Лекция 2.

Бесконечно малые функции и их свойства. Основные теоремы о пределах. Замечательные пределы. Натуральный логарифм и гиперболические функции

Функция $y=\alpha(x)$ называется бесконечно малой при $x \to x_0$, если

$$\lim_{x\to x_0}\alpha(x)=0.$$

Свойства бесконечно малых

1. Сумма двух бесконечно малых есть бесконечно малая.

Доказательство.

√

Если $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \to x_0$, то существуют δ_1 и δ_2 такие, что $|\alpha(x)| < \varepsilon/2$ и $|\beta(x)| < \varepsilon/2$ для выбранного значения ε . Тогда $|\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \varepsilon$, то есть $|(\alpha(x) + \beta(x)) - 0| < \varepsilon$. Следовательно, $\lim_{x \to x_0} (\alpha(x) + \beta(x)) = 0,$

то есть $\alpha(x) + \beta(x)$ – бесконечно малая.

$\overline{\mathbf{V}}$

Замечание. Отсюда следует, что сумма любого конечного числа бесконечно малых есть бесконечно малая.

2. Если $\alpha(x)$ — бесконечно малая при $x \to x_0$, а f(x) — функция, ограниченная в некоторой окрестности x_0 , то $\alpha(x)f(x)$ — бесконечно малая при $x \to x_0$.

Доказательство.

Выберем число M такое, что |f(x)| < M при $|x-x_0| < \delta_1$, и найдем такое δ_2 , что

$$|\alpha(x)| < \frac{\varepsilon}{M}$$
 npu $|x - x_0| < \delta_2$.

Тогда, если выбрать в качестве δ меньшее из чисел δ_1 и δ_2 ,

$$|\alpha(x)\cdot f(x)| < M\cdot \frac{\varepsilon}{M} = \varepsilon,$$

то есть $\alpha(x) \cdot f(x)$ – бесконечно малая.

 $\overline{\mathbf{V}}$

Следствие 1.

Произведение бесконечно малой на конечное число есть бесконечно малая.

Следствие 2.

Произведение двух или нескольких бесконечно малых есть бесконечно малая.

Следствие 3.

Линейная комбинация бесконечно малых есть бесконечно малая.

3 (Третье определение предела).

Если

$$\lim_{x\to x_0} f(x) = A,$$

то необходимым и достаточным условием этого является то, что функцию f(x) можно представить в виде $f(x)=A+\alpha(x)$, где $\alpha(x)$ — бесконечно малая при $x \longrightarrow x_0$.

Доказательство.

√

- 1)Пусть $\alpha(x)$ бесконечно малая при $x \to x_0$. Следовательно, $f(x) = A + \alpha(x)$.
- 2)Пусть $f(x)=A+\alpha(x)$. Тогда

$$\lim_{x\to x_0}(f(x)-A)=\lim_{x\to x_0}\alpha(x)=0,$$

значит,

$$\forall \varepsilon |f(x) - A| < \varepsilon \quad npu |x - x_0| < \delta(\varepsilon).$$

Следовательно,

$$\lim_{x\to x_0} f(x) = A.$$

 $\overline{\mathbf{V}}$

Замечание. Тем самым получено еще одно определение предела, эквивалентное двум предыдущим.

Основные теоремы о пределах

Теорема 1. Если существуют

$$\lim_{x\to x_0} f(x) = A \quad u \quad \lim_{x\to x_0} g(x) = B,$$

то существует и

$$\lim_{x\to x_0}(f(x)+g(x))=A+B.$$

Доказательство.

<u>_</u>

Используя третье определение предела, представим $f(x)=A+\alpha(x)$, $g(x)=B+\beta(x)$, где $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x\to x_0$. Тогда $f(x)+g(x)=A+B+(\alpha(x)+\beta(x))=A+B+\gamma(x)$, где $\gamma(x)=\alpha(x)+\beta(x)$ — бесконечно малая. Следовательно,

$$\lim_{x\to x_0} (f(x)+g(x)) = A+B.$$

 $\overline{\mathbf{V}}$

Теорема 2. Если существуют

$$\lim_{x\to x_0} f(x) = A \quad u \quad \lim_{x\to x_0} g(x) = B,$$

то существует и

$$\lim_{x\to x_0} (f(x)\cdot g(x)) = A\cdot B.$$

Доказательство.

√

Представим $f(x)=A+\alpha(x),\ g(x)=B+\beta(x),\$ где $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x\to x_0$. Тогда $f(x)\cdot g(x)=AB+A\beta(x)+B\alpha(x)+\alpha(x)\beta(x)$. Но $A\beta(x)+B\alpha(x)+\alpha(x)\beta(x)$ — бесконечно малая (так как f(x) и g(x) ограничены в окрестности x_0), следовательно,

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B.$$

 $\overline{\mathbf{V}}$

Теорема 3. Если существуют

$$\lim_{x\to x_0} f(x) = A \quad u \quad \lim_{x\to x_0} g(x) = B \neq 0,$$

то существует и

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

Доказательство.

Представим $f(x)=A+\alpha(x),\ g(x)=B+\beta(x),\$ где $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x\to x_0$. Тогда

$$\frac{f(x)}{g(x)} = \frac{A + \alpha(x)}{B + \beta(x)} = \frac{A}{B} + \frac{B\alpha(x) - A\beta(x)}{B(B + \beta(x))} =$$
$$= \frac{A}{B} + \frac{1}{B(B + \beta(x))} (B\alpha(x) - A\beta(x)),$$

где $\frac{1}{B(B+eta(x))}$ – ограниченная в окрестности x_0 функция, так как имеет

предел, равный $1/B^2$, а $B\alpha(x)$ - $A\beta(x)$ — бесконечно малая. Поэтому

$$\frac{1}{B(B+\beta(x))}(B\alpha(x)-A\beta(x))-$$

бесконечно малая, и

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{A}{B}=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}.$$

Теорема 4 («лемма о двух милиционерах»). Если $f(x) \le \varphi(x) \le g(x)$ в некоторой окрестности x_0 и

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = A,$$

то существует и

$$\lim_{x\to x_0}\varphi(x)=A.$$

Доказательство.

Из условия теоремы следует, что

$$f(x) - A \le \varphi(x) - A \le g(x) - A$$
.

Выберем δ -окрестность точки x_0 , в которой

$$|f(x)-A|<\varepsilon$$
 u $|g(x)-A|<\varepsilon$.

Тогда

$$-\varepsilon < f(x) - A \le \varphi(x) - A \le g(x) - A < \varepsilon$$
.

Поэтому $|\varphi(x)-A|<\varepsilon$, следовательно,

$$\lim_{x\to x_0}\varphi(x)=A.$$

Ø

Теорема 5. Если

$$npu \quad x \to x_0 \quad f(x) \ge 0 \quad u \quad \lim_{x \to x_0} f(x) = A, \quad mo \quad A \ge 0.$$

Доказательство.

Предположим, что A<0. Тогда, выбрав ε =|A|/2, найдем окрестность точки x_0 , в которой |f(x)-A|<|A|/2, следовательно, 3A/2< f(x)< A/2, то есть f(x)<0 в рассматриваемой окрестности, что противоречит условию теоремы.

Следствие 1.

Аналогично доказывается, что если $f(x) \le 0$, то $A \le 0$.

Следствие 2.

Если $f(x) \ge g(x)$ и обе функции имеют пределы в точке x_0 , то $\lim_{x \to x_0} f(x) \ge \lim_{x \to x_0} g(x)$.

Замечание. Все перечисленные утверждения можно доказать для $x \to \infty$.

Теорема 6 (без доказательства). Ограниченная и возрастающая при a < x < b $(a < x < \infty)$ функция имеет предел при $x \to b$ $(x \to \infty)$.

Замечательные пределы

Теорема (первый замечательный предел).

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Доказательство.

Рассмотрим окружность единичного радиуса с центром в начале координат и будем считать, что угол AOB равен x (радиан). Сравним площади треугольника AOB, сектора AOB и треугольника AOC, где прямая OC – касательная к окружности, проходящая через точку (1;0). Очевидно, что $S_{\triangle AOB} < S_{CEKM,AOB} < S_{\triangle AOC}$.

Используя соответствующие геометрические формулы для площадей фигур, получим отсюда, что

$$\frac{1}{2} \cdot 1^2 \cdot \sin x < \frac{1}{2} \cdot 1^2 \cdot x < \frac{1}{2} \cdot 1^2 \cdot tgx,$$

или $\sin x < x < \tan x$. Разделив все части неравенства на $\sin x$ (при $0 < x < \pi/2$ $\sin x > 0$), запишем неравенство в виде:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$
.

Тогда

$$\cos x < \frac{\sin x}{x} < 1,$$

и по лемме о двух милиционерах

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Замечание. Доказанное справедливо и при x < 0.

Следствия из первого замечательного предела

1.
$$\lim_{x \to 0} \frac{\sin kx}{x} = k \lim_{kx \to 0} \frac{\sin kx}{kx} = k \cdot 1 = k.$$

2.
$$\lim_{x \to 0} \frac{tgkx}{x} = \lim_{x \to 0} \frac{\sin kx}{x} \frac{1}{\cos kx} = k \cdot 1 = k.$$

3.
$$\lim_{x \to 0} \frac{\sin kx}{\sin mx} = \lim_{x \to 0} \frac{\sin kx}{x} \frac{x}{\sin mx} = k \frac{1}{m} = \frac{k}{m}.$$

4.
$$\lim_{x \to 0} \frac{tgkx}{tgmx} = \lim_{x \to 0} \frac{tgkx}{x} \frac{x}{tgmx} = \frac{k}{m}.$$

5.
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{y \to 0} \frac{y}{\sin y} = 1, \quad e \partial e \quad y = \arcsin x.$$

6.
$$\lim_{x \to 0} \frac{\operatorname{arct} gx}{x} = \lim_{y \to 0} \frac{y}{tgy} = 1, \quad e \partial e \quad y = \operatorname{arct} gx.$$

7.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x^2} = 2 \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{x} \right)^2 = 2(\frac{1}{2})^2 = \frac{1}{2}.$$

Теорема (второй замечательный предел).

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

Замечание. Число е≈2,7.

Доказательство.

√

1. Докажем сначала, что последовательность

$$\left(1+\frac{1}{n}\right)^n$$
 npu $n\to\infty$

имеет предел, заключенный между 2 и 3. По формуле бинома Ньютона

$$\left(1 + \frac{1}{n}\right)^{n} = 1 + \frac{n}{1} \frac{1}{n} + \frac{n(n-1)}{1 \cdot 2} \left(\frac{1}{n}\right)^{2} + \dots + \frac{n(n-1)\dots(n-(n-1))}{1 \cdot 2 \cdot \dots \cdot n} \left(\frac{1}{n}\right)^{n} =$$

$$= 1 + 1 + \frac{1}{1 \cdot 2} \left(1 - \frac{1}{n}\right) + \frac{1}{1 \cdot 2 \cdot 3} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots$$

$$+ \frac{1}{1 \cdot 2 \cdot \dots \cdot n} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right) \ge 2 -$$

возрастающая переменная величина при возрастающем п. С другой стороны,

$$\left(1-\frac{1}{n}\right) < 1; \left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) < 1$$

и т.д., поэтому

$$\left(1+\frac{1}{n}\right)^{n} < 1+1+\frac{1}{1\cdot 2} + \dots + \frac{1}{1\cdot 2\cdot \dots \cdot n} < < 1+1+\frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}} = 1+\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}} =$$

$$= 1+2-\left(\frac{1}{2}\right)^{n-1} < 3.$$

Следовательно,

$$2 \le \left(1 + \frac{1}{n}\right)^n < 3 - \frac{1}{n}$$

ограниченная и возрастающая величина, поэтому она имеет предел (см. теорему 6). Значение этого предела обозначается числом e.

2. Докажем, что

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e.$$

а) Пусть $x \to +\infty$. Тогда

$$n \le x < n+1, \frac{1}{n} \ge \frac{1}{x} > \frac{1}{n+1}, 1 + \frac{1}{n} \ge 1 + \frac{1}{x} > 1 + \frac{1}{n+1},$$
$$\left(1 + \frac{1}{n}\right)^{n+1} > \left(1 + \frac{1}{x}\right)^{x} > \left(1 + \frac{1}{n+1}\right)^{n}.$$

При $x \to \infty$ $n \to \infty$. Найдем пределы левой и правой частей неравенства:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right) = e \cdot 1 = e,$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+1} \right)^{n+1}}{1 + \frac{1}{n+1}} = \frac{e}{1} = e.$$

Следовательно, по лемме о двух милиционерах

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e.$$

б) Если $x \to -\infty$, то $t = -(x+1) \to +\infty$, и

$$\lim_{x \to -\infty} (1 + \frac{1}{x}) = \lim_{t \to +\infty} \left(1 - \frac{1}{t+1} \right)^{-t-1} = \lim_{t \to +\infty} \left(1 + \frac{1}{t} \right)^{t+1} = e \cdot 1 = e.$$

Теорема доказана.

Ø

Следствия из второго замечательного предела

1.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) =$$

$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln(\lim_{x \to 0} (1+x)^{\frac{1}{x}}) = \ln e = 1.$$
2.
$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \lim_{y \to 0} \frac{y}{\log_{a}(1+y)} = \ln a \cdot \lim_{y \to 0} \frac{y}{\ln(1+y)} = \ln a,$$

$$e \partial e \quad a > 0, \quad y = a^{x} - 1.$$
3.
$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \ln e = 1.$$

Натуральный логарифм и гиперболические функции

Логарифм с основанием e называется натуральным логарифмом.

Обозначение: $\log_e x = \ln x$.

Определение. Функции

$$shx = \frac{e^x - e^{-x}}{2}$$

(гиперболический синус),

$$chx = \frac{e^x + e^{-x}}{2}$$

(гиперболический косинус),

$$thx = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(гиперболический тангенс) и

$$cthx = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

(гиперболический котангенс) называются гиперболическими функциями.

Замечание 1.

Гиперболические функции обладают некоторыми свойствами, похожими на свойства обычных тригонометрических функций. Например,

$$ch^{2}x - sh^{2}x = \frac{1}{4} \left(e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x} \right) = 1,$$

$$2shx \cdot chx = 2 \frac{e^{x} - e^{-x}}{2} \cdot \frac{e^{x} + e^{-x}}{2} = \frac{e^{2x} - e^{-2x}}{2} = sh2x;$$

$$thx = \frac{shx}{chx}; \quad cthx = \frac{chx}{shx};$$

$$thx \cdot cthx = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \cdot \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = 1$$

и т.д.

Замечание 2.

Термин «гиперболические» объясняется тем, что уравнения

$$\begin{cases} x = a \ cht \\ y = a \ sht' \end{cases} \quad a > 0, \quad -\infty < t < +\infty,$$

являются параметрическими уравнениями правой ветви гиперболы $x^2 - y^2 = a^2 \,,$

так же, как

$$\begin{cases} x = a \cos t \\ y = a \sin t \end{cases} \quad (0 \le t \le 2\pi) -$$

параметрические уравнения окружности

$$x^2 + y^2 = a^2.$$