洲江水学

本科实验报告

课程名称:		数字逻辑设计
姓	名:	王浩雄
学	院:	竺可桢学院
	系:	混合班
专	业:	计算机科学与技术
学 号:		3230106032
指导教师:		马德

2025 年 4 月 14 日

浙江大学实验报告

课程名称:	数字逻辑	设计	实验类	型:		
实验项目名称:		锁存器、	触发器基本	本原理		
学生姓名:	王浩雄	_ 专业: _	混合班	学号:	323010	6032
同组学生姓名:		无		导老师:	- 马德	
实验地点:	紫金港东	4-509	实验	公日期 :	2025 年 4	月 <u>14</u> 日

一、实验目的和要求

- ① 掌握锁存器与触发器构成的条件和工作原理;
- ② 掌握锁存器与触发器的区别;
- ③ 掌握基本 SR 锁存器、门控 SR 锁存器、D 锁存器、SR 锁存器、D 触发器的基本功能:
- ④ 掌握基本 SR 锁存器、门控 SR 锁存器、D 锁存器、SR 锁存器存在的时序问题。

二、 实验内容

- ① 实现基本 SR 锁存器,验证功能和存在的时序问题;
- ② 实现门控 SR 锁存器,并验证功能和存在的时序问题;
- ③ 实现 D 锁存器,并验证功能和存在的时序问题;
- ④ 实现 SR 主从触发器,并验证功能和存在的时序问题;
- ⑤ 实现 D 触发器,并验证功能。

三、 主要仪器设备

① 装有 Xilinx ISE 14.7 的计算机 1 台

四、操作方法与实验步骤

1、基本 SR 锁存器设计与验证

① 在 Xilinx ISE 中新建 Schematic 文件,结合设计要求 (使用 NAND2 门),绘制电路连接图如下:

② 新建仿真激励文件如下:

```
module SR_LATCH_SR_LATCH_sch_tb();

    reg R, S;
    wire Q, NOTQ;

    SR_LATCH UUT (.Q(Q), .NOTQ(NOTQ), .R(R), .S(S));

initial begin
R=1;S=1; #50;
R=1;S=0; #50;
R=1;S=1; #50;
R=0;S=1; #50;
R=0;S=1; #50;
R=0;S=0; #50;
R=1;S=1; #50;
R=1;S=1; #50;
end
endmodule
```


测试组别	S	R	Q	NOTQ	解释
1	1	1	X	X	
2	0	1	1	0	Q置1
3	1	1	1	0	Q保持
4	1	0	0	1	Q 置 0
5	1	1	0	1	Q保持
6	0	0	1	1	未定义
7	1	1	1	0	

2、门控 SR 锁存器设计与验证

① 在 Xilinx ISE 中新建 Schematic 文件,结合设计要求 (使用 NAND2 门),绘制电路连接图如下:

② 新建仿真激励文件如下:

```
module CSR_LATCH_CSR_LATCH_sch_tb();

reg C, S, R;
wire NOTQ, Q;

CSR_LATCH UUT (.NOTQ(NOTQ), .Q(Q), .C(C), .S(S), .R(R) );
```

```
initial begin
C = 1;
R = 1; S = 1; #50;
R = 1; S = 0; #50;
R = 1; S = 1; #50;
R = 0; S = 1; #50;
R = 1; S = 1; #50;
R = 0; S = 0; #50;
R = 1; S = 1; #50;
C = 0;
R = 1; S = 1; #50;
R = 1; S = 0; #50;
R = 1; S = 1; #50;
R = 0; S = 1; #50;
R = 1; S = 1; #50;
R = 0; S = 0; #50;
R = 1; S = 1; #50;
end
endmodule
```


测试组别	С	S	R	Q	NOTQ	解释
1	1	1	1	1	1	未定义
2	1	0	1	0	1	Q 置 0
3	1	1	1	1	1	未定义
4	1	1	0	1	0	Q置1
5	1	1	1	1	1	未定义
6	1	0	0	1	0	Q保持
7	1	1	1	1	1	未定义
8	0	X	X	0	1	Q保持

3、D 锁存器设计与验证

① 在 Xilinx ISE 中新建 Schematic 文件,结合设计要求 (使用 NAND2 门),绘制电路连接图如下:

② 新建仿真激励文件如下:

```
module D_LATCH_D_LATCH_sch_tb();

reg C, D;

wire NOTQ, Q;

D_LATCH UUT (.NOTQ(NOTQ), .Q(Q), .C(C), .D(D));

initial begin
C=1;D=1; #50;
D=0; #50;
C=0;D=1; #50;
D=0;
end
endmodule
```

Name	Value	0 ns	50 ns	100 ns	150 ns 2
₽ C	0				
₩ D	0				
₩ Q	0				
™ NOTQ	1				

测试组别	C	D	Q	NOTQ	解释
1	1	1	1	0	Q置1
2	1	0	0	1	Q置0
3	0	X	0	1	Q保持

4、SR 触发器设计与验证

① 在 Xilinx ISE 中新建 Schematic 文件,结合设计要求(调用之前实现的 CSR_LATCH),绘制电路连接图如下:

② 新建仿真激励文件。为了能够验证一次性采样问题, 我编写的仿真激励如下:

```
module MS_FLIPFLOP_MS_FLIPFLOP_sch_tb();

    reg C, S, R;
    wire NOTQ, Q;

    MS_FLIPFLOP UUT (.C(C), .S(S), .R(R), .NOTQ(NOTQ), .Q(Q));

initial begin
    R=1;S=0; #320;
    R=0;S=0; #100;
    R=0;S=1; #100;
    R=0;S=0; #100;
end

always begin
    C=0; #20;
    C=1; #300;
end
endmodule
```

③ 运行仿真,得到如下的仿真波形。在第一个时钟为高的阶段内,触发器被Reset,随后的 Q=0 表明触发器被成功 Reset。在第二个时钟为高的阶段内,S信号发生 0-1-0 抖动,随后的 Q=1 表明触发器被此处的抖动成功 Set。从而说明了 SR 触发器存在一次性采样问题。

5、D 触发器设计与验证

① 在 Xilinx ISE 中新建 Schematic 文件,结合设计要求和真值表(使用 NAND3 门),绘制电路连接图如下:

② 新建仿真激励文件如下:

```
module D_FLIPFLOP_D_FLIPFLOP_sch_tb();
  reg D, CP, NOTR, NOTS;
  wire Q, NOTQ;
  D_FLIPFLOP UUT
(.Q(Q), .NOTQ(NOTQ), .NOTS(NOTS), .NOTR(NOTR), .D(D), .CP(CP));
initial begin
  NOTS = 1;
  NOTR = 1;
  D = 0; #150;
  D = 1; #150;
end
always begin
  C = 0; #50;
  C = 1; #50;
end
endmodule
```


测试组别	С	D	Q	NOTQ	解释
1	0	0	X	X	
2	1	0	0	1	Q 置 0
3	0	0	0	1	
4	1	1	1	0	Q置1
5	0	1	1	0	

五、 实验结果与分析

(请见上方分析)

六、 讨论、心得

在本次实验中,我使用 ISE 完成了多种锁存器、触发器的设计与验证。通过本次实验,我巩固了课堂所学的知识,对锁存器、触发器的作用和原理有了更深一步的理解,进一步加深了对时序逻辑电路的认识。