Exercice sur les suites

Delhomme Fabien

Table des matières

1	Définitions	1	
	1.1 Minorant, majorant	1	L
2	Étude des variations d'une suite	1	
3	Calculs de limites	2	
4	Problèmes 4.1 Suites imbriquées	2	•
	4.2 La série harmonique		

Définitions 1

1.1 Minorant, majorant

Déterminer un majorant et un minorant pour les suites suivantes :

- $\begin{array}{l} -u_n=\frac{-1}{n+1}\\ -u_n=\frac{n}{n+1}\\ -u_n=-\left(\frac{-1}{2}\right)^n\\ -u_n=\sin\left(n\right), \text{ vous pouvez vous aider en regardant à la calculatrice quelques} \end{array}$ valeurs de la suite

Étude des variations d'une suite 2

Étudier les variations de la suite $u_n = n^3 - 9n^2$, et de la suite $u_n = n^2 - 10n + 1$.

3 Calculs de limites

Déterminer les limites de :

$$- u_n = \frac{(-1)^n}{n}$$

$$- u_n = \sqrt{n^4 + 3}$$

$$- u_n = 2 * n + (-1)^n$$

$$- u_n = n - \sqrt{4n^2 + 1}$$

$$- u_n = \frac{\cos n}{n^2}$$

$$- u_n = \frac{n^5}{n^2 - 7}$$

Soit u la suite $n \mapsto \sqrt{n+1} - \sqrt{n}$.

1. Démontrer que pour tout $n \in \mathbb{N}$:

$$u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

2. En déduire que pour tout $n \in \mathbb{N}$:

$$0 < u_n < \frac{1}{2\sqrt{n}}$$

3. Quelle est la limite de la suite u ? Donner de tête un rang à partir duquel .

$$0 < u_n < 5 * 10^{-5}$$

4 Problèmes

4.1 Suites imbriquées

On définit les suite (u_n) et (v_n) par :

$$u_0 = 1$$
 $v_0 = 2$
 $u_{n+1} = \frac{u_n + 2v_n}{3}$ $v_{n+1} = \frac{u_n + 4v_n}{5}$

- 1. Écrire un algorithme qui prend en entrée un entier naturel n non nul et donne en sortie les valeurs $u_1, v_1, \ldots, u_n, v_n$. Programmer cet algorithme sur la calculatrice. Quelle conjecture est on amené à formuler sur le comportement de (u_n) et de (v_n) quand n tend vers $+\infty$?
- 2. On pose pour tout entier naturel n, $w_n = v_n u_n$. Démontrer que la suite (w_n) est géométrique. Préciser la limite de (w_n) et exprimer w_n en fonction de l'entier naturel n.

- 3. On pose pour tout entier naturel n, $t_n = 3u_n + 10v_n$. Démontrer que la suite t_n est constante.
- 4. Exprimer u_n et v_n en fonction de l'entier naturel n, puis préciser la limite de chacune des suites (u_n) et (v_n) .

4.2 La série harmonique

On considère la suite (u_n) définie sur \mathbb{N}^* par :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

- 1. Quel est le sens de variation de la suite (u_n) ?
- 2. Démontrer que pour tout $n \in \mathbb{N}^*$, on a :

$$u_{2n} - u_n \le \frac{1}{2}$$

En déduire que la suite (u_n) est divergente.

- 3. Quelle est la limite de la suite (u_n) ?
- 4. Écrire un programme qui détermine le plus petit entier naturel n tel que $u_n \ge 10$.