Does imputation matter? Benchmark for real-life classification problems

Katarzyna Woźnica

Warsaw University of Technology Faculty of Mathematics and Information Science

k.woznica@mini.pw.edu.pl

Settings for benchmark

- · 7 imputation methods: random, mean, kknn, hotdeck, mice, softImpute, missForest
- 5 ML classification algorithms: glmnet, rpart, ranger, kknn, xgboost
- 2 measures of model performace: AUC and F1
- · 14 real-world data sets

dataset name (dataset ID)	# obs	prc of missings
ipums_la_99-small (1018)	8844	7%
adult (1590)	48842	1%
eucalyptus (188)	736	3.9%
dresses-sales (23381)	500	14.7%
colic (27)	368	16.3%
credit-approval (29)	690	0.6%
sick (38)	3772	2.2%
labor (4)	57	33.6%
SpeedDating (40536)	8378	1.8%
hepatitis (55)	155	5.4%
vote (56)	435	5.3%
cylinder-bands (6332)	540	5.1%
echoMonths (944)	130	7.5%

Does exist the best universal imputation method?

For F1 the best results are on average for *mean* imputations. For AUC for *kknn* imputations. Simple methods are surprisingly good!

Do simple methods work effectively on similar tasks and ML algorithms?

Combinations of two methods are able to cover above 50% of best results. For F1 measure optimal pair is *missForest* and *random*. For AUC this is *mean* and *VIM_kknn* imputation.

What are the interactions between ML algorithms and imputation methods?

Mean, missForest and VIM_kknn methods cooperate with rpart and kknn while mice works with ranger and xgboost.

Conclusions

- 1. We perform the first empirically benchmark of imputation methods in terms of their impact on the predictive power of classifier algorithms.
- 2. We propose the general plan of the experiment.
- 3. Simple imputation methods achieve surprisingly good results. There are some trends in results but generally their structure is very complex. This is the area to employ meta-learning model.
- 4. We plan to extend this benchmark for other methods for imputations and more data sets.

Github repository: https://github.com/ModelOriented/EMMMA