SPMの結果表示

筑波大学医学医療系精神医学 根本清貴

この時間の作業ディレクトリ

- img_data/nisg-201912/ex4 がこの時間のディレク トリです
- こちらのディレクトリに移動してください

この時間で習得すること

- 2つの統計結果を同時に図示する方法
 - 断層像に表示
 - 脳表に表示
- 先程のSubj1, Subj2の結果を同時表示

Rendering レンダリング

レンダリング (rendering)とは、データ記述言 語やデータ構造で記述された抽象的で高次 の情報から、コンピュータのプログラムを用い て画像・映像・音声などを生成することをいう

複数の結果のレンダリング

SPMの左上のメ ニューの、Render... からアクセス

• Display: 脳表上へ のレンダリング

• Slice Overlay: 断層 像への重ね合わせ

2つの結果の脳表上へのレンダリング

SPMの左上のメ ニューの、Render... からアクセス

Render → Display

Render file

- spm12/rend にレンダリング用のファイルが存在
- 使うのは主に2つ
 - render_single_subj
 ect.mat
 - render_spm96.mat
- 内側面を表示したい時に render_spm96.matを利用
- 今も、render_spm96.mat を選択

Render file

- 統計結果をいくつ同時表示するかを指定
- 3つまで同時に表示可能
- 今は、2つ表示したいので、2 sets を選択

Select SPM.mat

- 1例目のSPM.matを選択
- ex4/stats/V_subj1にあるSPM.matを選択
 - NDB > V_subj1
 - apply masking: none
 - p value adjustment to control: none
 - threshold: 0.05
 - extent threshold: 400

Select SPM.mat

- 2例目のSPM.matを選択
- ex4/stats/V_subj2にあるSPM.matを選択
 - NDB > V_subj2
 - apply masking: none
 - p value adjustment to control: none
 - threshold: 0.05
 - extent threshold: 400

Results: render – Brighten blobs

- Brighten blobs は、 結果をどれだけ強調して 表示するかの選択
- どれを選ぶかは任意
- 今の場合、強調して表示 することとし て、"lots"を選択

Results: render – Which colours?

- Which colours? で 色を選択
- RGBの場合は、1例目は Red, 2例目はGreen, 3 例目はBlue
- Customでは自由に色を 選べる
- 今はRGBを選択

脳表上へのレンダリング

- 赤は1例目、緑は2例目
- 結果の共通しているとこ ろ、違っているところを表 示するのに適している

2つの結果の脳断層上へのレンダリング

SPMの左上のメ ニューの、Render... からアクセス

Render → Slice
 Overlay

image(s) to display

- 3つのファイルを同時に指定
- 背景用の構造画像
 - spm12/toolbox/
 DARTEL/icbm152.nii
- 1番目のT値画像
 - ex4/stats/V_subj1/
 spmT_0001.nii
- 2番目のT値画像
 - ex4/stats/V_subj2/
 spmT_0001.nii

- img 1の画像タイプ を指定
- 構造画像のため、 Structural を選択

- img 2の画像タイプ を指定
- 統計画像のため、 Blobs を選択

- img 2のカラーマッ プを指定
- 何でもよいが、今の 場合、autumnを指 定
- (次のスライドで示すカラーマップから自分の好きなものを選択)

Matlabで準備されているcolormap (1)

Matlabで準備されているcolormap (2)

- カラーマップの幅 を指定
- T値が1~5までを表示としたいので、15と入力

- Img 3の画像タイプ を指定
- 統計画像のため、 Blobsを選択
- *blob: 小さな塊、 (インクなどの)し み、ぼんやりした形

- img 3のカラーマッ プを指定
- 何でもよいが、今の 場合、summerを指 定

- カラーマップの幅 を指定
- T値が1~5までを表示としたいので、15と入力

Results: render – Image orientation

- 水平断、冠状断、 矢状断のどれに載 せるか指定
- 今は水平断の上に 載せたいの で、Axialを選択

Results: render – Slices to display

- Slices to display は、Z軸方向にどの スライスを表示す るか指定
- -36mm~34mmまで、1枚おきに表示したいので、

-36:2:34 と指定

Results: render

脳表ではなく、海馬領域をはじめとした皮質下領域を表示したい時に便利

Matlabコマンドからの直接の起動

Rendering

>> spm_render

- Slice Overlay
 - >> slover('basic_ui')

Questions?