Data Analysis Of Singapore's Waste Management

Yadanar Aung (P2214621) DAAA/FT/1B/02 ST1510 PDAS

Table of Contents

01

02

Nature of Datasets

Data Cleaning & Wrangling

03

Data Visualization & Insights

2003_2017_waste.csv

https://www.kaggle.com/datasets/mahaanand/singapore-waster-mgmt?select=2003_2017_waste.csv

First 5 Rows:

	waste_type	waste_disposed_of_tonne	total_waste_recycled_tonne	total_waste_generated_tonne	recycling_rate	year
0	Food	679900	111100.0	791000	0.14	2016
1	Paper/Cardboard	576000	607100.0	1183100	0.51	2016
2	Plastics	762700	59500.0	822200	0.07	2016
3	C&D	9700	1585700.0	1595400	0.99	2016
4	Horticultural waste	111500	209000.0	320500	0.65	2016

Last 5 Rows:

	waste_type	waste_disposed_of_tonne	total_waste_recycled_tonne	total_waste_generated_tonne	recycling_rate	year
220	Ash and sludge	214800	28600.0	243400	0.12	2017
221	Plastic	763400	51800.0	815200	0.06	2017
222	Textile/Leather	141200	9600.0	150800	0.06	2017
223	Others (stones, ceramic, rubber, etc.)	319300	7100.0	326400	0.02	2017
224	Total	2980000	4724300.0	7704300	0.61	2017

Information of Dataset 1:

```
**** Singapore Waste Management from 2013 to 2017 ****
Information of dataset 1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 225 entries, 0 to 224
Data columns (total 6 columns):
     Column
                                 Non-Null Count Dtype
                                                 object
    waste type
                                 225 non-null
    waste_disposed_of_tonne
                                 225 non-null
                                                  int64
     total waste recycled tonne
                                 225 non-null
                                                 float64
     total waste generated tonne 225 non-null
                                                  int64
     recycling rate
                                 225 non-null
                                                  float64
                                 225 non-null
                                                  int64
dtypes: float64(2), int64(3), object(1)
```

2018_2020_waste.csv

First 5 Rows:

https://www.kaggle.com/datasets/mahaanand/singapore-waster-mgmt?select=2018_2020_waste.csv

	Waste Type	Total Generated ('000 tonnes)	Total Recycled ('000 tonnes)	Year
0	Construction& Demolition	1624	1618	2018
1	Ferrous Metal	1269	1260	2018
2	Paper/Cardboard	1054	586	2018
3	Plastics	949	41	2018
4	Food	763	126	2018

Last 5 Rows:

	Waste Type	Total Generated ('000 tonnes)	Total Recycled ('000 tonnes)	Year
40	Non-ferrous metal	75	73	2020
41	Glass	66	7	2020
42	Scrap tyres	23	22	2020
43	Others (stones, ceramics, etc.)	193	21	2020
44	Overall	5880	3040	2020

Information of Dataset 2:

****	Singapore Waste Management from	m 2018 to 2020 *	***							
<class< td=""><td colspan="10">Information of dataset 2 <class 'pandas.core.frame.dataframe'=""> RangeIndex: 45 entries, 0 to 44 Data columns (total 4 columns):</class></td></class<>	Information of dataset 2 <class 'pandas.core.frame.dataframe'=""> RangeIndex: 45 entries, 0 to 44 Data columns (total 4 columns):</class>									
#	Column	Non-Null Count	Dtype							
0	Waste Type	45 non-null	object							
1	Total Generated ('000 tonnes)	45 non-null	int64							
2	Total Recycled ('000 tonnes)	45 non-null	int64							
3	Year	45 non-null	int64							
dtyp	es: int64(3), object(1)									
	_									

ghg-emissions.csv

https://www.climatewatchdata.org/ghg-emissions?breakBy=gas&end_year=2019&gases=all-

ghg®ions=SGP§ors=waste&start_year=1990

Information of Dataset 3:

dtypes: float64(30), object(2)

**** Gases Produced from Singapore Waste from 1990 to 2019

																					Info	ormation	of dataset 3	
																					<c1< td=""><td>ass 'pand</td><td>as.core.frame.Da</td><td>rtaFrame'></td></c1<>	ass 'pand	as.core.frame.Da	rtaFrame'>
																					•		4 entries, 0 to	
																					Data	a columns	(total 32 colum	ıns):
	Gas	unit	1990	1991	1992	1993	1994	1995	1996	1997	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	#	Column	Non-Null Count	Dtype
0	CH4	MtCO2e	1.15	1.18	1.22	1.26	1.30	1.33	1.37	1.42	2.45	2.54	2.62	2.71	2.79	2.88	2.96	3.03	3.11	3.19	0	Gas	4 non-null	object
1	CO2	MtCO2e	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1	unit	4 non-null	object
2	F-Gas	MtCO2e	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2	1990	2 non-null	float64
2		MtCO2e	0.05	0.05	0.05		0.06	0.06	0.06	0.06					0.10		0.11	0.11		0.11	3	1991	2 non-null 2 non-null	float64
,	NZU	WILCOZE	6.0.0	0.03	0.03	0.03	0.00	0.00	0:00	0.00	 0.03	0.03	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.11	4 5	1992 1993	2 non-null	float64 float64
																					6	1994	2 non-null	float64
																					7	1995	2 non-null	float64
																					8	1996	2 non-null	float64
																					9	1997	2 non-null	float64
																					10	1998	2 non-null	float64
																					11	1999	2 non-null	float64
																					12	2000	2 non-null	float64
																					13	2001	2 non-null	float64
																					14	2002	2 non-null	float64
																					15	2003	2 non-null	float64
																					16	2004	2 non-null	float64
																					30	2018	2 non-null	float64
																					31	2019	2 non-null	float64

solid-waste-management-total-waste-incinerated.csv

https://data.gov.sg/dataset/solid-waste-management-total-waste-incinerated-annual?view_id=882ae208-bd25-4b99-8cc9-a3b7b24d063a&resource_id=e4c8461f-e7de-4fc3-ad25-cf068ae09509

tota	_waste_incinerated
year	
2000	2.44
2001	2.55
2002	2.42
2003	2.31
2004	2.26
2005	2.28
2006	2.33
2007	2.38
2008	2.45
2009	2.48
2010	2.59
2011	2.66
2012	2.73
2013	2.82
2014	2.87
2015	2.83

Information of Dataset 4:

```
**** Total Waste Incinerated in Singapore from 2000 to 2015 ****

Information of dataset 4
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16 entries, 2000 to 2015
Data columns (total 1 columns):
# Column Non-Null Count Dtype
-------
0 total_waste_incinerated 16 non-null float64
dtypes: float64(1)
```

solid-waste-management-total-waste-landfilled.csv

 $\label{lem:hhttps://data.gov.sg/dataset/solid-waste-management-total-waste-landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab735 \\ \& total landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab735 \\ \& total landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab73 \\ \& total landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab73 \\ \& total landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab73 \\ \& total landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab73 \\ \& total landfilled-annual?view_id=c89734bc-5081-4730-be0e-8360-be0e$

	total_waste_landfilled
year	
2000	0.36
2001	0.25
2002	0.20
2003	0.19
2004	0.22
2005	0.27
2006	0.23
2007	0.19
2008	0.18
2009	0.15
2010	0.17
2011	0.20
2012	0.20
2013	0.20
2014	0.17
2015	0.19

Information of Dataset 5:

```
**** Total Waste Landfilled in Singapore from 2000 to 2015 ****

Information of dataset 5
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16 entries, 2000 to 2015

Data columns (total 1 columns):

# Column Non-Null Count Dtype
-------
0 total_waste_landfilled 16 non-null float64
dtypes: float64(1)
```

Datasets 1 & 2 Cleaning

Dataset 1:

	waste_type	waste_disposed_of_tonne	total_waste_recycled_tonne	total_waste_generated_tonne	recycling_rate year
0	Food	679900	111100.0	791000	0.14 2016
1	Paper/Cardboard	576000	607100.0	1183100	0.51 2016
2	Plastics	762700	59500.0	822200	0.07 2016
3	C&D	9700	1585700.0	1595400	0.99 2016
4	Horticultural waste	111500	209000.0	320800	0.65 2016

Dataset 2:

	Waste Type	Total Generated ('000 tonnes)	Total Recycled ('000 tonnes) Ye	ar
0	Construction& Demolition	1624	1618 \ 20	18
1	Ferrous Metal	1269	1260 20	18
2	Paper/Cardboard	1054/	586 20	18
3	Plastics	949	41/ 20	18
4	Food	763	126 20	18

- Datasets 1 & 2 are related to Waste Management across the years & have common columns.
- Hence, we will be cleaning the datasets with the intention to concatenate them afterwards

Check for Missing Values

Pandas function used:

isnull().sum()

```
Detecting Missing Values in Dataset 1 **
waste type
waste disposed of tonne
total waste recycled tonne
total waste generated tonne
recycling rate
                               0
year
dtype: int64
** Detecting Missing Values in Dataset 2 **
Waste Type
Total Generated ('000 tonnes)
Total Recycled ('000 tonnes)
Year
                                 0
dtype: int64
```

There are no missing values, but we will check again after concatenating the datasets

Check if Values are Represented Consistently

Dataset 1

	waste_type	waste_disposed_of_tonne	total_waste_recycled_tonne	total_waste_generated_tonne	recycling_rate	year
0	Food	679900	111100.0	791000	0.14	2016
1	Paper/Cardboard	576000	607100.0	1183100	0.51	2016
2	Plastics	762700	59500.0	822200	0.07	2016
3	C&D	9700	1585700.0	1595400	0.99	2016
4	Horticultural waste	111500	209000.0	320500	0.65	2016

Dataset 2

Ė	Waste Type	Total Generated ('000 tonnes)	Tota	l Recycled ('000 tonnes)	Year
0	Construction& Demolition		1624	_ \	1618	2018
1	Ferrous Metal		1269		1260	2018
2	Paper/Cardboard		1054		586	2018
3	Plastics	\	949		41	2018
4	Food		763		126	2018

Correct Values Under 'Total Generated' & 'Total Recycled' In Dataset 2

```
df2["Total Generated ('000 tonnes)"] = df2["Total Generated ('000 tonnes)"] * 1000
df2["Total Recycled ('000 tonnes)"] = df2["Total Recycled ('000 tonnes)"] * 1000
```

	Waste Type	Total Generated ('000' tonnes)	Total Recycled ('000 tonnes) Year
0	Construction& Demolition	1624000	1618000 2018
1	Ferrous Metal	1269000	1260000 20 8
2	Paper/Cardboard	1054000	586000 2018
3	Plastics	949000	41000 2018
4	Food	763000	126000 2018

Standardise Column Names

Pandas function used:

.rename()

```
# Standardise Column Names

df1 = df1.rename(columns = {"waste_type":"Waste Type", "waste_disposed_of_tonne":

"total_waste_recycled_tonne":"Total Waste Recycled",

"total_waste_generated_tonne":"Total Waste Generated",

"recycling_rate":"Recycling Rate", "year":"Year"})

df2 = df2.rename(columns = {"Total Generated ('000 tonnes)":"Total Waste Generate

"Total Recycled ('000 tonnes)":"Total Waste Recycled"})
```

Check Unique Column Values In Each Dataset

```
** Unique Values in Dataset 1 *
Total No.: 32
{'Ash & Sludge',
'Ash and sludge',
'C&D',
'Construction Debris'.
'Construction debris',
'Ferrous Metal'.
'Ferrous Metals'.
'Ferrous metal',
'Food',
'Food waste',
'Glass',
'Horticultural Waste'.
'Horticultural waste'.
 'Non-ferrous Metals',
 'Non-ferrous metal',
'Non-ferrous metals',
'Others',
'Others (stones, ceramic, rubber, etc.)',
'Others (stones, ceramics & rubber etc)',
'Others (stones, ceramics & rubber etc.)',
'Paper/Cardboard',
'Plastic',
'Plastics'.
'Scrap Tyres',
'Scrap tyres',
'Sludge',
'Textile/Leather',
'Total',
'Used Slag',
'Used slag',
'Wood'.
 'Wood/Timber'}
```

```
** Unique Values in Dataset 2 **
 Total No.: 22
 'Ash & Sluage',
 'Ash & sludge'.
 'Construction & Demolition',
 'Construction& Demolition',
 'Ferrous Metal',
 'Ferrous metal'.
 'Food',
 'Glass',
 'Horticultural',
 'Non-Ferrous Metal',
 'Non-ferrous metal',
 'Others (stones, ceramic, rubber, ect)',
 'Others (stones, ceramics, etc.)',
 'Overall',
 'Paper/Cardboard',
 'Plastics',
 'Scrap Tyres',
 'Scrap tyres',
 'Textile/Leather'.
 'Used Slag',
 'Used slag',
 'Wood'}
```

Pandas function used:

• .unique()

Expect No. of Unique Values:

```
** Latest Naming Convention **
Total No.: 15
'Ash & sludge'.
 'Construction & Demolition',
'Ferrous metal',
'Food',
'Glass',
'Horticultural'.
'Non-ferrous metal',
'Others (stones, ceramics, etc.)'
'Overall'.
'Paper/Cardboard',
'Plastics',
'Scrap tyres',
'Textile/Leather'.
'Used slag'.
 'Wood'}
```

Standardise Column Values Under 'Waste Type'

```
# 1. Ash & sludge
df1 = df1.replace('Ash & Sludge', 'Ash & sludge')
df1 = df1.replace('Sludge', 'Ash & sludge')
df1 = df1.replace('Ash and sludge', 'Ash & sludge')
df2 = df2.replace('Ash & Sludge', 'Ash & sludge')
```

Pandas function used:

• .replace()

After Standardising:

```
** Unique Values in Dataset 1 **
Total No.: 15

['Food' 'Paper/Cardboard' 'Plastics' 'Construction & Demolition'
'Horticultural' 'Wood' 'Ferrous metal' 'Non-ferrous metal' 'Used slag'
'Ash & sludge' 'Glass' 'Textile/Leather' 'Scrap tyres'
'Others (stones, ceramics, etc.)' 'Overall']

** Unique Values in Dataset 2 **
Total No.: 15

['Construction & Demolition' 'Ferrous metal' 'Paper/Cardboard' 'Plastics'
'Food' 'Wood' 'Horticultural' 'Ash & sludge' 'Textile/Leather'
'Used slag' 'Non-ferrous metal' 'Glass' 'Scrap tyres'
'Others (stones, ceramics, etc.)' 'Overall']
```

Concatenate Dataset 1 & 2

Dataset 1:

	Waste Type	Total Waste Disposed	Total Waste Recycled	Total Waste Generated	Recycling Rate	Year
0	Food	679900	111100	791000	0.14	2016
1	Paper/Cardboard	576000	607100	1183100	0.51	2016
2	Plastics	762700	59500	822200	0.07	2016
3	Construction & Demolition	9700	1585700	1595400	0.99	2016
4	Horticultural	111500	209000	320500	0.65	2016

concatenate datasets & reset index
df_concat = pd.concat([df1, df2], ignore_index=True)

Dataset 2:

	Waste Type	Total Waste Generated	Total Waste Recycled	Year
0	Construction & Demolition	1624000	1618000	2018
1	Ferrous metal	1269000	126000	2018
2	Paper/Cardboard	1054000	586000	2018
3	Plastics	949000	41000	2018
4	Food	763000	126000	2018

After concatenating:

	Waste Type	Total Waste Disposed	Total Waste Recycled	Total Waste Generated	Recycling Rate	Year	
0	Horticultural	185300.0	119300.0	304600	0.39	2003	
1	Paper/Cardboard	618500.0	466200.0	1084700	0.43	2003	
2	Plastics	540800.0	39100.0	579900	0.07	2003	
3	Construction & Demolition	24600.0	398300.0	422900	0.94	2003	
4	Wood	172600.0	40800.0	213400	0.19	2003	
265	Plastics	NaN	36000.0	868000	NaN	2020	
266	Ferrous metal	NaN	930000.0	934000	NaN	2020	
267	Paper/Cardboard	NaN	432000.0	1144000	NaN	2020	
268	Wood	NaN	195000.0	304000	NaN	2020	
269	Overall	NaN	3040000.0	5880000	NaN	2020	
270 ro	270 rows × 6 columns						

Check for Missing Value

Pandas function used:

.isnull().sum()

Waste Type	0
Total Waste Disposed	45
Total Waste Recycled	0
Total Waste Generated	0
Recycling Rate	45
dtype: int64	

	Waste Type	Total Waste Disposed	Total Waste Recycled	Total Waste Generated	Recycling Rate	ar
225	Construction & Demolition	NaN	1618000	1624000	NaN	2010
226	Glass	NaN	12000	64000	NaN	2018
227	Non-ferrous metal	NaN	170000	171000	NaN	2018
228	Overall	NaN	4726000	7695000	NaN	2018
229	Others (stones, ceramics, etc.)	NaN	11000	286000	NaN	2018
230	Used slag	NaN	179000	181000	NaN	2018
231	Textile/Leather	NaN	14000	220000	NaN	2018
232	Scrap tyres	NaN	29000	32000	NaN	2018
233	Horticultural	NaN	227000	320000	NaN	2018

Handle Missing Value

```
# Handle Missing Values under "Total Waste Disposed"

df_concat.loc[225:, "Total Waste Disposed"] = df_concat.loc[225:, "Total Waste Generated"] - df_concat.loc[225:, "Total Waste Recycled"]

# Handle Missing Values under "Recycling Rate", precision to 2dp

df_concat.loc[225:, "Recycling Rate"] = (df_concat.loc[225:, "Total Waste Recycled"] / df_concat.loc[225:, "Total Waste Generated"]).apply(lambda x: x - x % 0.01)
```

	Waste Type	Total Waste Disposed	Total Waste Recycled	Total Waste Generated	Recycling Rate	Year
0	Horticultural	185300	119300	304600	0.39	2003
1	Paper/Cardboard	618500	466200	1084700	0.43	2003
2	Plastics	540800	39100	579900	0.07	2003
3	Construction & Demolition	24600	398300	422900	0.94	2003
4	Wood	172600	40800	213400	0.19	2003
265	Plastics	832000	36000	868000	0.04	2020
266	Ferrous metal	4000	930000	934000	0.99	2020
267	Paper/Cardboard	712000	432000	1144000	0.37	2020
268	Wood	109000	195000	304000	0.64	2020
269	Overall	2840000	3040000	5880000	0.51	2020

Waste Type	0
Total Waste Disposed	0
Total Waste Recycled	0
Total Waste Generated	0
Recycling Rate	0
Year	0
dtype: int64	

Final Cleaned Dataset 1 & 2

df_concat.set_index(["Year"], inplace=True)

	Waste Type	Total Waste Disposed	Total Waste Recycled	Total Waste Generated	Recycling Rate
Year					
2003	Horticultural	185300	119300	304600	0.39
2003	Paper/Cardboard	618500	466200	1084700	0.43
2003	Plastics	540800	39100	579900	0.07
2003	Construction & Demolition	24600	398300	422900	0.94
2003	Wood	172600	40800	213400	0.19
2020	Plastics	832000	36000	868000	0.04
2020	Ferrous metal	4000	930000	934000	0.99
2020	Paper/Cardboard	712000	432000	1144000	0.37
2020	Wood	109000	195000	304000	0.64
2020	Overall	2840000	3040000	5880000	0.51

Save to New File:

Save Cleaned DataFrame to a new File
df concat.to csv('cleaned 2003 2020 waste.csv')

Dataset 3 Cleaning

Before:

	Gas	unit	1990	1991	1992	1993	1994	1995	1996	1997	 2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
0	CH4	MtCO2e	1.15	1.18	1.22	1.26	1.30	1.33	1.37	1.42	2.45	2.54	2.62	2.71	2.79	2.88	2.96	3.03	3.11	3.19
1	CO2	MtCO2e	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN								
2	F-Gas	MtCO2e	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN								
3	N2O	MtCO2e	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.09	0.09	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.11

Reshaping Dataset:

```
# Drop "unit" column
df3_v1 = df3.drop(['unit'], axis=1)
# Transpose to make gas & the years the rows
df3_v1 = df3_v1.T

# set column names to values under Gas row at index 0
df3_v1.columns = df3_v1.iloc[0]
# remove that row, which is now set as the column headers
df3_v1 = df3_v1[1:]
# set index name to Year
df3_v1.index.name = "Year"
```

After reshaping:

Gas	CH4	CO2	F-Gas	N20
Year				
1990	1.15	NaN	NaN	0.05
1991	1.18	NaN	NaN	0.05
1992	1.22	NaN	NaN	0.05
1993	1.26	NaN	NaN	0.05
1994	1.3	NaN	NaN	0.06
1995	1.33	NaN	NaN	0.06
1996	1.37	NaN	NaN	0.06
1997	1.42	NaN	NaN	0.06
1998	1.46	NaN	NaN	0.07
1999	1.5	NaN	NaN	0.07
2000	1.54	NaN	NaN	0.07
2001	1.58	NaN	NaN	0.07
2002	1.61	NaN	NaN	80.0
2003	1.64	NaN	NaN	80.0
2004	1.68	NaN	NaN	0.08

Check for Missing Values

Pandas function used:

isnull().sum()

```
** Detecting Missing Values in Dataset 3 **

Gas

CH4 0

CO2 30

F-Gas 30

N20 0

dtype: int64
```


Handle Missing Value

According to Health New York State:

Methane and carbon dioxide make up 90 to 98% of landfill gas. The remaining 2 to 10% includes nitrogen, oxygen, ammonia, sulfides, hydrogen and various other gases. Landfill gases are produced when bacteria break down organic waste.

https://www.health.ny.gov > environmental > outdoors > air

Important Things to Know About Landfill Gas

- Drop columns 'CO2' & 'F-Gas'
- Methane(CH4) & Nitrous Oxide(N20) are the more significant greenhouse gases produced from waste

```
df3_v2 = df3_v1.drop(['CO2', 'F-Gas'], axis = 1)
```

After dropping the columns:

Gas	CH4	N20
Year		
1990	1.15	0.05
1991	1.18	0.05
1992	1.22	0.05
1993	1.26	0.05
1994	1.3	0.06
1995	1.33	0.06
1996	1.37	0.06
1997	1.42	0.06
1998	1.46	0.07
1999	1.5	0.07
2000	1.54	0.07
2001	1.58	0.07
2002	1.61	80.0
2003	1.64	80.0

Check for Outliers Using BoxPlot

```
# 1st subplot
sns.boxplot(data=df3_v2['CH4'], ax=ax[0])
ax[0].set_xlabel('CH4')

# 2nd subplot
sns.boxplot(data=df3_v2['N20'], ax=ax[1])
ax[1].set_xlabel('N20')
```


Final Cleaned Dataset 3

Gas	CH4	N20
Year		
1990	1.15	0.05
1991	1.18	0.05
1992	1.22	0.05
1993	1.26	0.05
1994	1.30	0.06
1995	1.33	0.06
1996	1.37	0.06
1997	1.42	0.06
1998	1.46	0.07
1999	1.50	0.07
2000	1.54	0.07
2001	1.58	0.07
2002	1.61	0.08
2003	1.64	80.0
2004	1.68	80.0
2005	1.71	80.0
2006	1.86	0.08
2007	2.01	0.09
2008	2.15	0.09
2009	2.30	0.09

Nature of Dataset:

Save to New File:

```
df3_v2.to_csv('cleaned_ghg-emissions.csv')
```

Dataset 4 Cleaning

Checking for Missing Values:

isnull().sum()

```
** Detecting Missing Values in Dataset 5 **
total_waste_incinerated 0
dtype: int64
```

Checking for Outliers:

No outlier

Dataset 5 Cleaning

Checking for Missing Values:

• isnull().sum()

```
** Detecting Missing Values in Dataset 5 **
total_waste_landfilled  0
dtype: int64
```

Checking for Outliers:

 There's 1 outlier, but we will ignore it as we want to see how Singapore is managing waste sent to the landfill

Concatenate Datasets 4 & 5

 As both datasets 4 & 5 are related to Waste Disposal, we will concatenate them together

```
Final Dataset:
```

# Concatenate	Dataset 4 & 5 **
df4_5concat =	pd.concat([df4, df5], axis=1)

	total_waste_incinerated	total_waste_landfilled
year		
2000	2.44	0.36
2001	2.55	0.25
2002	2.42	0.20
2003	2.31	0.19
2004	2.26	0.22
2005	2.28	0.27
2006	2.33	0.23
2007	2.38	0.19
2008	2.45	0.18
2009	2.48	0.15
2010	2.59	0.17
2011	2.66	0.20
2012	2.73	0.20
2013	2.82	0.20
2014	2.87	0.17
2015	2.83	0.19

Save to New File:

df4_5concat.to_csv('cleaned_solid-waste-management-total-waste-landfilled-and-incinerated.csv')

Final Datasets

Final No. of Datasets: 3

- 1. cleaned_2003_2020_waste.csv
- 2. cleaned_ghg-emissions.csv
- 3. cleaned_solid-waste-management-total-waste-landfilled-and-incinerated.csv

Graph 1: Total Singapore Waste 2003 to 2020

- There is generally an increase in the total waste generated due to rapid urbanisation.
 But we do see a drop in 2019 when COVID-19 first started.
- The recycling rate also increases over the years, showing great efforts by the government to raise awareness about the importance of recycling, however we do see a drop in 2019 & 2020, when COVID-19 started.

According to **CNA**:

 Waste Collection Process were either halted or delayed due to the 'circuit breaker' which decreased the recycling rates

SINGAPORE: Overall waste generation in Singapore declined in 2020 for the fourth consecutive year, with less waste being sent to the Semakau Landfill, but overall recycling rates also dropped as the COVID-19 pandemic impact industries and collection process.

Graph 2/3: Total Waste Generated by Waste Type 2003 to 2020

- There are 3 prominent Waste Types generating the most waste which are 'Paper/Cardboard', 'Construction & Demolition' & 'Ferrous Metal',
- However, there is a big drop in "Construction & Demolition" & "Ferrous Metal" due to the COVID-19 pandemic as construction work have to be paused & delayed due to the 'Circuit Breaker" & "Health Measures"

Graph 4/5: Total Waste Disposed & Greenhouse Gas Emissions From Waste

Moreover, according to World Economic Forum:

- The waste sector is responsible for 20% of global methane emissions. And these methane emissions have more than 80 times the warming power of CO2, hence it is critical to monitor how waste is disposed
- Thus, next we will be fitting a simple linear model to see if we can predict CH4 emissions based on the total waste disposed

The waste sector is responsible for 20% of global methane emissions and **3.3% of global greenhouse gas emissions**, according to a new report, 'Zero Waste to Zero Emissions: How Reducing Waste is a Climate Gamechanger' from the Global Alliance for Incinerator Alternatives (GAIA). 7 Nov 2022

https://www.weforum.org > agenda > 2022/11 > waste-em...

This is how cities can reduce emissions with waste-reduction ...

Graph 6: Simple Linear Model for CH4 Emissions vs Total Waste Disposed

There is a positive correlation between Total Waste Disposed & CH4 emissions from it

There's a R*2 value of 0.683, indicating that:

Linear model is a moderate fit

There's moderate correlation between Total Waste Disposed & CH4 Emissions

Fitting Linear Model

Graph 7: Total Waste Sent to Semakau

Total Waste Landfilled

Insights:

- Big drop of 30% in waste sent to Semakau Landfill from 2000 to 2001.
 After this big drop, the amount of waste sent continuously decreases & remains low
- This is because, the Semakau Landfill will run out of space by 2035 at the current rate of waste growth
- Hence, the government is controlling the amount of waste sent by gradually decreasing the rate, in order to have increase the lifespan of Semakau by 5 to 10 more years

According to Zero Waste Nation.gov:

Semakau Landfill is Singapore's one and only landfill. It receives more than 2,000 tonnes of WTE incineration ash and non-incinerable waste daily.

At our current rate of waste growth, Semakau Landfill will run out of space by 2035.

Conclusion

- Waste Management plays a big part in mitigating climate change & all the scarce materials on earth by recycling & being responsible about our consumption of resources
- By ensuring responsible consumption of resources, it reduces greenhouse gases emissions from waste, which contributes to climate change & the warming of earth's surface
- It is also especially important in Singapore where there is limited land & the only landfill, Semakau, we have is slowly running low on its lifespan over the next few decades

World Health Organisation Sustainable Goal 12:

Goal 12:

Ensure sustainable consumption and production patterns

References

- https://www.channelnewsasia.com/singapore/less-waste-generated-singapore-recycling-rates-drop-239601
- https://www.health.ny.gov/environmental/outdoors/air/landfill_gas.htm#:~:text=Methane%20and%20carbon%20dioxide%20make,bacteria%20break%20down%20organic%20waste.
- https://www.weforum.org/agenda/2022/11/waste-emissions-methane-cities/#:~:text=The%20waste%20sector%20is%20responsible,for%20Incinerator%20Alternatives%20(GAIA).
- https://www.towardszerowaste.gov.sg/zero-wastenation/#:~:text=Semakau%20Landfill%20is%20Singapore's%20one,out%20of%20space%20by%202035.

Datasets:

- https://www.kaggle.com/datasets/mahaanand/singapore-waster-mgmt?select=2003_2017_waste.csv
- https://www.kaggle.com/datasets/mahaanand/singapore-waster-mgmt?select=2018_2020_waste.csv
- https://www.climatewatchdata.org/ghg-emissions?breakBy=gas&end_year=2019&gases=all-ghg®ions=SGP§ors=waste&start_year=1990
- https://data.gov.sg/dataset/solid-waste-management-total-waste-incinerated-annual?view_id=882ae208-bd25-4b99-8cc9-a3b7b24d063a&resource_id=e4c8461f-e7de-4fc3-ad25-cf068ae09509
- https://data.gov.sg/dataset/solid-waste-management-total-waste-landfilled-annual?view_id=c89734bc-5081-4730-be0e-83f2f59ab735&resource_id=81292d12-57a5-4e76-a65b-effacc6806b7