(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 31. Juli 2003 (31.07.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/062174 A1

(51) Internationale Patentklassifikation7: 41/18, 43/205, B01J 23/755

C07C 1/22,

(74) Gemeinsamer Vertreter: BASF AKTIENGE-

(21) Internationales Aktenzeichen:

PCT/EP03/00488

(22) Internationales Anmeldedatum:

20. Januar 2003 (20.01.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 02 837.0

24. Januar 2002 (24.01.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BOTTKE, Nils [DE/DE]; Werderstrasse 12, 68165 Mannheim (DE). FISCHER, Rolf-Hartmuth [DE/DE]; Bergstrasse 98, 69121 Heidelberg (DE). NÖBEL, Thomas [DE/DE]; Claudius-Lojet-Str.13, 67133 Maxdorf (DE). RÖSCH, Markus [DE/DE]; Friedrich-Ebert-Strasse 115A, 55276 Oppenheim (DE).

- SELLSCHAFT; 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR PRODUCING TOLUOL DERIVATIVES
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON TOLUOLDERIVATEN

(57) Abstract: The invention relates to a method for producing toluol derivatives of formula (I), in which R1, R2, and R3 independently of one another represent hydrogen, halogen, C1-C6 alkyl, hydroxyl or C₁-C₆ alkoxy. Said derivatives are produced by the hydrogenation of benzaldehydes and/or benzylalcohols of formula (II), IIa: X=CHO $X=CH[OC_1-C_6]$ alkyl]2, IIb: X=CH₂-OH X=CH₂OC₁-C₆ alkyl

with hydrogen in the presence of a catalyst, which is defined in more detail in the description.

(57) Zusammenfassung: Verfahren zur Herstellung von Toluolderivaten der Formel (I), in der R¹, R², und R³ unabhängig voneinander Wasserstoff, Halogen, C1-C6-Alkyl, Hydroxyl oder C1-C6-Alkoxy bedeuten, durch Hydierung von Benzaldehyden und/oder Benzylalkoholen der Formel (II), IIa: X=CHO X=CH[OC1-C6-Alkyl]2, IIb: X=CH2-OH X=CH2-OC1-C6-Alkyl mit Wasserstoff in Gegenwart eines Katalysators, der in der Beschreibung näher definiert wird.

THIS PAGE BLANK (USPTO)

Verfahren zur Herstellung von Toluolderivaten

Beschreibung

5

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Toluolderivaten I,

10

in der R^1 , R^2 und R^3 unabhängig voneinander Wasserstoff, Halogen, $C_1-C_6-Alkyl$, Hydroxyl oder $C_1-C_6-Alkoxy$ bedeuten, durch Hydrierung von Benzaldehyden und/oder Benzylalkoholen der Formel II,

20

IIa:
$$X = CHO$$

$$X = CH[OC_1-C_6-Alky1]_2$$

$$X = CH_2-OH$$

$$X = CH_2-OC_1-C_6-Alky1$$

mit Wasserstoff in Gegenwart von Katalysatoren.

Die katalytische Hydrierung von Benzaldehyden oder Benzylalkoholen II zu den entsprechenden Toluolderivaten I ist prinzipiell aus der Literatur bekannt.

- Aus Synthesis, Band 8 (1993), Seite 799, ist bekannt, 3,4,5-Tri-methoxybenzaldehyd, gelöst in Essigsäure in Gegenwart von 10 % Palladium auf Aktivkohle zu 3,4,5-Trimethoxytoluol zu hydrieren.
- Nach Liebigs Annalen der Chemie 1976; Heft 7/8, Seite 1445 wird analog Syringaaldehyd (4-Hydroxy-3.5-dimethoxybenzaldehyd) in Gegenwart von 10 % Palladium auf Aktivkohle ebenfalls in Eisessig zu 4-Hydroxy-3.5-dimethoxytoluol hydriert.
- In Journal of American Chemical Society Band 79 von 1957, Seiten 179 184 ist die Hydrierung von 3.4.5-Trimethoxybenzylalkohol in Eisessig an Palladium auf Aktivkohle (10 %ig) beschrieben.
- Nachteilig bei all den vorgenannten Verfahren ist, dass bei der Reaktion entstehendes Wasser mit Essigsäure ein korrosives Lösemittelgemisch bildet und dass ein teures Edelmetall als Hydrierkatalysator verwendet wird.

In EP 606072 wird über die Hydrierung von Benzaldehyden an geformtem, ein Platingruppenmetall enthaltendem Titanoxid berichtet. Die Edukte werden in nur 1 %iger wässriger oder ethanolischer Lösung und damit in hoher Verdünnung eingesetzt. Die Hy5 drierung verläuft mit geringem Umsatz und äußerst niedriger Selektivität. Als Nebenprodukte treten kernhydrierte bzw. entmethylierte Benzole auf.

Für die Hydrierung von p-Methoxybenzylalkohol zu p-Methoxytoluol 10 werden nach J. Org. Chem., 1949, 14, Seite 1089, Kupferchromit-Katalysatoren und als Lösungsmittel Methanol eingesetzt. Die direkte Umsetzung von p-Methoxybenzaldehyd zu p-Methoxytoluol ist lediglich allgemein erwähnt jedoch mit keinem Beispiel belegt. Nachteilig an diesem Verfahren ist die Verwendung von chromhaltigen Katalysatoren.

Die Hydrierung von Benzylalkoholen ist weiterhin in Chem. Eur. J. (2000), 6 (2), Seiten 313 - 320 beschrieben. Zum Einsatz kommen teure Edelmetall-Katalysatoren wie Rhodium auf Kohle oder Rhodium 20 auf einem Al₂O₃-Träger, die zudem einen hohen Anteil an kernhydrierten Produkten liefern.

Es bestand die Aufgabe, ein mit hoher Ausbeute und Selektivität durchführbares Verfahren zur Herstellung von substituierten Tolu25 olverbindungen zu entwickeln, das die genannten Nachteile vermeidet. Dabei sollten vor allem teure Edelmetall-Katalysatoren, chromhaltige Katalysatoren und korrosive Lösungsmittel vermieden werden. Nebenreaktionen wie die Kernhydrierung zu Cyclohexanderivaten, die Decarbonylierung der Aldehydfunktion oder die Abspaltung von Substituenten wie Alkoxy oder Halogen am Phenylring sollte möglichst vollständig verhindert werden.

Diese Aufgabe wird gelöst in einem Verfahren zur Herstellung von Toluolderivaten der Formel I,

35

40

45

in der R^1 , R^2 und R^3 unabhängig voneinander Wasserstoff, Halogen, C_1 - C_6 -Alkyl, Hydroxyl oder C_1 - C_6 -Alkoxy bedeuten, durch Hydrierung von Benzaldehyden und/oder Benzylalkoholen der Formel II,

5

10

R¹

IIa:
$$X = CHO$$

$$X = CH[OC_1-C_6-Alkyl]_2$$

$$X = CH_2-OH$$

$$X = CH_2OC_1-C_6-Alkyl$$

mit Wasserstoff in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass sich der Katalysator wie folgt zusammensetzt:

- (a) mindestens ein Metall und/oder mindestens ein Oxid, Hydroxid oder Salz eines Metalls ausgewählt aus der Gruppe, bestehend aus Cobalt, Nickel und Kupfer;
- 15 (b) 0 bis 50 Gew.-% eines oder mehrerer Metalle und/oder eines oder mehrerer Oxide, Hydroxide oder Salze eines Metalls ausgewählt aus der Gruppe, bestehend aus Platin, Rhodium, Eisen, Silber, Molybdän, Wolfram, Mangan, Rhenium, Zink, Cadmium, Blei, Aluminium, Zirkon, Zinn, Phosphor, Silicium, Arsen, Antimon, Bismut, Titan und Seltenerdmetallen, sowie
 - (c) 0 bis 5 Gew.-% eines Alkali- oder Erdalkalioxids, -hydroxids oder -salzes,
- wobei die Summe der Komponenten (a) bis (c) sofern nicht zusätzlich ein Träger verwendet wird, 100 Gew.-% beträgt.

Eine mögliche Ausführungsform des Katalysators enthält:

- (a) 40 bis 99 Gew.-%, bezogen auf die Summe der Komponenten (a) -(c), eines oder mehrerer Metalle und/oder eines oder mehrerer Metalloxide, -hydroxide oder -salze ausgewählt aus der Gruppe bestehend aus Cobalt, Nickel und Kupfer;
- 35 (b) 0,1 bis 40 Gew.-%, bezogen auf die Summe der Komponenten (a)
 (c), eines oder mehrerer Metalle und/oder Metalloxide, -hydroxide oder -salze ausgewählt aus der Gruppe bestehend aus
 Platin, Rhodium, Eisen, Silber, Molybdän, Wolfram, Mangan,
 Rhenium, Zink, Cadmium, Blei, Aluminium, Zirkon, Zinn, Phosphor, Silicium, Arsen, Antimon, Bismut und Seltenerdmetalle,
 sowie
- (c) 0,05 bis 5 Gew.-%, bezogen auf die Summe der Komponenten (a)
 (c), eines oder mehrerer Alkali- oder Erdalkalioxide, -hydroxide oder -salze.

Im folgenden werden einige bevorzugte Ausführungsformen beschrieben, wobei die Bevorzugungen jeweils für eine einzelne Komponente wie auch für Kombination verschiedener Komponenten gelten. Die im folgenden angegebenen Mengenangaben beziehen sich auf die Summe 5 der Komponenten (a) - (c). Ein gegebenfalls vorhandener Träger wurde in diesen Angaben nicht berücksichtigt.

Bevorzugte Katalysatoren sind solche, in denen die Komponente (a) 5 bis 100 Gew.-% ausmacht. Insbesondere bevorzugt sind Katalysa-10 toren, die Komponente (a) in 40 bis 99 Gew.-% enthalten.

Weiterhin sind Katalysatoren bevorzugt, in denen die Komponente (b) in 0 bis 50 Gew.-% und insbesondere in 1 bis 40 Gew.-% enthalten sind.

15

Bevorzugte Katalysatoren enthalten als Komponente (b) mindestens ein Metalloxid, Hydroxid oder Salz ausgewählt aus der Gruppe bestehend aus Platin, Rhodium, Eisen, Silber, Molybdän, Wolfram, Mangan, Rhenium, Zink, Cadmium, Blei, Aluminium, Zirkon, Zinn,

20 Phosphor, Silicium, Arsen, Antimon, Bismut und Seltenerdmetalle.

Besonders bevorzugte Katalysatoren enthalten als Komponente (b) mindestens ein Metalloxid, Hydroxid oder Salz ausgewählt aus der Gruppe bestehend aus Aluminium, Silicium, Zirkon, Molybdän, Man-25 gan und Phosphor.

Als Komponente (c) werden in den erfindungsgemäßen Katalysatoren vorzugsweise Oxide oder Salze von Alkalimetallen und Erdalkalimetallen ausgewählt aus der Gruppe bestehend aus Lithium, Kalium, 30 Cäsium, Magnesium und Calcium und insbesondere bevorzugt Natrium eingesetzt.

Als Ausgangsstoffe können insbesondere Verbindungen der Formeln IIa und IIb einzeln oder als Gemische eingesetzt werden, in denen 35 R¹ bis R³ die obengenannte Bedeutung besitzen und R⁴ Wasserstoff oder C_1 - C_6 -Alkyl bedeuten. In manchen Fällen hat es sich als Vorteil erwiesen, die Aldehyde IIa in Form ihrer Acetale einzusetzen. Die Acetale lassen sich aus den Aldehyden IIa durch Umsetzung mit einem C1-C6-Alkohol nach literaturüblichen Verfahren her-40 stellen.

5

CHO
$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

Die Katalysatoren können als homogene Katalysatoren in gelöster Form oder als heterogene Katalysatoren verwendet werden. Bei den heterogenen Katalysatoren kann es sich um Trägerkatalysatoren, Vollkatalysatoren oder Raneykatalysatoren handeln, die in fest angeordneter, in suspendierter oder in gewirbelter Form angewandt werden. Als Trägermaterialien kommen beispielsweise Oxide wie Aluminiumoxid, Siliciumdioxid, Alumosilikate, Lanthanoxid, Titandioxid, Zirkondioxid, Magnesiumoxid, Zinkoxid und Zeolithe sowie Aktivkohle oder Mischungen davon in Betracht.

Die Herstellung der heterogenen Katalysatoren erfolgt in der Regel derart, dass man Vorläufer der Komponenten (a), optional zusammen mit Vorläufern der Komponenten (b) (Promotoren) und/oder optional mit Vorläufern der Spurenkomponenten (c) in Gegenwart oder Abwesenheit von Trägermaterialien (je nachdem welcher Katalysatortyp gewünscht ist) ausfällt, optional den so erhaltenen Katalysatorvorläufer zu Strängen oder Tabletten verarbeitet,

25 trocknet und anschließend calciniert. Trägerkatalysatoren sind im allgemeinen auch erhältlich, indem man den Träger mit einer Lösung der Komponenten (a) und optional (b) und/oder (c) tränkt, wobei man die einzelnen Komponenten gleichzeitig oder nacheinander zugeben kann, oder indem man die Komponenten (a) und optional

30 (b) und/oder (c) auf den Träger nach an sich bekannten Methoden aufsprüht. Wenn nötig, können bei der Katalysator-Herstellung Bindemittel verwendet werden.

Als Vorläufer der Komponenten (a) kommen in der Regel gut wasser35 lösliche Salze der zuvor genannten Metalle wie Nitrate, Chloride,
Acetate, Formiate und Sulfate in Betracht, vorzugsweise Nitrate.

Als Vorläufer der Komponenten (b) kommen in der Regel gut wasserlösliche Salze oder Komplexsalze der zuvor genannten Metalle wie Nitrate, Chloride, Acetate, Formiate und Sulfate in Betracht, vorzugsweise Nitrate.

Als Vorläufer der Komponenten (c) kommen in der Regel gut wasserlösliche Salze der zuvor genannten Alkalimetalle und Erdalkalimetalle wie Hydroxide, Carbonate, Nitrate, Chloride, Acetate, For-

Die Fällung erfolgt im allgemeinen aus wässrigen Lösungen, wahl-5 weise durch Zugabe von Fällungsreagenzien, durch Änderung des pH-Wertes oder durch Änderung der Temperatur.

Üblicherweise trocknet man die so erhaltene Katalysatorvormasse bei Temperaturen im Bereich von 80 bis 150 °C, vorzugsweise von 80 10 bis 120 °C, vor.

Das Calcinieren nimmt man üblicherweise bei Temperaturen im Bereich von 150 bis 500 °C, vorzugsweise von 200 bis 450 °C, in einem Gasstrom aus Luft oder Stickstoff vor.

15

Gegebenenfalls wird die Katalysator-Oberfläche passiviert, was üblicherweise bei Temperaturen im Bereich von 20 bis 80, vorzugsweise von 25 bis 35 °C mittels Sauerstoff-Stickstoff-Mischungen wie Luft durchgeführt wird.

20

Man setzt die erhaltene calcinierte und gegebenenfalls passivierte Katalysatormasse im allgemeinen einer reduzierenden Atmosphäre aus ("Aktivierung"), beispielsweise indem man sie bei
einer Temperatur im Bereich von 100 bis 500 °C, vorzugsweise von
25 150 bis 400 °C, 2 bis 60 h einem Gasstrom, der freien Wasserstoff
enthält, aussetzt. Der Gasstrom besteht vorzugsweise aus 20 bis
100 Vol-% Wasserstoff und 0 bis 50 Vol.-% eines Inertgases wie
Stickstoff.

30 Aus der bevorzugten Aktivierung des Katalysators direkt im Synthesereaktor ergeben sich verfahrensökonomische Vorteile.

Die erfindungsgemäßen Katalysatoren zeichnen sich durch hohe Aktivität aus und ermöglichen hohe Durchsätze bei praktisch voll-35 ständigem Umsatz.

Die Hydrierung kann diskontinuierlich, insbesondere aber kontinuierlich durchgeführt werden. Beim kontinuierlichen Betrieb kann in Sumpf oder Rieselfahrweise, in der Gas- oder in der Flüssig40 phase gearbeitet werden.

Die Ausgangsstoffe der Formeln IIa und IIb sind nach den in der eingangs zitierten Literatur beschriebenen Verfahren zugänglich. Die Verbindungen IIa und IIb können in Substanz, z.B. in der Gasphase oder als Schmelze hydriert werden. In manchen Fällen hat es sich als vorteilhaft erwiesen ein Lösungsmittel zuzusetzen.

5 Als Lösungsmittel sind solche geeignet, die ein ausreichendes Lösungsvermögen für die Ausgangsstoffe II und die Zielprodukte I aufweisen und die unter den Hydrierbedingungen stabil sind. Beispiele für derartige Lösungsmittel sind Ether wie Tetrahydrofuran, Dioxan, Tetrahydropyran, Polyethylenglykoldialkylether oder 10 Polyethylenglykolmonoalkylether, Wasser, Alkohole wie Methanol, Ethanol, tert.-Butanol, Cyclohexanol, Alkylbenzole wie Toluol oder Xylole, Phenole wie Brenzkatechin, Resorcin, Hydrochinon, Pyrogallol oder Alkylether dieser Phenole. Es können auch Gemische dieser Lösungsmittel eingesetzt werden.

15

Bevorzugte Lösungsmittel sind Tetrahydrofuran, Dioxan, Tetrahydropyran, Polyethylenglykoldialkylether, Polyethylenglykolmonoalkylether, Alkylbenzole, Wasser und Alkohole oder Gemische dieser Verbindungen. Insbesondere geeignet sind Ether oder Ether/Wasser Gemische. Gleichfalls bevorzugt sind Alkohole und Alkohol/Wasser Gemische, insbesondere Methanol und methanol/Wasser Gemische.

Hydriert wird z. B. eine 1 bis 60 gew.-%ige Lösung der Ausgangsstoffe II in den genannten Lösungsmitteln.

25

In einer bevorzugten Ausführungsform wird die Hydrierung in der Gasphase ohne Verwendung eines Lösungsmittels durchgeführt.

Man hydriert bei Temperaturen von wahlweise 20 bis 280 °C und Drucken von wahlweise 1 bis 300 bar, bevorzugt bei Temperaturen 30 von 100 bis 260 °C und Drucken von 20 bis 250 bar.

Der zur Hydrierung eingesetzte Wasserstoff wird im allgemeinen in größerem stöchiometrischen Überschuss relativ zur Ausgangsverbindung II verwendet.

35

Er kann als Kreisgas in die Reaktion zurückgeführt werden. Der Wasserstoff kommt im allgemeinen technisch rein zum Einsatz. Beimengen von Inertgasen, z. B. Stickstoff stören jedoch den Reaktionsablauf nicht.

40

Die durch die erfindungsgemäße Hydrierung herstellbaren Verbindungen I stellen wertvolle Zwischenprodukte dar, die zur Herstellung von Pharmaprodukten, Feinchemikalien und Pflanzenschutzmitteln verwendet werden können.

Nachstehend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Die Prozentangaben bedeuten Gewichtsprozente.

Beispiele für erfindungsgemäße Katalysatoren:

5

Katalysator A: 60 Gew-% CuO; 40 Gew-% Al₂O₃;

Katalysator B: 65,4 Gew-% CoO; 20,2 Gew-% CuO; 8,3 Gew-% Mn_3O_4 ; 3,5 Gew-% MoO_3 ; 2,4 Gew-% P_2O_5 ; 0,2 Gew-% Na_2O_5 ;

10

Katalysator C: 74,0 Gew-% NiO; 2,2 Gew-% MoO3; 23,8 Gew-% CuO; auf ZrO2 als Träger;

Katalysator D: 77,7 Gew-% NiO, 13,6 Gew-% SiO_2 , 5,8 Gew-% Al_2O_3 , 4,7 Gew-% ZrO_2

Aktivierung des Katalysators A

In einem elektrisch beheizbaren Reaktor wurden 50 g Katalysator
20 A, welcher von einem Stickstoffstrom von 100 NL/h durchströmt
wurde, ausgehend von Raumtemperatur auf 250°C erhitzt. Für die
folgenden 12 h wurden dem Stickstoffstrom 5 NL/h Wasserstoff beigemischt. Innerhalb der nächsten 5 h wurde anschließend der
Stickstoff gegen reinen Wasserstoff ausgetauscht.

25

Aktivierung der Katalysatoren B, C und D bei Normaldruck

Nach Füllung eines elektrisch beheizbaren Reaktors von 1 Liter Volumen mit dem Katalysator wurde bei einem Stickstoffstrom von 30 300 1/h die Temperatur ausgehend von Raumtemperatur stündlich um ca. 20 °C erhöht, bis 290 °C erreicht waren. Jetzt wurde innerhalb von 6 Stunden der Stickstoff gegen Wasserstoff ausgetauscht. Dazu wurde stündlich der Wasserstoffanteil um 50 1/h erhöht und gleichzeitig der Stickstoffanteil um 50 1/h verringert. Sind 300 35 1/h Wasserstoff-Zufuhr erreicht, wurde die Reaktortemperatur auf 300 - 310 °C erhöht und 48 Stunden bei 300 1/h Wasserstoff beibehalten. Der Katalysator wurde nach Abkühlung unter Argon ausgebaut und unter Tetraethylenglycoldimethylether gelagert.

40 Herstellung von Toluolderivaten der Formel I

Beispiel 1

Hydrierung von 3,4,5-Trimethoxybenzaldehyd in der Gasphase an 45 Kupferkatalysatoren

Der Versuch wurde in einer Gasphasenapparatur, bestehend aus einem Verdampfer, einem Reaktor und einem Kondensator durchgeführt. Die Ausgangsverbindung wurde im Wasserstoffgegenstrom im Verdampfer an Raschigringen verdampft. Der mit Ausgangsverbindung gesättigte Wasserstoffstrom wurde auf den bereits voraktivierten Katalysator zur Reaktion gebracht. Anschließend gelangten die Gasströme in einen Kondensator, aus welchem die flüssig anfallenden Produkte abgelassen werden konnten. Der Wasserstoffdruck in der Hydrierapparatur betrug während der Reaktion 1 bar.

10

Pro Stunde wurden 4,5 g 3,4,5-Trimethoxybenzaldehyd im Wasserstoffgegenstrom an Raschigringen verdampft und bei einer Temperatur von 260 °C über 50 g voraktivierten Katalysator A geleitet. Das Wasserstoff-Edukt-Verhältnis (mol/mol) betrug ca. 4:1.

15 Bei einem Umsatz von 94 %, wurde eine Selektivität von 85 % erreicht.

Beispiel 2

20 Hydrierung von 3.4.5-Trimethoxybenzaldehyd in der Flüssigphase an Nickelkatalysatoren

In einem 300 ml Druckreaktor wurden 1 g Katalysator D in einem Katalysatorkorbeinsatz vorgelegt und mit 10 g 3,4,5-Trimethoxy25 benzaldehyd in 100 g Methanol versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck bei 200 bar und einer Temperatur von 180 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde. Anschließend wurde der Reaktor entspannt. Der Umsatz an Aldehyd betrug 100 %. Die 30 Ausbeute am gewünschten Toluolderivat lag bei 91 %, bezogen auf die Gesamtmenge des eingesetzten Aldehyds.

Beispiel 3

35 Hydrierung von 3,4,5-Trimethoxybenzaldehyd in der Flüssigphase an Cobaltkatalysatoren

Analog zu Beispiel 2 wurden 10 g 3,4,5-Trimethoxybenzaldehyd gelöst in 100 g Tetrahydrofuran an 1 g Katalysator B hydriert. Der 40 Umsatz an Aldehyd betrug 100 %. Die Ausbeute am gewünschten Toluolderivat lag bei 96 %, bezogen auf die Gesamtmenge des eingesetzten Aldehyds.

Beispiel 4

Flüssigphase

Analog zu Beispiel 2 wurden 10 g 3.4.5-Trimethoxybenzaldehyd ohne 5 Lösungsmittel an 1 g Katalysator C hydriert. Der Umsatz an Aldehyd betrug 100 %. Die Ausbeute am gewünschten Toluolderivat lag bei 94 %, bezogen auf die Gesamtmenge des eingesetzten Aldehyds

10

15

20

25

30

35

40

5

10

20

25

30

35

45

Patentansprüche

1. Verfahren zur Herstellung von Toluolderivaten der Formel I,

CH₃
R¹
R²

Hydrierung von Benzaldehyden und/oder Benzylalkoholen der

I

in der \mathbb{R}^1 , \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander Wasserstoff, Halogen, \mathbb{C}_1 - \mathbb{C}_6 -Alkyl, Hydroxyl oder \mathbb{C}_1 - \mathbb{C}_6 -Alkoxy bedeuten, durch

15 Formel II,

IIa: X = CHO $X = CH[OC_1-C_6-Alkyl]_2$ $X = CH_2-OH$ $X = CH_2OC_1-C_6-Alkyl$

mit Wasserstoff in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass sich der Katalysator wie folgt zusammensetzt:

- (a) mindestens ein Metall und/oder mindestens ein Oxid, Hydroxid oder Salz eines Metalls ausgewählt aus der Gruppe bestehend aus Cobalt, Nickel und Kupfer;
- (b) 0 bis 50 Gew.-% eines oder mehrerer Metalle und/oder eines oder mehrerer Oxide, Hydroxide oder Salze eines Metalls ausgewählt aus der Gruppe bestehend aus Platin, Rhodium, Eisen, Silber, Molybdän, Wolfram, Mangan, Rhenium, Zink, Cadmium, Blei, Aluminium, Zirkon, Zinn, Phosphor, Silicium, Arsen, Antimon, Bismut, Titan und Seltenerdmetallen, sowie
- (c) 0 bis 5 Gew.-% eines Alkali- oder Erdalkalioxids, -hydroxids oder -salzes,

wobei die Summe der Komponenten (a) bis (c), sofern nicht zusätzlich ein Träger verwendet wird, 100 Gew.-% beträgt.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Komponente (a) 40 bis 99 Gew.-% der Summe der Komponenten (a) bis (c) ausmacht.
- 5 3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die Komponente (b) 1 bis 40 Gew.-% der Summe der Komponenten (a) bis (c) ausmacht.
- 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Komponente (c) 0,05 bis 5 Gew.-% der Summe der
 Komponenten (a) bis (c) ausmacht.
 - 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Hydrierung in einem Lösungsmittel durchgeführt wird.
 - 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Lösungsmittel ein Ether, ein Alkylbenzol, Wasser oder Alkohol oder ein Gemisch dieser Lösungsmittel eingesetzt wird.
- 20 7. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Hydrierung in der Gasphase durchgeführt wird.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Hydrierung in der Schmelze der Verbindung II durchgeführt wird.
 - 9. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man die Hydrierung bei Drücken von 20 bis 250 bar und bei Temperaturen von 100 bis 260 °C durchführt.
 - 10. Verfahren nach den Ansprüchen 1 bis 9 zur Herstellung von 3,4,5-Trimethoxytoluol.

30

15

INTERNATIONAL SEARCH REPORT

onal Application No **SP** 03/00488

A. CLASSIFICATION OF SUBJECT MA IPC 7 CO7C1/22 CO7C41/18

C07C43/205

B01J23/755

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7C B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data

Relevant to claim No.
. selevan to claim No.
1-10
1-10
1-10
1-10

Y Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	 *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family
Date of the actual completion of the international search 18 March 2003	Date of mailing of the international search report 01/04/2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer O'Sullivan, P

INTERNATIONAL SEARCH REPORT

int onal Application No PCT/EP 03/00488

	(Continuation) DOCUMENTS SIDERED TO BE RELEVANT				
Calegory °		Relevant to claim No.			
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 601785 XP002235170 See reaction details No 14 abstract & SABATIER; KUBOTA: COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L'ACADEMIE DES SCIENCES, vol. 172, 1921, page 735 GAUTHIER-VILLARS, PARIS., FR	1,5-10			
X	KRAFFT, M ET AL: "Oxidation of secondary alcohols using Raney Nickel" JOURNAL OF ORGANIC CHEMISTRY., vol. 51, no. 26, 1986, pages 5482-5484, XPO02235169 AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0022-3263 page 5483, column 2, line 2 - line 4	1,5-10			
A	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 590491 XP002235171 abstract & PINCOCK, J A ET AL: JOURNAL OF ORGANIC CHEMISTRY., vol. 59, no. 19, 1994, pages 5587-5595, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0022-3263	1-10			

Ĺ

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int onal Application No
PCT 03/00488

nily Publication date

	tent document in search report		Publication date		Patent family member(s)	Publication date
US	4464482	A	07-08-1984	EP JP CA EP JP	0053884 A1 57117345 A 1185589 A1 0061304 A1 57165041 A	16-06-1982 21-07-1982 16-04-1985 29-09-1982 09-10-1982
FR	678954	Α	07-04-1930	NONE		
DE	904529	С	18-02-1954	NONE		
US	5387726	A	07-02-1995	DE BR CN DE EP ES MX	4300297 A1 9400041 A 1099740 A 59406155 D1 0606072 A1 2118981 T3 9400303 A1	21-07-1994 26-07-1994 08-03-1995 16-07-1998 13-07-1994 01-10-1998 29-07-1994

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Int onales Aktenzeichen PCT 03/00488

A. KLASSIFIZIERUNG DES ANMELDUN ALEGENSTANDES IPK 7 C07C1/22 C07C41/18

C07C43/205

B01J23/755

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 7\ C07C\ B01J$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.	
Α	US 4 464 482 A (BIRD ALFRED J ET AL) 7. August 1984 (1984-08-07) Beispiel 64	1-10	
A	FR 678 954 A (EXPL DES MATIERES ORGANIQUES S) 7. April 1930 (1930-04-07) Seite 1, Spalte 2, Zeile 39 - Zeile 54	1-10	
A	DE 904 529 C (BAYER AG) 18. Februar 1954 (1954-02-18) Seite 1, Spalte 1, Zeile 1 -Spalte 2, Zeile 23 Beispiel 6	1-10	
Α	US 5 387 726 A (BANKMANN MARTIN ET AL) 7. Februar 1995 (1995-02-07) in der Anmeldung erwähnt Spalte 3, Zeile 1 - Zeile 37	1-10	

entnehmen	<u></u>
* Besondere Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum
 A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 	öder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidlert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundellegenden
E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung
L Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf
anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie	*Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätlinkeit beruhand betrachtet

ausgeführt) werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist O' Veröffentlichung, die sich auf eine m
 ündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

18. März 2003

Datum des Abschlusses der internationalen Recherche

01/04/2003

Name und Postanschrift der Internationalen Recherchenbehörde

Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

O'Sullivan, P

Absendedatum des internationalen Recherchenberichts

INTERNATIONALER RECHERCHENBERICHT

Into onales Aktenzeichen
PCT/EP 03/00488

C.(Fortsetz	ung) ALS WESENTL ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
X	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 601785 XP002235170 See reaction details No 14 Zusammenfassung & SABATIER; KUBOTA: COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L'ACADEMIE DES SCIENCES, Bd. 172, 1921, Seite 735 GAUTHIER-VILLARS, PARIS., FR	1,5-10
X	KRAFFT, M ET AL: "Oxidation of secondary alcohols using Raney Nickel" JOURNAL OF ORGANIC CHEMISTRY., Bd. 51, Nr. 26, 1986, Seiten 5482-5484, XP002235169 AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0022-3263 Seite 5483, Spalte 2, Zeile 2 - Zeile 4	1,5-10
A	DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; Database accession no. 590491 XP002235171 Zusammenfassung & PINCOCK, J A ET AL: JOURNAL OF ORGANIC CHEMISTRY., Bd. 59, Nr. 19, 1994, Seiten 5587-5595, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0022-3263	1-10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Verättigtlichungen, die zur setben Patentfamilie gehören

Inte inales Aktenzeichen
PCT SP 03/00488

	echerchenbericht rtes Patentdokument		Datum der Veröffentlichung	1	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US	4464482	Α	07-08-1984	EP JP CA EP JP	0053884 A1 57117345 A 1185589 A1 0061304 A1 57165041 A	16-06-1982 21-07-1982 16-04-1985 29-09-1982 09-10-1982
FR	678954	Α	07-04-1930	KEINE		
DE	904529	С	18-02-1954	KEINE		
US	5387726	A	07-02-1995	DE BR CN DE EP ES MX	4300297 A1 9400041 A 1099740 A 59406155 D1 0606072 A1 2118981 T3 9400303 A1	21-07-1994 26-07-1994 08-03-1995 16-07-1998 13-07-1994 01-10-1998 29-07-1994

THIS PAGE BLANK (USPTO)