Problem Set 1

OSM Lab-Econ Sophia Mo

Problem 1 The steady-state values are:

Savings: [0.01931255, 0.05841117]

Capital and Labor: [0.07772372, 2.2]

Wage and Interest rate: [0.20172474, 2.43304586]

Consumption: [0.1824122, 0.20961442, 0.24087319]

Problem 2 The steady-state values when $\beta = 0.55$ are:

Savings: [0.02817696, 0.07686557]

Capital and Labor: [0.10504253, 2.2] Wage and Interest rate: [0.22415231, 1.88636]

Consumption: [0.19597535, 0.22861559, 0.26669216]

When all households are more patient, \bar{b}_2 , \bar{b}_3 both increase since consumption in future periods are more valuable for the households than before, resulting in their saving more today to further smooth consumption across periods.

 \bar{K} increases because by market clearing, it is equal to the sum of \bar{b}_2 and \bar{b}_3 ; \bar{L} remains unchanged because it is an exogenous variable.

 \bar{w} increases and \bar{r} decreases because $\frac{K}{L}$ increases. From firms' first order conditions, we know wage increases when capital-labor ratio increases, and interest rate decreases when capital labor ratio decrease (firms always optimize their capital-labor ratio according to prices).

 $\bar{c}_1, \bar{c}_2, \bar{c}_3$ all increase because income effect dominates intertemporal substitution effect—the increase in wage is much larger than the increase in households' savings for both periods.

Problem 3 Please see the python scipt for details of the time path. I choose T=30, and $b_{2,1}, b_{3,1}$ as required.

Problem 4 It only takes 3 periods for the aggregate capital stock to be within 0.0001 of the steady-state value, assuming $\beta = 0.442$. So T = 3 if we label the first period 1. I also found the second t(=7) such that the capital stock is within 0.0001 of the steady-state value.

