1.) *Here Class 1 corresponds to "5", and Class 2 corresponds to "6".

Table 1: Mixture of Gaussians:

Accuracy	0.8676								
w0	0.1057								
W	-0.0004 0.0819	0.0161 -0.0245	0.0304 0.1165	0.0129 0.0121	0.0531 0.0211	0.1589 0.1565	0.0227 0.0109	0.0362 -0.0506	-
	0.0723	0.0640	0.0098	-0.0201	-0.0118	-0.0565	-0.0338	0.0253	
	0.0524	0.0118	-0.0208	0.0180	0.0883	-0.0069	-0.0668	0.0022	
	0.0716	-0.0100	-0.0646	-0.0402	-0.0333	-0.0820	-0.0385	-0.0446	
	-0.0420	-0.0038	-0.2171	-0.0821	-0.0025	0.0272	0.0249	-0.0461	
	0.0329	-0.0994	-0.0726	-0.0532	0.0620	-0.0317	-0.0723	0.0098	
	-0.0259	-0.0731	0.0906	0.0586	-0.0185	-0.0489	0.0046	0.0158	
Pi1	0.4964								
Pi2	0.5036								,
u1	4.9201	5.0127	8.3103	10.0200	10.7532	9.5481	6.2976	4.6860	
	5.1180	6.0490	10.6661	9.8621	8.5844	7.7731	5.4211	4.5699	
	4.5753	6.5681	10.1506	7.0853	5.7260	4.8566	4.6515	4.5590	
	4.8657	6.4283	10.3031	9.7205	8.0617	6.4229	4.7114	4.7314	
	4.9546	5.4537	7.7187	7.9510	8.7060	7.9093	5.7768	4.3684	
	4.7387	4.8784	5.1016	5.7931	7.5045	8.6951	5.9347	4.5662	
	4.3884	5.0690	7.2123	7.8566	8.9365	8.0871	5.7768	4.7096	
	4.6479	4.9038	8.7514	10.4392	8.9147	6.5481	5.0998	5.0672	
u2	4.9767	4.8605	5.5760	9.5188	8.5027	5.3900	5.3345	4.8050	
~-	4.6816	4.6333	7.9535	10.3148	6.8784	5.1145	4.6780	4.6011	
	4.7835	4.9821	9.8140	8.4293	4.7746	4.8426	4.6708	4.7692	
	4.5975	5.5653	10.5617	7.8837	6.1503	5.4061	5.0841	4.6172	
	4.7835	6.1449	10.6047	9.8318	9.5850	8.7048	5.6225	4.5206	
	4.7800	5.6261	10.4526	9.0519	7.6333	9.2826	8.4419	4.6261	
	4.5921	5.2057	9.2379	9.9714	7.2182	9.5528	9.0304	4.9106	
	4.8640	4.8533	5.7335	9.1377	10.9696	9.7531	6.4669	5.0268	
diag(Sigma)	39.8587	39.5712	43.2563	42.4111	40.3930	41.9653	43.6573	35.7806	
	37.6420	39.6338	41.6589	41.4307	43.8446	39.8570	39.2544	37.2208	
	35.9671 36.3302	40.9541	42.5452	46.7621	39.7362 45.5309	38.2503 43.4102	36.0834	36.7397	
	37.8276	40.3912 42.6755	40.0378 41.9397	46.0040 44.2269	45.0235	45.2556	37.6236 41.4459	37.1228 33.0250	
	37.8276	42.0755 39.7835	39.8710	44.2269	46.4573	43.3695	41.4459	35.6092	
	35.2377	40.2025	43.9491	44.4505	45.8758	44.7406	43.9388	38.8965	
	38.0409	37.4593	44.8849	44.2500	42.3220	44.7400	42.7988	40.4677	
	20.0409	3/14333	44.0049	41.3303	44.3420	44.0120	44.7900	70:40//	

Table 2: Logistic Regression

Accuracy	0.8631
W	0.1347 -0.0295 0.0142 0.0349 0.0152 0.0442 0.1827 0.0378 0.0630 0.0940 -0.0047 0.1045 0.0168 0.0260 0.1929 0.0035 -0.0514 0.0529 0.0753 -0.0074 -0.0199 0.0069 -0.0969 -0.0220 0.0521 0.0608 0.0192 -0.0130 0.0317 0.0895 -0.0038 -0.1014 0.0271 0.1348 -0.0219 -0.0684 -0.0324 -0.0168 -0.0702 -0.0406 -0.0580 -0.0224 -0.0140 -0.2309 -0.0926 0.0062 -0.0001 0.0140
	-0.0933 0.0120 -0.1506 -0.0892 -0.0742 0.0632 -0.0347 -0.0848 -0.0003 -0.0337 -0.0703 0.1127 0.1009 -0.0432 -0.0486 -0.0058 0.0350

The parameterizations/objectives for both Mixture of Gaussians and Logistic Regression successfully generate a linear separator of the data leading to an 86% accuracy rate (when tested with cross-validation). Thus we can conclude that a mostly accurate linear separator can be found for this data set. Also, due to the closeness of the accuracies of Mixture of Gaussians and Logistic Regression, it might be hypothesized that the objectives of these two methods represent very similar goals.

The K Nearest Neighbours algorithm in Assignment 1 only accomplished an 81% accuracy. Thus, we can conclude that a linear separator was more suited for this data because both methods that found a linear separator achieved a higher accuracy. We could say that the data was more linearly separable than "K Nearest Neighbour separable".

(2) (AND) Possille - Take Wo = -1.5 w, = 1 w, = 1 OR Possitle - Take w = -0.5 v = 1 w = 1 (XOR) Not Possible: Take Q(x) = Q(x1, x2) $=((x_1-x_2)^2, (x_1-x_2)^2)$ and $w_e = -1$ $w_i = 1$ $w_2 = 1$ [IFF] Not Possible: Take O(x) = O(x, x2) $= \left(-(x_1-x_2)^2, -(x_1-x_2)^2\right)$ and w = 1 w = 1 w = 1 1) The dataset is not sequalle. Our experiment (see linear Separability. in) involved training and testing a logistic vegression classifier on the entire data set. If a linear separator did exist, the tests would be 100% accurate, because the linear separator found would divide the data into two classes perfectly. However, this experiment only achieved an accuracy of 88.74% (not 100%). Thus, the data cannot be livearly separable.