

[REPORT]

■ 과 목 명 : 인공지능 확률통계

■ 담당교수 : 서용덕 교수님

■ 제 출 일:2022.10.12

■ 학과: 데이터 사이언스. 인공지능

■ 학번: A64037

■ 성명: 서승덕

Q. Find an example of Bayesian Posterior Probability Calculation

We have considered examples of posterior computation through the exercises of the book. Now your job is to find a similar example, e.g. by googleing or by refering to books.

* In your pdf report, provide the problem and your solution. Try to put a detailed logical explanation.

선정 주제 : 코로나 키트의 사후확률은 어떻게 될까?

- 사후확률을 계산하기 위해 관련 자료 조사.
 - 1. 코로나 유증상자의 코로나 19 검사 실시 현황(서울시 코로나19 대응 주요소식, 2020.07.08)

신종 코로나바이러스감염증-19 상황판

	확진환자 현황		검사 현황 ⁴⁾			자가격리자 현황			
	확진자	사망자	격리해제	검사건수	검사중	결과음성	계	감시중	감시해제
서울시 ¹⁾	1,393	9	1,171	307,608	9,285	298,323	115,383	10,698	104,685
전 국 ²⁾	13,244	285	11,970	1,346,491	24,012	1,322,479	-	-	_
전세계 ³⁾	11,838,384	544,414	6,458,490	_	_	_	_	_	_

- 1) 서울시의 경우, '서울시 코로나19 발생동향' '20.07.08. 18시 기준
- 2) 전국의 경우, '질병관리본부' '20.07.08. 00시 기준
- 3) 전 세계의 경우, '2019-nCoV Global Cases (by Johns Hopkins CSSE)' '20.07.08. 15시 기준
- 4) 의사환자 및 조사대상 유증상자의 코로나19 검사 실시 현황
- 위 데이터에서 전국-검사 현황을 유증상자의 코로나 감염 확률로 가정.

P(C): 유증상자의 코로나 감염 확률, P(~C): 유증상자의 코로나 비감염 확률

2. 레피젠 코로나 자가진단키트 내 제품 진단 확률

	RT-PCR 제품 결과				
	양성	음성	총계		
양성	68	0	68		
음성	5	215	220		
총계	73	215	288		

P(D): 검사 결과 양성

P(DIC): 유증상자중 양성인 사람이 검사 결과 양성일 확률

P(D|~C): 유증상자중 음성인 사람이 검사 결과 양성일 확률

- 데이터 들을 통해 만들어낸 확률

1. P(C) = (1,346,491-1,322,479)/1,346,491

2. P(~C)=1,322,479/1,346,491

3. P(D|C) = 68/68

4. $P(D|\sim C) = 5/220$

- 사용 수식

$$P(H|D) = \frac{P(H) P(D|H)}{P(D)}$$

$$P(D) = P(H_1) P(D|H_1) + P(H_2) P(D|H_2)$$

- 계산

구하고자 하는 값 P(C|D): 유증상자가 진단키트를 시행하여 양성이 나왔을 때 코로나 감염자일 확률.

 $P(C|D) = P(C)^* P(D|C) / P(D)$

 $= P(C)^* P(D|C) / P(C)^* P(D|C) + P(\sim C)^* P(D|\sim C)$

= (1346491-1322479)/ 1346491 *68/68

/

((1346491-1322479)/1322479*(68/68) + 1,322,479/1,346,491*(5/220))

= 44.4%

	prior	likelihood	unnorm	posterior
코로나	0.017833	1	1.7833%	44.4%
~코로나	0.982167	0.022727	2.2322%	55.6%
			4.0155%	

- 결과

유증상자가 진단키트를 시행하여 양성이 나왔을 때, 코로나 감염자일 확률(P(C|D))은 44.4%가나왔음.