Mathematical Proof

John Shea

February 10, 2019

Assignment #5

Question 1

Theorem 1. If \mathscr{F} and \mathscr{G} are families of sets, and A in \mathscr{F} and B in \mathscr{G} , then $\cup \mathscr{F}$ and $\cup \mathscr{G}$ are not disjoin if A and B are not disjoint.

Proof. Suppose A and B are not disjoint. Then there exists at least one x which exists in A and B. Since A is an element of \mathscr{F} and $\cup \mathscr{F}$ consists of every member of the elements of \mathscr{F} , then x exists in $\cup \mathscr{F}$. And since B is an element of \mathscr{G} and $\cup \mathscr{G}$ consists of every member of every element of \mathscr{G} , then x exists in $\cup \mathscr{G}$. Therefore, $\cup \mathscr{F}$ and $\cup \mathscr{G}$ have x in common and are subsequently not disjoint.

Question 2

Theorem 2. For every integer n, 30|n if, and only if, 5|n and 6|n.

Proof. Suppose 30|n. Then there exists an integer k such that 30k = n. Therefore n = 30k = 5(6k), so 5|n. Similarly n = 30k = 6(5k), so 6|n.

Suppose 5|n and 6|n. Then there exists integers j and k such that n = 5j and n = 6k, which means n = 5j = 6k. Therefore 30(j - k) = 30j - 30k = 6(5j) - 5(6k) = 6n - 5n = n, so 30|n.

Question 3

Theorem 3. There is a unique real number x such that for every real number y, xy+x-17=17y

Proof. First, take xy + x - 17 = 17y and add 17 to both sides, the result is xy + x = 17y + 17. Then factor x + 1 out of both sides and get x(y + 1) = 17(y + 1). Then dived both sides by y + 1 and get x = 17. This proves that x = 17 for all real values of y except -1. Because, if y = -1 then dividing by y + 1 constitutes dividing by zero which is undefined. To prove that x = 17 holds as true for y = -1, take the point where the division by zero would occur and insert

x = 17 and y = -1 to test for truth. That results in the statement 17(-1+1) = 17(-1+1), which is clearly identical and leads to the true statement that 0 = 0.

Visual proof that x = 17 for all real numbers $y \neq -1$.

$$zy + x - 17 = 17y$$

$$\equiv xy + x - 17 + 17 = 17y + 17$$

$$\equiv xy + x = 17y + 17$$

$$\equiv x(y+1) = 17(y+1)$$

$$\equiv \frac{x(y+1)}{y+1}y + 1 = \frac{17(y+1)}{y+1}$$
(divide both sides by y-1)
$$\equiv x = 17$$
(conclusion)

Visual proof that x = 17 for y = -1.

$$zy + x - 17 = 17y$$

$$\equiv xy + x - 17 + 17 = 17y + 17$$

$$\equiv xy + x = 17y + 17$$

$$\equiv x(y + 1) = 17(y + 1)$$

$$\equiv 17(-1 + 1) = 17(-1 + 1)$$

$$\equiv 17(0) = 17(0)$$

$$\equiv 0 = 0$$
(add 17 to both sides)
(simplify)
(factor both sides)
(simplify)
(simplify)

Question 4

Theorem 4. For any set U, for every $B \in \wp(U)$ there is a unique D such that for every $C \in \wp(U), C \setminus B = C \cap D$.

Proof. Because B, D, and C are within $\wp(U)$, U is the universal set within the context of this problem. Suppose D is the complement of B (i.e. B^c) within set U. Then D is the set of all $x \notin B$ within $\wp(U)$. Therefore, for any possible $C \in \wp(U)$ if the members of C which also exists in B are removed (i.e. $C \setminus B$), the remainder of the set will exist in both C and D. Therefore, there exists a unique set D such that for all C, $C \setminus B = C \cap D$. Furthermore, that unique set D is the compliment of B, B^c .

Question 5

Theorem 5. For every positive integer n, there is a sequence of 2n consecutive positive integers containing no primes.

Proof. Suppose n is a positive integer. Suppose x = (2n+1)! + 2. $x = 1 \cdot 2 \cdot 3 \cdot 4 \dots (2n+1) + 2$. Two can be factored out to create $2 \cdot (1 \cdot 3 \cdot 4 \dots (2n+1) + 1)$. If 2 can be factored out of x, then x is divisible by 2 and therefore not prime. Similarly, $x + 1 = 1 \cdot 2 \cdot 3 \cdot 4 \dots (2n+1) + 3$. Three can be factored out leaving $3 \cdot (1 \cdot 2 \cdot 4 \dots (2n+1) + 1)$. With 3 factorizable, x + 1 is divisible by 3 and therefore not prime. This pattern repeats for all the numbers in the sequence proving that for any positive integer n, There is a sequence of 2n consecutive positive integers containing no primes.

A more visual depiction:

$$\begin{array}{c} x = 1 \cdot 2 \cdot 3 \cdot 4...(2n+1) + 2 \\ = 2 \cdot (1 \cdot 3 \cdot 4...(2n+1) + 1) & (x \text{ not prime}) \\ x + 1 = 1 \cdot 2 \cdot 3 \cdot 4...(2n+1) + 3 \\ = 3 \cdot (1 \cdot 2 \cdot 4...(2n+1) + 1) & (x+1 \text{ not prime}) \\ x + 2 = 1 \cdot 2 \cdot 3 \cdot 4...(2n+1) + 4 \\ = 4 \cdot (1 \cdot 2 \cdot 3...(2n+1) + 1) & (x+2 \text{ not prime}) \\ \dots & (\text{pattern repeats for the remainder of the sequence}) \end{array}$$

Question 6

Theorem 6. For $f(x) = x^2$ with domain $0 \le x \le 10$, then $\lim_{x\to 5} f(x) = 25$

Proof. Given $\epsilon > 0$ and $0 < |x - 5| < \delta$. Suppose $\delta = min\{1, \frac{\epsilon}{11}\}$. With a δ no greater than 1, x can be no greater than 6, and |x + 5| can be no greater than 11. Therefore:

$$|x^2 - 25| = |x - 5||x + 5|$$

$$< |x - 5|11$$

$$< (\frac{\epsilon}{11}) \cdot 11 = \epsilon$$