「ブロックチェーン技術概論 理論と実践」(第1刷)正誤表

最新情報は、サポートページ(https://github.com/blockchain-programming/book2021)をご覧ください.

2022 年 8 月 16 日時点

ページ	場所	誤	正	
v.	一番下の行	(一番下の行に追加)	4.6 秘密計算·······102	
22	上から1行目	計算コストと考えます。	計算コスト*6と考えます。	
23	上から7行目	小さくなります。	大きくなります。	
31	上から 11–12 行目	メカニズム使用した	メカニズムを使用した	
54	上から 11 行目	1996 年	1994年	
70	下から2行目	誤:https://cryptorating.eu/whitepapers/イーサリアム/イーサリアム_white_paper.pdf		
	(参考文献 [2])	$\hbox{$\mathbb{E}$: $\tt https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf}$		
75	上から 16, 19, 22 行目	生成限 g	生成元 g	
93	上から 10 行目	公開鍵暗号と使って	公開鍵暗号を使って	
99	上から 6–8 行目	誤: R については楕円曲線離散対数問題が困難であるという前提から rG の r を知ることは不可能とし, $s=(r+ed) \bmod n$ と $s=r$		
		が同じエントロピーをもつことを考えると検証者にはこの2つの確率変数はともに乱数と区別できません。したがってゼロ知識性		
		正:楕円曲線離散対数問題が困難であるという前提から, $R=rG$ から r を知ることや $eP=edG$ から ed を知ることは不可能です。		
		$s = (r + ed) \bmod n$ と $s = r$ の s は確率変数として区別できないので ed はわかりません。したがって d に関するゼロ知識性		
100	下から2行目	誤:対偶をとれば「間違った命題は証明できない」ということになります。		
		正:対偶をとると「偽なる命題は証明によって否定される」ことになります。		
102	下から9行目	秘密計算	4.6 秘密計算	
103	上から9行目	ブラックリーの (t,n) しきい値秘密分散法の例	ブラックリーの (t,n) しきい値秘密分散法の簡単な例	

ページ	場所	誤	正
103	上から 10 行目	してみましょう。	してみましょう(図 4.14)。
103	下から4行目	誤:ブラークリーの (t,n) しきい値秘密分散法は,空間の次元を変えることで,	
		正:ブラークリーの (t,n) しきい値秘密分散法では,シェアを秘密情報の点 s とランダムな点 r を通る t 次元空間の中の $(t-1)$ 次元超平面	
		とすることで、	
121	上から6行目	ビットコインの	ビットコインを
130	上から3つ目のコード	誤:(実行結果が途中で切れています)	
		正:サポートページ(https://github.com/blockchain-programming/book2021)に完全版を掲載しています.	
134	下から 3 行目	2140年	2141 年ごろ
134	下から 2 行目	$210000\mathrm{btc}$	$21000000\mathrm{btc}$
134	下から1行目	$210000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$	$21000000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$
135	上から 11, 15 行目	係数	係数(のリトルエンディアン)
		誤:0x 00000000 0004864c 00000000 00000000 00000000 00000000 0000	
135	上から 16 行目	誤:0x 00000000 0004864c 00000000 00000000 0	00000000 00000000 00000000 00000000
135	上から 16 行目	誤: 0x 00000000 0004864c 00000000 00000000 0 正: 0x 00000000 004c8604 00000000 00000000 0	
135	上から 16 行目 表 6.8 の説明		
		正: 0x 00000000 004c8604 00000000 00000000 0	00000000 00000000 00000000 00000000
151	表 6.8 の説明	正: 0x 00000000 004c8604 00000000 00000000 (行は前半 2 ビットで後半 3 ビット)	00000000 00000000 00000000 00000000 (行は前半 2 ビットで,列は後半 3 ビット)
151 151	表 6.8 の説明 上から 13 行目	正: 0x 00000000 004c8604 00000000 000000000 (行は前半 2 ビットで後半 3 ビット) ファーマット	00000000 00000000 00000000 00000000 (行は前半 2 ビットで,列は後半 3 ビット) フォーマット
151 151 167	表 6.8 の説明 上から 13 行目 上から 7 行目	正: 0x 00000000 004c8604 00000000 000000000 (行は前半 2 ビットで後半 3 ビット) ファーマット ゲーム論	00000000 00000000 00000000 00000000 (行は前半 2 ビットで、列は後半 3 ビット) フォーマット ゲーム理論
151 151 167 168	表 6.8 の説明 上から 13 行目 上から 7 行目 上から 7 行目	正: 0x 00000000 004c8604 00000000 00000000 (行は前半 2 ビットで後半 3 ビット) ファーマット ゲーム論 ゲーム論	00000000 00000000 00000000 00000000 (行は前半 2 ビットで、列は後半 3 ビット) フォーマット ゲーム理論 ゲーム理論
151 151 167 168 221	表 6.8 の説明 上から 13 行目 上から 7 行目 上から 7 行目 下から 1 行目	正: 0x 00000000 004c8604 00000000 00000000 (行は前半 2 ビットで後半 3 ビット) ファーマット ゲーム論 ゲーム論 ZK-Rolleup	00000000 00000000 00000000 00000000 (行は前半 2 ビットで、列は後半 3 ビット) フォーマット ゲーム理論 ゲーム理論 ZK-Rollups
151 151 167 168 221 224	表 6.8 の説明 上から 13 行目 上から 7 行目 上から 7 行目 下から 1 行目 上から 20 行目	正: 0x 00000000 004c8604 00000000 00000000 00000000 (行は前半 2 ビットで後半 3 ビット) ファーマット ゲーム論 ゲーム論 ZK-Rolleup Locked	00000000 00000000 00000000 00000000 (行は前半 2 ビットで,列は後半 3 ビット) フォーマット ゲーム理論 ゲーム理論 ZK-Rollups

ページ	場所	誤	正
351	上から6行目	$\{(x,y)\mid x,y\in GF(p)\}\cup\{(\infty,\infty)\}$	$\{(x,y)\mid x,y\in GF(p)\}\cup\{(\infty,\infty)\}$. ここで (∞,∞) は無限遠点 O.
352	上から9行目	$(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - y_1) + y_1)$	$(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - x_1) + y_1)$