CSc 134 Database Management and File Organization

2. Entity-Relationship Model

Ying Jin

Computer Science Department

California state University, Sacramento

Entity-Relationship Model

- Conceptual Model
- Entity, Relationship
- ER Diagram

Entity and Attribute

Entity

- An object with a physical existence or conceptual existence
- e.g. a person, a company
- Notation

Attributes

- Properties that describe entities
- e.g. Name of an employee
- Notation

Attribute

- Simple vs. Composite attribute
 - Simple (atomic) attribute
 - Attribute that are not divisible
 - · e.g. SSN, ZIP code
 - Notation
 - Composite Attribute
 - can be divided into smaller subparts
 - e.g. Address
 - Notation

Attribute

- Single value vs. Multivaled attribute
 - Single-valued attribute
 - e.g. Age of a person
 - Multivalued attribute
 - · e.g. College degree
 - Notation

Attribute

- Stored vs. Derived attribute

- Stored attribute
 e.g. birthDate
- Derived attribute
 - Derived from other attribute
 - e.g. age = current date birthDate
 - Notation

Entity types and entity sets

Entity Type

- Defines a collection of entities that have the same attributes.
- · e.g. employee
- describe the schema or intension for a set of entities that share the same structure.

Entity Set

- The collection of all entities of a particular entity type in the database at any point in time is called an entity set.
- e.g. a set of instances of employees.
- Also called the extension of the entity type.

ER Diagram For Entity and Attribute

Key

- A key is an attribute or the combination of multiple attributes that can be used to distinguish one entity instance from other entity instances in an entity type.
 - · (e.g. SSN of an employee)
- Composite Key: A set of attributes as the key of an entity.
- Key must be minimal
- Notations
- Composite attributes as a key

Value Sets

- Value set (or domain of values):
- The set of values that may be assigned to the attribute for each individual entity
- e.g. age of employee:
 value set: integer between 16 and 70
- Not displayed in ER diagram

Example

-ER diagram for entity

 A department has a unique name and a unique number. A department may have several locations.

Relationship

- Relationship Type
 - Defines a set of associations among entity types
 - e.g. Employees work for a department.

Employee Works_For Department

- Relationship Instance
 - •Instance of a relationship type that associates with entity instances.

Example of Relationship Instance

Math presentation

- Relationship R
- Relationship instance ri
 - ri associate n individual entities (e1, e2,..., en), where ej is a member of entity type Ej.
 - Each of the individual entities e1, e2,..., en is said to participate the in the relationship instance ri=(e1, e2,...,en)

Relationship role name

- Each entity type that participates in a relationship type plays a particular role.
- Role name: signify the rule that a participating entity from the entity type plays in each relationship instance.
- e.g. employee plays the role of worker department plays the role of employer.

Structure Constraint

- Cardinality Ratios
- Participation Constraints

Cardinality Ratios for Binary Relationship

- Specify the the number of relationship instances that an entity can participate in.
- Possible cardinality ratios
 - · 1:1 (one to one)
 - 1:N (one to many)
 - N:1 (many to one)
 - M:N (many to many)

Cardinality Ratio 1:1

 One instance of A can be associated with only one instance of B.

Cardinality Ratio 1:N

- One instance of A can be associated with any number of instances of B
- One instance of B can be associate with only one instance of A

Cardinality Ratio M:N

- One instance of A can be associated with any number of instances of B
- One instance of B can be associate with any number of instances of A

Participation Constraints

- Total Participation (Existence dependency)
 - · Any employee must work for one department.
- Partial Participation
 - Some of the employee entities manage department entities, but not necessary all.

Weak Entity

- Figure
- Does not have key attributes of its own.
- Has total participation constraints
- Partial Key: Unique identifier of a weak entity that can be used to distinguished from other weak entities related to the same owner entity

Attributes of relationship types

- An attribute conceptually belongs to the relationship
- M:N
 - Attributes may be determined by the combination of participating entities in a relationship instance, not by any single entity
- 1:1
 - A relationship attribute can be migrated to one of the participating entity types
- 1:M
 - A relationship attribute can be migrated only to the entity type on the N-side.
- 1:1 and 1:M: determined subjectively by the schema designer

Recursive Relationship

The Same entity type participates more than once in a relationship type in different roles.

Min/Max Notation

- A more precise way to present structure constraints.
- An entity instance e of an entity type E must participate in at least min and at most max relationship instances in R at all times.
- Max>=Min>=0
- Max>=1
- Min=0: partial participation
- Min>0: total participation

Example of Min/Max Notation

Non-Binary Relationship

