Languages, Automata and Computation II
Assignment 3

Dominik Wawszczak Student ID Number: 440014

Group Number: 1

Problem 1

This problem was solved in collaboration with Kacper Bal and Mateusz Mroczka.

We say that a language $L \in \mathbb{A}^*$ is a good, if it satisfies the condition from the statement, i.e.

$$\underset{w \in \mathbb{A}^*}{\forall} \ \forall \ (w \in L \iff \sigma(w) \in L).$$

Let $A \in \mathbb{A}$ be an arbitrary element. Define σ_A as the function constantly equal to A. For any good language $L \in \mathbb{A}^*$, it must hold that

$$\bigvee_{w \in \mathbb{A}^*} (w \in L \iff \sigma_A(w) \in L),$$

since the order of quantifiers does not matter. This is equivalent to

$$\bigvee_{w \in \mathbb{A}^*} (w \in L \iff A^{|w|} \in L),$$

which implies that for every $n \in \mathbb{N}$, L either contains all words of length n or none of them.

The problem of determining whether a language $L \in \mathbb{A}^*$ is good is semi-decidable, since we can iterate through register automata that use zero registers, comparing each one with the automaton from the input.

The complement of this problem is also semi-decidable, as we can iterate over words of length n, for $n \in \mathbb{N}$, considering only a subset of n symbols from \mathbb{A} . For each such word, we can check all the possible functions σ limited to this subset and verify whether the condition holds.

Since both the problem and its complement are semi-decidable, the problem is decidable, which completes the proof.

Problem 2

This problem was solved in collaboration with Kacper Bal and Mateusz Mroczka.

- 1. Let $L = \{b^*a\}^{\omega}$, and $w = b^{\omega}$. Clearly, $w \notin L$, but any finite prefix of w can be extended to a word in L by concatenating it with a^{ω} . Therefore, L is ω -regular, but not closed, which concludes the proof.
- 2. Let $w=a^1b^1a^2b^2a^3b^3\ldots$, and $L=\{w\}$. As shown in the tutorial, L is not ω -regular. To prove that it is closed, consider any $v\in \Sigma^\omega$ different from w. Let $n\in \mathbb{N}$ be the smallest index at which w and v differ. Then, the prefix of v of length n+1 (assuming 0-indexing) cannot be extended to an ω -word in L. Additionally, any finite prefix of w can be extended to w. Hence, L is closed, which completes the proof.
- 3. We can construct a parity automaton that is equivalent to the Büchi automaton from the input, as discussed in the lecture. Let \mathcal{A} be this parity automaton, and let A be the set of states from which there exists an accepting run. For each state q, we can verify whether $q \in A$ by setting the initial state to q and checking for nonemptiness.
 - Let \mathcal{A}' be the automaton obtained from \mathcal{A} by keeping only the states in A, and increasing every weight by one. By checking the nonemptiness of \mathcal{A}' , we can determine whether there exists a run in \mathcal{A} that visits only the states from A but is not accepting. If such a run exists, the language $L(\mathcal{A})$ is not closed, as there exists an ω -word corresponding to this run, whose every finite prefix can be extended to an ω -word in $L(\mathcal{A})$, but which is not in the language itself. If no such run exists, the language is closed, which concludes the proof.