Adventures in Bayesian Structural Time Series

Andrew Bates, Josh Gloyd, Tyler Tucker

What is BSTS?

- Comprised of 3 components:
 - Structural Time Series model (a.k.a. state space model)
 - Spike and Slab regression
 - Bayesian model averaging
- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- Implementation
 - ► R: bsts
 - ▶ or Causal Impact
 - ► Python: Causal Impact

Structural Time Series

- Data from unobserved state space plus noise
- Model the latent state space instead of the data directly

Local Level Model

- ▶ y_t: data
- $\blacktriangleright \mu_t$: latent state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$
 $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\xi}^2)$

Analogous to the inercept in linear regression but allowing for the intercept to vary over time

Structural Time Series

Local Linear Trend Model

- y_t, μ_t : same as before
- \triangleright ν_t : slope (additional state component)

$$y_t = \mu_t + \varepsilon_t \qquad \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

$$\mu_{t+1} = \mu_t + \nu_t + \xi_t \qquad \qquad \xi_t \sim N(0, \sigma_{\xi}^2)$$

$$\nu_{t+1} = \nu_t + \zeta_t \qquad \qquad \zeta_t \sim N(0, \sigma_{\zeta}^2)$$

Structural Time Series

General Form

- ▶ *y_t*: data
- $ightharpoonup lpha_t$: state component

$$y_t = Z_t' \alpha_t + \varepsilon_t \qquad \qquad \varepsilon_t \sim N(0, H_t) \qquad (1)$$

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t \qquad \qquad \eta_t \sim N(0, Q_t) \qquad (2)$$

- ▶ (1): observation equation
- ▶ (2): transition equation

Structural Time Series in Bayesian Context

- Spike and slab regression
 - Used when regression components are included
 - Variable selection technique
 - Prior on regression coefficients
- Bayesian Model Averaging
 - Consequence of spike and slab prior
 - ▶ Different β s included in each draw of posterior (i.e. different model on each draw)
- Prior Elicitation and Posterior Sampling
 - Inclusion probabilities for regression coefficients
 - ▶ Or: expected model size, expected R^2 , weight given to R^2
 - Gibbs sampler (stochastic search variable selection) to draw from posterior
 - For details see paper by Scott and Varian