

Kalor

A. KALOR

- Kalor adalah energi yang berpindah/ mengalir dari benda bersuhu lebih tinggi ke benda yang bersuhu lebih rendah untuk mencapai kesetimbangan termal.
- Natuan kalor yang sering digunakan:

 $1 J = 0.24 \, \text{kal}$

1 kal = 4.2 J

Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu sebesar 1 K pada 1 kg benda.

$$c = \frac{Q}{m.\Delta T}$$

c = kalor jenis (J/kg K)

Q = energi kalor (J) m = massa benda (kg)

 ΔT = perubahan suhu (K)

Kapasitas kalor adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu sebesar 1 K.

$$C = \frac{Q}{\Delta T} = m.c$$

C = kapasitas kalor (J/K)

Nergi kalor dapat dirumuskan:

$$Q = m.c.\Delta T$$

$$Q = C.\Delta T$$

B. AZAS BLACK

Azas Black menjelaskan kekekalan energi kalor:

Banyaknya **kalor yang dilepas** sama dengan banyak **kalor yang diterima**.

$$\Sigma Q$$
 lepas = ΣQ terima

Suhu akhir (campuran) adalah suhu yang dihasilkan oleh benda yang berbeda suhu yang telah mencapai kesetimbangan termal.

Azas Black dapat dirumuskan:

$$m_1.c_1.(T_1-T_c) = m_2.c_2.(T_c-T_2)$$

m = massa benda (kg)

c = kalor jenis (J/kg K)

Tc = suhu campuran (K)

- Kalorimeter adalah alat yang digunakan untuk mengukur kalor. Kalorimeter bekerja berdasarkan azas Black.
- Kalorimeter adalah sistem terisolasi, sehingga tidak ada energi kalor yang terbuang ke lingkungan.

C. PERUBAHAN WUJUD OLEH KALOR

🔌 Kalor dapat menyebabkan perubahan wujud.

→ menyerap kalor
→ melepas kalor

- Peleburan, proses perubahan zat cair menjadi zat padat.
- 2) **Pembekuan**, proses perubahan zat padat menjadi zat cair.
- 3) **Penguapan**, proses perubahan zat cair menjadi gas.
- Pengembunan, proses perubahan gas menjadi zat cair.
- Pengkristalan/ deposisi, proses perubahan gas menjadi zat padat.
- 6) **Penyumbliman**, proses perubahan zat padat menjadi gas.
- Kalor laten adalah kalor yang diperlukan untuk mengubah wujud zat tanpa kenaikan suhu tiap satuan massa.
- Kalor laten terdiri dari kalor lebur/beku dan kalor uap/embun.
- **Energi kalor** yang dihasilkan kalor laten dapat dirumuskan:

Q = energi kalor (J)

m = massa benda (kg)

L = kalor laten (J/kg)

Pada perubahan wujud air dari es menjadi uap, terjadi peleburan dan penguapan.

- 1) Penguapan air terjadi di permukaan air pada suhu sembarang.
- Mendidih adalah peristiwa penguapan di seluruh bagian air, terjadi pada suhu 100°C pada tekanan 1 atm.
- 3) Tekanan mempengaruhi titik didih dan titik beku air.

Tekanan berbanding lurus dengan titik didih dan berbanding terbalik dengan titik beku air.

GRAFIK PERUBAHAN WUJUD AIR

D. PERPINDAHAN KALOR

Kalor berpindah menurut tiga cara, yaitu konduksi, konveksi dan radiasi.

Konduksi adalah perpindahan kalor dengan zat perantara tanpa disertai perpindahan partikelpartikel zat.

$$Q = \frac{k.A.t.\Delta T}{L} \qquad H = \frac{Q}{t} = \frac{k.A.\Delta T}{L}$$

Q = energi kalor (J)

H = laju perpindahan kalor (J/s)

t = waktu perpindahan kalor (s)

k = koefisien konduktivitas termal (W/mK)

A = luas penampang (m²)

L = panjang batang (m)

 ΔT = selisih suhu tinggi dengan suhu rendah (K)

New Proses konduksi yaitu:

- Pada benda non-logam, perpindahan terjadi akibat getaran partikel yang menumbuk partikel di sebelahnya, sehingga berlangsung lambat.
- 2) Pada benda logam, perpindahan terjadi melalui elektron bebas pada lautan valensi ikatan logam yang mudah berpindah, sehingga berlangsung cepat.

Contoh peristiwa konduksi:

- 1) Alat masak memanaskan isinya dengan prinsip konduksi.
- 2) Sendok apabila dipanaskan salah satu ujungnya, maka unjung lainnya akan terasa panas.
- Nonveksi adalah perpindahan kalor dengan zat perantara dengan disertai perpindahan partikel-partikel zat.

$$Q = \frac{h.A.t.\Delta T}{L}$$
 $H = \frac{Q}{t} = \frac{h.A.\Delta T}{L}$

h = koefisien konveksi termal (W/mK)

A = luas penampang (m²)

L = panjang batang (m)

 ΔT = selisih suhu tinggi dengan suhu rendah (K)

■ Konveksi terjadi pada zat yang merupakan fluida, yaitu air atau gas. Konveksi terjadi akibat perbedaan massa jenis.

Jenis-jenis konveksi:

 Konveksi alamiah, terjadi akibat perbedaan massa jenis.

Contoh: pemanasan air, ventilasi udara, cerobong asap, angin darat dan angin laut.

 Konveksi paksa, terjadi akibat adanya tambahan seperti peniupan atau pemompaan zat yang dipanaskan ke suatu tempat.

Contoh: radiator mobil, pengering rambut, lemari es.

Radiasi adalah perpindahan kalor tanpa zat perantara yang hanya melalui pancaran gelombang elektromagnetik.

$$Q = e\sigma AtT^4$$

$$H = \frac{Q}{t} = e\sigma AT^4$$

$$I = \frac{Q}{A.t} = e\sigma T^4$$

Q = energi kalor (J)

H = laju perpindahan kalor (J/s)

t = waktu perpindahan kalor (s)

I = intensitas radiasi (W/m²)

e = koefisien emisivitas

 σ = tetapan Stefan-Boltzmann (5,67 x 10⁻⁸ W/m².K⁴)

A = luas permukaan (m²)

T = suhu mutlak benda (K)

- Radiasi dipancarkan oleh seluruh benda yang memiliki suhu, dan dipengaruhi oleh warna permukaan.
- Warna permukaan mempengaruhi nilai emisivitas benda (e):
 - 1) Nilai emisivitas benda berkisar $0 \le e \le 1$.
 - 2) Warna hitam memiliki nilai e = 1, yang merupakan penyerap dan pemancar kalor yang baik.
 - Warna putih memiliki nilai e = 0 , yang merupakan penyerap dan pemancar kalor yang buruk.

🔦 Contoh peristiwa radiasi:

- 1) Sinar matahari dapat memancar ke bumi karena radiasi.
- 2) Api unggun memancarkan panas secara radiasi.
- 3) Panel surya dan rumah kaca menyerap panas dari radiasi.