

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ЦЕНТР ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Кафедра «Электротехника»

Учебное пособие

Сборник примеров и задач по дисциплинам «Электротехника» и «Теоретические основы электротехники»

Автор

А.А.Лаврентьев, М.Р.Винокуров

Сборник примеров и задач по дисциплинам «Электротехника» и «Теоретические основы электротехники

Аннотация

В учебном пособии приведены примеры и разделам общей базовым ПО задачи теоретической электротехники. Пособие сформировано в форме удобной для проведения занятий практических И организации промежуточного контроля знаний студентов виде контрольных работ, сочетающих знание теоретического и практического материала.

Учебное пособие предназначено для студентов электротехнических и неэлектротехнических направлений подготовки.

Автор

А.А.Лаврентьев

Доктор физико-математических наук, профессор

М.Р. Винокуров

Кандидат технических наук, доцент

Оглавление

1. Эквивал	лентные	преобраз	ования эл	ектрическ и	х цепей	5
Задан	ие					5
ПРИМ	ІЕРЫ РАС	ЧЁТА				8
2. Методы	расчёта	а сложных	с электрич	еских цепе	й	14
Задан	ие					14
ПРИМ	ІЕРЫ РАС	СЧЁТА				18
3.Комплек	ссный	метод	расчёта	электри	ческих	цепей
синусоида	ільного ⁻	тока				26
Задан	ие					26
ПРИМ	IEP РАСЧЁ	ËTA				28
4. Резонан	існые яв	зления в э	лектриче	ских цепях .		33
ПРИМ	ІЕРЫ РАС	ЧЁТА				36
5. Электри	ческие	цепи со вз	ваимной и	ндуктивнос	тью	39
Задан	ие					39
ПРИМ	iep pacyi	ËTA				45
6. Трехфа	зные эло	ектрическ	ие цепи			49
Задан	ие					49
ПРИМ	ІЕРЫ РАС	СЧЁТА				52
7.Расчёт	электр	оических	цепей	при не	синусоид	альных
источника	х энергі	ии				57
Задан	ие					57
ПРИМ	iep pacyi	ËTA				62
8.Аналити	ческое	опреде	еление	первичных	с пара	іметров
четырехпо	олюсник	(ОВ				68
Задан	ие					68
ПРИМ	ІЕРЫ РАС	ЧЁТА				73

9. E	вторичные параметры четырехполюсников	80
	Задание	80
	ПРИМЕР РАСЧЁТА	85
10.	Переходные процессы в электрических цепях с о	дним
нак	опителем энергии	89
	Задание	89
	ПРИМЕРЫ РАСЧЁТА	93
11.	Переходные процессы в электрических цепях с д	вумя
нак	опителями энергии	103
	Задание	103
	ПРИМЕРЫ РАСЧЁТА	107
12.	Расчёт переходных процессов с помощью интег	ърала
Дюа	амеля	117
	Задание	117
	ПРИМЕРЫ РАСЧЁТА	121
13.	Нелинейные электрические цепи постоянного тока	128
	Задание	128
	ПРИМЕРЫ РАСЧЁТА	134
14.	Расчёт магнитных цепей постоянного тока	
	Задание	141
	ПРИМЕРЫ РАСЧЁТА	

1. Эквивалентные преобразования электрических цепей

Задание

- 1. Произвести расчёт всех токов схемы методом простых преобразований при подключении к узлам 1 и 2 постоянного источника ЭДС напряжением $U_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$
- 2.Проверить результат балансом мощностей.

Исходные данные:

U,	R_{1}	R_{2r}	R_{3r}	R ₄ ,	R_{5}	R_{6r}
В	Ом	Ом	Ом	Ом	Ом	Ом
100	10	20	30	40	50	60

Вариант контрольной работы соответствует номеру схемы

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Задание

Рассчитать все токи схемы методом простых преобразований при подключении к узлам 1 и 2 постоянного источника ЭДС напряжением $U_{\, \bullet \,}$

Исходные данные:

U,	R_{1} ,	R_{2r}	R_{3r}	R ₄ ,	R_{5}	R_{6r}
В	Ом	Ом	Ом	Ом	Ом	Ом
100	10	20	30	40	50	60

Решение

Резисторы \mathbf{R}_1 , \mathbf{R}_2 и \mathbf{R}_3 соединены последовательно, так как по ним протекает один и тот же ток. Эквивалентное сопротивление определится соотношением:

$$R_{123} = R_1 + R_2 + R_3 = 60 \text{ Om}$$

Схема после преобразования имеет вид:

Резисторы R_4 и R_5 соединены параллельно, так как к ним приложено одно и то же напряжение. Эквивалентное сопротивление определится соотношением:

$$R_{45} = \frac{R_4 \times R_5}{R_4 + R_5} = 22,22 \text{ Om}$$

Схема после преобразования имеет вид:

Резисторы R_{45} и R_{123} соединены параллельно, так как к ним приложено одно и то же напряжение. Эквивалентное сопротивление определится соотношением:

$$R_{\scriptscriptstyle \mathrm{3KB}} = rac{R_{\scriptscriptstyle 45} \; imes R_{\scriptscriptstyle 123}}{R_{\scriptscriptstyle 45} \; + R_{\scriptscriptstyle 123}} \, = \, 16,\!22 \; \mathrm{Om}$$

После преобразования схема имеет вид:

В соответствии с законом Ома, применённого для схемы рис.4, определится ток I_1 :

$$I_1 = \frac{U}{R_{3KB}} = 6,167 \text{ A}$$

В соответствии с законом Ома, применённого для схемы рис.3, определятся токи I_2 и I_5 :

$$I_2 = \frac{U}{R_{123}} = 1,667 \text{ A}; I_5 = \frac{U}{R_{45}} = 4,5 \text{ A}$$

В соответствии с законом Ома, применённого для схемы рис.2, определятся токи I_3 и I_4 :

$$I_3 = \frac{U}{R_4} = 2.5 \text{ A}; I_4 = \frac{U}{R_5} = 2.0 \text{ A}$$

Проверка результатов расчёта балансом мощностей:

$${\rm P}_{\rm ист.} = U \times I_1 \ = 616,7 \ {\rm Bt}$$

$${\rm P}_{\rm mp.} = I_2^2 \times (R_1 + R_2 + R_3) + I_3^2 \times R_4 + I_4^2 \times R_5 \ = 616,7 \ {\rm Bt}$$

$$P_{\rm ист} = P_{\rm ПD}$$

Баланс мощностей выполняется

ПРИМЕР №2

Исходная схема

Задание

Рассчитать все токи схемы методом простых преобразований при подключении к узлам 1 и 2 постоянного источника ЭДС напряжением $U_{\, \bullet }$

Исходные данные:

U,	R_{1}	R_{2r}	R_{3r}	R ₄ ,	R_{5}	R_{6r}
В	Ом	Ом	Ом	Ом	Ом	Ом
100	10	20	30	40	50	60

Решение

Резисторы R_1 и R_2 соединены параллельно, так как к ним приложено одно и то же напряжение. Эквивалентное сопротивление определится соотношением:

$$R_{12} = \frac{R_1 \times R_2}{R_1 + R_2} = 6,667 \text{ Om}$$

Схема после преобразования имеет вид:

Резисторы \mathbf{R}_{12} и \mathbf{R}_{3} соединены последовательно, так как по ним протекает один и тот же ток. Эквивалентное сопротивление определится соотношением:

$$R_{123} = R_{12} + R_{2} = 36,67$$
 OM

После преобразования схема имеет вид:

Резисторы \mathbf{R}_{123} и \mathbf{R}_4 соединены параллельно, так как к ним приложено одно и то же напряжение. Эквивалентное сопротивление определится соотношением:

$$R_{\rm ac} = \frac{R_{123} \times R_4}{R_{123} + R_4} = 19,13 \text{ OM}$$

После преобразования схема имеет вид:

В соответствии с законом Ома, применённого для схемы рис.4, определится ток $\it I$:

$$I = \frac{U}{R_{ac}} = 5,227 \text{ A}$$

В соответствии с законом Ома, применённого для схемы рис.3, определятся токи I_3 и I_4 :

$$I_3 = \frac{U}{R_{123}} = 2.727 \text{ A}; I_4 = \frac{U}{R_4} = 2.5 \text{ A}$$

12

В соответствии с законом Ома, применённого для схемы рис.2, определяется напряжение на участке U_{ab} :

$$U_{ab} = I_a \times R_{ab} = 18,18 \text{ B}$$

В соответствии с законом Ома, применённого для схемы рис.1, определятся токи I_1 и I_2 :

$$I_1 = \frac{U_{aB}}{R_1} = 1.818 \text{ A}; I_2 = \frac{U_{aB}}{R_2} = 0.909 \text{ A}$$

Проверка результатов расчёта балансом мощностей:

$${
m P}_{
m MCT.}=U imes I=522$$
 ,7 Вт ${
m P}_{
m mp.}=I_1^2 imes R_1+I_2^2 imes R_2+I_3^2 imes R_3+I_4^2 imes R_4=522$,7 Вт ${
m P}_{
m MCT}=P_{
m Пp}$

Баланс мощностей выполняется

2. Методы расчёта сложных электрических цепей

Задание

- 1. Указанным методом расчёта определить токи в заданной электрической цепи.
- 2. Составить баланс мощностей

Исходные данные:

E_{1}	E_{2}	E ₃ ,	E4,	J_{1}	J_{2}	R_{1}	R_{2r}	R_{3r}	R_{4}	R_{5}	R_{6r}	R_{7}
В	В	<i>E</i> ₃ ,	В	Α	Α	Ом	Ом	Ом	Ом	Ом	Ом	Ом
100	50	100	200	1	2	10	20	50	10	25	30	40

Методы расчёта:

- 1 законы Кирхгофа;
- 2 метод наложения;
- 3 метод контурных токов;
- 4 метод узловых напряжений;
- 5 метод эквивалентного генератора (определяемый ток указан на схеме).

Вариант контрольной работы состоит из двух чисел:

первое соответствует методу расчёта

второе соответствует номеру схем

ПРИМЕРЫ РАСЧЁТА

Исходная схема

Задание

- 1. При помощи *законов Кирхгофа* определить токи в заданной электрической цепи.
- 2. Составить баланс мощностей.

Исходные данные:

<i>E</i> ₁ , B	<i>E₃,</i> B	<i>J</i> ₂ , A	<i>R₁,</i> Ом	<i>R₃,</i> Ом
100	100	2	10	50

Решение

По I закону Кирхгофа следует составить 1 уравнение, так общее количество узлов равно 2.

$$I_1 = I_2 + I_{3(1)}$$

С учётом того, что ток $I_2 = J_2$ получим:

$$I_1 = J_2 + I_3$$

По II закону Кирхгофа следует составить 1 уравнение, так общее количество искомых токов равно 2.

$$I_1 R_1 + I_3 R_3 = E_1 + E_3 \tag{2}$$

В результате совместного решения уравнений(1) и (2) получим:

$$(J_2 + I_3)R_1 + I_3R_3 = E_1 + E_3$$

$$J_2R_1 + I_3R_1 + I_3R_3 = E_1 + E_3$$

$$I_3(R_1 + R_3) = E_1 + E_3 - J_2R_1$$

$$I_3 = \frac{E_1 + E_3 - J_2R_1}{R_1 + R_3} = 3 \text{ A}$$

$$I_1 = J_2 + I_3 = 5 \text{ A}$$

$$I_2 = J_2 = 2 \text{ A}$$

Проверка полученного решения

$$P_{
m MCT} = E_1 \; I_1 + E_3 \; I_3 + U_J J_2$$
 $U_J - I_1 R_1 = -E_1$ $U_J = I_1 R_1 - E_1 = -50 \; {
m B}$ $P_{
m MCT} = E_1 \; I_1 + E_3 \; I_3 + U_J J_2 = 700 \; {
m BT}$ $P_{
m np} = I_1^2 R_1 + I_2^2 R_3 = 700 \; {
m BT}$ $P_{
m MCT} = P_{
m Np}$

Баланс мощностей выполняется

Задание

При помощи **метода наложения** определить токи в заданной электрической цепи

Решение

В соответствии с принципом суперпозиции представим заданную электрическую схему совокупностью частичных схем, в каждой из которых действует только один источник Э.Д.С.

Выполним расчёт частичных токов методом эквивалентных преобразований:

$$R_{
m ЭКВ} = \frac{R_1 R_3}{R_1 + R_2} = 8,333 \; {
m Om}$$

$$U_I = J_2 \times R_{3KB} = 16,67 B$$

$$I_{1}' = \frac{U_{J}}{R_{1}} = 1,667 \text{ A}; \quad I_{3}' = \frac{U_{J}}{R_{3}} = 0,3333 \text{ A}; I_{2}' = J_{2} = 2 \text{ A}$$

$$I_1^{"''} = I_3^{"''} = \frac{E_3}{(R_1 + R_3)} = 1,667 \text{ A}; I_2^{"''} = 0$$

Результирующие значения токов исходной схемы определятся путём алгебраического суммирования токов каждой ветви всех частичных схем:

$$I_1 = I_1^{'} + I_1^{'''} + I_1^{'''} = 5 \text{ A}$$

 $I_2 = I_2^{'} + I_2^{'''} + I_2^{'''} = 2 \text{ A}$

$$I_3 = -I_3^{'} + I_3^{'''} + I_3^{''''} = 3 \text{ A}$$

Задание

При помощи *метода контурных токов* определить токи в заданной электрической цепи

Решение

Выбираем контурные токи, протекающие в независимых контурах.

В данном случае, значение контурного тока I_{22} предопределено, так как этот ток протекает по ветви с источником тока J_2 .

$$I_{22} = J_2$$

Для определения контурного тока I_{11} достаточно воспользоваться только первым уравнением универсальной системы:

$$I_{11}R_{11} - I_{22}R_{12} = E_{11} \quad (1)$$

Вычисляем коэффициенты и правые части уравнения (1) и разрешаем его относительного искомого контурного тока:

$$R_{11} = R_1 + R_3 = 60$$

$$R_{12} = R_3 = 50$$

$$E_{11} = E_1 + E_3 = 200$$

$$I_{11}R_{11} - I_{22}R_{12} = E_{11}$$

$$60I_{11} - 50 \times 2 = 200$$

$$60I_{11} = 300$$
 $I_{11} = 5$

Выполняем переход к реальным токам, протекающим в ветвях схемы:

$$I_1=I_{11}=5$$
 А $I_2=J_2=2$ А $I_3=I_{11}-I_{22}=3$ А Задание

При помощи **метода узловых напряжений** определить токи в заданной электрической цепи

Решение

В соответствии с методом двух узлов определяется потенциал узла ${f a}$ при условии, что потенциал узла ${f \phi_B}$ =0 В

$$\varphi_{a} = \frac{\frac{-E_{1}}{R_{1}} + \frac{E_{3}}{R_{2}} + J_{2}}{\frac{1}{R_{1}} + \frac{1}{R_{3}}} = -50 \text{ B}$$

Токи в ветвях определяются при помощи закона Ома для участков цепи с источниками Э.Д.С.:

$$I_1 = \frac{\varphi_{\mathsf{a}} + E_1}{R_1} = 5 \,\mathsf{A}$$

$$I_3 = \frac{-\varphi_a + E_3}{R_3} = 3 \text{ A}$$

Задание

При помощи **метода эквивалентного генератора** определить ток \mathbf{I}_3 в заданной электрической цепи

Решение

Для определения параметров эквивалентного генератора для вычисления указанного тока I_3 достаточно разомкнуть ветвь с данным током и вычислить напряжение холостого хода и сопротивление полученной схемы относительно разомкнутых клемм.

Схема в этом случае приобретает следующий вид:

Для указанного контура составим уравнение по II закону Кирхгофа, при условии, что в данном случае ток, протекающий по элементам этого контура, определяется величиной тока источника тока.

$$U_{aBXX} + J_2R_1 = E_1 + E_3$$

$$U_{\text{aBXX}} = E_1 + E_2 - J_2 R_1 = 180 \text{ B}$$
 $E_{\Gamma} = U_{\text{aBXX}} = 180 \text{ B}$

Сопротивление эквивалентного генератора относительно клемм «ав» определяется только величиной сопротивления резистора R_1 , так как внутреннее сопротивление источника тока равно бесконечности:

$$R_{\Gamma} = R_1 = 10 \text{ OM}$$
 $I_3 = \frac{E_r}{R_r + R_2} = 3 \text{ A}$

Значения токов приведённой схемы, полученные различными методами, оказываются одинаковыми, что указывает на достоверность полученных результатов.

3. Комплексный метод расчёта электрических цепей синусоидального тока

Задание

- 1. Произвести расчёт мгновенных токов i_1 , i_2 , i_3 и мгновенных напряжений u_{R1} , u_{L1} , u_{C1} , u_{R2} , u_{C2} , u_{R3} , u_{L3} , u_{C3} , u_{ab} , u_{bc} , и u_{ac} .
- 2. Составить баланс мощностей.

Исходные данные:

$$R_1 = R_2 = R_3 = X_{L1} = X_{L3} = X_{C1} = X_{C2} = X_{C3} = 10 \text{ Om}$$

 $X'_{C1} = X'_{L3} = 20 \text{ Om}$

Вариант контрольной работы состоит из двух чисел:

первое соответствует номеру строки из табл.1

второе соответствует номеру строки из табл.2

Таблица 1

Nō	Положение переключа теля					
	B ₁ B ₂					
1	1	7				
2	2	6				
3	3	5				
4	4	4				
5	5	3				
6	6	3				
7	7	1				
8	1	6				
9	2	5				
10	3	4				
11	4	3				
12	5	2				

Nō	Положение переключа теля				
	B ₁	B ₂			
13	6	1			
14	7	7			
15	1	5			
16	2	4			
17	3	3			
18	4	2			
19	5	1			
20	6	7			
21	7	6			
22	1	4			
23	2	3			
24	3	2			

Таблица 2

	Заданная
Nō	величина
1	$i_1(t)=5\sin(\omega t-90^\circ)$
2	$i_2(t)=10$ sin ωt
3	$i_3(t)=5\sin(\omega t+45^{\circ})$
4	$u_{\scriptscriptstyle aB}(t) = 100 \sin\!\omega t$
5	$u_{\scriptscriptstyle BC}(t)=100$ sin($\omega t+90^\circ$)
6	$u_{R2}(t) = 50\sin(\omega t - 90^{\circ})$
7	<i>u_{C2}(t)=50sin</i> ω <i>t</i>
8	$u_{ac}(t)=100\sin(\omega t -45^0)$

ПРИМЕР РАСЧЁТА

Исходная схема

Задание

Расчёт мгновенных токов i_{1} , i_{2} , i_{3} и мгновенных напряжений

Исходные данные:

$$R_1 = R_2 = R_3 = X_{L1} = X_{L3} = X_{C1} = X_{C2} = X_{C3} = 10 \text{ Om}$$

$$u_{R2}(t) = 50 \sin(\omega t - 90^0)$$

Решение

Составляем схему замещения в комплексной форме:

Заменяем заданное напряжение комплексным числом:

$$U_{mR_2} = 50e^{-j90^0}$$

Применяем закон Ома в комплексной форме и определяем комплексную амплитуду второго тока:

$$I_{m_2} = \frac{\dot{U}_{mR_2}}{R_2} = \frac{50 e^{-j90^0}}{10} = 5 e^{-j90^0}$$

Сопротивления каждого из участков электрической цепи представляем комплексными сопротивлениями:

$$\underline{Z}_1 = R_1 - jX_{C_1} = 0 - j10 = 10e^{-j90^0}$$

$$\underline{Z}_2 = R_2 - jX_{C_2} = 10 - j10 = 14,14e^{-j45^0}$$

$$\underline{Z}_3 = R_3 + jX_{L_3} = 0 + j10 = 10e^{j90^0}$$

Применяем закон Ома в комплексной форме для каждого из участков электрической цепи и определяем комплексные амплитуды искомых токов и напряжений:

$$\dot{U}_{mbc} = I_{m_2} \times \underline{Z}_2 = 5e^{-j90^{\circ}} \times 14,14e^{-j45^{\circ}} = 70,7e^{-j135^{\circ}}$$

$$I_{m_3} = \frac{\dot{U}_{mbc}}{\underline{Z}_3} = \frac{70,7e^{-j135^{\circ}}}{10e^{j90^{\circ}}} = 7,07e^{-j225^{\circ}}$$

$$I_{m_1} = I_{m_2} + I_{m_3} = 5e^{-j90^{\circ}} + 7,07e^{-j225^{\circ}} =$$

$$= 0 - j5 - 5 + j5 = -5 + j0 = 5e^{j180^{\circ}}$$

$$\dot{U}_{m c_2} = I_{m_2} \times (-jX_{c_2}) = 5e^{-j90^{\circ}} \times 10e^{-j90^{\circ}} = 50e^{-j180^{\circ}}$$

$$\dot{U}_{m c_3} = I_{m_3} \times (jX_{c_3}) = 7,07e^{-j225^{\circ}} \times 10e^{j90^{\circ}} = 70,7e^{-j135^{\circ}}$$

$$\dot{U}_{m c_1} = I_{m_1} \times (-jX_{c_1}) = 5e^{j180^{\circ}} \times 10e^{-j90^{\circ}} = 50e^{j90^{\circ}}$$

$$\dot{U}_{mab} = \dot{U}_{m c_1}$$

$$\dot{U}_{mac} = \dot{U}_{mab} + \dot{U}_{mbc} = 50e^{j90^{\circ}} + 70,7e^{-j135^{\circ}} =$$

$$= 0 + j50 - 50 - j50 = -50 + j0 = 50e^{j180^0}$$

Выполняем перевод от комплексных амплитуд найденных токов и напряжений к их мгновенным значениям:

$$i_2(t) = 5sin(\omega t - 90^0)$$

 $i_3(t) = 7,07sin(\omega t - 225^0)$
 $u_{c_1}(t) = 50sin(\omega t + 90^0)$
 $u_{c_2}(t) = 50sin(\omega t - 180^0)$
 $u_{l_3}(t) = 70,7sin(\omega t - 135^0)$
 $u_{ab}(t) = 50sin(\omega t + 90^0)$
 $u_{bc}(t) = 70,7sin(\omega t - 135^0)$
 $u_{ac}(t) = 50sin(\omega t + 180^0)$

Проверка выполненного решения балансом мощностей

Определяем комплексную мощность источника энергии:

$$\tilde{S}_{\text{MCT}} = \dot{U}_{ac} \times \ddot{I}_{1} = \frac{50}{\sqrt{2}} e^{j180^{\circ}} \times \frac{5}{\sqrt{2}} e^{-j180^{\circ}} = 125 e^{j0^{\circ}}$$

$$\tilde{S}_{\text{MCT}} = \mathbf{P}_{\text{MCT}} + jQ_{\text{MCT}} = 125 + j0$$

$$S_{\text{MCT}} = 125 \text{ BA; } \mathbf{P}_{\text{MCT}} = 125 \text{ BT; } Q_{\text{MCT}} = 0 \text{ Bap}$$

Определяем комплексную мощность приёмников энергии:

$$S_{\text{np}} = I_1^2 \times \underline{Z}_1 + I_2^2 \times \underline{Z}_2 + I_3^2 \times \underline{Z}_3 = \frac{5^2}{2} (0 - j10) +$$

$$= \frac{5^2}{2} (0 - j10) + \frac{5^2}{2} (10 - j10) + \frac{7,07^2}{2} (0 + j10) =$$

$$= 0 - j125 + 125 - j125 + 0 + j250 = 125 + j0$$

$$S_{\text{np}} = \mathbf{P}_{\text{np}} + jQ_{\text{np}} = \mathbf{125} + j0$$

$$S_{mp} = 125$$
 BA; $P_{mp} = 125$ BT;
$$P_{\text{ист.}} = P_{np.}$$

$$Q_{\text{ист.}} = Q_{np.}$$

$$S_{\text{ист.}} = S_{np.}$$

Баланс мощностей выполняется

4. Резонансные явления в электрических цепях

Вариант контрольной работы соответствует номеру строки из таблицы

Таблица

Νº	теля		е кл i-	Определит ь	
	1	2	3		
1	2	5	3	$R_2 = 10\sqrt{2} \ \textit{Om}; \ I_3 = I_1;$ $I_2 = 5\sqrt{2} \ \textit{A};$ $R_1 = 20 \ OM$	Составить баланс мощностей
2	5	3	1	$I_{10} = 0,1 \text{ A}; U = 12 \text{ B}; \text{ Q} = 3$	Напряжения на всех элементах цепи и ток при $\omega = 2\omega_o$
3	1	5	3	$R_2 = X_{C2} = 2 \text{ Om}; X_{L3} = 4$ Om; $I_3 = 1 \text{ A}$	<i>U, I</i> ₁ и Р
4	3	1	4	$I_3 = 5 \text{ A}$; $R_2 = X_{C3} = 2 \text{ OM}$	<i>I</i> ₂ , <i>I</i> ₁ , <i>U</i> , P
5	4	2	2	$U = 1 \text{ B}; X_{L2} = 2 \text{ Om}; R_3 = 15,75 \text{ Om}$	<i>I</i> ₁ , <i>I</i> ₂ , <i>I</i> ₃ , P
6	5	3	2	$U=1$ В; $R_1=10$ Ом; $L_1=0,1$ мГн; $R_3=2$ кОм; $C_2=100$ ПФ	$U_{ m bc}$
7	4	2	2	$X_{L2} = 4 \text{ Om}; R_3 = 4 \text{ Om}$	X _{C1}
8	2	5	2	$R_2=X_{C2}=10$ Om; $R_3=20$ Om	X _{L1}
9	6	2	5	$L_2 = L_3 = 0,1$ мГн; $C_1 = 100$ пФ; $R_1 = 10$ Ом; $R_3 = 2$ кОм	f_o

10	1	6	4	$L_2 = 0,1$ мГн; $C_2 = 0,1$ мкФ; $R_2 = 24$ Ом	f_o при резонансе напряжений и C_2 при f_o =500 кГц (резонанс токов)
11	2	5	3	$I_3 = 5 \text{ A}; R_1 = 20 \text{ Om}; U_{R2} = U_{XC2} = 100 \text{ B}$	Составить баланс мощностей
12	1	3	5	$I_1 = 6 \text{ A}; I_2 = 8 \text{ A}; X_{C2} = 16$ OM	<i>R</i> ₃ и <i>X</i> _{L3}
13	1	3	5	$I_1 = I_2 = 4 \text{ A}; \ \omega L_3 = 7 \text{ Om}$	X_{C2}
14	5	3	6	L_1 =0,1 мГн; C_2 =100 пФ; R_1 = R_3 =10 Ом; C_3 =100 ПФ	Q
15	1	6	4	$I_3 = 10 \text{ A}; \ \varphi_2 = 45^{\circ}; \ X_{L2} = 15 \text{ Om}; X_{C2} = 10 \text{ Om}$	<i>U, I,</i> P
16	2	4	4	$R_2 = X_{C2}; \ U_{C3} = 100\sqrt{2} \text{ B}; \ I_1$ = 10 A; $R_1 = 20 \text{ OM}$	Составить баланс мощностей
17	1	3	5	$I_1 = I_2 = 4 \text{ A}; X_{L3} = 7 \text{ Om}$	Составить баланс мощностей
18	5	3	6	$L_1 = 0,1$ мГн; $C_2 = C_3 = 100$ пФ; $R_1 = R_3 = 10$ Ом	f_o
19	5	3	2	$L_1 = 0,1$ мГн; $C_2 = 100$ пФ; $R_1 = 10$ Ом; $R_3 = 2$ кОм	f_o
20	3	1	4	$I_2 = I_3$; $I_1 = 10\sqrt{2}\text{A}$; $R_2 = 10$	<i>U</i> , P

21	4	1	3	$U_{C1} = 100 \text{ B}; R_2 = 20 \text{ Om};$ $X_{L3} = 10 \text{ Om}$	<i>U, I</i> ₁ , P
22	1	3	5	$I_1 = 6 \text{ A}; I_3 = 10 \text{ A}; X_{C2} = 16$ OM	Составить баланс мощностей
23	5	3	2	$L_1 = 0,1$ мГн; $C_2 = 100$ пФ; $R_1 = 10$ Ом; $R_3 = 2$ кОм	Q
24	1	3	5	$I_1 = I_2 = 4$ A; $\omega L_3 = 7$ Om	Составить баланс мощностей

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Составить баланс мощностей

Исходные данные:

$$I_1 = I_2 = 4 A$$

$$\omega L_3 = 7 OM$$

Решение

Построим векторную диаграмму, принимая во внимание, что ток источника I_1 должен совпадать по фазе со входным напряжением

т. к. $I_1 = I_2$ получаем равносторонний

прямо угольный треугольник.

Углы
$$\alpha_1=\alpha_2=\alpha_3=45^0$$

В результате получим: $U_{R3} = U_{L3}$ (как катеты равностороннего треугольника).По теореме Пифагора получим:

$$I_3 = \sqrt{I_1^2 + I_2^2} = 4\sqrt{2} A$$

$$U_{L_3} = I_3 \times \omega L_3 = 28\sqrt{2} E$$

$$U_{L_3} = U_{R_3} = 28\sqrt{2} E$$

$$U_{BX} = U_{C_2} = \sqrt{(28\sqrt{2})^2 + (28\sqrt{2})^2} = 56 B$$

$$R_3 = \omega L_3 = 7 OM$$

Баланс мощностей

$$P_{\text{MCT}} = U_{\text{BX}} \times I_1 = 56 \times 4 = 224 \text{ BT}$$
 $P_{\text{np}} = I_3^2 \times R_3 = 32 \times 7 = 224 \text{ BT}$
 $P_{\text{ист.}} = P_{\text{np.}}$

Баланс мощностей выполняется

ПРИМЕР №2

Исходная схема

Задание

Определить значение сопротивления конденсатора, при котором в цепи наблюдается резонанс напряжений.

Исходные данные:

$$X_{1,2} = 4 OM; R_2 = 4 OM$$

Решение

Определим полное сопротивление цепи в комплексной форме:

$$\begin{split} \underline{Z}_{\text{ЭКВ.}} &= \frac{R_2 \times j X_{\text{L3}}}{R_2 + j X_{\text{L3}}} - j X_{\text{C1}} = \frac{j16}{4 + j4} - j X_{\text{C1}} \\ \\ \underline{Z}_{\text{ЭКВ.}} &= \frac{16 \, e^{j90^{\circ}}}{5,657 \, e^{j45^{\circ}}} - j X_{\text{C1}} = 2,828 \, e^{j45^{\circ}} - j X_{\text{C1}} \\ \\ \underline{Z}_{\text{ЭКВ.}} &= 2 + j2 - j X_{\text{C1}} = 2 + j (2 - X_{\text{C1}}) = R_{\text{ЭКВ.}} + j X_{\text{ЭКВ.}}. \end{split}$$

При резонансе напряжений должно выполняться условие:

$$X_{3KB} = 0$$

2 - $X_{C_1} = 0$

Сопротивление конденсатора в момент резонанса: $X_{\texttt{C1}} = 2 \ \texttt{Om}$

5. Электрические цепи со взаимной индуктивностью

Задание

Вариант контрольной работы соответствует номеру схем

$$X_C = 40 \text{ Om}; X_1 = 50 \text{ Om};$$

 $X_2 = 40 \text{ Om};$

$$X_M = 10 \text{ Om}; R = 30 \text{ Om}.$$

Определить входное сопротивление цепи

Преобразовать данную схему в эквивалентную, не содержащую

взаимной индуктивности.

$$L_1 = 318$$
 мкГн; $L_2 = 159$ мкГн;

$$C = 1,59$$
 мк Φ ; $f = 10^4$ Гц; $U = 40$ мВ; $M = 124$ мкГн.

Определить все токи схемы

4

$$U = 100 \text{ B}; R = 10 \text{ Om}; X_{\text{M}}$$

= 5 Om;

$$X_{L1} = X_{L2} = X_C = 10 \text{ Om.}$$

Определить показание вольтметра

 $X_L = X_C = 10 \text{ Om; } k_M = 1; R$ = 10 Om.

Определить входное сопротивление цепи.

6

 $L_1 = 20$ мГн; $L_2 = 15$ мГн; $k_M = 0.5$; $\omega_0 = 5 \cdot 10^4 \; 1/\text{сек}.$

Определить емкость С, при которой наблюдается резонанс токов.

7

= 100 sin 1000 t; $X_{L1} = X_{L2} = 10 \text{ Om}$;

 $k_M = 0.5$; $X_C = 10$ Om.

Определить все токи схемы. 8

 $X_1 = 20 \text{ Om}; R = 40 \text{ Om};$ $X_C = 10 \text{ Om}.$

 $X_2 = X_M = 10 \text{ Om}; E = 200$ B;

> Определить показание вольтметра.

$$U = 100 \text{ B; } X_M = 5 \text{ Om;}$$

$$R_1 = R_2 = X_{L1} = X_{L2} = X_{C} = 10 \text{ Om.}$$

Определить: $P_{\text{потр}}$ и $P_{\text{ист}}$

10

$$X_1 = 20 \text{ Om}; R = 40 \text{ Om}; E$$

= 200 B;

$$X_2 = X_C = X_M = 10 \text{ Om.}$$

Определить показание вольтметра

11

U = 88 мВ; I = 2,2 мА; R_1 = 9,5 Ом; R_2 = 11,6 Ом; X_M = 3,2 Ом; X_{L1} = 14,6 Ом; X_{L2} = 17 Ом; f = 50 к Γ ц.

Определить величину емкости C.

12

$$X_1 = 20 \text{ Om}; R = 40 \text{ Om};$$

 $E = 200\text{B};$

$$X_2 = X_C = X_M = 10 \text{ Om.}$$

Определить показание вольтметра.

13

 $X_1 = 20 \text{ Om}; R = 40 \text{ Om}; E$ = 200 B; $X_2 = X_C = X_M = 10$ OM.

Определить показание вольтметра.

14

 $L_1 = 10$ мГн; $L_2 = 20$ мГн; $k_M = 0.5; \omega_0 = 5 \cdot 10^4$ 1/сек.

Определить емкость С, при которой наблюдается резонанс напряжений.

15

 $E = 180 \text{ B; } \Psi_{e} = 90^{\circ}; R = 15 \text{ Om;}$

 $X_1 = X_M = 10 \text{ Om}; X_2 = X_C$ = 20 Om.

Определить показания приборов

16

 $X_1 = 20 \text{ Om}; R = 40 \text{ Om};$ E = 200 B;

 $X_2 = X_C = X_M = 10 \text{ Om.}$

Определить показание вольтметра.

17

$$E = 180 \text{ B; } \Psi_{e} = 90^{\circ}; R = 15 \text{ Om;}$$

$$X_1 = X_M = 10 \text{ Om}; X_2 = X_C$$

= 20 Om.

Определить показания приборов.

18

$$R = X_L = 2 \text{ кОм; } k_M = 0,5; X_C = 1 \text{ кОм}$$

Определить входное сопротивление двухполюсника.

19

$$R_1 = R_2 = 100 \text{ Om}; L_2 = 0.2$$
 $X_2 = X_C = 40 \text{ Om}; X_M = 10 \text{ OM};$

$$L_1 = M = 0,1$$
 мГн; $ω_0 = 5 \cdot 10^5$ 1/ceκ.

Определить емкость С, при которой наблюдается резонанс напряжений.

20

$$X_2 = X_C = 40 \text{ Om}; X_M = 10$$
 Om;

$$X_1 = 50 \text{ Om}; E_1 = 80 -$$
 j60;

$$E_2 = 40 + j30$$
.

Определить показание амперметра.

21

$$J = 15 A$$
; $Ψ_J = 90°$; $R = 15 Om$;

$$X_1 = X_M = 10 \text{ Om}; X_2 = X_C$$

= 20 Om.

Определить показания приборов.

22

$$E_1 = E_2 = 100 \text{ B;} \Psi_{e1} = 90^{\circ}; \Psi_{e2} = 0^{\circ};$$

$$R_1 = X_1 = X_M = 20 \text{ Om};$$

 $X_3 = 40 \text{ Om};$

$$R_3 = X_C = 30 \text{ Om}; X_2 = 60 \text{ Om}.$$

Определить показания приборов.

23

$$E = 180 \text{ B; } \Psi_{e} = 90^{\circ}; R = 15 \text{ Om;}$$

$$X_1 = X_M = 10 \text{ Om}; X_2 = X_C$$

= 20 Om.

Определить показания приборов.

24

$$X_2 = X_C = 40 \text{ Om}; X_M = 10 \text{ Om};$$

$$X_1 = 50 \text{ Om}; R = 30 \text{ Om}.$$

Определить входное сопротивление цепи.

ПРИМЕР РАСЧЁТА

Исходная схема

Задание

- 1.Определить показания приборов.
 - 2.Проверить баланс мощностей.
- 3.При помощи эквивалентной схемы без магнитных связей определить входное сопротивление схемы.

Исходные данные:

$$J = 10 A$$
; $X_1 = X_C = X_3 = 10 Om$; $X_M = 20 Om$; $X_2 = 30 Om$.

Решение

Принимаем
$$\dot{J} = 10e^{j0^0}$$

1. Определим показания приборов при помощи законов Кирхгофа в комплексной форме:

$$\dot{l}_1 + \dot{l}_2 = \dot{J}$$
 (1)
 $\dot{l}_1 \times jX_3 - \dot{l}_2 \times jX_1 + \dot{l}_2 \times jX_C + \dot{J} \times jX_M = 0$ (2)

Выразим из уравнения (1) \dot{I}_1 и подставим его в уравнение (2):

$$\dot{I}_{1} = \dot{J} - \dot{I}_{2}$$

$$(\dot{J} - \dot{I}_{2}) \times jX_{3} - \dot{I}_{2} \times jX_{1} + \dot{I}_{2} \times jX_{C} + \dot{J} \times jX_{M} = 0 \quad (2)$$

$$j\dot{j} X_3 - j\dot{l}_2 X_3 - j\dot{l}_2 X_1 + j\dot{l}_2 X_C + j\dot{j} X_M = 0$$

$$j\dot{j} (X_3 + X_M) = j\dot{l}_2 (X_1 + X_3 - X_C)$$

$$\dot{l}_2 = \frac{\dot{j} \times (X_3 + X_M)}{X_1 + X_3 - X_C} = 30e^{j0^0}$$

$$\dot{l}_1 = \dot{j} - \dot{l}_2 = 20e^{-j180^0}$$

$$\dot{U}_{X_3} = \dot{l}_1 \times jX_3 = 200e^{-j90^0}$$

Показание амперметра - $I_A = I_1 = 20 \text{ A}$

Показание вольтметра - $U_V = U_{X_{\rm S}} = 200~{\rm B}$

2.Проверка баланса мощностей.

Определим напряжение на источнике тока при помощи второго закона Кирхгофа:

$$\begin{split} \dot{U}_{J} - \dot{I}_{2} \times jX_{1} + \dot{I}_{2} \times jX_{C} + \dot{J} \times jX_{M} - \dot{J} \times jX_{2} + \dot{I}_{2} \times jX_{M} &= 0 \\ \dot{U}_{J} = \dot{I}_{2} \times jX_{1} - \dot{I}_{2} \times jX_{C} - \dot{J} \times jX_{M} + \dot{J} \times jX_{2} - \dot{I}_{2} \times jX_{M} \\ \dot{U}_{J} = \dot{I}_{2} \times j(X_{1} - X_{C} - X_{M}) + \dot{J} \times j(X_{2} - jX_{M}) &= 500e^{-j90^{\circ}} \end{split}$$

Определим комплексную мощность источника энергии:

$$\widetilde{S}_{\text{ MCT.}} = \dot{U}_J \times \ddot{J} = 0 - j5000$$
 $P_{\text{MCT.}} = 0 \text{ Bt; } Q_{\text{IIP.}} = -5000 \text{ Bap}$

Определим комплексную мощность приёмников энергии:

$$\widetilde{S}_{\text{IIP.}} = I_1^2 \times jX_3 + I_2^2 \times jX_1 - I_2^2 \times jX_C + J^2 \times jX_2 = 0 + j7000$$

Определим комплексную мощность, обусловленную магнитной связью:

$$\widetilde{S}_{M} = -\dot{U}_{M1} \times \ddot{I}_{2} - \dot{U}_{M2} \times \ddot{J}$$

$$\dot{U}_{M1} = \dot{J} \times jX_{M} = 200e^{j90^{\circ}}$$

$$\dot{U}_{M2} = \dot{I}_2 \times jX_M = 600e^{j90^0}$$

$$\tilde{S}_M = -j200 \times 30 - j600 \times 10 = -j12000$$

Полная комплексная мощность потребителей:

$$\widetilde{S}_{\Sigma} = \widetilde{S}_{\Pi P.} + \widetilde{S}_{M} = 0 - j5000$$

$$P_{\Pi P} = 0 \text{ Bt; } Q_{\Pi P} = -5000 \text{ Bap}$$

Баланс мощностей выполняется

3.При помощи эквивалентной схемы без магнитных связей определяем входное сопротивление схемы

Для выполнения магнитной развязки преобразуем уравнения, описывающие энергетическое состояние электрической цепи:

$$\dot{I}_{1} + \dot{I}_{2} = \dot{J} \qquad (1)$$

$$\dot{I}_{1} \times jX_{3} - \dot{I}_{2} \times jX_{1} + \dot{I}_{2} \times jX_{C} + \dot{J} \times jX_{M} = 0 \quad (2)$$

$$\dot{U}_{1} - \dot{I}_{1} \times jX_{3} - \dot{J} \times jX_{2} + \dot{I}_{2} \times jX_{M} = 0 \quad (3)$$

В уравнение (2) подставим уравнение (1):

$$\dot{l}_{1} \times jX_{3} - \dot{l}_{2} \times jX_{1} + \dot{l}_{2} \times jX_{C} + (\dot{l}_{1} + \dot{l}_{2}) \times jX_{M} = 0$$

$$\dot{l}_{1} \times jX_{3} - \dot{l}_{2} \times jX_{1} + \dot{l}_{2} \times jX_{C} + \dot{l}_{1} \times jX_{M} + \dot{l}_{2} \times jX_{M} = 0$$

$$\dot{l}_1 \times j(X_2 + X_M) - \dot{l}_2 \times j(X_1 - X_C - X_M) = 0$$
 (4)

В уравнение (3) подставим l_2 из уравнение (1):

$$\dot{I}_2 = \dot{J} - \dot{I}_1$$

$$\dot{U}_{J} - \dot{I}_{1} \times jX_{3} - \dot{J} \times jX_{2} + (\dot{J} - \dot{I}_{1}) \times jX_{M} = 0$$

$$\dot{U}_{J} - \dot{I}_{1} \times jX_{3} - \dot{J} \times jX_{2} + J \times jX_{M} - \dot{I}_{1} \times jX_{M} = 0$$

$$\dot{U}_{J} - \dot{I}_{1} \times j(X_{3} + X_{M}) - \dot{J} \times j(X_{2} - X_{M}) = 0 (5)$$

Уравнениям (4) и (5) соответствует следующая схема замещения без магнитной связи:

Входное сопротивление схемы определяется методом эквивалентных преобразований:

$$\underline{Z}_{\text{SKB.}} = \frac{j[(X_1 - X_{\text{M}}) - jX_{\text{C}}] \times j(X_3 + X_{\text{M}})}{j[(X_1 - X_{\text{M}}) - jX_{\text{C}}] + j(X_3 + X_{\text{M}})} + j(X_2 - X_{\text{M}}) = -j50$$

6. Трехфазные электрические цепи

Задание

- 1. Рассчитать действующие значения фазных и линейных токов и напряжений на нагрузке.
- 2. Проверить баланс активных и реактивных мощностей.

Вариант контрольной работы соответствует номеру строки из таблицы

Рис. 1

Рис. 2

Таблица

	Νō	
Nº	р и С	Исходные данные
1	1	U_{ϕ} =100 B; Z_1 =10+j0; Z_2 =0+j10; Z_3 =0-j10; Z_N =∞
2	2	\mathring{U}_{ab} =100+j200; U_{bc} =-300; \underline{Y}_3 =0,4-j0,3; \dot{I}_2 = \dot{I}_1 e \dot{I}_3 = \dot{I}_2 e \dot{I}_3 = \dot{I}_2 e \dot{I}_3 = \dot{I}_3 = \dot{I}_4 e
3	1	$U_{\phi}=100 \text{ B; } \underline{Z}_1=10+j0; \underline{Z}_2=0+j10; \underline{Z}_3=0; \underline{Z}_N=\infty$
4	2	U_n =220 B; \underline{Z}_1 =22+j0; \underline{Z}_2 =19-j11; \underline{Z}_3 =19+j11
5	1	$\mathring{U}_{1}=100; \ \mathring{U}_{2}=-50+j100; \ \mathring{U}_{3}=50+j100; \ \underline{Y}_{1}=0,1-j0,4;$ $\dot{I}_{B}=\dot{I}_{A}e^{-j120^{\circ}}; \ \dot{I}_{C}=\dot{I}_{B}e^{-j120^{\circ}}; \ \underline{Z}_{N}=\infty;$ $\mathring{U}_{O'O}=100+j0$
6	2	P_{Σ} =50 κBτ; U_{π} =220 B; $\cos \phi$ =0,8; Z_{1} = Z_{2} = Z_{3} =R+j X_{1}
7	1	P_{Σ} =50 κBτ; U_{π} =380 B; $\cos \varphi$ =0,7575; Z_{1} = Z_{2} = Z_{3} =R+j X_{1}
8	2	U_{ϕ} =220 B; \underline{Z}_1 =38+j0; \underline{Z}_2 =0+j38; \underline{Z}_3 =38+j0
9	1	$ \mathring{U}_{1}=100; \mathring{U}_{2}=100e^{-j90^{\circ}}; \mathring{U}_{3}=150e^{j135^{\circ}}; \underline{Z}_{N}=\infty; $ $\underline{Z}_{2}=8-j6$ $ \dot{I}_{B}=\dot{I}_{A}e^{-j120^{\circ}}; \dot{I}_{C}=\dot{I}_{B}e^{-j120^{\circ}}; \mathring{U}_{O'O}=0-j100 $
1 0	2	$U_{\phi} = 220 \text{ B}; \ \underline{Z}_1 = \infty; \ \underline{Z}_2 = 0 + \text{j}38; \ \underline{Z}_3 = 38 + \text{j}0$

1 1	1	$U_{\phi}=100 \text{ B; } \underline{Z}_{1}=10+j0; \underline{Z}_{2}=0+j10; \underline{Z}_{3}=0-j10; \underline{Z}_{N}=0$
1 2	2	$U_n = 220 \text{ B}; \ \underline{Z}_1 = \underline{Z}_2 = \underline{Z}_3 = 16 + j12$
1	1	U_n =380 B; Z_1 =76+j0; Z_2 =0+j76; Z_3 =0-j76; Z_N =∞
1 4	2	$U_n = 100 \text{ B}; \ \underline{Z}_1 = \underline{Z}_2 = \underline{Z}_3 = 50 + j0$
1 5	1	$U_n=100 \text{ B;} I_A=4 \text{ A;} I_B=5 \text{ A;} I_C=3 \text{ A;} \underline{Z}_N=0;$ $\underline{Z}_1=R_1; \underline{Z}_2=-jX_2; \underline{Z}_3=jX_3$
1 6	2	$U_n=220 \text{ B}; \ \underline{Z}_1=R_1+j0; \ \underline{Z}_2=R_2+j0; \ \underline{Z}_3=R_3+j0;$ $P_1=440 \text{ BT}; \ P_2=1100 \text{ BT}; \ P_3=2200 \text{ BT}$
1 7	1	$U_n = 220 \text{ B; } \cos\varphi = 0.8(\varphi > 0); \ \underline{Z}_1 = \underline{Z}_2 = \underline{Z}_3 = 100 + j0$
1 8	2	$U_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
1 9	1	U_{n} =100 B; Z_{1} =0; Z_{2} = Z_{3} =10-j10; Z_{N} =∞
2 0	2	$U_{n}=220 \text{ B; } \underline{Z}_{2}=\infty; \underline{Z}_{1}=\underline{Z}_{3}=10\text{-j}10$
2 1	1	U_{ϕ} =380 B; $Z_1 = Z_2 = Z_3$; $I_1 = 10$ A; $P_{\Sigma} = 9120$ Bτ
2	2	U_n =380 B; Z_1 =10; Z_2 =10+j10; Z_3 =10-j10; обрыв линейного провода В
2	1	U_n =200 B; I_1 =4 A; I_2 =5 A; Z_N =∞; Z_1 = R_1 ; Z_2 =- Z_1 = Z_2 =- Z_3 =0
2	2	U_{π} =200 B; \underline{Z}_{1} =j10; \underline{Z}_{2} =j10; \underline{Z}_{3} =-j10; обрыв фазного провода са

2 5	1	$U_n=300 \text{ B; } \underline{Z}_1=10\text{-j}10\text{; } \underline{Z}_2=10\text{; } \underline{Z}_3=\text{-j}10\text{; } \underline{Z}_N=0$

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Задание

- 1. Рассчитать действующие значения фазных и линейных токов и напряжений на нагрузке.
 - 2. Проверить баланс активных и реактивных мощностей.

Исходные данные:

 $U_{\scriptscriptstyle Л} = 380$ В; $\underline{Z}_1 = j10$; $\underline{Z}_2 = -j10$; $\underline{Z}_3 = j10$; обрыв фазного провода ab

Решение

1. Расчёт действующих значений фазных и линейных токов и напряжений на нагрузке

При данном виде соединения $U_{\phi} = U_{\pi}$.

Определим комплексные значения данных напряжений:

$$\dot{U}_{ab} = 380e^{j30^{\circ}}; \dot{U}_{bc} = 380e^{-j90^{\circ}}; \dot{U}_{ca} = 380e^{j150^{\circ}}$$

При обрыве фазного провода ав $Z_1 = \infty$

Определяем значения фазных токов нагрузки:

$$\dot{I}_{1} = \dot{I}_{aB} = \frac{\dot{U}_{aB}}{\frac{Z}{1}} = \frac{380e^{j30^{\circ}}}{\infty} = 0 = 0 + j0;$$

$$\dot{I}_{2} = \dot{I}_{BC} = \frac{\dot{U}_{BC}}{\frac{Z}{2}} = \frac{380e^{-j90^{\circ}}}{10e^{-j90^{\circ}}} = 38e^{j0^{\circ}} = 38 + j0;$$

$$\dot{I}_{3} = \dot{I}_{Ca} = \frac{\dot{U}_{Ca}}{\frac{Z}{2}} = \frac{380e^{j150^{\circ}}}{10e^{j90^{\circ}}} = 38e^{j60^{\circ}} = 19 + j32,91$$

Определяем значения линейных токов:

$$\dot{I}_{\rm A}=\dot{I}_{\rm aB}-\dot{I}_{\rm ca}=-19-j32,91=38e^{-j120^0}$$
; $\dot{I}_{\rm B}=\dot{I}_{\rm BC}-\dot{I}_{\rm aB}=38+j0=38e^{j0^0}$; $\dot{I}_{\rm C}=\dot{I}_{\rm ca}-\dot{I}_{\rm BC}=-19+j32,91=38e^{j120^0}$ Действующие значения токов схемы:

$$I_1 = 0 \text{ A}; I_2 = 38 \text{ A}; I_3 = 38 \text{ A};$$

 $I_A = 38 \text{ A}; I_B = 38 \text{ A}; I_C = 38 \text{ A}$

Действующие значения линейных и фазных напряжений на нагрузке:

$$U_{aB} = 380 \text{ B}; \ U_{BC} = 380 \text{ B}; \ U_{ca} = 380 \text{ B};$$

2. Проверка баланса активных и реактивных мощностей

Определяем комплексную мощность источников Э.Д.С.:

$$\begin{split} \tilde{S}_{\text{HCT.}} &= \dot{E}_A \times \ddot{I}_A + \dot{E}_B \times \ddot{I}_B + \dot{E}_C \times \ddot{I}_C = \\ &= 220e^{j0^0} \times 38e^{j120^0} + 220e^{-j120^0} \times 38e^{j0^0} + 220e^{j120^0} \\ &\quad \times 38e^{-j120^0} = \\ &= 8360e^{j120^0} + 8360e^{-j120^0} + 8360e^{j0^0} = 0 + j0 \end{split}$$

Определяем комплексную мощность приёмников энергии:

$$\tilde{S}_{\Pi P.} = I_1^2 \times \underline{Z}_1 + I_2^2 \times \underline{Z}_2 + I_3^2 \times \underline{Z}_3 =$$

$$= 0 \times \infty + 38^2 \times (-j10) + 38^2 \times (j10) = 0 + j0$$

$$P_{\text{ист.}} = P_{\text{пр.}}$$

$$Q_{\text{ист.}} = Q_{\text{пр.}}$$

$$S_{\text{ист.}} = S_{\text{пр.}}$$

Баланс мощностей выполняется

ПРИМЕР №2

Исходная схема

Задание

- 1. Рассчитать фазные и линейные токи и напряжения на нагрузке.
 - 2. Проверить баланс активных и реактивных мощностей.

Исходные данные:

$$U_n=380 \text{ B}; \underline{Z}_1=10\text{-j}10; \underline{Z}_2=2\underline{Z}_1; \underline{Z}_3=0,5\underline{Z}_1; \underline{Z}_N=0$$

Решение

1. Расчёт фазных и линейных токов и напряжений на нагрузке

Определим комплексные значения фазных напряжений:

$$\dot{U}_{A} = \dot{U}_{1} = 220e^{j0^{\circ}}; \dot{U}_{B} = \dot{U}_{2} = 220e^{-j120^{\circ}}; \dot{U}_{C} = \dot{U}_{3} = 220e^{j120^{\circ}}$$

Определим комплексные значения линейных напряжений:

$$\dot{U}_{AB} = \dot{U}_{A} - \dot{U}_{B} = 380e^{j30^{\circ}}; \dot{U}_{BC} = \dot{U}_{B} - \dot{U}_{C} = 380e^{-j90^{\circ}}; \dot{U}_{CA} = \dot{U}_{C} - \dot{U}_{A} = 380e^{j150^{\circ}}$$

Определим комплексные значения фазных токов:

$$\dot{I}_{A} = \frac{\dot{U}_{A}}{\underline{Z}_{1}} = \frac{220e^{j0^{\circ}}}{10 - j10} = \frac{220e^{j0^{\circ}}}{14,14e^{-j45^{\circ}}} = 15,56e^{j45^{\circ}} = 11 + j11;$$

$$\dot{I}_{\rm B} = \frac{\dot{U}_{\rm B}}{\frac{\rm Z}{2}} = \frac{220e^{-j120^{\circ}}}{20 - j20} = \frac{220e^{-j120^{\circ}}}{28,28e^{-j45^{\circ}}} = 7,779e^{-j75^{\circ}}$$
$$= 2,013 - j7,514;$$

$$\dot{I}_{C} = \frac{\dot{U}_{C}}{\frac{Z}{3}} = \frac{220e^{j120^{\circ}}}{5 - j5} = \frac{220e^{j120^{\circ}}}{7,071 e^{-j45^{\circ}}} = 31,11e^{j165^{\circ}}$$
$$= -30,05 + j8,052$$

Определим комплексное значение тока в нейтральном проводе:

$$\dot{I}_N = \dot{I}_A + \dot{I}_B + \dot{I}_C = -17,04 + j11,54 = 20,58e^{j145,9^0}$$

Действующие значения токов схемы:

$$I_{\Delta} = 15,56 \text{ A}; I_{R} = 7,779 \text{ A}; I_{C} = 31,11 \text{ A}; I_{N} = 20,58 \text{ A}$$

Действующие значения фазных напряжений на нагрузке:

$$U_{\rm a} = 220 \text{ B}; U_{\rm g} = 220 \text{ B}; U_{\rm c} = 220 \text{ B}$$

Действующие значения линейных напряжений на нагрузке:

$$U_{ab} = 380 \text{ B}; U_{bc} = 380 \text{ B}; U_{ca} = 380 \text{ B}$$

2. Проверка баланса активных и реактивных мощностей

Определяем комплексную мощность источников Э.Д.С.

$$\tilde{S}_{\text{HCT.}} = \dot{E}_A \times \ddot{I}_A + \dot{E}_B \times \ddot{I}_B + \dot{E}_C \times \ddot{I}_C =$$

$$= 220e^{j0^{\circ}} \times 15,56e^{-j45^{\circ}} + 220e^{-j120^{\circ}} \times 7,779e^{j75^{\circ}} + 220e^{j120^{\circ}} \times 31,11e^{-j165^{\circ}} =$$

$$= 3423,2e^{-j45^{\circ}} + 1711,4e^{-j45^{\circ}} + 6844,2e^{-j45^{\circ}} =$$

=
$$2420,6 - j2420,6 + 1210,1 - j1210,1 + 4839,6 - j4839,6$$

= $8470,3 - j8470,3 = 11978,8e^{-j45^{\circ}}$

$$P_{\text{ИСТ}} = 8470,3$$
 Вт; $Q_{\text{ИСТ}} = -j8470,3$ Вар; $S_{\text{ИСТ}} = 11978,8$ ВА

Определяем комплексную мощность приёмников энергии:

$$\tilde{S}_{\Pi P.} = I_{A}^{2} \times \underline{Z}_{1} + I_{B}^{2} \times \underline{Z}_{2} + I_{C}^{2} \times \underline{Z}_{3} =$$

$$= 15,56^{2} \times (10 - j10) + 7,779^{2} \times (20 - j20) + 31,11^{2} \times (5 - j5)$$

$$=$$

$$= 2421,1 - j2421,1 + 1210,3 - j1210,3 + 4839,2 - j4839,2$$

$$= 8470,3 - j8470,3 = 11978,8e^{-j45^{0}}$$

$$P_{\Pi P.} = 8470,3 \text{ BT; } Q_{\Pi P.} = -j8470,3 \text{ Bap; } S_{\Pi P.} = 11978,8 \text{ BA}$$

$$P_{\text{UCT.}} = P_{\text{np.}}$$

$$Q_{\text{UCT.}} = Q_{\text{np.}}$$

$$S_{\text{MCT}} = S_{\text{np.}}$$

Баланс мощностей выполняется

7. Расчёт электрических цепей при несинусоидальных источниках энергии

Задание

- 1. Составить баланс активных и реактивных мощностей;
- 2. Определить мощность искажения

Вариант контрольной работы соответствует номеру строки из таблицы

ÖN) let	<i>положение</i> переключателей	жени. Зчате,	е	истописти	R_1	ωL	1/wC	\mathbb{R}^2	ωL ₂	1/ωC ₂	R_3	ωL	$1/\omega C_3$
	B_1	B_2	B_3	B_4		Θ	Θ	Θ	Σ O	Θ	Θ	Θ	Θ	ω O
Ŧ	2	2			$J_I(t)$ =10+5sin2 ωt -2sin(4 ωt +90°)	0	10	40	0	2	32	5	0	0
7	2	н	2	H	$J_1(t)=10+5sin2\omega t-2sin3\omega t$	10	0	0	0	2	45	10	2	20
ю	1	н	2	н	$e_1(t) = 10 + 10 \text{V/2} \sin(\omega t + 45^\circ) - 100 \text{V/2} \sin(3\omega t - 30^\circ)$	10	0	0	0	10	06	8	0	0
4	1	1	2	1	$e_1(t)$ =50+20 $\sqrt{2}$ sin3 ωt	100	0	0	0	40	360	8	0	0
ம	н	н	2	П	$e_1(t)$ =20+10 $\sqrt{2}$ sin ωt	10	0	0	0	10	10	8	0	0
9	₩	∺	H	H	$e_1(t)=100 \sin(\omega t-45^{\circ})-50 \sin(3\omega t+90^{\circ})$	50	10	06	0	30	30	50	0	0
7		↔	7		e ₁ (t)=100+200sin(wt-45°)- -100sin3wt	50	0	0	0	10	06	50	0	0
8	1	1	П	1	e,(t)=50-100v/2sin(ωt- 30°)+50v/2sin2ωt	10	0	0	0	10	10	8	0	0
6	1	1	2	1	e ₁ (t)=100+/5sinwt-50sin(2wt- 60°)	10	10	0	0	10	40	0	0	10
10	H	H	H	н	$e_1(t)=100+30\sin(\omega t+30^\circ)-60\sin(2\omega t-90^\circ)$	9	0	0	0	1	4	0	8	0

0	0	20	0	20	180	0	0	0	
0	0	0	0	0	20	0	0	0	
8	20	0	8	10	0	8	8	8	
					0			C ₂ =10	
40	30	0	0	0	30	1	ı	мкФ	
						L ₂ =10	L ₂ =		
20	0	20	М	20	30	мГн	2,5	ı	
							мГн		
0	0	0	72	0	0	0	0	0	
33	0		· ·	_	_			C ₁ =10	
33,33	06	0	18	0	0	1	ı	мкФ	
C	C				_	L ₁ =10	_		
10	10	0	2	0	0	мГн	0	1	
10	20	15	0	10	100	1000	100	100	
				• • •	#	10	T		
e ₁ (t)=100+75sin(wt-45°)+50sin2wt	$e_1(t) = 10 + 10 \sqrt{2} \sin(\omega t + 45^{\circ})$ 10 $\sqrt{2} \sin 3\omega t$	$e_1(t)$ =75sin ω t-50sin $2\omega t$	$e_1(t) = 100 sin wt - 50 sin (3 \omega t + 90^\circ) + + 20 sin (5 \omega t - 90^\circ)$	$e_1(t)$ =100+75sin ω t-50sin 2ω t	$e_1(t)$ =200sin ω t+150sin 2ω t++100sin 3ω t	$e_{I}(t)$ =120sin ω t+60sin 3ω t+30sin 5ω t; f =2 $\kappa\Gamma$ u; $i_{I}(5\omega t)$ =0; $\underline{Z}_{bc}(3\omega t)$ =0	$e_{I}(t) = 100sin\omega t + 50sin3\omega t;$ $U_{RI}(t) = 100sin\omega t; f = 50 \Gamma t$	$e_1(t) = 5 + 3 sin(1000t + 30^\circ) + 2 sin5000t;$ участок ab-резонанс 1 гармоники участок bc-резонанс 5 гармоники	
#	1	-	1	∺	Ħ	+	+	H	
2	H	1	3	1	H	↔	5	7	
-	7	-		1		7		7	
1	Ħ	1	T	1	Ħ	11	1	H	
11	12	13	14	15	16	17	18	19	

0	30	120	4	4	4	4	0	0
9	0	0	1	1	H	1	9	ъ
0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	4
0	30	30	т	т	т	3	0	1
0	10	10	9	10	10	10	0	0
0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0
10	10	10	9	10	10	10	10	9
$J_1(t)=10+6\sin(\omega t+30^\circ)$ $e_2(t)=20+20\sin(2\omega t+45^\circ)$	$J_1(t) = 5 + 10 \sin(1000 t + 30^{\circ})$	e ₁ (t)=50+100sin(2ωt-45°)	$J_I(t) = 10 + 6 \sin(\omega t + 30^\circ) + + 3 \sin(2\omega t + 90^\circ)$	$e_{I}(t)=100+60\sin(\omega t+30^{\circ})+$ +30sin(2 $\omega t+90^{\circ}$)	$J_I(t) = 10 + 6 \sin(\omega t + 30^\circ) + + 3 \sin(2\omega t + 90^\circ)$	$e_1(t) = 100 + 30 \sin(2\omega t + 90^\circ)$	$e_1(t)=100+60\sin(\omega t-30^\circ);$ $e_2(t)=10 B$	$e_1(t) = 100 + 60 \sin(\omega t + 30^{\circ});$ $e_2(t) = -20 - 30 \sin(2\omega t + 90^{\circ})$
- 5	1		7	+	+	1	7	7
			m	m	3	7	H	
			H		1	H	H	
20 2	21 2	22 1	23 2	24 1	25 2	26 1	27 1	28 1

ПРИМЕР РАСЧЁТА

Исходная схема

Задание

- 1. Составить баланс активных и реактивных мощностей;
- 2. Определить мощность искажения

Исходные данные:

$$R_1 = 10 \text{ Om}; X_{L1}^{(1)} = 2 \text{ Om}; X_{C2}^{(1)} = 6 \text{ Om}; X_{L3}^{(1)} = 6 \text{ Om}$$

 $e_1(t) = 30 \sin(\omega t - 15^\circ) + 20 \sin(2\omega t + 45^\circ); E_2 = 10 \text{ B}$

Решение

Схема замещения в комплексной форме

Расчёт выполняется для каждой составляющей источников энергии в отдельности.

Полное решение задачи выполняется методом наложения.

Для расчёта от действия постоянной составляющей источника ЭДС E_2 исходная электрическая цепь преобразуется к виду:

$$I_1 = I_3 = -\frac{E_2}{R_1} = -\frac{10}{10} = -1 \text{ A}$$

$$I_2 = 0$$

Для расчёта электрической цепи от действия каждой гармоники источника ЭДС электрическая цепь преобразуется к виду:

Комплексные сопротивления электрической цепи и источник ЭДС при действии основной (первой) гармоники (k=1) равны:

$$Z_1^{(1)} = R_1 + jX_{L_1}^{(1)} = 10 + j2 = 10, 2e^{j11,3^0}$$

$$Z_2^{(1)} = 0 - jX_{C_2}^{(1)} = 0 - j6 = 6e^{-j90^0}$$

$$Z_3^{(1)} = 0 + jX_{L_3}^{(1)} = 0 + j6 = 6e^{j90^0}$$

$$\dot{E}_{1m}^{(1)} = 30e^{-j15^0}$$

В результате преобразования электрической цепи получим эквивалентное сопротивление относительно источника ЭДС:

$$Z_{\rm 3KB}^{(1)} = Z_{1}^{(1)} + Z_{23}^{(1)} = Z_{1}^{(1)} + \frac{Z_{2}^{(1)} \times Z_{3}^{(1)}}{Z_{2}^{(1)} + Z_{3}^{(1)}} = 10 + j2 + \frac{6e^{-j90^{\circ}} \times 6e^{j90^{\circ}}}{0 - j6 + 0 + j6} = \infty$$

На участке ab наблюдается резонанс токов, в результате чего на данном участке возникает разрыв цепи и схема приобретает следующий вид:

Комплексные сопротивления электрической цепи и источник ЭДС при действии второй гармоники (k=2) равны:

$$Z_1^{(2)} = R_1 + jX_{L_1}^{(2)} = 10 + j4 = 10,77e^{j21,8^0}$$

$$\underline{Z}_{2}^{(2)} = 0 - jX_{C_{2}}^{(1)} = 0 - j3 = 3e^{-j90^{0}}$$

$$\underline{Z}_{3}^{(2)} = 0 + jX_{L_{3}}^{(1)} = 0 + j12 = 12e^{j90^{0}}$$

$$\dot{E}_{1m}^{(2)} = 20e^{j45^{0}}$$

В результате преобразования электрической цепи получим эквивалентное сопротивление относительно источника ЭДС:

$$\begin{split} Z_{\rm 3KB}^{(2)} &= Z_1^{(2)} + Z_{23}^{(2)} = Z_1^{(2)} + \frac{Z_2^{(2)} \times Z_3^{(2)}}{Z_2^{(2)} + Z_3^{(2)}} = 10 + j4 + \frac{3e^{-j90^0} \times 12e^{j90^0}}{0 - j3 + 0 + j12} \\ &= 10 + j4 + \frac{36e^{j0^0}}{0 + j9} = \\ &= 10 + j4 + \frac{36e^{j0^0}}{0 + j9} = 10 + j4 + \frac{36e^{j0^0}}{9e^{j90^0}} = 10 + j4 + 4e^{-j90^0} = 10 + j4 - j4 \\ &= 10 \, \mathrm{Om} \end{split}$$

Комплексные значения токов в каждой ветви схемы определятся:

$$\begin{split} I_{m_1}^{(2)} &= \frac{\dot{E}_{1m}^{(2)}}{\underline{Z}_{3KB}^{(2)}} = \frac{20e^{j45^0}}{10} = 2e^{j45^0} \\ \dot{U}_{abm}^{(2)} &= I_{m_1}^{(2)} \times \underline{Z}_{23}^{(2)} = 2e^{j45^0} \times 4e^{-j90^0} = 8e^{-j45^0} \\ I_{m_2}^{(2)} &= \frac{\dot{U}_{abm}^{(2)}}{\underline{Z}_{2}^{(1)}} = \frac{8e^{-j45^0}}{3e^{-j90^0}} = 2,667e^{j45^0} \\ I_{m_3}^{(2)} &= \frac{\dot{U}_{abm}^{(2)}}{\underline{Z}_{2}^{(1)}} = \frac{8e^{-j45^0}}{12e^{j90^0}} = 0,6667e^{-j135^0} \end{split}$$

Применяем метод наложения и определяем результирующие значения мгновенных токов в ветвях электрической цепи:

$$i_1(t) = I_1^{(0)} + i_1^{(1)}(t) + i_1^{(2)}(t)$$

$$i_1(t) = -1 + 2\sin(2\omega t + 45^0)$$

$$i_2(t) = i_2^{(1)}(t) + i_2^{(2)}(t)$$

$$i_2(t) = 5sin (\omega t + 75^0) + 2,667sin (2\omega t + 45^0)$$
$$i_3(t) = I_3^{(0)} + i_3^{(1)}(t) + i_3^{(2)}(t)$$
$$i_3(t) = -1 + 5sin (\omega t - 105^0) + 0,6667sin (2\omega t - 135^0)$$

Составляем баланс активных и реактивных мощностей.

Активная и реактивная мощности источников энергии от каждой из гармоник:

$$P_{\mu CT}^{(0)} = E_2 \times I_3^{(0)} = 10 \times 1 = 10 \text{ BT}$$

$$\tilde{S}_{\mu CT}^{(1)} = \dot{E}_1^{(1)} \times \ddot{I}_1^{(1)} = \frac{30}{\sqrt{2}} e^{-j15^0} \times 0 = 0 + j0$$

$$\tilde{S}_{\mu CT}^{(2)} = \dot{E}_1^{(2)} \times \ddot{I}_1^{(2)} = \frac{20}{\sqrt{2}} e^{j45^0} \times \frac{2}{\sqrt{2}} e^{-j45^0} 1 = 20 e^{j0^0} = 20 + j0$$

$$P_{\mu CT} = P_{\mu CT}^{(0)} + P_{\mu CT}^{(1)} + P_{\mu CT}^{(2)} = 30 \text{ B7}$$

$$Q_{\mu CT} = Q_{\mu CT}^{(1)} + Q_{\mu CT}^{(2)} = 0 \text{ Bap}$$

Активная и реактивная мощности приёмников энергии от каждой из гармоник:

$$\begin{split} P_{\text{np}}^{(0)} &= \left[I_{1}^{(0)}\right]^{2} \times R_{1} = 1 \times 10 = 10 \text{ BT} \\ \tilde{S}_{\text{np}}^{(1)} &= \left[I_{1}^{(1)}\right]^{2} \times \underline{Z}_{1}^{(1)} + \left[I_{2}^{(1)}\right]^{2} \times \underline{Z}_{2}^{(1)} + \left[I_{3}^{(1)}\right]^{2} \times \underline{Z}_{3}^{(1)} = \\ \tilde{S}_{\text{np}}^{(1)} &= \left[0\right]^{2} \times (10 + j2) + \left[\frac{5}{\sqrt{2}}\right]^{2} \times (0 - j6) + \left[\frac{5}{\sqrt{2}}\right]^{2} \times (0 + j6) = \\ \tilde{S}_{\text{np}}^{(1)} &= 0 + \left(0 - j75\right) + \left(0 + j75\right) = 0 + j0 \\ \tilde{S}_{\text{np}}^{(2)} &= \left[I_{1}^{(2)}\right]^{2} \times \underline{Z}_{1}^{(2)} + \left[I_{2}^{(2)}\right]^{2} \times \underline{Z}_{2}^{(2)} + \left[I_{3}^{(2)}\right]^{2} \times \underline{Z}_{3}^{(2)} = \\ \tilde{S}_{\text{np}}^{(2)} &= \left[\frac{2}{\sqrt{2}}\right]^{2} \times (10 + j4) + \left[\frac{2,667}{\sqrt{2}}\right]^{2} \times (0 - j3) + \left[\frac{0,6667}{\sqrt{2}}\right]^{2} \times (0 + j2) = \\ + j12) &= \end{split}$$

$$\tilde{S}_{\text{mp}}^{(2)} = (20 + j8) + (0 - j10,67) + (0 + j2,667) = 20 + j0$$

$$P_{\text{mp}} = P_{\text{mp}}^{(0)} + P_{\text{mp}}^{(1)} + P_{\text{mp}}^{(2)} = 30 B7$$

$$Q_{\text{mp}} = Q_{\text{mp}}^{(1)} + Q_{\text{mp}}^{(2)} = 0 Bap$$

$$P_{\text{MCT}} = P_{\text{mp}}; Q_{\text{MCT}} = Q_{\text{mp}}$$

8. Аналитическое определение первичных параметров четырехполюсников

Задание

- 1. Произвести расчёт входных сопротивлений заданного четырехполюсника в режимах х.х., о.х.х., к.з., о.к.з.
- 2. Произвести расчёт коэффициента <u>А</u> по формулам:

$$\underline{A} = \sqrt{\frac{\underline{Z}_{1\kappa} \times \underline{Z}_{1\kappa}}{\underline{Z}_{2\kappa} \mathbf{Q}_{1\kappa} - \underline{Z}_{1\kappa}}}$$

$$\underline{A} = \sqrt{\frac{\underline{Z}_{1x}}{\underline{Z}_{2x} - \underline{Z}_{2k}}}$$

3. Произвести расчёт остальных коэффициентов по формулам:

$$\underline{B} = \underline{A} \cdot \underline{Z}_{2K} \qquad C = \underline{A} / \underline{Z}_{1X}$$

$$\underline{D} = \underline{A} \cdot \frac{\underline{Z}_{2K}}{\underline{Z}_{1K}} = \underline{A} \cdot \frac{\underline{Z}_{2X}}{\underline{Z}_{1X}}$$

4. Произвести проверку выполненных расчётов по формуле:

$$\underline{A} \cdot \underline{D} - \underline{B} \cdot \underline{C} = 1$$

Исходные данные:

<u>Z</u> ₁	<u>Z</u> ₂	<u>Z</u> ₃	<u>Z</u> ₄	<u>Z</u> 5	<u>Z</u> 6
10 + j0	0 – j10	0 + j20	10 – j10	20 + j20	20 + j0

Вариант контрольной работы соответствует номеру схемы

ПРИМЕРЫ РАСЧЁТА

Пример №1

Исходная схема

- 1.Произвести расчёт входных сопротивлений заданного четырехполюсника в режимах: x.x.(1x), к.з.(1к), о.к.з.(2x)
- 2.Произвести расчёт коэффициентов A,B,C и D по соответствующим формулам.
- 3. Проверить выполненные расчёты по формуле: $A \times D B \times C = 1$

Исходные данные:

R_1	R_2	R ₃	R ₄
200	100	300	500

Решение

Применим метод эквивалентных преобразований

Режим холостого хода

$$R_{23} = R_2 + R_3 = 400 \, \text{Om}$$

$$R_{\rm ab} = \frac{R_{23} \times R_2}{R_{23} + R_2} = 80 \text{ Om}$$

$$R_{4ab} = R_{ab} + R_4 = 580 \text{ Om}$$

$$R_{\text{x.x.}} = R_{1x} = \frac{R_{4\text{BB}} \times R_1}{R_{4\text{BB}} + R_1} = 148,7 \text{ Om}$$

Режим короткого замыкания

$$R_{ab} = R_2/2 + R_4 = 550 \text{ Om}$$

Режим обратного короткого замыкания

$$R_{24} = \frac{R_2 \times R_4}{R_2 + R_4} = 83,33 \text{ Om}$$

$$R_{\rm ab}=R_{24}+R_2=183,3~{
m Om}$$

$$R_{\text{o.k.3.}} = R_{2\text{k}} = \frac{R_{\text{ab}} \times R_{3}}{R_{\text{ab}} + R_{3}} = 113,8 \text{ Om}$$

$$A = \sqrt{\frac{R_{1\text{k}} \times R_{2\text{k}}}{R_{2\text{k}}} R_{1\text{k}} - R_{1\text{k}}}$$

A = 9,667; **B** = A ×
$$R_{o.K.3}$$
 = 1100;
C = A / $R_{x.x.}$ = 0,06500; **D** = A × $\frac{R_{o.K.3.}}{R_{K.3.}}$ = 7,5

Проверка выполненных расчётов по формуле:

$$A \times D - B \times C = 1$$

9,667×7,5 - 1100×0,065 = 1

Пример №2

Исходная схема

Задание

Используя основные уравнения четырёхполюсника, рассчитать ток нагрузки I_2 , если сопротивление нагрузки $\underline{Z}_2 = 60 + j30$ Ом, а напряжение на входе $U_1 = 220$ В.

Определить коэффициенты A, B, C, D несимметричного четырёхполюсника.

Исходные данные:

$$x_L = 80 \text{ OM}, x_C = 40 \text{ OM}, r_3 = r_4 = 40 \text{ OM}.$$

Решение

Расчёт коэффициентов выполним с помощью входных сопротивлений

$$\underline{Z}_{1X} = r_4 + \frac{jx_L(r_3 - jx_C)}{jx_L + r_3 - jx_C} = 40 + \frac{j80(40 - j40)}{j80 + 40 - j40} = 40 + 80 = 120 \text{ Om}$$

$$\underline{Z}_{1\kappa} = \frac{\left(\frac{r_3 \times r_4}{r_3 + r_4} + jX_L\right) \times (-jX_C)}{\frac{r_3 \times r_4}{r_3 + r_4} + jX_L - jX_C} = \frac{\left(\frac{40 \times 40}{40 + 40} + j80\right) \times (-j40)}{\frac{40 \times 40}{40 + 40} + j80 - j40} =$$

$$=\frac{(20+j80)\times(-j40)}{20+j80-j40}=\frac{(20+j80)\times(-j40)}{20+j40}=\frac{82,46e^{j76^0}\times40e^{-j90^0}}{44,72e^{j63,4^0}}=$$

$$= \frac{3298,4e^{-j14^0}}{44,72e^{j63,4^0}} = 73,76e^{-j77,4^0} = 16,09 - j71,98$$

$$\underline{Z}_{2X} = r_4 + \frac{r_3(jx_L - jx_C)}{r_3 + jx_L - jx_C} = 40 + \frac{40(j80 - j40)}{40 + j80 - j40} = 60 + j20 = 63,25e^{j18,44^0} \text{ Om}$$

$$\underline{Z}_{2K} = \frac{-jx_C \cdot \left(r_3 + \frac{r_4 j x_L}{r_4 + j x_L}\right)}{-jx_C + r_3 + \frac{r_4 j x_L}{r_4 + j x_L}} = \frac{-j40 \left(40 + \frac{40 \cdot j80}{40 + j80}\right)}{-j40 + 40 + \frac{40 \cdot j80}{40 + j80}} = 20 - j33,33 = 38,87e^{-j59,04^0}$$

$$\underline{A} = \sqrt{\frac{\underline{Z}_{1X}}{\underline{Z}_{2X}} \cdot \underline{A} = 1, 2 - \frac{120}{j0,6} \frac{120 - 20 + j33,33}{j20 - 20 + j33,33}} = 1,342e^{-j26,57^{\circ}}$$

$$\underline{B} = \underline{Z}_{2K} \cdot \underline{A} = 38,87 \cdot e^{-59,04^{\circ}} \cdot 1,342 \cdot e^{-526,57^{\circ}} = 52,16 \cdot e^{-585,6^{\circ}} = 4 - 552$$

$$\underline{C} = \frac{1}{\underline{Z}_{1X}} \cdot \underline{A} = \frac{1,342e^{-j56,57^{\circ}}}{120} = 0,0112e^{-j26,57^{\circ}} = 0,01 - j0,005 \quad \text{Cm}$$

$$\underline{D} = \frac{\underline{Z}_{2X}}{\underline{Z}_{1X}} \cdot \underline{A} = \frac{63,25e^{j18,44^{\circ}}}{120} \cdot 1,342e^{-j26,57^{\circ}} = 0,707e^{-j8,13^{\circ}} = 0,7 - j0,1$$

Первое основное уравнение

$$\mathring{\mathcal{U}}_1 = \underline{\mathcal{A}} \cdot \mathring{\mathcal{U}}_2 + \underline{\mathcal{B}} \cdot \dot{I}_2 = \underline{\mathcal{A}} \cdot \dot{I}_2 \cdot \underline{\mathcal{Z}}_2 + \underline{\mathcal{B}} \cdot \dot{I}_2$$
, откуда

$$\dot{I}_2 = \frac{\dot{U}_1}{\underline{AZ}_2 + \underline{B}} = \frac{220}{(1,2 - j0,6)(60 + j30) + 4 - j52} =$$

$$= 2,05e^{j29^0} A$$

9. Вторичные параметры четырехполюсников

Задание

- 1. Рассчитать параметры четырехполюсника: Z_{C1} , Z_{C2} и ү.
- 2. Рассчитать мгновенные значения входных напряжения и тока при $Z_H=Z_{C2}$; $u_2=200$ sin($\omega t+30^\circ$).
- 3. Определить входное сопротивление четырехполюсника через входные напряжение и ток

Вариант контрольной работы соответствует номеру схемы

$$X_1 = X_2 = X_3 = X_4 = 10 \text{ Om}$$

$$X_1=X_2=10$$
 Om; $X_3=X_4=10$
Om

$$X_1 = X_3 = 10 \text{ OM};$$

 $X_5 = X_4 = 10 \text{ OM}; R_2 = 10$
 OM

$$X_1 = X_2 = X_3 = X_4 = X_5 = 10 \text{ Om}$$

$$X_1=X_2=10$$
 Om; $R_4=10$ Om;

$$X_1 = X_2 = X_3 = X_4 = X_5 = 10 \text{ OM}$$

Х₃=20 Ом

$$R_1 = R_2 = 10 \text{ OM};$$

 $R_3 = R_4 = 10 \text{ OM}$

$$X_1=X_2=10$$
 Om; $X_3=20$ Om;

$$X_4=30$$
 Om; $X_5=40$ Om

$$X_1 = X_2 = 10 \text{ OM};$$

 $R_2 = R_4 = 10 \text{ OM}; X_3 = 30$
 OM

$$R_1=R_4=10$$
 Om; $X_1=X_2=10$
Om; $X_3=20$ Om

$$X_1$$
=40 Om; X_2 = X_3 =10 Om;

$$X_1=X_4=10 \text{ OM}; R_1=R_2=R_3=10 \text{ OM}$$

$$X_1=X_2=2$$
 OM; $X_4=R_3=2$
OM

$$X_1=2 \text{ OM}; X_3=4 \text{ OM};$$

 $R_2=R_4=2 \text{ OM}$

$$R_1=10$$
 OM; $X_2=X_3=10$ OM; $X_4=5$ OM

$$R_1=R_5=10$$
 Om; $X_2=X_3=10$ Om;

$$R_1=10 \text{ Om}; X_2=20 \text{ Om}; X_3=10 \text{ Om}$$

$$X_1=X_2=10$$
 Om; $X_3=X_4=20$
Om

$$X_1 = X_2 = X_3 = X_4 = 10 \text{ OM};$$

 $X_5 = 20 \text{ OM}$

$$X_1=X_2=10$$
 OM; $X_3=X_4=10$
OM

$$X_1=10 \text{ OM}; X_2=20 \text{ OM}; X_3=40 \text{ OM}$$

$$X_1=X_2=10$$
 Om; $X_3=30$ Om

ПРИМЕР РАСЧЁТА

Исходная схема

Задание

Для приведённой схемы определить:

- параметры четырехполюсника: Z_{C1} , Z_{C2} и ү;
- мгновенные значения входных напряжения и тока при $Z_H = Z_{C2}$; $u_2 = 200 sin(\omega t + 30^\circ)$;

 входное сопротивление четырехполюсника через входные и напряжение и ток

Исходные данные:

$$x_L = 80 \text{ OM}, x_C = 40 \text{ OM}, r_3 = r_4 = 40 \text{ OM}.$$

Решение

Для данного четырехполюсника в примере №2 раздела 8.2 определены сопротивления в режимах холостого хода и короткого замыкания:

$$\underline{Z}_{1\kappa} = 73,76e^{-j77,4^{0}} = 16,09 - j71,98$$

$$\underline{Z}_{1\kappa} = 120e^{j0^{0}} = 120 + j0$$

$$\underline{Z}_{2\kappa} = 38,87e^{-j59^{0}} = 20 - j33,33$$

$$\underline{Z}_{2\kappa} = 63,25e^{j18,4^{0}} = 60 + j20$$

Определим вторичные параметры четырёхполюсника по соотношениям:

характеристические сопротивления
$$\underline{Z}_{1c} = \sqrt{\underline{Z}_{1x} \times \underline{Z}_{1K}}; \underline{Z}_{2c} = \sqrt{\underline{Z}_{2x} \times \underline{Z}_{2k}}$$
 \checkmark коэффициент распространения
$$\gamma = \frac{\ln{(\frac{1+th\gamma}{1-th\gamma})}}{2}$$

$$th\gamma = \sqrt{\frac{Z_{1x}}{Z_{1x}}} = \sqrt{\frac{Z_{2x}}{Z_{2x}}}$$
 где

$$\frac{Z_{1c} = \sqrt{120e^{j\cdot0^{\circ}} \times 73,76e^{-j77,4^{\circ}}} = \sqrt{8851,2e^{-j77,4^{\circ}}} = 94,08e^{-j38,7^{\circ}} = 73,42 - j58,82$$

$$\frac{Z_{2c} = \sqrt{63,25e^{j\,18,4^{\circ}} \times 38,87e^{-j59^{\circ}}} = \sqrt{2458,5e^{-j40,6^{\circ}}} = 49,58e^{-j20,3^{\circ}} = 46,5 - j17,2$$

$$th\gamma = \sqrt{\frac{73,76e^{-j77,4^0}}{120e^{j0^0}}} = \sqrt{0,615e^{-j77,4^0}} = 0,784e^{-j38,7^0} = 0,612 - j0,49$$

$$\gamma = \frac{\ln\frac{1+0,612-j0,49}{1-0,612+j0,49}}{2} = \frac{\ln\frac{1,612-j0,49}{0,388+j0,49}}{2} = \frac{\ln\frac{1,685e^{-j16,9^0}}{0,625e^{j51,6^0}}}{2} = \frac{\ln\frac{2,696e^{-j68,5^0}}{2}}{2} = \frac{\ln2,696+\ln e^{-j68,5^0}}{2} = \frac{0,9918-j68,5^0}{2} = \frac{0,9918-j68,5^0}{2}$$

$$\gamma = 0.4959 - j0.5975$$

Для определения мгновенных значений входных напряжения и тока при $Z_H = Z_{C2}$ и $u_2 = 200 sin(\omega t + 30^\circ)$ следует воспользоваться системой уравнений вида:

$$\begin{split} \dot{U}_{1m} &= \sqrt{\frac{Z_{1c}}{Z_{2c}}} \dot{U}_{2m} \, e^{\gamma}; l_{1m} = \sqrt{\frac{Z_{2c}}{Z_{1c}}} l_{2m} \, e^{\gamma} \\ \dot{U}_{2m} &= 200 \, e^{j \, 30^0}; \\ l_{2m} &= \frac{\dot{u}_{2m}}{\underline{Z}_{1}} = \frac{\dot{u}_{2m}}{\underline{Z}_{2c}} = \frac{200 \, e^{j \, 30^0}}{49,58 e^{-j \, 20,3^0}} = 4,034 \, e^{j \, 50,3^0} \\ \dot{U}_{1m} &= \sqrt{\frac{94,08 e^{-j \, 39,7^0}}{49,58 e^{-j \, 20,3^0}}} \, 200 e^{j \, 30^0} e^{(0.4959-j0.5975)} = \\ &= 1,378 e^{-j \, 9,2^0} \times 200 e^{j \, 30^0} e^{0.4959} e^{-j \, 34,3^0} = \\ &= 452,5 e^{-j \, 13,5^0}; u_1(t) = 452,5 sin \, (\omega t - 13,5^0) \\ l_{1m} &= \sqrt{\frac{49,58 e^{-j \, 20,3^0}}{94,08 e^{-j \, 38,7^0}}} \, 4,034 e^{j \, 50,2^0} e^{(0.4959-j0.5975)} = \\ &= 0,7257 e^{j \, 9,2^0} \times 4,034 e^{j \, 50,2^0} e^{(0.4959-j0.5975)} = \\ &= 4,807 e^{j \, 25,2^0}; i_1(t) = 4,807 sin \, (\omega t + 25,2^0) \end{split}$$

Определим входное сопротивление четырехполюсника и коэффициент распространения через входные и выходные напряжения и токи при помощи соотношений:

$$\underline{Z}_{\text{BX}} = \frac{\dot{U}_{\text{1m}}}{\dot{I}_{\text{1m}}} = \frac{452,5e^{-j13,5^{0}}}{4,807e^{j25,2^{0}}} = 94,1e^{-j38,7^{0}} = \underline{Z}_{\text{1c}}$$

Выполнение равенства $\underline{Z}_{Bx} = \underline{Z}_{1c}$ свидетельствует о достоверности полученных результатов расчётов

10. Переходные процессы в электрических цепях с одним накопителем энергии

Задание

- 1. Произвести расчёт всех переходных токов и напряжений на реактивных элементах заданной электрической цепи для следующих моментов времени: a) t = 0; b) $t = \infty$.
- 2. Качественно построить графики изменения найденных в п.1 токов и напряжений в функции времени.

Исходные данные:

<i>U,</i> B	<i>R</i> ₁ , OM	<i>R</i> ₂ , O _M	<i>R</i> ₃ , O _M	<i>R</i> ₄ , Ом	<i>J,</i> A
300	10	20	30	40	1

Вариант контрольной работы соответствует номеру схемы

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Задание

1. Рассчитать значения всех переходных токов и напряжение на реактивном элементе для моментов времени:

а)
$$t = 0_{-}$$
; б) $t = 0$; в) $t = \infty$.

2. Качественно построить графики изменения найденных в п.1 токов и напряжения в функции времени

Исходные данные:

<i>U,</i> B	<i>R</i> ₁ , Om	<i>R</i> ₂ , O _M	<i>R</i> ₃ , O _M
300	10	20	30

Решение

Рассмотрим заданную схему для момента времени t=0. Этот момент времени соответствует докоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

В результате анализа полученной схемы определяем:

$$i_1(0_{_}) = i_2(0_{_}) = \frac{U}{R_3} = 10 \text{ A}; i_3(0_{_}) = 0$$

$$u_C(0_{_}) = U = 300 \text{ B}$$

Рассмотрим заданную схему для момента времени $t = \infty$. Этот момент времени соответствует послекоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

В результате анализа полученной схемы определяем принуждённые составляющие токов и напряжения:

$$i_{1\text{пр}} = i_{2\text{пр}} = \frac{U}{R_1 + R_2 + R_3} = 5 \text{ A}; i_{3\text{пр}} = 0$$
 $u_{C\text{пр}} = i_{2\text{пр}} \times (R_2 + R_3) = 250 \text{ B}$

Рассмотрим заданную схему для момента времени t=0.

Составим систему уравнений переходного процесса для мгновенных значений токов и напряжения на конденсаторе.

$$i_1 = i_2 + i_3$$
 (1)
 $i_1 R_1 + i_2 (R_2 + R_3) = U$ (2)

$$u_C - i_2(R_2 + R_3) = 0$$
 (3)

Из уравнения (3) выразим i_2 :

$$i_2 = \frac{u_C}{(R_2 + R_3)}$$

Для t = 0 получим:

$$i_2(0) = \frac{u_C(0)}{(R_2 + R_3)}$$

С учётом II закона коммутации $u_c(0) = u_c(0_-) = 300 \ B$

$$i_2(0) = 6 \text{ A}$$

Из уравнения (2) выразим $i_1(0)$:

$$i_1(0) = \frac{U - i_2(0) \times (R_2 + R_3)}{R_1} = 0 \text{ A}$$

Из уравнения (1) выразим $i_3(0)$:

$$i_3(0) = i_1(0) - i_2(0) = -6 \text{ A}$$

Итоговая таблица результатов

	t=0_	<i>t</i> =0	<i>t</i> =∞
<i>i</i> ₁ ,A	10	0	5
i ₂ ,A	10	6	5
<i>i</i> ₃ ,A	0	-6	0
<i>u</i> _c ,B	300	300	250

Качественно графики изменения найденных токов и напряжения в функции времени могут быть представлены следующим образом:

ПРИМЕР №2

Исходная схема

Задание

1. Рассчитать значения всех переходных токов и напряжение на реактивном элементе для моментов времени:

a)
$$t = 0_{-}$$
; 6) $t = 0$; B) $t = \infty$.

2. Качественно построить графики изменения найденных в п.1 токов и напряжения в функции времени

Исходные данные:

<i>J,</i> A	<i>R</i> ₁ , Om	<i>R</i> ₂ , Om	<i>R</i> ₃ , Om	<i>R</i> ₄, Oм
1	10	20	30	40

Решение

Рассмотрим заданную схему для момента времени t=0. Этот момент времени соответствует докоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

$$R_{12} = \frac{R_1 \times R_2}{R_1 + R_2} = 6,667 \text{ Om}$$

$$R_{123} = R_{12} + R_3 = 36,67 \text{ Om}$$

$$R_{\scriptscriptstyle \mathrm{9KB}} = rac{R_{\scriptscriptstyle 123} \times R_{\scriptscriptstyle 4}}{R_{\scriptscriptstyle 123} + R_{\scriptscriptstyle 4}} = 19,\!13~\mathrm{OM}$$

$$U_{\text{aB}} = J \times R_{\text{SKB}} = 19,13 \text{ B}$$

$$i_3(0_{_}) = \frac{U_{aB}}{R_{123}} = 0,522 \text{ A}$$

$$i_4(0_{_}) = \frac{U_{aB}}{R_4} = 0,478 \text{ A}$$

$$U_{12} = i_3(0_{_}) \times R_{12} = 3,48 \text{ B}$$

$$i_1(0_{-}) = \frac{U_{12}}{R_1} = 0.348 \,\text{A}$$

$$i_2(0_{-}) = \frac{U_{12}}{R_2} = 0.174 \text{ A}$$

$$i_L(0) = J - i_1(0) = 0,652 \text{ A}$$

$$u_L(0) = 0 B$$

Рассмотрим заданную схему для момента времени $t = \infty$. Этот момент времени соответствует послекоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

В результате анализа полученной схемы определяем принуждённые составляющие токов и напряжения. Так как переключатель зашунтировал источник тока, то все токи и напряжение на катушке имеют следующие значения:

$$i_{1\pi p} = 0; i_{2\pi p} = 0;$$

 $i_{3\pi p} = 0; i_{4\pi p} = 0; u_{L\pi p} = 0$

Рассмотрим заданную схему для момента времени t=0.

Составим систему уравнений переходного процесса для мгновенных значений токов и напряжения на катушке.

$$J = i_1 + i_L \quad (1)$$

$$i_L = i_4 + i_2 \quad (2)$$

$$J = i_3 + i_4 \quad (3)$$

$$u_L + i_2 R_2 - i_1 R_1 = 0 \quad (4)$$

$$i_4 R_4 - i_3 R_3 - i_2 R_2 = 0 \quad (5)$$

Из уравнения (1) получим значение тока \dot{i}_2 :

$$i_1(0) = J - i_L(0)$$

С учётом I закона коммутации $i(0)=i(0_{-})=0,652$ A

$$i_1(0) = 0.348 \text{ A}$$

Выразим из уравнения (2) ток i_4 :

$$i_4 = i_L - i_2$$
 (6)

Выразим из уравнения (3) ток i_3 и подставим в него уравнение (6):

$$i_3 = J - i_4 = J - i_L + i_2$$
 (7)

Уравнения (6) и (7) подставим в уравнение (5):

$$(i_L - i_2)R_4 - (J - i_L + i_2)R_3 - i_2R_2 = 0$$

$$i_L R_4 - i_2 R_4 - JR_3 + i_L R_3 - i_2 R_3 - i_2 R_2 = 0$$

$$i_L (R_4 + R_3) - i_2 (R_2 + R_3 + R_4) - JR_3 = 0$$

$$i_L (R_4 + R_3) - JR_3 = i_2 (R_2 + R_3 + R_4)$$

$$i_2(0) = \frac{i_L(0)(R_4 + R_3) - JR_3}{R_2 + R_3 + R_4}$$

$$i_2(0) = 0,174 \text{ A}$$

При помощи уравнения (2) определим значение $i_4(0)$:

$$i_4(0) = i_L(0) - i_2(0) = 0,478 \text{ A}$$

При помощи уравнения (3) определим значение $i_3(0)$:

$$i_3(0) = J - i_4(0) = 0,522 \text{ A}$$

При помощи уравнения (4) определим значение $u_L(0)$:

$$u_L(0) = i_1(0)R_1 - i_2(0)R_2 = 0$$
 B

Итоговая таблица результатов

	t=0_	<i>t</i> =0	<i>t</i> =∞
<i>i</i> ₁ ,A	0,348	0,348	0
<i>i</i> ₂ ,A	0,174	0,174	0
<i>i</i> ₃ ,A	0,522	0,522	0
<i>i</i> ₄ ,A	0,478	0,478	0
<i>i</i> ∟,A	0,652	0,652	0
<i>u</i> _L ,B	0	0	0

Качественно графики изменения найденных токов и напряжения в функции времени могут быть представлены следующим образом:

11. Переходные процессы в электрических цепях с двумя накопителями энергии

Задание

- 1. Получить в общем виде неоднородное дифференциальное уравнение относительно напряжения на конденсаторе.
- 2. Произвести расчёт всех переходных токов и напряжений на реактивных элементах заданной электрической цепи для следующих моментов времени: a) t = 0; б) t = 0; в) $t = \infty$

Исходные данные:

<i>U,</i> B	<i>R</i> ₁ , Om	<i>R</i> ₂ , Om	<i>R₃,</i> Ом	<i>R</i> ₄ , Ом	<i>J,</i> A
300	10	20	30	40	1

Вариант контрольной работы соответствует номеру схемы

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Задание

- 1. Получить в общем виде неоднородное дифференциальное уравнение относительно напряжения на конденсаторе.
- 2. Произвести расчёт всех переходных токов и напряжений на реактивных элементах заданной электрической цепи для следующих моментов времени: a) t = 0; б) t = 0; в) $t = \infty$

Исходные данные:

<i>E,</i> B	<i>R</i> ₁ , OM	<i>R</i> ₂ , OM	<i>R₃,</i> Ом
300	10	20	30

Решение

1.Составим систему уравнений переходного процесса для мгновенных значений токов и напряжений.

$$i_1 = i_2 + i_3$$
 (1)
 $i_1 R_1 + u_C + i_2 R_2 = E$ (2)
 $i_3 R_3 + L \frac{di_3}{dt} - i_2 R_2 - u_C = 0$ (3)

Уравнение (3) принимаем за базовое и при помощи остальных уравнений сформируем неоднородное дифференциальное уравнение относительно напряжения на конденсаторе. Известно, что

$$i_2 = C \frac{du_C}{dt} \tag{4}$$

Из уравнения (2) выразим i_1 :

$$i_1 = \frac{E}{R_1} - i_2 \frac{R_2}{R_1} - u_C \frac{1}{R_1}$$
 или

$$i_1 = \frac{E}{R_1} - \frac{CR_2}{R_1} \frac{du_C}{dt} - u_C \frac{1}{R_1}$$

Из уравнения (1) выразим i_3 :

$$i_3 = i_1 - i_2$$

Подставим в данное уравнение выражения, полученные для токов

$$i_1$$
 и i_2 :

$$i_3 = \frac{E}{R_1} - \frac{CR_2}{R_1} \frac{du_C}{dt} - u_C \frac{1}{R_1} - C \frac{du_C}{dt}$$
 (5)

Подставим уравнения (4) и (5) в уравнение (3) и преобразуем полученное уравнение:

$$\begin{aligned} (\frac{E}{R_{1}} - \frac{CR_{2}}{R_{1}} \frac{du_{C}}{dt} - u_{C} & \frac{1}{R_{1}} - C \frac{du_{C}}{dt})R_{3} + L \frac{d}{dt} (\frac{E}{R_{1}} - \frac{CR_{2}}{R_{1}} \frac{du_{C}}{dt} - u_{C} & \frac{1}{R_{1}} \\ & - C \frac{du_{C}}{dt}) - CR_{2} \frac{du_{C}}{dt} - u_{C} = 0 \end{aligned}$$

$$\frac{ER_3}{R_1} - \frac{CR_2R_3}{R_1} \frac{du_C}{dt} - u_C \frac{R_3}{R_1} - CR_3 \frac{du_C}{dt} - \frac{LCR_2}{R_1} \frac{d^2u_C}{dt^2} - \frac{L}{R_1} \frac{du_C}{dt} - LC \frac{d^2u_C}{dt^2} - CR_2 \frac{du_C}{dt} - u_C = 0$$

$$\begin{split} -\frac{ER_3}{R_1} + \frac{CR_2R_3}{R_1}\frac{du_C}{dt} + u_C\frac{R_3}{R_1} + CR_3\frac{du_C}{dt} + \frac{LCR_2}{R_1}\frac{d^2u_C}{dt^2} + \frac{L}{R_1}\frac{du_C}{dt} \\ + LC\frac{d^2u_C}{dt^2} + CR_2\frac{du_C}{dt} + u_C = 0 \end{split}$$

$$\begin{split} \left(\frac{LCR_2}{R_1} + LC\right) \frac{d^2u_C}{dt^2} + \left(\frac{CR_2R_3}{R_1} + CR_3 + \frac{L}{R_1} + CR_2\right) \frac{du_C}{dt} + \left(\frac{R_3}{R_1} + 1\right)u_C \\ &= \frac{ER_3}{R_1} \end{split}$$

Последнее уравнение соответствует общему виду неоднородного дифференциального уравнения относительно напряжения на конденсаторе.

2. Расчёт всех переходных токов и напряжений на реактивных элементах заданной электрической цепи для следующих моментов времени:

a)
$$t = 0$$
; 6) $t = 0$; B) $t = \infty$

Рассмотрим заданную схему для момента времени t=0. Этот момент времени соответствует докоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

В результате анализа полученной схемы определяем:

$$i_1(0_-) = i_3(0_-) = \frac{U}{R_1 + R_3} = 7.5 \text{ A}$$

$$i_2(0_-) = 0$$

$$u_C(0_-) = i_1(0_-)R_3 = 225 \text{ B}$$

$$u_L(0_-) = 0 \text{ B}$$

Рассмотрим заданную схему для момента времени $t = \infty$. Этот момент времени соответствует послекоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

В результате анализа полученной схемы определяем:

$$i_{1mp} = i_{3mp} = \frac{U}{R_1 + R_3} = 7.5 \text{ A}$$
 $i_{2mp} = 0$
 $u_{Cmp} = i_{1mp}R_3 = 225 \text{ B}$
 $u_{Lmp} = 0 \text{ B}$

Рассмотрим заданную схему для момента времени t=0.

Составим систему уравнений переходного процесса для мгновенных значений токов и напряжений.

$$i_1 = i_2 + i_3$$
 (1)
 $i_1 R_1 + u_C + i_2 R_2 = E$ (2)

$$i_3 R_3 + u_L - i_2 R_2 - u_C = 0 (3)$$

В соответствии с законами коммутации:

$$i_3(0) = i_3(0_-) = 7.5 \,\mathrm{A}$$

$$u_C(0) = u_C(0_-) = 225 \,\mathrm{B}$$

Уравнение (1) подставим в уравнение (2):

$$(i_2 + i_3)R_1 + u_C + i_2R_2 = E$$

$$i_2R_1 + i_3R_1 + u_C + i_2R_2 = E$$

$$i_2(R_1 + R_2) + i_3R_1 + u_C = E$$

$$i_2(0) = \frac{E - u_C(0) - i_3(0)R_1}{R_1 + R_2} = 0 \text{ A}$$

Из уравнения (1):

$$i_1(0) = i_2(0) + i_3(0) = 7,5 \text{ A}$$

Из уравнения (3):

$$u_L(0) = i_2(0)R_2 + u_C(0) - i_3(0)R_3 = -225 \,\mathrm{B}$$

Итоговая таблица результатов

	t=0_	<i>t</i> =0	<i>t</i> =∞
<i>i</i> ₁ , A	7,5	7,5	7,5
<i>i</i> ₂ , A	0	0	0
<i>i</i> ₃ , A	7,5	7,5	7,5
<i>и</i> с, В	225	225	225
<i>u</i> ∟,B	0	-225	0

ПРИМЕР №2

Исходная схема

Задание

- 1. Получить в общем виде неоднородное дифференциальное уравнение относительно напряжения на конденсаторе.
- 2. Произвести расчёт всех переходных токов и напряжений на реактивных элементах заданной электрической цепи для следующих моментов времени: a) t=0; б) t=0; в) $t=\infty$

Исходные данные:

<i>J,</i> A	<i>R₁,</i>	<i>R₂,</i>	<i>R₃,</i>	<i>R₄,</i>
	Ом	Ом	Ом	Ом
1	10	20	30	40

Решение

Составим систему уравнений переходного процесса для мгновенных значений токов и напряжений.

$$J = i_1 + i_2 \qquad (1)$$

$$u_C + i_1 R_3 - i_2 R_4 - L \frac{di_2}{dt} = 0 \qquad (2)$$

Уравнение (2) принимаем за базовое и сформируем неоднородное дифференциальное уравнение относительно напряжения на конденсаторе. Известно, что

$$i_1 = C \frac{du_C}{dt} \tag{4}$$

Из уравнения (1) выразим i_2 :

$$i_2 = J - i_1 = J - C \frac{du_C}{dt}$$
 (5)

Подставим уравнения (4) и (5) в базовое уравнение и преобразуем его:

$$u_{C} + R_{3}C\frac{du_{C}}{dt} - (J - C\frac{du_{C}}{dt})R_{4} - L\frac{d}{dt}(J - C\frac{du_{C}}{dt}) = 0$$

$$u_{C} + R_{3}C\frac{du_{C}}{dt} - JR_{4} + CR_{4}\frac{du_{C}}{dt} + LC\frac{d^{2}u_{C}}{dt^{2}} = 0$$

$$LC\frac{d^{2}u_{C}}{dt^{2}} + (R_{3}C + CR_{4})\frac{du_{C}}{dt} + u_{C} = JR_{4}$$

Последнее уравнение соответствует общему виду неоднородного дифференциального уравнения относительно напряжения на конденсаторе.

2. Расчёт всех переходных токов и напряжений на реактивных элементах заданной электрической цепи для следующих моментов времени:

а)
$$t = 0_{-}$$
; б) $t = 0$; в) $t = \infty$

Рассмотрим заданную схему для момента времени t=0. Этот момент времени соответствует докоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

ИЛИ

$$R_{23} = \frac{R_2 \times R_3}{R_2 + R_3} = 12 \text{ Om}$$

В результате анализа полученной схемы определяем:

$$i_1(0_-) = 0 \text{ A}$$

$$i_2(0_-) = J = 1 \text{ A}$$

$$u_C(0_-) = i_2(0_-)(R_{23} + R_4) = 52 \text{ B}$$

$$u_L(0_-) = 0 \text{ B}$$

Рассмотрим заданную схему для момента времени $t = \infty$. Этот момент времени соответствует послекоммутационному установившемуся режиму. Электрическая цепь может быть преобразована к виду:

В результате анализа полученной схемы определяем:

$$i_{1mp} = 0 \text{ A}$$
 $i_{2mp} = J = 1 \text{ A}$
 $u_{Cmp} = i_{2mp}R_4 = 40 \text{ B}$
 $u_{Lmp} = 0 \text{ B}$

Рассмотрим заданную схему для момента времени t=0.

Составим систему уравнений переходного процесса для мгновенных значений токов и напряжений.

$$J = i_1 + i_2 \qquad (1)$$

$$u_C + i_1 R_3 - i_2 R_4 - u_L = 0 \qquad (2)$$

В соответствии с законами коммутации:

$$i_2(0) = i_2(0_-) = 1 \text{ A}$$

 $u_c(0) = u_c(0_-) = 52 \text{ B}$

Тогда в соответствии с уравнением (1):

$$i_1(0) = J - i_2(0) = 0 \text{ A}$$

в соответствии с уравнением (2):

$$u_L(0) = u_C(0) + i_1(0)R_3 - i_2(0)R_4 = 12 \text{ B}$$

Итоговая таблица результатов

	t=0_	<i>t</i> =0	<i>t</i> =∞
<i>i</i> ₁ , A	0	0	0
<i>i</i> ₂ , A	1	1	1
<i>и</i> с, В	52	52	40
<i>u</i> _L ,B	0	12	0

12. Расчёт переходных процессов с помощью интеграла Дюамеля

Задание

- 1. Рассчитать переходную проводимость для указанной электрической схемы операторным методом.
- 2. Определить закон изменения входного тока при действии указанного входного напряжения.

Исходные данные:

U, B	<i>Т,</i> сек	<i>R</i> , Ом	<i>С</i> , мкФ	<i>L,</i> мГн
100	0,01	30	10	100

Вариант контрольной работы состоит из двух чисел:

первое соответствует номеру схемы из табл. 1

второе соответствует форме входного напряжения из табл. 2

Таблица 1

Таблица 2

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

1. Рассчитать переходную проводимость для указанной электрической схемы операторным методом.

Решение

Схема замещения в операторной форме

Входное сопротивление в операторной форме:

$$Z(p) = \frac{1}{pC} + R = \frac{1 + pRC}{pC}$$

Закон Ома в операторной форме:

$$I(p) = \frac{\frac{U}{p}}{Z(p)} = \frac{\frac{1}{p}}{Z(p)} = \frac{pC}{p(1+pRC)} = \frac{F_1(p)}{F_2(p)} = \frac{C}{1+pRC} = G(p)$$

Переход к оригиналу при помощи теоремы разложения:

$$g(t) = \frac{F_{1}(p_{1})}{F_{2}'(p_{1})} e^{p_{1}t}$$

$$F_1(p) = C = 10 \cdot 10^{-6}$$

$$F_2(p) = 1 + pRC$$

Определяем корни уравнения:

$$F_2(p)=0$$

$$pRC + 1 = 0$$

$$p_2 = -\frac{1}{RC} = -33333,3$$

$$F_1(p_1) = C = 10 \cdot 10^{-6}$$

$$F_2'(p) = (1 + pRC)' = RC$$

$$F_2'(p_1) = RC = 300 \cdot 10^{-6}$$

$$g(t) = \frac{F_1(p_1)}{F_2'(p_1)} e^{p_1 t}$$

$$g(t) = \frac{10 \cdot 10^{-6}}{300 \cdot 10^{-6}} e^{-3333,3t}$$

$$g(t) = 0.03333 e^{-3333,3t}$$

2. Определить закон изменения входного тока при действии указанного входного напряжения.

Решение

Представим заданное напряжение совокупностью двух ступенчатых воздействий, при наложении которых обеспечивается форма заданного входного напряжения:

В интервале от 0 до Т:

$$i(t) = Ug(t)$$

$$g(t) = 0.03333e^{-3333.3t}$$

 $i(t) = 3.333e^{-3333.3t}$

В интервале от Т до ∞:

$$i(t) = Ug(t) - Ug(t - T)$$

Т=0,0001 сек

$$g(t-T) = 0.03333e^{-3333,3}(t-T) =$$

$$= 0.03333e^{-3333,3t}e^{-3333,3t} = 0.02388e^{-3333,3t}$$

$$i(t) = 3.333e^{-3333,3t} - 2.388e^{-3333,3t}$$

$$i(t) = 0.945e^{-3333,3t}$$

ПРИМЕР №2

Исходная схема

Задание

1. Рассчитать переходную проводимость для указанной электрической схемы операторным методом.

Решение

Схема замещения в операторной форме

Входное сопротивление в операторной форме:

$$Z(p) = \frac{(pL+R) \times R}{(pL+R) + R} = \frac{pRL + R^2}{pL + 2R}$$

Закон Ома в операторной форме:

$$I(p) = \frac{\frac{U}{p}}{Z(p)} = \frac{\frac{1}{p}}{Z(p)} = \frac{pL + 2R}{p(pRL + R^2)} = \frac{F_1(p)}{F_2(p)} = G(p)$$

Переход к оригиналу при помощи теоремы разложения:

$$g(t) = \frac{F_1(p_1)}{F_2'(p_1)} e^{p_1 t} + \frac{F_1(p_2)}{F_2'(p_2)} e^{p_2 t}$$

$$F_1(p) = pL + 2R$$

$$F_2(p) = p(pRL + R^2)$$

Определяем корни уравнения:

$$F_2(p) = 0$$
 $p_1 = 0$
 $pRL + R^2 = 0$
 $p_2 = -\frac{R^2}{RL} = -\frac{R}{L} = -300$

$$F_{1}(p_{1}) = 2R = 60$$

$$F_{1}(p_{2}) = pL + 2R = (-300) \times 0.1 + 60 = 30$$

$$F_{2}'(p) = [p(pRL + R^{2})]' = (p^{2}RL + pR^{2}) \cdot F_{2}'(p) = 2pRL + R^{2}$$

$$F_{2}'(p_{1}) = R^{2} = 900$$

$$F_{2}'(p_{1}) = R^{2} = 900$$

$$F_{2}'(p_{2}) = 2pRL + R^{2} = 2 \times (-300) \times 30 \times 0.1 + 900 = -900$$

$$g(t) = \frac{F_{1}(p_{1})}{F_{2}'(p_{1})} e^{p_{1}t} + \frac{F_{1}(p_{2})}{F_{2}'(p_{2})} e^{p_{2}t}$$

$$g(t) = \frac{60}{900} e^{0t} + \frac{30}{-900} e^{-300t}$$

$$g(t) = 0.06667 - 0.033338e^{-300t}$$

2. Определить закон изменения входного тока при действии указанного входного напряжения.

Решение

Представим заданное напряжение совокупностью двух ступенчатых воздействий, при наложении которых обеспечивается форма заданного входного напряжения:

$$i(t) = \int_{0}^{T} u'(\tau)g(t-\tau)d\tau =$$

$$= \int_{0}^{T} (666,7-333,3e^{-300t} e^{300\tau})d\tau =$$

$$= \int_{0}^{T} 666,7d\tau - 333,3e^{-300t} \int_{0}^{T} e^{300\tau}d\tau =$$

$$= 666,7(T-0) - 333,3e^{-300t} \frac{1}{300} (e^{300T} - e^{300\times 0}) =$$

$$= 6,667 - 1,111e^{-300t} (e^{300T} - 1) =$$

$$= 6,667 - 22,32e^{-300t} + 1,111e^{-300t}$$

$$i(t) = 6,667 - 21,21e^{-300t}$$

$$i(t) = \int_{0}^{T} u'(\tau)g(t-\tau)d\tau - Ug(t-T)$$

В интервале от Т до ∞:

$$g(t) = 0.06667 - 0.03333e^{-300t}$$

$$g(t-T) = 0.06667 - 0.03333e^{-300(t-T)}$$

$$g(t-T) = 0.06667 - 0.03333e^{-300t}e^{300 \times T}$$

$$g(t-T) = 0.06667 - 0.6695e^{-300t}$$

$$i(t) = \int_{0}^{T} u'(\tau)g(t-\tau)d\tau - Ug(t-T) = 0$$

$$= 6.667 - 21.21e^{-300t} - 6.667 + 66.95e^{-300t}$$

$$i(t) = 45.74e^{-300t}$$

13. Нелинейные электрические цепи постоянного тока

Задание

Вариант контрольной работы соответствует номеру строки из таблицы

	Вариант			По	Положение	ие				Бармант
Определить	B.A.X.	oi Z		переключателей	пюча	телей		Дано	Определить	B.A.X.
	£	•	\mathbf{B}_1	B ₂	B 3	B 4	Bs			£
нелинейного элемента	8ōN	H	H	H	4	m	m	$E_2=0$; $R_5=0$; $R_1=10$ OM; $E_3=10$ B; $R_2=10$ OM	Построить ВАХ $U_{\rm BX} = f(I_I)$	1
_{ай} этими точками этими точками включен НЭ	6ōN	7	H	4	4	m		$J_2=0$; $R_6=0$; $R_2=10$ OM; $R_5=20$ OM; $E_2=10$ B	Построить ВАХ $U_{\rm BX} = f(T_L)$	1
I_{L} , I_{Z} , I_{S} , U_{ab}	Nº10	m	н	2	н	m	2	$R_3=0$; $E_1=50~B$; $I_1=0,3~A$; $E_3=0$; $R_5=2000м$ (стабилизатор тока)	Пределы изменения сопротивления R ₂	Nº1
включенном между т. а и b	ZōN	4	н	2	П	ю	н	R_3 =10 Ом; I_1 =0,3 А; R_2 =20 Ом; J_2 =0; R_6 =0; R_5 =30 Ом (стабилизатор тока)	напряжения источника E_I	Nº1
I ₁ и построить ВАХ участка сf	H34-Nº12	Ŋ	2	4	т	т	н	$J_2=0$; $J_1=1$ A; $E_2=40$ B; $R_5=R_6=5$ OM	элементах цепи, если между τ . а и b включено $R_{\nu}=5$ Ом	N ₉ 2
I_{L} I_{2} I_{3} $U_{\mathcal{C}}$	H32-Nº2	9	н	н	П	2	н	$R_3=0$; $R_6=0$; $R_7=0$; $E_1=200$ $B_7J_2=5$ A_7 ; $R_2=40$ OM ; $R_5=10$ OM	<i>U и I на всех</i> элементах цепи	N ₉ 3
Построить ВАХ $U_{\rm Bx} = f(I_{\rm L})$, найти $U_{\rm Bx}$	1	7	H	2	m		н	$R_5=R_6=0$; $E_2=0$; $R_4=30~Om;I_1=0,4~A;$ ВАХОДИНАКОВЫ	$E_{ u}$ $I_{ u}$ $I_{ u}$	Nº4
Все токи	Nº13	œ	H	H	2	2	н	$R_5=R_6=0$; $R_2=2$ Ом; $I_3=5$ A; $R_1=2$ Ом; ВАХОДИНАКОВЫ	$E_{ u} I_{ u} I_2$	Nº5
Все токи	Nº13	6	H	₩	2	С	7	$R_2=0$; $R_6=0$; $R_1=4$ Om; $R_5=20$ Om; $E_1=24$ B ; $E_3=60$ B	Все токи схемы	9ōN
Все токи	Nº13	10	н	н	7	2	н	$R_5=R_6=0$; $R_2=1$ Ом; $I_2=5$ А; $R_1=2$ Ом; ВАХ одинаковы	Мощность источника	Nº5
Все токи	6ōN	11	2	1	4	3	11	$J_1=2$ A; $R_1=10$ Ow; $R_2=5$ Ow; $E_2=10$ B; $R_5=\infty$; $J_2=1$ A; $R_7=10$ Ow	Построить ВАХ U _{вх} =f(I ₁)	Nº5
Построить ВАХ $U_{Bx} = \mathit{f}(I_{\mathit{I}})$, найти I_{I}	1	12	ī	ю	H	H	ъ	$R_3=0$; $E_1=24$ B; $R_2=40$ Ow; $I_3=0.55$ A; $U_{cd}=12$ B	R_I	N9.7

				97		
Š	_	переключателей	люча	телей		Дано
	B ¹	B ₂	B 3	\mathbf{B}_4	B ₅	
13	H	4	2	1	2	$R_4 = 5$ Ом; $E_3 = 0$; $R_5 = 0$; $R_6 = 30$ Ом;задана ВАХ $U_{\rm Ex} = f(I_I)$
14	2	4	н	8	1	$J_1 = 12 \text{ A; } R_2 = 4 \text{ Ow; } R_3 = 16 \text{ Ow; } R_6 = 8 \text{ Ow; } J_2 = 0;$ $R_5 = 12 \text{ OM}$
15	н	2	н	3	1	$E_1=30 B$; $R_2=5 Om$; $R_3=10 Om$; $R_5=4 Om$; $R_6=6 Om$; $R_2=6 Om$; $R_2=0 Om$; R_2
16	H	4	н	3	н	$J_2=0$; $E_1=50$ B; $R_2=6$ Ow; $R_3=4$ Ow; $R_5=2$ Ow; $R_6=8$ Ow
17	н	1	3	3	2	$E_2 = -10 B$; $R_1 = 0.5 Om$; $E_1 = 20 B$; $E_3 = 10 B$; $R_5 = 0$; $R_6 = \infty$
18	1	2	3	3	2	E_1 =0; E_2 =10 B; E_3 =-30 B; R_5 =10 OM; R_6 =0
19	2	4	4	3	3	
20	1	1	1	1	1	$R_{d}=1.0M; R_{S}=\omega; R_{da}=0; R_{7}=3.0M$
21	2	1	1	1	1	$R_{4}=1~OM;~R_{5}=\infty;~R_{7}=3~OM;~R_{da}=0$
22	1	1	Н	1	+	$E_1 = 20 B$; $R_1 = R_2 = 4 O M$; $R_3 = 0$; $R_4 = 1 O M$; $R_5 = \infty$; $R_7 = 3 O M$; $J_2 = 1 A$
23	н	1	2	3	П	$E_1 = 36 B$; $R_1 = 24 Om$; $R_2 = 10 Om$; $R_5 = \infty$; $R_7 = 0$; $J_2 = -1 A$
24	H	4	4	ъ	ю	$E_2=10$ B; $R_2=R_S=10$ Ow; $E_3=10$ B; $E_1=20$ B

Вольтамперные характеристики нелинейных элементов Вариант №1

I, A	0	0,1	0,2	0,25	0,3	0,3	0,3	0,3	0,35	0,4
<i>U,</i> B	0	5	10	15	20	25	30	35	40	45

Вариант №2

I, A	0	0,25	0,5	1	1,5	2	2,5	3	3,5	4
<i>U,</i> B	0	1	2	2,5	4	6	7	10	20	30

Вариант №3

			0,5	0,2						
U,	-	-	-20	-10	0	10	20	25	30	40
В	40	30								

Вариант №4

I, A	0	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8
<i>U,</i> B	0	10	18	25	28	30	32	35	36	38

Вариант №5

I, A	0	2,5	5	7,5	10	12,5	15	17,5	20	22,5
<i>U,</i> B	0	4,5	7	9	10	11	11,5	11,7	11,8	12

Вариант №6

I, A	0	2	3	4	5	6	8	9	10	11
<i>U,</i> B	0	16	20	22	23	26	28	30	33	40

Вариант №7

I, A	0	0,6	0,65	0,7	0,8	0,82	0,85	0,87	0,9	1
<i>U</i> ,	0	2	3	4	5	6	8,5	10	12	14

Вариант №8

I, A	0	0,3	0,5	1	1,5	2	2,5	3	3,5	4
<i>U,</i> B	0	10	15	20	25	30	35	40	45	50

Вариант №9

I, A	0	0,	0,7	1,	1,	2,	2,	3,	4,	5,	6,
		5	0	0	5	0	6	5	2	2	2

U,	0	5	10	1	20	25	30	35	40	45	50
В				5							

Вариант №10

<i>I,</i> A	0	0,	1,	1,	2,	2,5	3,0	4,0	4,5	5,0
		5	0	5	0					
<i>U,</i> B	0	2,	3,	5,	9,	15,	25,	37,	39,0	40,
		0	0	0	0	0	0	0	39,0	0

Вариант №11

I, A	0	2,5	5,0	10	15	20	25	30	40
<i>U,</i> B	0	5,0	10	15	18	20	22	25	28

Вариант №12

I,	0	2,5	5,0	10	15	20	25	30	40
<i>U,</i> B	0	2,0	5,0	8,0	10,0	12,0	13,0	14,0	15,0

Вариант №13

I, A	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	3,8	4,0
<i>U,</i> B	0	0,2	0,5	0,7	1,0	1,5	2,0	3,0	3,8	4,0

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Задание

Определить все токи и проверить баланс мощностей

Исходные данные:

E1, B	E3, B	<i>R1,</i> Ом	<i>R3,</i> Ом
10	6	4	4

Характеристика нелинейного элемента

<i>I,</i> A 0	2,5	5	7,5	10	12,5	15	17,5	20	22,5
<i>U</i> , 0	4,5	7	9	10	11	11,5	11,7	11,8	12

Решение

Для решения задачи применяем метод эквивалентного генератора

Для режима холостого хода составим уравнение по 2 закону Кирхгофа для указанного контура:

$$U_{\text{abx.x.}} + I_1' R_1 = E_1$$
 $E_{3.\Gamma.} = U_{\text{abx.x.}} = E_1 - I_1' R_1$
 $I_1' = \frac{E_1 - E_3}{R_1 + R_3} = 0,5 \text{ A}$
 $E_{3.\Gamma.} = E_1 - I_1' R_1 = 8 \text{ B}$

Определяем внутреннее сопротивление эквивалентного генератора

$$R_{3.\Gamma} = \frac{R_1 \times R_B}{R_1 + R_B} = 2 \text{ OM}$$

Заданная схема преобразуется к виду:

Дальнейший путь расчёта сводится к графическому решению, представленному следующим семейством кривых.

$$U_{\text{H.a.}} = f(I)$$

Зависимость задана по условию задачи.

$$U_r = f(I)$$

Зависимость получена по результатам расчёта

сопротивления эквивалентного генератора. При этом достаточно задаться одним значением тока цепи и рассчитать значение напряжения на данном резисторе по закону Ома:

$$U_r = I \times R_{3,\Gamma}$$

Данная зависимость представляет собой прямую, проходящую через начало координат.

В соответствии со II законом Кирхгофа:

$$E_{3,\Gamma_1} = U_r + U_{H,3} = U_r(I) + U_{H,3}(I) = E_{3,\Gamma_1}(I)$$

Для реализации данного уравнения графически достаточно просуммировать предыдущие графические зависимости по оси ординат (при неизменных значениях тока)

Полученная графическая зависимость позволяет определить значение I_2 , как проекция на ось абсцисс точки пересечения значения $E_{\mathfrak{I},\Gamma}$ на данной графической зависимости. В результате получим:

$$I_2 = 1.75 A$$
.

Напряжение на нелинейном элементе получаем по соответствующей вольт-амперной характеристике:

$$U_{H.3} = 4.5 B.$$

Эти же результаты могут быть получены точкой пересечения заданной нелинейной зависимости с представленной зависимостью

$$E_{3,\Gamma} - U_r = f(I)$$

Для определения I_1 воспользуемся II законом Кирхгофа для контура, показанного пунктиром на исходной схеме.

$$U_{\text{H.3.}} + I_1 R_1 = E_1$$

$$I_1 = \frac{E_1 - U_{\text{H.3.}}}{R_4} = 1,375 \text{ A}$$

В соответствии с І законом Кирхгофа:

$$I_1 + I_3 = I_2$$

 $I_3 = I_2 - I_1 = 0.375 \text{ A}$

Проверка баланса мощностей

$${
m P}_{
m HCT.} = E_1 I_1 + E_3 I_3 = 16 \ {
m BT}$$
 ${
m P}_{
m \PiP.} = I_1^2 imes R_1 + I_3^2 imes R_3 \, + \, I_2 imes U_{
m H.9.} = 16 \ {
m BT}$ ${
m P}_{
m HCT.} = {
m P}_{
m \PiP.}$

ПРИМЕР №2

Исходная схема

Задание

Определить все токи и проверить баланс мощностей

Исходные данные:

E1, B	<i>R</i> 2, Ом	<i>R</i> 3, Ом
24	3	6

Входная характеристика электрической цепи

I,	0	0,5	7	1	1.5	2	2.6	3.5	4.2	5.2	6.2
<i>U,</i> B	0	3	4	6	10	18	25	33	35	35	35

Решение

Эквивалентная схема замещения

$$R_{23} = \frac{R_2 \times R_3}{R_2 + R_3} = 2 \text{ Om}$$

Дальнейший путь расчёта сводится к графическому решению, представленному следующим семейством кривых.

Зависимость U_r (I) представляет собой линейную зависимость, которая может быть построена при задании одного значения тока цепи и расчете значения напряжения на резисторе R_{23} по закону Ома:

$$U_r = I \times R_{23}$$

Данная зависимость представляет собой прямую, проходящую через начало координат.

Для получения зависимости $U_{H.Э.}$ (I) достаточно осуществить вычитание из графической зависимости $U_{BX.}$ (I) графической зависимости U_r (I) по оси ординат (при неизменных значениях тока).

Для определения значения тока I_1 достаточно отложить заданное значение входного напряжения на соответствующей графической зависимости. В результате получим: I_1 = 2,5 A.

По зависимостям $U_{H.Э.}$ (I) и U_r (I) соответственно получим:

$$U_{H.9.} = 19 B; U_r = 5 B$$

Токи в параллельных ветвях определяются по закону Ома:

$$I_2 = \frac{U_r}{R_2} = 1,667 \text{ A}$$
 $I_3 = \frac{U_r}{R_3} = 0,8333 \text{ A}$

Проверка баланса мощностей

$${
m P_{HCT.}} = E_1 I_1 = 60 \ {
m B_T}$$

 ${
m P_{\Pi P.}} = U_{{
m H.3.}} imes I_1 + I_2^2 imes R_2 \, + \, I_3^2 imes R_3 = 60 \ {
m B_T}$
 ${
m P_{HCT.}} = {
m P_{\Pi P.}}$

14. Расчёт магнитных цепей постоянного тока

Задание

- 1.Определить магнитный поток, индукцию и напряженность магнитного поля во всех участках магнитопровода, пренебрегая потоками рассечения.
- 2.По полученным результатам найти магнитное напряжение между двумя любыми точками магнитной цепи.
- 3. Проверить результат, полученный в п. 2, определив магнитное напряжение между теми же точками по другому пути

Вариант контрольной работы соответствует номеру строки из таблицы

Таблица

	Исходные данные магнитной цепи													
<u>o</u>	a,	b,	C,	d,	n,	\A/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	١٨/		I_k		δ_k	Ф, мкВб	
	СМ	СМ	СМ	СМ	СМ	W_1	W_2	W_3	k	Α	k	ММ	В, Тл	μ_{Γ}
1	3	6	9	8	3	200	-	-	1	1	1	0,5	-	500
2	4	8	12	10	4	-	-	150	3	3	2	0,8	_	720
3	7	14	21	18	7	-	250	-	2	-	3	0,7	$B_{\delta 3} = 0,3$	800
4	3,5	7	10,5	9	4	200	-	-	1	2,5	2	0,6	-	700
5	4	8	12	10	5	-	200	-	2	1	1	0,5	-	600
6	5	10	15	17	3	300	-	-	1	-	3	0,9	Φ ₂ =23	750
7	3	6	9	7	4	200	-	-	1	1,5	2	0,6	-	550
8	4	8	12	10	5	250	-	-	1	2,5	1	0,4	-	600
9	5	10	15	12	8	-	200	-	2	-	2	0,8	Ф ₃ =8	750
10	7	14	21	16	4	-	350	-	2	1	3	0,5	-	700
11	3,5	7	10 ,5	9	5	1	100	1	2	1,5	2	0,7	1	720
12	4,5	9	13, 5	11	7	100	-	-	1	3	1	0,8	-	600
13	6	12	18	15	4	250	-	-	1	-	2	0,9	$B_{\delta 2}=0,1$	600
14	3	6	9	7,5	3	-	-	300	3	-	3	0,5	$\Phi_1 = 0,9$	800
15	5	10	15	12	8	-	-	250	3	2	2	0,8	-	500
16	4	8	12	10	6	250	-	-	2	2	1	0,7	-	700
17	6	12	18	14	7	-	300		2	-	2	0,6	Ф1=9	750

18	3	6	9	8	5	200	-	-	1	-	3	0,6	$\Phi_3 = 0,4$	680
19	5	10	15	13	4	300	-	-	1	1	2	0,7	-	720
20	3,5	6	10	8	9	150	-	-	1	1,5	1	0,5	-	800
21	4	8	12	11	7	200	-	-	1	-	2	0,5	$B_{\delta 2} = 0,2$	500
22	6	12	18	16	3	-	-	400	3	-	3	0,6	Φ ₂ =10	600
23	3	6	9	8	6	-	-	100	3	3	2	0,7	-	550
24	7	14	21	17	5	-	150	-	2	3	1	0,8	-	650
25	5	11	16	13	4	-	-	250	3	-	2	0,7	Ф2=7	800

ПРИМЕРЫ РАСЧЁТА

ПРИМЕР №1

Исходная схема

Задание

1.Определить магнитный поток, индукцию и напряженность магнитного поля во всех

участках магнитопровода, пренебрегая потоками рассеяния.

- 2.По полученным результатам найти магнитное напряжение между двумя узловыми точками магнитной цепи.
- 3.Проверить результат, полученный в п. 2, определив магнитное напряжение между теми же точками по другому пути.

Исходные данные:

	Исходные данные магнитной цепи														
3										I _k		$\bar{\mathfrak{d}}_{k}$	Ф, мкВ		
a,	b,	С,	d,	n,	\٨/.	W_2	W ₂					б	He		
C M	СМ	СМ	СМ		VV1	VV 2	**3	k	Α	k	M M	В,	μ_{Γ}		
												Тл			
3	6	9	8	3	20 0	-	-	1	1	1	0, 5	-	500		

Решение

Заданная магнитная цепь

Определим параметры магнитной цепи

$$l_1 = 2a + 2b + d + c - \delta_1 = 34,95 \times 10^{-2} \text{ M}$$

$$l_2 = a + c = 12 \times 10^{-2} \text{ M}$$

$$l_3 = 2a + 2b + d + c = 35 \times 10^{-2} \text{ M}$$

$$S_1 = S_3 = a \times n = 9 \times 10^{-4} \text{ M}^2$$

$$S_2 = d \times n = 24 \times 10^{-4} \text{ M}^2$$

Определяем магнитные потоки, индукцию и напряженность магнитного поля

во всех участках магнитопровода

Эквивалентная схема замещения заданной магнитной цепи

Рассчитаем магнитные сопротивления участков магнитной цепи

$$\begin{split} R_{M1} &= \frac{l_1}{\mu_0 \mu_r S_1} = 618052 \, \frac{1}{\Gamma_{\rm H}}; \; R_{M2} = \frac{l_2}{\mu_0 \mu_r S_2} \\ &= 79577 \, \frac{1}{\Gamma_{\rm H}} \\ R_{M3} &= \frac{l_3}{\mu_0 \mu_r S_3} = 618936 \, \frac{1}{\Gamma_{\rm H}}; \quad R_{\delta 1} = \frac{\delta_1}{\mu_0 S_1} \\ &= 442097 \, \frac{1}{\Gamma_{\rm H}} \end{split}$$

Применяем метод эквивалентных преобразований

$$R_{Mab} = \frac{R_{M2} \times R_{M3}}{R_{M2} + R_{M3}} = 70511 \, \frac{1}{\Gamma_{\rm H}}$$

$$R_{M_{3KE}} = R_{M1} + R_{\delta 1} + R_{MaE} = 1130660 \frac{1}{\Gamma_{H}}$$

Определяем магнитный поток Φ_1 :

$$\Phi_1 = \frac{F_1}{R_{Make.}} = \frac{I_1 \times W_1}{R_{Make.}} = 176,9 \times 10^{-6} \text{ BG}$$

Определяем магнитное напряжение на участке «ав»:

$$U_{Mag} = \Phi_1 \times R_{Mag} = 12,47 \text{ A}$$

Определяем магнитный поток Ф2:

$$\Phi_2 = \frac{U_{Mab}}{R_{M2}} = 156,7 \times 10^{-6} \text{ BG}$$

Определяем магнитный поток Ф₃:

$$\Phi_3 = \frac{U_{Mab}}{R_{M3}} = 20.2 \times 10^{-6} \text{ BG}$$

Определяем магнитную индукцию на каждом участке магнитной цепи

$$B_1 = \frac{\Phi_1}{S_1} = 19,66 \times 10^{-2} \text{ Тл; } B_2 = \frac{\Phi_2}{S_2} = 6,529 \times 10^{-2} \text{ Тл}$$

$$B_3 = \frac{\Phi_3}{S_2} = 2,244 \times 10^{-2} \text{ Тл}$$

Определяем напряжённость магнитного поля на каждом участке магнитной цепи

$$H_1 = \frac{B_1}{\mu_0 \mu_r} = 312 \frac{A}{M}; \quad H_{\delta 1} = \frac{B_1}{\mu_0} = 156449 \frac{A}{M}$$
 $H_2 = \frac{B_2}{\mu_0 \mu_r} = 103.9 \frac{A}{M}; \quad H_3 = \frac{B_3}{\mu_0 \mu_r} = 35.71 \frac{A}{M}$

Определяем магнитное напряжение между двумя узловыми точками магнитной цепи

На первом участке магнитной цепи:

$$U_{Mag}(1) = F_1 - U_{M1} - U_{M\delta 1} = F_1 - H_1 \times l_1 - H_{\delta 1} \times \delta$$

$$U_{Mag}(1) = 12,73 \text{ A}$$

На втором участке магнитной цепи:

$$U_{\text{Mag}}(2) = H_2 \times l_2 = 12,47 \text{ A}$$

На третьем участке магнитной цепи:

$$U_{Mar}(3) = H_3 \times l_3 = 12.5 \text{ A}$$

Расхождение полученных результатов в пределах допустимой точности.

ПРИМЕР №2

Исходная схема

Задание

1.Определить магнитный поток, индукцию и напряженность магнитного поля во всех

участках магнитопровода, пренебрегая потоками рассеяния.

- 2.По полученным результатам найти магнитное напряжение между двумя узловыми точками магнитной цепи.
- 3.Проверить результат, полученный в п. 2, определив магнитное напряжение между теми же точками по другому пути.

Исходные данные:

	Исходные данные магнитной цепи													
2								I _k		δ_k		Ф, мкВ		
a,	b,	С,	d,	n,	W_1	W_2	W_3				М	б	μ_{Γ}	
М	СМ	СМ	СМ		1			k	Α	k	М	В,	•	
												Тл		
5	1 1	16	1 3	4	_	-	25 0	3	-	2	0, 7	$\Phi_2 = 7$	800	
											1			

Решение

Заданная магнитная цепь

Определим параметры магнитной цепи

$$l_1 = 2a + 2b + d + c = 61 \times 10^{-2} \text{ M}$$
 $l_2 = a + c - \delta_2 = 20,93 \times 10^{-2} \text{ M}$
 $l_3 = 2a + 2b + d + c = 61 \times 10^{-2} \text{ M}$
 $S_1 = S_3 = a \times n = 20 \times 10^{-4} \text{ M}^2$
 $S_2 = d \times n = 52 \times 10^{-4} \text{ M}^2$

Определяем магнитные потоки, индукцию и напряженность магнитного поля во всех участках магнитопровода

Эквивалентная схема замещения заданной магнитной цепи

Рассчитаем магнитные сопротивления участков магнитной цепи

$$\begin{split} R_{M1} &= \frac{l_1}{\mu_0 \mu_r S_1} = 303389 \; \frac{1}{\Gamma_{\rm H}}; \; R_{M2} = \frac{l_2}{\mu_0 \mu_r S_2} \\ &= 40037 \; \frac{1}{\Gamma_{\rm H}} \\ R_{M3} &= \frac{l_3}{\mu_0 \mu_r S_3} = 303389 \; \frac{1}{\Gamma_{\rm H}}; \quad R_{\delta 2} = \frac{\delta_2}{\mu_0 S_2} \\ &= 107124 \; \frac{1}{\Gamma_{\rm H}} \end{split}$$

При заданном магнитном потоке Φ_2 определим магнитное напряжение на участке «ав»

$$U_{Map} = \Phi_2 \times R_{M2} + \Phi_2 \times R_{S2} = 1,03 \text{ A}$$

Определим магнитный поток Φ_1 по закону Ома для магнитных цепей:

$$\Phi_1 = \frac{U_{MaB}}{R_{M1}} = 3,395 \times 10^{-6} \text{ BG}$$

Определим магнитный поток Φ_3 по I закону Кирхгофа для магнитных цепей:

$$\Phi_3 = \Phi_1 + \Phi_2 = 10{,}395 \times 10^{-6} \text{ B}$$

При помощи II закона Кирхгофа определим значение м.д.с.

$$F_3 = \Phi_3 \times R_{M3} + U_{Mab} = 4,184 \text{ A}$$

$$I_3 = \frac{F_3}{W_3} = 0,01674 \text{ A} = 167,4 \text{ MA}$$

Определяем магнитную индукцию на каждом участке магнитной цепи

$$B_1 = \frac{\Phi_1}{S_1} = 0.16975 \times 10^{-2} \text{ Тл; } B_2 = \frac{\Phi_2}{S_2} = 0.1346 \times 10^{-2} \text{ Тл}$$

$$B_3 = \frac{\Phi_3}{S_3} = 0.5198 \times 10^{-2} \text{ Тл}$$

Определяем напряжённость магнитного поля на каждом участке магнитной цепи

$$H_1 = \frac{B_1}{\mu_0 \mu_r} = 1,689 \frac{A}{M};$$
 $H_{\delta 2} = \frac{B_2}{\mu_0} = 1071,1 \frac{A}{M}$
 $H_2 = \frac{B_2}{\mu_0 \mu_r} = 1,339 \frac{A}{M};$ $H_3 = \frac{B_3}{\mu_0 \mu_r} = 5,171 \frac{A}{M}$

Определяем магнитное напряжение между двумя узловыми точками магнитной цепи

На первом участке магнитной цепи:

$$U_{Mag}(1) = U_{M1} = H_1 \times l_1 = 1.03 \text{ A}$$

На втором участке магнитной цепи:

$$U_{Mag}(2) = H_2 \times l_2 + H_{\delta 2} \times \delta 2 = 1.03 \text{ A}$$

На третьем участке магнитной цепи:

$$U_{Mag}(3) = F_3 - H_3 \times l_3 = 1,03 \text{ A}$$

Расхождение полученных результатов в пределах допустимой точности.