Cycle Initial en Technologies de l'Information de Saint-Étienne

COMPTE RENDU TP ELEN2 2022

Charlie DURAND - Lucas LESCURE

Montage Comparateur TL081

Détecteur de zéro

Chronogramme V_s et V_e

Montage détécteur de zéro

Charactéristique de transfer

Le détecteur de zéro s'agit simplement d'un comparateur non-inverseur à seuil 0V.

Lorsque le signal d'entrée dépasse ce seuil le TL081 débite +VCC c'est à dire 15V. Nous pouvons observer ceci sur la charactéristique de transfer.

À l'inverse quand le signal d'entrée est inférieur au seuil alors le TL081 débite –VCC c'est à dire -15V.

Detecteur de seuil (Inverseur)

Chronogramme V_s et V_e

Montage détécteur de seuil

Charactéristique de transfer

Le détecteur de seuil s'agit simplement d'un comparateur inverseur à seuil 5V.

Lorsque le signal d'entrée dépasse ce seuil le TL081 débite –VCC c'est à dire -15V. Nous pouvons observer ceci sur la charactéristique de transfer.

À l'inverse quand le signal d'entrée est inférieur au seuil alors le TL081 débite +VCC c'est à dire 15V.

La courbe est donc un signal carré de rapport cyclique 75% car $\frac{3}{4}$ du temps V_e est sous le seuil de basculement.

Trigger non-inverseur

Chronogramme V_s et V_e

Charactéristique de transfer

Pour calculer les seuils de basculement on voit qu'il y a une reaction. On retrouve donc par superposition: $e^+ = \frac{R2}{R1+R2}V_e + \frac{R1}{R1+R2}V_s$ et $e^- = 0$.

Ainsi on obtient alors $:V_e = -\frac{R1}{R2}V_s$

Les seuil
$$V_T^+$$
 et V_T^- sont donc:
$$V_T^+ = -\tfrac{R1}{R2} V_{CC} \text{ et } V_T^- = \tfrac{R1}{R2} V_{CC}$$

Soit
$$V_T^+ = 7.05$$
 et $V_T^- = -7.05$

Du fait de ces deux seuils, le TL081 débitera +VCC lorsque le signal d'entrée est croissant et de tension supérieure à 7.05V. Il ne débitera que -VCC si le signal d'entrée est décroissant et de valeur -7.05V.

Trigger non-inverseur

Trigger non-inverseur $(47k\Omega \rightarrow 10k\Omega)$

Chronogramme V_s et V_e

Charactéristique de transfer

On recalcule les seuils à l'aide des fromules de V_T^+ et $V_T^-\colon V_T^+=1.5V$ et $V_T^-=-1.5V$

On remarque qu'en modifiant la valeur des resistances on fait varier les valeur des deux seuils, ce qui modifie la phase du signal de sortie lorsque l'on compare avec le chronogramme prècedent.

Limitations en Fréquence

Chronogramme V_s et V_e à $1kH_z$

Charactéristique de transfer

Chronogramme V_s et V_e à $10kH_z$

Charactéristique de transfer

Chronogramme V_s et V_e à $100kH_z$

Charactéristique de transfer

Sur les fronts de commutation on observe que le TL081 met du temps à atteindre les 15V, c'est ce qu'on appelle le slew rate.

Grace aux curseurs on mesure le temp de monté comme étant $t=1.080\mu s$, avec ceci on en déduis donc que le slew rate est de $26V.\mu s^{-1}$ ce qui est dans le même ordre de grandeur que les $16V.\mu s^{-1}$ théoriques.

Utilisation du LM 393

Detecteur de seuil

Chronogramme V_s et V_e

Charactéristique de transfer

Montage détécteur de seuil

On voit sur la charactéristique de transfer que le seuil de basculement est à 5V. Ceci explique donc que V_s est à valeur +VCC lorsque V_e est supérireure à 5V et redescend à 0 lorsque V_e est en dessous des 5V.

On obtient alors un sginal carré d'amplitude 7.5V et d'offset 7.5V.

Trigger non-inverseur

Chronogramme V_s et V_e

Trigger non-inverseur

Comparateur à fenêtre

Chronogramme V_s et V_e

Comparateur à fenêtre

Charactéristique de transfer

Pour calculer les seuils de basculement on voit qu'il y a une reaction. On retrouve donc par superposition: $e^+ = \frac{R^2}{R^3 + R^2} V_e + \frac{R^3}{R^3 + R^2} V_s$ et $e^- = 0$.

Ainsi on obtient alors : $V_e = -\frac{R3}{R2}V_s$

Les seuil V_T^+ et V_T^- sont donc: $V_T^+ = -\frac{R3}{R2}V_{CC}$ et $V_T^- = 0$

Soit $V_T^+ = 7.05$ et $V_T^- = 0$

Du fait de ces deux seuils, le LM393 débitera +VCC lorsque le signal d'entrée est croissant et de tension supérieure à 7.05V. Il ne débitera que 0V si le signal d'entrée est décroissant et de valeur 0V.

C'est pour ceci que l'on obtient un signal carré de rapport cyclique 75%.

Charactéristique de transfer

Sur montage on relève donc les tensions 9.17V à la borne 3 et 6.23V à la borne 6.

En valeur théoriques on a la tension à la borne 3 comme étant : $e^+ = \frac{R2 + R3}{R1 + R2 + R3} = 8.9V$ et à la borne 4 comme étant : $e^- = \frac{R3}{R1 + R2 + R3} = 6.1V$

Les valeurs experimentales sont donc bien en accord avec les valeurs théoriques.

On voit donc sur la charactéristique de transfer que lorsque V_e est contetnue entre 6 et 9V, +VCC est débité en sortie, d'où le nom "fenêtre". À l'inverse si V_e n'est pas entre cet intervalle alors le signal en sortie est à 0V.