You are given two lists of n points, one list $P = [p_1, \ldots, p_n]$ lies on the line y = 0 and the other list $Q = [q_1, \ldots, q_n]$ lies on the line y = 1. We construct n line segments by connecting p_i to q_i for each $i = 1, \ldots, n$. You may assume that the numbers in P are distinct and the numbers in P are also distinct. Describe an $O(n^2)$ algorithm to return the size of the largest subset P of line segments such that no pair of line segments in P intersect.

For example, the following instance

should return 2. The largest subset of pairwise-nonintersecting line segments is $\{(p_2,q_2),(p_4,q_4)\}$.

Note. This is slightly different to the divide-and-conquer problem, which asked for the number of intersections of line segments. This problem asks for the size of the largest subset of **non-intersecting** line segments.

There are at least two approaches.

Approach 1. You can directly use dynamic programming...

Approach 2. Find a way to reduce this to the longest increasing subsequence problem.

Solution. We first begin by sorting the points according to their starting points P, keeping track of their positions in Q during the sort. This sorting will take $O(n \log n)$. From here, we simply need to find the longest increasing subsequence in Q. A non-intersecting subset of segments corresponds to an increasing sequence on end points in Q as otherwise, there would exist an intersection point (where $p_i < p_j$ but $q_i > q_j$, there must be an intersection).

From here, the application is a standard usage of Dynamic Programming, where we make a list of n numbers DP, where DP[i] represents the length of the LIS ending at q_i . For each i from 1 to n, we run for each j from 0 to i-1, if $q_j < q_i$, we update $DP[i] = \max\{DP[i], DP[j]+1\}$. The maximum value in DP will correspond to our desired answer. This is clearly done in $O(n^2)$ time.