DIC L24: Interconnect (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

6.1. Introduction (1)

- Wire geometry
 - Pitch = w + s
 - Aspect ratio (AR) = $\frac{t}{w}$
 - Older processes had AR << 1.
 - Modern processes have AR \approx 2.

Fig. 6.1

6.1. Introduction (2)

Example: Intel metal stacks

1 μm

GIST Lecture on December 5, 2019

(Equivalent to Table 6.1)

Fig. 6.2

6.2. Interconnect modeling (1)

- Lumped element models
 - A wire is a distributed circuit with a resistance and capacitance per unit length.

Fig. 6.5

6.2. Interconnect modeling (2)

Wire resistance

Resistance

$$R = \frac{\rho}{t} \frac{l}{w}$$
 Eq. (6.1)

With the sheet resistance

$$R = R_{\Box} \frac{l}{w}$$
 Eq. (6.2)

Fig. 6.6

6.2. Interconnect modeling (3)

Wire resistance

Resistance

$$R = \frac{\rho}{t} \, \frac{l}{w}$$

With the sheet resistance

$$R = R_{\square} \frac{l}{w}$$

- Example 6.1
 - Sheet resistance of $0.1 \Omega/_{\square}$
 - 0.125 µm wide and 1 mm long

Fig. 6.6

6.2. Interconnet modeling (4)

Al versus Cu

Dual damascene process

Metal	Bulk resistivity (μΩ • cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0

Table 6.2

(Cheng et al., "Copper metal for semiconductor interconnects")

6.2. Interconnect modeling (5)

Wire capacitance

- Parallel plate equation,
$$C = \epsilon_{ox} \frac{A}{d}$$

GIST Lecture on December 5, 2019

6.2. Interconnect modeling (6)

- M2 capacitance data (180 nm process)
 - Typical dense wires have
 - $\sim 0.2 \text{ fF/}\mu\text{m}.$

- In practice,
 - The layers above and below the conductor of interest are neither solid planes nor totally empty.

Fig. 6.12

6.3. Interconnect impact (1)

• Example 6.3

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 1 mm wire. (It was considered in Example 6.1.)
- The wire capacitance is 0.2 fF/μm.
- The unit-sized NMOSFET has R = 10 $k\Omega$ and C = 0.1 fF.

Fig. 6.14

6.3. Interconnect impact (2)

- Quadratic dependence of the delay on the length
- Example 6.4
 - The 1 mm-long wire has R = 800 Ω and C = 0.2 pF.
 - When the length is double, both of R and C are doubled.
- N-segement L-model
 - Each segment has r and c. Then, R = N X r and C = N X c.
 - The Elmore delay

$$\sum_{i=1}^{N} irc = rc \sum_{i=1}^{N} i = rc \frac{N(N+1)}{2} \approx \frac{RC}{2}$$

6.3. Interconnect impact (3)

- Long wires have significant capacitance and thus require substantial amounts of energy to switch.
- Example 6.6
 - Estimate the energy per unit length to send a bit of information (one rising and one falling transition) in a CMOS process.
 - Consider the same wire in the previous examples.
 - Assume that V_{DD} is 1 V.
 - $E = (0.2 pF/mm)(1.0 V)^2 = 0.2 pJ/bit/mm$ = 0.2 mW/Gbps/mm

6.3. Interconnect impact (4)

Crosstalk

- Increased delay on switching wires
- Noise on non-switching wires
- Crosstalk delay
 - The direction of the switching affects the delay.

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C_{gnd}	0
Switching opposite A	$2V_{DD}$	$C_{gnd} + 2 C_{adj}$	2

Fig. 6.16

Table 6.3

6.3. Interconnect impact (5)

- Crosstalk noise
 - In the floating case,

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

Fro the driven victim, the victim noise is reduced.

Fig. 6.17

Fig. 6.18

6.3. Interconnect impact (6)

• Simulated with $C_{adj} = C_{victim}$

Fig. 6.19