Wstęp do programowania Zestaw 7 — funkcje

Zadania realizowane na zajęciach

Zadanie 1. Napisać program, który wyznaczy pole i obwód prostokąta o długościach boków podanych przez użytkownika. W programie zdefiniować i wywołać następujące funkcje:

- o nazwie policz_pole, która zwraca pole prostokąta na podstawie długości boków przekazanych w argumentach.
- o nazwie policz_obwod, która zwraca obwód prostokąta na podstawie długości boków przekazanych w argumentach.

Zadanie 2. W programie zdefiniować funkcję o nazwie linia wypisującą na ekranie linię zbudowaną z podanej liczby znaków, liczbę znaków oraz typ znaku przekazać w parametrach. Następnie, wykorzystując funkcję linia, wyświetlić poniższe kształty, przy czym wysokość kształtu podaje użytkownik (przykłady dla n=4).

(a)	(b)	(c)
0000	Α	%
0000	AA	%%
0000	AAA	%%%
0000	AAAA	%%%%

Zadanie 3. Napisać funkcję, która dostaje jako argumenty pięć liczb całkowitych typu int i zwraca jako wartość sumę podanych liczb. Funkcję napisać tak, aby można było jej podać także mniejszą liczbę argumentów. W programie zastosować funkcję w ten sposób, że użytkownik podaje liczby a,b,c,d,e, a pogram oblicza sumy a+b, a+b+c, a+b+c+d, a+b+c+d+e.

Zadanie 4. Stosując mechanizm przeciążania napisać funkcje, które dostają jako argument liczbę całkowitą \mathbf{n} i zwracają jako wartość liczbę 2^n . Zilustrować działanie funkcji w programie.

Zadanie 5. Napisać rekurencyjną funkcję zwracającą dla otrzymanej w argumencie nieujemnej liczby całkowitej n wartość elementu ciągu Fibonacciego o indeksie n. Zilustrować działanie funkcji w programie.

Zadania do rozwiązania w domu

Zadanie 6. W programie zdefiniować funkcje o nazwie cale_na_cm przeliczającą długość w calach przekazaną w parametrze na długość w centymetrach. Wykorzystać napisaną funkcję do przeliczenia wartości podanych przez użytkownika.

Zadanie 7. Napisać program, który wczytuje ze standardowego wejścia liczbę całkowitą **n** i wypisuje na standardowe wyjście wartość bezwzględną z **n**. Do rozwiązania zadania nie używać funkcji bibliotecznych za wyjątkiem operacji wejścia/wyjścia. W programie użyć samodzielnie zaimplementowanej funkcji liczącej wartość bezwzględną.

Zadanie 8. Napisać program, który wczytuje ze standardowego wejścia nieujemną liczbę całkowitą \mathbf{n} ($\mathbf{n} > 2$) i wypisuje na standardowym wyjściu największą liczbę \mathbf{k} taką, że \mathbf{k} dzieli \mathbf{n} i $\mathbf{k} < \mathbf{n}$. Algorytm wyszukiwania liczby \mathbf{k} spełniającej powyższe warunki umieścić w oddzielnej funkcji.

Zadanie 9. Napisać funkcję, która wyznacza liczbę cyfr zadanej liczby całkowitej.

Zadanie 10. Napisać funkcję, która dostaje jako argumenty pięć liczb całkowitych typu int i zwraca jako wartość iloczyn podanych liczb. Funkcję napisać tak, aby można było jej podać także mniejszą liczbę argumentów. W programie zastosować funkcję w ten sposób, że użytkownik podaje liczby a,b,c,d,e, a pogram oblicza iloczyny a*b, a*b*c, a*b*c*d, a*b*c*d*e.

Zadanie 11. Napisać funkcję, która dostaje jako argumenty pięć liczb całkowitych typu unsigned int i zwraca jako wartość maksimum podanych liczb. Funkcję napisać tak, aby można było jej podać także mniejszą liczbę argumentów. W programie zastosować funkcję w ten sposób, że użytkownik podaje liczby a,b,c,d,e, a pogram oblicza maksima max{a,b}, max{a,b,c}, max{a,b,c,d}, max{a,b,c,d,e}.

Zadanie 12. Napisz rodzinę dwuargumentowych funkcji pot, z których każda jako argumenty otrzymuje liczbę n i nieujemną liczbę całkowitą m typu unsigned int (zakładamy, że co najmniej jeden z argumentów jest różny od zera) a następnie zwraca jako wartość n^m . Przeciążyć funkcję pot dla n o typach: double, int, unsigned int. Wynik zwrócony przez każdą z funkcji pot powinien być tego samego typu co n.

Zadanie 13. Rozbuduj program z zadania 10 z zestawu 5 tak, aby można było wykonać powyższe obliczenia dla n sędziów, którzy mają do dyspozycji punkty z przedziału [a,b] (a<b).

Zadanie 14. Napisać program wypisujący na ekranie n kolejnych wyrazów ciągu $(a_n)_{n\in\mathbb{N}}$ spełniającego równanie rekurencyjne

$$\begin{cases} a_0 = 1 \\ a_1 = 2 \\ a_{n+2} = 5a_n - 6a_{n+1}, \end{cases}$$

gdzie n jest liczbą naturalną wprowadzaną przez użytkownika.