Métodos e formulações para o problema de layout em fila dupla II

Resumo

Problemas de layout em fila dupla (PLFD) tratam da maneira que dispomos facilidades (máquinas) ao longo dos lados de um corredor, como em uma linha de produção, de modo a minimizar certo objetivo. São problemas desafiadores, e surgem em várias aplicações na indústria manufatureira. Modelos de programação linear inteira mista foram propostos na literatura para o PLFD, cuja resolução computacional deu-se por métodos enumerativos tipo *branch and bound*. Tais modelos utilizam a estratégia de "M grande", tornando as relaxações usuais em métodos branch and bound pobres. Apesar disso, estudo recente ("Métodos e formulações para o problema de layout em fila dupla" – IC 2019-2020) demonstrou que se trata de uma boa estratégia frente a outras disponíveis. De fato, vários trabalhos científicos nessa linha foram publicados nos últimos 3 anos. O objetivo desta pesquisa é estudar modelos existentes de programação linear inteira mista para o PLFD e propor modificações que melhorem o tempo de resolução em computador. Testes computacionais serão feitos para validar os modelos propostos.

Palavras-chave: Programação Linear Inteira Mista. Programação Não-Linear. Formulação de Balas. Problemas de layout em fila dupla.

1 Introdução

Este subprojeto é a continuação do subprojeto de IC anterior (2019-2020) intitulado "Métodos e formulações para o problema de layout em fila dupla". O problema considerado é o da localização de *facilidades* (máquinas, departamentos etc) em uma determinada área, de modo a minimizar certo objetivo. Usualmente este objetivo representa o custo total de transporte/comunicação entre as facilidades. Tais problemas surgem em aplicações provenientes da indústria manufatureira (consulte por exemplo (EL-RAYAH; HOLLIER, 1970), (KUSIAK; HERAGU, 1987), (HERAGU; KUSIAK, 1988), (CHUNG; TANCHOCO, 2010) e (SECCHIN; AMARAL, 2019)). Dentre os vários tipos de *layouts* possíveis, destacam-se o de **fila simples**, no qual as facilidades são dispostas ao longo de uma linha, e o de **fila dupla**, onde as facilidades são dispostas em duas fileiras. Desta forma, o custo de comunicação entre duas facilidades é determinado pelo produto da distância entre as facilidades pelo custo fixo por unidade de comprimento; quanto mais distantes forem duas facilidades, maior será o custo entre elas. A Figura 1 ilustra uma típica configuração de *layout* em **fila dupla**. Como mencionado anteriormente, o objetivo é o de minimizar o custo total de comunicação.

Figura 1: *Layout* em fila dupla. A distância d_{ij} entre as facilidades i e j é a distância entre seus centros. Fonte: (SECCHIN; AMARAL, 2019).

Neste subprojeto trataremos do **problema de** *layout* **em fila dupla** (PLFD) e suas variantes. Uma formulação matemática genérica para o problema com *n* facilidades é dada por

$$\min_{\varphi \in D} \sum_{1 < i < n} c_{ij} d_{ij}^{\varphi} \tag{1}$$

onde é D o conjunto de todos os possíveis layouts, d_{ij}^{φ} é a distância entre as facilidades i e j referentes ao layout φ , e c_{ij} é o custo fixo unitário de comunicação entre as facilidades i e j. O PLFD é considerado há décadas na literatura, sendo tratado inicialmente por modelos matemáticos que apenas aproximam soluções de (1) ou ainda utilizando (meta)heurísticas. Somente em 2010, Chung e Tanchoco (CHUNG; TANCHOCO, 2010) propuseram um modelo matemático linear inteiro misto, posteriormente corrigido por Zhang e Murray (2012), pelo qual recuperam-se soluções ótimas exatas do problema. Ou seja, no modelo de Chung e Tanchoco é dada uma descrição precisa do conjunto de layouts D em (1). Amaral (2013) propôs outra descrição, que também resulta em um modelo de programação linear inteira mista (PLIM), e cuja resolução por métodos tipo branch and bound mostrou-se mais eficiente.

Todas as formulações exatas citadas anteriormente fazem uso de uma constante "M grande". O uso de constantes do tipo é comum em modelos lineares quando queremos lidar com situações que envolvam escolhas binárias (no caso, o lado de cada facilidade, veja a Figura 1). Esta estratégia possui o inconveniente de tornar as relaxações lineares, aquelas que substituem restrições de integralidade tipo "z∈[0,1]" por "z∈[0,1]", pobres, o que leva a um grande número de enumerações explícitas em métodos tipo *branch and bound*. Isso nos levou ao estudo de modelos e estratégias que evitassem tal "M grande", em particular as formulações disjuntivas de Balas (veja (MARTIN, 1999)). Este estudo foi conduzido entre 2019 e 2020 em um trabalho de IC com outro estudante. Apesar da aparente fraqueza da estratégia "M grande", a conclusão do estudo realizado foi que ela é uma boa alternativa frente à outras disponíveis. Não à toa, vários trabalhos que utilizam "M grande" surgiram na literatura desde 2019 (veja por exemplo (CHAE; REGAN, 2020) e (AMARAL, 2021)). Destaca-se o trabalho de Fischer, Fischer e Hungerländer (2019), que estabeleceu a menor constante M possível para a correta formulação do problema.

Uma das estratégias para aliviar o custo computacional da resolução do PLFD é o emprego de novos modelos e desigualdades válidas/cortes. Secchin e Amaral (2019) concebem um modelo de PLIM que agrega variáveis que capturam a "folga" entre duas máquinas (veja Figura 1). Os autores mostram que o novo modelo, apesar de possuir mais variáveis que seus antecessores, favorece a resolução por métodos de *branch and bound*, sobretudo quando aliado ao uso de desigualdades válidas.

Pretendemos neste subprojeto estudar novas formulações para o PLFD. Os novos modelos a serem estudados foram desenvolvidos por este coordenador, mas não estão publicados em periódicos. Eles se baseiam na reinterpretação do PLFD como um problema de fila única, onde a noção de distância é descrita por expressões não lineares. Por fim, um modelo de PLIM é obtido reescrevendo essas expressões por um conjunto equivalente de restrições lineares. Esse estudo pretende, portanto, averiguar a eficácia desses novos modelos. Há ainda estratégias não verificadas, que dependem de testes numéricos robustos, tais como a perturbação do vetor de custos (análise de sensibilidade) e eliminação de restrições redundantes em modelos já estabelecidos (há resultados teóricos não publicados nesse sentido). Como citado anteriormente, casos particulares do PLFD foram considerados na literatura, dentre os quais destacamos o **problema do corredor** (AMARAL, 2012), onde não é permitida folga entre duas facilidades adjacentes (veja a Figura 1); e **parallel row ordering problem** (YANG et

al, 2019), onde o lado de cada facilidade é definido *a priori*. Ambos os casos estão associados à aplicações da indústria. Evidentemente, para estes problemas particulares existem modelos simplificados mais tratáveis computacionalmente. As técnicas aqui estudadas podem, em princípio, serem empregadas nesses casos particulares, o que tornam esses problemas possíveis alvos desse subprojeto.

Referências

AMARAL, A. R. S. A mixed-integer programming formulation of the double row layout problem based on a linear extension of a partial order. **Optim. Lett.**, v. 15, p. 1407-1423, 2021.

AMARAL, A. R. S. Optimal solutions for the double row layout problem. **Optimization Letters**, v. 7, n. 1, p. 407-413, 2013.

AMARAL, A. R. S. The corridor allocation problem. **Computers & Operations Research**, v. 39, p. 3325-3330, 2012.

CHAE, J.; REGAN, A. C. A mixed integer programming model for a double row layout problem. **Computers & Industrial Engineering**, v. 140, 2020.

CHUNG J.; TANCHOCO, J. M. A. The double row layout problem. **International Journal of Production Research**, v. 48, n. 3, p. 709-727, 2010.

EL-RAYAH, T. E.; HOLLIER, R. H. A review of plant design techniques. **International Journal of Production Research**, v. 8, n. 3, p. 263-279, 1970.

FISCHER, A.; FISCHER, F; HUNGERLÄNDER, P. New exact approaches to row layout problems. **Math. Prog. Comp.**, v. 11, p. 703-754, 2019.

HERAGU S. S.; KUSIAK, A. Machine layout problem in flexible manufacturing systems, **Operations Research**, v. 36, n. 2, p. 258-268, 1988.

KUSIAK A.; HERAGU, S. The facility layout problem. **European Journal of Operational Research**, v. 29, n. 3, p. 229-251, 1987.

MARTIN, R. K. Large Integer Programs: Projection and Inverse Projection. In: _____. Large Scale Linear and Integer Optimization: A Unified Approach. Springer US, 1999. cap. 16, p. 565-632.

SECCHIN, L. D.; AMARAL, A. R. S.; An improved mixed-integer programming model for the double row layout of facilities. **Optimization Letters**, v. 13, n. 1, p. 193-199, 2019.

YANG X.; CHENG W.; SMITH A. E.; AMARAL, A. R. S. An improved model for the parallel row ordering problem. **Journal of the Operational Research Society**, 2019.

ZHANG Z.; MURRAY C. C. A corrected formulation for the double row layout problem. **International Journal of Production Research**, v. 50, n. 15, 2012.