HUGE

Fuzzy Logic

July 31, 2018

Agenda.

- 1. Motivation
- 2. Ideas
- 3. Fuzzy sets
- 4. Membership functions
- 5. Properties

Motivation

Is it not enough with the classic logic?

No, classic logic does not reflects the nature of the concepts and human thoughts.

e.g.

Let's define tall person if he/she is taller than 1.7m

 $Tall\ people = \{\ height\ |\ height > 1.7\ m\}$

Basic ideas

Uncertainty: No sure and clear knowledge of any concept.

Formality

Optimization

Solvable

Generality

Specificity

Displacement caused by the Applied Force = Output

Types of uncertainty

Total certainty, certainty

Face or seal?

True or false?

Neural networks are efficient?

The blonde woman is tall or low?

What does A mean? and B? ... variables not specified

Determinism

Randomness

Ambiguity: More information allows solving the problem

Vagueness: Accuracy in definitions

Confusion

Some types of modeling

Randomness

Risk

$$P(A) = rac{N_A}{N}$$

Probability

Ambiguity

More information allows solving the problem

Vagueness-Precision in definitions

Fuzzy sets

Classic vs. Fuzzy

Classical logic:

Two values (0,1) are considered to express true / false.

Diffuse logic:

It is a multi-valued type of logic. 'possible'.

Classical logic

Diffuse logic

Fuzzy sets

It is a model to describe the meaning of vague or imprecise words.

They are functions that relate a universe of objects.

The membership function that makes this relation for the fuzzy set A is the function

 μA (x) gives the degree of belonging of the element x in the diffuse set A.

The fuzzyness describes the vagueness or imprecision of an event, definition or affirmation.

Membership function

Assign to each element of the set a degree of belonging between 0 and 1. A fuzzy set A in X is defined by the set of ordered pairs

 $X, \mu_a(x)$

Continuous fuzzy set

Membership function representations

Continuous variables:

$$A = \int_{x} \frac{\mu_{A}(x)}{x}$$

Discrete variables:

$$A = \frac{\mu_A(x_1)}{x_1} + \frac{\mu_A(x_2)}{x_2} + \dots + \frac{\mu_A(x_n)}{x_n} = \sum_{x \in X} \frac{\mu_A(x_i)}{x_i}$$

The signs of sum and integral do not mean sum or integration but the union of the pairs (x_i , $\mu_{\scriptscriptstyle A}(x_i)$). In both cases, the horizontal line does not mean division. This is a boundary bar.

Representation of fuzzy measurements

Speed at which we are going (77) a vertical is drawn.

Intersection value is taken looking at the vertical axis, there are TWO, the first is at a height of 0.20 and 0.75.

77 Km/h = 0.2 high speed, 0.75 Very high speed. Thus, the system has a "fuzzy" estimate of the current speed.

Membership functions properties

Center: Average of elements $\mu_x = 1$

Fuzzy Singleton: Support is a point F in U with

 $\mu_F = 1$

Height: Height, Greater membership degree... Normal set = 1

Membership functions properties

The cardinality of a classical set is defined as the number of elements in the set.

The cardinality of a diffuse set A is the sum of all the membership degrees of all the elements x in A, that is:

$$|A| = \sum_{x \in U} \mu_A(x)$$

$$|A| = \int_{x \in U} \mu_A(x) dx$$