Rozmaitości różniczkowalne

elo

_

Spis rzeczy niezbyt mądrych

	Definicja rozmaitości		
	1.1	Rozmaitości topologiczne	3
	1.2	Mapy, lokalne współrzędne	4
	1.3	Rozmaitości gładkie [różniczkowalne]	4
	1.4	Dopowiedzenie o funkcjach gładkich	6
2 Rozmaitość z brzegiem			Q
			0
	2.1	O brzegu i wnętrzu	9

1. Definicja rozmaitości

Zanim podany dokładną definicję, możemy rozważyć kilka przykładów rozmaitości różniczkowalnych:

- → powierzchnia, domknięta lub nie,
- \hookrightarrow podzbiory \mathbb{R}^n lub \mathbb{C}^n zapisywalne równaniami algebraicznymi (np. $z_1^2 + z_2^2 + z_3^1 \le \mathbb{C}^3$).

Cały wykład będzie wstępnym słownikiem wokół pojęcia rozmaitości różniczkowalnej.

1.1. Rozmaitości topologiczne

Przestrzeń topologiczna M jest n-wymiarową **rozmaitością topologiczną** [n-rozmaitością], jeżeli spełnia:

- 1. jest Hausdorffa,
- 2. ma przeliczalną bazę,
- 3. jest lokalnie euklidesowa wymiaru n, czyli każdy punkt z M posiada otwarte otoczenie w M homeomorficzne z otwartym podzbiorem w \mathbb{R}^n .

Konsekwencje Hausdorffowości:

→ Mamy wykluczone pewne patologie, na przykład przestrzeń

nie jest rozmaitością topologiczną.

 \hookrightarrow Pewne własności otoczeń punktów są zachowywane. To znaczy, dla dowolnego zwartego podzbioru otoczenia punktu $x\in U\subseteq \mathbb{R}^n$ $K\subseteq U$ jego odpowiednik $\overline{K}=\phi^{-1}(K)\subseteq \overline{U}\subseteq M$ jest domknięty i zwarty w M. [ćwiczenia]

Konsekwencje przeliczalności bazy:

- \hookrightarrow Spełniany jest warunek Lindelöfa: każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie. [ćwiczenia]
 - \hookrightarrow Każda rozmaitość jest wstępującą sumą otwartych podzbiorów

$$\mathsf{U}_1\subseteq\mathsf{U}_2\subseteq...\subseteq\mathsf{U}_n\subseteq...$$

które są po domknięciu w M zwarte. Czyli możemy ją wyczerpać za pomocą zbiorów, które są małe.

- → Parazwartość, czyli każde zwarte pokrycie M posiada lokalnie skończone rozdrobnienie.
- \hookrightarrow Każdą rozmaitość jesteśmy w stanie zanurzyć w \mathbb{R}^n dla odpowiednio dużego n.

Konsekwencje lokalnej euklidesowości:

- \hookrightarrow Twierdzenie Brouwer'a: dla n \neq m niepusty otwarty podzbiór \mathbb{R}^n nie jest homeomorficzny z jakimkolwiek otwartym podzbiorem w \mathbb{R}^m .

1.2. Mapy, lokalne współrzędne

Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U to otwarty podzbiór w M, a ϕ to homeomorfizm $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$. Mapa to jest jakiś homeomorfizm między rozmaitością a pewnym podzbiorem \mathbb{R}^n . Zbiór U nazywamy zbiorem mapowym. **Przez lokalną euklidesowość wiemy, że pokrywają one całą rozmaitość.**

Parę (U, ϕ) nazywamy też **lokalnymi współrzędnymi** na M albo *lokalną parametryzacją* M.

Fakt: Hausdorffowska przestrzeń X o przeliczalnej bazie jest n-rozmaitością ← posiada rodzinę map n-wymiarowych dla której zbiory mapowe pokrywają cały X.

Przykład: Rozważmy $S^n = \{(x_1,...,x_n) \in \mathbb{R}^{n+1} : \sum x_i^2 = 1\} \subseteq \mathbb{R}^{n+1}$ z dziedziczoną topologią. Z racji, że \mathbb{R}^{n+1} jest Hausdorffa i ma przeliczalną bazę, to S^n tęż spełnia te dwa warunki. Wystarczy teraz wskazać odpowiednią rodzinę map, która pokryje całe S^n . Dla i = 1,..., n + 1 określmy otwarte podzbiory w S^n

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

RYSUNEK DLA S³

Określmy odwzorowania $\phi_{\mathbf{i}}^{\pm} \,:\, \mathsf{U}_{\mathbf{i}}^{\pm}
ightarrow \mathbb{R}^{\mathsf{n}}$

$$\phi_i^{\pm}(x) = (x_1, ..., x_{i-1}, \hat{x_i}, x_{i+1}, ..., x_n).$$

Obraz tego odwzorowania to

$$\overline{\mathsf{U}}_{\mathsf{i}}^{\pm} = \phi_{\mathsf{i}}^{\pm}(\mathsf{U}_{\mathsf{i}}^{\pm}) = \{(\mathsf{x}_1,...,\mathsf{x}_n) \in \mathbb{R}^n \ : \ \sum \mathsf{x}_{\mathsf{i}}^2 < 1\}.$$

Odwzorowanie $\phi_{\bf i}^\pm: {\sf U}_{\bf i}^\pm o \overline{\sf U}_{\bf i}^\pm$ jest wzajemnie jednoznaczne [bijekcja], bo

$$(\phi_i^\pm)^{-1}(x_1,...,x_n)=(x_1,...,x_{i-1},\pm\sqrt{1-\sum x_j^2},x_{i+1},...,x_n).$$

Mamy w obie strony odwzorowanie ciągłe, więc jest to homeomorfizmy z odpowiednimi zbiorami \mathbb{R}^n .

1.3. Rozmaitości gładkie [różniczkowalne]

Na tym wykładzie nie będziemy poświęcać dużej uwagi rozmaitościom różniczkowalnym nie nieskończenie razy, więc pomimo lekkich niuansów między tymi dwoma słowami, dla nas zwykle one znaczą to samo.

Dla funkcji $f: M \to \mathbb{R}$ chcemy określić, co znaczy, że f *jest różniczkowalna*? Będziemy to robić za pomocą wcześniej zdefiniowanych map:

- \hookrightarrow Funkcja f wyrażona w mapie (U, ϕ) to nic innego jak złożenie f $\circ \phi^{-1}: \overline{U} \to \mathbb{R}$. Teraz f $\circ \phi^{-1}$ jest funkcją zależącą od n zmiennych rzeczywistych.
- \hookrightarrow Chciałoby się powiedzieć, że funkcja f : M $\to \mathbb{R}$ jest gładka, jeśli dla każdej mapy (U, ϕ) na M, ten fragment wyrażony w tej mapie f $\circ \phi^{-1}$ jest gładki. Niestety, tych map może być nieco za dużo.
 - → odwzorowanie przejścia między dwoma mapami

Mapy (U, ϕ_1) oraz (U, ϕ_2) są **zgodne** (gładko-zgodne), gdy odwzorowanie przejścia $\phi_1\phi_2^{-1}$ jest gładkie. Dla map (U, ϕ) i (V, ψ) mówimy, że są one zgodne, jeśli

 \hookrightarrow U \cap V = \emptyset , albo

$$\hookrightarrow \phi \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V) \text{ i } \psi \phi^{-1}(U \cap V) \to \psi(U \cap V) \text{ są gładkie.}$$

Warto zauważyć, że jeśli (U, ϕ) i (V, ψ) są zgodne, to $f \circ \phi^{-1} \upharpoonright (\phi(U \cap V))$ jest gładkie \iff

Odwzorowania przejściowe map są automatycznie dyfeomorfizmami.

Gładkim atlasem \mathscr{A} na topologicznej rozmaitości M nazywamy dowolny taki zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ taki, że:

- 1. zbiory mapowe U_{α} pokrywają całe M
- 2. każde dwie mapy z tego zbioru są zgodne.

Przykład: Rodzina map $\{(U_i^\pm,\phi_i^\pm): i=1,2,...,n+1\}$ jak wcześniej na sferze $S^n\subseteq R^{n+1}$ tworzy gładki atlas. Wystarczy zbadać gładką zgodność tych map. Rozpatrzmy jeden przypadek: $(U_i^+,\phi_i^+), (U_i^+,\phi_i^+), i < j$. Po pierwsze, jak wygląda przekrój tych zbiorów?

$$U_i \cap U_i = \{x \in S^n : x_i > 0, x_i > 0\}$$

Dalej, jak wyglądają obrazy tego przekroju przez poszczególne mapy?

$$\phi_{i}^{+}(U_{i} \cap U_{j}) = \{x \in \mathbb{R}^{n} : |x| < 1, x_{i-1} > 0\}$$

$$\phi_{i}^{+}(U_{i} \cap U_{j}) = \{x \in \mathbb{R}^{n} : |x| < 1, x_{i} < 0\}$$

Odwzorowania przejścia to:

$$\phi_{\mathbf{j}}^{+}(\mathsf{U}_{\mathbf{j}}^{+}\cap\mathsf{U}_{\mathbf{j}}^{+})\ni(\mathsf{x}_{1},...,\mathsf{x}_{\mathsf{n}})$$

$$(x_1,...,x_{j-1},\sqrt{1-|x|^2},x_j,...x_n)$$

$$\phi_i^+(\phi_i^+)^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},x_{i+1},...,x_{j-1},\sqrt{1-|x|^2},x_j,...,x_n)$$

jest przekształceniem gładkim. Analogicznie dla drugiego odwzorowania przejścia.

Rozmaitość gładka to para (M, \mathcal{A}) złożona z rozmaitości M i gładkiego atlasu \mathcal{A} na M.

Uściślenie: Często (M, \mathscr{A}_1) i (M, \mathscr{A}_2) będące rozmaitościami gładkimi określają tę samą rozmaitość.

Niech 🛭 będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest **zgodna z atlasem** \mathscr{A} , jeśli jest zgodna z każdą mapą z \mathscr{A} .
- 2. Dwa **atlasy** \mathscr{A}_1 , \mathscr{A}_2 **na** M **są zgodne**, jeśli każda mapa z \mathscr{A}_1 jest zgodna z atlasem \mathscr{A}_2 .

Twierdzenie: relacja atlasów jest relacją równoważności.

Dowód: Ćwiczenia.

Konwencja jest wtedy taka, że zgodne atlasy zadają tą samą strukturę gładką na M.

Zgodne atlasy można zsumować do jednego większego atlasu.

 \mathscr{A} jest atlasem maksymalnym na M, jeśli każda mapa na M zgodna z \mathscr{A} należy do \mathscr{A} .

Fakt Każdy atlas \mathscr{A} na M zawiera się w dokładnie jednym atlasie maksymalnym na M. Zaś ten atlas maksymalny to zbiór wszystkich map na M zgodnych z \mathscr{A} .

Rozmaitość gładką równoważnie definiuje się jako parę (M, \mathscr{A}), gdzie M to rozmaitość topologiczna, zaś \mathscr{A} to pewien atlas maksymalny.

1.4. Dopowiedzenie o funkcjach gładkich

Funkcja f : $M \to \mathbb{R}$ jest **gładka względem atlasu** \mathscr{A} na M, jeśli

$$(\forall (U, \phi) \in \mathscr{A}) \text{ f} \circ \phi^{-1} : \overline{U} \to \mathbb{R} \text{ jest q} \text{ladka}.$$

To znaczy po wyrażeniu w dowolnej mapie atlasu jest nadal funkcją gładką.

Fakt:

- 1. Jeśli f : M $\to \mathbb{R}$ jest gładka względem \mathscr{A} , zaś (U, ϕ) jest zgodna z \mathscr{A} , to wówczas funkcja f wyrażona w tej nowej mapie (czyli f $\circ \phi^{-1}$) też jest gładka.
- 2. Jeśli \mathscr{A}_1 , \mathscr{A}_2 są zgodnymi atlasami, wówczas taka funkcja $f: M \to \mathbb{R}$ jest gładka względem $\mathscr{A}_1 \iff$ jest gładka względem atlasu maksymalnego $\mathscr{A} \supseteq \mathscr{A}_1$, \mathscr{A}_2 zawierającego \mathscr{A}_1 (oraz \mathscr{A}).

Niech M będzie gładką rozmaitością. Wówczas $f:M\to\mathbb{R}$ jest gładka jeśli f jest gładka względem każdego (dowolnego) atlasu $\mathscr A$ wyznaczającego na M daną gładką strukturę.

Dwie mapy (U, ϕ) i (V, ψ) są C^k -zgodne, jeśli $\phi\psi^{-1}$ oraz $\psi\phi^{-1}$ są funkcjami klasy C^k .

C^k-atlas to atlas składający się z map, które są C^k-zgodne. Taki atlas określa strukturę C^k-rozmaitości na M. Jest to coś słabszego niż struktura rozmaitości gładkiej.

 C^0 tutaj to jest rozmaitość topologiczna, a C^∞ to często jest rozmaitość gładka.

Na C^k-rozmaitości nie da się sensownie określić funkcji klasy C^m dla m > k.

Rozmaitość analityczna $[C^{\omega}]$ to rozmaitość, dla której atlas składa się z map analitycznie zgodnych (czyli wyrażają się za pomocą szeregów potęgowych).

Rozmaitość zespolona ma mapy jako funkcje w \mathbb{C}^n zamiast w \mathbb{R}^n

Rozmaitość konformena - zachowuje kąty.

kawałkami liniowe

Dychotomia pomiędzy sytuacją C^0 a sytuacją C^k dla k > 0:

- \hookrightarrow Z każdego maksymalnego atlasu C^k-rozmaitości można wybrać atlas złożony z map C $^{\infty}$ -zgodnych. A zatem, każda C^k-rozmaitość posiada C^k-zgodną strukturę C $^{\infty}$ -rozmaitości.
 - \hookrightarrow Istnieją C 0 -rozmaitości niedopuszczające żadnej struktury gładkiej.

Definiowanie rozmaitości gładkiej za pomocą samego atlasu (bez odwołań do topologii).

Lemat: Niech X będzie zbiorem (bez topologii). Niech $\{U_{\alpha}\}$ będzie kolekcją podzbiorów X i dla każdego α mamy $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ różnowartościowe (n jest ustalone dla całego X). Ta trójka obiektów ma spełniać następujące warunki:

- 1. Dla każdego $\alpha \phi_{\alpha}(U_{\alpha})$ jest otwarty w \mathbb{R}^{n}
- 2. Dla każdych α , β $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n}

- 3. Gdy $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to $\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi(U_{\alpha} \cap U_{\beta}) \to \phi(U_{\alpha} \cap U_{\beta})$ jest odwzorowaniem gładkim. Są to dyfeomorfizmy (gładkie i odwracalne).
 - 4. Przeliczalnie wiele spośród zbiorów U_{α} pokrywa całe X.
- 5. Dla dowolnych punktów p, q \in X, p \neq q istnieją α , β oraz otwarte podzbiory $V_p \subseteq \phi_{\alpha}(U_{\alpha})$, $V_q \subseteq \phi_{\beta}(U_{\beta})$ takie, że p $\in \phi_{\alpha}^{-1}[V_p]$, q $\in \phi_{\beta}^{-1}[V_q]$ oraz $\phi_{\alpha}^{-1}[V_p] \cap \phi_{\beta}^{-1}[V_q] = \emptyset$. Czyli możemy rozdzielić dwa dowolne różne punkty za pomocą zbiorów otwartych w \mathbb{R}^n .

Wówczas na X istnieje struktura rozmaitości topologicznej dla której U_{α} są otwarte. Ponadto rodzina $(U_{\alpha}, \phi_{\alpha})$ tworzy gładki atlas na X.

Szkic dowodu: Topologię produkujemy jako bazę topologii na X bierzemy przeciwobrazy przez poszczególne ϕ_{α} otwartych podzbiorów w zbiorach $\phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^{n}$.

Lokalna n-euklidesowość X względem takiej topologii jest oczywista. Nietrudno jest też wybrać mniejszą bazę przeliczalną [ćwiczenia]. Hausdorffowość tak określonej topologii wynika z warunku 5.

Przykład: Niech \mathscr{L} będzie zbiorem wszystkich prostych na płaszczyźnie. Nie ma na tym zbiorze wygodnej do opisania topologii, ale możemy skorzystać z lematu wyżej.

Zacznijmy od opisania podzbiorów

$$U_V = \{proste niepoziome\}$$

Jeśli $U_h \ni L$, to wtedy $L = \{y = ax + b\}$ i wtedy ϕ_h będzie przypisywać takiej prostej parę (a, b). Jeśli zaś $U_V \ni L$, to wtedy $L = \{x = yc + d\}$ i wtedy ϕ_V przypisze jej (c, d). To, że $\phi_h(U_h)$ i $\phi_V(U_V)$ są różnowartościowe widać. Przyjrzyjmy się teraz przekrojowi naszych zbiorków:

$$U_h \cap U_V = \{ \text{proste niepoziomie i niepionowe} \} = \{ y = ax + b : a \neq 0 \} = \{ x = cd + d : c \neq 0 \}$$

$$\phi_h(\mathsf{U}_h\cap\mathsf{U}_v)$$
 = {(a, b) $\in\mathbb{R}^2$: a $eq 0$ }

$$\phi_{\mathsf{V}}(\mathsf{U}_{\mathsf{h}}\cap\mathsf{U}_{\mathsf{V}})$$
 = {(c, d) $\in\mathbb{R}^2$: c $eq 0$ }

i są to zbiory otwarte, więc warunek 3. jest spełniony. Warunek 4. jest tutaj trywialny.

Niech

To jest homeomorficzne z wnętrzem wstęgi Moejashdfkjasd

2. Rozmaitość z brzegiem

Lokalnie wygląda jak \mathbb{R}^n albo jak półprzestrzeń n-wymiarowa:

$$H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n \ge 0\}$$

brzegiem takiej półprzestrzeni nazywamy zbiór:

$$\partial H^n = \{x \in \mathbb{R}^n : x_n = 0\}$$

definiuje się też wnętrze takiej półprzestrzeni:

$$int(H^n) = \{x \in \mathbb{R}^n : x_n > 0\}$$

Dla otwartego zbioru $U \subseteq H^n$ określamy

- \hookrightarrow brzeg zbioru: $\partial U = U \cap \partial H^n$
- \hookrightarrow wnetrze zbioru: int(U) = U \cap int(Hⁿ)
- \hookrightarrow Jeżeli mamy zadane $f: U \to \mathbb{R}^m$, to jest ono **gładkie**, gdy jest obcięciem do U pewnej gładkiej funkcji $\bar{f}: \overline{U} \to \mathbb{R}^m$, gdzie \overline{U} jest otwartym podzbiorem \mathbb{R}^n taki, że $U \subseteq \overline{U}$.

Jeśli $f:U\to\mathbb{R}^m$ jest gładka, to wówczas pochodne cząstkowe f są dobrze określone w punktach int(U). Ze względu na ciągłość pochodnych cząstkowych dowolnego rozszerzenia \bar{f} , pochodne cząstkowe f są również dobrze określone w punktach ∂U .

Fakt z analizy: rozszerzenie \bar{f} istnieje \iff f jest gładka na int(U) oraz pochodne cząstkowe tego f obciętego do int(U) w sposób ciągły rozszerzają się na ∂U .

M jest **gładką rozmaitością z brzegiem**, jeśli posiada atlas $\{(U_{\alpha},\phi_{\alpha})\}$ taki, że U_{α} jest otwartym podzbiorem M oraz $\phi_{\alpha}:U_{\alpha}\to H^n$ jest homeomorfizmem na obraz, $\overline{U}_{\alpha}=\phi(U_{\alpha})\subseteq H^n$ jest otwarty. I dodatkowo odwzorowania przejścia $\phi_{\alpha}\phi_{\beta}^{-1}:\phi_{\beta}(U_{\alpha}\cap U_{\beta})\to\phi_{\alpha}(U_{\alpha}\cap U_{\beta})$ [$U_{\alpha}\cap U_{\beta}\subseteq H^n$ otwarte] są gładkie.

Fakt: Jeśli w pewnej mapie $(U_{\alpha}, \phi_{\alpha})$ $\phi_{\alpha}(p) \in \partial H^{n}$, to w każdej innej mapie $(U_{\beta}, \phi_{\beta})$ zawierającej punkt p również obraz punktu p należy do brzegu H^{n} .

Dowód:

Odwzorowania przejścia są gładkie, ale gładkie są też odwzorowania odwrotne, czyli $\phi_{\alpha}\phi_{\beta}^{-1}$ są gładkie i gładko odwracalne.

Twierdzenie o odwzorowaniu otwartym z analizy wielu zmiennych

Odwzorowania przejścia mają nieosobliwe macierze pierwszych pochodnych cząstkowych we wszystkich punktach.

Uwaga: Dla rozmaitości topologicznych z brzegiem (ta sama definicja, tylko odwzorowania przejścia nie muszą być gładkie, a wystarczy homeomorfizmy) dowód wyżej nie śmignie, ale *analogiczny fakt również zachodzi*, tylko dowód jest trudniejszy i opiera się na twierdzeniu Brouwera o niezmienniczości obszaru (analog twierdzenia o odwzorowaniach otartym dla ciągłych fLR $\to \mathbb{R}^n$)

Konsekwencja: następujące definicje mają sens:

$$\partial M$$
 = {p $\in M$: w pewnej mapie (każdej) $\phi_{\alpha}(p) \in \partial H^{n}$ } int(M) = {p $\in M$: dla pewnej mapy (U $_{\alpha}, \phi_{\alpha}$), $\phi_{\alpha}(p) \in \text{int}(H^{n})$ }

2.1. O brzegu i wnętrzu

Fakt 2.1. Wnętrze intM n-rozmaitości gładkiej M jest n-rozmaitością gładką bez brzegu.

Dowód: Pokażemy atlas, który nie działa dla int(M). Weźmy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$U'_{\alpha} = U_{\alpha} \cap int(M), \quad \phi'_{\alpha} = \phi_{\alpha} \upharpoonright U_{\alpha}$$

a (U_{α} , ϕ_{α}) było atlasem na M.

Fakt 2.2. Brzeg ∂M n-rozmaitości M z brzegiem jest (n – 1) wymiarową rozmaitością gładką bez brzegu.

Dowód:

Jako atlas na ∂M bierzemy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$\mathsf{U}_\alpha' = \mathsf{U}_\alpha \cap \partial \mathsf{U}_\partial \mathsf{M}$$

$$\phi_\alpha' : \mathsf{U}_\alpha' \to \mathbb{R}^{\mathsf{n}-1} = \partial \mathsf{H}^\mathsf{n} \quad \phi_\alpha' = \phi_\alpha \upharpoonright \mathsf{U}_\alpha'$$

Przykład: Dysk $D^n = \{x \in \mathbb{R}^n : |x| \le 1\}$ jest rozmaitością gładką z brzegiem $\partial D^n = \{x \in \mathbb{R}^n : |x| = 1\}$. Pokażemy mapy, ale uzasadnienie ich gładkiej zgodności pominiemy.

$$\begin{array}{lll} (\mathsf{U}_0,\phi_0) & : & \mathsf{U}_0 = \{x \ : \ |x| < 1\}, & \phi_0 : \mathsf{U}_0 \to \mathsf{H}^n, \ \phi_0(x_1,...,x_n) = (x_1,...,x_{n-1},x_n+2) \\ \\ & & (\mathsf{U}_i^\pm,\phi_i^\pm) & : & \mathsf{U}_i^+ = \{x \in \mathsf{D}^n \ : \ x_i > 0\}, & \phi_1 : \mathsf{U}_1 \to \mathsf{H}^n \end{array}$$

UWAGA, SĄ WZORKI, PODPIERDOL

Inny atlas gładki:

Rodzina $\{A_i\}$ podzbiorów przestrzeni topologicznej X jest **lokalnie skończona**, jeśli dla każdego $p \in X$ istnieje otwarte otoczenie $p \in U_p$ w X takie, że $U_p \cap A_\alpha \neq \emptyset$ tylko dla skończenie wielu α .

Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ jej **nośnik** supp(f) = cl($\{x \in X : f(x) \neq 0\}$)

Twierdzenie o rozkładzie jedności: Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M (może być z brzegiem) istnieje rodzina $\{f_j\}_{j\in J}$ gładkich funkcji $f_j:M\to\mathbb{R}$ takich, że

- $f_j \ge 0$
- ullet każdy nośnik supp(f $_{
 m j}$) zaiwera się w pewnym U $_{lpha}$ z pokrycia
- ullet nośniki $\{\operatorname{supp}(\mathsf{f}_{\mathsf{j}})\}_{\mathsf{j}\in\mathsf{J}}$ tworzą lokalnie skończoną rodzinę podzbiorów w M
- dla każdego $x \in M \sum_{i \in J} f_j(x) = 1$

Jest to rozkład jedności wpisany w pokrycie $\{U_{\alpha}\}$

Wracamy do pytania o istnienie $f:M\to\mathbb{R}$ takiego, że $f\upharpoonright\partial M\equiv 0$ i $f\upharpoonright int(M)>0$.