<u>Dashboard</u> / My c	courses / [S22]IR / Part 3. Search with Vectors / Quiz #2	
State Completed on Time taken	Monday, 21 March 2022, 9:12 AM Finished Monday, 21 March 2022, 9:32 AM 19 mins 56 secs 5.00 out of 10.00 (50%)	
Question 1 Correct Mark 1.00 out of 1.00		
a. continuoub. continuouc. paragrap	model with a single hidden layer, which is predicting a word given near-context of words is called: us skip-grams us bag of words h vector - distributed bag of words ctured semantic model	•
O e. embeddir	ng for language models	

Your answer is correct.

The correct answer is: continuous bag of words

Question 2

Incorrect

Mark 0.00 out of 2.00

Word "чикипарабум" is met in 3 times out of 15 document of a collection.

One for the documents is

0 е чикипарабум рамамбахара чикипарабум бум

where {e, pamam6axapa} are stop words, which we don't include in the vocabualary.

What is the value of TF-IDF for "чикипарабум" in this document, if we use this formula:

NB1 log base is 2.

NB2 Don't miss +1 in IDF

- a. 0.5
- ob. 1
- Oc. 1.5
- d. 0
- e. 3.0

Your answer is incorrect.

With no stopwords our text is

О чикипарабум чикипарабум бум

Or BoW = {чикипара бум: 2, бум: 1, o: 1}

Thus, TermFrequency = 2 / 4 = 0.5

IDF = log(1 + n / (1 + df)) + 1 = log(1 + 15 / (1 + 3)) + 1 = log(16/4) + 1 = log(4) + 1 = 2 + 1 = 3

×

TFxIDF = 0.5 * 3 = 1.5

The correct answer is:

1.5

Question 3		
Correct Mark 1.00 out of 1.00		
Mark 1.50 COT OT 1.50		
What is common for the following list of words?		
• fair		
• unfair		
• fairness		
O a. lemma		
○ b. part of speech		
		~
Your answer is correct.		
PoS are Adj, Adj, Noun		
lemmas are fair, unfair, fairness		
The correct answer is:		
stem		
Question 4		
Correct Mark 1.00 out of 1.00		
Mark 1.00 COT OT 1.00		
Mark all techniques, which can be used to reduce dataset dimensions.		
a. Latent Semantic Analysis	Uses SVD inside	
	1113140	
□ b. c Means clustering		
c. k Means clustering		
d. Random Projections		~
Your answer is correct.		
Clustering does not influence dimensionality, but reduces the number of items (from many to cluster count).		
The correct answers are: Latent Semantic Analysis, Random Projections		

Question 5

Correct

Mark 2.00 out of 2.00

You are doing LSA with SVD for a DTM, defined for D=9000 of documents and W=66000 words vocabulary.

You could find an accurate low-rank decomposition DTM=A*B. And the rank of both matrices is R=105.

Your matrices are dense and you use double-precision floating point values (recheck number of bytes!) to store them.

How many BYTES you need to store these matrices?

E.g. for D = 300K and W=20K you will have 2 rectangular matrices D \ast R and R \ast W.

Thus, R * (D + W) * BYTES_IN_DOUBLE = (300K * 400 + 20K * 400) * 8B = 320K * 8 * 400 = 320K * 3200 = **1024 000 000**

The correct answer is: 63000000

Question 6

Incorrect

Mark 0.00 out of 2.00

You study alien language of not-so-developed civilization. You want to propose them to build an inverted index for their (yet small) national library.

Their language **exactly** obeys **Zipf's law**, and the most frequent word's frequency is 70%. You agreed that long tail words which has **strictly less then 0.00013** (0.013%) frequency will not appear in the lexicon.

How many words will there be in their lexicon?

probabilty border B = 0.00013

K's word probability (by Zipf's law) = 0.7 / K

We are looking for all numbers K which satisfy

 $B \le 0.7 / K$

K <= 0.7 / B = 0.7 / 0.00013 = 5384.6...

Thus, maximum K is 5384.

Let's check:

0.7 / 5385 = 0.0001299907

The correct answer is: 5384

Question 7	
Incorrect	
Mark 0.00 out of 1.00	
For the word "fax" Which of the following typo corrections build using IoU of bigrams (Jaccard scorthis metric).	re) is the best (with respect to
NB For simplicity don't include word borders: fax bigrams are just $\{fa, ax\}$.	
a. faximile	x 2/7
o b. fox	
o c. axe	
○ d. fix	
Your answer is incorrect.	
$fax = \{fa, ax\}$	
$axe = \{ax. xe\}$	
IoU = {ax} / {fa, ax, xe} = 1/3	
The correct answer is:	
axe	
■ IR07. Vector Model	
Jump to	

<u>D(</u>

IR08. Vector space modelling with ML 🕨