The following shows the systematic application of the Todd-Coxeter algorithm to

$$< A, B|A^4, B^2, ABA^2B >$$

After defining 2 = 1A we have the following link table and list of chains. Notice that instead of erasing the bits I know, I have inserted numbers in the chains for the elements corresponding to the links. Notice, too that, near the end of the first chain in the second row, I have been able to insert a 1 since I know the link 1A2.

	A	В
1	2	
2		

1A2A A A1	1 <i>B B</i> 1	1A2B A A B1
2A A A 1A2	2B B2	2A B A A B2

The definition of the new element is shown in **bold** and the new information in the chain table is shown in **red**.

Now, defining 3 = 1B, we get

	A	B
1	2	3
2		
3		1

1 <i>A</i> 2 <i>A A A</i> 1	1B3B1	1 <i>A</i> 2 <i>B A A</i> 3 <i>B</i> 1
2A A A1A2	2B B2	2A B A A B2
3 <i>A A A A</i> 3	3B1B3	3A B A A 1B3

Notice that we have discovered the link 3B1, and that the first and last chains in the middle column have been completely filled in. These completed chains are shown in green.

Next, I choose to define 4 = 2A, and we get

	A	B
1	2	3
2	4	
3		1
4		

1A2A4A $A1$	1B3B1	$1A2B \ A \ A3B1$
2A4A A1A2	2B B2	2A4B A A B2
3A A A A 3	3B1B3	3A B A A1B3
4A A1A2A4	4B B4	4A B A A B4

After this, I choose to define 5 = 3B and obtain

	A	В
1	2	3
2	4	5
3		1
4		
5		2

1A2A4A $A1$	1B3B1	$1A2B5A \ A3B1$
2A4A A1A2	2B5B2	2A4B A A5B2
3A A A A 3	3B1B3	3A B A A1B3
4A A1A2A4	4B B4	4A B A A B4
5A A A A 5	$5B_{2}B_{5}$	5A B A1A2B5

which completes two more chains in the middle column, and shows us that 5B = 2. Now, I choose to define 6 = 3A, and this gives

	A	B
1	2	3
2	4	5
3	6	1
4		
5		2
6		

1A2A4A $A1$	1B3B1	$1A2B5A \ A3B1$
2A4A A1A2	2B5B2	2A4B A A5B2
3A6A A A3	3B1B3	3A6B A A1B3
4A A1A2A4	4B B4	4A B A A B4
5A A A A 5	5B2B5	5A B A1A2B5
6A A A 3A6	6B B6	6A B A A B6

Notice that we have made more progress than you might think towards completing the chains. For example, the missing fragment in the first chain in the left column is 4A A1, which is exactly the same as the missing fragment in the second chain and fourth chain in that column. Similarly, 6A A A3 occurs twice. So while there are 14 incomplete chains, there are, in fact, only 11 incomplete chain fragments.

The next step I choose to make is to define 7 = 4A which yields some dramatic information. First I obtain

	A	B
1	2	3
2	4	5
3	6	1
4	7	
5		2
6		4
7	1	

1A2A4A7A1	1B3B1	$1A2B5A \ A3B1$
2A4A7A1A2	2B5B2	2A4B A A5B2
3A6A A A3	3B1B3	3 <i>A</i> 6 <i>B</i> 4 <i>A</i> 7 <i>A</i> 1 <i>B</i> 3
4A7A1A2A4	4B B4	AABAAB4
5A A A A 5	5B2B5	5 <i>A B A</i> 1 <i>A</i> 2 <i>B</i> 5
6A A A 3A6	6B B6	6A B A A B6
7A1A2A4A7	7B B7	7 <i>A B A A B</i> 7

where the third chain in the third column has shown me that 6B = 4. Continuing to fill in the chains using the known information we discover

	A	В
1	2	3
2	4	5
3	6	1
4	7	6
5		2
6		4
7	1	

1A2A4A7A1	1B3B1	$1A2B5A \ A3B1$
2A4A7A1A2	2B5B2	2A4B A A5B2
3A6A A A3	3B1B3	3A6B4A7A1B3
4A7A1A2A4	4B B4	4A B A A B4
5A A A A 5	5B2B5	5A B A1A2B5
6A A A3A6	6B4B6	6A B A A B6
7A1A2A4A7	7B B7	7 <i>A B A A B</i> 7

where the information 4B = 6 has come from the second last chain in the middle column. Progessing still further, we get

	A	B
1	2	3
2	4	5
3	6	1
4	7	6
5		2
6	3	4
7	1	

1A2A4A7A1	1B3B1	$1A2B5A \ A3B1$
2A4A7A1A2	2B5B2	2A4B A A5B2
3A6A A A3	3B1B3	3A6B4A7A1B3
4A7A1A2A4	4B6B4	$4A7B \ A3A6B4$
5A A A A 5	5B2B5	$5A \ B7A1A2B5$
6A A A 3A6	6B4B6	6A3B1A2A4B6
7A1A2A4A7	7B B7	7 <i>A B A A B</i> 7

where we have now discovered that 6A = 3 from the second last chain in the last column. By the way, at this stage, the link table is showing that the graph of the group looks like

But now something interesting happens. A bit more work shows

	A	B
1	2	3
2	4	5
3	6 = (5)	1
4	7	6
5		2
6	3	4
7	1	

1A2A4A7A1	1B3B1	$1A2B5A \ A3B1$
2A4A7A1A2	2B5B2	2A4B6A3A5B2
3 <i>A</i> 6 <i>A</i> 3 <i>A</i> 6 <i>A</i> 3	3B1B3	3A6B4A7A1B3
4A7A1A2A4	4B6B4	4A7B $A3A6B4$
5 <i>A A A A</i> 5	5B2B5	5A B7A1A2B5
6A A A3A6	6B4B6	6A3B1A2A4B6
7A1A2A4A7	7B B7	7A B A A B7

where the second link in the last column has told us that 3A = 5. Earlier, we had given 3A the name 6, but we have now discovered that 5 and 6 are both names for the same element. This has further consequences. For instance, it means that 5A = 6A = 3, but it also means that 2 = 5B = 6B = 4, and so 2 and 4 are the same element.

	A	В
1	2	3
2	4	5
3	6 = (5)	1
4	7	5
5	3	2 = (4)
7	1	

1A2A2A7A1	1B3B1	1A2B5A $A3B1$
2A2A7A1A2	2B5B2	$2A_{2}B_{5}A_{3}A_{5}B_{2}$
3A5A3A5A3	3B1B3	3A5B2A7A1B3
2A7A1A2A2	2B5B2	$2A7B \ A3A5B2$
5A A A A 5	5B2B5	5A $B7A1A2B5$
5 <i>A A A A A A A</i>	5B2B5	5 <i>A</i> 3 <i>B</i> 1 <i>A</i> 2 <i>A</i> 2 <i>B</i> 5
7A1A2A2A7	7B B7	7A B A A B7

The identification of elements continues. We see below that 2A = 2 = 7, from which we rapidly deduce that 2 = 7 = 1 and hence that 3 = 1A = 2A = 5.

	A	B
1	2	3
2	2	5
3	5	1
2	7	5
5	3	2
7	1	

	A	B
1	1	3
1	1	3
3	3	1
1	1	3
3	3	
1	1	

so our link table and list of chains finally ends up being completed as

	A	B
1	1	3
3	3	1

1 <i>A</i> 1 <i>A</i> 1 <i>A</i> 1 <i>A</i> 1	1B3B1	1A1B3A3A3B1
3A3A3A3A3	3B1B3	3A3B1A1A1B3

so our group is the cyclic group of order 2. Note that our earlier graph wasn't entirely wrong. It is just that we later discovered that 1, 2, 4 and 7 are all the same element, and that 3, 5 and 6 are all the same element. Collapsing these onto one another, the graph becomes

Now that you have read this, I suggest that you practise the algorithm on this same presentation but using the choices 2 = 1A, 3 = 2B, 4 = 3A, 5 = 4A and 6 = 4B. This gets to the answer via a slightly quicker route. Just before you define 6 = 4B you should have 7 uncompleted chain fragments, which is considerably better than the 9 uncompleted chain fragments just before 6 was defined in my working. In the last step, when you follow my suggestion for practice, you will find that 2 = 6 = 1 and that 4 = 5 = 3.

Of course, as many of you noticed in class, we could have discovered all of this collapsing algebraically. It turns out that our relations mean that

$$A = B^{-1}A^{-2}B^{-1}$$

= $B^{-1}A^{2}B$ because $B^{2} = A^{4} = e$
= $(B^{-1}AB)(B^{-1}AB)$
= $A^{2}A^{2}$ because $B^{-1}AB = A^{2}$
= A^{4}
= e

and so the group is generated by B, which has order 2.

It is important to know two things about the Todd-Coxeter algorithm. First, it is not guaranteed to terminate. For instance, if you apply it to the group

$$< A, B|A^2, B^2 >$$

it will never terminate. In this case, it is because these relations can be satisfied by an infinite group. For instance, if $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} \cos 1 & \sin 1 \\ \sin 1 & -\cos 1 \end{pmatrix}$, it is easy to see that $A^2 = B^2 = I$, so the subgroup of the invertible matrices generated by these two matrices satisfies these relations. However, it is easy to check that $AB = \begin{pmatrix} \cos 1 & \sin 1 \\ -\sin 1 & \cos 1 \end{pmatrix}$, and then to prove by induction that $(AB)^n = \begin{pmatrix} \cos n & \sin n \\ -\sin n & \cos n \end{pmatrix}$. This means that $(AB)^n = I$ only if n = 0 (because 0 is the only integer multiple of π as π is not a rational number), and so the group contains an infinite subgroup generated by AB. Notice that this means that the Todd-Coxter algorithm cannot terminate because the elements AB, $(AB)^2$, $(AB)^3$, ... really are all different.

But it is worse. It can be proved that there is no method for choosing the new links in the Todd-Coxeter algorithm which will **always** cause the algorithm to terminate when the presentation is the presentation of a finite group. The (quite complicated) proof of this works by supposing that such a method did exist, and constructing from the supposed method itself a presentation of a finite group for which following the method will produce an infinite number of links.