Assignment 4

Python Programming

Question 1:

1. Importing Required Package

Solution:

import pandas as pd import numpy as np import seaborn as sbn import matplotlib.pyplot as plt

Question 2:

2. Loading the Dataset Solution:

 $db = pd.read_csv('/Mall_Customers.csv') \\ Db$

Output

Out[4]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
		***	Tank	***	***	***
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows $\tilde{A}f\hat{A}$ — 5 columns

Question 3:

3. Visualizations

1. UniVariate Analysis

1.Solution: plt.hist(db['Annual

Income (k\$)']

3.1.2 Solution

plt.hist(db['Age']

) Output:

sbn.countplot(db['Age']

) Output :

3.1.4 Solution:

sbn.countplot(db['Gender'])

Output:

3.1.5 Solution:

plt.hist(db['Spending Score (1-100)'])
Output:

2. Bi-Variate Analysis

1. Solution:

plt.scatter(db['Spending Score (1-100)'],db['Annual Income (k\$)'])

Output:

3.2.2 Solution:

plt.scatter(db['Gender'],db['Annual Income (k\$)'])

3.2.3 Solution :

plt.scatter(db['Age'],db['Spending Score (1-100)'])

Output:

3.2.4 Solution:

plt.scatter(db['Age'],db['Annual Income (k\$)'])

3.2.5 Solution:

sbn.heatmap(db.corr(), annot = **True**)

Output:

3.2.6 Solution:

sbn.barplot(db['Gender'], db['Age'])

3. Multi-Variate Analysis

1. Solution:

sbn.lmplot("Spending Score (1-100)", "Annual Income (k\$)", db, hue="Gender", fit_reg=False);

3.3.2 Solution:

sbn.pairplot(db

) Output :

Question 4:

4 . Perform descriptive statistics on the dataset

1.Solution :

db.describe()

			Spending Score (1-100)
200.000000	200.000000	200.000000	200.000000
100.500000	38.850000	60.560000	50.200000
57.879185	13.969007	26.264721	25.823522
1.000000	18.000000	15.000000	1.000000
50.750000	28.750000	41.500000	34.750000
100.500000	36.000000	61.500000	50.000000
150.250000	49.000000	78.000000	73.000000
200.000000	70.000000	137.000000	99.000000
	100.500000 57.879185 1.000000 50.750000 100.500000 150.250000	100.500000 38.850000 57.879185 13.969007 1.000000 18.000000 50.750000 28.750000 100.500000 36.000000 150.250000 49.000000	100.500000 38.850000 60.560000 57.879185 13.969007 26.264721 1.000000 15.000000 15.000000 50.750000 28.750000 41.500000 100.500000 36.000000 61.500000 150.250000 49.000000 78.000000

4.2 S

oluti

on:

db.dt

ypes

Outp

ut:

CustomerID int64
Gender object
Age int64
Annual Income (k\$) int64
Spending Score (1-100) int64

dtype: object

4.3 S

oluti

on:

db.va

r()

```
Outp
      ut:
|: CustomerID
                            3350.000000
   Age
                             195.133166
   Annual Income (k$)
                             689.835578
   Spending Score (1-100)
                             666.854271
   dtype: float64
      4.4 S
      oluti
      on:
      db.sk
      ew()
Output:
  CustomerID
                           0.000000
                           0.485569
  Age
  Annual Income (k$)
                           0.321843
  Spending Score (1-100)
                          -0.047220
  dtype: float64
      4.5
           S
      oluti
      on:
      db.co
```

rr()

Outp

ut:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.01 <mark>2</mark> 398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

4.6 S

oluti

on:

db.st

d()

Outp

ut:

CustomerID 57.879185 Age 13.969007 Annual Income (k\$) 26.264721 Spending Score (1-100) dtype: float64 25.823522

Question 5:

5. Check for Missing values and deal with them

1. Solution:

db.isna().sum()

```
Output:
  CustomerID
  Gender
  Age
  Annual Income (k$)
  Spending Score (1-100)
  dtype: int64
5.2 Solution:
db.isna().sum().sum() Output
:
 0
5.3
      Solution
db.duplicated().sum(
) Output:
0
Question 6:
```

6. Find the outliers and replace them outliers

```
1.Solution
ig,ax=plt.subplots(figsize=(25,5))
plt.subplot(1,
                         5,
                                        2)
sbn.boxplot(x=db['Age'])
plt.subplot(1,
                         5,
sbn.boxplot(x=db['Annual Income (k$)'])
plt.subplot(1,
                           5,
                                           4)
sbn.boxplot(x=db['Spending Score (1-100)'])
plt.subplot(1,
                         5,
                                        1)
sbn.boxplot(x=db['CustomerID'])
```

Output:

6.2 Solution:

quantile = db.quantile(q = [0.25, 0.75])quantile

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
0.25	50.75	28.75	41.5	34.75
0.75	150.25	49.00	78.0	73.00

6.3 Solution :

quantile.loc[0.75

] Output:

CustomerID	150.25
Age	49.00
Annual Income (k\$)	78.00
Spending Score (1-100)	73.00
Name: 0.75, dtype: float	64

6.4 Solution :

quantile.loc[0.25]

```
CustomerID 50.75
Age 28.75
Annual Income (k$) 41.50
Spending Score (1-100) 34.75
Name: 0.25, dtype: float64
```

6.5 Solution:

IQR = quantile.iloc[1] - quantile.iloc[0] IQR

Output:

CustomerID	99.50
Age	20.25
Annual Income (k\$)	36.50
Spending Score (1-100)	38.25
dtype: float64	

6.6 Solution:

upper = quantile.iloc[1] + (1.5 *IQR)

upper Output:

CustomerID	299.500
Age	79.375
Annual Income (k\$)	132.750
Spending Score (1-100)	130.375
dtype: float64	

6.7 Solution:

lower = quantile.iloc[0] - (1.5* IQR) lower

Output:

CustomerID	-98.500
Age	-1.625
Annual Income (k\$)	-13.250
Spending Score (1-100)	-22.625
dtype: float64	

6.8 Solution:

db.mean()

CustomerID	100.50
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	50.20
dtype: float64	

9. Solution : db['Annual

Income (k\$)'].max() Output :

137

10.Solution:

sbn.boxplot(db['CustomerID'])

Output:

6.11 Solution

sbn.boxplot(db['Age'])

6.12 Solution:

sbn.boxplot(db['Annual Income (k\$)'])
Output:

6.13 Solution:

sbn.boxplot(db['Spending Score (1-100)'])

Question 7:

$\boldsymbol{7}$. Check for Categorical columns and perform encoding

1.Solution:

db.select_dtypes(include='object').columns

Output:

```
Index(['Gender'], dtype='object')
```

2. Solution:

db['Gender'].unique()

Output:

```
array(['Male', 'Female'], dtype=object)
```

3. Solution:

 $\label{lem:conditional} $$ db['Gender'].replace({'Male':1,'Female':0},inplace=True) $$ db$

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.00	39
1	2	1	21	15.00	81
2	3	0	20	16.00	6
3	4	0	23	16.00	77
4	5	0	31	17.00	40
				***	***
195	196	0	35	120.00	79
196	197	0	45	126.00	28
197	198	1	32	126.00	74
198	199	1	32	60.55	18
199	200	1	30	60.55	83

200 rows Ãf— 5 columns

7.4 Solution:

db.head()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.0	39
1	2	1	21	15.0	81
2	3	0	20	16.0	6
3	4	0	23	16.0	77
4	5	0	31	17.0	40

Question 8:

8 . Scaling the data

1. Solution:

from sklearn.preprocessing import StandardScaler ss
= StandardScaler().fit_transform(db)

SS

Output:

Question 9:

9. Perform any of the clustering algorithms

1. Solution:

```
from sklearn.cluster import KMeans
TWSS = []
k = list(range(2,9))
```

```
[381507.64738523855,
268062.55433747417,
191557.78099047023,
153327.3825004856,
119166.15727643928,
101296.86197582977,
85792.73210128325]
```

9.2 Solution:

```
plt.plot(k,TWSS, 'ro--')
plt.xlabel('No of
Clusters')
plt.ylabel('TWSS')
```

Output:

9.3 Solution:

```
model = KMeans(n_clusters = 4)
model.fit(db) Output :
```

```
KMeans(n_clusters=4)
```

9.4 Solution:

mb = pd.Series(model.labels_)
db['Cluster'] = mb

db Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.00	39	1
1	2	1	21	15.00	81	1
2	.3	0	20	16.00	6	1
3	4	0	23	16.00	77	1
4	5	0	31	17.00	40	1
	444		***	V _{ee}		***
195	196	0	35	120.00	79	2
196	197	0	45	126.00	28	0
197	198	1	32	126.00	74	2
198	199	1	32	60.55	18	0
199	200	1	30	60.55	83	2

200 rows Ãf— 6 columns

9.5 Solution:

mb=pd.Series(model.labels_

) db.head(3) Output:

3		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	1	19	15.0	39	1
	1	2	1	21	15.0	81	1
	2	3	0	20	16.0	6	1

Question 10:

${\bf 10}$. Add the cluster data with the primary dataset

1. Solution:

db['Cluster']=kmeans.labels

_ db.head() Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.0	39	5
1	2	1	21	15.0	81	2
2	3	0	20	16.0	6	5
3	4	0	23	16.0	77	2
4	5	0	31	17.0	40	5

10.2 Solution

db.tail()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
195	196	0	35	120.00	79	6
196	197	0	45	126.00	28	1
197	198	1	32	126.00	74	6
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	6

Question 11:

${\bf 11}$. Split the data into dependent and independent variables

1. Solution:

X=db.drop('Cluster',axis=1) Y=db['Cluster'] y=db['Cluster'] y

```
0
        5
1
        2
2
        5
3
        2
        5
195
        1
        6
197
198
        1
199
Name: Cluster, Length: 200, dtype: int32
11.2 Solution:
from sklearn.model_selection import train_test_split
X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}} = \text{train\_test\_split}(X, Y, \text{test\_size} = 0.2, \text{random\_state} = 4
2)
print("Number transactions X_train dataset: ", X_train.shape)
print("Number transactions y_train dataset: ", y_train.shape)
print("Number transactions X_test dataset: ", X_test.shape)
print("Number transactions y_test dataset: ", y_test.shape)
Output:
     Number transactions X_train dataset: (160, 5)
     Number transactions y_train dataset: (160,)
     Number transactions X_test dataset: (40, 5)
     Number transactions y test dataset: (40,)
```

Question 12:

12. Split the data into training and testing

1.Solution:

X train

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
79	80	0	49	54.0	42
197	198	1	32	126.0	74
38	39	0	36	37.0	26
24	25	0	54	28.0	14
122	123	0	40	69.0	58
				***	***
106	107	0	66	63.0	50
14	15	1	37	20.0	13
92	93	1	48	60.0	49
179	180	1	35	93.0	90
102	103	1	67	62.0	59

160 rows Ãf— 5 columns

12.2 Solution:

X_test

	CustomeriD	Gender	Age	Annual Income (kd)	Spending Score (1-100)
95	96	1	24	6215	52
15	19	1	22	202	75
30	31	1	80	102	4
'58	199	1	34	780	1
28	129	- 1	59	212	11
115	110	0	19	650	×
69	70	.0	32	483	42
70	171	- 1	40	673	11
74	1/3	0	52	883	ti ti
45	46	- 0	24	390	45
00	107	76	43	480	8
82	181	- 3	46	562	15
65	166	:0	36	85.0	36
78	79	- 0	23	540	52
36	187	0	54	301,0	24
:77	178	- 3	22	880	66
58	57.	. p	5)	40	(F 5E
32	153	0	44	IND	25
82	83	13	67	543	- 41
88	60	13	39	480	55
24	123	98	33	70.0	25
16	17	0	25	21.0	33
48	141	8	34	763	22
22	94	0	40	600	46
65	66.	1	111	480	55
68	65	1	711	463	54
04	85	Đ	21	543	5)
87	68	a	66	483	48
25	120	ú	31	702	W
32	133	0	25	722	34
9	10	b	30	193	72
18	10	- 1	52	210	25
55	58	- 1	47	450	41
75	76	- 4	26	540	54
50	151	- 84	43	78.0	8 97
'04	105	- 1	49	620	58
35	136	. 0	29	1907	88
37	138		32	732	73
64	765	- 37	50	96	Ď.
76	77	0	345	150	

12.3 Solution:

y_train
Output:

```
79
     4
197
   6
38
     5
24
    5
122 0
106
14
    5
92
     0
179
     6
102
    0
Name: Cluster, Length: 160, dtype: int32
```

12.14 Solution:

y_test

```
95
       0
       2 5
15
       7 7
158
128
115
       0
69
       4
170
       1
174
       1
45
       2
       4
66
       1
182
165
       6
       0
78
       1
186
       6
177
       4 7
56
152
       4
82
68
       4
124
       5 7
16
148
       0
93
       4
65
       4
60
       0
84
       4
67
125
132
       7
       2
       5
18
       4
55
       4
75
150
      7
104
       0
135
       3
137
164
Name: Cluster, dtype: int32
```

Question 13:

13. Build the Model

1. Solution:

```
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(X_train,y_train)
from sklearn.linear_model import
LogisticRegression model=LogisticRegression()
model.fit(X_train,y_train)
```

```
Output:
  LogisticRegression()
Question 14: 14.
Train the Model
Solution:
model.score(X_train,y_train)
Output:
 0.83125
Question 15: 15.
Test the Model
Solution:
model.score(X_test,y_test)
Output:
 0.675
Question 16:
16. Measure the performance using Evaluation Metrics
1.
    Solution:
from sklearn.metrics import
confusion_matrix,classification_report
y_pred=model.predict(X_test) confusion_matrix(y_test,y_pred)
Output:
 array([[5, 0, 0, 0, 0, 0, 1, 0],
         [0, 5, 0, 0, 0, 0, 0, 0],
         [0, 0, 3, 0, 0, 0, 0, 0],
         [0, 0, 0, 3, 0, 0, 0, 0],
        [3, 0, 2, 0, 6, 0, 0, 0],
         [0, 0, 0, 0, 0, 3, 0, 0],
         [0, 0, 0, 1, 0, 0, 1, 0],
         [0, 6, 0, 0, 0, 0, 0, 1]])
```

Solution :

 $print(classification_report(y_test,y_pred))$

	precision	recall	t1-score	support	
0	0.62	0.83	0.71	6	
1	0.45	1.00	0.62	5	
2	0.60	1.00	0.75	3	
3	0.75	1.00	0.86	3	
4	1.00	0.55	0.71	11	
5	1.00	1.00	1.00	3	
6	0.50	0.50	0.50	2	
7	1.00	0.14	0.25	7	
accuracy			0.68	40	
macro avg	0.74	0.75	0.68	40	
weighted avg	0.80	0.68	0.64	40	