СОДЕРЖАНИЕ

введение

ОБОБЩЕННАЯ ФУНКЦИОНАЛЬНАЯ СХЕМА

ОПТИЧЕСКОЕ РАЗРЕШЕНИЕ

КОЭФФИЦИЕНТ ИЗЛУЧЕНИЯ

РАБОЧИЙ ДИАПАЗОН, ТОЧНОСТЬ, СКОРОСТЬ ИЗМЕРЕНИЯ

СХЕМЫ ПОДКЛЮЧЕНИЯ

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

ВВЕДЕНИЕ

Pyrometer, Radiation thermometer Преобразователь термоизлучения

- Чувствительный элемент:
 - сложная оптико-электронная система
- Класс датчиков:
 - первичный
 - на выходе ненормированный электрический сигнал
 - не является источником напряжения / тока
 - для формирования контрольно-измерительного сигнала требуется дополнительный внешний источник напряжения / тока
- Назначение:
 - измерение температуры

Каждый объект излучает тепловую энергию. Чем выше температура объекта (или его поверхности), тем мощнее тепловое излучение. Это тепловое излучение можно измерять различными способами и по степени интенсивности определять характеристики контролируемого объекта — например, его температуру.

Пирометр — прибор (или датчик) для бесконтактного (дистанционного) измерения температуры тел. Принцип его действия основан на измерении мощности теплового излучения объекта преимущественно в диапазонах инфракрасного излучения и видимого света.

Один из первых пирометров изобрел голладнский физик — Питер ван Мушенбрук (изобретение от 1731 г.). Изобретенный им пирометр использовался для определения температуры плавления ряда металлов при исследовании тепловых свойств твердых тел.

Пирометр измеряет только тепловое излучение поверхности объекта, а не внутри него. Площадь анализируемой поверхности объекта ограничена и зависит от угла обзора прибора и его удаленности от объекта.

Пирометры хорошо зарекомендовали себя как средства безопасного дистанционного измерения температур раскаленных объектов - когда прямое физическое взаимодействие с объектом невозможно из-за высоких температур и, соответственно, невозможно применить контактные способы измерения температуры (термосопротивления, термопары).

Пирометры по конструкции чувствительного элемента и первичного преобразователя:

- оптические (спектр видимого света и инфракрасных невидимых лучей)
- радиометры (ограниченный спектр инфракрасных лучей)

Пирометры по конструкции позиционера:

- с лазерным прицелом
- с оптическим наведением

ВВЕДЕНИЕ

Пирометры по способу исполнения:

- переносные / мобильные
- стационарные

Пирометры по диапазону измеряемых температур:

- низкотемпературные (до -30°C)
- высокотемпературные (более 400°С)

Ключевые показатели для выбора термопары:

- оптическое разрешение, расстояние измерения, угол обзора
- диапазон измеряемых температур (рабочий диапазон), точность, скорость измерения
- схема электрического подключения
- способ исполнения и монтажа

пирометр переносной / мобильный, общего назначения

пирометр стационарный с компенсационным проводом и блоком вторичного преобразователя, промышленного исполнения

ОБОБЩЕННАЯ ФУНКЦИОНАЛЬНАЯ СХЕМА

Для измерения температуры пирометр направляют на контролируемый объект — точнее на определенную область его поверхности (для точного позиционирования некоторые модели пирометров оснащаются лазерными указателями).

Идущее от объекта тепловое излучение попадает на оптическую систему пирометра *(1)*, которая состоит из набора линз и зеркал (объектив).

Оптическая система собирает излучение и фокусирует его на чувствительный элемент (2) первичного преобразователя (3). В качестве чувствительного элемента может использоваться термопара — в данном случае излучение нагревает горячий спай термопары и между парой ее электродов возникает термоэлектродвижущая сила (ТЭДС, т. е. электрический сигнал в несколько милливольт). Полученный с термопары электрический сигнал усиливается с помощью специальной схемы (например, усиливается с милливольт до 0-5 вольт).

Далее, электрический сигнал после первичного преобразователя может быть нормирован (унифицирован) с помощью вторичного преобразователя (4) (например, приведение к унифицированному аналоговому сигналу 4-20 мА или цифровому MODBUS RTU). Вторичный преобразователь может входить в конструкцию пирометра (для переносных / мобильных), подключаться извне или отсутствовать.

В портативных (мобильных) пирометрах вторичный преобразователь имеет встроенный микроконтроллер, который преобразует (масштабирует) входной аналоговый сигнал в числовое значение физической величины (°C) и выводит результат экран (5).

ОПТИЧЕСКОЕ РАЗРЕШЕНИЕ

Технический параметр (показатель) пирометра, определяющий площадь поверхности контролируемого объекта, в пределах которой будет измеряться температура.

Оптическое разрешение зависит от угла обзора объектива пирометра (*диаметр захвата*) и расстояния до объекта. Чем ближе к объекту, тем больше угол. Чем больше угол, тем больше площадь измерения. В тоже время, *чем больше площадь измерения*, *тем больше площадь измерения*.

Таким образом, оптическое разрешение — это отношение размера (диаметра) захвата пирометра к удаленности до объекта.

Возможные значения этого параметра зависит от модели пирометра:

• от 2:1 до 600:1

Если необходимо измерять температуру объекта с небольшого расстояния, то достаточно пирометра с небольшим разрешением, например, 4:1, 10:1.

Если измерение будет производиться с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением.

Показатель с более высоким разрешением относится к дорогим профессиональным пирометрам, которые используются для прецезионного (очень точного) измерения температуры.

КОЭФФИЦИЕНТ ИЗЛУЧЕНИЯ

Коэффициент эмисси, Степень черноты, є

Способность материала отражать излучение.

Этот показатель определяется как отношение энергии излучения поверхности объекта (E) при определенной температуре к энергии излучения абсолютно черного тела (Е_{ЧЕРН.ТЕЛА}) при той же температуре. Он может принимать значение: от 0.0 до 1.0.

$$\varepsilon = \frac{E}{E_{\text{YEPH.TEJA}}}$$

Чем выше значение этого показателя, тем лучше.

Черные неблестящие предметы имеют коэффициент излучения, равный 0.95 — это считается базовой нормой. Например, если измеряемая поверхность объекта имеет коэффициент излучения меньше 0.95, то на ее поверхность следует нанести слой специальной матовой краски.

Например, если поверхность выполнена из алюминия и отполирована до блеска, то ее температура, измеренная с помощью пирометра, будет иметь большую погрешность.

На коэффициент излучения также влияет степень окисленности поверхности (если поверхность выполнена из металла). Например, для полированной стали коэффициент равен 0.75, а для той же, но окисленной стали — 0.85.

Применение неверного коэффициента излучения — это один из основных источников возникновения погрешности измерения для всех пирометрических методов измерения температуры.

Матерал	Коэффициент излучения, среднее значение
Алюминий	0.30
Свинец, Латунь	0.50
Железо, Базальт	0.70
Сталь	0.80
Стекло плоское, Уголь	0.85
Снег, Песок, Кирпич	0.90
Вода, Краска матовая	0.93
Масло, Земля, Дерево, Текстиль	0.94
Медь, Керамика, Бетон, Асбест, Асфальт, Резина, Пластмасса	0.95
Известняк, Лед, Кожа	0.98

РАБОЧИЙ ДИАПАЗОН, ТОЧНОСТЬ, СКОРОСТЬ ИЗМЕРЕНИЯ

Диапазон измерения температур

• от -200 до 2200°C

Точность

• до 1.5 ... 2.0°С для портативный (мобильных) общего применения

Скорость измерения или время отклика

• до 0.15 секунд (150 миллисекунд) на одно измерение для профессиональных моделей

Это время, за которое пирометр выполнит полный цикл одного измерения (оптический сигнал > чувствительный элемент > первичный преобразователь).

Данный показатель является важным, если необходимо производить измерения с большой скоростью (с большой частотой опроса).

СХЕМЫ ПОДКЛЮЧЕНИЯ

Самый наилучший способ передачи сигнала пирометра — это использование вторичного преобразователя (например, преобразователь сигнала первичного преобразователя пирометра в унифицированный аналоговый сигнал 4-20 мА или цифровой MODBUS RTU), который будет находиться как можно ближе к пирометру (установленный в коммутационную головку датчика или в виде отдельного подключаемого блока).

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ

- 1. Неправильно выбран датчик (например, оптическое разрешение меньше, чем требуется)
- 2. Неправильно выбрано место установки датчика (например, датчик расположен слишком далеко от контролируемого объекта)
- 3. Запыленность, засоренность линзы оптической системы датчика
- 4. Низкий коэффициент излучения измеряемой площади.
- 5. Неправильно выбрана схема подключения датчика к каналу ввода
- 6. Разные градуировки: у датчика и регистрирующего прибора (например, неправильные коэффициенты масштабирования)

Перед тем, как приступать к монтажу пирометра, необходимо проверить:

- правильность выбора типа датчика
- соответствие условий эксплуатации
- соответствие мотажных конструкций
- правильность выбора места монтажа
- возможность подключения к регистрирующему прибору (каналу ввода)
- соответствие градуировки регистрирующего прибора (возможность масштабирования)
- отсутствие повреждений (как датчика, так и места монтажа)

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Преимущества

- + Измерение высоких температур (безконтактным методом)
- + Оперативное, дистанционное измерение
- + Контроль объектов, с которыми запрещен контакт (например, из-за высокой температуры, опасного электрического напряжения)
- + Контроль движущихся объектов
- + Измерение температуры миниатюрного объекта или его тонкого слоя на поверхности
- + Измерение температуры объекта, находящегося в труднодоступном месте
- + Исследование объектов с низкой теплоемкостью

Недостатки

- Сложность конструкции, сложность ремонта
- Необходимо учитывать коэффициент излучения объекта
- На результат измерения влияет степень чистоты объектива оптической системы