运筹学与优化第三次作业

3. 考虑对应下表的运输问题:

	<i>B</i> 1	Bz	<i>B</i> 3	B4	ai
A_1	4	5	6	5	20
A2	7	10	5	6	20
A 3	8	9	12	7	50
b_j	15	25	20	30	

- (1) 用西北角法求一初始基本可行解;
- (2)由(1)中求得的基本可行解出发,用表上作业法求最优解,使总运输费用最小.

分支定界法

1. 用分支定界法解下列问题:

(1) min
$$2x_1 + x_2 - 3x_3$$

s.t. $x_1 + x_2 + 2x_3 \le 5$,
 $2x_1 + 2x_2 - x_3 \le 1$,
 $x_1, x_2, x_3 \ge 0$, 且为整数.

割平面法

2. 用割平面法解下列问题:

(1) min
$$x_1 - 2x_2$$

s.t. $x_1 + x_2 \le 10$,
 $-x_1 + x_2 \le 5$,
 $x_1, x_2 \ge 0$, 且为整数.

匈牙利算法

4. 假设分派甲、乙、丙、丁、戊等 5 人去完成 A ,B ,C ,D ,E 等 5 项任务 ,每人必须完成 一项 ,每项任务必须由 1 人完成 .每个人完成各项任务所需时间 c_{ij} 如下表所示 ,问怎样分派任务才能使完成 5 项任务的总时间最少?

	A	В	С	D	E
甲	16	14	18	17	20
乙	14	13	16	15	17
丙	18	16	17	19	20
T	19	17	15	16	19
	17	15	19	18	21