MAT301H5Y

Week 10 Lecture 2 External direct sum

Tuesday Jul 27th, 2023 4-5pm instructed by Marcu-Antone Orsoni

Overview

In this class, we were introduced to external direct sums and their properties and how we can possibly "deconstruct" some groups.

External direct sum

Definition: External direct sum

Let (G, +), (G', *) be groups, the external direct sum of these groups is defined as below:

$$G \oplus G' = \{(g, g') : g \in G, g' \in G'\}$$

With the operation (a,b)(c,d) = (a+b,c*d). (Same can be extended for a finite number of arbitrary groups, forming a set of *n*-tuple if you have *n* groups which can be expressed as $G_1 \oplus G_2 \oplus G_3 \dots G_n = \bigoplus_{i=1}^n G_i$).

Theorem: External direct sums are groups

The external direct sum of an arbitrary collection of groups under the given operation form a group itself. In fact, $|G \oplus G'| = |G| \times |G'|$.

Proof: Instructor remarked the proof as can be seen in assignment 2 and some parts in the textbook.

Example: External direct sum

Find all elements of $U(8) \oplus \mathbb{Z}_3$.

Solution:

We can just list them out in the classic cartesian product format to obtain:

$$U(8) \oplus \mathbb{Z}_3 = \{(1,0), (1,1), (1,2) \dots (7,0), (7,1), (7,2)\}$$

Theorem: Order of elements in direct sums

Given an element of $\bigoplus_{i=1}^n G_i$ written as (g_1, g_2, \ldots, g_n) , we have $|(g_1, g_2, \ldots, g_n)| = \text{lcm}(|g_1|, |g_2|, \ldots, |g_n|)$.

Proof: See Assignment 2.

Proposition: isomorphism of direct sums

Given G, G' as groups then $G \oplus G' \cong G' \oplus G$.

Proof: Trivial(construct an inverse for the map $(a,b) \to (b,a)$ to shorten proof)

Theorem: Cyclic direct sums

if G and H are cyclic, then $G \oplus H$ is cyclic if and only if $\gcd(|G|, |H|) = 1$.

Proof: See assignment 2

Corollary: Cyclic decomposition

If $n = n_1 n_2 \dots n_k$ where $n_1, n_2 \dots, n_k$ are all coprime, then:

$$\mathbb{Z}_n \cong \bigoplus_{i=1}^k \mathbb{Z}_{n_i}$$

Theorem: Normal subgroup quotient isomorphism

If $H \subseteq G$ and $K \subseteq G'$ then $H \oplus K \subseteq G \oplus G'$ and $G \oplus G' / H \oplus K \cong G/H \oplus G'/K$

Proof: Ran out of time.