## II. kolo kategorie Z8

## **Z8**-II-1

Průměrný věk rodiny Kebulových, kterou tvoří otec, matka a několik dětí, je 18 let. Přitom průměrný věk rodiny bez tatínka, kterému je 38 let, je 14 let. Kolik dětí mají Kebulovi?

(L. Hozová)

**Možné řešení.** Počet členů této rodiny označíme n. Součet věků všech členů je roven součinu průměrného věku rodiny a počtu členů, tedy  $18 \cdot n$ . Rodina bez tatínka má n-1 členů a součet věků těchto členů je  $14 \cdot (n-1)$ . Víme, že tento součet je o 38 menší než součet věků všech členů. Docházíme tedy k rovnici

$$18 \cdot n = 14 \cdot (n-1) + 38,$$

po úpravě dostaneme

$$4n = 24,$$
$$n = 6.$$

Celá rodina má 6 členů, Kebulovi tedy mají 4 děti.

**Hodnocení.** 2 body za sestavení rovnice; 2 body za zdůvodnění tohoto sestavení; 1 bod za vyřešení rovnice; 1 bod za správný závěr.

Jiné řešení. Pomineme-li, že mezi dětmi a rodiči musí být určitý věkový rozestup, lze si po přečtení první věty v zadání představit rodinu, kterou tvoří jen 18letí členové. Po přečtení druhé věty můžeme svou představu upravit a v rodině vidět 38letého tatínka a zbytek členů 14letých. Věk tatínka jsme přitom zvýšili o 20, věk ostatních členů snížili vždy o 4. Aby při upravování naší představy zůstal součet věků všech členů rodiny stejný, musí být počet členů rodiny bez tatínka 20:4=5. Jedním z nich je maminka, děti tak musejí být 4.

Hodnocení. 6 bodů.

## **Z**8-II-2

Kolik existuje šestimístných přirozených čísel, která mají na místě statisíců číslici 1, na místě tisíců číslici 2 a na místě desítek číslici 3 a jsou beze zbytku dělitelná číslem 45?

(L. Šimůnek)

Možné řešení. Číslo je dělitelné číslem 45, právě když je dělitelné čísly 5 i 9. Na místě jednotek tedy musí být číslice 0 nebo 5 a jeho ciferný součet musí být násobkem devíti.

Nejprve určíme počet hledaných čísel, která mají na místě jednotek číslici 0. Tato čísla označíme jako  $\overline{1A2B30}$  a jejich ciferný součet je pak roven 6+A+B. Má-li být tento součet násobkem devíti a přihlédneme-li k tomu, že neznámé A a B označují číslice 0 až 9, může být ciferný součet roven buď 9, nebo 18. V prvním případě platí A+B=3, ve druhém A+B=12. Následující tabulky ukazují, kolik lze nalézt dvojic číslic dávajících součet 3, respektive 12:

| A | 3 | 2 | 1 | 0 |
|---|---|---|---|---|
| B | 0 | 1 | 2 | 3 |

| A | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
|---|---|---|---|---|---|---|---|
| B | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Čísel tvaru  $\overline{1A2B30}$  dělitelných číslem 45 tedy existuje 4+7=11.

Nyní určeme počet hledaných čísel, která mají na místě jednotek číslici 5. Ta označíme jako  $\overline{1C2D35}$  a jejich ciferný součet je pak 11+C+D. Podobně jako v předchozí části úlohy zjišťujeme, že buď musí platit C+D=7, nebo C+D=16. Sestavíme opět tabulky:

| C | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|
| D | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

| C | 9 | 8 | 7 |
|---|---|---|---|
| D | 7 | 8 | 9 |

Čísel tvaru  $\overline{1C2D35}$  dělitelných číslem 45 tedy existuje 8+3=11. Čísel odpovídajících zadání je celkem 11+11=22.

**Poznámka.** Žáci také mohou v úvodu rozdělit hledaná čísla do skupin s ciferným součtem 9, 18 a 27. Ve skupině s ciferným součtem 9 může být na místě jednotek pouze číslice 0, ve skupině s ciferným součtem 27 může být na místě jednotek pouze číslice 5 a ve skupině s ciferným součtem 18 mohou být na místě jednotek obě tyto číslice.

**Hodnocení.** 1 bod za podmínku dělitelnosti číslem 45; 1 bod za rozdělení hledaných čísel do skupin; 4 body za správné určení čísel v každé skupině.

## **Z8-II-3**

Na následujícím obrázku je šestiúhelník ABEFGD. Čtyřúhelníky ABCD a EFGC jsou shodné obdélníky a čtyřúhelník BEGD je také obdélník. Určete poměr obsahů bílé a šedé části šestiúhelníku, jestliže  $|AB|=5\,\mathrm{cm}$  a trojúhelník BEC je rovnostranný.



(K. Pazourek)

**Možné řešení.** Označme středy úseček BE a GD postupně H a I. Potom obdélník HEGI tvoří polovinu obdélníku BEGD a bod C leží na jeho straně HI. Tento obdélník ještě rozdělíme kolmicí spuštěnou z bodu C.



Nyní je zřejmé, že poměr bílé a šedé plochy v obdélníku HEGI je 1 : 1. Trojúhelníky CGE a EFG jsou shodné, a proto jsou obsahy bílých a šedých ploch v pětiúhelníku HEFGI v poměru 2 : 1. Celý obrázek je symetrický podle osy HI, tudíž poměr obsahů bílých a šedých částí šestiúhelníku ABEFGD je stejný.

**Poznámka.** Lze řešit i vhodným posunutím trojúhelníku DGC a následným rozdělením vzniklého útvaru na šest shodných trojúhelníků, viz obrázek.



Hodnocení. 5 bodů za správný a zdůvodněný postup; 1 bod za výsledek.

**Jiné řešení.** Protože trojúhelník BEC je rovnostranný, jsou všechny jeho vnitřní úhly  $60^\circ$ . Odtud plyne, že v trojúhelníku CDB měří vnitřní úhly  $30^\circ$ ,  $90^\circ$  a  $60^\circ$ , proto je tento trojúhelník polovinou rovnostranného trojúhelníku se stranou délky  $2 \cdot |CD| = 2 \cdot |AB| = 10 \, \mathrm{cm}$ . Proto je  $|BD| = 10 \, \mathrm{cm}$  a z Pythagorovy věty spočtěme délku strany BC v trojúhelníku CDB:

$$|BC| = \sqrt{10^2 - 5^2} = \sqrt{75} = 5\sqrt{3}$$
 (cm).

Obsah trojúhelníku CDB je tedy roven

$$S_{CDB} = \frac{1}{2}|BC| \cdot |CD| = \frac{1}{2} \cdot 5\sqrt{3} \cdot 5 = \frac{25}{2}\sqrt{3} \text{ (cm}^2).$$

Stejný obsah mají i trojúhelníky ABD, CGE a FEG, protože jsou s trojúhelníkem CDB shodné. Protože je trojúhelník BEC rovnostranný, je |BE| = |BC|, a spočtěme obsah obdélníku BEGD:

$$S_{BEGD} = |BE| \cdot |BD| = 5\sqrt{3} \cdot 10 = 50\sqrt{3} \text{ (cm}^2).$$

Potom obsah bílé části šestiúhelníku ABEFGD je

$$S_{\text{bil\'a}} = S_{ABD} + (S_{BEGD} - S_{CDB} - S_{CGE}) + S_{FEG} =$$
  
=  $S_{CDB} + (S_{BEGD} - S_{CDB} - S_{CDB}) + S_{CDB} =$   
=  $S_{BEGD} = 50\sqrt{3} \text{ (cm}^2).$ 

Obsah šedé části šestiúhelníku ABEFGD je

$$S_{\text{šedá}} = S_{CDB} + S_{CGE} = 2 \cdot S_{CDB} = 25\sqrt{3} \,(\text{cm}^2).$$

Proto poměr obsahů bílých a šedých částí šestiúhelníku je

$$S_{\text{bilá}}: S_{\text{šedá}} = 50\sqrt{3}: 25\sqrt{3} = 2:1.$$

**Hodnocení.** 1 bod za výpočet délky úsečky BC; po 1 bodu za výpočty obsahů trojúhelníku CDB a obdélníku BEGD; po 1 bodu za stanovení obsahů šedých a bílých častí; 1 bod za spočtení poměru obsahů bílé a šedé plochy (jednotlivé výpočty musí být zdůvodněny).

**Poznámka.** Přibližné hodnoty předchozích veličin vyjádřené pomocí tabulek bez kalkulačky jsou:  $|BC| \doteq 8,66 \,\mathrm{cm}, \, S_{CDB} \doteq 21,65 \,\mathrm{cm}^2, \, S_{BEGD} = S_{bílá} \doteq 86,6 \,\mathrm{cm}^2, \, S_{\text{šedá}} \doteq 43,3 \,\mathrm{cm}^2$  a poměr  $S_{bílá}: S_{\text{šedá}} \doteq 2:1$ . Jestliže řešitel počítá s přibližnými hodnotami a v jinak zcela správném řešení si na konci neuvědomí, že jím vypočtený poměr 2:1 je hodnota toliko přibližná, udělte mu celkem 5 bodů.