

THE NEURAL SIMULATION TOOL NEST OCNS 2022 Melbourne

July 18th, 2020 | Charl Linssen (c.linssen@fz-juelich.de) | SimLab Neuroscience

WHEN TO USE NEST?

Complexity of single elements

Possibility to simulate large networks

NEST = NEURAL SIMULATION TOOL

- Point neurons and neurons with few electrical compartments
- Phenomenological synapse models (STDP, STP)
 - + gap junctions, neuromodulation and structural plasticity
- Frameworks for rate models and binary neurons
- Support for neuroscience interfaces (MUSIC, libneurosim)
- Highly efficient C++ core with a Python frontend
- Hybrid parallelization (OpenMP+MPI)
- Same code from laptops to supercomputers

NEST DESIGN GOALS

NEST development is always driven by scientific needs.

High accuracy and flexibility

- Exact integration is used for suitable neuron models
- Spike interaction in continuous time available for suitable neuron models
- Extremely scalable: same code from laptop to supercomputers

Constant quality assurance

- Automated unit test suite included in NEST build
- Continuous integration for all repository checkins
- Peer review for all code contributions

NEURONAL SIMULATIONS IN NEST

A simulation in NEST mimics a neuroscientific experiment.

NEURON MODELS

- Integrate-and-fire models (iaf_)
 - Current-based (iaf_psc)
 - Conductance-based (iaf_cond)
 - Different post-synaptic shapes (_alpha, _exp, _delta)
- Single compartment Hodgin-Huxley models (hh_)
- Adaptive exponential integrate-and-fire models (aeif_)
- Allen Institute generalised leaky integrate-and fire family (gif_)
- Hill-Tononi model (Hill & Tononi 2005)
- Neuron models with >1 compartments ("mesocompartmental")
- ...and many more!

SYNAPSE MODELS

- Gap junctions (electical synapse)
- Short term depression, facilitation
- Spike-timing dependent plasticity (STDP)
 - All-to-all; several nearest-neighbour variants
- Triplet STDP (Pfister & Gerstner 2006)
- Voltage-based STDP (Clopath et al. 2010)
- Dopamine-modulated STDP (Potjans et al. 2010)
- ...and many more!

STIMULATION DEVICES

Spike generators:

- spike_generator spikes at prescibed points in time
- poisson_generator spikes according to a Poisson distribution
- gamma_sup_generator spikes according to a Gamma distribution

Current generators

- ac_generator provides a sine-shaped current
- dc_generator provices a constant current
- step_current_generator provides a step-wise constant current
- noise_generator provides a random noise current

RECORDING DEVICES

- spike_detector records incoming spikes
- multimeter records analog quantities (potentials, conductances, ...)
- voltmeter records the membrane potential
- correlation_detector records pairwise cross-correlations between the spiking activity of neurons
- weight_recorder records the weight of connections

SPECIFICATION OF CONNECTIVITY

- One-to-one
- All-to-all
- Fixed in-, out-degree
- Fixed total number (N)
- Pairwise Bernoulli (*p*)

```
A = Create('iaf_psc_alpha', n)
B = Create('spike_detector', n)
Connect(A, B, 'one_to_one')
```


Slide 9

RANDOMIZATION OF SYNAPSE PROPERTIES

Dozens of standard distributions are natively supported.

```
delay_dist = {'distribution': 'uniform',
              'low': 0.8, 'high': 2.5}
alpha_dist = { 'distribution': 'normal_clipped',
              'low': 0.5, 'mu': 5.0,
              'sigma': 1.0}
syn_dict = {'model': 'stdp_synapse',
            'weight': 2.5.
            'delay': delay_dist,
            'alpha': alpha_dist}
```


STRUCTURED NETWORKS USING TOPOLOGY

- Set node positions on grids or arbitrary points in space (1D, 2D, 3D)
- Nodes can be neurons or combinations of neurons and devices
- Connect nodes in a position- and distance-dependent manner
- Set boundary condition (periodic or not)

GAP JUNCTIONS

$$I_i^{gap} = g_{ij}(V_j - V_i) \underbrace{V_i}_{V_i} \underbrace{V_j}_{V_j} I_j^{gap} = g_{ij}(V_i - V_j)$$

Neuron
$$i$$
 (hh_psc_alpha_gap)
$$y_i'(t) = f_i(y_i(t)) \;,\; y_i(t_0) \; \text{given}$$

$$\frac{V_i'}{C_m} = -I_i^{ionic}(V_i, m_i, h_i, n_i, p_i)$$

$$+I_i^{applied}(I_i^{ex}, I_i^{in})$$

$$+I_i^{gap}(V_i, V_j)$$

- at each time point neuron i needs membrane potential of neuron j
- large system of differential equations
- naïve: communication of V in each step
- better: Jacobi waveform relaxation

Hahne et al. (2015). A unified framework for spiking and gap-junction interactions in distributed neural network simulations. Frontiers in Neuroinformatics. 9:22

NEST PERFORMANCE

Maximum network size and corresponding run time as function of number of virtual processes on the K computer (red) and JUQUEEN (blue). Taken from Kunkel et al.,

(2014), Front Neuroinf. DOI: 10.3389/fninf.2014.00078 July 18th, 2020

HOW TO USE NEST?

The Python interface PyNEST import nest n = nest.Create("iaf_psc_exp", 8000, {"V_m": -65.}) sd = nest.Create("spike_detector") nest.Connect(n, sd)

. . . nest.Simulate(1000.)

The multi-simulator Python interface PyNN from pyNN import nest

```
nest.setup()
neuron_t = nest.native_cell_type("iaf_psc_exp")
pop_exc = nest.Population(8000, neuron_t, {})
pop_exc.initialize(V_m=-65.)
. . .
nest.run(1000.)
```


Slide 14

NEURONAL SIMULATIONS IN NEST

A simulation in NEST mimics a neuroscientific experiment.

Member of the Helmholtz Association

A FULL EXAMPLE

```
# import NEST module
import nest
                                               # create a neuron
neuron = nest.Create('iaf psc exp')
voltmeter = nest.Create('voltmeter')
                                               # create a voltmeter
spikegenerator = nest.Create('spike_generator') # create a spike generator
nest.SetStatus(spikegenerator, {'spike times': [10., 50.]}) # let it spike
# connect spike generator and voltmeter to the neuron
nest.Connect(spikegenerator, neuron, syn spec={'weight' : 1E3})
nest.Connect(voltmeter, neuron)
nest.Simulate(100.) # run the simulation
# read out recording time and voltage from voltmeter and plot them
times = nest.GetStatus(voltmeter)[0]['events']['times']
voltage = nest.GetStatus(voltmeter)[0]['events']['V_m']
pl.plot(times. voltage)
pl.xlabel('time (ms)'); pl.ylabel('membrane potential (mV)')
pl.show()
```


A FULL EXAMPLE

Event-driven simulation:

- Visit a neuron only when it receives an event (e.g. a spike)
- From $y(t_i)$, calculate $y(t_{i+1})$

Time-driven simulation:

- Visit each neuron in each time step h
- From y(ih), calculate y([i+1]h)

Hanuschkin et al. Front. Neuroinf. 2010

Hanuschkin et al. Front. Neuroinf. 2010

	Event-driven	Time-driven
Pros	 more efficient for low input rates 'correct' solution for invertible neuron models 	 more efficient for high input rates works for all neuron models scales well
Cons	 only works for neurons with invertible dynamics event queue does not scale well 	 only 'approximate' solution even for analytically solvable models spikes can be missed due to discrete sampling of membrane potential

NEST uses a hybrid approach to simulation

- input events to neurons are frequent: time-driven algorithm
 - If the dynamics is nonlinear, we need a numerical method to solve it, e.g.:
 - Forward Euler: $y([i+1]h) = y(ih) + h \cdot \dot{y}(ih)$
 - Runge-Kutta (k-th order)
 - Runge-Kutte-Fehlberg with adaptive step size
 - ...
 - $\rightarrow\,$ Use a pre-implemented solver, for example, from the GNU Scientific Library (GSL).
 - If the dynamics is linear (e.g. leaky integrate-and-fire), we can solve it exactly.

NEST uses a hybrid approach to simulation

- input events to neurons are frequent: time-driven algorithm
 - If the dynamics is nonlinear, we need a numerical method to solve it, e.g.:
 - Forward Euler: $y([i+1]h) = y(ih) + h \cdot \dot{y}(ih)$
 - Runge-Kutta (k-th order)
 - Runge-Kutte-Fehlberg with adaptive step size
 - ...
 - → Use a pre-implemented solver, for example, from the GNU Scientific Library (GSL).
 - If the dynamics is linear (e.g. leaky integrate-and-fire), we can solve it exactly.
- events at synapses are rare: event driven component
 - Exception: gap junctions

MINIMUM SYNAPTIC DELAY

During an interval of the minimal transmission delay in the network (Δ), neurons are effectively decoupled.

Input events to neurons are frequent: time-driven updates. Events at synapses are rare: event driven.

COMMUNICATION OF EVENTS

 communication only required in intervals of the minimal delay between neurons

COMMUNICATION OF EVENTS

- communication only required in intervals of the minimal delay between neurons
- ullet communication frequency independent of step size h

COMMUNICATION OF EVENTS

- communication only required in intervals of the minimal delay between neurons
- ullet communication frequency independent of step size h
- less communications containing more data is more efficient due to overhead of communication between machines

REPRESENTATION OF NETWORK STRUCTURE: SERIAL

- Each neuron and synapse maintains its own parameters
- Synapses save the index of the target neuron

REPRESENTATION OF NETWORK STRUCTURE: DISTRIBUTED

- neurons are distributed round robin onto processes
- one target list for every neuron on each machine
- synapse stored on machine that hosts the target neuron
- wiring is a parallel operation

NESTML

NESTML is a domain-specific language for neuron and synapse models.

Using PyNEST, you instantiate and connect the models that you define in NESTML.

NESTML: DESIGN PRINCIPLES

- Concise; low on boilerplate
- Speak in the vernacular of the neuroscientist (keywords such as neuron, synapse)
- Easy (dynamical) equation handling coupled with imperative-style programming (if V_m >= threshold: ...)

NESTML comes with a code generation toolbox.

- Code generation (model definition but not instantiation)
- Automated ODE analysis and solver selection
- Flexible addition of targets using Jinja2 templates

NESTML: EXAMPLE

```
neuron iaf_psc_exp:
 state:
    V abs mV = 0 mV
 end
 equations:
                                                       input:
    shape G = \exp(-t / tau svn)
   V abs' = -V abs / tau m
                                                          spikes pA <- spike
           + (I_ext + convolve(G, spikes)) / C_m
                                                         I ext pA <- current
                                                       end
 end
                                                       update:
 parameters:
   C m pF = 250 pF
                                                         integrate_odes()
                                                          if V_abs > V_threshold:
    tau m ms = 10 ms
    tau svn ms = 2 ms
                                                            V abs = 0
                                                            emit_spike()
   V threshold mV = 40 mV # w.r.t. zero!
 end
                                                         end
                                                       end
                                                     end
```


GETTING HELP

Within Python:

```
nest.help('iaf_psc_exp')
nest.help('Connect')
```

Online documentation:

https://nest-simulator.readthedocs.io/

Community:

- NEST user mailing list
- Bi-weekly open video conference
- http://github.com/nest/nest-simulator/
- Annual NEST Conference: a forum for users and developers

Please tell us about problems. We can only fix what we know of!

REFERENCES AND FURTHER READING

- The NEST Simulator documentation at https://nest-simulator.readthedocs.io/
- Gewaltig et al. (2012) NEST by example: An introduction to the neural simulation tool NEST. doi:10.1007/978-94-007-3858-4_18
- Hanuschkin et al. (2010) A general and efficient method for incorporating precise spike times in globally time-driven simulations. doi:10.3389/fninf.2010.00113
- Jordan et al. (2018) Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. doi:10.3389/fninf.2018.00002

ACKNOWLEDGMENTS

This presentation is based on previous work by many people.

- Hannah Bos
- David Dahmen
- Moritz Deger
- Jochen Martin Eppler
- Espen Hagen
- Abigail Morrison

- Jannis Schuecker
- Johanna Senk
- Tom Tetzlaff
- Sacha van Albada
- Charl Linssen

