

Ejercicio 3. La fórmula $(3+7=\pi-8) \wedge True$ es una fórmula bien formada. ¿Por qué? Justifique informal, pero detalladamente, su respuesta.

damente, su respuesta. $ \begin{pmatrix} 3 + 7 = 77 - 8 \end{pmatrix} \land Tqbe $ $ \begin{pmatrix} 28 = 77 \end{pmatrix} \land Tnv = 1 $																					
							3	↓ ▼	=	7	7	- 5	2)	Λ	To	15 <u>0</u>					
							7,	· <u> </u>	5	_	\sim			1	てい	v(∪ <u>`</u>	_				
									<u> </u>	→	1))		11	11	\U	_				

O ASUMI

a/s

True on FALSE ON TRUE

? ES UND TONTOLOGIA

Ejercicio 8. Decimos que un conectivo es *expresable* mediante otros si es posible escribir una fórmula utilizando exclusivamente estos últimos y que tenga la misma tabla de verdad que el primero (es decir, son equivalentes). Por ejemplo, la disyunción es expresable mediante la conjunción más la negación, ya que $(p \lor q)$ tiene la misma tabla de verdad que $\neg(\neg p \land \neg q)$.

Mostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg (negación), \land (conjunción), \lor (disyunción), \rightarrow (implicación), \leftrightarrow (equivalencia) puede reescribirse utilizando sólo los conectivos \neg y \lor .

8) ME PIDE DEFININ J. N. V.

UTILIZAMOS SOLAMENTE J. V. V.

LA IMPLICACIÓN ESTÁ EN LA TEONIA.

SER SI DECUENDO DE

Ejercicio 9. \bigstar Sean las variables proposicionales f, e y m con los siguientes significados:

 $f \equiv$ "es fin de semana"

 $e \equiv$ "Juan estudia"

 $m \equiv$ "Juan escucha música"

- a) Escribir usando lógica proposicional las siguientes oraciones:
 - "Si es fin de semana, Juan estudia o escucha música, pero no ambas cosas"
 - "Si no es fin de semana entonces Juan no estudia"
 - "Cuando Juan estudia los fines de semana, lo hace escuchando música"
- b) Asumiendo que valen las tres proposiciones anteriores ¿se puede deducir que Juan no estudia? Justificar usando argumentos de la lógica proposicional.

Ejercicio 12. ★ Asignar un valor de verdad (verdadero, falso o indefinido) a cada una de las siguientes expresiones aritméticas en los reales.

2

a) 5 > 0

c) $(5+3-8)^{-1} \neq 2$

e) $0 \cdot \sqrt{-1} = 0$

b) $1 \le 1$

d) $\frac{1}{0} = \frac{1}{0}$

 $f) \sqrt{-1} \cdot 0 = 0$

- pred $a()\{(\forall x : \mathbb{Z})((0 \le x < 10) \rightarrow_L (P(x) \land Q(x)))\}$

