KATIANA KONTOLATI

Latrobe Hall 303, 3400 N Charles St, Baltimore, MD 21218

➤ kontolati@jhu.edu 🛅 linkedin.com/in/katiana-kontolati 🕥 github.com/katiana22

Education

Johns Hopkins University

Aug. 2019 – present

Ph.D. in Civil and Systems Engineering

Baltimore, MD

• Research areas: Scientific machine learning, uncertainty quantification, stochastic simulation

• Advisor: Dr. Michael Shields

• G.P.A.: 3.85/4.0

National Technical University of Athens

Sept. 2017 - July 2019

M.Sc. in Applied Mechanics

Athens, Greece

• Thesis: Bifurcations and stability in mesenchymal stem cell differentiation dynamics

• Advisors: Dr. Constantinos Siettos & Dr. Yannis Kominis

• G.P.A.: 9.40/10.0 (ranked 1^{st})

University of Thessaly

Sept. 2012 - July 2017

B.Sc. in Structural Engineering

Volos, Greece

• Thesis: Numerical investigation of weak-axis I profile connections (Advisor: Dr. Euripides Mistakidis)

• G.P.A.: 8.87/10.0 (ranked 2^{nd})

Experience

Los Alamos National Laboratory

June 2021 - Aug. 2021

Applied Machine Learning Research Fellow, CCS-3

Los Alamos, NM

- Developed a framework for constructing neural density estimators with normalizing flows on spectral latent spaces for regression and uncertainty quantification on very high-dimensional spectral data.
- Applied proposed framework to laser-induced breakdown spectroscopy (LIBS) spectra generated by the Mars Curiosity rover to predict the elemental composition of Martian rocks and soil with associated uncertainties.
- Presented work at NeurIPS 2021 Workshop on Machine Learning and the Physical Sciences.
- Collaborated with team members using version control systems (Git) to organize modifications and assign tasks.

Johns Hopkins University

Aug. 2019 – present

Graduate Research Assistant, SURG Group

Baltimore, MD

- Developing methodologies based on low-dimensional manifold learning and deep learning for surrogate modeling and uncertainty quantification in high-dimensional stochastic systems. Open-sourcing all codes on GitHub.
- Implemented proposed techniques for a variety of applications including parameterizing macroscopic models from atomistic simulation data and learning solutions of non-linear PDEs describing complex physico-chemical processes.
- Published 5 papers (2 under review) in peer-reviewed journals and presented in 5 International Conferences.
- Co-developer of **UQpy** (Uncertainty Quantification with python), a general purpose Python toolbox for modeling uncertainty in physical and mathematical systems. Contributing to the *Dimension Reduction* and *Surrogates* modules.

Aktor S.A.

June 2016 - Sept. 2016

Construction Management Intern

- Athens, Greece
- Oversaw the entire planning and building process of the retrofitting of the Akron Ilion Krystal building and reported the quality of performance on site to all site construction managers.
- Developed CAD drawings, calculated final material quantities and costs and performed preliminary engineering reviews on the detailed construction and demolition plan drawings.
- Utilized structural and earthquake engineering software SAP2000, for preliminary numerical analysis of structural elements during the demolition process.

Honors & Awards

National Science Foundation Fellowship MMLDT-CSET Conference, San Diego, California	Sept. 2021
Teaching Assistant Award Department of Civil and Systems Engineering, Johns Hopkins University	May 2021
Applied Machine Learning Summer Research Fellowship Los Alamos National Laboratory	Feb. 2021
Joseph Meyerhoff Fellowship Whiting School of Engineering, Johns Hopkins University	Aug. 2019
Graduate Research Fellowships Cornell University & ETH Zürich (declined)	Mar. 2019
COST Travel Grant European Cooperation in Science & Technology, Action TU 1304	April. 2017

Teaching Experience

- Gateway Computing: Python (EN.500.113), Lead Course Assistant, Johns Hopkins University
- Introduction to Research (EN.560.511), Teaching Assistant, Johns Hopkins University

Fall 2020 Spring 2021

Publications

Journal Publications (* denotes equal contribution)

- 1. Goswami, S.*, **Kontolati**, **K.***, D. Shields, M., E. Karniadakis, G., (2022). Deep transfer learning for partial differential equations under conditional shift with DeepONet. https://doi.org/10.48550/arXiv.2204.09810 (under review).
- 2. **Kontolati, K.***, Goswami, S.*, D. Shields, M., E. Karniadakis, G., (2022). On the influence of over-parameterization in manifold based surrogates and deep neural operators. https://doi.org/10.48550/arXiv.2203.05071 (under review).
- 3. **Kontolati, K.**, Loukrezis, D., Giovanis, D., Vandanapu, L., D. Shields M. (2022). A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. https://doi.org/10.48550/arXiv.2202.04648 (accepted for publication in the *Journal of Computational Physics*).
- 4. R. M. dos Santos, K., Giovanis D., Loukrezis, D., **Kontolati, K.**, D. Shields M. (2021). Grassmannian diffusion maps based surrogate modeling via geometric harmonics. https://doi.org/10.48550/arXiv.2109.13805 (accepted for publication in the *International Journal for Numerical Methods in Engineering*).
- 5. **Kontolati, K.**, Loukrezis, D., Giovanis, D., M. dos Santos, K., D. Shields, M. (2021). Manifold learning-based polynomial chaos expansions for high-dimensional surrogate models. *International Journal for Uncertainty Quantification*, 12(4): 39-64. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2022039936.
- Kontolati, K., Alix-Williams, D., Boffi, N. M., Falk, M. L., Rycroft, C. H., and Shields, M. D. (2021). Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids. *Acta Materialia*, 215, 117008. https://doi.org/ 10.1016/j.actamat.2021.117008.
- 7. **Kontolati, K.** and Siettos, C. (2019). Numerical analysis of mesenchymal stem cell mechanotransduction dynamics reveals homoclinic bifurcations. *International Journal of Non-Linear Mechanics*, 113, 146-157. https://doi.org/10.1016/j.ijnonlinmec.2019.04.001.

Conference Proceedings

- 1. Kontolati, K., Loukrezis, D., R. M. dos Santos, K., Giovanis, D., D. Shields M. (2022). Manifold learning for forward and inverse UQ in high dimensions, SIAM Conference on Uncertainty Quantification, Atlanta, Georgia, USA, April 12-15.
- 2. **Kontolati, K.**, Klein, N., Panda, N., Oyen D. (2021). Neural density estimation and uncertainty quantification for laser-induced breakdown spectroscopy spectra, *NeurIPS 4th Workshop on Machine Learning and the Physical Sciences*.
- 3. Kontolati, K., Loukrezis, D., Giovanis, D., R. M. dos Santos, K., D. Shields M. (2021). Nonlinear manifold-learning based dimensionality reduction for surrogate modeling and uncertainty quantification, *Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology*, San Diego, California, USA, September 26-29.
- 4. **Kontolati, K.**, L. Falk M., H. Rycroft C., D. Shields M. (2021). Atomistic-informed calibration of partial differential equations for material applications via machine learning. *SIAM Conference on Mathematical Aspects of Material Science*, Bilbao, Spain, May 17-28.
- Kontolati, K., Alix-Williams D., L. Falk M., H. Rycroft C., D. Shields M. (2021). Stochastic multi-scale material modeling via manifold learning. 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, Athens, Greece, June 27-30.
- 6. **Kontolati K.**, Koukouselis, A, Panagouli, O. (2017). Numerical investigation of weak-axis I profile connections, 9th Hellenic National Conference on Steel Structures, Larissa, Thessaly, Greece, October 5-7.

Invited Talks

• General Electric (GE) Research, Probabilistics Seminar, Niskayuna NY

Oct. 2021

• CRUNCH Seminar, Division of Applied Mathematics, Brown University, Providence RI

Sept. 2021

July 2019

Technical Skills

- Languages: Python, Fortran, SQL
- Software: PyTorch, Tensorflow, Mathematica, MSC Marc, AutoCAD 2D/3D
- Operating systems: Microsoft Windows, Apple MacOS, Linux/Unix
- Software development: UQpy (Uncertainty Quantification with Python)

Service / Leadership

• Reviewer for peer-reviewed journals, Journal of Computational Physics	2022 - p	resent
• Graduate Representative Organization (GRO), Advocacy Chair, JHU	2020	- 2021
• Homewood Council of Inclusive Excellence (HCIE), GS2F member, JHU	2020 -	- 2021
• ISAH Ambassador @ Hopkins, Education and Administration Committee, JHU		2020
• Homewood Graduate Board (HGB), Representative Ph.D. student of Whiting School of Engineering	, JHU	2020
• Machine Learning in Science & Engineering Conference 2020, Volunteer, Columbia University		2020

Languages

Greek (native), English (fluent), Japanese (learner)