Расчетно-графическая работа по математическому анализу Вариант 6

Егор Федоров Даниил Горляков

Университет ИТМО

Декабрь 2023

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные этображения

Вывод

Дано векторное поле $m{H}=(e^{x};-e^{y}).$

- 1. Убедитесь, что поле потенциально
- 2. Найдите уравнения векторных линий
- 3. Изобразите векторные линии на рисунке
- 4. Найдите потенциал поля при помощи криволинейного интеграла
- 5. Изобразите линии уровня потенциала (эквипотенциальные линии). Проиллюстрируйте ортогональность линий уровня и векторных линий.
- 6. Зафиксируйте точки A и B на какой-либо векторной линии. Вычислите работу поля вдоль этой линии.

Убедимся, что поле потенциально. Для этого найдем $\mathsf{rot}\, m{H} = \mathsf{grad}\, m{H} imes m{H}$.

$$\operatorname{grad} \boldsymbol{H} = \left(\frac{\partial \boldsymbol{H}}{\partial x}; \frac{\partial \boldsymbol{H}}{\partial y}\right) = (e^x; -e^y)$$

$$\operatorname{rot} \boldsymbol{H} = \operatorname{grad} \boldsymbol{H} \times \boldsymbol{H} = (e^{x}; -e^{y}; 0) \times (e^{x}; -e^{y}; 0) = \\ = (0, 0, e^{x} \cdot (-e^{y}) - (-e^{y}) \cdot e^{x}) = \mathbf{o}$$

Таким образом, так как rot $oldsymbol{H}=\mathbf{o}$, поле $oldsymbol{H}$ – потенциально [1].

Уравнения векторных линий

Для нахождения уравнений векторных линий решим дифференциальное уравнение:

$$\frac{dx}{e^x} = \frac{dy}{-e^y} \tag{1}$$

Проинтегрируем полученное уравнение:

$$\int e^{-x} dx = \int -e^{-y} dy \tag{2}$$

Интегрируя в уме, получаем:

$$-e^{-x} + C_1 = e^{-y} + C_2$$

 $e^{-y} + e^{-x} = C$

Перенесем e^{-x} в правую часть и прологарифмируем:

$$y = -\ln(C - e^{-x}),$$
 $C - e^{-x} > 0 \iff x > -\ln(C), C > 0$ (3)

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Конформны отображени

Вывод

Векторные линии

Рис.: Векторные линии поля $oldsymbol{H}$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2.
Поток
векторного поля

Задание 3. Конформные отображения

Вывод

Потенциал векторного поля

Пусть U(R) – потенциал поля H.

$$U(R) = \int_{\widehat{AR}} \mathbf{H} \, d\mathbf{r} \tag{4}$$

Где A – точка поля, координаты которой удовлетворяют условиям существования полей H и rot H.

Возьмем в качестве A точку (0;0). Так как интеграл в уравнении (4) не зависит от пути, то разобьем его на две линии $(0;0)-(R_x:0)-(R_x;R_y)$

$$U(R) = \int_{(0;0)}^{(R_x;0)} (e^x dx + (-e^y dy)) + \int_{(R_x;0)}^{(R_x;R_y)} (e^x dx + (-e^y dy)) =$$
 (5)

$$= \int_{0}^{R_{x}} e^{x} dx - \int_{0}^{R_{y}} e^{y} dy = e^{R_{x}} - e^{R_{y}}$$
(6)

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

литературы

Линии уровня потенциала

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Работа поля вдоль линии

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Вывод по задаче

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Дано тело T, ограниченное следующими поверхностями:

$$z + \sqrt{4 - x^2 - y^2} = 0$$
 $x^2 + z^2 = 1$ $x^2 + y + z^2 = 2$

На рисунке предоставлено сечение тела T координатной плоскостью Oyz.

- ightharpoonup Изобразите тело T на графике в пространстве.
- Вычислите поток поля

$$a = (\sin zy^2)i + \sqrt{2}xj + (\sqrt{2+y} - 3k)k$$

через боковую поверхность тела T, образованную вращением дуги AFEDC вокруг оси Oy, в направлении внешней нормали поверхности тела T.

Вывод по задаче

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного пол:

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Задание 3. Конформные отображения

$$w(z)=\frac{z-1}{z+1}$$

План выполнения работы:

- 1. Рассмотреть конформное отображение. Определить особые точки отображения (при наличии) и указать их вид.
- 2. Изобразить на комплексной плоскости отображение области виртуального пространства в область физического пространства с помощью заданного преобразования.
- 3. Выделить действительную и мнимую части отображения для построения искривленной координатной сетки в физическом пространстве.
- 4. Взять обратное преобразование к заданному и проанализировать его
- 5. Расчитать профиль показателя преломления используя конформное отображение

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Вывод по задаче

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного пол:

Задание 3. Конформные отображения

Зывод

Вывод

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного пол:

Задание 3. Конформные отображения

Вывод

Список литературы

- G.A. Korn и Т.M. Korn. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. 1968, c. 176—177. ISBN: 9780486411477.
- В. А. Зорич. Математический анализ, часть ІІ, 9-е изд. МЦНМО, 2019.

РГР по матанализу

Федоров. Горляков