Exercice

X-ENS PSI 2018 Un corrigé

1 Existence et unicité des solutions de (1)

1. Le problème (1bis) est un problème de Cauchy pour une équation différentielle linéaire d'ordre 2 à coefficients continus et le coefficient devant la dérivée seconde ne s'annule pas. Sur l'intervalle [0, 1], le théorème de Cauchy linéaire indique qu'il y a une unique solution v_{λ} . Comme $v_{\lambda}'' = cv_{\lambda} - f$ est continue, cette solution est de classe C^2 sur [0, 1].

(1bis) admet une unique solution

2. Notons $w_2 = v_0$, c'est à dire que w_2 est l'unique fonction de classe C^2 sur [0,1] telle que

$$\forall x \in [0,1], -w_2''(x) + c(x)w_2(x) = f(x) \text{ et } w_2(0) = 0, w_2'(0) = 0$$

Posons $w = \lambda w_1 + w_2$. On a immédiatement $w(0) = \lambda$ et $w'(0) = \lambda$. De plus, $w \in C^2([0,1])$ et

$$\forall x \in [0,1], \ w''(x) = \lambda w_1''(x) + w_2''(x) = \lambda c(x)w_1(x) + c(x)w_2(x) - f(x) = c(x)w(x) - f(x)$$

On en déduit que $v_{\lambda} = \lambda w_1 + w_2$.

3. Posons $h = w_1^2$. On a $h' = 2w_1w_1'$ et $h'' = 2(w_1')^2 + 2w_1w_1'' = 2(w_1')^2 + 2cw_1^2 \ge 0$. h' est donc croissante. Comme elle est nulle en 0, elle est positive. h est donc croissante. Si, par l'absurde, h était nulle en 1, on aurait h nulle sur [0,1]. w_1 serait aussi nulle sur [0,1] et ceci contredit $w_1'(0) = 1$. Ainsi,

$$w_1(1) \neq 0$$

4. On peut alors poser $\lambda = -\frac{w_2(1)}{w_1(1)}$ et on a $v_{\lambda}(1) = 0$ par choix de λ . v_{λ} est ainsi solution de (1). Soit u une solution de (1). u est l'unique solution du problème de Cauchy (1bis) avec $\lambda = u'(0)$. On a donc $u = v_{u'(0)} = u'(0)w_1 + w_2$. Ainsi, $0 = u(1) = u'(0)w_1(1) + w_2(1)$ et $u'(0) = -\frac{w_2(1)}{w_1(1)}$. u est donc égale à la solution v_{λ} exhibée.

5. Supposons, par l'absurde, que u prenne des valeurs < 0. u étant continue sur le segment [0,1] admet un minimum m. Avec notre hypothèse, m < 0. L'ensemble $\{t \in [0,1]/\ u(t) = m\}$ admet une borne inférieure que l'on note α . Par continuité de u, on a $u(\alpha) = m$ et $\alpha \in]0,1[$ (puisque u(0) = u(1) = 0). Ainsi, $u'(\alpha) = 0$ (minimum atteint sur l'ouvert]0,1[). Sur un voisinage $]\alpha - r, \alpha + r[$ de α , la fonction u est négative (par continuité) et donc u'' = cu - f est aussi négative sur ce voisinage. En particulier, u' est décroissante sur ce voisinage. Comme $u'(\alpha) = 0$, u' est positive sur $]\alpha - r, \alpha]$ et u est croissante sur cet intervalle. Comme u est minimale en α , u est en fait constante sur $]\alpha - r, \alpha]$. Ceci contredit la définition de α .

Si $f \ge 0$, l'unique solution de (1) est positive