

MIPI 使用指南

Version: 1.1.1

Release date: 2021-04-20

© 2021 北京晶视智能科技有限公司

本文件所含信息归北京晶视智能科技有限公司所有。

未经授权,严禁全部或部分复制或披露该等信息。

修订记录

	修订记录	A THE T	深圳種		深圳随		
•	2) 607		; 2) 60°	: 2)			
· denti	版本	日期	修订说明	修订人			
	1.0.0	2021/04/20	RD update by review	廖尹辰			
	1.1.1	2021/06/21	更正 MIPI_TX ioctl	黃立銘			

Confidential for Athlinet

for 深圳随

Specifications are subject to change without notice

法律声明

本数据手册包含北京晶视智能科技有限公司(下称"晶视智能")的保密信息。未经授 权,禁止使用或披露本数据手册中包含的信息。如您未经授权披露全部或部分保密信 息,导致晶视智能遭受任何损失或损害,您应对因之产生的损失/损害承担责任。 本文件内信息如有更改,恕不另行通知。晶视智能不对使用或依赖本文件所含信息承 担任何责任。

本数据手册和本文件所含的所有信息均按"原样"提供,无任何明示、暗示、法定或其 他形式的保证。晶视智能特别声明未做任何适销性、非侵权性和特定用途适用性的默 示保证, 亦对本数据手册所使用、包含或提供的任何第三方的软件不提供任何保证; 用户同意仅向该第三方寻求与此相关的任何保证索赔。此外,晶视智能亦不对任何其 根据用户规格或符合特定标准或公开讨论而制作的可交付成果承担责任。

Confidential for This Hilling t

Specifications are subject to change without notice

目录

Spec	ificat	ions are s	ubject to chang	e without notice				
	目	录					未定义书签。 未定义书签。	
	1.	功能概	· {述	\\.	602 1/2 HIVE	错误!>	未定义书签。	
		1.1.	目的	19,7		错误!>	未定义书签。	
		1.2.	定义及缩写.	100				
		1.3.	参考指引	(0)		错误!>	未定义书签。	
	2.	设计概	我述			错误!>	未定义书签。	
		2.1.	系统架构			错误!ラ	未定义书签。	
		2.2.	注意事项			错误!>	未定义书签。	
	3.	API 参	考			错误!ラ	未定义书签。	
	4.	数据类	型			错误!ラ	未定义书签。	
	5.	错误码]			错误!>	未定义书签。	
	6.	相关测]试			错误!>	未定义书签。	
		6.1.	单元测试			错误!>	未定义书签。	
		6.2.	功能测试					
		6.3.	性能测试		-5:41/1/19	错误!ラ	未定义书签。	
				confidential			未定义书签。	

Confidential for Athlet

1. MIPI 使用指南

Confidentia.1.机械述

idential for *** thinker idential for william MIPI Rx 可接收差分與 DC(TTL)介面數據, 並將數據轉換成 pixel 數據後傳給下一 級的 ISP 模塊。 差分訊號支援 SubLVDS(Sub Low-Voltage Differential Signal), MIPI-CSI 與 HiSPi(High-Speed Serial Pixel Interface)等視頻輸入。DC 訊號支 援 Sensor RAW12, BT1120, BT656 與 BT601。

1.2.重要概念

MIPI

移动行业处理器接口-Mobile Industry Processor Interface, MIPI 特指物理层 使用 D-PHY 传输规范並使用 CSI-2 為协议层的通信接口。

Lane

物理層用于连接发送端和接收端的一对高速差分线。一個 Lane 可傳送時鐘或 資料。1C4D 指一個時鐘 Lane 及 4 個資料 Lane。

• LVDS

低压差分信号(Low Voltage differential Signaling)· 這裡的 LVDS 泛指 LVDS 發展的 sub-LVDS 與 HiSPi 通过同步码区分消隐区和有效数据。

同步碼

MIPI-CSI 利用標準的短包(Short Packet)當做同步訊號。 LVDS 訊號利用同包 碼(Sync Code)作為同步訊號。 LVDS 有兩種同步模式:

- 使用 SOF/EOF 表示一幀的開始與結束。
- 使用 SOL/EOL 表示行的開始與結束。

Specifi						
1	圖 1-1 SOF/EOF	F/SOL/E(DL 同步方式			
	1 60°		VBLANK		4	for
	HBLANK	SOF	Active Line 1		HBLANK	
Confidenti	HBLANK		Active Line 2		HBLANK]
	HBLANK		Active Line 3	EOL	HBLANK	
	i	SOL	!		:	
	HBLANK		Active Line P-1		HBLANK	
	HBLANK		Active Line P	EOF	HBLANK	
			VBLANK]

使用 SAV invalid 與 EAV invalid 表示 VBLANK 的開始與結束。 使用 SAV valid 與 EAV valid 表示有效資料(information line, H.OB 與 pixel data)的開始與結束。

圖 1-2 SAV/EAV 同步方式

[圖 1-2 SAV/EA	V 同步方式				
		- 1 X				
	HBLANK	41/47	VBLANK		HBLANK	
	HBLANK	SAV	VBLANK	EAV	HBLANK	
• 0	HBLANK	Invalid		Invalid	HBLANK	
ient16	:		VBLANK		Canition	
Confidentis	HBLANK		Frame Information Line	EAV Valid	HBLANK	
	HBLANK	SAV Valid	OB/ effective pixel		HBLANK	
	HBLANK		OB/ effective pixel		HBLANK	
	HBLANK	valia		Valla	HBLANK	
	HBLANK		OB/ effective pixel		HBLANK	
	HBLANK		VBLANK		HBLANK	
	HBLANK	SAV	VBLANK	EAV	HBLANK	
	HBLANK	Invalid		Invalid	HBLANK	
	HBLANK		VBLANK		HBLANK	

DOL SONY 的交錯式 WDR 模式,全稱為 Digital Overlap。

1.3. 功能描述

MIPI RX 支援一路最大 4 lanes 或兩路最大 2 lanes 的 MIPI-CSI, sub-LVDS 與 HiSPi 差分視頻輸入接口,接口支持 lane 互換與差分訊號的 PN 互換。注意若使 用兩路插分訊號輸入, 腳位 MIPIRX#必須 0 到 2 同一組輸入, 3 到 5 同一組輸

confidential for Athlinet 入。MIPI RX 也支援 sensor TTL·BT1120 · BT656 與 BT601 等平行輸入接口 · 支持除了 Clock 以外的 lane 功能互换。 具體的 Lane 分佈如下表:

大・MIPI RX 也支援 sensor TTL・BT1120・BT656 與 BT601 等平行輸入接口・支持除了 Clock 以外的 lane 功能互換。 具體的 Lane 分佈如下表:表 1-1 支持 BT 接口分佈表。BGA 封裝支持 VIO-VI2, QFN 封裝支持 VIO. VIO	VI0	PAD NAME	VI1	PAD NAME	VI2	PAD NAME	1 den	
VIO_D[0] MIPIRX4P VI1_D[0] VIVO_D0 VI2_D[0] VIVO_D0 VI0_D[1] MIPIRX3N VI1_D[1] VIVO_D1 VI2_D[1] VIVO_D1 VI0_D[2] MIPIRX3P VI1_D[2] VIVO_D2 VI2_D[2] VIVO_D2 VI0_D[3] MIPIRX2N VI1_D[3] VIVO_D3 VI2_D[3] VIVO_D3 VI0_D[4] MIPIRX2P VI1_D[4] VIVO_D4 VI2_D[4] VIVO_D4 VI0_D[5] MIPIRX1N VI1_D[6] VIVO_D5 VI2_D[6] VIVO_D5 VI0_D[6] MIPIRX1P VI1_D[6] VIVO_D6 VI2_D[6] VIVO_D6 VI0_D[7] MIPIRX0N VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VI0_D[8] MIPIRXMO VI1_D[8] VIVO_D8 VI0_D[9] MIPI_TXMO VI1_D[10] VIVO_D9 VI0_D[10] MIPI_TXM1 VI1_D[11] MIPIRX5N VI0_D[12] MIPI_TXM1 VI1_D[13] MIPIRX5P VI0_D[13] MIPI_TXM2 VI1_D[13] MIPIRX4P VI0_D[14] MIPI_TXP2 VI1_D[15] MIPIRX3N VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VII_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VII_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VII_D[16] MIPIRX3P VI1_D[16] MIPIRX3P VII_D[16] MIPIRX3P VI1_D[16] VIV0_D10 VI1_D[16] MIPIRX3P VI1_D[16] VIV	VIO CLK			<i>></i>		VIDO CLK	Confile	
VIO_D[2] MIPIRX3P VI1_D[2] VIVO_D2 VI2_D[2] VIVO_D2 VIO_D[3] MIPIRX2N VI1_D[3] VIVO_D3 VI2_D[3] VIVO_D3 VIO_D[4] MIPIRX2P VI1_D[4] VIVO_D4 VI2_D[4] VIVO_D4 VIO_D[5] MIPIRX1N VI1_D[5] VIVO_D5 VI2_D[5] VIVO_D5 VIO_D[6] MIPIRX1P VI1_D[6] VIVO_D6 VI2_D[6] VIVO_D6 VIO_D[7] MIPIRX0N VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VIO_D[8] MIPIRX0P VI1_D[8] VIVO_D8 VIVO_D7 VIO_D[9] MIPI_TXM0 VI1_D[10] VIVO_D9 VIO_D[10] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXM1 VI1_D[12] MIPIRX4P VIO_D[14] MIPI_TXP2 VI1_D[15] MIPIRX3N VIO_D[16] MIPIRX3P VI1_D[16] MIPIRX3P								
VIO_D[3] MIPIRX2N VI1_D[3] VIVO_D3 VI2_D[3] VIVO_D3 VIO_D[4] MIPIRX2P VI1_D[4] VIVO_D4 VI2_D[4] VIVO_D4 VIO_D[5] MIPIRX1N VI1_D[5] VIVO_D5 VI2_D[6] VIVO_D5 VIO_D[6] MIPIRX1P VI1_D[6] VIVO_D6 VI2_D[6] VIVO_D6 VIO_D[7] MIPIRX0N VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VIO_D[8] MIPIRX0N VI1_D[8] VIVO_D8 VIVO_D7 VIO_D[9] MIPITXMO VI1_D[9] VIVO_D9 VIVO_D9 VIO_D[10] MIPI_TXMO VI1_D[10] VIVO_D10 VIVO_D10 VIO_D[12] MIPI_TXM1 VI1_D[12] MIPIRX5P VI0_D12 VIO_D[13] MIPI_TXM2 VI1_D[14] MIPIRX4N VI0_D14 MIPI_TXP2 VI1_D[15] MIPIRX3N	VI0_D[1]	MIPIRX3N	VI1_D[1]	VIVO_D1	VI2_D[1]	VIVO_D1		
VIO_D[4] MIPIRX2P VI1_D[4] VIVO_D4 VI2_D[4] VIVO_D4 VIO_D[5] MIPIRX1N VI1_D[5] VIVO_D5 VI2_D[5] VIVO_D5 VIO_D[6] MIPIRX1P VI1_D[6] VIVO_D6 VI2_D[6] VIVO_D6 VIO_D[7] MIPIRX0N VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VIO_D[8] MIPIRX0P VI1_D[8] VIVO_D8 VIVO_D7 VIO_D[9] MIPI_TXM0 VI1_D[9] VIVO_D9 VIO_D[10] MIPI_TXP0 VI1_D[10] VIVO_D10 VIO_D[11] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXP1 VI1_D[12] MIPIRX4N VIO_D[13] MIPI_TXP2 VI1_D[14] MIPIRX3N VIO_D[14] MIPI_TXP2 VI1_D[15] MIPIRX3N	VI0_D[2]	MIPIRX3P	VI1_D[2]	VIVO_D2	VI2_D[2]	VIVO_D2		
VIO_D[5] MIPIRX1N VI1_D[5] VIVO_D5 VI2_D[5] VIVO_D5 VIO_D[6] MIPIRX1P VI1_D[6] VIVO_D6 VI2_D[6] VIVO_D6 VIO_D[7] MIPIRX0N VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VIO_D[8] MIPIRX0P VI1_D[8] VIVO_D8 VIVO_D7 VIO_D[9] MIPI_TXM0 VI1_D[9] VIVO_D9 VIO_D[10] MIPI_TXP0 VI1_D[10] VIVO_D10 VIO_D[11] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXM1 VI1_D[12] MIPIRX4N VIO_D[13] MIPI_TXM2 VI1_D[14] MIPIRX4P VIO_D[14] MIPI_TXP2 VI1_D[15] MIPIRX3N VIO_D[16] MIPIRX3P VI1_D[16] MIPIRX3P	VI0_D[3]	MIPIRX2N	VI1_D[3]	VIVO_D3	VI2_D[3]	VIVO_D3		
VIO_D[6] MIPIRX1P VI1_D[6] VIVO_D6 VI2_D[6] VIVO_D6 VIO_D[7] MIPIRX0N VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VIO_D[8] MIPIRX0P VI1_D[8] VIVO_D8 VIVO_D7 VIO_D[9] MIPI_TXM0 VI1_D[9] VIVO_D9 VIO_D[10] MIPI_TXP0 VI1_D[10] VIVO_D10 VIO_D[11] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXP1 VI1_D[12] MIPIRX4N VIO_D[13] MIPI_TXP2 VI1_D[14] MIPIRX3N VIO_D[14] MIPI_TXP2 VI1_D[15] MIPIRX3N VIO_D[16] MIPIRX3P VII_D[16] MIPIRX3P	VI0_D[4]	MIPIRX2P	VI1_D[4]	VIVO_D4	VI2_D[4]	VIVO_D4		
VIO_D[7] MIPIRXON VI1_D[7] VIVO_D7 VI2_D[7] VIVO_D7 VIO_D[8] MIPIRXOP VI1_D[8] VIVO_D8 VIVO_D9 VIO_D[9] MIPI_TXM0 VI1_D[9] VIVO_D9 VIO_D[10] MIPI_TXP0 VI1_D[10] VIVO_D10 VIO_D[11] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXP1 VI1_D[12] MIPIRX4N VIO_D[13] MIPI_TXM2 VI1_D[14] MIPIRX4P VIO_D[14] MIPI_TXP2 VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[5]	MIPIRX1N	VI1_D[5]	VIVO_D5	VI2_D[5]	VIVO_D5		
VIO_D[8] MIPIRXOP VI1_D[8] VIVO_D8 VIO_D[9] MIPL_TXMO VI1_D[9] VIVO_D9 VIO_D[10] MIPI_TXPO VI1_D[10] VIVO_D10 VIO_D[11] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXP1 VI1_D[12] MIPIRX5P VIO_D[13] MIPI_TXM2 VI1_D[13] MIPIRX4N VIO_D[14] MIPI_TXP2 VI1_D[14] MIPIRX3N VI1_D[15] MIPIRX3P	VI0_D[6]	MIPIRX1P	VI1_D[6]	VIVO_D6	VI2_D[6]	VIVO_D6		
VIO_D[9] MIPI_TXM0 VI1_D[9] VIVO_D9 VIO_D[10] MIPI_TXP0 VI1_D[10] VIVO_D10 VIO_D[11] MIPI_TXM1 VI1_D[11] MIPIRX5N VIO_D[12] MIPI_TXP1 VI1_D[12] MIPIRX5P VIO_D[13] MIPI_TXM2 VI1_D[13] MIPIRX4N VIO_D[14] MIPI_TXP2 VI1_D[14] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[7]	MIPIRXON	VI1_D[7]	VIVO_D7	VI2_D[7]	VIVO_D7		
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[8]	MIPIRX0P	VI1_D[8]	VIVO_D8				
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[9]	MIPI_TXM0	VI1_D[9]	VIVO_D9		祖士		
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[10]	MIPI_TXP0	VI1_D[10]	VIVO_D10	i k	With the		
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[11]	MIPI_TXM1	VI1_D[11]	MIPIRX5N	805 11			
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[12]	MIPI_TXP1	VI1_D[12]	MIPIRX5P	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		121	
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[13]	MIPI_TXM2	VI1_D[13]	MIPIRX4N			Eiden	
VI1_D[15] MIPIRX3N VI1_D[16] MIPIRX3P	VI0_D[14]	MIPI_TXP2	VI1_D[14]	MIPIRX4P			Court	
			VI1_D[15]	MIPIRX3N				
VI1_D[17] MIPIRX2N			VI1_D[16]	MIPIRX3P				
			VI1_D[17]	MIPIRX2N				

MIPI RX 支援 MIPI-CSI 的解多工 (CSI Demux),可接收不同 channel ID 的通道資料。

圖 13 MIPI-CSI 的 channel ID

MIPI RX 支援 BT 接口的解多工 (BT Demux),輸入端將不同通道的資料以 BT656 字節交 錯的格式打包,MIPI RX 可還原各通道再以對應的同步碼解出有效資料。注意此模式只支 援單沿取樣(SDR)。

圖 1-4 BT demux 模式支援的輸入

1.4.API 參考

MIPI Rx 提供對接 sensor 時序的功能。 提供 ioctl 接口,可用的命令如下:

- CVI_MIPI_SET_HS_MODE: 設置 MIPI 的 Lane 分布模式。
- CVI MIPI SET DEV ATTR: 設置 MIPI 和並口設備屬性。

MIPI Tx 提供对接显示屏、级联的功能。提供 ioctl 接口,可用的命令如下:

- CVI_VIP_MIPI_TX_SET_DEV_CFG:设置 MIPI Tx 设备的属性。
- CVI VIP MIPI TX GET CMD:从 MIPI Tx 设备读取信息。
- CVI_VIP_MIPI_TX_SET_CMD: 设备发送命令给 MIPI Tx 设备
- CVI_VIP_MIPI_TX_ENABLE: 启用 MIPI Tx 设备。
- CVI_VIP_MIPI_TX_DISABLE:禁用 MIPI Tx 设备。
- CVI_VIP_MIPI_TX_SET_HS_SETTLE: 設定 MIPI Tx 在 HS mode 下的 settle timing •
- Confidential for TRIMET confidential for CVI_VIP_MIPI_TX_GET_HS_SETTLE:取得 MIPI Tx 在 HS mode 下的 settle Confidential timing •

Confidential for While

Specifications are subject to change without notice

CVI MIPI SET HS MODE

【描述】

相關功能被 CVI_MIPI_SET_DEV_ATTR 取代。

Confidential CVI_MIPI_SET_DEV_ATTR

【描述】

設置 MIPI 和並口設備屬性。

【參數】

#define CVI_MIPI_SET_DEV_ATTR	_IOW(CVI_MIPI_IOC_MAGIC,
0x01, struct combo_dev_attr_t)	

for深圳随手

【定義】

struct combo_dev_attr_t 類型的指針。

【返回值】

返回值		描述	4X
0		成功	一一
-1		失敗·並設置 errno	e oz
【芯片差異】	121	131	
無			
【需求】			
頭文件: cvi_vip_cif.h	า		

【芯片差異】

【需求】

【注意】

- 配置 CVI_MIPI_SET_DEV_ATTR 之前,需要使用 ISP 接口打開 MIPI_RX 時鐘. 詳情請見 ISP 相關文件。
- 除了配置 CVI_MIPI_SET_DEV_ATTR 之前, 還需要配置以下接口。
- 復位 MIPI: 接口為 CVI MIPI RESET MIPI。
- 打開 Sensor 的時鐘: 接口為 CVI_MIPI_ENABLE_SENSOR_CLOCK
- 復位 Sensor: 接口為 CVI_MIPI_RESET_SENSOR
- 撤銷復位 Sensor: 接口為 CVI_MIPI_UNRESET_SENSOR Confidential for TRIMET
- 推薦的配置流程如下:
- , Jensor。 , 授位 MIPI Rx。 4.配置 MIPI Rx 設備屬性。 1. 打開 ISP 時鐘。 2. 復位對接的 Sensor。 3. 復位 MIPI Rv

Confidential for While t

confidential for ikillime

Specifications are subject to change without notice

- ial for 深圳随土 4. 打開 Sensor 所連接的時鐘。
- 5. 撤銷復位對接的 Sensor。
- 推薦的退出程序如下:

 - 2. 關閉 Sensor 所連接的時鐘。
 - 3. 復位 MIPI Rx。
 - 4. 關閉 ISP 時鐘。
- 操作 Sensor 復位信號線和時鐘信號線會對所連接到該信號線的所有 Sensor 都產生效果。

【相關數據類型及接口】

- CVI_MIPI_RESET_MIPI
- CVI_MIPI_ENABLE_SENSOR_CLOCK
- CVI_MIPI_DISABLE_SENSOR_CLOCK
- CVI_MIPI_RESET_SENSOR
- CVI_MIPI_UNRESET_SENSOR

CVI_MIPI_RESET_SENSOR

【描述】

復位 sensor

【定義】

Confidential for This Ment #define CVI_MIPI_RESET_SENSOR

IOW(CVI MIPI IOC MAGIC, 0x05, unsigned int)

unsigned int。 Sensor 復位信號線編號。

【返回值】

返回值	描述
0	成功
-1	失敗·並設置 errno

【芯片差異】

無

【需求】

《頭文件: cvi_vip_cif.h

【注意】

ial for 深圳腫十 Sensor 復位信號綁定在對應的 dts。

for深圳便


```
for 深圳随土
mipi_rx: cif {
        compatible = "cvitek,cif";
        reg = <0x0 0x0a0c2000 0x0 0x2000>, <0x0 0x0a0d0000 0x0
        0x1000>
        <0x0 0x0a0c4000 0x0 0x2000>;
        reg-names = "csi_mac0", "csi_wrap0", "csi_mac1";
        interrupts = <GIC_SPI 155 IRQ_TYPE_LEVEL_HIGH>,
                    <GIC_SPI 156 IRQ_TYPE_LEVEL_HIGH>;
        interrupt-names = "csi0", "csi1";
        snsr-reset = <&porta 2 GPIO_ACTIVE_LOW>, <&porta 2
        GPIO_ACTIVE_LOW>;
        resets = <&rst RST CSIPHY0>, <&rst RST CSIPHY1>,
        <&rst RST_CSIPHYORST_APB>, <&rst RST_CSIPHY1RST_APB>;
        reset-names = "phy0", "phy1", "phy-apb0", "phy-apb1";
        clocks = <&clk CV182X_CLK_CAM0>, <&clk
        CV182X CLK CAM1>, <&clk CV182X CLK SRC VIP SYS 2>;
        clock-names = "clk_cam0", "clk_cam1", "clk_sys_2";
                                                   Confiden
```

Confidential CVI MIPI UNRESET SENSOR

【描述】

撤銷復位 sensor。

【定義】

```
#define CVI_MIPI_UNRESET_SENSOR
_IOW(CVI_MIPI_IOC_MAGIC, 0x06, unsigned int)
```

【參數】

unsigned int。 Sensor 復位信號線編號。

【返回值】

返回值		描述	
0		成功	一通十
-1		失敗·並設置 errno	深圳加工
【芯片差異】	1	Eo _t	for
無			
【需求】			
	10		

【芯片差異】

頭文件: cvi_vip_cif.h

【注意】

```
al for ixillities
                      Sensor 復位信號綁定在對應的 dts。
pi_rx: cif {
                    mipi rx: cif {
                            compatible = "cvitek,cif";
                            reg = \langle 0x0 \ 0x0a0c2000 \ 0x0 \ 0x2000 \rangle, \langle 0x0 \ 0x0a0d0000 \ 0x0
                            0x1000>,
                            <0x0 0x0a0c4000 0x0 0x2000>;
                            reg-names = "csi_mac0", "csi_wrap0", "csi_mac1";
                            interrupts = <GIC_SPI 155 IRQ_TYPE_LEVEL_HIGH>,
                                         <GIC_SPI 156 IRQ_TYPE_LEVEL_HIGH>;
                            interrupt-names = "csi0", "csi1";
                            snsr-reset = <&porta 2 GPIO_ACTIVE_LOW>, <&porta 2</pre>
                            GPIO_ACTIVE_LOW>;
                                                                                          for 深圳随
                            resets = <&rst RST CSIPHY0>, <&rst RST CSIPHY1>,
                            <&rst RST_CSIPHYORST_APB>, <&rst RST_CSIPHY1RST_APB>;
confidential f
                            reset-names = "phy0", "phy1", "phy-apb0", "phy-apb1";
                            clocks = <&clk CV182X_CLK_CAM0>, <&clk
                            CV182X CLK CAM1>, <&clk CV182X CLK SRC VIP SYS 2>;
                            clock-names = "clk cam0", "clk cam1", "clk sys 2";
                   };
```

CVI MIPI RESET MIPI

【描述】

復位 MIPI_Rx。

【定義】

```
#define CVI MIPI RESET MIPI
                                      _IOW(CVI_MIPI_IOC_MAGIC,
                                                            tial for milling
0x07, unsigned int)
```

【參數】

unsigned int。 MIPI_Rx 設備號。

【返回值】

返回值 描述

for深圳便士

ons are subject to change with	out notice		
X		X	4
0		成功	云州府里,
-1		失敗·並設置 errno	OT NAME
【芯片差異】			
無			
【需求】			
頭文件: cvi_vip_cif.h			

【芯片差異】

【注意】

無

CVI_MIPI_ENABLE_SENSOR_CLOCK

【描述】

打開 Sensor 的時鐘。

【定義】

#define CVI_MIPI_ENABLE_SENSOR_CLOCK _IOW(CVI_MIPI_IOC_MAGIC, 0x10, unsigned int)

【參數】

【返回值】

	"acinic cvi_iviii				
	_IOW(CVI_MIPI_	4			
	【參數】		深圳州		读圳性
	unsigned int。 M	IIPI_Rx 設備號。			
>	【返回值】	* 121	<i>y</i>	+121	_
	返回值	eiden	描述	eiden	
	0	Co_{DT}	成功	Cour	
	-1		失敗·並設置 e	rrno	

【芯片差異】

無

【需求】

頭文件: cvi_vip_cif.h

【注意】

無

CVI_MIPI_DISABLE_SENSOR_CLOCK

【描述】

【定義】

	_		
【描述】			
關閉 Sensor 的時鐘。			
【定義】			
#define CVI_MIPI_DISABI	_E_SENSOR_CLOCK	_IOW(CVI_MIPI_IOC_MAGIC, 0x11,	1
unsigned int)			

【參數】

for深圳随十

Confidential

Specifications are subject to change without notice

【返回值】

ons are subject to ch	ange without notice			
unsigned int。 【返回值】	MIPI_Rx 設備號。	cox 深圳随上	~ ~	
返回值		描述	: 21	
0	identi	成功	denti	
-1	Court	失敗·並設置 errno	<i>y</i> -	

【芯片差異】

無

【需求】

頭文件: cvi_vip_cif.h

【注意】

無

CVI MIPI SET CROP TOP

【描述】

捨棄每幀中的首 N 條資料

【定義】

#define CVI_MIPI_SET_WDR_MANUAL _IOW(CVI_MIPI_IOC_MAGIC, 0x21, struct crop_top_s)

【參數】

struct crop_top_s

【返回值】

返回值	描述
0	成功
-1	失敗·並設置 errno

【芯片差異】

無

【需求】

頭文件: cvi_vip_cif.h

【注意】

無

- for TRHIME + CVI_MIPI_SET_WDR_MANUAL Confidential

【描述】

打開 WDR 手動模式

【定義】

for深圳種子 _IOW(CVI_MIPI_IOC_MAGIC, 0x21, #define CVI_MIPI _SET_WDR_MANUAL struct manual_wdr_s) Confidential

【參數】

struct manual_wdr_s

【返回值】

返回值	描述
0	成功
-1	失敗·並設置 errno

【芯片差異】

無

【需求】

頭文件: cvi_vip_cif.h

【注意】

CVI_MIPI_SET_LVDS_FP_VS

【描述】

【定義】

無	
_MIPI_SET_LVDS_FP_VS	
【描述】	
設定 sub-LVDS 中 VSYNC 生成的時間點	
【定義】	
#define CVI_MIPI _SET_LVDS_FP_VSIOW(CVI_M	/IPI_IOC_MAGIC,
0x22, struct vsync_gen_s)	

【參數】

struct vsync_gen_s

【返回值】

返回值	描述
0	成功
-1	失敗·並設置 errno

【芯片差異】

無

【需求】

頭文件: cvi_vip_cif.h

【注意】

無

dential for *** Hillipet CVI_VIP_MIPI_TX_SET_DEV_CFG

【描述】

设置 MIPI Tx 设备的属性。

【定義】

mfidential for ikilliet #define CVI_VIP_MIPI_TX_SET_DEV_CFG_IOW(CVI_MIPI_TX_IOC_MAGIC , 0x01,

combo_dev_cfg_t)

【參數】

MIPI Tx 设备属性。

【返回值】

返回值	描述	
0	成功	
-1	失敗·並設置 errno	
【芯片差異】		
無【需求】		
頭文件: cvi_mipi_tx.h	: 27	
【芯片差異】 無 【需求】 頭文件: cvi_mipi_tx.h 【注意】		
# Court		
VID MIDL TV CET CMD		

【芯片差異】》

【需求】

CVI VIP MIPI TX GET CMD

【描述】

从 MIPI Tx 设备读取信息。

【定義】

#define CVI_VIP_MIPI_TX_GET_CMD_IOW(CVI_MIPI_TX_IOC_MAGIC , 0x04, Get_cmd_info_t)

【參數】

详见 get_cmd_info_t 结构体 说明。

【返回值】

详见 get_cmd_mio_t 结构体 说明。 【返回值】		
返回值	描述	深圳性
0	成功	Ear 1
-1 <u></u>	失敗·並設置 errno	
【芯片差異】	nfider	-
CO2,		

【芯片差異】

Confidential for This William

Specifications are subject to change without notice

無

【需求】

頭文件: cvi_mipi_tx.h

【注意】

無

Confidential for TRIMMET CVI_VIP_MIPI_TX_SET_CMD

【描述】

设备发送命令给 MIPI Tx 设备。

【定義】

#define CVI_VIP_MIPI_TX_SET_CMD_IOW(CVI_MIPI_TX_IOC_MAGIC , 0x02, cmd_info_t)

【參數】

详见 cmd_info_t 结构体说明。

【返回值】

【返回值】		mX	#X
返回值		描述	"是别们"
0.		成功	t Or
-1	*:121	失敗, 並設置 errno) ·
【芯片差異】	eiden	Eidene	-
無			

【芯片差異】

【需求】

頭文件: cvi_mipi_tx.h

【注意】

CVI VIP MIPI TX ENABLE

【描述】

启用 MIPI Tx 设备。

【定義】

for 深圳随土 #define CVI_VIP_MIPI_TX_ENABLE_IOW(CVI_MIPI_TX_IOC_MAGIC , 0x03, cmd_info_t) Confidential Confidentia

【參數】

無

深圳種十

【返回值】

ons are subject to chang	e without hotice			
【返回值】		州便十		云圳随土
返回值		描述		COX XX
0	: 21	成功	: 2)	70.
-1	denti	失敗,並設置 errno	denti	
【芯片差異】	Court		Court	

【芯片差異】

無

【需求】

頭文件: cvi_mipi_tx.h

【注意】

此 API 呼叫后 mipi 将切换至 HS 模式。

CVI VIP MIPI TX DISABLE

【描述】

禁用 MIPI Tx 设备。

【定義】

#define CVI_VIP_MIPI_TX_DISABLE _IOW(CVI_MIPI _TX_IOC_MAGIC , 0x05, cmd_info_t) confiden

【參數】

無

【返回值】

返回值	描述
0	成功
-1	失敗, 並設置 errno

【芯片差異】

無

【需求】

頭文件: cvi_mipi_tx.h

【注意】

CVI_VIP_MIPI_TX_SET_HS_SETTLE 【描述】

深圳種十

Specifications are subject to change without notice

設定 MIPI Tx 在 HS mode 下的 settle timing。

【定義】

#define CVI_VIP_MIPI_TX_SET_HS_SETTLE IOW(CVI_MIPI_TX_IOC_MAGIC, 0x06, struct hs_settle_s)

【參數】

無

【返回值】

返回值	描述
0	成功
-1	失敗, 並設置 errno

【芯片差異】

無

【需求】

頭文件: cvi_mipi_tx.h

CVI_VIP_MIPI_TX_GET_HS_SETTLE 【描述】 Confidenti'

取得 MIPI Tx 在 HS mode 下的 settle timing。

【定義】

#define CVI_VIP_MIPI_TX_GET_HS_SETTLE_IOWR(CVI_MIPI_TX_IOC_MAGIC, 0x06, struct hs_settle_s)

【參數】

無

【返回值】

描述	
成功	
失敗, 並設置 errno	_
	一地上
	成功 失敗, 並設置 errno

【芯片差異】

1.5.數據類型

Confidentie

MIPI RX 相關數據類型定義如下:

- CVI_MIPI_IOC_MAGIC: MIPI Rx ioctl 命令的幻數。
- onfidential for This many on the state of th MIPI LANE NUM: MIPI Rx 的 MIPI 設備支持的最大 Lane 數。
- WDR VC NUM: 定義最多支持的 Virtual Channel 數量。
- SYNC_CODE_NUM: 定義 LVDS 每個 Virtual Channel 的同步碼數量。

ial for This is

- input mode e: MIPI Rx 輸入接口類型。
- img_size_s: MIPI Rx 輸入資料每幀的大小。
- rx_mac_clk_e: MAC 的支持工作时鐘。
- cam_pll_freq_e: MIPI-RX 輸出的 Sensor 參考時鐘。
- mclk_pll_s: MIPI-RX 輸出的 Sensor 參考時鐘設定。
- raw_data_type_e: MIPI Rx 輸入資料格式。
- mipi_wdr_mode_e: MIPI-CSI WDR 模式。
- wdr_mode_e: LVDS/HISPI WDR 模式。
- lvds_sync_mode_e: LVDS 同步模式。
- lvds bit endian: 比特位大小端模式。
- lvds_vsync_type_e: LVDS 在 WDR 模式的同步方式。
- lvds_fid_type_e: LVDS frame identification ID 類型
- lvds_fid_type_s: LVDS frame identification ID 類型
- lvds_vsync_type_s: LVDS WDR 同步參數
- lvds_dev_attr_s: SubLVDS/HiSPi 設備屬性
- dphy_s: MIPI DPHY 屬性
- mipi_demux_info_s: MIPI 解多工模式屬性
- mipi_dev_attr_s: MIPI-CSI 設備屬性
- manual_wdr_attr_s: 手動 WDR 模式參數
- ttl_pin_func_e: TTL/BT 接口的配置功能
- ttl_src_e: TTL/BT 接口輸入來源
- bt demux mode e: BT 解多工模式的通道數量
- bt_demux_sync_s: BT 解多工模式的同步碼配置
- bt_demux_attr_s: BT 解多工模式的設備屬性
- ttl_dev_attr_s: TTL/BT 設備屬性
- combo_dev_attr_s: combo 設備屬性
- crop_top_s: 捨棄開頭的行資料屬性

<u>工</u>深圳艇十

Specifications are subject to change without notice

- manual_wdr_s: 手動 WDR 模式設定
- vsync_gen_s: SUBLVDS 垂直同步訊號屬性

MIPITX 相關數據類型定義如下:

- Confidential for This was confidential LANE MAX NUM: 一個 MIPI Tx 設備支援的最大 Lane 數
- output_mode_e: MIPI Tx 輸出模式
- video_mode_e: MIPI Tx 视频模式
- output_format_e: MIPI Tx 輸出格式
- sync_info_s: MIPI Tx 設備同步信息
- combo_dev_cfg_s: MIPI Tx 設備屬性
- cmd_info_s: 從 MIPI Tx 設備取回信息
- get_cmd_info_s: 從 MIPI Tx 設備取回信息
- hs settle s: MIPI Tx 設備 HS mode 下的 settle 信息

CVI_MIPI_IOC_MAGIC

【说明】

MIPI Rx ioctl 命令的幻數

【定义】

#define CVI_MIPI_IOC_MAGIC

'm'

Confident

Confidential for With Met

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

無

MIPI LANE NUM

【说明】

一個 MIPI Rx 設備支援的最大 Lane 數。

【定义】

#define MIPI_LANE_NUM 4 Confidential for

【芯片差异】

无。

【注意事项】

无。

Confidential for ikillimet

dential for ixillimet

Confidential for TRIMET

Specifications are subject to change without notice

【相关数据类型及接口】

無

Confidenti WDR_VC_NUM

Jonfidential for Arthurst 定義最多支持的 Virtual Channel 數量

【定义】

#define WDR_VC_NUM 2

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

無

SYNC CODE NUM

【说明】

OT WHITE 定義 LVDS 每個 Virtual Channel 的同步碼數量。

【定义】

#define SYNC_CODE_NUM

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

無

BT_DEMUX_NUM

【说明】

定義使用 bt demux 功能時支持最大的通道數量。

【定义】

#define BT_DEMUX_NUM Confidential

【芯片差异】

无。

【注意事项】

Confidential for ikillimet

Specifications are subject to change without notice Jonfidential for TRHIMET

无。

【相关数据类型及接口】

Confidentia MIPI DEMUX NUM

【说明】

定義使用 mipi demux 功能時支持最大的 virtual channel 數量。

【定义】

```
#define MIPI_DEMUX_NUM
                         4
```

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

input_mode_e

【说明】

MIPI Rx 輸入接口類型。

【定义】

```
confidential for ikillife !
enum input_mode_e {
      INPUT_MODE_MIPI = 0,
      INPUT_MODE_SUBLVDS,
      INPUT_MODE_HISPI,
      INPUT_MODE_CMOS,
      INPUT_MODE_BT1120,
      INPUT_MODE_BT601_19B_VHS,
      INPUT_MODE_BT656_9B,
      INPUT_MODE_CUSTOM_0,
      INPUT_MODE_BT_DEMUX,
      INPUT_MODE_BUTT
                                            confidential for
};
              Confidentia
```

【芯片差异】

无。

【注意事项】

Confidential for William Confidential

Specifications are subject to change without notice Confidential for *** ##### - T

无。

【相关数据类型及接口】

Confidential img size s

【说明】

MIPI Rx 輸入資料每幀的大小。

【定义】

```
struct img_size_s {
         unsigned int
                          width;
         unsigned int
                          height;
};
```

【芯片差异】

无。

【注意事项】

无。

confidential for This was 【相关数据类型及接口】

無

Confidential rx_mac_clk_e

【说明】

MAC 的支持工作时鐘。

【定义】

```
enum rx_mac_clk_e {
      RX_MAC_CLK_200M = 0,
   RX_MAC_CLK_400M,
       RX_MAC_CLK_500M,
   RX_MAC_CLK_600M,
                    dential for ikillimet
                                              confidential for ikilling
   RX_MAC_CLK_BUTT,
```

【芯片差异】

无。

【注意事项】

MAC 時鐘與支持的 MIPI 時鐘關係請參考 1.7.2。

Confidential for This Mile

【相关数据类型及接口】

無

```
cam_pll_freq_e
```

idential for TRHIMET MIPI-RX 輸出的 Sensor 參考時鐘。

【定义】

```
enum cam_pll_freq_e {
   CAMPLL_FREQ_NONE = 0,
   CAMPLL_FREQ_37P125M,
   CAMPLL_FREQ_25M,
   CAMPLL_FREQ_27M,
   CAMPLL_FREQ_24M,
                                           Confidential for Killhart
                           for深圳種十
   CAMPLL_FREQ_26M,
   CAMPLL_FREQ_NUM
};
              Confident
```

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

無

mclk pll s

【说明】

MIPI-RX 輸出的 Sensor 參考時鐘設定。

【定义】

```
al for Athlife
                              for深圳種
struct mclk_pll_s {
   unsigned int
                   cam;
   enum cam_pll_freq_e freq;
};
                                                     i den
```

【成員】

成員名稱 描述

idential for ikillifet

Specificat	tions are subject to cha	rige without notice	. V	. V
	cam		0: 輸出為 CAM_MCLK0 1: 輸出為 CAM_MCLK1	深圳種
	freq	: 21 5	輸出的 Sensor 參考時鐘	: 27 EO,
	【芯片差异】	cidenti	cå (dentif
	無			
	【注意事项】			

無

【相关数据类型及接口】

無

raw_data_type_e

【说明】

MIPI Rx 輸入資料格式。

【定义】

```
Confidential for 深圳种
                                            for深圳随
                enum raw_data_type_e {
                      RAW_DATA_8BIT = 0,
confidential for
                       RAW_DATA_10BIT,
                       RAW_DATA_12BIT,
                       YUV422_8BIT, /* MIPI-CSI only */
                       YUV422_10BIT, /* MIPI-CSI only*/
                       RAW_DATA_BUTT
                };
```

【芯片差异】

无。

【注意事项】

YUV422_8BIT 與 YUV422_10BIT 只支援 MIPI-CSI 格式。

【相关数据类型及接口】

無

mipi_wdr_mode_e

【说明】

MIPI-CSI WDR 模式。

【定义】

```
enum mipi_wdr_mode_e {
```

cial for TRHIME!

fidential for This Hill

```
};
```

【成員】

成員名稱	描述	
CVI_MIPI_WDR_MODE_NONE	線性模式	
CVI_MIPI_WDR_MODE_VC	MIPI-CSI Virtual Channel 模式	
CVI_MIPI_WDR_MODE_DT	MIPI-CSI Data Type 模式	
CVI_MIPI_WDR_MODE_DOL	Sony DOL LI 模式	
CVI_MIPI_WDR_MODE_MANUAL	WDR 手動模式	
【芯片差异】	1.11	14
无。深圳州		
【注意事项】		
● CVI MIPI WDR MODE VC 適用於	使用 MIPI-CSI Virtual Channel ID 分辨	

【芯片差异】

②【注意事项】

- for *** ## ## • CVI_MIPI_WDR_MODE_VC 適用於使用 MIPI-CSI Virtual Channel ID 分辨 長曝線與短曝線的 Sensor。
- CVI_MIPI_WDR_MODE_DT 適用於使用 MIPI-CSI Data Type ID 分辨長曝線 與短曝線的 Sensor。 注意注意長曝與短曝必須在同一幀開始與結束。
- CVI_MIPI_WDR_MODE_DOL 適用於使用 SONY MIPI-CSI Line Information 模式。
- CVI_MIPI_WDR_MODE_MANUAL 使用自訂的規則決定長曝線與短曝線。 【相关数据类型及接口】

無

wdr mode e

【说明】

Sub-LVDS/HISPI WDR 模式。

【定义】

```
enum wdr_mode_e {
      CVI_WDR_MODE_NONE = 0,
      CVI_WDR_MODE_2F,
```

```
confidential for This was a
CVI_WDR_MODE_3F,
CVI_WDR_MODE_DOL_2F,
CVI_WDR_MODE_DOL_3F,
CVI_WDR_MODE_DOL_BUTT
```

【成員】

成員名稱	描述
CVI_WDR_MODE_NONE	線性模式
CVI_WDR_MODE_2F	一般雙曝 WDR
CVI_WDR_MODE_3F	一般三曝 WDR
CVI_WDR_MODE_DOL_2F	Sony DOL-2 WDR
CVI_WDR_MODE_DOL_3F	Sony DOL-3 WDR

【芯片差异】

无。

【注意事项】

- CVI_WDR_MODE_DOL_2F 適合用 Sony Sub-LVDS DOL-2 WDR。

【相关数据类型及接口】

無

lvds_sync_mode_e

【说明】

LVDS 同步模式。

【定义】

```
enum lvds_sync_mode_e {
      LVDS_SYNC_MODE_SOF = 0,
      LVDS_SYNC_MODE_SAV,
      LVDS_SYNC_MODE_BUTT
```

【成員】

成員名稱	描述
LVDS_SYNC_MODE_SOF	SOF, EOF, SOL, EOL。 請參考圖 1-1

Eidential for TRIME

Specifications are subject to change without notice

ns are subject to change without notice		
LVDS_SYNC_MODE_SAV	Invalid SAV, invalid EAV, valid SAV, valid EAV。 請參考圖 1-2	
【芯片差异】	*121	
无。		
【注意事项】		
• LVDS_SYNC_MODE_SOF 適用於 HiS	SPi Packetize-SP 模式。	

【芯片差异】

【注意事项】

- LVDS_SYNC_MODE_SOF 適用於 HiSPi Packetize-SP 模式。
- LVDS_SYNC_MODE_SAV 適用於 sub-LVDS 與 HiSPi Streaming-SP 模式
- 當輸入為 INPUT_MODE_HISPI 並且同步模式為 LVDS_SYNC_MODE_SAV。 MIPI-Rx 切換到 HiSPi Streaming-SP 模式。

【相关数据类型及接口】

無

lvds bit endian

【说明】

比特位大小端模式。

【定义】

```
Confidential for This Hiller
enum lvds_bit_endian {
         LVDS_ENDIAN_LITTLE = 0,
         LVDS_ENDIAN_BIG,
         LVDS_ENDIAN_BUTT
};
```

【芯片差异】

無

【注意事项】

無

【相关数据类型及接口】

無

lvds_vsync_type_e

【说明】

LVDS 在 WDR 模式的同步方式。

【定义】

```
for 深圳艇十
enum lvds_vsync_type_e {
        LVDS_VSYNC_NORMAL = 0,
```

【成員】

ns are subject	to change without notice		
3.4117	LVDS_VSYNC_SHARE,		云州府里,
J.K.	LVDS_VSYNC_HCONNECT,		For IX
	LVDS_VSYNC_BUTT		10,
};	: dent !	- denti-	
【成員】	Court	Contra	
成員名稱		描述	
LVDS_VS	YNC_NORMAL	長短曝光幀有獨立的 SOF-EOF, SOL-	
		EOL 或 invalid-SAV-invalid-EAV,	
		valid SAV-valid EAV	
LVDS_VS	YNC_SHARE	长短曝光帧共用一对 SOF-EOF 标	
		识·短曝光的起始几行用固定值填充	
LVDS_VS	YNC_HCONNECT	长短曝光帧共用一对 SAV-EAV 标	
		识,长短曝光帧之间是固定周期的消	
		隐。	

					l ls	急。			
		LVDS_VSYNC_NORM	√AL [ः		式:	(重)			
ŀ	圖 1-3 L	LVDS_VSYNC_NORMAL 同步方式	1.						深圳小
	50	<u> </u>			1 50°	<u> </u>			802
Confidentie	SOF		. 16	ntial		Short Exposure Padding	, Jen	ial	
Court	SAV SOL	Long Exposure	EAV EOL	HBLANK	SAV SOL	Short Exposure	EAV EOL	HBLANK	
		Long Exposure Padding					EOF		
	sov	VBLANK	EOV		sov	VBLANK	EOV		

LVDS_VSYNC_HCONNECT 同步方式: Confidential for TRHIME + Confidential for White

圖 1-4 LVDS_VSYNC_HCONNECT 同步方式.

Specifi	Cations	are subject to change without h	lotice				
1	圖 1-4 L	VDS_VSYNC_HCONNECT 同步方式.					
	1 50		dential	VBLANK	. Je ^y	itial fo	
	SAV	Long Exposure	HBLANK (Fix Period)	Short Exposure	EAV	HBLANK	
		VBLANK)				
	SOV		VBLANK		EOV		

【芯片差异】

無

- 四内於 SONY sub-LVDS DOL-2 pattern 1 與
 いって Packtized-SP WDR 模式。

 LVDS_VSYNC_SHARE 適用於 HiSPi Streaming-SP WDR 模式。

 LVDS_VSYNC_HCONNECT 適用於 SONY sub-LVDS DOL-2 particles
 【相关数据类型及接口】

無

lvds_fid_type_e

【说明】

LVDS frame identification ID 類型。

【定义】

```
enum lvds_fid_type_e {
       LVDS_FID_NONE = 0,
                               or深圳随
       LVDS_FID_IN_SAV,
       LVDS_FID_BUTT,
3;
```

【成員】

【成員】	+181
成員名稱	描述
LVDS_FID_NONE	不使用 frame identification id。

Specifications are subject to change without notice

LVDS_FID_IN_SAV

Confidential for This Willet FID 插入在 SAV 第 4 個字段中。

【芯片差异】

【注意事项】

Confidential for 【相关数据类型及接口】

無

lvds_fid_type_s

【说明】

LVDS frame identification ID 類型。

【定义】

```
struct lvds_fid_type_s {
          enum lvds_fid_type_e
                                          fid;
                                                                      for *******
```

【成員】

成員名稱	ç	描述
fid	* ial *	LVDS DOL 模式下的 frame
	eiden	identification 類型
【芯片差异】	Cour	Co_{U_1}

【芯片差异】

無

【注意事项】

【相关数据类型及接口】

無

lvds_vsync_type_s

【说明】

LVDS WDR 同步參數。

【定义】

```
Reidential for Athlet
struct lvds_vsync_type_s {
         enum lvds_vsync_type_e sync_type;
         unsigned short
                                        hblank1;
         unsigned short
                                        hblank2;
```

Specifications are subject to change without notice

};

【芯片差异】

【注意事项】

- dential for Williams dential for 當 sync_type 為 LVDS_VSYNC_HCONNECT 時, 需要配置 hblank1 和 hblank2,表示長短曝間的消隠區長度。
- CV182x 只支援 DOL-2, 所以 hblank2 不需要設定。

【相关数据类型及接口】

無

lvds_dev_attr_s

【说明】

LVDS/SubLVDS/HiSPi 設備屬性。

【定义】

```
idential for *** Third to
                  struct lvds_dev_attr_s {
                            enum wdr_mode_e
                                                            wdr_mode;
Confidential for
                            enum lvds_sync_mode_e
                                                             sync_mode;
                            enum raw_data_type_e
                                                            raw_data_type;
                            enum lvds_bit_endian
                                                           data_endian;
                            enum lvds_bit_endian
                                                           sync_code_endian;
                                                           lane_id[MIPI_LANE_NUM+1];
                            short
                            short
                  sync_code[MIPI_LANE_NUM][WDR_VC_NUM+1][SYNC_CODE_NUM];
                            struct lvds_vsync_type_s
                                                         vsync_type;
                            struct lvds_fid_type_s
                                                        fid_type;
                                                           pn_swap[MIPI_LANE_NUM+1];
                            char
                    };
```

【成員】

【				_
成員名稱		描述		一里一
wdr_mode		WDR 模式		深圳州
sync_mode	1 5	LVDS 同步模式	1	for ,
raw_data_type	intial	傳輸的數據類型	ntial	
data_endian	nfide.	數據大小端模式	nfides	
	Cor		Cor	•
	32			

Specification	ons are subject to change without notice		
	sync_code_endian	同步碼大小端模式	不深圳随
	lane_id	發送端(sensor)和接收端(MIPI Rx)	T. J.K.
	ial.	lane 的對應關係	
	sync_code Confidents	每个 Virtual Channel 有 4 个同步	
	Court	码·根据同步模式不同·分别表示	
		SOF/EOF/ SOL/EOL 的同步码或者	
		invalid SAV/invalid EAV/ valid	
		SAV/valid EAV 的同步码。	
	vsync_type	vsync 类型·当 wdr_mod 为 DOL	
		模式并且 sync_mode 为	
		LVDS_SYNC_MODE_SAV 时·需要	
		配置 vsync 的类型	
	fid_type	frame identification 类型	
	pn_swap	Positive/negative line 是否交換	
	【芯片差异】	or *** thinket Confidential fo	大腿十
	#		读圳州
	《【注意事项】		25 1
	m tial		
	【相关数据类型及接口】		
	無 【注意事项】 無 【相关数据类型及接口】 無		
	hy_s		

dphy_s

【说明】

MIPI RX DPHY 屬性。

【定义】

	struct mipi_dev_attr_s {			
	unsigned char	able;		
	unsigned char	_settle;		
	} ;			
٠	【成員】	WATEL -		山地
	成員名稱	描述		深圳川
5	enable	開啟 MIPI RX DPHY 屬	性設定	
	hs settle	hs settle time	2122	

【成員】

【成員】		(道)	
成員名稱		描述	
enable	7 5	開啟 MIPI RX DPI	HY 屬性設定
hs_settle	intiai	hs settle time	intiat
【芯片差异】	confide		confide
	33		

Confidential for Athlet

atial for While t

Specifications are subject to change without notice confidential for ist the

無

【注意事项】

【相关数据类型及接口】

mipi_demux_info_s

【说明】

MIPI CSI 使用 Virtual Channel 解多工的屬性設定。

struct mipi_demux_info_s {	
unsigned int	demux_en;
unsigned char	vc_mapping[MIPI_DEMUX_NUM];
};	

【成員】

11			
【成員】	X X		
成員名稱	描述	"是别别"	
demux_en	開啟 mipi virtual channel 解多工	for the	
vc_mapping vc_mapping	設定 ISP channel 與 mipi virtual	>	
ei dent'	channel 對應關係. 例如		
Cour	vc_mapping = {0, 2, 3, 1}, ISP ch0		
	代表 vc=0; ch1 代表 vc=2; ch2 代表		
	vc=3; ch3 代表 vc=1.		

【芯片差异】

無

【注意事项】

【相关数据类型及接口】

無

mipi_dev_attr_s

【说明】

MIPI-CSI 設備屬性。

【定义】

struct mipi_dev_attr_s {

tial for TRHIME!

				7 4	
		enum ı	raw_data_type_e	raw_data_type;	
C		short		lane_id[MIPI_LANE_	_NUM+1];
: 21		enum ı	mipi_wdr_mode_e	wdr_mode;	
dentile		short		data_type[WDR_VC	_NUM];
COUETO		char		pn_swap[MIPI_LAN	E_NUM+1];
	} ;				

【成員】

成員名稱	描述				
wdr_mode	WDR 模式				
raw_data_type	傳輸的數據類型				
lane_id	發送端(sensor)和接收端(MIPI Rx)				
	lane 的對應關係				
data_type	當 WDR 模式為				
	CVI_MIPI_WDR_MODE_DT 時, 每				
	個 WDR frames 對應的 data type	大脑子			
pn_swap	個 WDR frames 對應的 data type Positive/negative line 是否交換	深圳仙			
【芯片差异】 無 【注意事项】 無	O.T.	for the			
#					
【注意事项】					
# COMP					
【相关数据类型及接口】					

【芯片差异】

【相关数据类型及接口】

無

manaul_wdr_attr_s

【说明】

手動 WDR 模式參數。

【定义】

```
struct manaul_wdr_attr_s {
                                                                        fidential for 深圳艇
                            unsigned int
                                                          manual_en;
                            unsigned short
                                                          l2s_distance;
Confidential for
                                                       lsef_length;
                            unsigned short
                            unsigned int
                                                          discard_padding_lines;
                            unsigned int
                                                          update;
```

【成員】

Specification	ns are subject to change without notice		
	【成員】	州便士	云圳随上
	成員名稱	描述	TX TX
	manual_en	手動 WDR 開關	70,
	I2s_distance	一幀中首條長曝到首列短曝的距離,	
	Contin	單位為行數。	
	lsef_length	長曝/短曝的行數。	
	discard_padding_lines	Sensor 是否有把 padding 行當有效	
		行輸出。	
	update	是否強制更新設定。 若否, 設定會等	
		下一張的同步訊號來才更新。	

【芯片差异】

無

【注意事项】

- HiSPi 輸入並且 sync_type 為 LVDS_VSYNC_SHARE 時,需打開手動 WDR 模式並設定參數。
- confidential for TRHIMET • MIPI-CSI 輸入並且 wdr mode 為 CVI_MIPI_WDR_MODE_MANUAL 時,需 打開手動 WDR 模式並設定參數。 Confidential

【相关数据类型及接口】

無

Confidential ttl pin func e

【说明】

TTL/BT 接口的配置功能.

```
enum ttl_pin_func_e {
                        TTL_PIN_FUNC_VS,
                        TTL_PIN_FUNC_HS,
                        TTL_PIN_FUNC_VDE,
                                                               Confidential for Thim The
                        TTL_PIN_FUNC_HDE,
                       ביב,
TTL_PIN_FUNC_D3,
TTL_PIN_FUNC_DA
confidential for
```

```
Confidential for This Mile
                                         121 for 深圳雁
                       TTL_PIN_FUNC_D5,
confidential f
                       TTL_PIN_FUNC_D6,
                       TTL_PIN_FUNC_D7,
                       TTL_PIN_FUNC_D8
                       TTL_PIN_FUNC_D9,
                       TTL_PIN_FUNC_D10,
                       TTL_PIN_FUNC_D11,
                       TTL_PIN_FUNC_D12,
                       TTL_PIN_FUNC_D13,
                       TTL_PIN_FUNC_D14,
                       TTL_PIN_FUNC_D15,
                       TTL_PIN_FUNC_NUM,
                };
```

【芯片差异】

无。

【注意事项】

无。

confidential for This was 【相关数据类型及接口】

無

Confidential ttl_src_e

【说明】

TTL/BT 接口輸入來源.

【定义】

```
enum ttl_src_e {
       TTL_VI_SRC_VI0 = 0,
       TTL_VI_SRC_VI1,
       TTL_VI_SRC_VI2,
                            /* BT demux */
       TTL_VI_SRC_NUM
                                               Confidential for TRHIME
               Confidential for TRAME
};
```

【芯片差异】

、无。

【注意事项】

无。

Confidential for Athlifet

Specifications are subject to change without notice onfidential for 深圳雁

【相关数据类型及接口】

參考表 1-1.

bt_demux_mode_e

BT 解多工模式的通道數量.

【定义】

```
enum bt_demux_mode_e {
       BT_DEMUX_DISABLE = 0,
       BT_DEMUX_2,
       BT_DEMUX_3,
       BT_DEMUX_4,
};
```

【芯片差异】

无。

【注意事项】

无。

Confidential for This William 【相关数据类型及接口】

無

Confidential bt_demux_sync_s

【说明】

BT 解多工模式的同步碼設定。

【定义】

```
struct bt_demux_sync_s {
       unsigned char
                               sav_vld;
       unsigned char
                               sav_blk;
       unsigned char
                               eav_vld;
       unsigned char
                               eav_blk;
                                                                    for 深圳種士
```

成員名稱	. 5	描述	
sav_vld	21,121	有效資料區間的 SAV	21:12.1
sav_blk	fiden	空白區間的 SAV	figen
	Copr	C	2/11
	38		

ns are subject to char	nge without notice	V	
eav_vld		有效資料區間的 EAV	州师
eav_blk	C	空白區間的 EAV	COL
【芯片差异】	: 22	: 27	-70
無			
【注意事项】			
無			

【芯片差异】

【相关数据类型及接口】

無

bt_demux_attr_s

【说明】

BT解多工模式的屬性設定。

【定义】

```
struct bt_demux_attr_s {
                                                                         Confidential for This will be the confidential for
                            signed char
                                                            func[TTL_PIN_FUNC_NUM];
                         unsigned short
                                                            v_fp;
Confidential for
                            unsigned short
                                                            h_fp;
                            unsigned short
                                                            v_bp;
                            unsigned short
                                                            h_bp;
                            enum bt_demux_mode_e
                                                                mode;
                            unsigned char
                                                             sync_code_part_A[3];
                                                                                    /* sync
                    code 0~2 */
                            struct bt_demux_sync_s
                    sync_code_part_B[BT_DEMUX_NUM]; /* sync code 3 */
                            char
                                                            yc_exchg;
                   };
```

成員名稱	描述	
func	BT 接口對應輸入源 TTL_VI_SRC_VI2	
	的 lane number. Index 為 BT 邏輯功	
· · · · · · · · · · · · · · · · · · ·	能, value 請參考表 1-1. 例如,	
or , &	func[TTL_PIN_FUNC_D0] = 5, 代表	
ntial	BT 訊號的 D0 接到 VI2_D[5], 即 pad	
afider.	name VIVO_D5.	
Corr	Corr	
39		

ns are subject to change without notice		
X	X	a X
v_fp	垂直方向的 front porch	一点相相,
h_fp	水平方向的 front porch	c of
v_bp	垂直方向的 back porch	
h_bp	水平方向的 back porch	1
mode	BT 解多工模式的通道數量	l
sync_code_part_A	BT 解多工模式的 0~2 同步碼	1
sync_code_part_B	BT 解多工模式的同步碼 3	1
yc_exchg	BIT0~BIT3 分別代表 CH0~CH3 的 Y	
	Cb/Cr bytes 順序互換. 1 為互換, 0	
	為不互換.	l

無

【注意事项】

無

【相关数据类型及接口】

無

ttl_dev_attr_s

fidential for Athlinet TTL/BT 接口的屬性設定。

【定义】

```
struct ttl_dev_attr_s {
        enum ttl_src_e
                                         vi;
        signed char
                                          func[TTL_PIN_FUNC_NUM];
        unsigned short
                                          v_bp;
        unsigned short
                                          h_bp;
};
```

成員名稱	描述	
vi vi	TTL/BT 接口的輸入來源, 允許值為	加州
深圳"	TTL_VI_SRC_VI0 或 TTL_VI_SRC_VI1	深圳
func	BT 接口對應輸入源的 lane number.	EOI
lantia	Index 為 BT 邏輯功能, value 請參考	
confide.	表 1-1. 例如, vi = TTL_VI_SRC_VI1	
00,	00,	•
40		

Speameatic	ns are subject to chang	ge Williagt Hoties		
	Or Killing I	2 5	時, func[TTL_PIN_FUNC_D0] = 5, 代表 BT 訊號的 D0 接到 VI1_D[5], 即 pad name VIVO_D5.	for 深圳腫 ^十
	v_bp	: Jent rea	垂直方向的 back porch	
	h_bp	Court	水平方向的 back porch	
	 【芯片差异】			_

無

【注意事项】

【相关数据类型及接口】

combo dev attr s

【说明】

combo 設備屬性,由於 MIPI Rx 能夠對接 CSI-2, sub-LVDS, HiSPi 等時序, 所以將 MIPI Rx 稱為 combo 設備。

【定义】

```
for 深圳随
                                                    Confidential
struct combo_dev_attr_s {
         enum input_mode_e
                                        input_mode;
         enum rx_mac_clk_e
                                       mac clk;
        struct mclk_pll_s
                                        mclk;
         union {
                struct mipi_dev_attr_s mipi_attr;
                struct lvds_dev_attr_s lvds_attr;
                struct ttl_dev_attr_s ttl_attr;
                struct bt_demux_attr_s bt_demux_attr;
        };
         unsigned int
                                      devno;
         struct img_size_s
                                      img_size;
                                                                         深圳種
         struct manaul_wdr_attr_s
                                        wdr_manu;
```

成員名稱	描述	ntial
input_mode	輸入接口類型	nfide.
	Cor	$C_{O_{I_{i}}}$

ns are subject to chan	ige without not	tice	1
X		**	
mac_clk		MIPI RX MAC 時鐘設定	
mclk		MIPI RX 輸出的 Sensor 參考時鐘設定	
mipi_attr		如果 input_mode 配置為 INPUT_MODE_MIPI,	
		則必須配置 mipi_attr	
lvds_attr	Court	如果 input_mode 配置為	
		INPUT_MODE_SUBLVDS/INPUT_MODE_HISPI,	
		則必須配置 lvds_attr	
devno		MIPI-Rx 設備號	
img_size		輸入幀大小	
wdr_manu		手動 WDR 屬性	

無

【注意事项】

無

Confidential for TRHIME 【相关数据类型及接口】

魚無

Confidential rate

捨棄開頭的行資料。

【定义】

```
struct crop_top_s {
           unsigned int
                                             devno;
          unsigned int
                                             crop_top;
                                             update;
           unsigned int
};
```

成員名稱	描述	
devno	MIPI-Rx 設備號	
crop_top	開頭要拾棄的行數	
update	是否強制更新設定。 若否, 設定會等下一張的同	
	步訊號來才更新。	
Confi	Couting	
	42	

Confidential for Athlifet

【相关数据类型及接口】

manual_wdr_s

【说明】

手動 WDR 模式設定。

【定义】

```
struct manual_wdr_s {
          unsigned int
                                          devno;
          struct manaul_wdr_attr_s
                                            attr;
```

【成員】

成員名稱	描述	1121
devno	MIPI-Rx 設備號	ciden
attr	手動 WDR 屬性	Cour

【芯片差异】

無

【注意事项】

無

【相关数据类型及接口】

無

vsync_gen_s

【说明】

手動 WDR 模式設定。

```
Fidential for Fight
                          for 深圳随土
       unsigned intalential
struct vsync_gen_s {
                                 devno;
```

Confidential for TRHIME

atial for Athline

Specifications are subject to change without notice

וכ	ns are subject to change without r	otice		
		- X		. X
	unsigned int	distance_fp;		深圳恒
	};		car	11/4
	【成員】	: 2)	: 21 10	
	成員名稱	描述	1077	

【成員】

成員名稱	c à	描述
devno	Courr	MIPI-Rx 設備號
distance_fp		當 input_mode 為 INPUT_MODE_SUBLVDS
		時・產生垂直同步訊號的時間點。

【芯片差异】

無

【注意事项】

• Sub-LVDS 不自帶垂直同步訊號,所以 MIPI-Rx 須自行生成送給 ISP。 distance_fp 可調整垂直同步時間點以達到加大 front porch 的作用。

【相关数据类型及接口】

無

LANE_MAX_NUM

【说明】

ial for willimet 一個 MIPI Tx 設備支援的最大 Lane 數。

【定义】

#define MIPI_LANE_NUM 4

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

無

output_mode_e

【说明】

MIPI Tx 輸出模式。

【定义】

enum output_mode_e

tial for TRHIME!

```
for深圳種十
   OUTPUT_MODE_CSI
                               = 0x0,
                                        /* csi mode */
   OUTPUT_MODE_DSI_VIDEO
                                         /* dsi video mode */
                               = 0x1,
   OUTPUT_MODE_DSI_CMD
                                         /* dsi command mode */
                               = 0x2,
   OUTPUT_MODE_BUTT
} output_mode_t;
```

【芯片差异】

芯片类型	是否支持
CV183x	只支持 OUTPUT_MODE_DSI_VIDEO
CV182x	只支持 OUTPUT_MODE_DSI_VIDEO

【注意事项】

无。

【相关数据类型及接口】

無

video mode e

【说明】

MIPI Tx 视频模式。

【定义】

```
Confidential for This was a
enum video_mode_e {
   BURST_MODE
                                  = 0x0,
   NON_BURST_MODE_SYNC_PULSES
                                      = 0x1,
   NON_BURST_MODE_SYNC_EVENTS
                                      = 0x2,
};
```

【芯片差异】

芯片类型	是否支持	
CV183x	只支持 BURST_MODE	
CV182x	只支持 BURST_MODE	
【注意事项】 无·	深圳膧	
無		
45		

【注意事项】

output_format_e

【说明】

MIPI Tx 輸出格式。

【定义】

```
mfidential for Khilmet
                   idential for Killher
enum output_format_e {
   OUT_FORMAT_RGB_16_BIT
                                  = 0x0,
   OUT_FORMAT_RGB_18_BIT
                                  = 0x1,
   OUT_FORMAT_RGB_24_BIT
                                  = 0x2,
   OUT_FORMAT_RGB_30_BIT
                                  = 0x3,
   OUT_FORMAT_YUV420_8_BIT_NORMAL = 0x4,
   OUT_FORMAT_YUV420_8_BIT_LEGACY = 0x5,
   OUT_FORMAT_YUV422_8_BIT
                                  = 0x6,
   OUT_FORMAT_BUTT
}; <
```

【芯片差异】

【芯片差异】	\$ 0	12	£ 0,7
芯片类型	121	是否支持	+181
CV183x	cident	不支持 YUV420	cident
CV182x	Court	不支持 YUV420	Cour
【沙辛申语】			_

【注意事项】

无。

【相关数据类型及接口】

無

sync_info_s

【说明】

MIPI Tx 設備同步信息。

```
Eidential for AMME
struct sync_info_s {
    unsigned short vid_hsa_pixels;
    unsigned short vid_hbp_pixels;
    unsigned short vid_hfp_pixels;
```

confidential for Athlifet unsigned short vid_hline_pixels; unsigned short vid_vsa_lines; unsigned short vid_vbp_lines; unsigned short vid_vfp_lines; unsigned short vid_active_lines; unsigned short edpi_cmd_size; vid_vsa_pos_polarity; bool vid_hsa_pos_polarity; bool **}**;

【成員】

	成員名稱	描述	
	vid_hsa_pixels	Horizontal sync-pluse 像素个数	
	vid_hbp_pixels	Horizontal back-porch 像素个数	
	vid_hfp_pixels	Horizontal front-porch 像素个数	
	vid_hline_pixels	Horizontal image active 像素个数	10年十
	vid_vsa_lines	Vertical sync-pluse 行数	深圳加
	vid_hbp_pixels	Vertical back-porch 行数	V
	vid_hbp_pixels	Vertical front-porch 行数	
	vid_active_pixels	Vertical image active 行数	
	edpi_cmd_size	写内存命令字节数。	
		video mode 时该值无效·command	
		mode 时该值设为 hact。	
	vid_vsa_pos_polarity;	Horizontal sync-pluse polarity	
	vid_hsa_pos_polarity;	Vertical sync-pluse polarity	

【芯片差异】

无。

【注意事项】

无。

confidential for Frimmet 【相关数据类型及接口】

combo_dev_cfg_s

MIPI Tx 設備屬性。

【定义】

```
Jevno;
lane_id[LANE_MAX_NUM];
output_mode;
video_mode;
struct combo_dev_cfg_s {
                      devno;
    unsigned int
    enum mipi_tx_lane_id
    enum output_mode_e
    enum video_mode_e
    enum output_format_e output_format;
    struct sync_info_s
                          sync_info;
    unsigned int
                           phy_data_rate;
    unsigned int
                           pixel_clk;
    bool
                           lane_pn_swap[LANE_MAX_NUM];
};
```

【成員】

成員名稱	描述
devno	MIPI Tx 设备号
lane_id	发送端(vo)和接收端(MIPI Tx) Lane的对应
tial	关系 未使用的 Lane 设置为-1。
e idential i	未使用的 Lane 设置为-1。
output_mode	MIPI Tx 输出模式。
video_mode	MIPI Tx 视频模式。
output_format	MIPI Tx 输出格式。
sync_info	MIPI Tx 设备的同步信息。
phy_data_rate	MIPI Tx 输出速率,MIPI Tx 高速模式每个
	通道(lane)的速率范围的描述。
pixel_clk	像素时钟。单位为 KHz
lane_pn_swap	Lane 设置上是否 P/N 要互换

【芯片差异】

无。

■ 旧关数据类型及接口】

CVI_VIP_MIPI_TX_SET_DEV_CFG

cmd_info_s

```
nfidential for Khillipet
全の内 】

給 MIPI Tx 設備初始化信息。

【定义】

struct cmペ
     unsigned int devno;
     unsigned short data_type;
     unsigned short cmd_size;
     unsigned char *cmd_data;
 };
```

【成員】

成员名称		描述
devno		MIPI Tx 设备号
data_type		命令数据类型
cmd_size		命令数据字节数·范围:(0,128)。
cmd_data	Ę	命令数据地址指针,需要用户分配。
【芯片差异】	Confidential	Confidential
无。		
【注意事项】		
_		

【芯片差异】

无。

【相关数据类型及接口】

CVI_VIP_MIPI_TX_SET_CMD

get_cmd_info_t

【说明】

從 MIPI Tx 設備取回信息。

```
Confidential for This William
                               for深圳随
struct get_cmd_info_s {
   unsigned int devno;
   unsigned short data_type;
   unsigned short data_param;
   unsigned short get_data_size;
```


【成員】

s are subject to change without notice		I
X	X	4
unsigned char *get_data;	till feet	点州相
} get_cmd_info_t;	or the	1/K-1
【成員】	3.27	
成员名称	描述	
devno	MIPI Tx 设备号	
data_type	命令数据类型	
data_param	数据参数,低八比特为第一个参数,高八	
	比特为第二个参数、不用时填 0	
get_data_size	预期获取的数据字节数,范围:(0,4)。	
get_data	获取到的数据存放地址指针·需要用户分	
	配。	

【芯片差异】

无。

【注意事项】

无。

【相关数据类型及接口】

Confidential for TRHIMET CVI_VIP_MIPI_TX_GET_CMD

Confidential hs_settle_s

【说明】

MIPI Tx 設備 HS mode 下的 settle 信息。

【定义】

```
struct hs_settle_s {
    unsigned char
                            prepare;
    unsigned char
                            zero;
    unsigned char
                            trail;
};
```

成员名称	描述
prepare	為 LP->HS 後的前置準備 T 數
zero	在進入 HS 後·在輸出資料前為 0 的 T 數
trail	在 HS->LP 時,要結束 HS 前,資料結束
angide.	後額外的T數
00,	00,
50	

无。

【注意事项】

【相关数据类型及接口】

無

1.6.Proc 信息

1.6.1. MIPI RX Proc 信息

ial for ist think MIPI_Rx 在正常工作下 proc 信息中的各種錯誤中斷計數應為 0。 若否,請檢查 MIPI_Rx 相關屬性是否配置正確。

【調試信息】

【調試信息分析】

- 1 for 深圳砸 MIPI Rx 通過 PHY Wrapper 接收 Sensor 的 MIPI-CSI/SubLVDS/HiSPi/TTL 訊號,由 MAC 內對應的介面進行同步頭檢測與對齊。
- MAC 將各 Lane 的數據合併成 Pixel 數據, 並將數據發送給後級的 ISP。
- PHY Wrapper 由 sensor 的 pixel clock 提供時鐘。 MAC 內的時鐘與後級 的 ISP 相同。
- 若要操作數據的 Crop, 可由後級的 ISP 來調試。

圖 1-5 數據示例圖

【參數說明】

【參數說明	11 +121	for idential	FOT KIMM
	- siden	: den	7
參數	Cour	描述	
MIPI	Devno	MIPI 設備號	
DEV	WorkMode	MIPI 設備工作模式: MIPI/	
ATTR		SUBLVDS/HISPI/CMOS 等模式	
1	DataType	RAW8/RAW10/RAW12 等類型	
	WDRMode	WDR 模式:	
1		• NONE	
		• VC	
1		• DT	
1		• DOL	
	aX	MANUAL	
11/1/	Laneld	Lane id	深圳随
ior	PN Swap	PN 訊號交換	802
LVDS	Devno	MIPI 設備號	. ,
DEV	WorkMode (1)	MIPI 設備工作模式: MIPI/	

	ATTR	是 `	SUBLVDS/HISPI/CMOS 等模式	
		DataType	RAW8/RAW10/RAW12 等類型	
: 2)		WDRMode	WDR 模式:	
dentile		: dentile	• NONE	
idential fo		WDRMode	WDR 模式: • NONE • 2To1	
			• 3To1	
			DOL2To1	
			• DOL3To1	
		Laneld	Lane id	
		PN Swap	PN 訊號交換	
		SyncMode	LVDS 的同步碼模式:	
			• SOF	
			• SAV	
		DataEndian	Data 的比特位大小端模式	
		SyncCodeEndian	同步碼的比特位大小端模式	
1	MIPI	Devno	MIPI 設備號	
şd	Info (僅	EccErr	ECC 錯誤的中斷計數	
ntial	MIPI 模	CrcErr	CRC 錯誤的中斷計數	
Fidential (式可見)	HdrErr	HDR Flag 錯誤的中斷計數	
		WcErr	Word Count 錯誤的中斷計數	
		fifofull	Fifofull 的中斷計數	
		Physical: D0	MIPIRX_PAD0 收到的資料	
		Physical: D1	MIPIRX_PAD1 收到的資料	
		Physical: D2	MIPIRX_PAD2 收到的資料	
		Physical: D3	MIPIRX_PAD3 收到的資料	
		Physical: D4	MIPIRX_PAD4 收到的資料	
		Physical: D5	MIPIRX_PAD5 收到的資料	
		Digital: D0	Sensor data lane 0 state	
		Digital: D1	Sensor data lane 1 state	
		Digital: D2	Sensor data lane 2 state	
CO		Digital: D3	Sensor data lane 3 state	
idential fo		CK_HS/CK_ULPS/	Sensor clock lane state	
Eiger,		CK_STOP/CK_ERR Deskew	Deskew 結果	

for 深圳随 Confidentia.7.FAQ

1.7.1. Land id 如何配置

Confidential for While Land id 的配置對應 mipi_dev_attr_s 中的 short lane_id[MIPI_LANE_NUM+1]或者 lvds_dev_attr_s 中的 short lane_id[MIPI_LANE_NUM+1], 其中 lane_id 數組的索引 號表示的是 Sensor 的 Lane ID,索引號 0表示 sensor clock,索引號 1表示 sensor lane 0。 land_id 數組的值表示的是 MIPI-Rx 的 Lane ID · 0表示 MIPIRX1_PAD0 · 1表示 MIPIRX1_PAD1。未使用的 lane 將其對應的 lane_id 配置為-1。 下面舉例說明,例如 MIPI 與 SENSOR 的引腳硬件連接如下表所示。

SENSOR 管腳	MIPI Lane 管腳	
Clock Lane (index = 0)	MIPIRX1_PAD0 (value = 0)	
Lane 0 (index = 1)	MIPIRX1_PAD1 (value = 1)	
Lane 1 (index = 2)	MIPIRX1_PAD2 (value = 2)	
Lane 2 (index = 3)	MIPIRX1_PAD3 (value = 3)	
Lane 3 (index = 4)	MIPIRX1_PAD4 (value = 4)	
antio	antio	
MIPI 的最大 Lane 數加上 Clock 為 5.所以	(lane_id 配置如下:	

MIPI 的最大 Lane 數加上 Clock 為 5, 所以 lane_id 配置如下:

1.7.2. MIPI 頻率說明

使用以下公式計算 MIPI 每 Lane 最高頻率與 VI MAC 的工作頻率:

MAC Freq * pixel width = lane num * MIPI Freq * 2 •

Confidential for This was confidential 其中 MAC_Freq 為 VI MAC 的工作頻率,pixel_width 為像素位寬,lane_num 為 MIPI lane 個數,MIPI_Freq 為每條 lane 的工作頻率。

可支持最快 MIPI_Freq = 400 * 12 / (4 * 2) = 600MHz。 若 MAC clock 為 400M · pixel width = 12 · lane num = 4 ·

Confiden

当手動 WDR 模式打開後・MIPI-Rx 會把收下來的資料以行為單位・遵遁以下規則分配給長曝幀與短曝幀。

• 12s_distance: 從第一年到後:

- 開始長曝與短曝交錯分配。
- lsef_length: 第 lsef_length+1 行開始都是短曝幀資料。 直到下個垂直同步訊號 為止。
- 當 discard_padding_lines=1 時 · 1 到 l2s_distance 行分配方式為{長-ignore-長ignore ...}, 第 l2s_distance+1 到 lsef_length 行分配方式為{長-短-長-短 ...}。第 lsef length+1 行到下個垂直同步訊號分配方式為{短-ignore-短-ignore ...}。

Padding data is sent as active lines, discard padding lines = 1

當 discard_padding_lines=0 時,1 到 l2s_distance 行分配方式為{長-長-長 ...}, 第 | 2s_distance + 1 到 | sef_length 行分配方式為{長-短-長-短 ...}。第 lsef_length+1 行到下個垂直同步訊號分配方式為{短-短-短 ...}。

Padding data is sent as blanking lines, discard_padding_lines = 0

- MIPI-Rx 必須確保發送給 ISP 的長曝幀與短曝幀行數是一致的。
- 調整 sensor 短曝長度,有可能 I2s_distance 須要一起調整。
- 有些 sensor 可能會在送完短曝有效資料後帶 dummy 行。 這會造成長曝與短曝 的行數不一致。 可將 I2s_distance 設成 0 · Isef_length 設成最大值 0x1FFF. Confidentia discard_padding_lines 為 1 即收下兩張帶有效與 dummy 資料的長短曝,再用 ISP crop 有效位置即可。

discard padding lines = 1 l2s distance = 0 Isef_length = 1FFF