TD 1 Automatique linéaire Au tour de la fonction de transfert

Exercice 1:

$$E_C = \frac{1}{2}m\dot{y}^2(t)$$

$$E_p = \frac{1}{2}Ky^2(t)$$

$$\Rightarrow L = E_C - E_p = \frac{1}{2}m\dot{y}^2(t) - \frac{1}{2}Ky^2(t)$$

D'après Lagrange-Euler:

$$\begin{split} &\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) - \frac{\partial L}{\partial y} = -\frac{\partial D}{\partial \dot{y}} + u(t) \\ &\Rightarrow m \ddot{y}(t) + k y(t) = -\alpha \dot{y}(t) + u(t) \\ &\Rightarrow m \ddot{y}(t) + \alpha \dot{y}(t) + k y(t) = u(t) \end{split}$$

TL =>

$$mp^{2}Y(p) + \alpha pY(p) + KY(p) = u(p)$$

$$\Rightarrow Y(p)(mp^{2} + \alpha p + K) = u(p)$$

$$\Rightarrow H(p) = \frac{Y(p)}{u(p)} = \frac{1}{mp^{2} + \alpha p + K}$$

Exercice 2:

$$\sum Fext = m\vec{a}$$

On projette sue l'axe Ox:

$$-Ky(t) - \alpha \dot{y}(t) + u(t) = m \ddot{y}(t)$$

Transformé de Laplace :

$$\Rightarrow -KY(p) - \alpha p Y(p) + u(p) = m p^{2} Y(p)$$

$$\Rightarrow Y(p) \cdot (mp^{2} + \alpha p + K) = u(P)$$

$$\Rightarrow H(p) = \frac{Y(p)}{u(p)} = \frac{1}{mp^{2} + \alpha p + K}$$

Exercice 3:

$$\varepsilon = E - e_5$$
 $e_1 = \varepsilon. G1$
 $e_2 = e_1 - e_5. G5$
 $e'_2 = e_2. G2$
 $e_4 = e'_2. G4$
 $e_3 = e'_2. G3$
 $e_5 = e_3 + e_4$

$$H = \frac{e_5}{E}$$

$$e_5 = e_3 + e_4 = e'_2. G3 + e'_2. G4 = e'_2 \times (G3 + G4)$$

$$\Rightarrow e_5 = e_2. G2 \times (G3 + G4) = e_2 \times (G2. G3 + G2. G4)$$

$$\Rightarrow e_5 = (e_1 - e_5. G5) \times (G2. G3 + G2. G4)$$

$$\Rightarrow e_5 \times (1 + G5 \times (G2. G3 + G2. G4)) = e_1 \times (G2. G3 + G2. G4)$$

Date: 18/03/2019

EX MACHINA

$$\Rightarrow e_5 \times (1 + G5 \times (G2.G3 + G2.G4)) = \varepsilon \times (G1.G2.G3 + G1.G2.G4)$$

$$\Rightarrow e_5 \times (1 + G5 \times (G2.G3 + G2.G4)) = (E - e_5) \times (G1.G2.G3 + G1.G2.G4)$$

$$\Rightarrow e_5 \times (1 + G5.G2.(G3 + G4) + G1.G2.(G3 + G4)) = E \times G1.G2 \times (G3 + G4)$$

$$\Rightarrow e_5 = \frac{E \times G1 \times G2 \times (G3 + G4)}{1 + G5 \times G2 \times (G3 + G4) + G1 \times G2 \times (G3 + G4)}$$

$$\Rightarrow H = \frac{G1 \times G2 \times (G3 + G4)}{1 + G5 \times G2 \times (G3 + G4) + G1 \times G2 \times (G3 + G4)}$$

Exercice 4:

Exercice 5:

Système 1:

$$S = e_3. G3$$

$$\varepsilon = E - e_3$$

$$e_3 = e_2$$
. $G2$

$$e_2 = e_1 - S$$

$$e_1 = \varepsilon$$
. $G1$

On a:

$$S = e_3$$
. $G3 = e_2$. $G2$. $G3$

$$\Rightarrow$$
 $S = e_1.G2.G3 - S.G2.G3$

$$\Rightarrow$$
 $S(1 + G2.G3) = \varepsilon.G1.G2.G3$

$$\Rightarrow$$
 $S(1 + G2.G3) = (E - e_3)G1.G2.G3$

$$\Rightarrow$$
 $S(1 + G2.G3) = E.G1.G2.G3 - e_3.G1.G2.G3$

$$\Rightarrow$$
 $S(1 + G2.G3) = E.G1.G2.G3 - \left(\frac{S}{G3}\right).G1.G2.G3$

$$\Rightarrow S = \frac{E.G1.G2.G3}{1 + G2.G3 + G1.G2}$$

Donc:

$$\Rightarrow H = \frac{G1.G2.G3}{1 + G2.G3 + G1.G2}$$

Système 2:

$$S = e_4.G3$$

 $e_4 = e_1 + e_3$
 $e_3 = e_2.G2$
 $e_2 = e_1 - e_4$
 $e_1 = E.G1$

On a:

$$S = e_4. G3 = (e_1 + e_3) \times G3 = (E.G1 + e_2.G2) \times G3$$

$$\Rightarrow S = E.G1. G3 + e_2.G2.G3$$

$$\Rightarrow S = E.G1. G3 + (e_1 - e_4).G2.G3$$

$$\Rightarrow S = E.G1.G3 + e_1.G2.G3 - e_4.G2.G3$$

$$\Rightarrow S = E.G1.G3 + E.G1.G2.G3 - \left(\frac{S}{G3}\right).G2.G3$$

$$\Rightarrow S = \frac{E.(G1.G3 + G1.G2.G3)}{1 + G2}$$

Donc:

$$\Rightarrow H = \frac{G1.G3 + G1.G2.G3}{1 + G2}$$

$$E_C = \frac{1}{2}m\dot{y}^2(t)$$

$$E_p = \frac{1}{2}Ky^2(t)$$

$$\Rightarrow L = E_C - E_p = \frac{1}{2}m\dot{y}^2(t) - \frac{1}{2}Ky^2(t)$$

D'après Lagrange-Euler:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{y}}\right) - \frac{\partial L}{\partial y} = -\frac{\partial D}{\partial \dot{y}} + u(t)$$

Da

Date: 18/03/2019

$$\Rightarrow m\ddot{y}(t) + ky(t) = -\alpha\dot{y}(t) + u(t)$$

$$\Rightarrow m\ddot{y}(t) + \alpha\dot{y}(t) + ky(t) = u(t)$$
TL =>
$$mp^{2}Y(p) + \alpha pY(p) + KY(p) = u(p)$$

$$\Rightarrow Y(p)(mp^{2} + \alpha p + K) = u(p)$$

$$\Rightarrow H(p) = \frac{Y(p)}{u(p)} = \frac{1}{mp^{2} + \alpha p + K}$$

Exercice 6:

En appliquant la technique de superposition :

$$E_{2} = 0 \text{ et } E_{3} = 0 \implies H_{1} = \frac{S}{E_{1}} = \frac{G1G3}{1 - G1G3G4G5}$$

$$E_{1} = 0 \text{ et } E_{3} = 0 \implies H_{2} = \frac{S}{E_{2}} = \frac{G3}{1 - G1G3G4G5}$$

$$E_{1} = 0 \text{ et } E_{1} = 0 \implies H_{3} = \frac{S}{E_{3}} = \frac{G5}{1 - G1G3G4G5}$$

$$\implies H_{total} = H_{1} + H_{2} + H_{3}$$

$$\implies H_{total} = \frac{G3 + G1G3 + G5}{1 - G1G3G4G5}$$

Exercice 7:

En appliquant la technique de superposition :

$$E_2 = 0 \implies H_1(p) = \frac{S}{E_1}$$

$$S = e_5. G3$$

$$\varepsilon = E1 - H1.S$$

$$e_1 = \varepsilon. G1$$

$$e_2 = e_1 - H2S.$$

$$e_3 = e_2. G2$$

$$e_4 = e_3 - H2.S$$

$$e_5 = e_4$$

on
$$a: S = e_5$$
. $G3 = (e_3 - H2.S)G3 = (e_2.G2 - H2.S)$. $G3$
 $\Rightarrow S = (e_1.G2 - e_4.G2.H3 - H2.S)$. $G3$
 $\Rightarrow S = (e_1.G2 - (e_3 - H2.S))$. $G2.H3 - H2.S)$. $G3$
 $\Rightarrow S = (E1.G1.G2 - H1.S.G2.G1 - (e_2.G2 - H2.S))$. $G2.H3 - H2.S)$. $G3$
 $\Rightarrow S = (E1.G1.G2 - H1.S.G2.G1 - (e_3 - H2.S))$. $G3 - H3 - H2.S$. $G3$
Or: $e_4 = e_3 - H2.S = e_5 \Rightarrow e_4 = \frac{S}{G3}$
 $\Rightarrow e_3 = S.H2 + \frac{S}{G3}$

Donc:

$$H_1(p) = \frac{S}{E_1} = \frac{G1.G2.G3}{1 + H1.G1.G2.G3 + H3.G2 + H2.G3}$$

Date: 18/03/2019

EX — MACHINA

$$E_1 = 0 \implies H_2(p) = \frac{S}{E_2}$$

$$e_1 = S.H1.G1$$

 $e_2 = e_1 - H3.e_4$
 $e_3 = e_2.G2$
 $e_4 = e_3 - H2.S$
 $e_5 = e_4 + E2$

$$S = e_5$$
. $G3 = e_4$. $G3 + E2$. $G3 = e_3$. $G3 - S$. $H2$. $G3 + E2$. $G3$

$$\Rightarrow S = e_2. G2. G3 - S. H2. G3 + E2. G3$$

$$\Rightarrow$$
 S = e_1 . G2. G3 - e_4 . H3. G2. G3 - S. H2. G3 + E2. G3

$$\Rightarrow S = S.H1.G1.G2.G3 - \left(\frac{S - E2.G3}{G3}\right).H3.G2.G3 - S.H2.G3 + E2.G3$$
$$\Rightarrow S = S.H1.G1.G2.G3 - (S - E2.G3).H3.G2 - S.H2.G3 + E2.G3$$

$$\Rightarrow S = \frac{E2. H3. G2. G3 + E2. G3}{1 - H1. G1. G2. G3 + H3. G2}$$

$$\Rightarrow H_2(p) = \frac{S}{E_2} = \frac{H3. G2. G3 + G3}{1 - H1. G1. G2. G3 + H3. G2}$$

Donc: