A Medida de Mahler

Rui Soares Barbosa

2º ano - Ciências da Computação Universidade do Minho

Setembro, 2008

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
- Aplicações

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
- Aplicações

Procura de primos grandes

1644 - Marin Mersenne (1588-1648)

$$M_n = 2^n - 1$$

p primo

$$p = 2 \quad 3 \quad 5 \quad 7 \quad 11 \quad 13$$

 $M_D = 3 \quad 7 \quad 31 \quad 127 \quad 2047 \quad 8191$

Os maiores primos encontrados são primos de Mersenne.

1916/18 - Pierce estudou uma generalização de M_n :

A um polinómio $p \in \mathbb{Z}[x]$,

$$p(x) = \sum_{k=0}^{d} a_k x^k = a_d \prod_{i=1}^{d} (x - \alpha_i)$$

 $a_k \in \mathbb{Z}$ (coeficientes) e $\alpha_i \in \mathbb{C}$ (raízes),

1916/18 - Pierce estudou uma generalização de M_n :

A um polinómio $p \in \mathbb{Z}[x]$,

$$p(x) = \sum_{k=0}^{d} a_k x^k = a_d \prod_{i=1}^{d} (x - \alpha_i)$$

 $a_k \in \mathbb{Z}$ (coeficientes) e $\alpha_i \in \mathbb{C}$ (raízes),

associou a sequência de inteiros

$$\Delta_n(p) = |a_d|^n \prod_{i=1}^d (\alpha_i^n - 1)$$

$$\Delta_n(p) = |a_d|^n \prod_{i=1}^d (\alpha_i^n - 1)$$

- $m \mid n \Rightarrow \Delta_m \mid \Delta_n$
- outros divisores de Δ_n satisfazem condições estritas

pelo que $\frac{\Delta_p}{\Delta_1}$ (p primo) seriam bons candidatos a primos...

caso particular: Mersenne

$$p(x) = x - 2$$

- p(x) = 0 sse x = 2
- $\Delta_n = 2^n 1$ (números de Mersenne)
- $\frac{\Delta_p}{\Delta_1} = \frac{2^p 1}{2^1 1} = 2^p 1$ (forma dos primos de Mersenne)

1933 - Lehmer estudou o crescimento da sucessão (Δ_n):

$$|\alpha| > 1 \Rightarrow \lim_{n \to \infty} \frac{|\alpha^{n+1} - 1|}{|\alpha^n - 1|} = |\alpha|$$

$$|\alpha| < 1 \Rightarrow \lim_{n \to \infty} \frac{|\alpha^{n+1} - 1|}{|\alpha^n - 1|} = 1$$

Logo, se $|\alpha_i| \neq 1$,

$$\lim_{n\to\infty}\frac{|\Delta_{n+1}|}{|\Delta_n|}=\lim_{n\to\infty}\frac{|a_d|^{n+1}\prod|\alpha_i^{n+1}-1|}{|a_d|^n\prod|\alpha_i^n-1|}=\underbrace{\left[|a_d|\prod_{i=1}^d\max\{1,|\alpha_i|\}\right]}_{M(p)}$$

"Medida" (de Mahler):

$$M(p) := |a_d| \prod_{i=1}^d \max\{1, |\alpha_i|\}$$

$$\Delta_n \sim M(p)^n$$

- menor crescimento reduz factores extra $(\neq \Delta_m)$.
 - Logo, há potencialmente mais primos se M(p) pequeno.

o problema de Lehmer

Lehmer -1933

"The following problem arises immediately. If ϵ is a positive quantity, to find a polynomial of the form

$$f(x) = x^r + a_{r-1}x^{r-1} + ... + a_0$$

where the a's are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and $1 + \epsilon$.

This problem, in interest in itself, is especially important for our purposes. Whether or not the problem has a solution for $\epsilon < 0.176$ we do not know"

o problema de Lehmer

Problema

Dado $\epsilon > 0$ arbitrário, existe $p \in \mathbb{Z}[x]$ tal que $1 < M(p) < 1 + \epsilon$?

Conjectura

Não

polinómio mínimo

encontrado por Lehmer:

$$\ell(x) = x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$$

$$M(\ell) = 1.176280818$$

Ainda não ultrapassado.

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
- Aplicações

M(p) como medida de polinómios

- M(pq) = M(p)M(q)
- M(p) = M(-p)

M(p) como medida de polinómios

- M(pq) = M(p)M(q)
- M(p) = M(-p)
- $M(p) = M(p^*)$

Definição (polinómio recíproco)

$$p^{\star}(x) = x^{d}p(1/x)$$

exemplo

$$p(x) = x^4 + 3x^3 - 5x^2 + 0x + 7$$

$$p^*(x) = x^4 \left(\frac{1}{x^4} + 3\frac{1}{x^3} - 5\frac{1}{x^2} + 0\frac{1}{x^1} + 7 \right)$$

$$= 1 + 3x - 5x^2 + 0x^3 + 7x^4$$

M(p) como medida de polinómios

- M(pq) = M(p)M(q)
- M(p) = M(-p)
- $M(p) = M(p^*)$

Demonstração.

$$p(x) = \sum_{k=0}^{d} a_k x^k = \prod_{i=1}^{d} (x - \alpha_i)$$
$$|p(0)| = |a_0| = |a_d| \prod_{i=1}^{d} |\alpha_i|$$

Logo

$$\prod_{i=1}^d |\alpha_i| = \frac{|a_0|}{|a_d|}$$

M(p) como medida de polinómios

- M(pq) = M(p)M(q)
- M(p) = M(-p)
- $M(p) = M(p^*)$

Demonstração.

$$\prod_{i=1}^{d} |\alpha_i| = \frac{|a_0|}{|a_d|}$$

Logo

$$\frac{M(p^{\star})}{M(p)} = \frac{|a_0| \prod\limits_{|\alpha_i^{-1}| > 1} |\alpha_i^{-1}|}{|a_d| \prod\limits_{|\alpha_i| > 1} |\alpha_i|} = \frac{\prod\limits_{i} |\alpha_i| \prod\limits_{|\alpha_i| \le 1} |\alpha_i^{-1}|}{\prod\limits_{|\alpha_i| > 1} |\alpha_i|} = 1$$

M(p) como medida de polinómios

- M(pq) = M(p)M(q)
- M(p) = M(-p)
- $M(p) = M(p^*)$
- $\bullet |a_j| \leq {d \choose j} M(p)$

consequência

 $\forall D \in N, M \in R, \{p \in \mathbb{Z}[x] \mid deg(p) \leq D, M(p) < M\} \text{ \'e finito}.$

M(p) como medida de polinómios

- M(pq) = M(p)M(q)
- M(p) = M(-p)
- $M(p) = M(p^*)$
- $|a_j| \leq {d \choose j} M(p)$
- $M(p) = exp(\int_0^1 log|p(e^{2\pi i t})| dt)$

permite definir M(p) para $p \in \mathbb{Z}[x_1,...,x_n]$

$$M(p) := |a_d| \prod_{i=1}^d \max\{1, |\alpha_i|\} \ge 1$$

observação

M(p) é o produto dos zeros fora do disco unitário.

$$M(p) := |a_d| \prod_{i=1}^d \max\{1, |\alpha_i|\} \ge 1$$

observação

M(p) é o produto dos zeros fora do disco unitário.

$$M(p) = 1$$
 quando $\forall i, |\alpha_i| < 1$

$$M(p) := |a_d| \prod_{i=1}^d \max\{1, |\alpha_i|\} \ge 1$$

observação

M(p) é o produto dos zeros fora do disco unitário.

$$M(p) = 1$$
 quando $\forall i, |\alpha_i| = 0 \lor |\alpha_i| = 1$ $M(p) = M(p^*)$

os polinómios mais "simples" . . .

Uma raíz n-ésima ζ da unidade satisfaz

$$\zeta^n = 1$$

$$\zeta_k = e^{k\frac{2\pi}{n}i}$$
 $k = 1, \dots, n$

os polinómios mais "simples" . . .

Uma raíz *n*-ésima ζ primitiva da unidade satisfaz

$$\begin{cases} \zeta^n = 1 \\ \zeta^m \neq 1 \quad \forall m, 0 < m < n \end{cases}$$

$$\zeta_k = e^{k\frac{2\pi}{n}i}$$
 $k = 1, ..., n, \gcd(k, n) = 1$

$$\begin{cases} \zeta^1 = 1 \\ \zeta^m \neq 1 \quad (0 < m < 1) \end{cases}$$

$$\begin{cases} & \zeta^2 = 1 \\ & \zeta^m \neq 1 \quad (m = 1) \end{cases}$$

$$\begin{cases} \zeta^3 = 1 \\ \zeta^m \neq 1 \quad (m = 1, 2) \end{cases}$$

$$\begin{cases} \zeta^4 = 1 \\ \zeta^m \neq 1 \quad (m = 1, 2, 3) \end{cases}$$

$$\begin{cases} \zeta^5 = 1 \\ \zeta^m \neq 1 \quad (m = 1, 2, 3, 4) \end{cases}$$

As raízes primitivas têm o mesmo polinómio mínimo

$$\Phi_n(x) = \prod_{\zeta_k \text{primitiva}} (x - \zeta_k) = \begin{cases} x - 1 & \text{se } n = 1 \\ \frac{x^n - 1}{\prod_{m \mid n} \Phi_m(x)} & \text{se } n > 1 \end{cases}$$

observação

$$M(\Phi_n) = \prod |\zeta_k| = 1$$

Esta medida é mínima.

observação

$$M(\Phi_n) = \prod |\zeta_k| = 1$$

Esta medida é mínima.

Questão

Que outros polinómios têm medida 1?

exemplos

- x, pois a sua única raiz é 0.
- produtos de polinómios já conhecidos de medida 1.

observação

$$M(\Phi_n) = \prod |\zeta_k| = 1$$

Esta medida é mínima.

Questão

Que outros polinómios têm medida 1?

exemplos

- x, pois a sua única raiz é 0.
- produtos de polinómios já conhecidos de medida 1.

Em geral,
$$p = x^a \Phi_{b_1} \dots \Phi_{b_r}$$
, com $a, r, b_i \in \mathbb{N}_0$

. . .

teorema de Kronecker

. . .

Haverá outros?

Teorema (Kronecker)

Não!

M(p) = 1 sse p é produto de ciclotómicos e potências de x.

ou seja,

M(p) = 1 <u>sse</u> as raízes de p são raízes da unidade ou zero.

teorema de Kronecker

Demonstração.

Seja $p \in \mathbb{Z}[x]_d$ com raízes α_i tal que M(p) = 1. Consideremos $p_k = a_d^k \prod (x - \alpha_i^k)$.

$$M(p_k) = 1$$

$$\Rightarrow |a_{j(k)}| \le {d \choose j}$$

$$\Rightarrow \{f_k | k \in \mathbb{N}\} \text{ \'e finito}$$

$$\Rightarrow \{\beta | \exists k, f_k(\beta) = 0\} \text{ \'e finito}$$

$$\Rightarrow \forall i, \exists r > s, \alpha_i^r = \alpha_i^s$$

$$\Rightarrow \forall i, \alpha_i = 0 \lor \alpha_i^{r-s} = 1$$

Ш

(desigualdade da norma)

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
 - Limites Globais
 - Limites Restritos
 - Explorações Computacionais
- Aplicações

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
 - Limites Globais
 - Limites Restritos
 - Explorações Computacionais
- Aplicações

limites globais

$$M(p) > 1 + R(d)$$

- 1971 Blanksby e Montgomery: $R(d) = \frac{1}{52d \log 6d}$
- 1978 Stewart: $R(d) = \frac{1}{10^4 d \log d}$

limites globais

$$M(p) > 1 + R(d)$$

- 1971 Blanksby e Montgomery: $R(d) = \frac{1}{52d \log 6d}$
- 1978 Stewart: $R(d) = \frac{1}{10^4 d \log d}$
- 1979 Dobrowolski: $R(d) = \frac{1}{1200} \left(\frac{\log \log d}{\log d} \right)^3 \pmod{d \geq 2}$.
- idem (assimptótico) $R(d) = (1 \epsilon) \left(\frac{\log \log d}{\log d} \right)^3$
- 1982 Cantor e Strauss: $R(d) = (2 \epsilon) \left(\frac{\log \log d}{\log d} \right)^3$
- 1983 Louboutin: $R(d) = (\frac{9}{4} \epsilon) \left(\frac{\log \log d}{\log d} \right)^3$
- 1996 Voutier: $R(d) = \frac{1}{4} \left(\frac{\log \log d}{\log d} \right)^3 \pmod{d \geq 2}$

limites globais

$$M(p) > 1 + R(d)$$

Mas...

Em qualquer caso,

$$\lim_{d\to\infty}R(d)=0$$

Problema de Lehmer ainda em aberto...

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
 - Limites Globais
 - Limites Restritos
 - Explorações Computacionais
- Aplicações

polinómios recíproco

Recordemos que...

$$p^{\star}(x) = x^{d}p(1/x)$$

Definição (polinómio recíproco)

p diz-se recíproco quando $p = p^*$.

observação

Se p recíproco,

- $a_i = a_{d-i}$ (coeficientes simétricos)
- Se $p(\alpha) = 0 \Rightarrow p(1/\alpha) = 0$ (raízes estáveis sob $z \to 1/z$)

mínimos para certas classes de polinómios

Smyth(1971) - recíprocos

Teorema

Se $p \in \mathbb{Z}[x]$ é não recíproco e $p(0)p(1) \neq 0$, então

$$M(p) \ge M(x^3 - x - 1) = 1.3247 = \theta$$

onde θ é a solução real do polinómio acima.

mínimos para certas classes de polinómios

- Smyth(1971) recíprocos
- O teorema de Smyth aplica-se a qualquer polinómio irredutível de grau ímpar
- Se p recíproco, $p = p^* = x^d p(1/x)$.
- $p(-1) = p^*(-1) = (-1)^d p(1/(-1)) = -p(-1)$
- p(-1) = 0
- p = (x+1)q M(x+1) = 1.

mínimos para certas classes de polinómios

- Smyth(1971) recíprocos
- O teorema de Smyth aplica-se a qualquer polinómio irredutível de grau ímpar
- Borwein, Dobrowolski, Mossinghoff (2007) coef. ímpares

Teorema

Se p é um polinómio com coeficiente ímpares, irredutível, não ciclotómico e $p(0) \neq 0$, então

$$M(p) \ge 5^{1/4} = 1.495...$$

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
 - Limites Globais
 - Limites Restritos
 - Explorações Computacionais
- Aplicações

Para M(p) < 2, temos $|a_j| \le 2 {d \choose j}$. Assim, a_j tem $4 {d \choose j} + 1$ possibilidades.

exemplo (grau=4)

número de polinómios a procurar (exaustivamente):

$$\underbrace{4\binom{4}{4}}_{a_4}\underbrace{(4\binom{4}{3}+1)}_{a_3}\underbrace{(4\binom{4}{2}+1)}_{a_2}\underbrace{(4\binom{4}{1}+1)}_{a_1}\underbrace{(4\binom{4}{0}+1)}_{a_0}=144500$$

medidas mínimas para cada $\mathbb{Z}_d[x]$

d	nº pols	polinómio	M(p)
1	20	<i>x</i> − 2	2
2	180	$x^2 - x - 1$	1.618
3	3380	$x^3 + 0x^2 - x + 1$	1.324
4	144500	$x^4 - x^3 + 0x^2 + 0x - 1$	1.380
5	14826420	$x^5 - x^4 + x^3 + 0x^2 - x + 1$	1.349
10	1.8×10^{23}	$\ell(x)$	1.176

Lehmer-1933

"We have not made an examination of all 10th degree symmetric polynomials, but a rather intensive search has failed to reveal a better polynomial than

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1, \Omega = 1.176280818$$

All efforts to find a better equation of degree 12 and 14 have been unsuccessful."

teste de M(p)

• candidatos: mónicos, recíprocos, irredutíveis, de grau par

teste de M(p)

- candidatos: mónicos, recíprocos, irredutíveis, de grau par
- filtro de quadrados das raízes (método de Graeffe)

$$p(x) = g(x^2) + xh(x^2) \quad \rightsquigarrow \quad (G(p))(x) = g(x)^2 - xh(x)^2$$
$$\{\alpha_i\} \quad \rightsquigarrow \quad \{\alpha_i^2\}$$

$$p_m := G^m(p)$$

- Se M(p) < M, $|a_{m,j}| \le {d \choose j} + {d-2 \choose j-2} (M^{2^m} + M^{-2^m} 2)$
- Se p é produto de ciclotómicos, $\forall m > \log_2 dp_m = p_{m+1}$

teste de M(p)

- candidatos: mónicos, recíprocos, irredutíveis, de grau par
- filtro de quadrados das raízes (método de Graeffe)
- remover factores ciclotómicos
- calcular M(P)

estratégias de pesquisa

• exaustiva $(\mathcal{O}(C^{d^2}))$

realizada até $d \le 24$, M = 1.3

estratégias de pesquisa

- exaustiva $(\mathcal{O}(C^{d^2}))$
- 1989 Boyd: Altura 1 (𝒪(𝒪^d))

$$p \in \mathbb{Z}[x] \text{ com } M(p) < 2 \Rightarrow \exists g \in \mathbb{Z}[x], H(fg) = 1$$

pesquisa até d ≤ 40 (encontrou anteriores)

estratégias de pesquisa

- exaustiva $(\mathcal{O}(C^{d^2}))$
- 1989 Boyd: Altura 1 (*O*(*C*^d))
- 1998 Mossinghoff, Pinner, Vaaler: Perturbações $(\mathcal{O}(C^{\sqrt{d}}))$

Produtos de ciclotómicos perturbados

encontrar produto de Φ s e peturbar o coeficiente do meio (± 1)

• pesquisa até $d \le 64$ (encontrou > 80% dos anteriores)

polinómio de Lehmer

$$\ell(x) = \Phi_1^2 \Phi_2^2 \Phi_3^2 \Phi_6 - x^5$$

estratégias de pesquisa

- exaustiva $(\mathcal{O}(C^{d^2}))$
- 1989 Boyd: Altura 1 (𝒪(𝒪^d))
- 1998 Mossinghoff, Pinner, Vaaler: Perturbações $(\mathcal{O}(C^{\sqrt{d}}))$
- Sparse Polynomials

número fixo de coeficientes não nulos

estratégias de pesquisa

- exaustiva $(\mathcal{O}(C^{d^2}))$
- 1989 Boyd: Altura 1 (𝒪(𝒪^d))
- 1998 Mossinghoff, Pinner, Vaaler: Perturbações $(\mathcal{O}(C^{\sqrt{d}}))$
- Sparse Polynomials
- 2000 Rhin, Sac-Épée: Estatístico

gerar coeficientes segundo uma dist. multinormal de média $x^n + 1$

estratégias de pesquisa

- exaustiva (O(C^{d²}))
- 1989 Boyd: Altura 1 (𝒪(𝒪^d))
- 1998 Mossinghoff, Pinner, Vaaler: Perturbações $(\mathcal{O}(C^{\sqrt{d}}))$
- Sparse Polynomials
- 2000 Rhin, Sac-Épée: Estatístico
- 2000 Rhin, Sac-Épée: Minimização

começar com uma semente e procurar minímo local (perturbações pequenas)

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
- Aplicações

A medida de Mahler e o problema de Lehmer surgem em muitas áreas aparentemente não relacionadas da matemática:

normas L_p

Para cada $r \in \mathbb{R}^+$, definimos a norma L_r como

$$\|p\|_r = (\int_0^1 |p(e^{2\pi i t})|^r dt)^{1/r}$$

Então

$$\lim_{r\to 0} \|p\|_r = \exp(\int_0^1 \log|p(e^{2\pi it})| \ dt) = M(p)$$

A medida de Mahler e o problema de Lehmer surgem em muitas áreas aparentemente não relacionadas da matemática:

- normas L_p
- teoria de números transcendentes

desigualdades úteis no estudo de números transcendentes (área onde Mahler a aplicou)

A medida de Mahler e o problema de Lehmer surgem em muitas áreas aparentemente não relacionadas da matemática:

- normas L_p
- teoria de números transcendentes
- factorização de polinómios

se a conjectura de Lehmer for verdadeira, existe um limite ao número de factores não ciclotómicos de um polinómio dependente dos seus coeficientes.

A medida de Mahler e o problema de Lehmer surgem em muitas áreas aparentemente não relacionadas da matemática:

- normas L_p
- teoria de números transcendentes
- factorização de polinómios
- funções-L e curvas elípticas

Existem relações entre a medida de Mahler para polinómios de várias variáveis e o valor de séries-L.

A medida de Mahler e o problema de Lehmer surgem em muitas áreas aparentemente não relacionadas da matemática:

- normas L_p
- teoria de números transcendentes
- factorização de polinómios
- funções-L e curvas elípticas
- teoria de nós

os polinómios de Alexander são um invariante de nó.

A medida mínima de polinómios de enlaces de "pretzel" é

$$M(\ell(x)) = 1.176...$$
 - "pretzel"-(2,3,7).

A medida de Mahler e o problema de Lehmer surgem em muitas áreas aparentemente não relacionadas da matemática:

- normas L_p
- teoria de números transcendentes
- factorização de polinómios
- funções-L e curvas elípticas
- teoria de nós
- sequências de inteiros
- sistemas dinâmicos algébricos

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
- Aplicações
 - Sequências de Lehmer-Pierce
 - Sistemas Dinâmicos "Algébricos"

Sequências de Lehmer-Pierce

$$\Delta_n(p) = |a_d|^n \prod_{i=1}^d |\alpha_i^n - 1|$$

generalizam a sequência de Mersenne

• Lehmer - procura de primos "grandes"

$$p(x) = x^3 - x - 1$$

$$\Delta_{133} = 63088004325217$$
 $\Delta_{127} = 3233514251032733$

Sequências de Lehmer-Pierce

$$\Delta_n(p) = |a_d|^n \prod_{i=1}^d |\alpha_i^n - 1|$$

generalizam a sequência de Mersenne

- Lehmer procura de primos "grandes"
- pequeno $M(p) \rightsquigarrow \text{mais primos...}$

Sequências de Lehmer-Pierce

$$\Delta_n(p) = |a_d|^n \prod_{i=1}^d |\alpha_i^n - 1|$$

generalizam a sequência de Mersenne

- Lehmer procura de primos "grandes"
- pequeno $M(p) \rightsquigarrow \text{mais primos...}$
- mas são demasiado pequenos!
- no entanto...permitem conhecer melhor sequências como a de Mersenne

Conjectura

Seja n_i o j-ésimo primo para o qual M_{n_i} é primo. Então

$$\frac{j}{\log\log M_{n_j}} \to \frac{e^{\gamma}}{\log 2}$$

i.e., o número de primos de Mersenne $\leq x$ tende para

$$\frac{e^{\gamma}}{\log 2} \log \log x$$

onde γ é a constante de Euler-Mascheroni:

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} 1/k - \log n \right)$$

Argumentação Heurística

Questão

Qual a probabilidade de M_k ser primo para k aleatório?

- Pelo teorema dos números primos, $\mathbb{P}(k \text{ primo}) = 1/\log k$
- Assumindo k primo, qual a probabilidade de M_k to ser?

Primeira aproximação

$$P_0:=\frac{1}{\log 2^k-1}$$

Observação

$$M_k$$
 primo $\Rightarrow \forall q < 2k + 1$ primo, $q \nmid M_k$

 $\textit{N}_0 = \mathbb{N} = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,$

$$P_0 \sim rac{|V|}{|N_0|}$$

 $2^k - 1$ não é divisível por 2 se for primo. Logo

$$P_1 : \sim \frac{|V|}{\frac{1}{2}|N_0|} = 2P_0$$

$$N_1=1,\ ,3,\ ,5,\ ,7,\ ,9,\ ,11,\ ,13,\ ,15,\ ,17,\ ,19,\ ,...$$

$$P_1\sim \frac{|\textit{V}|}{|\textit{N}_1|}$$

 $2^k - 1$ não é divisível por 3 se for primo. Logo

$$P_2 :\sim \frac{|V|}{\frac{2}{3}|\mathbb{N}|} = \frac{3}{2}P_1 = \frac{3}{2}2P_0$$

$$N_2 = 1, \; , \; , \; , 5, \; , 7, \; , \; , \; , 11, \; , 13, \; , \; , \; , 17, \; , 19, \; , ...$$

$$P_2 \sim \frac{|V|}{|N_2|}$$

 $2^k - 1$ não é divisível por 5 se for primo. Logo

$$P_3 : \sim \frac{|V|}{\frac{4}{5}|\mathbb{N}|} = \frac{5}{4}P_2 = \frac{5}{4}\frac{3}{2}2P_0$$

. . .

$$\mathbb{P}(2^k - 1\text{primo}|k\text{primo}) = \frac{1}{k\log 2} \frac{2}{1} \frac{3}{2} \frac{5}{4} \frac{7}{6} \dots \frac{q}{q-1}$$

para q primo < 2k + 1.

Conjectura de Wagstaff (Lehmer-Pierce)

procurando generalizar o raciocínio

Conjectura

Seja n_j o j-ésimo primo para o qual M_{n_j} é primo. Então

$$\frac{j}{\log\log\Delta_{n_i}(p)}\to\frac{\mathrm{e}^{\gamma}}{\log M(p)}$$

- Contexto: o Problema de Lehmer
- Propriedades Básicas
- Resultados
- Aplicações
 - Sequências de Lehmer-Pierce
 - Sistemas Dinâmicos "Algébricos"

sistemas dinâmicos algébricos

- X grupo compacto abeliano
- δ métrica em X
- μ medida em X
- $T: \alpha \ maps to T^{\alpha} \ (\alpha \in \mathbb{Z}^r)$
- $T^{\alpha}: X \to X$ automorfismo
- $T^n \Delta T^m = T^{n+m}$ (acção de \mathbb{Z}^r em X)

consideramos $X = \mathbb{T}^d$

sistemas dinâmicos algébricos

Dado p(x), considerar T(x) = Ax, onde A é a matriz companheira de p.

$$|Per_n| = \Delta_n$$