课程编号: 07000131

北京理工大学 2008-2009 学年第二学期

数学分析 B(下)期末试题(A卷)

班级	学号	姓名
----	----	----

(本试卷共5页, 九个大题)

 (/1/6/18/18/19/19/19/19/19/19/19/19/19/19/19/19/19/											
题号	1	1.1	[11]	四	五	六	八	八	九	总分	
得分											
签名											

- 一. 填空(每小题 4 分, 共 28 分)
- 1. 已知直线 $L: \frac{x-1}{3} = \frac{y+1}{2} = \frac{z-4}{n}$ 与平面 $\pi: 2x-y+z=5$ 平行,则 $n = \underline{\hspace{1cm}}$,直线 L 到平面 π 的距离 $d = \underline{\hspace{1cm}}$.

此积分的值I =______.

- 5. 曲线 $y = x^2$ 与直线 y = 1 围成一均匀薄片 D,其面密度 $\mu = 1$,则 D 的质量 m = 2 质心坐标为_____.
- 6. 设 $f(x) = \begin{cases} x & 0 \le x < \frac{\pi}{2} \\ 1 & \frac{\pi}{2} \le x < \pi \end{cases}$, $\sum_{n=1}^{\infty} b_n \sin nx$ 是 f(x) 的以 2π 为周期的正弦级数, S(x) 是此

7. 设曲线 $L: x^2 + y^2 = R^2$, 则 $I = \oint_L (3x^2 + 5y^2 + 2x\cos y + 5\sin y + 4)dl = _____.$

二. (8 分) 求曲面 $S: xyz = a^2$ (其中 x, y, z > 0)上点 M(x, y, z) 处的法向量 \vec{n} 以及曲面 S 在点 M 处的切平面与三坐标面所围立体的体积.

三. (9 分) 求级数 $\sum_{n=1}^{\infty} n(\frac{x+1}{2})^n$ 的收敛域及和函数.

四. (9 分) 设 V 是曲面 $x^2+y^2+z^2=2z$ $(z\geq 1)$ 与 $z=\sqrt{x^2+y^2}$ 所围成的有界闭区域,计算积分 $I=\iiint_V \sqrt{x^2+y^2+z^2} dV$.

五. (10 分) 设 $f(x,y) = x^2y + y^3 - y$, 求 f(x,y) 的极值点和极值.

六. (10 分) 已知沿平面任意闭曲线 L, 都有 $\int_L (2xy + \varphi(y))dx + (x-y)^2 dy = 0$, 且 $\varphi(0) = 1$, 求 $\varphi(y)$ 的表达式及积分 $I = \int_{(0,0)}^{(1,2)} (2xy + \varphi(y))dx + (x-y)^2 dy$ 的值.

七. (8 分) 将
$$f(x) = \begin{cases} \frac{x^2 + 1}{x} \ln(1 + x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 展成 x 的幂级数, 并指出收敛域.

八. (9 分) 设 S 是曲面 $z=\sqrt{x^2+y^2}$ $(1\leq z\leq 2)$ 的下侧,利用高斯公式计算曲面积分 $I=\iint_S x^3 dy dz+y^3 dz dx+(z+1) dx dy \, .$

九. (9 分) 设函数 f(x) 在 x = 0 的某邻域内有二阶导数,且 $\lim_{x \to 0} \frac{f(x)}{x} = a \ (a \ge 0$ 为实数), 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{n})$ 的敛散性,若收敛指出是条件收敛还是绝对收敛.