Chapter 7: Computations lifted to a functor context II. Monads

Part 2: Laws and structure of semimonads

Sergei Winitzki

Academy by the Bay

2018-03-11

Semimonad laws I: The intuitions

What properties of functor block programs do we expect to have?

- In $x \leftarrow c$, the value of x will go over items held in container c
- Manipulating items in container is followed by a generator:

```
x \leftarrow cont1
                                                                v \leftarrow cont1
      y = f(x)
                                                                         .map(x \Rightarrow f(x))
                                                                z \leftarrow cont2(y)
      z \leftarrow cont2(y)
cont1.flatMap(x \Rightarrow cont2(f(x))) = cont1.map(f).flatMap(y \Rightarrow cont2(y))
```

Manipulating items in container is preceded by a generator:

```
x \leftarrow cont1
                                                       x \leftarrow cont1
      y \leftarrow cont2(x)
                                                       z \leftarrow cont2(x)
      z = f(v)
                                                                 .map(f)
cont1.flatMap(cont2).map(f) = cont1.flatMap(x \Rightarrow cont2(x).map(f))
```

• After $x \leftarrow cont$, further computations will use all those x

```
x \leftarrow cont
                                                              v \leftarrow for \{ x \leftarrow cont \}
y \leftarrow p(x)
                                                                                 yy \leftarrow p(x) } yield yy
z \leftarrow cont2(y)
                                                              z \leftarrow cont2(v)
```

```
cont.flatMap(x \Rightarrow p(x).flatMap(cont2)) = cont.flatMap(p).flatMap(cont2)
```

Semimonad laws II: The laws for flatMap

To get a more concise notation, use flm instead of flatMap A semimonad S^A has flm^[S,A,B] : $(A \Rightarrow S^B) \Rightarrow S^A \Rightarrow S^B$ with 3 laws:

$$\begin{array}{c|c}
\operatorname{fimp} f^{A \Rightarrow B} & S^{B} & \operatorname{film} g^{B \Rightarrow S^{C}} \\
S^{A} & & \Longrightarrow S^{C} \\
\operatorname{film} (f^{A \Rightarrow B} \circ g^{B \Rightarrow S^{C}})
\end{array}$$

② $\operatorname{flm}\left(f^{A\Rightarrow S^B}\circ\operatorname{fmap}g^{B\Rightarrow C}\right)=\operatorname{flm}f\circ\operatorname{fmap}g$ (naturality in B)

$$S^{A} \xrightarrow{\text{flm } f^{A \Rightarrow S^{B}}} S^{B} \xrightarrow{\text{fmap } g^{B \Rightarrow C}} S^{C}$$

$$flm (f^{A \Rightarrow S^{B}} \circ fmap g^{B \Rightarrow C})$$

$$S^{A} \xrightarrow{\text{flm } f^{A \Rightarrow S^{B}}} S^{B} \xrightarrow{\text{flm } g^{B \Rightarrow S^{C}}} S^{C}$$

Is there a shorter formulation of the laws?

Semimonad laws III: The laws for flatten

The methods flatten (denoted by ftn) and flatMap are equivalent:

$$\mathsf{ftn}^{[S,A]}: S^{S^A} \Rightarrow S^A = \mathsf{flm}^{\big[S,S^A,A\big]}(m^{S^A} \Rightarrow m)$$

$$\mathsf{flm}\left(f^{A \Rightarrow S^B}\right) = \mathsf{fmap}\,f \circ \mathsf{ftn}$$

$$S^A \xrightarrow{\mathsf{flm}\left(f^{A \Rightarrow S^B}\right)} S^B$$

It turns out that flatten has only 2 laws:

2 $fmap(ftn^{[S]}) \circ ftn^{[S]} = ftn^{[S^S]} \circ ftn^{[S]}$ (associativity)

Equivalence of a natural transformation and a "lifting"

- Equivalence of flm and ftn: ftn = flm (id); flm $f = \text{fmap } f \circ \text{ftn}$
- We saw this before: deflate = fmapOpt(id); $fmapOpt f = fmap f \circ deflate$
 - ▶ Is there a general pattern where two such functions are equivalent?
- Let $tr: F^{G^A} \Rightarrow F^A$ be a natural transformation (F and G are functors)
- Define ftr: $(A \Rightarrow G^B) \Rightarrow F^A \Rightarrow F^B$ by ftr $f = \operatorname{fmap} f \circ \operatorname{tr}$
- It follows that tr = ftr(id), and we have equivalence between tr and ftr:

$$\operatorname{tr}: F^{G^A} \Rightarrow F^A = \operatorname{ftr}(m^{G^A} \Rightarrow m)$$

$$\operatorname{ftr}(f^{A \Rightarrow G^B}) = \operatorname{fmap} f \circ \operatorname{tr}$$

$$f^A \xrightarrow{\operatorname{ftr}(f^{A \Rightarrow G^B})} F^B$$

- An automatic law for ftr ("naturality in A") follows from the definition: fmap $g \circ \text{ftr } f = \text{fmap } g \circ \text{fmap } f \circ \text{tr} = \text{fmap } (g \circ f) \circ \text{tr} = \text{ftr } (g \circ f)$
 - ► This is why tr has one law fewer than ftr
- To demonstrate equivalence in the direction ftr → tr: start with an arbitrary ftr satisfying "naturality in A", then obtain tr = ftr (id) from it, then verify ftr f = fmap f o tr with that tr: fmap f o ftr (id) = ftr (f o id) = ftr f

Semimonad laws IV: Deriving the laws for flatten

Denote for brevity $q^{\uparrow} \equiv \operatorname{fmap}^{[S]} q$ for any function q Express flm $f = f^{\uparrow} \circ \operatorname{ftn}$ and substitute that into flm's 3 laws:

- flm $(f \circ g) = f^{\uparrow} \circ \text{flm } g$ gives $(f \circ g)^{\uparrow} \circ \text{ftn} = f^{\uparrow} \circ g^{\uparrow} \circ \text{ftn}$ — this law holds automatically due to functor composition law
- ② $\operatorname{flm}(f \circ g^{\uparrow}) = \operatorname{flm} f \circ g^{\uparrow}$ gives $(f \circ h)^{\uparrow} \circ \operatorname{ftn} = f^{\uparrow} \circ \operatorname{ftn} \circ h$; using the functor composition law, we reduce this to $h^{\uparrow} \circ \operatorname{ftn} = \operatorname{ftn} \circ h \operatorname{this}$ is the naturality law
- ③ flm $(f \circ \text{flm } g) = \text{flm } f \circ \text{flm } g$ with functor composition law gives $f^{\uparrow} \circ g^{\uparrow \uparrow} \circ \text{ftn}^{\uparrow} \circ \text{ftn} = f^{\uparrow} \circ \text{ftn} \circ g^{\uparrow} \circ \text{ftn}$; using ftn's naturality and omitting the common factor $f^{\uparrow} \circ g^{\uparrow \uparrow}$, we get $\text{ftn}^{\uparrow} \circ \text{ftn} = \text{ftn} \circ \text{ftn} \text{associativity law}$
 - flatten has the simplest type signature and the fewest laws
 - It is usually easy to check naturality!
 - ▶ Parametricity theorem: Any fully parametric code for a function of type $F^A \Rightarrow G^A$ implements a natural transformation
 - Checking flatten's associativity needs a lot more work

The cats library has a FlatMap type class, defining flatten via flatMap

Checking the associativity law for standard monads

- Implement flatten for these functors and check the laws (see code):
 - Option monad: $F^A \equiv 1 + A$; ftn: $1 + (1 + A) \Rightarrow 1 + A$
 - ▶ Either monad: $F^A \equiv Z + A$; ftn : $Z + (Z + A) \Rightarrow Z + A$
 - ▶ List monad: $F^A \equiv \text{List}^A$; ftn : List $\text{List}^{\text{List}^A} \Rightarrow \text{List}^A$
 - ▶ Writer monad: $F^A \equiv A \times W$; ftn : $(A \times W) \times W \Rightarrow A \times W$
 - ▶ Reader monad: $F^A \equiv R \Rightarrow A$; ftn : $(R \Rightarrow (R \Rightarrow A)) \Rightarrow R \Rightarrow A$
 - ▶ State: $F^A \equiv S \Rightarrow A \times S$; ftn : $(S \Rightarrow (S \Rightarrow A \times S) \times S) \Rightarrow S \Rightarrow A \times S$
 - ► Continuation monad: $F^A \equiv (A \Rightarrow R) \Rightarrow R$; ftn : $((((A \Rightarrow R) \Rightarrow R) \Rightarrow R) \Rightarrow (A \Rightarrow R) \Rightarrow R$
- Code implementing these flatten functions is fully parametric in A
 - Naturality of these functions follows from parametricity theorem
 - Associativity needs to be checked for each monad!
- Example of a useful semimonad that is *not* a full monad:
 - $F^A \equiv A \times V \times W; \text{ ftn } ((a \times v_1 \times w_1) \times v_2 \times w_2) = a \times v_1 \times w_2$
- Examples of *non-associative* (i.e. wrong) implementations of flatten:
 - $F^A \equiv A \times W \times W; \text{ ftn} ((a \times v_1 \times v_2) \times w_1 \times w_2) = a \times w_2 \times w_1$
 - $ightharpoonup F^A \equiv \operatorname{List}^A$, but flatten concatenates the nested lists in reverse order

Exercises II

Implement

Structure of semimonads

How to recognize a semimonad by its type?

Intuition from flatten: reshuffle data in F^{F^A} to fit into F^A Some constructions of exponential-polynomial semimonads:

- $F^A = Z$ (constant functor) for a fixed type Z
- ② $F^A \equiv Z + A \times W$ for a fixed type Z and a semigroup W

- **5** $F^A \equiv A + G^{F^A}$ (recursive) for any functor G^A
- $igoplus F^A \equiv H^A \Rightarrow A \times G^A$ for any contrafunctor H^A and semimonad G^A

* Worked examples II: Constructions of filterable functors I

- (2) The fmapOpt laws hold for $F^A \times G^A$ if they hold for F^A and G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_F $(f): F^A \Rightarrow F^B$ and fmapOpt_G $(f): G^A \Rightarrow G^B$
 - Define $fmapOpt_{F \times G} f \equiv p^{F^A} \times q^{G^A} \Rightarrow fmapOpt_F(f)(p) \times fmapOpt_G(f)(q)$
 - Identity law: $f = id_{\Diamond_{\mathsf{Opt}}}$, so $\mathsf{fmapOpt}_F f = \mathsf{id}$ and $\mathsf{fmapOpt}_G f = \mathsf{id}$
 - ▶ Hence we get fmapOpt_{F+G} $(f)(p \times q) = id(p) \times id(q) = p \times q$
 - Composition law:

```
\begin{split} &(\mathsf{fmapOpt}_{F \times G} \, f_1 \circ \mathsf{fmapOpt}_{F + G} \, f_2)(p \times q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_2) \, (\mathsf{fmapOpt}_F(f_1)(p) \times \mathsf{fmapOpt}_G(f_1)(q)) \\ &= (\mathsf{fmapOpt}_F \, f_1 \circ \mathsf{fmapOpt}_F \, f_2)(p) \times (\mathsf{fmapOpt}_G \, f_1 \circ \mathsf{fmapOpt}_G \, f_2) \, (q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} \, f_2)(p) \times \mathsf{fmapOpt}_G(f_1 \diamond f_2)(q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_1 \diamond_{\mathsf{Opt}} \, f_2)(p \times q) \end{split}
```

- ullet Exactly the same proof as that for functor property for $F^A imes G^A$
 - ▶ this is because fmapOpt corresponds to a generalized functor
- New proofs are necessary only when using non-filterable functors
 - ▶ these are used in constructions 4 6

* Worked examples II: Constructions of filterable functors II

- (5) The fmapOpt laws hold for $F^A \equiv 1 + A \times G^A$ if they hold for G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_G $(f): G^A \Rightarrow G^B$
 - Define fmapOpt_F(f)(1 + $a^A \times q^{G^A}$) by returning 0 + $b \times$ fmapOpt_G(f)(q) if the argument is 0 + $a \times q$ and f(a) = 0 + b, and returning 1 + 0 otherwise
 - Identity law: $f = id_{\diamond_{Ont}}$, so f(a) = 0 + a and fmapOpt_Gf = id
 - ▶ Hence we get fmapOpt_F(id_{Opt}) $(1 + a \times q) = 1 + a \times q$
 - Composition law: need only to check for arguments $0 + a \times q$, and only when $f_1(a) = 0 + b$ and $f_2(b) = 0 + c$, in which case $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 0 + c$; then

$$\begin{split} &(\mathsf{fmapOpt}_F \ f_1 \circ \mathsf{fmapOpt}_F \ f_2)(0 + a \times q) \\ &= \mathsf{fmapOpt}_F(f_2) \left(\mathsf{fmapOpt}_F(f_1)(0 + a \times q) \right) \\ &= \mathsf{fmapOpt}_F(f_2) \left(0 + b \times \mathsf{fmapOpt}_G(f_1)(q) \right) \\ &= 0 + c \times \left(\mathsf{fmapOpt}_G \ f_1 \circ \mathsf{fmapOpt}_G \ f_2 \right) (q) \\ &= 0 + c \times \mathsf{fmapOpt}_G(f_1 \diamond_{\mathsf{Opt}} f_2)(q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} f_2)(0 + a \times q) \end{split}$$

This is a "greedy filter": if f(a) is empty, will delete all data in G^A

* Worked examples II: Constructions of filterable functors III

- (6) The fmapOpt laws hold for $F^A \equiv G^A + A \times F^A$ if they hold for G^A
 - For $f^{A\Rightarrow 1+B}$, we have fmapOpt_G(f): $G^A\Rightarrow G^B$ and fmapOpt'_F(f): $F^A\Rightarrow F^B$ (for use in recursive arguments as the inductive assumption)
 - Define fmapOpt_F(f)($q^{G^A} + a^A \times p^{F^A}$) by returning $0 + \text{fmapOpt}'_F(f)(p)$ if f(a) = 1 + 0, and fmapOpt_G(f)(q) + $b \times \text{fmapOpt}'_F(f)(p)$ otherwise
 - Identity law: $id_{\diamond_{\mathbf{Opt}}}(x) \neq 1 + 0$, so $fmapOpt_F(id_{\diamond_{\mathbf{Opt}}})(q + a \times p) = q + a \times p$
 - Composition law:
 - $(\mathsf{fmapOpt}_F(f_1) \circ \mathsf{fmapOpt}_F(f_2))(q + \mathsf{a} \times \mathsf{p}) = \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} f_2)(q + \mathsf{a} \times \mathsf{p})$
 - For arguments q+0, the laws for G^A hold; so assume arguments $0+a\times p$. When $f_1(a)=0+b$ and $f_2(b)=0+c$, the proof of the previous example will go through. So we need to consider the two cases $f_1(a)=1+0$ and $f_1(a)=0+b$, $f_2(b)=1+0$
 - If $f_1(a) = 1 + 0$ then $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 1 + 0$; to show $\mathsf{fmapOpt}_F'(f_2)(\mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_1 \diamond_{\mathsf{Opt}} f_2)(p)$, use the inductive assumption about $\mathsf{fmapOpt}_F'$ on p
 - If $f_1(a) = 0 + b$ and $f_2(b) = 1 + 0$ then $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 1 + 0$; to show $\mathsf{fmapOpt}_F(f_2)(0 + b \times \mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_1 \diamond_{\mathsf{Opt}} f_2)(p)$, rewrite $\mathsf{fmapOpt}_F(f_2)(0 + b \times \mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_2)(\mathsf{fmapOpt}_F'(f_1)(p))$ and again use the inductive assumption about $\mathsf{fmapOpt}_F'$ on p

This is a "list-like filter": if f(a) is empty, will recurse into nested F^A data

Worked examples II: Constructions of filterable functors IV

Use known filterable constructions to show that

$$F^A \equiv (Int \times String) \Rightarrow (1 + Int \times A + A \times (1 + A) + (Int \Rightarrow 1 + A + A \times A \times String))$$
 is a filterable functor

- Instead of implementing Filterable and verifying laws by hand, we analyze the structure of this data type and use known constructions
- Define some auxiliary functors that are parts of the structure of F^A ,
 - $ightharpoonup R_1^A = (Int \times String) \Rightarrow A \text{ and } R_2^A = Int \Rightarrow A$
 - $G^A = 1 + \text{Int} \times A + A \times (1 + A)$ and $H^A = 1 + A + A \times A \times \text{String}$
- Now we can rewrite $F^A = R_1 [G^A + R_2 [H^A]]$
 - \triangleright G^A is filterable by construction 5 because it is of the form $G^A = 1 + A \times K^A$ with filterable functor $K^A = 1 + Int + A$
 - \triangleright K^A is of the form 1+A+X with constant type X, so it is filterable by constructions 1 and 3 with the Option functor 1 + A
 - ▶ H^A is filterable by construction 5 with $H^A = 1 + A \times (1 + A \times \text{String})$, while $1 + A \times String$ is filterable by constructions 5 and 1
- Constructions 3 and 4 show that $R_1 \left[G^A + R_2 \left[H^A \right] \right]$ is filterable Note that there are more than one way of implementing Filterable here

* Exercises II

- Implement a Filterable instance for type F[T] = G[H[T]] assuming that the functor H[T] already has a Filterable instance (construction 4). Verify the laws rigorously (i.e. by calculations, not tests).
- ② For type F[T] = Option[Int ⇒ Option[(T, T)]], implement a Filterable instance. Show that the filterable laws hold by using known filterable constructions (avoiding explicit proofs or tests).
- Implement a Filterable instance for $F^A \equiv G^A + \operatorname{Int} \times A \times A \times F^A$ (recursive) for a filterable functor G^A . Verify the laws rigorously.
- **3** Show that $F^A = 1 + A \times G^A$ is in general *not* filterable if G^A is an arbitrary (non-filterable) functor; it is enough to give an example.
- Show that $F^A = 1 + G^A + H^A$ is filterable if $1 + G^A$ and $1 + H^A$ are filterable (even when G^A and H^A are by themselves not filterable).
- **6** Show that the functor $F^A = A + (Int \Rightarrow A)$ is not filterable.
- **②** Show that one can define deflate: $C^{1+A} \Rightarrow C^A$ for any contrafunctor C^A (not necessarily filterable), similarly to how one can define inflate: $F^A \Rightarrow F^{1+A}$ for any functor F^A (not necessarily filterable).