概率论与数理统计练习题(10)

区间估计、假设检验

	姓名	学号	_班级
1. 填空题			
(1) 某产品指标 X ~	$N(\mu,1)$,从中随	机抽取容量为 16 的	一个样本,计算得样本均值
为 $\overline{X}=2$,则总体均值 μ 的置信度为 95% 的置信区间为			
(2) 某市随机对 1000 平确定该市成年人喜欢			r上网,则以 95%的置信水 ·
(3)从已知标准差 $\sigma=5.2$ 的正态总体中抽取容量为 16 的样本,算得样本均值			
$\stackrel{-}{x}$ = 27.56,在显著水平 α = 0.05之下检验假设 H_0 : μ = 26,检验结果是			
(4) 在 χ^2 检验时,用	J统计量 $\chi^2 = \frac{(n-1)^2}{\sigma^2}$	$\frac{(S^2)}{(S^2)}$,若 H_0 : $\sigma^2 = \sigma$	${\sigma_0}^2$ 时,用 $_{}$ 检验,它的拒
绝域为	; 若	$H_0: \sigma^2 \ge \sigma_0^2$ 时,月	用检验,它的拒绝域为
	·		
2. 选择题			
(1) 若总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知,则对于确定的样本容量,总体均值 μ 的置信区			
间长度 L 与置信度1-6	α 的关系是().	
(A) 当1-α缩小阳	d, L 缩短;	(B) 当1-α缩小时	, <i>L</i> 增大;
(C) 当1-α缩小时	†, <i>L</i> 不变;	(D) 以上说法均错.	
(2) 设正态总体期望 μ 的置信区间长度 $L = \frac{2S}{\sqrt{n}} t_{\alpha}(n-1)$,则其置信度为().			
(A) $1-\alpha$;	(B) α ; (C) $1-\frac{\alpha}{2}$;	D) $1-2\alpha$.
(3) 假设检验中,显显	著性水平α表示().	
(A) H_0 为假,但持	接受 H_0 的假设的概	率; (B) H_0 为真	,但拒绝 H_0 的假设的概率;
(C) H_0 为假,且抗	巨绝 H_0 的假设的概	率; (D)可信度.	
3. 计算题			

〔1〕岩石密度的测量结果 $X \sim N(\mu, \sigma^2)$,现抽取 12 个样品,测得 $\sum_{i=1}^{12} x_i = 32.1, \sum_{i=1}^{12} x_i^2 = 89.92.$ 当 μ 未知时,求方差 σ^2 的置信区间($\alpha = 0.1$).

(2) 若总体 $X \sim N(\mu_1, \sigma_1^2)$ 与 $Y \sim N(\mu_2, \sigma_2^2)$ 相互独立,已知样本数据 $n_1 = 80, \overline{x} = 200, s_1 = 80; \quad n_2 = 100, \overline{y} = 100, s_2 = 100. 求取 \alpha = 0.01 时, \mu_1 - \mu_2$ 的置信区间.

(3)设某次考试学生成绩服从正态分布,从中随机地抽取 36 位考生的成绩,算得平均成绩 x 为 66.5 分,标准差 x 为 15 分. 问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为 70 分?并给出检验过程.

(4) 某项考试要求成绩的标准差为 12, 现从考试成绩中任意抽取 15 份, 计算样本标准差为 16, 设成绩服从正态分布, 问此次考试的标准差是否不合要求 ($\alpha = 0.05$)?

概率论与数理统计练习题(10)详细解答

1. 填空题

(1)
$$\left(\bar{x} - \frac{1}{\sqrt{16}}u_{0.025}, \bar{x} + \frac{1}{\sqrt{16}}u_{0.025}\right) = (1.51, 2.49).$$

$$\frac{\sum_{k=1}^{n} X_{k} - np}{\sqrt{np(1-p)}} \stackrel{\text{if } (l) \perp b}{\sim} N(0,1),$$

故

$$P\left\{\left|\frac{\sum_{k=1}^{n} X_{k} - np}{\sqrt{np(1-p)}}\right| < u_{\alpha/2}\right\} \approx 1 - \alpha,$$

即

$$P\left\{\overline{X} - \frac{\sqrt{p(1-p)}}{\sqrt{n}}u_{\alpha/2}$$

而 p 的矩估计值为 $\hat{p} = 0.6$,故 p 的置信度为 95%的置信区间约为

$$(\overline{x} \pm \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}u_{\alpha/2}) = (0.5696, 0.6304).$$

(3)检验统计量
$$U = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}}$$
的观测值为 $u = \frac{27.56 - 26}{5.2 / \sqrt{16}} = 1.2 < u_{0.025} = 1.96$,故接受 H_0 .

(4) 双边假设;
$$\frac{(n-1)S^2}{\sigma_0^2} \le \chi_{1-\alpha/2}^2(n-1)$$
 或 $\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\alpha/2}^2(n-1)$; 左边假设;

$$\frac{(n-1)S^2}{\sigma_0^2} \leq \chi_{1-\alpha}^2(n-1).$$

2. 选择题

(1)置信区间的长度为 $L=2\frac{\sigma}{\sqrt{n}}u_{\alpha/2}$,当 $1-\alpha$ 缩小时, α 增大, $u_{\alpha/2}$ 随之缩小,置信区间的长度L缩短. 故选(A).

(2) 总体均值
$$\mu$$
 的置信度为 $1-\alpha$ 的置信区间为 $\left(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1),\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$

其长度为 $L=\frac{2S}{\sqrt{n}}t_{\alpha/2}(n-1)$,故当置信区间的长度为 $L=\frac{2S}{\sqrt{n}}t_{\alpha}(n-1)$ 时,置信度为 $1-2\alpha$. 故选 (D).

(3)显著性水平 α 表示犯第一类错误的概率,即"当原假设 H_0 为真时,拒绝 H_0 的概率". 故 选(B).

3. 计算题

(1) **AP**:
$$\overline{X} = \frac{1}{12} \sum_{i=1}^{12} X_i \sim N(\mu, \sigma^2/12), \quad \overline{x} = \frac{1}{12} \sum_{i=1}^{12} x_i = \frac{32.1}{12} = 2.675,$$

$$(n-1)s^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2 = 89.92 - 12 \times 2.675^2 = 4.0525$$
.

查表得 $\chi^2_{0.95}(14) = 4.575$, $\chi^2_{0.05}(14) = 19.675$, 于是 σ^2 的置信区间为

$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}\right) = (0.206, 0.886).$$

(2) 解: 因为 $\bar{x} = 200$, $\bar{y} = 100$, $t_{0.005}(178) = 2.575$,

$$s_w^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{79 \times 80^2 + 99 \times 100^2}{178} = 91.66^2,$$

所以 $\mu_1 - \mu_2$ 的置信度为99%的置信区间

$$\left(\overline{x} - \overline{y} \pm t_{0.005}(n_1 + n_2 - 2)s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right) = (100 \pm 35.4) = (64.6, 135.4).$$

(3) **解**: 检验假设为 $H_0: \mu = 70$, $H_1: \mu \neq 70$.

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{66.5 - 70}{15/6} = -1.4$$
, $t_{0.025}(35) = 2.0301$,

因为 $|t| < t_{0.025}(35)$, 故接受 H_0 , 即认为全体考生的平均成绩为 70 分.

(4) **解**: 检验假设为
$$H_0: \sigma^2 = \sigma_0^2 = 12^2$$
, $H_1: \sigma^2 \neq \sigma_0^2$.

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{14 \times 16^2}{12^2} = 24.8889, \ \chi_{0.025}^2(14) = 26.119, \ \chi_{0.975}^2(14) = 5.629,$$

因为 $\chi^2_{0.975}(14) < \chi^2 < \chi^2_{0.025}(14)$,所以接受 H_0 ,即认为此次考试的标准差符合要求.