Stochastik I

4. Übung

Aufgabe 13 (3 Punkte)

Beweisen Sie die folgenden Aussagen:

- (i) Es gelten die Implikationen (iii) \Rightarrow (iv), (iv) \Rightarrow (v) und (v) \Rightarrow (ii) in Proposition 2.1.3.
- (ii) Die Mengen $\{f \leq g\}, \{f = g\} \text{ und } \{f \neq g\} \text{ liegen für } f, g \in \mathcal{L}(\Omega, \mathcal{F}) \text{ in } \mathcal{F}.$

Aufgabe 14 (3 Punkte)

Es seien (Ω, \mathcal{F}) ein messbarer Raum und $f, g: \Omega \to \mathbb{R}$ zwei $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$ -messbare Abbildungen. Zudem gelte $g(\omega) \neq 0$ für jedes $\omega \in \Omega$. Zeigen Sie, dass dann auch die Abbildung $h := f/g: \Omega \to \mathbb{R}$ $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$ -messbar ist.

Aufgabe 15 (5 Punkte)

Es sei $f: \mathbb{R} \to \mathbb{R}$ eine beliebige Funktion. Beweisen Sie die folgenden Aussagen:

- (i) Ist f monoton, dann ist $f(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -messbar.
- (ii) Ist f differenzierbar auf \mathbb{R} , dann ist die Ableitung $f'(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -messbar.

Sei nun speziell $f := \mathbb{1}_{\mathbb{Q}}$ die Dirichlet-Funktion, wobei \mathbb{Q} die Menge aller rationalen Zahlen bezeichnet. Beweisen Sie die folgende Aussage:

(iii) f ist messbar, aber in keinem Punkt stetig.

Aufgabe 16 (5 Punkte)

Ein Maß μ auf $\mathcal{B}(\mathbb{R}^d)$ nennt man translationsinvariant, wenn es für jedes $y \in \mathbb{R}^d$ mit seinem Bildmaß $\mu_{T_y} := \mu \circ T_y^{-1}$ bzgl. der Translation $T_y : \mathbb{R}^d \to \mathbb{R}^d$, $x \mapsto T_y(x) := x + y$, übereinstimmt, d.h. wenn $\mu = \mu_{T_y}$ für alle $y \in \mathbb{R}^d$. Beweisen Sie die folgenden Aussagen:

- (i) Das Lebesgue-Maß $\ell^{(d)}$ auf $\mathcal{B}(\mathbb{R}^d)$ ist translations invariant.
- (ii) Ist μ irgendein translations invariantes Maß auf $\mathcal{B}(\mathbb{R}^d)$ mit $c:=\mu((0,1]^d)<\infty$, dann gilt $\mu(A)=c\cdot\ell^{(d)}(A)$ für alle $A\in\mathcal{B}(\mathbb{R}^d)$. (Bemerkung: Dies bedeutet, dass das Lebesgue-Maß $\ell^{(d)}$ durch die Translations invarianz und die Forderung, dass beschränkte Mengen endliches Maß haben, im wesentlichen eindeutig bestimmt ist.)