This is the context of the article. 这就是文章的所有内容。

$$f(x) = \begin{cases} 1/q, & \text{if } x = p/q \in Q; \\ 0, & \text{else.} \end{cases}$$
 (1)

Algorithm 1 间断点计算 (IPC) 算法构造 PSPF 函数.

步骤 1. 初始化, 设置 $I^* = \{P_L, P_H\}$ 和 $I = \{[P_L, P_H]\}$.

步骤 2. 如果 I 非空, 通过下面的步骤对 I^* 和 I 进行更新:

步骤 3. 对 I^* 中的值进行排序为 $P_0 < P_1 < \cdots < P_q$, 其中 $P_0 = P_L, P_q = P_H, q = |I^*| - 1$ 。

步骤 4. 从 I 中选择任意区间, 标记为 $[P_{k-1}, P_k]$ 其中 k 满足 $1 \le k \le q$ 。

步骤 5. 构造两个线性函数 $R_{k-1}(P)$ 和 $L_k(P)$ 使得 $R_{k-1}(P)$ 以等于 $\omega(P)$ 在 P_{k-1} 处的右导数 $K_r^{P_{k-1}}$ 的斜率通过 $(P_{k-1},\omega(P_{k-1}))$,并且 $L_k(z)$ 以等于 $\omega(P)$ 在 P_k 处的左导数 $K_l^{P_k}$ 的斜率通过 $(P_k,\omega(P_k))$ 。

步骤 6. 如果 $R_{k-1}(P)$ 经过 $(P_k, \omega(P_k))$ 或者 $L_k(P)$ 经过 $(P_{k-1}, \omega(P_{k-1}))$, 然后通过移除 $[P_{k-1}, P_k]$ 更新 I。否则, $R_{k-1}(P)$ 和 $L_k(P)$ 一定会在 P = P' 处有一个唯一的交点,其中 P' 为 (P_{k-1}, P_k) 中的一个点。通过 加入 P' 到 I^* 中进行更新,并且从 I 移除 $[P_{k-1}, P_k]$ 和加入 $[P_l, P']$ 和 $[P', P_r]$ 。

步骤 7. 回到步骤 2.

步骤 8. 通过连接 $P \in I^*$ 中的所有点 $(P, \omega(P))$ 返回得到一个分段线性函数。