	Fluid Dynamics -> Problem Sheet 7:
1	Darum 1s 4660 mm (bv 4m) below · ⇒ z = 4m. P = 20×103 Pa.
	Noω, diamatu, d = 0.25 m.
	area of cross section = $\pi d^2 = 1.049 m^2$.
	$\frac{\text{Flow}}{\text{min}} = \frac{2.4 \text{ m}^3}{\text{nin}} = \frac{2.4 \text{ m}^3}{\text{s}}$
	: Speed through a cross seetion = Flowrate
	Area of cross section.
	$= 2.4 = 0.815 \text{m/s.} = \sqrt{.}$
	60 × 0·049
	: To tal Euner gy haad (From Bernoullis' eq=):
45	P = 1000 kg /m = (600 kg
	Pg 2g = 9.81 m/s2
	= 60 × 103 + (0.815) + 4
	$= \frac{10^3 \times 9.81}{10^3 \times 9.81}$
	(0° × 4° 61
	- 6.0726 m. (Ans).
	= 6.0726 m. (Mas). For H20:
2)	Flow rate = 30 L/s. [1 L = 1 dm ³ 2m.
	$= 0.03 \text{ m}^3/3.$
	Somm.
	$\therefore A_1 = \text{area of cross section at } 0$ $= \pi \cdot \times \left(\frac{0.1}{2}\right)^2 = 7.854 \times 10^{-3} \text{ m}^2$
	$= \pi \cdot \times \left(\frac{0.1}{0.1} \right)^2 = 7.834 \times 10^{-10}$
	2)
	Similarly, $A_2 = \pi \times \left(\frac{8.05}{2}\right)^2 = 1.963 \times 10^{-8} \text{ m}^2$
	:. V ₁ = velocity of lig though (1) and, V ₂ = flowrate 15.28 m/s. = flow rate _ 3.82 m/s 42
	3.82 m/s
	A ₁
	T)

C	Berno	44:6	00
rom	Belno	ullis	egu:

$$P_1 + \frac{1}{2} p V_1^2 + p z_1 g = P_2 + \frac{1}{2} p V_2^2 + p z_2 g$$

$$= 1000 \left(15.28^{2} - 3.82^{2} \right) + 1000 \times 9.81 \times (-2)$$

$$= iT \times \left(\frac{0.2}{2}\right)^2 = 0.0814 \text{ m}^2$$

$$\therefore A_2 = \sqrt{1 \times \left(\frac{0.1}{2}\right)^2} = 7.854 \times 10^{-3} \,\mathrm{m}^2$$

Since it is an incompressible laig. (Hze);

from continuity equ:

$$A_1 V_1 = A_2 V_2$$

 $\frac{1}{2} V_1 = A_2 V_2 = 8.25 V_2$

Now, for Bornouli's equ:

$$\frac{1}{2} \left(\frac{1000 - 250}{2} \right) \times 10^{3} = \frac{1000}{2} \left[\frac{1}{2} - 0.0625 \sqrt{\frac{1}{2}} \right]$$

:. Flow rate = discharge =
$$V_2 \times A_2 = 17.89 \times (7.854 \times 10^{-3}) \text{ m}^3/\text{s}$$

: $0.1405 \text{ m}^3/\text{s}$.

$$A_1$$
 = area of cross section at 0 :
$$= \pi \left(\frac{0.25}{2}\right)^2 = 0.0441 \text{ m}^2$$

$$\therefore A_2 = \pi \left(\frac{0.125}{2} \right)^2 = 0.0123 \text{ m}^2$$

$$V_2 = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, V_1$$

$$\Rightarrow (60-20) \times (0^3 + 1000 \times 9.81 (-0.3) = 1000 (14.936) V_1^2$$

	Putting In (), and : it is how tental, z1-22=0.
	$\Rightarrow 14.954 U_1^2 = 2 \times 9.81 (0.25)$
	⇒ V1 = 0.5717 m/s.
	:. Vol. flow (thoo retical) = Qtn = 4, U1 = 0.0405 m3/s.
	Now, Cd = <u>Qacual</u> . = <u>0.037</u> .
	> Cd > 0.914
6.	
	Px = Py = P1 + pg(z1-z) 12.5cm.
	$= P_2 + p_3(z_2 - z - h)$ $+ p_m g(h)$ $z_1 = 0.865 m.$
	2.
	> P ₁ -P ₂ = Pg (z ₂ -z ₁) + h (Pmg-Pg). A ₁ = π(0.2) ²
	$\Rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$= 10.9. (uuits).$ $= 0.0123 m^{2}$
	Now, voing Bernoulli eq. for vontur motor:
	V-2-V-2-20 [P-D- 7-7]
	$V_2^2 - V_1^2 = 2g \left[P_1 - P_2 + Z_1 - Z_2 \right] = 2 \times 9.81 \times (10.9)$ $P_3 = 213.84 (units).$
	From continuity, $V_1 = A_2 \cdot V_2 \Rightarrow V_1 = 0.391 V_2$ A1
	\Rightarrow 0.847 $V_2^2 = 213.84$

*	V2 =	12.88	m/s.
		^	

$$Q = A_2 V_2$$

$$Q = 0.195 m^3/s.$$

P = 1000 kg/m3

$$Q_{\text{actual}} = 40 \text{ lit } / s ; C_D = 0.96.$$

$$Q_{\text{th}} = 40 / 0.96 = 41.67 \text{ lit } / s.$$

$$= 0.04167 \text{ m}^3 / s$$

$$= A_1 V_1$$

$$\frac{1}{\pi} \times \frac{0.05}{2}^{2}$$

From continuity,
$$V_e = \frac{A_1}{A_2} \cdot V_1$$

$$= \frac{\pi \times (0.1\%)^2}{\pi \times (0.045\%)^2} \times 2.358 = 9.432 \text{ m/s}.$$

250 mm

150mm.

Now, by Buroullis eq":

$$P_1 + \frac{1}{2} P V_1^2 + Pg z_1 = P_2 + \frac{1}{2} P V_2^2 + Pg z_2$$

$$= \frac{1000}{2} \left[9.432^2 - 2.358^2 \right] + 1000 \times 4.81 \times \left(0.25 \right)$$

8.	For the manematic reading,
	$H = \begin{bmatrix} P_1 - P_2 \\ P_3 \end{bmatrix} + Z_1 - Z_2 \end{bmatrix} = h \begin{bmatrix} P_m \\ P \end{bmatrix} = 0.12 \begin{bmatrix} 13600 \\ 800 \end{bmatrix}$ $= 1.92 (uuits).$
	Now, $A_1 \leq lgiuon$. A2 $\therefore by continuity; V_2 = A_1 V_1$ A2 \bigcirc
	$V_2 = 5V_1$ Now, by Bunoulti eq ² . $P_1 + \frac{1}{2} P V_1^2 + z_1 p_3 + P_2 + \frac{1}{2} P V_2^2 + z_2 p_3$.
	$\Rightarrow P_{1} - P_{2} + pg(z_{1} - z_{2}) = P(v_{2}^{2} - v_{1}^{2})$ $\Rightarrow 2g\left[P_{1} - P_{2} + z_{1} - z_{2}\right] = V_{2}^{2} - V_{1}^{2}.$ Pg
	$\Rightarrow (50)^{2} - 0,^{2} = 2 \times 9.81 \times (1.92) \Rightarrow 240,^{2} = 2 \times 9.81 \times 1.92$ $\Rightarrow 0_{1} = 1.253 \text{ m/s}$ $\therefore 0_{2} = 50, = 6.264 \text{ m/s}.$ $A_{2} = \pi \left(\frac{6.01}{2}\right)^{2} = 7.854 \times 10^{-5}$
	:. Discharge = $Q = A_{L} \times V_{2} = 4.92 \times 10^{-4} \text{ m}/\text{s}$ = 0.492 Lit/s .

