Regression assignment

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

1) Identify your problem statement

Output: insurance charges (premium amount) Input: Age, sex, bmi, children, smoker, charges

This process is called underwriting, based on customer details deciding insurance premium. Usually it will be done by underwriter manually.

Stage1: this problem is having data in numbers (excel) so domain is ML (id ML is not at all giving good model then DL)

Stage 2: input and output both the values are available so it is supervised learning

Stage3: Output value is continuous number so it is regression problem.

Many algorithms we can try like

- 1. Multiple Linear regression 2.SVM 3. Decision tree 4. Random forest
- 2.) Tell basic info about the dataset (Total number of rows, columns) 1338 rows × 6 columns
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)

Data -> 1. Nominal data (it will be string with no ordering) 2. Ordinal data (this will have certain order)

Here in this data set 2 categorical columns are there

- 1. Sex
- 2. Smoker

Sex and smoker both are nominal data so we have to use one hot encoding using get_dummies() function

df = pd.get_dummies(df,drop_first=True)

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final mode

I have created Multiple Linear Regression, SVM, random forest, decision tree In that SVM is giving comparatively good result r2 score = 0.877995 => 88%

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

	model_name	hyperparamter_value	r2score
0	Multiple_LinearRegression	Normal	0.789479
1	SVM	form=Standard,Kernel = rbf,c=100000	0.789479
2	Decision tree	form=normal,criterion =poisson splitter=random	0.759623
3	Random Forest	form=Standard,n_estimators =200	0.853603
	model_name	hyperparamter_value r2sco	re
3	Random Forest form	n=Standard,n_estimators =200 0.85360	03

2nd iteration (other day)

	model_name	hyperparamter_value	r2score
0	Multiple_LinearRegression	Normal	0.789479
1	SVM	form=Standard,Kernel = rbf,c=10000	0.877995
2	Decision tree	form=normal,criterion =poisson splitter=random	0.751467
3	Random Forest	form=Standard,n_estimators =100	0.854955

model	_name	hyperparamter_value	r2score
1	SVM	form=Standard,Kernel = rbf,c=10000	0.877995

^{6.)} Mention your final model, justify why u have chosen the same.

Tried all possible options choose model which have more accuracy so that it can predict correct value

Tried all possible combination and choosed best model