Problem-set-12
1) Determine the value of $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} (x,n)^n$
Converges.
\mathcal{N}_{-}^{n}
Cauchy's root test,
I fant 'n < convergent. San - absolutely convergent. Divergent for d> 1.
Divergent for d> 1.
(an) 'n = xn > For convergent -> [_] < -
$\frac{1}{n+1} \left \frac{dn}{dn} \right \xrightarrow{n \to \infty} dn$

or Convergent for $1 \times 1 < 1$ Div. for $1 \times |x| > 1$.

VE

2] Consider Zan, an >0 4 n. Prove / disprove ->
(a) If and <1 & n, series converges.

Som > Take an = \(\hat{n} \) = \(\frac{an+1}{an} = \frac{an}{n+1} \) = \(\frac{n}{n+1} \) \(\frac{n}{n

(b) If ant 1 > 1 & n, series diruges.

Since ant > 1 = an / 0.

Hence, Zan is dirergent.

(3) Show 1+1 + 1 + 1 + 1 + 1 + 1 + - converges. I show the root lest & ratio lest are not applicable.

Obtain et ratio; it is alternating for diff-terme of the

Condense State Condense Continue (State Condense)

We to the second of the second

The wife the

L< 101 (0)

Hence satto lest falls. Root test fails, since

by Comparism test

4] consider the rearranged GM 162+1+1+1+1-
suro that the series converges by me root lost & mat vato lest is not applicable.
vato lest is not applicable.
(n) \rightarrow n^{thete} $a_n = \sum_{n=1}^{\infty} n \cdot n \cdot n \cdot dd$
2n-2 n: even.
- me consecutive socio de alternationa pre la 2
ratio test is not applicable. In SI, n= odd
Hurseller by root test -s and in
Horsever by root text -s an'n
$= \frac{1}{1}$, $= \frac{1}{1}$, $= \frac{1}{1}$
Hence, by soot tost -> an'n -> 1/2
(and) 1/2
3 Convergent
(a) If I an X R bn converges absolutely show that
Zanba converges absolutely
(a) If Σ an L Σ bn converges absolutely, show that Σ and converges absolutely. Soll - 'Ibn is conv - bn - 0. > bn/< E.
10 hal Elant eventually.
-8 Ianbn / Etan / convergent.
convergent.
By Comparison tost / laubal converges abstructely.

(b) Zan Convergent absolutely.; (bn) - Breund ed segn suro lanbul com. Son > : (bn) is a bounded seg", [bn] < M for som M. 28 laubn | M | an | convergent. " By comp. test. (C) Example of a conv. series $\sum a_n 2_n (b_n)$ s.t.

Zanbn diverges.

Sol = Qu==1, 7 bn 2 (-1) n, oscillatory seg 7 aubn=1.) Div. series (6) In each of the following cases, discuss the complaint of Zan, where an = 0 of Zan, where an 20 (a) $\frac{n!}{n^n}$ Converges by roction test.

and intly not into the st.

(n+1)!

(n+1) n+1 × nt = (n+1) n+1 = (n+1) n+1

(d)
$$\frac{n^2 2^n}{[2n+1)[}$$

Converges by matio test..

$$\left(\frac{1}{3}\right)^{\frac{2}{3}}\left(1+\frac{1}{4}\right)^{\frac{2}{3}}$$

Converges by root test: 3 and $\frac{e}{3} < 1$.

$$(g)$$
 $sin(-1)^n \choose n^p)$, $p>0$.

Theibniz test >

Then (-1) an

$$\frac{1}{2^{n}-n}$$

(°1)
$$(-1)^n (\ln n)^3$$

1 Leibnin (Ext i conv.)

The flat is a conv.

$$If f(a) = (\ln x)^3$$

$$f'(a) (0 \forall x) e^3$$

Converges assortely by root test

$$\frac{2^n + n^2 - \ln n}{n!}$$

$$(m)$$
 $\left(1+\frac{2}{n}\right)^{n^2-\sqrt{n}}$

$$50^{2}$$
, $\sqrt{1}$ $\sqrt{2}$ $\sqrt{2}$

(h)
$$n^2(2\pi + (1)^n)^n$$

$$\frac{50^{2}}{10^{n}}$$

$$\frac{n^{2}(2\kappa+4)^{n}}{10^{n}}$$

Apply Ratio test.