

An Empirical Investigation of the Failure Mode of Training in Mildly Overparameterized NNs

Master's Thesis
- Midterm Presentation-

Student: *Theodor Stoican*Supervisor: *Berfin Şimşek*Co-supervisor: *Johanni Brea*

EPFL Setup

Teacher-student setup (same setup as the one published in [1])

- Dataset
 - 1681 points on a regular grid $\{(x_1,x_2)|4x_1=-20,\dots,20,4x_2=-20,\dots,20\}$
 - with labels $y=\Sigma_{i=1}^4a_i\sigma(\Sigma_{j=1}^2w_{ij}x_j)$, where w_{ij} preset weights of teacher, and $a_1=1,a_2=-1,a_3=1,a_4=-1$
- Teacher expressive enough to achieve zero loss on this dataset
- Student vary the size, minimum of 5

EPFL Issue

- Teacher-student setup (same setup as the one published in [1])
- A student of width 45 achieves zero loss consistently
- A student of width 5 for a fraction of initializations it fails
 - Why exactly?

width
Difference between loss values at convergence ([1])

- To formulate a first intuition, we need to look at the G number
 - $ullet G(r,m) = \Sigma_{k_1+...+k_r=m} inom{m}{k_1,...,k_r}$
 - (= the number of critical subspaces in an overparameterized NN generated from a critical point of a smaller network)
- For a teacher of size 4 and a student of size 5:
 - G(4,5) = 240, G(3,5) = 150, G(2,5) = 30
 - G(4,5) > G(3,5) > G(2,5)
 - Hence, first level saddles are more common than second level saddles and so forth

EPFL Intuition (2)

 Intuitively we can associate the points of failure within the chart to one of these classes

width
Attempting to trace the origins of non-zero loss points ([1])

EPFL

Problem Definition

- Can one examine the nature of these failure points beyond intuition?
 - For that we propose a set of experiments
 - The student must learn the teacher's weights (<u>Setup</u>)
 - Hence, for a student with sizes of 4, 5, 6, 7
 - Run 1000 experiments
 - Adam optimizer (l.r.=0.0001)
 - For each experiment, accurately identify:
 - the local minima
 - the saddles
 - the global minima

EPFL

Strict Saddles - Intro

- From a theoretical standpoint, a point is a strict saddle if:
 - The Hessian of the function at that point has a neg. eigenvalue
- From a practical standpoint, one could apply this simply by:
 - Identifying a point with a low magnitude gradient
 - Computing the Hessian with torch.autograd.grad
- As usual with practice, things turn out to be more complicated, due to:
 - Numerical errors
 - Imperfect computation methods (torch.autograd.grad)

Strict Saddles - First Attempt

All points identified with this method have a small magnitude smallest

eigenvalue

Distribution of the smallest eigenvalue (for experiments with negative eigenvalues). Student size: 5

- 347/1000 experiments have a negative smallest eigenvalue
- Second order optimization (SLSQP) was further applied at these points
- Rarely, it has yielded a new point with positive eigenspectrum
- Hence, is the algorithm just prone to numerical issues or are these indeed saddles?

Strict Saddles - Perturbation

- To find out an answer, the next technique was employed:
 - Perturb the point where Adam has converged by:
 - Sampling from a normed multivariate Gaussian
 - Mean: 0
 - Standard deviation: 0.1
 - Adding to the neuron point: $\epsilon*normed_gaussian$
 - Apply SLSQP from that point
 - Repeat until the smallest eigenvalue is positive

Strict Saddles - Perturbation (Intuition)

- Hopefully by perturbing very slightly, one can get closer to the min.
- Only one perturbation has to be successful

Desired effect of perturbation

Strict Saddles - Perturbation Results

- This technique has converged to a local/global min. for all experiments
- The smallest eigenvalue has flipped signs (from neg. to pos.)
 - -1.7e-06 -> 4.45e-07
 - 2 random perturbations
- The loss has slightly changed
 - 1.75e-07 -> 5.92e-08
- Discussion why neg. smallest eigenvalue?
 - Numerical errors?
 - Optimizer limitation?
 - Or actually saddles?

A 5 neuron student which has converged to a minimum (crosses represent convergence after perturbation)

EPFL

Strict Saddles - Regimes

- Additionally, in order to distinguish between the 2 cases:
 - See how the smallest eval correlates with the loss.
 - If a negative smallest eval is clustered around a loss value
 - Intuitively it is likely that these are saddles
 - Otherwise (if they are randomly distributed)
 - It could be due to numerical issues
- In the chart, one can see obvious clusters
 - First regime: saddle dominated
 - Second regime: local min. dominated
 - Third regime: global min. dominated

Correlation between the smallest eigenvalue and the loss. Visible clustering of the losses dependent on the smallest eval.

Global Minima - Issue

- In literature, points are commonly considered global minima if the loss is small enough (sometimes l.t. 1e-3 [2], sometimes l.t. 1e-4 [3])
- Seemingly not a reliable criterion
 - Some local minima we've found correspond to a loss of 1e-4
 - Others to an even smaller loss
- Hence, how can we more reliably identify global minima?

Global Minima - Symmetry Induced

- A category of global minima are symmetry induced
- Visually identifiable, since they all respect the following property ([1]):

$$\theta^r=(w_1,\ldots,w_r,a_1,\ldots,a_r)$$

$$\downarrow$$

$$\theta^m=(\underbrace{w_1,\ldots,w_1}_{k_1},\ldots,\underbrace{w_r,\ldots,w_r}_{k_r},\underbrace{w_1',\ldots,w_1'}_{b_1},\ldots,\underbrace{w_j',\ldots,w_j'}_{b_j},\ldots,\underbrace{w_j',\ldots,w_j'}_{b_j},\ldots,\underbrace{a_1^1,\ldots,a_1^1,\ldots,a_r^1,\ldots,a_1^1,\ldots,a_1^1,\ldots,a_1^1,\ldots,a_j^1,\ldots,a_j^1}_{b_j})$$
 , under: $\Sigma_{i=1}^{k_t}a_t^i=a_t,\Sigma_{i=1}^{b_t}\alpha_t^i=0$

Teacher's configuration

Global Minima - Visual Inspection

- As well as the sigmoid symmetry property:
 - $\sigma(-wx) = 1 \sigma(wx)$
- One example
 - Two of the student's weights match the teacher's weights
 - The other 2 are symmetric w.r.t. to the origin

A student with 5 neurons and a corresponding loss of ~1e-9 at convergence.

 w_1

Local Minima - Theory

- Assume we have a point to which the following correspond:
 - A small enough gradient
 - A Hessian with all positive eigenvalues
- Then this point is a candidate for a local minimum ([2])
- However, how does one know this is not, in fact, a global minimum?
- Intuitively a global minimum has to correspond to a rather small loss
- But how to identify this threshold specifically?

Local Minima - Visual Attempt

- Identifying some local minima visually is possible for high-loss points
- E.g. (neuron-point with a loss of ~1e-4) 0.4

None of the student's neurons converge to teacher's neurons.

 Formally, one can prove that this is a local minimum by applying the lemmas from [2]

Local Minima - Formal Attempt

- Essentially, there are 2 lemmas ([2])
- Lemma 1
 - For a neuron point, given that
 - the gradient at that point is small enough
 - the hessian is positive definite
 - (and a few other assumptions)
 - then this point is within a certain radius of the min (local/global)
- Lemma 2
 - Given that
 - the loss function is a Lipschitz function
 - the loss at the current point is larger enough than 0
 - The neighboring minimum can't have a loss of 0 -> non-global

Next Steps

- Apply the aforementioned lemmas in order to prove that some of the critical points are local minima
- Check out if the remaining critical points with positive smallest eval are global minima
- Find further statistics to find all saddles
- Identify the level of the existing saddles (first-level, second-level, etc.)
- Extend the same statistics for other sizes of the student (4, 6, 7) and compare the results

References

[1] Şimşek Berfin et al., 2021, Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and Invariances

[2] Safran Itay, Shamir Ohad, 2017, Spurious Local Minima are Common in Two-Layer ReLU Neural Networks

[3] Zhang Yaoyu, 2021, Embedding Principle of Loss Landscape of Deep Neural Networks