Modal Logic Solutions to Exercise Set 05

We will work through these exercises (and possibly some others as well) during the problem class. Exercises marked with a (\triangle) are a little more challenging, and those marked with a (\blacktriangle) are more difficult still.

1. Recall that the definitions of an immediate and a strict extension of a tableau T are as follows. A tableau T' is an immediate extension of T, in symbols $T \prec_1 T'$, if T' is obtained from T by applying a branch extension rule. A tableau T' strictly extends T, in symbols $T \prec T'$, if there is a sequence of k tableaus $\langle T_i \rangle_{i \leq k}$ such that $T_0 = T$, $T_k = T'$, and for all i < k, $T_i \prec_1 T_{i+1}$. We call such a sequence a generating sequence of length k for T', or that T' is generated from T. A tableau T' extends T, in symbols $T \preceq T'$, if $T \prec T'$ or T = T'.

Fix a tableau T_0 and consider the restriction of the \prec relation to the set $\{T|T_0 \leq T\}$. Prove that the following properties hold of the restricted relation.

- (a) \prec is transitive: if $A \prec B$ and $B \prec C$, then $A \prec C$.
- (b) \prec is irreflexive: if $A \prec B$, then $A \neq B$.
- (c) \leq is antisymmetric: if $A \leq B$ and $B \leq A$, then A = B.
- (d) \prec (and hence \preceq) is wellfounded: there is no function g such that for all $n \in \mathbb{N}$, $g(n+1) \prec g(n)$.

Solution: For (a), let $A \prec B$ be witnessed by a sequence of tableaus $A = T_0, \ldots, T_k = B$ and let $B \prec C$ be witnessed by $B = T_k, \ldots, T_{k+n} = C$. The sequence T_0, \ldots, T_{k+n} is a generating sequence of length k+n from A to C, so $A \prec C$.

For (b), if $A \prec B$ then B has at least one more node than A, so $A \neq B$.

For (c), let $A \leq B$ and $B \leq A$ and assume for a contradiction that $A \neq B$. $A \prec B$ and $B \prec A$, so by transitivity, $A \prec A$. But \prec is irreflexive by (b), so $A \neq A$, a contradiction.

For (d), suppose to the contrary that there is such a g. Let T be any tableau in the range of g, and let n be such that g(n) = T. By definition, T is generated by a k-length sequence of tableaus $T_0, T_1, \ldots, T_k = T$. Without loss of generality, let $g(n+k) = T_0$. Then by definition, $g(n+k+1) = T^*$ for some tableau $T^* \prec T_0$. But there can be no such tableau, since T_0 is the minimal element of the ordering.

2. Prove the necessity case of the branch extension lemma. Suppose that T is a tableau with a satisfiable branch B, and that $\sigma \square P$ appears on B. Show that the result of extending B by applying the necessity rule is another satisfiable tableau.

Solution: Let B be satisfied by (W, R, \Vdash) and assignment f. We apply the necessity rule and extend B with the formula $\sigma . n$, where the prefix $\sigma . n$ already occurred on B.

 $f(\sigma.n)$ is accessible from $f(\sigma)$ by definition, and since $f(\sigma) \Vdash \Box P$, $f(\sigma.n) \Vdash P$. So the existing model and assignment satisfy the extended branch and hence the extended tableau.

3. Prove the other possibility case of the branch extension lemma. Suppose that T is a tableau with a satisfiable branch B, and that $\sigma \neg \Box P$ appears on B. Show that the result of extending B by applying the possibility rule is another satisfiable tableau.

Solution: Let B be satisfied by (W, R, \Vdash) and assignment f. We apply the possibility rule and extend B with the formula $\sigma.n \neg P$, where the prefix $\sigma.n$ does not occur on B.

Since $f(\sigma) \Vdash \neg \Box P$, there must be a world u such that $f(\sigma)Ru$ and $u \Vdash \neg P$. So we define a new assignment

$$g(\tau) = \begin{cases} u & \text{if } \tau = \sigma.n \\ f(\tau) & \text{otherwise.} \end{cases}$$

By construction, $g(\sigma.n) \Vdash \neg P$ and $g(\sigma)Rg(\sigma.n)$, and since $g \upharpoonright_B = f$, g is an assignment such that all formulas on the extended branch are satisfied by it.

4. (\triangle) Re-prove the soundness theorem for **K** by using induction on the length of the generating sequence for the (hypothetical) closed but satisfiable tableau T.

Hint: Use the trivial tableau T_0 whose only formula is $\sigma \neg P$ as the base case, and apply the branch extension lemma to show that T_{n+1} is satisfiable on the assumption that T_n is. The rest of the proof is the same as the one in the lecture.

Solution: As in the lecture, suppose for a contradiction that P is provable via \mathbf{K} -tableau, but P is not \mathbf{K} -valid.

Let T be a closed tableau starting with $1 \neg P$, and let T_0 be the initial tableau whose only node is $1 \neg P$. $T_0 \prec T$, so there is a generating sequence of length k for T from T_0 .

Since P is not K-valid, there is a model (W, R, \Vdash) and a world $u \in W$ such that $u \not\Vdash P$. Let f be such that f(1) = u, so T_0 is satisfiable by f and (W, R, \Vdash) . Assume that for some $n \leq k$, T_n is satisfiable. By the branch extension lemma, T_{n+1} is satisfiable. So by induction, T_k is satisfiable. But T is also closed, by assumption, and therefore unsatisfiable, giving us our contradiction.