Panic

Alexander Späh & Julian Schmidt

Aim

Simulating dynamical features of escape panic

Dirk Helbing*†, Illés Farkas‡ & Tamás Vicsek*‡

* Collegium Budapest–Institute for Advanced Study, Szentháromság u. 2, H-1014 Budapest, Hungary

† Institute for Economics and Traffic, Dresden University of Technology, D-01062 Dresden, Germany

‡ Department of Biological Physics, Eötvös University, Pázmány Péter Sétány 1A, H-1117 Budapest, Hungary

One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings^{1,2}; at other times, stampedes can arise during the rush for seats^{3,4} or seemingly without cause. Although engi-

playground

forces — desired velocity

forces — agent/agent interaction

forces — agent/agent interaction

forces — agent/agent interaction

forces — agent/wall interaction

Computing

grid vs. N²

Parameters

desired velocity

wall angle

Demonstration

escape time of every agent

desired velocity [m/s]

Problems of this model

Pressure to high

Agents can get stuck

Agents can become too weak to get through door

Conclusion

