Ones

Time limit: 1 sec

Prof. Chin wants to represent positive integer n as a sum of *addends*, where each addends is an integer number (maybe negative) containing only 1s. For example, he can represent 121 as 121=111+11+-1.

Input

The first line of the input contains integer n $(1 \le n < 10^9)$.

Output

Print expected minimal number of digits 1.

Examples

Input	Output
121	6
11	2
1	1
2	2
5	5
6	6
7	6
30	9

Hint:

- 1. When $n \le 11$, the solution should be calculated trivially. When n > 11, the solution should be calculated recursively.
- 2. Let q_1 =1, q_2 =11, q_3 =111, q_4 =1111 For any integer n, Let q_k be the largest number such that $q_{k-1} <= |n|$. We know that the sum that has the least number of 1s has q_k either floor($|n|/q_k$) or floor($|n|/q_k$)+1 times.