第十一章历年期末试题

1. (2017年) 以下四个关于级数的结论中,正确的结论是

(A) 若
$$\sum_{n=1}^{\infty} u_n^2$$
 和 $\sum_{n=1}^{\infty} v_n^2$ 都收敛,则 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 收敛.

(B) 若
$$\sum_{n=1}^{\infty} |u_n v_n|$$
 收敛,则 $\sum_{n=1}^{\infty} u_n^2 = \sum_{n=1}^{\infty} v_n^2$ 都收敛.

(C) 若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 发散,则 $u_n \ge \frac{1}{n}$.

(D) 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,且 $u_n \ge v_n$ $(n = 1, 2, \dots)$,则级数 $\sum_{n=1}^{\infty} v_n$ 也收敛.

- 2. (2016年) 设 a 为常数,则级数 $\sum_{i=1}^{\infty} \left(\frac{\sin a}{n^2} \frac{1}{\sqrt{n}} \right)$ ().
 - (A) 绝对收敛

(B) 发散

(C)条件收敛

- (D) 收敛性取决于 a 的值
- 3. (2016年) 微分方程 $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$ 的通解是 (

$$(A) \sin \frac{y}{x} = \frac{1}{Cx}$$

(A)
$$\sin \frac{y}{x} = \frac{1}{Cx}$$
 (B) $\sin \frac{y}{x} = x + C$ (C) $\sin \frac{x}{y} = Cx$

(C)
$$\sin \frac{x}{y} = Cx$$

(D)
$$\sin \frac{y}{x} = Cx$$

- **4.** (2014年) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 满足关系 $a_n \leq b_n$,则 (

 - (A) 当 $\sum_{n=1}^{\infty} a_n$ 收敛时, $\sum_{n=1}^{\infty} b_n$ 也收敛 (B) 当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n$ 也收敛

 - (C) 当 $\sum_{n=0}^{\infty} b_n$ 发散时, $\sum_{n=0}^{\infty} a_n$ 收敛 (D) 当 $\sum_{n=0}^{\infty} b_n$ 发散时, $\sum_{n=0}^{\infty} a_n$ 也发散
- **5.** (**2013**年) 设 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 是正项级数,且 $u_n > v_n (n = 1, 2, \dots, 99), u_n \le v_n (n = 1, 2, \dots, 99)$ 100,101,…),则下列命题正确的是().

 - (A) 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛 (B) 若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

 - (C) 若 $\sum_{n=0}^{\infty} v_n$ 发散,则 $\sum_{n=0}^{\infty} u_n$ 发散 (D) 若 $\sum_{n=0}^{\infty} v_n$ 收敛,则 $\sum_{n=0}^{\infty} u_n$ 发散

6.		$<\frac{1}{n}(n=1,2,\cdots)$,则		
	$(\mathbf{A}) \sum_{n=1}^{\infty} u_n$	$(B) \sum_{n=1}^{\infty} (-1)^n u_n$	(C) $\sum_{n=1}^{\infty} \sqrt{u_n}$	$\mathbf{(D)} \sum_{n=1}^{\infty} (-1)^n u_n^2$
7 .	(2011 年) 设级数 $\sum_{n=1}^{\infty}$	u_n 收敛,则下列级 u_n	数中必定发散是 ().
	$(\mathbf{A})\sum_{n=1}^{\infty}(-1)^n u_n$	$(B) \sum_{n=1}^{\infty} u_n^2$	(C) $\sum_{n=1}^{\infty} u_n $	$(D) \sum_{n=1}^{\infty} \frac{1}{u_n}$
8.	(2010 年) 设 $\lim_{n\to\infty} u_n = 0$, 则级数 $\sum_{n=1}^{\infty} u_n$ ().			
	(A) 一定收敛, 其和		(B) 一定收敛, 但和	不一定为零
	(C) 一定发散		(D) 可能收敛, 也可	能发散
9.	(2017 年) 设幂级数 收敛区间是	n=0	坟域是 (—4,2], 则幕级	及数 $\sum_{n=1}^{\infty} n a_n (x-2)^n$ 的
10	. (2016 年)设 $\lim_{n \to \infty}$	$\left \frac{a_{n+1}}{a_n} \right = \frac{1}{4}$,则幂级数	$\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半	径 R =
11	.(2015 年) 实数 <i>q</i> 沫	瞒足什么条件,几何 [。]	级数 $\sum\limits_{n=1}^{\infty}q^{n-1}$ 收敛,	即 <i>q</i> 满足
12	. (2014年) 幂级数 🥻	$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2^n}, x < 2 \mathbf{f}^4$	的和函数是 ————	• -
13	. (2013年) 幂级数 🧴	$\sum\limits_{n=1}^{\infty}rac{1}{2^{n}n}x^{n}$ 的收剑半径	<u>-</u>	
14	. (2012年) 幂级数 》	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n \cdot n} (x-1)^n $ if	收敛域为	_•

16. (**2010** 年) 设幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$$
 的收敛域为_____.

17. (2017 年) 求微分方程 $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ 的通解.

15. (**2011** 年) 级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ 的和 S =_____.

- **18**. (2017年) 判定级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(1+n)}$ 敛散性,若收敛,指出其是绝对收敛还是条件收敛.
- **19.** (2017年) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n}}{2^n \cdot n}$ 的收敛域及和函数.
- **20.** (**2016**年) 求幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+2}$ 的和函数及收敛域。
- **21.** (2016年) 将函数 $f(x) = \frac{1}{5-x}$ 展开为 (x-1) 的幂级数,并求其收敛域.
- **22.** (**2015** 年) 级数 $\sum_{n=2}^{\infty} \sin\left(n\pi + \frac{1}{\ln n}\right)$ 是绝对收敛,条件收敛,还是发散?
- **23.** (2014年) 求幂级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n} (x-1)^n$ 的收敛域。
- 24. (2013 年) 判断级数 $\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$ 的敛散性.
- **25.** (**2013**年) 将函数 $f(x) = \ln x$ 展开成 (x-2) 的幂级数。
- **26.** (2012年) (本题满分 8 分) 判断级数 $\sum_{n=1}^{\infty} (\frac{b}{a_n})^n$ 的敛散性, 其中 $\lim_{n\to\infty} a_n = a$, (a > 0, b > 0).
- **27**. (**2012**年) 将函数 $f(x) = \frac{1}{x^2 + 4x + 3}$ 展开成 (x 1) 的幂级数.
- 28. (2011 年) 讨论级数 $\sum_{n=1}^{\infty} (-1)^n \frac{n}{a^n} (a > 0)$ 是绝对收敛,条件收敛,还是发散.
- **29.** (2011年) 试求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 的收敛域 I 与和函数 S(x), 并求级数 $\sum_{n=1}^{\infty} \frac{n+1}{2^n}$ 的和.
- **30**. (**2010**年) 判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}$ 绝对收敛和条件收敛性.

- **31.** (**2010**年) 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x+4) 的幂级数.
- 32. (2011 年) 设级数 $\sum_{n=1}^{\infty} u_n^2$ 收敛,证明级数 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 绝对收敛.

[另附] 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,证明级数 $\sum_{n=1}^{\infty} \frac{u_n}{n^2}$ 绝对收敛.