Exercise

1 Complete the following table, indicating whether the relations on the given sets are reflexive, symmetric or transitive:

	Set	Relation	Reflexive	Symmetric	Transitive
(a)	{boys}	'is the brother of'	F	Т	F
(<i>b</i>)	{children}	'is the brother of'			
(c)	{straight lines in the plane}	'is perpendicular to'			
(d)	{straight lines in the plane}	'is parallel to or coincident with'			
(c)	{triangles in the plane}	'is similar to'			
(<i>f</i>)	{triangles in the plane}	'is congruent with'			
(g)	Ti.	xRy if and only if $xy > 0$			
(/1)	1	xRy if and only if $ x-y $ is even	***************************************		
(i)	- Z	xRy if and only if $(x^2 - y^2)$ is an even integer			
(j)	<i>T.</i>	xRy if and only if $(x^2 - y^2)$ is an odd integer			
(k)	77.	xRy if and only if $(x - y)$ is divisible by 2 or 3			
(I)	7	xRy if and only if $x < y$			
(m)	7 *	xRy if and only if x is a factor of y			2.
(n)	7 *	xRy if and only if $2x > y$			
(0)	Z *	xRy if and only if $(x - y)$ is divisible by 5			
(p)	Γ,	xRy if and only if x has the same number of digits as y			
(q)	Z '	xRy if and only if $\frac{x}{y}$ is an		7	
		integer			

- 2 Describe the equivalence classes for each of the equivalence relations in question 1.
- 3 Invent other examples of sets and relations which are
 - (a) symmetric and transitive, but not reflexive
 - (b) reflexive and symmetric, but not transitive
 - (c) reflexive and transitive, but not symmetric
 - (d) reflexive, symmetric and transitive
- 4 (a) A relation R, is defined on the set

$$S_1 = \{(a, b): a, b \in \mathbb{Z} \text{ and } b \neq 0\}$$

by $(p,q)R_1(r,s)$ if and only if ps = rq.

Prove that this is an equivalence relation, and describe the equivalence classes.

(b) A relation R_2 is defined on the set

$$S_2 = \{(a,b): a,b \in \mathbb{Z}^+\}$$

by $(p,q)R_2(r,s)$ if and only if p+s=q+r.

Prove that this is an equivalence relation, and describe the equivalence classes.

5 S is the set of matrices
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}$$
.

(a) If
$$P = \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$, find A and B such that $P = AQ$ and $Q = BP$, and verify that $A^{-1} = B$.

- (b) A relation is now defined on the set S by 'P is related to Q if and only if there exists a non-singular matrix A, such that P = AQ'. Is this relation an equivalence relation?
- 6 A relation R is defined on the set of 2 × 1 matrices as follows: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} R \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ if you can

find a value of $\lambda \in \mathbb{R}$ which will make the statement $\begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ true.

- (a) Show that this relation is an equivalence relation.
- (b) Find three 2 × 1 matrices each related to $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$
- (c) Describe fully the equivalence class $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.
- 7 Let S be the following set of matrices:

$$S = \left\{ \begin{bmatrix} 2-a & 1-a \\ a-1 & a \end{bmatrix} : a \in \mathbb{R} \right\}.$$

A relation R is defined on the set of points in the plane by

$$(x_1, x_2)R(y_1, y_2)$$

if and only if $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ for some $A \in S$.

- (a) Show that the relation is an equivalence relation.
- (b) Describe the set of points in the equivalence class containing the point (0, 2).
- 8 How many distinct equivalence relations can be defined on the set $\{x, y, z\}$?

- I (a) FTF (f) TTT
- (b). FFF (g) FTT
- (c) FTF
- (d) TTT
- (i) T T T
- (e) TTT (j) FTF

- (k) TTF (1) FFT
- (h) TTT (m) T F T
- (n) TFF (o) TTT

- (p) TTT (q) T F T
- 2 (d) Parallel lines
 - (e) Similar triangles
 - (f) Congruent triangles
 - (h) {odd integers}, {even integers}
 - (i) {odd integers}, {even integers}
 - (o) Congruent classes mod 5
 - (p) Numbers of same length
- 3 (a) Any non-empty set with a void relation
 - (b) Non-zero elements of \mathbb{Z} with $xRy \Leftrightarrow x$ and y have same sign or same parity
 - (c) \mathbb{R} with $xRy \Leftrightarrow x \leqslant y$
 - (d) \mathbb{C} with $z_1 R z_1 \Leftrightarrow |z_1| = |z_2|$

5 (a)
$$A = \begin{bmatrix} \frac{1}{2} & 1\\ \frac{7}{2} & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} \frac{3}{5} & \frac{1}{5}\\ \frac{7}{10} & -\frac{1}{10} \end{bmatrix}$ (b) Yes

- 6 (b) $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ (c) $\left\{ \begin{bmatrix} \mu \\ 3 \end{bmatrix} \right\}$, $\mu \in \mathbb{R}$
- 7 (b) The line x + y = 2
- 8 5