

Campo de carga puntiforme

É a região do espaço ao redor de uma carga elétrica, na qual a carga faz sentir seu efeito de interação elétrica sobre outras cargas ai colocadas.

O sentido do campo elétrico depende do sinal da carga geradora:

- carga fonte positiva: sentido de afastamento da carga;
- carga fonte negativa: sentido de aproximação da carga.

Campo de carga puntiforme

Intensidade do campo (E)

Uma carga Q, a fonte, gera um campo (E) na sua vizinhança, cuja intensidade varia de acordo com a expressão:

Onde:

$$E = \frac{k \cdot |Q|}{d^2}$$

E - Módulo do vetor (newton/coulomb)

K - é a constante eletrostática $k = 9 \cdot 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2$

d – é a distancia em metros

Campo de carga puntiforme

Exemplo:

Calcule o modulo do vetor do campo elétrico criado por uma carga de 2 μ C, num ponto situado a 30 cm da carga.

$$E = \frac{k \cdot |Q|}{d^2}$$

$$E = 9 \cdot 10^{9} \cdot 2 \cdot 10^{-6}$$

$$(3. \ 10^{-1})^{2}$$

$$E = 2. \ 10^{-5} \ N/C$$

Relação entre campo e força elétrica:

A formula abaixo representa a força que uma carga q sofre quando é imersa em um campo de uma carga Q .

Onde:

$$\overrightarrow{F} = q \cdot \overrightarrow{E}$$

F -> é a força em Nilton

q -> é a carga em Columb

E -> é o campo elétrico em Nilton / Columb

Relação entre campo e força elétrica:

Cargas	Vetor campo criado por Q	Força de interação entre Q e q
+Q e +q	O vetor campo em P é divergente.	P E +Q +q F A força de interação tem o mesmo sentido do vetor campo.
+Q e —q	P → E +Q O vetor campo em P é divergente.	A força de interação tem sentido oposto ao do vetor campo.
—Q e +q	O vetor campo em P é convergente:	A força de interação tem o mesmo sentido do vetor campo.
-Q e −q	O vetor campo em P é convergente.	A força de interação tem sentido oposto ao do vetor campo.

Linhas de força:

Representam o comportamento do campo nas vizinhanças da carga fonte.

- Direção do vetor campo elétrico: tangente às linhas de força, em cada ponto
- Setas das linhas de força: indicam o sentido do campo; a intensidade tem a ver com a densidade das linhas de força no local.

V. Campo elétrico uniforme

Para produzi-lo, precisamos de duas placas paralelas, carregadas com sinais opostos e bem próximas, de modo que a distância entre elas seja muito menor que o comprimento das placas.

Se as placas forem grandes e bem próximas, as linhas de campo serão paralelas e igualmente espaçadas; teremos assim um campo elétrico uniforme.

Lei de Gauss

Karl Friedrich Gauss

Foi um menino prodígio em Matemática, e tornou-se um dos maiores matemáticos da História.

Na Física, o nome de Gauss aparece associado à Teoria do Potencial (Lei de Gauss), e ao estudo do magnetismo terrestre.

Equação da Lei de Gauss

A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que existe dentro do volume limitado por esta superfície.

Matematicamente temos:

$$\varepsilon_0 \Phi = q$$

onde:

 — fluxo do campo elétrico através de uma superfície fechada,

q – carga líquida envolvida por esta superfície,

 $\varepsilon_0 = 8.85 \times 10^{-12} \, C^2/Nm^2$ – constante de permissividade.

Aplicação da Lei de Gauss

Uma carga puntiforme de 1,84 µC está no centro de uma superfície gaussiana cúbica com 55 cm de aresta.

Calcule PE através da superfície.

$$\varepsilon_0 \Phi = q$$

$$e_0 = 8.85 \times 10^{-12} \, \text{N}^{-1} \, \text{m}^{-2} \, \text{C}^{-2}$$

Aplicação da Lei de Gauss

Uma carga puntiforme de 1,84µC está no centro de uma superfície gaussiana cúbica com 55 cm de aresta.

Solução

EO . ΦΕ = 9

Logo:

$$\Phi E = 9/E0 = 1,84.10^{-6}/8,85.10^{-12}$$

E0 = 207909,60 Nm²/C

As dimensões da superfície gaussiana não interferem no resultado, uma vez que todo o fluxo do campo elétrico da carga q irá atravessá-la, sendo a superfície pequena o grande.

 $e_0 = 8,85 \times 10^{-12} \, \text{N}^{-1} \text{m}^{-2} \, \text{C}^{-2}$

Aplicação da Lei de Gauss

Uma carga puntiforme +q de 10µC está à uma distância d/2 diretamente acima do centro de uma superfície quadrada de lado d, conforme mostra a fig. abaixo. Calcule o fluxo elétrico através do quadrado.

(Sugestão: Raciocine como se o quadrado fosse a face de um cubo de aresta d.)

$$e_0 = 8,85 \times 10^{-12} \, N^{-1} m^{-2} C^{-2}$$

$$\varepsilon O \cdot \Phi E = q$$

Campo elétrico

Solução:

Veja o seguinte esquema:

Considerando-se a área do quadrado como sendo 1/6 da área do cubo, o fluxo através do quadrado (Φ_Q) será:

$$\Phi_{\mathcal{Q}} = \frac{\Phi_{\mathcal{E}}}{6}$$

$$\Phi_{\mathcal{Q}} = \frac{q}{6\varepsilon_0}$$

