Immobiliers Silicon Valley

SOMMAIRE

1) Contexte

2) EDA

3) MODEL

4) Axes d'ameliorations

Contexte

Votre demande:

Créer un modèle prédictif pour prédire la valeur des logements en Californie

Les outils apportés :

Une base de données qui contient les prix médians des logements pour les districts de Californie issus du recensement de 1990

Rendu:

03/02/23

Contexte

Planning previsionnel:

Janvier:

12 : EDA + Baseline / 13 : Iteration , cross validation, nettoyage des donnés, veille knn / 25 : scaling

Fevrier:

1 : Pipelines pour industrialiser le processus (automatiser) / 2 et 3 : Model hyperparametre

Planning réalisé :

Janvier:

12 : Creation repository local et remote + Création planning + veille : EDA + Debut EDA + creation Figma / 13 : EDA + veille alias + creation alias / 15 : EDA / 17 : EDA + Planning update / 25 : EDA + veilles : Data preprocessing + Debut model / 26 : Baseline / 31 : Iterations + EDA cleaning

Fevrier:

1 : Gros probleme avec Git jusqu'a 14h10 + refaire rajout EDA + nouvelles iterations + check model / 2 : Nouvelles iterations + Model Hold Out, Regression Lineai / 3 : Check EDA et model + presentation

Rendu:

03/02/23

1) Imports librairies + train_data

	Unnamed: 0	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proxin
0	2072	-119.84	36.77	6.0	1853.0	473.0	1397.0	417.0	1.4817	72000.0	INLA
1	10600	-117.80	33.68	8.0	2032.0	349.0	862.0	340.0	6.9133	274100.0	<1H OCE
2	2494	-120.19	36.60	25.0	875.0	214.0	931.0	214.0	1.5536	58300.0	INLA
3	4284	-118.32	34.10	31.0	622.0	229.0	597.0	227.0	1.5284	200000.0	<1H OCE
4	16541	-121.23	37.79	21.0	1922.0	373.0	1130.0	372.0	4.0815	117900.0	INLA
5	8781	-118.32	33.79	32.0	2381.0	467.0	1264.0	488.0	4.1477	315100.0	<1H OCE
6	5438	-118.43	34.01	31.0	2526.0	528.0	1046.0	504.0	4.7009	500001.0	<1H OCE
7	14856	-117.07	32.64	32.0	5135.0	1025.0	2152.0	944.0	4.1325	172800.0	NEAR OCE
8	19956	-119.33	36.22	9.0	3748.0	644.0	1955.0	620.0	4.2011	108100.0	INLA
9	17175	-122.47	37.50	18.0	2297.0	416.0	1086.0	381.0	4.8750	334600.0	NEAR OCE

2) Observation du data set

corr = total_rooms, households, population, total_bedrooms, population

3) Nettoyage et transformation

Rename population total_residents

OneHotEncoder on ocean_proximity

Remove columns: unnamed: 0, latitude and longitude

ocean_proximity	ocean_proximity_<1H OCEAN	ocean_proximity_INLAND	ocean_proximity_ISLAND	ocean_proximity_NEAR BAY	ocean_proximity_NEAR OCEAN
INLAND	0.0	1.0	0.0	0.0	0.0
<1H OCEAN	1.0	0.0	0.0	0.0	0.0
INLAND	0.0	1.0	0.0	0.0	0.0
<1H OCEAN	1.0	0.0	0.0	0.0	0.0
INLAND	0.0	1.0	0.0	0.0	0.0
ii.	4.2	120		120	4
INLAND	0.0	1.0	0.0	0.0	0.0
NEAR BAY	0.0	0.0	0.0	1.0	0.0
INLAND	0.0	1.0	0.0	0.0	0.0
<1H OCEAN	1.0	0.0	0.0	0.0	0.0
NEAR OCEAN	0.0	0.0	0.0	0.0	1.0

3) Nettoyage et transformation

MODEL

1) Imports librairies + iterations

MODEL

- 2) Models utilisés
 - Dummy

Hold Out

- Regression Lineaire

- Cross validation

MODEL

2) Iteration utilisés

- immo_base

- df_no_outliers

df_immobilier_no_null

- df_immobilier_null_mean

- df_immobilier_null_median

Amélioration

- Techniques :
 - Connaissances et utilisation des modèles : RandomForest, KNN,...
 - .gitignor
 - Pickle

- Gestion projet :
 - Mauvaise compréhension des consignes (EDA 2/3j)
 - Mauvaise compréhension du référentiel (Objectif 1?)

- Bilan:
 - Reprendre de mon côté le projet pour maîtriser les techniques utiliser

Feed back

- Pour plus de performance, une base de données plus récentes

Avez-vous des questions?

Référence

- notebook evaluation model
- notebook diabetes
- https://medium.com/analytics-vidhya/different-type-of-feature-engineering-encoding-techniques-for-categorical-variable-encoding-214363a016fb
- https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preproces sing
- https://towardsdatascience.com/preprocessing-with-sklearn-a-complete-and-c omprehensive-guide-670cb98fcfb9
- Aides camarades

Merci