CE-1901-11 - Dr. Durant - Quiz 4 Winter 2016-'17, Week 5

Note: These quiz problems are in 3 groups: problems 1-3, 4, and 5-8.

1. (2 points) **Complete** the truth table for the following schematic. **Include** columns for each intermediate term (all gate outputs).

Α	- MSA±	NOT X inst4	NAND2
B C	MERT.	NAND2 Y	inst3

Α	В	С	Х	Υ	F
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	1	1	0
0	1	1	/	0	.1
1	0	0	0	ľ	1
1	0	/	()	1	1
1	1	0	0	1	1
1	1	1	0	0	1

2. (1 point) Write the equation directly from the schematic above.

3. (1 point) Write the simpler of the 2 canonical equations (SOP or POS) based on your truth table.

4. (1 point) **Prove** that (AB)' = A' + B' using perfect induction. That is, evaluate both expressions in a truth table and confirm that they agree in all rows. Be sure to include all intermediate terms as columns, including NOTs.

5. (2 points) Let $F(ABC) = \Sigma_m(0,2,3,4) + d(1)$ (d indicates don't care conditions). Derive the simplest SOP or POS expression for F using a K-map. **Reminders**: adjacent terms in a K-map may differ in the value of only 1 bit. Start with m_0 in the upper left corner, putting m_1 to the right and m_4 below it. Form largest groups possible. It is okay to cover terms more than once as your form larger implicants.

6. (1 point) Draw your reduced circuit for F directly using NOT, AND, and OR gates

7. (1 point) Re-draw it using just (NAND [for SOP] or NOR [for POS]) and NOT gates based on the most simplified form. **Reminders:** The first step is to put 2 NOT gates on every input to the final output. After that, apply DeMorgan's Theorems (bubble pushing).

8. (1 point) *Calculate* the number of transistors needed for *each* of the two reduced equations above.

CE-1901-12 - Dr. Durant - Quiz 4 Winter 2016-'17, Week 5

Note: These quiz problems are in 3 groups: problems 1-3, 4, and 5-8.

1. (2 points) **Complete** the truth table for the following schematic. **Include** columns for each intermediate term (all gate outputs).

Α	В	С	X	Y	F
0	0	0	1	1	0
0	0	1	1	D	10
0	1	0	1	P	14
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	0	0	7

2. (1 point) Write the equation directly from the schematic above.

3. (1 point) Write the simpler of the 2 canonical equations (SOP or POS) based on your truth table.

4. (1 point) **Prove** that (A+B)' = A'B' using perfect induction. That is, evaluate both expressions in a truth table and confirm that they agree in all rows. Be sure to include all intermediate terms as columns, including NOTs.

5. (2 points) Let $F(ABC) = \Sigma_m(0, 1, 2, 6) + d(7)$ (d indicates don't care conditions). Derive the simplest SOP or POS expression for F using a K-map. **Reminders**: adjacent terms in a K-map may differ in the value of only 1 bit. Start with m_0 in the upper left corner, putting m_1 to the right and m_4 below it. Form largest groups possible. It is okay to cover terms more than once as your form larger implicants.

$$F = \overline{A} \overline{B} + \overline{B} \overline{C}$$
 equally complex $= (\overline{A} + \overline{B})(\overline{B} + \overline{C})$ either is correct

5. (1 point) Draw your reduced circuit for F directly using NOT, AND, and OR gates.

7. (1 point) Re-draw it using just (NAND [for SOP] or NOR [for POS]) and NOT gates based on the most simplified form. **Reminders:** The first step is to put 2 NOT gates on every input to the final output. After that, apply DeMorgan's Theorems (bubble pushing).

8. (1 point) *Calculate* the number of transistors needed for *each* of the two reduced circuits above.

(1 point) Calculate the number of transistors needed
$$\frac{6}{5}$$
 Sof $\frac{7}{3}$ Not $\frac{6}{2}$ AND2 $\frac{12}{2}$ 1 OR2 $\frac{6}{24}$ 18