Versuch 34

8. September 2021

Spektralphotometrie

Physikalisches Anfängerpraktikum I

Juan Provencio

Betreuerin: Carla Kulcsar

Inhaltsverzeichnis

1	Ziel	des Versuches	2			
2	Gru	ındlagen	2			
	2.1	Gitterspektrometer	2			
	2.2	Fotometrie	2			
	2.3	Bestimmung der Absoprtions- und Extinktionskoeffizienten $$. $$.	3			
3	Ver	suchsaufbau	4			
	3.1	Materialen und Geräte	4			
	3.2	Aufbau				
4	Mes	ssung und Auswertung	5			
	4.1	Messprotokoll	5			
		Auswertung				
5	Zusammenfassung und Diskussion					
	5.1		12			
	5.2	Diskussion				
6	Que	ellen	13			

1 Ziel des Versuches

Mit diesem Versuch wollen wir als erstes lernen, wie ein Gitterspektrometer funktioniert, und wie man Daten daraus analysiert. Insbesondere wollen wir mit zwei unterschiedlichen Methoden den Extinktionskoeffizient ε bestimmt. Dieser gibt an wie Licht durch ein Medium an Intensität verliert. Dieser ist in der Fotometrie wichtig, weil wenn er bekannt ist, kann man dadurch die Konzentration einer Substanz in einer Lösung bestimmen.

2 Grundlagen

2.1 Gitterspektrometer

Wenn Licht durch einen Gitter geht, dann wird es in Licht spezifischer Wellenlänge getrennt und diese werden räumlich nebeneinander angeordnet. Dieses Verhältnis können wir aus der Formel für den Ablenkwinkel der Maxima φ am Gitter erkennen.

$$\sin \varphi = \frac{n \cdot \lambda}{g} \tag{1}$$

Hier entspricht n der Ordnung des Maximums, g die Gitterkonstante und λ die Wellenlänge. Der Auftreffpunkt des Lichtes hängt also von der Wellenlänge ab. Dies erlaubt einen klaren Überblick über die "Dichte" des Lichtes in Abhängigkeit von der Wellenlänge zu haben. Das entstehende Licht wird dann an einem Sensor beobachtet und die jeweiligen Anteile werden digital interpretiert und auf einem Programm eingetragen.

2.2 Fotometrie

Substanzen absorbieren Licht bzw. Strahlung in einer sehr eigenartigen Weise, abhängig von der Konzentration und der Wellenlänge des Lichts, was absorbiert wird. Mit der Spektralfotometrie können wir diese Konzentration bestimmen, aber auch die zeitliche Entwicklung einer Substanz durch die Änderungen in seinem Absorptionsspektrum bestimmen. Um dies zu bestimmen guckt man sich die Entwicklung der Intensität des Lichtes an, welche differentiell als integrierbare Differentialgleichung aufgefasst werden kann.

$$\frac{\mathrm{d}I}{I} = -k\mathrm{d}l\tag{2}$$

Als Lösung erhalten wir eine absteigende Exponentialfunktion für die Intensität

$$I = I_0 e^{-kl} \tag{3}$$

Das ist das sogenannte Lambertsche Absorptionsgesetz. Anders formuliert erhalten wir eine lineare Gleichung für den natürlichen Logarithmus der Intensität

$$ln I = -k \cdot l + ln I_0$$
(4)

Auf logarithmisches Papier wird aber in der Regel der Logarithmus mit Base 10 verwendet, weshalb wir durch eine kurze Änderung der Basis den Ausdruck

$$\log I = -\log e \cdot k \cdot l + \log I_0 = -k' \cdot l + \text{const.}$$
 (5)

erhalten. Dabei ist natürlich \log_{10} mit log gemeint und $k' = \log e \cdot k$.

Das Beersche Gesetz besagt zusätzlich, dass dieser "dekadischer Absorptionskoeffizient" k' proportional zur Konzentration c eines Stoffes ist.

$$k' = \varepsilon \cdot c \tag{6}$$

Diese Proportionalitätskonstante ε wird molares Extinktionskoeffizient genannt. Verschiedene Bedingungen müssen hier erfüllt sein, damit dieses Gesetz gültig ist. Im Optimalfall sind ist der Extinktionskoeffizient unabhängig von der Konzentration. Beide sind aber von der Wellenlänge abhängig, das heißt, wenn wir versuchen den Wert für ε zu bestimmen, dann wird dies nur für eine bestimmte Wellenlänge gültig sein.

2.3 Bestimmung der Absoprtions- und Extinktionskoeffizienten

2.3.1 Variation der Länge

Per Gleichung (5) lässt sich eine lineare Beziehung zwischen dem Logarithmus der Intensität log I und der Länge l aufstellen, bei der der Absorptionskoeffizient k' die Steigung ist. Da wir eine konstante Konzentration c haben, können wir mit Gleichung (6) den Extinktionskoeffizient ε bestimmen.

2.3.2 Variation der Konzentration

Andererseits bleibt l konstant, und man variiert dabei die Konzentration. Somit erhält man im Diagramm $\varepsilon \cdot l$ als Steigung, und bei bekannter Länge ist nur ε zu bestimmen.

3 Versuchsaufbau

3.1 Materialen und Geräte

• Spektralfotometrische Messanordnung bestehend aus: Lichtquelle, Lochblende, Linse, Küvettenbank und Fasereinkoppler

- Gitterspektrometer, Ocean Optics USB4000
- Computer mit Drucker
- 1 Satz (5 Stück) Küvetten mit 0,00005-molaren Kaliumpermanganatlösung (KMnO₄), Schitdicken $l_1=1,5$ cm, $l_2=3$ cm, $l_3=6$ cm, $l_4=12$ cm, $l_5=24$ cm
- 25 ml-Bürette mit 1/20 ml-Teilung und 21 Vorratsgefäß (Voll entsalzenes Wasser), eine 25 ml-Bürett mit 1/10 ml-Teilung und 21 Vorratsgefäß (0,001-molare wässrige KMnO₄-Lösung)
- Offene Küvette (rechteckig), $l = 1, 5 \,\mathrm{cm}$
- Logarithmisches Papier, 3 Dekaden

3.2 Aufbau

Abbildung 1: Aufbau des Versuchs

4 Messung und Auswertung

4.1 Messprotokoll

Messprotokol	1 134 Spek	tral photometrie	
08.09.2021			
D. Broad	Ł III		
The Brand Juan Brower	ncio		
1. Angabe:	Messung Rauden	- von KMuOq	
millande:	λ = (507 /	2 ± 1/2) nu.	OD_ = 1,06 ± 0.01
	λ = (525		OD = 1,41 ± 0.01
3. Bande:	λ3= (545 ±	1) nm	00 = 1,41 ± 0.01
	Aq = (566 ±		004 = 0,77 ± 0.01
	dambertsches (
Elugestellte	Integrations text	6100 gree =	6,4 msec
t = 13 ms			
	doc lobos	1456 Mai 11058	chiedonon Wovetten
werden durc	shore finit	The were wells	CVACCUTOTY YOU VCTICA
al-alla As			
lessurg 1	hovette ([cm]	Intensitat 5	Withelwest TIM
1		6347453	
2		68492114 68675,03 68645,27	(63 555, 61)
3	1,5	63575,03	30
5		63621,09	65560
		05001,57	
3			
4		48 0 5 4 , 41	(42029 12)
1 2		48065,23	(47988, 97) 30
4 2 3	3	48065,23	(47988, 17) 30
1 2 3 4	3	48065,23	(47988, 17) 30
4 2 3	3	48 065,23 47 949,86 47 985, 80 47 919,57	(47988, 17) 30
1 2 3 4 5 5	3	48 065,23 47 949,86 47 955,80 47 919,67	(47988, 17) 30
1 2 3 4 5 5 1 2 2		48 065,23 47 949,86 47 955,80 47 919,67	
1 2 3 4 5 5	3	48 065,23 47 949,86 47 955,80 47 919,67	(17995 35) 12
1 2 3 4 5 5 1 2 2		48 065,23 47 949,86 47 955 80 47 919,67 18 015,81 18 025,90 17 99,97 17 98,07	
1 2 3 4 5 1 2 3 4 5 5		48 065,23 47 949,86 47 949,87 47 949,87 48 015,84 48 023,90 47 997,97 47 986,07 17 988,99	(17995 35) 12
1 2 3 4 5 5 1		48 065,23 47 949,86 47 949,87 47 949,87 48 015,84 48 023,90 47 997,97 47 986,07 17 988,99	(17895 35) 12 17996
1 2 3 4 5 1 2 3 4 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5	6	48 065,23 47 949,86 47 955,80 47 949,87 18 015,81 18 023,90 17 991,97 17 986,07 17 988,90 4002,88	(17995 35) 12
1 2 3 4 5 5 1 2 2 3 4 4 5 5 1 2 2 3 4 4 5 5 1 2 2 3 4 4 5 5 1 2 2 3 4 4 5 5 1 4 2 2 3 4 4 5 1 4 2 2 3 4 4 5 1 4 2 2 3 4 4 5 1 4 2 2 3 4 4 5 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		48 065,23 47 949,86 47 925,80 47 949,67 18 025,90 17 991,97 17 988,99 17 988,99 4050,45 4022,91	(17995 35) 12 17996 (4010,53) 3
1 2 3 4 5 1 2 3 4 5 1 2 3 3 4 5 5 1 2 2 3 3 4 5 5 1 5 5 1 5 5 6 6 6 6 6 6 6 6 6 6 6 6	6	48 065,23 47 949,86 47 955,80 47 949,87 18 015,81 18 023,90 17 991,97 17 986,07 17 988,90 4002,88	(17895 35) 12 11996 (4010,59) 5
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	6	48 065,23 47 949,86 47 949,86 47 949,87 18 015,81 18 023,90 17 997,97 17 986,97 17 988,99 4030,45 4022,91 4022,91 4022,91 4022,91	(1795 35) 12 11996 (4013,59) 5 4020
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5	6	48 065,23 47 949,86 47 949,86 47 949,87 18 015,81 18 023,90 17 997,97 17 986,97 17 988,99 4030,45 4022,91 4022,91 4022,91 4022,91	(17395 35) 12 12 996 (4013,53) 3 4020 Angabe: (1905. Mitt@week)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	6	48 065,23 47 949,86 47 949,86 47 949,87 18 015,81 18 023,90 17 997,97 17 986,97 17 988,99 4030,45 4022,91 4022,91 4022,91 4022,91	(1795 35) 12 11996 (4013,59) 5 4020
1 2 3 4 5 1 2 3	6	48 065,23 47 949,86 47 925,80 47 949,67 18 025,90 17 991,97 17 988,99 17 988,99 4050,45 4022,91	(17395 35) 12 12 996 (4013,53) 3 4020 Angabe: (1905. Mitt@week)

Abbildung 2: Messprotokoll

Abbildung 3: Fortsetzung Messprotokoll

Hessung	Intensitat Nowmen [mt]	tote sitat	der Vonzentrat	QI.
1		65 202.66		
2	04	63 190,01		
3	21 ±0,1	63190,01	(63 204,81)	10
4		63219:39	65210	
S		63214.39		
1		38 640 41		
2		086000		
3	11,430,1	28 624 40	(28661.28)	13
4		38 624, 10 38 684, 79	(38661,28)	
5		38667,03		
1		24685.43		
3		24685,43		
3	+1,610,1	24.528,60	(14593.52)	30
3		24528,60	24590	
2		24616,81		
1 2 3		8473,49		
2	1 1 0 1 0 1	8440 47	(94 - 2 2 2)	
	+4,0±0,1	9460,65 8440,41 8440,03	(8452,87)	6
5		2410 01	8453	
3		0 444,05		
1		1353,60		
2		1312,64		
3	+14101	1534,03	(1345 (13)	10
4		1560, 87	(1345 MA 18)	
5		1865,10		
			CK	8.08.21
			-	

Abbildung 4: Fortsetzung Messprotokoll

4.2 Auswertung

4.2.1 Messung der Intensität

Als erstes haben wir die Lagen der Permanganatbanden bestimmt, d.h., die Stellen wo die optische Dichte lokale Maxima aufwies. Dafür haben wir zuerst das System ohne Küvette kalibriert und eine Referenzmessung und Dunkelmessung durchgeführt. Die Mit der 12 cm lange Küvette haben wir dann das Absorptionsspektrum aufgenommen und die optische Dichte an den Maxima aufgeschrieben. Das abgeschriftete Spektrum ist in Diagramm 1 dargestellt.

Diagramm 1: Absorption in Abhängigkeit der Wellenlänge

4.2.2 Bestimmung des Extinktionskoeffizients

Im Folgenden wird versucht aus dem Diagramm 2 den Extinktionskoeffizient aus dem Lambertschen und Beerschen Gesetz zu bestimmen. Der Versuch wurde beim Maximum der optischen Dichte $\lambda_2=525\,\mathrm{nm}$, also sind die folgenden Rechnungen nur für diesen Fall gültig. Zu erwähnen ist auch die Tatsache, dass wegen der maximalen Auflösung des Geräts kann das Spektrum nicht kontinuierlich über alle Wellenlängen bestimmt werden. Wir haben die für die Messungen die nächste anzeigbare Wellenlänge von $\lambda=524,979\,\mathrm{nm}$.

Als erstes berechnen wir den Fehler der korregierten Intensität mithilfe der

Gaußschen Fehlerfortpflanzung.

$$\sigma_{I_{\text{korr}}} = \sqrt{\left(\sigma_{\overline{I_{\text{korr}}}}\right)^2 + \left(\frac{\partial}{\partial D_m}(I_{\text{korr}}) \cdot \sigma_{D_m}\right)^2 + \left(\frac{\partial}{\partial D_o}(I_{\text{korr}}) \cdot \sigma_{D_o}\right)^2}$$
 (7)

$$= \sqrt{\left(\sigma_{\overline{I_{\text{korr}}}}\right)^2 + \left(I\frac{2D_m}{D_o^2} \cdot \sigma_{D_m}\right)^2 + \left(I\frac{2D_m^2}{D_o^3} \cdot \sigma_{D_o}\right)^2} \tag{8}$$

Hier benutzen wir den Mittelwert der noch nicht korregierten Intensitäten für I = 290,00

$$\sigma_{I_{\text{korr}}} = 17 \tag{9}$$

Somit erhalten wir insgesamt für die letzte Messreihe eine Intensität von

$$I_{\text{korr}} = 233 \pm 17$$
 (10)

Zunächst bestimmen wir aus der Steigung der Geraden auf Diagramm 2 den Extinktionskoeffizient ε . Als erstes gucken wir uns per dem Lambertschen Gesetz die Gerade der Intensität in Abhängigkeit der Länge an. Dann ist die Steigung k':

$$k' = \frac{\log 50000 - \log 400}{18 \,\text{cm}}$$

$$= 11,6495 \,\text{m}^{-1}$$
(11)

$$= 11,6495 \,\mathrm{m}^{-1} \qquad (12)$$

Für den Fehler benutzen wir die Differenz der Steigung der Ausgleichsgerade und der "Fehlergerade". Dadurch, dass die Fehler zu klein für die verwendete Skala sind benutzen wir folgende Formel für den Fehler:

$$\sigma_{k'} = k' - \frac{\log(I_1 + \sigma_{I_1}) - \log(I_2 - \sigma_{I_2})}{l_1 - l_2}$$

$$= 11, 7 \,\mathrm{m}^{-1} - \frac{\log 63590 - \log 233}{23, 5 \,\mathrm{cm}}$$
(13)

$$= 11,7 \,\mathrm{m}^{-1} - \frac{\log 63590 - \log 233}{23,5 \,\mathrm{cm}} \tag{14}$$

$$= 0.7 \,\mathrm{m}^{-1} \tag{15}$$

Dabei haben wir für I_1 den Mittelwert der ersten Messreihe aus Tabelle 3 des Messprotokolls 3 und für I_2 den Mittelwert der letzten Messreihe. Somit erhalten wir insgesamt eine Steigung von

$$k' = (11, 7 \pm 0, 7) \,\mathrm{m}^{-1} \,\checkmark$$
 (16)

Dabei wissen wir, dass der Extinktionskoeffizient

$$\varepsilon = \frac{k'}{c} \qquad \checkmark \tag{17}$$

und per Versuchsanleitung ist die Konzentration in der Flüssigkeit c=5. $10^{-5} \,\mathrm{mol}\,\mathrm{l}^{-1}$. Somit beträgt ε_L

$$\varepsilon_L = (2, 33 \pm 0, 14) \cdot 10^6 \,\mathrm{cm^2 \,mol^{-1}} = (2330 \pm 140) \,\mathrm{l \,mol^{-1} \,cm^{-1}} \| \qquad (18)$$
 Für den Fehler wurde nur die Steigung k' verwendet, denn in der Prakti-

kumsanleitung kein Fehler für die Konzentration c gegeben wurde.

Als nächstes gucken wir uns die Steigung der Gerade in Abhängigkeit der Konzentration. Wir verfahren analog zur letzten Teilaufgabe, in diesem Fall beträgt aber die Steigung der Gerade $\varepsilon_B \cdot l$ mit $l = 1.5 \,\mathrm{cm}$ als Konstante Länge.

$$\varepsilon_B \cdot l = (m) = \frac{\log 50000 - \log 1500}{5.35 \cdot 10^{-4} \,\text{mol } l^{-1}} \tag{19}$$

$$= 2846, 5 \,\mathrm{l}\,\mathrm{mol}^{-1} \qquad |\cdot \frac{1}{l} \qquad (20)$$

$$\varepsilon_B = \left(\frac{m}{l}\right) = 1,8978 \cdot 10^6 \,\mathrm{cm}^2 \,\mathrm{mol}^{-1} \tag{21}$$

Für die Konzentration hätten sich Fehler auf einer Fehlergerade nicht beobachten können. Dementsprechend benutzen wir einen ähnlichen Ansatz wie vorhin und bestimmen den Fehler der Steigung σ_m mit einer Hoch- und Unterschätzung der ersten und letzten Messungen.

$$\sigma_m = m - \frac{\log(I_1 + \sigma_{I_1}) - \log(I_2 - \sigma_{I_2})}{c_1 - c_2}$$
(22)

Hier ist sind I_1, I_2 und c_1, c_2 ebenfalls die Mittelwerte der ersten bzw. letzten Messreihe aus Tabelle 2 im Messprotokoll 4

$$= 2846, 51 \,\mathrm{mol}^{-1} - 3102, 11 \,\mathrm{mol}^{-1} \tag{23}$$

$$= 255,61 \,\mathrm{mol}^{-1} \tag{24}$$

Mit diesem Wert können wir mit dem Gaußschen Fortpflanzungsgesetz den Fehler des Extinktionskoeffizientes σ_{ε} bestimmen.

$$\sigma_{\varepsilon_B} = \sqrt{\left(\frac{\sigma_m}{l}\right)^2} = 0.17 \cdot 10^6 \,\mathrm{cm}^2 \,\mathrm{mol}^{-1} \tag{25}$$

Somit ergibt sich insgesamt

$$\varepsilon_B = (1, 90 \pm 0, 17) \cdot 10^6 \,\mathrm{cm}^2 \,\mathrm{mol}^{-1} = (1900 \pm 170) \,\mathrm{l} \,\mathrm{mol}^{-1} \,\mathrm{cm}^{-1} \|$$
 (26)

Diagramm 2: Lambertsches und Beersches Absorptionsgesetz

5 Zusammenfassung und Diskussion

5.1 Zusammenfassung

In diesem Versuch haben wir als erstes den Umgang mit einem Gitterspektrometer und dem Software, der zu Interpretation der Ergebnisse hilft, gelernt. Dabei sind einige Sachen zu beachten, wie zum Beispiel die Durchführung von Referenz- und Dunkelmessungen.

Danach haben wir mithilfe zweier Vorgehensweisen den Extinktionskoeffizient ε in einer Kaliumpermanganatlösung bei Licht der Wellenlänge $\lambda=525\,\mathrm{nm}$ bestimmt. Die erste Methode basiert auf das Lambertsche Gesetz (2) was besagt, dass die Intensität von Licht in einem Medium exponentiell mit der zurükgelegten Länge abfällt. Da haben wir bei konstanter Konzentration c verschiedene die Intensität bei verschiedenen Längen gemessen und die gegebenen Werte in ein Diagramm abgebildet. Die Annahme dabei war, dass die Werte des Logarithmus der Intensität und die Länge in einem linearen Zusammenhang zu einander stehen, also haben wir sie im Rahmen unserer Fähigkeiten mit einer Gerade auf Logarithmuspapier verbunden. Die andere Methode geht davon aus, dass die Intensität von der Konzentration der Lösung abhängt, dieses Verhältnis ist bekannt als das Beersche Gesetz. Ebenfalls haben wir hier die Messwerte mit einer Gerade verbunden.

Bei der Ausrechnung ging darum, die Steigung dieser beiden Geraden zu bestimmen und daraus durch leichte Umformung den Extinktionskoeffizient zu bestimmen.

5.2 Diskussion

Bei der Durchführung des Versuchs wurde auf diverse mögliche Fehler eingegangen. Beispielsweise sind schon die in der Anleitung erwähnte Schritte der Dunkelmessung und der Mittlung der Messungen mit Scans to average nützlich um Fehler zu behebn. Zusätzlich wurden diese Messungen mehrmals durchgeführt und nochmal einen Mittelwert daraus gebildet. Die Messdaten für die erste Messreihe der Intensität in Abhängigkeit der Länge sind insofern ausreichend genau. Die Korrektur der letzten Messreihe bei der Küvette der Länge $l=24\,\mathrm{cm}$ ist aber anfällig auf die Messung des Durchmessers des Lichts. Diese ist somit mit einem deutlich größeren relativen Fehler behaftet im Vergleich zu den anderen Werten $\left(\frac{17}{233}>>\frac{30}{63560}\right)$. Diesen Fehler hätte man zum Beispiel mit einem Schirm mit einer Skala verringern können, aber wir haben es auf einem handgelateten Papierblatt mit einem Lineal gemessen, weshalb wir auch einen etwa größeren Fehler abgeschätzt haben. Menschliche

Handlung kann aber zu einer größeren unbeachteten Propagation von Fehlern im zweiten Versuchsteil führen. Als erstes bei der Datensammlung der Intensität in Abhängigkeit der Konzentration ist zu erwähnen, dass die Volumina, insbesondere gegen die letzten Messwerte, signifikant von den "Rechenwerten" abweichen können, dadurch dass jedes Mal dass das Gefäß wieder gefüllt wurde ein neuer Fehler entstanden haben könnte. Die größten Fehlern sind aber höchstwahrscheinlich bei den handskizzierten Geraden auf Logarithmuspapier entstanden. Es wurde versucht die Geraden in der Nähe der ersten Messungen zu halten, und größere Abweichungen bei den letzten Messungen zu erlauben, denn aufgrund der logarithmischen Skala kleine Abweichungen von den ersten Messwerten, d.h. da wo die Intensität am größten war, zu viel größere Fehlern führen.

Wenn wir die zwei erhaltenen Werte für den Extinktionskoeffizient aus 18 und 26 vergleichen erhalten wir eine Abweichung von

$$\frac{|\varepsilon_L - \varepsilon_B|}{\sqrt{(\sigma_{\varepsilon_L})^2 + (\sigma_{\varepsilon_B})^2}} = 2$$
 (27)

 2σ -Bereiche. Das ist akzeptabler aber weist trotzdem darauf hin, dass es verschiedene Verbesserungsstellen gibt. Selbst bei Ausstreckung der Fehlerbereichen teilen die beiden Werte keine gemeinsame Zone.

6 Quellen

Wagner, J., Universität Heidelberg (2021). Physikalisches Praktikum PAP1 für Studierende der Physik B.Sc., 55-60.

Walcher W, et. al. (1967). Praktikum der Physik (8. Auflage). https://doi.org/10.1007/978-3-322-94128-2

Glossar

Absorptionsspektrum Beim Durchgang von Licht durch Materie wird ein Teil davon von dieser absorbiert. Das Absorptionsspektrum zeigt das Verhältnis an Licht bestimmter Wellenlängen, was absorbiert wurde. Ein kleiner Wert im Absorptionsspektrum bedeutet, dass viel Licht von dieser Wellenlänge absorbiert worden ist.. 2