Folyadékszcintillációs spektroszkópia

OLAR ALEX

Eötvös Loránd Tudományegyetem

I. Mérés célja

A labor során megismerkedtünk a folyadékszcintillációs spektroszkópia módszerével.

II. Elméleti összefoglaló

A mérés során a negatív béta-bomló trícium atomot vizsgáltuk és ennek kaptuk meg 19 db spektrumát. A bomló trícium a bomlás során kibocsájt egy elektront és héliummá alakul, az elektronokat koincidenciában lehetőségünk van detektálni egy fotoelektron sokszorozó segítségével.

A felszabaduló energia nem kizárólag az elektronra fordítódik, hiszen egy antineutrínó is keletkezik a folyamat során így az elektron energia spektruma folytonos lesz. Az alakja jellemezhető a következő formulával.

$$\rho(E)dE \sim \sqrt{E}(Q - E)^2 \tag{1}$$

A kapott kifejezéssel felírva a várható értéket:

$$\langle E \rangle = \frac{1}{3}Q\tag{2}$$

A bomlás során maximálisan 18.6 keV energia szabadul fel, ennek harmada az mely a várható érték lesz.

$$\langle E \rangle \approx 6.2 \text{ keV}$$
 (3)

A kiértékelés során megillesztettük az (1)-es összefüggést, majd kiszámoltuk az energia várható értékét a súlyozott átlagokból, majd az (1)-es összefüggést kiegészítettük a labor mellé kapott cikkből származtatott Fermi-függvénnyel.

III. Kiértékelés

III.1. Átlag spektrum

A mért adatok átlag spektruma hibákkal:

1. ábra. A spektrumok átlaga

Jól látható, hogy a hibák elenyészően kicsik, a különböző mérések nagyban fedésben vannak.

III.2. Szórás és beütés szám

Az egyes 'bin-ekben lévő beütések hibáját (σ) véve az átlag beütések számának a következő összefüggést kell elméleti úton mutatnia:

$$\sigma^2 = m \cdot N$$

Ahol N a beütések átlagos száma adott 'bin-ben, míg σ a szórás.

2. ábra. Szórás

Látható, hogy az illesztés paraméterei:

$$\sigma^2 = m * N = (0.861 \pm 0.001) * N$$

III.3. Átlagos energia

Az energia átlagok a súlyozott spektrum átlagokból pedig:

$$\left\langle E\right\rangle = 6.1875 \pm 0.0076~keV$$

ami nagyban összevág a kívánt, elméleti adattal.

3. ábra. Átlagos energia alakulása a különböző spektrumokban

III.4. Illesztések

III.4.1. Fermi függvény nélkül

Először az (1) - es összefüggést illesztettük meg. Ez többé kevésbé sikerült. Az illesztés során két paramétert használtunk Q-t és egy normálási tényezőt N-t. Az illesztést Pythonban végeztük el, és hiába állítottuk a paramétereket, nem kaptunk sokkalta változatosabb illesztéseket. Az illesztett görbék paramétereit táblázatban tüntetem fel és csak egy ábrát közlök, hiszen feleslgeesnek érzem mind a 19-et belerakni a jegyzőkönyvbe.

Norm factor	Q [keV]
0.0001 ± 0.00000	17.662 ± 0.544
0.0001 ± 0.00000	17.645 ± 0.553
0.0001 ± 0.00000	17.588 ± 0.532
0.0001 ± 0.00000	17.628 ± 0.542
0.0001 ± 0.00000	17.633 ± 0.546
0.0001 ± 0.00000	17.598 ± 0.545
0.0001 ± 0.00000	17.595 ± 0.552
0.0001 ± 0.00000	17.589 ± 0.530
0.0001 ± 0.00000	17.580 ± 0.548
0.0001 ± 0.00000	17.596 ± 0.557
0.0001 ± 0.00000	17.601 ± 0.536
0.0001 ± 0.00000	17.592 ± 0.544
0.0001 ± 0.00000	17.638 ± 0.553
0.0001 ± 0.00000	17.625 ± 0.559
0.0001 ± 0.00000	17.606 ± 0.538
0.0001 ± 0.00000	17.612 ± 0.551
0.0001 ± 0.00000	17.561 ± 0.553
0.0001 ± 0.00000	17.621 ± 0.550
0.0001 ± 0.00000	17.612 ± 0.550
0.0001 ± 0.00000	17.544 ± 0.550

4. ábra. A 7. illesztés - paraméterivel

III.4.2. Fermi fügvénnyel

Az irodalomban [2] található Fermi-függvényt használva, mely kisebb magokra, β^- -bomlásra a következő:

$$P(E)_{\eta} = \eta^{2} P(E) 2\pi \frac{Y(\eta)}{(1 - e^{-2\pi Y(\eta)})}$$

$$P(E) = N\sqrt{E}(E - Q)^{2}$$

$$Y(\eta) = \frac{3}{137} \cdot \frac{(1 + \eta^{2})^{\frac{1}{2}}}{\eta}$$

Jól láható, hogy $P(E)_{\eta}$ egy három paraméteres függvény melynek illesztése nem triviális és a számítógép nem is bírkózott meg vele sajnálatos módon. Ezért azt a módszert alkalmaztuk, hogy a felhasználtuk az előző illesztés N,Q paramétereit és csakis az η paramétert illesztettük meg az előbbi függvényben. Ezáltal az illesztések konvergáltak, de precízek sajnos nem lettek.

η	Norm factor	Q [keV]
0.9521 ± 0.0004	0.0001 ± 0.00000	17.662 ± 0.544
0.9521 ± 0.0004	0.0001 ± 0.00000	17.645 ± 0.553
0.9521 ± 0.0004	0.0001 ± 0.00000	17.588 ± 0.532
0.9521 ± 0.0004	0.0001 ± 0.00000	17.628 ± 0.542
0.9521 ± 0.0004	0.0001 ± 0.00000	17.633 ± 0.546
0.9521 ± 0.0004	0.0001 ± 0.00000	17.598 ± 0.545
0.9521 ± 0.0004	0.0001 ± 0.00000	17.595 ± 0.552
0.9521 ± 0.0004	0.0001 ± 0.00000	17.589 ± 0.530
0.9521 ± 0.0004	0.0001 ± 0.00000	17.580 ± 0.548
0.9521 ± 0.0004	0.0001 ± 0.00000	17.596 ± 0.557
0.9521 ± 0.0004	0.0001 ± 0.00000	17.601 ± 0.536
0.9521 ± 0.0004	0.0001 ± 0.00000	17.592 ± 0.544
0.9521 ± 0.0004	0.0001 ± 0.00000	17.638 ± 0.553
0.9521 ± 0.0004	0.0001 ± 0.00000	17.625 ± 0.559
0.9521 ± 0.0004	0.0001 ± 0.00000	17.606 ± 0.538
0.9521 ± 0.0004	0.0001 ± 0.00000	17.612 ± 0.551
0.9521 ± 0.0004	0.0001 ± 0.00000	17.561 ± 0.553
0.9521 ± 0.0004	0.0001 ± 0.00000	17.621 ± 0.550
0.9521 ± 0.0004	0.0001 ± 0.00000	17.612 ± 0.550
0.9521 ± 0.0004	0.0001 ± 0.00000	17.544 ± 0.550

 η lényegében konstans lett minden egyes görbére. Ez nem feltétlenül probléma abból a szempontból, hogy a görbék, mint az az átlagolás során kiderült nem térnek el jelentős mértékben. Itt is egy ábrát mellékelek csak.

5. ábra. A 7. illesztés - paraméterivel

IV. Diszkusszió

A mérés során a műszerhez kapcsolt számítógép kék halált kapott. A gép csatlakoztatva van az internetre és még mindig csak Windows XP fut rajta. A mérési adatokat ezért később kaptuk meg és a mérést nem mi végeztük el valójában.

Hivatkozások

- $[1\]\ http://metal.elte.hu/oktatas/alkfizlab/meresleirasok/FSS.pdf$
- $[2\]$ I. Feister Numerical evaluation of the Fermi-Beta Distribution Function