Theory of Automata and Formal Language Lecture-12

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj April 21, 2021

Minimization of Finite Automata

Equivalent states

Two states q_1 and q_2 are said to be equivalent if both $\hat{\delta}(q_1, x)$ and $\hat{\delta}(q_2, x)$ are final states or both of them are non-final states for all $x \in \Sigma^*$.

K-equivalent states

Two states q_1 and q_2 are said to be k-equivalent if both $\hat{\delta}(q_1,x)$ and $\hat{\delta}(q_2,x)$ are final states or both of them are non-final states for all $x \in \Sigma^*$ and $|x| \le k$.

1

Construction of Minimum Automata

Step 1: First we find a set Π_0 that consists of two sets. First is the set of final states and second is the set of non-final states. That is,

$$\Pi_0 = \{ F, Q-F \}$$

 $\Pi_k \to \mathsf{Set}$ of k-equivalence classes

 $\mathsf{Q} \to \mathsf{Set} \ \mathsf{of} \ \mathsf{states}$

 $\mathsf{F} \to \mathsf{Set}$ of final states

Step 2 (Construction of Π_{k+1} from Π_k):

- 1. Put all the equivalence classes or sets of Π_k into Π_{k+1} as it as if it consists of single states.
- 2. Let S be a set belong into Π_k . Let q_i and q_j are the two states belong into S.
- 3. Compute states q_i and q_j (k+1)-equivalent or not.
- 4. If they are (k+1)-equivalent then put these two states in the same set of Π_{k+1} , otherwise both states belong into different sets in Π_{k+1} .
- 5. Similarly, we check all pairs of states in S. And put the states either in same set or in different set in Π_{k+1} .
- 6. Similarly, we apply above procedure for all the sets belong into Π_k .

Step 3: Construct Π_n for $n=1,2,3,4,\ldots$, until $\Pi_n=\Pi_{n+1}$.

Step 4: For the required minimum state automata, the states are the equivalence classes obtained in step 3 i.e. the elements of Π_n . The state table is obtained by replacing a state q by the corresponding equivalence class [q].

4

Example: Construct a minimum state automata equivalent to the following finite automata:

Example: Minimize the following automata:-

Example: Minimize the following automata:-

δ	а	b
$\rightarrow q_0$	q_1	q_2
q_1	q_4	q_3
q_2	q_4	q_3
q ₃	q ₅	q_6
q ₄	q ₇	q_6
q ₅	q_3	q_6
q_6	q_6	q_6
q ₇	q_4	q_6