Solar Cell: TOPCON

姓名: 邮箱:

学号: 专业: 电子科学与技术

T1

一、光学仿真

1.1 器件结构(层)定义、波长及绒面因子设定

本文采用 Niraj Anand 和 Paresh Kale[1]给出的典型的 TOPCON 电池结构和参数表,见图 1 和表 1。

Layers	Default parameters
SiN _x dielectric	t=70 nm
Front contact boundary	Standard texture surface (54.74°), w/o absorption loss, flat band
Front contact	MS Schottky contact model, SRV = 104 cm/s (assuming good passivation)
p+-type Si layer	$t=0.3 \mu m$, $N_a=2.6^{\circ}10^{19} \text{ cm}^{-3}$, lifetime setting: 1 μs
n-type c-Si layer	$t=200 \mu m$, $N_d=5*10^{15} cm^{-3}$, lifetime setting: $1*10^5 \mu s$ (without bulk defects
Interface: SiO _x	$Chi = 1.0 \text{ eV}, E_e = 8.9 \text{ eV}, dk = 3.9, m_e = 0.98, m_h = 0.49, D_{eh} = 0$
n+-type Si layer	$t = 20 \text{ nm}, N_d = 1 * 10^{19} \text{ cm}^{-3}$, lifetime setting: 50 µs
Rear contact	MS Schottky contact model, SRV = 1 * 104 cm/s
Rear contact boundary	A plane surface, w/o absorption loss, flat band
Ag electrode	$t=1 \mu m$

图 1. TOPCON 电池分层结构图.

表 1. TOPCON 电池分层结构图.

从而在网站上设置如图 2:

图 2. TOPCON 电池设置图.

本设计的光谱选择为 AM1.5G, 波长范围为 300~1450nm, 波长仿真间隔为 10nm。 本设计考虑绒面因子, 并设置为 1。

1.2 每层材料的复折射率设定

各层材料 $(Ag、SiN_x、Si、SiO_2)$ 对应光谱波长范围的复折射率由多个实验[2-7]得到。

网页端数据冗长,仅作部分展示如图 3,其中 p+Si emitter/n-Si wafer/n+ploy-Si 层共用 Si 的 折射率; Ag/SiNx 层中 Ag 仅作触电,真正透光的是 SiNx; 其他层材料和复折射率——对应 (见 Supplement Material)。

图 3. 网页端复折射率设定示意图.

1.3 光学计算

光学计算结果如下:

图 4. 光学计算结果 a). 吸收率与波长关系图. b). 生成率与空间坐标关系图. c). 反射率与空间坐标关系图

二、电学仿真

2.1 一般电学参数设定

根据题意要求,需要得到具有特征参数的 J-V 曲线,采取电学仿真模式为连续电压扫描, 其他设置见图 5。

图 5. 一般电学参数设定图.

2.2 各层电学参数设定

电极功函数参考 Ag 的功函数、教学视频中 SiN_x 的功函数。下文解释中间各层电学参数来源:

- (1) p+Si emitter/n-Si wafer/n+ploy-Si 层:载流子迁移率由模型[8]计算得到;重掺杂的情况下 Si 禁带宽度会变窄[9],采用经验公式[10-11]计算禁带宽度变窄的数值大小,计算后的 p+Si,禁带宽度为 1.08eV,n+Si,禁带宽度为 1.06eV;掺杂浓度、少子寿命由表 1 定义;电子亲和能、导带和价带有效态密度、相对介电常数取 300K 下 Si 的标准值。
- (2) SiO₂层的电子亲和能和禁带宽度由表 1 定义;其余与教学视频一致。 具体数值见 Supplement Material,最后得到器件能带图如图 6。

图 6. 器件能带图.

2.3 电学计算

电学计算可以得到题目要求的 J-V 曲线,以及 Jsc、Voc、FF 和 PCE,如图 7.

特性参数

短路电流 (mA/cm^2)	开路电压 (V)	填充因子 (%)	转换效率 (%)
42.6494	0.652	83.6012	23.2473

图 7. 伏安曲线图及相关特性参数.

T2

T1 已经给出了隧穿层厚度为 1nm 情况下的 Jsc、Voc、FF 和 PCE。

按照 T1 步骤重新计算 3nm 和 2nm 的结果如图 8。

图 8. 改变隧穿层后的伏安曲线、相关参数图

原因解释: TOPCON 电池中隧穿层的设计使得电子发生量子隧穿,同时提供有效的钝化以减少表面复合。当隧穿层厚度太大时,量子隧穿概率贬低,导致有效钝化失效和接触界面的

载流子复合增加。这也导致了开路电压的下降和电池效率的减少。

T3

Fill Factor 的定义是 $FF = \frac{P_{max}}{V_{oc} \times I_{sc}}$,但是 P_{max} 和 I_{sc} 可能与 V_{oc} 也存在隐含的函数关系。

表面 SRH 复合

改变载流子寿命,得到下表 2,进一步绘制得到图 9 $V_{oc}-FF$ 曲线。

$V_{oc}(V)$	FF(%)	$V_{oc}(V)$	FF(%)
0.652	83.6039	0.57	29.2209
0.636	68.757	0.568	28.8545
0.626	59.0496	0.566	28.4853
0.623	56.0512	0.563	28.1633
0.604	40.9476	0.557	27.5089
0.602	39.4483	0.549	26.9374
0.6	38.739	0.54	26.3976
0.597	37.2116	0.529	25.937
0.59	34.0906	0.515	25.6048
0.588	33.3049	0.498	25.4058
0.585	32.5678	0.48	25.245
0.583	31.7673	0.44	25.1093
0.579	30.7915	0.397	25.1334
0.578	30.6605	0.355	25.0907
0.577	30.4367	0.291	25.085
0.576	30.3046	0.227	25.0691
0.575	29.8939	0.141	25.1256
0.573	29.7192	0.077	25.0574

表 2. 表面 SRH 复合下的 Voc - FF 计算表.

图 9. 表面 SRH 复合下的 Voc - FF 曲线图

体 SRH 复合

改变载流子寿命,得到下表 3,进一步绘制得到图 10 V_{oc} – FF曲线。

$V_{oc}(V)$	FF(%)	$V_{oc}(V)$	FF(%)
0.639	84.585	0.547	82.4874
0.637	84.1263	0.5233	81.9226
0.635	83.6158	0.5232	81.8725
0.631	83.5371	0.521	81.9217
0.607	82.763	0.52	81.9073
0.558	82.5918	0.518	81.8524
0.557	82.5943	0.488	80.9193
0.555	82.5633		

表 3. 体 SRH 复合下的 Voc - FF 计算表.

图 10. 体 SRH 复合下的 Voc - FF 曲线图

对比和解释

图 9 (仅考虑表面 SRH 复合): 填充因子 (FF) 在低开路电压 (Voc) 范围内基本保持不变, 直到 Voc 接近 0.6 V 时, FF 才开始急剧上升。在表面 SRH 复合占主导时,表面态引起的复合在低 Voc 时较为显著,抑制了填充因子的提升[12-13]。随着 Voc 增加,表面复合的影响逐渐被削弱,填充因子在某一临界点后迅速上升,这是因为高 Voc 可能导致表面复合的影响变小,电子-空穴对更容易通过电场分离,光电流增大。

图 10 (仅考虑体 SRH 复合): 填充因子在整个开路电压范围内逐渐增加,尤其是在 Voc 接近 0.6 V 时上升速度加快,但没有图 9 中那么剧烈。在体 SRH 复合占主导时,体内的复合中心均匀分布,复合过程相对稳定。随着 Voc 的增加,填充因子逐渐提升,表现为较平滑的上升曲线。这说明在低 Voc 时,体内复合也对填充因子有影响,但不如表面复合那么剧烈。当 Voc 达到较高值时,体内复合逐渐减少,填充因子缓慢提升。

总之,表面复合在低 Voc 时对填充因子的抑制作用较强,但一旦 Voc 超过某个临界值,填充因子会迅速提升,体复合对填充因子的影响更加均匀和渐进,填充因子随 Voc 逐渐增加,没有明显的临界点。

Reference

- 1 Anand, N., Kale, P. Optimization of T OPCon Structured Solar Cell Using A FORS-HET. *Trans. Electr. Electron. Mater.* 22, 160–166 (2021). https://doi.org/10.1007/s42341-020-0022 0-0
- 2 Jiang, Y., Pillai, S. & Green, M. Realistic Silver Optical Constants for Plasmonics. Sci Rep 6, 30605 (2016). https://doi.org/10.1038/srep30605
- 3 Beliaev, Leonid Yu. et al. Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor deposition. *Thin Solid Films* (2022): n. pag.
- 4 Radhakrishnan, T. Further studies on the temperature variation of the refractive index of crystals. *Proc. Indian Acad. Sci.* (*Math. Sci.*) 33, 22–34 (1951). https://doi.org/10.1007/BF03172255
- 5 Radhakrishnan, T. The dispersion, briefringence and optical activity of quartz. *Proc. Indian Acad. Sci. (Math. Sci.)* 25, 260 (1947). https://doi.org/10.1007/BF03171408
- 6 Schinke, Carsten et al. Uncertainty ana lysis for the coefficient of band-to-ban d absorption of crystalline silicon. *AIP Advances* 5 (2015): 067168.
- 7 Vogt, Malte Ruben. Development of physical models for the simulation of optical properties of solar cell modules. (2015).
- **8** G. Masetti, M. Severi and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, in *IEEE Transactions on Electron Devices*,

- vol. 30, no. 7, pp. 764-769, July 1983, https://doi: 10.1109/T-ED.1983.21207.
- 9 H. P. D. Lanyon and R. A. Tuft, Ban dgap narrowing in heavily doped silico n, 1978 International Electron Devices Meeting, Washington, DC, USA, 1978, pp. 316-319, https://doi: 10.1109/IED M.1978.189417
- Yan, Di and Andrés Cuevas. Empirical determination of the energy band gap narrowing in highly doped n+ silicon. *Journal of Applied Physics* 114 (2013): 044508.
- 11 D. Yan et al. Empirical determination of the energy band gap narrowing in p+ silicon heavily doped with boron. *J ournal of Applied Physics*, 116 (2014): 194505. https://doi.org/10.1063/1.4902066.
- 12 Gao P, Lin H, Wang G, et al. Unveiling the mechanism of attaining high fil l factor in silicon solar cells. *Authorea Preprints*; 2023. DOI: 10.22541/au.16 9270402.26764825/v1.
- 13 Sandberg, Oskar J. et al. Relating Cha rge Transport, Contact Properties, and Recombination to Open-Circuit Voltage in Sandwich-Type Thin-Film Solar C ells. *Physical review applied* 5 (2016): 044005.