

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

uence Range: 1 to 6200

10 20 30 40 50 60 70
GACGGATCGG GAGATCTCCC GATCCCCAT GGTCGACTCT CAGTACAATC TGCTCTGATG CCGCATAGTT
80 90 100 110 120 130 140
AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAGCTACA
150 160 170 180 190 200 210
ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCCTTTGCG CTGCTTCGCG
220 230 240 250 260 270 280
ATGTACGGGC CAGATATAACG CGTTGACATT GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC
290 300 310 320 330 340 350
ATTAGTTCAT AGCCCATATA TGGAGTTCCG CGTTACATAA CTTACGGTA ATGGCCCGCC TGGCTGACCG
360 370 380 390 400 410 420
CCCAACGACC CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
430 440 450 460 470 480 490
ATTGACGTCA ATGGGTGGAC TATTTACGGT AAAC TGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC
500 510 520 530 540 550 560
AAGTACGCC C CTATTGACG TCAATGACGG TAAATGGCCC GCCTCCATT ATGCCCACTA CATGACCTTA
570 580 590 600 610 620 630
TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTA GTCA TCGCTATTAC CATGGTGATG CGGTTTGCC
640 650 660 670 680 690 700
AGTACATCAA TGGGCGTGGG TAGCGGTTTG ACTCACGGGG ATTCCAAAGT CTCCACCCCA TTGACGTCAA
710 720 730 740 750 760 770
TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AATGTGCTA ACAACTCCGC CCCATTGACG
780 790 800 810 820 830 840
CAAATGGCG GTAGGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
850 860 870 880 890 900 910
CTGCTTAACT GGCTTATCGA AATTAATACG ACTCACTATAA GGGAGACCCA AGCTTCGCAG AATTCCCTGCC
920 930 940 950 960 970 980
GCTGCTACAG TGTGTCCAGC GTCCTGCCTG GCTGTGCTGA GUGCTGGAAC AGTGGCGCAT CATTCAAGTG
990 1000 1010 1020 1030 1040 1050
CACAGTTACC CATCCTGAGT CTGGCACCTT AACTGGCACA ATTGCCAAAG TCACAGGTGA GCTCAGATGC

FIGURE 1

Homo sapiens

1060 1070 1080 1090 1100 1110 1120
ATACCAGGAC ATTGTATGAC GTTCCCTGCT CACATGCCTG CTTTCTTCCT ATAATACAGA TGCTCAACTA
1130 1140 1150 1160 1170 1180 1190
ACTGCTCATG TCCTTATATC ACAGAGGGAA ATTGGAGCTA TCTGAGGAAC TGCCCAGAAC GGAAGGGCAG
1200 1210 1220 1230 1240 1250 1260
AGGGGTCTTG CTCTCCTTGT CTGAGGCCATA ACTCTTCTTT CTACCTTCCA GTGAACACCT TCCCACCCCCA
1270 1280 1290 1300 1310 1320 1330
GGTCCACCTG CTACCGCCGC CGTCGGAGGA GCTGGCCCTG AATGAGCTCT TGTCCCTGAC ATGCCTGGTG
1340 1350 1360 1370 1380 1390 1400
CGAGCTTTCA ACCCTAAAGA AGTGCTGGTG CGATGGCTGC ATGGAAATGA GGAGCTGTCC CCAGAAAGCT
1410 1420 1430 1440 1450 1460 1470
ACCTAGTGTG TGAGCCCCTA AAGGAGCCAG GCGAGGGAGC CACCACCTAC CTGGTGACAA GCGTGTGCG
TGTATCAGCT GAAAGCTTGA TATCGAATTG CGGAGGCCGG ACCGGCAGTG CAGCCCGAAG CCCCGCAGTC
1480 1490 1500 1510 1520 1530 1540
1550 1560 1570 1580 1590
CCCGAGCACG CGTGGCC ATG CGT CCC CTG CGC CCC CGC GCC GCG CTG CTG GCG CTC CTG
Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Leu Leu>
____a____a____a____a____a____ORF RF[1] ____a____a____a____a____a____>
1600 1610 1620 1630 1640 1650
GCC TCG CTC CTG GCC GCG CCC CCG GTG GCC CCG GAG GCG CTC CTG GTG CAT
Ala Ser Leu Leu Ala Ala Pro Pro Val Ala Pro Glu Ala Pro His Leu Val His>
____a____a____a____a____a____a____ORF RF[1] ____a____a____a____a____a____a____>
1660 1670 1680 1690 1700 1710
GTG GAC GCG GCC CGC GCG CTG TGG CCC CTG CGG CGC TTC TGG AGG AGC ACA GGC TTC
Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg Ser Thr Gly Phe>
____a____a____a____a____a____a____ORF RF[1] ____a____a____a____a____a____a____>
1720 1730 1740 1750 1760 1770
TGC CCC CCG CTG CCA CAC AGC CAG GCT GAC CAG TAC GTC CTC AGC TGG GAC CAG CAG
Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr Val Leu Ser Trp Asp Gln Gln>
____a____a____a____a____a____a____ORF RF[1] ____a____a____a____a____a____a____>
1780 1790 1800 1810 1820
CTC AAC CTC GCC TAT GTG GGC GCC GTC CCT CAC CGC GGC ATC AAG CAG GTC CGG ACC
Leu Asn Leu Ala Tyr Val Gly Ala Val Pro His Arg Gly Ile Lys Gln Val Arg Thr>
____a____a____a____a____a____a____ORF RF[1] ____a____a____a____a____a____a____>
1830 1840 1850 1860 1870 1880
CAC TGG CTG CTG GAG CTT GTC ACC ACC AGG GGG TCC ACT GGA CGG GGC CTG AGC TAC
His Trp Leu Leu Glu Leu Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr>

FIGURE 1B.

2460 2470 2480 2490 2500 2510
 GCG GAC CCG CTG GTG GGC TGG TCC CTG CCA CAG CCG TGG AGG GCG GAC GTG ACC TAC
 Ala Asp Pro Leu Val Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2520 2530 2540 2550 2560
 GCG GCC ATG GTG GTG AAG GTC ATC GCG CAG CAT CAG AAC CTG CTA CTG GCC AAC ACC
 Ala Ala Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Ala Asn Thr>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2570 2580 2590 2600 2610 2620
 ACC TCC GCC TTC CCC TAC GCG CTC CTG AGC AAC GAC AAT GCC TTC CTG AGC TAC CAC
 Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe Leu Ser Tyr His>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2630 2640 2650 2660 2670 2680
 CCG CAC CCC TTC GCG CAG CGC ACG CTC ACC GCG CGC TTC CAG GTC AAC AAC ACC CGC
 Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg Phe Gln Val Asn Asn Thr Arg>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2690 2700 2710 2720 2730
 CCG CCG CAC GTG CAG CTG TTG CGC AAG CCG GTG CTC ACG GCC ATG GGG CTG CTG GCG
 Pro Pro His Val Gln Leu Leu Arg Lys Pro Val Leu Thr Ala Met Gly Leu Leu Ala>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2740 2750 2760 2770 2780 2790
 CTG CTG GAT GAG GAG CAG CTC TGG GCC GAA GTG TCG CAG GCC GGG ACC GTC CTG GAC
 Leu Leu Asp Glu Glu Gln Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2800 2810 2820 2830 2840 2850
 AGC AAC CAC ACG GTG GGC GTC CTG GCC AGC GCC CAC CGC CCC CAG GGC CCG GCC GAC
 Ser Asn His Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2860 2870 2880 2890 2900 2910
 GCC TGG CGC GCC GCG GTG CTG ATC TAC GCG AGC GAC GAC ACC CGC GCC CAC CCC AAC
 Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala His Pro Asn>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2920 2930 2940 2950 2960
 CGC AGC GTC GCG GTG ACC CTG CGG CTG CGC GGG GTG CCC CCC GGC CCG GGC CTG GTC
 Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro Pro Gly Pro Gly Leu Val>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 2970 2980 2990 3000 3010 3020
 TAC GTC ACG CGC TAC CTG GAC AAC GGG CTC TGC AGC CCC GAC GGC GAG TGG CGG CGC
 Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu Cys Ser Pro Asp Gly Glu Trp Arg Arg>
 _____a____a____a____a____a____a____a____a____a____a____a____a____a____a____a____>
 3030 3040 3050 3060 3070 3080

AAAAAAAAAA AAAAAAAAAG AATTCCCTGCA GCCCGGGGGGA TCCACTAGTT CTAGAGGGCC CGTTTAAACC
3760 3770 3780 3790 3800 3810 3820
CGCTGATCAG CCTCGACTGT GCCTCTAGT TGCCAGCCAT CTGTTGTTG CCCCTCCCCC GTGCCTTCCT
3830 3840 3850 3860 3870 3880 3890
TGACCCCTGGA AGGTGCCACT CCCACTGTCC TTTCTTAATA AAATGAGGAA ATTGCATCGC ATTGTCTGAG
3900 3910 3920 3930 3940 3950 3960
TAGGTGTCAT TCTATTCTGG GGGGTGGGGT GGGGCAGGAC AGCAAGGGGG AGGATTGGGA AGACAAATAGC
3970 3980 3990 4000 4010 4020 4030
AGGCATGCTG GGGATGCGGT GGGCTCTATG GCTTCTGAGG CGGAAAGAAC CAGCTGGGC TCGAGAGCTT
4040 4050 4060 4070 4080 4090 4100
GGCGTAATCA TGGTCATAGC TGTTTCTGT GTGAATTGT TATCGCTCA CAATTCCACA CAACATACGA
4110 4120 4130 4140 4150 4160 4170
GCCCGAAGCA TAAAGTGTAA AGCCTGGGGT GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCCT
4180 4190 4200 4210 4220 4230 4240
CACTGCCCGC TTTCCAGTCG GGAAACCTGT CGTGCCAGCT GCATTAATGA ATCGGCCAAC GCGCGGGGAG
4250 4260 4270 4280 4290 4300 4310
AGGCGGTTTG CGTATTGGGC GCTCTTCCGC TTCCTCGCTC ACTGACTCGC TCGCCTCGGT CGTTCGGCTG
4320 4330 4340 4350 4360 4370 4380
CCCCGAGCGG TATCAGCTCA CTCAAAGCCG GAAATACGGT TATCCACAGA ATCAGGGGAT AACGGCGGAA
4390 4400 4410 4420 4430 4440 4450
AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAAGGCC GCGTTGCTGG CGTTTTTCCA
TAGGCTCCGC CCCCTGACG AGCATCACAA AAATGACGC TCAAGTCAGA GGTGGCGAA CCCGACAGGA
4530 4540 4550 4560 4570 4580 4590
CTATAAAGAT ACCRGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA
4600 4610 4620 4630 4640 4650 4660
CCGGATACCT GTCCGCCCTT CTCCCTTCGG GAGCGTGGC GCTTTCTCAA TGTCACGCT GTAGGTATCT
4670 4680 4690 4700 4710 4720 4730
CAGTTCCGTG TAGGTCGTT GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTCAGCC CGACCGCTGC
4740 4750 4760 4770 4780 4790 4800
GCCTTATCG GTAACTATCG TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCACCGAGCCA

4810	4820	4830	4840	4850	4860	4870
CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCAGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA
4880	4890	4900	4910	4920	4930	4940
CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAGAGTT
4950	4960	4970	4980	4990	5000	5010
GGTAGCTCTT	GATCCGGCAA	ACAAPACCACC	GCTGGTAGCG	GTGGTTTTT	TGTTTGCAAG	CAGCAGATTA
5020	5030	5040	5050	5060	5070	5080
CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTGATCTT	TTCTACGGGG	TCTGACGCC	AGTGGAACGA
5090	5100	5110	5120	5130	5140	5150
AAACTCACGT	TAAGGGATT	TGGTCATGAG	ATTATCAAAA	AGGATCTTC	CCTAGATCCT	TTTAAATTAA
5160	5170	5180	5190	5200	5210	5220
AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA
5230	5240	5250	5260	5270	5280	5290
GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATA GTGCC	TGACTCCCCG	TCGTGTAGAT
5300	5310	5320	5330	5340	5350	5360
AACTACGATA	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	GCPATGATAC	CGCGAGACCC	ACGCTCACCG
5370	5380	5390	5400	5410	5420	5430
GCTCCAGATT	TATCAGCAAT	AAACCGAGCCA	GCCGGAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT
5440	5450	5460	5470	5480	5490	5500
CCGCCTCCAT	CCAGTCTATT	AA TTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	ATAGTTGCC
5510	5520	5530	5540	5550	5560	5570
CAACGTTGTT	GCCATTGCTA	CAGGCATCGT	GGTGTACGC	TCGTCGTTTG	GTATGGCTTC	ATTCA GCTCC
5580	5590	5600	5610	5620	5630	5640
GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAAA	AGCGGTTAGC	TCCTTCGGTC
5650	5660	5670	5680	5690	5700	5710
CTCCGATCGT	TGTCAGAAAGT	AAGTTGGCCG	CAGTGTATC	ACTCATGGTT	ATGGCAGCAC	TGCATATTC
5720	5730	5740	5750	5760	5770	5780
TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	GGTGAGTA	CAACCAAGTC	ATTCTGAGAA
5790	5800	5810	5820	5830	5840	5850
TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	CCGGGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA
5860	5870	5880	5890	5900	5910	5920

CTTTAAAAGT GCTCATCATT GGAAAACGTT CTTGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG
5930 5940 5950 5960 5970 5980 5990
ATCCAGTTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTCT
6000 6010 6020 6030 6040 6050 6060
GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC
6070 6080 6090 6100 6110 6120 6130
TCATACTCTT CCTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT
6140 6150 6160 6170 6180 6190 6200
TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGGCG ACATTCCCC GAAAAGTGCC ACCTGACGTC

FIGURE 1G

FIGURE 2. SDS-POLYACRYLAMIDE GELS DEMONSTRATING IMPROVEMENTS IN PURITY

Gel using the Kakkis et al 1994, published procedure for purification

Gel using the new Galli Process contained in this application

1. Molecular Weight Marker
2. Prior Process Carson (nonpublished) Batch 2000C9001 Reference Reduced (7.5 μg)
3. Same Batch 2000C9001 Reference Reduced (5.0 μg)
4. Galli Process Enzyme Batch P10006 (5.0 μg)

FIGURE 2

FIGURE 3A IDURONIDASE PRODUCTION USING THE GALLI PROCESS

FIGURE 3B. IDURONIDASE PRODUCTION USING BUTYRATE INDUCTION

Reduction in Liver Volume During Enzyme Therapy

FIGURE 4

Urinary GAG Excretion During Enzyme Therapy

FIGURE 5

Elbow and Knee Extension in HAC002

Shoulder flexion to 104 weeks in four patients with most restriction

Sleep Apnea Improves

Apneas + Hypopneas During Sleep

Pre and Post Treatment

JOM001 AHC002 RCD003 SSH004 SWD005 GMD006 JAN007 N-M008 CEL009 BBG010

Pulmonary Function Tests in GMD006

Increased Height Growth Velocity

FIGURE 12.

**COMPARISON OF HOST PROTEIN CONTAMINATION BETWEEN A PRIOR AND THE NEW
GALLI PROCESS**

Chinese Hamster Ovary Host Protein Contamination by ELISA Assay

SOURCE AND BATCH NUMBER	CHOP PROTEIN CONTAMINATION (microgram per milligram)	PERCENT CHOP CONTAMINATION	PURITY OF THE ENZYME FROM CHOP
Prior Process (Carson/REI)			
C9002	14	1.4%	98.6%
C9003	24	2.4%	97.6%
C9004	16	1.6%	98.4%
New Process (Galli)			
P1003	<1.3	<0.13%	>99.9%
P1006	1.2	0.12%	99.9%
P1007	<0.6	<0.06%	>99.9%
P1008	<0.67	<0.067%	>99.9%

FIGURE 12

Comparison of Galli and Carson Material

FIGURE 13