Standard model for DPPC:

 $H_0 = \sum_{\substack{q \in \mathcal{P} \\ Q \in \mathcal{Q}}} \frac{m_i v_i^2}{2} + \sum_{\substack{k_r (r_{ij} - r_0)^2 \\ 2}} + \sum_{\substack{k_\theta (\cos(\theta_{ijk}) - \cos(\theta_0))^2 \\ 2}} \frac{k_\theta (\cos(\theta_{ijk}) - \cos(\theta_0))^2}{2}$ $W_0 = \frac{1}{2\rho_0} \int_{\mathcal{Q}} d\mathbf{r} \left(\sum_{k\ell} \tilde{\chi}_{k\ell} \phi_k(\mathbf{r}) \phi_\ell(\mathbf{r}) + \frac{1}{\kappa} \left(\sum_{\ell} \phi_\ell(\mathbf{r}) - a \right)^2 \right)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.50 13.50 -3.60		$W_0 = \frac{1}{2\rho_0} \int d\mathbf{r}$	$(\angle k\ell \ Xk\ell \Upsilon$	$k(1)\varphi_\ell$	$f(\mathbf{I}) + \frac{1}{f}$	<u>,</u> (Ζ _ℓ ^φ	/ℓ(1)
4.50 13.50 -3.60 P (************************************	4.50 13.50 -3.60			G	P	C	W	
$\tilde{v}_{\rm res}/k_{\rm L} {\rm mol}^{-1}$ 6.30 4.50 G		$\langle \hat{0} \langle \hat{1} \rangle$		-1.50				
/ (1) / 1 mol=1		4341						_
	1 / 1) / 1	$\langle X \rangle \rangle$		$\tilde{\mathbf{v}}_{\mathbf{k}\boldsymbol{\theta}}/\mathrm{k}\mathbf{J}$	$\tilde{\chi}_{k\ell}/k J \text{mol}^{-1}$			

Modeling of tension:
$$W_1 = -\frac{1}{\rho_0} \int d\mathbf{r} \ (K_{\rm ST} \mathbf{\nabla} \phi_{\rm W}(\mathbf{r}) \cdot \mathbf{\nabla} \phi_{\rm C}(\mathbf{r}))$$