

Datenbanksysteme II: Cost Estimation for Cost-Based Optimization

Ulf Leser

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations

Motivation: Cost-based Optimizers

- Find best plan based on estimation of a plan's cost
- Requires a cost model: How do we compute the cost of an operation, given its input, its output, and its internal computation?
 - And: How do we aggregate operator cost to query cost?
- Most prominent: Size of intermediate results
 - Output of some operation and input to other operations
 - This is typically 1:1, for joins 2:1
 - Requires accurate cardinality estimation

Other Costs

- Width of tuples
 - Typically easy to estimate we'll mostly skip this
- Real data access
 - Disk or cache (which cache?)
 - Random / sequential read?
 - Access by index?
- Computing the relational operation itself
 - Mostly cheap: Comparisons
 - But: Aggregations, projections with functions
 - E.g. Median
 - E.g. Window Functions

Example

```
SELECT *

FROM product p, sales S

WHERE p.id=s.p_id and p.price>100
```

- Assume we store for each attribute: count, (min, max)
- Assume 3300 products, prices between 0-1000 Euro, 1M sales, index on sales.p_id and product.id
- Assuming uniform distribution
 - Price range is 0-1000 => selectivity of condition is 9/10 = 0.9
 - Expect 9/10*3300 ~ 3000 products
 - Choose BNL, hash, or sort-merge join
 - Depending on buffer available

Example

- More accurate selectivity: Histograms
 - Assume 10 buckets for price of products
 - Real selectivity of condition is 5/3300 ∼ 0,0015
 - Choose index-join: scan p, collect id of selected products, use index on sales.p_id to access sales
- Note: We are making another assumption which?
 - Maybe people mostly buy expensive goods?

Cost Model

- A cost model characterizes (base or intermediate) relations
 - Relation = set of attributes + number of tuples (count)
- Encompasses methods to derive model of the result of a relational operation from the input(s)
- Requirements
 - Model should be much smaller than relation
 - Should allow for accurate predictions for all relational operations
 - We will have to make some compromises
 - Should be easy to maintain when data changes
 - Should be generated quickly
 - Needs to be stored and accessed efficiently
 - Should be easily derivable for intermediate relations during query processing

First Model: Uniform Distribution in Each Attribute

- With uniform distribution, we may try min, max:
 - "Smaller": Requires only a few bytes per attribute
 - More for string attributes
 - Need not always be exact: "zz" instead of "zweifel", 5 instead of 5,231
 - "Accurate": Let's see (this lecture)
 - "Maintainable": In constant time for INSERT
 - Update/delete: Exact models may require finding new min / max
 - Alternative: Ignore update/delete, accept errors
 - "Fast generation": Requires only one pass
 - "Derivable": Let's see (this lecture)

Other Models

- Recall: Small, accurate, updateable, derivable
- Option 2: Assume one of the standard distributions
 - Normal, Poisson, Zipf, ...
 - Weight of persons, number of sales per product, ...
 - Small: Yes, only a few parameters (mean, stddev, ...)
 - Accurate: Very accurate it values follow distribution tightly
 - But: How should the DB know which distribution is the right one?
 - Must be specified by developer
 - Updatable: No updates necessary once parameters are known
 - Derivable: Very difficult to impossible
 - Normal distribution after SELECT is not normal anymore

Other Models II

- Recall: Small, accurate, updateable, derivable
- Option 3: Approximation of distribution by histograms
 - Different types, more or less accurate for different distributions
 - Parameterized size, simple to build
 - Accuracy depends on type and size
 - Efficient means for updates and derivations
 - Later this lecture
- Option 4: Sampling
 - Maintain a random sample of tuples for each relation
 - Estimate all costs on this sample
 - Configurable size, larger = more accurate
 - Derivation is like simulating a query
 - Even later this lecture

Important Note

- Estimations need not be exact
 - Should only help to discern good transformations from bad ones
 - Only order of alternatives matters, not their concrete cost
 - If 1st/2nd plan have estimated costs 1,1/1,15, although real costs are 10/1000, we nevertheless reach our goal choosing the best
- Estimates in reality are often very bad
 - Orders of magnitude (see examples at end of this lecture)
 - Especially when data deviates from assumptions of the model
 - Still, resulting plans might be very good
- Trade-off: Impact of higher accuracy of more complex models versus effort to maintain models

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations

Rules of Thumb

- We discuss impact of each relational operation on parameters of a simple model assuming uniform distributions
 - S will denote the result of a (unary, binary) operation
- For relation R and attribute A, our model consists of
 - v(R, A): Number of distinct values of A
 - max(R, A), min(R, A): Maximal/minimal value of A
 - Values that do exist in R, not maximal / minimal possible values
 - Count = |R|: Number of tuples in R
- Task: Given those values for input relations, estimate them for output relation S
- Recall: Selectivity is the fraction of tuples after a selection

Selectivity of a Selection

- Assume min≤const≤max
- Selection of the form $S = \sigma_{A=const}(R)$
 - sel(query) = 1/v(R,A)
 - And hence |S| = |R| / v(R,A); will be skipped from now on
 - v(S,A) = 1; max(S,A)=min(S,A)=const
- Selection of the form "A<const" (or ≤, ≥, >)
 - sel(query) = (const-min) / (max-min)
 - v(S,A) = v(R,A) *sel(query)
 - $\min(S,A) = \min; \max(S,A) = const$
 - Alternative: |S| = |R| / k (e.g. k=10,15,...)
 - Idea: With such queries, one usually searches for outliers
 - k ~ frequency of outliers ("magic constant")
 - Very rough estimate, but requires no knowledge of values in A at all

Selection II

- Selection of the form "A≠const"
 - Sel(query) = (v(R,A)-1)/v(R,A)
 - We assume that const exists as value in A
 - v(S,A) = v(R,A)-1
 - $\min(S,A) = \min, \max(S,A) = \max$
 - Alternative model: sel(query)=1

Complex Selections

- Conjunction: Selection of the form "Aθc₁ ∧ Bθc₂ ∧ ..."
 - Assumption: Statistical independence of atomic conditions
 - Total selectivity is sel($A\theta c_1$) * sel($B\theta c_2$) * ...
 - v, min, max are adapted iteratively
- Negation: Selection of the form "not Aθc"
 - Selectivity is 1-sel($A\theta c$)
- Disjunction: Selection of the form "Aθc₁ ∨ Bθc₂ ∨ ..."
 - Rephrase into $\neg (\neg (A\theta c_1) \land \neg (B\theta c_2) \land ...)$
 - Selectivity is 1- $(1-sel(c_1))*(1-sel(c_2))*...$

Distinct and Projection

- Selectivity of DISTINCT
 - |S| = v(R,A)
 - v(S,A)=v(R,A), min(S,A)=min, max(S,A)=max
- Selectivity of projection
 - Only change the width of a tuple
 - Selectivity=1
 - Caution
 - In real life, we need to estimate sizes in bytes
 - This requires number of tuples and size of tuples
 - Our current model ignores this issue

DISTINCT and GROUP-BY

- Selectivity of GROUP-BY
 - Same as selectivity of distinct on group attributes
- But: Selectivity of select distinct A,B,C from ...

Projection and Distinct

- Selectivity of GROUP-BY with single attribute
 - Same as selectivity of distinct on group attributes
- But: Selectivity of select distinct A,B,C from ...
 - Not easy: We need to know correlations of values
 - Clearly, $|S| \le v(R,A) * v(R,B) * v(R,C)$
 - Simple heuristic: $|S| = \min(\frac{1}{2} * |R|, v(R,A) * v(R,B) * v(R,C))$
- Alternative
 - Multi-dimensional histograms (later)

Selectivity of Cartesian Product

- Consider S=R x T
 - |S| = |R| * |T|
 - For all attributes A of S: max(S,A), min(S,A), v(S,A) are copied from base relation

Selectivity of Joins

- Consider join: $R\bowtie_A T$ (means $\sigma_{R,A=T,A}$ (R x T))
- What is the selectivity of the join?
 - Need to know about correlation of values in different relations
- Suggestions
 - Option 1: We assume (or know) joining a PK with a FK
 - Thus, if v(R,A)<v(T,A), T.A is PK in T and R.A is FK
 - Or vice versa
 - Then, each FK "finds" its PK
 - Thus: |S|=|R|, max(S,A)=max(R,A), min(S,A)=min(R,A), v(S,A)=v(R,A)

Selectivity of Joins

- Option 2: Assume that value sets are similar
 - Assumption: Users don't join independent attributes
 - Thus, most tuples will find a join partner
 - Thus, each tuple from T will join with app. |R|/v(R,A) tuples from R
 - Symmetrically, each tuple from R will join with app. |T|/v(T,A) tuples from T
 - Thus, we expect $|T|^*|R|/v(R,A)$ or $|R|^*|T|/v(T,A)$
 - Typical solution: |S| = |R| * |T| / (max(v(T,A), v(R,A)))
 - |R| < |T| : v(S,A) = v(R,A), min(S,A) = min(R,A), max(S,A) = max(R,A)
- What about Theta-Joins: R⋈_{R.A<T.B}T?
 - For each distinct value T.B, estimate which fraction of R has smaller values in R.A, then aggregate

Remarks

- Careful: When we select a tuples by condition on attribute
 A, also value ranges of all other attributes change
 - Because many tuples are filtered away from the input
- We did not discuss these effects yet
- Simple model: Ignore
 - Operation on R.A does not influence models of other attributes of R.
 - Example: "age<19" does not change min(R,name) or max(R,name)
 - Often wrong: "age<19" does change max(R, income)
- Otherwise, we need a model taking correlations of values into account
 - E.g. Multi-dimensional Histograms

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
 - Types of histograms
 - Building and maintenance
 - Derivation on intermediate results
- Sampling
- Example: Oracle
- Some empirical observations

Histograms

- Real data is rarely uniformly distributed
 - Nor Poisson, normal, Zipf, ...
- Solution: Histograms [for single attributes]
 - Partition the (current) value range into b buckets
 - Count number of tuples in each bucket
 - During optimization, estimate selectivities from affected buckets
 - Typical: Assume uniform distribution within each bucket
- Advantage
 - Frequencies usually vary less inside smaller ranges
 - Lower errors due to smaller ranges for uniformity assumption
 - b is a parameter tuning the accuracy / effort trade-off

Issues

- We must think about
 - How should we choose the borders of buckets?
 - What do we store for each bucket (could be more than count)?
 - How do we keep buckets up-to-date?

Example: Assuming Uniform Distribution

- Assume normal distribution of weights
 - Spread: 120-40=80, mean: 80, stddev: 12; 100.000 people
- Uniform distribution: 100.000/80=1250 for each possible weight
- Leads to large errors in almost all possible query ranges

Equi-Width Histograms

- Borders are equi-distant (distance: value range / b)
 - Advantage: Border values need not be stored
- Remaining error depends on
 - Number of buckets (large b -> less errors, but more space)
 - Distribution of values in each bucket

Equi-Depth

- Choose borders such that frequency of values in each bucket is approximately equal
 - If single value more frequent than |R|/b use other type of histograms
 - Buckets have varying sizes borders need to be stored
- Better fit to data in dense areas

Example

- Query: Number of people with weight in [65-70]
 - Real value: 11603
 - Uniform distribution: (70-65+1)*1250 = 7500
 - Error: 4103 ~ 35%
 - Equi-width histogram
 - Average frequency in range 60-69 is 1469
 - Average frequency in range 70-79 is 2926
 - Estimation: 5*1469 + 1*2926 = 10271
 - Error: 1332 ~ 11%

Example cont'd

- Query: Number of people with weight in [65-70]
 - Real value: 11603
 - Uniform distribution: (70-65+1)*1250 = 7500
 - Error: 4103 ~ 35%
 - Equi-depth histogram
 - Average frequency in range 65-69 is 1850
 - Average frequency in range 70-73 is 2581
 - Estimation: 5*1850 + 1*2581 = 11831
 - Error: 228 ~ 2%

- In general, equi-depth histograms are considered more accurate than equi-width histograms
 - But more costly to build and maintain

Other: Serial Histograms

- Sort values by frequency and build buckets as ranges of frequencies (rare values, less rare values, ...)
 - Frequency ranges of different buckets do not overlap
- Better fit, but values in buckets must be stored explicitly
 - There are no consecutive ranges any more
 - Not directly applicable for REAL or VARCHAR (discretize!)
- Range queries must find their values in all buckets

Value	1	2	3	4	5	6	7
Cnt	12	92	10	180	22	20	80

Bucket	1	2	3	
Values	4	2,5,7	1,3,6	
Total cnt	180	194	42	
σ^2	0	~1400	~28	

Other: V-Optimal Histograms

- Sort values by frequency and build buckets such that sum of weighted variance is minimized in each bucket
 - Explicitly considers the expected error
- Provably best class of histograms for "average" queries
 - But costly to generate and maintain
 - Best known algorithm is O(b*n²) (n: |values|, b: |buckets|)

Value	1	2	3	4	5	6	7
Cnt	12	92	10	180	22	20	80

Bucket	1	2	3	
Values	4	2,5	1,3,6,7	
Total cnt	180	172	64	
σ^2	0	~72	~35	

Other Types of Histograms

- End-biased histograms
 - Sort values by frequency and build singleton buckets for k largest / smallest frequencies plus one bucket for all other values
 - Simple form of serial histograms, quite effective for many realworld data distributions (e.g. Zipf-like distributions)
- "Commercial systems seem mostly to use equi-depth and compressed histograms (mixture of equi-depth and endbiased histograms)"

Ioannidis, Y. (2003). "The history of histograms (abridged)". VLDB
Ioannidis / Christodoulakis (1993). "Optimal Histograms for Limiting Worst-Case Error
Propagation in the Size of Join Results.", TODS
Ioannidis / Poosala (1995). "Balancing Histogram Optimality and Practicality for Query Result
Size Estimation." SIGMOD Record

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
 - Types of histograms
 - Building and maintenance
 - Derivation and cardinality estimation
- Sampling
- Example: Oracle
- Some empirical observations

Building and Maintaining Equi-Width Histograms

Building: Two scans

- One for finding (min, max), one for counting bucket frequencies
 - Borders are regularly distributed over range
- We can compute histograms for all attributes of a table at once

Maintaining

- If min / max does not change: Increase/ decrease frequencies in affected bucket
 - That's the most frequent case: Maintaining EW-histograms is cheap!
 - Finding the bucket is in O(1)
- If min/max does change: Rebuild histogram
 - Or ignore change and only change frequency in first/last bucket

Building and Maintaining Equi-Depth Histograms

Building: Scanning and sorting

- We need to sort all values, then partition into b roughly equal-size intervals
- Requires one scan+sort per attribute
- That's rather expensive
 - Alternative: Use sample to estimate border values; sort on few values

Maintaining

- Almost all changes influence borders of buckets
 - Only updates of value within ED-range do not
- Option 1: Accept intermediate inequalities in bucket frequencies
 - ... and regularly re-compute entire histogram
- Option 2: Implement complex bucket merging/ splitting procedures

Offline Histograms

- We assumed histograms to be updated with every data update
- Other option: (Re-)compute only on request
 - Administrator needs to trigger re-computation of (all, table-wise, attribute-wise, ...) statistics from time to time
 - Otherwise, query performance may degrade
 - Both cases (new or outdated statistics) may lead to unpredictable changes in query behavior
- For long, this was the only available option
- Today: Automatically maintained statistics
 - General trend: Reduce cost of ownership
 - Self-optimizing, self-maintaining, zero-administration, ...

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
 - Types of histograms
 - Building and maintenance
 - Cardinality estimation and derivation
- Sampling
- Example: Oracle
- Some empirical observations

Estimation - Selection

- A=const: Find enclosing bucket, assume uniform distribution within bucket
- A<const: Find matching buckets and aggregate counts
 - When const does not coincide with bucket border, assume uniform distribution in bucket
- DISTINCT
 - No support
 - Solution: Also keep v(R,A)
 - Plus COUNT plus histograms

Histograms for Join Estimation

- Assume sales and reclamations
 - And a slightly strange query, not joining a PK/FK pair

```
SELECT count(*)
FROM sales S, reclamation R
WHERE S.productID=R.productID;
```


Example without Histograms

- Without histograms, assuming uniform distribution
 - Recall join-formula (no PK/FK)
 - − Gives |S|*|R|/(max (v(R,productID), v(S,productID))) ~ 2500

Example with Histograms

- Uniform distribution within buckets
 - And uniform distribution of distinct values
 - Better: Store cnt of distinct value per bucket
 - $-(7000*300/500)+(450*60/500)+...\sim4200$
- More complicated if bucket borders of join attributes do not coincide
 - Always the case for equi-depth histograms

Range	S.pID	R.pID	
0-499	7000	300	
-999	450	60	
-1499	2650	0	
-1999	4900	0	
-2499	100	20	
-2999	4900	0	

Complex Selections

- How to apply histograms for complex conditions?
 - People with weight<30 and age<25 ?</p>
 - People with income>1M and tax depth<100K?</p>
 - Until now, we assumed statistical independence of attributes
 - Better estimates require conditional distributions
 - But: Combinatorial explosion of the number of combinations
 - Plus: Could be connected by AND, OR, AND NOT, ...
- Multidimensional histograms
 - Build histograms on combinations of value ranges
 - Need sophisticated storage structures multidimensional indexes

Derivation - Selection

- A=const: Histogram degenerates to a singleton bucket
- A<const: Histogram is cut into two pieces
 - Keeping number of buckets / same depth of buckets would require recreating the histogram
 - Other option: Go on with "partial" histogram

DISTINCT

- Equi-Width: No change
 - We do not record distinct values, min / max does not change
- Equi-Depth: Recreate or ignore

Derivation - Joins

- Assume histograms on both join keys
- Histogram needs to be build during join execution
 - Equi-Width:
 - Find min/max from both input histograms (larger min, smaller max)
 - Fix bucket borders depending on b
 - While generating join results, always increment corresponding bucket
 - On-the-fly computation
 - Equi-Depth
 - Compute all join results, then sort and compute buckets
 - Sort can be skipped when sort-merge is used
 - But on-the-fly computation is impossible: Size of join result is unknown

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Some empirical observations

Sampling

- Alternative to histograms: Use a sample of the data
 - Reservoir sampling: Compute a random sample and maintain
 - If chosen randomly, sample should have same distribution as full data set – and also contain all correlations
 - Usually, a 1-5% sample suffices
 - Statistics give the methods to estimate sample size depending on error probabilities
- Also useful for approximate COUNT, AVG, SUM, etc.
 - Approximate query processing: Faster answers with small errors
 - Active research area ("Taming the terabyte")

Building and Maintaining

- Idea: How to get a random sample S of s% of a table T?
 - Selecting first s% rows is a bad idea (yet fast)
 - Solution: Scan and pick every tuple with probability s
 - Will create a sample S of size roughly s*|T|
 - Exact size doesn't matter
 - We just have to make sure that there is no buffer overflow

Maintain

- DELETE: If tuple in sample is deleted, choose a new tuple at random
- INSERT: Add new tuple to S with probability s
- UPDATE: Propagate to sample
- All this is expensive: Operations always need to check S
- Alternative: Ignore updates and rebuild from time to time

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations

Example: Oracle Basic Statistics

- Table statistics
 - Number of rows
 - Number of blocks
 - Average row length
- Column statistics
 - Number of distinct values (NDV) in column
 - Number of nulls in column
 - Data distribution (histogram)
- Index statistics
 - Number of leaf blocks
 - Levels
 - Clustering factor
- System statistics
 - I/O performance and utilization
 - CPU performance and utilization

- If activated: "Oracle gathers statistics on all database objects automatically and maintains those statistics in a regularlyscheduled maintenance job."
- High-frequency tables: "Because the automatic statistics gathering runs during an overnight batch window, the statistics on tables which are significantly modified during the day may become stale"

Example: Oracle Histograms

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations
 - Leis, Gubichev, Mirchev, Boncz, Kemper, Neumann (2015): "How good are query optimizers, really?", PVLDB

Empirical Observations

- Goal: Try to separately measure the relative impact of cardinality estimation, cost model, and join order algorithm
 - Hypothesis: Distribution assumptions (uniform) underlying most cost models are usually wrong
 - How much does this impact plan quality?

Approach

- "Real-life" benchmark: IMDB data, 21 tables, ~3GB raw data, many correlations between everything
 - Forget TPC-DS, TPC-H synthetically generated (uniform) data
- − 33 query types with each ~3 incarnations; 113 queries, 3-16 joins
- Use optimizers (with hints) to obtain cardinality estimates
- Execute queries to obtain true cardinalities
- Compare results from five different database systems
 - PostGreSQL, Hyper, DBMS-A, DBMS-B, DBMS-C

Selectivity of Selections on Base Tables

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections

- 50% of estimates are almost perfect, in all systems
- 90% of estimates are wrong by a factor of 6 at most but much worse in DBMS-C
- Extreme errors go up to factor 100.000
- Simple PostGres model works rather well
 - Min/max, distinct values, histograms

Cardinality Estimates for Multi-Joins

- All systems work rather well for up to 2 joins
 - With median errors below 10
- In all systems, accuracy decreases quickly with more joins
 - Note the logarithmic scale at y-axis
- Join sizes mostly are heavily underestimated

Do not Use TPC-H!

Uniform data – perfect estimations

Impact on Runtime

- Approach: Obtain estimates from system X, inject into PostGres, let PostGres optimize and run the query
 - "Optimal": Same approach using true cardinalities

	< 0.9	[0.9,1.1)	[1.1,2)	[2,10)	[10,100)	>100
PostgreSQL	1.8%	38%	25%	25%	5.3%	5.3%
DBMS A	2.7%	54%	21%	14%	0.9%	7.1%
DBMS B	0.9%	35%	18%	15%	7.1%	25%
DBMS C	1.8%	38%	35%	13%	7.1%	5.3%
HyPer	2.7%	37%	27%	19%	8.0%	6.2%

Observations

- Estimates from DBMS-A (HyPer) lead to near-optimal plans in 54% (37%) of all queries
- DBMS-B (C, Hyper) estimates lead to plans more than 10 times slower than "optimal" for 32% (12%, 14%) of all queries
- Overall: Even extremely bad estimates (DBMS-C) do not impact query performance too much too often
 - Wrong estimates sometimes even speed-up queries!

Quality of Cost Models

- Using true cardinality makes cost estimates much better
 - See different columns
- Changing the concrete cost model has little impact
 - See different rows
 - "Tuned": MainMem-adapted
 - "Simple": Roughly our option 1
- Message: Invest in cardinality estimates, not in performance modelling

But ...

- More interesting results in the paper
 - E.g.: More indexes make estimations harder larger search space
 - "Harder", not "worse"
- But
 - A single data set
 - Real data, but synthetic workload
 - Runtimes are all from PostGres, ignoring many special features in the runtime engines of other systems
 - No parallelization
 - Although this data fits in memory, PostGres is not a MM-DBMS
 - Logs are writing to disk all the time
- Solution: Measure, model, and optimize for your workload