Lista de Exercícios Cálculo II

- (a) Lendo os valores do gráfico dado de f, utilize quatro retângulos para encontrar as estimativas inferior e superior para a área sob o gráfico dado de f de x = 0 até x = 8. Em cada caso, esboce os retângulos que você usar.
 - (b) Encontre novas estimativas, usando oito retângulos em cada caso.

- 2. (a) Use seis retângulos para achar estimativas de cada tipo para a área sob o gráfico dado de f de x = 0 até x = 12.
 - (i) L₆ (pontos amostrais são extremidades esquerdas)
 - (ii) R₆ (pontos amostrais são extremidades direitas)
- **2 Definição** A **área** A da região S que está sob o gráfico de uma função contínua f é o limite da soma das áreas dos retângulos aproximantes:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[f(x_1) \, \Delta x + f(x_2) \, \Delta x + \dots + f(x_n) \, \Delta x \right]$$

19–21 Use a Definição 2 para achar uma expressão para a área sob o gráfico de f como um limite. Não calcule o limite.

19.
$$f(x) = \frac{2x}{x^2 + 1}$$
, $1 \le x \le 3$

20.
$$f(x) = x^2 + \sqrt{1 + 2x}$$
, $4 \le x \le 7$

21.
$$f(x) = \sqrt{\sin x}, \quad 0 \le x \le \pi$$

- 3. (a) Estime a área sob o gráfico $f(x) = \cos x$ de x = 0 até $x = \pi/2$ usando quatro retângulos aproximantes e extremidades direitas. Esboce o gráfico e os retângulos. Sua estimativa é uma subestimativa ou uma superestimativa?
 - (b) Repita a parte (a) usando extremidades esquerdas.
- 4. (a) Estime a área sob o gráfico de f(x) = √x de x = 0 até x = 4 usando quatro retângulos aproximantes e extremidades direitas. Esboce o gráfico e os retângulos. Sua estimativa é uma subestimativa ou uma superestimativa?
 - (b) Repita a parte (a) usando extremidades esquerdas.
- 5. (a) Estime a área sob o gráfico f(x) = 1 + x² de x = -1 até x = 2 usando três retângulos aproximantes e extremidades direitas. Então, aperfeiçoe sua estimativa utilizando seis retângulos aproximantes. Esboce a curva e os retângulos aproximantes.
 - (b) Repita a parte (a) usando extremidades esquerdas.
 - (c) Repita a parte (a) empregando os pontos médios.
 - (d) A partir de seus esboços das partes (a), (b) e (c), qual parece ser a melhor estimativa?
 - 17. O gráfico da velocidade de um carro freando é mostrado. Use-o para estimar a distância percorrida pelo carro enquanto os freios estão sendo aplicados.

- (iii) M₆ (pontos amostrais são pontos médios)
- (b) L_6 é uma subestimativa ou superestimativa em relação à área verdadeira?
- (c) R₆ é uma subestimativa ou superestimativa em relação à área verdadeira?
- (d) Entre os números L_6 , R_6 ou M_6 , qual fornece a melhor estimativa? Explique.

- A leitura do velocímetro de uma motocicleta em intervalos de 12 segundos é mostrada na tabela a seguir.
 - (a) Estime a distância percorrida pela motocicleta durante esse período, usando a velocidade no começo dos intervalos de tempo.
 - (b) Dê outra estimativa utilizando a velocidade no fim dos intervalos de tempo.
 - (c) As estimativas feitas nas partes (a) e (b) são estimativas superior e inferior? Explique.

t (s)	0	12	24	36	48	60
v (m/s)	9,1	8,5	7,6	6,7	7,3	8,2

15. Óleo vaza de um tanque a uma taxa de r(t) litros por hora. A taxa decresce à medida que o tempo passa e os valores da taxa em intervalos de duas horas são mostrados na tabela a seguir. Encontre estimativas superior e inferior para a quantidade total de óleo que vazou.

t (h)	0	2	4	6	8	10
r(t) (L/h)	8,7	7,6	6,8	6,2	5,7	5,3

18. O gráfico da velocidade de um carro em aceleração a partir do repouso até uma velocidade de 120 km/h em um período de 30 segundos é mostrado. Estime a distância percorrida durante esse período.

Exercícios

- 1. Calcule a soma de Riemann para $f(x) = 3 \frac{1}{2}x$, $2 \le x \le 14$, com seis subintervalos, tomando os pontos amostrais como as extremidades esquerdas. Explique, com a ajuda de um diagrama, o que representa a soma de Riemann.
- 2 Se $f(x) = x^2 2x$, $0 \le x \le 3$, calcule a soma de Riemann com n = 6, tomando como pontos amostrais as extremidades direitas. O que representa a soma de Riemann? Ilustre com um diagrama.
- 3. Se $f(x) = e^x 2$, $0 \le x \le 2$, calcule a soma de Riemann com n = 4 correta até a sexta casa decimal, tomando como pontos amostrais os pontos médios. O que representa a soma de Riemann? Ilustre com um diagrama.
- **4.** (a) Calcule a soma de Riemann para $f(x) = \sin x$, $0 \le x \le 3\pi/2$ e com seis termos, tomando os pontos amostrais como as extremidades direitas. (Dê a resposta correta até a sexta casa decimal). Explique o que a soma de Riemann representa com a ajuda de um esboço.
 - (b) Repita a parte (a) tomando como pontos amostrais os pontos
- 17-20 Expresse o limite como uma integral definida no intervalo dado.

17.
$$\lim_{n\to\infty} \sum_{i=1}^{n} x_i \ln(1+x_i^2) \Delta x$$
, [2, 6]

18.
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{\cos x_i}{x_i} \Delta x, \quad [\pi, 2\pi]$$

19.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[5(x_i^*)^3 - 4x_i^* \right] \Delta x$$
, [2, 7]

20.
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{x_i^*}{(x_i^*)^2 + 4} \Delta x$$
, [1, 3]

4 Teorema Se f for integrável em [a, b], então

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \, \Delta x$$

onde

$$\Delta x = \frac{b-a}{n}$$
 e $x_i = a + i \Delta x$

$$x_i = a + i \, \Delta x$$

- 21-25 Use a forma da definição de integral dada no Teorema 4 para calcular a integral.
- **21.** $\int_{-1}^{5} (1 + 3x) dx$
- **22.** $\int_{0}^{4} (x^2 + 2x 5) dx$

- **23.** $\int_{0}^{0} (x^{2} + x) dx$
- **24.** $\int_{0}^{2} (2x x^{3}) dx$
- **25.** $\int_{1}^{1} (x^3 3x^2) dx$
- **26.** (a) Encontre uma aproximação para a integral $\int_0^4 (x^2 3x) dx$ usando uma soma de Riemann com as extremidades direitas
 - (b) Faça um diagrama como a Figura 3 para ilustrar a aproximação da parte (a).
 - (c) Use o Teorema 4 para calcular $\int_0^4 (x^2 3x) dx$.
 - (d) Interprete a integral da parte (c) como uma diferença de áreas e ilustre com diagramas como o da Figura 4.

- 35-40 Calcule a integral, interpretando-a em termos das áreas.
- **35.** $\int_{0}^{2} (1-x) dx$
- **36.** $\int_{0}^{9} \left(\frac{1}{3}x 2 \right) dx$
- 37. $\int_{-2}^{0} \left(1 + \sqrt{9 x^2}\right) dx$
- **38.** $\int_{-5}^{5} (x \sqrt{25 x^2}) dx$
- **39.** $\int_{-1}^{2} |x| dx$
- **40.** $\int_{0}^{10} |x 5| dx$
- **6.** O gráfico de g é apresentado. Estime $\int_{-2}^{4} g(x) dx$ com seis subintervalos usando (a) extremidades direitas, (b) extremidades esquerdas e (c) pontos médios.

7. Uma tabela de valores de uma função crescente f é dada. Use a tabela para encontrar uma estimativa inferior e superior para $\int_{0}^{25} f(x) dx$.

х	0	5	10	15	20	25
f(x)	-42	-37	-25	-6	15	36

- **41.** Calcule $\int_{0}^{\pi} \sin^{2}x \cos^{4}x \, dx.$
- **42.** Dado que $\int_0^1 3x \sqrt{x^2 + 4} \ dx = 5\sqrt{5} 8$, o que é $\int_0^0 3u\sqrt{u^2+4}\ du?$
- 27. Demonstre que $\int_a^b x \, dx = \frac{b^2 a^2}{2}$.
- 55-58 Use as propriedades das integrais para verificar a designaldade sem calcular as integrais.

55.
$$\int_0^4 (x^2 - 4x + 4) \, dx \ge 0$$

56.
$$\int_0^1 \sqrt{1 + x^2} \, dx \le \int_0^1 \sqrt{1 + x} \, dx$$

57.
$$2 \le \int_{-1}^{1} \sqrt{1 + x^2} \, dx \le 2\sqrt{2}$$

58.
$$\frac{\sqrt{2} \pi}{24} \le \int_{\pi/6}^{\pi/4} \cos x \, dx \le \frac{\sqrt{3} \pi}{24}$$

59-64 Use a Propriedade 8 para estimar o valor da integral.

59.
$$\int_{1}^{4} \sqrt{x} \ dx$$

60.
$$\int_0^2 \frac{1}{1+x^2} \, dx$$

61.
$$\int_{\pi/4}^{\pi/3} \operatorname{tg} x \, dx$$

62.
$$\int_0^2 (x^3 - 3x + 3) dx$$

63.
$$\int_{0}^{2} xe^{-x} dx$$

64.
$$\int_{0}^{2\pi} (x-2 \sin x) dx$$

Exercícios

1.3 Teorema Fundamental do Cálculo

- 1. Explique exatamente o significado da afirmação "derivação e integração são processos inversos".
- **2.** Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Calcule g(x) para x = 0, 1, 2, 3, 4, 5 e 6.
 - (b) Estime q(7).
 - (c) Onde q tem um valor máximo? Onde possui um valor mí-
 - (d) Faça um esboço do gráfico de g.

- **4.** Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Calcule g(0) e g(6).
 - (b) Estime g(x) para x = 1, 2, 3, 4, e 5.
 - (c) Em que intervalo g está crescendo?
 - (d) Onde q tem um valor máximo?
 - (e) Faça um esboço do gráfico de g.
 - (f) Use o gráfico da parte (e) para esboçar o gráfico de g'(x). Compare com o gráfico de f.

19-44 Calcule a integral.

19.
$$\int_{-1}^{2} (x^3 - 2x) dx$$

20.
$$\int_{-1}^{1} x^{100} dx$$

21.
$$\int_{1}^{4} (5-2t+3t^2) dt$$

21.
$$\int_{1}^{4} (5 - 2t + 3t^2) dt$$
 22. $\int_{0}^{1} \left(1 + \frac{1}{2}u^4 - \frac{2}{5}u^9\right) du$

23.
$$\int_0^1 x^{4/5} dx$$

24.
$$\int_{1}^{8} \sqrt[3]{x} \ dx$$

25.
$$\int_{1}^{2} \frac{3}{t^{4}} dt$$

26.
$$\int_{\pi}^{2\pi} \cos \theta \ d\theta$$

27.
$$\int_0^2 x(2+x^5) dx$$

28.
$$\int_{0}^{1} (3 + x\sqrt{x}) dx$$

29.
$$\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$$

30.
$$\int_0^2 (y-1)(2y+1) dy$$

31.
$$\int_0^{\pi/4} \sec^2 t \, dt$$

32.
$$\int_0^{\pi/4} \sec \theta \ \lg \theta \ d\theta$$

33.
$$\int_{1}^{2} (1 + 2y)^{2} dy$$

34.
$$\int_0^3 (2 \sin x - e^x) dx$$

35.
$$\int_{1}^{2} \frac{v^{3} + 3v^{6}}{v^{4}} dv$$

36.
$$\int_{1}^{18} \sqrt{\frac{3}{z}} dz$$

37.
$$\int_0^1 (x^e + e^x) dx$$

38.
$$\int_0^1 \cosh t \, dt$$

39.
$$\int_{1/\sqrt{3}}^{\sqrt{3}} \frac{8}{1+x^2} \, dx$$

40.
$$\int_{1}^{2} \frac{4 + u^{2}}{u^{3}} du$$

41.
$$\int_{-1}^{1} e^{u+1} du$$

42. $\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1-x^2}} dx$

- Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Calcule g(0), g(1), g(2), g(3) e g(6).
 - (b) Em que intervalos g está crescendo?
 - (c) Onde g tem um valor máximo?
 - (d) Faça um esboço do gráfico de g.

7-18 Use a Parte 1 do Teorema Fundamental do Cálculo para encontrar a derivada da função.

7.
$$g(x) = \int_1^x \frac{1}{t^3 + 1} dt$$
 8. $g(x) = \int_3^x e^{t^2 - t} dt$

8.
$$g(x) = \int_3^x e^{t^2 - t} dt$$

9.
$$g(s) = \int_{5}^{s} (t - t^2)^8 dt$$
 10. $g(r) = \int_{0}^{r} \sqrt{x^2 + 4} dx$

10.
$$g(r) = \int_0^r \sqrt{x^2 + 4} \ dx$$

11.
$$F(x) = \int_{x}^{\pi} \sqrt{1 + \sec t} \ dt$$

Dica:
$$\int_{x}^{\pi} \sqrt{1 + \sec t} \, dt = -\int_{\pi}^{x} \sqrt{1 + \sec t} \, dt$$

12.
$$G(x) = \int_{x}^{1} \cos \sqrt{t} \ dt$$

13.
$$h(x) = \int_{1}^{e^x} \ln t \, dt$$

13.
$$h(x) = \int_{1}^{e^{x}} \ln t \, dt$$
 14. $h(x) = \int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4} + 1} \, dz$

15.
$$y = \int_0^{\lg x} \sqrt{t + \sqrt{t}} \, dt$$

16.
$$y = \int_0^{x^4} \cos^2 \theta \, d\theta$$

17.
$$y = \int_{1-3x}^{1} \frac{u^3}{1+u^2} du$$
 18. $y = \int_{\text{sen } x}^{1} \sqrt{1+t^2} dt$

18.
$$y = \int_{-\infty}^{1} \sqrt{1 + t^2} \, dt$$

43.
$$\int_0^{\pi} f(x) dx \quad \text{onde } f(x) = \begin{cases} \sin x & \text{se } 0 \le x < \pi/2 \\ \cos x & \text{se } \pi/2 \le x \le \pi \end{cases}$$

43.
$$\int_0^{\pi} f(x) dx \quad \text{onde } f(x) = \begin{cases} \sin x & \text{se } 0 \le x < \pi/2 \\ \cos x & \text{se } \pi/2 \le x \le \pi \end{cases}$$
44.
$$\int_{-2}^2 f(x) dx \quad \text{onde } f(x) = \begin{cases} 2 & \text{se } -2 \le x \le 0 \\ 4 - x^2 & \text{se } 0 < x \le 2 \end{cases}$$

45–48 O que está errado na equação?

45.
$$\int_{-2}^{1} x^{-4} dx = \frac{x^{-3}}{-3} \bigg|_{-2}^{1} = -\frac{3}{8}$$

46.
$$\int_{-1}^{2} \frac{4}{x^3} dx = -\frac{2}{x^2} \bigg]^2 = \frac{3}{2}$$

47.
$$\int_{-/3}^{\pi} \sec \theta \, \lg \theta \, d\theta = \sec \theta \Big]_{\pi/3}^{\pi} = -3$$

48.
$$\int_0^{\pi} \sec^2 x \, dx = \operatorname{tg} x \Big]_0^{\pi} = 0$$

Use 0 site WolframAlpha para desenhar o função do integrando intervalo integral.

49-52 Use um gráfico para dar uma estimativa grosseira da área da região que fica abaixo da curva dada. Encontre a seguir a área exata.

49.
$$y = \sqrt[3]{x}, \quad 0 \le x \le 27$$

50.
$$y = x^{-4}$$
, $1 \le x \le 6$

51.
$$y = \sin x, \ 0 \le x \le \pi$$

52.
$$y = \sec^2 x, \ 0 \le x \le \pi/3$$

53-54 Calcule a integral e interprete-a como uma diferença de áreas. Ilustre com um esboço.

53.
$$\int_{-1}^{2} x^3 dx$$

54.
$$\int_{\pi/6}^{2\pi} \cos x \, dx$$

77. Encontre uma função f e um número a tais que

$$6 + \int_a^x \frac{f(t)}{t^2} dt = 2\sqrt{x} \qquad \text{para todo } x > 0$$

78. A área marcada B é três vezes a área marcada A. Expresse b em termos de a.

72. Se f é contínua e g e h são funções deriváveis, encontre uma fórmula para

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt$$

- **73.** (a) Mostre que $1 \le \sqrt{1 + x^3} \le 1 + x^3$ para $x \ge 0$.
 - (b) Mostre que $1 \le \int_0^1 \sqrt{1 + x^3} \, dx \le 1,25$.
- **74.** (a) Mostre que $\cos(x^2) \ge \cos x$ para $0 \le x \le 1$.
 - (b) Deduza que $\int_0^{\pi/6} \cos(x^2) dx \ge \frac{1}{2}$.
- 75. Mostre que

$$0 \le \int_{5}^{10} \frac{x^2}{x^4 + x^2 + 1} \, dx \le 0.1$$

comparando o integrando a uma função mais simples.

55-59 Encontre a derivada da função.

55.
$$g(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$

Dica:
$$\int_{2x}^{3x} f(u) du = \int_{2x}^{0} f(u) du + \int_{0}^{3x} f(u) du$$

56.
$$g(x) = \int_{1-2x}^{1+2x} t \sin t \, dt$$

57.
$$F(x) = \int_{x}^{x^2} e^{t^2} dt$$

57.
$$F(x) = \int_{x}^{x^{2}} e^{t^{2}} dt$$
 58. $F(x) = \int_{\sqrt{x}}^{2x} \operatorname{arctg} t dt$

59.
$$y = \int_{\cos x}^{\sin x} \ln(1 + 2v) dv$$

- **60.** Se $f(x) = \int_0^x (1-t^2)e^{t^2}dt$, em qual intervalo f é crescente?
- 61. Em qual intervalo a curva

$$y = \int_0^x \frac{t^2}{t^2 + t + 2} dt$$

é côncava para baixo?

- **62.** Se $f(x) = \int_0^{\sin x} \sqrt{1 + t^2} dt$ e $g(y) = \int_3^y f(x) dx$, encontre $g''(\pi/6)$.
- **63.** Se f(1) = 12, f' é contínua e $\int_{1}^{4} f'(x) dx = 17$, qual é o valor de f(4)?

- 1-4 Verifique, por derivação, que a fórmula está correta.
- 1. $\int \frac{x}{\sqrt{x^2+1}} dx = \sqrt{x^2+1} + C$
- $2. \int \cos^2 x \, dx = \frac{1}{2}x + \frac{1}{4} \sin 2x + C$
- 3. $\int \cos^3 x \, dx = \sin x \frac{1}{3} \sin^3 x + C$
- **4.** $\int \frac{x}{\sqrt{a+bx}} dx = \frac{2}{3b^2} (bx 2a) \sqrt{a+bx} + C$

Regra do Ponto Médio

$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(\bar{x}_i) \Delta x = \Delta x \left[f(\bar{x}_1) + \dots + f(\bar{x}_n) \right]$$

onde

$$\Delta x = \frac{b-a}{n}$$

e

$$\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{ponto médio de } [x_{i-1}, x_i]$$

- **64.** A água escoa pelo fundo de um tanque de armazenamento a uma taxa de r(t) = 200 4t litros por minuto, onde $0 \le t \le 50$. Encontre a quantidade de água que escoa do tanque durante os primeiros dez minutos.
- **65.** A velocidade de um carro foi lida de seu velocímetro em intervalos de 10 segundos e registrada na tabela. Use a Regra do Ponto Médio para estimar a distância percorrida pelo carro.

t (s)	v (mi/h)	t (s)	v (mi/h)
0	0	60	56
10	38	70	53
20	52	80	50
30	58	90	47
40	55	100	45
50	51		

66. Suponha que um vulcão esteja em erupção e que as leituras da taxa r(t), cujos materiais sólidos são lançados na atmosfera, sejam as dadas na tabela. O tempo t é medido em segundos e a unidade para r(t) é toneladas por segundo.

t	0	1	2	3	4	5	6
r(t)	2	10	24	36	46	54	60

- (a) Dê estimativas superior e inferior para a quantidade Q(6) do material proveniente da erupção após 6 segundos.
- (b) Use a Regra do Ponto Médio para estimar Q(6).
- **69.** Uma população de bactérias é de 4 000 no tempo t = 0 e sua taxa de crescimento é de $1000 \cdot 2^t$ bactérias por hora depois de t horas. Qual é a população depois de uma hora?

- **51.** Se w'(t) for a taxa de crescimento de uma criança em quilogramas por ano, o que $\int_{5}^{10} w'(t) dt$ representa?
- **52.** A corrente em um fio elétrico é definida como a derivada da carga: I(t) = Q'(t). (Veja o Exemplo 3 na Seção 3.7.) O que $\int_a^b I(t) dt$ representa?
- **53.** Se vazar óleo de um tanque a uma taxa de r(t) galões por minuto em um instante t, o que $\int_0^{120} r(t) dt$ representa?
- **54.** Uma colmeia com uma população inicial de 100 abelhas cresce a uma taxa de n'(t) por semana. O que representa $100 + \int_0^{15} n'(t) dt$?
- **55.** Na Seção 4.7 definimos a função rendimento marginal R'(x) como a derivada da função rendimento R(x), onde $x \in O$ número de unidades vendidas. O que representa $\int_{1000}^{5000} R'(x) dx$?
- **56.** Se f(x) for a inclinação de uma trilha a uma distância de x quillômetros do começo dela, o que $\int_3^5 f(x) dx$ representa?
- **57.** Se $x \notin \text{medido em metros e } f(x)$, em newtons, quais são as unidades de $\int_0^{100} f(x) dx$?
- **58.** Se as unidades para x são pés e as unidades para a(x) são libras por pé, quais são as unidades para da/dx? Quais são as unidades para $\int_{2}^{8} a(x) dx$?
- **61–62** A função aceleração (em m/s^2) e a velocidade inicial são dadas para uma partícula movendo-se ao longo de uma reta. Encontre (a) a velocidade no instante t e (b) a distância percorrida durante o intervalo de tempo dado.

61.
$$a(t) = t + 4$$
, $v(0) = 5$, $0 \le t \le 10$

62.
$$a(t) = 2t + 3$$
, $v(0) = -4$, $0 \le t \le 3$

- **63.** A densidade linear de uma barra de comprimento 4 m é dada por $\rho(x) = 9 + 2\sqrt{x}$, medida em quilogramas por metro, em que x é medido em metros a partir de uma extremidade da barra. Encontre a massa total da barra.
- 71. A seguir, está ilustrada a potência consumida na cidade de Ontário, Canadá, em 9 de dezembro de 2004 (P é medida em megawatts; t é medido em horas a partir da meia-noite). Usando o fato de que a potência é a taxa de variação da energia, estime a energia usada naquele dia.

$$1. \quad \int \cos 3x \, dx, \quad u = 3x$$

2.
$$\int x(4+x^2)^{10} dx, \quad u=4+x^2$$

3.
$$\int x^2 \sqrt{x^3 + 1} \, dx, \quad u = x^3 + 1$$

4.
$$\int \frac{dt}{(1-6t)^4}$$
, $u=1-6t$

5.
$$\int \cos^3 \theta \ \sin \theta \ d\theta, \ \theta = \cos \theta$$

6.
$$\int \frac{\sec^2(1/x)}{x^2} \, dx, \quad u = 1/x$$

53-73 Avalie a integral definida.

53.
$$\int_0^1 \cos(\pi t/2) dt$$

55.
$$\int_{0}^{1} \sqrt[3]{1 + 7x} \ dx$$

57.
$$\int_0^{\pi} \sec^2(t/4) dt$$

59.
$$\int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx$$

61.
$$\int_{-\pi/4}^{\pi/4} (x^3 + x^4 \operatorname{tg} x) \, dx$$

63.
$$\int_0^{13} \frac{dx}{\sqrt[3]{(1+2x)^2}}$$

65.
$$\int_{0}^{a} x \sqrt{x^{2} + a^{2}} dx$$
 $(a > 0)$

67.
$$\int_{1}^{2} x \sqrt{x-1} \, dx$$

69.
$$\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

71.
$$\int_0^1 \frac{e^z + 1}{e^z + z} dz$$

73.
$$\int_0^1 \frac{dx}{(1+\sqrt{x})^4}$$

54. $\int_0^1 (3t-1)^{50} dt$

56.
$$\int_0^3 \frac{dx}{5x+1}$$

58.
$$\int_{1/6}^{1/2} \cos \sec \pi t \cot \pi t dt$$

60.
$$\int_0^1 x e^{-x^2} \, dx$$

62.
$$\int_0^{\pi/2} \cos x \, \sin(\sin x) \, dx$$

64.
$$\int_{0}^{a} x \sqrt{a^{2} - x^{2}} dx$$

66.
$$\int_{-\pi/3}^{\pi/3} x^4 \sin x \, dx$$

68.
$$\int_0^4 \frac{x}{\sqrt{1+2x}} dx$$

70.
$$\int_0^{1/2} \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx$$

72.
$$\int_{0}^{T/2} \sin(2\pi t/T - \alpha) dt$$

77. Calcule $\int_{-2}^{2} (x+3)\sqrt{4-x^2} dx$ escrevendo-a como uma soma de duas integrais e interpretando uma dessas integrais em termos de uma área.

78. Calcule $\int_0^1 x \sqrt{1-x^4} dx$ fazendo uma substituição e interpretando a integral resultante em termos de uma área.

74. Verifique que $f(x) = \text{sen } \sqrt[3]{x}$ é uma função ímpar e use este fato para mostrar que

$$0 \le \int_{-2}^3 \operatorname{sen} \sqrt[3]{x} \, dx \le 1.$$

81. Um tanque de armazenamento de petróleo sofre uma ruptura em t = 0 e o petróleo vaza do tanque a uma taxa de $r(t) = 100e^{-0.01t}$ litros por minuto. Quanto petróleo vazou na primeira hora?

82. Uma população de bactérias tem inicialmente 400 bactérias e cresce a uma taxa de $r(t) = (450,268)e^{1.12567t}$ bactérias por hora. Quantas bactérias existirão após 3 horas?

83. A respiração é cíclica e o ciclo completo respiratório desde o início da inalação até o fim da expiração demora cerca de 5 s. A taxa máxima de fluxo de ar nos pulmões é de cerca de 0,5 L/s. Isso explica, em partes, porque a função $f(t)=\frac{1}{2} \sin(2\pi t/5)$ tem sido frequentemente utilizada para modelar a taxa de fluxo de ar nos pulmões. Use esse modelo para encontrar o volume de ar inalado nos pulmões no instante t.

84. A Alabama Instruments Company preparou uma linha de montagem para fabricar uma nova calculadora. A taxa de produção dessas calculadoras após *t* semanas é

$$\frac{dx}{dt} = 5000 \left(1 - \frac{100}{(t+10)^2} \right) \text{ calculadoras/semana.}$$

(Observe que a produção tende a 5 000 por semana à medida que passa o tempo, mas a produção inicial é baixa, pois os trabalhadores não estão familiarizados com as novas técnicas.) Encontre o número de calculadoras produzidas no começo da terceira semana até o fim da quarta semana.

5

Revisão

Verificação de Conceitos

- (a) Escreva uma expressão para uma soma de Riemann de uma função f. Explique o significado da notação que você usar.
 - (b) Se f(x) ≥ 0, qual a interpretação geométrica de uma soma de Riemann? Ilustre com um diagrama.
 - (c) Se f(x) assumir valores positivos e negativos, qual a interpretação geométrica de uma soma de Riemann? Ilustre com um diagrama.
- **2.** (a) Escreva a definição de integral definida de uma função contínua de *a* até *b*.
 - (b) Qual a interpretação geométrica de $\int_a^b f(x) dx$ se $f(x) \ge 0$?
 - (c) Qual a interpretação geométrica de $\int_a^b f(x) dx$ se f(x) assumir valores positivos e negativos? Ilustre com um diagrama.
- 3. Enuncie ambas as partes do Teorema Fundamental do Cálculo.
- 4. (a) Enuncie o Teorema da Variação Total.

- (b) Se r(t) for a taxa segundo a qual a água escoa para dentro de um reservatório, o que representa $\int_{t_1}^{t_2} r(t) dt$?
- 5. Suponha que uma partícula mova-se para a frente e para trás ao longo de uma linha reta com velocidade v(t), medida em metros por segundo, com aceleração a(t).
 - (a) Qual o significado de $\int_{60}^{120} v(t) dt$?
 - (b) Qual o significado de $\int_{60}^{120} |v(t)| dt$?
 - (c) Qual o significado de $\int_{60}^{120} a(t) dt$?
- **6.** (a) Explique o significado da integral indefinida $\int f(x) dx$.
 - (b) Qual a conexão entre a integral definida $\int_a^b f(x) dx$ e a integral indefinida $\int f(x) dx$?
- Explique exatamente o significado da afirmação "derivação e integração são processos inversos".
- 8. Enuncie a Regra da Substituição. Na prática, como fazer uso dela?

2. Aplicações da integral: Area entre curvas

Exercícios 6.1

1-4 Encontre a área da região sombreada.

3.

31-32 Calcule a integral e interprete-a como a área de uma região. Esboce a região.

31.
$$\int_0^{\pi/2} |\sin x - \cos 2x| \, dx$$
 32. $\int_0^4 |\sqrt{x+2} - x| \, dx$

32.
$$\int_0^4 |\sqrt{x+2} - x| dx$$

50. Encontre a área da região delimitada pela parábola $y = x^2$, pela reta tangente a esta parábola em (1, 1) e pelo eixo x.

51. Encontre o número b tal que a reta y = b divida a região delimitada pelas curvas $y = x^2 e y = 4$ em duas regiões com área igual.

52. (a) Encontre o número a tal que a reta x = a bissecte a área sob a curva $y = 1/x^2$, $1 \le x \le 4$.

(b) Encontre o número b tal que a reta y = b bissecte a área da

53. Encontre os valores de c tais que a área da região delimitada pelas parábolas $y = x^2 - c^2$ e $y = c^2 - x^2$ seja 576.

54. Suponha que $0 < c < \pi/2$. Para qual valor de c a área da região delimitada pelas curvas $y = \cos x$, $y = \cos (x - c)$ e x = 0 é igual à área da região delimitada pelas curvas $y = \cos(x - c)$, $x = \pi$ e y = 0?

55. Para quais valores de m a reta y = mx e a curva $y = x/(x^2 + 1)$ delimitam uma região? Encontre a área da região.

5-12 Esboce a região delimitada pelas curvas indicadas. Decida quando integrar em relação a x ou y. Desenhe um retângulo aproximante típico e identifique sua altura e largura. Então, calcule a área da região.

5. $y = e^x$, $y = x^2 - 1$, x = -1, x = 1

6. $y = \sin x$, y = x, $x = \pi/2$, $x = \pi$

7. y = x, $y = x^2$

8. $y = x^2 - 2x$, y = x + 4

9. y = 1/x, $y = 1/x^2$, x = 2

10. $y = \sin x$, $y = 2x/\pi$, $x \ge 0$

11. $x = 1 - y^2$, $x = y^2 - 1$

12. $4x + y^2 = 12$, x = y

13-28 Esboce a região delimitada pelas curvas indicadas e encontre sua área

13. $y = 12 - x^2$, $y = x^2 - 6$

14. $y = x^2$, $y = 4x - x^2$

15. $y = e^x$, $y = xe^x$, x = 0

16. $y = \cos x$, $y = 2 - \cos x$, $0 \le x \le 2\pi$

17. $x = 2y^2$, $x = 4 + y^2$

18. $y = \sqrt{x-1}$, x-y=1

19. $y = \cos \pi x$, $y = 4x^2 - 1$

20. $x = y^4$, $y = \sqrt{2 - x}$, y = 0

21. $y = \operatorname{tg} x$, $y = 2 \operatorname{sen} x$, $-\pi/3 \le x \le \pi/3$

22. $y = x^3$, x = y

23. $y = \cos x$, $y = \sin 2x$, x = 0, $x = \pi/2$

24. $y = \cos x$, $y = 1 - \cos x$, $0 \le x \le \pi$

25. $y = \sqrt{x}$, $y = \frac{1}{2}x$, x = 9

26. $y = |x|, y = x^2 - 2$

27. y = 1/x, y = x, $y = \frac{1}{4}x$, x > 0

28. $y = \frac{1}{4}x^2$, $y = 2x^2$, x + y = 3, $x \ge 0$

29-30 Use o cálculo para encontrar a área do triângulo com os vértices dados.

29. (0, 0), (3, 1), (1, 2)

30. (0, 5), (2, -2), (5, 1)

2.1 Volumes por Fatiamento e Rotação em Torno de um Eixo

6.2 Exercícios

1–18 Encontre o volume do sólido obtido pela rotação da região delimitada pelas curvas dadas em torno das retas especificadas. Esboce a região, o sólido e um disco ou arruela típicos.

1.
$$y = 2 - \frac{1}{2}x$$
, $y = 0$, $x = 1$, $x = 2$; em torno do eixo x

2.
$$y = 1 - x^2$$
, $y = 0$; em torno do eixo x

3.
$$y = 1/x$$
, $x = 1$, $x = 2$, $y = 0$; em torno do eixo x

4.
$$y = \sqrt{25 - x^2}$$
, $y = 0$, $x = 2$, $x = 4$; em torno do eixo x

5.
$$x = 2\sqrt{y}, x = 0, y = 9$$
; em tomo do eixo y

6.
$$y = \ln x$$
, $y = 1$, $y = 2$, $x = 0$; em torno do eixo y

7.
$$y = x^3$$
, $y = x$, $x \ge 0$; em torno do eixo x

8.
$$y = \frac{1}{4}x^2$$
, $y = 5 - x^2$; em torno do eixo x

9.
$$y^2 = x$$
, $x = 2y$; em torno do eixo y

10.
$$y = \frac{1}{4}x^2$$
, $x = 2$, $y = 0$; em torno do eixo y

11.
$$y = x^2$$
, $x = y^2$; em torno de $y = 1$

12.
$$y = e^{-x}$$
, $y = 1$, $x = 2$; em torno de $y = 2$

13.
$$y = 1 + \sec x$$
, $y = 3$; em torno de $y = 1$

14.
$$y = \sin x$$
, $y = \cos x$, $0 \le x \le \pi/4$; em torno de $y = -1$

15.
$$x = y^2$$
, $x = 1$; em torno de $x = 1$

16.
$$y = x$$
, $y = \sqrt{x}$; em torno de $x = 2$

17.
$$y = x^2$$
, $x = y^2$; em torno de $x = -1$

18.
$$y = x$$
, $y = 0$, $x = 2$, $x = 4$; em torno de $x = 1$

47–59 Encontre o volume do sólido S descrito.

47. Um cone circular reto com altura h e base com raio r.

48. Um tronco de um cone circular reto com altura *h*, raio da base inferior *R* e raio de base superior *r*.

49. Uma calota de uma esfera de raio r e altura h.

50. Um tronco de pirâmide com base quadrada de lado *b*, topo quadrado de lado *a* e altura *h*.

O que acontece se a = b? O que acontece se a = 0?

51. Uma pirâmide com altura h e base retangular com lados b e 2b.

19–30 Veja a figura e encontre o volume gerado pela rotação da região ao redor da reta especificada.

- **19.** \Re_1 em torno de OA
- **21.** \mathcal{R}_1 em torno de AB
- **23.** \Re_2 em torno de OA
- **25.** \Re_2 em torno de AB
- **27.** \Re_3 em torno de OA
- **29.** \Re_3 em torno de AB
- **20.** \mathcal{R}_1 em torno de OC
- **22.** \mathcal{R}_1 em torno de BC
- **24.** \mathcal{R}_2 em torno de OC
- **26.** \Re_2 em torno de BC
- **28.** \Re_3 em torno de OC
- **30.** \Re_3 em torno de BC

53. Um tetraedro com três faces perpendiculares entre si e as três arestas perpendiculares entre si com comprimentos de 3 cm, 4 cm e 5 cm.

54. A base de *S* é um disco circular com raio *r*. As secções transversais paralelas, perpendiculares à base, são quadradas.

55. A base de S é uma região elíptica delimitada pela curva 9x² + 4y²
 = 36. As secções transversais perpendiculares ao eixo x são triângulos isósceles retos com hipotenusa na base.

56. A base de *S* é a região triangular com vértices (0,0), (1,0), e (0,1). As secções transversais perpendiculares ao eixo y são triângulos equiláteros.

57. A base de *S* é a mesma base do Exercício 56, mas as secções transversais perpendiculares ao eixo *x* são quadradas.

58. A base de S é a região delimitada pela parábola $y = 1 - x^2$ e pelo eixo x. As secções transversais perpendiculares ao eixo y são quadradas.

59. A base de *S* é a mesma base do Exercício 58, mas as secções transversais perpendiculares ao eixo *x* são triângulos isósceles com altura igual à base.

Exercícios

1. Considere S o sólido obtido pela rotação da região mostrada na figura em torno do eixo y. Explique por que é complicado usar fatias para encontrar o volume V de S. Esboce uma casca de aproximação típica. Quais são a circunferência e a altura? Use cascas para encontrar V.

2. Considere S o sólido obtido pela rotação da região mostrada na figura em torno do eixo y. Esboce uma casca cilíndrica típica e encontre sua circunferência e altura. Use cascas para encontrar o volume S. Você acha que esse método é preferível ao fatiamento? Explique.

3–7 Use o método das cascas cilíndricas para achar o volume gerado pela rotação da região delimitada pelas curvas em torno do eixo y.

3.
$$y = 1/x$$
, $y = 0$, $x = 1$, $x = 2$

4.
$$y = x^2$$
, $y = 0$, $x = 1$

4.
$$y = x^2$$
, $y = 0$, $x = 1$
5. $y = e^{-x^2}$, $y = 0$, $x = 0$, $x = 1$

6.
$$y = 4x - x^2$$
, $y = x$

7.
$$y = x^2$$
, $y = 6x - 2x^2$

15-20 Use o método das cascas cilíndricas para achar o volume gerado pela rotação da região delimitada pelas curvas dadas em torno do eixo especificado.

15.
$$y = x^4$$
, $y = 0$, $x = 1$; em torno de $x = 2$

16.
$$y = \sqrt{x}$$
, $y = 0$, $x = 1$; em torno de $x = -1$

17.
$$y = 4x - x^2$$
, $y = 3$; em torno de $x = 1$

18.
$$y = x^2$$
, $y = 2 - x^2$; em torno de $x = 1$

19.
$$y = x^3$$
, $y = 0$, $x = 1$; em torno de $y = 1$

20.
$$y = x^2 + 1$$
, $x = 2$; em torno de $y = -2$

1.4 Técnicas de Resolução (Integração por Partes)

Exercícios 7.1

1-2 Calcule a integral usando a integração por partes com as escolhas de u e dv indicadas.

1.
$$\int x^2 \ln x \, dx$$
; $u = \ln x$, $dv = x^2 \, dx$

2.
$$\int \theta \cos \theta \, d\theta; \quad u = \theta, \, dv = \cos \theta \, d\theta$$

3-36 Calcule a integral.

$$3. \quad \int x \cos 5x \, dx$$

$$4. \int xe^{-x} dx$$

5.
$$\int re^{r/2} dr$$

19.
$$\int z^3 e^z dz$$

$$\int \frac{xe^{2x}}{1-x^2} dx$$

25.
$$\int_0^1 t \cosh t \, dt$$

27.
$$\int_{1}^{3} r^{3} \ln r \, dr$$

29.
$$\int_0^1 \frac{y}{e^{2y}} dy$$

31.
$$\int_0^{1/2} \cos^{-1} x \, dx$$

33.
$$\int \cos x \ln(\sin x) dx$$
 34. $\int_0^1 \frac{r^3}{\sqrt{4+r^2}} dr$

35.
$$\int_{1}^{2} x^{4} (\ln x)^{2} dx$$

20.
$$\int x \, \mathrm{tg}^2 x \, dx$$

21.
$$\int \frac{xe^{2x}}{(1+2x)^2} dx$$
 22. $\int (\arcsin x)^2 dx$

23.
$$\int_{0}^{1/2} x \cos \pi x \, dx$$
 24. $\int_{0}^{1} (x^2 + 1) e^{-x} \, dx$

$$26. \int_4^9 \frac{\ln y}{\sqrt{y}} \ dy$$

28.
$$\int_0^{2\pi} t^2 \sin 2t \, dt$$

30.
$$\int_{1}^{\sqrt{3}} \arctan(1/x) dr$$

32.
$$\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} dx$$

34.
$$\int_0^1 \frac{r^3}{\sqrt{4+r^2}} \, dr$$

7.2

Exercícios

1-49 Calcule a integral.

1.
$$\int \sin^3 x \cos^2 x \, dx$$

3.
$$\int_0^{\pi/2} \sin^7\theta \cos^5\theta \ d\theta$$

$$5. \quad \int \operatorname{sen}^2(\pi x) \cos^5(\pi x) \, dx$$

7.
$$\int_0^{\pi/2} \cos^2\theta \ d\theta$$

9.
$$\int_0^{\pi} \cos^4(2t) dt$$

11.
$$\int_0^{\pi/2} \sin^2 x \cos^2 x \, dx$$

13.
$$\int t \, \mathrm{sen}^2 t \, dt$$

15.
$$\int \frac{\cos^5 \alpha}{\sqrt{\sin \alpha}} d\alpha$$

17.
$$\int \cos^2 x \, \mathrm{tg}^3 x \, dx$$

19.
$$\int \frac{\cos x + \sin 2x}{\sin x} dx$$

$$2. \int \sin^6 x \cos^3 x \, dx$$

4.
$$\int_0^{\pi/2} \cos^5 x \, dx$$

6.
$$\int \frac{\sin^3(\sqrt{x})}{\sqrt{x}} dx$$

8.
$$\int_{0}^{\pi/2} \sin^2(\frac{1}{3} \theta) d\theta$$

10.
$$\int_0^{\pi} \sin^2 t \cos^4 t \, dt$$

12.
$$\int_0^{\pi/2} (2 - \sin \theta)^2 d\theta$$

14.
$$\int \cos \theta \cos^5(\sin \theta) d\theta$$

$$16. \int x \, \mathrm{sen}^3 x \, dx$$

18.
$$\int \cot g^5 \theta \, \sin^4 \theta \, d\theta$$

$$20. \int \cos^2 x \sin 2x \, dx$$

1.4 Técnicas de Resolução (Substituição Trigonométrica)

Exercícios 7.3

1-3 Calcule a integral usando a substituição trigonométrica indicada. Esboce e coloque legendas no triângulo retângulo associado.

1.
$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} dx$$
; $x = 3 \sec \theta$

$$2. \quad \int x^3 \sqrt{9 - x^2} dx; \quad x = 3 \sin \theta$$

3.
$$\int \frac{x^3}{\sqrt{x^2 + 9}} dx$$
; $x = 3 \text{ tg } \theta$

4-30 Calcule a integral.

4.
$$\int_0^1 x^3 \sqrt{1-x^2} \ dx$$

5.
$$\int_{\sqrt{2}}^{2} \frac{1}{t^3 \sqrt{t^2 - 1}} dt$$

5.
$$\int_{\sqrt{2}}^{2} \frac{1}{t^3 \sqrt{t^2 - 1}} dt$$
 6. $\int_{0}^{3} \frac{x}{\sqrt{36 - x^2}} dx$

7.
$$\int_0^a \frac{dx}{(a^2 + x^2)^{3/2}}; \quad a > 0$$
 8. $\int \frac{dt}{t^2 \sqrt{t^2 - 16}}$

$$8. \quad \int \frac{dt}{t^2 \sqrt{t^2 - 1}}$$

$$9. \quad \int \frac{dx}{\sqrt{x^2 + 16}}$$

9.
$$\int \frac{dx}{\sqrt{x^2 + 16}}$$
 10. $\int \frac{t^5}{\sqrt{t^2 + 2}} dt$

11.
$$\int \sqrt{1-4x^2} \, dx$$
 12. $\int \frac{du}{u\sqrt{5-u^2}}$

$$12. \int \frac{du}{u\sqrt{5-u^2}}$$

21.
$$\int_0^{0.6} \frac{x^2}{\sqrt{9 - 25x^2}} dx$$
 22.
$$\int_0^1 \sqrt{x^2 + 1} dx$$

22.
$$\int_0^1 \sqrt{x^2+1} \ dx$$

1.4 Técnicas de Resolução (Frações Parciais)

7.4

Exercícios

1-6 Escreva as formas de decomposição em frações parciais da função (como no Exemplo 7). Não determine os valores numéricos

1. (a)
$$\frac{1+6x}{(4x-3)(2x+5)}$$

(b)
$$\frac{10}{5x^2 - 2x^3}$$

2. (a)
$$\frac{x}{x^2 + x - 2}$$

(b)
$$\frac{x^2}{x^2+x+2}$$

3. (a)
$$\frac{x^4 + 1}{x^5 + 4x^3}$$

(b)
$$\frac{1}{(x^2+9)^2}$$

4. (a)
$$\frac{x^4 - 2x^3 + x^2 + 2x - 1}{x^2 + 2x + 1}$$
 (b) $\frac{x^2 - 1}{x^3 + x^2 + x}$

7-38 Calcule a integral.

15.
$$\int_{3}^{4} \frac{x^3 - 2x^2 - 4}{x^3 + 2x^2} dx$$

16.
$$\int_0^1 \frac{x^3 - 4x - 10}{x^2 - x - 6} dx$$

17.
$$\int_{1}^{2} \frac{4y^{2} - 7y - 12}{y(y+2)(y-3)} dy$$
 18. $\int \frac{x^{2} + 2x - 1}{x^{3} - x} dx$

18.
$$\int \frac{x^2 + 2x - 1}{x^3 - x} dx$$

1.5 Integrais Impróprias

Exercícios 7.8

Explique por que cada uma das seguintes integrais é imprópria.

(a)
$$\int_{1}^{2} \frac{x}{x-1} dx$$

(b)
$$\int_0^\infty \frac{1}{1+x^3} dx$$

(c)
$$\int_{-\infty}^{\infty} x^2 e^{-x^2} dx$$

(d)
$$\int_{-\infty}^{\pi/4} \cot x \, dx$$

2. Quais das seguintes integrais são impróprias? Por quê?

(a)
$$\int_0^{\pi/4} \text{tg } x \, dx$$

(b)
$$\int_0^{\pi} \operatorname{tg} x \, dx$$

(c)
$$\int_{-1}^{1} \frac{dx}{x^2 - x - 2} dx$$
 (d) $\int_{0}^{\infty} e^{-x^2} dx$

$$(d) \int_0^\infty e^{-x^2} \, dx$$

Encontre a área sob a curva $y = 1/x^3$ de x = 1 a x = t e calcule--a para t = 10, 100 e 1 000. Então encontre a área total dessa curva para $x \ge 1$.

49-54 Use o Teorema da Comparação para determinar se a integral é convergente ou divergente.

49.
$$\int_0^\infty \frac{x}{x^3 + 1} \ dx$$

50.
$$\int_{1}^{\infty} \frac{2 + e^{-x}}{x} dx$$

51.
$$\int_{1}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} dx$$

52.
$$\int_0^\infty \frac{\operatorname{arctg} x}{2 + e^x} dx$$

$$\mathbf{53.} \quad \int_0^1 \frac{\sec^2 x}{x\sqrt{x}} \ dx$$

54.
$$\int_0^{\pi} \frac{\sin^2 x}{\sqrt{x}} dx$$

5-40 Determine se cada integral é convergente ou divergente. Calcule aquelas que são convergentes.

$$5. \quad \int_3^\infty \frac{1}{(x-2)^{3/2}} \, dx$$

$$\mathbf{6.} \quad \int_0^\infty \frac{1}{\sqrt[4]{1+x}} \ dx$$

7.
$$\int_{-\infty}^{0} \frac{1}{3 - 4x} \, dx$$

8.
$$\int_{1}^{\infty} \frac{1}{(2x+1)^3} \, dx$$

9.
$$\int_{2}^{\infty} e^{-5p} dp$$

$$10. \quad \int_{-\infty}^{0} 2^r dr$$

11.
$$\int_0^\infty \frac{x^2}{\sqrt{1-x^3}} \, dx$$

12.
$$\int_{-\infty}^{\infty} (y^3 - 3y^2) dy$$

$$13. \quad \int_{-\infty}^{\infty} x e^{-x^2} \, dx$$

$$14. \quad \int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx$$

$$25. \quad \int_e^\infty \frac{1}{x(\ln x)^3} \ dx$$

26.
$$\int_0^\infty \frac{x \arctan x}{(1+x^2)^2} \, dx$$

27.
$$\int_0^1 \frac{3}{x^5} dx$$

28.
$$\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$$

29.
$$\int_{-2}^{14} \frac{1}{\sqrt[4]{x+2}} dx$$

30.
$$\int_{6}^{8} \frac{4}{(x-6)^3} \, dx$$

31.
$$\int_{-2}^{3} \frac{1}{x^4} dx$$

32.
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

33.
$$\int_0^9 \frac{1}{\sqrt[3]{x-1}} dx$$

34.
$$\int_0^5 \frac{w}{w-2} dw$$

35.
$$\int_0^3 \frac{dx}{x^2 - 6x + 5}$$

36.
$$\int_{\pi/2}^{\pi} \operatorname{cossec} x \, dx$$

37.
$$\int_{-1}^{0} \frac{e^{1/x}}{x^3} dx$$

38.
$$\int_0^1 \frac{e^{1/x}}{x^3} dx$$

39.
$$\int_0^2 z^2 \ln z \, dz$$

40.
$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx$$

2.3 Comprimento de Curvas Planas

Exercícios

- 1. Use a fórmula do comprimento de arco 3 para encontrar o comprimento da curva $y = 2x - 5, -1 \le x \le 3$. Verifique o seu resultado observando que a curva é um segmento de reta e calculando seu comprimento pela fórmula da distância.
- Use a fórmula do comprimento de arco para encontrar o comprimento da curva $y = \sqrt{2 - x^2}$, $0 \le x \le 1$. Verifique sua resposta observando que a curva é parte de um círculo.
- 3-6 Escreva uma integral para o comprimento da curva. Use sua calculadora para encontrar o comprimento da curva com precisão de quatro casas decimais.
- 3. $y = \sin x$, $0 \le x \le \pi$
- **4.** $y = xe^{-x}$, $0 \le x \le 2$
- **5.** $x = \sqrt{y} y$, $1 \le y \le 4$
- **6.** $x = y^2 2y$, $0 \le y \le 2$

7-18 Encontre o comprimento exato da curva.

- 7. $y = 1 + 6x^{3/2}, 0 \le x \le 1$
- **8.** $y^2 = 4(x+4)^3$, $0 \le x \le 2$, y > 0
- **9.** $y = \frac{x^5}{6} + \frac{1}{10x^3}, \quad 1 \le x \le 2$
- **10.** $x = \frac{y^4}{8} + \frac{1}{4y^2}, \quad 1 \le y \le 2$
- **11.** $x = \frac{1}{3}\sqrt{y} (y 3), 1 \le y \le 9$
- **12.** $y = \ln(\cos x), \quad 0 \le x \le \pi/3$
- **13.** $y = \ln(\sec x), \quad 0 \le x \le \pi/4$
- **14.** $y = 3 + \frac{1}{2} \cosh 2x$, $0 \le x \le 1$
- **15.** $y = \frac{1}{4}x^2 \frac{1}{2}\ln x$, $1 \le x \le 2$
- **16.** $v = \sqrt{x x^2} + \sin^{-1}(\sqrt{x})$
- **17.** $y = \ln(1 x^2), \quad 0 \le x \le \frac{1}{2}$
- **18.** $y = 1 e^{-x}$, $0 \le x \le 2$

2.4 Áreas de Superfícies de Revolução

8.2 **Exercícios**

- (a) Escreva uma integral para a área da superfície obtida pela rotação da curva em torno do (i) eixo x e (ii) eixo y.
- (b) Use o recurso de integração numérica de sua calculadora para calcular as áreas da superfície com precisão de quatro casas decimais.
- **1.** $y = \operatorname{tg} x$, $0 \le x \le \pi/3$ **2.** $y = x^{-2}$, $1 \le x \le 2$
- **3.** $y = e^{-x^2}$, $-1 \le x \le 1$ **3.** $x = \ln(2y + 1)$, $0 \le y \le 1$
- 5-12 Calcule a área exata da superfície obtida pela rotação da curva em tomo do eixo x.
- **5.** $y = x^3$, $0 \le x \le 2$
- **6.** $9x = y^2 + 18$, $2 \le x \le 6$
- 7. $y = \sqrt{1 + 4x}$, $1 \le x \le 5$
- **8.** $y = \sqrt{1 + e^x}, \quad 0 \le x \le 1$
- **9.** $y = \operatorname{sen} \pi x$, $0 \le x \le 1$
- **10.** $y = \frac{x^3}{6} + \frac{1}{2x}, \quad \frac{1}{2} \le x \le 1$
- **11.** $x = \frac{1}{3}(y^2 + 2)^{3/2}, \quad 1 \le y \le 2$
- **12.** $x = 1 + 2y^2$, $1 \le y \le 2$
- 13-16 A curva dada é girada em torno do eixo y. Calcule a área da superfície resultante.
- **13.** $y = \sqrt[3]{x}$, $1 \le y \le 2$

- **26.** Se a curva infinita $y = e^{-x}$, $x \ge 0$, é girada em tomo do eixo x, calcule a área da superfície resultante.
- **27.** (a) Se a > 0, encontre a área da superfície gerada pela rotação da curva $3ay^2 = x(a - x)^2$ em torno do eixo x.
 - (b) Encontre a área da superfície se a rotação for em torno do eixo y.
- 28. Um grupo de engenheiros está construindo uma antena parabólica cujo formato será formado pela rotação da curva $y = ax^2$ em torno do eixo y. Se a antena tiver 10 pés de diâmetro e uma profundidade máxima de 2 pés, encontre o valor de a e a área de superfície da antena.