Source:

1 | Definitions

1.1 affine subset

An affine subset of a vector space V is of the form U + v where $U \subseteq V$ and $v \in V$.

1.2 | product space

The product of some vector spaces $V_1 \times \cdots \times V_n$ is the set of lists of vectors with one from each respective space:

$$\{(v_1,\ldots,v_n): v_1 \in V_1,\ldots,v_n \in V_n\}$$

1.3 | quotient space

A quotient space V/U is the set of affine subsets $\{U+v:v\in V\}$ (although some of those affine subsets are equivalent).

1.4 | equivalence relation

An equivalence relation is a set of elements that are considered equivalent (equal to eachother). For example, in a vector space U, $U+0=U+u \forall u \in U$.

Exr0n · 2020-2021 Page 1