Measuring and Augmenting Large
Language Models for Solving Capturethe-Flag Challenges

李智浩

目录

CONTENTS

01

背景与意义

02

相关工作

03

研究内容与方法

04

技术细节

05

实验结果与分析

06

讨论与未来方向

CTF竞赛的重要性

 01
 02
 03
 04

 提升技能水平
 选拔顶尖人才
 推动技术发展
 促进教育普及

通过模拟真实场景,提高参与者识别和利用漏洞的能力

成为全球顶级赛事中的重要 环节,用于选拔顶尖网络安 全人才。 激发对自动化攻防策略的研究,推动AI在网络安全的应用。

作为教育工具,加速学习者 理解复杂安全概念,促进网 络安全教育的普及。

大型语言模型在网络安全领域的潜力

相关工作

网络安全评估基准

CyberSecEval 2

评估大语言模型的全面网络安全知识,涵盖广泛领域,如漏洞检测、 防御策略等。

SecBench

提供多维度的网络安全评估数据集 ,用于测试LLMs在不同安全任务 上的表现。

CyberMetric

专注于衡量LLMs在网络安全领域的知识深度,通过精心设计的数据集进行评估。

CTF基准

Intercode-CTF与NYU CTF Dataset等,侧重于评估LLMs解 决CTF挑战的能力,强调实战技能

自动化CTF解决方法

Intercode-CTF

评估LLM端到端CTF问题解决能力, 提供静态命令行环境和基础工具,但 缺乏互动性和专业工具支持。

NYU CTF Bench

引入更复杂的环境和工具,但仍受限 于非交互式操作,未能充分模拟真实 CTF场景。

AutoPwn

专注于CTF破解进展,利用神经网络系统自动识别漏洞,但未涵盖CTF全部环节。

研究内容与方法

CTFKNOW: 技术知识基准设计

问题生成 🛑

基于提取的知识点,设计涵盖单选与开放题型的问题,精确衡量LLM的能力。

过滤幻觉

去除提取过程中产生的错误或不准确的 信息,提高知识点的可靠性。

知识点提取

利用大语言模型自动抽取核心知识,形成初步的知识点集合。

收集解题报告 ■

收集3000余篇高质量CTF解题报告,作为构建问题库(知识库)的基础资料。

■ 问题筛选

对生成的问题进行筛选,确保其质量与准确性,符合评估标准。

专家人工验证

邀请领域专家对问题进行人工验证,确保问题的准确性和有效性。

建立基准

构建高质量的基准,用于后续的LLM性 能评估和比较,促进技术发展。

CTFAGENT: 自动化CTF解题框架概述

CTFAGENT旨在通过两阶段RAG和环境增强,弥补LLM在CTF场景下的知识应用缺口,提升**问题理解**与**解决能力。**

结合理解与利用阶段,精准匹配技术 知识,辅助LLM识别并利用漏洞,实 现高效问题解决。

提供动态命令行反馈与高级CTF工具 ,优化LLM与环境互动,增强复杂任 务处理能力。

两阶段RAG机制

环境增强模块功能

CTFAGENT核心理念

技术细节

两阶段RAG系统

RAG-Understanding

在题目中,CTFAgent首先通过EA模块获取附件代码(如通过 cat 命令或反编译工具)。此代码被用于向量化,并作为检索key由RAG模块中的DB-Understanding匹配对应漏洞知识。

RAG-Exploiting

一旦LLM识别出潜在漏洞并开始生成利用方案,CTFAgent会自动将这些"利用思路"(Exploit Ideas)作为查询输入,向数据库中匹配更为详细且可操作的利用策略,例如:示例exp脚本、工具使用方法等

动态反馈机制

结合LLM的输出动态调整检索策略,确保提供的知识与当前问题场景高度 匹配,促进精准解决问题。

交互式环境增强模块

提升命令行互动性

通过提供针对性提示和动态命令行反馈,增强LLM在处理复杂任务时的实时互动能力,有效解决权限读取和远程服务器交互难题。

实时反馈机制

实现每轮输出即时反馈,确保LLM能够迅速调整策略,提高在多轮交互中解决问题的效率和准确性。

高级CTF工具集成

引入IDA Pro等专业级工具,显著改善代码审计效率,优化逆向工程和漏洞利用过程,助力LLM精准识别并利用代码漏洞。

环境适应性增强

通过模拟真实CTF环境,使LLM能够在接近实战的条件下操作,提升其应对各种挑战的能力,加速学习和适应过程。

交互式环境增强模块案例

CTFAgent 使用 decompile 获取反编译代码 → 识别 buffer overflow。

调用 start_nc_session 连接远程服务器。

利用 payload (由 RAG引导 提供) 构造攻击并通过 nc_send_line 发送。

收到包含 flag 的响应。

实验结果与分析

性能评估

CTFAGENT在Intercode-CTF数据集上显著提升了问题解决能力,从基线的39%提升至73%,增幅达85%。

CTFAGENT表现

采用更先进的o1模型后,CTFAGENT额外解决了11个挑战,总解决率提升至84%。

在更具挑战性的NYU CTF数据集上, CTFAGENT解决了18个挑战,比基线 提高了120%。

高级模型效果

NYU CTF数据集

案例研究与失败原因分析

案例解析

详细分析了CTFAgent在特定CTF 挑战中的工作流程,展示了如何通 过两阶段RAG系统和环境增强模 块协同工作来解决问题。

失败模式识别

归纳了CTFAgent在尝试解决CTF 挑战时遇到的主要失败类型,包括 超过最大尝试次数、上下文长度超 出限制等。

RAG误导问题

探讨了RAG系统因检索不准确而 导致CTFAgent接收错误的技术知识,从而影响了解决方案的效率和 准确性。

多模态能力缺失

指出了CTFAgent在处理涉及图像和多模态工具的CTF挑战时的局限性,强调了未来研究的方向。

讨论与未来方向

教育与研究影响

智能辅助学习

LLM作为智能助手,加速安全知识获取,提升CTF教育效率与体验。

实战技能提升

通过模拟真实攻击场景,增强参与者实战经验和问题解决能力。

前沿研究推动

促进AI驱动的进攻性安全能力发展, 应对软件漏洞自动化发现与修复挑战

社区生态建设

激发更多高质量CTF赛事,促进网络 安全人才发掘与培养。

伦理考量与风险缓解

数据源公开透明

社区协作重要

倡导安全使用

0

所有数据均来自公开的漏 洞报告,保障无隐私泄露 风险。 CTFAGENT与CTFKNOW 共同推动,强调社区合作 的重要性。 鼓励将LLM应用于防御安全,并呼吁学术界研究防护机制。

THANKS