Python - Analiza danych z modułem PANDAS

www.udemy.com (http://www.udemy.com) (R)

LAB - S06-L003 - agregacje

1. Zaimportuj moduł pandas i numpy nadaj im standardowe aliasy. Zaimportuj też datetime, timedelta i time, możesz skorzystać z poniższych poleceń:

```
from datetime import datetime
from datetime import timedelta
import time
```

2. Do wykonania zadań będziemy korzystać z danych dotyczących maratonów. Uruchom poniższy kod, który przygotuje zmienną df o odpowiedniej strukturze:

- 3. W zmiennej group_city zapisz wynik grupowania data frame df ze względu na kolumnę City
- 4. Korzystając z odpowiedniej funkcji agregującej wyznacz wartość średnią dla każdej grupy
- Ponownie wyznacz wartość średnią, ale tym razem jawnie wskaż, że średnia ma być wyliczana tylko dla kolumn "TotalSeconds","HalfSeconds"
- 6. Ile czasu w sumie biegali uczestnicy maratonów w poszczególnych miastach? Korzystając z funkcji sum wyznacz sumę czasu **TotalSeconds** dla każdego miasta oddzielnie
- 7. W zmiennej group_age zapisz wynik grupowania data frame df ze względu na kolumnę Age
- 8. Zastosuj agregację count() dla każdej grupy w group_age
- 9. A ilu uczestników w różnym wieku zakończyło bieg? W tym celu policz ile osób w każdym wieku ma podaną wartość w kolumnie **TotalSeconds**

<u>finishers-analysis/data (https://www.kaggle.com/rojour/boston-marathon-2016-finishers-analysis/data)</u>

Rozwiązania:

Poniżej znajdują się propozycje rozwiązań zadań. Prawdopodobnie istnieje wiele dobrych rozwiązań, dlatego jeżeli rozwiązujesz zadania samodzielnie, to najprawdopodobniej zrobisz to inaczej, może nawet lepiej :) Możesz pochwalić się swoimi rozwiązaniami w sekcji Q&A

```
In [1]: import pandas as pd
import numpy as np
from datetime import datetime
from datetime import timedelta
import time
```

Out[2]:

	Age	M/F	City	State	Country	Half	40K	Pace	TotalSeconds	HalfSeconds
Bib										
5	21	М	Addis Ababa	NaN	ETH	01:06:45	02:05:59	0:05:04	7559.0	4005.0
1	26	М	Ambo	NaN	ETH	01:06:46	02:05:59	0:05:06	7559.0	4006.0
6	31	М	Addis Ababa	NaN	ETH	01:06:44	02:06:47	0:05:07	7607.0	4004.0
11	33	М	Kitale	NaN	KEN	01:06:46	02:06:47	0:05:07	7607.0	4006.0
14	23	М	Eldoret	NaN	KEN	01:06:46	02:08:11	0:05:11	7691.0	4006.0

```
In [3]: group_city = df.groupby(by="City")
```

```
In [4]: group_city.mean().head()
```

Out[4]:

Age TotalSeconds	HalfSeconds
------------------	-------------

City			
0851 Oslo	39.0	11724.0	5731.0
20832	35.0	11640.0	5757.0
34-120 Andrychow	43.5	14111.0	6699.5
5700 Svendborg	58.0	13498.0	6552.0
95630	46.0	13043.0	6625.0

```
In [5]: group_city[["TotalSeconds","HalfSeconds"]].mean().head()
```

Out[5]:

TotalSeconds HalfSeconds

City		
0851 Oslo	11724.0	5731.0
20832	11640.0	5757.0
34-120 Andrychow	14111.0	6699.5
5700 Svendborg	13498.0	6552.0
95630	13043.0	6625.0

```
In [6]: group_city["TotalSeconds"].sum().head()
```

Out[6]: City

0851 Oslo11724.02083211640.034-120 Andrychow28222.05700 Svendborg13498.09563013043.0

Name: TotalSeconds, dtype: float64

```
In [7]: group_age = df.groupby('Age')
```

In [8]: group_age.count().head()

Out[8]:

	M/F	City	State	Country	Half	40K	Pace	TotalSeconds	HalfSeconds
Age									
18	22	22	22	22	22	22	22	22	22
19	41	41	41	41	41	41	41	41	41
20	84	84	82	84	84	84	84	84	84
21	159	159	155	159	159	159	159	159	159
22	226	226	222	226	226	226	226	226	226

In [9]: group_age["TotalSeconds"].count().head()

Out[9]: Age

18 22

19 41

20 8421 159

22 226

Name: TotalSeconds, dtype: int64