CS/ECE/ME 532

Homework 6: more SVD

due: Friday October 28, 2016

- **1. Normal equations.** Using the SVD, show that for any $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the normal equations $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ always have at least one solution. What is this solution?
- **2.** Right inverses. A right inverse of $A \in \mathbb{R}^{m \times n}$ is a matrix $B \in \mathbb{R}^{n \times m}$ such that AB = I.
 - a) Prove that if the rows of A are linearly independent, A has a right inverse.
 - b) Prove that if A has a right inverse, the rows of A are linearly independent.
 - c) Suppose A has linearly independent rows. Find a parameterization of all right inverses of A.
- **3. Recovering a blurred signal.** Many sensing and imaging systems produce signals that may be slightly distorted or blurred (e.g., an out-of-focus camera). In such situations, algorithms are needed to deblur the data to obtain a more accurate estimate of the true signal. Suppose our true signal is a vector $x \in \mathbb{R}^n$, and the blurring produces a new signal $b \in \mathbb{R}^n$ according to the model:

$$b_i = \frac{1}{k} (x_i + x_{i-1} + \dots + x_{i-k+1}) + w_i$$
 for $i = 1, \dots, n$

In other words, each b_i is the average of the past k values of x_i , plus some extra noise w_i . Note: in the above formula, treat x_j as zero when j < 1. The goal is to estimate x using b and A.

- a) We can write the above equations in the more compact form: b = Ax + w. Write code that generates the $A \in \mathbb{R}^{n \times n}$ matrix as a function of n and k.
- b) Suppose the true x is given in the file xsignal.csv. Generate b by using k = 30. To generate w, make each w_i normally distributed with standard deviation σ . For example, you can do this in matlab via: w=sigma*randn(n,1). Plot x and b using $\sigma = 0.01$ and $\sigma = 0.1$.
- c) Reconstruct x in the three following ways, and for each one plot the true x and its reconstruction.
 - (i) Ordinary least squares
 - (ii) Truncated SVD; only keep the largest m singular values of A and try different values of m.
 - (iii) Regularized (Tikhonov) least squares; try different values of the parameter λ .
- d) Experiment with different averaging functions (i.e., different values of k in the code) and with different noise levels (σ in the code). How do the blurring and noise level affect the value of the regularization parameters that produce the best estimates?