DOCUMENTS ET CALCULATRICES NON AUTORISÉS

La précision des raisonnements et le soin apporté à la rédaction seront pris en compte dans la notation

Exercice 1

On considère l'équation différentielle : x(x+2)y' + (x+1)y = 1 (E).

Soit $y = \sum_{n=0}^{+\infty} a_n x^n$ une solution de (E) développable en série entière en 0.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, $n a_{n-1} + (2n+1) a_n = 0$.
- 2. Montrer que, pour tout $n \in \mathbb{N}$, $a_n \neq 0$.
- 3. Déterminer le rayon de convergence R de la série entière $\sum_{n>0} a_n x^n$.
- 4. Montrer que, pour tout $x \in]-R, R[\ ,\ y(x) = \sum_{n=0}^{+\infty} \lambda^n \frac{(n!)^2}{(2n+1)!} x^n$, où λ est un réel à déterminer.

Exercice 2

Calculer la somme $A = \sum_{n=1}^{+\infty} \frac{2^n(n^2+n-1)}{3^n}$. Vous justifierez l'existence de A.

Exercice 3

Soit f la fonction définie sur \mathbb{R} , 2π -périodique telle que :

$$\forall t \in]-\pi,\pi], \ f(t) = \sin\left(\frac{t}{2}\right)$$

- 1. Tracer la représentation graphique de f sur $[-3\pi, 3\pi]$.
- 2. Justifier que, pour tout $n \in \mathbb{N}$, $a_n = 0$.
- 3. Montrer que, pour tout $n \in \mathbb{N}^*$, $b_n = (-1)^{n+1} \frac{8n}{\pi(4n^2-1)}$
- 4. Ecrire la série de Fourier trigonométrique de f.
- 5. On note S la somme de la série de Fourier de f. Justifier que S est définie sur \mathbb{R} et exprimer, pour tout $t \in [0, 2\pi]$, S(t) en fonction de t.

6. Calculer
$$B = \sum_{n=0}^{+\infty} (-1)^n \frac{2n+1}{16n^2+16n+3}$$
.

7. Calcular
$$C = \sum_{n=1}^{+\infty} \frac{n^2}{(4n^2 - 1)^2}$$
.