

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15080064303

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 13.3" Android non-touch LCD Media Player

Model No.: DT133-AS4-720, 502-1019ATM

FCC ID: 2AB6Z-DT133-AS4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Aug., 2015

Date of Test: 13 Aug., to 10 Sep., 2015

Date of report issued: 14 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description				
00	14 Sep., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.				

Tested by: 14 Sep., 2015

Test Engineer

Reviewed by: Date: 14 Sep., 2015

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES.	T SUMMARY	4
5		ERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES.	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1	00.00000 =0000	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	00.00000 =0000	
	6.7.2		
7	TES	T SETUP PHOTO	30
Ω	FIIT	CONSTRUCTIONAL DETAILS	21

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4-2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

-	,
Product Name:	13.3" Android non-touch LCD Media Player
Model No.:	DT133-AS4-720, 502-1019ATM
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15080064303

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15080064303

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	НР	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016					
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Method:	ANSI C63.4: 2009							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 kHz							
Limit:	Francisco de (MILE)	Limit (c	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 * Decreases with the logarithn	60	50					
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling im The peripheral devices at through a LISN that provi with 50ohm termination. (test setup and photograp) Both sides of A.C. line an interference. In order to fi positions of equipment ar changed according to AN measurement. 	ation network (L.I.S.N.) pedance for the measure also connected to thicked a 500hm/50uH con (Please refer to the blocks). e checked for maximum emisted all of the interface care	y, which provides a curing equipment. The main power cupling impedance cock diagram of the conducted sion, the relative ables must be					
Test setup:	LISN 40cm		er — AC power					
Test Instruments:	Refer to section 5.6 for details	3						
Test mode:	Refer to section 5.3 for details	3						
Test results:	Passed							

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Site Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 13.3" Android non-touch LCD Media Player : DT33-AS4-720 EUT

Model Test Mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
1	MHz	dBu∜	<u>dB</u>		dBu₹	dBu√	<u>dB</u>	
1	0.170	43.92	0.25	10.77	54.94	64.94	-10.00	QP
2	0.170	32.05	0.25	10.77	43.07	54.94	-11.87	Average
3	0.200	39.46	0.25	10.76	50.47	63.62	-13.15	QP
1 2 3 4 5 6 7 8 9	0.211	26.13	0.25	10.76	37.14	53.18	-16.04	Average
5	0.246	35.99	0.26	10.75	47.00	61.91	-14.91	QP
6	0.246	25.16	0.26	10.75	36.17	51.91	-15.74	Average
7	0.260	35.16	0.26	10.75	46.17	61.42	-15.25	QP
8	0.260	23.62	0.26	10.75	34.63	51.42	-16.79	Average
9	0.270	22.60	0.26	10.75	33.61	51.12	-17.51	Average
10	0.505	31.58	0.29	10.76	42.63	56.00	-13.37	QP
11	0.505	23.06	0.29	10.76	34.11	46.00	-11.89	Average
12	6.420	25.95	0.26	10.81	37.02	60.00	-22.98	QP

Line:

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 13.3" Android non-touch LCD Media Player EUT

Model : DT133-AS4-720
Test Mode : WIFI mode
Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Viki

vemark	•							
		Read		Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	₫₿u₹	<u>d</u> B	₫B	dBu₹	dBu√	<u>d</u> B	
1	0.155	43.78	0.27	10.78	54.83	65.74	-10.91	QP
2	0.170	27.24	0.27	10.77	38.28	54.94	-16.66	Average
3	0.195	37.87	0.28	10.76	48.91	63.80	-14.89	QP
2 3 4 5 6 7 8 9	0.195	22.04	0.28	10.76	33.08	53.80	-20.72	Average
5	0.211	21.37	0.28	10.76	32.41	53.18	-20.77	Average
6	0.215	36.66	0.28	10.76	47.70	63.01	-15.31	QP
7	0.240	33.12	0.27	10.75	44.14	62.08	-17.94	QP
8	0.249	32.15	0.27	10.75	43.17	61.78	-18.61	QP
9	0.255	16.86	0.27	10.75	27.88	51.60	-23.72	Average
10	0.440	17.66	0.28	10.74	28.68	47.07	-18.39	Average
11	0.499	29.21	0.29	10.76	40.26	56.01	-15.75	QP
12	0.521	20.47	0.28	10.76	31.51	46.00	-14.49	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205				
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Above 1GHz	Detector Peak RMS	RBW 1MHz 1MHz	VBW 3MHz 3MHz	Remark Peak Value Average Value		
Limit:	Freque		Limit (dBuV/m @3m) 54.00		Remark Average Value		
	Above 1	GHz	74.0		Peak Value		
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the substitute of the emission of the EUT have 10dB	at a 3 meter come the position was set 3 meter which was mount a height is varied to determine to the and vertice measurement. The author of the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported to the position of the rotal table maximum read ceiver system and width with sion level of the ecified, then te would be reported to the reported t	amber. The of the highests away from the on the to the field from one he maximum al polarizations ion, the EU a was turned the was turned the was set to P Maximum He EUT in peasting could butted. Otherwise re-tested	table was rest radiation. The interfer op of a variate meter to for a value of the ans of the answer and of the answer answer answer answer answer and of the answer	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to reged to its worst from 1 meter to 4 hees to 360 degrees. Function and s 10dB lower than and the peak values ssions that did not be using peak, quasi-		
Test setup:	peak or average method as specified and then reported in a data sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
Test Instruments:	Refer to section	5.6 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Measurement Data:

Test mode: 802.11b			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390	20.08	27.58	6.63	0	54.29	74	-19.71	Vertical
2390	21.03	27.58	6.63	0	55.24	74	-18.76	Horizontal
Test mode: 80)2.11b		Test channel: Lowest		Remark: Ave			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390	11.45	27.58	6.63	0	45.66	54	-8.34	Vertical
2390	11.24	27.58	6.63	0	45.45	54	-8.55	Horizontal

Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	23.47	27.52	6.85	0	57.84	74	-16.16	Vertical
2483.5	22.98	27.52	6.85	0	57.35	74	-16.65	Horizontal
Test mode: 80)2.11b		Test channel: Highest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	11.35	27.52	6.85	0	45.72	54	-8.28	Vertical
2483.5	10.97	27.52	6.85	0	45.34	54	-8.66	Horizontal

Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	r olali
2390	30.24	27.58	6.63	0	64.45	74	-9.55	Vertical
2390	31.55	27.58	6.63	0	65.76	74	-8.24	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.
((dBuV)	(dB/m)	(dB)	(dB)	,	, ,	(dB)	
2390	(dBuV) 11.04	(dB/m) 27.58	(dB) 6.63	(aB)	45.25	54	-8.75	Vertical

Test mode: 80)2.11g		Test channel: Highest			Remark: Peak			
Erogueney	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)		
2483.5	21.47	27.52	6.85	0	55.84	74	-18.16	Vertical	
2483.5	20.99	27.52	6.85	0	55.36	74	-18.64	Horizontal	
Test mode: 80)2.11g		Test char	nel: Highest		Remark: Ave	erage		
Fraguerov.	Read	Antenna	Cable	Preamp	Lovel	LimitLina	Over		
Frequency	Level	Factor	Loss	Factor	Level	Limit Line	Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
2483.5	10.72	27.52	6.85	0	45.09	54	-8.91	Vertical	
2483.5	10.33	27.52	6.85	0	44.70	54	-9.30	Horizontal	

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test mode: 802.11n-HT20			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390	27.44	27.58	6.63	0	61.65	74	-12.35	Vertical	
2390	28.56	27.58	6.63	0	62.77	74	-11.23	Horizontal	
						Remark: Average			
Test mode: 80	02.11n-HT20)	Test char	nnel: Lowest		Remark: Ave	erage		
Test mode: 80 Frequency (MHz)	02.11n-HT20 Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.	

Test mode: 802.11n-HT20			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	22.58	27.52	6.85	0	56.95	74	-17.05	Vertical
2483.5	23.46	27.52	6.85	0	57.83	74	-16.17	Horizontal
						Remark: Average		
Test mode: 80	02.11n -HT2	0	Test char	nel: Highest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11n -HT2 Read Level (dBuV)	O Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80)2.11n -HT4	0	Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390	21.58	27.58	6.63	0	55.79	74	-18.21	Vertical	
2390	21.47	27.58	6.63	0	55.68	74	-18.32	Horizontal	
Test mode: 80)2.11n -HT4	0	Test char	nel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390	11.08	27.58	6.63	0	45.29	54	-8.71	Vertical	
2390	10.95	27.58	6.63	0	45.16	54	-8.84	Horizontal	

Test mode: 80)2.11n -HT4	0	Test char	nel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	23.45	27.52	6.85	0	57.82	74	-16.18	Vertical
2483.5	24.08	27.52	6.85	0	58.45	74	-15.55	Horizontal
Test mode: 80)2.11n -HT4	0	Test char	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	9.63	27.52	6.85	0	44.00	54	-10.00	Vertical
2483.5	9.85	27.52	6.85	0	44.22	54	-9.78	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205					
Test Method:	ANSI C63.4:200)9						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
	Frequency Detector RBW VBW Remark							
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak V							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	710000 10112	RMS	1MHz	3MHz	Average Value			
Limit:								
	Freque		Limit (dBuV		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0 74.0		Average Value Peak Value			
Took Dropodyro	1 The FLIT w	as placed on t						
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the material Europe in the second to find the material Europe in the second to determine the material Europe in the Europe in	at a 3 meter ce the position as set 3 meter hich was mount a height is var to determine to that and vertice neasurement. Uspected emisten the antennal the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported the position of the would be reported to the position of the would be reported to the position of the would be reported to the position of the position o	amber. The toof the highests away from the on the toolean tendence of the maximum all polarizations on the EU a was turned to was turned to was set to P Maximum He EUT in peasing could burted. Otherwise re-tested	able was ro st radiation. the interfer op of a varia e meter to for a value of the ons of the an T was arran to heights to from 0 degreak Detect old Mode. ak mode wa be stopped a vise the emi one by one	e 0.8 meters above tated 360 degrees ence-receiving able-height antenna our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees Function and s 10dB lower than and the peak values essions that did not e using peak, quasi-ported in a data			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 13.3" Android non-touch LCD Media Player : DT133-AS4-720 Condition EUT

Model Test mode : WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki

RINGIAN									
	Freq		Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	101.289	33.05	13.02	0.97	29.52	17.52	43.50	-25.98	QP
2	191.745	39.55	10.56	1.37	28.89	22.59	43.50	-20.91	QP
3	336.035	38.21	13.99	1.89	28.53	25.56	46.00	-20.44	QP
4	423.540	35.95	15.49	2.18	28.82	24.80	46.00	-21.20	QP
5	699.305	36.23	18.80	2.91	28.67	29.27	46.00	-16.73	QP
6	771.449	43.29	19.72	3.10	28.36	37.75	46.00	-8.25	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 13.3" Android non-touch LCD Media Player : DT133-AS4-720 Condition

EUT

Model Test mode: WIFI mode
Power Rating: AC120V/60Hz
Environment: Temp:25.5°C
Test Engineer: Viki
REMARK:

Huni:55% 101KPa

PHETE								
	ear	Cable	a Cable	Cable Preamy	P	Limit	Over	
	ct	Loss	r Loss	Loss Factor	r Level	Line	Limit	Remark
			m dB	dB di	B dBuV/m	dBuV/m	<u>dB</u>	
1	9.	0.55	6 0.55	0.55 29.8	7 18.05	40.00	-21.95	QP
2	9.	0.98	7 0.98	0.98 29.5	1 17.73	43.50	-25.77	QP
2	8.	2.18	9 2.18	2.18 28.83	2 29.24	46.00	-16.76	QP
4	8.	2.74	8 2.74	2.74 28.83	3 33.51	46.00	-12.49	QP
5	8.	2.93	6 2.93	2.93 28.64	4 33.24	46.00	-12.76	QP
6	8.	3.11	7 3.11	3.11 28.33	2 37.34	46.00	-8.66	QP
4 5 6	8.	2.93	6 2.93	2.93 28.6	4 33.24	46.00	-12	. 76

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Erogueney	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)		
4824.00	44.09	31.54	10.58	40.22	45.99	74.00	-28.01	Vertical	
4824.00	43.25	31.54	10.58	40.22	45.15	74.00	-28.85	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Erogueney	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)		
4824.00	38.69	31.54	10.58	40.22	40.59	54.00	-13.41	Vertical	
4824.00	37.46	31.54	10.58	40.22	39.36	54.00	-14.64	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.28	31.57	10.64	40.15	47.34	74.00	-26.66	Vertical
4874.00	45.03	31.57	10.64	40.15	47.09	74.00	-26.91	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.29	31.57	10.64	40.15	38.35	54.00	-15.65	Vertical
4874.00	36.58	31.57	10.64	40.15	38.64	54.00	-15.36	Horizontal

Test mode: 80	02.11b		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	42.58	31.61	10.70	40.08	44.81	74.00	-29.19	Vertical	
4924.00	41.97	31.61	10.70	40.08	44.20	74.00	-29.80	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	35.26	31.61	10.70	40.08	37.49	54.00	-16.51	Vertical	
4924.00	34.18	31.61	10.70	40.08	36.41	54.00	-17.59	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.28	31.54	10.58	40.22	47.18	74.00	-26.82	Vertical
4824.00	44.56	31.54	10.58	40.22	46.46	74.00	-27.54	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	35.16	31.54	10.58	40.22	37.06	54.00	-16.94	Vertical
4824.00	34.78	31.54	10.58	40.22	36.68	54.00	-17.32	Horizontal

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.29	31.57	10.64	40.15	47.35	74.00	-26.65	Vertical	
4874.00	44.63	31.57	10.64	40.15	46.69	74.00	-27.31	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.78	31.57	10.64	40.15	38.84	54.00	-15.16	Vertical	
4874.00	34.95	31.57	10.64	40.15	37.01	54.00	-16.99	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.22	31.61	10.70	40.08	47.45	74.00	-26.55	Vertical
4924.00	46.01	31.61	10.70	40.08	48.24	74.00	-25.76	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.27	31.61	10.70	40.08	38.50	54.00	-15.50	Vertical
4924.00	35.86	31.61	10.70	40.08	38.09	54.00	-15.91	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.28	31.54	10.58	40.22	47.18	74.00	-26.82	Vertical
4824.00	44.67	31.54	10.58	40.22	46.57	74.00	-27.43	Horizontal
Test mode: 8	02.11n(H20)		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.25	31.54	10.58	40.22	38.15	54.00	-15.85	Vertical
4824.00	35.48	31.54	10.58	40.22	37.38	54.00	-16.62	Horizontal

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.75	31.57	10.64	40.15	50.81	74.00	-23.19	Vertical	
4874.00	48.06	31.57	10.64	40.15	50.12	74.00	-23.88	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.26	31.57	10.64	40.15	37.32	54.00	-16.68	Vertical	
4874.00	35.44	31.57	10.64	40.15	37.50	54.00	-16.50	Horizontal	

Test mode: 80	est mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	47.08	31.61	10.70	40.08	49.31	74.00	-24.69	Vertical	
4924.00	46.52	31.61	10.70	40.08	48.75	74.00	-25.25	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	34.16	31.61	10.70	40.08	36.39	54.00	-17.61	Vertical	
4924.00	34.05	31.61	10.70	40.08	36.28	54.00	-17.72	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	44.96	31.55	10.61	40.19	46.93	74.00	-27.07	Vertical	
4844.00	45.02	31.55	10.61	40.19	46.99	74.00	-27.01	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	33.47	31.55	10.61	40.19	35.44	54.00	-18.56	Vertical	
4844.00	33.18	31.55	10.61	40.19	35.15	54.00	-18.85	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.82	31.57	10.64	40.15	47.88	74.00	-26.12	Vertical	
4874.00	46.07	31.57	10.64	40.15	48.13	74.00	-25.87	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.26	31.57	10.64	40.15	37.32	54.00	-16.68	Vertical	
4874.00	34.97	31.57	10.64	40.15	37.03	54.00	-16.97	Horizontal	

Test mode: 80	Гest mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	45.28	31.59	10.67	40.10	47.44	74.00	-26.56	Vertical	
4904.00	45.01	31.59	10.67	40.10	47.17	74.00	-26.83	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.55	31.59	10.67	40.10	38.71	54.00	-15.29	Vertical	
4904.00	36.74	31.59	10.67	40.10	38.90	54.00	-15.10	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.