Related Topic: Clustering

Input: $n \text{ sites: } S = \{s_1, s_2, ..., s_n\}$

Output: Locations of k centers: $C = \{c_1, c_2, ..., c_k\}$

Objective: Minimize the total distance from each site to the nearest center.

Minimize
$$\sum_{s \in S} dist(s, C)^2$$

dist(s, C): Distance from s to the nearest center.

$$dist(s, C) = \min_{c \in C} \{dist(s, c)\}\$$

Reformulation

- \square site (n sites)
- center (k centers)

(1) Divide the *n* sites into *k* clusters based on the nearest center.

$$S = \{s_1, s_2, \dots, s_n\}$$

$$S = S_1 \cup S_2 \cup \dots \cup S_k$$

(2) Reformulate the objective function as follows:

Minimize
$$\sum_{j=1}^{k} \sum_{s \in S_j} dist(s - c_j)^2$$

Related Topic: Clustering

Minimize
$$\sum_{j=1}^{\kappa} \sum_{s \in S_j} dist(s - c_j)^2$$

$$S = \{s_1, s_2, \dots, s_n\}$$

$$S = S_1 \cup S_2 \cup \dots \cup S_k$$

s and c_i : Points in the 2D space.

k-means Algorithm: Iterate the following two steps from a random partition of S into k subsets: S_1 , S_2 , ..., S_k

(i)
$$c_j = \frac{1}{|S_j|} \sum_{s \in S_j} s$$

(ii)
$$S_j = \{s | dist(s, c_j) = \min_{l=1,2,\dots,k} dist(s, c_l)\}, \ j = 1, 2, \dots, k$$

Exercise 4-1:

In the k-means algorithm, we can start with (i) using an initial partition $\{S_1, S_2, ..., S_k\}$ or with (ii) using initial centers $\{c_1, c_2, ..., c_k\}$. Design a good initialization method for k-means algorithm for (i) and also for (ii).

Example (12 sites and 2 centers)							
If we start with the following partitions:							
If we start with the following centers:							

Difficulty of "Min-Max" objective function: ("minimize the worst case" objective function)

Minimization of the maximum distance from each site to the nearest center.

Minimize $\max_{s \in S} dist(s, C)$

All the following solutions are optimal (for k = 2).

Comparison of Problems:

(1) Minimization of the maximum distance from each site to the nearest center.

Minimize $\max_{s \in S} dist(s, C)$

(2) Minimization of the total distance from each site to the nearest center

Minimize $\sum_{s \in S} dist(s, C)^2$

Q. Which is a better problem formulation?

sitecenter

Comparison of Problems:

(1) Minimization of the maximum distance from each

site to the nearest center.

Minimize Max dist(s, C) $s \in S$

Example of a good solution

(2) Minimization of the total distance from each site

to the nearest center

Minimize $\sum dist(s, C)^2$ $s \in S$

Example of a good solution

Which is the best solution?

Comparison of Algorithms:

(1) Minimization of the maximum distance from each site to the nearest center.

Minimize $\max_{s \in S} dist(s, C)$

Center Selection Algorithm:

Simple heuristics (a greedy algorithm) 2-Approximation algorithm

(2) Minimization of the total distance from each site to the nearest center

Minimize $\sum_{s \in S} dist(s, C)^2$

K-means Algorithm

Iterative adjustment algorithm (iterations of two greedy algorithms)

Not an exact optimization algorithm