Sección 2.3 Funciones cuadráticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

Definición

- 2 Transformaciones y funciones cuadráticas
- 3 Aplicaciones de funciones cuadráticas

Definición

Función cuadrática

Una función es una función cuadrática si se puede expresar de la forma $q(x) = ax^2 + bx + c$ donde a, b y c son constantes con $a \neq 0$.

Existen otras formas equivalentes en las cuales se puede representar una función cuadrática, la forma estándar se puede obtener luego de expandir toda la expresión y agrupar los términos semejantes. Note que, en la forma estándar, las constantes b o c pueden ser cero.

Ejemplos

- 1. Cada una de las siguientes funciones es una función cuadrática.
 - (a) $f(x) = x^2$
 - (b) f(x) = x(x-5)
 - (c) f(x) = (x+3)(x+2)
 - (d) $f(x) = (x-3)^2$
 - (e) $f(x) = 3(x-1)^2 + 4$
 - (f) f(x) = (4-3x) + (x+1)(2x-3) + x(x+2) 7

- En cada una de las siguientes ecuaciones, una de las variables es función cuadrática de la otra.
 - (a) $A = \pi r^2$

(b)
$$H = 2t^2 - 4t$$

(c)
$$R = (w+4)(3w-7)$$

(d)
$$g+1=4p+3p^2$$

(e)
$$3x^2 + y = 1$$

Observe que $2x^2 + 3x - 1 = 0$, no es la fórmula de una función cuadrática. En realidad, es una *ecuación cuadrática*.

Una función cuadrática debe tener dos variables, una variable de entrada y otra variable de salida, por ejemplo: $y = 2x^2 + 3x - 1$ o $f(x) = 2x^2 + 3x - 1$.

 Las siguientes gráficas son ejemplos de gráficas de funciones cuadráticas.

Se observa que todas las gráficas en el ejemplo anterior tienen la misma forma básica, todas ellas son ejemplos de *parábolas*. El punto donde la gráfica cambia de creciente a decreciente o viceversa, se llama *vértice* de la parábola.

Transformaciones y funciones cuadráticas

Se verá que la gráfica de cualquier función cuadrática se puede obtener realizando transformaciones a la gráfica de la parábola básica $f(x)=x^2$ y por ende la gráfica de cualquier función cuadrática es una parábola.

Ejemplos

1. Use transformaciones de la función $f(x)=x^2$ para hallar el vértice de la gráfica de la función cuadrática $g(x)=2(x-1)^2+3$.

2. Halle el vértice de $y=-3(x+2)^2+5$ y determine si es un punto máximo o mínimo.

Solución:

La tabla a continuación muestra paso a paso las transformaciones que llevan $y=x^2$ a $y=-3(x+2)^2+5$.

Transformación	Ecuación	Vértice	Máx. o Mín.
Gráfica original	$y = x^2$	(0,0)	Mín.
Traslación horizontal de 2 unidades a la izquierda			
Estiramiento vertical por un factor de 3			
Reflexión vertical			
Traslación vertical de 5 unidades hacia arriba			

De manera similar, la gráfica de $y=x^2$ se puede transformar paso a paso en la gráfica de $y=a(x-h)^2+k$ para mostrar que el vértice de la gráfica de $y=a(x-h)^2+k$ es el punto (h,k).

Gráfica de una función cuadrática

La gráfica de la función cuadrática $g(x)=a(x-h)^2+k$ es una parábola con vértice (h,k).

- Si a > 0, la parábola abre hacia arriba.
- Si a < 0, la parábola abre hacia abajo.

La parábola es simétrica con respecto a la recta vertical x = h.

Ejemplos

Grafique cada una de las siguientes funciones cuadráticas.

(a)
$$f(x) = -(x-1)^2 - 3$$

(b)
$$g(x) = 2(x+1)^2 + 3$$

2. Halle una fórmula que represente la gráfica de la parábola mostrada a continuación.

Función cuadrática y completar el cuadrado

Toda función cuadrática $f(x)=ax^2+bx+c$, se puede expresar de la forma $f(x)=a(x-h)^2+k$ utilizando el método de completación del cuadrado.

Si se tiene $x^2 + bx$ y se quiere completar el cuadrado perfecto, se debe agregar $\left(\frac{b}{2}\right)^2$, esto es:

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2.$$

Ejemplos

1. Dada la expresión x^2+6x , utilice la técnica de completar el cuadrado para obtener un cuadrado perfecto.

2. Escriba $f(x) = x^2 - 6x + 13$ en la forma $f(x) = a(x - h)^2 + k$.

3. Escriba $f(x) = 2x^2 + 4x + 3$ en la forma $f(x) = a(x - h)^2 + k$.

4. Escriba $f(x) = -2x^2 + 2x + 7$ en la forma $f(x) = a(x - h)^2 + k$.

Como toda función cuadrática se puede escribir en la forma

$$f(x) = a(x - h)^2 + k$$

y toda función que se escribe en esa forma es una transformación de la parábola $y=x^2$, entonces:

Gráfica de una función cuadrática

La gráfica de cualquier función cuadrática es una transformación de la gráfica de la parábola $y=x^2$ y por ende es una parábola.

Además del vértice, los interceptos con el eje x de las gráficas de funciones cuadráticas que están en la forma $f(x)=a(x-h)^2+k$ son fáciles de hallar.

Ejemplo

Halle los interceptos con el eje x de la gráfica de $f(x) = -2(x+3)^2 + 4$.

En general, dada una función cuadrática $f(x) = ax^2 + bx + c$, completando el cuadrado se obtiene:

$$f(x) = ax^2 + bx + c$$

$$= a\left(x^2 + \frac{b}{a}x\right) + c$$

$$= a\left(x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2\right) + c - a\left(\frac{b}{2a}\right)^2$$

$$= a\left(x + \frac{b}{2a}\right)^2 + c - a\left(\frac{b^2}{4a^2}\right)$$

$$= a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$

$$= a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$

La última ecuación implica que la coordenada en x del vértice es $x=-\frac{b}{2a}$, por tanto, la coordenada en y del vértice es $y=f\left(-\frac{b}{2a}\right)$.

Vértice de una parábola

El vértice de la parábola con ecuación $y=ax^2+bx+c$, tiene coordenada x dada por $x=-\frac{b}{2a}$.

Note que la recta vertical $x=-\frac{b}{2a}$, es el eje de simetría de la parábola.

Por ejemplo, para $f(x)=(x-3)^2=x^2-6x+9$, el eje de simetría es $x=-\frac{-6}{2(1)}=3$.

Si se desea encontrar los interceptos de la gráfica de $f(x)=ax^2+bx+c$ con el eje x, se puede resolver la ecuación f(x)=0 para la variable x, es decir, la ecuación $ax^2+bx+c=0$. Por la fórmula cuadrática, se sabe que las soluciones son:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Si el discriminate es menor que cero, es decir, $b^2-4ac<0$, se observa que la parábola no tiene interceptos con el eje x.

Ejemplos

Describa la gráfica de cada una de las siguientes funciones cuadráticas.

1.
$$f(x) = 2(x+3)(x-1)$$

2.
$$g(x) = -2x^2 + 8x - 1$$

Propiedades del discriminante

Dada una parábola $y = ax^2 + bx + c$:

- Si $b^2 4ac < 0$, entonces la parábola no cruza el eje x.
- Si $b^2-4ac=0$, entonces la parábola toca el eje x en un punto, pero no lo cruza.
- Si $b^2 4ac > 0$, entonces la parábola cruza el eje x en dos puntos.

Ejemplo

Use el discriminante para determinar cuántos interceptos con el eje \boldsymbol{x} tiene cada una de las siguientes parábolas.

(a)
$$y = 3x^2 + x + 2$$

(b)
$$y = x^2 - 6x + 9$$

(c)
$$y = x^2 + 3x - 7$$

Aplicaciones de funciones cuadráticas

La altura de un objeto en caída libre se puede modelar con funciones cuadráticas. El modelo general para la altura de un objeto que ha sido lanzado (y donde la única fuerza que actúa sobre el objeto es la gravedad) es:

$$s(t) = -\frac{a}{2}t^2 + v_0t + s_0$$

donde a representa la aceleración debido a la gravedad (los valores aceptados para a son $9.8~{\rm metros/segundo}^2$ o también $32~{\rm pies/segundo}^2$), v_0 representa la velocidad inicial, y s_0 representa la altura inicial del objeto.

Ejemplos

1. Se dispara un proyectil directamente hacia arriba con una velocidad inicial de 98 metros/segundo. Halle la altura máxima que alcanza el proyectil y cuánto tiempo tarda en volver a tierra.

2. Hay 100 pies de verja disponibles y se quiere cercar el área rectangular más grande posible usando uno de los lados de la casa como parte de la cerca. Halle las dimensiones de la región rectangular que se puede cercar.