PATENTTI- JA REKISTERIHALLIT NATIONAL BOARD OF PATENTS AND REGISTRATION

Helsinki 9.6.2000

F100/00320

0/009038 PCT/FI00/00320

REC'D 14 AUG 2000

WIPO PCT

ETUOIKEUSTODISTUS PRIORITY DOCUMENT

Hakija Valmet Corporation Applicant Helsinki

Patenttihakemus nro 990967 Patent application no

Tekemispäivä 28.04.1999 Filing date

Kansainvälinen luokka **D21F**

International class

Keksinnön nimitys Title of invention PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN **COMPLIANCE WITH** RULE 17.1(a) OR (b)

"Menetelmä ja laitteisto laimennusnesteen sekoittamiseksi massavirtaukseen paperikoneessa tai kartonkikoneessa"

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims, abstract and drawings originally filed with the Finnish Patent Office.

Apulaistarkastaja

Maksu 300,mk Fee 300,-FIM

Osoite:

FIN-00101 Helsinki, FINLAND

Menetelmä ja laitteisto laimennusnesteen sekoittamiseksi massavirtaukseen paperikoneessa tai kartonkikoneessa Förfarande och anläggning för att blanda en utspädningsvätska i en massaströmining i en pappersmaskin eller en kartongmaskin

5

Keksinnön kohteena on menetelmä ja laitteisto laimennusnesteen sekoittamiseksi massavirtaukseen paperikoneessa tai kartonkikoneessa.

10

Tekniikan tason osalta viittaamme julkaisuun DE-19723861 ja FI 901593.

On osoittautunut, että mittauslaitteiden kehittymisen myötä markkinoilla neliömassaprofiilin säätötarkkuusvaatimukset kasvavat aina vain enemmän. Tavanomaisen ns.
laimennusperälaatikon laimennusjakoväli on tällä hetkellä noin 32 - 75 mm, eikä sen
pienentäminen enää ole mahdollista, jos laimennusvetenä käytetään kuituja sisältävää
viiravettä, koska viiravedellä auki pysyvät laimennuksen syöttökanavat eivät mahdu
tiheällä jaolla olevien pillirivien väliin.

15

Ratkaisuksi esitetään tarvittaessa laimennuksen muuttamista kaksivaiheiseksi siten, että karkeasäätö tehdään viiravedellä ja hienosäätö raakavedellä.

20

Kasvava säätötarkkuusvaatimus edellyttää yhä tiheämpää laimennusjakoväliä ja sitä kautta yhä ahtaampia laimennussyöttökanavia. Mikäli laimennusvetenä käytetään viiravettä, tukkeentuvat ahtaat laimennuskanavat helposti. Raakavedellä ei tukkeentumisongelmia esiinny, mutta sen "täysimääräinen käyttö" ei ole taloudellisista ja ympäristösyistä järkevää.

25

Kaksivaiheisen laimennuksen idea on korjata suuret neliömassaprofiilivirheet suurella viiravesimäärällä ja pienet profiilivirheet pienellä raakavesimäärällä. Näin saavutetaan paperitehtaalla hyvä raakavesitalous.

Toinen kaksivaiheisuuden etu on neliömassaprofiilin hyvä säätömahdollisuus. Voidaan käyttää koko venttiilin säätöalue hyväksi ja voidaan valita molempiin säätöihin optimikokoiset säätöventtiilit.

5

Karkeasäätö tehdään jakotukin jälkeiseen pillistöön kuten konventionaalisessa perälaatikossa. Säädön jakoväli ensimmäisessä laimennusvaiheessa voidaan kasvattaa esim. 120 mm:iin siten, että yksi laimennuselin syöttää kahta pilliriviä. Karkeasäätö korjaa profiilin karkeat muotovirheet, kuten esim. radan kutistumisesta aiheutuvat profiilivirheet. Karkeasäädön jälkeen profiiliin jäljelle jäävät pienet virheet korjataan toisen vaiheen hienosäätölaimennuksella.

10

15

Hienosäätö tehdään turbulenssigeneraattorilaimennuksena laimentamalla joitain, tai jokaista, turbulenssigeneraattorin pilliä. Jäljellä olevien pienten virheiden korjaamiseen tarvitaan hyvin pieni laimennus, joten hienosäädön laimennusvetenä voidaan käyttää taloudellisesti raakavettä tai kuitujen talteenotosta saatavaa kirkastettua viiravettä. Koska esim. raakavesi ei sisällä likaavia tai tukkivia partikkeleita, voidaan laimennuskanavat tehdä hyvin ahtaisiin tiloihin. Lisäksi säätöventtiilit, sekä venttiilejä käyttävät toimilaitteet, voivat olla tavallisia markkinoilta löytyviä standardilaitteita, jotka ovat huomattavasti edullisempia konventionaalisiin laimennusventtiileihin ja toimilaitteisiin verrattuna.

20

Paikallinen minimilaimennus raakavedellä voi olla lähes 0 % ja maksimipaikallislaimennuksen ei tarvitse olla korkea, koska raakaveden sakeus on 0 % ja jäljellä oleva korjattava virhe on pieni. Näin ollen kalliimpaa raakavettä kulutetaan hyvin pieni määrä. Raakaveden syötölle ei tarvita erillistä kiertoa.

25

Hinnaltaan esitetty ratkaisu ei poikkea juurikaan konventionaalisen laimennusperälaatikon hinnasta. Esitetyssä ratkaisussa käytetään puolet vähemmän kalliita laimennusventtiilejä ja -toimilaitteita.

Näin ollen entuudestaan tunnetaan sekoitinyksiköt, joissa laimennusvesi ja perälaatikon jakotukista johdettu massa sekoitetaan ja yhdistynyt virtaus johdetaan edelleen eteenpäin perälaatikossa ja muodostusviiralle. Laimennusnesteen tuontikohtia sijaitsee perälaatikon eri leveysasemissa ja näin ollen riippuvaisesti siitä tiheydestä, jolla laimennuskohtia sijaitsee perälaatikon leveydeltä, saadaan haluttu resoluutio rainan neliöpainon säätöön.

Keksinnön mukaiselle menetelmälle ja laitteistolle on tunnusomaista se, mitä on esitetty patenttivaatimuksissa.

10

15

5

Tässä hakemuksessa ehdotetaan siten käytettäväksi ainakin kaksiportaista laimennusta. Laimennuksen ensimmäisessä vaiheessa suoritetaan neliöpainoprofiilin karkeasäätö ja laimennuksen toisessa vaiheessa hienosäätö. Ensimmäisessä vaiheessa käytetään viiravettä laimennusvetenä ja ensimmäisessä vaiheessa ovat venttiilit harvemmalla jaotuksella kuin toisessa säätövaiheessa, jossa venttiilit ovat tiheämmällä jaotuksella kuin ensimmäisessä laimennusvaiheessa. Etuna ratkaisussa on se, että toisen vaiheen venttiilit voivat olla konstruktioltaan vähemmän tarkkuutta vaativia ja siten halvempia kuin ensimmäisen vaiheen venttiilit. Ne eivät tukkeudu, koska toisessa vaiheessa käytetään kuituja sisältämätöntä laimennusvettä. Venttiilit voivat siten sisältää pienemmät kanavat. Ne eivät vaadi paljon tilaa.

20

Keksinnön puitteissa voidaan käyttää myös kolmivaiheisia tai useampivaiheista säätöä, mutta edullisin säätöratkaisu on kaksivaiheinen laimennusnesteen säätö.

25

Paperikoneen tai kartonkikoneen perälaatikkorakenne voi olla edullisesti seuraava:

a) massa johdetaan massanjakotukkiin, joka kapenee poistopäätyään kohti tavan-

' kammioon,

omaisesti, b) massanjakotukista johdetaan massavirta pillistöön ja edelleen pillistön kautta väli-

30

c) välikammiosta johdetaan massavirtaus edelleen turbulenssigeneraattoriin ja turbulenssigeneraattorista edelleen huulikartion kautta muodostusviiralle.

Keksintöä selostetaan seuraavassa viittaamalla oheisien piirustuksien kuvioissa esitettyihin keksinnön eräisiin edullisiin suoritusmuotoihin, joihin keksintöä ei ole tarkoitus kuitenkaan yksinomaan rajoittaa.

Keksinnön mukaisesti sijaitsevat ensimmäiset laimennusvaiheen venttiilit pillistön yhteydessä ja toisen laimennusvaiheen venttiilit välikammion jälkeen turbulenssigeneraattorin yhteydessä.

Kuvioissa 1A - 1C on esitetty keksinnön mukainen menetelmä vaiheittain. Kuvion 1A kuvaaja F_1 esittää korjaamatonta jakotukilta J_1 johdetun massan neliöpainoprofiilia koneleveydeltä. Ensimmäisessä laimennusvaiheessa suoritetaan karkea neliöpainoprofiilisäätö ensimmäisen laimennusvaiheen venttiileillä $V_1, V_2...$

Neliöpainoprofiilia säätävien venttiilien $V_1,\,V_2\,\dots\,$ jälkeistä neliöpainoprofiilia esitetään kuvion 1B kuvaajassa F_1 '.

Kuviossa 1C kuvaaja F_2 esittää toisen laimennusvaiheen jälkeistä korjattua massan neliöpainoprofiilia. Toisen laimennusvaiheen laimennusventtiilit V_1' , V_2' ... on sijoitettu esimerkiksi turbulenssigeneraattorin yhteyteen. Kuvaaja F_2 esittää neliöpainoprofiilia massavirrassa koneleveydeltä toisen vaiheen venttiilien V_1 ', V_2 '... suorittaman säädön jälkeen.

Kuvioissa 1A - 1C esittää vaakakoordinaatti X perälaatikkokäyttöä ja pystykoordinaatti Y esittää neliöpainoa. Pystykoordinaatistosta Y on luettavissa massassa ja edelleen rainassa esiintyvä neliöpainon poikkeama 0-tasosta eli neliöpainovirhe. Neliöpainoprofiili voidaan mitata massavirrasta, mutta helpoin tapa on mitata neliöpaino valmiista paperitai kartonkirainasta.

25

5

10

15

20

Kuviossa 2 on esitetty keksinnön mukainen paperikoneen tai kartonkikoneen perälaatikko.

Kuviossa 1A ensimmäisessä kuvaajassa F₁ on esitetty ensimmäisen laimennusvaiheen säätö. Kuvaaja F₁ esittää massassa esiintyvää neliöpainovaihtelua ennen ensimmäisen vaiheen säätöventtiilejä V₁, V₂, V₃ ...

Kuviossa 1A esittää kuvaaja F_1 massassa M_1 esiintyvää neliöpainovaihtelua. Keskimääräinen neliöpainovaihtelu on esitetty edelleen kuvaajalla F_{10} . Niin kuin kuvaajasta F_{10} nähdään esiintyy neliöpainossa ensinnäkin muotovirhe ja toiseksi paikallinen virhe. Kyseinen muotovirhe korjataan ensimmäisen laimennusvaiheen I säätöventtiileillä V_1 , V_2 ... niin, että kuvaajasta F_{10} saadaan suora. Paikalliset virheet korjataan toisen vaiheen II neliöpainosäädöllä venttiileillä V_1 ', V_2 '....

15

10

Kuvion 1B kuvaaja F_1 ' esittää ensimmäisen vaiheen jälkeistä tilannetta, jolloin laimennusnesteen tuonnilla on toteutettu massan M_1 neliöpainon säätö. Kuvaajassa vaakakoordinaatisto X esittää perälaatikon poikkisuuntaista asemaa ja venttiilien asemia on merkitty V_1 ', V_2 ', V_3 '... vaakakoordinaatistoon X. Pystykoordinaatistossa Y on esitetty massan neliöpainovirhe ensimmäisen vaiheen I säädön jälkeen.

20

25

Kuviossa 1C on esitetty toisen laimennusvaiheen II neliöpainosäätöä. Kuvaaja F₂ esittää tilannetta toisen laimennusvaiheen laimennusnesteventtiilien V₁', V₂', V₃'... jälkeen. Kuvaaja F₂ on suora ja neliöpainovirhettä ei enää esiinny. Kuvaajassa vaakakoordinaatit kuvaavat perälaatikkoleveyttä ja venttiilien asemaa on merkitty V₁', V₂'... kulloiseenkin vaakakoordinaatiston X pisteeseen. Pystykoordinaatti Y esittää massan neliöpainovirhettä. 0-taso esittää virheetöntä vakioneliöpainotilannetta. Ensimmäisen vaiheen I laimennusvetenä käytetään viiravettä, joka voi sisältää kuituja ja täyte/hienoaineita. Toisen vaiheen II laimennus suoritetaan laimennusvedellä, jossa ei ole kuituja, kuten raakavedellä. Etuna tällöin on, että voidaan käyttää tavanomaisia venttiilejä V₁', V₂', V₃'..., koska kuitujen aiheuttamaa kanavien tukkeutumisriskiä ei ole.

Mainitunlaiset laimennusvesisyötöt voidaan sijoittaa pienemmällä jaotuksella kuin nykyisin laimennussäädössä olevan 60 mm sijaan voidaan mennä 30 mm säätöön venttiilien välillä. Käytettävä laimennusvesimäärä on vähäinen ja erillistä laimennusveden kiertoa ei tarvita. Näin ollen keksinnön mukainen ratkaisu on konstruktioltaan edullinen ja sillä päästään tiheämpään venttiilien väliseen jaotukseen eli suurempaan resoluutioon eli säädön tarkkuuteen. Käyttämällä raakavettä toisen vaiheen säädössä voidaan käyttää tavanomaisia venttiiliratkaisuja, jolloin myös venttiilit voidaan sijoittaa jopa 20 - 30 mm jaotuksella toisiinsa nähden. Sen sijaan ensimmäisen vaiheen säädössä voidaan säätöresoluutiota mainitun vaiheen kohdalla muuttaa niin, että venttiilit, esim. 60 mm:n tavanomaisen 1-vaihelaimennuksen sijaan ovat esimerkiksi 120 mm:n jaotuksella toisiinsa nähden. Näin ollen käyttämällä keksinnön mukaista ratkaisua, jossa ensimmäisen vaiheen laimennuksessa laimennusvetenä käytetään viiravettä ja toisen vaiheen laimennuksessa kuituja sisältämätöntä laimennusvettä, päästään kokonaislopputulokseen, jossa säätötarkkuus on parempi kuin tavanomaisessa yksivaiheisessa laimennuksessa ja jossa kuitenkin konstruktiokustannukset rakenteen osalta eivät ole suurentuneet yksivaiheiseen laimennukseen verrattuna.

Laimennuksen ensimmäisessä vaiheessa suoritetaan neliöpainoprofiilin karkeasäätö ja laimennuksen toisessa vaiheessa hienosäätö. Toisessa laimennusvaiheessa käytettävä laimennusvesi on edullisesti raakavettä tai kirkastettua viiravettä. Näin ollen toisen vaiheen laimennusvesi sisältää kiintoaineita ja/tai kuituja olennaisesti prosentuaalisesti vähemmän kuin ensimmäisen vaiheen laimennusvesi, joka edullisesti on viiralta otettua vettä. Edullisimmin toisen vaiheen laimennusvesi on kiinto- ja täyteaineita sekä kuituja sisältämätöntä raakavettä.

25

20

5

10

15

Kuviossa 2 on esitetty keksinnön mukainen paperikoneen tai kartonkikoneen perälaatikko 10. Perälaatikko käsittää massanjakotukin J₁, massanjakotukin jälkeen pillistön 11, pillistön jälkeen välikammion 12 ja välikammion jälkeen turbulenssigeneraattorin 13 ja edelleen huulikartion 14, josta massa M₁ johdetaan muodostusviiralle H₁. Keksinnön mukaisesti suoritetaan ensimmäisen vaiheen laimennus pillistön 11 putkiin 11a_{1.1},

30

11a_{1.2}, 11a_{4.1}, 11a_{4.2} ... venttiilien V_1 , V_2 , V_3 ... kautta. viiraveden jakotukista J_2 johdetaan viiravesi (nuoli L_1) putkiin D_1 , D_2 , D_3 ... ja niiden kautta venttiileille V_1 , V_2 , V_3 ... ja edelleen kyseisten säädettävien venttiilien V_1 , V_2 ... kautta pillistöön 11 sen putkiin 11a_{1.1}, 11a_{1.2}, 11a_{4.1}, 11a_{4.2} ... Venttiilit V_1 , V_2 , V_3 ... sijaitsevat esimerkiksi 120 mm jaotuksella 10 m leveän perälaatikon yhteydessä. Toinen laimennuskohta eli toisen laimennusvaiheen II venttiilit V_1 ', V_2 '... sijaitsevat edullisesti turbulenssigeneraattorin 13 turbulenssiputkien 13a_{1.1}, 13a_{1.2}, 13a_{1.3}, 13a_{2.1}, 13a_{2.2}, 13a_{2.3} yhteydessä perälaatikon eri leveyspisteissä. Raakavesi johdetaan (nuoli L_2) raakaveden jakotukista J_3 kanavaan D_1 ', D_2 ', D_3 '... ja venttiilien V_1 ', V_2 '... kautta edelleen turbulenssigeneraattorien 13 putkiin 13a_{1.1}, 13a_{1.2}, 13a_{1.3}, 13a_{2.1}, 13a_{2.2}, 13a_{2.3}, jossa raakavesi johdetaan ensimmäisessä vaiheessa laimennetun massan yhteyteen. Massan M_1 virtaus on esitetty nuolin S_1 ja laimennusvesien virtausta on esitetty nuolin L_1 ja L_2 .

Tuotaessa laimennusneste massavirtauksen yhteyteen ensimmäisessä laimennusvaiheessa ja toisessa laimennusvaiheessa laimennusvaiheessa laimennusvaiheessa I joko yhteen tai useampaan, edullisesti kaikkiin, pillistön 11 kyseisen leveyskohdan putkirivien putkiin. Vastaavasti toisessa laimennusvaiheessa II voidaan laimennusvesi johtaa joko yhteen kyseisen leveyskohdan turbulenssigeneraattorin 13 putkeen tai kyseisen leveyskohdan useampaan putkeen, edullisesti kaikkiin putkiin.

Patenttivaatimukset

5

10

- 1. Menetelmä laimennusveden johtamiseksi paperikoneen tai kartonkikoneen perälaatikon massanjakotukista johdetun massavirtauksen yhteyteen, tunnettu siitä, että menetelmässä suoritetaan laimennus ainakin kaksivaiheisesti käyttämällä ensimmäisessä laimennusvaiheessa (I) suuremmalla keskinäisellä välimatkalla perälaatikon eri leveyskohdissa olevia venttiilejä (V_1 , V_2 , V_3 ...) ja johtamalla laimennusvesi mainittujen venttiilien kautta halutuille perälaatikon leveyskohdille paperin tai kartongin neliöpainon säätötarpeen mukaisesti ja että menetelmässä toisessa laimennusvaiheessa (II) johdetaan ensimmäisestä laimennusvaiheesta (I) tulevan massavirtauksen yhteyteen laimennusvettä, jota säädetään venttiileillä (V_1 ', V_2 '...), jotka venttiilit (V_1 ', V_2 '...) on asetettu tiheämmälle jaotukselle kuin ensimmäisen laimennusvaiheen (I) venttiilit (V_1 , V_2 , V_3 ...).
- 2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että laimennuksen ensimmäisessä vaiheessa (I) suoritetaan massan (M₁) neliöpainoprofiilin karkeasäätö ja laimennuksen toisessa vaiheessa (II) massan (M₁) neliöpainoprofiilin hienosäätö koneleveydeltä.
- 3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, tunnettu siitä, että laimennuksen toisessa vaiheessa (II) käytetään laimennusvetenä vettä, jonka kiintoaine, täyteaine tai kuitupitoisuus on olennaisesti prosentuaalisesti pienempi kuin ensimmäisen laimennusvaiheen (I) laimennusveden.
- 4. Jonkin edellä olevan patenttivaatimuksen 1 3 mukainen menetelmä, tunnettu siitä, että toisessa laimennusvaiheessa (II) käytettävä laimennusvesi on raakavettä tai kirkastettua viiravettä.
 - 5. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että ensimmäisen vaiheen (I) laimennusvesi on viiravettä.

6. Paperikoneen tai kartonkikoneen perälaatikko (10), joka käsittää massanjakotukin (J₁) ja sen jälkeen pillistön (11) ja pillistön jälkeen välikammion (12) ja välikammion jälkeen turbulenssigeneraattorin (13) ja turbulenssigeneraattorin jälkeen huulikartion (14), josta massa johdetaan edelleen muodostusviiralle (H₁), tunnettu siitä, että laitteisto käsittää ensimmäisen laimennusvaiheen (I) venttiilit (V₁, V₂, V₃...), joiden kautta johdetaan laimennusvettä jakotukista (J₁) johdetun massan (M₁) yhteyteen halutuille kohdille perälaatikkoleveyttä rainan neliöpainon säätämiseksi ensimmäisessä vaiheessa (I) ja että perälaatikko käsittää toisen laimennusvaiheen (II) venttiilit (V₁', V₂', V₃'...), joiden venttiilien (V₁', V₂' ...) kautta johdetaan toisen laimennusvaiheen laimennusvesi ensimmäisestä laimennusvaiheesta (I) tulleen massan (M₁) yhteyteen.

7. Patenttivaatimuksen 6 mukainen paperikoneen tai kartonkikoneen perälaatikko, tunnettu siitä, että ensimmäisen laimennusvaiheen (I) laimennusvesi johdetaan massanjakotukista (J₁) johdetun massan (M₁) yhteyteen perälaatikon pillistön (11) yhteydessä ja että toisen laimennusvaiheen (II) laimennusvesi johdetaan ensimmäisestä laimennusvaiheesta (I) tulleen massan (M₁) yhteyteen turbulenssigeneraattorin (13) yhteydessä.

8. Patenttivaatimuksen 6 tai 7 mukainen perälaatikko, tunnettu siitä, että ensimmäisen laimennusvaiheen (I) venttiilit (V_1 , V_2 , V_3 ...) ovat suuremman keskinäisen välimatkan päässä toisistaan kuin toisen laimennusvaiheen (II) venttiilit (V_1 ', V_2 ', V_3 ' ...), jolloin ensimmäisen laimennusvaiheen (I) venttiileillä (V_1 , V_2 ...) suoritetaan rainan neliöpainon karkeasäätö ja toisen laimennusvaiheen (II) venttiileillä (V_1 ', V_2 '...) suoritetaan rainan neliöpainon hienosäätö.

9. Jonkin edellä olevan patenttivaatimuksen 6 - 8 mukainen perälaatikko, tunnettu siitä, että laitteisto käsittää toisen laimennusvaiheen (II) laimennusvedelle jakotukin (J₃), joka käsittää laimennusvetenä raakavettä.

20

15

5

(57) Tiivistelmä

Keksinnön kohteena on menetelmä ja laitteisto laimennusnesteen sekeittamiseksi massavirtaukseen paperikoneessa tai kartonkikoneessa. Menetelmässä suoritetaan laimennus ainakin kaksivaiheisesti käyttämällä ensimmäisessä laimennusvaiheessa (I) suuremmalla keskinäisellä välimatkalla perälaatikon eri leveyskohdissa olevia venttiilejä (V₁, V₂, V₃...) ja johtamalla laimennusvesi mainittujen venttiilien kautta halutuille perälaatikon leveyskohdille paperin tai kartongin neliöpainon säätötarpeen mukaisesti. Menetelmässä toisessa laimennusvaiheessa (II) johdetaan ensimmäisestä laimennusvaiheesta (I) tulevan massavirtauksen yhteyteen laimennusvettä, jota säädetään venttiileillä (V₁', V₂'...), jotka venttiilit (V₁', V₂'...) on asetettu tiheämmälle jaotukselle kuin ensimmäisen laimennusvaiheen (I) venttiilit (V₁, V₂, V₃...).

FIG. 2

		, , , , , , , , , , , , , , , , , , ,