

Sheaves for Heterogeneous Data

Luke Braithwaite

Read the paper: https://arxiv.org/abs/2409.08036

Source code available at: https://github.com/AspieCoder1/mphil-acs-repo

Background

- Relational data
- Heterogeneous graphs
- GNNs
- Heterogeneous GNNs

Relational data is everywhere

Neuroscience

Chemistry

Transport

Robotics

Social networks

Graphs

A graph is a set of nodes connected by edges

Heterogenous data

Heterogeneous data multiple node and edge types

Graph Neural Networks

Node features are updated using local aggregation

$$\mathbf{m}_{u}^{(l)} \coloneqq \operatorname{AGG}\left(\left\{\left(\mathbf{x}_{u}^{(l)}, \mathbf{x}_{u}^{(l)}\right) \middle| v \in \mathcal{V}\right\}\right)$$

$$\mathbf{x}_{u}^{(l+1)} \coloneqq \operatorname{UPD}\left(\mathbf{x}_{u}^{(l)}, \mathbf{m}_{u}^{(l+1)}\right)$$

Heterogeneous Graph Neural Networks

HetGNN^[4]

Sheaves for heterogeneous data

- Cellular sheaves
- Neural Sheaf Diffusion
- Sheaves model heterogeneity

Motivating sheaves

Local data assignment → consistent global representation

Cellular sheaves

- Node stalks $\mathcal{F}(u)$ attached to each node
- Edge stalks $\mathcal{F}(e)$ attached to each edge
- Restriction map $\mathcal{F}_{u extttleleft}$ for each node-edge incidence pair

So what is a sheaf?

Opinion dynamics^[1] provides a nice perspective

Why sheaves?

The underlying topology models the heterogeneity

^{*}Here $C^0(\mathcal{G}, \mathcal{F}) = \bigoplus_{u \in \mathcal{V}} \mathcal{F}(u)$, or the block matrix formed by stacking each node stalk representation.

Neural Sheaf Diffusion^[1]

Attaches a sheaf to a Graph Convolutional Network

$$\mathbf{Y} = \sigma \left((\mathbf{I}_{nd} - \Delta_{\mathcal{F}}) (\mathbf{I}_n \otimes \mathbf{W}_1) \mathbf{X} \mathbf{W}_2 \right)$$

$$\mathcal{F}_{u \leq e} = \mathrm{MLP} \left(\mathbf{x}_u || \mathbf{x}_v \right)$$

NSD performs well on benchmarks

NSD is smaller than R-GCN with similar performance

	ACM		DBLP		IMDB	
	Macro F1	Micro F1	Macro F1	Micro F1	Macro F1	Micro F1
GAT	75.80 ± 10.69	77.91 ± 8.66	95.47 ± 0.44	95.70 ± 0.42	84.12 ± 0.96	85.31 ± 0.92
GCN	89.09 ± 3.66	89.14 ± 3.60	96.31 ± 0.73	96.57 ± 0.63	82.41 ± 1.15	83.99 ± 0.92
HAN	86.95 ± 6.19	86.64 ± 6.43	94.74 ± 0.81	95.01 ± 0.73	13.53 ± 0.24	38.70 ± 1.13
R-GCN	95.81 ± 0.39	95.75 ± 0.39	96.79 ± 0.39	97.01 ± 0.34	88.16 ± 0.67	89.08 ± 0.63
HGT	93.24 ± 3.19	93.30 ± 2.91	93.91 ± 1.08	94.26 ± 1.09	87.74 ± 0.76	88.45 ± 0.71
Sheaf-NSD	94.97 ± 0.41	94.94 ± 0.42	96.69 ± 0.82	96.89 ± 0.79	86.70 ± 0.90	87.50 ± 0.78

Sheaf-NSD 111x smaller than R-GCN

	Last	:FM	MovieLens		
	AUPR	AUROC	AUPR	AUROC	
GAT	62.88 ± 0.18	50.69 ± 0.63	97.06 ± 0.24	97.47 ± 0.21	
GCN	96.84 ± 0.10	96.42 ± 0.08	99.57 ± 0.03	99.51 ± 0.03	
HAN	82.48 ± 3.86	78.47 ± 3.04	63.49 ± 0.14	52.06 ± 0.27	
R-GCN	96.86 ± 0.07	96.97 ± 0.05	99.06 ± 0.05	99.13 ± 0.04	
HGT	-	-	-		
Sheaf-NSD	97.16 ± 0.19	96.58 ± 0.18	99.66 ± 0.04	99.57 ± 0.03	

Sheaf-NSD 209x smaller than R-GCN

Sheaves implicitly learn types

HETSHEAF

A general framework for heterogeneous sheaf neural networks

HETSHEAF pipeline

Feature preprocessing

Linear layers used to project features to same dimensionality

Heterogeneous sheaf predictors

Sheaf-NSD

$$\begin{array}{ccc}
\tau_u & \tau_v \\
\hline
u & e \\
\hline
\tau_e & v
\end{array}$$

$$\mathcal{F}_{u \leq e} = \text{MLP}(\mathbf{x}_u || \mathbf{x}_v)$$

Sheaf-ensemble

Sheaf-NE

Sheaf-EE

Sheaf-TE

$$\mathcal{F}_{u \leq e} = \text{MLP}(\mathbf{x}_u || \mathbf{x}_v || \tau_u || \tau_v || \tau_e)$$

Sheaf-NT

$$\begin{array}{ccc}
\tau_u & \tau_v \\
\hline
u & e \\
\hline
\tau_e & v
\end{array}$$

$$\mathcal{F}_{u \leq e} = \text{MLP}(\tau_u \| \tau_v)$$

Sheaf-ET

$$\begin{array}{ccc}
\tau_u & \tau_v \\
\hline
u & \tau_e \\
\hline
\end{array}$$

$$\mathcal{F}_{u \leq e} = \text{MLP}(\tau_e)$$

Sheaf-types

$$\begin{array}{ccc}
\tau_u & \tau_v \\
\hline
u & \tau_e \\
\end{array}$$

$$\mathcal{F}_{u \leq e} = \text{MLP}(\tau_u || \tau_v || \tau_e)$$

^{*} Each type is assumed to be a one-hot encoded vector, $\tau_e \coloneqq \mathbf{e}_{\psi(e)}$ for $e \in \mathcal{E}$ and $\tau_u \coloneqq \mathbf{e}_{\phi(u)}$ for $u \in \mathcal{V}$.

Final architecture

Type information improves performance

The sheaf learners achieve SOTA or competitive results

Table 5.1: **Performance on heterogeneous node classification.** Results for the SheafGNN architectures and baselines from the literature are shown. The average macro and micro F1 score and standard deviation after 10 runs. The top three models are coloured by **First, Second** and **Third.**

	ACM		DBLP		IMDB	
	Macro F1	Micro F1	Macro F1	Micro F1	Macro F1	Micro F1
GAT [69]	75.8 ± 107.0	77.91 ± 8.66	95.47 ± 0.44	95.70 ± 0.42	84.12 ± 0.96	85.31 ± 0.92
GCN [47]	89.09 ± 3.66	89.14 ± 3.60	96.31 ± 0.73	96.57 ± 0.63	82.41 ± 1.15	83.99 ± 0.92
HAN [74]	86.95 ± 6.19	86.64 ± 6.43	94.74 ± 0.81	95.01 ± 0.73	13.53 ± 0.24	38.70 ± 1.13
RGCN [62]	95.81 ± 0.39	95.75 ± 0.39	96.79 ± 0.39	97.01 ± 0.34	88.16 ± 0.67	89.08 ± 0.63
HGT [41]	93.24 ± 3.19	93.30 ± 2.91	93.91 ± 1.08	94.26 ± 1.09	87.74 ± 0.76	88.45 ± 0.71
O(d)-nsd [7]	94.64 ± 1.02	94.59 ± 1.03	96.32 ± 0.46	96.55 ± 0.42	86.35 ± 1.29	87.20 ± 1.07
Diag-nsd [7]	94.42 ± 0.51	94.42 ± 0.48	95.25 ± 0.70	95.52 ± 0.67	86.36 ± 0.94	87.26 ± 0.78
Gen-nsd [7]	94.97 ± 0.41	94.94 ± 0.42	96.69 ± 0.82	96.89 ± 0.79	86.70 ± 0.90	87.50 ± 0.78
Sheaf-TE (ours)	96.11 ± 0.49	96.09 ± 0.51	97.93 ± 0.36	98.08 ± 0.31	86.85 ± 0.81	87.67 ± 0.80
Sheaf-ensemble (ours)	96.16 ± 0.52	96.12 ± 0.54	97.46 ± 0.64	97.62 ± 0.60	86.92 ± 1.10	87.79 ± 0.95
Sheaf-NE (ours)	96.13 ± 0.39	96.09 ± 0.38	97.68 ± 0.55	97.83 ± 0.51	86.87 ± 1.01	87.73 ± 0.81
Sheaf-EE (ours)	96.39 ± 0.37	96.35 ± 0.36	97.57 ± 0.69	97.73 ± 0.62	87.12 ± 0.75	87.88 ± 0.67
Sheaf-NT (ours)	96.12 ± 0.36	96.12 ± 0.32	97.88 ± 0.47	98.04 ± 0.43	86.92 ± 0.95	87.76 ± 0.85
Sheaf-ET (ours)	95.84 ± 0.65	95.82 ± 0.65	97.69 ± 0.47	97.83 ± 0.47	86.12 ± 0.82	87.05 ± 0.69

Table 5.3: **Performance on heterogeneous link prediction benchmarks.** Results for the three base SheafGNN architectures and baselines from the literature are shown. The table shows the average and standard deviation of the binary AUROC and AUPR scores after 10 runs with the top three models, coloured **First**, **Second** and **Third**. The runs labelled '–' were caused by an out-of-memory error of the GPU.

	La	stFM	MovieLens		
	AUPR	AUROC	AUPR	AUROC	
GAT	62.88 ± 0.18	50.69 ± 0.63	97.06 ± 0.24	97.47 ± 0.21	
GCN	96.84 ± 0.10	96.42 ± 0.08	99.57 ± 0.03	99.51 ± 0.03	
HAN	82.48 ± 3.86	78.47 ± 3.04	63.49 ± 0.14	52.06 ± 0.27	
R-GCN	96.86 ± 0.07	96.97 ± 0.05	99.06 ± 0.05	99.13 ± 0.04	
HGT	_	_	_	_	
Sheaf-nsd	97.16 ± 0.19	96.58 ± 0.18	99.66 ± 0.04	99.57 ± 0.03	
Sheaf-TE (ours)	97.71 ± 0.52	97.23 ± 0.63	99.65 ± 0.03	99.57 ± 0.04	
Sheaf-ensemble (ours)	98.21 ± 0.15	97.71 ± 0.18	99.68 ± 0.04	99.59 ± 0.04	
Sheaf-NE (ours)	97.90 ± 0.68	97.51 ± 0.51	99.66 ± 0.04	99.57 ± 0.04	
Sheaf-EE (ours)	97.51 ± 0.44	96.91 ± 0.52	99.67 ± 0.05	99.57 ± 0.05	
Sheaf-NT (ours)	98.24 ± 0.13	97.80 ± 0.18	99.61 ± 0.03	99.52 ± 0.03	
Sheaf-ET (ours)	97.84 ± 0.32	97.260 ± 0.003	99.64 ± 0.03	99.54 ± 0.03	

Future work

- Lifting to hypergraphs
- Generalised sheaf message passing
- Topological sheaves

Accounting for higher order interactions

Hypergraphs connect an arbitrary set of nodes

Generalised sheaf message passing

Sheaf Topological Neural Networks

Traditional discrete domains

• : Nodes

: Edges

Summary

- Sheaves provide a natural way to model heterogeneity
- Sheaf predictors may be parameterised to include type information
- Type information improves model performance
- These results are competitive or SOTA across all benchmarks
- We can define more general sheaf message passing approaches