

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра теоретических Основ электротехники

Цепи с распределенными и сосредоточенными параметрами Методические указания и задания к расчетно-графическим работам № 1,2

для студентов специальности 5В0702- Автоматизация и управление

СОСТАВИТЕЛИ: С.Ю. Креслина, А.Т Аршабекова. Цепи с распределенными и сосредоточенными параметрами. Методические указания и задания к расчетно-графическим работам № 1,2 для студентов специальности 5В0702- Автоматизация и управление. – Алматы: АУЭС, 2013.-14 с.

Методические указания и задания к расчетно-графическим работам № 1,2 по дисциплине «Цепи с распределенными и сосредоточенными параметрами», содержат две расчетно-графические работы по темам: «Расчет четырехполюсников», «Расчет линии с распределенными параметрами», требования к их выполнению и оформлению, задания, схемы и параметры электрических цепей, методические указания.

Расчетно-графические работы предназначены для студентов специальности 5В0702- Автоматизация и управление.

Ил. 18, табл. 6, библиогр.- 7 назв.

Рецензент:

Печатается по плану издания «НАО Алматинского университета энергетики и связи» на 2013 г.

1 Требования к выполнению и оформлению расчетно-графических работ

- 1.1 Расчетно-графическая работа (РГР) должна включать следующие элементы:
- а) титульный лист (приложение А);
- б) задание:
- в) содержание;
- г) введение;
- д) основную часть;
- е) заключение (выводы):
- ж) список литературы;
- з) приложения.
- 1.2 Текст задания должен быть переписан полностью, со всеми рисунками и числовыми значениями для своего варианта.
- 1.3 Каждый этап расчетно-графической работы должен быть озаглавлен.
- 1.4 Расчетно-графическая работа может быть выполнена рукописным способом или с применением компьютерной печати (в программе Microsoft Word, шрифт высотой 14 пунктов с интервалом 1,0-1,5). Текст пишется на одной стороне листа белой бумаги формата A4. По всем четырем сторонам листа оставляются поля: левое не менее 30мм, правое не менее 10мм, верхнее и нижнее 20мм.
- 1.5 Все листы расчетно-графической работы должны иметь сквозную нумерацию, начиная с титульного листа, включая приложение. Номер листа пишется в правом верхнем углу без точки.
- 1.6 Расчеты должны сопровождаться пояснениями. Нельзя приводить только расчетные формулы и конечные результаты. Расчетно-графические работы, в которых вычисления и пояснения приводятся сокращенно, к защите не допускаются.
- 1.7 Рисунки должны быть пронумерованы.
- 1.8 На графиках указываются названия изображаемых величин, их единицы измерения. Масштабы необходимо подбирать так, чтобы было удобно пользоваться графиком или диаграммой.
- 1.9 У величин, имеющих определенные размерности, писать в окончательных результатах соответствующие единицы измерения. Все обозначения электрических величин должны соответствовать ГОСТу.
- 1.10 Введение должно содержать цель работы и методы анализа и расчета режимов электрической цепи. Слово «ВВЕДЕНИЕ» записывается прописными буквами в виде заголовка.
- 1.11 Заключение (выводы) должно содержать анализ и оценку результатов работы.
- 1.12 Расчетно-графическая работа должна быть сдана на проверку в срок, в соответствии с графиком учебного процесса. В случае нарушения срока сдачи РГР снижается итоговый балл за работу.

РЕСПУБЛИКА КАЗАХСТАН АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра теоретических основ электротехники

Расчетно-графическая работа № по дисциплине «Цепи с распределенными и сосредоточенным параметрами» (полное наименование работы) Работа выполнена Студентом	ли
по дисциплине «Цепи с распределенными и сосредоточенным параметрами» (полное наименование работы) Работа выполнена Студентом (фамилия и инициалы (номер зачетной книжк	ли
по дисциплине «Цепи с распределенными и сосредоточенным параметрами» (полное наименование работы) Работа выполнена Студентом (фамилия и инициалы (номер зачетной книжк	ми
по дисциплине «Цепи с распределенными и сосредоточенным параметрами» (полное наименование работы) Работа выполнена Студентом (фамилия и инициалы (номер зачетной книжк	ми
по дисциплине «Цепи с распределенными и сосредоточенным параметрами» (полное наименование работы) Работа выполнена Студентом (фамилия и инициалы (номер зачетной книжк	ми
по дисциплине «Цепи с распределенными и сосредоточенным параметрами» (полное наименование работы) Работа выполнена Студентом (фамилия и инициалы (номер зачетной книжк	ми
(полное наименование работы) Работа выполнена Студентом	
Работа выполнена Студентом(фамилия и инициалы ————————————————————————————————————	
Студентом (фамилия и инициалы (номер зачетной книжк	
Студентом (фамилия и инициалы (номер зачетной книжк	
Студентом (фамилия и инициалы (номер зачетной книжк	
Студентом (фамилия и инициалы (номер зачетной книжк	
Студентом (фамилия и инициалы (номер зачетной книжк	
Студентом (фамилия и инициалы (номер зачетной книжк	
Студентом (фамилия и инициалы (номер зачетной книжк	
(фамилия и инициалы) ————————————————————————————————————	
(номер зачетной книжк	
_)
T	<u>—</u> и)
Группа(шифр группы)	<u> </u>
	,
Отчет принят	
(дата принятия отче	
Преподаватель(Ф.И.С	ета
$(\Psi.H.C)$	

Алматы 201...

2 Расчетно-графическая работа №1. Расчет четырехполюсников

Два симметричных четырехполюсника каскадно соединены. Заданы схемы двух четырехполюсников (схема 1 и схема 2) и сопротивления четырехполюсников. Определить:

- 2.1 А- параметры каждого из них.
- 2.2 А- параметры каскадного соединения четырехполюсников, используя:
 - 2.2.1 А- параметры каждого из них.
 - 2.2.2 Схему эквивалентного четырехполюсника.
- 2.3 Вторичные параметры четырехполюсника (Z_{c1} , Γ , Λ , B), используя Апараметры, режимы холостого хода и короткого замыкания.
- 2.4 Входное сопротивление относительно первичных зажимов, при подключении к выходным зажимам нагрузки $R_{\scriptscriptstyle H}$.
- 2.5 Входное сопротивление относительно вторичных зажимов, при нагрузке четырехполюсника со стороны первичных зажимов $R_{\scriptscriptstyle \Gamma_{\scriptscriptstyle L}}$

Вариант выбирается по таблицам 2.1-2.3 в соответствии с номером зачетной книжки и первой буквой фамилии.

Таблица 2.1

Год		Последняя цифра зачетной книжки								
поступления										
чётный	1	2	3	4	5	6	7	8	9	0
нечётный	0	9	8	7	6	5	4	3	2	1
№ схемы 1	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.1	2.2
четырехпол										
L, мГн	70	60	50	65	80	55	75	85	95	100
f, кГц	1	2	3	4	5	1	2	3	4	5

Таблипа 2.2

таолица 2	таолица 2.2									
Год			Предпо	следня	яя циф	ра зач	етной к	нижки		
поступления										
чётный	1	2	3	4	5	6	7	8	9	0
нечётный	0	9	8	7	6	5	4	3	2	1
R, кОм	1	2	3	4	5	6	7	8	9	10
R _н , кОм	0.5	0.6	0.8	0.9	0.4	0.7	1.1	1.2	1.3	1.0

Таблица 2.3

Год		Первая буква фамилии								
поступления										
чётный	БЛЦ	КX	ВМЧ	ГНШ	ДОЯ	ЕПР	ЖСЗ	ТЭИ	УЮФ	АЩ
нечётный	KX	ВМЧ	ГНШ	БЛЦ	ЕПР	ДОЯ	ТЭИ	ЖСЗ	АЩ	УЮФ
№ схемы 2	2.9	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.12	2.15
четырехпол										
С, мкФ	0, 1	0, 3	0, 2	0, 4	0, 5	0, 6	0, 7	0, 8	0, 9	0, 6
R_{Γ} , кОм	0.2	0.19	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.11

Рисунок 2.1

Рисунок 2.2

Рисунок 2.3

Рисунок 2.4

Рисунок 2.5

Рисунок 2.6

Рисунок 2.7

 \mathbb{R}

Рисунок 2.9

Рисунок 2.10

Рисунок 2.11

Рисунок 2.12

Рисунок 2.13

Рисунок 2.14

Рисунок 2.15

Рисунок 2.16

3 Расчетно-графическая работа №2. Расчет линии с распределенными параметрами

Задана линия с первичными параметрами (R_0, G_0, L_0, C_0) и частотой f, длиной линии l. Известен ток в конце линии (I_2) и сопротивление нагрузки $(R_{\scriptscriptstyle H})$.

Определить:

- 3.1 Вторичные параметры линии.
- 3.2 Напряжение и ток в начале линии.
- 3.3 Активную мощность в начале и конце линии, кпд линии.

Полагая, что линия стала линией без потерь, определить:

- 3.4 Вторичные параметры линии.
- 3.5 Напряжение и ток в начале линии.

Таблица 3.1

Год			После	едняя і	цифраз	зачетн	ой кни	жки		
поступления										
чётный	1	2	3	4	5	6	7	8	9	0
нечётный	0	9	8	7	6	5	4	3	2	1
R_0 , Om/km	1	3	5	7	9	2	4	6	8	10
L_0 , м Γ н/км	0.5	1	1.5	2	0.8	1.2	1.7	2.1	2.3	2.7
f, кГц	1	2	3	4	5	1	2	3	4	5

Таблица 3.2

Год		Предпоследняя цифра зачетной книжки								
поступления										
чётный	1	2	3	4	5	6	7	8	9	0
нечётный	0	9	8	7	6	5	4	3	2	1
G_0 , MKCM/KM	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1
R _H , OM	400	350	300	250	200	150	100	50	450	500

Таблипа 3.3

таолицаз	••									
Год		Первая буква фамилии								
поступления										
чётный	БЛЦ	KX	ВМЧ	ГНШ	ДОЯ	ЕПР	ЖСЗ	ТЭИ	УЮФ	АЩ
нечётный	КХ	ВМЧ	ГНШ	БЛЦ	ЕПР	ДОЯ	ИЄТ	ЖСЗ	АЩ	УЮФ
1, км	100	95	90	85	80	75	70	65	60	55
С, нФ/км	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5
I ₂ , мА	100	90	80	70	60	50	40	30	20	10

4 Методические указания к выполнению расчетно-графических работ № 1,2.

Каскадное соединение является наиболее часто встречающимся в цепях автоматики, связи и телемеханики.

Для определения параметров четырехполюсника, получившегося результате соединения через параметры каскадного отдельных четырехполюсников наиболее удобно пользоваться системой A-параметров. При этом матрица A-параметров всего соединения определяется как произведение матриц A -параметров составляющих этого соединения. Другими словами, для определения какого-либо A-параметра каскадного соединения A -параметры необходимо перемножить соответствующие отдельных четырехполюсников.

При *каскадном* (*цепочечном*) соединении четырехполюсников входные зажимы каждого последующего четырехполюсника подключаются к выходным зажимам предыдущего.

Рисунок 3.1

$$\underline{A'_{11}}\underline{A''_{11}} = \underline{A_{11}}, \underline{A'_{12}}\underline{A''_{12}} = \underline{A_{12}}, \underline{A'_{21}}\underline{A''_{21}} = \underline{A_{21}}, \underline{A'_{22}}\underline{A''_{22}} = \underline{A_{22}}$$

Рисунок 3.2

Коэффициенты четырехполюсника могут быть определены по известным напряжениям и токам из режимов холостого хода и короткого замыкания из системы уравнений A -параметров.

$$\dot{U}_1 = \underline{A}_{11}\dot{U}_2 + \underline{A}_{12}\dot{I}_2,$$

$$\dot{I}_1 = \underline{A}_{21}\dot{U}_2 + \underline{A}_{22}\dot{I}_2$$

Коэффициенты пассивного четырехполюсника связаны соотношением:

$$A_{11}A_{22} - A_{12}A_{21} = 1$$

Входное сопротивление представляет собой то сопротивление, которое является нагрузкой для генератора, подключенного к четырехполюснику.

$$\underline{Z}_{BX1} = \frac{\underline{A}_{11}\underline{Z}_H + \underline{A}_{12}}{\underline{A}_{21}\underline{Z}_H + \underline{A}_{22}} \qquad \underline{Z}_{BX2} = \frac{\underline{A}_{22}\underline{Z}_H + \underline{A}_{12}}{\underline{A}_{21}\underline{Z}_H + \underline{A}_{11}}$$

Вторичные параметры четырехполюсника через А-параметры:

$$\underline{Z}_{C1} = \sqrt{\frac{A_{11}A_{12}}{A_{21}A_{22}}}$$
 $\underline{Z}_{C2} = \sqrt{\frac{A_{22}A_{12}}{A_{21}A_{11}}}$

$$\underline{\Gamma} = ln \frac{\dot{U}_1}{\dot{U}_2} = ln \frac{\dot{I}_1}{\dot{I}_2} = ln \left(\sqrt{\underline{A}_{11}\underline{A}_{22}} + \sqrt{\underline{A}_{12}\underline{A}_{21}} \right)$$

характеристические сопротивления можно выразить через параметры холостого хода и короткого замыкания:

$$Z_{C1} = \sqrt{Z_{1XX}Z_{1K3}}$$
, $Z_{C2} = \sqrt{Z_{2XX}Z_{2K3}}$

характеристическая постоянная передачи через параметры холостого хода и короткого замыкания

$$th\underline{\Gamma}_1 = \sqrt{\frac{\underline{A}_{21}\underline{A}_{12}}{\underline{A}_{11}\underline{A}_{22}}} = \sqrt{\frac{\underline{Z}_{1K3}}{\underline{Z}_{1XX}}}$$

$$th\underline{\Gamma}_2 = \sqrt{\frac{\underline{A}_{12}\underline{A}_{21}}{\underline{A}_{11}\underline{A}_{22}}} = \sqrt{\frac{\underline{Z}_{2K3}}{\underline{Z}_{2XX}}}$$

$$e^{2\underline{\Gamma}} = e^{2(A+jB)} = \frac{1+th\underline{\Gamma}}{1-th\Gamma}$$

Вторичные (характеристические) параметры линии γ - коэффициент распространения волны. Он характеризует изменение напряжения \dot{U} и тока \dot{I} вдоль линии на протяжении 1 км. В алгебраической форме комплекс $\bar{\gamma} = \alpha + j\beta$,

где $\,\alpha$ - коэффициент затухания волны на 1 км, $\left[\alpha\right] = \left\lceil \frac{1}{\kappa \scriptscriptstyle M} \right\rceil;$

 β - коэффициент изменения фазы на 1 км, $[\beta] = \left\lceil \frac{1}{\kappa M} \right\rceil$.

$$\gamma = \sqrt{\underline{Z_0}\underline{Y_0}} = \sqrt{(R_0 + j\omega L_0)(G_0 + j\omega C_0)} = \alpha + j\beta,$$

волновое или характеристическое сопротивление линии.

$$\underline{Z}_{\rm C} = \sqrt{\frac{\underline{Z}_0}{\underline{Y}_0}} = \sqrt{\frac{R_0 + j\omega L_0}{G_0 + j\omega C_0}} = Z_{\rm C} {\rm e}^{j\Theta},$$

Зная ток и напряжение в конце линии можно определить ток и напряжение в начале линии:

$$\dot{U}_1(x) = \dot{U}_2 ch(\gamma l) + Z_c \dot{I}_2 sh(\gamma l),$$

$$\dot{I}_1(x) = \dot{I}_2 ch(\gamma l) + \frac{\dot{U}_2}{Z_c} sh(\gamma l)$$

Если положить $R_0 = G_0 = 0$, то получим так называемую линию без потерь. Для такой линии все найденные соотношения упрощаются, продольное сопротивление и поперечная проводимость на единицу длины линии будут

$$Z_0 = j\omega \cdot L_0, Y_0 = j\omega \cdot C_0.$$

Тогда волновое сопротивление линии
$$Z_{\scriptscriptstyle B} = \sqrt{\frac{Z_{\scriptscriptstyle 0}}{Y_{\scriptscriptstyle 0}}} = \sqrt{\frac{L_{\scriptscriptstyle 0}}{C_{\scriptscriptstyle 0}}} = z_{\scriptscriptstyle B}$$
 ,

т.е. оказывается чисто вещественным числом, не зависящим от частоты генератора, питающего линию. Следовательно, токи падающей и отраженной волн совпадают по фазе со своими напряжениями.

Коэффициент распространения $\bar{\gamma}$ на единицу длины линии оказывается числом мнимым $\bar{\gamma} = \sqrt{Z_0 \cdot Y_0} = j\omega \cdot \sqrt{L_0 \cdot C_0}$,

т.е. коэффициент затухания $\alpha=0$, коэффициент изменения фазы

$$\beta = \omega \cdot \sqrt{L_0 \cdot C_0} \; .$$

Список литературы

- 1. Сборник задач по теоретическим основам электротехники/ Л.Д.Бессонов, И.Г.Демидова, М.Е.Заруди и др.-М.: Высшая школа, 2003.-52с.
- 2. Бессонов Л.А. Теоретические основы электротехники.-М.: Гардарики,1999. 638с.
- 3. Шебес М.Р., Каблукова М.В. Задачник по теории линейных электрических цепей. М.: Высшая школа, 1990. 544с.
- 4. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей.- М.: Энергоатомиздат, 1989. -528с.
- 5. Денисенко В.И., Зуслина Е.Х ТОЭ. Учебное пособие.- Алматы: АИЭС, 2000, 83 с.
- 6. Денисенко В.И., Креслина С.Ю. ТОЭ1. Конспект лекций (для бакалавриата 050702 Автоматизация и управление). Алматы: АИЭС, 2008, с. 67.
- 7. Денисенко В.И., Креслина С.Ю., Светашев Г.М. ТОЭ2. Конспект лекций (для бакалавриата 050702 Автоматизация и управление). Алматы: АИЭС, 2009, с. 62.

Содержание

1 Требования к выполнению и оформлению расчетно-графических ра	бот3
2 Расчетно-графическая работа №1	5
3 Расчетно-графическая работа №2	8
4 Методические указания к выполнению РГР № 1,2	9
Список литературы	12

Алма <u>Т</u>	Аршабекова
Светлана Ю	оьевна Креслина

Цепи с распределенными и сосредоточенными параметрами

Методические указания и задания к расчетно-графическим работам № 1,2 для студентов специальности 5В0702- Автоматизация и управление

Редактор: 3.Т.Абдраимова

Специалист по стандартизации: Б.Н. Мауталинова

Тираж100 экз.	Бумага типографская
Подписано в печать	Формат 60х84 1/16 №1
Объем уч изд. л.	Заказ Ценатенге.

Копировально-множительное бюро Некоммерческого акционерного общества «Алматинский университет энергетики и связи» 050013, Алматы, Байтурсынова, 126

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра теоретических основ электротехники

	УТВЕРЖДАЮ
	Проректор по учебно-
	методической работе
	С.В. Коньшин
	"" с.в. конышин "" 2013г.
	20131.
Цепи с распределенными и сосј	релоточенными параметрами
Методические указания и задания к ра	
для студентов специальности 5В07	
для студентов специальности эвот	02- Автоматизация и управление
СОГЛАСОВАНО	Рассмотрено и одобрено на
Начальник УМО	заседании кафедры ТОЭ
М.А.Мустафин	Протокол № 3 от 15.11.2012г.
<u>" " 2013Γ.</u>	Зав. кафедрой ТОЭ
20131.	3.И. Жолдыбаева
Председатель МО и Э по УМК	5.11. Жолдыоасва
1	Солиссовомо
М.В.Башкиров	Согласовано
"" 2013г.	D 1 VIII
_	Зав. кафедрой ИК
Редактор	Б.Ж.Хисаров
	" 2013г
"" 2013г.	
Специалист по стандартизации	
•	
~~~~~ 2013г.	
	Составители:
	С.Ю. Креслина
	А.Т. Аршабекова
	А.т. Аршаоскова