

《Combining Spectrum-Based Fault Localization and Statistical Debugging- An Empirical Study》	2019	ASE
《An Empirical Study of Boosting Spectrum-based Fault Localization via PageRank》	2019	TSE
《Deep Transfer Bug Localization》	2019	TSE
《Boosting coverage-based fault localization via graph-based representation learning》	2021	FSE/ESEC
《Combining Query Reduction and Expansion for Text-Retrieval-Based Bug Localization》	2021	SANER

Combining Spectrum-Based Fault Localization and Statistical Debugging: An Empirical Study

作者: Jiajun Jiang, Ran Wang, Yingfei Xiong

汇报人:陈冰婷 导师:邹卫琴

PART 01 Why

PART 02 What

PART 03 Experiments

PART 03 Results

SBFL

and

SD

$$Ochiai(e) = \frac{\mathit{failed}(e)}{\sqrt{\mathit{totalfailed} \cdot (\mathit{failed}(e) + \mathit{passed}(e))}}$$

$$Importance(p) = \frac{2}{\frac{1}{Increase(p)} + \frac{1}{Sensitive(p)}}$$

Different spectrum-based fault localization approaches follow the same paradigm but use different formulas to compute the suspicious scores.

·returns - i.e.,>,<,
$$\geq$$
,==and =.

·scalar-pairs

$$extit{Increase}(p) = rac{F(p)}{S(p) + F(p)} - rac{F_o(p)}{S_o(p) + F_o(p)}$$
 $extit{Sensitive}(p) = rac{\log(F(p))}{\log(totalfailed)}$

Unified Model

$$c(s, e, r) = \max_{p \in s(e)} r(p)$$

$$UNI^{s,r,g,c}(E) = \{(e, max_{e_i \in g(e)}c(s, e_i, r)) \mid e \in E\}$$

Four Variation Points

Predicates

Which kinds of predicates are most important?

Granularity of Data Collection

How does the granularity of data collection impact fault localization result?

Risk Evaluation Formulas

How does the risk evaluation formula impact theeffectiveness of fault localization?

Methods for Combining Suspicious Scores

How does combining method among different predicates impact the effectiveness of fault localization?

Experiments

Benchmark: Defect4j

TABLE I: Details of the experiment benchmark.

Project	#Bugs	#KLoC	#Tests	
JFree Chart	26	96	2,205	
Apache commons-Math	106	85	3,602	
Apache commons-Lang	65	22	2,245	
Joda-Time	27	28	4,130	
Closure compiler	133	90	7,927	
Total	357	321	20,109	

Evaluation Metrics

Recall of Top-k

EXAM Score

Frameword

https://github.com/xgdsmileboy/StateCoverLocator

Predicates

Branches

Returns

Scalar-Pairs

SBFL

Predicates

Fig. 1: Fault localization results when only employing individual group of predicates.

Fig. 2: Fault localization results when considering the combination among different groups of predicates.

Risk Evaluation Formulas

TABLE II: Formulas employed in the experiment.

Name	Formula
Ochiai [24]	$r(p) = rac{ ext{failed}(p)}{\sqrt{ ext{totalfailed} \cdot (ext{failed}(p) + ext{passed}(p))}}$
Tarantula [2]	$r(p) = rac{failed(p)/totalfailed}{failed(p)/totalfailed+passed(p)/totalpassed}$
Barinel [35]	$r(p) = 1 - \frac{passed(p)}{passed(p) + failed(p)}$
DStar [†] [36]	$r(p) = rac{ ext{failed}(p)^*}{ ext{passed}(p) + (ext{totalfailed} - ext{failed}(p))}$
Op2 [37]	$r(p) = failed(p) - rac{passed(p)}{totalpassed + 1}$
NewSD [‡]	$r(p) = \frac{2}{1/Increase(p) + \log(totalfailed)/\log(F(p) + 1)}$

Risk Evaluation Formulas

Fig. 3: Fault localization results when using different risk evaluation formulas.

Granularity of Data Collection

Fig. 4: Comparison of fault localization results under statement and method level data collection.

Methods for Combining Suspicious Scores

MaxPred

Given a program elemente, we compute its suspicious score as the maximum score of all predicates related to it, i.e., $c(s, e, r) = maxp \in s(e)r(p)$.

LinPred

Given a program elemente, we partition the predicates related to it into two stand alone sets: P1 and P2, where P1 \cup P2=s(e) and P1 contains one predicate from SBFL while the others constitute P2. Then, the combining method is defined as $c(s, e,r)=(1-\alpha)\cdot max_{p\in P1}r(p)+\alpha\cdot max_{p\in P2}r(p)$, where $\alpha\in[0,1.0]$

Methods for Combining Suspicious Scores

Fig. 5: Result comparison among traditional SBFL and SD approaches with the combined methods.

Conclusion

Among all predicates, those from existing conditions contribute most to the Top-1 fault localization accuracy;

Fine-grained datacollection contributes more effective fault localization withlittle more execution overhead

A linear combination of suspicious scores from SBFL and SD predicates leads to the best result.

THANK YOU FOR YOUR LISTENING.

谢谢您的聆听