2019年普通高等学校招生全国统一考试(Ⅲ)

理科数学

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一 项是符合题目要求的。

1.已知集合 $A = \{-1,0,1,2\}$, $B = \{x \mid x^2 \le 1\}$, 则 $A \cap B = ($)

- A. $\{-1,0,1\}$ B. $\{0,1\}$ C. $\{-1,1\}$ D. $\{0,1,2\}$

2.若 z(1+i) = 2i ,则 z=()

- A. -1-i
- B. -1+i C. 1-i
- D. 1 + i

3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说 四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读 过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过 《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该 校学生总数比值的估计值为()

- A. 0.5
- B. 0.6
- C. 0.7
- D. 0.8

 $4.(1+2x^2)(1+x)^4$ 的展开式中 x^3 的系数为()

- A. 12
- B. 16
- C. 20
- D. 24

5.已知各项均为正数的等比数列 $\{a_n\}$ 的前 4 项和为 15,且 $a_5=3a_3+4a_1$,则 $a_3=$ ()

- A. 16
- B. 8
- C. 4
- D. 2

6.已知曲线 $y = ae^x + x \ln x$ 在 (1, ae) 处的切线方程为 y=2x+b,则()

- A. a = e, b = -1 B. a = e, b = 1 C. $a = e^{-1}, b = 1$ D. $a = e^{-1}, b = -1$

7.函数 $y = \frac{2x^3}{2^x + 2^{-x}}$ 在[-6,6] 的图像大致为()

8.如图,点 N 为正方形 ABCD 的中心, $\triangle ECD$ 为正三角形,平面 ECD 上平面 ABCD,M 是线段 ED 的中点,则()

D.

- A. BM = EN, 且直线 BM, EN 是相交直线
- B. BM≠EN, 且直线 BM, EN 是相交直线
- C. BM = EN, 且直线 BM, EN 是异面直线
- D. BM≠EN, 且直线 BM, EN 是异面直线

9.执行右边的程序框图,如果输入的 ε 为 0.01,则输出 s 的值等于 ()

10.双曲线 C: $\frac{x^2}{4} - \frac{y^2}{2} = 1$ 的右焦点为 F,点 P 在 C 的一条渐近线上,O 为坐标 原点.若|PO|=|PF|,则 $\triangle PFO$ 的面积为()

A. $\frac{3\sqrt{2}}{4}$ B. $\frac{3\sqrt{2}}{2}$ C. $2\sqrt{2}$ D. $3\sqrt{2}$

结束

11.设 f(x)是定义域为 R 的偶函数,且在 $(0,+\infty)$ 单调递减,则()

A.
$$f(\log_3 \frac{1}{4}) > f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}})$$

A.
$$f(\log_3 \frac{1}{4}) > f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}})$$
 B. $f(\log_3 \frac{1}{4}) > f(2^{-\frac{2}{3}}) > f(2^{-\frac{3}{2}})$

C.
$$f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}}) > f(\log_3 \frac{1}{4})$$

C.
$$f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}}) > f(\log_3 \frac{1}{4})$$
 D. $f(2^{-\frac{2}{3}}) > f(2^{-\frac{3}{2}}) > f(\log_3 \frac{1}{4})$

12.设函数 $f(x) = \sin(\omega x + \frac{\pi}{5})(\omega > 0)$,已知 f(x)在[0,2 π]有且仅有 5 个零点,下述四个结论:

①f(x)在(0,2 π)有且仅有 3 个极大值点; ②f(x)在(0,2 π)有且仅有 2 个极小值点; ③f(x)在(0, $\frac{\pi}{10}$)

单调递增; ④ ω 的取值范围是 $\left[\frac{12}{5}, \frac{29}{10}\right]$.其中所有正确结论的编号是()

A.14

B.(2)(3)

C.(1)(2)(3)

D.134

二、填空题:本题共4小题,每小题5分,共20分.

13.已知 a, b 为单位向量,且 $a \cdot b = 0$,若 $c = 2a - \sqrt{5}b$,则 $\cos \langle a,c \rangle =$

14.记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,若 $a_1 \neq 0$, $a_2 = 3a_1$,则 $\frac{S_{10}}{S_n} = \underline{\hspace{1cm}}$.

15.设 F_1 , F_2 为椭圆 C: $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 的两个焦点,M为 C上一点且在第一象限,若 $\triangle MF_1F_2$

为等腰三角形,则 M 的坐标为 .

三、解答题: 共 70 分,解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。

(一) 必考题: 共60分.

17. (12分)

为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 200 只小鼠随机分成 A,B 两组,每组 100 只,其中 A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图:

记 C 为事件: "乙离子残留在体内的百分比不低于 5.5",根据直方图得到 P(C) 的估计值为 0.70.

- (1) 求乙离子残留百分比直方图中 a, b 的值;
- (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值代表).

18. (12分)

 $\triangle ABC$ 的内角 A, B, C 的对边分别是 a, b, c, 已知 $a\sin\frac{A+C}{2}=b\sin A$.

- (1) 求*B*;
- (2) 若 $\triangle ABC$ 为锐角三角形,且 c=1,求 $\triangle ABC$ 面积的取值范围.

19. (12分)

图 1 是由矩形 ABED, $Rt\triangle ABC$ 和菱形 BFGC 组成的一个平面图形, 其中 AB=1, BE=BF=2, $\angle FBC=60^\circ$. 将其沿 AB, BC 折起使得 BE 与 BF 重合. 连结 DG, 如图 2.

- (1) 证明: 图 2 中的 A, C, G, D 四点共面, 且平面 ABC⊥平面 BCGE;
- (2) 求图 2 中的二面角 B-CG-A 的大小.

20. (12分)

已知函数 $f(x) = 2x^3 - ax^2 + b$.

- (1) 讨论 f(x)的单调性;
- (2) 是否存在 a, b, 使得 f(x)在区间[0,1]的最小值为-1 且最大值为 1? 若存在,求出 a, b 的所有值:若不存在,说明理由.

21. (12分)

已知曲线 C: $y = \frac{x^2}{2}$, D 为直线 $y = -\frac{1}{2}$ 上的动点,过 D 作 C 的两条切线,切点分别为 A, B.

- (1) 证明: 直线 AB 过定点;
- (2)若以 $E(0,\frac{5}{2})$ 为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.

- (二)选考题:共 10分,请考生在 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。
- 22.[选修 4-4: 坐标系与参数方程](10分)

如图,在极坐标系 Ox 中, A(2,0), $B(\sqrt{2},\frac{\pi}{4})$,

 $C(\sqrt{2}, \frac{3\pi}{4})$, $D(2, \pi)$,弧 \widehat{AB} , \widehat{BC} , \widehat{CD} , 所在的圆的圆心分别

 $\mathbb{A}[1,0)$, $(1,\frac{\pi}{2})$, $(1,\pi)$,曲线 M_1 是弧 \widehat{AB} , 曲线 M_2 是弧 \widehat{BC} , 曲线 M_3 是弧 \widehat{CD} .

- (1) 分别写出 M_1 , M_2 , M_3 的极坐标方程;
- (2) 曲线 M 由 M_1 , M_2 , M_3 构成,若点 P 在 M 上,且 $|OP| = \sqrt{3}$,求 P 的极坐标.
- 23.[选修 4-5: 不等式选讲] (10 分)

设x, y, $z \in \mathbb{R}$, 且x+y+z=1.

(1) 求 $(x-1)^2 + (y+1)^2 + (z+1)^2$ 的最小值;

(2) 若
$$(x-2)^2 + (y-1)^2 + (z-a)^2 \ge \frac{1}{3}$$
成立,证明: $a \le -3$ 或 $a \ge -1$.

1-5 ADCAD 6-10 DBBCA 11-12 CD

13 .2/3 14. 4 15 .
$$(3,\sqrt{15})$$
 16. 118.8

17. (1)
$$\beta(c) = a + 0.20 + 0.15 = 0.70$$
.

: $a = 0.35$

: $0.05 + b + 0.15 + a + 0.20 + 0.15 = |$

: $b = 0.10$

---- 6分

(2) 関語強調なりは対すが随力: $2 \times 0.15 + 3 \times 0.20 + 4 \times 0.30 + 5 \times 0.20 + 6 \times 0.40 +$

18 正确答案及相关解析

18. (1) :
$$a \sin \frac{A+c}{2} = b \sin A$$
, ... $a \sin \frac{\pi - B}{2} = b \sin A$
... $a \cos \frac{B}{2} = b \sin A$, ... $a \sin \frac{\pi - B}{2} = b \sin A$
... $a \cos \frac{B}{2} = b \sin A$, ... $a \cos \frac{B}{2} = cos \frac{B}{2} = cos \frac{B}{2} = cos \frac{B}{2}$
... $a \cos \frac{B}{2} = \frac{b}{\sin B}$, ... $a \cos \frac{B}{2} = (0, \frac{\lambda}{2})$, ... $a \cos \frac{B}{2} \neq 0$
... $a \cos \frac{B}{2} = \frac{1}{2}$, ... $a \cos \frac{B}{2} = (0, \frac{\lambda}{2})$, ... $a \cos \frac{B}{2} \neq 0$
... $a \cos \frac{B}{2} = \frac{1}{2}$, ... $a \cos \frac{B}{2} = \frac{\lambda}{2}$ $a \cos \frac{B}{2} = \frac{\lambda}{2}$.
(2) ... $a \cos \frac{B}{2} = \frac{1}{2}$, ... $a \cos \frac{B}{2} = \frac{\lambda}{2}$ $a \cos \frac{B}{2} = \frac{\lambda}{2}$.
... $a \cos \frac{B}{2} = \frac{1}{2}$, ... $a \cos \frac{B}{2} = \frac{\lambda}{2}$ $a \cos \frac{B}{2} = \frac{\lambda}{2}$.
... $a \cos \frac{B}{2} = \frac{\lambda}{2}$ $a \cos \frac{B}{$

19 正确答案及相关解析

19. (125)

(1) i酮: (e) cha. 基明 BFGC中待 CGU BF 矩刷 ADEB中特 ADU BE

> 斯起扬ADEB与和BFGC 给BESTBF等。

电新线性递频 物. CG《AD》 国共四些叫ACGD为到河边到。

所的. A, C.G, D四美中面.

RYSABOUT. ABLBC. ABLBE - 4 &

M AB LATO BCGE.

且 AB C 和BABC 上和面 BCGE

- 63

(2) 电流量到 BFGC中 ZFBC=60° 花轴 BFGC中,延长GF剩H.便 EH=1 连络 BH. 以 B为原义. BC, BA. BH 阿花酸为分. 9.2 鞭建锅间的 松鹅.

(#270, AB=1. BE=BF=2 Mrs. BC=2 (A) B(0,0.0) A(0,1.0) C(2,0.0) G(3.0.13)

他的不知, AB上和的公子的明明和的的品的有情况的是为两年(0.1.0)——9" 治平面ACG:11左何多为 前、到前=(x,y,是)

栽待 cA=(1,→1.0). cA=(1,0.13)

別 (前·CĀ=0 ⇒)2ズ-У=0 ⇒)X=У ⇒ 前=(1,2,-3)
治=陶削 B-CG-A的年間的の
例 [Coso]= 「前・BĀ」 =
$$\frac{2}{|\vec{n}||\vec{B}\vec{A}|} = \frac{2}{|\vec{n}||\vec{B}\vec{A}|} = \frac{3}{2}$$

一 電削 B-CG-A 物語=簡節 別其大い物で - - /2′.

20 正确答案及相关解析

20,
$$(126)$$
.

(1) $\frac{1}{12} + (x) = 2x^{2} - ax^{2} + b$.

(1) $\frac{1}{12} + (x) = 6x^{2} - 2ax = 0$ $\therefore x = 0$ $\frac{a}{3}$
 $\frac{1}{3} = 0$ $\frac{1}{3} = \frac{1}{3} = 0$ $\frac{1}{3} = \frac{1}{3} = 0$ $\frac{1}{3} = 0$

121

21 正确答案及相关解析

·施小作的一一 在大作的1

(2) 由(x=2y), 福 x=x=xy,-y=)

(x=2y).

(x=x=\frac{1}{2}), B(x_1,\frac{1}{2}), B(x_2,\frac{1}{2}), A(x_2=2y) (x=1).

(x=x).

(x=

22 正确答案及相关解析

23 正确答案及相关解析

2). (1) "
$$x_{1}y_{1}+y_{2}=1$$
1. $(x_{-1})^{2}+(y_{1$