Ideas de constructivismo y computabilidad

Mario Román

21 de septiembre de 2018LibreIM - IEMath Granada

Outline

1. Constructivismo	
2. Interpretación BHK	
3. Matemática constructivista	
4. Geometría diferencial sintética	
5. Omnisciencia	
6. Agda	

Esquema

4	0 1	,	
1	Constr	uctivism	\sim

- 2. Interpretación BHK
- 3. Matemática constructivista
- 4. Geometría diferencial sintética
- 5. Omnisciencia
- 6. Agda

Constructivismo en filosofía

- Múltiples tendencias filosóficas.
- $\bullet\,$ Algunas con diferencias prácticas en las matemáticas.
- Asumimos constructivismo de Bishop, que se limita al agnosticismo sobre el tercio excluso.

Agnosticismo respecto a un axioma

Supongamos que siempre hubiéramos trabajado con el axioma: todos los grupos son conmutativos. ¿Qué ocurriría si un día lo retiráramos?

- Podemos probar menos teoremas.
- Pero tenemos más ejemplos, algunos extraños.
- Retirarlo no es lo mismo que asumir su contrario.

Definiciones

- \top es la proposición verdadera.
- \bot es la proposición falsa, implica cualquier cosa $\forall A \colon \bot \Rightarrow A$.
- $\neg A$ se define como $A \Rightarrow \bot$.
- El tercio excluso es el axioma $\forall A : A \lor \neg A$.
- Esto no da una lógica de más valores de verdad, de hecho, $\neg \neg A \wedge \neg A \Rightarrow \bot$.

La doble negación equivale al tercio excluso

Si queremos ser agnósticos con el tercio excluso tenemos que serlo con la regla de la doble negación $A = \neg \neg A$, porque son equivalentes.

- $A \Rightarrow \neg \neg A$ es fácil.
- $\neg \neg A \Rightarrow A$ es fácil si tenemos el tercio excluso.
- Además ¬¬(A ∨ ¬A) siempre, así que si tenemos la doble negación, tenemos el tercio excluso

No podemos hacer demostraciones por reducción al absurdo

Hay dos cosas distintas que llamamos demostración por reducción al absurdo.

- 1. Supongamos $\neg A$, ..., llegamos a contradicción \bot , luego A;
- 2. Supongamos A, ..., llegamos a contradicción \bot , luego $\neg A$.

La primera equivale al tercio excluso. La segunda es la definición de negación. Sólo son iguales si asumimos el tercio excluso. Muchas demostraciones por 'contradicción' no lo son.

- La raíz de 2 es irracional.
- Teorema de Cantor.
- Teorema de Russell.

Esquema

1. Constructivismo

2. Interpretación BHK

- 3. Matemática constructivista
- 4. Geometría diferencial sintética
- 5. Omnisciencia
- 6. Agda

Una intuición

Diremos que $p \Vdash \varphi$ si p es un programa que realiza a φ .

- $p \Vdash \top$ en todos los casos;
- $p \Vdash \bot$ en ningún caso;
- $\langle p, q \rangle \Vdash \phi \land \psi$, cuando $p \Vdash \phi \lor q \Vdash \psi$;
- ⟨p, q⟩ | φ ∨ ψ, cuando p representa un bit que nos dice si vamos a demostrar φ o si vamos a demostrar ψ y q realiza al elegido;
- $p \Vdash \phi \Rightarrow \psi$, cuando p es un programa que toma como entrada un $s \Vdash \phi$ y devuelve un $p(s) \Vdash \psi$;
- $p \Vdash \forall x \in A, \phi(x)$, cuando p es un programa que toma como entrada $s \Vdash a \in A$ y devuelve $p(s) \Vdash \phi(a)$;
- $\langle p,q \rangle \Vdash \exists x \in A, \phi(x)$, cuando $p \Vdash a \in A \ y \ q \Vdash \phi(a)$.

Las proposiciones válidas en lógica intuicionista deberían ser realizables.

Interpretando

- No existe un programa $p \Vdash \forall \varphi \colon \varphi \vee \neg \varphi.$ Resolvería el problema de decisión.

Interpretando

- No existe un programa $p \Vdash \forall \varphi \colon \varphi \vee \neg \varphi.$ Resolvería el problema de decisión.
- No existe un programa $p \Vdash \forall x \in \mathbb{R} \colon (x=0) \lor (x \neq 0)$. Necesitaría inspeccionar infinitos bits.

Interpretando

- No existe un programa $p \Vdash \forall \varphi \colon \varphi \vee \neg \varphi$. Resolvería el problema de decisión.
- No existe un programa $p \Vdash \forall x \in \mathbb{R} \colon (x=0) \lor (x \neq 0)$. Necesitaría inspeccionar infinitos bits.
- Existe un programa

$$p \Vdash \Big(\phi(0) \land (\forall k \in \mathbb{N} \colon \phi(k) \Rightarrow \phi(k+1))\Big) \Rightarrow \forall n \in \mathbb{N} \colon \phi(n).$$

```
def natInd (zero, succ, n):
  if n == 0: return zero
  return succ(natInd(zero,succ,n-1))
```

```
natInd :: a -> (a -> a) -> Integer -> a
natInd z s 0 = z
natInd z s n = s (natInd z s (n-1))
```

Esquema

1.	Con	stru	ctiv	ismo

2. Interpretación BHK

3. Matemática constructivista

- 4. Geometría diferencial sintética
- 5. Omnisciencia
- 6. Agda

Perdemos el axioma de elección

- Teorema de Diaconescu. El axioma de elección implica el tercio excluso.
- La demostración usa sólo conjuntos finitos y aprovecha que $\forall n \in \mathbb{N} \colon (n=0) \lor (n \neq 0).$

Empiezan a pasar cosas extrañas

- No podemos probar que cada espacio vectorial tiene una base.
- El teorema de Bolzano tampoco puede probarse. Podremos de todas formas probar versiones que intentan construir el cero aproximándolo, pero necesitamos hipótesis adicionales.
- El teorema de Tychonoff o el lema de Zorn son equivalentes al axioma de elección, no podemos esperar probarlos en este contexto.
- Existe una función $f: [0,1] \to \mathbb{R}$ no acotada.
- Es un problema abierto determinar si existe una biyección $\mathbb{R} \to \mathbb{N}$.
- 'Toda función es continua' es un axioma válido.
- 'Toda función es computable' es un axioma válido.

No es cierto que el subconjunto de un conjunto finito deba ser finito.

Dada una proposición no decidible P, el conjunto $A=\{0\mid P\text{ es cierto}\}$ no puede probarse finito, pero puede probarse que no es infinito. El conjunto A es ¬¬-finito.

Esquema

1. Constructivismo	
2. Interpretación BHK	
3. Matemática constructivista	
4. Geometría diferencial sintética	

Oficialidad y realidad

Oficialmente todos calculamos límites y derivadas usando la caracterización ε - δ de Cauchy. En realidad se acaban haciendo cosas como las siguientes.

$$(x^2)' = \frac{(x+dx)^2 - x^2}{dx} = 2x + dx \stackrel{?!}{=} 2x.$$

- ¿Pero por qué puedes derivar? Asumo lo que haga falta.
- ¿Pero por qué quitas el dx? Es muy pequeño, es despreciable.
- ¿Pero entonces por qué no quitarlo directamente?

$$(x^2)' = \frac{(x+dx)^2 - x^2}{dx} \stackrel{?!}{=} \frac{x^2 - x^2}{dx} = 0.$$

Vamos a formalizar esto.

Microafinidad

- Infinitesimales $D = \{d \in \mathbb{R} \mid d^2 = 0\}.$
- Axioma. Toda función $g \colon D \to \mathbb{R}$ es lineal de forma única.
- En particular cada $f\colon \mathbb{R} \to \mathbb{R}$ tiene una única 'derivada' en cada punto $x \in \mathbb{R}.$

$$g(d) = f(x+d) = f(x) + f'(x)d$$

• ¿Pero no es verdad que $D = \{0\}$? No, si debilitamos la lógica

Cancelación

- R es un cuerpo, luego $(x \neq 0) \Rightarrow x$ tiene inversa.
- Pero los infintesimales no cumplen la condición. No podemos dividir por un infinitesimal.

Teorema de cancelación. Si tenemos ad = bd para todo $d \in D$, entonces a = b.

Podemos dividir por un infinitesimal sólo si está cuantificado universalmente.

Derivación, series de Taylor

Si llamamos $f(x) = x^2$, tenemos

$$f'(x)d = f(x+d) - f(x) = x^2 + 2xd - x^2 = 2xd.$$

Y ¿cómo funciona en general?

- · Podríamos intentar segundas derivadas.
- $f(x+d_1+d_2) = f(x) + (d_1+d_2)f'(x) + \frac{(d_1+d_2)^2}{2}f''(x)$
- $d_1 + d_2$ nos da un nilpotente de grado 3.

Axioma (versión general). Para nilpotentes de grado n, toda función es de forma única una serie.

$$g(d) = a_0 + a_1 d + a_2 d^2 + \dots + a_{n-1} d^{n-1}$$

Esquema

-1	C
Ι.	Constructivismo

2. Interpretación BHK

3. Matemática constructivista

4. Geometría diferencial sintética

5. Omnisciencia

6. Agda

¿Qué buscamos?

Un conjunto X es omnisciente si para cualquier proposición booleana $p\colon X\to 2$, podemos o encontrar un $x\in X$ tal que p(x)= true o podemos encontrar una demostración de para cualquier $x\in X$ se tiene que p(x)= false.

¿Son los naturales omniscientes? ¡No!, contravendría Turing. Pero hay conjuntos parecidos a ellos que sí lo son.

```
forsome (\n -> 2 * n ^ 3 == 245 + n) -- true
forsome (\n -> n * n == 28) -- false
epsilon (\n -> n * n + 4 * n == 32) -- 4
```

Construimos funciones de búsqueda $\varepsilon \colon (X \to 2) \to X$ tales que $p(\varepsilon(p)) = 1$ nos da un ejemplo y $p(\varepsilon(p)) = 0$ implica que no hay ninguno.

Espacio de Cantor

El espacio de Cantor es $2^{\mathbb{N}}$.

- Es el espacio de todas las funciones (de Haskell) de los naturales a los booleanos.
- Es no numerable, no hay biyección (en Haskell) con los naturales.

```
-- Empezamos definiendo el espacio de Cantor. Incluimos una función
-- auxiliar que añade un elemento al inicio de la secuencia.

type Cantor = Integer -> Bool

(#) :: Bool -> Cantor -> Cantor

(b # f) 0 = b

(b # f) n = f (n-1)
```

Búsqueda en el espacio de Cantor

La magia.

```
-- Esta definición de epsilon es debida a Ulrich Berger.

epsilon :: (Cantor -> Bool) -> Cantor

epsilon p =

if forsome (\a -> p (False # a))

then False # epsilon (\a -> p (False # a))

else True # epsilon (\a -> p (True # a))

forsome :: (Cantor -> Bool) -> Bool
forsome p = p (epsilon p)
```

Funciones auxiliares.

```
forevery :: (Cantor -> Bool) -> Bool
forevery p = not (forsome (not . p))

-- Igualdad para funciones.
instance (Eq b) => Eq (Cantor -> b) where
f == g = forevery (\u -> f u == g u)
```

Y en el código que acompaña estas diapositivas hay versiones más eficientes usando mónadas.

Usando búsquedas

```
n b = if b then 1 else 0 -- Auxiliar Bool -> Integer
-- Ejemplos:
forsome (\f -> n(f 1) + n(f 2) + n(f 3) == 4)
-- False
w1 = (\f -> f ( n(f 2) * n(f 4) + n(f 3) * n(f 4)))
w2 = (\g -> g ((n(g 3) + n(g 2)) * n(g 4)))
w1 == w2
-- True
v1 = (\g -> let ng = n . g in ng(2*ng 0 + 3*ng 2 + 2*ng 1) )
v2 = (\g -> let ng = n . g in ng(2*ng 0 + 3*ng 2 + 2*ng 2) )
v1 == v2
-- False
```

${\bf Compacidad}$

Teoría. La diferencia entre \mathbb{N} , que no es omnisciente, y $2^{\mathbb{N}}$ que sí, es la compacidad.

Computación	Topología
Tipo de datos	Espacio
Elemento del tipo	Punto del espacio
Propiedad semidecidible	Conjunto abierto
Función computable	Función continua
forevery es semidecidible	Compacto
forsome es semidecidible	Overt

Conaturales

Vamos a compactificar los naturales con la compactificación de Alexandrov. Les añadimos un punto $\infty \in \mathbb{N}_{\infty}$. El espacio \mathbb{N}_{∞} se llama de números conaturales.

- $\{\infty\}$ es cerrado, \mathbb{N} es abierto.
- Es la secuencia convergente genérica, las secuencias convergentes de X son las funciones continuas $\mathbb{N}_{\infty} \to X$.
- Es semidecidible ver si un conatural es finito, pero no es decidible.

Desde fuera parecen biyectivos, no lo son. Las funciones que nos interesan son las computables/continuas. Moraleja: un conjunto en matemática constructivista es más que su cardinalidad, tiene una estructura topológica/computable.

Conaturales en Haskell

Haskell construye los conaturales casi sin querer. Evaluación perezosa.

```
-- Una representación de los números conaturales.

data Conat = Zero | Succ Conat deriving (Eq, Show)

infinity :: Conat
infinity = Succ infinity

-- Hacerlos instancia de Num nos permitirá usar los enteros con
-- notación usual.
instance Num Conat where
Zero + y = y
Succ x + y = Succ (x + y)
Zero * y = Zero
Succ x * y = y + (x * y)
fromInteger 0 = Zero
fromInteger n = Succ (fromInteger (n-1))
```

Búsquedas en los conaturales

Función de búsqueda.

```
epsilon :: (Conat -> Bool) -> Conat
epsilon p = if p Zero
   then Zero
   else Succ $ epsilon (p . Succ)
```

Ejemplos de búsqueda.

```
forsome (\n -> 2 * n ^ 3 == 245 * n) -- true

forsome (\n -> n * n == 28) -- false

epsilon (\n -> n * n + 4 * n == 32) -- 4
```

Esquema

1	Con	at-m=-	nti-	

2. Interpretación BHK

3. Matemática constructivista

4. Geometría diferencial sintética

Omnisciencia

6. Agda

