Analysis 2 - Concise Notes

MATH50001

Term 1 Content

Arnav Singh

Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue Content from MATH40002 assumed to be known.

Contents

1		erentiation in Higher Dimensions
	1.1	Euclidean Spaces
		1.1.1 Preliminaries
		1.1.2 Euclidean space of dim. n
		1.1.3 Convergence of Sequences in Euclidean Spaces
	1.2	Continuity
		1.2.1 Open sets in Euclidean Spaces
		1.2.2 Continuity at a point/on an open set
	1.3	Derivative of a map of Euclidean Spaces
		1.3.1 Derivative of a linear map
		1.3.2 Chain Rule
	1.4	Directional Derivatives
		1.4.1 Rates of change and Partial Derivatives
		1.4.2 Relation between partial derivatives and differentiability
	1.5	Higher Derivatives
	1.0	1.5.1 Higher derivatives as linear maps
		1.5.2 Symmetry of mixed partial derivatives
		1.5.3 Taylor's Theorem
	1.6	Inverse & Implicit Function Theorem
	1.0	1.6.1 Inverse Function Theorem
		1.6.2 Implicit Function Theorem
		1.6.4 Implicit Function Theorem - General Form
		1.0.4 Implicit runction Theorem - General Porm
2	Met	tric and Topological Spaces
	2.1	Metric Spaces
		2.1.1 Motivation + Definition
		2.1.2 Examples of metrics
		2.1.3 Normed Vector Spaces
		2.1.4 Open sets in metric spaces
		2.1.5 Convergence in Metric Spaces
		2.1.6 Closed sets in metric spaces
		2.1.7 Interior, isolated, limit, and boundary points in metric spaces
		2.1.8 Continuous maps of metric spaces
	2.2	Topological Spaces
	2.2	2.2.2 Topology on a set
		2.2.3 Convergence, and Hausdorff property
		2.2.4 Closed sets in topological spaces
		2.2.5 Continuous maps on topological spaces
	2.3	Connectedness
	2.3	2.3.1 Connected sets
		1 .
	0.4	2.3.3 Path Connected Sets
	2.4	Compactness
		2.4.1 Compactness by covers
		2.4.2 Sequential Compactness
	2 -	2.4.3 Continuous maps + Compact Sets
	2.5	Completeness
		2.5.1 Complete metric spaces Banach space
		2.5.2 Arzelà-Ascoli
		2.5.3 Fixed point theorem

1 Differentiation in Higher Dimensions

1.1 Euclidean Spaces

1.1.1 Preliminaries

Definition - Modulus Function

$$|x| := \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Having the following properties:

- (i) $\forall x \in \mathbb{R}, |x| \ge 0, |x| = 0 \iff x = 0$
- (ii) $\forall x, y \in \mathbb{R}, |xy| = |x||y|$
- (iii) $\forall x, y \in \mathbb{R}, |x+y| \le |x| + |y|$ (Triangle inequality)

1.1.2 Euclidean space of dim. n

Define - Euclidean Space of dim. n, \mathbb{R}^n

Defined as the set of ordered *n*-tuples (x^1, \ldots, x^n) , s.t each $x^i \in \mathbb{R} \forall i$ \mathbb{R}^n a vector space.

Define - Inner Product, $\langle \cdot, \cdot \rangle$, : $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

$$\langle (x^1, x^2, \dots, x^n), (y^1, y^2, \dots, y^n) \rangle = \sum_{i=1}^n x^i y^i$$

Define - Norm/Lengths, $||\cdot||: \mathbb{R}^n \to \mathbb{R}$

$$||x|| = \sqrt{\langle x, x \rangle}$$

Having the following properties:

- (i) $\forall x \in \mathbb{R}^n, ||x|| \ge 0, ||x|| = 0 \iff x = \vec{0}$
- (ii) $\forall \in \mathbb{R}, x \in \mathbb{R}^n ||\lambda x|| = |\lambda|||x||$
- (iii) $\forall x, y \in \mathbb{R}^n, ||x+y|| \le ||x|| + ||y||$ (Triangle inequality)

Definition - Cauchy-Schwartz Inequality

$$|\langle x, y \rangle| \le ||x|| ||y||$$

1.1.3 Convergence of Sequences in Euclidean Spaces

Definition - Sequence in \mathbb{R}^n

An infinite ordered list, $x_0, x_1, \ldots, s.t \ x_i \in \mathbb{R}^n \ \forall i.$ Denoted $(x_i)_{i \geq 1}$ or $(x_i)_{i \in \mathbb{N}}$

Definition 1.1 - Convergence

A seq. $(x_i) \in \mathbb{R}^n$ converges to $x \in \mathbb{R}^n$ if $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall i \geq \mathbb{N}, ||x_i - x|| < \epsilon$ Corollary

seq. $(x_i) \in \mathbb{R}^n$ converges to $x \in \mathbb{R}^n \iff$

For
$$x_i = (x_i^1, \dots, x_i^n)$$
 and $x = (x^1, \dots, x^n)$
 $x_i \to x \iff \forall k \ x_i^k \to x^k \text{ as } i \to \infty$

1.2 Continuity

1.2.1 Open sets in Euclidean Spaces

Definition - Open Ball

Open ball of radius r is

$$B_r(x) = \{ y \in \mathbb{R}^n : ||x - y|| < r \}$$

Definition 1.2 - Open sets

A set $U \subseteq \mathbb{R}^n$ is called **open**, if

 $\forall x \in U, \exists r > 0 \text{ such that} B_r(x) \subseteq U$

1.2.2 Continuity at a point/on an open set

Definition 1.3 - Continuity at a point

Let $A \subset \mathbb{R}^n$ an open set, with $f: A \to R^n$

f continuous at $p \in A$ if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t } ||x - p|| < \delta \implies ||f(x) - f(p)|| < \epsilon$$

f is (pointwise) continuous on $A \subseteq \mathbb{R}^n \iff$ continuous $\forall p \in A$, we write f is continuous. For small enough δ , we have $f(B_{\delta}(p)) \subseteq B_{\epsilon}(f(p))$

Theorem 1.2 - Composition of continuous functions

Let $A \subseteq \mathbb{R}^n$ open, $B \subseteq \mathbb{R}^m$ open and suppose $f: A \to B$ continuous at $p \in A$, and $g: B \to \mathbb{R}^l$ continuous at f(p)

Then
$$g \circ f : A \to \mathbb{R}^l$$
 continuous at p

Definition 1.4 - Limit of a function at a point

 $A \subseteq \mathbb{R}^n$ an open set. f a function $f: A \to \mathbb{R}^m$, with $p \in A$ and $q \in \mathbb{R}^m$

Say $\lim_{x\to p} f(x) = q$ if $\forall \epsilon > 0, \exists \delta > 0$ s.t $\forall x \in A$ with $0 < ||x-p|| < \delta$ we have $||f(x)-p|| < \epsilon$

$$f$$
 continuous at $p \iff \lim_{x \to p} f(x) = q$

Theorem 1.3 - Algebra of Limits

Suppose $A \subseteq \mathbb{R}^n$ open, with $p \in A$ and $f, g : A \to \mathbb{R}^n$

$$\lim_{x \to p} f(x) = F \text{ and } \lim_{x \to p} g(x) = G$$

Then:

(i)
$$\lim_{x\to p} (f(x) + g(x)) = F + G$$

(ii)
$$\lim_{x\to p} (f(x)g(x)) = FG$$

(iii) If,
$$G \neq 0$$
 then $\lim_{x\to p} \frac{f(x)}{g(x)} = \frac{F}{G}$

1.3 Derivative of a map of Euclidean Spaces

1.3.1 Derivative of a linear map

Lemma 1.5

The map $f:(a,b)\to\mathbb{R}$ differentiable at $p\in(a,b)\iff\exists$ map of the form $A_{\lambda}(x)=\lambda(x-p)+f(p)$ for some $\lambda\in\mathbb{R}$ s.t

$$\lim_{x \to p} \frac{|f(x) - A_{\lambda}(x)|}{|x - p|} = 0$$

Notation

h[v] for h a linear map, v a vector

h(v) h a map, v a point in domain of h

 $L(\mathbb{R}^n; \mathbb{R}^m)$ – Set of linear maps from $\mathbb{R}^n \to \mathbb{R}^m$

Definition 1.5 - Derivative in higher dimension

Suppose $\Omega \subset \mathbb{R}^n$ open. The map $f: \Omega \to \mathbb{R}^m$ differentiable at $p \in \Omega$ if \exists a linear map $\Lambda \in L(\mathbb{R}^n; \mathbb{R}^m)$ such that

$$\lim_{x\to p}\frac{||f(x)-(\Lambda[x-p]+f(p))}{||x-p||}=0$$

We write

$$Df(p):=\Lambda$$

Calling Df(p) the derivative of f at p Λ a $m \times n$ matrix called the **Jacobian**

Lemma 1.6 - Differentiable then continuous

 $\Omega \subset \mathbb{R}^n$ open, $f: \Omega \to \mathbb{R}^m$ differentiable at $p \in \Omega \implies f$ continuous at p

Theorem 1.7 - Uniqueness of Derivative

The derivative, if it exists, is unique

1.3.2 Chain Rule

Chain rule in \mathbb{R}

 $f,g:\mathbb{R}\to\mathbb{R},g$ differentiable at p,f differentiable at g(p) Then $f\circ g$ differentiable at p with

$$(f \circ g)'(p) = f'(g(p))g'(p)$$

Theorem 1.8 - Chain rule in higher dim.

 $\Omega \subset \mathbb{R}^n$ open, $\Omega' \subset \mathbb{R}^m$ open

With $g: \Omega \to \Omega'$ differentiable at $p \in \Omega$, $f: \Omega' \to \mathbb{R}^l$ differentiable at $g(p) \in \Omega'$

Then $h = f \circ g : \Omega \to \mathbb{R}^l$, differentiable at p, s.t

$$Dh(p) = D(f(q(p)) \circ Dq(p)$$

1.4 Directional Derivatives

1.4.1 Rates of change and Partial Derivatives

Definition - Directional Derivative

The directional derivative of f at p in the direction v is

$$\frac{\partial f}{\partial v}(p) := \lim_{t \to 0} \frac{1}{t} [f(p+vt) - f(p)] = Df(p)[v]$$

Definition - Partial derivatives

We can find any directional derivative at p, given we know the partial derivatives of f

$$D_i f(p) = \frac{\partial f}{\partial e_i}(p)$$

In \mathbb{R}^3 we have,

$$Df(p)[v] = \begin{pmatrix} D_1 f(p) & D_2 f(p) & D_3 f(p) \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix}$$

Definition - Gradient

Gradient of f at p

$$\nabla f(p) = \begin{pmatrix} D_1 f(p) \\ D_2 f(p) \\ D_3 f(p) \end{pmatrix} \qquad Df(p) = (\nabla f(p))^t$$

Theorem 1.9 - Jacobian

Suppose $\Omega \subset \mathbb{R}^n$ open and $f:\Omega \to \mathbb{R}^m$ of the form

$$f(x) = (f^1(x), f^2(x), \dots, f^m(x))$$

If f differentiable for some $p \in \Omega$ Then Jacobian of f at p is:

$$Df(p) = \begin{pmatrix} D_1 f^1(p) & \dots & D_n f^1(p) \\ \vdots & \ddots & \vdots \\ D_1 f^m(p) & \dots & D_n f^m(p) \end{pmatrix}$$

1.4.2 Relation between partial derivatives and differentiability

Theorem 1.12

Let $\Omega \subset \mathbb{R}^n$ open, $f: \Omega \to \mathbb{R}$. Suppose the partial derivatives:

$$D_i f(x) := \lim_{t \to 0} \frac{f(x + te_i - f(x))}{t}$$

exist $\forall x \in \Omega$, with each map $x \mapsto D_i f(x)$ continuous at $p, \forall i \Longrightarrow f$ is differentiable at p

1.5 Higher Derivatives

1.5.1 Higher derivatives as linear maps

Can think of the differential of f, Df(p) as a map

$$Df: \Omega \to L(\mathbb{R}^n; \mathbb{R}^m) = \Omega \to \mathbb{R}^{mn}$$

$$p \mapsto Df(p)$$

if map Df is continuous $\implies f: \Omega \to \mathbb{R}$ is continuously differentiable

Definition - Higher derivative

If $Df: \Omega \to \mathbb{R}^{mn}$ differentiable at p, denote derivative of Df as $DDf(p): \mathbb{R}^n \to \mathbb{R}^{nm}$

$$DDf(p) \in L(\mathbb{R}^n; \mathbb{R}^{nm}) = L(\mathbb{R}^n; L(\mathbb{R}^n; \mathbb{R}^m))$$

Where DDf(p) is a linear map $\mathcal{L} \in L(\mathbb{R}^n; L(\mathbb{R}^n; \mathbb{R}^m))$, satisfying:

$$\lim_{x \to p} \frac{||Df(x) - Df(p) - \mathcal{L}[x - p]||}{||x - p||} = 0$$

DDf(p) takes an n-vector to a $m \times n$ matrix

Definition - Continuously differentiable

 $f: \Omega \to \mathbb{R}^m$ is k-times differentiable with all continuous derivatives $\implies f$ is k-times continuously differentiable Testing for k-times differentiability

For $f = (f^1(x), f^2(x), \dots, f^m(x))$

If f differentiable at $p \in \Omega \implies$ we have partial derivatives $D_i f^j : \Omega \to \mathbb{R}$.

If Df differentiable, then 2^{nd} partial derivatives exist

$$D_k D_i f^j(p) := \lim_{t \to 0} \frac{D_i f^j(p + te_k) - D_i f^j(p)}{t}$$

Easy to check these exist and are continuous \implies k-times differentiability at p

Symmetry of mixed partial derivatives

Theorem 1.13 - Schwartz' Theorem

Suppose $\Omega \subset \mathbb{R}^n$ open and $f:\Omega \to \mathbb{R}$ differentiable $\forall p \in \Omega$

Suppose also, for $i, j \in \{1, ..., n\}$, 2^{nd} partial derivatives $D_i D_j f$ and $D_j D_i f$ exist and are continuous $\forall p \in \Omega$

$$\forall p \in \Omega, D_i D_j f(p) = D_j D_i f(p)$$

Definition - Hessian

The matrix of 2^{nd} partial derivatives at the point p

Hess
$$f(p) = [D_i D_j f(p)]_{i,j=1,...,n}$$

Schwartz' Theorem says Hess f(p) is a symmetric matrix

1.5.3 Taylor's Theorem

Definition - Multi-inidices

Multi-index $\alpha \in (\mathbb{N})^n$, $\alpha = (\alpha_1, \dots, \alpha_n)$ We define $|a| = \sum_{i=1}^n \alpha_i$ and

$$D^{\alpha} f := (D_1)^{\alpha_1} (D_2)^{\alpha_2} \dots (D_n)^{\alpha_n} f,$$

And for a vector $h = (h_1, \ldots, h_n)$

$$h^{\alpha} := (h^1)^{\alpha_1} (h^2)^{\alpha_2} \dots (h^n)^{\alpha_n}$$

Also

$$\alpha! := \alpha_1! \alpha_2! \dots \alpha_n!$$

helpful examples

$$D^{(0,3,0)}f(p) = D_2^3 f(p)$$

$$D^{(1,0,1)}f(p) = D_1 D_3 f(p)$$

$$(x,y,z)^{(2,1,5)} = x^2 y^1 z^5$$

Theorem 1.14 - Taylor's Theorem in higher dim.

Suppose $p \in \mathbb{R}^n$ and $f: B_r(p) \to \mathbb{R}$ a k-times continuously differentiable $\forall q \in B_r(p)$, for some $k \geq 1 \in \mathbb{N}$ Then $\forall h \in \mathbb{R}^n$ with ||h|| < r We have

$$f(p+h) = \sum_{|\alpha| \le k-1} \frac{h^{\alpha}}{\alpha!} D^{\alpha} f(p) + R_k(p,h)$$

Sum over all $\alpha = (\alpha_1, \dots, \alpha_n)$ with $|\alpha| \le k-1$ and remainder term

$$R_k(p,h) = \sum_{|\alpha|=k} \frac{h^{\alpha}}{\alpha!} D^a f(x)$$

for some x s.t 0 < ||x - p|| < ||h||Evidently

$$\lim_{h \to 0} \frac{|R_k(p,h)|}{||h||^{k-1}} = 0$$

1.6 Inverse & Implicit Function Theorem

1.6.1 **Inverse Function Theorem**

Theorem 1.15 - (Inverse Function Theorem)

Let Ω an open set in \mathbb{R}^n , $f:\Omega\to\mathbb{R}^n$ continuously differentiable on Ω , $\exists q\in\Omega$ s.t Df(q) invertible Then \exists open sets $U \subset \Omega$ and $V \subset \mathbb{R}^n, q \in U, f(q) \in V$ s.t

- (i) $f: U \to V$, a bijection
- (ii) $f^{-1}: V \to U$, continuously differentiable
- (iii) $\forall y \in V$,

$$Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}$$

1.6.2 Implicit Function Theorem

Theorem 1.16 - (Implicit Function Theorem - Simple version)

 $\Omega \subset \mathbb{R}^2$ open

 $F: \Omega \to \mathbb{R}$ continuously differentiable and $\exists (x', y') \in \Omega$ s.t

- (i) F(x', y') = 0, and
- (ii) $D_2F(x', y') \neq 0$
- $\implies \exists$ open sets $A, B \subset \mathbb{R}$ with $x' \in A, y' \in B$ with a map $f: A \to B$ s.t

$$(x,y) \in A \times B$$
 satisfies $F(x,y) = 0 \iff y = f(x)$ for some $x \in A$

with $f: A \to B$ continuously differentiable.

Definition - C^1 -diffeomorphism

 $\Omega, \Omega' \subset \mathbb{R}^n$ open.

Say $f: \Omega \to \Omega'$ a C^1 -diffeormorphism, if $f: \Omega \to \Omega'$ a bijection, continuously differentiable, and $\forall x \in \Omega, Df(x)$ invertible \mathcal{D} the set of all C^1 -diffeomorphisms from $\Omega \to \Omega$, a group under group law; composition.

1.6.4 Implicit Function Theorem - General Form

Theorem 1.17 - (Implicit Function Theorem)

 $\Omega \subset \mathbb{R}^n, \Omega' \subset \mathbb{R}^m$ open sets

 $F: \Omega \times \Omega' \to \mathbb{R}^m$ continuously differentiable on $\Omega \times \Omega'$ and sps $\exists (a,b) \in \Omega \times \Omega'$ s.t

- (i) f(p) = 0 and,
- (ii) $m \times n$ matrix

$$(D_{n+i}f^i(p)), \qquad 1 \le i, j \le m$$

invertible

 $\implies \exists$ open sets $A \subset \Omega, B \subset \Omega'$ with $a \in A, b \in B$ with a map $g: A \to B$ s.t

$$g(x,y) = 0$$
 for some $(x,y) \in A \times B \iff y = g(x)$ for some $x \in A$

with $g:A\to B$ continuously differentiable.

2 Metric and Topological Spaces

2.1 Metric Spaces

2.1.1 Motivation + Definition

Definition 2.1 - Metric

X an arbitrary set

Metric a function $d: X \times X \to \mathbb{R}$ satisfying:

(M1)
$$\forall x, y \in X$$
; $d(x, y) \ge 0, d(x, y) = 0 \iff x = y$ (positivity)

(M2)
$$\forall x, y \in X$$
; $d(x, y) = d(y, x)$ (symmetry)

(M3)
$$\forall x, y, z \in Xd(x, y) \leq d(x, z) + d(z, y)$$
 (triangle inequality)

Definition 2.2 - Metric space

Pair of a set and metric; M = (X, d)

Call elements of X points, with d(x, y) distance between x, y w.r.t d

Definition

$$C([a,b]) = \{ f : [a,b] \to \mathbb{R} | f : [a,b] \to \mathbb{R} \text{continuous} \}$$

2.1.2 Examples of metrics

Examples

- $d_2(x,y) = ||x-y||$; Euclidean metric on \mathbb{R}^n
- $d_{\text{disc}}(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$
- $d_{\infty}(x,y) = \sup_{k \ge 1} |x^k y^k|$
- $d_{\infty}(f,g) = \max_{a < t < b} |f(t) g(t)|$ where $f,g \in C([a,b])$ (supremum/uniform metric)

Definition 2.3. Induced metrics

(X,d) a metric space

$$Y \subseteq X$$
, define $d|_Y : Y \times Y \to \mathbb{R}$ as $d|_Y(x,y) = d(x,y) \ \forall x,y \in Y$

Definition 2.3. Metric Subspace

Say $(Y, d|_Y)$ a metric subspace of (X, d)

Definition 2.4. Product metric space

 (X_1, d_1) and (X_2, d_2) metric spaces.

define metric using $d_1, d_2 d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}$.

 $(X_1 \times X_2, d)$ a product metric space.

2.1.3 Normed Vector Spaces

Definition 2.5. Norm in Metric Spaces

V a vector space on \mathbb{R} . Say $||\cdot||:V\to\mathbb{R}$ a **norm** on V if

(N1)
$$\forall v \in V$$
, $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$

(N2)
$$\forall v \in V, \forall \lambda \in \mathbb{R}, ||\lambda v|| = |\lambda| \cdot ||v||$$

(N3)
$$\forall u, v \in V, ||u+v|| \le ||u|| + ||v||$$

Definition - Normed vector space

A pair of a vector space $(V, ||\cdot||)$

note $||\cdot||$ is a metric on $V \Longrightarrow$ normed vector space a metric space.

2.1.4 Open sets in metric spaces

Definition 2.6. Open ball in metric spaces

$$(X,d)$$
, with $x \in X, \epsilon \in \mathbb{R}; \epsilon > 0$

Ball radius
$$\epsilon$$
; $B_{\epsilon}(x) = \{x' \in X | d(x, x') < \epsilon\}$

notation; $B_{\epsilon}(x, X, d)$

Definition 2.7. Open set in metric space

$$(X,d)$$
 a metric space. $U \subseteq X$ open in (X,d) if:

$$\forall u \in U, \ \exists \delta > 0 \in \mathbb{R} \text{ s.t } B_{\delta}(u) \subset U$$

Definition 2.8. Topologically equivalent

 d_1, d_2 metrics on a set X topologically equivalent if:

$$\forall U \subseteq X, U \text{ open in } (X, d_1) \iff U \text{ open in } (X, d_2)$$

2.1.5 Convergence in Metric Spaces

Definition 2.9. Convergence in Metric Spaces

$$(X, d)$$
 a metric space. $(x_n)_{n\geq 1}$ a sequence in X . Say $(x_n) \to x \in (X, d)$ if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall n \geq N, d(x, x_n) < \epsilon$$

Lemma 2.7. - if
$$(x_n)$$
 converges in $(X,d) \Longrightarrow \text{limit is unique}$
Corollary - d_1, d_2 topologically equivalent $\iff (x_n)$ converges in (X, d_1) and (X, d_2)

2.1.6 Closed sets in metric spaces

Definition 2.10. Closed set in Metric Spaces

$$(X,d)$$
 a metric space. $V \subseteq X$ a set.
 V closed in (X,d) if $\forall (x_n) \in V$ s.t $(x_n) \to x$ convergent in $(X,d) \implies x \in V$

Theorem 2.9.

$$(X,d)$$
 a metric space. $V \subseteq X$

$$V$$
 closed in $(X,d) \iff X \setminus V$ open in (X,d)

Lemma 2.10

- (i) Intersection of closed sets in (X, d) is a closed set in (X, d)
- (ii) Finite union of closed sets in (X, d) a closed set in (X, d)

2.1.7 Interior, isolated, limit, and boundary points in metric spaces

Definition 2.11. - 2.12.

(X,d) a metric space, $V \subset X, x \in X$

(i) x an interior/inner point of V if

$$\exists \delta > 0$$
, s.t $B_{\delta}(x) \subset V$

- (a) Interior of V; $V^{\circ} \{v \in V : v \text{ an interior point of } V\}$
- (ii) x a limit/accumulation point of V if

$$\forall \delta > 0, (B_{\delta}(x) \cap V) \setminus \{x\} \neq \emptyset$$

Note: not all limit points of V are in V

- (b) Closure of V; $\bar{V} V \cup \{v \text{ a limit point of } V\}$
- (iii) x a boundary point of V if

$$\forall \delta > 0, B_{\delta} \cap V \neq \emptyset$$
 and $B_{\delta}(x) \setminus V \neq \emptyset$

- (c) Boundary of V; $\partial V \{v \in X : v \text{ a boundary point of } V\}$
- (iv) x an **isolated point** of V if

$$\exists \delta > 0, \text{ s.t } V \cap B_{\delta}(x) = \{x\}$$

Lemma 2.11 (X,d) a metric space, $V \subseteq X$ $x \in X$ a limit point of $V \iff \exists$ sequence in $V \setminus \{x\}$ converging to x.

Definition 2.13. Dense and Seperable subsets

(X,d) a metric space

- $V \subseteq X$ dense in X if $\bar{V} = X$
- (X, d) separable if, \exists dense countable subset of X

2.1.8 Continuous maps of metric spaces

Definition 2.14. Continuity in metric spaces

$$(X, d_X), (Y, d_Y)$$
 metric spaces.
 $f: X \to Y$ a map

(i) f continuous at $x \in X$ if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t } \forall x' \in X \text{ s.t } d_X(x', x) < \delta, d_Y(f(x), f(x')) < \epsilon$$

- (ii) $f: X \to Y$ continuous if f continuous $\forall x \in X$
- (iii) $f: X \to Y$ uniformly continuous if f continuous $\forall x \in X$ with $\delta = \delta(\epsilon)$ not depending on x

Theorem 2.12.

 $(A_1, d_1), (A_2, d_2)$ metric spaces

 $f: A_1 \to A_2$ continuous \iff pre-image of any open set in A_2 is an open set in A_1

 $f: A_1 \to A_2$ continuous \iff pre-image of any closed set in A_2 is a closed set in A_1

Theorem 2.13.

$$(X, d_X), (Y, d_Y)$$
 metric spaces

 $f: X \to Y \text{ a map};$

f continuous at $x \in X \iff$ for any sequence $(x_n) \to x$; $f(x_n) \to f(x)$ in (Y, d_Y)

Definition 2.15. Homeomorphism

 $(X_1, d_1), (X_2, d_2)$ metric spaces.

- (i) $f: X_1 \to X_2$ a homeomorphism if
 - $f: X_1 \to X_2$ a bijection
 - $f: X_1 \to X_2$ and $f^{-1}: X_2 \to X_1$ continuous
- (ii) Say $(X_1, d_1), (X_2, d_2)$ homeomorphic if \exists homeomorphism from X_1 to X_2

Definition 2.16.

 $(X, d_X), (Y, d_Y)$ metric spaces with $f: X \to Y$

- (i) f is **Lipschitz** if \exists constant M > 0 s.t $\forall x_1, x_2 \in X, d_Y(f(x_1), f(x_2)) \leq M \cdot d_X(x_1, x_2)$
- (ii) f is **bi-Lipschitz** if \exists constants $M_1, M_2 > 0$ s.t $\forall x_1, x_2 \in X$

$$M_2 \cdot d_X(x_1, x_2) \le d_Y(f(x_1), f(x_2)) \le M_1 \cdot d_X(x_1, x_2)$$

Corollary; any bi-Lipschitz map is injective

(iii) f an isometry/distance preserving if $\forall x_1, x_2 \in X$;

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$$

2.2 Topological Spaces

2.2.2 Topology on a set

Definition 2.17. Topology

A an arbitrary set. τ a collection of subsets of A τ a topology on A if:

- **(T1)** $\emptyset \in \tau$ and $A \in \tau$
- **(T2)** $G_{\alpha} \in \tau$ for α in a (finite) set $I \implies \bigcup_{\alpha \in I} G_{\alpha} \in \tau$
- **(T3)** $G_1, G_2, \ldots, G_m \in \tau \implies \bigcap_{i=1}^m G_i \in \tau$

A topological space; (A, τ) a pair of a set A and topology τ on A. Each element in τ an open set in (A, τ) U a neighbourhood of a if $U \in \tau$ and $a \in U$

Example 2.25. Some Topologies

- 1. Coarse topology A arbitrary set, $\tau = \{\emptyset, A\}$
- 2. Induced topology (X, d) a metric space, with τ the collection of all open sets in (X, d)
- 3. Order Topology $A = \mathbb{R}$ with τ collection of subsets of \mathbb{R} of form $(a, +\infty)$, $a \in \mathbb{R} \cup \{-\infty, +\infty\}$, $(infty, +\infty) := \emptyset$
- 4. Discrete Topology A arbitrary, $\tau = \mathcal{P}(A)$
- 5. Product topology -

Definition. Metrisable topological space

Say topological space (X,τ) metrisable if \exists metric on X which induces a topology τ .

Definition. Induced and Subspace topology

 (X,τ) a topological space. $Y\subset X$

$$\tau_Y = \{ U \cap Y | U \in \tau \}$$

 τ_Y the induced topology on Y from (X, τ)

 (Y, τ_Y) has the subspace topology induced from (X, τ)

Definition 2.18. Stronger topology

A a set, with τ_1, τ_2

Say τ_1 stronger (or finer) than τ_2 if $\tau_2 \subset \tau_1$

Lemma 2.14.

 (A, τ)

A set $G \subset A$ open $\iff \forall x \in G, \exists \text{ neighbourhood of } x \text{ contained in } G$

Definition 2.19. Interior in Topological space

 (A, τ) a topological space. $\Omega \subseteq A$ $z \in \Omega$ an interior point of Ω if

 $\exists U \in \tau \text{ s.t } z \in U \text{ and } U \subset \Omega$

interior of $\Omega; \Omega^{\circ} = \{z \in \Omega | z \text{ an interior point of } \Omega\}$ Properties of interior

- $S \subset T \implies S^{\circ} \subset T^{\circ}$
- S open in $A \iff S = S^{\circ}$
- S° largest open set contained in S

2.2.3 Convergence, and Hausdorff property

Definition 2.20. Convergence in Topological Spaces

 (A, τ) a topological space. $(x_n)_{n\geq 1}$ a sequence in A (x_n) converges in (A, τ) if

 $\exists x \in A \text{ s.t } \forall G \in \tau \text{ with } x \in G, \ \exists N \in \mathbb{N}, \text{ s.t } \forall n \geq N, x_n \in G$

Definition 2.21. Hausdorff

 (A, τ) called **Hausdorff** if:

 $\forall x, y \in A \ x \neq y, \ \exists \text{ open set } U, V \text{ s.t } x \in U, y \in V \text{ and } U \cap V = \emptyset$

Say U and V separate x and y

Theorem 2.14.

 (A, τ) a Hausdorff topological space. (x_n) a sequence in A. if (x_n) convergent in $(A, \tau) \Longrightarrow \text{limit is unique}$.

2.2.4 Closed sets in topological spaces

Definition 2.22. Closed set in Topological space

 (A, τ) a topological space.

 $V \subseteq A$. Say V closed in $(A, \tau) \iff A \setminus V \in \tau$

Lemma 2.17.

 (A, τ) a topological space $\implies \emptyset$ and A closed in (A, τ)

- (i) intersection of closed sets in (A, τ) is a closed set in (A, τ)
- (ii) union of a finite number of closed sets in (A, τ) is a closed set in (A, τ)

Definition 2.23. Limit/Accumulation point in Topological Spaces

 (A, τ) , a topological space, $S \subseteq A$

 $x \in A$ a limit/accumulation point of S if

 $\forall U \text{ a neighbourhood of } x, (S \cap U) \setminus \{x\} \neq \emptyset$

x not necessarily in S

Closure of $S, \bar{S} = S \cup \{x \in A | x \text{ a limit point of } S\}$

Lemma

 $S \text{ closed in } (A, \tau) \iff S = \bar{S}$

2.2.5 Continuous maps on topological spaces

Definition 2.24. Continuity in topological space

$$(X, \tau_X), (Y, \tau_Y)$$
 with $f: X \to Y$
f continuous on X if:

$$\forall$$
open sets $U \in Y$, $f^{-1}(U)$ open in X

Theorem 2.20.

$$(X, \tau_X), (Y, \tau_Y)$$
 with $f: X \to Y$
f continuous \iff pre-image of closed set in Y is closed in X

Theorem 2.21.

$$(X, \tau_X), (Y, \tau_Y), (Z, \tau_Z)$$

 $f: X \to Y, g: Y \to Z$ continuous $\implies g \circ f: X \to Z$ continuous

Definition 2.25. Homeomorphisms in Topological space

 $f: X \to Y$ a homeomorphism is $f: X \to Y$ bijective with f and f^{-1} continuous

Definition 2.25. Topologically equivalent in Topological space

 $(X, \tau_X), (Y, \tau_Y)$ topologically equivalent/homeomorphic if \exists homeomorphism from $X \to Y$

2.3 Connectedness

2.3.1 Connected sets

Definition 2.26. Disconnected sets

For (X, d) a metric space, consider $T \subseteq X$. T disconnected, if \exists open sets $U, V \in X$ s.t:

- (i) $U \cap V = \emptyset$
- (ii) $T \subseteq U \cup V$
- (iii) $T \cap U \neq \emptyset$ and $T \cap V \neq \emptyset$

Set connected if not disconnected, i.e for any 2 of the properties that hold from above the 3rd cannot.

Lemma 2.23.

$$(X,d)$$
 a metric space. $T\subseteq X$

T disconnected
$$\iff$$
 \exists continuous $f: T \to \mathbb{R}$ s.t $f(T) = \{0,1\}$

Theorem 2.22.

Consider
$$(\mathbb{R}, d), S \subseteq \mathbb{R}$$

$$S$$
 connected $\iff S$ an interval

2.3.2 Continuous maps + Connected sets

Theorem 2.27.

$$(A, d_1)$$
 and (A, d_2) metric spaces. $f: A_1 \to A_2$ continuous map $S \subset A$ connected $\Longrightarrow f(S)$ connected Corollary 2.28. $f: (X, d_X) \to (Y, d_Y)$ a homeomorphism

$$X$$
 connected $\iff Y$ connected

Theorem 2.29.

(X,d) connected metric space, $f:X\to\mathbb{R}$ continuous. Assume $\exists a,b\in X$ s.t $f(a)<0, f(b)>0 \implies \exists c\in X$ s.t f(c)=0

2.3.3 Path Connected Sets

Definition 2.28. Path

Under (X, d) given $a, b \in X$

Path from $a \to b$ a continuous map $f: [0,1] \to X$ s.t f(0) = a, f(1) = b

Definition 2.29. Path Connected

(X,d) path connected if $\forall a,b \in X, \exists$ path from $a \to b$ in X

Theorem 2.30.

if (X, d) path connected \implies connected

2.4 Compactness

2.4.1 Compactness by covers

Definition 2.30. Covers

(X,d) a metric space. $Y \subseteq X$

(i) collection R of open subsets of X an **open cover** for Y if

$$Y\subseteq\bigcup_{v\in R}v$$

(ii) Given open cover R for YSay C a **sub-cover** of R for Y if $C \subseteq R$ and $Y \subseteq \bigcup_{v \in R} v$

(iii) Open cover R for Y is a **finite cover** if R has finitely many elements.

Definition 2.31. Compact

(X,d) a metric space

 $Y \subseteq X$ compact in (X, d) if every open cover for Y has a finite sub-cover.

Proposition 2.32.

 $a, b \in \mathbb{R}, \ a \leq b \text{ in } (R, d_1) \text{ we have } [a, b] \text{ compact}$

Proposition 2.33.

(X,d) a metric space, $Y \subseteq X$

X compact, Y closed $\implies Y$ compact.

Theorem 2.34.

(X,d) a metric space $Y \subset X$

 $Y \text{ compact } \Longrightarrow Y \text{ closed}$

Theorem 2.35.

 $(X, d_X), (Y, d_Y)$ metric spaces. Considering $(X \times Y, d)$

 $d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2)$

 $X, Y \text{ compact} \implies (X \times Y, d) \text{ compact}$

Corollary

 $[a_1,b_1]\times[a_2,b_2]\cdots\times[a_{n-1},b_{n-1}]\times[a_n,b_n]$ compact in \mathbb{R}^n

Definition 2.32. Bounded

(X,d) non-empty metric space, $Z \subseteq X$

Z bounded in (X, d) if $\exists M \in \mathbb{R}$ s.t $\forall x, y \in Z; d(x, y) \leq M$

S arbitrary set. $f: S \to X$ bounded if f(S) bounded in X

Lemma 2.37.

(X,d) compact metric space $\implies X$ bounded

Theorem 2.36. Heine-Borel

Consider $(\mathbb{R}^n, d_2), X \subseteq \mathbb{R}^n$

X compact $\iff X$ closed and bounded

2.4.2 Sequential Compactness

Definition 2.33. Sequentially compact

(X,d) sequentially compact, if for every sequence in X has convergent subsequence in (X,d)

$$\forall (x_n)_{n\geq 1} \in X, \ \exists (x_{n_k})_{k\geq 1}, \ x\in X \text{ s.t } x_{n_k} \to x$$

Lemma 2.39.

(X,d) a metric space. with sequence $(x_n)_{n\geq 1}$ s.t $\exists (x_{n_k})_{k\geq 1},\ x\in X$ s.t $x_{n_k}\to x$.

 $\iff \exists x \in X \text{ s.t } \forall \epsilon > 0 \text{ there are infinitely many } i \text{ s.t } x_i \in B_{\epsilon}(x)$

Theorem 2.41. Bolzanno-Weierstrass

Any bounded sequence in \mathbb{R}^n has convergent subsequence.

Theorem 2.40. + 2.42.

(X,d) metric space.

X Compact $\iff X$ Sequentially Compact

2.4.3 Continuous maps + Compact Sets

Theorem 2.41.

 $(X, d_X), (Y, d_Y)$ metric spaces. $f: X \to Y$ a continuous map if

 $Z \text{ compact in } X \implies f(Z) \text{ compact in } Y$

Corollary 2.44.

 $(X, d_X), (Y, d_Y)$ metric spaces, $f: X \to Y$ a homeomorphism

 $\implies X \text{ compact} \iff Y \text{ compact}$

Theorem 2.45.

Every continuous map from compact metric space to a metric space is uniformly continuous.

Corollary 2.46. $f:[a,b]\to\mathbb{R}$ continuous $\Longrightarrow f$ uniformly continuous

Theorem 2.47.

 (X, d_X) compact, $f: X \to \mathbb{R}$ continuous $\implies f$ bounded above and below attaining its upper & lower bounds

Theorem 2.48.

 $f: \mathbb{R} \to \mathbb{R}$ continuous w.r.t Euclidean metrics on domain and range.

 $\forall [a,b]$ we have f([a,b]) of the form [m,M] for $m,M \in \mathbb{R}$

2.5 Completeness

2.5.1 Complete metric spaces Banach space

Definition 2.34. Cauchy Sequence

(X,d) a metric $(x_n)_{n\geq 1}$ sequence in X

Say $(x_n)_{n\geq 1}$ a Cauchy sequence in (X,d) if

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \text{ s.t } \forall n, m \geq N_{\epsilon} \text{ we have } d(x_n, x_m) < \epsilon$$

Definition 2.35. Complete & Banach

- (i) metric space (X, d) complete if every Cauchy sequence in X converges to a limit in X
- (ii) Normed vector space $(V, ||\cdot||)$ a Banach space if V with induced metric space $d_{||||}$ a complete metric space.

Theorem 2.51.

Assume $(f_n:[a,b]\to\mathbb{R})_{n\geq 1}$ sequence of continuous functions converging uniformly to $f:[a,b]\to\mathbb{R}\implies f:[a,b]\to\mathbb{R}$ continuous

Theorem 2.52.

Metric space $(C([a,b]), d_{\infty})$ is complete or equivalently $(C([a,b]), ||\cdot||_{\infty})$ a Banach space

Theorem 2.53.

(X,d) a compact metric space $\implies (X,d)$ complete

2.5.2 Arzelà-Ascoli

Definition 2.36. Uniformly bounded & Uniformly equi-continuous

Let \mathcal{C} a collection of functions $f:[a,b]\to\mathbb{R}$

- 1. Say collection \mathcal{C} uniformly bounded if $\exists M \text{ s.t } \forall f \in \mathcal{C} \text{ and } \forall x \in [a,b] \implies |f(x)| < M$
- 2. Say collection C uniformly equi-continuous if $\forall \epsilon > 0, \exists \delta > 0$ s.t $\forall f \in C$ and $\forall x_1, x_2 \in [a, b]$ s.t $|x_1 x_2| < \delta$ we have $|f(x_1) f(x_2)| < \epsilon$

Theorem 2.54. Arzelà-Ascoli

Assume \mathcal{C} collection of continuous functions $f:[a,b]\to\mathbb{R}$ if \mathcal{C} uniformly bounded and uniformly equi-continuous \Longrightarrow every sequence in \mathcal{C} has convergent subsequence in $(C([a,b],d_{\infty})$

2.5.3 Fixed point theorem

Definition 2.37. Contracting

$$(X_1, d_1)$$
 and (X_2, d_2) , with $f: X_1 \to X_2$
Say f contracting if $\exists K \in (0, 1)$ s.t $\forall a, b \in X$ we have

$$d_2(f(a), f(b)) \le K \cdot d_1(a, b)$$

Every contracting map is continuous.

Definition 2.37. Fixed point

$$f: X \to X$$
 say $x \in X$ a fixed point of f if $f(x) = x$

Theorem 2.55. Banach fixed point theorem

 $(\boldsymbol{X},\boldsymbol{d})$ a non-empty complete metric space.

 $f: X \to X$ a contracting map $\implies f$ has unique fixed point in X