```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: df=pd.read_csv("14_Iris.csv")
df
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

Ducu	COTAMMIS (COCAT	0 0014111113/1		
#	Column	Non-Null Count	Dtype	
0	Id	150 non-null	int64	
1	SepalLengthCm	150 non-null	float64	
2	SepalWidthCm	150 non-null	float64	
3	PetalLengthCm	150 non-null	float64	
4	PetalWidthCm	150 non-null	float64	
5	Species	150 non-null	object	
dtype	es: float64(4),	int64(1), object	t(1)	
memory usage: 7.2+ KB				

In [4]: df.describe()

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x26122843340>

In [7]: sns.displot(df['PetalWidthCm'])

Out[7]: <seaborn.axisgrid.FacetGrid at 0x26128914cd0>

In [8]: df1=df.drop(['Species'],axis=1)
df1

Out[8]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

```
In [9]: sns.heatmap(df1.corr())
```

Out[9]: <AxesSubplot:>


```
In [10]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

```
In [13]: y=df['PetalWidthCm']
    x=df1.drop(['PetalWidthCm','Id'],axis=1)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    print(x_train)
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm
24	4.8	3.4	1.9
45	4.8	3.0	1.4
74	6.4	2.9	4.3
5	5.4	3.9	1.7
53	5.5	2.3	4.0
• •	• • •	• • •	• • •
133	6.3	2.8	5.1
0	5.1	3.5	1.4
64	5.6	2.9	3.6
67	5.8	2.7	4.1
3	4.6	3.1	1.5

[105 rows x 3 columns]

```
In [14]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[14]: -0.09541859899382077

```
In [15]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff
```

Out[15]:

SepalLengthCm -0.181269 SepalWidthCm 0.154738 PetalLengthCm 0.498854

```
In [16]: prediction=model.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[16]: <matplotlib.collections.PathCollection at 0x2612916c730>


```
In [17]: model.score(x_test,y_test)
```

Out[17]: 0.9561579235297623

```
In [18]: from sklearn.linear_model import Ridge,Lasso
```

```
In [19]: rr = Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[19]: Ridge(alpha=10)

```
In [20]: rr.score(x_test,y_test)
```

Out[20]: 0.934689213881383

```
In [21]: la = Lasso(alpha=10)
    la.fit(x_train,y_train)
```

Out[21]: Lasso(alpha=10)

```
In [22]: la.score(x_test,y_test)
Out[22]: -0.00030502743828941803
In []:
```