-	
	52
	Aspresical line or great circle on S2
	is L= IT os 2 -> the intersection of 52 with
	a plane TI C R3 with passes through the
	Remark Lisaciale in the plane To with center the origin and padius I. (unit sphere with center the origin)
	and padius I. (unit sphere with center the origin)
-	· · · · · · · · · · · · · · · · · · ·
	Another Remark Could also consider Trus where TCIR3 is any plane (not necessarily through origin).
	is any plane (not recessarily Through origin).
	Dois vives a circle in the along IT.
	Inis gives a circle in the plane IT, center = ?? tadius = ?? \le 1
	$= P = \sqrt{1-d^2} equal = FF$
	$= P = \sqrt{1-d^2} \text{equal_iff.}$ $r = \sqrt{1-d^2} (0,0,0) \in \Pi$
	COSS Section (d) TI
	,
	Eact (to be proved later) The shortest path from P to Q
	along the surface of the sphere 52, is given by a segment.
	along the surface of the sphere 52, is given by a segment of a spherical line.
	Q: Given two points P&Q, is there a sprenicalline L. passing through P&Q, and if so, is it uniquely determined?
	passing incogn rase 1 was 11 30, 13 11 Uniquely were miles.
	OYES D Weed a plane II that contains
	(2) NO (; Q) P,Q, and the origin.
	2 NO P.Q. and the origin. (2) IF P.Q. & O do not lie on a line,
	then TT is uniquely determined.

Kal	
4	
A	
	Note, O_1P_1G lie on a line $\stackrel{\leftarrow}{=}$ $\stackrel{\frown}{p}$ $\stackrel{\frown}{Q}$ are [antipodal points] (i.e. $P = (a_1b_1c)$, $Q = (+a_1-b_1-c)$ or $\stackrel{\frown}{QQ} = -OP$
<u> </u>	
<u> </u>	Recap There's a spherical line through ony two points P,QES2, It's unique unless P&Q are ontipodal.
À	TAX WE WINDOWN.
<u> </u>	EX line of longitude on earth are spherical lines connecting the north & south poles
	: (antipodal points)
	(lines of latitude: are not great circles)
	Libut Equator is a great (irdle)
	- Street Equator in a sylear Graze
	Note also, If L, & Lz are spherical lines then
	LINL = \$ P.Q3, pair of antipodal points.
	P-e-TTOS2
	Aside: "spneical circle"
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Spherical distance -> (ompute
	Define the spherical distance:
	(1-10-1) ds2(P,Q) to be
	the resign of the snortest pato from P to Q.
	(union is the shorter segment of the great circle
	Connecting P & Q)
	Formula for ds2(p,Q)?? (given, 8= (a,b,c) Q=(d,e,f).
- - O-	
	Length of arc of grout circle from P to Q.
_	radius c=1
7 (circumference 2TTC=2TT

```
So ds2(P,Q) = ZTTC. 9/2TT
               - 0 · r
 ds2(P,Q)=0)
                  0 < 0 < m
EX P = \frac{1}{3}(\frac{1}{2}) Q = \frac{1}{3}(\frac{1}{2})
      ds=(P,Q)=?
Recall dot product of vectors U. v. in R3:
        u·v=(a,b,c)·(d,e,f)=ad+be+cf (rengtanf vector u)
(MATH 233)
             = 11411.11211.cos0 where 1/411=[[la,b,c]]
                                                     =\sqrt{a^2+b^2+c^2}
              Cosine rule: 180/2 = 10P/2 + 100/2 - 210P/100/000
        (y-u)(y-u) = u \cdot u + y \cdot y - 2u \cdot y
Recall:
                    => n. ~ = 11 /11 /11 /102 0 1/2 /2= cos 0
11x112= x.x)
                    => 0 = cos 1 ( 4. 4)
Our exercise: \theta = \cos^{1}(\overrightarrow{OP} \cdot \overrightarrow{OQ}) = \cos^{1}(\frac{1}{3}(\frac{1}{2}) \cdot \frac{1}{3}(\frac{1}{2}))
              (=cos (= (2+2+4)) = cos (8/a): 7/
                note Horn = Hogn = 7 because Pro ES2!
```

-