Loan Eligibility Prediction for Dream Housing Finance company

Dream Housing Finance company deals in all kinds of home loans. They have presence across all urban, semi urban and rural areas. Customer first applies for home loan and after that company validates the customer eligibility for loan.

Company wants to automate the loan eligibility process (real time) based on customer detail provided while filling online application form. These details are Gender, Marital Status, Education, Number of Dependents, Income, Loan Amount, Credit History and others. To automate this process, they have provided a dataset to identify the customers segments that are eligible for loan amount so that they can specifically target these customers.

▼ 1. Load the libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score
```

▼ 2. Load the data

```
train = pd.read_csv('../input/loan-predction-logistic-regression/train.csv')
test = pd.read_csv('../input/loan-predction-logistic-regression/test.csv')
sample = pd.read_csv('../input/loan-predction-logistic-regression/sample_submission.csv')
```

▼ 3. Exploratory Data Analysis (EDA)

train.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4								•

train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
              Non-Null Count Dtype
# Column
                     -----
0 Loan_ID
                   614 non-null
                                    object
    Gender
                    601 non-null
                                    object
                   611 non-null
2 Married
                                    object
3 Dependents
                   599 non-null
                                    object
                     614 non-null
    Education
                                    object
   Self_Employed
                     582 non-null
                                    object
6 ApplicantIncome 614 non-null
                                    int64
    CoapplicantIncome 614 non-null
                                    float64
                     592 non-null
8 LoanAmount
                                    float64
    Loan_Amount_Term 600 non-null
                                    float64
10 Credit_History
                     564 non-null
                                    float64
                     614 non-null
11 Property_Area
                                    object
12 Loan Status
                     614 non-null
                                    object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

	count	mean	std	min	25%	50%	75%	max
ApplicantIncome	614.0	5403.459283	6109.041673	150.0	2877.5	3812.5	5795.00	81000.0
CoapplicantIncome	614.0	1621.245798	2926.248369	0.0	0.0	1188.5	2297.25	41667.0
LoanAmount	592.0	146.412162	85.587325	9.0	100.0	128.0	168.00	700.0
Loan_Amount_Term	600.0	342.000000	65.120410	12.0	360.0	360.0	360.00	480.0
Credit History	564.0	0.842199	0.364878	0.0	1.0	1.0	1.00	1.0

```
train.isna().sum()
```

```
0
Loan_ID
Gender
                    13
Married
                     3
Dependents
                    15
.
Education
                     0
Self_Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                    0
LoanAmount
                    22
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
```

 ${\tt train.shape} \ , \ {\tt test.shape}$

((614, 13), (367, 12))

train_original=train.copy()
test_original=test.copy()

train['Loan_Status'].value_counts(dropna=False, normalize=True)

Y 0.687296 N 0.312704

Name: Loan_Status, dtype: float64

 $\verb|train['Gender']|.value_counts(dropna=False, normalize=True)|$

Male 0.796417 Female 0.182410 NaN 0.021173

Name: Gender, dtype: float64

train.hist(edgecolor='black',figsize=(10,10))

train['Gender'].value_counts(normalize=True).plot.bar()
plt.show()

train['Dependents'].value_counts(normalize=True).plot.bar(title='Dependents')
plt.show()

train['Married'].value_counts(normalize=True).plot.bar(title='Married')
plt.show()

train['Education'].value_counts(normalize=True).plot.bar(title='Education')
plt.show()

train['Self_Employed'].value_counts(normalize=True).plot.bar(title='Self_Employed')
plt.show()

 $\label{trainsigma} train['Property_Area'].value_counts(normalize=True).plot.bar(title='Property_Area') \\ plt.show()$

Let's see the boxplots for all the numeric features

train.boxplot(figsize=(10,10))

<AxesSubplot:>

Let's plot the effect of different features on the output

 $\label{lem:constab} $$\operatorname{Gender'}_1, \operatorname{Train}' \to \operatorname{Status'}_1$$ Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,figsize=(4,4)) plt.show()$

Married=pd.crosstab(train['Married'],train['Loan_Status'])
Married.div(Married.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,figsize=(4,4))
plt.show()

 $\label{lem:pependents} $$ \operatorname{Dependents:pd.crosstab(train['Dependents'], train['Loan_Status'])}$$ $$ \operatorname{Dependents.div(Dependents.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(4,4)) $$ plt.show() $$$


```
Loan_Status
```

Education=pd.crosstab(train['Education'],train['Loan_Status'])
Education.div(Education.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,figsize=(4,4))
plt.show()

Self_Employed=pd.crosstab(train['Self_Employed'],train['Loan_Status'])
Self_Employed.div(Self_Employed.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,figsize=(4,4))
plt.show()

Credit_History=pd.crosstab(train['Credit_History'],train['Loan_Status'])
Property_Area=pd.crosstab(train['Property_Area'],train['Loan_Status'])
Credit_History.div(Credit_History.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,figsize=(4,4))
plt.show()
Property_Area.div(Property_Area.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True)
plt.show()

4. Data Preprocessing

Let's fill the missing values in the training set.

We are using the most frequent value for a particular feature to fill as a replacement for the missing value

train.isnull().sum()

Loan ID 0 Gender 13 Married 3 Dependents 15 Education a Self_Employed 32 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 0 Property_Area Loan_Status 0 dtype: int64

```
train["Gender"].fillna(train["Gender"].mode()[0],inplace=True)
train["Married"].fillna(train["Married"].mode()[0],inplace=True)
train["Dependents"].fillna(train["Dependents"].mode()[0],inplace=True)
train["Education"].fillna(train["Education"].mode()[0],inplace=True)
train["Self_Employed"].fillna(train["Self_Employed"].mode()[0],inplace=True)
train["LoanAmount"].fillna(train["LoanAmount"].median(),inplace=True)
train["Loan_Amount_Term"].fillna(train["Loan_Amount_Term"].mode()[0],inplace=True)
train["Credit_History"].fillna(train["Credit_History"].mode()[0],inplace=True)
train["Property_Area"].fillna(train["Property_Area"].mode()[0],inplace=True)
```

train.isnull().sum()

```
Loan_ID
                    0
Gender
                    0
Married
                    0
Dependents
                    0
Education
                    0
Self_Employed
ApplicantIncome
                    0
CoapplicantIncome
LoanAmount
Loan_Amount_Term
Credit_History
                    0
Property_Area
                    0
Loan_Status
dtype: int64
```

train.head()

data_One.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Cre
0	LP001002	Male	No	0	Graduate	No	5849	0.0	128.0	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
∢											•

Let's perform one hot encoding for non-numeric features

```
data_One = pd.get_dummies(train[['Gender','Married','Education','Self_Employed','Property_Area']])
data_One.shape
    (614, 11)
```

	Gender_Female	Gender_Male	Married_No	Married_Yes	Education_Graduate	Education_Not Graduate	Self_Employed_No	Self_Employed_Yes	Property _.
0	0	1	1	0	1	0	1	0	
1	0	1	0	1	1	0	1	0	
2	0	1	0	1	1	0	0	1	
3	0	1	0	1	0	1	1	0	
4	0	1	1	0	1	0	1	0	

```
train = train.drop(['Gender','Married','Education','Self_Employed','Property_Area'], axis =1)
pd.concat([train,data_One], axis=1)
```

	Loan_ID	Dependents	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status	Gender_Female
0	LP001002	0	5849	0.0	128.0	360.0	1.0	Υ	0
1	LP001003	1	4583	1508.0	128.0	360.0	1.0	N	0
train = p	d.concat([t	rain,data_On	ne], axis=1)						
-		-							-
train.sha	pe								
(614	, 19)								
609	LP002978	0	2900	0.0	71.0	360.0	1.0	Υ	1
train.Loa	n_Status=tr	ain.Loan_Sta	ntus.map({"N":0,"\	(":1})					
٠	LI 002000	ı	0012	£∓0.∪	200.0	000.0	1.0		·
train.Loa	n_Status								
0	1								

1

Name: Loan_Status, Length: 614, dtype: int64

train.head()

612

613

Loan_ID	Dependents	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status	Gender_Female	G
0 LP001002	0	5849	0.0	128.0	360.0	1.0	1	0	
1 LP001003	1	4583	1508.0	128.0	360.0	1.0	0	0	
2 LP001005	0	3000	0.0	66.0	360.0	1.0	1	0	
3 LP001006	0	2583	2358.0	120.0	360.0	1.0	1	0	
4 LP001008	0	6000	0.0	141.0	360.0	1.0	1	0	

train.isna().sum()

Loan_ID Dependents ApplicantIncome 0 CoapplicantIncome 0 0 LoanAmount Loan_Amount_Term 0 Credit_History Loan_Status 0 Gender_Female 0 Gender_Male Married_No Married_Yes 0 0 Education_Graduate Education_Not Graduate 0 Self_Employed_No 0 Self_Employed_Yes 0 Property_Area_Rural 0 Property_Area_Semiurban 0 Property_Area_Urban 0 dtype: int64

▼ 5. Model Training (Logistic Regression)

train=train.drop('Loan_ID',axis=1)
test=test.drop('Loan_ID',axis=1)

```
X=train.drop("Loan_Status",1)
y=train.Loan_Status
```

/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWarning: In a future version of pandas all arguments of DataFrame. """Entry point for launching an IPython kernel.

←

X.head()

	Dependents	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Gender_Female	Gender_Male	Married_No
0	0	5849	0.0	128.0	360.0	1.0	0	1	1
1	1	4583	1508.0	128.0	360.0	1.0	0	1	0
2	0	3000	0.0	66.0	360.0	1.0	0	1	0
3	0	2583	2358.0	120.0	360.0	1.0	0	1	0
4	0	6000	0.0	141.0	360.0	1.0	0	1	1

X['Dependents'].value_counts()

0 360

1 102

2 101

3+ 51

Name: Dependents, dtype: int64

X.Dependents=X.Dependents.map({"3+":3,"0":0,"1":1,"2":2})

X['Dependents'].value_counts()

0 360

1 102

2 1013 51

Name: Dependents, dtype: int64

Split the dataset by (70% for train - 30% for test)

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=70)

from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(X_train,y_train)

LogisticRegression()

Evaluate the performance

pred_LR=model.predict(X_test)

from sklearn.metrics import classification_report
print(classification_report(y_test, pred_LR))

	precision	recall	f1-score	support
0	0.85	0.47	0.60	62
1	0.78	0.96	0.86	123
accuracy			0.79	185
macro avg	0.82	0.71	0.73	185
weighted avg	0.81	0.79	0.78	185

6. Conclusion

We can see that the accuracy of the data is almost 80%. This is an adequette result given that Logistic regression is a simple model for classification.

We can also notice that the f1 score for Loan-accept class is 0.86 which is a moderate one. However, the f1-score for Loan-reject class is poor and merely 0.60. One of the probable reason behind this is that this dataset is highly imbalanced where two third of the data belongs to the Loan-accept class. THat's why the model perfors better for that class where underperforming for Loan-reject class.

To improve the performance we can use more advanced models (Tree based classifiers) or any other models designed for for imbalance learning.