(11) EP 1 076 463 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:

(51) Int. Ct.7: H04Q 3/00

14.02.2001 Bulletin 2001/07

(21) Application number: 00306519.0

(2.1)

(22) Date of filing: 31.07.2000

(84) Designated Contracting States:

AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 11.08,1999 US 372185

(71) Applicant:

LUCENT TECHNOLOGIES INC.
Murray Hill, New Jersey 07974-0636 (US)

(72) Inventor: Torabi, Mohammad Naperville, IL, 60656 (US)

(74) Representative: Walts, Christopher Malcolm Kelway, Dr. et al Lucent Technologies (UK) Ltd, 5 Mornington Road Woodford Green Essex, IG8 0TU (GB)

(54) Supporting network in telecommunications systems

The Supporting Network for telecommunications systems is inter-connected with the visited wireless communications network and offers a virtual home environment for subscriber requested services to subscribers' mobile terminals that are roaming within the wireless communication system. The Supporting Network treats the service provider concept as a complete network entity and not necessarily as a single or simple service platform that is bounded by the physical extent of the service platform. The deployment of the Supporting Network is possible in 3rd Generation wireless communications networks, 1st and 2nd Generation wireless communications networks, as well as in wireline communications networks. An essential service requirement is that reaming wireless subscribers should be able to use their mobile terminals and obtain the services for which they have subscribed, in different visited wireless communications networks, regardless of the subscribers' location in the wireless communication systems. The Supporting Network for telecommunication systems provides the desired services to the mobile subscriber terminal, directly through the inter-connection of the visited communications network with the Supporting Network: The network inter-connection is affected by the use of a unique Network-to-Network Interface protocol that enables a Supporting Network operator to become a purveyor of third generation mobile telecommunications services to subscribers who are presently served by wireless communications networks that are incapable of providing these services.

Description

Field Of The Invention

[0001] This invention relates to telecommunications is systems and, in perticular, to the concept of a Support ing Network that enables network operators and/or service providers to offer services that are not supported in their networksplatforms to their customers/subscribers.

Problem

[0002] It is a problem in the filled of telecommunications systems for network operations and/or service proviolers to offer services that are not supported in their networks/platforms. In the majority of 1st and 2nd Generation wireless networks, the notion of Senrice Provioler and Network Operator are synonymous. However, due to increasingly expanding deregulated consumer are market, it is anticipated that these two entities of the telecommunication industry are destined to evolve into independent entities.

[0003] A typical problem encountered in telecommunications systems, such as wiveless communications syssystems, is when a reaming subscriber enters a service
area in which the service that the subscriber is authorized to receive in his/her home network is not supported
by the visited network. The requested service may not
be available in the visited network, it may not be economical for the visited network operator to provide the
requested service, or the visited network may not be
technically capable of providing the requested service
on its own. In these instances, the reaming subscriber is
denied the service which the subscriber has contracted

35
to receive.

Solution

100041 The above described problems are solved 40 and a technical advance is achieved by the Supporting Network for telecommunication systems which is interconnected with the visited wireless communications network and offers a virtual home environment for subscriber requested services to subscribers' mobile termi- 46 nais that are roaming within the wireless communication system. The Supporting Network treats the service provider concept as a complete network entity and not necessarily as a single or simple service platform that is bounded by the physical extent of the service platform. so The deployment of the Supporting Network is possible in 3rd Generation wireless communications networks. 1st and 2nd Generation wireless communications networks, as well as in wireline communications networks. This Supporting Network solves the aforementioned 55 problems, and provides the subscriber requested service to the roaming subscriber in the visited wireless communications network.

An essential service requirement for the 3rd Generation systems is that wireless subscribers should be able to use their subscriber mobile terminals and obtain the services for which they have subscribed, in different visited wireless communications networks, regardless of the subscribers' location in the wireless communication systems. The Supporting Network for telecommunication systems provides the desired services to the mobile subscriber terminal, directly through the inter-connection of the Visited communications network with the Supporting Network. The network interconnection is affected by the use of a unique Networkto-Network Interface protocol that enables a Supporting Network operator to become a purveyor of third generation mobile telecommunications services to subscribers who are presently served by wireless communications networks that are incapable of providing these services.

Brief Description Of The Drawing

[0006]

Figure 1 illustrates in block diagram form the architecture of the proposed Supporting Network which is inter-connected with other wireless communications networks for third generation telecommunication systems (e.g., IMT-2000); and

Figure 2 illustrates in flow diagram of an example operation of the Supporting Network for the interconnected telecommunications networks of Figure 1

Detailed Description Of The Drawings

Definitions:

[0007] For the purpose of this description, the foltowing definitions are provided for various terms that are used herein:

Wireless Communications Network is a wireless network comprised of base stations, base station control systems, and one or Mobile Switching Centers.

Home Network 102 as shown in Figure 1 is the wireless communications network which holds location and service profile information related to the subscriber.

Supporting Network 100 as shown in Figure 1 is the communications network (fixed or wreeles) which provides support for a variety of services including but not limited to service logic programs and service related data for supplementary services.

Visited (Serving) Network 101 as shown in Figure 1 is the wireless communications network where a subscriber is presently being served.

Interrogating Network is the communications net- 5 work (fixed or wireless) from which a routing data retrieval request is sent to the Home Network of the called subscriber.

Destination Network is the wireless communica- 10 tions network to which an outgoing call from a subscriber is destined.

Wireless Communications System is a system of Wireless Communications Networks (e.g., Home 15 Networks, Supporting Networks, and Visited Networks).

Supporting Network Inter-Connection

Figure 1 is the block diagram of the architecture of the proposed Supporting Network 100 as interconnected with existing third generation telecommunication systems, consisting in this example of a visited network 101 and a home network 102. The Functional 25 contracted to receive. Entitles used in Figure 1 are the existing components of a typical wireless communications network as described below. In this figure, the major Functional Entitles (FE) that may be involved in inter-network communications are shown in solid boxes (e.g., SCF, LMF, ac AMF, and SACF).

Functional Politics of Wireless Communications Systems

There are a plurality of functional entities implemented in wireless communication systems, and the following are noted in the description (the terminology defining well known entities in accordance with ITU-T standards), and they are exemplary of the types of 40 entities used for deployment of the Supporting Network:

Service Control Function LMF: Location Management Function AMF: Authentication Management Function SDF: Service Data Function 986 Specialized Resource Function

Connection Control Function CnCF: CCF: Call Control Function Service Switching Function SSF:

PSCF: Packet Service Control Function PSGCF: Packet Service Gateway Control Function UIMF: User Identification Module Function

Information Flows Diagram

SCF.

Figure 2 illustrates in flow diagram form the operation of a service establishment procedure from the

Supporting Network 100 to a user in the Visited Network 101 within the third generation wireless telecommunications system as illustrated in Figure 1, in particular, the mobile subscriber unit can roam through a plurality of service areas which are included in a number of *networks", each of which is provisioned with a variety of services. The subscriber typically originates a wireless call from his/her present location in the Visited Network 101 to a designated destination in the Destination Network, selecting one or more features and services that the subscriber is subscribed and/or authorized to receive for this call connection. The difficulty is where the mobile subscriber unit transitions from one network ("Home Network" or "Old Visited Network") to a new serving network ('Visited Network'), and discovers that this network cannot support the services for which the mobile subscriber unit has subscribed. The requested service may not be available in the new visited wireless communication system, or it may not be economical to on provide the requested service in the visited wireless communication system, or the visited wireless communication system is not capable of providing the requested service. In these instances, the roaming subscriber is denied the service which the subscriber has

100111 The proposed concept to deploy Supporting Networks for telecommunication systems overcomes this problem. It provides the desired service to the mobile subscriber unit, either through the use of resident capability in the Supporting Network 100 or by contracting out the requested service to another "Supporting Network" that has the capacity to provide the requested service.

35 Visited Network Triggered Service Request

The information flows in Floure 2 show an example of the visited network triggered service request to the Supporting Network 100. A brief description of these flows is provided below.

Signal Flow #1 (SERVICE INVOCATION request indication (reg.ind.))

45 TOO131 Triggered by the CCFYSSF of the Visited Network 101, this flow invokes the service logic of the Service Control Function SCF in the Supporting Network 100. This trigger is per instruction and information contained in the subscriber profile, and it could be 50 detected from any active Trigger Detection Point encountered during a call processing.

Signal Flow #2 (USER INFORMATION REQUEST req.ind.)

[0014] Initiated by the Service Control Function SCF of the Supporting Network 100, this flow is to request information on the user's location residing in the

55

Location Management Function LMF of the Home Network 192.

Signal Flow # 3 (USER INFORMATION REQUEST response confirmation (resp.conf.))

[0015] This flow is from the Location Management Function LMF in the Home Network 102 to the Service Control Function SCF in the Supporting Network 100 for the user location information.

Signal Flow #4 (A common procedure for SPECIAL-IZED RESOURCE ASSIST)

[0016] This common procedure is initiated by the is Service Control Function SCF of the Supporting Network 100 for the Specialized Resource Function's SRF specialized recource assistance (e.g., play announcement and/or digit collection) in conjunction with the operations involving the CCF/SSF and the user. 20 Detailed FE-fevile signal flows of this common procadure should be aligned with existing Intelligent Network Application Prococo (INAP) operations and procedures.

Signal Flow #5 (SERVICE INVOCATION resp.conf.)

[0017] This flow is from the Service Control Function SCF in the Supporting Network 100 to the CCF/SSF in the Visited Network 101 to transfer service instructions.

Implementation Variations

Examples similar to Figure 1 can be provided for Packet Service Control Function PSCF (of 35 internet services), Location Management Function LMF. and Authentication Management Function AMF triggered service requests to the Supporting Network. When implemented, the Supporting Network 100 can be a full fledged network equipped with the full set of 40 service providing functional entitles that are presently available in communications networks, or it may be equipped with only a subset of these service providing functional entities. Thus, as shown in Floure 1, the Supporting Network 100 is optionally equipped with the full 46 set of service providing functional entities. This enables the Supporting Network 100 to Implement any feature that is desired and subscribed by a subscriber, and make it available at a mobile communication unit roaming outside its home network. In Figure 1, the Service 50 Control Function (SCF) is used to interconnect the plurality of networks to exchange control information there between to serve the service logic processing and the wireless communications connections that are processed in this system of inter-connected networks. The 55 Service Control Function SCF in conjunction with the Service Data Function SDF enables the Supporting Network 100 to provide control of the services sub-

scribed and/or requested by a user. In the Supporting Network 100, the Service Control Function SCF is also used to query the various networks to Identify a locus in these networks that can provide a service that is requested by a subscriber and for which the mobile subscriber unit is subscriber unit subscriber unit is subscriber unit solved.

As shown in Figure 2, in operation, when a mobile subscriber unit is registered in a non-home serving network (Visited Network), the Visited Network 101 obtains subscriber's service profile in which the list of subscribed services as well as the identity and address of the subscriber's home and Supporting Networks are available. Upon receiving a request from the user for a service unavailable at the Visited Network 101, the Visited Network 101 sends an inquiry to the subscriber's Home 102 or Supporting 100 Network, depending upon the residency of the service. This inquiry is to determine whether the subscriber is subscribed and/or authorized to receive the requested service. Taking the case of service residency in the Supporting Network 100, this inquiry message can be transmitted by the Service Switching Function SSF of the Visited Network 101 (either direct or via to the Service Control Function SCF of the Visited Network) to the Service Control Function SCF of the Supporting Network 100. The inquiry message is processed in well known fashion in the Supporting Network 100 and a response message is returned to the Visited Network 101 from the Service Control Function SCF of the Supporting Network 100, Furthermore, the Service Control Function SCF of the Supporting Network 100 processes the received request by determining whether the subscriber's service request can be implemented in one of the service providing entitles (servers) that are provisioned in the Supporting Network 100. If so, the data contained in the received mes-

sage is used by the Identified service providing entity to provide the service to the requesting subscriber. [0020] The processing of the service requests can entail retrieving date from other sources, such ser the Home Network's Location Management Function (LMF), Authentication Management Function (LMF), Authentication Management Function (LMF), Packed Service Control Function (PSCP), as well set possible outsourcing of the service requests to other entworks for processing. Thus, the Supporting Network 100 not only controls the implementation of the service request by processing some in front all of the request, but

5 100 not only controls the implementation of the service request by processing some if not all of the request, but can also function as a service broker by transferring the processing of some or all of the service requests to other networks that are equipped to provide the or requested service.

Summary

[0021] The proposed Supporting Network for telecommunication systems provides a point of full service network to any mobile subscriber unit roaming within the systems. The services are provided, either directly through the use of its own resident capabilities or by contracting out the requested service to another network service provider, justiform, or server. The network interconnection is affocted by the use of a unique Network-to-Network interface protocol that enables a Supporting Network operator to become a purveyor of a complete set of third generation mobile selecommunications services. Considering that writeline networks and fixed terminals are special cases of mobile networks and mobile terminals, respectively, this invention is equally applicable to wretine networks and fixed terminals.

Claims

A Supporting Network for providing wireless 15 and/or wireline communication services to a subscriber whose mobile terminal is operational in a visited communication network that cannot provide a communication service requested by said subscriber, compression:

means, responsive to a subscriber at said mobile terminal requesting a communication service that is unavailable in said visited communication network, for transmitting a message from said visited communication network, deeignating said requested service, to said Supportino Network

means, in said Supporting Network responsive up to receipt of said message designating said requested service, for identifying a service processing entity that is capable of executing said communication service; and

means, in said Supporting Network, for transmitting data to said service processing entity to execute said communication service.

2. The Supporting Network of claim 1 further com- 40 prising:

means, in said Supporting Network responsive to receipt of data from said service processing entity to execute said communication service, 4s for transmitting said data to said visited communication network.

The Supporting Network of claim 1 wherein said means for identifying comprises:

means, responsive to said service request, for activating service providing logic,

means for requesting subscriber information 55 residing in a Location Menagement Function of a Home Network for said subscriber; and

means, responsive to a Location Management Function in said Home Network transferring said requested subscriber information, for initiating specialized resource assistance to implament said requested service.

 The Supporting Network of claim 3 further comprising:

means for transferring service Instructions to a Service Function located in said Visited Network

 The Supporting Network of claim 1 wherein said Supporting Network is connected to at least one visited network comprising;

at least one of: 1st Generation wireless communications network, 2st Generation wireless communications network, 3st Generation wireless communications network, and wireline network

 The Supporting Network of claim 1 wherein said Supporting Network provides said requested service to subscriber terminals comprising:

> at least one of: fixed, mobile, and cordless terminals.

7. A method of operating a Supporting Network for providing wheleas ant/or whether communication services to a subscriber whose mobile terminal is operational in a visited communication network that cannot provide a communication service requested by said subscriber, commissing the steps of

transmitting, in response to a subscriber al said mobile terminal equesting a communication service that is unavailable in said visited communication network, a message from said visited communication network, designating said requested service, to said busporting Network:

identifying, in said Supporting Network in response to receipt of said message designating said requested service, a service processing entity that is capable of executing said communication service; and

transmitting data from said Supporting Network to said service processing entity to execute said communication service.

 The method of operating a Supporting Network of claim 7 further comprising the step of:

transmitting, from said Supporting Network in

response to receipt of data from said service processing entity to execute said communication service, said data to said visited communication network.

 The method of operating a Supporting Network of claim 7 wherein said step of identifying comprises:

activating, in response to said service request, 10 service providing logic;

requesting subscriber information residing in a Location Management Function of a Home Network for said subscriber; and

initiating, in response to a Location Management Function in said Home Notwork transferring said requested subscriber information, specialized resource assistance to implement 20 said requested service.

 The method of operating a Supporting Network of claim 9 further comprising the step of:

transferring service instructions to a Service Control Function located in said Visited Network.

11. The method of operating a Supporting Network of claim 7 comprising:

connecting said Supporting Network to at least one visited network comprising at least one of: 1st Generation wireless communications net work, 2rd Generation wireless communications network, 3rd Generation wireless communications network, and wireless communications network, and wireline network.

The method of operating a Supporting Network 40 of claim 7 comprising;

providing said requested service to subscriber terminals comprising at least one of: fixed, mobile, and cordless terminals.

13. A Supporting Network for providing wireless and/or vireline communication services to a subscriber whose mobile terminal is operational in a visited communication network that cannot provide so a communication service requested by said subscriber, comprising:

Service Switching Function means of said Visited Network, responsive to a subscriber 56 located in said visited communication network on a call connection requesting a service that said subscriber is authorized to receive for said

call connection, for invoking a service request to said Supporting Network:

Service Control Function means of said Supporting Network for obtaining said requested service comprising:

means, responsive to said service request, for activating service providing logic.

means for requesting subscriber information residing in a Location Management Function of a Home Network for said subscriber.

means, responsive to a Location Management Function in said Home Network transforring said requested subscriber information, for initiating specialized resource assistance to implement said requested service; and

means for transmitting data to said Visited Network to implement said requested service for said subscriber in said Visited Network, 14. The Supporting Network of claim 13 wherein said means for transmitting comprises:

means for transferring service instructions to at least one of a Call Control Function and a Service Switching Function located in said Visited Network

15. The Supporting Network of claim 13 wherein said Service Switching Function means is responsive to instruction and information contained in a subscriber profile associated with said subscriber.

FIG. 1

FIG. 2

7