Lesson 1

Áron F. Hegyi,

GitHub Copilot

February 22, 2023

1 Konjuktív és diszjunktív logikai kapcsolatok

1.1 Egyszerűbb írásmód: De Morgan's Laws

m_i^n	i	j	$\overline{M_j^n}$
A * B * C	7	0	$\overline{\overline{A} + \overline{B} + \overline{C}}$
$\overline{A} * B * \overline{C}$	2	5	$\overline{A + \overline{B} + C}$
$A * \overline{B} * C$	5	2	$\overline{\overline{A} + B + \overline{C}}$

This is the sum of all the minterms of F^4 .

$$F^4 = \sum^{4} (0, 2, 3, 4, 5, 11, 15)$$

 $F^4 = ABCD 7 times$

$$F^4 = (\overline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + C + \overline{D}) \cdot (\overline{A} + \overline{B} + C + D) \cdot (\overline{A} + B + \overline{C} + \overline{D}) \cdot (\overline{A} + B + \overline{C} + D) \cdot (\overline{A} + B + C + \overline{D}) \cdot (A + B + C + D)$$

ABCD igazságtábla

0	\mathbf{A}	В	\mathbf{C}	D	\mathbf{F}
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	1
4	0	0	1	1	1
5	0	1	0	0	1
6	0	1	0	1	0
7	0	1	1	0	0
8	0	1	1	1	0
9	1	0	0	0	0
10	1	0	0	1	0
11	1	0	1	0	1
12	1	0	1	1	0
13	1	1	0	0	0
14	1	1	0	1	0
15	1	1	1	0	1

2 Egyszerűsítés

Logikai függvények egszerűsítése! Logikai algebra. Szabályai és alkalmazásuk:

2.1 Kommutatív szabály

$$A + B = B + A$$
$$A \cdot B = B \cdot A$$

2.2 Disztributív szabály

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$A + (B \cdot C) = (A+B) \cdot (A+C)$$

2.3 A logikai algebra alapszabályai

$$\begin{array}{lll} A \cdot \oslash = \oslash & A \cdot A = A & \oslash \cdot \oslash = \oslash \\ A + \oslash = A & A + A = A & \oslash + \oslash = \oslash \\ A \cdot 1 = A & A + 1 = 1 & 1 \cdot 1 = 1 \\ A + 1 = 1 & A \cdot 1 = A & 1 + 1 = 1 \end{array}$$

2.4 De Morgan szabály

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Igazságtábla:

A	В	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

De Morgan szabály megfordítja a logikai műveleteket a negációval.

2.5 XOR és XNOR

$$A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

$$A \odot B = \overline{A} \cdot \overline{B} + A \cdot B$$

2.6 Gyakorlás

$$A \oplus B = \overline{A \odot B}$$

$$\overline{A} \cdot B + A \cdot \overline{B} = \overline{A} \cdot \overline{B} + A \cdot B$$

$$\overline{A} \cdot B + A \cdot \overline{B} = (A + B) \cdot (\overline{A} + \overline{B})$$

$$\overline{A} \cdot B + A \cdot \overline{B} = A \cdot \overline{A} + A \cdot \overline{B} + \overline{B} \cdot \overline{A} + B \cdot \overline{B}$$

$$\overline{A} \cdot B + A \cdot \overline{B} = A \cdot \overline{B} + B \cdot \overline{A}$$

2.7 Logikai függvények egyszerűsítése grafikus módszerrel

Α

$$\begin{array}{c|c} 0 & \overline{A} \\ \hline 1 & A \end{array}$$

AB

	0	1
0	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$
1	$A \cdot \overline{B}$	$A \cdot B$

A BC

	00	01	11	10
0	0	1	3	2
1	4	5	7	6

AB CD

	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$$F^3 = A \cdot B \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{C} + B \cdot C$$

$$\overline{C} (\overline{A} \cdot A) + B \cdot C = \overline{C} \cdot (\overline{B} + A) + B \cdot C$$

2.8 Karnaugh táblák

AB

	\mathbf{A}	$\mid \mathbf{B} \mid$	F^2
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

АВС

	\mathbf{A}	В	$\mid \mathbf{C} \mid$	F^3
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$\overline{A} \cdot \overline{C} \cdot (\overline{B} + B) + \overline{A} \cdot B \cdot C + A \cdot B \cdot (\overline{C} + C)$$

$$\overline{A} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B$$

$$\overline{A} \cdot \overline{C} + B \cdot (\overline{A} \cdot C + A) = \overline{A} \cdot \overline{C} + B \cdot (A + C)$$

$$F^3 = \overline{A} \cdot \overline{C} + B$$

A B C D

	\mathbf{A}	В	\mathbf{C}	$\mid \mathbf{D} \mid$	$ F^4 $
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

$$\overline{B} \cdot \overline{C} + \overline{C} \cdot D + C \cdot \overline{D} + A \cdot D \cdot B$$