Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Yu, Tang, Rao, Huang, Zhou & Lu

présenté par

William Guimont-Martin

• Nuages des points

- Inspiré du traitement de la langue naturelle
 - Transformer & Self-supervised learning de BERT [0]
 - Liens entre les disciplines
- Apprentissage auto-supervisé sur les nuages de points

Plan de la présentation

- Nuages de points
- Apprentissage auto-supervisé & BERT
- Point-BERT
- Résultats

Nuages de points

- Ensemble de points 3D
- Tâches
 - Classification
 - Segmentation des parties
 - Détection d'objets
 - Segmentation sémantique

Apprentissage profond et nuages de points

- Plus difficile à travailler que les images [0]
 - Densité irrégulière
 - Non-structuré
 - Non-ordonné
- Et l'annotation...

[0] Bello, Saifullahi Aminu, et al. "Deep learning on 3D point clouds." *Remote Sensing* 12.11 (2020): 1729.

Apprentissage auto-supervisé

- Annoter des données 3D est dur et coûteux
 - 3h pour 200m! [0]
- Self-Supervised Learning (SSL)
- Tâche de pré-entraînement
 - Pré-entraînement sur beaucoup de données non-annotées
 - Fine-tuning sur peu de données annotées
- Génère sa propre supervision à partir des données
 - Pas besoin d'annotation
 - Corruption / reconstruction

[0]

BERT: Masked Language Modeling

Corruption

The quick brown fox jumps over the lazy dog

Reconstruction

The quick brown fox jumps over the lazy dog

Masked Autoencoder

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Encodage

- Échantillonnage des points centraux
- Voisinnage
- Normalisation
 - Garder information locale seulement
- Mini-PointNet
 - Invariant aux permuations des points

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Discrete Variational Autoencoder

- Variational autoencoder
 - Compression
 - Décompression
 - Espace latent discret (tokens)
- Espace latent discret
 - Pont nuages de points -> NLP
 - Vocabulaire fixe
 - Similaire à des "mots"
 - Forme des "phrases" représentant le nuage de points

The Tokenizer

- Traduit le nuage de points en "mots"
- DGCNN
 - Construction d'un graphe kNN
 - Convolution sur les arêtes

Le Decoder

- Traduire les "mots" en nuages de points
- DGCNN
 - Prendre toute la "phrase" en compte
- FoldingNet pour la reconstruction

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Pre-training 3D Point Cloud Transformers with Masked Point Modeling

- Encodage des nuages de points
- Tokenizer pour utiliser des concepts de NLP
 - Pont entre les nuages de points et le NLP
- Masked Point Modeling
 - "Compréhension" des nuages
 - Bonne représentation interne
 - Comment on masque?

Masked Point Modeling

- Masque en bloc
- Masque 25%-45% des tokens

Fine-tuning: Classification

Classification

- Pré-entraînement sur ShapeNet
- Test sur ModelNet40
- [T] = Transformer + biais inductifs
- Patches = Plus de points

Table 1. Comparisons of Point-BERT with of state-of-the-art models on ModelNet40. We report the classification accuracy (%) and the number of points in the input. [ST] and [T] represent the standard Transformers models and Transformer-based models with some special designs and more inductive biases, respectively.

Method	#point	Acc.
PointNet [39]	1k	89.2
PointNet++ [40]	1k	90.5
SO-Net [24]	1k	92.5
PointCNN [25]	1k	92.2
DGCNN [60]	1k	92.9
DensePoint [28]	1k	92.8
RSCNN [45]	1k	92.9
[T] PTC [11]	1k	93.2
[T] PointTransformer [72]	_	93.7
[ST] NPTC [11]	1k	91.0
[ST] Transformer	1k	91.4
[ST] Transformer + OcCo [58]	1k	92.1
[ST] Point-BERT	1k	93.2
[ST] Transformer	4k	91.2
[ST] Transformer + OcCo [58]	4k	92.2
[ST] Point-BERT	4k	93.4
[ST] Point-BERT	8k	93.8

Few-Shot Classification

- K-way N-shot
 - K classes
 - N exemples par classe
- Meilleure performance

Table 2. **Few-shot classification results on ModelNet40.** We report the average accuracy (%) as well as the standard deviation over 10 independent experiments.

	5-way		10-way	
	10-shot	20-shot	10-shot	20-shot
DGCNN-rand [58] DGCNN-OcCo [58]	31.6 ± 2.8 90.6 ± 2.8	40.8 ± 4.6 92.5 ± 1.9	19.9 ± 2.1 82.9 ± 1.3	16.9 ± 1.5 86.5 ± 2.2
DGCNN-rand* DGCNN-OcCo* Transformer-rand Transformer-OcCo Point-BERT	91.9 ± 3.3 87.8 ± 5.2 94.0 ± 3.6	93.4 ± 3.2 93.9 ± 3.1 93.3 ± 4.3 95.9 ± 2.3 96.3 ± 2.7	84.6 ± 5.5	91.3 ± 4.6 89.4 ± 6.3 92.4 ± 4.6

Étude d'ablation

Pretext tasks	MPM	Point Patch Mixing	Moco	Acc.
Model A				91.41
Model B	✓			92.58 ↑
Model C	✓	\checkmark		92.91 ↑
Model D	✓	✓	\checkmark	93.24 ↑
Augmentation	mask type	mask ratio	replace	Acc.
Model B	block mask	[0.25, 0.45]	No	92.58
Model B	block mask	[0.25, 0.45]	Yes	91.81↓
Model B	rand mask	[0.25, 0.45]	No	92.34 ↓
Model B	block mask	[0.55, 0.85]	No	92.52 ↓
Model D	block mask	[0.25, 0.45]	No	93.16
Model D	block mask	[0.25, 0.45]	Yes	92.58 ↓
Model D	rand mask	[0.25, 0.45]	No	92.91 ↓
Model D	block mask	[0.55, 0.85]	No	92.59 ↓

Conclusion

- Touche à beaucoup de techniques
 - PointNet
 - Transformers
 - GNN
 - FoldingNet
- SSL semble être le futur
 - Acquisition peu coûteuse
 - Coûts d'annotation très grands
 - Multi-modalité
- Liens entre les disciplines de l'apprentissage profond
 - Avenue de recherche intéressante
 - Plus d'interdisciplinarité

Références

- Yu, Xumin, et al. "Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling." arXiv preprint arXiv:2111.14819 (2021).
- Déziel, Jean-Luc, et al. "PixSet: An Opportunity for 3D Computer Vision to Go Beyond Point Clouds With a Full-Waveform LiDAR Dataset." 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021.
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
- Bello, Saifullahi Aminu, et al. "Deep learning on 3D point clouds." Remote Sensing 12.11 (2020): 1729.
- Zheng, Wu, et al. "SE-SSD: Self-ensembling single-stage object detector from point cloud." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning on point clouds. TOG, 2019.
- Wang, Yue, et al. "Dynamic graph cnn for learning on point clouds." Acm Transactions On Graphics (tog) 38.5 (2019): 1-12.
- He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.
- Guimont-Martin, William. "Présentation de Point-BERT" William Guimont-Martin, 2022, https://willguimont.github.io/cs/2022/01/28/point-bert.html

Questions?

LeCake

Y. LeCun

How Much Information is the Machine Given during Learning?

- "Pure" Reinforcement Learning (cherry)
- ➤ The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
- The machine predicts a category or a few numbers for each input
- ► Predicting human-supplied data
- ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
- The machine predicts any part of its input for any observed part.
- ▶ Predicts future frames in videos
- ► Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference

Contrastive Learning

- Autre type de SSL
- Sémantique de haut niveau
 - CLS token
- MoCo [0]

QKV Attention

- Query
- Key
- Value

Scaled Dot-Product Attention

Want more transformers?

• <u>Transformers in Computer Vision</u> (French)