Real analysis Qualifying exam, August 2019

- 1. Let \mathcal{C} be the Cantor set on [0,1]. Recall that it is obtained by iteratively deleting the open middle third: $(\frac{1}{3},\frac{2}{3})$, then $(\frac{1}{9},\frac{2}{9}) \cup (\frac{7}{9},\frac{8}{9})$, and so on.
 - (a) Show that $C + C := \{a + b : a, b \in C\}$ is the full segment [0, 2].
 - (b) Find two sets $A, B \subset \mathbb{R}$, each of which is closed and has Lebesgue measure zero, such that $A + B = \{a + b : a \in A, b \in B\}$ is the full line \mathbb{R} .
- 2. Does there exist a measure space (X, \mathcal{F}, μ) with a finite measure μ , and a sequence of μ -measurable functions $\{f_n\}_{n=1,2,\ldots}$ on X such that:
 - $f_n(x) \ge 0$ for all n, x;
 - $f_n(x) \to 0$ as $n \to +\infty$ for all x;
 - $\int f_n(x)\mu(dx) \to 0 \text{ as } n \to +\infty;$
 - $\Phi(x) := \sup_n f_n(x)$ has infinite integral?

If yes, give an example of such a sequence $\{f_n\}$. If no, give a proof of nonexistence.

- 3. Let μ be a signed Borel measure on \mathbb{R}^n which is bounded on bounded sets. Suppose that $\int f d\mu = 0$ for all continuous functions f with bounded support. Show that then $\mu = 0$.
- 4. Let $L^1(\mathbb{R})$ be the space of Lebesgue integrable functions on \mathbb{R} . For a positive function $f \in L^1(\mathbb{R})$ show that the function $\frac{1}{f(x)}$ does not belong to $L^1(\mathbb{R})$.

(Hint: look at the function $1 = f^{1/2}f^{-1/2}$.)

- 5. Applying the Gram-Schmidt orthogonalization to $1, x, x^2, ...$ in the Hilbert space $L^2([-1, 1])$ (with Lebesgue measure), one gets the Legendre polynomials $L_n(x)$, n = 0, 1, 2, ...
 - (a) Show that the Legendre polynomials form a basis (= complete orthogonal system) in the Hilbert space $L^2([-1,1])$
 - (b) Show that the Legendre polynomials are given by the formula $L_n(x) = c_n \frac{d^n}{dx^n} (x^2 1)^n$ (you do not need to specify c_n).

(Hint: employ integration by parts.)