Охранное устройство с оповещением по сети сотовой связи

Исполнитель: Шестаков Владислав Геннадьевич

Руководитель: Дик Сергей Константинович

Цель дипломного проекта:

- разработать модуль охранного устройства, с возможностью контролирования датчиков и срабатывания сигнализации
- Провести расчёты конструктивных параметров проектируемого устройства
- Разработать печатную плату, корпус устройства, сборочные чертежи устройства и платы, алгоритм работы устройства
- Разработать маршрутную карту и технологическую схему сборки
- Провести технико-экономическое обоснование целесообразности производства разрабатываемого устройства
- Устройство будет обладать возможностью подключения 7 проводных датчиков
- Устройство будет обладать возможностью звонить и отправлять смс-сообщения.

Обзор аналогов охранного устройства

Беспроводные

ALTOX

Поддержка GSM частот	850/900/1800
поддержка ОЗМ частот	830/900/1800
Поддержка датчиков температуры	до 3 датчиков
Количество охранных зон	4
Количество номеров	3
Работа в автономном режиме	нет
Напряжение питания	10B - 28B
Ток, потребляемый в режиме	30мА
ожидания	
Ток, потребляемый охранным	до 2мА
шлейфом	

Проводные

Эритея Микра 2М

Поддержка GSM частот	900/1800 mHz
Количество проводных зон	3
Количество номеров оповещения	3
Напряжение питания	220 B
Рабочая температура	от –10 до +55 °C

Схема электрическая структурная

Схема электрическая принципиальная

Алгоритм работы устройства

Алгоритм работы устройства

Компоновочный расчет устройства

• 1)
$$S_{\Pi\Pi} = \frac{S_{\text{yct}}}{m \cdot K_3} = \frac{3503,125}{1*0,5} = 7006,25 \text{mm}^2$$

- Где $S_{\rm yct}$ суммарная площадь всех элементов, мм² ($S_{\rm yct} = 3503,125~{\rm mm}^2$)
- К₃ коэффициент заполнения платы;
- m количество сторон монтажа
- Размеры печатной платы 50 × 150 мм

• 2)
$$V_{\text{корп}} = \frac{V_{\text{уст}}}{K_3} = \frac{14841,1}{0,5} = 29682,2 \text{мм}^3$$

- Где $V_{\rm ycr}$ суммарный объём всех элементов, мм 3 ($V_{\rm ycr}=14841$,1 мм 3)
- K_3 коэффициент по объёму;
- Размеры корпуса 160 × 60 × 28 мм

Расчет печатного монтажа

1. Расчет номинальной ширины проводника:

$$t = t_M \partial^* J_H * h^* \rho = 0.25 * 0.05 * 0.05 * 20 = 12.5 \text{ MK M},$$

где, $t_{M\partial}$ — минимально допустимая ширина проводника, мм; (таблица 5) J_H — ток нагрузки, A;

h – толщина проводника, мм (0,035 или 0,05);

ρ – удельная плотность тока, А/мм:

- для наклеенной фольги — 20 A/мм .

2. Расчёт диаметров монтажных отверстий:

$$d = d_{9} + r + \left| \Delta d_{HO} \right|$$

где $d_{\mathfrak{I}}$ — максимальное значение диаметра вывода навесного ИЭТ, устанавливаемого на печатную плату. Для прямоугольного вывода за диаметр берется диагональ его сечения;

r — разность между минимальным значением диаметра отверстия и максимальным значением диаметра вывода (для прямоугольных — диагонали сечения устанавливаемого ИЭТ).

$$d=0,7+0,4+0,13=1,23$$
 MM;

Выбор класса точности связан с конструктивными особенностями проектируемой печатной платы, бюджетом на разработку и с конкретным производством, так как он обусловлен уровнем технологического оснащения производства. Печатная плата проектируемого устройства имеет третий класс точности.

3. Расчет диаметров контактных площадок:

$$D = (d + \Delta d_{g.o.}) + 2 \cdot b + \Delta t_{g.o.} + 2 \cdot \Delta d_{mp} + (T_d^2 + T_D^2 + \Delta t_{n.o.}^2)^{\frac{1}{2}}$$

где d – номинальное значение монтажного отверстия;

 $\Delta d_{e.o.}$ – верхнее предельное отклонение диаметра отверстия;

 Δd_{mp} — величина подтравливания диэлектрика, которая для МПП принимается равной 0,03 мм, для ОПП — нулю;

 T_d – позиционный допуск расположения оси отверстия;

 $T_{_{D}}$ — позиционный допуск расположения центра контактной площадки;

 $\Delta t_{6.0.}$ — верхнее предельное отклонение диаметра контактной площадки;

 $\varDelta t_{no}$ — нижнее предельное отклонение диаметра контактной площадки.

$$\begin{array}{l} D_1 \!\!=\! 1,\! 23 \!+\! 0,\! 13 \!+\! 0,\! 1 \!\!*\! 2 + 0,\! 01 \!\!*\! 10^{\text{-}3} \!\!+\! (0,\! 2^2 + 0,\! 15^2 + 0,\! 06^2 \!\!*\! 10^{\text{-}6})^{1/2} \!\!=\! 1,\! 71_{\text{MM}} \\ D_2 \!\!=\! 1,\! 23 \!\!+\! 0,\! 13 \!\!+\! 0,\! 1 \!\!*\! 2 + 0,\! 01 \!\!*\! 10^{\text{-}3} \!\!+\! (0,\! 2^2 + 0,\! 15^2 + 0,\! 06^2 \!\!*\! 10^{\text{-}6})^{1/2} \!\!=\! 1,\! 71_{\text{MM}} \end{array}$$

4. Расчет наименьшего расстояния для прокладки п-го количества проводников:

$$L = \frac{D_1 + D_2}{2} + t \cdot n + S(n+1) + T_i$$

где n – количество печатных проводников;

t - предельное отклонение ширины элемента проводящего рисунка;

 T_{i} — позиционный допуск расположения печатного проводника, который учитывается только при n>0.

$$L=1.71+0.25*45+0.25*46+0.05=24.51 \text{ mm}$$

Печатная плата

Сторона монтажа

Ταδλυμα 1

Условные обозначения площадки	Длина мм	Ширина мм	Количество контактов
	1±0.1	1±0.1	82
	2±0.1	1±0.1	12

Ταδηυμα 2

Условные обозначения отверстий	Размер отверстий, мм	Размер контактной площадки	Наличие металлизации в отверстиях	Количество отверстий
•	Ø0.3 _{20.13}	0.6±0.05	Есть	20
•	ФО. 7 _{-0.13}	1.25±0.1	Есть	60
\odot	Ф2 _{-0.5}	3.5±0.1	Нет	4
■□	0.7.013	1.25±0.1	Есть	3

Ταδπυμα 3

Параметры элементов рисунка платы	Минимальное значен	ие основного параметра
печатной	для узкого места	для свободного места
Ширина печатных проводников	0,3	0,6
Расстояние между краями соседних отверстий проводящего рисунка	0,3	0,6

- 1. *Размер для справок
- 2. Печатную плату изготовить комбинированным позитивным методом по ГОСТ 23752—79
- 3. Шаг координатной сетки 2,5 мм по ГОСТ 10317—79
- Класс точности 3 по ГОСТ 23751-86
- 5. Группа жесткости 2 по ГОСТ 23752—79
- 6. Покрытие печтных првоодников, конатктных площадок и металлизированных отверстий имерсионное Олово ImmSn ГОСТ P55693—2013
- 7. Позиционное обозначение элементов маркировать краской МКЗ белая ОСТ92—2.0—ПРЗ, шрифт по СТБ 922—95 методом шелкографии ГОСТ 2.304—81
- 8. Параметры элементов рисунка печатной платы приведены в таблицах 1, 2, 3
- 9. Печатная плата должна соответствовать ГОСТ 27151-86

Сборочный чертеж модуля

- 1. *Размеры для справок
- 2. Установку элементов выполнить по ГОСТ 29137-91
- 3. Установку SMD-компонентов производить по ГОСТ Р МЭК 61192-2-2010. Установку отдельных элементов см. на чертеже
- 4. Припойная паста KOKI SX58305
- 5. Πρυποῦ ΠΟC -61 ΓΟCT 21931-76
- 6. Шаг координатной сетки 2.5мм по ГОСТ 10317–79
- 7. Позиции элементов условно не показаны
- 8. Позиционнаые обозначения показаны условно
- 9. После установки элементов покрываем лаком HumiSeal
- 10. Остальные TT по СТБ 1022-96

Установка SMD-конденсаторов компонентов

Установка микроконтроллера

Чертеж основания

Материал: АБС-пластик Изготовление: Литьевое прессование

- 1. Надписи маркировать краской Эмаль МЛ-12, белая по ГОСТ 9754-76 по СТБ 922-95 методом шелкографии ГОСТ 2.304-81 симметрично относительно отверстий.
- 2. Точность отливки по ГОСТ 27358-87
- Неуказанные предельные отклонения размеров ±1712/2
- 4. Остальные технические требования по СТБ 1014-95

Чертеж крышки

- Надписи маркировать краской Эмаль МЛ—12, белая по ГОСТ 9754—76 по СТБ 922—95 методом шелкографии ГОСТ 2.304—81 симметрично относительно отверстий.
- 2. Точность отливки по ГОСТ 27358-87
- 3. Неуказанные предельные отклонения размеров ±1T12/2
- 4. Остальные технические требования по СТБ 1014-95

Материал: АБС-пластик

Изгтовление: Литьевое прессование

Сборочный чертеж устройства

- 1. Все винты стопорить краской Эмаль МЛ—12, черная ГОСТ 9754—76
- 2. Стекла соединить с крышкой клеем БФ-4 ГОСТ 12172-2016
- 3. Остальные TT по СТБ 1022-96

Расчет виброустойчивости платы

Собственная частота платы:

$$f_0 = \frac{\pi}{2a^2} \cdot \left(1 + \frac{a^2}{b^2}\right) \cdot \sqrt{\frac{D}{M} \cdot a \cdot b}$$

где a - длина платы, м: a=0,15 м;

где b - ширина платы, м: b=0,05 м;

где D - цилиндрическая жесткость платы, Н/м;

где М - масса платы с ЭРЭ, кг: М=0,3 кг.

Цилиндрическую жесткость платы, Н/м, вычисляем по формуле

$$D = \frac{E \cdot h^3}{12 \cdot (1 - v^2)}$$

где Е - модуль упругости материала платы, Н/м2;

где h - толщина платы, м;

где v - коэффициент Пуассона.

 $E = 3.02 \cdot 10^{10} \text{ H/m}^2$;

 $h = 2 \cdot 10^{-3} \text{ M}$;

 $\nu = 0.22$.

Подставляя эти значения в формулу, получим:

$$D = \frac{3,02 \cdot 10^{10} \cdot (2 \cdot 10^{-3})^3}{12 \cdot (1 - 0,22^2)} = 2,12 \text{ H/m}$$

$$f_0 = \frac{\pi}{2 \cdot 0,150^2} \cdot \left(1 + \frac{0,150^2}{0,05^2}\right) \cdot \sqrt[2]{\frac{2,12}{0,3} \cdot 0,150 \cdot 0,05} = 240,35 \ \Gamma$$
ц

Печатная плата должна обладать значительной усталостной долговечностью при воздействии вибраций. Для этого необходимо, чтобы минимальная частота собственных колебаний плат удовлетворяла условию:

$$f_{\min} \ge \sqrt[3]{\frac{\beta \cdot g \cdot n_{b\max}}{0,003 \cdot b}}$$

где β - безразмерная постоянная, выбирается в зависимости от величины частоты собственных колебаний и воздействующих вибраций;

b - размер короткой стороны платы, мм;

n_{bmax} - вибрационные перегрузки в единицах, 3...9.

$$f_{min} \ge \sqrt[3]{rac{54 \cdot 9,8 \cdot 3}{0,003 \cdot 0,05}} = 220 \ \Gamma$$
ц

Собственная частота вибрации платы удовлетворяет условию.

По результатам данного расчета можно сделать вывод, что печатная плата прибора будет обладать достаточной усталостной долговечностью при воздействии вибраций. Условие вибропрочности выполнено.

Оценка теплового режима и выбор способа охлаждения

Определение температуры корпуса и нагретой зоны

$$T_K = Q_K + T_C$$
,
 $T_K=1,059+40^{\circ}C=41,059^{\circ}C$

$$T_3 = Q_3 + T_C$$
,
 $T_3 = 1,2174 + 40$ °C=41,22°C

Выбор способа охлаждения:

Решение проблемы охлаждения электронных средств, с использованием ИЭТ выделяющих при работе тепло является одним из важных этапов их конструирования. Выделяемое изделиями тепло может быть отведено от поверхности прибора и передано за пределы электронного средства несколькими методами, применяемыми отдельно или в сочетании друг с другом.

Достаточно использовать естественное воздушное охлаждение.

Расчет надежности

Группа элементов	Вероятность на отказ, λ _э , 1/ч
имс	2,002*10 ⁻⁶
Диоды	0,05*10 ⁻⁶
Биполярные транзисторы	0,154*10 ⁻⁶
Резисторы	1,298*10 ⁻⁶
Конденсаторы	0,0132*10 ⁻⁶
Кнопки	0,043*10 ⁻⁶
Кварцевый резонатор	0,286*10 ⁻⁶
Светодиод	0,01*10 ⁻⁶
Оптопара	18*10 ⁻⁶
Тиристор	0,242*10 ⁻⁶
Плата	0,2*10 ⁻⁶
Пайка	0,04*10 ⁻⁶

1. Расчёт интенсивности отказов ЭС:

$$\lambda_{\Im\Sigma} = \lambda_{\Im j} \cdot n_j = \left(\lambda_{0\Gamma j} \prod_i K_i\right) n_j$$

где λ_i — значение интенсивности отказа i-го элемента с учетом режима и условий работы;

 λ_{oi} — справочное значение интенсивности отказа i-го элемента;

 α_{j} – поправочный коэффициент, учитывающий j-ый фактор;

m - общее число учитываемых эксплуатационных факторов.

$$\begin{array}{c} \lambda \! = \! \lambda_{\text{3a}} \! + \! \lambda_{\text{3b}} \! * \! 2 \! + \! \lambda_{\text{3F}} \! * \! 2 \! + \! \lambda_{\text{3F}} \! * \! 2 \! 1 \! + \! \lambda_{\text{3g}} \! * \! 18 \! + \! \lambda_{\text{9e}} \! + \! \lambda_{\text{3g}} \! * \! 9 \! + \! \lambda_{\text{3F}} \! * \! 3 \! + \\ \lambda_{\text{3K}} \! * \! 2 \! = \! 2,\! 002 \! + \! 0,\! 05 \! * \! 3 \! + \! 0,\! 154 \! * \! 2 \! + \! 1,\! 298 \! * \! 21 \! + \! 0,\! 0132 \! * \! 18 \! + \! 0,\! 043 \! + \! 0,\! 286 \! + \! 0,\! 01 \! * \! 9 \! + \! 18 \! * \! 3 \! + \! 0,\! 242 \\ * 2 \! = \! 84,\! 86 \! * \! 10^{-6} 1/\mathtt{q} \end{array}$$

2. Расчёт наработки на отказ:

$$T_O = \frac{1}{\lambda}$$
, $T_O=1/84,86*10^{-6}=11,784$ кч

3. Расчёт вероятности безотказной работы:

$$P(t) = e^{-\lambda \cdot t},$$

 $P(t) = e^{-84,86*10e \cdot 3*1,485} = 0.98$

Анализ технологичности конструкции электронного модуля устройства

Показатели технологичности	Значение K _i	Коэффициент влияния, ф _і
Коэффициент автоматизации пайки ЭРЭ	$K_{A\Pi} = 0,986$	1,0
Коэффициент автоматизации установки ЭРЭ	$K_{AY} = 0.986$	1,0
Коэффициент снижения трудоёмкости сборки и монтажа	$K_{T CE} = 0.56$	0,8
Коэффициент автоматизации операций контроля и настойки	$K_{AKH.} = 1$	0,5
Коэффициент повторяемости ЭРЭ	$K_{\text{пов.} \ni P\ni} = 0.781$	0,3
Коэффициент применения типовых техпроцессов	К _{т.п.} = 1	0,2
Коэффициент сокращения применения деталей	$K_{\text{СПД}} = 1$	0,1

Комплексный показатель технологичности определяется по формуле:

$$K = \frac{\sum_{i=1}^{7} K_i \, \phi_i}{\sum_{i=1}^{7} \phi_i} = 0.82.$$

Базовое значение комплексного показателя:

$$K_{\rm E} = \frac{K_{\rm C}N_{\rm CM} + 0.8N_{\rm IIM}}{N_{\rm CM} + N_{\rm IIM}} = 0.72$$

Уровень технологичности вычисляется по формуле:

$$K_{yT} = \frac{K}{K_E} = \frac{0.82}{0.72} = 1.14$$

Технико-экономическое обоснование

Сырье и материалы за вычетом отходов	11,98
Комплектующие	46,23
Заработная плата работников за одно устройство	9,84
Полная себестоимость	94,64
Отпускная цена	137,24

Технико-экономическое обоснование

В результате технико-экономического обоснования инвестиций по производству нового изделия были получены следующие значения показателей их эффективности:

- 1. Чистый дисконтированный доход за четыре года производства продукции составит 1 650 973,6 р.
- 2. Все инвестиции окупаются на второй год.
- 3. Рентабельность инвестиций составляет 119,24 %. Таким образом, производство нового вида изделия является эффективным и инвестиции в его производство целесообразны.
- Себестоимость устройства 94,64 р.
- Отпускная цена устройства 137,24 р.
- Плановая прибыль с реализации одного устройства 42,6 р.

Техника безопасности

• Ток, проходящий через тело человека при контакте без изоляции:

$$I = \frac{U}{R} = \frac{5 \text{ B}}{1000 \text{ Om}} = 5 \text{ MA}$$

Сопротивление корпуса

$$R = \rho \frac{l}{S} = 5 \cdot 10^{13} \text{OM/M} \frac{0,015 \text{ M}}{0,15 \text{ M} \cdot 0,05 \text{ M}} = 1,86 \cdot 10^{14} \text{ OM}$$

Ток, проходящий через тело человека

$$I = \frac{U}{R} = \frac{5 \text{ B}}{1.86 \cdot 10^{14} \text{ Om}} = 0.026 \text{ HA}$$

Выводы:

- Спроектированы: печатная плата, сборочный чертеж печатной платы, сборочный чертеж устройства и чертежи деталей
- Разработана структурная схема устройства, алгоритм работы устройства
- Проведены расчёты конструктивных параметров устройства
- Устройство спроектировано с учетом воздействия дестабилизирующих факторов, предусмотрены конструкторские решения для снижения воздействия
- Устройство имеет возможность подключения 7 датчиков.
- Устройство имеет возможность оповещения по мобильному телефону.
- Разработан технологический процесс сборки устройства. Процесс состоит из 11 операций. Комплексный показатель технологичности -0.82, уровень технологичности 1.14. Конструкция изделия в достаточной мере технологична.
- В результате технико-экономического обоснования инвестиций по производству нового изделия чистый дисконтированный доход за четыре года производства продукции составляет 1 650 973,6p. Все инвестиции окупаются на второй год. Рентабельность инвестиций составляет 119,24 %.

Спасибо за внимание!