

Pertemuan 3

MODEL DATA

Model Data

PENGERTIAN MODEL DATA:

Sekumpulan konsep-konsep untuk menerangkan data, hubungan-hubungan antara data, makna data (semantik) dan batasan data.

JENIS-JENIS MODEL DATA

- A. Model Data Berdasarkan Object
- B. Model Data Berdasarkan Record

A. Model Data Berbasis Objek

Model data berbasis objek menggunakan konsep entitas, atribut dan hubungan antar entitas.

Terdiri dari:

- 1. Model Keterhubungan Entitas (*Entity-Relationship Model*)
- 2. Model Berorientasi Object (Object-Oriented Model)
- 3. Model Data Semantik (Semantic Data Model)
- 4. Model Data Fungsional (Functional Data Model)

Model Keterhubungan Entitas (*Entity-Relationship Model*) merupakan model yang paling populer digunakan dalam perancangan basis data.

1. Entity Relationship Model

Model untuk menjelaskan hubungan antar data dalam basis data berdasarkan suatu persepsi bahwa real world terdiri dari objek-object dasar yang mempunyai hubungan atau relasi antara objek-objek tersebut.

Komponen utama pembentuk Model Entity-Relationship, yaitu: **Entitas** (*Entity*), **Relasi** (Relation). Kedua komponen ini dideskripsikan lebih lanjut melalui sejumlah **Atribut/Properti**.

Tabel Buku

Tabel Anggota

Kode Buku	Judul	Stok Buku
B01	Pemograman C++	10
B02	Membuat Aplikasi 30 Menit	15
B03	Cooking is Easy	15

Kode Anggota	Nama
A01	Surya
A02	Fitri
A03	Syahrur

Tabel Peminjaman

Kode pinjam	Tgl pinjam	Kode buku	Kode anggota	juml	Tgl kembali
PJ01	10-01-2019	B01	A01	1	13-01-2019
PJ01	10-01-2019	B02	A01	1	13-01-2019
PJ01	10-01-2019	B03	A01	1	13-01-2019
PJ02	12-01-2019	B02	A02	1	14-01-2019
PJ02	12-01-2019	B03	A02	1	14-01-2019

Atribut: kode buku, judul, stok buku

Entitas: B01, B02, B03, Pemograman C++, dst.

Relasi : hubungan antara kode buku di tabel buku dengan kode buku di

tabel peminjaman. Begitu pula dengan kode anggota.

Diagram Entity-Relationship (Diagram E-R)

Model Entity Relationship yang berisi komponen himpunan entitas, relasi, yang dilengkapi atribut-atribut, dapat digambarkan menggunakan Diagram *Entity-Relationship* (Diagram E-R).

Simbol dasar yang digunakan:

:Menyatakan Himpunan Entitas

:Menunjukan Himpunan Relasi

:Menyatakan Atribut (Atribut key digaris bawahi)

:Penghubung / Link

Diagram Entity-Relationship (Diagram E-R) lanjutan

Dalam Diagram E-R aturan terpenting adalah Kardinalitas relasi/ **Mapping Cardinalities** yang menentukan jumlah entity yang dapat dikaitkan dengan entity lainnya melalui relationship-set.

Jenis Mapping Cardinalities:

- Relasi satu ke satu (one-to-one)
- Relasi satu ke banyak (one-to-Many)
- Relasi banyak ke banyak (many-to-many)

Contoh Relasi one-to-one

Contoh Relasi one-to-many

Contoh Relasi many-to-many

2. Model Berorientasi Object (Object-Oriented Model)

https://searchoracle.techtarget.com/tip/Alternatives-to-the-relational-database-model https://slideplayer.info/slide/11870146/

Model Berorientasi Object (Object-Oriented Model)

Penggambaran model berbasis objek menggunakan UML. UML Digambarkan dengan 2 Jenis :

- 1. Structural Diagram
- 2. Behaviour Diagram

*Detail pembahasan UML ada di Mata Kuliah Pemodelan Berbasis Objek

Structural Diagram

Structural diagram terdiri dari:

- Class Diagram
- Object Diagram
- Component Diagram
- Deployment Diagram

Behavioral Diagram

Behavioral Diagram terdiri dari:

- Use case Diagram
- Sequence Diagram
- Collaboration Diagram
- Statechart Diagram
- Activity Diagram

3. Semantic Model

Hampir sama dengan Entity Relationship model dimana relasi antara objek dasar tidak dinyatakan dengan simbol tetapi menggunakan kata-kata (Semantic). Sebagai contoh, dengan masih menggunakan relasi pada Bank X sebagaimana contoh sebelumnya, dalam semantic model adalah seperti terlihat pada gambar di atas.

Tanda-tanda yang menggunakan dalam semantic model adalah sebagai berikut :

———— : Menunjukkan adanya relasi

_____ : menunjukkan atribut

Contoh Kasus Semantic Model

B. Model Data Berbasis Record

Model ini berdasarkan pada record untuk menjelaskan kepada user tentang hubungan logic antar data dalam basis data

PERBEDAAN DENGAN MODEL DATA BERBASIS OBJEK

Pada record based data model disamping digunakan untuk menguraikan struktur logika keseluruhan dari suatu database, juga digunakan untuk menguraikan implementasi dari sistem database (higher level description of implementation)

Model Relational

Terdapat 3 data model pada model data berbasis record:

1. Model Relational,

Dimana data serta hubungan antar data direpresentasikan oleh sejumlah tabel dan masing-masing tabel terdiri dari beberapa kolom yang namanya unique. Model ini berdasarkan notasi teori himpunan (set theory), yaitu relation.

Contoh: data base penjual barang terdiri dari 3 tabel:

- Supllier
- Suku_cadang
- Pengiriman

Model Relational lanjutan

SUPPLIER	No_supl	Nama_pen	Status	КОТА
$\qquad \qquad \bigcap$	S01	PT. OGAH-RUGI	03	MEDAN
	s02	PT. SANTAI-DULU	03	SURABAYA
	s03	PT. MALU-MALU	02	BANDUNG
	s04	CV. ASAL JADI	01	MEDAN

		-
NO_SUPL	NO_PART	JUML
S01	P01	200
S01	P02	300
S01	P04	250
S02	P01	300
S02	P02	400
S03	P03	400
S04	P04	300

PENGIRIMAN

SUKU CADANG

	NO_PA RT	NAMA_PART	BAHAN BAKU	BERA T	КОТА
\rightarrow	P01	BAUT-3 cm	BESI	10	JAKARTA
	P02	MUR - 3 cm	BESI	8	JAKARTA
	P03	BAUT -10 cm	ALUMUNIUM	45	SURABAYA
	P04	PACKING	KARET	6	MEDAN
	P05	RING-MM	ALUMUNIUM	2	JAKARTA

Model Hirarki

2. Model Hirarki

Dimana data serta hubungan antar data direpresentasikan dengan record dan link (pointer), dimana record-record tersebut disusun dalam bentuk tree (pohon), dan masing-masing node pada tree tersebut merupakan record/grup data elemen dan memiliki hubungan cardinalitas 1:1 dan 1:M

Model Hirarki Lanjutan

Model Jaringan

3. Model Jaringan

Distandarisasi tahun 1971 oleh Database Task Group (DBTG) atau disebut juga model CODASYL (Conference on Data System Language), mirip dengan hirarkical model dimana data dan hubungan antar data direpresentasikan dengan record dan links. Perbedaannya terletak pada susunan record dan linknya yaitu network model menyusun record-record dalam bentuk graph dan menyatakan hubungan cardinalitas 1:1, 1:M dan N:M

Model Jaringan lanjutan

