

Bus SystemsAutomotive Bus Systems – TT Ethernet

Prof. Dr. Reinhard Gotzhein, Dr. Thomas Kuhn

Automotive Bus Systems

Learning objectives

- Understand operation of standard ethernet
 - Bus arbitration
 - MAC Frame formats
- Understand shortcomings of standard ethernet for embedded systems
 - Predictbability
- Understand TTEthernet history and approach

Ethernet

- Local Area Network
 - Developed for the connection of computers
 - Servers, Terminals, Workstations
 - Personal computers (later)
- History
 - 1983, 802.3 CSMA/CD Standard was initially published
 - Basic Medium Access Control and frame formats
 - Foundation of modern ethernet networks
 - Based on collision detection and collision resolution
- Physical layers
 - Shared medium
 - 10Base5 ("Thick Ethernet") 9.5 mm Diameter coaxial cable (~1982)
 - 10Base2 ("Thin Ethernet") thinner "Antenna style" coaxial cable (~1985)
 - Twisted Pair (~1990-Today, 10BASE-T (1990), 100BASE-TX (1995), 1000BASE-T (1999), 10GBASE-T (2006))

10-BaseT

- Requires two twisted pair wires
- Category 3 or category 5 cable types are used for realizing network
 - Category 3:
 - Unshielded twisted pair cable
 - Supports bandwidth up to 16 Mhz
 - Used e.g. for telephone wiring
 - Category 5:
 - Unshielded twisted pair cables
 - Supportds bandwidth up to 100 Mhz
 - 4 Pairs are common, more pairs are possible
- Uses Manchester coding

100-BaseTX

- Requires two twisted pair wires
 - Category 5 cable types are used for realizing network
- Uses 4B5B coding followed by MLT-3 encoding on copper wires
 - DC equalization and optimizes transmission spectrum
 - Maps 4 data bits to 5 code bits
 - Efficient with respect to required signal spectrum

100-BaseTX	Data value	4B	5B
 4B5B Coding Maps 4 Bit data to 5 Bit code Avoids long 1 and 0 sequences by ensuring at least two level transitions per code sequence Additional code sequences are used for control words Two consecutive 5-Byte sequences ensure proper level transitions 	0	0000	11110
 Maps 4 Bit data to 5 Bit code Avoids long 1 and 0 sequences by ensuring at least two level transitions 	1 2 3 4 5	0001 0010 0011 0100 0101 0110	01001 10100 10101 01010 01011
control wordsTwo consecutive 5-Byte sequences	6 7 8 9 A B C D E	0110 0111 1000 1001 1010 1011 1100 1101 1110	01110 01111 10010 10011 10110 10111 11010 11011 11100 11101

100-BaseTX

- MLT-3 Coding
 - Cycles three voltage levels sequentially: -1, 0, +1
 - 1-Bit: Moves to next level in cycle, 0-Bit stays at current level
 - Coding efficiency of 1 Bit per Baud
 - Requires four cycles for transition through full cycle

- Ethernet frame format
 - 8 Byte Preamble (7 Bytes Preamble, 1 Byte Start of Frame)
 - 6 Byte destination address
 - 6 Byte source address
 - 2 Byte type
 - 60-1514 Bytes body (payload data)
 - 4 Byte CRC checksum (CRC-32)

64	48	48	16	32
Preamble	Dest addr	Src addr	Туре	Body // CRC

Ethernet is an address based protocol

- Source and destination nodes are explicitly addresed
- Addresses are unique and pre-programmed into Ethernet controllers
 - 6-Byte MAC-Address
 - Manufracturers receive blocks of MAC addresses for their controllers
 - No two controllers with same MAC address must appear in same network
- Broadcast address (FF:FF:FF:FF:FF:FF) supports communication with all nodes
 - In the same physical network (OSI-Layer 2 do you remember?)
 - These frames are not routed to other networks

CSMA/CD Medium access – Rationale

- Shared medium the same transmission medium us used by all stations
- CSMA/CD detects collisions, but unlike CSMA/CA does not avoid them
- CSMA/CD rationale
 - Send only if medium is idle
 - Carrier Sensing (CS)
 - Enable multiple stations to access the same medium
 - Multiple Access (MA)
 - Stop sending immediately if collision (concurrent transmitters) is detected
 - Collision Detection (CD)
- IEEE 802.3 implements fair and decentral CSMA/CD medium access algorithm
 - All stations have similar chance of accessing the medium

CSMA/CD Medium access – Collisions

- Collisions are caused when two adaptors transmit at the same time
 - Adaptors sense collision based on voltage differences
- Example

Message almost there at time T when B starts – collision!

CSMA/CD Medium access – Collisions

- Frame transmission is invalidated
 - All nodes must be able to sense that collision
- How can A know that a collision has taken place?
 - There must be a mechanism to ensure retransmission on collision
 - A's message reaches B at time T
 - B's message reaches A at time 2T
 - So, A must still be transmitting at 2T
- IEEE 802.3 specifies maximum value of 2T to be 51.2μs
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1μs to transmit one bit, 512 bits (64B) take 51.2μs
 - Ethernet frames must be at least 64B long
 - 14B header, 46B data, 4B CRC. Padding is used if data is less than 46B
 - Send 48 Bit jamming signal after collision is detected to ensure all hosts see collision

CSMA/CD Medium access – Collisions

- If a collision is detected, delay and try again
 - Delay time is selected using binary exponential backoff delay
 - 1st time: choose K from {0,1} then delay = K * 51.2us
 - 2nd time: choose K from {0,1,2,3} then delay = K * 51.2us
 - nth time: delay = K x 51.2us, for K=0..2n 1
 - Maximum value for k is 1023
 - Transmitting node gives up after several tries (usually 16)
 - Reports transmit error to host
- If backoff delays are not random, transmitters will re-start transmission at same time
 - Size of set 'k' is balanced between network size and waiting times
 - Smaller maximum value of 'k' yields less waiting times but larger probability of collisions

CSMA/CD Medium access – Implications

- Ethernet works best under light loads
 - Higher networks loads imply higher probability of collisions
- Ethernet is not predictable
 - Repeated collisions could cause a frame to be not transmitted at all
 - No worst case transmission delays can be estimated
 - Worst case = no transmission
- Ethernet is fast, cheap, and easy to administer

Ethernet - Topologies

- Line Topology
 - One broadcasting and collision domain
- Star topology (Hub)
 - Hub forwards incoming signals to all ports
 - Less error prone to errors in cables
 - Same broadcasting and collision domain as line topology

Ethernet - Topologies

- Star topology (switched store and forward)
 - Switch transmits signal to receiver port or broadcasts if receiver port is unknown
 - Forwards frame after it has been fully received
 - Bidirectional communication is used
 - Enables hierarchical topologies
 - Switch only as limited storage space, if storage space is exceeded it defaults to broadcasting
 - Switch decouples collision domains collisions are not propagated to other ports
 - Enables multiple concurrent transmissions between independent pairs of nodes
 - Prevents collisions between switched nodes if no additional line topology is used
 - Broadcasts are propagated to all nodes
 - Special measures need to be taken to avoid loops between switches

Ethernet - Topologies

- Star topology (switched wormhole routing)
 - Frame is forwarded after destination address has been evaluated
 - Faster, but more likely affected by transmission errors (why?)

- Development and standardization
 - Originated as academic research project (TT-Ethernet)
 - Development was continued by TTTech as TTEthernet
 - One out of many real-time Ethernet standards
- TTEthernet extends standard Ethernet frames
 - Time triggered messages
 - Sent at defined times
 - Take precedence over all other messages
 - Rate constrained messages
 - Guaranteed bandwidth and maximum bounds for delay
 - Best effort messages
 - Regular 802.3 frames
 - Least important in TT Ethernet topologies

- Application areas
 - Time triggered messages
 - Shared control loops
 - X-by-wire applications
 - Safety relevant communication
 - Communication that is sensitive with respect to delay/jitter
 - Rate contrained messages
 - Shared control loops
 - Multi-media traffic
 - Communication that is more tolerant with respect to delay/jitter
 - Best effort traffic
 - Software updates
 - Diagnostic data
 - "App" downloads
 - Traffic that has no particular / only low real-time requirements

Realization

- Time divided medium
- Medium is time divided into base periods
- Base periods contain fixed time triggered slots
 - Fixed time slots (TT Time Triggered) used for critical hard real-time traffic
 - Rate constrained traffic for traffic with bitrate/delay requirements
 - Best effort slots for uncritical data
- Predictable delay and jitter possible for:
 - Fixed time slots
 - Rate constrained traffic
- Best effort traffic uses remaining time

Realization – TT Ethernet is mostly realized on ISO/OSI Layer 2

	-
Preamble (7 bytes)	\setminus
Start Frame Delimiter (1 byte)	
Destination MAC Address (6 bytes)	
Source MAC Address (6 bytes)	
Tag Type Field (88d7 if TT)	V
Client Data (0 to n bytes)	
PAD (0 to 64 bytes)	
Frame Check Sequence (4 bytes)	
	_

Standard Ethernet Message Header

TTEthernet Realization

- TT Network segments
 - Switched infrastructure
 - Switches need to be TTEthernet conforming
 - Adapters transmitting TT Data need to be TTEthernet conforming
- Normal nodes may only send best effort messages
- TTEthernet nodes may send all types of messages

TTEthernet switches

- Ensure TT Protocol and bandwidth/delay constraints
 - Regular "Normal" nodes do not need to implement TT Protocol to communicate via BE frames
- BE/RC frames are delayed in TT slots
 - RC frames are transmitted due to their bandwidth guarantees
- Manage the integration of TTEthernet and standard Ethernet devices

Example TTEthernet topology – Traffic types

TTEthernet Realization

- TT Network segments
 - Switched infrastructure
 - Switches need to be TTEthernet conforming
 - Adapters transmitting TT Data need to be TTEthernet conforming
- Normal nodes
 - Normal nodes may only send best effort messages
 - TTEthernet nodes may send all types of messages
- Time synchronization
 - TTEthernet nodes maintain time synchronization to create time slots
 - Time synchronization is operational accross multiple hops (switches)
- Redundancy
 - TTEthernet networks may consist of multiple channels
 - Messages may be sent over multiple channels to obtain redundancy

TTEthernet synchronization topology - example

Synchronization

- Precondition for time triggered approaches (e.g. time slots)
- Node types
 - Synchronization master (SM)
 - Starts synchronization by transmitting synchronization frames
 - Initial and periodic re-synchronization to set and to maintain shared clock
 - Compression master (CM)
 - Receives synchronization frames from SMs
 - Calculates relative delay
 - Transmits aggregates synchronization frame back to SM and SC
 - Synchronization client (SC)
 - Receives synchronization frames and synchronizes to them
- Nodes only synchronize to synchronization frames sent by compression masters (CM)

Synchronization over multiple devices

- Necessary when devices are not directly connected to synchronization masters
- Synchronization must handle introduced delay
 - Sources of delay
 - Frame propagation t_{prop} Depends on cable length
 - Transmission time $t_{tx} = t_{bit} * n_{bits}$ Depends on synchronization frame length
 - Forwarding delay t_{switch} Depends on switch performance
- Maximum delay times for each network segment are known
 - Delays add up to worst case delay time for link i: d_{wc}(i)
- When re-synchronizing, nodes measure transmission delay and wait until worst case delay is reached
 - Accuracy depends on clock drift
 - Reduces jitter during re-synchronization

Synchronization process

Message forwarding in TTEthernet Switches

- TT Ethernet switches use store-and-forward message forwarding
 - Messages are completely received before they are forwarded to output links
 - This enables switches to change the nature of a message, e.g. a TT message could be forwarded as BE message to less significant network segments
 - RC/BE messages that are received at any port during TT slot are stored in the switch and their transmission is deferred
 - Switches assume network to be properly configured, e.g. two TT messages must not be received during the same TT slot

Message forwarding in TTEthernet Switches - Example

TTEthernet

- Supports synchronous and asynchronous real-time traffic
 - Time triggered communication
 - Rate constraint communication
- Also supports best-effort communication
 - Integration of legacy devices
- Adds redundancy
 - Different physically independent channels
- Fault detection and avoidance
 - Switches act as guards to disconnect "babbling idiots" from network
 - The same node may be connected to multiple switches for redundancy reasons
 - Cliques of wrongly synchronized nodes are detected through network monitoring
 - Multiple independent synchronization domains (channels) may be created