Nutritional Label for HomeCredit ADS

Javae Elliott, Ashley Brill

Our Analysis

UIBackground, I/O

purpose, stated goals, trade-offs, data collection & selection 02

Implementation

data cleaning, preprocessing, validation of stated goals 03

Validation

validation of stated goals, Kaggle score

04

Outcomes

effectiveness across subpopulations

05

Summary

advice, stakeholders, appropriateness

Utilities

Assessed their
Logistic Regression
model as well as
their Light Gradient
Boosting Machine
model

Purpose

Predict Home Credit Group clients' repayment ability(Y:1,N:0) while acting as a 'How-to'

Trade-Offs

The naive is simple, understandable, has insignificant signals; The complex model is slow, less understandable, yet yields top-tier accuracy

Input, Output

Home Credit Group

Released sample of their datasets, sourced from themselves, Credit Bureau

Rules

00 00 00

The Home Credit team decided not to publish the true test values, limiting our research.

EXT_SOURCE#

Were named as fields for which they want to keep origin hidden

Our Focus

Age, Income, Gender, Income/Education/ **Housing Types**

Distributions of the Full Dataset

Distributions, cntd.

Correlation Heatmap

Indicators

These groups of negative correlations are because they're indicator fields from the same parent feature

Weak

Our naive model showed to pick up on these noisier signals

Stronger +/-

Some make direct sense, i.e., age & housing type

Implementation

Feature Engineering

Data Exploration

Polynomial

Domain Knowledge

Validation

recall: the creators want this to be a 'How-To'

Raise feature to exponent to create a new input variable

Variables added to dataset based on assumption

this could affect the models differently

The creator(s) showed their feature importance to validate their feature engineering

Kaggle evaluated the ADS using the ROC curve

Outcomes

Our View

We took a stance of belief in demographic parity and Rawlsian EO

Visuals

Prediction values across subgroups

AIF360

Comparing Mean Difference/Disparate Impact Across fields

Summary Plot

SHAP Summary Plot For the naive model

Dependence Plot(s)

Individual SHAP
Dependence Plots for interesting cases

. AIF360 Tools on Training Dataset

LogReg Predictions Across Subgroups

LogReg Predictions, cntd.

LGB Machine Predictions Across Subgroups

LGB Machine Predictions, cntd.

SHAP

Unemployed

Summary

As an ADS that is meant to also be a guide for Kaggle beginners, we want to be forgiving to how little data processing exists. But this guide displays a <u>strong lack of fairness</u> to subgroups.

The data was <u>inappropriate</u>, it skewed towards upper middle class, college educated, white women, an inaccurate representation of the population of individuals potentially needing a loan. It also uses poor privatization techniques.

The ADS bias is <u>high</u>, it inputted sensitive attributes to both models, despite no bias mitigation techniques.

Summary, cntd.

The ADS implementation is <u>risky but accurate</u>. Its use of domain knowledge features run the risk of the user's own biases/errors being caught as a signal, yet the ADS scored high on Kaggle with a top-tier score for accuracy for its LGBM model.

In no way are we comfortable with implementing this ADS in the industry. We suggest as improvements:

Adversarial Debiasing for the simpler model

Differentially private and representative data collection

