# PRIVACY-PRESERVING COLLABORATIVE FILTERING (PPCF)

# Collaborative Filtering (CF)

**Problem: Information Overload** 



Solution: Collaborative Filtering (CF)

5/13/2010 2







### Motivation

- CF has disadvantages
  - Most important: Serious threat to individual privacy
  - Privacy risks: severe & many
  - Vulnerable E-commerce sites
  - Customer data: Valuable asset
  - False data contribution
  - Privacy measures: Key to CF's success
    - Q1. How can customers contribute their preferences for CF purposes without greatly compromising their privacy?
    - Q2. How can the server provides accurate referrals estimated from perturbed data without exposing users' privacy?

5/13/2010 6

### Motivation

- Diverse privacy concerns
  - Data sensitivities differ
  - Various data disguising
    - Q3. How can the server perform CF services on inconsistently disguised data and how does this data affect accuracy?
- Split data between vendors
  - No data disclosure (privacy, legal, and financial concerns)
    - Q4. How can two parties perform recommendation services on integrated data to increase mutual benefits without threatening their privacy?

5/13/2010

### Goals

- Proposing PPCF schemes to providing accurate referrals efficiently without threatening users' privacy
- Achieving privacy: Prevent the data collector from learning
  - True ratings
    - How much users like or dislike items they rated
    - Whether they like or dislike products
  - Items rated by users or showed interest
- Achieving PPCF on partitioned data
  - Prevent data owners from deriving information
  - Providing accurate referrals efficiently
- Studying PPCF on inconsistently perturbed data

5/13/2010





## Scalar Product and Sum

$$A' \cdot B' = \sum_{i=1}^{n} (a_i + r_i)(b_i + v_i)$$

$$= \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} a_i v_i + \sum_{i=1}^{n} r_i b_i + \sum_{i=1}^{n} r_i v_i$$

$$\approx \sum_{i=1}^{n} a_i b_i$$

$$\sum_{i=1}^{n} (a_{i} + r_{i}) = \sum_{i=1}^{n} a_{i} + \sum_{i=1}^{n} r_{i} \approx \sum_{i=1}^{n} a_{i}$$

5/13/2010

#### **PPCF Using RPT**

1

# **Inconsistent Data Disguising**

- Perturb data differently
- Results inconsistently disguised data
- Effects of this data
- 1. Some users reveal true data
- 2. Some disguise private data differently:
  - a) Disguise ratings only
  - b) Perturb ratings and rated items
  - c) Different perturbing data
  - d) Parameter selection and level of perturbation
  - e) Different amount of data

5/13/2010

#### **PPCF on Inconsistently Perturbed Data**

12

### **RRT**

- Problem: Getting accurate answers to sensitive questions
- Example: "Have you ever used illegal drugs?"
- Two related questions:
  - □ (1.) "Have you ever used illegal drugs?" YES NO
  - □ (2.) "Have you never used illegal drugs?" YES NO
- Answer 1. question: With probability θ
- Answer 2. question: With probability 1- θ
- Get answers "YES" or "NO"
- Which question was answered?
- Answering Q1: Telling the truth
- Answering Q2: Telling a lie

5/13/2010

#### **PPCF Using RRT**

13

## RRT-based Data Disguising

- How to perturb ratings
- Preferences: Like (1) or Dislike (0)
- Example:
  - Rating: Like (1)
- Generate a random number r from [0, 1]
- If  $r > \theta$ , lie: Dislike (0)
- Otherwise, tell the truth: Like (1)
- Send true data: With probability θ
- Send false data (lie): With probability 1- θ

5/13/2010

#### **PPCF Using RRT**

14





### **RRT-based Schemes**

- 1. Group items in the same way
- 2. Disguise ratings in different groups independently
- 3. Example:
  - a. U1 = (1, 1, 0, -, 0, 1, -, 0, 1, 0, -, 1), three-group,  $\theta = 0.7$
  - **b.** r1 = 0.8, r2 = 0.4, r3 = 0.9
  - c. Group ratings into three groups:



d. Based on random numbers and  $\theta$ , disguise ratings:

5/13/2010

#### **PPCF Using RRT**

17

### **Partitioned Data**

- Problem: Inadequate data
  - Inaccurate, unreliable referrals
  - Low coverage
- Solution: Integrated data
- Joint data: Advantageous
- Data partition:
  - Horizontally
  - Vertically
- Recommendations on integrated data
- Privacy concerns, legal issues, and financial reasons

5/13/2010

#### **PPCF on Partitioned Data**

18



