In discussing the performance of computers, we will be primarily concerned with response time for the first few chapters. To maximize performance, we want to minimize response time or execution time for some task. Thus, we can relate performance and execution time for a computer X:

$$Performance_{x} = \frac{1}{Execution time_{x}}$$

This means that for two computers X and Y, if the performance of X is greater than the performance of Y, we have

$$\frac{1}{\text{Execution time}_{\text{x}}} > \frac{1}{\text{Execution time}_{\text{y}}} > \frac{1}{\text{Execution time}_{\text{y}}}$$

$$\text{Execution time}_{\text{y}} > \text{Execution time}_{\text{y}}$$

That is, the execution time on Y is longer than that on X, if X is faster than Y.

In discussing a computer design, we often want to relate the performance of two different computers quantitatively. We will use the phrase "X is *n* times faster than Y"—or equivalently "X is *n* times as fast as Y"—to mean

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = n$$

If X is *n* times faster than Y, then the execution time on Y is *n* times longer than it is on X:

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = n$$

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

EXAMPLE

We know that A is *n* times faster than B if

 $\frac{\text{Performance}_{A}}{\text{Performance}_{B}} = \frac{\text{Execution time}_{B}}{\text{Execution time}_{A}} = n$

ANSWER