Occupancy and multi-state occupancy projection models SSA 200

Site occupancy projection

Essentially a weighted coin flip

Probability of heads (1) = Occupancy probability (P)

P can be a function of environmental factors

Year t +1 Year t Site Occupied Invasive fish community affects P Natural persistence probability (P, near 1) Stream Length affects P

Round tail and Headwater Chub site occupancy model

Hydrology/flood frequency affects P Recolonize?

These effects and relationships are estimated from data (i.e., the needs analysis) or elicited from experts

Multiple replicates

Spread sheet example

Multistate projection models

$$\sum T_t^{i,j} = 1$$

Multiple population states

Low abundance

Multiple population states

Matrix formulation

$$\begin{bmatrix} N_{t+1}^e \\ N_{t+1}^L \\ N_{t+1}^H \end{bmatrix} = \begin{bmatrix} T^{ee} & T^{eL} & T^{eH} \\ T^{Le} & T^{LL} & T^{LH} \\ T^{He} & T^{HL} & T^{HH} \end{bmatrix} \times \begin{bmatrix} N_t^e \\ N_t^L \\ N_t^H \end{bmatrix}$$

Matrix formulation

$$\begin{bmatrix} N_{t+1}^e \\ N_{t+1}^L \\ N_{t+1}^H \end{bmatrix} = \begin{bmatrix} T^{ee} & T^{eL} & T^{eH} \\ T^{Le} & T^{LL} & T^{LH} \\ T^{He} & T^{HL} & T^{HH} \end{bmatrix} \times \begin{bmatrix} N_t^e \\ N_t^L \\ N_t^H \end{bmatrix}$$

$$N_{t+1}^{e} = N_{t}^{e} T^{ee} + N_{t}^{L} T^{eL} + N_{t}^{H} T^{eH}$$

$$N_{t+1}^{L} = N_{t}^{e} T^{Le} + N_{t}^{L} T^{LL} + N_{t}^{H} T^{LH}$$

$$N_{t+1}^{H} = N_{t}^{e} T^{He} + N_{t}^{L} T^{HL} + N_{t}^{H} T^{HH}$$

Example output

	Time										
Replicate	1	2	3	4	5	6	7	8	9	10	
1	2	2	2	2	1	1	2	2	1	1	
2	2	1	1	1	0	0	0	0	0	0	
3	2	2	2	2	2	2	2	2	2	2	
4	2	2	2	2	2	1	1	2	2	2	
5	2	0	0	0	0	0	0	0	0	0	
6	2	2	2	2	2	2	2	2	2	2	
7	2	1	2	2	2	2	2	2	2	2	
8	2	2	2	2	2	2	2	2	2	2	
9	2	2	2	2	2	1	1	1	1	1	
10	2	1	1	1	2	2	2	1	1	1	
											Γ

Environmental effects on probabilities

Chub Model Parameters

General Ecological Model for 2 AZ Chubs Model inputs

Conditional Logical functions

 Link population parameters to environmental conditions by discrete logic function

"If average rainfall is less than x, then occupancy probability is y"

Continuous functions

Stream length and persistence probability

Measurement error

- Simulation data assume perfect knowledge of the system
 - o i.e., no partial observability/observation error in monitoring data
- May be important to add observation error to output from the models
 - Recovery planning
 - Section 7 planning
 - Delisting decisions
- Observed system response will not match predictions
 - This is the case no matter, but account for all uncertainties might be important

Modify model outputs

Randomized adjustments to model output data

Spread sheet example

Questions?

