Question Bank (Module-2)

1. Evaluate $\iint_R \frac{xy^3}{x^2+1} dA$, $R: 0 \le x \le 1$, $0 \le y \le 2$. **Ans. 2 ln 2**

2. Find the volume of the region bounded above by the plane z=2-x-y and below by the square $R: 0 \le x \le 1, 0 \le y \le 1$. Ans. 1

3. Write an iterated integral for $\iint_R dA$ over the described region R using (a) vertical cross-sections, (b) horizontal cross sections

Ans. (a) $\int_0^2 \int_1^{e^x} dy dx$ (b) $\int_1^{e^2} \int_{\ln y}^2 dx dy$

4. Evaluate \iint_R dxdy throughout the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. **Ans.** πab

5. Evaluate $\iint_R r^2 dr d\theta$ over the area of the circle $r = a \cos \theta$. Ans. $\frac{2a^3}{3}$

6. Find the area included between the parabola $y = 4x - x^2$ and the line y = x. Ans. $\frac{9}{2}$ sq. units

7. Reverse the order of integration of $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same. Ans. $\frac{5}{6}$

8. Find the volume of the solid whose base is the region in the xy plane that is bounded by the parabola $y = 4 - x^2$ and the line y = 3x while the top of the solid is bounded by the plane z = x + 4.

Ans. $\frac{625}{12}$

9. Reverse the order of integration of $\int_0^2 \int_0^{\sqrt{4-y^2}} ye^x dxdy$ and hence evaluate the same. **Ans.** $e^2 + 1$

- **10.** Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$ Ans. $8 \frac{\log 2}{3} \frac{19}{9}$
- **11.**Find the area enclosed by the lines = 2x, $y = \frac{x}{2}$, and y = 3 x.

Ans. $\frac{3}{2}$

- **12.**Evaluate: $\int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} dy dx$. **Ans. 2**
- **13.** Evaluate the volume given by integral $\int_0^1 \int_0^{2-x} \int_0^{2-x-y} dz dy dx$. **Ans.** $\frac{7}{6}$
- **14.** Reverse the order of integration and evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$. **Ans.** $\frac{\pi a}{4}$
- **15.** Find the volume of the tetrahedron cut from the first octant by the plane 6x + 3y + 2z = 6. **Ans. 1**
- **16.** Evaluate: $\int_{-1}^{1} \int_{0}^{2\pi} \int_{0}^{1+\cos\theta} 4r dr d\theta dz$.Ans. $\frac{3\pi}{10}$