

Statistika Non Parametrik TSD - Ganjil 2022/2023

Pertemuan 6:

Uji Keselarasan / Kesesuaian / GoF

Outline

- 1. Uji Chi-square
- 2. Uji Kolmogorov-Smirnov
- 3. Uji distribusi Uniform (dengan uji Chi-Sq)
- 4. Uji distribusi Binomial (dengan uji Chi-Sq)
- 5. Uji distribusi Poisson (dengan uji Chi-Sq)
- 6. Uji distribusi Uniform (dengan uji KS) (This Week)
- 7. Uji distribusi Binomial (dengan uji KS) (This Week)
- 8. Uji distribusi Poisson (dengan uji KS) (This Week)
- 9. Uji distribusi Normal (dengan uji Chi-Sq, KS, Liliefors) (This Week)

Uji Kolmogorov-Smirnov

Uji Kolmogorov-Smirnov

K-S 1 variable digunakan untuk membandingkan distribusi pengamatan dengan distribusi teoritis pada 1 variabel dengan skala ordinal

K-S 2 variabel digunakan untuk mencari sebab dan akibat berbeda dari 2 variabel dengan skala ordinal

Jika X adalah variable yang akan diuji dengan menggunakan UJI KS, maka terlebih dahulu harus diurutkan dari yang paling kecil hingga paling besar.

$$KS_{\text{hitung}} = \max |D|$$

$$D = F_{\text{observed}} - F_{\text{expected}}$$

Daerah penolakan

Tolak H_0 apabila $KS_{\text{hitung}} > KS_{\text{tabel}}$

Contoh 3

Rasa sakit pada saat melahirkan ditunjukkan dengan nilai skor (1-5) oleh 10 orang wanita. Tunjukkan apakah ada perbedaan dalam pemilihan skor rasa sakit. Dengan taraf signifikansi 5%.

Skor	1	2	3	4	5	Jumlah
Jumlah Ibu	0	1	0	5	4	10

Jawab

Perumusan hipotesis

H₀: Tidak ada perbedaan dalam pemilihan skor rasa sakit

H₁: Terdapat perbedaan dalam pemilihan skor rasa sakit

Taraf Signifikansi

$$\alpha = 5\%$$

• Statistik uji

Skor	1	2	3	4	5	Jumlah
Jumlah Ibu	0	1	0	5	4	10
p observed	0	0.1	0	0.5	0.4	1
p expected	0.2	0.2	0.2	0.2	0.2	1
F Observed	0	0.1	0.1	0.6	1	
F Expected	0.2	0.4	0.6	0.8	1	
(Fo-Fe)	-0.2	-0.3	-0.5	-0.2	0	
Fo-Fe	0.2	0.3	0.5	0.2	0	
			KS hitung			

$$KS_{\text{hitung}} = \mathbf{max} |D| = 0,5$$

Daerah penolakan

Berdasarkan Tabel diperoleh

$$KS_{\text{tabel}} = 0,409$$

Kesimpulan

Karena $KS_{\text{hitung}} > KS_{\text{tabel}}$ maka TOLAK H₀

Artinya penelitian ini berhasil memperlihatkan bahwa terdapat perbedaan dalam pemilihan skor rasa sakit

Tabel Nilai Kritis Uji Kolmogorov-Smirnov

n	α = 0,20	α = 0,10	α = 0,05	α = 0,02	α = 0,01
1	0,900	0,950	0,975	0,990	0,995
2	0,684	0,776	0,842	0,900	0,929
3	0,565	0,636	0,708	0,785	0,829
4	0,493	0,565	0,624	0,689	0,734
5	0,447	0,509	0,563	0,627	0,669
6	0,410	0,468	0,519	0,577	0,617
7	0,381	0,436	0,483	0,538	0,576
8	0,359	0,410	0,454	0,507	0,542
9	0,339	0,387	0.430	0,480	0,513
10	0,323	0,369	0,409	0,457	0,486
11	0,308	0,352	0,391	0,437	0,468
12	0,296	0,338	0,375	0,419	0,449
13	0.285	0.325	0.361	0.404	0.432

Uji distribusi Uniform (dengan KS)

Uji distribusi Uniform (dengan KS)

Perumusan hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Uniform

 H_1 : data sampel tidak berasal dari suatu populasi berdistribusi Uniform

Statistik uji

$$KS_{\text{hitung}} = \mathbf{max} |D|$$

Daerah penolakan

Tolak H_0 apabila $KS_{\text{hitung}} > KS_{\text{tabel}}$

• Pada pengujian keselarasan untuk distribusi Uniform, nilai peluangnya adalah $p_i=rac{1}{r}$, i = 1, 2,, r.

Contoh 4 (KS)

Diketahui data pada table di bawah. Apakah sebaran nilai tersebut Uniform? Gunakan alpha = 0.05.

Nilai	A	В	С	D	E
Frekuensi	14	18	32	20	16

Jawab

Hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Uniform

H₁: data sampel tidak berasal dari suatu populasi berdistribusi Uniform

Statistik uji

r = banyaknya karakteristik yang diamati

$$p_i = \frac{1}{r} = \frac{1}{5}$$

$$KS_{\text{hitung}} = \mathbf{max} |D| = 0,08$$

Daerah penolakan

Gagal tolak H_0 karena $KS_{\text{hitung}} = 0.08 < KS_{\text{tabel}} = 0.134$

• **Kesimpulan**: Data sampel berdistribusi Uniform

Uniform										
Nilai	Α	В	С	D	E	Total				
Frekuensi	14	18	32	20	16	100ai				
p observed	0.14	0.18	0.32	0.2	0.16	1				
p expected	0.2	0.2	0.2	0.2	0.2	1				
F observed	0.14	0.32	0.64	0.84	1					
F expected	0.2	0.4	0.6	0.8	1					
Fobs - Fexp	-0.06	-0.08	0.04	0.04	0					
Fobs - Fexp	0.06	0.08	0.04	0.04	0					
		KS Hitung								

Tabel Nilai Kritis Uji Kolmogorov-Smirnov

n	α = 0,20	α = 0,10	α = 0,05	α = 0,02	α = 0,01
1	0,900	0,950	0,975	0,990	0,995
2	0,684	0,776	0,842	0,900	0,929
3	0,565	0,636	0,708	0,785	0,829
4	0,493	0,565	0,624	0,689	0,734
5	0,447	0,509	0,563	0,627	0,669
		K (K)	1/1 > ((→	к [
95	0,108	0,124	0,137	0,154	0,165
100	0,106	0,121	0,134	0,150	0,161

Uji distribusi Binomial (dengan KS)

Uji distribusi Binomial

$$Pi = P(x = i) = \begin{bmatrix} r \\ I \end{bmatrix} p^{(i)} q^{(r-i)}$$

p = peluang sukses terjadi

$$q = 1 - p$$

Perumusan hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Binomial

H₁: data sampel tidak berasal dari suatu populasi berdistribusi Binomial

Uji distribusi Binomial

Statistik uji

$$KS_{\text{hitung}} = \mathbf{max} |D|$$

Daerah penolakan

Tolak
$$H_0$$
 apabila $KS_{hitung} > KS_{tabel}$

Contoh 7

Uji kerapuhan 280 batang nylon ditekukkan pada 5 titik dan dicatat banyaknya patahan (0, 1, 2, 3, 4, 5). Uji apakah data berasal dari populasi berdistribusi Binomial dengan parameter p=0.5.

Banyak patahan	0	1	2	3	4	5	TOTAL
Banyak batang nylon	2	5	3	2	1	2	15

Jawab

Hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Binomial

H₁: data sampel tidak berasal dari suatu populasi berdistribusi Binomial

Statistik uji

r = banyaknya karakteristik yang diamati

$$KS_{\text{hitung}} = \mathbf{max} |D| = 0,268$$

Daerah penolakan

Gagal tolak H_0 karena $KS_{\text{hitung}} = 0,268 < KS_{\text{tabel}} = 0,338$

• Kesimpulan : Data sampel berdistribusi Binomial

Binomial										
Banyak patahan (i)	0	1	2	3	4	5	TOTAL			
Banyak Batang Nylon	2	5	3	2	1	2	15			
p observed	0.133333	0.333333	0.2	0.133333	0.066667	0.133333	1			
F observed	0.133333	0.466667	0.666667	0.8	0.866667	1				
combin	5	1	10	1	10	5				
p^i	1	0.5	0.25	0.125	0.0625	0.03125				
q^(r-i)	0.03125	0.0625	0.125	0.25	0.5	1				
p expected	0.15625	0.03125	0.3125	0.03125	0.3125	0.15625	1			
F expected	0.15625	0.1875	0.5	0.53125	0.84375	1				
Fo-Fe	0.022917	0.279167	0.166667	0.26875	0.022917	0				
				KS hitung						

Tabel Nilai Kritis Uji Kolmogorov-Smirnov

n	α = 0,20	α = 0,10	α = 0,05	α = 0,02	α = 0,01
1	0,900	0,950	0,975	0,990	0,995
2	0,684	0,776	0,842	0,900	0,929
3	0,565	0,636	0,708	0,785	0,829
4	0,493	0,565	0,624	0,689	0,734
5	0,447	0,509	0,563	0,627	0,669
6	0,410	0,468	0,519	0,577	0,617
7	0,381	0,436	0,483	0,538	0,576
8	0,359	0,410	0,454	0,507	0,542
9	0,339	0,387	0,430	0,480	0,513
10	0,323	0,369	0,409	0,457	0,486
11	0,308	0,352	0,391	0,437	0,468
12	0,296	0,338	0,375	0,419	0,449
13	0,285	0,325	0,361	0,404	0,432
14	0,275	0,314	0,349	0,390	0,418
15	0,266	0,304	0,338	0,377	0,404
16	0,258	0,295	0,327	0,366	0,392
17	0,250	0,286	0,318	0,355	0,381

Uji distribusi Poisson (dengan KS)

Uji distribusi Poisson

$$Pi = P(x = i) = e^{-\lambda} \lambda^{x}$$
, $\lambda \approx \hat{\lambda} = rata - rata$

Perumusan hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Poisson

H₁: data sampel tidak berasal dari suatu populasi berdistribusi

Poisson

Contoh 8

• Banyak pasien di ruang tunggu dalam kurun waktu atau interval per 30 detik. Uji apakah banyak pasien menunggu dalam interval per 30 detik mengikuti distribusi Poisson dengan parameter $\lambda = 3$?

Banyak pasien teramati	0	1	2	3	4	5	6	7	Total
Banyak interval	4	1	2	2	4	4	6	2	25

Jawab

Hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Poisson

H₁: data sampel tidak berasal dari suatu populasi berdistribusi Poisson

Statistik uji

r = banyaknya karakteristik yang diamati

$$KS_{\text{hitung}} = \mathbf{max} |D| = 0,295$$

Daerah penolakan

Tolak H₀ karena	$KS_{\text{hittung}} = 0,295 > KS_{\text{tabel}} = 0,264$

Poisson											
Banyak pasien teramati	0	1	2	3	4	5	6	7	Total		lambda
oi	4	1	2	2	4	4	6	2	25		3
e(-lambda)	0.049787	0.049787	0.049787	0.049787	0.049787	0.049787	0.049787	0.049787			
lambda^x	1	3	9	27	81	243	729	2187			
x!	1	1	2	6	24	120	720	5040			
pi	0.049787	0.149361	0.224042	0.224042	0.168031	0.100819	0.050409	0.021604	0.988095		
p observed	0.16	0.04	0.08	0.08	0.16	0.16	0.24	0.08			
F observed	0.16	0.2	0.28	0.36	0.52	0.68	0.92	1			
F expected	0.049787	0.199148	0.42319	0.647232	0.815263	0.916082	0.966491	0.988095			
Fo-Fe	0.110213	0.000852	0.14319	0.287232	0.295263	0.236082	0.046491	0.011905			
					KS Hitung						

Kesimpulan: Data sampel tidak berdistribusi Binomial

n	α = 0,20	α = 0,10	α = 0,05	α = 0,02	α = 0,01	
1	0,900	0,950	0,975	0,990	0,995	
2	0,684	0,776	0,842	0,900	0,929	
3	0,565	0,636	0,708	0,785	0,829	
4	0,493	0,565	0,624	0,689	0,734	
5	0,447	0,509	0,563	0,627	0,669	
6	0,410	0,468	0,519	0,577	0,617	
7	በ 381	0.436	<u> </u>	0.538	0.576	
	K (€ () () () () () ()		1 ()			
24	0,212	0,242	0,269	0,301	0,323	
2 4 25	0,212	,		•	•	
	,	0,238	0,264	0,295	0,317	
26	0,204	0,233	0,259	0,290	0,311	

Uji distribusi Normal (dengan Chi-Square, KS, dan Liliefors)

Uji Liliefors

Asumsi:

- sampel terdiri n pengamatan bebas
- skala pengukuran minimal yang mungkin digunakan nominal
- hasil pengamatan diklasifikasikan dalam r kategori yang tidak saling tumpang tindih

Uji Liliefors

Hipotesis:

H₀: data sampel berasal dari distribusi normal

H₁: data sampel tidak berasal dari distribusi normal

• Statistik uji:

$$L_0 = \sup_{x} |F(z_i) - S(z_i)|$$

Daerah penolakan:

tolak Ho jika $L_0 > L_{\alpha, n}$

 $L_{\alpha, n}$ adalah nilai kritis untuk uji Liliefors

Uji Liliefors

Langkah-langkah:

- 1. Ubah x_i , i = 1, 2, ..., n ke dalam bentuk z_i , i = 1, 2, ..., n, melalui transformasi
- 2. Hitung $F(z_i) = P(z < z_i)$
- 3. Hitung proporsi z_1 , z_2 , ..., z_n yang $< z_i$; katakan $S(z_i)$ maka

$$S(z_i) = \frac{\text{banyaknya} z_1, z_2, \dots, z_n \text{ yang} \le z_i}{n}$$

- 4. Hitung $|F(z_i) S(z_i)|$
- 5. Tentukan $L_0 = \sup_{\mathbf{z}} |F(z_i) S(z_i)|$
- 6. Bandingkan nilai \hat{L}_0 dengan $L_{\alpha,n}$

Contoh 9

Berikut diberikan data:

23 27 33 40 48 48 57 59 62 68 69 70

yang diambil dari suatu populasi, akan diuji hipotesis nol bahwa sampel ini berasal dari populasi dengan distribusi normal pada $\alpha = 0.05$.

Jawab

Penyelesaian

PERUMUSAN HIPOTESIS:

H₀: data sampel berasal dari distribusi normal

H₁: data sampel tidak berasal dari distribusi normal

STATISTIK UJI:
$$L_0 = \sup_{x} |F(z_i) - S(z_i)|$$

DAERAH KRITIS : tolak Ho jika $L_0 > L_{\alpha, n}$

Untuk α = 0.05 dan n = 12 dari tabel nilai kritis uji Liliefors L_{0.05, 12} = 0,242

Perhitungan:

Dari data di atas diperoleh : lihat table di slide selanjutnya

Jawab

i	1	2	3	4	5	6	7	8	9	10	11	12
data (urut)	23	27	33	40	48	48	57	59	62	68	69	70
mean												
50.33333												
std.dev												
16.54928												
Z	-1.65163	-1.40993	-1.04738	-0.6244	-0.14099	-0.14099	0.402837	0.523688	0.704965	1.067519	1.127944	1.18837
F(z)	0.049305	0.07928	0.147463	0.266183	0.443938	0.443938	0.656466	0.699752	0.759584	0.857131	0.870328	0.882656
S(z)	0.083333	0.166667	0.25	0.333333	0.416667	0.5	0.583333	0.666667	0.75	0.833333	0.916667	1
F(z)-S(z)	0.034029	0.087387	0.102537	0.06715	0.027271	0.056062	0.073133	0.033086	0.009584	0.023798	0.046338	0.117344
												Lo

Dari tabel di atas tampak pada = 70 memberikan nilai terbesar sehingga $L_0 = 0,117$.

Dari tabel nilai kritis uji Liliefors $L_{0,05, 12} = 0,242$ berarti $L_0 < L_{0,05, 12}$ maka hipotesis nol diterima.

Kesimpulannya adalah bahwa populasi asal berdistribusi normal

Catatan:

Untuk pengujian keselarasan ini data harus dalam keadaan terurut dari kecil ke besar.

FAKULTAS TEKNOLOGI MAJU DAN MULTIDISIPLIN

Tabel Nilai Kritis Untuk Uji Liliefors

	Ukuran	Taraf Nyata (α)								
	Sampel	0.01	0.05	0.10	0.15	0.20				
	n = 4	0.417	0.381	0.352	0.319	0.300				
	5	0.405	0.337	0.315	0.299	0.285				
	6	0.364	0.319	0.294	0.277	0.265				
	7	0.348	0.300	0.276	0.258	0.247				
	8	0.331	0.285	0.261	0.244	0.233				
	9	0.311	0.271	0.249	0.233	0.223				
	10	0.294	0.258	0.239	0.224	0.215				
	11	0.284	0.249	0.230	0.217	0.206				
	12	0.275	0.242	0.223	0.212	0.199				
	13	0.268	0.234	0.214	0.202	0.190				
	14	0.261	0.227	0.207	0.194	0.183				
	15	0.257	0.220	0.201	0.187	0.177				
	16	0.250	0.213	0.195	0.182	0.173				
	17	0.245	0.206	0.289	0.177	0.169				
	18	0.239	0.200	0.184	0.173	0.166				
	19	0.235	0.195	0.179	0.169	0.163				
	20	0.231	0.190	0.174	0.166	0.160				
	25	0.200	0.173	0.158	0.147	0.142				
	30	0.187	0.161	0.144	0.136	0.131				
	n > 30	$\frac{1.031}{\sqrt{n}}$	$\frac{0.886}{\sqrt{n}}$	$\frac{0.805}{\sqrt{n}}$	$\frac{0.768}{\sqrt{n}}$	$\frac{0.736}{\sqrt{n}}$				

Sumber: Sudjana (1992)

Latihan Soal

Kerjakan Contoh 9 menggunakan Uji Chi-Square dan Uji KS

Terima Kasih

