Reinforcement Learning of Theorem Proving

a paper by Cezary Kaliszyk, Josef Urban, Henryk Michalewski and Miroslav Olšák

presented by Dobrik Georgiev

Overview

- How tableau provers work
- 2 Reinforcement Learning and Application to TP
 - Basics
 - Application to TP
 - Results
- Summary

- Reinforcement Learning and Application to TP
 - Basics
 - Application to TP
 - Results

Summary

Clauses:

- $c_1: P(X)$
- $c_2 : R(X,Y) \vee \neg P(X) \vee Q(Y)$
- $c_3 : S(X) \vee \neg Q(b)$
- c_4 : $\neg S(X) \lor \neg Q(X)$
- c_5 : $\neg Q(X) \lor \neg R(a, X)$
- c_6 : $\neg R(a, X) \lor Q(X)$

Clauses:

$$c_1: P(X)$$

$$c_2 : R(X,Y) \vee \neg P(X) \vee Q(Y)$$

$$c_3 : S(X) \vee \neg Q(b)$$

$$c_4: \neg S(X) \vee \neg Q(X)$$

$$c_5$$
: $\neg Q(X) \lor \neg R(a,X)$

$$c_6$$
: $\neg R(a, X) \lor Q(X)$

Figure: A closed tableau

Figure: The search tree of a (non-connection) tableau based TP

- Reinforcement Learning and Application to TP
 - Basics
 - Application to TP
 - Results

Summary

RL Basics

- policy learning
- value learning

Figure: An agent has to reach a reward without burning

Application to TP

RL to TP mapping:

- ullet agent \leftrightarrow TP
- environment ↔ search tree
- ullet actions \leftrightarrow extending search tree
- ullet reward \leftrightarrow finding a closed tableau

Application to TP – the UCT formula

Tree search with RL – use the UCT formula! For each node *i*:

$$f_i = \frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N_i}{n_i}}$$

On every step, take the node with highest f_i .

 w_i : total reward

 n_i : number node of visits

c: hyperparameter

 p_i : prior probability

 N_i : total parent visits

Application to TP – the UCT formula

Tree search with RL – use the UCT formula! For each node i:

$$f_i = \frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N_i}{n_i}}$$

On every step, take the node with highest f_i .

w_i: total reward

 n_i : number node of visits

c: hyperparameter

p_i: prior probability

 N_i : total parent visits

Application to TP – the UCT formula

Tree search with RL – use the UCT formula! For each node *i*:

$$f_i = \frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N_i}{n_i}}$$

On every step, take the node with highest f_i .

 w_i : total reward

 n_i : number node of visits

c: hyperparameter

p_i: prior probability

 N_i : total parent visits

Application to TP – Extracting features (Literals)

- For each Literal L, e.g. $f(X, Y) = g(sk_1, sk_2(X))$
- Build it's feature tree
- Count term walks of length 3
- E.g. for L we get $\{(\oplus, =, f) : 1, (=, f, \circledast) : 2, ...\}$

Figure: Feature Tree for *L*

³Example and picture from Jakubuv and Urban (2017)

Application to TP – Extracting features

• Features for a *clause* – union of features for literals

Application to TP – Extracting features

- Features for a *clause* union of features for literals
- Feature vector for a state:
 - Features of clauses and goals
 - ullet additional metadata # of open goals, depth of node, etc.

Application to TP – Extracting features

- Features for a *clause* union of features for literals
- Feature vector for a state:
 - Features of clauses and goals
 - additional metadata # of open goals, depth of node, etc.
- Features for an action contains:
 - features of the clause used
 - features of literal used

Application to TP – Learning the parameters

• Start with unrestricted Monte-Carlo TP runs:

$$f_i = \frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N_i}{n_i}}$$

Application to TP – Learning the parameters

Start with unrestricted Monte-Carlo TP runs:

$$f_i = \frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N_i}{n_i}}$$

- Learn action a relevance given f_s and f_a
 - r_a = how often a occurs at i
 - $p_i = softmax(r_a, R)$

Application to TP – Learning the parameters

• Start with unrestricted Monte-Carlo TP runs:

$$f_i = \frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N_i}{n_i}}$$

- Learn action a relevance given f_s and f_a
 - $r_a = \text{how often } a \text{ occurs at } i$
 - $p_i = softmax(r_a, R)$
- Associate node state feature with value
 - 0 if node not a proof
 - 0.99 proof depth otherwise
- Apply regression on the logits to learn prior probability and value

Results

Results from 2003 problems of the Mizar Mathematical Library (Grabowski et al., 2010) with limit of 2×10^6 inferences.

Iteration	1	5	10	15	20
Proved	1037	1182	1210	1223	1235

Table: Proved problems per iterations of learning

Methodology	Proved	IPS
Heuristics	876	64K
RL	1235	16K

Table: Using RL gives 40% more proves but slows down the inference speed

- Reinforcement Learning and Application to TP
 - Basics
 - Application to TP
 - Results

Summary

Summary

- Reinforcement Learning can be applied to tableau based provers
- Many new problems solved
- RL (and ML methods in general) slow down provers

Questions?

Bibliography

- Grabowski, A., Kornilowicz, A., and Naumowicz, A. (2010). Mizar in a nutshell. *Journal of Formalized Reasoning*, 3(2):153–245.
- Jakubuv, J. and Urban, J. (2017). ENIGMA: efficient learning-based inference guiding machine. In *Intelligent Computer Mathematics 10th International Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings*, pages 292–302.