离散数学第十二次作业-二元关系

Problem 1

设集合 $A = \{a, b, c\}$, 判断以下结论是否正确.

(1) $\emptyset \subseteq A \times A$

 $(2) \{a,c\} \in A$

 $(3) \{a, b\} \in A \times A$

(4) $(c,c) \in A \times A$

答案:

(1) 正确

(2) 错误

(3) 错误

(4) 正确

Problem 2

设 A, B 为任意集合, 证明: 若 $A \times A = B \times B$, 则 A = B.

答案: 任取 x,

 $x \in A \Leftrightarrow x \in A \land x \Leftrightarrow \langle x, x \rangle \in A \times A \Leftrightarrow \langle x, x \rangle \ni B \times B \Leftrightarrow x \in B \land x \in B \Leftrightarrow x \in B$

Problem 3

证明 $A \times B \neq B \times A$ 除非 A = B, 其中 A 和 B 均为非空集合.

答案: 证明: 当 $A \neq B$ 时, 有以下两种情形:

- 1. $\exists x \in A(x \notin B)$, 则在 $A \times B$ 中第一个元素为 x 的序偶不存在于 $B \times A$ 中, 因此 $A \times B \neq B \times A$.
- 2. $\exists x \in B(x \notin A)$, 由对称性, $A \times B \neq B \times A$.

因此, 当 $A \neq B$ 时, $A \times B \neq B \times A$.

当且仅当 A = B 时, $A \times B = A \times A = B \times A$.

综上, 命题得证.

Problem 4

设 R 是从集合 A 到集合 B 的关系,从集合 B 到集合 A 的逆关系 (记作 R^{-1}) 是有序对集合 $\{(b,a) \mid (a,b) \in R\}$; 而补关系 \bar{R} 是有序对集合 $\{(a,b) \mid (a,b) \notin R, a \in A, b \in B\}$.

若 R 是正整数集合上的关系: $R = \{(a,b) \mid a$ 整除 $b\}$, 求

$$(1) R^{-1}$$

 $(2) \bar{R}$

答案:

$$(1) R^{-1} = \{(a,b) \mid a \text{ it } b \text{ is } k\}$$

(2)
$$\bar{R} = \{(a,b) \mid a$$
 不能整除 $b\}$

Problem 5

设

$$A = \{\langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle\}$$

$$B = \{\langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 4, 2 \rangle\}$$

求

(1)
$$A \cup B, A \cap B$$

(2) dom
$$A$$
, dom B , dom $(A \cup B)$

(3) ran
$$A$$
, ran B , ran $(A \cap B)$

(4) fld
$$(A - B)$$

答案:

$$(1) A \cup B = \{\langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 3, \rangle, \langle 1, 3 \rangle, \langle 4, 2 \rangle\}, A \cap B = \{\langle 2, 4 \rangle\}$$

(3) ran
$$A = \{2, 3, 4\}$$
, ran $B = \{2, 3, 4\}$, ran $(A \cap B) = \{4\}$

(2) dom
$$A = \{1, 2, 3\}$$
, dom $B = \{1, 2, 4\}$, dom $(A \cup B) = \{1, 2, 3, 4\}$

(4) fld
$$(A - B) = \{1, 2, 3\}$$

Problem 6

设 R 是关系 $\{(1,2),(1,3),(2,3),(2,4),(3,1)\}$, S 是关系 $\{(2,1),(3,1),(3,2),(4,2)\}$, 求 $S \circ R$.

答案: $S \circ R = \{(1,1), (1,2), (2,1), (2,2)\}$

Problem 7

设 R_1 和 R_2 分别是整数集合上的 "模 3 同余" 和 "模 4 同余" 关系, 即 $R_1 = \{(a,b) \mid a \equiv b \pmod{3}\}$ 和 $R_2 = \{(a,b) \mid a \equiv b \pmod{4}\}$. 求

(1) $R_1 \cup R_2$

(2) $R_1 \cap R_2$

(3) $R_1 - R_2$

(4) $R_2 - R_1$

(5) $R_1 \oplus R_2$

答案:

(1) $R_1 \cup R_2 = \{(a, b) \mid (a \equiv b \pmod{3}) \lor (a \equiv b \pmod{4})\}$

(2) $R_1 \cap R_2 = \{(a, b) \mid a \equiv b \pmod{12}\}$

(3) $R_1 - R_2 = \{(a, b) \mid (a \equiv b \pmod{3}) \land \neg (a \equiv b \pmod{4})\}$

(4) $R_2 - R_1 = \{(a, b) \mid a \equiv b \pmod{4} \} \land \neg (a \equiv b \pmod{3}) \}$

(5) $R_1 \oplus R_2 = \{(a,b) \mid ((a \equiv b \pmod{3})) \lor (a \equiv b \pmod{4})) \land \neg (a \equiv b \pmod{12})\}$

Problem 8

问

a) 在集合 $\{a,b,c,d\}$ 上有多少个不同的关系?

b) 在集合 $\{a,b,c,d\}$ 上有多少个关系包含有序对 (a,a)?

答案:

a) 有 $2^{4^2} = 65536$ 个不同的关系, 因为 $|A \times A| = 4^2$.

b) 有 $2^{4^2-1} = 32768$ 个不同的关系包含有序对 (a, a, B) $|A \times A| - 1 = 4^2$.

Problem 9

设 R_1 和 R_2 是 A 上的关系, 试证明:

(1) $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$.

(2) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$.

答案: 任取 $\langle x, y \rangle$,

$$\langle x, y \rangle \in (R_1 \cup R_2)^{-1} \Leftrightarrow \langle y, x \rangle \in R_1 \cup R_2$$
$$\Leftrightarrow \langle y, x \rangle \in R_1 \vee \langle y, x \rangle \in R_2 \Leftrightarrow \langle x, y \rangle \in R_1^{-1} \vee \langle x, y \rangle \in R_2^{-1}$$
$$\Leftrightarrow \langle x, y \rangle \in R_1^{-1} \cup R_2^{-1}$$

(2) 证明与(1)类似.