Inna Tanni Lectus 32) to snamned

Measures of Dispersion

The deviction of an entry x in a population data set is the difference between the entry and the mean u of the data set

Defication of x=x-u

Variances

Squared differences of the given values from their writhmetic mean.

As a formula, the variance of population Observations $\chi_1, \chi_2, \dots, \chi_N$, commonly denoted by 6^{2} s

$$6^{2} = \frac{\sum (x_{1}-\bar{x})^{2}}{N} \dots c_{1}$$

and Nis the total number of Observations.

computing variance for frequency distribution;

$$6 = \frac{\sum f(x_1^2 - \overline{x})^2}{N} \quad \text{on.} \quad 6 = \left[\frac{\sum f(d)^2}{N} - \left(\frac{\sum f(d)^2}{N}\right)\right] \times h^2$$

For grouped doda zi will be the mid value of the i-th class.

Mean = 10

Mean = 10

Standard deviction; The Positive square recob Of the variance is the Standard deviation,

That is standard devication is the positive, Square root of the mean-square devications of the Observations from their arithmetic mean.

If x_1, x_2, \dots, x_N be N observations Of a variable, then the standard deviation is defined as

$$6 = \sqrt{\frac{\sum (x_i - \bar{x})^{\perp}}{N}}$$

for frequency distribution. Standard detir deviction is defined as

$$6 = \sqrt{\frac{\sum f(x_i - \overline{x})^{\perp}}{N}}$$
 on $6 = \sqrt{\frac{\sum f(d)^{\perp}}{N}} \times h$

Coefficient of variances

A coefficient of variance is computed as a percentange of the Standard deviation of the distribution of the mean of the same distribution symbolically

$$C \cdot V = \frac{6}{\sqrt{2}} \times 100$$

where 6= Standard devication = mean and co-efficient of variance for the age distribution given below;

Age	24.5-29.5	29.5-34.5	34.5-39.5	39.5-44.5	44.5-49.5	49.5-54.5
Frequency	3	9	15	12	7	4

501m

Age	Frequency	Mid value	di= zi-A	4191	5:01-
24.5-29.5	3	27	-2	-6	12
29.5-34.5	9	32	- 1	- 9	9
34.5-39.5	15	37 = A	0	0	0
39.5-44.5	12	42	1	12	12
44.5-49.5		47	2	·	28
49.5-54.5		52	3	12	36
	Idi=50	,		[네는 23	Fe=161E
	•	100000000000000000000000000000000000000	4		

$$6^{\frac{1}{2}} \left[\frac{\sum |d|}{N} - \left(\frac{\sum |d|}{N} \right)^{\frac{1}{2}} \right] \times h^{\frac{1}{2}}$$

$$= \left[\frac{97}{50} - \left(\frac{23}{50} \right)^{\frac{1}{2}} \right] \times 5^{\frac{1}{2}}$$

$$= 43.21$$

Standard devication,

$$6 = \left[\sqrt{\frac{\Sigma + idi}{N}} - \left(\frac{\Sigma + idi}{N} \right)^{2} \right] \times h$$

$$= \sqrt{43 \cdot 21} = 6 \cdot 573$$

co-efficient of variance;

we know, co-efficient of variance,

$$\frac{6}{2}$$
 x 100.

Now, mean,
$$\overline{\chi} = A + \frac{\Sigma \text{didi}}{N} \times h$$

= $37 + \frac{23}{50} \times 5$
= $39 + 2.3$
= 39.3

$$C \cdot V = \frac{6.573}{39.3} \times 100$$

$$= 16.73\%$$

Scanned with CamScanner

ن

C

ci) calculate variance. Standard devication and co-efficient of variance known the following frequency distributions

projet	10-20	20-30	30-40	40-50	50-60
No. of companies	8	12	20	6	4

(ii)

ProJit	0-70	10-20	20-30	30-40	40-50
Cosubanies NO.04	6	25	36	20	13

(iii)	Profit	0-10	10-20	20-30	30-40	40-50	50-60
·	No of Companies	E	12	20	30	20	10

(IV)

"Yaz	5-10	10-15	15-20	20-25	25-30	30-35	35-40
No.01 Managors	18	30	46	28	20	12	6

herquartile range on quartile deviations.

Interquartile range represents the difference between the third quartile B3 and the first quartile B3. Symbolically B3-B1 is interquartile range. The semi-interquartile range is called the quartile deviation.

problem: The profit earned by 100 companies are given below:

pnosis	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No of Company	4	8.	18	30	15	10	8	7

- (i) calculate the range within which middle 50% companies fall
- (i) calculate quartile devication.

D		1 Cumulcative Freques
Class	Frequency	Cumulculve
		4
20-30	4	,
	8	12
30-40	В	30
40-50	18	
70-50		60
50-60	30	75
/	15	
60-70		85
70-80	10	
70-80		93
80-90	8	100
	7	
90-100		

1St quartile

Here,
$$N=100$$
, $\frac{1\times100}{4}=25$

(40-50) is the 1st quartile class because

25th observation lies (40-50)

$$B_1 = 40 + \frac{25 - 12}{18} \times 10$$

$$= 47.22$$

Again 3nd quantile
$$\frac{3\times100}{4} = 75$$

$$0.83 = 60 + \frac{75 - 60}{15} \times 10$$

$$\frac{8_3 - 8_1}{2} = \frac{70 - 47 \cdot 22}{2}$$
= 11.39

1 300		10-20	20-30	30-40	40-5D	50-60	60-70	
Age	0-70	10-20	20 30		7			1
No.01 as	6	5	8	15	\	6	3	1
Mo. 07								

- (i) calculate the range within which middle 50% members fall
 - (ii) calculate quartile devication.

Mean Deviction: Mean devication is an average of absolute deviation of each observation from the mean. Symbolically

$$M \cdot D = \frac{\sum \frac{1}{N} |\chi_1 - \chi_1|}{N}$$
, where $\chi = mean$

Problem: Calculate the mean deviation for the following data:

	Marks	0-10	T	T				•
			10-20	20-30.	30-40	40-50	50-60	60-70
*	Frequency	6	5	8	15	7	6	3
L						,	0	7

Solo:

Marks	7,	Mid Value	di	1616	1 T	12;-21	fi 12i-z	1	-
0-10	6	5	-3	-18	•				
10-20	5	15	- 2	-10		28·4 18·4	170.4	T	
20-30	8 '	25	-1	-8	X=A+Zfidjy	•	9 <u>1</u> 67· <u>1</u>		V
30-40	15	33	0	O	-35+ -8 x16		24		
40-50	7	45	נ	7	33.4	٦١٠ ٦	81.1		
50-60	6	55	2	12		21.6	129.6		
60-70	3	65	3	ე		31.6	94.6		• #
				, e	: -				
Z.	$f_i = 50$,		() ()					

Z-ji = 50 8-= 161 FZ

Itilizi-21=658.4

e of Mean Deviction =
$$\frac{\sum \frac{1}{5} |x_i - \bar{x}|}{N}$$

= $\frac{658.4}{50}$
= 13.168 (Am)

Empirical Relationship

Q.

Quartile Devication (8.D)= 3 Standard devication (6)

Mean deviction (M.D) = 4 Standard deviction (6)

Blewrite Devication (B.D) = 5 Mean devication.

calculate standard devication

and then calculate mean devication for the following using

daras

datas		40-50 50-60
[molity 10-20]	401 1 10 70 1	70 0
projet 10-20 (Lakha)	20	$\frac{1}{6}$
No.01 8	12	
Companier		

(1
	Porofet	Compani	es Mid Value Xi	di	- Jidi	32
	10-20	8	15	-2	-16	12
	20-30	12	25	-1	0	0
	30-40	20	35	0	6	6
	40-50	6	45	1	8	16
	50-60	4	55	2	Z-Jidi=-14	Ifidi=66

Standard deviation.
$$G = \sqrt{\frac{2 \text{didi}}{N}} - \left(\frac{1 \text{didi}}{N}\right)^{L} \times h$$

$$= \sqrt{\frac{100}{50}} - \left(\frac{-14}{50}\right)^{L}$$

$$= 11.14 \text{ Lath}$$
Mean deviation = $\frac{4}{5} \times 6$

$$= \frac{4}{5} \times 11.44$$

$$= 8.912 \text{ Lath}$$

ealculate mean deviction and then calculate quartile deviction using empirical relation for the following datas

Citating		0-60 60-70
Marks 0-10 10-20 Frequent 6 5	8 15 7	6 3