Artificial Intelligence Project DSCI-6612

Team members

Namitha Nagaraju Fatiha Sayda Batıya

Under the Guidance of

Vahid Behzadan

Date

November 2021

PROJECT TITLE

Disease prediction using Machine Learning

MOTIVATION

- Machine learning methods can be used to create models obtained by training them on a known dataset to predict new information.
- Medicine is a very critical field of science which needs high attention to details while modelling, to predict this new information.
- With the advancement of technology, leveraging the advantages of the machine's high precision, speed and accuracy can help save a lot of time, effort and money.
- This project aims at providing initial diagnosis of deceases when a patient enters his symptoms into the systems. This initial information regarding a probable medical problem can help patients save their money by not consulting a doctor who usually take a lot of money during first consulting sessions. They can also research and then go to a professional for further treatment.

Dataset

https://www.kaggle.com/kaushil268/ disease-prediction-using-machinelearning

- 132 COLUMNS ARE SYMPTOMS USED TO CLASSIFY 41 KNOWN DISEASES.
- THE TEST DATASET HAS 13 KB OF DATA AND THE TRAIN DATA HAS 1.3 MB OF DATA.

itching	skin_rash	nodal_skin_€	continuous_s	shivering	chills	joint_pain	stomach_pa	iacid
1	1	1	0	0	0	0	0	
0	0	0	1	1	1	0	0	
0	0	0	0	0	0	0	1	
1	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	
0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	
0	1	0	0	0	1	1	0	
0	0	0	0	0	1	0	0	

Snapshot of dataset indicating the different symptoms

DEPENDENT VARIABLES (GIVEN)

- · itching
- skin rash
- shivering
- · chills
- anxiety
- · lethargy
- blister
- · nausea
- · caugh
- weight gain
- · cold hands
- mood swing
- · ETC

INDEPENDENT VARIABLES (TO PREDICT)

- Allergy
- · GERD
- Chronic cholestasis
- Drug Reaction
- Peptic ulcer diseae
- · AIDS
- Diabetes
- Gastroenteritis
- Bronchial Asthma
- Hypertension
- Migraine
- · ETC

APPROACH

ALL THE BELOW CLASSIFICATION ALGORITHMS WILL BE USED TO TRAIN THE DATA. THE BEST OF THESE MODELS WILL BE USED TOIMPLEMENT AN END TO END APPLICATION HELPFUL FOR A PATIENT TO INITIALLY DIAGNOSE THIER PROBLEM BEFORE GOING TO A SPECIALISED DOCTOR.

Logistic Regression

Random Forest

Support Vector Machine

KNeighbors

Decision Tree

Ada Boost

Bagging

Gradient Boosting

DELIVERABLES

JUPITER NOTEBOOK: Presentation outlining

- Data Cleaning
- Data Exploration
- Implementation of the machine learning algorithms
- Results of different methods
- Comparison of different methods
- Evaluation methods
- Selection of best method

Evaluation method

CONFUSION MATRIX

Blue and gray circles indicate cases known to be positive (TP + FN) and negative (FP + TN), respectively, and blue and gray backgrounds/squares depict cases predicted as positive (TP + FP) and negative (FN + TN), respectively. Equations for calculating each metric are encoded graphically in terms of the quantities in the confusion matrix. FDR, false discovery rate

TRAIN CV ACCURANCY: 1.000

TEST ACCURACY: 1.000

Results

```
CONFUSION MATRIX:

[[50 0 0 0 . . . 0 0 0]

[ 0 50 0 . . . 0 0 0]

[ 0 0 50 . . . 0 0 0]

[ 0 0 0 . . . 50 0 0]

[ 0 0 0 . . . 50 0 0]
```

accuracy			1.00	2050
macro avg	1.00	1.00	1.00	2050
weighted avg	1.00	1.00	1.00	2050

CLASSIFICATION REPORT precision recall f1-score support 1.00 1.00 1.00 50 0 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 1.00 1.00 50 1.00 10 1.00 1.00 50 1.00 11 1.00 1.00 50 12 1.00 1.00 1.00 50 1.00 13 1.00 1.00 50 1.00 14 1.00 1.00 50 1.00 15 1.00 1.00 50 16 1.00 1.00 1.00 50 17 1.00 1.00 1.00 50 1.00 18 1.00 1.00 50 1.00 19 1.00 1.00 50 1.00 20 1.00 1.00 50 1.00 21 1.00 1.00 50 22 1.00 1.00 1.00 50 1.00 23 1.00 1.00 50 1.00 24 1.00 1.00 50 1.00 25 1.00 1.00 50 26 1.00 1.00 1.00 50 27 1.00 1.00 1.00 50 28 1.00 1.00 1.00 50 29 1.00 1.00 1.00 50 30 1.00 1.00 1.00 50 31 1.00 1.00 1.00 50 32 1.00 1.00 1.00 50 33 1.00 1.00 1.00 50 1.00 1.00 34 1.00 50 35 1.00 1.00 1.00 50 36 1.00 1.00 1.00 50 37 1.00 1.00 1.00 50

38

39

40

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

50

50

50

Thank you