Unidad 1: Presentación Axiomatica de los Números Reales Analisis Matemático I

Iker M. Canut 15 de julio de 2020

1. Axiomas de Cuerpo

- Propiedad Conmutativa: a + b = b + a y $a \cdot b = b \cdot a$
- Propiedad Asociativa: a + (b + c) = (a + b) + c y $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Propiedad **Distributiva**: $a \cdot (b+c) = a \cdot b + a \cdot c$
- Existencia de Elementos Neutros: $\forall a \in \mathbb{R}, a+0=a \text{ y } a \cdot 1=a$
- Existencia de **Elementos Opuestos**: $\forall a \in \mathbb{R} \ \exists b : a+b=b+a=0$
- **E**xistencia de **Elementos Recíprocos**: $\forall a \neq 0, \ \exists b : a \cdot b = b \cdot a = 1$

.....

$$a = a$$

$$a = b \Rightarrow b = a$$

$$a = b \land b = c \Rightarrow a = c$$

Teorema 1: Propiedad Cancelativa de la Suma: $a + b = a + c \Rightarrow b = c$

Corolario 1: Unicidad del Elemento Neutro de la Suma. $a + 0' = 0' + a = a \Rightarrow 0' = 0$

Corolario 2: Unicidad del Elemento Opuesto. $a + b = a + b' = 0 \Rightarrow b = b'$

Teorema 2:

$$-(-a) = a$$

$$\bullet a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$$

$$-0 = 0$$

$$-(-a)\cdot(-b)=a\cdot b$$

$$\mathbf{n} \cdot 0 \cdot a = 0$$

$$a \cdot (b-c) = a \cdot c$$

Teorema 3: Propiedad Cancelativa del Producto: $a \cdot b = a \cdot c \land a \neq 0 \Rightarrow b = c$

Corolario 3: Unicidad del Elemento Neutro del Producto. $a + 0' = 0' + a = a \Rightarrow 0' = 0$

Corolario 4: Unicidad del Recíproco. $\forall a \neq 0$, existe un único $b: a \cdot b = b \cdot a = 1$

Teorema 4:

$$a \neq 0, b \neq 0, \left(\frac{a}{b}\right)^{-1} = \frac{a^{-1}}{b^{-1}}$$

$$1^{-1} = 1$$

•
$$b \neq 0 \land d \neq 0$$
:

$$\frac{a}{1} = a$$
, si $a \neq 0$, $\frac{1}{a} = a^{-1}$

•
$$(b \cdot d)^{-1} = b^{-1} \cdot d^{-1}$$

$$\bullet \ a \cdot b = 0 \Rightarrow a = 0 \lor b = 0$$

$$\bullet \ \frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$$

$$-a = (-1) \cdot a$$

$$\bullet \ \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

2. Axiomas de Orden

- Si $a, b \in \mathbb{R}_0^+ \Rightarrow a + b \in \mathbb{R}_0^+$ y $a \cdot b \in \mathbb{R}_0^+$
- $\forall a \in \mathbb{R} : a \neq 0 \Rightarrow \text{ o bien } a \in \mathbb{R}^+ \text{ o } -a \in \mathbb{R}^+$
- $0 \notin \mathbb{R}$

.....

- $a < b \Rightarrow b a \in \mathbb{R}^+$
- $a > b \Rightarrow a b \in \mathbb{R}^+$
- $a < b \Rightarrow$ o bien $b a \in \mathbb{R}^+$ o a = b
- $a > b \Rightarrow$ o bien $a b \in \mathbb{R}^+$ o a = b
- $a > 0 \iff a \in \mathbb{R}^+$

Teorema 5: Propiedad de Tricotomía: Dados $a, b \in \mathbb{R}$ sucede solo una de las siguientes proposiciones:

$$a < b$$
 $a > b$

Teorema 6: Propiedad Transitiva de la Relación Menor: Si $a < b \land b < c \Rightarrow a < c$

- $a < b \Rightarrow a + c < b + c$
- $a \cdot b > 0 \iff a \ y \ b \ \text{son}$ los dos positivos o los dos negativos.
- $a < b \land c < d \Rightarrow a + c < b + d$
- $a < b \land c > 0 \Rightarrow a \cdot c < b \cdot c$
- $a < b \land c < 0 \Rightarrow a \cdot c > b \cdot c$
- $a \neq 0 \Rightarrow a^2 > 0$
- **■** 1 > 0
- $a < b \Rightarrow -b < -a$
- $a \cdot b < 0 \iff a \text{ positivo y}$ b negativo, o a negativo y b positivo.
- $a > 0 \iff \frac{1}{a} > 0$
- $0 < a < b \Rightarrow 0 < \frac{1}{b} < \frac{1}{a}$

Números Naturales, Enteros, Racionales e Irracionales

Números Naturales: N. El conjuntos inductivo más pequeño:

- 1. El número 1 pertenece al conjunto.
- 2. Si a pertenece al conjunto, a + 1 también pertenece.

Destacamos que 1 es el primer elemento de N, i.e es el menor. Ergo, si $a < 1 \Rightarrow a \notin \mathbb{N}$

Números Enteros: $\mathbb{Z} = \{x \in \mathbb{R} : x \in \mathbb{N} \lor -x \in \mathbb{N} \lor x = 0\}$

La suma, la diferencia y el producto son operaciones cerradas en \mathbb{Z} .

Números Racionales: $\mathbb{Q} = \left\{ x \in \mathbb{R} : \exists p, q \in \mathbb{Z}, q \neq 0 : x = \frac{p}{q} \right\}$

Observaciones: • $\mathbb{Z} \subset \mathbb{Q}$ • Dados $a, b \in \mathbb{R}, c, d \in \mathbb{R} - \{0\}, \frac{a}{c} = \frac{b}{d} \iff ad = bc$

2.2. Representación Geometrica de los numeros reales: la recta real

En una recta se elige un punto para representar al 0 y otro punto distinto para representar al 1 (esta elección fija la escala). Cada punto de la recta representa a un único número real y cada número real está representado por un único punto de la recta.

- 1. Si los puntos A y B representan los números reales a y b, A está a la izquierda de $B \iff a < b$.
- 2. Si los puntos A, B, C, D representan a los números reales a, b, c, d. con a < b y c < d, entonces \overline{AB} y \overline{CD} son congruentes $\iff b-a=d-c$.

Además, los números positivos quedan a la derecha del 0, y los negativos a la izquierda del mismo.

Intervalos Reales 2.3.

•
$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

•
$$[a, b) = \{x \in \mathbb{R} : a < x < b\}$$

•
$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$\bullet [a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

$$\bullet [a, +\infty) = \{x \in \mathbb{R} : a \le x\}$$

$$(-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

$$(-\infty, b] = \{x \in \mathbb{R} : x \le b\}$$

2.4. Valor absoluto de un número

Dado $x \in \mathbb{R}$, su valor absoluto es el número real |x|:

$$|x| = \begin{cases} x & \text{, si } x \ge 0 \\ -x & \text{, si } x < 0 \end{cases}$$

Geométricamente, |x| es la distancia en la recta real entre los puntos 0 y x. También puede verse que la distancia entre dos puntos cualesquiera $x, y \in \mathbb{R}$ está dada por el valor |x - y| = |y - x|.

Proposición:

- $|x| \ge 0$
- $|x| = 0 \iff x = 0$
- |x| = |-x|
- -|x| < x < |x|
- Sea a > 0: $|x| < a \iff -a < x < a$

- Sea a > 0: $|x| > a \iff x < -a \lor a < x$
- $|x+y| \le |x| + |y|$
- $|x \cdot y| = |x| \cdot |y|$
- Sea $y \neq 0$, $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

3. Introducción A10

Sea A un subconjunto no vacio de \mathbb{R}

- Cota Superior: Sea $b \in \mathbb{R}$, b es una cota superior de A si $a \leq b \ \forall a \in A$.
- Cota Inferior: Sea $b \in \mathbb{R}$, b es una cota inferior de A si $a \ge b \ \forall a \in A$.
- Supremo: b es supremo de $A \iff (a \le b \ \forall a \in A) \land (c < b \Rightarrow c \text{ no es una cota superior de } A)$.
- Ínfimo: b es ínfimo de $A \iff (b \le a \ \forall a \in A) \land (b < c \Rightarrow c \text{ no es una cota inferior de } A)$.
- Máximo: b es máximo de A si $a \le b \ \forall a \in A \land b \in A$.
- Mínimo: b es mínimo de A si $b \le a \ \forall a \in A \land b \in A$.

......

Teorema 8: Unicidad del supremo: Dos números distintos no pueden ser supremos de un mismo conjunto. Por esto tenemos una notación: b = sup(A).

Teorema 9: Caracterización del Supremo: $b = sup(A) \iff b$ es una cota superior de A tal que $\forall \epsilon > 0$ existe algun elemento $a \in A$ tal que $b - \epsilon < a$.

Demostración:

- \Rightarrow) Supongamos que no ocurre, entonces $a \leq b \epsilon$ y es cota superior de A, pero contradice que b es supremo de A, porque $a \leq b \epsilon < b$.
- \Leftarrow) Queremos demostrar que c < b no es cota superior de A. Sea $\epsilon_c = b c > 0$ y como $\exists a \in A : b \epsilon_c < a$, entonces $a > b \epsilon_c = b (b c) = c$ i.e c no es cota superior de A. Luego, $b = \sup(A)$.

Proposición 3: $b = max(A) \iff b \in A \land b = sup(A)$.

Proposición 4: $b = min(A) \iff b \in A \land b = inf(A)$.

3.1. Axioma del Supremo

Todo conjunto no vacío de números reales que sea acotado superiormente tiene un supremo.

Teorema 10: Existencia de Raices Cuadradas: Dado $a \ge 0$, existe un único $x \in \mathbb{R}$: $x \ge 0$ y $x^2 = a$. Si a = 0 es trivial. Si a > 0, sabemos que tiene dos soluciones (solo una es positiva). Se define el

conjunto $S_a = \{x \in \mathbb{R} : x^2 \leq a\}$. Vemos que $S_a \neq \emptyset$ y que está acotado superiormente. Luego existe $b = \sup(A)$. Luego, por tricotomía sacamos que $b^2 = a$.

Teorema 11: Propiedad Arquimediana de los Reales: Sean $x, y \in \mathbb{R}, x > 0 \Rightarrow \exists n \in \mathbb{N} : y < n \cdot x$. Va por absurdo, suponiendo $n \cdot x \leq y \ \forall n \in \mathbb{N}$. Definimos $S = \{n \cdot x : n \in \mathbb{N}\}$. S no es vacio, ergo existe $b = \sup(S)$. Luego $\exists a \in S : b - x < a$ (Caracterización). Y se podria escribir como $a = m \cdot x, m \in \mathbb{N}$. Es decir, $b < mx + x = (m+1) \cdot x$. Pero $(m+1) \cdot x \in S$, y b no es cota superior de S, lo que contradice que $b = \sup(S)$. Se contradice por suponer S acotado superiormente. Luego $\exists n \in \mathbb{N} : y < n \cdot x$.

Corolario 5:

- $\forall y \in \mathbb{R}, \exists n \in \mathbb{N} : y < N.$
- N no está acotado superiormente.
- Sea x > 0, $\exists n \in \mathbb{N} : \frac{1}{n} < x$

Teorema 12: Si A está acotado inferiormente, entonces posee ínfimo.

.....

Dado $x \in \mathbb{R}$, existe un único número p entero tal que $p \le x < p+1$. Demostracion:

- Si $x \in \mathbb{Z}$, p = x verifica.
- Sino, si 0 < x < 1, entonces p = 0 verifica.
- Sino, sea $S = \{n \in \mathbb{N} : x < n\}$ es distinto de \emptyset . Está acotado inferiormente por x, y por la propiedad arquimediana, existe $n_0 > x$ y $n_0 \in S$. Luego existe un minimo m y $m-1 \le x < m$ $\notin S$. Luego, llamando p = m-1, tenemos que $p \le x < p+1$, siendo p único.
- Si $x < 0 \Rightarrow -x > 0$ y es análogo.

Y queda demostrado que cuaquiera sea $x \in \mathbb{R}$, existe un unico $p \in \mathbb{Z}$:

$$p \le x$$

que suele notarse como [x] y se denomina **parte entera** de x:

$$[x] \le x < [x] + 1$$