

Network Security - Project

Tian Dong tian.dong@sjtu.edu.cn

2023.5

- 1 Introduction
- Task 1: Textbook-RSA
- Task 2: CCA2 Attack
- Task 3: OAEP
- Submission and Standard

- 1 Introduction
- 2 Task 1: Textbook-RSA
- Task 2: CCA2 Attack
- 4 Task 3: OAEP
- 5 Submission and Standard

Introduction

- DDL: 2025.06.23 23:59
- Submit Format:
 - Project_\${Team_name}.{tar.gz/rar/zip}
 - Task 1
 - Your code/data for task 1 (15/100)
 - Task 2
 - Your code/data for task 2 (25/100)
 - Task 3
 - Your code/data for task 3 (15/100)
 - Report_\${Team_name}.pdf (45/100)

- 1 Introduction
- Task 1: Textbook-RSA
- Task 2: CCA2 Attack
- Task 3: OAEP
- 5 Submission and Standard

- Goal: Implement the textbook RSA algorithm (without any padding)
- Your code should be able to:
 - **Generate** a random RSA key pair with a given key size (e.g., 1024-bit)
 - Encrypt a plaintext with the public key.
 - **Decrypt** a ciphertext with the private key.

- 1 Introduction
- 2 Task 1: Textbook-RSA
- Task 2: CCA2 Attack
- Task 3: OAEP
- 5 Submission and Standard

- Goal : Perform a CCA2 attack on textbook RSA
- Textbook RSA is elegant, but has no semantic security.
- An adaptive chosen-ciphertext attack (abbreviated as **CCA2**) is an interactive form of chosen-ciphertext attack in which an attacker sends a number of ciphertexts to be decrypted, then uses the results of these decryptions to select subsequent ciphertexts.
- The goal of this attack is **to gradually reveal** information about an encrypted message, or about the decryption key itself.

- Refer an existing work for the implementation
 - Details of this attack can be found in **Chap 4**.

When Textbook RSA is Used to Protect the Privacy of Hundreds of Millions of Users

Jeffrey Knockel
Dept. of Computer Science
University of New Mexico
jeffk@cs.unm.edu

Thomas Ristenpart

Cornell Tech

ristenpart@cornell.edu

Jedidiah R. Crandall
Dept. of Computer Science
University of New Mexico
crandall@cs.unm.edu

• Knockel J, Ristenpart T, Crandall J. When textbook RSA is used to protect the privacy of hundreds of millions of users[J]. arXiv preprint arXiv:1802.03367, 2018.

Server-client communication

Client

1 generate a 128-bit AES session key for the session.

- 2 encrypt this session key using a 1024-bit RSA public key.
- ③ use the AES session key to encrypt the WUP request.
- 4 send the RSA-encrypted AES session key and the encrypted WUP request to the server.
- 1 decrypt the RSA-encrypted AES key it received from the client.
- ② choose the least significant 128 bits of the plaintext to be the AES session key.
- ③ decrypt the WUP request using the AES session key.
- 4 send an AES-encrypted response if the WUP request is valid.

Server

- In this attack, the server knows
 - RSA key pair
 - AES key
- The adversary knows
 - RSA public key
 - a RSA-encrypted AES key
 - an AES-encrypted WUP request
- The adversary wants to know
 - AES key

- In this part, you are supposed to
 - Properly design your own WUP request format, server-client communication model, etc.
 - **Generate** a history message by yourself, it should includes a RSA-encrypted AES key and an AES-encrypted request.
 - Present the **attack** process to obtain the AES key (and further decrypt the encrypted request) from the history message.
- You can use third-party library to implement **AES** encryption and decryption.

- 1 Introduction
- 2 Task 1: Textbook-RSA
- Task 2: CCA2 Attack
- Task 3: OAEP
- 5 Submission and Standard

- Goal: defend the attack
 - Implement RSA-OAEP algorithm and discuss why it can defend such kind of attacks.
- Since textbook RSA is vulnerable to attacks, in this paper, the authors give a solution: **using OAEP key padding algorithm**.
- In cryptography, Optimal Asymmetric Encryption Padding (**OAEP**) is a padding scheme often used together with RSA encryption. OAEP satisfies the following two goals:
 - Add an element of randomness which can be used to convert a **deterministic** encryption scheme (e.g., traditional RSA) into a **probabilistic** scheme.
 - **Prevent partial decryption** of ciphertexts (or other information leakage) by ensuring that an adversary cannot recover any portion of the plaintext without being able to invert the trapdoor one-way permutation.

Project - Task 3: OAEP

• *n* is the number of bits in the

RSA modulus.

- *k0* and *k1* are integers fixed by the protocol.
- m is the plaintext message, an (n-k0-k1) bit string
- *G* and *H* are typically some cryptographic hash functions fixed by the protocol.
- ⊕ is an xor operation

Project - Task 3: OAEP encoding

- 2. r is a randomly generated k0 bit string n-k0-k1
- 3. G expands the $k\theta$ bits of r to $n-k\theta$ bits.

be n-k0 bits in length.

- 4. $X = m00..0 \oplus G(r)$
- 5. H reduces the $n-k\theta$ bits of X to $k\theta$ bits.
- 6. $Y = r \oplus H(X)$
- 7. The output is X || Y where X is shown in the diagram as the leftmost block and Y as the rightmost block

Project - Task 3: OAEP decoding

- 1. recover the random string as $r = Y \oplus H(X)$
- 2. recover the message as $m00..0 = X \oplus n-k0-k1$, G(r)
- 3. The "all-or-nothing" security is from the fact that to recover *m*, you must recover the entire X and the entire Y; X is required to recover *r* from Y, and *r* is required to recover *m* from X. Since any changed bit of a cryptographic hash completely changes the result, the entire X and the entire Y must both be completely recovered.

- In this part, you are supposed to
 - Add the **OAEP padding** module to the textbook RSA implementation.
 - Give a **discussion** on the advantages of RSA-OAEP compared to the textbook RSA.
 - As a bonus, you can further try to **present** CCA2 attack to **RSA-OAEP** to see whether it can thwart the CCA2 attack you have implemented in part 2.

- 1 Introduction
- 2 Task 1: Textbook-RSA
- Task 2: CCA2 Attack
- 4 Task 3: OAEP
- Submission and Standard

Task 1

- Files to be Submitted and Standard of Grading:
 - Code: 6 points
 - RSA parameters (Decimal, 1024bits):
 - RSA_Moduler.txt1 point
 - RSA_p.txt1 point
 - RSA_q.txt1 point
 - RSA key (Decimal, 1024bits):
 - RSA_Secret_Key.txt 1 point
 - RSA_Public_Key.txt 1 point
 - Encryption:
 - Raw_Message.txt 1 point
 - Encrypted_Message.txt (hexadecimal)1 point
 - Pass Decryption (TA)2 points

Task 2

- Files to be Submitted and Standard of Grading:
 - **Code** : 10 points
 - CCA2 (Use RSA parameters in task 1):
 - History_Message.txt1 point
 - AES_Key.txt (hexadecimal, 128bits)1 point
 - WUP_Request.txt (hexadecimal)1 point
 - AES_Encrypted_WUP.txt (hexadecimal)2 points
 - Attack Process to Obtain the AES key: 10 points
 - Both Screenshot and Log Files are OK

Task 3

1 point

- Files to be Submitted and Standard of Grading:
 - **Code** : 10 points
 - Encryption (Use RSA parameters and Message in task 1):
 - Random_Number.txt
 - Message_After_Padding.txt (hexadecimal) 1 point
 - Encrypted_Message.txt (hexadecimal)1 point
 - Pass Decryption (TA)2 points

(Recommended using n=1024, k0=512, hash: sha512)

Any extra file added is OK but need to be explained in report!

Thank You

