FDTD Underwater Acoustic Propagation

Application to localization using interval analysis

Quentin Brateau

ENSTA Bretagne · Agence Innovation Défense

Research laboratories

ENSTA Bretagne

Projects

- DGA RAPID PROTEUS:
 Underwater acoustic propagation simulation using Finite Difference Time Domain
- DGA ROBOTIX:
 Underwater acoustic source localization using interval analysis

Table of contents

- 1 Introduction
- Scope of the study
- Wave equation
- 2 Finite Difference Time Domain
- Numeric Scheme
- Viscoelastic modeling of materials
- Physically constrained acoustic sources model
- 3 Results
 - Validation
- Results

Introduction Scope of the study

Variables of interest

- Pressure
- Particle velocity

Scope of the simulation

- Rectilinear Grid support for fields
- Viscoelastic modeling of materials

Introduction Wave Equation

Figure 1: Jean Le Rond d'Alembert

Wave equation

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \phi(\mathbf{r}, t) = f(\mathbf{r}, t) \tag{1}$$

Variables of interest

- Pressure P(t,x)
- Particle Velocity U(t,x)

Numeric scheme

- 2^{nd} order in time $O(\Delta t^2)$ [1]
- 4^{th} order in space $O(\Delta x^4)$ [1]

Figure 2: Staggered pressure and particle velocity fields

Figure 3: James Clerk Maxwell

Standard Linear Solid model

- Viscoelastic material modeling
- Springs
- Dashpots

Figure 4: Standard Linear Solid model, Maxwell representation

Scène

- Plage de fréquence
- · Constantes de relaxations

Matériau

- Ondes P : *c_p*, *Q_p*
- Ondes S: cs, Qs
- Calcule constante de temps qui linéarise le mieux Q sur la plage de fréquence

Figure 5: Exemple de facteur de qualité optimal

Matériau viscoélastique

- Modélisation linéaire des matériaux [2]
- SLS (Standard Linear Solid Model)

Matériau

- Ondes P : c_p, Q_p
- Ondes S: c_s, Q_s
- Calcule constante de temps qui linéarise le mieux Q sur la plage de fréquence

Figure 6: Scène utilisée dans la comparaison

Figure 7: Comparaison des Transmission Loss simulées pour les deux modèles

© Quentin Brateau 11

Méthodes ensemblistes

- Basées sur les ensembles
- Renvoie l'ensemble des possibilités
- · Calcul garanti

Caractéristiques

- Post-traitement
- Ensemble de solutions compatibles
- Domaine non-linéaires

Méthodes Probabilistes

- Basées sur les probabilités
- · Renvoie une position possible
- · Calcul probable

Caractéristiques

- Traitement temps réel
- · Point avec covariance
- Domaine linéaire

Figure 8: Méthodes ensemblistes

Figure 9: Méthodes probabilistes

Example

- Intervalles
- Zonotopes
- Polytopes

Example

- Filtre de Kalman
- Filtre de Bayes
- Méthodes de Monte-Carlo

Réciprocité

- Carte de niveau acoustique perçus par rapport à un récepteur
- Résoudre problème d'inversion

Réciprocité Acoustique

- Cadre de l'acoustique linéaire [3]
- Valable en avec modélisation visco-élastique des matériaux

Figure 10: Carte de niveaux acoustiques pour un récepteur placé en $(2000,20)\ m$

Problème d'inversion

(d) Position de la source compatibles avec les mesures de niveaux acoustiques

Figure 11: Localisation ensembliste de la source acoustique

Améliorations

- Modélisation du bruit
- Passage de la 2D à la 3D
- Passage du Python au C++
- Validation en milieu naturel

Localisation ensembliste

- Émetteur/Récepteur en mouvement
- Simulation à plusieurs fréquences
- · Navigation dans données sonar
- SLAM acoustique

Figure 12: SeaBot - Thomas Le Mézo

- [1] J. O. Robertsson, J. O. Blanch, and W. W. Symes, "Viscoelastic finite-difference modeling," *Geophysics*, vol. 59, no. 9, pp. 1444–1456, 1994.
- [2] J. Blanch, J. O. A. Robertsson, and W. W. Symes, "Modeling of a constant q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique," *Geophysics*, vol. 60, pp. 176–184, 1995.
- [3] J. W. S. B. Rayleigh, *The theory of sound*, vol. 2. Macmillan, 1896.

© Quentin Brateau