Part D: Solving Parallel circuit problems

In a parallel circuit, the rules are slightly different.

Parallel Circuit Rules:

- 1: For each element and the total circuit, the formula V = IR.
- 2: The *voltage* is the same for every element.
- 3: The *current* adds up to the total for each circuit element.
- 4: The *resistance* DOES NOT add up to the total.
- **D.1.** A parallel circuit with a 12-Volt battery, a 3-Ohm resistor, and a 6-Ohm resistor:

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

D.2 a parallel circuit with a 10 Volt battery, a 5-Ohm resistor, and a 10-Ohm resistor:

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

D.3 a parallel circuit with a 20 Volt battery, a 2 Ohm resistor, and a 4 Ohm resistor:

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
voltage (v)			
Current (A)			
Resistance (Ω)			

D.4 A parallel circuit with a 6-volt battery and *three* 2-ohm resistors.

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)				
Current (A)				
Resistance (Ω)				

D.5 A parallel circuit with a 10.45-volt battery, a 3.45-ohm resistor, a 2.58-ohm resistor, and a 8.12-ohm resistor. [use a calculator, round the answers to two decimal places]

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)				
Current (A)				
Resistance (Ω)				

D.6 Which rule is the same for series and parallel circuits?

D.7 Which rules are different for series and parallel circuits?

Answers:

D.1

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	12	12	12
Current (A)	4	2	6
Resistance (Ω)	3	6	2

D.2

	Resistor 1	Resistor 2	Total Circuit
V-14 (V)	10	10	10
Voltage (V)	10	10	10
Current (A)	2	1	3
Resistance (Ω)	5	10	3.33

D.3

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	20	20	20
Current (A)	10	5	15
Resistance (Ω)	2	4	1.33

D.4

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)	6	6	6	6
		-	-	0
Current (A)	3	3	3	9
Resistance (Ω)	2	2	2	0.667

D.5

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
	10.45	10.45	10.45	10.45
Voltage (V)	10.45	10.45	10.45	10.45
Current (A)	3.03	4.05	1.29	8.37
Resistance (Ω)	3.45	2.58	8.12	1.25

All results are rounded to three significant figures.

D.6 Ohm's Law applies to both series and parallel circuits.

D.7 In a series circuit, voltage adds and current is constant.

In a parallel circuit, current adds, and voltage is constant

In a series circuit, resistance adds up, while it does not in a parallel circuit.