Llenguatges Funcionals: Introducció

Albert Rubio

Llenguatges de Programació, FIB, UPC

Continguts

1 Introducció als Llenguatges Funcionals

2 Fonaments de la Programació Funcional

Continguts

1 Introducció als Llenguatges Funcionals

2 Fonaments de la Programació Funcional

Presentació

Aplicacions

- Microsoft. SLAM (OCaml). F# a .NET o Visual Studio
- Jane Street Capital (Wall Street), OCaml.
- Credit Siusse, Haskell, F#.
- Barclays, Haskell.
- EDF Trading (energia), Scala.
- Ericsson, Erlang, Haskell; Nokia també
- Facebook, Google, Haskell
- Twitter, Scala
- Conf.: Commercial Users of Functional Programming

Presentació

Aplicacions

- Derivative pricing.
- Data analysis (per exemple, fulls de càlcul).
- Hardware description languages.
- Geospatial search engine (geographical information).
- Desenvolupament de Software crític.
- ...

Presentació

Objectius

- Conèixer un llenguatge funcional pur
- Conèixer els fonaments del model de càlcul
- Sistema de tipus potent, ordre superior.
- Lambda-expressions. Funcions anònimes.
- Pattern matching, lazy evaluation
- Base per altres Llenguatges de Programació Funcionals: OCaml, Erlang, F#, Scala, ...
- Base per entendre aquestes construccions: C++, Java, Python, Ruby,
 ...

Continguts

1 Introducció als Llenguatges Funcionals

2 Fonaments de la Programació Funcional

Fonaments: λ -càlcul

- Model de computació funcional.
- Alonzo Church, 1932
- Totes les funcions recursives poden ser representades en λ -càlcul (Kleene,Rosser 1936)
- El λ -càlcul pot expressar exactament les funcions computables per una Màquina de Turing (Turing 1937).
- Abstracció i aplicació (variables lligades i substitució)
- Origen del llenguatges funcionals

Fonaments: λ -càlcul

Construcció de λ -termes. Dues "operacions":

- Abstracció: $\lambda x.u$ on u és un λ -terme.
- Aplicació: $(u \ v)$ on u i v són λ -termes. Associa a l'esquerra: $(((u \ v_1) \ v_2) \ \dots \ v_n) = (u \ v_1 \ v_2 \ \dots \ v_n)$

Intuïció: funcions matemàtiques.

$$f(x, y, z) = x^2 + 2y + z + 4$$

és
 $f = \lambda x. \lambda y. \lambda z. x^2 + 2y + z + 4$
i
 $f(6, 3, 12)$ és $(f \ 6 \ 3 \ 12)$, o millor $((f \ 6) \ 3) \ 12)$

Fonaments: λ -càlcul

Computació. Una sola regla:

• β -reducció: $(\lambda x.u \ v) \rightarrow_{\beta} u[x := v]$

Intuïció:

$$(\lambda x.\lambda y.\lambda z.x^2 + 2y + z + 4 \ 6 \ 3 \ 12) \rightarrow_{\beta}^{3}$$

 $x^2 + 2y + z + 4[x := 6][y := 3][z := 12] =$
 $6^2 + 2 \cdot 3 + 12 + 4 = 58$

Variables

- Lligades. Variables que apareixen en una abstracció. En $\lambda x.(y \ \lambda z.(x \ z))$, x i z són lligades
- Lliures. Les demés (a l'exemple y). Es poden substituir!

 α -conversió: $\lambda x.u =_{\alpha} \lambda y.u[x := y]$ si y és nova

Fonaments: λ -càlcul

Exemple: codificació dels nombres naturals

- 0: $c_0 = \lambda x. \lambda y. x = \lambda x y. y$
- n: $c_n = \lambda x.\lambda y.(\underbrace{x...(x}_n y)) = \lambda x y.x^n(y)$
- increment: $A_s = \lambda z \times y.(x(z \times y))$
- suma: $A_+ = \lambda p \ q \times y.(p \times (q \times y))$
- producte: $A_* = \lambda p \ q \times y.(p \ (q \times) \ y)$
- $(A_s c_n) \rightarrow_{\beta} c_{n+1}$
- $(A_+ c_n c_m) \rightarrow_{\beta} c_{n+m}$
- $(A_* c_n c_m) \rightarrow_{\beta} c_{n \cdot m}$

Fonaments: λ -càlcul

Propietats de la β -reducció:

β-reducció és confluent.

Si
$$t \to_{\beta} \ldots \to_{\beta} t_1$$
 i $t \to_{\beta} \ldots \to_{\beta} t_2$ llavors $t_1 \to_{\beta} \ldots \to_{\beta} t_3$ i $t_2 \to_{\beta} \ldots \to_{\beta} t_3$

• estratègia normalitzant de la β -reducció:

left-most outer-most.

Redueix la λ sintàcticament més a l'esquerra.

Si existeix un terme que no es pot reescriure més, aquesta estratègia el troba!

Fonaments: λ -càlcul amb tipus

Només considerarem tipus simples

a la Curry

$$\lambda x.x: \alpha \to \alpha$$

a la Church

$$\lambda x : \alpha . x : \alpha \to \alpha$$

Declaracions

- A la Curry el tipus dels paràmetres es dedueixen del context.
- Cal declarar el tipus de las variables lliures.

Fonaments: λ -càlcul amb tipus

Exemple: Tipus simples: només tipus bàsics i funcionals.

Sigui Γ un context (declaració) de la forma $\{x:\alpha,y:\beta\}$ un λ -terme t és tipable en Γ si

$$\Gamma \vdash t : \sigma$$

es pot deduir de les següents regles (a la Curry)

Abstracció:Variable:
$$\frac{\Gamma \cdot \{x : \sigma\} \vdash t : \tau}{\Gamma \vdash (\lambda x . t) : \sigma \rightarrow \tau}$$
$$\frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma}$$

$$\frac{\Gamma \vdash s : \sigma \to \tau \quad \Gamma \vdash t : \sigma}{\Gamma \vdash (s \ t) : \tau}$$

Fonaments: λ -càlcul amb tipus

Exemple: Tipus simples: només tipus bàsics i funcionals.

Sigui Γ un context (declaració) de la forma $\{x:\alpha,y:\beta\}$ un λ -terme t és tipable en Γ si

$$\Gamma \vdash t : \sigma$$

es pot deduir de les següents regles (a la Church)

Abstracció:Variable:
$$\frac{\Gamma \cdot \{x : \sigma\} \vdash t : \tau}{\Gamma \vdash (\lambda x : \sigma . t) : \sigma \rightarrow \tau}$$
$$\frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma}$$

$$\frac{\Gamma \vdash s : \sigma \to \tau \qquad \Gamma \vdash t : \sigma}{\Gamma \vdash (s \ t) : \tau}$$

Fonaments: λ -càlcul amb tipus

 $\lambda x.(x \ x)$ no és tipable.

Exemple de derivació de tipus

$$\frac{\{f:\beta\to\alpha,x:\beta\}\vdash f:\beta\to\alpha\qquad\qquad \{f:\beta\to\alpha,x:\beta\}\vdash x:\beta\}}{\{f:\beta\to\alpha,x:\beta\}\vdash (f\ x):\alpha}
\frac{\{f:\beta\to\alpha\}\vdash \lambda x.(f\ x):\beta\to\alpha}{\{f:\beta\to\alpha\}\vdash \lambda x.(f\ x):\beta\to\alpha}$$

- Si t es tipable amb aquest sistema la β -reducció acaba.
- El λ -càlcul amb tipus simples no és Turing complet
- Cal afegir polimorfisme i definició de noves funcions