Лабораторная работа № 5

Модель гармонический колебаний (Вариант 9)

Сулицкий Богдан Романович

Содержание

Цели работы	4
Задания	5
Теоретическое введение:	6
Выполнение лабораторной работы Код на Julia:	8 8 14
Вывод	19
Список литературы	20

Список иллюстраций

1	Система ОДУ по условию	6
1	Подключение библиотек и создание переменных	8
2	Функции уравнение и визуализации	9
3	Решение ОДУ и построение мат. моделей	0
4	Математическая модель - І случай	1
5	Математическая модель - І случай (парам.)	2
6	Математическая модель - II случай	3
7	Математическая модель - II случай(парам.)	4
8		5
9	OpenModelica - II случай	6
10		6
11	Математическая модель - І случай (парам.)	7
12	Математическая модель - II случай	7
13	Математическая модель - ІІ случай (парам.)	8

Цели работы

Целью данной лабораторной работы является построение математической модели хищник-жертва.

Задания

Для модели «хищник-жертва»:

- 1. Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=9, y_0=29.$
- 2. Найти стационарное состояние системы.

Теоретическое введение:

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории).
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает.
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными.
- 4. Эффект насыщения численности обеих популяций не учитывается.
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников (1).

$$\frac{dx}{dt} = ax(t) - bx(t)y(t)$$
$$\frac{dy}{dt} = -cy(t) + dx(t)y(t)$$

Рис. 1: Система ОДУ по условию

В этой модели х – число жертв, у - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутстви хищников, с - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Выполнение лабораторной работы

Код на Julia:

Подключаем нужные библиотеки и создаем переменные.(1)

```
using PyPlot
using DifferentialEquations

range = (0, 100)
a = 0.21 # коэф. смертности хищников
b = 0.049 # коэф. прироста жертв
c = 0.41 # коэф. числа хищников
d = 0.031 # коэф.смертности жертв
X = 14
Y = 19
```

Рис. 1: Подключение библиотек и создание переменных

С помощью Differential Equations[1] создадим функции уравнения и визуализации.(2)

```
function f(du, u, p, t)
    du[1] = -a*u[1] + b*u[1]*u[2]
    du[2] = c*u[2] - d*u[1]*u[2]
end
function draw(p)
    ax = PyPlot.axes()
   ax.set_title(p)
   ax.plot(x, y, color="red")
    show()
   clf()
   ax = PyPlot.axes()
    ax.set_title(p)
    ax.plot(time, x, color="blue")
    ax.plot(time, y, color="red")
    show()
end
```

Рис. 2: Функции уравнение и визуализации

Решаем ОДУ для обоих случаев и создаем математические модели.(3)

model model_1

```
parameter Real a = 0.21;
parameter Real b = 0.049;
parameter Real c = 0.41;
parameter Real d = 0.031;

parameter Real x0=14;
parameter Real y0=19;

Real x(start =x0);
Real y(start =y0);

equation
    der(x) = -a*x + b*x*y;
    der(y) = c*y - d*x*y;

annotation(experiment(StartTime = 0, StopTime = 100, Tolerance = 1e-6, Interval = 0.02));

end model_1;

Рис. 3: Решение ОДУ и построение мат. моделей

Результаты:(4-7)
```


Рис. 4: Математическая модель - І случай

Рис. 5: Математическая модель - І случай (парам.)

Случай со стационарным состоянием системы

Рис. 6: Математическая модель - ІІ случай

Рис. 7: Математическая модель - ІІ случай (парам.)

Код на OpenModelica

Реализуем код на OpenModelica, указав начальные значения переменных. Далее запишем ОДУ, а также укажем интервалы.(8-9)

model model_1

```
parameter Real a = 0.21;
parameter Real b = 0.049;
parameter Real c = 0.41;
parameter Real d = 0.031;

parameter Real x0=14;
parameter Real y0=19;

Real x(start =x0);
Real y(start =y0);

equation
    der(x) = -a*x + b*x*y;
    der(y) = c*y - d*x*y;

annotation(experiment(StartTime = 0, StopTime = 100, Tolerance = 1e-6, Interval = 0.02));

end model_1;
```

Рис. 8: OpenModelica - I случай

model model_2

```
parameter Real a = 0.21;
parameter Real b = 0.049;
parameter Real c = 0.41;
parameter Real d = 0.031;

parameter Real x0=c/d;
parameter Real y0=a/b;

Real x(start =x0);
Real y(start =y0);

equation
    der(x) = -a*x + b*x*y;
    der(y) = c*y - d*x*y;

annotation(experiment(StartTime = 0, StopTime = 100, Tolerance = 1e-6, Interval = 0.02));
end model_2;
```

Рис. 9: OpenModelica - II случай

Результаты:(10-13)

Рис. 10: Математическая модель - І случай

Рис. 11: Математическая модель - І случай(парам.)

Рис. 12: Математическая модель - II случай

Рис. 13: Математическая модель - II случай(парам.)

Вывод

В результате проделанной работы был написан код на Julia и OpenModelica и были построены математические модели: график зависимости численности хищников от численности жертв, а также график зависимости численности хищников и численности жертв от времени в стационарной системе.

Список литературы

1. DifferentialEquations.jl: Efficient Differential Equation Solving in Julia [Электронный ресурс]. 2023. URL: https://docs.sciml.ai/DiffEqDocs/stable/.