Generative Al and Social Media

Tauhid Zaman

Generative AI and Social Media

- Learn to use generative Al tools
 - For analyzing and creating social media data
 - For building social media related web applications

- No coding experience required
 - Al does most of the work for us
- Lectures
 - -1.00-4:30
 - Room: 822

Bio - Tauhid Zaman

- Associate Professor in the Operations Management Group (OMG) at Yale SOM
- BS, MEng, PhD in Electrical Engineering and Computer Science from MIT
- Research: Social media analytics, generative AI, cryptocurrency, sports analytics
- Email: tauhid.zaman@yale.edu

Course Info

Course website:

https://zlisto.github.io/genAl_social_media/

- Instructor
 - Tauhid Zaman, tauhid.zaman@yale.edu
- Teaching Assistant
 - Lisa

What Can We Do With Generative AI + Social Media?

Learning About an Audience

Search engines

Social media

What you need

What you like

Learning About an Audience

Al Agents

What you feel

Analyzing Social Media Data with AI

Measure sentiment

Community detection

Image analysis

Measuring Sentiment

 Old way: train a model that looks for happy or sad words in text

Measuring Sentiment with Al

New way: ask Al

Sentiment Analysis:

- Polarity: 1.0 (Positive sentiment)
- Subjectivity: 1.0 (Completely subjective)

The sentiment is highly positive, reflecting happiness and enthusiasm. [-]

Community Detection

 Old way: use network structure and machine learning algorithms

Community Detection with Al

New way: ask Al

Name	Community
Alex	Friends from Work
Sophia	Friends from Work
James	College Friends
Emma	College Friends
Liam	Neighborhood
Olivia	Neighborhood
Noah	Family
Ava	Family
William	Online Friends
Isabella	Online Friends

Social Network Communities

Image Analysis

Old way: train a classifier on labeled images

Image Analysis with Al

New way: ask Al

This image appears to show a German Shepherd dog. Let me know if you need further details or analysis!

Creating Social Media Content with Al

- Text content
- Image content
- Audio content
- Video content

Text Content

Tweet

write a tweet about how hyped i am to be teaching Generative AI and Social Media (GENAISM) and put in a funny joke about Elon Musk.

Image Caption

Image Content

draw a catchy Instragram image for this tweet:
Breaking: Elon Musk unveils the next-gen Tesla
DogBot. It doesn't fetch, but it might tweet
back at you. Beta testing begins in your
backyard. ## Dogecoin #Innovation

Audio Content

- Al can easily convert text to speech
- Al can also clone someone's voice
 - ElevenLabs
- Allows us to make narrations for videos
- Allows us to make human sounding, intelligent conversational agents
 - New thing from ElevenLabs

Video Content

Convert a script into video

Google Gemini

- Scene 1: Sasin University campus, with upbeat background music and quick cuts of students walking.
- Scene 2: Classroom filled with excited students working on laptops.
- Scene 3: Students laughing and high-fiving while showing their projects to each other.

Building Web Apps with Al

- Course teaches you how to build web applications for social media
- To build a web app you need to know
 - HTML
 - JavaScript
 - Python
 - SQL
- In the old days you'd hire a team of software developers to build your app for you
 - And pay them a lot

Building Web Apps with Al

- With Al you build a web app by yourself with very little training
 - Vibe coding coding by telling the Al the vibe of what you want to make
- Once you have the basics down, you can make some very creative and cool apps
- Some examples
 - Narration generator
 - Photoblog writer
 - Video maker
 - Influencer assistant
 - And many more …

Vibe Coding

Transformers

Geometry of Data Points

The geometry of these data points consists of two clusters

Embeddings

- If we embed text, we turn text into a numeric data point
- A good embedding will encode meaning of the text in the geometry of the data points
- With a good embedding, we can do a lot of useful things with text

Document

Time to tell the story of Tesla & SpaceX

Asteroid impact risk is well understood, but not comets. Those worry me.

Yesterday, I did the most important thing I can do to support @BarackObama - I voted

The President has been steady on the issues

A favorite Obama family recipe is up for a vote

Transformers

- Neural network developed in 2017 by Google
- Revolutionized natural language processing

What Can Transformers Do?

- Measure sentiment
- Translation
- Web search
- Text summarization
- Generate text
- Question answering
- Write code
- Be your friend ☺
- ANYTHING!!!!

Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain

avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention

Transformer Architecture

- The transformer has many layers
- Each layer has an embedding vector for each word in the input text

Transformer Layer

- Each layer has many self-attention heads
- Each attention head operates on a small chunk of the input vectors in parallel

Self-Attention Head

- Each self-attention head computes weights from each word to each other word, creating an attention pattern
- This attention pattern represents some aspect of the language (subject, sentiment, etc)

Self-Attention Head

 Each self-attention head outputs a context dependent embedding vector for each word

Self-Attention Head

- Output embedding vector of a word is a weighted combination of input embedding vector of all words
- Weight is given by attention pattern

hungry

Word	Vector	Weight	Weight x Vector
CLS		0.01	
Ī		0.9	
am		0.07	
hungry		0.02	
		Sum:	

Context Dependent Embeddings

Consider these sentences that use the word bat

- 1. A bat flew out of the cave
- 2. The bat pooped on the ground
- 3. A bat bit me in the neck
- 4. Im afraid of a bat because it is like a rat with wings
- 5. A bat flew out of the baseball players hand
- 6. I hit a home run with the metal bat
- 7. No one swung a bat harder than Babe Ruth

Context Dependent Embeddings

- The transformer outputs a context dependent embedding vector for each word in each sentence
- Let's see if the bat embeddings differ depending on the meaning of the word

Context Dependent Embeddings

Context Dependent Embeddings

Generative Transformers

- A generative transformer turns the word embedding vector into a probability distribution over all words in the vocabulary
 - Ex) GPT, GPT-2, GPT-3, ChatGPT, GPT-4
- Text is generated by sampling from this distribution
- These types of transformers are also called large language models (LLMs)

ChatGPT

- GPT = Generative Pre-trained Transformer
- ChatGPT Released in 2023 by OpenAl
- Newest version of ChatGPT (GPT-4) has over 1.8 trillion parameters
 - More than 120 layers
 - More than 96 attention heads per layer
 - At least 12,288 dimensional word embedding
- Trained on all text data in the world + human labeled data

Transformer Basic Training

- A transformer is trained to complete the masked language task (MLT)
 - Fill in the masked word
- Unsupervised process no labeled data needed

Data	Prediction
I went to the [MASK]	[MASK] = store
I went to the store to buy [MASK]	[MASK] = eggs
I went to the store to buy eggs and they were [MASK]	[MASK] = expensive

ChatGPT (GPT-3.5)

- ChatGPT (GPT-3.5) was a major advancement in generative AI
- Trained using a clever technique: reinforcement learning from human feedback (RLHF)

Transformer Advanced Training

- Masked language task (MLT) takes a transformer from a baby to a child
- To go from a child to a superhuman a new training technique was needed: Reinforcement Learning from Human Feedback (RLHF)
 - Fine-tune on human created data
 - 2. Train a reward model to score how good the transformer is
 - 3. Let the transformer try to beat its high score

Fine Tuning

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Some people went to the moon... 40 contractors hired to write responses to prompts

the Open API

Input / output pairs are used to train a supervised model on appropriate responses to instructions.

Prompt dataset is a series of

prompts previously submitted to

Reward Model

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

Responses are generated by the SFT model

A labeler ranks the outputs from best to worst.

D>G>A=B

(k/2) combinations of rankings served to the model as a batch datapoint

Beat High Score with Reinforcement Learning

Sentiment Analysis with Transformers

Measuring Sentiment with Pre-Trained Transformers

- In the old days, we would have to train a transformer to measure sentiment
 - Collect and label data ⊗
 - Train for hours on a GPU ⊗
- Today, we have AI
 - No training data needed
 - No training needed
 - Sometimes you don't even need any examples

Few-Shot Learning

- How do we make the language model generate text for a specific task?
- Old way fine tune on new set of data
 - Collect and label data ⊗
 - Train for hours on a GPU ⊗
- New way few-shot learning
 - Put a few example texts in the input
 - No training needed
 - Works surprisingly well if the model is large enough

Few-Shot Learning

Emergent Behavior

- The transformer was trained to complete sentences
- It has shown the ability to perform many behaviors it was not trained on
- These are emergent behaviors
 but no one really
 understands why the emerge
- Emergent behaviors are the reason why transformers are so powerful

Measuring Sentiment with ChatGPT

- ChatGPT can measure sentiment based on a prompt
- Ex) "You will be given a sentence and must grade its sentiment from 0 to 100, 0 meaning very negative and 100 meaning very positive. Return only the numerical score: I hate my job

You will be given a sentence and must grade its sentiment from 0 to 100, 0 meaning very negative and 100 meaning very positive. Return only the numerical score: I hate my job

You will be given a sentence and must grade its sentiment from 0 to 100, 0 meaning very negative and 100 meaning very positive. Return only the numerical score: I hate my job

Measuring Complex Sentiment with Al

 Al can give us more nuanced sentiment and explain why

COURSE LOGISTICS

Grading

- Grading:
 - Homework Assignments: 40%
 - Final Project Report: 50%
 - Final Project Presentation: 10%

Homework Assignments

- Weekly homework assignments (usually)
- Homeworks submissions are
 - Python code file (.py)
 - Google Colab notebook file (.ipynb)
- Should be completed individually (Al assist is ok)
- Late homework will not be accepted unless you have a

really good excuse

Final Project

- Topic Something that involves the novel analysis or creation of social media data
- Examples
 - Build a web app where you can upload your vacation images and it writes a photoblog with information about the sites in your photos
 - Build a web app that creates virtual podcasts between celebrities on a topic of your choice
- Teams must be formed by July 4th (next week)
- Topics chosen by July 9th (before break)
- Final presentation during last day of class
- Final report due on last day of class

Final Project Teams

1 person

2 people

3 people

Next Class: Coding Session

- We will learn to measure complex tweet sentiment with Al
- We will do some vibe coding in Google Colab

Before Next Class

- Create Google account
- Get ready to vibe code in Python

