General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-171179) PDSS/IMC CIS USER'S GUIDE (Intermetrics, Inc.) 110 p HC A06/MF A01 CSCL 09B N85-10682

Unclas G3/61 23655

IR-AL-031

PDSS/IMC CIS USERS GUIDE

30 OCTOBER 1984

CONTRACT NUMBER: NAS8-33825

Prepared For: National Aeronautics and Space Administration

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

Prepared By: Intermetrics, Inc.

3322 South Memorial Parkway Huntsville, Alabama 35801

(205) 883-6860

RELEASE DATE: DOCUMENT CHANGE RECORD SHEET: COPY NO. CHANGE IR-AL-031 PDSS/IMC CIS Users Guide DOCUMENT: 30 October 1984 REVISION NUMBERED REVISION TO INCORPORATE THE CHANGE INTO THE DOCUMENT DATED OTHER COMMENTS REGARDING THIS CHANGE CHANGE (AUTH., INSTRUCT., ETC.) (DATE) 1. ADD PAGES! 2. REMOVE PAGES; 15-Oct-84 Initial Release

PREFACE

This document contains the PDSS/IMC Computer Interface Simulation (CIS) user's manual.

This document was prepared for the Information and Electronic Systems Laboratory of the Marshall Space Flight Center under NASA contract NAS8-33825.

Technical direction was provided by:

Mr. Jim Lewis (EB32)

Mr. Bob Panciera (EB32)

Mr. Ken Williamson (EB42)

Questions concerning this document should be directed to the Intermetrics, Inc., Huntsville office.

Intermetrics, Inc.
3322 South Memorial Parkway
Century Office Center, Suite 72
Huntsville, Alabama 35801
(205) 883-6860

By: COC.

Miractor

Southeast Division

TABLE OF CONTENTS

			Page
1.0	Intro	duction	1
2.0	PDSS/	IMC CIS Structure	3
		2.0.1 Power Subsystem Model	3 4 4 4 5 5
	2.1 2.2 2.3 2.4	PDSS Power Up PDSS Power Down PDSS/IMC CIS Cables Running CIS	14
		2.4.1 CIS Start	18
	2.5	PDSS/IMC CIS Commands	20
		2.5.1 DDU Simulated Commands	21
		2.5.1.1 I-Item Entry	21
		2.5.2 System Commands	23
		2.5.2.1 COMM Command	24 25 26 27 27 28 28 28 29

TABLE OF CONTENTS (CONTINUED)

					Page
				• • • • • • • • • • • • • • • • • •	
2.8	Log Dump		• • • • • • •		34
2.9	IMCE DEP	MMU Load.		• • • • • • • • • • • • • • • • • • • •	35
2.10	Patching	DEP MMU L	oad File		35
2.11	Realtime	Modifying	DEP MMU	Load Data	36
APPEI	NDIX A			• • • • • • • • • • • • • • • • • • • •	38

LIST OF FIGURES

Figure		Page
2-1	Power Subsystem Model	6
2-1	UIT Interface Model	7
2-3	WUPPE Interface Model	8
2-4	DRIRU Model	9
2-5	ASTROS Intertace Signals	11
2-6	AST Model	12
2-7	Comet Track Model	13
A-1	PDSS/IMC GSE Layout	39
A-2	PDSS/IMC CAMAC Crate	
A-3	RFC Task Flow	
A – 4	CIS Data Flow	
A-5	PDSS/IMC Interface Definition	
A-6	Model Assignment	
A-7	PDSS/IMC Master Display	
A-8	RFC DDU Display	
A-9	RFC Display RFC002	
A-10	RFC Display RFC003	
A-11	RFC Display RFC004	
A-12	RFC Display RFC005	
A-13	IMCE Power Up/Down Commands	
A-14	Keyboard Commands	
A-15	Item Entry Summary	
A-16	Tasks	
A-17	Model Data Control	
A-18	Model Data Description	
A-19	WAO Command Data	. 63
A-20	IMCE MMU Load Specifications	
A-21	DEP Memory Load	
A-22	ECIO Analog Data	
A-23	ECIO Discrete Data	
A-24	ECIO Serial Data	
A-25	Display Types	. 75
A-26	IMCS Crew Page Display Elements	
A-27	Flight Crew Page	
A-28	Exception Monitor	. 78
A-29	Item Entries	
A-30	Generalized Command (No Data)	
A-31 A-32	Generalized Command (Data)	
	RAU Synchronous Serial	• 73
A-33	SEID Discrete Outputs	
A-34	PDSS/SEID GML	. 85 . 86
A-35 A-36		
A-30 A-37	NEA Lookup Table	
~~J/	MER GUVRUU 19015 NULCBAAAAAAAAAAAAAAAAAA	• 00

LIST OF FIGURES

Figure		Page
A-38	ECIO Voltage Conversion	89
A-39	HRM Voltage Conversion	90
A-40	CAMAC-AO Voltage Conversion	91
A-41	Flight Command Format	
A-42	Test Command Format	
A-43	Status Word Format	94
A = A A	Acquisition Modes and Track Mode Data Format	

ACRONYMS

AI	Analog Input
AO	Analog Output
AST	Astros Start Tracker
ASTROS	Advanced Star/Target Reference Optical Sensor
CCD	Charged Coupled Device
CDMS	Command and Data Management System
CIS	Computer Interface Simulation
CPD	Cruciform Power Distributor
DEP	Dedicated Experiment Processor
DI	Discrete Input
DO	Discrete Output
DRIRU	Dry Rotor Inertial Reference Unit
ECAS	Experiment Computer Application Software
ECIO	Experiment Computer Input/Output
ECOS	Experiment Computer Operating System
EIMC	Electrical Interface Mode Commands
ESA	European Space Agency
FI	Flexible Input
GML	General Measurement Loop
GMT	Greenwich Mean Time
GSE	Ground Support Equipment
HRM	High Rate Multiplexor
HUT	Hopkins Ultraviolet Telescope
IIA	Instrument Interface Agreement
IMC IMCE	Image Motion Compensator Image Motion Compensation Electronics
IMCS	Image Motion Compensation Subsystem
IPS	Instrument Pointing System
LAM	Look At Me
MMU	Mass Memory Unit
NASA	National Aeronautics and Space Administration
PCC	Programmable Crate Controller
PCM	Pulse Code Modulated
pid	Page Identifier
PDSS	Payload Development Support System
POCC	Payload Operations Control Center
ŲΤ	Qualification Test
RAU	Remote Acquisition Unit
RAUI	Remote Access Unit Interface
RAUS	Remote Access Unit Simulator
RFC	Reflight Certification
RIUI	Remote Interface Unit Interface
SEID	Spacelab Experiment Interface Device
SI	Serial Input
sid	Signal Identifier
SL SC	Spacelab
SO	Serial Output

ACRONYMS (CONTINUED)

SPL	Scratch Pad Line
SPSME	Spacelab Payload Standard Modular Electronics
SRR	Software Requirements Review
SWCDR	Software Critical Design Review
SWCI	Software Configuration Inspection
SWPDR	Software Preliminary Design Review
ÜV	Ultraviolet
UIT	Ultraviolet Imaging Telescope
UTC	User Time Clock
MUPPE	Wisconsin Ultraviolet Photocolarometry Experiment

CIS USERS GUIDE

1.0 INTRODUCTION

The PDSS/IMC Computer Interface Simulation (CIS) software was developed in accordance with the following document:

PDSS/IMC Requirements and Functional Specifications IR-AL-010 Revision 1.1 15 August 1984

The PDSS/IMC CIS software executes as an application of PDSS. The user should reference the following documents for details on the operation of the PDSS/SEID.

PDSS User's Manual IR-AL-001 Revision 2.1 Intermetrics, Inc. 15 July 1984

SEID II Specifications IR-AL-007 Revision 1.0 Intermetrics, Inc. 15 July 1984

The user should also be familiar with the DEC RT-11 Operating System, the DEC LSI 11/23 processor, and the Standard Engineering CAMAC Crate. Figures A-1, A-2, and A-3 show the PDSS configuration for the CIS application.

Figures A-7 to A-12 define the PDSS/IMC display pages supported for the CIS application. Figure A-7 is the standard PDSS display page containing data and status for the SEID interfaces. Figure A-9 is the simulated display page for the ASTRO/IMCE flight display page. Figures A-8 to A-12 are the user defined display pages.

2.0 PDSS/INC CIS STRUCTURE

The PDSS/IMC CIS software provides a real time interface simulation for the following IMC subsystems:

- Dry Rotor Inertial Reference Unit (DRIRU-II)
- Advanced Star/Target Reference Optical Sensor (ASTROS)
- Ultra Violet Imaging Telescope (UIT)
- Wisconsin Ultraviolet Photopolarimetry Experiment (WUPPE)
- Cruciform Power Distributor (CPD)
- Spacelab Experiment Computer Operating System (SL-ECUS)

The CIS models are structured as PDSS tasks allowing the models to be active/inactive as specified by the operator. Figure A-4 depicts the task (Model) data flow for the CIS application.

Figure A-5 defines the CIS model interfaces and Figure A-6 specifies the interface assignments to the models.

A brief description of each of the models follows.

2.0.1 POWER SUBSYSTEM MODEL

The Power Subsystem model runs once per second. The model acquires four power signals over SEID FI channels (FI 33 = +5V, FI 37 = +15V, FI 39 = -15V, and FI 45 = temp). The model outputs to the CAMAC AO's either the acquired signals or data values DPWR. Figure 2-1 defines the power subsystem model logic.

2.0.2 UIT INTERFACE MODEL

The UIT interface model receives two serial messages and outputs pitch and yaw analog differences every 20 milliseconds. Figure 2-2 depicts the UIT interface model.

2.0.3 WUPPE INTERFACE MODEL

The WUPPE interface model receives one serial message every 20 milliseconds. Figure 2-3 depicts the WUPPE interface model.

2.0.4 DRIRU MODEL

The DRIRU model provides a DRIRU-II interface simulation that includes 12 incremental angle pulse channels, 12 range status telemetry discrete output channels, 6 analog rate telemetry analog output channels, 3 gyro temperature resistor channels, 3 motor current telemetry analog output channels, and 12 electrical interface mode command discrete input channels. Figure 2-4 depicts the DRIRU model.

2.0.5 AST MODEL

The AST model provides an interface simulation for the AST Star Tracker. Figure 2-5 depicts the AST Interface Signals and Figure 2-6 depicts the AST model logic.

2.0.6 COMET TRACK MODEL

The Comet Track model provides a data interface simulation of the Comet Track data. Figure 2-7 depicts the Comet Track model.

2.0.7 ECOS/ECAS MODEL

The ECOS/ECAS models provide a simulation of the ASTROS ECOS and ECAS functions including DDU flight display, DDU keyboard processing, exception monitoring, and ECIO data acquisition.

INPUT	PROCESS	OUPUT
ACQUIRE POWER SIGNALS	REPEAT EVERY 1.0 SECOND CASE DCTRL[1]	
FI 33=+5V FI 37=+15V	O: SELECT FI VALUES	
FI 39=-15V FI 45=TEMP	>0: SELECT DPWR VALUES <0: SELECT NO OUTPUT ENDCASE	
	OUTPUT POWER SIGNALS END REPEAT	CAMAC AO N(11)A(0) = +5V VALUE N(11)A(1) = +15V VALUE N(11)A(2) = -15V VALUE N(11)A(3) = TEMP VALUE

FIGURE 2-1: POWER SUBSYSTEM MODEL

INPUT	PROCESS	OUTPUT
	REPEAT EVERY 20 MILLISECONDS	
ACQUIRE UIT SERIAL MESSAGE	FETCH UIT PITCH AND YAW DATA	
UITI SERIAL	OUTPUT UIT PITCH AND YAW ANALOG	
	END REPEAT	CAMAC AO
		N(10)A(6) = UIT XERR N(10)A(7) = UIT YERR

FIGURE 2-2: UIT INTERFACE MODEL

INPUT	PROCESS	OUTPUT
	REPEAT EVERY 20 MILLISECONDS	
ACQUIRE WUPPE SERIAL MESSAGE		
WUPPE SERIAL	FETCH WUPPE PITCH AND YAW	
	END REPEAT	

FIGURE 2-3: WUPPE INTERFACE MODEL

INPUT	PROCESS	OUTPUT
ACQUIRE EIMC DISCRETE INPUTS RRH1A=FI1 RRH2A=FI2 RRL1A=FI5 RRL2A=FI7 RRH1B=FI13 RRL1B=FI13 RRL2B=FI15 RRH1C=FI17 RRH2C=FI19 RRH1C=FI21 RRL2C=FI23	REPEAT EVERY 1 SECOND FETCH EIMC DISCRETE INPUTS IF DRIRU INITIALIZE SELECT MOTOR CURRENT DATA DTMV SEND MOTOR CURRENT DATA ENDIF BEGIN RANGE STATUS TELEMETRY COMPUTATION IF (RRH1x .AND. RRH2x)=1 THEN RSTxxx=0 IF (RRL1x .AND. RRL2x)=1 THEN RSTxxx=1 CASE DCTRL [8] O: SELECT MODEL RST DATA >0: SELECT DRST <0: SELECT NO OUTPUT END CASE SEND RST DATA END BEGIN	CAMAC AO N(11)A(4)=T/MA N(11)A(5)=T/MB N(11)A(6)=T/MC SEID DO RSTX1A=D0#16 RSTX1B=D0#17 RSTY1B=D0#18 RSTY1C=D0#19 RSTZ1A=D0#20 RSTZ1C=D0#21

FIGURE 2-4: DRIRU MODEL

INPUT	PROCESS	OUTPUT
	IF PULSE OUTPUT COMPLETE SELECT GYRO DATA DGYRO SELECT GYRO DATA SEND GYRO DATA COMPUTE ANALOG RATE TELEMETRY	GYROSI DTXA=N(6)A(0) DTXB=N(8)A(0) DTYB=N(7)A(0) DTYC=N(7)A(1) DTZA=N(6)A(1) DTZC=N(8)A(1)
	SEND ANALOG RATE TELEMETRY END REPEAT	CAMAC AO N(12)A(2) = ANRXA N(12)A(3) = ANRXB N(12)A(4) = ANRYB N(12)A(5) = ANRYC N(12)A(6) = ANRZA N(12)A(7) = ANRZC

FIGURE 2-4: DRIRU MODEL (CONTINUED)

IMC RAU COMMAND CLOCK (1 MHZ BURSTS) COMMAND DATA (16-BITS+PARITY) DATA TRANSFER REQUEST DATA CLOCK (1 MHZ BURSTS) SERIAL DATA (16-BITS + PARITY) T/E COOLER POWER ON/OFF COMMANDS T/E COMMAND ENABLE MASTER RESET CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) +8 V MON. +18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER SYSTEM COMMAND DATA (16-BITS+PARITY) ASSEMBLY ASSEMBLY ASTROS ELECTRONICS ASSEMBLY ASSEMBLY ASTROS ELECTRONICS ASSEMBLY FOWER OPTICS RADIATOR OPTICS POTICS ASSEMBLY FOWER OPTICS RADIATOR OPTICS POWER GROUND CHASSIS GROUND			
COMMAND DATA (16-BITS+PARITY) DATA TRANSFER REQUEST DATA CLOCK (1 MHZ BURSTS) SERIAL DATA (16-BITS + PARITY) T/E COOLER POWER ON/OFF COVER OPEN/CLOSE SERIAL COMMAND ENABLE MASTER RESET CCD TEMP HEAT SINK TEMP OPTICS TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 5 POWER (VOLTAGE) HEATER NO. 5 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND	IMC RAU	LOGIC/ANALOG GROUND	
DIGITAL COMMAND DATA (16-BITS+PARITY) DATA TRANSFER REQUEST DATA CLOCK (1 MHz BURSTS) SERIAL DATA (16-BITS + PARITY) T/E COOLER POWER ON/OFF COVER OPEN/CLOSE SERIAL COMMAND ENABLE¹ MASTER RESET CCD TEMP² HEAT SINK TEMP² OPTICS TEMP² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) +8 V MON. +18 V MON. -18 V MON. -18 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND	_	COMMAND CLOCK (1 MHz BURSTS)	
DATA CLOCK (1 MHz BURSTS) SERIAL DATA (16-BITS + PARITY) T/E COOLER POWER ON/OFF COVER OPEN/CLOSE SERIAL COMMAND ENABLE¹ MASTER RESET CCD TEMP² HEAT SINK TEMP² OPTICS TEMP² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) +8 V MON. +18 V MON19 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER POWER GROUND		COMMAND DATA (16-BITS+PARITY)	
T/E COOLER POWER ON/OFF COVER OPEN/CLOSE SERIAL COMMAND ENABLE MASTER RESET CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) +8 V MON. +18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER GROUND	DIGITAL	DATA TRANSFER REQUEST	
T/E COOLER POWER ON/OFF COVER OPEN/CLOSE SERIAL COMMAND ENABLE MASTER RESET CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER GROUND		DATA CLOCK (1 MHz BURSTS)	
COVER OPEN/CLOSE SERIAL COMMAND ENABLE ¹ MASTER RESET CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND		SERIAL DATA (16-BITS + PARITY)	
COVER OPEN/CLOSE SERIAL COMMAND ENABLE ¹ MASTER RESET CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND			
ON/OFF COMMANDS SERIAL COMMAND ENABLE ¹ MASTER RESET CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND		T/E COOLER POWER ON/OFF	
COMMANDS SERIAL COMMAND ENABLE MASTER RESET CCD TEMP HEAT SINK TEMP OPTICS TEMP ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND	ON /OFF	COVER OPEN/CLOSE	
CCD TEMP ² HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER EVERTEM		SERIAL COMMAND ENABLE ¹	
HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE		MASTER RESET	
HEAT SINK TEMP ² OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE			
OPTICS TEMP ² ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) OPTICS 12 ACTIVE +8 V MON. +18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. POWER POWER GROUND		CCD TEMP ²	
ELECTRONICS ASSEMBLY TEMP CCD COOLER POWER (VOLTAGE) HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. POWER POWER GROUND ELECTRONICS ASSEMBLY TEMP CODE TO THE POWER (VOLTAGE) RADIATOR OPTICS POWER (VOLTAGE) ANALOG POWER (VOLTAGE) POWER (VOLTAGE) ANALOG POWER (VOLTAGE) POWER (VOLTAGE) ANALOG POWER (VOLTAGE) POWER (VOLTAGE)		HEAT SINK TEMP ²	
ANALOG DATA HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. POWER POWER POWER GROUND CCCD COOLER POWER (VOLTAGE) RADIATOR OPTICS RADIATOR OPTICS PAGE (2 SPARES) +28 V MON. +28 VDC (UNREGULATED) (2 CABLES)*		OPTICS TEMP ²	
ANALOG DATA HEATER NO. 1 POWER (VOLTAGE) HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. POWER POWER POWER GROUND RADIATOR OPTICS RADIATOR OPTICS		ELECTRONICS ASSEMBLY TEMP	
DATA HEATER NO. 2 POWER (VOLTAGE) 12 ACTIVE		CCD COOLER POWER (VOLTAGE)	
HEATER NO. 2 POWER (VOLTAGE) +8 V MON. +18 V MON. -18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. POWER POWER GROUND		HEATER NO. 1 POWER (VOLTAGE)	
+ +18 V MON18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER GROUND	DATA	HEATER NO. 2 POWER (VOLTAGE)	OPTICS
-18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER POWER GROUND	12 ACTIVE	+8 V MON.	
-18 V MON. SPARE (2 SPARES) +5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER GROUND	+	+18 V MON.	
+5 V MON. +6 V MON. +28 VDC (UNREGULATED) (2 CABLES)* POWER GROUND	3 SPARES	-18 V MON.	
+6 V MON. +28 VDC (UNREGULATED) (2 CABLES) * POWER GROUND SYSTEM			
+28 VDC (UNREGULATED) (2 CABLES) * POWER GROUND			
POWER GROUND		TO Y PRIM.	
CVCTPM		+28 VDC (UNREGULATED) (2 CABLES)*	
SYSTEM CHASSIS GROUND	POWER	POWER GROUND	
	SYSTEM	CHASSIS GROUND	

^{*1} POWER CABLE TO ELECTRONICS AND 1 POWER CABLE TO HEATERS.

FIGURE 2-5: ASTROS INTERFACE SIGNALS

NOTE 1 - MSFC MENTIONED REMOVAL OF THIS LINE.

NOTE 2 - SCALE FACTORS DEFINED IN DETAILED SPEC #ES513218.

INPUT	PROCESS	OUTPUT
ACQUIRE AST SERIAL ASTI (2 WORDS)	REPEAT EVERY 1.0 SECOND SELECT AST ANALOG DATA -DASTAL SEND AST ANALOG DATA FETCH AST SERIAL INPUT CASE SERIAL INPUT COMMAND: PROCESS COMMAND FRAME START: SELECT OUTPUT DUMP: SELECT DUMP END CASE	CAMAC FO N(9)A(0) = CCD TEMP 1 = HEAT SINK TEMP 2 = OPTICS TEMP 3 = EA TEMP 4 = CCD LOOP PWR 5 = HEAT #1 PWR 6 = HEAT #2 PWR 7 = HEAT #3 PWR N(10)A(0) = +5V 1 = +8V 2 = +18V 3 = -19V 4 = SA ELECTRONICS 5 = BASE PLATE TEMP
	SENU AST SERIAL OUTPUT END REPEAT	ASTI SERIAL OUTPUT (10 WORDS)

FIGURE 2-6: AST MODEL

INPUT	PROCESS	OUTPUT
	REPEAT EVERY 100 MILLISECONDS	
	SELECT COMET TRACK DATA - DTRACK	
	SEND COMET TRACK DATA	WRITE SEID PCM CHANNEL #0 9 WORDS TRACK DATA
	END REPEAT	
	l	

FIGURE 2-7: COMET TRACK MODEL

2.1 PDSS POWER UP

The following steps should be followed to power up PDSS.

STEP	<u>ACTION</u>		
1	Turn Conrac VDU Power Switch On		
2	Turn DSD-880 Power Switch On		
3	Turn VT-125 Power Switch On		
4	Turn Quantex Line Printer Switch On		
5	Turn PDSS Crate Power Switch On		
6	Turn SEID Power Switch On		

The LSI 11/23 will boot RT-11 from the DSD winchester disk. Standard RT-11 operating system commands can be used for setting date and time.

DATE dd-mm-yy
TIME hh:mm:ss

The RT-11 initialization file "SY:STARTX.COM" sets the date. The DATE command in this file can be changed using standard DEC editor functions.

The SEID time is set by the "SET-GMT" command as described in IR-AL-007.

2.2 PDSS Power Down

The following steps should be followed to power down PDSS.

STEP	ACTION		
1	Turn Conrac VDC Power Switch Off		
2	Turn DSD-880 Power Switch Off		
3	Turn VT-125 Power Switch Off		

- Turn PDSS Crate Power Switch Off
 Turn SEID Power Switch Off
- 6 Turn Quantex Line Printer Switch Off

2.3 PDSS/IMC CIS CABLES

The following cables should be connected.

```
CAMAC RAUI-J1------IMCE ASTI-J1
CAMAC RIUI-J1 (UIT)-----IMCE DEI-J1
CAMAC RIUI-J2 (WUPPE)-----IMCE DEI-J2
CAMAC GYROS 1 (N5) J1, J2-----IMCE DEI-J3
    GYROS 2 (N6) - J3
    GYROS 3 (N7) - J4
    GYROS 4 (N8) - J5
CAMAC 3112 (N9) - J1-----IMCE DEI J1,J2
CAMAC 3112 (N10) - J2
CAMAC 3112 (N11) - J3
CAMAC 3112 (N12)
SEID J1, J5-----IMCE DIOI J1
SEID J2. J6-----IMCE DIOI J2
SEID J3-----CAMAC GYROS 1
SEID J4, J7-----IMCE PWR J2
SEID J9-----IMCE HRMI J1, J2
SEID J10-----IMCE RAUI J1, J3, J4, J5, J6
SEID J17, J18------STAGS J1, J2
SEID J19, J2U-----ITF HRM J1, J2
SEID J15-----CAMAC PARALLEL PORT
```

2.4 RUNNING CIS

The following section covers the commands to start and stop the CIS application.

2.4.1 CIS Start

The CIS application is initiated by the following operations where "..." denotes keyboard entries.

STEP	<u>ACTION</u>	DESCRIPTION
1	"ORCIS"	RT-11 Program Load
2	SEID reset	Reset SEID (see below)
3	" 4 "	Selection Option 4
4	14 14	Power-On IMCE (see below)
5	"INIT"	Start CIS Application
6	"=PUN 1"	Perform SEID Initialize

- (1) The "@RCIS" operation causes the RT-11 operating system to perform command file [RCIS.COM], to load the PDSS/IMC application program, and to initiate program execution. When loaded and started, the PDSS program displays the PDSS Master Display page (Figure A-7) on the VT-125 and opens communication with the SEID on the parallel port. When the PDSS LSI 11/23 has established communication with the SEID, the PDSS Master Display will prompt the user to select the program option.
- (2) If the PDSS LSI 11/23 cannot establish communication with the SEID, the operator will be prompted to reset the SEID. The SEID reset prompt is noted by the "RESET SEID" message

on the PDSS Master Display and the ringing of the VT-125 bell. The operator should depress the SEID reset button on the SEID front panel <u>once</u>. The PDSS Display page should then return to the "SELECT OPTION" message.

CAUTION: Depressing the SEID reset button when not requested or while the program is being loaded causes the program to crash requiring a hard recovery to be performed.

- (3) PDSS option "4" should be selected causing the display page to be cleared and the prompt "?" displayed.
- (4) Figure A-13 identifies the commands for the power up/down of IMCE subsystems. Two configurations are supported: first IMCE is powered via the simulated CPD and the PDSS/SEID is cabled to allow SEID control of IMCE power supply, and second IMCE is powered via the CPD.
- (5) The CIS task are initiated by the "INIT" command.
- (6) The "=RUN 1" command causes the executive to perfrom the standard SEID initialize.

->SEID BEING LOADED TVS SLOAD RFC.S5

DEF 5

DE. J

GML-RES 3

MLOAD RFC.MON

XSEND

MON

D[1] = .F008

D[1] = .F000

D[0]=.0001 START 5 PDSS/IMC CIS

In general, during this period, the operator should not attempt any keyboard commands.

An "=RUN 2" command would cause the executive to bypass the automatic SEID initialization.

If after the "MON" command is issued there are "BAD SEID RESPONSE" messages, the IMCE has not been powered or the RAUI cable has not been connected. The operator should issue a "MOFF". Once the IMCE is powered and the RAUI cabled, the operator enters a "MON" command to start the SEID monitor.

2.4.2 CIS STOP

To stop the ${\tt Ci}$ task, the following commands should be entered:

=STOP

The =STOP command causes the following PDSS/IMC commands to be performed.

STOP 5 MOFF QUIT

2.4.3 CIS QUICK START/STOP

To perform a quick stop of CIS:

STOP 5 MOFF PULSE 33,0N or PULSE 54,0N

To perform a quick start of CIS:

PULSE 32,0N or PULSE 56,0N MON START 5

2.4.4 CIS FAILURES

During the power on/off sequence, if any of the following conditions arise, a recovery procedure should be used.

- 1. SEID will not initialize
- 2. Garbaye characters appear on CRT
- 3. Program does not complete initialization

FAST RECOVERY PROCEDURE:

- Reset CRT (Depress SET-UP,0)
- 2. Depress SEID Reset
- 3. Depress LSI 11/23 BOOT

HARD RECOVERY PROCEDURE:

- 1. Power Off SEID
- 2. Power Off PDSS CRATE
- 3. Reset CRT (Depress SET-UP,0)
- 4. Power On PDSS Crate
- 5. Power On SEID

2.5 PDSS/IMC CIS COMMANDS

PDSS/IMC CIS commands are grouped into two categories: CIS DDU simulated commands and CIS system commands. Figure A-14 lists the commands for each category.

The general syntax for PDSS/IMC commands is as follows:

All PDSS/IMC commands must have an equal "=" character as the first character. The "=" character is used by the PDSS keyboard monitor for detecting those commands to be handled by user tasks. Failure to have an "=" as the first character results in a PDSS message - "PDSS-68: INVALID COMMAND".

Embedded blanks are not allowed in the 'cccc'.

The < > brackets denote optional data for commands.

Keys (/k) are optional and may be included with commands.

Parameter data is entered as p1,p2,...pn. Unless otherwise specified, the data is entered in hexadecimal. Leading zeroes

are not required. Spaces are allowed between parameters but not within the data itself. Either commas or spaces may be used as separators. The number of parameters is a function of the command.

2.5.1 DDU SIMULATED COMMANDS

The DDU commands provide a simulated DDU keyboard function.

2.5.1.1 I-Item Entry

Syntax: =I item-number hex-data ...

The =I simulates the DDU Item Entry keyboard function.

Item Entries identified for IMCS are defined in Figure A-15 and Figure A-29.

The IMCS flight display page can be viewed on the PDSS VDU display page 1 ($\pm DISP$ 1).

2.5.1.2 P-PFK

Syntax: =P pkf-number

The =P simulates the DDU PFK keyboard function. No PFK commands are identified for IMCS. The =P is null processed.

2.5.1.3 T-TYPE

Syntax: =T hex-data

The =T simulates the DDU TYPE keyboard function. No TYPE commands are identified for IMCS. The =T is null processed.

2.5.1.4 C-CMD

Syntax: =C C-type sid hex-data

=C WRI sid hex-data (Figure A-29)
=C ISS sid (Figure A-28)

The =C simulates the DDU CMD keyboard function. CMD sid's are identified in Figures A-30 and A-31. These commands are distinguished by commands that pulse discretes ("ISS") and commands that write serial commands to the AST ("WRI").

Example:

To select GYRO channels XA,YB,ZA the operator enters: =C ISS 3917 <CR>

Example:

To add defect coordinates C=10, L=14 the operator enters: =C WRI tbd-sid F002 UAOE <CR>

Example:

To send an AST test command, the operator enters: =C WRI tbd-sid F003 dddd dddd <CR>

The test commands are summarized in "Software Requirements Definition for ASTROS Star Tracker (AST) Firmware (DM05, Rev. C), 1 June 1984, Jet Propulsion Laboratory, Figure A-42.

2.5.2 SYSTEM COMMANDS

The System commands identified in Figure A-14 provide operator control of system functions. Each command is described in the following sections.

2.5.2.1 COMM Command

Syntax: =COMM comment-character-string

comment-character-string = character string of length

16

The COMM command allows the operator to enter a 16 character comment line in the log buffer. On each log cycle, the entire log buffer including the comment field is written to disk.

The COMM command can be used for reference points, reminders, or test headers.

2.5.2.2 CTRL Command

Syntax: =CRTL control-key [,integer-data]
control-key =["/V", "/M", "/E", "/T"]

The CTRL command provides system level control to the operator.

<u>/Y</u>

The "/V" key toggles the verify control switch between verify/no-verify.

/M

The "/M" key toggles the mode control switch.

<u>/T</u>

Syntax: /T i,t

where 1 <= 1 <= 28

t = milliseconds

The "/T" key causes time parameter i to be updated to time value t (milliseconds). PDSS/IMC software provides the user with setable time variables as listed in Figure A-16.

<u>/E</u>

Syntax: /E i

where i

0 = Reset to zero

1 = Freeze

2 = Compute drift rate

The "/E" command controls the earth's rate computation for DRIRU comparison.

The earth's drift rate is computed as 15.04107 arc-seconds/second * cos (Latitude = 34.6474) (15.04107 * COS(346474) = 12.373781) and is displayed on display page 3 (=DISP 3). The gyro drift rates are read and accumulated once per second.

2.5.2.3 DISP Command

Syntax: =DISP display-key pid display-key = ["/I", "/F", "/U"]

The DISP command is used to request the active display of a display page, to re-initialize a display page, to freeze a display page, or to unfreeze a display page.

Unless frozen, all display pages are updated on a round robin basis at the display rate.

The pid parameter designates the display page (i.e., $1 \le pid$, ≤ 5). A value for pid outside this range is treated as an invalid parameter and the command is not processed.

Example:

=DISP 2

Requests an active display of page 2. The requested page is mapped to the active page of the VDU.

Example:

=DISP/I 3

Re-initializes the background data from disk for page 3. The foreground or variable data for page 3 will be lost.

Example:

=DISP/F 1

Freezes display page 1. The display function will not update the page data until an unfreeze is invoked.

Example:

=DISP/U 1

Unfreezes display page 1.

2.5.2.4 LOG Command

Syntax: =LOG [addr,number-words]

The =LOG command toggles the PDSS/IMC log control switch between active/inactive. When active, the PDSS/IMC log function

logs the IMC Data Buffers to disk file (IMC.LOG) at the time interval [T26=1.0 seconds]. When inactive, the PDSS log function is not performed.

If no parameters are specified, the log function defaults to addr(GMT),852; i.e., the log record is 852 words in length and starts at the data entry GMT.

2.5.2.5 MOD Command

Syntax: =MOD addr hex-data ... hex-data addr = octal address hexdata = hexadecimal data

The MOD command is used to change data. The hexadecimal data is moved into the data buffer beginning at the address (addr) specified. If the address range is actively being displayed on the VIEW page, the display data will be updated.

After all data has been deposited in memory, the next deposit address is displayed on the system console.

2.5.2.6 PMEH Command

Syntax: =PMEM

The PMEM command prints the display pages on the PDSS line printer. This command provides a hard copy mechanism for saving the display pages during testing. All display pages are printed.

2.5.2.7 STOP Command

Syntax: =STOP

The STOP command closes the log file, stops the logging function, and clears the CAMAC CSR, INT and CCR registers. The command stops the comet track sequence ("STOP 5") and stops the SEID monitor ("MOFF"). The STOP command should be used just prior to terminating a session.

2.5.2.8 VIEW Command

Syntax: =VIEW[view-key][addr]
addr = octal address

The VIEW command causes the PDSS/IMC Data or the SEID Data Buffers to be displayed to the VDU. The data is displayed as 4 hex characters (16 bits).

The /S control key causes the SEID Data Buffer area to be displayed. If the /S control key and the adr parameters are absent, the VIEW defaults to the ABEGIN area.

The VIEW display page is displayed to the VDU when the =VIEW command is entered. The data on the display is refreshed at a 1.0 second display refresh rate.

2.5.2.9 TASK Command

Syntax: =TASK task-mask

The TASK command allows the operator to engage or disengage the application tasks. The tasks are selected by the task-mask parameter which is described in Figure A-16.

2.5.2.10 DATA COMMAND

Syntax: =DATA data-index data-code hex-data

The DATA command allows the operator to modify model data. The DATA data table is depicted in Figure A-17. The data index parameter references the model data control indes. The data-code parameter sets the model data control code. The data-code values are:

Code Value	Source of Output Data
U	Model
>0	Table
<0	No Output

The association for the model data and the output data is shown in Figure A-18.

2.5.2.11 THE COMMAND

Syntax: =TMC RUN filename

-TMC STOP

-TMC HOLD

=TMC FO

The TMC file is created by the user using standard DEC editor. The file consists of statements of which the first character defines the statement type.

FIRST	STATEMENT
CHARACTER	TYPE

- . Stop (EOF) for TMC file
- * wait time tttttt
 = time in milliseconds
- \$ comment line
- PDSS/IMC keyboard command
- else PDSS command

The =TMC RUN initiates the TMC statement processing defined by file = "filename". The statements are processed sequentially until the stop statement is encountered.

The =TMC STOP stops the TMC statement processing immediately.

The =TMC HOLD freezes the TMC statement processing until a go command is received.

The =TMC GO releases the TMC statement processing.

2.5.2.12 WAO COMMAND

Syntax: =WAO WAO-index hex-data

The WAO command allows the operator to output a data value to a CAMAC AO register. Figure A-19 lists the CAMAC IO indices and their assigned functions. Figure A-38 shows typical CAMAC AO voltage conversions from hexadecimal data.

The user should be aware that the analog output value will be over-written by the models unless an =DATA command has been previously entered to freeze data.

2.5.2.13 RUN COMMAND

Syntax: =RUN run-code

run-code = 1 initialize SEID
2 skip initialize

The =RUN provides the operator the capability to skip the standard SEID initialize.

2.6 MESSAGES

The following messages are displayed to the PDSS system console. An explanation of each message is given.

MSG# MESSAGE

1 -> ERR PARMS

The command syntax is incorrect, a parameter value is invalid, or the number of parameters is incorrect.

- 2 -> ERR COMMAND
 The command is invalid and is not processed.
- -> ERR MAP EXTENDED MEM The RT-11 system calls to establish Extended Memory Mapping indicates an error. This is an RT-11 or hardware error. PDSS/IMC will not run without Extended Memory Mapping.
- 4 -> ERR LUOKUP
 A system LOOKUP for a data file was in error.
- 5 -> ERR READ
 Disk read error occurred.
- -> ERR LOOKUP MMU.IMC
 System LOOKUP of file MMU.IMC resulted in error.
- 14 -> ERR LOOKUP IMC.LOG
 The IMC log file (IMC.LOG) could not be opened.
- 15 -> ERR LOG FULL The IMC log file (IMC.LOG) is full and has been closed.
- 17 -> ERR PMEM LP An error was encountered in writing to the line printer. Verify that the printer is on.
- 18 -> ERR WSSER

 An error occurred on the .WRITE to SEID.
- 19 -> SEID BEING INITIALIZED SEID being loaded by PDSS.

20 -> TMC HOLD
TMC is in HOLD state.

21 -> TMC STOP
 TMC has been stopped.

22 -> ERR AST CMU
An invalid AST command was received.

2.7 PDSS/IMC GENERATION

The PDSS/IMC files are as follows.

FILE	CONTENTS
PDSSFG.SAV	PDSS Foreground Task
IMCCIS.MAC	CIS Source Code
IMCCIS.OBJ	CIS Object Code
IMCCIS.SAV	CIS LOAD
RFC.MON	CIS SEID Montor File
0.001	CIS Display Page 1 Background
D.002	CIS Display Page 2 Background
0.013	CIS Display Page 3 Background
D.004	CIS Display Page 4 Background
U.012	CIS Display Page 5 Background
IMC.LOG	IMCLOG
RFC.S5	CIS Comet Track Sequence
MMU.IMC	MMU Load File

The RT-11 command to recompile the CIS software is:

MACRO IMCCIS

The RT-11 command to link the CIS software is:

OLCIS

The contents of the LCIS.COM file is as follows:

R LINK

IMCCIS, IMCCIS=PDSS, READKB, USRKB, LOG, INTHEX/C VRAMC, SEID2, USRDP, USRSQ, USRCIS, IMCCIS//

The RT-11 command to run the CIS software is:

eRC1S

The contents of the RCIS.COM is as follows:

RUN ICAMAC FRUN PDSSFG.SAV RUN IMCCIS

2.8 LOG DUMP

The LDUMP program displays the log on the PDSS CRT.

The operations enumerated below should be followed:

- (1) RENAME IMC.LOG ZSEID.LOG
- (2) LDUMP
- (3) SET-UP 9 log display
- (4) SET-UP 9

The NO-SCRULL key can be used to control the display scroll; i.e., to start and stop the display scrolling.

2.9 INCE DEP MMU LOAD

The support program BMHU generates the DEP MMU Load file.

INPUT FILE: MMU.MAC

OUTPUT FILES: MMU.JMC

DEP.IMC

The file MMU.MAC contains the data source for the DEP MMU load. This file is edited using the standard RT-11 editor (EDIT MMU.MAC).

After the MMU.MAC file has been edited, the following steps should be followed.

1. MACRO MMU.MAC /* Assemble MMU.MAC */

2. @BMMU /* Link BMMU & MMU */

3. RUN BMMU /* Execute BMMU */

 ${\tt BMMU}$ expects the PDSS Line Printer to be cabled and powered.

2.10 PATCHING DEP MMU LOAD FILE

The PDSS DEP MMU load file [MMU.IMC] can be patched using the RT-11 PATCH utility. The commands for executing PATCH are

discussed below. Bold letters indicate keyboard entries the user should make.

To call PATCH from the PDSS system console:

.R PATCH <RET>
FILENAME-*MMU.INC/A

To examine and change locations in the file the general format is:

*word-offset/ current-value new-value <RET> or <LF>

For example if the first and second words have the values 397.('6.5) and 3.('3), they may be changed to the values by the 1 and 2 following commands:

*0/ 615 2 <LF>
*2/ 3 2 <RET>

To exit the PATCH utility, the E command causes PATCH to close the file and return control to RT-11.

* E

2.11 REALTIME MODIFYING DEP MMU LOAD DATA

The PDSS DEP MMU load can be examined and modified by the following procedure.

=CTRL/M

= I 3

=VIEW 143600

=MOD address data

=I 3

Sets MMU Load patch mode

Causes file to be read

Displays Load data

Modifies Load data

Performs MMU Load to DEP

APPENDIX A

FIGURE A-2: PDSS/IMC CAMAC CRATE

FIGURE A-4: CIS DATA FLOW

ASTROS	IMCE	TYPE	ADDR	GSE	TYPE	ADDR
Cmd clock	RAUS	SOC	*	RAUI	SOC	*
Cmd data	RAUS	SO	*	RAUI	S 0	N2
Data xfr rqst	RAUS	SIR	*	RAUI	SIR	*
Data clock	RAUS	SIC	*	RAUI	SIC	*
Serial data	RAUS	SI	*	RAUI	SI	N2
T/E cool pwr on/off	DIO	DO	001	SEID2	FI	00
Spare	DIO	DO	002	SEID2	FI	02
Master reset	DIO	DO	003	SEID2	FI	04
CCD temp	A/D	AI	16	3112	AU	N9A0
Heat sink temp	A/D	ΑI	17	3112	AO	N9A1
Optics temp	A/D	ΑI	18	3112	AO	N9A2
EA temp	C/A	ΑI	19	3112	AO	N9A3
CCD coop pwr	A/D	ΑI	20	3112	A0	N9A4
Heat #1 pwr	A/D	ΑI	21	3112	AO	N9A5
Heat #2 pwr	A/D	ΑI	22	3112	A0	N9A6
Heat #3 pwr	A/D	ΑI	23	3112	A0	N9A7
+5 v	A/D	ΑI	24	3112	A0	NIOAO
+8v	A/D	ΑI	25	3112	AO	NIOAI
+18v	A/D	ΑI	26	3112	A0	N10A2
-18v	A/D	ΑI	27	3112	AO	N10A3
ASTBPT	A/D	ΑI	29	3112	AO	N1OA4
Mstr Clk Status	010	DI	1	SEID2	D0	0
DRIRU	DEI	TYPE	ADDR	GSE	TYPE	ADDR
/* Incremental	Angle	Pulse O	itput *	/		
+DTXA	DEI	PULSE		GYROS	PULSE	N6
-DTXA	DEI	PULSE	*	GYROS	PULSE	N6
+DTXB	DEI	PULSE	*	GYROS	PULSE	N8
-DTXB	DEI	PULSE	*	GYROS	PULSE	N8
+DTYB	DEI	PULSE	*	GYROS		N7
-DTYB	DEI	PULSE	*	GYROS	PULSE	N7
+DTYC	DEI	PULSE	*	GYROS	PULSE	N7
-DTYC	DEI	PULSE	*	GYROS	PULSE	N7
+DTZA	DEI	PULSE	*	GYROS	PULSE	N6
-DTZA	DEI	PULSE	*	GYROS	PULSE	N6
+DTZC	DEI	PULSE	*	GYROS	PULSE	N8
-DTZC	DEI	PULSE	*	GYROS		N8

FIGURE A-5: PDSS/IMC INTERFACE DEFINITION

/*	Electrical	Interfac	e Mode	Command	s * /		
RRH1A RRH2A		DE I	DO	*	SE I D2	FI	03
RRL1A RRL2A		DEI	DO	•	SEID2	FI	07
RRH1B RRH2B		DEI	DO	*	SE 1 D 2	FI	3.1
RRL1B RRL2B		DEI	DO	*	SE 1 D 2	FI	15
RRH1C RRH2C		I 3U	00	*	SE 1 0 2	FI	19
RRL1C RRL2C		DEI	DO	*	SE I D 2	FI	23
/*	Range Stat	us Telemo	etry Ou	tput */			
RSTX1A		010	DI	101	SE I D 2	90	16
Spare		D10	DI	102	SE I D 2	DO	01
RSTX1B		D I O	DI	103	SE I D 2	DO	17
Spare		010	01	104	SE I D 2	DO	03
RSTYLE		010	DI	105	SEID2	D0	18
Spare		010 010	D I D I	106 107	SEID2	DO DO	05
RSTY1C Spare		D10	DI	107	SIED2 SEID2	00	19 07
RST21A		D10	ΒĪ	109	SE I D 2	00	20
SPARE		DIU	DI	110	SE I D 2	00	09
RST21C		010	DI	111	SEID2	DO	21
SPARE		DIO	DI	112	2E 1D2	DO	11
TEMPA		A/D	ΑI	7	SM	RES	*
TEMPB		A/D	Αĭ	8	SH	RES	*
TEMPC		A/D	ΑI	y	SW	RES	*
/1	Analog Ra	te Teleme	try Ou	tput */			
ANRXA		A/D	AI	10	3112	A0	N12A2
ANRXB		A/D		11	3112	AO	N12A3
ANRYB		A/D	ΑI	12	3112	AO	N12A4
ANRYC		A/D	ΑI	13	3112	AC	N12A5
ANRZA ANRZC		A/D	AI	14	3112	A0	N12A6
		A/D	ΑI	15	3112	AO	N12A7
T/MA		A/D	Al	4	3112	AO	N11A4
T/MB		A/D	ΑI	5	3112	AO	NIIAS
T/MC		A/D	IA	6	3112	AO	N11A6

FIGURE A-5: PDSS/IMC INTERFACE DEFINITION (CONTINUED)

WUPPE	IMCE	TYPE	ADDR	<u>GSE</u>	TYPE	ADBR
CLOGK Data	DE I	SER SER	*	RIUI RIUI	SER SER	* N3
ENABLE	DEI	DO	•	RIUI	DI	•
XERR YERR	A/D A/D	AI AI	*	3112 3112	A0 A0	
<u> UIT </u>	IMCE	TYPE	ADDR	<u>ase</u>	TYPE	ADDR
CLOCK DATA	DEI	SER SER	*	RIUI RIUI	SER SER	* N4
XENABLE YENABLE	DEI	00 00	*	RIUI RIUI	DI DI	*
XERR YERR	A/D A/D	AI AI	31 32	3112 3112	A0 A0	N10A6 N10A7
RAUI	INCE	TYPE	ADDR	<u>ese</u>	TYPE	ADDR
Cmd clock Cmd data Data xfr rqst Data clock Serial data	RAUI RAUI RAUI RAUI RAUI	SOC SO SIR SIC SI	* * * *	SEID2 SEID2 SEID2 SEID2 SEID2	SOC SO SIR SIC SI	PCM CMD CLK O PCM DTA O PCM DTA REQ O PCM DTA CLK O PCM DTA O
THI	IMCE	TYPE	ADDR	GSE	TYPE	ADDR
TIME TIME UPDATE	TMI TMI	UTC UTCU	*	SEID2 SEID2	UTC UTCU	UTC 1 UTCU 1
HRMI	IMCE	TYPE	AUDR	GSE	TYPE	ADDR
DATA CLOCK	HRMI HRMI	PCM PCM	*	STAGS STAGS	PCM PCM	* *

FIGURE A-5: PDSS/IMC INTERFACE DEFINITION (CONTINUED)

POWER +5V +15V -15V TEMP +5V +15V -15V TEMP TEMP CAL INPUT +6V +24V -24% STATUS -6V	PWR PWR A/D A/D A/D A/D PWR PWR PWR PWR PWR PWR	AO	### ### ### ### ### #### #############	SEID2 SEID2 SEID2 SEID2 3112 3112 3112 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2	FI FI FI AO AO AO DO FI FI FI	ADDR 33 37 39 45 N11A0 N11A1 N11A2 N11A3 34 35 41 43 47 49
DRIRU X POWER ON DRIRU X POWER OFF DRIRU Y POWER ON DRIRU Y POWER OFF DRIRU Z POWER OFF DRIRU HEATER POWER DRIRU HEATER POWER IMCE POWER OFF IMCE HEATER ON IMCE HEATER ON IMCE HEATER ON AST POWER OFF EA HEATER ON EA HEATER OFF SA HEATER OFF SA HEATER OFF				SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2 SEID2	DO D	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 32 33

					MODELS		
INDEX				AST	DRIRU		POWER
ECIO FI	SIGNAL		AO INDEX	UTASK23	UTASK24	SWITCHES	UTASK25 UIT
0	SPARE						
2	SPARE						
4	ANRXA		52		X		
6	ANRXB		54		X		
8	ANRYB		56		X		
10	ANRYC		58		X		
12	ANRZA		60		X		
14	ANRZC		62		X		
16	TEMPA					X	
18	TEMPB					X	
20	TEMPC					X	
22	T/MA		40		X		
24	T/MB		42		X		
26	T/MC		44		X		
28		TEMP	0	x			
30	AST HST		2	X			
32	AST OPT		4 6 8	X			
34	AST EAT		6	X			
36	AST CCP			X			
38	H1P		10	X			
40	H2P		12	X			
42	AST H3P		14	X			
44	AST +5		16	X			
46	AST BPT		26	X			
48	AST +5		18	x			
50	AST +18		20	X			
52	AST -18		22	X			
54	IMCEPST		38				X
56	PS+5		32				X
58	PS-15		36				X
60	PS+15		34				X
62	ASTSAT		24				
	UITXERR		28				x
	UITYERR		30				×

FIGURE A-6: MODEL ASSIGNMENT

ORI	OPMAT.	nrc2	
OF	POOK	QUALI	N

DMG		080	REI	IFS	GNC	TME	MEG	B	DDO	ADIO	CMD	USA	Ř
			MET:				GMT:					ro DEP	PDSS
	101	~	PAR	LEN							en.	PCM CHANNEL	E
	101	~	PAR	LEN							01	PUM CHANNEL	PUR
	707		FAR	LEN							-	PCM CHANNEL) F0
	FLX TOT	ي اور	FLX 5		7					53	* * 0	ANNE	X X E
70	777	10 ক	X X X X X X X X X X X X X X X X X X X	. * * * * * * * * * * * * * * * * * * *		8 % 8 4 × ×	ייי פרן אייי	888 111	85 85 85	- × ; I I I	××:	40 EE	
	ŽŽ.	9 (4					9			
	7. Y	φę.	FLX 4		35								

ORIGINAL PAGE IN OF POOR QUALITY

```
1 FIMO IMAGE MOTION COMP
                         GMT DD/HH:MM:SS !
2' T L ID NNN H 123456 DIS DIS DIS DIS DIS DIS *!
3 LONZOFF
              STATUS
                          MODE: SELECT
4! 1/10 HRTS
                XXX
                            11 STBY₩
51 2/ 9 IMCE PWR
                XXX TEMP +XXX^ 12 OPER*
613
      IMCE LOAD
                            13 DRIRU*
71 4 SELF-TEST
                            14 CMT TRK*
                XXXX
S! 5/ 8 DRIRU PWR
                XXX TEMP +XXX^ 15 CAL*
91
                XXX TEMP +XXX^
                XXX TEMP +XXX^ 22 MIR RESET
101
11 ! 6/ 7 AST FWR
                XXX TEMP +XXX^
                            FILTER SETTLED* !
121
   MAG COOD
            AST STAT
                       COMPUTER DUMPS
131
                    16 AST* 17 DEP* 18 PCC*!
14 + X + XXX
            STRY
                            ADDR XXXX XXXX
151
      +XXX
             SRCH*
                        19
                        20 LNGH XXXX
16! +X +XXX
             TRK≯
                           EXEC*
17!
      +XXX
                        21
18! +X +XXX
191
201------
22'-----SPL------
231
```

ORIGINAL P.

```
1! ITF IMAGE MOTION COMP
                           GMT DD/HH:MM:SS
2! TIL ID NNN H 123456 DIS DIS DIS DIS DIS DIS *
     IMCE COMMANDS
                           GYRO CHANNEL XYZ
4! 3916 REBOOT
                     3917 A B A* 3921 B B A*
        SELFTEST ###
                     3918 A B C* 3922 B B C*
5! 3902
61
      AST COMMANDS
                     3919 A C A* 3923 B C A*
7! 3925 STANDBY*
                     3920 A C C* 3924 B C C*
81 3926
        SEARCH*
                           DRIRU CHANNEL
                      3906
91 3927
        SEARCH LFOV*
                           A HIGH* 3907A LOW*!
10! 3928 RESET DEFECTS
                      3939 B HIGH* 3941B LOW*!
11! 3929 LED ON*
                      3942 C HIGH* 3943C LOW*!
12! 3930 LED OFF*
13! 3931
       LIGHT FLOOD ON*
14! 3932 LIGHT FLOOD OFF*
                           AST SYNCH
15! 3933 FRAME START
                       3908 1HZ* 3912 3HZ*
16! 102 SET DEFECTS
                       3910 2HZ* 3915 4HZ*
17! 107 UPDATE INTERVAL
181
   103 TEST COMMAND
                       DATA ---- ----
191
20 | ------
21!-----!
23!
```

FIGURE A-9: RFC DISPLAY RFC002

GMT=DDD, HH, MM, SS

ORIGINAL PAGE IS

ANALOG (VOLTAGE +) ANRXA +0000 ANRXB TEMPA +0000 TEMPB CODTEM +0000 ASTHST ASTH2P +0000 ASTH3P AST+18 +0000 PSTEMP	(X.XX) +0000 ANRYB +0000 TEMPC +0000 ASTOPT +0000 AST+5 +0000 PS+5	+0000 ANRYC +0000 T/MA +0000 ASTEAT +0000 ASTEFT +0000 PS-15	+0000 ANRZA +0000 T/MB +0000 ASTCPW +0000 AST+8 +0000 PS+15	+0000 ANR +0000 T/M +0000 AST +0000 AST +0000 AST	C +0000 H1P +0000 +18 +0000
DISCRETE ODDD ODDD ODDD ODDD	סם סססם סססס	ממממ ממ			
SERIAL XXXX 8888 8888 8888 8888 8888 8888 888					
ANALOG (ENGINEER) ANRXA +0000 ANRXB TEMPA +0000 TEMPB CODTEM +0000 ASTHST ASTH2P +0000 ASTHSP AST-13 +0000 PSTEMP	ING UNITS +X +0000 ANRYB +0000 TEMPS +0000 ASTOPT +0000 AST+5 +0000 PS+5	X.XX) +0000 ANRYC +0000 T/MA +0000 ASTEAT +0000 ASTEPT +0000 PS-15	+0000 ANRZA +0000 T/MB +0000 ASTCPW +0000 AST+8 +0000 PS+15	+0000 ANR +0000 T/M +0000 AST +0000 AST +0000 AST	C +0000 H1P +0000 +18 +0000

OR	IGINAL	PAGE 19
OF.	POOR	QUALITY

GMT=DDD:HH:MM:SS				2A/AC
		ZA/ZC	A5 A6 A7	YB/YC .
PDSS/IMC DATA		YB/YC	A2 A3 A4	DRIFT> XA/XB
	SCM> SI:	OVROS> XA/XB	AO> AO A1 A2 N9 N10 N11 N12 RIU> WUPPE UIT	STAR> BRGH NEA/VAF #1 #2

ORIGINAL PAGE IS

GMT=DDD:HH:MM:SS															
ΩM															
			!	1						-		1	-		
			-	!						!	!	!!!	!		
			-	-								1	1		
			!	1						-	1	1	1	1	
DATA			-	-						1				1	
PDSS/IMC DATA		1	!!!	-						1			-	!	
PDSS,		-	1	!	!		1	-		1	!	-	!	1	
		1	1	1	1	1	!	!			-	!	-	!!!!	
- GYROF	DATA	!	1	1	!!!!	1		1	1	!	1	!!!	-	1	
	CTRL	1	1	1	1	1	1	-	-	!	1	!	-		1
013 TASK	MODEL>	1: DPWR	2: DAST	G: DASTAL	4: DIMI	5: DTMA	6: DIMT	7: DIMV	8: DRST	9: DTRACK	10: DGYRO	:1:	12:	13: DRATE	14:TEST

FIGURE A-12: RFC DISPLAY RFC005

I. SIMULATED CPD

SEID			FUNCTION				
"PULSE	32,	0 N "	IMCE	POWER	0 N		
"PULSE	33,	ON"	IMCE	POWER	OFF		

II. CPD

POWER UP

SEID	ITEM ENTRY	FUNCTION
"PULSE 48,0N"	5	DRIRU A POWER ON
"PULSE 50,0N"	5	DRIRU B POWER ON
"PULSE 52,0N"	5	DRIRU C POWER ON
"PULSE 56,0N"	2	IMCE POWER ON
"PULSE 58,0N"	1	IMCE HEATER ON
"PULSE 60,0N"	6	AST POWER ON
"PULSE 62,0N"	1	AST EA HEATER ON
"PULSE 32,0N"	1	AST SA HEATER ON

POWER DOWN

SEID		ITEM ENTRY	FUNCTION
"PULSE 49	,ON"	8	DRIRU A POWER DOWN
"PULSE 51	.,ON"	8	DRIRU B POWER DOWN
"PULSE 53	3,0N"	8	DRIRU C POWER DOWN
"PULSE 57	',ON"	9	IMCE POWER OFF
"PULSE 59	,ON"	10	IMCE HEATER OFF
"PULSE 61	, ON"	7	AST POWER OFF
"PULSE 63	3,0N"	10	AST EA HEATER OFF
"PULSE 33	3,0N"	10	AST SA HEATER OFF

FIGURE A-13: IMCE POWER UP/DOWN COMMANDS

DDU CATEGORY

Command	<u>Parameters</u>	<u>Function</u>
= I	item-number hex-data	DDU Item Entry
= P	pfk-number	DDU PFK Entry
= T	hex-data	DDU Type Entry
= C	C-type sid hex-data	DDU CMD Entry

SYSTEM COMMAND CATEGORY

Command	<u>Parameters</u>	Function
=TASK	task-mask	Select Tasks
=CTRL	control-key [integer-data]	System Control
=VIEW	[view-key][addr]	View Memory Data
=TMC	tmc-command [filename]	Run Timed Measurement
		Commands
=L0G	[addr number-words]	Run Log
=STOP		Stop Task
=DISP	display-key pid	Select Display Page
=PMEM		Print Display Pages
=SRST		System Reset
=STAR		Start
= C O M M	comment-character-string	Enter Log Comment
=MOD	addr hex-data hex-data	Modify Memory
=DATA	data-index data-code	Model Data
	[hex-data]	
= W A O	wao-index hex-data	Write CAMAC AO
=RUN	run-code	Executive Run

FIGURE A-14: KEYBOARD COMMANDS

addr = octal address ["WRI", "ISS"] c-type character string of length 16 comment-character-string ["/V","/M","/E","/T"] control-key data-code = [-1,0,+1][1,2,...,14] data-index = ["/I","/F","/U"] display-key = RT-11 filename filename hex-data array [1...4] of hex-characters integer-data integer item-number [1...22] number-words integer pfk-number = [0] [1,2,3,4,5]pid = [-1,0,+1]run-code sid signal identifier task-mask hex-data = [RUN,STOP,HOLD,GO] tmc-command view-key = ["/S"] wao-index = [0,2,4,6,...,60,62]

FIGURE A-14: KEYBOARD COMMANDS (CONTINUED)

ITEM	<u>PARAMETERS</u>	FUNCTION		
1		HTRS ENA		
2		IMCE PWR ON		
3		IMCE LOAD		
4		SELF TEST		
5		DRIRU PWR ON		
6		AST PWR ON		
7		AST PWR OFF		
8		DRIRU PWR OF	F	
9		IMCE PWR OFF		
10		HTRS INHIBIT		
11		IMCE STBY		
12		IMCE OPEN		
13		IMCE DRIRU		
14		IMCE CMTRK		
15		CAL		
16		AST DUMP		
17		DEP DUMP		
18		PCC DUMP		
19	aaaa bbbb	START		
			aaaa	bbbb
		AST	0000	AST address(hex)
		DEP	blank(hex)	offset(hex)
		PCC		PCC address(hex)
20	cccc	LaGH=length		
21		EXEC	•	,
22		MIRROR RS		

FIGURE A-15: ITEM ENTRY SUMMARY

TIME VARIABLE	(SECS) DEFAULT	TASK MASK	TASK/FUNCTION
T1 T2 T3 T4	1.0 2.0 1.0		
T5 T6 T7 T8	10.0 2.0 15.0 1.0		TEST-MMU LOAD AST ACO TIME
T9 T10 T11 T12	1.0 1.0 1.0		TASK 12 - EXECUTIVE
T13 T14 T15 T16	1.0 1.0 1.0	1 2 3 4	TASK 13 - TMC TASK 14 - AST CYCLIC TASK 15 - COMTRK TASK 16 - EXMON
T17 T18 T19 T20	1.0 1.0 1.0	5 6 7 8	TASK 17 - ECAS TASK 18 - CREW TASK 19 - FLTDIS TASK 20 - DGENER
T21 T22 T23 T24	10.0 10.0 1.0 1.0	10 11 12	TASK 21 - UIT MODEL TASK 22 - WUPPE MODEL TASK 23 - AST MODEL TASK 24 - DRIRU MODEL
T25 T26 T27 T28	1.0 1.0 1.0	13 14 15	TASK 25 - POWER MODEL TASK 26 - LOG FUNCTION TASK 27 - DISPLAY UPDATE TASK 28 - KEYBOARD MONITO

FIGURE A-16: TASKS

index	DATA	# WORDS	DEFAUL					
1	DPWR	4.	852.	764.	764.	260.		
2	DAST	10.	3203	4987	03E8	1000	2000	1000
			0000	8000				
3	DASTAL	14.	4000	0060	696.	410.	1023.	731.
			731.	731.	1796	1486.	1675.	-1675.
			619.	622.				
4	DTMI	3.	851.	776.	245.			
5	DTMA	3.	12.	13.	10.			
6	DTMT	3.	45.	35.	43.			
7	DTMV	3.	260.	305.	323.			
8	DRST	1.	0000					
9	DTRACK	9.	0000	0000	0000	0000	0000	0000
			0000	0000	0000			
10	DGYRO	8.	0100	8200	0200	8100	0100	8200
			0200	8100				
11	DGYRO+16.	8.	0060	8020	0020	8060	0060	8020
			0020	8060				
12	DGYRO+32.	8.	0A08	0050	8080	0040	80A0	0800
			8080	OUAO				
13	DRATE	6.	0800	0800	0400	0400	0200	0200
14	DTEST	8.						

FIGURE A-17: MODEL DATA CONTROL

	DEFAUL		CAMAC AO INDEX	DESCRIPTION
DPWR				IMCE Analog Output Signals
(1)	852.	PWR+5V	32	
(2)	764.	PWR+15V	34	
	764.	PWR-15V	36	
(4)	260.	IMCE TEMP	38	
DAST		ASTSU		AST Serial Output 3203 4987 03E8 1000 3000 1000 0000 8000 4000 0060
			,	
DASTAL	1740.	(-50.c) CCDTEMP	0	AST Analog Output Signals
		(+20.c) HS TEMP	2	
		(+20.c) OPTICS TEM		
		(+40.c) EA TEMP	6	
		(5v) HEAT #1 PWR		
		(-5v) HEAT #2 PWR	12	
		(-5v) HEAT #3 PWR	14	
		(+5v) AST+5v	16	
		(+18v) AST+8v	18	
		(+18v) AST+18v	20	
		(-18v) AST-18v	22	
		(20c) 5P TEMP	26	
	622.	(20c) SA TEMP	24	

FIGURE A-18: MODEL DATA DESCRIPTION

		DEFAULT		CAMAC	
		VALUE_	SIGNAL	AO INDEX	DESCRIPTION
	DTMI	851., 776	., 945.		DRIRU Gyro Spinup Power Up
-	DTMA	12., 13.,	10.		FOR I=1 TO DTMT
	DTMT	45., 35.,	43.		DTMV(I) = DTMV(I-1) + DTMA
					where DTMV(0)=DTMI
	DTMU	260.	T/MA	40	DRIRU Gyro Currents
		305.	T/MB	42	
		323.	T/MC	44	
	DRST	0	ANRXA	52	
			ANRXB	54	
			ANRYB	56	
			ANRYC	58	
			ANRZA	60	
			ANRZC	62	
	DTRACK				Comet Track
					0000 0000 0000 0000 0000 0000
					0000 0000 0000
	DGYRU				Gyro Channel Pulses
					**** **** ****
					(1) (2) (3) (4)

FIGURE A-18: MODEL DATA DESCRIPTION (CONTINUED)

DEFAULT VALUE

SIGNAL

CAMAC

AO INDEX

DESCRIPTION

Gyro's Loaded (1) (2) (3) (4)

xxxx = 0 Stops Gyro Output

xxxx = Sign + data

DRATE

Gyro Rates

0800 0500 0400 0400 0400

0200 0200

DTEST

Test Data

000A 0000 0000 0000 0000

0000 0000 0000

FIGURE A-18: MODEL DATA DESCRIPTION (CONTINUED)

index	CAMAC 10	FUNCTION
0	N(9)A(0)	CCD TEMP
2	1	HEAT SINK TEMP
4	2	OPTICS TEMP
6	3	EA TEMP
8	4	CCD LOOP PWR
10	5	HEAT #1 PWR
12	6	HEAT #2 PWR
14	7	HEAT #3 PWR
16	N(10)A(0)	+5V AST
18	1	+8V AST
20	2	+18V AST
22	3	-18V AST
24	4	SA ELECTRONICS
26	5	BASE PLATE TEMP
28	6	UIT XERR
30	7	UIT YERR
32	N(11)A(0)	PWR +5V
34	1	PWR +15V
36	2	PWR -15V
38	3	IMCE TEMP
40	4	T/MA
42	5	T/MB
44	6	T/MC
46	7	
48	N(12)A(0)	
50	1	
52	2	ANRXA
54	3	ANRXB
56	4	ANRYB
58	5	ANRYC
60	6	ANRZA
62	7	ANRZC

FIGURE A-19: WAO COMMAND DATA

ORIGINAL PAGE IS OF POOR QUALITY

MMU DATA SISTING 4 OCT 1984

SYTE	XXXX XXXX	VALUE	DESCRIPTION
0000	018D	FLTX+FIX	NUMBER OF WORDS
0002	0003	3	ALLOWED-FAILURES
0004	OSDC	1500.	AST-TO-COUNT
0006	000A	10.	KDL
0008	0000 4248	50.0	TOL-P-B
0012	0000 4208	100.0	TOL-C-P
0016	0000 4000	6.0	C-TOL
0020	0000 4000	2.0	AST-BRIGHTNESS-TOL
0024	0000 4000	2.0	AST-MOTION-TOLERANCE
0028	0000 4120	10.0	W-CAL-AMPLITUDE
0032	999A 436F	2.396E+2	BORE-SIGHT-COL
0.036	OCCD 4391	2.901E+2	BORE-SIGHT-LINE
2040	0000 4228	42.0	UIT-MAX
0044	E148 4136	11.43	WUPPE-MAX
0048	0000 41A0	20.0	AVERAGE-CONST
0052	A5E3 309B	0.019	GYRO-NOISE [1.1]
0056	5029 3DOF	0.035	[2.1]
2060	7480 3093	0.018	[3.1]
∴64	CCCD 3D40	0.050	[4.1]
0068	6A7F 3CBC	0.023	(5.11
0072	D70A 3D23	0.040	[6,1]
0076	2000 2000	0.0	GYRO-ACTIVE-SELECTOR [1.1]
0080	0000 3F80	1.0	C1.27
0084	0000 3F80	1.0	[1,3]
0088	0000 0000	0.0	[1.4]
0092	0000 0000	0.0	[1.5]
C-196	0000 0000	0.0	[1,6]
0100	0000 0000	0.0	[2,1]
0104	0000 0000	0.0	[2,2]
0108	0000 0000	0.0	[2.3]
0112	0000 3F80	1.0	[2,4]
0116	0000 0000	0.0	[2,5]
0120	0000 3F80	1.0	[2,6]
0124	0000 3F80	1.0	[3,1]
0128	0000 0000	0.0	[3,2]
0132	0000 0000	0.0	[3,3]
0136	0000 0000	0.0	[3,4]
0140	0000 3F80	1.0	[3,5]
0144	0000 0000	0.0	[3,6]
0148	0000 0000	0.0	GYRO-PRIME-SELECTOR [1.1]
0152	0000 3F80	1.0	[1,2]
0156	0000 0000	0.0	[1,3]
0160	0000 0000	0.0	[1.4]
0164	0000 0000	0.0	[1.5]
0168	0000 0000	0.0	[1.6]
0172	0000 0000	0.0	[2,1]
0175	0000 0000	0.0	[2,2]
0130	0000 0000	0.0	[2,3]

FIGURE A-20: IMCE MMU LOAD SPECIFICATIONS

BYTE	VVYV	XXXX	VALUE	DESCRIPTION
- 1 L	2202	^^ \^	VALUE	DESCRIPTION
0184	0000	0000	0.0	(2,4)
0188		0000	0.0	[2.5]
0192		3F90	1.0	[2.6]
0196		3F80	1.0	C3.13
0200		0000	0.0	(3.2)
0204	0000		2.0	[3,3]
0208		0000	0.0	[3,4]
0212	0000		5.6	(3,5)
0216	0000		0.0	[3,6]
0220		0000	0.0	GYRO-BACKUP-SELECTOR [1.1]
0224		0000	5.0	[1,2]
0338		3F30	1.0	[1.3]
0232		0000	0.0	51.43
236		0000	0.0	[1,5]
0240		0000	0.0	[1.5]
0244		3000		52.13
0248		0000	0.0	[2,2]
0252		0000	0.0	
		3F80		[2.3]
0 25 6 0260		0000	0.0	[2.4]
C284		0000	0.5	(2.5)
				[2,6]
0263 0272		0000 0000	0.0	53.13
227		0000	0.0	[3,2]
				[3,3]
1280		2000	9. 9	[3,4]
0284		3F30	1.0	[3.5]
) 2/9/9		0000	0.0	[3.6]
1202		0000	0.0	GYRO-SCALE-FACTORS [1,1]
0293		0000	0.0	[1,2]
0300		3040	0.0125004	[1,3]
0304		30'40	0.0125019	[2.1]
0308		2000	0.0	[2.2]
0312		0000	0.0	[2,3]
0315	Control Control Control	30.40	0.0124599	[3,1]
0329		0000	0.0	[3,2]
0324		0000	0.0	[3,3]
0328		0000	0.0	[4.1]
0335		3040	0.0124716	54.21
0336		0000	0.0	[4,3]
0340		0000	0.0	[5,1]
0344		0000	0.0	[5,2]
0348		3040	0.0124677	[5,3]
0352		0000	2.0	[6,1]
0356		30.40	0.0124808	[6,2]
0360		0000	0.0	[6,3]
0364		0000	0.0	PRELAUNCH-DRIFT-RATES [1,1]
0368		0000	0.0	[1,2]
0372	063F	BF6C	-0.9249	[1,3]

SYTE	XXXX	XXXX	VALUE	DESCRIPTION
0376	7DBF	BEDD	-0.4326	[2,1]
380	_	0000		[2,2]
0384		0000	0.0	[2,3]
0338	7 7 7	BF 4B	-0.7948	[3,1]
0392		0000		[3,2]
0096		0000	0.0	(3,3)
0400		0000		[4,1]
0404		BEDC	-0.4304	[4.2]
0408		0000		[4.3]
0412		0000	0.0	[5,1]
	0000		0.0	[5,2]
	126F			(5,3)
0424		0000		[6,1]
	ED91		+0.3690	56.21
				[6,3]
0436	0000	203F	1.0868E-11	NEA-TABLE [1.1]
	FD4E			[2.1]
	1910			[3,1]
0448	1A50	2000	1.1376E-12	[4,1]
0452	2040	20AU	6.7928E-13	[5,1]
0.454	3348	2001	4.6069E-13	[6.1]
0460	0004	2ABE	3.3846E-13	[7,1]
	1A50			[8,1]
	50D5			[9.1]
0472		2A84		[10.1]
	502E			[11.1]
	502E			[12, 1]
	SE7F			[13,1]
	SE7F			[14,1]
	AB7E			[15,1]
	AB7E		1.1517E-13	[16.1]
0500 0504	AB7E			[17.1]
		29BE		[18.1]
0512	890E	29BE	8.4616E-14	[19,1]
			8.4616E-14	[20,1]
0516		29BE		[21,1]
0520		29BE	8.4616E-14	[22.1]
0524		2984	5.8761E-14	[23.1]
0528		2984	5.8761E-14	[24.1]
0532		2984	5.8751E-14	[25, 1]
0536		2984	5.8761E-14	[26,1]
0540		2984	5.8761E-14	[27,1]
0544		2984	5.8761E-14	[28,1]
0548		2984	5.8761E-14	[29,1]
0552		2984	5.8761E-14	[30,1]
0556		2984	5.8761E-14	[31.1]
0560		3F80	1.0	P-TRANSFORM [1,1]
0564	0000	0000	0.0	[1.2]

SYTE	*XXX	XXXX	VALUE	DESCRIPTION
0568	0000	2000	0.0	[1.3]
0572	2000		0.0	[2,1]
0576	0000		1.0	[2.2]
0580		0000	0.0	[2.3]
0584		0000	0.0	
0588	0000		0.0	[3,1]
0592	0000			[3.2]
0576		3F80	1.0	[3,3]
0600	0000			FA-TRANSFORM [1,1]
0604	0000		0.0	[1,2]
0608	0000		0.0	[1,3]
0612	0000			[2,1]
0616			1.0	[2,2]
	0000		0.0	[2,3]
0620	0000		0.0	[3,1]
0624		0000	0.0	[3,2]
0628		3F80	1.0	[3,3]
0632		3F80	1.0	U-TRANSFORM [1.1]
0636		0000	0.0	[1.27
0640		0000	0.0	[1,3]
0644		0000	0.0	[2.1]
0643		3F80	1.0	[2.2]
0652		0000	0.0	02,31
0650	0000	0000	0.0	53,13
0660	0,000	0000	0.0	[3,2]
0004		3F/80	1.0	[3.3]
0448	0000	3F80	1.0	W-TRANSFORM [1,1]
0673	0000	0000	0.0	[1.2]
0.475	0000	0000	0.0	[1,3]
0680	0000	0000	0.0	[2.1]
0684	0000	3F80	1.0	[2,2]
0688	0000	0000	0.0	[2,3]
0692	0000	0000	0.0	[3,1]
0696	0000	0000	0.0	[3.2]
0700		3F30	1.0	[3,3]
0704		33D6	1.0E-7	ERR-COVAR-MAT [1,1]
0708	0077		1.0E-8	[1,2]
0712	0077		1.0E-8	[1,3]
0716		322B	1.0E-8	[1.4]
0720	BF95		1.0E-7	[2,1]
0724		322B	1.0E-8	[2,2]
0728	CC77		1.0E-8	[2,3]
0732	0077		1.0E-8	[2,4]
0736	BF95		1.0E-7	[3.1]
0740		322B	1.0E-8	[3,2]
0744	0077		1.0E-8	[3,2]
0748	0077		1.0E-8	
0752	BF95		1.0E-7	[3.4]
0756	0077		1.0E-9	[4.1]
77.365	557	32.20	1.06-5	[4.2]

ORIGINAL PAGE IS

MMU DATA LISTING 4 OCT 1984

•			
BYTE	XXXX XXXX	VALUE	DESCRIPTION
0760	CC77 322B	1.0E-8	[4.3]
0764	CC77 322B	1.0E-8	[4,4]
0768	0000	0	NUMBER-DEFECT-COORDS
0770	0000	0	DEFECT-COORDS [1,1]
0772	0000	0	[2.1]
0774	0000	0	[3.1]
0776	0000	0	[4,1]
0778	0000	0	[5.1]
0780	0000	0	[6,1]
0782	0000	0	[7.1]
0784	0000	0	08,11
0786	0000	0	[9,1]
0788	0000	0	[10.1]
0790	OOFA	250.	#CYCLES FASTLOOP INIT
0792	E081	0	SENT-CHECKSUM

41.50		3693	0000	3	3580	0000	0000	3	0000	0000	COLD	3	3040	3040	0000		0000	2COE	SASA	200	ZVEE.	
0000	3	74BC	0000	3	000	0000	2000	9	0000	0000	0000	3	249C	4553	0000		0000	1910	30.00	NO.	SYCE	
0000	200	SDOF	0000	300	3580	2000	000	0000	0000	0000	0000	200	0000	0000	200	SEUD	0000	SCAF	2000	1047	29BE	
0000	2000	5020	0000	300	0000	0000	2000	0000	0000	0000	0000	2000	0000	0000	1	/UEF	000	FLAF	1	cnoc	89CE	
0000	0004	360E	000	700	000	0000	2000	0000	0000	0000	0000	2000	0000	0000	000	STO.	BEDC	BENC	000	- W.	2 A 01	
0000	0000	ASE 3	100	0000	0000	0000	2	0000	0000	0000	0000	0000	0000	0000	1000	1634	5064	3116	1110	600	ABZE	
4000	0000	A1AO		3480	3F80 (000	000	0000	0000	0000	000	0000	3040	0000	200	0000	0000	0000	3	ZAAO	2A01	
	0000	0000		0000	0000	0000	0000	88	0000	0000		0000	0405	0000	2000	0000	0000	000	3	IASC	ABZE	1
	4208	1 36 10	0011	000	0000	000	00 to	000	0000	0000		0000	3C4C	7000)	0000	0000		SEBL	SABE	2401	
	_			Ξ	_		_	_	Ι			_				_	_			_		
	_	Ĭ	-	_			_	_	_			_	_			_	_		_	**		•
	•		•	` '			_	_	•	3	•	-	_	•	_	_	_	•	_		•	•
	-			_			_	_	-			•	_		_	_	•	,	_		•	•
	_						_	_				_			_							
	5000) (100	SD4C	3	200	0000	0000	000	000	000	SF30	9	3	000	0000	9	200	000	BAO	7540	000
00000	nan (9	4000	000	300	000	0000	0000	9		0000	0000	2000		9000	0000	200		0000	ASC	L	200
3LDCK=000000	9		0	000	3 9	30	. 01	9		, ; ;	0	0			9	8		?	9			3
M	000		000	000	000	00	400	200	3	5	300	300			10:	400	100	Ď.	100	JO.		2

2984	000	0000	0000	3580	3580	322B	322E	0000	0000	0000	0000	0000	0000	0000	0000	
5169	0000	0000	0000	0000	0000	CC77	CC77	0000	0000	0000	0000	0000	0000	0000	0000	3
2984	0000	0000	3580	3F80	0000	322B	322B	0000	0000	0000	0000	0000	0000	0000	0000	3
5169	0000	0000	0000	0000	0000	7733	CC77	E081	0000	0000	0000	0000	0000	0000	000	3
2984	0000	3580	3580	0000	0000	322B	322E	OOFA	0000	0000	0000	0000	0000	0000	0000	3
5169	0000	0000	0000	0000	0000	CC77	CC77	0000	0000	0000	0000	0000	0000	0000	0000	3
4866	3F80	3580	0000	0000	0000	3306	3306	0000	0000	0000	0000	0000	0000	0000	000	300
5169	0000	0000	000	0000	0000	PEOS	BFOS	0000	0000	0000	0000	0000	0000	0000	200	0000
2984	2984	0000	000		3F80	322R	322E	0000	000		0000	0000	0000	000	3	0000
5140	5160	0			000	527	0077	000						8	3	0000
1900	1000		888	300		200E	0000 0000								3	800
9	5140		88			200	100		88					38	3	000
000	2000	500		000	8 8	2000	2220	900	38	38		8 8		38	3	8
Š	10760	200	3 8	38		36	100			38		3 8	38	38		000
9	1000	000	2000	300			0000	9000	900			3 8	38		0000	0000
00000	000 CE	1000	000	0000	9000		200	0,000	0000	0000	300	2000	0000		0000	0000
SEDICK=00000	9 9	2 6	2	e, 9	0+15	0 4	2 6) ()	5 (9 6	200	8	3	OH	150
15 P		9	5 /	Č :	5 (5	2 ,	5	5	c :	- (7.	5	ē.	5

NAME	DESCRIPTION	SAMPLE RATE	SIZE (BITS)	SPSANL INDEX	
	Spare Spare	1	8	0 1	
ANR XA ANR XB	X Axis Rate A X Axis Rate B	1	8 8	3	
ANRYB ANRYC ANRZA ANRZC	Y Axis Rate B Y Axis Rate C Z Axis Rate A Z Axis Rate C	1 1 1	8 8 8	4 5 6 7	
TEMPA TEMPB TEMPC T/MA	A GYRO Temperature B GYRO Temperature C GYRO Temperature A GYRO Motor Current	1 1 1 1	8 8 8 8	8 9 10 11	
T/MB T/MC CCDTEM ASTHST	B GYRO Motor Current C GYRO Motor Current AST CCD Temperature AST Heat Sink Temperature	1 1 1	8 8 8 8	12 13 14 15	
ASTOPT ASTEAT ASTCPW ASTH1P	AST Optics Temperature AST EA Temperature AST CCD Cooler Volt AST Heater #1 Volt	1 1 1	8 8 8	16 17 18 19	
ASTH2P ASTH3P AST+5 ASTBPT	AST Heater #2 Volt AST Heater #3 Volt AST +5 Volts AST Baseplate Temperature	1 1 1	8 8 8	20 21 22 23	
AST+8 AST+18 AST-18 PSTEMP	AST +8 Volts AST +18 Volts AST -18 Volts IMCE Temperature	1 1 1	8 8 8	24 25 26 27	
PS+5 P5-15 PS+15 ASTSAT	PS +5 PS -15 Volts PS +15 Volts AST SA Electronics Temperature	1 1 1	8 8 8	28 29 30 31	

Data deposited in SPSANL

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE A-22: ECIO ANALOG DATA

DESCRIPTION			NUMBER UF BITS	BIT POSITION	DATA TYPE
DEP Software Status	Parent Word	1			
-Load MMU -Load OK -Test -DRI Mode -Standby -Operate -DRI (Only) -Mirror Reset -Comet -Calibrate -AST Standby -AST Search -AST Track -Filter Settled -IMCE Power -AST Dump	On/Off Y/N Go/Nogo Hi/Lo On/Off On/Off On/Off On/Off On/Off Y/N Y/N Y/N Y/N Y/N On/Off Y/N	DEP 1-01 DEP 1-02 DEP 1-03 DEP 1-04 DEP 1-05 DEP 1-06 DEP 1-07 DEP 1-08 DEP 1-09 DEP 1-10 DEP 1-11 DEP 1-12 DEP 1-13 DEP 1-14 DEP 1-15 DEP 1-16	1 1 1 1 1 1 1 1 1 1 1	15 14 13 12 11 10 9 8 7 6 5 4 3 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
DEP Software Status -XA YB ZA -XA YB ZC -XA YC ZA -XA YC ZC -XB YB ZA -XB YB ZA -XB YC ZA	Parent Word	DEP 2-01 DEP 2-02 DEP 2-03 DEP 2-04 DEP 2-05 DEP 2-06 DEP 2-07 DEP 2-08 DEP 2-09	1 1 1 1 1 1 1 1 1	15 14 13 12 11 10 9 8 7 0-6	8 8 8 8 8 8 8

FIGURE A-23: ECIO DISCRETE DATA

DESCRIPTION	NUMBER OF BITS	BIT POSITION	DATA TYPE
DEP Hardware Status Parent Word			
-1 Memory Error -2 PCC Communication Error -3 System Interrupt Error -4 8087 Computational Error -5 Running in Monitor -6 Error 6 -7 Error 7 -8 Error 8 -9 Error 9 -10 Error 10 -11 Error 11 -12 Error 12 -13 Error 13 -14 Error 14 -15 Error 15 -16 error 16	1 1 1 1 1 1 1 1 1 1	15 14 13 12 11 10 9 8 7 6 5 4 3 2	8 8 8 8 8 8 8 8 8 8 8 8 8
PCC Software Statue Parent Word 1			
-Telemetry On/Off PCC01 -RAU On/Off PCC02 -Spare -PCC Memory Test Error/Noerr PCC14 -Spare	1 1 11 1 2	15 14 13-3 2 1-0	B B B B
Group 1 DI Parent Word			
-Spare -DRI Range Status ZC DI -DRI Range Statue ZA DI -DRI Range Status YC DI -DRI Range Status YB DI -DRI Range Status XB DI -DRI Range Status XB DI -DRI Range Status XB DI -DRI Range Status XA DI	10 1 1 1 1 1 1	15-6 5 4 3 2 1 1	B B B B B

FIGURE A-23: ECIO DISCRETE DATA (CONTINUED)

DESCRIPTION	NUMBER OF BITS	BIT POSITION	DATA TYPE
DRI Mode Command Group DO's Parent Word -Spare -DRI Mode Command C, Low	10	15-6	B B B
-DRI Mode Command C, High -DRI Mode Command B, Low -DRI Mode Command B, High -DRI Mode Command A, Low -DRI Mode Command A, High	i 1 1 1	3 2 1 0	B B B
-Spare -PCO Buffer Overflow -RAU Did Not Take All RAUI Data	10 1 1	15-6 5 4	8 8 8
-PCU Data Word Parity Error -STSW Parity Error -Non-Valid STSW -Parity Bit	1 1 1	3 2 1 0	B B B B
Group O DI Parent Word -Master Clock Status -Spare	1 15	15 14-0	

Data deposited in SPSDIS

FIGURE A-23: ECIO DISCRETE DATA (CONTINUED)

DESCRIPTION	NUMBER OF BITS	BIT POSITION	DATA TYPE
AST Wrap Around Counter	16	0	U
AST Data Word 1 Parent	16		
-AST Update Interval (MS)	9	15-7	U
-AST Memory Dump On/Off	i	6	В
-AST Self Test Star On/Off	1	5	В
-AST Error Flag Normal/Error	1	4	В
-AST Thermoelectric Cooler Power On/Off	1	3	В
-AST Rate Flag	1	2	В
-AST Operation Mode	2	1-0	U
AST Data Word 2 Parent	16	0	N
-AST Light Flood Status	1	15	В
-AST Brightness of 1st Star	5	14-10	Ü
-AST Brightness of 2nd Star	5	9-5	Ų
-AST Brightness of 3rd Star	5	4-0	U
AST Data Word 3 Parent	16	0	N
-AST Error Number	4	15-12	N
-AST Integration Time (MS)	12	11-0	U
AST Vertical Coord. of 1st Star (16 LSB)	16	0	U
AST Horizontal Coord. of 1st Star (16 LSB)	16	0	U
AST Vertical Coord. of 2nd Star (16 LSB)	16	0	U
AST Horizontal Coord. of 2nd Star (16 LSB)	16	0	U
AST Vertical Coord. of 3rd Star (16 LSB)	16	0	U
AST Horizontal Coord. of 3rd Star (16 LSB)	16	0	U
AST Data Word 10 Parent	16	0	N
-Spare	4	15-12	
-AST Vertical Coord. of 1st Star (2 MSB)	ž	11-10	U
-AST Hor. Coord. of 1st Star (2 MSB)	2	9-8	Ŭ
-AST Vertical Coord. of 2nd Star (2 MSB)	2 2 2 2	7-6	Ü
-AST Hor. Coord. of 2nd Star (2 MSB)	2	5 - 4	U
-AST Vertical Coord. of 3rd Star (2 MSB)		3-2	U
-AST Hor. Coord. of 3rd Star (2 MSB)	2	1-0	U
Calibrate Mode Y	16	0	U
Calibrate Mode Z	16	0	U
Data deposited in SPSSER			

FIGURE A-24: ECIO SERIAL DATA

TYPE	DESCRIPTION
b	bit test
i	integer
j	subinteger
h	hex
٧	voltage

LOGIC

- b IF (DATA .and. MASK) = 1
 then bit is off
 else bit is on
- i DATA = integer
- j rjs (DATA .and. MASK)
- h hexadecimal integer
- v voltage = 20/255(DATA+.5)*100

FIGURE A-25: DISPLAY TYPES

ORIGINAL PAGE IS OF POOR QUALITY

NO.	ELEMENT
1	HTRS XXX IMCE PWR XXX
2	IMCE PWR XXX
4	SELF TEST XXX
5	DRIRU PWR xxx
6	xxx
7	xxx
8	AST PWR XXX
9	AST TEMP +xxx
16 17	STBY* OPER*
18	DRIRU*
19	CMT TRK*
20	CAL*
21	AST*
22	DEP*
23	PCC*
24	STRT XXXX
25	LNGH XXXX
30 26	IMCE TEMP +xxx EXEC*
31	DRIRU TEMP +xxx
32	+xxx
33	+xxx
35	MAG CORD +x
36	+xxx
37	+xxx
38	+x
39 40	+xxx +xxx
41	+x ×
42	+xxx
43	+xxx
44	AST STBY*
45	SRCH*
46	TRK*
47	FILTER SETTLED*
48 49	STRT XXXX MIRROR RESET*
49	MIKKUK KESE!*

FIGURE A-26: IMCS CREW PAGE DISPLAY ELEMENTS

NO.	TYPE	LN	SOURCE		DISP	LAY	sid
0	٧	4	KAI	(27)			3279
1	b	3	ECASD1	x8000	INH	ENA	
2	b	3	SPSDIS	x0002	OFF	ON	
3	b	1	ECASD1	x4000	31.	*	
4	b	5	SPSDIS	×2000	NOGO	GO	
	v	4	KAI	(11)			3263
5 6 7	v	4	KAI	(12)			3264
7	v	4	KAI	(13)			3265
8	V	4	KAI	(22)			3274
9	V	4	KAI	(17)			3269
16	b	1	SPSDIS	x0800		*	
17	b	1	SPSDIS	x0400		*	
18	b	ī	SPSDIS	x0020		*	
19	b	ī	SPSDIS	x0080		*	
20	b	ī	SPSDIS	x0040		*	
21	b	1	ECASD1	x0004		*	
22	b	1	ECASD1	x0002		*	
23	b	1	ECASD1	x0001		*	
24	h	4	DUMPB				
25	h	4	DUMPE				
26	b	1	SPSDIS	x0008		*	
31	v	4	KAI	(8)			3253
32	v	4	KAI	(9)			3254
33	v		KAI	(10)			3256
35	200	ż	SPSSER	(6) x7C00			3286
36	j	4 2 4	ECASI1				
37	1	4	ECASI2				
38	i	4 2 4	SPSSER	(6) x03E0			3287
39	j	4	ECASI3	,			
40	i	4	ECASI4				
41	i	2	SPSSER	(6) x001F			3288
42	j	2	ECASI5	,			
43	i	4	ECASI6				
44	b	i	SPSDIS	x0020		*	
45	b	î	SPSDIS	x0010		*	
46	b	î	SPSDIS	x0008		*	
47	Ь	i	SPSDIS	x0004		*	
48	h	4	DUMPC	×0004			
40	- 11	*	DUMPL				

FIGURE A-27: FLIGHT CREW PAGE

INDEX	UPPER	LOWER	CONVERSION
	+8.00	-8.00	A0=0.0, A1=.01955034
1 2	+8.00	-8.00	NO-010, NI-10130004
•	70.00	-0.00	
3	+0.111	-0.111	A0=0.0, A1=.000325839
4	+0.111	-0.111	
- 6	+0.111	-0.111	
3 4 5 6 7	+0.111	-0.111	
7	+0.111	-0.111	
8	+0.111	-0.111	
•		*****	
9	+65.00	-9.71	A0=105.87402, A1=-1.203126
10	+65.00	-9.71	A2=7.104376E-3, A3=-2.371302E-5
11	+65.00	-9.71	A4=2.393933E-8, A5=433526
	, , , , , , , , , , , , , , , , , , , ,		
12	+70.0	28.0	A0=0.0, A1=.07963479
13	+70.0	28.0	
14	+70.0	28.0	
O TA			
15	-47.0	-67.0	A0=-55.0, A1=.029326
16	+45.0	+15.0	A0=+6.0, A1=.097752
17	30.0	10.0	A0=14.0, A1=.048876
18	50.0	-10.0	A0=15.0, A1=.097752
19	7.0	4.5	A0=5.75, A1=.004301
20	0.0	-10.0	A0=-0.0, A1=.027370
21	0.0	-10.0	
22	0.0	-10.0	
23	5.25	4.75	A0=0.0, A1=.011144
24	30.0	10.0	A0=15.0, A1=.097752
25	10.0	7.5	A0=0.0, A1=.021505
0.6	20 5	17.6	A0-0 0 A1- 042011
26	20.5	17.5	A0=0.0, A1=.043011
27	-20.5	-17.5	
28	+80.00	-20.00	A0=-20.0, A1=.391007
29	+5.25	-4.75	
30	-15.75	-14.25	A0=0.0, A1=.02346745 A0=0.0, A1=.07820137
31	+15.75	+14.25	A0=0.0, A1=.07820137
32	50.0	-10.0	A0=39100684, A1=+.39100684
36	30.0	-10.0	NO103100004, NI-1103100004
33	+8.00	-8.00	A0=-5.12, A1=.04015686
34	+8.00	-8.00	
35	+8.00	-8.00	
36	+8.00	-8.00	
37	+8.00	-8.00	
• ,	.0.00	-0,00	
*S() =	SPSME Analog Input		

*S() = SPSME Analog Input A() = RAU Flexible Input

FIGURE A-28: EXCEPTION MONITOR

ITEM	FUNCTION	ACTION	
1	HTRS ENA	Issue DOP - IMCE Heater On SID=#3370,DOP=11,SEID: Issue DOP - AST EA Heater (SID=#3374,DOP=15,SEID: Issue DOP - AST SA Heater (SID=3386,DOP=27,SEID=	0 n = 6 2 0 n
2	IMCE PWR ON	Issue DOP - IMCE Power On SID=#3368,DOP=9,SEID=	56
3	IMCE LOAD	DEP Protocol MMU Load	
4	SELF TEST	Issue SPSME DO 31 SID=#3902,WRI=001F,SD	0=31
5	DRIRU PWR ON	Issue DOP - DRIRU A Power SID=#3360,DOP=1,SEID= Issue DOP - DRIRU B Power SID=#3362,DOP=3,SEID= Issue DOP - DRIRU C Power SID=#3364,DOP=5,SEID=	48 On 50 On
6	AST PWR ON	Issue DOP - AST Power On SID=#3372,DOP=13,SEID	=60
7	AST PWR OFF	Issue DOP - AST Power Off SID=#3373,DOP=14,SEID:	=61
8	DRIRU PWR OFF	Issue DOP - DRIRU X Power (SID=#3361,DOP=2,SEID=0 Issue DOP - DRIRU Y Power (SID=#3363,DOP=4,SEID=0 Issue DOP - DRIRU Z Power (SID=#3365,DOP=6,SEID=0	49 Off 51 Off
9	IMCE PWR OFF	Issue DOP - IMCE Power Off SID=#3369,DOP=10,SEID:	=57

FIGURE A-29: ITEM ENTRIES

ITEM	FUNCTION	ACTION
10	HTRS INHIBIT	Issue DOP - IMCE Heater Off SID=#3371,DOP=12,SEID=59 Issue DOP - AST EA Heater Off SID=#3375,DOP=16,SEID=63 Issue DOP - AST SA Heater Off SID=3387,DOP=28,SEID=33
11	STBY	Issue SPSME DO - Standby SID=#3903,WRI=0001,SD0=1
12	OPER	Issue SPSME DO - Operate SID=#3904,WRI=0002,SD0=2
13	DRIRU	Issue SPSME DO - DRIRU Only SID=#3905,WRI=0003,SD0=3
14	CMTRK	<pre>Issue SPSME DO - Comet Track SID=#3909,WRI=0007,SD0=7</pre>
15	CAL	<pre>Issue SPSME DO - Calibrate SID=#3911,WRI=0009,SD0=9</pre>
16	AST DUMP	
17	DEP DUMP	
18	PCC DUMP	
19	START	Data=start address
20	LNGH	Data=length
21	EXEC	<pre>Issue Dump Serial Message SID=TBD,WRI=F00x,ssss,1111</pre>
22	MIRROR RST	Issue SPSME DO - Mirror Reset SID=3938,WRI=0030,SEID=48

FIGURE A-29: ITEM ENTRIES (CONTINUED)

:CMD: ISS-sid :ENTER:

SID	COMMAND	SDO	WRI
3907	DRIRU High/Low	5	0005
3908	AST SYNCH 1HZ	6	0006
3910	AST SYNCH 2HZ	8	0008
3912	AST SYNCH 3HZ	10	000A
3915	AST SYNCH 4HZ	12	000C
3916	REBOOT	11	000B
3917	GYRO CHNL XA, YB, ZA	13	000D
3918	XA,YB,ZC	14	000E
3919	XA,YC,ZA	16	0010
3920	XA,YC,ZC	17	0011
3921	XB,YB,ZA	18	0012
3922	XB,YB,ZC	19	0013
3923	XB,YC,ZA	20	0014
3924	XB,YC,ZC	21	0015
3925	AST STANDBY	15	000F
3926	AST SEARCH LEGY	22 23	0016
3927 3928	AST SEARCH LFOV AST RESET DEFECTS	24	0017 0018
3929	AST LED ON	25	0018
3930	AST LED OFF	26	001A
3931	AST LIGHT FLOOD ON	27	001B
3932	AST LIGHT FLOOD OFF	28	001C
3933	AST FRAME START	29	001D
3934	SET GMT	30	001E
3902	SELF TEST	31	001F
TBD	DRIRU CHANNEL A HIGH	32	0020
TBD	A LOW	33	0021
TBD	B HIGH	34	0022
TBD	B LOW	35	0023
TBD	C HIGH	36	0024
TBD	C LOW	37	0025
3903	STANDBY	1	0001
3904	OPERATE		0002
3905	DRIRU ONLY	2 3 7	0003
3909	COMET TRACK	7	0007
3911	CALIBRATE	9	0009
TBD	Mirror Reset	48	0030

FIGURE A-30: GENERALIZED COMMAND (NO DATA)

:CMD: WRI-sid-FOOx-dddd :ENTER:

SID	COMMAND	WRI
TBD	SET AST DEFECTS	F000 F002 dddd
TBD	AST TEST COMMAND	F000 F003 dddd dddd
TBD	DUMP AST	F000 F004 dddd
TBD	DUMP DEP	F000 F005 dddd dddd
TBD	DUMP PCC	F000 F006 dddd
TBU	AST UPDATE INTERVAL	F000 F007 dddd

FIGURE A-31: GENERALIZED COMMAND (DATA)

SID	COMMAND	WRI
TBD	GMT	FOOl dddd dddd dddd
TBD	COMET TRACK	FUOD FOOR dddd dddd dddd dddd dddd dddd

SEID -DO	FUNCTION
0	Master Clock Status
32	AST SA Heater On Off
33	UTT
34	Temp CAL Input
48	DRIRU A Power On
49	A Off
50	B On
51	B Off
52	C On
53	C Off
54	DRIRU Heater Power On
55	Off
55	IMCE Power On
57	Off
÷.	•
58	IMCE Heater On
59	Off
60	AST Power On
61	Off
62	AST EA Power On
63	Off

FIGURE A-33: SEID DISCRETE OUTPUTS

CYCLE	COMMAND	COMMENT	
1	WRITE 1,GMT,1	Broadcast	GMT
2	WRITE O.GMT.1	Broadcast	
3	READ O	Read PCM C	
4	TIME	Read GMT &	
6	SSEN-BLK 0,1,2,3,4,5,6,7	Read SPSME	
8	SSAM-BLK 0.1	Read SPSME	
10	SSREAD		Serial
50	PSAMPLE U	Read RAU F	
	PSAMPLE 2		
	PSAMPLE 4		
	PSAMPLE 6		
	PSAMPLE 8		
	PSAMPLE 10		
	PSAMPLE 12		
	PSAMPLE 14		
60	PSAMPLE 16	Read RAU F	I's
	PSAMPLE 18		
	PSAMPLE 20		
	PSAMPLE 22		
	PSAMPLE 24		
	PSAMPLE 26		
	PSAMPLE 28		
	PSAMPLE 30	D 4 DAN 5	• • •
70	PSAMPLE 32	Read RAU F	1.2
	PSAMPLE 34		
	PSAMPLE 36		
	PSAMPLE 38 PSAMPLE 40		
	PSAMPLE 42		
	PSAMPLE 44		
	PSAMPLE 46		
80	PSAMPLE 48	Read RAU F	110
00	PSAMPLE 50	KEAU KAU I	
	PSAMPLE 52		
	PSAMPLE 54		
	PSAMPLE 56		
	PSAMPLE 58		
	PSAMPLE 60		
	PSAMPLE 62		
	FUNDE OF		

The SEID GML is stored on the PDSS disk under filename 'RFC.MON'.

FIGURE A-34: PDSS/SEID GML

STATEMENT #	STATEMENT
1	IF D[0]<>0 THEN
2	LOOP D[0]
3	WAIT 0,10
Mark Street Make.	END LOOP
5	DWRITE 0,9,1
6	ELSE
7	WAIT 10,0
8	ENDIF
9	START 5

NOTES:

- The Comet Track sequence is stored on the PDSS disk under filename 'KFC.S5'.
- The Comet Track sequence is loaded by PDSS and executed as sequence 5 in SEID ('DEF 5').
- 3. The Comet Track sequence executes continuously once started. Based on the value of SEID dynamic table entry 0 (D[0]), the sequence performs as follows:

<u>D[0]</u>	SEQUENCE
0	No I/O, Runs every 10 seconds
1	Writes Comet Track data every 10 milliseconds
10	Writes Comet Track data every 1 second

FIGURE A-35: COMET TRACK SEQUENCE DEFINITION

ORIGINAL PAGE IS OF POOR QUALITY

BRIGHTNE	SS	NEA	VARIANCE	VARIANCE
B ()	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	0.68 0.46 0.29 0.22 0.17 0.14 0.12 0.11 0.10 0.09 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.4624 0.2116 0.0841 0.0484 0.0289 0.0196 0.0144 0.0121 0.0100 0.0100 0.0081 0.0081 0.0064 0.0064 0.0049 0.0049 0.0049 0.0036 0.0036 0.0036 0.0036 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	1.0868E-11 4.9735E-12 1.9767E-12 1.1376E-12 6.7928E-13 4.6069E-13 2.8440E-13 2.3504E-13 1.9039E-13 1.9039E-13 1.5043E-13 1.517E-13 1.1517E-13 1.1517E-13 1.1517E-13 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 8.4616E-14 5.8761E-14 5.8761E-14 5.8761E-14 5.8761E-14 5.8761E-14 5.8761E-14 5.8761E-14
		(ARCSEC)	(ARCSEC**2)	(RADIAN**2)

FIGURE A-36: NEA LOOKUP TABLE

NOTES:

Given a star Brightness B(x), the Noise Equivalent Angle (NEA) and variance are computed from a table lookup.

Pixel Scale Factor

P2R = 24.51 Arcsec/pixel = 1.1882783E-4 Radians/pixel (4.8481368E-5 Radians/arc-sec)

Boresight Coordinates

BSC = 239.6 (Column)

BSL = 290.1 (Line)

AST Validity Check Parameters

TOLB = 2 (Brightness Units)

TOLM = 2 (Motion Pixels)

HEX	DEC	VOLTS	HEX	DEC	VOLTS
7 F	127	9.96	80	-128	-10.04
73	11	9.02	80	-115	-9.02
6C	108	8.47	94	-108	-8.47
66	102	8.00	9A	-102	-8.00
60	96	7.52	AO	-96	-7.52
59	89	6.98	A7	-89	-6.98
53	83	6.51	AD	-83	-6.51
4D	77	6.04	В3	-77	-6.04
46	7 C	5.49	ВА	-70	-5.49
40	64	5.02	CO	-64	-5.02
39	57	4.47	C7	-57	-4.47
33	51	4.00	CD	-51	-4.00
2D	45	3.53	D3	-45	-3.53
26	38	2.98	DA	-38	-2.98
20	32	2.51	ΕO	-32	-2.51
1A	26	2.04	E 6	-26	-2.04
13	19	1.45	ED	-19	-1.45
UU	13	1.02	F3	-13	-1.02
06	6	0.47	FA	-6	-0.47
00	0	0.00			

ECIO: VOLTAGE RANGE = -10.0 TO +10.0 COUNT RANGE = -128 TO +127 CONVERSION FACTOR = .07843137

FIGURE A-38: ECIO VOLTAGE CONVERSION

HEX	DEC	VOLTS	HEX	DEC	VOLTS
1FF	511	9.99	200	-512	-10.00
1E6	486	9.50	21A	-486	-9.50
100	460	8.99	234	-460	-8.99
183	435	8.50	240	-435	-8.50
180	384	7.51	280	-384	-7.51
166	358	7.00	29A	-358	-7.00
14C	332	6.49	284	-332	-6.49
133	307	6.00	2CD	-307	-6.00
119	281	5.49	2E7	-281	-5.49
100	256	5.00	300	-256	-5.00
0E6	230	4.50	31A	-230	-4.50
OCD	205	4.01	333	-205	-4.01
083	179	3.50	34D	-179	-3.50
099	153	2.99	367	-153	-2.99
080	128	2.50	380	-128	-2.50
066	102	1.99	39A	-102	-1.99
040	77	1.51	3B3	-77	-1.51
033	51	1.00	3CD	-51	-1.00
01A	26	0.51	3E6	-26	-0.51
000	0	0.00			

HRM: VOLTAGE RANGE = -10.0 TO +10.0 COUNT RANGE = -512 TO +511 CONVERSION FACTOR = .01955034

FIGURE A-39: HRM VOLTAGE CONVERSION

HEX	DEC	VOLTS	HEX	DEC	VOLTS
7FF	2047	10.0	F801	-2047	-10.00
799	1945	9.50	F867	-1945	- 9.50
732	1842	9.00	F8CE	-1843	- 9.00
6CC	1740	8.50	F934	-1740	- 8.50
666	1638	8.00	F99A	-1638	- 8.00
5FF	1536	7.50	FA01	-1536	- 7.50
599	1433	7.00	FA67	-1433	- 7.00
532	1331	6.50	FACE	-1331	- 6.50
4CC	1229	6.00	FB34	-1229	- 6.00
466	1126	5.50	FB9A	-1126	- 5.50
3FF	1024	5.00	FC01	-1024	- 5.00
399	921	4.50	FC67	- 921	- 4.50
333	819	4.00	FCCO	- 819	- 4.00
200	717	3.50	FD34	- 717	- 3.50
266	614	3.00	FD9A	- 614	- 3.00
1FF	512	2.50	FE01	- 512	- 2.50
199	410	2.00	FE67	- 410	- 2.00
133	307	1.50	FECD	- 307	- 1.50
CC	205	1.00	FF34	- 205	- 1.00
66	102	0.50	FF9A	- 102	- 0.50
0	0	0.00			

CAMAC-AU VOLTAGE RANGE = -10.00 TO +10.00 COUNT RANGE = -2048 TO +2047 CONVERSION FACTOR = 0.004884

FIGURE A-40: CAMAC-AO VOLTAGE CONVERSION

Flight Command Format

Word 1: Corrand Code	Word 2:	Comand Parameters

COMMAND TABLE

I I	COMMENT CODE (HEX)	CAMAND PARAMETER
Standby	F000	None - Note 1
Frame Search (limited FOV)	F002	None
Frame Search (full FOV)	F003	None
Add Defect Coordinates	F004	Note 2
Reset Defect Map	F005	None
Specify Update Interval	F001	INote 3
Memory Dump	F020	Note 4
Self Test LED On	F040	None
Self Test LED Off	FO41	lione
Light Flood On	F008	None
Light Flood Off	F009	None
Frame Start	F080	None

Notes:

- When additional parameters are not required for a command, the second word
 of the fixed 2 word format is ignored by ASIROS.
- This command adds a 6x6 pixel region to the CCD defect map. The Command Parameter is defined as follows:

Where C_i , L_i identify the 6x6 pixel region as containing the corners (2 C_i -2, 2 L_i -2) and (2 C_i + 3, 2 L_i + 3), and 2 \leq C_i \leq 158, 2 \leq L_i \leq 254

3. Word #2 has the format 15 12 11 0

Where: I_c is the ASTROS Update Interval (in milliseconds) 15 0

4. Word #2 has the format

A1

Where: A1 is the 16-bit address of the first word of memory to be read.

Word 1: Corrend Code!

Word 2: [Cirrend Parameter]

Command	Cormand C	ode	Cormand Parameter
	ASCII	HEX	
1. Load Line Window 1	"IJ.	4031	Note 1
2. Load Column Window 1	"Pl"	5031	Note 1
3. Load Line Window 2	"L2"	4C32	Note 1
4. Load Column Window 2	"P2"	5032	Note 1
5. Load Line Window 3	"1.3"	4033	Noe 1
6. Load Column Window 3	"P3"	5033	Note 1
7. Window Exposure	"wX"	5758	Note 2
8. Dump Window Data	"WD"	5744	Note 3
9. Load Threshold Value	"LT"	4054	Note 4
10. Threshold Exposure	"TX"	5458	Note 2
11. Dump No. Thresold Pixels	"NI"	4E54	None - Note 5
12. Dump Thresold Data	"TD"	5444	Note 6
13. Map Exposure	"MX"	4D58	Note 2
14. Software Reset	"SR"	5352	None - Note 7
15. Memory Dump with Checksum	"MD"	4D44	Note 8
16. Local Status	"LS"	4C53	None - Note 9
17. Dump CCD Parameters	"CP"	4350	None - Note 10
18. Load Radiator DAC	"RD"	5244	Note 11
19. Load Optics DAC	"OD"	4P44	Note 11
20. Load CCD (TEC)	Φ*	4344	Note 11

Notes:

- The line and column of 3 5x5 window are the coordinates of the window pixel nearest (0,0).
- 2. The exposure (integration) time is in units of 0.1ms. All 6 window coordinates must be proceeded with valid values before this command is issued. For each line in a window, the 3 column guard band pixels are input and stored in addition to the 5 line pixels in the window. (8 pixels/line x 15 lines 100 total data numbers stored). All pixel data numbers are stored sequentially without sorting.

FIGURE A-42: TEST COMMAND FORMAT

Word #

	15 14 10 9	5 4 0
2	L B ₃ B ₂	B ₁
	15 12 11	0
3	E T	
4	C ₁	A CONTRACTOR OF THE PARTY OF TH
5	L	
•		
6	C ₂	
7	L ₂	
19 44 - 1		
8	C3	
9	L ₃	
	15 12 11 10 9 8 7 6 5	4 3 2 1 0
10	$(Space) \mid C_1 \mid L_1 \mid C_2 \mid I$	2 C3 L3
Abbreviation	Title	Possible Values
Bi	Brightness of ith star	= 0 = invalid star, otherwise
X		(pixel intensity-threshold)
	*	Scaling factor
L	Light flood status	0-OFF
		1-ON
E	Error Number	0-15
	DELOE HU.DOE	
T	Integration time	= T (in milliseconds)
	FIGURE A-43: STATUS WOR	D FORMAT
	FIGURE A-43. STATUS WOR	D I VINIA!

ORIGINAL PAGE ISI OF POOR QUALITY

Status Word = First word of each data output:

:5	7	6	5	4	3	2	1 0
I		MD	ST	122	THE	P	MODE

antreviations	Title	Possible Values:
Nobe	Operating Mode	0-Full Field Acquisition 1-Limited Field Acquisition
		2-Track
		3-Standby
R	Rate Flag	0-Normal Operation
		l-Requested update interval will degrade performance
1 23	Thermoelectric Coder	0-OFF
	Power	1-ON
253	Error Flag	0-Normal Operation
		1-Error State
<i>5</i> :	Self-Test Star	0-OFP
		1-ON
10	Memory Data	0-Normal Operation
		1-Subsequent 9 words are memory data
	Approximate Interval between updates	= I x 10ms

ORIGINAL PAGE 19 OF POOR QUALITY

(or exposure time)

Abbreviation	Title	Possible Values
C _i ,L _i (Words 4-9)	Coordinates of ith star	16 LSEs of the vertical and horizontal coordinates of the ith star relative to the CCD frame corrected for optical distortion.
C _i ,L _i (Word 10)	MSBs of ith star	Two MSEs (bits 16 and 17) of the vertical and horizontal coordinates of the ith star position.