Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление – Ядерные физика и технологии Отделение ядерно-топливного цикла

Отчет по практической работе $N_{2}6$

по дисциплине

«Теория каскадов для разделения двухкомпонентных изотопных смесей»

Влияние количества газовых центрифуг в ступени питания на параметры каскада

Вариант 6

Исполнитель:			
Студент, гр. 0А8Д	подпись	дата	Кузьменко А.С.
Проверил:			
Профессор ОЯТЦ	подпись	 дата	Орлов А.А.

ЦЕЛЬ РАБОТЫ

Исследование влияния количества ГЦ в ступени подачи потока питания в каскад на полный коэффициент разделения ступеней, эффективную разделительная способность каскада, фактическую разделительную способность каскада, схемный КПД каскада, коэффициент использования разделительной мощности каскада. Определение оптимального количества ГЦ в ступени подачи потока питания в каскад.

1. ИСХОДНЫЕ ДАННЫЕ

Таблица 1 – Исходные данные

№ варианта	Количество ступеней в каскаде	Ступень подачи основного потока питания	Количество ГЦ в ступенях (кроме ступени подачи потока питания)	Концентрация отбора потока легкой фракции каскада, %	Концентрация отбора потока тяжелой фракции каскада, %
6	10	6	30000	3	0,2

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

Проведен расчет каскада с изменением количества ГЦ в ступени подачи потока питания от 5000 до 50000 с шагом 5000. Результаты расчетов представлены в таблицах 2 и 3.

Таблица 2 – Результаты расчета полных коэффициентов разделения ступеней в зависимости от количества ГЦ в ступени подачи потока питания

Количество ГЦ в ступени подачи потока питания	χ_I	X2	X3	X4	X 5	X 6	X 7	X8	X9	X10
5000	0,659	0,559	0,518	0,495	0,477	0,445	0,422	0,392	0,341	0,188
10000	0,656	0,558	0,517	0,495	0,476	0,442	0,422	0,394	0,343	0,191

15000	0,654	0,557	0,516	0,494	0,475	0,441	0,422	0,394	0,343	0,193
20000	0,652	0,556	0,516	0,494	0,475	0,440	0,422	0,395	0,344	0,195
25000	0,651	0,556	0,516	0,494	0,474	0,439	0,422	0,395	0,345	0,196
30000	0,650	0,555	0,515	0,493	0,474	0,439	0,422	0,395	0,345	0,197
35000	0,650	0,555	0,515	0,493	0,474	0,438	0,422	0,396	0,346	0,198
40000	0,649	0,555	0,515	0,493	0,473	0,438	0,422	0,396	0,346	0,198
45000	0,648	0,554	0,515	0,493	0,473	0,437	0,422	0,396	0,346	0,199
50000	0,648	0,554	0,515	0,493	0,473	0,437	0,422	0,396	0,346	0,199

По данным таблицы 2 построена зависимость полного коэффициента разделения при изменении количества ГЦ в ступени подачи потока питания (рисунок 1).

Из рисунка 1 видно, что полный коэффициент разделения для всех количеств ГЦ в ступени подачи потока питания нелинейно убывает с $\chi \approx 0,65$ до $\chi \approx 0,19$ (уменьшается на 70,8 %). Наибольшее значение на ступени отбора тяжелой фракции $\chi = 0,659$ достигается при 5000 ГЦ в ступени, на ступени отбора легкой фракции наибольшее значение $\chi = 0,199$ достигается при 50000 ГЦ в ступени.

Рисунок 1 — Зависимость полного коэффициента разделения от количества ГЦ в ступени подачи потока питания

Рассчитанные значения эффективной и фактической разделительных способностей, схемного КПД каскада и коэффициента использования разделительной мощности каскада приведены в таблице 3.

Таблица 3 — Результаты расчета характеристик эффективности каскада в зависимости от количества ГЦ в ступени подачи потока питания

Количество ГЦ в				
ступени подачи	$E_{ i\phi\phi}$	$E_{\phi a \kappa m}$	η_{cx} , %	$K_{u\scriptscriptstyle M},\%$
потока питания				
5000	42,303	49,185	86,01	44,01
10000	46,299	52,701	87,85	47,31
15000	48,819	55,177	88,48	49,01
20000	50,694	57,143	88,71	50,02
25000	52,201	58,796	88,78	50,63

30000	53,467	60,236	88,76	50,99
35000	54,563	61,517	88,70	51,19
40000	55,531	62,676	88,60	51,25
45000	56,400	63,738	88,49	51,23
50000	57,190	64,720	88,37	51,14

По данным таблицы 3 построены зависимости эффективной и фактической разделительных способностей при изменении количества ГЦ в ступени подачи потока питания (рисунок 2).

Рисунок 2 — Зависимости эффективной и фактической разделительных способностей от количества ГЦ в ступени подачи потока питания

Из рисунка 2 видно, что эффективная и фактическая разделительные способности возрастают с $E_{9\varphi\varphi}=42{,}303$ г/с и $E_{\varphi a \kappa \tau}=49{,}185$ г/с до $E_{9\varphi\varphi}=57{,}190$ г/с и $E_{\varphi a \kappa \tau}=64{,}720$ г/с (эффективная разделительная способность увеличивается на 26 %, фактическая разделительная способность увеличивается на 24 %). Максимальные значения эффективной и фактической

разделительных способностей ($E_{9\varphi\varphi} = 57,190$ г/с, $E_{\varphi a \kappa \tau} = 64,720$ г/с) достигаются при 50000 ГЦ в ступени подачи потока питания в каскад. При таком количестве ГЦ фактическая разделительная способность больше эффективной на 11,6 %, при 5000 ГЦ в ступени подачи потока питания в каскад фактическая разделительная способность больше эффективной на 14 %.

По данным таблицы 3 построены зависимости схемного КПД и коэффициента использования разделительной мощности каскада при изменении количества ГЦ в ступени подачи потока питания (рисунок 3).

Рисунок 3 — Зависимости схемного КПД и коэффициента использования разделительной мощности каскада от количества ГЦ в ступени подачи потока питания

Из рисунка 3 видно, что схемный КПД нелинейно возрастает с 86,01 % до 88,37 %, а коэффициент использования разделительной мощности каскада с 44,01 % до 51,14 %. Максимальное значение схемного КПД 88,78 % достигается при 25000 ГЦ в ступени, а коэффициента использования разделительной мощности 51,25 % при 40000 ГЦ в ступени.

ВЫВОДЫ

Исследовано влияние количества ГЦ в ступени подачи потока питания в каскад на полный коэффициент разделения ступеней, эффективную разделительная способность каскада, фактическую разделительную способность каскада, схемный КПД каскада, коэффициент использования разделительной мощности каскада

- 1. Установлено, что максимальное значение на ступени отбора легкой фракции достигается при 50000 ГЦ в ступени, а на ступени отбора тяжелой фракции при 5000 ГЦ в ступени.
- 2. Показано, что эффективная и фактическая разделительные способности достигают максимального значения при 50000 ГЦ в ступени подачи потока питания в каскад.
- 3. Определено, что максимальное значение схемного КПД достигается при 25000 ГЦ в ступени, а коэффициента использования разделительной мощности при 40000 ГЦ.
- 4. Рекомендовано использовать 50000 ГЦ в ступени подачи потока питания в каскад, так как при данном количестве достигаются максимальные значения эффективной и фактической разделительных способностей.