

Schlüsselqualifikationen

Forschungsprojekt

Wissenschaftliches Arbeiten mit Menschen – Übungen zu Schlüsselqualifikationen

Prof. Dr. Dirk Reichardt

www.dhbw-stuttgart.de

prof. dr. dirk reichardt

Informatik Univ. Kaiserslautern

Promotion Autonomes Fahren **Diplomarbeit**

Verkehrszeichenerkennu

VSTC

Vehicle Systems

prof. dr. dirk reichardt

Forschungsarten

Informatik

Univ. Kaiserslautern

Promotion

Autonomes Fahren Studienarbeit: Fallbasierte Motordiagnose

Diplomarbeit

Verkehrszeichenerkennu ng Grundlagen | freie Forschung

Grundlagen | am Anwendungsbeispiel kein direkter Produktbezug

Grundlagen | am Anwendungsbeispiel kein direkter Produktbezug

Forschung: Emotional Computing

BA / DHBW Stuttgart

Prof. für

Forschung: Handtherapie / IILAB

DHBW

Beauftragter FIT

Grundlagen | freie Forschung

Anwendung | direkter Produktbezug

Forschungsarten

Universitäten

Forschung

Grundlagen | freie Forschung

Grundlagen | am Anwendungsbeispiel kein direkter Produktbezug

Grundlagen | am Anwendungsbeispiel kein direkter Produktbezug

HAW

DHBW

Kooperative Angewandte Forschung Forschung

Orundlagen | freie Forschung

Nicht im strategischen Fokus

Anwendung | direkter Produktbezug

strategischer Fokus

Aufgaben der Hochschulen

Forschungsmethoden ...?

Was ist eigentlich Forschung ...

Impressionen

have fun - visit

fruzzer.com

Wer ist das?

Alan Turing

Kryptographie

Gottfried Wilhelm Leibniz

Entwicklung einer logischen Symbolsprache (Binärsystem)

Douglas Carl Engelbart

Computermaus

Blaise Pascal

Marie Curie

Stephen Hawking

Theodor Adorno

Jürgen Habermas

Jane Goodall

Grace Hopper

Welchen Namen haben Sie schonmal gehört?

Wen hätten Sie am Bild erkannt?

Wie heißt das Forschungsgebiet der jeweiligen Personen?

Was war der bekannteste Beitrag zur Wissenschaft?

Welche Forschungsmethoden wurde wohl eingesetzt?

Und was für Forschungsmethoden gibt es?

Als **Forschungsmethoden** werden in den <u>Wissenschaften</u> Verfahren und Analysetechniken bezeichnet, die zur Klärung von wissenschaftlichen Fragestellungen dienen.

Insbesondere in den <u>Sozialwissenschaften</u> ist die Unterscheidung in <u>Quantitative Forschungsmethoden</u> und <u>Qualitative Forschungsmethoden</u> geläufig.

Die <u>Wissenschaftstheorie</u> befasst sich unter anderem mit Voraussetzungen für Forschungsmethoden.

Erstes Studienjahr Informatik

Forschungsmethoden?

Integration eines Praxismoduls in das Studium Praxismodul Beurteilung **Praxis Praxis** durch Prüfungsausschuss Genehmigung Verantwortlich für Projektbericht Reflexionsbericht der Praxisinhalte Betreuung und Durchführung durch die Hochschule Teil A: ABL ist das Unternehmen Feedback / Teil B: Studierende (Ausbildungsleitung) Genehmigung Bewertungsvorschlag der Praxisbetreuer*innen durch Praxisbetreuer*innen

Forschungsmethoden, wissenschaftliches Arbeiten und wissenschaftliches Schreiben

Was erwartet Sie in dieser Lehrveranstaltung?

Was versteht man unter Wissenschaft?

In jeder Disziplin könnte das etwas anders sein!

Etwas Struktur für die Wissenschaften ...

Bild:

J. Borchert / P. Goos / B. Strahler, "Forschungsansätze", Arbeitsbericht Nr. 25/2004, Institut für Wirtschaftsinformatik, Georg-August-Universität Göttingen, 2004

Gibt es einen gemeinsamen Nenner?

Erkenntnisgewinn!

Induktion

Einzelne Beobachtungen

unsicher & vielleicht falsch

Gesetz

"Alle Schwäne sind weiß"

Deduktion

Bekannte Theorie
Annahmen

Schlussfolgerung

Was ist eine Forschungsfrage?

Einbettung in eine *Theorie*Verbindet eventuell mehrere Theorien
Nutzung von Begriffen,
Axiomen und Erkenntnissen
dieser Theorie

Bearbeitet eine *Lücke*in der bestehenden Theorie
Versucht eine Annahme zu belegen
Erweitert die bestehende Theorie
Bildet Brücke zwischen Theorien

Die Forschungsfrage

Situation beschreiben
Phänomen erklären
Vorhersage machen
Maßnahmen zur Zielerreichung finden
Bewertung einer Situation

Frage klar beschreiben Operationalisierbarkeit Frage muss neu sein Frage muss relevant und nicht trivial sein

Welche Forschungsstrategie wird gewählt?

Ist die Strategie passend und angemessen für die Forschungsfrage?

Ist die Strategie mit den vorhandenen Ressourcen machbar?

Ist die Strategie ethisch vertretbar?

Unser methodischer Fokus Das Experiment

Die Erhebung

Die Fallstudie

Die "Grounded Theory"

Die Aktionsforschung

Die Simulation

Der mathematisch-logische Beweis

Forschung

DHBW Stuttgart

Wie ordnet man eine praktische Aufgabenstellung ein?

Problem wird beschrieben Auftrag wird spezifiziert Durchführung wird beauftragt Ergebnis wird abgenommen

Ich habe die Aufgabe erhalten und fehlerfrei umgesetzt ...

wo ist die Forschung?

Wie ordnet man eine praktische Aufgabenstellung ein?

Design Science Research

Umfeld

Problem im Unternehmensumfeld

Randbedingungen sind gegeben:

Eingesetzte Technologie

Aufgabenfelder von Kolleg*innen

Unternehmensstruktur

prozesse undStrategie

Design Problem

Erstellen

≡valuiere

Relevance

Cycle

Entwurf und Realisierung einer (prototypischen) Lösung

> Design Cycle

Analyse
Fallstudie
Experiment
Simulation
Feldstudie

Knowledge Question

Wissensbasis /
Stand der Wissenschaft

Wissenschaftliche Theorien

Bekannte Modelle

Analysemethoden

Formalismen

Rigor

Cycle

Methoden und Maßnahmen

Validierungskriterien

Erfahrungswissen

Metaartefakte

Forschungsthema

Was ist die Motivation zur Forschung?

Was ist das eigentliche Interesse?

Wann handelt es sich um ein wissenschaftliches Thema bzw. eine wissenschaftliche Aufgabenstellung?

Halte nur ich das Thema für relevant oder auch andere?

Grundsätzliche Forschungsinteressen

nach T.Plümper

y-basiertes Design

Der Versuch ein Phänomen möglichst vollständig zu verstehen und alle Ursachen zu finden, welche dieses beeinflussen.

Fixe abhängige Variable - Suche nach Determinanten

x-basiertes Design

Der Versuch die (ggf.) Auswirkungen eines Phänomens zu erfassen und zu erklären.

Fixe unabhängige Variable - Suche nach Folgen

Grundsätzliche Forschungsinteressen

nach T.Plümper

y=f(x) -basiertes Design

Herstellen eines Zusammenhangs zwischen einer oder mehreren unabhängigen Variablen und einer abhängigen (oder mehreren ähnlichen)

Welche Vor- und Nachteile haben die Ansätze?

Welche sind in unserem Umfeld üblich?

Diskussion:

Finden Sie Beispiele für x-basierte und y-basierte Forschungsdesigns

Diskutieren Sie dies mit der Nachbarin / dem Nachbarn.

ambient intelligence

serious games

bio feedback

technologies

eye tracking

gesture recognition

user experience design

> wearable computing

human computer interaction

> social robotics

augmented reality

virtual reality

speech recognition

emotion recognition

Cycle Trainer

Hand Therapy

Robotics

Cycling in Stuttgart

Home Automation

IoT

Von der Theorie zur Hypothese

Wichtig zur Begründung der Forschung, des Zwecks und der Sinnhaftigkeit

Literatu Arbeit!

Theorie: Man nimmt an es gibt Auswirkungen von Radonstrahlung aus

dem Erzgebirge auf die Einwohner von Sachsen. Bei längerem Einwirken soll es zu genetischen Änderungen bei Neugeborenen Kommen. Die Veränderungen im Gehirn bewirken eine erhöhte

Intelligenz.

Hypothese: "Sachsen sind intelligenter als andere Deutsche"

Präzisieren und Operationalisieren der Hypothese

Hypothese: "Sachsen sind intelligenter als andere Deutsche"

H1: Der Anteil der Erwachsenen (> 18 J.), deren Eltern vor ihrer Geburt mindestens

ein Jahr in Sachsen gelebt haben und deren IQ Wert (gemäß Test X) über dem

Durchschnittswert (100) liegt, ist um mindestens 5 % höher als der

entsprechende Anteil im Bundesdurchschnitt.

H2: Erwachsene (> 18 J.), deren Eltern vor ihrer Geburt mindestens ein Jahr in

Sachsen gelebt haben, erzielen im Durchschnitt mindestens 5 IQ Punkte (im Text

X) über den bundesdeutschen Durchschnittswerten.

H3: Erwachsene (> 18 J.), deren Eltern vor ihrer Geburt mindestens ein Jahr in

Sachsen gelebt haben, erzielen im Durchschnitt mindestens 5 IQ Punkte (im Text

X) mehr als Erwachsene (> 18 J.) deren Eltern nie in Sachsen gelebt haben.

Frage: Wie prüfen Sie diese Hypothesen?

Präzisieren und Operationalisieren der Hypothese

Hypothese: "Sachsen sind intelligenter als andere Deutsche"

H1: π (Sachsen IQ > 100) \geq 55 %

Populationsanteil

H2: (Sachsen IQ) ≥ 105 IQ Punkte

Populationsmittelwert

H3: (Sachsen IQ) ≥ (andere Deutsche IQ) + 5 IC unkter

Präziser

Geltungsbereich

eingeschränkt

Subjektivität

Frage: Wie prüfen Sie diese Hypothesen?

Messen - Signifikanztests

Vom Messen zum Testen

Testen = erfassen/ermitteln von nicht direkt beobachtbaren Merkmalen

Gütekriterien für Tests:

Vom Messen zum Testen

Objektivität	Durchführungsobjektivität	z.B. Erläuterungen unterschiedlich durch Testleiter
	Auswertungsobjektivität	Verschiedene Anwender kommen zum gleichen Ergebnis
	Interpretationsobjektivität	Verschiedene Anwender ziehen aus dem Ergebnis die gleichen Schlüsse
Reliabilität	Testtheorie $X = T + E$	Zufallsfehler, unsystematisch, Annahme: mehrere Messungen führen im Mittel zum Fehlerausgleich
Stabilität>	Retest Methode	Test zweimal durchführen – Korrelation bestimmen Problem: Lern-/Übungs-/Erinnerungseffekte
	Paralleltest Methode	Verschiedene Test-Items mit gleicher Methode Messen (zeitlicher Abstand)
	Testhalbierungsmethode	Korrelation zwischen zwei Aufgabenblöcken. Problem: Ansteigende Schwierigkeit der Aufgaben
		Messen (zeitlicher Abstand) Korrelation zwischen zwei Aufgabenblöcken.

Vom Messen zum Testen

In der Physik ganz klar – bei psychometrischen Tests nicht: Validität!

Validität Inhaltsvalidität Wesentliche Merkmale identifizieren und messen

Schule: Aufgaben decken Unterrichtsstoff ab

Kriteriumsvalidität Vorhersagevalidität, innere Validierung (andere

Tests), Bsp.: Berufseinstiegstest, Zugangstest

Konstruktvalidität Viele Hypothesen über das Merkmal werden

getestet, längerer Prozess

Diskussion:

Bewerten Sie die folgenden "Tests" bezüglich

Objektivität Reliabilität (im Sinne der Testtheorie) Inhaltsvalidität

- A) Abitur
- B) Klausur im Fach Mathematik
- C) Klausur im Fach Deutsch
- D) Bachelorarbeit

