Homework 2

Jon Campbell

```
library(tidyverse)
library(knitr)
library(PSweight)
```

Part 1

Question 1

```
hsr <- read.table("data/hw2/HSR.txt", header = TRUE)
#p_z = P(Y(z)==1)
#target estimand is ATE p_1 - p_2
X <- apply(hsr[,c(1,3,4,5,6,7,8,12)], MARGIN = 2, factor)
Z <- factor(hsr$pg)
Y <- hsr$i_aqoc</pre>
```

a)

```
#checking balance via ASD
plot(prop_score_summary, metric = "ASD")
```


From the love plot we see that most of the covariates have an ASD above 0.1 when unweighted but perform much better with IPW. mcs_sd and severity2 are slightly above 0.1 and race2 is around 0.35 under IPW. The covariates are perfected balanced with overlap weighing.

Looking at he distribution of IPW there are 2 observations with high weights relative to the sample.

b)

```
tibble(
  prop_score = prop_scores,
  trt = Z
) |>
  ggplot(aes(x = prop_score, fill = trt)) +
  geom_density(alpha = 0.5)
```


plot(prop_score_summary, metric = "ASD")

From the density plot of propensity scores by group, there is good overlap. The love plot shows good balance with overlap weighting and IPW weighting.

c)

```
unweighted <- prop_score_summary$unweighted.sumstat[,1:2]
colnames(unweighted) <- c("unweighted.trt1", "unweighted.trt2")

ipw_weighted <- prop_score_summary$IPW.sumstat[,1:2]
colnames(ipw_weighted) <- c("IPW.trt1", "IPW.trt2")

overlap_weighted <- prop_score_summary$overlap.sumstat[,1:2]
colnames(overlap_weighted) <- c("overlap.trt1", "overlap.trt2")

tab1 <- cbind(unweighted, ipw_weighted, overlap_weighted) |> round(4)
tab1 |>
    kable()
```

	unweighted.tr	t1unweighted.tr	t2IPW.trt	1 IPW.trt2	2 overlap.trt1	overlap.trt2
i_age	40.4571	39.6532	41.5684	41.1479	41.1248	41.1248
$as.factor(i_sex)1$	0.7619	0.6532	0.7181	0.7071	0.7152	0.7152
as.factor(i_race)1	0.8381	0.6416	0.7601	0.7205	0.8236	0.8236
as.factor(i_race)2	0.0095	0.2197	0.0269	0.1371	0.0200	0.0200
as.factor(i_race)3	0.0571	0.0116	0.0374	0.0372	0.0380	0.0380
as.factor(i_race)4	0.0667	0.0694	0.0765	0.0597	0.0752	0.0752
as.factor(i_educ)	2 0.0190	0.0116	0.0145	0.0114	0.0165	0.0165
as.factor(i_educ)	0.0952	0.0289	0.0561	0.0455	0.0608	0.0608
as.factor(i_educ)	4 0.3905	0.2254	0.2862	0.3152	0.3064	0.3064
as.factor(i_educ)	0.2571	0.4277	0.3621	0.3514	0.3213	0.3213
as.factor(i_educ)	0.2286	0.3064	0.2771	0.2765	0.2950	0.2950
as.factor(i_insu)2	0.2571	0.3064	0.2515	0.2761	0.2535	0.2535
as.factor(i_insu)3	0.0000	0.0058	0.0000	0.0035	0.0000	0.0000
as.factor(i_insu)5	0.0571	0.0405	0.0309	0.0307	0.0254	0.0254
as.factor(i_drug)	1 0.9905	0.9769	0.9941	0.9846	0.9925	0.9925
as.factor(i_seve)2	0.2381	0.2312	0.2176	0.2794	0.2508	0.2508
as.factor(i_seve)3	0.4667	0.4509	0.3963	0.4118	0.4453	0.4453
as.factor(i_seve)4	0.1905	0.1329	0.1755	0.1478	0.1587	0.1587
com_t	2.9143	1.7168	2.4733	2.4398	2.3778	2.3778
$\operatorname{pcs_sd}$	41.4148	48.2981	46.1089	46.6206	45.3764	45.3764
mcs_sd	48.9392	48.4198	48.1294	46.9954	48.4299	48.4299

d)

```
Z \leftarrow ifelse(Z == 1,0,1)
  ps.hsr <- as.factor(pg) ~ i_age + as.factor(i_sex) + as.factor(i_race) + as.factor(i_educ)
  ate.ipw.norm <- PSweight(ps.formula = ps.hsr, yname = "i_aqoc", data = hsr
                       , weight = "IPW")
  ato.overlap <- PSweight(ps.formula = ps.hsr, yname = "i_aqoc", data = hsr
                       , weight = "overlap")
  ate.ipw.nonnorm <- summary(lm(i_aqoc ~ pg, data = hsr, weights = IPW_weights))$coefficient
  results.ate <- rbind(summary(ate.ipw.norm, type = "DIF", contrast = c(-1,1))$estimates[,1:
        summary(ato.overlap, type = "DIF", contrast = c(-1,1))$estimates[,1:2],
        ate.ipw.nonnorm)
  rownames(results.ate) <- c("ATE IPW Normalized", "ATO Overlap", "ATE NonNormalized")
  results.ate |> round(4)
                   Estimate Std.Error
ATE IPW Normalized -0.1455
                              0.0562
ATO Overlap
                   -0.1272
                               0.0607
ATE NonNormalized -0.1455 0.0527
```

Question 2

a)

Estimate Std. Error -0.18540597 0.08938014

```
Estimate Std.Error -0.13034248 0.06778558
```

Option (c) is most likely the best way to estimate E[Y(1)|V=1)] - E[Y(2)|V=1] because it adjusts the propensity score estimation to the subgroup. This helps with incorporating information specific to V=1

, weight = "IPW"))\$estimates[,1:2]

Question 3

```
p_z = Pr(Y(z)=1) fraction of patients satisfied with the service in group z
Interest Q = p_1(1-p_2)/p_2(1-p_1)
```

a)

```
Z \leftarrow ifelse(hsr$pg == 1, 1,0)
  X <- scale(as.matrix(hsr[,2:11]))</pre>
  Y <- hsr$i_aqoc
  delta <- summary(glm(Y~X + Z + X*Z, family = "binomial"))$coefficients["Z",1]</pre>
  Q <- exp(delta)
  Q
[1] 2.928333
b)
  model <- glm(Y~X + Z + X*Z, family = "binomial")</pre>
  p <- predict(model, type = "response")</pre>
  phat_1 \leftarrow mean(p[Z ==1])
  phat_2 \leftarrow mean(p[Z == 0])
  Q <- (phat_1*(1-phat_2))/(phat_2*(1-phat_1))
[1] 2.253486
c)
  new_dat1 <- model[["model"]] |> mutate(Z = rep(1,length(Y)))
  new_dat2 <- model[["model"]] |> mutate(Z = rep(0,length(Y)))
  p1 <- predict(model, type = "response",newdata = new_dat1)</pre>
  p2 <- predict(model, type = "response", newdata = new_dat2)</pre>
  phat_1 <- mean(p1)</pre>
  phat_2 <- mean(p2)</pre>
  Q <- (phat_1*(1-phat_2))/(phat_2*(1-phat_1))
[1] 1.948134
```

d)

```
prop_score = glm(Z ~ X, family = binomial)$fitted.values
  q.prop_score = quantile(prop_score, c(0.2,0.4,0.6,0.8))
  stratas = cut(prop_score, breaks = c(0,q.prop_score,1), labels = 1:5)
  dat <- tibble(</pre>
    z = Z
    x = X
    y = Y,
    strat = stratas
  estimates <- numeric(length = 5)</pre>
  for (s in 1:5) {
    strat_dat <- dat[dat$strat==s,]</pre>
    mod <- glm(y~z, data = strat_dat, family = "binomial")</pre>
    estimates[s] = summary(mod)$coefficients["z",1]
  exp(mean(estimates))
[1] 60.29537
e)
  seq(0,1,length.out = 5)
[1] 0.00 0.25 0.50 0.75 1.00
Part 2
  brscn <- read.table("data/hw2/brscn.txt", header = TRUE)</pre>
```

Question 1