ΤΥΠΟΛΟΓΙΟ ΜΑΣ061

Α. Περιγραφική Στατιστική

Δειγματικός μέσος:
$$\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i$$
, Δειγματική διασπορά: $S^2=\frac{1}{n-1}\left(\sum_{i=1}^n x_i^2-n\bar{x}^2\right)$, Δειγματική τυπική απόκλιση: $S=\sqrt{S^2}$

Β. Πιθανότητες

- Αθροιστικός Νόμος: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Πολλαπλασιαστικός Νόμος: $P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$
- Θεώρημα Ολικής Πιθανότητας: $P(B) = P(B|A) \cdot P(A) + P(B|A') \cdot P(A')$
- Θεώρημα Bayes: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

Γ. Τυχαίες Μεταβλητές και Κατανομές

- Μέση τιμή τυχαίας μεταβλητής: $\mu = E(X) = \sum x_i f(x_i)$
- Διασπορά τυχαίας μεταβλητής: $\sigma^2 = V(X) = \sum x_i^2 f(x_i) \mu^2$

Στοιχεία γνωστών κατανομών				
Κατανομή		Συνάρτηση πιθανότητας	Μέση τιμή	Διασπορά
Bernoulli	Bern(p)	$p^x(1-p)^{1-x}, \ x=0,1$	p	1-p
Διωνυμική	Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}, \ x=0,1,\dots n$	np	np(1-p)
Γεωμετρική	Geo(p)	$p(1-p)^{x-1}, x=1,2,\dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Αρνητική διωνυμική	NB(r,p)	$\binom{x-1}{r-1}p^r(1-p)^{x-r}, x=r,r+1,\dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Υπεργεωμετρική	H(N,r,n)	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}, \ x = 0, 1, \dots r$	$\frac{nr}{N}$	$\frac{nr}{N} \cdot \frac{N-r}{N} \cdot \frac{N-n}{N-1}$
Poisson	$P(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!}, \ x > 0$	λ	λ
Κανονική	$N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}$	μ	σ^2

Δ. Κανονική κατανομή και Κατανομές Δειγματοληψίας

Έστω ότι η τ.μ. $X_\sim N(\mu,\sigma^2)$. Τότε η τυποποιημένη τυχαία μεταβλητή $Z=(X-\mu)/\sigma\sim N(0,1)$. Επίσης, η τυχαία μεταβλητή X που δηλώνει τη μέση τιμή n παρατηρήσεων από το δείγμα, ακολουθεί την κανονική κατανομή $N(\mu,\sigma^2/n)$. Αν το τυχαίο δείγμα προέρχεται από διωνυμική κατανομή Bin(n,p) και το μέγεθος του δείγματος είναι μεγαλύτερο του 30, τότε $X\sim N(np,np(1-p))$.