```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#import warnings
#warnings.filterwarnings('ignore')

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: p
andas.util.testing is deprecated. Use the functions in the public API at pandas.testing i
```

import pandas.util.testing as tm

In [2]:

```
df = pd.read_csv('diabetes.csv')
```

In [3]:

df.head()

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

In [4]:

```
df.shape
```

Out[4]:

(768, 9)

The Diabetes dataset says where a person has diabetes or not based on various parameters. The dataset contains 9 variables out of which 8 are Independent variable and 1 dependent variable.

Independent Variables

- 1. Pregnancies: no of times pregnant.
- 2. Glucose: Plasma glucose conc. a 2 hrs in an oral glucose tolerance test.
- 3. BP: Diastolic Blood pressure.
- 4. Skin Thickness: Triceps skin fold thickness.
- 5. Insulin: 2-hr serum insulin.
- 6. BMI: Body mass Index.
- 7. DiabetesPF: Diabetes pedigree fun.
- 8. Age: Age in yrs

Dependent Variable

1. Outcome: 0 or 1

In [5]:

```
df.info() # Data info
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries. 0 to 767

```
.....goinaon. ... onoiteo, o oo ...
Data columns (total 9 columns):
                     Non-Null Count Dtype
# Column
____
   Pregnancies
                             768 non-null int64
0
                             768 non-null
    Glucose
                             768 non-null int64
768 non-null int64
    BloodPressure
    SkinThickness
    Insulin
                             768 non-null int64
   BMI
 5
                             768 non-null float64
 6
   DiabetesPedigreeFunction 768 non-null float64
7
                             768 non-null int64
   Age
8 Outcome
                             768 non-null int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

Dataset types

In [6]:

```
df.dtypes # Data types
Out[6]:
Pregnancies
                              int64
Glucose
                              int64
BloodPressure
                              int64
SkinThickness
                              int64
Insulin
                              int64
BMI
                           float64
DiabetesPedigreeFunction float64
                             int64
Outcome
                              int64
dtype: object
```

The data types is correct for all the variables.

Description of the dataset

```
In [7]:
df.describe()
```

Out[7]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000
4								Þ

From the description, we can see that the count of all the variables are 768 and hence we can say that there are no missing data present.

In [8]:

To check for missing values in dataset

Out[8]:	
Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	

df.isnull().sum()

From this, we can say that there are no null values present.

Analysing Missing data or data with '0' values

In [9]:

df.head(20)

Out[9]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1
10	4	110	92	0	0	37.6	0.191	30	0
11	10	168	74	0	0	38.0	0.537	34	1
12	10	139	80	0	0	27.1	1.441	57	0
13	1	189	60	23	846	30.1	0.398	59	1
14	5	166	72	19	175	25.8	0.587	51	1
15	7	100	0	0	0	30.0	0.484	32	1
16	0	118	84	47	230	45.8	0.551	31	1
17	7	107	74	0	0	29.6	0.254	31	1
18	1	103	30	38	83	43.3	0.183	33	0
19	1	115	70	30	96	34.6	0.529	32	1

Missing Data:

- 1. The result shows that there are no null values / Missing data in the datset.
- 2. As per the dataset, we can say that '0' values does not make sense for few columns presented below:
 - a. Diastolic BP
 - b. Body Mass Index

- c. Plasma glucose concentration
- d. Triceps skinfold thickness
- e. 2-hr serum insulin
- 3. This means that these columns having a value of zero indicates an invalid or missing value which needs to be handled

Steps for handling missing values

- 1. First, replace the 0 values by NaN for the respective columns so that the no of missing values can be counted.
- 2. Replace the NaN value by median.
- 3. Although in this dataset, both mean and median have similar range of values except for Insulin variable, I choose median for better measure.

In [10]:

```
# Replace 0 values by NaN
df[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']] = df[['Glucose', 'Bl
oodPressure', 'SkinThickness', 'Insulin', 'BMI']].replace(0, np.nan)
```

In [11]:

df.head(20)

Out[11]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148.0	72.0	35.0	NaN	33.6	0.627	50	1
1	1	85.0	66.0	29.0	NaN	26.6	0.351	31	0
2	8	183.0	64.0	NaN	NaN	23.3	0.672	32	1
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
5	5	116.0	74.0	NaN	NaN	25.6	0.201	30	0
6	3	78.0	50.0	32.0	88.0	31.0	0.248	26	1
7	10	115.0	NaN	NaN	NaN	35.3	0.134	29	0
8	2	197.0	70.0	45.0	543.0	30.5	0.158	53	1
9	8	125.0	96.0	NaN	NaN	NaN	0.232	54	1
10	4	110.0	92.0	NaN	NaN	37.6	0.191	30	0
11	10	168.0	74.0	NaN	NaN	38.0	0.537	34	1
12	10	139.0	80.0	NaN	NaN	27.1	1.441	57	0
13	1	189.0	60.0	23.0	846.0	30.1	0.398	59	1
14	5	166.0	72.0	19.0	175.0	25.8	0.587	51	1
15	7	100.0	NaN	NaN	NaN	30.0	0.484	32	1
16	0	118.0	84.0	47.0	230.0	45.8	0.551	31	1
17	7	107.0	74.0	NaN	NaN	29.6	0.254	31	1
18	1	103.0	30.0	38.0	83.0	43.3	0.183	33	0
19	1	115.0	70.0	30.0	96.0	34.6	0.529	32	1

In [12]:

```
# Find the no of missing values in the dataset
df.isnull().sum()
```

```
0
Pregnancies
Glucose
                                5
BloodPressure
                               35
SkinThickness
                              227
                              374
Insulin
BMI
                               11
DiabetesPedigreeFunction
                               0
                                0
Age
                                0
Outcome
dtype: int64
```

In [13]:

```
# Finding % of missing values for skin Thickness and Insulin
st_percent = (df['SkinThickness'].isnull().sum() / len(df))*100
Insulin_percent = (df['Insulin'].isnull().sum() / len(df))*100
print(st_percent, Insulin_percent)
```

29.557291666666668 48.69791666666667

From above analysis, we can observe that Skin Thickness and Insulin has a percentage of about 30% and 49% of missing values. These variables can be neglected but these also produces a major contribution to the dataset and hence the missing values are Imputed.

In [14]:

```
# Replacing NaN to median value to explore dataset

columns = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']

for col in columns:
    df[col].fillna(df[col].median(), inplace = True)
```

In [15]:

df.head(25)

Out[15]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148.0	72.0	35.0	125.0	33.6	0.627	50	1
1	1	85.0	66.0	29.0	125.0	26.6	0.351	31	0
2	8	183.0	64.0	29.0	125.0	23.3	0.672	32	1
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
5	5	116.0	74.0	29.0	125.0	25.6	0.201	30	0
6	3	78.0	50.0	32.0	88.0	31.0	0.248	26	1
7	10	115.0	72.0	29.0	125.0	35.3	0.134	29	0
8	2	197.0	70.0	45.0	543.0	30.5	0.158	53	1
9	8	125.0	96.0	29.0	125.0	32.3	0.232	54	1
10	4	110.0	92.0	29.0	125.0	37.6	0.191	30	0
11	10	168.0	74.0	29.0	125.0	38.0	0.537	34	1
12	10	139.0	80.0	29.0	125.0	27.1	1.441	57	0
13	1	189.0	60.0	23.0	846.0	30.1	0.398	59	1
14	5	166.0	72.0	19.0	175.0	25.8	0.587	51	1
15	7	100.0	72.0	29.0	125.0	30.0	0.484	32	1
16	0	118.0	84.0	47.0	230.0	45.8	0.551	31	1
17	7	107.0	74.0	29.0	125.0	29.6	0.254	31	1
									-

18	1 Pregnancies	103.0 Glucose	30.0 BloodPressure	38.0 SkinThickness	83.0 Insulin		0.183 DiabetesPedigreeFunction	33 Age	Outcome
19	1	115.0	70.0	30.0	96.0	34.6	0.529	32	1
20	3	126.0	88.0	41.0	235.0	39.3	0.704	27	0
21	8	99.0	84.0	29.0	125.0	35.4	0.388	50	0
22	7	196.0	90.0	29.0	125.0	39.8	0.451	41	1
23	9	119.0	80.0	35.0	125.0	29.0	0.263	29	1
24	11	143.0	94.0	33.0	146.0	36.6	0.254	51	1

Visualization

How much percentage of people are diabetic and healthy?

```
In [16]:
```

```
# Outcome analyis
# To get the number of Diabetic and healthy persons
df.groupby('Outcome').size()
```

Out[16]:

Outcome 0 500 1 268 dtype: int64

In [17]:

```
%matplotlib inline
# Plotting frequency of the outcome
labels = 'Diabetic', 'Healthy'
df.Outcome.value_counts().plot(kind = 'pie', labels = labels, shadow = True, autopct = '%1.1f%%')
plt.show()
```


From Outcome plot, we can easily observe that around 65.1% people are diabetic and 34.9% are healthy.

Analysis by Histogram

```
In [18]:
```

```
# Histogram

df.hist(figsize = (15, 10))
plt.show()
```

200

BloodPressure

From the histogram analysis, we can observe that:

- 1. Age, DiabetesPedegreeFunction and Preganancies are rightly skewed.
- 2. Glucose is normally distributed.
- 3. The skew data has to be converted to normal distribution for ML model, since in skew data, the tail region is treated as outliers and it may affect the model after removal. Tranformation like log transformation can be used.

In [19]:

Distplot

```
fig1, ax1 = plt.subplots(4, 2, figsize = (16, 16))
sns.distplot(df['Pregnancies'], ax = ax1[0][0])
sns.distplot(df['Glucose'], ax = ax1[0][1])
sns.distplot(df['BloodPressure'], ax = ax1[1][0])
sns.distplot(df['SkinThickness'], ax = ax1[1][1])
sns.distplot(df['Insulin'], ax = ax1[2][0])
sns.distplot(df['BMI'], ax = ax1[2][1])
sns.distplot(df['DiabetesPedigreeFunction'], ax = ax1[3][0])
sns.distplot(df['Age'], ax = ax1[3][1])
plt.show()
0.30
                                                      0.014
0.25
                                                      0.012
                                                      0.010
0.20
                                                      0.008
0.15
                                                      0.006
0.10
                                                      0.004
0.05
                                                      0.002
0.00
                                                      0.000
                                     15
                                                                                               200
                                                                           100
                                                                              Glucose
                       Pregnancies
0.05
                                                      0.175
0.04
                                                      0.150
```


From the above distribution, we can observe that the variables Glucose, BloodPressure, BMI are normally distributes while Pregnancies, Age, Insulin and DiabetesPedigreeFunction are rightly skewed.

Outcome analysis by Age

Age Outcome Percentage Diabetic

```
In [20]:
print(df['Age'].max(), df['Age'].min())
81 21
In [21]:
age 24 = len(df[(df['Age']<=24) & (df['Outcome'] == 1)])
age_{25_30} = len(df[(df['Age'].between(25, 30)) & (df['Outcome'] == 1)])
age 31 40 = len(df[(df['Age'].between(31, 40)) & (df['Outcome'] == 1)])
age 41 50 = len(df[(df['Age']].between(41, 50)) & (df['Outcome'] == 1)])
age 51 = len(df[(df['Age']>=51) & (df['Outcome'] == 1)])
In [22]:
df age = {'Age' : ['<=24', '25-30', '31-40', '41-50', '>=51'], 'Outcome' : [age 24, age
25_30, age_31_40, age_41_50, age_51]}
df age = pd.DataFrame(df age, columns = ['Age', 'Outcome'])
In [23]:
df age['Percentage Diabetic'] = df age['Outcome'] / df['Outcome'].sum()*100
In [24]:
df age
Out[24]:
```

0	∕ ∓24 Age	Outcome 31	Percentage Diabetic
1	25-30	59	22.014925
2	31-40	76	28.358209
3	41-50	64	23.880597
4	>=51	38	14.179104

In [47]:

```
df_age.plot.bar('Age', 'Percentage Diabetic')
plt.show()
```


From the age analysis we can observe following things:

- 1. The total no of diabetic patients ar 34.8% out of total outcome count. So, the above analysis is done for this 34.8%.
- 2. The age analysis predicts that there are about 28% of Patients with Diabetic in the age range of 31-40, while ages below 24 and above 38 takes least percentage with 11.5% and 14.17%

Analysis with Pregnancies

In [25]:

```
sns.boxplot(df['Outcome'], df['Pregnancies'])
plt.show()
```


In [26]:

```
sns.barplot(df['Outcome'], df['Pregnancies'])
plt.show()
```

I

From both BoxPlot and BarPlot, we can observe that patient with Pregnancies have higher chances of getting Diabetic

Analysis of Glucose variable

In [27]:

```
sns.boxplot(df['Outcome'], df['Glucose'])
plt.show()
```


- 1. Here, the Glucose variable with 0 outcome has some outliers present.
- 2. The Glucose variable with 1 outcome is perfectly distributed without outliers.

Analysis of BP variable

In [28]:

```
sns.boxplot(df['Outcome'], df['BloodPressure'])
plt.show()
```


There are a lot of outliers in BloodPressure for both outcomes.

Analysis of Insulin Parameter

```
In [29]:
```

```
sns.boxplot(df['Outcome'], df['Insulin'])
plt.show()
```


Insulin parameter also has lot and lot of outlier values.

Analysis of BMI

```
In [30]:
```

```
sns.boxplot(df['Outcome'], df['BMI'])
plt.show()
```


Analysis of Diabetes Pedigree Function Parameter

```
In [31]:
```

```
sns.boxplot(df['Outcome'], df['DiabetesPedigreeFunction'])
plt.show()
```


Co-relation matrix

In [32]:

df.corr()

Out[32]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
Pregnancies	1.000000	0.128213	0.208615	0.081770	0.025047	0.021559	-0.03352
Glucose	0.128213	1.000000	0.218937	0.192615	0.419451	0.231049	0.13732
BloodPressure	0.208615	0.218937	1.000000	0.191892	0.045363	0.281257	-0.00237
SkinThickness	0.081770	0.192615	0.191892	1.000000	0.155610	0.543205	0.10218
Insulin	0.025047	0.419451	0.045363	0.155610	1.000000	0.180241	0.12650
ВМІ	0.021559	0.231049	0.281257	0.543205	0.180241	1.000000	0.15343
DiabetesPedigreeFunction	-0.033523	0.137327	-0.002378	0.102188	0.126503	0.153438	1.00000
Age	0.544341	0.266909	0.324915	0.126107	0.097101	0.025597	0.03356
Outcome	0.221898	0.492782	0.165723	0.214873	0.203790	0.312038	0.17384
4							Þ

In [33]:

```
# Co-relation matrix
plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True, fmt = '.0%')
plt.show()
```

- 1.0

- 0.8

- 0.6

- 0.4

The correlation matrix gives the relation between the variables.

- 1. There is a 54% correlation between SkinThickness and BMI which implies that as SkinThinkness increases, BMI increases by 54% and vice-versa.
- 2. In the dataset there is very less negative correlation between the varaibles.

Conclusion

- 1. The dataset is a classification problem to find out whether the person is diabetic or not based on various parameters/varaibles.
- 2. The dataset is checked with data types, null values and description.
- 3. The null values are treated with median in the dataset.
- 4. The percentage of diabetic people are calculated based on age range.
- 5. Outliers for each variables are analysed. Skewness is analysed for each variable.
- 6. Correlation matrix analysis is done.

In [33]: