Wydział	Imię i nazwisko)	Rok	Grupa	Zespół
	1. Michał Rogo	owski			
WFiIS	2. Ihnatsi Yern	nakovich	II	10	02
PRACOWNIA	Temat	Nr ćwiczenia			
ELEKTRONICZNA					
WFiIS AGH	Pomiary stałop	00			
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
10.03.2022	12.03.2022				

Pomiary stałoprądowe

Ćwiczenie nr $00\,$

Michał Rogowski

Ihnatsi Yermakovich

1	\mathbf{Cel}	ćwiczenia	2
2	Prz	ebieg ćwiczenia	2
	2.1	Pomiar napięcia i przepływającego prądu przez pojedynczy rezystor	2
	2.2	Pomiar rezystancji miernikiem wielkości elektrycznych i porówanie z parametrem dopa-	
		sowania	4
	2.3	Pomiar rozkładu napięć w dzielniku napięciowym	4
	2.4	Pomiar rozpływu prądów w dzielniku prądowym	5

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z konfiguracją połączeń szeregowych i równoległych odbiorników, pomiar prądu przepływającego przez rezystor wraz z pomiarem spadku napięcia oraz badanie słuszności prawa Ohma oraz równań Kirchhoffa..

2 Przebieg ćwiczenia

2.1 Pomiar napięcia i przepływającego prądu przez pojedynczy rezystor

Rysunek 1: Schemat do pomiaru napięcia i prądu na pojedynczym rezystorze

Wartość rezystancji opornika w tabelach jest wartością teoretyczną i obliczono ją z prawa Ohma ze wzoru:

$$R = \frac{V_1}{A_1} \tag{1}$$

Wartość średnia teoretyczna dla R_1 wynosi:

$$\overline{R_1} = \frac{1}{n} \sum R_i = 0,9891 \,(\mathrm{k}\Omega) \tag{2}$$

Wartość średnia teoretyczna dla R_2 wynosi:

$$\overline{R_2} = \frac{1}{n} \sum R_i = 1,9689 \,(\mathrm{k}\Omega) \tag{3}$$

Tabela 1: Wartości pomiar
owe amperomierza i woltomierza dla różnych wartości napię
ć ${\cal E}_1$ dla ${\cal R}_1$

Lp.	$\mathrm{E}_1[V]$	$A_1[mA]$	$V_1[V]$	$R_1[k\Omega]$
1	0,9960	1,0069	0,9899	0,9892
2	1,9990	2,0197	1,9858	0,9898
3	3,0030	3,0337	2,9821	0,9899
4	4,0060	4,0493	3,9780	0,9893
5	5,0080	5,0661	4,9740	0,9885
6	6,0110	6,0850	5,9700	0,9878

Rysunek 2: Wykres zależności napięcia ${\cal V}_1$ od prądu ${\cal A}_1$ dla ${\cal R}_1$

Tabela 2: Wartości pomiar
owe amperomierza i woltomierza dla różnych wartości napię
ć E_1 dla ${\cal R}_2$

Lp.	$\mathrm{E}_1[V]$	$A_1[mA]$	$V_1[V]$	$R_2[k\Omega]$
1	0,9970	0,5040	0,9929	1,9700
2	1,9990	1,0110	1,9915	1,9698
3	3,0030	1,5184	2,9907	1,9696
4	4,0060	2,0263	3,9890	1,9686
5	5,0080	2,5344	4,9880	1,9681
6	6,0110	3,0431	5,9870	1,9674

Rysunek 3: Wykres zależności napięcia ${\cal V}_1$ od prądu ${\cal A}_1$ dla ${\cal R}_2$

Przeprowadzając regresję liniową otrzymano:

$$R_1 = 0,980 \ k\Omega \qquad R_2 = 1,967 \ k\Omega \tag{4}$$

Otrzymane wyniki pokazują liniową zależność napięciowo-prądową. Ponadto otrzymano bardzo zbliżone wartości przeprowadzając regresję liniową zmierzonych wyników i wartości otrzymanych stosując prawo Ohma.

$$\overline{R_{Ohma}} \approx R_{eksperyment}$$
 (5)

Przpeprowadzając powyższy eksperyment upewniliśmy się w skuteczności prawa Ohma. Niedokładności między innym są spowodowane nieidealnością urządzeń, a mianowicie: rzeczywisty amperomierz ma rezystancję większą od 0, co sprawia, że na nim powstaje spadek napięcia, rzeczywisty woltomierz posiada skończoną rezystancję, co sprawia, że przez niego płynie prąd.

2.2 Pomiar rezystancji miernikiem wielkości elektrycznych i porówanie z parametrem dopasowania

Za pomocą omomierza zmierzono wartość rezystancji pierwszego opornika, której wartość była równa 0,9836 k Ω . Następnie zmierzono rezystancję drugiego opornika, która wyniosła 1,9708 k Ω . Zmierzone wartości są bardzo bliskie wynikom, które otrzymano po wykonaniu regresji liniowej. W ten sposób potwierdzono efektywność przeprowadzenia regresji.

2.3 Pomiar rozkładu napięć w dzielniku napięciowym

Rysunek 4: Schemat pomiarowy dzielnika napięciowego

Tabela 3: Wartości pomiarowe dla dzielnika napięciowego

Lp.	E1 [V]	A1 [mA]	V1 [V]	V2 [V]	R1 $[k\Omega]$	$R2 [k\Omega]$	$R_1 + R_2[k\Omega]$	$E1/A1 [k\Omega]$
1	0,9970	0,3365	0,3307	0,6624	0,9828	1,9685	2,9513	2,9629
2	1,9990	0,6749	0,6636	1,3292	0,9833	1,9695	2,9527	2,9619
3	3,0030	1,0136	0,9964	1,9965	0,9830	1,9697	2,9527	2,9627
4	4,0060	1,3523	1,3297	2,6633	0,9833	1,9695	2,9527	2,9624
5	5,0080	1,6912	1,6620	3,2290	0,9827	1,9093	2,8920	2,9612
6	6,0100	2,0299	1,9957	3,9970	0,9832	1,9691	2,9522	2,9607

Analizując powyższą tablicę, zauważmy, że prawo Kirchhoffa dla oczka jest spełnione, bo dla każdego zebranego wyniku jest prawdziwe równanie:

$$E_1 \approx V_1 + V \tag{6}$$

Co zgadza się z teorią:

$$\sum_{i} U_{i} = \sum_{k} \varepsilon_{k} \tag{7}$$

Zarówno wartość zastępcza $R_1 + R_2$ jak i wartość ilorazu E_1/A_1 jest umieszczona w powyższej tablicy. Wartości te pokrywają się z pominięciem małego błędu, który jest opisany w podpunkcie 2.1.

2.4 Pomiar rozpływu prądów w dzielniku prądowym

Rysunek 5: Schemat pomiarowy dzielnika prądowego

Zasilając układ napięciem U = 5,009 V, zmierzono prąd I = 7,5719 mA. Następnie zmierzono prąd $I_1=5,0654$ mA oraz prąd $I_2=2,5338$ mA.

Zauważmy, że pradowe prawo Kirchhoffa dla wezła jest słuszne:

$$I_1 + I_2 \approx \tilde{7}, 6 \, mA \approx I \tag{8}$$

Co zgadza się z teorią:

$$\sum_{\alpha=1,2,\dots} I_{\alpha} = 0 \tag{9}$$

Korzystając z prawa Ohma obliczono wartości $R_1=0.9889~{\rm k}\Omega$ oraz $R_2=1.9769~{\rm k}\Omega$. Rezystancję zastępczą rezystorów obliczono ze wzoru:

$$R = \frac{R1R2}{R1 + R2} = 0,659, (k\Omega)$$
 (10)

Iloraz napięcia i pradu:

$$R = \frac{E_1}{I} = 0,662 \ (k\Omega) \tag{11}$$

Wartość rezystancji zastępczej pokrywa się z ilorazem prądu i napięcia uwzględniając mały błąd, który jest opisany w podpunkcie 2.1