Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007

2ª Aula Prática

- 1. Indique justificando quais das proposições seguintes são verdadeiras:
 - a) $\{1\} \subset \{1, \{2, 3\}\}$
 - b) $\{1\} \in \{1, \{2, 3\}\}$
 - c) $2 \in \{1, \{2, 3\}\}$
 - $d) 1 \in \{\mathbb{R}\}$
 - e) $\emptyset = \{x \in \mathbb{N} : x = x + 1\}$
 - f) $\emptyset \in \{0\}$
 - g) $\emptyset \subset \{0\}$
 - h) $\forall_{x \in \mathbb{R}} x > 0 \Leftrightarrow x^{-1} > 0$
 - i) $\forall_{x \in \mathbb{R}} x > 1 \Leftrightarrow x^{-1} < 1$
 - j) $\forall_{x,y \in \mathbb{R}} x < y \Rightarrow y^{-1} < x^{-1}$
 - k) $\forall_{x \neq 0} \, x^2 > 0$
 - l) $\forall_{x,y \in \mathbb{R}} x < y \Rightarrow x^2 < y^2$
 - m) $\forall_{x,y \in \mathbb{R}} x < y < 0 \Rightarrow x^2 > y^2$
- 2. Verifique que $\forall_{a>0}\,a+\frac{1}{a}\geq 1.$ (Sugestão: considere separadamente $a\geq 1$ e a<1.)
- 3. (Exercícios 1.17, 1.18 e 1.19 de [2]) Demonstre pelo princípio de indução matemática que:
 - a) $1 + 3 + \dots + (2n 1) = n^2$, $\forall n \in \mathbb{N}_1$
 - b) $\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1},$ para todo o natural $n\geq 1$
 - c) $(n!)^2>2^nn^2,$ para todo o natural $n\geq 4$
 - d) $n! \geq 2^{n-1},$ para todo o natural $n \geq 1$
- 4. Demonstre pelo princípio de indução matemática que:
 - a) $1+2+3+\cdots+n=\frac{n(n+1)}{2},$ para qualquer $n\in\mathbb{N}_1$
 - b) Para $a \in \mathbb{R}$, $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$, para qualquer $n \in \mathbb{N}$

- c) $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} = 1 \frac{1}{(n+1)!}$, para qualquer $n \in \mathbb{N}$
- d) $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$, para qualquer $n \in \mathbb{N}_1$
- e) $1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$, para qualquer $n \in \mathbb{N}_1$
- 5. Demonstre pelo princípio de indução matemática que:
 - a) $(n+2)! \geq 2^{2n}$, para qualquer $n \in \mathbb{N}_1$
 - b) $2n-3 < 2^{n-2}$, para todo o natural $n \ge 5$
 - c) $7^n 1$ é múltiplo¹ de 6 para qualquer $n \in \mathbb{N}_1$
 - d) $2^{2n} + 2$ é múltiplo de 3 para qualquer $n \in \mathbb{N}$
- 6. (Exercício 1.20 de [2]) Demonstre a desigualdade de Bernoulli: Sendo a>-1 e $n\in\mathbb{N},$

$$(1+a)^n \ge 1 + na.$$

- 7. Seja P(n) a condição " $n^2 + 3n + 1$ é par".
 - a) Mostre que $P(n) \Rightarrow P(n+1)$
 - b) Pode concluir que $n^2 + 3n + 1$ é par, para qualquer $n \in \mathbb{N}$?
 - c) Mostre que para qualquer $n \in \mathbb{N}, n^2 + 3n + 1$ é impar
- 8. Seja $f: \mathbb{N} \longrightarrow \mathbb{N}$ tal que f(0) = 1 e f(n+1) = (2n+2)(2n+1)f(n). Mostre por indução matemática que, para qualquer $n \in \mathbb{N}$,

$$f(n) = (2n)!$$

9. Considere a sucessão real (u_n) dada por:

$$\begin{cases} u_1 = 3, \\ u_{n+1} = \frac{3u_n}{(n+1)^2}. \end{cases}$$

Mostre usando indução matemática que $u_n = \frac{3^n}{(n!)^2}$, para qualquer $n \in \mathbb{N}_1$.

10. (Teste de 29-4-2006) Considere a sucessão real (u_n) dada por:

$$\begin{cases} u_1 = 1, \\ u_{n+1} = \sqrt{2u_n^2 + 1}. \end{cases}$$

Mostre usando indução matemática que $u_n = \sqrt{2^n - 1}$, para qualquer $n \in \mathbb{N}_1$.

¹Um número é múltiplo de 6 sse é da forma 6k, para algum $k \in \mathbb{N}_1$.

- 11. Verifique que se $n \in \mathbb{N}$ é impar, então n^2 é também impar. O que pode concluir de $n \in \mathbb{N}$ sabendo que n^2 é par?
- 12. Verifique que se x, y são números racionais, então $x + y, xy, -x, x^{-1}$ (para $x \neq 0$) são também números racionais.²
- 13. (Exercício I.3 de [1]) Verifique que, se x é um número racional diferente de zero e y um números irracional, x+y, x-y, xy e y/x são irracionais; mostre também que, sendo x e y irracionais, a sua soma, diferença, produto e quociente podem ser ou não ser irracionais.
- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, 8^a ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.

 $^{^2}$ Ou seja, $\mathbb Q$ é fechado para a adição e multiplicação e contem os simétricos e inversos de todos os seus elementos. Mostra-se assim, uma vez que também os elementos neutros 0 e 1 são racionais, que $\mathbb Q$ é um corpo. É fácil ver que também verifica as propriedades de ordem, ou seja, $\mathbb Q$ é um corpo ordenado.