Field kinematics Momentum Norm Frame

k^{μ}	$k^2 == k_\mu k^\mu$	n ^μ

Fundamental fields

Fields	Symmetries

SO(3)

Expansion

 $\mathcal{A}_{\alpha\beta}^{\beta} n^{\alpha}$

 $\frac{1}{2}\,\mathcal{R}_{\beta\delta\chi}\,\,n_{\alpha}\,\,n^{\delta} + \frac{1}{4}\,\mathcal{R}_{\chi\delta\beta}\,\,n_{\alpha}\,\,n^{\delta} + \frac{3}{8}\,\eta_{\beta\chi}\,\,\mathcal{R}_{\delta\,\,\epsilon}^{\,\,\epsilon}\,\,n_{\alpha}\,\,n^{\delta} - \frac{1}{4}\,\mathcal{R}_{\alpha\chi\delta}\,\,n_{\beta}\,\,n^{\delta} - \frac{1}{2}\,\mathcal{R}_{\alpha\delta\chi}\,\,n_{\beta}\,\,n^{\delta} - \frac{1}{4}\,\mathcal{R}_{\chi\delta\alpha}\,\,n_{\beta}\,\,n^{\delta} - \frac{3}{8}\,\eta_{\alpha\chi}\,\,\mathcal{R}_{\delta\,\,\epsilon}^{\,\,\epsilon}\,\,n_{\beta}\,\,n^{\delta} - \frac{3}{8}\,\eta_{\alpha\chi}\,\,n^{\delta}\,\,n^{\delta} - \frac{3}{8}\,\eta_{\alpha\chi}\,\,n^{\delta}\,\,n^$

 $\frac{1}{2} \mathcal{A}_{\alpha\beta\delta} \ n_\chi \ n^\delta - \frac{1}{4} \mathcal{A}_{\alpha\delta\beta} \ n_\chi \ n^\delta + \frac{1}{4} \mathcal{A}_{\beta\delta\alpha} \ n_\chi \ n^\delta + \frac{3}{8} \eta_{\beta\chi} \mathcal{A}_{\alpha\delta\epsilon} \ n^\delta \ n^\epsilon - \frac{3}{8} \eta_{\alpha\chi} \mathcal{A}_{\beta\delta\epsilon} \ n^\delta \ n^\epsilon - \frac{3}{8} \mathcal{A}_{\beta\delta\epsilon} \ n_\alpha \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\alpha \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\alpha \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \mathcal{A}_{\alpha\delta\epsilon} \ n_\alpha \ n_\chi \ n^\delta \ n^$

Sources

Sources #1 0⁺ σ

#1 0 σ

#1 1⁺ σαβ

 $1^+ \sigma_{\alpha\beta}$ $1^{*1} \sigma_{\alpha}$

 $1^{2} \sigma_{\alpha}$

 $2^{-1}\sigma_{\alpha\beta\chi}$

$\mathcal{A}_{\alpha\beta\chi} \left[\text{StrongGenSet[} \{1,2\}, \text{GenSet[} - (1,2)] \right] \left\{ \frac{1}{2} \eta_{\beta\chi} \right. \left. \frac{\sharp^1}{1} \mathcal{A}_{\alpha} + \frac{1}{2} \eta_{\alpha\chi} \right. \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta} + \frac{4}{3} \right. \left. \frac{\sharp^1}{2} \mathcal{A}_{\alpha\beta\chi} + \frac{1}{3} \eta_{\beta\chi} \right. \left. \frac{\sharp^1}{0} \mathcal{A} \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} \right. \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \left. \eta_{\alpha} + \left. \frac{\sharp^1}{1} \mathcal{A}_{\beta\chi} \right. \right. \right. \left. \eta_{\alpha}$

StrongGenSet[{},GenSet[]]

SO(3) | Symmetries

SO(3) irreps

Я	StrongGenSet[{}, GenSet[]] -	$\epsilon \eta_{lphaeta\chi\delta}{\cal R}^{eta\chi\delta}n^lpha$
$\mathcal{A}_{lphaeta}$	StrongGenSet[{1,2},GenSet[-(1,2)]]	$-\frac{1}{2} \mathcal{A}_{\alpha\chi\beta} \ \ n^\chi + \frac{1}{2} \mathcal{A}_{\beta\chi\alpha} \ \ n^\chi - \frac{1}{2} \mathcal{A}_{\beta\chi\delta} \ \ n_\alpha \ \ n^\chi \ n^\delta + \frac{1}{2} \mathcal{A}_{\alpha\chi\delta} \ \ n_\beta \ \ n^\chi \ n^\delta$
$\mathcal{A}_{lphaeta}$	StrongGenSet[{1,2},GenSet[-(1,2)]]	$\mathcal{A}_{\alpha\beta\chi} \ n^{\chi} + \mathcal{A}_{\beta\chi\delta} \ n_{\alpha} \ n^{\chi} \ n^{\delta} - \mathcal{A}_{\alpha\chi\delta} \ n_{\beta} \ n^{\chi} \ n^{\delta}$
\mathcal{A}_{lpha}	StrongGenSet[{}, GenSet[]] -	$\mathcal{A}_{\alpha\beta}^{\ \beta} + \mathcal{A}_{\beta\chi}^{\ \chi} \ n_{\alpha} \ n^{\beta} + \mathcal{A}_{\alpha\beta\chi}^{\ \alpha} \ n^{\beta} \ n^{\chi}$
\mathcal{A}_{lpha}	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha\beta\chi}$ n^{β} n^{χ}
$\mathcal{A}_{lphaeta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]] -	$\frac{1}{2} \mathcal{A}_{\alpha\chi\beta} \ n^{\chi} - \frac{1}{2} \mathcal{A}_{\beta\chi\alpha} \ n^{\chi} - \frac{1}{3} \eta_{\alpha\beta} \mathcal{A}_{\chi\ \delta}^{\ \delta} \ n^{\chi} + \frac{1}{3} \mathcal{A}_{\chi\ \delta}^{\ \delta} \ n_{\alpha} n_{\beta} n^{\chi} + \frac{1}{2} \mathcal{A}_{\beta\chi\delta} \ n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \mathcal{A}_{\alpha\chi\delta} \ n_{\beta} n^{\chi} n^{\delta}$
$\mathcal{A}_{lphaeta\chi}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$\frac{1}{2} \mathcal{A}_{\alpha\beta\chi} + \frac{1}{4} \mathcal{A}_{\alpha\chi\beta} - \frac{3}{8} \eta_{\beta\chi} \mathcal{A}_{\alpha\ \delta}^{\ \delta} - \frac{1}{4} \mathcal{A}_{\beta\chi\alpha} + \frac{3}{8} \eta_{\alpha\chi} \mathcal{A}_{\beta\ \delta}^{\ \delta} - \frac{3}{8} \mathcal{A}_{\beta\ \delta}^{\ \delta} n_{\alpha} n_{\chi} + \frac{3}{8} \mathcal{A}_{\alpha\ \delta}^{\ \delta} n_{\beta} n_{\chi} + \frac{1}{4} \mathcal{A}_{\beta\chi\delta} n_{\alpha} n^{\delta} + \frac{1}{4} \mathcal{A}_{\beta\chi\delta} n_{\alpha} n^{\delta} + \frac{1}{4} \mathcal{A}_{\beta\chi\delta} n_{\alpha} n^{\delta} n^{$
		$\frac{1}{2} \mathcal{A}_{\beta\delta\chi} n_{\alpha} n^{\delta} + \frac{1}{4} \mathcal{A}_{\chi\delta\beta} n_{\alpha} n^{\delta} + \frac{3}{8} n_{\beta\chi} \mathcal{A}_{\delta \epsilon}^{ \epsilon} n_{\alpha} n^{\delta} - \frac{1}{4} \mathcal{A}_{\alpha\chi\delta} n_{\beta} n^{\delta} - \frac{1}{2} \mathcal{A}_{\alpha\delta\chi} n_{\beta} n^{\delta} - \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} n^{\delta} + \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} n^{\delta} + \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} n^{\delta} + \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} n^{\delta} + \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n^{\delta} + \frac{1}{4} \mathcal{A}_{\chi\delta\alpha} n^{\delta} + \frac{1}{8} n^$