Math 131B: Homework 5

Owen Jones

5/12/2023

Problem 1. Exercise 2.4.2

 $f: X \to Y$ is clearly continuous if f is the constant function, so we only need to show the other direction. Let $f: X \to Y$ be a continuous function. Suppose $x_0 \in X$. Let $V = f^{-1}(B_{d_Y}(f(x_0), 1))$ which by the continuity of f is open in X. Suppose for the sake of contradiction, $X \setminus V \neq \emptyset$. Let $U = \bigcup_{x \in X \setminus V} f^{-1}(B_{d_Y}(f(x), 1))$ which by the continuity of f is an open set equal to $X \setminus V$. Since X is

connected and $U \cup V = X$, $U \cap V \neq \emptyset$. However, this is clearly impossible because any $x \in U \cap V$ cannot simultaneously have the property $f(x) = f(x_0)$, and $f(x) \neq f(x_0)$. Hence, $X \setminus V = \emptyset$ and f is constant.

QED

Problem 2. Exercise 2.4.7

Suppose E is a path connected subset of X, and suppose for the sake of contradiction E is disconnected. Let U and V be disjoint non-empty relatively open subsets s.t $U \cup V = E$. Let $x \in U$ and $y \in V$. It follows there exists a continuous function $\gamma:[0,1] \to E$ s.t $\gamma(0) = x$ and $\gamma(1) = y$. Let $a = \sup\{z \in [0,1]: \gamma(z) \in U\}$ where $\gamma(a) \in E$. Because U is relatively open in E, $\gamma(a) \in U$ implies $\gamma(a) \neq y$ and there exists $\epsilon > 0$ s.t $B_{(E,d_{E\times E})}(\gamma(a),\epsilon) \subseteq U$, but this is a contradiction because then a cannot be an upper bound for $\{z \in [0,1]: \gamma(z) \in U\}$. Thus, $\gamma(a) \in V$. Because V is relatively open in E, $\gamma(a) \neq x$ and $\epsilon > 0$ s.t $B_{(E,d_{E\times E})}(\gamma(a),\epsilon) \subseteq V$, but this is a contradiction because then a cannot be the least upper bound for $\{z \in [0,1]: \gamma(z) \in U\}$. Thus $\gamma(a) \notin U \cup V$ and $\gamma(a) \in E$, so $U \cup V \neq E$. Hence E is not disconnected.

QED

Problem 3. Exercise 3.2.4

Let $\epsilon=1$. Because f_n converges uniformly to f, there exists N>0 s.t $d_Y(f_n(x),f(x))<1$ for every n>N and $x\in X$. Because f is bounded, there exists a ball $B_{(Y,d_Y)}(y_0,R_f)$ in Y s.t $f(x)\in B_{(Y,d_Y)}(y_0,R_f)$ for all $x\in X$. Because each f_n for $n\in\{1...N\}$ is bounded, there exists a ball $B_{(Y,d_Y)}(y_n,R_n)$ in Y s.t $f_n(x)\in B_{(Y,d_Y)}(y_n,R_n)$ for all $x\in X$. It follows by the triangle innequality, $d_Y(y_0,f_n)\leq d_Y(y_0,f)+d_Y(f,f_n)< R_f+1$ for every $x\in X$ and n>N, and $d_Y(y_0,f_n)\leq d_Y(y_0,y_n)+d_Y(y_n,f_n)< R_n+d_Y(y_0,y_n)$ for every $x\in X$ and $n\leq N$. Let $R=\max\{R_f+1,d_Y(y_0,y_1)+R_1,...,d_Y(y_0,y_n)+R_n\}$. Thus, $f_n(x)\in B_{(Y,d_Y)}(y_0,R)$ for all $x\in X$ and all positive integers n. QED

Problem 4. Exercise 3.3.6

Suppose $(f^{(n)})_{n=1}^{\infty}$ is a sequence of bounded functions from one metric space (X, d_X) to another (Y, d_Y) , and suppose this sequence converges uniformly to another function $f: X \to Y$. Since each $f^{(n)}(x)$ is bounded, there exists $B_{(Y,d_Y)}(y_n,R_n)$ in Y s.t $f^{(n)}(x) \in B_{(Y,d_Y)}(y_n,R_n)$ for each $x \in X$. Because $(f^{(n)})_{n=1}^{\infty}$ converges uniformly to f(x), for all but finitely many n $d_Y(f^{(n)}(x),f(x)) < 1$ for each $x \in X$. It follows for any sufficiently large n, $d_Y(f(x),y_n) \leq d_Y(f^{(n)}(x),f(x)) + d_Y(f^{(n)}(x),y_n) < R_n + 1$ for each $x \in X$. Thus, for any sufficiently large n, $f(x) \in B_{(Y,d_Y)}(y_n,R_n+1)$ for each $x \in X$, so f(x) is bounded.

QED

3.2.4 assumes f is bounded and shows that every function in the sequence is contained in a single ball, and 3.3.6 proves that f is bounded if it is the limit of a sequence of bounded functions.

Problem 5. Exercise 3.3.7

Let $f_n: (0,1) \to (\frac{n}{n+1},n)$ $f_n(x) = \frac{1}{x+\frac{1}{n}}$ which converges to $f: (0,1) \to (1,\infty)$ $f(x) = \frac{1}{x}$. For every $x \in X$ and $\epsilon > 0$, there exists $N = \frac{1}{x^2\epsilon}$ s.t if n > N $d_Y(f_n(x), f(x)) = |\frac{x+\frac{1}{n}}{x(x+\frac{1}{n})} - \frac{x}{x(x+\frac{1}{n})}| = |\frac{1}{x^2n+x}| < |\frac{1}{x^2n}| < \epsilon$. Hence, f_n converges pointwise to f, where each f_n is bounded, but f is unbounded. QED

Problem 6. Exercise 3.3.8

Because each $f_n(x)$ and $g_n(x)$ are uniformly bounded, Excercise 3.2.4 states that there also exists some M>0 s.t |f(x)|< M and |g(x)|< M. Let $\epsilon>0$ and choose N to be sufficiently large s.t $d(f_n(x),f(x))<\frac{\epsilon}{2M}$ and $d(f_n(x),f(x))<\frac{\epsilon}{2M}$ by the uniform convergence of f_n and g_n . If n>N, $d(f_n(x)g_n(x),f(x)g(x))=|f_n(x)g_n(x)-f(x)g(x)|$ $=|f_n(x)g_n(x)-f_n(x)g(x)+f_n(x)g(x)-f(x)g(x)|$ $\leq |f_n(x)||g_n(x)-g(x)|+|g(x)||f_n(x)-f(x)|< M\frac{\epsilon}{2M}+M\frac{\epsilon}{2M}=\epsilon$. Hence $f_n(x)g_n(x)$ converges uniformly to f(x)g(x). QED

Problem 7. Exercise 3.4.1

- $(d_{\infty}(f,f)=0)$ This is clearly true because $d_Y(f(x),f(x))=0$ for all $x\in X$, so $\sup\{d_Y(f(x),f(x)):x\in X\}=0$. Thus, $d_{\infty}(f,f)=0$.
 - (Positivity) $d_Y(f(x), g(x)) \ge 0$ for every $x \in X$, so $\sup\{d_Y(f(x), g(x)) : x \in X\} \ge 0$. If f and g are distinct, there exists at least one point where $g(x) \ne f(x)$, so $\sup\{d_Y(f(x), g(x)) : x \in X\} > 0$ Thus, $d_\infty(f, g) > 0$ for distinct functions f and g.
 - (Symmetry) $d_Y(f(x), g(x)) = d_Y(g(x), f(x))$ for every $x \in X$, so $\sup\{d_Y(f(x), g(x)) : x \in X\} = \sup\{d_Y(g(x), f(x)) : x \in X\}$. Thus, $d_{\infty}(f, g) = d_{\infty}(g, f)$.
- (Triangle innequality) $d_Y(f(x), g(x)) \le d_Y(f(x), h(x)) + d_Y(h(x), g(x))$ for all $x \in X$, so $\sup\{d_Y(f(x), g(x)) : x \in X\} \le \sup\{d_Y(f(x), h(x)) + d_Y(g(x), h(x)) : x \in X\}$.

Because the sum of the supremums of two functions is greater than or equal to the supremum of the sum of two functions,

 $\sup\{d_Y(f(x), g(x)) : x \in X\} \le \sup\{d_Y(f(x), h(x)) : x \in X\} + \sup\{d_Y(g(x), h(x)) : x \in X\}$ Thus, $d_{\infty}(f, g) \le d_{\infty}(f, h) + d_{\infty}(g, h)$.

Hence, $B(X \to Y)$ is a metric space.

Problem 8. Exercise 3.4.2

Let $(f^{(n)})_{n=1}^{\infty}$ be a sequence of functions in the space $B(X \to Y)$ with metric d_{∞} and let f be another function in $B(X \to Y)$. First we show that if $(f^{(n)}(x))_{n=1}^{\infty}$ converges to f in the metric d_{∞} , then $(f^{(n)})_{n=1}^{\infty}$ converges uniformly to f. If $\lim_{n \to \infty} d_{\infty}(f^{(n)}, f) = 0$, then for every $\epsilon > 0$ there exists N > 0 s.t $\sup\{d_Y(f^{(n)}(x), f(x)) : x \in X\} < \epsilon$ whenever n > N. Since $\sup\{d_Y(f^{(n)}(x), f(x)) : x \in X\} < \epsilon$ and $d_Y(f^{(n)}(x), f(x)) \le \sup\{d_Y(f^{(n)}(x), f(x)) : x \in X\}$ for each $x \in X$. Hence, $f^{(n)}$ converges uniformly to f.

Next we show that if $(f^{(n)})_{n=1}^{\infty}$ converges uniformly to f, then $(f^{(n)})_{n=1}^{\infty}$ converges to f in the metric d_{∞} . If for every $\epsilon > 0$, there exists N > 0 s.t $d_Y(f^{(n)}(x), f(x)) < \frac{\epsilon}{2}$ for every n > N and $x \in X$, then $\sup\{d_Y(f^{(n)}(x), f(x)) : x \in X\} \le \frac{\epsilon}{2} < \epsilon$. Thus, $d_{\infty}(f^{(n)}, f) < \epsilon$. Hence $(f^{(n)})_{n=1}^{\infty}$ converges to f with respect to the metric d_{∞} .

Problem 9. Additional Problem

If E is disconnected, there exist two open, non-empty, disjoint sets A and B s.t. $A \cup B = E$. Using the fact that A and B are complements of each other in E, $B = \overline{B} \cap E$ and $A = \overline{A} \cap E$ are closed in E. Because A and B are subsets of E, any point in \overline{A} not in E will not be in B and vice-versa, so because A and B are disjoint, $A \cap \overline{B} = B \cap \overline{A} = \emptyset$.

Suppose there exist sets A and B s.t $A \cup B = E$, $A \cap \overline{B} = \emptyset$, and $\overline{A} \cap B = \emptyset$. $A \subseteq \overline{A}$ and $\overline{A} \cap B = \emptyset$, so $A \cap B = \emptyset$. B is open in E because $\overline{A} \cap B = \emptyset$, $\overline{A} \cap E$ is closed in E, and $E \setminus \overline{A} = B$. The same logic holds to show A is also open in E. Because A and B are disjoint, nonempty, open, and $A \cup B = E$, E is disconnected.