What is claimed is:

1	1.	A method for a secure transaction over a multi-computer network comprising the		
2		steps of:		
3		a.	providing at least two separate computer programs that are designed to	
4			communicate with each other over a multi-computer network, each	
5			separate computer program resident and runnable on a separate computer	
6			of the multi-computer network, at least one of the at least two separate	
7			computer programs further being a security server program for receiving	
8			and processing the secure transaction and at least one of the at least two	
9			separate computer programs further being a customer program;	
10		b.	running the security server program on a substantially continuous basis	
11			thereby making it available to receive secure transactions;	
12		c.	running the customer program on an as needed basis for communicating	
13			with the security server program with the customer program across a first	
14			communication port;	
15		d.	receiving a dynamically assigned port address from the security server	
16			program, further, receiving from the security server program a public set	
17			of numbers and a security server intermediate value that was calculated	
18			using at least the public set of numbers;	
19		e.	switching the customer program to the second port address for further	
20			communications with the security server program;	
21		f.	having the customer program calculate a customer intermediate value	
22			using at least the public set of numbers and a shared final value using at	

23			least the customer intermediate value and the security server intermediate	
24			value;	
25		g.	sending the customer intermediate value to the security server program;	
26		h.	having the security server program calculate the shared final value using	
27			the customer intermediate value and the security server intermediate	
28			value;	
29		i.	having both the security server program and the customer program create	
30		•	an encryption key using at least the shared final value;	
31		j.	having the customer computer encrypt transaction information using the	
32			encryption key;	
33		k.	sending the encrypted transaction information to the security server	
34			program;	
35		1.	having the security server program de-crypt the encrypted transaction	
36		•	information; and	
37		m.	having the security server program process the transaction.	
1	2.	The r	nethod according to claim 1 wherein the public set of numbers is at least a	
2		publi	c prime number and a prime modulus number.	
1	3.	The r	The method according to claim 2 wherein the customer intermediate value is	
2		further calculated using a customer selected random number and the security		
3		serve	r intermediate value is calculated using a security server selected random	
4		numb	per.	

1

2

3

4

5

- The method according to claim 3 wherein the shared final value is calculated by
 the customer computer program using at least the security server intermediate
 value, the customer selected random number, and the prime modulus; and the
 shared final value is calculated by the security server program using at least the
 customer intermediate value, the security server selected random number, and the
 prime modulus.
- The method according to claim 4 wherein the step of creating an encryption key using at least the shared final value comprises at least the step of passing at least a portion of the shared final value through a further encryption algorithm.
- 1 6. The method according to claim 5 wherein the further encryption algorithm is a one-way function.
 - 7. The method according the claim 1 further including the step of having the customer computer program send customer profile information to the security server program for comparison with customer profile information previously stored on a computer memory accessibly by the security server program, thereby verifying the identity of the customer.
- The method according the claim 1 further including the step of having the

 customer computer program send customer profile information to the security

 server program for comparison with customer profile information previously

 stored on a computer memory accessibly by the security server program, thereby

 verifying the identity of the customer.

- 1 9. The method according to claim 7 wherein the customer profile information
 2 comprises a pass phrase that may have white spaces and answers to customer
 3 created personal information questions.
- 1 10. The method according to claim 8 wherein the customer profile information
 2 comprises a pass phrase that may have white spaces and answers to customer
 3 created personal information questions.