381 A Proofs for the iSAEM Algorithm

382 A.1 Proof of Lemma 2

Lemma. Assume A3, A4. For all $s \in S$,

$$v_{\min}^{-1} \langle \nabla V(\mathbf{s}) \, | \, \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \rangle \ge \|\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))\|^2 \ge v_{\max}^{-2} \|\nabla V(\mathbf{s})\|^2, \tag{16}$$

Proof Using A3 and the fact that we can exchange integration with differentiation and the Fisher's identity, we obtain

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \left(\nabla_{\boldsymbol{\theta}} \, \mathbf{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \mathsf{L}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right)$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \left(\nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \, \mathbf{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \mathbf{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right)$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \mathbf{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} (\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))) ,$$

$$(17)$$

386 Consider the following vector map:

$$|\mathbf{s} \to \nabla_{\boldsymbol{\theta}} L(\mathbf{s}, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})} = \nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} r(\overline{\boldsymbol{\theta}}(\mathbf{s})) - J_{\phi}^{\boldsymbol{\theta}} (\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \mathbf{s} .$$

Taking the gradient of the above map w.r.t. s and using assumption A_3 , we show that:

$$\mathbf{0} = -\operatorname{J}_{\phi}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \left(\underbrace{\nabla_{\boldsymbol{\theta}}^{2}\big(\psi(\boldsymbol{\theta}) + r(\boldsymbol{\theta}) - \big\langle\phi(\boldsymbol{\theta})\,|\,\mathbf{s}\big\rangle\big)}_{=\operatorname{H}_{L}^{\boldsymbol{\theta}}(\mathbf{s};\boldsymbol{\theta})} \Big|_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})}\right)\operatorname{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})\;.$$

388 The above yields

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathrm{B}(\mathbf{s})(\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))) ,$$

where we recall $B(\mathbf{s}) = J_{\phi}^{\theta}(\overline{\theta}(\mathbf{s})) \left(H_{L}^{\theta}(\mathbf{s}; \overline{\theta}(\mathbf{s})) \right)^{-1} J_{\phi}^{\theta}(\overline{\theta}(\mathbf{s}))^{\top}$. The proof of (16) follows directly from the assumption A4.

391 A.2 Proof of Theorem 1

Beforehand, We present two intermediary Lemmas important for the analysis of the incremental

update of the iSAEM algorithm. The first one gives a characterization of the quantity $\mathbb{E}[\tilde{S}^{(k+1)} - \hat{S}^{(k)}]$

394 $\hat{\mathbf{s}}^{(k)}$]:

395 **Lemma.** Assume A. The update (1) is equivalent to the following update on the resulting statistics

396 $\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} \left(\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} \right).$

397 Also:

$$\mathbb{E}[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}] = \mathbb{E}[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] + \frac{1}{n} \mathbb{E}[\eta_{i_{k}}^{(k+1)}],$$

398 where $\bar{\mathbf{s}}^{(k)}$ is defined by (3) and $\tau_i^k = \max\{k' : i_{k'} = i, \ k' < k\}$.

399 **Proof** From update (1), we have:

$$\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = \tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)} + \frac{1}{n} \left(\tilde{S}_{i_k}^{(k+1)} - \tilde{S}_{i_k}^{(\tau_i^k)} \right) \\
= \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \tilde{S}^{(k)} - \overline{\mathbf{s}}^{(k)} - \frac{1}{n} \left(\tilde{S}_{i_k}^{(\tau_i^k)} - \tilde{S}_{i_k}^{(k+1)} \right) .$$

400 Since $ilde{S}_{i_k}^{(k+1)} = \overline{\mathbf{s}}_{i_k}(oldsymbol{ heta}^{(k)}) + \eta_{i_k}^{(k+1)}$ we have

$$\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \tilde{S}^{(k)} - \overline{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)}) + \frac{1}{n} \eta_{i_k}^{(k+1)}.$$

Taking the full expectation of both side of the equation leads to:

$$\mathbb{E}[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}] = \mathbb{E}[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}] + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] - \frac{1}{n}\mathbb{E}[\mathbb{E}[\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}_{i_{k}}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_{k}]] + \frac{1}{n}\mathbb{E}[\eta_{i_{k}}^{(k+1)}].$$

- Since we have $\mathbb{E}[\tilde{S}_i^{(\tau_i^k)}|\mathcal{F}_k] = \frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)}$ and $\mathbb{E}\left[\bar{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_k\right] = \bar{\mathbf{s}}^{(k)}$, we conclude the proof 402 of the Lemma. 403
- We also derived the following auxiliary Lemma which sets an upper bound for the quantity 404 $\mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2]$: 405
- **Lemma 7.** For any $k \ge 0$ and consider the iSAEM update in (1), it holds that 406

$$\mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2] \le 4\mathbb{E}[\|\overline{s}^{(k)} - \hat{s}^{(k)}\|^2] + \frac{2L_{\mathbf{s}}^2}{n^3} \sum_{i=1}^n \mathbb{E}\left[\|\hat{s}^{(k)} - \hat{s}^{(t_i^k)}\|^2\right] + 2\frac{c_{\eta}}{M_k} + 4\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)} - \overline{\mathbf{s}}^{(k)}\right\|^2\right].$$

Proof Applying the iSAEM update yields:

$$\begin{split} \mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2] = & \mathbb{E}[\|\tilde{S}^{(k)} - \hat{s}^{(k)} - \frac{1}{n} \left(\tilde{S}^{(\tau_i^k)}_{i_k} - \tilde{S}^{(k)}_{i_k}\right)\|^2] \\ \leq & 4\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^n \tilde{S}^{(\tau_i^k)}_i - \overline{\mathbf{s}}^{(k)}\right\|^2\right] + 4\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^2] \\ & + \frac{2}{n^2}\mathbb{E}[\|\overline{\mathbf{s}}^{(k)}_{i_k} - \overline{\mathbf{s}}^{(t^k_{i_k})}_{i_k}\|^2] + 2\frac{c_{\eta}}{M_k} \; . \end{split}$$

The last expectation can be further bounded by 408

410

$$\frac{2}{n^2}\mathbb{E}[\|\overline{s}_{i_k}^{(k)} - \overline{s}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{2}{n^3}\sum_{i=1}^n\mathbb{E}[\|\overline{s}_i^{(k)} - \overline{s}_i^{(t_i^k)}\|^2] \overset{(a)}{\leq} \frac{2\operatorname{L}_{\mathbf{s}}^2}{n^3}\sum_{i=1}^n\mathbb{E}[\|\hat{s}^{(k)} - \hat{s}^{(t_i^k)}\|^2]\;,$$

where (a) is due to Lemma 1 and which concludes the proof of the Lemma. 409

Theorem. Assume A1-A5. Consider the iSAEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ obtained with $\rho_{k+1} = 1$ 411

for any $k \leq K_m$ where K_m is a positive integer. Let $\{\gamma_k = 1/(k^a \alpha c_1 \overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of stepsizes, $c_1 = v_{\min}^{-1}$, $\alpha = \max\{8, 1 + 6v_{\min}\}$, $\overline{L} = \max\{L_{\mathbf{s}}, L_V\}$, $\beta = c_1 \overline{L}/n$. Then:

$$\upsilon_{\max}^{-2} \sum_{k=0}^{\mathsf{K_m}} \tilde{\alpha}_k \mathbb{E}[\|\nabla V(\hat{\pmb{s}}^{(k)})\|^2] \leq \mathbb{E}[V(\hat{\pmb{s}}^{(0)}) - V(\hat{\pmb{s}}^{(\mathsf{K_m})})] + \sum_{k=0}^{\mathsf{K_m}-1} \tilde{\Gamma}_k \mathbb{E}[\|\eta_{i_k}^{(k)}\|^2] \; .$$

Proof Under the smoothness of the Lyapunov function V (cf. Lemma 1), we can write:

$$V(\hat{\mathbf{s}}^{(k+1)}) \leq V(\hat{\mathbf{s}}^{(k)}) + \gamma_{k+1} \langle \tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} | \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} ||\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}||^2.$$

Taking the expectation on both sides yields:

$$\mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(k+1)})\right] \leq \mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(k)})\right] + \gamma_{k+1}\mathbb{E}\left[\left\langle \tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \mid \nabla V(\hat{\boldsymbol{s}}^{(k)})\right\rangle\right] + \frac{\gamma_{k+1}^2 \operatorname{L}_V}{2}\mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2\right].$$

416 Using Lemma 3, we obtain:

$$\begin{split} & \mathbb{E}\left[\left\langle \tilde{S}^{(k+1)} - \hat{s}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ = & \mathbb{E}\left[\left\langle \overline{s}^{(k)} - \hat{s}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{s}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ & + \frac{1}{n} \mathbb{E}\left[\left\langle \eta_{i_{k}}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ \stackrel{(a)}{\leq} - v_{\min} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{\mathbf{s}}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ & + \frac{1}{n} \mathbb{E}\left[\left\langle \eta_{i_{k}}^{(k)} \,|\, \nabla V(\hat{s}^{(k)})\right\rangle\right] \\ \stackrel{(b)}{\leq} - v_{\min} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right] \\ & + \frac{\beta(n-1)+1}{2n} \mathbb{E}\left[\left\|\nabla V(\hat{s}^{(k)})\right\|^{2}\right] + \frac{1}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \\ \stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}^{(\tau_{i}^{k})}_{i} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right] \\ & + \frac{1}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \;, \end{split}$$

where (a) is due to the growth condition (2) and (b) is due to Young's inequality (with $\beta \to 1$). Note $a_k = \gamma_{k+1} \left(v_{\min} - v_{\max}^2 \frac{\beta(n-1)+1}{2n} \right)$ and

$$a_{k}\mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] \leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right] + \frac{\gamma_{k+1}^{2} L_{V}}{2} \mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^{2}\right] + \frac{\gamma_{k+1}(1 - \frac{1}{n})}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{\gamma_{k+1}}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}].$$
(18)

We now give an upper bound of $\mathbb{E}\left[\|\tilde{S}^{(k+1)}-\hat{s}^{(k)}\|^2\right]$ using Lemma 7 and plug it into (18):

$$(a_{k} - 2\gamma_{k+1}^{2} L_{V}) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}]$$

$$\leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right]$$

$$+ \gamma_{k+1} \left(\frac{1}{2\beta}(1 - \frac{1}{n}) + 2\gamma_{k+1} L_{V}\right) \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right]$$

$$+ \gamma_{k+1} \left(\gamma_{k+1} L_{V} + \frac{1}{2n}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]$$

$$+ \frac{\gamma_{k+1}^{2} L_{V} L_{\mathbf{s}}^{2}}{n^{3}} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\tau_{i}^{k})}\|^{2}].$$
(19)

Next, we observe that

$$\frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2]\right),$$

where the equality holds as i_k and j_k are drawn independently. For any $\beta > 0$, it holds

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 + 2\langle\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\rangle\right] \\ = & \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 - 2\gamma_{k+1}\langle\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\rangle\right] \\ \leq & \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^2 + \gamma_{k+1}\beta\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2\right], \end{split}$$

where the last inequality is due to Young's inequality. Subsequently, we have

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k+1})}\|^{2}] \\ \leq &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\Big[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^{2}\Big] \;. \end{split}$$

423 Observe that $\hat{s}^{(k+1)}-\hat{s}^{(k)}=-\gamma_{k+1}(\hat{s}^{(k)}-\tilde{S}^{(k+1)}).$ Applying Lemma 7 yields

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)}-\hat{\boldsymbol{s}}^{(\tau_{i}^{k+1})}\|^{2}]\\ \leq &(\gamma_{k+1}^{2}+\frac{n-1}{n}\frac{\gamma_{k+1}}{\beta})\mathbb{E}\Big[\|\tilde{\boldsymbol{S}}^{(k+1)}-\hat{\boldsymbol{s}}^{(k)}\|^{2}\Big]+\sum_{i=1}^{n}\mathbb{E}\Big[\frac{1-\frac{1}{n}+\gamma_{k+1}\beta}{n}\|\hat{\boldsymbol{s}}^{(k)}-\hat{\boldsymbol{s}}^{(\tau_{i}^{k})}\|^{2}\Big]\\ \leq &4\big(\gamma_{k+1}^{2}+\frac{\gamma_{k+1}}{\beta}\big)\mathbb{E}\Big[\|\overline{\boldsymbol{s}}^{(k)}-\hat{\boldsymbol{s}}^{(k)}\|^{2}\Big]+2\big(\gamma_{k+1}^{2}+\frac{\gamma_{k+1}}{\beta}\big)\mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]\\ &+4\big(\gamma_{k+1}^{2}+\frac{\gamma_{k+1}}{\beta}\big)\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}\tilde{\boldsymbol{S}}_{i}^{(\tau_{i}^{k})}-\overline{\boldsymbol{s}}^{(k)}\right\|^{2}\right]\\ &+\sum_{i=1}^{n}\mathbb{E}\Big[\frac{1-\frac{1}{n}+\gamma_{k+1}\beta+\frac{2\gamma_{k+1}}{n^{2}}\frac{\mathbf{L}_{s}^{2}}{n^{2}}\big(\gamma_{k+1}+\frac{1}{\beta}\big)}{n}\|\hat{\boldsymbol{s}}^{(k)}-\hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}\Big]\;. \end{split}$$

424 Let us define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\tau_i^k)}\|^2].$$

425 From the above, we get

$$\Delta^{(k+1)} \leq \left(1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1} L_{\mathbf{s}}^{2}}{n^{2}} (\gamma_{k+1} + \frac{1}{\beta})\right) \Delta^{(k)} + 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E} \left[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2} \right] + 2(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E} \left[\|\eta_{i_{k}}^{(k)}\|^{2} + 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E} \left[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)} \|^{2} \right] \right].$$

Setting $c_1=v_{\min}^{-1}$, $\alpha=\max\{8,1+6v_{\min}\}$, $\overline{L}=\max\{\mathrm{L_s},\mathrm{L}_V\}$, $\gamma_{k+1}=\frac{1}{k\alpha c_1\overline{L}}$, $\beta=\frac{c_1\overline{L}}{n}$, 427 $c_1(k\alpha-1)\geq c_1(\alpha-1)\geq 6$, $\alpha\geq 8$, we observe that

$$1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1}L_{\mathbf{s}}^2}{n^2}(\gamma_{k+1} + \frac{1}{\beta}) \le 1 - \frac{c_1(k\alpha - 1) - 4}{k\alpha nc_1} \le 1 - \frac{2}{k\alpha nc_1},$$

which shows that $1-\frac{1}{n}+\gamma_{k+1}\beta+\frac{2\gamma_{k+1}\operatorname{L}_{\mathbf{s}}^2}{n^2}(\gamma_{k+1}+\frac{1}{\beta})\in(0,1)$ for any k>0. Denote $\Lambda_{(k+1)}=\frac{1}{n}-\gamma_{k+1}\beta-\frac{2\gamma_{k+1}\operatorname{L}_{\mathbf{s}}^2}{n^2}(\gamma_{k+1}+\frac{1}{\beta})$ and note that $\Delta^{(0)}=0$, thus the telescoping sum yields:

$$\Delta^{(k+1)} \leq 4 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} \left(1 - \Lambda_{(j)} \right) \left(\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta} \right) \mathbb{E}[\| \overline{\mathbf{s}}^{(\ell)} - \hat{\mathbf{s}}^{(\ell)} \|^{2}]$$

$$+ 2 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} \left(1 - \Lambda_{(j)} \right) \left(\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta} \right) \mathbb{E} \left[\left\| \eta_{i_{\ell}}^{(\ell)} \right\|^{2} \right]$$

$$+ 4 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} \left(1 - \Lambda_{(j)} \right) \left(\gamma_{\ell+1}^{2} \right)$$

$$+ \frac{\gamma_{\ell+1}}{\beta} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{\ell})} - \overline{\mathbf{s}}^{(\ell)} \right\|^{2} \right] .$$

Note $\omega_{k,\ell} = \prod_{j=\ell+1}^k \left(1 - \Lambda_{(j)}\right)$ Summing on both sides over k=0 to $k=\mathsf{K_m}-1$ yields:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Delta^{(k+1)} \\
= 4 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right) \omega_{k,1} \mathbb{E} [\| \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} \|^{2}] + 2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right) \omega_{k,1} \mathbb{E} \left[\left\| \eta_{i_{\ell}}^{(k)} \right\|^{2} \right] \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} 4 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right) \omega_{k,1} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)} \right\|^{2} \right] \\
\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{4 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \mathbb{E} [\| \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} \|^{2}] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{2 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \mathbb{E} \left[\left\| \eta_{i_{\ell}}^{(k)} \right\|^{2} \right] \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{4 \left(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)} \right\|^{2} \right] . \tag{20}$$

We recall (19) where we have summed on both sides from k = 0 to $k = K_m - 1$:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left(a_{k} - 2\gamma_{k+1}^{2} \, \mathcal{L}_{V} \right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}]$$

$$\leq \mathbb{E} \left[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(K)}) \right]$$

$$+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \left(\frac{1}{2\beta} (1 - \frac{1}{n}) + 2\gamma_{k+1} \, \mathcal{L}_{V} \right) \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)} \right\|^{2} \right]$$

$$+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \left(\gamma_{k+1} \, \mathcal{L}_{V} + \frac{1}{2n} \right) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]$$

$$+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{\gamma_{k+1}^{2} \, \mathcal{L}_{V} \, \mathcal{L}_{\mathsf{s}}^{2}}{n^{2}} \Delta^{(k)} .$$

$$(21)$$

432 Plugging (20) into (21) results in:

$$\begin{split} & \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\alpha}_{k} \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\beta}_{k} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] \\ \leq & \mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(0)}) - V(\hat{\boldsymbol{s}}^{(K)})\right] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\Gamma}_{k} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \;, \end{split}$$

433 where

$$\begin{split} \tilde{\alpha}_k &= a_k - 2\gamma_{k+1}^2 \, \mathcal{L}_V - \frac{\gamma_{k+1}^2 \, \mathcal{L}_V \, \mathcal{L}_\mathbf{s}^2}{n^2} \, \frac{4 \left(\gamma_{k+1}^2 + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \;, \\ \tilde{\beta}_k &= \gamma_{k+1} \left(\frac{1}{2\beta} (1 - \frac{1}{n}) + 2\gamma_{k+1} \, \mathcal{L}_V \right) - \frac{\gamma_{k+1}^2 \, \mathcal{L}_V \, \mathcal{L}_\mathbf{s}^2}{n^2} \, \frac{4 \left(\gamma_{k+1}^2 + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \;, \\ \tilde{\Gamma}_k &= \gamma_{k+1} \left(\gamma_{k+1} \, \mathcal{L}_V + \frac{1}{2n} \right) + \frac{\gamma_{k+1}^2 \, \mathcal{L}_V \, \mathcal{L}_\mathbf{s}^2}{n^2} \, \frac{2 \left(\gamma_{k+1}^2 + \frac{\gamma_{k+1}}{\beta} \right)}{\Lambda_{(k+1)}} \;, \end{split}$$

434 and

$$a_{k} = \gamma_{k+1} \left(v_{\min} - v_{\max}^{2} \frac{\beta(n-1)+1}{2n} \right) ,$$

$$\Lambda_{(k+1)} = \frac{1}{n} - \gamma_{k+1} \beta - \frac{2\gamma_{k+1} L_{\mathbf{s}}^{2}}{n^{2}} (\gamma_{k+1} + \frac{1}{\beta}) ,$$

$$c_{1} = v_{\min}^{-1}, \alpha = \max\{8, 1 + 6v_{\min}\}, \overline{L} = \max\{L_{\mathbf{s}}, L_{V}\}, \gamma_{k+1} = \frac{1}{k \alpha c_{*} \overline{L}}, \beta = \frac{c_{1} \overline{L}}{n} .$$

When, for any k > 0, $\tilde{\alpha}_k \ge 0$, we have by Lemma 2 that:

$$\sum_{k=0}^{\mathsf{K}_{\mathsf{m}}} \tilde{\alpha}_k \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq v_{\max}^2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}} \tilde{\alpha}_k \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2] \;,$$

which yields an upper bound of the gradient of the Lyapunov function V along the path of the iSAEM update and concludes the proof of the Theorem.

438 B Proofs for the vrTTEM and the fiTTEM Algorithms

- 439 B.1 Proofs of Auxiliary Lemmas (Lemma 4, Lemma 5 and Lemma 6)
- **Lemma.** Consider the vrTTEM update (2) with $\rho_k = \rho$, it holds for all k > 0

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k+1)}\|^2] \leq 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 L_{\mathbf{s}}^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{S}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2].$$

- where we recall that $\ell(k)$ is the first iteration number in the epoch that iteration k is in.
- **Proof** Beforehand, we provide a rewiriting of the quantity $\hat{s}^{(k+1)} \hat{s}^{(k)}$ that will be useful throughout this proof:

$$\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} &= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)}) \\
&= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - (1 - \rho) \tilde{S}^{(k)} - \rho \mathbf{S}^{(k+1)}) \\
&= -\gamma_{k+1} \left((1 - \rho) \left[\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right] + \rho \left[\hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)} \right] \right) .$$
(22)

We observe, using the identity (22), that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^2] \le 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \mathcal{S}^{(k+1)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{\boldsymbol{S}}^{(k)}\|^2]. \tag{23}$$

For the latter term, we obtain its upper bound as

$$\begin{split} & \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] \\ = & \mathbb{E}\Big[\|\frac{1}{n}\sum_{i=1}^n \left(\overline{\boldsymbol{s}}_i^{(k)} - \tilde{\boldsymbol{S}}_i^{\ell(k)}\right) - \left(\overline{\boldsymbol{s}}_{i_k}^{(k)} - \tilde{\boldsymbol{S}}_{i_k}^{(\ell(k))}\right)\|^2\Big] \\ \stackrel{(a)}{\leq} & \mathbb{E}[\|\overline{\boldsymbol{s}}_{i_k}^{(k)} - \overline{\boldsymbol{s}}_{i_k}^{(\ell(k))}\|^2] + \mathbb{E}[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2] \stackrel{(b)}{\leq} & \mathbf{L}_{\mathbf{s}}^2 \, \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + \mathbb{E}[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2] \;, \end{split}$$

- where (a) uses the variance inequality and (b) uses Lemma 1. Substituting into (23) proves the
- 447 lemma
- **Lemma.** Consider the fiTTEM update (3) with $\rho_k = \rho$. It holds for all k > 0 that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k+1)}\|^2] \leq 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \frac{L_s^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{S}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\eta_{i, \cdot}^{(k+1)}\|^2],$$

- where $m L_s$ is the smoothness constant defined in Lemma m I.
- Proof Beforehand, we provide a rewiriting of the quantity $\hat{s}^{(k+1)} \hat{s}^{(k)}$ that will be useful throughout this proof:

$$\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} &= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)}) \\
&= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - (1 - \rho) \tilde{S}^{(k)} - \rho \mathbf{S}^{(k+1)}) \\
&= -\gamma_{k+1} \left((1 - \rho) \left[\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right] + \rho \left[\hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)} \right] \right) \\
&= -\gamma_{k+1} \left((1 - \rho) \left[\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right] + \rho \left[\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{S}}^{(k)} - (\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(t_{i_k}^k)}_{i_k}) \right] \right) .$$
(24)

We observe, using the identity (24), that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k+1)}\|^2] \le 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - \tilde{\boldsymbol{S}}^{(k)}\|^2] . \tag{25}$$

For the latter term, we obtain its upper bound as

$$\begin{split} \mathbb{E}[\|\overline{\pmb{s}}^{(k)} - \pmb{\mathcal{S}}^{(k+1)}\|^2] &= \mathbb{E}\Big[\|\frac{1}{n}\sum_{i=1}^n \big(\overline{\pmb{s}}_i^{(k)} - \overline{\pmb{\mathcal{S}}}_i^{(k)}\big) - \big(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\big)\|^2\Big] \\ &\stackrel{(a)}{\leq} \mathbb{E}[\|\overline{\pmb{s}}_{i_k}^{(k)} - \overline{\pmb{s}}_{i_k}^{(\ell(k))}\|^2] + \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] \;, \end{split}$$

where (a) uses the variance inequality. We can further bound the last expectation using Lemma 1:

$$\mathbb{E}[\|\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|\overline{\mathbf{s}}_i^{(k)} - \overline{\mathbf{s}}_i^{(t_i^k)}\|^2] \overset{(a)}{\leq} \frac{\mathbf{L}_{\mathbf{s}}^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2].$$

- Substituting into (25) proves the lemma.
- **Lemma.** Considering a decreasing stepsize $\gamma_k \in (0,1)$ and a constant $\rho \in (0,1)$, we have

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \leq \frac{\rho}{1 - \rho} \sum_{\ell=0}^{k} (1 - \gamma_{\ell})^2 (\boldsymbol{\mathcal{S}}^{(\ell)} - \tilde{S}^{(\ell)}) \;,$$

where $oldsymbol{\mathcal{S}}^{(k)}$ is defined either by Line $oldsymbol{2}$ (vrTTEM) or Line $oldsymbol{3}$ (fiTTEM).

Proof We begin by writing the two-timescale update:

$$\tilde{S}^{(k+1)} = \tilde{S}^{(k)} + \rho \left(\mathbf{S}^{(k+1)} - \tilde{S}^{(k)} \right),
\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}),$$
(26)

where $\mathcal{S}^{(k+1)} = \frac{1}{n} \sum_{i=1}^n \tilde{S}_i^{(t_i^k)} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)} \right)$ according to (3). Denote $\delta^{(k+1)} = \hat{s}^{(k+1)} - \tilde{S}^{(k+1)}$. Then from (26), doing the subtraction of both equations yields: 459

460

$$\delta^{(k+1)} = (1 - \gamma_{k+1})\delta^{(k)} + \frac{\rho}{1 - \rho}(1 - \gamma_{k+1})(\mathbf{S}^{(k+1)} - \tilde{S}^{(k+1)}).$$

Using the telescoping sum and noting that $\delta^{(0)}=0$, we have 461

$$\delta^{(k+1)} \le \frac{\rho}{1-\rho} \sum_{\ell=0}^k (1-\gamma_{\ell+1})^2 (\boldsymbol{\mathcal{S}}^{(\ell+1)} - \tilde{S}^{(\ell+1)}) .$$

462

B.2 Additional Intermediary Result 463

Lemma 8. At iteration k+1, the drift term of update (3), with $\rho_{k+1}=\rho$, is equivalent to the 464 following:

$$\begin{split} \hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)} = & \rho(\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}) + \rho \eta_{i_k}^{(k+1)} + \rho \left[\left(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)} \right) - \mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}] \right] \\ & + (1 - \rho) \left(\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right) \;, \end{split}$$

where we recall that $\eta_{i_k}^{(k+1)}$, defined in (12), which is the gap between the MC approximation and 466 467

Proof Using the fiTTEM update $\tilde{S}^{(k+1)} = (1-\rho)\tilde{S}^{(k)} + \rho \mathcal{S}^{(k+1)}$ where $\mathcal{S}^{(k+1)} = \overline{\mathcal{S}}^{(k)} + (\tilde{S}^{(k)}_{i,i} - \tilde{S}^{(k)}_{i,i})$

 $\tilde{S}_{i.}^{(t_{i_k}^{\kappa})}$ leads to the following decomposition:

$$\tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}$$

$$\begin{split} &= (1-\rho)\tilde{S}^{(k)} + \rho \left(\overline{\mathcal{S}}^{(k)} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right)\right) - \hat{\mathbf{s}}^{(k)} + \rho \overline{\mathbf{s}}^{(k)} - \rho \overline{\mathbf{s}}^{(k)} \\ &= \rho (\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}) + \rho (\tilde{S}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(k)}) + (1-\rho) \left(\tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)}\right) + \rho \left(\overline{\mathcal{S}}^{(k)} - \overline{\mathbf{s}}^{(k)} + \left(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right)\right) \\ &= \rho (\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}) + \rho \eta_{i_k}^{(k+1)} - \rho \left[\left(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right) - \mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}]\right] \\ &+ (1-\rho) \left(\tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)}\right) \,, \end{split}$$

where we observe that $\mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}] = \overline{\mathbf{s}}^{(k)} - \overline{\boldsymbol{\mathcal{S}}}^{(k)}$ and which concludes the proof.

Important Note: Note that $\bar{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}$ is not equal to $\eta_{i_k}^{(k+1)}$, defined in (12), which is the gap 471

between the MC approximation and the expected statistics. Indeed $\tilde{S}_{ik}^{(t_{ik}^k)}$ is not computed under the 472

same model as $\bar{\mathbf{s}}_{i_k}^{(k)}$. 473

B.3 Proof of Theorem 2 474

Theorem. Assume A1-A5. Consider the vrTTEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ for any $k \leq \mathsf{K}_{\mathsf{m}}$ where 475

 K_m is a positive integer. Let $\{\gamma_{k+1}=1/(k^a\overline{L})\}_{k>0}$, where $a\in(0,1)$, be a sequence of stepsizes,

 $\overline{L} = \max\{L_s, L_V\}, \ \rho = \mu/(c_1\overline{L}n^{2/3}), \ m = nc_1^2/(2\mu^2 + \mu c_1^2) \ and \ a \ constant \ \mu \in (0, 1). \ Then:$

$$\mathbb{E}[\|\nabla V(\hat{s}^{(K)})\|^2] \leq \frac{2n^{2/3}\overline{L}}{\mu \mathsf{P}_{\mathsf{m}} \upsilon_{\min}^2 \upsilon_{\max}^2} \left(\mathbb{E}[\Delta V] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \tilde{\eta}^{(k+1)} + \chi^{(k+1)} \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^2] \right) \ .$$

Proof Using the smoothness of V and update (2), we obtain:

$$V(\hat{s}^{(k+1)}) \leq V(\hat{s}^{(k)}) + \langle \hat{s}^{(k+1)} - \hat{s}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\mathcal{L}_{V}}{2} \| \hat{s}^{(k+1)} - \hat{s}^{(k)} \|^{2}$$

$$\leq V(\hat{s}^{(k)}) - \gamma_{k+1} \langle \hat{s}^{(k)} - \tilde{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^{2} \mathcal{L}_{V}}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^{2}.$$
(27)

Denote $H_{k+1} := \hat{s}^{(k)} - \tilde{S}^{(k+1)}$ the drift term of the fiTTEM update in (7) and $h_k = \hat{s}^{(k)} - \overline{s}^{(k)}$.

Taking expectations on both sides show that

$$\mathbb{E}[V(\hat{s}^{(k+1)})] \\
\stackrel{(a)}{\leq} \mathbb{E}[V(\hat{s}^{(k)})] - \gamma_{k+1}(1-\rho)\mathbb{E}\Big[\langle \hat{s}^{(k)} - \tilde{S}^{(k)} | \nabla V(\hat{s}^{(k)})\rangle\Big] \\
- \gamma_{k+1}\rho\mathbb{E}\Big[\langle \hat{s}^{(k)} - \mathcal{S}^{(k+1)} | \nabla V(\hat{s}^{(k)})\rangle\Big] + \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\mathbf{H}_{k+1}\|^{2}] \\
\stackrel{(b)}{\leq} \mathbb{E}[V(\hat{s}^{(k)})] - \gamma_{k+1}\rho\mathbb{E}\Big[\langle \mathbf{h}_{k} | \nabla V(\hat{s}^{(k)})\rangle\Big] - \gamma_{k+1}(1-\rho)\mathbb{E}\Big[\langle \hat{s}^{(k)} - \tilde{S}^{(k)} | \nabla V(\hat{s}^{(k)})\rangle\Big] \\
- \gamma_{k+1}\rho\mathbb{E}\Big[\langle \eta_{i_{k}}^{(k+1)} | \nabla V(\hat{s}^{(k)})\rangle\Big] + \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\mathbf{H}_{k+1}\|^{2}] \\
\stackrel{(c)}{\leq} \mathbb{E}[V(\hat{s}^{(k)})] - (\gamma_{k+1}\rho v_{\min} + \gamma_{k+1}v_{\max}^{2}) \mathbb{E}\Big[\|\mathbf{h}_{k}\|^{2}\Big] + \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\mathbf{H}_{k+1}\|^{2}] \\
- \gamma_{k+1}\rho\mathbb{E}\Big[\|\eta_{i_{k}}^{(k+1)}\|^{2}\Big] - \gamma_{k+1}(1-\rho)\mathbb{E}\Big[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}\Big] ,$$

- where we have used (22) in (a) and $\mathbb{E}\left[\mathbf{\mathcal{S}}^{(k+1)}\right] = \overline{\mathbf{s}}^{(k)} + \mathbb{E}[\eta_{i_k}^{(k+1)}]$ in (b), the growth condition in
- Lemma 2 and Young's inequality with the constant equal to 1 in (c).
- Furthermore, for $k+1 \le \ell(k) + m$ (i.e., k+1 is in the same epoch as k), we have

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} + \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + 2\big\langle\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\,|\,\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\big\rangle\Big] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \gamma_{k+1}^2\|\mathbf{H}_{k+1}\|^2 \\ & -2\gamma_{k+1}\big\langle\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\,|\,\rho(\mathbf{h}_k - \eta_{i_k}^{(k+1)}) + (1-\rho)(\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)})\big\rangle\Big] \\ \leq & \mathbb{E}\Big[(1+\gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \gamma_{k+1}^2\|\mathbf{H}_{k+1}\|^2 + \frac{\gamma_{k+1}\rho}{\beta}\|\mathbf{h}_k\|^2 \\ & + \frac{\gamma_{k+1}\rho}{\beta}\|\eta_{i_k}^{(k+1)}\|^2 + \frac{\gamma_{k+1}(1-\rho)}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2\Big] \;, \end{split}$$

- where we first used (22) and the last inequality is due to Young's inequality.
- 485 Consider the following sequence

$$R_k := \mathbb{E}[V(\hat{\mathbf{s}}^{(k)}) + b_k ||\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\ell(k))}||^2],$$

where $b_k := \bar{b}_{k \bmod m}$ is a periodic sequence where:

$$\bar{b}_i = \bar{b}_{i+1} (1 + \gamma_{k+1} \beta + 2 \gamma_{k+1}^2 \rho^2 \, \mathbf{L}_{\mathbf{s}}^2) + \gamma_{k+1}^2 \rho^2 \, \mathbf{L}_V \, \mathbf{L}_{\mathbf{s}}^2, \ i = 0, 1, \dots, m-1 \ \text{with} \ \bar{b}_m = 0 \ .$$

Note that \bar{b}_i is decreasing with i and this implies

$$\bar{b}_i \leq \bar{b}_0 = \gamma_{k+1}^2 \rho^2 L_V L_s^2 \frac{(1 + \gamma_{k+1} \beta + 2\gamma_{k+1}^2 \rho^2 L_s^2)^m - 1}{\gamma_{k+1} \beta + 2\gamma_{k+1}^2 \rho^2 L_s^2}, \ i = 1, 2, \dots, m.$$

For $k+1 \le \ell(k)+m$, we have the following inequality

$$\begin{split} R_{k+1} &\leq \mathbb{E}\Big[V(\hat{s}^{(k)}) - \left(\gamma_{k+1}\rho v_{\min} + \gamma_{k+1}v_{\max}^2\right)\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}^2 \mathbf{L}_V}{2}\|\mathbf{H}_{k+1}\|^2\Big] \\ &+ \gamma_{k+1}\mathbb{E}\left[\rho\left\|\eta_{i_k}^{(k+1)}\right\|^2 - (1-\rho)\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^2\right] \\ &+ b_{k+1}\mathbb{E}\left[(1+\gamma_{k+1}\beta)\|\hat{s}^{(k)} - \hat{s}^{(\ell(k))}\|^2 + \gamma_{k+1}^2\|\mathbf{H}_{k+1}\|^2 + \frac{\gamma_{k+1}\rho}{\beta}\|\mathbf{h}_k\|^2\right] \\ &+ b_{k+1}\mathbb{E}\left[\frac{\gamma_{k+1}\rho}{\beta}\|\eta_{i_k}^{(k+1)}\|^2 + \frac{\gamma_{k+1}(1-\rho)}{\beta}\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^2\right] \;. \end{split}$$

489 And using Lemma 4 we obtain:

$$\begin{split} & \mathcal{R}_{k+1} \\ \leq & \mathbb{E} \Big[V(\hat{\boldsymbol{s}}^{(k)}) - \left(\gamma_{k+1} \rho v_{\min} + \gamma_{k+1} v_{\max}^2 - \gamma_{k+1}^2 \rho^2 \operatorname{L}_V \right) \| \mathbf{h}_k \|^2 + \gamma_{k+1}^2 \rho^2 \operatorname{L}_V \operatorname{L}_{\mathbf{s}}^2 \| \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))} \|^2 \Big] \\ & + b_{k+1} \mathbb{E} \left[\left(1 + \gamma_{k+1} \beta + 2 \gamma_{k+1}^2 \rho^2 \operatorname{L}_{\mathbf{s}}^2 \right) \| \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))} \|^2 + \left(\frac{\gamma_{k+1} \rho}{\beta} + 2 \gamma_{k+1}^2 \rho^2 \right) \| \mathbf{h}_k \|^2 \right] \\ & + \gamma_{k+1} \mathbb{E} \left[\left(\rho + \rho^2 \gamma_{k+1} \operatorname{L}_V \right) \left\| \eta_{i_k}^{(k+1)} \right\|^2 - \left(1 - \rho - (1 - \rho)^2 \gamma_{k+1} \operatorname{L}_V \right) \| \hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)} \|^2 \right] \\ & + b_{k+1} \mathbb{E} \left[\left(\frac{\gamma_{k+1} \rho}{\beta} + 2 \gamma_{k+1}^2 \rho^2 \right) \| \eta_{i_k}^{(k+1)} \|^2 + \left(\frac{\gamma_{k+1} (1 - \rho)}{\beta} + 2 \gamma_{k+1}^2 (1 - \rho)^2 \right) \| \hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)} \|^2 \right] \,. \end{split}$$

490 Rearranging the terms yields:

$$\begin{split} R_{k+1} & \leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)})] - \gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 \operatorname{L}_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2)\right) \mathbb{E}[\|\mathbf{h}_k\|^2] \\ & + \left(\underbrace{b_{k+1} (1 + \gamma \beta + 2\gamma^2 \rho^2 \operatorname{L}_{\mathbf{s}}^2) + \gamma^2 \rho^2 \operatorname{L}_V \operatorname{L}_{\mathbf{s}}^2}_{=b_k \text{ since } k+1 \leq \ell(k) + m}\right) \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + \tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}, \end{split}$$

491 where

$$\begin{split} &\tilde{\eta}^{(k+1)} = \left(\gamma_{k+1}(\rho + \rho^2 \gamma_{k+1} \, \mathcal{L}_V) + b_{k+1}(\frac{\gamma_{k+1}\rho}{\beta} + 2\gamma_{k+1}^2 \rho^2) \right) \mathbb{E} \left[\left\| \eta_{i_k}^{(k+1)} \right\|^2 \right] \\ &\chi^{(k+1)} = \left(b_{k+1}(\frac{\gamma_{k+1}(1-\rho)}{\beta} + 2\gamma_{k+1}^2 (1-\rho)^2) - \gamma_{k+1}(1-\rho - (1-\rho)^2 \gamma_{k+1} \, \mathcal{L}_V) \right) \\ &\tilde{\chi}^{(k+1)} = \chi^{(k+1)} \mathbb{E} \left[\left\| \hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right\|^2 \right] \,. \end{split}$$

This leads, using Lemma 2, that for any γ_{k+1} , ρ and β such that $\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 L_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2) > 0$,

$$\begin{split} & v_{\max}^2 \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] \\ \leq & \frac{R_k - R_{k+1}}{\gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 \operatorname{L}_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2)\right)} \\ & + \frac{\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}}{\gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 \operatorname{L}_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1} \rho^2)\right)} \ . \end{split}$$

494 We first remark that

$$\gamma_{k+1} \left(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 L_V - b_{k+1} \left(\frac{\rho}{\beta} + 2 \gamma_{k+1} \rho^2 \right) \right)$$

$$\geq \frac{\gamma_{k+1} \rho}{c_1} \left(1 - \gamma_{k+1} c_1 \rho L_V - b_{k+1} \left(\frac{c_1}{\beta} + 2 \gamma_{k+1} \rho c_1 \right) \right) ,$$

where $c_1=v_{\min}^{-1}$. By setting $\overline{L}=\max\{\mathrm{L_s},\mathrm{L}_V\},\ \beta=\frac{c_1\overline{L}}{n^{1/3}},\ \rho=\frac{\mu}{c_1\overline{L}n^{2/3}},\ m=\frac{nc_1^2}{2\mu^2+\mu c_1^2}$ and $\{\gamma_{k+1}\}$ any sequence of decreasing stepsizes in (0,1), it can be shown that there exists $\mu\in(0,1)$,

such that the following lower bound holds

$$1 - \gamma_{k+1}c_{1}\rho L_{V} - b_{k+1}\left(\frac{c_{1}}{\beta} + 2\gamma_{k+1}\rho c_{1}\right)$$

$$\geq 1 - \frac{\mu}{n^{\frac{2}{3}}} - \overline{b}_{0}\left(\frac{n^{\frac{1}{3}}}{\overline{L}} + \frac{2\mu}{\overline{L}n^{\frac{2}{3}}}\right)$$

$$\geq 1 - \frac{\mu}{n^{\frac{2}{3}}} - \frac{L_{V}\mu^{2}}{c_{1}^{2}n^{\frac{4}{3}}} \frac{(1 + \gamma\beta + 2\gamma^{2} L_{s}^{2})^{m} - 1}{\gamma\beta + 2\gamma^{2} L_{s}^{2}} \left(\frac{n^{\frac{1}{3}}}{\overline{L}} + \frac{2\mu}{\overline{L}n^{\frac{2}{3}}}\right)$$

$$\stackrel{(a)}{\geq} 1 - \frac{\mu}{n^{\frac{2}{3}}} - \frac{\mu}{c_{1}^{2}} (e - 1)\left(1 + \frac{2\mu}{n}\right) \geq 1 - \mu - \mu(1 + 2\mu)\frac{e - 1}{c_{1}^{2}} \stackrel{(b)}{\geq} \frac{1}{2},$$

where the simplification in (a) is due to

$$\frac{\mu}{n} \leq \gamma \beta + 2 \gamma^2 \operatorname{L}_{\mathbf{s}}^2 \leq \frac{\mu}{n} + \frac{2\mu^2}{c_1^2 n^{\frac{4}{3}}} \leq \frac{\mu c_1^2 + 2\mu^2}{c_1^2} \frac{1}{n} \ \text{ and } \ (1 + \gamma \beta + 2 \gamma^2 \operatorname{L}_{\mathbf{s}}^2)^m \leq \mathrm{e} - 1.$$

- and the required μ in (b) can be found by solving the quadratic equation.
- 500 Finally, these results yield:

$$\upsilon_{\max}^2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{s}^{(k)})\|^2] \leq \frac{2(R_0 - R_{\mathsf{K}_{\mathsf{m}}})}{\upsilon_{\min}\rho} + 2 \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}}{\upsilon_{\min}\rho} \;.$$

Note that $R_0 = \mathbb{E}[V(\hat{s}^{(0)})]$ and if K_m is a multiple of m, then $R_{\text{max}} = \mathbb{E}[V(\hat{s}^{(K_m)})]$. Under the latter condition, we have

$$\begin{split} \sum_{k=0}^{\mathsf{K_m}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{s}^{(k)})\|^2] \leq & \frac{2n^{2/3} \overline{L}}{\mu v_{\min}^2 v_{\max}^2} \mathbb{E}[V(\hat{s}^{(0)}) - V(\hat{s}^{(\mathsf{K_m})})] \\ & + \frac{2n^{2/3} \overline{L}}{\mu v_{\min}^2 v_{\max}^2} \sum_{k=0}^{\mathsf{K_m}-1} \left[\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}\right] \; . \end{split}$$

503 This concludes our proof.

504

505 B.4 Proof of Theorem 3

Theorem. Assume A1-A5. Consider the fiTTEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ for any $k \leq \mathsf{K}_{\mathsf{m}}$ where K_{m} be a positive integer. Let $\{\gamma_{k+1} = 1/(k^a \alpha c_1 \overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of positive stepsizes, $\alpha = \max\{2, 1 + 2v_{\min}\}$, $\overline{L} = \max\{\mathsf{L}_{\mathbf{s}}, \mathsf{L}_{V}\}$, $\beta = 1/(\alpha n)$, $\rho = 1/(\alpha c_1 \overline{L} n^{2/3})$ and $c_1(k\alpha - 1) \geq c_1(\alpha - 1) \geq 2$, $\alpha \geq 2$. Then:

$$\mathbb{E}[\|\nabla V(\hat{s}^{(K)})\|^2] \leq \frac{4\alpha \overline{L} n^{2/3}}{\mathsf{P}_{\mathsf{m}} v_{\min}^2 v_{\max}^2} \left(\mathbb{E}\big[\Delta V\big] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Xi^{(k+1)} + \Gamma^{(k+1)} \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^2] \right) \,.$$

Proof Using the smoothness of V and update (3), we obtain:

$$V(\hat{s}^{(k+1)}) \leq V(\hat{s}^{(k)}) + \langle \hat{s}^{(k+1)} - \hat{s}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{L_V}{2} \| \hat{s}^{(k+1)} - \hat{s}^{(k)} \|^2$$

$$\leq V(\hat{s}^{(k)}) - \gamma_{k+1} \langle \hat{s}^{(k)} - \tilde{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^2 .$$
(29)

Denote $H_{k+1} := \hat{s}^{(k)} - \tilde{S}^{(k+1)}$ the drift term of the fiTTEM update in (7) and $h_k = \hat{s}^{(k)} - \overline{s}^{(k)}$.

Using Lemma 8 and the additional following identity:

$$\mathbb{E}\left[\left(\bar{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right) - \mathbb{E}\left[\bar{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right]\right] = 0,$$
(30)

we have:

$$\begin{split} & \mathbb{E}[V(\hat{s}^{(k+1)})] \\ \leq & \mathbb{E}[V(\hat{s}^{(k)})] - \gamma_{k+1}\rho \mathbb{E}[\left\langle \mathsf{h}_{k} \,|\, \nabla V(\hat{s}^{(k)}) \right\rangle] \\ & - \gamma_{k+1} \mathbb{E}\left[\left\langle \rho \mathbb{E}[\eta_{i_{k}}^{(k+1)} | \mathcal{F}_{k}] + (1-\rho) \mathbb{E}[\hat{s}^{(k)} - \tilde{S}^{(k)}] \,|\, \nabla V(\hat{s}^{(k)}) \right\rangle\right] + \frac{\gamma_{k+1}^{2} \,\mathcal{L}_{V}}{2} \|\mathsf{H}_{k+1}\|^{2} \\ \stackrel{(a)}{\leq} & - v_{\min} \gamma_{k+1} \rho \mathbb{E}[\|\mathsf{h}_{k}\|^{2}] - \gamma_{k+1} \mathbb{E}\left[\left\| \nabla V(\hat{s}^{(k)}) \right\|^{2}\right] \\ & - \frac{\gamma_{k+1} \rho^{2}}{2} \xi^{(k+1)} - \frac{\gamma_{k+1} (1-\rho)^{2}}{2} \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}] + \frac{\gamma_{k+1}^{2} \,\mathcal{L}_{V}}{2} \|\mathsf{H}_{k+1}\|^{2} \\ \stackrel{(b)}{\leq} & - (v_{\min} \gamma_{k+1} \rho + \gamma_{k+1} v_{\max}^{2}) \mathbb{E}[\|\mathsf{h}_{k}\|^{2}] - \frac{\gamma_{k+1} \rho^{2}}{2} \xi^{(k+1)} - \frac{\gamma_{k+1} (1-\rho)^{2}}{2} \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}] \\ & + \frac{\gamma_{k+1}^{2} \,\mathcal{L}_{V}}{2} \|\mathsf{H}_{k+1}\|^{2} \;, \end{split}$$

where $\xi^{(k+1)} = \mathbb{E}[\|\mathbb{E}[\eta_{i_k}^{(k+1)}|\mathcal{F}_k]\|^2].$

Bounding $\mathbb{E}\left[\|\mathsf{H}_{k+1}\|^2\right]$ Using Lemma 5, we obtain:

$$\gamma_{k+1}(v_{\min}\rho + v_{\max}^2 - \gamma_{k+1}\rho^2 L_V) \mathbb{E}[\|\mathbf{h}_k\|^2] \\
\leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right] + \tilde{\xi}^{(k+1)} + \left((1-\rho)^2 \gamma_{k+1}^2 L_V - \frac{\gamma_{k+1}(1-\rho)^2}{2}\right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \\
+ \frac{\gamma_{k+1}^2 L_V \rho^2 L_{\mathbf{s}}^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2], \tag{31}$$

where $\tilde{\xi}^{(k+1)} = \gamma_{k+1}^2 \rho^2 \operatorname{L}_V \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] - \frac{\gamma_{k+1}\rho^2}{2} \xi^{(k+1)}$. Next, we observe that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \right), \tag{32}$$

where the equality holds as i_k and j_k are drawn independently. Then,

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ &= \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \, | \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)} \rangle \Big] \;. \end{split}$$

Note that $\hat{s}^{(k+1)} - \hat{s}^{(k)} = -\gamma_{k+1}(\hat{s}^{(k)} - \tilde{S}^{(k+1)}) = -\gamma_{k+1}\mathsf{H}_{k+1}$ and that in expectation we recall that $\mathbb{E}[\mathsf{H}_{k+1}|\mathcal{F}_k] = \rho\mathsf{h}_k + \rho\mathbb{E}[\eta_{i_k}^{(k+1)}|\mathcal{F}_k] + (1-\rho)\mathbb{E}[\tilde{S}^{(k)} - \hat{s}^{(k)}]$ where $\mathsf{h}_k = \hat{s}^{(k)} - \overline{\mathbf{s}}^{(k)}$. Thus,

for any $\beta > 0$, it holds

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\big\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\big\rangle\Big] \\ \leq & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + (1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\mathbb{E}[\left\|\eta_{i_k}^{(k+1)}\right\|^2] \\ & + \frac{\gamma_{k+1}(1-\rho)^2}{\beta}\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2]\Big] \;, \end{split}$$

where the last inequality is due to Young's inequality. Plugging this into (32) yields:

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\big\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \,|\, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\big\rangle\Big] \\ \leq & \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + (1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\mathbb{E}\Big[\Big\|\boldsymbol{\eta}_{i_k}^{(k+1)}\Big\|^2\Big] \\ & + \frac{\gamma_{k+1}(1-\rho)^2}{\beta}\mathbb{E}\Big[\Big\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\Big\|^2\Big]\Big] \;. \end{split}$$

Subsequently, we have

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_{i}^{k+1})}\|^{2}] \\ \leq &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\Big[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\|\mathbf{h}_{k}\|^{2} \\ &+ \frac{\gamma_{k+1}\rho^{2}}{\beta} \mathbb{E}[\left\|\eta_{i_{k}}^{(k+1)}\right\|^{2}] + \frac{\gamma_{k+1}(1-\rho)^{2}}{\beta} \mathbb{E}\left[\left\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\right\|^{2}\right]\Big]\Big] \; . \end{split}$$

We now use Lemma 5 on $\|\hat{s}^{(k+1)} - \hat{s}^{(k)}\|^2 = \gamma_{k+1}^2 \|\hat{s}^{(k)} - \tilde{S}^{(k+1)}\|^2$ and obtain:

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{s}^{(k+1)} - \hat{s}^{(t_{i}^{k+1})}\|^{2}] \\ &\leq \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] \\ &+ \sum_{i=1}^{n} \left(\frac{\gamma_{k+1}^{2} \rho^{2} \, \mathbf{L}_{\mathbf{s}}^{2}}{n} + \frac{(n-1)(1+\gamma_{k+1}\beta)}{n^{2}}\right) \mathbb{E}\left[\|\hat{s}^{(k)} - \hat{s}^{(t_{i}^{k})}\|^{2}\right] \\ &+ \gamma_{k+1}(1-\rho)^{2} \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}] + \left(2\gamma_{k+1}^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] \\ &\leq \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\|^{2}] \\ &+ \sum_{i=1}^{n} \left(\frac{1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^{2}\rho^{2} \, \mathbf{L}_{\mathbf{s}}^{2}}{n}\right) \mathbb{E}\left[\|\hat{s}^{(k)} - \hat{s}^{(t_{i}^{k})}\|^{2}\right] \\ &+ \gamma_{k+1}(1-\rho)^{2} \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}] + \left(2\gamma_{k+1}^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] \,. \end{split}$$

Let us define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2].$$

From the above, we get

$$\begin{split} \Delta^{(k+1)} & \leq \left(1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2 \rho^2 \, \mathbf{L}_{\mathbf{s}}^2\right) \Delta^{(k)} + \left(2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^2] \\ & + \gamma_{k+1} (1 - \rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2] + \gamma_{k+1} \left(2\gamma_{k+1} + \frac{\rho^2}{\beta}\right) \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] \; . \end{split}$$

Setting
$$c_1=v_{\min}^{-1}$$
, $\alpha=\max\{2,1+2v_{\min}\}$, $\overline{L}=\max\{\mathbf{L_s},\mathbf{L}_V\}$, $\gamma_{k+1}=\frac{1}{k}$, $\beta=\frac{1}{\alpha n}$, $\rho=\frac{1}{\alpha c_1\overline{L}n^{2/3}}$, 527 $c_1(k\alpha-1)\geq c_1(\alpha-1)\geq 2$, $\alpha\geq 2$, we observe that

$$1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2\rho^2 L_{\mathbf{s}}^2 \le 1 - \frac{1}{n} + \frac{1}{\alpha kn} + \frac{1}{\alpha^2 c_1^2 k^2 n^{\frac{4}{3}}} \le 1 - \frac{c_1(k\alpha - 1) - 1}{k\alpha nc_1} \le 1 - \frac{1}{k\alpha nc_1}$$

which shows that $1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2\rho^2 \operatorname{L}_{\mathbf{s}}^2 \in (0,1)$ for any k>0. Denote $\Lambda_{(k+1)} = \frac{1}{n} - \gamma_{k+1}\beta - \gamma_{k+1}^2\rho^2 \operatorname{L}_{\mathbf{s}}^2$ and note that $\Delta^{(0)} = 0$, thus the telescoping sum yields:

$$\Delta^{(k+1)} \leq \sum_{\ell=0}^{k} \omega_{k,\ell} \left(2\gamma_{\ell+1}^{2} \rho^{2} + \frac{\gamma_{\ell+1}^{2} \rho^{2}}{\beta} \right) \mathbb{E} \left[\left\| \bar{\mathbf{s}}^{(\ell)} - \hat{\mathbf{s}}^{(\ell)} \right\|^{2} \right]$$

$$+ \sum_{\ell=0}^{k} \omega_{k,\ell} \gamma_{\ell+1} (1 - \rho)^{2} \left(2\gamma_{\ell+1} + \frac{1}{\beta} \right) \mathbb{E} \left[\left\| \tilde{S}^{(\ell)} - \hat{\mathbf{s}}^{(\ell)} \right\|^{2} \right] + \sum_{\ell=0}^{k} \omega_{k,\ell} \gamma_{\ell+1} \tilde{\epsilon}^{(\ell+1)} ,$$

where
$$\omega_{k,\ell} = \prod_{j=\ell+1}^k \left(1 - \Lambda_{(j)}\right)$$
 and $\tilde{\epsilon}^{(\ell+1)} = \left(2\gamma_{k+1} + \frac{\rho^2}{\beta}\right) \mathbb{E}[\left\|\eta_{i_k}^{(k+1)}\right\|^2]$.

Summing on both sides over k = 0 to $k = K_m - 1$ yields:

$$\begin{split} \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Delta^{(k+1)} &\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta}}{\Lambda_{(k+1)}} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^2] \\ &+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{\gamma_{k+1} (1-\rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta}\right)}{\Lambda_{(k+1)}} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2] + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \frac{\gamma_{k+1}}{\Lambda_{(k+1)}} \tilde{\epsilon}^{(k+1)} \;. \end{split}$$

We recall (31) where we have summed on both sides from k=0 to $k=\mathsf{K}_\mathsf{m}-1$:

$$\mathbb{E}\left[V(\hat{\mathbf{s}}^{(\mathsf{K}_{\mathsf{m}})}) - V(\hat{\mathbf{s}}^{(0)})\right] \\
\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left\{ \gamma_{k+1} \left(-(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}\rho^{2} \, \mathbf{L}_{V} \right) \mathbb{E}[\|\mathbf{h}_{k}\|^{2}] + \gamma^{2} \, \mathbf{L}_{V} \, \rho^{2} \, \mathbf{L}_{\mathbf{s}}^{2} \, \Delta^{(k)} \right\} \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left\{ \tilde{\xi}^{(k+1)} + \left((1-\rho)^{2} \gamma_{k+1}^{2} \, \mathbf{L}_{V} - \frac{\gamma_{k+1} (1-\rho)^{2}}{2} \right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}] \right\} \\
\leq \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \left\{ \left[-\gamma_{k+1} (v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}^{2} \rho^{2} \, \mathbf{L}_{V} + \frac{\rho^{2} \gamma_{k+1}^{2} \, \mathbf{L}_{V} \, \mathbf{L}_{\mathbf{s}}^{2} \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta} \right)}{\Lambda_{(k+1)}} \right] \mathbb{E}[\|\mathbf{h}_{k}\|^{2}] \right\} \\
+ \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Xi^{(k+1)} + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Gamma^{(k+1)} \mathbb{E}\left[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2} \right] , \tag{33}$$

where

$$\Xi^{(k+1)} = \tilde{\xi}^{(k+1)} + \frac{\gamma_{k+1}^3 L_V \rho^2 L_s^2}{\Lambda_{(k+1)}} \tilde{\epsilon}^{(k+1)}$$

and

$$\Gamma^{(k+1)} = \left((1-\rho)^2 \gamma_{k+1}^2 \, \mathcal{L}_V - \frac{\gamma_{k+1} (1-\rho)^2}{2} \right) + \frac{\gamma_{k+1}^3 \, \mathcal{L}_V \, \rho^2 \, \mathcal{L}_s^2 (1-\rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta} \right)}{\Lambda_{(k+1)}} \, .$$

We now analyse the following quantity

$$-\gamma_{k+1}(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}^{2}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1}^{2} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\Lambda_{(k+1)}}$$

$$= \gamma_{k+1} \left[-(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\Lambda_{(k+1)}} \right].$$
(34)

Furthermore, we recall that $c_1 = v_{\min}^{-1}$, $\alpha = \max\{2, 1 + 2v_{\min}\}$, $\overline{L} = \max\{L_{\mathbf{s}}, L_V\}$, $\gamma_{k+1} = \frac{1}{k}$, $\beta = \frac{1}{\alpha n}$, $\rho = \frac{1}{\alpha c_1 \overline{L} n^{2/3}}$, $c_1(k\alpha - 1) \ge c_1(\alpha - 1) \ge 2$, $\alpha \ge 2$. Then,

$$\gamma_{k+1}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\frac{1}{n} - \gamma_{k+1}\beta - \gamma_{k+1}^{2}\rho^{2} L_{s}^{2}} \\
\leq \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\overline{L}(k\alpha^{2}c_{1}^{2}n^{4/3})^{-1}\left(\frac{2}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}} + \frac{1}{k\alpha c_{1}^{2}\overline{L}^{2}n^{1/3}}\right)}{\frac{1}{n} - \frac{1}{k\alpha n} - \frac{1}{k^{2}\alpha^{2}c_{1}^{2}n^{4/3}}} \\
= \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\overline{L}\left(\frac{2}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}} + \frac{1}{k\alpha c_{1}^{2}\overline{L}^{2}n^{1/3}}\right)}{(k\alpha c_{1}n^{1/3})(k\alpha - 1)c_{1} - 1} \\
\leq \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{1}{4k\alpha^{2}c_{1}^{2}\overline{L}n^{1/3}} \\
\leq \frac{1}{k^{2}\alpha c_{1}^{2}\overline{L}n^{4/3}} + \frac{1}{4k\alpha^{2}c_{1}^{3}\overline{L}n^{2/3}} \\
\leq \frac{3/4}{\alpha c_{1}^{2}\overline{L}n^{2/3}} ,$$
(35)

where (a) is due to $c_1(k\alpha-1) \ge c_1(\alpha-1) \ge 2$ and $k\alpha c_1 n^{1/3} \ge 1$. Note also that

$$-(\upsilon_{\min}\rho + \upsilon_{\max}^2) \le -\rho\upsilon_{\min} = -\frac{1}{\alpha c_1^2 \overline{L} n^{2/3}} ,$$

which yields that

$$\left[-(v_{\min}\rho + v_{\max}^2) + \gamma_{k+1}\rho^2 L_V + \frac{\rho^2 \gamma_{k+1} L_V L_s^2 \left(2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta} \right)}{\Lambda_{(k+1)}} \right] \le -\frac{1/4}{\alpha c_1^2 \overline{L} n^{2/3}} .$$

Using the Lemma 2, we know that $v_{\max}^2 \|\nabla V(\hat{s}^{(k)})\|^2 \le \|\hat{s}^{(k)} - \overline{s}^{(k)}\|^2$ and using (35) on (33) yields:

$$\begin{split} &v_{\max}^2 \sum_{k=0}^{\mathsf{K_m}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\mathbf{s}}^{(k)})\|^2] \\ \leq & \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2} \big[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(\mathsf{K_m})}) \big] \\ &+ \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2} \sum_{k=0}^{\mathsf{K_m}-1} \Xi^{(k+1)} + \sum_{k=0}^{\mathsf{K_m}-1} \Gamma^{(k+1)} \mathbb{E}\left[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2 \right] \;, \end{split}$$

proving the bound on the second order moment of the gradient of the Lyapunov function:

$$\begin{split} \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] &\leq \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2 v_{\max}^2} \big[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(\mathsf{K}_{\mathsf{m}})}) \big] \\ &+ \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2 v_{\max}^2} \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Xi^{(k+1)} + \sum_{k=0}^{\mathsf{K}_{\mathsf{m}}-1} \Gamma^{(k+1)} \mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2 \right] \;. \end{split}$$

539

540 C Practical Implementations of Two-Timescale EM Methods

541 C.1 Application on GMM

542 C.1.1 Explicit Updates

We first recognize that the constraint set for θ is given by

$$\Theta = \Lambda^M \times \mathbb{R}^M$$
.

- Using the partition of the sufficient statistics as $S(y_i,z_i)=$ $(S^{(1)}(y_i,z_i)^\top,S^{(2)}(y_i,z_i)^\top,S^{(3)}(y_i,z_i))^\top\in\mathbb{R}^{M-1}\times\mathbb{R}^{M-1}\times\mathbb{R}$, the partition $\phi(\boldsymbol{\theta})=(\phi^{(1)}(\boldsymbol{\theta})^\top,\phi^{(2)}(\boldsymbol{\theta})^\top,\phi^{(3)}(\boldsymbol{\theta}))^\top\in\mathbb{R}^{M-1}\times\mathbb{R}^{M-1}\times\mathbb{R}$ and the fact that $\mathbb{1}_{\{M\}}(z_i)=1-\sum_{m=1}^{M-1}\mathbb{1}_{\{m\}}(z_i)$, the complete data log-likelihood can be expressed as in (2) with
 - $s_{i,m}^{(1)} = \mathbb{1}_{\{m\}}(z_i), \quad \phi_m^{(1)}(\boldsymbol{\theta}) = \left\{ \log(\omega_m) \frac{\mu_m^2}{2} \right\} \left\{ \log(1 \sum_{j=1}^{M-1} \omega_j) \frac{\mu_M^2}{2} \right\} ,$ $s_{i,m}^{(2)} = \mathbb{1}_{\{m\}}(z_i)y_i, \quad \phi_m^{(2)}(\boldsymbol{\theta}) = \mu_m , \quad s_i^{(3)} = y_i, \quad \phi^{(3)}(\boldsymbol{\theta}) = \mu_M ,$ (36)
- and $\psi(\boldsymbol{\theta}) = -\left\{\log(1-\sum_{m=1}^{M-1}\omega_m) \frac{\mu_M^2}{2\sigma^2}\right\}$. We also define for each $m\in \llbracket 1,M
 rbracket$, $j\in \llbracket 1,3
 rbracket$,
- $s_m^{(j)} = n^{-1} \sum_{i=1}^n s_{i,m}^{(j)}$. Consider the following latent sample used to compute an approximation of the conditional expected value $\mathbb{E}_{\theta}[\mathbbm{1}_{\{z_i=m\}}|y=y_i]$:

$$z_{i,m} \sim \mathbb{P}\left(z_i = m | y_i; \boldsymbol{\theta}\right)$$
 (37)

- where $m \in \llbracket 1, M
 rbracket, i \in [n]$ and $oldsymbol{ heta} = (oldsymbol{w}, oldsymbol{\mu}) \in \Theta$.
- In particular, given iteration k+1, the computation of the approximated quantity $\tilde{S}_{i_k}^{(k)}$ during lncremental-step updates, see (8) can be written as

$$\tilde{S}_{i_{k}}^{(k)} = \left(\underbrace{\mathbb{1}_{\{1\}}(z_{i_{k},1}), \dots, \mathbb{1}_{\{M-1\}}(z_{i_{k},M-1})}_{:=\tilde{s}_{i_{k}}^{(1)}}, \underbrace{\mathbb{1}_{\{1\}}(z_{i_{k},1})y_{i_{k}}, \dots, \mathbb{1}_{\{M-1\}}(z_{i_{k},M-1})y_{i_{k}}}_{:=\tilde{s}_{i_{k}}^{(3)}(\boldsymbol{\theta}^{(k)})}, \underbrace{y_{i_{k}}}_{:=\tilde{s}_{i_{k}}^{(3)}(\boldsymbol{\theta}^{(k)})}\right)^{\top}.$$
(38)

Recall that we have used the following regularizer:

$$\mathbf{r}(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \epsilon \sum_{m=1}^{M} \log(\omega_m) - \epsilon \log\left(1 - \sum_{m=1}^{M-1} \omega_m\right), \tag{39}$$

556 It can be shown that the regularized M-step evaluates to

$$\overline{\theta}(s) = \begin{pmatrix}
(1 + \epsilon M)^{-1} \left(s_1^{(1)} + \epsilon, \dots, s_{M-1}^{(1)} + \epsilon\right)^{\top} \\
\left(\left(s_1^{(1)} + \delta\right)^{-1} s_1^{(2)}, \dots, \left(s_{M-1}^{(1)} + \delta\right)^{-1} s_{M-1}^{(2)}\right)^{\top} \\
\left(1 - \sum_{m=1}^{M-1} s_m^{(1)} + \delta\right)^{-1} \left(s^{(3)} - \sum_{m=1}^{M-1} s_m^{(2)}\right)
\end{pmatrix} = \begin{pmatrix}
\overline{\omega}(s) \\
\overline{\mu}(s) \\
\overline{\mu}_M(s)
\end{pmatrix} .$$
(40)

where we have defined for all $m \in [\![1,M]\!]$ and $j \in [\![1,3]\!]$, $s_m^{(j)} = n^{-1} \sum_{i=1}^n s_{i,m}^{(j)}$.

558 C.1.2 Model Assumptions (GMM example)

- We use the GMM example to illustrate the required assumptions.
- Many practical models can satisfy the compactness of the sets as in Assumption A1 For instance,
- the GMM example satisfies (11) as the sufficient statistics are composed of indicator functions and
- observations as defined Section C.1 Equation (36).

Assumptions A2 and A3 are standard for the curved exponential family models. For GMM, the following (strongly convex) regularization $r(\theta)$ ensures A3:

$$r(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \epsilon \sum_{m=1}^{M} \log(\omega_m) - \epsilon \log\left(1 - \sum_{m=1}^{M-1} \omega_m\right),$$

- since it ensures $\theta^{(k)}$ is unique and lies in $int(\Delta^M) \times \mathbb{R}^M$. We remark that for A2, it is possible to 563
- define the Lipschitz constant L_p independently for each data y_i to yield a refined characterization. 564
- Again, A4 is satisfied by practical models. For GMM, it can be verified by deriving the closed form 565
- expression for B(s) and using A1. 566
- Under A1 and A3, we have $\|\hat{s}^{(k)}\| < \infty$ since S is compact and $\hat{\theta}^{(k)} \in \text{int}(\Theta)$ for any k > 0 which 567
- thus ensure that the EM methods operate in a closed set throughout the optimization process. 568

C.1.3 Algorithms updates 569

- In the sequel, recall that, for all $i \in [n]$ and iteration k, the computed statistic $\tilde{S}_{i_k}^{(k)}$ is defined by (38). At iteration k, the several E-steps defined by (1) or (2) and (3) leads to the definition of the quantity
- 571
- $\hat{\mathbf{s}}^{(k+1)}$. For the GMM example, after the initialization of the quantity $\hat{\mathbf{s}}^{(0)} = n^{-1} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}^{(0)}$, those 572
- E-steps break down as follows: 573
- **Batch EM (EM):** for all $i \in [n]$, compute $\overline{\mathbf{s}}_i^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = n^{-1} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}^{(k)} .$$

where $\bar{\mathbf{s}}_i^{(k)}$ are computed using the exact conditional expected balue $\mathbb{E}_{\theta}[\mathbb{1}_{\{z_i=m\}}|y=y_i]$:

$$\widetilde{\omega}_m(y_i; \boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{1}_{\{z_i = m\}} | y = y_i] = \frac{\omega_m \exp(-\frac{1}{2}(y_i - \mu_i)^2)}{\sum_{j=1}^M \omega_j \exp(-\frac{1}{2}(y_i - \mu_j)^2)},$$

Incremental EM (iEM): draw an index i_k uniformly at random on [n], compute $\overline{\mathbf{s}}_{i_k}^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \frac{1}{n} (\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(\tau_i^k)}) = n^{-1} \sum_{i=1}^n \bar{\mathbf{s}}_i^{(\tau_i^k)}.$$

batch SAEM (SAEM): draw an index i_k uniformly at random on [n], compute $\bar{\mathbf{s}}_{i_k}^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} \tilde{S}^{(k)} .$$

- where $=\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(k)}$ with $\tilde{S}_{i}^{(k)}$ defined in (38).
- Incremental SAEM (iSAEM): draw an index i_k uniformly at random on [n], compute $\bar{\mathbf{s}}_{i_k}^{(k)}$ and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} (\tilde{S}^{(k)} + \frac{1}{n} (\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(\tau_i^k)}_{i_k})).$$

- Variance Reduced Two-Timescale EM (vrTTEM): draw an index i_k uniformly at random on [n],
- compute $\overline{\mathbf{s}}_{i_k}^{(k)}$ and set 581

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)}(1 - \gamma_{k+1}) + \gamma_{k+1} \big(\tilde{S}^{(k)}(1 - \rho) + \rho \big(\tilde{S}^{(\ell(k))} + \big(\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(\ell(k))}_{i_k} \big) \big) \big) \; .$$

Fast Incremental Two-Timescale EM (fiTTEM): draw an index i_k uniformly at random on [n], compute $\bar{\mathbf{s}}_{i_k}^{(k)}$ and set 583

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} (\tilde{S}^{(k)} (1 - \rho) + \rho (\overline{\mathbf{S}}^{(k)} + (\tilde{S}^{(k)}_{i_k} - \tilde{S}^{(t_{i_k}^k)}_{i_k})).$$

Finally, the *k*-th update reads $\hat{\theta}^{(k+1)} = \overline{\theta}(\hat{\mathbf{s}}^{(k+1)})$ where the function $s \to \overline{\theta}(s)$ is defined by (40).

585 C.2 Deformable Template Model for Image Analysis

586 C.2.1 Model and Updates

The complete model belongs to the curved exponential family, see [2], which vector of sufficient statistics $S = (S_1(z), S_2(z), S_3(z))$ read:

$$S_{1}(z) = \frac{1}{n} \sum_{i=1}^{n} S_{1}(y_{i}, z_{i}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{K}_{p}^{z_{i}})^{\top} y_{i} ,$$

$$S_{2}(z) = \frac{1}{n} \sum_{i=1}^{n} S_{2}(y_{i}, z_{i}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{K}_{p}^{z_{i}})^{\top} (\mathbf{K}_{p}^{z_{i}}) ,$$

$$S_{3}(z) = \frac{1}{n} \sum_{i=1}^{n} S_{3}(y_{i}, z_{i}) = \frac{1}{n} \sum_{i=1}^{n} z_{i}^{t} z_{i} ,$$

$$(41)$$

where for any pixel $u \in \mathbb{R}^2$ and $j \in \llbracket 1, k_g
rbracket$ we denote:

$$\mathbf{K}_p^{z_i}(x_u,j) = \mathbf{K}_p^{z_i}(x_u - \phi_i(x_u,z_i), p_j).$$

Finally, the Two-Timescale M-step yields the following parameter updates:

$$\bar{\boldsymbol{\theta}}(\hat{s}) = \begin{pmatrix} \beta(\hat{s}) = \hat{s}_2^{-1}(z)\hat{s}_1(z) \\ \Gamma(\hat{s}) = \frac{1}{n}\hat{s}_3(z) \\ \sigma(\hat{s}) = \beta(\hat{s})^{\top}\hat{s}_2(z)\beta(\hat{s}) - 2\beta(\hat{s})\hat{s}_1(z) \end{pmatrix}, \tag{42}$$

where $\hat{s} = (\hat{s}_1(z), \hat{s}_2(z), \hat{s}_3(z))$ is the vector of statistics obtained via the SA-step (7) and using the MC approximation of the sufficient statistics $(S_1(z), S_2(z), S_3(z))$ defined in (41).

593 C.2.2 Numerical Applications

602

603

604

605

606

607

608

For the inference of the template, we use the Matlab code (online SAEM) used in [24] and implement our own batch, incremental, Variance reduced and Fast Incremental variants. The hyperparameters are kept the same and reads as follows M=400, $\gamma_k=1/k^{0.6}$ and p=16. The number of landmarks for the template is $k_p=15$ points and for the deformation $k_g=6$ points. Both have Gaussian kernels with respectively standard deviation of 0.12 and 0.3. The standard deviation of the measurement errors is set to 0.1.

For the simulation part, we use the Carlin and Chib MCMC procedure, see [9]. Refer to [24] for more details.

D Additional Experiment: Pharmacokinetics (PK) Model with Absorption Lag Time

This numerical example was conducted in order to characterize the pharmacokinetics (PK) of orally administered drug to simulated patients, using a population pharmacokinetics approach. M=50 synthetic datasets were generated for n=5000 patients with 10 observations (concentration measures) per patient. The goal tis to model the evolution of the concentration of the absorbed drug using a nonlinear and latent variable model.

Model and Explicit Updates: We consider a one-compartment PK model for oral administration with an absorption lag-time (T^{lag}), assuming first-order absorption and linear elimination processes. The final model includes the following variables: ka the absorption rate constant, V the volume of distribution, k the elimination rate constant and T^{lag} the absorption lag-time. We also add several covariates to our model such as D the dose of drug administered, t the time at which measures are taken and the weight of the patient influencing the volume V. More precisely, the log-volume

 $\log(V)$ is a linear function of the log-weight $lw70 = \log(wt/70)$. Let $z_i = (T_i^{\text{lag}}, ka_i, V_i, k_i)$ be the vector of individual PK parameters, different for each individual i. The final model reads:

$$y_{ij} = f(t_{ij}, z_i) + \varepsilon_{ij} \quad \text{where} \quad f(t_{ij}, z_i) = \frac{D \, k a_i}{V(k a_i - k_i)} \left(e^{-k a_i \, (t_{ij} - T_i^{\text{lag}})} - e^{-k_i \, (t_{ij} - T_i^{\text{lag}})} \right) \,, \tag{43}$$

where y_{ij} is the j-th concentration measurement of the drug of dosage D injected at time t_{ij} for patient i. We assume in this example that the residual errors ε_{ij} are independent and normally distributed with mean 0 and variance σ^2 . Lognormal distributions are used for the four PK parameters.

620 Lognormal distributions are used for the four PK parameters:

$$\log(T_i^{\text{lag}}) \sim \mathcal{N}(\log(T_{\text{pop}}^{\text{lag}}), \omega_{T^{\text{lag}}}^2), \log(ka_i) \sim \mathcal{N}(\log(ka_{\text{pop}}), \omega_{ka}^2), \log(V_i) \sim \mathcal{N}(\log(V_{\text{pop}}), \omega_V^2), \log(k_i) \sim \mathcal{N}(\log(k_{\text{pop}}), \omega_k^2).$$

We recall that the complete model (y, z) defined by (43) belongs to the curved exponential family, which vector of sufficient statistics $S = (S_1(z), S_2(z), S_3(z))$ read:

$$S_1(z) = \frac{1}{n} \sum_{i=1}^n z_i, \quad S_2(z) = \frac{1}{n} \sum_{i=1}^n z_i^\top z_i, \quad S_3(z) = \frac{1}{n} \sum_{i=1}^n (y_i - f(t_i, z_i))^2$$
(44)

where we have noted y_i and t_i the vector of observations and time for each patient i. At iteration k, and setting the number of MC samples to 1 for the sake of clarity, the MC sampling $z_i^{(k)} \sim p(z_i|y_i,\theta^{(k)})$ is performed using a Metropolis-Hastings procedure detailed in Algorithm 2. The quantities $\tilde{S}^{(k+1)}$ and $\hat{s}^{(k+1)}$ are then updated according to the different methods. Finally the maximization step yields:

$$\overline{\theta}(s) = \begin{pmatrix} \hat{\mathbf{s}}_{1}^{(k+1)} \\ \hat{\mathbf{s}}_{2}^{(k+1)} - \hat{\mathbf{s}}_{1}^{(k+1)} \left(\hat{\mathbf{s}}_{1}^{(k+1)} \right)^{\top} \\ \hat{\mathbf{s}}_{3}^{(k+1)} \end{pmatrix} = \begin{pmatrix} \overline{\boldsymbol{z}_{pop}}(\hat{\mathbf{s}}^{(k+1)}) \\ \overline{\boldsymbol{\omega}_{\boldsymbol{z}}}(\hat{\mathbf{s}}^{(k+1)}) \\ \overline{\boldsymbol{\sigma}}(\hat{\mathbf{s}}^{(k+1)}) \end{pmatrix} . \tag{45}$$

where $z_{
m pop}$ denotes the vector of fixed effects $(T_{
m pop}^{
m lag}, ka_{
m pop}, V_{
m pop}, k_{
m pop})$.

Metropolis Hastings algorithm. During the simulation step of the MISSO method, the sampling from the target distribution $\pi(z_i, \theta) := p(z_i|y_i, \theta)$ is performed using a Metropolis Hastings (MH) algorithm [27] with proposal distribution $q(z_i, \delta)$ where $\theta = (z_{\text{pop}}, \omega_z)$ and δ is the vector of parameters of the proposal distribution. Commonly they parameterize a Gaussian proposal. The MH algorithm is summarized in 2.

Algorithm 2 MH aglorithm

629

630

631

632

633

```
1: Input: initialization z_{i,0} \sim q(z_i; \boldsymbol{\delta})
 2: for m=1,\cdots,M do
             Sample z_{i,m} \sim q(z_i; \boldsymbol{\delta})
 3:
             Sample u \sim \mathcal{U}(\llbracket 0, 1 \rrbracket)
Calculate the ratio r = \frac{\pi(z_{i,m}; \boldsymbol{\theta})/q(z_{i,m}); \boldsymbol{\delta})}{\pi(z_{i,m-1}; \boldsymbol{\theta})/q(z_{i,m-1}); \boldsymbol{\delta})}
 4:
             if u < r then
 6:
 7:
                  Accept z_{i,m}
 8:
 9:
                   z_{i,m} \leftarrow z_{i,m-1}
10:
             end if
11: end for
12: Output: z_{i,M}
```

Monte Carlo study: We conduct a Monte Carlo study to showcase the benefits of our scheme. M=50 datasets have been simulated using the following PK parameters values: $T_{\rm pop}^{\rm lag}=1$, $ka_{\rm pop}=1$, $ka_{\rm pop}=1$, $v_{\rm pop}=8$, $v_{\rm p$

the mean square distance over the M replicates $E_k(\ell) = \frac{1}{M} \sum_{m=1}^M \left(\theta_k^{(m)}(\ell) - \theta^*\right)^2$ and plot it against the epochs (passes over the data) Figure 4. Note that the MC-step (5) is performed using a Metropolis Hastings procedure since the posterior distribution under the model θ noted $p(z_i|y_i,\theta)$ is intractable due to the nonlinearity of the model (43). Figure 4 shows clear advantage of variance reduced methods (vrTTEM and fiTTEM) avoiding the twists and turns displayed by the incremental and the batch methods.

Figure 4: Precision $|ka^{(k)} - ka^*|^2$ per epoch