Oxygénothérapie aux urgences

Dr ABBOU.Y
Faculté de médecine
2023/2024

plan

- Introduction
- Physiologie
- Indication de l'oxygénothérapie
- Effets secondaires de l'hyperoxémie
- Mécanisme d'adaptation à l'hypoxie
- Avantage de l' hyperoxémie
- Modalités d'administration d'oxygenothérapie
- La mesure des pressions en ventilation mécanique

introduction

- L'oxygénothérapie est indiqué en cas d'hypoxie tissulaire en fonction de l'hypoxémie.
- Découvert en 1774 sous le nom air déphlogistiqué.
- Puis sous le nom oxygène par ANTOINE Lavoisier
- Statut médicament 1998

Physiopathologie

Hypoxie non hypoxémique :

Débit cardiaque diminué, hb, capacité de fixation d'o2.

- Hypoxie hypoxémique :PAO2 < 60 mm hg
- Shunt : n'est pas corrigé par l'O₂.
- Effet shunt par ↓ rapport V/Q : partiellement corrigé par l'O₂
- Trouble de diffusion alvéolo-capillaire: répondent bien à l'o2

Indication et objectifs de l' oxygénothérapie

- Oxygénothérapie à haut débit OHD pour hyperoxémie: intoxication CO, pneumothorax.
- Oxygénothérapie pour SaO2 entre 94 à 98 %:
- a) Hypoxie non hypoxémique : ACR , ÉTAT DE CHOC
- b) Hypoxie hypoxémique : exacerbation d'asthme , pneumopathie , cancer , EP
- Oxygénothérapie pour Sa02 entre 88 à 92 % : patient à risque hypercapnie
- Oxygénothérapie non indiqué sauf hypoxémie : Syndrome coronaire , AVC , intoxication a la bléomycine

EFFETS SECONDAIRE DE L'HYPEROXÉMIE

- <u>Lésion pulmonaire direct</u>: inflammation et extravasation capillaire et œdème (lié aux radicaux libre d'O2)
- Atélectasie
- Hypercapnie :
- a) Levé du stimulus hypoxique .
- b) Inhibition de la vasoconstriction adaptative des vx bronchique → altération rapport V/Q
- c) effet Haldane : ↑ paco2 dans ca forme dissoute par
 ↓ de la fraction lié aux carbaminehémoglobine (forte liaison avec l'O2).
- Altération hémodynamique microcirculatoire par vasoconstriction

Mécanisme d'adaptation à l'hypoxie

- HIF -1 α : hypoxique inductible factor
- a) Erythropoïèse
- b) 个 VEGF
- Voie anaérobie par inhibition de la pyruvate déshydrogénase
- ↑ ventilation alvéolaire : stimulation chémorécepteur glomus carotidien
- Hypoxémie permissive : vise des objectif
 Oxygénothérapie moins élevée lors d'hypoxémie chronique

Avantage de l'hyperoxémie

- <u>**V** demie vie carboxyhémoglobine</u> de 300 min à 90 min lors d'une intoxication CO
- Résolution de pneumothorax : la ↓ d'azote alvéolaire offre un gradient plèvre –capillaire facilitant la résorption d'air
- Amélioration de la perfusion d'organe par vasoconstriction périphérique

Courbe dissociation de l'oxyhemoglobine

- SaO2 chute brutalement en dessous de certain valeur PaO2
- La SaO2 reste ↑ malgré une ↓ PaO2 favorisant la capture d'O2 capillaire pulmonaire
- Modeste ↓ PaO2 malgré
 ↓ importante SaO2 ,
 facilitant la diffusion d'O2
 vers les tissus .

Modalités d'administration d' oxygénothérapie

- Humidifié réchauffé le long des Voies aérienne sup (saturation 100 % iso thermique 37°)
- Les recommandations préconisent une humidifications lors d'usage de haut débit
- Humidificateur réutilisable (barboteur) ou jetable pré remplie d'eau stérile.

Matériel d'oxygénothérapie

patient par les différents matériels u minaiation.

Modalités d'administration d' oxygénothérapie

- 1. Lunette d'oxygène : FIO2<40% pour un débit <5 L/min
- 2. Masque faciale simple :6 à 10 l/mn \rightarrow FiO2 35 à 55%
- 3. Masque venturi : FIO2 de 24 à 60 % en fonction du code couleur venturi , indiqué chez le BPCO
- 4. masque réserve : FiO2 entre 64% à 90%
- 5. Optiflow ou OHD : oxygène à haut débit utilisant des turbine à air ↑délivrant jusqu'à 70 litres /min FIO2 à 100 % .
- 6. La CPAP Boussignac :[™] est plus récente. Elle fonctionne sur le principe d'injection d'O2 dans un petit cylindre ,créant une hélice virtuelle du fait des propriétés de friction de l'air.

Masque à réserve

Masque venturi

Optiflow ou OHD

AVANTAGES DE L'OHD

- Améliore le confort des patient
- Rinçage de l'espace mort anatomique agissant comme un réservoir frais d'o2 et réduisant la reinhalation de Co2
- ↓ le risque de <u>collapsus inspiratoire pharyngé</u>
 provoqué par l'hypoxie , l'hypercapnie et le
 sommeil
- ↑ PEP pression expiratoire positive
- ↓rapport espace mort/ Vt

La mesure des pressions en ventilation mécanique

- doit permettre l'évaluation du risque barotraumatique, au mieux au niveau alvéolaire.
- La pression de pic (ou pression de crête)est mesurée en insufflation , dépend en grande partie de la résistance de la sonde.
- **pression de plateau (Pplat)** reflète La pression alvéolaire , nécessite une pause télé inspiratoire durant laquelle les débits inspiratoire et expiratoire sont nuls.
- **PEP intrinsèque (PEPi)** et hyperinflation dynamique Initialement décrite au cours du syndrome obstructif, c'est la présence anormale d'une pression positive dans les voies aériennes en fin d'expiration.

Les cinq principaux modes ventilatoires utilisés en médecine d'urgence

Modes ventilatoires

Modes volumétriques :

1. Exemple → Ventilation contrôlée

Le volume courant (VT) prédéterminé est délivré par le ventilateur à une fréquence fixe et imposée, choisie par le clinicien , comporte plusieurs phases :

Temps d'inspiration (Ti) : temps d'insufflation + temps de plateau

Temps expiratoire (Te)

Rapport I/E = rapport Ti/Te

- Modes barométriques ou en pression
- 1. Exemple → Ventilation en pression contrôlée (VPC) : La fréquence machine est déterminée, de même qu'un Ti. Le Te découle du réglage de ces deux paramètres. Le clinicien détermine un niveau de pression d'insufflation appliqué durant le Ti.
 - Selon les résistances, le ventilateur adapte son débit d'insufflation pour maintenir la pression d'insufflation de consigne.
- Exemple → Ventilation spontanée avec aide inspiratoire :généralement associé à une pression expiratoire positive (AI+PEP). À chaque effort inspiratoire du patient détecté (trigger inspiratoire), le ventilateur délivre une pression inspiratoire constante appelée aide inspiratoire.

Conséquences hémodynamiques interactions cœur-poumons

- Pression positive et fonction cardiaque :
- ↓ précharge ventricule droit
- ↑ Postcharge ventricule droit

Contrainte pariétale

Wall Tension (T) = Transmural Pressure (P) x Radius (r)

2 x Wall Thickness (u)

La tension murale augmente avec le rayon Le rayon diminue lors de l'application d'une PEV

Effet sur le VES

Loi de Laplace

$$\sigma = (P_{tm} \times R) / E$$

Implication thérapeutique

- A/La diminution du retour veineux offre au cœur gauche défaillant :
- 1. une diminution de la pression du remplissage et du volume sanguin central
- 2. une précharge adéquate.
- B/ la ventilation en pression positive offre les avantages suivants :
- ↓ de la Postcharge suite à une ↓ du stress pariétale du VG (pression transmurale du VG) :
- a) ↑ la perfusion coronaire
- b) \uparrow la contractilité en améliorant l'oxygénation myocardique
- c) Améliore la performance en maintenant la vitesse de raccourcissement des fibres.
- 2. Chasse de sang des alvéoles vers la circulation d'aval améliorant la précharge.
- 3. ↑ pression trans diaphragmatique améliorant l'éjection du VG.
- 4. Vasodilation reflexe suite à l'↑ de du débit cardiaque diminue d'avantage la post charge.