$4^{\rm o}$ appello — 7 febbraio 2023

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alla base canonica) è

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & -1 \end{pmatrix}$$

- (a) Si determini se la matrice A è invertibile.
- (b) Sia $v_1 = (1, 1, 0), v_2 = f(v_1)$ e $v_3 = f(v_2)$. Si dimostri che $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .
- (c) Sia $v_4 = f(v_3)$. Si scriva v_4 come combinazione lineare dei vettori v_1, v_2, v_3 .
- (d) Si scriva la matrice B di f rispetto alla base \mathcal{B} trovata al punto (b).
- (e) Dato che A e B sono matrici simili, esiste una matrice invertibile P tale che $A = PBP^{-1}$. Si trovi una tale matrice P.

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 5 & 0 & t \end{pmatrix}$$

- (a) Calcolare gli autovalori di A e mostrare che per $t \neq 0, t \neq 5$ la matrice A è diagonalizzabile.
- (b) Consideriamo ora i due casi $t=0,\,t=5.$ Per ciascuno di questi casi calcolare gli autovettori di A e dire se A è diagonalizzabile.
- (c) Stabilire se esistono dei valori di t per i quali A sia simile a una matrice triangolare superiore avente tutti gli elementi sulla diagonale principale diversi da zero.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U l'insieme delle soluzioni del seguente sistema:

$$U: \begin{cases} x_1 - x_3 + 2x_4 = 0 \\ x_2 + 2x_3 - 2x_4 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

- (a) Trovare la dimensione e una base di U.
- (b) Determinare una base di U^{\perp} e scrivere un sistema di equazioni nelle incognite x_1, x_2, x_3, x_4 il cui insieme delle soluzioni sia U^{\perp} .
- (c) Dato il vettore $v = (1, 1, 1, 3) \in \mathbb{R}^4$, determinare le sue proiezioni ortogonali su U e su U^{\perp} .
- (d) Si dica se esiste un sottospazio $W \subset \mathbb{R}^4$ tale che $U \oplus W = \mathbb{R}^4$ e $U^{\perp} \oplus W = \mathbb{R}^4$. Se W esiste trovare una sua base, altrimenti spiegare perché un tale W non può esistere.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sia r la retta passante per A=(0,2,-1) e B=(4,0,1) e sia s la retta di equazioni

$$s: \begin{cases} x - 2z = 3\\ y + z = 3 \end{cases}$$

- (a) Determinare un punto C sulla retta s tale che il vettore \vec{AC} sia ortogonale al vettore \vec{AB} e calcolare l'area del triangolo ABC.
- (b) Verificare che le rette r e s sono parallele e scrivere l'equazione cartesiana del piano π che contiene r e s.
- (c) Determinare per quale valore di t esistono delle rette passanti per il punto P=(1,t,0) che intersecano sia r che s.
- (d) Dato il punto Q = (6, -6, -9) determinare il punto Q' simmetrico di Q rispetto al piano π .

 $4^{\rm o}$ appello — 7 febbraio 2023

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alla base canonica) è

$$A = \begin{pmatrix} 1 & -2 & 0 \\ -1 & 0 & 2 \\ 0 & -3 & 1 \end{pmatrix}$$

- (a) Si determini se la matrice A è invertibile.
- (b) Sia $v_1 = (1, 0, 1), v_2 = f(v_1)$ e $v_3 = f(v_2)$. Si dimostri che $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .
- (c) Sia $v_4 = f(v_3)$. Si scriva v_4 come combinazione lineare dei vettori v_1, v_2, v_3 .
- (d) Si scriva la matrice B di f rispetto alla base \mathcal{B} trovata al punto (b).
- (e) Dato che A e B sono matrici simili, esiste una matrice invertibile P tale che $A = PBP^{-1}$. Si trovi una tale matrice P.

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -4 & 2 & 0 \\ -2 & 0 & t \end{pmatrix}$$

- (a) Calcolare gli autovalori di A e mostrare che per $t \neq 0, t \neq 4$ la matrice A è diagonalizzabile.
- (b) Consideriamo ora i due casi $t=0,\,t=4.$ Per ciascuno di questi casi calcolare gli autovettori di A e dire se A è diagonalizzabile.
- (c) Stabilire se esistono dei valori di t per i quali A sia simile a una matrice triangolare superiore avente tutti gli elementi sulla diagonale principale diversi da zero.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U l'insieme delle soluzioni del seguente sistema:

$$U: \begin{cases} 2x_1 + x_2 - 3x_4 = 0\\ 3x_1 - x_3 - 2x_4 = 0\\ x_1 - x_2 - x_3 + x_4 = 0 \end{cases}$$

- (a) Trovare la dimensione e una base di U.
- (b) Determinare una base di U^{\perp} e scrivere un sistema di equazioni nelle incognite x_1, x_2, x_3, x_4 il cui insieme delle soluzioni sia U^{\perp} .
- (c) Dato il vettore $v=(3,-1,-1,3)\in\mathbb{R}^4$, determinare le sue proiezioni ortogonali su U e su U^{\perp} .
- (d) Si dica se esiste un sottospazio $W \subset \mathbb{R}^4$ tale che $U \oplus W = \mathbb{R}^4$ e $U^{\perp} \oplus W = \mathbb{R}^4$. Se W esiste trovare una sua base, altrimenti spiegare perché un tale W non può esistere.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sia r la retta passante per A=(1,0,-2) e B=(3,-4,0) e sia s la retta di equazioni

$$s: \begin{cases} 2x + y = 1\\ x - z = 2 \end{cases}$$

- (a) Determinare un punto C sulla retta s tale che il vettore \vec{AC} sia ortogonale al vettore \vec{AB} e calcolare l'area del triangolo ABC.
- (b) Verificare che le rette r e s sono parallele e scrivere l'equazione cartesiana del piano π che contiene r e s.
- (c) Determinare per quale valore di t esistono delle rette passanti per il punto P=(2,-1,t) che intersecano sia r che s.
- (d) Dato il punto Q = (3, -2, 4) determinare il punto Q' simmetrico di Q rispetto al piano π .

 $4^{\rm o}$ appello — 7 febbraio 2023

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alla base canonica) è

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

- (a) Si determini se la matrice A è invertibile.
- (b) Sia $v_1 = (0, 1, 1), v_2 = f(v_1)$ e $v_3 = f(v_2)$. Si dimostri che $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .
- (c) Sia $v_4 = f(v_3)$. Si scriva v_4 come combinazione lineare dei vettori v_1, v_2, v_3 .
- (d) Si scriva la matrice B di f rispetto alla base \mathcal{B} trovata al punto (b).
- (e) Dato che A e B sono matrici simili, esiste una matrice invertibile P tale che $A = PBP^{-1}$. Si trovi una tale matrice P.

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} -1 & 3 & 0 \\ 2 & -6 & 0 \\ 7 & 0 & t \end{pmatrix}$$

- (a) Calcolare gli autovalori di A e mostrare che per $t \neq 0, t \neq -7$ la matrice A è diagonalizzabile.
- (b) Consideriamo ora i due casi t = 0, t = -7. Per ciascuno di questi casi calcolare gli autovettori di A e dire se A è diagonalizzabile.
- (c) Stabilire se esistono dei valori di t per i quali A sia simile a una matrice triangolare superiore avente tutti gli elementi sulla diagonale principale diversi da zero.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U l'insieme delle soluzioni del seguente sistema:

$$U: \begin{cases} 2x_1 - 2x_2 - x_3 = 0\\ 3x_1 + 2x_2 + x_4 = 0\\ x_1 + 4x_2 + x_3 + x_4 = 0 \end{cases}$$

- (a) Trovare la dimensione e una base di U.
- (b) Determinare una base di U^{\perp} e scrivere un sistema di equazioni nelle incognite x_1, x_2, x_3, x_4 il cui insieme delle soluzioni sia U^{\perp} .
- (c) Dato il vettore $v=(2,3,5,0)\in\mathbb{R}^4$, determinare le sue proiezioni ortogonali su U e su U^{\perp} .
- (d) Si dica se esiste un sottospazio $W \subset \mathbb{R}^4$ tale che $U \oplus W = \mathbb{R}^4$ e $U^{\perp} \oplus W = \mathbb{R}^4$. Se W esiste trovare una sua base, altrimenti spiegare perché un tale W non può esistere.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sia r la retta passante per A=(0,1,3) e B=(2,3,-3) e sia s la retta di equazioni

$$s: \begin{cases} 3y + z = 2\\ x - y = 1 \end{cases}$$

- (a) Determinare un punto C sulla retta s tale che il vettore \vec{AC} sia ortogonale al vettore \vec{AB} e calcolare l'area del triangolo ABC.
- (b) Verificare che le rette r e s sono parallele e scrivere l'equazione cartesiana del piano π che contiene r e s.
- (c) Determinare per quale valore di t esistono delle rette passanti per il punto P=(1,3,t) che intersecano sia r che s.
- (d) Dato il punto Q = (-2, -3, -1) determinare il punto Q' simmetrico di Q rispetto al piano π .

$4^{\rm o}$ appello — 7 febbraio 2023

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alla base canonica) è

$$A = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

- (a) Si determini se la matrice A è invertibile.
- (b) Sia $v_1 = (1, 0, -1), v_2 = f(v_1)$ e $v_3 = f(v_2)$. Si dimostri che $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .
- (c) Sia $v_4 = f(v_3)$. Si scriva v_4 come combinazione lineare dei vettori v_1, v_2, v_3 .
- (d) Si scriva la matrice B di f rispetto alla base \mathcal{B} trovata al punto (b).
- (e) Dato che A e B sono matrici simili, esiste una matrice invertibile P tale che $A = PBP^{-1}$. Si trovi una tale matrice P.

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} 3 & -1 & 0 \\ -6 & 2 & 0 \\ -5 & 0 & t \end{pmatrix}$$

- (a) Calcolare gli autovalori di A e mostrare che per $t \neq 0, t \neq 5$ la matrice A è diagonalizzabile.
- (b) Consideriamo ora i due casi $t=0,\,t=5.$ Per ciascuno di questi casi calcolare gli autovettori di A e dire se A è diagonalizzabile.
- (c) Stabilire se esistono dei valori di t per i quali A sia simile a una matrice triangolare superiore avente tutti gli elementi sulla diagonale principale diversi da zero.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U l'insieme delle soluzioni del seguente sistema:

$$U: \begin{cases} x_1 - 3x_2 + 2x_3 = 0\\ 2x_2 - 2x_3 - x_4 = 0\\ x_1 - x_2 - x_4 = 0 \end{cases}$$

- (a) Trovare la dimensione e una base di U.
- (b) Determinare una base di U^{\perp} e scrivere un sistema di equazioni nelle incognite x_1, x_2, x_3, x_4 il cui insieme delle soluzioni sia U^{\perp} .
- (c) Dato il vettore $v=(3,-1,1,-2)\in\mathbb{R}^4$, determinare le sue proiezioni ortogonali su U e su U^{\perp} .
- (d) Si dica se esiste un sottospazio $W \subset \mathbb{R}^4$ tale che $U \oplus W = \mathbb{R}^4$ e $U^{\perp} \oplus W = \mathbb{R}^4$. Se W esiste trovare una sua base, altrimenti spiegare perché un tale W non può esistere.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sia r la retta passante per A=(1,-1,2) e B=(3,3,0) e sia s la retta di equazioni

$$s: \begin{cases} 2x - y = 1\\ x + z = 4 \end{cases}$$

- (a) Determinare un punto C sulla retta s tale che il vettore \vec{AC} sia ortogonale al vettore \vec{AB} e calcolare l'area del triangolo ABC.
- (b) Verificare che le rette r e s sono parallele e scrivere l'equazione cartesiana del piano π che contiene r e s.
- (c) Determinare per quale valore di t esistono delle rette passanti per il punto P=(2,t,2) che intersecano sia r che s.
- (d) Dato il punto Q = (-7, 1, -2) determinare il punto Q' simmetrico di Q rispetto al piano π .