# Riemann Surfaces

Based on lectures by Notes taken by yehelip

Winter 2025

These notes are not endorsed by the lecturers. I have revised them outside lectures to incorporate supplementary explanations, clarifications, and material for fun. While I have strived for accuracy, any errors or misinterpretations are most likely mine.

Contents Riemann Surfaces

## Contents

| 1 | Introduction                                         | 3  |
|---|------------------------------------------------------|----|
| 2 | Introduction to Teichmuller spaces                   | 5  |
| 3 | Isotopy and Homotopy                                 | 8  |
| 4 | Hyperbolic geometry                                  | 10 |
|   | 4.1 Qualitative properties of Möbius transformations | 10 |

1 Introduction Riemann Surfaces

## 1 Introduction

**Definition 1.1** (Riemann surface). A Riemann surface is a 1-dimensional complex manifold.

**Definition 1.2** (Riemann surface). A Riemann surface is a topological space X together with open subsets  $\{U_k\}_{k\in I}$  of X with  $\bigcup_{k\in I} U_k = X$  together with maps  $f_i \colon U_i \to \mathbb{C}$  such that

- (1) Each  $f_i$  is a homeomorphism onto its image.
- (2) If  $U_i \cap U_j \neq \emptyset$  then  $f_i \circ f_j^{-1} \colon f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$  are biholomorphic.

**Remark 1.1.** A function  $f: \mathbb{C} \to \mathbb{C}$  is holomorphic at p if  $f'(p) = \lim_{z \to p} \frac{f(z) - f(p)}{z - p}$  exists.

**Definition 1.3** (Biholomorphism). A function  $f: \mathbb{C} \to \mathbb{C}$  is called biholomorphic if it has an inverse and both f and f' are holomorphic.

**Definition 1.4** (Atlas). The  $\{(U_i, f_i)\}_{i \in I}$  are called an atlas of the Riemann surface.

**Definition 1.5** (Chart). Each individual  $(U_i, f_i)$  is called a chart of the Riemann surface.

**Example 1.1.** Let  $U \subset \mathbb{C}$ . Then U can take an atlas with one chart which is the identity map.

**Example 1.2** (Riemann sphere). Let  $X = \{(z,t) \in \mathbb{C} \times \mathbb{R} : |z|^2 + t^2 = \mathbb{R}\}$ . We identify  $\mathbb{C}$  with the xy plane. Denote N and S the north and south poles of the sphere accordingly. We define  $\pi_N \colon \mathbb{C} \to S$  such that  $\pi_N$  sends each point (z,t) on the sphere to its stereographic projection from N onto the plane (point  $\xi$ ) as can be seen in the figure below:



We can similarly define  $\pi_S$  and verify that the images of the projections are  $X \setminus \{N\}$  and  $X \setminus \{S\}$  accordingly.

Now X is a Riemann surface with an atlas consisting of  $\pi_S \colon X \setminus \{S\} \to \mathbb{C}$  and  $\pi_N \colon X \setminus \{N\} \to \mathbb{C}$ . We denote the Riemann sphere as  $\hat{\mathbb{C}}$ .

**Definition 1.6** (Biholomorphism of Riemann surfaces). Let  $(X, (U_i, f_i)), (Y, (W_i, g_i))$  be two Riemann surfaces. A biholomorphism between them is a homeomorphism  $X \xrightarrow{\phi} Y$  such that  $g_i \circ \phi \circ f_i^{-1}$  are biholomorphisms on their domains of definition.

A main problem in Riemann surfaces was classifying certain types of Riemann surfaces up to biholomorphisms.

Theorem 1.1. (Riemann mapping theorem). Any two proper open simply connected subsets of  $\mathbb{C}$  are biholomorphic.

1 Introduction Riemann Surfaces

A generalization of the Riemann mapping theorem is the uniformization theorem proved by Kobe in 1907.

**Theorem 1.2.** (Uniformization theorem). Any simply connected Riemann surface is bi-holomorphic to one of the following:

- $(1) \mathbb{C}$
- (2) Ĉ
- (3)  $\mathbb{H} = \{ z \in \mathbb{C} \colon \operatorname{Im}(z) > 0 \}$

We will give a proof for this theorem in the end of the class.

A natural question that arises is what about non simply connected Riemann surfaces?

**Theorem 1.3.** (Uniformization theorem, part II). Any connected Riemann surface is biholomorphic either to  $\hat{\mathbb{C}}$  or to a quotient of  $\mathbb{C}$  or  $\mathbb{H}$  by a properly discontinuous torsion-free subgroup of biholomorphisms.

**Remark 1.2.** Biholomorphisms of  $U = \mathbb{C}$  or  $\mathbb{H}$  (or any subset of  $\mathbb{C}$ ) forms a group under composition. We denote that group by Bih(U).

**Definition 1.7** (Properly discontinuous group). A countable subgroup of Bih(U) is said to be properly discontinuous if for all compact  $K \subseteq U$ , the set  $\{g \in G : gK \cap K \neq \emptyset\}$  is finite.

**Definition 1.8** (torsion-free action).  $G \subseteq Bih(U)$  is torsion-free if gp = p for some  $p \in U$  implies g is the identity.

**Remark 1.3.** Notice that multiplication in gp is the group action of g on the set U. That us gp = g(p).

We can know define the quotient space U/G where  $p \sim q$  if there exists  $g \in G$  such that gp = q.

Introduce a topology on U/G which is the coarsest topology such that the canonical projections  $U \to U/G$  are continuous.

Under the assumptions that G is properly discontinuous and torsion-free, U/G is a Riemann surface with the following charts. By assumptions on G, we can find for any  $p \in U$  a neighbourhood W of  $p \in U$  such that  $\pi \colon U \to U/G$  is a homeomorphism onto its image when restricted to W.

So, restrictions of  $\pi$  to these neighbourhoods W provide an atlas.

**Definition 1.9** (Free action). Let G

#### $\mathbf{2}$ Introduction to Teichmuller spaces

Let S be a topological space. Then

 $Modulispace(S) = \{Riemann surfaces homeomorphic to S up to biholomorphisms\}$ 

**Definition 2.1** (Teichmuller space). We consider pairs (X, f) where X is a Riemann space and  $f: S \to X$  is a homeomorphism. Then

$$Teich(S) = \{(X, f) : f : S \to X\} /_{\sim}$$

where  $(X_1, f_1) \sim (X_2, f_2)$  if there exists a biholomorphism  $X_1 \xrightarrow{\phi} X_2$  such that  $f_2 \circ f_1^{-1}$  is homotopic to  $\phi$ . In other words commutes up to homotopy.

**Remark 2.1.** The pair (X, f) is called a *marking* for S.

**Definition 2.2** (Homotopy). We say that two continuous functions f, g from a topological space X to Y are homotopic if there exists a continuous function  $H: X \times [0,1] \to Y$  such that H(x,0) = f(x) and H(x,1) = g(x) for all  $x \in X$ .

**Definition 2.3** (Mapping class group). First we define:

 $\operatorname{Homeo}^+(S) = \{ \operatorname{Orientation preserving homeomorphisms } S \to S \}$  $\operatorname{Homeo}^0 \triangleleft \operatorname{Homeo}^+(S) = \{ \text{the homeo. homotopic to the identity.} \}$ 

And now we define

$$MCG(S) = Homeo^{+}(S) / Homeo^{0}(S) = \frac{Diff^{+}(S)}{Diff^{0}(S)}.$$

We have that MCG acts on Teich(S) by  $\varphi \in \text{Homeo}^+(S)$ ,  $[\varphi] \in \text{MCG}(S)$  as such

$$[\varphi][(X,f)] = [(X,f \circ e^{-1})].$$

Now  $\mathcal{M}(S) = \text{Teich}(S) / \text{MCG}(S)$ . Our goal is to determine  $\mathcal{M}(S)$  and MCG(S) when S is a torus.

**Theorem 2.1.** Assume S is a torus  $T \cong \mathbb{R}^2 / \mathbb{Z}^2$ . Then  $MCG(S) = SL_2(\mathbb{Z})$  acting linearly on the torus.  $\mathcal{M}(S)$  can be identified with  $\mathbb{H}\left/\mathrm{SL}_2(\mathbb{Z})\right.$  where the action is by Mobius transformations.

*Proof.* Any Riemann surfaces homeomorphic to S has to form  $\mathbb{C}/\Lambda$  where  $\Lambda \subseteq Bih(\mathbb{C})$  is properly disc, free, and  $\Lambda(z \to z + \tau_1, z \to z + \tau_2)$  where  $\tau_1, \tau_2 \notin \mathbb{R}$ . We have to determine when different  $\mathbb{C}/\Lambda$  are biholomorphic. We can also write  $\mathbb{C}/\Lambda$  where  $\Lambda = \langle \tau_1, \tau_2 \rangle \subseteq \mathbb{C}$ . If  $\Lambda_1 = \langle \tau_1, \tau_2 \rangle$ ,  $\Lambda_2 = \langle c\tau_1, c\tau_2 \rangle$  for  $c \in \mathbb{C}^*$ . Then  $\mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$  is given by  $[z] \to [cz]$ . For any  $\tau_1, \tau_2 \in \mathbb{C}$  there exists  $c \in \mathbb{C}^{\times}$  such that (up to change in order)

This tells us that any Riemann torus is biholomorphic to  $\mathbb{C}/\langle XX, XX \rangle$  where  $\tau \in \mathbb{H}$ . So we have a surjection  $\mathbb{H} \to \mathcal{M}(S)$ .

**Theorem 2.2.**  $\mathbb{C} / \langle 1, \tau_1 \rangle$  is biholomorphic to  $\mathbb{C} / \langle 1, \tau_2 \rangle$  iff exists  $A \in \mathrm{SL}_2(\mathbb{Z})$  such that writing  $\tau_1, \tau_2$  as elements of  $\mathbb{R}^2$ , we have  $A\tau_1 = \tau_2$ .

*Proof.* Suppose there exists a biholomorphism  $f: \mathbb{C} / \langle 1, \tau_1 \rangle \to \mathbb{C} / \langle 1, \tau_2 \rangle$ . Let  $\bar{f}: \mathbb{C} \to \mathbb{C}$  be a lift of f. This means  $f(g+x) - f(x) \in \langle 1, \tau_1 \rangle$  whenever  $g \in \langle 1, \tau_1 \rangle$ .

$$f: \mathbb{C} / \langle 1, \tau_1 \rangle \to \mathbb{C} / \langle 1, \tau_2 \rangle bih.$$
  
 $\bar{f}: \mathbb{C} \to \mathbb{C} lift.$ 

By post composing with a biholomorphism of  $\mathbb{C}$  we can assume  $\bar{f}(0) = 0$ . We know that  $\bar{f}(\tau_2)$  and  $\bar{f}(1)$  are equivalent mod  $\langle 1, \tau_1 \rangle$ .

**Remark 2.2.** Let S be a Riemann surface. Recall that  $\mathcal{M}(S)$  is the moduli space of S, which is the space of Riemann surfaces homeo to S up to biholomorphism.

Recall that we define

$$MCG(S) = Homeo^{+}(S) / Homeo^{0}(S)$$

And the Teichmuller space of S

$$Teich(S) = \{(X, f) : f : S \to X\} /_{\sim}$$

where  $(X_1, f_1) \sim (X_2, f_2)$  if there exists a biholomorphism  $X_1 \xrightarrow{\phi} X_2$  such that  $f_2 \circ f_1^{-1}$  is homotopic to  $\phi$ .

Our goal today is to show that for  $T = \text{torus} = \mathbb{R}^2 / \mathbb{Z}^2$ .

- $MCG(S) \cong SL_2(\mathbb{Z})$ .
- $\mathcal{M}(S) \cong \mathbb{H} / \mathrm{SL}_2(\mathbb{Z})$ .
- Teich $(S) \cong \mathbb{H}$ .

Notice that because of the relation

$$\operatorname{Teich}(S) / \operatorname{MCG}(S) = \mathcal{M}(S)$$

we only need to prove two of these propositions.

First let's prove that  $\mathcal{M}(S) \cong \mathbb{H} / \mathrm{SL}_2(\mathbb{Z})$ . Any Riemann surface is homeomorphic to T (a complex torus) is biholomorphic to  $\mathbb{C} / \langle \tau_1, \tau_2 \rangle$ .

Recall that if  $c \in \mathbb{C}^{\times}$  then  $\mathbb{C} / \langle \tau_1, \tau_2 \rangle$  is biholomorphic to  $\mathbb{C} / \langle c\tau_1, c\tau_2 \rangle$  via the map

$$f(z + \langle \tau_1, \tau_2 \rangle) = cz + \langle c\tau_1, c\tau_2 \rangle.$$

Up to changing the order of  $\tau_1$ ,  $\tau_2$  we can find  $c \in \mathbb{C} \times$  such that  $c\tau_1 = 1$  and  $c_2 \in \mathbb{H}$ . Our goal now is to determine when there exists a biholomorphism

$$\mathbb{C}/\langle 1, \tau_1 \rangle \mapsto \mathbb{C}/\langle 1, \tau_2 \rangle, \quad \tau_1, \tau_2 \in \mathbb{H}$$

Denote  $\Lambda_{\tau} = \langle 1, \tau \rangle$ , when  $\tau \in \mathbb{H}$ .

**Theorem 2.3.** There exists a biholomorphism

$$\mathbb{C}/\langle 1, \tau_1 \rangle \mapsto \mathbb{C}/\langle 1, \tau_2 \rangle, \quad \tau_1, \tau_2 \in \mathbb{H}$$

iff there exists

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

with  $\tau_2 = \frac{a\tau_1 + b}{c\tau_2 + d}$ . This will imply that

$$\mathcal{M}(S) \cong \mathbb{H} / \mathrm{SL}_2(\mathbb{Z}).$$

*Proof.* Suppose there exists a biholomorphism

$$f: \mathbb{C} / \langle 1, \tau_1 \rangle \to \mathbb{C} / \langle 1, \tau_2 \rangle.$$

Lift it up to  $\bar{f}: \mathbb{C} \to \mathbb{C}$ . Then  $\bar{f}(g+x) - \bar{f}(x) \in \Lambda_{\tau_1}$  whenever  $x \in \mathbb{C}$ ,  $g \in \Lambda_{\tau_2}$ . We can replace  $\bar{f}$  with  $\bar{f} - \bar{f}(0)$ . We can assume that  $\bar{f}(0) = 0$  (and is still a lift off).

**Remark 2.3.** Since  $\bar{f}$  is a lift off of f we have  $\bar{f}(\Lambda_{\tau_2}) = \Lambda_{\tau_1}$ .

We know that  $\bar{f}$  has form  $\bar{f}(z) = az + b$  such that  $a \in \mathbb{C}^{\times}$ ,  $b \in \mathbb{C}$ . As  $\bar{f}(0) = 0$  we have  $\bar{f}(z) = az$ . Also,  $\{0, 1, \tau_2\} \subseteq \Lambda_{\tau_2}$  so  $0 = \bar{f}(0)$ ,  $\bar{f}(1) = a$ ,  $\bar{f}(\tau_2) = a\tau_2$  are in  $\Lambda_{\tau_1}$  so we can write  $a = \bar{f}(1)$  = We now have

$$\tau_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and we still need to show it is an element of  $\mathrm{SL}_2(\mathbb{Z})$ .

## 3 Isotopy and Homotopy

Let X be a metric space and  $F_0, F_1: X \to X$  homeomorphisms. Then we say  $F_0, F_1$  are homotopic if there exists a family  $F_t$  for  $t \in [0,1]$  of continuous maps such that  $t \mapsto F_t(x)$  is continuous for all  $x \in X$  (we don't require  $F_0, F_1$  to be homeomorphisms).

The maps  $F_0$ ,  $F_1$  are said to be isotopic if  $F_t$  are required to be homeomorphisms. For a surface S, we defined MCG(S)

**Theorem 3.1** (Baire, Epstein). If S is a finite type surface (e.g. closed surface of XXX) then two homeomorphisms  $F_0, F_1: X \to X$  are homotopic iff they are isotopic.

Last time we have shown that if  $T = \mathbb{R}^2/\mathbb{Z}^2$  is a torus, then  $MCG(S) = SL_2(\mathbb{Z})$ . For any  $A \in SL_2(\mathbb{Z})$  we obtained a homeomorphism

$$\psi_A : T \longrightarrow T$$
$$[x] \longmapsto [Ax]$$

We showed that any orientation preserving homeomorphism  $\phi: T \to T$  is homotopic to  $\psi_A$  for some  $A \in \mathrm{SL}_2(\mathbb{Z})$ .

This gives a map

$$\begin{array}{cccc} \Phi & : & \operatorname{SL}_2(\mathbb{Z}) & \longrightarrow & \operatorname{MCG}(T) \\ & [A] & \longmapsto & [\psi_A] \end{array}$$

which we know is surjective. Why is  $\Phi$  injective?

We want to show that for  $A \in \mathrm{SL}_2(\mathbb{Z})$  and  $A \neq I$  that  $\psi_A$  is not homotopic to the identity map.

We will see this by showing that  $\psi_A$  acts nontrivially on the fundamental group  $\Pi_1(T)$ .

**Definition 3.1** (Loop). A loop based at p is a continuous function  $\gamma \colon [0,1] \to X$  with f(0) = f(1) = 0.

**Definition 3.2** (Homotopy). We say that two continuous functions f, g from a topological space X to Y are homotopic if there exists a continuous function  $H: X \times [0,1] \to Y$  such that H(x,0) = f(x) and H(x,1) = g(x) for all  $x \in X$ .

**Definition 3.3** (Fundamental group). The fundamental group of a topological space X is the space of all loops in X based at a point  $p \in X$  up to homotopy.

A homeomorphism  $\psi \colon X \to X$  acts on  $\Pi_1(X)$  by

$$\psi[\gamma] = [\psi \circ \gamma].$$

The group operation is concatenation of loops.

Investion is changing the direction of the loop.

**Exercise 3.1** (Fundamental group of the torus). The fundamental group of T is  $\Pi_1(T) \cong \mathbb{Z}^2$  is generated by

$$\begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}.$$

This means any loop is homotopic to  $\begin{bmatrix} a \\ b \end{bmatrix}$  by doing  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$  a times and  $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$  b times.

For  $A \in \mathrm{SL}_2(\mathbb{Z})$  and  $\psi_A \colon T \to T$  action on  $\Pi_1(T,(0,0))$  (fundamental group of the torus based in (0,0)) defined by

$$(x,y)\mapsto A\begin{pmatrix}x\\y\end{pmatrix}.$$

If  $\psi_A$  was homotopic to the identity it owuld act trivially on  $\Pi_1(T,(0,0))$  which means that

$$[0,1] = [A(1,0)] = [(b,d)]$$
 and  $[(1,0)] = [A(1,0)] = [(a,c)]$ 

so (a,c)=(1,0) and (b,d)=(0,1) so A is the identity matrix.

## 4 Hyperbolic geometry

Recall that Bih( $\mathbb{H}$ ) is the set of Mobius transformations with a representing matrix in  $SL_2(\mathbb{Z})$ . But  $z \mapsto \frac{1}{z}$  does not present Euclidean metric on  $\mathbb{H} = \{z \colon \Im(z) > 0\}$ .

We will introduce a metric  $\rho = \rho_{hyp}$  on  $\mathbb{H}$  s.t.

 $Bih(\mathbb{H}) = Orientation preserving isometrics of (\mathbb{H}, \rho).$ 

**Definition 4.1** (Length). Let  $\gamma \colon [0,1] \to \mathbb{H}$  be a pointwise continuous smooth path between a and b.

The hyperbolic length of  $\gamma$  is

$$L_{\rho}(\gamma) := \int_{0}^{1}$$

Recall that every element in every  $\operatorname{Mob}(\hat{\mathbb{C}})$  is conjugate to either  $z \mapsto z+1$  or  $z \mapsto \Lambda z$  for  $\Lambda \in \mathbb{C} \setminus \{0,1\}$ .

Recall that  $T_{\lambda}(z) = \Lambda z$  and  $T_{\Lambda^{-1}}(z) = \Lambda^{-1}z$  are conjugate via the transform

$$S(z) = \frac{1}{z}.$$

Indeed this can be verified.

So in the above classification we can assume  $|\Lambda| \geq 1$ .

**Corollary 4.1.** A complete set of nonindentity conjugacy class representations in  $Mob(\mathbb{C})$  is  $z \mapsto z + 1$  or  $z \mapsto \Lambda z$  for  $\{\Lambda, 1/\Lambda\}$  distinct unordered pairs.

*Proof.* We know that  $z \mapsto z+1$  cannot be conjugate to  $z \mapsto \Lambda z$  which has two fixed points in  $\hat{\mathbb{C}}$ .

We need to show that for different  $\Lambda \neq 1$  and  $|\Lambda| \geq 1$ ,  $z \mapsto \Lambda z$  are not conjugate. Recall that in general if  $\psi \in \text{Mob}(\hat{\mathbb{C}})$  then

$$\psi = \psi_A(z) = \frac{az+b}{cz+d} \text{ s.t. } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{C}).$$

There are two matrices representing  $\psi$  which are A and -A.

Since  $\operatorname{PSL}_2(\mathbb{C}) \to \operatorname{Mob}(\hat{\mathbb{C}})$  defined as  $[A] \mapsto \psi_A$  is an isomorphism, we know that  $\psi_A$  and  $\psi_B$  are conjugate in  $\operatorname{Mob}(\hat{C})$  if and only if A is conjugate to  $\pm B$  in  $\operatorname{SL}_2(\mathbb{C})$ .

Now, if A is conjugate to B then A, B have the same eigenvalues.

Coming back to  $z \mapsto \Lambda z$ .

If  $\Lambda_1, \Lambda_2 \in \mathbb{C} \setminus 0, 1$  such that  $|\Lambda_1|, |\Lambda_2| \geq 1$ .  $z \mapsto \Lambda z$  is represented by

$$\begin{pmatrix} \Lambda & 0 \\ 0 & 1/\Lambda \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C}).$$

which has eigenvalues  $(1, 1/\Lambda)$  for distinct  $|\Lambda| \geq 1$  so they can't be conjugate.

### 4.1 Qualitative properties of Möbius transformations

The map  $z \mapsto z+1$  preserves the unique line in  $\mathbb{H}$  which converges to  $\infty$  (which is the fixed point of  $z \mapsto z+1$ ) in both directions. In other words, all the horizontal lines.

The map  $z \mapsto \Lambda z$  preserves the geodesic in  $\mathbb{H}$  which converges to the two fixed points  $z \to \Lambda z$  (namely  $0, \infty$ ).