

We create a best fit This will reduce the error with test data. In Linear Regression we are always going to get the But to create -- line we use Ridge Regression which will reduce the error in our Test Data. In order to get this line, we will use the Cost In: - 1 = (ho (x) - y (1))2 + > (slope) :: > = hyperparaweter 8 lope = 0, If set we have multiple slopes we square their survention 0, + 02 + On)2 , we will get finean Regression b/w O (slope) and >? to me sow, when our $\lambda=0$, we get finer Regression. That means we will get GRADIENT DESCENT come.

~3
· when O value changes with new weight with)
when O value changes with new weight with λ , a new Best fit gets created.
· In this way it NEVER get OVERFITTED
I do with Ridge Regression, you know it will never
Overfit!
Recap:-
- Let say we have a problem statement which is
Overfit Condition ->
Traine Data -> # Holy Accuracy = 95%
Traing Data > & Hoph Accuracy = 95% Test Data > Low Accuracy = 60%
In most to some two prosent the tip the tip
Because in Kigde Repression we don't only just focus on
Cost $f_{\mu} + \lambda(0)^{2}$
- Adding & value reduces a value since our Global Minima pets -
- Adding I value reduces 0 value since our Global Minima pots shifted on left side.

That wears x3 is least correaled feature. with hyperparameter tuning, in Greating > La feature deleted! O + O, K, + O2 K2 + O3K3 Oo + 0.54x, + 0.25x, + 0.10x, Revoved Important Features *>*=0 0 0.2 0.4 0.6 0.8 1.0 Maximum point O goes till zero! become zero and they get deleted. they when your dataset has outlier, use the LASSO -

3

ELASTIC DET	-
	7
· Combination of Ridge & Lasso [4 4 16 L. Dore	4
· Cost fu = 1 2 (ho(x) + yi) + 1 (alope) +	
Cost fu = I = (ho (x) Ty) T	
le slope	
The policy regions of heavest	_
	-
	-
	-
	10
	-
	· ·
	-
	-3
	2.5