SECTION A (50 marks)

ANSWER ALL THE QUESTIONS

QUESTION A1 (5 Marks)

$$\int 5x^3 - 3x^2 + 1 - \frac{2}{\sqrt{x}} dx$$

QUESTION A2 (5 Marks)

$$\int \frac{1}{1-x^2} dx$$

QUESTION A3 (5 Marks)

$$\int \frac{e^x}{1+e^x} dx$$

QUESTION A4 (5 Marks)

Evaluate
$$\int_{0}^{1} \frac{1}{\sqrt{1+3x}} dx$$

QUESTION A5 (5 Marks)

Evaluate
$$\int \left(\frac{2t^4 + t^2 - 2}{t^4} \right) dt$$

QUESTION A6 (5 Marks)

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ for $y = 4x^3 - 5x^2 + 8$

QUESTION A7 (5 Marks)

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ for $y = (2x-7)^5$

QUESTION A8 (5 Marks)

Find the gradient for the curve xy(x + y) = 6 at the point (1,2).

QUESTION A9 (5 Marks)

If
$$y = (ax+2)^2$$
 and $\frac{d^2y}{dx^2} = 18$, find the values of a.

QUESTION A10 (5 Marks)

Differentiate $\frac{4}{x^2+3}$ with respect to x.

SECTION B (50 MARKS) ANSWER ALL THE QUESTIONS

QUESTION B1 (25 Marks)

- (a) Find $\frac{dy}{dx}$ in the following cases:
 - (i) $y = 3x^4 2x^2 + x 2 + \frac{4}{\sqrt{x}}$

(ii) $y = \frac{1 + e^{2x}}{x + e^x}$

(iii) $y = \left(2x - \frac{1}{2x}\right)^3$

(b) $\int \left(2x + \frac{3}{2x}\right)^2 dx$

[6 marks]

[7 marks]

[5 marks]

[7 marks]

QUESTION B1 (25 Marks)

- (a) Evaluate
 - (i) $\int_{1}^{2} \left(x \frac{1}{x^2} \right) dx$

[6 marks]

(ii) $\int_{1}^{2} \frac{x+1}{x^3} dx$

[6 marks]

- (b) Given that $\int_{0}^{4} p(x)dx = 6$, evaluate
 - (i) $\int_{0}^{4} 3p(x)dx$

[3 marks]

(ii)
$$\int_{0}^{4} \left[2 - p(x)\right] dx$$

[4 marks]

(c) Find
$$\int \left(\frac{1}{x^2} - \frac{1}{x^3}\right) dx$$

[6 marks]

Formulae

Quadratic equation

If $ax^2 + bx + c = 0$, $a \neq 0$	If $ax^2 + bx + c = 0$, $a \ne 0$ has roots α and
$-b \pm \sqrt{b^2 - 4ac}$	β ,
$x = {2a}$	$\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$

Exponential and logarithm

Differentiation and Integration

$\frac{d}{dx}(ax^n) = anx^{n-1}$ $\frac{d}{dx}(\ln x) = \frac{1}{x}$ If $y = u$, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ If $y = uv$, $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\frac{d}{dx}(ae^{kx}) = ake^{kx}$ $\frac{d}{dx}(\log_a u) = \frac{u}{u \ln a}$ If $y = \frac{u}{v}$, $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
--	--

Integration

$$\int ax^{n} dx = \frac{ax^{n+1}}{n+1} + c, \quad n \neq -1$$

$$\int (ax+b)^{n} dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c, \quad n \neq -1$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c$$

$$\int e^{x} dx = e^{x} + c$$

$$\int f(g(x)) \cdot g'(x) dx = F(g(x)) + c$$