

A (very) brief introduction to RevBayes

October 21, 2017
Michael Landis & Rachel Warnock
michael.landis@yale.com

Modeling in theory

What parameters & processes explain the data?

Identify a problem

Define probabilities of outcomes

Implement model as software method

Apply model to data with method

Modeling in practice

Program new method

or

Modify existing method

No method implements all models

Existing software often difficult to extend

Model specification complicated

Phylogenies are unusual

A simple model

Phylogenies are unusual

A simple model

A tree-based model

RevBayes

Flexible model specification Graphical models

Easy and intuitive to use Rev language interface

Fast computation and efficient inference C++ backend

Bayesian terminology

D

9

 $P(D \mid \theta)$

 $P(\theta)$

 $P(\theta \mid D)$

data, observations

model parameters

model likelihood

prior probability

posterior probability

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

Model equations

How are the model variables interrelated?

$$D \sim \text{Exponential}(Y)$$

$$Y = (\theta_1 - \theta_2)^2$$

$$\theta_1 \sim \text{Exponential}(1)$$

$$\theta_2 \sim \text{Exponential}(1)$$

Model graph

 $D \sim \text{Exponential}(Y)$

$$Y = (\theta_1 - \theta_2)^2$$

 $\theta_1 \sim \text{Exponential}(1)$

 $\theta_2 \sim \text{Exponential}(1)$

Model variable relationships

Edges indicate how child nodes depend on parent nodes

Model variable types

Nodes have different properties

The Rev Language

Constant node p < -0.5 $x \sim dnBernoulli(p)$ Stochastic node Stochastic node x.clamp(1)(observed) Deterministic node x := exp(p)for (i in 1:N) { Plate (iid variables) x[i] ~ dnBernoulli(p) (short demo)

Bayesian phylogenetics

D

sequence alignment

 θ

tree, rates

 $P(D \mid \theta)$

prob. sequences evolved under particular tree w/ rate

 $P(\theta)$

birth-death process prior, substitution rate prior, etc.

 $P(\theta \mid D)$

prob. each tree w/ rate describe particular evolved sequences

A simple phylogenetic model

A simple phylogenetic model

GTR, birth-death, strict clock

GTR, birth-death, UCLN clock


```
root ~ dnUniform(0,1000.0)
psi ~ dnBirthDeath(lambda=2.0, mu=1.0,
                   rootAge=root, taxon_names)
alpha1 \leftarrow v(1,1,1,1,1,1)
alpha2 <- v(1,1,1,1)
er ~ dnDirichlet( alpha1 )
pi ~ dnDirichlet( alpha2 )
Q_mol := fnGTR(er, pi)
mu <- 0
sigma <- 1
for (i in 1:(2*N-2)) {
  r[i] ~ dnLognormal( mu, sigma )
seq ~ dnPhyloCTMC( tree=psi, Q=Q_mol, branchRates=r, type="DNA" )
seq.clamp( data )
```

Partitions, GTR, birth-death, strict clock


```
root \sim dnUniform(0,1000.0)
psi ~ dnBirthDeath(lambda=2.0, mu=1.0,
                   rootAge=root, taxon_names)
alpha1 \leftarrow v(1,1,1,1,1,1)
alpha2 <- v(1,1,1,1)
er ~ dnDirichlet( alpha1 )
for (i in 1:N) {
  pi[i] ~ dnDirichlet( alpha2 )
  Q_mol[i] := fnGTR(er, pi[i])
  seq[i] ~ dnPhyloCTMC( tree=psi, Q=Q_mol[i], branchRates=0.01, type="DNA" )
  seq[i].clamp( data[i] )
```

Modularity

Hyperpriors

Scalable complexity

Performance

Estimate substitution process, tree fixed

_					
	Software	HKY	$\mathrm{HYK}{+}\Gamma$	GTR	${\rm GTR}{+}\Gamma$
	BEAST v1.8	65.3	188.4	75.8	213.4
	BEAST $v1.8$ - BEAGLE	41.2	105.2	47.5	107.4
	MrBayes 3.2	78.2	177.7	76.9	169.9
	${\tt MrBayes}~3.2$ - ${\tt BEAGLE}$	92.5	221.2	91.4	222.7
> _	RevBayes	46.9	161.3	62.5	181.2

Estimate tree, substitution process fixed

	Software	NNI	Node-Slide
	BEAST v1.8	30.7	42.8
	BEAST $v1.8$ - BEAGLE	21.0	28.3
	${\tt MrBayes}\ 3.2$	37.2	38.1
	${\tt MrBayes}~3.2$ - ${\tt BEAGLE}$	42.6	31.9
>	RevBayes	17.8	23.5

Features

Complex models Bayesian & maximum likelihood Simulation Model selection & adequacy Ancestral state estimation Custom variable monitoring Parallel processing Interactive & scripted languages

revbayes.com/tutorials

```
Introductions
     Getting Started with RevBayes
     Markov chain Monte Carlo
     Molecular phylogenetics
Substitution models
Data partitioning
Divergence time estimation
     node calibrations
     tip dating
     fossilized birth-death processes
Diversification rate estimation
     episodic models
     branch-heterogeneous rate variation
     state-dependent rate variation
```

```
Species tree estimation
concatenated analyses
multispecies coalescent
Biogeography
Chromosome evolution
Continuous trait evolution
Discrete morphological evolution
Methods
MCMC Strategies
Model Selection
Model adequacy
```

Tip-dating and FBD tutorial with bears

Basic principles of divergence time estimation

branch lengths = rate x time v = rt

Basic principles of divergence time estimation

branch lengths = time

Basic principles of divergence time estimation

branch lengths = time

Divergence time estimation: a tricky business

Modular components of the graphical model used in the FBD tip-dating analysis described in the tutorial.

λ Branching (speciation) rate

μ Extinction rate

ψ Fossil sampling rate

P Extant species sampling probability

- μ Extinction rate
- ψ Fossil sampling rate
- P Extant species sampling probability
- Divergence times (a stochastic outcome of this process)
- Fossil occurrence times (a stochastic outcome of this process)

λ Branching (speciation) rate

μ Extinction rate

ψ Fossil sampling rate

P Extant species sampling probability

t) Divergence times (a stochastic outcome of this process)

Fossil occurrence times (a stochastic outcome of this process)

Stadler, 2009, *JTB*, 26:58-66

Previous birth-death tree priors (side note)

The fossilised birth-death process (= tree prior)

Stratigraphic age uncertainty

Stratigraphic range data

Watch this RevBayes space!!

r

Substitution rate substitution/character/myr

r Substitution ratesubstitution/character/myr

Not all fossils need to have data to be useful! Fossils are valuable even without character data!

Substitution rate substitution/character/myr

Strict clock model

Substitution rate substitution/character/myr

A relaxed clock model

branch lengths = rate x time


```
Jukes cantor model with 2 characters
> 0 <- fnJC(2)
> Q
   [ [-1.0000, 1.0000],
        1.0000, -1.0000 ] ]
> Q.getTransitionProbabilities(0.1)
                                                  0.1 myr
   [ [ 0.909, 0.091],
     [ 0.091, 0.909] ]
> Q.getTransitionProbabilities(100)
                                                  100 myr
   [ [ 0.500, 0.500],
     [ 0.500, 0.500] ]
```

Rate and time are only semi-identifiable

branch lengths = rate x time

Divergence time estimation: a tricky business

Modular components of the graphical model used in the FBD tip-dating analysis described in the tutorial.