Probability Theory

III WLLN \sim Independence

Seongho, Joo

August 7, 2025

Seoul National University

L^2 Space

Given a measure space $(\Omega, \mathcal{F}, \mu)$,

$$L^2(\Omega,\mathcal{F},\mu)=\{f:\Omega\to\mathbb{R} \text{ measurable s.t } \int_\Omega f^2\,\mathrm{d}\mu<\infty\}$$

Note: for any real number f,g,

$$0 \le (|f| - |g|)^2 = f^2 - 2|fg| + g^2 \implies |fg| \le \frac{1}{2}(f^2 + g^2)$$

Thus, if $f,g\in L^2$, then $\int |fg|\,\mathrm{d}\mu \leq \int \frac{1}{2}(f^2+g^2)\,\mathrm{d}\mu = \frac{1}{2}\int f^2\,\mathrm{d}\mu + \frac{1}{2}\int g^2\,\mathrm{d}\mu < \infty$ This implies if $f,g\in L^2$, then $fg\in L^1$

As a corollary, if μ is a finite measure, then $L^2(\mu)\subseteq L^1(\mu)$. (Take $g=1\in L^2$)

L^2 Space

For $f, g \in L^2(\Omega, \mathcal{F}, \mu)$, define:

$$||f||_{L^2} := (\int_{\Omega} f^2 \,\mathrm{d}\mu)^2, \quad \langle f,g \rangle := \int_{\Omega} fg \,\mathrm{d}\mu$$

Theorem 1 (Cauchy-Schwarz)

For $f,g\in L^2(\Omega,\mathcal{F},\mu)$, then

$$|\langle f, g \rangle_{L^2}| \le \int f g \, \mathrm{d}\mu \le ||f||_{L^2} ||g||_{L^2}$$

Proof. For $t \in \mathbb{R}$, $p(t) = \int (|f| - t|g|)^2 \,\mathrm{d}\mu \geq 0$

L^2 Space

For $f,g\in L^2(\Omega,\mathcal{F},\mu)$, define:

$$||f||_{L^2} := (\int_\Omega f^2 \,\mathrm{d}\mu)^2, \quad \langle f,g \rangle := \int_\Omega fg \,\mathrm{d}\mu$$

Theorem 1 (Cauchy-Schwarz)

For $f,g\in L^2(\Omega,\mathcal{F},\mu)$, then

$$|\langle f, g \rangle_{L^2}| \le \int f g \, \mathrm{d}\mu \le ||f||_{L^2} ||g||_{L^2}$$

Proof. For $t \in \mathbb{R}$, $p(t) = \int (|f| - t|g|)^2 d\mu \ge 0$

Corollary 1

 $L^2(\Omega,\mathcal{F},\mu)$ is a vector space, and $||f||_{L^2}^2=\sqrt{\langle f,f\rangle_{L^2}}$ is a norm on it.

Fact: L^2 is actually a *Hilbert space*: it is Cauchy complete. If $f_n \in L^2$ s.t. $||f_n - f_m||_{L^2} \to 0$ as $n, m \to \infty$, then $\exists ! f \in L^2$ such that $||f_n - f||_{L^2} \to 0$

Covariance

Definition 1

For $X,Y\in L^2$, let $\mathring{X}=X-\mathbb{E}[X],\mathring{Y}=Y-\mathbb{E}[Y].$ Their covariance is

$$\mathsf{Cov}(X,Y) := \mathbb{E}[\mathring{X}\mathring{Y}] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

For $X \in L^2$, its variance is

$$\mathsf{Var}(X) := \mathsf{Cov}(X, X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \le 0$$

Lemma 1

If $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathrm{Var}(X) = 0$, then $X = \mathrm{Const}$ a.s.

Example 1. $N = \operatorname{Pois}(\alpha)$, $\mathbb{E}[N] = \alpha$

$$\mathsf{Var}(N) = \mathbb{E}[(N-\alpha)^2] = \sum_{k=0}^{\infty} (k-\alpha)^2 e^{-\alpha} \frac{\alpha^k}{k!} = \alpha$$

Example 2. $X = \mathcal{N}(\alpha,t)$, $X = \sqrt{t}Z + \alpha$, $Z = \mathcal{N}(0,I)$

$$\operatorname{Var}(X) = \mathbb{E}[(X - \alpha)^2] = \mathbb{E}[(\sqrt{t}Z)^2] = t\mathbb{E}[Z^2] = t$$

Correlation

Definition 2

 $X,Y\in L^2(\Omega,\mathcal{F},\mathbb{P})$ are uncorrelated if $\mathrm{Cov}(X,Y)=0$ In general, their correlation is $\mathrm{Corr}(X,Y)=rac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\mathrm{Var}(Y)}}$

Proposition 1

 $\operatorname{Cov}(X+\alpha,Y)=\operatorname{Cov}(X,Y+\alpha)=\operatorname{Cov}(X,Y)$ for any $\alpha\in\mathbb{R}.$ As a result, if X_1,\ldots,X_n are all (pairwise) uncorrelated , then $\operatorname{Var}(X_1+\cdots+X_n)=\operatorname{Var}(X_1)+\ldots\operatorname{Var}(X_n)$

Proof.

Chebyshev's inequality

Recall Markov inequality: if $f \geq 0, \varepsilon, p > 0$, then

$$\mu\{f \ge \varepsilon\} \le \frac{1}{\varepsilon^p} \int f^p \,\mathrm{d}\mu$$

suppose μ is a probability measure, $X \in L^2$. Set p=2, and apply Markov's inequality to $f=|\mathring{X}|=|X-\mathbb{E}[X]|$

$$\mathbb{P}(|X - \mathbb{E}[X]| \geq \varepsilon) = \mathbb{P}(|\mathring{X}| \geq \varepsilon) \leq \frac{1}{\varepsilon^2} \mathbb{E}[|\mathring{X}|^2] = \frac{1}{\varepsilon^2} \mathsf{Var}(X)$$

The Weak Law of Large Numbers

Theorem 2

Let $\{X_n\}_{n=1}^\infty$ be a sequence of L^2 random variables on a probability space, that are pairwise uncorrelated: $\operatorname{Cov}(X_n,X_m)=0$ if n!=m and all with the same mean and variance: $\mathbb{E}[X_n]=\alpha,\ \operatorname{Var}(X_n)=t,\quad \forall n$ Let $S_n=X_1+\cdots+X_n$. Then for any $\varepsilon>0$,

$$\mathbb{P}(|\frac{S_n}{n} - \alpha| \ge \varepsilon) \le \mathcal{O}(\frac{1}{n})$$

It means that $\frac{S_n}{n}$ is asymptotically concentrated at α . But does it mean $\frac{S_n}{n} \to \alpha$ a.s.? Take X_n such that $\mathbb{P}(X_n=1)=\frac{1}{n}, \mathbb{P}(X_n=0)=1-\frac{1}{n}$. By Borel-Cantelli II: $\mathbb{P}(X_n=1 \ \text{i.o})=1$

Convergence in Measure

Definition 3

Let (Ω,\mathcal{F},μ) be a measurable space. Given a measurable functions $f_n,f:\Omega\to\mathbb{R}$, we say $f_n\underset{\mu}{\to} f$ if $\forall \varepsilon>0, \lim_{n\to\infty}\mu\{|f_n-f|\geq\varepsilon\}=0$

Theorem 3

Let $f_n, g_n, f, g, \in L^0(\Omega, \mathcal{F}, \mu)$.

- $\ \ \, \hbox{ (Uniqueness of limits) If } f_n \underset{\mu}{\to} f \text{ and } f_n \underset{\mu}{\to} g \text{, then } f = g \text{ μ-a.s.}$
- $\textbf{2} \ \text{If} \ \alpha,\beta \in \mathbb{R}, f_n \underset{\mu}{\rightarrow} f, \ \ \text{and} \ \ g_n \underset{\mu}{\rightarrow} g, \ \text{then} \ \alpha f_n + \beta g_n \underset{\mu}{\rightarrow} \alpha f + \beta g$
- If $f_n \to f$, then $\{f_n\}$ is cauchy in measure.

Convergence in Measure

Theorem 4

If $\{f_n\}$ is a L^0 -cauchy sequence, then $\exists\in L^1$ such that subsequence $f_{n_k}\to f$ a.s. Moreover, $f_n\underset{\mu}{\to} f$.

Proof.

Almost sure convergence implies convergence in measure

Theorem 5

If $f_n o f$ μ -a.s., then $f_n \underset{\mu}{\to} f$. f

$$\begin{split} & \text{Proof. For any } \varepsilon > 0, \ \mu\{|f_n - f| \geq \varepsilon i.o\} = 0 \ \text{Let } A_n = \{|f_n - f| \geq \varepsilon\}. \\ & 0 = \mu\{A_n \text{ i.o }\} = \mu(\cap_{k=1}^{\infty} \cap_{n \geq k} A_n) = \lim_{k \to \infty} \mu(\cup_{n \geq k} A_n) \\ & \Longrightarrow \mu(A_k) \geq \mu(\cup_{n \geq k} A_n) \to 0 \\ & \Longrightarrow \mu\{|f_k - f| \geq \varepsilon\} \geq \mu\{\cup_{n \geq k} A_n) \to 0 \end{split}$$

L^p convergence implies convergence in measure

For $1 \le p < \infty$, $||f||_{L^p} := (\int_\Omega |f|^p \,\mathrm{d}\mu)^{1/p}$ defines a norm on $L^p(\Omega,\mathcal{F},\mu)$. In particular,

$$||f+g||_{L^p} \ge ||f||_{L^p} + ||g||_{L^p}$$

for $f,g\in L^p$. Thus L^p is a normed vector space.

Lemma 2

Let
$$f_n, f \in L^p(\Omega, \mathcal{F}, \mu), (1 \ge p < \infty)$$
 with $||f_n - f||_{L^p} \to 0$, then $f_n \xrightarrow{\iota} f$.

Proof. Followed by Markov's inequality.

The converse is false. Take $f_n = n \cdot \mathbf{1}_{[0,1/n]}$

L^p space is complete

Theorem 6

For
$$1 \leq p < \infty$$
, $f_n \in L^p$, $||f_n - f_m||_{L^p} \to 0$ as $n, m \to \infty$ $\implies \exists f \in L^p$ such that $||f_n - f||_{L^p} \to 0$

Proof. Since f_n is L^0 -Cauchy. There exists (n_k) such that $f_{n_k} \to f$ a.s, $f \in L^0$.

$$||f_{n_k}-f||_{L^p}^p = \int \lim_{j\to\infty} |f_{n_k}-f_{n_j}|^p \,\mathrm{d}\mu \overset{\dagger}{\leq} \liminf_{j\to\infty} \int |f_{n_k}-f_{n_j}|^p \,\mathrm{d}\mu = \liminf_{j\to\infty} ||f_{n_k}-f_{n_j}||_{L^p}^p$$
 †: holds by Fatou's lemma. Take $k\to\infty$, then $||f_{n_K}-f||_{L^p}\to 0$

$$||f_n - f||_{L^p} \le ||f_n - f_{n_n}|| + ||f_{n_n} - f||_{L^p} \to 0$$

Multiplicative System

A set $\mathbb H$ of $\mathbb R$ -valued functions on Ω is closed under bounded convergence if

$$f_n \in \mathbb{H}, \exists M < \infty \text{ s.t. } |f_n(w)| \leq M \ \forall n \in \mathbb{N}, w \in \Omega, \ \lim_{n \to \infty} f_n(w) = f(w) \in \mathbb{R} \ \forall w \in \Omega$$

 $\implies f \in \mathbb{H}$

Remark. $C_c(\mathbb{R}), C_b(\mathbb{R})$ are *not* closed under bounded convergence.

Multiplicative System

A set $\mathbb H$ of $\mathbb R$ -valued functions on Ω is closed under bounded convergence if $f_n \in \mathbb H, \exists M < \infty \text{ s.t. } |f_n(w)| \leq M \ \forall n \in \mathbb N, w \in \Omega, \ \lim_{n \to \infty} f_n(w) = f(w) \in \mathbb R \ \forall w \in \Omega \\ \Longrightarrow f \in \mathbb H$

Remark. $C_c(\mathbb{R}), C_b(\mathbb{R})$ are *not* closed under bounded convergence.

Notation: Given a collection M of \mathbb{R} -valued bounded functions on Ω , let

 $\mathbb{H}(\mathbb{M}):=\text{the smallest subspace of }\mathbb{B}(\Omega)\text{ containing }\mathbb{M}\cup\{1\}\text{, and closed under bounded convergence}.$

Multiplicative System Theorem

Theorem 7

Let $\mathbb{H}\subseteq\mathbb{B}(\Omega)$ be a subspace, containing 1, and closed under bounded convergence. Let $\mathbb{M}\subseteq\mathbb{H}$ be a *multiplicative system*: $f,g\in\mathbb{M}\to f\cdot g\in\mathbb{M}$ Then \mathbb{H} contains all bounded $\sigma(\mathbb{M})$ -measurable functions: $\mathbb{B}(\Omega,\sigma(\mathbb{M}))\subseteq\mathbb{H}$. In fact, $\mathbb{B}(\Omega,\sigma(\mathbb{M}))=\mathbb{H}(\mathbb{M})$

Multiplicative System Theorem

Theorem 7

Let $\mathbb{H}\subseteq\mathbb{B}(\Omega)$ be a subspace, containing 1, and closed under bounded convergence. Let $\mathbb{M}\subseteq\mathbb{H}$ be a *multiplicative system*: $f,g\in\mathbb{M}\to f\cdot g\in\mathbb{M}$ Then \mathbb{H} contains all bounded $\sigma(\mathbb{M})$ -measurable functions: $\mathbb{B}(\Omega,\sigma(\mathbb{M}))\subseteq\mathbb{H}$. In fact,

Corollary 2

 $\mathbb{B}(\Omega, \sigma(\mathbb{M}) = \mathbb{H}(\mathbb{M})$

 $\mathbb{H}(C_c(\mathbb{R})) = \mathbb{B}(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ i.e. the bounded convergence closure of the compactly-supported continuous functions is all bounded Borel measurable functions.

Corollary 3

Suppose ν,μ are Borel probability measures on $\mathbb R$, and

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu = \int_{\mathbb{R}} f \, \mathrm{d}\nu \quad f \in C_c(\mathbb{R})$$

Then $\mu = \nu$

Product Measure

Definition 4

Given two measurable spaces $(\Omega_1, \mathcal{F}_1), (\Omega_2, \mathcal{F}_2)$,

$$\mathcal{F}_1 \otimes \mathcal{F}_2 := \sigma(\mathcal{F}_1 \times \mathcal{F}_2) = \sigma(A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2)$$

By induction, larger products are

$$\bigotimes_{j=1}^{d} \mathcal{F}_{j} = \sigma\{\prod_{j=1}^{d} B_{j} : B_{j} \in \mathcal{F}_{j}, 1 \leq j \leq d\}$$

Fact: $\bigotimes_{j=1}^d \mathcal{F}_j = \sigma\{\pi_k : 1 \leq k \leq d\}$, where π_k be the standard projection.

Product Measure

Definition 4

Given two measurable spaces $(\Omega_1, \mathcal{F}_1), (\Omega_2, \mathcal{F}_2)$,

$$\mathcal{F}_1 \otimes \mathcal{F}_2 := \sigma(\mathcal{F}_1 \times \mathcal{F}_2) = \sigma(A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2)$$

By induction, larger products are

$$\bigotimes_{j=1}^{d} \mathcal{F}_j = \sigma\{\prod_{j=1}^{d} B_j : B_j \in \mathcal{F}_j, 1 \le j \le d\}$$

Fact: $\bigotimes_{j=1}^{d} \mathcal{F}_{j} = \sigma\{\pi_{k} : 1 \leq k \leq d\}$, where π_{k} be the standard projection.

Lemma 3 (Product Measurability)

Let $(\Omega_j, \mathcal{F}_j)_{j \in J}$ and (Υ, \mathcal{B}) be measurable spaces.

Then, $f:\Upsilon \to \prod_{j\in J}\Omega_j$ is $\mathcal{B}/\bigotimes_{j\in J}\mathcal{F}_j$ -measurable. if and only if $\pi_k\circ f:\Upsilon \to \Omega_k$ is $\mathcal{B}/\mathcal{F}_k$ -measurable $\forall k\in J$

Product Measure

Theorem 8

Let $(\Omega_j, \mathcal{F}_j, \mu_j)$, j=1,2 be σ -finite measure spaces. Let $f:\Omega_1 \times \Omega_2 \to [0,\infty)$ be a non-negative $\mathcal{F}_1 \otimes \mathcal{F}_2/\mathcal{B}(\mathbb{R})$ -measurable function. Then,

- $\begin{array}{c} \blacksquare \ w_1 \mapsto f(w_1,w_2) \ \text{is} \ \mathcal{F}_1/\mathcal{B}(\mathbb{R}) \text{-measurable} \ \forall w_2 \in \Omega_2 \\ w_2 \mapsto f(w_1,w_2) \ \text{is} \ \mathcal{F}_2/\mathcal{B}(\mathbb{R}) \text{-measurable} \ \forall w_1 \in \Omega_1 \end{array}$
- $\begin{array}{c} \mathbf{D} \ w_1 \mapsto \int_{\Omega_2} f(w_1,w_2) \, \mu_2(\mathrm{d} w_2) \ \text{is} \ \mathcal{F}_1/\mathcal{B}(\bar{\mathbb{R}}) \text{-measurable} \\ w_2 \mapsto \int_{\Omega_1} f(w_1,w_2) \, \mu_1(\mathrm{d} w_1) \ \text{is} \ \mathcal{F}_2/\mathcal{B}(\bar{\mathbb{R}}) \text{-measurable} \end{array}$
- $$\begin{split} & \underbrace{ \int_{\Omega_1} \left(\int_{\Omega_2} f(w_1, w_2) \, \mu_2(\mathrm{d}w_2) \mu_1(\mathrm{d}w_1) \right) = }_{ \Omega_2 \left(\int_{\Omega_1} f(w_1, w_2) \, \mu_1(\mathrm{d}w_2) \mu_2(\mathrm{d}w_1) \right) } \end{aligned}$$

Proof.

Step 1. Verify that 1-3 hold for $f = f_1 \otimes f_2, f_i \in \mathbb{B}(\Omega_i, \mathcal{F}_i)$

Step 2. Using Dynkin's Multiplicative Systems Theorem, show that

$$\mathbb{B}(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2) \subseteq \mathbb{H} = \{ f \in \mathbb{B} : 1 \text{-3 hold } \}$$

Step 3. Show that it holds for non-negative, measurable $\forall f$

Tonelli-Fubini

Theorem 9 (Fubini)

Let $f \in L^0(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mu_1 \otimes \mu_2)$. TFAE:

- $\mathbf{1} f \in L^1(\Omega_1 \times \Omega_2, \mathcal{F}_1, \otimes \mathcal{F}_2, \mu_1 \otimes \mu_2)$
- $\int_{\Omega_1} \left(\int_{\Omega_2} |f(w_1, w_2)| \mu_2(\mathrm{d}w_2) \right) \mu_1(\mathrm{d}w_1) < \infty$

In this case,

$$\begin{split} & w_1 \mapsto f(w_1, w_2) \in L^1(\Omega, \mathcal{F}_1, \mu_1) \text{ for } \mu_2\text{-a.e. } w_2 \\ & w_2 \mapsto f(w_1, w_2) \in L^1(\Omega_2, \mathcal{F}_2, \mu_2) \text{ for } \mu_1\text{-a.e. } w_1 \\ & w_2 \mapsto \int f(w_1, w_2) \mu_1(\mathrm{d}w_1) \in L^1(\Omega_2, \mathcal{F}_2, \mu_2), \\ & w_1 \mapsto \int f(w_1, w_2) \mu_2(\mathrm{d}w_2) \in L^1(\Omega_1, \mathcal{F}_1, \mu_1) \end{split}$$

and $\int_{\Omega_1 \times \Omega_2} f \, \mathrm{d}(\mu_1 \otimes \mu_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f(w_1, w_2) \mu_2(\mathrm{d}w_2) \right) \mu_1(\mathrm{d}w_1)$, the integration order can be changed.

Independence

Let $C_1, \ldots C_n \subseteq \mathcal{F}$ be collections of events.

Definition 5

$$\mathcal{C}_1,\ldots,\mathcal{C}_n\subseteq\mathcal{F}$$
 are independent if for $I\subseteq[n]=\{1,\ldots,n\}$
$$\mathbb{P}(\bigcap_{i\in I}A_i)=\prod_{i\in I}\mathbb{P}(A_i),\quad \forall A_i\in\mathcal{C}_i,i\in I$$

For infinite case, let $\{\mathcal{C}_t\}_{t\in T}$ be any collection of subsets of \mathcal{F} . We call them independent if and only if, for all finite subsets $J\subset T, \{\mathcal{C}_j\}_{j\in J}$ is independent.

Observation: If C_1, \ldots, C_n are independent, so are $C_1 \bigcup \Omega, \ldots C_n \bigcup \Omega$. This makes the notation so much easier.

Independence

Let $C_1, \ldots C_n \subseteq \mathcal{F}$ be collections of events.

Definition 5

$$\mathcal{C}_1,\ldots,\mathcal{C}_n\subseteq\mathcal{F}$$
 are independent if for $I\subseteq[n]=\{1,\ldots,n\}$
$$\mathbb{P}(\bigcap_{i\in I}A_i)=\prod_{i\in I}\mathbb{P}(A_i),\quad \forall A_i\in\mathcal{C}_i,i\in I$$

For infinite case, let $\{\mathcal{C}_t\}_{t\in T}$ be any collection of subsets of \mathcal{F} . We call them independent if and only if, for all finite subsets $J\subset T, \{\mathcal{C}_j\}_{j\in J}$ is independent.

Observation: If C_1, \ldots, C_n are independent, so are $C_1 \bigcup \Omega, \ldots C_n \bigcup \Omega$. This makes the notation so much easier.

Lemma 4

If $C_1, \ldots, C_n \subseteq \mathcal{F}$ and $\Omega \in C_j$ for all $j \in [n]$ then C_1, \ldots, C_n are independent if and only if

$$\mathbb{P}(A_1 \cap \dots \cap A_n) = \prod_{i=1}^n \mathbb{P}(A_i), \quad \forall A_i \in \mathcal{C}_i \cup \Omega$$

Independence

A collection $\mathcal{C} \subseteq \mathcal{F}$ is a π -system if it is closed under finite intersections.

$$A, B \in \mathcal{C} \implies A \cap B \in \mathcal{C}$$

Theorem 10

If $C_1, \ldots C_n \subseteq \mathcal{F}$ are independent π -systems, then $\sigma(C_1), \ldots, \sigma(C_n)$ are independent.

Proof. Use Lemma 5, prove the case for n=2.

In general, the independence of collections of events does $\it not$ implies the σ -field independence.

Lemma 5

If $\mathcal{C}\subseteq\mathcal{F}$ is π -system, and μ,ν are probability measure on \mathcal{F} such that $\mu=\nu$ on \mathcal{C} , then $\mu=\nu$ on $\sigma(\mathcal{C})$

Proof. Take $\mathbb{M} = \{\mathbf{1}_B : B \in \mathcal{C}\} \subseteq \mathbb{B}(\mathcal{F})$ which is a multiplicative system. Note that $\sigma(\mathcal{C}) \subseteq \sigma(\mathbb{M})$.

Borel-Cantelli Lemma II

Lemma 6

Let $\{A_n\}_{n=1}^\infty$ be an infinite sequence of independent events. Then

$$\mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} \mathbb{P}(A_n) := \lim_{M \to \infty} \prod_{n=1}^{M} \mathbb{P}(A_n)$$

Lemma 7 (Borel-Cantelli Lemma II)

Let $\{A_n\}_{n=1}^{\infty}$ be independent events. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(\{A_n \text{ i.o}\}) = 1$

Proof.
$$\{A_n \text{ i.o }\} = \bigcap_{k=1}^{\infty} \bigcup_{n \ge k} A_n$$

$$\begin{split} X_i: (\Omega, \mathcal{F}, \mathbb{P}) & \to (S_i, \mathcal{B}_i) = (\mathbb{R}^{d_i}, \mathcal{B}(\mathbb{R}^{d_i})) \\ \sigma(X_i) &= \text{minimal } \sigma\text{-field s.t } X_i \text{ is } \mathcal{F}/\mathcal{B}_i\text{-measurable.} \end{split}$$

Definition 6

Random variables $\{X_i\}_{i\in I}$ are independent if the σ -field $\{\sigma(X_i)\}_{i\in I}$ are independent.

i.e.
$$\forall B_i \in \mathcal{B}_i$$
, $\{X_i^{-1}(B_i)\}_{i \in I}$ are independent.

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \mathbb{P}(X_1 \in B_1) \dots \mathbb{P}(X_n \in B_n)$$

$$\begin{split} X_i: (\Omega, \mathcal{F}, \mathbb{P}) & \to (S_i, \mathcal{B}_i) = (\mathbb{R}^{d_i}, \mathcal{B}(\mathbb{R}^{d_i})) \\ \sigma(X_i) & = \text{minimal } \sigma\text{-field s.t } X_i \text{ is } \mathcal{F}/\mathcal{B}_i\text{-measurable.} \end{split}$$

Definition 6

Random variables $\{X_i\}_{i\in I}$ are independent if the σ -field $\{\sigma(X_i)\}_{i\in I}$ are independent.

i.e.
$$\forall B_i \in \mathcal{B}_i, \{X_i^{-1}(B_i)\}_{i \in I}$$
 are independent.
$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \mathbb{P}(X_1 \in B_1) \dots \mathbb{P}(X_n \in B_n)$$

Lemma 8

Given random variables $X_i:(\Omega,\mathcal{F},\mathbb{P})\to (S_i,\mathcal{B}_i)$, if $\mathcal{E}_i\subseteq \mathcal{B}_i$ are π -systems s.t $\sigma(\mathcal{E}_i)=\mathcal{B}_i$, then $\{X_i\}_{i\in I}$ are independent if and only if $\{X_i^{-1}(E_i)\}_{i\in I}$ are independent $\forall E_i\in \mathcal{E}_i$

ullet As a result, the X_i 's are independent if and only if

$$\mathbb{P}(X_1 \le t_1, \dots, X_n \le t_n) = \mathbb{P}(X_1 \le t_1) \dots \mathbb{P}(X_n \le t_n) = F_{X_1}(t_1) \dots F_{X_n}(t_n)$$

Given $\bar{X}=(X_1,\ldots X_n),\ X_i:(\Omega,\mathcal{F},\mathbb{P})\to (S_i,\mathcal{B}_i),$ their joint law $\mu_{\bar{X}}$ is the probability measure on $\mathcal{B}_1\otimes\cdots\otimes\mathcal{B}_n$ defined by $\mu_{\bar{X}}:=\mathbb{P}\circ\bar{X}^{-1}$

Theorem 11

$$X_1,\dots,X_n$$
 are independent if and only if $\mu_{X_1,\dots,X_n}=\mu_{X_1}\otimes\dots\mu_{X_n}$

Proof.

Theorem 12 (Independence conditions)

Let $X_i:(\Omega,\mathcal{F},\mathbb{P})\to (S_i,\mathcal{B}_i)$ be random variables, $i\in [n].$ set $\bar{X}=(X_1,\dots X_n).$ TFAE:

- II X_1, \ldots, X_n are independent.
- $\mathbb{E}[f_1(X_1)\dots f_n(X_n)] = \mathbb{E}[f_1(X_1)]\dots \mathbb{E}[f_n(X_n)] \quad \forall f_i \in \mathbb{B}(S_i,\mathcal{B}_i) \dots (\dagger)$ Moreover, if each $(S_i,\mathcal{B}_i) = (\mathbb{R}^{d_i},\mathcal{B}(\mathbb{R}^{d_i}))$, we also have
- \dagger holds $\forall f_i \in C_c(\mathbb{R}^{d_i})$

Proof.
$$3 \implies 1$$
, $f_i = \mathbf{1}_{B_i}$, $B_i \in \mathcal{B}_i$

Grouping and Functions

Lemma 9

If $\mathcal{F}_1,\ldots,\mathcal{F}_n$ are independent, σ -fields and $n=n_1+n_2+\cdots+n_k$, then $\mathcal{G}_1=\sigma(\mathcal{F}_1\cup\cdots\cup\mathcal{F}_{n_1}),\ldots,\mathcal{G}_k=\sigma(\mathcal{F}_{n_1+\ldots n_{k-1}+1}\cup\cdots\cup\mathcal{F}_n)$ are independent σ -fields

Corollary 4

Let $X_i:(\Omega,\mathcal{F},\mathbb{P}) \to (S_i,\mathcal{B}_i)$ be independent, $i\in[n]$. Let $n=n_1+n_2+\cdots+n_k$. Let $f_j:S_{n_1+\cdots+n_{j-1}+1}\times\cdots\times S_{n_1+\cdots+n_j}\to\mathbb{R}$ be measurable, $j\in[k]$. Then $Y_j=f_j(X_{n_1+\cdots n_{j-1}+1},\ldots X_{n_1+\cdots+n_j})$ are independent, $j\in[k]$.

Example. If X_1, X_2, X_3, X_4, X_5 are independent, so are $X_1 + X_2, X_3X_4, e^{X_5}$

Method of Moments for testing independence

Proposition 2

Let $X_i:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R})$ be bounded random variables. Then, $X_1,\ldots X_n$ are independent if and only if

$$\mathbb{E}[X_1^{k_1} \dots X_n^{k_n}] = \mathbb{E}[X_1^{k_1}] \dots \mathbb{E}[X_n^{k_n}] \quad \forall k_1, \dots, k_n \in \mathbb{N}$$