KOSHA GUIDE P - 162 - 2017

정유 및 석유화학 산업의 고정식 물분무설비(Water spray system)의 설계 등에 관한 기술지침

2017. 10.

한 국 산 업 안 전 보 건 공 단

안전보건기술지침의 개요

- O 작성자 : 조필래, 이향직
- O 제·개정 경과
 - 2017년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - API RP 2030, "Application of Fixed Water Spray Systems for Fire Protection in the Petroleum and Petrochemical Industries", 2014
 - API RP 2001, "Fire Protection in Refineries", 2012
 - NFPA 13, "Installation of Sprinkler Systems", 2016
 - NFPA 15, "Water Spray Fixed Systems for Fire Protection", 2017
 - KOSHA GUIDE P-115, "정유 및 석유화학 공장의 소방설비에 관한 기술지침"
 - NFSC 104, "물분무소화설비의 화재안전기준"
 - "위험물안전관리에 관한 세부기준"
- O 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정 본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2017년 10월 31일

제 정 자 : 한국산업안전보건공단 이사장

정유 및 석유화학 산업의 고정식 물분무설비(Water spray system)의 설계 등에 관한 기술지침

1. 목 적

이 지침은 정유 및 석유화학 산업의 위험설비에 설치하는 고정식 물분무설비의 설계 등에 관한 기술적인 사항을 정하는데 그 목적이 있다.

2. 적용범위

이 지침은 정유 및 석유화학 산업의 설비 및 구조물의 화재 손상을 방지하기 위한 고정식 물분무설비에 대해 적용된다. 다만, 다음과 같은 사항에는 적용하지 않는다.

- (1) 물분무설비를 보충하는 인화성 액체의 화재를 진압하기 위해 사용되는 폼 스프링클러 설비
- (2) 불화수소와 같은 유해위험한 물질의 누출에 의한 잠재적인 영향을 감소시키기 위해 성공적으로 사용될 수 있는 증기감소 시스템
- (3) 복사열 감소 또는 점화 전 탄화수소 증기의 확산과 같은 상황에 사용되는 수막설비(Water curtain)
- (4) 비 공정건물에서 사용되는 전통적인 스프링클러설비
- (5) 미분무시스템(Water mist system)

3. 용어의 정의

- 3.1 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (1) "물분무설비 (Water spray system)"라 함은 물공급 배관에 지정된 유량과 입자 및 분포로 물을 배출하도록 설계된 분사노즐(Spray nozzle)이 부착된 배관시스템을 말한다.

- (2) "일제개방밸브 (Deluge valve)"라 함은 모든 개방된 밸브 또는 노즐을 통해 배관시스템 내의 물을 동시에 방출시키는 작동밸브를 말하며, 수동조작, 원 격조작 또는 자동조작밸브로 설치될 수 있다.
- (3) "델루지 시스템 (Deluge system)"이라 함은 물배관과 일제개방밸브 및 다수의 개방 노즐이 부착된 배관시스템을 말하며, 일제개방밸브를 개방하면 동시에 모든 노즐을 통해 물이 분사되어, 물분무시스템과 유사하나 특별한 분사량 및 분사분포를 얻기 위한 방향성의 분사노즐을 사용하지는 않는다. 일반적으로 정유 및 석유화학산업에서는 노즐 없이 물이 개방된 배관으로 부터 흘러내리도록 설치되는 설비로 정의된다.
- (4) "고압분출화재 (Jet fire)"라 함은 배관, 저장 탱크 등에서 연속적으로 누출되는 고압의 위험물질이 누출원 근처의 발화원에 의하여 점화되는 현상을 말하며, 이 경우 연속적으로 복사열이 발생된다.
- (5) "액면화재 (Pool fire)"라 함은 액체(액화가스 포함)의 위험물질이 누출되어 주변 바닥에 고여 있는 액체가 기화되어 발화원에 의해 점화된 것을 말한다.
- (6) "주수율 (Water spray application rates)"이라 함은 단위면적당 1분 동안 분사된 물의 양(리터)을 말하며, 이 지침에서 사용되는 단위는 lpm/m² (1/min/m²)으로 표시된다.
- 3.2 기타 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 동법시행령, 동법시행규칙, 산업안전보건 기준에 관한 규칙에서 정하는 바에 의한다.

4. 물분무설비 필요성 분석

4.1 일반사항

- (1) 정유 및 석유화학 산업은 다량의 인화성물질(인화성액체 또는 인화성가스)을 취급하기 때문에 화재위험성이 높다.
- (2) 화재에 관련된 화학물질의 종류 및 상태(가스 또는 증기)에 따라 적절하게 대응할 수 있는 소방시설을 고려하여야 한다.
- (3) 공정에서 취급되는 다양한 설비별 운전조건에 따른 화재 위험특성을 검토

P - 162 - 2017

하여야 한다.

- (4) 서로 인접하여 설비를 설치할 경우 영향을 받을 수 있으므로 화재확대 방지에 적합한 소방시설을 고려하여야 한다.
- (5) 복사열 또는 직접적인 화염접촉 등 화재의 영향종류에 따른 손상을 방지하기 위한 적절한 방법을 검토하여야 한다.
- (6) 기타 기존 설치된 소방시설의 실효성을 검토하여야 한다.

4.2 물분무설비 필요성 분석 시 고려사항

정유 및 석유화학 산업의 설비에 고정식 물분무설비를 설치하고자 할 때에는 아래와 같은 사항을 검토하고, 그에 따라 적절한 소방설비를 결정하여야 한다.

4.2.1 화재방지시설

기존 설치된 다양한 화재방지와 관련된 시설들을 검토하여야 하며, 검토하여야 할 주요 사항들은 아래와 같다.

- (1) 설비, 건물 및 공정 사이의 간격
- (2) 내화구조
- (3) 수동 및 자동 정지시스템
- (4) 격리 및 내용물 배출시스템
- (5) 공장 및 다른 소방기관의 대응시간 및 대응능력
- (6) 고정식 모니터, 이동식 모니터 및 소화전의 소방수 적용용량
- (7) 휴대용 및 이동식 소방설비의 이용가능성 및 이를 사용할 인력의 유용성
- (8) 누출된 지역에서 탄화수소의 배출(Drainage) 정도
- (9) 연료 하중(Fuel load)의 특성 : 탄화수소의 체류량, 온도 및 휘발성
- (10) 차단되지 않고, 공급될 물의 유용성 및 유량
- (11) 보호대상설비의 중요도

P - 162 - 2017

- (12) 설비의 특별 위험성 및 취약성 (예, 방사성물질 원천, 그라우트(Grout) 라이닝설비 등)
- (13) 잠재적인 지역사회 및 환경영향 위험 등

4.2.2 소방 및 억제설비의 접근성

- (1) 물리적 장애물(설비, 배관, 구조물, 도로, 배수로 등), 복사열 또는 화재생성물에 의한 시야방해 등은 화재 시 소방설비에 접근할 때 큰 문제가 될 수있다.
- (2) 비상 시 소방 및 억제설비에 대한 접근성 검토를 통해 고정식 불문부설비의 필요성을 결정할 수 있다.

4.2.3 화재발생확률

- (1) 경험에 따라 화재발생확률이 높은 설비에 대해 우선적으로 물분무설비를 설치할 필요가 있다.
- (2) 화재발생확률이 높은 설비는 일반적으로 아래와 같다.
 - (가) 펌프
 - (나) 압축기

4.2.4 공정의 가치(Unit value)

비싼 공정 또는 공정설비는 화재발생 시 잠재적으로 손실이 더 크기 때문에 공 정 및 공정설비의 손실비용을 고려하여 고정식 물분무설비의 필요성을 검토할 수 있다.

4.2.5 핵심설비와 운전정지

연속운전에 핵심적인 설비가 화재로 손상되면 보수 또는 교체에 따른 손실이 매우 클 수 있으므로, 이러한 설비에는 물분무설비 외에 다른 수동적 방호대책 (Passive protection)을 함께 고려하여야 한다.

4.2.6 내용물 배출 및 격리

- (1) 공정지역에서 물분무설비의 설계 및 설치는 화재폭로 잠재성, 예상 화재지 속시간, 내용물 배출(Drainage) 능력에 따라 결정된다.
- (2) 공정설비가 신속하게 격리되거나 또는 내용물이 배출되지 않으면 화재는 내화설비에 의해 설비 등이 유지되는 시간보다 더 오래 지속될 수 있으므 로, 이러한 경우 설비 등을 냉각시키기 위해 물분무설비(또는 소화전 등)를 사용할 수 있다.

4.2.7 화학물질 또는 운전조건

- (1) 물과 격렬하게 반응하는 물반응성물질(예를 들면, 금속알킬 촉매 등)과 같은 특별한 물질이 공정 내에 존재할 수 있으므로 이러한 물질에 대해서는 물과의 혼화성(Compatibility)을 확인하고, 소화방법을 검토하여야 한다.
- (2) 아주 높은 온도 또는 압력에서 취급되는 물질에 대해서는 적절한 대응방법을 검토하여야 한다.

4.2.8 지역사회 및 환경 영향

주민과 인접한 지역이나 또는 환경적으로 민감한 지역에 근접하여 설치된 화재 위험설비에는 설비의 중요도 또는 경제적인 사항과 관계없이 물분무설비를 설 치하여 영향을 줄일 필요가 있다.

5. 물분무설비 구성

5.1 일반사항

- (1) 물분무설비는 신뢰할 수 있는 소방수원에 연결된 고정배관시스템이며, 분사 노즐은 방호대상설비에 대해 지정된 유량과 분포로 배출되도록 설계한다.
- (2) 일반적으로 화재(점화) 예방, 열폭로 보호, 연소 또는 소화 조절을 위해 물 분무설비를 설치하며, 다른 소방설비와 별도로 독립적으로 설치하거나, 또 는 다른 소방설비에 보충적으로 설치할 수 있다.

P - 162 - 2017

- (3) 물분무설비는 일반적으로 고압분출화재(Jet fire)를 진압하는데 적절하지 않으며, 또한 그것을 진압하기 위해 설치하지 않는다. 다만, 고압분출화재로 인해 인접설비의 열영향을 감소시키기 위해서는 설치할 수 있다.
- (4) 물분무설비 설치 시 위험물안전관리법의 적용을 받는 경우에는 해당법규의 요구사항을 반영하여야 한다.

5.2 물분무설비의 구성

5.2.1 노즐

- (1) 노즐 선택 시 고려하여야 할 사항은 아래와 같다.
 - (가) 보호대상설비의 특성
 - (나) 물분무설비의 목적
 - (다) 노즐의 방출특성
 - (라) 가능한 바람 및 열류(Thermal draft) 조건
 - (마) 설비 구성 및 간격 요구사항
 - (바) 부식수(Corrosive water) 또는 부식적인 대기조건
 - (사) 방수량 요구사항과 유용성
 - (아) 배출(Drainage)
- (2) 노즐의 유효범위는 물방울의 속도 및 크기에 따라 결정하여야 한다.
- (3) 오리피스 사이즈, 노즐 특성 및 방출 패턴의 차이 때문에 특정 목적으로 설 치된 분사노즐은 원칙적으로 적절한 분석 없이 다른 용도로 대체할 수 없 다.

5.2.2 배관 및 핏팅류(Piping and fittings)

(1) 배관 서포트 및 행거를 설계할 때 잠재적인 충격 또는 과압영향을 고려하여야 한다.

- (2) 물공급시스템이 공급할 수 있는 최대운전압력(단, 1.207 MPa 이하)에 적합하도록 배관시스템을 설계하여야 한다.
- (3) 옥외에 설치되는 배관, 핏팅류 및 행거는 내부식성 재질로 설치하여야 한다.
- (4) 최소 요구사항으로 강관 및 강재 핏팅류는 내외부에 아연도금이 된 것을 사용하여야 한다.
- (5) 절단 및 나사가공에 의해 아연도금이 제거되어 노출된 곳은 내부식성 코팅 또는 도장 등을 통해 보호하여야 한다.
- (6) 냉각탑 내부, 소금성분의 해양조건, 소금 또는 해수가 사용되는 곳과 같이 심각한 부식환경이 존재하면, 에폭시 라이닝 재질의 배관, 내화성의 GRP(Glass reinforced plastic) 배관, 큐프로 니켈 배관, 스테인리스강 배관 또는 튜브와 같은 더 높은 내식성 재질을 고려하여야 한다.
- (7) 초기 재료이 비용이 비쌀수록 장기적인 유지관리비용의 절감 및 더 오랜 설비수명을 보증할 수 있다.

5.2.3 물분무시스템 작동밸브

- (1) 각각의 물분무시스템에는 분사노즐을 통한 유량을 조절할 작동밸브가 있어 야 한다.
- (2) 작동밸브는 수동 또는 자동으로 설치될 수 있다.
- (3) 수동작동밸브는 화재 시에 쉽게 식별할 수 있고, 접근할 수 있는 곳에 설치한다.
- (4) 수동작동밸브는 볼밸브 또는 버터플라이밸브와 같이 1명의 조작자에 의해 쉽고 빠르게 개방할 수 있는 형태이어야 한다.
- (5) 6인치 이상의 밸브는 쉽게 조작될 수 있도록 기어조작핸들(Gear operator) 이 부착되어야 한다.
- (6) 일제개방밸브(Deluge valve)로 불리는 원격조작밸브 또는 자동작동밸브는 기계, 유압, 공압, 또는 전기적으로 작동될 수 있으며, 이런 밸브에는 원격조작 또는 자동작동의 기능을 해지할 수 있는 수동조작 기능이 있어야 있다.

P - 162 - 2017

- (7) 가능한 한 원격조작밸브 또는 자동작동밸브를 보호대상지역 외부에 설치하여야 한다.
- (8) 시스템 작동밸브는 기계적인 손상(또는 폭발 잠재성이 있는 경우의 폭발 손상)에 의해 방호되는 지역에 설치하여야 한다.
- (9) 물분무시스템(델루지시스템 포함)의 일제개방밸브와 물공급배관 사이에는 밸브의 개폐위치를 지시하는 개폐인지밸브(Position indicating valve, PIV) 를 설치하여야 하고, 이 밸브(PIV)를 상시 개방하여야 한다.

5.2.4 스트레이너(Strainer)

- (1) 지름 9.5 mm(3/8인치) 미만의 수로를 갖는 노즐 또는 이물질이 포함될 우려가 있는 배관에는 스트레이너를 설치하여야 한다.
- (2) 스트레이너는 일반적으로 시스템 작동밸브 상류측에 설치하고, 필요 시 시 스템 격리밸브의 하류측에도 설치할 수 있다.
- (3) 스트레이너는 분사노즐의 작동을 방해할 정도인 모든 고체입자를 걸러낼 수 있어야 하며, 일반적으로 3.2 mm (1/8인치) 정도의 구멍이 적절하다.
- (4) 스트레이너는 제공된 보호형태, 물의 상태 및 다른 지역적인 환경을 고려하여 평가된 시간동안 심각한 압력손실 없이 연속적으로 작동되어야 한다.
- (5) 스트레이너는 시스템의 가동정지 없이 청소될 수 있는 구조이어야 하고, 비상 시에 접근될 수 있어야 한다.
- (6) 필요 시 주기적으로 스트레이너를 청소할 수 있도록 바이패스를 설치할 수 있다.

5.2.5 압력계

시스템의 운전상태를 알 수 있도록 일제개방밸브 전단 등에 압력계를 설치하여 야 하다.

5.2.6 경보장치, 조절장치 및 감지장치

P - 162 - 2017

- (1) 보호지역에 물분무시스템이 작동되고 있을 때를 알려주는 음향경보장치를 설치하여야 한다.
- (2) 물분무설비가 멀리 떨어져 있는 경우에 경보작동을 감시하는 시스템이 있어야 하며, 이 감시시스템은 조정실과 같이 사람이 상주하는 곳에 있거나 또는 자동 페이징(Automated personal paging)과 같은 별도의 경보시스템을 사용하여 설치하여야 한다.
- (3) 자동경보시스템은 운전원의 더 빠른 대응을 가능하게 하므로, 피해를 최소화하는데 도움이 된다.
- (4) 자동경보시스템을 화재감지기 또는 가스감지기와 연동시켜 설치할 수 있다.
- (5) 감지시스템과 물분무설비가 연동되어 있을 경우 시스템작동 경보장치와 별도로 경보장치를 설치하여야 한다.
- (6) 작업자가 상주하는 않는 지역 또는 원격지역의 물분무설비는 일반적으로 자동작동설비로 설치하는 것이 좋다.

6. 물분무설비의 설계

6.1 물분무설비의 설계목적

6.1.1 일반사항

- (1) 물분무설비를 설치하는 목적은 주로 열 폭로방지(Het exposure protection), 연소조절(Control of burning) 또는 화재진압(Extinguishment)이다.
- (2) 일반적으로 고압분출화재(Jet fire)에 의한 화염접촉(Impingement)을 방지하기 위한 목적으로 물분무설비를 설치하지 않는다.
- (3) 화염접촉에 의한 높은 열유속(Heat flux) 효과로부터 설비를 보호하기 위해 서는 훨씬 더 높은 수준의 냉각이 필요하므로, 소화전 등을 해당지점에 직 접 분사하여 냉각시키는 것이 더 효과적인 방법이다.
- (4) 물분무설비의 설치대상은 KOSHA GUIDE P-115 "정유 및 석유화학 공장 의 소방설비에 관한 기술지침", NFSC 104 "물분무소화설비의 화재안전기 준", "위험물안전관리에 관한 세부기준" 등을 참조한다.

P - 162 - 2017

6.1.2 설계목적

6.1.2.1 열 폭로방지

- (1) 물분무설비의 가장 일반적인 목적은 전도, 복사 및 대류 열전달에 의해 야기된 열응력으로부터 설비 또는 구조물을 보호하고, 또한 가연성물질의 점화를 막아 열 폭로를 방지하는 데 있다.
- (2) 열 폭로 방지시스템을 설계할 때 고려할 한 가지 요소는 심각한 손상 또는 파괴가 일어나기 전에 구조물이 안전하게 지지될 수 있는 허용가능한 최대 온도이다.
- (3) 이 시스템의 목적은 열을 흡수하여 온도를 낮추는데 있고, 표면온도는 물분 무에 의한 연속적인 수막(Water film)에 의해 이론적으로 물의 비점(100 ℃)까지 제한될 수 있다.

6.1.2.2 연소 조절(Control of burning)

- (1) 물분무설비는 화염 또는 연소표면에 직접 물을 분사함으로써 연소율을 통제할 수 있다.
- (2) 연소율은 주변 열 흡수, 증기생성 및 화염강도 축소, 주변환경으로 방출되는 열량제한을 통해 통제된다.

6.1.2.3 화재진압(Extinguishment)

- (1) 물분무설비에 의한 화재진압활동은 연료가 고체연료이거나, 물에 녹는 물질이거나 또는 인화점이 높을 때 가장 효과적이다.
- (2) 상당한 양으로 누출되는 인화성가스 또는 인화성증기의 화재일 경우 주변설비에 대한 적절한 보호 아래 이 물질들을 물분무설비를 사용하여 통제된 연소율로 태우는 것이 화재진압(소화)하는 것보다 더 좋은 방법이다.
- (3) 상당한 양으로 누출되는 인화성가스 또는 인화성증기의 화재를 진압하게 되면 누출된 가스 또는 증기가 재점화되어 증기운폭발과 같은 결과를 초래 할 수 있으므로, 화재를 진압할 때는 관련 위험성을 주의깊게 평가하여야 한다.

6.1.2.4 고열설비(Hot equipment)의 열충격 검토

P - 162 - 2017

- (1) 고열표면에 물을 분사할 때 생기는 열충격(Thermal shock)은 주철제 펌프 몸체와 같은 설비에서 손상이 발생된 기록이 있지만, 화재 상황에서 열충격 은 일반적으로 문제가 되지 않는다.
- (2) 물분무설비를 사용하여 냉각시킬 때 고열설비의 냉각(Chilling)에 의한 열충 격과 금속재질상의 적합성을 검토할 필요가 있다. 다만, 열충격에 의한 잠 재적인 열손상이 물을 분사하지 않아서 발생되는 화재손상보다 작으면 분사하는 것이 좋다.

6.2 물분무시스템 설계

6.2.1 물공급

- (1) 공급되는 물의 유량과 압력은 동시에 작동되도록 설계된 모든 시스템, 소화전, 모니터 노즐의 설계 유량 및 설계시간에 대해 방수되도록 적절해야 한다.
- (2) 소화전과 모니터 노즐에 대해 효과적인 방수압을 유지시키는 것은 전체 설계를 확립하는 결정적인 요소가 될 수 있다.
- (3) 모든 이용가능한 수원의 신뢰성과 적절성에 기반하여 공급수원을 평가하고 결정하여야 한다.

6.2.2 물수요량

- (1) 물분무설비의 적절한 사이즈를 결정하는 요인들은 아래와 같다.
 - (가) 관련된 위험성의 특성
 - (나) 보호대상설비의 수량, 형태 및 설비 사이의 간격
 - (다) 다른 보호대책의 적절성
 - (라) 단일 화재에서 포함될 수 있는 면적의 크기
- (2) 물분무시스템의 사이즈는 아래와 같은 사항에 따라 축소할 수 있다.
 - (가) 방화벽 또는 적절한 거리 이격의 방법으로 면적을 분할하는 방법

- (나) 인화성액체의 확산을 제한하는 방법 (적절히 설계된 일반적인 공장 배유(Drainage) 시스템 또는 특별한 배유 방법 적용)
- (다) 상기 두 가지 접근법을 결합한 방법
- (3) 개별 화재지역은 개별 시스템에 의해 보호하는 것이 바람직하지만, 넓은 공 정지역에 대한 전체 물수요량은 가장 큰 단일 물분무시스템에 의한 용량보 다 일반적으로 훨씬 크다.
- (4) 단일 물분무시스템의 사이즈는 설계방출률(노즐을 사용할 때 최소압력에서 계산된 값)이 11,350 lpm을 초과하지 않아야 한다.
- (5) 단일 시스템 또는 동시에 작동되도록 설계된 다수의 시스템에 대한 계산상 설계방출률은 동시에 발생된 다른 화재진압에 필요한 요구량을 고려하여 이용가능한 물공급량을 초과하지 않아야 한다.
- (6) 한 시스템의 초기 설계용량은 일반적으로 8,316 lpm을 초과하지 않아야 한다.
- (7) 미래에 필요한 용도로 최소 756 lpm의 용량을 고려하고, 총계 11,350 lpm을 초과하지 않도록 용량을 고려하여야 한다.
- (8) 소방수량을 증가시키는 시스템의 개선과 확장은 거의 항상 일어나므로 설계자는 초기 설계 시에 펌프, 배관, 배출설비 등에 대한 적절한 여유를 고려하여야 한다.

6.2.3 물분무노즐

- (1) 물공급 시 고체입자에 의해 방해될 가능성이 있을 경우에는 3/8인치 통로 보다 작은 오리피스를 갖는 노즐을 배제하는 것이 좋다.
- (2) (1)항과 같은 이유 때문에 개별 스트레이너를 갖는 노즐을 권장하지 않는다.
- (3) 가능하면 물공급배관의 상부에서 노즐을 연결하여야 한다.

6.2.4 수리 계산 및 도면

(1) 수리 계산은 위험물관리법 등에 따라 수행되어야 한다.

P - 162 - 2017

- (2) 각 노즐의 압력이 리스트에 나타나도록 불문무시스템을 설계하여야 한다.
- (3) 옥외에서 노즐의 분사압력은 가장 멀리 있는 노즐에서 210 kPa 이상이어야 한다.
- (4) 최초 설계 시의 수리 계산값을 변경할 때마다 유지하고, 반영하여야 한다.
- (5) 설치된 대로 최신의 도면을 유지하여야 한다.

6.2.5 배관

- (1) 시스템 콘트롤밸브의 하부 배관은 일반적으로 건조한 상태로 유지하여야 한다.
- (2) 시스템 콘트롤밸브의 하부 배관에 물이 흘렀을 경우에는 배관을 드레인하여야 한다.
- (3) 드레인을 필요로 하는 배관의 저점(Low point) 또는 갇힌 지역(Trapped)의 개소를 최소화하기 위해 물분무시스템의 설계 및 설치 시에 주의하여야 한다.
- (4) 잠재적인 막힘(Plugging)을 최소화하기 위해 배관의 상부에 배출부 (Take-offs)를 설치하여야 한다.
- (5) 물공급 헤더라인에는 청소용 연결부를 설치하야 한다.
- (6) 다른 공정설비의 유지 또는 운전을 방해하지 않도록 물분무설비의 배관을 설치하여야 한다.
- (7) 결빙우려지역에 설치할 경우에는 지면 위의 콘트롤밸브를 포함하여 정체지점까지 동파방지조치를 하여야 한다.
- (8) 배관 유니온은 정비하는 동안 제거하는데 편리하지만, 스크류타입의 유니온 은 2인치 이상의 배관에는 사용하지 않아야 한다.
- (9) 핏팅류의 선택과 적용은 위험물관리법 또는 NFPA 15를 따른다.

7. 물분무설비의 주수율(Water application rates) 산정

7.1 일반사항

- (1) 물분무시스템의 주수율은 물분무설비의 설치목적, 보호대상설비 또는 구조물의 형태 및 특성, 화재에 관련된 연료의 특성에 따라 결정될 수 있다.
- (2) 단일 대형 물분무시스템은 동일 시스템 내에서 여러 목적에 따라 다른 주수율을 적용하여 사용될 수 있다. 예를 들어, 하나의 물분무시스템이 한 그룹의 공정펌프를 보호(연소율 통제를 위한 주수율 적용)하기 위해 사용되면서 동시에 적절한 주수율로 직접 주변의 케이블 트레이 및 구조물을 보호하기 위해 사용될 수 있다.
- (3) 참고문헌, 경험 및 테스트 등에 따라 실제적인 주수율을 선택할 수 있다.
- (4) 사고시나리오에 대한 위험성평가는 가능한 잠재적인 화재특성, 통제되지 않는 연소의 결과, 적절한 주수율을 결정하는데 유용할 수 있다.
- (5) 7.2항의 일반적인 주수율, 7.3항의 주요설비 및 구조물별 주수율에 대한 요약된 사항은 <별표 1>의 "노출면적 당 주수율"에 정리되어 있다.

7.2 일반적인 주수율

7.2.1 열 폭로방지용 주수율

- (1) 열 폭로방지를 위한 물분무는 열에 의한 파손(Failure)을 보호하기 위해 또는 가연성물질의 점화를 방지하기 위해 직접 설비 또는 구조물에 물을 분사하는 것이다.
- (2) 필요한 주수율은 열전달율, 최대허용온도, 물에 의한 열흡수효율에 의존된다.
- (3) 경험에 의해 일반적인 주수율은 4.1~10.2 lpm/m² 로 제시된다.
- (4) 압력용기, 용기의 지지대(레그, 스커트, 새들 등) 또는 파이프랙 지지대와 같이 하중을 지지하는 구조물 성분의 강재표면에는 10.2 lpm/m² 보다 더 높은 주수율을 권장한다.
- (5) (3) 및 (4)항의 주수율은 직접적인 비압력의 화염접촉을 포함한 다소 심각한 열입력에 대해 적절하지만, 고압분출화재(Jet fire)에 의한 화염접촉에 대해서는 적절하지 않다.

- (6) 고압분출화재에 의한 화염접촉이 발생되면 화염이 보호대상표면에서 물을 분리시키므로, 더 높은 주수율이 필요하고, 해당지점을 보호하기 위해서는 약 946~1,893 lpm의 물이 필요하다.
- (7) 하중을 받는 않는 구조물 성분, 상압저장탱크 및 상압용기와 같은 강재 표면을 보호하는 데는 4.1 lpm/m² 보다 낮은 주수율이 적용되며, 복사열 흡수를 위해서도 역시 이 주수율이 적용될 수 있다.

7.2.2 연소조절용 주수율

- (1) 화염지역 또는 연소표면에 물분무설비를 적용함으로써 효과적으로 화재 강도를 조절할 수 있다.
- (2) 화염 내부에 분사된 물은 주변으로 방출되는 복사 및 대류열량을 감소시키고, 열 흡수를 통해 반응속도를 느리게 하는데, 펌프, 압축기 또는 유정 (Well head)과 같이 3차원 화재가 예상되는 경우 설비 보호를 위해 물분무설비를 설치하는 것이 전형적인 연소조절 목적으로 설치되는 경우의 예이다.
- (3) 연소조절을 위한 주수율은 시나리오에 따라 변하며, 8.2~20.4 lpm/m²의 주수율을 권장한다.
- (4) 인화성액체 또는 가연성액체의 연소표면에 분사된 물은 화재강도를 조절하는데 보다 효과적이며, 연소표면에 도달한 물입자는 연소되는 액체의 온도를 낮출 수 있고, 그리하여 증발율과 연소율을 감소시킬 수 있다.
- (5) 전형적인 탄화수소 누출 화재에 적용되는 주수율은 12.2~14.6 lpm/m²이다.
- (6) 물분무설비 선택 시 아래와 같은 두 가지 목적과 균형을 맞추어 선택할 필요가 있다.
 - (가) 화재에 의한 대류흐름을 통과하여 연료표면에 도달할 정도의 충분한 크 기 및 속도를 갖는 물입자의 크기 제공
 - (나) 연료표면에 많은 에너지를 전달하여 요동에 의한 증발률 증가 및 화재 강도의 증가없이 물을 전달

7.2.3 화재진압용 주수율

P - 162 - 2017

- (1) 화재진압은 탄화수소를 취급하는 석유화학산업에서 거의 물분무설비의 주목적이 아니다.
- (2) 물분무설비가 화재진압용으로 적용되는 경우에는 가연성 재질의 벨트를 사용하는 컨베이어벨트 시스템과 같은 가연성 고체물질과 관련된 화재의 경우이다.
- (3) 화재에 관련된 연료의 성질 및 적용 형상에 따라 다르지만, 화재진압용 주수율은 보통 6.1~12.5 lpm/m²의 범위이다.
- (4) 어떤 종류의 가연성액체(또는 인화성액체)의 화재 시에 물분무설비가 사용 될 수 있다. 즉, 인화점 60 ℃ 이상의 비수용성의 탄화수소는 물분무설비를 사용하여 인화점 이하로 냉각시키는 방법으로 소화할 수 있다.
- (5) 가연성액체(또는 인화성액체)에 따라 다르나, 화재진압용으로 14.6~20.4 lpm/m²의 주수율이 효과적일 수 있다.
- (6) 알코올 및 글리콜과 같은 물에 녹는 물질은 때때로 물로 희석하여 소화될 수 있지만, 높은 증기압과 낮은 혼화성의 에테르류(예, Methyl tert-butyl ether, MTBE)는 희석에 의한 소화방법은 어렵다.
- (7) 물분무설비로 낮은 인화점의 탄화수소 액체를 소화시키는 것은 거의 가능하지 않고, 바람직하지 않다.

7.3 주요 설비 및 구조물용 주수율

정유 및 석유화학 산업에서 일반적으로 물분무설비를 적용할 수 있는 주요 설비 및 구조물은 아래와 같다.

- (1) 펌프(Pumps)
- (2) 파이프랙(Pipe racks)
- (3) 변압기 (Transformers)
- (4) 공랭식 냉각기(Air-fin coolers)
- (5) 압력용기, 열교환기 및 탑조류(Pressure vessels, exchangers and towers)
- (6) 압력 저장탱크 (Pressurized storage tanks)
- (7) 압축기(Compressors)
- (8) 터빈(Turbines)

P - 162 - 2017

- (9) 전동기(Motors)
- (10) 냉각탑(Cooling towers)
- (11) 탄화수소 출하랙 (H.C loading racks)
- (12) 유정(Well heads)
- (13) 상압저장탱크(Atmospheric storage tanks)
- (14) 공정 건물 및 구조물 Process buildings & structures)
- (15) 비금속 전기 케이블 및 튜빙 트랙

7.3.1 펌프(Pumps)

- (1) 인화성물질을 취급하는 펌프 중 아래 사항에 모두 해당될 경우 고정식 물 분무설비를 설치하여야 한다.
 - (가) 펌프에서 취급되는 유체가 해당물질의 인화점보다 약 22 °C(40 °F) 이상 일 때
 - (나) 펌프 화재에 의해 순식간에 인접한 다른 설비(인접 펌프 포함) 또는 구 조물이 손상될 수 있도록 근접해 있을 때
 - (다) 펌프 화재 시 주변의 모니터 또는 소화전 등을 사용하여 보호하기 어렵 거나 실제적이지 않은 곳에 있을 때
- (2) 물분무설비는 최소한 펌프 전체(축, 실, 다른 중요부분 포함)를 둘러싸도록 설치하여야 한다.
- (3) 선택적으로 물분무설비에 포함될 범위를 펌프 주변으로부터 0.6 m 범위까지 연장할 수 있고, 해당범위에 인입 및 토출 플랜지, 체크밸브, 게이지 연결지점, 차단밸브, 발란스 라인 및 물분무 적용지역 내의 윤활시스템 연결부를 포함시킬 수 있다.
- (4) 펌프용 주수율은 지면에서의 투영면적 상으로 20.4 lpm/m² 이상이어야 한다.

7.3.2 파이프랙 및 배관(Pipe racks and piping)

- (1) 파이프랙 하부에 액면화재 또는 심각한 다른 화재 폭로의 위험이 있고, 주 변 소화전 등을 사용한 접근이 제한될 때에 파이프랙 보호를 위한 물분무 설비가 필요하다.
- (2) 파이프랙 하부에 배유시설(Drainage)이 양호하게 설치되어 있으면 물분무설비의 필요성은 감소된다.
- (3) 지면과 가까운 파이프랙(받침대 위의 배관)은 거의 물분무설비가 필요하지 않다.
- (4) 물분부설비가 필요한 파이프랙에는 일반적으로 내화설비가 우선적으로 필요하다.
- (5) 노출된 주요 파이프랙의 배관 및 도관(Conduit) 등을 보호하기 위해 물분무설비를 설치하는 경우에는 아래의 사항을 고려하여 설계하여야 한다.
 - (가) 배관 및 도관의 아래에서 위를 향하도록 물분무설비를 설치하여야 한다.
 - (나) 물분무설비의 배관을 파이프랙 하부에 설치할 때 잠재적인 손상위험이 있거나 또는 적절히 설치할 수 없어서 물분무설비의 배관을 파이프랙의 상부에 설치할 때에는 물분무설비를 배관 및 도관 등의 상부에 적용할 수 있다.
 - (다) 파이프랙에 물분무설비를 설치할 경우에는 <표 1>의 주수율을 적용하여야 한다.

<표 1> 파이프랙 단별 주수율

파이프랙	주수율 (lpm/m²)		분사노즐 필요	
단(Level) 번호	1단	2단 이상 (비고)	단(Level)	
1단	10.2	미적용	전체(All)	
2단	8.2	6.1	전체(All)	
3,4,5단	8.2	6.1	교번(Alternate)	
6단 이상	8.2	4.1	교번(Alternate)	

(비고) 누출 화재(Spill fire)에 노출된 경우를 고려한 값임.

(라) 파이프랙 전체 폭의 보호표면에 대해 물이 분사되도록 분사노즐을 설치 하여야 한다.

P - 162 - 2017

- (마) 보호하고자 하는 파이프랙의 하부에서 0.8 m 이내의 위치에 분사노즐을 설치하여야 한다.
- (6) 내화되지 않은 수직 파이프랙 지지대는 10.2 lpm/m²의 주수율로 보호하여 야 한다.
- (7) 콘트롤밸브 지역에 중대한 화재 노출의 잠재성이 있으면 보호조치를 고려하여야 한다.

7.3.3 변압기(Transformers)

- (1) 대형 유입변압기(Oil-filled transformer)는 일반적으로 공정설비, 건물, 구조물 또는 다른 변압기와 이격하여 설치하거나 또는 조적식 벽에 의해 분리하여 설치한다.
- (2) 변압기가 중대한 화재에 노출될 위험이 없거나 또는 변압기에 의한 그런 위험이 발생할 가능성이 없으면 변압기에 물분무설비를 설치할 필요가 없 다.
- (3) 대형 유입변압기에 물분무설비의 필요성이 있으면, 모든 노출된 표면에 10.2 lpm/m^2 의 주수율을 적용하여 아래와 같이 물분무설비를 설치하여야 한다.
 - (가) 변압기의 모든 노출된 표면에 대해 물이 분사되도록 노즐을 설치하여야 한다.
 - (나) 구조적으로 분사노즐을 통해 직접 분사하기 곤란한 변압기 하부 표면 등의 지역에는 수평 분사방식 또는 변압기 하부지역을 냉각하는 방식 등의 방법을 적용할 수 있다.

7.3.4 공랭식 냉각기(Air-fin coolers)

(1) 공랭식 냉각기의 튜브의 파열에 의한 인화성액체의 누출로 화재가 발생되면 누출되는 냉각기, 주변의 냉각기 뱅크(Bank), 지지구조물 및 냉각기 하부 설비에 열 열향을 줄 수 있다.

P - 162 - 2017

- (2) 액체상태의 공랭식 냉각기의 대용량 뱅크 또는 핵심적인 뱅크 부분, 냉각기 하부의 공정설비에 중대한 열 폭로가 예상되거나 또는 하부의 공정설비로 부터 중대한 열 폭로가 예상되면 물분부설비를 고려하여야 한다.
- (3) 가스로 차 있는 공랭식 냉각기에는 주변 공정설비로부터 잠재적인 열 폭로 가 없으면 거의 물분무설비를 고려할 필요가 없다.
- (4) 공랭식 냉각기에 물분무설비를 설치할 때에 냉각기 아래에 분사노즐을 설치하여야 하고, 분사방향은 위쪽을 향하도록 설치하여야 한다.
- (5) 공랭식 냉각기용 주수율은 수평투영면적에 대해 10.2 lpm/m²을 적용하여야 한다.
- (6) 냉각기 아래에 배기팬(Forced draft fan, F. D fan)을 설치할 경우에는 충만 실(Plenum) 내의 팬과 튜브 사이 및 팬의 공기흡입구측에 분사노즐을 설치하여야 한다.
- (7) 물분무설비의 작동 시에 불꽃감지기 또는 온도감지기 또는 인터록설비를 통해 냉각용 배기팬(F.D fan) 또는 흡입팬(Induced draft fan, I. D fan)을 가동정지시키면, 물분무설비의 효과를 현저하게 높일 수 있다.
- (8) 공랭식 냉각기의 지지대에 내화설비가 설치되지 않는 경우, 지지대 표면에 10.2 lpm/m^2 의 주수율로 분사되도록 물분무설비를 설치하고, 이 경우 분사지점에서 하부지역으로 3.7 m 까지 수용가능하다.

7.3.5 압력용기, 열교환기 및 탑조류(Pressure vessels, exchangers, and towers)

- (1) 저장용기, 공정용기, 구형탱크, 탑조류 및 열교환기 등의 압력용기가 화재에 폭로되면 복사열, 비압력(Non-pressurized) 직접 화재 또는 강렬한 압력 화재(Jet fire)에 의해 열 손상을 입을 수 있다.
- (2) 중대한 화재에 노출될 수 있고, 소화전 등으로부터 적절한 냉각이 어려운 압력용기를 보호하기 위해 고정식 물분무설비를 고려하여야 한다.
- (3) 압력용기에 물분무설비를 설치할 때 압력용기의 전체 표면에 대해 적용하여야 한다.
- (4) 복사열 폭로에 대응하는 경우에는 위험원으로부터 거리에 따라 4.1 lpm/m² 이하의 주수율을 적용할 수 있다.

- (5) 압력용기에 비 압력의 화염접촉이 있는 경우에는 최소 10.2 lpm/m²의 주수 율이 필요하다.
- (6) 수직형 용기 및 탑조류는 액면화재가 일어날 수 있는 레벨에서 12.2 m 높이까지 물분무설비로 보호될 필요가 있고, 수직 및 경사 표면에 대해 분사지점에서 하부 3.7 m까지 보호된다.
- (7) 하부(Bottom) 표면에 대한 직접 분사(Spray)는 보통 전체 표면에 대한 분사를 보증하기 위해 요구된다.
- (8) 돌출물(맨홀, 플랜지 등)에 의해 흘러내리는 방식으로 전체 표면에 대한 물분무가 방해되는 경우에는 추가적인 분사노즐이 필요하다.
- (9) LPG 구형탱크에 대한 보호는 아래와 같다.
 - (가) 전체 표면에 대해 물분무설비를 설치하여야 하며, 특히 구형탱크의 하부 에도 물분무노즐을 설치하여 모든 표면을 수막으로 보호하여야 한다.
 - (나) 비압력 화염접촉 시나리오에 대한 구형탱크 표면의 주수율은 4.1~10.2 lpm/m²에 상응하여야 한다.
- (10) 비상대응계획 수립 시에 고압분출화재(Jet fire)에 의한 화염접촉을 고려할 경우에는 화염접촉 지점에 1000~2000 lpm의 분사량을 적용하도록 고려하여야 하며, 증기공간에 화염접촉이 있을 경우에는 특히 중요하다.
- (11) 내화조치가 되지 않은 높이 300 mm 이상의 용기 지지대(레그, 스커트, 새들 등)에 물분무설비를 설치할 경우의 주수율은 10.2 lpm/m²이며, 이 경우에는 우선적으로 내화설비를 검토하여야 한다.
- (12) 만약 (11)항의 지지대에 직접적인 화염접촉이 없는 액면화재에 의한 복사 열에 대응하기 위해 물분무설비를 설치할 때에는 최소 주수율은 4.1 lpm/m²이어야 한다.
- (13) 동체측에 인화성액체가 들어있고, 지름이 1 m 이상인 열교환기(Shell and tube 형식)는 압력용기로 고려하여야 하고, 물분무설비가 요구될 경우에는 압력용기에 적용되는 기준으로 설치하여야 한다.

7.3.6 압축기(Compressors)

(1) 200 마력 이하의 소형 모터구동 압축기

- (가) 인화성가스를 취급하는 소형압축기는 7.3.1항의 인화성액체를 취급하는 펌프에 적용된 기준을 적용하여 물분무설비의 필요성을 검토하여야 한 다.
- (나) 소형압축기의 물분무설비는 펌프에 적용된 기준을 따른다.
- (2) 대형 엔진 또는 터빈구동 압축기
 - (가) 대형 엔진 또는 터빈구동 압축기의 구동기, 동력전달장치 및 윤활시스템은 압력 하에서 취급되므로 다량의 고온 윤활유에 의한 추가적인 화재 위험성이 존재한다.
 - (나) 이런 윤활유는 인화점이 높지만, 고온 표면 근처에서 누출되면 윤활유가 증발되어 고가의 압축기 및 구동기(Driver)가 화재에 폭로되는 잠재 위 험성이 있으므로 이런 설비를 보호하기 위해 물분무설비를 설치하는 것 이 바람직하다.
 - (다) 물분무설비를 설치할 때 모든 노출된 표면(윤활유 콘솔 및 윤활유 저장 탱크와 같은 보조설비 포함)에 직접 분사되도록 분사노즐을 설치하여야 하고, 주수율은 투영설비의 표면 기준으로 10.2 lpm/m²이어야 한다.
- (3) 대형압축기가 건물 또는 캐노피 내에 설치된 경우
 - (가) 대형압축기가 건물 또는 캐노피 내에 설치될 때 압축기 또는 구동기와 관련된 화재는 건물 또는 캐노피의 구조적인 손상을 초래하거나 다른 인접 설비를 화재에 노출시키게 한다.
 - (나) 각 설비 또는 구조물별로 직접 물분무설비를 설치하는 대신에 빌딩 또는 캐노피 내의 전체 지역에 대해 지붕 아래 고온의 가연성가스가 축적 될 위험성을 줄이기 위해 물분무설비를 설치할 수 있다.
 - (다) (나)항의 경우 지붕 또는 캐노피 바로 아래에 180도 분사노즐 또는 개방 형 스프링클러를 적용하여야 하고, 바닥면적 기준으로 주수율은 12.2 lpm/m²이어야 한다.
 - (라) 빌딩에 윤활시스템을 포함하는 지하층, 지하실 또는 배관 트렌치가 있을 경우, 이 공간에도 동일하게 주수율 12.2 lpm/m²의 추가적인 물분무설비가 필요하다.

P - 162 - 2017

7.3.7 터빈(Turbines)

탄화수소를 취급하는 터빈에 대해 물분무설비를 설치할 경우에는 압축기의 크 기별로 적용한 기준과 동일하게 적용하여야 한다.

7.3.8 전동기(Motors)

- (1) 전동기(특히 전폐형구조)는 중대한 화재 잠재성은 없지만, 심각한 화재에 노출되면 심하게 손상될 수 있다.
- (2) 잠재적인 화재에 노출될 수 있는 매우 크고, 고가인 교체하기 어려운 전동 기에는 물분무설비가 필요할 수 있다.
- (3) 전동기에 물분무설비를 설치할 경우 모든 노출된 외부 표면에 대해 10.2 lpm/m^2 의 주수율을 적용하여야 한다.

7.3.9 냉각탑(Cooling towers)

- (1) 중요한 가연성의 냉각탑을 보호하기 위해 물분무설비를 설치할 경우에는 NFPA 214와 같은 기준을 적용하여 설계하여야 한다.
- (2) 냉각탑의 다양한 부분에 대해 주수율은 6.1~20.4 lpm/m²로 적용하여야 한다.

7.3.10 탄화수소 출하랙(Hydrocarbon Loading rack)

- (1) 일반적으로 인화성액체를 취급하는 트럭 및 레일카 출하랙에는 물분무설비를 적용하지 않는다.
- (2) 누출된 탄화수소 관련 화재를 물분무설비로 진압하는 것이 어렵고, 또한 효과적으로 트럭 또는 레일카를 포괄하도록 노즐을 설치하는 것도 어렵기 때문에 출하랙에는 물분무설비보다 폼 물분무설비 또는 폼 모니터 노즐이 더바람직하다.
- (3) 모니터 노즐에 의해 적절한 소방활동이 되지 않을 경우 LPG 레일카 출하 랙에는 물분무설비가 설치될 수 있고, 이 경우에는 로딩암 및 레일카와 같은 출하랙의 모든 부분이 포함되도록 물분무설비의 노즐을 설치하여야 한

P - 162 - 2017

다. 즉, 레일카의 모든 부분이 물분무설비의 노즐에 의해 둘러싸이기 위해 서는 레일 양측에 노즐을 설치하여야 한다.

(4) LPG 레일카 출하랙에 설치되는 물분무설비의 주수율은 10.2 lpm/m²로 설계되어야 한다.

7.3.11 유정(Well heads)

- (1) 해상의 오일 및 가스 유정은 일반 주민 및 다른 설비로부터 멀리 떨어져 있고, 비상차단설비가 설치되어 있어 거의 물분무설비를 요구하지 않는다.
- (2) 육상 플랫폼의 유정은 다수의 다른 유정 및 다른 설비가 인접하게 설치되어 물분무설비를 설치할 필요가 있다.
- (3) 유정에서 화재가 발생할 때 인접 유정뿐만 아니라 유정 상부의 구조물도 보호하여야 한다. 따라서 유정의 상부 구조물 바로 아래에 넓은 각도의 노즐을 위치시키고, 유정을 포괄하도록 노줄의 방향을 아래로 설치하는 것이 효과적이다.
- (4) 유정에 물분부설비를 설치할 경우 주수율은 20.4 lpm/m²이어야 한다.
- (5) 유정 상부에 구조물이 없는 유정인 경우에는 고유량의 노즐을 유정 하부에 위치시켜 상부로 분사되도록 설치하고, 유정 주변에 정방형으로 4개의 노즐이 설치하여야 한다.
- (6) 노즐의 분사각도와 위치는 유정의 선단이 분사 시에 포함되도록 설치하여 야 하고, 유정 1개당 760~920 lpm의 물을 공급하도록 각 노즐의 분사량은 190~230 lpm이어야 한다.

7.3.12 상압저장탱크(Atmospheric storage tanks)

- (1) 외부화재에 대해 상압저장탱크의 보호를 검토할 때 냉각용 소화수를 복사 열에 폭로된 지붕 부분과 액체에 접촉되지 않는 동체 부분에 분사해야 효 과가 있다.
- (2) 상압저장탱크에 물분무설비를 설치할 경우 일반적으로 동체의 3.7~7.4 m 지점에 분사되며, 분사지점의 아래로 3.7 m 까지는 경사 또는 수직표면에 대해 허용된다.

P - 162 - 2017

- (3) 만약 상압저장탱크의 상부에 윈드 거더(Wind girder)가 있으면 각 거더 링 아래에 분사노즐을 설치하여야 한다.
- (4) 상압저장탱크에 적용되는 주수율은 4.1 lpm/m² 로 설계한다.
- (5) 인접탱크에 화재가 발생되면 일반적으로 전체 탱크 표면적의 1/4~1/2 정도 가 폭로될 수 있다.
- (6) 화재 발생 시 상압저장탱크의 정확한 화재 폭로 위치 및 탱크의 액체 레벨을 알 수 없기 때문에 물분무설비의 노즐은 탱크 전체 기준으로 설치되지 만, 화재의 영향은 한 부분이므로 전체 노즐을 통해 물을 분사하면 상당량의 물이 낭비되므로 분사노즐을 지역별로 구분하는 것이 효과적이다.
- (7) 화재 발생 시 소화전 등을 사용하여 냉각시키면 경우에 따라 물의 낭비를 줄이고 효과적으로 냉각시킬 수 있다.

7.3.13 공정 건물 및 구조물(Process buildings and structures)

- (1) 혼잡한 건물 내부 또는 부분적으로 개방된 구조물 내부에 있는 인화성액체 또는 인화성가스 취급설비는 일반적으로 높은 대형 화재의 잠재성을 가지 고 있다.
- (2) 공정 건물 또는 구조물 내부의 설비는 일반적으로 소화전 등으로 보호하기 위해 접근하기가 어렵기 때문에 적절한 물분무설비를 설치할 필요가 있다.
- (3) 공정 건물 또는 구조물 내부의 혼잡 지역에서 개별 설비 또는 구조물에 물 분무설비를 설치하는 방법이 실제적이지 않을 경우 해당 공정 건물 또는 구조물의 넓은 지역이 포함되도록 상부에 물분무설비를 설치할 수 있다.
- (4) 공정 건물 또는 구조물 내부에 있는 보호지역의 모든 설비가 포함되도록 천장 위치에 넓의 각도(180도)의 노즐 또는 개방형 스프링클러를 설치할 수 있다.
- (5) 공정 건물 또는 구조물 내부에 설치되는 물분무설비의 주수율은 바닥면적 기준으로 12.2 lpm/m² 이상으로 설계하여야 한다.
- (6) 바닥을 가리는 넓은 면적의 설비, 통행 플랫폼, 중간층(Mezzanine) 및 유사한 설비 등의 아래에는 (5)항과 같은 주수율을 갖는 물분무설비를 설치하여야 한다.

P - 162 - 2017

- (7) 누출물질에 의한 화재로 영향을 받는 층의 모든 보호대상 설비 및 구성부 재를 분사노즐로 보호하여야 한다.
- (8) 중간층 등이 개방된 그레이팅으로 설치되면 그레이팅 아래의 지역에 대한 주수율은 6.1 lpm/m²로 축소할 수 있다.
- 7.3.14 비금속 전기 케이블 및 튜빙 트랙(Nonmetallic electrical cable and tubing runs)
 - (1) 중요한 콘트롤라인 및 동력선과 같은 전기 케이블 등은 열매유 펌프 상부 또는 가열로 주변과 같은 화재위험이 높은 지역에서 이격되도록 배치시키는 것이 좋다.
 - (2) 화재 위험지역에서 케이블을 이격시키는 방법이 적절하지 않을 때에는 내화등급이 있는 케이블을 사용하거나 케이블에 내화조치를 하여야 한다.
 - (3) (1)항 및 (2)항의 조치가 적절하지 않을 때에는 개방된 케이블 트레이 등은 주수율 12.2 lpm/m² 의 물분무설비를 통해 보호하여야 한다.

KOSHA GUIDE P - 162 - 2017

<별표 1>

노출표면적 당 주수율

(Water spray application rates for exposed surface area)

번호	주수율 적용 대상 또는 목적	관련 조항	주수율 (lpm/m²)	참고사항
1	설계목적별 주수율	-		
(1)	일반적인 열 폭로 보호용	7.2.1	4.1~10.2	
(2)	연소 조절용(Control of Burning) : 시나리오에 따라 주수율이 변할 수 있음.	7.2.2	20.4	
(3)	화재진압용(Extinguishment)			비고 4
	- 가연성고체(Combustible Solid)	7.2.3	6.1~12.5	
	- 가연성액체(Combustible Liquid)	7.2.3	10.2~20.4	
	- 인화성액체(Flammable Liquid)	7.2.3	N/A	
2	주요 설비 및 구조물별 주수율			
(1)	펌프(Pumps)	7.3.1	20.4	
(2)	파이프랙(Pipe Racks)	7.3.2	10.2	비고 2
(3)	변압기(Transformers)	7.3.3	10.2	
(4)	공랭식 냉각기(Air-fin coolers)	7.3.4	10.2	비고 1
(5)	압력용기, 열교환기 및 탑조류(Pressure Vessels, Exchangers and Towers)	7.3.5	10.2	비고 3
(6)	압력 저장탱크(Pressurized storage tanks)	7.3.5		API Std 2510 & Publ 2510A
	- 복사열 보호(Radiant Exposure)	7.3.5	0~4.1	
	- 비압력 화염접촉(Non-pressure Impingement)	7.3.5	10.2~6.1 (비고 3)	
	- 압력 화염접촉(Pressure Impingement)	7.3.6	최소 20.4	비고 5
(7)	압축기(Compressors) - 일반용도 - 건물	7.3.6 7.3.6	10.2 12.2	200~300 HP 이하는 펌프와 동일 적용
(8)	터빈(Turbines) - 일반용 - 건물 내부	7.3.7 (7.3.7)	10.2 12.2	압축기와 동일 적용
(9)	전동기(Motors)	7.3.8	10.2	
(10)	냉각탑(Cooling towers)	7.3.9	6.1~20.4	NFPA 214
(11)	탄화수소 출하랙(H.C loading racks)	7.3.10	10.2	
(12)	유정(Well heads)	7.3.11	20.4	
(13)	상압저장탱크(Atmospheric storage tanks)	7.3.12	4.1	
(14)	공정 건물 및 구조물Process buildings & structures)	7.3.13		NFPA 13

KOSHA GUIDE P - 162 - 2017

번호	주수율 적용 대상 또는 목적	관련 조항	주수율 (lpm/m²)	참고사항
	- 메인 건물 및 구조물(Primary) - 중간층 등 보조 등(Supplemental)		12.2 6.1	비고 6
(15)	비금속 전기 케이블 및 튜빙 트랙(Nonmetallic electrical cable and tubing runs)	7.3.14	12.5	.=_ v

- 비 1. NFPA 15에서 구체적으로 공랭식 냉각기에 대해 제시되지 않으나, 용기 및 배관보호를 위해 최소 10.2 lpm/m²의 주수율이 권장된다. 용기 또는 내용물의 온도가 제한되어야 하는 곳에는 더 높은 주수율이 요구될 수 있다.
 - 2. 다층구조의 파이프랙 상부레벨에서 분사되는 물밀도는 감소될 수 있다.
 - 3. 관련 기술자료, 문서화된 경험 또는 다른 보호수단이 있는 곳에는 6.1~10.2 lpm/m²의 주수율이 적용될 수 있다.
 - 4. 구체적인 물질에 대한 관련 시험자료를 검토하여 주수율을 적용하여야 한다.
 - 5. 화염접촉부에 직접 646~1,893 lpm 으로 분사하는 것이 좋다.
 - 6. 직화가열로의 내화되지 않은 지지대(Fired heater supports)에 적용할 경우에는 10.2 lpm/m²의 주수율이 권장된다.