jhTAlib

Joost Hoeks

2019-03-22

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Examples	3
Example 1	3
Example 2	3
Example 3	4
Example 4	4
Example 5	4
Example 6	4
Example 7	5
Example 8	5
Example 9	5
Example 10	5
Test	5
Reference	6
Behavioral Techniques	6
Candlestick	8
Cycle Indicators	10
Data	11
Event Driven	12
Experimental	12
General	14
Information	16
Math Functions	16
Momentum Indicators	21
Overlap Studies	25
Pattern Recognition	28
Price Transform	31
Statistic Functions	39

Uncategorised	35 35 36
jhTAlib	
Technical Analysis Library Time-Series	
You can use and import it for your:	
• Technical Analysis Software	
• Charting Software	
• Backtest Software	
• Trading Robot Software	
• Trading Software in general	
Work in progress	
• The Python Standard Library	
Docs	
• .html	
• .epub	
• .json	
• .odt	
• .pdf	
• .rst	
• .rtf	
• .xml	

Install

```
From PyPI:
$ [sudo] pip3 install jhtalib
From source:
$ git clone https://github.com/joosthoeks/jhTAlib.git
$ cd jhTAlib
$ [sudo] pip3 install -e .
Update
From PyPI:
$ [sudo] pip3 install --upgrade jhtalib
From source:
$ cd jhTAlib
$ git pull [upstream master]
Examples
$ cd example/
Example 1
$ python3 example-1-plot.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/\\
example/example-1-plot.ipynb
```

Example 2

\$ python3 example-2-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb

Example 3

\$ python3 example-3-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb

Example 4

\$ python3 example-4-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

Example 5

\$ python3 example-5-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb

Example 6

\$ python3 example-6-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb

<pre>\$ python3 example-7-quand1-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb\\ ___$
Example 9
<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-9-cryptocompare-2-df.ipynb \\ ___$
Example 10
DF NumPy Pandas
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb
Test
<pre>\$ cd test/ \$ python3 test.py</pre>

Example 7

import jhtalib as jhta Behavioral Techniques ATH | All Time High | DONE • dict of lists = jhta.ATH(df, price='High') LMC | Last Major Correction | DONE • dict of lists = jhta.LMC(df, price='Low') PP | Pivot Point | DONE • dict of lists = jhta.PP(df) • https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis) FIBOPR | Fibonacci Price Retracements | DONE • dict of lists = jhta.FIBOPR(df, price='Close') FIBTR | Fibonacci Time Retracements | GANNPR | W. D. Gann Price Retracements | DONE • dict of lists = jhta.GANNPR(df, price='Close') GANNTR | W. D. Gann Time Retracements |

Reference

JDN Julian Day Number DONE	
• jdn = jhta.JDN(utc_year, utc_month, utc_day)	
• https://en.wikipedia.org/wiki/Julian_day	
JD Julian Date DONE	
 jd = jhta.JD(utc_year, utc_month, utc_day, ut utc_second) 	c_hour, utc_minute,
$\bullet \ \ https://en.wikipedia.org/wiki/Julian_day$	
SUNC Sun Cycle	
MERCURYC Mercury Cycle •	
VENUSC Venus Cycle •	
EARTHC Earth Cycle	
MARSC Mars Cycle	

JUPITERC Jupiter Cycle •	
SATURNC Saturn Cycle •	
URANUSC Uranus Cycle •	
NEPTUNEC Neptune Cycle •	
PLUTOC Pluto Cycle •	-
MOONC Moon Cycle •	
Candlestick	
CDLBODYS Candle Body Size DONE	
• list = jhta.CDLBODYS(df)	
• https://www.tradeciety.com/understand-candlesticks-	-patterns/
	r 50001115/

CDLWICKS | Candle Wick Size | DONE

- list = jhta.CDLWICKS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLUPPSHAS | Candle Upper Shadow Size | DONE

- list = jhta.CDLUPPSHAS(df)
- $\bullet \ \, {\rm https://www.tradeciety.com/understand\text{-}candlesticks\text{-}patterns/}$

CDLLOWSHAS | Candle Lower Shadow Size | DONE

- list = jhta.CDLLOWSHAS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLBODYP | Candle Body Percent | DONE

• list = jhta.CDLBODYP(p)

CDLBODYM | Candle Body Momentum | DONE

- list = jhta.CDLBODYM(df, n)
- book: Trading Systems and Methods

QSTICK | Qstick | DONE

- list = jhta.QSTICK(df, n)
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Qstick.htm$

SHADOWT Shadow Trends DONE
 dict of lists = jhta.SHADOWT(df, n)
• book: The New Technical Trader
IMI Introday Momentum Index DONE
IMI Intraday Momentum Index DONE
• list = jhta.IMI(df)
• https://www.fmlabs.com/reference/default.htm?url=IMI.htm
Cycle Indicators
HT DODEDIOD Hills and Throughout Desire and Cools Desired
HT_DCPERIOD Hilbert Transform - Dominant Cycle Period
•

HT_DCPHASE Hilbert Transform - Dominant Cycle Phase
•
$ \begin{tabular}{ll} HT_PHASOR & & Hilbert & Transform & - & Phasor & Components & \\ \hline \end{tabular} $
•
THE CINE LINE AT C. C. W.
HT_SINE Hilbert Transform - SineWave
•
${\bf HT_TRENDLINE} \mid {\bf Hilbert\ Transform\ \textbf{-}\ Instantaneous\ Trendline}$
•

$\label{eq:html} \mbox{HT_TRENDMODE} \mid \mbox{Hilbert Transform - Trend vs Cycle Mode} \mid$ TS | Trend Score | DONE • list = jhta.TS(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm Data CSV2DF | CSV file 2 DataFeed | DONE • dict of tuples = jhta.CSV2DF(csv_file_path) CSVURL2DF | CSV file url 2 DataFeed | DONE • dict of tuples = jhta.CSVURL2DF(csv_file_url) DF2CSV | DataFeed 2 CSV file | DONE • csv file = jhta.DF2CSV(df, csv_file_path) DF2DFREV | DataFeed 2 DataFeed Reversed | DONE • dict of tuples = jhta.DF2DFREV(df) DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples = jhta.DF2DFWIN(df, start=0, end=10)

DF_HEAD | DataFeed HEAD | DONE • dict of tuples = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples = jhta.DF2HEIKIN_ASHI(df) **Event Driven** ASI | Accumulation Swing Index (J. Welles Wilder) | DONE • list = jhta.ASI(df, L) • book: New Concepts in Technical Trading Systems SI | Swing Index (J. Welles Wilder) | DONE • list = jhta.SI(df, L) • book: New Concepts in Technical Trading Systems Experimental JH_SAVGP | Swing Average Price - previous Average Price | DONE • list = jhta.JH_SAVGP(df)

mation DONE		
• list = jhta.	JH_SAVGPS(df)	
JH_SCO Swing • list = jhta.	Close - Open DONE JH_SCO(df)	
JH_SCOS Swin • list = jhta.	g Close - Open Summation DON $_{ m JH_SCOS(df)}$	ΤE
JH_SMEDP Sw	ring Median Price - previous Media	an Price DONE
jh_SMEDPS Sw tion DONE • list = jhta.	ving Median Price - previous Media	an Price Summa-
	Price - previous Price DONE JH_SPP(df, price='Close')	
•	g Price - previous Price Summatio	on DONE

JH_SAVGPS | Swing Average Price - previous Average Price Sum-

JH_{-}	_STYPP	Swing	Typical	Price -	previous	Typical	Price	DONE

• list = jhta.JH_STYPP(df)

JH_STYPPS | Swing Typical Price - previous Typical Price Summation | DONE

• list = jhta.JH_STYPPS(df)

JH_SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE

• list = jhta.JH_SWCLP(df)

JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

• list = jhta.JH_SWCLPS(df)

General

NORMALIZE | Normalize | DONE

- list = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/$

STANDARDIZE | Standardize | DONE

- list = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/$

14

SPREAD | Spread | DONE

• list = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list = jhta.CP(df1, df2, price1='Close', price2='Close')

CRSI | Comparative Relative Strength Index | DONE

- list = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=RSIC.htm

CS | Comparative Strength | DONE

- list = jhta.CS(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- https://www.investopedia.com/terms/p/profit_loss_ratio.asp

EV | Expected Value | DONE • float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float) • https://en.wikipedia.org/wiki/Expected_value POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE • int = jhta.POR(hitrade_float, profit_loss_ratio_float) • book: Computer Analysis of the Futures Markets Information INFO | Print df Information | DONE • print = jhta.INFO(df, price='Close') INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list = jhta.EXP(df, price='Close') LOG | Logarithm | DONE

LOG10 | Base-10 Logarithm | DONE

• list = jhta.LOG(df, price='Close')

• list = jhta.LOG10(df, price='Close')

```
SQRT | Square Root | DONE
  • list = jhta.SQRT(df, price='Close')
ACOS | Arc Cosine | DONE
  • list = jhta.ACOS(df, price='Close')
ASIN | Arc Sine | DONE
  • list = jhta.ASIN(df, price='Close')
ATAN | Arc Tangent | DONE
  • list = jhta.ATAN(df, price='Close')
COS | Cosine | DONE
  • list = jhta.COS(df, price='Close')
SIN | Sine | DONE
  • list = jhta.SIN(df, price='Close')
TAN | Tangent | DONE
  • list = jhta.TAN(df, price='Close')
ACOSH | Inverse Hyperbolic Cosine | DONE
  • list = jhta.ACOSH(df, price='Close')
```

ASINH | Inverse Hyperbolic Sine | DONE • list = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI() $\mathbf{E} \mid \mathbf{Mathematical}$ constant $\mathbf{E} \mid \mathbf{DONE}$ • float = jhta.E() TAU | Mathematical constant TAU | DONE • float = jhta.TAU()

PHI | Mathematical constant PHI | DONE • float = jhta.PHI() CEIL | Ceiling | DONE • list = jhta.CEIL(df, price='Close') FLOOR | Floor | DONE • list = jhta.FLOOR(df, price='Close') **DEGREES** | Radians to Degrees | **DONE** • list = jhta.DEGREES(df, price='Close') RADIANS | Degrees to Radians | DONE • list = jhta.RADIANS(df, price='Close') ADD | Addition High + Low | DONE • list = jhta.ADD(df) $\mathbf{DIV} \mid \mathbf{Division} \ \mathbf{High} \ / \ \mathbf{Low} \mid \mathbf{DONE}$ • list = jhta.DIV(df) MAX | Highest value over a specified period | DONE • list = jhta.MAX(df, n, price='Close')

MAXINDEX Index of highest value over a specified period •
MIN Lowest value over a specified period DONE • list = jhta.MIN(df, n, price='Close')
$\label{eq:minimized_minimized} \begin{aligned} & \text{MININDEX} \mid \text{Index of lowest value over a specified period} \mid & & \\ \bullet & & \\ \end{aligned}$
$\begin{array}{c c} \hline \\ MINMAX \mid Lowest \ and \ Highest \ values \ over \ a \ specified \ period \mid \\ \bullet \\ \hline \end{array}$
MINMAXINDEX Indexes of lowest and highest values over a specified period $ \bullet $
MULT Multiply High * Low DONE • list = jhta.MULT(df)
SUB Subtraction High - Low DONE • list = jhta.SUB(df)
SUM Summation DONE • list = jhta.SUM(df, n, price='Close')

Momentum Indicators
ADX Average Directional Movement Index
ADXR Average Directional Movement Index Rating • ——————————————————————————————————
APO Absolute Price Oscillator DONE
 list = jhta.APO(df, n_fast, n_slow, price='Close') https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm
AROON Aroon
AROONOSC Aroon Oscillator •
BOP Balance Of Power
CCI Commodity Channel Index

CMO Chande Momentum Oscillator •	
DX Directional Movement Index	
$\label{eq:macd_decomposition} \mathbf{MACD} \mid \mathbf{Moving} \ \mathbf{Average} \ \mathbf{Convergence/Divergence}$ •	I
MACDEXT MACD with controllable MA type •	
MACDFIX Moving Average Convergence/Divergence	nce Fix 12/26
MFI Money Flow Index •	
MINUS_DI Minus Directional Indicator •	
MINUS_DM Minus Directional Movement •	

MOM Momentum DONE
• list = jhta.MOM(df, n, price='Close')
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=Momentum.htm$
PLUS_DI Plus Directional Indicator
•
DITIS DM Diversional Mayament
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator
•
RMI Relative Momentum Index DONE
• list = jhta.RMI(df, n, price='Close')
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RMI.htm$
ROC Rate of Change DONE
• list = jhta.ROC(df, n, price='Close')
DOCD Data of Change Depositions DONE
ROCP Rate of Change Percentage DONE
list = ihta.ROCP(df, n, price='Close')

ROCR Rate of Change Ratio DONE
• list = jhta.ROCR(df, n, price='Close')
DOCDIOS D. J. CCI. D. J. 100 L. DOMB
ROCR100 Rate of Change Ratio 100 scale DONE
• list = jhta.ROCR100(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm} \\ \underline{\hspace{1cm}}$
RSI Relative Strength Index DONE
• list = jhta.RSI(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=rsi.htm
STOCH Stochastic DONE
• list = jhta.STOCH(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm} \\ \underline{\hspace{1cm}}$
STOCHF Stochastic Fast •
STOCHRSI Stochastic Relative Strength Index •
TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA •

ULTOSC Ultimate Oscillator
•
WILLR Williams' %R DONE
• list = jhta.WILLR(df, n)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm$
Overlap Studies
BBANDS Bollinger Bands DONE
• dict of lists = jhta.BBANDS(df, n, f=2)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm$
BBANDW Bollinger Band Width DONE
• list = jhta.BBANDW(df, n, f=2)
$ \bullet \ https://www.fmlabs.com/reference/default.htm?url=BollingerWidthhtm$
DEMA Double Exponential Moving Average
•
EMA Exponential Moving Average
•

ENVP | Envelope Percent | DONE • dict of lists = jhta.ENVP(df, pct=.01, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm$ KAMA | Kaufman Adaptive Moving Average | MA | Moving Average | MAMA | MESA Adaptive Moving Average | MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE

• list = jhta.MIDPRICE(df, n)

 $\bullet \ \ http://www.tadoc.org/indicator/MIDPRICE.htm$

MMR Mayer Multiple Ratio DONE
• list = jhta.MMR(df, n=200, price='Close')
$\bullet \ {\rm https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/}$
SAR Parabolic SAR DONE
• list = jhta.SAR(df, af_step=.02, af_max=.2)
• book: New Concepts in Technical Trading Systems
SAREXT Parabolic SAR - Extended
•
SMA Simple Moving Average DONE
• list = jhta.SMA(df, n, price='Close')
$\bullet \ https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm$
T3 Triple Exponential Moving Average (T3)
<u> </u>
TEMA Triple Exponential Maying Average
TEMA Triple Exponential Moving Average •
TRIMA Triangular Moving Average DONE
• list = jhta.TRIMA(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm

WMA | Weighted Moving Average • Pattern Recognition CDL2CROWS | Two Crows |

CDL3BLACKCROWS \mid Three Black Crows \mid

CDL3INSIDE | Three Inside Up/Down |

CDL3LINESTRIKE | Three-Line Strike |

CDL3OUTSIDE | Three Outside Up/Down |

CDL3STARSINSOUTH | Three Stars In The South |

CDL3WHITESOLDIERS | Three Advancing White Soldiers |

CDLABANDONEDBABY | Abandoned Baby |

CDLADVANCEBLOCK | Advance Block |

CDLBELTHOLD | Belt-hold |

CDLBREAKAWAY | Breakaway |

CDLCLOSINGMARUBOZU | Closing Marubozu |

CDLCONSEALBABYSWALL | Concealing Baby Swallow |

CDLCOUNTERATTACK | Counterattack |

CDLDARKCLOUDCOVER | Dark Cloud Cover |

```
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
```

```
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
\mathbf{CDLMARUBOZU} \mid \mathbf{Marubozu} \mid
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
```

```
{\bf CDLSHOOTINGSTAR} \mid {\bf Shooting} \ {\bf Star} \mid
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
Price Transform
AVGPRICE | Average Price | DONE
  • list = jhta.AVGPRICE(df)
```

31

• https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm

MEDPRICE | Median Price | DONE

- list = jhta.MEDPRICE(df)
- $\bullet \quad \text{https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm}$

TYPPRICE | Typical Price | DONE

- list = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list = jhta.WCLPRICE(df)
- $\bullet \ \, \text{https://www.fmlabs.com/reference/default.htm?url=WeightedCloses.} \\ \text{htm}$

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE

• list = jhta.MEDIAN(df, n, price='Close')

MEDIAN_LOW | Low median of data | DONE

• list = jhta.MEDIAN_LOW(df, n, price='Close')

• list = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list = jhta.VARIANCE(df, n, price='Close', xbar=None)

MEDIAN_HIGH | High median of data | DONE

COV | Covariance | DONE

- float = jhta.COV(list1, list2)
- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance

COVARIANCE | Covariance | DONE

- list = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')

COR | Correlation | DONE

• float = jhta.COR(list1, list2)

CORRELATION | Correlation | DONE

• list = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list = jhta.LSR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://www.mathsisfun.com/data/least-squares-regression.html$

SLR | Simple Linear Regression | DONE

- list = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/$

Uncategorised

Volatility Indicators

ATR | Average True Range | DONE

- list = jhta.ATR(df, n)
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

-

NATR | Normalized Average True Range |

RVI | Relative Volatility Index | DONE

- list = jhta.RVI(df, n)
- https://www.fmlabs.com/reference/default.htm?url=RVI.htm

INERTIA Inertia •
TRANGE True Range DONE • list = jhta.TRANGE(df) • https://www.fmlabs.com/reference/default.htm?url=TR.htm
Volume Indicators
AD Chaikin A/D Line DONE
• list = jhta.AD(df)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$
ADOSC Chaikin A/D Oscillator •
OBV On Balance Volume DONE
• list = jhta.OBV(df)
• https://www.fmlabs.com/reference/default.htm?url=OBV.htm