Exercise 2

1 Simulation results:
2 numArrivals: 1000
3 numDepartures: 998
4 avg Wait: 1.8906618446580803

4 avg Wait: 1.8906618446580803 5 avg System Time: 2.814388534740915

- A linked list and a priority queue is used
- In randomInterarrivalTime, from an exponential distribution
- In randomServiceTime, from an exponential distribution

Exercise 3

- avg arrival time= 1.3558307457972822
- ullet it seemed that $avgArrivalTime = rac{1}{arrivalRate}$

Exercise 6

- Yes, in Event e = eventList.poll ();
- Yes, scheduleArrival provides the first event in the queue. Then scheduleArrival is called in handleArrival like a recursive program

Exercise 7

avg System Time: 2.814388534740915

Exercise 8

avg Wait: 1.890661844658080

- 2.814388534740915-1.8906618446580803= 0.92372
- This is the time spent at the server. This rate is near the 1/serviceRate so is in my expectation.

Exercise 10:

avg service rate= 1.0825712959645295

This value is approximate equal to the stated rate in the program.

Exercise 11:

There's a significant delay in wait and system time. a congestion might have happened

Exercise 12

use $\lambda = 0.01$, the avg wait time is very small

Exercise 14:

M = 1.944

M/d= 0.6907361851440171

Exercise 15:

λ	no wait prob
0.5	0.483
0.6	0.4
0.75	0.312

Exercise 16:

- ullet M is discrete. D is continuous. The range of M and D is not absolute, it changes with the λ and μ
- M

- Seemed to be exponential distribution
- D

• Seemed to be exponential distribution as well.

Exercise 19:

No it doesn't work, only one boid is moving at a same time.

Exercise 20:

molecular simulation in Molecule uses a single thread, so it's synchronous.

21-25

Exercise 21:

Game of life is a synchronous simulation. Every step depends on the result of previous step.

Exercise 22:

Χ

• h is the lower bound of E(T)

Exercise 23

- X is a typical gaussian distribution
- T is a Poisson distribution

Exercise 24:

The size of the the event list in single queue is all arrival and departure events.(before they are removed)

Exercise 25:

Log(N) time needed for each operation