

Segmentation using Deep Learning

Segmentation using Deep Learning

upsampling

Upsampling

Nearest Neighbor

1	2
3	4

Input: 2 x 2

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Output: 4 x 4

Unpooling

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

0	0	2	0	
0	1	0	0	
0	0	0	0	
3	0	0	4	

Transposed Convolution

Transposed Convolution

W _{0,0} 0 W _{0,1} W _{0,} W _{0,2} W _{0,} 0 W _{0,}	1 0	0 0 0 0
W _{0,2} W _{0,} 0 W _{0,}	0 0	0
0 W _{0,}	2 0	0
\A/ 0	W _{0,0}	0
$W_{1,0}$		
W _{1,1} W _{1,}	$_{0}$ $W_{0,1}$	W _{0,0}
W _{1,2} W _{1,}	1 W _{0,2}	W _{0,1}
W _{1,}	2 0	W _{0,2}
W _{2,0} 0	W _{1,0}	0
W _{2,1} W _{2,}	0 W _{1,1}	W _{1,0}
W _{2,2} W _{2,}	1 W _{1,2}	W _{1,1}
0 W _{2,}	2 0	W _{1,2}
0 0	W _{2,0}	0
0 0	W _{2,1}	W _{2,0}
0 0	W _{2,2}	W _{2,1}
0 0	0	W _{2,2}
		16×4

Sparse Matrix C^T

 $\begin{array}{c} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \\ 4 \times 1 \end{array}$

 \mathbf{X}_{0} \mathbf{X}_1 \mathbf{X}_2 X_3 X_4 X_5 X_6 X_7 X_8 **X**₉ \mathbf{X}_{10} X_{11} X_{12} X_{13} X_{14} **X**₁₅ 16×1

Up - Convolution

U-Net

Dilated Convolution

Dilated Convolution

Atrous Spatial Pyramid Pooling

DeepLab-LargeFOV

DeepLab-ASPP

DeepLab V3

Depth-wise Separable Convolution

Medical image segmentation (3)

Depth-wise Separable Convolution

DeepLab V3, DeepLab V3+

Segmentation Networks

PASCAL VOC2012 Leaderboard

Encoder

Segmentation in 3D

Patch-wise segmentation

Loss Functions

$$CE(p, \hat{p}) = -(p \log(\hat{p}) + (1-p) \log(1-\hat{p})$$

$$WCE(p, \hat{p}) = -(\beta p \log(\hat{p}) + (1 - p)\log(1 - \hat{p})$$

$$BCE(p, \hat{p}) = -(\beta p \log(\hat{p}) + (1 - \beta)(1 - p)\log(1 - \hat{p})$$

Loss Functions

$$DL(p, \hat{p}) = 1 - \frac{2p\hat{p} + 1}{p + \hat{p} + 1}$$

$$DL(p, \hat{p}) = 1 - \frac{2\sum p_{h,w}\hat{p}_{h,w}}{\sum p_{h,w} + \sum \hat{p}_{h,w}}$$

Segmentation Metric

Pixel accuracy

$$Accurary = \frac{TP + TN}{TP + TN + FP + FN}$$

Intersection over Union

$$IoU = \frac{|S_g \cap S_r|}{|S_g \cup S_r|} = \frac{TP}{TP + FP + FN}$$

Dice Coefficient

$$DICE = \frac{2|S_g \cap S_r|}{|S_g| + |S_r|} = \frac{2TP}{2TP + FP + FN}$$

Segmentation Metric

Hausdorff distance

$$HD(A,B) = \max(h(A,B),h(B,A))$$

$$h(A,B) = \max_{a \in A} \min_{b \in B} ||a - b||$$

$$AVD(A,B) = \max(d(A,B),d(B,A))$$

$$d(A,B) = \frac{1}{N} \sum_{a \in A} \min_{b \in B} ||a - b||$$

