SS-ZG548: ADVANCED DATA MINING

Lecture-02: Incremental Mining

Dr. Kamlesh Tiwari Assistant Professor

Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA

Jan 07, 2018

(WILP @ BITS-Pilani Jan-Apr 2018)

 Data mining is a process supporting knowledge discovery in databases (KDD). KDD involves collection of data, preprocessing, transformation, data mining, and interpretation.

- Data mining is a process supporting knowledge discovery in databases (KDD). KDD involves collection of data, preprocessing, transformation, data mining, and interpretation.
- Three parts Model, Preference, and Search

- Data mining is a process supporting knowledge discovery in databases (KDD). KDD involves collection of data, preprocessing, transformation, data mining, and interpretation.
- Three parts Model, Preference, and Search
- Two broad categories

- Data mining is a process supporting knowledge discovery in databases (KDD). KDD involves collection of data, preprocessing, transformation, data mining, and interpretation.
- Three parts Model, Preference, and Search
- Two broad categories 1) Predictive if we focus on new data involving classification, regression, time series analysis, and prediction

- Data mining is a process supporting knowledge discovery in databases (KDD). KDD involves collection of data, preprocessing, transformation, data mining, and interpretation.
- Three parts Model, Preference, and Search
- Two broad categories 1) Predictive if we focus on new data involving classification, regression, time series analysis, and prediction 2) Descriptive when we want to understand/describe the data itself involving clustering, summarization, association rules, or sequence discovery

- Data mining is a process supporting knowledge discovery in databases (KDD). KDD involves collection of data, preprocessing, transformation, data mining, and interpretation.
- Three parts Model, Preference, and Search
- Two broad categories 1) Predictive if we focus on new data involving classification, regression, time series analysis, and prediction 2) Descriptive when we want to understand/describe the data itself involving clustering, summarization, association rules, or sequence discovery
- Differs from traditional query processing
 - Query may not be well formed
 - Data may be preprocessed and modified
 - Output could be an analysis that may not be a subset of data

Database Data Mining Statistics Algorithms Machine Learning

Issues:

Human interaction,

Database Data Mining Statistics Algorithms Machine Learning

Issues:

Human interaction, Overfitting,

Database Data Mining Statistics Algorithms Machine Learning

Issues:

Human interaction, Overfitting, Outliers,

Database Data Mining Statistics Algorithms Machine Learning

Issues:

Human interaction, Overfitting, Outliers, Large dataset,

Discipline that includes many fields Information Retrieval Database Statistics Algorithms Machine Learning

Issues:

Human interaction, Overfitting, Outliers, Large dataset, High dimension,

Issues:

Human interaction, Overfitting, Outliers, Large dataset, High dimension, Multimedia data,

Algorithms

Discipline that includes many fields Information Retrieval Database Data Mining Statistics

Issues:

Human interaction, Overfitting, Outliers, Large dataset, High dimension, Multimedia data, missing data,

Machine Learning

Algorithms

Discipline that includes many fields Information Retrieval Database Data Mining Statistics

Issues:

Human interaction, Overfitting, Outliers, Large dataset, High dimension, Multimedia data, missing data, irrelevant data,

Machine Learning

Algorithms

Information Retrieval Database Data Mining Statistics

Issues:

Human interaction, Overfitting, Outliers, Large dataset, High dimension, Multimedia data, missing data, irrelevant data, noisy data,

Machine Learning

Database Data Mining Statistics Algorithms Machine Learning

Issues:

Human interaction, Overfitting, Outliers, Large dataset, High dimension, Multimedia data, missing data, irrelevant data, noisy data, changing data.

Association rules tries to do linked analysis.

•
$$I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$$
 and $t_i \subseteq I$

Association rules tries to do linked analysis.

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained

Association rules tries to do linked analysis.

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent

Association rules tries to do linked analysis.

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent
- Apriori analysis

Association rules tries to do linked analysis.

Example: Whether sames products are selling together?

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent
- Apriori analysis

Let's do it:

 $t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$ and minimum support count be 2

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1 }	3 ✓
{2 }	3 ✓
{3 }	4 🗸
4	1
{5}	4 🗸

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1 }	3 ✓
{2 }	3 ✓
{3}	4 🗸
4	1
{5 }	4 🗸

Symb	Sup
{1,2}	1
{1,3}	3 ✓
{1,5}	2 🗸
{2,3}	2 🗸
{2,5}	3 ✓
{3,5}	3 ✓

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1}	3 ✓
{2}	3 ✓
{3}	4 🗸
4 }	1
{5}	4 🗸

Sup
1
3 ✓
2 🗸
2 🗸
3 ✓
3 ✓

Sup
1
1
2 🗸
2 🗸

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1}	3 ✓
{2}	3 ✓
{3}	4 🗸
4 }	1
{5 }	4 🗸

Sup
1
3 ✓
2 🗸
2 🗸
3 ✓
3 ✓

Sup
1
1
2 🗸
2 🗸

Symb	Sup
{1,2,3,5}	1

Mathematical model of Association Rule Mining

• Let $I = \{i_1, i_2, ..., i_m\}$ be set of items

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$
- An association rule is an implication of the form $X \Rightarrow Y$, where $X \subset I$, $Y \subset I$ and $X \cap Y = \phi$

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$
- An association rule is an implication of the form $X \Rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$ and $X \cap Y = \phi$
- An association rule $X \Rightarrow Y$ has a **support** s in set T if s% of the transactions in T contains $X \cup Y$

$$support(X \Rightarrow Y) = P(X \cup Y)$$

Mathematical model of Association Rule Mining

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$
- An association rule is an implication of the form $X \Rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$ and $X \cap Y = \phi$
- An association rule X ⇒ Y has a support s in set T if s% of the transactions in T contains X ∪ Y

$$support(X \Rightarrow Y) = P(X \cup Y)$$

 The association rule X ⇒ Y holds in the transaction set T with confidence c if c% of the transactions in T that contain X also contain Y.

$$confidence(X \Rightarrow Y) = P(Y|X)$$

An Example

Find **support** and **confidence** for $X \Rightarrow Y$ in following database

(Z) (Z) (X,Y) (X,Y) (X,Y) (X,Z) (X,Z) (Z) (Z)

• support = $P(X \cup Y)$

An Example

Find **support** and **confidence** for $X \Rightarrow Y$ in following database

(Z) (Z) (Z) (X,Y) (X,Y) (X,Y) (X,Z) (X,Z) (Z) (Z)

• support =
$$P(X \cup Y)$$

• confidence =
$$P(Y|X)$$

An Example

Find **support** and **confidence** for $X \Rightarrow Y$ in following database

(Z) (Z) (Z) (X,Y) (X,Y) (X,Y) (X,Z) (X,Z) (Z) (Z)

• support =
$$P(X \cup Y)$$

• confidence =
$$P(Y|X)$$

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

• Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.
 - Second part is straight forward

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.
 - Second part is straight forward
 - Most of the research interest lies in solving the first part

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.
 - Second part is straight forward
 - Most of the research interest lies in solving the first part

Prior work includes *Apriori*, *DHP*, *partition based*, *TreeProjection*, FP-Tree. and constraint-based ones.

 Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂
- In next data scan, the set of frequent 2-item sets L_2 are identified

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂
- In next data scan, the set of frequent 2-item sets L_2 are identified
- The whole process continues iteratively until there is no more candidate item sets

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂
- In next data scan, the set of frequent 2-item sets L_2 are identified
- The whole process continues iteratively until there is no more candidate item sets

Example:

Consider $I = \{A, B, C, D, E, F\}$ and transaction $T = \{t_1 = (A, B, C), t_2 = (A, F), t_3 = (A, B, C, E), t_4 = (A, B, D, F), t_5 = (C, F), t_6 = (A, B, C), t_7 = (A, B, C, E), t_8 = (C, D, E), t_9 = (B, D, E), \}$ and the minimum support be greater then 3.

```
T_1=(A,B,C)

T_2=(A,F)

T_3=(A,B,C,E)

T_4=(A,B,D,F)

T_5=(C,F)

T_7=(A,B,C,E)

T_8=(C,D,E)

T_9=(B,D,E)
```

Consider transactions T

 T_1 =(A,B,C) T_2 =(A,F) T_3 =(A,B,C,E) T_4 =(A,B,D,F) T_5 =(C,F) T_6 =(A,B,C) T_7 =(A,B,C,E) T_8 =(C,D,E) T_9 =(B,D,E)

	Item	Supp
	{A}	6
Scan T	{B}	6
$$ C_1	{C}	6
•	{D}	3
	ξE}	6
	ξF}	3

Consider transactions T

 $T_1=(A,B,C)$ $T_2=(A,F)$ $T_3=(A,B,C,E)$ $T_4=(A,B,D,F)$ $T_5=(C,F)$ $T_6=(A,B,C)$ $T_7=(A,B,C,E)$ $T_8=(C,D,E)$ $T_9=(B,D,E)$

	Item	Supp
ĺ	{A}	6
L_1	{B}	6
	{C}	6
	{E}	6

Item
{A,B} {A,C} C ₂ {A,E} {B,C} {B,E} {C,E}

	Item	Supp
	{A}	6
L ₁	{B}	6
	{C}	6
	{E}	6

	Item		Item	Supp
	{A,B}		{A,B}	5
	{A,C}	Scan T	{A,C}	4
C_2	{A,E}	$\longrightarrow c_2$	{A,E}	2
-	{B,C}	-	{B,C}	4
	{B,E}		{B,E}	3
	{C,E}		{C,E}	3

Consider transactions T

Supp

5

4

4

Item

 $\{A,B\}$

{A,C}

B,C

Consider transactions T

_		Soon T		
c.	Item	Ocall I	Item	Supp
C3	{A,B,C}	7 03	{A,B,C}	4

Consider transactions T

 $T_1 = (A,B,C)$ $T_2 = (A,F)$ $T_3 = (A,B,C,E)$ $T_4 = (A,B,D,F)$ $T_5 = (C,F)$ $T_6 = (A,B,C)$ $T_7 = (A,B,C,E)$ $T_8 = (C,D,E)$ $T_9 = (B,D,E)$

Thank You!

Thank you very much for your attention!

Queries ?