## 2019 Presidential Election Public Opinion Tweet Sentiment Analysis

Using LSTM & Random Forest Algorithm



## Table of Content

- O1. Project Brief
- O2. Data Exploration & Understanding
- O3. Data Cleaning & Preprocessing
- 04. Exploratory Data Analysis (EDA)
- 05. Random Forest & LSTM Model Results
- **O6.** Random Forest Parameter Tuning
- 07. Sentiment Analysis Model Reliability Test
- 08. Conclusion

## Project Brief

Given the 2019 presidential election's tweet data of public opinion, this project:

- > Experiment with varieties of preprocessing and vectorization technique
- > **Test** the Random Forest & LSTM algorithm
- > Optimized model (Hyperparameter Tuning)
- > Evaluate and conclude which algorithms is the best performing

EDA, Data Data Feature Data Model Cleaning & **Exploration** & Modeling Extraction **Evaluation** Understanding **Preprocessing** Methodology Text Cleaning Data Quantity TF-IDF Vectorizer • Test 1: Precision (e.g. Stopwords, • Data Distribution Random Forest Recall Punctuation, Case Algorithm EDA Wordcloud • Split Data Train & • F1-score Folding) Test (80:20) • Test 2: • Text Preprocessing LSTM Algorithm Stopwords removal Word Tokenization Sentence Tokenization Word2Vec (CBOW)

## Data Exploration & Understanding

There are **1,814 tweet data** related to 2019 presidential election which **distributed almost evenly (~33%)** among 3 sentiments (Positive, Negative, Neutral)



## Data Cleaning & Preprocessing

#### **Data Final**

data.head()

1. Project Brief

|   | Unnamed: | sentimen | tweet                                                         | tweet_clean                                                | tweet_sw                                                   | tweet_token_words                                    | tweet_token_sentences                                | tweet_w2v_model                                         |
|---|----------|----------|---------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| 0 | 0        | negatif  | Kata<br>@prabowo<br>Indonesia<br>tidak dihargai<br>bangsa     | kata<br>indonesia<br>dihargai<br>bangsa ase<br>berita past | kata<br>indonesia<br>dihargai<br>bangsa asing<br>berita pa | [kata, indonesia,<br>dihargai, bangsa, ase,<br>berit | [kata indonesia dihargai<br>bangsa ase berita pas    | [-0.031047378,<br>0.108620666,<br>0.06571932,<br>0.0231 |
| 1 | 1        | netral   | Batuan<br>Langka,<br>Tasbih Jokowi<br>Hadiah dari<br>Habib    | batuan langka<br>tasbih jokowi<br>hadiah habib<br>luthf    | batuan<br>langka tasbih<br>jokowi hadiah<br>habib luthf    | [batuan, langka,<br>tasbih, jokowi,<br>hadiah, habib | [batuan langka tasbih<br>jokowi hadiah habib<br>luth | [0.0012729826,<br>0.003569824,<br>-0.003325973,<br>0.00 |
| 2 | 2        | netral   | Di era Jokowi,<br>ekonomi<br>Indonesia<br>semakin<br>baik     | era jokowi<br>ekonomi<br>indonesia<br>semakin baik<br>indo | era jokowi<br>ekonomi<br>indonesia<br>semakin baik<br>indo | [era, jokowi,<br>ekonomi, indonesia,<br>semakin, bai | [era jokowi ekonomi<br>indonesia semakin baik<br>ind | [-0.032167733,<br>0.10593001,<br>0.0747535,<br>0.035609 |
| 3 | 3        | positif  | Bagi<br>Sumatera<br>Selatan, Asian<br>Games<br>berdampak<br>p | sumatera<br>selatan asian<br>game<br>berdampak<br>pd ekono | sumatera<br>selatan asian<br>games<br>berdampak<br>pd ekon | [sumatera, selatan,<br>asian, game,<br>berdampak, pd | [sumatera selatan asian<br>game berdampak pd<br>ekon | [-0.0008489212,<br>0.019022403,<br>0.020040477, -0.0    |

#### **Text Cleaning**

(e.g. Stopwords, Punctuation, Case Folding)

#### **Text Preprocessing**

Stopwords removal
Word Tokenization
Sentence Tokenization
Word2Vec (CBOW)

## Exploratory Data Analysis (EDA)

"Ekonomi" is a popular topic opiniated by public related to 2019 presidential elections as it's consistently topN in all sentiment category.

On candidates side: "Jokowi" were topN in all sentiments, occured slightly more compared to "Prabowo" in positive and neutral sentiments. However, "Jokowi" surpassed "Ekonomi" as the top1 word in negative sentiment tweets while "Prabowo" were mentioned way less in comparison

#### Positive Sentiment Word Cloud

# Positive Reviews Word Cloud or angular production with but the production of the pr

#### **Neutral** Sentiment Word Cloud



#### **Negative** Sentiment Word Cloud



### Random Forest & LSTM Model Results

#### **Random Forest Baseline**

#### 1. Model Evaluation on **train set**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negatif      | 1.00      | 1.00   | 1.00     | 479     |
| netral       | 1.00      | 1.00   | 1.00     | 480     |
| positif      | 1.00      | 1.00   | 1.00     | 493     |
| accuracy     |           |        | 1.00     | 1452    |
| macro avg    | 1.00      | 1.00   | 1.00     | 1452    |
| weighted avg | 1.00      | 1.00   | 1.00     | 1452    |

#### 2. Model Evaluation on test set

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negatif      | 0.58      | 0.74   | 0.65     | 117     |
| netral       | 0.61      | 0.61   | 0.61     | 127     |
| positif      | 0.60      | 0.43   | 0.50     | 119     |
| accuracy     |           |        | 0.59     | 363     |
| macro avg    | 0.59      | 0.59   | 0.59     | 363     |
| weighted avg | 0.59      | 0.59   | 0.59     | 363     |

#### **LSTM Baseline**

#### 1. Model Evaluation on train set

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| negatif      | 0.98      | 0.98   | 0.98     | 478     |  |
| netral       | 0.96      | 0.96   | 0.96     | 480     |  |
| positif      | 0.96      | 0.96   | 0.96     | 493     |  |
| accuracy     |           |        | 0.97     | 1452    |  |
| macro avg    | 0.97      | 0.87   | 0.97     | 1452    |  |
| weighted avg | 0.97      | 0.97   | 0.97     | 1452    |  |

#### 2. Model Evaluation on **test set**

|                                       | precision            | recall               | f1-score             | support           |
|---------------------------------------|----------------------|----------------------|----------------------|-------------------|
| negatif<br>netral<br>positif          | 0.98<br>0.97<br>0.96 | 0.98<br>0.95<br>0.98 | 0.98<br>0.96<br>0.97 | 134<br>107<br>122 |
| accuracy<br>macro avg<br>weighted avg | 0.97<br>0.97         | 0.97<br>0.97         | 0.97<br>0.97<br>0.97 | 363<br>363<br>363 |

LSTM Evaluation Metrics (precision, recall, F1–Score) were around ~97%,

LSTM evaluation
were significantly
better compared to
random forest
(~59%)

## Random Forest Parameter Tuning

#### **Top 5 Metrics Parameter Tuning**



```
### Get Best Parameters
grid_search.best_params_
```

{'max\_depth': 15, 'max\_features': 'auto', 'n\_estimators': 500, 'n\_jobs': -1}

# Define random forest model
model = RandomForestClassifier(max\_depth = 15, max\_features = "auto", n\_estimators = 500, n\_jobs = -1)

#### **Random Forest Post - Tuning**

#### 1. Model Evaluation on train set

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negatif      | 0.94      | 0.90   | 0.92     | 479     |
| netral       | 0.82      | 0.94   | 0.88     | 480     |
| positif      | 0.97      | 0.87   | 0.92     | 493     |
| accuracy     |           |        | 0.90     | 1452    |
| macro avg    | 0.91      | 0.90   | 0.90     | 1452    |
| weighted avg | 0.91      | 0.90   | 0.90     | 1452    |

#### 2. Model Evaluation on **test set**

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| negatif      | 0.59      | 0.72   | 0.65     | 117     |  |
| netral       | 0.62      | 0.56   | 0.59     | 127     |  |
| positif      | 0.60      | 0.53   | 0.56     | 119     |  |
| accuracy     |           |        | 0.60     | 363     |  |
| macro avg    | 0.60      | 0.60   | 0.60     | 363     |  |
| weighted avg | 0.60      | 0.60   | 0.60     | 363     |  |

## Sentiment Analysis Model Reliability Test

```
# Panggil fungsi predict dengan teks yang ingin Anda prediksi
  predict("di era jokowi ekonomi indonesia semakin baik indonesiamaju jokowilagi jokowimenang total debat") # Aktual Positif
1/1 [======= ] - Os 163ms/step
Sentimen: Negative
Waktu prediksi: 0.39333176612854004 detik
   # Panggil fungsi predict dengan teks yang ingin Anda prediksi
  predict("kata indonesia dihargai bangsa asing berita pasti hoax buatan penguasa ") # Aktual Negatif
1/1 [======= ] - Os 35ms/step
Sentimen: Negative
Waktu prediksi: 0.09423494338989258 detik
  # Panggil fungsi predict dengan teks yang ingin Anda prediksi
  predict("negarawan sejati sll bangga mengedepankan harga diri bangsanya berdaulat gantipresiden") # Aktual Natral
1/1 [======= ] - Os 144ms/step
Sentimen: Negative
Waktu prediksi: 0.36240100860595703 detik
   # Panggil fungsi predict dengan teks yang ingin Anda prediksi
  predict("bangun bangsa mendukung perekonomian negara bersama pak jokowi ayo kerja") # Aktual Netral
1/1 [======= ] - Os 98ms/step
```

Upon testing the model to a text, the prediction were heavily resulted as "negative sentiment" instead of its actual sentiment (4 out of 4 were flagged negative)

Further checks & test might need to be done to find and address the cause

Sentimen: Negative

Waktu prediksi: 0.23909282684326172 detik

2. Pre-modeling

## Conclusion

2. Pre-modeling

- Word Tokenization along with wordcloud can help to visualize the top word for analysis
- Based on the test, LSTM algorithm's evaluation metrics were significantly better compared to Random Forest
- Parameter tuning on Random Forest does improve the evaluation metrics performance, however the improvement was not significant (~1%) and still low compared to LSTM evaluation
- Sample test is good to be conducted to ensure the model reliability

## Thank You!

2023 - Apollo Team - Indonesia Al NLP Batch 2