Practica 4

Ivan Vercinsky

Ejemplos de Formulas

 $(\neg p)$ No es una formula porque no es de la 2da de la definición.

 $p \rightarrow q$ No es formula, porque le faltan los parentesis

 $\neg(\neg p)$ No es formula, porque $(\neg p)$ no lo era.

 $(p \to \neg q)$ Es formula, ya que $\neg q$ es el caso 2. p,q son formulas y luego la expresión es del caso 3

Notación

$$(p \land q) := \neg (p \to \neg q)$$
, con p y q formulas $(p \lor q) := (\neg p \to q)$

Ejercicio 1

Demostrar que si $a \in FORM$, entonces tiene la misma cantidad de parentesis que abren y que cierran.

- l(a) := # de parentesis izquierdos
- r(a) := # de parentesis derechos

Demos: por Inducción Estructural.

- Caso Base
 - $a \in PROP$. Entonces vale porque l(a) == r(a) == 0
- Casos Recursivos
 - $a = \neg b$. Entonces
 - \circ vale porque l(a) == l(b) == r(b) == r(a)
 - $\circ l(a) == l(b)$ porque la negación no agrega parentesis
 - $\circ r(a) == r(b)$ porque la negación no agrega parentesis
 - \circ r(b) == l(b) por Hipotesis Inductiva
 - $a = (b \to c)$. Entonces
 - $\circ\,$ vale porque l(a) == l(b) + l(c) + 1 == r(b) + r(c) + 1 == r(a)
 - $\circ l(a) == l(b) + l(c) + 1$ porque la implicación agrega un parentesis a la izquierda
 - r(a) = r(b) + r(c) + 1 porque la implicación agrega un parentesis a la derecha
 - Y, además
 - 0 l(b) + l(c) + 1 == r(b) + r(c) + 1
 - l(b) + l(c) == r(b) + r(c) por Hipotesis Inductiva

Semántica

Valuación:

$$v: PROP \rightarrow 0, 1$$

Notación:

$$v \models q \leftrightarrow v(q) = 1$$
 $q \in PROP$ $v \nvDash q \leftrightarrow v(q) = 0$ $q \in PROP$

Def: Valor de Verdad de una formula a bajo una valuación v

$$\mathbf{a} = PROP \rightarrow v \models \mathbf{a} \leftrightarrow v(\mathbf{a}) = 1$$

$$\mathbf{a} = \neg \mathbf{b} \to v \models \mathbf{a} \leftrightarrow v \nvDash \mathbf{b}$$

$$\mathbf{a} = (\mathbf{b} \to \mathbf{c}) \to v \vDash \mathbf{a} \leftrightarrow v \nvDash \mathbf{b} \ o \ v \vDash \mathbf{c}$$

```
Def: La formula de \mathbf{a} es una tautologia \leftrightarrow v \models \mathbf{a} \ \forall v : VAL
```

Def: La formula de \mathbf{a} es una contradicción $\leftrightarrow v \nvDash \mathbf{a} \ \forall v : VAL$

Def: La formula de \mathbf{a} es una contingencia $\leftrightarrow \exists v_1, v_2 : v_1 \vDash \mathbf{a} \ y \ v_2 \nvDash \mathbf{a}$

Ejercicio 2

Decidir si las siguientes formulas son tautologias, contradicciones, o contingencias

- 1. $a = (p \rightarrow q)$
 - Como $a = (p \to q)$ entonces $v \vDash a \leftrightarrow v \nvDash p \lor v \vDash q$
 - Quiero ver si existen v_1, v_2 tal que $v_1 \vDash a$ y $v_2 \nvDash a$. Luego a es contingencia
 - Sea $v_1 \in VAL$ tal que $v_1(p) = 0$
 - entonces $v_1 \nvDash p \to v_1 \vDash a$ por definición de $a = (p \to q)$
 - Sea $v_2 \in VAL$ tal que $v_2(p) = 0 \land v_2(q) = 1$
 - entonces $v_2 \nvDash p \land v_2 \vDash q \rightarrow v_2 \nvDash a$ por definición de $a = (p \rightarrow q)$
 - Probamos que a es contingencia
- 2. $a = \neg(p \rightarrow q)$
 - Misma idea que el item anterior. Pero invirtiendo las valuaciones
- 3. $a = (((p \land q) \rightarrow r) \rightarrow (p \rightarrow r))$
 - \blacksquare Quiero ver si existen v_1, v_2 tal que $v_1 \vDash a$ y $v_2 \nvDash a$. Luego a es contingencia
 - Sea $b = ((p \land q) \rightarrow r)$
 - Sea $c = (p \to r)$
 - Luego, queda que $a = (b \rightarrow c)$
 - Hay que buscar v_1 tal que $v_1 \nvDash b$ Entonces $v_1 \vDash a$
 - Sea $v_1: VAL$ tal que $v_1(p) = 1 \land v_1(q) = 1 \land v_1(r) = 0$
 - entonces $v_1 \vDash (p \land q) \land v_1 \nvDash r \rightarrow v_1 \nvDash b$
 - Por lo anterior encontramos que $v_1 \vDash a$
 - Ahora, hay que buscar v_2 tal que $v_2 \vDash b \land v_2 \nvDash c$ Entonces $v_2 \nvDash a$
 - Sea $v_2: VAL$ tal que $v_2(p) = 1 \land v_1(q) = 0 \land v_1(r) = 0$
 - entonces $v_2 \nvDash (p \land q) \rightarrow v_2 \vDash b$ porque al no valer el antecedente vale la implicación
 - además $v_2 \vDash p \land v_2 \nvDash r$ entonces $v_2 \nvDash (p \to r)$ entonces $v_2 \nvDash c$
 - Por lo anterior encontramos que $v_2 \nvDash a$
 - Probamos que a es contingencia
- 4. $a = (((p \rightarrow q) \rightarrow p) \rightarrow p)$
 - \bullet $v_1 \vDash p$ entonces satisface al ultimo consecuente luego satisface a toda implicación.
 - No parece haber v_2 tal que $v_2 \nvDash a$.
 - Probemos que $v \vDash a \ \forall \ v : VAL \rightarrow a$ es tautologia
 - Supongamos que $\exists v_2 : VAL$ tal que $v_2 \nvDash a$
 - Entonces $v_2 \vDash ((p \rightarrow q) \rightarrow p) \ y \ v_2 \nvDash p$
 - Entonces $(v_2 \nvDash (p \rightarrow q) \text{ o } v_2 \vDash p) \text{ y } v_2 \nvDash p$
 - Entonces $v_2 \vDash p \ y \ v_2 \nvDash q \ y \ v_2 \nvDash p$ ABS!
 - Luego, probamos que $\nexists v_2 : VAL$ tal que $v_2 \nvDash a$
 - \bullet Luego a es tautologia
- 5. $a = (((p \rightarrow q) \land (r \rightarrow q) \rightarrow ((p \lor r) \rightarrow q)))$
 - Es tautologia
 - Queda de tarea escribirlo bien

Ejercicio 3

 $\beta \in FORM$ contradicción y $\alpha \in FORM$. Defino α_{β} como la formula que se obtiene al reemplazar todas las variables proposiciones de α por la formula β .

Probar que α_{β} es una contradiccón o una tautologia.

Demostración por Inducción Estructural en α

- Caso Base
 - $\alpha \in PROP$ entonces $\alpha_{\beta} := \beta$ entonces es una contradicción por definición de β
- Paso Inductivo
 - $\alpha = \neg \phi$
 - \circ entonces $\alpha_{\beta} := \neg \phi_{\beta}$
 - o Luego por Hipotesis Inductiva ϕ_{β} es tautologia o contradicción.
 - \circ Luego $\neg \phi_{\beta}$ es contradicción o tautologia
 - $\alpha = (\phi \to \psi)$
 - \circ entonces $\alpha_{\beta} := (\phi_{\beta} \to \psi_{\beta})$
 - o Luego por Hipotesis Inductiva ϕ_{β} es tautologia o contradicción y ψ_{β} es tautologia o contradicción.
 - o Si
 - \diamond entonces $v \nvDash \phi_\beta \ \forall v: VAL \to v \vDash \alpha_\beta \ \forall v: VAL \to \alpha_\beta$ es tautologia
 - o Si ψ_{β} es tautologia:
 - \diamond entonces $v \vDash \psi_\beta \ \forall v : VAL \to v \vDash \alpha_\beta \ \forall v : VAL \to \alpha_\beta$ es tautologia
 - \circ Si ϕ_{β} es tautologia y ψ_{β} es contradiccion:
 - \diamond entonces $v \vDash \phi_{\beta} \ \forall v : VAL$
 - \diamond entonces $v \nvDash \psi_{\beta} \ \forall v : VAL$
 - $\diamond \text{ entonces } v \vDash \phi_{\beta} \wedge v \nvDash \psi_{\beta} \ \forall v : VAL$
 - \diamond entonces $v \nvDash \alpha_{\beta} \ \forall v : VAL \rightarrow \alpha_{\beta}$ es contradicción

Conectivos Adecuados

Función Boolean: Formalizar una tabla de verdad

$$f: \{0,1\}^N \to \{0,1\} \text{ con } n \in N_{\geq 1}$$

Sea la siguiente tabla:

p	q	$(p \wedge q)$
0	0	0
0	1	0
1	0	0
1	1	1

Y, sea f una func Booleana tal que:

$$f(0,0) = 0$$

$$f(0,1) = 0$$

$$f(1,0) = 0$$

$$f(1,1) = 1$$

Dada $f, \ Existe \ a \in FORM \ tal \ que \ la tabla \ de \ verdad \ de \ a \ coincide \ con \ f$ Para el caso de arriba, SI. $a = (p \land q)$

Def: Un Conjunto C de Conectivos se dice adecuado si $\forall f \in funcBooleana$, existe $a \in FORM_C$ (una formula que solo usa conectivos del conjunto C) cuya tabla de verdad coincide con f

Proposición

Sea $C = \{\land, \lor, \neg\}$ es adecuado

Idea: Para pensar la demostración, hay que probarlo para cualquier f. En ese caso f, puede ser cte 0 (contradicción) en ese caso cualquier α que sea contradicción sirve. O, f puede ser cte 1 entonces cualquier α que sea tautologia sirve. Y, el caso no trivial, es cuando f es tiene valores para el cual da 1 y para otros da 0. Entonces, veamos un ejemplo. Buscar una $\alpha \in FORM_C$ para esta f

p	q	r	f
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	0

Mirar las filas donde f(i) = 1. Y, las unis con \vee . Luego $\alpha = (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge q \wedge \neg r)$

Finalmente, la siguiente demostración concluye que C es adecuado.

Sea una función boolean cualquiera, $f: \{0,1\}^n \to \{0,1\}$. Buscamos una fórmula α que se escriba usando los conectivos de C, cuya tabla de verdad se corresponda con la tabla de f. Si f es la función constantemente igual a 0, definimos la fórmula $\alpha = (p_0 \land \neg p_0)$. Si no, llamemos

$$E = \{ \overline{d} \in \{0,1\}^n / f(\overline{d}) = 1 \}$$

al conjunto de las tuplas $\overline{d}=(d_1,\ldots,d_n)$ sobre las culas f vale uno. Dado $s\in 0,1,$ defino

$$p_i^s = \begin{cases} p_i & \text{si } s = 1\\ \neg p_i & \text{si } s = 0 \end{cases}$$

y, dada $\overline{d} \in E$, defino

$$\alpha_{\overline{d}} = \bigwedge_{i=1}^{n} p_i^{d_i}$$

Finalmente, la fórmula

$$\alpha = \bigvee_{\overline{d} \in E} \alpha_{\overline{d}}$$

es lo que buscamos.

Equivalencia

Def: Sean α , $\beta \in FORM$ $\alpha \equiv \beta \leftrightarrow (v \models \alpha \leftrightarrow v \models \beta, \forall v : VAL)$

Ejercicio 4

Decidir si los siguientes conjuntos de conectivos son adecuados o no.

- 1. $\{\land, \lor, \rightarrow, \neg\}$
 - \bullet Si, pues $\{\land,\lor,\rightarrow,\lnot\}\subseteq C$ que ya probamos es adecuado
- $2. \{\rightarrow, \neg\}$
 - lacktriangle Veamos que con los conectivos de este conjunto podemos armar los conectivos de C y entonces concluir que este conj es adecuado también.
 - Este conj tiene la ¬ pero le faltan ∧ y ∨. Veamos que estos se pueden construir a partir de los conectivos de este conj.
 - $(\alpha \wedge \beta) \equiv \neg(\alpha \rightarrow \neg\beta)$ que es una $FORM_C$
 - $(\alpha \vee \beta) \equiv (\neg \alpha \rightarrow \beta)$ que es una $FORM_C$
 - Luego como C es adecuado $\rightarrow \{\rightarrow, \neg\}$ también
- 3. $\{\land, \neg\}$

- \blacksquare Misma idea, a este conj, le falta el \lor . Veamos que se puede construir a partir de \land y \neg
- $(\alpha \vee \beta) \equiv \neg (\neg \alpha \wedge \neg \beta)$
- Luego $\{\land, \neg\}$ es adecuado
- 4. $\{\land, \rightarrow\}$
 - Este conj no es adecuado. Probemoslo.
 - Primero, veamos que una valuacion cualquiera que satisface a cualquier proposición, también, satisface a todas las formulas de este conj.
 - Sea $v \in VAL / v(q) = 1 \ \forall q \in PROP \rightarrow v \models \alpha \ \forall \alpha \in FORM_{\{\land, \rightarrow\}}$
 - Probemos esto por Inducción Estructural
 - Caso Base

$$\circ \ \alpha \in PROP \to v(\alpha) = 1 \to v \models \alpha$$

• Pasos Inductivos

$$\circ \alpha \text{ es } (\beta \land \varphi) \to \text{por HI } v \vDash \beta \text{ y } v \vDash \varphi \to v \vDash (\beta \land \varphi)$$

$$\circ \alpha \text{ es } (\beta \to \varphi) \to \text{por HI } v \vDash \beta \text{ y } v \vDash \varphi \to v \vDash (\beta \to \varphi)$$

- Ahora, supongamos que $\exists \alpha \in FORM_{\{\land, \to\}}$ talque $\alpha \equiv \neg p$
- Sea $v \in VAL / v(\varphi) = 1 \ \forall \varphi \in PROP$
- Entonces, por lo anterior $v \vDash \alpha$ porque $\alpha \in FORM_{\{\land, \rightarrow\}}$
- Pero, entonces como $v \models \alpha \rightarrow v \models \neg p \rightarrow v(p) = 0$ Abs!
- Es Absurdo suponer que $\neg p \in FORM_{\{\land, \to\}}$
- Entonces la funcion booleana que corresponde a $\neg p$ no se puede obtener a partir de $FORM_{\{\land,\to\}}$
- Entonces $FORM_{\{\land, \rightarrow\}}$ no es adecuado. Como queriamos probar

Consecuencia Semántica

Def: Sean $\Gamma \subseteq FORM \ y \ v \in VAL \ decimos \ que \ v \models \Gamma \ si \ v \models \alpha \ \forall \alpha \in \Gamma$ Def: Si $\exists \ v \in VAL \ talque \ v \models \Gamma \ entonces \ se \ dice \ que \ \Gamma \ es \ satisfacible$

Def: Consecuencia Semántica

Hasta ahora veniamos usando \models para decir que una valuación hace verdadera una formula. Ahora, vamos a reutilizar este simbolo para introducir el concepto de *hipotesis*.

Si Γ es un conj de fórmulas, decimos que las hipotesis de Γ implican semánticamente a α (y lo notamos como $\Gamma \vDash \alpha$) si toda valuación v que satisface las hipotesis de Γ también satisface a la conclusión α .

En otras palabras: decimos que $\Gamma \vDash \alpha$ si vale que todas las valuaciones que satisfacen a Γ también satisfacen a α .

Más formalmente, $\Gamma \vDash \alpha \ si \ \forall v \in VAL \ (v \vDash \Gamma \rightarrow v \vDash \alpha)$

Def: $Con(\Gamma) = \{\alpha \in FORM \ / \ \Gamma \vDash \alpha \}$ y se llama Conjunto de Consecuencias

Ejercicio 5

Sean Γ_1 y Γ_2 satisfacibles. Decidir si los siguientes conjuntos son satisfacibles.

- 1. ∅
- Es trivialmente cierto. Porque no hay ninguna formula en el vacio. Entonces cualquier valuación lo satisface
- $v \vDash \alpha \ \forall \alpha \in \emptyset \rightarrow v \vDash \emptyset$
- 2. $\{p_9\}$
 - Si, tomo cualquier $v \in VAL$ talque $v(p_9) = 1 \rightarrow v \models p_9 \rightarrow v \models \{p_9\}$
- 3. FORM
 - IDEA: Las contradicciónes son parte de este conjunto y no existen valuaciones que las satisfagan. Por definición.
 - No, como $(p \land \neg p) \in FORM$ y $\nexists v \in VAL$ talque $v(p \land \neg p) = 1$ entonces FORM no es satisfacible
- 4. $\Gamma_1 \bigcup \Gamma_2$
 - No, porque si $\Gamma_1 = \{p\}$ y $\Gamma_2 = \{\neg p\}$ que son satisfacibles, luego, no puede pasar que $\exists v \in VAL$ talque $v \models p$ y $v \models \neg p$ entonces $v \nvDash \Gamma_1 \bigcup \Gamma_2$
- 5. $\Gamma_1 \cap \Gamma_2$
 - Si, porque $\Gamma_1 \cap \Gamma_2 \subseteq \Gamma_1$
 - Entonces si $\exists v \in VAL$ talque $v \models \Gamma_1 \rightarrow v \models \Gamma_1 \bigcap \Gamma_2$

Ejercicio 6

Decidir si las siguientes afirmaciones son verdaderas o falsas

- 1. $\{p_1\} \vDash p_2$
 - Falso
 - Tomo $v \in VAL / v(p_1) = 1$ y $v(p_2) = 0$ y el resto cualquier cosa
 - Entonces $v \vDash \{p_1\}$ porque $v \vDash p_1$
 - Pero $v \nvDash p_2$
 - Entonces $\{p_1\} \nvDash p_2$
- 2. $\emptyset \vDash (p_3 \land p_7)$
 - Falso
 - Tomo $v \in VAL / v(\varphi) = 0 \, \forall \varphi \in PROP$
 - $v \models \emptyset$ trivialmente
 - Pero $v \nvDash (p_3 \wedge p_7)$
 - Entonces $\emptyset \nvDash (p_3 \wedge p_7)$
- 3. $\emptyset \vDash (p_5 \lor \neg p_5)$
 - Verdadero
 - Como $(p_5 \vee \neg p_5)$ es una tautologia. Entonces $v \vDash (p_5 \vee \neg p_5) \forall v \in VAL$
 - Dada $v \in VAL / v \models \emptyset \rightarrow v \models (p_5 \vee \neg p_5)$
 - Luego $\emptyset \vDash (p_5 \lor \neg p_5)$
- 4. $Con(\emptyset) = TAUT = \{\alpha \in FORM \mid \alpha \text{ es tautologia}\}\$
 - Verdadero
 - $\bullet \ \alpha \in Con(\emptyset)$
 - $\quad \blacksquare \; \leftrightarrow \; \forall v \in VAL \, (v \vDash \emptyset \rightarrow v \vDash \alpha)$
 - $\blacksquare \; \leftrightarrow \; \forall v \in VAL \: v \vDash \alpha$
 - $\blacksquare \leftrightarrow \alpha$ es tautologia
- 5. $FORM \models (p_1 \land \neg p_1)$
 - Verdadero
 - $Con(FORM) = \emptyset$ porque no hay una valuación que satisfaga todas las formulas!
 - Luego es trivialmente verdadero
 - $v \models FORM \rightarrow v \models (p_1 \land \neg p_1)$ es Verdadero, (Antecedente Falso) $\forall v \in VAL$
- 6. Si Γ es satisfacible $\to Con(\Gamma)$ es satisfacible
 - Verdadero
 - Como Γ es satisfacible $\rightarrow \exists v \in VAL / v \models \Gamma$.
 - Veamos que $v \models Con(\Gamma)$
 - Sea $\alpha \in Con(\Gamma)$
 - Por def de Con si $v \models \Gamma \rightarrow v \models \alpha$
 - Por lo tanto $Con(\Gamma)$ es satisfacible.