mimclib

Abdul-Lateef Haji-Ali

Mathematical Institute, University of Oxford.

July 31, 2017

Outline

- Primer
 - Problem
 - Monte Carlo (MC)
 - Multilevel Monte Carlo (MLMC)
 - Multi-Index Monte Carlo
- 2 mimclib
 - Library Overview
 - Installation
 - Example output

The central question

Given an \mathbb{R}^n -valued random variable, X with PDF $f(x): \mathbb{R}^n \to [0,\infty)$ and a function, $g: \mathbb{R}^n \to \mathbb{R}$, assume that we are interested in computing the quantity

$$E[g(\boldsymbol{X})] = \int_{\mathbb{R}^n} g(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}.$$

The central question

Given an \mathbb{R}^n -valued random variable, X with PDF $f(x): \mathbb{R}^n \to [0,\infty)$ and a function, $g: \mathbb{R}^n \to \mathbb{R}$, assume that we are interested in computing the quantity

$$E[g(\boldsymbol{X})] = \int_{\mathbb{R}^n} g(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}.$$

Possible difficulties:

- PDF, f, is inaccessible, only (approximate) samples of X can be generated.
 - E.g., **X** is the solution of an SDE.
- Dimension, *n*, is large or even infinite, hence the integral is expensive to approximate.
 - E.g., expansion of a random field.

Setup

Our objective is to build an estimator $\mathcal{A} \approx \mathrm{E}[g(\boldsymbol{X})]$ with minimal work where

$$P(|\mathcal{A} - \mathrm{E}[g(\mathbf{X})]| \leq \mathrm{TOL}) \geq \epsilon$$

for a given accuracy TOL and a given confidence level determined by 0 $<\epsilon<1.$

Setup

Our objective is to build an estimator $\mathcal{A} \approx \mathrm{E}[g(\boldsymbol{X})]$ with minimal work where

$$P(|\mathcal{A} - \mathrm{E}[g(\mathbf{X})]| \leq \mathrm{TOL}) \geq \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0 < \epsilon < 1$.

Instead, we impose the following, more restrictive, two constraints:

Bias constraint:
$$|E[A - g(X)]| \le (1 - \theta)TOL$$
,

Statistical constraint:
$$P(|A - E[A]| \le \theta TOL) \ge \epsilon$$
.

For some tolerance splitting, $\theta \in (0,1)$.

Setup

Our objective is to build an estimator $\mathcal{A} \approx \mathbb{E}[g(\mathbf{X})]$ with minimal work where

$$P(|\mathcal{A} - \mathrm{E}[g(\mathbf{X})]| \leq \mathrm{TOL}) \geq \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0 < \epsilon < 1$.

Instead, we impose the following, more restrictive, two constraints:

Bias constraint:
$$|E[A - g(X)]| \le (1 - \theta)TOL$$
,

Statistical constraint:
$$\operatorname{Var}[\mathcal{A}] \leq \left(\frac{\theta \operatorname{TOL}}{\Phi^{-1}\left(\frac{\epsilon+1}{2}\right)}\right)^2$$
.

For some tolerance splitting, $\theta \in (0,1)$. Assuming (at least asymptotic) normality of the estimator, A. Here, Φ^{-1} is the inverse of the standard normal CDF.

Numerical approximation

Notation: g_{ℓ} for $\ell \in \mathbb{N}$ is the approximation of g calculated based on discretization parameters $\boldsymbol{h}_{\ell} = (h_{\ell,i})_{i=1}^d$.

Monte Carlo

The simplest (and most popular) estimator is the Monte Carlo estimator

$$\mathcal{A}_{\mathsf{MC}}[g_L; M] = \frac{1}{M} \sum_{m=1}^{M} g_L(\boldsymbol{X}^{(m)}),$$

for a given level, L, and number of samples, M, that we can choose to satisfy the error constraints and minimize the work.

MLMC main idea: Variance reduction

Multilevel Monte Carlo (MLMC)

(Heinrich, 1998) and (Giles, 2008)

Observe the telescopic identity

$$\mathrm{E}[g] pprox \mathrm{E}[g_L] = \mathrm{E}[g_0] + \sum_{\ell=1}^L \mathrm{E}[g_\ell - g_{\ell-1}]$$

Multilevel Monte Carlo (MLMC)

(Heinrich, 1998) and (Giles, 2008)

Observe the telescopic identity

$$\mathrm{E}[g] pprox \mathrm{E}[g_L] = \mathrm{E}[g_0] + \sum_{\ell=1}^L \mathrm{E}[g_\ell - g_{\ell-1}] = \sum_{\ell=0}^L \mathrm{E}[\Delta_\ell g],$$

where

$$\Delta_{\ell}g = egin{cases} g_0 & ext{if } \ell = 0, \ g_{\ell} - g_{\ell-1} & ext{if } \ell > 0. \end{cases}$$

Multilevel Monte Carlo (MLMC)

(Heinrich, 1998) and (Giles, 2008)

Observe the telescopic identity

$$\mathrm{E}[g] \approx \mathrm{E}[g_L] = \mathrm{E}[g_0] + \sum_{\ell=1}^L \mathrm{E}[g_\ell - g_{\ell-1}] = \sum_{\ell=0}^L \mathrm{E}[\Delta_\ell g],$$

where

$$\Delta_\ell g = egin{cases} g_0 & ext{if } \ell = 0, \ g_\ell - g_{\ell-1} & ext{if } \ell > 0. \end{cases}$$

Then, using Monte Carlo to approximate each difference independently, the MLMC estimator can be written as

$$\mathcal{A}_{\mathsf{MLMC}}[g;L] = \sum_{\ell=0}^{L} \mathcal{A}_{\mathsf{MC}}[\Delta g_{\ell};M_{\ell}].$$

Main idea: variance reduction using cheaper approximations.

Assumptions

```
Assumption MC1 (Bias): |E[g-g_\ell]| \lesssim \exp(-w\ell), Assumption MC2 (Work): \operatorname{Work}[g_\ell] \lesssim \exp(d\gamma\ell), Assumption MLMC3 (Variance): \operatorname{Var}[g_\ell-g_{\ell-1}] \lesssim \exp(-s\ell)
```

for all $\ell \in \mathbb{N}$ and positive constants γ, w, s .

Assumptions

Assumption MC1 (Bias): $|E[g-g_\ell]| \lesssim \exp(-w\ell)$, Assumption MC2 (Work): $\operatorname{Work}[g_\ell] \lesssim \exp(d\gamma\ell)$, Assumption MLMC3 (Variance): $\operatorname{Var}[g_\ell-g_{\ell-1}] \lesssim \exp(-s\ell)$

for all $\ell \in \mathbb{N}$ and positive constants γ, w, s .

The optimal work of MLMC is

$$\begin{cases} \mathcal{O}\left(\mathrm{TOL}^{-2}\right) & s > d\gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\right)\left(\log\left(\mathrm{TOL}^{-1}\right)\right)^{2} & s = d\gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d\gamma-s}{w}}\right) & s < d\gamma \end{cases}$$

Assumptions

Assumption MC1 (Bias):
$$|E[g-g_\ell]| \lesssim \exp(-w\ell)$$
, Assumption MC2 (Work): $\operatorname{Work}[g_\ell] \lesssim \exp(\frac{d}{\gamma}\ell)$, Assumption MLMC3 (Variance): $\operatorname{Var}[g_\ell-g_{\ell-1}] \lesssim \exp(-s\ell)$

for all $\ell \in \mathbb{N}$ and positive constants γ, w, s .

Recall: Optimal cost of Monte Carlo is
$$\mathcal{O}\left(\mathrm{TOL}^{-2-rac{d\gamma}{w}}
ight)$$

The optimal work of MLMC is

$$\begin{cases} \mathcal{O}\left(\mathrm{TOL}^{-2}\right) & s > d\gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\right)\left(\log\left(\mathrm{TOL}^{-1}\right)\right)^{2} & s = d\gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d\gamma-s}{w}}\right) & s < d\gamma \end{cases}$$

Notice: the cost exponentially increases with increasing d.

Continuation MLMC

• To compute M_ℓ we need to find L and find estimates of V_ℓ .

Continuation MLMC

- To compute M_ℓ we need to find L and find estimates of V_ℓ .
- Instead of running for the small required TOL, CMLMC runs a sequence of MLMC realizations, for decreasing tolerances, ending with the required TOL.
- In each step, estimates of V_{ℓ} are generated using a Bayesian setting which uses **Assumption MLMC3** coupled with the generated samples to produce good estimates even with a small number of samples.
- The value of L is also chosen in each step to minimize the work. This allows choosing a better splitting parameter, θ.
- CMLMC does not have to reuse samples between iterations, ensuring an unbiased estimator for level L approximation.

Problem Monte Carlo (MC) Multilevel Monte Carlo (MLMC) Multi-Index Monte Carlo

Variance reduction: MLMC

Variance reduction: Further potential

Consider discretization parameters possibly different in each direction

$$h_{i,\alpha_i} = h_{i,0} \, \beta_i^{-\alpha_i}$$

with $\beta_i > 1$. For a multi-index $\alpha = (\alpha_i)_{i=1}^d \in \mathbb{N}^d$, we denote by S_{α} the approximation of S calculated using a discretization defined by α .

Consider discretization parameters possibly different in each direction

$$h_{i,\alpha_i} = h_{i,0} \, \beta_i^{-\alpha_i}$$

with $\beta_i > 1$. For a multi-index $\alpha = (\alpha_i)_{i=1}^d \in \mathbb{N}^d$, we denote by S_{α} the approximation of S calculated using a discretization defined by α .

For i = 1, ..., d, define the first order difference operators

$$\Delta_i g_{\alpha} = \begin{cases} g_{\alpha} & \text{if } \alpha_i = 0, \\ g_{\alpha} - g_{\alpha - \mathbf{e}_i} & \text{if } \alpha_i > 0, \end{cases}$$

Construct the first order mixed difference

$$\Delta g_{\boldsymbol{\alpha}} = \left(\otimes_{i=1}^d \Delta_i \right) g_{\boldsymbol{\alpha}} = \sum_{\mathbf{j} \in \{0,1\}^d} (-1)^{|\mathbf{j}|} g_{\boldsymbol{\alpha} - \mathbf{j}}$$

with $|\mathbf{j}| = \sum_{i=1}^{d} j_i$. Requires 2^d evaluations of S on different grids.

Example: Computing g_{α} in d=2

For
$$\alpha = (\alpha_1, \alpha_2)$$
, we have

$$egin{aligned} \Delta g_{(lpha_1,lpha_2)} &= \Delta_2(\Delta_1 g_{(lpha_1,lpha_2)}) \ &= \Delta_2 \left(g_{lpha_1,lpha_2} - g_{lpha_1-1,lpha_2}
ight) \ &= g_{lpha_1,lpha_2} - g_{lpha_1-1,lpha_2-1} \cdot & - g_{lpha_1,lpha_2-1} + g_{lpha_1-1,lpha_2-1} \cdot & \end{aligned}$$

Then, assuming that

$$E[g_{\alpha}] \to E[S]$$
 as $\alpha_i \to \infty$ for all $i = 1, ..., d$,

it is not difficult to see that

$$\mathrm{E}[g] = \sum_{oldsymbol{lpha} \in \mathbb{N}^d} \mathrm{E}[oldsymbol{\Delta} g_{oldsymbol{lpha}}]$$

Then, assuming that

$$E[g_{\alpha}] \to E[S]$$
 as $\alpha_i \to \infty$ for all $i = 1, ..., d$,

it is not difficult to see that

$$\mathrm{E}[g] = \sum_{oldsymbol{lpha} \in \mathbb{N}^d} \mathrm{E}[\Delta g_{oldsymbol{lpha}}] pprox \sum_{oldsymbol{lpha} \in \mathcal{I}} \mathrm{E}[\Delta g_{oldsymbol{lpha}}]$$

where $\mathcal{I} \subset \mathbb{N}^d$ is a *properly chosen* index set.

Then, assuming that

$$\mathrm{E}[g_{\alpha}] \to \mathrm{E}[S]$$
 as $\alpha_i \to \infty$ for all $i = 1, \dots, d$,

it is not difficult to see that

$$\mathrm{E}[g] = \sum_{oldsymbol{lpha} \in \mathbb{N}^d} \mathrm{E}[oldsymbol{\Delta} g_{oldsymbol{lpha}}] pprox \sum_{oldsymbol{lpha} \in oldsymbol{\mathcal{I}}} \mathrm{E}[oldsymbol{\Delta} g_{oldsymbol{lpha}}]$$

where $\mathcal{I} \subset \mathbb{N}^d$ is a *properly chosen* index set.

As in MLMC, appoximating each term by independent MC samplers, the MIMC estimator can be written as

$$\mathcal{A}_{\mathsf{MIMC}} = \sum_{\alpha \in \mathcal{I}} \frac{1}{M_{\alpha}} \sum_{m=1}^{M_{\alpha}} \Delta g_{\alpha}(\omega_{\alpha,m})$$

with properly chosen sample sizes $(M_{\alpha})_{\alpha \in \mathcal{I}}$.

Assumptions for MIMC

For every lpha, we assume the following

Assumption 1 (Bias):
$$E_{\alpha} = |E[\Delta g_{\alpha}]| \propto \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i}w_{i}}$$

Assumption 2 (Variance):
$$V_{\alpha} = \operatorname{Var}[\Delta g_{\alpha}] \propto \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} s_{i}},$$

Assumption 3 (Work):
$$W_{\alpha} = \mathsf{Work}(\Delta g_{\alpha}) \propto \prod_{i=1}^{d} \beta_{i}^{\alpha_{i} \gamma_{i}},$$

For positive constants γ_i , w_i , $s_i < 2w_i$ and for $i = 1 \dots d$.

$$\mathsf{Work}(\mathsf{MIMC}) = \sum_{\boldsymbol{\alpha} \in \mathcal{I}} \mathit{M}_{\boldsymbol{\alpha}} \, \mathit{W}_{\boldsymbol{\alpha}} \propto \sum_{\boldsymbol{\alpha} \in \mathcal{I}} \mathit{M}_{\boldsymbol{\alpha}} \, \left(\prod\nolimits_{i=1}^{\boldsymbol{d}} \beta_i^{\alpha_i \gamma_i} \right).$$

Primer

Remark on product rates

• The **Assumptions 1 & 2** in MIMC that the rates for each α are products of 1D rates

$$E_{\alpha} \propto \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} w_{i}}, \qquad V_{\alpha} \propto \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} s_{i}}$$

are stronger than the corresponding assumptions in MLMC.

Remark on product rates

ullet The **Assumptions 1 & 2** in MIMC that the rates for each lpha are *products of 1D rates*

$$E_{\alpha} \propto \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i}w_{i}}, \qquad V_{\alpha} \propto \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i}s_{i}}$$

are stronger than the corresponding assumptions in MLMC.

• They imply existence of mixed derivatives of the solution of the PDE (and possibly the solution of the adjoint problem associated to the functional Ψ), as opposed to standard derivatives for MLMC.

Optimal index set

Or find it adaptively!

Fully Isotropic Case: Rough noise case

Assume $w_i = w$, $s_i = s < 2w$, $\beta_i = \beta$ and $\gamma_i = \gamma$ for all $i \in \{1 \cdots d\}$. Then the optimal work is

$$\begin{aligned} & \mathsf{Work}(\mathsf{MC}) = \mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d\gamma}{w}}\right). \\ & \mathsf{Work}(\mathsf{MLMC}) = \begin{cases} \mathcal{O}\left(\mathrm{TOL}^{-2}\right), & s > d\gamma, \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log\left(\mathrm{TOL}^{-1}\right)\right)^{2}\right), & s = d\gamma, \\ \mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{(d\gamma-s)}{w}\right)}\right), & s < d\gamma. \end{cases} \\ & \mathsf{Work}(\mathsf{MIMC}) = \begin{cases} \mathcal{O}\left(\mathrm{TOL}^{-2}\right), & s > \gamma, \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log\left(\mathrm{TOL}^{-1}\right)\right)^{2d}\right), & s = \gamma, \\ \mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{\gamma-s}{w}\right)}\log\left(\mathrm{TOL}^{-1}\right)^{\left(d-1\right)\frac{\gamma-s}{w}}\right), & s < \gamma. \end{cases} \end{aligned}$$

- These methods and others are common in UQ applications.
- UQ research further requires systematic studies of deterministic or random runs.
- mimclib is a library that was developed with that objective in mind.
- mimclib can also be used for non-academic purpose too.

Vision

- Provide an easy to use, customizable and extendable open source library for UQ problems, both forward and inverse.
- Multilevel and Multi-index versions of Monte Carlo, Quasi Monte Carlo, Stochastic collocation, Least square projection among others.
- Support parallel computation whenever possible.
- Provide easy to use storage facility.
- Provide easy to customize plotting facility (for common plots).
- Provide some simple (and not so simple) test cases.
- Use Python for easier implementation of most parts of code and use object code (C++ or FORTRAN) for computationally expensive parts.

What has been done, mimclib 0.2.0.dev0

- Multilevel and Multi-index versions of Monte Carlo, Stochastic Collocation and Random Projection.
- Provide easy to use storage facility in SQLite and MySQL.
- Provide easy to customize plotting facility using matplotlib (for common plots).
- Provide easy to run test cases.
- Documentation is still in progress (these slides are part of it).
- MPI friendly, but parallelization has to be implemented by user.
- Interface is written with the other features in mind.

Why?

Python

- Open source. No need for licensing
- An easy to use programming language. Familiar to MATLAB users (Especially with numpy and matplotlib)
- Can call object code for computationally expensive parts, e.g., samplers.
- Database engine: MySQL and SQLite
 - Relatively easy data modifications and querying.
 - Allows asynchronous access which is ideal for parallel computation.
 - Allows remote access.
 - Optimal storage and data querying.
 - No need to worry about it for average user.

Installation

- Prerequisites: gcc (supporting c++11), python2.7, pip.
- First step:
 - > git clone \
 https://github.com/StochasticNumerics/mimclib.git
 - > cd mimclib
 - > make pip
 - Or just google: "mimclib github"
- Done!.
- A bit more complicated to install MySQL. Not for the faint of heart but very convenient if you are planning to run thousands of simulations on a cluster.

Minimal Sampler

```
def mySampleQoI(run, inds, M):
       run: is a reference to current run
    # inds: is a dxN array that specifies the
    #
             discretization-level along each dimension
    #
         M: number of samples
    return solves, t
    # solves: and NxM array that returns the samples
    #
               for each discretization
           t: time taken to generate these samples.
```

Errors, customised

PP-plot

Variance convergence

Running time

Conclusions

- Research in UQ methods is booming. mimclib can provide you with a base to start from.
- mimclibis still growing, rapidly, to adapt to different applications and different samplers.
- If you feel that mimclib is missing a feature, fork mimcliband implement it!

mimclib needs your help!

Questions?

