浙沙大学 实验报告

4 B.	3230/03676
11 ltn .	2029. 3.11
地点:	准生港1月实金物,8

	12.17	104 14 14 1			
课程名称:	F4.8	战约: 9万			
实验名称: 2000 高度及附着的	定量分物	同组学生姓名:			

- 、实验目的和要求(必填)

三、主要仪器设备(必填)

五、实验数据记录和处理

七、讨论、心得

二、实验内容和原理(必填)

四、操作方法与实验步骤

六、实验结果与分析(必填)

一、实验目的

1. 了解 pH总测定弱酸的解高常数和解高度的原理和方式

Z、了解直流电压法测量溶液 pH的原理

3. 学习使用 pH 计,了解用缓冲溶液校准仪器的意义

大学习物液管,容量瓶和半微量滴定管的基本操作

二、实验原理

1、pH计的原理:电位分析法

自细测得的化学电池的电动势转换成对表示缺

(玻璃铁) (地种绿电板) 特别溶液

PH测定原电池的组成为:

山AglAgcl,内的比溶液/玻璃膜/州溶液/kcl(饱和),Hg.Cl/Hgli

州计在使腻要校准,测量最适应围为1~/。

补充、离子强度 I=支气 Cizi² **浓度** 电荷数

实验名称:	٠.	14. //	学号:
		姓名:	

2. 棚岛度与解离常数

(1) Z面发电部预: HA+HO=H30+Ac

$$k_{\alpha}^{\theta} = \frac{c(H')}{c^{\theta}} \cdot \frac{c(Ac)}{c^{\theta}}$$

$$\frac{c(H_{Ac})}{c^{\theta}}$$

其中C(H+)、C(Ac), C(HAC)为平衡引浓度, C= 1 mol/L

初:HAC来度为C

末: CCHAC)= C-CCH+), CCH+)=CCAC)

解剖度 X= C(HT) , 弱电解发浓度越大,从越小

解离常数 是 = (()) = ()

实验中配制&已知浓度的HAc缩液,用PH计测得PH值, 换算得CUHT),代入公式即球进口与Ko

(2)缓冲溶液:由MAC与HAC组成

pH= Pka+ y c(Ac) 当c(Ac) = C(HAc)时, Pka= pH i ka = CCH+)/

3、实验仪器及试剂

仪器、州计、烧杯、滴定管、物液管、容量瓶、吸耳球 试剂:2酸溶液(0,1mol·L'),未知一元弱酸溶液(0,1mol·L'), Na OH (0.1 mol·L-1), 0.2% 動廠试剂: "解"置意位"开闭工程"。

別け直乗利要核連、郷屋最立資用という。

制机。高于马克拉丁生态。这

测量顺序为日、0、0、0、0、0

符号

区)可使用PH=5、01到7、00线冲流 延期保存,长期保存不放回保湿性

(4)校准先放7片8.86 画放7件9.00

(5)每汉)一次清洪电极

iT

四、数据记录及处理

	Z	炎电离	度及解	高常致洪	JE .	1 1/2
编号	C _o	PH	(C41')	CLAE)	ka	3
1	0.0/022	3.51	3/x/o-4	シリメトサ	9.68×/0-t	3.03
2	0.02044	3.13	7.4x p-9	7.4×10-4	3.78×10-5	
3	0.05/10	2,92	1-2×10-3	1-2×10-3	5.89 40.2	2135
- 4	0.1022	2.76	1.7×10-3	17×10-3	2,90×10-5	1.61
1117	7.	17: Ka:	263×10-5	細	破不需要	柒 科值
5	1	4.59	2574/0-5	/	25/x/b-5	

T=24.7°C

- · 结果表明, 解离度 《随 2酸浓度 增大而下降, 成功验证 弱电解 浓度越大, 《越小的规律
- 误差分析: 理论值 ka⁰=1.77×10⁻⁵ 实验值 ka⁰= 2.63×10⁻⁵

相对误差、2.63×10-5-1.77×10-5 = 48.6%

- 原图:(1) 乙酸溶液配完后放置时间过长 有部分乙酸挥发,实际浓度低于理论值
 - (2) 使用粉液管时不精确。取得的Z酸偏少,测得CHT)编制, PH偏高 ,
 - 13)使用9H计测量时特测溶液摇晃不塌,段于读数,使唱读到的数值并非稳定值

(4)滴定时肉眼判断不准确

实验名称:

五、实验感悟

姓名:_____学号:_____

看似并不复杂的实验其实蕴含了众多非常重要的化学实验操作技能,如物液管,容量瓶。pH计等仪器的使用。每种仪器都需要学习其完整严谨的使用方去,否则在流程中许多微小的不规,范操作的累加。就会导致实验结果的天差地别。课前者老师演示,感觉并不困难,但实际上手操作时也会手忙脏肚。总顾言之,我的耐心好细程度,实验技能等能力在接下来的课程中还有很大提升空间。

六、思考题

订

线

- 1. 为了防止pH计未被去离子水冲洗干净,而上一溶液浓度比特测浓度高则使溶液浓度变高而形成浓度误差。
- 2、U)不可从,此时无法忽略本电离 (2)不可从,AC会影响电离平衡 (3)可从
- 3、 Koro受影响, X 受影响 / X 越大则电离度越大,不能表示CLHT)越大加在单一溶液中处理 PH越大,CLHT)越小 (HTZ /// 西 NOLLIA) 中京
- 4、测HAC的 ka®时使用公式 ka= [HT], 所以要测HAC被 测定未知酸时使用公式 pka= pH, 所以不必测浓度
- 5、有景如何,HAC)农度与PH值呈线性关系,浓度不准确则PH值不准
- 6、不需要, 只需滴定剂/AOH和酸咖啡