Spatial dynamics: simulations & data

Austin Burt Imperial College London

Simulation model of driving Y

- Discrete generations
- Stepping-stone array of islands, equal dispersal to all 4 neighbours, edges are absorbing
- Density-independent and -dependent
 (Deredec) survival to adulthood within islands
- Stochastic:

Survival to adulthood	Binomial	
Mating	Binomial	
Dispersal	Multinomial	
Fecundity	Poisson	

Simulation model of driving Y

- 50 x 50 grid (2500 islands)
- 50 HEG-bearing males introduced into 10 randomly chosen islands

Baseline parameter values

Juveni	ile mortality (u _i)	0.168da ⁻¹	Density-dependent param. (a)	106	
Lengt	h of juvenile stage (T _j)	16da	Emigration rate (u)	0.01gen ⁻¹	
Fecun	idity (f)	200gen ⁻¹	$R_m = (1-u_j)^{T_j} f / 2 = 5.3$	m _{crit} = I	$-1/(2R_m)=0.91$

HEG-free equilibrium: $a(R_m-1) = 4.3M$ zygotes (43K adults)

Not included

- No spatial, temporal heterogeneity in R_m (favourable & unfavourable habitats, seasonality, etc.)
- No spatial, temporal heterogeneity in dispersal (asymmetries, seasonality, long-distance, roads, etc.), life history
- No overlapping generations

Estimates of movement from population differentiation

Compilation of studies using microsatellites

- 485 estimates from ~17 studies of An. gambiae s.l.
- Intercept ~ 0.06; corresponds to Nm ~ 4
- Needs full error-checking & analysis

Estimates of movement from population differentiation

Compilation of studies using microsatellites

Genomics will add new data

- 485 estimates from ~17 studies of An. gambiae s.l.
- Intercept ~ 0.06; corresponds to Nm ~ 4
- Needs full error-checking & analysis

Parameterization (I)

An. arabiensis

- Speed of species invasion ~ 50 100km / yr; ~ 4 8km/gen
- No invasion into unsuitable habitat
- Inferred mechanisms:
 - Wind possibly important in preventing movement south from Natal
 - Several 'long jumps' most probably by boat, train or automobile

Quick-and-dirty analysis:

$$4 = 2\sqrt{(DR_m)} = 2\sqrt{(10D)}$$

 $D \sim 0.4 \text{km}^2/\text{gen}$

$$\sigma = \sqrt{(2D)} \sim 0.9 \text{km/gen}$$

Parameterization (2)

Spread of insecticide resistance: N1575Y mutation in voltage-gated sodium channel:

single recent origin (as judged by haplotype analysis)

found over a range of > 2000km (e.g., 1000km from midpoint)

Frequency in Burkina Faso

Jones et al. 2012 PNAS 109:6614-9

selection coefficient:

 $s \sim 0.08$

Quick-and-dirty analysis:

Suppose spread 1000km in 50 yrs

ie 20km/yr; I.7km/gen

$$1.7 = 2\sqrt{(Ds)} = 2\sqrt{(0.08D)}$$

 $D \sim 9 \text{km}^2/\text{gen}$

$$\sigma = \sqrt{(2D)} = 4 \text{km/gen}$$

Could selection historically have been much stronger (e.g., agricultural use)??

If s ~ 0.3,
$$\sigma$$
 ~ 2km/gen