

VI. Országos Magyar Matematikaolimpia XXXIII. EMMV

országos szakasz, Nagybánya, 2024. február 26–29.

V. osztály

1. feladat (10 pont). Egy sportosztályban kézilabdázók, futók és röplabdázók vannak, és minden gyerek csak egy sportot űz. Tudjuk, hogy a kézilabdázók és a futók összesen kétszer annyian vannak, mint a röplabdázók; a kézilabdázók és a röplabdázók számának összege kétszerese a futók számának; a futók és a röplabdázók együtt 8-cal többen vannak, mint a kézilabdázók. Hány kézilabdázó, futó, illetve röplabdázó van külön-külön a sportosztályban?

Simon József, Csíkszereda

Első megoldás. Hivatalból

(1 pont)

Mivel a kézilabdázók és a futók összesen kétszer annyian vannak, mint a röplabdázók, ezért a sportosztályban levők száma háromszorosa a röplabdázók számának. (**2** pont)

Mivel a kézilabdázók és a röplabdázók számának összege kétszerese a futók számámak, ezért a sportosztályban levők száma a futók számának is háromszorosa. (2 pont)

A fenti két állítás alapján, a röplabdázók száma megegyezik a futók számával, (1 pont)

ugyanakkor a kézilabdázók száma is egyenlő a futók számával,

(2 pont)

tehát a különböző sportokat űzők száma megegyezik.

(1 pont)

Mivel a futók és a röplabdázók számának összege 8-cal több a kézilabdázók számánál, de a különböző sportokat űzők száma megegyezik, ezért 8 kézilabdázó, 8 futó és 8 röplabdázó van a sportosztályban.

(1 pont)

Második megoldás. Hivatalból

(1 pont)

Jelöljük a kézilabdázók, a futók, illetve a röplabdázók számát rendre k, f, illetve r betűkkel.

A feladatban szereplő állítások alapján k + f = 2r, k + r = 2f és f + r = k + 8.

(3x1 pont)

Az első két összefüggésből azt kapjuk, hogy k + f + r = 3r = 3f, (2x1 pont)

ahonnan r = f.

(1 pont)

Figyelembe véve, hogy k + r = 2f, következik, hogy k = f,

(1 pont)

tehát k = r = f.

(1 pont)

Az f + r = k + 8 összefüggést is felhasználva, k = r = f = 8 lesz,

(1 pont)

tehát 8 kézilabdázó, 8 futó és 8 röplabdázó van a sportosztályban.

- 2. feladat (10 pont). a) Határozd meg azt a legkisebb, nullától különböző k természetes számot, amelyre a $k \cdot 2024$ szám felírható három egymás utáni természetes szám szorzataként!
- b) Két természetes szám összege 2024, és az egyiknek a másikkal való osztási maradéka 6. Melyek ezek a számok?

Pálhegyi Farkas László, Nagyvárad Nagy Örs, Kolozsvár

Megoldás. Hivatalból (1 pont)

a) Mivel a 2024 prímtényezős felbontása $2^3 \cdot 11 \cdot 23$,

(1 pont)

ezért a szorzat valamelyik tényezője a 23 többszöröse kell legyen, így a legkisebb nem nulla szorzatban az egyik tényező a 23. (1 pont)

Ilyen felbontás a $22 \cdot 23 \cdot 24 = 6 \cdot 2024$, ahonnan k = 6.

(1 pont)

b) Legyen az egyik szám a, a másik pedig b. Ekkor a+b=2024 és $a=b\cdot h+6$, ahol b>6. (1 pont)

Mivel
$$2018 = 1 \cdot 2018 = 2 \cdot 1009$$
, és $b > 6$, (1 pont)

Ha
$$b = 1009$$
, akkor $a = 1 \cdot 1009 + 6 = 1015$. (1 pont)

Ha
$$b = 2018$$
, akkor $a = 0 \cdot 2018 + 6 = 6$. (1 pont)

- **3. feladat** (10 pont). Adott a következő számsorozat: 0, 1, 10, 11, 100, 101, 110, ...
- a) Milyen szabály szerint követik egymást a számok a sorozatban? Írd fel a sorozat további öt tagját!
- b) Határozd meg a számsorozat 2024. tagját!
- c) Hányadik tagja a sorozatnak az 1010110011 szám?

Mátyás Beáta, Szatmárnémeti Nagy Örs, Kolozsvár

a) A sorozat tagjai a $0, 1, 2, 3, \ldots$ természetes számok 2-es számrendszerben felírt alakjai. (1 pont)

A következő 5 tag: 111, 1000, 1001, 1010, 1011 (2 pont)

b) A sorozat 2024. tagja a 2023-as szám lesz, (1 pont)

aminek a 2-es számrendszerben felírt alakja 11111100111. (2 pont)

c) A 2-es számrendszerbeli 1010110011 szám tízes számrendszerben felírva

$$1 \cdot 2^9 + 1 \cdot 2^7 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2 + 1 = 691.$$
 (2 pont)

Ez a szám a sorozat 692. tagja. (1 pont)

- 4. feladat (10 pont). Roli 2024. január 1-én olyan karórát szeretett volna vásárolni, amelyik azt is mutatja, hogy az aktuális nap a hónap hányadik napja. A vásárolt óra számlapján egy számláló 1-től 31-ig változik, és minden éjfélkor eggyel növekszik, majd a 31-es után ismét 1-esre vált. A hónapok különböző hosszúsága miatt ez az óra legtöbbször téves számot mutat. Újév napján az óra helyesen járt, azaz 1-est mutatott.
- a) A 2024-es szökőévben hány nap fogja a helyes számot mutatni az óra?
- b) 2024. december 31-én hányast fog mutatni az óra? Hát 2025. december 31-én?

c) A 2028-as szökőévben melyik lesz az első olyan nap, amikor a helyes számot mutatja az óra?

Bartha-Zágoni Csongor, Marosvásárhely

Megoldás. Hivatalból

(1 pont)

a) Mivel a vásárolt óra 2024. január 1-én helyes számot mutat, ezért január hónap minden napján helyes számot fog mutatni. (1 pont)

Tudjuk, hogy az óra a 31-es után 1-esre vált és január 31 napos, ezért februárban is minden nap helyes számot fog mutatni. (1 pont)

2024-ben február 29 napos, az óra viszont 31 után vált 1-esre, ezért márciusban 2-vel marad el a helyes értéktől, és március 1-től kezdve 2024 végéig az óra nem mutat helyes számot. Tehát 2024-ben összesen 31+29=60 nap mutatja a helyes értéket. (1 pont)

b) Az óra minden 30 napos hónapban (április, június, szeptember, november) további 1-1 nappal marad le a helyes értéktől, (1 pont)

ezért 2024. december 31-én összesen 6 nap lesz az eltérés a helyes értéktől, és ekkor az óra 31-6=25öt fog mutatni. (1 pont)

Az óra 2025 februárjában 31 - 28 = 3 napot, míg a 30 napos hónapokban rendre 1-1 napot marad le a helyes értéktől. Tehát 2025. december 31-én összesen 6+7=13 napot marad le a helyes számtól, azaz 31-13=18-at mutat. (1 pont)

c) Az előző alpontok gondolatmenetét folytatva 2026 és 2027-ben újabb 7-7 napot marad le az óra. (1 pont)

2028 szökőév, így februárban még 2 napot, áprilisban és júniusban pedig 1-1 napot marad le az óra. Ez összesen 6+7+7+7+2+1+1=31 nap lemaradás, (1 pont)

így 2028. július 1-én éppen 1-esre vált és a helyes számot fogja mutatni. (1 pont)

3/3