Kaggle Project

House Prices: Advanced Regression Techniques

Christian Nava, Jenna Ford, Dan Crouthamel, Sangrae Cho August 14, 2019

I. Introduction

Data Description

The Ames Housing Dataset is a modern alternative to the popular Boston Housing Dataset. The Ames dataset contains 2,930 observations of individual residential property sales in Ames, Iowa from 2006 to 2010 and contains 80 quantitative and categorical variables. These 80 variables can be further categorized into 20 continuous variables related to area dimensions, 14 discrete variables related to the number and types of rooms in a property (e.g., kitchen, bathroom, bedroom, etc.), and 46 categorical variables (23 nominal and 23 ordinal) describing garages, materials, environmental conditions, and ratings of items within the property. The dataset and its label descriptions can be found on the Kaggle competition data page.

II. Analysis Question 1

Problem Statement

Understanding the factors influencing a home's sale price is a critical business need for a real estate company. The client, Century21 Ames, who sells houses in the North Ames, Edwards, and Brookside neighborhoods wants an estimate that helps them determine how the sale price of a house is related to the square footage of its living area. Also, the client wants to know if the sale price depends on the house's neighborhood (i.e., North Ames, Edwards, or Brookside).

Solution Outline

As linear regression techniques have been successful in predicting housing prices, in this project they will be used to provide an estimate of the relationship between the sale price of a house and the square footage of its living area.

¹De Cock, D. (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. *Journal of Statistics Education*, 19(3).

The metric used to evaluate submissions for this Kaggle competition is the root mean square error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sale price.

Build and Fit the Model

Linear Regression

Linear regression is a method to determine whether one or more predictor variables explain the dependent variable. In this project, we have performed a log-log transformation, $log_e(x)$, of the data where both the response and explanatory (predictor) variables are logged and the regression model is given by the following:

$$\mu\{log(Y) \mid log(X), \ Neighborhood\} = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 log(X) + \beta_4 Cent_1 + \beta_5 Cent_2$$

Where Y is the sale price of the home, X is the square footage of the home's living area (in 100 sq ft increments), β_0 is the intercept from the linear regression equation, β_1 , β_2 , β_3 , β_4 and β_5 are the regression coefficients, D_1 and D_2 are dummy variables for Edwards and Brookside neighborhoods, respectively, and $Cent_1$ and $Cent_2$ are variables representing the interaction between the log of the square footage of the living area and the Edwards and Brookside neighborhoods, respectively. A centering method was used for the Cent interactions.

Check Assumptions

Linear Relationship

Per the residual plot (Figure 5, top left), the residuals appear randomly distributed around 0, which suggests a linear relationship and satisfies the assumption of linearity.

Normality

Per the histogram of the residuals and the QQ plot (Figure 5, middle left and bottom left), the log-transformed data appear normally distributed.

Constant Variance/Multicollinearity

There should be little to no multicollinearity among the predictors. Per the variance inflation factor (VIF), where a value of VIF>10 would indicate the presence of multicollinearity, the assumption is satisfied. VIF values for all variables are below 1.2 (Figure 6).

Independence

We will assume independence. The dataset contains the sales of all homes in Ames, lowa from 2006 to 2010.

Outliers

The original plots do show some outliers where the square footage is about 4000. Figure 1 shows the scatterplot with all values and no transformations. The Cook's D plot in Figure 3 shows that at least one of these observations over 4000 sq ft has high leverage. All analyses are done removing observations where the house has more than 4000 sq ft.

Comparing Competing Models

Adjusted R²

The adjusted r-squared statistic is a variation on the coefficient of determination, R^2 , that has been adjusted for the number of explanatory variables in the model. With a multivariate regression model, as additional explanatory variables are included in the model, the R^2 value will continue to increase irrespective of the variable's significance. With the adjusted R^2 , however, explanatory variables that do not improve the model are penalized, which helps determine if the addition of an explanatory variable improves the model fit. In our model, the R^2 value is 51.21% and the adjusted R^2 value is 50.56%.

Parameters

Estimates

Table 1 shows the parameter estimates for the model.

$$\mu\{log(Y) \mid log(X), \ Neighborhood\} \ = \ \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 log(X) + \beta_4 Cent_1 + \beta_5 Cent_2$$

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation	95% Con Lim	
Intercept	1	10.40966	0.08593	121.13	<.0001	0	10.24068	10.57863
N1	1	-0.14503	0.02293	-6.33	<.0001	1.06949	-0.19012	-0.09995
N2	1	-0.11467	0.02839	-4.04	<.0001	1.10740	-0.17049	-0.05885
GRLIVAREA_LOG	1	0.57731	0.03358	17.19	<.0001	1.04260	0.51129	0.64334
CENT1_LOG	1	0.20031	0.08228	2.43	0.0154	1.10338	0.03854	0.36209
CENT2_LOG	1	0.34662	0.08345	4.15	<.0001	1.16008	0.18254	0.51071

Table 1: Parameter Estimates

Interpretation of Parameters

 β_0 : **Intercept** - The intercept in the model provides an estimate (e^{10,40966} = \$33,179) of the sale price of a house in the N. Ames neighborhood (reference neighborhood) with a living area square footage of zero.

- β_1 : **N1** This is the adjustment of the intercept for a house in the Edwards neighborhood with respect to a house N. Ames neighborhood. For a living area square footage of zero, the house in the Edwards neighborhood has an estimated median sale price of $e^{-0.14503}$ = .86 or 14% less than the house in the N. Ames neighborhood.
- β_2 : **N2** This is the adjustment of the intercept for a house in the Brookside neighborhood with respect to a house N. Ames neighborhood. For a living area square footage of zero, the house in the Brookside neighborhood has an estimated median sale price of $e^{-0.11467}$ = .89 or 11% less than the house in the N. Ames neighborhood.
- β_3 : **GRLIVAREA_LOG** Each doubling of the living area square footage, with the neighborhood held constant, results in a $2^{0.57731}$ = 1.4921 multiplicative change in the median sale price. This translates to a 49.21% increase in the median sale price.
- β_4 : **CENT1_LOG** Each doubling of the living area square footage for the Edwards neighborhood, with respect to the N. Ames neighborhood, results in a $2^{0.20031}$ = 1.1489 multiplicative change in the median sale price. This translates to a 14.89% increase in the median sale price for the Edwards neighborhood over the N. Ames neighborhood.
- β_5 : **CENT2_LOG** Each doubling of the living area square footage for the Brookside neighborhood, with respect to the N. Ames neighborhood, results in a $2^{0.34662}$ = 1.2716 multiplicative change in the median sale price. This translates to a 27.16% increase in the median sale price for the Brookside neighborhood over the N. Ames neighborhood.

Predictions

Using the model discussed above, we have provided predictions for the 3 neighborhoods at each of their mean living area square footage. These predictions are listed in Table 2.

Avg. Living Predicted 95% Confidence Limits -95% Confidence Limits -Neighborhood Area Value Mean Prediction Brookside 1203 \$123,797 \$117,818 \$130,066 \$85,0598 \$180,160 Edwards 1203 \$120,427 \$115,983 \$125,041 \$82,868 \$175,027 N. Ames 1203 \$139,763 \$136,298 \$143,315 \$96,269 \$202,906 Brookside \$132,774 \$125,958 \$139,944 \$193,300 1310 \$91,190 Edwards 1310 \$127,555 \$122,688 \$132,628 \$87,755 \$185,4059 N. Ames \$145,525 \$141,917 1310 \$149,223 \$100,238 \$211,272 Brookside 1340 \$135,239 \$135,239 \$142,729 \$92,865 \$196,929 Edwards 1340 \$129,495 \$129,495 \$134,767 \$89,081 \$188,245 N. Ames 1340 \$147,075 \$147,075 \$150,874 \$101,3064 \$213,523

Table 2: Sales Price Predictions

Conclusion

The relationship between the living area and the median sale price of a house with respect to the three neighborhoods of interest can be quantified by the following equations:

```
N. Ames: \mu\{logSalePrice \mid logLiveArea\} = 10.6711 + 0.47302 * logLiveArea 
 Edwards: \mu\{logSalePrice \mid logLiveArea\} = 10.0239 + 0.67333 * logLiveArea 
 Brookside: \mu\{logSalePrice \mid logLiveArea\} = 9.68755 + 0.81964 * logLiveArea
```

Where a doubling in the living area leads to a $2^{0.47302}$ = 1.3888 (39% increase) multiplicative change in the median sale price for the N. Ames neighborhood, a $2^{0.67333}$ = 1.5947 (59% increase) multiplicative change in the median sale price for the Edwards neighborhood, and a $2^{0.81964}$ = 1.7650 (77% increase) multiplicative change in the median sale price for the Brookside neighborhood.

III. Analysis Question 2

Problem Statement

We are seeking to build the best predictive model for sales price from a selection of the following linear regression models: forward selection, backward elimination, stepwise selection, and a custom model of our design. Comparative metrics to determine the best model will include an adjusted R² value, CV Press, and a Kaggle Score for each of the four models. Variables with the highest correlation are included in the selection models.

Model Selection

Forward Selection

In a forward selection model we start with just the intercept and no predictors. We subsequently add predictors one at a time using the predictor that improves the fit of the model the most until no new predictor adds a significant improvement to the model.²

Our forward selection model achieved an adjusted R² of 0.8927, CV press value of 22.0603, and Kaggle score of 0.16250 (Table 2).

² SAS/STAT(R) 12.3 User's Guide: High-Performance Procedures, Forward Selection

Backward Elimination

The backward elimination model begins with a full model that uses all possible predictors and then successively eliminates the least significant predictors one by one until a stopping condition is met.³

For our model, the stopping condition was the predicted residual sum of square with k-fold cross validation (CV) for 5 folds. Our backward elimination model achieved an adjusted R² of 0.8959, CV press value of 22.6955, and Kaggle score of 0.16193 (Table 3).

Stepwise Selection

The stepwise selection model is a variation on the forward selection model where we start with only the intercept and sequentially add the most significant predictors, however, at each step of adding a predictor, variables that do not significantly improve the fit of the model are eliminated as they would be in a backward elimination model.⁴

Our stepwise selection model achieved an adjusted R² of 0.8927, CV press value of 22.0022, and Kaggle score of 0.16193 (Table 3).

Custom Model

For our custom model, we looked at variables that had high correlation and considered variables that we found important when looking for houses such as building type (i.e. single family home), whether the house has central air conditioning/heating and the year the house was built.

Our custom model achieved an adjusted R² of 0.9028, CV press value of 23.3070, and Kaggle score of 0.13198 (Table 3). This model outperformed the forward, backward and stepwise selection models.

Check Assumptions for the Custom Model

Linear Relationship

Per the residual plot (Figure 24, upper left graph), the residuals appear randomly distributed around 0, which suggests a linear relationship and satisfies the assumption of linearity.

Normality

Per the histogram of the residuals and the QQ plot (Figure 24, middle left graph), the log-transformed data appear normally distributed. The distribution does appear to have a slight left-skew.

³ Ibid, Backward Elimination

⁴ Ibid, <u>Stepwise Selection</u>

Constant Variance/Multicollinearity

Per the residual plot (Figure 24, upper left graph), the residuals appear randomly distributed around 0 with no evidence of unequal variance. Additionally, an unequal variance is related to a skewed distribution. Per the histogram of the residuals, with a superimposed normal distribution (Figure 24, bottom left), there is no evidence of unequal variance.

Independence

We will assume independence. The dataset contains the sales of all homes in Ames, lowa from 2006 to 2010.

Outliers

The original plots do show some outliers where the square footage is about 4000. Figure 1 shows the scatterplot with all values and no transformations. The Cook's D plot in Figure 3 shows that at least one of these observations over 4000 sq ft has high leverage. All analyses are done removing observations where the house has more than 4000 sq ft.

Comparing Competing Models

As shown in Table 3, we found that the Custom Model performed the best in terms of Adjusted R², CV Press, and Kaggle Score metrics as compared to the Forward Selection, Backward Elimination, and Stepwise Selection models.

Table 3: Metric comparison for all models

Predictive Model	Adjusted R ²	CV Press	Kaggle Score
Forward Selection	0.8927	22.0603	0.16250
Backward Elimination	0.8959	21.6955	0.16193
Stepwise Selection	0.8927	22.0022	0.15571
Custom Model	0.9028	23.3070	0.13198

Conclusion

Our custom model produced the best performance from the models in Table 3. Given the scope of the project and the limitations of the models, there is additional room for improvement that other models can address. Further explorations of models to predict house sale prices include regularized linear models, boosting models (XGBoost, LightGBM), and stacked regression models.

Appendix

Reading in the Data

```
%MACRO READ DATA (PATH, NAME, NUM OBS);
* REPLACE NA WITH MISSING;
DATA NULL;
     INFILE "&PATH.&NAME..csv" DSD TRUNCOVER;
     FILE "&PATH.&NAME. missing.csv" DSD;
     LENGTH WORD $200;
     * LOOP THROUGH EACH OF THE 81 COLUMNS AND REPLACE 'NA' WITH .;
     DO I=1 TO &NUM OBS;
           INPUT WORD 0;
           IF I IN (7,31,32,33,34,36,58,59,61,64,65,73,74,75) THEN DO;
                PUT WORD@;
           END;
           ELSE DO;
                IF WORD='NA' THEN WORD = .;
                PUT WORD@;
           END;
     END;
     * OUTPUT THE RECORD TO THE FILE;
     PUT;
RUN;
* IMPORT THE FILE WHERE NAS ARE REPLACED WITH .;
PROC IMPORT DATAFILE="&PATH.&NAME. missing.csv" OUT=&NAME REPLACE;
     GUESSINGROWS=MAX;
RUN;
%MEND;
* CREATE A DATASET WITH THE LIST OF FILES TO READ IN;
DATA LIST;
     * THIS IS WHERE YOU UPDATE WITH THE LOCATION OF YOUR FILES;
     PATH='/data/bnsf/ib/hubops/jford/data science/kaggle/';
     NAME='train'; NUM OBS = 81; OUTPUT;
     NAME='test'; NUM OBS = 80; OUTPUT;
RUN;
```

```
* EXECUTE THE MACRO TO LOOP THROUGH THE FILES BEING READ IN;

DATA _NULL_;

SET LIST;

CALL EXECUTE('%READ_DATA('||PATH||','||NAME||','||NUM_OBS||')');

RUN;
```

Analysis Question 1

```
* CREATE DUMMY VARIABLES FOR NEIGHBORHOOD AND ONLY KEEP 3
NEIGHBORHOODS;
DATA TRAIN1;
    SET TRAIN;
     IF NEIGHBORHOOD IN ('Edwards', 'BrkSide', 'NAmes');
     IF NEIGHBORHOOD = 'Edwards' THEN DO;
         N1 = 1;
         N2 = 0;
     END;
     ELSE IF NEIGHBORHOOD = 'BrkSide' THEN DO;
         N1 = 0;
          N2 = 1;
     END;
     ELSE DO;
         N1 = 0;
         N2 = 0;
     END;
     GRLIVAREA = GRLIVAREA/100;
     SALEPRICE LOG = LOG(SALEPRICE);
     GRLIVAREA LOG = LOG(GRLIVAREA);
RUN;
*********
* WITH OUTLIERS
********
PROC MEANS DATA=TRAIN1;
RUN;
* CREATE INTERACTION VARIABLES;
DATA TRAIN2;
    SET TRAIN1;
```

```
CENT1 = (GRLIVAREA LOG - 13.0183) * (N1 - 0.2610966);
     CENT2 = (GRLIVAREA LOG - 13.0183) * (N2 - 0.1514360);
     CENT1 LOG = (GRLIVAREA LOG - 2.5141431) * (N1 - 0.2610966);
     CENT2 LOG = (GRLIVAREA LOG - 2.5141431) * (N2 - 0.1514360);
     GRCENT=(GRLIVAREA LOG - 2.5141431);
RUN;
ODS GRAPHICS ON;
SYMBOL1 V='SQUAREFILLED' C="#58508D" I=NONE;
SYMBOL2 V='DOT' C=ROSE I=NONE;
SYMBOL3 V='TRIANGLEFILLED' C=BIOY I=NONE;
*EDA AND REGRESSIONS WITHOUT TRANSFORMATIONS;
PROC GPLOT DATA=TRAIN2;
PLOT SALEPRICE*GRLIVAREA=NEIGHBORHOOD;
TITLE1 'Figure 1: House Sales Price and Square Footage by
Neighborhood';
TITLE2 'Without Transformations';
RUN;
```

Figure 1: House Sale Price and Square Footage by Neighborhood 'Without Transformations


```
*EDA AND REGRESSIONS WITH TRANSFORMATIONS;

PROC GPLOT DATA=TRAIN2;

PLOT SALEPRICE_LOG*GRLIVAREA_LOG=NEIGHBORHOOD;

TITLE1 'Figure 2: House Sales Price and Square Footage by Neighborhood';

TITLE2 'With Log Transformations';

RUN;
```

Figure 2: House Sale Price and Square Footage by Neighborhood With Log Transformations


```
PROC REG DATA=TRAIN2;
    MODEL SALEPRICE = N1 N2 GRLIVAREA /VIF;
    TITLE1 'Figure 3: Simple Linear Regression';
    TITLE2 'No Transformations';
RUN;
```

Figure 3: Simple Linear Regression No Transformations

Figure 4: Summary Simple Linear Regression, No Transformation

	Number of Observations Read Number of Observations Used									
			Analy	sis of V	aria	nce				
Source		DF		Sum of Squares		Mean Square		- Val	ue	Pr > F
Model		3	2.205076E11		735	502535486		83.0	00	<.0001
Error		379	3.356	3.356445E11 88560		856055	99			
Corrected	ed Total 382 5.561521E11									
	Root	MSE		297	59 R	-Square	0	3965	I	
	Deper	ndent I	Mean		-	di R-Sq	_	3917		
	Coeff			21.554	The state of the s					
			Parar	neter Es	tima	ites				
Variable	DF	1000	meter timate	Stand	100000	t Value	Pr	> t	100	ariance offation
Intercept	1		85887	4578.1	1684	18.76	<	0001		0
N1	1		18988	3577.82	2668	-5.31	<.	0001		1.06804
N2	1	2	16106	4395.35	5182	-3.66	0.	0003		1.07364
GrLivArea	1	4576.	00645	314.88	3014	14.53	<.	0001	7	1.00815

Figure 5: Simple Linear Regression Log-Log Transformation

Figure 6: Summary
Simple Linear Regression, Log-Log Transformation

3.0	Number of Observations Read					83	
N	Number of Observations Used					83	
		Ana	lysis of Va	ariance			
Source		DF	Sum of Squares	RAPETER 1	F۱	/alue	Pr > F
Model		5	14.62858	2.92572	7	79.14	<.0001
Error		377	13.93775	0.03697			
Corrected To	otal	382	28.56633	-			
Root M	ISE		0.1922	8 R-Squa	are	0.51	21
Depend	ependent Mean		11.7988	7 Adj R-S	Sq	0.50	56
Coeff V			1.6296	2			

		Parameter	Estimates			
Variable	DF	Parameter Estimate		t Value	Pr > t	Variance Inflation
Intercept	1	10.50849	0.08297	126.65	<.0001	0
N1	1	-0.15415	0.02313	-6.66	<.0001	1.06929
N2	1	-0.11208	0.02895	-3.87	0.0001	1.11578
GRLIVAREA LOG	1	0.53769	0.03236	16.61	<.0001	1.05356
CENT1 LOG	1	0.04664	0.07248	0.64	0.5203	1.14765
CENT2 LOG	1	0.34662	0.08482	4.09	<.0001	1.18656

```
*********
* WITHOUT OUTLIERS
*********
DATA TRAIN_NO_OUTLIERS;
     SET TRAIN1;
     IF GRLIVAREA < 4000/100;</pre>
RUN;
PROC MEANS DATA=TRAIN NO OUTLIERS;
RUN;
DATA TRAIN NO OUTLIERS1;
     SET TRAIN NO OUTLIERS;
     CENT1 = (GRLIVAREA LOG - 12.8158530) * (N1 - 0.2572178);
     CENT2 = (GRLIVAREA LOG - 12.8158530) * (N2 - 0.1522310);
     CENT1 LOG = (GRLIVAREA_LOG - 2.5066639) * (N1 - 0.2572178);
     CENT2 LOG = (GRLIVAREA LOG - 2.5066639) * (N2 - 0.1522310);
RUN;
PROC GPLOT DATA=TRAIN NO OUTLIERS1;
```

```
PLOT SALEPRICE * GRLIVAREA=NEIGHBORHOOD;
TITLE1 'Figure 7: House Sales Price and Square Footage by
Neighborhood';
TITLE2 'Without Outliers, Without Transformations';
RUN;
```

Figure 7: House Sale Price and Square Footage by Neighborhood Without Outliers, Without Transformations


```
PROC GPLOT DATA=TRAIN_NO_OUTLIERS1;
    PLOT SALEPRICE_LOG * GRLIVAREA_LOG=NEIGHBORHOOD;
    TITLE1 'Figure 8: House Sales Price and Square Footage by Neighborhood';
    TITLE2 'Without Outliers, Without Log Transformations';
RUN;
```

Figure 8: House Sale Price and Square Footage by Neighborhood Without Outliers, Without Log Transformations


```
PROC REG DATA=TRAIN_NO_OUTLIERS1 PLOTS=ALL;
    MODEL SALEPRICE = N1 N2 GRLIVAREA /VIF;
    TITLE1 'Figure 9: Simple Linear Regression';
    TITLE2 'Without Outliers, Without Transformations';
RUN;
```

Figure 9: Simple Linear Regression Without Outliers, Without Transformations

Figure 10: Summary
Simple Linear Regression, Untransformed Data Without Outliers

	1	lumbe	r of Ol	servatio	ons l	Read	38	1	
	1	lumbe	r of Ol	servatio	ons l	Jsed	38	1	
			Analy	sis of V	aria	ıce			
Source	1 2		Sum of Squares		Mean Square		F Valu	ue Pr > F	
Model		3	2.737	209E11	912	402938	19	122.9	95 < .0001
Error		377	2.797	2.797579E11		420634	22		
Corrected Total		380	5.534	788E11					1
1	Root	MSE		272	41 R	-Square	. (0.4945	
	Deper	ndent I	Mean	1378	82 A	dj R-Sq	(0.4905	
	Coeff	Var		19.75658					
			Parar	neter Es	tima	ites			
Variable	DF		meter timate	Stand		t Value	e P	r > t	Variance Inflation
Intercept	1		62577	4985.94	4083	12.55	5 <	.0001	0
N1	1	- 1	15465	3301.4	1217	-4.68	3 <	.0001	1.06917
N2	1		14198	4029.47	7740	-3.52	2 0	.0005	1.07588
GrLivArea	1	6354.	96854	354.3	7700	17.93	3 <	.0001	1.00982

Figure 11: Linear Regression Without Outliers, Log-Log Transformations

Figure 12: Summary
Simple Linear Regression, Log-transformed Data Without Outliers

	Number of Observations Read 381										
	Number of Observations Used							381			
			Ana	lysis	of Var	iance				4	
	Sou	rce	DF	100	m of ares	Mean Square		Value	Pr > F		
	Mod	lel	5	15.0	0592 3	.00118		83.87	<.0001		
	Erro	or	375	13.4	1833 (.03578					
	Cor	rected Total	380	28.4	2424						
		Root MSE		0	.18916	R-Squa	are	0.52	79		
	Dependent Mear					Adj R-			16		
		Coeff Var			.60340	(1 - (7 -)	- 100				
			Para	amete	er Estin	nates					
Variable	DF	Parameter Estimate	Stand	0.0000000	t Value	Pr > t		Variano Inflatio		Confide	nce Limits
Intercept	1	10.40966	0.08	593	121.13	<.0001	1		0 1	0.24068	10.57863
N1	1	-0.14503	0.02	293	-6.33	<.0001	1	1.0694	9 -	0.19012	-0.09995
N2	1	-0.11467	0.02	2839	-4.04	<.0001	1	1.1074	.0	0.17049	-0.05885
GRLIVAREA_LOG	1	0.57731	0.03	358	17.19	<.0001	1	1.0426	0	0.51129	0.64334
CENT1_LOG	1	0.20031	0.08	3228	2.43	0.0154	4	1.1033	8	0.03854	0.36209
CENT2_LOG	1	0.34662	0.08	345	4.15	<.0001	1	1.1600	8	0.18254	0.51071

Figure 13: Output Statistics
Simple Linear Regression, Log-transformed Data Without Outliers

	Output Statistics								
Obs	Dependent Variable	Predicted Value	Std Error Mean			95% CL	Predict	Residual	
1	11.7	11.6356	0.0251	11.5862	11.6851	11.2604	12.0109	0.0428	
2	12.0	11.8669	0.0126	11.8421	11.8917	11.4942	12.2397	0.0971	
3	11.8	11.4455	0.0320	11.3826	11.5084	11.0683	11.8227	0.3451	
4	11.9	11.7621	0.0161	11.7305	11.7938	11.3889	12.1354	0.1496	
5	11.8	11.8983	0.0129	11.8729	11.9238	11.5255	12.2712	-0.0561	
6	11.8	11.7104	0.0195	11.6720	11.7488	11.3365	12.0843	0.1011	
7	12.2	11.9826	0.0166	11.9499	12.0153	11.6092	12.3560	0.2603	
8	11.1	11.0389	0.0604	10.9200	11.1577	10.6484	11.4293	0.0957	
9	12.0	12.0113	0.0185	11.9749	12.0476	11.6375	12.3850	0.005468	
10	11.9	11.8833	0.0127	11.8583	11.9082	11.5105	12.2561	0.0549	
11	11.6	11.7865	0.0148	11.7574	11.8155	11.4134	12.1596	-0.1874	
12	11.3	11.6696	0.0195	11.6314	11.7079	11.2957	12.0435	-0.3551	
13	12.0	11.8930	0.0128	11.8678	11.9182	11.5202	12.2658	0.0899	
14	11.9	11.8264	0.0132	11.8004	11.8523	11.4535	12.1992	0.0301	
15	11.6	11.7077	0.0250	11.6587	11.7568	11.3326	12.0829	-0.0594	
16	11.8	11.9057	0.0131	11.8799	11.9315	11.5329	12.2785	-0.1304	
17	12.1	11.9278	0.0138	11.9006	11.9550	11.5548	12.3007	0.1757	
18	12.1	12.1347	0.0282	12.0793	12.1901	11.7587	12.5108	-0.0340	
19	12.4	12.1381	0.0285	12.0822	12.1941	11.7620	12.5143	0.2668	
20	11.9	11.7993	0.0142	11.7714	11.8272	11.4263	12.1723	0.0845	

```
PROC SGPLOT DATA=TRAIN_NO_OUTLIERS1 ;
    TITLE "Sales Price by Living Area and Neighborhood";
    REG Y=SALEPRICE_LOG X=GRLIVAREA_LOG / GROUP=NEIGHBORHOOD ;
    TITLE1 'Figure 14: Linear Regression';
    TITLE2 'Without Outliers, Log-Log Transformations';
RUN;
```

Figure 14: Linear Regression
Without Outliers, Log-Log Transformations

Analysis Question 2

```
* DATA PREP;
DATA TRAIN2;
     SET TRAIN;
     SALEPRICE LOG = LOG(SALEPRICE);
     IF GRLIVAREA < 4000;</pre>
     BATHROOMS = .5*HALFBATH + FULLBATH;
     ROOMS = BATHROOMS + TOTRMSABVGRD;
     SQFT = (BSMTFINSF1 + GRLIVAREA) /100;
     SQFT LOG = LOG(SQFT);
     GRLIVAREA = GRLIVAREA/100;
     GRLIVAREA LOG = LOG(GRLIVAREA);
RUN;
* CORRELATION MATRIX;
* CODE FROM
HTTPS://BLOGS.SAS.COM/CONTENT/SASDUMMY/2013/06/12/CORRELATIONS-MATRIX
-HEATMAP-WITH-SAS/;
%MACRO PREPCORRDATA (IN=,OUT=);
 /* RUN CORR MATRIX FOR INPUT DATA, ALL NUMERIC VARS */
  PROC CORR DATA=&IN. NOPRINT
    PEARSON
    OUTP=WORK. TMPCORR
    VARDEF=DF
 RUN;
  /* PREP DATA FOR HEAT MAP */
DATA &OUT.;
  KEEP X Y R;
  SET WORK. TMPCORR(WHERE= ( TYPE = "CORR"));
  ARRAY V{*} NUMERIC ;
  X = NAME;
  DO I = DIM(V) TO \mathbf{1} BY -\mathbf{1};
   Y = VNAME(V(I));
    R = V(I);
    /* CREATES A LOWER TRIANGULAR MATRIX */
```

```
IF (I< N ) THEN
     R=.;
   OUTPUT;
 END;
RUN;
PROC DATASETS LIB=WORK NOLIST NOWARN;
  DELETE TMPCORR;
QUIT;
%MEND;
ODS PATH WORK.MYSTORE (UPDATE) SASHELP.TMPLMST (READ);
PROC TEMPLATE;
  DEFINE STATGRAPH CORRHEATMAP;
  DYNAMIC TITLE;
   BEGINGRAPH;
      ENTRYTITLE _TITLE;
      RANGEATTRMAP NAME='MAP';
      RANGE -1 - 1 / RANGECOLORMODEL=(CXD8B365 CXF5F5F5 CX5AB4AC);
      ENDRANGEATTRMAP;
     RANGEATTRVAR VAR=R ATTRVAR=R ATTRMAP='MAP';
     LAYOUT OVERLAY /
     XAXISOPTS=(DISPLAY=(LINE TICKS TICKVALUES))
     YAXISOPTS=(DISPLAY=(LINE TICKS TICKVALUES));
     HEATMAPPARM X = X Y = Y COLORRESPONSE = R /
          XBINAXIS=FALSE YBINAXIS=FALSE
          NAME = "HEATMAP" DISPLAY=ALL;
     CONTINUOUSLEGEND "HEATMAP" /
                    ORIENT = VERTICAL LOCATION = OUTSIDE
                   TITLE="PEARSON CORRELATION";
     ENDLAYOUT;
   ENDGRAPH;
 END;
RUN;
ODS GRAPHICS /HEIGHT=2400 WIDTH=2400 IMAGEMAP;
%PREPCORRDATA(IN=TRAIN2(DROP=ID) ,OUT=CORR MATRIX);
PROC SGRENDER DATA=CORR MATRIX TEMPLATE=CORRHEATMAP;
   DYNAMIC TITLE ="CORR MATRIX";
RUN;
```

Figure 15: Correlation Matrix


```
* EDA FOR CATEGORICAL VARIABLES;
ODS GRAPHICS /HEIGHT=600 WIDTH=600 IMAGEMAP;

PROC SGPANEL DATA=TRAIN2 NOAUTOLEGEND;
TITLE "Figure 16: Sales Price by Central Air";
```

PANELBY CENTRALAIR; HISTOGRAM SALEPRICE LOG; DENSITY SALEPRICE_LOG;

Figure 16: Sale Price by Central Air


```
PROC SGPANEL DATA=TRAIN2 NOAUTOLEGEND;
     TITLE "Figure 17: Sales Price by Building Type";
     PANELBY BldgType;
     HISTOGRAM SALEPRICE LOG;
     DENSITY SALEPRICE_LOG;
RUN;
```


Figure 17: Sale Price by Building Type

PROC SGPANEL DATA=TRAIN2(WHERE=(MISSING(ROOFMATL)=0)) NOAUTOLEGEND;
 TITLE "Figure 18: Sales Price by Roof Material";
 PANELBY ROOFMATL /COLUMNS=4;
 HISTOGRAM SALEPRICE_LOG;

Figure 18: Sale Price by Roof Material


```
ODS GRAPHICS /HEIGHT=600 WIDTH=2400 IMAGEMAP;

PROC SGPANEL DATA=TRAIN2 NOAUTOLEGEND;

TITLE "Figure 19: Sales Price by Neighborhood";

PANELBY NEIGHBORHOOD / columns=13;

HISTOGRAM SALEPRICE_LOG;

DENSITY SALEPRICE_LOG;

RUN;
```


Note: It is difficult to read Figure 19. The point of the figure is to show how different the distributions of SALEPRICE_LOG look for each neighborhood. This is a significant variable to include in the model.

```
PROC GLMSELECT DATA=TRAIN2;

CLASS EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH

GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE GARAGECOND

CENTRALAIR FOUNDATION NEIGHBORHOOD;

MODEL SALEPRICE_LOG = LOTAREA WOODDECKSF OPENPORCHSF

FIREPLACES MASVNRAREA GARAGEYRBLT YEARBUILT ROOMS GARAGEAREA

GARAGECARS OVERALLQUAL SQFT_LOG EXTERQUAL BSMTQUAL KITCHENQUAL

GARAGEFINISH GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE

GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD

/ SELECTION = FORWARD(STOP=CV) CVMETHOD=RANDOM(5)

STATS=ADJRSQ;

TITLE 'Figure 20: Forward Selection Model';

RUN;
```

Figure 20: Summary Forward Selection Model

Step	Effect Entered	Number Effects In	Number Parms In	Adjusted R-Square	SBC	CV PRESS
0	Intercept	1	1	0.0000	-2664.9883	193.8435
1	OverallQual	2	2	0.6641	-4149.9911	65.2888
2	SQFT_LOG	3	3	0.8002	-4853.7698	38.7845
3	Neighborhood	4	27	0.8428	-5033.0914	31.8471
4	GarageArea	5	28	0.8535	-5122.7393	29.6788
5	KitchenQual	6	31	0.8622	-5188.0498	27.9850
6	LotArea	7	32	0.8679	-5239.5168	26.7793
7	CentralAir	8	33	0.8732	-5289.5237	25.6880
8	ROOMS	9	34	0.8783	-5338.9957	24.7700
9	OpenPorchSF	10	35	0.8814	-5368.5859	24.1556
10	YearBuilt	11	36	0.8840	-5392.2700	23.6960
11	WoodDeckSF	12	37	0.8861	-5411.8592	23.3086
12	Fireplaces	13	38	0.8881	-5429.3126	22.9509
13	HeatingQC	14	42	0.8903	-5431.9604	22.5515
14	BsmtExposure	15	46	0.8927	-5436.8589*	22.0446
	GarageCars	16	47	0.8928	-5432.6911	22.0157
16	GarageType	17	52	0.8950*	-5429.5735	21.8002

Selection stopped at a local minimum of the cross validation PRESS.

Stop Details							
Candidate For	Effect	Candidate CV PRESS	Compare CV PRESS				
Entry	GarageYrBlt	21.8429 >	21.8002				

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value				
Model	45	173.46847	3.85485	253.48				
Error	1321	20.08928	0.01521					
Corrected Total	1366	193.55776						

Root MSE	0.12332
Dependent Mean	12.05158
R-Square	0.8962
Adj R-Sq	0.8927
AIC	-4307.99612
AICC	-4304.57535
SBC	-5436.85892
CV PRESS	22.06034

PROC GLMSELECT DATA=TRAIN2;

CLASS EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD;

MODEL SALEPRICE_LOG = LOTAREA WOODDECKSF OPENPORCHSF
FIREPLACES MASVNRAREA GARAGEYRBLT YEARBUILT ROOMS GARAGEAREA
GARAGECARS OVERALLQUAL SQFT_LOG EXTERQUAL BSMTQUAL KITCHENQUAL
GARAGEFINISH GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE
GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD

/ SELECTION = BACKWARD(STOP=CV) CVMETHOD=RANDOM(5) STATS=ADJRSQ;
TITLE 'Figure 21: Backward Selection Model';

RUN;

Figure 21: Summary Backward Elimination Model

Step	Effect Removed	Number Effects In		Adjusted R-Square	SBC	CV PRESS
0		25	75	0.8968*	-5311.0668	21.9172
1	Foundation	24	70	0.8966	-5339.9249	21.8334
2	GarageCond	23	66	0.8964	-5362.1820	21.8092
3	BsmtQual	22	62	0.8958	-5377.7975	21.7674
4	GarageFinish	21	60	0.8959	-5391.5433*	21.6955*
		* Optin	nal Value o	of Criterion		

Selection stopped at a local minimum of the cross validation PRESS.

	Sto	p Details		
Candidate For	Effect	Candidate CV PRESS		Compare CV PRESS
Removal	LotShape	21.7832	>	21.6955

Analysis of Variance									
Source Squares Square F Val									
Model	59	174.27156	2.95376	200.17					
Error	1307	19.28619	0.01476						
Corrected Total	1366	193.55776							

Root MSE	0.12147
Dependent Mean	12.05158
R-Square	0.9004
Adj R-Sq	0.8959
AIC	-4335.76569
AICC	-4329.96952
SBC	-5391.54326
CV PRESS	21.69550

PROC GLMSELECT DATA=TRAIN2;

CLASS EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD;

MODEL SALEPRICE_LOG = LOTAREA WOODDECKSF OPENPORCHSF FIREPLACES MASVNRAREA GARAGEYRBLT YEARBUILT ROOMS GARAGEAREA GARAGECARS OVERALLQUAL SQFT_LOG EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD

/ SELECTION = STEPWISE(STOP=CV) CVMETHOD=RANDOM(5) STATS=ADJRSQ;
TITLE 'Figure 22: Stepwise Selection Model';

Figure 22: Summary Stepwise Selection Model

Step	Effect Entered	Effect Removed	Number Effects In		Adjusted R-Square	SBC	CV PRESS
0	Intercept		1	1	0.0000	-2664.9883	194.2986
1	OverallQual		2	2	0.6641	-4149.9911	65.2742
2	SQFT_LOG		3	3	0.8002	-4853.7698	38.7690
3	Neighborhood		4	27	0.8428	-5033.0914	31.5664
4	GarageArea		5	28	0.8535	-5122.7393	29.4708
5	KitchenQual		6	31	0.8622	-5188.0498	27.6232
6	LotArea		7	32	0.8679	-5239.5168	26.5829
7	CentralAir		8	33	0.8732	-5289.5237	25.7274
8	ROOMS		9	34	0.8783	-5338.9957	24.7889
9	OpenPorchSF		10	35	0.8814	-5368.5859	24.1254
10	YearBuilt		11	36	0.8840	-5392.2700	23.7349
11	WoodDeckSF		12	37	0.8861	-5411.8592	23.2176
12	Fireplaces		13	38	0.8881	-5429.3126	22.8090
13	HeatingQC		14	42	0.8903	-5431.9604	22.4108
14	BsmtExposure		15	46	0.8927*	-5436.8589*	22.0022

Selection stopped as adding or dropping any effect does not improve the selection criterion.

	1	Inalysi	s of \	/ariand	ce		
Source	ource		The state of the s		um of uares	Mean Square	F Value
Model		45	173.46847		3.85485	253.48	
Error		1321	20.	08928	0.01521		
Corrected	1366	193.	55776				
	Root M		loan	_	0.12332		
	R-Squ		lent Mean re		0.8962		
	Adj R-	Sq			0.8927		
	AIC			-430	7.99612		
	AICC			-430	4.57535		
	SBC			-543	6.85892		
	CV PR	ESS		2:	2.00219		

* CUSTOM MODEL;

PROC GLM DATA=TRAIN2 PLOTS=ALL;

CLASS NEIGHBORHOOD BLDGTYPE ROOFMATL CENTRALAIR;

MODEL SALEPRICE_LOG = OVERALLQUAL OVERALLCOND YEARBUILT
ROOFMATL BSMTFINSF1 TOTALBSMTSF GRLIVAREA_LOG CENTRALAIR
NEIGHBORHOOD | BLDGTYPE / SOLUTION CLPARM;

RUN;

PROC GLMSELECT DATA=TRAIN2 PLOTS=ALL;

CLASS NEIGHBORHOOD BLDGTYPE ROOFMATL CENTRALAIR;

MODEL SALEPRICE_LOG = OVERALLQUAL OVERALLCOND YEARBUILT
ROOFMATL BSMTFINSF1 TOTALBSMTSF GRLIVAREA_LOG CENTRALAIR
NEIGHBORHOOD | BLDGTYPE / SELECTION=NONE STATS=PRESS;

Figure 23a: Summary Custom Model

Source		DF	Sun	of Squares	Mean Square	F Value	Pr > F
Model		76		207.2343962	2.7267684	178.85	<.0001
Error		1379		21.0249043	0.0152465		
Corrected Total 1455		1455		228.2593005			
1	R-Square	Coeff	Var	Root MSE	SALEPRICE_L	OG Mean	
	0.907890	1.02	7094	0.123477	_	12.02194	
Source			DF	Type I SS	Mean Square	F Value	Pr > I
OverallQ	ual		1	153, 1972213			
OverallCo	ond		1	0.3228806	0.3228806	21.18	<.000
YearBuilt	t		1	7.0987914	7.0987914	465.60	<.000
RoofMatl			6	0.5707126	0.0951188	6.24	<.000
BsmtFinSF1		1	7.8770132	7.8770132	516.64	<.000	
TotalBsmtSF		1	6.8543041	6.8543041	449.57	<.000	
GRLIVAREA LOG		1	23.6090418	23.6090418	1548.49	<.000	
CentralAir		1	0.2263898	0.2263898	14.85	0.000	
Neighborhood		24	4.9291890	0.2053829	13.47	< .000	
BldgType			4	1.3259670	0.3314917	21.74	<.000
Neighbor	hoo*Bldg	Type	35	1.2228853	0.0349396	2.29	<.000
Source			DF	Type III SS	Mean Square	F Value	Pr > I
OverallQ	ual		1	3.17565599	3.17565599	208.29	<.000
OverallCo	ond		1	4.01760013	4.01760013	263.51	<.000
YearBuilt	1		1	2.04432422	2.04432422	134.08	<.000
RoofMatl			6	0.27144371	0.04524062	2.97	0.007
BsmtFinSF1		1	2.06604098	2.06604098	135.51	<.0001	
TotalBsmtSF		1	1.62255449	1.62255449	106.42	<.000	
GRLIVAREA_LOG		1	16.96831466	16.96831466	1112.93	<.000	
CentralAir		1	0.21012999	0.21012999	13.78	0.000	
Neighborhood		24	2.21429782	0.09226241	6.05	<.000	
BldgType)		4	0.29798939	0.07449735	4.89	0.000
Neighborhoo*BldgType		Type	35	1.22288532	0.03493958	2.29	<.000

Root MSE	0.12348
Dependent Mean	12.02194
R-Square	0.9079
Adj R-Sq	0.9028
AIC	-4558.15028
AICC	-4549.20039
PRESS	23.30700
SBC	-5609.32476

Figure 23b: Summary
Custom Model

Parameter		Estimate		Standard Error	t Value	Pr > t	95% Confide	ence Limits
Intercept		3.923520375	В	0.56029422	7.00	<.0001	2.824399185	5.022641564
OverallQual		0.064942062		0.00449981	14.43	<.0001	0.056114848	0.073769276
OverallCond		0.057774011		0.00355905	16.23	<.0001	0.050792274	0.064755748
YearBuilt		0.003208109		0.00027705	11.58	<.0001	0.002664623	0.003751595
RoofMatl	CompShg	-0.205230139	В	0.05714789	-3.59	0.0003	-0.317336346	-0.093123931
RoofMatl	Membran	0.005313558	В	0.13746554	0.04	0.9692	-0.264350639	0.274977754
RoofMatl	Metal	-0.021769180	В	0.13763727	-0.16	0.8744	-0.291770255	0.248231895
RoofMatl	Roll	-0.245072442	В	0.13956431	-1.76	0.0793	-0.518853756	0.028708872
RoofMatl	Tar&Grv	-0.186090711	В	0.06815668	-2.73	0.0064	-0.319792701	-0.052388722
RoofMatl	WdShake	-0.236646400	В	0.07952386	-2.98	0.0030	-0.392647214	-0.080645585
RoofMatl	WdShngl	0.000000000	В					
BsmtFinSF1		0.000108086		0.00000929	11.64	<.0001	0.000089872	0.000126301
TotalBsmtSF		0.000118458		0.00001148	10.32	<.0001	0.000095932	0.000140983
GRLIVAREA	LOG	0.492503503		0.01476301	33.36	<.0001	0.463543121	0.521463885
CentralAir	N	-0.060481041	В	0.01629146	-3.71	0.0002	-0.092439775	-0.028522308
CentralAir	Y	0.000000000	В					
Neighborhoo	d Blmngtn	-0.216061192	В	0.07811600	-2.77	0.0058	-0.369300243	-0.062822142
Neighborhoo	d Blueste	-0.411451065	В	0.14305250	-2.88	0.0041	-0.692075114	-0.130827015
Neighborhoo		-0.411839514	В	0.09518495	-4.33	<.0001	-0.598562478	-0.225116549
Neighborhoo	d BrkSide	-0.066750591	В	0.15951208	-0.42	0.6757	-0.379663173	0.246161992

Note: Figure 23b only includes a partial screenshot of the parameter estimates table.

Figure 24: Residual Plots Custom Model

Code for Kaggle Submission

```
* KAGGLE SUBMISSIONS;

DATA TEST2;

SET TEST;

SALEPRICE_LOG = LOG(SALEPRICE);

BATHROOMS = .5*HALFBATH + FULLBATH;

ROOMS = BATHROOMS + TOTRMSABVGRD;

SQFT = (BSMTFINSF1 + GRLIVAREA)/100;

SQFT_LOG = LOG(SQFT);

GRLIVAREA = GRLIVAREA/100;

GRLIVAREA_LOG = LOG(GRLIVAREA);

RUN;

* COMBINE TRAIN AND TEST DATASETS;

DATA KAGGLE;
```

```
SET TRAIN2 TEST2;
RUN;
* CALCULATE MEAN BY NEIGHBORHOOD FOR ANY MISSING PREDICTIONS;
PROC SQL;
     CREATE TABLE MEAN PRICE AS
     SELECT NEIGHBORHOOD
          , AVG (SALEPRICE)
     FROM TRAIN2
     GROUP BY 1
QUIT;
* FORWARD SELECTION MODEL;
PROC GLMSELECT DATA=KAGGLE;
          CLASS EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH
     GARAGETYPE HEATINGOC BSMTEXPOSURE LOTSHAPE GARAGECOND
     CENTRALAIR FOUNDATION NEIGHBORHOOD;
          MODEL SALEPRICE LOG = LOTAREA WOODDECKSF OPENPORCHSF
     FIREPLACES MASVNRAREA GARAGEYRBLT YEARBUILT ROOMS GARAGEAREA
     GARAGECARS OVERALLOUAL SOFT LOG EXTEROUAL BSMTQUAL KITCHENQUAL
     GARAGEFINISH GARAGETYPE HEATINGOC BSMTEXPOSURE LOTSHAPE
     GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD
       / SELECTION = FORWARD (STOP=CV) CVMETHOD=RANDOM (5)
STATS=ADJRSQ;
     OUTPUT OUT=RESULTS FORWARD P=PREDICT;
RUN;
* BACKWARD SELECTION MODEL;
PROC GLMSELECT DATA=KAGGLE;
          CLASS EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH
     GARAGETYPE HEATINGOC BSMTEXPOSURE LOTSHAPE GARAGECOND
     CENTRALAIR FOUNDATION NEIGHBORHOOD;
          MODEL SALEPRICE LOG = LOTAREA WOODDECKSF OPENPORCHSF
     FIREPLACES MASVNRAREA GARAGEYRBLT YEARBUILT ROOMS GARAGEAREA
     GARAGECARS OVERALLQUAL SQFT LOG EXTERQUAL BSMTQUAL KITCHENQUAL
     GARAGEFINISH GARAGETYPE HEATINGOC BSMTEXPOSURE LOTSHAPE
     GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD
            / SELECTION = BACKWARD(STOP=CV) CVMETHOD=RANDOM(5)
     STATS=ADJRSQ;
     OUTPUT OUT=RESULTS BACKWARD P=PREDICT;
RUN;
* STEPWISE SELECTION MODEL;
PROC GLMSELECT DATA=KAGGLE;
```

```
CLASS EXTERQUAL BSMTQUAL KITCHENQUAL GARAGEFINISH
     GARAGETYPE HEATINGOC BSMTEXPOSURE LOTSHAPE GARAGECOND
     CENTRALAIR FOUNDATION NEIGHBORHOOD;
          MODEL SALEPRICE LOG = LOTAREA WOODDECKSF OPENPORCHSF
     FIREPLACES MASVNRAREA GARAGEYRBLT YEARBUILT ROOMS GARAGEAREA
     GARAGECARS OVERALLQUAL SQFT LOG EXTERQUAL BSMTQUAL KITCHENQUAL
     GARAGEFINISH GARAGETYPE HEATINGQC BSMTEXPOSURE LOTSHAPE
     GARAGECOND CENTRALAIR FOUNDATION NEIGHBORHOOD
            / SELECTION = STEPWISE(STOP=CV) CVMETHOD=RANDOM(5)
     STATS=ADJRSQ;
     OUTPUT OUT=RESULTS STEPWISE P=PREDICT;
RUN;
* CUSTOM MODEL;
PROC GLMSELECT DATA=kaggle PLOTS=ALL;
     CLASS NEIGHBORHOOD BLDGTYPE ROOFMATL CENTRALAIR;
          MODEL SALEPRICE LOG = OVERALLQUAL OVERALLCOND YEARBUILT
     ROOFMATL BSMTFINSF1 TOTALBSMTSF GRLIVAREA LOG CENTRALAIR
     NEIGHBORHOOD | BLDGTYPE / SELECTION=NONE CVMETHOD=RANDOM(5)
     stats=press;
     OUTPUT OUT=RESULTS CUSTOM P=PREDICT;
RUN;
%MACRO FILE SUBMISSION(FILE);
DATA RESULTS2;
SET &FILE;
IF ID > 1460;
SALEPRICE = EXP(PREDICT);
* REPLACE ANY MISSING PREDICTIONS WITH THE MEAN SALES PRICE FOR THE
NEIGHBORHOOD;
if missing(predict) = 1 then do;
if neighborhood = "Blmngtn" then saleprice= 194870.8824;
else if neighborhood = "Blueste" then saleprice=137500;
else if neighborhood = "BrDale" then saleprice= 104493.75;
else if neighborhood = "BrkSide" then saleprice=124834.0517;
else if neighborhood = "ClearCr" then saleprice=212565.4286;
else if neighborhood = "CollgCr" then saleprice=197965.7733;
else if neighborhood = "Crawfor" then saleprice=210624.7255;
else if neighborhood = "Edwards" then saleprice=127318.5714;
else if neighborhood = "Gilbert" then saleprice=192854.5063;
else if neighborhood = "IDOTRR" then saleprice= 100123.7838;
else if neighborhood = "MeadowV" then saleprice=98576.47059;
else if neighborhood = "Mitchel" then saleprice=156270.1225;
else if neighborhood = "NAmes" then saleprice=
                                                 145847.08;
else if neighborhood = "NPkVill" then saleprice=142694.4444;
```

```
else if neighborhood = "NWAmes" then saleprice= 189050.0685;
else if neighborhood = "NoRidge" then saleprice=314028.4103;
else if neighborhood = "NridgHt" then saleprice=316270.6234;
else if neighborhood = "OldTown" then saleprice=128225.3009;
else if neighborhood = "SWISU" then saleprice=
                                                  142591.36;
else if neighborhood = "Sawyer" then saleprice= 136793.1351;
else if neighborhood = "SawyerW" then saleprice=186555.7966;
else if neighborhood = "Somerst" then saleprice=225379.8372;
else if neighborhood = "StoneBr" then saleprice=310499;
else if neighborhood = "Timber" then saleprice= 242247.4474;
else if neighborhood = "Veenker" then saleprice=238772.7273;
end;
KEEP ID SALEPRICE;
RUN;
PROC EXPORT DATA=RESULTS2
FILE="/data/bnsf/ib/hubops/jford/data science/kaggle/&FILE..csv"
replace;
RUN;
%MEND;
DATA LIST;
     LENGTH FILE $16.;
     FILE="RESULTS FORWARD"; OUTPUT;
     FILE="RESULTS BACKWARD"; OUTPUT;
     FILE="RESULTS STEPWISE"; OUTPUT;
     FILE="RESULTS CUSTOM"; OUTPUT;
RUN;
DATA NULL ;
     SET LIST;
     CALL EXECUTE ('%FILE SUBMISSION('||FILE||')');
RUN;
```