Laboratorium Podstaw Techniki Cyfrowej				
Zadanie nr: 3 Temat: Układy sekwencyjne – automat s	Data: 10.05.2023			
Kierunek / semestr: inf / 7				
Autor: Dawid Biskupski 146341				

- 1. Cel zadania:
- a) Wykonaj projekt automatu A1 z kodowaniem stanów i wyjść automatu w kodzie NKB
 Tablica przejść układu:

automat A1						
stan obecny	stan st.następny wyjście obecny On Y					
Q	x='0' x='1' (2:0)					
50	S 1	56	110			
S1	52	S1	001			
S2	S 3	S5	101			
S3	S4	52	010			
S*	S* S0 S0 NrStanu					

- 2. Synteza układu:
 - a. Tablica przejść

	0	1	Υ
S0	S1	S6	110
S1	S2	S1	001
S2	S3	S5	101
S3	S4	S2	010
S4	S0	S0	100
S5	S0	S0	101
S6	S0	S0	110

b. Kodowanie:

$$S0 = 000$$

$$S1 = 001$$

$$S2 = 010$$

$$S3 = 011$$

$$S4 = 100$$

$$S5 = 101$$

$$S6 = 110$$

c. Tablica przejść z uwzględnieniem kodowania.

Q2\Q1\Q0	Q1\Q2	Q1\Q2
Stan obecny:	X=0	X=1
000	001	110
001	010	001
010	011	101
011	100	010
100	000	000
101	000	000
110	000	000

d. Tablica Karnaugha dla D0.

Q2,Q1\Q0,X	00	01	11	10
00	1	0	1	0
01	1	1	0	0
11	0	0	Х	Х
10	0	0	0	0

$$D0 = x' Q0' Q2' + Q0' Q1 Q2' + Q2' Q1' Q0 x$$

e. Tablica Karnaugha dla D1.

Q2,Q1\Q0,X	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	0	X	Х
10	0	0	V	0

$$D1 = Q2' Q1' Q0' x + Q2' Q1' Q0 x' + Q2' Q1 Q0' x' + Q1 Q0 x$$

f. Tablica Karnaugha dla D2.

Q2,Q1\Q0,X	00	01	11	10
00	0	1	0	0
01	0	1	0	1
11	0	0	Χ	X
10	0	0	0	0

$$D2 = Q2' Q0' x + Q1 Q0 x'$$

g. Tablica prawdy dla wyjścia Y0

Q2 Q1\Q0	0	1
00	0	1
01	1	0
11	0	Χ
10	0	1

h. Tablica prawdy dla wyjścia Y1

Q2 Q1\Q0	0	1	
00	1	Ω	
01	U	1	
11	1	X	
10	U	U	

i. Tablica prawdy dla wyjścia Y1

Q2 Q1\Q0	0	1
00	1	0
01	1	0
11	1	X
10	1	1

3. Schemat układu automatu A1:

4. Automat A1 wraz sterownikiem led4_driver

5. Weryfikacja poprawności schematu.

Diagram stanów dla automatu A2

Wyniki symulacji behawioralnej:

Widać na niej, że stany prawidłowo przechodzą według diagramu stanów automatu A1.

6. Wyniki symulacji czasowej STA:

```
Data Sheet report:
All values displayed in nanoseconds (ns)
Setup/Hold to clock clk
|Max Setup to|Max Hold to | | Clock |
      | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
-----+
   | 2.487(R)| 0.317(R)|clk_BUFGP | 0.000|
Clock clk to Pad
    | clk (edge) | | Clock |
Destination | to PAD |Internal Clock(s) | Phase |
Q<0> | 8.341(R)|clk_BUFGP | 0.000|
    Qn<1>
Qn<2>
Y<1>
Y<2>
Clock to Setup on destination clock clk
   | Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
-----+
     3.059
Source Pad |Destination Pad| Delay |
-----+
  |Qn<0> | 8.575|
|Qn<1> | 7.217|
|Qn<2> | 7.780|
```

Maksymalna częstotliwość pracy układu to: 116 Mhz

7. Cel zadania \ wymagania projektowe (dla podpunktu b) b.)

Wykonaj projekt automatu A2 z kodowaniem stanów automatu w kodzie 1zN oraz kodowaniem wyjść wg tabeli

Tabela przejść układu:

automat A2					
stan st.następny wyjście obecny Qn Y					
į Q	x='0'	x='1'	(2:0)		
S0	S1	S7	111		
S1	S2	52	010		
S2	S 3	S6	110		
S3	S4	S 3	011		
S*	S0	50	NrStanu		

- 8. Synteza układu:
 - a. Tablica przejść:

	X=0	X=1	Υ	DEC
S0	S1	S7	111	7
S1	S2	S2	010	2
S2	S3	S6	110	6
S3	S4	S3	011	3
S4	S0	S0	100	4
S5	-	-	-	
S6	S0	S0	110	6
S7	S0	S0	111	7

b. Kodowanie oraz wartości hexadecymalne

Stan	1zN	Hex
S0	0000 0001	1
S1	0000 0010	2
S2	0000 0100	4
S3	0000 1000	8
S4	0001 0000	10

S5	-	
S6	0100 0000	40
S7	1000 0000	80

c. Tablica przejść z uwzględnieniem kodowania

	Q7Q6Q4Q3Q2Q1Q0	0	1
0	0000 0001	0000 0010	1000 0000
1	0000 0010	0000 0100	0000 0100
2	0000 0100	0000 1000	0100 0000
3	0000 1000	0001 0000	0000 1000
4	0001 0000	0000 0001	0000 0001
5	0010 0000	-	-
6	0100 0000	0000 0001	0000 0001
7	1000 0000	0000 0001	0000 0001

(Kolory zostały nadane by ułatwić tworzenie funkcji przerzutników) Funkcja dla przerzutnika D0

Qn0=Q7+Q6+Q4

Funkcja dla przerzutnika D1 Qn1=Q0x'

Funkcja dla przerzutnika D2 Qn2=Q1

Funkcja dla przerzutnika D3 Qn3=Q2x'+Q3x

Funkcja dla przerzutnika D4 Qn4=Q3x'

Funkcja dla przerzutnika D5 Qn5=0

Funkcja dla przerzutnika D6 Qn6=Q2x Funkcja dla przerzutnika D7 Qn7=Q0x

Funkcja dla przerzutnika wyjścia Y(0) Y(0)=Q0+Q3+Q7

Funkcja dla przerzutnika wyjścia Y(1) Y(1)=Q0+Q1+Q2+Q3+Q6+Q7

Funkcja dla przerzutnika wyjścia Y(2) Y(2)=Q0+Q2+Q4+Q6+Q7

9. Schemat układu automatu A2

10. Struktura układu z automatem A2 i sterownikiem led4_driver.

11. Weryfikacja poprawności schematu

a. Diagram przejść automatu, wraz z wartościami Y w jednostkach dziesiętnych.

Wyniki symulacji behawioralnej:

Z symulacji wynika, że stany przechodzą prawidłowo i pokazują prawidłowe wartości Y.

Wyniki analizy czasowej STA:

Błąd podczas generowania