Streaming and Non-Autoregressive End-to-End Models for Speech Recognition

Zhengkun Tian

zhengkun.tian@nlpr.ia.ac.cn

Institute of Automation, Chinese Academy of Sciences

Contents

- 1. Background
- 2. Streaming ASR
 - Monotonic Attention
 - © Accumulation of Information
 - © Triggered Attention
 - ©Chunk-Wise
- 3. Non-Autoregressive Transformer
- 4. Conclusion

1. Background

End-to-end Model Speech Recognition

- © CTC (DeepSpeech)
- © Transducer (RNN-T/SA-T)
- Attention-based Model

\$PPAI人工智能前:0学生i2tz

2. Streaming ASR

The Weakness of Attention

Most of attention mechanisms needs the whole sequence as input to compute attention weights.

2.1. Monotonic Attention

Location Attention

Monotonic Chunk-wise Attention (MoChA)

© Location Attention

Constrained position prediction

$$\Delta p_t = C_{max} * \operatorname{sigmoid}(V_p^{\mathsf{T}} \tanh(W_p h_t^d))$$

• Unconstrained position prediction

$$\Delta p_t = \exp(V_p^{\mathsf{T}} \tanh(W_p h_t^d))$$

O Location Attention

Scale variable

$$\lambda_t = \exp(V_{\lambda}^{\mathsf{T}} \tanh(W_p h_t^d))$$

• Scaled Gaussian Distribution:

$$a_t^{\mathcal{N}}(s) = \lambda_t * \exp\left(-\frac{(s-p_t)^2}{2\sigma^2}\right).$$

• Locality-based Alignment Generation

$$a_t^{\mathcal{S}}(s) = \text{Align}(h_s^e, h_t^d), \ \forall s \in [p_t - 2\sigma, p_t + 2\sigma].$$

Context Calculation

$$c_t = \sum_{s=(p_t-2\sigma)}^{(p_t+2\sigma)} \left(a_t^{\mathcal{N}}(s) * a_t^{\mathcal{S}}(s) \right) * h_s^e$$

Location Attention

Table 1: Results from baseline and proposed models on ASR task with TIMIT test set.

Model	Test PER (%)
Global Attention Model (Baseline)	
Att Enc-Dec (pretrained with HMM align)	18.6
(Chorowski et al., 2014)	16.0
Att Enc-Dec (Pereyra et al., 2017)	23.2
Att Enc-Dec (Luo et al., 2016)	24.5
Att Enc-Dec with MLP Scorer (ours)	23.8
Att Enc-Dec with <i>local-m</i> (ours)	
(Luong et al., 2015)	

Local Attention Model (Proposed)						
Monotonicity	Localit	y				
Pos Prediction	Alignment	Func.	Test			
Δp_t	$\mathbf{Score}(h_s^e, h_t^d)$	Type	PER (%)			
Const (sigmoid)	No	-	23.2			
Const (sigmoid)	Yes	Bilinear	21.9			
Const (sigmoid)	Yes	MLP	21.7			
Unconst (exp)	No	-	23.1			
Unconst (exp)	Yes	Bilinear	20.9			
Unconst (exp)	Yes	MLP	21.4			

Table 2: Results from baseline and proposed method on G2P task with CMUDict test set

Model	PER	WER	
Wiodei	(%)	(%)	
Baseline			
Enc-Dec LSTM (2 lyr)	7.63	28.61	
(Yao and Zweig, 2015)	7.03	20.01	
Bi-LSTM (3 lyr)	5.45	23.55	
(Yao and Zweig, 2015)	3.43	23.33	
Att Enc-Dec with	5.96	25.55	
Global MLP Scorer (ours)	3.90	23.33	
Att Enc-Dec with local-m	5.64	24.32	
(ours) (Luong et al., 2015)	3.04	24.32	
Proposed			
Att Enc-Dec + Unconst (exp)	5.45	23.15	
$(2\sigma = 2)$	3.43	23.13	
Att Enc-Dec + Unconst (exp)	5.43	23.19	
$(2\sigma = 3)$	3.43	23.19	

MoChA

• Compute attention energy

$$e_{i,j} = \text{MonotonicEnergy}(s_{i-1}, h_j)$$

Compute probability of sampling

$$p_{i,j} = \sigma(e_{i,j})$$

• Compute chunkwise softmax energies over a size-w chunk

$$v = t_i - w + 1$$

$$u_{i,k} = \text{ChunkEnergy}(s_{i-1}, h_k), k \in \{v, v + 1, \dots, t_i\}$$

• Compute softmax-weighted average over the chunk

$$c_{i} = \sum_{k=v}^{t_{i}} \frac{\exp(u_{i,k})}{\sum_{l=v}^{t_{i}} \exp(u_{i,l})} h_{k}$$

MoChA

Compare different attention mechanisms

(a) Soft attention.

- (b) Hard monotonic attention.
- (c) Monotonic chunkwise attention.

MoChA

Prior Result			WER
(Raffel et al., 2017) (CT	33.4%		
(Luo et al., 2016) (Reint	27.0%		
(Wang et al., 2016) (CT	22.7%		
(Raffel et al., 2017) (Mo	17.4%		
Attention Mechanism	Best WER	Averag	ge WER
Soft Attention (offline)	14.2%		± 0.3%
MoChA, $w = 2$	13.9%		± 0.6%

Table 1: Word error rate on the Wall Street Journal test set. Our results (bottom) reflect the statistics of 8 trials.

2.2 Accumulation of Information

Dynamically decide how many frames should be processed to predict a linguistic output.

- Adaptive Computation Steps
- © Continuous Integrate-and-Fire

Adaptive Computation Steps

Encoder-Decoder

 $\mathbf{h}_{i}^{i} = Recurrency(\mathbf{h}_{i-1}^{i}, [\mathbf{h}_{2i-1}^{i-1}, \mathbf{h}_{2i}^{i-1}])$ $p(y_i) = softmax(Recurrency(s_{i-1}, y_{i-1}, c_i))$

Fig. 2. The workflow of ACS algorithm. The halting probability is calculated out of the representations by the halting layer, which consists of a 1-D CNN layer and a sigmoidal unit.

Adaptive Computation Steps

Compute energy vectors

$$e_j = \text{Convolution1d}(\widetilde{h}_j)$$

Compute halting probability

$$a_j = \sigma(\boldsymbol{e}_j)$$

$$N_i = \min \left\{ n: \sum_{j=1}^n a_j \ge 1 - \epsilon \right\} \qquad R_j = 1 - \sum_{j=1}^{N_i - 1} a_j$$

$$p_{j} = \begin{cases} R_{i} \text{ if } j = N_{i} \\ a_{j} \text{ otherwise} \end{cases} \qquad c_{i} = \sum_{j=1}^{N_{i}} p_{j} h_{j}$$

Adaptive Computation Steps

Table 1. Character Error Rate (CER) on HMM-DNN and end-toend models. The results of attention-based and ACS models were decoded using beam search algorithm with the width of 8.

Model	CER
HMM-Hybrid Models	
HMM-DNN [19]	8.5%
Online Character Models	
Attention	34.9%
Attention + RNN-LM	32.4%
ACS	35.2%
ACS + Bidirectional Contexts (<i>w</i> =1)	33.5%
ACS + Bidirectional Contexts (w=1) + RNN-LM	31.2%
Offline Character Models	
Attention	23.2%
Attention + RNN-LM	22.0%
ACS	21.6%
ACS + Bidirectional Contexts (<i>w</i> =1)	19.8%
ACS + Bidirectional Contexts $(w=1)$ + RNN-LM	18.7%

• Integrate-And-Fire

Figure 2: The architecture of our CIF-based encoder-decoder model. Operations in the dashed rectangles are only applied in the training stage, and the switch (S) in the CIF part connects the right in the training stage and the left in the inference stage.

• Scaling

$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_K)$$

$$\downarrow \frac{\tilde{U}}{\sum_{k=1}^K \alpha_k}$$

$$\boldsymbol{\alpha'} = (\alpha_1', \alpha_2', ..., \alpha_K')$$

• Loss

$$\mathcal{L}_{Qua} = \left| \sum_{k=1}^{K} \alpha_k - \tilde{U} \right|$$

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_1 \mathcal{L}_{CTC} + \lambda_2 \mathcal{L}_{Qu}$$

• Compare CIF with attention mechanism

(b) Attention

(c) CIF

Figure 3: Token boundary positioning by CIF on an English utterance in Librispeech test-clean where "_" represents the space. The boundary in the spectrogram is marked by two humans. The middle part shows the calculated weights α for each encoded representations, and the upper part shows the accumulated weights α^a at different steps. When α^a reaches the threshold, a firing happens and a token boundary is located. We find the located boundaries are roughly accurate and the token with more stable and clear pronunciations are more prone to be located ahead of time by CIF.

Table 1: Comparison with other published models on the AISHELL-2, CER (%)

Model	End-to-End	test_android	test_ios	test_mic
Chain-TDNN [33]	No	9.59	8.81	10.87
CIF-based model	Yes	7.25 ± 0.06	6.69 ± 0.02	7.47 ± 0.06

Table 2: Comparison with other end-to-end models on the Librispeech dataset, WER (%)

		text-clean		text-	other
Model	Params	w/o LM	w/ LM	w/o LM	w/ LM
LAS + SpecAugment [34]	- 16	2.8	2.5	6.8	5.8
Jasper [35]	333 M	3.86	2.95	11.95	8.79
wav2letter++ [36]	-	_	3.44	-	11.24
LAS + Deep bLSTM [37]	150 M	4.87	3.82	15.39	12.76
ASG + Gated ConvNet [38]	208 M	6.7	4.8	20.8	14.5
CTC + policy learning [39]	75 M	-	5.42	-	14.70
CTC + i-SRU 1D-Conv [40]	36 M	-	5.73	-	15.96
'Soft' and 'monotonic':					
ACS [15]	67M	16.72 ± 0.07	16.11 ± 0.03	24.09 ± 0.25	22.66 ± 0.30
Triggered Attention [14]	-	7.4	5.7	19.2	16.1
CIF-based model	67M	4.48 ± 0.09	3.70 ± 0.10	12.62 ± 0.09	10.90 ± 0.16

2.3. Triggered Attention

© Triggered attention system architecture

Triggered attention system architecture

Details:

$$t = 1$$
 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
 $Z = (\langle b \rangle, \langle b \rangle, d$, d , $\langle b \rangle$, o , g , g , $\langle b \rangle$)
 $p(Z|H) = (0.9, 0.7, 0.4, 0.7, 0.7, 0.8, 0.9, 0.6, 0.5)$
 $Z' = (\langle b \rangle, \langle b \rangle, d$, $\langle b \rangle, \langle b \rangle$, o , g , $\langle b \rangle, \langle b \rangle$)

Fig. 2. Conversion of the CTC sequence Z into the trigger sequence Z', using an example with the word "dog". The red dashed boxes and the arrows indicate the frame position of a trigger event.

$$a_{lt} = \begin{cases} \text{DotProductAttention}(\boldsymbol{q}_{l-1}, \boldsymbol{h}_t) \\ \text{ContentAttention}(\boldsymbol{q}_{l-1}, \boldsymbol{h}_t) \\ \text{LocationAttention}(\{a_{l-1}\}_{t=1}^{\tau_l}, \boldsymbol{q}_{l-1}, \boldsymbol{h}_t) \end{cases}$$

Table 4. Character error rates (CER) and word error rates (WER) of the LibriSpeech ASR task.

System Settings		CER	[%]	WER [%]		
Model	Model LM		test	dev	test	
Wiodei	Livi	[clean/other]	[clean/other]	[clean/other]	[clean/other]	
Attention(dot)	X	14.8 / 29.3	16.0 / 30.5	12.4 / 25.2	13.9 / 26.3	
Attention(cont)	X	9.6 / 24.4	8.8 / 23.8	7.4 / 21.3	7.5 / 20.6	
Attention(loc)	X	7.1 / 22.1	7.3 / 23.0	5.8 / 19.2	6.1 / 20.0	
$TA(dot, \varepsilon = 2)$	X	10.3 / 23.2	10.2 / 23.9	9.2 / 21.0	9.3 / 21.6	
$TA(cont, \varepsilon = 2)$	X	8.2 / 20.3	8.1 / 21.3	7.4 / 18.4	7.4 / 19.2	
$TA(loc, \varepsilon = 20)$	X	8.0 / 20.7	8.1 / 22.0	7.3 / 19.1	7.4 / 20.0	
Attention(dot)	/	12.6 / 28.3	14.7 / 29.6	10.1 / 22.9	12.5 / 24.3	
Attention(cont)	1	9.8 / 21.8	9.0 / 21.0	7.4 / 18.0	7.8 / 17.0	
Attention(loc)	✓	6.6 / 19.2	6.7 / 20.0	5.3 / 15.4	5.4 / 16.1	
$TA(dot, \varepsilon = 2)$	✓	9.2 / 21.3	9.1 / 22.5	7.8 / 18.7	8.0 / 19.8	
$TA(cont, \varepsilon = 2)$	✓	6.9 / 18.3	6.7 / 19.3	5.8 / 15.8	5.7 / 16.7	
$TA(loc, \varepsilon = 20)$	✓	7.1 / 19.1	7.2 / 20.5	6.2 / 17.0	6.3 / 18.3	

2.4 Chunk-Wise

Neural Transducer

(b) Neural Transducer

\$ | 人工智能前沿学生论坛

Synchronous Transformer

(a) The Structure of Synchronous Transformer and Inference Process

Synchronous Transformer

- (b) The Structure of Decoder
- (c) Output Probability Lattice

Synchronous Transformer

Table 3. Comparisons with other models (CER %).

Model	Online	Steps	Dev	Test
LAS [20]	No	U	-	10.56
Transformer	No	U	7.80	8.64
RNN-T [10]	No	T	10.13	11.82
SA-T [10]	No	T	8.30	9.30
Chunk-Flow SA-T [10]	Yes	T	8.58	9.80
Sync-Transformer	Yes	U+M	7.91	8.91

\$PPAI 人工智能前: 6学生论坛

3. Non-Autoregressive Transformer

• Autoregressive Model

© Inference Procedure

\$PPAI 人工智能前: 6学生论坛

System	Dev CER	Test CER	Real Time Factor
Baseline(Transformer)	6.0	6.7	1.44
Baseline(Kaldi nnet3)	-	8.6	-
Baseline(Kaldi chain)	- 1/	7.5	-
An et al. (2019)		6.3	-
Fan et al. (2019)	₩ <u>-</u> ,``	6.7	-
Easy first(K=1)	6.8	7.6	0.22
Easy first(K=3)	6.4	7.1	0.22
Mask-predict(K=1)	6.8	7.6	0.22
Mask-predict(K=3)	6.4	7.2	0.24
A-FMLM(K=1)	6.2	6.7	0.28
A-FMLM(K=2)	6.2	6.8	0.22

© Spike-Triggered Non-Autoregressive Transformer

© Spike-Triggered Non-Autoregressive Transformer

Figure 2: The analysis of the predicted length. The histogram shows the difference between the target length and the predicted length.

(a) The realtionship bettween trigger and word boundaries

(b) Attention mechanism visualization

© Spike-Triggered Non-Autoregressive Transformer

Table 3: Compare with other models in performance and realtime factor.

Model	DEV	TEST	RTF
TDNN-Chain (Kaldi) [21]	14	7.45	-
LAS[22]	7/-	10.56	-
Speech-Transformer *	6.57	7.37	0.0504
SA-Transducer † [16]	8.30	9.30	0.1536
SAN-CTC * [23]	7.83	8.74	0.0168
Sync-Transformer † [24]	7.91	8.91	0.1183
NAT-MASKED * [11]	7.16	8.03	0.0058
ST-NAT(ours)	6.88	7.67	0.0056
ST-NAT+LM(ours)	6.39	7.02	0.0292

^{*} These models are re-implemented by ourselves according to the papers.

[†] We supplement the RTF of our previous two models.

4. Conclusion

• There is still a lot of room to improve for the streaming end-to-end models.

• Non-Autoregressive Transformers can achieve a comparable performance with the autoregressive transformer.

Thanks

