CS 577- Intro to Algorithms

Computational Intractability (Part 2)

Dieter van Melkebeek

November 19, 2020

Motivation

Motivation

► Recognizing infeasible approaches

Motivation

- Recognizing infeasible approaches
- ▶ P vs NP problem

Motivation

- ► Recognizing infeasible approaches
- ▶ P vs NP problem

P, NP, and NPC

Motivation

- Recognizing infeasible approaches
- ▶ P vs NP problem

P, NP, and NPC

P: decision problems that have polynomial-time algorithms

Motivation

- Recognizing infeasible approaches
- ► P vs NP problem

P. NP. and NPC

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates

Motivation

- Recognizing infeasible approaches
- ► P vs NP problem

P. NP. and NPC

- ▶ P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- ► Fact: P ⊆ NP

Motivation

- Recognizing infeasible approaches
- ► P vs NP problem

P, NP, and NPC

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NP
- ightharpoonup Conjecture: $P \neq NP$

Motivation

- Recognizing infeasible approaches
- ► P vs NP problem

P, NP, and NPC

- ▶ P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NP
- ightharpoonup Conjecture: $P \neq NP$
- ▶ NP-complete (NPC): hardest problems in NP

Motivation

- Recognizing infeasible approaches
- P vs NP problem

P. NP. and NPC

- ▶ P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NP
- ightharpoonup Conjecture: $P \neq NP$
- ▶ NP-complete (NPC): hardest problems in NP
- ▶ Assume $P \neq NP$. If $B \in NPC$ then $B \notin P$.

Motivation

- Recognizing infeasible approaches
- ► P vs NP problem

P, NP, and NPC

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NP
- ▶ Conjecture: P ≠ NP
- ▶ NP-complete (NPC): hardest problems in NP
- ▶ Assume $P \neq NP$. If $B \in NPC$ then $B \notin P$.

Today: Satisfiability

► Parameters:

- \circ $c \in \mathbb{N}$
- o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
- o $f:\{0,1\}^*\times\{0,1\}^*\to\mathbb{R}$ in P

- ► Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V:\{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ in P
 - \circ $f: \{0,1\}^* \times \{0,1\}^* \rightarrow \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

- ► Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - \circ $f:\{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

Goal:

- ► Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - \circ $f:\{0,1\}^* imes\{0,1\}^* o\mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

▶ Goal:

Decision Is
$$S_x \neq \emptyset$$
?

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - \circ $f:\{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

▶ Goal:

Decision Is $S_x \neq \emptyset$? Search Find $y \in S_x$ or report that no such y exists.

- ► Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - o $f: \{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

▶ Goal:

Decision Is $S_x \neq \emptyset$?

Search Find $y \in S_x$ or report that no such y exists.

Optimization Find $y^* \in S_x$ such that

$$f(x, y^*) = \min_{y \in S_x} (f(x, y))$$
 respectively
 $f(x, y^*) = \max_{y \in S_x} (f(x, y))$

- ► Parameters:
 - \circ $c \in \mathbb{N}$
 - $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - \circ $f: \{0,1\}^* \times \{0,1\}^* \rightarrow \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0, 1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

▶ Goal:

Decision Is $S_x \neq \emptyset$?

Search Find $y \in S_x$ or report that no such y exists.

Optimization Find $y^* \in S_x$ such that

$$f(x, y^*) = \min_{y \in S_x} (f(x, y))$$
 respectively
 $f(x, y^*) = \max_{y \in S_x} (f(x, y))$

Examples: Independent Set, Satisfiability, Graph Coloring, Traveling Salesperson Problem, . . .

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

 $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- \Rightarrow Consider any $A \in NP$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- ⇒ Consider any $A \in NP$. $A \leq^p B$ and $B \in P$ implies $A \in P$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- ⇒ Consider any $A \in NP$. $A \leq^p B$ and $B \in P$ implies $A \in P$.

Corollary

Assume $P \neq NP$. If B is NP-hard then $B \notin P$.

Inputs:

Inputs: Output: Output: AND

Input: Boolean circuit C on inputs y_1, y_2, \ldots, y_m

Input: Boolean circuit C on inputs y_1, y_2, \ldots, y_m , i.e, DAG where each leaf has label in $\{y_1, y_2, \ldots, y_m\}$, and each other vertex a label in $\{\land, \lor, \neg\}$

Input: Boolean circuit C on inputs y_1, y_2, \ldots, y_m , i.e, DAG where each leaf has label in $\{y_1, y_2, \ldots, y_m\}$, and each other vertex a label in $\{\land, \lor, \neg\}$; output vertex

Circuit Satisfiability

Input: Boolean circuit C on inputs y_1, y_2, \ldots, y_m , i.e, DAG where each leaf has label in $\{y_1, y_2, \ldots, y_m\}$, and each other vertex a label in $\{\land, \lor, \neg\}$; output vertex

Output: satisfying assignment, i.e., a setting of the inputs of C to true/false that makes the output of C true

Circuit Satisfiability

Input: Boolean circuit C on inputs y_1, y_2, \ldots, y_m , i.e, DAG where each leaf has label in $\{y_1, y_2, \ldots, y_m\}$, and each other vertex a label in $\{\land, \lor, \neg\}$; output vertex

Output: satisfying assignment, i.e., a setting of the inputs of *C* to true/false that makes the output of *C* true; or report that none exists.

Proof

Proof

▶ Need to show A
leq p Circuit-SAT for each A in NP.

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x,y)$ for all $y \in \{0,1\}^m$ can be constructed in time $n^{O(1)}$.

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x,y)$ for all $y \in \{0,1\}^m$ can be constructed in time $n^{O(1)}$.

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x,y)$ for all $y \in \{0,1\}^m$ can be constructed in time $n^{O(1)}$.

Reduction

A Circuit-SAT

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x,y)$ for all $y \in \{0,1\}^m$ can be constructed in time $n^{O(1)}$.

Reduction

A Circuit-SAT

X

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x,y)$ for all $y \in \{0,1\}^m$ can be constructed in time $n^{O(1)}$.

A Circuit-SAT
$$x \rightarrow x' = C_x$$

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x, y)$ for all $y \in \{0, 1\}^m$ can be constructed in time $n^{O(1)}$.

$$A$$
 Circuit-SAT $x \rightarrow x' = C_x$ \downarrow [blackbox] y' with $C_x(y') = 1$

Proof

- ▶ Need to show $A \leq^p$ Circuit-SAT for each A in NP.
- ▶ A is specified by $c \in \mathbb{N}$ and $V \in P$ such that valid solutions on input $x \in \{0,1\}^n$ are $S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$.

Lemma

A Boolean circuit C_x on $m \doteq n^c$ inputs such that $C_x(y) = V(x, y)$ for all $y \in \{0, 1\}^m$ can be constructed in time $n^{O(1)}$.

$$\begin{array}{ccccc} A & & \mathsf{Circuit\text{-}SAT} \\ x & \to & x' = \mathit{C}_x \\ & & & \downarrow \; [\mathsf{blackbox}] \\ y = y' & \leftarrow & y' \; \mathsf{with} \; \mathit{C}_x(y') = 1 \end{array}$$

Specification

Input: Boolean formula φ

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Literal: variable or negated variable

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Literal: variable or negated variable

▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., each clause contains at most k literals.

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Literal: variable or negated variable

▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., each clause contains at most k literals.

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_{k-1} \vee \ell_k$$

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Literal: variable or negated variable

▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., each clause contains at most k literals.

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_{k-1} \vee \ell_k \equiv \overline{\ell_1} \wedge \overline{\ell_2} \wedge \overline{\ell_{k-1}} \Rightarrow \ell_k$$

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Literal: variable or negated variable

▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., each clause contains at most k literals.

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_{k-1} \vee \ell_k \equiv \overline{\ell_1} \wedge \overline{\ell_2} \wedge \overline{\ell_{k-1}} \Rightarrow \ell_k$$

Results

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.

Clause: disjunction of literals

Literal: variable or negated variable

▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., each clause contains at most k literals.

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_{k-1} \vee \ell_k \equiv \overline{\ell_1} \wedge \overline{\ell_2} \wedge \overline{\ell_{k-1}} \Rightarrow \ell_k$$

Results

3-SAT is NP-hard.

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

- ▶ CNF-SAT: φ is CNF, i.e., a conjunction of clauses.
 - Clause: disjunction of literals
 - Literal: variable or negated variable
- ▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., each clause contains at most k literals.

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_{k-1} \vee \ell_k \equiv \overline{\ell_1} \wedge \overline{\ell_2} \wedge \overline{\ell_{k-1}} \Rightarrow \ell_k$$

Results

- 3-SAT is NP-hard.
- ▶ 2-SAT can be solved in polynomial time.

Strategy

Strategy

To show a new problem C is NP-hard:

Strategy

To show a new problem C is NP-hard:

ightharpoonup Find a known NP-complete problem B.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Justification

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Justification

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Justification

Consider any $A \in NP$.

▶ By the NP-hardness of B, $A \leq^p B$.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Justification

- ▶ By the NP-hardness of B, $A \leq^p B$.
- ▶ We show that $B \leq^p C$.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Justification

- ▶ By the NP-hardness of B, $A \leq^p B$.
- ▶ We show that $B \leq^p C$.
- ▶ Therefore $A \leq^p B \leq^p C$.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Justification

- ▶ By the NP-hardness of B, $A \leq^p B$.
- ▶ We show that $B \leq^p C$.
- ▶ Therefore $A \leq^p B \leq^p C$.
- ▶ By transitivity $A \leq^p C$.

Strategy

Mapping reduction Circuit-SAT \leq^p 3-SAT

Strategy

Mapping reduction Circuit-SAT \leq^p 3-SAT

Gadget reduction

Strategy

Mapping reduction Circuit-SAT \leq^p 3-SAT

Gadget reduction

Inputs:

Introduce a variable for each input of *C*.

- Introduce a variable for each input of C.
- ▶ Introduce a variable for each gate of *C*.

- Introduce a variable for each input of C.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

- Introduce a variable for each input of C.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ g' = NOT g$$

- Introduce a variable for each input of C.
- Introduce a variable for each gate of C.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g
ightarrow \left\{ egin{array}{l} g \Rightarrow \overline{g'} \ \overline{g} \Rightarrow g' \end{array}
ight.$$

- Introduce a variable for each input of C.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

- Introduce a variable for each input of C.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ g' = g_1 \text{ AND } g_2$$

- Introduce a variable for each input of C.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ g' = \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \lor \overline{g'} \\ g \lor g' \end{array} \right.$$

$$\circ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \\ g_1 \land g_2 \Rightarrow g' \end{array} \right.$$

- ▶ Introduce a variable for each input of *C*.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ \ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ g_1 \wedge g_2 \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \vee \overline{g_2} \vee g' \end{array} \right.$$

- ▶ Introduce a variable for each input of *C*.
- ▶ Introduce a variable for each gate of *C*.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ \ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \wedge g_2 \Rightarrow g' \end{array} \right.$$

▶ Add unit clause consisting of the variable for the output gate.

- Introduce a variable for each input of C.
- Introduce a variable for each gate of C.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ \ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ g_1 \wedge g_2 \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \vee \overline{g_2} \vee g' \end{array} \right.$$

▶ Add unit clause consisting of the variable for the output gate.

Correctness

- Introduce a variable for each input of C.
- Introduce a variable for each gate of C.
- For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ \ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \vee \overline{g_2} \vee g' \end{array} \right.$$

Add unit clause consisting of the variable for the output gate.

Correctness

- C has a satisfying assignment
 - $\Leftrightarrow \varphi$ has a satisfying assignment.

- ▶ Introduce a variable for each input of *C*.
- Introduce a variable for each gate of C.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ \ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ g_1 \wedge g_2 \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \vee \overline{g_2} \vee g' \end{array} \right.$$

Add unit clause consisting of the variable for the output gate.

Correctness

- C has a satisfying assignment
 φ has a satisfying assignment.
- **Each** satisfying assignment for φ includes one for C.

- ▶ Introduce a variable for each input of *C*.
- Introduce a variable for each gate of C.
- ► For each gate g, include clauses with at most 3 literals each that combined force the variable of the gate to the value of the gate on the input.

$$\circ \ g' = \ \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ \ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ g_1 \wedge g_2 \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \vee \overline{g_2} \vee g' \end{array} \right.$$

▶ Add unit clause consisting of the variable for the output gate.

Correctness

- C has a satisfying assignment
 φ has a satisfying assignment.
- **Each** satisfying assignment for φ includes one for C.

Polynomial running time

Reduction to digraph reachability

Reduction to digraph reachability

Construction of the digraph *G*

Reduction to digraph reachability

Construction of the digraph G

▶ Introduce a vertex for each variable x_i that occurs in φ , and another one for its negation $\overline{x_i}$.

Reduction to digraph reachability

Construction of the digraph G

- Introduce a vertex for each variable x_i that occurs in φ , and another one for its negation $\overline{x_i}$.
- Interpret each clause $\ell_1 \vee \ell_2$ as the implications $\overline{\ell_1} \Rightarrow \ell_2$ and $\overline{\ell_2} \Rightarrow \ell_1$. Include edges $(\overline{\ell_1}, \ell_2)$ and $(\overline{\ell_2}, \ell_1)$ in G.

Reduction to digraph reachability

Construction of the digraph G

- Introduce a vertex for each variable x_i that occurs in φ , and another one for its negation $\overline{x_i}$.
- Interpret each clause $\ell_1 \vee \ell_2$ as the implications $\overline{\ell_1} \Rightarrow \ell_2$ and $\overline{\ell_2} \Rightarrow \ell_1$. Include edges $(\overline{\ell_1}, \ell_2)$ and $(\overline{\ell_2}, \ell_1)$ in G.

Claim

- φ has a satisfying assignment
- \Leftrightarrow for no variable x_i there are paths $x_i \rightsquigarrow \overline{x_i}$ and $\overline{x_i} \rightsquigarrow x_i$ in G.

Reduction to digraph reachability

Construction of the digraph G

- Introduce a vertex for each variable x_i that occurs in φ , and another one for its negation $\overline{x_i}$.
- Interpret each clause $\ell_1 \vee \ell_2$ as the implications $\overline{\ell_1} \Rightarrow \ell_2$ and $\overline{\ell_2} \Rightarrow \ell_1$. Include edges $(\overline{\ell_1}, \ell_2)$ and $(\overline{\ell_2}, \ell_1)$ in G.

Claim

 φ has a satisfying assignment

 \Leftrightarrow for no variable x_i there are paths $x_i \rightsquigarrow \overline{x_i}$ and $\overline{x_i} \rightsquigarrow x_i$ in G.

Proof

⇒ By contraposition.

Reduction to digraph reachability

Construction of the digraph G

- Introduce a vertex for each variable x_i that occurs in φ , and another one for its negation $\overline{x_i}$.
- Interpret each clause $\ell_1 \vee \ell_2$ as the implications $\overline{\ell_1} \Rightarrow \ell_2$ and $\overline{\ell_2} \Rightarrow \ell_1$. Include edges $(\overline{\ell_1}, \ell_2)$ and $(\overline{\ell_2}, \ell_1)$ in G.

Claim

- φ has a satisfying assignment
- \Leftrightarrow for no variable x_i there are paths $x_i \rightsquigarrow \overline{x_i}$ and $\overline{x_i} \rightsquigarrow x_i$ in G.

Proof

- ⇒ By contraposition.
- \leftarrow Pick a literal ℓ such that there is no path $\ell \leadsto \overline{\ell}$ in G, set ℓ to true, simplify the formula/digraph, and repeat until there are no variables left.

