EXPERIMENT 1

LOGIC GATES AND BOOLEAN ALGEBRA

OBJEJTIVE

Gain experience in truth table and Boolean algebra.

THEORY

THE AND GATE

The AND gate implements the Boolean AND function where the output only is logical 1 when all inputs are logical 1. The standard symbol and the truth table for an **AND** gate with two inputs is given below.

The Boolean expression for the *AND* gate is F = A.B

symbol

THE OR GATE

The OR gate implements the Boolean OR function where the output is logical 1 when just input is logical 1. The standard symbol and the truth table for an **OR** gate with two inputs is given below.

Figure 2 **OR** Gate

Table 2 Truth table of *OR* Gate

В

0

1

0

1

AND Gate

F

0

0

0

1

The Boolean expression for the OR gate is F = A + B.

DIGITAL DESIGN

THE NOT GATE

The *NOT* gate implements the Boolean *NOT* function where the output is the inverse of the input. The standard symbol and the truth table for the *NOT* gate is given below.

Figure 3 *NOT* Gate Table 3 Truth table of *NOT* Gate

The Boolean expression for the **NOT** gate is $F = \overline{A}$

From these three basic logical gates it's to possible implement any Boolean expression into hardware.

THE NAND GATE

The *NAND* gate is an *AND* gate followed by a *NOT* gate. The output is logical 1 when one of the inputs is logical 0. The standard symbol and the truth table for the *NAND* gate is given below.

Figure 4 *NAND* Gate Table 4 Truth table of *NAND* Gate

The Boolean expression for the *NAND* gate is $F = \overline{A \square B}$.

DIGITAL DESIGN

THE NOR GATE

The *NOR* is a combination of an *OR* followed by a *NOT* gate. The output is logical 1 when none of the inputs are logical 0. The standard symbol and the truth table for the *NOR* gate is given below.

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Figure 5 *NAND* Gate

Table 5 Truth table of *NAND* Gate

The Boolean expression for the *NOR* gate is $R = \overline{A + B}$.

TRUTH TABLE

A truth table is a list of all the possible inputs and the corresponding outputs for a given system. The amount of possible inputs is determined by the amount of input variables. This value can be obtained by the formula 2^n .

Example: Determine the truth table for: Y = A'B'C + ABC.

Truth Table			
A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Table 6 Truth Table

BUILDING A CIRCUIT

In order to build a circuit from a truth table, we must first determine the Boolean expression for that particular truth table. Then the circuit can be constructed from multiple *AND* gates who's outputs all tie into one multiple input *OR* gate.

Looking at the truth table, we must first determine the Boolean expression. From the two instances where the output is high we obtain the following Boolean expression.

$$F = A'B'C + ABC$$

To build this circuit we need two 3-input AND gates, two Inverters, and a 2-input OR gate. The completed circuit is shown below:

Figure 6 Logic Circuit

EXPERIMENTAL PROCEDURE

Equation F = ABC+A'BC

- 1) Complete the Truth Table of the equation.
- 2) Implement equation by using minimum amount of logic gates.

Equipment List:

- 1) 74LS32 TTL OR GATE IC
- 2) 74LS08 TTL AND GATE IC
- 3) 74LS04 TTL NOT GATE IC
- 4) Standard set equipments

