

MÉTODOS LOCALES II (MANIFOLD LEARNING)

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 12) 23.FEBRERO.2024

Spectral Embedding

Ref: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. M. Belkin, P. Niyogi, Neural Computation, June 2003; 15(6) 1373-1396.

Idea: Se construye una matriz de adyacencia o de afinidad (similaridad) W entre una estructura de grafo entre los datos. Los elementos w_{ij} de W pesan o miden el grado de afinidad.

- Se construye la matriz laplaciana L = D W y la laplaciana normalizada $\mathcal{L} = D^{-1/2}(D W)D^{-1/2}$.
- Se calculan la descomposición en autovalores de \mathcal{L} . Los autovectores describen las direcciones de proyección.

Spectral Embedding

Spectral Embedding

20 60

Laplaciano normalizado ${\cal L}$

Autoencoders

Definir mapas lineales $\mathcal{E}: \mathbb{R}^d \to \mathbb{R}^p$ y $\mathcal{D}: \mathbb{R}^p \to \mathbb{R}^d$, con p < d.

 \mathcal{E} se llama el *encoder*, y \mathcal{D} el *decoder*. El objetivo es resolver $\min_{\mathcal{E},\mathcal{D}} \sum_i ||\mathbf{x}_i - (\mathcal{D} \circ \mathcal{E})(\mathbf{x}_i)||^2.$

Se usa $\mathbf{x}_i^* = \mathcal{E}(\mathbf{x}_i)$ como representación de \mathbf{x}_i . La elección popular para \mathcal{E} y \mathcal{D} : redes neuronales

Autoencoders

Red neuronal covolucional profunda (CNN).

Autoencoders

LLE

LLE: Local Linear Embedding

Refs: Roweis ST, Lawrence LK (2000) Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science 290(5500): 2323-2326. https://cs.nyu.edu/roweis/lle/publications.html

Idea: Caracterizar la estructura local en el espacio original, y tratamos de conservar esta estructura local en el nuevo espacio.

• Si conozco los k-vecinos más cercanos a \mathbf{x}_i , denotados por $\{\mathbf{x}_j: j \in vec(i)\}$.

Vamos a tratar de escribir \mathbf{x}_i como combinación lineal de sus k-vecinos más cercanos (k < d)

$$\mathbf{x}_i = \sum_{j \in vec(i)} \mathbf{w}_{ij} \mathbf{x}_j, \quad \text{com } \sum_{j \in vec(i)} \mathbf{w}_{ij} = 1.$$

LLE

- Para cada \mathbf{x}_i buscamos los k-vecinos más cercanos $\{\mathbf{x}_i: j \in vec(i)\}$.
- Resolvemos

$$\min_{\mathsf{w}_{ij}} \sum_{i} ||\mathbf{x}_i - \sum_{j \in \mathit{vec}(i)} \mathsf{w}_{ij} \mathbf{x}_j||^2,$$

sujeto a $\sum_j w_{ij} = 1$.

Resolvemos

$$\min_{\mathbf{x}_j^*} \sum_i ||\mathbf{x}_i^* - \sum_{j \in \textit{vec}(i)} w_{ij} \mathbf{x}_j^*||^2,$$

sujeto a restricciones de norma y

ᲙᲙᲙᲙᲙᲙᲙᲙᲕ≾३३३३३**३**३३३

LLE

SOM

SOM: Self organizing maps

Ref: Kohonen, Teuvo (1982). Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43 (1): 59-69.

Idea: Colocar cada dato \mathbf{x}_i en una celda $c_{\ell(i)}$ de una retícula o *grid*. Asociamos con cada celda c_ℓ un representante $\mathbf{m}_\ell \in \mathbb{R}^d$.

SOM

Imponemos que

- los representantes a celdas cercanas sean similares,
- los datos son similares al representante de su celda.

Repetir para cada \mathbf{x}_i :

- 1. Buscar el repreentante más cercano a \mathbf{x}_i , denotado como $\mathbf{m}_{\ell(i)}$
- 2. Para todas las celdas c_k , actualizamos

$$\mathbf{m}_k = \mathbf{m}_k + \alpha h \big(d(\mathbf{c}_k, \mathbf{c}_\ell(i))^2 \big) ||\mathbf{x}_i - \mathbf{m}_k||^2.$$

(h es positiva y decreciente, d es la distancia en el grid, α es un tamaño de paso decreciente en el tiempo.)

El método minimiza la función de costo

$$J(\{\mathbf{m}_k\}, \{\ell(i)\}) = \sum_{\ell} \sum_{k} h(d(c_k, c_{\ell}(i))^2) ||\mathbf{x}_i - \mathbf{m}_k||^2.$$

SOM

SOM de países sobre 39 indicadores: salud, educación, economía, servicios, ... (Kohonen)

Figure 2: The values of some of the indicators visualized on the SOM groundwork:
(a) Life expectancy at birth (years); (b) Adult illiteracy (%); (c) Share of food in household consumption (%); (d) Share of medical care in household consumption (%); (e) Population per physician; (f) Infant mortality rate (per thousand live births); (g) Tertiary education enrollment (% of age group); and (h) Share of the lowest-earning 20 percent in the total household income. In each display, white indicates the largest value and black the smallest, respectively.

Ejemplo 2 https://towardsdatascience.com/how-to-implement-kohonens-self-organizing-maps-989c4da05f19

Probabilistic PCA:

Hacer PCA en el espacio de parámetros de la distribución. Considermaso $\mathbb{X} = [\theta_{ij}]$ ó $\mathbb{X} = [g(\theta_{ij})]$ asociados a una muestra $[X_{ij}]$ de v.a. independientes con distribuciones cualquiera.

Hacer $[\theta_{ij}] = USV^T$.

Ejemplo Poisson PCA:

(e)
$$n = 500, \lambda \in (2.16, 2.90)$$

Projection Pursuit:

Similar a PCA. En lugar de buscar la dirección ℓ de máxima varianza, usamos otra medida de proyección óptima.

Buscar direcciones que maximicen la no gaussianidad (caracterizamos la gaussiana en términos de la entropía). Por ejemplo, buscamos ℓ tal que la negentropía de ℓ^T **x** sea máxima. (Similar a ICA)

Camino alternativo: usar Kurtosis (peakedness)

$$Kurt_N(X) = \frac{E(X-EX)^4}{Var(X)^2} \qquad Kurt(X) = E(X-EX)^4 - 3Var(X)^2$$

Métodos aleatorios y grand tour:

Hacer una caminata aleatoria (película) con proyecciones que cambian suavemente.

Recursos en Python

- sklearn.decomposition: Contiene los métodos de PCA, KernelPCA, NMF, FastICA, y contiene otros similares como LDA, FactorAnalysis, DictionaryLearning.
- <u>sklearn.manifold</u>: Contiene métodos de *manifold learning*: Isomap, t-SNE, Local Lineal Embedding (y variantes de LLE: modified LLE, Hessian LLE, LTSA LLE), MultiDimensionalScaling (MDS), SpectralEmbedding.
- <u>tensorflow</u> y <u>pytorch</u>: Librerías para redes neuronales, en particular auto-encoders.
- Software *ggobi*: Tiene importantes herramientas para visualización. Contiene el método de *grand tour*.
- SimpSOM, MiniSom, SOMPy, kohonen: Librerías con implementaciones de SOM. (pip install ...)

