复变函数与积分变换 B(6022900)期末考试 A 卷

2019-2020 学年第 1 学期

一、选择题

1. 己知
$$|z|=1$$
, $\arg(z-2)=\frac{5}{6}\pi$, 则 $z=($).

A.
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

B.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

C.
$$-\frac{\sqrt{3}}{2} + \frac{i}{2}$$

A.
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 B. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ C. $-\frac{\sqrt{3}}{2} + \frac{i}{2}$ D. $2 - \frac{\sqrt{3}}{2} + \frac{i}{2}$

A.
$$e^{iz} = \cos z + i \sin z$$
 B. $\sqrt[4]{z^2} = \sqrt{z}$ C. $-\frac{\sqrt{3}}{2} + \frac{i}{2}$ D. $2 - \frac{\sqrt{3}}{2} + \frac{i}{2}$

$$B. \quad \sqrt[4]{z^2} = \sqrt{z}$$

C.
$$-\frac{\sqrt{3}}{2} + \frac{i}{2}$$

D.
$$2 - \frac{\sqrt{3}}{2} + \frac{i}{2}$$

A.
$$\sum_{n=1}^{\infty} e^{\frac{2\pi i}{n}}$$

B.
$$\sum_{n=2}^{\infty} \frac{\mathbf{i}^n}{\ln n}$$

A.
$$\sum_{n=1}^{\infty} e^{\frac{2\pi i}{n}}$$
 B. $\sum_{n=2}^{\infty} \frac{i^n}{\ln n}$ C. $\sum_{n=1}^{\infty} \frac{1}{n} \left[(-1)^n + \frac{i}{n} \right]$ D. $\sum_{n=0}^{\infty} \frac{1}{(2-i)^n}$

$$D. \sum_{n=0}^{\infty} \frac{1}{\left(2-i\right)^n}$$

4. 设
$$L \lceil f(t) \rceil = F(s)$$
, 则 $L^{-1} \lceil sF'(s) \rceil = ($).

A.
$$tf(t)-f'(t)$$

B.
$$tf'(t) + f(t)$$

C.
$$-tf'(t) - f(t)$$

A.
$$tf(t)-f'(t)$$
 B. $tf'(t)+f(t)$ C. $-tf'(t)-f(t)$ D. $-tf(t)+f'(t)$

二、填空题

1. 方程
$$e^z = -2 + 2i$$
,则 $z = _____$.

2. 级数
$$\sum_{n=1}^{\infty} \frac{2^n}{(z-3)^n} + \sum_{n=0}^{\infty} \frac{(1+i)^n}{3^n (n+1)^2}$$
 的收敛圆环为______.

3. 令
$$f(t) = u(t)$$
, 其中 $u(t)$ 为单位阶跃函数,若 $g(t) = u(t)\sin t$,则 $f(t)*g(t) = ______$

4.
$$\int_{-5}^{2} t e^{-2t} \delta(t+3) dz = \underline{\qquad}$$

三、解答题

- 1. 求-8i的三次方根.
- 2. 求下列积分:

(1)
$$I = \int_C \overline{z} |1-z|^2 dz$$
, $C: 0 \rightarrow 2i$ Efg.

(2)
$$I = \iint_C \frac{1}{z^2 + 1} e^{\frac{1}{z}} dz$$
, $C: |z + i| = \frac{3}{2}$ IE for.

(3)
$$I = \int_{-\infty}^{+\infty} \frac{\cos x dx}{x^2 + 4x + 5}$$
.

- 3. 设f(z) = u + iv在D内解析,且有 $v = u^2$,试证明f(z)在D内为常数.
- 4. 将 $f(z) = \frac{1}{z^2 1}$ 在 $2 < |z + 1| < +\infty$ 内展开为洛朗级数.
- 5. 求 $f(t) = \begin{cases} 1-|t|, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$ 的 Fourier 变换.
- 6. 求 $f(z) = \frac{\tan z}{z(3z-\pi)^2}$ 的全部孤立奇点及所有孤立奇点的留数.