

Deep Learning

Redes Neuronales con TensorFlow

Agosto 31

Tensores

Deep Learning

Redes Neuronales con TensorFlow

Agosto 31

Tensores

- Tensores
- Código en TensorFlow
 - Indexación

scalar = tf.constant(7)

vector = tf.constant([7,8])


```
matrix = tf.constant([[7, 8], [9, 10]])
```


tf.constant(numpy_arange(1,61), shape=(3,4,5))

1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	

					$/\!\!/$
21	22	23	24	25	
26	27	28	29	30	
31	32	33	34	35	
36	37	38	39	40	

					$\overline{/}$
41	42	43	44	45	
46	47	48	49	50	
51	52	53	54	55	
56	57	58	59	60	

E = tf.constant(numpy_arange(1,61), shape=(3,4,5))

1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	

21	22	23	24	25	
26	27	28	29	30	
31	32	33	34	35	
36	37	38	39	40	

>> E[:2, :2]

>> E[:2, :2, :2]

>> E[2, 1]

QUESTION:

A "tensor" is one of the most basic data structures used in machine learning systems.

Let's go back to basics and focus on the fundamental characteristics of a tensor.

Which of the following are valid attributes that represent a tensor?

- Its number of axes. This attribute is also called the "rank" of the tensor.
- Its cardinality. This attribute represents the numerical relationship between the axes of the tensor.
- Its shape. This attribute represents the number of elements along each dimension.
- Its data type. This attribute represents the type of values contained in the tensor.

ANSWER:

Which of the following are valid attributes that represent a tensor

- Its number of axes. This attribute is also called the "rank" of the tensor.
- Its cardinality. This attribute represents the numerical relationship between the axes of the tensor.
- Its shape. This attribute represents the number of elements along each dimension.
- Its data type. This attribute represents the type of values contained in the tensor.

Explanation:

Three primary attributes define a tensor:

Its rank, or the number of axes.

Its shape, or the number of dimensions.

Its data type, or the type of data contained in it.

The rank of a tensor refers to the tensor's number of axes. Examples:

Rank of a matrix is 2.

Rank of a vector is 1.

Rank of a scalar is 0.

The shape of a tensor describes the number of elements along each dimension. Examples:

- () scalar
- (2,) vector
- (3, 2) matrix
- (3, 2, 5) 3D tensor

Referencias

■ Foto de portada: Joshua Hoehne

GRACIAS

emilio.sandpal@gmail.com

