# EEE 598: Generative AI: Theory and Practice



### Team members

Aakash Kumar Tomar (1229632003) Abhijeet Ghildiyal (1229612347) Prateek Parashar(1229631743)



Project Title: Faster Diffusion – Rethinking the Role of the Encoder for Diffusion Model Inference



Paper Reference:

(https://arxiv.org/pdf/2312.09608)

## **Project Goals**

|                  | Sampling<br>Method           | T FID ↓ | Clip-                            | GFLOPs/ | s/image ↓                |                              |                             |
|------------------|------------------------------|---------|----------------------------------|---------|--------------------------|------------------------------|-----------------------------|
| DM               |                              |         | FID \score \forall score \forall | image ↓ | Unet of DM               | DM                           |                             |
| Stable Diffusion | DDIM [44]                    | 50      | 21.75                            | 0.773   | 37050                    | 2.23                         | 2.42                        |
|                  | DDIM [44] w/<br>Ours         | 50      | 21.08                            | 0.783   | $27350_{27\%\downarrow}$ | <b>1.21</b> <sub>45%↓</sub>  | $1.42_{41\% \downarrow}$    |
|                  | DPM-Solver [30]              | 20      | 21.36                            | 0.780   | 14821                    | 0.90                         | 1.14                        |
|                  | DPM-Solver [30] w/<br>Ours   | 20      | 21.25                            | 0.779   | 11743 <sub>21%↓</sub>    | <b>0.46</b> <sub>48%↓</sub>  | $0.64_{43\% \downarrow}$    |
|                  | DPM-Solver++ [31]            |         | 20.51                            | 0.782   | 14821                    | 0.90                         | 1.13                        |
|                  | DPM-Solver++ [31] w/<br>Ours | 20      | 20.76                            | 0.781   | 11743 <sub>21%↓</sub>    | <b>0.46</b> <sub>48%</sub> ↓ | <b>0.64</b> <sub>43%↓</sub> |

Table 1. Quantitative evaluation in both SD model

#### Standard Baselines

- Stable Diffusion v1.5
- Samplers: DDIM, DPM-Solver, DPM-Solver++

#### Dataset

MSCOCO-2017

#### **Metrics**

- FID
- Clip score
- Sampling time (s/image for Unet)

This covers the baseline evaluation of the models and highlights the faster diffusion method proposed by the paper



# **Project Goals**



#### Main Goal

Our project aims to analyze encode and decoder features in stable diffusion models, verifying minimal change in encoder outputs and significant change in decoder outputs during generation

#### **Feature Measurement**

Encoder and decoder features are quantitatively measured using Mean Squared Error and Frobenius norm for accuracy and consistency.

#### **Objective**

Accelerating stable diffusion sampling time without retraining using encoder propagation,
While maintaining high generation image quality (evaluated using FID & Clip score)





# MS-COCO 2017 Dataset





## **About the Dataset**

- ✓ MS-COCO is a standard benchmark for evaluating text-to-image generation models, it contains diverse, natural image captions covering everyday scenes, objects & interactions.
- ✓ The training/validation for the dataset is 118K/5K, each image has 5 different captions/prompts (all of them are human-written descriptions of the image, collected via Amazon Mechanical Turk)
- ✓ For our project we are using the validation set (5000 images) where each image is mapped to one caption each.



E.g.1 A woman stands in the dining area at the table



E.g.2 A big burly grizzly bear is show with grass the background

# Sampling Pipeline

#### **Dataset Preparation**

Validation set contains 5,000 images- each paired with one prompt

#### **Sampling & Metrics**

Baseline image generation and metric calculations are performed, followed by implementation of faster diffusion for comparative analysis







#### **Stable Diffusion Initialization**

Stable Diffusion v1.5 is initialized alongside samplers like DDIM, DDPM, DPM Solver, and DPM Solver++

#### FASTER DIFFUSION IMPLEMENTATION





Encoder features are cached at selected timesteps, reused at non-key steps, and parallel encoding is enabled for efficiency.



#### **Sampling Loop Alterations**

The sampling loop is modified to accommodate encoder propagation and optimize decoding.



#### **Evaluation**

Metrics tracked include FID, CLIP score, and overall sampling time.





#### MODEL ARCHITECTURE OVERVIEW

- Stable Diffusion v1.5 Employs a UNet backbone with encoder, bottleneck, decoder & skip connections, Text is processed via a CLIP(ViT-L/14) encoder.
- Sampling Algorithms- Multiple schedulers such as DDIM, DDPM, DPM Solver & DPM Solver++.

#### LIBRARIES AND TOOLS

- Hugging Face Diffusers: for loading the Stable Diffusion model and running sampling
- PyTorch: for underlying tensor operations scikit-learn: (for optional PCA if re-analysing features, similar to paper)
- o NumPy, Matplotlib: for numerical analysis and plotting
- o torch metrics: (optional) for easier FID computation

#### OTHER DETAILS & METRICS

- o Sampling only- The focus is strictly on inference & sampling optimization, not on model training
- o Inference Optimization Methods- These include encoder propagation, parallel decoding, and capturing evaluation metrics such as FID, Clip score & Sampling time

# Main Results

# Hyperparameters and Ranges

| Parameter                             | Range                                       | Description                                             | Why Tuned?                                                                       |
|---------------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
| Key Time-Steps<br>Selection (t_key)   | Manual list [0, 1, 2, 3, 5, 10, 15, 25, 35] | Chosen time-steps where encoder features are recomputed | To balance speed-up and minimize quality loss                                    |
| Prior Noise Injection<br>Strength (α) | 0.003                                       | Amount of initial noise (zT) added during sampling      | To recover texture details lost in encoder propagation                           |
| Scheduler Type                        | {DDIM, DPM-Solver, DPM-Solver++}            | Sampling scheduler used for denoising                   | Different schedulers<br>have different tradeoffs<br>between speed and<br>quality |
| Sampling Steps (T)                    | 20–50                                       | Number of sampling steps during generation              | Higher steps = better quality but slower inference                               |

## RESULTS

#### 1. What Worked:

- •Encoder propagation reduced sampling time significantly (~24–41% faster than standard DDIM sampling).
- •Prior noise injection helped recover texture and fine details without large computational cost.
- •FID and Clip score metrics stayed very close to baseline Stable Diffusion results.
- •Parallel decoding worked well, allowing multi-step decoding simultaneously.
- •Sampling acceleration was achieved without retraining the model (huge benefit over distillation-based methods).

## 2. What Didn't Work (Challenges):

- •Without prior noise injection, some generated images were slightly smoother and lost fine textures (especially at early time steps).
- •Aggressively skipping too many encoder time-steps (too few key steps) led to semantic drift: images not matching prompts as closely.
- •Some minor memory increase when enabling caching (not huge, but noticeable for GPU).



| Method               | Pros                                            | Cons                                       |  |
|----------------------|-------------------------------------------------|--------------------------------------------|--|
| Faster Diffusion     | No retraining needed, parallelism, good quality | Minor texture loss without noise injection |  |
| Distillation methods | One-step or few-step generation                 | Requires huge retraining time, new models  |  |

Prompt: A big burly grizzly bear is show with grass in the background



Stable Diffusion



Faster Diffusion

## Result Visualization

| Method                | Steps | FID     | Clip score | Sampling time (s) |
|-----------------------|-------|---------|------------|-------------------|
|                       |       |         |            |                   |
| DDIM                  | 50    | 25.2524 | 0.7798     | 1.518927889       |
|                       |       |         |            |                   |
| DDIM w/ Ours          | 50    | 25.0416 | 0.7808     | 1.10814           |
|                       |       |         |            |                   |
| DPM-Solver            | 20    | 26.9162 | 0.7781     | 2.156606401       |
|                       |       |         |            |                   |
| DPM-Solver w/ Ours    | 20    | 27.2168 | 0.779      | 0.685638421       |
|                       |       |         |            |                   |
| DPM-Solver-PP         | 20    | 27.0645 | 0.7786     | 0.633730816       |
|                       |       |         |            |                   |
| DPM-Solver-PP w/ Ours | 20    | 26.8469 | 0.7806     | 0.49428855        |

# Pros and Cons of Approach

## ➤ Why should this approach be adopted?

- Significantly accelerates diffusion sampling (up to 41% faster) without any model retraining, making it accessible even with limited compute resources.
- Maintains high image quality (FID and Clipscore close to baseline) while enabling partial parallelization during inference.

## Limitations/Problems with this approach

- •Slight loss of fine texture details without applying prior noise injection during encoder propagation.
- •Manual tuning of key time-steps is required to balance speedup vs. quality not fully automatic yet.

## Team Members

Asu ID – 1229632003

• Feature analysis, code implementation, sampling pipelines & validation

Abhijeet Ghildiyal ASU ID – 1229612347 Data setup, sampling pipelines & documentation

Prateek Parashar ASU ID – 1229631743 • Result analysis, Project management, codebase maintenance & final reporting



## References

- 1. <u>Jennewein, Douglas M. et al. "The Sol Supercomputer at Arizona State University." In Practice and Experience in Advanced Research Computing</u> (pp. 296–301). Association for Computing Machinery, 2023
- 2. <u>Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár "Microsoft COCO: Common Objects in Context", 2014</u>
- 3. Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer, "High-Resolution Image Synthesis with Latent Diffusion Models (Stable Diffusion)", 2021
- 4. <u>Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, Yejin Choi, "CLIP Score: A Reference-free Evaluation Metric for Image Captioning"</u>, 2021
- 5. Yu Yu, Weibin Zhang, Yun Deng, "Frechet Inception Distance (FID) for Evaluating GANs",2021
- 6. <u>Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu "DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models", 2022</u>
- 7. Jiaming Song, Chenlin Meng, Stefano Ermon, "Denoising Diffusion Implicit Models", 2020
- 8. Jonathan Ho, Ajay Jain, Pieter Abbeel "Denoising Diffusion Probabilistic Models". 2020
- 9. <u>Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu "DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps"</u>, 2022