

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第四章 级数

- 1 复数项级数
- 2 幂级数
- 3 泰勒级数
- 4 洛朗级数

第一节 复数项级数

- ■复数项级数
- ■绝对收敛和条件收敛

-1945-

复数项级数

复数域上的级数与实数域上的级数并无本质差别.

定义

- 设 $\{z_n\}_{n\geq 1}$ 是复数列. 表达式 $\sum_{n=1}^{\infty} z_n$ 称为复数项无穷级数.
- 如果部分和数列 $\{s_n\}_{n\geqslant 1}$ 极限存在, 则称 $\sum\limits_{n=1}^{\infty}z_n$ 收敛, 并记 $\sum\limits_{n=1}^{\infty}z_n=\lim\limits_{n\to\infty}s_n$ 为它的和. 否则称该级数发散.

如果 $\sum_{n=1}^{\infty} z_n = A$ 收敛, 则 $z_n = s_n - s_{n-1} \to A - A = 0$. 因此 $z_n \to 0$ 是

 $\sum_{n=1}^{\infty} z_n$ 收敛的必要条件.

复数项级数敛散性的判定

定理

$$\sum_{n=1}^{\infty} z_n = a + bi$$
 当且仅当 $\sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b.$

证明

设部分和

$$\sigma_n = x_1 + x_2 + \dots + x_n, \quad \tau_n = y_1 + y_2 + \dots + y_n.$$

则

$$s_n = z_1 + z_2 + \dots + z_n = \sigma_n + i\tau_n.$$

由复数列的敛散性判定条件可知

$$\lim_{n \to \infty} s_n = a + bi \iff \lim_{n \to \infty} \sigma_n = a, \quad \lim_{n \to \infty} \tau_n = b.$$

于是命题得证.

复数项级数敛散性的判定

定理

如果实数项级数

$$\sum_{n=1}^{\infty} |z_n| = |z_1| + |z_2| + \cdots$$

收敛, 则
$$\sum\limits_{n=1}^{\infty}z_n$$
 也收敛, 且 $\left|\sum\limits_{n=1}^{\infty}z_n\right|\leqslant\sum\limits_{n=1}^{\infty}|z_n|$.

复数项级数敛散性的判定

证明

因为 $|x_n|, |y_n| \leq |z_n|$, 由比较判别法可知实数项级数 $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ 绝对收敛,

从而收敛. 故 $\sum_{n=1}^{\infty} z_n$ 也收敛.

由三角不等式可知 $\left|\sum_{k=1}^{n} z_{k}\right| \leqslant \sum_{k=1}^{n} |z_{k}|$. 两边同时取极限即得级数的不等式关

系

$$\left|\sum_{n=1}^{\infty} z_n\right| = \left|\lim_{n \to \infty} \sum_{k=1}^n z_k\right| = \lim_{n \to \infty} \left|\sum_{k=1}^n z_k\right| \leqslant \lim_{n \to \infty} \sum_{k=1}^n |z_k| = \sum_{n=1}^{\infty} |z_n|,$$

其中第二个等式是因为绝对值函数 |z| 连续.

绝对收敛和条件收敛

定义

- (1) 如果级数 $\sum_{n=1}^{\infty} |z_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} z_n$ 绝对收敛.
- (2) 称收敛但不绝对收敛的级数条件收敛.

定理

 $\sum\limits_{n=1}^{\infty}z_{n}$ 绝对收敛当且仅当它的实部和虚部级数都绝对收敛.

证明

必要性由前一定理的证明已经知道, 充分性由 $|z_n| \leq |x_n| + |y_n|$ 可得.

绝对收敛和条件收敛的判定

实部级数

虚部级数

		发散	条件收敛	绝对收敛
$\left(\right)$	发散	发散	发散	发散
	条件收敛	发散	条件收敛	条件收敛
	绝对收敛	发散	条件收敛	绝对收敛

绝对收敛和条件收敛

绝对收敛的复级数各项可以任意重排次序而不改变其绝对收敛性, 且不改变 其和.

一般的级数重排有限项不改变其敛散性与和, 但如果重排无限项则可能会改变其敛散性与和.

思考

什么时候
$$\left|\sum\limits_{n=1}^{\infty}z_{n}\right|=\sum\limits_{n=1}^{\infty}|z_{n}|$$
?

答案

当且仅当非零的 z_n 的辐角全都相同时成立.

例

级数 $\sum_{n=1}^{\infty} \frac{1+i^n}{n}$ 发散、条件收敛、还是绝对收敛?

解

由于实部级数

$$\sum_{n=1}^{\infty} x_n = 1 + \frac{1}{3} + \frac{2}{4} + \frac{1}{5} + \frac{1}{7} + \frac{2}{8} + \cdots$$

发散,所以该级数发散.

它的虚部级数是一个交错级数, 从而是条件收敛的.

例

级数 $\sum_{n=1}^{\infty} \frac{i^n}{n}$ 发散、条件收敛、还是绝对收敛?

解

因为它的实部和虚部级数

$$\sum_{n=1}^{\infty} x_n = -\frac{1}{2} + \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \cdots$$

$$\sum_{n=1}^{\infty} y_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

均条件收敛, 所以原级数条件收敛.

典型例题: 判断级数的敛散性

练习

级数
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} + \frac{i}{2^n} \right]$$
 发散、条件收敛、还是绝对收敛?

答案

实部级数条件收敛,虚部级数绝对收敛,所以该级数条件收敛.

级数敛散性判别法

由正项级数的判别法可以得到: 设

- (1) 达朗贝尔判别法 (比值法): $\lambda = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$ (假设存在);
- (2) 柯西判别法 (根式法): $\lambda = \lim_{n \to \infty} \sqrt[n]{|z_n|}$ (假设存在);
- (3) 柯西-阿达马判别法: $\lambda = \overline{\lim_{n \to \infty}} \sqrt[n]{|z_n|}$ (子数列中极限的最大值).
 - 当 $\lambda < 1$ 时, $\sum_{n=0}^{\infty} z_n$ 绝对收敛.
 - 当 $\lambda > 1$ 时, $\sum_{n=0}^{\infty} z_n$ 发散.
 - 当 $\lambda = 1$ 时, 无法使用该方法判断敛散性.

其证明是通过将该级数与相应的等比级数做比较得到的.

典型例题: 判断级数的敛散性

例

 $\sum_{n=0}^{\infty} \frac{(8i)^n}{n!}$ 发散、条件收敛、还是绝对收敛?

解

因为
$$\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = \lim_{n\to\infty} \left| \frac{8}{n+1} \right| = 0$$
, 所以该级数绝对收敛.

实际上. 它的实部和虚部级数分别为

$$1 - \frac{8^2}{2!} + \frac{8^4}{4!} - \dots = \cos 8, \quad 8 - \frac{8^3}{3!} + \frac{8^5}{5!} - \dots = \sin 8,$$

因此

$$\sum_{n=0}^{\infty} \frac{(8i)^n}{n!} = \cos 8 + i \sin 8 = e^{8i}.$$

第二节 幂级数

- ■幂级数的收敛域
- ■收敛半径的计算
- ■幂级数的运算性质

函数项级数与幂级数

复变函数级数与实变量函数级数也是类似的.

定义

- 设 $\{f_n(z)\}_{n\geq 1}$ 是一个复变函数列, 其中每一项都在区域 D 上有定义. 表达式 $\sum\limits_{n=1}^{\infty}f_n(z)$ 称为复变函数项级数.
- 对于 $z_0 \in D$, 如果级数 $\sum_{n=1}^{\infty} f_n(z_0)$ 收敛, 则称 $\sum_{n=1}^{\infty} f_n(z)$ 在 z_0 处收敛, 相应 级数的值称为它的和.
- 如果 $\sum_{n=1}^{\infty} f_n(z)$ 在 D 上处处收敛,则它的和是一个函数,称为和函数.
- 称形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的函数项级数为幂级数.

我们只需要考虑 a=0 情形的幂级数, 因为二者的收敛范围与和函数只是差一个平移.

阿贝尔定理

阿贝尔定理

- (1) 如果 $\sum_{n=0}^{\infty} c_n z^n$ 在 $z_0 \neq 0$ 处收敛, 那么对任意 $|z| < |z_0|$ 的 z, 该级数必绝对收敛.
- (2) 如果 $\sum_{n=0}^{\infty} c_n z^n$ 在 $z_0 \neq 0$ 处发散, 那么对任意 $|z| > |z_0|$ 的 z, 该级数必发散.

证明

(1) 因为级数收敛, 所以 $\lim_{n\to\infty} c_n z_0^n = 0$. 故存在 M 使得 $|c_n z_0^n| < M$. 对于 $|z| < |z_0|$,

$$\sum_{n=0}^{\infty} |c_n z^n| = \sum_{n=0}^{\infty} |c_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \le M \sum_{n=0}^{\infty} \left| \frac{z}{z_0} \right|^n = \frac{M}{1 - \left| \frac{z}{z_0} \right|}.$$

所以级数在 z 处绝对收敛. (2)是(1)的逆否命题.

幂级数的收敛半径

设 R 是实幂级数 $\sum_{n=0}^{\infty} |c_n| x^n$ 的收敛半径.

- 如果 $R=+\infty$, 由阿贝尔定理可知 $\sum\limits_{n=0}^{\infty}c_nz^n$ 处处绝对收敛.
- 如果 $0 < R < +\infty$, 那么 $\sum_{n=0}^{\infty} c_n z^n$ 在 |z| < R 上绝对收敛, 在 |z| > R 上发散.
- 如果 R=0, 那么 $\sum_{n=0}^{\infty} c_n z^n$ 仅在 z=0 处收敛, 对任意 $z\neq 0$ 都发散.

我们称 R 为该幂级数的收敛半径.

例题: 收敛半径的计算

例

求幂级数 $\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots$ 的收敛半径与和函数.

解

如果幂级数收敛,则由 $z^n \to 0$ 可知 |z| < 1. 当 |z| < 1 时,和函数为

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - z^{n+1}}{1 - z} = \frac{1}{1 - z}.$$

因此收敛半径为1.

收敛半径的计算

由正项级数的相应判别法容易得到公式 $R=\frac{1}{r}$, 其中

- (1) 达朗贝尔公式 (比值法): $r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ (假设存在);
- (2) 柯西公式 (根式法): $r = \lim_{n \to \infty} \sqrt[n]{|c_n|}$ (假设存在);
- (3) 柯西-阿达马公式: $r = \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}$.

如果 r=0 或 $+\infty$, 则 $R=+\infty$ 或 0.

-1945-

例

求幂级数 $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n}$ 的收敛半径, 并讨论 z=0,2 的情形.

解

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{n}{n+1} = 1$$
 可知收敛半径为 1. 当 $z=2$ 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散. 当 $z=0$ 时, $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛.

事实上, 收敛圆周上既可能处处收敛, 也可能处处发散, 也可能既有收敛的点也有发散的点.

典型例题: 收敛半径的计算

例

求幂级数 $\sum_{n=0}^{\infty} \cos(in) z^n$ 的收敛半径.

解

我们有
$$c_n = \cos(in) = \frac{e^n + e^{-n}}{2}$$
. 由

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \frac{e^{n+1} + e^{-n-1}}{e^n + e^{-n}} = e \lim_{n \to \infty} \frac{1 + e^{-2n-2}}{1 + e^{-2n}} = e$$

可知收敛半径为 $\frac{1}{e}$.

练习

幂级数的有理运算

定理

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R_1, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n, |z| < R_2.$$

那么当 $|z| < R = \min\{R_1, R_2\}$ 时,

$$(f \pm g)(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n, \quad (fg)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) z^n.$$

当 f,g 的收敛半径相同时, $f\pm g$ 或 fg 的收敛半径可以比 f,g 的大.

幂级数的代换运算

定理

设幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, |z| < R,$$

设函数 $\varphi(z)$ 在 |z| < r 上解析且 $|\varphi(z)| < R$, 那么当 |z| < r 时,

$$f[\varphi(z)] = \sum_{n=0}^{\infty} a_n [\varphi(z)]^n.$$

幂级数的解析性质

定理

设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R, 则在 |z| < R 上:

- (1) 它的和函数 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 解析,
- (2) $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$,
- (3) $\int_0^z f(z) dz = \sum_{n=0}^\infty \frac{c_n}{n+1} z^{n+1}$.

也就是说, 在收敛圆内, 幂级数的和函数解析, 且可以逐项求导, 逐项积分.

幂级数的解析性质

由于和函数在 |z| > R 上没有定义,因此我们不能谈和函数在 |z| = R 上的解析性.

如果函数 g(z) 在该幂级数收敛的点处和 f(z) 均相同,则 g(z) 一定在收敛圆周上有奇点. 这是因为一旦 g(z) 在收敛圆周上处处解析,该和函数就可以在一个半径更大的圆域上作泰勒展开.

例题: 幂级数展开

例

把函数 $\frac{1}{z-b}$ 表成形如 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的幂级数, 其中 $a \neq b$.

解

$$\frac{1}{z-b} = \frac{1}{(z-a)-(b-a)} = \frac{1}{a-b} \cdot \frac{1}{1-\frac{z-a}{b-a}}.$$

当
$$|z-a| < |b-a|$$
 时, $\frac{1}{z-b} = \frac{1}{a-b} \sum_{n=0}^{\infty} \left(\frac{z-a}{b-a}\right)^n$, 即

$$\frac{1}{z-b} = -\sum_{n=0}^{\infty} \frac{(z-a)^n}{(b-a)^{n+1}}, \quad |z-a| < |b-a|.$$

典型例题: 幂级数的收敛半径与和函数

例

求幂级数 $\sum_{n=1}^{\infty} (2^n - 1)z^{n-1}$ 的收敛半径与和函数.

解

由
$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=\lim_{n\to\infty}\frac{2^{n+1}-1}{2^n-1}=2$$
 可知收敛半径为 $\frac{1}{2}$. 当 $|z|<\frac{1}{2}$ 时, $|2z|<1$. 从而

$$\sum_{n=1}^{\infty} (2^n - 1)z^{n-1} = \sum_{n=1}^{\infty} 2^n z^{n-1} - \sum_{n=1}^{\infty} z^{n-1}$$
$$= \frac{2}{1 - 2z} - \frac{1}{1 - z} = \frac{1}{(1 - 2z)(1 - z)}.$$

例

求幂级数 $\sum_{n=0}^{\infty} (n+1)z^n$ 的收敛半径与和函数.

解

由
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{n+1}{n} = 1$$
 可知收敛半径为 1. 当 $|z| < 1$ 时,

$$\int_0^z \sum_{n=0}^\infty (n+1)z^n \, \mathrm{d}z = \sum_{n=0}^\infty z^{n+1} = \frac{z}{1-z} = -1 - \frac{1}{z-1},$$

因此

$$\sum_{n=0}^{\infty} (n+1)z^n = \left(-\frac{1}{z-1}\right)' = \frac{1}{(z-1)^2}, \quad |z| < 1.$$

典型例题: 幂级数的收敛半径与和函数

练习

 \overline{x} 求幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n}$ 的收敛半径与和函数.

答案

收敛半径为 1, 和函数为 ln(1-z).

例题: 函数项级数的积分

例

$$\vec{x} \oint_{|z|=\frac{1}{2}} \left(\sum_{n=-1}^{\infty} z^n \right) dz.$$

解

由于 $\sum_{n=0}^{\infty} z^n$ 在 |z| < 1 收敛, 它的和函数解析. 因此

$$\oint_{|z|=\frac{1}{2}} \left(\sum_{n=-1}^{\infty} z^n \right) dz = \oint_{|z|=\frac{1}{2}} \frac{1}{z} dz + \oint_{|z|=\frac{1}{2}} \left(\sum_{n=0}^{\infty} z^n \right) dz$$
$$= 2\pi i + 0 = 2\pi i.$$

第三节 泰勒级数

- 泰勒展开的形式与性质
- ■泰勒展开的计算方法

-1945-

实泰勒级数的特点

我们知道,幂级数在它的收敛域内的和函数是一个解析函数.反过来,解析函数是不是也一定可以在一点展开成幂级数呢?也就是说是否存在泰勒级数展开?在实变函数中我们知道,一个函数即使在一点附近无限次可导,它的泰勒级数也未必收敛到原函数.例如

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

它处处可导, 但是它在 0 处的各阶导数都是 0. 因此它的泰勒级数是 0, 余项恒为 f(x). 除 0 外它的泰勒级数均不收敛到原函数.

实泰勒级数的特点

而即使是泰勒级数能收敛到原函数的情形, 它成立的范围也很难从函数本身读出. 例如

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots, \quad |x| < 1.$$

这可以从 x = -1 是奇点看出. 而

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots, \quad |x| < 1$$

却并没有奇点. 为什么它的麦克劳林级数成立的开区间也是 (-1,1)? 这个问题在本节可以得到回答.

泰勒展开的形式

设函数 f(z) 在区域 D 解析, $z_0\in D$. 设 $|z-z_0|$ 小于 z_0 到 D 边界的距离 d, 则存在 $|z-z_0|< r< d$. 设 $K:|\zeta-z_0|=r$, 则 K 和它的内部包含在 D 中. 由于 $\left|\frac{z-z_0}{\zeta-z_0}\right|<1$, 因此

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$

故

$$f(z) = \frac{1}{2\pi i} \oint_K \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_K f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta$$
$$= \sum_{n=0}^{N-1} \left[\frac{1}{2\pi i} \oint_K \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n + R_N(z),$$
$$= \sum_{n=0}^{N-1} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n + R_N(z),$$

其中

$$R_N(z) = \frac{1}{2\pi i} \oint_K f(\zeta) \left[\sum_{n=N}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} \right] d\zeta$$
$$= \frac{1}{2\pi i} \oint_K \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z - z_0}{\zeta - z_0} \right)^N d\zeta.$$

泰勒展开的形式

由于 $f(\zeta)$ 在 $D\supseteq K$ 上解析, 从而在 K 上连续且有界. 设 $|f(\zeta)|\leqslant M,\zeta\in K$, 那么

$$|R_N(z)| \leqslant \frac{1}{2\pi} \oint_K \left| \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z - z_0}{\zeta - z_0} \right)^N \right| ds$$

$$\leqslant \frac{1}{2\pi} \cdot \frac{M}{r - |z - z_0|} \cdot \left| \frac{z - z_0}{\zeta - z_0} \right|^N \cdot 2\pi r \to 0 \quad (N \to \infty).$$

故

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad |z - z_0| < d.$$

泰勒展开的成立范围

由于幂级数在收敛半径内的和函数是解析的, 因此解析函数的泰勒展开成立 的圆域不包含奇点. 由此可知, 解析函数在 z_0 处泰勒展开成立的圆域的最大半径 是 zn 到最近奇点的距离

需要注意的是, 泰勒级数的收敛半径是有可能比这个半径更大的, 而且泰勒 展开等式也可能在这个圆域之外的点成立. 例如

$$f(z) = \begin{cases} e^z, & z \neq 1; \\ 0, & z = 1 \end{cases}$$

的麦克劳林展开为 $f(z)=\sum\limits_{n=0}^{\infty}\frac{z^n}{n!},\quad |z|<1.$ 现在我们来看 $f(z)=\frac{1}{1+z^2}.$ 它的奇点为 $\pm i$,所以它的麦克劳林展开成立的半径是 1. 这就解释了为什么函数 $f(x)=\frac{1}{1+x^2}$ 的麦克劳林展开成立的开区 间是 (-1,1).

幂级数展开的唯一性

若 f(z) 在 z_0 附近展开为 $\sum_{n=0}^{\infty} c_n(z-z_0)^n$, 则由幂级数的逐项求导性质可知

$$f^{(n)}(z_0) = \sum_{k=n}^{\infty} c_k k(k-1) \cdots (k-n+1)(z-z_0)^{k-n} \Big|_{z=z_0} = n! c_n.$$

所以解析函数的幂级数展开是唯一的.

因此解析函数的泰勒展开不仅可以直接求出各阶导数得到, 也可以利用幂级数的运算法则得到.

典型例题: 泰勒展开的计算

例

由于
$$(e^z)^{(n)}(0) = e^z|_{z=0} = 1$$
,因此
$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad \forall z.$$

例

由于
$$(\cos z)^{(n)} = \cos\left(z + \frac{n\pi}{2}\right)$$
,

$$(\cos z)^{(2n+1)}(0) = 0, \quad (\cos z)^{(2n)}(0) = (-1)^n,$$

因此

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad \forall z.$$

-1945-

由 e^z 的泰勒展开可得

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{\infty} \frac{(iz)^n - (-iz)^n}{2i \cdot n!}$$
$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad \forall z$$

函数 $f(z)=(1+z)^{\alpha}$ 的主值为 $\exp\left[\alpha\ln(1+z)\right]$. 它在去掉射线 $z=x\leqslant -1$ 的区域内解析. 由于

$$f^{(n)}(0) = \alpha(\alpha - 1) \cdots (\alpha - n + 1) \exp[(\alpha - n) \ln(1 + z)]\Big|_{z=0}$$
$$= \alpha(\alpha - 1) \cdots (\alpha - n + 1).$$

因此

$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2}z^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}z^3 + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^n, \quad |z| < 1.$$

将对数函数的主值 $\ln(1+z)$ 展开成 z 的幂级数.

解

由于 $\ln(1+z)$ 在去掉射线 $z=x\leqslant -1$ 的区域内解析, 因此它在 |z|<1 内解析. 此时

$$[\ln(1+z)]' = \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \quad |z| < 1.$$

逐项积分得到

$$\ln(1+z) = \int_0^z \frac{1}{1+\zeta} d\zeta = \int_0^z \sum_{n=0}^\infty (-1)^n \zeta^n d\zeta$$
$$= \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1} = \sum_{n=1}^\infty \frac{(-1)^{n+1} z^n}{n}, \quad |z| < 1.$$

典型例题: 泰勒展开的计算

例

将 $\frac{1}{(1+z)^2}$ 展开成 z 的幂级数.

解

由于
$$\frac{1}{(1+z)^2}$$
 的奇点为 $z=-1$, 因此它在 $|z|<1$ 内解析. 由于

$$\frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots = \sum_{n=0}^{\infty} (-1)^n z^n,$$

因此

$$\frac{1}{(1+z)^2} = -\left(\frac{1}{1+z}\right)' = -\sum_{n=1}^{\infty} (-1)^n nz^{n-1}$$
$$= \sum_{n=1}^{\infty} (-1)^n (n+1)z^n, \quad |z| < 1.$$

典型例题: 泰勒展开的计算

例

将 $\frac{1}{3z-2}$ 展开成 z 的幂级数.

解

由于
$$\frac{1}{3z-2}$$
 的奇点为 $z=\frac{2}{3}$,因此它在 $|z|<\frac{2}{3}$ 内解析. 此时
$$\frac{1}{3z-2}=-\frac{1}{2}\cdot\frac{1}{1-\frac{3z}{2}}=-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{3z}{2}\right)^n$$

$$=-\sum_{n=0}^{\infty}\frac{3^n}{2^{n+1}}z^n,\quad |z|<\frac{2}{3}.$$

练习

将 $\frac{1}{1-3z+2z^2}$ 展开成 z 的幂级数.

答案

$$\frac{1}{1 - 3z + 2z^2} = \frac{2}{1 - 2z} - \frac{1}{1 - z} = \sum_{n=0}^{\infty} (2^{n+1} - 1)z^n, \quad |z| < \frac{1}{2}.$$

思考

奇函数和偶函数的麦克劳林展开有什么特点?

答案

奇函数 (偶函数) 的麦克劳林展开只有奇数次项 (偶数次项).

第四节 洛朗级数

- 双边幂级数
- 洛朗展开的形式
- 洛朗展开的计算方法

双边幂级数

如果解析函数 f(z) 在 z_0 处解析, 那么在 z_0 处可以展开成泰勒级数. 如果 f(z) 在 z_0 处不解析呢? 此时 f(z) 一定不能展开成 $z-z_0$ 的幂级数, 然而它却可能可以展开为双边幂级数

例如

$$\frac{1}{z^2(1-z)} = \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \cdots, \quad 0 < |z| < 1.$$

双边幂级数的敛散性

为了保证双边幂级数的收敛范围有一个好的性质以便于我们使用, 我们对它的敛散性作如下定义:

定义

如果双边幂级数的非负幂次部分和负幂次部分作为函数项级数都收敛,则我们称这个双边幂级数收敛. 否则我们称之为发散.

注意双边幂级数的敛散性不能像幂级数那样通过部分和形成的数列的极限 来定义, 因为使用不同的部分和选取方式会影响到极限的数值.

双边幂级数的收敛域

设 $\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ 的收敛半径为 R_2 , 则它在 $|z-z_0|< R_2$ 内收敛, 在 $|z-z_0|>R_2$ 内发散.

对于负幂次部分,令 $\zeta = \frac{1}{z-z_0}$,那么负幂次部分是 ζ 的一个幂级数 $\sum\limits_{n=1}^{\infty} c_{-n} \zeta^n$. 设该幂级数的收敛半径为 R,则它在 $|\zeta| < R$ 内收敛,在 $|\zeta| > R$ 内发散. 设 $R_1 := \frac{1}{R}$,则 $\sum\limits_{n=1}^{\infty} c_{-n} (z-z_0)^{-n}$ 在 $|z-z_0| > R_1$ 内收敛,在 $|z-z_0| < R_1$ 内发散.

- (1) 如果 $R_1 > R_2$, 则该双边幂级数处处不收敛.
- (2) 如果 $R_1 = R_2$, 则该双边幂级数只在圆周 $|z z_0| = R_1$ 上可能有收敛的点. 此时没有收敛域.
- (3) 如果 $R_1 < R_2$, 则该双边幂级数在 $R_1 < |z-z_0| < R_2$ 内收敛, 在 $|z-z_0| < R_1$ 或 $> R_2$ 内发散, 在圆周 $|z-z_0| = R_1$ 或 R_2 上既可能发散也可能收敛.

双边幂级数的收敛域

因此双边幂级数的收敛域为圆环域 $R_1 < |z - z_0| < R_2$. 当 $R_1 = 0$ 或 $R_2 = +\infty$ 时, 圆环域的形状会有所不同.

双边幂级数的非负幂次部分和负幂次部分在收敛圆环域内都收敛,因此它们的和函数都解析 ($\zeta = \frac{1}{z-z_0}$ 关于 z 解析),且可以逐项求导、逐项积分. 从而双边幂级数的和函数也是解析的,且可以逐项求导、逐项积分.

求双边幂级数
$$\sum_{n=1}^{\infty} \frac{z^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{(2+i)^n}$$
 的收敛域与和函数.

解

非负幂次部分收敛域为 $|z|<|2+i|=\sqrt{5}$, 负幂次部分收敛域为 |z|>|2|=2. 因此该双边幂级数的收敛域为 $2<|z|<\sqrt{5}$. 此时

$$\sum_{n=1}^{\infty} \frac{2^n}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{(2+i)^n} = \frac{\frac{z}{z}}{1 - \frac{z}{z}} + \frac{1}{1 - \frac{z}{2+i}} = \frac{-iz}{(z-2)(z-2-i)}.$$

洛朗级数

反过来,在圆环域内解析的函数也一定能展开为双边幂级数,被称为洛朗级

数.

例如
$$f(z) = \frac{1}{z(1-z)}$$
 在 $z = 0, 1$ 以外解析. 在圆环域 $0 < |z| < 1$ 内,

$$f(z) = \frac{1}{z} + \frac{1}{1-z} = \frac{1}{z} + 1 + z + z^2 + z^3 + \cdots$$

在圆环域 $1 < |z| < +\infty$ 内,

$$f(z) = \frac{1}{z} - \frac{1}{z} \cdot \frac{1}{1 - \frac{1}{z}} = -\frac{1}{z^2} - \frac{1}{z^3} - \frac{1}{z^4} - \cdots$$

洛朗级数的形式

现在我们来证明洛朗级数的存在性并得到洛朗展开式. 设 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内解析. 设

$$K_1: |z-z_0| = r$$
, $K_2: |z-z_0| = R$, $R_1 < r < R < R_2$.

是该圆环域内的两个圆周. 对于 $r < |z - z_0| < R$, 由柯西积分公式,

$$f(z) = \frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

-1945-

洛朗级数

和泰勒级数的推导类似,

$$\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

可以表达为幂级数的形式. 对于 $\zeta \in K_1$, 由 $\left| \frac{\zeta - z_0}{z - z_0} \right| < 1$ 可得

$$-\frac{1}{\zeta - z} = \frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}} = \sum_{n=1}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}},$$

$$-\frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=1}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}} d\zeta.$$

-1945-

洛朗级数的形式

$$R_N(z) = \frac{1}{2\pi i} \oint_{K_1} f(\zeta) \sum_{n=N}^{\infty} \frac{(z - z_0)^{-n}}{(\zeta - z_0)^{-n+1}} d\zeta$$
$$= \frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta)}{z - \zeta} \cdot \left(\frac{\zeta - z_0}{z - z_0}\right)^{N-1} d\zeta.$$

由于 $f(\zeta)$ 在 $D \supseteq K_1$ 上解析,从而在 K_1 上连续且有界. 设 $|f(\zeta)| \leqslant M, \zeta \in K_1$,那么

$$|R_N(z)| \leqslant \frac{1}{2\pi} \oint_{K_1} \left| \frac{f(\zeta)}{z - \zeta} \cdot \left(\frac{\zeta - z_0}{z - z_0} \right)^{N-1} \right| ds$$

$$\leqslant \frac{1}{2\pi} \cdot \frac{M}{|z - z_0| - r} \cdot \left| \frac{\zeta - z_0}{z - z_0} \right|^{N-1} \cdot 2\pi r \to 0 \quad (N \to \infty).$$

洛朗级数的形式

故

$$f(z) = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n$$

$$+ \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_1} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{-n+1}} \right] (z - z_0)^{-n},$$

其中 $r<|z-z_0|< R$. 由复合闭路定理, K_1,K_2 可以换成任意一条在圆环域内绕 z_0 的闭路 C. 从而我们得到 f(z) 在以 z_0 为圆心的圆环域的洛朗展开

$$f(z) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi i} \oint_C \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} \right] (z - z_0)^n,$$

其中 $R_1 < |z - z_0| < R_2$.

洛朗展开的唯一性

我们称 f(z) 洛朗展开的非负幂次部分为它的解析部分, 负幂次部分为它的主要部分.

设在圆环域 $R_1 < |z-z_0| < R_2$ 内的解析函数 f(z) 可以表达为双边幂级数

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n,$$

则逐项积分得到

$$\oint_C \frac{f(\zeta) \, \mathrm{d}\zeta}{(\zeta - z_0)^{n+1}} = \sum_{k = -\infty}^{\infty} c_k \oint_C (\zeta - z_0)^{k-n-1} \, \mathrm{d}\zeta = 2\pi i c_n.$$

因此 f(z) 在圆环域内的双边幂级数展开是唯一的, 它就是洛朗级数.

典型例题: 求洛朗级数

例

将
$$f(z) = \frac{e^z - 1}{z^2}$$
 展开为以 0 为中心的洛朗级数.

由洛朗级数的唯一性,我们可以从 e^z 的泰勒展开通过代数运算来得到洛朗级数. 这种做法比直接计算积分更简便. 因此我们一般 不用直接法, 而是 用双边幂级数的代数、求导、求积分运算 来得到洛朗级数.

解

$$\frac{e^z - 1}{z^2} = \frac{1}{z^2} \left(z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \right) = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n,$$

其中 $0 < |z| < +\infty$.

典型例题: 求洛朗展开

例

在下列圆环域中把 $f(z) = \frac{1}{(z-1)(z-2)}$ 展开为洛朗级数.

(1)
$$0 < |z| < 1$$
, (2) $1 < |z| < 2$, (3) $2 < |z| < +\infty$.

解

由于 f(z) 的奇点为 z=1,2, 因此在这些圆环域内 f(z) 都可以展开为洛朗级数. 注意到

$$f(z) = \frac{1}{z - 2} - \frac{1}{z - 1},$$

因此我们可以根据 |z| 的范围来将其展开成等比级数.

续解

(1) 由于
$$|z| < 1$$
, $\left| \frac{z}{2} \right| < 1$, 因此
$$f(z) = -\frac{1}{2-z} + \frac{1}{1-z} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} + \frac{1}{1-z}$$
$$= -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2} \right)^n + \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}} \right) z^n$$
$$= \frac{1}{2} + \frac{3}{4} z + \frac{7}{8} z^2 + \cdots$$

续解

(2) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{z}{2} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} - \frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}}$$

$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = -\sum_{n=1}^{\infty} \frac{1}{z^n} - \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^n$$

$$= \cdots - \frac{1}{z^2} - \frac{1}{z} - \frac{1}{z} - \frac{1}{2} - \frac{1}{4} z - \frac{1}{8} z^2 - \cdots$$

续解

(3) 由于
$$\left| \frac{1}{z} \right| < 1, \left| \frac{2}{z} \right| < 1$$
, 因此

$$f(z) = \frac{1}{1-z} - \frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} + \frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}}$$
$$= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n = \sum_{n=0}^{\infty} \frac{2^n - 1}{z^{n+1}}$$
$$= \frac{1}{z^2} + \frac{3}{z^3} + \frac{7}{z^4} + \cdots$$

洛朗展开的一些特点可以帮助我们检验计算的正确性.

- 若 f(z) 在 $|z-z_0| < R_2$ 内解析, 则 f(z) 可以展开为泰勒级数. 由唯一性可知泰勒级数等于洛朗级数. 因此此时洛朗展开一定没有负幂次项.
- 若 f(z) 在圆周 $|z-z_0| = R_1, R_2 > 0$ 上有奇点,则在圆环域 $R_1 < |z-z_0| < R_2$ 上的洛朗展开一定有无穷多负幂次和无穷多正幂次项.
- 有理函数在 $0 < |z z_0| < r$ 洛朗展开最多只有有限多负幂次项, 在 $R < |z z_0| < +\infty$ 洛朗展开最多只有有限多正幂次项.
- 有理函数在不同圆环域上的洛朗展开形式地相减, 系数会有共同的通项形式 (\mathbb{R}^n) 的组合, 其中 λ 是奇点, P(n) 是多项式).

例如
$$f(z) = \frac{z^3 - 2z^2 - z + 3}{(z - 1)(z - 2)} = z + 1 + \frac{1}{z - 2} - \frac{1}{z - 1}$$

$$f(z) = -\sum_{n < 0} z^n + \frac{1}{2} + \frac{3}{4}z - \sum_{n \ge 2} 2^{-n-1}z^n, \quad 1 < |z| < 2.$$

每个系数加 1 得到

$$f(z) = \frac{3}{2} + \frac{7}{4}z + \sum_{n>2} (1 - 2^{-n-1})z^n, \quad 0 < |z| < 1,$$

每个系数加 2^{-n-1} 得到

$$f(z) = \sum_{n \ge 0} (2^{-n-1} - 1)z^n + 1 + z, \quad |z| > 2.$$

(2022 年 A 卷) 将函数 $f(z) = \frac{z+1}{(z-1)^2}$ 在圆环域 0 < |z| < 1 内展开成洛朗级数.

解

$$f(z) = \frac{z - 1 + 2}{(z - 1)^2} = \frac{1}{z - 1} + \frac{2}{(z - 1)^2} = -\frac{1}{1 - z} + 2\left(\frac{1}{1 - z}\right)'$$

因此当 0 < |z| < 1 时,

$$f(z) = -\sum_{n=0}^{\infty} z^n + 2\left(\sum_{n=0}^{\infty} z^n\right)' = -\sum_{n=0}^{\infty} z^n + 2\sum_{n=1}^{\infty} nz^{n-1} = \sum_{n=0}^{\infty} (2n+1)z^n.$$

典型例题: 求洛朗展开

练习

(2022 年 A 卷) 将函数 $f(z) = \frac{z+1}{(z-1)^2}$ 在圆环域 $1 < |z| < +\infty$ 内展开成洛朗级数.

答案

$$f(z) = \sum_{n=1}^{\infty} \frac{2n-1}{z^n}.$$

例题: 洛朗展开的应用

注意到当 n=-1 时, 洛朗级数的系数

$$c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta,$$

因此洛朗展开可以用来帮助计算函数的积分, 它就是所谓的留数.

例题: 洛朗展开的应用

例

求
$$\oint_{|z|=3} \frac{1}{z(z+1)^2} \,\mathrm{d}z.$$

解

$$f(z) = \frac{1}{z(z+1)^2} = \frac{1}{(z+1)^3} \cdot \frac{1}{1 - \frac{1}{z+1}}$$
$$= \frac{1}{(z+1)^3} \sum_{n=0}^{\infty} \frac{1}{(z+1)^n} = \sum_{n=0}^{\infty} \frac{1}{(z+1)^{n+3}}$$

数
$$\oint_C f(z) dz = 2\pi i c_{-1} = 0.$$