Anomaly Detection in Heart Activity

Amro Ghoneim Ismail El Sharkawy Zeyad Ali

Our Project

The aim of our project is detect anomalies in heartbeats constructed from an electrocardiogram (ECG) monitor, which is the recording of the electrical pulse/activity of one's heart within the MCU. The recording of the heart beat will be displayed and the system will detect if there is an anomaly in the heart beat.

Design

- The heart pulses will be detected using the AD8232 module.
- The readings detected from the AD8232 will be sent to the STM32 microcontroller on one of its ADC input pins.
- The readings will then be given to the machine learning model deployed on the MCU for real time inference
- The readings/output will then be transmitted via UART and/or displayed on MCU(LEDs) which will be received by a python application.
- The application will will take the readings and display them.

Design

Implementation: Keil

The embedded code on the STM32 received the ADC input from the AD8232 and transmitted it through the UART. (Sampling rate unchanged)

```
while (1)
    // Test: Set GPIO pin high
  //HAL GPIO WritePin(GPIOB, GPIO PIN 3, GPIO PIN SET);
  // Get ADC value
 HAL ADC Start (&hadcl);
  HAL ADC PollForConversion(&hadcl, HAL MAX DELAY);
  raw = HAL ADC GetValue(&hadcl);
  // Test: Set GPIO pin low
  //HAL GPIO WritePin(GPIOA, GPIO PIN 10, GPIO PIN RESET);
  // Convert to string and print
  sprintf(reading, "%hu\r\n", raw);
  HAL UART Transmit(&huart2, (uint8 t*)reading, sizeof(reading)-5, HAL MAX DELAY);
  // Pretend we have to do something else for a while
  HAL Delay(1);
```

Implementation: Python Application

Using python's library Pyserial, the port of interest "COM3" was specified alongside the corresponding baudrate.

UART output is read line by line and formatted using the decode("utf-8") function after being parsed to output desired format.

Data is then gathered and stored in a csv file for later review.

For better visualization of errors and changes, data is then graphed in real time as shown in slide 8.

```
plot window = 200
y_var = np.array(np.zeros([plot_window]))
plt.ion()
fig, ax = plt.subplots()
line, = ax.plot(y var)
if ser.isOpen():
        while 1:
            ser bytes = ser.readline()
            decoded bytes = float(ser bytes[0:len(ser bytes) - 2].decode("utf-8"))
            print(decoded bytes)
                writer = csv.writer(f, delimiter=",")
                writer.writerow([time.time(), decoded_bytes])
                y_var = np.append(y_var, decoded_bytes)
                y_var = y_var[1:plot_window + 1]
                line.set ydata(y var)
                ax.relim()
                ax.autoscale view()
                fig.canvas.draw()
                fig.canvas.flush events()
        print("error")
                                                                                  Looks like you're using NumPy
```

ser = serial.Serial(port='COM3', baudrate=9600, bytesize=serial.EIGHTBITS, parity=serial.PARITY NONE, timeout=2)

ser.flushInput()

Results

About the Data set

- Number of Samples: 109446
- Number of Categories: 5
- Sampling Frequency: 125Hz
- Data Source: Physionet's MIT-BIH Arrhythmia Dataset
 - Preprocessing steps described in this paper to create the data set
- Classes: ['N': 0, 'S': 1, 'V': 2, 'F': 3, 'Q': 4]

Data set Class Distribution

Initial Class distribution of the data set shows highly imbalanced data!

This will affect model performance for detecting anomalies

```
9 72471
4 6431
2 5788
1 2223
3 641
```

Name: 187, dtype: int64

Data set resampling

Resampled the data set to have a balanced class distribution

Each class now has 20,000 samples each

4 20000

3 20000

2 20000

1 20000

0 20000

Name: 187, dtype: int64

Other preprocessing techniques

Added some noise to the data to make it more generalized

Keras

Open-source neural-network library written in Python

Can run on top of Tensorflow, Theano and other machine learning frameworks

User Friendly, Modular and Extensible

Model Architecture

```
data input=(X train.shape[1],1)
inputs cnn=Input(shape=(im shape), name='data input')
conv1 1=Convolution1D(64, (6), activation='relu', input shape=im shape)(inputs cnn)
conv1 1=BatchNormalization()(conv1 1)
pool1=MaxPool1D(pool size=(3), strides=(2), padding="same")(conv1 1)
conv2 1=Convolution1D(64, (3), activation='relu', input shape=im shape)(pool1)
conv2 1=BatchNormalization()(conv2 1)
pool2=MaxPool1D(pool size=(2), strides=(2), padding="same")(conv2 1)
conv3 1=Convolution1D(64, (3), activation='relu', input shape=im shape)(pool2)
conv3 1=BatchNormalization()(conv3 1)
pool3=MaxPool1D(pool size=(2), strides=(2), padding="same")(conv3 1)
flatten=Flatten()(pool3)
dense end1 = Dense(64, activation='relu')(flatten)
dense end2 = Dense(32, activation='relu')(dense end1)
main output = Dense(5, activation='softmax', name='main output')(dense end2)
```

Results

The graphs below show the training accuracy and validation loss over 5 epochs

Results

 The confusion matrix shows that the model performs on the test set with slight decrease in results for the two classes S and F

STM32.AI

- Interoperable with popular deep learning training tools (Keras)
- Compatible with many IDEs and compilers (Keil)
- Sensor and RTOS agnostic
- Allows multiple Artificial Neural Networks to be run on a single STM32 MCU
- Full support for ultra-low-power STM32 MCUs

What's next?

- Check if the resulting readings are correct and if they need noise filtering.
- Adjust sampling rate according to the user's input.
- Use STM32.AI to deploy model on MCU
- Apply needed preprocessing tasks to captured data and use model for inference