SEQUENCE LISTING

<110>	David, Weinstein						
<120>	NOVEL GROWTH FACTOR OPA1 AND USES THEREOF						
<130>	96700/595						
<140>	US 09/479,145	US 09/479,145					
<141>	2000-01-07						
<150>	09/294,764						
<151>	1999-04-19						
<160>	4						
<170>	PatentIn version 3.0						
<210>	1						
<211>	1680						
<212>	DNA						
<213>							
<220>							
<221>							
<222>							
<223>	n at positions 1098-1104 may be t, a, c, or g						
<400>	1						
	ttgg ttgcataaca gcagggtacc tgaaagagcc ttctgggagt tagtgaacta	60					
	ttgt tttgttcaca taacgccacc atcaacttaa agtgaattgt ctttgttata	120					
	gtca ctatggactt accetaaaga tettetgtae ttetgtette cataggacaa	180					
	agta ctacatacet catetettgg gttattattg tagtettgca tteatggtta	240					
_		300					
	taaa aataaatacc aattatggaa atagtactaa aggettgeeg cacatgaaac	360					
	ttaa ttggtttaaa gtccctttat aaagagtgct acatggttta gataaaggaa	420					
	aact attgagttac aggggatttt attaattata aaatgcaatc aatttaaatt	480					
	gttt aagactagte eettggataa geeccaageg aatttgtett eagattatta						
	gtgc tgtaaatcag ggtgggcaat tcacagcctt tctgaactga ctgaactaga	540					
derrada	data dadapapapa opida adapapa adamonty %						

ttctttcaac tgggttttca	gcataaatgg	gaactgatgt	agaaggcagg	atttagccct	840
tctaggcaaa agaaaagctc	agttgggttt	cacgagtgtt	cctgtgctta	tattcagtct	900
gtgcctacat gttctcatgc	atgtctaacc	tgatttacct	cttacctgta	acctacctta	960
tcatgtggct tttaattgac	agtcactcag	ccatttctaa	gcagatatag	tagtaccttt	1020
cagaactcac attggcaagt	gtaaaaagat	gacttaaggt	gaagtgagga	caaaatcaca	1080
ttctgcatac taacctannn	nnnnctccct	ttaaggtgct	aaacttgcac	ctcatgtcca	1140
ctcagtaaca agtattggga	cgtagagcac	agcctcactc	agctctgaaa	ggtaatacag	1200
cttgtgagga agtgagccag	cagtggcctt	tgcaattgtg	gatcttgagc	tctgctctca	1260
gcagatttca ggtgtaacca	tttgttaact	gtactgaagg	tgtgtcctca	agaagaaagt	1320
gttcaaatta aaaaagctgc	tgccaagtac	actgtgtggt	cttctccttt	gaatcctagg	1380
gttctatccc tcttcagagt	catgtttctg	gtgctgctac	tttaaaacac	agctcacaag	1440
aataactaac ttgctcaaat	atggagaaaa	ctcaataggg	ttcagggagg	ttctggcagt	1500
gtgcagtgtg aaataatcct	gagtccttgc	tgaacacaac	tgtaggcttg	agttataaag	1560
cacattccaa attttaaata	aaagcattta	ctcaattatt	ataaaacaac	atatttaaaa	1620
agatgaacca caccaaaggt	catcaaaaca	cctttttata	aattagataa	ttctacctgt	1680
<210> 2					
<211> 1680					

<212> DNA

<213> homo sapiens

<400> 2

ttgagactgg	ttgcataaca	gcagggtacc	tgaaagagcc	ttctgggagt	tagtgaacta	60
ggtagattgt	tttgttcaca	taacgccacc	atcaacttaa	agtgaattgt	ctttgttata	120
aatgaggtca	ctatggactt	accctaaaga	tcttctgtac	ttctgtcttc	cataggacaa	180
atgataagta	ctacatacct	catctcttgg	gttattattg	tagtcttgca	ttcatggtta	240
tgaatttaaa	aataaatacc	aattatggaa	atagtactaa	aggcttgccg	cacatgaaac	300
attattttaa	ttggtttaaa	gtccctttat	aaagagtgct	acatggttta	gataaaggaa	360
acatataact	attgagttac	aggggatttt	attaattata	aaatgcaatc	aatttaaatt	420
acgtaggttt	aagactagtc	ccttggataa	gccccaagcg	aatttgtctt	cagattatta	480
ت بالك الم بالم الارت	+ 4+ 222+ 224	ودد باششت ولمد			• • •	•

that was the same of the same

tgccaactgt tggaattcac tttattgtag aaaaacccaa actgagasts (taagtittg = "10

7	tttagc	aatg	tgtttctggt	atgaaacaaa	ctactgtgtc	actgtccagg	taggaaacaa	780
	ttcttt	caac	tgggttttca	gcataaatgg	gaactgatgt	agaaggcagg	atttagccct	840
	tctagg	caaa	agaaaagctc	agttgggttt	cacgagtgtt	cctgtgctta	tattcagtct	900
	gtgcct	acat	gttctcatgc	atgtctaacc	tgatttacct	cttacctgta	acctacctta	960
	tcatgt	ggct	tttaattgac	agtcactcag	ccatttctaa	gcagatatag	tagtaccttt	1020
	cagaact	tcac	attggcaagt	gtaaaaagat	gacttaaggt	gaagtgagga	caaaatcaca	1080
	ttctgc	atac	taacctattt	ttttctccct	ttaaggtgct	aaacttgcac	ctcatgtcca	1140
	ctcagta	aaca	agtattggga	cgtagagcac	agcctcactc	agctctgaaa	ggtaatacag	1200
	cttgtg	agga	agtgagccag	cagtggcctt	tgcaattgtg	gatcttgagc	tctgctctca	1260
	gcagati	ttca	ggtgtaacca	tttgttaact	gtactgaagg	tgtgtcctca	agaagaaagt	1320
	gttcaaa	atta	aaaaagctgc	tgccaagtac	actgtgtggt	cttctccttt	gaatcctagg	1380
	gttctat	ccc	tcttcagagt	catgtttctg	gtgctgctac	tttaaaacac	agctcacaag	1440
	aataact	caac	ttgctcaaat	atggagaaaa	ctcaataggg	ttcagggagg	ttctggcagt	1500
	gtgcagt	gtg	aaataatcct	gagtccttgc	tgaacacaac	tgtaggcttg	agttataaag	1560
	cacatto	ccaa	attttaaata	aaagcattta	ctcaattatt	ataaaacaac	atatttaaaa	1620
	agatgaa	асса	caccaaaggt	catcaaaaca	cctttttata	aattagataa	ttctacctgt	1680
	<210>	3						
	<211>	20						
	0.10	DATA						

<212> DNA

<213> artificial sequence

<220>

<221> primer_bind

<222> (1)..(20)

<223> degenerate primer corresponding to deduced opal protein sequence;
n at positions 3, 6, 13, and 16 may be t, a, c, or g

<400> 3

gentengaag etnetngaag

20

<210> 4

011 00

. : :: : : .

<221> primer_bind

<222> (1)..(22)

<223> degenerate primer corresponding to deduced opal protein sequence;
n at positions 7, 10, 13, 16, 19, and 22 may be t, a, c, or g

<400> 4

tttcatntcn tcntcngtng gn

22