Однородные системы линейных уравнений (ОСЛУ)

Рассмотрим ОСЛУ:

Эта система всегда совместна, так как существует тривиальное её решение:

$$x_1 = 0$$
, $x_2 = 0$, ..., $x_n = 0$.

Основная матрица системы (1) имеет вид:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Пусть ранг r(A) матрицы A равен r. Если r=n (n — количество неизвестных системы), то нулевое решение будет единственным решением системы (1); при r < n система будет обладать также решениями, отличными от нулевого. В частности, система n линейных однородных уравнений с n неизвестными обладает решениями, отличными от нулевого, тогда и только тогда, когда определитель основной матрицы этой системы равен нулю.

Сформулируем свойства решений ОСЛУ (1).

Пусть
$$r(A) < n$$
 . Если $\mathbf{a} = (a_1, a_2, ..., a_n)$ и $\mathbf{b} = (b_1, b_2, ..., b_n)$ – решения системы (1), то:

- 1) a + b решение системы (1);
- 2) ka решение системы (1) (k произвольная постоянная);
- 3) любая линейная комбинация решений системы (1) также является решением системы (1).

1. Фундаментальный набор решений (ФНР)

Всякая максимальная линейно независимая система решений однородной системы линейных уравнений называется её фундаментальной системой решений (ФСР) или фундаментальным набором решений (ФНР). Можно сформулировать и такое определение: базис множества всех решений однородной системы линейных уравнений называется фундаментальным набором решений этой системы.

Очевидно, что ФНР будет существовать лишь в том случае, когда система (1) обладает ненулевыми решениями, то есть если ранг её основной матрицы будет меньше числа неизвестных (r < n). При этом система (1) может обладать многими различными фундаментальными наборами решений, и все эти наборы эквивалентны между собой (состоят из одного и того же числа решений).

Теорема (о ФНР). Фундаментальный набор решений однородной системы линейных уравнений (при r < n) состоит из n - r векторов решений, где r – ранг основной матрицы системы, n – число неизвестных.

Доказательство. Рассмотрим ОСЛУ (1). Так как ранг основной матрицы этой системы равен r, то система имеет r главных неизвестных и n-r свободных.

Пусть $x_1, x_2, ..., x_r$ – главные неизвестные и $x_{r+1}, x_{r+2}, ..., x_n$ – свободные неизвестные. И пусть, например, главные неизвестные выражаются через свободные так:

$$\begin{cases} x_{1} = c_{11}x_{r+1} + c_{12}x_{r+2} + c_{13}x_{r+3} + \dots + c_{1(n-r)}x_{n}, \\ x_{2} = c_{21}x_{r+1} + c_{22}x_{r+2} + c_{23}x_{r+3} + \dots + c_{2(n-r)}x_{n}, \\ \vdots \\ x_{r} = c_{r1}x_{r+1} + c_{r2}x_{r+2} + c_{r3}x_{r+3} + \dots + c_{r(n-r)}x_{n}. \end{cases}$$

$$(2)$$

Видим, что главные неизвестные выражаются через свободные линейно.

Придадим свободным неизвестным значения компонент единичных векторов:

Тогда при этих значениях получаем следующие векторы решений системы:

$$\begin{aligned} \boldsymbol{l_1} &= \left(c_{11}, \ c_{21}, \ c_{31}, \ ..., \ c_{r1}, \ 1, \ 0, \ 0, \ ..., \ 0\right), \\ \boldsymbol{l_2} &= \left(c_{12}, \ c_{22}, \ c_{32}, \ ..., \ c_{r2}, \ 0, \ 1, \ 0, \ ..., \ 0\right), \\ \boldsymbol{l_3} &= \left(c_{13}, \ c_{23}, \ c_{33}, \ ..., \ c_{r3}, \ 0, \ 0, \ 1, \ ..., \ 0\right), \\ &\cdots \\ \boldsymbol{l_{n-r}} &= \left(c_{1(n-r)}, \ c_{2(n-r)}, \ c_{3(n-r)}, \ ..., \ c_{r(n-r)}, \ 0, \ 0, \ 0, \ ..., \ 1\right). \end{aligned}$$

Покажем, что именно эти векторы составляют базис во множестве решений системы (1). Составим матрицу, строками которой являются векторы $l_1, ..., l_{n-r}$:

Заметим, что ранг матрицы L не может быть больше числа её строк, то есть $r(L) \le n-r$. Но и меньше, чем n-r, он тоже быть не может, так как в этой матрице содержится минор порядка n-r, отличный от нуля:

$$M_{n-r} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}.$$

Этот минор является базисным, и поэтому ранг матрицы L равен n-r: r(L)=n-r. L содержит n-r линейно независимых строк. Значит, все векторы l_1, \ldots, l_{n-r} линейно независимы.

Покажем теперь, что любое решение ОСЛУ (1) является линейной комбинацией векторов решений $\boldsymbol{l_1}, ..., \boldsymbol{l_{n-r}}$. Пусть $\boldsymbol{a} = (a_1, a_2, ..., a_r, a_{r+1}, a_{r+2}, ..., a_n)$ – решение системы (1). Заметим, что в этом решении $a_1, a_2, ..., a_r$ – значения главных неизвестных, свободные неизвестные принимают значения $a_{r+1}, a_{r+2}, ..., a_n$.

Для доказательства того, что любое решение системы (1) есть линейная комбинация фундаментального набора решений l_1, \ldots, l_{n-r} , рассмотрим вектор b, являющийся линейной комбинацией этих линейно независимых векторов:

$$b = a_{r+1} l_1 + a_{r+2} l_2 + ... + a_n l_{n-r}.$$

Заметим, что по свойству 3 решений ОСЛУ вектор b как линейная комбинация решений также является решением системы (1).

Найдём компоненты вектора b. Очевидно, что значения свободных неизвестных вектора a. Но тогда по формулам (2) получим, что и значения главных неизвестных у векторов a и b совпадают:

$$\boldsymbol{b} = (a_1, a_2, ..., a_r, a_{r+1}, a_{r+2}, ..., a_n).$$

Таким образом, векторы a и b совпадают, и любое решение системы (1) является линейной комбинацией векторов фундаментального набора решений.

Теорема доказана.

Пример. Решить систему и найти фундаментальный набор решений:

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 0, \\ 2x_1 + 3x_2 + 4x_3 + 5x_4 + 6x_5 = 0, \\ 3x_1 + 5x_2 + 7x_3 + 9x_4 + 11x_5 = 0, \\ x_1 + x_2 + x_3 + x_4 + x_5 = 0. \end{cases}$$

Решение. Определим ранг основной матрицы системы. Для этого приведем её к ступенчатому виду:

В полученной ступенчатой матрице две ненулевые строки, поэтому её ранг r равен 2. В системе 5 неизвестных.

Итак, r = 2, n = 5, ФНР состоит из n - r = 3 векторов решений. Переменные x_1 , x_2 можно назначить главными; минор, составленный из коэффициентов перед ними, является базисным:

$$M_2 = \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} = -1 \neq 0.$$

Тогда свободные неизвестные — x_3 , x_4 , x_5 . Выпишем систему, соответствующую ступенчатой матрице, и выразим главные неизвестные через свободные:

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 0, \\ -x_2 - 2x_3 - 3x_4 - 4x_5 = 0, \end{cases}$$

откуда $x_2 = -2x_3 - 3x_4 - 4x_5$, $x_1 = x_3 + 2x_4 + 3x_5$.

Пусть $x_3=t_1,\ x_4=t_2,\ x_5=t_3$. Тогда $x_1=t_1+2t_2+3t_3,\ x_2=-2t_1-3t_2-4t_3$, и общее решение системы имеет вид:

$$(t_1+2t_2+3t_3, -2t_1-3t_2-4t_3, t_1, t_2, t_3).$$

Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. И найдём, тем самым, частное решение системы. Например, при $t_1 = 1$, $t_2 = 2$, $t_3 = 3$ получаем решение

$$a = (14, -20, 1, 2, 3).$$

Найдём фундаментальный набор решений системы. Для этого придадим свободным неизвестным, например, значения компонент единичных векторов и получим соответствующие значения главных неизвестных:

$$l_1 = (1, -2, 1, 0, 0)$$
 (при $x_3 = 1, x_4 = 0, x_5 = 0$), $l_2 = (2, -3, 0, 1, 0)$ (при $x_3 = 0, x_4 = 1, x_5 = 0$), $l_3 = (3, -4, 0, 0, 1)$ (при $x_3 = 0, x_4 = 0, x_5 = 1$).

Таким образом, векторы решений l_1 , l_2 , l_3 образуют ФНР рассматриваемой однородной системы линейных уравнений.

Заметим, что полученное выше частное решение a системы, является линейной комбинацией векторов ФНР:

$$a = l_1 + 2l_2 + 3l_3$$
.

Вообще, любая линейная комбинация решений фундаментального набора будет являться решением однородной системы линейных уравнений:

 $b = b_1 l_1 + b_2 l_2 + b_3 l_3$ — произвольное решение системы (здесь $b_1, b_2, b_3 \in \mathbb{R}$).

2. Связь между решениями однородных и неоднородных систем

Пусть дана система линейных неоднородных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \dots \dots \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$
(S)

Система линейных уравнений, полученная из системы (S) заменой свободных членов нулями, называется *приведённой системой* для системы (S):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \dots \dots \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

$$(S_0)$$

Между решениями систем (S) и (S_0) существует тесная связь, как показывают следующие две теоремы.

Теорема 1. Сумма любого решения системы (S) с любым решением приведённой системы (S_0) снова будет решением системы (S).

Доказательство. Пусть $(c_1, c_2, ..., c_n)$ – решение системы (S), $(d_1, d_2, ..., d_n)$ – решение системы (S_0) . Возьмём любое из уравнений системы (S); например, i—тое:

$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$$

или (что то же самое):

$$\sum_{i=1}^n a_{ij} x_j = b_i .$$

Тогда $\sum_{j=1}^{n} a_{ij} c_j = b_i$ — верное равенство, так как $(c_1, c_2, ..., c_n)$ — решение системы (S).

По аналогии, для произвольного i—того уравнения $\sum_{j=1}^{n} a_{ij} x_{j} = 0$ системы (S_{0}) верным

будет равенство $\sum_{j=1}^{n} a_{ij} d_j = 0$.

Если $(c_1 + d_1, c_2 + d_2, ..., c_n + d_n)$ есть решение системы (S), то $\sum_{j=1}^n a_{ij} (c_j + d_j) = b_i$ —

верное равенство. Для того чтобы это показать, подставим вместо неизвестных числа $c_1 + d_1$, $c_2 + d_2$, ..., $c_n + d_n$ в i-тое уравнение системы (S). В самом деле:

$$\sum_{i=1}^{n} a_{ij} (c_j + d_j) = \sum_{i=1}^{n} a_{ij} c_j + \sum_{i=1}^{n} a_{ij} d_j = b_i + 0 = b_i.$$

Теорема доказана.

Теорема 2. Разность любых двух решений системы (S) служит решением для приведенной системы (S_0) .

Доказательство. Действительно, пусть $(c_1, c_2, ..., c_n)$ и $(c_1', c_2', ..., c_n')$ – решения системы (S). Берём любое из уравнений системы (S₀), например, i—тое, и подставляем в него вместо неизвестных числа c_1-c_1' , c_2-c_2' , ..., c_n-c_n' . Получаем:

$$\sum_{j=1}^{n} a_{ij} \left(c_{j} - c'_{j} \right) = \sum_{j=1}^{n} a_{ij} c_{j} - \sum_{j=1}^{n} a_{ij} c'_{j} = b_{i} - b_{i} = 0.$$

Теорема доказана.

Из этих теорем вытекает, что, найдя одно решение системы линейных неоднородных уравнений (S) и складывая его с каждым из решений приведенной системы (S_0), можно получить все решения системы (S).