Tittle: Public Health Awareness Campaign Analysis

Introduction:

Transportation efficiency is a critical factor in urban planning and sustainability. This document initiates the process of analyzing public transportation efficiency using IBM Cognos for visualization. Beginning with an exploration of the concept of transportation efficiency, we aim to collect, process, and clean relevant data to facilitate in-depth analysis. This analysis will provide valuable insights for improving public transportation system.

<u> Analysis Objectives:</u>

- The primary objectives of this project are to assess and improve public transportation efficiency. This involves evaluating factors such as ridership trends, route optimization, on-time performance, and environmental impact. We seek to leverage IBM Cognos for data visualization to gain actionable insights, enhance decision-making for transportation authorities, and contribute to more sustainable and effective urban mobility systems.
- > At present we tried visualisations that show how NumberOfBoardings is distributed across routes, stops and a week.

Data Cleaning and Preprocessing:

```
In [1]:
```

```
import numpy as np import pandas as pd
import osfor dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

/kaggle/input/unisys/Public Health Awareness Campaign Analysis.doc

- Age is the general age of the Person
- Gender is the general character of the person

- Mental Heath is the based on the Human Mental Power
- Physical Health is the based on Human Physical Strength
- Benefits is the how the people get useful from the Campaign

Step-1: Load the data set from the above link

https://www.kaggle.com/datasets/osmi/mental-health-in-tech-survey

import pandas as pd = pd.read_csv('/kaggle/input/unisys/survey.CSV', low_memory=False)data.shapedata.head(10)

Load the Dataset

Timestamp	Age	Gender	Country	state	self_empl	family_hi:	treatment	work_inte
27-08-2014 11:29	37	Female	United Sta	IL	NA	No	Yes	Often
27-08-2014 11:29	44	M	United Sta	IN	NA	No	No	Rarely
27-08-2014 11:29	32	Male	Canada	NA	NA	No	No	Rarely
27-08-2014 11:29	31	Male	United Kir	NA	NA	Yes	Yes	Often
27-08-2014 11:30	31	Male	United Sta	TX	NA	No	No	Never
27-08-2014 11:31	33	Male	United Sta	TN	NA	Yes	No	Sometime
27-08-2014 11:31	35	Female	United Sta	MI	NA	Yes	Yes	Sometime
27-08-2014 11:32	39	M	Canada	NA	NA	No	No	Never
27-08-2014 11:32	42	Female	United Sta	IL	NA	Yes	Yes	Sometime
27-08-2014 11:32	23	Male	Canada	NA	NA	No	No	Never
27-08-2014 11:32	31	Male	United Sta	ОН	NA	No	Yes	Sometime
27-08-2014 11:32	29	male	Bulgaria	NA	NA	No	No	Never
27-08-2014 11:33	42	female	United Sta	CA	NA	Yes	Yes	Sometime
27-08-2014 11:33	36	Male	United Sta	CT	NA	Yes	No	Never
27-08-2014 11:33	27	Male	Canada	NA	NA	No	No	Never

Step 2: Drop duplicates and Check data types of columnsdata = da ta.drop_duplicates()import seaborn as snsprint(data.dtypes)

Age	int
Gender	String
Country	String
Physical	String
Health	

Mental String

Health

Benefits String

Step 3: Check data types of columnsprint("\nCheck data types of c
olumns")print(data.dtypes)

Age int

Gender String

Country String

Physical String

Health

Mental String

Health

Benefits String

Step 4: Handle mixed data types#'Timestamp' column has mixed type
s, convert it to numericdata['Timestamp'] = pd.to_numeric(data[Time
stamp], errors='coerce')print("Handle mixed data types")print(data.
shape)

Handle mixed data types

(10857234, 6)

Step 5: Handle missing values# Drop rows with missing values or f
ill them based on your project required data= data.dropna()print("\
nHandle missing values")print(data.shape)

Handle missing values

(6414906, 6)

#Step 6 : Unique values for each column in the DataFrameprint(data.
nunique())

Age	1646
Gender	49
Country	49
Physical	49
Health	
Mental	49
Health	
Benefits	49

Visualization on IBM Cognos:

Gender by **Age** is the bar chart which to take the people to survey in certain age to find male or female

State by **self_employed** which means how the people are self employed by statewise

3

family_history by work_interfere

Family history by work interfere which people to make there doing the job

The person who benefit who by tech companys

5

Leave by **anonymly** who can take leave on sick or illnes

mental_health_consequence by phys_health_consequence

Person who can by **Mental_health** and **Physical_health**

Comments by **obs_consequence** which the who see some consequences on the commented on that