

Author: Francis Osei Supervisor: Prof. Dr. Christophe Ley

Faculty of Science and Technology Department of Mathematics oseifrancis633@gmail.com

Francis Osei Graph-Based Modeling July 2023

Table of Contents

- Motivation
- Ranking Football Teams
- Rating of Football Matches
- Model Comparison
- Conclusion

Francis Osei Graph-Based Modeling

Motivation

- Machine learning and statistical models have distinct methodologies.
- They often encounter similar challenges When applied to football prediction

Figure 1: Challenges in ML and statistical models

Francis Osei Graph-Based Modeling July 2023 3/23

nking Football Teams Rating of Football Matches Model Compa

Motivation

Motivation

 Hybrid model demonstrated superior performance in forecasting football match outcomes.

Figure 2: Examples of hybrid models

4/23

Francis Osei Graph-Based Modeling July 2023

- To address the potential problems involved in football predictions, a network-based method using
 - 1 Eigenvector centrality.
 - 2 Random walk.
- The model consider FIFA club ranking score of each football club as a key factor

Francis Osei Graph-Based Modeling July 2023 5/23

Preliminary

Figure 3: Graphical Representation of the Interconnections Among Group F Teams in the 2022 World Cup

Francis Osei Graph-Based Modeling July 2023 6/23

July 2023

An Overview of Graphs in Football

- A graph G = (V, E) consists of two sets of information:
 - **1** Set of nodes $V = \{v_1, v_2, \dots v_l\}$
 - 2 Set of vertices $E = \{e_1, e_2, \cdots e_n\}$
- In this framework, the nodes are partitioned into two disjoint sets
 - 1 $\Gamma = \{x_1, x_2, \dots, x_{l_1}\}$ (football clubs)
 - 2 $\Omega = \{y_1, y_2, \dots, y_{l_2}\}$ (national teams)

such that $\Gamma \cup \Omega = V$ and $I_1 + I_2 = I$.

• Edges represent relationship between national teams and football clubs

UNIVERSITÉ D

7/23

Node Degree

Mathematically, the degree of a node v_i is computed as

$$d(v_i) = |\{v_j : (v_i, v_j) \text{ is an edge}\}, i, j = 1, 2, 3 \cdots, I|$$
 (1)

- Node degree analyzes diversity's impact on football team performance in tournaments.
- Once the node degree $d(v_i)$ surpasses a specific threshold, it starts to negatively impact the team's performance (Ignacio (2022)).

Francis Osei **July 2023**

Node Degree

Teams	Year	Position	Node degree
Italy	2006	winner	10
France	2006	runner-up	16
Spain	2010	winner	9
Netherlands	2010	runner-up	17
Germany	2014	winner	11
Argentine	2014	runner-up	15
France	2018	winner	15
Croatia	2018	runner-up	21
Argentine	2022	winner	18
France	2022	runner-up	16

Table 1: Comparison of Winners and Runners-up in the 2006 to 2022 World Cups

Francis Osei Graph-Based Modeling July 2023 9/23

Drawbacks of Node Degree for Teams Ranking

- The node degree may not be enough to fully describe the connection of the network in a weighted network.
 - The strength of the connections is often represented by weights.
 - We only consider the amount of connections a national team has with football clubs

Francis Osei **July 2023** 10/23

Eigenvector Centrality

- Eigenvector centrality measures node importance based on connections to other significant nodes.
- In the context of football prediction, eigenvector centrality can be used to determine the most influential teams in a tournament.
- Mathematically, eigenvector centrality assigns a score x_i to each team i ∈ V denoted as:

$$x_i = \beta \sum_{j \in V: (i,j) \in E} x_j = \beta \sum_{j \in V} A_{ji} x_j$$
 (2)

where A_{ij} represent the adjacency matrix of a weighted graph, where the entries correspond to the edge weights.

Francis Osei Graph-Based Modeling July 2023 11/23

• Let us consider a tournament comprising three teams, where each team is represented by a total of six players.

Clubs	Score	
Α	300	
Α	300	
В	500	
В	500	
C	700	
G	350	

(a'	Nation	Team	X
١	a,	Mation	I Calli	\sim

Clubs	Score
С	700
C	700
В	500
В	500
В	500
Н	670

(b) National Team Y

Clubs	Score
Е	310
E	310
F	270
G	350
Α	300
D	250

(c) National Team Z

Francis Osei Graph-Based Modeling July 2023 12/23

Eigenvector Centrality

Figure 4: Figure

Teams	Eigenvector centrality score
X	0.50
Y	0.50
Z	0.40

13/23

Francis Osei

Power Method

- To compute the eigenvector centrality vector x_i , we can utilize an iterative process known as the power method.
 - **1** Choose an initial vector $\mathbf{x}^{(0)}$ of length n.
 - Perform the following steps for a specified number of iterations or until convergence is reached:
 - 2a. Update the vector $\mathbf{x}^{(t)}$ at iteration t using the equation $\mathbf{x}^{(t)} = A\mathbf{x}^{(t-1)}$, where A is the adjacency matrix.
 - 2b. Normalize the vector $\mathbf{x}^{(t)}$ by dividing it by its largest element to prevent numerical instability and ensure that the magnitudes of the vector remain in a reasonable range.
 - Solution Check for convergence by comparing the difference between $\mathbf{x}^{(t)}$ and $\mathbf{x}^{(t-1)}$.

- A random walk on a graph is a process that begins at some vertex, and at each time step moves to another vertex.
- We can calculate the likelihood of different teams winning a match by using random walk approach.
- Random walks on graphs can be considered as specific instances of Markov chains.

Francis Osei Graph-Based Modeling July 2023 15/23

- Let's w(e) be a weight function that assigns a weight to each edge e ∈ E,
- To calculate the likelihood of a match outcome Team X and any other national team ξ,
 - We can perform a random walk starting from team X
 - 2 Compute the probability of reaching team ξ within a certain number of steps.

16/23

- The initial distribution, $P_0(X) = 1$,
- $P_0(\xi) = 0$ for all other nodes ξ
- The transition probabilities from team X to its neighboring nodes v is given as

$$p(X, v) = \frac{w(e)}{\sum_{e \in V_X} w(e)}$$
 (3)

Francis Osei Graph-Based Modeling July 2023 17/23

- Let P(X) represent the probability of team X winning a match
- The probability can be estimated by solving the following system of equation:

$$P(X) = C_X \cdot p(X, u_0) \cdot \prod_{k=1}^n p(u_{k-1}, u_k) \cdot p(u_n, \xi)$$
(4)

Here, C_X represents the centrality score of team X.

UNIVERSITÉ DI

Teams	Eigenvector centrality score
X	0.50
Y	0.50
Z	0.40

Teams	Х	Υ	Z
X	-	0.48	0.62
Υ	0.52	-	0.64
Z	0.38	0.36	-

Table 3: Estimating the probabilities of each team's victory in matches against one another

UNIVERSITÉ DU LUXEMBOURG

Francis Osei Graph-Based Modeling July 2023 19/23

Analysis of the Proposed Model against Other Models

• FIFA world cup 2022 network

Francis Osei Graph-Based Modeling July 2023 20/23

FIFA	Bookmakers	Opta	Hybrid-model	Graph-Based	Actual Ranking
S BRA	🗪 BRA	🔯 BRA	S BRA	【 【 FRA	M ARG
BEL	I FRA	M ARG	M ARG	🗪 BRA	■ ■ FRA
M ARG	M ARG	■ FRA	GER	CRO	CRO
III FRA	→ ENG	ESP	■ NED	M ARG	MOR MOR

Table 4: Top 4 Teams Ranking for FIFA World CUP 2022

Francis Osei Graph-Based Modeling July 2023 21/23

A Comparative Analysis of the Proposed Model against Other Models

- Comparing the Network-Based Method to
 - Mathematical Modelling Approach by Oxford University's modeller Joshua Bull
 - Random forest

Stages	Joshua Bull	Graph-Based Method	Machine Learning
Round 16	0.56	0.75	0.75
Quater final	0.75	0.75	0.75
Semi final	0.50	0.75	0.50
Final	0.00	0.50	0.00

Table 5: Percentage of Correctly Predicted Teams for Each Stage of the Tournament

Francis Osei **July 2023** 22/23

Conclusion

- We introduced a novel approach based on graph theory to rank and predict the outcomes of international football competitions.
- We applied the model to the FIFA World Cup 2022.
 - 1 A total of 27 out of the 48 group stage matches were accurately predicted.
 - 2 Out of the 16 matches in knockout stage, 11 were correctly predicted.
 - 3 The model achieved a probability of 63.54% for correctly predicting match outcomes.

Francis Osei Graph-Based Modeling July 2023 23/23

Thank you

References I

- 1 Dixon, M. J., & Coles, S. G. (1997). *Modelling association football scores and inefficiencies in the football betting market*. Journal of the Royal Statistical Society
- 2 Borgatti, S. P. (2006). *Identifying sets of key players in a social network*. Computational & Mathematical Organization Theory, 12, 21-34.
- Beal, R., Middleton, S. E., Norman, T. J., & Ramchurn, S. D. (2021). Combining machine learning and human experts to predict match outcomes in football: A baseline model. In Proceedings of the AAAI Conference on Artificial Intelligence.
- 4 Groll, A., Ley, C., Schauberger, G., & Van Eetvelde, H. (2019). A hybrid random forest to predict soccer matches in international tournaments. Journal of Quantitative Analysis in Sports, 15(4), 271-287.

Francis Osei Graph-Based Modeling July 2023 23/23

References II

- Gonstantinou, A.C., (2019) Dolores: a model that predicts football match outcomes from all over the world. Mach Learn 108, 49–75. https://doi.org/10.1007/s10994-018-5703-7
- 6 https://www.zeileis.org/news/fifa2022/, Access date (July 09, 2023).
- https://www.linkedin.com/pulse/predicting-2022-fifa-world-cup-using-machine-learning-ameya-diwan/, Access date (July 09, 2023)
- 8 https://online-bookmakers.com/world-cup/, Access date (July 09, 2023)
- o https://www.maths.ox.ac.uk/node/61756, Access date (July 05, 2023)

