

Inteligência Artificial II

Engenharia de Computação

Sistemas Baseados em Enxames

Prof. Anderson Luiz Fernandes Perez Email: anderson.perez@ufsc.br

Sumário

- Introdução
- Otimização por colônia de formigas
- Otimização por enxame de partículas

Introdução

- Sistemas baseados em enxame modelam populações de indivíduos simples, com pouca capacidade de processamento.
- A população de indivíduos forma sistemas descentralizados e auto-organizáveis.
- A interação entre esses indivíduos fazem emergir padrões de inteligência capazes de resolver problemas complexos.

Introdução

- Propriedades da inteligência coletiva
 - Proximidade
 - Os agentes devem ser capazes de interagir.
 - Qualidade
 - Os agentes devem ser capazes de avaliar seu comportamento.
 - Diversidade
 - O sistema deve reagir a situações inesperadas.
 - Estabilidade
 - Nem todas as variações ambientes devem afetar o comportamento de um agente.
 - Adaptabilidade
 - Capacidade do agente de se adequar a mudanças ambientais.

Introdução

- Inteligência coletiva
 - Propriedade emergente de um sistema coletivo que resulta de seus princípios de proximidade, qualidade, diversidade, estabilidade e adaptabilidade.
 - Um sistema de enxame é composto por um conjunto de agentes capazes de interagir entre si e com o meio ambiente.

de formigas

 Algoritmo de propósito geral que pode ser utilizado para resolver diferentes tipos de problemas de otimização.

Características:

- Versatilidade: pode ser aplicado a versões similares do mesmo problema.
- Robustez: com pequenas modificações pode ser aplicado a problemas similares.
- Baseado em população: utiliza população de indivíduos na busca de uma solução.

de formigas

- No algoritmo "as formigas" são tratados como agentes com capacidade muito simples.
- Uma características interessante do estudo sobre as formigas e como essas estabelecem o melhor (menor) caminho entre a fonte de alimento e sua colônia.

de formigas

- A comunicação entre as formigas é realizada por meio de uma substância química que uma formiga liberar ao longo do caminho.
- Essas substância é conhecida como fermônio.
- Uma formiga decide, com uma grande probabilidade, seguir a trilha de feromônio.
- Quando mais formigas seguirem a trilha, mais esta se tornará atraente (feed-back positivo).

de formigas

Exemplo 1: escolha do menor caminho

de formigas

Exemplo 2: escolha do menor caminho

de formigas

Exemplo 3: problema do caixeiro viajante

de formigas

- As formigas em um sistema simulado possuem as seguintes características:
 - Possuem memória
 - Não são totalmente cegas
 - Vivem em um ambiente onde o tempo é discreto

de formigas

Recrutamento

- Nome dado ao comportamento de reunir um grande número de formigas coletores em torno de uma determinada fonte de alimento.
- O recrutamento pode ser:
 - Em massa
 - Em grupo
 - Em linha

de formigas

Algoritmo ACO

```
procedure [best] = ACO(max_it)
   initialize τ<sub>ij</sub> //usually every edge is initialized with the same τ<sub>0</sub>
   place each ant k on a randomly selected edge
   t ← 1
   while t < max it do,
       for i = 1 to N do. //for each ant
           build a solution using a probabilistic transition rule (e-1) times. The rule is function of \tau and \eta
          //e is the number of edges on the graph G
      end for
       evaluate the cost of every solution built
      if an improved solution is found,
          then update the best solution found
      end if
      update pheromone trails
      t \leftarrow t + 1
   end while
end procedure
```

Otimização por enxame de partículas de Santa Catarina

- Técnica de otimização estocástica baseada no comportamento social da revoada de pássaros e de cardume de peixes.
- É baseado em uma população de soluções, a cada nova geração as soluções são melhoradas.
- Não possuem operadores de evolução como cruzamento e mutação.

Otimização por enxame de partículas de Santa Catarina

- As soluções potenciais, conhecidas como partículas, voam através do espaço de busca, seguindo as melhores partículas no momento.
- Todas as partículas possuem resultados (fitness) e são comparadas com pássaros em busca de comida.
- Em cada interação cada partícula é melhorada, seguindo dois melhores valores:
 - O melhor resultado que esta partícula encontrou anteriormente (pBest);
 - Melhor valor obtido por qualquer outra partícula da população (gBest).

- As partículas que forma a solução movimenta-se no espaço de busca à procura da melhor solução.
- O movimento é regido pela velocidade da partícula, que é definido por:
 - Velocidade atual da partícula
 - Influência da melhor posição já encontrada pela partícula (componente cognitiva)
 - Influência da melhor solução encontrada pela vizinhança da partícula.

Universidade Federal de Santa Catarina

Otimização por enxame

de partículas

 A velocidade da partícula é atualizada conforme a equação:

$$v_{id}(t+1) = wv_{id}(t) + c_1r_1(t)[y_{id}(t) - x_{id}(t)] + c_2r_2(t)[y_{gd}(t) - x_{id}(t)]$$

- Onde:
 - V_{id}(t) velocidade atual da partícula i na dimensão d.
 - w peso incercial. (alto busca em amplitude); (baixo busca em profundidada).
 - c₁ e c₂ constante de aceleração.
 - $-c_1r_1(t)[y_{id}(t)-x_{id}(t)]$ qualidade da posição atual da partícula em relação a melhor posição já encontrada por ela.
 - $-c_2r_2(t)[y_{gd}(t)-x_{id}(t)]$ qualidade da posição atual da partícula em relação a melhor posição já encontrada por sua vizinhança.
 - r₁ e r₂ números aleatórios.

Universidade Federal de Santa Catarina

Otimização por enxame

de partículas

- Cada partícula é representada por três vetores que representam:
 - Posição da partícula no espaço de busca d-dimensional.

$$\overrightarrow{x_i} = (x_{i1}, x_{i2}, \dots, x_{id})$$

Melhor posição encontrada pela própria partícula.

$$\vec{y_i} = (y_{i1}, y_{i2}, ..., y_{id})$$

Velocidade atual da partícula.

$$\vec{v_i} = (v_{i1}, v_{i2}, ..., v_{id})$$

Otimização por enxame

de partículas

- Topologia
 - Estrela e anel

Otimização por enxame de partículas

Algoritmo do PSO

de Santa Catarina

```
cria e inicializa um enxame d-dimensional:
repita
  para cada partícula do enxame faça
     para cada dimensão d faça
       se f(x_{id}) < f(y_{id}) então
          y_{id} = x_{id};
       fim:
       se f(y_{id}) < f(y_{ad}) então
          y_{ad} = y_{id};
       fim;
     fim:
  fim:
  para cada partícula do enxame faça
     atualiza a velocidade atual da partícula conforme equação (1);
     atualiza a posição atual da partícula conforme equação (2);
  fim:
enquanto nenhuma condição de parada for satisfeita;
```

Otimização por enxame de partículas

Exemplo: ações negociadas na bolsa de valores

