Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 4 по вычислительной математике АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ Вариант N213

Группа: Р3116

Выполнил:

Сиразетдинов А.Н.

Проверил:

Малышева Т.А.

Г. Санкт-Петербург

Оглавление

Цель работы	3
Рабочие формулы метода	
Вычислительная часть	
Задание	5
Таблица табулирования	5
Линейная аппроксимация	
Квадратичная аппроксимация	6
Вывод	7
График	7
Листинг программы	8
Результаты работы программы	
Вывод	

Цель работы

Найти функцию, являющуюся наилучшим	приближением	заданной	табличной	функции	по методу
наименьших квадратов					

Рабочие формулы метода

Линейная аппроксимация

Рассмотрим в качестве эмпирической формулы линейную функцию: $\varphi(x,a,b)=ax+b$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a,b) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

Для нахождения a и b необходимо найти минимум функции S(a,b).

Необходимое условие существования минимума для функции S:

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases} \quad \text{или} \quad \begin{cases} 2 \sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \\ 2 \sum_{i=1}^{n} (ax_i + b - y_i) = 0 \end{cases}$$

Упростим полученную систему:

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ

Рассмотрим в качестве эмпирической формулы квадратичную функцию:

$$\varphi(x, a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \to min$$

Приравниваем к нулю частные производные *S* по неизвестным параметрам, получаем систему линейных уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n a_2x_i^2 + a_1x_i + a_0 - y_i = 0 \\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_2x_i^2 + a_1x_i + a_0 - y_i)x_i = 0 \\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^n (a_2x_i^2 + a_1x_i + a_0 - y_i)x_i^2 = 0 \end{cases} \begin{cases} a_0n + a_1\sum_{i=1}^n x_i + a_2\sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0\sum_{i=1}^n x_i + a_1\sum_{i=1}^n x_i^2 + a_2\sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0\sum_{i=1}^n x_i^2 + a_1\sum_{i=1}^n x_i^3 + a_2\sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

Аппроксимация с помощью других функций

Вид функции	Табличный Х	Табличный Ү
Степенная	Ln X	Ln Y
Экспоненциальная	X	Ln Y
Логарифмическая	Ln X	Y

Вычислительная часть

Задание

	λ 12	
13	$y = \frac{31x}{x^4 + 13}$	$x \in [0,4]$ $h = 0,4$

Таблица табулирования

i	1	2	3	4	5	6	7	8	9	10	11
Х	0,00	0,40	0,80	1,20	1,60	2,00	2,40	2,80	3,20	3,60	4,00
У	0,00	0,95	1,85	2,47	2,54	2,14	1,61	1,17	0,84	0,62	0,46

Линейная аппроксимация

$$\varphi(x) = a + bx$$

$$SX = 22$$

$$SXX = 61,6$$

$$SY = 14,64$$

$$SXY = 27,044$$

$$\begin{cases} \text{na} + \text{SX} * \text{b} = \text{SY} \\ \text{SX} * \text{a} + \text{SXX} * \text{b} = \text{SXY} \end{cases} \begin{cases} 11\text{a} + 22\text{b} = 14,64 \\ 22\text{a} + 61,6\text{b} = 27,044 \end{cases}$$

$$\Delta = SXX * n - SX * SX = 193,6$$

$$\Delta_1 = SXY * n - SX * SY = -24,593$$

$$\Delta_2 = SXX * SY - SX * SXY = 306,851$$

$$a = \frac{\Delta_1}{\Delta} = -0,127$$

$$b = \frac{\Delta_2}{\Delta} = 1,585$$

$$\varphi(x) = -0.127x + 1.585$$

i	1	2	3	4	5	6	7	8	9	10	11
Х	0,00	0,40	0,80	1,20	1,60	2,00	2,40	2,80	3,20	3,60	4,00
у	0,00	0,95	1,85	2,47	2,54	2,14	1,61	1,17	0,84	0,62	0,46
phi	1,6	1,5	1,5	1,4	1,4	1,3	1,3	1,2	1,2	1,1	1,1
(phi-											
y)^2	2,51	0,34	0,13	1,07	1,33	0,65	0,11	0,00	0,11	0,26	0,38

$$\sigma = \sqrt{\frac{\sum \varphi(x) - y}{n}} = 0,793$$

Квадратичная аппроксимация

$$\varphi(x) = a + a_1 x + a_2 x^2$$

SX	22,00
SXX	61,6
SX^3	193,6
SX^4	648,525
SY	14,64
SXY	27,044
SXXY	62,341

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

По методу Крамера:

$$\Delta = \begin{array}{cccc} 11 & 22 & 61.6 \\ \Delta = 22 & 61.6 & 193,6 = 4252,424 \\ 61.6 & 193,6 & 648,525 \end{array}$$

$$\Delta_1 = \begin{array}{cccc} 14,64 & 22 & 61.6 \\ \Delta_2 = 27,044 & 61.6 & 193,6 & = 1768,909 \\ 62,341 & 193,6 & 648,525 \end{array}$$

$$\Delta_2 = \begin{array}{cccc} 11 & 14,64 & 61.6 \\ 22 & 27,044 & 193,6 & = 7745,054 \\ 61.6 & 62,341 & 648,525 \end{array}$$

$$\Delta_3 = \begin{array}{cccc} 11 & 22 & 14.64 \\ 22 & 61.6 & 27,044 = -2071,326 \\ 61.6 & 193.6 & 62,341 \end{array}$$

$$a_0 = \frac{\Delta_1}{\Delta} = 0,416$$

$$a_1 = \frac{\Delta_2}{\Lambda} = 1,821$$

$$a_2 = \frac{\Delta_3}{\Lambda} = -0.487$$

$$\varphi(x) = 0.416 + 1.821x - 0.487x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Х	0,00	0,40	0,80	1,20	1,60	2,00	2,40	2,80	3,20	3,60	4,00
у	0,00	0,95	1,85	2,47	2,54	2,14	1,61	1,17	0,84	0,62	0,46
phi	0,4	1,1	1,6	1,9	2,1	2,1	2	1,7	1,3	0,7	-0,1
(phi-											
y)^2	0,17	0,01	0,08	0,32	0,21	0,00	0,14	0,28	0,17	0,00	0,31

$$\sigma = \sqrt{\frac{\sum \varphi(x) - y}{n}} = 0.393$$

Вывод

Среднеквадратичное отклонение линейной аппроксимации: 0,793

Среднеквадратичное отклонение квадратичной аппроксимации: 0,393

Квадратичная аппроксимация дает наилучшее приближение

График

Листинг программы

```
def solve(self, file) -> Callable[[float], float]:
    SX = sum([p.x for p in self.table])
    SX2 = sum([p.x**2 for p in self.table])
    SX3 = sum([p.x**3 for p in self.table])
    SX4 = sum([p.x**4 for p in self.table])
    SY = sum([p.x ** p.y for p in self.table])
    SXY = sum([p.x * p.y for p in self.table])
    SX2Y = sum([p.x**2 * p.y for p in self.table])

x = np.array([
    [self.n, SX, SX2],
    [sX2, SX3, SX4]
])

y = np.array([
    SY,
    SXY,
    SXY
])

a = np.linalg.solve(x, y)

self.func = lambda x: a[0] + a[1] * x + a[2] * x**2
    self.c, self.b, self.a = a
    self.report(file=file)
    return self.func
```

Результаты работы программы

```
Введите название файла input.txt
 Вы хотите выводить данные в файл? y/n n
| 1 | -3.000 | -66.929 | -128.098 | -61.169 |

| 2 | -2.000 | 4.118 | -137.401 | -141.519 |

| 3 | -1.000 | -7.405 | -146.705 | -139.300 |

| 4 | 0.000 | -10.000 | -156.008 | -146.008 |

| 5 | 1.000 | -23.568 | -165.312 | -141.744 |
 Коэффициент детерминации: 0.01
 Точность аппроксимации недостаточна
 Коэффициент корреляции Пирсона: -0.11
  N | X | Y | P | e |
0 | -4.680 | -659.441 | -469.742 | 49.699 |
1 | -3.000 | -66.929 | -163.513 | -96.584 |
2 | -2.000 | 4.118 | -8.610 | -12.728 |
1 | -3.08 | -7.685 | 58.685 | 56.470 |
```

	Вь	Выбор аппроксимирующей функции															
Вид функции														delta		R^2	
					-156.008				·+-			304189.677					
ax^2 + bx + c			539		-49.843		46	.687				28094.248		59.260		0.909	
		0.6	83		-39.514		-55			43.613		27817.003		58.967		0.910	
ax^3 +bx^2 +cx^1 +dx^0												27817.003		58.967		0.910	
ax^4 +bx^3 +cx^2 +dx^1 +ex^0												401.143		7.081		0.999	
ax^5 +bx^4 +cx^3 +dx^2 +ex^1 +fx^0												0.000		0.000		1.000	
x^6 +bx^5 +cx^4 +dx^3 +ex^2 +fx^1 +gx^0												0.000		0.000		1.000	

Вывод

В ходе выполнения лабораторной работы была выполнена аппроксимация функции с использованием линейного, квадратичного, экспоненциального и логарифмического приближений. Также был реализован скрипт, которые реализует МНК и строит графики данных функций и аппроксимаций