Numeri reali

Tabella dei contenuti

Insieme dei reali	
Proprietà dei reali	
Postulato di Eudosso-Archimede	
Proprietà degli intervalli inscatolati	
Maggioranti e minoranti di un insieme	
Insiemi Limitati	
Massimo e minimo di un insieme	
Estremo superiore ed inferiore di un insieme	
Teorema di completezza	
Notazione degli intervalli	

Insieme dei reali

Supponiamo di aver costruito l'insieme dei numeri reali \mathbb{R} , con le familiari operazioni di addizione e moltiplicazione e la relazione d'ordine \leq . Supponiamo che:

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$

Proprietà dei reali

Supponiamo inoltre che le operazioni $+, \cdot$ e la relazione d'ordine \leq soddisfino le usuali proprietà algebriche. Ci concentriamo su due proprietà ulteriori dei numeri reali.

Postulato di Eudosso-Archimede

Per ogni $a \in \mathbb{R}, b \in \mathbb{R}$ con 0 < a < b esiste $n \in \mathbb{Z}$ t.c. na > b, cioè esisterà sempre un numero intero che moltiplicato per a sia maggiore di b.

Proprietà degli intervalli inscatolati

La proprietà degli intervalli inscatolati permette di individuare infiniti numeri reali in un intervallo di valori, quindi mostra come i numeri reali non presentano interruzioni tra loro.

Nota bene

Dati $a, b \in \mathbb{R}$ con a < b viene chiamato intervallo chiuso $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}.$

Date due successioni di reali:

$$a_0 < a_1 < a_2 < a_3 < \dots$$

 $b_0 > b_1 > b_2 > b_3 > \dots$

Tali per cui $a_j < b_j$ per ogni indice j esiste un numero reale c per cui $c \in [a_j,b_j], \ \forall j \in \mathbb{N}$. Per esempio, dato il numero reale $\sqrt{2}=1,41421\ldots$ possiamo scrivere:

$$a_0 = 1$$
 $b_0 = 1$
 $a_1 = 1, 4$ $b_1 = 1, 5$
 $a_2 = 1, 41$ $b_2 = 1, 42$
 $a_3 = 1, 414$ $b_3 = 1, 415$

Notiamo come $\sqrt{2}$ appartiene a tutti gli intervalli $[a_j,b_j]$. Questo esempio però mostra anche che i numeri razionali $\mathbb Q$ non soddisfano la proprietà degli intervalli inscatolati.

La definizione degli intervalli inscatolati può essere riformulata ma necessita di ulteriori elementi.

Maggioranti e minoranti di un insieme

Sia $S \subseteq \mathbb{R}, b \in \mathbb{R}$, si dice che b è:

- un maggiorante di S se $b \ge x$
- un minorante di S se b < x.

Insiemi Limitati

Si dice che S è:

- limitato superiormente se esiste un maggiorante di S
- limitato inferiormente se esiste un minorante di S.

Esempio L'insieme:

- [0,1] è limitato sup. ed inf.
- \mathbb{N} è limitato inf. ma non sup.
- Z non è limitato

Considerando ad esempio l'intervallo [0,1], tale insieme possiede come maggioranti tutti e soli i reali $x \ge 1$ e come minoranti tutti e soli i reali $x \le 0$.

 $Nota\ bene$

Si dice che un insieme $S \subseteq \mathbb{R}$ è limitato se è limitato sia sup. sia inf.

Massimo e minimo di un insieme

Dati $S \subseteq \mathbb{R}, b \in \mathbb{R}$ m si dice che b è massimo oppure minimo di S se:

- $b \in S$
- b è rispettivamente $\begin{cases} \text{maggiorante} \\ \text{minorante} \end{cases}$ di S

Non sempre il massimo ed il minimo di un insieme limitato esistono, ma se esistono sono unici.

Esempio L'insieme:

- [0,1] è limitato, max [0,1] = 1, min [0,1] = 0
- \mathbb{N} è limitato inf. ma non sup., max \mathbb{N} non esiste, min $\mathbb{N}=0$
- \mathbb{Z} non è limitato, max \mathbb{Z} , min \mathbb{Z} non esistono
- (0,1) è limitato ma max (0,1), min (0,1) non esistono

Nell'ultimo caso, comunque preso $b \in (0,1)$ il numero $\frac{b}{2} \in (0,1)$, $\frac{b}{2} < b$, cioè si possono scegliere numeri sempre più piccoli senza mai trovare il valore minimo, o valori sempre più grandi senza mai trovare il massimo.

Estremo superiore ed inferiore di un insieme

Dato un insieme $S \subseteq \mathbb{R}$ limitato, si definisce come:

- \bullet estremo superiore di S il minimo dei suoi maggioranti
- \bullet estremo inferiore di S il massimo dei suoi minoranti.

Esempio Dati gli insiemi limitati $S_1 = (0,1), S_2 = (-1,1) \cup [2,3]$ possiamo dire:

- $\sup (0,1) = 1$
- $\inf(0,1) = 0$
- $\sup S = 3$
- $\inf S = -1$

Non è detto che sup S, inf S siano elementi appartenenti ad S, ma se lo sono allora coincidono rispettivamente con max S, min S.

Teorema di completezza

Ogni sottoinsieme di \mathbb{R} :

- limitato superiormente, possiede un estremo superiore
- limitato inferiormente, possided un estremo inferiore.

 $Nota\ bene$

Dato l'insieme $S = \{x \in \mathbb{Q}: x^2 < 2\} = \{x \in \mathbb{Q}: -\sqrt{2} < x < \sqrt{2}\}.$ S quindi è limitato:

- $\sup S = \sqrt{2} \notin \mathbb{Q}$
- $\inf S = -\sqrt{2} \in \mathbb{Q}$

Questo dimostra che il teorema di completezza non vale per l'insieme \mathbb{Q} .

Nota bene

D'ora in poi scriveremo sup $S=+\infty$ se S non è limitato superiormente e inf $S=-\infty$ se S non è limitato inferiormente.

Esempio Dati gli insiemi \mathbb{N}, \mathbb{Z} e $S = \{x \in \mathbb{R} : x > \pi\}$:

- $\sup \mathbb{N} = +\infty$
- $\sup \mathbb{Z} = +\infty$
- $\inf \mathbb{Z} = -\infty$
- $\sup \{x \in \mathbb{R} : x > \pi\} = +\infty$

Notazione degli intervalli

Siano dati $a \in \mathbb{R}, b \in \mathbb{R}$ con a < b. Si definiscono vari tipi di intervalli **limitati** di estremi a, b:

- $[a,b] := \{x \in \mathbb{R}: a \le x \le b\}$ chiuso limitato
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$
- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ aperto limitato

Vengono poi definiti anche gli intervalli illimitati:

$$\begin{array}{l} \bullet & [a,+\infty) \coloneqq \{x \in \mathbb{R}: \ x \geq a\} \\ (-\infty,a] \coloneqq \{x \in \mathbb{R}: \ x \leq a\} \end{array} \right\} \text{ chiusi illimitati }$$

$$\begin{array}{l} \bullet & (a,+\infty) \coloneqq \{x \in \mathbb{R}: \ x > a\} \\ \bullet & (-\infty,a) \coloneqq \{x \in \mathbb{R}: \ x < a\} \end{array} \text{ aperti illimitati }$$

•
$$(-\infty, +\infty) \coloneqq \mathbb{R}$$