

* Indicates required question

Questions

1) The main difference between	* 5 points
Latch and Flip Flop is that Latch	
is while Flip Flop is	

Level	triggered	-	Edge	triggere
Level	inggered		Luge	inggere

\bigcirc	Edge triggered	_	Level	triggered
	Lage triggerea		LCVCI	triggeree

- Both are edge triggered.
- Both are level triggered.

2) If we want to Implement an * 5 points Odd parity Checker with only one gate which one should we use?

5) Which of the following C++ * 5 points statements describes the behavior of the figure:

(assuming that A & B is 1 bit)

- If(A==1) { Out =C; } else { Out=B; };
- If(B==1) { Out =C; } else { Out=A; };
- If(B==1) { Out =A; } else { Out=0; };
- If(A==1) { Out =C; };
- 6) Assuming that I have 2 signed * 5 points
 4bits number (the 4th bit is the sign) A=0111 and B=1100
 (the signed number is in 2's
- (the signed number is in 2's complement representation)

6) Assuming that I have 2 signed * 5 points
4bits number (the 4th bit is the sign) A=0111 and B=1100
(the signed number is in 2's complement representation)
(The values in binary) so if
C=A+B

0 1001
0011
1100

- 7) What's the implementation of * 5 points
 Boolean Function
 as Sum of Products?
- Group of OR gates outputs into Single AND gate.
- Group of AND gates outputs into Single OR gate.
- Group of XOR gate outputs into Single NAND gate.
- None of the above

1010

8) Which of the following is NOT * 5 points a characteristic of a Moore finite state machine?					
Output depends only on the current state.					
Output depends only on the current input.					
O It has more states compared to a Mealy finite state machine.					
Output changes after the clock edge.					
9) What is the purpose of a * 5 points multiplexer (MUX) in digital design?					
To combine multiple signals into one					
O To generate clock signals.					
To synchronize asynchronous signals.					
To store data temporarily.					
10) What is the output for this * 5 points combinational circuit:					

12) For the following counter * 5 points with a sequence of 0, then 5,7,9,1 and again back to 0 to repeat, State the minimum number of bits needed to design such FSM counter. L09(N) **13)** Write 2's complement for * 5 points 100100 101100 11100 100111 11011

