⑲ 日本 国 特 許 庁 (J P)

⑩特許出願公開

⑫公開特許公報(A)

平2-272929

Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)11月7日

H 04 L 1/08

8732-5K

審査請求 未請求 請求項の数 3 (全4頁)

図発明の名称

多数決符号化復号化方式、その方式における符号化器及び復号化器

②特 頭 平1−93050

221H 頤 平1(1989)4月14日

個発 明 者 Ш על ⑫発 明 者 佐 藤

学

東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内 東京都港区虎ノ門1丁目7番12号

沖電気工業株式会社内

@発 明 者 加藤 拓朗 俊 雄

東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内 東京都港区虎ノ門1丁目7番12号

勿出 願 人 冲電気工業株式会社

四代 理 人

弁理士 山本 恵一

睭 詽

1. 発明の名称

多数決符号化復号化方式、その方式におけ る符号化器及び復号化器

2. 特許請求の範囲

(1)多数決符号化復号化方式を用い、同一データ を複数回送るディジタルデータ通信システムにお いて、

対応するデータを一定間隔で遅延させるための シフトレジスタ群を有することを特徴とする多数 決符号化復号化方式における符号化器。

(2)多数決符号化復号化方式を用い、同一データ を複数回送るディジタルデータ通信システムにお いて、

一定間隔おきに受信したデータを同時に出力す るシフトレジスタ群と、

複数回送られてきたデータの多数決を取る多数 決論理回路とを有することを特徴とする多数決符 号化復号化方式における復号化器。

(3)多数決符号化復号化方式を用い、同一データ

を複数回送るディジタルデータ通信システムにお いて、

送信例符号化器が、

対応するデータを一定間隔で遅延させるための 第1 のシフトレジスタ群を有し、

受信侧復号化器が、

一定間隔おきに受信したデータを同時に出力す る第2のシフトレジスタ群と、

複数回送られてきたデータの多数決を取る多数 決論理回路とを有することを特徴とする多数決符 号化復号化方式。

3. 発明の詳細な説明

(産業上の利用分野)

本発明はデータ通信、特にランダム性誤り、バ ースト性誤りの双方が頻発する回線のデータ通信 における多数決符号化復号化方式に関する。

(従来の技術)

従来、この種の方式は特開昭63-164533 号公報 に開示されるものがあり、当該従来の方式を図面 に基づいて以下説明する。

第3図は従来の多数決符号化復号化方式を用い たデータ通信システムを示すブロック図である。 同図において、31はデータ送信器、32は符号化 ,器、 33は 通信路、 34は復号化器、 35はデータ受信 器である。この従来のデータ通信システムにおい て、データ送信器31から符号化器32に入力された データは予め定められた長さのフレームにフレー ム化され、誤り検出符号で符号化されて、その符 号化されたものを1フレームとして通信路33に複 数回送信される。復号化器34では受信した複数の フレームについてそれぞれ誤り検出符号の復号化 が行なわれる。誤りの検出されないフレームがあ れば、正しいデータとしてデータ受信器35に送ら れる。全てのフレームに誤りが検出されたときは 全フレームの対応するビットの多数決を取り新た に1つのフレームとする。新たに生成されたフレ ームは誤り検出符号の復号化が行なわれ、誤りが 検出されなければ、正しいデータとしてデータ受 信器35に送られる。

(発明が解決しようとする課題)

側符号化器に、対応するデータを一定間隔で遅延させるための第1のシフトレジスタ群を有し、受信側復号化器に、一定間隔おきに受信したデータを同時に出力する第2のシフトレジスタ群と、複数回送られてきたデータの多数決を取る多数決論理回路とを有することに特徴がある。

(作用)

しかしながら、従来の方式では受信個で予めたしながら、従来の方式では受信個で予数決をしておかなければ正しく多数用である。 はいっことができないのです。 また、 同期ピームを 識別する方法も ちょう の悪い 回線では 同期ができずる 大い に は 別ができずる 大い に は 別ができずる 大い に は り の ること な 方法 られる 取った と で さ ないという問題点が あった こと ない こ は ないという 問題点が あった こ

本発明はこれらの問題点を解決するためのもので、可変長フレームに適用可能で、ランダム性誤り、バースト性誤りの双方が発生する回線に適用可能な多数決符号化復号化方式を提供することを目的とする。

(課題を解決するたの手段)

本発明は前記問題点を解決するために、多数決符号化復号化方式を用い、同一データを複数回送るディジタルデータ通信システムにおいて、送信

従って、本発明は前記問題点を解決でき、可変 長フレームに適用可能で、ランダム性譲り、バースト性誤りの双方が発生する回線に適用可能な多 数決符号化復号化方式を提供できる。

(実施例)

以下、本発明の一実施例を図面に基づいて説明する。

第1 図は本発明の一実施例における符号化器を示すブロック図であり、また第2 図は本実施例における復号化器を示すブロック図である。第1 図において、11は符号化器入力端子、12-1、・・・、12-4、13-1、・・・、13-3、14-1、14-2、15-1はm(mは正の整数である)段シフトレジスタ、16は並列変換器、16-1、・・・、16-5 は並列変換器16の入力端子、17は符号化器出力端子である。第2 図において、21は復号化器入力端子、22は10 型の出力端子、22は10 で、22-5 は直列並列変換器22の出力端子、23-1、24-1、24-2、25-1、・・・、25-3、26-1、・・・、26-4はmピットシフトレジスタ、27は3-5多数決論理回路、28は復号化器出力端子である。

次に、本実施例の動作を第1図及び第2図に基づいて説明する。

はじめに、第1図の符号化器における動作について説明する、先ず、入力端子11より符号化器に入力されたデータは、シフトレジスタ12-1、13-1、14-1、15 及並列直列変換器16に入力される。各シフトレジスタでは入力がある毎に1段ずつシントレジスタでは入力がある毎に1段ず合に入力される。並列直列変換器16では、入力されたデータが入力端子16-5、16-4、・・・、16-1の順に符号化器出力端子17に送られる。従って、同一データはmビットおきに並列直列変換器16に入力され、(5m+1)ビットおきに符号化器出力端子17に出力される。

そして、第2図の復号化器における動作は次のように行なわれる。先ず、復号化器入力端子21より入力された受信データは、直列並列変換器22に入力され、出力端子22-5,22-4,・・・、22-1の順に出力される。各シフトレジスタでは入力がある毎に1段ずつシフトし、最後段のデータが多数決論理回路27に入力される。従って、(5a+1)ビットおき

16-1~16-5… 入力端子、

17…符号化器出力端子、

21…復号化器入力端子、

22…直列並列変換器、

22-1~22-5… 出力端子、

23-1,24-1,24-2,25-1 ~ 25-3,26-1~26-4

… m ピットシフトレジスタ、

27…3-5多数決論理回路、

28…復号化器出力端子。

特許出願人

沖電気工業株式会社

特許出願代理人

弁理士 山本恵一

に復号化器入力端子21より入力された受信データは同じタイミングで多数決論理回路27に入力され 多数決論理化によって誤り訂正される。

(発明の効果)

以上説明したように、本発明によれば、同一データを所定のビット間隔で送信しているためバースト性誤りの発生する回線にも適用可能である。また、データをフレーム化していないので、可変長のデータを送ることが可能である。

4. 図面の簡単な説明

第1図は本発明の一実施例における符号化器を示すブロック図、第2図は本実施例における復号化器を示すブロック図、第3図は従来の多数決符号化復号化方式を用いたデータ通信システムを示すブロック図である。

11…符号化器入力端子、

12-1~12-4,13-1 ~ 13-3,14-1,14-2,15-1

··· m 段シフトレイジスタ.

16…並列直列変換器、

11:符号化型入力端子

12-1~12-4,13-1~13-3,14-1,14-2,15-1:m段シフトレジスタ

16-1~16-5:入刀端子

17:符号化发出力等子

本発明における符号化器

第 1 図

21:使号化党入力对于

22-1-22-5:出力減チ 23-1.24-1.24-2.25-1~25-3.26-1~26-4:mビットシフトレジスタ 28:複写化製出力減チ

本知明における復号化器

第 2 図

従来の多数決符号化復居化方式によるデータ通信システム

第 3 図