Efficient Neuromorphic Computing with the Feedforward Inhibitory Motif

¹Yu (Kevin) Cao, ²Maxim Bazhenov, ¹Jae-sun Seo, ¹Shimeng Yu, ³Visar Berisha

¹School of ECEE, ASU; ²School of Medicine, UCSD; ³Dept. of SHS, ASU

Machine Learning Today

- A top-down approach: better for CPU/GPU
 - Pros: mathematical, accurate, scalable
 - Cons: computation cost, energy efficiency, off-line learning

- Edge computing needs novel hardware/algorithms
 - Local to the sensor, real-time, reliable, low-power
 - On-line, personalized learning with continuous data

Acceleration Needs

 10³ – 10⁵ speedup required to achieve real-time training of HD images at 30 frames/second

Resistive Crossbar Architecture

Physical Challenges

Nonlinear, noisy, poor endurance (habituation in programming)

These hardware problems (variations, unreliable synapse) and application demands (real time, on-line learning, and mobile) exist in biological cortical and sensory systems!

A bio-plausible hardware-algorithm solution:

robust, low-power, low-precision, accurate, on-line

Brain-inspired Computing

- A bottom-up approach: better integration with sensors
 - Pros: energy efficiency, simpler computing, real time, reliable
 - Cons: complicated dynamics, limited scale and accuracy

Neurobiological Basis of Learning

- Reward (supervision): global feedback signal
- Inhibition: unsupervised sparse feature extraction
- Synapse: non-linear, habituation (local), noisy
- Neurons: continuous leaky-integrate-fire
- Learning: local, feed forward STDP or SRDP on each plastic synapse

Monkey, Parietal cortex, Nature Communications, 2015

Mouse, Motor cortex, Nature Communications, 2014

RHINO: A Biomimetic Solution

- Reward, Habituation, Inhibition, NOise
- Motif: a recurring network element; general in biological process

Network Structure

- Rewarding for associative (supervised) learning
- Inhibition to speed up the formation of sparsity
- Habituation (decay in learning rate) to achieve the convergence
- Non-gradient based: no backward propagation
- Local adaptation: no crosstalk among synapses

Learning Rules

- Reward: A global feedback to all W's
 - C: classification score
 - Correct: $|C-C_{th}|$; Punish: $-|C-C_{th}|$; If $|C-C_{th}| < \theta_C$, no reward feedback
- Classification: Punish only
 - Δ W ∝ -(C-C_{th})E/η for wrong classification
- Excitation: Hebbian learning rule with habituation
 - $\Delta W \propto \text{Reward} \cdot \text{E} \cdot (\text{X} \theta_{\text{XE}}) / \eta$
 - η: learning rate decays with training, i.e., habituation per synapse
- Inhibition: positive feedback on E
 - If $E < \theta_{\text{weak}}$, $\Delta W \propto \text{Reward} \cdot E \cdot I/\eta$
 - If $E > \theta_{strong}$, $\Delta W \propto Reward \cdot (E-\rho) \cdot I/\eta$
- Neuron: spiking leaky-integrate-fire

Demonstration: MNIST

- MNIST for handwriting recognition
 - Data represented by 0 50 spikes
 - Full image 28 x 28
 - No pooling or normalization
 - 50% connectivity of W_{X2E} and W_{X2I}

Neuron Firing Rate

- Sparsity: an appropriate range (5-15%) is critical
- Homeostatic balance, which controls overfiring of the output neurons, is essential for learning

Factors for Learning Accuracy

- Initial randomness: without noise, learning cannot start
- With 100 Is, the network size of E is reduced by 3X at the same accuracy of 95%; ~50X speedup over gradient-based approaches

Results Comparison

Reference	Input	Data format and precision	Learning rules	Number of neurons	Number of parameters	Number of images	Accuracy
Mushroom body	28x28	ISDIKE	Rewarded STDP	50000	5E5	60000	87%
Two layer SNN	28x28	Spike	STDP	300	2.4E5	60000x3	93.5%
Unsupervised SNN	28x28	Spike	STDP	6400	4.6E7	200000	95.0%
This work	28x28	Spike rate in a 50 window	Rewarded SRDP	2100	8.4E5	60000	95.0%
This work	28x28	Spike rate in a 50 window	Rewarded SRDP	6000	2.4E6	60000	96.2%
Spiking RBM	28x28	Spike rate	Contrastive divergence	500	3.9E5	20000	92.6%
Sparse Coding	10x10 patch	3-bit number	Gradient	300	3E4	60000x10	94.0%
Two layer NN	28x28	Floating number	Gradient descent	1000	7.8E5	60000	95.5%
Spiking CNN	28x28	Spike timing	Regenerative learning	5.6E4	1.2E5	60000	99.08%

Summary

- RHINO: A bio-plausible spiking NN
 - Feedforward inhibitory motif
 - Reward + Local adaptation
- What matters to efficiency: spiking, precision, motif,...?
- Algorithms
 - Multi-layer, hierarchical
 - Low-precision learning
 - On-line learning
- Hardware
 - Implementation with resistive synaptic array
 - Reliable learning

