การแข่งขันเทคโนโลยีนวัตกรรมหุ่นยนต์ ปัญญาประดิษฐ์ และอินเทอร์เน็ตของสรรพสิ่ง ประจำปี 2023 (Innovation Robotic AI & IOT Contest 2023)

โจทย์แข่งขันในหัวข้ออุตสาหกรรม หุ่นยนต์ประจำสถานีบริการน้ำมัน สำหรับเติมน้ำมันอัตโนมัติ ทีม ห้องทดลองของศาสตราจารย์ยูโทเนียม

สารบัญย่อ

- 1. วัตถุประสงค์ของโครงการ
- 2. เงื่อนไขสำคัญ
- 3. เป้าหมายและหน้าที่หลักของหุ่นที่ต้องทำได้(ใช้เป็นเงื่อนไขสำหรับการออกแบบหุ่น)
- 4. แผนเวลาการทำงาน 4 เดือน เริ่ม พฤษภาคม สิงหาคม
- 5. งบประมาณค่าใช้จ่าย

1. วัตถุประสงค์ของโครงการ

- ส่งเสริมพัฒนาต้นแบบเทคโนโลยีนวัตกรรมหุ่นยนต์ต่อยอดสู่แหล่งทุนงานวิจัยสู่เชิงพาณิชย์ในอนาคต
- ส่งเสริมให้นิสิตนักศึกษาได้มีความสนใจทางด้านการใช้เทคโนโลยีหุ่นยนต์เคลื่อนที่อัตโนมัติและระบบ ปัญญาประดิษฐ์ สำหรับการเกษตรอัจฉริยะ
- ส่งเสริมให้เกิดการพัฒนาสิ่งประดิษฐ์ที่ใช้เทคโนโลยีหุ่นยนต์เคลื่อนที่อัตโนมัติและระบบปัญญาประดิษฐ์ สำหรับแก้ปัญหา ตามโจทย์ที่ได้จากภาคการเกษตร อุตสาหกรรม และ IOT ที่เครื่องจักรกลธรรมดาหรืออุปกรณ์ที่ใช้อยู่ในปัจจุบันทำได้ยาก หรือจะ ทำได้แต่ต้องสั่งซื้อนำเข้าจากต่างประเทศด้วยราคาที่แพง
- สนับสนุนให้เกิดการถ่ายทอดองค์ความรู้ระหว่างผู้เข้าแข่งขันด้วยกัน และเผยแพร่เทคโนโลยีสู่ท้องถิ่นผ่านสถาบันการศึกษา ระดับอุดมศึกษาหรืออาชีวศึกษาในท้องถิ่น

2. เงื่อนไขสำคัญ

- *** ต้องประดิษฐ์หุ่นยนต์ที่สามารถทำงานได้อย่างอัตโนมัติทั้งระบบ(โดยอาศัย AI เป็นประมวลผลและตัวควบคุม) มีระบบ ควบคุมด้วยมือสำหรับกรณีจำเป็น เช่น เคลื่อนย้ายหุ่นไปที่สถานที่อื่น หรือ หยุดฉุกเฉิน
- *** งานทั้งหมดต้องเสร็จภายใน 3 เดือน
- ***** งบประมาณจากผู้จัดคือ 10000.- บาท ซึ่งไม่เพียงพอดังนั้นจำเป็นต้องอาศัยทุนและความช่วยเหลือจากคณะ วิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าคุณทหารลาดบังเป็นหลัก และต้องใช้จ่ายอย่างระมัดระวัง จากเงื่อนไขข้างต้น ทางทีมงานจึงวางแผนสำหรับสร้างหุ่นยนต์อย่างรอบคอบและประหยัดรวมถึงใช้เทคโนโลยีที่มีและดี

3. เป้าหมายและหน้าที่หลักของหุ่นที่ต้องทำได้(ใช้เป็นเงื่อนไขสำหรับการออกแบบหุ่นยนต์)

3.1 ตัวหุ่นยนต์

สามารถเคลื่อนที่ได้โดยอาศัยระบบ AI เป็นตัวควบคุม มีขนาดที่เล็กพอที่จะสามารถไปยังจุดต่างๆที่มนุษย์เข้าถึงและทำงานแทนมนุษย์ได้ มีคล่องตัวสูงในสถานที่แคบและเคลื่อนที่ทุกทิศทางรอบตัว สามารถควบคุมด้วยมือได้ สำหรับทำงานบางอย่าง เช่น หยุดฉุกเฉิน เคลื่อนที่ย้ายไปสถานที่อื่น ตัวหุ่นมีความแข็งแรงและสวยงาม และมีค่าใช้จ่ายในการบำรุงรักษาต่ำ

3.2 ระบบตรวจจับสำหรับการเคลื่อนที่

สามารถตรวจจับสิ่งแวดล้อมได้รอบตัว เช่น อุปกรณ์ประเภท LIDAR มีรัศมีตรวจจับไม่น้อยกว่า 2 เมตรจากกึ่งกลางตัวหุ่น(รัศมีตรวจจับเพิ่มได้โดยเพิ่มงบประมาณ)

3.3 ระบบตรวจจับสำหรับมองหาวัตถุ

สามารถตรวจจับรายละเอียดของวัตถุในระยะใกล้ได้ดีดังนั้นจะเน้นที่ระบบกล้อง แล้วใช้ระบบ Al วิเคราะห์ภาพเพื่อหา เป้าหมาย เช่น ตำแหน่งของอุปกรณ์เติมน้ำมัน ตำแหน่งป้ายทะเบียน ตำแหน่งช่องเติมน้ำมัน เป็นต้น

3.4 ระบบสื่อสารโดยใช้เสียงสั่งงานและออกเสียงตอบรับคำสั่ง

สามารถออกเสียงเพื่อตั้งคำถามง่ายๆ เกี่ยวกับชนิดของน้ำมันที่ต้องการเติมและมีข้อมูลเพียงพอสำหรับวิเคราะห์เสียงคำตอบ ที่ได้รับมา

3.5 ระบบควบคุมและขับเคลื่อน

ทำงานโดยใช้พลังงานไฟฟ้าทั้งหมดในการประมวลผลและขับเคลื่อน อาศัยระบบ AI สั่งงานระบบต่างๆในตัวหุ่นยนต์ทั้งหมด(นอกจากสวิตช์ฉุกเฉินที่สั่งงานปิดระบบได้โดยตรง) มีความสามารถเดินทางโดยอัตโนมัติในระดับที่สามารถทำงานเองได้โดยลำพัง ใช้ล้อที่สามารถเคลื่อนที่ไปในทุกทิศทางได้อย่างอิสระ และให้การทรงตัวที่ดี

3.7 ระบบหยิบจับวัตถุ

สามารถหยิบอุปกรณ์ที่มนุษย์ใช้สำหรับบริการเติมน้ำมันได้ เช่น หัวจ่ายน้ำมัน

3.8 ระบบ AI

สามารถเคลื่อนที่ไปยังเป้าหมายได้เองโดยอาศัยระบบ AI ในการตรวจวิเคราะห์สิ่งกีดขวาง สร้างแผนที่ สร้างเส้นทางเดินที่ ปรับเองได้ตามสภาพแวดล้อม หลบสิ่งกีดขวางได้

สามารถหาเส้นทางเดินได้เองโดยวิเคราะห์หาเส้นทางที่ใช้เวลาทำงานโดยรวมน้อยที่สุด สามารถส่งเสียงเพื่อถามและวิเคราะห์เสียงที่ได้รับเพื่อทำตามคำสั่ง สามารถอ่านค่าต่างๆได้ เช่น เลขทะเบียนรถ ป้ายกำกับชนิดน้ำมัน ฯลฯ

4. จากเงื่อนไขที่ตั้งเป้าไว้ในหัวข้อ 3 จึงการทำการออกแบบส่วนต่างๆดังต่อไปนี้

4.1 ตัวหุ่นยนต์

ระบบขับเคลื่อนที่วางแผนไว้จะเป็นลักษณะรถขับเคลื่อน 4 ล้อที่สามารถทำงานได้เป็นอิสระต่อกันเพื่อให้สามารถเคลื่อนที่ไป ได้ทุกทิศทางดังในรูปที่ 1. ในตัวรถจะประกอบด้วยเซ็นเซอร์ที่จำเป็นต่างๆจำนวนมากเพื่อให้สามารถวิเคราะห์ค่าต่างๆได้อย่าง ถูกต้อง เช่น ตำแหน่ง ความเร็ว ทิศทาง ฯลฯ เป็นต้น

รูปที่ 1. รูปแสดงตัวรถที่จะสร้างขึ้น

4.2 ระบบตรวจจับสำหรับการเคลื่อนที่

จากรูปสนามแข่ง จะพบว่าอุปกรณ์ที่ใช้มีลักษณะทรงตันดังนั้นการใช้งานระบบ lidar น่าจะมีความเหมาะสมเพราะสามารถ สแกนวัตถุได้รอบตัว โดยติดตั้งในระดับต่ำเพื่อให้สามารถตรวจวัตถุได้ทุกชิ้น โดยเบื้องต้นก่อนการแข่งขันจะให้มีการเรียนรู้แผนที่ ของสนามแข่ง(โดยยังไม่มีสิ่งกีดขวาง)โดยปล่อยให้วิ่งสร้างแผนที่ขึ้นเอง จากนั้นจะกำหนดตำแหน่งเป้าหมายต่างๆ รถยนต์ ตู้จ่าย ฯลฯ เป็นต้น จากนั้นก็พร้อมสำหรับการแข่งขัน (ในการแข่งขันไม่ทราบว่ากรรมการจะมีการปรับตำแหน่งรถยนต์หรือไม่ดังนั้นจึง อาจต้องทำให้ AI สามารถเรียนรู้ถึงการเปลี่ยนที่ของวัตถุเป้าหมาย เพื่อให้สามารถทำงานได้เสมือนว่าอยู่ในระบบบริการจริง)

4.3 ระบบตรวจจับสำหรับมองหาวัตถุ

ระบบตรวจหาอุปกรณ์จะเน้นใช้ระบบกล้อง 3 มิติทำงานร่วมกับระบบแผนที่โดยเมื่อคาดการว่าถึงเป้าหมายแล้วก็ทำการ ตรวจหาวัตถุเป้าหมายต่างๆ เช่น ป้ายทะเบียน หัวจ่ายน้ำมัน ป้ายกำกับชนิดเชื้อเพลิง ช่องเติมน้ำมัน ฯลฯ เป็นต้น

รูปแสดงตำแหน่งวางกล้องเพื่อสามารถปรับมุมกล้องมองรอบตัวได้ทุกมิติอย่างชัดเจน

ระบบตรวจสอบป้ายทะเบียนรถยนต์ ระบบ AI จะแบ่งออกเป็น 3 ส่วน แล้วทำการถอดรหัสภาพเป็นข้อมูลอักษร เพื่อใช้ใน การยืนยันด้วยเสียงและปฏิบัติงาน

ระบบตรวจสอบป้ายกำกับชนิดน้ำมันจะให้ AI จดจำเป็นรูปภาพ เพื่อแยกประเภทชนิดน้ำมัน

4.4 ระบบสื่อสารโดยใช้เสียงสั่งงานและออกเสียงตอบรับคำสั่ง

ระบบนี้จะติดตั้งที่โต๊ะควบคุมเพื่อให้สะดวกในการใช้งาน จะประกอบด้วย

ระบบพูด ใช้ลำโพงคอมฯ เปล่งเสียงโดยอาศัยข้อมูลของคำพูดทีละคำ บันทึกแทนอักษรต่างๆ ซึ่งจะเป็นส่วนที่ทำได้ง่าย ระบบฟัง ใช้ไมค์คอมฯ รับสัญญาณเสียงเข้าในรูปข้อมูลแล้วส่งให้ระบบ AI วิเคราะห์ เนื่องจากระบบนี้จะทำงานได้ สมบูรณ์ต้องใช้เวลาและข้อมูลในการพัฒนาสูงมาก ดังนั้นจึงให้เรียนรู้เฉพาะประโยคที่จำเป็นเท่านั้น

4.5 ระบบควบคุมและขับเคลื่อน

แหล่งจ่ายพลังงาน เนื่องมีการทำงานในช่วงเวลาสั้นๆ ดังนั้นการใช้แบตเตอรี่จึงเป็นทางเลือกที่เหมาะสม โดยจะใช้ แบตเตอรี่ขนาดประมาณ 200 Wh 24 โวลต์

ระบบขับเคลื่อน ตั้งใจจะใช้ล้อ mecanum wheel ทั้งนี้เพื่อให้สามารถเคลื่อนที่ได้คล่องตัวและดูทันสมัย โดยใช้ มอเตอร์ขนาด 250 วัตต์พร้อม Encoder จำนวน 4 ตัวเพื่อขับล้อทั้ง 4

ระบบขับมอเตอร์ จะใช้วงจร H bridge ขนาด 500 watt 60 volt จำนวน 4 ชุด

ระบบควบคุมมอเตอร์ ระบบไมโครคอนโทรลเลอร์จำนวน 4 ชุด ควบคุมแบบป้อนกลับเพื่อควบคุมตำแหน่งมุมและความเร็ว ของมอเตอร์ทั้ง 4 ตัว โดยรับคำสั่งจากระบบ AI เพื่อควบคุมทิศทางและรูปแบบการเคลื่อนที่ให้ได้ตามที่กำหนด

4.6 ระบบแขนกล

ได้ออกแบบแขนกลขนาด 6 แกนที่มีขนาดใกล้เคียงกับแขนมนุษย์เพื่อควบคุมการหยิบสิ่งของต่างๆ เช่น หัวจ่ายน้ำมัน โดยจะ ทำเองทั้งหมดเพื่อให้สามารถอยู่ในงบที่จำกัด โดยมีลักษณะดังรูป (ยังออกแบบไม่ครบทุกแกน)

รูปแขนกลที่ได้ออกแบบไว้

4.7 ระบบหยิบจับวัตถุ

ออกแบบเป็นระบบโมดูลสามารถเปลี่ยนหัวจับได้เพื่อให้เหมาะสมกับงานที่ทำ เช่น หยิบหัวจ่ายน้ำมัน (มือจับอยู่ในระหว่างออกแบบ)

4.8 ระบบ Al

ระบบ AI หลักจะอยู่บนชุดควบคุมหลักซึ่งจะแยกต่างหากจากตัวหุ่นยนต์ (เป็นโต๊ะควบคุมเพื่อให้สื่อสารกับมนุษย์ได้สะดวก
) และควบคุมตัวหุ่นยนต์ผ่านระบบ WIFI โดยการทำงานทั้งหมดของหุ่นยนต์จะแสดงผลที่ชุดควบคุมหลัก ทำให้ง่ายต่อความเข้าใจ
ในเหตุการณ์ต่างๆที่เกิดขึ้น

รูปที่ 3 แสดงตำแหน่งต่างๆ ที่เกี่ยวข้องทั้งหมดในสนามแข่งขัน

4. แผนเวลาการทำงาน 8 เดือน เริ่ม มกราคม – สิงหาคม

		ระยะเวล	าดำเนินงา	กิจกรรมย่อย		
กิจกรรมหลัก	5	6	7	8	9	
	พ.ค.	ື່ມ.ຍ.	ก.ค.	ส.ค.	ก.ย.	
สร้างตัวรถจริงพร้อมระบบขับเคลื่อน						
ทดสอบการทำงานตัวรถจริง						
ซ่อมบำรุงและปรับปรุงตัวรถจริง						
สร้างแขนกลพร้อมทดสอบ						
ซ่อมบำรุงและปรับปรุงแขนกล						
สร้างอุปกรณ์หยิบชิ้นงาน						
ทดสอบการทำงานของอุปกรณ์หยิบชิ้นงาน						
พัฒนาและปรับปรุงระบบ Al						
สร้างและปรับปรุงโต๊ะควบคุม						
ทดสอบการทำงานเต็มรูปแบบและปรับปรุง						
รายงานความคืบหน้าครั้งที่ 1						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 2						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 3						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 4						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 5						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 6						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 7						ครั้งละ 1-5 นาที
รายงานความคืบหน้าครั้งที่ 8						ครั้งละ 1-5 นาที

5. งบประมาณค่าใช้จ่าย (ต้องไม่เกิน 100000.-)

- ค่าใช้จ่ายโครงสร้างตัวรถ+แขนกล
 - ค่าใช้จ่ายระบบควบคุมและขับเคลื่อนหุ่นยนต์
 - ค่าใช้จ่ายระบบควบคุมและขับเคลื่อนแขนกล
 40000.- บาท

- ค่าใช้จ่ายระบบ AI (ยังไม่ประเมินเพราะมีราคาสูง แต่เพื่อประหยัดจะเน้นการใช้โปรแกรมและดึงงบจากระบบอื่นๆ)

- ค่าใช้จ่ายสำรอง 5000.- บาท

6. สิ่งที่ได้หลังจบโครงการ

ได้ระบบสำหรับให้ นศ ได้เรียนรู้ ,พัฒนาและปรับปรุงให้ดีขึ้นเมื่อมีโอกาศได้รับงบเพิ่มในอนาคต