EE5311 Tutorial_3 Report

L.Pradeep EE22B074

Consider the static CMOS inverter shown below. It drives another identical inverter. The input V_{in} is a pulse between 0 and V_{DD} , with a rise and fall time equal to 5 ps and a pulse width of 250 ps. The output is V_{out} .

(a) Set $V_{DD}=1.8V$. Assume that $L_n=L_p=0.15\,\mu\mathrm{m}$ and $W_n=0.42\,\mu\mathrm{m}$. Obtain the delay for $W_p=0.42\,\mu\mathrm{m},0.84\,\mu\mathrm{m},1.26\,\mu\mathrm{m}$.

w=0.42um	w=0.84um	w=1.26um
2.18e-11 s	1.99e-11 s	2.11e-11 s

Optimal width for less delay is 0.84 um

Width = 0.42um


```
Circuit: ** sch_path: /howe/ee22b074/ee5311/tutorial_3/parta,sch
Reset re-loads circuit ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta.sch
Circuit: ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta,sch
Doing analysis at TEMP = 27,000000 and TNOM = 27,000000
Using SPARSE 1.3 as Direct Linear Solver
Initial Transient Solution
                                             Voltage
Node
vdd
                                                 1.8
vin
                                                    0
                                                 1.8
vout
                                        4.53092e-08
net1
vin1#branch
vdd1#branch
                                       -1.81498e-11
Reference value : 0.00000e+00
No. of Data Rows : 2520
                      = 1,277011e-11 targ= 2,527011e-11 trig= 1,250000e-11
= 3,088289e-11 targ= 1,483829e-10 trig= 1,175000e-10
thl
tlh
w : 0.42 delay : 2.18265E-11
ngspice 7 -> ■
```

Width = 0.84um

Circuit: ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta.sch

Reset re-loads circuit ** sch_path; /home/ee22b074/ee5311/tutorial_3/parta.sch

Circuit: ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta.sch

Doing analysis at TEMP = 27,000000 and TNOM = 27,000000

Using SPARSE 1.3 as Direct Linear Solver

Initial Transient Solution

Node	Voltage
vdd	1.8
vin	0
vout	1.8
net1	6,71229e-07
vin1#branch vdd1#branch	0 -2.43518e-10

```
Reference value : 0,00000e+00
No. of Data Rows : 2520
```

thl = 1.822964e-11 targ= 3.072964e-11 trig= 1.250000e-11 tlh = 2.167976e-11 targ= 1.391798e-10 trig= 1.175000e-10 w : 0.84 delay : 1.99547E-11 ngspice 7 ->

Width = 1.26um


```
Note: No compatibility mode selected!
Circuit: ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta.sch
Reset re-loads circuit ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta.sch
Circuit: ** sch_path: /home/ee22b074/ee5311/tutorial_3/parta.sch
Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
Using SPARSE 1.3 as Direct Linear Solver
Initial Transient Solution
Node
                                              Voltage
vdd
                                                   1.8
vin
                                                   1.8
vout
                                         9.60947e-07
net1
vin1#branch
vdd1#branch
                                        -3.47833e-10
Reference value : 0,00000e+00
No. of Data Rows : 2520
thl = 2,3273336
tlh = 1,8965776
                       = 2,327333e-11 targ= 3,577333e-11 trig= 1,250000e-11
= 1,896577e-11 targ= 1,364658e-10 trig= 1,175000e-10
```

w : 1.26 delay : 2.11195E-11 ngspice 7 -> ■ (b) Set W_p so that delay is minimised. Plot the delay as a function of V_{DD} for $V_{DD} = 1$ V to 1.8V in steps of 0.1V. How does it compare with analytical estimates?

Delay vs vdd graph

$$\frac{d}{d} = \frac{d}{d} \frac{d}{d} = \frac{d}{d} \left(\frac{d}{d} \right) + \frac{d}{d} \left(\frac{d}{d} \right) + \frac{d}{d} = \frac{d}{d} \left(\frac{d}{d} \right$$

$$\frac{\partial bp}{\partial w_p} = 0 \quad \Rightarrow \frac{\partial}{\partial w_p} \left(\frac{\partial}{\partial w_p} + \frac{\partial}$$

CS Scanned with CamScanner

$$w_{p} = \sqrt{\frac{\mu_{n} G_{NN}}{\mu_{p} G_{NN}}} \quad w_{n} = \sqrt{\frac{25 \times 834}{9 \times 816}} \quad w_{p} = (2.83 \times 0.42)$$

$$= 1.68 \times 0.42$$

$$\approx 0.70 \approx 0.84 \mu m$$

Analytical Expectation:

From delay models, the propagation delay TP of a CMOS inverter is approximately given by:

$$\tau p = k*VDD/(VDD-VT)^2$$

For sufficiently large VDDV, the dominant term simplifies to: $\tau p \approx 1/VDD$

Thus, we expect delay to decrease as VDD increases, following an inverse relationship.

(c) Plot the measured and estimated energy-delay product as a function of V_{DD} . What is the optimum V_{DD} ?

Energy delay product (EOP)

EDP = PDP×6p =
$$\frac{1}{2}CV_{DO}^{2}$$
-tp

How does this vary with V_{DD} ?

For simplicity , but = tphi (assumption)

tp $\alpha \frac{V_{DO}(E_{CL} + V_{DO} - V_{T})}{(V_{DO} - V_{T})^{2}}$

EDP $\alpha \frac{V_{DO}(E_{CL} + V_{DO} - V_{T})}{(V_{DO} - V_{T})^{2}}$
 $\alpha \frac{\partial EDP}{\partial V_{PO}} = 0 \Rightarrow V_{DO} = \frac{5}{4}V_{T} - E_{CL} + \frac{\sqrt{(5V_{T} - E_{CL})^{2} + 24V_{T}(E_{CL} - V_{T})}}{4}$
 $\alpha \approx 1.4V$

Blue line in estimated and redone is measured values of energy delay products

CS Scanned with CamScanner

