Affymetrix GeneChip Data Analysis with LIMMA

Asad

2023-05-13

Call Libraries

library(affy)

```
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
       IQR, mad, sd, var, xtabs
##
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
       union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
       'browseVignettes()'. To cite Bioconductor, see
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
```

library(oligo)

```
## Loading required package: oligoClasses
## Welcome to oligoClasses version 1.56.0
##
## Attaching package: 'oligoClasses'
```

```
## The following object is masked from 'package:affy':
##
##
       list.celfiles
## Loading required package: Biostrings
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:utils':
##
##
       findMatches
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
##
##
       windows
## Loading required package: XVector
## Loading required package: GenomeInfoDb
## Attaching package: 'Biostrings'
## The following object is masked from 'package:base':
##
##
       strsplit
## Welcome to oligo version 1.58.0
## Attaching package: 'oligo'
## The following objects are masked from 'package:affy':
##
##
       intensity, MAplot, mm, mm<-, mmindex, pm, pm<-, pmindex,
##
       probeNames, rma
```

```
library(GEOquery)
## Setting options('download.file.method.GEOquery'='auto')
## Setting options('GEOquery.inmemory.gpl'=FALSE)
library(Biobase)
library(tidyr)
## Attaching package: 'tidyr'
## The following object is masked from 'package:S4Vectors':
##
##
       expand
library(splitstackshape)
library(arrayQualityMetrics)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:oligo':
##
##
       summarize
## The following objects are masked from 'package:Biostrings':
##
##
       collapse, intersect, setdiff, setequal, union
## The following object is masked from 'package:GenomeInfoDb':
##
##
       intersect
## The following object is masked from 'package:XVector':
##
##
       slice
## The following objects are masked from 'package: IRanges':
##
##
       collapse, desc, intersect, setdiff, slice, union
## The following objects are masked from 'package:S4Vectors':
##
##
       first, intersect, rename, setdiff, setequal, union
## The following object is masked from 'package:Biobase':
##
##
       combine
```

```
## The following objects are masked from 'package:BiocGenerics':
##
       combine, intersect, setdiff, union
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(limma)
##
## Attaching package: 'limma'
## The following object is masked from 'package:oligo':
##
##
       backgroundCorrect
## The following object is masked from 'package:BiocGenerics':
##
##
       plotMA
library(annotate)
## Loading required package: AnnotationDbi
##
## Attaching package: 'AnnotationDbi'
## The following object is masked from 'package:dplyr':
##
##
       select
## Loading required package: XML
library(AnnotationDbi)
library(org.Hs.eg.db)
##
library(hgu133plus2.db)
```

4

##

library(EnhancedVolcano)

```
## Loading required package: ggplot2
## Loading required package: ggrepel
## Registered S3 methods overwritten by 'ggalt':
##
     method
                              from
##
     grid.draw.absoluteGrob
                             ggplot2
##
     grobHeight.absoluteGrob ggplot2
     grobWidth.absoluteGrob ggplot2
##
     grobX.absoluteGrob
                             ggplot2
     grobY.absoluteGrob
                             ggplot2
library(umap)
library(maptools)
```

```
## Loading required package: sp
##
## Attaching package: 'sp'
## The following object is masked from 'package:oligo':
##
##
       geometry
## The following object is masked from 'package: IRanges':
##
##
       %over%
## The following object is masked from 'package:oligoClasses':
##
##
       geometry
## Checking rgeos availability: TRUE
## Please note that 'maptools' will be retired during 2023,
## plan transition at your earliest convenience;
## some functionality will be moved to 'sp'.
```

setwd("D:/CancerData/Data")

Read celFiles

```
celFiles <- list.celfiles()
gset <- read.celfiles(celFiles)</pre>
```

```
## Loading required package: pd.hg.u133.plus.2
```

```
## Loading required package: RSQLite
## Loading required package: DBI

## Platform design info loaded.

## Reading in : GSM869667.CEL
## Reading in : GSM869668.CEL
## Reading in : GSM869669.CEL
## Reading in : GSM869670.CEL
## Reading in : GSM869671.CEL
## Reading in : GSM869671.CEL
## Reading in : GSM869672.CEL
## Reading in : GSM869673.CEL
## Reading in : GSM869674.CEL
## Reading in : GSM869674.CEL
## Reading in : GSM869675.CEL
## Reading in : GSM869676.CEL
## Reading in : GSM869678.CEL
## Reading in : GSM869679.CEL
```

Check if the expression ranges between 0-16 which means log2 transformed data

head(exprs(gset), 10)

##		GSM869667.CEL	GSM869668.CEL	GSM869669.CEL	GSM869670.CEL	GSM869671.CEL
##	1	229	108	109	124	175
##	2	10821	6408	6348	7954	19795
##	3	281	120	191	197	229
##	4	11322	6574	6440	8379	20164
##	5	84	97	64	94	149
##	6	189	96	87	96	138
##	7	10640	6409	6237	8195	20049
##	8	261	127	142	157	215
##	9	10548	6369	6215	8078	19846
##	10	237	104	127	130	210
##		GSM869672.CEL	GSM869673.CEL	GSM869674.CEL	GSM869675.CEL	GSM869676.CEL
##	1	175	206	190	430	236
##	2	21528	22435	18942	27267	9115
##	3	613	717	460	916	358
##	4	22583	22919	19122	28664	9391
##	5	140	117	179	149	174
##	6	164	192	181	258	237
##	7	21700	22731	19600	29211	9493
##	8	386	589	484	634	345
##	9	20858	22756	19066	29337	9252
##	10	339	558	335	384	292
##		GSM869678.CEL	GSM869679.CEL			
##	1	138	143			
##	2	8686	9857			
##	3	214	215			
##	4	9018	9944			
##	5	181	135			

##	6	94	122
##	7	8503	10106
##	8	186	176
##	9	8491	10031
##	10	159	154

Check sample distribution and probe intensity plot before normalization

```
boxplot(gset, xlab='Samples', ylab='log2 Expression', col='Red',
    main= 'Average Expression Before Normalization')
```

Average Expression Before Normalization


```
hist(gset, lwd=2,xlab='Log intensity',
    main="Signal Densities Before Normalization")
```

Signal Densities Before Normalization

 $\label{eq:cell_section} $\#$ Generate pseudo-image of chip intensity for individual sample (CEL file) $\#$ image(affyRaw[,1]) $$ $\#$ Perform normalization $\#$ RMA Normalization $$$

```
gset <- rma(gset)</pre>
```

- ## Background correcting
- ## Normalizing
- ## Calculating Expression

#Quantile normalization #gset<- normalize(gset, method='quantile')

Apply log2 transformation if Required

```
ex <- exprs(gset)
qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))
LogC <- (qx[5] > 100) ||
  (qx[6]-qx[1] > 50 && qx[2] > 0)
if (LogC) { ex[which(ex <= 0)] <- NaN
exprs(gset) <- log2(ex) }
```

Check probe intensity plot after normalization

```
boxplot(gset, xlab='Samples', ylab='log2Expression',col='Green',
    main= 'Average Expression After Normalization')
```

Average Expression After Normalization

hist(gset, lwd=2,xlab='log intensity',
 main="Signal Densities After Normalization")

Signal Densities After Normalization

Naming the Probe IDs to Gene IDs

```
ID<- featureNames(gset)
Symbol <- getSYMBOL(ID, 'hgu133plus2.db')
fData(gset) <- data.frame(Symbol=Symbol)</pre>
```

Perform DEG Analysis

```
Normal Tumor
##
## 1
           1
                 0
## 2
           1
## 3
           1
                 0
## 4
           1
                 0
## 5
           1
                 0
## 6
```

```
fit<- lmFit(gset, design)
contrast.mat<- makeContrasts("Tumor-Normal", levels = design)
fit2<- contrasts.fit(fit, contrast.mat)
fit3<-eBayes(fit2)
options(digits = 2)
topTable(fit3)</pre>
```

```
##
                 Symbol logFC AveExpr t P.Value adj.P.Val
## 200806_s_at
                  HSPD1 1.70
                                12.0 6.0 4.6e-05
                                                     0.56 0.780
                  SIKE1 1.28
## 204666 s at
                                6.9 5.9 6.2e-05
                                                     0.56 0.623
## 215512 at
                MARCHF6 1.70
                                 6.0 5.8 6.4e-05
                                                     0.56 0.600
## 1555033_a_at
                              5.9 5.6 9.9e-05
                 RGS12 1.04
                                                     0.56 0.359
                              8.0 5.4 1.3e-04
## 214513_s_at
                  CREB1 1.34
                                                     0.56 0.220
                              11.1 5.4 1.3e-04
## 210950_s_at
                  FDFT1 1.07
                                                     0.56 0.214
                              6.7 5.2 1.7e-04
                                                     0.56 0.030
## 235819_at
                 BTF3L4 1.38
## 220220 at
              LRRC37A4P 1.03
                                5.7 5.2 1.8e-04
                                                     0.56 0.024
## 230134_s_at
                  RC3H2 0.94
                                 7.7 5.1 2.1e-04
                                                     0.56 -0.071
## 242019_at
                  CERS6 1.32
                                 6.3 5.1 2.3e-04
                                                     0.56 -0.127
```

```
DEGs<- topTable(fit3, n=Inf, adjust="BH")
write.csv(DEGs, file="DEGs.csv")</pre>
```

Stratify

```
Significant_DEGs<- filter(DEGs,logFC>1|logFC< -1 & adj.P.Val<0.7)
Significant_UP<- filter(Significant_DEGs,logFC> 1)
Significant_Down<- filter(Significant_DEGs,logFC< -1)
```

Create basic volcano plot

Volcano plot

EnhancedVolcano

total = 54675 variables

Visualizing DEG of Interest

```
DEG_of_Interest <- data.frame(topTable(fit3, number=Inf, lfc=1, p.value = 1))
Genes_of_interest <- gset[rownames(DEG_of_Interest),]
heatmap(exprs(Genes_of_interest))</pre>
```


UMAP plot (dimensionality reduction)

Warning: Function moved to the car package because maptools is retiring in 2023

UMAP plot, nbrs=7

#Saving normalized expression

head(exprs(gset),10)

##		GSM869667.CEL	GSM869668.CEL	GSM869669.CEL	GSM869670.CEL	GSM869671.CEL
##	1007_s_at	11.6	13.0	13.2	12.4	12.4
##	1053_at	9.4	9.6	8.9	9.3	8.9
##	117_at	8.4	7.9	8.4	9.8	8.2
##	121_at	9.9	8.7	8.5	8.7	9.7
##	1255_g_at	5.7	4.7	4.7	4.9	4.8
##	1294_at	8.8	8.1	8.1	8.7	9.2
##	1316_at	6.7	7.3	8.3	7.9	6.5
##	1320_at	6.3	6.1	6.6	6.0	6.9
##	1405_i_at	7.4	5.3	6.6	6.2	7.8
##	1431_at	5.2	5.0	5.5	5.3	5.0
##		GSM869672.CEL	GSM869673.CEL	GSM869674.CEL	GSM869675.CEL	GSM869676.CEL
##	1007_s_at	12.8	13.1	12.8	13.3	12.4
##	1053_at	9.8	9.4	9.9	8.6	9.4
##	117_at	8.7	7.9	8.3	7.4	8.7
##	121_at	10.1	10.0	10.4	9.9	9.6
##	1255_g_at	4.9	4.9	4.8	7.0	5.2
##	1294_at	8.4	8.2	8.0	8.2	7.3
##	1316_at	6.4	6.4	7.0	6.4	7.0
##	1320_at	6.6	6.7	6.8	7.0	6.5
	4405	6.0	5.6	5.5	6.1	6.3
##	1405_i_at	6.8	5.6	5.5	0.1	0.5
	1405_1_at 1431_at	5.3	5.0	5.1	5.4	5.1

```
GSM869678.CEL GSM869679.CEL
             13.0
## 1007_s_at
                                12.4
                  11.0
## 1053_at
                                9.7
## 117_at
                   8.9
                                 8.5
## 121_at
                    9.3
                                10.0
## 1255_g_at
                    4.5
                                 4.7
## 1294_at
                                 9.0
                    9.2
## 1316_at
                    6.0
                                 6.4
## 1320_at
                                 6.9
                    7.7
## 1405_i_at
                    7.3
                                 8.8
## 1431_at
                    4.5
                                 5.1
```

```
norm.exprs<- data.frame(exprs(gset))
norm.exprs$Symbol <- getSYMBOL(ID,'hgu133plus2.db')
norm.exprs<-norm.exprs %>% relocate(Symbol)
write.csv(norm.exprs, 'normalized_expression.csv')
```