

Compound Operations

- More interesting morphological operations can be performed by performing combinations of erosions and dilations.
- The most widely used of these compound operations are:
 - 1. Opening
 - 2. Closing

Opening Opening of image t by structuring element s denoted by tos is simply an erosion followed by a dilation t ∘s = (t ∘s) ⊕s After erosion After dilation (cpening) Note a disc shaped structuring element is used

Boundary Extraction Region Filling

- Some more interesting morphological algorithms include
 - Boundary extraction
 - Region filling
 - Extraction of connected components
 - Thinning/thickening
 - Skeletonisation

Boundary Extraction

• Extracting the boundary (or outline) of an object is often extremely useful. The boundary can be given simply as

$$\beta(A) = A - (A \ominus B)$$

Boundary Extraction

 A simple image and the result of performing boundary extraction using a square 3x3 structuring element

Region Filling

 Given a pixel inside a boundary, region filling attempts to fill that boundary with object pixels

Given a point inside here, can we fill the whole circle?

Region Filling

- The key equation for region filling is
- Whe $X_k = (X_{k-1} \oplus B) \cap A^c$ k = 1,2,3....
 - $-\ {\rm X_o}$ is simply the starting point inside the boundary
 - B is a simple structuring
 - A^c is the complement of A
- This equation is applied repeatedly until \boldsymbol{X}_K is equal to $\boldsymbol{X}_{K\text{-}1}$.
- Finally the result is unioned with the original boundary.

THANK YOU