UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo vaje

Vaja 20 - Prožnostni modul

Luka Orlić

Kazalo

Se	znar	n uporabljenih simbolov	2
1	Teo	retični uvod	3
2	Nal	loga	4
3	Pot	rebščine	4
4	Ski	ca	4
5	Me	ritve	5
	5.1	Bakrena žica	5
	5.2	Meritve za natezno trdnost	7
	5.3	Metodologija	7
6	Obo	delava meritev	8
	6.1	Presek žice	8
	6.2	Baker	9
	6.3	Jeklo	10
	6.4	Natezna trdnost	10
7	Δns	aliza rezultatov	11

${\bf Seznam\ uporabljenih\ simbolov}$

Oznaka	Pomen
Δ	TEXT, enota: UNIT

1 Teoretični uvod

Pri majhnih deformaciji telesa je sila, ki deformacijo povzroči, sorazmerna z deformacijo (Hookov zakon). Pri ravni žici je relativni razteg $\Delta l/l$ sorazmeren z natezno napetostjo F/S:

$$\frac{\Delta l}{l} = \frac{1}{E} \frac{F}{S} \tag{1}$$

Pri tem je E prožnostni modul snovi. Vrednost E je za večino kovin okrog $10^7 N/cm^2$. Natezno napetost, pri Hookov zakon neha veljati imenujemo mejo linearnosti. Natezno napetost, pri kateri se snov že deformira pa imenujemo meja prožnosti. Ta je za kovine nekajkrat $10^4 N/cm^2$. Če prekoračimo to mejo, se žica po razbremenitvi ne skrči več na svojo prvotno dolžino, ampak ohrani trajen podaljšek. Če obremenjujemo žico še naprej, prekoračimo končno tudi mejo trdnosti in se žica pretrga.

2 Naloga

- i.) Določi prožnostni modul
- ii.) Določi mejo linearnosti
- iii.) Določi natezno trdnost bakrenih žič.

3 Potrebščine

- $\bullet\,$ Mizica z merili, privita na zid
- merjenec (2x bakrena žica, 1x jeklena žica)
- uteži s kljukicami
- $\bullet\,$ mikrometerski vijak

4 Skica

Slika 1: Merilec raztega žice

5 Meritve

5.1 Bakrena žica

Razteg v odvisnosti od mase - Baker					
Index	masa $[kg]$	x [m]	Δ x [m]	$F/S [N/m^2]$	$\delta x/x$ []
1	0.092	0.01700	0.000E+00	1.020E+08	6.148E-02
2	0.202	0.01735	3.500E-04	2.039E+08	6.275E-02
3	0.302	0.01765	6.500E-04	3.059E+08	4.567E-02
4	0.402	0.01790	9.000E-04	4.079E+08	3.679E-02
5	0.502	0.01820	1.200E-03	5.098E+08	3.103E-02
6	0.602	0.01850	1.500E-03	6.118E+08	2.695E-02
7	0.702	0.01875	1.750E-03	7.137E+08	2.384E-02
8	0.802	0.01900	2.000E-03	8.157E+08	2.143E-02
9	0.902	0.01935	2.350E-03	9.177E+08	1.961E-02
10	1.002	0.01960	2.600E-03	1.020E+09	1.804E-02
11	1.102	0.01995	2.950E-03	1.122E+09	1.681E-02
12	1.202	0.02030	3.300E-03	1.224E+09	1.578E-02
13	1.302	0.02060	3.600E-03	1.326E+09	1.486E-02
14	1.402	0.02095	3.950E-03	1.427E+09	1.409E-02
15	1.502	0.02140	4.400E-03	1.529E+09	1.349E-02
16	1.602	0.02225	5.250E-03	1.631E+09	1.319E-02
17	1.502	0.02210	5.100E-03	1.733E+09	1.237E-02
18	1.402	0.02195	4.950E-03	1.835E+09	1.302E-02
19	1.302	0.02170	4.700E-03	1.937E+09	1.368E-02
20	1.202	0.02145	4.450E-03	2.039E+09	1.443E-02
21	1.102	0.02125	4.250E-03	2.141E+09	1.533E-02
22	1.002	0.02095	3.950E-03	2.243E+09	1.628E-02
23	0.902	0.02070	3.700E-03	2.345E+09	1.745E-02
24	0.802	0.02045	3.450E-03	2.447E+09	1.882E-02
25	0.702	0.02010	3.100E-03	2.549E+09	2.038E-02
26	0.602	0.01990	2.900E-03	2.651E+09	2.245E-02
27	0.502	0.01960	2.600E-03	2.753E+09	2.492E-02
28	0.402	0.01925	2.250E-03	2.855E+09	2.804E-02
29	0.302	0.01890	1.900E-03	2.957E+09	3.223E-02
30	0.202	0.01860	1.600E-03	3.059E+09	3.823E-02
31	0.092	0.01820	1.200E-03	3.161E+09	4.709E-02

 [•] $l_b = 2,015m$ - Dolžina bakrene žice

 [•] $d_b=0,35mm\pm0,005mm$ - Debelina bakrene žice

Razteg v odvisnosti od mase - Jeklo					
Index	masa $[kg]$	x [m]	$\Delta \times [m]$	$F/S [N/m^2]$	$\delta x/x$ []
1	0.202	0.1332	0.000E+00	2.90E+07	0.000E+00
2	0.302	0.1335	3.500E-04	4.335E+07	1.785E-04
3	0.402	0.1339	7.000E-04	5.770E+07	3.569E-04
4	0.502	0.1342	1.000E-03	7.205E+07	5.098E-04
5	0.602	0.1344	1.200E-03	8.640E+07	6.116E-04
6	0.702	0.1346	1.450E-03	1.008E+08	7.390E-04
7	0.802	0.1349	1.700E-03	1.151E+08	8.663E-04
8	0.902	0.1351	1.950E-03	1.295E+08	9.935E-04
9	1.002	0.1353	2.150E-03	1.438E+08	1.095E-03
10	1.102	0.1356	2.400E-03	1.582E + 08	1.223E-03
11	1.202	0.1358	2.650E-03	1.725E+08	1.350E-03
12	1.302	0.1360	2.850E-03	1.869E + 08	1.451E-03
13	1.402	0.1362	3.050E-03	2.012E+08	1.553E-03
14	1.502	0.1365	3.300E-03	2.156E+08	1.680E-03
15	1.602	0.1366	3.450E-03	2.299E+08	1.756E-03
16	1.702	0.1369	3.700E-03	2.443E+08	1.883E-03
17	1.802	0.1371	3.900E-03	2.586E + 08	1.985E-03
18	1.902	0.1372	4.050E-03	2.730E + 08	2.061E-03
19	2.002	0.1374	4.250E-03	2.873E + 08	2.163E-03
20	2.102	0.1376	4.450E-03	3.017E+08	2.264E-03
21	2.168	0.1377	4.550E-03	3.112E+08	2.315E-03
22	2.268	0.1380	4.800E-03	3.255E+08	2.442E-03
23	2.368	0.1382	5.000E-03	3.399E+08	2.543E-03
24	2.468	0.1383	5.150E-03	3.542E + 08	2.620E-03
25	2.568	0.1386	5.400E-03	3.686E + 08	2.746E-03
26	2.668	0.1387	5.550E-03	3.829E + 08	2.822E-03
27	2.568	0.1386	5.450E-03	3.686E + 08	2.771E-03
28	2.468	0.1384	5.250E-03	3.542E + 08	2.670E-03
29	2.368	0.1383	5.100E-03	3.399E+08	2.594E-03
30	2.268	0.1381	4.950E-03	3.255E+08	2.518E-03
31	2.168	0.1379	4.750E-03	3.112E+08	2.416E-03
32	2.102	0.1378	4.650E-03	3.017E+08	2.366E-03
33	2.002	0.1376	4.400E-03	2.873E+08	2.238E-03
34	1.902	0.1374	4.200E-03	2.730E+08	2.137E-03
35	1.802	0.1372	4.050E-03	2.586E + 08	2.061E-03
36	1.702	0.1371	3.900E-03	2.443E+08	1.985E-03
37	1.602	0.1369	3.700E-03	2.299E+08	1.883E-03
38	1.502	0.1367	3.500E-03	2.156E+08	1.781E-03
39	1.402	0.1365	3.300E-03	2.012E+08	1.680E-03

Razteg v odvisnosti od mase - Jeklo					
Index	masa $[kg]$	x [m]	Δ x [m]	$F/S [N/m^2]$	$\delta x/x$ []
40	1.302	0.1363	3.150E-03	1.869E+08	1.604E-03
41	1.202	0.1362	3.000E-03	1.725E+08	1.527E-03
42	1.102	0.1360	2.800E-03	1.582E + 08	1.426E-03
43	1.002	0.1358	2.600E-03	1.438E+08	1.324E-03
44	0.902	0.1355	2.350E-03	1.295E+08	1.197E-03
45	0.802	0.1353	2.150E-03	1.151E+08	1.095E-03
46	0.702	0.1351	1.900E-03	1.008E+08	9.678E-04
47	0.602	0.1348	1.600E-03	8.640E+07	8.151E-04
48	0.502	0.1344	1.250E-03	7.205E+07	6.369E-04
49	0.402	0.1342	1.000E-03	5.770E+07	5.096E-04
50	0.302	0.1338	6.500E-04	4.335E+07	3.313E-04
51	0.202	0.1333	1.000E-04	2.899E+07	5.098E-05

- $l_j = 1,961m$ Dolžina jeklene žice
- $d_j = 0,295mm \pm 0,005mm$ Debelina jeklene žice

5.2 Meritve za natezno trdnost

Baker - $d = 0, 115mm$			
Index	masa $[kg]$		
1	0,242		
2	0,237		
3	0,239		
Baker - $d = 0,335mm$			
Index	masa $[kg]$		
1	2,402		
2	2,282		
3	2,216		

5.3 Metodologija

Debelino smo merili z makrometerskim vijakom, dolžino pa z metrom. Na steno pritrjeni skali smo odčitavili razteg žice.

6 Obdelava meritev

6.1 Presek žice

$$S = \pi * (\frac{d}{2})^{2}$$

$$S_{b} \approx 9, 6 * 10^{-8} m^{2} d = 0, 35mm$$

$$S_{j} \approx 6, 83 * 10^{-8} m^{2} d = 0, 295mm$$

$$S_{b1} \approx 1, 0 * 10^{-8} m^{2}; d = 0, 115mm$$

$$S_{b2} \approx 8, 8 * 10^{-8} m^{2}; d = 0, 335mm$$

$$(2)$$

- OPOMBA: Napaka vseh presekov je 10%
- \bullet OPOMBA: Napaka vseh debelin je 1,5%
- ullet OPOMBA: Za naslednje račune($\Delta l/l;\ F/S$), bodo rezultati zapisani v tabeli meritev

$$\frac{\Delta l}{l} = \frac{|x_{n-1} - x_n|}{l + (x_n - x_1)}$$

$$\frac{F}{S} = \frac{mg}{S}$$
(3)

$$k = \frac{1}{E}$$

$$E = \frac{1}{k}$$
(4)

6.2 Baker

Slika 2: Baker: $\Delta x/x(F/S)$

Legenda:

- Modre točke dodajamo uteži
- Oranžme točke odvzemamo uteži
- Sive točke točke dodajanja uteži, ki so presegle mejo linearnosti

$$k = 1 * 10^{-8}$$

 $R^2 = 0,9985 \& 0,9935$
 $E = 1 * 10^8 N/m^2$ (5)

$$(F/S)_{linearnosti} \in (1.4 * 10^8, 1.5 * 10^8]$$

6.3 Jeklo

Slika 3: Jeklo: $\Delta x/x(F/S)$

$$k = 7, 5 * 10^{-12}$$

$$R^{2} = 0,9966 \& 0,9847$$

$$E = 1, 3 * 10^{11} N/m^{2}$$
(6)

Legenda:

- Modre točke dodajamo uteži
- Oranžme točke odvzemamo uteži
- Sive točke točke dodajanja uteži, ki so presegle mejo linearnosti

6.4 Natezna trdnost

$$(\frac{F}{S})_{1,2} = \frac{\overline{m_{1,2}} g}{S_{1,2}}$$

$$(\frac{F}{S})_1 = 2, 3 * 10^8 N/m^2$$

$$(\frac{F}{S})_2 = 2, 2 * 10^9 N/m^2$$

$$(7)$$

7 Analiza rezultatov

Določili smo prožnostni modul jeklene in bakrene žiče kakor tudi natezno trdnost. Pri bakreni smo tudi določili mejo linearnosti bakra. Mejo linearnosti jeklene žice nismo mogli doseči.