Betting the NFL Over/Under A Data Science Perspective

Eric H. Wilson

Business Problem

- ~38 million¹ people bet on NFL games, wagering > \$12 billion²
- Profits are maximized by responding to public demand in setting Over/Under

Can we use data and machine learning to identify betting opportunities for profit?

¹ American Gaming Association, 2019

² Play USA, 2021

Stakeholders

Coaches, General Managers, etc.

General Public

Where Do the Data Come From?

- Data from 2010-2019 comprising 2559 games compiled from http://pro-football-reference.com/
- 48 features generated from game conditions & averaging statistics over previous 5 contests,
 - Statistics include rushing and passing yards on both offense and defense, red-zone efficiency, and special teams stats
- Total score predictions for 1735 games are generated

What Do the Data Look Like?

- Total Score, Over/Under are normally distributed
- Total Score exhibits much larger range

What Do the Data Look Like?

Outliers are primarily distributed to the upside

Do Game Conditions Impact Total Score?

Week

 Over has statistically significantly higher winning percentage in first 10 weeks

Temperature

- Temperature has significant effect on passing yards -> Total Points
- Not given sufficient consideration in Over/Under

Do Game Conditions Impact Total Score?

Wind has a significant effect on Total Points output

Higher scoring in Dome games but not as much as assumed in Over/Under

Predicting Total Score — What Are the Important Features?

- No dominant feature
- V_RZ_Def_Pct has greater relative importance in Total Points than in Over/Under
- _TD high multicollinearity with _Pts

- Wind only significant feature with neg. correlation to Total Points
- Visitor features > home features
- Lack of offensive rushing features

Which Model to Choose?

- Recursive feature elimination, hyperparameter tuning used to optimize models
- All optimized models contain large # of features

Random Forest gives best results

10.9							
10.8							
10.7							
10.6 M							
10.5							
10.4							
10.3	Random Forest	Ridge	XGBoost	OLS			
	Model Model						

٠,								
	Regression Model	Ordinary Least Squares	Ridge	Random Forest	XGBoost			
	# of Features	38	45	37	41			
	Tuned Hyperparameters		alpha = 0.44	n_estimators = 25, max_depth = 5, min_samples_leaf = 1	learning_rate = 0.11, n_estimators = 50, max_depth = 3, subsample = 1.0, colsample_bytree = 0.3, gamma = 0.0, min_child_weight = 1, reg_alpha = 0			
	Top five features	V_Off_Pass, H_Pts, V_Pass_Metric, Wind, H_Pass_Metric	Wind, V_Off_Pass, H_Pts, V_RZ_Def_Pct, grass	V_Off_Pass, H_Off_Pass, H_Pass_Metric, V_RZ_Def_Pct, V_Pts_Opp	H_TO_Lost, H_Off_Pass, V_Off_Pass, V_TD, H_TD			
	Test MAE	10.701	10.516	10.505	10.571			

Threshold Tuning

- Threshold of deviation of Total Score from Over/Under is applied to optimize betting strategy
- A threshold of -1 (Under) and +2 (Over) is most optimal, yielding a seasonal return of 42% when applied to the test set

Threshold	Training Set	Test Set	Threshold	Training Set	Test Set
-5	\$92 \$0.55	-\$24 -\$0.19	All Over	\$179 \$0.24	\$42 \$0.05
-4.5	\$112 \$0.53	-\$5 -\$0.03	0.5	\$175 \$0.27	\$31 \$0.04
-4	\$120 \$0.47	\$7 \$0.04	1	\$173 \$ 0.31	\$18 \$0.03
-3.5	\$118 \$0.38	\$32 \$0.12	1.5	\$163 \$0.33	\$53 \$0.09
-3	\$144 \$0.39	\$39 \$0.12	2	\$165 \$0.40	\$29 \$0.06
-2.5	\$163 \$ 0.38	\$29 \$0.07	2.5	\$154 \$0.43	\$13 \$0.30
-2	\$194 \$ 0.39	\$19 \$0.04	3	\$132 \$0.44	\$9 \$0.03
-1.5	\$204 \$0.35	\$8 \$0.02	3.5	\$109 \$0.46	\$33 \$0.13
-1	\$222 \$0.34	\$9 \$0.01	4	\$96 \$0.51	\$47 \$0.25
-0.5	\$225 \$0.29	\$21 \$0.03	4.5	\$83 \$0.57	\$63 \$0.44
All Under	\$222 \$0.26	\$45 \$0.06	5	\$75 \$0.63	\$47 \$0.43

Conclusions

- Passing yards is most important single statistic for Total Score.
- Wind, temperature have significant effect on Total Score, not adequately taken into account in Over/Under determinations.
- No dominating feature in the prediction of total score, many features exhibit similar levels of importance — all optimized models employ a large number of features.
- Random forest model with 37 features produces the best results
- Threshold of Total Score with respect to Over/Under can be applied to optimize results