GEL-2005 Systèmes et commande linéaires

Mini-test #2

Lundi 26 novembre 2018, 9h30-10h20

Document permis: aucun

Professeur: André Desbiens, Département de génie électrique et de génie informatique

NOM :		
PRÉNOM :		
MATRICIII E		

Nomenclature:

$$G(s) = G_c(s)G_p(s)$$

$$H(s) = \frac{G(s)}{1 + G(s)}$$

$$u_e(t) : \text{échelon unitaire}$$

$$y_m$$
Figure 1

 $\stackrel{y}{\rightarrow}$

Question 1 (20%)

La fonction de transfert d'un système est $\frac{20e^{-2s}}{2s+1}$. L'entrée du système est tracée à la figure 2. Le système est au repos (à 0) à t=2. Que vaut la sortie du système à t=8?

Réponse : y(8) = 86.47

Question 2 (20%)

Le système stable est celui illustré à la figure 1 avec $G_c(s) = \frac{0.49(0.8s+1)}{0.8s}$, $G_p(s) = \frac{7}{s(0.17s+1)}$, $r(t) = 2u_e(t)$, $d_u(t) = -2u_e(t-3)$, $d_v(t) = 3u_e(t-4)$ et $d_m(t) = 0$. Que vaut le signal de commande (la variable manipulée) en régime permanent? Justifiez votre réponse par des arguments solides et détaillés ou bien à l'aide de calculs.

Réponse : $u(\infty) = 2$

Question 3 (20%)

Le système est celui illustré à la figure 1 avec $r(t) = d_v(t) = d_m(t) = 0$ et $d_u(t) = 2\cos(5t + 0.1)$. La réponse en fréquences de G(s) est tracée à la figure 3. Quelle est l'amplitude des oscillations de u(t) en régime permanent?

Bonus de l'ingénieur: Lors d'un examen, réussir les trois quarts d'une question vaut généralement 75%. Toutefois, en pratique, résoudre les trois quarts d'un problème ne vaut rien. Calculez la réponse numérique exacte à ce numéro et obtenez un bonus de 10%.

Figure 3

Réponse: 1.46

Question 4 (20%)

Le système est celui illustré à la figure 1 avec $d_u(t) = d_y(t) = d_m(t) = 0$ et $r(t) = 2u_e(t)$. Les réponses en fréquences de G(s) (lignes continues) et $G_p(s)$ (lignes pointillées) sont tracées à la figure 4.

- a) Que vaut $u(\infty)$? Justifiez votre réponse par des arguments solides et détaillés ou bien à l'aide de calculs.
- b) Quel retard (avec les unités) faudrait-il ajouter à $G_p(s)$ pour amener l'asservissement à la limite de la stabilité?

Réponses : a) $u(\infty) = 0.11$ b) $\theta = 1.57$ sec

Question 5 (20%)

Le système est celui illustré à la figure 1. La figure 5 montre la réponse en fréquences de G(s) tracée sur un abaque de Black.

- a) Si $d_u(t) = d_y(t) = 0$ et $r(t) = 2\cos(18t)$, alors quelle est l'expression de y(t) en régime permanent?
- b) Si $d_u(t) = d_y(t) = d_m(t) = 0$ et $r(t) = 3u_e(t)$, alors que vaut y(t) en régime permanent? Justifiez votre réponse par des arguments solides et détaillés ou bien à l'aide de calculs.

Réponses : a) $2.82\cos(18t - 1.58)$ b) $y(\infty) = 3$

Figure 5