Author: Sinclair R. Combs

User Input

Layered unit cell

The program requires a priori identification of layers within the unit cell. These should be loaded into the program as a csv file of the following format, where each cell represents a csv entry:

Layer	Atom	Element	x	y	\mathbf{z}	Occupancy
A	Sc1	Sc^{3+}	0	0	0	1
A	Li1	Li ⁺	0	0.3347	0	1
A	Li2	Li ⁺	0.5	0.169	0	0.365
В	Sc1	Sc^{3+}	0	0.5	0.5	1
В	Li1	Li ⁺	0	0.1653	0.5	1
В	Li2	Li ⁺	0	0.331	0.5	0.365

Layer is a unique tag associated with a given layer of atoms. **Atom** is a unique tag to distinguish from other atoms of the same type. **Element** is the atomic element and oxidation state. The parameters **x**, **y**, and **z** are the atomic position in fractional coordinates. **Occupancy** is the site occupancy.

Note: Unit cell should be transformed (if necessary) such that layers are orthogonal to lattice vectors. When importing the csv, the stacking direction will automatically be converted to c.

Supercell size (N) – Number of repeat unit cells used to construct supercells

Stacking direction – Lattice vector orthogonal to layers

Faulted layer – Unique tag of layer to be faulted

Stacking probability (P) - Probability with which faulting will occur in a given layer

Stacking vector (S) – Translation vector corresponding to stacking fault displacement in fractional coordinates relative to the original layer position

pyfaults

Top-level module.

Functions

toCif (cell, path, fn, inclPkl=False)

Generates a CIF file from a given structure.

Parameters	cell (Unitcell or Supercell) – Structure to write to cif format
	path (str) – File directory to save to
	fn(str) – File name to save to
	inclPkl (bool, optional) – Generates pickle file of cif data. Default is False.
Returns	None

importCSV (path, fn)

Imports CSV file as a dataframe.

Parameters	path (str) - File directory
	fn(str) - File name
Returns	None

Classes

Lattice

Lattice parameters

LayerAtom

Atom in a specified layer and its properties

Layer

Collection of atoms that form a specified layer

ChildLayer

Spatially translated child layer from parent layer

Unitcell

Collection of layers that form a unit cell

Supercell

Collection of unit cells that form a supercell

pyfaults.lattice

Contains class Lattice for defining lattice parameters.

class Lattice (a, b, c, alpha, beta, gamma)

Bases: object

Stores lattice parameter values.

Danamatana	o (float) Tottico vector o (Å)
Parameters	a (float) - Lattice vector a (A)
	b (float) - Lattice vector b (Å)
	c (float) – Lattice vector c (Å)
	alpha $(float)$ – Lattice angle α (°)
	beta $(float)$ – Lattice angle β (°)
	gamma $(float)$ – Lattice angle γ (°)

Functions

setParam (a=None, b=None, c=None, alpha=None, beta=None, gamma=None)

Sets one or more lattice parameters, any parameters not specified will retain original values.

Parameters	a (float, optional) – New value of lattice vector a (Å)	
	b (float, optional) – New value of lattice vector b (Å)	
	c (float, optional) – New value of lattice vector c (Å)	
	alpha (float, optional) – New value of lattice angle α (°)	
	beta (float, optional) – New value of lattice angle β (°)	
	gamma (float, optional) – New value of lattice angle γ (°)	
Returns	Self	

display ()

Prints lattice parameters.

Parameters	None
Returns	None

pyfaults.layerAtom

Contains class LayerAtom for defining atoms in specific layers.

class LayerAtom (layerName, atomLabel, element, xyz, occupancy, lattice)

Bases: object

Stores layer-specific atomic properties.

Parameters	layerName (str) – Unique identifier for layer in which atom is located
	atomLabel (str) – Unique identifier for atom
	element (str) – Atomic element and oxidation state (if applicable)
	xyz (nparray) – Atomic position [x, y, z] in fractional coordinates
	occupancy (float) – Crystallographic site occupancy
	lattice $(Lattice)$ – Unit cell lattice parameters

Functions

 $\begin{tabular}{ll} {\tt setParam} & (layerName=None, \ atomLabel=None, \ element=None, \ xyz=None, \ lattice=None, \ occupancy=None) \end{tabular}$

Sets one or more atomic parameters, any parameters not specified will retain original values.

Parameters	layerName (str, optional) – New layer name
	atomLabel (str, optional) - New atom label
	element $(str, optional)$ – New element label
	xyz (nparray, optional) – New array for atomic position
	occupancy (float, optional) – New value for site occupancy
	lattice (Lattice, optional) – New unit cell lattice
Returns	Self

display ()

Prints atomic parameters.

Parameters	None
Returns	None

pyfaults.layer

Contains class Layer for storing a list of atoms that defines a layer.

class Layer (atoms, lattice, layerName)

Bases: object

Collection of atoms that form a layer.

Parameters	atoms $(LayerAtom)$ – List of LayerAtom instances to add to layer
	lattice $(Lattice)$ – Unit cell lattice parameters
	layerName (str) – Unique identifier for layer

Functions

setParam (atoms=None, lattice=None, layerName=None)

Sets one or more layer parameters, any parameters not specified will retain original values.

Parameters	atoms (LayerAtom, optional) – New list of atoms to add to layer
	lattice (Lattice, optional) – New unit cell lattice
	layerName $(str, optional)$ – New layer name
Returns	Self

display ()

Prints layer name and atoms.

Parameters	None
Returns	None

atom_info()

Prints atomic information of atoms in layer.

Parameters	None
Returns	None

Additional Methods

getLayers (df, lattice, layerNames, stackDir)

Pulls layer information from imported dataframe.

Parameters	df (dataframe) – Dataframe with atomic parameters
	lattice $(Lattice)$ – Unit cell lattice parameters
	layerNames (str) – Layer names as documented in imported csv
	stackDir(str) – Lattice vector orthogonal to layers
Returns	layers $(Layer)$ – List of layer instances

pyfaults.childLayer

Contains class ChildLayer for generating a spatially translated copy of a parent layer.

class ChildLayer (layerName, parent, transVec)

Bases: object

Generates a child layer from a given parent layer.

Parameters	layerName (str) – Unique identifier for child layer
	parent $(Layer)$ – Parent layer
	transVec (nparray) – Translation vector [x, y, z] representing shift from
	parent layer position to child layer position in fractional coordinates

Functions

 $\verb|setParam| (layerName=None, parent=None, transVec=None)|$

Sets one or more child layer parameters, any parameters not specified will retain original values.

Parameters	layerName (str, optional) – New child layer name
	parent (Layer, optional) - New parent layer
	transVec (nparray, optional) – New translation vector
Returns	Self

generate (parent, transVec)

Creates child layer by translating parent layer.

Parameters	parent $(Layer)$ – Parent layer
	transVec (nparray) - Translation vector [x, y, z] representing shift from
	parent layer position to child layer position in fractional coordinates
Returns	Self

display ()

Prints layer name and atoms.

Parameters	None
Returns	None

atom_info()

Prints atomic information of atoms in layer.

Parameters	None
Returns	None

pyfaults.unitcell

Contains class Unitcell for storing a list of layers that defines a unit cell.

class Unitcell (name, layers, lattice)

Bases: object

Collection of layers that form a unit cell.

Parameters	name (str) – Unique identifier for unit cell
	layers $(Layer)$ – List of layers that form unit cell
	lattice (Lattice) – Unit cell lattice parameters

Functions

 $\verb|setParam| (name=None, layers=None, lattice=None)|$

Sets one or more unit cell parameters, any parameters not specified will retain original values.

Parameters	name (str, optional) – New unit cell name
	layers (Layer, optional) – New list of layers
	lattice (Lattice, optional) – New unit cell lattice
Returns	Self

layer_info ()

Prints names of layers in unit cell.

Parameters	None
Returns	None

atom_info ()

Prints atomic information of atoms in layer.

Parameters	None
Returns	None

pyfaults.Supercell

Contains class Supercell for storing a list of unit cells that defines a supercell.

 $class \ \mathtt{Supercell} \ (unitcell, \ nStacks, \ fltLayer = None, \ stackVec = None, \ stackProb = None) \\ \mathtt{Bases: object}$

Collection of unit cells that form a supercell.

Parameters	unitcell $(Unitcell)$ – Base unit cell
	nStacks (int) - List of layers that form unit cell
	fltLayer (str, optional) – Name of faulted layer. Default is None.
	stackVec (nparray, optional) – Stacking vector relative to ideal position.
	Default is None.
	stackProb (float, optional) – Stacking probability. Default is None.

Functions

setParam (nStacks=None)

Sets value for number of stacks (N).

Parameters	nStacks (int, optional) – New N value
Returns	Self

setLayers (unitcell, fltLayer=None, stackVec=None, stackProb=None)
Sets supercell layers, if only unitcell is specified, the supercell will not be faulted.

Parameters	unitcell (<i>Unitcell</i>) – Base unit cell
	fltLayer (str, optional) – New name of faulted layer
	stackVec (nparray, optional) – New stacking vector
	stackProb (float, optional) – New stacking probability
Returns	Self

layer_info ()

Prints names of layers in unit cell.

Parameters	None
Returns	None

show_faults ()

Prints names of faulted layers.

Parameters	None
Returns	None