hw1_tangmingchuan

October 4, 2023

0.1 Genomics data analysis based on R

 $HW1\text{-}Tang Mingchuan\text{-}2000017785\text{-}Peking\ University}$

My Jupyternotebook failed to export latex pdf with Chinese characters, sorry if my English troubles you.

1 A

		Private	Apps	Accept	Enroll	Top10perc
		<chr $>$	<int $>$	<int $>$	<int $>$	<int $>$
A data.frame: 10×5	Abilene Christian University	Yes	1660	1232	721	23
	Adelphi University	Yes	2186	1924	512	16
	Adrian College	Yes	1428	1097	336	22
	Agnes Scott College	Yes	417	349	137	60
	Alaska Pacific University	Yes	193	146	55	16
	Albertson College	Yes	587	479	158	38
	Albertus Magnus College	Yes	353	340	103	17
	Albion College	Yes	1899	1720	489	37
	Albright College	Yes	1038	839	227	30
	Alderson-Broaddus College	Yes	582	498	172	21

Apps_mean: 3001.638 Accept_mean: 2018.804

Cor: 0.9434506

[]: # 5 summary(college[, c(0:3)])

```
Private
              Apps
                             Accept
Yes:565
                               :
                                    72
         Min.
               :
                    81
                         Min.
                         1st Qu.: 604
No :212
          1st Qu.: 776
         Median: 1558
                         Median: 1110
                : 3002
          Mean
                         Mean
                                : 2019
          3rd Qu.: 3624
                         3rd Qu.: 2424
                 :48094
         Max.
                         Max.
                                :26330
```

As above, 1st Qu and 3st Qu represent 25 percentile and 75 percentile respectively.

```
[]: # 6
pairs(college[, c(0:5)])
```


)

Elite-Outstate_boxplot


```
[]: # 9
layout(matrix(c(1, 2), 2, 1, byrow = TRUE), widths = c(1, 1))
hist(college[["Apps"]], main = "Histogram of college_Apps")
hist(college[["Accept"]], main = "Histogram of college_Accept")
```

Histogram of college_Apps

Histogram of college_Accept


```
[]: # 10
write.csv(college, file = "./College_Elite_added.csv")
```

2 B

```
[]: # 11
Auto <- read.csv("./Auto.csv", na.strings = "?")
Auto <- na.omit(Auto)
Auto[c(1:10),c(1:5)]</pre>
```

		mpg	cylinders	displacement	horsepower	weight
		<dbl></dbl>	<int $>$	<dbl $>$	<int $>$	<int $>$
A data.frame: 10×5	1	18	8	307	130	3504
	2	15	8	350	165	3693
	3	18	8	318	150	3436
	4	16	8	304	150	3433
	5	17	8	302	140	3449
	6	15	8	429	198	4341
	7	14	8	454	220	4354
	8	14	8	440	215	4312
	9	14	8	455	225	4425
	10	15	8	390	190	3850

```
[]: # 12
relation <- lm(mpg ~ horsepower, data = Auto)
summary(relation)

predict(relation, data.frame(horsepower = c(98)), interval = "confidence")
predict(relation, data.frame(horsepower = c(98)), interval = "prediction")</pre>
```

Call:

lm(formula = mpg ~ horsepower, data = Auto)

Residuals:

Min 1Q Median 3Q Max -13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049

F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

A matrix: 1×3 of type dbl $\frac{\text{lit}}{1}$ $\frac{\text{lwr}}{24.46708}$ $\frac{\text{upr}}{23.97308}$ $\frac{\text{24.96108}}{24.96108}$

As summary above predictor and outcome variable can be described as: mpg \sim 39.9 - 0.16 * horsepower, R-squared \sim 0.6, correlation is relative strong, negative correlation.

when horsepower = 98, mpg is expected to be 24.22. 95\% confidence and prediction range are

(23.97308, 24.96108) and (14.8094, 34.12476) respectively.

```
[]: # 13
plot(Auto[["horsepower"]], Auto[["mpg"]],
    main = "mpg & horsepower Regression", col = "#ff6600",
    abline(relation, col = "#190dce"), xlab = "horsepower", ylab = "mpg"
)
```

mpg & horsepower Regression


```
[]: # 14
par(mfrow = c(2, 2))
plot(relation)
```


- 1. Residuals vs Fitted. This fig shows that there could be a non-linear relationship between predictor variable and the outcome variable because the U-shape residual instead of a horizontal line.
- 2. Normal Q-Q. This plot shows if residuals are normally distributed. In this case, residuals follow a straight line well, indicating the residuals is expected to be normally distributed.
- 3. Scale-Location. This plot shows if residuals are spread equally along the ranges of predictors. In this case, the U-shaped curve indicates that the residuals spread wider when fitted value is small and large.
- 4. Residuals vs Leverage. This plot helps us to find influential cases (i.e., subjects) if there are any. From the plot there is no influential case, or cases.

reference:

Understanding Diagnostic Plots for Linear Regression Analysis

3 C

[]: # 15

```
X <- sum(sample(</pre>
         x = c(-1, 1), size = 10,
         replace = TRUE
     ))
     Х
    6
[]: # 16
     simulate_coin_flips <- function(Ntrials, Nflips) {</pre>
          sequences <- replicate(Ntrials, sample(c(1, -1), Nflips, replace = TRUE))</pre>
         return(sequences)
     }
     calculate_average_X <- function(sequences) {</pre>
          idx <- apply(</pre>
              sequences, 2,
              function(sequence) {
                  return(which(sequence == 1)[5] == 5)
              }
         )
         idx <- ifelse(is.na(idx), FALSE, idx)</pre>
         step <- apply(sequences[, idx], 2, sum)</pre>
         mean_value <- mean(step)</pre>
         return(c(mean_value, step))
     }
     Ntrials <- 200
     Nflips <- 10
     sequences <- simulate coin flips(Ntrials, Nflips)</pre>
     average_X <- calculate_average_X(sequences)</pre>
     cat("mean_value_X:", average_X[1])
    mean_value_X: 6.5
[]: # 17
     Ntrials <- 2000
     Nflips <- 8000
     average <- function(Ntrials, Nflips) {</pre>
         sequences <- simulate_coin_flips(Ntrials, Nflips)</pre>
```

```
average_X <- calculate_average_X(sequences)
    return(average_X[1])
}

X_series <- replicate(50, average(Ntrials, Nflips))

cat("mean_value_X_series:", X_series)
plot(X_series)</pre>
```

mean_value_X_series: -8.583333 17.16129 -4.608696 12.72131 -2.412698 -0.4193548 0.9275362 -18.26087 -8.142857 13.43284 -8.734177 15.25806 3.272727 19.65385 7.508197 -2.947368 -7.933333 4.516129 -3.087719 6.328358 0.3793103 10.78571 3.575758 20.98182 7.783784 -4.076923 8.275862 0.1851852 -3.555556 -6.771429 -9.875 13.46479 3.740741 -10.35294 14 3.275362 -20.8 7.151515 27.22581 8.103448 6.507937 10.44068 -3.333333 12.03571 1.527273 -2.415094 14.08511 30.55385 17.09375 10.46377

As shown above, the mean value didn't converge to 0. The limit of 5 head beginning make the sum of each trial begins with 5 and the mean value of later flips is expected to be 0, making the theoratical mean value of each trial to be 5.

If Nflips is an even number N = 2n, then $P(sum = 2a) = C_{2n}^{n-a}/2^N$. From hist drawn as follows, we can see that the distribution is "wider" as flip number increases (bigger std). So the mean value is not converged to 0 (not converged to 5 in this case).

