a respective sorting step in accordance with the sorting criterion relevant in the sorting step, a conveying path section to be used as a first source storage area (QS1) and a conveying path section to be used as a second source storage area (QS2) for providing the objects located on conveyed goods carriers for sorting/treatment during a respective sorting step, at least one diverter device (W) between the source storage areas (QS1, QS2), and the destination storage areas (ZS1, ZS2),/at least one data reading device (L), provided close to the diverter device (W), for registering order numbers, preferably provided in machine-readable form on the conveyed goods carriers, of objects which are supplied to the diverter device (W), a control/device (S) that receives order number information from the data reading device (L) and which is set up to control the supply of the conveyed goods carriers with objects located on them to the diverter device (W) and to control the diverter position of the diverter device (W) in such a way that, according to the sorting criterion as to whether the order number of the object respectively fed to the diverter device (W) has or would have a zero or a one in its binary representation at a point that depends on the relevant sorting step, the relevant objects in the sorting steps being supplied to the first destination storage area (ZS1) and from there to the first source storage area (QS1) or to the second destination storage area (ZS2) and from there to the second source storage area (QS2) for sorting treatment in the next sorting step, the least significant digit of the order number in the binary representation being relevant for the sorting criterion in the first sorting step and the respective next most significant digit in the order number in the binary representation being relevant for the sorting criterion in the successive further sorting steps and, beginning at the second sorting step, either first all the objects from the first source storage area (QS1) and then