Croal: Students should understand the basiz definitions, properties and examples of inner products & inner product spaces

Class Q: What is an example of an inner product space which is not R' with the dot product.

Recall: we talked about vector spaces being the combrella term for which had addition, scalar must & so on.

one thing that was not mentioned was the dot product.

Brainstorm mind 4 properties of the dot product

Which assigns to every pur of vectors v, veV a real number (v, v) st

 $\begin{array}{lll}
0 & \langle \vec{v}, \vec{u} \rangle = \langle \vec{u}, \vec{v} \rangle & (\text{Yechreally with a conjugate if over } C \text{ but we} \\
0 & \langle \vec{v}, \vec{u} + \vec{w} \rangle = \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{w} \rangle & \text{won't be}) \\
3) & \langle c\vec{v}, \vec{u} \rangle = c \langle \vec{v}, \vec{u} \rangle & \forall cell \\
4) & \langle \vec{v}, \vec{u} \rangle \geq 0 & \text{and} & \langle \vec{u}, \vec{u} \rangle = 0 & \text{iff} & \vec{u} = \vec{0}
\end{array}$

inner produt space.

Ex: R" with the iscal dot product.

Z[a,b] continuous functions on the interval [a,b] with $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) g(x) dx$

> TK" with a weighted dot product P2(TR) with <f,g> = fogo + f,g, + f2g2 and many others. We will focus of vertration and examples on wednesday.

Properties: let il, v, vi EV an Inner prod. space and CER then

① $\langle \vec{u} + \vec{v} q, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ ② $\langle \vec{u}, c\vec{v} \rangle = C \langle \vec{u}, \vec{v} \rangle$ ③ $\langle \vec{u}, \vec{o} \rangle = \langle \vec{o}, \vec{v} \rangle = O$ The # not the vector.

Note that these all follow directly from the definition and are not included there for that veeson,

What concepts from class did we define with a dot product, and this can now be generalized. Think small first.

1 length/norm of V is 11VN = V(V, V>

(2) distance between it and is d(ti, v) = 11ti-v11

3) i and i are orthogonal if (ii, i) = 0

from a practical standpoint why should we care?

in an inner product space V. Then it and i are orthogonal

 $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$

Proof: $\|\vec{u} + \vec{v}\|^2 = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle = \langle \vec{u}, \vec{u} + \vec{v} \rangle + \langle \vec{v}, \vec{u} + \vec{v} \rangle$

 $=\langle \vec{u}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle = ||\vec{u}||^2 + 2\langle \vec{u}, \vec{v} \rangle + ||\vec{v}u||^2$

which is $\|\vec{u}\|^2 + \|\vec{v}\|^2$ iff $\langle \vec{u}, \vec{v} \rangle = 0$, i.e. \vec{u} and \vec{v} are orth.

more generally this leads is to another result, &

Thm (the triangle inequality) let $\vec{u}, \vec{v} \in V$ cus inner prod space then $||\vec{u} + \vec{v}|| \leq ||\vec{u}|| + ||\vec{v}||$

for proof see page 540.

last result for today

Thm: (the Couchy - Schwart inequality) let u, ve V con inner prod. space then |\lambda u, v > | \le || \var{u} || \var{v}||

with egality it f i and i are scalar milts of eachother.

the proof of this is bused around projections. (included in friday's talk)
Fridays Tunk)
Next class we will verify that some of the examples from before are indeed inner prod. spaces and do some examples of work in these spaces.
from before are indeed inner prod. spaces and do some
examples of work in these spaces.