

Tidy work in Tidyverse

R Foundation for Life Scientists

Marcin Kierczak

Typical Tidyverse Workflow

The tidyverse curse?

Navigating the balance between base R and the tidyverse is a challenge to learn. -Robert A. Muenchen

source: http://www.storybench.org/getting-started-with-tidyverse-in-r/

Introduction to Pipes

Rene Magritt, *La trahison des images*, Wikimedia

- Let the data flow.
- Ceci n'est pas une pipe -- magrittr
- The %>% pipe:

```
x %>% f = f(x)
x %>% f(y) = f(x, y)
x %>% f %>% g %>% h = h(g(f(x)))
```

instead of writing this:

```
data <- iris
data <- head(data, n=3)</pre>
```

write this:

Tibbles

head(as_tibble(iris))

```
## # A tibble: 6 × 5
    Sepal.Length Sepal.Width Petal.Length P
##
           <db1>
                       <db1>
                                    <db1>
## 1
                        3.5
                                      1.4
             5.1
## 2
             4.9
                         .3
                                      1.4
## 3
             4.7
                         3.2
                                      1.3
## 4
             4.6
                         3.1
                                      1.5
## 5
                         3.6
                                      1.4
## 6
             5.4
                         3.9
                                      1.7
```

- **tibble** is one of the unifying features of tidyverse,
- it is a better data.frame realization,
- objects data.frame can be coerced to tibble using as_tibble()

```
tibble(
  x = 1,  # recycling
  y = runif(8),
  z = x + y^2,
  outcome = rnorm(8)
)
```

```
## # A tibble: 8 × 4
                 z outcome
       X V
    <dbl> <dbl> <dbl>
                   <dbl>
## 1 1 0.195 1.04 -0.847
## 2 1 0.276 1.08 -0.780
## 3 1 0.171 1.03 0.454
## 4
       1 0.887
              1.79 0.189
## 5
       1 0.575
              1.33
                    2.85
## 6 1 0.726
              1.53 1.97
## 7 1 0.0971 1.01 -0.354
## 8
       1 0.879
              1.77 0.675
```

More on Tibbles

- When you print a tibble:
 - o all columns that fit the screen are shown,
 - first 10 rows are shown,
 - o data type for each column is shown.

```
as_tibble(cars) %>% print(n = 5)
```

- my_tibble %>% print(n = 50, width = Inf),
 options(tibble.print_min = 15, tibble.print_max = 25),
 options(dplyr.print_min = Inf),
- options(tibble.width = Inf)

Subsetting Tibbles


```
vehicles <- as tibble(cars[1:5,])</pre>
vehicles[['speed']]
vehicles[[1]]
vehicles$speed
# Using placeholders
vehicles %>% .$dist
vehicles %>% .[['dist']]
vehicles %>% .[[2]]
## [1] 4 4 7 7 8
## [1] 4 4 7 7 8
## [1] 4 4 7 7 8
## [1] 2 10 4 22 16
## [1] 2 10 4 22 16
## [1] 2 10 4 22 16
```

Note! Not all old R functions work with tibbles, than you have to use as.data.frame(my_tibble).

Tibbles are Stricter than data.frames


```
cars <- cars[1:5,]</pre>
cars$spe # partial matching
## [1] 4 4 7 7 8
vehicles$spe # no partial matching
## Warning: Unknown or uninitialised column: `spe`.
## NUI I
cars$gear
## NULL
vehicles$gear
## Warning: Unknown or uninitialised column: `gear`.
## NULL
```

Loading Data

In tidyverse you import data using readr package that provides a number of useful data import functions:

- read_delim() a generic function for reading *-delimited files. There are a number of convenience wrappers:
 - read_csv() used to read comma-delimited files,
 - o read_csv2() reads semicolon-delimited files, read_tsv() that reads tab-delimited files.
- read_fwf for reading fixed-width files with its wrappers:
 - fwf_widths() for width-based reading,
 - fwf_positions() for positions-based reading and
 - o read_table() for reading white space-delimited fixed-width files.
- read_log() for reading Apache-style logs. The most commonly used read_csv() has some familiar arguments like:
- skip -- to specify the number of rows to skip (headers),
- col_names -- to supply a vector of column names,
- comment -- to specify what character designates a comment,
- na -- to specify how missing values are represented.

Importing Data Using readr

When reading and parsing a file, readr attempts to guess proper parser for each column by looking at the 1000 first rows.

```
tricky_dataset <- read_csv(readr_example('challenge.csv'))

## Rows: 2000 Columns: 2
## — Column specification
## Delimiter: ","
## dbl (1): x
## date (1): y
##

## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.</pre>
```

OK, so there are some parsing failures. We can examine them more closely using problems() as suggested in the above output.

Looking at Problematic Columns


```
(p <- problems(tricky_dataset))

## # A tibble: 0 × 5
## # i 5 variables: row <int>, col <int>, expected <chr>, actual <chr>, file <chr>
```

OK, let's see which columns cause trouble:

```
p %$% table(col)
##
```

Looks like the problem occurs only in the \times column.

Fixing Problematic Columns

So, how can we fix the problematic columns?

1. We can explicitely tell what parser to use:

As you can see, we can still do better by parsing the y column as date, not as character.

Fixing Problematic Columns cted.

12/30

But knowing that the parser is guessed based on the first 1000 lines, we can see what sits past the 1000-th line in the data:

It seems, we were very unlucky, because up till 1000-th line there are only integers in the x column and NAs in the y column so the parser cannot be guessed correctly. To fix this:

```
## Rows: 2000 Columns: 2
## — Column specification
## Delimiter: ","
## dbl (1): x
## date (1): y
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Writing to a File

The readr package also provides functions useful for writing tibbled data into a file:

```
write_csv()write_tsv()write_excel_csv()
```

They always save:

- text in UTF-8,
- dates in ISO8601

But saving in csv (or tsv) does mean you loose information about the type of data in particular columns. You can avoid this by using:

- write_rds() and read_rds() to read/write objects in R binary rds format,
- use write_feather() and read_feather() from package feather to read/write objects in a fast binary format that other programming languages can access.

Basic Data Transformations with dplyr

Let us create a tibble:

```
(bijou <- as tibble(diamonds) %>% head(n = 10))
```

```
## # A tibble: 10 × 10
    carat cut color clarity depth table price x
##
    <dbl> <ord> <ord> <ord> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <
##
  1 0.23 Ideal E SI2 61.5
                                5.5
                                     326 3.95 3.98 2.43
##
  2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
##
  3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
##
  4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
##
                   SI2 63.3 58 335 4.34 4.35 2.75
##
  5 0.31 Good J
   6 0.24 Very Good J
                  VVS2 62.8 57 336 3.94 3.96 2.48
##
  7 0.24 Very Good I
                  VVS1 62.3 57 336 3.95 3.98 2.47
##
                  SI1 61.9 55 337 4.07 4.11 2.53
##
  8 0.26 Very Good H
                          65.1 61 337 3.87 3.78 2.49
  9 0.22 Fair F
##
                   VS2
                           59.4
                                  61 338 4 4.05 2.39
## 10 0.23 Very Good H
                   VS1
```


Picking Observations using filter()


```
bijou %>% filter(cut == 'Ideal' | cut == 'Premium', carat >= 0.23) %>% head(n = 5)

## # A tibble: 2 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63</pre>
```

Be careful with floating point comparisons! Also, rows with comparison resulting in NA are skipped by default!

```
bijou %>% filter(near(0.23, carat) | is.na(carat)) %>% head(n = 5)
```

```
## # A tibble: 3 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> = 3.95 3.98 2.43
## 2 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 3 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
```

Rearranging Observations using arrange()

bijou %>% arrange(cut, carat, desc(price))

```
## # A tibble: 10 × 10
##
    carat cut color clarity depth table price x
    <dbl> <ord> <ord> <ord> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <
##
   1 0.22 Fair E
                     VS2 65.1
                                      337 3.87 3.78
##
                                  61
  2 0.23 Good E
                     VS1 56.9 65
##
                                      327 4.05 4.07
                                                   2.31
  3 0.31 Good
                7
                     SI2 63.3 58
##
                                      335 4.34 4.35
                                                   2.75
                          59.4 61
##
  4 0.23 Very Good H
                   VS1
                                      338 4
                                              4.05 2.39
                         62.8
##
  5 0.24 Very Good J
                   VVS2
                                57
                                      336 3.94 3.96
                                                   2.48
##
   6 0.24 Very Good I
                   VVS1
                         62.3
                                57
                                      336 3.95
                                              3.98
                                                   2.47
##
  7 0.26 Very Good H
                   SI1 61.9 55
                                      337 4.07
                                              4.11
                                                   2.53
  8 0.21 Premium E
##
                  SI1 59.8 61 326 3.89 3.84 2.31
                        62.4 58 334 4.2 4.23 2.63
   9 0.29 Premium I VS2
##
                            61.5 55 326 3.95 3.98 2.43
## 10 0.23 Ideal E
                     SI2
```

The NA s always end up at the end of the rearranged tibble.

Selecting Variables with select()

Simple select with a range:

Exclusive select:

```
bijou %>% select(-(x:z)) %>% head(n = 4)
```

```
## # A tibble: 4 × 7

## carat cut color clarity depth table price

## (dbl> <ord> <ord> <ord> <dbl> <dbl> <int>
## 1 0.23 Ideal E SI2 61.5 55 326

## 2 0.21 Premium E SI1 59.8 61 326

## 3 0.23 Good E VS1 56.9 65 327

## 4 0.29 Premium I VS2 62.4 58 334
```

Selecting Variables with select() cted.

rename is a variant of select, here used with everything() to move x to the beginning and rename it to var_x

```
bijou %>% rename(var x = x) %>% head(n = 5)
## # A tibble: 5 × 10
  carat cut color clarity depth table price var x y z
   <dbl> <ord> <ord> <ord> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <
## 1 0.23 Tdeal F
                   ST2 61.5 55
                                     326 3.95 3.98
## 2 0.21 Premium F
                 SI1 59.8 61
                                    326 3.89 3.84 2.31
## 3 0.23 Good
                 VS1 56.9 65 327 4.05 4.07 2.31
                 VS2
                       62.4 58 334 4.2 4.23 2.63
## 4 0.29 Premium T
## 5 0.31 Good
                        63.3 58 335 4.34 4.35 2.75
              J 5T2
```

use everything() to bring some columns to the front:

```
bijou %>% select(x:z, everything()) %>% head(n = 4)
```

```
## # A tibble: 4 × 10
   x v z carat cut color clarity depth table price
   <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 3.95 3.98 2.43 0.23 Ideal
                                SI2 61.5
                                            55 326
## 2 3.89 3.84 2.31 0.21 Premium E
                                SI1
                                     59.8 61 326
## 3 4.05 4.07 2.31
                 0.23 Good
                              VS1 56.9 65 327
   4.2 4.23 2.63 0.29 Premium T
                              VS2
                                      62.4
                                             58
                                                334
```

Create/alter new Variables with mutate


```
bijou %>% mutate(p = x + z, q = p + y) %>% select(-(depth:price)) %>% head(n = 5)
```

```
## # A tibble: 5 × 9
## carat cut color clarity x y z p q
## <dbl> <ord> <ord> <ord> <ord> <dbl> <dbl>
```

or with transmute (only the transformed variables will be retained)

```
bijou %>% transmute(carat, cut, sum = x + y + z) %>% head(n = 5)
```

```
## # A tibble: 5 × 3

## carat cut sum

## <dbl> <ord> <dbl>
## 1 0.23 Ideal 10.4

## 2 0.21 Premium 10.0

## 3 0.23 Good 10.4

## 4 0.29 Premium 11.1

## 5 0.31 Good 11.4
```

Group and Summarize

Other data manipulation tips


```
bijou %>% group_by(cut) %>% summarize(count = n())
```

When you need to regroup within the same pipe, use ungroup().

The Concept of Tidy Data

Data are tidy sensu Wickham if:

- each and every observation is represented as exactly one row,
- each and every variable is represented by exactly one column,
- thus each data table cell contains only one value.

Usually data are untidy in only one way. However, if you are unlucky, they are really untidy and thus a pain to work with...

Tidy Data

Are these data tidy?

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	Species	variable	value
5.1	3.5	1.4	0.2	setosa	setosa	Sepal.Length	5.1
4.9	3.0	1.4	0.2	setosa	setosa	Sepal.Length	4.9
4.7	3.2	1.3	0.2	setosa	setosa	Sepal.Length	4.7

Sepal.L.W	Petal.L.W	Species	
5.1/3.5	1.4/0.2	setosa	
4.9/3	1.4/0.2	setosa	
4.7/3.2	1.3/0.2	setosa	

Sepal.Length	5.1	4.9	4.7	4.6
Sepal.Width	3.5	3.0	3.2	3.1
Petal.Length	1.4	1.4	1.3	1.5
Petal.Width	0.2	0.2	0.2	0.2
Species	setosa	setosa	setosa	setosa

Tidying Data with tidyr::pivot_longer

If some of your column names are actually values of a variable, use pivot_longer (replaces
gather):

```
bijou2 %>% head(n = 5)
## # A tibble: 5 x 3
## cut `2008` `2009`
## <ord> <int> <dbl>
## 1 Ideal 326 330.
## 2 Premium 326 330.
## 3 Good 327 331.
## 4 Premium 334 338.
## 5 Good 335 339.
bijou2 %>%
 pivot longer(c(`2008`, `2009`), names to = 'year', values to = 'price') %>%
 head(n = 5)
## # A tibble: 5 × 3
## cut year price
## <ord> <chr> <dbl>
## 1 Ideal 2008 326
## 2 Ideal 2009 330.
## 3 Premium 2008
                326
## 4 Premium 2009
                330.
## 5 Good 2008
                327
```

Tidying Data with tidyr::pivot_wider

If some of your observations are scattered across many rows, use pivot_wider (replaces gather):

bijou3

```
## # A tibble: 9 × 5
  cut price clarity dimension measurement
   <ord> <int> <ord> <chr>
                                  <db1>
## 1 Ideal 326 SI2
                                 3.95
                     X
## 2 Premium 326 SI1
                                 3.89
                     X
## 3 Good 327 VS1 x
                                 4.05
## 4 Ideal 326 SI2
                                   3.98
                     V
## 5 Premium 326 SI1
                                   3.84
                     V
## 6 Good 327 VS1
                                 4.07
                     V
## 7 Ideal 326 SI2
                                 2.43
                     7
## 8 Premium 326 SI1
                                  2.31
## 9 Good 327 VS1
                                   2.31
```

```
bijou3 %>%
  pivot_wider(names_from=dimension, values_from=measurement) %>%
  head(n = 4)
```

```
## # A tibble: 3 × 6
## cut price clarity x y z
## <ord> <int> <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 2.43
## 2 Premium 326 SI1 3.89 3.84 2.31
## 3 Good 327 VS1 4.05 4.07 2.31
```

Tidying Data with separate

If some of your columns contain more than one value, use separate:

```
bijou4
## # A tibble: 5 × 4
## cut price clarity dim
## <ord> <int> <ord> <chr>
## 1 Ideal 326 SI2 3.95/3.98/2.43
## 2 Premium 326 SI1 3.89/3.84/2.31
## 3 Good 327 VS1 4.05/4.07/2.31
## 4 Premium 334 VS2 4.2/4.23/2.63
## 5 Good 335 SI2 4.34/4.35/2.75
bijou4 %>%
```

```
separate(dim, into = c("x", "y", "z"), sep = "/", convert = T)
```

```
## # A tibble: 5 × 6
## cut price clarity x y z
## <ord> <int> <ord> <dbl> <dbl> <dbl>
## 1 Ideal 326 SI2 3.95 3.98 2.43
## 2 Premium 326 SI1 3.89 3.84 2.31
## 3 Good 327 VS1 4.05 4.07 2.31
## 4 Premium 334 VS2 4.2 4.23 2.63
## 5 Good 335 SI2 4.34 4.35 2.75
```

Tidying Data with unite

If some of your columns contain more than one value, use separate:

```
## # A tibble: 5 x 7

## cut price clarity_prefix clarity_suffix x y z

## <ord> <int> <chr> <chr> <chr> </chr> 1 Ideal 326 SI 2 3.95 3.98 2.43

## 2 Premium 326 SI 1 3.89 3.84 2.31

## 3 Good 327 VS 1 4.05 4.07 2.31

## 4 Premium 334 VS 2 4.2 4.23 2.63

## 5 Good 335 SI 2 4.34 4.35 2.75
```

bijou5 %>% unite(clarity, clarity_prefix, clarity_suffix, sep='')

```
## # A tibble: 5 × 6

## cut price clarity x y z

## <ord> <int> <chr> <dbl> <dbl> <dbl> <dbl> 

## 1 Ideal 326 SI2 3.95 3.98 2.43

## 2 Premium 326 SI1 3.89 3.84 2.31

## 3 Good 327 VS1 4.05 4.07 2.31

## 4 Premium 334 VS2 4.2 4.23 2.63

## 5 Good 335 SI2 4.34 4.35 2.75
```

Note: that sep is here interpreted as the position to split on. It can also be a *regular expression* or a delimiting string/character. Pretty flexible approach!

Completing Missing Values Using complete

missing_stones %>% complete(cut, continent)

```
## # A tibble: 12 × 4
  cut continent clarity price
  <ord> <chr> <ord> <int>
  1 Fair AusOce VS2 337
## 2 Fair Eur <NA> NA
## 3 Good AusOce SI2 335
## 4 Good Eur VS1 327
  5 Very Good AusOce VVS2 336
  6 Very Good AusOce SI1 337
## 7 Very Good Eur VVS1 336
## 8 Very Good Eur VS1
                        338
## 9 Premium AusOce VS2 334
## 10 Premium Eur SI1
                          326
## 11 Ideal AusOce <NA>
                       NA
## 12 Ideal Eur
                  SI2
                          326
```

Some Other Friends

- stringr for string manipulation and regular expressions,
- forcats for working with factors,
- **lubridate** for working with dates.

Thank you. Questions?

