Tarea 1.2 Espacio muestral y eventos

PARTICIÓN DEL ESPACIO MUESTRAL

Al conjunto de todos los resultados posibles de un experimento estadístico se le llama espacio muestral y se representa con el símbolo S.

A cada resultado en un espacio muestral se le llama elemento o miembro del espacio muestral, o simplemente punto muestral. Si el espacio muestral tiene un número finito de elementos, podemos listar los miembros separados por comas y encerrarlos entre llaves. Por consiguiente, el espacio muestral S, de los resultados posibles cuando se lanza una moneda al aire, se puede escribir como

$$S = \{H, T\},$$

en donde H y T corresponden a "caras" y "cruces", respectivamente

Considere el experimento de lanzar un dado. Si nos interesara el número que aparece en la cara superior, el espacio muestral sería

$$S_1 = \{1, 2, 3, 4, 5, 6\}$$

Si sólo estuviéramos interesados en si el número es par o impar, el espacio muestral sería simplemente

 $S_2 = \{par, impar\}$

PERMUTACIÓN

Una permutación es un arreglo de todo o parte de un conjunto de objetos.

El número de permutaciones de n objetos es n!

El número de permutaciones de las cuatro letras a, b, c y d será 4! = 24.

El número de permutaciones de n objetos distintos tomados de r a la vez es

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

En un año se otorgará uno de tres a algunos de los estudiantes, de un grupo de 25, de posgrado del departamento de estadística. Si cada estudiante puede recibir un premio como máximo, ¿cuántas selecciones posibles habría?

Solución: Como los premios son distinguibles, se trata de un problema de permutación. El número total de puntos muestrales es

$$_{25}P_3 = \frac{25!}{(25-3)!} = \frac{25!}{22!} = (25)(24)(23) = 13,800$$

El número de permutaciones de n objetos ordenados en un círculo es (n-1)!

Con 4 letras diferentes a, b, c y d tenemos 24 permutaciones distintas. Si permitimos que a = b = x y c = d = y, podemos listar sólo las siguientes permutaciones distintas: xxyy, xyxy, yxxy, yyxx, xyyx y yxyx. De esta forma tenemos 4!/(2!2!) = 6 permutaciones distintas.

El número de permutaciones distintas de n objetos, en el que n_1 son de una clase, n_2 de una segunda clase, ..., n_k de una k-ésima clase es

$$\frac{n!}{n_1! \, n_2! \dots \, n_k!}$$

Durante un entrenamiento de fútbol americano colegial, el coordinador defensivo necesita tener a 10 jugadores parados en una fi la. Entre estos 10 jugadores hay 1 de primer año, 2 de segundo año, 4 de tercer año y 3 de cuarto año, respectivamente. ¿De cuántas formas diferentes se pueden arreglar en una fi la si lo único que los distingue es el grado en el cual están?

$$\frac{10!}{1!\,2!\,4!\,3!} = 12,600$$

El número de formas de partir un conjunto de n objetos en r celdas con n₁ elementos en la primera celda, n₂ elementos en la segunda, y así sucesivamente, es

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! \, n_2! \dots \, n_k!}$$

Donde $n_1 + n_2 + ... + n_r = n$

Un hotel va a hospedar a siete estudiantes de posgrado que asisten a una conferencia, ¿en cuántas formas los puede asignar a una habitación triple y a dos dobles?

Solución: El número total de particiones posibles sería

$$\binom{7}{3,2,2} = \frac{7!}{3! \ 2! \ 2!} = 210$$

COMBINACIÓN

El número de combinaciones de n objetos distintos tomados de r a la vez es

$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

Un niño le pide a su madre que le lleve cinco cartuchos de Game-Boy TM de su colección de 10 juegos recreativos y 5 de deportes. ¿De cuántas maneras podría su madre llevarle 3 juegos recreativos y 2 de deportes?

Solución: El número de formas de seleccionar 3 cartuchos de 10 es

$$\binom{10}{3} = \frac{10!}{3! (10-3)!} = 120$$

El número de formas de seleccionar 2 cartuchos de 5 es

$$\binom{5}{2} = \frac{5!}{2!(5-2)!} = 10$$

Si utilizamos la regla de la multiplicación (regla 2.1) con n1 = 120 y n2 = 10, tenemos que hay (120)(10) = 1200 formas.

EJERCICIOS

- 2.1 Liste los elementos de cada uno de los siguientes espacios muestrales:
- a) el conjunto de números enteros entre 1 y 50 que son divisibles entre 8;

b) el conjunto $S = \{x \mid x^2 + 4x - 5 = 0\};$

$$x = \frac{-4 \pm \sqrt{4^2 - 4 * 1 * (-5)}}{2} = \frac{-4 \pm 6}{2} \rightarrow x_1 = -5 \ x_2 = 1$$

S={ -5, 1 }

c) el conjunto de resultados cuando se lanza una moneda al aire hasta que aparecen una cruz o tres caras;

S={ cruz, cara-cruz, cara-cara- cruz, cara-cara-cara }

d) el conjunto $S = (x \mid x \text{ es un continente});$

S={ América, África, Asia, Europa, Oceanía, Antártida }

e) el conjunto $S = \{x \mid 2x - 4 \ge 0 \ y \ x < 1\}.$

```
S={ \omega }
```

2.7 De un grupo de estudiantes de química se seleccionan cuatro al azar y se clasifican como hombre o mujer. Liste los elementos del espacio muestral S_1 usando la letra H para hombre y M para mujer. Defina un segundo espacio muestral S_2 donde los elementos representen el número de mujeres seleccionadas.

```
S_1 = \{ MMMM, MMMH, MMHH, MHHH, HHHH \}

S_2 = \{ 0, 1, 2, 3, 4 \}
```

2.15 Considere el espacio muestral S = {cobre, sodio, nitrógeno, potasio, uranio, oxígeno, cinc} y los eventos

```
A = {cobre, sodio, cinc},B = {sodio, nitrógeno, potasio}C = {oxígeno}.
```

Liste los elementos de los conjuntos que corresponden a los siguientes eventos:

```
a) A';
        A'= { nitrógeno, potasio, uranio, oxígeno }
b) A ∪ C;
        A \cup C = \{ cobre, sodio, cinc, oxígeno \}
c) (A ∩ B') ∪ C';
        B'={ cobre, uranio, oxígeno, cinc }
        (A \cap B') = \{ cobre, cinc \}
        C'={ cobre, sodio, nitrógeno, potasio, uranio, cinc }
        (A \cap B') \cup C'{ cobre, sodio, nitrógeno, potasio, uranio, cinc }
d ) B' ∩ C'
        B' \cap C'=\{ cobre, uranio, cinc \}
e) A \cap B \cap C;
        A \cap B=\{ \text{ sodio } \}
        A \cap B \cap C = \{ \emptyset \}
f) (A' \cup B') \cap (A' \cap C).
        (A' ∪ B')= {cobre, nitrógeno, potasio, uranio, oxígeno, cinc}
        (A' \cap C) = \{ oxígeno \}
```

$(A' \cup B') \cap (A' \cap C) = \{ oxígeno \}$

2.19 Suponga que una familia sale de vacaciones de verano en su casa rodante y que M es el evento de que sufrirán fallas mecánicas, T es el evento de que recibirán una infracción por cometer una falta de tránsito y V es el evento de que llegarán a un lugar para acampar que esté lleno. Remítase al diagrama de Venn de la figura 2.5 y exprese con palabras los eventos representados por las siguientes regiones:

Figura 2.5

a) región 5;

El evento fue fallas mecánicas.

b) región 3;

Los eventos fueron infracción y lugar de acampar lleno por igual.

c) regiones 1 y 2 juntas;

Los eventos fueron principalmente fallas mecánicas y lugares de acampar llenos y infracciones en menor medida.

d) regiones 4 y 7 juntas;

Los eventos fueron principalmente infracciones y fallas mecánicas en menor medida.

e) regiones 3, 6, 7 y 8 juntas.

Los eventos fueron infracciones y lugares de acampar llenos, asi como otros eventos aleatorios.

- 2.20 Remítase al ejercicio 2.19 y al diagrama de Venn de la fi gura 2.5, liste los números de las regiones que representan los siguientes eventos:
- a) La familia no experimentará fallas mecánicas y no será multada por cometer una infracción de tránsito, pero llegará a un lugar para acampar que está lleno.

Región 6.

b) La familia experimentará tanto fallas mecánicas como problemas para localizar un lugar disponible para acampar, pero no será multada por cometer una infracción de tránsito.

Región 2.

c) La familia experimentará fallas mecánicas o encontrará un lugar para acampar lleno, pero no será multada por cometer una infracción de tránsito.

Región 5 y 6.

d) La familia no llegará a un lugar para acampar lleno.

Región 4.

¿Tuviste alguna dificultad?

En lo personal ninguna pues todos estos temas ya los había visto en matemáticas discretas de mi primer semestre en el CUCEI, los cuales me gustan mucho y considero que se me dan bien.

¿Cómo lo resolviste?

Si me hizo falta regresar a ver un poco de mis viejas notas y archivos que tenia de primer semestre así como el libro de walpole, pero en general recordaba todo con bastante claridad.

BIBLIOGRAFÍA

Walpole, . (2012). *Probabilidad Y Estadística para ingeniería y ciencias*. México: Pearson