تکلیف معماری کامپیوتر سری ۳

پرهام الوانی ۴ اردیبهشت ۱۳۹۴

فهرست مطالب

۲ طراحی ۱ ۲ طراحی ۲ ۳ طراحی ۳

۱ طراحی ۱

در این طراحی تاخیر بافرض اینکه تاخیر adder ripple برابر با au d و تاخیر Multiplexer برابر با au d باشد داریم:

FA-1:1* Yd = Yd \implies Level-1:7dFA-r: 1 * rd = rdMux-1: \(d \) \implies Level- $Y:\Delta d$ FA-r:r*rd=rdMux-**T**:**T**d \implies Level- Υ : λd FA-f:f* Td = AdMux-**T**:**T**d \implies Level-4:11d $FA-\Delta:\Delta* \Upsilon d = \Im d$ Mux-**۴**:**۳***d* \implies Level-0:14d FA-9: T*Td = 9d \implies Level-9:17d

با توجه به آنجه در بالا گفته شد برای این طراحی نیاز به ۳۲ عدد Adder Full و ۱۰ عدد است.

۲ طراحی ۲

 g_i ها و p_i ها و نحسبه ی از روابط SOP استفاده شده است پس تاخیر پس از محاسبه ی p_i ها و p_i ها و رودی ها برابر با p_i خواهد بود. توجه به این نکته هم خالی از لطف نیست که برای پیاده سازی p_i با ورودی های زیاد ممکن است نیاز شود سطح های پیاده سازی افزایش یافته و تاخیر بیشتر شود.

$$delay = rd$$

و در نهایت برای تعداد قطعات مصرف شده در پیاده سازی انجام شده توسط نرم افزار proteus داریم:

Quantity	Name Part
۱۵	AND
٩	OR
18	XOR
۶	AND-۳
1	OR-٣
1	OR-۴
۵	AND-۴
۴	AND-۵
1	OR-۵
۵	AND-Y
1	OR-۶
1	OR-Y
1	AND-A
1	OR-A

۳ طراحی ۳

در این طراحی نیاز به ۲ عدد Adder Ripple ۸ بیتی داریم زبرا اگر حاصل جمع carry داشته باشد باید حاصل را با ۱ جمع کینم، برای پیاده سازی بهینه تر Adder Ripple دوم را با استفاده از Adder Half ها پیاده سازی میگنیم.

$$Half - Adderdelay = Vd$$

 $Full - Adderdelay = Vd$

$$Full-AdderbasedRipple-Adderdelay = \texttt{T}nd$$

$$\Rightarrow \texttt{A} * \texttt{T}d = \texttt{N} \texttt{F}d$$

$$Half-AdderbasedRipple-Adderdelay = nd$$

$$\Rightarrow \texttt{A} * d = \texttt{A}d$$

$$\Rightarrow \texttt{A}d + \texttt{N} \texttt{F}d = \texttt{T} \texttt{F}d$$

با توجه آنچه در بالا گفته شد برای این طراحی نیاز به Λ عدد Full-Adder و Λ عدد است.