Módulo 1 - Laboratório 3 Implementação e avaliação de aplicações concorrentes (parte 2)

Computação Concorrente (ICP-117) 2021.2 Prof. Silvana Rossetto

¹Instituto de Computação/UFRJ

Introdução

O objetivo deste Laboratório é projetar e implementar uma versão concorrente para o problema de **encontrar a quantidade de valores de um vetor de números reais que estão dentro de uma faixa de valores dada**; e avaliar o desempenho da aplicação em termos de tempo de execução. Usaremos a linguagem C e a biblioteca *Pthreads*.

Acompanhe a explanação da professora nas vídeo-aulas deste laboratório. Se tiver dúvidas, entre em contato por email.

Atividade 1

Objetivo: Implementar uma solução sequencial e uma solução concorrente para o problema dado.

Roteiro:

- 1. Implemente a função de inicialização do vetor de entrada preenchendo seus campos com valores aleatórios do tipo float. O número de elementos (N) do vetor deve ser informado pelo usuário na chamada do programa. Sugestão: defina a variável N do tipo long long int e use a função atoll() para converter o valor recebido do usuário (string) para long long int.
- 2. Receba da entrada padrão os limiares da faixa de valores: **limiar inferior** (L_i) e **limiar superior** (L_s) e guarde-os nas suas respectivas variáveis. Cada valor x do vetor de entrada será verificado sobre essa faixa, i.e., se $L_i < x < L_s$ então a quantidade de valores encontrados deverá ser incrementada de 1.
- 3. Implemente uma **função sequencial** para resolver o problema e meça o seu tempo de execução.
- 4. Implemente uma **função concorrente** para resolver o problema e meça o seu tempo de execução. O **número de threads (NTHREADS) deve ser informado pelo usuário na chamada do programa. Use a função pthread_exit() para retornar o valor calculado pelas threads para a função main().**
- 5. Verifique a corretude da solução concorrente comparando seus resultados com os resultados da versão sequencial para o mesmo vetor de entrada.
- 6. Calcule o ganho de desempenho (aceleração) obtido com a versão concorrente: (T_{sequencial}/T_{concorrente}). Considere os seguintes valores de N: 10⁵, 10⁷, 10⁸. Para a versão concorrente, experimente com 1, 2 e 4 threads. Repita a execução do programa várias vezes para cada configuração dos parâmetros de entrada. Use o menor tempo obtido nessas execuções para a versão sequencial e para a versão concorrente e então calcule a aceleração. Escreva os resultados de aceleração obtidos no README do código no GitHub ou GitLab.

Entrega do laboratório: Disponibilize o código implementado nas duas atividades em um ambiente de acesso remoto (GitHub ou GitLab). Use o formulário de entrega desse laboratório para enviar o link do repositório do código implementado e responder às questões propostas.