On the minimum number of arcs in 4-dicritical oriented graphs

Frédéric Havet¹, <u>Lucas Picasarri-Arrieta</u>¹, Clément Rambaud^{1,2}

Université Côte d'Azur, CNRS, Inria, I3S, Sophia-Antipolis, France
 DIENS, École normale Supérieure, CNRS, PSL University, Paris, France

• k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

Definition

D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ if $H \subsetneq D$.

Definition

D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ if $H \subsetneq D$.

Main Question: bound $d_k(n)$: minimum number of arcs in an n-vertex k-dicritical digraph.

Definition

D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ if $H \subsetneq D$.

Main Question: bound $d_k(n)$: minimum number of arcs in an n-vertex k-dicritical digraph.

Proposition

D k-dicritical $\Rightarrow \forall v \in V, d^+(v), d^-(v) \geq k-1$.

Definition

D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ if $H \subsetneq D$.

Main Question: bound $d_k(n)$: minimum number of arcs in an n-vertex k-dicritical digraph.

Proposition

 $D \text{ } k\text{-dicritical} \Rightarrow \forall v \in V, d^+(v), d^-(v) \geq k-1.$

First Easy Bound: $d_k(n) \ge (k-1)n$.

• Undirected case: $g_k(n) \ge \frac{1}{2}(k - \frac{2}{k-1})n - \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey '14]

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey '14]
- Conjecture: On K_{k-2} -free graphs, $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1} + \varepsilon_k)n \frac{k(k-3)}{2(k-1)}$. [Postle '17]

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey '14]
- Conjecture: On K_{k-2} -free graphs, $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1} + \varepsilon_k)n \frac{k(k-3)}{2(k-1)}$. [Postle '17]
- Known for k = 5 [Postle '17], k = 6 [Gao and Postle '18] and $k \ge 33$ [Gould, Larsen and Postle '21].

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey '14]
- Conjecture: On K_{k-2} -free graphs, $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1} + \varepsilon_k)n \frac{k(k-3)}{2(k-1)}$. [Postle '17]
- Known for k = 5 [Postle '17], k = 6 [Gao and Postle '18] and $k \ge 33$ [Gould, Larsen and Postle '21].
- Conjecture: $d_k(n) \ge (k \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Kostochka and Stiebitz '20] known for $k \in \{2, 3, 4\}$, open for $k \ge 5$.

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey '14]
- Conjecture: On K_{k-2} -free graphs, $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1} + \varepsilon_k)n \frac{k(k-3)}{2(k-1)}$. [Postle '17]
- Known for k = 5 [Postle '17], k = 6 [Gao and Postle '18] and $k \ge 33$ [Gould, Larsen and Postle '21].
- Conjecture: $d_k(n) \ge (k \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Kostochka and Stiebitz '20] known for $k \in \{2, 3, 4\}$, open for $k \ge 5$.
- Best bound: $d_k(n) \ge (k \frac{1}{2} + \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Aboulker and Vermande '22]

 $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

 $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

• Conjecture: $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz '20]

 $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

- Conjecture: $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz '20]
- Known for k = 3. [Aboulker, Bellitto, Havet and Rambaud '22].

 $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

- Conjecture: $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz '20]
- Known for k = 3. [Aboulker, Bellitto, Havet and Rambaud '22].

Theorem

If \vec{G} is a 4-dicritical oriented graph, then $m(\vec{G}) \geq \left(\frac{10}{3} + \frac{1}{51}\right) n(\vec{G}) - 1$.

Which improves $m(D) \geq \frac{10}{3}n(D) - \frac{4}{3}$ (Kostochka and Stiebitz) in general.

4-Ore digraphs

Definition

The class of 4-Ore graphs is the smallest containing K_4 closed under Ore-composition.

4-Ore digraphs

Definition

The class of 4-Ore graphs is the smallest containing K_4 closed under Ore-composition.

Theorem (Dirac '64)

4-Ore graphs are 4-critical.

4-Ore digraphs

Definition

The class of 4-Ore graphs is the smallest containing K_4 closed under Ore-composition.

Theorem (Dirac '64)

4-Ore graphs are 4-critical.

Definition

4-Ore digraphs are the bidirected 4-Ore graphs.

• $T(D) = \max\{d + 2t \mid \exists \text{ packing of } d \text{ digons and } t \text{ bidirected triangles}\}$

- $T(D) = \max\{d + 2t \mid \exists \text{ packing of } d \text{ digons and } t \text{ bidirected triangles}\}$
- $T(D) = 0 \Leftrightarrow D$ is an oriented graph.

- $T(D) = \max\{d + 2t \mid \exists \text{ packing of } d \text{ digons and } t \text{ bidirected triangles}\}$
- $T(D) = 0 \Leftrightarrow D$ is an oriented graph.

Definition

The **potential** of D is

$$\rho(D) = \left(\frac{10}{3} + \varepsilon\right)n - m + \delta T(D).$$

- $T(D) = \max\{d + 2t \mid \exists \text{ packing of } d \text{ digons and } t \text{ bidirected triangles}\}$
- $T(D) = 0 \Leftrightarrow D$ is an oriented graph.

Definition

The **potential** of D is

$$\rho(D) = \left(\frac{10}{3} + \varepsilon\right)n - m + \delta T(D).$$

Theorem

Let $\varepsilon, \delta \geq 0$ such that $\delta \geq 6\varepsilon$ and $3\delta - \varepsilon \leq \frac{1}{3}$. If D is 4-dicritical, then

- \bullet $\rho(D) \leq \frac{4}{3} + \varepsilon n \delta \frac{2(n-1)}{3}$ if D is 4-Ore, and
- $\rho(D) \leq 1$ otherwise.

Theorem

Let $\varepsilon, \delta \geq 0$ such that $\delta \geq 6\varepsilon$ and $3\delta - \varepsilon \leq \frac{1}{3}$. If D is 4-dicritical, then

- \bullet $\rho(D) \leq \frac{4}{3} + \varepsilon n \delta \frac{2(n-1)}{3}$ if D is 4-Ore, and
- $\rho(D) \leq 1$ otherwise.

Theorem

Let $\varepsilon, \delta \geq 0$ such that $\delta \geq 6\varepsilon$ and $3\delta - \varepsilon \leq \frac{1}{3}$. If D is 4-dicritical, then

For $\varepsilon = \frac{1}{51}$ and $\delta = 6\varepsilon$ we obtain:

Corollary

If \vec{G} is 4-dicritical, then $m(\vec{G}) \geq \left(\frac{10}{3} + \frac{1}{51}\right) n(\vec{G}) - 1$.

Theorem

Let $\varepsilon, \delta \geq 0$ such that $\delta \geq 6\varepsilon$ and $3\delta - \varepsilon \leq \frac{1}{3}$. If D is 4-dicritical, then

- $\rho(D) \leq 1$ otherwise.

For $\varepsilon = \frac{1}{51}$ and $\delta = 6\varepsilon$ we obtain:

Corollary

If \vec{G} is 4-dicritical, then $m(\vec{G}) \geq \left(\frac{10}{3} + \frac{1}{51}\right) n(\vec{G}) - 1$.

For $\varepsilon = \delta = 0$ we obtain:

Corollary

If D is 4-dicritical, then $m(D) \ge \frac{10}{3}n - \frac{4}{3}$ and equality holds only if D is 4-Ore.

 $\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$

• D minimal counterexample: $\rho(D) > 1$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

 $\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$

- *D* minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

 $\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-dicritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-dicritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$n(R') = n(W) + n(R) - n(X_W)$$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$n(R') = n(W) + n(R) - n(X_W)$$

 $m(R') \ge m(W) + m(R) - m(X_W)$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$n(R') = n(W) + n(R) - n(X_W)$$

 $m(R') \ge m(W) + m(R) - m(X_W)$
 $T(R') \ge T(W) + T(R) - n(X_W)$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$n(R') = n(W) + n(R) - n(X_W)$$

 $m(R') \ge m(W) + m(R) - m(X_W)$
 $T(R') \ge T(W) + T(R) - n(X_W)$

$$\Rightarrow \rho(R') \leq \rho(W) + \rho(R) - \frac{10}{3} - \varepsilon + \delta$$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- *D* minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

$$n(R') = n(W) + n(R) - n(X_W)$$

$$m(R') \ge m(W) + m(R) - m(X_W)$$

$$T(R') \ge T(W) + T(R) - n(X_W)$$

$$\Rightarrow \rho(R') \le \rho(W) + \rho(R) - \frac{10}{3} - \varepsilon + \delta$$

$$\Rightarrow \rho(D) < \rho(R') < \rho(R) - 2 + 3\varepsilon - \delta$$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + 2 3\varepsilon + \delta$.

Proof: By induction on n - n(R).

$$n(R') = n(W) + n(R) - n(X_W)$$

$$m(R') \ge m(W) + m(R) - m(X_W)$$

$$T(R') \ge T(W) + T(R) - n(X_W)$$

$$\Rightarrow \rho(R') \le \rho(W) + \rho(R) - \frac{10}{3} - \varepsilon + \delta$$

$$\Rightarrow \rho(D) < \rho(R') < \rho(R) - 2 + 3\varepsilon - \delta$$

• With more work: $\rho(R) \ge \rho(D) + \frac{8}{3} - \varepsilon - \delta$.

A useful tool

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + \frac{8}{3} \varepsilon \delta$.

Claim

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\} \text{ is } 3\text{-dicolourable}.$

A useful tool

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + \frac{8}{3} \varepsilon \delta$.

Claim

 $\forall R \subseteq_{ind} D, R \cup \{uv, u'v'\} \text{ is } 3\text{-dicolourable}.$

Proof:

If not true, $\exists W \subseteq (R \cup \{uv, u'v'\})$ 4-dicritical. But then:

$$\left(\rho(D) + \frac{8}{3} - \varepsilon - \delta\right) - (2 + 2\delta) \le \rho(W) \le \frac{4}{3} + 4\varepsilon - 2\delta$$

A useful tool

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- D minimal counterexample: $\rho(D) > 1$.
- Every smaller 4-discritical W satisfies $\rho(W) \leq \frac{4}{3} + 4\varepsilon 2\delta$.
- $\forall R \subseteq_{\text{ind}} D \text{ with } n(R) \ge 4$: $\rho(R) \ge \rho(D) + \frac{8}{3} \varepsilon \delta$.

Claim

 $\forall R \subseteq_{ind} D, R \cup \{uv, u'v'\} \text{ is } 3\text{-dicolourable}.$

Proof:

If not true, $\exists W \subseteq (R \cup \{uv, u'v'\})$ 4-dicritical. But then:

$$\left(\rho(D) + \frac{8}{3} - \varepsilon - \delta\right) - (2 + 2\delta) \le \rho(W) \le \frac{4}{3} + 4\varepsilon - 2\delta$$
$$\Rightarrow \rho(D) \le 1$$

The neighbourhood of 6-vertices

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

Claim

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\} \text{ is } 3\text{-dicolourable}.$

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

The neighbourhood of 6-vertices

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

Claim

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subseteq_{ind} D$, $R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

 $\forall R \subsetneq_{ind} D, R \cup \{uv, u'v'\}$ is 3-dicolourable.

Claim

A vertex of degree 6 has either 3 or 6 neighbours.

Proof:

Claim

A vertex of degree 7 has 7 neighbours.

Chelou arcs

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

xy is chelou if $d^+(x) = 3$, $d^-(y) = 3$ and y has a simple in-neighbour $z \neq x$.

xy is chelou if $d^+(x) = 3$, $d^-(y) = 3$ and y has a simple in-neighbour $z \neq x$.

Claim

There is no chelou arc in D.

xy is chelou if $d^+(x) = 3$, $d^-(y) = 3$ and y has a simple in-neighbour $z \neq x$.

Claim

There is no chelou arc in D.

Structure of $D[V_6]$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- valency val(v): number of arcs between v and a vertex of degree ≥ 8 .
- neighbourhood-valency $\nu(v)$: $\sum_{u \in N(v)} val(u)$.

Structure of $D[V_6]$

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

- valency val(v): number of arcs between v and a vertex of degree ≥ 8 .
- neighbourhood-valency $\nu(v)$: $\sum_{u \in N(v)} val(u)$.
- V_6 : vertices of degree 6.

Claim

Every connected component of $D[V_6]$ is one of the following.

Discharging

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

• Initial charge:

$$w(v) = \frac{10}{3} + \varepsilon - \frac{1}{2}d(v) - \delta\sigma(v)$$

where $\sigma(v) = \frac{1}{|C|}$ if $v \in C$ in $D[V_6]$, $|C| \ge 2$, and $\sigma(v) = 0$ otherwise.

Discharging

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

• Initial charge:

$$w(v) = \frac{10}{3} + \varepsilon - \frac{1}{2}d(v) - \delta\sigma(v)$$

where $\sigma(v) = \frac{1}{|C|}$ if $v \in C$ in $D[V_6]$, $|C| \ge 2$, and $\sigma(v) = 0$ otherwise.

• We have:

$$\rho(D) \leq \sum_{v \in V} w(v)$$

Discharging

$$\rho = (\frac{10}{3} + \varepsilon)n - m - \delta T$$

Initial charge:

$$w(v) = \frac{10}{3} + \varepsilon - \frac{1}{2}d(v) - \delta\sigma(v)$$

where $\sigma(v) = \frac{1}{|C|}$ if $v \in C$ in $D[V_6]$, $|C| \ge 2$, and $\sigma(v) = 0$ otherwise.

• We have:

$$\rho(D) \leq \sum_{v \in V} w(v)$$

• Apply some discharging rules to obtain $w^*(v) \leq 0$, and contradict $\rho(D) > 1$.

$$m \leq \frac{5}{2}n$$

$$m \leq \frac{5}{2}n$$

$$m \leq \frac{5}{2}n$$

$$m \leq \frac{5}{2}n$$

$$m \leq \frac{9}{2}n$$

Conjecture (Kostochka and Stiebitz)

$$d_k(n) \ge (k - \frac{2}{k-1})n - \frac{k(k-3)}{k-1}$$
 (open for $k \ge 5$).

Conjecture (Kostochka and Stiebitz)

 $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough (open for $k \ge 5$).

Conjecture (Kostochka and Stiebitz)

$$d_k(n) \ge (k - \frac{2}{k-1})n - \frac{k(k-3)}{k-1}$$
 (open for $k \ge 5$).

Conjecture (Kostochka and Stiebitz)

 $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough (open for $k \ge 5$).

Question: reduce the gaps for o_3 and o_4 .

$$\frac{7}{3}n + 2 \le o_3(n) \le \frac{5}{2}n \qquad \qquad (\frac{10}{3} + \frac{1}{51})n - 1 \le o_4(n) \le \frac{9}{2}n$$

Conjecture (Kostochka and Stiebitz)

$$d_k(n) \ge (k - \frac{2}{k-1})n - \frac{k(k-3)}{k-1}$$
 (open for $k \ge 5$).

Conjecture (Kostochka and Stiebitz)

 $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough (open for $k \ge 5$).

Question: reduce the gaps for o_3 and o_4 .

$$\frac{7}{3}n + 2 \le o_3(n) \le \frac{5}{2}n \qquad \qquad (\frac{10}{3} + \frac{1}{51})n - 1 \le o_4(n) \le \frac{9}{2}n$$

Question: What about oriented graphs with digirth at least 4?

Conjecture (Kostochka and Stiebitz)

$$d_k(n) \ge (k - \frac{2}{k-1})n - \frac{k(k-3)}{k-1}$$
 (open for $k \ge 5$).

Conjecture (Kostochka and Stiebitz)

 $o_k(n) \ge (1 + \varepsilon_k)d_k(n)$ when $k \ge 3$ and n large enough (open for $k \ge 5$).

Question: reduce the gaps for o_3 and o_4 .

$$\frac{7}{3}n + 2 \le o_3(n) \le \frac{5}{2}n \qquad \qquad (\frac{10}{3} + \frac{1}{51})n - 1 \le o_4(n) \le \frac{9}{2}n$$

Question: What about oriented graphs with digirth at least 4?

Thank You!

