Les Fondation Modèles comprennet presque les quantificateurs.

Research Question

Can foundation models understand (generalized) quantifiers like humans?

Some birds can fly. — X-Y% (0 < X < Y < 100) birds can fly.

Task

- Implicit percentage values of quantifiers.
- Sentence-level relation nature; impacts of linguistic and social clues.
- Deficiencies in ambiguous premises and quantitative reasoning.
- Splitting [0, 1] in W with β : $W_{\beta=0.05} = \{0.5\%, 10\%...\}$
- A model receives a quantified sentence and outputs $[p_1, p_2] \in W_\beta$ where the predicate in the quantified sentence holds true.

PRESQUE: Pragmatic Reasoning for Semantics of Quantifiers

- NLI backbone
- RSA adoption
- No training, no bias

New Dataset: QuRe

- Existing datasets (e.g. HVD):
- Limited quantifiers
- No golden percentage scope
- e.g. All rocks have minerals.
- Ours: QuRe
- More generalized quantifiers

- Specificity levels
- Difficulty to reason percentage scope from the non-quantification context.
- Full/Partially/Indeterminable
- Golden percentage scope
- Sentence topics

[WIKI ENTITY] ORIGINAL SENTENCE	[SPECIFICITY, EXPRESSION] QuRe SENTENCE	TOPICS
[Human] Most humans (61%) live in Asia; the remainder live in the Americas (14%), Africa (14%), Europe (11%), and Oceania (0.5%). Within the last century, humans have explored challenging environments such as Antarctica, the deep sea, and outer space.	[Fully, 0.11] Most humans (61%) live in Asia; the remainder live in the Americas (14%), Africa (14%), some Europe, and Oceania (0.5%). Within the last century, humans have explored challenging environments such as Antarctica, the deep sea, and outer space.	population continents exploration
[List of blade materials] Prior to 2002, INFI contained 0.5% Carbon, 0.74% Nitrogen, about 1% Cobalt, and about 0.1% Nickel.	[Partially, 0.005] Prior to 2002, INFI contained tiny levels of Carbon, 0.74% Nitrogen, about 1% Cobalt, and about 0.1% Nickel.	chemical composition INFI elements
[List of blade materials] In order for a steel to be considered stainless it must have a Chromium content of at least 10.5%.	[Indeterminable, $>= 0.105$] In order for a steel to be considered stainless it must have <u>some</u> Chromium content.	steel metallurgy composition

Beyond Direct NLI Interpretation

NLI Limitations

- Pragmatic theory (*Grice 1975*)
- Rational Speech Act (RSA, Goodman and Frank 2016)
- Word state *W* and utterances *U*.
 - *W*: percentage value set {0, 10%, 20% ...}
 - *U*: quantifier set {no, few, some ...}
- The mental states of Listener L and speaker S are iteratively modeled with a Bayesian approach.

- Premise \tilde{p} : All airplanes have engines.
- Hypothesis \tilde{h} : 90% airplanes have engines.
- p: percentage values.
- q: quantifiers
- \bullet Entailment(\cdot) comes from the NLI model.

•Literal listener

 $L_0(p|q) \propto \operatorname{Entailment}(\tilde{p}, \tilde{h})$

- Pragmatic speaker $S_0(q|p) \propto \operatorname{Entailment}(\tilde{h}, \tilde{p})$
- Pragmatic listener
- $P(p) = \sum P(p|q)P(q)$ $L_1(p|q) \propto S_0(q|p)P(p)$

Result (QuRe)

ullet PRESQUE generally performs better than L_0 among all

SPECIFICITY	HIT@1↑		MRR↑		CROSSENTROPY↓			F1@{1,5} ↑				
	Rnd.	L ₀	L ₁	Rnd.	$\mid L_0 \mid$	L_1	Rnd.	L_0	$\mid L_1 \mid$	Rnd.	L ₀	L_1
Fully	4.1	27.3	29.7	12.3	22.1	24.3	6.44	5.64	5.74	2.8/8.6	19.5/24.3	21.5/26.5
Partial	8.2	26.4	28.5	11.6	21.2	21.7	7.78	6.99	7.06	4.3/8.3	16.9/25.9	18.3/27.3
Indeterminable	9.7	21.4	21.4	12.5	18.1	22.7	7.76	7.20	6.69	5.3/10.1	14.9 /18.2	14.8/ 25.6
Total	7.9	24.0	25.1	11.8	19.8	22.7	7.47	6.86	6.78	4.4/9.3	16.3/21.7	17.1/26.3

Examples

[GS.] SENTENCE _Q / [SPC.] SENTENCE _P	PRIMARY SCOPE	MRR	F1@5	CE
[F] In 57 separate fights, one loss was observed to Neope goschkevitschii, giving V. mandarinia a <u>large</u> winning rate.	L ₀ : 5%-20%	0.11	0.00	7.67
[95%-100%] In 57 separate fights, one loss was observed to Neope goschkevitschii, giving V. mandarinia a win rate of 98.3%.	L ₁ : 85%-100%	0.67	0.67	3.52
[P] From 4 locations in different parts of Europe, a <u>large</u> number had clutch size of 2, 41% had size of 3, clutches of 1 and 4 each constituted about 8%.	L ₀ : 30%-40%	0.22	0.40	6.29
[40%-45%] From 4 locations in different parts of Europe, 43% had clutch size of 2, 41% had size of 3, clutches of 1 and 4 each constituted about 8%.	L ₁ : 30%-45%	0.33	0.67	4.92
[I] It is typically made from rye bread, usually known as black bread, and is not classified as an alcoholic beverage in Poland, as its alcohol content usually is very				

Human & PRESQUE Perception

Human defined percentage scopes of quantifiers are similar to PRESQUE.

Result (HVD)

- PRESQUE has lower cross entropy than L_0 .
- RoBERTa generally performs

BASE MODEL(#PARAM.)	CROSSENTROPY↓				
	$ L_0$ $ $	PRESQUE			
ALBERT (Lan et al., 2020) (222M) XLNet (Yang et al., 2019) (361M) BART (Lewis et al., 2020) (407M)	1.76 1.64 1.89	1.48 1.35 1.32			
RoBERTa (Liu et al., 2019) (355M)	1.69	1.29			

Consecutiveness & Distance Metrics

- MSD: the minimal distance between the consecutive scope of top K percentage predictions and the golden percentage scope.
- F1: the span overlap between the consecutive scope of top K percentage predictions and the golden percentage scope.
- PRESQUE has higher consecutiveness and lower MSD

Consecutiveness

- If top 3 percentage predictions are
- {10%, 20%, 30%}, gives a consecutive scope 10%-30%. **Consistent**
- {10%, 30%, 50%}, no consecutive scope. **Not consistent**
- ullet PRESQUE predictions has higher consecutiveness ratio than L_0 .

EMNLP 2023