$em_notes_2_23$

Benjamin Bass

April 6, 2016

Contents

1	Cor	$ m atinuing\ Feldspars < 2016-02-23\ Tue>$	1		
2	Techtosilicates 2.1 Zeolite Group				
	2.3	Scapolite (it's own little group)	6		
3	Phyllosilicates				
	3.1	Structure	7		
4	Phyllosilicates Continued $<2016-02-25$ Thu>				
	4.1	Quick Review and Finish Up	10		
		4.1.1 Micas	10		
	4.2	Other Phyllosilicates	11		
	4.3	Clay Minerals	12		
		4.3.1 1:1 Clays	12		
		4.3.2 2:1 Clays	12		
5	Inosilicates				
	5.1	Pyroxenes	13		
		5.1.1 Structure of Pyroxenes			
	Earth Materials				

1 Continuing Feldspars < 2016-02-23 Tue >

includes

• granites

• rhylites

2 Techtosilicates

- You can get KSpar in metamorphic rocks, but that's more specialized
 - Potassium Feldspar, not as abundant as plagioclase, but still extremely abundant and common mineral.
 - Kind of like quartz.
 - In general, you need silica-rich Environments, KAlSi₃, that's a lot of silica.
 - A felsic rock. Compositionally, we need that felisc composition to get Feldspar
 - very high temperature
 - these things are called granualites
 - metamorphic formation
 - IN addition to the formula we just covered, often times in KSpar, we can have ${\rm Fe}^{3+}$ subbing in.
 - * It would substitute for Aluminum. 1-for-1
 - * when we get this sub in KSpar, it gives it a pink color.
 - * most Kspars are a little pink/orange (not found in Plagioclase)
 - * Another substitution is Lead gives a green Amazonite
- All feldspars are very common in sedementary rocks
 - only thing more common is quartz.
 - quartz is just more resistent to weathering
- An Arcose Sandstone
 - A feldspar-rich sandstone. Fairly immature
- Pegmatite
 - All examples we saw in lab with beautiful crystals, those are from pegmatites
 - very water rich environment

- Plagioclase Feldspar
 - its everywhere, ther isn't a rock type you can't get plagioclase from
 - igneous, hydrothermal, .. it's everywhere
 - In more felisc rocks, things tend to be more sodium rich or Albite rich
 - * so granite or rhylite. Plagioclase there will be more albite
 - In more mafic rocks, more sodium rich
 - * basalt, gavrow, anorthite rich
 - * Also generally correspond to tempratures
 - * Boen's reaction series (higher T Mafic, lower T Sodium rich, felsic)
 - * Know the Feldspar Triangle
- Techtosilicates

2.1 Zeolite Group

- ullet in terms of variety and # of minerals. The zeolites contain the most different mineral varities of any silicate
- 80 naturally occurring zeolites, more synth'd in a lab
- All zeolites contain structural water. H2O
- Two ways water can be held in minerals
 - Structural water:
 - * Molecules of water that live inside the structure
 - Others have OH in their chemistry and get another H when disturbed.
 - Formula: M_{x} D_{v} Al. Formula page 1.
 - The ratio of Aluminum to Silica depends on the M-side. They tend to be mono-valent cations
 - D tends to be di-valent cations (Ca, Mn)
 - Structure itself: silicon tetrahedra with long, wide-open tunnels or holes where the water gets in.

- (Na, Ca, H2O) are loosly bound and exchangable in the structure.
 - these make it absorbant
 - Dessecant
 - $Na + -> < Ca^{2+}$
- Mineral Use:

_

- Common Zeolites: (not that important, recognize them as zeolites)
 - Amalcine (Na) Isometric (looks like Leucite, but different size and shape)
 - Chabazite (Ca, Na, u) Triclinic (mixed sort of mineral, triclinic. Looks hexagonal (pseudohexagonal))
 - Heulandite (Na, Ca) Monoclinic
 - Stillbite (Na, Ca) Monoclinic (elongaded, blady sheets)
 - Naturolite (Na) Orthorhombic (radiating fibres)
- Where do zeolites form?
 - Environment is Low-Low Temperature Metamorphism.
 - Hydrothermal Alteration
 - common rocks with a lot of K, Na, Ca (like in feldspar)
 - Low Temp Alteration & metamorphism, often in mafic rocks
 - Mafic rocks are very susceptable to low T, hydrothermal alteration
 - They break down and make zeolites.
 - Often fine-grained fillings in cracks or voids, or vesicles.
 - Great place for Zeolites to form.
 - Difficult to identify these fine grains without going to XRD.

silica group feldspar group zeolite group

2.2 Category (Sodalite, Leucite, Nephiline): Feldspathoids

- Like feldspar, but they exist in Low-Si rocks.
 - "Silica-Undersaturated environments"
 - Not enough Si to form Quartz
 - Still have Alkali Elements, those are necessary for Feldspathoids
 - Weird to have that kind of environment.
- Leucite: KAlSi₂O₆
 - soccer ball-shaped, roundish crystals
 - Formula looks a lot like KSpar (KAl)
 - Why would we get Leucite instead of KSpar?
 - * <write reaction>
 - * <Look for Pics>
 - * If we low silica rocks/highSilica Rocks
 - * lookup (30:00):question:
- Nepheline < complicated formula>
 - Formula for Nepheline
 - Has a little sodium and calcium, not so pure in real world
 - One other Mineral End Membe: Nepheline has complete solid solution to
 - * KAlSiO4 (Calcilite), the end of a solid solution.

• Bonus:

- Two common igneous rock types. Silica undersaturated and have abundant nephaline
- Phonalite (igneous rocks)
 - * pings when you hit it, doesn't break either
 - * Si-undersaturated
 - * Alkali-enriched
 - * Volcanic rock
- Syenite (the intrusive rock)
 - * silica undersaturated, intrusive rock

- Other Feldspathoids (foids):
 - Sodalite: Na8(AlSiO4)6 Cl2 (chlorine, otherwise it's albite)
 - Lazurite:
 - * (Na,Ca)8 (AlSiO4)6 (SO4, Cl, S)2
 - * Beautiful Azure Blue color
 - * Primary constituant of Lapiz Lazuli
 - Petalite: Li(AlSi4O10)
 - * society really likes Petalite for it's lithium. We <3 Lithium
 - * Hard to find large quantities of Lithium
 - * This can be found in Lithium-Rich Pegmatites
 - * :question: why does Petalite buck-trends. why unusual?

2.3 Scapolite (it's own little group)

- solid solution between two end members
 - (Marialite) Na4Al3Si9O24Cl
 - (Meionite) Ca4Al6Si6O24(CO3)
 - So, bring in Na, Ca
 - * Except for the Cl and the CO3 (carbonate), these look like:
 - · very common mineral things are identical to... Plagioclase Feldspars! Anorthite, Albite
 - * Scapolite takes the place of Plagioclase Feldspars in a **contactmetamorphic environment**
 - * Magma intrusions cause magma intrusions. (Silicate Magma's into a carbonate limestone)
 - * CO2 will be burned off into the atmosphere
 - * That's where Scapolite forms. It's an indicator of these conditions.
- Keep End-Members Of Solid Solution Paired
 - Mariolite, Myanite
 - (Feldspars): Albite, Anorthite

3 Phyllosilicates

- Slightly less polymerizatoin of silica
- Construct Phyllosilicates
- There are fundamental structures of phyllosiliates
- Know the Structure First
- they're sheet silicates
- Phyllo dough, sheety. fun fact.
- Silicon tetrahedra shares 3 of its oxygens with other silicon tetrahedra. Leaving 1 to bond with other things
- Phyllosilicates are generally soft (1's and 2's) :important:
- Not very dense, fairly open structures ():important:
- Single plane of leavage, easy to identify cleavage :important:

3.1 Structure

- Combination of Tetrahedral Sheets (T)
- and Octahedral Sheets (O)
- Tetrahedral Sheets:
 - Tetrahedral Sites, connected in 2-D Sheet
 - filled with either Al, or Si.
- Octahedral Sheets:
 - Made out of 2 adjacent planes of OH groups.
 - Between which, are a whole bunch of Octahedral, edge-sharing, sites.
- Between these two OH groups, we get our octahedral sites.
 - Filled with Cations
 - Depending on the Cations, there are 2 types of Octahedral Sheets
 - * Tri-Octahedral Sheet:

- \cdot 3/3 sites are filled with a 2+ cation (Mg, Fe)
- * Di-Octahedral Sheet:
 - · 2 out of 3 sites are filled with 3+ Cation (Al)
 - · in the other site, it's vacant
- These building blocks are important:
 - 1. Tetrahedral Sheets
 - 2. Tri-Octahedral Sheets
 - 3. Di-Octahedral Sheets
- Now we glue the different sheets together:
 - Combine T and/or O sheets to make Layers
 - Two Most Fundamental (T is trapezoid) (O is rectangle)
 - * (T)(O) Layer
 - * (T)(O)(T) Layer
 - * (O)... sometimes...
 - Layers are bound together by VanDerWaals or Interlayer Cation
- TABLEL CONSTRUCTION

DiOctahedral	Diagram	Tri-Octahedral	Notes
$\overline{\mathrm{Al}_2(\mathrm{OH})_6}$	(O)	$Mg_3(OH)_6$	These aren't silicates
Gibsite		Brucite	they're hydroxides!
(ore for Al)			
$Al_2Si_2O_5(OH)_4$	(T)	$Mg_3(Si_2O_5)(OH)_2$	
Kaolinite	(O)	Serpentine	
(most abundant Clay)		swap Al for Mg	
$Al_2Si_4O_{10}(OH)_2$	(T)	$\mathrm{Mg_3Si_4O_{10}(OH)_2}$	
Pyrophylite	(O)	Talc	
$ m w/\ Van Der Waals$	(T)		
$\overline{\mathrm{KAl}_{2}(\mathrm{AlSi}_{3})\mathrm{O}_{10}(\mathrm{OH})_{2}}$	+	$\text{KMg}_3(\text{AlSi}_3)\text{O}_{10}(\text{OH})_2$	
Muscovite (kendmember)	(T)	Biotite	
$NaAl_2(AlSi_3)O_{11}(OH)_2$	(O)		MICAS: (TOT)
Paraganite	(T)		w/ interlayer
	+		cation
$Ca(Al_2)(Al_2Si_2)O_{10}(OH)_2$	2+		
Margarite	(T)		
	(O)		
	(T)		
	2+		
	(Talc)		
	(Brucite)	Chloride	
	(Talc)	3rd most common	
	` '	phyllosilicate	

:question: about K end member in the table Look at page 5 for the phengite information... Ask :question: about it.

4 Phyllosilicates Continued <2016-02-25 Thu>

- Phyllosilicates cont.
- Phengite
 - similar to muscovite, but it takes the place of muscovite at High Pressures
 - $\rm K(Al_2)(AlSi_3)O_{10}(OH)_2$ (Muscovite)
 - \ast Add some ${\rm Mg^{2+}}$ and some Si for Al and creates Phengite
 - * (4si/4Al) = (3/1)

- * Phengite is a really common indicator of ultra-high pressure/conditions
- Paragonite is muscovite except remove K and put in Na

4.1 Quick Review and Finish Up

4.1.1 Micas

- TOT + interlayer Cations
- Biotite:
 - 2 end members (Fe²⁺ Anite), (Mg²⁺ Phlogopite)
 - Common Brown Mica, can get it everywhere
 - Need a lil Mg and Fe and a Na
- Muscovite (one end member) :question:
 - Silvery/clear
 - restricted to felsic, igneous, metamorphic, and sedementary derivatives
- Paragonite:
 - Na-rich
 - Higher Pressure Mica
 - Paragonite, like Phengite, is an indicator of High Pressure
 - sometimes, paragonite is more white than muscovite's silvery whitish color
- Phengite:
 - Si-rich, high pressure
- Muscovite, Paragonite, Phengite can be called "White Mica"
- Glauconite:
 - green mica, because Fe³⁺
 - Often fine grained in marine sedimentsf

END MICAS

4.2 Other Phyllosilicates

• Chlorite:

- Dark Green
- low-temperature metamorphic rocks
- hydrating mafic protoliths
- Mafic Protoligh (basalt)
- Green Schist/Green Stone is green becasue of chlorite
- looks like a mica
- forms with the micas, muscovite & friends
- How to tell Chlorite from others Micas ?:
 - * Micas are Elastic, Chlorite isn't. (+ color)

• Talc:

- soft, greasy, fun to look at
- Common in hydration of mafic to UltraMafic rocks
- Hydration, Low-T metamorphism of ultramafic rocks
- Water added to Basalt, but you need "Ultra"mafic protolith such as:
 - * the mantle!
- Inject water into the mantle and you'll make things like Talc
- Or Serpentine!!

• Serpentine

- Common in metamorphic hydration (add water to mantle, will make Talc, Brucite, Serpentine)
- Is a fun one:)
- Very water rich. It has an incredible solid storehouse of water. Up to 15% weight in water.
- 3 Different Crystal forms Serpentine can take :important:
- They're serpentine chemically and structurally.
- Serpentine is a (T)(O) structure. But it can bend to fit things together. Bent Sheets (see page 1).

- * Lizardite: random ordering of bent TO's. Massive texture.
- * Antigorite: Ordered, wavy formation.
- * Crysotile: Ordered, in a circle. That's where we get the needles. Sheet Needle.
 - · Asbestos form of Crysotile, and of Serpentine
 - · It's not structurally a needle, it's a sheet.
 - · not as bad as amphibole asbestos

4.3 Clay Minerals

- XRD needed to identify the Clay Minerals
- sedementology "clay" is anything finer than a grain size :question:
- mineralology "clay" is a phylosilicate tends to be fine grained.
- Two Broad categories of Clay Minerals

4.3.1 1:1 Clays

(T)(O) ex: Kaolinite

• strictly speaking, serpentine counts here. But it doesn't form in the same environment so we don't count it.

4.3.2 2:1 Clays

(T)(O)(T) ex: (don't have their own formula, know that they're 2:1 clays, and that Smectite, Verm, and Montmor. form due to weathering of Mafic Rocks have a property of shrinking and swelling due to water uptake in the interlayer regions)

- Smectite (includes some mix of Ca, Mg, Fe in the octahedral sites)
- Vermiculite
- Montmorillionite
- Illite (brings in K, similar to muscovite)
- Kaolinite and Illite form from weathering of Felsic Rocks
 - that's a big deal

- We could add Glauconite (K, Fe³⁺) to the mix.
 - Often forms as a Clay in marine, sedimentary environments
 - sediment binds them
- Smec, Verm, Montor. they expand and dessicate with water. By like 50%!!! That's huge
- Because they're so fine grained, you can't identify these potential dangers unless you resort to XRD

END OF PHYLLOSILICATES ========

5 Inosilicates

- Two types:
 - single chain silicates = pyroxenes. pyroxenes are single chain silicates. the end.
 - * End in SiO₃
 - Dobule chiain silicates = amphiboles.
 - * End in Si₈O₂₂

5.1 Pyroxenes

- LEARN THE STRUCTURE FIRST!!!, just like with the phyllosilicates
- And amphibole can get ugly formula-wise, so learn by structure first
- like feldspar with triangle, learn the triangle and use structure

5.1.1 Structure of Pyroxenes

- silicon tetrahedron's sitting flat on the board, stacked end to end. C-axis. Page 2.
- Along C-Axis view: $\Delta\Delta\Delta$