Introductory Econometrics

Lecture 15: Large sample results: Consistency

Instructor: Ma, Jun

Renmin University of China

November 8, 2021

Why we need the large sample theory

- We have shown that the OLS estimator $\hat{\beta}$ has some desirable properties:
 - $\hat{\beta}$ is unbiased if the errors are strongly exogenous: E[U|X] = 0.
 - ► If in addition the errors are homoskedastic then $\widehat{\text{Var}}(\hat{\beta}) = s^2 / \sum_{i=1}^n (X_i \bar{X})^2$ is an unbiased estimator of the conditional variance of the OLS estimator $\hat{\beta}$.
 - ► If in addition the errors are normally distributed (given X) then $T = (\hat{\beta} \beta) / \sqrt{\widehat{\text{Var}}(\hat{\beta})}$ has a t distribution which can be used for hypotheses testing.

► If the errors are only weakly exogenous:

$$\mathrm{E}\left[X_{i}U_{i}\right]=0,$$

the OLS estimator is in general biased.

► If the errors are heteroskedastic:

$$\mathrm{E}\left[U_{i}^{2}|X_{i}\right]=h\left(X_{i}\right),$$

the "usual" variance formula is invalid; we also do not have an unbiased estimator for the variance in this case.

- ► If the errors are not normally distributed conditional on *X* then *T* and *F*-statistics do not have *t* and *F* distributions under the null hypothesis.
- ► The asymptotic or large sample theory allows us to derive approximate properties and distributions of estimators and test statistics by assuming that the sample size *n* is very large.

Convergence in probability and LLN

Let θ_n be a sequence of random variables indexed by the sample size n. We say that θ_n converges in probability if

$$\lim_{n\to\infty} \Pr\left[|\theta_n - \theta| \ge \varepsilon\right] = 0 \text{ for all } \varepsilon > 0.$$

- We denote this as $\theta_n \to_p \theta$ or plim $\theta_n = \theta$.
- ► An example of convergence in probability is a Law of Large Numbers (LLN):

Let X_1, X_2, \ldots, X_n be a random sample such that $E[X_i] = \mu$ for all $i = 1, \ldots, n$, and define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, under certain conditions,

$$\bar{X}_n \to_{\mathcal{D}} \mu$$
.

LLN

Let $X_1, ..., X_n$ be a sample of independent identically distributed (iid) random variables. Let $E[X_i] = \mu$. If $Var[X_i] = \sigma^2 < \infty$ then

$$\bar{X}_n \to_p \mu$$
.

► In fact when the data are iid, the LLN holds if

$$E[|X_i|] < \infty$$
,

but we prove the result under a stronger assumption that $\text{Var}[X_i] < \infty$.

Markov's inequality

► Markov's inequality. Let W be a random variable. For $\varepsilon > 0$ and r > 0,

$$\Pr[|W| \ge \varepsilon] \le \frac{\mathrm{E}[|W|^r]}{\varepsilon^r}.$$

▶ With r = 2, we have Chebyshev's inequality. Suppose that $E[X] = \mu$. Take $W = X - \mu$ and apply Markov's inequality with r = 2. For $\varepsilon > 0$,

$$\Pr[|X - \mu| \ge \varepsilon] \le \frac{\mathrm{E}\left[(X - \mu)^2\right]}{\varepsilon^2}$$
$$= \frac{\mathrm{Var}[X]}{\varepsilon^2}.$$

Probability of observing an outlier (a large deviation of X from its mean μ) can be bounded by the variance.

Proof of the LLN

Fix $\varepsilon > 0$ and apply Markov's inequality with r = 2:

$$\Pr\left[\left|\bar{X}_{n} - \mu\right| \ge \varepsilon\right] = \Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu\right| \ge \varepsilon\right]$$

$$= \Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \mu\right)\right| \ge \epsilon\right] \le \frac{\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \mu\right)\right)^{2}\right]}{\epsilon^{2}}$$

$$= \frac{1}{n^{2}\epsilon^{2}}\left(\sum_{i=1}^{n}\mathbb{E}\left[\left(X_{i} - \mu\right)^{2}\right] + \sum_{i=1}^{n}\sum_{j\neq i}\mathbb{E}\left[\left(X_{i} - \mu\right)\left(X_{j} - \mu\right)\right]\right)$$

$$= \frac{1}{n^{2}\epsilon^{2}}\left(\sum_{i=1}^{n}\operatorname{Var}\left[X_{i}\right] + \sum_{i=1}^{n}\sum_{j\neq i}\operatorname{Cov}\left[X_{i}, X_{j}\right]\right)$$

$$= \frac{n\sigma^{2}}{n^{2}\epsilon^{2}} = \frac{\sigma^{2}}{n\epsilon^{2}} \to 0 \text{ as } n \to \infty \text{ for all } \epsilon > 0.$$

Averaging and variance reduction

▶ Let $X_1, ..., X_n$ be a sample and suppose that

$$E[X_i] = \mu \text{ for all } i = 1, ..., n,$$

$$Var[X_i] = \sigma^2 \text{ for all } i = 1, ..., n,$$

$$Cov[X_i, X_j] = 0 \text{ for all } j \neq i.$$

► Consider the mean of the average:

$$E\left[\bar{X}_n\right] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$
$$= \frac{1}{n}\sum_{i=1}^n E\left[X_i\right]$$
$$= \frac{1}{n}\sum_{i=1}^n \mu = \frac{1}{n}n\mu = \mu.$$

► Consider the variance of the average:

$$\operatorname{Var}\left[\bar{X}_{n}\right] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\operatorname{Var}\left[\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\left(\sum_{i=1}^{n}\operatorname{Var}\left[X_{i}\right] + \sum_{i=1}^{n}\sum_{j\neq i}\operatorname{Cov}\left[X_{i},X_{j}\right]\right)$$

$$= \frac{1}{n^{2}}\left(\sum_{i=1}^{n}\sigma^{2} + \sum_{i=1}^{n}\sum_{j\neq i}0\right)$$

$$= \frac{1}{n^{2}}n\sigma^{2} = \frac{\sigma^{2}}{n}.$$

▶ The variance of the average approaches zero as $n \to \infty$ if the observations are uncorrelated.

Convergence in probability: properties

► Slutsky's Lemma. Suppose that $\theta_n \to_p \theta$, and let g be a function continuous at θ . Then,

$$g(\theta_n) \to_p g(\theta)$$
.

- ▶ If $\theta_n \to_p \theta$, then $\theta_n^2 \to_p \theta^2$.
- ▶ If $\theta_n \to_p \theta$ and $\theta \neq 0$, then $1/\theta_n \to_p 1/\theta$.
- ▶ Suppose that $\theta_n \to_p \theta$ and $\lambda_n \to_p \lambda$. Then,
 - $\bullet \ \theta_n + \lambda_n \to_p \theta + \lambda.$
 - $\bullet \ \theta_n \lambda_n \to_p \theta \lambda.$
 - $\theta_n/\lambda_n \to_p \theta/\lambda$ provided that $\lambda \neq 0$.

Consistency

- Let $\hat{\beta}_n$ be an estimator of β based on a sample of size n.
- We say that $\hat{\beta}_n$ is a consistent estimator of β if as $n \to \infty$,

$$\hat{\beta}_n \to_p \beta$$
.

• Consistency means that the probability of the event that the distance between $\hat{\beta}_n$ and β exceeds $\varepsilon > 0$ can be made arbitrary small by increasing the sample size.

Consistency of OLS

- ► Suppose that:
 - 1. The data $\{(Y_i, X_i) : i = 1, ..., n\}$ are iid.
 - 2. $Y_i = \beta_0 + \beta_1 X_i + U_i$, where E $[U_i] = 0$.
 - 3. $E[X_iU_i] = 0$.
 - 4. 0 < Var $[X_i]$ < ∞.
- Let $\hat{\beta}_{0,n}$ and $\hat{\beta}_{1,n}$ be the OLS estimators of β_0 and β_1 respectively based on a sample of size n. Under Assumptions 1-4,

$$\hat{\beta}_{0,n} \to_p \beta_0,$$

$$\hat{\beta}_{1,n} \to_p \beta_1.$$

► The key identifying assumption is Assumption 3: $Cov[X_i, U_i] = 0$.

Proof of consistency

▶ Write

$$\hat{\beta}_{1,n} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2} = \beta_1 + \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n) U_i}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2}$$
$$= \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2}.$$

► We will show that

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i \to_p 0,$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \to_p \operatorname{Var} [X_i],$$

► Since $Var(X_i) \neq 0$,

$$\hat{\beta}_{1,n} = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n) U_i}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2} \rightarrow_p \beta_1 + \frac{0}{\text{Var}[X_i]} = \beta_1.$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i \to_p 0$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)U_{i}=\frac{1}{n}\sum_{i=1}^{n}X_{i}U_{i}-\bar{X}_{n}\left(\frac{1}{n}\sum_{i=1}^{n}U_{i}\right).$$

By the LLN.

$$\frac{1}{n} \sum_{i=1}^{n} X_i U_i \to_p E[X_i U_i] = 0,$$

$$\bar{X}_n \to_p E[X_i],$$

$$\frac{1}{n} \sum_{i=1}^{n} U_i \to_p E[U_i] = 0.$$

Hence,

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i = \frac{1}{n} \sum_{i=1}^{n} X_i U_i - \bar{X}_n \left(\frac{1}{n} \sum_{i=1}^{n} U_i \right) \to_p 0 - \mathbb{E} [X_i] \cdot 0$$

$$= 0.$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \rightarrow_p \text{Var} [X_i]$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2\bar{X}_n X_i + \bar{X}_n^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2\bar{X}_n \frac{1}{n} \sum_{i=1}^{n} X_i + \bar{X}_n^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2\bar{X}_n \bar{X}_n + \bar{X}_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2.$$

▶ By the LLN,
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \rightarrow_p E[X_i^2]$$
 and $\bar{X}_n \rightarrow_p E[X_i]$.

- ► By Slutsky's Lemma, $\bar{X}_n^2 \rightarrow_p (E[X_i])^2$.
- · Dy Sit

► Thus,

 $\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2 \to_p E[X_i^2] - (E[X_i])^2 = Var[X_i].$

Multiple regression

► Under similar conditions to 1-4, one can establish consistency of OLS for the multiple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i,$$

where $E[U_i] = 0$.

► The key assumption is that the errors and regressors are uncorrelated:

$$E[X_{1,i}U_i] = \ldots = E[X_{k,i}U_i] = 0.$$

Omitted variables and the inconsistency of OLS

► Suppose that the true model has two regressors:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i,$$

 $\mathbb{E} [X_{1,i} U_i] = \mathbb{E} [X_{2,i} U_i] = 0.$

▶ Suppose that the econometrician includes only X_1 in the regression when estimating β_1 :

$$\tilde{\beta}_{1,n} = \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) Y_{i}}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^{2}} \\
= \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) (\beta_{0} + \beta_{1} X_{1,i} + \beta_{2} X_{2,i} + U_{i})}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^{2}} \\
= \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^{2}} + \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_{i}}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^{2}}.$$

$$\tilde{\beta}_{1,n} = \beta_1 + \beta_2 \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2} + \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_i}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2}.$$

► As before.

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(X_{1,i} - \bar{X}_{1,n})U_{i}}{\frac{1}{n}\sum_{i=1}^{n}(X_{1,i} - \bar{X}_{1,n})^{2}} = \frac{\frac{1}{n}\sum_{i=1}^{n}X_{1,i}U_{i} - \bar{X}_{1,n}\bar{U}_{n}}{\frac{1}{n}\sum_{i=1}^{n}X_{1,i}^{2} - \bar{X}_{1,n}} \xrightarrow{0} \frac{0}{E\left[X_{1,i}^{2}\right] - \left(E\left[X_{1,i}\right]\right)^{2}} = \frac{0}{\text{Vor}\left[X_{1,i}\right]} = 0.$$

$$\tilde{\beta}_{1,n} = \beta_1 + \beta_2 \frac{\frac{1}{n} \sum_{i=1}^n \left(X_{1,i} - \bar{X}_{1,n} \right) X_{2,i}}{\frac{1}{n} \sum_{i=1}^n \left(X_{1,i} - \bar{X}_{1,n} \right)^2} + \frac{\frac{1}{n} \sum_{i=1}^n \left(X_{1,i} - \bar{X}_{1,n} \right) U_i}{\frac{1}{n} \sum_{i=1}^n \left(X_{1,i} - \bar{X}_{1,n} \right)^2}.$$

► However,

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\frac{1}{n}\sum_{i=1}^{n}(X_{1,i} - \bar{X}_{1,n})^{2}} = \frac{\frac{1}{n}\sum_{i=1}^{n}X_{1,i}X_{2,i} - \bar{X}_{1,n}\bar{X}_{2,n}}{\frac{1}{n}\sum_{i=1}^{n}X_{1,i}^{2} - \bar{X}_{1,n}^{2}}$$

$$\rightarrow p \frac{E[X_{1,i}X_{2,i}] - (E[X_{1,i}]) (E[X_{2,i}])}{E[X_{1,i}^{2}] - (E[X_{1,i}])^{2}}$$

$$= \frac{Cov[X_{1,i}, X_{2,i}]}{Var[X_{1,i}]}.$$

► We have,

$$\tilde{\beta}_{1,n} = \beta_{1} + \beta_{2} \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^{2}} + \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_{i}}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^{2}}$$

$$\rightarrow_{p} \beta_{1} + \beta_{2} \frac{\text{Cov} [X_{1,i}, X_{2,i}]}{\text{Var} [X_{1,i}]} + \frac{0}{\text{Var} [X_{1,i}]}$$

$$= \beta_{1} + \beta_{2} \frac{\text{Cov} [X_{1,i}, X_{2,i}]}{\text{Var} [X_{1,i}]}.$$

- ► Thus, $\tilde{\beta}_{1,n}$ is inconsistent unless:
 - 1. $\beta_2 = 0$ (the model is correctly specified).
 - 2. Cov $[X_{1,i}, X_{2,i}] = 0$ (the omitted variable is uncorrelated with the included regressor).

► In this example, the model contains two regressors:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i,$$

 $\mathbb{E} [X_{1,i} U_i] = \mathbb{E} [X_{2,i} U_i] = 0.$

 \blacktriangleright However, since X_2 is not controlled for, it goes into the error term:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + V_i$$
, where
 $V_i = \beta_2 X_{2,i} + U_i$.

For consistency of $\tilde{\beta}_{1,n}$ we need Cov $\left[X_{1,i},V_i\right]$ to be equal to zero, however,

$$\begin{aligned} \text{Cov} \left[X_{1,i}, V_{i} \right] &= &\text{Cov} \left[X_{1,i}, \beta_{2} X_{2,i} + U_{i} \right] \\ &= &\text{Cov} \left[X_{1,i}, \beta_{2} X_{2,i} \right] + \text{Cov} \left[X_{1,i}, U_{i} \right] \\ &= &\beta_{2} \text{Cov} \left[X_{1,i}, X_{2,i} \right] + 0 \\ &\neq &0, \text{unless } \beta_{2} = 0 \text{ or Cov} \left[X_{1,i}, X_{2,i} \right] = 0. \end{aligned}$$