<u>Assignment 1</u> (Python programming exercise)

Python is a popular programming language (https://www.zdnet.com/article/programming-language-pythons-popularity-ahead-of-java-for-first-time-but-still-trailing-c/) and is popular for data mining application. This exercise is aimed at getting some simple Python programming done.

Write a Python program which input two n-dimensional vectors \mathbf{x} and \mathbf{y} and compute the following similarity measures:

- 1. Euclidean
- 2. cosine
- 3. Jaccard
- 4. correlation

Input requirement

The user enters n and then two strings of n numbers. Each number is separated by spaces. The number may be integers or floating point numbers. The program checks the input and asks the user to re-input if there are less than n numbers.

Output requirement

Print the values of the 4 measures.

Notes

The measures should be implemented from scratch. Do not use existing functions, but basic functions (e.g. sqrt ()) can be used.

Marking Scheme

1. The measures are correctly implemented. Test it with Appendix.

(80%)

- 2. The program is adequately commented. Marks will be deducted if there are no or few comments. (20%)
- 3. You'll get 0 mark if your program cannot run.

What you should hand in

One Jupyter notebook containing your code, output, and answers.

Appendix

For the following vectors, \mathbf{x} and \mathbf{y} , calculate the indicated similarity or distance measures.

- (a) $\mathbf{x} = (1, 1, 1, 1)$, $\mathbf{y} = (2, 2, 2, 2)$ cosine, correlation, Euclidean $\cos(\mathbf{x}, \mathbf{y}) = 1$, $\operatorname{corr}(\mathbf{x}, \mathbf{y}) = 0/0$ (undefined), Euclidean $(\mathbf{x}, \mathbf{y}) = 2$
- (b) $\mathbf{x} = (0, 1, 0, 1)$, $\mathbf{y} = (1, 0, 1, 0)$ cosine, correlation, Euclidean, Jaccard $\cos(\mathbf{x}, \mathbf{y}) = 0$, $\cot(\mathbf{x}, \mathbf{y}) = -1$, Euclidean $(\mathbf{x}, \mathbf{y}) = 2$, Jaccard $(\mathbf{x}, \mathbf{y}) = 0$
- (c) $\mathbf{x} = (0, -1, 0, 1)$, $\mathbf{y} = (1, 0, -1, 0)$ cosine, correlation, Euclidean $\cos(\mathbf{x}, \mathbf{y}) = 0$, $\cot(\mathbf{x}, \mathbf{y}) = 0$, Euclidean $(\mathbf{x}, \mathbf{y}) = 0$
- (d) $\mathbf{x} = (1, 1, 0, 1, 0, 1), \ \mathbf{y} = (1, 1, 1, 0, 0, 1)$ cosine, correlation, Jaccard $\cos(\mathbf{x}, \mathbf{y}) = 0.75, \cos(\mathbf{x}, \mathbf{y}) = 0.25, \operatorname{Jaccard}(\mathbf{x}, \mathbf{y}) = 0.6$
- (e) $\mathbf{x} = (2, -1, 0, 2, 0, -3), \ \mathbf{y} = (-1, 1, -1, 0, 0, -1)$ cosine, correlation $\cos(\mathbf{x}, \mathbf{y}) = 0$, $\operatorname{corr}(\mathbf{x}, \mathbf{y}) = 0$