Epreuve écrite

Examen de fin d'études secondaires 2002

Section: B/C

Branche: chimie

Nom et prénom du candidat

12 JUIN 2002

[C = question de cours; TC = transfert/compréhension; An = application numérique]

I. Mécanismes réactionnels (14 pts.)

Etudier les mécanismes des réactions suivantes:

- 1) Préparation du bromoéthane à partir de l'éthanol par substitution nucléophile. [c:9]
- 2) Action de la triéthylamine sur l'iodoéthane. [c:5]

II. Alcools, aldéhydes, cétones (16 pts.)

- Comparer la volatilité des aldéhydes et cétones avec celle des hydrocarbures et des alcools de masse molaire similaire. Expliquer les différences. [C:3]
- 2) Etablir l'équation chimique de l'estérification du propanetriol avec l'acide nitrique. Quel est l'usage du produit obtenu? [C:3]
- 3) Dresser les équations du système rédox de la réaction du propanal avec la liqueur de Fehling. [TC:3]
- 4) L'arôme principal des champignons des prés est l'oct-1-èn-3-ol.
 - a) Est-ce que cette molécule est chirale? Justifier. [TC:1]
 - b) Présente-t-elle l'isomérie Z/E? Justifier. [TC:1]
 - c) Cet arôme est traité avec:
 - l'eau de brome,
 - la dinitrophénylhydrazine (DNPH),
 - une solution de dichromate de potassium,
 - le réactif de Tollens.

Pour chaque test, décrire brièvement les observations faites et expliquer (sans équations chimiques). [TC:5]

Examen de fin d'études secondaires 2002

Corrigé

[C = question de cours; TC = transfert/compréhension; An = application numérique]

I. Mécanismes réactionnels (14 pts.)	I
1) livre p. 39-40	C g
2) livre p. 83	C 5
II. Alcools, aldéhydes, cétones (16 pts.)	
1) livre p.62	C 3
2) livre p. 59	C 3
	1
3) Ox. $CH_3^- CH_2^- CHO + 3OH^- \longrightarrow CH_3^- CH_2^- COO^- + 2H_2O + 2\bar{e}$ $red. 2Cu^{2f}_{cpx} + 2\bar{e} + 2OH^- \longrightarrow Cu_2O + H_2O + 2cpx$	
	TC 3
$nedox$: $l cult cpx + cH_3 - cH_2 - cHO + 50H^- \longrightarrow cult + cH_3 - cH_2 - cHO - + 3H_2O + 2cpx$	
•)
$ \begin{bmatrix} cH_{2} = CH - C - cH_{2} - cH_{2} - cH_{2} - cH_{2} - cH_{3} \\ OH \end{bmatrix} $	
a) molécule chirale, car C3 est asymétrique (quatre substituants différents sur C3)	TC 1
b) pas d'isomènie 2/E, car C1 parte deux substituents identiques	TC 1
C) - dérection de l'eau de brome; addition de Bri sur la l'édison double	Tc 1,5
- pas de réaction avec DNPH; pas de fonction carbonyle présente	TC 1
- orange → vert (cr 31); oxydation d'un occor secondaine en cétour	TC 1,5
- pas de réaction; pas de fonction aldohyde présente	TC 1

3) a)
$$n(HA) = \mathcal{L}(HA) - V(HA) = 0, 11 \text{ mod } e^{-1} \cdot 0, 7e = 0, 077 \text{ mod}$$

$$M(HA) = \frac{m(HA)}{n(HA)} = \frac{110}{0,077 \text{ mod}} = 142,86 \text{ g} \cdot \text{mod}^{-1}$$

$$HA \stackrel{\triangle}{=} Ce_{\lambda} C_{n} H_{\lambda n-1} COOH$$

$$2.35,5 + 12 m + 2 m - 1 + 45 = 142,86$$

$$14m = 27,86$$

$$m = 2$$

ac. 1,1 - déchlore = ac. 1,3 - déchlore = ac. 3,3 - déchlore = propanoique propanoique propanoique

TC 2

```
IV. Acides, bases et pH (15 pts.)
```

1)
$$pk_2(HNO_2/NO_2^-) = 3,14$$

 $x^2 + k_2 x - k_2 x_0 = 0$ awac $x = EH_3O^+J$

$$X_1 = 8_1 16 \cdot 10^{-3} = [H_3 0 t]$$
 ; $(X_2 = -8_1 88 \cdot 10^{-3})$
 $pH = -log[H_3 0 t] = 2_1 09$

2)
$$m(KNO_2) = \frac{m(KNO_2)}{M(KNO_2)} = \frac{8,5 g}{85,1 g \cdot moe^{-1}} = 0,10 \text{ moe}$$

 $[KNO_2] = \frac{m(KNO_2)}{V(sor)} = \frac{0,10 \text{ moe}}{0,5 \text{ e}} = 0,1 \text{ moe} \cdot e^{-1} = [NO_5]$

$$X^{2} + K_{b}X - K_{b}X_{0} = 0$$
 avec $X = [OH]$

$$K_{b} = 1,38 \cdot 10^{-11}$$

$$K_{0} = 0,2$$

$$X_A = 1,66 \cdot 10^{-6} = [0H^{-}]$$
; $(X_A = -1,66 \cdot 10^{-6})$
 $P^{0H} = -log [0H^{-}] = 5,78$
 $P^{0H} = 14 - poh = 8,22$

(1)
$$pH = pk_2 + log \frac{m_0(NO_2^-)}{m_0(HNO_2)} = 3,14 + log \frac{0,1}{0,05} = \frac{3,44}{0,05}$$

5) a)
$$HNO_2 + OH^- \longrightarrow NO_2^- + H_2O$$
 $C \downarrow$

$$pH = p_{4}^{1} + \lim_{t \to 0} \frac{0.1 + 0.025}{0.05 - 0.025} = 3.14 + \lim_{t \to 0} \frac{0.125}{0.025} = 3.84$$

Am 3

An 4

TC 1

An 2

TC 1

An 3