$$A = \begin{bmatrix} 1 & e \\ e \end{bmatrix} & K(A) = \|A\| \|A^{-1}\| \\ A^{-1} = \begin{bmatrix} 1 & e \\ e \end{bmatrix} & \|A\|_{1} = \max\{1, e\} = Y \\ \|A^{-1}\|_{2} = Y \\ \|A^{-1}\|_{2} = Y \\ \|A^{-1}\|_{2} = \max\{1, e\} = Y \\ \|A^{-1}\|_{2} = Y \\ \|A^{-1}\|_{2} = \max\{1, e\} = Y \\ \|A^{-1}\|_{2} = Y \\ \|$$

ا تفتی در ماترس سمت راست است. $AX = b + \Delta b$ X*=[4, -14, 4.] : pin b de = in 1 / 10 / 10 / 10 $\widetilde{X} = \widetilde{A}'(b+\Delta b)$ $\widetilde{X} = \begin{bmatrix} Y_{1} \circ Y_{1} & Y_{2} & Y_{3} & Y_{3} \end{bmatrix}$ $\widetilde{X} = \begin{bmatrix} Y_{1} \circ Y_{1} & Y_{3} & Y_$ $\Delta X = \widetilde{X} - \chi^* = \begin{bmatrix} 0/01^{1} \\ -0/10 \end{bmatrix} \qquad \frac{\|\Delta X\|_{1}}{\|X\|_{1}} = \frac{0/100}{100} = \frac{0/000}{100} = \frac{0/000}{1$ ا رُج ب فعالما ي كم داعل عزوه راكتم إلولنم ماره تعيات جواب دستفاعال را يز تعين كنم : K(A) $\frac{\|\Delta b\|_1}{\|b\|_1} \leq \frac{\|\Delta x\|_1}{\|x\|_1} \leq K_1(A) \frac{\|\Delta b\|_1}{\|b\|_1} \frac{K(A) = V + \Lambda}{\|\Delta b\|_1} \frac{\|\Delta b\|_1}{\|b\|_1} \frac{V + \Lambda}{\|b\|_1} \frac{V + \Lambda}{$ کر کرای بالی بزرگی است و بعن ار کواننم کا ۱۲ روس را کاری بزرگی است و بعن ار کواننم کا ۱۲ روس را کاری میلیرت به طور کای بیمالت و بدوس است) (مارس) صلیرت به طور کای بیمالت و بدوس است) (مارس) صلیرت به طور کای بیمالت و بدوس است) (مارس) صلیرت به طور کای بیمالت و بدوس است) (مارس) صلیرت به طور کای بیمالت و بدوس است) $X = (A+\Delta A)^{-1}(b+\Delta b) = [P',0YIA, -YY,1KVY, ro,10YA]$ $\Delta X = \widetilde{X} - X^* = \left[\frac{0}{0} \sqrt{11} \right] \sqrt{-9} \sqrt{10} \sqrt{1} \sqrt{1} \sqrt{10} \sqrt{1} \sqrt{10} \sqrt{10$ والله المحالية من والله والمرابع قعد اهلى ؛ وفونس A نسور بائم ، 6+0 . اگر شرط ۱>۱۱ ۱۱۸ ۱۱۸ ۱۱۸ ۱۱۸ ۱۱۸ مرار باش اتفاى صفاى سى موا 11 All = 0/0000 | 11 All = 0/000 | K(A) = 11 All, 11 A-11, = 1/4 x KON = VKN } $\frac{|\Delta X|}{|X|} \ll \frac{|\nabla X|}{|-|\nabla X|} \ll \frac{|\nabla X|}{|-|\nabla X|} (1/4 \frac{1}{4} \frac$

 $K(A) = ||A|||A|| = ||Y|| \times ||Y|| = ||Y|| \times ||Y|| = ||Y|| \times ||Y||$ A = (D+L) - (-U) : (1) dul custo in = la ciso , GGS=MN , GGS = (D+L) (-U) و درنیج ایر وزن مارس A را از ست جرب در آن مزد کنم. $M = D + L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $(D+L)^{-1}A=(D+L)^{-1}b$ $M^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -Y & 1 & 0 & 0 \\ -Y & -Y/4 & 1 \end{bmatrix}$ $M^{-1}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1/8 & -1/8 & -1/8 \\ 0 & -1/8 & -1/8 & -1/8 \\ 0 & -9/8 & -9/8/1498 \end{bmatrix}$ ر نیج عرس حالت کسره تراکوی برابر با ایس می کسی است بر حوث می ان است بر از از است بر حوث می ان است بر از است بر از است بر از از از است بر از از از است بر از است بر از از است بر از اس D = digg (1, t, ",1) D' = digg (1, k, k,1) (- P $\|a^i\|_{r} = \sqrt{\sum_{j=1}^{n} |a_{ij}|^r}$ $A = \begin{bmatrix} -10^{-1} & -10^{-1} & -10^{-1} \\ 4 \times 10^{-1} & 0 & -10^{-1} \\ 1 & 0 \times 10^{-1} & 4 \end{bmatrix}$ $\|a'\|_{Y} = \int_{(-1c^{-1})^{r} + (-1c^{-1})^{r} \times r} = \int_{(-1c^{-1})^{r} \times r} = \int_{(-1c^{-1})^{r$ $D = \begin{bmatrix} |a'|_{r} & 0 & 0 \\ 0 & |a''|_{r} & 0 \\ 0 & 0 & |a''|_{r} \end{bmatrix}$ ||a"||y = | (xx1.")" + (-1.")" = \(\frac{1}{6} \) \(\tau \) \(\tau \) $\|a^r\|_{Y} = \sqrt{1+(\partial x)^{-r}})^r + x^r = \sqrt{1+|a|^{-r}}$

D= Vo, arto 0 o/ 1410h -01 NODUK] مارس طوش حالت سده -0/00 0/9 VOIF عند : وَفَى لَدَ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ $K_{\gamma}(A) = \frac{\int \lambda_{\text{max}}}{\sqrt{\lambda_{\text{min}}}}$ $ATA = \begin{bmatrix} \Delta_{X}|_{0}^{Y} & \Delta_{/0}|_{X}|_{0}^{Y} & Y_{+} & q_{X}|_{0}^{Y} \\ \Delta_{/0}|_{X}|_{0}^{Y} & \gamma_{/0}|_{X}|_{0}^{Y} & Y_{/0}|_{X}|_{0}^{Y} \end{bmatrix} \rightarrow \begin{bmatrix} \lambda_{mix}(ATA) & = & 1 \vee / \cos \theta \\ \lambda_{mix}$ $(DA)^{T} DA = \begin{bmatrix} 1/0917^{0} & 0/00.05 & 0/5919 \\ 0/0005 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/07781 & 0/5919 \\ 0/0781 & 0/5919 \\ 0/$ Ky(DAT.DA) = 1/2 Z Y, K9 TTV) rosocosos

CL (A+ΔA)(X+ΔX)=(b+Δb)of ielolos ye X+ΔX /1 2 oje X.V vie (B) $\frac{1 \triangle X \parallel}{\|X + \triangle X \|} \leq K(A) \left(\frac{\|\triangle A \|}{\|A \|} + \frac{\|\triangle b \|}{\|A \| \|X + \triangle X \|} \right)$: ED. CET با مفاس مارت دانه شره ر مورت مرا عارت مالا کافی است مالا کافی است کنتی کے ، $\widetilde{A}\widetilde{X} = \widetilde{b}$ $\frac{\|\Delta b\|}{\|A\| \|X + \Delta X\|} = \frac{\|\Delta b\|}{\|\tilde{b}\|} + \frac{\|\Delta b\|}{\|\tilde{b}\|} \cdot \frac{\|\Delta A\|}{\|A\|}$ X+DX = (A+DA) (b+Db) $\tilde{X} = \tilde{A}'\tilde{b}$ $\frac{1|\Delta b|}{|A|||\tilde{\chi}||} = \frac{1|\Delta b|}{|\tilde{b}||} \left(1 + \frac{1|\Delta A|}{|A||}\right) \Longrightarrow \frac{1|\tilde{b}||}{|A|||\tilde{\chi}||} = \frac{1|A| + 1|\Delta A|}{|A|||\tilde{\chi}||} \Longrightarrow \frac{1|\tilde{b}||}{|A|||\tilde{\chi}||} = \frac{1|A| + 1|\Delta A|}{|A|||\tilde{\chi}||} \Longrightarrow \frac{1|\tilde{b}||}{|A|||\tilde{\chi}||} = \frac{1|A| + 1|\Delta A|}{|A|||\tilde{\chi}||} \Longrightarrow \frac{1|\tilde{b}||}{|A|||\tilde{\chi}||} = \frac{1|A|| + 1|\Delta A||}{|A|||\tilde{\chi}||} \Longrightarrow \frac{1|\tilde{b}||}{|A|||\tilde{\chi}||} = \frac{1|A|| + 1|\Delta A||}{|A|||} \Longrightarrow \frac{1|\tilde{b}||}{|A|||} \Longrightarrow \frac{1|\tilde{b$ | = | X | (||A|| + ||ΔA||) => ||B|| > ||B|| >

 $|r=b-A\tilde{n}|$ A+H = A + $\frac{r\tilde{n}T}{|\tilde{n}|^{r}}$ $(A+H)\widetilde{\pi} = A\widetilde{n} + \frac{r\widetilde{\pi}^{T}\widetilde{\pi}}{\|\widetilde{\pi}\|_{F}^{T}} = A\widetilde{n} + r \frac{\|\widetilde{\pi}\|_{F}^{T}}{\|\widetilde{\pi}\|_{F}^{T}} = A\widetilde{n} + r = A\widetilde{n} + b - A\widetilde{n} = b$ $\widetilde{\pi}^{T}\widetilde{\pi} = \|\widetilde{\pi}\|_{F}^{T}$ $\widetilde{\pi}^{T}\widetilde{\pi} = \|\widetilde{\pi}\|_{F}^{T}$ $\widetilde{\pi}^{T}\widetilde{\pi} = \|\widetilde{\pi}\|_{F}^{T}$ $\widetilde{\pi}^{T}\widetilde{\pi} = \|\widetilde{\pi}\|_{F}^{T}$ $\alpha = \frac{\|A\|_{r} \|\widetilde{\chi}\|_{r}}{\|r\|_{r}} \qquad H = \frac{r \widetilde{\chi}^{T}}{\|\widetilde{\chi}\|_{r}} \qquad (A+H)\widetilde{\chi} = b$ $\|H\widetilde{\chi}\| = \|b - A\widetilde{\chi}\|_{r} = \|r\|_{r}$ $\|H\|_{r}\|\widetilde{\chi}\|_{r} \ge \|r\|_{r} \qquad \frac{\|r\|_{r}}{\|\widetilde{\chi}\|_{r}} \le \|H\|_{r}$ $\frac{\|H\|_{r}\|\widetilde{\chi}\|_{r}}{\|A\|_{r}} \ge \|r\|_{r}$ $\frac{\|H\|_{r}}{\|A\|_{r}} = \frac{\|H\|_{r}}{\|A\|_{r}}$ $\frac{\|H\|_{r}}{\|A\|_{r}} = \frac{\|H\|_{r}}{\|A\|_{r}}$ زون سن یک حواب زودک به جواب املی دستگاه باری . رای ط (A+H) بر داری و در این رابطی می دان از میزان از مینی در ماترس A در نظر گرفت . حول یک به جواب دستی نزنگ است در نقی میزان اشفیش مویز است و شایراین H مقد سیار کوهلیس از A فواهد الا المحالة ا وحون مع صفى برك بود مين مقوار ۱۱ HIL در برابر ۱۱ All نامير است و در نتج در دستگاه ما=۱۲ (A+H) عنون برك مود الله مزان آختی ۱ نویزاست , به سا حواب یک حوابی نزدگ به جواب اصلی دستگاه خواب بود .

V (i) (4) K(Hr) = 19, KA $H_{r} = 0 \qquad \left[\begin{array}{c} 1 \\ 4 \end{array} \right] \left[\begin{array}{c} \alpha_1 \\ \gamma_r \end{array} \right] = 0 \qquad \left[\begin{array}{c} \chi_1 + \frac{\chi_r}{r} = 0 \\ \chi_{\chi_1} + \chi_{\chi_2} = 0 \end{array} \right]$ $\chi_{r} = \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] \left[\begin{array}{c} \alpha_1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] = 0 \qquad \left[\begin{array}{c} 1 \\ \gamma \end{array} \right] =$ به مورد علی کنید این در خط صنی می وزیک سن و بر زی مونی و وسا سی الله اما برازی العالی برای عدمالت مارس های صفیر سار بزنگر به و و بر مور که این مارس ها مروس هاند. 1 1/4 / 2 = 0 \ 21/4 + 21/4 + 21/4 = 0 (C) 1 / 1/2 + 2/2 + 2/2 + 2/2 = 0 سار بر مير زند حسن درنتی که استان و افتال کوچک رکونه سخر بر افتال سارزاد در جواب درستگاه مورنخ سورکه اصلاً مطوب ما ست.