```
In [2]:
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-pytho
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files
under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserve
d as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of
the current session
/kaggle/input/treated-data-irr/Final treated data (1).xlsx
/kaggle/input/treated-data-irrigation/Final treated data.xlsx
In [3]:
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import r2 score
from sklearn.preprocessing import MinMaxScaler
from sklearn.model selection import train test split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import SimpleRNN
from sklearn.metrics import mean absolute error, mean squared error
import seaborn as sns
import pandas as pd
from sklearn.model selection import train test split
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
2024-05-02 08:40:50.747040: E external/local xla/xla/stream executor/cuda/cuda dnn.cc:926
1] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when
one has already been registered
2024-05-02 08:40:50.747192: E external/local xla/xla/stream executor/cuda/cuda fft.cc:607
] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when
one has already been registered
2024-05-02 08:40:50.906530: E external/local xla/xla/stream executor/cuda/cuda blas.cc:15
15] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS w
hen one has already been registered
In [4]:
df = pd.read excel('/kaggle/input/treated-data-irr/Final treated data (1).xlsx')
In [5]:
df.head()
Out[5]:
```

CI BOD COD WWQIs WWQIi

16.83

13.65

33.6

1.5

Date pH Temp TDS TSS

30.0 316.0 18.0 76.0

0 2021-07-02 7.6

```
0.8
                                       16.8
                                             12.82
2 2021-07-07 7.3
               30.0 276.0 21.0 51.0
3 2021-07-09 7.1
                28.0 194.0 15.0 32.0
                                   1.4
                                       8.4
                                             7.47
                                                   5.39
4 2021-07-12 7.5
                29.0 198.0 16.0 36.0
                                   1.1
                                       8.4
                                             11.51
                                                   10.00
In [6]:
dfi = df.copy()
In [7]:
dfs = dfi.drop('WWQIs', axis=1)
In [8]:
for column in dfs.columns.difference(['Date']):
    mean value = dfs[column].mean()
    dfs[column].fillna(mean value, inplace=True)
/tmp/ipykernel 33/4021660727.py:3: FutureWarning: A value is trying to be set on a copy o
f a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the i
ntermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col:
value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operati
on inplace on the original object.
  dfs[column].fillna(mean value, inplace=True)
In [9]:
null percentage = (dfs.isnull().sum() / len(dfs)) * 100
null percentage
Out[9]:
         0.0
Date
         0.0
рΗ
         0.0
Temp
TDS
         0.0
TSS
         0.0
Cl
         0.0
BOD
         0.0
         0.0
COD
WWQIi
         0.0
dtype: float64
In [10]:
# Calculate WWQI categories
conditions = [
    (dfs['WWQIi'] < 25),
    (dfs['WWQIi'] >= 25) & (df['WWQIi'] < 50),
    (dfs['WWQIi'] >= 50) & (df['WWQIi'] < 75),
    (dfs['WWQIi'] >= 75) & (df['WWQIi'] < 100),
    (dfs['WWQIi'] >= 100)
1
categories = ['Excellent', 'Good', 'Fair', 'Poor', 'Extremely Poor']
# Create a new column 'WWQI Category'
dfs['WWQI Category'] = pd.cut(df['WWQIi'], bins=[-float('inf'), 25, 50, 75, 100, float('
inf')],
                              labels=categories)
# Count occurrences of each category
category counts = dfs['WWQI Category'].value counts()
```

7.2 29.0 240.0 36.0 43.0 1.5 8.4 12.15 9.10 pH Temp TDS TSS CI BOD COD wwols wwols

```
# Calculate percentages
category_percentages = (category_counts / len(dfs)) * 100

fig, ax = plt.subplots()
bars = ax.bar(category_percentages.index, category_percentages.values)

# Display numbers above the bars
for bar in bars:
    yval = bar.get_height()
    ax.text(bar.get_x() + bar.get_width() / 2, yval, round(yval, 2), ha='center', va='bottom')

plt.xlabel('WWQI Category')
plt.ylabel('Percentage')
plt.title('Percentage of WWQI Categories')
plt.show()
```

Percentage of WWQI Categories

In [11]:

```
dfs.drop("WWQI_Category", axis=1, inplace=True)
```

In [12]:

```
dfs['Date'] = pd.to_datetime(dfs['Date'])
dfs.set_index('Date', inplace=True)
```

In [13]:

```
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(dfs)
```

In [14]:

```
def create_sequences(data, seq_length):
    sequences = []
    targets = []

for i in range(len(data) - seq_length):
        seq = data[i:i + seq_length]
        label = data[i + seq_length]
        sequences.append(seq)
        targets.append(label)
```

```
return np.array(sequences), np.array(targets)
seq length = 10  # You can adjust this based on your needs
X, y = create sequences(scaled data, seq length)
In [15]:
In [15]:
def custom train test split(X, y, test size=0.2, random state=None):
    classes = np.unique(y)
    train_indices, test_indices = [], []
    for c in classes:
        indices = np.where(y == c)[0]
        np.random.shuffle(indices)
        split idx = int(len(indices) * (1 - test size))
        train indices.extend(indices[:split idx])
        test indices.extend(indices[split idx:])
    np.random.shuffle(train indices)
    np.random.shuffle(test indices)
    X train, X test = X[train indices], X[test indices]
    y train, y test = y[train indices], y[test indices]
    return X train, X test, y train, y test
X train, X test, y train, y test = custom train test split(X, y, test size=0.2, random s
tate=42)
In [17]:
X train.shape
Out[17]:
(1234, 10, 8)
In [16]:
early stopping = EarlyStopping(monitor='val loss', patience=10, restore best weights=True
RNN Modelling
In [17]:
modelRnn = Sequential()
modelRnn.add(SimpleRNN(units=16, return sequences=True, input shape=(X train.shape[1], X
train.shape[2])))
modelRnn.add(SimpleRNN(units=64))
modelRnn.add(Dense(units=y train.shape[1])) # Assuming the output size is the same as in
put size
modelRnn.compile(optimizer='adam', loss='mean_squared_error')
historyRnn = modelRnn.fit(X train, y train, epochs=200, batch size=24, validation data=(
X test, y test), verbose=1, callbacks=[early stopping])
Epoch 1/200
/opt/conda/lib/python3.10/site-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do
not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models,
prefer using an `Input(shape)` object as the first layer in the model instead.
  super(). init (**kwargs)
52/52
                         - 3s 13ms/step - loss: 0.1694 - val_loss: 0.0336
Epoch 2/200
52/52
                         - 0s 7ms/step - loss: 0.0266 - val loss: 0.0281
```

- 0s 7ms/step - loss: 0.0246 - val loss: 0.0260

Epoch 3/200 **52/52**

Бросп 52/52		Λe	6mg/stan	_	1000	0 0220	_	val loss:	0 0246
Epoch 52/52	5/200							_	
Epoch	6/200							val_loss:	
52/52 Epoch	7/200							val_loss:	
52/52 Epoch	8/200							val_loss:	
	9/200							val_loss:	
_	10/200							val_loss:	
Epoch	11/200							val_loss:	
	12/200							val_loss:	
	13/200	0s	6ms/step	-	loss:	0.0187	-	val_loss:	0.0222
-	14/200	0s	6ms/step	-	loss:	0.0189	-	<pre>val_loss:</pre>	0.0223
	15/200	0s	7ms/step	-	loss:	0.0193	-	<pre>val_loss:</pre>	0.0216
	16/200	0s	7ms/step	-	loss:	0.0178	-	<pre>val_loss:</pre>	0.0213
	17/200	0s	7ms/step	-	loss:	0.0175	-	<pre>val_loss:</pre>	0.0207
52/52 Epoch	18/200	0s	6ms/step	-	loss:	0.0174	-	<pre>val_loss:</pre>	0.0204
	19/200	0s	6ms/step	-	loss:	0.0183	-	<pre>val_loss:</pre>	0.0209
52/52 Epoch	20/200	0s	6ms/step	-	loss:	0.0185	-	<pre>val_loss:</pre>	0.0206
52/52 Epoch	21/200	0s	7ms/step	-	loss:	0.0171	-	<pre>val_loss:</pre>	0.0210
52/52 Epoch	22/200	1s	6ms/step	-	loss:	0.0173	-	<pre>val_loss:</pre>	0.0205
52/52		0s	6ms/step	-	loss:	0.0173	-	<pre>val_loss:</pre>	0.0200
52/52		0s	6ms/step	-	loss:	0.0169	-	<pre>val_loss:</pre>	0.0190
52/52		0s	6ms/step	-	loss:	0.0165	-	<pre>val_loss:</pre>	0.0206
52/52		0s	6ms/step	-	loss:	0.0168	-	<pre>val_loss:</pre>	0.0188
52/52		0s	7ms/step	-	loss:	0.0162	-	<pre>val_loss:</pre>	0.0190
52/52		0s	7ms/step	-	loss:	0.0154	-	<pre>val_loss:</pre>	0.0186
52/52		0s	6ms/step	-	loss:	0.0162	-	<pre>val_loss:</pre>	0.0184
52/52		0s	6ms/step	-	loss:	0.0153	-	<pre>val_loss:</pre>	0.0180
52/52	31/200	0s	7ms/step	-	loss:	0.0142	-	<pre>val_loss:</pre>	0.0178
52/52	32/200	0s	6ms/step	-	loss:	0.0150	-	<pre>val_loss:</pre>	0.0170
52/52	33/200	0s	6ms/step	-	loss:	0.0147	-	<pre>val_loss:</pre>	0.0178
52/52		0s	6ms/step	-	loss:	0.0144	-	<pre>val_loss:</pre>	0.0171
52/52		0s	6ms/step	-	loss:	0.0140	-	<pre>val_loss:</pre>	0.0166
52/52		0s	6ms/step	-	loss:	0.0135	-	<pre>val_loss:</pre>	0.0160
52/52		0s	6ms/step	-	loss:	0.0133	-	<pre>val_loss:</pre>	0.0160
52/52		0s	6ms/step	-	loss:	0.0133	-	<pre>val_loss:</pre>	0.0151
52/52		0s	6ms/step	-	loss:	0.0125	-	<pre>val_loss:</pre>	0.0148
52/52		0s	6ms/step	-	loss:	0.0123	-	<pre>val_loss:</pre>	0.0148

Бросп 52/52	40/200	Λe	6ms/stan	_	1000	0 0121	_	val loss:	0 0154
Epoch	41/200							_	
_	42/200							val_loss:	
_	43/200							val_loss:	
_	44/200							val_loss:	
	45/200		_					val_loss:	
	46/200							<pre>val_loss:</pre>	
Epoch	47/200	0s	7ms/step	-	loss:	0.0103	-	<pre>val_loss:</pre>	0.0127
	48/200	0s	6ms/step	-	loss:	0.0108	-	<pre>val_loss:</pre>	0.0124
	49/200	0s	6ms/step	-	loss:	0.0096	-	<pre>val_loss:</pre>	0.0131
52/52	50/200	0s	6ms/step	-	loss:	0.0099	-	<pre>val_loss:</pre>	0.0115
52/52	51/200	0s	6ms/step	-	loss:	0.0092	-	<pre>val_loss:</pre>	0.0112
52/52	52/200	0s	6ms/step	-	loss:	0.0091	-	<pre>val_loss:</pre>	0.0108
52/52	53/200	0s	7ms/step	-	loss:	0.0088	-	<pre>val_loss:</pre>	0.0106
52/52		0s	6ms/step	-	loss:	0.0086	-	val_loss:	0.0107
52/52		0s	6ms/step	_	loss:	0.0083	-	val_loss:	0.0099
52/52		0s	6ms/step	-	loss:	0.0078	-	val_loss:	0.0099
52/52		0s	6ms/step	_	loss:	0.0080	-	val_loss:	0.0101
52/52		0s	6ms/step	_	loss:	0.0080	_	val_loss:	0.0095
52/52		0s	7ms/step	_	loss:	0.0071	-	val_loss:	0.0088
Epoch 52/52	59/200	0s	6ms/step	_	loss:	0.0070	_	val_loss:	0.0088
Epoch 52/52	60/200	0s	6ms/step	_	loss:	0.0075	_	val_loss:	0.0085
Epoch 52/52	61/200	0s	6ms/step	_	loss:	0.0066	_	val loss:	0.0091
Epoch 52/52	62/200	0s	6ms/step	_	loss:	0.0069	_	val loss:	0.0089
Epoch 52/52	63/200							- val loss:	
_	64/200		_					- val loss:	
Epoch	65/200							val loss:	
Epoch	66/200							val loss:	
Epoch	67/200							val loss:	
Epoch	68/200							val loss:	
Epoch	69/200							val loss:	
Epoch	70/200							_	
Epoch	71/200							val_loss:	
_	72/200							val_loss:	
Epoch	73/200							val_loss:	
-	74/200							val_loss:	
-	75/200							<pre>val_loss:</pre>	
52/52	76/000	0s	6ms/step	_	loss:	0.0049	-	val_loss:	0.0065

	/6/200	_			7	0.0046			0.0000
	77/200							val_loss:	
	78/200							val_loss:	
	79/200							val_loss:	
	80/200	0s	6ms/step	-	loss:	0.0046	-	<pre>val_loss:</pre>	0.0053
52/52 Epoch	81/200	0s	6ms/step	-	loss:	0.0041	-	<pre>val_loss:</pre>	0.0055
52/52 Epoch	82/200	0s	6ms/step	-	loss:	0.0038	-	<pre>val_loss:</pre>	0.0059
52/52		0s	6ms/step	-	loss:	0.0041	-	<pre>val_loss:</pre>	0.0052
52/52		0s	6ms/step	-	loss:	0.0040	-	<pre>val_loss:</pre>	0.0050
52/52		0s	6ms/step	-	loss:	0.0037	-	<pre>val_loss:</pre>	0.0054
52/52		0s	6ms/step	-	loss:	0.0035	-	val_loss:	0.0047
52/52		0s	6ms/step	-	loss:	0.0033	-	val_loss:	0.0048
52/52		0s	6ms/step	_	loss:	0.0035	_	val_loss:	0.0047
_	88/200	0s	6ms/step	_	loss:	0.0035	_	val_loss:	0.0045
_	89/200	0s	6ms/step	_	loss:	0.0032	_	val loss:	0.0047
	90/200	0s	6ms/step	_	loss:	0.0032	_	val loss:	0.0045
Epoch	91/200							- val loss:	
Epoch	92/200							val loss:	
	93/200							_	
Epoch	94/200							val_loss:	
	95/200							val_loss:	
	96/200							val_loss:	
_	97/200							val_loss:	
_	98/200							val_loss:	
52/52 Epoch	99/200	0s	6ms/step	-	loss:	0.0025	-	<pre>val_loss:</pre>	0.0036
52/52 Epoch	100/200	0s	6ms/step	-	loss:	0.0024	-	val_loss:	0.0036
52/52 Epoch	101/200	0s	6ms/step	-	loss:	0.0024	-	<pre>val_loss:</pre>	0.0036
	102/200	1s	6ms/step	-	loss:	0.0024	-	<pre>val_loss:</pre>	0.0034
	103/200	0s	7ms/step	-	loss:	0.0022	-	<pre>val_loss:</pre>	0.0034
	104/200	0s	6ms/step	-	loss:	0.0023	-	<pre>val_loss:</pre>	0.0032
	105/200	0s	6ms/step	-	loss:	0.0021	-	<pre>val_loss:</pre>	0.0031
52/52	106/200	0s	6ms/step	-	loss:	0.0019	-	<pre>val_loss:</pre>	0.0029
52/52		0s	6ms/step	-	loss:	0.0020	-	<pre>val_loss:</pre>	0.0029
52/52		0s	6ms/step	-	loss:	0.0020	-	<pre>val_loss:</pre>	0.0033
52/52		0s	6ms/step	-	loss:	0.0021	-	val_loss:	0.0032
52/52		0s	6ms/step	-	loss:	0.0021	-	val_loss:	0.0032
52/52		0s	6ms/step	_	loss:	0.0019	_	val_loss:	0.0028
52/52		0s	6ms/step	_	loss:	0.0017	_	val_loss:	0.0028
- 1	110/000								

_	112/200	٥٥	6mg/gtop		1000.	0.0017 - 3721 logg. 0.0029
_	113/200					0.0017 - val_loss: 0.0028
_	114/200					0.0017 - val_loss: 0.0030
_	115/200		_			0.0017 - val_loss: 0.0030
_	116/200					0.0018 - val_loss: 0.0029
	117/200					0.0017 - val_loss: 0.0026
52/52 Epoch	118/200	0s	6ms/step	-	loss:	0.0016 - val_loss: 0.0025
	119/200	0s	6ms/step	-	loss:	0.0014 - val_loss: 0.0026
	120/200	0s	6ms/step	-	loss:	0.0016 - val_loss: 0.0025
	121/200	0s	6ms/step	-	loss:	0.0014 - val_loss: 0.0024
52/52		0s	6ms/step	-	loss:	0.0014 - val_loss: 0.0023
52/52		0s	6ms/step	-	loss:	0.0013 - val_loss: 0.0025
52/52		0s	6ms/step	-	loss:	0.0014 - val_loss: 0.0022
52/52		0s	6ms/step	_	loss:	0.0013 - val_loss: 0.0022
52/52		0s	6ms/step	-	loss:	0.0012 - val_loss: 0.0020
52/52		0s	6ms/step	-	loss:	0.0013 - val_loss: 0.0022
52/52		0s	6ms/step	_	loss:	0.0013 - val_loss: 0.0024
52/52		0s	7ms/step	_	loss:	0.0014 - val_loss: 0.0021
52/52		1s	7ms/step	_	loss:	0.0011 - val_loss: 0.0020
52/52		1s	7ms/step	_	loss:	0.0012 - val_loss: 0.0021
Epoch 52/52	131/200	0s	6ms/step	_	loss:	0.0013 - val_loss: 0.0022
Epoch 52/52	132/200	0s	6ms/step	_	loss:	0.0013 - val_loss: 0.0021
Epoch 52/52	133/200	0s	6ms/step	_	loss:	0.0012 - val loss: 0.0019
Epoch 52/52	134/200	0s	6ms/step	_	loss:	9.9283e-04 - val loss: 0.0020
Epoch 52/52	135/200					0.0010 - val loss: 0.0019
Epoch	136/200					- 0.0011 - val_loss: 0.0020
Epoch	137/200					0.0010 - val loss: 0.0019
Epoch	138/200					9.5373e-04 - val loss: 0.0018
Epoch	139/200					9.6821e-04 - val loss: 0.0018
Epoch	140/200					_
Epoch	141/200					9.2728e-04 - val_loss: 0.0017
_	142/200					8.7010e-04 - val_loss: 0.0019
Epoch	143/200					9.4571e-04 - val_loss: 0.0017
Epoch	144/200					8.0325e-04 - val_loss: 0.0018
Epoch	145/200					8.1096e-04 - val_loss: 0.0018
_	146/200					9.4492e-04 - val_loss: 0.0016
_	147/200					8.8446e-04 - val_loss: 0.0017
52/52	140/000	0s	6ms/step	-	loss:	8.6038e-04 - val_loss: 0.0015

ыросп 52/52	148/200	٥٥	Ema/atan		1000	0 04770 04			0 0017
Epoch	149/200					8.8477e-04		_	
_	150/200					9.6235e-04		_	
_	151/200					7.4591e-04		_	
52/52 Epoch	152/200	0s	6ms/step -	-	loss:	7.2462e-04	-	val_loss:	0.0017
	153/200	0s	6ms/step -	-	loss:	8.0756e-04	-	val_loss:	0.0015
	154/200	0s	6ms/step	-	loss:	8.1992e-04	-	<pre>val_loss:</pre>	0.0017
52/52		0s	6ms/step	-	loss:	7.9153e-04	-	<pre>val_loss:</pre>	0.0015
52/52		0s	6ms/step	-	loss:	7.0745e-04	-	<pre>val_loss:</pre>	0.0016
52/52		0s	6ms/step	-	loss:	8.1839e-04	-	<pre>val_loss:</pre>	0.0016
52/52		0s	7ms/step	-	loss:	8.5888e-04	-	val_loss:	0.0014
52/52		0s	6ms/step	-	loss:	7.8904e-04	-	val_loss:	0.0015
52/52		0s	6ms/step	-	loss:	6.7370e-04	-	val_loss:	0.0014
52/52		0s	6ms/step	_	loss:	7.8719e-04	_	val_loss:	0.0015
52/52		0s	6ms/step	_	loss:	6.9943e-04	_	val_loss:	0.0015
	162/200	0s	6ms/step	_	loss:	6.3656e-04	_	val_loss:	0.0013
Epoch 52/52	163/200	0s	6ms/step	_	loss:	6.5988e-04	_	val loss:	0.0015
Epoch 52/52	164/200	0s	6ms/step	_	loss:	7.0092e-04	_	val loss:	0.0013
Epoch 52/52	165/200					6.3000e-04		_	
	166/200					5.8499e-04		_	
Epoch	167/200					7.5915e-04		_	
	168/200					6.6432e-04		_	
Epoch	169/200							_	
_	170/200					6.5779e-04		_	
_	171/200					5.7199e-04		_	
Epoch	172/200					6.4041e-04		_	
Epoch	173/200					7.0442e-04		_	
Epoch	174/200					6.2694e-04		_	
	175/200					6.4703e-04		_	
	176/200	0s	6ms/step -	-	loss:	5.2022e-04	-	val_loss:	0.0011
	177/200	0s	6ms/step	-	loss:	4.6660e-04	-	<pre>val_loss:</pre>	0.0012
	178/200	0s	6ms/step	-	loss:	4.7339e-04	-	<pre>val_loss:</pre>	0.0011
52/52		0s	6ms/step	-	loss:	5.3330e-04	-	<pre>val_loss:</pre>	0.0013
52/52		0s	6ms/step	-	loss:	5.5705e-04	-	<pre>val_loss:</pre>	0.0013
52/52		0s	6ms/step	-	loss:	5.8811e-04	-	<pre>val_loss:</pre>	0.0012
52/52		0s	6ms/step	-	loss:	5.3013e-04	-	val_loss:	0.0011
52/52		0s	7ms/step	-	loss:	5.6960e-04	_	val_loss:	0.0012
52/52	183/200	0s	6ms/step	_	loss:	5.2001e-04	_	val_loss:	0.0011
1									

```
Epocn 184/200
52/52
                          - Os 6ms/step - loss: 4.6059e-04 - val loss: 0.0011
Epoch 185/200
                           Os 6ms/step - loss: 4.8554e-04 - val loss: 0.0012
52/52
Epoch 186/200
52/52
                           Os 7ms/step - loss: 4.8546e-04 - val loss: 0.0010
Epoch 187/200
                           Os 6ms/step - loss: 5.1965e-04 - val loss: 0.0013
52/52
Epoch 188/200
52/52
                           Os 6ms/step - loss: 5.9058e-04 - val loss: 0.0010
Epoch 189/200
                           0s 6ms/step - loss: 4.9747e-04 - val loss: 0.0011
52/52
Epoch 190/200
52/52
                          • 0s 7ms/step - loss: 3.8539e-04 - val loss: 0.0012
Epoch 191/200
52/52
                          • 0s 6ms/step - loss: 4.7775e-04 - val loss: 0.0011
Epoch 192/200
                          • 0s 6ms/step - loss: 5.0961e-04 - val loss: 0.0010
52/52
Epoch 193/200
52/52 -
                          • 0s 7ms/step - loss: 4.9932e-04 - val loss: 0.0013
Epoch 194/200
52/52 •
                          - 0s 6ms/step - loss: 5.7334e-04 - val loss: 0.0012
Epoch 195/200
52/52
                          - 0s 6ms/step - loss: 5.7393e-04 - val loss: 0.0012
Epoch 196/200
52/52
                         - 0s 6ms/step - loss: 7.3511e-04 - val loss: 0.0017
Epoch 197/200
                          - Os 6ms/step - loss: 7.9082e-04 - val loss: 0.0012
52/52
Epoch 198/200
52/52
                          - 0s 6ms/step - loss: 5.0701e-04 - val loss: 0.0011
Epoch 199/200
52/52
                          - Os 6ms/step - loss: 4.3866e-04 - val loss: 0.0012
Epoch 200/200
52/52
                          - 0s 6ms/step - loss: 4.7701e-04 - val_loss: 0.0012
```

In [18]:

```
plt.plot(historyRnn.history['loss'], label='Training Loss')
# Plot validation loss
plt.plot(historyRnn.history['val_loss'], label='Validation Loss')

plt.title('Training and Validation Loss Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
```


0 25 50 75 100 125 150 175 200 Epochs

In [19]:

```
y_pred_scaled = modelRnn.predict(X_test)
y_pred_actual = scaler.inverse_transform(y_pred_scaled)
y_test_actual = scaler.inverse_transform(y_test)
```

31/31 ______ 1s 10ms/step

In [20]:

```
actual_values = y_test_actual[:, 7]
predicted_values = y_pred_actual[:, 7]
```

In [23]:

```
plt.figure(figsize=(10, 6))
plt.plot(actual_values, label='Actual WWQI', marker='o')
plt.plot(predicted_values, label='Predicted WWQI', linestyle='dashed', marker='o')

plt.title('Actual vs Predicted WWQI Over Time')
plt.xlabel('Date')
plt.ylabel('WWQI')
plt.legend()
plt.grid(True)
plt.show()
```


In [24]:

```
# Calculate MAE and MSE
rnn_mae = mean_absolute_error(actual_values, predicted_values)
mse = mean_squared_error(actual_values, predicted_values)
rnn_rmse = np.sqrt(mse)
r_squared_rnn = r2_score(actual_values, predicted_values)

print(f'Mean Absolute Error (MAE): {rnn_mae}')
print(f'Root Mean Squared Error (RMSE): {rnn_rmse}')
```

Date

```
print("R-squared value:", r_squared_rnn)
Mean Absolute Error (MAE): 0.7502541925305234
Root Mean Squared Error (RMSE): 0.9846687854627356
R-squared value: 0.9844604460744509
In [25]:
future steps rnn = 120 # 10 years * 12 months
# Initial sequence to start prediction
initial sequence rnn = scaled data[-seq length:]
# Predict the future values
future predictions scaled rnn = []
for _ in range(future_steps rnn):
    next pred scaled rnn = modelRnn.predict(initial sequence rnn.reshape(1, seq length,
scaled data.shape[1]))
    future_predictions_scaled_rnn.append(next_pred_scaled_rnn)
    initial sequence rnn = np.concatenate((initial sequence rnn[1:], next pred scaled rn
n), axis=0)
# Convert the predictions to array
future predictions scaled rnn = np.array(future predictions scaled rnn).squeeze()
# Inverse transform the predictions to get them in the original scale
future predictions rnn = scaler.inverse transform(future predictions scaled rnn)
1/1
                         0s 21ms/step
1/1
                         0s 22ms/step
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 21ms/step
                         0s 20ms/step
1/1
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
                         0s 21ms/step
1/1
1/1
                         0s 21ms/step
1/1
                         0s 21ms/step
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
1/1
                         0s 20ms/step
1/1
                         0s 19ms/step
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
                         0s 21ms/step
1/1
                         0s 22ms/step
1/1
                         0s 21ms/step
1/1
                         0s 20ms/step
1/1
                         0s 20ms/step
1/1
                         0s 21ms/step
1/1
                         0s 21ms/step
1/1
                         0s 22ms/step
1/1
                         0s 21ms/step
```

1/1 0s 21ms/step	
1/1 0s 21ms/step	
1/1 ———— 0s 20ms/step	
1/1 0e 22me/stan	
1/1 — 03 22ms/step 1/1 — 0s 21ms/step	
1/1 — 0s 21ms/step	
1/1	
· · ·	
-	
-	
1/1 00 21mo/ ocep	
1/1 — 0s 22ms/step	
1/1 — 0s 22ms/step	
1/1 — 03 22ms/step 1/1 — 0s 22ms/step	
1/1 0s 20ms/step	
1/1 — 0s 20ms/step	
1/10 20mg/ston	
1/1 ———————————————————————————————————	
1/1 — 0s 21ms/step	
1/1 — 03 21m3/3cep 1/1 — 0s 20ms/step	
1/1 0s 20ms/step	
1/1	
1/1	
1/1 ——— 0s 20ms/step	
1/1 0s 19ms/step	
1/1 0s 20ms/step	
1/1	
1/1 — 0s 22ms/step	
1/1	
1/1 — 0s 24ms/step	
1/1 — 0s 20ms/step	
1/1 — 0s 20ms/step	
1/1 — 0s 23ms/step	
1/1	
1/1 — 03 21m3/3cep 1/1 — 0s 22ms/step	
-	
1/1	
1/1	
1/1 — 0s 20ms/step	
1/1 0s 20ms/step	
1/1 0s 21ms/step	
1/1 ——— 0s 20ms/step	
1/1 ——— 0s 21ms/step	
1/1 ——— 0s 19ms/step	
1/1 ——— 0s 20ms/step	
1/1 ——— 0s 22ms/step	
1/1 ——— 0s 21ms/step	
1/1 0s 22ms/step	
1/1 0s 21ms/step	
1/1 0s 20ms/step	
1/1 — 0s 21ms/step	
1/1 — 0s 20ms/step	
1/10s 20ms/step	
1/1 — 0s 21ms/step	
1/1 — 0s 21ms/step	
1/1	
1/1 ———————————————————————————————————	
-	
1/1	
1/1 — 0s 22ms/step	
1/1 0s 21ms/step	
1/1 0s 21ms/step	
1/1 0s 20ms/step	
1/1 0s 20ms/step	
1/1 0s 21ms/step	
1/1 0s 22ms/step	
1/1 0s 21ms/step	
1/1 0s 22ms/step	
e e e e e e e e e e e e e e e e e e e	

In [26]:

```
import datetime
last_date_rnn = dfs.index[-1]

# Generate future dates for the extended time series
future_dates_rnn = [last_date_rnn + datetime.timedelta(days=i * 30) for i in range(1, fu
ture_steps_rnn + 1)]

# Plot the predicted WWQI values for the future
plt.figure(figsize=(12, 6))
plt.plot(future_dates_rnn, future_predictions_rnn[:, 7], label='Predicted WWQI (Future)',
linestyle='dashed', marker='o')

plt.title('Predicted WWQI Over Time')
plt.xlabel('Date')
plt.ylabel('WWQI')
plt.legend()
plt.grid(True)
plt.show()
```


In [27]:

```
dfr = df.copy()
```

In [28]:

```
dfr = dfr.drop('WWQIs', axis=1)
```

In [29]:

```
dfr.head()
```

Out[29]:

	Date	рН	Temp	TDS	TSS	CI	BOD	COD	WWQIi
0	2021-07-02	7.6	30.0	316.0	18.0	76.0	1.5	33.6	13.65
1	2021-07-05	7.2	29.0	240.0	36.0	43.0	1.5	8.4	9.10

```
2 2021-07-07 7.3 Temps 270.8 ISS 51.0 BOB GOD WWQQI
3 2021-07-09 7.1
                28.0 194.0 15.0 32.0
                                   1.4
                                       8.4
                                             5.39
4 2021-07-12 7.5
                                            10.00
               29.0 198.0 16.0 36.0
                                       8.4
                                   1.1
In [30]:
dfr['Date'] = pd.to_datetime(dfr['Date'])
dfr.set index('Date', inplace=True)
In [31]:
null percentage = (dfr.isnull().sum() / len(dfr)) * 100
null percentage
Out[31]:
рН
         0.347222
         0.347222
Temp
TDS
         0.347222
TSS
         0.347222
C1
         0.347222
BOD
         0.347222
COD
         0.347222
WWQIi
        0.347222
dtype: float64
In [32]:
for column in dfr.columns.difference(['Date']):
    mean value = dfr[column].mean()
    dfr[column].fillna(mean value, inplace=True)
/tmp/ipykernel 33/4147450775.py:3: FutureWarning: A value is trying to be set on a copy o
f a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the i
ntermediate object on which we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col:
value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operati
on inplace on the original object.
  dfr[column].fillna(mean value, inplace=True)
In [33]:
null percentage = (dfr.isnull().sum() / len(dfr)) * 100
null percentage
Out[33]:
         0.0
рΗ
         0.0
Temp
TDS
         0.0
TSS
         0.0
Cl
         0.0
BOD
         0.0
COD
         0.0
         0.0
WWQIi
dtype: float64
In [34]:
scaler = MinMaxScaler()
scaled data = scaler.fit transform(dfr)
In [41]:
def create sequences(data, seq length):
```

```
sequences = []
    targets = []
    for i in range(len(data) - seq_length):
        seq = data[i:i + seq length]
        label = data[i + seq length]
        sequences.append(seq)
        targets.append(label)
    return np.array(sequences), np.array(targets)
seq length = 10  # You can adjust this based on your needs
X, y = create_sequences(scaled data, seq length)
In [42]:
X.shape
Out[42]:
(278, 10, 8)
In [43]:
y.shape
Out[43]:
(278, 8)
In [44]:
def custom_train_test_split(X, y, test_size=0.2, random_state=None):
    classes = np.unique(y)
    train_indices, test_indices = [], []
    for c in classes:
        indices = np.where(y == c)[0]
       np.random.shuffle(indices)
        split idx = int(len(indices) * (1 - test size))
        train indices.extend(indices[:split idx])
        test indices.extend(indices[split idx:])
    np.random.shuffle(train indices)
    np.random.shuffle(test indices)
   X train, X test = X[train indices], X[test indices]
    y train, y test = y[train indices], y[test indices]
   return X_train, X_test, y_train, y_test
X_train_lstm, X_test_lstm, y_train_lstm, y_test_lstm = custom_train_test_split(X, y, tes
t_size=0.2, random_state=42)
In [45]:
X train.shape
Out[45]:
(1234, 10, 8)
In [ ]:
```

LSTM Modelling

```
In []:
In [47]:
```

```
modell = Sequenclar()
model1.add(LSTM(units=16, return sequences=True, input shape=(X.shape[1], X.shape[2])))
model1.add(LSTM(units=64))
model1.add(Dense(units=scaled data.shape[1])) # Assuming the output size is the same as i
nput size
model1.compile(optimizer='adam', loss='mean squared error')
history1 = model1.fit(X_train_lstm, y_train_lstm, epochs=200, batch_size=24, validation
data=(X_test_lstm, y_test_lstm), verbose=1)
Epoch 1/200
                          • 4s 18ms/step - loss: 0.0518 - val loss: 0.0277
52/52
Epoch 2/200
                          • 1s 11ms/step - loss: 0.0236 - val loss: 0.0263
52/52
Epoch 3/200
                          • 1s 11ms/step - loss: 0.0215 - val loss: 0.0252
52/52
Epoch 4/200
52/52
                          • 1s 11ms/step - loss: 0.0208 - val loss: 0.0257
Epoch 5/200
52/52
                          - 1s 11ms/step - loss: 0.0211 - val loss: 0.0247
Epoch 6/200
52/52
                          - 1s 10ms/step - loss: 0.0205 - val loss: 0.0244
Epoch 7/200
52/52 -
                          - 1s 11ms/step - loss: 0.0209 - val loss: 0.0241
Epoch 8/200
52/52
                          • 1s 11ms/step - loss: 0.0191 - val loss: 0.0238
Epoch 9/200
52/52 -
                          - 1s 11ms/step - loss: 0.0199 - val loss: 0.0240
Epoch 10/200
52/52 -
                          - 1s 11ms/step - loss: 0.0193 - val loss: 0.0236
Epoch 11/200
52/52
                          - 1s 10ms/step - loss: 0.0198 - val_loss: 0.0237
Epoch 12/200
52/52 •
                         - 1s 11ms/step - loss: 0.0203 - val loss: 0.0237
Epoch 13/200
                          - 1s 11ms/step - loss: 0.0187 - val loss: 0.0236
52/52
Epoch 14/200
                         - 1s 11ms/step - loss: 0.0199 - val loss: 0.0242
52/52
Epoch 15/200
                          - 1s 11ms/step - loss: 0.0190 - val_loss: 0.0238
52/52
Epoch 16/200
52/52
                         - 1s 11ms/step - loss: 0.0197 - val loss: 0.0234
Epoch 17/200
52/52
                          - 1s 11ms/step - loss: 0.0189 - val loss: 0.0230
Epoch 18/200
52/52
                          - 1s 11ms/step - loss: 0.0187 - val loss: 0.0226
Epoch 19/200
                          - 1s 11ms/step - loss: 0.0174 - val loss: 0.0225
52/52
Epoch 20/200
                          - 1s 11ms/step - loss: 0.0190 - val_loss: 0.0228
52/52
Epoch 21/200
                          - 1s 11ms/step - loss: 0.0199 - val loss: 0.0230
52/52
Epoch 22/200
                          • 1s 11ms/step - loss: 0.0182 - val loss: 0.0232
52/52
Epoch 23/200
52/52
                          • 1s 11ms/step - loss: 0.0179 - val loss: 0.0233
Epoch 24/200
52/52
                          - 1s 11ms/step - loss: 0.0189 - val loss: 0.0229
Epoch 25/200
52/52
                          - 1s 11ms/step - loss: 0.0178 - val loss: 0.0229
Epoch 26/200
52/52
                          - 1s 11ms/step - loss: 0.0182 - val loss: 0.0220
Epoch 27/200
52/52
                          • 1s 11ms/step - loss: 0.0182 - val loss: 0.0225
Epoch 28/200
52/52 -
                          - 1s 11ms/step - loss: 0.0179 - val_loss: 0.0221
Epoch 29/200
```

- 1s 11ms/step - loss: 0.0176 - val_loss: 0.0221

- 1s 11ms/step - loss: 0.0168 - val loss: 0.0221

52/52

52/52 •

Epoch 30/200

Enoch 31/200

	U1/200	1 -	11/		1	0 0170			0 0010
	32/200		11ms/step					_	
52/52 Epoch	33/200		11ms/step					_	
52/52 Epoch	34/200	1s	11ms/step	-	loss:	0.0179	-	val_loss:	0.0218
	35/200	1s	11ms/step	-	loss:	0.0167	-	<pre>val_loss:</pre>	0.0228
	36/200	1s	11ms/step	-	loss:	0.0161	-	val_loss:	0.0213
	37/200	1s	11ms/step	-	loss:	0.0182	-	val_loss:	0.0211
52/52		1s	11ms/step	-	loss:	0.0175	-	<pre>val_loss:</pre>	0.0212
	39/200	1s	11ms/step	-	loss:	0.0163	-	<pre>val_loss:</pre>	0.0216
	40/200	1s	11ms/step	-	loss:	0.0169	-	<pre>val_loss:</pre>	0.0208
52/52		1s	11ms/step	-	loss:	0.0165	-	<pre>val_loss:</pre>	0.0208
52/52		1s	11ms/step	-	loss:	0.0161	-	<pre>val_loss:</pre>	0.0206
52/52		1s	11ms/step	-	loss:	0.0160	-	val_loss:	0.0205
52/52		1s	11ms/step	_	loss:	0.0169	_	val_loss:	0.0208
_	44/200	1s	11ms/step	_	loss:	0.0157	_	val_loss:	0.0204
Epoch 52/52	45/200	1s	11ms/step	_	loss:	0.0161	_	val loss:	0.0200
Epoch 52/52	46/200		11ms/step					_	
Epoch	47/200		11ms/step					_	
	48/200		11ms/step						
Epoch	49/200							_	
Epoch	50/200		11ms/step 12ms/step					_	
Epoch	51/200							_	
52/52 Epoch 52/52	52/200		11ms/step					_	
Epoch	53/200		14ms/step					_	
	54/200	ls	11ms/step	_	loss:	0.0148	_	val_loss:	0.0193
Epoch	55/200		11ms/step					_	
	56/200		11ms/step					_	
	57/200	1s	11ms/step	-	loss:	0.0141	-	val_loss:	0.0181
	58/200	1s	11ms/step	-	loss:	0.0143	-	<pre>val_loss:</pre>	0.0177
52/52	59/200	1s	11ms/step	-	loss:	0.0142	-	<pre>val_loss:</pre>	0.0180
52/52		1s	11ms/step	-	loss:	0.0136	-	<pre>val_loss:</pre>	0.0180
52/52		1s	11ms/step	-	loss:	0.0139	-	<pre>val_loss:</pre>	0.0173
52/52		1s	11ms/step	-	loss:	0.0123	_	val_loss:	0.0172
Epoch 52/52	62/200	1s	11ms/step	_	loss:	0.0132	_	val_loss:	0.0169
_	63/200	1s	11ms/step	_	loss:	0.0131	_	val loss:	0.0170
	64/200		10ms/step					_	
	65/200		11ms/step					_	
-	66/200		11ms/step					_	
	67/200	12	ıımə/əceb	_	±∪55;	0.0132	_	va1_1055;	0.0102

	01/200	1 -	10 / - +	1	0 0100		1 1	0 0161
	68/200		10ms/step -					
52/52 Epoch	69/200		11ms/step -				_	
52/52 Epoch	70/200	1s	11ms/step -	loss:	0.0124	-	val_loss:	0.0151
52/52		1s	11ms/step -	loss:	0.0113	-	<pre>val_loss:</pre>	0.0150
-	72/200	1s	11ms/step -	loss:	0.0120	-	<pre>val_loss:</pre>	0.0150
	73/200	1s	11ms/step -	loss:	0.0116	-	<pre>val_loss:</pre>	0.0147
52/52	74/200	1s	11ms/step -	loss:	0.0111	-	<pre>val_loss:</pre>	0.0146
52/52		1s	11ms/step -	loss:	0.0111	-	val_loss:	0.0141
52/52	75/200	1s	11ms/step -	loss:	0.0112	_	val_loss:	0.0145
52/52	76/200	1s	11ms/step -	loss:	0.0112	_	val_loss:	0.0142
_	77/200	1s	11ms/step -	loss:	0.0110	_	val loss:	0.0140
_	78/200	1s	11ms/step -	loss:	0.0109	_	val loss:	0.0138
Epoch	79/200		11ms/step -				_	
Epoch	80/200		11ms/step -					
Epoch	81/200							
_	82/200		11ms/step -				_	
_	83/200		11ms/step -				_	
	84/200		11ms/step -				_	
52/52 Epoch	85/200	ls	11ms/step -	loss:	0.0093	-	val_loss:	0.0125
	86/200	1s	11ms/step -	loss:	0.0092	-	<pre>val_loss:</pre>	0.0120
52/52		1s	11ms/step -	loss:	0.0095	-	<pre>val_loss:</pre>	0.0114
52/52		1s	11ms/step -	loss:	0.0090	-	<pre>val_loss:</pre>	0.0111
52/52		1s	11ms/step -	loss:	0.0089	-	<pre>val_loss:</pre>	0.0108
52/52		1s	11ms/step -	loss:	0.0087	-	val_loss:	0.0109
52/52		1s	11ms/step -	loss:	0.0088	_	val_loss:	0.0107
-	91/200	1s	11ms/step -	loss:	0.0095	_	val_loss:	0.0102
	92/200	1s	11ms/step -	loss:	0.0080	_	val loss:	0.0106
Epoch	93/200		11ms/step -					
Epoch	94/200		11ms/step -				_	
Epoch	95/200		11ms/step -				_	
Epoch	96/200						_	
Epoch	97/200		11ms/step -				_	
Epoch	98/200		11ms/step -				_	
	99/200	1s	10ms/step -	loss:	0.0073	-	val_loss:	0.0088
	100/200	1s	11ms/step -	loss:	0.0073	-	<pre>val_loss:</pre>	0.0086
52/52 Epoch	101/200	1s	11ms/step -	loss:	0.0071	-	<pre>val_loss:</pre>	0.0085
52/52		1s	11ms/step -	loss:	0.0067	-	<pre>val_loss:</pre>	0.0083
52/52		1s	11ms/step -	loss:	0.0065	-	<pre>val_loss:</pre>	0.0082
earn it til								

52/52	100/200	1 c	13ms/step	_	1000	0 0065	_	772] lose.	0 0077
Epoch	104/200		_					_	
Epoch	105/200		11ms/step					_	
	106/200	1s	11ms/step	-	loss:	0.0068	-	val_loss:	0.0097
	107/200	1s	11ms/step	-	loss:	0.0070	-	<pre>val_loss:</pre>	0.0073
52/52		1s	11ms/step	-	loss:	0.0059	-	<pre>val_loss:</pre>	0.0070
52/52		1s	11ms/step	-	loss:	0.0055	-	<pre>val_loss:</pre>	0.0066
52/52		1s	11ms/step	-	loss:	0.0052	-	val_loss:	0.0062
52/52		1s	11ms/step	-	loss:	0.0058	-	val_loss:	0.0068
52/52		1s	11ms/step	_	loss:	0.0054	_	val_loss:	0.0057
-	112/200	1s	11ms/step	_	loss:	0.0050	_	val_loss:	0.0056
_	113/200	1s	11ms/step	_	loss:	0.0047	_	val loss:	0.0054
Epoch 52/52	114/200		11ms/step					_	
	115/200		11ms/step					_	
	116/200		11ms/step					_	
	117/200							_	
Epoch	118/200		11ms/step					_	
_	119/200		11ms/step					_	
-	120/200		11ms/step					_	
Epoch	121/200		11ms/step					_	
	122/200	1s	11ms/step	-	loss:	0.0039	-	val_loss:	0.0043
52/52 Epoch	123/200	1s	11ms/step	-	loss:	0.0037	-	<pre>val_loss:</pre>	0.0040
	124/200	1s	11ms/step	-	loss:	0.0036	-	val_loss:	0.0039
52/52 Epoch	125/200	1s	11ms/step	-	loss:	0.0035	-	<pre>val_loss:</pre>	0.0042
	126/200	1s	11ms/step	-	loss:	0.0033	-	<pre>val_loss:</pre>	0.0037
52/52		1s	11ms/step	-	loss:	0.0034	-	<pre>val_loss:</pre>	0.0038
52/52		1s	11ms/step	-	loss:	0.0034	-	<pre>val_loss:</pre>	0.0037
52/52	129/200	1s	11ms/step	-	loss:	0.0034	-	<pre>val_loss:</pre>	0.0035
52/52		1s	11ms/step	-	loss:	0.0032	-	<pre>val_loss:</pre>	0.0038
52/52		1s	11ms/step	-	loss:	0.0033	-	val_loss:	0.0037
52/52		1s	11ms/step	-	loss:	0.0031	-	val_loss:	0.0032
52/52		1s	11ms/step	_	loss:	0.0029	-	val_loss:	0.0035
52/52		1s	11ms/step	-	loss:	0.0030	-	val_loss:	0.0032
Epoch 52/52	134/200	1s	11ms/step	_	loss:	0.0027	_	val_loss:	0.0031
52/52		1s	11ms/step	_	loss:	0.0029	_	val_loss:	0.0031
Epoch 52/52	136/200	1s	11ms/step	_	loss:	0.0025	_	val_loss:	0.0030
Epoch 52/52	137/200	1s	11ms/step	_	loss:	0.0025	_	val loss:	0.0028
_	138/200		11ms/step					_	
	139/200		±					_	

```
100011 100/200
52/52
                          - 1s 11ms/step - loss: 0.0025 - val_loss: 0.0029
Epoch 140/200
                          - 1s 11ms/step - loss: 0.0025 - val loss: 0.0030
52/52
Epoch 141/200
52/52
                          - 1s 11ms/step - loss: 0.0027 - val loss: 0.0028
Epoch 142/200
                          - 1s 11ms/step - loss: 0.0025 - val_loss: 0.0026
52/52
Epoch 143/200
52/52
                           1s 10ms/step - loss: 0.0023 - val loss: 0.0024
Epoch 144/200
52/52
                          • 1s 11ms/step - loss: 0.0020 - val loss: 0.0022
Epoch 145/200
                          • 1s 10ms/step - loss: 0.0020 - val loss: 0.0024
52/52
Epoch 146/200
                          • 1s 11ms/step - loss: 0.0021 - val_loss: 0.0023
52/52
Epoch 147/200
                          • 1s 11ms/step - loss: 0.0020 - val_loss: 0.0022
52/52
Epoch 148/200
52/52
                           1s 11ms/step - loss: 0.0019 - val_loss: 0.0021
Epoch 149/200
52/52
                          - 1s 11ms/step - loss: 0.0019 - val loss: 0.0020
Epoch 150/200
52/52
                          - 1s 11ms/step - loss: 0.0016 - val loss: 0.0020
Epoch 151/200
52/52
                          - 1s 11ms/step - loss: 0.0018 - val loss: 0.0019
Epoch 152/200
52/52
                          • 1s 11ms/step - loss: 0.0018 - val loss: 0.0018
Epoch 153/200
52/52 •
                          - 1s 11ms/step - loss: 0.0016 - val loss: 0.0019
Epoch 154/200
                          - 1s 10ms/step - loss: 0.0015 - val loss: 0.0018
52/52 -
Epoch 155/200
52/52
                          - 1s 11ms/step - loss: 0.0016 - val_loss: 0.0017
Epoch 156/200
52/52
                         - 1s 12ms/step - loss: 0.0017 - val_loss: 0.0021
Epoch 157/200
                          - 1s 11ms/step - loss: 0.0017 - val loss: 0.0024
52/52
Epoch 158/200
                         - 1s 11ms/step - loss: 0.0017 - val loss: 0.0022
52/52
Epoch 159/200
                          - 1s 11ms/step - loss: 0.0017 - val loss: 0.0018
52/52
Epoch 160/200
                         - 1s 11ms/step - loss: 0.0015 - val loss: 0.0016
52/52
Epoch 161/200
                          - 1s 11ms/step - loss: 0.0014 - val loss: 0.0015
52/52
Epoch 162/200
52/52
                          - 1s 11ms/step - loss: 0.0012 - val loss: 0.0015
Epoch 163/200
                          - 1s 11ms/step - loss: 0.0012 - val_loss: 0.0016
52/52
Epoch 164/200
                          - 1s 11ms/step - loss: 0.0012 - val_loss: 0.0016
52/52
Epoch 165/200
                          - 1s 11ms/step - loss: 0.0012 - val loss: 0.0015
52/52
Epoch 166/200
                          • 1s 11ms/step - loss: 0.0012 - val loss: 0.0012
52/52
Epoch 167/200
52/52
                          - 1s 11ms/step - loss: 0.0010 - val loss: 0.0015
Epoch 168/200
52/52
                          - 1s 11ms/step - loss: 0.0011 - val loss: 0.0012
Epoch 169/200
52/52
                          - 1s 11ms/step - loss: 9.2668e-04 - val loss: 0.0013
Epoch 170/200
52/52
                          - 1s 11ms/step - loss: 0.0011 - val loss: 0.0012
Epoch 171/200
                          • 1s 11ms/step - loss: 8.8007e-04 - val loss: 0.0012
52/52
Epoch 172/200
52/52 -
                          - 1s 12ms/step - loss: 8.5549e-04 - val_loss: 0.0010
Epoch 173/200
52/52
                          - 1s 11ms/step - loss: 9.2492e-04 - val_loss: 0.0011
Epoch 174/200
                          - 1s 11ms/step - loss: 9.0769e-04 - val loss: 0.0011
52/52
Enoch 175/200
```

```
52/52
                          - 1s 11ms/step - loss: 8.1504e-04 - val_loss: 0.0011
Epoch 176/200
                          - 1s 11ms/step - loss: 7.4995e-04 - val loss: 0.0012
52/52
Epoch 177/200
52/52
                          - 1s 11ms/step - loss: 7.6929e-04 - val loss: 0.0010
Epoch 178/200
52/52
                          - 1s 11ms/step - loss: 7.2338e-04 - val loss: 9.4138e-04
Epoch 179/200
52/52
                          • 1s 11ms/step - loss: 6.2056e-04 - val loss: 0.0010
Epoch 180/200
52/52
                          • 1s 11ms/step - loss: 7.2586e-04 - val loss: 9.9988e-04
Epoch 181/200
                          - 1s 11ms/step - loss: 6.2678e-04 - val loss: 0.0012
52/52
Epoch 182/200
                          - 1s 11ms/step - loss: 6.8517e-04 - val_loss: 9.9395e-04
52/52
Epoch 183/200
                          - 1s 11ms/step - loss: 7.1418e-04 - val_loss: 8.5484e-04
52/52
Epoch 184/200
52/52
                          • 1s 10ms/step - loss: 5.7941e-04 - val loss: 8.8057e-04
Epoch 185/200
52/52
                          - 1s 11ms/step - loss: 5.4712e-04 - val loss: 7.7263e-04
Epoch 186/200
52/52
                          - 1s 11ms/step - loss: 5.1311e-04 - val loss: 9.1209e-04
Epoch 187/200
52/52 -
                         - 1s 11ms/step - loss: 5.3465e-04 - val loss: 8.4344e-04
Epoch 188/200
52/52
                          - 1s 11ms/step - loss: 5.2972e-04 - val loss: 8.4593e-04
Epoch 189/200
52/52 -
                          - 1s 11ms/step - loss: 5.5813e-04 - val loss: 9.5904e-04
Epoch 190/200
                         - 1s 11ms/step - loss: 5.7014e-04 - val loss: 7.1329e-04
52/52 -
Epoch 191/200
52/52
                         - 1s 11ms/step - loss: 4.2473e-04 - val_loss: 8.0449e-04
Epoch 192/200
52/52 -
                         - 1s 11ms/step - loss: 4.6525e-04 - val_loss: 7.5490e-04
Epoch 193/200
                         - 1s 11ms/step - loss: 4.5430e-04 - val loss: 7.4787e-04
52/52
Epoch 194/200
52/52
                        - 1s 11ms/step - loss: 4.9162e-04 - val loss: 7.2000e-04
Epoch 195/200
                         - 1s 11ms/step - loss: 3.4341e-04 - val loss: 6.7324e-04
52/52
Epoch 196/200
52/52
                         - 1s 11ms/step - loss: 3.8362e-04 - val loss: 7.0952e-04
Epoch 197/200
52/52
                          - 1s 11ms/step - loss: 4.3810e-04 - val loss: 7.3240e-04
Epoch 198/200
52/52
                          - 1s 11ms/step - loss: 4.7561e-04 - val loss: 9.4372e-04
Epoch 199/200
                          - 1s 11ms/step - loss: 5.4546e-04 - val loss: 7.3578e-04
52/52
Epoch 200/200
52/52
                          - 1s 11ms/step - loss: 4.8420e-04 - val_loss: 7.7339e-04
In [48]:
plt.plot(history1.history['loss'], label='Train Loss')
plt.plot(history1.history['val loss'], label='Validation Loss')
plt.legend()
plt.title('Training and Validation Loss Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
```

Training and Validation Loss Over Epochs

In [49]:

```
y_pred_scaled = model1.predict(X_test)
y_pred_actual = scaler.inverse_transform(y_pred_scaled)
y_test_actual = scaler.inverse_transform(y_test)
```

31/31 ______ 1s 13ms/step

In [50]:

```
actual_values_lstm = y_test_actual[:, 7]
predicted_values_lstm = y_pred_actual[:, 7]
```

In [51]:

```
plt.figure(figsize=(10, 6))
plt.plot(actual_values_lstm, label='Actual WWQI', marker='o')
plt.plot(predicted_values_lstm, label='Predicted WWQI', linestyle='dashed', marker='o')

plt.title('Actual vs Predicted WWQI Over Time')
plt.xlabel('Date')
plt.ylabel('WWQI')
plt.legend()
plt.grid(True)
plt.show()
```

Actual vs Predicted WWQI Over Time

In [52]:

```
# Calculate MAE and MSE
lstm_mae = mean_absolute_error(actual_values_lstm, predicted_values_lstm)
mse = mean_squared_error(actual_values_lstm, predicted_values_lstm)
lstm_rmse = np.sqrt(mse)
r_squared_lstm = r2_score(actual_values_lstm, predicted_values_lstm)

print(f'Mean Absolute Error (MAE): {lstm_mae}')
print(f'Root Mean Squared Error (RMSE): {lstm_rmse}')
print("R-squared value:", r_squared_lstm)
```

Mean Absolute Error (MAE): 0.7527528116679119 Root Mean Squared Error (RMSE): 1.0600869985501247 R-squared value: 0.9828037027096039

In [38]:

R-squared value: 0.9773361364682523

In [75]:

```
future_steps = 120  # 10 years * 12 months

# Initial sequence to start prediction
initial_sequence = scaled_data[-seq_length:]

# Predict the future values
future_predictions_scaled = []

for _ in range(future_steps):
    next_pred_scaled = modell.predict(initial_sequence.reshape(1, seq_length, scaled_dat
a.shape[1]))
    future_predictions_scaled.append(next_pred_scaled)
    initial_sequence = np.concatenate((initial_sequence[1:], next_pred_scaled), axis=0)

# Convert the predictions to array
future_predictions_scaled = np.array(future_predictions_scaled).squeeze()

# Inverse transform the predictions to get them in the original scale
future_predictions = scaler.inverse_transform(future_predictions_scaled)
```

1 /1	Λ-	02/
1/1	0s	23ms/step
1/1	0s	23ms/step
1/1	 0s	22ms/step
1/1	 0s	22ms/step
1/1	 0s	21ms/step
1/1	 0s	21ms/step
1/1	0s	22ms/step
1/1	 0s	23ms/step
1/1	 0s	23ms/step
1/1	 0s	22ms/step
1/1	 0s	22ms/step
1/1	0s	22ms/step
1/1	0s	22ms/step
1/1	0s	21ms/step
1/1	0s	21ms/step
1/1	0s	21ms/step
1/1	0s	22ms/step
1/1	0s	21ms/step
1/1	 0s	22ms/step
1/1	0s	24ms/step
1/1	 0s	23ms/step
1/1	 0s	22ms/step
1/1	 0s	21ms/step
1/1	 0s	22ms/step

1/1	Os 23ms/step
1/1	0s 22ms/step
1/1	Os 21ms/step
1/1	=
•	0s 21ms/step
1/1	0s 20ms/step
1/1	0s 21ms/step
1/1	0s 21ms/step
1/1	0s 24ms/step
1/1	Os 23ms/step
1/1	0s 22ms/step
1/1	Os 21ms/step
· .	
-/-	0s 21ms/step
	0s 22ms/step
1/1	0s 20ms/step
1/1	0s 20ms/step
1/1	0s 21ms/step
1/1	=
1/1	0s 26ms/step
1/1	0s 23ms/step
1/1	0s 23ms/step
1/1	0s 23ms/step
1/1	0s 23ms/step
1/1	Os 22ms/step
= / =	
1/1	0s 21ms/step
1/1	0s 23ms/step
1/1	0s 20ms/step
1/1	0s 21ms/step
1/1	Os 20ms/step
-/-	=
	0s 20ms/step
-, -	0s 23ms/step
1/1	0s 22ms/step
1/1	0s 22ms/step
1/1	Os 22ms/step
•	
= 1 =	0s 22ms/step
1/1	0s 22ms/step
1/1	0s 21ms/step
1/1	0s 21ms/step
1/1	0s 21ms/step
1/1	Os 20ms/step
1/1	0s 21ms/step
1/1	0s 21ms/step
1/1	0s 24ms/step
1/1	Os 23ms/step
1/1	0s 23ms/step
1/1	Os 22ms/step
-	
1/1	0s 24ms/step
1/1	0s 22ms/step
1/1	0s 22ms/step
1/1	0s 21ms/step
1/1	0s 21ms/step
1/1	Os 20ms/step
	=
1/1	0s 20ms/step
1/1	0s 20ms/step
1/1	0s 24ms/step
1/1	0s 23ms/step
1/1	0s 23ms/step
1/1	Os 23ms/step
-	±
1/1	0s 22ms/step
1/1	0s 22ms/step
1/1	0s 22ms/step
1/1	0s 21ms/step
1/1	Os 21ms/step
1/1	Os 20ms/step
-	=
1/1	0s 21ms/step
1/1	0s 20ms/step
1/1	0s 24ms/step
1/1	0s 22ms/step
	0s 23ms/step
1/1	
-/-	=
1/1	0s 22ms/step
-/-	=

```
1/1
                          0s 22ms/step
1/1
                          0s 21ms/step
1/1
                          0s 21ms/step
1/1
                          0s 30ms/step
1/1
                          0s 20ms/step
1/1
                          0s 20ms/step
1/1
                          0s 21ms/step
1/1
                          0s 23ms/step
1/1
                          0s 22ms/step
1/1
                          0s 21ms/step
                          0s 22ms/step
1/1
                          0s 22ms/step
1/1
1/1
                          0s 21ms/step
1/1
                          0s 21ms/step
                          0s 21ms/step
1/1
1/1
                          0s 21ms/step
1/1
                          0s 21ms/step
1/1
                          0s 21ms/step
                          0s 22ms/step
1/1
                          0s 26ms/step
1/1
                          0s 23ms/step
1/1
                          0s 22ms/step
1/1
1/1
                         0s 25ms/step
                         0s 22ms/step
1/1
```

In [96]:

```
import datetime
# Assuming 'dfs' is your original DataFrame with 'Date' as index
last date = dfr.index[-1]
# Generate future dates for the extended time series
future dates = [last date + datetime.timedelta(days=i * 30) for i in range(1, future ste
ps + 1)]
# Plot the predicted WWQI values for the future
plt.figure(figsize=(12, 6))
plt.plot(future_dates, future_predictions[:, 7], label='Predicted WWQI (Future)', linesty
le='dashed', marker='o')
plt.title('Predicted WWQI Over Time')
plt.xlabel('Date')
plt.ylabel('WWQI')
plt.legend()
plt.grid(True)
plt.show()
```


In [62]:

```
import numpy as np
import matplotlib.pyplot as plt
labels = ['RNN', 'LSTM']
mae values = [round(rnn mae, 3), round(lstm mae, 3)]
rmse values = [round(rnn rmse, 3), round(lstm rmse, 3)]
r2_values = [round(r_squared_rnn, 3), round(r_squared_lstm, 3)]
x = np.arange(len(labels))
width = 0.3
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, mae values, width, label='MAE')
rects2 = ax.bar(x, rmse values, width, label='RMSE')
rects3 = ax.bar(x + width/2, r2 values, width, label='R-Squared')
ax.set_ylabel('Scores')
ax.set title('Comparison of MAE, RMSE, and R-Squared')
ax.set xticks(x)
ax.set xticklabels(labels)
ax.legend()
# Function to add labels on top of the bars
def autolabel(rects):
   for rect in rects:
       height = rect.get height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get x() + rect.get width() / 2, height),
                    xytext=(0, 3), # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
autolabel (rects1)
autolabel(rects2)
autolabel (rects3)
fig.tight layout()
plt.savefig('rnn vs lstm.png')
plt.show()
```


WWQI Predictor

```
In [91]:
```

```
import numpy as np
import datetime
# Define the last date in your initial data
initial year = 2023
initial month = 4
initial day = 6
initial date = datetime.datetime(year=initial year, month=initial month, day=initial day)
year = int(input("Enter the year: "))
month = int(input("Enter the month: "))
day = int(input("Enter the day: "))
# Define the target date
target_date = datetime.datetime(year=year, month=month, day=day)
# Find the index corresponding to the target date in the future dates list
delta days = (target date - last date).days
# Calculate the index in the future predictions array
index = delta days // 30  # Assuming each step in future dates corresponds to 30 days
# Check if the index is within the range of available predictions
if 0 <= index < len(future_predictions):</pre>
   # Get the predicted value for the target date
   target prediction = future predictions[index, 7] # Assuming you want the prediction
for the 7th column
   print("Prediction for {}: {}".format(target date.strftime("%Y-%m-%d"), target predic
tion))
else:
   print("Prediction is not available for the given date.")
Prediction for 2032-01-05: 10.84066390991211
```

In []: