PRUEBA 1

Análisis Funcional y Aplicaciones I (525401).

Viernes 17 de Mayo de 2002

Prof. Gabriel N. Gatica.

Problema 1 (20 Puntos).

- a) Sea S un subespacio de un Hilbert H. Demuestre que $S^{\perp} = \bar{S}^{\perp}$.
- **b)** Sea Ω un abierto acotado de \mathbf{R}^n con frontera suave Γ , y considere el espacio de Sobolev $H^1(\Omega)$. Encuentre y caracterice el subespacio V de $H^1(\Omega)$ tal que $H^1(\Omega) = H^1_0(\Omega) \oplus V$.

Problema 2 (20 Puntos).

Sean H un espacio de Hilbert, $A: H \times H \to \mathbf{R}$ una forma bilineal acotada y H-elíptica, y $F \in H'$. Además, sea $\{H_n\}_{n \in \mathbf{N}}$ una sucesión de subespacios de dimensión finita de H, y para cada $n \in \mathbf{N}$ considere una forma bilineal acotada $A_n: H_n \times H_n \to \mathbf{R}$ tal que la sucesión $\{A_n\}_{n \in \mathbf{N}}$ es uniformemente elíptica. Esto significa que existe $\tilde{\alpha} > 0$, independiente de n, tal que $A_n(v_n, v_n) \geq \tilde{\alpha} \|v_n\|_H^2 \ \forall v_n \in H_n, \ \forall n \in \mathbf{N}$.

a) Pruebe que existen únicos $u \in H$ y $u_n \in H_n$ tales que

$$A(u,v) = F(v) \quad \forall v \in H$$

y

$$A_n(u_n, v_n) = F(v_n) \quad \forall v_n \in H_n.$$

b) Demuestre que existe C > 0, independiente de $n \in \mathbb{N}$, tal que

$$||u - u_n||_H \le C \inf_{v_n \in H_n} \left\{ ||u - v_n||_H + \sup_{\substack{w_n \in H_n \\ w_n \ne 0}} \frac{|A(v_n, w_n) - A_n(v_n, w_n)|}{||w_n||_H} \right\}.$$

Problema 3 (20 Puntos).

Sea Ω un abierto acotado de \mathbf{R}^n , y sea $\kappa: \Omega \to \mathbf{R}$ una función continua para la cual existen constantes $M, \beta > 0$, tales que $\beta \leq \kappa(x) \leq M$ para todo $x \in \Omega$. Defina el conjunto $S := \{ v \in H_0^1(\Omega) : \|v\|_{H^1(\Omega)} \leq 1 \}$, y demuestre que para todo $u \in H_0^1(\Omega)$ existe un único $g \in S$ tal que

$$\int_{\Omega} \kappa(x) \|\nabla u(x) - \nabla g(x)\|_{\mathbf{R}^n}^2 dx = \min_{v \in S} \int_{\Omega} \kappa(x) \|\nabla u(x) - \nabla v(x)\|_{\mathbf{R}^n}^2 dx.$$

Problema 4 (20 Puntos).

Sean $(H, \langle \cdot, \cdot \rangle_H)$ y $(Q, \langle \cdot, \cdot \rangle_Q)$ espacios de Hilbert, y sea $\mathbf{B} \in \mathcal{L}(H, Q)$ con espacio nulo $V := N(\mathbf{B})$.

- $\mathbf{a)} \ \ \text{Demuestre que} \quad \sup_{v \in H \atop v \neq 0} \frac{\langle \mathbf{B}(v), q \rangle_Q}{\|v\|_H} \, = \, \sup_{v \in V^\perp \atop v \neq 0} \, \frac{\langle \mathbf{B}(v), q \rangle_Q}{\|v\|_H} \qquad \forall \, q \in Q.$
- **b)** Suponga que existe $\beta>0$ tal que $\sup_{\substack{v\in V^{\perp}\\v\neq 0}}\frac{\langle \mathbf{B}(v),q\rangle_{Q}}{\|v\|_{H}}\geq \beta\|q\|_{Q} \quad \forall\, q\in Q,\ \mathbf{y}$ pruebe que $H=R(\mathbf{B}^{*})\oplus V.$

Problema 5 (20 Puntos).

- a) Sean X, Y espacios de Banach, y sea $A: \mathcal{D}(A) \subseteq X \to Y$ un operador lineal cerrado. Considere $\mathcal{D}(A)$ provisto de la norma $||x||_A := ||x||_X + ||A(x)||_Y$, y demuestre que $(\mathcal{D}(A), ||\cdot||_A)$ es completo.
- b) Sean X, Y espacios de Banach, y sea $A: \mathcal{D}(A) \subseteq X \to Y$ un operador lineal tal que $N(A) = \{0\}$ y R(A) = Y. Suponga que $\mathcal{D}(A)$ y el grafo G_A son subespacios cerrados de X y $X \times Y$, respectivamente. Demuestre que existe A^{-1} y que $A^{-1} \in \mathcal{L}(Y, \mathcal{D}(A))$.