May 5th – 7th,2022

Christophe LAPORTE

Audit - Conseil - Formation - Remote DBA

Un peu de pré-histoire

```
1958
     1<sup>er</sup> modem (BELL)
1961
    Concept de Clound Computing
    John Mc Carthy
1969
    ARPANET
1973
    Création de TCP/IP
1974
    Création de la société Microsoft
```

```
1981
     1er PC (IBM)
1983
    Adoption de TCP/IP
     1er serveur DNS
     1 000 ordinateurs connectés
1989
     SQL Server v1.0 (OS/2 Warp)
     1<sup>er</sup> notebook (Compaq)
     100 000 ordinateurs connectés
1991
    Annonce publique WWW
     Internet à usage général (CERN)
```

Un peu de pré-histoire

1989

SQL Server v1.0 (OS/2 Warp)

2008

Sortie de Windows 2008 & SQL Server 2008 Annonce de Windows Azure & SQL Data Services

2010

Sortie de Windows 2008R2 & SQL Server 2008R2 Virtualiser SQL server, le bon choix ? Et Microsoft publie quelques services Cloud ... SQL Server (managé) était l'un d'eux!

Aujourd'hui

SQL Server : SQL Serve 2019 (Windows, Linux, Kubernetes) Microsoft Azure : 200+ service et 68 régions annoncées (Juillet 2021)

Microsoft Azure L'offre SQL Server

Microsoft Azure: l'offre SQL Server

SQL in containers

Best for portable, consistent, and easy to patch SQL

SQL on Kubernetes

Best for database containers at scale with built-in HA

SQL Edge

Best for data and machine learning applications on IOT Edge

SQL Server dans un container

- Azure Container Instances
 - Seule préoccupation : le conteneur
 - Convient parfaitement pour des scénarios dev/test/CICD
- Azure Kubernetes Service
 - Cluster K8s totalement géré
 - Parfait pour des scénarii de production
 - HA par défaut ! Comportement semblable à un FCI
- Azure SQL Edge
 - SQL Server sur Raspberry Pi (ARM64)
 - Data streaming, time series, In-database ML ...

Microsoft Azure: l'offre SQL Server

SQL in containers

Best for portable, consistent, and easy to patch SQL

SQL virtual machines

Best for migrations and applications requiring OS-level access

SQL on Kubernetes

Best for database containers at scale with built-in HA

SQL Edge

Best for data and machine learning applications on IOT Edge

Azure SQL: SQL Server dans une VM

Cas d'usage

"Lift and Shift"

Support étendu pour SQL Server 2008/R2

Accès à l'OS

Besoins en IOPS/Bande passante importants

Haute disponibilité

« Haute disponibilité » native pour la VM

Always On Availability Groups

Y compris scénarii hybrides

Always On Failover Cluster Instances

Azure Premium File Share

Azure Shared Disks

Plus qu'une simple VM!

Images préconfigurées

Sous-système disque adapté

Resource provider

Flexibilité de la licence

Sauvegardes automatisées, mises à jour, monitoring

Azure SQL Server VMs: l'heure du choix

Choix ... compliqué

Nombre de cœurs

4 cores <= 154 VMs <= 8 cores 16 cores <= 104 VMs <= 24 cores

Mémoire

6GB <= 149 VMs <=33GB 32GB <= 142 VMs <=128GB

Disques

Stockage local (TempDB, BPE, Host caching) /!\ IO Capping

VMs à mémoire optimisée

124 VMs : Serie E ou M, RAM >= 16GB, CPU <= 24

Mes favorites : Série **Ebdsv5**

VMs contraintes extrêmement intéressantes

Capacités mémoire et CPU identiques

Mais ½ ou ¼ cœurs -> impact sur la licence SQL

Size	vCPU	Memory: GiB	Temp storage (SSD) GiB	Max data disks	Max temp storage throughput: IOPS / MBps	Max uncached storage throughput: IOPS / MBps	Max burst uncached disk throughput: IOPS/MBp	Max NICs	Network bandwidth
Standard_E2bds_v5	2	16	75	4	9000/125	5500/156	10000/1200	2	10000
Standard_E4bds_v5	4	32	150	8	19000/250	11000/350	20000/1200	2	10000
Standard_E8bds_v5	8	64	300	16	38000/500	22000/625	40000/1200	4	10000
Standard_E16bds_v5	16	128	600	32	75000/1000	44000/1250	64000/2000	8	12500
Standard_E32bds_v5	32	256	1200	32	150000/1250	88000/2500	120000/4000	8	16000
Standard_E48bds_v5	48	384	1800	32	225000/2000	120000/4000	120000/4000	8	16000
Standard_E64bds_v5	64	512	2400	32	300000/4000	120000/4000	120000/4000	8	20000

Microsoft Azure: l'offre SQL Server

SQL in containers

Best for portable, consistent, and easy to patch SQL

SQL virtual machines

Best for migrations and applications requiring OS-level access

SQL on Kubernetes

Best for database containers at scale with built-in HA

SQL managed instances

Best for most lift-and-shift migrations to the cloud. Instance pool options are available

SQL Edge

Best for data and machine learning applications on IOT Edge

Azure SQL: Instances Managées

Expérience similaire à SQL Server

Instance dédiée

Choix du classement

~100% compatible avec SQL Server

Service Broker, Database mail

Requêtes cross database, SQL Agent

Adaptation minimale, voire aucun changement applicatifs

Service managé

Sauvegarde et mise à jour automatisée Haute-disponibilité par défaut, SLA 99.99% Support Natif d'un VNet

Migrations simplifiées

Capacités de sauvegardes / restauration natives

Azure SQL: Instances Managées

General Purpose

- Generic workload
- 4 -> 80 vCores
- 20 -> 870 GB RAM
- Stockage distant
 - Premium SSD (5-10ms)
 - 2 -> 16TB
 - 500 -> 7500 IOPS / fichier
- 1 seul réplica
 - Failover ~1 minute

Business Critical

- Low latency workloads
- 4 -> 80 vCores
- 20 -> 870 GB RAM
- Stockage local
 - SSDs locaux (1-2 ms)
 - 1 -> 16TB
 - 16 000 -> 320 000 IOPS (4K / vCore)
- 4 réplicas
 - ~Groupes de disponibilité
 - Failover rapide ~10 seconds
 - 1 read-scale réplica
 - 2 réplicas HA
- Hekaton

Azure SQL: Instances Managées

HA: Auto failover Groups

Azure Traffic User device Manager Ingress Load Ingress Load End user Balancer traffic Failover group 🚾 DNS zone Azure SQL Azure SQL Geo-replication Managed Instance son Managed Instance Application Read-write listener (read-write) (read-write) DB traffic Application Application Read-only listener (read-only) (read-only) VNet VNet Secondary region Primary region

Modèle de facturation

Microsoft Azure: l'offre SQL Server

SQL in containers

Best for portable, consistent, and easy to patch SQL

SQL virtual machines

Best for migrations and applications requiring OS-level access

SQL on Kubernetes

Best for database containers at scale with built-in HA

SQL managed instances

Best for most lift-and-shift migrations to the cloud. Instance pool options are available

SQL Edge

Best for data and machine learning applications on IOT Edge

SQL databases

Best for modern cloud applications. Elastic pools, Hyperscale and Serverless options are available

Service managé

Déploiement en quelques secondes

Sauvegardes automatisées géo-redondées

Disponibilité dépendant du tier

SLA 99,9 -> 99,995%

RPO 5 secondes, RTO 30 secondes

Cas d'usage

Philosophie cloud moderne

Performance prédictibles

Mutualisation des couts

Service tiers

General Purpose

Business critical

Hyperscale

Fonction de

Volumétrie

Ressources en calcul

InMemory OLTP (Hekaton)

Scaling (up / down / in / out)

Haute disponibilité

General Purpose / Standard

Stockage distant Premium
Similaire à un cluster de basculement

Business Critical / Premium

Stockage local SSD (faible latence) Similaire aux groupes de disponibilité Réplica secondaire accessible en RO Hekaton

Hyperscale

Supporte jusqu'à 100TB

Scale-up rapide

Scale-out Compute & Pages Servers

Provisionnement rapide de réplicas secondaires

Réplicas secondaires accessible en RO

Stockage LRS | ZRS | RA-GRS

Backup et restauration ~instantanés

Haute disponibilité – Disaster Recovery

Geo-replication

Auto-failover groups

Redondance de zone

General Purpose / Standard

Business Critical / Premium

Modèle de facturation

Single database (GP & BC) Elastic Pool (GP & BC) Serverless (GP)

Azure SQL: Security

Infrastructure

Firewall Server & Database

Private Link Endpoint

Advanced Threat Detection

Données

Chiffrement des données : at rest & TDE

Chiffrement en transport : TLS and Always Encrypted

Dynamic Data Masking

Data Discovery and Classification

Audit

Azure SQL: Monitoring

Expérience de monitoring unifiée

Pour Azure SQL, SQLMI et Azure VMs Azure Monitor Metrics, Alerts and Logs SQL Insight (public preview)

Microsoft Azure Le point de vue du DBA

Offre mature en terme de

```
Performance
```

Grand choix de configuration / performance (laaS, PaaS and CaaS)

Fonctionnalités HA / DR

Monitoring

Sécurité

Migration: ~zero downtime (SQLMi + LRS | DMS)

Fonctionnalités SQL Server (évolutions (1,2) permanentes)

Simplicité de mise en œuvre

Création d'un serveur / d'une base

Maintenance

GRS backups par défaut

Infrastructure résiliente

Stockage ZRS, Géo-réplication, Auto-failover groups

Idée reçue

Le cloud coûte cher ...

Difficile à évaluer

Les ressources internes consommées sont rarement valorisées

Exercice : Donner un prix à une VM OnPrem

Datacenter OnPremise

Limites de compute ou de stockage ?

ScaleUp / ScaleOut ?

Auto Stop des VMs?

Services ServerLess?

Capacités HA / DR similaires ?

La question n'est plus

« Si ou quand » mais « comment et quelle plateforme cible»
Besoins en terme de migration (down time)
Besoins en terme de ressources matérielles
Taille et disponibilité de la base de données

La meilleure plateforme pour SQL Server

Les autre cloud providers sont ... « loin » derrière Microsoft propriétaire du code de SQL Server Pas de bricolage pour élaborer un service PaaS

Azure - la fin du métier de DBA?

Poste toujours attractif (plus que jamais ?)

Mise en avant des compétences (performance tuning, architecture, modélisation)

Supprime les tâches répétitives sans valeur ajoutée (80% du temps ?)

Compétences et responsabilités identiques

Performance tuning

Choix HW / SW

Et quelques une supplémentaires

IaaS, CaaS (AKS,ACI) et PaaS (SQLDB,SQLMI)

Réseau et sécurité (Private Endpoints, ...)

Besoins en administrateurs de données

Volume de 175 ZB attendu en 2025

80% de données non structurées

=> 35 000 000 TB de données structurées

