University of Rajshahi

Department of Computer Science and Engineering

B.Sc. Engg.(CSE) 1st Year EVEN Semester 2016

Course: PHY 1221 (Applied Electricity and Magnetism)

Time: 3 Hrs. Full Marks: 52.5

[N.B. Answer SIX questions taking at least THREE from each part.]

 .a) State superposition principle for electric charges. b) Derive an expressions for the electric field at a point on the axial line due to an electric dipole. c) An electric dipole of moment 2x10⁻⁸ cm is placed in a uniform field intensity 1.5x10⁵NC⁻¹ (i) What maximum torque does the field exert on the dipole? (ii) How much work is done on turning the dipole end to end? 	1 4.75 3
2.a) State and prove Gauss's law in electrostatics.b) Charge is distributed uniformly over the surface of a sphere. Use Gauss's law to find the electric field at the points (i) Outside of the sphere (ii) On the surface of the sphere	5 3.75
 3.a) Define capacitor. Classify the capacitors. Write down the major uses of capacitor. b) Derive an expression for the energy stored by a charged capacitor. c) The parallel plates of an air-filled capacitor are 1 cm apart. What will be the area A of each plate if capacitance is to be 0.25 µF? 	1+1+3 2.75
4.a) Establish the relation between current density and electron drift velocity. b) Deduce the condition for the balance of a Wheatstone's bridge. c) Write short note about Superconductor.	3.5 3.5 1.75
Part B	
5.a) State and prove Ampere's law. Apply it to calculate the magnetic field due to a solenoid, b) Define self-inductance and mutual inductance.	3+3 2.75
 6.a) Describe a moving coil galvanometer. Explain how current can be measured with it. b) What are the differences between ballistic and deadbeat galvanometer? c) Prove that the charge sensitivity of a B.G. is 2π/T times the current sensitivity. 	4 2 2.75
7.a) Briefly describe about Seebeck and Peltier effects. b) Write down the laws of addition of thermal electromotive forces.	4 4.75
expression for the rate of decay of current.	4.75
b) An e.m.f. 10V is applied to a circuit having a resistance of 10Ω and in inductance of 0.5H. Find the time required by the current to attain 63.2% of its final value. What is the time constant of the	4

University of Rajshahi Department of Computer Science and Engineering B.Sc. Engg. Part-I Even Semester Exam - 2015 Course: PHY1221 (Applied Electricity and Magnetism) Full Marks: 52.5 Time: 3 Hours

(Answer any 6 questions not taking more than 3 from each Part)

1.(a)	Define an electric dipole and its moment.	1
(b)	Find the electric field \overline{E} at a point P due to a dipole at a distance r from the midpoint of the dipole.	5
(c)	A water molecule in its vapour state has an electric dipole moment 6.2×10^{-30} cm. What is the	2.75
	electric field \overline{E} at a distance r of 1.1 nm from the molecule on the dipole axis?	
2.(a)	What is electric flux?	2
(b)	Obtain Coulomb's law from Gauss's law.	3.50
(c)	A point charge of 1.8 μ C is at the centre of a spherical Gaussian surface of radius 55 cm. What is the net flux through the surface?	3.25
3.(a)	Calculate the total enclosed charge q for a parallel plate capacitor with dielectric using Gauss's law.	5
(b)	A parallel plate capacitor of plate area 11.5 cm ² and plate separation 1.24 cm. A potential difference 85.5 V is applied between the plates. The battery is then disconnected, and a dielectric slab of thickness 0.78 cm and dielectric constant 2.61 is placed between the plates. What is the	3.75
	capacitance with the slab in place?	
4.(a)	What is the current density and drift yelocity of the charge carrier?	2
(b)	Establish the relationship between the current density and drift velocity.	4
(c)	What is the drift velocity of the conduction electrons in a copper wire of diameter 0.5 mm and length 20 m, when it is connected across the battery of 1.5 V and the internal resistance 1.25Ω .	2.75
	(Here $\rho = 8.96 \times 10^3 \text{ kg/m}^3$, $n = 8.49 \times 10^{28} \text{ m}^{-3}$)	
	All contents of the second of	
	Part B	
5.(a)	State and explain Faraday's law of induction. Deduce its differential form.	3.75
(b)	Find the mutual inductance of two co-axial coils.	5
6.(a)	What do you mean by thermal emf?	2
(b)	What is Thomson effect?	3
(c)	Find an expression of the thermo-electric power.	3.75
7.(a)	Find expression for the growth and decay of charges of a capacitor through resistor with constant emf.	3.75
(b)	What is the time constant in an RC circuit? Show that the time constant has the unit of time.	2
(c)	In an RC circuit $R = 0.4 \times 10^6$ ohm and $C = 2.5 \times 10^6$ F, in what time will the charge in the	3
	capacitor decay one fourth of its initial value?	
8.(a)	An alternating emf is applied to a circuit consisting an inductor, capacitor and resistor in series. Obtain the expression for the current and impedance.	5.75
(b)		3

University of Rajshahi

Department of Computer Science & Engineering

1st Year Second Semester Examination 2014

Course: PHY 1221 (Applied Electricity and Magnetism)

Full Marks: 52.5 Duration: 3 (Three) Hours

		Part-A	5
1.	a) b)	State and prove Gauss's law in electrostatics. Charge is distributed uniformly over the surface of a sphere. Use Gauss's law to find the electric field at the points i. Outside the sphere ii. On the surface of the sphere	3.75
		ii. On the surface of the sphere	2
2.		Define capacitance and capacitor. Deduce the relation $C = \frac{\mathcal{E}_0 \Lambda}{a}$ for a parallel plate capacitor, where the symbols have their usual	4.75
	c)	significance. The parallel plate of an air-filled capacitor are 1cm apart. What must be the area A of each plate if capacitance is to be $0.25\mu F$?	2
3.	a) b)	Derive an expression for the energy stored by a charged capacitor. The capacitance of a parallel plate capacitor is 400pF and its plate are separated by 2mm of air.	4.75
		ii. What will be the energy when it is charged to 1500 volts? iii. What will be the potential difference with the same charge if the plate separation is doubled?	2 2
4.	a) b)	State and explain Kirchhoff's law in an electrical network. Deduce the condition for the balance of a Wheatstone's bridge.	4 4.75
		Part-B	
5.	a)	State Ampere's law. Derive an expression for magnetizing force, B due to a current carrying	2+2
	b)	long straight conductor. Calculate the magnetizing force and flux density at a distance of 1 cm from a long straight circular conductor in air carrying a current of 100A. Draw a curve showing the variation of B from the conductor surface outwards if its diameter is 1mm.	4.75
6.	a)	Describe a moving coil galvanometer. Explain how current can be measured with it.	3+2
	64	What are the differences between ballistic and deadbeat galvanometer?	2.75
	c)	What are the statement of the statement	2.73
,	-1	A series circuit containing an inductor L and a resistor R is connected to a battery. Obtain the	4.75
	b)	A series circuit containing expression for the rate of decay of current. An e.m.f. 10v is applied to a circuit having a resistance of 10Ω and an inductance of 0.5H. find the time required by the current to attain 63.2% of its final value. What is the time constant of the circuit?	4
8.	a)	Define reactance and impedance of an AC circuit.	2
	LA	Analyze a series LCR circuit and explain the phenomenon of resonance. Find the resonance frequency of an LCR series circuit for L=10mH, C=0.02μF and r=20Ω.	3+1 2.75

University of Rajshahi
Department of Computer Science and Engineering
B.Sc. (Engg.) Examination-2013, Year-I, Semester-II
Course: PHY-1221 (Applied Electricity and Magnetism)
Full Marks-52.5 Time: 3 hours

[N.B. Answer any six questions taking THREE from each of the groups]

		Lait-A	
1.	a)	Derive an expression for the electric field at any point due to and electric dipole.	5
		Find the potential energy of an electric dipole placed in a uniform external electric field.	3.75
2.	a) b)	Define dielectric constant and energy density. Find the expression for the capacitance of a parallel plate capacitor without dielectric.	2 3.75
	c)	Show that $\vec{D} = \in_0 \vec{E} + \vec{P}$.	3
3.	a)	Derive an expression for the conductivity of metals based on free electron	5
		theory of conductivity. A metal rod of length 25cm has resistance $7.5\times10^{-6}\Omega$. The diameter of the rod is 0.40 cm. Calculate the resistivity of the metal.	
4.	a)	Define current density. Establish the relation between current density and	5
	b)	electron drift velocity. One end of an Al wire of diameter 2.5 mm is welded to one end of Cu wire of diameter 1.8 mm, the composite wire carries a steady current of 1.3 A, what is the current density in each wire?	3.75
		<u>Part-B</u>	
5	. a		3.75 5
. 6	. a	Describe Thomson effect.	5 3.75
-7	. a	Find expressions for the growth of charges of a capacitor through a resistor with	5
	b	constant emf. In an RC circuit $R = 0.4 \times 10^6 \Omega$ and $C = 2.5 \times 10^6 F$, in what time will the charge in	3.75
		the capacitor decay one fourth of its initial value?	8.75
	3. V	Vrite short note on (any TWO): a) Seebeck effect b) Peltier effect c) Reactance d) Resonance	

University of Rajshahi

Department of Computer Science and Engineering

B.Sc. Engg.(CSE) 1st Year Even Semester 2012

Course: PHY 1221 (Applied Electricity and Magnetism)

Time: 4 Hrs. Full Marks: 52.5

[N.B. Answer SIX questions taking at least THREE from each part.]

 a) State Gauss's law in electrostatics. b) Find an expression for the magnitude of the electric field Ē at a distance r in front of a sheet having surface charge density σ. 	
c) The nucleus of a uranium atom has a radius R of 6.8x10 ⁻¹⁵ m. What is the magnitude of the electric field at its surface?	
2.a) Define polarization.	2
b) Prove the relation for the capacitance of a parallel plate capacitor $C = \frac{e_0 A}{d - t + t/k}$ of plate area A separated by a distance d with dielectric slab of thickness 't' and constant 'k; in between plates.	3.75
c) Derive an expression for the energy stored in a capacitor.	3
B.a) Define resistance, resistivity and conductivity. What do you mean by a superconductor?	2.75
c) A Cu wire of diameter 1.8 mm carries a steady current of 2.54A. What is the current density in the Cu wire?	3
4.a) State and Explain Kirchhoff's laws in a network and apply them to find an expression for the current through the galvanometer in an unbalanced Wheatstone bridge.	2+3
 b) How can you use this bridge to determine an unknown resistance? c) The current in a simple series circuit is 5 A. When an additional resistance of 2 ohm is inserted, the current drops to 4 A. What was the resistance of the original circuit? 	2 1.75
Part B	
b) Explain and find motional emf. 5.a) Explain Seebeck and Peltier effects. b) What is neutral temperature and temperature of inversion?	3+3 2.75 4 2 2.75
resistance with constant emf.	3+3
	2.75
 i.a) Define reactance and impedance of an ac circuit. b) An alternating emf E=E₀ sin ωt is applied to a circuit containing a capacitor C and a resistor R. Find the the current at any instant. 	2
c) Explain Resonance in LCR ac series circuit.	2.75

University of Rajshahi

Department of Computer Science and Engineering

B.Sc. Engg.(CSE) 1st Year 2nd Semester 2011

Course: PHY 1221 (Applied Electricity and Magnetism)

Time: 4 Hrs. Full Marks: 52.5

[N.B. Answer SIX questions taking at least THREE from each part.]

	4
 1.a) Define an electric dipole and its moment. b) Find the electric field \(\vec{E} \) at a point P due to a dipole at a distance r from the midpoint of the dipole. c) A water molecule in its vapour state has an electric dipole moment 6.2×10⁻³⁰cm. What is the electric field \(\vec{E} \) at a distance r of 1.1 rm from the molecule on the dipole axis? 	5 c 2.7
2.a) What is the role of dielectric constant in a capacitor.	1.7
b) Explain susceptibility and electric polarization. Show that $\vec{D}=\epsilon_0\vec{E}+\rho$.	0.00
3.a) Define current density and conductivity.	2
b) Establish the relation between current density and electron drift velocity.	3
c) One end of an A1 wire of diameter 2.5 mm is welded to one end of Cu wire of diameter 1.8 mm. The composite wire carries a steady current of 1.3A. What is the current density in each wire?	e 3.7
4.a) Describe Kirchhoff's laws in a network.	3
b) Deduce the condition of balance of Wheatstone's bridge.	5.7
Part B	
5.a) State and explain Faraday's law of induction.	1.75
b) Show that the mutual inductances are complementary.	2
 c) Find the co-efficient of coupling. d) A 0.5 m long solenoid has 1500 turns and area of cross section 0.0075 m². A second coil of 500 turns is closely wound on the central part of the solenoid. Calculate mutual inductances between two coils. 	2 3
6.a) Explain Peltier and Thomson effects.	3
b) How the Peltier effect differs from Joule heating effect?	3
c) The emf in a Fe-Pb thermocouple, the cold junction of which is kept at 0°C is given by E=18t-0.015t². Find the neutral temperature and Peltier co-efficient at 27°C.	2.75
7.a) Find expression for the growth and decay of charges of a capacitor through a resistor with constant emf.	3.75
b) What is the time constant in an RC circuit? Show that the time constant has the unit of time. c) In an RC circuit R=0.4x10 ⁶ ohm and C=2.5x10 ⁶ F, in what time will the charge in the capacitor decay one fourth of its initial value?	2 3
8.a) Find the mean value and rms value of an alternating current. b) Obtain the circuit equation for LR ac series circuit and solve it for the current i. c) Define reactance and impedance of the above circuit. Show graphically the variation of reactance with frequency.	3 3.75 2