Física Teórica 3 — 2do. cuatrimestre de 2013 Primer parcial (the real thing)

- 1. **Proceso de Poisson.** La variable estocástica N(t) mide el número de eventos registrados entre t=0 y t; por ejemplo, el número de partículas detectadas por un contador entre 0 y t. Se asume que la probabilidad de registrar un evento entre t y t+dt es $\nu(t)dt$, independientemente del número de eventos registrados hasta tiempo t; la probabilidad de más de un registro es de orden dt^2 . Sea $p_n(t)$ la probabilidad de que hayan ocurrido n registros hasta tiempo t.
 - a) Escriba la ecuación maestra para $p_n(t)$.
 - b) Muestre explícitamente que la probabilidad total se conserva, $d\left[\sum_n p_n(t)\right]/dt = 0$.

La ecuación maestra puede resolverse mediante la función generatriz $F(z,t) = \sum_n p_n(t) z^n$.

- c) Escriba la ecuación que satisface F(z,t).
- d) Si el registro se inicia en t=0, con $p_0(0)=1$, escriba la condición inicial F(z,0) y encuentre F(z,t) para $t\geq 0$.
- e) Desarrollando F(z,t) en potencias de z, calcule $p_n(t)$.
- f) Calcule $\langle n(t) \rangle$ y $\langle n(t)^2 \rangle \langle n(t) \rangle^2$.
- g) (Opcional I.) Particularice los resultados e) y f) al caso $\nu(t)$ constante (proceso homogéneo).
- h) (Opcional II.) Escriba la probabilidad condicional $p(n_2, t_2|n_1, t_1)$ de tener n_2 registros a tiempo t_2 si había n_1 en $t_1 < t_2$.
- 2. Un gas ideal clásico está formado por N partículas atrapadas en un potencial armónico isótropo, $V(\mathbf{r}) = \frac{1}{2}m\omega^2 r^2$. Las partículas tienen masa m. Se pide encontrar, usando cualquiera de los ensambles:
 - (a) La energía interna, U(T, N).
 - (b) La entropía, S(T, N) y S(U, N).
 - (c) El valor medio de r^2 para una partícula del gas, $\langle r^2 \rangle$ (T).
- 3. Una superficie adsorbente está en contacto con un reservorio de partículas indistinguibles a temperatura T y fugacidad z. La superficie tiene N_0 sitios distinguibles e independientes, cada uno de los cuales puede adsorber una partícula. A su vez, cada partícula adsorbida puede ocupar dos estados, con energías $-\epsilon_1$ y $-\epsilon_2$, respectivamente.
 - (a) Escriba la función de partición del sistema en el ensamble gran canónico.
 - (b) Suponiendo que hay en promedio n sitios ocupados, calcule z como función de T y de n.
 - (c) Calcule la energía media del sistema como función de T y de n.
 - (d) Encuentre, como función de T y de n, la fracción de las partículas adsorbidas que está en cada estado.

Preguntas teóricas

- 1. Justifique la ecuación de Van der Waals.
- 2. ¿Cuándo vale la extensividad de la Entropía en un sistema?
- 3. ¿Cuál es la condición de equilibrio para un sistema a $S,\,N$ y V constantes?
- 4. ¿Cuál es la condición de equilibrio de acuerdo con la ecuación de Boltzmann?
- 5. ¿Qué es la Paradoja de Gibbs y qué consecuencias tiene en la formulación de la teoría de ensambles?
- 6. Ensamble canónico: justifique.
- 7. ¿Cómo son las fluctuaciones de energía en el gran canónico?
- 8. Matriz de adyacencia y distinguibilidad de grafos rotulados.