The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Canceled)

2. (Withdrawn) A manufacturing method for a semiconductor device, comprising:

forming over a substrate a conductive layer patterned to have a length of one side not larger than a thickness of the substrate;

forming a semiconductor layer formed inside the conductive layer and an insulating layer covering a top surface and a side surface of the semiconductor layer wherein the semiconductor layer and the insulating layer are interposed between the substrate and the conductive layer; and

selectively heating a region where the conductive layer is formed, by using a heat source for irradiating an incoherent light within a wavelength band ranging at least from a visible light band to an infrared band to thereby conduct heat treatment on the semiconductor layer and the insulating layer.

3. (Currently Amended) A manufacturing method for a semiconductor device, comprising:

forming[[,]] <u>at least first and second</u> semiconductor layers that are divided from each other in an island-like shape over a substrate having an insulating surface;

forming a conductive layer covering an entire surface of each of the <u>first and second</u> semiconductor layers and having ends situated outside each of the <u>semiconductor layers</u>, over each of the <u>semiconductor layers</u> through <u>with</u> an insulating layer <u>interposed therebetween</u>; and

selectively heating a region where the conductive layer is formed, the first and second semiconductor layers by irradiating an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band to thereby conduct heat treatment on each of the first and second semiconductor layers and the insulating layer wherein said conductive layer extends beyond each periphery of the first and second semiconductor layers at least when the selective heating of the first and second semiconductor layers is performed.

4. (Currently Amended) A manufacturing method for a semiconductor device, comprising:

forming a first insulating layer over a substrate having an insulating surface;

forming semiconductor layers that are divided from each other in an island-like shape over the first insulating layer;

forming a second insulating layer that covers a top surface and a side surface of each of the semiconductor layers;

forming a conductive layer that covers the top surface and an end surface of each of the semiconductor layers and having ends situated outside each of the semiconductor layers, over the second insulating layer;

selectively heating a region where the conductive layer is formed, by irradiating an incoherent electromagnetic wave within a wavelength band ranging at least from a visible-light-band to an infrared band to thereby conduct heat treatment on each of the semiconductor layers and the insulating layer; and

forming a gate electrode overlapping with each of the semiconductor layers by etching the conductive layer

The method according to claim 3 further comprising a step of etching the conductive layer after the selective heating of the first and second semiconductor layers to form at least first and second gate electrodes over the first and second semiconductor islands, respectively.

5. (Currently Amended) A manufacturing method for a semiconductor device, comprising:

forming semiconductor layers that are divided from each other in an island-like shape over a substrate;

forming a conductive layer covering an entire surface of each of the semiconductor layers and having ends situated outside each of the semiconductor layers, over each of the semiconductor layers through an insulating layer;

irradiating an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band for 30 to 300 seconds; and

selectively heating a region where the conductive layer is formed to thereby conduct heat treatment on each of the semiconductor layers and the insulating layer

The method according to claim 3 wherein said incoherent electromagnetic wave is irradiated for 30 to 300 seconds.

6. (Canceled)

- 7. (Withdrawn) A manufacturing method for a semiconductor device according to claim 2, the substrate is glass substrate.
- 8. (Currently Amended) A manufacturing method for a semiconductor device according to claim 3, wherein the substrate is glass substrate.

9.-11. (Canceled)

12. (Withdrawn) A manufacturing method for a semiconductor device according to claim 2, the substrate is selected from one of quartz and sapphire.

13. (Currently Amended) A manufacturing method for a semiconductor device according to claim 3, wherein the substrate is selected from one of quartz and sapphire.

14.-16. (Canceled)

- 17. (Withdrawn) A manufacturing method for a semiconductor device according to claim 2, the substrate has a transmittance of 50 % or higher with respect to the electromagnetic wave within the wavelength band.
- 18. (Currently Amended) A manufacturing method for a semiconductor device according to claim 3, wherein the substrate has a transmittance of 50 % or higher with respect to the electromagnetic wave within the wavelength band.

19.-21. (Canceled)

- 22. (Withdrawn) A manufacturing method for a semiconductor device according to claim 2, wherein the conductive layer is formed of a metal nitride.
- 23. (Currently Amended) A manufacturing method for a semiconductor device according to claim 3, wherein the conductive layer is formed of comprises a metal nitride.

24.-26. (Canceled)

27. (Withdrawn) A manufacturing method for a semiconductor device according to claim 2, further comprising forming a second conductive layer on the conductive layer and forming a part of a gate electrode using the conductive layer.

28. (Original) A manufacturing method for a semiconductor device according to claim 3, further comprising forming a second conductive layer on the conductive layer and forming a part of a gate electrode using the conductive layer.

29.-31. (Canceled)

- 32. (Withdrawn) A manufacturing method for a semiconductor device according to claim 2, wherein the heat treatment is performed at a temperature not less than a distortion point of the substrate.
- 33. (Currently Amended) A manufacturing method for a semiconductor device according to claim 3, wherein the heat treatment the selective heating of the substrate is performed at a temperature not [[less]] lower than a distortion point of the substrate.

34.-35. (Canceled)

36. (Original) A manufacturing method for a semiconductor device, comprising: heating an entire surface of a substrate by radiation heating from a first heat source:

forming non-transparent layers that are separated from each other in an island-like shape over the substrate, the non-transparent layers each having a different, higher absorptance with respect to an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band, than the substrate; and

locally heating a region where each of the non-transparent layers having the high absorptance with respect to the incoherent electromagnetic wave is formed, by using a second heat source for radiating the incoherent electromagnetic wave.

37. (Original) A manufacturing method for a semiconductor device, comprising: heating an entire surface of a substrate by radiation heating from a first heat source;

forming a non-transparent layer to overlap with a semiconductor layer formed in an island-like shape through an insulating film over the substrate, the non-transparent layer having a different, higher absorptance with respect to an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band, than the substrate; and

selectively heating a region where the non-transparent layer having the high absorptance with respect to the incoherent electromagnetic wave is formed, by using a second heat source for radiating the incoherent electromagnetic wave to thereby conduct heat treatment on the semiconductor layer and the insulating layer through conductive heating from the non-transparent layer having the high absorptance with respect to the electromagnetic wave.

- 38. (Currently Amended) A manufacturing method for a semiconductor device according to claim 36, wherein the substrate is glass substrate.
- 39. (Currently Amended) A manufacturing method for a semiconductor device according to claim 37, wherein the substrate is glass substrate.
- 40. (Currently Amended) A manufacturing method for a semiconductor device according to claim 36, wherein the substrate is selected from one of quartz and sapphire.
- 41. (Currently Amended) A manufacturing method for a semiconductor device according to claim 37, wherein the substrate is selected from one of quartz and sapphire.

- 42. (Currently Amended) A manufacturing method for a semiconductor device according to claim 36, wherein the substrate has a transmittance of 50 % or higher with respect to the electromagnetic wave within the wavelength band
- 43. (Currently Amended) A manufacturing method for a semiconductor device according to claim 37, wherein the substrate has a transmittance of 50 % or higher with respect to the electromagnetic wave within the wavelength band.
- 44. (Currently Amended) A manufacturing method for a semiconductor device according to claim 36, wherein the insulating layer covers a top surface and a side surface of each of the semiconductor layers.
- 45. (Currently Amended) A manufacturing method for a semiconductor device according to claim 37, wherein the insulating layer covers a top surface and a side surface of each of the semiconductor layers.
- 46. (Currently Amended) A manufacturing method for a semiconductor device according to claim 36, wherein the insulating layer includes a laminate of a silicon oxide film and a silicon nitride film.
- 47. (Currently Amended) A manufacturing method for a semiconductor device according to claim 37, wherein the insulating layer includes a laminate of a silicon oxide film and a silicon nitride film.
- 48. (Original) A manufacturing method for a semiconductor device according to claim 36, wherein the non-transparent layer having the high absorptance is formed of a

high melting-point metal selected from the group consisting of molybdenum (Mo), tungsten (W), titanium (Ti), and chromium (Cr).

- 49. (Original) A manufacturing method for a semiconductor device according to claim 37, wherein the non-transparent layer having the high absorptance is formed of a high melting-point metal selected from the group consisting of molybdenum (Mo), tungsten (W), titanium (Ti), and chromium (Cr).
- 50. (Original) A manufacturing method for a semiconductor device according to claim 36, wherein the non-transparent layer having the high absorptance is formed of a metal nitride selected from the group consisting of titanium nitride (TiN), tantalum nitride (TaN), and tungsten nitride (WN).
- 51. (Original) A manufacturing method for a semiconductor device according to claim 37, wherein the non-transparent layer having the high absorptance is formed of a metal nitride selected from the group consisting of titanium nitride (TiN), tantalum nitride (TaN), and tungsten nitride (WN).
- 52. (Original) A manufacturing method for a semiconductor device according to claim 36, wherein the non-transparent layer having the high absorptance is formed of one selected from the group consisting of tungsten silicide (WSi₂), molybdenum silicide (MoSi₂), titanium silicide (TiSi₂), tantalum silicide (TaSi₂), chromium silicide (CrSi₂), cobalt silicide (CoSi₂), and platinum silicide (PtSi₂).
- 53. (Original) A manufacturing method for a semiconductor device according to claim 37, wherein the non-transparent layer having the high absorptance is formed of one selected from the group consisting of tungsten silicide (WSi₂), molybdenum silicide

(MoSi₂), titanium silicide (TiSi₂), tantalum silicide (TaSi₂), chromium silicide (CrSi₂), cobalt silicide (CoSi₂), and platinum silicide (PtSi₂).

54. (Original) A manufacturing method for a semiconductor device according to claim 36, wherein the substrate has a transmittance of 60% or higher with respect to the incoherent electromagnetic wave within the wavelength band ranging from the visible light band to the infrared band and the non-transparent layer having the high absorptance has a transmittance of 30% or lower with respect to the incoherent

electromagnetic wave within the wavelength band ranging from the visible light band to

the infrared band.

55. (Original) A manufacturing method for a semiconductor device according to claim 37, wherein the substrate has a transmittance of 60% or higher with respect to the incoherent electromagnetic wave within the wavelength band ranging from the visible

light band to the infrared band and the non-transparent layer having the high

absorptance has a transmittance of 30% or lower with respect to the incoherent

electromagnetic wave within the wavelength band ranging from the visible light band to

the infrared band.

56. (Original) A manufacturing method for a semiconductor device according to

claim 36, wherein the second heat treatment step is performed at a temperature not

lower than a distortion point of the substrate.

57. (Original) A manufacturing method for a semiconductor device according to

claim 37, wherein the second heat treatment step is performed at a temperature not

lower than a distortion point of the substrate.

58. (Withdrawn) A heat treatment method comprising:

contracting a glass substrate, the first heat treatment step including a step of heating an entire surface of the glass substrate and a step of subsequently cooling the glass substrate down to a room temperature;

forming non-transparent layers that are separated from each other in an islandshape over the glass substrate, the non-transparent layers each having a different, higher absorptance with respect to an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band, than the glass substrate; and

locally heating a region where each of the non-transparent layers having the high absorptance with respect to the electromagnetic wave is formed, by radiation heat of the incoherent electromagnetic wave.

59. (Withdrawn) A heat treatment method comprising:

contracting a glass substrate, the first heat treatment step including a step of heating an entire surface of the glass substrate and a step of subsequently cooling the glass substrate down to a room temperature;

forming a non-transparent layer to overlap with a semiconductor layer formed in an island-like shape through an insulating film over the glass substrate, the nontransparent layer having a different, higher absorptance with respect to an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band, than the glass substrate; and

locally heating a region where the non-transparent layer having the high absorptance with respect to the electromagnetic wave is formed, by radiation heat of the incoherent electromagnetic wave to thereby conduct heat treatment on the semiconductor layer and the insulating film through conductive heating from the nontransparent layer having the high absorptance with respect to the electromagnetic wave.

- 60. (Withdrawn) A heat treatment method according to claim 58, wherein the non-transparent layer having the high absorptance is formed of a high melting-point metal selected from the group consisting of molybdenum (Mo), tungsten (W), titanium (Ti), and chromium (Cr).
- 61. (Withdrawn) A heat treatment method according to claim 59, wherein the non-transparent layer having the high absorptance is formed of a high melting-point metal selected from the group consisting of molybdenum (Mo), tungsten (W), titanium (Ti), and chromium (Cr).
- 62. (Withdrawn) A heat treatment method according to claim 58, wherein the non-transparent layer having the high absorptance is formed of a metal nitride selected from the group consisting of titanium nitride (TiN), tantalum nitride (TaN), and tungsten nitride (WN).
- 63. (Withdrawn) A heat treatment method according to claim 59, wherein the non-transparent layer having the high absorptance is formed of a metal nitride selected from the group consisting of titanium nitride (TiN), tantalum nitride (TaN), and tungsten nitride (WN).
- 64. (Withdrawn) A heat treatment method according to claim 58, wherein the non-transparent layer having the high absorptance is formed of one selected from the group consisting of tungsten silicide (WSi₂), molybdenum silicide (MoSi₂), titanium silicide (TiSi₂), tantalum silicide (TaSi₂), chromium silicide (CrSi₂), cobalt silicide (CoSi₂), and platinum silicide (PtSi₂).
- 65. (Withdrawn) A heat treatment method according to claim 59, wherein the non-transparent layer having the high absorptance is formed of one selected from the

group consisting of tungsten silicide (WSi₂), molybdenum silicide (MoSi₂), titanium silicide (TiSi₂), tantalum silicide (TaSi₂), chromium silicide (CrSi₂), cobalt silicide (CoSi₂), and platinum silicide (PtSi₂).

- 66. (Withdrawn) A heat treatment method according to any one of claim 58, wherein the glass substrate has a transmittance of 60% or higher with respect to the incoherent electromagnetic wave within the wavelength band ranging from the visible light band to the infrared band and the non-transparent layer having the high absorptance has a transmittance of 30% or lower with respect to the incoherent electromagnetic wave within the wavelength band ranging from the visible light band to the infrared band.
- 67. (Withdrawn) A heat treatment method according to any one of claim 59. wherein the glass substrate has a transmittance of 60% or higher with respect to the incoherent electromagnetic wave within the wavelength band ranging from the visible light band to the infrared band and the non-transparent layer having the high absorptance has a transmittance of 30% or lower with respect to the incoherent electromagnetic wave within the wavelength band ranging from the visible light band to the infrared band.
- 68. (Withdrawn) A heat treatment method according to any one of claim 58, wherein the second heat treatment step is performed at a temperature not less than a distortion point of the glass substrate.
- 69. (Withdrawn) A heat treatment method according to any one of claim 59, wherein the second heat treatment step is performed at a temperature not less than a distortion point of the glass substrate.

70. (Withdrawn) A manufacturing method for a semiconductor device, which includes performing heat treatment by irradiating an electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band, comprising:

forming a conductive layer absorbing the electromagnetic wave over a substrate; forming, between the substrate and the conductive layer, a semiconductor layer formed inside the conductive layer and an insulating layer covering a top surface and a side surface of the semiconductor layer wherein the semiconductor layer and the insulating layer are interposed between the substrate and the conductive layer; and

selectively heating a region where the conductive layer is formed, by irradiating the electromagnetic wave to thereby conduct heat treatment on the semiconductor layer and the insulating layer.

- 71. (Withdrawn) A manufacturing method for a semiconductor device according to claim 70, the substrate is glass substrate.
- 72. (Withdrawn) A manufacturing method for a semiconductor device according to claim 70, the substrate is selected from one of quartz and sapphire.
- 73. (Withdrawn) A manufacturing method for a semiconductor device according to claim 70, the substrate has a transmittance of 50 % or higher with respect to the electromagnetic wave within the wavelength band
 - 74. (New) A manufacturing method for a semiconductor device, comprising: forming a semiconductor layer over a substrate;

forming an insulating layer over the semiconductor layer;

forming a conductive layer over the semiconductor layer with the insulating layer interposed therebetween; and

selectively heating the semiconductor layer by using a heat source capable of radiating an incoherent electromagnetic wave within a wavelength band ranging at least from a visible light band to an infrared band wherein said conductive layer extends beyond a periphery of the semiconductor layer at least when the selective heating of the semiconductor layer is performed.

- 75. (New) A manufacturing method for a semiconductor device according to claim 74, wherein a transparency of said substrate with respect to said incoherent electromagnetic wave is 50% or larger.
- 76. (New) A manufacturing method for a semiconductor device according to claim 74, wherein said substrate is a glass substrate.
- 77. (New) A manufacturing method for a semiconductor device according to claim 74, wherein said substrate is selected from one of quartz and sapphire.
- 78. (New) A manufacturing method for a semiconductor device according to claim 74, wherein the conductive layer comprises a metal nitride.
- 79. (New) A manufacturing method for a semiconductor device according to claim 74, further comprising forming a second conductive layer on the conductive layer for forming at least a part of a gate electrode.
- 80. (New) A manufacturing method for a semiconductor device according to claim 74, wherein the selective heating of the semiconductor layer is performed at a temperature not lower than a distortion point of the substrate.