Reducing the Dimensionality of Data with Neural Networks

presentation based on a research paper by G. E. Hinton and R. R. Salakhutdinov

Chris Sipola, s1667278¹ Elias Mistler, s1675946¹

> ¹School of Informatics University of Edinburgh

Data Mining and Exploration, 2017

- 1 Paper overview
- 2 Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- 3 Performance
 - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

Paper overview

- Neural nets can be used for dimensionality reduction. They're called autoencoder networks
- However, these networks only work well if weights are initialized to be close to correct solution
- This paper describes a way of initializing the weights through pre-training using restricted Boltzmann machines (RBMs)
- It works much better than PCA for dimensionality reduction

- 1 Paper overview
- 2 Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- 3 Performance
 - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

PCA: linear data¹

PCA is good at summarizing data where relationships are linear.

¹Image source:

http://www.inf.ed.ac.uk/teaching/courses/dme/2017/lecture-notes.pdf

PCA: nonlinear data²

However, traditional PCA has trouble summarizing nonlinear data because it can't account for nonlinear relationships.

²Image source:

http://www.inf.ed.ac.uk/teaching/courses/dme/2017/lecture-notes.pdf

Can engineer features for PCA, e.g.,

$$\phi(x_1, x_2) = (x_1, x_2, \sqrt{x_1 + x_2}, atan(x_1, x_2))$$

but ideally we would *learn* them using powerful models like neural networks.

- 1 Paper overview
- 2 Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- 3 Performance
 - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

Modeling nonlinear, complex relationships³

000000

Activation functions in neural networks—such as the *sigmoid* or *ReLU* functions—allow us to capture complex relationships between input variables.

³Image source: http://neuralnetworksanddeeplearning.com/chap1.html

Activation function after linear transformation⁴

$$y_k = \text{softmax}\left(\sum_{r=1}^{H} w_{kr}^{(2)} h_r^{(1)} + b_k\right)$$
 $h_j^{(1)} = \text{sigmoid}\left(\sum_{s=1}^{d} w_{js}^{(1)} x_s + b_j\right)$

Linear function (no effective hidden layers)⁵

- Data has a nonlinear relationship
- No hidden layers → logistic regression

⁵Source: http://playground.tensorflow.org

Nonlinear function (one hidden layer)⁶

One hidden layer \rightarrow smarter decision boundary.

⁶Source: http://playground.tensorflow.org

Deep networks: training is hard⁷

Why is training deep networks hard?

- Vanishing/exploding gradients: gradients for layers closer to the input layer are computed multiplicatively using backprop
- If sigmoid/tanh hidden units near the output saturate then back-propagated gradients will be very small

http://www.inf.ed.ac.uk/teaching/courses/mlp/2016/mlp06=enc.pdf 4 > > > > > 0 0 0

⁷Slide material taken from MLP course:

Solution: pre-training⁸

Solve by stacked pre-training

- Train the first hidden layer
- Add a new hidden layer, and train only the parameters relating to the new hidden layer. Repeat.
- Then use the pretrained weights to initialise the network and fine-tune the complete network using gradient descent

http://www.inf.ed.ac.uk/teaching/courses/mlp/2016/mlp06_enc.pdf = 5 > 5 > 0 < 0

⁸Slide material taken from MLP course:

Solution: pre-training⁸

Solve by stacked pre-training

- Train the first hidden layer
- Add a new hidden layer, and train only the parameters relating to the new hidden layer. Repeat.
- Then use the pretrained weights to initialise the network and fine-tune the complete network using gradient descent

Approaches to pre-training

- Supervised: Layer-by-layer cross-entropy training
- Unsupervised: Restricted Boltzmann machines

http://www.inf.ed.ac.uk/teaching/courses/mlp/2016/mlp06-enc.pdf

⁸Slide material taken from MLP course:

- Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- - Examples
 - Comparison
- - Why it matters
 - Conclusion

Autoencoder architecture

Autoencoder architecture

- Artificial Neural Network architecture:
 One network with a low-D hidden layer
 Can be split to 2 NNs → encoder and decoder
- Unsupervised learning
- learns low-dimensional (higher-level) representation ("code") of the data
- Claim: This code performs much better than PCA for dimensionality reduction if trained properly

Autoencoders: Training

- Unsupervised learning is achieved through minimising the difference between input and output
- lacksquare Deep architecture ightarrow hard to train
- Solution:
 - layer-wise pre-training with RBMs
 - gradient descent for fine-tuning

- Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- - Examples
 - Comparison
- - Why it matters
 - Conclusion

- Two-layer Neural Network architecture
- binary nodes
- efficient training through stochasticity
 - logistic squashing / softmax function
 - interpreted as activation probability
 - → stochastic binary values
 - → training maximises probability of training data

RBM probabilities and energy function

- \mathbf{v} : vector of m visible units v_i
- h: vector of n hidden units h_j
- W: $m \times n$ matrix of weights $w_{i,j}$
- **a** (size m), b (size n): bias vectors for visible / hidden units

RBM probabilities and energy function

- \mathbf{v} : vector of m visible units v_i
- h: vector of n hidden units h_j
- W: $m \times n$ matrix of weights $w_{i,j}$
- **a** (size m), b (size n): bias vectors for visible / hidden units
- Activation probability: $P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^m w_{i,j}v_i)$

RBM probabilities and energy function

- \mathbf{v} : vector of m visible units v_i
- h: vector of n hidden units h_j
- W: $m \times n$ matrix of weights $w_{i,j}$
- **a** (size m), b (size n): bias vectors for visible / hidden units
- Activation probability: $P(h_j = 1|v) = \sigma(b_j + \sum_{i=1}^m w_{i,j}v_i)$
- Energy function: $E(v,h) = -a^T v b^T h v^T W h$

Architecture and procedure⁹

00000

Contribution of the paper

- Code layer contains the dimensionality-reduced data
- Note the encoder network and decoder network
- Once reduced, need decoder network to recover data
- Deep Neural Network architecture
 - \rightarrow need for effective training
- ⇒ The paper suggests a new approach to autoencoder training by doing layerwise training with restricted Boltzmann machines

- 1 Paper overviev
- 2 Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- 3 Performance
 - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

Examples

Example 1: image compression

Fig. 3. (A) The twodimensional codes for 500 digits of each class produced by taking the first two principal components of all 60,000 training images. (B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder. For an alternative visualization, see (3).

Examples

Example 2: document retrieval

Fig. 4. (A) The fraction of retrieved documents in the same class as the query when a query document from the test set is used to retrieve other test set documents, averaged over all 402,207 possible queries. (B) The codes produced by two-dimensional LSA. (C) The codes produced by 2000-500-252-252-2 autoencoder.

Comparison

- 1 Paper overviev
- 2 Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- 3 Performance
 - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

Comparison

Effect of the RBM pre-training

Random initialisation vs. layer-wise pre-training in a deep (left) and shallow (right) autoencoder 10

¹⁰ Image source: Online supplements of the paper ←□ → ←② → ←② → ←② → → ② → ◆② → ◆②

Why it matters

- - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
 - - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

Why it matters

Why it matters

- Dimensionality reduction is necessary to:
 - handle, visualise and communicate high-D data effectively
 - store data space-efficiently while preserving the inner structure
 - run further Machine Learning algorithms more efficiently

Why it matters

- Dimensionality reduction is necessary to:
 - handle, visualise and communicate high-D data effectively
 - store data space-efficiently while preserving the inner structure
 - run further Machine Learning algorithms more efficiently
- Autoencoders offer dimensionality reduction superior to PCA made feasible by RBM-based, layer-wise pre-training:
 - learns intrinsic high-level features automatically
 - is extremely flexible due to non-linearity
 - can (theoretically) learn arbitrary mappings / structures

Conclusion

- 1 Paper overview
- 2 Background material and motivation
 - PCA
 - Neural Networks
 - Nonlinearities
 - pre-training
 - Autoencoders
 - Restricted Boltzmann Machines
- 3 Performance
 - Examples
 - Comparison
- 4 Discussion
 - Why it matters
 - Conclusion

Background material and motivation ୦୦୦୦ ୦୦୦୦ ୦୦୦୦ Performance 000 00 Discussion

Conclusion

Conclusion

- Autoencoders can reduce dimensionality by better representing nonlinear relationships in the data
- Restricted Boltzmann Machines allow for effective, layer-wise pre-training
- The resulting non-linear representation performs far better than PCA for complex structures in the data

