Structure of pHs RLC

Antoine Falaize¹ and Thomas Helie²

 1 Project-team S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France 2 Project-team S3†, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place

Igor-Stravinsky, 75004 Paris, France

June 27, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
ℓ_1	IN	electronics.source	('A', 'ref')	{ type voltage
ℓ_2	R1	electronics.resistor	('A', 'B')	R ('R1', 1000.0)
ℓ_3	L	electronics.inductor	('B', 'C')	{ L ('L', 0.05)
ℓ_4	С	electronics.capacitor	('C', 'ref')	C ('C', 2e-06)

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 0;$$

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\rm L} \\ x_{\rm C} \end{pmatrix}$$
;
Input $\mathbf{u} = \begin{pmatrix} u_{\rm IN} \end{pmatrix}$;

^{*}http://s3.ircam.fr †http://s3.ircam.fr

Figure 1: Graph of system RLC.

Output
$$\mathbf{y} = (y_{\text{IN}});$$

3 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \, \mathtt{H}(\mathbf{x}) = 250000.0 \cdot x_{\mathrm{C}}^2 + 10.0 \cdot x_{\mathrm{L}}^2; \\ & \text{Hamiltonian gradient } \, \nabla \mathtt{H}(\mathbf{x}) = \left(\begin{array}{c} 20.0 \cdot x_{\mathrm{L}} \\ 500000.0 \cdot x_{\mathrm{C}} \end{array} \right); \end{split}$$

4 System parameters

4.1 Constant

parameter	value (SI)
C:	2e-06
R1:	1000.0
L:	0.05

$$\mathbf{M} = \begin{pmatrix} -1000.0 & -1.0 & 1.0 \\ 1.0 & 0 & 0 \\ -1.0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{J} = \begin{pmatrix} 0 & -1.0 & 1.0 \\ 1.0 & 0 & 0 \\ -1.0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{R} = \begin{pmatrix} 1000.0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix};$$