SES 2024 届高一下数学测验(12)2022. 5. 25

	班级学号	·	性名	
_,	、填空题(每题5分,共60分)			
1.	已知复数 z 满足 $(1+i)z=2$,则复数 z 的虚部为			
2.	若复数 $2+i$ 是实系数方程 $x^2+px+q=0$ 的一个虚数根,则 $pq=$			
3.	关于 x 的方程 $x^2 + 4x + k = 0$ 有一个根为 $-2 + 3i$,	则实数 k =_		
4.	复数 $z = (1 - \sqrt{3}i)^5$,则 z 的辐角主值是	_		
5.	计算: $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \div \left[4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)\right] = \underline{\qquad}$	_		
6.				
7.	设 z 是复数, $f(z)=z^n$ $(n \in \mathbb{N}^*)$,对于虚数单位 i	,则 $f(1+i)$	取得最小正整数时, 对	$d \propto n$ 的
	值是			
		2i,则 $z=$		
9.	下列命题中: ①任意两个确定的复数都不能比较大小;			
	②若 $ z \le 1$,则 $-1 \le z \le 1$;			
	③若 $z_1^2 + z_2^2 = 0$,则 $z_1 = z_2 = 0$;			
	④ z + z = 0 ⇔ z 为纯虚数;			
	$\overline{5} z = \overline{z} \Leftrightarrow z \in R_{\circ}$			
	其中正确的命题是			
10.	. 设复数 z 满足条件 $\arg z \in \left(\frac{3}{4}\pi, \pi\right)$,则 $\frac{2021}{\overline{z^2}}$ 对应	复平面上的点位	立于第象限	
11.	. 若关于 x 的实系数方程 $x^2 - z \cdot x + 1 = 0$ ($z \in \mathbb{C}$)	有实数根,则	z-1+i的最小值为	•
12.	. 若关于 x 的方程 $2x^2 + 3ax + a^2 - a = 0$ 至少有一个	根的模为1,则	实数 <i>a</i> =	
_,	、解答题(12 分+14 分+14 分)			
	. 已知复数 $z = bi(b \in R)$, $\frac{z-2}{1+i}$ 是实数, 其中 i 是虚数	分单位		
13.	$1 \pm \iota$	λ +μ.		
	(1)求复数 z;	D	/+- +++ []	
	(2)若复数 $(m+z)^2$ 在复平面内对应的点在第一象限,	x 要数 m 的取	值泡围.	

- 14. 已知 α 、 β 是实系数方程 $x^2+2x+p=0$ 的两根
 - (1) 若 $|\alpha-\beta|=3$,求p的值;
 - (2) 求 $|\alpha|$ + $|\beta|$ 的值.

- 15. 设虚数z满足 $|2z + 3| = \sqrt{3}|\overline{z} + 2|$.
 - (1)求证:|z|为定值;
 - (2)是否存在实数k,使 $\frac{z}{k} + \frac{k}{z}$ 为实数?若存在,求出k的值;若不存在,说明理由.

- 三、附加题(10分)
- 16. 设 $z \in \mathbf{C}$,且|z| = 1,且 $\frac{5}{2}z^2 2z + \frac{1}{z} \in \mathbf{R}$,求z.