### Recitation 4

Seung-hun Lee

Columbia University

#### Sampling distribution

- OLS estimate that we are getting is a random variable getting different estimates depending on sample we work with.
- $\hat{\beta}_1$ : Recall that we can write

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Now, replace  $Y_i$  an  $\bar{Y}$  with

$$Y_i = \beta_0 + \beta X_i + u_i, \ \bar{Y} = \beta_0 + \beta_1 \bar{X} + \bar{u},$$

which allows us to write

$$(Y_i - \bar{Y}) = (\beta_1(X_i - \bar{X}) + (u_i - \bar{u}))$$

and get

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^{n} (X_i - \bar{X})(u_i - \bar{u})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Seung-hun Lee Recitation 4 2 / 18

•  $E[\hat{\beta}_1]$ : It can be written as

$$E[\hat{\beta}_{1}] = E\left[\beta_{1} + \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}\right]$$
$$= \beta_{1} + E\left[\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}\right]$$

 $\sum_{i=1}^{n} (X_i - \bar{X})(u_i - \bar{u})$  can be written to something simpler.

$$\sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u}) = \sum_{i=1}^{n} X_{i}u_{i} - \bar{u}\sum_{i=1}^{n} X_{i} + \bar{X}\sum_{i=1}^{n} u_{i} + n\bar{X}\bar{u}$$

- $\rightarrow$  Since  $\bar{X}$  is a sample mean of X,  $\sum_{i=1}^{n} X_i = n\bar{X}$ .
- $\rightarrow$  The assumption that conditional mean is zero and  $(X_i, u_i)$  are uncorrelated means that the term on the left hand side is zero.
- $\rightarrow$  Therefore, UNDER CLASSICAL ASSUMPTIONS,  $E[\hat{\beta}_1] = \beta_1$ .

Seung-hun Lee Recitation 4 3 / 18

•  $var[\hat{\beta}_1]$ : We use the definition of the variances and the fact that the expected value of  $\hat{\beta}_1$  is unbiased (at least for now) to get

$$\begin{aligned} var(\hat{\beta}_{1}) &= E\left[\left(\hat{\beta}_{1} - E[\hat{\beta}_{1}]\right)^{2}\right] \\ &= E\left[\left(\hat{\beta}_{1} - \beta_{1}\right)^{2}\right] \\ &= E\left[\left(\frac{\sum_{i=1}^{n}(X_{i} - \bar{X})(u_{i} - \bar{u})}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}\right)^{2}\right] \\ &= E\left[\left(\frac{(X_{1} - \bar{X})(u_{1} - \bar{u})}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}} + ... + \frac{(X_{n} - \bar{X})(u_{n} - \bar{u})}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}\right)^{2}\right] \end{aligned}$$

Seung-hun Lee Recitation 4 4 / 18

- → We assume homoskedasticity and no autocorrelation
- → Since X<sub>i</sub> is from the data and u<sub>i</sub> is a random error term, we can take all the X<sub>i</sub> terms in and keep the u<sub>i</sub> terms in the expectation to get (i.i.d assumption is also useful here)

$$var(\hat{\beta}_{1}) = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} E[(u_{i} - \bar{u})^{2}]}{[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}]^{2}}$$

$$= \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sigma_{u}^{2}}{[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}]^{2}} (\because E[(u_{i} - \bar{u})^{2} = var(u_{i}))$$

$$= \sigma_{u}^{2} \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}]^{2}} = \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

Note that to decrease the variance in the estimates, the variance of the error should be small relative to the variation in the  $X_i$ .

Seung-hun Lee Recitation 4 5/18

•  $\hat{\beta}_0$ : The formula for  $\hat{\beta}_0$  is  $\bar{Y} - \hat{\beta}_1 \bar{X}$ . By changing  $\bar{Y}$ , we can get

$$\hat{\beta}_0 = (\beta_0 + \beta_1 \bar{X} + \bar{u}) - \hat{\beta}_1 \bar{X}$$
$$= \beta_0 + (\beta_1 - \hat{\beta}_1) \bar{X} + \bar{u}$$

Then we can say the following about the sampling distribution

•  $E[\hat{\beta}_0]$ : We can write

$$E[\hat{\beta}_0] = \beta_0 + E[(\beta_1 - \hat{\beta}_1)\bar{X}] + E[\bar{u}] = \beta_0$$

since  $\hat{\beta}_1$  is unbiased and conditional expectation of  $u_i$  is zero.

 $\rightarrow$  Thus, under our current assumptions,  $\hat{\beta}_0$  is unbiased.

Seung-hun Lee Recitation 4 6 / 18

•  $var[\hat{\beta}_0]$ : Using the definition of the variance, we can write

$$\begin{aligned} var(\hat{\beta}_0) &= E\left[\left(\hat{\beta}_0 - E[\hat{\beta}_0]\right)^2\right] = E\left[\left(\hat{\beta}_0 - \beta_0\right)^2\right] \\ &= E\left[\left((\beta_1 - \hat{\beta}_1)\bar{X} + \bar{u}\right)^2\right] \\ &= \bar{X}^2 E\left[\left(\beta_1 - \hat{\beta}_1\right)^2\right] + 2\bar{X} E\left[\left(\beta_1 - \hat{\beta}_1\right)\bar{u}\right] + E[\bar{u}^2] \end{aligned}$$

Under the assumption (A2), we can ignore the middle term as this is zero. The rest of the terms are  $\bar{X}^2 var(\hat{\beta}_1)$  and  $\frac{\sigma_u^2}{n}$ . the final result is

$$var(\hat{\beta}_0) = \frac{\sigma_u^2 \bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} + \frac{\sigma_u^2}{n} = \frac{\sigma_u^2}{n} \frac{\sum_{i=1}^n X_i^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

Seung-hun Lee Recitation 4 7 / 18

#### So what do we take away?

At the end of the day, we can say

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

$$\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sigma_u^2}{n} \frac{\sum_{i=1}^n X_i^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

 The importance of this is that now we can conduct a hypothesis test and create a test statistic based on this distribution

Seung-hun Lee Recitation 4 8 / 18

#### Hypothesis test

- From the sample distribution of  $\hat{\beta}_1$ , we can break down into two cases
- **Know**  $\sigma_u$ : Since the  $\hat{\beta}_1$  takes a normal distribution, we can "standardize" it to get the test statistic and the distribution for it

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{var(\hat{\beta}_1)}} \sim N(0, 1)$$

and compare against the critical values (depending on significance level, two vs one-sided test)

Seung-hun Lee Recitation 4 9 / 18

#### Hypothesis test

• **Don't know**  $\sigma_u$ ; need to have an estimate for  $var(\hat{\beta}_1)$  due to not knowing  $\sigma_u$ . The test statistics and its distribution is

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{var}(\hat{\beta}_1)}} \sim t_{n-2}$$

where  $var(\hat{\beta}_1)$  is the estimate for the variance and  $t_{n-2}$  is a t-distribution with n-2 degrees of freedom.

- The d.f. is determined by the number of observations, where 2 is subtracted because we are estimating  $\beta_0$  and  $\beta_1$  in the process.
- When *n* is large, t-distribution becomes similar to the normal distribution

Seung-hun Lee Recitation 4 10 / 18

#### Confidence interval

- Confidence interval: A 95% confidence interval is a range of numbers that form a random interval that has a 95% chance of including a (nonrandom) true value of a parameter.
- This can be obtained by inverting the rejection region that we have used in the critical value approach.

$$\Pr\left(-1.96 \le \frac{\hat{\beta}_1 - \beta_1}{\sqrt{var(\hat{\beta}_1)}} \le 1.96\right) = 0.95$$

$$\implies \Pr\left(\hat{\beta}_1 - 1.96 \times \sqrt{var(\hat{\beta}_1)} \le \beta_1 \le \hat{\beta}_1 + 1.96 \times \sqrt{var(\hat{\beta}_1)}\right) = 0.95$$

 If they encompass the null test value, then we cannot reject the null hypothesis. Otherwise, we can reject the null.

Seung-hun Lee Recitation 4 11 / 18

#### Binary Xi

- We may be interested in whether there is a difference in outcome due to affiliation to a certain group, which is usually binary
- Dummy variable:

$$X_i = \begin{cases} 1 & \text{if } i \text{ belongs in group } X \\ 0 & \text{if otherwise} \end{cases}$$

OLS method can be applied, with different interpretation

$$E[Y_i|X_i = 0] = \beta_0$$
  
 $E[Y_i|X_i = 1] = \beta_1 + \beta_0$ 

 $\beta_1$  is then the difference in mean between  $X_i = 1$  and  $X_i = 0$  groups

Seung-hun Lee Recitation 4 12 / 18

#### Heteroskedasticity

- The assumption that  $var(u_i)$  is constant may not hold.
- If we stick to homoskedasticity in this case, the standard errors are incorrectly estimated (usually underestimated)



 In such case, standard errors of our estimators must take this into account.

Seung-hun Lee Recitation 4 13 / 18

#### Consequences of heteroskedasticity

| egress testsor str |                     |                      |            |                            |                    |                       |                   | . regress testscr str, vce(robust) |                     |       |           |            |              |  |
|--------------------|---------------------|----------------------|------------|----------------------------|--------------------|-----------------------|-------------------|------------------------------------|---------------------|-------|-----------|------------|--------------|--|
| Source             | SS                  | df                   | MS         | Number of obs              |                    | = 420<br>= 22.58      | Linear regression |                                    |                     |       | Number of |            | 420<br>19.26 |  |
| Model              | 7794.11919          | 1                    | 7794.11919 | Prob > F                   |                    | = 0.0000              |                   |                                    |                     |       | Prob > F  | _          | 0.0000       |  |
| Residual           | 144315.475          | 418                  | 345.252333 | R-squared<br>Adj R-squared |                    | = 0.0512<br>= 0.0490  |                   |                                    |                     |       | R-squared |            | 0.0512       |  |
| Total              | 152109.594          | 419                  | 363.030058 |                            |                    | = 18.581              |                   |                                    |                     |       | Root MSE  | -          | 18.581       |  |
| testscr            | Coef.               | Std. Err.            | t I        | P> t  [                    | 95% Conf           | . Interval]           | testscr           | Coef.                              | Robust<br>Std. Err. | t     | P> t      | IDEA Conf  | Intervall    |  |
|                    |                     |                      |            |                            |                    |                       | testser           |                                    | 5101 2111           |       | 1-1-1     | [334 60111 | 11111111111  |  |
| str                | -2.27981<br>698.933 | .4798255<br>9.467491 |            |                            | .222981<br>80.3232 | -1.336638<br>717.5428 | str               | -2.27981<br>698.933                | .5194894            | -4.39 | 0.000     | -3.300947  | -1.258672    |  |

- The variance rises (usually) in the heteroskedastic regression, so we may make a wrong hypothesis test
- The coefficients are unchanged, since estimation of OLS estimates did not rely on homoskedasticity

Seung-hun Lee Recitation 4 14 / 18

#### Omitted variable bias

- Suppose that there are more than one possible independent variable
- The set of models are

True: 
$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$
  
Mistake:  $Y_i = \beta_0 + \beta_1 X_i + u_i^*$   
Sample:  $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i$ 

• Suppose you run an OLS regression without  $Z_i$ .  $\hat{\beta}_1$  can be calculated as  $\frac{\sum_{i=1}^{n}(X_i-\bar{X})(Y_i-\bar{Y})}{\sum_{i=1}^{n}(X_i-\bar{X})^2}$ . Replacing this with the true model gives

$$\begin{split} \frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(Y_{i}-\bar{Y})}{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}} &= \frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(\beta_{1}(X_{i}-\bar{X})+\beta_{2}(Z_{i}-\bar{Z})+(u_{i}-\bar{u}))}{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}} \\ &= \beta_{1}+\beta_{2}\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(Z_{i}-\bar{Z})}{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}} + \frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(u_{i}-\bar{u})}{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}} \end{split}$$

Seung-hun Lee Recitation 4 15 / 18

#### Omitted variable bias

- If  $\beta_2 \neq 0$  and  $\frac{\sum_{i=1}^n (X_i \bar{X})(Z_i \bar{Z})}{\sum_{i=1}^n (X_i \bar{X})^2} \neq 0$ , then the mean of  $\hat{\beta}_1$  is not guaranteed to be  $\beta_1$ . This leads to the **omitted variable bias** problem
- This happens when both of the following cases hold
  - Z should explain Y: If the slope coefficient of  $Z(\beta_2)$  is nonzero, then the Z variable is part of the error term if we forget to include them
  - Z is correlated with X: If  $cov(X, Z) \neq 0$  and the regression residual  $\hat{u}$  is correlated with Z, the independent variable is now correlated with  $\hat{u}$ , which leads to violation of the assumption that independent variable and the residual are not correlated.
- We can even determine the direction of the bias
  - $\begin{array}{l} \bullet \ \, \hat{\beta}_1 \ \, \text{is overestimated if} \ \, \beta_2 \frac{\sum_{l=1}^n (X_l \bar{X})(Z_l \bar{Z})}{\sum_{l=1}^n (X_l \bar{X})^2} > 0 \\ \bullet \ \, \hat{\beta}_1 \ \, \text{is underestiated if} \ \, \beta_2 \frac{\sum_{l=1}^n (X_l \bar{X})(Z_l \bar{Z})}{\sum_{l=1}^n (X_l \bar{X})^2} < 0 \\ \end{array}$

Seuna-hun Lee Recitation 4 16 / 18

#### Omitted variable bias: What to do about it?

- We can simply include the Z variable if we have the data for it.
- Another way is to conduct an ideal randomized controlled experiment (or randomized control trial) that randomly assigns value of X to all students.
- If none of the two are feasible, we should find another variable that can be a proxy to Z they have to be related to the X variable and is uncorrelated with the errors which is the Instrumental Variable method.

#### Interpretation

- The technicalities involved do not change drastically compared to the univariate regression.
- However, one should interpret the coefficients cautiously. Suppose that the regression is

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• To see the impact of  $X_i$  and  $Y_i$ , one needs to take (partial) derivatives on  $Y_i$  with respect to  $X_i$ . This leads to

$$\beta_1 = \frac{\partial Y_i}{\partial X_i}$$

- In words,  $\beta_1$  captures how much  $Y_i$  changes with respect to  $X_i$  holding other variables constant (ceteris paribus).
- If you do not hold other variables ( $Z_i$  in this case) fixed, the change will not exactly be  $\beta_1$  (it could be more or less)

Seung-hun Lee Recitation 4 18 / 18