Logic Representations

Basic Definitions

- Let $B = \{0,1\}$ $Y = \{0,1,2\}$
 - A logic function f in n inputs $x_1, x_2, ... x_n$ and m outputs $y_1, y_2, ... y_m$ is a mapping.

$$f: B^n \longrightarrow Y^m$$

- For each component f_i , i = 1,2, ...,m, define
- ON_SET: the set of input values x such that $f_i(x) = 1$
- OFF_SET: the set of input values x such that $f_i(x) = 0$
- DC_SET: the set of input values x such that $f_i(x) = 2$
- Completely specified function : DC_SET = φ

 Incompletely specified function : DC_SET≠ φ
- $m=1 \Rightarrow$ a single output function
 - m>1 => a multiple output function

Representations

1. Truth Table

Full adder

X	Y	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Multiple output function
- Sum: on-set = {(0 0 1), (0 1 0), (1 0 0), (1 1 1)}

 off-set= {(0 0 0), (0 1 1), (1 0 1), (1 1 0)}
- Completely specified function

Representations

2. Geometrical representation

1 variable

2 variables

3 variables

sum : on-set = $\{(0\ 0\ 1), (0\ 1\ 0), (1\ 0\ 0), (1\ 1_41)\}$ off-set = $\{(0\ 1\ 1), (1\ 0\ 1), (1\ 1\ 0), (0\ 0\ 0)\}$

Representations

3. Algebraic representations

Canonical sum of product (list of minterms)

$$C_{out} = x'yC_{in} + xy'C_{in} + xyC_{in}' + xyC_{in}$$

Reduced sum of product (two-level)

$$C_{out} = yC_{in} + xC_{in} + xy$$

= $yC_{in} + xC_{in} + xyC_{in}$

- List of cubes (Sum of Products (SOP), Disjunctive Normal Form (DNF))
- List of conjuncts (Product of Sums (POS), Conjunctive Normal Form (CNF))

Multi-level representation

$$C_{out} = C_{in} (x + y) + xy$$

4. Reduced Ordered Binary Decision Diagrams

Binary Decision Diagram

- Vertex represents decision
- Follow dashed line for value 0
- Follow solid line for value 1
- Function value determined by leaf value

Reduced Ordered Binary Decision Diagram (**ROBDD**)

Binary decision graph:

$$f = x_2 x_3 + x_1 x_3$$

- Terminal node:
- attribute

value
$$(v) = 0$$

value
$$(v) = 1$$

- Nonterminal node:
- index (v) = i, $i = 1 \sim 3$
- two children

low (v)

high (v)

- Evaluate an input vector

ROBDD

A BDD graph which has a vertex v as root corresponds to the function F_v :

- (1) If v is a terminal node:
 - a) if value (v) is 1, then $F_v = 1$
 - b) if value (v) is 0, then $F_v = 0$
- (2) If F is a nonterminal node (with index(v) = i)

$$F_{v}(x_{i}, ...x_{n}) = x_{i}' F_{low(v)}(x_{i+1}, ...x_{n}) + x_{i} F_{high(v)}(x_{i+1}, ...x_{n})$$

Shannon expansion

Variable Ordering

- Assign arbitrary total ordering to variable
 e.g. X1 < X2 < X3
- Variable must appear in ascending order along all paths

- Properties
 - No conflicting variable assignments along path
 - Simplifies manipulation

Reduced OBDD

Reduced OBDD:

- 1. No distinct vertices v and w such that subgraphs rooted by v and w are isomorphism.
- 2. No vertex v with low (v) = high(v)

• Merge equivalent leaves

Merge isomorphic nodes

• Eliminate redundant node

• Eliminate redundant node

ROBDD

After reduce

Implementation of Reduce

- Visit OBDD bottom up and label each vertex with an identifier
- Redundancy

```
-if id( low(v) ) = id( high(v) ), then vertex v is redundant

\Rightarrow set id(v) = id( low(v) )

-if index (v) = index(v) and id( low(v) ) = id( low(v) ) and id( high(v) ) = id( high(v) ), then set id(v) = id(v)
```

- A different identifier is given to each vertex at level *i*
- An ROBDD is identified by a subset of vertices with different identifiers

Reduce

Construct ROBDD Using Hash Table

- Using a hash table called unique table
 - Contain a key for each vertex of an OBDD
 - Key : (variable, right child, left child)
 - Each key uniquely identify the specific function
 - Look up the table can determine if another vertex in the table implements the same function

The Unique Table – Hash Table

- Unique table : hash table mapping (Xi, G, H) into a node in the DAG
 - before adding a node to the DAG, check if it already exists
 - avoids creating two nodes with the same function
 - constructed bottom up
 - terminated when root is reached
 - canonical form : pointer equality determines
 function equality

ROBDD Using Unique Table

Unique table

Key

Identifier	Variable	Right child	Left child
5	a	3	4
4	b	3	1
3	C	2	1

Multi-Rooted ROBDD

$$f = (a+b) c$$

 $g = b c d$
variable order (d, a, b, c)

f is constructed first and is associated with id=5 g: id=6

Unique table

Key

Identifier	Variable	Right child	Left child
6	d	4	1
5	a	3	4
4	b	3	1
3	С	2	1

Ordering Effects

- Ordered BDD: if x < y, then all nodes representing x precede all nodes representing y
- Given an ordering of variables, reduced OBDD is canonical

Example of a Good Ordering

 The size of OBDD depends on the ordering of variables

$$ex : x_1x_2 + x_3x_4$$

$$x_1 < x_2 < x_3 < x_4$$

Example of a Less Good Ordering

- For a good ordering, the size of an OBDD remains reasonably small
- Multiplier is an exception

$$x_1 < x_3 < x_2 < x_4$$

Which Ordering is Better?

• Let x3 x2 x1 x0 and y3 y2 y1 y0 be two binary numbers and carry-out3 the carry out of the most significant bit.

• Two ordering:

 Which ordering will result in smaller size and why?

Sample Function Classes

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	Linear	Exponential	High
Symmetric	Linear	Quadratic	Medium
Multipication	Exponential	Exponential	Low

General Experience

- Many tasks have reasonable ROBDD representations
- Algorithms remain practical for up to 100,000 vertex ROBDD
- Heuristic ordering methods generally satisfactory

Operations on ROBDD

Apply $f_1 < op > f_2$ $(f_1, f_2 \text{ must have the same ordering of variables,}$ then operations can be operated on f_1, f_2)

•
$$f_1 \cdot f_2 = (x_1'g_1 + x_1g_2)(x_1'g_3 + x_1g_4)$$

= $x_1'g_1g_3 + x_1g_2g_4$
= $x_1'(g_1g_3) + x_1(g_2g_4)$

- $f_1 + f_2$
- f₁⊕ f₂
- etc.

ROBDD

- complement: f ⊕ 1
- $f1 \rightarrow f2$: f1' + f1f2 (implication)
- time complexity

Reduced $O(|G|\log|G|)$

Apply $O(|G_1||G_2|)$

Generating ROBDD from Network

 Represent output functions of gate network as ROBDDs

Property of ROBDD

- (1) Commonly encountered functions have reasonable representations.(except multiplier)
- (2) Complementation will not blow up the representation.
- (3) Canonical form so that equivalence, satisfiability checking can be done easily.
- (4) Multi-level representation

Achille's heel function:

$$F = x_1 x_2 x_3 + x_4 x_5 x_6 + \dots + x_{3n-2} x_{3n-1} x_{3n}$$

F' has 3ⁿ terms

5. And-Inverter Graphs (AIGs)

And-Inverter Graph

- 5. And-Inverter Graph (AIG)
 - Simple structure
 - And-Gates as nodes (shown as circles)
 with two inputs as edges (shown as arrows)
 - Inverter edges marked with a dot
 - Used in ABC

Example

Ex:
$$y = f(x_1, x_2, x_3) = ((x_1 \cdot x_2)' \cdot (x_2 \cdot x_3)')'$$

= $(x_1 \cdot x_2) + (x_2 \cdot x_3)$

AIG Construction

- Start from SOP representation
- Convert to AIG using DeMorgan's law

$$x_1 + x_2 = (x_1 + x_2) = (x_1 \cdot x_2)$$

AIG Attributes

- Size is the number of AND nodes in it
- Logic level is the number of ANDgates on the longest path from the primary inputs (PIs) to the primary outputs (POs)
- The inverters are ignored

$$f(a,b,c,d) =$$

ac + d(ac' + bc)

6 nodes, 4 levels

AIG Canonicity

- . AIGs are not canonical
 - —ROBDDs are canonical
 - Same function represented by two functionally equivalent AIGs with different structures
 - Different structures can still be optimal with different objectives

AIG Canonicity

6 nodes, 4 levels => area optimal

7 nodes, 3 levels => speed (delay) optimal

6. Reed-Muller Form

Representation

Reed-Muller Expression (with AND, XOR and 1)

Algebraic Normal Form (ANF)

- $f(x_1, x_2, x_3, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus \dots \oplus a_n x_n \oplus a_{1,2} x_1 x_2 \oplus a_{1,3} x_1 x_3 \oplus \dots \oplus a_{n-1,n} x_{n-1,n} \oplus \dots \oplus a_{1,2,\dots,n} x_1 x_2 \dots x_n$ where $a_i = 0$ or 1
- . Use un-complemented literals only
- The above is called the Positive Polarity RM (PPRM), which is canonical (unique) for the given function
- $a \oplus b = b \oplus a, \quad a \oplus 1 = a', \quad (a \oplus b) \oplus c = a \oplus (b \oplus c), \quad c(a \oplus b) = ac \oplus bc$
- . $a + b = a \oplus b$ when a, b are exclusive

Example

$$\begin{split} f(x_1, \, x_2) &= f(0, \, 0)x_1'x_2' + f(0, \, 1)x_1'x_2 + f(1, \, 0)x_1x_2' \\ &+ f(1, \, 1)x_1x_2 \\ &= f(0, \, 0)x_1'x_2' \oplus f(0, \, 1)x_1'x_2 \oplus f(1, \, 0)x_1x_2' \\ &\oplus f(1, \, 1)x_1x_2 \\ &= f(0, \, 0)(x_1 \oplus 1)(x_2 \oplus 1) \oplus \\ f(0, \, 1)(x_1 \oplus 1)x_2 \oplus \\ f(1, \, 0)x_1(x_2 \oplus 1) \oplus \\ f(1, \, 1)x_1x_2 \\ &= f(0, \, 0)(x_1x_2 \oplus x_1 \oplus x_2 \oplus 1) \oplus \\ f(0, \, 1)(x_1x_2 \oplus x_2) \oplus \\ f(1, \, 0)(x_1x_2 \oplus x_1) \oplus \\ f(1, \, 1)x_1x_2 \\ &= f(0, \, 0) \oplus \\ (f(0, 0) \oplus f(1, 0))x_1 \oplus \\ (f(0, 0) \oplus f(0, 1))x_2 \oplus \\ (f(0, 0) \oplus f(0, 1)) \oplus f(1, 0) \oplus f(1, 1)x_1x_2 \end{split}$$

Characteristic Functions

Characteristic Function

Let E be a set and $A \subseteq E$

The characteristic function A is the function

$$X_A: E \to \{0,1\}$$

$$X_A(x) = 1 \text{ if } x \in A$$

$$X_A(x) = 0 \text{ if } x \notin A$$

Ex:

$$E = \{ 1,2,3,4 \}$$

 $A = \{ 1,2 \}$
 $X_{A(1)} = 1$
 $X_{A}(3) = 0$

Characteristic Function

Given a Boolean function

$$f: Bn \rightarrow Bm$$

the mapping relation denoted as $F \subseteq B^n \times B^m$ is defined as

$$F(x,y) = \{(x,y) \in B^n \times B^m | y = f(x) \}$$

The characteristic function of a function f is defined for (x, y) s.t. $X_f(x, y) = 1$ iff $(x, y) \in F$

Characteristic Function

Ex:
$$y = f(x_1, x_2) = x_1 + x_2$$

X ₁	\mathbf{X}_2	У
0	0	0
0	1	1
1	0	1
1	1	1

$$F_{y}(x_1, x_2, y) =$$

\mathbf{x}_1	\mathbf{x}_2	У	F	
0	0	0	1	V
0	0	1	0	
0	1	0	0	
0	1	1	1	V
1	0	0	0	
1	0	1	1	V
1	1	0	0	
1	1	1	1	V

Operations on Logic Functions

Operation on Logic Function

- Complement
- Intersection
- Union
- Difference
- XOR
- F is a tautology
- Cofactor
- Boolean difference
- Consensus operator
- Smoothing operator

Cofactor

Cofactor operation (restriction)

$$f_{\overline{xi}} = f_{xi=0}$$
 cofactor of f with respect to $x_i=0$
 $f_{xi} = f_{xi=1}$ cofactor of f with respect to $x_i=1$

Cofactor is a new function independent of x_i

$$f_{xi=0} = f(x_1, x_2,, x_i = 0, ..., x_n)$$

 $f_{xi=1} = f(x_1, x_2,, x_i = 1, ..., x_n)$

$$f(x, y, z) = xy + \overline{y}z + \overline{x}\overline{z}$$

$$f_{x=0} = \overline{y}z + \overline{z}$$

$$f_{x=1} = y + \overline{y}z$$

Cofator

Cofactor with respect to any cube Ex:

$$f(x, y, z, w) = xy + \overline{z}w + \overline{w} \overline{x}$$

$$f_{\overline{xy}} = f_{x=0, y=0} = \overline{z}w + \overline{w}$$

$$f_{x\overline{y}} = f_{x=1, y=0} = \overline{z}w$$

Shannon Expansion

$$\begin{split} f &= \overline{x} \cdot f_{x=0} + x \cdot f_{x=1} \\ &= \overline{x}_i \cdot \overline{y}_j \cdot f_{\overline{x}_i \overline{y}_j} + x_i \cdot \overline{y}_j \cdot f_{x_i \overline{y}_j} + \overline{x}_i \cdot y_j f_{\overline{x}_i y_j} + x_i \cdot y_j \cdot f_{x_i y_j} \end{split}$$

Ex:
$$f(x, y, z, w) = xy + z\overline{w} + \overline{x}\overline{w}$$

$$f_x = y + z\overline{w}$$

$$f_{\overline{x}} = z\overline{w} + \overline{w}$$

$$f = x(y + z\overline{w}) + \overline{x}(z\overline{w} + \overline{w})$$

Boolean Difference

 $\frac{\partial f}{\partial x}$ is called Boolean difference of f with respect to x

$$Def \colon \frac{\partial f}{\partial x} = f_x \oplus f_{\overline{x}}$$

f is sensitive to the value of x when $\frac{\partial f}{\partial x}$

Ex:

$$f(x, y, z, w) = xy + z\overline{w} + \overline{w} \overline{x}$$

$$f_{\overline{x}} = f(x = 0, y, z, w) = z\overline{w} + \overline{w}$$

$$f_{x} = f(x = 1, y, z, w) = y + z\overline{w}$$

$$f_{\overline{x}} \oplus f_{x} = (z\overline{w} + \overline{w}) \oplus (y + z\overline{w})$$

$$= yw$$

Application: Test pattern generation

Consensus Operator

$$Def: \forall x(f) = f_x \cdot f_{\bar{x}}$$

 $\forall x(f)$ evaluate f to be true for x=1 and x=0

Ex:
$$f(x, y, z, w) = xy + z\overline{w} + \overline{w} \overline{x}$$

$$\forall x(f) = f_x \cdot f_{\overline{x}} = z\overline{w} + \overline{w} y$$

Universal quantification of function w.r.t.
 variable x

Smoothing Operator

$$Def: \exists x(f) = f_x + f_{\bar{x}}$$

 $\exists x(f)$ evaluate f to be true for x=1 or x=0

Ex:

$$f(x, y, z, w) = xy + z\overline{w} + \overline{w} \overline{x}$$

$$\exists x(f) = f_x + f_{\overline{x}} = z\overline{w} + \overline{w} + z\overline{w} + y$$

- . Existential quantification of function w.r.t. variable x
- . Application: Image computation of sequential circuits