Machine Learning for EDS

Tutorial week 2

2023/2024

Generically in the following exercises, consider \mathcal{X} to be a measurable space of features, \mathcal{Y} a measurable space of outputs, P a distribution over $\mathcal{X} \times \mathcal{Y}$, $(X,Y) \sim P$, and $\eta(X) = \mathbb{E}[Y|X]$.

Problem 1 Consider two 6-face dice: die 1 and die 2. On die 1, 3 faces are blue, and 3 faces are red. On die 2, 5 faces are blue, and the remaining one is red. First choose a die at random, say die 1 with probability $p \in [0,1]$. The selected die is rolled and the color appearing on the upward face is recorded. Denote by $X \in \{1,2\}$ the selected die, and $Y \in \{0,1\}$ the outcome of rolling the die, say Y = 1 for blue, Y = 0 for red. Let us study the problem of predicting the outcome Y given X.

- 1. Is this a regression or a classification problem? Why?
- 2. Show that $\eta(X) = \mathbb{P}(Y = 1|X)$.
- 3. For the 0-1 cost function, what is the general form (expressed in terms of η) of Bayes predictors and Bayes risk in this framework?
- 4. Derive η and Bayes predictors explicitly, and then show that Bayes risk is equal to $\mathcal{R}_P^* = \frac{1}{6} + \frac{p}{3}$.
- 5. Intuitively, why is Bayes risk an increasing function of p?

Problem 2 Consider the regression framework with $\mathcal{Y} = \mathbb{R}$. Let $F_{Y|X}(\cdot|x)$ be the conditional distribution function of Y|X=x. In this exercise, we assume the existence of the conditional PDF $f_{Y|X=x}(\cdot|x)$, which may be relaxed.

- 1. For the absolute value cost c(y, y') = |y y'| for $y, y' \in \mathcal{Y}$, let us show that $f^* : x \mapsto \text{med}(Y|X = x)$ is a Bayes predictor, where med(Y|X = x) stands for the median of the distribution of Y given X = x:
 - (a) Fix $x \in \mathcal{X}$, and consider the function $r_x : a \mapsto r_x(a) = \mathbb{E}[|a Y||X = x]$. Show that for any $a \in \mathbb{R}$, $r'_x(a) = 2\mathbb{P}(Y \le a|X = x) 1$ and $r''_x(a) = 2f_{Y|X=x}(a)$.

Hint: Recall that for
$$\varphi(x) = \int_{A(x)}^{B(x)} g(x,t)dt$$
 (assuming all functions are differentiable),
$$\varphi'(x) = \int_{A(x)}^{B(x)} \frac{\partial g(x,t)}{\partial x} dt + B'(x)g(x,B(x)) - A'(x)g(x,A(x))$$

Note: This rule cannot be applied immediately to improper integrals. To be able to apply the rule, you could split the integrals $\int_a^\infty y f_{Y|X}(y|x) = \int_a^M y f_{Y|X}(y|x) + \int_M^\infty y f_{Y|X}(y|x)$.

- (b) Show that r_x admits a global minimum at $a_x^* = \text{med}(Y|X=x)$.
- (c) Deduce that $\mathbb{E}[|f^*(X) Y|] \leq \mathbb{E}[|f(X) Y|]$ for any predictor $f \in \mathcal{F}$ and conclude that $f^*: x \mapsto \operatorname{med}(Y|X = x)$ is a Bayes predictor.
- 2. Derive a Bayes predictor when c is the asymmetric absolute value cost:

$$c(y,y') = c_-(y'-y)\mathbb{1}_{y < y'} + c_+(y-y')\mathbb{1}_{y \ge y'} \text{ for } y,y' \in \mathcal{Y}, \text{ with } c_-,c_+ \ge 0, \ c_- + c_+ > 0.$$

How does it relate to the Bayes predictor of the previous question?

Problem 3 Let $\mu_0, \mu_1 \in \mathbb{R}^d$ two vectors and Σ_0, Σ_1 two symmetric positive definite matrices of size d. Let Y be a random variable such that $\mathbb{P}(Y = 1) = 1 - \mathbb{P}(Y = 0) = p \in [0, 1]$, and let X be a random variable such that $X|Y = i \sim \mathcal{N}(\mu_i, \Sigma_i)$, for $i \in \{0, 1\}$. We consider the classification problem of predicting Y given X with the 0-1 cost.

- 1. Recall the general form of Bayes classifiers in this framework (expressed in terms of η).
- 2. Show that $\eta(x) > 1/2 \iff \frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=0|X=x)} > 1$.
- 3. For i = 0, 1, derive an expression of $\mathbb{P}(Y = i | X = x)$ in terms of $N_i(x)$ (the pdf of a multivariate normal with mean μ_i and variance Σ_i), $f_X(x)$ and p.
- 4. Show that a Bayes classifier can be expressed as

$$f^*: x \in \mathbb{R}^d \mapsto \mathbb{1}_{x^\top A x + b^\top x + c > 0},$$

for some matrix A, vector b and constant c, depending on $\mu_0, \mu_1, \Sigma_0, \Sigma_1$ and p.

Hint: Use the pdf of the multivariate normal distribution.

5. What is the geometric form of the decision boundary for this classifier? What if $\Sigma_0 = \Sigma_1$?

Problem 4 Consider the binary classification framework with $\mathcal{Y} = \{0, 1\}$. Let c the asymmetric 0-1 cost function: $c(y, y') = w_{y'} \mathbb{1}_{y \neq y'}$, for $y, y' \in \{0, 1\}$, with $w_0, w_1 \geq 0$, $w_0 + w_1 > 0$. Show that $f^* : x \in \mathcal{X} \mapsto \mathbb{1}_{\eta(x) > w_0/(w_0 + w_1)}$ is a Bayes predictor and derive Bayes risk, the expression of the excess risk and the set of all Bayes predictors.

1. Define the risk conditional on X, $r_X(f) := \mathbb{E}[c(f(X), Y)|X]$, for any classifier $f \in \mathcal{F}$. Show that $r_X(f) = w_0 f(X)(1 - \eta(X)) + w_1(1 - f(X))\eta(X)$.

- 2. Deduce that $r_X(f) \ge \min \left(w_0(1 \eta(X)), w_1 \eta(X) \right)$, and show that $r_X(f^*) = \min \left(w_0(1 \eta(X)), w_1 \eta(X) \right).$
- 3. Show that f^* is a Bayes predictor and show that Bayes risk reads

$$\mathcal{R}_P^* = \mathbb{E}\Big[\min\Big(w_0(1 - \eta(X)), w_1\eta(X)\Big)\Big].$$

- 4. Recall the definition of the excess risk of a classifier $f \in \mathcal{F}$ in terms of $\mathcal{R}_{P}^{c}(f)$ and \mathcal{R}_{P}^{*} .
- 5. Show that

$$\ell(f^*, f) = (w_0 + w_1) \mathbb{E} \Big[\mathbb{1}_{f(X) \neq f^*(X)} \Big| \frac{w_0}{w_0 + w_1} - \eta(X) \Big| \Big],$$

and deduce that all Bayes classifiers are almost surely equal to f^* .