

Regular Language Models Part-3

Conversion of NFA to DFA:-

1NFA can have multiple DFA

д	Α	В
S ₀	S ₁	Ь
S ₁	S ₂	S ₂
S ₂	S	0

д	A	В
N_1	N ₂	N ₃
N2	N ₄	N
N3	N ₄	/0
N ₄	/0	1 0

www.gradeup.co

Note: Power of DFA &NFA is same because the functionality is same & we can convert NFA to DFA & DFA to NFA.

Union of 2 FA'S

FA1

FA2

∂_1	Α	В
$Z_1(X_1 Y_1)$	$Z_2 (X_2 y_1)$	$+Z_3 (x_1 y_2)$
Z ₂ (X ₂ Y ₁)	+Z ₄ (X ₃ y ₁)	$+Z_3 (x_1 y_2)$

www.gradeup.co

+Z ₃ (X ₁ Y ₂)	Z ₂ (X ₂ y ₁)	+Z ₃ (x ₁ y ₂)
+Z ₄ (X ₃ Y ₁)	+Z4 (X ₃ Y ₁)	+Z ₅ (X ₃ Y ₂)
+Z ₅ (X ₃ Y ₂)	+Z4(X ₃ Y ₁)	+Z ₅ (X ₃ Y ₂)

FA1

FA2

д	A	В
$Z_1(X_1 Y_1)$	+Z ₂ (X ₂ y ₂)	+Z ₃ (x ₁ y ₂)
+Z ₂ (X ₂ Y ₁)	+Z ₄ (X ₂ y ₁)	$Z_1 (x_1 y_1)$
+Z ₃ (X ₁ Y ₂)	+Z ₂ (X ₂ y ₁)	$Z_1 (x_1 y_1)$
+Z ₄ (X ₃ Y ₁)	+Z ₄ (X ₂ y ₂)	+Z ₃ (x ₁ y ₂)

Concatenation of 2 FA's

FA 1

FA 2

$Z_1(\mathbf{x}_1)$

	а	b
$Z_1(x_1)$	$Z_2(x_2)$	$Z_1(x_1)$
$Z_2(x_2y_2)$	$Z_3(x_2y_1)$	$Z_1(x_1)$
Z ₃ (x ₃ y ₁)	$Z_3(x_3y_1)$	$Z_4(x_3 y_1 y_2)$
$Z_4(x_3Y_1y_2)$	$Z_3(x_3y_1)$	$Z_4(x_3y_1Y_2)$

FA1

FA2

	а	b
$Z_1(x_1)$	$Z_2(x_2y_1)$	Z ₁ (x ₁)
$Z_2(x_2y_2)$	$Z_3(x_2y_1y_2)$	$Z_4(x_1y_2)$
$Z_3(x_2y_1y_2)$	$Z_3(x_2y_1y_2)$	$Z_5(x_1 y_2 y_1)$
$Z_4(x_1y_2)$	$Z_2(x_2y_1)$	$Z_6(x_1y_1)$
$Z_5(x_1 y_2 y_1)$	$Z_3(x_2b_1y_2)$	$Z_5(x_1y_1y)$

gradeup

 $Z_6(X_1Y_1)/Z_3(X_2Y_1Y_2)$ $Z_4(X_1,y_2)$

Gradeup UGC NET Super Superscription

Features:

- 1. 7+ Structured Courses for UGC NET Exam
- 2. 200+ Mock Tests for UGC NET & MHSET Exams
- 3. Separate Batches in Hindi & English
- 4. Mock Tests are available in Hindi & English
- 5. Available on Mobile & Desktop

Gradeup Super Subscription, Enroll Now