Mogguena Komponena poroma is guasanainen "Un centrai unemoga anny gerennen Jugna III - 33 Rempux Dui Oceanagebour Bapianus 38 Mig vac brenonne zabgant odryers gonpunybamica mabua okageni "moi" gosporecuocmi 1. 9=35,29 ± 9005 b= 51, 18 ± 0,003 d = 26° (37 ± 1)' Muono naponeno pama: S=ab. sind $A\delta cours mus noxubra:$ $\Delta (f') = \sum_{i,j=1}^{3} |\delta f(x_1, x_2, x_3, x_3)| \Delta (x_3, x_3)$ D(f') = 16. sin (d)). D(a) + 1a. sin(d)]. D(6)+ + | a.b. cos(L) | . > (L) = |51, 18 · sin (268) | . 0,005+ + | 35,29 · sin (26,3) | · 0,001 + | 35,29 · 51,18 · cos (26,3) (0°,11) = 0,115+0,0158+0,469=0,5998

f(a*, b*, d*) = 35, 29, 51, 18. sin (26°(37))=	
= 809,19	
Mogi bignocna noxuora:	
8(1)= 809,19 = 0,0007	
2. $f(x) = x^2 + 4 \sin x$	
$f'(x) = 2x + y \cos x$	
$x_{n+1} = x_n - \frac{f(x)}{f(x)}$	
Bizbarenio Xo = A	
X1 = 0 = 7 - 434h	
$\chi_1 = \frac{\pi}{3} - \frac{\pi^2}{3} + 4 = -0,488$	
Tepelipie aux youby zynama:	
1 X1 - X0 < E	
$ -0,488-1,57 =2,058 \ge E$	
Justo ne buconythous, money mogobnyous $Y_2 = -0,488 - \frac{-1,64}{2,56} = 0,152$	
Tepeliperacies gruby jaminan:	
[0,152+0,488]=0,6478.	
Unne, arropuetion repeda upogobament, noku	

	8490		Xn) <	E , m	onlo
lx	n+1-Xn/29	004.			0
3.	CXITX2			11 213	
	d X1+X3			111	
	$(2 \times 1 + \times 2 \times 1 + \times 2 \times 1 \times 1$	1		AP + X	* X - 1
A	= (1 1 3 1 0 1 2 1	1 2	X LOS		= +4
13.	uro purmobjeu	io u	remog	Tayer	a 3 budgrou
	usbero er		No.	o pueg	lar:
		2 2 1 1 1 1 4 2	P + = -		- 6 - 1
þ	1 \$ 0 2 2 3	$5 \left(\frac{2}{1} \right)$			2 0 X - 1 X 1
	/ 1/2 0	01	860 1	= ₹7 4	- 8.8 0 -
	= -1/2 1	0			H CORN 4
	1-20	1)	1/2	1/2	32000
A	= M1. P1 A0	= 0	1/2	- 1/2	3 eX + X
		03	0	=-19/84	2-1210
	18 mars of the	1	Esper	W 1 1 10	LA BALL

	1/2					
1/2 O	-1/2					
0	1-1/					
Pa = E						
			1 8	W.		
$M_{R} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$			194 =			
	11	01				
Aa = M2 Pa D1 =	0	0 -1	115			
1 (101)		4				
$A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$					10/1	
D of A = (-1)e ar	(0)	(2)			1= 4	
Det A = -1 · 1.	8 . 3 = -	-1 -	h	X		
			005100	chack		
arampungi						
					9 7	
	1/1-1			+		
	The state of					
					- N	

4. (xy-y?=1	C.70=4
d x ² y + y = 5	2=0,01
$f_{1}(x,y) = xy - y^{2} - 1$ $f_{2}(x,y) = x^{2}y + y - 5$ $A = F'(x,y) = \begin{cases} 3xy \end{cases}$	x -2 y x 2 +1 / 3 x 1 = 1
Bosonemo $X = (1, 1)^{T}$ $A_0 = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$	(1-1-0) = 61 (1-1-0) = 61 (1
$ \frac{1}{10} = \frac{1}{10} (x, y^{\circ}) = \frac{1}{10} = \frac{1}{10} = \frac{1}{10} (x, y^{\circ}) = \frac{1}{10} = \frac{1}{10}$	1 3 -1) -3)
$A_{0}Z^{\circ} = \overline{F}^{\circ}$ $\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2_{1} \\ 2_{2} \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$ $Z_{1} = -\overline{q}$ $Z_{2} = -\overline{q}$	

```
1/20/1 = 5/4 > 8
 Money reperoguemo go maciny meuro macy
  X\overline{I} = X^{\circ} - Z^{\circ} = (3,1)^{\top} - (-\frac{5}{4}, -\frac{1}{4}) =
 =(2,25;1,25) X_1=(2,25,1,25)^T
  A_{1} = \begin{pmatrix} 1,25 & -0,25 \\ 5,625 & 6,06 \end{pmatrix}
 \begin{pmatrix} 1,25 & -0.25 \\ 5,625 & 6.06 \end{pmatrix} \begin{pmatrix} 21 \\ 72 \end{pmatrix} = \begin{pmatrix} 0,25 \\ 2.58 \end{pmatrix}
 21^{1} = 2395 = 924
 21 = \frac{97}{479} = 0,2
1211 = 0,24 > 8
Ociciosas y mobo municipales inepagiones
upo yeur pre buio manaca, mo mogobanyeuro,
noxu v / 2" / 2 = E. moomo 1/2" / 1 = 0,01.
5. f(x)=ex [-3,0] &= 10-4
Ocaciona la mar reduciolesia byzan, mo
```

```
|f(x) - Ln(x)| ≤ Mn+1 (b-a)n+1 ≤ €
 6=0
 M_{n+1} = \max_{x \in [-1,0]} \{(n+1)\}
 f (x) = ex
 f((x) = ex
 £ (x) = e x
 M_{n+1} = \max \left| e^{x} \right| = 1
x \in E_{1}, o_{1}
 \frac{1}{(n+1)!} \frac{(0+1)^{n+1}}{(2^{2n+1})!} = \frac{1}{(n+1)!} \frac{1}{\chi^{2n+1}} \leq \varepsilon
 Memogous nig Jopey post enjeuro:
 (n+1)! \cdot 2^{2n+1} \leq 0,0003
n = 3 = 7 |f(x) - L_3(x)| = 0,0003 > \varepsilon
n=4=> |f(x)-24(x)1=1,63.10-5 LE
Omare, nomproma viusniems recumobur
Egzuib N+1= 4+1= 5.
```