LAUZTAS LĪNIJAS UN ŠAHS

1.1 Hilberta līkne

Definēsim rekursīvi līknes $H_k(t)$.

Attēlā redzamas līknes $H_1(t)$, $H_2(t)$ un $H_3(t)$. Par līkni šeit saukta funkcija, kas definēta skaitļiem $t \in [0;1]$, bet vērtības ir skaitļu pāri (x,y) jeb punkti vienības kvadrātā $[0;1] \times [0;1]$.

Līkni $H_1(t)$ vispirms definējam vērtībām $t \in \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$. Sadalām kvadrātu $[0;1] \times [0;1]$ četros mazākos kvadrātos un skaitļus $\{0, 1/3, 2/3, 1\}$ attēlojam uz mazo kvadrātu centriem $(\frac{1}{4}, \frac{1}{4}), (\frac{1}{4}, \frac{3}{4}), (\frac{3}{4}, \frac{3}{4})$ un $(\frac{1}{4}, \frac{1}{4})$. Visām citām vērtībām $t \in [0;1]$ līkne ar nemainīgu ātrumu pārvietojas starp norādītajiem punktiem. Līknes vienādojumu var uzrakstīt kā sistēminu, škirojot gadījumus:

$$H_1(t) = \begin{cases} \left(\frac{1}{4}, \frac{1}{4}\right), & \text{if } z = 0\\ \left(\frac{1}{4}, 3 \cdot \left(\frac{1}{3} - t\right) \cdot \frac{1}{4} + 3 \cdot (t - 0) \cdot \frac{3}{4}\right), & \text{if } z \in (0/3; 1/3)\\ \left(\frac{1}{4}, \frac{3}{4}\right), & \text{if } z = 1/3\\ \left(3 \cdot \left(\frac{2}{3} - t\right) \cdot \frac{1}{4} + 3 \cdot \left(t - \frac{1}{3}\right) \cdot \frac{3}{4}\right), & \text{if } z \in (1/3; 2/3)\\ \left(\frac{3}{4}, \frac{3}{4}\right), & \text{if } z = 2/3\\ \left(\frac{3}{4}, \frac{3}{4}\right), & \text{if } z \in (2/3; 1)\\ \left(\frac{3}{4}, \frac{1}{4}\right), & \text{if } z = 1 \end{cases}$$

Līknei $H_2(t)$ sadalām nogriezni piecpadsmit vienādās daļās ar 16 punktiem:

$$t \in \left\{0, \frac{1}{15}, \frac{2}{15}, \dots, \frac{14}{15}, 1\right\}$$

Katru no šiem punktiem attēlojam par kādu no 4×4 mazo kvadrātiņu centriem, kuros sagriežam vērtību apgabalu —

kvadrātu $[0;1] \times [0;1]$. Katrā no intervāliem līkni velk kā taisnes nogriezni ar nemainīgu ātrumu.

$$H_2(t) = \begin{cases} \left(\frac{1}{8}, \frac{1}{8}\right), & \text{if } z = 0\\ \left(15 \cdot \left(\frac{1}{15} - t\right) \cdot \frac{1}{8} + 15 \cdot (t - 0) \cdot \frac{3}{8}, \frac{1}{8}\right), & \text{if } z \in (0; 1/15)\\ \left(\frac{3}{8}, \frac{1}{8}\right), & \text{if } z = 1/15\\ \dots\\ \left(\frac{7}{8}, \frac{7}{8}\right), & \text{if } z = 1 \end{cases}$$

Līdzīgi arī citām līknēm H_k – intervālu [0;1] sadala $2^{2k}-1$ vienādās daļās. Sadala arī kvadrātu $[0;1]\times[0;1]$ mazākos kvadrātiņos: $2^k\times 2^k$ un vienmērīgā ātrumā apstaigā šo kvadrātiņu centrus.

Secība, kādā līkne apstaigā mazos kvadrātiņus, veidojas rekursīvi. Līknei H_1 šī secība ir kā pakavs (1/4,1/4),(1/4,3/4),(3/4,3/4),(3/4,1/4), bet katru nākamo iegūst no iepriekšējās: Secību līknei H_{k+1} veido no četrām līknes H_k kopijām, kuras visas ir samazinātas ar līdzības koeficientu 0.5 un pagrieztas tā, kā redzams zīmējumā.

Pašu Hilberta līkni (tās vērtību argumentam $t \in [0;1]$) definē ar robežu:

$$H(t) = \lim_{n \to \infty} H_n(t).$$

Var pamatot, ka visu funkciju $H_k(t)$ virkne konverģē vienmērīgi visā intervālā.

Aplūkojam funkciju $x = H_x(t)$, kura atrod x-koordināti līknei H(t).

- Uzzīmēt grafiku funkcijai $x = H_x(t)$ ar Python Matplotlib vai līdzīgu rīku.
- Parādīt, ka $t\mapsto H_x(t)$ ir nepārtraukta funkcija.
- Parādīt, ka $t\mapsto H_x(t)$ ir vienmērīgi nepārtraukta funkcija un noteikt, kā dotajam $\varepsilon>0$ var atrast $\delta>0$ tā, lai argumentiem t_1,t_2 , kam $|t_1-t_2|<\delta$ izpildās $|H_x(t_1)-H_x(t_2)|<\varepsilon$.

Atbilde:

Vispirms uzzīmējam koordinātes Hilberta līknes tuvinājumiem $H_1(t)$, $H_2(t)$, $H_3(t)$. Pēc tam (pa labi) attēlojam grafiku pašas Hilberta līknes projekcijai uz x ass.

1.2 Šaha dāmu novietošana

Dots 12×12 šaha galdiņš. Kā izvietot tajā 12 šaha dāmas tā, lai tās neapdraudētu viena otru (neatrastos uz tās pašas horizontāles, vertikāles vai diagonāles).

Hilbert Curve on x-axis: 3 Iterations and their Limit

