Constraint Satisfaction Problem

29/02/2024

Koustav Rudra

CSPs: Recap

- CSP Structure
 - Variables
 - Domains
 - Constraints
 - Implicit (code to compute)
 - Explicit (list of legal tuples)
 - Unary / Binary / n-ary
 - Goals
 - Find any solution
 - Find optimal solution

CSP Solver

• Backtracking give huge gain in speed

- Ordering
 - Which variable should be processed next (MRV)?
 - In what order values of the chosen variable be tried (LCV)?
- Filtering
 - Can we detect eventual failure early?
 - Arc consistency

NP-hard

- Structure
 - Can we exploit the problem structure?

CSP: Efficient Solver

29/02/2024

Koustav Rudra

K-Consistency

- Consistency → Non-violence of constraints
- Degrees of consistency
 - 1-consistency (node consistency)
 - Unary constraints
 - 2-consistency (Arc consistency)
 - Any consistent assignment to one can be extended to other
 - Binary
 - K-consistency
 - Any consistent assignment to K-1 nodes can be extended to the Kth node
 - If we have satisfactory assignments for K-1 nodes
 - We can find a satisfactory assignment for Kth node

Strong K-Consistency

- Strong K-consistent → K-1, K-2,...,1 consistent
- Strong N-consistency ensures solution without backtracking [N variable CSP]
 - Choose random assignment of any variable
 - Choose a new variable
 - 2-consistency \rightarrow there is a choice consistent with the first
 - Choose another variable
 - 3-consistency \rightarrow there is a choice consistent with the first two
 - ...
- What is the limitation?
 - Enforcing strong N-consistency as hard as having the solution
- Trade-off between arc-consistency and K-consistency
 - E.g., 3-consistency aka Path-consistency

Problem Structure

- Independent Subproblems
 - Mainland and Tasmania do not interact
- How to identify independent subproblems?
 - Connected components of constraint graph
- What is the benefit?
 - Without decomposition running time: $O(d^n)$
 - Let n variables broken into subproblem of c variables
 - Worst case: $O(\frac{n}{c}d^c)$ \rightarrow Linear in n
- Let n=100, c=20, d=2
 - Without decomposition: 2¹⁰⁰
 - With decomposition: $5 * 2^{20}$

Tree Structured CSP

- No loop
- If constraint graph has no loop, the CSP could be solved in $O(nd^2)$ in worst case

Tree Structured CSP

- Order:
 - Choose a Root variable
 - Order other variables in such a way that parents precede children
- Remove Backward:
 - For i=n to 2, REMOVEINCONSISTENT($Parent[x_i], x_i$)
- Assign Forward:
 - For i=1 to n, Assign x_i consistently with $Parent[x_i]$
- Runtime: $O(nd^2)$ Forward Pass: n, Backward Pass: n, Comparison: d^2

Tree Structured CSP

- After Backward pass all the root-to-leaf arcs are consistent
 - After a backward pass, each $x \rightarrow y$ has been made arc consistent
 - Y's children have been processed before y
 - Y's options can't be reduced
- Forward assignment will not backtrack

 $D \leftarrow F$

- Does not work on constraint graphs with cycles?
- Tree Structured CSP is not common
- How can we convert a CSP to Tree Structured CSP?

- Conditioning: Forcefully initiate a variable and prune the domains of the neighbours
- CUTSET-CONDITIONING:
 - Obtain a CUTSET of variables
 - Removing those will leave the constraint graph a tree
 - Instantiate (in all ways) the CUTSET

CUTSET Conditioning

Thank You