System Description

Motor Controller MCU Firmware

Viraj Ariyawangsha December 21, 2024

Microcontroller	STM32F103C8T6 (STM Blue pill)	
Platform	STM32 Cube IDE 1.13.1	
Programming Language	С	
Link to source code https://github.com/AryansVj/motor-controller		

Firmware Architecture

Main components

Running Status struct: A data structure defined to hold the real time parameters of the system providing a single point of access for write and read.

- Reference Speed: The speed required by the user updated by user input (INC/DEC)
- Current RPM: The current rpm calculated by the Timer using motor controller feedback
- PID Output: The output generated by the closed loop PID controller output
- Fault Status: The True (1) / False (0) flag defined to indicate any fault conditions in the motor

Timer with RPM Calculator: A timer set to overflow at a sampling period of 600 ms (equivalent to 10 pulses at 100 RPM) with input capture configured to count the number of pulses that resets each

time the timer interrupt is triggered. The count of pulses is used to calculate the current RPM and update in the *Running status* struct.

PID Controller: A closed loop PID controller that uses the reference speed, feedback motor speed and the tuned K_p , K_i and K_d values to reduce the error.

$$error[i] = reference \ speed[i] - current \ RPM[i-1]$$
 $PID \ Output = [PID \ Controller \ gains] \leftarrow error$

PWM Generator: Another timer is used to generate the PWM signal of 100 Hz frequency by varying the duty cycle according to the PID output. In case of a fault condition, the PID output is bypassed and the control signal is set to stop the motor.

SR Control: Shift Register control logic to control the LED Array. Two cascaded shift registers of 8 outputs each is configured to switch on required number of LEDs according to the current RPM out of the 10 LEDs by setting their register value High.

Ports and Signals

Name	Function	Operation description
INC	A button to increase the	Trigger the ISR 1 to increase the reference speed by
	motor speed	100 RPM via interrupts
DEC	A button to decrease the	Trigger the ISR 2 to reduce the reference speed by
	motor speed	100 RPM via interrupts
RESET	A reset button to reset the	Trigger the ISR 3 to set the fault status of the
	fault status	system back to false (0)
Fault Signal	Indication of a motor fault	Triggers the ISR 4 setting the fault status to true (1)
Speed Signal	Feedback from the motor	A pulse train that corresponds to the current motor
	control with running speed	speed
Control	PWM signal to control the	PWM signal governed by the PID controller is sent
Signal	motor speed	with the required duty cycle to set the motor speed
LED Array	A linear indicator of the	A shift register is driven using the 3 GPIO to switch
	current motor speed	on the required number of LEDs out of 10 LED array

Resource Allocation

Resource		Function	
TIM2	General Purpose timer	Speed signal count conture and DDM calculation	
PA0	GPIO (in)	Speed signal count capture and RPM calculation	
TIM3	General Purpose timer	DIMMA Signal ganaration	
PA6	GPIO (out)	PWM Signal generation	
PA1	GPIO_EXTI1	External interrupt for INC button	
PA2	GPIO_EXTI2	External interrupt for DEC button	
PA3	GPIO_EXTI3	External interrupt for RESET button	
PA4	GPIO_EXTI4	External interrupt for FAULT CONDITION signal	
PA10	GPIO (out)	LED Shift register data pin (DS)	
PA11	GPIO (out)	LED Shift register clock pin (SHCP)	
PA12	GPIO (out)	LED Shift register latch pin (STCP)	
PC13	GPIO (out)	Built in LED for testing	

References

- 1. PID Controller library for ARM Cortex M (STM32) by Majid Derhambakhsh (https://github.com/Majid-Derhambakhsh/PID-Library)
- 2. STM32F103C8 Datasheet (https://www.st.com/resource/en/datasheet/stm32f103c8.pdf)