Common Source

Maximize Gain

$$A_v = -\sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} \frac{V_{RD}}{I_D}$$

Diode Connected Load

$$A_v = -g_{m1} \frac{1}{g_{m2} + g_{mb2}}$$
$$= -\frac{g_{m1}}{g_{m2}} \frac{1}{1 + \eta}$$

CS with current-source load

Voltage Swing

CS with Active Load

$$A_v = -(g_{m1} + g_{m2})(r_{O1}||r_{O2})$$

CS with Source Degeneration

Source Follower

Cascode

$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}$$

Assuming $g_m r_O \gg 1$, we have $R_{out} \approx (g_{m2} + g_{mb2}) r_{O2} r_{O1}$

A. Negative-TC Voltage (CTAT)

For a bipolar device, the forward voltage of a pn-junction diode exhibits a negative TC.

$$\begin{split} I_C &= I_s \, \exp(V_{BE}/V_T) \, \text{ where } V_T = \frac{kT}{q} \\ I_S &= bT^{4+m} \, \exp(-\frac{Eg}{kT}) \\ V_{BE} &= V_T \, \ln\left(\frac{I_C}{I_S}\right) \\ \frac{\partial V_{BE}}{\partial T} &= \frac{\partial V_T}{\partial T} \, \ln\frac{I_C}{I_S} - \frac{V_T}{I_S} \frac{\partial I_S}{\partial T} \\ \frac{V_T}{I_S} \frac{\partial I_S}{\partial T} &= (4+m)\frac{V_T}{T} + \frac{E_g}{kT^2} V_T \\ \frac{\partial V_{BE}}{\partial T} &= \frac{V_T}{T} \, \ln\frac{I_C}{I_S} - (4+m)\frac{V_T}{T} + \frac{E_g}{kT^2} V_T \\ &= \frac{V_{BE} - (4+m)V_T - E_g/q}{T} \end{split}$$

Thus, at T=300K and $V_{BE}\approx 750 \text{mV}$, the change in TC voltage with respect to temperature is $\partial V_{BE}/\partial T\approx -1.5 \text{mV}$.

Fig. 1. PTAT Circuit

$$\begin{split} \Delta V_{BE} &= V_{BE1} - V_{BE2} \\ &= V_T \, \ln (\frac{nI_0}{I_S}) - V_T \, \ln (\frac{I_0}{mI_S}) \\ &= V_T \, \ln (nm) \\ &= \frac{kT}{q} \, \ln (nm) \\ \frac{\partial}{\partial T} \Delta V_{BE} &= \frac{\partial}{\partial T} \frac{kT}{q} \, \ln (nm) \\ &= \frac{k}{q} \, \ln (nm) \end{split}$$

$$V_{REF} = \alpha_1 V_{BE} + \alpha_2 V_T ln(nm)$$

For simplicity, α_1 is chosen to be 1. Then V_{REF} is

$$V_{REF} = V_{BE} + \alpha_2 V_T ln(m)$$

Figure 5.1 Applications of current sources.

It is important to appreciate the cause-and-effect relationships stipulated by $V_{GS} = f^{-1}(I_{REF})$ and $f[f^{-1}(I_{REF})] = I_{REF}$. The former suggests that we must *generate* a V_{GS} from I_{REF} ; i.e., I_{REF} is the cause and V_{GS} is the effect. A MOSFET can perform this function only if it is configured as a diode while carrying a current of I_{REF} [M_1 in Fig. 5.5(b)]. Similarly, the latter equation indicates that a transistor must sense $f^{-1}(I_{REF})$ (= V_{GS}) and generate $f[f^{-1}(I_{REF})]$. In this case, the cause is V_{GS} and the effect is the output current, $f[f^{-1}(I_{REF})]$ [as provided by M_2 in Fig. 5.5(b)].

The small-signal drain current of M_1 is equal to $g_{m1}V_{in}$. Since $I_{D2} = I_{D1}$ and $I_{D3} = I_{D2}(W/L)_3/(W/L)_2$, the small-signal drain current of M_3 is equal to $g_{m1}V_{in}(W/L)_3/(W/L)_2$, yielding a voltage gain of $g_{m1}R_L(W/L)_3/(W/L)_2$.

Figure 5.12 (a) Cascode current source, (b) modification of mirror circuit to generate the cascode bias voltage, and (c) cascode current mirror.

$$V_{N} = V_{GS0} + V_{GS1}$$

$$= \sqrt{\frac{2I_{REF}}{\mu_{n}C_{ox}}} \left[\sqrt{\left(\frac{L}{W}\right)_{0}} + \sqrt{\left(\frac{L}{W}\right)_{1}} \right] + V_{TH0} + V_{TH1}$$

$$V_{Y} = V_{X} \approx \sqrt{2I_{REF}/[\mu_{n}C_{ox}(W/L)_{1}]} + V_{TH0} + V_{TH1}$$

Amplifier type	Characteristics ^a				
	$R_{\rm in}$	A_{vo}	R_o	A_{v}	G_{v}
Common source (Fig. 7.35)	~	$-g_m R_D$	R_D	$-g_m\big(R_D\ R_L\big)$	$-g_m(R_D \parallel R_L)$
Common source with R_s (Fig. 7.37)	∞	$-\frac{g_m R_D}{1+g_m R_s}$	R_D	$\frac{-g_m \left(R_D \parallel R_L\right)}{1 + g_m R_s}$	$-\frac{g_m(R_D \parallel R_L}{1 + g_m R_s}$
				$-\frac{R_D \ R_L}{1/g_m + R_s}$	$-\frac{R_D \parallel R_L}{1/g_m + R_s}$
Common gate (Fig. 7.39)	$\frac{1}{g_m}$	$g_m R_D$	R_D	$g_m \big(R_D \parallel R_L \big)$	$\frac{R_D \ R_L}{R_{\rm sig} + 1/g_m}$
Source follower (Fig. 7.42)	∞	1	1	$\frac{R_L}{R_L + 1/g_m}$	$\frac{R_L}{R_L + 1/g_m}$

Common Emitter

Common Source

Common Base

Common Gate

Common Collector

Common Drain or "Source Follower"

