- 1. Цель работы.
- Синтез и анализ работы различных схем сравнения двоичных чисел.
- 2. Моделирование логических схем сравнения 4 -разрядных двоичных чисел А и В на равенство.
 - 2.1 На основе использования логической схемы равнозначности.

$$F = \overline{(A0 \oplus B0)} * \overline{(A1 \oplus B1)} * \overline{(A2 \oplus B2)} * \overline{(A3 \oplus B3)}$$

Рисунок 1. Первая принципиальная схема сравнения 4 -разрядных двоичных чисел A и B на равенство.

2.2 На основе применения логической схемы неравнозначности. Используем теорему де Моргана:

$$F = \frac{\overline{(A0 \oplus B0)} * \overline{(A1 \oplus B1)} * \overline{(A2 \oplus B2)} * \overline{(A3 \oplus B3)}}{\overline{(A3 \oplus B3)}} = \overline{(A0 \oplus B0) + (A1 \oplus B1) + (A2 \oplus B2) + (A3 \oplus B3)}$$

Рисунок 2. Вторая принципиальная схема сравнения 4 -разрядных двоичных чисел A и B на равенство.

Рисунок 3. Временная диаграмма работы обеих схем.

По временной диаграмме видно, что схемы работают одинаково верно (выходы d(Res12) и d(Res34)).

- 3. Моделирование принципиальной схемы сравнения 5-разрядных двоичных чисел A и B на неравенство A < B.
 - 3.1 Последовательное сравнение.

Таблица истинности для 1-разрядных двоичных чисел А и В.

1 00000	iști trenititiire enitit	ottit i puopitotto
A0	В0	F0
0	0	0
0	1	1
1	0	0
1	1	0

Таблица истинности для 2-разрядных двоичных чисел А и В.

A1	A0	B1	В0	F1	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	0	

Карта Карно для F1.

Pисунок 4. Принципиальная схема сравнения 5-разрядных двоичных чисел A и B нанеравенство. Критический путь равен 10.

Рисунок 5. Временная диаграмма работы схемы.

3.2 Параллельное сравнение.

Рисунок 6. Принципиальная схема сравнения 5-разрядных двоичных чисел A и B на неравенство. Критический путь равен 5.

5

Рисунок 7. Временная диаграмма работы схемы.

По временным диаграммам: Pисунок 5 и Pисунок 7 видно, что схемы при одинаковых входных данных работают одинаково верно (выход d(Res) принимает значение истины, если A < B).

4 Вывод.

В результате выполнения работы:

- построены логические схемы сравнения 4-разрядных двоичных чисел A и B на равенство: на основе использования логической схемы равнозначности и неравнозначности;
- реализована логическая схема сравнения 5-разрядных двоичных чисел A и B на неравенство для последовательного и параллельного вариантов формирования результата сравнения чисел.
- вычислены критические пути при последовательном и параллельном сравнении: они равны 10 и 5 соответственно. Следовательно, при параллельном сравнении программа работает быстрее, но при этом наиболее аппаратно затратно.