	[Total	No.	of Printed Pages	:2
J	LOW	110.	of I imea I ages.	•

MEIC-205 M.E./M.Tech., II Semester

Examination, June 2013

Advance Controlled Systems

Time: Three Hours

Maximum Marks: 70

Note: Attempt any *five* questions. All questions carry equal marks. Wherever mentioned the signal 1(t) means unit step function of time.

- 1. Discretize the given continuous-time state dynamics $\dot{x} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ 8 \end{bmatrix} u$ with output $y = x_1$ and sampling time T = 0.02 second. Determine the eigen-values of the discretized system.

 RGPVONLINE.COM
- 2. The state space description of a homogeneous second order system is described as, $\dot{x} = \begin{bmatrix} 4 & 1 \\ -24 & -10 \end{bmatrix} x$. Determine eigen-values and eigen-vectors. Compute $P^{-1}AP$. What will be the nature of phase trajectory if $x(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

- 3. Given $\dot{x} = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} x + \begin{bmatrix} 2 \\ 10 \end{bmatrix} u$ with output $y = x_1$. Let the error $e = z_1 = y_R y$ and the control law is $u = Kz_1$ with K = 10. Derive the description for error state dynamics. Obtain the error state vector solution when $Y_R = 1(t)$.
- 4. Given the same system as in Q. 3. Define error $e = y_R y$. Use feedback control u = Ke to regulate the error $e \to 0$. Determine the range of K for closed loop stability by using Lyapunov method.

RGPVONLINE.COM

- 5. Use state feedback control $u = -[k_1 \ k_2]x$ in the same state space description given in Q.3. Determine the ranges of k_1 and k_2 for closed loop stability by using Routh-Hurwitz criteria.
- 6. Given $\dot{x} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ 8 \end{bmatrix} u$ with output $y = x_1$. Let the error $e = z_1 = y_R y$ and $z_2 = \dot{z}_1 + 2u$, then design the VSC so that the error dynamics follow the sliding surface $\sigma = \begin{bmatrix} 8 & 1 \end{bmatrix} z$. 14
- 7. A nonlinear system is described by $\dot{x}_1 = x_2 + 5x_1^2$ Obtain a control law by using Lyapunov function so that the state $x \to 0$ in steady state.
- 8. Derive the conditions of optimality for the cost function $J\langle x\rangle = \int_{t_0}^{t_f} \phi(x, \dot{x}, t) dt$ without any constaints. Discuss about the boundary conditions.