Introduction to Machine Learning and Stochastic Optimization

Robert M. Gower

Solving the Finite Sum Training Problem

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} f_i(w) =: f(w)$$

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla \left(\frac{1}{n} \sum_{i=1}^{n} f_i(w) \right) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$$
Output w^{T+1}

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d) = (862,2)

Gradient Descent Example

-1.5

-0.5

0.5

-2.5

from LIBSVM

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$$
Output w^{T+1}

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j \left[\nabla f_j(w) \right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j \left[\nabla f_j(w) \right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$

Use $\nabla f_j(w) \approx \nabla f(w)$

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
Sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^{T+1}

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Often the same as the regularization parameter

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Strong Convexity

Often the same as the regularization parameter

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Strong convexity parameter!

Often the same as the regularization parameter

Strong convexity

parameter!

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}\left[||\nabla f_j(w^t)||_2^2\right] \leq B^2$$
, for all iterates w^t of SGD

Example of Strong Convexity

Hinge loss + L2

$$\max\{0, 1 - x\} + \frac{1}{2}||x||_2^2$$

Quadratic lower bound

Theorem

If $\frac{1}{\lambda} \geq \alpha > 0$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t \mathbb{E}\left[||w^0 - w^*||_2^2\right] + \frac{\alpha}{\lambda}B^2$$

Shows that $\alpha \approx \frac{1}{\lambda}$

Shows that $\alpha \approx 0$

Proof:

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

Bounded

Stoch grad

$$\mathbb{E}_{j} \left[||w^{t+1} - w^{*}||_{2}^{2} \right] = ||w^{t} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||\nabla f_{j}(w^{t})||_{2}^{2} \right]$$

$$\leq ||w^{t} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha^{2} B^{2}$$

Taking total expectation

$$\mathbb{E}\left[||w^{t+1} - w^*||_2^2\right] \le (1 - \alpha\lambda)\mathbb{E}\left[||w^t - w^*||_2^2\right] + \alpha^2 B^2$$

Using the geometric series sum $\sum_{i=0}^{\infty} (1 - \alpha \lambda)^{i} = \frac{1 - (1 - \alpha \mu)^{t+1}}{\alpha^{\lambda}} \le \frac{1}{\alpha^{\lambda}}$

 $= (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha \lambda)^i \alpha^2 B^2$

$$\mathbb{E}\left[||w^{t+1} - w^*||_2^2\right] \le (1 - \alpha\lambda)^{t+1}||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

Theorem (Shrinking stepsize)

If $\alpha_t = \frac{1}{t\lambda}$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \frac{4B^2}{t}$$

Set
$$w^0 = 0$$
, $\alpha_t = \frac{1}{t\lambda}$.
for $t = 1, 2, 3, \dots, T$

$$Sor j \in \{1, \dots, n\}$$

$$w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$$
Output w^{T+1}

Theorem (Shrinking stepsize)

If $\alpha_t = \frac{1}{t\lambda}$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \frac{4B^2}{t}$$
 Sublinear convergence

Set
$$w^0 = 0$$
, $\alpha_t = \frac{1}{t\lambda}$.
for $t = 1, 2, 3, \dots, T$

$$Sor j \in \{1, \dots, n\}$$

$$w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$$
Output w^{T+1}

Theorem (Shrinking stepsize)

If $\alpha_t = \frac{1}{t\lambda}$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \frac{4B^2}{t}$$

Sublinear convergence

Set
$$w^0 = 0, \alpha_t = \frac{1}{t\lambda}$$
.
for $t = 1, 2, 3, \dots, T$

$$Sor j \in \{1, \dots, n\}$$

$$w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$$
Output w^{T+1}
Shrinking
Stepsize

time

Maybe just an unbiased estimate is not enough.

Variance reduced methods through Sketching

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_i(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_i(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Unbiased

$$\mathbb{E}[g^t] = \nabla f(w^t)$$

Converges in L2

$$\mathbb{E}||g^t - \nabla f(w^t)||_2^2 \longrightarrow_{w^t \to w^*} 0$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Unbiased

$$\mathbb{E}[g^t] = \nabla f(w^t)$$

Solves problem of $||\nabla f_i(w)||_2^2 \leq B^2$

Converges in L2

$$\mathbb{E}||g^t - \nabla f(w^t)||_2^2$$

$$\underset{v^t \to w^*}{\longrightarrow} 0$$

Example: The Stochastic Average Gradient

Maintain $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)]$ and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t = w^t - \alpha g^t$$

Update J_i^t 's by sampling $j \in \{1, ..., n\}$ uniformly at random and setting:

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j\\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

M. Schmidt, N. Le Roux, F. Bach (2016) Mathematical Programming Minimizing Finite Sums with the Stochastic Average Gradient.

The Stochastic Average Gradient

The Stochastic Average Gradient

How to prove this converges? Is this the only option?

Introducing the Jacobian

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$F(w) \stackrel{\mathrm{def}}{=} (f_1(w), \dots, f_n(w))$$

$$DF(w) = (\nabla f_1(w), \dots, \nabla f_n(w))$$

Introducing the Jacobian

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$F(w) \stackrel{\mathrm{def}}{=} (f_1(w), \dots, f_n(w))$$

$$DF(w) = (\nabla f_1(w), \dots, \nabla f_n(w))$$

$$\nabla f(w) = \frac{1}{n} DF(w) \mathbf{1}, \text{ where } \mathbf{1}^{\top} = (1, 1, \dots, 1) \in \mathbf{R}^n$$

Introducing the Jacobian

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$F(w) \stackrel{\mathrm{def}}{=} (f_1(w), \dots, f_n(w))$$

$$DF(w) = (\nabla f_1(w), \dots, \nabla f_n(w))$$

$$\nabla f(w) = \frac{1}{n} DF(w) \mathbf{1}, \text{ where } \mathbf{1}^{\top} = (1, 1, \dots, 1) \in \mathbf{R}^n$$

 $\nabla f(w)$ is a dense linear measurement of DF(w)

The Stochastic Average Gradient

Maintain $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)] = DF(w^t)$ and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t$$

Update J_i^t 's by sampling $j \in \{1, ..., n\}$ uniformly at random and setting:

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j\\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

Is this the only option? How to prove this converges?

The Stochastic Average Gradient

Maintain $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)] = DF(w^t)$ and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t$$
 Estimate of $\frac{1}{n} DF(w^t) \mathbf{1}$

Update J_i^t 's by sampling $j \in \{1, ..., n\}$ uniformly at random and setting:

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j\\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

Is this the only option? How to prove this converges?

The Stochastic Average Gradient

Maintain $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)] = DF(w^t)$ and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t$$
 Estimate of $\frac{1}{n} DF(w^t) \mathbf{1}$

Update J_i^t 's by sampling $j \in \{1, \ldots, n\}$ uniformly at random and setting:

etting: Stoch. Linear Measurement
$$DF(w^t)e_j$$

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j \\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

Is this the only option? How to prove this converges?

Stochastic Sparse Sketches

Sparse Stochastic Matrix

$$S \in \mathbf{R}^{n \times \tau}$$
 a sparse matrix and $\tau \ll d$
 $S \sim \mathcal{D}$ fixed distribution

Stochastic Sketch

$$DF(w)S = \sum_{i=1}^{r} DF(w)S_{:i}$$

Stochastic Sparse Sketches

Sparse Stochastic Matrix

$$S \in \mathbf{R}^{n \times \tau}$$
 a sparse matrix and $\tau \ll d$
 $S \sim \mathcal{D}$ fixed distribution

Stochastic Sketch

$$DF(w)S = \sum_{i=1}^{7} DF(w)S_{:i}$$

Eg: SGD Sketch

$$S = e_j \in \mathbf{R}^d$$
 the jth unit coordinate vector
with $\mathbb{P}(S = e_j) = \frac{1}{n}$

$$DF(x)S = \nabla f_i(w)$$

Stochastic Sparse Sketches

Eg: Mini-batch SGD Sketch

$$S = I_C \in \mathbf{R}^{n \times \tau} \text{ where } C \subset \{1, \dots, n\}$$

$$DF(w)S = [\nabla f_{C_1}(w), \dots, \nabla f_{C_{\tau}}(w)]$$

Exe.
$$\tau = 3, n = 6, \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $DF(w)S = [\nabla f_1(w), \nabla f_4(w), \nabla f_6(w)]$

Many examples: Sparse Rademacher matrices, sampling with replacement, nonuniform...etc

Maintain Jacobian Estimate

$$J^{t-1} \approx DF(w^{t-1})$$

Sample Stochastic Sketch

$$S \sim \mathcal{D}$$
$$DF(w^t)S$$

Maintain Jacobian Estimate

$$J^{t-1} \approx DF(w^{t-1})$$

Sample Stochastic Sketch

$$S \sim \mathcal{D}$$
$$DF(w^t)S$$

Improved Guess

$$J^t \approx DF(w^t)$$

Jacobian Sketching Algorithm

```
Set \alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}

For t = 1, \dots, T

Sample S \sim \mathcal{D}

Calculate Sketch DF(w^t)S

Update J^t using DF(w^t)S and J^{t-1}

Calculate g^t = \frac{1}{n}J^t\mathbf{1}

Step w^{t+1} = w^t - \alpha g^t.
```

Jacobian Sketching Algorithm

```
Set \alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}

For t = 1, \dots, T

Sample S \sim \mathcal{D}

Calculate Sketch DF(w^t)S

Update J^t using DF(w^t)S and J^{t-1}

Calculate g^t = \frac{1}{n}J^t\mathbf{1}

Step w^{t+1} = w^t - \alpha g^t.
```

$$\approx \frac{1}{n}DF(w)\mathbf{1}$$

Jacobian Sketching Algorithm

Set
$$\alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}$$

For
$$t = 1, \ldots, T$$

Sample
$$S \sim \mathcal{D}$$

Calculate Sketch
$$DF(w^t)S$$

Update J^t using $DF(w^t)S$ and J^{t-1}

Calculate
$$g^t = \frac{1}{n}J^t\mathbf{1}$$

Step $w^{t+1} = w^t - \alpha g^t$.

Step
$$w^{t+1} = w^t - \alpha g^t$$
.

$$\dot{} pprox rac{1}{n} DF(w) \mathbf{1}$$

$$J^t = DF(w^t)$$

$$J^t S = DF(w^t)S, \quad S \sim \mathcal{D}$$

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
$$J^{t}S = DF(w^{t})S, \quad S \sim \mathcal{D}$$

Sketch and Project the Jacobian

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
$$J^{t}S = DF(w^{t})S, \quad S \sim \mathcal{D}$$

Sketch and Project the Jacobian

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
$$J^{t}S = DF(w^{t})S, \quad S \sim \mathcal{D}$$

RMG and Peter Richtarik (2015)

Randomized iterative methods for linear systems

SIAM Journal on Matrix Analysis and Applications 36(4)

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
 subject to
$$JS = DF(w^{t})S$$

Show that the solution J^t is given by

Solution:
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$$

Proof: The Lagrangian is given by

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$

subject to $JS = DF(w^{t})S$

Show that the solution J^t is given by

Solution:
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$$

Proof: The Lagrangian is given by

$$L(J,Y) := \frac{1}{2}||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle$$

= $\frac{1}{2}||J - J^{t-1}||_F^2 + \langle YS^\top, DF^t - J \rangle$

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
 subject to
$$JS = DF(w^{t})S$$

Show that the solution J^t is given by

Solution:
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$$

Proof: The Lagrangian is given by

$$L(J,Y) := \frac{1}{2}||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle$$

= $\frac{1}{2}||J - J^{t-1}||_F^2 + \langle YS^\top, DF^t - J \rangle$

(1)

Differentiating in J and setting to zero: $YS^{\top} = J - J^{t-1}$

$$J^t = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_F^2$$
 subject to
$$JS = DF(w^t)S$$

Show that the solution J^t is given by

Solution:
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$$

Proof: The Lagrangian is given by

$$L(J,Y) := \frac{1}{2}||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle$$

= $\frac{1}{2}||J - J^{t-1}||_F^2 + \langle YS^\top, DF^t - J \rangle$

Differentiating in J and setting to zero: $YS^{\top} = J - J^{t-1}$ (1)

Right multiplying by $S(S^{\top}S)^{-1}$ gives: $Y = (DF^t - J^{t-1})S(S^{\top}S)^{-1}$ (2)

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
 subject to
$$JS = DF(w^{t})S$$

Show that the solution J^t is given by

Solution:
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$$

Proof: The Lagrangian is given by

$$L(J,Y) := \frac{1}{2}||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle$$

= $\frac{1}{2}||J - J^{t-1}||_F^2 + \langle YS^\top, DF^t - J \rangle$

Differentiating in J and setting to zero: $YS^{\top} = J - J^{t-1}$ (1)

Right multiplying by $S(S^{\top}S)^{-1}$ gives: $Y = (DF^t - J^{t-1})S(S^{\top}S)^{-1}$ (2)

Substituting (1) into (2) gives the solution.

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$

subject to $JS = DF(w^{t})S$

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}$$

$$g^{t} = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}\mathbf{1}$$

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$

subject to $JS = DF(w^{t})S$

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}$$

$$g^{t} = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}\mathbf{1}$$

If
$$\eta = 1$$
 then $g^t = \frac{1}{n}J^t\mathbf{1}$

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F(\mathbf{W})}^{2}$$

subject to $JS = DF(w^{t})S$

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}W^{-1}S)^{-1}S^{\top}W^{-1}$$

$$g^{t} = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^{t}))S(S^{\top}W^{-1}S)^{-1}S^{\top}W^{-1}\mathbf{1}$$

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$

subject to $JS = DF(w^{t})S$

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}$$

$$g^{t} = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}\mathbf{1}$$

$$J^{t} = \arg\min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$

subject to $JS = DF(w^{t})S$

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top} =: P_{S}$$

$$g^{t} = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}\mathbf{1}$$

Unbiased Condition

Lemma. If $(\frac{1}{\eta}, \mathbf{1})$ is an eigenpair of $\mathbb{E}[P_S]$ then

$$\mathbb{E}_S[g^t] = \nabla f(w^t)$$

consequently g^t is an unbiased estimator.

Proof:
$$g^t = g^{t-1} - \frac{\eta}{n} (J^{t-1} - DF(w^t)) S(S^\top S)^{-1} S^\top \mathbf{1}$$

Unbiased Condition

Lemma. If $(\frac{1}{\eta}, \mathbf{1})$ is an eigenpair of $\mathbb{E}[P_S]$ then

$$\mathbb{E}_S[g^t] = \nabla f(w^t)$$

consequently g^t is an unbiased estimator.

Proof:
$$g^t = g^{t-1} - \frac{\eta}{n} (J^{t-1} - DF(w^t)) S(S^\top S)^{-1} S^\top \mathbf{1}$$

Unbiased Condition

Lemma. If $(\frac{1}{\eta}, \mathbf{1})$ is an eigenpair of $\mathbb{E}[P_S]$ then

$$\mathbb{E}_S[g^t] = \nabla f(w^t)$$

consequently g^t is an unbiased estimator.

Proof:
$$g^{t} = g^{t-1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top}S)^{-1} S^{\top} \mathbf{1}$$

$$\mathbb{E}_{S}[g^{t}] = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) \mathbb{E}_{S}[S(S^{\top}S)^{-1} S^{\top}] \mathbf{1}$$

$$= \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n\eta} (J^{t-1} - DF(w^{t})) \mathbf{1} \qquad P_{S}$$

$$= \frac{1}{n} J^{t-1} \mathbf{1} - \frac{1}{n} J^{t-1} \mathbf{1} + \frac{1}{n} DF(w^{t}) \mathbf{1} \qquad = \nabla f(w^{t})$$

Let
$$\mathbb{P}[S = e_i] = \frac{1}{n}$$
 for $i = 1, ..., n$. Show that

$$\mathbb{E}[P_S]\mathbf{1} = \mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \frac{1}{n}\mathbf{1}$$

Proof:

Let
$$\mathbb{P}[S = e_i] = \frac{1}{n}$$
 for $i = 1, ..., n$. Show that

$$\mathbb{E}[P_S]\mathbf{1} = \mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \frac{1}{n}\mathbf{1}$$

Proof:

Let
$$\mathbb{P}[S = e_i] = \frac{1}{n}$$
 for $i = 1, ..., n$. Show that

$$\mathbb{E}[P_S]\mathbf{1} = \mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \frac{1}{n}\mathbf{1}$$

Proof:
$$\mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \sum_{i=1}^{n} \frac{1}{n} \frac{e_{i}e_{i}^{\top}}{e_{i}^{\top}e_{i}}$$
$$= \frac{1}{n} \sum_{i=1}^{n} e_{i}e_{i}^{\top}\mathbf{1}$$
$$= \frac{1}{n}I\mathbf{1} = \frac{1}{n}\mathbf{1}$$

Archetype Jacobian Sketching Algorithm

```
Choose distribution \mathcal{D} and unbiased \eta > 0

Set \alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}

For t = 1, \dots, T

Sample S \sim \mathcal{D}

Calculate Sketch DF(w^t)S

Update J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top

Calculate g^t = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top \mathbf{1}

Step w^{t+1} = w^t - \alpha g^t
```

Archetype Jacobian Sketching Algorithm

Choose distribution \mathcal{D} and unbiased $\eta > 0$

Set
$$\alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}$$

For
$$t = 1, \ldots, T$$

Sample
$$S \sim \mathcal{D}$$

Calculate Sketch $DF(w^t)S$

Update
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}$$

Calculate
$$g^t = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}\mathbf{1}$$

Step
$$w^{t+1} = w^t - \alpha g^t$$

Looks expensive and complicated. Investigate

Example: minibatch-SAGA

Let
$$C \subset \{1, ..., n\}$$
 with $|C| = \tau$ and $\mathbb{P}[S = I_C] = \frac{1}{\binom{n}{\tau}}$
$$\mathbb{E}[P_S]\mathbf{1} = \frac{\tau}{n}\mathbf{1}$$

Homework:

$$\mathbb{E}[P_S]\mathbf{1} = \frac{\tau}{n}\mathbf{1}$$

Exe.
$$\tau = 3, n = 6, \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $DF(w)S = [\nabla f_1(w), \nabla f_4(w), \nabla f_6(w)]$

Example: minibatch-SAGA

Let
$$C \subset \{1, \ldots, n\}$$
 with $|C| = \tau$ and $\mathbb{P}[S = I_C] = \frac{1}{\binom{n}{\tau}}$

Homework:

$$\mathbb{E}[P_S]\mathbf{1} = \frac{\tau}{n}\mathbf{1}$$

Exe.
$$\tau = 3, n = 6, \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $DF(w)S = [\nabla f_1(w), \nabla f_4(w), \nabla f_6(w)]$

Jacobain update
$$J_j^t = \begin{cases} \nabla f_j(w^t) & \text{if } j \in C, \\ J_j^{t-1} & \text{if } j \neq C. \end{cases}$$

Gradiant estimate
$$g^t = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{1}{\tau}\sum_{j\in C}(J_j^{t-1} - \nabla f_j(w^t))$$

Proving Convergence of Variance reduced methods