5章 三角関数

BASIC

249 (1) 図のように,頂点を定めると

$$AC = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

よって
$$\sin \alpha = \frac{3}{5}, \cos \alpha = \frac{4}{5}, \tan \alpha = \frac{3}{4}$$

(2) 図のように,頂点を定めると

$$AC = \sqrt{2^2 + (\sqrt{3})^2} = \sqrt{7}$$

よって
$$\sin \alpha = \frac{\sqrt{3}}{\sqrt{7}} = \frac{\sqrt{21}}{7}, \quad \cos \alpha = \frac{2}{\sqrt{7}} = \frac{2\sqrt{7}}{7},$$

$$\tan \alpha = \frac{\sqrt{3}}{2}$$

(3) 図のように,頂点を定めると

$$BC = \sqrt{13^2 - 12^2} = \sqrt{25} = 5$$

よって
$$\sin lpha = rac{5}{13}, \;\; \cos lpha = rac{12}{13}, \;\; an lpha = rac{5}{12}$$

250 (1) 与武 =
$$\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

$$= \frac{(\sqrt{3} + 1) \cdot \sqrt{2}}{2\sqrt{2} \cdot \sqrt{2}}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

(2) 与式 =
$$\frac{1}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{\sqrt{3}}{2}$$

= $\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$
= $\mathbf{0}$

(3) 与武 =
$$\frac{\sqrt{3}+1}{1-\sqrt{3}\cdot 1}$$

$$= \frac{(\sqrt{3}+1)^2}{(1-\sqrt{3})(1+\sqrt{3})}$$

$$= \frac{3+2\sqrt{3}+1}{1-3}$$

$$= \frac{4+2\sqrt{3}}{-2}$$

$$= -2 - \sqrt{3}$$

251 (1) 与式 =
$$\sin(90^{\circ} - 6^{\circ})$$

= $\cos 6^{\circ}$

(2) 与式 =
$$\cos(90^{\circ} - 38^{\circ})$$

= $\sin 38^{\circ}$

(3) 与式 =
$$\tan(90^{\circ} - 27^{\circ})$$

= $\frac{1}{\tan 27^{\circ}}$

252 (1) 与式
$$= 0.8290$$

(2) 与式 =
$$0.8988$$

253 AB =
$$x$$
 (m) とすると $\tan 11^{\circ} = \frac{153}{x}$ よって $x = \frac{153}{\tan 11^{\circ}}$ $= \frac{153}{0.1944}$ $= 787.037 \cdots$

したがって , 約 787 m

254 (1) 与式 =
$$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} - \left(-\frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{2}}$$

= $\frac{1}{2} + \frac{1}{2}$
= 1

(2) 与武 =
$$\frac{-\frac{1}{\sqrt{3}} - 1}{1 + \left(-\frac{1}{\sqrt{3}}\right) \cdot 1}$$
$$= \frac{-1 - \sqrt{3}}{\sqrt{3} - 1}$$
$$= \frac{-(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$$
$$= -\frac{3 + 2\sqrt{3} + 1}{3 - 1}$$
$$= -\frac{4 + 2\sqrt{3}}{2}$$
$$= -2 - \sqrt{3}$$

(3) 与武 =
$$-\frac{\sqrt{3}}{2} \cdot \left(-\frac{1}{2}\right) + \frac{1}{2} \cdot \frac{\sqrt{3}}{2}$$

= $\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}$
= $\frac{\sqrt{3}}{2}$

255 (1) 与式 =
$$\sin(180^{\circ} - 83^{\circ})$$

= $\sin 83^{\circ} = 0.9925$

(2) 与式 =
$$\cos(180^{\circ} - 24^{\circ})$$

= $-\cos 24^{\circ} = -0.9135$

(3) 与式 =
$$\tan(180^{\circ} - 80^{\circ})$$

= $-\tan 80^{\circ} = -5.6713$

256 (1)
$$\sin^2 \alpha + \cos^2 \alpha = 1 \text{ LU}$$
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$
$$= 1 - \left(\frac{3}{4}\right)^2$$

$$=1-rac{9}{16}=rac{7}{16}$$
 $lpha$ は鈍角なので, $\coslpha<0$ よって, $\coslpha=-\sqrt{rac{7}{16}}=-rac{\sqrt{7}}{4}$

また

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$= \frac{\frac{3}{4}}{-\frac{\sqrt{7}}{4}}$$

$$= -\frac{3}{\sqrt{7}} = -\frac{3\sqrt{7}}{7}$$

(2)
$$\sin^2 \alpha + \cos^2 \alpha = 1 \text{ LU}$$
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$
$$= 1 - \left(\frac{1}{3}\right)^2$$
$$= 1 - \frac{1}{9} = \frac{8}{9}$$

 $=1-\frac{1}{9}=\frac{8}{9}$ α は鋭角なので, $\cos\alpha>0$ よって, $\cos\alpha=\sqrt{\frac{8}{9}}=\frac{2\sqrt{2}}{3}$

≢ t:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$= \frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}}$$

$$= \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

$$\sin^2\alpha + \cos^2\alpha = 1 \text{ より}$$

$$\sin^2\alpha = 1 - \cos^2\alpha$$

$$= 1 - \left(-\frac{5}{6}\right)^2$$

$$= 1 - \frac{25}{36} = \frac{11}{36}$$

$$\sin\alpha > 0 \text{ であるから}$$

$$\sin\alpha = \sqrt{\frac{11}{36}} = \frac{\sqrt{11}}{6}$$
また

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$= \frac{\frac{\sqrt{11}}{6}}{-\frac{5}{6}} = -\frac{\sqrt{11}}{5}$$

(4)
$$\frac{1}{\cos^2\alpha} = 1 + \tan^2\alpha = 1 + \left(\frac{1}{2}\right)^2 = \frac{5}{4}$$
 よって, $\cos^2\alpha = \frac{4}{5}$ α は鋭角なので, $\cos\alpha > 0$ $\cos\alpha = \sqrt{\frac{4}{5}} = \frac{2\sqrt{5}}{5}$

また

$$\sin\alpha = \tan\alpha\cos\alpha$$

$$= \frac{1}{2} \cdot \frac{4\sqrt{5}}{5}$$
$$= \frac{\sqrt{5}}{5}$$

(5)
$$\frac{1}{\cos^2\alpha} = 1 + \tan^2\alpha = 1 + (-4)^2 = 17$$
 よって, $\cos^2\alpha = \frac{1}{17}$ α は鈍角なので, $\cos\alpha < 0$ $\cos\alpha = -\sqrt{\frac{1}{17}} = -\frac{\sqrt{17}}{17}$

また

$$\sin\alpha = \tan\alpha\cos\alpha$$

$$= -4 \cdot \left(-\frac{\sqrt{17}}{17} \right)$$
$$= \frac{4\sqrt{17}}{17}$$

257 (1) 正弦定理より,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
 であるから
$$a = \frac{b}{\sin B} \cdot \sin A$$
$$= \frac{3 \cdot \sin 30^{\circ}}{\sin 45^{\circ}}$$
$$= \frac{3 \cdot \frac{1}{2}}{\frac{1}{\sqrt{2}}}$$
$$= \frac{3\sqrt{2}}{2}$$

(2) 正弦定理より,
$$\frac{b}{\sin B}=\frac{c}{\sin C}$$
 であるから $\sin C=c\cdot\frac{\sin B}{b}$
$$=\frac{\sqrt{2}\cdot\sin 45^\circ}{2}$$

$$=\frac{\sqrt{2}\cdot\frac{1}{\sqrt{2}}}{2}$$

$$=\frac{1}{2}$$

(3)
$$C=180^\circ-\left(45^\circ+105^\circ\right)=30^\circ$$
 正弦定理より, $\frac{a}{\sin A}=\frac{c}{\sin C}$ であるから
$$a=\frac{c}{\sin C}\cdot\sin A$$

$$=\frac{2\cdot\sin 45^\circ}{\sin 30^\circ}$$

$$=\frac{2\cdot\frac{1}{\sqrt{2}}}{\frac{1}{2}}$$

$$=2\sqrt{2}$$

 ${f 258}$ 外接円の半径を R とする . 正三角形の 1 つの内角は 60° である

$$2R = \frac{a}{\sin 60^{\circ}}$$

$$\sharp \circ \mathsf{T}$$

$$R = \frac{a}{2\sin 60^{\circ}}$$

$$= \frac{a}{2 \cdot \frac{\sqrt{3}}{2}}$$

$$= \frac{a}{\sqrt{3}} = \frac{\sqrt{3}}{3}a$$

259 (1)余弦定理より

$$a^2=b^2+c^2-2bc\cos A$$

$$=4^2+(3\sqrt{3})^2-2\cdot 4\cdot 3\sqrt{3}\cdot \cos 30^\circ$$

$$=16+27-24\sqrt{3}\cdot \frac{\sqrt{3}}{2}$$

$$=43-36=7$$
 $a>0$ であるから, $a=\sqrt{7}$

(2) 余弦定理より

$$b^2=c^2+a^2-2ca\cos B$$

$$=(\sqrt{6})^2+(2\sqrt{3})^2-2\cdot\sqrt{6}\cdot2\sqrt{3}\cdot\cos 135^\circ$$

$$=6+12-12\sqrt{2}\cdot\left(-\frac{1}{\sqrt{2}}\right)$$

$$=18+12=30$$
 $b>0$ であるから、 $b=\sqrt{30}$

(3) 余弦定理より

$$a^2=b^2+c^2-2bc\cos A$$
 $(\sqrt{7})^2=1^2+c^2-2\cdot 1\cdot c\cdot \cos 60^\circ$ $7=1+c^2-2c\cdot \frac{1}{2}$ $7=1+c^2-c$ $c^2-c-6=0$ $(c-3)(c+2)=0$ $c=3,-2$ $c>0$ であるから, $c=3$

260 余弦定理より

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{4^2 + 5^2 - 2^2}{2 \cdot 4 \cdot 5}$$

$$= \frac{16 + 25 - 4}{40} = \frac{37}{40}$$

$$\cos B = \frac{c^2 + a^2 - c^2}{2ca}$$

$$= \frac{5^2 + 2^2 - 4^2}{2 \cdot 5 \cdot 2}$$

$$= \frac{25 + 4 - 16}{20} = \frac{13}{20}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{2^2 + 4^2 - 5^2}{2 \cdot 2 \cdot 4}$$

$$= \frac{4 + 16 - 25}{16} = -\frac{5}{16}$$

261 余弦定理より

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{4^2 + 5^2 - a^2}{2 \cdot 4 \cdot 5}$$

$$= \frac{16 + 25 - a^2}{40} = \frac{41 - a^2}{40}$$

A が鋭角となるためには , $\cos A > 0$ となればよいから

$$41-a^2>0$$
 $a^2-41<0$ $(a+\sqrt{41})(a-\sqrt{41})<0$ よって, $-\sqrt{41}< a<\sqrt{41}$ $a>0$ であるから,求める a の範囲は $0< a<\sqrt{41}$

262 $\triangle ABC$ の面積を S とする .

$$(1) S = \frac{1}{2}bc\sin A$$

$$= \frac{1}{2} \cdot 5 \cdot 7 \cdot \sin 60^{\circ}$$

$$= \frac{35}{2} \cdot \frac{\sqrt{3}}{2} = \frac{35\sqrt{3}}{4}$$

$$(2) S = \frac{1}{2}ab\sin C$$

$$= \frac{1}{2} \cdot 2 \cdot 3 \cdot \sin 45^{\circ}$$

$$= 3 \cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}$$

263 $\triangle {
m ABC}$ の面積を S とすると , $S=rac{1}{2}ca\sin B$ であるから

$$7\sqrt{3} = \frac{1}{2}c \cdot 10 \cdot \sin 30^{\circ}$$

$$7\sqrt{3} = 5c \cdot \frac{1}{2}$$

$$7\sqrt{3} = \frac{5}{2}c$$

$$5 \Rightarrow c$$

$$c = 7\sqrt{3} \cdot \frac{2}{5} = \frac{14\sqrt{3}}{5}$$

264 (1) 余弦定理より

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{4^2 + 5^2 - 7^2}{2 \cdot 4 \cdot 5}$$

$$= -\frac{1}{5}$$

(2)
$$\sin^2 C + \cos^2 C = 1$$
, $\sin C > 0$ より $\sin C = \sqrt{1 - \left(-\frac{1}{5}\right)^2}$ $= \sqrt{\frac{24}{25}}$ $= \frac{2\sqrt{6}}{5}$

(3)
$$S = \frac{1}{2}ab\sin C$$
$$= \frac{1}{2} \cdot 4 \cdot 5 \cdot \frac{2\sqrt{6}}{5}$$
$$= 4\sqrt{6}$$

(4) 正弦定理より,
$$2R=\frac{c}{\sin C}$$
 であるから $R=\frac{1}{2}\cdot\frac{7}{\frac{2\sqrt{6}}{5}}$ $=\frac{35}{4\sqrt{6}}$ $=\frac{35\sqrt{6}}{24}$

265 $\triangle {
m ABC}$ の面積を S , $s=rac{a+b+c}{2}$ とし , ヘロンの公式を利用する .

(1)
$$s = \frac{3+5+6}{2} = 7$$

$$S = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{7(7-3)(7-5)(7-6)}$$

$$= \sqrt{7 \cdot 4 \cdot 2 \cdot 1}$$

$$= \sqrt{56} = 2\sqrt{14}$$

$$(2) s = \frac{4+5+6}{2} = \frac{15}{2}$$

$$S = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{\frac{15}{2} \left(\frac{15}{2} - 4\right) \left(\frac{15}{2} - 5\right) \left(\frac{15}{2} - 6\right)}$$

$$= \sqrt{\frac{15}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2}}$$

$$= \frac{15\sqrt{7}}{4}$$

CHECK

266 (1) 図のように,頂点を定めると
$$\mathrm{AB} = \sqrt{3^2 - (\sqrt{2})^2} = \sqrt{7}$$

よって
$$\sin \alpha = \frac{\sqrt{2}}{3}, \cos \alpha = \frac{\sqrt{7}}{3},$$
 $\tan \alpha = \frac{\sqrt{2}}{\sqrt{7}} = \frac{\sqrt{14}}{7}$

(
$$2$$
) 図のように,頂点を定めると
$$\mathrm{AC} = \sqrt{1^2 + (\sqrt{5})^2} = \sqrt{6}$$

よって
$$\sin \alpha = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{30}}{6}, \cos \alpha = \frac{1}{\sqrt{6}},$$

$$\tan \alpha = \sqrt{5}$$

$$\Delta A'BA$$
 において, $\angle A'BA = 30^\circ$ であるから $\angle BA'A = 90^\circ - 3^\circ = 87^\circ$ よって, $\tan 87^\circ = \frac{AB}{AA'} = \frac{AB}{10}$ であるから $AB = \tan 87^\circ \times 10$ $= 19.0811 \times 10 = 190.811$

よって, AB の距離はおよそ 191 m

268 (1) 与武 =
$$\frac{1}{2} \cdot \frac{1}{2} + \left(-\frac{\sqrt{3}}{2}\right) \cdot \frac{\sqrt{3}}{2} + 1 \cdot \left(-\frac{1}{\sqrt{2}}\right)$$

$$= \frac{1}{4} - \frac{3}{4} - \frac{2\sqrt{2}}{4}$$

$$= \frac{1 - 3 - 2\sqrt{2}}{4}$$

$$= \frac{-2 - 2\sqrt{2}}{4} = -\frac{1 + \sqrt{2}}{2}$$
(2) 与武 = $\frac{\frac{1}{\sqrt{3}} + (-1) + 0}{1 - (-\sqrt{3}) \cdot 1}$

$$= \frac{\left(\frac{1}{\sqrt{3}} - 1\right) \times \sqrt{3}}{(1 + \sqrt{3}) \times \sqrt{3}}$$

$$= \frac{1 - \sqrt{3}}{\sqrt{3} + 3} = \frac{(1 - \sqrt{3})(\sqrt{3} - 3)}{(\sqrt{3} + 3)(\sqrt{3} - 3)}$$

$$= \frac{-6 + 4\sqrt{3}}{3 - 9} = \frac{3 - 2\sqrt{3}}{3}$$
(3) 与武 = $\cos \alpha \cdot (-\cos \alpha) - \sin \alpha \sin \alpha$

$$= -\cos^{2} \alpha - \sin^{2} \alpha$$
$$= -(\cos^{2} \alpha + \sin^{2} \alpha) = -1$$

$$\begin{split} \sin^2\alpha + \cos^2\alpha &= 1 \text{ LU} \\ \sin^2\alpha &= 1 - \cos^2\alpha \\ &= 1 - \left(-\frac{1}{5}\right)^2 \\ &= 1 - \frac{1}{25} = \frac{24}{25} \\ \alpha \text{ は鈍角なので }, \sin\alpha > 0 \\ \text{よって }, \sin\alpha &= \sqrt{\frac{24}{25}} = \frac{2\sqrt{6}}{5} \\ \text{また} \\ \tan\alpha &= \frac{\sin\alpha}{\cos\alpha} \end{split}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$= \frac{\frac{3}{4}}{-\frac{\sqrt{7}}{4}}$$

$$= -\frac{3}{\sqrt{7}} = -\frac{3\sqrt{7}}{7}$$

$$270$$

$$\frac{1}{\cos^2\alpha}=1+\tan^2\alpha=1+\left(-\frac{1}{2}\right)^2=\frac{5}{4}$$
 よって, $\cos^2\alpha=\frac{4}{5}$ α は鋭角なので, $\cos\alpha<0$
$$\cos\alpha=-\sqrt{\frac{4}{5}}=-\frac{2\sqrt{5}}{5}$$
 また

$$\sin \alpha = \tan \alpha \cos \alpha$$

$$= -\frac{1}{2} \cdot \left(-\frac{4\sqrt{5}}{5} \right)$$

$$= \frac{\sqrt{5}}{5}$$

271 (1)
$$A = 180^{\circ} - (B+C)$$
$$= 180^{\circ} - (105^{\circ} + 45^{\circ}) = 30^{\circ}$$

正弦定理より , $\frac{a}{\sin A} = 2R$ であるから
$$R = \frac{1}{2} \cdot \frac{a}{\sin A}$$
$$= \frac{\sqrt{6}}{2\sin 30^{\circ}}$$
$$= \frac{\sqrt{6}}{2 \cdot \frac{1}{2}} = \sqrt{6}$$

また,正弦定理より,
$$\frac{c}{\sin C}=2R$$
 であるから $c=2R\cdot\sin C$
$$=2\sqrt{6}\cdot\sin 45^\circ$$

$$=2\sqrt{6}\cdot\frac{\sqrt{2}}{2}$$

$$=\sqrt{6}\cdot\sqrt{2}=2\sqrt{3}$$

(2)
$$S = \frac{1}{2}ab\sin C$$

 $= \frac{1}{2} \cdot 5 \cdot 10 \cdot \sin 120^{\circ}$
 $= 25 \cdot \frac{\sqrt{3}}{2} = \frac{25\sqrt{3}}{2}$
また,余弦定理より
 $c^2 = a^2 + b^2 - 2ab\cos C$
 $= 5^2 + 10^2 - 2 \cdot 5 \cdot 10 \cdot \cos 120^{\circ}$
 $= 25 + 100 - 100 \cdot \left(-\frac{1}{2}\right)$
 $= 125 + 50 = 175$
 $c > 0$ であるから, $c = \sqrt{175} = 5\sqrt{7}$

$$a^2=b^2+c^2-2bc\cos A$$

$$=12^2+15^2-2\cdot 12\cdot 15\cdot \cos 60^\circ$$

$$=144+225-360\cdot \frac{1}{2}$$

$$=369-180=189$$
 $a>0$ であるから, $a=\sqrt{189}=3\sqrt{21}$ また,正弦定理より, $\frac{a}{\sin A}=2R$ であるから $R=\frac{1}{2}\cdot \frac{a}{\sin A}$
$$=\frac{3\sqrt{21}}{2\sin 60^\circ}$$

$$=\frac{3\sqrt{21}}{2\cdot \frac{\sqrt{3}}{2}}$$

$$=\frac{3\sqrt{21}}{\sqrt{3}}=3\sqrt{7}$$

(4) 余弦定理より

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{6^2 + 7^2 - 8^2}{2 \cdot 6 \cdot 7}$$

$$= \frac{36 + 49 - 64}{84}$$

$$= \frac{21}{84} = \frac{1}{4}$$

$$\sin^2 C + \cos^2 C = 1 , \sin C > 0$$
より

$$\triangle ABD$$
 にあいて $\triangle BDA = \triangle DBC - \triangle BAD$ $= 30^{\circ} - 15^{\circ} = 15^{\circ}$ よって, $BA = BD = 2$ これより, $AC = 2 + \sqrt{3}$ $\triangle ACD$ において,三平方の定理より $AD = \sqrt{AC^2 + CD^2}$

 $\sin A = \frac{2S}{bc}$ $= \frac{2 \cdot 84}{14 \cdot 15} = \frac{4}{5}$

$$= \sqrt{(2 + \sqrt{3})^2 + 1^2}$$

$$= \sqrt{4 + 4\sqrt{3} + 3 + 1}$$

$$= \sqrt{8 + 4\sqrt{3}}$$

$$= 2\sqrt{2 + \sqrt{3}}$$

以上より

$$\sin 15^{\circ} = \frac{DC}{AD}$$

$$= \frac{1}{2\sqrt{2 + \sqrt{3}}}$$

$$\cos 15^{\circ} = \frac{AC}{AD}$$

$$= \frac{2 + \sqrt{3}}{2\sqrt{2 + \sqrt{3}}}$$

$$= \frac{(\sqrt{2 + \sqrt{3}})^2}{2\sqrt{2 + \sqrt{3}}}$$

$$= \frac{\sqrt{2 + \sqrt{3}}}{2}$$

$$\tan 15^{\circ} = \frac{DC}{AC}$$

$$= \frac{1}{2 + \sqrt{3}}$$

$$= \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})}$$

$$= \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}$$

〔2重根号をはずせるならば〕

$$AD = 2\sqrt{2 + \sqrt{3}}$$

$$= \sqrt{4(2 + \sqrt{3})}$$

$$= \sqrt{8 + 4\sqrt{3}}$$

$$= \sqrt{8 + 2\sqrt{12}}$$

$$= \sqrt{(6 + 2) + 2\sqrt{6 \cdot 2}}$$

$$= \sqrt{6} + \sqrt{2}$$

よって $\sin 15^{\circ} = \frac{DC}{AD}$

$$= \frac{1}{\sqrt{6} + \sqrt{2}}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\cos 15^{\circ} = \frac{AC}{AD}$$

$$= \frac{2 + \sqrt{3}}{\sqrt{6} + \sqrt{2}}$$

$$= \frac{(2 + \sqrt{3})(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$$

$$= \frac{2\sqrt{6} - 2\sqrt{2} + 3\sqrt{2} - \sqrt{6}}{4}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

STEP UP

- 273 (1) $\cos \alpha > 0$ より, $0^\circ < \alpha < 90^\circ$ 三角関数表より, $\alpha = 39^\circ$
 - (2) $\cos \alpha < 0$ より , $90^\circ < \alpha < 180^\circ$ $\cos \alpha = -0.5878$ より , $-\cos \alpha = 0.5878$ $-\cos \alpha = \cos(180^\circ \alpha)$ であるから $\cos(180^\circ \alpha) = 0.5878$ 三角関数表より , $180^\circ \alpha = 54^\circ$ となるから $\alpha = 180^\circ 54^\circ = \mathbf{126}^\circ$
 - (3) i) $0^{\circ}<\alpha<90^{\circ}$ のとき 三角関数表より , $\alpha=6^{\circ}$
 - $egin{aligned} &\mathrm{ii} \) \ 90^\circ < lpha < 180^\circ \ \mathfrak{O}$ とき $&\sinlpha = \sin(180^\circ lpha) \ ag{r}$ あるから $&\sin(180^\circ lpha) = 0.1045 \ &$ 三角関数表より , $&180^\circ lpha = 6^\circ$ となるから

$$lpha=180^{\circ}-6^{\circ}=174^{\circ}$$

よって, $lpha=6^{\circ},\ 174^{\circ}$

$$(4)$$
 $an lpha < 0$ より, $90^\circ < lpha < 180^\circ$ $an lpha = -6.3138$ より, $- an lpha = 6.3138$ $- an lpha = an(180^\circ - lpha)$ であるから $an(180^\circ - lpha) = 6.3138$ 三角関数表より, $180^\circ - lpha = 81^\circ$ となるから $lpha = 180^\circ - 81^\circ = \mathbf{99}^\circ$

274 (1)

$$\alpha = 45^{\circ}, 135^{\circ}$$

(2)

$$\alpha = 150^{\circ}$$

(3)

$$\alpha = \mathbf{60}^{\circ}$$

275 CD = x とおく.

$$AC=AD$$
 より , $\angle ADC=\angle ACD=\frac{180^\circ-36^\circ}{2}=72^\circ$ これより , $\triangle DBC$ は , $DB=DC$ の二等辺三角形であるから , $\angle BDC=180^\circ-(72^\circ\times 2)=36^\circ$

また, $\angle {\rm BDA} = 72^{\circ} - 36^{\circ} = 36^{\circ}$ より, $\triangle {\rm BAD}$ は, ${\rm BA} = {\rm BD}$ の二等辺三角形である.

以上より, ${
m AB}={
m BD}={
m CD}=x$ であり, $\triangle{
m ACD}$ $\triangle{
m DBC}$ であるから

$$\mathrm{AD}:\mathrm{DC}=\mathrm{DC}:\mathrm{CB}$$
 , すなわち , $1:x=x:(1-x)$ これを解くと

$$x^2 = 1 - x$$
$$x^2 + x - 1 = 0$$

$$x=rac{-1\pm\sqrt{1^2-4\cdot1\cdot(-1)}}{2}$$

$$=rac{-1\pm\sqrt{5}}{2}$$
 $x>0$ より , $x=rac{-1+\sqrt{5}}{2}$ すなわち , $\mathrm{CD}=rac{-1+\sqrt{5}}{2}$

$$\triangle \text{ACD}$$
 において,余弦定理より $\cos 36^\circ = \frac{\text{AD}^2 + \text{AC}^2 - \text{CD}^2}{2 \cdot \text{AD} \cdot \text{AC}}$ $= \frac{1^2 + 1^2 - \text{CD}^2}{2 \cdot 1 \cdot 1}$ $= \frac{2 - \text{CD}^2}{2}$ ここで, $\text{CD}^2 = \left(\frac{-1 + \sqrt{5}}{2}\right)^2$ $= \frac{1 - 2\sqrt{5} + 5}{4}$ $= \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2}$ よって, $\cos 36^\circ = \frac{2 - \frac{3 - \sqrt{5}}{2}}{2}$ $= \frac{4 - (3 - \sqrt{5})}{4}$ $= \frac{1 + \sqrt{5}}{4}$

底面に関わる線分の長さを求める.

AH =
$$100 \times \frac{1}{\sqrt{2}} = \frac{100}{\sqrt{2}} = 50\sqrt{2}$$

HM = BM = $100 \times \frac{1}{2} = 50$

(1) $\triangle OAH$ において

$$an lpha = rac{ ext{OH}}{ ext{AH}} = rac{90}{50\sqrt{2}} = rac{9}{5\sqrt{2}} = rac{9\sqrt{2}}{10}$$
 $= rac{9 imes 1.4142}{10} \coloneqq 1.2728$ 三角関数表より, $lpha = \mathbf{52}^\circ$

△OMH において (2) $an eta = rac{\mathrm{OH}}{\mathrm{MH}} = rac{90}{50} = rac{9}{5} = 1.8$ 三角関数表より, $eta = \mathbf{61}^\circ$

よって ,
$$\gamma=26^{\circ}\times 2={\bf 52}^{\circ}$$

[別解]

 $\triangle OBH$ において, $BH = 50\sqrt{2}$ であるから, 三平方の定 理より

OB =
$$\sqrt{90^2 + (50\sqrt{2})^2} = \sqrt{8100 + 5000}$$

= $\sqrt{13100} = 10\sqrt{131}$

 $\triangle \mathrm{OBC}$ において , $\mathrm{OC} = \mathrm{OB} = 10\sqrt{131}$ であるから , 余 弦定理より

定理より
$$\cos \gamma = \frac{\mathrm{OB}^2 + \mathrm{OC}^2 - \mathrm{BC}^2}{2 \cdot \mathrm{OB} \cdot \mathrm{OC}}$$

$$= \frac{(10\sqrt{131})^2 + (10\sqrt{131})^2 - 100^2}{2 \cdot 10\sqrt{131} \cdot 10\sqrt{131}}$$

$$= \frac{(100 \cdot 131) \times 2 - 100^2}{200 \cdot 131}$$

$$= \frac{131 - 50}{131} = \frac{81}{131} = 0.61832 \cdots$$
三角関数表より, $\gamma = \mathbf{52}^\circ$

正弦定理より , $\frac{c}{\sin C} = 2R$ これより , $\sin C = \frac{c}{2R}$ よって , $S = \frac{1}{2}ab\sin C = \frac{1}{2}ab\cdot \frac{c}{2R}$ $S = \frac{1}{2} ab \sin C$ から , $\sin C$ を消去することを考える .

正弦定理より,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

これより, $b = \frac{a\sin B}{\sin A}$
よって, $S = \frac{1}{2}ab\sin C = \frac{1}{2}a \cdot \frac{a\sin B}{\sin A} \cdot \sin C$
 $= \frac{a^2\sin B\sin C}{2\sin A}$
 $S = \frac{1}{2}ab\sin C$ から, b を消去することを考える.

$$S = \frac{1}{2}ab\sin C$$
 から, b を消去することを考える

以上より,
$$S=rac{abc}{4R}=rac{a^2\sin B\sin C}{2\sin A}$$

278 $s=rac{a+b+c}{2}$ とし,ヘロンの公式より, $\triangle {
m ABC}$ の面積を求め $s = \frac{8+5+7}{2} = 10$ よって, $S = \sqrt{10(10-8)(10-5)(10-7)}$

$$5 = \sqrt{10(10 - 8)(10 - 3)(10 - 3)(10 - 3)}$$
$$= \sqrt{10 \cdot 2 \cdot 5 \cdot 3}$$
$$= 10\sqrt{3}$$

ここで,前問の
$$S=rac{abc}{4R}$$
 より, $R=rac{abc}{4S}$ であるから $R=rac{8\cdot 5\cdot 7}{4\cdot 10\sqrt{3}}$ $=rac{7}{\sqrt{3}}=rac{7\sqrt{3}}{3}$

下の図のように,対角線の交点を $oxed{\mathrm{E}}$ とし, $oxed{\mathrm{AC}}=l,\; oxed{\mathrm{BD}}=m$, $\angle AEB = \theta$ とする.

頂点 B, D から対角線 ACに, それぞれ垂線 BH, DIを引く.ま

た, $\mathrm{BE} = m_1, \; \mathrm{ED} = m_2 \; \; (m_1 + m_2 = m)$ とする.

 $\triangle {
m BEH}$ において , $\sin heta = rac{{
m BH}}{m_1}$ より , ${
m BH} = m_1 \sin heta$ であるか

 $\triangle ABC = \frac{1}{2}AC \cdot BH$ $=\frac{1}{2}lm_1\sin\theta$

同様に, $\triangle {
m DEI}$ において, $\sin heta = rac{{
m DI}}{m_2}$ より, ${
m DI} = m_2 \sin heta$ で あるから

$$\triangle ADC = \frac{1}{2}AC \cdot DI$$
$$= \frac{1}{2}lm_2 \sin \theta$$

$$S = \triangle ABC + \triangle ADC = \frac{1}{2}lm_1\sin\theta + \frac{1}{2}lm_2\sin\theta$$
$$= \frac{1}{2}l(m_1 + m_2)\sin\theta$$
$$= \frac{1}{2}lm\sin\theta$$

したがって , $S=rac{1}{2}lm\sin\theta$

〔別解〕

$${
m AE}=l_1, \ {
m EC}=l_2 \ (l_1+l_2=l)$$
 ${
m BE}=m_1, \ {
m ED}=m_2 \ (m_1+m_2=m)$ とする .

280 (1) 四角形 ABCD の面積は, △ABD の 2 倍である.

 $\triangle {
m ABD}$ において , $\frac{7+13+10}{2}=15$ であるから , ヘロ ンの公式より

$$\triangle ABD = \sqrt{15(15-7)(15-13)(15-10)}$$
$$= \sqrt{15 \cdot 8 \cdot 2 \cdot 5}$$
$$= \sqrt{2^4 \cdot 5^2 \cdot 3} = 20\sqrt{3}$$

よって, 四角形 ABCD の面積は, $20\sqrt{3} \times 2 = \mathbf{40}\sqrt{\mathbf{3}}$

(2)

 $\triangle {
m ABC}$ において, $rac{4+9+7}{2}=10$ であるから,ヘロン

$$\triangle ABC = \sqrt{10(10 - 4)(10 - 9)(10 - 7)}$$
$$= \sqrt{10 \cdot 6 \cdot 1 \cdot 3}$$
$$= \sqrt{2^2 \cdot 3^2 \cdot 5} = 6\sqrt{5}$$

 $\triangle {
m ACD}$ において , $\frac{3+7+8}{2}=9$ であるから , ヘロンの

公式より

$$\triangle ABC = \sqrt{9(9-3)(9-7)(9-8)}$$

$$= \sqrt{9 \cdot 6 \cdot 2 \cdot 1}$$

$$= \sqrt{2^2 \cdot 3^2 \cdot 3} = 6\sqrt{3}$$

よって , 四角形 ABCD の面積は , $6\sqrt{5}+6\sqrt{3}$

前問の $S=\frac{1}{2}lm\sin\theta$ を利用する . 四角形の面積を S とすると $S=\frac{1}{2}\cdot 10\cdot 12\cdot \sin 60^\circ$ (3)

$$S = \frac{1}{2} \cdot 10 \cdot 12 \cdot \sin 60^{\circ}$$

$$=60\cdot\frac{\sqrt{3}}{2}=30\sqrt{3}$$

281 (1)余弦定理より

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

差辺 =
$$2bc \cdot \frac{b^2 + c^2 - a^2}{2bc} + 2ca \cdot \frac{c^2 + a^2 - b^2}{2ca}$$

+ $2ab \cdot \frac{a^2 + b^2 - c^2}{2ab}$
= $(b^2 + c^2 - a^2) + (c^2 + a^2 - b^2) + (a^2 + b^2 - c^2)$
= $a^2 + b^2 + c^2 = 右辺$

(3)正弦定理より

$$\sin A = \frac{a}{2R}$$

$$\sin B = \frac{b}{2R}$$

余弦定理より

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

左辺 =
$$\frac{a}{2R} \left(a - c \cdot \frac{c^2 + a^2 - b^2}{2ca} \right)$$

$$= \frac{a}{2R} \left(a - \frac{c^2 + a^2 - b^2}{2a} \right)$$

$$= \frac{a}{2R} \left\{ \frac{2a^2 - (c^2 + a^2 - b^2)}{2a} \right\}$$

$$= \frac{a}{2R} \cdot \frac{a^2 + b^2 - c^2}{2a}$$

$$= \frac{a^2 + b^2 - c^2}{4R}$$
右辺 = $\frac{b}{2R} \left(b - c \cdot \frac{b^2 + c^2 - a^2}{2bc} \right)$

$$= \frac{b}{2R} \left(b - \frac{b^2 + c^2 - a^2}{2b} \right)$$

$$= \frac{b}{2R} \left\{ \frac{2b^2 - (b^2 + c^2 - a^2)}{2b} \right\}$$

$$= \frac{b}{2R} \cdot \frac{a^2 + b^2 - c^2}{2b}$$

$$= \frac{a^2 + b^2 - c^2}{4R}$$
よって、左辺 = 右辺

282 (1)正弦定理より

$$\sin B = rac{b}{2R}$$
 $\sin C = rac{c}{2R}$ これらを , 与えられた等式に代入すると $b \cdot rac{b}{2R} = c \cdot rac{c}{2R}$ $rac{b^2}{2R} = rac{c^2}{2R}$ $b^2 = c^2$ $b^2 - c^2 = 0$ $(b+c)(b-c) = 0$

ここで , $b+c \neq 0$ より , b-c=0 , すなわち b=c であ るから , $\triangle ABC$ は , b=c の二等辺三角形である .

(2) 余弦定理より

第弦定理より
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ これらを,与えられた等式に代入すると $a \cdot \frac{c^2 + a^2 - b^2}{2ca} = b \cdot \frac{b^2 + c^2 - a^2}{2bc} + c$

$$rac{c^2+a^2-b^2}{2c}=rac{b^2+c^2-a^2}{2c}+c$$
 $c^2+a^2-b^2=(b^2+c^2-a^2)+2c^2$ $2a^2=2b^2+2c^2$,すなわち $a^2=b^2+c^2$ であるから, \triangle ABC は, \angle A=90°の直角三角形である.

(3)
$$an A : an B = a : b$$
 より, $a an B = b an A$ これより, $a \cdot \frac{\sin B}{\cos B} = b \cdot \frac{\sin A}{\cos A}$ すなわち, $a an B an B an A an B an B an A an B an B$

よって , $\angle {
m A} = \angle {
m B}$ となるから , $\triangle {
m ABC}$ は , a=b の二 等辺三角形である.