DA3 ASSIGNMENT

Introduction:

The aim of this assignment is to uncover building models for regression analysis and how we can achieve the desired outcome using other variables in the data. And also, to understand the factors we consider while creating a good model. In addition, we also see how a model could move towards overestimation if too many variables are used, and it might be underestimated if too few variables are used. In this assignment, we are analyzing cpsearnings dataset and will be building 4 models from the simplest one to the more complex ones. It will give us a better understanding of how to choose the right model.

Data Cleaning:

The occupation code we chose was '0630' and we filtered the data for people above the age of 20 years. The dummy variables were created since we had qualitative values as well, so true/false variables were created and used in the analysis. The male variable was also created, and other variables were used like marital status, whether the person has a child, their ethnicity, how educated they are etc. The graphs have been included below to better understand our data and statistics. We can see our wages and how they were skewed and what the distribution looks like after taking a log. We can also see the age vs wages loess graph, and lastly we see the boxplot with education categories.

Model Comparison:

The simplest, model 1 will have education as main variable. We will set the base at 'No Diploma' and take all the categories above it. We will be noticing that how the wages differ between men and women and our results show that.

The second model will have the age variable added. This way we will keep increasing the variables in each model and understand the statistics it provides. Lastly, model 4 will have the most complexity with the most variables.

We will keep in mind that a lower BIC will be preferred in the statistics because it helps in preventing overfitting. To assess our model, we will also check RMSE and would prefer the one with the lowest RMSE value. In this we create 4 folds and perform the calculations.

	Model1	Model2	Model3	Model4
Fold1	12.919500	11.877732	11.784141	11.627399
Fold2	13.160009	12.103995	11.996320	11.799814
Fold3	13.187572	12.093038	12.051339	11.827412
Fold4	13.193208	11.915244	11.806503	11.687276
Average	13.115072	11.997502	11.909576	11.735475

With these statistics, we can see that with RMSE values, the Model 4 which has the highest number of variables performs better with an average of 11.73. Also keeping in mind that model 2 and model 3 aren't too far ahead in terms of performance with RMSE. Now we will run the regressions and see all stats and assess which model performance was the best.

Regression: reg1

OLS Regression Results

===========							
Dep. Variable:	W	ages	R-squared:			0.062	
Model:		OLS	Adj. R-squared:			0.056	
Method:	Least Squa	ares	F-st	atistic:		9.568	
Date:	Fri, 19 Jan	2024	<pre>Prob (F-statistic):</pre>			7.71e-09	
Time:	19:0	3:28	Log-Likelihood:			-2771.7	
No. Observations:		694	AIC:			5555.	
Df Residuals:		688	BIC:			5583.	
Df Model:		5					
Covariance Type:		HC1					
===========	========	=====	=====	========	=======		======
	coef	std	err	t	P> t	[0.025	0.975]
Intercept	23.3977	a.	806	29.027	0.000	21.815	24.980
Associate[T.True]	0.5117		453	0.352	0.725	-2.340	3,364
Bachelors[T.True]	5.3039		143	4.640	0.000	3.060	7.548
Masters[T.True]	7.5261		744	4.316	0.000	4.103	10.950
Professional[T.True]			141	1.623	0.105	-1.411	14.850
PhD[T.True]	26.9066		874	3.914	0.000	13.410	40.403
=======================================	=========		=====	=========	=======	========	.51405
Omnibus:	126	.362	Durb	in-Watson:		1.840	

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 208.706

 Skew:
 1.140
 Prob(JB):
 4.79e-46

 Kurtosis:
 4.420
 Cond. No.
 15.0

Notes:

[1] Standard Errors are heteroscedasticity robust (HC1)

Regression: reg2

OLS Regression Results

Dep. Variable:	wages	R-squared:	0.214				
Model:	OLS	Adj. R-squared:	0.205				
Method:	Least Squares	F-statistic:	25.34				
Date:	Fri, 19 Jan 2024	Prob (F-statistic):	2.31e-34				
Time:	19:03:28	Log-Likelihood:	-2710.4				
No. Observations:	694	AIC:	5439.				
Df Residuals:	685	BIC:	5480.				
Df Model:	8						
Covariance Type:	HC1						

==========		======	========	======		======	=======	=======
		coef	std err		t P> t	I	[0.025	0.975]
Intercept	-26.9112	5.515	-4.880	0.000	-37.739	-16.083		
Associate[T.True]	0.4814	1.302	0.370	0.712	-2.076	3.038		
Bachelors[T.True]	8.2056	1.138	7.212	0.000	5.972	10.440		
Masters[T.True]	8.6881	1.695	5.127	0.000	5.361	12.016		
Professional[T.True]	5.7174	4.170	1.371	0.171	-2.470	13.905		
PhD[T.True]	24.9108	6.460	3.856	0.000	12.227	37.594		
age	2.0432	0.288	7.095	0.000	1.478	2.609		
agesq	-0.0197	0.004	-5.590	0.000	-0.027	-0.013		
male	3.8196	1.187	3.219	0.001	1.490	6.150		
Omnibus:	94.690 Durbin-Watson:				1.833			
Prob(Omnibus):	0.000 Jarque-Bera (JB):		:	148.984				
Skew:	0.897 Prob(JB):			4.45e-33				
Kurtosis:	4	1.390 Co	nd. Nó.		2.85e+04			

Notes:

[1] Standard Errors are heteroscedasticity robust (HC1) $\,$

Regression: reg3

OLS Regression Results

OLS Regression Results								
Dep. Variable: Model:	 W	ages OLS	R-squared: Adj. R-squared:			0.224		
Method:	Least Squ		_	atistic:		0.212 19.84		
Date:	Fri, 19 Jan			(F-statistic	١.	6.71e-35		
Time:		3:28		Likelihood:	<i>)</i> ·	-2705.8		
No. Observations:	15.0	694	AIC:			5436.		
Df Residuals:		682	BIC:			5490.		
Df Model:		11						
Covariance Type:		HC1						
=======================================	coef	std	err	t	P> t	[0.025	0.975]	
Intercept	-26 . 8292	 6.	 186	-4 . 337	0.000	-38 . 974	-14.684	
Associate[T.True]	0.4263	1.	290	0.330	0.741	-2.107	2.959	
Bachelors[T.True]	8.0135	1.	141	7.023	0.000	5.773	10.254	
Masters[T.True]	8.5359	1.	699	5.025	0.000	5.201	11.871	
Professional[T.True]	6.1226	3.	989	1.535	0.125	-1.710	13.955	
PhD[T.True]	23.6612	6.	468	3.658	0.000	10.962	36.361	
male	3.9151	1.	167	3.355	0.001	1.624	6.207	
age	1.8814		330	5.709	0.000	1.234	2.528	
agesq	-0.0179		004	-4.465	0.000	-0.026	-0.010	
white	2.9005		156	2.509	0.012	0.631	5.170	
child	1.0417		122	0.929	0.353	-1.160	3.244	
marital_status	1.0617	1. 	048 =====	1.013	0.311 	-0.996	3.120	
Omnibus:	96	.880	Durb	in-Watson:		1.823		
Prob(Omnibus):	0	.000	Jarque-Bera (JB):			155.562		
Skew:	0	.904	Prob(JB):			1.66e-34		
Kurtosis:	4	.452	Cond	. No.		3.08e+04		

Omnibus: 93.710 Durbin-Watson: 1.825
Prob(Omnibus): 0.000 Jarque-Bera (JB): 147.597
Skew: 0.888 Prob(JB): 8.91e-33
Kurtosis: 4.396 Cond. No. 6.69e+04

Notes:

[1] Standard Errors are heteroscedasticity robust (HC1)

Choosing the model:

As we look at the BIC values from all models, we can see that the lowest value is of Model 2, but Model 3 also has a value pretty close to the lowest one. If we consider our RMSE values, we can remember that Model 4 had the lowest. With BIC, that is not the case as Model 2 performs the best here. So, what will we conclude and how will we select a model. I believe that due to the penalty term in BIC when the number of variables increases, that causes our Model 4 to have a higher value. As we can see that it isn't the highest value, 5583 of Model 1 being the highest BIC and Model 4's BIC is 5523. Therefore, it seems like the best model to use with the live data would be Model 4 since it performs the best with RMSE, and the BIC values aren't bad either.