A Handbook of Statistical Analyses Using ${\sf R}$

Brian S. Everitt and Torsten Hothorn

CHAPTER 7

Density Estimation: Erupting Geysers and Star Clusters

- 7.1 Introduction
- 7.2 Density Estimation
- 7.3 Analysis Using R

7.3.1 A Parametric Density Estimate for the Old Faithful Data

```
R> logL <- function(param, x) {</pre>
      d1 <- dnorm(x, mean = param[2], sd = param[3])</pre>
      d2 \leftarrow dnorm(x, mean = param[4], sd = param[5])
      -sum(log(param[1] * d1 + (1 - param[1]) * d2))
+ }
R> startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3)
R> opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B",
               lower = c(0.01, rep(1, 4)),
               upper = c(0.99, rep(200, 4)))
R> opp
$par
                            sd1
 0.360891 54.612122 5.872379 80.093415 5.867289
$value
[1] 1034.002
$counts
function gradient
      55
$convergence
```

Of course, optimising the appropriate likelihood 'by hand' is not very convenient. In fact, (at least) two packages offer high-level functionality for estimating mixture models. The first one is package *mclust* (Fraley et al., 2006) implementing the methodology described in Fraley and Raftery (2002). Here,

```
R> data("faithful", package = "datasets")
   R> x <- faithful$waiting</pre>
   R> layout(matrix(1:3, ncol = 3))
   R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
          probability = TRUE, main = "Gaussian kernel", border = "gray")
   R> lines(density(x, width = 12), lwd = 2)
   R> rug(x)
   R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
          probability = TRUE, main = "Rectangular kernel", border = "gray")
   R> lines(density(x, width = 12, window = "rectangular"), lwd = 2)
11
   R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
12
          probability = TRUE, main = "Triangular kernel", border = "gray")
   R> lines(density(x, width = 12, window = "triangular"), lwd = 2)
   R> rug(x)
```


Figure 7.1 Density estimates of the geyser eruption data imposed on a histogram of the data.

a Bayesian information criterion (BIC) is applied to choose the form of the mixture model:

```
R> library("mclust")
R> mc <- Mclust(faithful$waiting)
R> mc
best model: E with 2 components
```

and the estimated means are

```
ANALYSIS USING R
```

```
5
```

```
R> library("KernSmooth")
R> data("CYGOB1", package = "HSAUR")
```

R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))</pre>

R> contour(x = CYGOB1d\$x1, y = CYGOB1d\$x2, z = CYGOB1d\$fhat,

+ xlab = "log surface temperature", ylab = "log light intensity")

Figure 7.2 A contour plot of the bivariate density estimate of the CYGOB1 data, i.e., a two-dimensional graphical display for a three-dimensional problem.

R> mc\$parameters\$mean

1 2 54.61911 80.09384

with estimated standard deviation (found to be equal within both groups)

R> sqrt(mc\$parameters\$variance\$sigmasq)

[1] 5.86848

```
R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,
+ xlab = "log surface temperature", ylab = "log light intensity",
+ zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE)
```


Figure 7.3 The bivariate density estimate of the CYGOB1 data, here shown in a three-dimensional fashion using the persp function.

The proportion is $\hat{p} = 0.36$. The second package is called *flexmix* whose functionality is described by Leisch (2004). A mixture of two normals can be fitted using

```
R> library("flexmix")
R> fl <- flexmix(waiting ~ 1, data = faithful, k = 2)
with \hat{p} = 0.36 and estimated parameters
R> parameters(fl, component = 1)
$coef
(Intercept)
54.6287
```

```
$sigma
[1] 5.895234
R> parameters(fl, component = 2)
$coef
(Intercept)
    80.09858
$sigma
[1] 5.871749
```

We can get standard errors for the five parameter estimates by using a bootstrap approach (see Efron and Tibshirani, 1993). The original data are slightly perturbed by drawing n out of n observations with replacement and those artificial replications of the original data are called bootstrap samples. Now, we can fit the mixture for each bootstrap sample and assess the variability of the estimates, for example using confidence intervals. Some suitable R code based on the Mclust function follows. First, we define a function that, for a bootstrap sample indx, fits a two-component mixture model and returns \hat{p} and the estimated means (note that we need to make sure that we always get an estimate of p, not 1-p):

```
R> library("boot")
R> fit <- function(x, indx) {</pre>
      a <- Mclust(x[indx], minG = 2, maxG = 2)$parameters
      if (a\$pro[1] < 0.5)
          return(c(p = a*pro[1], mu1 = a*mean[1], mu2 = a*mean[2]))
      return(c(p = 1 - a*pro[1], mu1 = a*mean[2], mu2 = a*mean[1]))
+ }
The function fit can now be fed into the boot function (Canty and Ripley,
2006) for bootstrapping (here 1000 bootstrap samples are drawn)
R> bootpara <- boot(faithful$waiting, fit, R = 1000)
We assess the variability of our estimates \hat{p} by means of adjusted bootstrap
percentile (BCa) confidence intervals, which for \hat{p} can be obtained from
R> boot.ci(bootpara, type = "bca", index = 1)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 1)
Intervals:
Leve 1
             BCa
95%
    (0.3041, 0.4233)
Calculations and Intervals on Original Scale
```

We see that there is a reasonable variability in the mixture model, however, the means in the two components are rather stable, as can be seen from

```
R> opar <- as.list(opp$par)
R> rx <- seq(from = 40, to = 110, by = 0.1)
R> d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1)
R> d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2)
R> f <- opar$p * d1 + (1 - opar$p) * d2
R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",
+ border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "")
R> lines(rx, f, lwd = 2)
R> lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2)
R> legend(50, 0.06, legend = c("Fitted two-component mixture density",
+ "Fitted single normal density"),
+ lty = 1:2, bty = "n")
```


Figure 7.4 Fitted normal density and two-component normal mixture for geyser eruption data.

```
R> boot.ci(bootpara, type = "bca", index = 2)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 2)
Intervals :
            BCa
Level
95%
     (53.42, 56.07)
Calculations and Intervals on Original Scale
for \hat{\mu}_1 and for \hat{\mu}_2 from
R> boot.ci(bootpara, type = "bca", index = 3)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 3)
Intervals :
Level
            BCa
      (79.05, 81.01)
95%
Calculations and Intervals on Original Scale
```

Finally, we show a graphical representation of both the bootstrap distribution of the mean estimates *and* the corresponding confidence intervals. For convenience, we define a function for plotting, namely

The element t of an object created by boot contains the bootstrap replications of our estimates, i.e., the values computed by fit for each of the 1000 bootstrap samples of the geyser data. First, we plot a simple density estimate and then construct a line representing the confidence interval. We apply this function to the bootstrap distributions of our estimates $\hat{\mu}_1$ and $\hat{\mu}_2$ in Figure 7.5.

```
R> layout(matrix(1:2, ncol = 2))
R> bootplot(bootpara, 2, main = expression(mu[1]))
R> bootplot(bootpara, 3, main = expression(mu[2]))
```


Figure 7.5 Bootstrap distribution and confidence intervals for the mean estimates of a two-component mixture for the geyser data.

Bibliography

- Canty, A. and Ripley, B. D. (2006), boot: Bootstrap R (S-PLUS) Functions (Canty), URL http://CRAN.R-project.org, R package version 1.2-26.
- Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, London, UK: Chapman & Hall/CRC.
- Fraley, C. and Raftery, A. E. (2002), "Model-based clustering, discriminant analysis, and density estimation," *Journal of the American Statistical Association*, 97, 611–631.
- Fraley, C., Raftery, A. E., and Wehrens, R. (2006), mclust: Model-based Cluster Analysis, URL http://www.stat.washington.edu/mclust, R package version 3.0-0.
- Leisch, F. (2004), "FlexMix: A general framework for finite mixture models and latent class regression in R," *Journal of Statistical Software*, 11, URL http://www.jstatsoft.org/v11/i08/.