ECO220 Lecture Notes

Tianyu Du

May 8, 2018

Contents

1	Lec	ture 1	Ma	ıy.	8 2	01	8.												1
	1.1	Statist	tics																1
		1.1.1	$\mathbf{E}\mathbf{x}$	am	ple :	1.													1
		1.1.2	$\mathbf{E}\mathbf{x}$	am	ple :	2.													3

1 Lecture 1 May. 8 2018

Content Chapter 1-4,

- Statistics
- Data
- Population
- Sample

1.1 Statistics

What is statistics Quantitive methods.

1.1.1 Example 1

Question This summer, 120 students enrolled in ECO220. Find out the number of courses that students are taking, the average number of courses they take, and the % of student taking 1 or 2 courses.

Population 120 students in ECO220. Noted as N = 120

Analyze:

- 1. Number of courses they take.
- 2. Average number of courses they take.
- 3. Percent of students taking 1 or 2 courses.

Data information collected from the whole *population* (all individuals). Use data to answer questions above.

number of courses	number of students	percent
1	40	0.33
2	30	0.25
3	30	0.25
4	15	0.14
5	5	0.03
Total	120	1.00

Figure 1: Frequency

Parameters Parameters are fixed numbers. They can be calculated once we measure everyone in population.

Examples of parameters from population

• Average $\mu = 2.29$

1.1.2 Example 2

Question Find out the percentage of people in Ontario who are in favour of government policy.

Population People in Ontario.

In favour of policy	# of people in Ontario	%
Very much in favour	*	*
In favour	*	*
neutral	*	*
not in favour	*	*
strongly against	*	*
Total	N = Population of Ontario	1.00

Sample Since N is too large to handle, we select a sample, which is a subset of population, denoted as n, and then analyze the sample.

In favour of policy	# of people in Ontario	%
Very much in favour		
In favour		
neutral		
not in favour		
strongly against		
Total	n = Size of sample	1.00

The above chart based on sample data to *estimate* the chart using population data.

Let p be the % of people in Ontario (population) who are "very in favour" or "in favour"

Let \hat{p} be the % of people in sample who are "very in favour" or "in favour", can be calculated based on the sample data.

The parameter p has an unknown value. The value of \hat{p} can be calculated from sample data, \hat{p} is an **estimate** for p.

Note p is a fixed value, but \hat{p} will change from sample to sample. We call \hat{p} an **estimator** (or **sample statistic**). The value of sample statistic will change from sample to sample, we call \hat{p} a random value.

Parameters on population

- μ : Average
- p: Percentage

Sample Statistic on sample

- \overline{x} : Average
- \hat{p} : Percentage

Statistics