A Primer on Deep Learning

Dong Xu

EECS Department
C. S. Bond Life Sciences Center
University of Missouri, Columbia
http://digbio.missouri.edu

Introduction

- Primer for those who are unfamiliar with deep learning methods
- A high-level view of deep learning strategy and methods
- Deep learning has been successfully applied in single-cell data analyses

Al Scope

Machine Learning Types

Supervised

implausible labels

"COW"

Target

Unsupervised

limited power

Self-supervised

derives label from a co-occuring input to related information

Supervised Machine Learning

 Apply a prediction function to a feature representation of image to get the desired output:

Generalization

Training set (labels known)

Test set (labels unknown)

 How well does a learned model generalize from the data it was trained on to a new test set?

Learning Hierarchical Representations

- Hierarchy of representations with increasing level of abstraction. Each stage is a kind of trainable nonlinear feature transform
- Image recognition
 Pixel → edge → texton → motif → part → object
- Text Character → word → word group → clause → sentence → story

Handwriting Digit Recognition

Input

 $Ink \to 1 \\
No ink \to 0$

Output

Each dimension represents the confidence of a digit.

Deep Neural Network (DNN)

Deep means many hidden layers

Abstraction and Representation

physical space → latent/embedding space (manifold)

photo

impressionism

expressionism

cubism

abstract expressionism

Latent Representation

https://distill.pub/2017/feature-visualization/

Unsupervised Learning & Embedding

An embedding is a function from an original space to an embedding space that preserves aspects of the geometry of the original space

Autoencoder

As close as possible

A type of unsupervised learning which discovers generic features of the data (learn data patterns)

Randomly generate a vector as code

Autoencoder with 3 Layers

Z: Latent variable; embedding

Manifold

- A Manifold is a topological space that locally resembles Euclidean space near each point
- n-dim manifold → topological space M, every point x ∈ M has a neighbor homeomorphic (isomorphismic) to Euclidean space Rn

Manifold Hypothesis

- DL Central Hypothesis: Data concentrates around a low-dim manifold (relevant dimension)
- Mimic human learning
- Not all embeddings produce manifold

T-SNE Visualization

U-Map

Uniform Manifold Approximation and Projection (UMAP)

find a topological representation of the data in a lower dimensional space through manifold learning technique

https://github.com/lmcinnes/umap

Graph Neural Network (GNN)

- GNN learns a task-independent representation of a graph by deconvoluting node relationships through neighbor information propagation in a deep learning architecture.
- Generate node embeddings based on local neighborhoods

Foundation Model Era

Machine learning paradigms

Feature engineering: manual feature extraction (SVM, LightGBM, XGBoost)

Architecture engineering: raw features, design deep network (CNN, LSTM)

Objective engineering: pre-train large model and fine-tune it (ResNet50, Bert)

Prompt engineering: prompt **foundation model** in zero/few shots

Industrial era of artificial intelligence

From Transformer to GPT

Self-supervised learning to predict missing words

From LLM to Single-cell LLM

Embed gene expression values or gene expression order in each cell

Prompt-based Learning on scLLMs

Add small adapter to scLLM and train the adapter using small data

Summary

- Deep learning methods are evolving fast
- Deep learning add values for single-cell data analyses
- New opportunities to apply deep learning to extract more valuable insights from single-cell data
- Deep learning is not hard to learn and apply for practical purposes

Acknowledgments

This file is for the educational purpose only. Some materials (including pictures and text) were taken from the Internet at the public domain.