AP Calculus Homework 3

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

1. Each limit represents the derivative of some function f at some number a. State such an f and a in each case.

a)
$$\lim_{x \to 5} \frac{2^x - 32}{x - 5}$$
 b) $\lim_{x \to \pi/4} \frac{\tan x - 1}{x - \pi/4}$

b)
$$\lim_{x \to \pi/4} \frac{\tan x - 1}{x - \pi/4}$$

2. A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t=5.

a)
$$f(t) = 100 + 50t - 4.9t^2$$

b)
$$f(t) = t^{-1} - t$$

3. Differentiate the function. (Choose any five problems)

a)
$$f(x) = x^3 - 4x + 6$$

a)
$$f(x) = x^3 - 4x + 6$$
 b) $h(x) = (x - 2)(2x + 3)$ c) $R(t) = 5t^{-3/5}$

c)
$$R(t) = 5t^{-3/5}$$

$$d) G(x) = \sqrt{x} - 2e^x$$

e)
$$f(t) = \sqrt{t} - \frac{1}{\sqrt{t}}$$

d)
$$G(x) = \sqrt{x} - 2e^x$$
 e) $f(t) = \sqrt{t} - \frac{1}{\sqrt{t}}$ f) $y = \frac{x^2 + 4x + 3}{\sqrt{x}}$

$$g) y = \frac{x^2 - 2\sqrt{x}}{x}$$

h)
$$u = \sqrt[5]{t} + 4\sqrt{t^5}$$

g)
$$y = \frac{x^2 - 2\sqrt{x}}{x}$$
 h) $u = \sqrt[5]{t} + 4\sqrt{t^5}$ i) $v = \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right)^2$

j)
$$z = \frac{A}{y^{10}} + Be^y$$
 k) $y = e^{x+1} + 1$

k)
$$y = e^{x+1} + 1$$

4. Show that the curve $y = 6x^3 + 5x - 3$ has no tangent line with slope 4.

5.** Find the value of c such that the line $y = \frac{3}{2}x + 6$ is tangent to the curve $y = c\sqrt{x}$.

6. Differentiate (Choose any five problems)

a)
$$f(x) = (x^3 + 2x)e^x$$
 b) $\frac{e^x}{1+x}$ c) $f(t) = \frac{2t}{4+t^2}$

$$b) \frac{e^x}{1+x}$$

c)
$$f(t) = \frac{2t}{4+t^2}$$

d)
$$V(x) = (2x^3 + 3)(x^4 - 2x)$$
 e) $R(t) = (t + e^t)(3 - \sqrt{t})$ f) $y = \frac{x+1}{x^3 + x - 2}$

e)
$$R(t) = (t + e^t)(3 - \sqrt{t})$$

f)
$$y = \frac{x+1}{x^3 + x - 2}$$

g)
$$y = \frac{t^2 + 2}{t^4 - 3t^2 + 1}$$
 h) $y = (r^2 - 2r)e^r$ i) $z = w^{3/2}(w + ce^w)$

h)
$$y = (r^2 - 2r)e^r$$

$$z = w^{3/2}(w + ce^{w})$$

$$j) f(t) = \frac{2t}{2 + \sqrt{t}}$$

- 7. Suppose that f(2) = -3, g(2) = 4, f'(2) = -2, and g'(2) = 7. Find h'(2) if
- a) h(x) = 5f(x) 4g(x) b) h(x) = f(x)g(x)
- c)* $h(x) = \frac{f(x)}{g(x)}$ d)* $h(x) = \frac{g(x)}{1 + f(x)}$
- 8. If f is a differentiable function, find an expression for the derivative of each of the following functions.

- a) $y = x^2 f(x)$ b)* $y = \frac{x^2}{f(x)}$ c)* $y = \frac{1 + x f(x)}{\sqrt{x}}$
- 9.* Find equations of the tangent lines to the curve

$$y = \frac{x-1}{x+1}$$

- that are parallel to the line x 2y = 2.
- 10. If $y = \frac{3}{4 + r^2}$, then $\frac{dy}{dx} = \frac{1}{2}$
- A) $\frac{-6x}{(4+x^2)^2}$ B) $\frac{3x}{(4+x^2)^2}$ C) $\frac{6x}{(4+x^2)^2}$ D) $\frac{-3}{(4+x^2)^2}$ E) $\frac{3}{2x}$

- 11. An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1,5) is

- A) 13x y = 8 B) 13x + y = 18 C) x 13y = 64
- D) x + 13y = 66 E) -2x + 3y = 13
- 12. If $f(x) = 2x^2 + 1$, then $\lim_{x \to 0} \frac{f(x) f(0)}{x^2}$ is
- A) 0
- C) 2
- D) 4 E) nonexistent
- 13. If $f(x) = -x^3 + x + \frac{1}{x}$, then f'(-1) =

- A) 3 B) 1 C) -1 D) -3 E) -5