

UNIVERSITY INSTITUTE OF COMPUTING MASTER OF COMPUTER APPLICATIONS

Design and Analysis of Algorithms

24CAT-611

DISCOVER . LEARN . EMPOWER

Optimal binary search trees

e.g. binary search trees for 3, 7, 9, 12;

Optimal binary search trees

n identifiers : $a_1 < a_2 < a_3 < ... < a_n$ P_i , $1 \le i \le n$: the probability that a_i is searched. Q_i , $0 \le i \le n$: the probability that x is searched where $a_i < x < a_{i+1}$ ($a_0 = -\infty$, $a_{n+1} = \infty$).

$$\sum_{i=1}^{n} P_i + \sum_{i=1}^{n} Q_i = 1$$

Optimally Binary Search Tree

■The expected cost of a binary tree:

Identifiers: 4, 5, 8, 10, 11, 12, 14 Internal node: successful search, P_i External node: unsuccessful search, Q_i

Let C(i, j) denote the cost of an optimal binary search tree containing a_i, \ldots, a_i .

The cost of the optimal binary search tree with a_k as its root:

Computation relationships of subtrees

e.g. n=4

Time complexity : $O(n^3)$ when j-i=m, there are (n-m) C(i, j)'s to compute. Each C(i, j) with j-i=m can be computed in O(m) time.

Matrix-chain multiplication

n matrices $A_1, A_2, ..., A_n$ with size

$$p_0 \times p_1$$
, $p_1 \times p_2$, $p_2 \times p_3$, ..., $p_{n-1} \times p_n$

To determine the multiplication order such that # of scalar multiplications is minimized.

To compute $A_i \times A_{i+1}$, we need $p_{i-1}p_ip_{i+1}$ scalar multiplications.

e.g. n=4, A₁:
$$3 \times 5$$
, A₂: 5×4 , A₃: 4×2 , A₄: 2×5 ((A₁ × A₂) × A₃) × A₄, # of scalar multiplications: $3 * 5 * 4 + 3 * 4 * 2 + 3 * 2 * 5 = 114$ (A₁ × (A₂ × A₃)) × A₄, # of scalar multiplications: $3 * 5 * 2 + 5 * 4 * 2 + 3 * 2 * 5 = 100$ (A₁ × A₂) × (A₃ × A₄), # of scalar multiplications: $3 * 5 * 4 + 3 * 4 * 5 + 4 * 2 * 5 = 160$

PRACTICE PROBLEM BASED ON 0/1 KNAPSACK PROBLEM-

Let m(i, j) denote the minimum cost for computing $A_i \times A_{i+1} \times ... \times A_j$

Computation sequence :

Time complexity: O(n³)

References

1. https://webpages.uncc.edu ras > courses > OB

Books:

- 1. Introduction to Algorithms by Coreman, Leiserson, Rivest, Stein.
- 2. Fundamentals of Algorithms by Ellis Horwitz
- 3. Computer Algorithms/C++ by Sartaj Sahni, Sanguthevar Rajasekaran

