DM4: Pendule pesant - corrigé

- 1. Les forces appliquées au solide sont : le poids $\vec{P}=m\vec{g}$ appliqué au centre de gravité et la réaction de l'axe \vec{R} .
- 2. On oriente l'axe Δ selon $\vec{e}_{\Delta}.$ Le TMC projeté sur l'axe Δ donne :

$$\frac{\mathrm{d}L_{\Delta}}{\mathrm{d}t} = \mathcal{M}_{\Delta}(\vec{P}) + \mathcal{M}_{\Delta}(\vec{R}) = -mgl\sin\theta + 0$$

Avec $L_{\Delta} = J_{\Delta}\dot{\theta}$ on obtient finalement $J_{\Delta}\ddot{\theta} + mgl\sin\theta = 0$

3. Lorsque $\theta \ll 1$, $\sin \theta \simeq \theta$ et l'équation précédente devient

$$J_{\Delta}\ddot{\theta} + mgl\theta = 0$$

La solution générale de cette équation différentielle est $\theta(t) = A\cos(\omega_0 t + \varphi)$. Les conditions initiales donnent $A = \theta_0$ et $\varphi = 0$. Donc finalement $\theta(t) = \theta_0\cos(\omega_0 t)$ avec $\omega_0^2 = \frac{mgl}{J_\Delta}$.

- 4. Voir schéma ci-dessus, on ajoute la force \vec{F} de rappel du ressort.
- 5. On applique le TMC projeté sur l'axe Δ , il faut ajouter le moment par rapport à Δ de la force \vec{F} , on obtient :

$$J_{\Delta}\ddot{\theta} = -mgl\sin\theta - FL\cos(\theta) = -mgl\sin\theta - kL^{2}\sin\theta\cos\theta.$$

6. Pour des angles $\theta \ll 1$, on a $\sin \theta \simeq \theta$ et $\cos \theta \simeq 1$. L'équation différentielle ci-dessus devient :

$$J_{\Delta}\ddot{\theta} + (mgl + kL^2)\theta = 0.$$

La pulsation des oscillations devient $\omega_0^2 = \frac{mgl + kL^2}{J_{\Delta}}$, elle est donc supérieure à la pulsation obtenue dans la partie précédente (comme on devait s'y attendre).

- 7. L'énergie potentielle élastique du ressort est $E_p = \frac{1}{2}k(l-l_0)^2$. Donc $E_p = \frac{1}{2}kL^2\sin^2\theta$.
- 8. L'énergie mécanique totale du pendule est égale la somme de son énergie cinétique (Ec) et des énergies potentielles élastiques (Epe) et de pesenteur (Epp):

$$E_m(\theta) = \underbrace{\frac{1}{2}J_{\Delta}\dot{\theta}^2}_{Ec} \underbrace{-mgl\cos\theta}_{Epp} + \underbrace{\frac{1}{2}kL^2\sin^2(\theta)}_{Epe}$$

9. Il n'y a pas de frottements donc l'énergie mécanique est conservée lors du mouvement. On en déduit que $\frac{\mathrm{d}\,E_m}{\mathrm{d}\,t}=0$ et donc :

$$J_{\Delta}\dot{\theta}\ddot{\theta} + mgl\dot{\theta}\sin\theta + kL^2\cos\theta\dot{\theta} = 0.$$

En simplifiant par $\dot{\theta}$ on retrouve bien l'équation différentielle trouvée plus tôt.