### Es gribu motociklu

### 13 punkti

**A**: Dots iekšdedzes dzinējs, kura vidējais spēka moments ir 90 Nm (šāds dzinējs varētu tikt izmantots, piemēram, sacīkšu motociklos). Kāda ir dzinēja jauda pie 15 000 apgriezieniem minūtē? 1.5 punkti

B: Šajā apakšpunktā tiek apskatīts motociklu sacīkšu braucējs, braucot līkumā. Zināms, ka, cenšoties sasniegt vislabāko rezultātu, braucējs saliecas līdz nokrišanas robežai, tas ir, šādā līkumā nav iespējams sasvērties vairāk, nenokrītot. Motocikla attēls, kā arī koordinātu sistēma, ir doti attēlā.



**B1**: Zināms, ka motocikla masas centrs atrodas punktā A = (0.4; 0.4), bet motociklista masas centrs ir punkts B = (0.7; 0.35). Motocikla masa ir 176 kg, bet pats motociklists sver 72 kg. Kādas ir motocikla un braucēja kopējā masas centra koordinātes?

1.5 punkti

**B2**: Kāds ir berzes koeficients  $\mu_s$  starp riepām un asfaltu?

2 punkti

B2: Vai šajā situācijā starp riepām un asfaltu ir statiskā vai dinamiskā berze? Kāpēc?

2 punkti

**B3**: Dots, ka motocikla trajektorija ir riņķa līnijas loks ar rādiusu R=50 m. Kāds ir lielākais ātrums  $V_{max}$ , ar kādu motociklists var izbraukt šādu līkumu?

2 punkti

**B4**: Kā izmainīsies maksimālais ātrums līkumā, ja sacīkšu komandas inženieri samazinātu motocikla masu par  $50\,\mathrm{kg}$ ?

**B5**: Par cik procentiem samazināsies maksimālais ātrums līkumā, ja, sacīkšu dienā uzlijot lietum, berzes koeficients starp riepu gumiju un asfaltu samazinās uz pusi?

2 punkti

### Kārtējais laistīšanās uzdevums

# 7 punkti

Lielā traukā ar ūdeni gaismas laušanas koeficients ir n=1.3. Tad traukā tiek piebērts pulveris, kurs noslāņojas trauka apakšējā daļā, kur gaismas laušanas koeficients n=1.6, tā ka trauka augšējā malā gaismas laušanas koeficient vēl joprojām ir 1.3 un pāreja līdz 1.6 notiek vienmērīgi. Veicot skices vari pieņemt ka krišanas leņķis ir  $60^{\circ}$ 

 ${\bf A}$ : Uzskicē gaismas stara ceļu, ja pāreja no vides n=1.3 uz n=1.6 notiktu pēkšņi. Norādi svarīgos leņķus.

 ${f B}$ : Uzskicē gaismas stara ceļu, ja pāreja no vides n=1.3 uz n=1.6 notiek vienmērīgi. Norādi svarīgos leņķus. Kāpēc gaismas ceļš būs tieši šāds?

3 punkti

C: Uzskicē gaismas stara ceļu, ja pulveris noslāņojas šķidruma augšā - t.i. pāreja notiek no n=1.6 uz n=1.3. Norādi svarīgos leņķus.

Pelmeņu katls 11 punkti

Alberts nesen sāka studijas un pārvācās uz studentu kopmītni. Diemžēl kopmītnē nav tējkannas, un vienīgie trauki, kas kopmītnē ir pieejami, ir liels metāla katls un maza metāla krūze. Alberts izlēma sev uztaisīt pelmeņus katlā un tēju krūzē, uzliekot lielo katlu uz plīts, bet mazo krūzi ar tēju ievietojot lielajā katlā.

Vienkāršības labad var pieņemt, ka abos traukos ir tīrs ūdens ar nemainīgu blīvumu  $\rho_u = 1 \,\mathrm{g/cm^3}$ . Abi trauki ir veidoti no dzelzs, kura blīvums  $\rho_{dz} = 7.85 \,\mathrm{g/cm^3}$ . Katliņa izmēri un tilpums ir stipri lielāki nekā krūzītei, un krūzīte atrodas tālu no katla sieniņām un peld katlā esošajā ūdenī. Termiskās izplešanās efektus var neņemt vērā. Pieņemt, ka krūze paliek vertikālā stāvoklī.

**A**: Krūzīti var aproksimēt kā dobu cilindru. Cilindra dimensijas ir dotas zīmējumā, ārējais diametrs  $D=12\,\mathrm{cm}$ , augstums  $H=16\,\mathrm{cm}$ , sieniņu biezums  $t=3\,\mathrm{mm}$ . Būdams inženierijas students, Alberts aizdomājās par sakarībām starp ūdens līmeņiem lielajā katlā un krūzē.



A1: Kurš no dotajiem apgalvojumiem ir patiess?

1.5 punkti

- 1. Ūdens līmenis krūzē būs vienāds ar ūdens līmeni katlā
- 2. Ūdens līmenis krūzē būs augstāks par ūdens līmeni katlā
- 3. Udens līmenis katlā būs augstāks par ūdens līmeni krūzē
- 4. Nevar noteikt no dotās informācijas

A2: Kāds ir maksimālais ūdens tilpums, ko var ieliet krūzē, pirms tā nogrims un Alberts sabojā savas vakariņas?
2 punkti

**A3**: Vai eksistē tāda krūze, kuru šādā situācijā varēs piepildīt pilnu līdz malām, tai nenogrimstot? Ja atbilde ir jā, tad kādiem nosacījumiem jāizpildās.

2 punkti

**B**: Ticis galā ar ūdens daudzumiem, Alberts ķērās klāt pie pelmeņu vārīšanas. Katls tiek uzlikts uz plīts un sākts sildīt, līdz ūdens lielajā katlā sāk vārīties.

B1: Kurš no šiem apgalvojumiem ir patiess? Kāpēc?

3.5 punkti

- 1. Ūdens krūzē sāks vārīties pirms ūdens lielajā katlā
- 2. Ūdens krūzē sāks vārīties pēc ūdens lielajā katlā
- 3. Ūdens krūzē nesāks vārīties
- 4. Nevar noteikt no dotās informācijas

B2: Kāda ir ūdens temperatūra krūzē pēc tam, kad ūdens katlā sāka vārīties?

2 punkti

### Kosmiskā Lampa

### 14 punkti

Interesanti, ka, lai gan fotonam (gaismas daļiņai) nav masas, tam tomēr piemīt masai līdzīgas īpašības, piemēram, tam piemīt impulss p=hf/c, kur f - frekvence; c - gaismas ātrums; Planka konstante  $h=6,62607015\cdot 10^{-34}~{\rm J~s.}$ 

**A**: Satelīts, kura masa ir m=100 kg, atrodas riņķveida orbītā ap Zemi augstumā h=400 km. Lai paceltu tā orbītu, satelīts izšauj  $N=2\cdot 10^{32}$  fotonus ar frekvenci f=100 THz pretēji sava ātruma vektora virzienam. Nosaki ātruma izmaiņu  $\Delta V$ .

2 punkti

**B**: Uzskicē satelīta kustības trajektoriju ap Zemi, norādot, kur tas atrodas sākuma brīdī un kur tas atradīsies, kad būs vistālāk no Zemes.

4 punkti

C: Kāds būs maksimālais attālums no Zemes, kas tiks sasniegts? Ja A punktā neieguvi atbildi, pieņem, ka  $\Delta V = 1$  km/s (atšķiras no iepriekš izrēķinātās vērtības).

6 punktī

**D**: Kāpēc A punktā fotonus jāizšauj pretēji kustības virzienam, lai iegūtu vislielāko raķetes ātruma izmaiņu  $\Delta V$ ?

### Satelīta pārvadāšana

#### 10 punkti

**A1**: Divas mašīnas ved satelīta daļas no punkta A uz punktu B. Pirmā mašīna brauc ar konstantu ātrumu, otrā ar laikā mainīgu ātrumu. Sekojošajā grafikā (nākamajā lapā dots palielināts grafiks) attēlota pirmās mašīnas ātruma atkarība no laika otrās mašīnas atskaites sistēmā. Uzzīmē otrās mašīnas ātruma grafiku pirmās mašīnas atskaites sistēmā.

2 punkti

**Piezīme:** otru grafiku zīmē kopā ar jau doto - vai nu uz palielinātā attēla nākamajā lapā, vai arī pārzīmējot grafiku uz rūtiņu papīra.



**A2**: Otrā mašīna no punkta A izbrauca laikā  $t_0=1$  min pēc pirmās. Zināms, ka tā pirmo mašīnu panāca, braucot laiku  $t_1=9$  min, kā arī abas mašīnas punktā B nonāca vienā laikā. Lielākais attālums starp abām mašīnām bija d=1.960 km. Nosaki pirmās mašīnas ātrumu,  $v_1$ , otrās mašīnas maksimālo ātrumu,  $v_{2,max}$  un attālumu starp punktiem A un B,  $D_{AB}$ .

6 punkti

**B**: Ceļu no B uz C veic trešā mašīna. Zināms, ka pusi ceļa tā brauc ar ātrumu  $v_1$ , trešdaļu ceļa brauc ar ātrumu  $v_{2,max}$  un pārējo ceļu veic ar ātrumu  $v_3$ . Aprēķini trešās mašīnas vidējo ātrumu. 2 punkti



## Demonstrējums: Konfekšu deja

10 punkti

A: Paskaidro, kāpēc iekārtās konfektes svārstās ar dažādām amplitūdām.

3.34 punkti

B: Izskaidro fāzes nobīdi vienai no konfektēm.

3.33 punkti

C: Kā būtu iespējams noteikt gaisa pretestību konfektei? Pilns risinājums nav nepieciešams. Pieņem, ka svārstību amplitūdu var izteikt kā:

$$A = \frac{K/l}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}}$$

kur A ir svārstību amplitūda, K ir konstante ar dimensijām m²/s², l ir svārsta garums,  $\omega_0$  ir brīvo svārstību frekvence,  $\omega$  ir pieliktā spēka svārstību frekvence,  $\gamma=c/m$ , kur c ir gaisa pretestību raksturojošā konstante.

3.33 punkti

## Eksperiments: Tēju vai kafiju?

35 punkti

Kāds ir siltumvadīšanas koeficients keramikai?

Siltumvadīšanas koeficients ir materiāla īpašība, kas raksturo cik labi siltums var plūst cauri ķermenim. Ja esi kādreiz pieskāries kokam un metālam, tad zini, ka metāls šķiet daudz aukstāks, jo tavas rokas atdotais siltums ātrāk aizplūst prom.

Jauda P, kas plūst cauri krūzītes sienai, ir proporcionāla tās virsmas laukumam S, siltumvadīšanas koeficientam k, temperatūras starpībai  $\Delta T$  un apgriezti proporcionāla krūzītes biezumam l.

$$P = \frac{kS}{l}\Delta T$$

Jauda, kas plūst cauri krūzītes sienai, ir siltuma daudzums, kas no krūzītes iekšpuses plūst cauri keramikai un silda apkārtesošo vidi uz laika vienību. Citiem vārdiem sakot, tas cik ātri ūdens krūzītē atdziest. Šim jums varētu noderēt sekojošās formulas, kur Q ir siltumenerģija,  $c=4190\frac{J}{kgK}$  ir ūdens siltumietilpība, m ir ūdens masa un t ir laiks.

$$P = \frac{Q}{\Delta t}$$

$$Q=cm\Delta T$$

Ieteikums 1: Pievērsiet īpašu uzmanību, kas ir  $\Delta T$ .

Ieteikums 2: Padomājiet, kas ietekmēs eksperimentu un kādus pieņēmumus Jūs veiksiet eksperimenta gaitā, kā Jūs šos pieņēmumus pārbaudīsiet, vai tie ir patiesi?

Ieteikums 3: Ja nepietiek laika, rakstiet, ko vajadzētu izdarīt, lai eksperimentu pabeigtu. Daudzkārt, kad vēl nevar zināt kā tikt līdz gala rezultātam var domāt: kas palīdzētu nonākts tuvāk?

Dots (pārbaudi, ka viss šeit uzskaitītais ir izsniegts!): lineāls, hronometrs, termometrs, krūzīte, spainis ar 3l auksta ūdens, karstais ūdens (pieejams gaitenī pie tējkannas, **Tējkannu pēc tam atnest atpakaļ!!!**), statīvs, putuplasts.

A1: Veic mērījumus un izrēķini krūzītes ārējās virsmas laukumu, sienas biezumu un tilpumu. Novērtē arī kļūdas savos mērījumos un rezultātos!
 3 punkti

A2: Krūzītes osiņu varat neņemt vērā. Kā tas ietekmē rezultātus?

 $1 \ punkti$ 

**B**: Izplāno eksperimentu krūzītes siltumvadīšanas koeficienta noteikšanai. Pieraksti galvenos eksperimenta soļus, izveido un anotē eksperimentālās iekārtas skici, kā arī īsumā parādi, kā no mērījumiem iegūsi siltumvadīšanas koeficientu.

10 punkti

C: Veic eksperimentu un piefiksē mērījumus. Parasti olimpiādēs sagaida vismaz 15 mērījumus. 5 punkti

**D**: Grafiski attēlo, kā laikā mainās temperatūras starpība starp ūdeni krūzītē un ūdeni spainī, citi nepieciešamie grafiki.

3 punkti

E: Nosaki krūzītes materiāla siltumvadīšanas koeficientu.

7 punkti

F: Mini pieņēmumus, neprecizitātes un secinājumus vai novērojumus.

6 punkti