In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression
 import seaborn as sns
 from sklearn.linear_model import Ridge, RidgeCV, Lasso
 from sklearn.preprocessing import StandardScaler

In [2]: df=pd.read_csv(r"C:\Users\Downloads\fiat500_VehicleSelection_Dataset.csv")
 df

:	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	рор	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	рор	73	3074	106880	1	41.903221	12.495650
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	рор	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	pop	51	1766	54276	1	40.323410	17.568270

In [3]: df.head(10)

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	pric
0	1	lounge	51	882	25000	1	44.907242	8.611560	890
1	2	рор	51	1186	32500	1	45.666359	12.241890	880
2	3	sport	74	4658	142228	1	45.503300	11.417840	420
3	4	lounge	51	2739	160000	1	40.633171	17.634609	600
4	5	рор	73	3074	106880	1	41.903221	12.495650	57(
5	6	рор	74	3623	70225	1	45.000702	7.682270	79(
6	7	lounge	51	731	11600	1	44.907242	8.611560	1075
7	8	lounge	51	1521	49076	1	41.903221	12.495650	919
8	9	sport	73	4049	76000	1	45.548000	11.549470	560
9	10	sport	51	3653	89000	1	45.438301	10.991700	600
4									•

In [4]: df.info

1537

1537

1538

Out[4]:			od DataFr s_owners	ame.info of \	ID	model	engine_power	age_in_days
	0	1	 lounge	51	882	2 250	90	1
	1	2	pop	51	1186	325	00	1
	2	3	sport	74	4658	3 1422	28	1
	3	4	lounge	51	2739	1600	90	1
	4	_		70	207/	1 1000	00	4

51

7900

5 pop 73 51 1533 1534 sport 1534 1535 lounge 74 3835 1535 1536 pop 51 2223 1536 1537 51 lounge

3074 106880 3712 115280 1 112000 1 60457 1 2557 1 80750 1 1766 54276

lat price lon 0 44.907242 8.611560 8900 1 45.666359 12.241890 8800 2 45.503300 11.417840 4200 40.633171 17.634609 6000 3 4 41.903221 12.495650 5700 . . . 1533 45.069679 7.704920 5200 1534 45.845692 8.666870 4600 1535 45.481541 9.413480 7500 1536 45.000702 7.682270 5990

17.568270

pop

[1538 rows x 9 columns]>

```
In [5]: |df.describe
Out[5]: <bound method NDFrame.describe of
                                                      ID
                                                           model
                                                                   engine_power
                                                                                  age_in_da
                     previous owners
                 km
         ys
         0
                  1
                      lounge
                                         51
                                                      882
                                                            25000
                                                                                   1
         1
                  2
                                         51
                                                     1186
                                                            32500
                                                                                   1
                         pop
         2
                  3
                                         74
                                                     4658
                                                           142228
                                                                                   1
                       sport
         3
                  4
                      lounge
                                         51
                                                     2739
                                                           160000
                                                                                   1
         4
                  5
                                         73
                                                     3074
                                                                                   1
                         pop
                                                           106880
                                        . . .
                                                     3712
               1534
                                         51
                                                                                   1
         1533
                       sport
                                                           115280
         1534
               1535
                      lounge
                                         74
                                                     3835
                                                           112000
                                                                                   1
         1535
               1536
                                         51
                                                     2223
                                                            60457
                                                                                   1
                         pop
                      lounge
         1536
               1537
                                         51
                                                     2557
                                                            80750
                                                                                   1
         1537
               1538
                         pop
                                         51
                                                     1766
                                                            54276
                                                                                   1
                                       price
                      lat
                                 lon
         0
               44.907242
                            8.611560
                                        8900
               45.666359
                           12.241890
                                        8800
         1
         2
               45.503300
                           11.417840
                                        4200
         3
               40.633171
                           17.634609
                                        6000
               41.903221
                                        5700
         4
                           12.495650
                                         . . .
         . . .
                            7.704920
         1533
               45.069679
                                        5200
         1534
               45.845692
                            8.666870
                                        4600
         1535
               45.481541
                            9.413480
                                        7500
         1536
               45.000702
                            7.682270
                                        5990
         1537
               40.323410
                           17.568270
                                        7900
         [1538 rows x 9 columns]>
In [6]: df.columns
Out[6]: Index(['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previous_owners',
                 'lat', 'lon', 'price'],
               dtype='object')
```

In [7]: sns.displot(['Price'])

Out[7]: <seaborn.axisgrid.FacetGrid at 0x23fc6794490>

In [8]: sns.displot(df['price'])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x23fcca264d0>

In [9]: sns.displot(df['engine_power'])

Out[9]: <seaborn.axisgrid.FacetGrid at 0x23fcd165f30>

Out[10]: <Axes: >


```
Out[11]: <Axes: >
```



```
In [13]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print(regr.intercept_)
```

In [14]: coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
coeff_df

Out[14]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [15]: predictions=regr.predict(X_test)
plt.scatter(y_test,predictions)

Out[15]: <matplotlib.collections.PathCollection at 0x23fce477ac0>


```
In [16]: sns.displot((y_test,predictions),bins=50)
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x23fce36ace0>


```
In [17]: from sklearn import metrics
    print('MAE:',metrics.mean_absolute_error(y_test,predictions))
    print('MSE:',metrics.mean_squared_error(y_test,predictions))
    print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179519935 MSE: 551442.6799691805 MAE: 742.5918663500029

```
In [18]: #accuracy
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    regr.fit(X_train,y_train)
    print(regr.score(X_test,y_test))
```

In [19]: plt.figure(figsize=(10,10))
sns.heatmap(fiatdf.corr(),annot=True)

Out[19]: <Axes: >

In [20]: sns.lmplot(x="age_in_days",y="km",data=fiatdf,order=2)

Out[20]: <seaborn.axisgrid.FacetGrid at 0x23fceaa20b0>


```
In [21]: sns.lmplot(x="price",y="km",data=df,order=2)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x23fceb02bf0>


```
In [22]: df.fillna(method='ffill',inplace=True)
    x=np.array(df['age_in_days']).reshape(-1,1)
    y=np.array(df['km']).reshape(-1,1)
    df.dropna(inplace=True)
```

```
In [23]:
    X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    regr.fit(X_train,y_train)
    regr.fit(X_train,y_train)
```

Out[23]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [24]: y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='y')
    plt.plot(X_test,y_pred,color='b')
    plt.show()
```



```
In [25]: #Linear regression model
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    actual=y_test #actual value
    train_score_regr=regr.score(X_train,y_train)
    test_score_regr=regr.score(X_test,y_test)
    print("\nLinear model:\n")
    print("The train score for Linear model is {}".format(train_score_regr))
    print("The test score for Linear model is {}".format(test_score_regr))
```

Linear model:

The train score for Linear model is 0.698875263814575 The test score for Linear model is 0.6788811761009449

```
In [26]: #ridge regression model
    ridgeReg=Ridge(alpha=10)
    ridgeReg.fit(X_train,y_train)
    #train and test score for ridge regression
    train_score_ridge=ridgeReg.score(X_train,y_train)
    test_score_ridge=ridgeReg.score(X_test,y_test)
    print("\nRidge model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge model:

The train score for ridge model is 0.698875263814575 The test score for ridge model is 0.6788811770230736

```
In [27]: #lasso regression model
    lassoReg=Lasso(alpha=10)
    lassoReg.fit(X_train,y_train)
    #train and test score for ridge regression
    train_score_lasso=lassoReg.score(X_train,y_train)
    test_score_lasso=lassoReg.score(X_test,y_test)
    print("\nLasso model:\n")
    print("The train score for lasso model is {}".format(train_score_lasso))
    print("The test score for lasso model is {}".format(test_score_lasso))
```

Lasso model:

The train score for lasso model is 0.6988752638145399 The test score for lasso model is 0.6788812133066009

```
In [28]: #using the linear cv model for ridge regression
    from sklearn.linear_model import RidgeCV
    #ridge cross validation
    ridge_cv=RidgeCV(alphas=[0.0001,0.001,0.1,1,10]).fit(X_train,y_train)
    #score
    print(ridge_cv.score(X_train,y_train))
    print(ridge_cv.score(X_test,y_test))
```

0.6988752638145734

```
In [30]: #using the Linear cv model for Lasso regression
    from sklearn.linear_model import LassoCV
    #Lasso cross validation
    lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,1,10],random_state=0).fit(X_tra
    #score
    print(lasso_cv.score(X_train,y_train))
    print(lasso_cv.score(X_test,y_test))

    0.698875263814575
    0.6788811761013169

    C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\linear_model\_coordina
    te_descent.py:1568: DataConversionWarning: A column-vector y was passed when
    a 1d array was expected. Please change the shape of y to (n_samples, ), for e
    xample using ravel().
    y = column_or_ld(y, warn=True)
In []:
```