MATE 6551: Tarea 1

Due on October 8, 2025

Prof. Iván Cardona , C41, October 8, 2025

Sergio Rodríguez

Problem 0

If X is a topological space homeomorphic to D^n , then every continuous $f: X \to X$ has a fixed point.

Proof:

Let $\varphi: X \to D^n$ be a homeomorphism. Suppose, for a contradiction, that there exists a continuous $f: X \to X$ with no fixed point. Then for any $x \in X$, $f(x) \neq x \Longrightarrow \varphi(x) \neq \varphi(f(x))$ by the injectivity of φ . Then the points $\varphi(x), \varphi(f(x)) \in D^n$ define a unique ray ℓ_x starting at $\varphi(f(x))$ and passing through $\varphi(x)$.

Define $\psi: D^n \to S^{n-1}$ by $\psi(x) = \left(\ell_{\varphi^{-1}(x)} \setminus \{\varphi(f(x))\}\right) \cap S^{n-1}$. Note that this is well defined as $\ell_{\varphi^{-1}(x)} \setminus \{\varphi(f(x))\}$ is guaranteed to intersect S^{n-1} exactly once for all $x \in X$. An analytic geometry argument mentioned in class yields the continuity of ψ . Finally, note that $x \in S^{n-1} \Longrightarrow \psi(x) = x$, because the intersection of $\ell_{\varphi^{-1}(x)} \setminus \{\varphi(f(x))\}$ with S^{n-1} coincides precisely with $\varphi(x)$. Therefore, ψ is a retraction, thus making S^{n-1} a retract of D^n , which contradicts Lemma 0.2. \bigstar

MEP

Problem 1

Let $f \in \text{Hom}(A, B)$ be a morphism in a category \mathcal{C} . If f has a left inverse g and a right inverse h, then g = h.

Proof:

By hypothesis, $g \circ f = 1_A$ and $f \circ h = 1_B$. Then:

$$g = g \circ 1_B = g \circ (f \circ h) = (g \circ f) \circ h = 1_A \circ h = h \tag{1}$$

MEP

Problem 2

Let G be a group and let \mathcal{C} be the one-object category it defines: obj $\mathcal{C} = \{*\}$, $\operatorname{Hom}(*,*) = G$, and composition is the group operation. If H is a normal subgroup of G, define $x \sim y$ to mean $xy^{-1} \in H$. Show that \sim is a congruence on \mathcal{C} and that [*,*] = G/H in the corresponding quotient category.

Proof:

First, we prove that \sim is an equivalence relation:

Let $x, y, z \in G$, then:

a) (Reflexivity):

Because H is a subgroup, it contains the identity element: $xx^{-1} = e \in H \Longrightarrow x \sim x$.

b) (Symmetry):

Suppose that $x \sim y$. Then $xy^{-1} \in H$. But H is a subgroup of G, so it follows that: $(xy^{-1})^{-1} = (y^{-1})^{-1}x^{-1} = yx^{-1} \in H \Longrightarrow y \sim x$.

c) (Transitivity):

Suppose that $x\sim y$ and $y\sim z$. Then $xy^{-1},yz^{-1}\in H$. But, because H is a subgroup: $xy^{-1}yz^{-1}=xz^{-1}\in H\Longrightarrow x\sim z$.

To conclude that \sim forms a congruence on \mathcal{C} , it suffices to show that, for all $x, x', y, y' \in G$, we have $x \sim x', y \sim y' \Longrightarrow xy \sim x'y'$. Note that, in general, the definition of a congruence in a category involves slightly different conditions, but the fact that \mathcal{C} has a single hom-set allows us to reduce them to the condition shown above.

Suppose that $x \sim x'$ and $y \sim y'$. Then $x(x')^{-1}$, $y(y')^{-1} \in H$. Since H is normal in G, we know that $x(y(y')^{-1})x^{-1} \in H$, but H is a subgroup, so $h := (x(y(y')^{-1})x^{-1})(x(x')^{-1}) \in H$. But:

$$h = (x(y(y')^{-1})x^{-1})(x(x')^{-1})$$

$$= x(y(y')^{-1})(x^{-1}x)(x')^{-1}$$

$$= x(y(y')^{-1})(x')^{-1}$$

$$= (xy)((y')^{-1}(x')^{-1})$$

$$= (xy)(x'y')^{-1}$$
(2)

 $xy \sim x'y'$, which shows that \sim is a congruence in \mathcal{C} .

By definition, $[*,*] = \{[f] \mid f \in \operatorname{Hom}_{\mathcal{C}}(*,*)\}$, where [f] is the equivalence class of $f \in \operatorname{Hom}_{\mathcal{C}}(*,*) = G$ under \sim . This coincides exactly with the set G/H. Furthermore, composition in a quotient category is defined by $[g] \circ [f] = [g \circ f]$, which, in our case, translates to: [f][g] = [fg]. This coincides with the definition of the operation in a quotient group, which is well defined due to the normality of H.

MEP

Problem 3

Let $x_0, x_1 \in X$ and let $f_i : X \to X$ for $i \in \{0, 1\}$ denote the constant map at x_i . Prove that $f_0 \simeq f_1$ if and only if there is a continuous $F : I \to X$ with $F(0) = x_0$ and $F(1) = x_1$.

Proof:

Suppose that $H:f_0\simeq f_1$. Then define $F:I\to X$ by $F(t)=H(x_0,t)$. Note that F is the composition of continuous functions, and is thus continuous, and also note that:

$$F(0) = H(x_0, 0) = f_0(x_0) = x_0$$
 and $F(1) = H(x_0, 1) = f_1(x_0) = x_1$.

Suppose now that there exists a continuous $F:I\to X$ with $F(0)=x_0$ and $F(1)=x_1$. Then define $H:X\times I\to X$ by H(x,t)=F(t). Once again, note that H is the composition of continuous functions, and is thus continuous, and that for all $x\in X$:

$$H(x,0) = F(0) = x_0 = f_0(x)$$
 and $H(x,1) = F(1) = x_1 = f_1(x)$.

MEP

Problem 4

- (i) Give an example of a continuous image of a contractible space that is not contractible.
- (ii) Show that a retract of a contractible space is contractible.

Example (i):

Define $f:[0,2\pi)\to S^1$ by $f(x)=(\cos(x),\sin(x))$. We know that \sin and \cos are continuous by analysis, then f is continuous. Also, since S^1 is the unit circle, we have that its circumference is 2π , then by the definition of \sin and \cos , f is surjective.

Now, note that $[0,2\pi)$ is contractible via H(x,t)=tx, but $f([0,2\pi))=S^1$ is not contractible, because $\pi_1(S^1,(1,0))\simeq \mathbb{Z}$, which is non-trivial.

Proof (ii):

Let X be a contractible space with contraction $H: 1_X \simeq c_{x_0}$ for some fixed $x_0 \in X$ (where c_{x_0} is the constant function at x_0), and let $A \subseteq X$ be a retract of X with retraction $r: X \to A$. Then define $G: A \times I \to A$ by G(a,t) = r(H(a,t)). Because G is the composition of continuous functions, G is itself continuous, and the following hold:

$$G(a,0) = r(H(a,0)) = r(1_X(a)) = r(a) = a = 1_A(a)$$
(3)

and

$$G(a,1) = r(H(a,1)) = r\Big(c_{x_0}(a)\Big) = r(x_0) = c_{r(x_0)}(a) \tag{4}$$

which is a constant function.

$$\therefore G: 1_A \simeq c_{r(x_0)}.$$

MEP