LECTURE 3 (MAY 20)

Comparison Theorem, Triangle Inequalities, Bolzao Weirstrass Thoerem (TEXTBOOK pg 2 -)

Author

Tom Jeong

Contents

1	Comparison Theorem	3
	1.1 Bolzeno - weirstrass Theorem	4
2	Proof of Bolzao -Weirstrass Theorem	5

1 Comparison Theorem

Theorem 1.1 (Comparison Theorem). if (a_n) , (b_n) are sequences of real numbers such that $a_n \leq b_n$ for all n, then

$$\lim_{n\to\infty}a_n\leq\lim_{n\to\infty}b_n$$

example: let $k \in \mathbb{N}$, which we will define (a_n) , s.t $a_{n+k} - a_n = c \in \mathbb{R}$. Prove that $\lim_{n \to \infty} \frac{a_n}{n} = \frac{c}{k}$. (hint examin case k = 1 first.)

Let $\epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall n \geq N \implies |a_{n+1} - a_n - c| < \epsilon.$ we cwant to examin $\frac{a_n}{n}$ c

$$\left|\frac{a_{n+1}}{n} - \frac{a_n}{n} - \frac{c}{n}\right| < \frac{\epsilon}{n}$$

want to exmine divergent sequences: we say $(a+n)_{n\geq 1}$ diverges to ∞ written as $a_n\to\infty$ if $forall M\in\mathbb{R}, \exists N\in\mathbb{N} \text{ s.t } a_n>M$ for all $n\geq N$.

Proof 1.2.

$$an + 1 - an = c$$

$$\Rightarrow a_{n+2} - a_{n+1} = c$$

$$a_{n+2} - c - a_n = c$$

$$a_{n+2} = a_n + 2c$$

$$\vdots$$

$$a_{n+k} = a_n + kc$$

for $k \ge 1$, and $forall n \ge N$, we examin $|a_{N+k} - a_N - kc| < k\epsilon$

$$= |(a_{N+k} - a_{N+a-1}) + (a_{N+k-1} - a_{N+k-2}) + \dots + (a_{N+1} - a_N) - kc| < k\epsilon$$

by the giga triangle inequality this is less than equal to

$$\leq |a_{N+k} - a_{N+k-1} - c| + |a_{N+k-1} - a_{N+k-2} - c| + \dots + |a_{N+1} - a_N - c| < k\epsilon$$

 $\begin{array}{l} \forall k \geq 1 \longrightarrow |\frac{a_{N+k}}{N+k} - \frac{a_N}{N} - c\frac{k}{N+k}| < k\frac{\epsilon}{N+k} \text{ and we take limit as } k \rightarrow \infty \\ \forall \delta > 0, \exists M \text{ s.t. } for all k \geq M \end{array}$

$$\begin{split} & |\frac{a_N}{N+k}| < \delta| \\ & |c\frac{k}{N+k} - c| < \delta \\ & |k\frac{\epsilon}{N+k} - \epsilon| < \delta \end{split}$$

note that $|a| - |b| \le |a - b|$

$$\leq \left| (b_{N+k} - c) - \frac{a_N}{N+k} - \left(\frac{ck}{N+k} - c \right) \right| < \frac{\epsilon k}{N+k} \cdots (1*)$$

$$\left| |b_{N+k} - c| - \left| \frac{a_n}{N+k} - \left(\frac{ck}{N+k} - c \right) \right| < \frac{\epsilon k}{N+k}$$

$$(1*) \to |b_{N+k} - c| < \frac{\epsilon k}{N+k} + \frac{a_N}{N+k} + \frac{ck}{N+k} - c \le \epsilon + 3\delta$$

1.1 Bolzeno - weirstrass Theorem

Theorem 1.3 (Bolzeno - Weirstrass Theorem). if $(a_n)_{n\geq 1}$ is a sequence in \mathbb{R} s.t. (a_n) is bounded, then \exists a convergent subsequence.

Definition 1.1 (Subsequence). $(b_n)_{n\geq 1}$ is a subsequence of $(a_n)_{n\geq 1}$ if \exists a strictly increasing sequence of natural numbers $(n_k)_{k\geq 1}$ s.t. $b_k = a_{n_k}$ for all $k \geq 1$.

Definition 1.2. a sequence (a_n) is monotone (strictly) increasing if $a_{n+1} \ge a_n$ for all $n \ge 1$ (strictly increasing if $a_{n+1} > a_n$ for all $n \ge 1$).

it is useful for the monotone convergence theorem.

Theorem 1.4 (Monotone Convergence Theorem). if $(a_n)_{n\geq 1}$ is a monotone increasing sequence in \mathbb{R} that is **bounded above**, then (a_n) has a finite limit. (convergence)

Consider set $E = a_1, a_2, ...,$ and E is bounded above, then sup(E) exists. We will define $a = \sup(E)$

Let $\epsilon > 0$ and a is the supremum implies that $\exists a_N \in E \text{ s.t. } a - \epsilon < a_N \le a$ in order to prove this we want to end up with the equation $-\epsilon < a - a_N < 0 < \epsilon$

$$a - \epsilon \le a_n \le a$$
, $\forall n \ge N$ (as a_n is increasing)
 $\Rightarrow |a_n - a| \le \epsilon$, $\forall n \ge N$ (as a_n is increasing)

2 Proof of Bolzao -Weirstrass Theorem

We will prove the theorem until we need a lemma and we will then introduce couple of lemmas. WE can have some simple observations. First, observe that if $E = A \cup B$ (This means this is a disjoint union). And (a_n) has values in E which implies that $a_n \in E | \forall n$

$$\exists M \in \mathbb{R} \text{ s.t. } |a_n| \leq M, \ \forall n \geq 1$$

which implies that a_n must be in A or initinite numbers in B: if not, only fininte number of terms in A and B which is a contradiction.

$$I_o = [-M, M]$$

observe that $I_o = [-M, 0] \cup [0, M] \to$ there is infinite nuber of terms in one of these call that I_1 . Then $I_1 = [-M, 0]$ or [0, M].

Inductively obtain I_n : $I_{n+1} = I_n$ – finite number of terms, I_{n+1} is a closed interval.

$$M(I_n) = \frac{2M}{2^n}$$
 (M here means 'the measure of')

for each n, we can take an element of $\{a_1, \ldots\}$ which is in I_n which satisfies:

1.
$$a_{n_m} \in I_M$$

2.
$$n_m > n_{m-1}$$

Consider a subsequence $(a_{n_m})_{m\geq 1}$ s.t. $a_{n_m}\in I_m$ for all $m\geq 1$. Claim: $(a_{n_m})_{m\geq 1}$ is a Cauchy sequence (converges).

Definition 2.1 (Cauchy Sequence). $(a_n)_{n\geq 1}$ is a Cauchy sequence if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. $|a_n - a_m| < \epsilon$ for all $n, m \geq N$.

Here is an important lemma for the Bolzab - Weirstrass

Lemma 2.1 (Nested Interval Property). If (I_n) is a sequence of Intervals such that

- 1. $I_{n+1} \subset I_n$ for all $n \ge 1$
- 2. I_n is bdd
- 3. I_n if closed

$$\to \bigcap_{n\in\mathbb{N}} I_n \neq \emptyset$$

More over if $\lim_{n\to\infty} M(I_n) = \lim_{n\to\infty} (b_n - a_n) = 0$ then $\bigcap_{n\in\mathbb{N}} I_n = \{c\}$ where c is a single point.

$$\exists a \in \bigcap_{n \in \mathbb{N}} I_n$$
 consider $|a_{n_m} - a| \le \frac{2M}{2^m}$
$$a \in I_m, \text{ and } a_{n_m} \in I_m, \ \forall m \ge 1$$