LINMA1731 – Project 2019 Fish schools tracking

By Louis Navarre and Gilles Peiffer

Abstract

In this paper we solve the first part of the project for the class "Stochastic processes: Estimation and prediction" given during the Fall term of 2019. The average speed of each fish in a school of fish is approximated by a gamma-distributed random variable with a shape parameter k and a scale parameter s, and various methods for estimating this quantity are given; a numerical simulation is also included.

Contents

Part 1. Average speed estimation	2
1. Introduction	2
2. Maximum likelihood estimation	2
3. Properties of the estimator	3
4. Joint maximum likelihood estimation	4
5. Numerical simulation	5
6. Fisher information matrix	7
7. Numerical proof	7
Appendix A. Definitions of properties	8
A.1. Asymptotically unbiased	8
A.2. Efficiency	8
A.3. Best asymptotically normal	8
A.4. Consistency	9
Appendix B. Omitted proofs	9
B.1. Proof of normality using the central limit theorem	6
Appendix C. Calculations of the Fisher information matrix	10
References	11

[©] 2019 Gilles Peiffer and Louis Navarre.

Part 1. Average speed estimation

1. Introduction

For the purpose of this project, we assume that the speed of each fish in a school at time i is a random variable V_i following a Gamma distribution, as suggested in [1]. This distribution is characterized by two parameters: a shape parameter k > 0 and a scale parameter s > 0. The parameters are the same for every fish and are time invariant. The aim of this first part is to identify these two parameters using empirical observations v_i .

2. Maximum likelihood estimation

Let v_i be i.i.d. realisations of a random variable following a Gamma distribution $\Gamma(k,s)$ (with $i=1,\ldots,N$). We first assume that the shape parameter k is known.

We start by deriving the maximum likelihood estimator of $\theta := s$ based on N observations. Since the estimand θ is a deterministic quantity, we use Fisher estimation. In order to do this, let us restate the probability density function of $V_i \sim \Gamma(k, s)$:

(2.1)
$$f_{V_i}(v_i; k, s) = \frac{1}{\Gamma(k)s^k} v_i^{k-1} e^{-\frac{v_i}{s}}, \quad i = 1, \dots, N.$$

With this in mind, we can find that the likelihood $\mathcal{L}(v_1,\ldots,v_N;k,\theta)$ is given by

(2.2)
$$\mathcal{L}(v_1, \dots, v_N; k, \theta) = \prod_{i=1}^{N} f_{V_i}(v_i; k, \theta) = \prod_{i=1}^{N} \frac{1}{\Gamma(k)\theta^k} v_i^{k-1} e^{-\frac{v_i}{\theta}}.$$

In order to alleviate notation, we compute instead the log-likelihood, which is generally easier to work with¹:

(2.3)
$$\ell(v_1, \dots, v_N; k, \theta) := \ln \mathcal{L}(v_1, \dots, v_N; k, \theta)$$

$$= \sum_{i=1}^{N} \ln \left(\frac{1}{\Gamma(k)\theta^k} v_i^{k-1} e^{-\frac{v_i}{\theta}} \right)$$

(2.5)
$$= (k-1)\sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{v_i}{\theta} - N(k \ln \theta + \ln \Gamma(k)).$$

Now, in order to obtain the maximum likelihood estimate $\hat{\theta}$, we must differentiate the log-likelihood with respect to the estimand θ , and set it equal to

¹This is possible because the values of θ which maximize the log-likelihood also maximize the likelihood.

zero:

(2.6)
$$\frac{\partial \ell(v_1, \dots, v_N; k, \theta)}{\partial \theta} \bigg|_{\theta = \hat{\theta}} = -\frac{kN}{\hat{\theta}} + \frac{\sum_{i=1}^N v_i}{\hat{\theta}^2} = 0$$

(2.7)
$$\iff \hat{\theta} = \frac{\sum_{i=1}^{N} v_i}{kN} = \frac{\overline{v}}{k}.$$

This then allows us to find the maximum likelihood estimator $\widehat{\Theta}$, given by

(2.8)
$$\widehat{\Theta} = \frac{\sum_{i=1}^{N} V_i}{kN} = \frac{\overline{V}}{k}.$$

3. Properties of the estimator

The estimator we just found has many interesting properties. First, it is an asymptotically unbiased estimator (A.1) . One can show that $\lim_{N\to+\infty}\mathbb{E}\left[\frac{\overline{V}}{k}\right]=\theta$:

(3.1)
$$\mathbb{E}\left[\frac{\overline{V}}{k}\right] = \frac{\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}V_{i}\right]}{k} = \frac{\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[V_{i}\right]}{k} = \frac{\frac{1}{N}Nk\theta}{k} = \theta.$$

The estimator is more than asymptotically unbiased; it is unbiased. Another interesting property is the efficiency (A.2) of θ . An unbiased estimator is said to be *efficient* if it reaches the Cramr-Rao bound for all values of θ , that is,

(3.2)
$$\operatorname{cov}\widehat{\Theta} = \mathcal{I}^{-1}(\theta), \quad \forall \theta.$$

Since we only have one estimator, we only have to calculate the expectation of the second derivative of the log-likelihood function derived earlier:

(3.3)
$$\mathcal{I}(\theta) = -N\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \left((k-1) \ln v_1 - \frac{v_1}{\theta} - \left(k \ln \theta + \ln \Gamma(k) \right) \right) \right]$$

$$(3.4) = N\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \left(\frac{v_1}{\theta} + k \ln \theta\right)\right] = \frac{kN}{\theta^2}.$$

Then, we have to compute the variance of the ML estimator $\hat{\Theta}$, which is given by

$$\mathbb{V}\left[\widehat{\Theta}\right] = \mathbb{V}\left[\frac{\overline{V}}{k}\right] = \frac{\theta^2}{kN}.$$

We directly see that the variance of our estimator reaches the Cramr-Rao lower bound; it is then an efficient estimator.

A third property is that the estimator is best asymptotically normal (A.3). In our case, we can show using the Cramr-Rao lower bound that Σ is minimal if it is equal to $\mathcal{I}^{-1}(\theta)$. To alleviate notations, we will write $\ell(\theta)$ instead of $\ell(v_1, \ldots, v_N; k, \theta)$. By definition, since $\hat{\theta} = \arg \max_{\theta} \ell(\theta)$, we know that

 $\ell'(\hat{\theta}) = 0$. Let θ_0 be the true value of the parameter θ . We can then use Taylor expansion on $\ell'(\hat{\theta})$ around $\hat{\theta} = \theta_0$ to obtain

(3.6)
$$\ell'(\hat{\theta}) = \ell'(\theta_0) + \frac{\ell''(\theta_0)}{1!} (\hat{\theta} - \theta_0) + \mathcal{O}\left((\hat{\theta} - \theta_0)^2\right).$$

We know the expression on the left is zero, hence

(3.7)
$$\ell'(\theta_0) = -\ell''(\theta_0)(\hat{\theta} - \theta_0) + \mathcal{O}\left((\hat{\theta} - \theta_0)^2\right).$$

Rearranging and multiplying by \sqrt{n} , we get

(3.8)
$$\sqrt{n}(\hat{\theta} - \theta_0) = \frac{\ell'(\theta_0)/\sqrt{n}}{-\ell''(\theta_0)/n + \mathcal{O}\left((\hat{\theta} - \theta_0)/n\right)}.$$

Next, we need to show that $\ell'(\theta_0)/\sqrt{n} \sim \mathcal{N}(0, \mathcal{I}(\theta_0))$. This is done using the Lindeberg–Lvy central limit theorem, in Appendix B.1. We know that $1/N\ell''(\theta_0) = \mathcal{I}(\theta_0)$. Finally, we can rewrite

(3.9)
$$\sqrt{N}(\hat{\theta} - \theta_0) \sim \frac{\mathcal{N}(0, \mathcal{I}(\theta_0))}{\mathcal{I}(\theta_0)} = \mathcal{N}(0, \mathcal{I}^{-1}(\theta_0)),$$

where we didn't take into account the remainder of the Taylor series, which goes to zero. This proves that the ML estimator is best asymptotically normal.

A last but important property to show that we have a "good" estimator is the consistency (A.4) of it. We have shown that the estimator is unbiased, hence its MSE is equal to its variance. Since the estimator is efficient - as said earlier - we know that its variance is equal to the Cramr–Rao lower bound, $\operatorname{cov}\widehat{\Theta} = \mathcal{I}^{-1}(\theta)$. We found this lower bound to be equal to $\theta^2/(kN)$ in (3.4). We have

(3.10)
$$\lim_{N \to +\infty} \operatorname{cov} \widehat{\Theta} = \lim_{N \to +\infty} \frac{\theta^2}{kN} = 0.$$

This proves that the variance (and hence the mean square error) of the estimator goes to zero as N goes to infinity, hence the estimator is consistent.

4. Joint maximum likelihood estimation

We now consider $V_i \sim \Gamma(k,s)$ (for $i=1,\ldots,N$) with both k and s unknown. Before, we assumed k was known, so we could maximize the log-likelihood function with respect to s. Now, we have to maximize this function with respect to s and k at the same time. We know the maximum likelihood estimator of s, $\hat{s} = f(k)$. Therefore, in the log-likelihood function, we can replace all the occurrences of s by the estimator we found, \hat{s} . We then get a function of k only, which we can differentiate and set its derivative to zero, solving to find the maximum likelihood estimator of k. We use the log-likelihood as given

in (2.5). We abusively write $\ell(v)$ instead of $\ell(v_1, \ldots, v_N; \theta)$ Substituting in the estimator \hat{s} instead of s, one finds

(4.1)
$$\ell(v) = (k-1) \sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{kv_i}{\overline{v}} - Nk \ln \overline{v} + Nk \ln k - N \ln \Gamma(k)$$

Taking the derivative of this function with respect to k, we get

$$(4.2) \qquad \frac{\partial \ell(v)}{\partial k} \bigg|_{k=\hat{k}} = \sum_{i=1}^{N} \ln v_i - N - N \ln \overline{v} + N \ln \hat{k} + \frac{N\hat{k}}{\hat{k}} - N \frac{\Gamma(\hat{k})}{\Gamma(\hat{k})} \psi^{(0)}(\hat{k})$$

(4.3)
$$= \sum_{i=1}^{N} \ln v_i - N \ln \sum_{i=1}^{N} v_i + N \ln \hat{k} + N \ln N - N \psi^{(0)}(\hat{k}),$$

where $\psi^{(0)}$ is the digamma function, i.e. the logarithmic derivative of the gamma function. We now look for a root of this equation:

(4.4)
$$\ln \hat{k} - \psi^{(0)}(\hat{k}) = \ln \left(\sum_{i=1}^{N} v_i \right) - \ln N - \frac{\sum_{i=1}^{N} \ln v_i}{N}$$

(4.5)
$$\iff \ln \hat{k} - \psi^{(0)}(\hat{k}) = \ln \left(\frac{\sum_{i=1}^{N} v_i}{N} \right) - \frac{\sum_{i=1}^{N} \ln v_i}{N}.$$

This equation has no closed-form solution for \hat{k} , but can be approximated using numerical methods since the function is very well-behaved.

5. Numerical simulation

6. Fisher information matrix

We can compute the Fisher information matrix. Since we have two estimators, this matrix is a 2×2 matrix. This matrix is hence computed by

$$\mathcal{I}(\theta) = \left(\begin{array}{cc} -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial s^2} \right] & -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial k \partial s} \right] \\ -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial s \partial k} \right] & -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial k^2} \right] \end{array} \right)$$

And remember the log-likelihood function, computed before.

(6.1)
$$\ell(x) = (k-1) \sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{v_i}{s} - N(k \ln s + \ln \Gamma(k))$$

The calculation of theses entries can be found in appendix C. Finally, the Fisher information matrix is

$$\mathcal{I}(\theta) = N \left(\begin{array}{cc} \frac{K}{s^2} & \frac{1}{s} \\ \frac{1}{s} & \psi_1(k) \end{array} \right)$$

And the inverse of this matrix, the Cramr-Rao lower-bound, is

$$\mathcal{I}^{-1}(\theta) = \frac{1}{N} \begin{pmatrix} \psi_1(k) & -\frac{1}{s} \\ -\frac{1}{s} & \frac{K}{s^2} \end{pmatrix} \cdot \frac{s^2}{K\psi_1(k) - 1}$$

7. Numerical proof

Figure 7 show the matrix norm induced by the vector 2-norm of the *ratio* matrix. This matrix is is the result of the ratio of the entries of the empirical covariance matrix by the inverse of the Fisher information matrix, subtracted by one. As a result, if the empirical covariance matrix tends to reach the

Cramr-Rao lower bound, the ratio of the entries should tend to 1, and hence the matrix induced norm of this matrix subtracted by 1 should be equal to 0. Indeed, we see on figure 7 that this matrix induced norm tends to 0 as the size of the sample vector increases. It empirically proofs that our estimators reach the Cramr-Rao lower bound, meaning that they are efficient.

Figure 1. Norm of the "ratio" matrix subtracted by 1

Appendix A. Definitions of properties

A.1. Asymptotically unbiased.

Definition A.1 (Unbiased estimator). The Fisher estimator $\widehat{\Theta} = g(Z)$ of θ is unbiased if

(A.1)
$$m_{\widehat{\Theta};\theta} := \mathbb{E}\left[g(Z);\theta\right] = \theta, \text{ for all } \theta.$$

A.2. Efficiency.

Definition A.2 (Efficient estimator). An unbiased estimator is said to be efficient if it reaches the Cramr–Rao bound for all values of θ , that is,

(A.2)
$$\operatorname{cov}\widehat{\Theta} = \mathcal{I}^{-1}(\theta), \quad \forall \theta.$$

A.3. Best asymptotically normal.

Definition A.3 (Best asymptotically normal). A sequence $\{\widehat{\Theta}_N(Z)\}_{N\in\mathbb{N}}$ of consistent estimators of θ is called best asymptotically normal if

(A.3)
$$\sqrt{N} \left(\widehat{\Theta}_N(Z) - \theta \right) \xrightarrow[N \to +\infty]{\mathcal{D}} \mathcal{N}(0, \Sigma) ,$$

for some minimal positive definite matrix Σ .

A.4. Consistency.

Definition A.4 (Consistent estimator). A sequence $\{\widehat{\Theta}_N(Z)\}_{N\in\mathbb{N}}$ of estimators of θ is called *consistent* if

(A.4)
$$\underset{N \to +\infty}{\text{plim}} \widehat{\Theta}_N(Z) = \theta.$$

Equivalently, we can show that the MSE of the estimator converges to zero as N goes to infinity.

Appendix B. Omitted proofs

B.1. Proof of normality using the central limit theorem.

Proof. We want to prove that $\ell'(\theta_0)/\sqrt{N} \sim \mathcal{N}(0,\mathcal{I}(\theta_0))$. We simplify notation by writing $f(v_i)$ instead of $f_{V_i}(v_i;k,\theta)$ and using Euler's notation for derivatives. First, we show that the expected value of $\ell'(\theta_0)/\sqrt{N}$ is zero.

(B.1)
$$\mathbb{E}\left[\frac{\ell'(\theta_0)}{\sqrt{N}}\right] = \int_{-\infty}^{+\infty} \partial_{\theta_0} \left(\sum_{i=1}^{N} \frac{\ln f(v_i)}{\sqrt{N}}\right) f(v_i) \, \mathrm{d}v_i$$

(B.2)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{\partial_{\theta} f(v_i)}{f(v_i)} f(v_i) \, \mathrm{d}v_i$$

(B.3)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{\partial_{\theta} f(v_i)}{f(v_i)} f(v_i) \, \mathrm{d}v_i$$

(B.4)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \partial_{\theta} f(v_i) \, dv_i$$

(B.5)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \partial_{\theta} \int_{-\infty}^{+\infty} f(v_i) \, dv_i$$

(B.6)
$$= 0$$
.

Next, we compute the variance of $\ell'(\theta_0)/\sqrt{N}$. First, we compute (for $i=1,\ldots,N$)

(B.7)
$$\mathbb{E}\left[\left(\partial_{\theta_0} \ln f(v_i)\right)^2\right] = \int_{-\infty}^{+\infty} \partial_{\theta_0} \ln f(v_i) \frac{\partial_{\theta_0} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$
(B.8)
$$= \int_{-\infty}^{+\infty} \partial_{\theta_0} \ln f(v_i) \partial_{\theta_0} f(v_i) \, dv_i.$$

Using the product rule, we can then find

(B.9)
$$= -\int_{-\infty}^{+\infty} \partial_{\theta_0} \theta_0 \ln f(v_i) f(v_i) dv_i + \int_{-\infty}^{+\infty} \partial_{\theta_0} \left(\partial_{\theta_0} \ln f(v_i) f(v_i) \right) dv_i .$$

(B.10)
$$= -\mathbb{E}\left[\partial_{\theta_0\theta_0} \ln f(v_i)\right] + \partial_{\theta_0} \int_{-\infty}^{\infty} \frac{\partial_{\theta_0} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

$$(B.11) = \mathcal{I}(\theta),$$

where the last expression can be shown to be zero by a similar argument as the one used above for the expected value. Knowing this, one easily finds

(B.12)
$$\mathbb{V}\left[\frac{\ell'(\theta_0)}{\sqrt{N}}\right] = \frac{1}{N}\mathbb{V}\left[\sum_{i=1}^N \partial_{\theta_0} \ln f(v_i)\right] = \mathcal{I}(\theta_0),$$

since the random variables are i.i.d.. Using the Lindeberg-Lvy CLT, we thus have

(B.13)
$$\frac{\ell'(\theta_0)}{\sqrt{N}} \sim \mathcal{N}(0, \mathcal{I}(\theta_0)). \qquad \Box$$

Appendix C. Calculations of the Fisher information matrix

(C.1)
$$\frac{\partial h(z;\theta)}{\partial s} = \frac{1}{s^2} \sum_{i=1}^{N} v_i - \frac{Nk}{s}$$

(C.2)
$$\frac{\partial h(z;\theta)}{\partial k} = \sum_{i=1}^{N} \ln v_i - N \ln s - N\psi_0(k)$$

(C.3)
$$\frac{\partial^2 h(z;\theta)}{\partial s^2} = -\frac{2}{s^3} \sum_{i=1}^N v_i + \frac{Nk}{s^2}$$

(C.4)
$$\frac{\partial^2 h(z;\theta)}{\partial k^2} = -N\psi_1(k).$$

(C.5)
$$\frac{\partial^2 h(z;\theta)}{\partial k \partial s} = -\frac{N}{s}.$$

Then, we take the expectation of these computed values.

$$(C.6) \mathcal{I}_{00} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\theta)}{\partial s^2}\right\} = -\mathbb{E}\left\{-\frac{2}{s^3}\sum_{i=1}^N v_i + \frac{Nk}{s^2}\right\}$$

(C.7)
$$= \frac{2}{s^3} Nsk - \frac{NK}{s^2} = \frac{NK}{s^2}.$$

(C.8)
$$\mathcal{I}_{01} = \mathcal{I}_{10} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\theta)}{\partial k \partial s}\right\} = \frac{N}{s}.$$

(C.9)
$$\mathcal{I}_{11} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\theta)}{\partial k^2}\right\} = -N\psi_1(k).$$

References

Universit catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium E-mail: navarre.louis@student.uclouvain.be

Universit catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium $E\text{-}mail\colon$ gilles.peiffer@student.uclouvain.be