OBJECT DETECTORS EMERGE IN DEEP SCENE CNN'S

Luca Simonetto - 11413522 Edgar Schönfeld - 11398272

Outline

- Introduction
- Methods and Results
 - Imagenet CNN and Places CNN
 - Internal CNN representation
 - Emergence of objects in the representation
- Conclusions
- Future work

Introduction - Paper Overview

Title: Object Detectors Emerge in Deep CNNs

Year: 2015

Concerned with: Understanding the internal representation learned by a CNN

Main Message: When training a CNN for Scene Classification,

Object detectors emerge as a byproduct.

Introduction - Paper Overview

Example of Scene Classification:

street

Additional Findings:

- CNN trained for scene classification naturally discovers more object categories than a CNN for object recognition
- The same network can do both *object localization* and *scene recognition* in a single forward-pass

Introduction - Related Work

- Visualizing and Understanding Convolutional Networks (2014)
- Analyzing the Performance of Multilayer Neural Networks for Object Recognition (2014)
- How transferable are features in deep neural networks? (2014)

Introduction - Scene vs. Object Classification

	Object Classification	Scene Classification
Constituents made of	"Object Parts"	Objects
Parts have	strong internal configuration	weak internal configuration
Consequence	different and arbitrary part configurations	Less ambiguity
Object representation	learned under supervision	Unsupervised learning

May explain why Scene-CNNs recognize objects so well

Methodology - Imagenet CNN and Places CNN

	ImageNet-CNN	Places-CNN
Network architecture:	Same	
Trained on images of	Objects	Scenes
# of categories	1000	205
Top-1 accuracy	57.4 % - for object recog. 40.8 % - for scene recog. (with SVM)	50.0 %

clear bias

How and what does a CNN learn?

Which parts of the image are used for classification?

Simplifying the input representation - minimal images

Minimal Images

Classify image

Segment image into regions

Iteratively remove segments that result in smallest decrease in classification score

Minimal Images

Resulting image contains

minimal info to correctly classify image

mostly objects

Objects are important part of the representation built by the network

Bedroom - bed in 87% cases

Art gallery - paintings in 81% cases

Bookstore - bookcase in 96% cases

What is the shape and size of the internal receptive fields?

- Theoretical size defined by the CNN architecture
- Empirical size might be different

Determining the empirical rf size, using:

sliding-window stimuli

discrepancy maps for top 10 images

calibrated discrepancy maps

receptive field

The empirical size of the rf is much smaller than the theoretical size, especially in the later layers. They also are more meaningful deeper in the net.

We can now do image segmentation (sort of), by looking at the receptive fields, and understand what the network "looks at" when doing scene classification.

The deeper we go the more meaningful the rfs seems to be.

Do all the receptive fields work at the same abstraction level or not?

Some look for low level semantics (shapes, patterns) and others look for more complex ones (objects and scenes).

This analysis requires some brute force work ———— Amazon Mechanical Turk

Task 2 Task 1 Mark (by clicking on them) the images which don't correspond to the short description you just wrote Word/Short description: tower

Task 3

Which category does your short description mostly belong to?

- Scene (kitchen, corridor, street, beach, ...)
- Region or surface (road, grass, wall, floor, sky, ...)
- Object (bed, car, building, tree, ...)
- Object part (leg, head, wheel, roof, ...)
- Texture or material (striped, rugged, wooden, plastic, ...)
- Simple elements or colors (vertical line, curved line, color blue,)

For each layer the average precision is calculated

Places-CNN layers usually have higher AP than imageNet-CNN!

Distribution of concept categories (precision > 75%)

Deeper layers detect more high-level abstractions.

What object classes emerge?

Are multiple units detecting the same object?

Can we do segmentation with this information?

Objects detected in pool5 of Places-CNN

Many classes encoded by different units.

Each unit covers an object appearance.

Objects detected in pool5 of ImageNet-CNN

Why do those object emerge?

- They seem to be correlated with the frequencies of the dataset used
- Objects detected seem to be the most informative for scene recognition

- Places-CNN achieves state-of-the-art performance on scene recognition
- The receptive fields are shaped around what they need to detect
- Every unit is specialized on a single concept
- Multiple units detect the same appearance of the same object
- Places-CNN detects the more discriminative objects

Let's do segmentation!

Conclusions

- CNNs that perform scene classification have developed internal object detectors
- Image segmentation can be done without being explicitly asked
- Scene recognition CNNs automatically learn which object are more discriminative than others

Future work

- Study of this phenomena, as it will probably appear in other CNNs for classification
- Constraints could be added to improve the internal quality of the receptive fields
- Develop an all-in-one system that can reliably combine the tasks exposed in this paper

Figure: "Learning Deep Features for Discriminative Localization" (Zhou et al 2016)