

Binomial	1-1eap:
A Bin	nomial heap is a forest of 1. binomial trees of distinct height 2. each of which is in heap order
A Bi	rumial heap with 6 nodes 6: binary 110 Rz B, Boxo.
# +	Trees in a binomial heap with nodes = log_2^n Their height log_2^n with nodes = log_2^n $20+2^1+\cdots+2^K=n$
findm	in. : $O(\log n)$: compare routs $O(1)$ get a point point minimum.
Inserti	Fon: B_1 A_2 A_3 A_4 A_4 A_4 A_5 A_6 A_7 A_8 A_1 A_7 A_8 A_1 A_8 A_1 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_4 A_4 A_5 A_7 A_8 A_1 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_4 A_4 A_5 A_7 A_8 A_1 A_1 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_4 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_4 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_4 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_4 A_5 A_7 A_8 A_1 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_5 A_7 A_8 A_1 A_1 A_2 A_3 A_4 A_4 A_4 A_5 A_5 A_7 A_8 A_1 A_1 A_2 A_1 A_2 A_3 A_4 A_4 A_5 A_5 A_7
ins c	9)

5 i=	ì+l																
0 (#	(ombi)	ies)		0 ((# e	tre ach	es - cum	in	M	t 1 deco	012	<i>=</i> #	tree) (foc 2	72 ^M ,)	
Merge 1-1:	12	24				B)	S			ß	Ο,						
1-12;	Ž	3	24			14	b 26				/0,						
(j)		mbine		b. (a		d +:		e									
// 0	on	A		[]				110	2	2							

merge (1-11, 1-12) 1. for i=0 to max { II trees in H, II trees in H2}
2. If there are more than one trees of height i
3. combine them into a Bitt 0 (# trees in H1+" " in Hz) = 0 (19n1+19n2) = 0(19n) Deletemin. ond ger a new H' with Bo B1 B2 Merge 1-1 with T2 decetemin (H) (efemin (11) 1. find the BK than contain) the min (04) 2. H= H-BK (1) 3. H'= BK - root (04) = 01/5n) (delese & porners) 4. Merge (H, N')

decheas	ekey (x,t)
	O(K) = O(1091) Percolate Leight times.
Deletion	doveasemin $(X, -\infty)$ + deletemin $O((09n)$
make	heap (K1, Kn)
	1. $H(\phi)$ 2. for i=1 to n. $O(nlogn)$ 3 insert (H, Ki)
	insert (H, Ki) not right
	ing with empty heap n consecutive insertions take tome in total.
Proof 1.	$O(\pm combines) = O(-\frac{2}{2}, \frac{r}{4}, \dots)$
	$= \mathcal{O}(n)$
	U(H) = # troes in H U(Ampty) =0
	actual cost = $[+ # combines]$ $\Delta \Psi = [- # combines]$

amortized volt = 2. B3 left child-) next sibling Inverted. File Index 相交·、 $O(n_1+n_3)+O(n_1+n_3)+\cdots+O(n_1+n_k)$ = $O(kn_1+\sum_{i=1}^{K}n_{ik})$ = $O(\sum_{i=1}^{K}n_{ik})$ =) (おけ)
(人を句 7月23り.