Al and Speech Homework #2

목표

- Task = regression
- System = neural network
 - 가장 간단한 NN 구조 사용
- Supervised learning을 C로 구현
 - Backpropagation에 따라 gradient 계산

광운대학교 전자공학과 Copyright © by 박 호 종

Problem Setting

- Training dataset
 - Input: 10-D vector of floating-point values
 - $-0.5 \le x_k \le 0.5$
 - Output : a floating-point value
 - Example : 10가지 개인 정보 → 신용도 결정
 - 1000 data of $(x_1, x_2, ..., x_{10}, y)$ from 1000 people
- Target
 - (x₁, x₂ x₁₀) 와 y 사이의 관계 learning
- Neural network
 - No hidden layers
 - No bias

광운대학교 전자공학과

- Linear activation function
- $y = \sum_{k=1}^{10} w_k x_k$

Copyright © by 박호종

Training Data 특성

Scatter diagram

Different input-output dependency

광운대학교 전자공학과 4 Copyright © by 박 호 종

NN Training

- Training by stochastic gradient descent(SGD) algorithm
 - Weight initialization
 - Uniform between -0.5 and 0.5
 - C code : w[k] = ((float)rand() / RAND_MAX) 0.5
 - Batch size = 1
 - 1 epoch
 - $-\eta = 0.1$

광운대학교 전자공학과

5

Copyright © by 박호종

NN Training

- Update process
 - Forward
 - 각 input x 에 대하여 output y = wx 계산
 - Output error

•
$$C = \frac{1}{2}(y^* - y)^2$$

•
$$\delta^{l=2} = \frac{\partial C}{\partial (z=y)} = y - y^*$$

- Gradient

•
$$\frac{\partial C}{\partial \mathbf{W}^2} = \delta^2(\mathbf{a}^1)^T = (y - y^*)\mathbf{x}^T$$

•
$$\frac{\partial C}{\partial w_k} = x_k(y - y^*)$$

- Update

•
$$w_k \leftarrow w_k - \eta \frac{\partial c}{\partial w_k} = w_k + \eta x_k (y^* - y)$$

$$\boldsymbol{z}^l = \boldsymbol{W}^l \boldsymbol{a}^{l-1} + \boldsymbol{b}^l$$

$$y = wx$$

C code

• File open, read, write (text file)

```
float input[DIM] = {0,0,}, target;
fopen_s(&fin, "trainingDB.dat", "rt");
fopen_s(&fo, "output.dat", "wt");

for (k = 0; k < DIM; k++)
    fscanf(fin, "%f", input + k);

for (k = 0; k < DIM; k++)
    fprintf(fo, "%10.7f", weight[k]);
fprintf(fo, "\n");</pre>
```

광운대학교 전자공학과

Copyright © by 박 호 종

C code

7

• 전체 구조

for (input index)

- Data read
- Output computation
- · Gradient computation
- · Weight update
- Weight and cost write

Check-Point

- 500번째 x 에 대한 $C = \frac{1}{2}(y^* y)^2 \cong 0.00057$
- 1000번째 x 에 대한 $C = \frac{1}{2}(y^* y)^2 \cong 0.0000012$
- After 1000 updates, weight의 크기 순서
 w₁ > w₈ > w₂ >> w₁₀

광운대학교 전자공학과

9

Copyright © by 박호종

결과 분석

• 각 x 에 대한 $C = \frac{1}{2}(y^* - y)^2$

결과 분석

· Weight trajectory

광운대학교 전자공학과

11

Copyright © by 박 호 종

결과 분석

w1-w2 trajectory

12

결과 분석

과제 제출

• Due: 5월 15일(금) 23:59

• File name : SpeechHW2_이름_학번.hwp 또는 docx

• 제출 내용

- C code

Learning output : weight, cost

- 다양한 실험 결과와 설명

광운대학교 전자공학과 13 Copyright © by 박 호 종

결과 분석 : Batch Size

SGD, batch size = 1

Copyright © by 박호종

Overfitting

15

Classification

광운대학교 전자공학과

- Training data : A와 B에 의한 출력 data (x, y)

• A/B 경계 찾기

- Testing : (x, y) 가 주어질 때 A/B 판단

Copyright © by 박호종

광운대학교 전자공학과 16 Copyright © by 박 호 종

광운대학교 전자공학과

Overfitting

- Training data에 대하여 과도하게 정확한 modeling
 - Training data에 특화된 system → 일반화된 system을 찾지 못함

- 그 결과, testing data에 대한 성능 저하

- Generalization error

training data

광운대학교 전자공학과

17

Copyright © by 박호종

Overfitting

- Regression
 - Training data : (x, y), y = f(x) 관계를 가짐
 - 실제 주어진 data는 noise 포함 : y = f(x) + noise
 - x 와 y 관계를 modeling 하는 function 찾기
 - − Testing : x 가 주어질 때 y 예측

광운대학교 전자공학과 18 Copyright © by 박 호 종

Overfitting

- Training data에 포함된 noise를 learning 하면 안 됨
- Overfitting 해결 방법
 - Training data 크기 증가
 - Generalization 증가
 - Training 방법 개선
 - Regularization
 - Drop-out
 - Multi-model

광운대학교 전자공학과 19 Copyright © by 박 호 종