Data Warehousing and Data Mining Assignment Project Exam Help

— L2: Patas: Warehousing and OLAP —

Add WeChat powcoder

Why and What are Data Warehouses?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Data Analysis Problems

- The same data found in many different systems
 - Example: customer data across different department Project Exam Help
 - The same concept is defined differently
- Heterogeneous sources
 - Relational DBMS, OnLine Transaction
 Processing (OLTP)
 - Unstructured data in files (e.g., MS Excel) and documents (e.g., MS Word)

Data Analysis Problems (Cont'd)

- Data is suited for operational systems
 - Accounting, billing, etc.
 - Do not sepportent lysis across business functions
 https://powcoder.com
- Data quality is bad
 Add WeChat powcoder
 Missing data, imprecise data, different use of
 - Missing data, imprecise data, different use of systems
- Data are "volatile"
 - Data deleted in operational systems (6months)
 - Data change over time no historical information

Solution: Data Warehouse

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database Assignment Project Exam Help
 - Support information processing by providing a solid platform of https://powcoder.com consolidated, historical data for analysis.
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on httips of perations decision processing.
- Provide a simple and woncise view around particular subject issues by excluding data that are not useful in the decision support process.

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records Assignment Project Exam Help
- Data cleaning and data integration dechniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operations idatabase Project Evalue Idata.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- 2. Operation Alsupplante of that a clote smooth older pin the data warehouse environment. The worder of the control of the clote smooth older pin the data warehouse environment.
 - Does not require transaction processing, recovery, Add WeChat powcoder and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data.

Data Warehouse Architecture

Extract data from operational data sources

clean, transform Monitoring & Admnistration Bulk load/refresh

Assignment Project

OLAP-server provides

multidimensional **Aie**

Multidimensional-olap (Essbase, oracle express)

Relational-olap (Redbrick, Informix, Sybase, SQL server)

Data Warehouse Architecture

Why Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery Assignment Project Exam Help
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensionattyiew/porsotidation.com
- Different functions and different data:
 Add WeChat powcoder
 missing data: Decision support requires historical data which
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled

Why OLAP Servers?

- Different workload:
 - OLTP (on-line transaction processing)
 - Major task of traditional relational DBMS
 - Day-to-day or entire purder in the interpretary of the property o
 - OLAP (on-line apalytical processing) r.com
 - Major task of data warehouse system
 - Data analysis and decision multipat powcoder
- Queries hard/infeasible for OLTP, e.g.,
 - Which week we have the largest sales?
 - Does the sales of dairy products increase over time?
 - Generate a spread sheet of total sales by state and by year.
- Difficult to represent these queries by using SQL Why?

OLTP vs. OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design A	applicationerien Project	Expirate to p
data	current, up-to-date	historical,
	detailed, flat relational isolated PS://POWCode	summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read We Chat po	MCG Clark
	index/hash on prim. key	
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Comparisons

Databases

Purpose	Many purposes; Flexible and general Assignment Project Exa	One purpose: Data analysis m Help
Conceptual Model	ER	Multidimensional
	https://powcoder.co	m

(Normalized) Relational Model Logical Model (Denormalized) Star schema / Add WeChat powcoods cube/cuboids

Relational Tables ROLAP: Relational tables MOLAP: Multidimensional arrays

Data Warehouses

MDX (easier for analytical

Materialized data cube

Bitmap/Join indexes, Star join,

queries)

Physical Model Query Language SQL (hard for analytical queries)

B+-tree/hash indexes, Multiple

join optimization, Materialized

Query Processing

The Multidimensional Model

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

The Multidimensional Model

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube, which is a multidimensional generalization of 2D spread sheet.
- Key conceptssignment Project Exam Help
 - Facts: the subject it models
 - Typically transactions in this course; other types includes snapshots, etc.
 Add WeChat powcoder

 Measures: numbers that can be aggregated

 - Dimensions: context of the measure
 - Hierarchies:
 - Provide contexts of different granularities (aka. grains)
- Goals for dimensional modeling:
 - Surround facts with as much relevant context (dimensions) as possible Why?

Supermarket Example

- Subject: analyze total sales and profits
- Fact: Each Sales Transaction
 - Measure Pollars Sold Amount Sold Cost
 - Calculated Measure: Profit
- Dimensions: https://powcoder.com
 - Store Add WeChat powcoder
 - Product
 - Time

Visualizing the Cubes

A valid instance of the model is a data cube

product

Concepts: cell, fact (=non-empty cell), measure, dimensions

Q: How to generalize it to 3D?

3D Cube and Hierarchies

Concepts: hierarchy (a tree of dimension values), level

Hierarchies

Concepts: hierarchy (a tree of dimension values), level

The (city, moth) Cuboid

Sales of ALL_PROD in NY in Jan

Assume: no other non-ALL levels on all dimensions.

All the Cuboids

Assume: no other non-ALL levels on all dimensions.

All the Cuboids /2

Lattice of the cuboids

- n-dim cube can be reduced has (protected has (protected), where D_i is the set of allowed values on the i-th dimension.
 - if D_i = L_i (a particular level), then Di = all descendant dimension values of L_i.
 - ALL can be omitted and hence reduces the effective dimensionality $\frac{d}{dt}$
- A complete cube of d-dimensions consists of $\prod_{i=1}^{n_i} (n_i + 1)$ cuboids, where n_i is the number of levels (excluding ALL) on i-th dimension.
 - They collectively form a lattice.

Properties of Operations

- All operations are closed under the multidimensional model
 - i.e., both signute and route put comand peration is a cube
- So that they can be composed
 Add WeChat powcoder

Q: What's the analogy in the Relational Model?

Common OLAP Operations

Roll-up: move up the hierarchy

Q: what should be its value?

Data Cube Measures: Three Categories

- <u>Distributive</u>: if the result derived by applying the function to *n* aggregate values is the same as that derived by applying the function on all the data without partitioning Assignment Project Exam Help

 • E.g., count(), sum(), min(), max()
- Algebraic: if it can the computed by camalgebraic function with Marguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., avg(), min_N(), standard_deviation()
- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()

Common OLAP Operations

Drill-down: move down
 the hierarchy
 more fine-grained

Project Exam Help

aggregation https://powcoder.com

Add WeChat powcoder

Slice and Dice Queries

 Slice and Dice: select and project on one or more dimension values

The output cube has smaller dimensionality than the input cube

- Pivoting: aggregate on selected dimensions
 - usually 2 dims (crosstabulation)

 Tabulation
 Project Exam I

Book176

product

A Reflective Pause

Let's review the definition of data cubes again.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- Key message:
 - Disentangle the "object" from its "representation" or "implementation"

Modeling Exercise 1: Monthly Phone Service Billing

Theme: analyze the income/revenue of Telstra

Solution

FACT

Assignment Project Exam Help

MEASURE https://powcoder.com

Add WeChat powcoder

DIMENSIONS

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

The Logical Model

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Logical Models

- Two main approaches:
 - Using relational DB technology:
 - Star scheigan Smowflakjectchema, Hadp constellation
 - Using multidimensional technology:
 - Just as multidimensional data cube Add WeChat powcoder

Universal Schema → Star Schema

- Many data warehouses adopt a star schema to represent the multidimensional model
- Each dimension is represented by a dimension-table
 - LOCATION (gration kay, Ptoriestret addres) pity, state, country, region)
 - dimension tablestapes not province didect.com
- Transactions are described through a fact-table
 each tuple consists of a logical pointer to each of the dimension-
 - each tuple consists of a logical pointer to each of the dimensiontables (foreign-key) and a list of measures (e.g. sales \$\$\$)

The universal schema for supermarket

S136 Syd NSW 76Ha Nestle Biscuit 40 10 18 S173 Melb Vic 76Ha Nestle Biscuit 20 5 11	Store	City	State	Prod	Brand	Category	\$Sold	#Sold	Cost
S173 Melb Vic 76Ha Nestle Biscuit 20 5 11	S136	Syd	NSW	76Ha	Nestle	Biscuit	40	10	18
3173 Tielb Vie 7611d Nestie Bisedie 20 3 11	S173	Melb	Vic	76Ha	Nestle	Biscuit	20	5	11

30

The Star Schema

PRODUCT

product_key product name brand color supplier name

LOCATION

location key store street address city state country region

Think why:

- (1) Denormalized once from the universal schema
- (2) Controlled redundancy

Typical Models for Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension mental Project Exam Help
 - Snowflake schema://poweinament of star schema
 where some dimensional hierarchy is normalized into a
 Add WeChat powcoder
 set of smaller dimension tables, forming a shape
 similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called <u>galaxy schema</u> or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

Advantages of Star Schema

- Facts and dimensions are clearly depicted
 - dimension tables are relatively static, data is loaded (append mestly) timeton fractetable(s)
 - easy to comprehend (and write queries)

```
"Find total sales per product-category in our stores in Europe"
Add We Chat powcoder
```

```
SELECT PRODUCT.category, SUM(SALES.amount)
```

```
FROM SALES, PRODUCT, LOCATION
```

WHERE SALES.product_key = PRODUCT.product_key

AND SALES.location_key = LOCATION.location_key

AND LOCATION.region="Europe"

GROUP BY PRODUCT.category

Operations: Slice (Loc.Region.Europe) + Pivot (Prod.category)

Query Language

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Query Language

LOCATION.region="Europe"

Two approaches:

LOCATION.location key

GROUP BY PRODUCT. category

AND

- Using relational DB technology: SQL (with extensions) such as CUBE/PIVOT/UNPIVOT)
 Assignment Project Exam Help
 Using multidimensional technology: MDX

```
https://powcoder.com
SELECT PRODUCT.category,
                                    SELECT
SUM(SALES.amount)
                   Add WeChat probboter[category] on ROWS,
       SALES, PRODUCT, LOCATION
                                    {[MEASURES].[amount]} on COLUMNS
WHERE SALES.product key =
                                    FROM
                                           [SALES]
PRODUCT.product_key
                                    WHERE ([LOCATION].[region].[Europe])
       SALES.location key =
AND
```

Operations: Slice (Loc.Region.Europe) + Pivot (Prod.category, Measures.amnt)

Physical Model + Query Processing Techniques

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Physical Model + Query Processing Techniques

- Two main approaches:
 - Using relational DB technology: ROLAP
 - Using matticiments on indetection of the composition of t
- Hybrid: HOLAPttps://powcoder.com
 - Base cuboid: RQLAP WeChat powcoder
 - Other cuboids: MOLAP

Q1: Selection on low-cardinality attributes

Omitting the Product dimension

region

Indexing OLAP Data: Bitmap Index

(1) BI on dimension tables

- Index on an attribute (column) with low distinct values
- Each distinct values, v, is associated with a n-bit vector (n = #rows)
 A science of Evens II-le
- Assignment Project Exam Help
 The +th bit is set if the +th row of the table has the value v for the indexed column wcoder.com
 Multiple BIs can be efficiently combined to enable optimized scan
- Multiple BIs can be efficiently combined to enable optimized scan of the table Add WeChat powcoder

Custom

Cust	Region	Type
C1	Asia	Retail
C2	Europe	Dealer
C3	Asia	Dealer
C4	America	Retail
C5	Europe	Dealer

BI on Customer.Region

V	bitmap
Asia	10100
Europe	0 1 0 0 1
America	00010

Indexing OLAP Data: Bitmap Index /2

- Bitmap join index (BI on Fact Table Joined with Dimension tables)
 - Conceptually, perform a join, map each dimension value to the Bitmap of Coires ponding talk table rows.

https://powcoder.com

Add WeChat powcoder

```
-- ORACLE SYNTAX –

CREATE BITMAP INDEX sales_cust_region_bjix

ON sales(customer.cust_region)

FROM sales, customer
```

WHERE sales.cust_id = customers.cust_id;

Indexing OLAP Data: Bitmap Index /3

Sales

time	customer	loc	Sale
101	C1	100	1
173	C1 A	ssign	ımenj
208	C2	100	tng./3
863	C3	200	tps:// 5
991	C1	100	dd W
1001	C2	200	13
1966	C4	100	21
2017	C5	200	34

Customer

	Cust	Region	Type
	C1	Asia	Retail
Project	E xai	fiul the lep	Dealer
	C3	Asia	Dealer
powcode	CACO1	America	Retail
~1	C5	Europe	Dealer
eChat po	OWCO	der	

BI on Sales(Customer.Region)

v	bitmap
Asia	11011000
Europe	00100101
America	0000010

Q2: Selection on high-cardinality attributes

Indexing OLAP Data: Join Indices

- Join index relates the values of the <u>dimensions</u> of a star schema to <u>rows</u> in the fact table.
 - a join index on withent Projectly Example maintains for each distinct city = Coogee city a list of Rows of powcoder.com the tuples recording the sales in the city distinct powcoder.
- Join indices can span multiple dimensions OR
 - can be implemented as bitmapindexes (per dimension)
 - use bit-op for multiple-joins

Q3: Arbitrary selections on Dimensions

Chap 4.4 in [JPT10]

Star Query and Star Join (Cont.)

Q4: Coarse-grain Aggregations

- "Find total sales per customer type in our stores in Europe"
 - Join-index will prune ¾ of the data (uniform sales), but the remaining ¼ is still large (several millions transactions)
 - Index is undhustoged powcoder.com
- High-level aggregations are expensive!!!!!
 Add WeChat powcoder
 - ⇒Long Query Response Times
 - ⇒Pre-computation is necessary
 - ⇒Pre-computation is most beneficial

Cuboids = GROUP BYs

Multidimensional aggregation = selection on corresponding cuboid

```
GB_{(type, cft)} (sightment Riojee): Exam (Chkelp \triangleleft \sigma_3(Loc))
```


- σ₁ selects some Brands,
- σ₃ selegta a meChities owcoder

```
GB_{(type, city)}(\sigma_{1'2'3'}(Cuboid(Year, Type, City)))
```

- Materialize some/all of the cuboids
 - A complex decision involving cuboid sizes, query workload, and physical organization

Two Issues

- How to store the materialized cuboids?
- How to compute the cuboids efficiently?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

CUBE BY in ROLAP

Sales		Produ	ct		Store	Product_key	sum(amout)		
5	ares	1	2	3	4	ALL	1	1 4	454 925
	1	454	-	-	925	1379	2	1	468
	2	468	800	_	_	1268	2 3	2	800 296
Store	3	296	-	Assi	gnm	ent P r	oject Exam	Help	240
S	4	652	_	540	745	1937	4	4 3	625 240
	ALL	1870	800	780	https	://pov	vcoder.com	4	745
	4 Group-bys here: • Neer		T14.		1 2	ALL ALL	1379 1268		
	+ Grou (store,	_			Add 4 queri	es!!!	hat ³ powcod	er ALL ALL	536 1937
	(store)	-			1		ALL	1 2	1870 800
	(product)			•	ite them idently	ALL ALL		<u>780</u> 1670	
	0				1		ALL	ALL	5120

SELECT LOCATION.store, SALES.product_key, SUM (amount)

FROM SALES, LOCATION

WHERE SALES.location_key=LOCATION.location_key

CUBE BY SALES.product_key, LOCATION.store

Top-down Approach

Model dependencies among the aggregates:

Bottom-Up Approach (BUC)

BUC (Beyer & Ramakrishnan, SIGMOD'99)

Ideas Assignment Project Exam He

Compute the cube from bottom up https://powcoder.com

Divide-and-conquer
 Add WeChat powcoder
 A simpler recursive version:

BUC-SR

Α	В		
1	1	:	
1	3		
1	2		
1	1		
2			

5 ABCD

8 ACD

11 BC 13 BD 15 CD

Understanding Recursion /1

- Powerful computing/problem-solving techniques Assignment Project Exam Help
- Examples
 - Factorial: https://powcoder.com
 - f(n) = 1, iAdd WeChat powcoder
 - f(n) = f(n-1) * n, if $n \ge 1$
 - Quick sort:
 - Sort([x]) = [x]
 - Sort([x1, ..., pivot, ... xn]) = sort[ys] ++ sort[zs]), where

f(0) = 0! =

ys =
$$[x \mid x \text{ in } xi, x \leq pivot]$$

zs = $[x \mid x \leftarrow xi, x > pivot]$

List comprehension in Haskell or python

Understanding Recursion /2

 Let C(n, m) be the number of ways to select m balls from n numbered balls

Key Points

- Sub-problems need to be "smaller", so that a simple/trivial boundary case can be reached Assignment Project Exam Help
- Divide-and-conquer
 - There may be multiple ways the entire solution space can be divided into disjoint sub-spaces, each of which can be conquered recursively.

Geometric Intuition /1

Reduce Cube(in 2D) to Cube(in 1D)

Geometric Intuition /2

Geometric Intuition /3

Reduce Cube(in 3D) to Gunghin Project Exam Help

https://powcoder.com

Add WeChat powcoder

Algebraic Derivation

- How to compute n-dim cube on (n+1)-dim base cuboid (array)?
 - What dosoigtpuertuplejelooks like Pelp
- How to compute (n+1)-dim cube on (n+1)-dim base cuboid (array)?
 [{r1-r5}, ABC]
 - What else do we need powcoder

[{r1-r5}, **BC**]

-1	A	В	C	M
- -2	1	1	1	10
<u>-</u> 3	1	1	2	20
-4	1	2	1	30
	1	3	1	40
c 5	2	1	1	50

BUC-SR (Simple Recursion)*

- BUC-SR(data, dims)
 - If (dims is seigpty)nt Project Exam Help is essential
 - Output (sum(data)) https://powcoder.com
 - Else
 - Dims = [dim1, rest_of_dims]
 - For each distinct value v of dim1
 - slice v = slice of data on "dim1 = v"
 - BUC-SR(slice_v, rest_of_dims)
 - data' = Project(data, rest_of_dims)
 - BUC-SR(data', rest_of_dims)

Boundary case: data is essentially a list of measure values

General case:

1)Slice on dim1. Call BUC-SR recursively for each slice

2)Project out dim1, and call BUC-SR on it recursively

Try a 3D-Cube by Yourself

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

[{r1-r5}, ABC]

-				-
r1	A	В	С	M
r2	1	1	1	10
r3	1	1	2	20
r4	1	2	1	30
	1	3	1	40
r5	2	1	1	50
4/3/	<u>/</u>			

73

MOLAP

- (Sparse) array-based multidimensional storage engine
- Pros: Assignment Project Exam Help
 - small size (esp. for dense cubes)
 - fast in indexing and query processing Add WeChat powcoder
- Cons:
 - scalability
 - conversion from relational data

Multidimensional Array

f(time, item) = 4*time + item

time	item	dollars_sold	
Q1	home entertainment	605	
Q2	home entertainment	680	
Q3	home entertainment	Assign	n
Q4	home entertainment	\$ 7 † †	n
Q1	computer	825	Р
Q2	computer	952	
Q3	computer	10 23 C	lC
Q4	computer	1038	
Q1	phone	14	
Q2	phone	31	
Q3	phone	30	
Q4	phone	38	
Q1	security	400	
Q2	security	512	
Q3	security	501	
Q4	security	580	

3
•
V

time	item	dollars_s old
0	0	605
1	0	680
xam²	Help	812
3	0	927
c om º	1	825
	1	952
2	1	1023
code	r 1	1038
0	2	14
1	2	31
2	2	30
3	2	38
0	3	400
1	3	512
2	3	501
3	3	580

offset

Multidimensional Array

Step 3: If dense, only need to store sorted slots

offset	dollars_sold
0	605
1	825
2	14
3	Acs
4	680
5	952
6	31
7	512
8	812
9	1023
10	30
11	501
12	927
13	1038
14	38
15	580

Think: how to decode a slot?

signment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dense MD array	
	605
	825
	14
	400
	680
	952
	31
	512
	812
1	023
	30
	501
	927
1	038
	38
	580

The Sparse Case

f(time, item) = 4*time + item

Multidimensional Array

Choice 1

offset	dollars_sold
0	605
15	580

Think: how to decode a slot?

Assignmentidimensional ExamisHelp typically sparse

https://sosparedeir.yoing., offset + value)

Add Worlding shunk toder further reduce the space

- Space usage:
 - (d+1)*n*4 vs 2*n*4
- HOLAP:
 - Store all non-base cuboid in MD array
 - Assign a value for ALL

Dense MD array	
	605
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	580