Homework set 4

Due by 15:00 on Monday, September 18, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io. You may quote problems from older homework sets and results we've read in the textbook if you feel like they help.

If $f: V \to W$ is a linear map we denote its kernel by $\ker f = \{x \in V \mid f(x) = 0\}$.

Problem 1. Let $f: V \to V$ be a linear map.

- 1. Suppose V is finite-dimensional. Show that f is bijective if and only if $\ker f = 0$.
- 2. Consider l^{∞} , the space of bounded sequences (x_n) of real numbers. Let $f: l^{\infty} \to l^{\infty}$ be the right shift operator $f(x_n) = (0, x_1, x_2, \ldots)$. Show that $\ker f = 0$ but that f is not bijective.

Problem 2. Let $f:V\to W$ be a surjective bounded operator from a normed space to a normed space. Suppose that there is a c>0 such that $|f(x)|\geq c|x|$ for all x. Show that $f^{-1}:W\to V$ exists and is bounded.

Problem 3. Let l^{∞} be the space of bounded sequences (x_n) of real numbers.

- 1. Show that $f: l^{\infty} \to l^{\infty}$ defined by $f(x_n) = (x_n/n)$ is linear and bounded.
- 2. Show that f^{-1} exists and is linear but not bounded.

Problem 4. Let $V = C^0([0,1])$ be the space of real-valued continuous functions on [0,1]. Let $T:V\to \mathbf{R}$ be defined by T(f)=f(0).

- 1. Show that *T* is a linear functional.
- 2. Consider the norm $|f|=(\int_0^1|f(x)|^pdx)^{1/p}$ for $1\leq p<\infty$. Show that T is not bounded with respect to this norm.
- 3. Consider the norm $|f| = \sup_{0 \le x \le 1} |f(x)|$. Show that T is bounded with respect to this norm and calculate its norm.