第八章 群和环

第十二节 子群的陪集及 拉格朗日定理(2)

定理2

设<H,★>是群<G,★>的子群,对任何 $a \in G$, $a \lor \emptyset$ 属于且仅属于一个陪集。

证明

任取 $a \in G$,因 $e \in H$,于是 $a=a \star e \in aH$,所以 a 必属于一个陪集。

如果有 b∈G,使得 a∈bH,于是 a∈aH∩bH,即 aH∩bH≠Φ,根据定理1有 aH=bH。即 a 仅属于一个陪集。

定理3

设<G,★>是有限群,<H,★>是群<G,★>的子群, b∈G, bH为<H,★>的左陪集,则 bH 中的任何两个 元素都不相同。

证明

(反证法, 假设 bH 中有两个元素相同)

假设有 $b \star h_1 \in bH$, $b \star h_2 \in bH$, (其中 $h_1, h_2 \in H$, $h_1 \neq h_2$) 使得 $b \star h_1 = b \star h_2$, 由可消去性有 $h_1 = h_2$, 矛盾。所以 bH 中任何两个元素都不相同。

第十二节 结束