Лекция 9. Стабилизация частоты

Мгновенная частота

$$f(t) = \frac{1}{2\pi} \frac{d\varphi}{dt},$$

Средняя частота (за время измерения от t до $t + \tau$)

$$f_{\rm cp} = \frac{1}{\tau} \int_t^{t+\tau} f(t) \, dt$$

Абсолютная нестабильность

$$\Delta f = f_{\rm cp2} - f_{\rm cp1},$$

Относительная нестабильность

$$\varepsilon = \Delta f/f_{\rm A\Gamma} = (f_{\rm cp2} - f_{\rm cp1})/f_{\rm cp1}$$

Кратковременная нестабильность измеряется за очень короткое время (обычно менее 1 с)

Она определяется быстрыми флуктуационными изменениями частоты автогенератора, вызываемыми тепловыми, дробовыми и фликкер шумами. Определяются высокочастотной частью спектра $S\omega(\omega)$.

Долговременная нестабильность средней частоты Δf ср АГ, проявляющаяся за временные интервалы наблюдения более одной секунды (часа, сутки, месяца, года и более).

Связана с воздействием на параметры автогенератора медленных и сверхмедленных, дестабилизирующих факторов (изменениями температуры, атмосферного давления и влажности окружающей среды, вибрациями, нестабильностью напряжения источника питания, старением ЭП и реактивных элементов контура и других элементов схемы АГ, нестабильностью его нагрузки, создаваемой последующими каскадами.

Две основные **причины нестабильности частоты** АГ, обусловленные непосредственным <u>изменением резонансной частоты</u> его контура $\omega 0 = 1/\sqrt{LC}$ и изменениями параметров схемы в петле положительной обратной связи - ϕ ос .

1. Влияние изменения параметров L и C контура АГ.

$$\Delta\omega = \frac{1}{\sqrt{(L + \Delta L)(C + \Delta C)}} - \frac{1}{\sqrt{LC}} \approx -\frac{\omega_0}{2} \left(\frac{\Delta L}{L} + \frac{\Delta C}{C} \right) \qquad \varepsilon = \frac{\Delta\omega}{\omega_0} = -\frac{1}{2} \left(\frac{\Delta L}{L} + \frac{\Delta C}{C} \right)$$

Температурные коэффициенты индуктивности (ТКИ) и емкости (ТКЕ)

$$\alpha_L \approx \frac{\Delta L}{L} \Delta t^{\circ}; \quad \alpha_C \approx \frac{\Delta C}{C} \Delta t^{\circ}$$

Обычно ТКИ на уровне $10-3...5 \cdot 10-4$. ТКЕ того же порядка или меньше

Некоторые конденсаторы, обладающие отрицательным ТКЕ позволяют скомпенсировать положительные значения ТКИ индуктивностей — **термокомпенсация**. Полная термокомпенсация возможна только при определенной температуре и на одной рабочей частоте

Более эффективным является непосредственное **термостатирование** АГ, при котором обеспечивается постоянство температуры АГ при значительных изменениях температуры окружающей среды. **Недостаток** - значительно (в разы) увеличение массогабаритных размеров устройства в целом, а также резкое (в разы) увеличение потребляемой АГ вместе с термостатом мощности.

2. Действие дестабилизирующих факторов $\Delta \alpha$ на цепь обратной связи

чтобы **баланс фаз** $\varphi(\omega_{{\rm A}\Gamma},\alpha_0)=2\pi m$ сохранился при действии $\Delta\alpha$, частота $\omega_{{\rm A}\Gamma}$ должна также измениться на малую величину $\Delta\omega$

$$\varphi(\omega_{A\Gamma} + \Delta\omega, \alpha_0 + \Delta\alpha) = 2\pi m$$

Разлагая левую часть уравнения в ряд Тейлора по степеням $\Delta \omega$ и $\Delta \alpha$ в окрестности $\varphi(\omega_{A\Gamma}, \alpha_0) = 2\pi m$

$$\varphi(\omega_{A\Gamma}, \alpha_0) + \left[\frac{\partial \varphi}{\partial \omega} \Big|_{\substack{\omega = \omega_{A\Gamma} \\ \alpha = \alpha_0}} \right] \Delta \omega + \left[\frac{\partial \varphi}{\partial \alpha} \Big|_{\substack{\omega = \omega_{A\Gamma} \\ \alpha = \alpha_0}} \right] \Delta \alpha + \dots = 2\pi m$$

Изменение суммарного набега фазы, вызванное изменением параметра lpha

$$\Delta \varphi = -\left[\frac{\partial \varphi}{\partial \alpha}\Big|_{\substack{\omega = \omega_{\text{A}\Gamma} \\ \alpha = \alpha_0}}\right] \Delta \alpha \quad = \quad \left[\frac{\partial \varphi}{\partial \omega}\Big|_{\substack{\omega = \omega_{\text{A}\Gamma} \\ \alpha = \alpha_0}}\right] \Delta \omega$$

Отсюда, поделив на ω аг найдём ϵ

$$\frac{\Delta\omega}{\omega_{A\Gamma}} = -\Delta\varphi / \omega_{A\Gamma} \left[\frac{\partial\varphi}{\partial\omega} \Big|_{\substack{\omega=\omega_{A\Gamma}\\ \alpha=\alpha_0}} \right]$$

Стабильность частоты АГ при заданном значении $\Delta \phi$ тем выше, чем резче суммарный фазовый сдвиг зависит от частоты автоколебаний

Стабильность частоты АГ при заданном значении Δφ тем выше, чем резче суммарный фазовый сдвиг зависит от частоты автоколебаний.

Повышать добротность!

Наиболее резкая зависимость у ФЧХ контура. Чем ближе частота автогенератора ω AГ к резонансной частоте контура ω 0, тем выше значения $\partial \phi/\partial \omega$ и выше стабильность частоты.

Необходимо уменьшать ϕ s, т.е. использовать высокочастотные транзисторы с максимальной граничной частотой ω s. Тогда ω AГ $\approx \omega$ 0

$$\varphi_s + \varphi_y(\omega) = 0$$

$$\varphi_y(\omega) = -\arctan \frac{2(\omega - \omega_0)Q_H}{\omega_0}$$

После дифференцирования получим

$$\left. \frac{\partial \varphi_z}{\partial \omega} \right|_{\omega = \omega_{\text{A}\Gamma}} \approx -\frac{2Q_{\text{H}}}{\omega_0}, \qquad \varepsilon = \left. \frac{\Delta \omega}{\omega_{\text{A}\Gamma}} = -\Delta \varphi \right/ 2Q_{\text{H}}$$

С соблюдением всех мер в LC АГ удаётся снизить ε до $\approx 10^{-4}$

Автогенераторы с кварцевыми резонаторами

Позволяют на несколько порядков (практически до $10^{-6}\dots 10^{-9}$ и более) снизить ϵ

Добротность эквивалентного колебательного контура достигает $10^5 \dots 10^7$ и более, с одновременно мало изменяющимися параметрами от воздействия внешних дестабилизирующих факторов.

Устройство и принцип действия кварцевого резонатора

Кварцевая пластина преобразует подводимое к ней электрическое колебание в механическое и наоборот (пьезоэлектрический эффект)

Природный кварцевый минерал (пьезокварц) представляет собой кристаллическую двуокись кремния SiO2. Искусственно полученные кристаллы по параметрам даже превосходят природные.

Частоты АГ на кварцевых резонаторах от нескольких сотен Герц до УВЧ (500. . . 1000 МГц) Зависят от размеров резонатора (от 50 мм до 50 мкм и менее) и видов механических колебаний.

колебания как на основной частоте, так и на частотах **нечетных гармоник** от n=3; 5; 7;... и до n=21; 23; 25 на частотах от ≈ 5 МГц до ≈ 1000 МГц. Кристаллы кварца имеют **форму**:

Конструкция (*a*) и обозначение в схеме кварцевого резонатора (*б*)

Эквивалентная схема кварцевого резонатора на гармониках:

Основная частота механических колебаний

fкв = M/d, где M = 1,6. . .3 МГц·мм (зависит от типа среза), d — толщина пластины среза, мм (d > 0,1 мм — хрупкость!) fкв не выше ≈ 17 МГц для среза АТ и ≈ 25 МГц для среза БТ

При работе на механических гармониках

АГ сразу (без умножителей) работает до 250. . . 300 МГц. Добротность на частотах 3 и 5 гармоник даже выше в 1,5. . . 2,0 раза, чем на основной.

Lкв*n* отражает массу кварцевой пластины **Скв***n* — величину, обратную упругости пластины, сопротивление **Гкв***n* учитывает потери **Со** —емкость кварцедержателя или металлизации

$$L_{\text{\tiny KB}} = 10^{-2}\dots 10~\Gamma$$
н, $C_{\text{\tiny KB}} = 10^{-2}\dots 10^{-5}~\Pi$ Ф $r_{\text{\tiny KB}} = 5\dots 50~$ Ом $C_0 = 1\dots 8~\Pi$ Ф.

$$Z_{\scriptscriptstyle \mathrm{KB}}(\omega) = R_{\scriptscriptstyle \mathrm{KB}}(\omega) + jX_{\scriptscriptstyle \mathrm{KB}}(\omega).$$

$$Z_{\text{kb}}(\omega) = 1/(j\omega C_0 + 1/(j\omega L_{\text{kb}} + 1/j\omega C_{\text{kb}} + r_{\text{kb}}))$$

$$\omega_{\mathrm{kb}} = 1/\sqrt{L_{\mathrm{kb}}C_{\mathrm{kb}}}$$

$$\omega_{\text{посл}} \geqslant \omega_{\text{kb}} = 1/\sqrt{L_{\text{kb}}C_{\text{kb}}};$$

Упрощённая эквивалентная схема

$$\omega_{\mathrm{пар}}\leqslant 1/\sqrt{rac{L_{\mathrm{\tiny KB}}C_{0}C_{\mathrm{\tiny KB}}}{C_{0}+C_{\mathrm{\tiny KB}}}}=\omega_{\mathrm{\tiny KB}}\sqrt{1+rac{C_{\mathrm{\tiny KB}}}{C_{0}}}pprox \left(1+0.5rac{C_{\mathrm{\tiny KB}}}{C_{0}}
ight)\omega_{\mathrm{\tiny KB}}$$
 знаки равенства при $r_{\mathrm{\tiny KB}} o 0.$

$$\Delta\omega=\omega_{\rm пар}-\omega_{\rm посл}\approx\omega_{\rm кв}$$
0,5 $C_{\rm кв}/C_0$ $\Delta\omega/\omega_{\rm кв}=$ 10 $^{-3}\dots$ 10 $^{-5}$ индуктивное сопротивление

$$ho_{\mathrm{kb}} = \omega_{\mathrm{kb}} L_{\mathrm{kb}} = 1/\omega_{\mathrm{kb}} C_{\mathrm{kb}} = \sqrt{L_{\mathrm{kb}}/C_{\mathrm{kb}}}$$
 $Q_{\mathrm{kb}} = \rho_{\mathrm{kb}}/r_{\mathrm{kb}}$ от сотен тысяч до $1\dots 10$ миллионов $R_{\mathrm{hap}}(\omega_{\mathrm{hap}}) = 1/(\omega_{\mathrm{kb}} C_0)^2 r_{\mathrm{kb}}$

осуществляется трансформация малого сопротивления $r \kappa B \to 0$ в большое сопротивление Rпар $ightarrow \infty$ (Г-цепочка в виде двухзвенного ФНЧ)

Температурная зависимость частоты кварцевого резонатора.

ТКЧ кварца со срезом АТ не более $\approx n10^{-6}$

срезы БТ и РТ для термостатированных АГ

годовое изменение частоты, обусловленное **старением** $\approx 1*10^{-6}$

предельный уровень мощности АГ ≈ 1... 2 мВт (для прецизионных резонаторов не более 10 мкВт)

Схемы кварцевых автогенераторов

осцилляторные и фильтровые схемы

$$X_{\text{\tiny KB}}(\omega) + X_1(\omega) + X_2(\omega) = 0$$

Без учёта емкости СО

$$\omega_{\rm A\Gamma} L_{\scriptscriptstyle \rm KB} - \frac{1}{\omega_{\rm A\Gamma} C_{\scriptscriptstyle \rm KB}} - \frac{1}{\omega_{\rm A\Gamma} C_1} - \frac{1}{\omega_{\rm A\Gamma} C_2} = 0.$$

$$\omega_{\mathrm{A}\Gamma} pprox \omega_{\mathrm{kb}} \left(1 + \frac{1}{2} C_{\mathrm{kb}} \frac{C_1 + C_2}{C_1 C_2} \right)$$

Автоколебания возможны только на частоте ω AГ = ω 1 $\approx \omega$ кв.

По схеме емкостной трехточки

На частоте $\omega 2 = \omega$ пар генерация невозможна. Очень большая резистивная составляющая (нет баланса амплитуд)

Фильтровые схемы АГ с кварцевым резонатором

кварцевый резонатор включается в цепь обратной связи трехточечного АГ в виде очень узкополосного полосового фильтра, который приближает частоту АГ к частоте ω кв $\approx \omega$ посл

через кварцевый резонатор протекает гораздо меньший ток по сравнению с контурным током эквивалентного резонансного контура осцилляторной схемы (в Qн раз)

реальная опасность **паразитной** «бескварцевой» **автогенерации** с использованием емкости *C*0, а не самого резонатора. Её исключают **компенсацией** или **нейтрализацией** действия статической емкости *C*0.

Для **компенсации** к резонатору подключают параллельно или последовательно индуктивность *L*комп, чтобы контур, образованный ей и *CO*, резонировал на частоте используемой гармоники

В схемах с **нейтрализацией** емкостная проводимость кварца компенсируется проводимостью емкости специального нейтродинного конденсатора $C_{\text{нейт}} = C_0$

Схема с кварцевым резонатором в цепи ОС

Схемы АГ с кварцевым резонатором в цепи ОС в реализуют на предельно высоких частотах (до 250. . . 300 МГц) с использованием его на гармониках до $n \approx 9$ и выше.

Нейтрализация емкости C_0 в схеме Клаппа