Ehrhart Polynomials

VIII Encuentro Colombiano De Combinatoria

Day I: Appetizers

- (1) Given integers a, b, c, d, form the line segment $[(a, b), (c, d)] \subset \mathbb{R}^2$ joining the points (a, b) and (c, d). Show that the number of integer points on this line segment is gcd(a c, b d) + 1.
- (2) Prove that a triangle with vertices on the integer lattice has no other interior/boundary lattice points if and only if it has area $\frac{1}{2}$. (*Hint:* You may begin by "doubling" the triangle to form a parallelogram.)
- (3) Pick four points in \mathbb{Z}^3 and let \mathcal{P} be their convex hull (in \mathbb{R}^3). Compute the Ehrhart polynomial of \mathcal{P} . (If you cannot think of a good example, consider the regular tetrahedron with vertices (0,0,0), (1,1,0), (1,0,1), (0,1,1).)
- (4) Recall that the standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin. Verify that

$$L_{\Delta}(t) = egin{pmatrix} d+t \ d \end{pmatrix} \qquad ext{and} \qquad L_{\Delta^\circ}(t) = egin{pmatrix} t-1 \ d \end{pmatrix}.$$

(If you'd like to amuse your colleagues, we can also write $L_{\Delta^{\circ}}(t) = (-1)^d \, \binom{d-t}{d}$.)

(5) Given a (d-1)-polytope Q with vertices $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ such that the origin is in Q, we define the bipyramid BiPyr(Q) over Q as the convex hull of

$$(\mathbf{v}_1,0), (\mathbf{v}_2,0), \dots, (\mathbf{v}_m,0), (0,\dots,0,1), \text{ and } (0,\dots,0,-1).$$

Show that $\operatorname{Ehr}_{\operatorname{BiPyr}(\mathcal{Q})}(z) = \frac{1+z}{1-z} \operatorname{Ehr}_{\mathcal{Q}}(z)$.

(6) Compute the Ehrhart polynomial of the octahedron

$$\Diamond = \{ \mathbf{x} \in \mathbb{R}^3 : |x_1| + |x_2| + |x_3| \le 1 \}$$

via the four different approaches outlined in the lecture:

- (a) triangulation into 8 standard tetrahedra & their faces (inclusion–exclusion);
- (b) disjoint triangulation into 8 standard tetrahedra;
- (c) [sage] interpolation;
- (d) [sage] generating function.

Generalize.

- (7) [sage] Plot the roots of the Ehrhart polynomials of cross polytopes in different dimensions. What's going on here?
- (8) [research problem] Compute the Ehrhart polynomial of the Birkhoff—von Neumann polytope \mathcal{B}_{10} or the volume of \mathcal{B}_{11} .

(9) Define the Eulerian number A(d, k) through¹

$$\sum_{j\geq 0} j^d z^j = \frac{\sum_{k=0}^d A(d,k) z^k}{(1-z)^{d+1}}.$$

Alternatively, we may think of the polynomial $\sum_{k=0}^{d} A(d,k) z^{k}$ is the numerator of the rational function

$$\left(z\frac{d}{dz}\right)^d \left(\frac{1}{1-z}\right) = \underbrace{z\frac{d}{dz}\cdots z\frac{d}{dz}}_{d \text{ times}} \left(\frac{1}{1-z}\right).$$

Prove the following:

$$A(d,k) = A(d,d+1-k),$$

$$A(d,k) = (d-k+1) A(d-1,k-1) + k A(d-1,k),$$

$$\sum_{k=0}^{d} A(d,k) = d!,$$

$$A(d,k) = \sum_{j=0}^{k} (-1)^{j} {d+1 \choose j} (k-j)^{d}.$$

(10) The permutahedron $\mathcal{P}_d \in \mathbb{R}^d$ is defined as the convex hull of

$$\{(\pi(1)-1, \pi(2)-1, \ldots, \pi(d)-1) : \pi \in S_d\}$$

where S_d is the set of all permutations of $\{1, 2, ..., d\}$. Show that P_d is a zonotope:

$$\mathcal{P}_d = [\mathbf{e}_1, \mathbf{e}_2] + [\mathbf{e}_1, \mathbf{e}_3] + \cdots + [\mathbf{e}_{d-1}, \mathbf{e}_d],$$

where $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d$ are the standard unit vectors.

- (11) Prove that \mathcal{P}_d tiles the hyperplane spanned by it.
- (12) Show that a sequence f(n) is given by a polynomial of degree $\leq d$ if and only if

$$\sum_{n>0} f(n) z^n = \frac{h(z)}{(1-z)^{d+1}}$$

for some polynomial h(z) of degree $\leq d$. Furthermore, f(n) has degree d if and only if $h(1) \neq 0$.

MATTHIAS BECK

https://matthbeck.github.io/

¹There are two slightly conflicting definitions of *Eulerian numbers* in the literature: sometimes, they are defined through $\sum_{j\geq 0} (j+1)^d z^j = \frac{\sum_{k=0}^d A(d,k)z^k}{(1-z)^{d+1}}$ instead.

Ehrhart Polynomials

VIII Encuentro Colombiano De Combinatoria

Day II: Generating Functions & Complexity

(1) Compute the generating functions for

$$P_{\leq n} := \{\lambda \in \mathbb{Z}^n : 0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n\},$$

partitions into at most n parts. Adjust your computations for partitions into exactly n parts.

- (2) Compute the integer-point transform of the cone $\mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.
- (3) Let $n \ge 3$ and

$$T_n := \{(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_n \ge \dots \ge \lambda_1 \ge 1 \text{ and } \lambda_1 + \dots + \lambda_{n-1} > \lambda_n\},$$

the set of all "n-gon partitions."

- (a) Compute the generating function for T_3 .
- (b) What makes your computation more complicated for n > 3?
- (c) Compute the generating function for

$$\widetilde{T}_n := \{(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_n \ge \dots \ge \lambda_1 \ge 1 \text{ and } \lambda_1 + \dots + \lambda_{n-1} \le \lambda_n \},$$

and conclude from it the generating function for T_n .

(4) Recall the lecture-hall partitions

$$LH_n := \left\{ \lambda \in \mathbb{Z}^n : 0 \le \frac{\lambda_1}{1} \le \frac{\lambda_2}{2} \le \dots \le \frac{\lambda_n}{n} \right\}.$$

Compute the generators of the underlying cone, and verify the first few instances of the Lecture-Hall Theorem:

$$\sum_{\lambda \in \mathrm{LH}_n} q^{\lambda_1 + \dots + \lambda_n} \; = \; \frac{1}{(1-q)(1-q^3) \cdots (1-q^{2n-1})} \, .$$

- (5) Pick five points in \mathbb{Z}^3 and let \mathcal{P} be their convex hull (in \mathbb{R}^3). Compute the Ehrhart polynomial of \mathcal{P} .
- (6) [research problem] Choose d+1 of the 2^d vertices of the unit d-cube, and let Δ be the simplex defined by their convex hull.
 - (a) Which choice of vertices maximizes vol Δ ?
 - (b) What is the maximum volume of such a Δ ?

- (7) Give an explicit bijection between the faces (including \varnothing) of a given polytope \mathcal{P} and the faces (excluding \varnothing) of its homogenization cone(\mathcal{P}).
- (8) Suppose $\mathcal{P} \subset \mathbb{R}^m$ and $\mathcal{Q} \subset \mathbb{R}^n$ are lattice polytopes. Prove that the *convolution* of their Ehrhart polynomials,

$$L(t) := \sum_{s=0}^{t} L_{\mathcal{P}}(s) L_{\mathcal{Q}}(t-s)$$

equals the Ehrhart quasipolynomial of the polytope given by the convex hull of $\mathcal{P} \times \{\mathbf{0}_n\} \times \{0\}$ and $\{\mathbf{0}_m\} \times \mathcal{Q} \times \{1\}$. Here $\mathbf{0}_d$ denotes the origin in \mathbb{R}^d .

(9) Verify (parts of) the classification picture of degree-2 Ehrhart polynomials $c_2t^2 + c_1t + 1$: every half-integral point in the figure below corresponds to an Ehrhart polynomial.

- (10) [research problem] Give the corresponding classification picture of degree-3 Ehrhart polynomials.
- (11) This exercise constructs triangulations. Given a polytope $\mathcal{P} \subseteq \mathbb{R}^d$ with vertices $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, randomly choose $h_1, h_2, \dots, h_n \in \mathbb{R}$, and define the new polytope $\mathcal{Q} \subseteq \mathbb{R}^{d+1}$ as the convex hull of $(\mathbf{v}_1, h_1), (\mathbf{v}_2, h_2), \dots, (\mathbf{v}_n, h_n)$. The *lower hull* of \mathcal{Q} consists of all points that are *visible from below*: all points $(x_1, x_2, \dots, x_{d+1}) \in \mathcal{Q}$ for which there is no $\epsilon > 0$ such that $(x_1, x_2, \dots, x_{d+1} \epsilon) \in \mathcal{Q}$. A *lower face* of \mathcal{Q} is a face of \mathcal{Q} that is in the lower hull. Let $\pi : \mathbb{R}^{d+1} \to \mathbb{R}^d$ be the projection that forgets the last coordinate. Show that all lower faces of \mathcal{Q} are simplices, and that their projections under π form a triangulation of \mathcal{P} .

Ehrhart Polynomials

VIII Encuentro Colombiano De Combinatoria

Day III: Ehrhart Structures

- (1) Give an example of a polynomial f(n) with (some) negative coefficients whose corresponding generating function numerator polynomial h(z) has only positive coefficients.
- (2) For a lattice polytope \mathcal{P} , the numerator of the generating function is the h^* -polynomial of \mathcal{P} . Give a non-unimodal² example of an h^* -polynomial.
- (3) [research problem] Now let $\mathcal{P} = \{\mathbf{x} \in [0,1]^d : x_1 + x_2 + \cdots + x_d = k\}$, for your favorite integers $2 \le k \le d-2$. (This is the (d,k)-hypersimplex.) Prove that the h^* -polynomial of \mathcal{P} is unimodal.
- (4) For any polynomial h(z) of degree d, show there exist unique polynomials a(z) and b(z) such that

$$h(z) = a(z) + z b(z)$$
 where $a(z) = z^d a(\frac{1}{z})$ and $b(z) = z^{d-1} b(\frac{1}{z})$.

(There are many variations of this; e.g., we could leave out the z factor in front of b(z).)

(5) Derive inequalities for the coefficients of h(z) if we know that both a(z) and b(z) have only nonnegative coefficients.

²A polynomial is *unimodal* if its coefficients increase up to some point and then decrease.