Домашнее задание 1. Группа 277, осень 2015

Задача 1. Пусть \hat{F}_n — эмпирическая функция распределения, построенная по простой выборке длины n, с неизвестной функцией распределения F.

- Какое распределение имеет случайная величина $n\hat{F}_n(x)$?
- Используя оценку $\hat{F}_n(x)$ и вариант центральной предельной теоремы, построить приближенный (в виду предельности теоремы) интервал, содержащий значение F(x) с заданной вероятностью α .

Теорема 1 (Неравенство Дворецкого-Кифера-Вольфовитца). Пусть $X_1, \ldots, X_n \sim F$. Тогда для любого $\varepsilon > 0$:

$$\mathsf{P}\left(\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\geq\varepsilon\right)\leq 2\exp(-2n\varepsilon^2).$$

Задача 2. Построить на основании неравенства Дворецкого-Кифера-Вольфовитца неасимптотический вариант критерия согласия Колмогорова. Указать критическую область при заданном уровне значимости.

Задача 3 (Теорема Гливенко–Кантелли). Доказать, что $\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\xrightarrow{\text{п.н.}}0.$

Указание. Вспомните лемму Бореля-Кантелли.

Задача 4. Построить plug-in оценки для математического ожидания и дисперсии. Являются ли эти оценки несмещенными?

Указание. Статистический функционал — это действительнозначная функция, определенная на некотором множестве функций распределения. Например, математическое ожидание можно рассматривать как статистический функционал:

$$\mu(F) = \int x dF(x).$$

Пусть требуется оценить значение некоторого статистического функционала S в точке F. Plug-in оценкой величины S(F) называется оценка, представимая в виде $S(\hat{F}_n)$, где \hat{F}_n — эмпирическая функция распределения.

Пусть оценивается некоторый неизвестный параметр распределения θ , причем предполагается, что $\theta \in \Theta$, где Θ — некоторое фиксированное множество. Оценка $\hat{\theta}$ параметра θ называется несмещенной, если $\mathbb{E}\hat{\theta} = \theta$ для всех $\theta \in \Theta$.