# Game Data Analysis of League of Legend

Supervisor: Prof. John C.S. Lui

Team Members: 1155066601 Feng Chen

1155066051 Wu Di

1155066626 Zhao Che

#### **Overview**

- Introduction
- Data Crawling
- Champion Matrix and Recommendation
- Champion Ability Ranking
- Champion Clustering and Match Prediction

#### **Outline**

- Introduction
- Data Crawling
- Champion Matrix and Recommendation
- Champion Ability Ranking
- Champion Clustering and Match Prediction

#### **Objectives**

- ▶ MOBA (multiplayer online battle arena): a quite new but popular game genre
- ► LoL (League of Legends): one of the most popular MOBA in the world: over 27 million daily players
- Data analysis on games
  - Insights on game design: game balance, champion positioning
  - Insights for gamers: how to pick champion, how to find champion suitable for a player

#### Introduction to League of Legends

- Goal: destroy the opposing team's building (base)
- ► Two opposing team: 5 v.s. 5, summoner (player) champion (game character)
- Champion official position: Fighter, Marksman, Mage, Tank, Assassin, Support
- Damage and scores of kill, assist, death
- Earn money and level up by killing champion, building...
- ► Each match is discrete, kind of like ball games

#### **Outline**

- Introduction
- Data Crawling
- Champion Matrix and Recommendation
- Champion Ability Ranking
- Champion Clustering and Match Prediction

#### **API and Target Data**

- ► Riot REST API: free, URL query, return JSON data
- Cassiopeia: open source python wrapper of Riot API, return Python object data
- ► Target Matches: North American district, Pre-Season 2016 in different levels
- Seven database tables to remodel the crawled data

#### **Crawling Strategy**

- (1) Randomly choose 3 summoners (players) with tier "Silver", "Challenger" and "Diamond" separately, add them to an empty seed list;
- (2) For each summoner in the seed list, use a processor to crawl all his historical matches into the datasets;
- (3) For each crawled much, obtain ten summoners' ID. If the summoner is not crawled, add his ID to the seed list;
- (4) Stop the corresponding processor when we obtain about 100,000 matches from the Silver seed, 60,000 from the Challenger seeds and 60,000 from the diamond seed;
- (5) Repeat step (2);
- (6) If all processors stopped, merge three crawled datasets into one.

#### **Crawled Data**

SQLite Database size: 2.1 GB

#### Table Records:

Summoner: 487,484

Match: 222,652

► Team: 445,304

► *TeamBan*: 1,330,757

▶ Participant: 2,226,520

ParticipantTimeLine: 8,906,080

FrameKillEvent: 21,692,852

#### **Outline**

- Introduction
- Data Crawling
- Champion Matrix and Recommendation
- Champion Ability Ranking
- Champion Clustering and Match Prediction

#### **Preprocessing**

- 1. Generate kill/assist matrix
  - ► Sum the kill/assist events and normalize them by  $Total\_pick_i$
- 2. Player level separation
  - ▶ Divide players into 7 different levels (tiers) and 5 different versions

#### **Preprocessing**

- ▶ 1. Generate kill/assist matrix:
- Kill matrix demo

|         | Aatrox | Ahri       | Akali | Alistar | Amumu |
|---------|--------|------------|-------|---------|-------|
| Aatrox  | 0      | <u>232</u> | 141   | 198     | 195   |
| Ahri    | 314    | 0          | 761   | 1601    | 1032  |
| Akali   | 151    | 942        | 0     | 352     | 316   |
| Alistar | 82     | 445        | 143   | 0       | 201   |
| Amumu   | 177    | 754        | 274   | 601     | 0     |

#### Normalized Kill matrix demo

|         | Aatrox | Ahri   | Akali  | Alistar | Amumu  |
|---------|--------|--------|--------|---------|--------|
| Aatrox  | 0      | 0.0478 | 0.0290 | 0.0408  | 0.0402 |
| Ahri    | 0.0117 | 0      | 0.0285 | 0.0599  | 0.0386 |
| Akali   | 0.0249 | 0.1551 | 0      | 0.0579  | 0.0520 |
| Alistar | 0.0034 | 0.0189 | 0.0061 | 0       | 0.0086 |
| Amumu   | 0.0125 | 0.0534 | 0.0194 | 0.0425  | 0      |

 $avg_kill_{ij} = K_{ij}/Total_pick_i$ 

### **Preprocessing**

▶ 2. Player level separation:

| Tiers:    | Challenger | Master | Diamond | Platinum | Gold | Silver | Bronze |
|-----------|------------|--------|---------|----------|------|--------|--------|
|           |            |        |         |          |      |        |        |
| Versions: | 5.21       | 5.22   | 5.23    | 5.24     | 6.1  |        |        |

| Time       | Number of Champions |
|------------|---------------------|
| 01/01/2016 | 128                 |
| 05/01/2016 | 140                 |

- ▶ 1. Recommend according to popularity and win rate
- ▶ 2. Recommend according to kill/assist matrices

▶ 1. Recommend according to popularity and win rate:

Top 10 Win-rate



| Champion        | win_rate |
|-----------------|----------|
| Miss<br>Fortune | 0.546508 |
| Janna           | 0.542181 |
| Dr. Mundo       | 0.541674 |
| Brand           | 0.539527 |
| Trundle         | 0.535452 |
| Amumu           | 0.534467 |
| Rammus          | 0.534403 |
| Malzahar        | 0.533652 |
| Volibear        | 0.533047 |
| Sona            | 0.529421 |

Bibliographic coupling matrix:



Let  $A_{ij}$  represents the amount of times vertex i cites vertex j. The bibliographic coupling matrix, B, is defined as:

While A is the adjacency matrix of the citation network.

2. Recommend according to kill/assist matrices K / A:





2. Recommend according to kill/assist matrices:

Top 10 choices to counter Vayne



#### Single Feature Win Rate Prediction

- 0-1 classification problem.
- Totally 31 features of each match.
- ▶ 220 thousand match 80% for training, 20% for testing.
- Train models and select the best model and the best predict result.

### Single Feature Win Rate Prediction

| Feature type              | Error<br>Rate | Predict Rate |
|---------------------------|---------------|--------------|
| gold_earned               | 0.0267        | 0.9733       |
| turret_kills              | 0.0427        | 0.9573       |
| champion_level            | 0.0538        | 0.9462       |
| kills                     | 0.0668        | 0.9332       |
| deaths                    | 0.0673        | 0.9327       |
| kda                       | 0.0721        | 0.9279       |
| damage_dealt              | 0.1028        | 0.8972       |
| gold_spent                | 0.1043        | 0.8957       |
| assists                   | 0.1095        | 0.8905       |
| largest_killing_spree     | 0.124         | 0.876        |
| killing_sprees            | 0.131         | 0.869        |
| damage_dealt_to_champions | 0.131         | 0.869        |
| largest_multi_kill        | 0.1916        | 0.8084       |
| physical_damage_dealt     | 0.2307        | 0.7693       |
| CS                        | 0.248         | 0.752        |
|                           | ·             |              |

| Feature type                        | Error<br>Rate | Predict<br>Rate |
|-------------------------------------|---------------|-----------------|
| physical_damage_dealt_to_champio ns | 0.2543        | 0.7457          |
| damage_taken                        | 0.2582        | 0.7418          |
| magic_damage_dealt_to_champions     | 0.3229        | 0.6771          |
| magic_damage_taken                  | 0.3334        | 0.6666          |
| healing_done                        | 0.3339        | 0.6661          |
| largest_critical_strike             | 0.361         | 0.639           |
| true_damage_dealt                   | 0.3649        | 0.6351          |
| magic_damage_dealt                  | 0.3694        | 0.6306          |
| wards_placed                        | 0.3837        | 0.6163          |
| crowd_control_dealt                 | 0.3961        | 0.6039          |
| true_damage_dealt_to_champions      | 0.4156        | 0.5844          |
| true_damage_taken                   | 0.4156        | 0.5844          |
| physical_damage_taken               | 0,4221        | 0.5779          |
| vision_wards_bought                 | 0.4391        | 0.5609          |
| units_healed                        | 0.4567        | 0.5433          |
| ward_kills                          | 0.4758        | 0.5242          |

#### **Outline**

- Introduction
- Data Crawling
- ► Champion Matrix and Recommendation
- Champion Ability Ranking
- Champion Clustering and Match Prediction

#### Champion Ranking with Average Score

#### Killing Ability Ranking

|     | Champion | Score    | Position          |        | Champion | Score    | Position      |
|-----|----------|----------|-------------------|--------|----------|----------|---------------|
|     | Akali    | 9.031286 | Assassin          |        | Soraka   | 0.738921 | Support, Mage |
| Тор | Talon    | 8.934305 | Assassin, Fighter | Bottom | Janna    | 0.967073 | Support, Mage |
| 10  | Fizz     | 8.835916 | Assassin          | 10     | Braum    | 1.603554 | Support, Tank |
|     | Zed      | 8.432829 | Assassin, Fighter |        | Nami     | 1.837762 | Support, Mage |
|     | Katarina | 8.303200 | Assassin, Mage    |        | Alistar  | 1.851857 | Tank, Support |

Tops all have Assassin labels, while bottoms all have Support Labels.

Underperformed: Vi(55, F, A), Xin Zhao(60, F, A), Teemo(64, Mar, A)

Outperformed: Quinn(10, Mar, F), Corki(19, Mar)

#### Champion Ranking with Average Score

#### Assisting Ability Ranking

|     | Champion | Score     | Position         |        | Champion   | Score    | Position          |
|-----|----------|-----------|------------------|--------|------------|----------|-------------------|
|     | Nami     | 15.268267 | Support, Mage    |        | Master Yi  | 5.003692 | Assassin, Fighter |
| Тор | Janna    | 14.727506 | Support, Mage    | Bottom | Tryndamere | 5.052246 | Fighter, Assassin |
| 5   | Braum    | 14.124870 | Support, Tank    | 5      | Riven      | 5.103746 | Fighter, Assassin |
|     | Soraka   | 14.058027 | Support, Mage    |        | Jax        | 5.268868 | Fighter, Assassin |
|     | Thresh   | 13.811561 | Support, Fighter |        | Fiora      | 5.318172 | Fighter, Assassin |

Tops all have Support labels, bottoms all have Assassin and Fighter Labels.

Underperformed: Kayle(75, F, S), Anivia(49, Ma, S)

Outperformed: Nautilus, (13, T, F), Rammus(18, T, F)

#### Graph Model of Champion Relationship

#### Champion Kill Matrix K:

- ► non-negative:  $K_{ij} = k \ge 0$ champion i kills j for k times in all matches
- ► asymmetric:  $K_{ij} \neq K_{ji}$
- diagonal entries are all 0: K<sub>ii</sub> = 0 any champion can only be picked once in a match

**K'**: **K** normalized by picks(i)

K": K normalized by enemy\_incidence(i,j)

Champion Assist Matrix A: A, A' and A" (normed by partner\_incidence), with similar properties

#### Graph Model of Champion Relationship

- Relationship between each pair of champions
- Transitive assumption: if champion i kills j many times, j itself has high killing ability, then i also has high killing ability
- Eigenvector Centrality: K'x = wx
- ▶ find the eigenvector **x** corresponding to the largest eigenvalue w;
  - $x_i$  is the score of champion i's killing ability
- ► HITS: hub score of i in **K'** measures its killing ability

Killing Ranking with Eigenvector Centrality of K'

|     | Champion | Score    | Position          |        | Champion | Score    | Position      |
|-----|----------|----------|-------------------|--------|----------|----------|---------------|
|     | Akali    | 0.137101 | Assassin          |        | Soraka   | 0.010750 | Support, Mage |
| Тор | Talon    | 0.136831 | Assassin, Fighter | Bottom | Janna    | 0.014215 | Support, Mage |
| 5   | Fizz     | 0.133501 | Assassin, Fighter | 5      | Braum    | 0.023332 | Support, Tank |
|     | Zed      | 0.129720 | Assassin, Fighter |        | Nami     | 0.026539 | Support, Mage |
|     | Katarina | 0.123811 | Assassin, Mage    |        | Alistar  | 0.027421 | Tank, Support |

No significant difference.

Killing Ranking with Hub Centrality of K'

|     | Champion | Score    | Position           |        | Champion | Score    | Position      |
|-----|----------|----------|--------------------|--------|----------|----------|---------------|
|     | Talon    | 0.012690 | Assassin, Fighter  |        | Soraka   | 0.001080 | Support, Mage |
| Тор | Akali    | 0.012320 | Assassin           | Bottom | Janna    | 0.001501 | Support, Mage |
| 5   | Twitch   | 0.012129 | Marksman, Assassin | 5      | Braum    | 0.002402 | Support, Tank |
|     | Fizz     | 0.011963 | Assassin, Fighter  |        | Alistar  | 0.002754 | Tank, Support |
|     | Katarina | 0.011612 | Assassin, Mage     |        | Nami     | 0.002773 | Support, Mage |

No significant difference: average score method is good enough

Assisting Ranking with Eigenvector Centrality of A'

|     | Champion | Score    | Position         |        | Champion   | Score    | Position          |
|-----|----------|----------|------------------|--------|------------|----------|-------------------|
|     | Nami     | 0.150016 | Support, Mage    |        | Master Yi  | 0.051729 | Assassin, Fighter |
| Тор | Janna    | 0.144490 | Support, Mage    | Bottom | Tryndamere | 0.052331 | Fighter, Assassin |
| 5   | Braum    | 0.138364 | Support, Tank    | 5      | Riven      | 0.053255 | Fighter, Assassin |
|     | Soraka   | 0.137169 | Support, Mage    |        | Jax        | 0.054587 | Fighter, Assassin |
|     | Thresh   | 0.135735 | Support, Fighter |        | Fiora      | 0.055673 | Fighter, Assassin |

No significant difference.

Assisting Ranking with Hub Centrality of A'

|     | Champion | Score    | Position         |        | Champion | Score    | Position           |
|-----|----------|----------|------------------|--------|----------|----------|--------------------|
|     | Nami     | 0.016397 | Support, Mage    |        | Vayne    | 0.003561 | Marksman, Assassin |
| Тор | Janna    | 0.015918 | Support, Mage    | Bottom | Tristana | 0.003760 | Marksman, Assassin |
| 5   | Braum    | 0.015368 | Support, Tank    | 5      | Draven   | 0.003793 | Marksman           |
|     | Thresh   | 0.014688 | Support, Fighter |        | Kalista  | 0.003917 | Marksman           |
|     | Soraka   | 0.014248 | Support, Mage    |        | Lucian   | 0.004176 | Marksman           |

▶ Bottoms are quite different: Marksman instead of Fighter and Assassin.

- ► However, K' and A' gives us only biased result, because we ignore how the victim / assisted champion is picked in normalization
- ▶ Using K" and A" is more reasonable, but Killing Ranking using eigenvector centrality with K" cannot get a stable solution in our experiments, and HITS cannot even converge
- So we try another method: PageRank

$$x_i = a \sum_j (K'')^T_{ij} x_j / k^{\text{out}}_j + B$$

We use transpose of K" because i kills j means i has higher killing ability than j;  $\alpha$ =0.85,  $\beta$ =0.15; similar for A"

► Killing Ranking with PageRank Centrality of K"

|       | Champion        | Score    | Position          | Bottom<br>5 | Champion | Score    | Position      |
|-------|-----------------|----------|-------------------|-------------|----------|----------|---------------|
| Т     | Twisted<br>Fate | 0.054610 | Mage              |             | Soraka   | 0.001938 | Support, Mage |
| Top 5 | Akali           | 0.011221 | Assassin          |             | Janna    | 0.002134 | Support, Mage |
| 3     | Fizz            | 0.011182 | Assassin, Fighter |             | Braum    | 0.002811 | Support, Tank |
|       | Talon           | 0.011080 | Assassin, Fighter |             | Nami     | 0.003020 | Support, Mage |
|       | Zed             | 0.010720 | Assassin, Fighter |             | Alistar  | 0.003111 | Tank, Support |

Twisted Fate is outstanding.

Assisting Ranking with PageRank Centrality of A"

|     | Champion | Score    | Position         |        | Champion   | Score    | Position          |
|-----|----------|----------|------------------|--------|------------|----------|-------------------|
|     | Nami     | 0.012476 | Support, Mage    |        | Master Yi  | 0.005288 | Assassin, Fighter |
| Тор | Janna    | 0.011874 | Support, Mage    | Bottom | Riven      | 0.005388 | Fighter, Assassin |
| 5   | Soraka   | 0.011514 | Support, Mage    | 5      | Tryndamere | 0.005396 | Fighter, Assassin |
|     | Braum    | 0.011464 | Support, Tank    |        | Jax        | 0.005570 | Fighter, Assassin |
|     | Thresh   | 0.011218 | Support, Fighter |        | Fiora      | 0.005572 | Fighter, Assassin |

No significant difference.

#### **Champion Ability Ranking**

- Some possible future Works in this part:
  - Deep analysis on exceptional results like non-convergence HITS
  - Combine the result from match data with static champion setting like health, skills, and growth curve (by level)
  - Comparison with the champion clustering results
  - Champion Popularity Ranking

#### **Outline**

- Introduction
- Data Crawling
- Champion Matrix and Recommendation
- Champion Ability Ranking
- Champion Clustering and Match Prediction

## **Champion Clustering**

#### Features

|                     | Ī                                                           |  |  |  |
|---------------------|-------------------------------------------------------------|--|--|--|
| Match champion      | Champions that involve in this match                        |  |  |  |
| Kills               | Number of enemy champions killed                            |  |  |  |
| Deaths              | Number of time champions die                                |  |  |  |
| Assists             | Number of times assisting teammates to kill enemy champions |  |  |  |
| Gold earned         | How much gold earned by champions                           |  |  |  |
| Magic damage        | Magic damage dealt to enemy champions                       |  |  |  |
| Physical damage     | Physical damage dealt to enemy champions                    |  |  |  |
| True damage         | True damage dealt to enemy champions                        |  |  |  |
| Damage taken        | Damage taken from enemy champions                           |  |  |  |
| Crowd control dealt | Sum of time of dealing control to enemy champions           |  |  |  |
| Ward placed         | Number of wards that have been placed                       |  |  |  |
| Ward kills          | Number of wards that have been killed                       |  |  |  |

#### **Champion Clustering**

- Algorithms
  - K-means

Minimize within-cluster sum of squares

$$\min \sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||^2$$

- 1. Randomly initialize k centroids.
- 2. For each point, find the closest centroid and put this point into that cluster.
- 3. Re-calculate centroids.
- 4. Repeat step 2 and 3 until it converges.

- Algorithms
  - ► K-means









- Algorithms
  - Agglomerative

Pair nearest points/clusters and finally obtain n clusters.

- 1. Initialize with m points.
- 2. For each point, find and be merged with the nearest cluster as a cluster.
- 3. For each cluster, find and be merged with the nearest cluster as a new cluster.
- 4. Repeat step 3 until there are exactly n clusters.

- Algorithms
  - Agglomerative



- Evaluation
  - ▶ Distortion: sum of distances between points and their centroid.

Distortion = 
$$\frac{\sum Euclidean(v,centroid)}{n}$$

Distance between clusters

Distance = 
$$\frac{\sum Euclidean(centroid_i, centroid_j)}{2m}$$

#### Evaluation

Distortion and distance between clusters are both important. Low distortion and high distance between clusters are what we desire.

$$D = \frac{distance}{distortion}$$

#### Selecting k

Elbow method: find k where D decreases the most and slows down the trend afterwards.





#### Result

| Index | Kills | Deaths | Assists | Gold  | Magic<br>damage | Physical<br>damage | True<br>damage | Damage<br>taken | Control | Ward |
|-------|-------|--------|---------|-------|-----------------|--------------------|----------------|-----------------|---------|------|
| 1     | 4     | 5      | 8       | 11291 | 13340           | 2436               | 890            | 30760           | 685     | 11   |
| 2     | 5     | 5      | 6       | 11742 | 3515            | 11856              | 1366           | 29593           | 685     | 10   |
| 3     | 6     | 5      | 6       | 12328 | 2545            | 16919              | 846            | 20438           | 332     | 9    |
| 4     | 5     | 5      | 7       | 11801 | 19353           | 1624               | 716            | 18880           | 560     | 11   |
| 5     | 4     | 5      | 9       | 10684 | 9367            | 3626               | 682            | 24158           | 530     | 15   |
| 6     | 2     | 4      | 13      | 9864  | 8806            | 1765               | 216            | 16455           | 266     | 19   |

Result illustration



- Interesting results
  - Fighters perform just like marksman.







Marksman is alike support character.



► There are many more.

1. Based on character composition

Feature is a vector representing two teams' character composition.

| Cluster | 1 | 2 | 3 | 4 | 5 | 6 |  |  |
|---------|---|---|---|---|---|---|--|--|
| Count   | 2 | 1 | 1 | 0 | 1 | 0 |  |  |
| +       |   |   |   |   |   |   |  |  |
| Cluster | 1 | 2 | 3 | 4 | 5 | 6 |  |  |
| Count   | 0 | 0 | 2 | 1 | 1 | 1 |  |  |

Label is win/lose of team 1.

1. Based on character composition

Result is not satisfying. That means it's impossible to predict result before match happens with such features.

|         | Precision | Recall | F1-score |
|---------|-----------|--------|----------|
| Lose    | 49%       | 50%    | 50%      |
| Win     | 52%       | 49%    | 50%      |
| Average | 51%       | 49%    | 50%      |

To improve: include players' data.

#### 2. Based on match statistics

► Single feature's result

| Feature             | Prediction precision |  |  |
|---------------------|----------------------|--|--|
| Gold difference     | 97%                  |  |  |
| Turret kills        | 95%                  |  |  |
| Levels              | 94%                  |  |  |
| Kills               | 93%                  |  |  |
| Deaths              | 93%                  |  |  |
| Assists             | 89%                  |  |  |
| Dragon kills        | 78%                  |  |  |
| Physical damage     | 74%                  |  |  |
| Damage taken        | 74%                  |  |  |
| Baron kills         | 80%                  |  |  |
| Magic damage        | 67%                  |  |  |
| Heal                | 66%                  |  |  |
| Wards placed        | 61%                  |  |  |
| Crowd control dealt | 60%                  |  |  |
| True damage         | 58%                  |  |  |
| Ward kills          | 52%                  |  |  |

#### 2. Based on match statistics

Included features

| Damage | Physical damage, magic damage, true damage, damage taker |  |  |  |
|--------|----------------------------------------------------------|--|--|--|
| Buffs  | Dragon kills, Baron kills                                |  |  |  |
| Wards  | Number of wards placed, killed                           |  |  |  |
| Other  | Heal, crowd control dealt                                |  |  |  |

#### 2. Based on match statistics

This result's precision is higher than any of the included single features.

|         | Precision | Recall | F1-score |
|---------|-----------|--------|----------|
| Lose    | 89%       | 90%    | 90%      |
| Win     | 90%       | 89%    | 89%      |
| Average | 90%       | 90%    | 89%      |

Future work: use in-match statistics to predict trends, recommend strategies.

# Thank you.