعاب در ریشه درخت: \blacksquare

...

ویدئوی نمایش رنگ آمیزی - جستجوی عمقی (DFS)

