Übungsaufgaben zur Vorlesung "Analysis I"

Blatt 12

Aufgabe 1. Berechnen Sie die Ableitung von f dort, wo sie existiert (bzw. in x_0), wenn:

a)
$$f(x) = \sqrt{2x^2 + \sqrt{x^2 + 1}}$$

b)
$$f(x) = \frac{\sin(\ln x)}{x} + \frac{\tan x}{e^x - e}$$

c)
$$xf(x) + \ln f(x) = 1, x_0 = 0$$

$$d) f(x) = x^x$$

Hinweis: Benutzen Sie die Darstellung aus der Definition der allgemeinen Potenz.

Aufgabe 2. Sei $f: \mathbb{R} \setminus \{1, -1\} \to \mathbb{R}$ durch

$$f(x) = \frac{x^3}{x^2 - 1}$$

definiert. Bestimmen Sie f', finden Sie die lokalen Extrema von f und die Intervalle, auf denen f wächst oder fällt. Wie verhält sich die Funktion an den Randpunkten des Definitionsbereichs? Skizzieren Sie den Graphen von f.

Aufgabe 3. Seien $f, g: [a, b] \to \mathbb{R}$ stetig auf [a, b] und differenzierbar auf (a, b). Beweisen oder widerlegen Sie:

- a) ? Ist f monoton auf (a, b), so ist f' monoton auf (a, b). ?
- b) ? Ist f(a) = g(a) und $0 \le f'(x) < g'(x)$ auf (a,b), so gilt f(x) < g(x) für alle $x \in (a,b]$. ?

Aufgabe 4.

- a) Beweisen Sie die Ungleichung $\frac{x}{1+x} < \ln(1+x) < x$ für x > 0.
- b) Berechnen Sie den Grenzwert $\lim_{x\to 0} \frac{\ln(x+1)}{x}$.

Abgabe: Bis 24. Januar vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1				2	3		4		
	a	b	c	d		a	b	a	b	
Punkte	2	2	2	2	6	2	2	2	1	21

Präsenzaufgaben und Anregungen

1. Berechnen Sie die Ableitung von f, wo es möglich ist, und geben Sie ihren Definitionsbereich an, wenn:

a)
$$f(x) = x^3 \sqrt[3]{x^2} - x^7 \sqrt{x}$$

b)
$$f(x) = \sqrt{e^{\sin\sqrt{x}}}$$

c)
$$f(x) = \frac{\sqrt{x}\sin x}{\ln(x-1)}$$

d)
$$f(x) = \ln(x + \sqrt{x^2 + 1})$$

- 2. Finden Sie die Ableitung der Funktion y = y(x), die implizit durch die Gleichung $y^5 + y^3 + y + x = 0$ definiert ist und berechnen Sie y'(0).
- 3. Sei f durch

a)
$$f(x) = \frac{x-2}{\sqrt{x^2+1}}$$

b)
$$f(x) = \frac{e^{-x}}{1-x}$$

definiert. Welchen Definitionsbereich hat f? Bestimmen Sie f', finden Sie die lokalen Extrema von f und die Intervalle, auf denen f wächst oder fällt. Wie verhält sich die Funktion an den Randpunkten des Definitionsbereichs. Skizzieren Sie den Graphen von f.

- 4. Zeigen Sie: Zwischen zwei reellen Nullstellen eines Polynoms mit reellen Koeffizienten gibt es eine reelle Nullstelle seiner Ableitung.
- 5. Beweisen Sie die Ungleichung $py^{p-1}(x-y) \le x^p y^p \le px^{p-1}(x-y)$ für 0 < y < x und p > 1.
- 6. Beweisen oder widerlegen Sie:
 - a) ? Sind $f, g: (a, b) \to \mathbb{R}$ differenzierbar und gilt f < g auf (a, b), so ist $f' \le g'$ auf (a, b). ?
 - b) ? Es gibt eine differenzierbare Funktion $f:(0,+\infty)\to\mathbb{R}$, sodass $\lim_{x\to+\infty}f'(x)=0$ gilt und $\lim_{x\to+\infty}f(x)$ nicht existiert. ?
 - c) ? Sei f eine differenzierbare Funktion. Ist f gerade, so ist f' ungerade. ?

2

7. Berechnen Sie mit Hilfe des Mittelwertsatzes $\lim_{n\to\infty} n(1-\cos\frac{1}{n})$.