Inteligência Artificial Tópico 04 - Parte 02 Aprendizado de Máquina - Avaliação de Desempenho

Profa. Dra. \mathcal{P} riscila \mathcal{T} iemi \mathbb{N} aeda \mathcal{S} aito \mathbb{P} priscilasaito \mathbb{P} ufscar.br

Roteiro

Aprendizado de Máquina

Avaliação de Desempenho Preditivo

- Algoritmos e modelos
- Algoritmos de AM induzem modelos
 - funções, hipóteses
- Desempenho a ser avaliado
 - saída de um algoritmo de AM:
 - * modelo induzido
 - saída de um modelo de classificação:
 - ★ classificação para um novo exemplo

Avaliação de Desempenho

- Depende da tarefa
 - classificação: considera taxa de exemplos incorretamente classificados
 - * ex.: acurácia
 - regressão: considera diferença entre valor previsto e valor correto
 - * ex.: MSE
- Média dos erros obtidos em diferentes execuções de um experimento

Desempenho de Classificação

- Principal objetivo de um modelo é a classificação correta de novos exemplos
 - desempenho preditivo
 - errar o mínimo possível
 - minimizar taxa de erro de classificação
 - geralmente não é possível medir com exatidão essa taxa de erro
 - ★ deve ser estimada do erro de treinamento
 - ★ amostragem de dados

Generalização

- Capacidade de generalização de uma hipótese
 - propriedade de continuar válida para outros objetos que não fazem parte de seu conjunto de treinamento

Problemas

- Overfitting: especialização nos dados de treinamento, não generaliza
- Underfitting: baixo acerto mesmo nos dados de treinamento

Overfitting

- Sobreajuste ou overtraining
- Fenômeno que ocorre quando o modelo estatístico se ajusta em demasiado ao conjunto de dados/amostras
- É comum que a amostra apresente dsvios causados por erros de medição ou fatores aleatórios, ocorre o sobreajuste quando o modelo se ajusta a estes

Teorema do patinho feio (de Watanabe)

Caso haja um conjunto suficientemente grande de características em comum, sem uma outra referência previamente estabelecida, é possível fazer com que dois padrões arbitrários sejam considerados similares Um cisne e um pato e um par de cisnes podem ficar igualmente similares

Overfitting

8 / 41

Overfitting

• Como contornar esse problema?

Cross-validation

- consiste em separar os dados em treinamento e teste
 - ★ conjunto de treinamento usado para o aprendizado do conceito
 - conjunto de teste usado para medir o grau de efetividade do conceito aprendido
- essa divisão dos dados em subconjuntos ajuda a evitar que o modelo aprenda as particularidades dos dados

Amostragem de Dados

- Permite melhor avaliação do desempenho preditivo
- Alternativas
 - amostragem única
 - ★ hold-out
 - re-amostragem

Hold-out

Métodos de Reamostragem

- Utilizam várias partições para os conjuntos de treinamento e de teste
 - random subsampling
 - k-fold cross-validation
 - ★ leave-one-out
 - bootstrap

Random Subsampling

k-fold Cross-Validation

Leave-one-out

- Cross-validation, em que k = n, sendo que n representa o número de amostras disponíveis
- Estimativa de erro é praticamente não tendenciosa
 - média das estimativas tende a taxa de erro verdadeiro
- Computacionalmente caro
 - geralmente utilizado para pequenos conjuntos de exemplos
 - ▶ 10-fold cross validation aproxima leave-one-out
- Variância tende a ser elevada

Bootstrap

- Funciona melhor que cross-validation para conjuntos muito pequenos
- Existem diversas variações
- Forma mais simples de bootstrap
 - amostragem com reposição
 - cada partição é uma amostra aleatória com reposição do conjunto total de exemplos
 - conjunto de treinamento têm o mesmo número de exemplos do conjunto total
 - ★ exemplos que restarem são utilizados para teste

Acurácia

- Quantos exemplos foram corretamente classificados?
 - avalia erro nas classes igualmente
- Pode não ser adequada para dados desbalanceados
 - pode prejudicar desempenho para classe minoritária
 - ★ geralmente mais interessante que a classe majoritária
 - acurácia balanceada

Classificação Binária

- Classe de interesse é a classe positiva
- Dois tipos de erro:
 - classificação de um exemplo N como P
 - ★ falso positivo (alarme falso)
 - * ex.: diagnosticado como doente, mas está saudável
 - classificação de um exemplo P como N
 - ★ falso negativo
 - * ex.: diagnosticado como saudável, mas está doente

Desempenho Preditivo

- Matriz de confusão (tabela de contingência) pode ser utilizada para distinguir os erros
 - base de várias medidas
 - pode ser utilizada com 2 ou mais classes

<u>ira</u>	Classe predita			
Jade		1	2	3
asse verdadeira	1	25	0	5
sse	2	10	40	0
Ca	3	0	0	20

• Matriz de confusão para 200 exemplos divididos em 2 classes

Medidas de Avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$
 (Alarmes falsos)

Erro do tipo I

Taxa de FN (TFN) =
$$\frac{FN}{VP + FN}$$

Erro do tipo II

Medidas de Avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$
 (Alarmes falsos)

Taxa de VP (TVP) =
$$\frac{VP}{VP + FN}$$

Benefício

Avaliação de 3 classificadores

 $\frac{FP}{FP+VN}$

Avaliação de 3 classificadores

$$\frac{FP}{FP+VN}$$

Classe predita
p n
20 30
N 15 35

Classificador 1

$$TVP = 0.4$$

$$TFP = 0.3$$

Classificador 2

$$TVP = 0.7$$

$$TFP = 0.5$$

Classificador 3

$$TVP = 0.6$$

$$TFP = 0.2$$

Medidas de Avaliação

• Medidas frequentemente utilizadas

TFP (Erro tipo I)

 $\frac{FP}{FP+VN}$

Precisão

 $\frac{VP}{VP+FP}$

TVP

 $\frac{VP}{VP+FN}$

Sensibilidade Revocação (Recall)

TFN (Erro tipo II)

 $\frac{FN}{VP+FN}$

Especificidade

 $\frac{VN}{VN+FP}=1$ - TFP

Acurácia

 $\tfrac{\mathit{VP} + \mathit{VN}}{\mathit{VP} + \mathit{VN} + \mathit{FP} + \mathit{FN}}$

Medida F1

 $\frac{2}{1/prec+1/rev}$

Revocação x Precisão

- Revocação (recall)
 - porcentagem de exemplos positivos classificados como positivos
 - * nenhum exemplo positivo é deixado de fora
- Precisão
 - porcentagem de exemplos classificados como positivos que são realmente positivos
 - ★ nenhum exemplo negativo é incluído

Sensibilidade x Especificidade

- Sensibilidade
 - porcentagem de exemplos positivos classificados como positivos
 - ★ igual a revocação
- Especificidade
 - porcentagem de exemplos negativos classificados como negativos
 - * nenhum exemplo negativo é deixado de fora

Avaliação

- Medida-F
 - média harmônica ponderada da precisão e da revocação
- Medida-F1
 - precisão e revocação têm o mesmo peso

Medida-F

$$\frac{(1+\alpha) \times (prec \times rec)}{\alpha \times prec + rev}$$

Medida-F1

$$rac{2 imes (\mathit{prec} imes \mathit{rev})}{\mathit{prec} + \mathit{rev}} = rac{2}{1 \ / \ \mathit{prec} + 1 \ / \ \mathit{rev}}$$

- Seja um classificador com a seguinte matriz de confusão, definir:
 - acurácia
 - precisão
 - revocação
 - especificidade

adeira SID	Classe predita			
verd _d	70	30		
Classe Z	40	60		

Acurácia

$$\frac{VP+VN}{VP+VN+FP+FN}$$

Precisão

$$\frac{VP}{VP+FP}$$

Revocação

 $\frac{VP}{VP+FN}$

Especificidade

$$\frac{VN}{VN+FP}$$

Acurácia

$$\frac{VP+VN}{VP+VN+FP+FN} = (70+60) / (70+30+40+60) = 0.65$$

Precisão

$$\frac{VP}{VP+FP} = 70 / (70+40) = 0.64$$

Revocação

$$\frac{VP}{VP+FN} = 7 / (70+30) = 0.70$$

Especificidade

$$\frac{VN}{VN+FP} = 60 / (40+60) = 0.60$$

Gráficos ROC

- Do inglês, Receiver operating characteristics
- Medida de desempenho originária da área de processamento de sinais
 - muito utilizada nas áreas médica e biológica
 - mostra relação entre custo (TFP) e benefício (TVP)

$$\frac{FP}{FP+VN} \times \frac{VP}{VP+FN}$$

Colocar no gráfico ROC os 3 classificadores do exemplo anterior

Classificador 1

$$\mathsf{TFP} = 0.3$$

$$TVP = 0.4$$

Classificador 2

$$TFP = 0.5$$

$$TVP = 0.7$$

Classificador 3

$$\mathsf{TFP} = 0.2$$

$$TVP = 0.6$$

Gráficos ROC

Gráficos ROC

- Classificadores discretos produzem um simples ponto no gráfico ROC
 - ► ADs e conjuntos de regras
- Outros classificadores produzem uma probabilidade ou score
 - ► RNAs e NB
- Curvas ROC permitem uma melhor comparação de classificadores
 - são insensíveis a mudanças na distribuição das classes

Curvas ROC

- Mostram ROC para diferentes variações
- Classificadores que geram valores contínuos (threshold, probabilidade)
 - diferentes valores de threshold podem ser utilizados para gerar vários pontos
 - ★ ligação dos pontos gera uma curva ROC
- Classificadores discretos
 - convertidos internamente ou comitês

Curvas ROC

Área sob a curva ROC (AUC)

- Fornece uma estimativa do desempenho de classificadores
- Gera um valor contínuo no intervalo [0,1]
 - quanto maior melhor
 - adição de áreas de sucessivos trapezóides
- Um classificador com maior AUC pode apresentar AUC pior em trechos da curva
- Mais confiável utilizar médias de AUCs

Área Sob Curvas ROC

Ávaliação de Desempenho

- Teste de Hipóteses
 - permite afirmar que uma técnica é melhor que outra com X% de confiança
 - podem assumir que os dados seguem uma dada distribuição de probabilidade
 - paramétricos
 - não paramétricos
 - número de técnicas comparadas
 - ★ duas
 - mais que duas

Referências e Leituras Complementares

- ullet Cap. 18 o livro Russel e Norvig
- ullet Cap. 10
 ightarrow livro Ben Coppin