S.No.: 122 BCACS 1105

No. of Printed Pages: 04

Following Paper ID and Ro	ll No. t	o,b	e filled	lin	you	r A	nsw	er I	300	k.
PAPER ID: 16405	Roll' No.									

BCA Examination 2021-22

(Special Carry Over Paper)

BASIC MATHEMATICS

Time: Three Hours] [Maximum Marks: 60

Note: - Attempt all questions.

SECTION-A

- 1. Attempt all parts of the following: $8 \times 1 = 8$
 - (a) Define arithmetic progression with example.
 - (b) Write formula to calculate nth term of A. D.
 - (c) Define geometric progression with example.
 - (d) Define square matrix with example.
 - (e) Finth n^{th} derivative of e^{x} .

[P. T. O.

Evaluate:

$$\int \frac{1}{x} dx$$

Evaluate:

$$\int x^3 dx$$

Evaluate:

$$\frac{d}{dx}(x e^x)$$

SECTION-B

- 2. Attempt any two parts of the following: $2\times6=12$
 - The eighth (8th) term of an A. P. is half of its second term and 11th term exceeds one third of fourth term by 1. Find 15th term.
 - (b)

$$A = \begin{bmatrix} 2 & -3 \\ p & q \end{bmatrix}$$

Find p and q so that $A^2 = I$.

- Differentiate the following: (c)
 - (i) $y = e^{ax} \sin bx$ (ii) $y = x^2 \log x$

(d) Evaluate:

$$\int \frac{1}{1+\overline{e}^x} dx$$

SECTION-C

Note: Attempt all questions. Attempt any two parts from each question. $5\times8=40$

- 3. (a) The nth term of an A. P. is given by (-u n + 15). Find the sum of first 20 terms of this A. P.
 - (b) In an A. P., if $S_n = n(4n+1)$. Find the A. P.
 - (c) If x, 2x + 2, 3x + 3 are first three terms of a geometric progression. Find its fourth term.
- 4. (a) Find value of x, y, a and b if:

$$\begin{bmatrix} x+y & a+b \\ a-b & 2x-3y \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ 3 & -5 \end{bmatrix}$$

(b) Find matrix X if:

$$\begin{bmatrix} 2 & 1 \\ 5 & 0 \end{bmatrix} - 3X = \begin{bmatrix} -7 & 4 \\ 2 & 6 \end{bmatrix}$$

(c) If:

A =
$$\begin{bmatrix} 2 & -2 \\ 5 & -5 \end{bmatrix}$$
 and B =
$$\begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix}$$

Compute AB and BA. What conclusions can you draw.

5. (a) Find

$$\frac{dy}{dx}$$
 when $x^2 + xy + y^2 = 100$

(b) Differentiate:

$$\frac{e^{x}}{1+\sin x}$$

(c) If $y^x = e^{y-x}$, prove that:

$$\frac{dy}{dx} = \frac{\left(1 + \log y\right)^2}{\log y}$$

6. (a) Evaluate:

$$\int \frac{e^2 x}{2 + e^x} dx$$

(b) Evaluate:

$$\int_0^1 \left(2x^3 + 3\right)^2 dx$$

(c) Evaluate:

$$\int_{1}^{\sqrt{3}} \frac{\mathrm{dx}}{1+x^2}$$