Flip flops

Introduction

- A Flip Flop is an electronic circuit that is capable of storing one bit of information.
- It is a memory element that is capable of storing one bit of information.
- It has two stable states either 0 or 1.

Introduction

A flip flop has two outputs as shown-

Flip flop types

Flip flops are of different types depending on how their inputs and clock pulses cause transition between two states.

There are 4 basic types of flip flops-

- 1. SR Flip Flop
- 2. JK Flip Flop
- 3. D Flip Flop
- 4. T Flip Flop

SR Flip flop

- SR flip flop is the simplest type of flip flops.
- It stands for Set Reset flip flop.
- It is a clocked flip flop.
- Following are the two methods for constructing a SR flip flop-
 - 1. By using NOR latch
 - 2. By using NAND latch

1. Construction of SR Flip Flop By Using NAND Latch-

Truth Table

S	R	Q _N	Q _{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	

2. Construction of SR Flip Flop By Using NOR Latch-

JK Flip flop

- JK flip flop is a refined & improved version of SR flip flop that has been introduced to solve the problem of indeterminate state that occurs in SR flip flop when both the inputs are 1.
- There are following two methods for constructing a JK flip flop-

JK Flip flop

J	K	Qn	Q _{n+1}	State
0	0	0	0	Q _n (Hold)
0	0	1	1	
0	1	0	0	Reset
0	1	1	0	
1	0	0	1	Set
1	0	1	1	
1	1	0	1	Toggel
1	1	1	0	

JK Flip flop

J	K	Qn	Q _{n+1}	State
0	0	0	0	Q _n (Hold)
0	0	1	1	
0	1	0	0	Docot
0	1	1	0	Reset
1	0	0	1	Set
1	0	1	1	
1	1	0	1	Toggol
1	1	1	0	Toggel

 \therefore Characterstic equation is $Q_{n+1} = J\overline{Q}_n + \overline{K}Q_n$

D Flip flop

- D stands for data thus it is used to store data.
- The basic building block of D flip flop is SR flip flop.
- In SR flip flop if both i/p are same, o/p is either no change or it is invalid (i/o -> 00, No change and o/p -> 1 1, Invalid).
- These conditions can be avoided by making them complement of each other. This modified SR flip flop is called as D flip flop.

D Flip flop

 The input D goes directly to i/p S and its complement is applied to R i/p. Due to this, only two i/p conditions exist: S=0 & R=1 or S=1 & R=0.

D Flip flop

D	S	R	Q	State
	0	0	Previous State	No Change
0	0	1	0	Reset
1	1	0	1	Set
	1	1	?	Forbidden

T (Toggle) Flip flop

- We can design the T flip flop by making simple modifications to the JK flip flop.
- The T flip flop is a single input device and hence by connecting J and K inputs together and giving them with single input called T, we can convert a JK flip flop into T flip flop.
- So, a T flip flop is sometimes called as single input JK flip flop.

T (Toggle) Flip flop

T (Toggle) Flip flop

Qn	т	Q n+1
0	0	0
0	1	1
1	0	1
1	1	0

Т	Q n+1
0	Q n
1	Q n '

