Projekt nr 2 Charakterystyki aerodynamiczne płata

W projekcie tym należy wyznaczyć dwie podstawowe symetryczne charakterystyki aerodynamiczne płata nośnego samolotu istotne do obliczeń osiągów samolotu:

- $Cx(\alpha)$ współczynnik oporu aerodynamicznego,
- Cz(α) współczynnik siły nośnej

jako funkcje kata natarcia płata α .

Wielkości te wyznaczyć należy wychodząc z danych profilu płata uzyskanych z badań tunelowych i wykorzystując zaproponowane dalej uproszczone metody obliczeniowe.

1. Geometria płata

Poprawne wykonanie obliczeń charakterystyk aerodynamicznych płata nośnego wymaga znajomości niektórych podstawowych wielkości geometrycznych płata, w szczególności (rys.2.1, przykład najbardziej popularnego obrysu trapezowego płata):

- rozpiętości płata b,
- cięciwy na osi symetrii samolotu (cięciwy przykadłubowej) c₀,
- cięciwy końcowej c_k,
- pola powierzchni płata S
- średniej cięciwy aerodynamicznej ca,
- zbieżności płata λ,
- wydłużenia geometrycznego Λ .

Wielkości te są na ogół zamieszczone w danych technicznych samolotu. Można je również odczytać z rysunku sylwetki samolotu w znanej skali oraz wyznaczyć z podanych dalej zależności.

Rys. 2.1

Wartość średniej cięciwy aerodynamicznej płata c_a oraz położenie początku (noska) średniej cięciwy aerodynamicznej względem początku cięciwy przykadłubowej x_N należy wyznaczyć z zależności (oznaczenia zmiennych pod całkami wg. rys. 2.1):

$$c_{a} = \frac{\int_{\frac{b}{2}}^{\frac{b}{2}} (c(y))^{2} dy}{\int_{\frac{b}{2}}^{\frac{b}{2}} c(y) \cdot x(y) dy}, \qquad x_{N} = \frac{\int_{\frac{b}{2}}^{\frac{b}{2}} c(y) \cdot x(y) dy}{\int_{\frac{b}{2}}^{\frac{b}{2}} c(y) dy}.$$
(2.1), (2.2)

Dla płata trapezowego wartości c_a oraz x_N można wyznaczyć z konstrukcji geometrycznej pokazanej na rys 2.1 lub z zależności [7]:

$$c_{a} = 2*c_{0}*(1+\lambda+\lambda^{2})/(3*(1+\lambda)), x_{N} = b*tg(v_{N})*(1+2*\lambda)/(6*(1+\lambda)). (2.3)$$

W powyższych wzorach $v_{x\,0}$ to kąt skosu krawędzi natarcia płata, zaś Λ oraz λ to odpowiednio wydłużenie i zbieżność, które wynoszą:

$$\Lambda = b^2/S$$
, $\lambda = c_k/c_0$. (2.4), (2.5)

Uwaga 1

Jeżeli płat samolotu ma bardziej złożony obrys, inny niż prostokątny lub trapezowy (por. płaty samolotów PZL P-7 i PZL P-11 lub Westland Lysander), jedynym sposobem poprawnego obliczenia wartości średniej cięciwy aerodynamicznej c_a i jej położenia x_N w płaszczyźnie (xy) jest obliczenie ich według zależności (2.1) i (2.2); całki występujące w licznikach tych zależności oblicza się analitycznie lub numerycznie przedziałami wynikającymi ze zmiany kształtu krawędzi natarcia i krawędzi spływu wzdłuż rozpiętości.

Uwaga 2

Dla płatów o obrysie eliptycznym lub zbliżonym do eliptycznego (np. Supermarine Spitfire Mk V) zbieżności nie wyznacza się. Średnia cięciwa aerodynamiczna płata eliptycznego i współrzędna jej punktu natarcia wynoszą:

$$c_a = \frac{8}{3} \cdot \frac{c_0}{\pi}, \qquad x_N = \frac{c_0}{2} \cdot \left(I - \frac{8}{3 \cdot \pi} \right) \tag{2.5a}$$

2. Charakterystyki profilu płata.

2.1. Zebranie danych dla charakterystyk profilu.

Posługując się danymi samolotu należy ustalić, jaki profil miał płat samolotu. Zwykle typ profilu jest podany w opisie technicznym samolotu. Jeżeli płat posiada profil zmienny wzdłuż rozpiętości (tzw. skręcenie aerodynamiczne płata), to w porozumieniu z prowadzącym projektowanie należy przyjąć do obliczeń jeden z profili

zakładając, że jest on niezmienny wzdłuż rozpiętości. W przypadku, gdy dane samolotu nic nie mówią o typie profilu płata lub gdy nie są dostępne dane profilu, wówczas w porozumieniu z prowadzącym należy do obliczeń przyjąć inny profil o właściwościach możliwie najbardziej zbliżonych do profilu oryginalnego. W obu tych przypadkach zaleca się przyjmować do obliczeń profil o gorszych własnościach: większym współczynniku oporu i momentu podłużnego oraz mniejszym $C_{z\,max}$. Musi to być profil, dla którego są dostępne charakterystyki aerodynamiczne dla trzech różnych liczb Reynoldsa [4], [8].

Następnie, posługując się danymi samolotu, należy obliczyć wartość liczby Reynoldsa odpowiadającej minimalnej prędkości lotu ustalonego V_{S1} w pobliżu ziem (tzw. prędkości przeciągnięcia):

$$Re_{1} = V_{S1} * c_{a} / v_{0}. {(2.6)}$$

Może się zdarzyć, iż dane samolotu nie zawierają wartości prędkości przeciągnięcia V_{S1} . Wówczas prędkość tę można oszacować w następujący sposób:

• z danych profilu wybranego do wyznaczania charakterystyk płata trzeba odczytać wartość $C_{z\,max}$ dla najmniejszej liczby Reynoldsa, dla której badano dany profil; zwykle są to $Re=2.8*10^6$, $Re=3*10^6$ lub $Re=3.1*10^6$;

 należy obliczyć prędkość lotu przy ziemi odpowiadającą maksymalnej wartości współczynnika siły nośnej według zależności wynikającej z równania równowagi sił na kierunku prostopadłym do predkości lotu:

$$V_{S1} = \sqrt{\frac{2 \cdot m \cdot g}{\rho_0 \cdot S \cdot C_{zmax}}}$$
 (2.6a)

Mając wartość Re dla minimalnej prędkości lotu ustalonego z danych profilu należy teraz wybrać te charakterystyki $Cx_{\infty}(\alpha_{\infty})$ i $Cz_{\infty}(\alpha_{\infty})$, które są najbliższe obliczonej wartości Re_1 (przykładowo, dla samolotów lekkich o masie startowej poniżej 2000 kg będą to charakterystyki dla $Re=3*10^6$) i przenieść do pomocniczej tabeli obliczeniowej (Tabela 2.1, wielkości w tabeli są przykładowe). Bardzo istotne jest, by charakterystyki profilu obejmowały <u>cały zakres</u> kątów natarcia α_{∞} od α_{∞_kryt-} aż do α_{∞_kryt-} Może się zdarzyć, że na wykresach źródłowych brak jest wartości współczynnika oporu Cx_{∞} dla kątów natarcia bliskich krytycznym. W takim przypadku należy odpowiednio ekstrapolować wykresy $Cx_{\infty}(\alpha_{\infty})$ do α_{∞_kryt-} i α_{∞_kryt+} . Pamiętać również należy o odczytaniu z wyników badań tunelowych wartości współczynnika momentu podłużnego profilu względem środka aerodynamicznego Cm_{SA} , położenia środka aerodynamicznego S.A. profilu $x_{S.A.}$ i z_{SA} oraz o obliczeniu bardzo istotnego w dalszych analizach parametru $a_{\infty}=dCz_{\infty}/d\alpha_{\infty}$.

<u>Uwaga 1.</u>

Jedynym racjonalnym sposobem obliczenia pochodnej $a_{\infty}=dCz_{\infty}/d\alpha \infty$ jest <u>aproksymacja liniowa</u> charakterystyki $Cz_{\infty}(\alpha \infty)$ w jej liniowym zakresie, to jest w zakresie kątów natarcia w przybliżeniu od $0.8*\alpha_{\infty}$ kryt- do $0.8*\alpha_{\infty}$ kryt-. Każdy arkusz kalkulacyjny jest wyposażony w funkcją wykonującą taką aproksymację, przykładowo aproksymację liniową $\mathbf{y}=\mathbf{a}^*\mathbf{x}+\mathbf{b}$ funkcji dyskretnej $\mathbf{y}(\mathbf{x})$ danej w \mathbf{n} punktach w pakiecie OpenOffice Calc wykonuje funkcja o nazwie REGLINP(parametry).

Uwaga 2.

Ze względu na właściwości algorytmów następujących dalej obliczeń aerodynamiki i osiągów samolotu jako zmienną niezależną przy odczytywaniu wartości współczynników aerodynamicznych i do obliczeń należy <u>przyjąć współczynnik</u> <u>siły nośnej Cz. nie zaś kąt natarcia α.</u> Ponadto zalecane jest, by przyrost Cz dla dodatniego zakresu tego współczynnika był nierównomierny, zagęszczony w pobliżu Cz=0 oraz w okolicach krytycznych kątów natarcia (por. Tabela 2.0).

Tabela 2.0 Zalecane wartości współczynnika siły nośnej

Lp.	Zakres wartości Cz	Przyrost ΔCz			
1	$Cz_{max} \geq Cz > 0.8 Cz_{max}$	0.1			
2	$0.8 \text{ Cz}_{\text{max}} \geq \text{Cz} > 0.6$	0.2			
3	$0.6 \ge Cz > 0.3$	0.1			
4	$0.3 \ge Cz > 0.1$	0.05			
5	$0.1 \ge Cz \ge 0.0$	0.02			

Tabela 2.1 Charakterystyki aerodynamiczne profilu NACA 23012

Profil NACA 23012 Dane wg "Theory of Wing Sections"											
α [stopnie]	-11.2	-7.4		16.3	17.5	położenie środka aerodynamicznego					
Re1= 3,000,000	Cz_{∞}	-0.8	-0.6		1.4	1.48	$\overline{X}_{S.A.}$	0.246			
	Cx_{∞}	0.0130	0.0108		0.0210	0.0340	$\overline{z}_{S.A.}$	-0.070			

Uwagi.

- 1. Wartość $C_{m S.A.} = -0.065$ jest stała dla kątów natarcia $-8.4 < \alpha < +15.3$.
- 2. Wartość $dCz/d\alpha = 6.18$ [1/rad], stała dla podanego wyżej zakresu katów natarcia.

Wartości Cz_{∞} , α_{∞} oraz Cx_{∞} odczytane z wykresów i zebrane w tabeli 2.1 przenosimy odpowiednio do tabeli 2.2. Tabela ta zawierać będzie wyniki obliczeń charakterystyk profilu, płata i całego samolotu.

Analiza charakterystyk aerodynamicznych profili lotniczych prowadzi do stwierdzenia, że dla klasycznych, typowych profili starszej generacji (np. serie cztero- i pięciocyfrowe NACA) przy prędkościach lotu dalekich od prędkości dźwięku (Ma<0.4) wartości współczynnika siły oporu Cx∞ wyraźnie zależą od liczby Reynoldsa i efekt ten należy uwzględnić.

2.2. Korekta współczynnika oporu profilu płata związana z liczbą Reynoldsa

Badania tunelowe wielu profili pokazały, że wyraźny wpływ Re na współczynnik oporu profilowego jest obserwowany szczególnie w zakresie małych kątów natarcia (otoczenie punktu Cz=0) do liczb Re równych lub większych niż $10*10^6$, a na ogół zanika w pobliżu Cz_{max} . Zważywszy, że samolot jest zwykle eksploatowany na kątach natarcia dalekich od krytycznych (dalekich od Cz_{max}) i przy liczbach Reynoldsa większych niż Re_1 , można do korekt Cx_{∞} zastosować następującą uproszczoną metodę:

oblicza się minimalną wartości współczynnika oporu aerodynamicznego profilu Cx_{min2} dla Cz₂= 0 (duże prędkości lotu) na podstawie znanej liczby Reynoldsa Re₁ i Cx_{min1} dla tej liczby stosując przybliżoną zależność:

$$C_{x \min 2} = C_{x \min 1} \cdot \left(\frac{\text{Re}_1}{10 \cdot 10^6}\right)^{0.11},$$
 (2.7)

przyjmując, że współczynniki oporu aerodynamicznego dla profilu płata dla Cz_{max} nie zależą od Re, poprawkę ΔCx_{Re} dla pośrednich wartości kątów natarcia pomiędzy α∞_{Cz=0} oraz α∞_{kryt-} i α∞_{kryt+} a tym samym dla pośrednich wartości współczynnika siły nośnej Cz, wyznacza się według liniowej zależności (ważnej dla dodatnich i ujemnych wartości Cz!):

$$\Delta Cx_{Re}(Cz) = (Cx_{min_2} - Cx_{min_1})*(1 - |Cz/Cz_{max}|);$$
(2.8)

(wartość poprawki ΔCx_{Re} jest zawsze ujemna!);

 ostatecznie wartości współczynników oporu analizowanego profilu płata dla całego zakresu kątów natarcia wynoszą:

$$Cx_{\infty}'(Cz_{\infty}) = Cx_{\infty}^{1} + \Delta Cx_{Re}.$$
 (2.9)

Skorygowane o wpływ liczby Reynoldsa wartości współczynnika oporu profilu Cx_{∞} ' umieszczamy w piątej kolumnie zbiorczej tabeli obliczeniowej 2.2.

Tabela 2.2Charakterystyki aerodynamiczne profilu, płata i samolotu

	Profil				Płat			Samolot								
L.p.	$C_{z\infty}$	$C_{x\infty}$	$lpha_{\infty}$	$C_{x\infty}$	$\alpha_{\rm i}$	$\alpha_{\mathfrak{p}}$	C_{xi}	C' _{xp}	C_{zH}	C_{xH}	C'_{x_szk}	C _x	ΔC_{zH}	C'z	$K = C'_z/C_x$	$E=C_{z}^{'3}/C_{x}^{2}$
1	$C_{Z\mathrm{max}}^-$															
2																
3																
4																
5																
6																
					·			·								
n-1																
n	$C_{Z \max}^+$				·											

3. Charakterystyki płata.

Doświadczalnie i teoretycznie można dowieść [1, 4, 7], że współczynnik oporu dla płata o skończonym wydłużeniu wyznaczyć można ze związków:

$$C'_{x} = C_{x} + \Delta C_{x} + C_{x}, \qquad (2.10)$$

$$C'_{x_p} = C_{x_o}' + \Delta C_{x_{tech}} + C_{x_i}, \qquad (2.10)$$

$$C_{x_i} = \frac{C_z^2}{\pi \cdot \Lambda} \cdot (1 + \delta) , \qquad (2.11)$$

gdzie:

ΔCx_{tech} - wzrost współczynnika oporu płata wywołany odchyleniami kształtu profilu na rzeczywistych skrzydłach samolotu od obrysu teoretycznego, chropowatością materiału, z jakiego wykonane są skrzydła, nitami itp.

 Cx_i - współczynnik oporu indukowanego,

- współczynnik korekcyjny (współczynnik Glauerta) uwzględniający m. in. δ wpływ obrysu płata na wartość współczynnika oporu indukowanego Cx_i.

Wartość współczynnika ΔCx_{tech} można oszacować jedynie w sposób przybliżony przyjmując na podstawie wyników badań eksperymentalnych wartość z podanego niżej przedziału [2, 3]:

$$\Delta Cx_{tech} = \begin{cases} 0.15*Cx_{\infty \, min} & dla \, samolotów \, o \, skrzydłach \, metalowych \, lub \, \\ & kompozytowych, \end{cases}$$

$$0.50*Cx_{\infty \, min} & dla \, samolotów \, o \, skrzydłach \, drewnianych \, krytych \, \\ & płótnem \, lub \, o \, konstrukcji \, mieszanej. \end{cases}$$

Oczywiście dla współczynnika siły nośnej płata takiego samego, jak dla profilu średni kat natarcia jest inny (większy) i wynosi:

$$\alpha_{p} = \alpha_{\infty} + \alpha_{i}, \qquad (2.12)$$

$$\alpha_i = \frac{C_z}{\pi \cdot \Lambda} \cdot (1 + \tau) , \qquad (2.13)$$

gdzie:

 α_i - indukowany kat natarcia,

τ - drugi współczynnik korekcyjny Glauerta uwzględniający m. in. wpływ obrysu płata na wartość współczynnika siły nośnej na płacie.

W obliczeniach wartość współczynnika siły nośnej przyjmujemy takie jak w obliczeniach współczynnika oporu profilu. (por. tab.2.2), czyli $Cz = Cz_{\infty}$.

Kąt natarcia we wzorach (2.12) i (2.13) wyrażony być musi w radianach.

Wartości współczynników δ i τ wyznaczymy na podstawie analizy wyników obliczeń współczynników siły nośnej i siły oporu płatów o różnych profilach oraz o obrysie prostokatnym i trapezowym przeprowadzonych dokładniejszą metodą opartą o wirowy model płata nośnego. Pokazać można [1, 7], że dla płatów o obrysie trapezowym i dowolnym profilu wartości współczynników δ i τ wyznaczyć można dość dokładnie z następujących wzorów:

$$\tau = \frac{\tau_1 \cdot \tau_2}{0.17} \tag{2.14}$$

gdzie:

$$\tau_1 = 0.023 \left(\frac{\Lambda}{a_{\infty}}\right)^3 - 0.103 \left(\frac{\Lambda}{a_{\infty}}\right)^2 + 0.25 \left(\frac{\Lambda}{a_{\infty}}\right)$$
 (2.15)

$$\tau_2 = -0.18 \cdot \lambda^5 + 1.52 \cdot \lambda^4 - 3.51 \cdot \lambda^3 + 3.5 \cdot \lambda^2 - 1.33 \cdot \lambda + 0.17 \tag{2.16}$$

oraz:

$$\delta = \frac{\delta_1 \cdot \delta_2 \cdot \delta_3}{0.048} \tag{2.17}$$

gdzie:

$$\delta_1 = 0.0537 \frac{\Lambda}{a_{\infty}} - 0.005 \tag{2.18}$$

$$\delta_2 = -0.43 \cdot \lambda^5 + 1.83 \cdot \lambda^4 - 3.06 \cdot \lambda^3 + 2.56 \cdot \lambda^2 - \lambda + 0.148 \tag{2.19}$$

$$\delta_3 = \left(-2.2 \cdot 10^{-7} \cdot \Lambda^3 + 10^{-7} \cdot \Lambda^2 + 1.6 \cdot 10^{-5}\right) \cdot \beta_{25}^{3} + 1 \tag{2.20}$$

W związkach (2.15) i (2.18) współczynnik $a_{\infty} = \frac{dC_z}{d\alpha}$ ma wymiar 1/rad, zaś β_{25} w (2.20) to kąt skosu linii utworzonej z punktów lezących na ½ cięciwy płata mierzony w stopniach.

<u>Uwaga:</u> wartości poprawek δ i τ <u>są zawsze dodatnie</u> i dla typowych płatów nie przekraczają wartości 0.2; dla płatów o obrysie eliptycznym $\delta = \tau = 0$.

Obliczenia wartości współczynników oporu płata oraz kątów natarcia płata wykonujemy posługując się tabelą obliczeniową (Tabela 2.2), zaś wyniki obliczeń nanosimy na wykres (rys. 2.2) porównując je z charakterystykami profilu.

<u>Uwaga</u>: jak łatwo zauważyć, opisane wyżej algorytmy obliczeniowe nie uwzględniają zmian minimalnej i maksymalnej wartości współczynnika siły nośnej wraz ze zmianą liczby Reynoldsa samolotu w porównani z badaniami tunelowymi; pominięto też niewielkie zmiany ekstremalnych wartości współczynnika siły nośnej wywołane skończonym wydłużeniem płata; zatem pokazane na rys. 2.2 spadki Cz_{max} (otrzymane z dokładniejszych obliczeń) na wykresach nie pojawią się w ogóle.

Rys. 2.2

4. Przypadki szczególne wyznaczania charakterystyk płata.

4.1 Dane z badań tunelowych tylko dla jednej liczby Reynoldsa

Zdarza się często, że charakterystyki profilu $Cx(\alpha)$ i $Cz(\alpha)$ publikowane są tylko dla jednej liczby Reynoldsa. Ponadto wykresy lub tabele wartości współczynników aerodynamicznych dane są nie dla profilu, ale dla prostokątnego płata o znanym wydłużeniu (zwykle Λ =5 lub Λ =6). Zazwyczaj sytuacja taka występuje w przypadku korzystania z bardzo starych materiałów źródłowych pochodzących sprzed 1939 roku. Pojawia się zatem problem przeliczenia wartości współczynników aerodynamicznych na inne wydłużenie i inną liczbę Reynoldsa. Doświadczenie pokazuje, że racjonalnym postępowaniem w takim przypadku jest przeliczenie charakterystyk na nowe wydłużenie posługując się związkami na opór indukowany i indukowany kąt natarcia wyprowadzonymi z teorii linii nośnej Prandtl'a-Glauerta oraz wykonanie uproszczonej korekty współczynnika oporu i wartości maksymalnego współczynnika siły nośnej według opisanej niżej metody.

a) przeliczenie na inne wydłużenie

Można łatwo wykazać, że różnice między współczynnikami oporu i kątami natarcia płatów o dwóch różnych wydłużeniach Λ_1 i Λ_2 dla tej samej wartości współczynnika siły nośnej Cz dane są zależnościami (kąt natarcia w radianach!):

$$Cx_2 - Cx_1 = (Cz^2/\pi)^* [(1 + \delta_2)/\Lambda_2 - (1 + \delta_1)/\Lambda_1],$$
 (2.22)

$$\alpha_2 - \alpha_1 = (Cz/\pi)^* [(1+\tau_2)/\Lambda_2 - (1+\tau_1)/\Lambda_1];$$
 (2.23)

Wartości współczynników Glauerta δ_1 , δ_2 , τ_1 , τ_2 (które zależą od geometrii płatów oraz nieznanej wartości współczynnika $a_{\infty} = (dCz/d\alpha)_{\infty}$) można w przybliżeniu przyjąć równe wartościom uzyskanym w sposób opisany wyżej w punkcie 3 przy założeniu $\Lambda/a_{\infty} = 1$.

b) wpływ Re na wartość Czmax

Poprawne oszacowanie wpływu zmiany liczby Reynoldsa na wartość Cz_{max} wymaga wykorzystania wyników obszernych badań tunelowych kilku serii profili. Sposób obliczeń można znaleźć np. w książce profesora Władysława Fiszdona "Mechanika Lotu", wydanie I z 1952 roku, tom I, punkt 2.11 str. 2/72 i następne. Jeżeli natomiast liczba Reynoldsa odpowiadająca prędkości przeciągnięcia V_{min} obliczona dla analizowanego samolotu i płata (zależność 2.5) jest zbliżona do tej, dla której był badany płat o znanych charakterystykach, to korektę Cz_{max} można pominąć, przyjmując $(Cz_{max})_{analizowany} = (Cz_{max})_{dany}$ oraz pomijając analizę wpływu skończonego wydłużenia i obrysu płata na Cz_{max} .

c) wpływ Re na wartość Cx

Do przeliczeń C_x można tu zastosować metodę analogiczna do opisanej wyżej w punkcie 2.2:

- obliczyć liczbę Reynoldsa Re₂ dla największej prędkości lotu, jaka osiąga samolot (jest to prędkość V_D dopuszczalna prędkość obliczeniowa lub V_{NE} prędkość nieprzekraczalna, nazywane nieprecyzyjnie w opisach samolotu prędkością nurkowania);
- minimalne wartości współczynnika oporu aerodynamicznego profilu płata danego (indeks 1)
 i analizowanego (indeks 2) są związane przybliżoną zależnością:

$$Cx_{\min_2} = Cx_{\min_1} * (Re_1/Re_2)^{0.11};$$
 (2.24)

 przyjmując, że współczynniki oporu aerodynamicznego dla profilu płata danego i analizowanego są dla Cz_{max} takie same, poprawkę ΔCx_{Re} obliczamy według liniowej zależności (ważnej dla dodatnich i ujemnych wartości Cz):

$$\Delta Cx_{Re}(Cz) = (Cx_{min 2} - Cx_{min 1})*(1 - |Cz/Cz_{max}|);$$
 (2.25)

(oczywiście wartość ΔCx_{Re} może być dodatnia lub ujemna, por. wzór (2.24))

ostatecznie wartości współczynników oporu analizowanego płata wynoszą:

$$Cx_2' = Cx_2 + \Delta Cx_{Re}$$
 (2.26)

gdzie Cx₂ obliczono z zależności (2.22).

Oczywiście tak wyznaczoną charakterystykę Cx_2 '(Cz) należy skorygować dodając składnik wynikający z tzw. oporu technicznego (punkt 3, wyznaczanie wartości ΔCx_{tech}).

d) korekta kąta natarcia

Kąt natarcia α_2 realizujący wartości współczynnika Cz płata danego i analizowanego obliczamy bezpośrednio z zależności (2.23).

Przykład wyniku przeliczania współczynnika oporu płata dla Re₂>Re₁ (zaczerpnięty z cytowanego wyżej podręcznika Mechaniki Lotu, Re₂ > Re₁) pokazano na rys. 2.3.

5. Współczynnik $a = \frac{dC_z}{d\alpha}$ dla płata.

Łatwo zauważyć analizując zależności (2.12) i (2.13), że opływ indukowany płata zmienia charakterystykę $Cz(\alpha)$ wpływając na ważną dla wielu analiz z zakresu mechaniki lotu i budowy samolotów pochodną

$$a = \frac{dC_z}{d\alpha}.$$

Wielkość tę należy wyznaczyć w dowolny sposób na podstawie obliczonej uprzednio dyskretnej zależności Cz(α) dla płata, przy czym do obliczeń należy wziąć pod uwagę tylko punkty z liniowego zakresu tej charakterystyki (patrz zalecenia w uwadze 1 na stronie 3 i rys. 2.4). Otrzymaną wartość należy porównać z wynikiem otrzymanym z zależności:

$$a = \frac{a_{\infty}}{1 + \frac{a_{\infty}}{\pi \cdot \Lambda} \cdot (1 + \tau)}.$$
(2.27)

Obie wartości winny być zbliżone z tolerancją ±10%.

Aproksymacji charakterystyki Cz(alfa) płata nośnego

Rys. 2.4

(***