BATTLE OF NEIGHBORHOODS ASSIGNMENT 2 Osazemen Oriakhi M. June, 2020

INTRODUCTION

Today Tourism is one of the pillars of the economy and the people most often visits those countries who are rich in heritage and developed enough from a foreign prospective, like friendly environment. Every city is unique in their own way and give something new. However, people have their different interests and desire a level of satisfaction from a leisure vacation. Most times, people return dissatisfied at their experience as it wasn't up to expectation. It's not just about the awesomeness of the name of the city or the location, what makes a vacation memorable are the interesting memories from sightseeing, recreational suites and villas, movie theatres and so on. hence the need to carry out an exploratory survey of the cities of interest to compare between them. And now the information is so common regarding location of every place around the world on your fingertips which make it easier to explore. Therefore, tourists always eager to travel to different places on the basis of available information, and the comparison (the part of the Today Tourism is one of the pillars of the economy and the people most often visits those countries who are rich in heritage and developed information) between the two cities always assist to choose the specific places or according to their choice.

BUSINESS PROBLEM

Toronto and New York are the famous places in the world. They are diverse in many ways. Both are multicultural as well as the financial hubs of their respective countries. The purpose of this exploration is to determine which of them is the best choice for a vacation. We would achieve this by comparing between their respective boroughs; Manhattan and Central Toronto using the Foursquare API.

INTERESTS

This analysis would catch the interests of the following:

- 1. Tourists: they would be able to get information about the city they are to travel to and they would know in advance the satisfaction to expect
- 2. Couples: newly weds desire a nice and comfy location for their honey moon, this project would be beneficial to them in choosing a good location.
- 3. Firms and Organizations: most firms organize vacations for their employees and would love to get the best satisfaction, hence they would benefit from this project.

DATA ACQUISITION AND CLEANING

For Toronto case, we have extracted table of Toronto's Borough (Central Toronto) from Wikipedia page (https://www.en.wikipedia.org/wiki/List of postal codes of Canada: M), where a table containing the list of postal codes, cities, boroughs and neighborhoods of Canada. Then we arrange the data according to our requirements. In the arrangement phase, which applied multiple steps including but not limited to, eliminating "Not assigned" values, we also get the list of coordinates for each of the locations from a csv file, from this page, (http://cocl.us/Geospatial_data) after which we would sort each coordinates with their respective locations from the previous data. The resulting data frame is shown below.

	Postal Code	Borough	Neighborhood	Latitude	Longitude
0	M4N	Central Toronto	Lawrence Park	43.728020	-79.388790
1	M5N	Central Toronto	Roselawn	43.711695	-79.416936
2	M4P	Central Toronto	Davisville North	43.712751	-79.390197
3	M5P	Central Toronto	Forest Hill North & West, Forest Hill Road Park	43.696948	-79.411307
4	M4R	Central Toronto	North Toronto West, Lawrence Park	43.715383	-79.405678
5	M5R	Central Toronto	The Annex, North Midtown, Yorkville	43.672710	-79.405678
6	M4S	Central Toronto	Davisville	43.704324	-79.388790
7	M4T	Central Toronto	Moore Park, Summerhill East	43.689574	-79.383160
8	M4V	Central Toronto	Summerhill West, Rathnelly, South Hill, Forest	43.686412	-79.400049

Fig.1 Data frame showing the neighborhoods of Central Toronto as well as their coordinates.

Also, for Manhattan, being a city in New York, we extracted its data from a JSON file, (newyork_data.json) after which we filtered out the details of Neighborhoods under Manhattan and converted it into a data frame as shown below:

	Borough	Neighborhood	Latitude	Longitude
0	Manhattan	Marble Hill	40.876551	-73.910660
1	Manhattan	Chinatown	40.715618	-73.994279
2	Manhattan	Washington Heights	40.851903	-73.936900
3	Manhattan	Inwood	40.867684	-73.9212 <mark>1</mark> 0
4	Manhattan	Hamilton Heights	40.823604	-73.949688

Fig.2 Data frame showing the neighborhoods of Manhattan as well as their coordinates.

For data verification and further exploration, we use Foursquare API to get the coordinates of Toronto and explore its neighborhoods (for both cities). The neighborhoods are further characterized as venues and venue categories as shown below. This would be further processed to be used in the machine learning algorithm, K-means Clustering in order to segment them and the comparison would be made between the two cities. Below is the result of the process:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Lawrence Park	43.728020	-79.388790	Lawrence Park Ravine	43.726963	-79.394382	Park
1	Lawrence Park	43.728020	-79.388790	Zodiac Swim School	43.728532	-79.382860	Swim School
2	Lawrence Park	43.728020	-79.388790	TTC Bus #162 - Lawrence-Donway	43.728026	-79.382805	Bus Line
3	Roselawn	43.711695	-79.416936	Ceiling Champions	43.713891	-79.420702	Home Service
4	Roselawn	43.711695	-79.416936	Rosalind's Garden Oasis	43.712189	-79.41197 <mark>8</mark>	Garden

Fig.3 Foursquare API data classification

METHODOLOGY

As we have selected two cities to explore their neighborhoods. The data exploration, analysis and visualization for both cities are done in the same way but separately. After the Data cleaning and preprocessing, we started by visualizing both cities, using the folium library (for map generation) as well as the geopy library (to get the longitude and latitude coordinates) with the data collected from both data sources. The figures below show the pre clustered visualizations of Manhattan and Central Toronto.

Fig. 4 Map visualization of Manhattan before clustering

Fig. 5 Map visualization of Central Toronto before clustering

Mississauga

Next, we utilized the Foursquare API in exploring the neighborhoods of both cities and segmenting them. We defined a function to get the near by venues around the neighborhoods of both cities and classify them into different categories. The result was then converted into a data frame as shown earlier in fig 3. Next, we grouped all the venues into their respective neighborhoods and counted them. We then displayed the result thus:

Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
36	36	36	36	36	36
9	9	9	9	9	9
4	4	4	4	4	4
3	3	3	3	3	3
3	3	3	3	3	3
21	21	21	21	21	21
3	3	3	3	3	3
16	16	16	16	16	16
21	21	21	21	21	21
	36 9 4 3 3 21 3	36 36 9 9 4 4 4 3 3 3 3 21 21 3 3 3 16 16 16	36 36 36 9 9 9 9 4 4 4 4 3 3 3 3 3 3 21 21 21 3 3 3 3 3 16 16 16	Samuel Longitude Latitude 36 36 36 36 9 9 9 9 4 4 4 4 3 3 3 3 3 3 3 3 21 21 21 21 3 3 3 3 16 16 16 16	Same and the congruence Lantide Lantide Longitude 36 36 36 36 9 9 9 9 4 4 4 4 3 3 3 3 3 3 3 3 21 21 21 21 21 3 3 3 3 16 16 16 16 16

Fig. 6 Data frame showing the number of categories per neighborhood

We then observed that there were 64 unique categories for Central Toronto and 329 unique categories for Manhattan.

Next, we analyzed both neighborhoods through one hot encoding (giving '1' if a venue category is there, and '0' in case of venue category is not there). On the basis of one hot

encoding, we calculate mean of the frequency of occurrence of each category and grouped them per neighborhood after which we picked top ten venues on that basis for each neighborhood. It means the top venues are showing the foot traffic or the more visited places. This result was put into a data frame as shown in fig. 9.

	Neighborhood	American Restaurant	BBQ Joint	Bagel Shop	Bank	Breakfast Spot	Brewery	Burger Joint		Café	Chinese Restaurant	Clothing Store	Coffee Shop	Department Store	Dessert Shop	Diner	Donut Shop
0	Lawrence Park	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	0	0
1	Lawrence Park	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Lawrence Park	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
3	Roselawn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Roselawn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. 1																	

Fig. 7 One hot encoding on the presence of a venue category per neighborhood

	Neighborhood	American Restaurant	BBQ Joint	Bagel Shop	Bank	Breakfast Spot	Brewery	Burger Joint	Bus Line	Café	Chinese Restaurant	Clothing Store	Coffee Shop	Department Store	Dess Sh
0	Davisville	0.0000	0.000000	0.0000	0.0000	0.000000	0.027778	0.000000	0.000000	0.055556	0.000000	0.000000	0.055556	0.000000	0.0833
1	Davisville North	0.0000	0.000000	0.0000	0.0000	0.11 11 11	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.11 11 11	0.0000
2	Forest Hill North & West, Forest Hill Road Park	0.0000	0.000000	0.0000	0.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
3	Lawrence Park	0.0000	0.000000	0.0000	0.0000	0.000000	0.000000	0.000000	0.333333	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
4	Moore Park, Summerhill East	0.0000	0.000000	0.0000	0.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
5	North Toronto West, Lawrence Park	0.0000	0.000000	0.0000	0.0000	0.000000	0.000000	0.000000	0.000000	0.047619	0.047619	0.095238	0.095238	0.000000	0.0000
6	Roselawn	0.0000	0.000000	0.0000	0.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000

Fig 8. Grouped rows by neighborhood by taking the mean of the frequency of occurrence of each category

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Davisville	Pizza Place	Dessert Shop	Sandwich Place	Coffee Shop	Italian Restaurant	Sushi Restaurant	Café	Gym	Restaurant	Gourmet Shop
1	Davisville North	Pizza Place	Hotel	Gym / Fitness Center	Gym	Breakfast Spot	Sandwich Place	Food & Drink Shop	Department Store	Park	Fried Chicken Joint
2	Forest Hill North & West, Forest Hill Road Park	Mexican Restaurant	Trail	Jewelry Store	Sushi Restaurant	Yoga Studio	Fast Food Restaurant	Food & Drink Shop	Fried Chicken Joint	Garden	Gas Station
3	Lawrence Park	Bus Line	Park	Swim School	Yoga Studio	Food & Drink Shop	Fried Chicken	Garden	Gas Station	Gift Shop	Gourmet Shop

Fig 9. Ten most common venues per Neighborhood

Next, we apply the K-means Clustering machine learning algorithm to the data for proper segmentation. We set the number of clusters 'k' to 5, then we generated labels for each cluster using numbers (0-4). Each neighborhoods as well as its category were classified into their respective clusters and the result was displayed as a data frame, ready for visualization.

	Postal Code	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
0	M4N	Central Toronto	Lawrence Park	43.728020	-79.388790	0	Bus Line	Park	Swim School	Yoga Studio	Food & Drink Shop	Fried Chicken Joint	Garden	Gas Station
1	M5N	Central Toronto	Roselawn	43.711695	-79.416936	3	Home Service	Music Venue	Garden	Yoga Studio	Ice Cream Shop	History Museum	Gym / Fitness Center	Gym
2	M4P	Central Toronto	Davisville North	43.712751	-79.390197	1	Pizza Place	Hotel	Gym / Fitness Center	Gym	Breakfast Spot	Sandwich Place	Food & Drink Shop	Department Store
3	M5P	Central Toronto	Forest Hill North & West, Forest Hill Road Park	43.696948	-79.411307	4	Mexican Restaurant	Trail	Jewelry Store	Sushi Restaurant	Yoga Studio	Fast Food Restaurant	Food & Drink Shop	Fried Chicken Joint
4	M4R	Central Toronto	North Toronto West, Lawrence Park	43.715383	-79.405678	1	Coffee Shop	Clothing Store	Yoga Studio	Ice Cream Shop	Gift Shop	Italian Restaurant	Metro Station	Mexican Restaurant

Fig. 10 Resulting Data frame after Clustering

RESULTS

We used the folium library once more to visualize the resulting clustered data for both Central Toronto and Manhattan as shown in the figures below:

Fig. 11 Map showing the clustered results for Central Toronto. Each color represents a cluster label.

Fig. 12 Map showing the clustered results for Manhattan. Each color represents a cluster label

Exploring the clusters:

For Central Toronto and Manhattan, we had 5 clusters, the details of their components can be seen through this link:

https://github.com/osazee25/Coursera_Capstone2/blob/master/BATTLE%20OF%20NEIGHBORHOODS.ipynb

To summarize the results, for Central Toronto, Cluster 1 consisted of parks, Cluster 2 consisted of restaurants and joints, Cluster 3 consisted of playgrounds and leisure places, Cluster 4 consisted of snacks and fitness joints, Cluster 5 consisted of shopping hubs.

For Manhattan, Cluster 1 consisted of restaurants and fitness joints, Cluster 2 consisted of tourist centres and hubs, Cluster 3 consisted of Travels and leisure places, Cluster 4 consisted of public places and stations, Cluster 5 consisted of Pharmacy and health centres.

OBSERVATION AND RECOMMENDATION

After clustering the data of the respective neighborhoods, it can be seen that though both cities are fun to visit. The cities are similar in that they both have restaurants, gym centres, wine shops, hotels, spa etc., but Manhattan differs more in that it has a harbour, heliport, boat or ferry (cluster3), which is good for tourism and also, movie theatres which I personally consider a

perquisite. Also, Central Toronto has a bank, which is very ok for cash deposits but this rarely occurs during vacation as money carried is meant to be spent.

Based on this analysis, I would recommend Manhattan a better choice for vacation as it has the required facilities and venues for an enjoyable visit.

CONCLUSION

The Central Toronto and Manhattan neighborhoods are great venues. As we know that every place is unique in its own way, hence the appreciated function of the Foursquare API. This code can be modified for future comparisons with other Boroughs in various other cities with their location data.