Lecture Notes for Machine Learning in Python

Professor Eric Larson
Evaluation and Cross Validation, Video Lecture

Model Evaluation Best Practices

Model Evaluation

- How reliable are our estimates of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Best Practice: Setup Pipelines

- Combine pre- and post-processing into stages
- Excellent way to prevent "data snooping"
 - guarantees separation of testing and training sets

Best Practice: Setup Pipelines

Test Accuracy: 0.947

Best Practice: Use Pipelines in Validation Loops

use testing set, and *never*, *never*, *never* let the model see it, Many different strategies:

- Holdout
 - Reserve x% for training and (1-x)% for testing
- Random subsampling
 - Repeated holdout, with replacement
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=M
- Stratified Cross Validation
 - Select samples, keeping overall class distribution same for each fold

Validation Loop Strategies

Holdout

Validation Loop Strategies

k-Fold Cross Validation

Validation Loop Strategies

- What is the point of cross validation?
 - Primary: To realistically estimate how your classifier will perform on data it has not seen
 - situation must be *plausible* scenario
 - Secondary: hyperparameter tuning
 - what parameters should I set when training the model?
 - attain average performance from CV
 - use parameters to obtain final model

- Folds must be plausible, representative of the actual use case for the classifier
- Time series:
 Cannot apply stratified cross validation

- Folds must be plausible, representative of the actual use case for the classifier
- Time series:
 Cannot apply stratified cross validation
- Cannot apply folding, actually

- Folds must be plausible, representative of the actual use case for the classifier
- Time series:
 Cannot apply stratified cross validation
- Cannot apply folding, actually
- Even better:
 Mirror real life use case

Beyond cross validation

- So ... we separated out the data
- How do we know a model is actually good?

Bias Variance Tradeoff

- Complex models can really fit the training data, giving lower bias
- Simpler models have trouble fitting data, resulting in higher bias
- But complex models can have high variance in their decision!

Bias Variance Tradeoff

- Complex models can really fit the training data, giving lower bias
- Simpler models have trouble fitting data, resulting in higher bias
- But complex models can have high variance in their decision!

The Learning Curve: Number of Samples

randomly get this number of samples ...

Learning curve shows how accuracy changes with varying sample size

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

You cannot estimate this curve without collecting the data. Some bounds exist, but they are too loose to be useful!!!!

The Learning Curve: Number of Samples

The Learning Curve: Number of Samples

20

The Validation Curve: Hyper-parameters

Similar to learning curve, but sweeping a hyperparameter of the learning algorithm

Look for sweet spot in the parameter for the validation accuracy

But, this can introduce data snooping...

Nested Cross Validation: Hyper-parameters

Nested Cross Validation: Hyper-parameters

Model Evaluation Metrics/Measures

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
- Not how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=No	Class=Yes
ACTUAL CLASS	Class=No	d	С
	Class=Yes	b	а

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=No	Class=Yes
ACTUAL CLASS	Class=No	d (TN)	c (FP)
	Class=Yes	b (FN)	a (TP)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitations of Accuracy

- Ignores the cost of misclassifications
- Consider an imbalanced 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Other evaluation metrics: Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=No	Class=Yes
ACTUAL CLASS	Class=No	C(No No)	C(Yes No)
	Class=Yes	C(No Yes)	C(Yes Yes)

Define a cost function based on your expertise with problem:

 $C(i \mid j)$: Cost of misclassifying class j example as class i

Cost Matrix Examples

Lower cost means "better"

Cost Matrix	PREDICTED CLASS		
4.071141	C(i j)	-	+
ACTUAL CLASS	-	0	1
32.183	+	100	-1

i.e., medical diagnosis costs?

Cost Matrix	PREDICTED CLASS				
	C(i j)	USA	CAN	AUS	NZ
	USA	0	1	10	10
ACTUAL	CAN	1	0	10	10
CLASS	AUS	10	10	0	20
	NZ	10	10	20	0

i.e., predicting travel locations?

Cost-Sensitive Measures

PREDICTED CLASS

```
from sklearn.metrics import precision_score, recall_score, f1_score
print('Precision: %.3f' % precision_score(y_true=y_test, y_pred=y_pred))
print('Recall: %.3f' % recall_score(y_true=y_test, y_pred=y_pred))
print('F1: %.3f' % f1_score(y_true=y_test, y_pred=y_pred))
```

CIACC	_	(114/	\1 1 <i>)</i>
CLASS	Class-Vas	р	а
	Class=Yes	(FN)	(TP)

Precision (p) =
$$\frac{a}{a+c}$$
 Higher Precision == Lower false positives

Recall (r) =
$$\frac{a}{a+b}$$

Higher Recall == Lower false negatives

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$ Higher F1 == Lower FN & FP

Cost-Sensitive Measures: Multi-Class

```
pre_scorer = make_scorer(score_func=precision_score,
                                     pos label=1,
                                     greater_is_better=True,
                                     average='micro')
      Precision<sub>micro</sub> = TP_1+...+TP_k
                                                 weight all instances equally
                    TP_1+...+TP_{k-1}FP_1+...+FP_{k-1}
         Recall<sub>micro</sub> = TP_1+...+TP_k
                    TP_1+...+TP_k+FN_1+...+Fn_k
            F1_{\text{micro}} = \underline{2(TP_1 + ... + TP_k)}
                    2(TP_1+...+TP_k)+FP_1+...+FP_k+FN_1+...+Fn_k
             X_{\text{macro}} = X_1 + ... + X_k
k \quad \text{weight all classes equally}
                                                                         31
```

The Receiver Operating Characteristic

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing for equal number of classes
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperforms the other
- M₁ is better for small FPR
- M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal: Area = 1.0

How to Construct an ROC curve

classifier score

Instance #	P(+ A)	True Class
6	0.95	+
2	0.93	+
5	0.87	-
4	0.85	-
9	0.85	-
1	0.85	+
10	0.76	-
8	0.53	+
3	0.43	-
7	0.25	+

- Use classifier that produces probability score for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold, T, at each unique value of P(+|A)
- P(+|A) < T, is negative class,
 else it is a positive class
- Count the number of TP, FP,
 TN, FN at each threshold
- TP rate, TPR = TP/Positives
- FP rate, FPR = FP/Negatives³⁶

How to Construct an ROC curve

classifier score

Instance #	P(+ A)	True Class
6	0.95	+
2	0.93	+
5	0.87	-
4	0.85	-
9	0.85	-
1	0.85	+
10	0.76	-
8	0.53	+
3	0.43	
7	0.25	+

FPR

- •TP rate, TPR = TP/Positives, "+ above thresh"
- FP rate, FPR = FP/Negatives "- above thresh"

How to Construct an ROC curve

Significance Testing

Tests of Significance

- Given two models:
 - Model M_1 : accuracy = 85%, tested on 30 instances
 - Model M_2 : accuracy = 75%, tested on 5000 instances
- Can we say M_1 is better than M_2 ?
 - How much confidence can we place on accuracy of M₁ and M₂?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Comparing Performance of 2 Models

- Given two models, M₁ and M₂, which is better?
 - M1 is tested on D_1 (size= n_1), found error rate = e_1
 - N2 is tested on D_2 (size= n_2), found error rate = e_2
 - Assume D₁ and D₂ are independent
 - If n₁ and n₂ are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

Approximate:

$$\hat{\sigma}_i^2 = \frac{e_i(1 - e_i)}{n_i}$$

variance estimate comes from **binomial distribution**, which is approximated well by **normal distribution**

Comparing Performance of 2 Models

- To test if performance difference is statistically significant: $d = e_1 e_2$ **estimate of the mean difference**
 - $d \sim N(d_t, \sigma_t)$ where d_t is the true difference
 - Since D₁ and D₂ are independent, their variance adds up:

$$\int_{1}^{\sigma_{1}^{2}} = \sigma_{1}^{2} + \sigma_{2}^{2} \cong \hat{\sigma}_{1}^{2} + \hat{\sigma}_{2}^{2}$$

$$= \frac{e1(1-e1)}{n1} + \frac{e2(1-e2)}{n2}$$

estimate of the variance in subtracted error rates

· At (1-a) confidence level, bounds on $d=d\pm Z_{\alpha/2}\hat{\sigma}_{t}$

An Illustrative Example

$$= d \pm Z_{\alpha/2} \hat{\sigma}_{t}$$

- Given: M_1 : $n_1 = 30$, $e_1 = 0.15$ M_2 : $n_2 = 5000$, $e_2 = 0.25$
- $d = |e_2 e_1| = 0.1$ (2-sided test)

$$\hat{\sigma}_{d}^{2} = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

• At 95% confidence level, $Z_{\alpha/2}=1.96$

$$d_1 = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$$

• => Interval contains 0 => difference may not be statistically significant

Another illustrative example

 M_1 : $n_1 = 30$, $e_1 = 0.15$

 M_2 : $n_2 = 5000$, $e_2 = 0.25$

Use common sense and choose the classifier with 5000 test examples

Folded statistical comparisons

- Each learning algorithm may produce k models:
 - L_1 may produce M_{11} , M_{12} , ..., M_{1k}
 - L_2 may produce M_{21} , M_{22} , ..., M_{2k}
- If models are generated on the same test sets D₁,D₂,
 ..., D_k (e.g., via cross-validation)
 - For each set: compute $d_j = e_{1j} e_{2j}$, the jth difference
 - d_i has mean d and variance $\sigma_{\rm t}$

$$\sigma_t^2 = \frac{1}{k-1} \sum_{j=1}^k (\bar{d} - d_j)^2$$

$$d_t = \bar{d} \pm \frac{1}{\sqrt{k}} t_{1-\alpha,k-1} \sigma_t$$
confidence

multiplier

now we can bound to

get a better idea about
how the criterion varies

$$t(95\%,k=10) = 2.26$$

standard deviation of folds

An illustrative Example

```
acc1 = cross_val_score(clf1, X, y=y, cv=cv)
acc2 = cross_val_score(clf2, X, y=y, cv=cv)
t = 2.26 / np.sqrt(10)
e = (1-acc1)-(1-acc2)
# std1 = np.std(acc1)
# std2 = np.std(acc2)
stdtot = np.std(e)
dbar = np.mean(e)
print "Range of:', dbar-t*stdtot,dbar+t*stdtot
```

For in class assignment:

Using Cross Validation, Folding, ROC, and Statistical Significance to Evaluate Algorithm
Performance