1. 用一个计数器 74161 和一个 8 选 1 数据选择器 74151 及必要的门电路设计一个脉冲序列 发生器: 当 X=0 时产生序列信号 101010; 当 X=1 时产生序列信号 0011101。

方法 1: X=0,利用 $S_0 \subseteq S_5$; X=1,利用 $S_0 \subseteq S_6$; $LD = \overline{X}S_5 + (X)S_6$

X	D0	D1	D2	D3	D4	D5	D6	D7
0	1	0	1	0	1	0		
1	0	0	1	1	1	0	1	
	$\overline{\overline{X}}$	0	1	X	1	0	1 OR x	

方法 1: X=0,利用 S_{10} 至 S_{15} ; X=1,利用 S_{9} 至 S_{15} ; $LD = \overline{X}S_{5} + (X)S_{6}$

X	D0	D1	D2	D3	D4	D5	D6	D7
0			1	0	1	0	1	0
1		0	0	1	1	1	0	1
		$0 \text{ OR } \overline{X}$	\overline{X}	X	1	X	$\overline{\overline{X}}$	X

- 2. 由主从 JK 触发器和 555 定时器组成的电路如图(a)所示,已知: CP 为 10Hz 的方波, R_1 =10k Ω , R_2 =56 k Ω 。 C_1 =1000pF, C_2 =4.7 μ F。触发器 Q 及 555(图 b)输出端(3 端)初态为 0。
 - 1) 试画出触发器 Q 端、u_i、u_o相对于 CP 的波形.
 - 2) 试求触发器 Q 端输出波形的周期.

$$T_{cp} = 100 \text{ms};$$

 $R_1 C_1 = 10 \mu \text{s}$
 $t_w = 1.1 R_2 C_2 \approx 290 \text{ms}$
 $T_Q = 400 \text{ms}$

- 3, 描述设计一个模为30的可逆计数器。
 - 有进位/借位输出端;
 - 有计数/保持控制端、置数控制端、加减控制端、预置数输入端;
 - 进位/借位信号只在计数状态下才会输出。

```
module c30(d,clk,co_bo,load,up_down,qd,en);
       input[5:1]
                   d;
       input
                       clk,en,load,up_down;
       output[5:1] qd;
       output
                   co_bo;
       reg[5:1]
                   cnt;
       assign
                   qd=cnt;
       assign
                  co_bo= en &&(up_down && cnt==29 || !up_down &&
cnt==00);
       always @(posedge clk)
       begin
           if(load)
                        cnt=d;
                                //高电平、同步置数
            else if(up_down) //加法计数
                         if(cnt==29) cnt=en?0:cnt;
                                                     //计数或保持
                                cnt = cnt + en; // 计数或保持
                          else
                  else //减法计数
                         if(cnt==00) cnt=en?29:cnt; //计数或保持
                                              //计数或保持
                          else
                                 cnt = cnt - en:
       end
       endmodule
```

测试题

1.组合逻辑

设计一多数表决电路,要求 A、B、C、D 四人中只要多数同意,则决议就通过;如果只有二人同意二人反对时,则 A 有决定权。假设同意用高电平"1"表示,不同意用低电平"0"表示;通过用高电平"1"表示,不通过用低电平"0"表示,输出结果用变量 F表示。试求:

- (1) 列出真值表并写出输出的逻辑函数表达式;
- (2) 化简输出逻辑函数,用与非门实现设计并画出电路图。

2.逻辑设计

试用 4×2 字位容量的 ROM 实现半加器的逻辑功能。列出真值表,写出半加器的表达式,并直接在图中画出用 ROM 点阵图实现的半加法器电路。

3. 计数器电路

只用2个十六进制74161计数器设计一个完整的17进制计数器。

4.Verilog HDL 语言

写出带并行预置的 4 位 BCD 十进可逆计数器的行为级描述。

计数器有三个控制输入分别对应三种功能:加法计数、减法计数和预置。优先顺序是预置、加法计数和减法计数。