112-1 Discrete Mathematics Charpter 2-4~2-6

姓名:許嘉隆 學號:412770116

chap2-4 ex2 , 10 ,12 , 16

2. *a*₈ ?

a)
$$2^7 = 128$$

c)
$$1 + (-1)^8 = 2$$

d)
$$-(-2)^8 = -256$$

10. $a_0 \sim a_5$?

a)
$$a_n = -2a_{n-1}$$
, $a_0 = -1$

$$a_1 = 2$$

$$a_2 = -4$$

$$a_3 = 8$$

$$a_4 = -16$$

$$a_5 = 32$$

b)
$$a_n = a_{n-1} - a_{n-2}$$
, $a_0 = 2$, $a_1 = -1$

$$a_2 = -1 - (2) = -3$$

$$a_3 = -3 - (-1) = -2$$

$$a_4 = -2 - (-3) = 1$$

$$a_5 = 1 - (-2) = 3$$

c)
$$a_n = 3a_{n-1}^2$$
, $a_0 = 1$

$$a_1 = 3$$

$$a_2 = 3 \cdot 3^2 = 3^3$$

$$a_3 = 3 \cdot 3^6 = 3^7$$

$$a_4 = 3 \cdot 3^{14} = 3^{15}$$

$$a_5 = 3 \cdot 3^{30} = 3^{31}$$

d)
$$a_n = na_{n-1} + a_{n-2}^2$$
, $a_0 = -1$, $a_1 = 0$

$$a_2 = 2 \cdot 0 + (-1)^2 = 1$$

$$a_3 = 3 \cdot 1 + 0^2 = 3$$

$$a_4 = 4 \cdot 3 + 1^2 = 13$$

 $a_5 \equiv 5 \cdot 13 + 3^2 = 74$

e)
$$a_n = a_{n-1} - a_{n-2} + a_{n-3}$$
, $a_0 = 1$, $a_1 = 1$, $a_2 = 2$
 $a_3 = 2 - 1 + 1 = 2$

$$a_4 = 2 - 2 + 1 = 1$$

$$a_5 = 1 - 2 + 2 = 1$$

12. solution of the $a_n = -3a_{n-1} + 4a_{n-2}$

a)
$$a_n = 0$$

 $a_n = -3 \cdot 0 + 4 \cdot 0 = 0$

b)
$$a_n = 1$$

 $a_n = -3 \cdot 1 + 4 \cdot 1 = 1$

c)
$$a_n = (-4)^n$$

 $a_n = -3 \cdot (-4)^{n-1} + 4 \cdot (-4)^{n-2}$
 $= (-4)^{n-2}(12+4)$
 $= (-4)^{n-2} \cdot 4^2$
 $= (-4)^n$

d)
$$a_n = 2(-4)^n + 3$$

 $a_n = -3 \cdot [2(-4)^{n-1} + 3] + 4 \cdot [2(-4)^{n-2} + 3]$
 $= -6(-4)^{n-1} - 9 + 8(-4)^{n-2} + 12$
 $= (-4)^{n-2}(24 + 8) + 3$
 $= 2 \cdot (-4)^n + 3$

16. Find the solution of $\{a_n\}$

a)
$$a_n = -a_{n-1}$$
, $a_0 = 5$

$$a_n = -a_{n-1}$$

 $= -(-a_{n-2})$
 $= (-1)^2 \cdot a_{n-2}$
 \vdots
 $= (-1)^n \cdot a_{n-n}$
 $= (-1)^n \cdot 5$

b)
$$a_n = a_{n-1} + 3$$
, $a_0 = 1$
 $a_n = a_{n-1} + 3$
 $= (a_{n-2} + 3) + 3$
 $= a_{n-2} + 2 \cdot 3$
 \vdots
 $= a_{n-n} + n \cdot 3$
 $= 3n + 1$

c)
$$a_n = a_{n-1} - n$$
, $a_0 = 4$
 $a_n = a_{n-1} - n$
 $= (a_{n-2} - n - 1) - n$
 $= [(a_{n-3} - n - 2) - n - 1] - n$
 $= a_{n-3} - 3n - 1 - 2$
 \vdots
 $= a_{n-n} - n \cdot n - (1 + 2 + 3... n - 1)$
 $= a_0 - n^2 - \left(\frac{n(n-1)}{2}\right)$
 $= 4 - n^2 - \left(\frac{n(n-1)}{2}\right)$

d)
$$a_n = 2a_{n-1} - 3$$
, $a_0 = -1$

$$\begin{array}{lll} a_n &=& 2a_{n-1} - 3 \\ &=& 2[2a_{n-2} - 3] - 3 \\ &=& 2^2a_{n-2} - 2 \cdot 3 - 3 \\ &=& 2^2[2a_{n-3} - 3] - 3(2+1) \\ &=& 2^3a_{n-3} - 2^2 \cdot 3 - 3(2+1) \\ &=& 2^3a_{n-3} - 3\left(2^0 + 2^1 + 2^2 + \dots + 2^{n-1}\right) \\ &=& 2^na_{n-n} - 3\left(2^0 + 2^1 + 2^2 + \dots + 2^{n-1}\right) \\ &=& 2^na_{n-n} - 3\left(2^0 + 2^1 + 2^2 + \dots + 2^{n-1}\right) \\ &=& (-1)2^n(1+3) + 3 \\ &=& (-1)2^{n+2} + 3 \\ \end{array}$$

$$\begin{array}{lll} e) \ a_n &=& (n+1)(n \cdot a_{n-2}) \\ &=& (n+1)(n \cdot a_{n-2}) \\ &=& (n+1)n(n-1)a_{n-3} \\ \end{array}$$

$$\begin{array}{lll} e) \ a_n &=& (n+1)(n \cdot a_{n-2}) \\ &=& (n+1)n(n-1)a_{n-3} \\ \end{array}$$

$$\begin{array}{lll} e) \ a_n &=& (n+1)(n)(n-1)\dots \cdot 2 \\ &=& (n+1)(n)(n-1)\dots \cdot 2 \\ &=& (n+1)! \cdot a_0 \\ &=& 2(n+1)! \\ \end{array}$$

$$\begin{array}{lll} e) \ a_n &=& 2na_{n-1}, \ a_0 = 3 \\ a_n &=& 2 \cdot n[2 \cdot (n-1) \cdot a_{n-2}] \\ &=& 2^2 \cdot n \cdot (n-1) \cdot a_{n-2} \\ \vdots \\ &=& 2^n \cdot a_{n-n} \cdot (n \cdot (n-1) \cdot \dots \cdot 1) \\ &=& 2^n \cdot 3 \cdot n! \\ \end{array}$$

$$\begin{array}{lll} e) \ a_n &=& -a_{n-1} + n - 1, \ a_0 = 7 \\ a_n &=& -[-a_{n-2} + n - 2] + n - 1 \\ &=& (-1)^2[-a_{n-3} + n - 3] + [(n-1) - (n-2)] \\ &=& (-1)^3 \cdot a_{n-3} + [(n-1) - (n-2) + (n-3)] \\ \vdots \\ &=& (-1)^n \cdot a_{n-n} + \left[(n-1) - (n-2) + \dots + (-1)^{n-1}(n-n) \right] \\ &=& \frac{2n-1 + (-1)^n}{4} (-1)^n \cdot 7 \end{array}$$

2.	Determine whether each of these sets is finite, countably infinite, or uncountable.
	a) the integers greater than 10 11, 12, 13, countably infinite
	b) the odd negative integers -1, -3, -5, countably infinite
	c) the integers with absolute value less than 1,000,000 -999.999,,0,1, 999.999 finite
	d) the real numbers between 0 and 2 0.???, 1.??? uncountable
	e) the set $A \times Z^+$ where $A = \{2, 3\}$ (2, 1), (3, 1), (2, 2), (3, 2), countably infinite
	f) the integers that are multiples of 10 10, 20, 30, countably infinite
4.	Determine whether each of these sets is countable or uncountable.
	a) integers not divisible by 3 1, 2, 4, 5, 7, 8 countable
	b) integers divisible by 5 but not by 7 5, 10, 30, 40, countable
	c) the real numbers with decimal representations consisting of all 1s .1 .11 .111 .1111 1 1.1 1.11 1.1
	d) the real numbers with decimal representations of all 1s or 9s .1 .9 .11 .19 .91 .111 .??? uncountable 1.9 1.1 1.19 1.91 1.111 1.119 1.???

4. Find the product AB, where

a)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

$$A \cdot B = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & -2 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 0 & 3 & -1 \\ -3 & -2 & 0 & 2 \end{bmatrix}$

$$A \cdot B = \begin{bmatrix} 4 & -1 & -7 & 6 \\ -7 & -5 & 8 & 5 \\ 4 & 0 & 7 & 3 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 0 & -1 \\ 7 & 2 \\ -4 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -1 & 2 & 3 & 0 \\ -2 & 0 & 3 & 4 & 1 \end{bmatrix}$

$$A \cdot B = \begin{bmatrix} 2 & 0 & -3 & -4 & -1 \\ 24 & -7 & 20 & 29 & 2 \\ -10 & 4 & -17 & -24 & -3 \end{bmatrix}$$

28. Find the Boolean product of A and B, where

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 and
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A \odot B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$