

RESERVOIR ENGINEERING GRADUATE CERTIFICATE - Week 2

Fluid studies -PVT

A special course by IFP Training for REPSOL ALGERIA Alger – November 06 - 10, 2016

An IFP Training Course for REPSOL

Fluid studies PVT

Instructor: Patrick ELHORGA

Fluid studies PVT - Summary

Preface

Reminders on thermodynamics

- Petroleum genesis
- Pure component and mixture equilibrium
- Hydrocarbon fluid classification
- PVT experiments
- Constant volume gas depletion
- PVT Modeling

Thermodynamic model

- Liquid-Vapor equilibrium
- Equation of state (EOS)
- Compositional grading
- Matching of experimental data

Characterization and modeling of heavy fractions

- Heavy fractions
- Viscosity modeling

Fluid studies PVT

Measurements

- Sampling
- Analysis

▶ Fluid synthesis

Gas injection

- Specific PVT experiments
- Miscibility (FCMP, MCMP, Kr...)
- Compositional matching

Interfacial Tension

Calculation of OOIP/OGIP

- Black-oil data
- Compositional data

▶ Fluid synthesis examples

Fluid studies quick sum_up

Preface

Preface

We need to know

- 1. The composition of the production well stream and its temporal variation
- 2. The separator specifications including LPG
- 3. The design of the completions by identifying the spatial fluid distributions in the vicinity of the wellbore
- 4. Gas injection/re-injection
 - Identifying gas composition
 - The interaction of the injected gas and the reservoir fluid

IFPTraining

Fluid Studies - PVT

Preface

AND

- 5. The ultimate recoveries of components, under different drives, mixing/no mixing, single depletion, etc.
- 6. The amounts and composition of liquids left in the reservoir not recovered (especially in gas condensate reservoirs) and their properties: density, Surface Tension, viscosity.
- 7. To detect spatial variation of the PVT properties
- 8. To identify and adjust data inconsistencies

Preface

AND

For Reservoir Performance simulation software:

- 9. To create "Black-Oil" PVT tables for Black Oil Simulation
- 10. To create Compositional PVT models for compositional simulation

Fluid Studies - PVT

Preface

OBJECTIVE OF GATHERING AND ANALYZING PVT DATA

- ► To calibrate models (Equations of State, EOS)
- ▶ Why?
 - We cannot measure all the characteristics of hydrocarbon fluids. EOS provides one consistent source of PVT data
 - Experiment problems (cost, reliability, accuracy and precision)

PVT

- ▶ Sometimes people spend a lot of time on the rock characteristics and put less emphasis on fluid PVT.
- ▶ Fluid PVT is as important as rock properties as it is directly related to reserves and the dynamics of the reservoirs for performance estimations

Petroleum genesis

Fluid Studies - PVT

Petroleum genesis: Hydrocarbons

Petroleum genesis: Hydrocarbon classification into groups

IFPTraining

Fluid Studies - PVT

Petroleum genesis: Hydrocarbon classification into groups

Petroleum genesis: Hydrocarbon classification into groups

SATURATED HC

UNSATURATED HC

Fluid Studies - PVT

Petroleum genesis

NORMAL and ISO ALKANES: Cn H2n+2

▶ Group of hydrocarbons consisting of linear molecules with the formula C_nH_{2n+2} . Methane, CH_4 , is the simplest member. Higher members, starting at about C_{18} , are wax-like and are called paraffins.

CYCLO ALKANES: Cn H_{2n}

- At low carbon numbers Cycloalkanes are less stable than normal alkane counterparts
 - thus present in much smaller amounts
 - but can have significant effect on the phase behavior

Petroleum genesis

Normal boiling point of paraffins

Petroleum genesis

Aromatics

- Aromatic hydrocarbons contain one or more benzene rings
- ▶ Stable rings with 3 carbon-carbon double bonds C₆H₆
- ▶ They have some significant effect on the phase behavior.

Non Hydrocarbons: Sulfur components

Fluid Studies - PVT

Non Hydrocarbons: Other components

Non hydrocarbons

▶ Nitrogen – Pyridine – Most others are unstable

 C_6H_5N • Pyridine

Oxygen – Aromatic alcohols, aldehydes, carboxylic acids

• Phenol

C₆H₅OH

▶ Organo – Metallic – Trace amounts

Reminders

Some definitions

- Intensive properties
 - They do not depend on the quantity of material (density, viscosity, permeability)
- **Extensive properties**
 - They depend on the quantity of material (mass, volume)

Extensive properties can be summed but intensive properties require specific averaging

Fluid Studies - PVT

Reminders

Some definitions

- Isothermal
 - An isothermal process takes place at constant temperature
- Isobaric
 - Isobaric processes occur under conditions of constant pressure
- Isochoric
 - Describes a process or system change which takes place at constant volume
- Isenthalpic
 - Describes a process or system change which takes place at constant enthalpy

Pure component equilibrium

Temperature

Vapor pressure curve of C2H6

Fluid Studies - PVT

IFPTraining

Vapor pressure curves of several normal alkanes

Fluid Studies - PVT

IFPTraining

Properties of pure components

Name	Mw	Тс	Pc	Acentric	
	(g/gmol)	(K)	(bar)	factor	
.,	46.04	400.4	45.0		
methane	16.04	190.4	46.0	0.011	
ethane	30.07	305.4	48.8	0.099	
propane	44.10	369.8	42.5	0.153	
n-butane	58.12	425.2	38.0	0.199	
i-butane	58.12	408.2	36.5	0.183	
n-pentane	72.15	469.7	33.7	0.251	
i-pentane	72.15	460.4	33.9	0.227	
n-hexane	86.18	507.5	30.1	0.299	
benzene	78.11	562.2	48.9	0.212	
cyclohexane	84.16	553.5	40.7	0.212	
n-heptane	100.20	540.3	27.4	0.349	
n-octane	114.23	568.8	24.9	0.398	
n-nonane	128.26	594.6	22.9	0.445	
n-decane	142.29	617.7	21.2	0.489	
nitrogen	28.01	126.2	33.9	0.039	
carb dioxoyde	44.01	304.1	73.8	0.239	
hydr sulfide	34.08	373.2	89.4	0.081	

Liq-Vap equilibrium

Phase envelope

Phase envelope

.FPTraining

3

Phase envelope

C₂H₆ - C₆H₁₄ binary mixtures

IFP Training 37

Under saturated oil

Under saturated oil

- Point 1 indicates that the initial reservoir pressure is undersaturated.
- As reservoir depletion proceeds from 1 to 2, reservoir hydrocarbon fluid moves in the pore space in the form of single phase oil and gas-oil ratio (the ratio of gas produced at surface conditions to the oil produced at surface conditions) at surface conditions is constant. The amount of oil production necessary to bring the pressure down from point 1 to 2 is a small fraction of the total production.
- As production continues and pressure is reduced along path 2 to 3, gas comes out of solution in the reservoir.
- At point 3, the effective permeability to oil and gas are about equal.
- But the viscosity of the oil is about two-orders of magnitude larger than viscosity of the gas.
- Therefore, at point 3, usually more than 90% of the reservoir flow stream volume is gas.

IFPTraining

Volatile oil

Volatile oil

- Volatile oils have fewer heavy molecules than black oils.
- ► The critical temperature of volatile oil is much lower than that of black oil, and is close to reservoir temperature.
- ➤ The figure on the left shows that, as reservoir pressure is reduced below bubble point pressure, large volumes of gas leave the solution.
- This rapidly reduces the effective permeability to oil and the reservoir flow stream becomes mostly gas within a few hundred psi below the bubble point.
- ➤ The effective permeability to oil may become virtually zero and the flow stream may essentially be gas long before reservoir reaches the point 3.

Fluid Studies - PVT

IFPTraining

43

Under saturated oil

Saturated oil

Fluid Studies - PVT

IFPTraining

Saturated oil

Condensate gas

Condensate gas

- Retrograde gases have even fewer heavy molecules than volatile oils.
- ► The critical point shifts to the left and downward in the phase diagram and the critical temperature is usually less than reservoir temperature.
- ▶ Retrograde condensate appears in the reservoir pore spaces at pressure below the dew point pressure. Throughout most of the reservoir, since the amount of liquid in the pore space is usually smaller than critical oil saturation the effective permeability to this condensate is zero and little is produced.
- ▶ Along line 2 to 3, the condensate builds up first and then revaporizes at the lower pressures.
- ► This behavior is typical for constant composition expansion type application.
- At reservoir conditions can we see reevaporation?

Condensate gas

Fluid Studies - PVT

IFPTraining

49

Wet gas

Wet gas

Wet gas

- ► The composition of a wet gas contains much fewer heavy molecules.
- Because the phase diagram covers a much smaller temperature range, the pressure depletion path in the reservoir does not enter the twophase region.
- ► The reservoir fluid is gas throughout the life of the reservoir.
- However, separator conditions lie within the two-phase envelope, indicating that some liquid will condense at the surface

Wet gas

IFPTraining

51

Fluid Studies - PVT

Wet gas

Dry gas

Dry gas

Dry gas

- ▶ Dry gas is virtually pure methane.
- ► The two-phase envelope is small and lies below reservoir conditions and to the left of surface condition
- ► The fluid is theoretically gas both in the reservoir and at the surface.

Dry gas

Fluid Studies - PVT

IFPTraining

HO: Heavy Oil

5

Fluid classification

GC: Condensate Gas

WG: Wet Gas

DG: Dry Gas

Gas

CF: Critical Fluid

LO: Light Oil

BO: Black Oil

ressure

Temperature

Fluid classification: saturated or not

Fluid Studies - PVT

IFPTraining

Fluid classification: gases

Pressure

Temperature

Temperature

ining 59

Fluid Studies - PVT

Fluid classification

	Separator	Density	Composition					
Well test	GOR	of STO	C1	C2	C3	C4	C5	C6+
	(Sm^3/m^3)	(kg/m ³)	(mole %)					
		-						
Heavy oil	< 10	> 900		3	4	5	8	80
Standard oil	< 500	800 - 900	45	4	4	3	2	42
Critical fluid	# 700	750 - 850	55	10	8	5	6	16
Condensate gas	700 - 800	700 - 800	75	8	5	2	2	8
Wet gas	> 15000	700 - 800	90	5	3	1	1	1
Dry gas	infinite		95	3	1	1		
	Separator	Density	Composition					
Well test	GOR	of STO	C1	C2	С3	C4	C5	C6+
	(Sft ³ /barrel)	(lb/ft ³)	(mole %)					
		-						
Heavy oil	< 60	> 56		3	4	5	8	80
Standard oil	< 3000	50 - 56	45	4	4	3	2	42
Critical fluid	# 4000	47 - 53	55	10	8	5	6	16
Condensate gas	4000-4500	47 - 53	75	8	5	2	2	8
Wet gas	>85000	44 - 50	90	5	3	1	1	1
Dry gas	infinite		95	3	1	1		

Bottomhole properties

	GOR	Bottomhole	Bottomhole
Well test	separator	density	Viscosity (**)
	(Sm^3/m^3)	(kg/m^3)	(cPo)
Bitumen		> 950	> 1000
Heavy oil	< 10	850 - 950	sevl 10 ² to sevl 10 ³
Standard oil	< 500	550 - 850	0.2 to several
Critical fluid	# 700	450 - 550	0.2 to several
Gas condensate	700 - 800	300 - 450	< 0.3
Wet gas	> 15000	100 - 400 (*)	< 0.3
Dry gas	infinite	100 - 400 (*)	< 0.3

^{*:} highly pressure-dependent

Fluid Studies - PVT

Oil and gas specific gravity

Stock Tank Oil Specific Gravity

► API definition: ° API = (141.5 / SG) - 131.5

SG being the specific gravity of oil w.r.t water @ 60°F

Condensates, very light oil

 $SG < 0.8 (> 45^{\circ}API)$

Light oil

 $0.80 < SG < 0.86 (33-45^{\circ}API)$

Standard oil

 $0.86 < SG < 0.92 (22-33^{\circ}API)$

Heavy oil

 $0.92 < SG < 1.00 (< 22^{\circ}API)$

Gas Specific Gravity

- ► Gas SG is defined w.r.t <u>air</u> @ Std conditions (60°F, 1 atm).
- ► Gas SG can be determined from the gas composition (Mw): SG = (gas Mw) / (air Mw) with air Mw = 28.996 g/gmol
- ▶ SG = Mw / 29

^{**:} highly temperature-dependent

PVT experiments

▶ Oil:

- Bubble point
- Flash test
- Multi stage separation
- Differential liberation
- Constant Mass Expansion (CME)
- Viscosity under pressure

► Gas:

- Dew point
- Multi stage separation
- Constant Mass Expansion (CME)
- Constant Volume Depletion (CVD)

PVT experiment:

constant mass expansion for an oil

Graphical determination of the saturation pressure

Fluid Studies - PVT

PVT experiment: flash test for an oil

▶ Objective:

To determine reservoir fluid composition

► Main properties derived from this experiment:

- Molecular composition of reservoir fluid
- Rough GOR value
- Rough Bo value
- Density and viscosity of oil at atmospheric conditions

$$Bo = \frac{V_{oil}^{res}}{V_{oil}^{Sto}} \qquad GOR = \frac{V_{gas}^{Sto}}{V_{oil}^{Sto}}$$

Characterization of oil and gas phases

Gas

- Composition (GC)
- > % H₂S
- ▶ Trace components
- ▶ SG

Oil

- Composition (GC)
- Heavy fraction (GPC)
- Wax
- WAT Wax Appearance Temperature
- Pour point **Lowest Flowing Temperature**
- Density
- Viscosity

Fluid Studies - PVT

PVT experiment: multi stage test for an oil

- ▶ Objective:
 - Simulation of field test or process separation scheme
- Main properties derived from this experiment:
 - **GOR**
 - **Process Rsi**
 - Process Boi
 - Gas composition at each step

Stock tank liquid composition and properties

Characterization of oil and gas phases

Gas

- Composition (GC)
- ▶ % H₂S
- **▶** Trace components
- ▶ SG

Fluid Studies - PVT

Oil

- Composition (GC)
- ► Heavy fraction (GPC)
- Wax
- **▶** WAT
- **▶** Pour point
- Density
- Viscosity

IFPTraining

69

PVT experiment: differential liberation for an oil

Objective:

- Simulation of reservoir depletion
- ► Main properties derived from this experiment:
 - Liberation GOR
 - Differential Rsb
 - Differential Bob
 - Gas composition at each step
 - Residual oil composition and properties

Differential vaporization

$$Bg = \frac{V_{gas}^{P_i}}{V_{gas}^{Std}}$$

$$Bo = \frac{V_{oil}^{P_i}}{V_{oil}^{Sto}}$$

$$\mathsf{GOR}_{\mathsf{Total}} = \frac{\mathsf{V}_{\mathsf{gas}}^{\mathsf{Sto}}}{\mathsf{V}_{\mathsf{oil}}^{\mathsf{Sto}}} = \mathsf{R}_{\mathsf{gas}}$$

Fluid Studies - PVT

Differential vaporization

Reservoir Pressure

Bubble point pressure

No compositional change

Differential vaporization versus multi-stage test

- ▶ Differential liberation. The final volume of liquid phase remaining in the cell at standard conditions is called RESIDUAL OIL
- ▶ Multi-stage test. Oil that results when one m3 or barrel of oil is flashed through a certain surface separator is called STOCK TANK OIL.
- ▶ RESIDUAL OIL and STOCK TANK OIL are both products of the original oil but are developed by different pressure-temperature routes.
 - Multiple series of flashes at the elevated temperature of the reservoir
 - Some stage flash at low temperature and pressure

$$B_{_{O}}^{_{Dif}} > B_{_{O}}^{_{Sep}}$$

$$ho_{_{RO}}^{_{Dif}} >
ho_{_{STO}}^{_{Sep}}$$

Fluid Studies - PVT

Viscosity measurement

Constant Temperature = reservoir T

Measurement of pressure drop across a capillary tube:

$$\mu = \frac{k.\Delta P}{Q}$$

Oil unit performances

Range of work:

Pressure: 1 bar - 1000 bar

Temperature: -20°C to 180°C

• GOR: 5 to 700 m³/m³

Viscosity: 0.2 to 200 cPo

Accuracy:

Volumes:

resolution 5 10⁻⁶ cm³

accuracy 10⁻⁴ cm³

Temperature: ± 1°C

Pressure:

• HP: ±1 bar

• BP: ±10⁻³ bar

Viscosity: ±10⁻² cPo

IFPTraining

Fluid Studies - PVT

PVT experiment: constant mass expansion

for a condensate gas

Objective:

• Fluid behavior at reservoir conditions

▶ Main properties derived from this experiment:

- Liquid drop out curve
- Compressibility factor curve

Remarks:

- The measurement accuracy of a very small volume of liquid is low.
- The dew point may never be known better than +/-1.5 bars (20 psi)

Notice that CME = CCE

PVT experiment: constant mass expansion

for a condensate gas

Fluid Studies - PVT

77

PVT experiment: constant mass expansion

for a condensate gas

Phase envelop - Liquid deposit

PVT experiment: constant mass expansion for a

PVT experiment: constant volume depletion

for a condensate gas

Objective:

Simulation of reservoir production for condensate gas and volatile oil

Main properties derived from this experiment:

- Liquid drop out curve
- Volumetric factor of the wellstream during depletion
- Wellstream composition during depletion

Remarks:

- Be sure to have vapor and liquid at each step
- Problems imply negative calculated liquid compositions.
- Plot Ki(P) = Yi(P) / Xi(P)
 - All lines monotonic and smooth, no crossing, ordered with volatilities
- Use the Hoffman-Crump-Hocott plot:
 - Log(KiP) is linear regarding B(1/Tbi-1/T) with B=(log(Pci) -log(Pref)) / (1/Tbi-1/Tci)

Constant volume gas depletion

Step by step description

- 0: Measure reference Volume Vsat à P1=Psat
- 1: Decrease P to P2<P1 lowering the piston, condensation occurs
- 2: Reset the cell volume to Vsat, pushing up the piston
- 3: Measure Oil and gas volumes
- 1: Decrease P to P3<P2, ...

Fluid Studies - PVT

Constant volume depletion

Current reservoir pressure

Dew Point Pressure

Well-stream composition remains unchanged

Liquid deposit is assumed to be not mobile

Gas unit performances

► Range of work:

• Pressure: 1 bar - 1500 bar

• Temperature: -20°C to 200°C

Viscosity: 0.05 to 1 cPo

► Accuracy:

Volumes:

• resolution 5 10⁻⁵ cm³

• accuracy 10⁻³ cm³

Temperature: ± 1°C

• Pressure:

Fluid Studies - PVT

HP: ±1 bar

• BP: ±10⁻³ bar

Viscosity: ±10⁻² cPo

PVT modeling

▶ Data:

$$Z_{i} = X_{i} \cdot L + Y_{i} \cdot V$$

Balance by component

$$L+V=1$$

Global balance

$$K_i = Y_i/X_i$$

Equilibrium constant

$$\sum X_i = \sum Y_i = 1$$

Balance by phase

▶ Calculations:

$$Z_{i} = X_{i} \cdot (1 - V) + K_{i} \cdot X_{i} V$$
so: $X_{i} = Z_{i} / [1 + V(K_{i} - 1)]$

$$Y_{i} = K_{i} \cdot Z_{i} / [1 + V(K_{i} - 1)]$$

► Rachford-Rice equation:

$$f(V) = \sum_{i} Z_{i} (K_{i} - 1) / [1 + V(K_{i} - 1)] = 0$$

resolution by Newton's method

$$V^{\scriptscriptstyle (n+1)} = V^{\scriptscriptstyle (n)} - \left[f\!\left(V^{\scriptscriptstyle (n)}\right)\!/f^{\scriptscriptstyle \mathsf{I}}\!\left(V^{\scriptscriptstyle (n)}\right) \right]$$

John of Valve

Fluid Studies - PVT

IFPTraining

.

Liquid — Vapor equilibrium

Flash

$$\sum_{i=1}^{n} \frac{Z_{i}(K_{i}-1)}{1+V(K_{i}-1)} = 0$$

Bubble point

$$\sum_{\scriptscriptstyle i=1}^n K_{\scriptscriptstyle i} Z_{\scriptscriptstyle i} = 1$$

Dew point

$$\sum_{i=1}^n \frac{Z_i}{K_i} = 1$$

Cal calculation of K values

$$K_i = \frac{y_i}{x_i}$$

Experiments:

- Binary or ternary diagrams,
- Detailed analysis.

Iterative calculations:

Estimated initial values.

Fluid Studies - PVT

Liquid — Vapor equilibrium

Liquid-vapor equilibrium diagram Methane - Ethane (-87.06°C)

X1=0.5, Y1=0.95

X2=0.5, Y2=0.05

K1=1.9, K2=0.10

Fluid Studies - PVT

Liquid — Vapor equilibrium

Ternary diagram: pressure sensitivity

Fluid Studies - PVT

Liquid — Vapor equilibrium

Initial value for Ki

WILSON's correlation

$$C_{0} = \frac{7}{3} \ln(10)$$

$$k_{i} = exp \left\{ C_{o} \cdot (1 + w_{i}) \cdot \left(1 - \frac{T_{c_{i}}}{T} \right) \right\} \cdot \frac{P_{c_{i}}}{P}$$

WHITSON's correlation

$$C_1 = \frac{69 \cdot M_n - 4200}{14.696} C_2 = 1 - \left(\frac{P-1}{C_1 - 1}\right)^{0.6}$$

$$\mathbf{k_{i}} = \left(\frac{\mathbf{P_{c_{i}}}}{\mathbf{C_{1}}}\right)^{c_{2}-1} \cdot exp\left\{\mathbf{C_{0}} \cdot \mathbf{C_{2}} \cdot \left(\mathbf{1} + \mathbf{w_{i}}\right) \cdot \left(\mathbf{1} - \frac{\mathbf{T_{c_{i}}}}{\mathbf{T}}\right)\right\} \cdot \frac{\mathbf{P_{c_{i}}}}{\mathbf{P}}$$

- State functions
- ► Free enthalpy G (Gibbs)
 - G = H T.S = (U + PV) TS
 - dG = -S.dT + V.dP
- ► At the equilibrium some of these functions display a minimum. In particular: dG = 0 (T, P system)

$$\left. egin{aligned} G_{_{V}}, & g_{_{i}}^{_{V}}, & n_{_{i}}^{_{V}} \\ G_{_{L}}, & g_{_{i}}^{_{L}}, & n_{_{i}}^{_{L}} \end{aligned}
ight. \qquad n_{_{i}}^{_{V}} + n_{_{i}}^{_{L}} = n_{_{i}}$$

$$g_{i} = g_{i}^{\circ} + RTIn\left(\frac{f_{i}}{f_{i}^{\circ}}\right)$$

$$f_{i}: fugacity$$

Equilibrium: $g_i^v = g_i^L$

Liquid – Vapour equilibrium

$$f_i^v = f_i^L$$
 for all "i"

Fluid Studies - PVT

Liquid — Vapor equilibrium

- State variables
 - Temperature, Pressure, Volume, ...
- State functions
 - Internal energy U
 - dU = dQ + dW
 - For a reversible transformation:
 - dQ = T.dS (S: entropy)
 - Enthalpy H
 - H = U + P.V
 - dH = T.dS + V.dP
 - Free energy A (Helmholtz)
 - A = U T.S
 - dA = S.dT P.dV
 - Free enthalpy G (Gibbs)
 - G = H T.S
 - dG = S.dT + V.dP

Thermodynamics potentials

At equilibrium, some of these state functions display a minimum; by analogy with potential energy, these functions are called

THERMODYNAMICS POTENTIALS

In particular:

Fluid Studies - PVT

- dG = 0 (T, P system)
- dA = 0 (T, V system)

IFPTraining

Liquid — Vapor equilibrium

Disturbance and return to equilibrium such that:

$$dG=dG_V+dG_L=0$$
 i.e.
$$\sum_i g_i^V dn_i^V=-\sum_i g_i^L dn_i^L \quad \text{with} \quad dn_i^V=-dn_i^L$$

$$\sum_i \left(g_i^V-g_i^L\right)dn_i=0 \quad \forall i$$

$$g_i^V = g_i^L \quad \forall i$$

Chemical potential gi and fugacity fi

$$m{g}_{i} = m{g}_{i}^{o} + m{RT}_{i} \ln \left(rac{m{f}_{i}}{m{f}_{i}^{o}}
ight)$$
Liquid - Vapor Equilibrium

$$f_i^{\ \ \nu} = f_i^{\ \ L}$$
 for all "i"

Reference: Ideal gas at T and P

$$f_i^o = x_i P$$

Coefficient of fugacity

$$\varphi_i = \frac{f_i}{X_i P}$$
At equilibrium

$$\mathbf{K}_{i} = \frac{\mathbf{y}_{i}}{\mathbf{x}_{i}} = \frac{\varphi_{i}^{L}}{\varphi_{i}^{V}}$$

Equations of state

MARIOTTE 1650	$P = \frac{RT}{V}$
VAN DER WAALS 1873	$P = \frac{RT}{V - b} - \frac{a_c}{V^2}$
CLAUSIUS 1880	$P = \frac{RT}{V - b} - \frac{a_c}{T(V + c)^2}$
BERTHELOT	$P = \frac{RT}{V - b} - \frac{a_c}{TV^2}$
REDLICH KWONG	$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{a_c} \mathbf{T}^{-0.5}}{\mathbf{V}(\mathbf{V} + \mathbf{b})}$
WILSON 1964	$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{A}(\mathbf{T})}{\mathbf{V}(\mathbf{V} + \mathbf{b})}$
SOAVE REDLICH KWONG 1972	$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{B}(\mathbf{T})}{\mathbf{V}(\mathbf{V} + \mathbf{b})}$
PENG - ROBINSON 1976	$P = \frac{RT}{V - b} - \frac{C(T)}{V(V + b) + b(V - b)}$
PATEL TEJA 1981	$P = \frac{RT}{V - b} - \frac{D(T)}{V(V + b) + c(V - b)}$

Peng – Robinson's Equation

$$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{a}(\mathbf{T})}{\mathbf{V}(\mathbf{V} + \mathbf{b}) + \mathbf{b}(\mathbf{V} - \mathbf{b})}$$

$$\begin{aligned} a(T) &= a \Big(T_c \Big) \, f(T) \\ a\Big(T_c \Big) &= \Omega_a \, \frac{R^2 T_c^2}{P_c} \\ \Omega_a &= 0.4572 \end{aligned}$$

$$\begin{aligned} \mathbf{b} &= \mathbf{b} \big(\mathbf{T_c} \big) \\ \mathbf{b} \big(\mathbf{T_c} \big) &= \Omega_{\!_{\mathbf{b}}} \frac{\mathbf{R} \, \mathbf{T_c}}{\mathbf{P_c}} \\ \Omega_{\!_{\mathbf{b}}} &= \mathbf{0.0778} \end{aligned}$$

Fluid Studies - PVT

Peng – Robinson's Equation

$$f(T) = \left[1 + m\left(1 - \sqrt{T_r}\right)\right]^2$$

 ω < 0.49 (nC₁₀)

 $m = 0.37464 + 1.54226 \omega - 0.26992 \omega^2$

 $\omega > 0.49$

 $m = 0.379642 + 1.48503 \omega - 0.164423 \omega^2 + 0.016666 \omega^3$

$$Z = \frac{PV}{RT}$$
 $A = \frac{aP}{R^2T^2}$ $B = \frac{bP}{RT}$

$$A = \frac{aP}{R^2T^2}$$

$$B = \frac{bP}{RT}$$

$$Z^{3} + (B - 1)Z^{2} + (A - 3B^{2} - 2B)Z + (B^{3} + B^{2} - AB) = 0$$

Acentric factor w

Fluid Studies - PVT

g

Fugacity

General expression for a pure component:

$$ln\left(\frac{f}{P}\right) = \frac{1}{RT} \int_{v}^{inf} \left(P - \frac{RT}{V}\right) dV + Z - ln Z - 1$$

Peng-Robinson's Equation:

$$In\left(\frac{f}{P}\right) = Z - 1 - Log(Z - B)$$
$$-\frac{A}{2\sqrt{2}B} \cdot In\left(\frac{Z + 2.414 \cdot B}{Z - 0.414 \cdot B}\right)$$

Pure components → mixture

$$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}_{\mathbf{m}}} - \frac{\mathbf{a}_{\mathbf{m}}(\mathbf{T})}{\mathbf{V}(\mathbf{V} + \mathbf{b}_{\mathbf{m}}) + \mathbf{b}_{\mathbf{m}}(\mathbf{V} - \mathbf{b}_{\mathbf{m}})}$$

$$b_{m} = \sum_{i=1}^{n} x_{i} \cdot b_{i}$$

$$a_{m} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \cdot x_{j} \cdot (1 - k_{ij}) \cdot \sqrt{a_{i} \cdot a_{j}}$$

 $k_{\parallel} = Binary interaction coefficients$

Fluid Studies - PVT

Liquid — Vapor equilibrium

Binary diagram: CO2-iC4 (experiment and EOS calculations)

Fugacity coefficient of component k in a mixture

Peng-Robinson's Equation:

$$Log\left(\frac{f_{k}}{Px_{k}}\right) = \frac{b_{k}}{b_{m}}(Z-1) - Log(Z-B)$$
$$-\frac{A}{2\sqrt{2}B}\left(\frac{2\sum_{i}^{n}x_{i}a_{ik}}{a_{m}} - \frac{b_{k}}{b_{m}}\right)$$
$$\times Log\left(\frac{Z+2.414B}{Z-0.414B}\right)$$

with:
$$a_{ik} = (1 - k_{ik}) \cdot \sqrt{a_i \cdot a_k}$$

Fluid Studies - PVT

Liquid — vapor equilibrium

Generalized NEWTON's method

- ▶ Target function $F_i = f_i^L f_i^V$ (n component vector)
 - n variables
 - $X_1, X_2, ..., X_{n-1}$ and $L \rightarrow R$ (vector of iteration variables)
- Newton's method: $J^{\lambda}(R^{\lambda+1}-R^{\lambda})=F^{\lambda}$ (J:F(R) jacobian) $j_{_{i1}}=\partial F_{_{i}}/\partial L \quad \ i\in \begin{bmatrix} 1,nc \end{bmatrix}$ $j_{_{ik}}=\partial F_{_{i}}/\partial x_{_{k}}\quad i\in \begin{bmatrix}1,nc\end{bmatrix}$ $k \in [1, nc - 1]$
- ▶ For the next iteration, the solution vector R is given by:

$$\mathsf{R}^{^{\lambda+1}} = \mathsf{R}^{^{\lambda}} - \left[\mathsf{J}^{^{\lambda}}\right]^{^{\!\!-1}}\!\mathsf{F}^{^{\lambda}}$$

(quadratic convergence)

Fluid Studies - PVT

Liquid — vapor equilibrium and phase envelopes

Standard compositional grading with depth

Variation of composition with depth

- Knowing the composition, and pressure p° at the reference height h°
- ► Calculate the composition and pressure at other heights
- ▶ Ignoring the compositional gradient in petroleum reservoirs may result in bad reservoir management

Variation of composition with depth

- As hydrocarbons move into the reservoir rocks from source, they are influenced by the Earth's gravity, the temperature field, and capillary forces.
- Gravity forces tend to segregate the heavier and lighter components.
- ▶ Thus, lighter components move upwards while heavier components move downwards.
- ▶ Temperature acts in an opposite direction and reduces the intensity of the movements.
- ▶ The resulting effect is the decrease in solution gas oil ratio, formation volume factor of oil and bubble point pressure, and an increase in the viscosity and gasdew pressure with depth

Fluid Studies - PVT

IFPTraining 117

Standard compositional grading with depth

IFPTraining

Compositional grading with depth

Fluid Studies - PVT

GOC transition: evolution of the phase envelopes

Hypercritical transition: evolution of the phase envelopes

Fluid Studies - PVT

There is no point where the bottom hole conditions are on the phase envelope, the fluid is never saturated and there is no GOC

13

Compositional grading with depth

Hypercritical transition: BH density profile

GOC transition: BH density profile

Hypercritical transition: Total GLR profile

Fluid Studies - PVT

12

Compositional grading with depth

ightharpoonup Due to the gravity (γ) effect, the chemical potential " g_i " varies with depth:

$$dg_i = m_i \gamma dh$$

▶ We know that:

$$g_i = g_i^0 + RT Ln (f_i / f_i^0)$$

$$\Rightarrow d g_i = RT d (Ln f_i)$$

$$(m_i \gamma / RT) dh = d (Ln f_i)$$
so: $m_i \gamma h / RT - 0 = Ln f_i^h - Ln f_i$

$$f_i^h / f_i = \exp(m_i \gamma h / RT)$$

Algorithm

Fluid Studies - PVT

Matching Methodology

Methodology

- ► As few EOS parameters as possible
- ► Most poorly defined components (highest uncertainty)
- ► Maintain properties monoticity
- ▶ Change properties by a few percent, if possible
- ▶ Weight important measurements
- ▶ Require "match" to reservoir and surface conditions
- Swelling test for injection schemes?

Trial and error until acquire "engineering feel"

Prior to matching

Check measured data for consistency and quality

- Compositions sum to 100%?
- Pressure-dependent data: correct trends?
- Material balance on CVD?
- Property definitions?
- Consistent units?
- Plus fraction description?

► EOS: Use three-parameter model - extra degree of freedom in c_i (Volume Shift)

Fluid Studies - PVT

Matching methodology

Choice of the variables

- T_c , p_c , ω of Cn+ fraction(s): saturation pressure, liquid dropout, etc.
- Volume shift: Z-factors, densities, etc.
- Z_c or V_c for LBC viscosity
- Parachor for interfacial tension

Dangers

- The "traditional" matching procedure is to adjust k_{C1 Cn+} to obtain measured p_{sat}
- May imply a phase diagram deviation at low temperature.
- Engineer must decide if deviation will affect the simulation results or separator flashes

Matching methodology

Dangers

Figure 10-4. Phase envelope calculated for the gas condensate mixture for which the molar composition is given in Table 10-1.,

IFPTraining

131

Fluid Studies - PVT

Matching algorithm

Influence of Tc on the liquid deposit

Fluid Studies - PVT

IFPTraining

Influence of Pc on the liquid deposit

Influence of ω on the liquid deposit

Fluid Studies - PVT

IFPTraining

135

Influence of Kij on the liquid deposit

The "split" of the heavy cut

Fluid Studies - PVT

IFPTraining

13

Influence of Tc on the envelope

Influence of Pc on the envelope

Fluid Studies - PVT

IFPTraining

139

Influence of $\boldsymbol{\omega}$ on the envelope

Influence of Kij on the envelope

Fluid Studies - PVT

IFPTraining

14

The "split" of the heavy cut

Volume shift

$$V = V^{EOS}$$

→ Matching of both bottom hole and surface densities

IFPTraining 143

Fluid Studies - PVT

Results of a 14-component match

	Measured	Simulated	Relative error
	values	values	%
P _{rosée}	353.000	353.000	0.00
$ ho_{V}$ à P_{sat}	0.315	0.315	0.00
ρ_V à P_{fond}	0.312	0.313	0.32
GOR sep	1631.800	1733.542	6.24
ρ _∟ sep	0.722	0.730	1.11
GOR total	OR total 2055.770		0.74
ρ_L Std	0.779	0.767	1.54
	Simulation of	liquid deposit	
Pressure	Measured	Simulated	
bar abs	values	values	
353.0	0.000	0.000	
350.0	0.135	0.230	See figure
334.5	1.111	1.396	
318.0	2.368	2.596	
281.0	5.075	5.128	
245.5	7.359	7.314	
201.0	9.574	9.558	
159.0	10.824	10.952	
120.0	11.360	11.500	
82.0	11.313	11.303	
42.0	10.722	10.066	

Results of a 14-component match

Fluid Studies - PVT

IFPTraining

. 1

The "split" of the heavy cut

The "split" of the heavy cut

Splitting

- "Insufficient description of heavier hydrocarbons reduces the accuracy of PVT predictions" Whitson C.H., SPEJ, p. 683, Aug. 1983
- Condensates and Volatile Oils are particularly sensitive to the composition and properties of the plus fraction
- **Laboratories tend to give very limited analysis to the plus fraction, i.e., M_{N+}** γ_{N+}
- Requires an automatic procedure to characterize the plus fraction
- ▶ Whitson (1980)
- Pedersen et al (1982)
- Katz (1983)
- Pedersen et al (1985)
- Whitson et al (1986 & 1989)

Fluid Studies - PVT

The "split" of the heavy cut

Analytical Splitting

In splitting the heavy ends using analytical techniques, important requirements must be fulfilled:

$$\sum_{i}^{N+} Ci = C_n^+$$

$$\sum_{i=n}^{N+} \operatorname{Ci} \mathbf{M} \mathbf{w}_{i} = \mathbf{C}_{7}^{+} \mathbf{M} \mathbf{w}_{7}$$

▶ The sum of product off the mole fractions and molecular weight divided by the specific gravity of each individual component is equal to that of Cn+

$$\sum_{i=n}^{N+} \left[\frac{Ci \ Mw_i}{\gamma_i} \right] = \frac{Z_7^+ \ Mw_7^+}{\gamma_7^+}$$

Ahmed (1989)

The "split" of the heavy cut

Whitson Analytical Splitting

- ▶ Knowing the Molecular Weight and density (specify gravity) of the Cn+ fraction, Whitson splitting calculation uses a three-parameter probability density function.
- ▶ This procedure splits Cn+ fraction into many (30-40) small pseudocomponents, then lumps them to the desired number.

IFPTraining 149

Heavy cut properties

- ▶ There are so many components in petroleum reservoirs that it is impossible to obtain their exact composition.
- ▶ Only pure components such as N_2 , CO_2 , H_2S , C_1 - C_6 up to C_{45} may be identified, and the rest is lumped and called heavy ends.
- ▶ These heavy ends (or plus fractions) may comprise very large number of isomers, and can be defined by boiling point fractions only.
- ▶ These heavy constituents have considerable impact on the performance of EOS.

Fluid Studies - PVT

Heavy cut properties

- ▶ For use in EOS, the components should at least be characterized by their
 - critical pressure
 - critical temperature,
 - critical volume,
 - acentric factor,
 - molecular weight, and
 - density at standard conditions.

CAVETT's method

- Required data
 - **Boiling point Teb**
 - API = 141.5 / SG 131.5
- Tc and Teb in Fahrenheit

$$T_{c} = F_{0} + F_{1}T_{eb} + F_{2}T_{eb}^{2} + F_{3}T_{eb}API + F_{4}T_{eb}^{3} + F_{5}T_{eb}^{2}API + F_{6}T_{eb}^{2}API^{2}$$

▶ Pc in psia is given by:

$$Log(Pc) = G_0 + G_1 T_{eb} + G_2 T_{eb}^2 + G_3 T_{eb} API + G_4 T_{eb}^3 + G_5 T_{eb}^2 API + G_6 T_{eb} API^2 + G_7 T_{eb}^2 API^2$$

	F	G
0	768.071	2.829
1	1.7134	Ი 9 41 2Ი 1Ი ⁻³
2	-0.10834 10 ⁻²	-0.30475 10 ⁻⁵
3	-0.89213 10 ⁻²	-0.20876 10 ⁻⁴
4	0.38890 10 ⁻⁶	0.15141 10 ⁻⁸
5	0.53095 10 ⁻⁶	0.11048 10 ⁻⁷
6	0.32712 10 ⁻⁷	-0.48270 10 ⁻⁷
7		0.13950 10 ⁻⁹

Fluid Studies - PVT

Heavy cut properties

Lee-Kessler

$$\begin{split} p_c(\mathrm{psi}) &= 8.3634 - \frac{0.0566}{\gamma} \\ &- \left(0.24244 + 2.2989 \gamma + \frac{0.11857}{\gamma^2} \right) \times 10^{-3} T_b \\ &+ \left(1.4685 + \frac{3.648}{\gamma} \right) \frac{0.47227}{\gamma^2} \times 10^{-7} T_b^2 \\ &- \left(0.42019 + \frac{1.6977}{\gamma^2} \right) \times 10^{-10} T_b^3 \end{split}$$

$$\begin{split} T_{_{c}}(R) &= 341.7 + 811.0\gamma + (0.4244 + 0.1174\gamma)T_{_{b}} \\ &+ \frac{\left(0.4669 - 3.26223\gamma\right)x10^{5}}{T_{_{b}}} \end{split}$$

with
$$\gamma = SPGR$$

Lee-Kessler

$$\omega = \frac{\left(-In\left(\frac{Pc}{14.696}\right) - 5.92714 + \frac{6.09648}{T_{b,r}} + 1.28862InT_{b,r} - 0.169347T_{b,r}^{6}\right)}{\left(15.2518 - \frac{15.6875}{T_{b,r}} - 13.4721InT_{b,r} + 0.43577T_{b,r}^{6}\right)}$$

$$(T_{b,r} < 0.8)$$

$$\begin{split} &\omega = -7.904 + 0.1352 M_w - 0.007465 M_w^2 + 8.359 T_{b,r} \\ &+ \frac{\left(1.408 - 0.01065 M_w\right)}{T_{b,r}} \\ &\quad (T_{b,r} > 0.8) \end{split}$$

Fluid Studies - PVT

Heavy cut properties

Standing (Mathews, Roland, Katz Correlation)

$$Pc = 1188.0 - 431.0 \cdot log(MW-61.1)$$

+ $(2319.0 - 852.0 \cdot logMW - 53.7) \cdot (\rho - 0.8)$
 $Tc = 608.0 + 364.0 \cdot dlog 10(MW - 71.2)$
+ $(2450.0 \cdot log(MW) - 3800.0) \cdot dlog 10(\rho)$
 $BPR = BP + 459.67$
 $\omega = 3.0 \cdot (log((Pc) - 2.0057)$
 $/(7.0 \cdot T/BPR - 1.0)) - 1.0$

RIAZI and DAUBERT's method

- Required data
 - Boiling point (Teb)
 - Specific gravity
- **Teb in Rankine**

$$\theta = aT_{eb}^{b}d^{c} \qquad \omega = \frac{3}{7}\left(\frac{\log_{10}P_{c}}{\frac{T_{c}}{T_{eb}}-1}\right)-1$$

θ	а	b	С
М	4.567300 10 ⁻⁵	2,19620	-1,0164
Tc (°R)	0.242787 10 ²	0,58848	0,3596
Pc (psia)	3.128100 10 ⁻⁹	-2,31250	2,3201
Vc (ft³/lb)	7.521400 10 ⁻³	0,28960	-7,6666

Fluid Studies - PVT

IFPTraining 159

Heavy cut properties

Comparing the methods: Pc

Comparing the methods: Tc

Fluid Studies - PVT

IFPTraining

Heavy cut properties

▶ JOBACK's method

$$\begin{aligned} & P_{_{C}} = \left(0.113 + 0.0032 \cdot n_{_{A}} - \sum \Delta P\right)^{\!\!\!\!-2} \\ & V_{_{C}} = 17.5 + \sum \Delta V \end{aligned}$$

► N_A = number of atoms in the molecule

٠.,	TOTOGIC		
	Groups	ΔР	ΔV
-	out of a cycle		
	-CH3	-0,0012	65
	-CH2-	0	56
	>CH-	0,002	41
	>C<	0,0043	27
	=CH2	-0,0028	56
	=CH-	-0,0006	46
	>C=	0,0011	38
	=C=	0,0028	36
	in a cycle		
	-CH2-	0,0025	48
	>CH-	0,0004	38
	>C<	0,0061	27
	=CH-	0,0011	41
	=C<	0,0008	32

Heavy cut properties

FEDOR's method

$$T_{_{C}}=535\cdot log \sum \Delta T$$

Groups	ΔT
-CH3	1,79
-CH2-	1,34
>CH-	0,45
>C<	-0,22
=CH2	1,59
=CH-	1,4
>C=	0,89

Fluid Studies - PVT

Viscosity

Lohrenz-Bray-Clark's correlation

$$\begin{split} \rho_c' &= \frac{1}{V_c} = \frac{1}{\sum_i Z_i V_{ci}} \qquad \rho_r = \frac{\rho}{\rho_c'} \\ \xi_i &= \frac{T_{ci}^{1/6}}{M w_i^{1/2} \cdot P_{ci}^{2/3}} \qquad T_r = \frac{T}{\sum_i Z_i T_{ci}} \\ \mu_i^* &= \frac{34.10^{-5} T r_i^{0.94}}{\xi_i} \qquad Tr_i < 1.5 \\ \mu_i^* &= \frac{17.78 \cdot 10^{-5} \left(4.58 T r_i - 1.67\right)^{5/8}}{\xi} \qquad Tr_i \geq 1.5 \end{split}$$

Viscositymixture@T and low pressure

$$\boldsymbol{\mu}^* = \frac{\sum\limits_{i} Z_{_{i}} \boldsymbol{\mu}_{_{i}}^* \left(\boldsymbol{M} \boldsymbol{w}_{_{i}}\right)^{_{1/2}}}{\sum\limits_{.} Z_{_{i}} \left(\boldsymbol{M} \boldsymbol{w}_{_{i}}\right)^{_{1/2}}}$$

Lohrenz-Bray-Clark's correlation

$$\begin{split} \xi &= \frac{[\sum\limits_{i} \left(Z_{_{i}} T_{_{Ci}}\right)]^{_{1/6}}}{[\sum\limits_{i} \left(Z_{_{i}} M w_{_{i}}\right)]^{_{1/2}} \cdot [\sum\limits_{i} \left(Z_{_{i}} P_{_{Ci}}\right)]^{_{2/3}}} \\ \mu &= \mu^{*} + \frac{\left(0.1023 + a_{_{1}} \rho_{_{r}} + a_{_{2}} \rho_{_{r}}^{^{2}} + a_{_{3}} \rho_{_{r}}^{^{3}} + a_{_{4}} \rho_{_{r}}^{^{4}}\right)^{_{4}}}{\xi} - 10^{^{-4}} \\ a_{_{1}} &= 0.023364 \qquad a_{_{2}} = 0.058533 \\ a_{_{3}} &= -0.040758 \qquad a_{_{4}} = 0.0093324 \end{split}$$

Matching

Liquid: Heavy cut Vc

Vapor: Methane Vc

If necessary: a₁, a₂, a₃, a₄

Fluid Studies - PVT

Viscosity matching

Sampling

IFPTraining 171

Sampling

Fluid Studies - PVT

Two different groups of technique

Bottom hole sampling

- Without phase separation at the sampling point:
 - open hole: RFT, MDT, RCI, ...
 - cased hole: Wireline, DST

Surface sampling

- Without phase separation at the sampling point: well head, isokinetic,
- With phase separation: at separator conditions

RFT= Repeat Formation tester

MDT = Modular Dynamic Formation tester

DST = Drill Stem Test

Fluid Studies - PVT

Drill stem test

Figure 18-2 A drill stem test.

Repeat formation tester

RFT Pretest and Sampling Principle (Courtesy of Schlumberger)

Fluid Studies - PVT

Sampling

- ► There is always mud filtrate invasion near the wellbore.
- ► The main problem of Open Hole sampling is to reduce the amount of filtrate in the chambers
 - → Pump out module
 - → Analyzer module

Fluid Studies - PVT

Sampling

Pressure Drawdown versus sample quality

- ► Flowing well has pressure drop of Dp in near-wellbore region
- ▶ Sample taken at points 1 & 4 are single phase
- ▶ Sample taken at 2 & 3 are two-phase

Open Hole sampling

Advantages

- Precise depth sampling
- Characterization of the whole fluid column in one shot
- Small ΔP: monophasic sampling
- Avoid doing a DST

Drawbacks

- Contamination by mud filtrate
- Not representative for trace or aggressive components (Hg, H₂S, ...)
- ▶ Small sample volume, not sufficient for crude assay
- Risk of emulsion for heavy crude

IFPTraining 179

Fluid Studies - PVT

Sampling

Surface sampling

Reasons

- The difficulties in obtaining valid downhole samples in gascondensate wells has made surface sampling at the separator the most usual method of PVT sample taking.
- If it is known in advance what the 2. saturation pressure of the fluid is, and it happens to be below wellhead flowing pressure (at wellhead temperature)

Drawbacks

- ▶ The PVT laboratory has to re-create the original fluid from a liquid sample and a gas sample!!!
- ▶ The risks of contamination and leakage are doubled because of this.
- ▶ The successful recombination also relies on accurate and repeatable measurements of both gas and oil rates during the test.
- These measurements may require a revision in the light of the compositional analysis.

Bottom hole or surface sampling (main points)

Surface

- Metering
- ► Stability (T, P, Qo, Qg, ...)
- Separation efficiency
- ▶ Total lift of the liquid phase

Bottom hole

- ▶ Well conditioning (clean up, choke, flowing or shut in well, ...)
- Segregation (re opening of the well ...)
- Small sample volume

Fluid Studies - PVT

Sampling

Surface sampling: oil

- Constant GOR as long as:
 - flowing pressure > bubble point pressure
- Increasing GOR as soon as:
 - flowing pressure = bubble point pressure

Surface sampling: saturated oil

- ▶ Whatever the choke, the GOR increases
- ► Surface sampling is <u>not reliable</u>

Fluid Studies - PVT

IFPTraining

183

Sampling

Surface sampling: gas condensate

- ▶ With the 1/8" choke, liquid accumulates at the bottom of the well: increasing GOR
- ▶ With bigger chokes, the speed of the gas raises, the accumulated liquid is carried up by the gas: the GOR decreases
- ▶ The same sequence happens again many times: zigzag curve → sluggy flow
- ► The flow rate must be increased (speed > 3 m/s)

Separator efficiency

- ▶ If the separator is not correctly sized regarding the rates being put through it:
 - Carry over for gas condensate
 - Carry under for heavy / foamy oil

Fluid Studies - PVT

185

Sampling

Sampling

Fluid Studies - PVT

18

IFPTraining

189

Fluid Studies - PVT

Analysis

Decontamination: composition

Composition of OBM from two samples at the same depth

Composition of OBM from one sample based on regular HC distribution

Analysis

Decontamination: properties

Volume additivity:

- Mw
- BH and Std fluid density
- GOR
- Во

Extrapolation to zero pollution:

 Experimental points Linearity 275 Zero contamination 250 $R^2 = 0.9932$ 225 200 175 150 125 **Multi contamination** 10 Rate 20 30 rates

Fluid Studies - PVT

IFPTraining

Sampling

Multi contamination rates

MDT after an OBM drilling

Recommendations

Fluid Studies - PVT

19

Sampling

Assessment of PVT Reports

Sampling

Sample composition check

- Mole percentages sum to 100?
- Nitrogen content possible air contamination?
- H2S concentration
 - was any value reported at the wellsite
 - are the lab measured values comparable

Mass balance check

• Check reservoir fluid density and composition using process, CVD or differential data

Analysis

Analysis

Gas chromatography analysis

Analysis

Gas chromatography

Heavy fraction characterization

GPC analysis

IFPTraining 199

Measurements: analysis

Fluid Studies - PVT

"Heavy" fraction Criteria → Process

Boiling point → Distillation or gas chromatography

Molecular weight → Gel permeation chromatography

> Chemical family → **Liquid Chromatography**

Functional group → **Absorption spectrometry**

Fluid synthesis

Data from: geology, geochemistry, production, PVT studies...

Tool box

- Samples expertise
- **▶** Data standardization
- Statistical analysis
- ► EOS fluid model
- Static gravitational model
- ► GWD (gas show)

Fluid Studies - PVT

IFPTraining

203

Light ends lumping methods

C6 cut: lumping according to boiling temperature (36.5<Teb<69.2 °C)

Composants	М	Tc	Pc	w	Teb	% mol.
Cyclopentane	70,14	511,6	45,09	0,1923	322,05	0,0887
2-2 dimethyl butane	86,18	488,7	30,80	0,2310	322,85	0,0088
2-3 dimethyl butane	86,18	499,9	31,31	0,2473	331,15	0,0299
2 methyl pentane	86,18	497,5	30,10	0,2791	333,35	0,2629
3 methyl pentane	86,18	504,5	31,21	0,2750	336,35	0,1576
Normal hexane	86,18	504,4	29,69	0,2957	341,25	0,5191
C6 (Teb)	84,85	503,1	30,87	0,2781		1,0670

 ${\sf C6\,cut:lumping\,according\,to\,carbon\,number}$

Composants	М	Tc	Pc	W	Teb	% mol.
2-2 dimethyl butane	86,18	488,7	30,80	0,2310	322,85	0,0088
2-3 dimethyl butane	86,18	499,9	31,31	0,2473	331,15	0,0299
2 methyl pentane	86,18	497,5	30,09	0,2791	333,35	0,2629
3 methyl pentane	86,18	504,5	31,21	0,2750	336,35	0,1576
Normal hexane	86,18	504,4	29,69	0,2957	341,25	0,5191
Methylcyclopentane	86,18	532,7	37,90	0,2395	344,95	0,2628
Benzène	78,11	562,1	48,94	0,2100	353,25	0,2969
Cyclohexane	84,16	553,4	40,73	0,2144	353,85	0,4549
C6 (CN)	84,25	523,3	35,15	0,2521		1,9929

g/mol

M: molecular weight

Tc: critical temperature Kelvin
Pc: critical pressure bar

ω: acentric factor dimensionless

Teb: boiling point temperature Kelvin

Calculation of mixture properties

$$T_{C} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{Z_{i} Z_{j} T_{C_{i}} T_{C_{j}}}{\sqrt{P_{C_{i}} P_{C_{j}}}}}{\sum_{i=1}^{n} \frac{Z_{i} T_{C_{i}}}{P_{C_{i}}}} \qquad k_{nm} = \frac{\sum_{i=L_{n}}^{u} \sum_{j=L_{m}}^{u} Z_{i} Z_{j} M_{i} M_{j} k_{ij}}{\overline{M}_{n} \overline{M}_{m} \sum_{i=L_{n}}^{u} Z_{i} \sum_{j=L_{m}}^{u} Z_{j}}$$

$$P_C = \frac{T_C}{\sum_{i=1}^n \frac{Z_i T_{C_i}}{P_{C_i}}} \qquad \omega = \sum_{i=1}^n Z_i \omega_i$$

Fluid Studies - PVT

205

Pure components and light cuts

Pure compounds

Components	M	Tc	Pc	ω	% mol.
N2	28.01	126.2	33.94	0.0400	0.326
CO2	44.01	304.2	73.76	0.2250	2.590
C1	16.04	190.6	46.00	0.0115	64.685
C2	30.07	305.4	48.84	0.0908	8.998
C3	44.10	369.8	42.46	0.1454	5.118
iC4	58.12	408.1	36.48	0.1760	0.737
nC4	58.12	425.2	38.00	0.1928	2.035

Lumping according to the carbon number

Components	M	Tc	Pc	ω	% mol.
iC5	71.91	465.42	34.39	0.2231	0.754
nC5	72.15	469.60	33.74	0.2273	0.902
C6	84.25	623.33	35.15	0.2521	1.993
C7	97.46	558.34	32.98	0.2801	2.048
C8	111.24	586.58	29.01	0.3180	1.467
C9	125.80	610.23	26.29	0.3710	0.993
C10	139.16	635.02	24.82	0.4101	0.808

Lumping according to boiling point temperature

Components	M	Tc	Pc	ω	% mol.
iC5	72.15	460.36	33.84	0.2272	0.666
nC5	72.15	469.6	33.74	0.2273	0.902
C6	84.85	503.13	30.87	0.2781	1.067
C7	90.53	538.64	34.31	0.2683	1.905
C8	103.57	572.13	31.33	0.2817	2.084
C9	118.09	601.84	28.05	0.3523	1.130
C10	133.72	633.17	26.33	0.3851	1.211

Data standardization

	GECO	ELF	ELF CORELAB		
N2	0.37	0.35		0.36	
CO2	2.65	2.59		2.67	
C1	66.18	64.69		65.69	
C2	9.02	9.00		9.03	
C3	4.93	5.12		4.89	
iC4	0.72	0.74		0.70	
nC4	2.01	2.04		1.86	
iC5	0.67	0.75		0.6	
nC5	0.95	0.90		0.86	
C6	1.15	1.99		1.10	
С7	1.86	2.05		1.84	
C 8	1.95	1.47		2.08	
C 9	1.15	0.99		1.25	
C10+	6.38	7.35		7.07	
MC10+	272	236		255	

Fluid Studies - PVT

Measurements: analysis

"Heavy" fraction Criteria → Process

Boiling point → Distillation or gas chromatography

Molecular weight → Gel permeation chromatography

> Chemical family → **Liquid Chromatography**

Functional group → **Absorption spectrometry**

Data standardization

	GECO		ELF		CORELAB	
N2	0.37	0.37	0.35	0.35	0.36	0.36
CO2	2.65	2.62	2.59	2.59	2.67	2.65
C1	66.18	65.42	64.69	64.69	65.69	65.06
C2	9.02	8.92	9.00	9.00	9.03	8.94
C3	4.93	4.87	5.12	5.12	4.89	4.84
iC4	0.72	0.71	0.74	0.74	0.70	0.69
nC4	2.01	1.99	2.04	2.04	1.86	1.84
iC5	0.67	0.66	0.75	0.75	0.6	0.59
nC5	0.95	0.94	0.90	0.90	0.86	0.85
C6	1.15	1.13	1.99	1.07	1.10	1.08
C7	1.86	1.84	2.05	1.91	1.84	1.93
C8	1.95	1.94	1.47	2.08	2.08	2.13
C9	1.15	1.14	0.99	1.13	1.25	1.27
C10+	6.38	7.46	7.35	7.76	7.07	7.76
MC10+	272	236	236	236	255	236

Same lumping method - same Mw for the heavy cut (C10+)

IFPTraining

209

Fluid Studies - PVT

Liquid deposit

1: CM E (V @ P init)
2: CM E (V @ P dew)

3: CVD (V @ P dew)

4: CM E (V @ P)

Field cases

IFPTraining 211

Fluid Studies - PVT

Gas injection

Mechanisms

- According to gas and oil composition also reservoir conditions:
- No miscibility: two phases → sweeping efficiency depends on mobility ratio.

- ► According to gas and oil composition also reservoir conditions:
 - No miscibility: one phase → swelling effect depends on the undersaturated oil in the reservoir.

- ► According to gas and oil composition also reservoir conditions:
 - Miscibility is possible: obtaining of a progressive change → means Criticality.

215

Fluid Studies - PVT

Gas injection

- Oil: 40°API, BPP = 235 b, BHP = 360 b
- ► First matching on standard <u>oil only</u> measurements
- Experiment: gas separator injection in oil for several steps, bubble points measured
 - The model based on standard measurements is wrong
 - Phenomena are not well represented (L/V, composition, ...)
 - Necessity to take into account the effect of gas injection.
- Need for gas injection experiments, which represent the right phenomena: Miscibility and Criticality

Specific PVT experiment

- Swelling test Gas is added to the initial reservoir fluid, mixture is kept monophasic (increasing of exp. pressure)
 - Saturation pressure profile
 - Criticality location
 - Relative volume (swelling effect)
- ⇒ No phase separation, no material balance
- **⇒**Approach of criticality location
- ⇒Standard PVT for each mixture

IFPTraining

217

Fluid Studies - PVT

Gas injection

Specific PVT experiment

- Multiple contact test (MCT)Gas is added at constant pressure: equilibrium
 - One phase is withdrawn (gas or liquid)
 - Compositional profile
 - Liquid relative volume (ultimate vaporization)

- Represent the reservoir around injector
- ⇒ Experimental problems: equilibrium should be reached, phase separation V/L, Mat. Balance

Ternary diagram

First Contact Miscibility (FCMP)

Fluid Studies - PVT

IFPTraining

223

Miscibility

Multiple Contact Miscibility

"Front" miscibility (vaporizing gas drive)

The front gas vaporizes the oil intermediate components: gas becomes heavier & miscible

Multiple Contact Miscibility

"Rear" miscibility (condensing gas drive)

The rear gas intermediate components condense in the oil: oil becomes lighter & miscible

Fluid Studies - PVT

IFPTraining

225

Miscibility

Multiple Contact Miscibility

Miscible model

Interfacial tension:

▶ The following are modeled:

$$K_{rog} = F(\sigma)K_{rog_{nm}} + (1 - F(\sigma))K_{rog_{m}}$$

$$K_{rg} = F(\sigma)K_{rg_{nm}} + (1 - F(\sigma))K_{rg_{m}}$$
with
$$F(\sigma) = \left(\frac{\sigma}{\sigma_{0}}\right)^{1/n}$$

$$\sigma_0 \approx 1 dyne/cm$$
 $n = 2$
to be adjusted according to the situation

Fluid Studies - PVT

Miscible model

- Interfacial tension:
 - High values of n (10, 15) correspond to cases of low miscibility
 - For capillary pressure, Pcgo, the following equation is used:

$$P_{cgo} = P_{cgonm} \left(\frac{\sigma}{\sigma_o} \right)$$

▶ The flowrates are therefore proportional to the saturations

Gas injection

Matching

▶ Specific PVT experiments are performed:

Swelling test Multiple Contacts Test (MCT)

Specific matching methodology

- ▶ Initial oil
 - Classical volumetric matching:
 - Tc, Pc, ω of the heavy cut(s),
 - interaction between the C1 and the heavy cut(s),
 - volume shift.
- ▶ Equilibrium data
 - Matching of equilibrium data:
 - Interactions between the heavy cut(s) and all the other components.

Interfacial tension

Sugden and Mac Leod's method (pure components)

$$\sigma = \left(Pa \cdot \frac{\rho_L - \rho_V}{M} \right)^4$$

 $\rho_{\rm I}$: Liquid phase density g/cm³ ρ_{V} : Vapor phase density g/cm³ g/mole M: Molecular weight

 $(dyne/cm)^{1/4}$. $cm^3/mole$ Pa: Parachor

dyne / cm σ: Interfacial tension

The parachor (from the greek para(close to) and chor (space)) is a name created by Sugden and is an empirical constant that links the surface tension of a liquid to its molecular volume. It may be used to compare molecular volumes under the condition where they have the same surface tension.

σ:Interfacial tension

Sugden and Mac Leod's method (mixtures)

$$\sigma = \left\{ \sum_{i=1}^{n} Pa_i \cdot \left(x_i \frac{\rho_L}{M_L} - y_i \frac{\rho_V}{M_V} \right) \right\}^4$$

 X_i,Y_i : Molar fraction of component i in the liquid and vapor phases ρ_L,ρ_V : Liquid and vapor phase densities g/cm^3 M_L,M_V : Molecular weight of liquid and vapor phases g/mole Pa_i : Parachor of component i g/mole

g/cm³ g/mole (dyne/cm)¹/⁴. cm³/mole dyne/cm

Fluid Studies - PVT

IFPTraining

Matching of interfacial tension

Black-Oil model

Fluid Studies - PVT

Black-Oil model

V_{GB}

$$Bo = \frac{V_{OB}}{V_{OS}}$$

Definitions:

 T_s , P_s

Black-Oil model

Fluid Studies - PVT

IFPTraining

23

Black-Oil model

Black-Oil: correlations

Fluid Studies - PVT

IFPTraining

24:

Black-Oil: correlations

Differential vaporisation

Fluid Studies - PVT

Composite Bo

Comparison of Bo

The STO volume is a lot smaller for Diff than for Composite

Separators conditions

IFPTraining 245

Fluid Studies - PVT

Extended Black-Oil model

Definitions:

$$Bo = \frac{V_{OB}}{V_{OS}}$$

$$Bg' = \frac{V_{GB}}{V}$$

$$Rs = \frac{V_{GOS}}{V_{OS}}$$

$$Rv = \frac{V_{OGS}}{V_{GS}}$$

 T_s , P_s

Constant volume gas depletion

Fluid Studies - PVT

Black-oil quantities

WARNING!!

- ► For an oil:
 - Bo(P) and Rs(P) depend on the process
- ▶ For a gas:
 - Bg(P) is independent of the process
- ▶ For a condensate / wet gas:
 - Rv(P) and Bg'(P) depend on the process

Condensate content

Fluid Studies - PVT

IFPTraining 249

Composite black-oil quantities

► From a PVT study:

- process test
- differential liberation

1. P > P sat

- Boc (P) = V(P) / V(Psat) * Bop (Psat)
- Rsc(P) = Rsp(Psat)

2. P < P sat

- Boc(P) = Bod(P) * (Bop(Psat) / Bod(Psat))
- Rsc (P) = Rsp (Psat) Δ Rsd(P) * (Bop (Psat)/Bod (Psat))
- $\Delta Rsd(P) = Rsd(Psat) Rsd(P)$

Bo for a volatile oil

IFPTraining

Fluid Studies - PVT

Compositional data: characterization of cuts

	COMPOSITION AND PHYSICAL PROPERTIES								
Name	ZF %	Mw	Tc (K)	Pc (bar)	Acent fact	Vc (cm3)	Parachor		
GN1	71.61	16.12	190.31	45.88	0.0116	98.9	76.6995		
GN2	11.19	31.28	301.25	49.65	0.0957	143.0	105.4330		
GN3	7.11	48.95	387.44	40.49	0.1600	221.5	162.1903		
GN4	3.87	84.05	506.62	32.49	0.2621	351.9	268.0716		
GN5	2.27	122.66	618.15	26.34	0.3000	511.8	422.4642		
GN6	3.11	204.81	702.45	18.50	0.6000	975.0	481.6625		
GN7	0.84	340.00	787.25	17.50	0.9200	1320.0	799.5959		

	BINARY INTERACTION COEFFICIENTS								
	GN1	GN2	GN3	GN4	GN5	GN6	GN7		
GN1		-0.00155	0.00032	0.00890	0.01851	0.05840	0.06738		
GN2	-0.00155		0.00840	0.00137	0.00278	0.04802	0.04800		
GN3	0.00032	0.00840		0.00146	0.00276	0.02998	0.02999		
GN4	0.00890	0.00137	0.00146		0	0	0		
GN5	0.01851	0.00278	0.00276	0		0	0		
GN6	0.05840	0.04802	0.02998	0	0		0		
GN7	0.06738	0.04800	0.02999	0	0	0			

Why lumping?

- Because of the high number of components, the analysis of a large PVT report may reveal impractical on a small or overloaded machine
- The cost of EOS calculations are directly related to the number of components (N_c²) used to characterize the reservoir fluid studied.
- ▶ In reservoir simulation of the compositional type, the EOS calculations must be repeated numerously in each grid block and at each time step. (reducing the number of components \rightarrow reducing the number of equations)
- ▶ For anything but the simplest (or economically limited) reservoir cases, a complete compositional simulation using an extended fluid analysis becomes prohibitive in time and cost terms.
- What is required is a procedure, which will maintain the thermodynamic consistency while using a minimum number of representative components or 'pseudo-components'.

Fluid Studies - PVT

How to lump

According to the constraints due to

1. Simulation:

- Kind of fluid
- Production scheme (gas injection ...)
- Thermodynamic phenomena

2. Process:

- Surface treatment (particularly for the gas phase)
- Specifications

Rules for grouping

- K values with the same magnitude
 - $C_1 N_2$
 - $C_2 CO_2 C_3$

 - $C_4 C_5$ $C_6 C_{10} < C_6 C_7$ $C_{11}P$
- Similarity of properties
- Insensitivity of experiments to trial grouping
- **Example:**
 - Obvious candidates
 - iC_4 and $nC_4 \rightarrow C_4$
 - iC_5 and $nC_5 \rightarrow C_5$

IFPTraining 257

Fluid Studies - PVT

Lumping

- Lumping scheme (SPE 13119)
 - Properties chosen

$$\sqrt{a_{i}} = \frac{\sqrt{0.45724} R T_{ci}}{\sqrt{P_{ci}}}$$

$$b_{i} = \frac{0.0778 R T_{ci}}{P_{ci}}$$

$$m_{i} = f(\omega_{i}) \text{ and } M_{i}$$

Lumping algorithm

Fluid Studies - PVT

IFPTraining

Properties calculation

$$T_{C} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{Z_{i} Z_{j} T_{C_{i}} T_{C_{j}}}{\sqrt{P_{C_{i}} P_{C_{j}}}}}{\sum_{i=1}^{n} \frac{Z_{i} T_{C_{i}}}{P_{C_{i}}}} \qquad k_{nm} = \frac{\sum_{i=L_{n}}^{u} \sum_{j=L_{m}}^{u} Z_{i} Z_{j} M_{i} M_{j} k_{ij}}{\overline{M}_{n} \overline{M}_{n} \sum_{i=L}^{u} Z_{i} \sum_{j=L_{m}}^{u} Z_{j}}$$

$$P_{C} = \frac{T_{C}}{\sum_{i=1}^{n} \frac{Z_{i}T_{C_{i}}}{P_{C_{i}}}} \qquad \omega = \sum_{i=1}^{n} Z_{i}\omega_{i}$$

$$k_{nm} = rac{\sum_{i=L_{n}}^{D_{n}} \sum_{j=L_{m}}^{D_{m}} z_{i} z_{j} M_{i} M_{j} k_{ij}}{\overline{M}_{n} \overline{M}_{n} \sum_{i=L_{n}}^{U_{n}} z_{i} \sum_{j=L_{m}}^{U_{m}} z_{j}}$$

$$M = \sum_{i=1}^{n} X_i \cdot M_i$$

Results of a 7-component match

	Valeurs	Valeurs	Erreur
	mesurées	simulées	relative %
P _{rosée}	353.000	353.000	0.00
ρ _ν à P _{sat}	0.315	0.314	0.32
ρ _ν à P _{fond}	0.312	0.312	0.00
GOR sep	1631.800	1783.837	9.31
ρ _∟ sep	0.722	0.734	1.66
ρ _∟ Std	0.779	0.786	0.90
	Simulation du	dépôt liquide	
Pression bar	Valeurs	Valeurs	
abs	mesurées	simulées	
353.0	0.000	0.000	
350.0	0.135	0.259	Voir figure
334.5	1.111	1.553	
318.0	2.368	2.847	
281.0	5.075	5.459	
245.5	7.359	7.585	
201.0	9.574	9.654	
159.0	10.824	10.899	
120.0	11.360	11.381	
82.0	11.313	11.186	
42.0	10.722	10.008	

Fluid Studies - PVT

IFPTraining

Results of a 7-component match

Results of a 14 and a 7-component match

IFPTraining

Results for different groupings

Fluid Studies - PVT

Fluid Studies - PVT

1 -3040.0												
1 -3040.0 390.30 136.30 0.0420 320.10 352.48 0.0398 302.50 2053.38 8.1135 779.3	N°			T. fond °C				Vis. sat cPo	ρ sat Kg/m³	Rs m³/m³	Bo m³/m³	ρ std Kg/m³
2 -3060.0 390.90 136.80 0.0426 323.00 356.06 0.0404 306.90 1976.57 7.8420 780.1 3 -3080.0 391.60 137.30 0.0431 325.80 388.02 0.0411 310.40 1903.34 7.5692 780.1 4 -3100.0 392.20 137.80 0.0437 328.80 361.03 0.0422 314.80 1830.09 7.3038 780.6 5 -3125.8 393.10 138.40 0.0446 333.50 364.57 0.0435 320.70 1732.10 6.9467 781.1 6 -3151.6 393.90 139.10 0.0457 338.80 368.53 0.0450 327.50 1629.21 6.5746 781.8 8 -3203.2 395.70 140.40 0.0488 353.10 372.72 0.0472 335.20 1523.92 6.1910 782.6 8 -3203.2 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80				120.20					•	2052.20	0.4405	770.0
3 -3080.0 391.60 137.30 0.0431 325.80 358.02 0.0411 310.40 1903.34 7.5692 780.1 4 -3100.0 392.20 137.80 0.0437 328.90 361.03 0.0422 314.80 1830.09 7.3038 780.6 5 -3125.8 393.10 138.40 0.0446 333.50 364.57 0.0435 320.70 1732.10 6.9467 781.1 6 -3151.6 399.90 139.10 0.0457 338.80 368.53 0.0450 327.50 1629.21 6.5746 781.8 7 -317.4 394.80 139.70 0.0470 345.00 372.72 0.0472 335.20 1523.92 6.1910 782.6 8 -3203.2 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1261.60 52380 785.4 10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80												
4 -3100.0 392.20 137.80 0.0437 328.90 361.03 0.0422 314.80 1830.09 7.3038 780.6 5 -3125.8 393.10 138.40 0.0446 333.50 364.57 0.0435 320.70 1732.10 6.9467 781.1 6 -3151.6 393.90 139.10 0.0457 338.80 368.53 0.0450 327.50 1629.21 6.5746 781.8 7 -3177.4 394.80 139.70 0.0470 345.00 372.72 0.0472 335.20 1523.92 6.1910 782.6 8 -3203.2 395.70 140.40 0.0488 353.10 378.43 0.0502 345.60 1401.78 5.7477 784.0 9 -3229.0 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40												
5 -3125.8 393.10 138.40 0.0446 333.50 364.57 0.0435 320.70 1732.10 6.9467 781.1 6 -3151.6 393.90 139.10 0.0457 338.80 368.53 0.0450 327.50 1629.21 6.5746 781.8 7 -3177.4 394.80 139.70 0.0470 345.00 372.22 0.0472 335.20 1523.92 6.1910 782.6 8 -3203.2 395.70 140.40 0.0488 353.10 378.43 0.0502 345.60 1401.78 5.7477 784.0 9 -3229.0 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1261.60 5.2380 785.4 10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.25 0.0530 370.00 389.74 0.0580 374.40	_											
6 -3151.6 393.90 139.10 0.0457 338.80 368.53 0.0450 327.50 1629.21 6.5746 781.8 7 -3177.4 394.80 139.70 0.0470 345.00 372.72 0.0472 335.20 1523.92 6.1910 782.6 8 -3203.2 395.70 140.40 0.0488 353.10 378.43 0.0502 345.60 1401.78 5.7477 784.0 9 -3229.0 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1261.60 5.2380 785.4 10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40 1119.60 4.7238 787.1 12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0142 467.90												
7 -3177.4 394.80 139.70 0.0470 345.00 372.72 0.0472 335.20 1523.92 6.1910 782.6 8 -3203.2 395.70 140.40 0.0488 353.10 378.43 0.0502 345.60 1401.78 5.7477 784.0 9 -3229.0 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1261.60 5.2380 785.4 10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40 1119.60 4.7238 787.1 12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0990 387.40 1018.49 4.3588 788.7 13 -3269.8 398.10 142.02 0.1665 486.80 391.67 0.1246 384.60												
8 -3203.2 395.70 140.40 0.0488 353.10 378.43 0.0502 345.60 1401.78 5.7477 784.0 9 -3229.0 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1261.60 5.2380 785.4 10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40 1119.60 4.7238 787.1 12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0990 387.40 1018.49 4.3588 788.7 13 -3269.8 398.10 142.02 0.0996 468.70 395.93 0.1142 467.90 582.81 2.8162 799.7 14 -3280.0 398.57 142.27 0.1165 486.80 391.67 0.1246 384.60	_											
9 -3229.0 396.60 141.00 0.0515 364.10 384.18 0.0519 358.80 1261.60 5.2380 785.4 10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40 1119.60 4.7238 787.1 12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0990 387.40 1018.49 4.3588 788.7 14 -3280.0 398.57 142.27 0.1165 486.80 391.67 0.1246 384.60 519.96 2.6020 802.5 15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80												
10 -3239.2 396.96 141.25 0.0530 370.00 386.89 0.0542 365.80 1196.22 5.0008 786.2 11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40 1119.60 4.7238 787.1 12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0990 387.40 1018.49 4.3588 788.7 13 -3269.8 398.10 142.02 0.0996 468.70 395.93 0.1142 467.90 582.81 2.8162 799.7 14 -3280.0 398.67 142.27 0.1165 486.80 391.67 0.1246 384.60 519.96 2.6020 802.5 15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80												
11 -3249.4 397.33 141.51 0.0551 377.60 389.74 0.0580 374.40 1119.60 4.7238 787.1 12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0990 387.40 1018.49 4.3588 788.7 13 -3269.8 398.10 142.02 0.0996 468.70 395.93 0.1142 467.90 582.81 2.8162 799.7 14 -3280.0 398.57 142.27 0.1165 486.80 391.67 0.1246 384.60 519.96 2.6020 802.5 15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80 464.42 2.4159 805.6 17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40	_											
12 -3259.6 397.70 141.80 0.0585 386.00 393.59 0.0990 387.40 1018.49 4.3588 788.7 13 -3269.8 398.10 142.02 0.0996 468.70 395.93 0.1142 467.90 582.81 2.8162 799.7 14 -3280.0 398.57 142.27 0.1165 486.80 391.67 0.1246 384.60 519.96 2.6020 802.5 15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80 464.42 2.4159 805.6 17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40 446.53 2.3566 806.8 18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20	_											
13 -3269.8 398.10 142.02 0.0996 468.70 395.93 0.1142 467.90 582.81 2.8162 799.7 14 -3280.0 398.57 142.27 0.1165 486.80 391.67 0.1246 384.60 519.96 2.6020 802.5 15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80 464.42 2.4159 805.6 17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40 446.53 2.3566 806.8 18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20 431.80 2.3081 807.8 19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40				-								_
14 -3280.0 398.57 142.27 0.1165 486.80 391.67 0.1246 384.60 519.96 2.6020 802.5 15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80 464.42 2.4159 805.6 17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40 446.53 2.3566 806.8 18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20 431.80 2.3081 807.8 19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40 419.05 2.2664 808.7 20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00	12	-3259.6	397.70	141.80	0.0585	386.00	393.59	0.0990	387.40	1018.49	4.3588	788.7
15 -3290.2 399.06 142.53 0.1286 397.30 388.45 0.1334 493.90 487.17 2.4918 804.2 16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80 464.42 2.4159 805.6 17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40 446.53 2.3566 806.8 18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20 431.80 2.3081 807.8 19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40 419.05 2.2664 808.7 20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00 408.38 2.2316 809.5 21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40	13	-3269.8	398.10	142.02	0.0996	468.70	395.93	0.1142	467.90	582.81	2.8162	799.7
16 -3300.4 399.56 142.78 0.1389 505.10 386.00 0.1412 500.80 464.42 2.4159 805.6 17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40 446.53 2.3566 806.8 18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20 431.80 2.3081 807.8 19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40 419.05 2.2664 808.7 20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00 408.38 2.2316 809.5 21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40 398.64 2.2000 810.4 22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60	14	-3280.0	398.57	142.27	0.1165	486.80	391.67	0.1246	384.60	519.96	2.6020	802.5
17 -3310.6 400.06 143.04 0.1484 511.50 383.73 0.1484 506.40 446.53 2.3566 806.8 18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20 431.80 2.3081 807.8 19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40 419.05 2.2664 808.7 20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00 408.38 2.2316 809.5 21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40 398.64 2.2000 810.4 22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60 389.70 2.1710 811.2 23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 <td< td=""><td>15</td><td>-3290.2</td><td>399.06</td><td>142.53</td><td>0.1286</td><td>397.30</td><td>388.45</td><td>0.1334</td><td>493.90</td><td>487.17</td><td>2.4918</td><td>804.2</td></td<>	15	-3290.2	399.06	142.53	0.1286	397.30	388.45	0.1334	493.90	487.17	2.4918	804.2
18 -3320.8 400.57 143.29 0.1574 517.00 381.62 0.1553 511.20 431.80 2.3081 807.8 19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40 419.05 2.2664 808.7 20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00 408.38 2.2316 809.5 21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40 398.64 2.2000 810.4 22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60 389.70 2.1710 811.2 23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00	16	-3300.4	399.56	142.78	0.1389	505.10	386.00	0.1412	500.80	464.42	2.4159	805.6
19 -3331.0 401.09 143.55 0.1661 521.90 379.64 0.1615 515.40 419.05 2.2664 808.7 20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00 408.38 2.2316 809.5 21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40 398.64 2.2000 810.4 22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60 389.70 2.1710 811.2 23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00 374.56 2.1224 812.5 25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412	17	-3310.6	400.06	143.04	0.1484	511.50	383.73	0.1484	506.40	446.53	2.3566	806.8
20 -3341.2 401.61 143.80 0.1742 526.10 377.81 0.1678 519.00 408.38 2.2316 809.5 21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40 398.64 2.2000 810.4 22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60 389.70 2.1710 811.2 23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00 374.56 2.1224 812.5 25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00	18	-3320.8	400.57	143.29	0.1574	517.00	381.62	0.1553	511.20	431.80	2.3081	807.8
21 -3351.4 402.14 144.06 0.1823 530.10 376.13 0.1742 522.40 398.64 2.2000 810.4 22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60 389.70 2.1710 811.2 23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00 374.56 2.1224 812.5 25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	19	-3331.0	401.09	143.55	0.1661	521.90	379.64	0.1615	515.40	419.05	2.2664	808.7
22 -3361.6 402.67 144.31 0.1907 533.90 374.60 0.1799 525.60 389.70 2.1710 811.2 23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00 374.56 2.1224 812.5 25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	20	-3341.2	401.61	143.80	0.1742	526.10	377.81	0.1678	519.00	408.38	2.2316	809.5
23 -3371.8 403.20 144.57 0.1984 537.20 372.89 0.1855 528.40 381.67 2.1452 811.8 24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00 374.56 2.1224 812.5 25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	21	-3351.4	402.14	144.06	0.1823	530.10	376.13	0.1742	522.40	398.64	2.2000	810.4
24 -3382.0 403.74 144.82 0.2062 540.40 371.40 0.1913 531.00 374.56 2.1224 812.5 25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	22	-3361.6	402.67	144.31	0.1907	533.90	374.60	0.1799	525.60	389.70	2.1710	811.2
25 -3392.2 404.28 145.08 0.2142 543.50 369.85 0.1971 533.60 367.46 2.0997 813.1 26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	23	-3371.8	403.20	144.57	0.1984	537.20	372.89	0.1855	528.40	381.67	2.1452	811.8
26 -3402.4 404.83 145.33 0.2223 546.40 368.54 0.2026 636.00 361.11 2.0793 813.8 27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	24	-3382.0	403.74	144.82	0.2062	540.40	371.40	0.1913	531.00	374.56	2.1224	812.5
27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	25	-3392.2	404.28	145.08	0.2142	543.50	369.85	0.1971	533.60	367.46	2.0997	813.1
27 -3412.6 405.37 145.59 0.2300 549.00 367.18 0.2081 538.20 355.25 2.0607 814.4	26	-3402.4	404.83	145.33	0.2223	546.40	368.54	0.2026	636.00	361.11	2.0793	813.8
	27											
	28	-3422.8	405.92	145.84	0.2380	551.70	365.79	0.2137	540.40	349.51	2.0425	814.9

Fluid Studies - PVT

Pseudo process

Pseudo process

- ▶ Split factors are used in STAB to obtain a liquid without methane
- ▶ The following split factors are used to restore the composition of the condensate over several years,
 - N2: 100%, CO2: 100%, C1: 100%,
 - C2: 96%, C3: 58%, iC4: 13%, nC4: 10%
 - iC5: 0, nC5: 0,

IFPTraining 267

Lumping / ungrouping

Fluid Studies - PVT

 $\textbf{\textit{Hypothesis}} \hspace{0.1in} : \delta_{ij} \hspace{0.1in} \text{are zero}$

$$\Phi_{i}^{L} = \text{Ln} [f_{i}^{L}/(xi.P)] = C_{0}^{L} + C_{1}^{L} (a_{i})^{1/2} + C_{2}^{L} b_{i}$$

 $\Phi_{i}^{V} = \text{Ln} [f_{i}^{V}/(yi.P)] = C_{0}^{V} + C_{1}^{V} (a_{i})^{1/2} + C_{2}^{V} b_{i}$

At equilibrium : $f_i^L = f_i^V$

$$Ln K_i = Ln (y_i / x_i) = \Phi_i^L - \Phi_i^V$$

Ln
$$K_i = \Delta C_0 + \Delta C_1 (a_i)^{1/2} + \Delta C_2 b_i$$

Ln
$$K_i = C_0 + C_1 (a_i)^{1/2} + C_2 b_i$$

Fugacity

Fugacity coefficient of component k in a mixture (Peng-Robinson's EOS)

$$Log\left(\frac{f_k}{Px_k}\right) = \frac{b_k}{b_m}(Z-1) - Log(Z-B)$$

$$-\frac{A}{2\sqrt{2}B}\left(\frac{2\sum_{i}^{n}x_{i}a_{ik}}{a_{m}}-\frac{b_{k}}{b_{m}}\right)$$

$$\times Log \left(\frac{Z + 2.414B}{Z - 0.414B} \right) \qquad \text{with:} \quad a_{ik} = \sqrt{a_i \cdot a_k}$$

with:
$$a_{ik} = \sqrt{a_i \cdot a_k}$$

when:
$$\delta_{ik} = 0$$

Fluid Studies - PVT

IFPTraining

Lumping / ungrouping

- From:
 - 7 pseudo-components (z_i) to 16 components (Z_i)
- Equilibrium @ 7 pseudo-components:
 - We know: x_i , y_i and $\Theta \rightarrow k_i$
 - There are: 7 equations $Ln(k_i) = C_0 + C_1 (a_i)^{1/2} + C_2 b_i \rightarrow C_0$, C_1 and C_2
- Hypothesis:
 - Θ is the same for the 2 representations (7 and 16 comp.).
 - For the 16 components we know: Z_i , Θ , C_0 , C1 and C_2 so Z_i , Θ and K_i

$$X_i = Z_i / (1 + \Theta (K_i - 1))$$

$$Y_{i} = Z_{i} K_{i} / (1 + \Theta (K_{i} - 1))$$

Lumping / ungrouping

- ▶ For a condensate gas, a CVD can be numerically performed with a detailed fluid representation.
- ▶ So, the detailed compositional profile of the produced gas versus the reservoir pressure is obtained.
- ▶ At a given reservoir pressure, each pseudo component is ungrouped according to the new "true" proportions.

IFPTraining 271

Fluid synthesis

Field case / A

Field case / A

<u>Properties</u>	Initial A3 DST1 1992	A NI MD 200
BH conditions		
(52.7°C - 131.7b)		
Density (kg/m3)	822,3	833,
Viscosity (cPo)	2,39	4,2
Saturation pressure (bar)	65,4	32,0
Density (kg/m3)	814,6	826,
Viscosity (cPo)	2,12	3,4
Process test		
(40°C-6.7b / 40°C-1b / 15°C-1b)		
Total GOR	43,2	
Boi	1,1218	
Liquid density (kg/m3) @ 40°C	862,1	
Stock tank liquid density (kg/m3)	874,3	
Composition test		
(50°C-1b / 15°C-1b)		
Total GOR		20,:
Boi		1,10
Liquid density (kg/m3) @ 50°C		868,
Stock tank liquid density (kg/m3)		891

	Initial	A NE
<u>Components</u>	A3 DST1	MDT
	1992	2000
N2	0,23%	0,12%
CO2	0,67%	0,16%
C1	17,74%	6,91%
C2	4,48%	3,49%
С3	4,98%	4,65%
IC4	1,24%	1,27%
NC4	3,27%	3,40%
IC5	1,97%	2,26%
NC5	2,18%	2,48%
C6	4,47%	5,35%
С7	4,30%	5,57%
С8	4,03%	5,05%
С9	3,68%	4,97%
C10	3,59%	4,63%
C11P	43,17%	49,69%

IFPTraining

Field case / A

2 wells: A3 and A-NE

Very different compositions, very different PVT behaviors, about 10km apart with a possible sealing fault between them

2 different fluids: compartmentalization

Data from drilling

Problems during drilling, the well has remained "under water" for 2 months

2 different fluids: compartmentalization

Washing by the mud filtrate

EP - Fluid synthesis

Field case / A

Geochemistry study

same origin, same maturity, no biodegradation

Thermodynamic study

fluid model for A3, simulation of a multi-contact experiment between A3 fluid and water

Soreide & Withson EOS

Field case / A

EP - Fluid synthesis

	Initial	After water	A NE
<u>Properties</u>	A3 DST1	washing	MDT
	1992	(34 vol)	2000
BH conditions			
(52.7°C - 131.7b)			
Density (kg/m3)	822,3	844,8	833,6
Viscosity (cPo)	2,39	3,08	4,27
Saturation pressure (bar)	65,4	24,0	32,6
Density (kg/m3)	814,6	833,9	826,9
Viscosity (cPo)	2,12	2,60	3,48
Viscosity (CPO)	2,12	2,00	3,40
Process test			
(40°C-6.7b / 40°C-1b / 15°C-1b)			
Total GOR	43,2	20,2	
Boi	1,1218	1,0668	
Liquid density (kg/m3) @ 40°C	862,1	861,2	
Stock tank liquid density (kg/m3)	874,3	873,5	
Composition test			
(50°C-1b / 15°C-1b)			
(30 6-187 13 6-18)			
Total GOR		25,4	20,1
Boi		1,0890	1,1018
Liquid density (kg/m3) @ 50°C		861,3	868,8
Stock tank liquid density (kg/m3)		878,3	891

Components	After water washing (34 vol)	A NE MDT 2000
N2 CO2	0,05% 0,00%	0,12% 0,16%
C1	6,87%	6,91%
C2	3,54%	3,49%
C3	5,31%	4,65%
IC4	1,44%	1,27%
NC4	3,74%	3,40%
IC5	2,29%	2,26%
NC5	2,55%	2,48%
C6	5,22%	5,35%
C7	5,03%	5,57%
C8	4,72%	5,05%
C9	4,31%	4,97%
C10	4,21%	4,63%
C11P	50,59%	49,69%

Field case / A

From MDT measurement, a slight trend can be observed on C1 content, the saturation pressure and GOR as a function of the pumping duration before sampling

MDT number	Pumping	C1 content	BH density	Sat. Press.	GOR	ST liq. Dens.	Water
	duration	(mol %)	(kg/m3)	(abs. bar)	(Sm3/Sm3)	(kg/m3)	content
	_	_					
90	2h 30	6,5	837,2	30,4	19,7	891	50%
128	3h	6,9	833,6	32,6	20,1	891	37,50%
129	3h	7,2	833,7	32,9	20,1	894,1	40%

No conclusion was drawn from this single trend

IFPTraining 280

EP - Fluid synthesis

Field case / A

Conclusions

- ▶ The unexpected A-NE sample composition can be explained by a water washing process
- ▶ A representative sample was obtained after a longer pumping period duration

Later, the production data confirmed that the two fluids were identical (no compartmentalization)

Field case / V

EP - Fluid synthesis

Field case / V

- ► GOR measurements obtained from a lot of wells do not show any obvious trend according to perf depth and/or well location
- ► Highly undersaturated, the fluid exhibits a non classical GOR profile vs. depth: from 280 to 150 for only 70 m depth variation!

Different fluids: compartmentalization

Data from Geology – Geochemistry

2D Témis simulation on the Central Graben: accumulation conditions (P, T) (at the beginning (15 M years), saturated fluid with a gas-cap) Sedimentation speeding up during the last 5 M years

Paleo gas-cap dissolution

IFPTraining 284

EP - Fluid synthesis

Field case / V

Data from Geology – Geochemistry

Accumulation pressure # 250 b

Data from Seismic

Due to a gas "cloud" over the cap-rock It was difficult to interpret seismic data

Data from PVT study

BHP # 460 b

BPP: top 330 b, top -70 m # 270 b

Field case / V

Paleo gas-cap dissolution

EP - Fluid synthesis

Field case / V

Paleo gas-cap dissolution

Paleo gas-cap dissolution

EP - Fluid synthesis

288

Field case / V

Today, the calculated diffusion mean distance is about 500 m

- → only a part of the reservoir has been highly affected by the dissolution / diffusion phenomenon
 - → original fluid (not affected by the phenomenon) should be produced by the flank wells

Thermodynamic study

A differential liberation of a top fluid has been performed from bottom pressure to 250 b (accumulation pressure)

New calculation of the composition of the fluid obtained according to the depth in order to compare with the fluid flank

Gravitational model

IFPTraining 290

Field case / V

EP - Fluid synthesis

Component	Composition	Diff. Lib. @ 90°C	Composition	2/8	Composition	2/11
	top fluid	liquid phase (step 250 b)	37.5 m below	flank fluid	68 m below	flank fluid
			@ 90°C		@ 91.1℃	
N2	0,66	0,48	0,48	0,26	0,47	0,36
CO2	0,35	0,35	0,35	0,10	0,35	0,35
C1	54,51	46,40	46,05	44,86	45,77	45,68
C2	7,88	7,85	7,82	6,29	7,80	6,16
C3	5,40	5,76	5,75	5,92	5,73	6,17
IC4	0,76	0,84	0,84	0,88	0,83	0,83
NC4	2,81	3,16	3,15	3,54	3,15	3,50
IC5	1,00	1,15	1,15	1,34	1,15	1,54
NC5	1,55	1,80	1,80	1,89	1,80	2,17
C6	1,91	2,26	2,26	2,31	2,26	2,88
C7P	23,17	29,94	30,35	32,61	30,68	30,36

Conclusions

The classification of the GOR values can be explained according to:

the distance to the anticline axis, the depth, the fracturation level

IFPTraining

292

Field case / V

EP - Fluid synthesis

Deep offshore field

PVT data

MDT pressures, composition profile with depth

Continuous oil column

IFPTraining

294

EP - Fluid synthesis

Field case / G

Non classical evolution with depth of some parameters

Non classical evolution with depth of some parameters

EP - Fluid synthesis

9

Field case / G

Data from geochemistry

very mature underlying source rock producing gas

Data from GWD

non sealing cap-rock (C1 leakage)

External gas flux

Field case / G

EP - Fluid synthesis

IFPTraining 298

Field case / G

Field case / G

The non classical evolution has been explained and simulated by means of a partial gravitational model

IFPTraining 300

Fluid studies PVT (Sampling - PVT)

Quick sum up

Reservoir fluid classification

Gas system: T res > Tc

★ Initial reservoir Tres, Pres

L+V

Temperature

- ★ Surface separator Ts, Ps
- ☆ Critical point Tc, Pc

Water phase is not taken into account

Standard compositional grading with depth

Critical transition without any GOC

Due to the displacement of the critical points, T res (~constant) which is higher than the corresponding Tc at the top, becomes lower at the bottom -> continuous change from a gas phase to an oil phase without any interface (no GOC).

None of the initial bottom hole conditions enters the phase envelop > the reservoir fluid is always under monophasic state.

Sampling (1)

Cased Hole sampling

(Sampling after casing - during Testing (DST))

- Surface Sampling:
 - Well Head (monophasic)
 - Specific manifold
 - Separator
- Downhole Sampling:
 - Wireline
 - Chamber included in test assembly

Monophasic

Diphasic

Open Hole sampling

(Sampling before casing – while drilling – no flow at surface)

Downhole Sampling:

Monophasic

MDT type (Schlumberger), RDT (Halliburton), RCI (Baker)

Downhole Sampling: the fluid is monophasic at sampling point, in open hole sampling the

fluid may be polluted (after OBM drilling)

Sampling at surface: the fluid is generally diphasic

Fluid studies PVT

200

Sampling (2)

Reliable sampling

Whatever the technique: bottom hole flowing pressure > saturation pressure

▶ Bottom Hole Sampling (BHS):

- MDT type: fluid contamination (after an Oil Based Mud drilling) → suitable corrections to get the properties of the actual reservoir fluid
- DST: sampling tool location w.r.t perforations (segregation, liq-vap equilibrium)

Surface Sampling (separator):

- Constant GOR:
 - constant separator conditions (P, T)
 - lift up velocity for wet gases (v > 2-3 m/s to ensure the total liquid lift up)
- Heater prior the separator input (to avoid wax deposit)
- Separator efficiency (carry-over (wet gases), carry-under (heavy oils))

Sampling (3)

Open hole sampling after an OBM drilling

- ► Fluid sample (MDT type) is contaminated by the hydrocarbons added to the mud,
- ► Whatever the pumping duration (for clean out), zero pollution is generally impossible,
- So, PVT experiments will be carried out on a contaminated fluid.

Do not use raw data from PVT study without any appropriate corrections

In order to determine the whole set of

properties of the actual reservoir fluid

Bubble Point Pressure

Experiment

Linear profile

True BPP

Pollution rate

Zero pollution

6

At a given depth, take 3 samples at different pollution rates.

IFPTraining

Invaded zone

Contaminate

Analyze modul

Sample

module Pump-out

module

Reservoir

fluid

307

Sampling (4)

Fluid studies PVT

PVT experiments for oil

- Constant mass expansion
 - bubble point pressure

Multi-stage separation

- initial oil composition
- initial oil density
- initial oil process Rs
- stock Tank Oil (STO) properties

Differential vaporization fluid properties vs Pressure

- differential Bo function of P
- differential Rs function of P
- **STO** properties

IFPTraining

PVT experiments for gas condensate

Constant mass expansion (CME)

Constant volume depletion (CVD)

- very close to the actual behavior
- produced gas composition function of P

Mechanisms

1

According to gas and oil composition also reservoir conditions:

No miscibility: one phase → <u>swelling effect</u> depends on the undersaturated oil in the reservoir

2 According to gas and oil composition and also reservoir conditions:

No miscibility: two phases →the <u>sweeping efficiency</u> depends on the mobility ratio

Front or fingerings

Progressive change from gas to oil

(3)

According to gas and oil composition and also reservoir conditions:

Miscibility is possible: obtaining of a <u>progressive change</u> → means Criticality

IFPTraining

011

Fluid studies PVT

Definitions (1)

When the oil and gas reservoir phases run through surface facilities

For oil reservoir

Bo = V oil / STO

Rs = Std Gas 2 / STO

For gas reservoir

Bg' = V gas / Std Gas 1

Rv = cgr = condensates / Std Gas 1

Bg = V gas / V gas in Std cond

- ▶ Volumes at surface (1b/15°C) depend on the process scheme; so, Bo, Rs, Bg' and Rv depend on the process.
- Bg does not depend on the process.
- Except for dry gas, Bg is theoretical.
 - Bg = (Z * T) / (288.15 * P) T in K, P in bar
 - Bg ~ 1/P

P in bar

► As the reservoir pressure changes, oil and gas phases in the reservoir change too; so, Bo, Rs, Bg', Rv and Bg are functions of the reservoir pressure.

Definitions (2)

For oil reservoir

Rs = Std Gas 2 / STO

Bo = V oil / STO

IFPTraining

Fluid studies PVT

Calculation of STOIIP

How to calculate the Stock Tank Oil Initially In Place?

0.5

0

100

► The geologist knows:

- the rock volume at reservoir condition (BHC)
- the porosity $(\Phi) \rightarrow$ the fluid volume at BHC
- the initial water saturation (Swi) and net to gross
 (Hu/Ht) → the HC volume at BHC

STOIIP = HC volume @ BHC / initial process Bo

100

Bubble point pressure

300

200

Pressure (bar)

Liquid — Vapor equilibrium

Thermodynamics constraints

- As per thermodynamics, at Liquid-Vapor equilibrium, some of the state functions display a minimum,
- In particular for G = H T.S (T, P system) \rightarrow dG = S.dT + V.dP = 0
- So that, for each component, Fugacity in liquid phase = Fugacity in vapor phase

Equation of state (EOS)

- Since Soave's improvement (1972) the fugacities can be accurately calculated by means
- The most widely used EOS is that of Peng & Robinson (1976):

$$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{a}(\mathbf{T})}{\mathbf{V}(\mathbf{V} + \mathbf{b}) + \mathbf{b}(\mathbf{V} - \mathbf{b})}$$

Fluid studies PVT

Peng – Robinson's Equation

Pure component

$$\mathbf{P} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{a}(\mathbf{T})}{\mathbf{V}(\mathbf{V} + \mathbf{b}) + \mathbf{b}(\mathbf{V} - \mathbf{b})}$$

$$\begin{aligned} a(T) &= a \left(T_c \right) f(T) \\ a\left(T_c \right) &= \Omega_a \frac{R^2 T_c^2}{P_c} \\ \Omega_a &= 0.4572 \end{aligned} \qquad \begin{aligned} b &= b \left(T_c \right) \\ b \left(T_c \right) &= \Omega_b \frac{R T_c}{P_c} \\ \Omega_b &= 0.0778 \end{aligned}$$

$$\begin{aligned} \mathbf{b} &= \mathbf{b} \left(\mathbf{T_c} \right) \\ \mathbf{b} \left(\mathbf{T_c} \right) &= \Omega_b \frac{\mathbf{R} \, \mathbf{T_c}}{\mathbf{P_c}} \\ \Omega_b &= \mathbf{0.0778} \end{aligned}$$

$$f(T) = \left[1 + m\left(1 - \sqrt{T_r}\right)\right]^2$$

$$\omega < 0.49 \quad (nC_{10})$$

$$m = 0.37464 + 1.54226 \ \omega - 0.26992 \ \omega^2$$

$$\omega > 0.49$$

$$m = 0.379642 + 1.48503 \ \omega - 0.164423 \ \omega^2 + 0.016666 \ \omega^3$$

Mixtures

$$P = \frac{RT}{V - b_m} - \frac{a_m(T)}{V(V + b_m) + b_m(V - b_m)}$$

$$b_{m} = \sum_{i=1}^{n} x_{i} \cdot b_{i}$$

$$a_{m} = \sum_{i=1}^{n} \sum_{i=1}^{n} x_{i} \cdot x_{j} \cdot (1 - k_{ij}) \cdot \sqrt{a_{i} \cdot a_{j}}$$

 $k_{_{ij}} = Binary interaction coefficients$

Fluid model

- ▶ The fluid model is the whole characterization of all the components (Mw, Tc, Pc, w, volume shift, Vc, Parachor ...) and the binary interaction coefficient matrix (Kij) obtained to perfectly fit the experimental data (PVT report).
- ▶ The fit is obtained by tuning the physical properties of the "heavy" cut(s), the Kij (between the lightest and the heaviest components) and the volume shift of the lightest and the heaviest component.
 - Tc, Pc, ω , Kij to match the equilibrium (saturation pressure, composition),
 - Volume shift to match the volumes,
 - Vc to match the viscosity,
 - Parachor to match the interfacial tension.

BINARY INTERACTION COEFFICIENTS								
Kij	GN1	GN2	GN3	GN4	GN5	GN6	GN7	
GN1		-0,00155	0,00032	0,00890	0,01851	0,05840	0,06738	
GN2	-0,00155		0,00840	0,00137	0,00278	0,04802	0,04800	
GN3	0,00032	0,00840		0,00146	0,00276	0,02998	0,02999	
GN4	0,00890	0,00137	0,00146		0	0	0	
GN5	0,01851	0,00278	0,00276	0		0	0	
GN6	0,05840	0,04802	0,02998	0	0		0	
GN7	0,06738	0,04800	0,02999	0	0	0		

COMPOSITION AND PHYSICAL PROPERTIES								
Name	ZF %	Mw	Tc (K)	Pc (bar)	Acent fact	Vol shift	Vc (cm ³)	Parachor
GN1	71,61	16,12	190,31	45,88	0,0116	-0,10	98,9	76,6995
GN2	11,19	31,28	301,25	49,65	0,0957	0	143,0	105,4330
GN3	7,11	48,95	387,44	40,49	0,1600	0	221,5	162,1903
GN4	3,87	84,05	506,62	32,49	0,2621	0	351,9	268,0716
GN5	2,27	122,66	618,15	26,34	0,3000	0	511,8	422,4642
GN6	3,11	204,81	702,45	18,50	0,6000	0	975,0	481,6625
GN7	0,84	340,00	787,25	17,50	0,9200	0,04	1320,0	799,5959

IFPTraining 317