APELLIDOS: __

NOMBRE:

Matemáticas/ Ingeniería Informática-Matemáticas

Estructuras Algebraicas Convocatoria ordinaria, 19 de enero de 2022

DNI/NIE:_____ GRUPO: 130 / 726

DURACIÓN DEL EXAMEN: 2 HORAS Y 30 MINUTOS

Ejercicio 1. (3 puntos) Recordamos que la acción de un grupo G sobre un conjunto Ω se dice transitiva si ésta define una única órbita.	
a) Encuentra el número $ \mathrm{Syl}_5(S_5) $ de 5-subgrupos de Sylow del grupo simétrico S_5 .	
$ S_5 = 5! = 24.5$	
Syl5(Sg) = 1 (mod 5) => Syl5(Sg) = 1 0 6 5 11 6 16) => Syl5(S5) = 1	0
Syl 5 (Sg) divide a 24	

Como P_= < (1,2,3,4,5)) y P_= < (2,1,3,4,5) son dos 5-subgrupos

distintos, deducimos que | Syl 5(S5) = 6.

b) Define una acción de S_5 en $\mathrm{Syl}_5(S_5)$ que sea transitiva y describe el núcleo de esa acción.

Estructuras Algebraicas

$$S_5 \times Syl_5(S_5) \longrightarrow Syl_5(S_5)$$

 $(\sigma, P) \longmapsto \sigma \circ P := \sigma P \sigma - 1$

· Es realmente una acción

a)
$$(\sigma_1 \cdot \sigma_2) \circ P = \sigma_1 \sigma_2 P(\sigma_1 \sigma_2)^{-1} = \sigma_1 (\sigma_2 P \sigma_2^{-1}) \sigma_1^{-1} = \sigma_1 (\sigma_2 P \sigma_$$

b) 10P=1.P.1=P

- · Es transitiva porque los p-grupos de Sylox son todos conjugados.
- · Nuicleo de la acción (: S5 +> Big(Syl5) = S6 O -> C; C(E) = OPO-1

$$\begin{aligned} \ker f &= \left\{ \sigma \in S_5 \middle| f_{=} id \right\} = \left\{ \sigma \in S_5 \middle| \sigma P \sigma^{-1} = P \right. \forall P \in Syl_5 \right\} = \\ &= \left\{ \sigma \in S_5 \middle| \sigma \in N_{S_5}(P), \forall P \in Syl_5 \right\} = \left(N_{S_5}(P) \right. \\ &= \left\{ P \in Syl_5(S_5) \right\}. \end{aligned}$$

OBSERVACIONES:

4) Aunque no se requiere esto para alcanzar la ma'xima nota, de hecho Kerp={13, porque Kerp \(S_{5} \Rightarrow \text{Kerp} = \bigg\{\frac{12}{85}\gamma\text{guipo alt}\)

· Kerp=55 >> NS-(P)=5 tPESyl >> P=5 tPESyl, lo cual es obviamente falso.

· ker(=As \$\rightarrow As \le Ns_5(P). Imposible pues |As |= 60 y |Ns_6(P) |= 20 (ver parte c).
2) Alternationmente, la acción puede definirse como:

(O, P) -> P - 5-1 P. 0.

- c) Dado $P \in \mathrm{Syl}_5(\mathsf{S}_5)$, demuestra que $\mathbf{N}_{\mathsf{S}_5}(P) = PH$ con $H \leq \mathsf{S}_5$ tal que $P \cap H = 1$.
- 1) Emperamos calculando | NS5(P) | usando el hecho de que la acción trene sólo 1 orbita. La formula de clares de:

$$6 = |Syl_5(P)| = |O(P)| = \frac{|S_5|}{|Stabp|} = \frac{5!}{|Stabp|} \Rightarrow |Stabp| = \frac{5!}{6} = 20 = 5.2^2$$

Claramente, Stab={OESs/OPO-=P3=Ns(P)=> |Ns(P)|=5.22

2) Ahora calcularnos el número no de 5-subo de Sylox de NS5 (P).

$$M_5 = 1 \pmod{5} \Rightarrow N_5 = 1, 6, \frac{1}{5} \Rightarrow N_5 = 1$$

- 3) Claramente P < Ns(P) > Pes el <u>Unico</u> 5-grupo de Sylox de Ns(P) > > P a Ns(P) (i.e. es un subgrupo normal).
- 4) Sea H un 2-suly de Sylow de Ns, (P), entonces 1H1=4 >

 PNH=1 (pues IPNH) divide a IPI=5 y a IH1=4).
- 5) Finalmente, como Panss(P) y PAH=1> PH es un subgrupo de Ns, (H) de orden 5-4=20> PH=Ns,(P)

Ejercicio 2. (2 puntos) Razona si cada uno de los enunciados siguientes es verdadero o falso, aportando una prueba o un contraejemplo según corresponda.

- a) Todo grupo de orden 45 es cíclico.
- b) En un dominio de ideales principales un elemento irreducible genera un ideal primo.
- a) Falso $G = C_3 \times C_3 \times C_5$ es de orden 45 pero no es ailico, pues el maiximo orden que un elemento de G puede alcanzar es $3.5 = 15 \neq 45$.

 b) Sea A un amillo principal y peA un elemento irreducible. Tenemos que ver que $xy \in (p) \Rightarrow x \in (p)$ o $y \in (p)$. Supongamos que $x \notin (p)$ y considerensos el ideal T = (x, p). Como A es principal, T = (x, p) = (d), para algun $d \in A \Rightarrow p \in (d) \Rightarrow P = Sd$, para algun $S \in A \Rightarrow \binom{i}{i} S \in A^* = \mathcal{U}(A)$, (i.e. S esumidad) $\binom{i}{i} d \in A^* = \mathcal{U}(A)$, (i.e. S esumidad)

 $\Rightarrow Si \text{ occurre } i) \Rightarrow I=(x,p)=(d)=(sis.d)=(sd)=(p) \Rightarrow x \in (p). \text{ Controliccion.}$ $\Rightarrow Si \text{ occurre } ii) \Rightarrow 1=d! d \in (d)=I=(x,p) \Rightarrow 1=dx+\beta P, \forall x,\beta \in A, \Rightarrow$ $\Rightarrow y=dxy+\beta yP \Rightarrow y \in (p).$ $\in (p) \quad \in (p)$

Hemos probado que six (P) entonces y E (P). C.Q.D