Problem J3: Are we there yet?

Problem Description

You decide to go for a very long drive on a very straight road. Along this road are five cities. As you travel, you record the distance between each pair of consecutive cities.

You would like to calculate a distance table that indicates the distance between any two of the cities you have encountered.

Input Specification

The first line contains 4 positive integers less than 1000, each representing the distances between consecutive pairs of consecutive cities: specifically, the ith integer represents the distance between city i and city i+1.

Output Specification

The output should be 5 lines, with the *i*th line $(1 \le i \le 5)$ containing the distance from city *i* to cities 1, 2, ... 5 in order, separated by one space.

Sample Input

3 10 12 5

Output for Sample Input

0 3 13 25 30 3 0 10 22 27 13 10 0 12 17 25 22 12 0 5 30 27 17 5 0

Explanation of Output for Sample Input

The first line of output contains:

- 0, since the distance from city 1 to city 1 is 0;
- 3, since the distance between city 1 and city 2 is 3;
- 13, since the distance between city 1 and city 3 is 3 + 10 = 13;
- 25, since the distance between city 1 and city 4 is 3 + 10 + 12 = 25;
- 30, since the distance between city 1 and city 5 is 3 + 10 + 12 + 5 = 30.

Problème J3 : Quand est-ce qu'on arrive?

Description du problème

Vous décidez de faire une longue promenade en voiture sur une route très droite. Sur cette route, il y a cinq villes. En chemin, vous notez la distance entre chaque deux villes consécutives.

Vous voulez remplir un tableau qui indique la distance entre n'importe quelles deux des villes rencontrées.

Précisions par rapport aux entrées

La première ligne contiendra 4 entiers strictement positifs inférieurs à 1000, représentant les distances entre les villes consécutives. C'est-à-dire que le $i^{\text{ième}}$ entier représente la distance entre la ville i et la ville i+1.

Précisions par rapport aux sorties

La sortie sera composée de 5 lignes, la $i^{\text{ième}}$ ligne ($1 \le i \le 5$) contenant les distances entre la ville i et les villes 1, 2, ..., 5, dans l'ordre, séparées d'une espace.

Exemple d'entrée

3 10 12 5

Sortie pour l'exemple d'entrée

0 3 13 25 30 3 0 10 22 27 13 10 0 12 17 25 22 12 0 5 30 27 17 5 0

Explication de la sortie pour l'exemple d'entrée

La première ligne de sortie contient :

- 0, puisqu'il y a une distance de 0 entre la ville 1 et la ville 1;
- 3, puisqu'il y a une distance de 3 entre la ville 1 et la ville 2;
- 13, puisqu'il y a une distance de 3 + 10, ou 13, entre la ville 1 et la ville 3;
- 25, puisqu'il y a une distance de 3 + 10 + 12, ou 25, entre la ville 1 et la ville 4;
- 30, puisqu'il y a une distance de 3 + 10 + 12 + 5, ou 30, entre la ville 1 et la ville 5.