

教师姓名	沈炜炜	学生姓名	郑旭晶	首课时间	20190423	本课时间	20190514
学习科目	数学	上课年级	高三	教材版本		人教 A 版	
课题名称	填空题与选择题简单题型小结						
重点难点							

目录

1	集合与不等式	2
2	复数	3
3	函数、方程与不等式	5
4	指数函数、对数函数、幂函数	5
5	平面向量	5
6	三角函数概念、同角关系与恒等变换	5
7	三角函数的图像和性质	5
8	直线与圆方程	5
9	导数	5
10	线性规划	5
11	等差数列与等比数列	8
12	框图	8
13	基本不等式	8
14	概率与统计	8
15		8
16	参考答案	9

、集合与不等式

- **1.1** [2018 文•全国 I 卷] 已知集合 $A = \{0, 2\}$, $B = \{-2, -1, 0, 1, 2\}$, 则 $A \cap B = \dots$ ()
- **A**. {0, 2}

B. {1, 2}

C. {0}

D. $\{-1, -2, 0, 1, 2\}$

【答案】: A

知识点提示

交集: 既属于集合 A,又属于 B 的所有元素组成的集合,记为 $A \cap B$.

[$\{0, 1\}$: $\{1, 2, 3\} \cap \{2, 3, 5\} = \{2, 3\}$; $[2, +\infty) \cap [-1, 3) = [2, 3)$.

- **1.2** [2018 文•济南模拟] 已知集合 $A = \{x \mid x^2 + 2x 3 = 0\}$, $B = \{-1, 1\}$ 则 $A \cup B = \dots$ (
- A. {1}

- B. $\{-1, 1, 3\}$
- $C. \{-3, -1, 1\}$
- D. $\{-3, -1, 1, 3\}$

【答案】: C

【解析】: 方程 $x^2 + 2x - 3 = 0$ 的解为 x = 1 或 x = -3, : 集合 $B = \{1, -3\}$, 故 A = 1 的并集 $A \cup B = \{-3, -1, 1\}$

知识点提示

• 并集:集合A中所有元素与集合B中的所有元素共同组成的集合,记为 $A \cup B$.

[$\{0, 1\}$]: $\{1, 2, 3\} \cup \{2, 3, 5\} = \{1, 2, 3, 5\}$; $\{1, 1, 2, 3\} \cup \{1, 1, 3\} = [-1, +\infty)$.

• 解一元二次方程方法(以方程 $2x^2 - 5x - 3 = 0$ 为例):

配方法:

十字相乘法:

$$2x^2 - 5x - 3 = 0$$

$$x^2 - \frac{5}{2}x - \frac{3}{2} = 0$$

$$+1 \longrightarrow 2x+1$$

 $-3 \longrightarrow x-3$

$$x^{2} - 2 \times \frac{5}{4}x + \left(\frac{5}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2} - \frac{3}{2} = 0$$

$$\left(x - \frac{5}{4}\right)^2 = \frac{25}{16} + \frac{3 \times 8}{2 \times 8} = \frac{49}{16}$$

$$\left(x - \frac{5}{4}\right)^2 = \frac{25}{16} + \frac{5}{4} = \pm \frac{7}{4}$$

$$-\frac{5}{4}$$
 $-\frac{5}{16}$ $+\frac{7}{2 \times 8}$ $-\frac{5}{2}$

$$2x^2 \quad (-6x+x) - 3 \quad \longrightarrow 2x^2 - 5x - 3 = 0$$

 $x = \frac{5}{4} \pm \frac{7}{4}$

$$∴ 2x + 1 = 0$$
 或 $x - 3 = 0$,

所以方程可化为 (2x+1)(x-3)=0,

即
$$x = 3$$
 或 $x = \frac{1}{2}$.

即 x = 3 或 $x = -\frac{1}{2}$.

1.3 [2018 文•贵阳期末] 设 $A = \{x \mid -1 < x < 2\}$, $B = \{x \mid y = \sqrt{-x+1}\}$, 则 $A \cap B = \dots$ (

)

A. (-1, 1]

B. (-5, 2)

C. (-3, 2)

D. (-3, 3)

1.4 [2018 文•天津卷] 设全集为 \mathbb{R} ,集合 $A = \{x \mid 0 < x < 2\}$, $B = \{x \mid x \ge 1\}$,则 $A \cap (\mathbb{C}_{\mathbb{R}}B) = \dots$ A. $\{x \mid 0 < x \le 1\}$

B. $\{x \mid 0 < x < 1\}$ C. $\{x \mid 1 \le x < 2\}$

D. $\{x \mid 0 < x < 2\}$

1.5《2019 金考卷双测 20 套 (文)ISBN978-7-5371-9890-5》题型 1 集合的运算 P1p8【2018• 南昌调 研】【集合,交集,对数】

[2018 文•南昌调研] 设集合 $A = \{x \mid -2 \le x \le 1\}$, $B = \{x \mid y = \log_2(x^2 - 2x - 3)\}$, 则 $A \cap B = \dots$

A. [-2, 1)

B. (-1, 1]

C. [-2, -1)

1.6《2019 金考卷双测 20 套 (文)ISBN978-7-5371-9890-5》题型 1 集合的运算 P1p3【2018• 全国 II 卷】【集合,元素】

[2018 文•全国 II 卷] 已知集合 $A = \{(x,y) \mid x^2 + y^2 \le 3, x \in \mathbb{Z}, y \in \mathbb{Z}\}$,则 A 中元素的个数为...(

A. 9

B. 8

C. 5

D. 4

二、 复数

2.1 [2017 文 • 全国 I 新课标] 下列各式的运算结果为纯虚数的是()

A. $i(1+i)^2$

B. $i^2(1-i)$

C. $(1+i)^2$

D. i(1 + i)

【答案】: C

【解析】: 选项 A: $i(1+i)^2 = i(2i) = -2$; 选项 B: $i^2(1-i) = -1(1-i) = i-1$; 选项 C: $(1+i)^2 = 1+2i-1 = 2i$; 选项 D: i(1+i) = i-1.

知识点提示

复数
$$a + b\mathbf{i}(a, b \in \mathbb{R})$$
 $\begin{cases} \mathbf{x} & (b = 0) \\ \mathbf{x} & (b \neq 0) \end{cases}$ 年 $(b \neq 0)$ 非纯虚数 $(a \neq 0)$

【例】: 3 是实数; -1 + 3i 与 2i 是虚数, 并且 2i 是纯虚数, -1 + 3i 是非纯虚数; 以上三个数都 是复数.

2.2 [2018 文•全国 I 卷] 设 $z = \frac{1-i}{1+i} + 2i$,则 $|z| = \dots$ (

A. 0

【答案】: C

【解析】: $z = \frac{1-i}{1+i} + 2i = \frac{(1-i)(1-i)}{(1+i)(1-i)} + 2i = \frac{-2i}{2} + 2i = i$, $\therefore |z| = 1$

知识点提示

复数 $z = a + bi(a, b \in \mathbb{R})$ 对应的向量 \overrightarrow{OZ} 的模,也即点 Z(a, b) 与原点 O 的距离叫做复数的模,记为 |z|. 即:

显然, $|z| \ge 0$. 复数的模是一个不小于 0 的实数.

【例】: |3-4i|=5; |2i|=2.

2.3 [2016 文 • 全国新课标] 设 (1+2i)(a+i) 的实部与虚部相等,其中 a 为实数,则 a=....(

A. -3

B. -2

C. 2

D. 3

【答案】: A

【解析】: (1+2i)(a+i) = a+i+2ai-2 = (a-2)+(2a+1)i; 实部为 a-2, 虚部为 2a+1; 故 $a-2=2a+1 \Rightarrow -2-1=2a-a$, 即 a=-3.

知识点提示

复数 $z=a+b\mathrm{i}(a,b\in\mathbb{R})$ 对应点为 (a,b),共轭复数为 $\bar{z}=a-b\mathrm{i}$,实部为 a,虚部为 b,模为 $|z|=\sqrt{a^2+b^2}$.

2.4 [2015 文 • 全国新课标 I-3] 已知复数 z 满足 (z-1)i = 1 + i,则 z =(

A. -2 - i

B. -2 + i

C. 2 - i

D. 2 + i

【答案】: C

【解析】: $(z-1)i = 1 + i \Rightarrow z - 1 = \frac{1+i}{i} = 1 - i$, $\therefore z = 2 - i$.

② 这是关于 z 的一元一次方程,与关于 x 的方程 $\sqrt{2}(x-1) = 1 + \sqrt{2}$ 一样的解法即可:

 $(x-1) = \frac{1+\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}+2}{2} \Rightarrow x = 1 + \frac{\sqrt{2}+2}{2} = \frac{\sqrt{2}+4}{2}$ (或写为 $2+\frac{\sqrt{2}}{2}$). 这里的 $\sqrt{2}$ 与 i 并无本质区别,都是用一些符号表示一个数.

- 三、 函数、方程与不等式
- 四、指数函数、对数函数、幂函数
- 五、平面向量
- 六、三角函数概念、同角关系与恒等变换
- 七、三角函数的图像和性质
- 八、直线与圆方程
- 九、导数
- 十、线性规划

10.1 [2018 文•大连双基测试] 设实数 x, y 满足约束条件 $\begin{cases} x-y+1 \ge 0, \\ x+y-1 \le 0, \end{cases}$ 则目标函数 z=2x+y 的 $x-2y-1 \le 0.$

取值范围为()

A. $[1, +\infty)$

B. $[2, +\infty)$

C. [-8, 1]

D. [-8, 2]

【解析】: 约束条件涉及三条直线,将三个直线方程编号

$$x - y + 1 = 0$$
, ①

$$x + y - 1 = 0$$
, (2)

$$x - 2y - 1 = 0$$
. 3

- 由①,②得交点(0,1),
 - 检查. 将求得的交点代入方程①②, 仔细笔算检查, 确保没算错: 由0-1+1=0, 0+1-1=0, 计算正确;
 - 将交点 (0,1) 代入③对应的不等式 $0-2\times1-1=-3 \le 0$,符合题意. 于是将点 (0,1) 代入目标函数,得 z=1.
- 由①, ③得交点 (-3,-2),
 - 检查. 将求得的交点分别代入方程①③,仔细笔算检查,确保没算错:由 -3 (-2) + 1 = $-3 + 2 + 1 = 0, -3 2 \times (-2) 1 = -3 + 4 1 = 0$,计算正确;
 - 将交点 (-3,-2) 代入②对应的不等式 $-3+(-2)-1=-6 \le 0$,满足条件. 于是将点 (-3,-2) 代入目标函数得 z=-8.

- 由②, ③得交点(1,0),
 - 检查. 将求得的交点分别代入方程①③,仔细笔算检查,确保没算错: 由 $1-0-1=0,1-2\times0-1=1-0-1=0$, 计算正确;
 - 将交点 (1,0) 代入①对应的不等式 $1-0+1=2 \ge 0$,满足条件. 于是将点 (1,0) 代入目标函数得 z=-8.

于是 z 最小值为 2, 最大值 -8, 值域 [-8, 2], 选 D.

10.2 [2018 文•益阳、湘潭调研] 设变量 x, y 满足约束条件 $\begin{cases} x-y-1 \leqslant 0, \\ x+y \geqslant 0, \end{cases}$ 则 z=x-3y 的最大值 $x+2y-4 \geqslant 0.$

为_____.

【解析】: 约束条件涉及三条直线,将三个直线方程编号

$$x - y - 1 = 0$$
, (1)

$$x + y = 0, (2)$$

$$x + 2y - 4 = 0$$
. 3

- 由①,②得交点 $(\frac{1}{2}, -\frac{1}{2})$,
 - 检查. 将求得的交点代入方程①②, 仔细笔算检查, 确保没算错: 由 $\frac{1}{2}$ $(-\frac{1}{2})$ $1 = \frac{1}{2} + \frac{1}{2} 1 = 0$, $\frac{1}{2} + (-\frac{1}{2}) = 0$, 计算正确;
 - 将交点 $(\frac{1}{2}, -\frac{1}{2})$ 代入③对应的不等式 $\frac{1}{2} + 2 \times (-\frac{1}{2}) 4 = \frac{1}{2} 1 4 < 0$,不符合题意. 于是"抛弃"这个点.
- 由①, ③得交点(2,1),
 - 检查. 将求得的交点分别代入方程①③,仔细笔算检查,确保没算错: 由 $2-1-1=0,2+2\times1-4=2+2-4=0$, 计算正确;
 - 将交点 (2,1) 代入②对应的不等式 $2+1 \ge 0$,满足条件. 于是将点 (2,1) 代入目标函数得 z=-1.
- 由②, ③得交点 (-4,4),
 - 检查. 将求得的交点分别代入方程①③,仔细笔算检查,确保没算错: 由 -4+4=0, $-4+2\times4-4=-4+8-4=0$, 计算正确;

- 将交点 (-4,4) 代入①对应的不等式 -4-4-1=-9 ≤ 0,满足条件. 于是将点 (-4,4) 代入 目标函数得 z = -12.

干是 7 最大值 -1.

补充说明

此题求①②交点时,得到的点 $(\frac{1}{2}, -\frac{1}{2})$,不符合题意. 这种情况很少见,但为求万无一失,还是不 能省去代入检验的步骤.

一旦出现这种情况,则目标函数不可能同时存在最大值与最小值. 因此此题若要求 z = x - 3y 的 值域,那么 [-8,-1] 将是错误答案. 这种情况更少见. 一般由题目的描述可以直接判断目标函数 有最大值还是有最小值.

此题中,目标函数 z = x - 3y 要么只有最大值(这种情况最大值为 -1,那么值域应为($-\infty$,-1)),要么只有 最小值(这种情况最小值为 -8,那么值域应为 $(-8,+\infty)$). 为判断值域,将不符合约束条件的点 $(\frac{1}{8},-\frac{1}{8})$ 带入目标函数得 z=2,于是 2 不可能在 z 的值域中,所以 z 的值域为 $(-\infty, -1)$, z 只有最大值.

如果要求 h = x + 3y 的值域,那么由①,③交点 (2,1) 得 h = 5,由②,③交点 (-4,4) 得 h = 8,于是 h 可 能是只有最大值,最大值为 8,值域 $(-\infty,8)$; 也可能 h 只有最小值,最小值为 5,值域 $(5,+\infty)$,由不满 足约束条件的①,②交点 $(\frac{1}{2}, -\frac{1}{2})$ 得 h = -1,可见 h 不能等于 -1,因此 h 值域为 $(5, +\infty)$,h 只有最小值.

 $x - y + 4 \ge 0$ **10.3** [2018 文 • 湖北八校联考(一)] 已知 x, y 满足约束条件 $\{x \le 2,$ 且 z = x + 3y 的最小值 $x + y + k \geqslant 0.$

为 2,则常数 k=

【解析】: 约束条件涉及三条直线, 将三个直线方程编号(含有要求的未知数 k 的式子标记为第③式)

$$x - y + 4 = 0$$
, (1)

$$x - 2 = 0$$
, (2)

$$x + y + k = 0$$
. (3)

由己知 z = x + 3y 的最小值为 2,即 $x + 3y \ge 2$,也即

$$x + 3y - 2 \ge 0$$
 ①

- 由①,②得交点(2,6),
 - 检查. 将求得的交点分别代入方程(Ω), 仔细笔算检查, 确保没算错: 由 2-6+4=0, 2-2=0, 计算正确:
 - 将交点 (2,6) 代入(0,6) 代入(0,6) (4) (2,6) 代入(0,6) (5) 所以此交点不是最值点. 接着往下做.

②如果交点满足①式,那么题目所求应为k的取值范围(答案将类似于k>2, k<-7),基本不会这样考. 因此某种程度上,这一步骤实际上完全可以省略.

- 由①, ①得交点 $(-\frac{5}{2},\frac{3}{2})$,
 - 检查. 将求得的交点分别代入方程①①,仔细笔算检查,确保没算错: 由 $-\frac{5}{2} \frac{3}{2} + 4 = -\frac{8}{2} + 4 = -4 + 4 = 0, -\frac{5}{2} + 3 \times \frac{3}{2} 2 = -\frac{5}{2} + \frac{9}{2} 2 = \frac{4}{2} 2 = 0$,计算正确;
 - 将交点 $\left(-\frac{5}{2},\frac{3}{2}\right)$ 代入③式,得 $k=-(x+y)=-(-\frac{5}{2}+\frac{3}{2})=-(-\frac{2}{2})=1$;

此时约束条件为 $\begin{cases} x-y+4 \ge 0, \\ x \le 2, \end{cases}$ 目标函数 z=x+3y. 利用前两个例题使用的方法求出这 $x+y+1 \ge 0.$

种情况下的最小值,如果最小值为 2,那么题目所求的 k 值就是 1,否则进行下一步: 计算②,⑥的交点,将交点代入③式,即得到 k 的值.

经计算,此时三个交点分别为 (2,6)、 $(-\frac{5}{2},\frac{3}{2})$ 、 (2,-3), ②③两式交点 (2,-3) 取得最小值 $z_{\min}=x+3y=2+3\times(-3)=-7\neq 2$, 所以 k 的值不为 1

- 由②, ⑥得交点(2,0),
 - 检查. 将求得的交点分别代入方程②⑩,仔细笔算检查,确保没算错:由 $2-2=0,2+3\times0-2=0$, 计算正确;
 - 将交点 (2,0) 代入③式,得 k = -(x+y) = -(2+0) = -2; 此即为所求.

答案: 常数 k = -2.

十一、等差数列与等比数列

十二、 框图

十三、基本不等式

十四、 概率与统计

十五、

十六、参考答案

1.3 A **1.5** C

1.4 B

鼓楼校区: 87500166 台江校区: 83310089 金山校区: 87521588 爱琴海校区: 87509388