# INTRODUCTION TO MATLAB PROGRAMMING Lec 1.1: MATLAB Basics

Dr. Niket Kaisare

Department of Chemical Engineering

IIT-Madras

NPTEL Course: MATLAB Programming for Numerical Computations — Week-1

#### About this Module

- We will cover the following topics
  - MATLAB basics
  - Arrays: Unlocking potential of MATLAB
  - Loops and Execution Control
  - MATLAB files: Scripts and Functions
  - Program Output and Plotting

# Starting and Exiting MATLAB

- We will go over starting a MATLAB session, layout of MATLAB window, MATLAB editor, etc.
- Also see video "Getting Started with MATLAB" on MATLAB site http://in.mathworks.com/videos/getting-started-with-matlab-68985.html

## MATLAB Programming Example

Indian captain, Mahendra Singh Dhoni, hits a ball with initial velocity of 35 m/s and angle of 45°. If the boundary is at a distance of 75 m, will he score a six?

- Setting up the problem:
  - $v_{net} = 35$ ;  $u_0 = v_{net} \cos(\pi/4)$ ;  $v_0 = v_{net} \sin(\pi/4)$
  - x' = u; y' = v
  - $u' = -\kappa u$ ; v' = -g;





#### MATLAB Code

```
%% Define Parameters and Initial Conditions
                         % gravitational acceleration
            = 9.81;
param.kappa = 0.006;
                          % air drag coefficient
u0 = 35*cos(pi/4);
v0 = 35*sin(pi/4);
X0 = [0; 0;
                         % starting position is the origin
    u0; v0];
                          % starting velocity is given
tSpan = [0 20]; % simulation time
[tOut, XOut] = ode45(@ballTrajectoryFun,tSpan,X0, [], param);
%% Displaying the results
figure(1);
plot(XOut(:,1),XOut(:,2),'bo');
xlabel('x (m)'); ylabel('y (m)');
%% Animating results
exitCode = ballAnimation(tOut, XOut);
```

#### MATLAB Code: Main Code Blocks

```
%% Define Parameters and Initial Conditions
                                                                                            Computation Input block
                            % gravitational acceleration
% air drag coefficient
param.g
              = 9.81;
param.kappa = 0.006;
u0 = 35*cos(pi/4);
v0 = 35*sin(pi/4);
%% Setting up and Solving the problem
X0 = [0; 0;  % starting position is the origin u0; v0];  % starting velocity is given tSpan = [0 20];  % simulation time
[tOut, XOut] = ode45(@ballTrajectoryFun,tSpan,X0, [], param);
%% Displaying the results
                                                                                            Output block
figure(1);
plot(XOut(:,1),XOut(:,2),'bo');
xlabel('x (m)'); ylabel('y (m)');
%% Animating results
exitCode = ballAnimation(tOut, XOut);
```

# MATLAB Code: Key Parts

```
%% Define Parameters and Initial Conditions
param.g = 9.81;

Comment

u0 = 35*cos(pi/

Assignment

(Math) Expression

[tOut, XOut] = ode45(@bal

Calling a function

plot(XOu

Calling a function
```

#### MATLAB Code

```
param.g
        = 9.81;
                     % gravitational acceleration
param.kappa = 0.006;
                       % air drag coefficient
u0 = 35*cos(pi/4);
v0 = 35*sin(pi/4);
%% Setting up and Solving the problem
X0 = [0; 0;
                       % starting position is the origin
                       % starting velocity is given
   u0; v0];
tSpan = [0 20];
                       % simulation time
[tOut, XOut] = ode45(@ballTrajectoryFun,tSpan,X0, [], param);
%% Displaying the results
figure(1);
plot(XOut(:,1),XOut(:,2),'bo');
xlabel('x (m)'); ylabel('y (m)');
%% Animating results
exitCode = ballAnimation(tOut, XOut);
```

## Basic Data Types

- Matlab easily works with arrays
  - Scalars, vectors and arrays
  - Assigning variables
  - Row vs. column vectors
  - Arrays / Matrices
- Suppress "echo"
- Variables are case-sensitive

# Basic Mathematical Expressions

#### **Scalar Operations**

- •+ \* / ^
- •log, exp
- •pow, sqrt
- •sin, cos, tan
- ·asin, acos, atan
- ·rem, round, ceil, floor

#### Special Variables

| Variable | Meaning                  |
|----------|--------------------------|
| pi       | Number $\pi$             |
| eps      | Machine precision        |
| i        | Imaginary unit           |
| inf      | Infinity                 |
| NaN      | Not a Number (e.g., 0/0) |
| ans      | Last displayed result    |
| end      | Last element of array    |
| realmax  | Largest real number      |
| intmax   | Largest integer          |

End of Lecture 1-1

# INTRODUCTION TO MATLAB PROGRAMMING Lec 1.2: Array Operations

Dr. Niket Kaisare
Department of Chemical Engineering
IIT-Madras

NPTEL Course: MATLAB Programming for Numerical Computations — Week-1

# Arrays are the most powerful aspect of MATLAB

- We will learn
  - Building arrays
  - Colon notations
  - Array operations and functions
- Also view "Working with Arrays in MATLAB" on MATLAB website:

http://in.mathworks.com/videos/working-with-arrays-in-matlab-69022.html

# **Building Arrays**

Recall that we can build arrays as:

 We can also build arrays from existing arrays (if correct size):

#### **Array Building Functions**

| Command    | Meaning                      |  |  |
|------------|------------------------------|--|--|
| ones(m,n)  | Build m×n matrix of 1's      |  |  |
| zeros(m,n) | Build m×n matrix of 0's      |  |  |
| eye(n)     | Identity matrix              |  |  |
| diag(vec)  | Create diagonal matrix       |  |  |
| diag(A)    | Diagonal elements of A       |  |  |
| rand(m,n)  | Uniform random number array  |  |  |
| randn(m,n) | Gaussian Random number array |  |  |
| magic(m)   | Magic square matrix          |  |  |
| hilb       | Hilbert matrix               |  |  |

# **Basic Mathematical Expressions**

#### "Scalar" Operations

- •log, exp
- •power, sqrt
- •sin, cos, tan
- ·asin, acos, atan
- •rem, round, ceil, floor •length, size, eig

#### **Matrix Operations**

- •+ \* / ^
- •logm, expm
- mpower, sqrtm
- sum, prod, cumsum, cumprod
- •min, max, mean, std

# **Basic Mathematical Expressions**

#### "Scalar" Operations

- •+ .\* ./ .^ •+ \* / ^
- ·log, exp
- •power, sqrt

- •rem, round, ceil, floor •length, size, eig

#### Matrix Operations

- ·logm, expm
- mpower, sqrtm
- sin, cos, tansum,prod,cumsum,cumprod
- asin, acos, atanmin, max, mean, std

End of Lecture 1-2

# INTRODUCTION TO MATLAB PROGRAMMING Lec 1.2b: Array Operations Revisited

Dr. Niket Kaisare
Department of Chemical Engineering
IIT-Madras

NPTEL Course: MATLAB Programming for Numerical Computations — Week-1

# Tapping some Array Operations in MATLAB

- Also view "Working with Arrays in MATLAB" on MATLAB website:
   <a href="http://in.mathworks.com/videos/working-with-arrays-in-matlab-69022.html">http://in.mathworks.com/videos/working-with-arrays-in-matlab-69022.html</a>
- Consider the following example (Marks earned by students)

| Name      | Math | Programming | Thermodynamics | Mechanics |
|-----------|------|-------------|----------------|-----------|
| Amit      | 24   | 44          | 36             | 36        |
| Bhavna    | 52   | 57          | 68             | 76        |
| Chetan    | 66   | 53          | 69             | 73        |
| Deepak    | 85   | 40          | 86             | 72        |
| Elizabeth | 15   | 47          | 25             | 28        |
| Farah     | 79   | 72          | 82             | 91        |

ourses

### Some things to try

- Create a 6×3 matrix allMarks to contain marks for first three courses
- Append marks for the Mechanics course to allMarks when received
- Do the following computations
  - Mechanics course was out of 50. Scale the marks to half
  - Extract row 3 and give the m We will use matrix fundaes for this:
  - Extract marks of our best stu
  - Calculate average marks obt  $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0.1 \end{bmatrix} = \begin{bmatrix} 2a & 0.1b \\ 2c & 0.1d \end{bmatrix}$
  - Scale all the marks out of 10

End of Lecture 1-2b

# INTRODUCTION TO MATLAB PROGRAMMING Lec 1.3: Loops and Execution Control

Dr. Niket Kaisare

Department of Chemical Engineering

IIT-Madras

NPTEL Course: MATLAB Programming for Numerical Computations — Week-1

# Various Loops in MATLAB

 For Loop (commands below will execute 10 times)

```
for i=1:10
     <statement 1>;
     :
     <statement n>;
end
```

 While Loop (commands below will execute if the condition is true)

```
while i<10
     <statement 1>;
     :
      <statement n>;
     i=i+1;
end
```

#### When to use For Loop

- For loop is used when a set of operations are to be repeated a specific number of times
- Examples
  - Find first 10 terms of Fibonacci series
  - Find factorial of a number n

•

# When to use While Loop

- While loop is used when a set of operations is to be repeated if a certain condition is met
  - Find all terms of Fibonacci series less than value 200
  - Location of a ball thrown upwards is given by  $y=v_0t-\frac{1}{2}g\,t^2$ . Calculate the location of the ball for every 0.1 seconds until it reaches the ground (i.e., y>0)

#### MacLaurin Series

ullet Calculate approximate value of  $e^{\,0.5}$  using the infinite series:

$$e^{a} = 1 + a + \frac{a^{2}}{2!} + \frac{a^{3}}{3!} + \frac{a^{4}}{4!} + \cdots$$

These calculations are to be performed with 2 to 7 terms in the series

#### End of Lecture 1-3

# INTRODUCTION TO MATLAB PROGRAMMING Lec 1.4: Working with Files – Scripts & Functions

Dr. Niket Kaisare

Department of Chemical Engineering

IIT-Madras

NPTEL Course: MATLAB Programming for Numerical Computations — Week-1

### Working with MATLAB files

- Type "edit <fileName>" at the command prompt to open MATLAB code editor with the file fileName.m.
- MATLAB files are of two types: Scripts and Functions
- More help from MATLAB website on "Writing a MATLAB Program":
   <a href="http://in.mathworks.com/videos/writing-a-matlab-program-69023.html">http://in.mathworks.com/videos/writing-a-matlab-program-69023.html</a>

### MATLAB Files: Scripts vs. Functions

- Scripts
   Files containing sequence of MATLAB commands
- MATLAB statements are executed as if typed on command prompt
- Functions
   Files that take certain input(s),
   executes sequence of steps, and
   returns output(s) at the end
- MATLAB statements are executed in function's own variable space

### Scope of Variables

- script shares the variables with workspace from where it was called
- Typically, that means MATLAB workspace
- function has its own workspace
- Variables used in a function have local scope
- Functions "talk" through input and output variables:

```
[out1,out2,...] = function fcnName(in1,in2,...)
```

### Script and Function Examples:

Write a script to calculate factorial
 Write a function to calculate

$$n! = 1 \times 2 \times \cdots \times n$$

$$f = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

Note: Such functions are commonly used to calculate physical properties of fluids. Today, we will consider a simple case of:

$$c_0 = 1, \qquad c_m = 1/m$$

## When to use Scripts vs. Functions (beginners)

- · Use scripts when you want to...
  - Make small calculations (e.g., factorial, plotting, basic computing etc.)
- Use functions when you want to...
  - Calculate values (r) as a function of variables (t,y,...): r = f(t,y,...)
  - Pass on the function values to MATLAB function for solving something; e.g.,:

$$\frac{dy}{dt} = f(t,y) \rightarrow \text{function dy} = \text{myODEfun}(t,y)$$
<...>ode45(@myOdefun, <...>)

- Calculate properties as a function of temperature, concentration, current, etc.
- All other purposes, you are likely to use scripts (instead of functions)

# INTRODUCTION TO MATLAB PROGRAMMING Lec 1.5: Plotting and Output

Dr. Niket Kaisare
Department of Chemical Engineering
IIT-Madras

NPTEL Course: MATLAB Programming for Numerical Computations — Week-1

# Various forms of output

- Display on the screen
  - Variables will echo if command ends without semicolon
  - Other options...
- Plotting data
  - Using plot command
  - · Other options...
- More help from MATLAB website on "Using Basic Plotting Functions" http://in.mathworks.com/videos/using-basic-plotting-functions-69018.html

# Displaying on the screen

• Recall various methods we used in this module:

```
• Echo result on screen: \Rightarrow b = [1, 2; 7 1];
```

• Using disp command: disp (b)

• disp some text: disp('Hello world')

More "beautiful" output:

```
disp(['Factorial value is ', num2str(factValue)])
```

More advanced output using fprintf:

```
fprintf('Factorial Value is: %4i\n',factValue)
```

# **Plotting**

- Consider the example of a ball thrown vertically upwards
  - · Plot location vs. time
  - Labeling the axes
  - Other plotting options
- Plot-ting multiple lines
- Log-Log plot

#### End of Lecture 1.5

# MODULE – 1 INTRODUCTION TO MATLAB PROGRAMMING

Dr. Niket Kaisare

Department of Chemical Engineering

IIT-Madras

 ${\tt NPTEL\,Course:\,MATLAB\,\,Programming\,for\,Numerical\,\,Computations\,--\,Week-1}$ 

### Summary of Module-1

- MATLAB basics
  - Familiarized with MATLAB command window and editor
  - Variables: scalars, vectors and arrays
  - Mathematical operations: both scalar and matrix operations
- Arrays: Unlocking potential of MATLAB
  - Array operations vs. elemental operations
  - Using arrays for more efficient use of MATLAB

# Summary of Module-1

- Execution control
  - for and while loops
  - if-then statements
- MATLAB files
  - Scripts and Functions
  - When to use scripts vs. functions
- Plotting in MATLAB