Lab04-Matroid

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

```
* If there is any problem, please contact TA Yiming Liu.

* Name:Yijia Diao Student ID:518030910146 Email: diao_yijia@sjtu.edu.cn
```

- 1. Give a directed graph G = (V, E) whose edges have integer weights. Let w(e) be the weight of edge $e \in E$. We are also given a constraint $f(u) \ge 0$ on the out-degree of each node $u \in V$. Our goal is to find a subset of edges with maximal weight, whose out-degree at any node is no greater than the constraint.
 - (a) Please define independent sets and prove that they form a matroid.
 - (b) Write an optimal greedy algorithm based on Greedy-MAX in the form of pseudo code.
 - (c) Analyze the time complexity of your algorithm.

Solution. (a)

Definition 1 (Independent Sub-graph). G' is a sub-graph of G. G' is independent if $\forall V' \in G' : out\text{-}degree \leq f(u)$.

Let \mathbf{C} be the set of all independent sub-graph of G. Now proof (G, \mathbf{C}) is matroid.

Proof. (Hereditary): $\forall B \in \mathbb{C}, \forall A \subseteq B$, the out-degree of $A \leq$ that of B. So $\forall V \in A$: out-degree $\leq f(u)$, which means $A \in \mathbb{C}$.

(Exchange Property): Consider two independent graph A and B with |A| < |B|. Now proof by Contradiction.

Suppose that $\forall E \in B \setminus A$, $A \cup \{E\}$ is not an independent graph. Therefore, $\forall E \in B$ must be connected with those $V \in A$: out-degree of V = f(u), and are out-edge of V. Let k be the number of V above, so $|A| \geq kf(n)$, $|B| \leq kf(n) \Rightarrow |A| \geq |B|$, contradiction. So we can conclude that (G, \mathbb{C}) is matroid.

(b)

Algorithm 1: Greedy-MAX for Maximal Weight of Edge

Input: G = (V, E), w(e), f(u).

Output: A subset of edges E' with maximal weight, whose out-degree at any node $\leq f(u)$.

```
1 Sort all e \in E by w(e) non-decreasingly;
```

- $\mathbf{z} \ E' \leftarrow \emptyset, sumweight \leftarrow 0;$
- $\mathbf{3}$ for $all\ e \in E$ do

```
4 G' = (V', E' \cup \{e\});

5 if \forall u \in V' : u \leq f(u) then

6 E' \leftarrow E' \cup \{e\}, sumweight \leftarrow sumweight + w(e);
```

7 return E';

(c) Suppose we use two adjacent vertex to denote an edge, and |E| = n. The time complexity of sorting is $O(n \log n)$. For line **5**, we can use Red-Black tree to optimize, so its time complexity is $O(\log n)$; thus the time complexity of the **For** loop is $O(n \log n)$. So we can conclude that the time complexity of Alg.1 is $O(n \log n)$.

2. Let X, Y, Z be three sets. We say two triples (x_1, y_1, z_1) and (x_2, y_2, z_2) in $X \times Y \times Z$ are disjoint if $x_1 \neq x_2, y_1 \neq y_2$, and $z_1 \neq z_2$. Consider the following problem:

Definition 2 (MAX-3DM). Given three disjoint sets X, Y, Z and a nonnegative weight function $c(\cdot)$ on all triples in $X \times Y \times Z$, **Maximum 3-Dimensional Matching** (MAX-3DM) is to find a collection \mathcal{F} of disjoint triples with maximum total weight.

- (a) Let $D = X \times Y \times Z$. Define independent sets for MAX-3DM.
- (b) Write a greedy algorithm based on Greedy-MAX in the form of pseudo code.
- (c) Give a counterexample to show that your Greedy-MAX algorithm in Q. 2b is not optimal.
- (d) Show that: $\max_{F \subset D} \frac{v(F)}{u(F)} \leq 3$. (Hint: you may need Theorem 1 for this subquestion.)

Theorem 1. Suppose an independent system (E, \mathcal{I}) is the intersection of k matroids (E, \mathcal{I}_i) , $1 \leq i \leq k$; that is, $\mathcal{I} = \bigcap_{i=1}^k \mathcal{I}_i$. Then $\max_{F \subseteq E} \frac{v(F)}{u(F)} \leq k$, where v(F) is the maximum size of independent subset in F and u(F) is the minimum size of maximal independent subset in F.

Solution. (a)

Definition 3 (Independent Triple Collection). A set S is independent iff. $S \subseteq D$ and $\forall (x_i, y_i, z_i), (x_j, y_j, z_j) \in S$ are disjoint $(i \neq j)$.

(b)

Algorithm 2: Greedy-MAX for MAX-3DM

Input: $D, c(\cdot)$.

Output: A collection \mathcal{F}' of disjoint triples.

- 1 Sort all $(x, y, z) \in D$ by c((x, y, z)) non-decreasingly;
- 2 $\mathcal{F}' \leftarrow \emptyset$, sumweight $\leftarrow 0$;
- з for $all(x,y,z) \in D$ do
- 4 | if $\mathcal{F}' \cup \{(x, y, z)\}$ is an independent set then
- 6 return \mathcal{F}' :
- (c) $X = Y = Z = \{1, 2\}, D = X \times Y \times Z$.

$$c((x,y,z)) = \begin{cases} 9 & (x,y,z) = (1,1,1) \\ 1 & (x,y,z) = (2,2,2) \\ 8 & \text{otherwise} \end{cases}$$

The result of Alg.2 is $\mathcal{F}' = \{(1,1,1),(2,2,2)\}$ and the weight is 10, but one of the optimal solution is $\mathcal{F} = \{(1,2,1),(2,1,2)\}$, weight= 16.

(d) **Proof.** Suppose $D_x \in D$: $\forall x_i, x_j \in X (i \neq j)$: $x_i \neq x_j$; $D_y \in D$: $\forall y_i, y_j \in X (i \neq j)$: $y_i \neq y_j$; $D_z \in D$: $\forall z_i, z_j \in X (i \neq j)$: $z_i \neq z_j$.

Define C_1, C_2 and C_3 are the collection of D_x, D_y and D_z ; and define C is the collection of independent subset of D. So we have: $C = \bigcap_{i=1}^3 C_i$.

Now proof (D, \mathcal{C}_1) , (D, \mathcal{C}_2) and (D, \mathcal{C}_3) are matroids. Since \mathcal{C}_1 , \mathcal{C}_2 and \mathcal{C}_3 are equivalent, we only consider \mathcal{C}_1 .

Hereditary: $\forall B \subseteq D_x, \forall A \subset B$, since $\forall x_i, x_j \in B(i \neq j) : x_i \neq x_j$, we have the same property for A. So $A \in \mathcal{C}_x$.

Exchange Property: (by contradiction) $\forall A, B \in \mathcal{C}_1$, |A| < |B|, suppose $\forall (x, y, z) \in B \setminus A$, $A \cup \{(x, y, z)\} \notin \mathcal{C}_1$, which equals $\forall (x, y, z) \in B, \exists x_a \in A : x = x_a$. And since A and B are subsets of D_x , their cardinality equals to the number of different x. So we have $|B| \leq |A|$, contradiction.

Therefore we can conclude that $(D, \mathcal{C}_1), (D, \mathcal{C}_2)$ and (D, \mathcal{C}_3) are matroids. According to Thm.1, we have $\max_{F \subseteq D} \frac{v(F)}{u(F)} \leq 3$.

3. Crowdsourcing is the process of obtaining needed services, ideas, or content by soliciting contributions from a large group of people, especially an online community. Suppose you want to form a team to complete a crowdsourcing task, and there are n individuals to choose from. Each person p_i can contribute v_i ($v_i > 0$) to the team, but he/she can only work with up to c_i other people. Now it is up to you to choose a certain group of people and maximize their total contributions ($\sum_i v_i$).

- (a) Given OPT(i, b, c) = maximum contributions when choosing from $\{p_1, p_2, \dots, p_i\}$ with b persons from $\{p_{i+1}, p_{i+2}, \dots, p_n\}$ already on board and at most c seats left before any of the existing team members gets uncomfortable. Describe the optimal substructure as we did in class and write a recurrence for OPT(i, b, c).
- (b) Design an algorithm to form your team using dynamic programming, in the form of pseudo code.
- (c) Analyze the time and space complexities of your design.

Solution. (a) Optimal substructure:

Case 1: OPT selects p_i .

- collect contribution v_i ,
- calculate the minimal people that could be added,
- must include OPT in $\{p_1, p_2, \cdots, p_{i-1}\}$

Case 2: OPT does not select p_i

• must include OPT in $\{p_1, p_2, \cdots, p_{i-1}\}$

Recurrence function:

$$OPT(i, b, c) = \begin{cases} 0 & c = 0 \text{ or } i = 0 \\ OPT(i - 1, b, c) & c_i < b \\ \max\{v_i + OPT(i - 1, b + 1, minc), OPT(i - 1, b, c)\} & \text{otherwise} \end{cases}$$

in which $minc = min\{c - 1, c_i - b\}$.

(b)

Algorithm 3: Crowdsourcing

10 return OPT[n, 0, n];

```
Input: n, c_i, v_i (1 \le i \le n).
  Output: maximized \sum_i v_i
1 Initialize OPT[i, b, c] as 3-dimensional array[n, n, n];
2 OPT[0, b, c] \leftarrow 0, OPT[i, b, 0] \leftarrow 0;
\mathbf{s} for i=1 to n do
      for b = n to c_i + 1 do
4
        for all c do OPT[i, b, c] \leftarrow OPT[i-1, b, c];
\mathbf{5}
      for b = c_i to 0 do
6
           for all c \geq 1 do
7
               minc \leftarrow \min\{c-1, c_i\};
8
               OPT[i,b,c] \leftarrow \max\{v_i + OPT[i-1,b+1,minc], OPT[i-1,b,c]\}
9
```

(c)	Time complexity: Since all operations in For-loop are $O(1)$, the time complexity of Alg.3
	is $O(n^3)$.
	Space complexity: $O(n^3)$

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.