

Heartbreak. Disappointment....

What happens when customers buy tickets for fake events?

EDA and Feature Selection

- Looked at features that helped identify events with high risk of fraud
- Ticket_types feature contained tickets_sold-->pulled this out as a feature in our model
- Other features:
 - Sale duration
 - User age
 - Name length
 - o GTS
 - Number of payouts

Model Performance:

- Compared Logistic Regression, Random Forest, and Gradient Boosting models using cross validation
 - Random Forest had the highest performance
 - Max_features: log2
 - N_estimators: 400
- Final Model Metrics:

ROC-AUC score: 0.938

F1 score: 0.917

Accuracy score: 0.986

MongoDB and AWS

- Hosted our prediction script and process of storing on MongoDB with AWS
- When pulling live data, add predicted probability before we add the response to MongoDB
 - This way, when we were developing our web app, we didn't need to call the model at all, we instead just pulled from Mongo
- 3. Also added features that were most important in deciding each event had low, medium, or high risk of fraud
 - a. Tree Interpreter helped us pull these features

Two Tickets to Nowhere Dashboard

http://13.56.168.145:3333/

Future Steps

- Enable Fraud Team to Flag items on Dashboard for Follow-Up and Clear
- Implement a visual to show the risk of fraud
 - Sort the events by level of risk
- Add contact information of events to website
- As time goes on, improve model to catch fraud events that get by our model

Thank you!

Karina Patel, Marcus Steele, Jinglie Zhou, Paul Knowles

