Compare Ad Effectiveness Using A/B Tests with Python Project

Task Group 1 - Import, Inspect, and Merge

Task 1

Import the pandas and numpy libraries using their standard aliases.

```
In [1]: import numpy as np import pandas as pd
```

Task 2

Out

Import the CSV file users.csv and assign it to the variable users . Preview the first five rows.

```
In [3]: users = pd.read_csv('users.csv')
    users.head()
```

[3]:		user_id	timestamp	device_id	clicked
	0	U790620	2022-01-01 00:23:33 Saturday	M003	False
	1	U584867	2022-01-01 01:30:07 Saturday	M001	False
	2	U128681	2022-01-01 01:30:14 Saturday	M002	True
	3	U694898	2022-01-01 01:31:55 Saturday	M003	False
	4	U456823	2022-01-01 03:18:25 Saturday	M001	False

▶ What is the structure of this dataset? Toggle to check!

Task 3

Import the CSV file advertisements.csv and assign it to the variable advertisements . Preview the first five rows.

```
In [5]: advertisements = pd.read_csv('advertisements.csv')
advertisements.head()
```

Out[5]:		user_id	timestamp	ad_source	ad_version
	0	U790620	2022-01-01 00:23:33 Saturday	Twitter	А
	1	U584867	2022-01-01 01:30:07 Saturday	Google	В
	2	U128681	2022-01-01 01:30:14 Saturday	TikTok	В
	3	U694898	2022-01-01 01:31:55 Saturday	TikTok	А
	4	U456823	2022-01-01 03:18:25 Saturday	Google	А

▶ What is the structure of this dataset? Toggle to check!

Task 4

There are two user_id columns, one in each DataFrame. Let's do a quick check to see if they have the same number of unique users. If they don't, we'll know to be careful about this issue later on in our analysis.

Count the unique number of <code>user_ids</code> in <code>users</code> and separately in <code>advertisements</code>.

Print both counts.

```
In [10]: print('Users unique user_id:', users['user_id'].nunique(), '\nAdvertiseements unique user_id:',
    advertisements['user_id'].nunique())
```

Users unique user_id: 15122 Advertiseements unique user_id: 14602 In order to effectively analyze the results of our A/B test, we'll need rows that contain user information from both DataFrames. Specifically, we'll need to know whether or not a user clicked on the ad in users and we'll need to know which ad_version the user viewed in advertisements .

Merge users and advertisements on the user_id and timestamp columns. Make sure to only return rows that have data from both DataFrames.

Save the merged DataFrame to a variable named users_ads and preview the first five rows.

In [13]: users_ads = pd.merge(left=users, right=advertisements, left_on=['user_id', 'timestamp'], right_on=['user_id', 'timestamp'], right_on=['user_id', 'timestamp']

Out[13]:	user_id		timestamp	device_id	clicked	ad_source	ad_version
	0	U790620	2022-01-01 00:23:33 Saturday	M003	False	Twitter	А
	1	U584867	2022-01-01 01:30:07 Saturday	M001	False	Google	В
	2	U128681	2022-01-01 01:30:14 Saturday	M002	True	TikTok	В
	3	U694898	2022-01-01 01:31:55 Saturday	M003	False	TikTok	А
	4	U456823	2022-01-01 03:18:25 Saturday	M001	False	Google	Α

▶ Why do we use a merge that returns matching rows from both DataFrames? Toggle to check!

Task Group 2 - Use Aggregations to Calculate Click-Through Rate

Task 6

To begin our exploration, let's count how many times each ad_version was viewed by users in users_ads .

Group users_ads by ad_version and count the user_id column. Save the result to the variable ad_view_count , and rename the user_id column num_views .

Preview the final result.

```
In [16]: ad_view_count = users_ads.groupby('ad_version').agg({'user_id':'count'}).rename(columns={'user_id':'num_views'})
ad_view_count
```

Out[16]:

num_views

ad_version	
Α	7154
В	7270

Task 7

There may be instances where individual users saw the ads more than once. Let's re-do the groupby from Task 6, but adding a column with the number of unique user_id s for each ad.

Modify ad_view_count to also return the count of unique users in user_id . Name this new column nunique .

Preview the modified ad_view_count .

Out[19]:

num_views nunique

ad_version					
Α	7154	7125			
В	7270	7232			

▶ How should we address users who saw ads more than once? Toggle to check!

Task 8

Group by ad_version and compute the **percentage** of users who clicked on each ad. This metric is known as the **click-through rate** (CTR) and is widely used as a performance metric.

Save the resultin DataFrame to the variable ad_ctr_pct .

Rename the clicked column to click_rate.

Preview ad_ctr_pct.

▶ What did we learn about each ad version? Toggle to check!

Task Group 3: Compare Ad Performances by Social Media Platform

Task 9

Let's break down click-through rate by social media platform.

Group users_ads by ad_source and ad_version, and compute the percent of True values in clicked.

Rename the column containing the percents ctr and view the full resulting DataFrame.

Twitter A 0.119624

Task 10

TikTok

It is a little hard to read the long-format table from Task 9.

A 0.115819B 0.202358

B 0.175070

Pivot users_ads to create a wide-format version of this table, and name it ad_social.

Print all rows of ad_social.

Twitter 0.119624 0.175070

▶ What did we learn about the ad performances across various social media platforms? Toggle to check!

Task Group 4 - Compare Ad Performances by Tech Device

Task 11

Let's now investigate the click-through rates broken down by device (cell phone, tablet, etc.)

Import the CSV file devices.csv and assign it to the variable devices . Preview the full dataset.

How many different devices are there?

In [27]: devices = pd.read_csv('devices.csv')
 devices

Out[27]:

	device_id	device_type	brand
0	M001	Mobile	Apple
1	M002	Mobile	Samsung
2	M003	Mobile	Google
3	M004	Mobile	Huawei
4	M005	Mobile	Xiaomi
5	M006	Mobile	vivo
6	P001	PC	Apple
7	P002	PC	Dell
8	P003	PC	HP
9	P004	PC	ASUS
10	P005	PC	Lenovo
11	P006	PC	Other
12	S001	Smartwatch	Apple
13	S002	Smartwatch	Samsung
14	S003	Smartwatch	FitBit
15	ST01	Streaming	Roku
16	ST02	Streaming	Apple TV
17	ST03	Streaming	Gaming Console
18	T001	Tablet	Apple
19	T002	Tablet	Samsung
20	T003	Tablet	Amazon
21	T004	Tablet	Microsoft

▶ What is the structure of this dataset? Toggle to check!

Task 12

Let's now combine each user's ad information with their device information.

Merge users_ads with devices using the device_id column. Make sure to return all of the rows in users_ads , along with matching device information if it exists.

Name the merged DataFrame users_devices and preview the first five rows.

In [29]: users_devices = pd.merge(left=users_ads, right=devices, left_on='device_id', right_on='device_id', how='outer')
users_devices.head()

Out[29]:

	user_id	timestamp	device_id	clicked	ad_source	ad_version	device_type	brand
0	U790620	2022-01-01 00:23:33 Saturday	M003	False	Twitter	А	Mobile	Google
1	U694898	2022-01-01 01:31:55 Saturday	M003	False	TikTok	А	Mobile	Google
2	U447163	2022-01-01 06:37:08 Saturday	M003	True	Google	В	Mobile	Google
3	U143188	2022-01-01 12:36:02 Saturday	M003	False	TikTok	В	Mobile	Google
4	U533059	2022-01-02 10:08:20 Sunday	M003	False	Meta	В	Mobile	Google

Calculate the percentage of users who clicked on the advertisement based on their device_type and ad_version they viewed.

▶ What did we learn about the ad performances across tech devices? Toggle to check!

Task Group 5 - Weekday and Weekend Performance by Device Type

Task 14

Let's break our analysis down further by weekday versus weekend user behavior.

There are various approaches we could use to explore this question, but let's practice using the split-apply-combine (SAC) technique.

Recall, SAC involves a three-step process where we:

- 1. Split the dataset into one or more pieces
- 2. Apply a function or transformation to each piece
- 3. Combine the results from each piece

We've provided starter code below that creates a new column day_of_week extracted from the timestamp column indicating the day on which the user viewed the ad.

Count the number of users who viewed each ad, grouped by the day of the week and the ad version they saw.

```
In [42]: # Create 'day_of_week' column
users_devices['day_of_week'] = users_devices['timestamp'].str.split(' ', expand=True)[2]
## YOUR SOLUTION HERE
users_devices.groupby(['day_of_week', 'ad_version']).agg({'clicked': 'count'})
```

Out[42]: clicked

day_of_week	ad_version	
Friday	А	1061
	В	1061
Monday	Α	1014
	В	1037
Saturday	Α	1045
	В	996
Sunday	Α	979
	В	1057
Thursday	Α	1018
	В	997
Tuesday	Α	991
	В	1068
Wednesday	Α	1046
	В	1054

Task 15

Split users_devices into two DataFrames:

• weekends filtering for users who saw either ad on Saturday or Sunday

• weekdays filtering for users who saw either ad from Monday to Friday

Use the | operator, and see the hint for more of a refresher on Boolean masks!

Preview the first five rows in weekdays .

```
In [48]: weekend = (users_devices['day_of_week'] == 'Saturday')|(users_devices['day_of_week'] == 'Sunday')
In [49]: weekday = ~weekend
         users_devices[weekday]
Out[49]:
                   user_id
                                       timestamp device_id clicked ad_source ad_version device_type
                                                                                                                brand day_of_week
                               2022-01-03 00:10:18
              7 U484678
                                                      M003
                                                               False
                                                                                                 Mobile
                                                                                                               Google
                                                                          Meta
                                                                                         Α
                                                                                                                            Monday
                                          Monday
                               2022-01-03 00:53:23
               8 U597754
                                                      M003
                                                               False
                                                                         TikTok
                                                                                         В
                                                                                                 Mobile
                                                                                                               Google
                                                                                                                            Monday
                                          Monday
                               2022-01-03 04:17:55
              9 U695803
                                                      M003
                                                                                                 Mobile
                                                                                                               Google
                                                               False
                                                                         TikTok
                                                                                         Α
                                                                                                                            Monday
                                          Monday
                               2022-01-04 05:18:44
              10 U331858
                                                      M003
                                                               False
                                                                         TikTok
                                                                                         В
                                                                                                 Mobile
                                                                                                               Google
                                                                                                                           Tuesday
                                          Tuesday
                               2022-01-04 07:32:42
              11
                 U128142
                                                      M003
                                                                True
                                                                                         В
                                                                                                 Mobile
                                                                                                               Google
                                                                                                                           Tuesday
                                                                        Google
                                          Tuesday
          14427
                      NaN
                                             NaN
                                                       S002
                                                                NaN
                                                                           NaN
                                                                                      NaN
                                                                                             Smartwatch
                                                                                                             Samsung
                                                                                                                               NaN
          14428
                      NaN
                                             NaN
                                                       S003
                                                                NaN
                                                                           NaN
                                                                                      NaN
                                                                                             Smartwatch
                                                                                                                FitBit
                                                                                                                               NaN
          14429
                      NaN
                                             NaN
                                                       ST01
                                                                NaN
                                                                           NaN
                                                                                      NaN
                                                                                              Streaming
                                                                                                                Roku
                                                                                                                               NaN
          14430
                                                       ST02
                                                                                                             Apple TV
                      NaN
                                             NaN
                                                                NaN
                                                                                      NaN
                                                                                                                               NaN
                                                                           NaN
                                                                                              Streaming
                                                                                                              Gaming
          14431
                      NaN
                                             NaN
                                                       ST03
                                                                NaN
                                                                           NaN
                                                                                      NaN
                                                                                                                               NaN
                                                                                              Streaming
```

Console

10355 rows × 9 columns

Task 16

Apply aggregation functions.

Create a new DataFrame weekday_ctr that computes

- the total number of views on weekdays
- the percent of clicks on weekdays

grouped by device_type and ad_version .

Name the two columns weekday_views and weekday_rate, and then reset the index of the DataFrame weekday_ctr.

Print the full weekday_ctr DataFrame.

```
In [50]: weekday_ctr = users_devices[weekdays].groupby(['device_type', 'ad_version']).agg({'clicked':['count', 'mean']})
weekday_ctr = weekday_ctr.rename(columns={'clicked':'', 'count':'weekday_views', 'mean':'weekday_rate'})
weekday_ctr
```

Out[50]:

		weekday_views	weekday_rate
device_type	ad_version		
Mobile	Α	2517	0.125944
	В	2594	0.212799
PC	Α	1309	0.128342
	В	1285	0.189105
Tablet	Α	1009	0.142716
	В	1012	0.164032

Task 17

Create a new DataFrame weekend_ctr that computes

- the total number of clicks on weekends
- the percent of clicks on weekends

grouped by device_type and ad_version.

Name the two columns weekend_views and weekend_rate , and then reset the index of the DataFrame weekend_ctr .

Print the full weekend_ctr DataFrame.

```
In [51]: weekend_ctr = users_devices[weekend].groupby(['device_type', 'ad_version']).agg({'clicked':['count', 'mean']})
    weekend_ctr = weekend_ctr.rename(columns={'clicked':'', 'count':'weekend_views', 'mean':'weekend_rate'})
    weekend_ctr
```

Out[51]:

device_type	ad_version		
Mobile	Α	1002	0.108782
	В	996	0.223896
PC	Α	521	0.103647
	В	513	0.165692
Tablet	Α	386	0.090674
	В	412	0.189320

weekend views weekend rate

Task 18

Combine weekday_ctr and weekend_ctr by merging on the device_type and ad_version columns into a DataFrame named combined_ctr. Make sure to return matching rows from both DataFrames.

Preview all of the click-through rates in <code>combined_ctr</code> .

```
In [55]: combined_ctr = pd.merge(left=weekday_ctr, right=weekend_ctr, left_on=['device_type', 'ad_version'], right_on=['devi
combined_ctr
```

Out[55]:

		weekday_views	weekday_rate	weekend_views	weekend_rate
device_type	ad_version				
Mobile	А	2517	0.125944	1002	0.108782
	В	2594	0.212799	996	0.223896
PC	Α	1309	0.128342	521	0.103647
	В	1285	0.189105	513	0.165692
Tablet	Α	1009	0.142716	386	0.090674
	В	1012	0.164032	412	0.189320