数值解析

第2回: メモリの動的確保、行列・ベクトルとノルム

本日の目標

- 1. メモリの動的確保について理解する
- 2. ライブラリ関数を使えるようになる
- 3. 配列を用いた行列演算をプログラムできるようにする

領域(メモリ, 配列)の動的確保

- ・プログラム実行中に、必要な量の領域を作る
 - malloc (Memory Allocation)
- 使わなくなったときには解放する
 - free

例)

- •卒業証書は、3月になってから作成する
- ・実行(後期日程完了)するまで、何人卒業できるかわからない
- •4月に十分多い枚数を作っておくことも可能だが非効率

復習:ポインタと配列

double $b[4] = \{2.54, 1.33, 0.52, 2.824\}$

double *a = (b+1)
*a : 1.33 (=b[1])
2.54
$$\frac{1.33}{0.52}$$
 0.52 2.824
*a = 3.0

- 要素番号を伴わずに出てきた配列は、先頭要素へのポインタ
- ポインタの加減は、オブジェクトのサイズ分ずつアドレスを変化
- 間接参照演算子と、ポインタ型と、積演算子はどれも*なので注意する

1次元配列の動的確保 (malloc)

② 確保できたら先頭要素を指すポインタを返します

double *a = (double *)malloc(4 * sizeof(double))

先頭はaで表す

1箱の大きさはdouble: キャスト(double *)

③ 使い終わったら後片付けをします. free(a)

2次元配列

2次元配列(使用時)

3次元以上も同様にして作成可能

補足

領域解放する際は、末端から順に解放する.

```
例えば、double **matrix に2次元配列を割り当てた場合
free(matrix)
を先にやってしまうとmatrix[0]で作った領域が解放できない.
for (行)
 free(matrix[行])
free(matrix)
```


ベクトルの演算

- 和・差 成分ごとの和・差を計算。
- 内積 $\vec{a} \cdot \vec{b}$ $|\vec{a}||\vec{b}|\cos\theta = \sum_{i=1}^{n} a_i b_i$
- ・外積 $\vec{a} \times \vec{b}$ 大きさ $|\vec{a}||\vec{b}|\sin\theta$, $\vec{a} \not \in \vec{b}$ に直交

行列の演算

和・差成分ごとの和・差を計算。

• 積

行列の演算

転置 行と列を入れ替える

逆行列

正方行列Aに対して,

$$AX = XA = E$$

となる行列Xを逆行列といい、A-1と記述する.

逆行列が存在するとき行列Aは正則であるといい、 逆行列が存在しなければ特異であるという.

ベクトルノルム

長さ(距離)、大きさの概念の一般化

$$\sqrt[p]{\sum_{i=n}^{n} |x_i|^p}$$

• p=2 (2-ノルム), n=2 (2次元ベクトル)の場合

 $\sqrt{(x_1)^2 + (x_2)^2}$: ベクトルの長さ(大きさ), ユークリッドノルム

ベクトルノルム

• p=1の場合 (1-ノルム), n=2では

 $|x_1| + |x_2|$:絶対値の総和

• p=∞の場合 (∞-ノルム, 最大値ノルム), n=2では

$$(|x_1|^{\infty} + |x_2|^{\infty})^{\frac{1}{\infty}} = \max_{i=1,2} |x_i|$$

最大値ノルムの証明

$$(|x_1|^{\infty} + |x_2|^{\infty})^{\frac{1}{\infty}}$$

最大値では1 最大値以外では1より小さい

最大値を仮に x_m と置く

$$(|x_1|^{\infty} + |x_2|^{\infty})^{\frac{1}{\infty}} = \left\{ |x_m|^{\infty} \left(\frac{|x_1|}{|x_m|} \right)^{\infty} + |x_m|^{\infty} \left(\frac{|x_2|}{|x_m|} \right)^{\infty} \right\}^{\frac{1}{\infty}}$$

$$= \left\{ |x_m|^{\infty} (1)^{\infty} + |x_m|^{\infty} (1 \text{ Line})^{\infty} \right\}^{\frac{1}{\infty}}$$

$$= |x_m|^{\infty \frac{1}{\infty}}$$

$$= |x_m|$$

ソート

数(データ)をあるルールに従って並べかえること. ex) 学籍番号順, 50音順, アルファベット順

- ・バブルソート
- ・クイックソート
- ・ 選択ソート
- ・ヒープソート
- etc.

バブルソート

1個目と2個目の要素を比較し、小さい順に並べる. 2個目と3個目の要素を比較し、小さい順に並べる. 3個目と4個目の要素を比較し、小さい順に並べる. 4個目と5個目の要素を比較し、小さい順に並べる.

n個の要素に対し、n-1回の比較で1セット、1セット終わると最大値が最後尾に来る.

バブルソート

2セット目、また先頭から順に同じことを実行する.

1	3	5	2	9

2番目に大きい数が最後から2番目の要素に入る.

1 3	2	5	9
-----	---	---	---

n-1セット繰り返すことで、データは小さい順に整列される.

計算量: $(n-1)^2$

実際には不要な比較・交換を省けるのでもう少し下がる

クイックソート

ピボットを選び、数列をピボット以下と以上に分割

3 1 2 5 9

分割されたそれぞれで同じことを繰り返す

1 2

計算量: $Q_n = n - 1 + Q_a + Q_b$ ($Q_a \geq Q_b$ はサブセットの計算量)

最悪値: バブルソートと同じ, 平均値: 2n log n

計算量, Order

計算量の概略を比較するとき、Oという表記が使われる.

- ●高い次数のものを抜き出す
- ●係数は省く

```
ex) 
バブルソート(n-1)^2 \rightarrow O(n^2) 
クイックソートの平均2n \log n \rightarrow O(n \log n)
```

参考: qsort関数

void qsort(void *array, size_t n, size_t m,
 int (*comp)(const void *a1, const void *a2))

比較関数へのポインタ int (*comp)(const void *a1, const void *a2))が必要

講義中にソートが必要な際は,

- qsort関数
- 自作のソート関数(過去のプログラム授業で作ったもの) どちらを使っても良い.

演習課題2

(予備)以下の計算をおこなえ

$$(1) \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 3 \\ 7 \\ -2 \end{pmatrix}$$

$$(2) \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 7 \\ -2 \end{pmatrix}$$

k2-input1.csvから行列Aを、k2-input2.csvからベクトルxを入力し、行列積Axの計算を行うプログラムを作成せよ。

例
$$\begin{pmatrix} 2 & 8 & 4 \\ 3 & 2 & -1 \\ 7 & -1 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \\ -2 \end{pmatrix}$$

余談

・ 行列積って役に立つの?

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/3(x_1 + x_2 + x_3) \\ 1/3(x_2 + x_3 + x_4) \\ 1/3(x_3 + x_4 + x_5) \\ 0 \end{pmatrix}$$

移動平均の計算

課題について

- ・2週間に1回程度の課題
- ・2週目終了後2週間で提出締切(今回は11/14)
- ・提出ファイルが複数になる場合はzip圧縮して1ファイルにする
- Blackboard上の提出ページか, readme.txtにて説明を加える
 - ・ コンパイル環境、コンパイル方法、実行方法等
- 配布したライブラリに関しては変更していなければ添付不要
 - 説明にライブラリ使用について記載すること
- ・動作確認用のデータファイルは課題と同時に掲載
- ・評価用データファイルは評価の時間に公開