Capítulo 1

Máquinas de Turing

1.1. Codificación y enumeración de MT

1. Es imposible codificar la siguiente máquina de Turing M dada por la Tabla 1.1, con q_1 estado inicial, q_2 estado final, $R = \text{Derecha y } \square = \text{Blanco}$.

Tabla 1.1: Máquina de Turing M.

M	1	2	
q_1	$(q_1,1,R)$	$(q_2, 2, R)$	_
q_2	_	_	_

- a) Verdadero
- b) Falso
- 2. Sea M la máquina de Turing codificada por

siguiendo el convenio de que $X_1=0, X_2=1, X_3=\square=$ Blanco, $D_1=L=$ Izquierda, $D_2=R=$ Derecha, q_1 el estado inicial, q_2 el estado final y que la codificación de $\delta(q_i,X_j)=(q_k,X_l,D_m)$ está dada por $0^i10^j10^k10^l10^m$. Entonces se verifica que M no acepta ningún lenguaje.

- a) Verdadero
- b) Falso
- 3. Sea M la máquina de Turing codificada por

siguiendo el convenio de que $X_1 = 0$, $X_2 = 1$, $X_3 = \square$ = Blanco, $D_1 = L$ = Izquierda, $D_2 = R$ = Derecha, q_1 el estado inicial, q_2 el estado final y que la codificación de $\delta(q_i, X_j) = (q_k, X_l, D_m)$ está dada por $0^i 10^j 10^k 10^l 10^m$. Entonces se verifica que M no acepta ningún lenguaje.

- a) Verdadero
- b) Falso
- 4. Sea M la máquina de Turing codificada por

0101010100110100100100100,

siguiendo el convenio de que $X_1=0, X_2=1, X_3=\square=$ Blanco, $D_1=L=$ Izquierda, $D_2=R=$ Derecha, q_1 el estado inicial, q_2 el estado final y que la codificación de $\delta(q_i,X_j)=(q_k,X_l,D_m)$ está dada por $0^i10^j10^k10^l10^m$. Entonces se verifica que M no reconoce ningún lenguaje.

- a) Verdadero
- b) Falso
- 5. Sea la máquina de Turing M dada por la Tabla 1.2, con $F = \{q_4\}$, R = Derecha, L = Izquierda y $\square =$ Blanco, entonces para la entrada 000111 \square la secuencia completa de movimientos es:

$$q_0000111\square \vdash Xq_100111\square \vdash X0q_10111\square \vdash X00q_1111\square$$
$$\vdash X00Yq_211\square \vdash X00Yq_21\square \vdash X00Y11q_2\square$$

Tabla 1.2: MT M para describir la secuencia completa de movimientos para $000111\square$

M	0	1	X	Y	
q_0	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, \square, R)
q_4	_	_	_	_	_

- a) Verdadero
- b) Falso
- 6. Sea la máquina de Turing M dada por la Tabla 1.3, con $F = \{q_4\}$, R = Derecha, L = Izquierda y $\square =$ Blanco, entonces para la entrada 00111 \square la máquina se detiene aceptando dicha entrada.

$$q_000111\Box \vdash Xq_10111\Box \vdash X0q_1111\Box \vdash X0Yq_211\Box$$

 $\vdash X0Y1q_21\Box \vdash X0Y1Yq_3\Box \vdash X0Y1Yq_4\Box$

3

Tabla 1.3: MT M para describir la secuencia completa de movimientos para $00111\square$

M	0	1	X	Y	
q_0	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, \square, R)
q_4	_	_	_	_	_

- a) Verdadero
- b) Falso
- 7. No hay ninguna máquina de Turing M_i tal que su vector característico asociado tenga un 1 en la componente i.
 - a) Verdadero
 - b) Falso
- 8. No existe ninguna máquina de Turing M_i tal que su vector característico esté formado por todo unos excepto en una componente.
 - a) Verdadero
 - b) Falso
- 9. Los primeros 5 valores del vector característico de M_{2708} son (0, 1, 0, 1, 1).
 - a) Verdadero
 - b) Falso
- 10. Las primeras 10 cadenas $\{w_1, w_2, \dots, w_{10}\}\$ son $\{\epsilon, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
 - a) Verdadero
 - b) Falso
- 11. Sea la máquina de Turing M dada por la tabla siguiente, con $F = \{q_2\}$, R = Derecha, $L = \text{Izquierda y } \square = \text{Blanco}$, entonces las 5 primeras componentes de su vector característico son (0,0,0,0,1).
 - a) Verdadero
 - b) Falso

Tabla 1.4: Máquina de Turing M.

M	0	1	
q_0	$(q_0, 0, R)$	$(q_0, 1, R)$	(q_1, \square, L)
q_1	_	$(q_2,1,R)$	_
q_2	_	_	_

1.2. Relación de MT con otras máquinas

- 1. Un ejemplo de lenguaje que es aceptado por una máquina de Turing y que, sin embargo, no es aceptado por ningún autómata de una pila es el siguiente: $\{0^{n+1}1^n|n\geq 1\}$
 - a) Verdadero
 - b) Falso
- 2. Un ejemplo de lenguaje que es aceptado por una máquina de Turing y que, sin embargo, no es aceptado por ningún autómata de una pila es el siguiente: $\{0^n1^{n+1}|n\geq 1\}$
 - a) Verdadero
 - b) Falso
- 3. Sea el lenguaje $\Sigma = \{0,1\}$ y $L = \{0^*\}$, se puede aceptar por un autómata a pila determinista y por una máquina de Turing
 - a) Verdadero
 - b) Falso

Capítulo 2

Indecidibilidad

2.1. *R* **y** *RE*

- 1. Si P se puede reducir a \overline{L} y P es indecidible, entonces L es indecidible:
 - a) Verdadera
 - b) Falsa
- 2. Si $L \in RE$ y $\overline{L} \notin RE$, entonces $L \notin R$:
 - a) Verdadera
 - b) Falsa
- 3. (Anulada por repetida) Si $P \prec \overline{L}$ y P indecidible, entonces L es indecidible:
 - a) Verdadera
 - b) Falsa
- 4. Si un lenguaje L es recursivo, entonces \overline{L} es recursivo:
 - a) Verdadero
 - b) Falso
- 5. La máquina de Turing M dada por la Tabla 2.1, con $F = \{q_4\}$, R = Derecha, L = Izquierda y $\square =$ Blanco, sirve para demostrar que el lenguaje $L = \{0^n 1^n, n \ge 0\}$ es recursivo enumerable no recursivo.
 - a) Verdadero
 - b) Falso
- 6. Sea L el lenguaje formado por las palabras sobre $\Sigma = \{0, 1\}$ que contienen al menos un 1. Para demostrar que dicho lenguaje es recursivo basta con considerar la máquina de Turing M dada por la Tabla siguiente, con q_0 estado inicial, q_1 estado final, $R = \text{Derecha y } \square = \text{Blanco}$.

Tabla 2.1: Propuesta de MT M para aceptar $L = \{0^n 1^n, n \ge 0\}$

M	0	1	X	Y	
q_0	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, R)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, \square, R)
q_4		_	_	_	_

Tabla 2.2: Propuesta de MT M para demostrar que el lenguaje formado por las palabras sobre $\Sigma = \{0, 1\}$ que contienen al menos un 1 es recursivo

M	0	1	
q_0	$(q_0, 0, R)$	$(q_1, 1, R)$	_
q_1	_	_	_

- a) Verdadero
- b) Falso
- 7. Sea L el lenguaje formado por las palabras sobre $\Sigma = \{0,1\}$ que contienen al menos un 1. Para demostrar que dicho lenguaje es recursivo basta con considerar la máquina de Turing M dada por la Figura 2.1
 - a) Verdadero
 - b) Falso
- 8. La máquina de Turing M dada por la tabla siguiente, con $F=\{q_1\}$, R= Derecha, L= Izquierda y $\square=$ Blanco tiene asociada la Figura 2.2.

Tabla 2.3: Máquina de Turing M.

M	0	1	
q_0	$(q_0, 0, R)$	$(q_1,1,R)$	(q_0, \square, L)
q_1	_	_	_

- a) Verdadero
- b) Falso
- 9. Sea $\Sigma = \{0, 1\}$, entonces se tiene que $L = \{0^*\}$ es recursivo.

2.1. R Y RE 7

Figura 2.1: Propuesta de MT para demostrar que el lenguaje formado por las palabras sobre $\Sigma = \{0, 1\}$ que contienen al menos un 1 es recursivo

- a) Verdadero
- b) Falso
- 10. Sea $\Sigma = \{0,1\}$, entonces el lenguaje de las cadenas Σ^* cuyo primer símbolo no vuelve a aparecer, es decidible.
 - a) Verdadero
 - b) Falso
- 11. Sea $\Sigma = \{0,1\}$, entonces el lenguaje de las cadenas Σ^* que comienzan y acaban con el mismo símbolo, es recursivo.
 - a) Verdadero
 - b) Falso
- 12. Sea $\Sigma = \{a, b, c\}$, entonces se tiene que $L = \{a^r b^s c^t, r \cdot s = t, r, s, t > 0\}$ es recursivo.
 - a) Verdadero
 - b) Falso
- 13. Sea $\Sigma=\{a,b,c\}$, entonces se tiene que $L=\{a^nb^nc^n,\ n\geq 0\}$ y $L=\{a^nb^nc^n,\ n>0\}$ son ambos recursivos.
 - a) Verdadero
 - b) Falso
- 14. Los lenguajes recursivos son cerrados respecto a la clausura de Kleene.

Figura 2.2: Máquina de Turing M.

- a) Verdadero
- b) Falso
- 15. Los lenguajes recursivos enumerables son cerrados respecto a la clausura de Kleene.
 - a) Verdadero
 - b) Falso

2.2. L_d , L_u y otros lenguajes

- 1. Sea L un lenguaje, de forma que existe una reducción desde L_d a L, entonces L:
 - a) Es recursivamente enumerable
 - b) No es recursivamente enumerable
- 2. \overline{L}_d es el conjunto de todas las cadenas w_i tales que:
 - a) w_i no forma parte de $L(M_i)$
 - b) M_i acepta w_i
- 3. $\overline{L_u} \in RE$:
 - a) Verdadera
 - b) Falsa
- 4. (Anulada por repetida) Se verifica que $\overline{L}_u \in RE$:

••	Eb, Eo T office EbroditeEs
	a) Verdaderab) Falsa
5.	\mathcal{L}_d no es un lenguaje recursivamente enumerable.
	a) Verdadero
	b) Falso

- 6. La cadena $w_{2708} \in L_d$.
 - a) Verdadero
 - b) Falso
- 7. El esquema de demostración de que L_u es RE es construir explicitamente una MT con una cinta que acepte L_u .
 - a) Verdadero
 - b) Falso
- 8. Los pares (0101001010,00) y (11111111,00) pertenecen a L_u .
 - a) Verdadero
 - b) Falso
- 9. El esquema de demostración de que L_{ne} es RE es construir explicitamente una MT determinista que acepte L_{ne} .
 - a) Verdadero
 - b) Falso
- 10. L_e y L_{ne} son indecidibles.
 - a) Verdadero
 - b) Falso
- 11. La MT M_{1354} está en L_{ne} .
 - a) Verdadero
 - b) Falso
- 12. La MT M_{127} está en L_{ne} .
 - a) Verdadero
 - b) Falso
- 13. Si una MT tiene un 1 en su vector característico, entonces dicha máquina pertenece a L_{ne} .
 - a) Verdadero

- b) Falso
- 14. Si se denota por L_1 al "Lenguaje formado por el conjunto de los códigos de las máquinas de Turing M_i , tales que su lenguaje está formado por al menos 37 cadenas diferentes" y por L_2 al "Lenguaje formado por el conjunto de los códigos de las máquinas de Turing M_i MT que tienen al menos 37 estados diferentes", se tiene que ambos son indecidibles.
 - a) Verdadero
 - b) Falso
- 15. Si se denota por L al "Lenguaje formado por el conjunto de los códigos de las máquinas de Turing M_i , tales que su lenguaje es reconocido por alguna MT con 37 estados como máximo", se tiene que L es indecidible.
 - a) Verdadero
 - b) Falso
- 16. Si se denota por L al "Lenguaje formado por el conjunto de los códigos de las máquinas de Turing M_i , tales que su lenguaje es reconocido por alguna MT con un número par de estados", se tiene que L es indecidible.
 - a) Verdadero
 - b) Falso
- 17. (IAE1) Si una máquina de Turing tiene un código que está en L_e , entonces necesariamente es que es un código de una máquina de Turing no válida.
 - a) Verdadero
 - b) Falso
- 18. Para que $w_i \in L_d$ se tiene que cumplir que $L(M_i) = \emptyset$
 - a) Verdadero
 - b) Falso
- 19. Puede ocurrir que $L(M_i) = L(M_j) \neq \emptyset$ con $i \neq j$.
 - a) Verdadero
 - b) Falso
- 20. Se verifica que $L(M_{70}) = L(M_{20770})$.
 - a) Verdadero
 - b) Falso
- 21. La máquina de Turing con un único estado que es a la vez de inicio y de aceptación y sin ninguna transción acepta L_e .

11

- a) Verdadero
- b) Falso
- 22. Se verifica que $L_e \subset L_d$.
 - a) Verdadero
 - b) Falso
- 23. Sea $L = \{0^*\}$, entonces se verifica que $L \subset L_d$.
 - a) Verdadero
 - b) Falso

2.3. *PCP* **y** *PCPM*

1. Considere los siguientes pares de listas

Entonces:

- a) El PCPM tiene solución negativa y el PCP solución positiva
- b) Tanto el PCPM como el PCP tienen solución negativa
- 2. Es posible que para una instancia en concreto del PCP se tenga que el PCPM asociado tenga solución negativa y , sin embargo, el PCP tenga solución positiva:
 - a) Verdadera
 - b) Falsa
- 3. Considere el Problema de la Correspondencia de Post (PCP) planteado sobre los siguientes dos pares $(w_1, x_1) = (10, 1)$ y $(w_2, x_2) = (110, 01)$:
 - a) no puede saberse si tiene respuesta afirmativa o negativa en este caso, porque es un problema indecidible
 - b) tiene solución negativa para esta instancia
- 4. Considere el Problema de la Correspondencia de Post (PCP) planteado sobre los siguientes cuatro pares $(w_1, x_1) = (ab, abab), (w_2, x_2) = (b, a), (w_3, x_3) = (aba, b)y(w_4, x_4) = (aa, b)$:
 - a) tiene solución negativa, porque PCP es un problema indecidible
 - b) tiene solución positiva para esta instancia

Capítulo 3

Intratabilidad

3.1. P, NP, NP-Completo y NP-Difícil

- 1. Si P fuera igual a NP entonces co-NP sería igual a NP:
 - a) Verdadera
 - b) Falsa
- 2. Si hay algún problema P_1 que pertenece a P y a NP-Completo, entonces P=NP:
 - a) Verdadera
 - b) Falsa
- 3. La clase ${\cal P}$ es cerrada respecto a la complementación:
 - a) Verdadera
 - b) Falsa
- 4. No existen problemas que sean a la vez NP y co NP:
 - a) Verdadera
 - b) Falsa

3.2. *SAT*, *CSAT* **y** 3*SAT*

- 1. La expresión booleana $(x\vee \overline{y})\wedge (y\vee z)\wedge (\overline{x}\vee \overline{y})$ pertenece a 2SAT :
 - a) Verdadera
 - b) Falsa
- 2. La cláusula $e=x_1\vee x_2$ se puede extender a una expresión equivalente FNC-3:

- a) Verdadera
- b) Falsa
- 3. La expresión $E=x\wedge (\neg x\vee y)\wedge \neg y$ admite una única asignación de verdad que la hace satisfacible:
 - a) Verdadera
 - b) Falsa
- 4. Si una expresión booleana es satisfacible, entonces necesariamente sólo puede haber una asignación de verdad:
 - a) Verdadera
 - b) Falsa

3.3. Problema FBC

3.4. Problema de la primalidad

- 1. (IAE2) Sean $a, b \in \mathbb{Z}$ y $n \in \mathbb{N}$, entonces $a \equiv b \pmod{n} \Leftrightarrow n \mid (a b)$.
 - a) Verdadero
 - b) Falso
- 2. (IAE3) Sean $a,b\in\mathbb{Z}$ y $c,m\in\mathbb{N},$ entonces $ac\equiv bc\ (mod\ m)\Rightarrow a\equiv b\ (mod\ \frac{m}{c})$
 - a) Verdadero
 - b) Falso
- 3. (IAE4) Los siguientes dos enunciados A y B del teorema pequeño de Fermat son equivalentes, siendo:
 - A: p primo y a y p primos entre sí, entonces $a^{p-1} \equiv 1 \pmod{p}$.
 - $B: p \text{ primo}, \text{ entonces } a^p \equiv a \pmod{p}.$
 - a) Verdadero
 - b) Falso
- 4. Se tiene que $2^7 \equiv 1 \pmod{7}$
 - a) Verdadero
 - b) Falso
- 5. Se tiene que $2^{16} \equiv 64 \pmod{341}$
 - a) Verdadero

- b) Falso
- 6. Al verificarse que no es cierto que $2^{10}\equiv 2\ (mod\ 10)$, se puede concluir utilizando el Teorema pequeño de Fermat que 10 no es primo.
 - a) Verdadero
 - b) Falso
- 7. Si $n^p n = \dot{p}$ entonces p es primo.
 - a) Verdadero
 - b) Falso
- 8. Al verificarse que $2^7 \equiv 2 \ (mod \ 7)$ se puede concluir utilizando el Teorema pequeño de Fermat que 7 es primo.
 - a) Verdadero
 - b) Falso