MATHEMATICS

Trig

Identities:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

$$\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$$

$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

$$\cos^2 A = \frac{1 + \cos 2A}{2}$$

$$\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)$$

$$\sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)$$

$$\cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)$$

$$\cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)$$

Law of Sines: sides: A, B, and C; angles opposite: α , β , and γ

$$\frac{A}{\sin \alpha} = \frac{B}{\sin \beta} = \frac{C}{\sin \gamma}$$

Law of Cosines: sides: *A*, *B*, and *C*; angle opposite of $C = \gamma$

$$C^2 = A^2 + B^2 - 2AB \cos \nu$$

Circular Arclength: $s = r\theta$; θ in rad

Vectors

Divergence theorem (Gauss' thm): $\int_V (\nabla \cdot \mathbf{F}) \, d_V = \oiint_S \mathbf{F} \cdot \mathbf{n} \, dS$ Stokes theorem: $\int_S \nabla \times \mathbf{F} \cdot dS = \oiint_C \mathbf{F} \cdot d\mathbf{r}$ Dot product: $\mathbf{A} \cdot \mathbf{B} = |A||B|\cos\theta \hat{\mathbf{n}} = A_x B_x + A_y B_y + A_z B_z$ Cross product: $\mathbf{A} \times \mathbf{B} = |A||B|\sin\theta \hat{\mathbf{n}}$

Coordinate systems & conversions

COORDINATE CONVERSION

COORDINALE CONVERSION					
cartesian to	cylindrical to	spherical to			
cylindrical	cartesian	cartesian			
$\rho = \sqrt{x^2 + y^2}$	$x = \rho \cos \phi$	$x = r\sin\theta\cos\phi$			
$\dot{\phi} = \arctan(y/x)$	$y = \rho \sin \phi$	$y = r \sin \theta \sin \dot{\phi}$			
z = z	z = z	$z = r \cos \theta$			
spherical	spherical	cylindrical			
$r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \arccos(z/r)$ $\phi = \arctan(y/x)$	$r = \sqrt{\rho^2 + z^2}$ $\theta = \arctan(\rho/z)$ $\phi = \phi$	$\rho = r \sin \theta$ $\phi = r \sin \theta$ $z = r \cos \theta$			

UNIT VECTOR CONVERSION

cartesian to	cylindrical to	spherical to
cylindrical	cartesian	cartesian
$\hat{\boldsymbol{\rho}} = \frac{x}{\rho}\hat{\boldsymbol{x}} + \frac{y}{\rho}\hat{\boldsymbol{y}}$	$\hat{x} = cos\phi \hat{\rho} - sin\phi \hat{\phi}$	$\hat{\mathbf{x}} = \sin\theta\cos\phi\hat{\mathbf{r}} +$
		$\cos\theta\cos\phi\hat{\boldsymbol{\theta}} - \sin\phi\hat{\boldsymbol{q}}$
$\hat{\boldsymbol{\phi}} = -\frac{y}{\rho}\hat{\boldsymbol{x}} + \frac{x}{\rho}\hat{\boldsymbol{y}}$	$\hat{x} = \cos\phi \hat{\rho} - \sin\phi \hat{\phi}$	$\hat{y} = \sin \theta \sin \phi \hat{r} +$
		$\cos\theta\sin\phi\hat{\boldsymbol{\theta}} + \cos\phi\phi$
$\hat{z}=\hat{z}$	$\hat{z}=\hat{z}$	$\hat{z} = \cos\theta \hat{r} - \sin\theta \hat{\theta}$
$\frac{\hat{z} = \hat{z}}{\text{spherical}}$	$\hat{z} = \hat{z}$ spherical	$ \frac{\hat{z} = \cos\theta \hat{r} - \sin\theta \hat{\theta}}{\text{cylindrical}} $
$ \begin{array}{c} \text{spherical} \\ \hat{r} = \frac{x\hat{x} + y\hat{y} + z\hat{z}}{2} \end{array} $		
$ \begin{array}{c} \text{spherical} \\ \hat{r} = \frac{x\hat{x} + y\hat{y} + z\hat{z}}{2} \end{array} $	spherical	cylindrical
spherical	spherical $\hat{r} = \frac{\rho}{r} \hat{\rho} + \frac{z}{r} \hat{z}$	cylindrical $\hat{\rho} = \sin \theta \hat{r} + \cos \theta \hat{\theta}$

DIFFERENTIAL ELEMENTS

cartesian	cylindrical	spherical
$d\mathbf{l} = dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$	$d\mathbf{l} = d\rho \hat{\boldsymbol{\rho}} + \rho d\phi \hat{\boldsymbol{\phi}} + dz\hat{\boldsymbol{z}}$	$d\mathbf{l} = dr\hat{\mathbf{r}} + rd\theta\hat{\boldsymbol{\theta}} +$
		$r\sin heta d\phi oldsymbol{\hat{\phi}}$
$d\mathbf{A} = dy dx \hat{\mathbf{x}} +$	$d\mathbf{A} = \rho d\phi dz \hat{\boldsymbol{\rho}} +$	$d\mathbf{A} = r^2 \sin\theta d\theta d\phi \hat{\mathbf{r}} +$
$dx dz \hat{y}+$	$d\rhodz\hat{\boldsymbol{\phi}}$ +	$r \sin \theta dr d\phi \hat{\theta} +$
dx dy 2	$\rho d\rho d\phi \hat{z}$	$rdrd hetaoldsymbol{\hat{\phi}}$
dV = dx dy dz	$dV = \rho d\rho d\phi dz$	$dV = r^2 \sin\theta dr d\theta d\phi$

POS, VEL, ACCEL

polal:
$\bar{\mathbf{r}} = \rho \mathbf{e}_{\rho}$
$\mathbf{v} = \dot{\rho}\mathbf{e}_{\rho} + \rho\dot{\theta}\mathbf{e}_{\theta}$
$\mathbf{a} = (\ddot{\rho} - \rho \dot{\theta}^2) \mathbf{e}_{\rho} + (\rho \ddot{\theta} + 2\dot{\rho} \dot{\theta}) \mathbf{e}_{\theta}$
cylindrical:
$\mathbf{r} = \rho \mathbf{e}_{\rho} + z \mathbf{e}_{z}$
$\mathbf{v} = \dot{\rho}\mathbf{e}_{\rho} + \rho\dot{\theta}\mathbf{e}_{\theta} + \dot{z}\mathbf{e}_{z}$
$\mathbf{a} = (\ddot{\rho} - \rho \dot{\theta}^2) \mathbf{e}_{\rho} + (\rho \ddot{\theta} + 2\dot{\rho} \dot{\theta}) \mathbf{e}_{\theta} + \ddot{z} \mathbf{e}_{z}$
spherical:
$\mathbf{r} = \rho \mathbf{e}_{\rho}$
$\mathbf{v} = \dot{\rho}\mathbf{e}_{\rho} + \rho\dot{\theta}\mathbf{e}_{\theta} + \rho\dot{\phi}\sin\theta\mathbf{e}_{\phi}$
$\mathbf{a} = (\ddot{\rho} - \rho\dot{\theta}^2 - \rho\dot{\phi}^2\sin^2\theta)\mathbf{e}_{\rho} + (\rho\ddot{\theta} + 2\dot{\rho}\dot{\theta} - \rho\dot{\phi}^2\sin\theta\cos\theta)\mathbf{e}_{\theta} +$
$\left(\rho\ddot{\phi}\sin\theta + 2\dot{\rho}\dot{\phi}\sin\theta + 2\rho\dot{\theta}\dot{\phi}\cos\theta\right)\mathbf{e}_{\phi}$

nolar

del, ∇, in CARTESIAN

del operator:
$$\nabla = \mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z}$$

gradient: $\nabla \phi = \operatorname{grad} \phi = \mathbf{e}_x \frac{\partial \phi}{\partial x} + \mathbf{e}_y \frac{\partial \phi}{\partial y} + \mathbf{e}_z \frac{\partial \phi}{\partial z}$

directional derivative: $\frac{d\phi}{ds} = \nabla \phi \cdot \frac{\mathbf{A}}{|\mathbf{A}|}$

divergence: $\nabla \cdot \mathbf{V} = \operatorname{div} \mathbf{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial z} + \frac{\partial V_z}{\partial z}$

curl: $\nabla \times \mathbf{V} = \mathbf{e}_x \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \right) + \mathbf{e}_y \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x} \right) + \mathbf{e}_z \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right)$

Laplacian: $\Delta f = \nabla^2 \phi = \nabla \cdot (\nabla \phi) = \operatorname{div} \operatorname{grad} \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$

del. ∇. in CYLINDRICAL

gradient:
$$\nabla f = grad f = \frac{\partial f}{\partial \rho} \mathbf{e}_{\rho} + \frac{\partial f}{\rho} \frac{\partial \phi}{\partial z} \mathbf{e}_{+} + \frac{\partial f}{\partial z} \mathbf{e}_{z}$$

divergence: $\nabla \cdot \mathbf{V} = div \mathbf{V} = \frac{1}{\rho} \frac{\partial (\nu V_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial V_{\phi}}{\partial \phi} + \frac{\partial \mathbf{V}_{z}}{\partial z}$
curl: $\nabla \times \mathbf{V} = \left(\frac{1}{\rho} \frac{\partial V_{z}}{\partial \phi} - \frac{\partial V_{\phi}}{\partial z}\right) \mathbf{e}_{\rho} + \left(\frac{\partial V_{\rho}}{\partial z} - \frac{\partial V_{z}}{\partial \rho}\right) \mathbf{e}_{\phi} + \frac{1}{\rho} \left(\frac{\partial (\rho V_{\phi})}{\partial \rho} - \frac{\partial V_{\rho}}{\partial \phi}\right) \mathbf{e}_{z}$
Laplacian: $\Delta f = \nabla^{2} f = \nabla \cdot (\nabla f) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho}\right) + \frac{1}{2\rho} \frac{\partial^{2} f}{\partial v^{2}} + \frac{\partial^{2} f}{\partial v^{2}}$

del, ∇ , in SPHERICAL

$$\begin{aligned} & \textbf{gradient:} \ \, \nabla f = \textit{grad} \, f = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \mathbf{e}_\phi \\ & \textbf{divergence:} \ \, \nabla \cdot \mathbf{V} = \textit{div} \, \mathbf{V} = \frac{1}{r^2} \frac{\partial (r^2 V_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(V_\theta \sin \theta \right) + \frac{1}{r \sin \theta} \frac{\partial V_\phi}{\partial \phi} \\ & \textbf{curl:} \ \, \nabla \times \mathbf{V} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (V_\phi \sin \theta) - \frac{\partial V_\theta}{\partial \phi} \right) \mathbf{e}_r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial V_r}{\partial \phi} - \frac{\partial}{\partial r} (r V_\phi) \right) \mathbf{e}_\theta + \frac{1}{r} \left(\frac{\partial}{\partial r} (r V_\theta) - \frac{\partial V_r}{\partial \theta} \right) \mathbf{e}_\phi \\ & \textbf{Laplacian:} \end{aligned}$$

 $\Delta f = \nabla^2 f = \nabla \cdot (\nabla f) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$

Taylor series

Taylor series of f(x) about x = a:

$$f(x) = f(a) + (x - a)f'(a) + \frac{1}{2!}(x - a)^2 f''(a) + \dots + \frac{1}{n!}(x - a)^n f^{(n)}(a) + \dots$$

Ordinary differential equations

Separable 1st-order

Equation can be written as f(y)dy = f(x)dx, such as $\frac{dy}{dx} = N(1 - y)$. Evaluate integrals directly.

Linear 1st-order

Write the equation in the form y' + P(x)y = Q(x) and then define $I = \int P(x)dx$ and find y by solving $ye^I = \int Q(x)e^Idx + c$

Linear 2nd-order homogeneous with constant coefficients

Equations of the form $a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = 0$ *a* and *b*:

$$a, b \in \mathfrak{R}, a \neq b \Rightarrow y = c_1 e^{ax} + c_2 e^{bx}$$

 $a, b \in \mathfrak{R}, a = b \Rightarrow y = (Ax + B)e^{ax}$

For $a, b \in \mathfrak{I}$, $a = b^* = \alpha \pm i\beta$, any of the following forms are solutions

$$y = Ae^{\alpha + i\beta x} + Be^{\alpha - i\beta x}$$

$$y = e^{\alpha x} \left(Ae^{i\beta x} + Be^{-i\beta x} \right)$$

$$y = e^{\alpha x} \left(c_1 \sin \beta x + c_2 \cos \beta x \right)$$

$$y = ce^{\alpha x} \sin (\beta x + \gamma)$$

$$y = ce^{\alpha x} \cos (\beta x + \delta)$$

Linear 2nd-order inhomogeneous with constant coefficients Equations of one of the forms

$$a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = f(x)$$
$$\frac{d^2 y}{dx^2} + \frac{a_1}{a_2} \frac{dy}{dx} + \frac{a_0}{a_2} y = F(x)$$

 $(D-a)(D-b)y = F(x) = ke^{cx}$, particular solution y_p is given by: $y_p = Ce^{cx}$ if c is not equal to either a or b; $y_p = Cx^2e^{cx}$ if c equals a or b, $a \neq b$; $y_p = Cx^2e^{cx}$ if c = a = b

(For $F(x) = k \cos \alpha x$ or $F(x) = k \sin \alpha x$, solve the above with $F(x) = ke^{\epsilon - i\alpha x}$ and take the real or imag part, respectively. For F(x) = const, set c = 0.)

A more general form of this (called the *method of undetermined coefficients*) follows:

$$(D-a)(D-b)y = F(x) = e^{cx}P_n(x)$$
; $P_n(x)$ is a polynomial of degree n :

$$y_p = \begin{cases} e^{cx}Q_n(x) & \text{if } c \neq a \text{ and } c \neq b \\ xe^{cx}Q_n(x) & \text{if } c = a \text{ or } c = b, a \neq b \\ x^2e^{cx}Q_n(x) & \text{if } c = a = b \end{cases}$$

Calculus of variations

$$\begin{split} J &= \int_{x_1}^{x_2} f\{y(x), y \prime (x); x\} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} = 0 \\ \frac{\partial f}{\partial x} &= \frac{d}{dx} \left(f - y \prime \frac{\partial f}{\partial y} \right) = 0 \\ f &= y \ell \frac{\partial f}{\partial w} = const \text{ for } \frac{\partial f}{\partial x} = 0 \end{split}$$

FUNDAMENTAL (AND NOT SO FUNDAMENTAL) CONSTANTS

 $G = \text{gravit. constant} = 6.674 \times 10^{-11} \text{ N m}^2 \text{kg}^{-2}$ g = gravit. accel on Earth surface = 9.8 m/s^2 Note: $GM_e = gR_e^2$ R_S = mean radius of Sun = 696×10^6 m R_E = mean radius of Earth = 6.371 × 10⁶ m R_M = mean radius of Moon = 1.737 × 10⁶ m $R_{S_E} = \text{mean distance, Earth to Sun} = 149.6 \times 10^9 \text{ m}$ $D = \text{mean distance, Earth to Moon} = 384.4 \times 10^6 \text{ m}$ $M_S = \text{mass of Sun} = 1.99 \times 10^{30} \text{ kg}$ $M_E = \text{mass of Earth} = 5.98 \times 10^{24} \text{ kg}$ $M_m = \text{mass of Moon} = 7.35 \times 10^{22} \text{ kg}$

Physics

Newton's laws

1st: Body remains at rest or in uniform motion unless acted upon by a force

 2^{nd} : $\mathbf{F}_{tot} = \frac{d\mathbf{p}}{dt} = m\mathbf{a}$ 3^{rd} : $\mathbf{F}_{A \to B} = -\mathbf{F}_{B \to A}$

Lagrangian dynamics

Hamilton's principle — Nature minimizes (makes stationary) the action. **Constrained** — If a 3D system of N particles has n < 3N minimum generalized coordinates, the system is constrained.

Natural — The coordinates q_n are *natural* if the relationships of r_α (every particle's position) to q_n doesn't change with time.

Ignorable — a coordinate q_i is *ignorable* if the corresponding generalized momentum p_i is constant.

Lyupanov Stability — If x_e is Lyapunov stable and all solutions that start out near x_e converge to x_e , then x_e is asymptotically stable

Lagrangian: $\mathcal{L} = T - U$ Action: $S = \int_{t_1}^{t_2} \mathcal{L}(q_1, q_2, \dots, q_N, \dot{q}_1, \dot{q}_2, \dots, \dot{q}_N, t) dt$ Euler-Lagrange equations: $\frac{\partial \mathcal{L}}{\partial q_1} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial q_1}, \dots$ etc. Generalized forces: $F_i = \frac{\partial \mathcal{L}}{\partial q_i}$ Generalized momenta $p_i = \frac{\partial \mathcal{L}}{\partial x_i}$

Orbits

Definitions: $M = m_1 + m_2$; $\mu = \frac{m_1 m_2}{m_1 + m_2}$; e.g., $U(\rho) = \frac{-Gm_1 m_2}{\rho}$ **Kinetic energy:** $T = \frac{1}{2}M\dot{r}^2 + \frac{1}{2}\mu\dot{r}^2$

Lagrangian: $\mathcal{L} = \frac{1}{2}\mu\dot{\rho}^2 + \frac{1}{2}\mu\rho^2\dot{\phi}^2 - U(\rho)$ **Solution in** ϕ : $\dot{\phi} = \frac{\ell}{\mu\rho^2}$ (ℓ const — angular momentum)

Solution in ρ : $\mu \ddot{\rho} = -\frac{d}{d\rho} U(\rho) + \frac{\ell^2}{u o^3} = -\frac{d}{d\rho} \left[U(\rho) + \frac{\ell^2}{2u o^2} \right]$

Effective potential: $U_{eff} = U(\rho) + \frac{\ell^2}{2uo^2}$

Note cons. of energy: $\frac{d}{dt} \left(\frac{1}{2} \mu \dot{\rho}^2 \right) = -\frac{d}{dt} U_{eff}(\rho); E = \frac{1}{2} \mu \dot{\rho}^2 + U_{eff}(\rho)$

Use: u = 1/r and $\frac{d}{dt} = \frac{d\phi}{dt} \frac{d}{d\phi} = \dot{\phi} \frac{d}{d\phi} = \frac{\ell}{uo^2} \frac{d}{d\phi} = \frac{\ell u^2}{\mu} \frac{d}{d\phi}$

u-equation: $u''(\phi) = -u(\phi) - \frac{\mu}{\ell^2 u(\phi)^2 F(u)}$

Use: $\gamma = Gm_1m_2$ and $F(u) = -\gamma u^2$; then $U''(\phi) = -u(\phi) + \gamma \mu/\ell^2$; use $w(\phi) = u(\phi) - \gamma \mu / \ell^2$, so $W(\phi) = A\cos(\phi - \delta)$ ergo $u(\phi) = \frac{\gamma \mu}{\ell^2} + A\cos\phi$

Radial eqn: $r(\phi) = \frac{r_c}{1 + \epsilon \cos \phi}$

Cartesian:

$$\left(\frac{x + \frac{r_c \varepsilon}{1 - \varepsilon^2}}{\frac{r_c}{1 - \varepsilon^2}}\right)^2 + \left(\frac{y}{\frac{r_c}{\sqrt{1 - \varepsilon^2}}}\right)^2$$

Eccentricity: $\varepsilon = A \cdot r_c$ (*A* some constant)

Circular orbit: $r_c = \ell^2/\gamma \mu$

Min radius: $r_{min} = \frac{r_c}{1+\varepsilon} = \frac{\ell^2}{\gamma\mu(1+\varepsilon)}$ (at $\phi = 0$; perihelion); $\ell = \mu r v_{tan}$ Max radius: $r_{max} = \frac{r_c}{1-\varepsilon}$ (at $\phi = \pi$; aphelion)

Radial velocity: $v_r = \sqrt{\frac{\mu}{r_c}} \cdot \varepsilon \cdot \sin \phi$

Tangential velocity: $v_t = \sqrt{\frac{\mu}{r_c}} \cdot (1 + \varepsilon \cdot \cos \phi)$

Ellipse params: $a = \frac{r_c}{1-\varepsilon^2}$; $b = \frac{r_c}{\sqrt{1-\varepsilon^2}}$; $d = a\varepsilon$; $\varepsilon = \sqrt{1-(b/a)^2}$

Orbital period: $\tau = 2\pi \cdot a \cdot \sqrt{\frac{a}{\mu}}$

Energy: $E = \frac{\gamma^2 \mu}{2\ell^2} (\varepsilon^2 - 1)$

Kepler's 1st law: Orbits are ellipses w/ sun at a focus (approx. true) **Kepler's** 2nd **law:** Line from Sun to planet, equal areas in equal times $dA = \frac{1}{2}r^2d\phi$; $\frac{dA}{dt} = \frac{1}{2}\frac{\ell}{\mu}$, inep. of time

Kepler's 3^{rd} **law:** $\tau = \frac{A}{4ALH} = \frac{2\pi ab\mu}{\ell} \Rightarrow \tau^2 = 4\pi^2 \frac{a^3 r_c \mu^2}{\ell^2} = 4\pi^2 \frac{a^3 \mu}{r} \approx \frac{4\pi^2}{\ell} a^3$

Cartesian system

inertia: $I = \int_{V} r^2 dM$, $dM = \rho(x, y, z) dx dy dz$

momentum: $p \equiv mv$ kinetic energy: $T = \frac{1}{2}mv^2$

Rotating system

moment of inertia: $I = \int r^2 dm$ or, for a point mass, $I = r^2 m$, where r is the perp. distance to axis of rotation

parallel axis theorem: $I_z = I_{cm} + md^2$; I_{cm} : inertia about center of mass, m: mass, d: distance between axes

angular momentum: $L \equiv r \times p = I\Omega$; r: position vec, p: linear momentum torque: $\mathbf{N} \equiv \mathbf{r} \times \mathbf{F} = \dot{\mathbf{L}} = \mathbf{r} \times \dot{\mathbf{p}}$

work: $W = N\theta$, θ in rad

angle: θ

angular velocity: $\Omega = \dot{\theta} = \frac{\mathbf{r} \times \mathbf{v}}{|\mathbf{r}|^2}$

linear velocity: $\mathbf{v} = \mathbf{\Omega} \times \mathbf{r}$

angular acceleration: $\alpha = \dot{\Omega} = \ddot{\theta} = \mathbf{a}_T/r$; \mathbf{a}_T is tangential acceleration

newton's 2^{nd} -law: $N = I\alpha$

time deriv, unit vec in rotating frame: $\frac{de}{dt} = \Omega \times e$ (e fixed in body) time deriv, vec in rotating frame: $\left(\frac{d\mathbf{r}}{dt}\right)_{S_0} = \left(\frac{d\mathbf{r}}{dt}\right)_S + \mathbf{\Omega} \times \mathbf{r}$ (S_0 : inert, S: rot)

Newton's 2^{nd} in rotating frame: $m\ddot{\mathbf{r}} = \ddot{\mathbf{F}} + 2m\dot{\mathbf{r}} \times \Omega + m(\Omega \times \mathbf{r}) \times \Omega$

Conservative Force

Conditions, given that F has continuous first partial derivatives in a simply connected region...

No curl anywhere: $\nabla \times \mathbf{F} = 0$ Equal work regardless of path:

 $W_C = \int_C \mathbf{F} \cdot d\mathbf{s} = constant \, \forall \, C$

 $W_C = \oint_C \mathbf{F} \cdot d\mathbf{s} = 0 \,\forall \, C$

F · dr is exact differential $\mathbf{F} = \nabla W$, W single-valued

Allows definition of potential: $\mathbf{F} = -\nabla \mathbf{U}$

Specific Forces

gravity

point mass or sph.-symm mass: $\mathbf{F} = -G \frac{Mm}{2} \mathbf{e}_r \approx -mg$ on earth

generally: $\mathbf{F} = -Gm \int_{V} \frac{\rho(\mathbf{r}')\mathbf{e}_{r}}{r^{2}} dv'$ grav field vector: $\mathbf{g} \equiv -\nabla \Phi = \mathbf{F}/m$

grav potential, point mass: $\Phi = -G\frac{M}{r}$

grav potential, mass distr: $\Phi = -G \int_{V}^{L} \frac{\rho(\mathbf{r}')}{r} dv'$

potential energy: $U = m\Phi$

Gauss' law for grav, int: $\oint_C \mathbf{g} \cdot d\mathbf{A} = -4\pi GM$

Gauss' law for grav, dif: $\nabla \cdot \mathbf{g} = -4\pi G \rho$

Poisson's equation: $\nabla^2 \phi = 4\pi G \rho$, for rad-sym system, this is

 $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) = 4\pi G \rho(r)$ and $\mathbf{g}(r) = -\mathbf{e}_r \frac{\partial \phi}{\partial r}$

tidal (due to Moon's gravity)

e_R points from Moon's center to test mass on Earth

e_D is from center of Moon to center of Earth

(x, y) ECEF coord of test mass

 $\mathbf{F}_T = -GmM_m \left(\frac{\mathbf{e}_R}{R^2} - \frac{\mathbf{e}_D}{D^2} \right)$ $F_{T_x} \approx 2GmM_m x/D^3$

 $F_{T_y} \approx -GmM_m y/D^3$

spring (simple, linear)

F = -kx (x: displ from eq lib, k: spring const)

inertial force, linear accel: $F_{inert} = -mA$ (A: frame's accel w.r.t. inertial frame)

centrifugal (inertial force)

 $\mathbf{F}_{centr} = m (\mathbf{\Omega} \times \mathbf{r}) \times \mathbf{\Omega}$ (generally)

 $\mathbf{F}_{centr} = \frac{mv^2}{r} \mathbf{e}_r = mr\Omega^2 \mathbf{e}_r$ (for circular motion)

 $U_{centr}(r) = \frac{\ell^2}{2mr^2}$ (ℓ : angular momentum)

Free-fall accel (e.g., on Earth): $\mathbf{g} = \mathbf{g}_0 + (\mathbf{\Omega} \times \mathbf{R}) \times \mathbf{\Omega}$

coriolis (inertial force)

 $\mathbf{F_{cor}} = 2m\dot{\mathbf{r}} \times \mathbf{\Omega}$

buoyant -

 $F = \rho_{fluid} V g$, dir. opposite to grav.-induced pressure grad. in fluid; ρ_{fluid} : density, V: submerged volume, g: grav.

lorentz

 $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, q is charge of particle, \mathbf{v} its velocity, \mathbf{B} is mag. field strength

electrostatic — F = qE, q is charge, E electric field

Energy

potential energy:
$$\int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} \equiv U_{1} - U_{2}$$

(work, done by force F, req'd to move particle from point 1 to point 2 with no change in kinetic energy); potential energy is the capacity

force due to the potential U: $\mathbf{F} = -\nabla U$

kinetic energy: $T \equiv \frac{1}{2}mv^2$ total energy: $E \equiv T + U$

1D solution given E **and** U(x), for conservative force only:

$$t - t_0 = \int_{x_0}^{x} \frac{\pm dx}{\sqrt{\frac{2}{m} [E - U(x)]}}$$

Conservation theorems

linear momentum: $\frac{d}{dt}(p_1 + p_2) = 0$ (or $p_1 + p_2$ is const) if no external forces act upon system

angular momentum: $\dot{\mathbf{L}} = \mathbf{r} \times \dot{\mathbf{p}} = 0$ (or L is const) if no external torque acts

energy: $\mathbf{F} + \nabla U = 0$; $\frac{dE}{dt} = 0$ if the force field represented by \mathbf{F} is conservative

Harmonic oscillation

Simple harmonic oscillator

$$m\ddot{x} = -kx$$

$$\omega_0^2 \equiv k/m$$

$$\ddot{x} + \omega_0^2 x = 0$$

$$x(t) = A \sin(\omega_0 t - \delta)$$

$$E = T + U = \frac{1}{2}kA^2$$

Damped oscillator

equation of motion: $m\ddot{x} + b\dot{x} + kx = 0$; b is resisting force coeff, k is restoring

convenient substitutions: $\beta \equiv \frac{b}{2\pi}$ (damping), and $\omega_0^2 \equiv k/m$ (natural ang. freq, undamped sys)

new eqn of motion: $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$ general sol'n:

$$x(t) = e^{-\beta t} \left[A_1 exp\left(\sqrt{\beta^2 - \omega_0^2} t\right) + A_2 exp\left(-\sqrt{\beta^2 - \omega_0^2} t\right) \right]$$

underdamping: $\omega_0^2 > \beta^2$ critical damping: $\omega_0^2 = \beta^2$ overdamping: $\omega_0^2 < \beta^2$

Sinusoidally-driven damped oscillator

eqn of motion: $m\ddot{x} + b\dot{x} + kx = F_0 \cos \omega t$; *b* is resisting force coeff, *k* is restoring force coeff

convenient substitutions: $A = F_0/m$ (driving ampl), $\beta \equiv \frac{b}{2m}$ (damping), and $\omega_0^2 \equiv k/m$ (natural ang. freq, undamped sys)

new eqn of motion: $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = A \cos \omega t$

complementary solution:

$$x_c(t) = e^{-\beta t} \left[A_1 exp\left(\sqrt{\beta^2 - \omega_0^2} t\right) + A_2 exp\left(-\sqrt{\beta^2 - \omega_0^2} t\right) \right]$$

particular solution:

$$x_p(t) = \frac{A}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\omega^2\beta^2}} cos(\omega t - \delta)$$

$$\delta = \arctan\left(\frac{2\omega\beta}{\omega_0^2 - \omega^2}\right)$$

amplitude resonance frequency: $\omega_R = \sqrt{\omega_0^2 - 2\beta^2} \ (\omega_r < \omega_1 < \omega_0)$

kinetic energy resonance frequency: $\omega_E = \omega_0$

quality factor: $Q \equiv \frac{\omega_R}{2B} \approx \frac{\omega_0}{\Delta \omega}$ (the latter is for lightly damped systems; $\Delta \omega$ is the distance between half-energy points — $D_r es / \sqrt{2}$ — on the amplitude resonance curve)

Underdamped oscillator

pseudo-frequency of oscillation: $\omega_1^2 \equiv \omega_0^2 - \beta^2$ **solution (form 1):** $x(t) = e^{-\beta t} \left[A_1 e^{i\omega_1 t} + A_2 e^{-i\omega_1 t} \right]$ **solution (form 2):** $x(t) = Ae^{-\tilde{\beta}t}\cos(\omega_1 t - \delta)$

phase plot: Use the var. subst. $u = \omega_1 x$, $w = \beta x + \dot{x}$ and plot w on the y-axis

vs. u on the x-axis response to δ force: $x(t) = \frac{b}{\omega_1} e^{-\beta(t-t_0)} \sin \omega_1(t-t_0)$

green's fn: $G(t,t') \equiv \frac{1}{m\omega_1} e^{-\beta(\hat{t}-t')} \sin \omega_1(t-t'), t \geq t'; 0$ otherwise

Critically damped oscillator

qualitative behavior: System approaches equilibrium (natural solution dies out) faster than the others.

solution: $x(t) = (A + Bt)e^{-\beta t}$

Overdamped oscillator

pseudo-frequency of (non-)oscillation: $\omega_2^2 \equiv \beta^2 - \omega_0^2$

solution: $x(t) = e^{-\beta t} [A_1 e^{\omega_2 t} + A_2 e^{-\omega_2 t}]$

phase plot: Asymptotic behavior tends towards $\dot{x} = -(\beta - \omega_2)x$ unless

 $A_1 = 0$, then it goes to $\dot{x} = -(\beta + \omega_2)x$

Series RLC circuit

voltage across inductor: $V_L = L \frac{dI}{dt} = L\ddot{q}$

voltage across resistor: $V_R = IR = R \frac{dq}{dt} = R\dot{q}$

voltage across capacitor: $V_C = \frac{q}{C}$

diffeq of RLC circuit with driving power source: $L\ddot{q} + R\dot{q} + q/C = V(t)$

Electrical-mechanical equivalents

	Mechanical		Electrical
x	Displacement	q	Charge
χ̈́	Velocity	$\dot{q} = I$	Current
m	Mass	Ĺ	Inductance
b	Damping resistance	R	Resistance
l/k	Mechanical compliance	C	Capacitance
F	Ampl of impressed force	ε	Ampl of impressed emf