INSTITUTO MARIA IMACULADA

Faculdades Integradas Maria Imaculada

Graduação em Engenharia Civil

ROTEIRO PARA DIMENSIONAMENTO DE PILARES

BRUNO EDUARDO FABOCI

Mogi Guaçu

SUMÁRIO

1.	INT	RODUÇÃO	.4
2.	DIM	ENSIONAMENTO DE PILARES	.5
	2.1.	P01	.5
	2.1.1.	Valores de Cálculo	.5
	2.1.2.	Comprimento Equivalente do Tramo do Pilar	.5
	2.1.2.1.	Eixo X	.5
	2.1.2.2.	Comprimento Equivalente	.5
	2.1.2.3.	Eixo Y	.6
	2.1.3.	Vãos Efetivos das Vigas V01 e V15	.6
	2.1.3.1.	Viga V01	.6
	2.1.3.2.	Viga V15	.6
	2.1.4.	Cálculo dos Momentos Fletores Atuantes no Pilar	.7
	2.1.4.1.	Momentos Fletores Relativos à Viga V01 – Eixo X	.7
	2.1.4.1.	Rigidez dos Tramos Superior e Inferior do Pilar	.7
	2.1.4.1.2	2. Rigidez da Viga	.7
	2.1.4.1.3	3. Momento de Engastamento Perfeito do Primeiro Tramo da Viga	.8
	2.1.4.1.4	4. Momento Fletores Atuantes nos Tramos Superior e Inferior	.8
	2.1.4.2.	Momentos Fletores Relativos à Viga V15 – Eixo Y	.8
	2.1.4.2.	Rigidez dos Tramos Superior e Inferior do Pilar	.8
	2.1.4.2.2	2. Rigidez da Viga	.8
	2.1.4.2.3	3. Momento de Engastamento Perfeito do Primeiro Tramo da Viga	.8
	2.1.4.2.4	4. Momento Fletores Atuantes nos Tramos Superior e Inferior	.8
	2.1.5.	Calculo de Excentricidades Relativas aos Momentos Atuantes nas	
Se	eções de	Topo e Base do Pilar P01	.9
	2.1.6.	Cálculo dos Momentos Mínimos	.9
	2.1.7.	Verificação da Necessidade da Consideração de Momentos de Segunda	а
0	rdem	9	
	2.1.7.1.	Direção do Eixo X	.9
	2.1.7.2.	Direção do Eixo Y	10
	2.1.8.	Cálculo dos Momentos Totais nas Direções x e y	10
	2.1.8.1.	Momento Total na Direção do Eixo X	11

2.1.8.1.1. 1a Iteração Md , $tot = 985, 2KNcm$	11
2.1.8.1.2. 2^a Iteração Md , $tot = 985$, $2 + 17252 = 1355KNcm$	11
2.1.8.1.3. 3^a Iteração Md , $tot = 1355 + 22872 = 1821KNcm$	11
2.1.8.1.4. Excentricidade Total na Direção do Eixo X	11
2.1.8.2. Momento Total na Direção do Eixo Y	12
2.1.8.2.1. 1a Iteração Md , $tot = 1024,38 KN cm$	12
2.1.8.2.2. 2^a Iteração Md , $tot = 1024$, $38 + 1064$, $42 = 1044$, $4KNcm$	12
2.1.8.2.3. 3a Iteração Md , $tot = 1044$, $4 + 1103$, $22 = 1073$, $8KNcm$	12
2.1.8.2.4. Excentricidade Total na Direção do Eixo Y	12
2.1.8.3. Cálculo dos Momentos Totais nas duas Direções x e y Usando a	
Equação da Solução Única	13
2.1.8.3.1. Momento Total na Direção do Eixo X	13
2.1.8.3.2. Momento Total na Direção do Eixo Y	13
2.1.8.4. Cálculo da Área de Armadura Longitudinal	14
2.1.8.5. Cálculo da Taxa Geométrica Mínima de Armadura	.15

1. INTRODUÇÃO

5

2. DIMENSIONAMENTO DE PILARES

2.1.P01

Por se tratar de um pilar de canto, o pilar P01 está submetido à flexão composta obliqua, ou seja, está submetido a força centrada e momentos fletores em duas direções, devido a ligação das vigas V01 e V15.

2.1.1. Valores de Cálculo

Os módulos da força normal característica e de cálculo no pilar 01 são:

Nk = 1186, 67KN

Nd = 1,4x1168,67 = 1661,34KN

2.1.2. Comprimento Equivalente do Tramo do Pilar

2.1.2.1. Eixo X

Determina-se a distância entre as faces da viga V01, da face superior do andar I até o andar I+1, resultando:

$$lox = 275 - 55 = 220cm$$

2.1.2.2. Comprimento Equivalente

O comprimento equivalente é o menor valor entre o comprimento livre do pilar, acrescido da dimensão do pilar na direção considerada (x), e a distância dos centros das vigas do andar I e I+1. Temos:

$$lex = lox + hx = 220 + 19 = 239cm$$

$$lex = 275cm$$

Portanto, lex = 239cm

2.1.2.3. Eixo Y

Os valores para o eixo y são calculados de forma análoga ao eixo x.

$$loy = 275 - 55 = 220cm$$

$$ley = loy + hy = 220 + 65 = 285cm$$

$$ley = 275cm$$

Portanto, ley = 275cm

2.1.3. Vãos Efetivos das Vigas V01 e V15

2.1.3.1. Viga V01

O cálculo dos vãos efetivos é determinado por:

$$lef, v1 = lo, v1 + a1 + a2$$

Onde:

•
$$lo, v1 = 506 - \frac{19}{2} - \frac{110}{2} = 441,5cm$$

• a1 é a menor medida entre:

$$a1 = \frac{hx,p1}{2} = \frac{19}{2} = 9,5cm$$

$$0 \quad a1 = 0, 3xh_{v1} = 0, 3x55 = 16, 5cm$$

Portanto, a1 = 9,5cm

• a2 é a menor medida entre:

$$0 \quad a2 = \frac{hx_{p}p}{2} = \frac{110}{2} = 55cm$$

$$\circ \quad a2=0, 3xh_{v1}=0, 3x55=16, 5cm$$

Portanto, a2 = 16,5cm

$$lef, v1 = 441, 5 + 9, 5 + 16, 5 = 467, 5cm$$

2.1.3.2. Viga V15

Os valore para a viga V15 são calculados de forma análoga à V01 $lef, v_{15} = lo, v_{15} + a1 + a2$

Onde:

•
$$lo, v1 = 386 - \frac{65}{2} - \frac{65}{2} = 321cm$$

• a1 é a menor medida entre:

$$0 \quad a1 = \frac{hy,p1}{2} = \frac{65}{2} = 32,5cm$$

o
$$a1 = 0,3xh_{v15} = 0,3x55 = 16,5cm$$

Portanto, a1 = 16,5cm

a2 é a menor medida entre:

$$0 \quad a2 = \frac{hy.p2}{2} = \frac{65}{2} = 32,5cm$$

$$\circ \quad a2 = 0, 3xh_{v15} = 0, 3x55 = 16, 5cm$$

Portanto, a2 = 16,5cm

$$lef, v1 = 321 + 16, 5 + 16, 5 = 354cm$$

2.1.4. Cálculo dos Momentos Fletores Atuantes no Pilar

2.1.4.1. Momentos Fletores Relativos à Viga V01 – Eixo X

Calculam-se os índices de rigidez dos tramos superior e inferior do pilar e do tramo da viga vinculada ao pilar, calcula-se o momento de engastamento perfeito e os momentos atuantes nas barras superior e inferior do pilar.

2.1.4.1.1. Rigidez dos Tramos Superior e Inferior do Pilar

$$r_{sup} = r_{inf} = \frac{3 \times I_{pilar}}{\frac{1}{2} \times I_{sup}} = \frac{3 \times 65 \times 19^{3}}{12} \times \frac{1}{119,5} = 932,7cm^{3}$$

2.1.4.1.2. Rigidez da Viga

$$r_{v01} = \frac{4 \times I_{v01}}{I_{v01}} = \frac{4 \times 19 \times 55^3}{12} \times \frac{1}{467, 5} = 2.254 cm^3$$

2.1.4.1.3. Momento de Engastamento Perfeito do Primeiro Tramo da Viga

$$M_{eng} = \frac{(g+q) x l^2_{viga}}{12} = \frac{17,07x4,675^2}{12} = 31,08KNm = 3.108KNcm$$

2.1.4.1.4. Momento Fletores Atuantes nos Tramos Superior e Inferior

$$M_{sup} = M_{inf} = M_{eng}x \left(\frac{r_{sup}}{r_{viga} + r_{sup} + r_{inf}} \right) = 3.108 x \left(\frac{932,7}{2.254 + 932,7 + 932,7} \right)$$

$$M_{sup} = M_{inf} = 703,7KNcm$$

2.1.4.2. Momentos Fletores Relativos à Viga V15 – Eixo Y

Os valores do momento no eixo y são calculados de forma análoga ao eixo x.

2.1.4.2.1. Rigidez dos Tramos Superior e Inferior do Pilar

$$r_{sup} = r_{inf} = \frac{3 \times I_{pilar}}{\frac{1}{2} \times I_{sup}} = \frac{3 \times 19 \times 65^{3}}{12} \times \frac{1}{137,5} = 9.487 cm^{3}$$

2.1.4.2.2. Rigidez da Viga

$$r_{v01} = \frac{4 \times I_{v15}}{l_{v15}} = \frac{4 \times 19 \times 55^3}{12} \times \frac{1}{354} = 2976,6 cm^3$$

2.1.4.2.3. Momento de Engastamento Perfeito do Primeiro Tramo da Viga

$$M_{eng} = \frac{(g+q) x l^2_{viga}}{12} = \frac{16,21x3,54^2}{12} = 16,93$$
KNm = 1.693KNcm

2.1.4.2.4. Momento Fletores Atuantes nos Tramos Superior e Inferior

$$M_{sup} = M_{inf} = M_{eng}x \left(\frac{r_{sup}}{r_{viga} + r_{sup} + r_{inf}} \right) = 1.693x \left(\frac{9.487}{2976, 6 + 9.487 + 9.487} \right)$$

$$M_{sup} = M_{inf} = 731,7KNcm$$

2.1.5. Calculo de Excentricidades Relativas aos Momentos Atuantes nas Seções de Topo e Base do Pilar P01

$$M_{dix,A} = M_{dix,B} = 1,4x \, (Msup = Minf) = 1,4x703,7 = 985,2KNcm$$

$$e_{ix,A} = e_{ix,B} = \frac{M_{dix}}{Nd} = \frac{985,2}{1661.34} = 0,59cm$$

$$M_{diy,A} = M_{diy,B} = 1,4x (Msup = Minf) = 1,4x731,7 = 1024,38KNcm$$

$$e_{iy,A} = e_{iy,B} = \frac{M_{diy}}{Nd} = \frac{1024,38}{1661,34} = 0,62cm$$

2.1.6. Cálculo dos Momentos Mínimos

Os módulos dos momentos mínimos nas direções x e y resultam em:

$$M_{d1x,min} = N_d x (0,015+0,03hx) = 1661,34x (0,015+0,03x0,19) = 34,39KNm$$

 $M_{d1x,min} = 3.439KNcm$

$$M_{d1y,min} = N_d x (0,015+0,03hy) = 1661,34x (0,015+0,03x0,65) = 57,31KNm$$

 $M_{d1y,min} = 5.731KNcm$

2.1.7. Verificação da Necessidade da Consideração de Momentos de Segunda Ordem

A verificação é feita calculando os índices de esbeltes para as direções x e y.

2.1.7.1. Direção do Eixo X

O Cálculo do índice de esbeltes é determinado pela expressão:

$$\lambda x = \frac{l_{ex}x\sqrt{12}}{h_x} = \frac{239\sqrt{12}}{19} = 43,6$$

O cálculo do índice de esbeltes de referência é dado pela expressão:

$$(\lambda_1)_x = \frac{25 + 12,5x\frac{e_{ix}}{h_x}}{\alpha_{bx}} = \frac{25 + 12,5x\frac{0,59}{19}}{1,0} = 25,39 > 35$$

• Se Mx < Mx, min, então $\alpha_{bx} = 1$, 0;

Portanto, tem-se $(\lambda_1)_x = 35$

Como $(\lambda_1)_x = 35 < \lambda_x = 43, 6 < 90$, tem-se pilar medianamente esbelto na direção x, havendo necessidade de se considerar os efeitos de segunda ordem.

2.1.7.2. Direção do Eixo Y

Analogamente, o índice de esbeltes é determinado por:

$$\lambda y = \frac{l_{ey}x\sqrt{12}}{h_v} = \frac{275\sqrt{12}}{65} = 14,65$$

E o índice de esbeltes de referência é determinado por:

$$(\lambda_1)_y = \frac{25 + 12,5x\frac{e_{iy}}{h_y}}{\alpha_{by}} = \frac{25 + 12,5x\frac{0,62}{65}}{1,0} = 25,12 > 35$$

Portanto, tem-se $(\lambda_1)_x = 35$

Como $(\lambda_1)_x = 35 > \lambda_x = 14,65$, não há necessidade de se considerar os efeitos de segunda ordem na direção y.

2.1.8. Cálculo dos Momentos Totais nas Direções x e y

Na Flexão Composta Obliqua, aplica-se o método do Pilar Padrão com Rigidez Aproximada, cujo procedimento consiste na amplificação dos momentos de 1ª ordem em cada direção, simultaneamente. Dessa amplificação resulta o Momento Total Máximo, para a determinação da área de armadura longitudinal, expresso por:

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} \ge \{M_{d1,a}; M_{1d,min}\}$$

Com
$$K = 32 \cdot \left(1 + 5 \cdot \frac{M_{d,tot}}{h \cdot Nd}\right) \cdot V$$
 e $V = \frac{N_d}{Ac \cdot fcd}$

2.1.8.1. Momento Total na Direção do Eixo X

2.1.8.1.1. 1ª Iteração
$$M_{d,tot} = 985, 2KNcm$$

$$K = 32 \cdot \left(1 + 5 \cdot \frac{985, 2}{19.1661, 34}\right) \cdot 0,62 = 22,9$$

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} = \frac{1,0.985,2}{1 - \frac{43,6^2}{120.\frac{22,9}{0,62}}} = 1725KNcm$$

2.1.8.1.2.
$$2^a$$
 Iteração $M_{d,tot} = \frac{985,2+1725}{2} = 1355 KNcm$

$$K = 32.\left(1+5.\frac{1355}{19.1661,34}\right).0,62 = 24,1$$

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} = \frac{1, 0.1355}{1 - \frac{43, 6^2}{120.\frac{24, 1}{0, 62}}} = 2287KNcm$$

2.1.8.1.3. 3ª Iteração
$$M_{d,tot} = \frac{1355+2287}{2} = 1821 KNcm$$

$$K = 32 \cdot \left(1 + 5 \cdot \frac{1821}{19.1661.34}\right) \cdot 0,62 = 25,56$$

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} = \frac{1, 0.1821}{1 - \frac{43, 6^2}{120 \cdot \frac{22, 56}{0.62}}} = 3225KNcm$$

Portanto, após 3 iterações tem-se $M_{d,tot} = 3225 KNcm < M_{d1x,min} = 3439 KNcm$

Então, o momento solicitante de cálculo será igual a:

$$M_{d,tot} = 3.439KNcm$$

2.1.8.1.4. Excentricidade Total na Direção do Eixo X

$$e_{x,total} = \frac{M_{dx,tot}}{Nd} = \frac{3439}{1661,34} = 2,07cm$$

2.1.8.2. Momento Total na Direção do Eixo Y

2.1.8.2.1. 1ª Iteração
$$M_{d,tot} = 1024,38KNcm$$

$$K = 32.\left(1+5.\frac{1024,38}{65.1661,34}\right).0,62 = 29,5$$

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} = \frac{1,0.1024,38}{1 - \frac{14,65^2}{120.\frac{29,5}{0,62}}} = 1064,4KNcm$$

2.1.8.2.2.
$$2^{a}$$
 Iteração $M_{d,tot} = \frac{1024,38+1064,4}{2} = 1044,4KNcm$

$$K = 32 \cdot \left(1 + 5 \cdot \frac{1044, 4}{65.1661, 34}\right) \cdot 0,62 = 20,8$$

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} = \frac{1, 0.1044, 4}{1 - \frac{14,65^2}{120.\frac{20,8}{0.62}}} = 1103, 2KNcm$$

2.1.8.2.3.
$$3^a$$
 Iteração $M_{d,tot} = \frac{1044,4+1103,2}{2} = 1073,8 KNcm$

$$K = 32 \cdot \left(1 + 5 \cdot \frac{1073,8}{65.1661,34}\right) \cdot 0,62 = 20,8$$

$$M_{d,tot} = \frac{\alpha_b \cdot M_{d1,A}}{1 - \frac{\lambda^2}{120 \cdot \frac{K}{V}}} = \frac{1, 0.1073, 8}{1 - \frac{14,65^2}{120.\frac{20,8}{0.62}}} = 1134, 3KNcm$$

Portanto, após 3 iterações tem-se $M_{d,tot} = 1134, 3KNcm < M_{d1x,min} = 5731KNcm$

Então, o momento solicitante de cálculo será igual a:

$$M_{d,tot} = 5.731KNcm$$

2.1.8.2.4. Excentricidade Total na Direção do Eixo Y

$$e_{y,total} = \frac{M_{dx,tot}}{Nd} = \frac{5731}{1661,34} = 3,45cm$$

2.1.8.3. Cálculo dos Momentos Totais nas duas Direções x e y Usando a Equação da Solução Única

A título de comparação, calculam-se os momentos totais com a equação deduzida para solução única do processo do pilar-padrão com rigidez k aproximada.

2.1.8.3.1. Momento Total na Direção do Eixo X

$$a.M_{dx,tot}^2 + b.M_{dx,tot} + c = zero$$

Dados:

$$\alpha_{bx} = 1.0$$
 $M_{d1x,A} = 985,2$ KNcm = 9,85KNm
 $l_{ex} = 2,39$ m
 $N_d = 1661,34$
 $M_{d1x,min} = 3.439$ KNcm = 34,39KNm
 $h_x = 0,19$ m

Vem:

$$a = 5$$
. $h = 5$. 0 , $19 = 0$, 95

$$b = h^2 \cdot Nd - \frac{l_{ex}^2 \cdot Nd}{320} - 5 \cdot h \cdot \alpha_b \cdot M_{1d,A}$$

$$b = 0, 19^2 \cdot 1661, 34 - \frac{2, 39^2 \cdot 1661, 34}{320} - 5 \cdot 0, 19 \cdot 1, 0.9, 85 = 20, 96$$

$$c = -h^2$$
. Nd . α_b . $M_{1d,A} = -0$, 19^2 . 1661 , 34 . 1 , 0 . 9 , $85 = -590$, 74

Substituindo os valores de a, b e c na equação, temos:

$$M_{dx,tot} = 38,29KNm = 3.829KNcm$$

Sendo que o momento total em x deve ser maior ou igual ao momento mínimo, temos:

$$M_{dx,tot} = 3.829 KNcm > M_{d1x,min} = 3.439 KNcm$$

2.1.8.3.2. Momento Total na Direção do Eixo Y

Analogamente, calculamos o momento em y.

$$a.M_{dx.tot}^{2} + b.M_{dx.tot} + c = zero$$

Dados:

$$lpha_{by} = 1.0$$
 $M_{d1y,A} = 1024,38 KNcm = 10,24 KNm$
 $l_{ey} = 2,75 m$
 $N_d = 1661,34 KN$
 $M_{d1y,min} = 5731 KNcm = 57,31 KNm$
 $h_v = 0,65 m$

Vem:

$$a = 5$$
. $h = 5$. 0 , $65 = 3$, 25

$$b = h^2 \cdot Nd - \frac{l_{ey}^2 \cdot Nd}{320} - 5 \cdot h \cdot \alpha_b \cdot M_{1d,A}$$

$$b = 0,65^2 \cdot 1661,34 - \frac{2,75^2 \cdot 1661,34}{320} - 5 \cdot 0,65 \cdot 10,24 = 629,37$$

$$c = -h^2 \cdot Nd \cdot \alpha_b \cdot M_{1d,A} = -0,65^2 \cdot 1661,34 \cdot 1,0 \cdot 10,24 = -7187,62$$

Substituindo os valores de a, b e c na equação, temos:

$$M_{dv,tot} = 10,81KNm = 1.081KNcm$$

Sendo que o momento total em x deve ser maior ou igual ao momento mínimo, temos:

$$M_{dx,tot} = 1.081KNcm < M_{d1x,min} = 5.731KNcm$$

2.1.8.4. Cálculo da Área de Armadura Longitudinal

Para o cálculo das áreas das armaduras relativas aos momentos totais nas direções x e y, consideram-se os momentos calculados no processo iterativo.

$$\frac{d'_y}{h_y} = \frac{2,5}{65} = 0,04$$

$$\frac{d'_x}{h_x} = \frac{2,5}{19} = 0,13$$

As excentricidades do pilar P01 são:

$$e_x = 2,07cm$$

$$e_{v} = 3,45cm$$

O valor da força normal reduzida é igual a:

$$V_d = 0,62$$

Os momentos fletores reduzidos são iguais a:

$$\mu_{dy} = V_d. \frac{e_y}{h_y} = 0,62. \frac{3,45}{65} = 0,03$$

$$\mu_{dx} = V_d.\frac{e_x}{h_x} = 0,62.\frac{2,07}{19} = 0,07$$

Adotando o uso do ábaco A-21, resulta w = 0, 0

Portanto, a seção transversal precisa ser armada com a taxa mínima de armadura longitudinal.

2.1.8.5. Cálculo da Taxa Geométrica Mínima de Armadura

$$As_{min} = 0, 15. \frac{N_{cd}}{f_{vd}} = 0, 15. \frac{1661, 34}{43, 5} = 5, 73cm^2 > 0, 004. A_c = 4, 94cm^2$$

$$A_{total} = A_s + A'_s = 5,73 + 5,73 = 11,46cm^2$$

A maior medida do lado do pilar é de 65cm, portanto, a seção transversal será armada com 16ø10,0mm, resultando em uma área de 12,56cm².