

Pertemuan 2

Teknik Pencarian Akar pada Persamaan Non-linier

Komputasi Numerik (KOM325)

Review materi pertemuan sebelumnya

- Apa itu error ?
- Sebutkan sumber-sumber error!
- Apa yang dimaksud dengan Loss of Significance Error ?
- Apa yang dimaksud dengan propagasi error ?

Subtopik

- Metode dalam pencarian akar pada persamaan non-linier meliputi:
 - Metode Bisection,
 - Metode Newton,
 - Metode Secant,
 - Metode Iterasi satu titik
- Studi kasus pencarian akar pada persamaan nonlinier secara numerik
- Algoritme pencarian akar pada persamaan nonlinier

- Masalah pencarian akar yang lazim disebut akar persamaan adalah mencari solusi persamaan sebuah fungsi yang membuat nilai-nilai nol.
- Misal: 2x-3=0
 - Solusi adalah memindahkan nilai -3 ke ruas kanan sehingga dihasilkan 2x=3, dan hasilnya x=3/2
- $x^2 4x 5 = 0$ Solusi adalah yang membuat nilai-nilai nol
- Umumnya permasalahan akar muncul dalam bentuk non linear yang melibatkan fungsi-fungsi trigonometri, eksponensial, logaritma, transeden dan lain-lain

Ingat kembali persamaan berikut dalam kalkulus

$$f(x) = ax^2 + bx + c = 0 \tag{1}$$

Penyelesaian fungsi tersebut diperoleh dengan menggunakan rumus berikut

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{2}$$

- x_1 dan x_2 adalah akar dari persamaan kuadratik (1). Akar tersebut menggambarkan nilai-nilai x yang membuat persamaan (1) sama dengan nol.
- Dengan demikian akar dari suatu persamaan merupakan nilai x yang memenuhi f(x) = 0

- Contoh: tentukan akar dari $2x^2 + 5x 3 = 0$
- Akar dari persamaan kuadratik tersebut adalah $x_1 = 0.5$ dan $x_2 = -3$.
- $> f1 <- function(x) 2*x^2+5*x-3$
- > plot(f1, -4, 2)

Teorema:

Misal f(x) adalah fungsi kontinu. Setiap bilangan r dimana f(r) = 0 dinamakan akar dari persamaan f(x) = 0. Juga dikatakan bahwa r adalah titik nol persamaan. Persamaan (2) cukup sesuai digunakan untuk mencari akar persamaan kuadrat seperti dalam bentuk (1).

Bagaimana dengan fungsi non-linier berikut? Apakah bisa diselesaikan dengan persamaan (2)?

$$f(x) = e^{-x} - 3x$$
$$f(x) = x \sin(x) - 1$$
$$f(x) = \ln(x) - 5 + x$$

- Dalam metode numerik, pencarian akar f(x) = 0 dilakukan secara iteratif dengan menelusuri skuens nilai x yang mungkin dan menyebabkan solusinya adalah nol
- Banyak algoritme untuk pencarian akar secara numerik dan dikelompokan ke dalam dua metode:
 - Metode Tertutup: Bisection, regula falsi
 - Metode Terbuka: Fixed point, Newthon-Rahpson dan Secant

Metode Tertutup

- Sering disebut dengan metode konvergen.
 Metode yang mencari akar dari suatu
 persamaan/fungsi dengan selang tertutup antara
 titik a dan b atau [a, b]. Sudah dipastikan berisi
 minimal 1 akar. Dengan kata lain iterasinya
 konvergen menuju 1 akar.
- Dalam sebuah selang pencarian akar tergantung untuk karakteristik fungsi dengan nilai berikut:
 - f(a)f(b) < 0 → jumlah akarnya adalah ganjil</p>
 - f(a)f(b) > 0 → jumlah akarnya adalah genap atau tidak ada sama sekali

Metode Bagi Dua (bisection)

?

- Misalkan sudah ditentukan selang [a,b] sehingga f(x) kontinu pada selang [a, b] dimana f(a). f(b) 0.
- Hal ini menunjukkan bahwa f(x) berubah tanda pada [a, b] yang artinya f(x) = 0 mempunyai sedikitnya 1 akar pada [a, b]
- Metode bagi dua, pada setiap iterasinya, membagi selang [a,b] menjadi 2 bagian, misalkan x=c sehingga didapatkan dua subselang tutup dengan ukuran yang sama yaitu [a,c] dan [c,b]
- Selang yang dipilih untuk iterasi berikutnya adalah subselang yang memuat akar dan bergantung pada f(a)f(c) < 0 atau f(c)f(b) < 0
- Selang baru dibagi dua denga cara yang sama sampai dengan ukuran selang dengan sangat kecil (Lebar selang baru [a-c] atau [c-b] lebih kecil dari nilai toleransi lebar selang yang mengurung akar)

[?]

- Misalkan f(x) kontinu pada selang [a, b] dimana f(a)f(b) = 0.
- Hal ini menunjukkan bahwa f(x) berubah tanda pada [a, b] yang artinya f(x) = 0 mempunyai sedikitnya 1 akar pada [a, b]

• Proses pencarian akar pada f(x) = 0 pada selang [a, b] dapat dilakukan dengan membagi selang tersebut menjadi dua bagian, yaitu [a, c] dan [c, b], sehingga berlaku

$$f(a)f(c) = \begin{cases} <0, akar \ pada \ selang \ (a,c) \\ =0, akar = c \\ >0, akar \ pada \ selang \ (c,b) \end{cases}$$

$$f(c)f(b) = \begin{cases} <0, akar \ pada \ selang \ (c,b) \\ =0, akar = c \\ >0, akar \ pada \ selang \ (a,c) \end{cases}$$

• Selanjutnya untuk mencari akar f(x) = 0 pada selang [a, c] dapat dilakukan dengan membagi selang tersebut menjadi dua bagian, yaitu $[a, c_1]$ dan $[c_1, c]$, sehingga berlaku

$$C_{1} = \frac{a+c}{2}$$

$$f(a)f(c_{1}) = \begin{cases} <0, akar \ pada \ selang \ (a,c_{1}) \\ =0, akar = c_{1} \\ >0, akar \ pada \ selang \ (c_{1},c) \end{cases} = \begin{cases} <0, akar \ pada \ selang \ (c_{1},c) \\ =0, akar = c \\ >0, akar \ pada \ selang \ (a,c_{1}) \end{cases}$$

• Demikian proses penentuan akar tersebut berlanjut, sehingga jika akar terdapat pada selang [a, c_1], maka selang tersebut dibagi dua sehingga diperoleh selang-selang [a, c_2] dan [c_2 , c_1] dengan $c_2 = \frac{a+c_1}{2}$

Proses akan berhenti bila

- 1. Akar telah ditemukan
- Mencapai iterasi maksimum (N) yang telah ditetapkan sebelumnya
- 3. $|b-a| \le \varepsilon$ (lebar selang cukup kecil).

Algoritme metode Bagi Dua untuk pencarian akar dari f(x) = 0:

- 1. Input : a, b, ϵ dengan f(a). f(b) < 0.
- 2. Set $c = \frac{a+b}{2}$

jika f(c) = 0 maka akar = $c \rightarrow$ proses selesai jika f(a).f(c) < 0 maka set b = cjika tidak, set a = c{periksa apakah $|b - a| \le \varepsilon$ } jika $|b - a| \le \varepsilon \rightarrow$ proses selesai \rightarrow akar = c

jika tidak, kembali ke langkah 2

Contoh 1: tentukan akar dari persamaan

$$f(x) = e^x - 3x$$

pada selang [0, 1] dengan $\varepsilon = 10^{-2}$ (perhitungan menggunakan desimal 4 digit)

iterasi	а	b	С	f (c)
1	0	1	0.5000	0.1487
2	0.5000	1	0.7500	-0.1330
3	0.5000	0.7500	0.6250	-6.754×10^{-3}
4	0.5000	0.6250	0.5625	0.0676
5	0.5625	0.6250	0.5938	0.0295
6	0.5938	0.6250	0.6094	0.01112
7	0.6094	0.6250	0.6172	2.130×10^{-3}

Contoh 1 (lanjutan):

Lebar selang pada setiap iterasi

iterasi	1	2	3	4	5	6	7
b — a	0.5	0.25	0.125	0.0625	0.0312	0.0156	7.8×10^{-3}

jika nilai ujung selang pada iterasi ke-i dinotasikan sebagai a_i dan b_i , untuk i = 1, 2,...,n, maka lebar selang pada saat ke-i adalah $\frac{1}{2^i}(b-a)$ (1)

Proses pencarian akar akan berhenti bila lebar selang sangat kecil, artinya $|b_n - a_n| \le \mathcal{E}$

- Jika nilai ε yang diketahui, banyaknya iterasi sampai akar diperoleh dapat ditentukan.
- Pada iterasi ke-n, proses pencarian akar akan berhenti karena

$$\left|b_n - a_n\right| \le \varepsilon \tag{2}$$

Dengan menggunakan persamaan (1), persamaan (2)
 menjadi 1 (1)

$$\frac{1}{2^n}(b-a) \le \varepsilon \tag{3}$$

Selanjutnya dari persamaan (3) diperoleh

$$n = INT \left(\frac{\log(\frac{b-a}{\varepsilon})}{\log 2} \right) + 1$$

Tentukan akar terbesar dari persamaan

$$f(x) = x^6 - x - 1 = 0$$

pada selang [1, 2] dengan ε =0.001

iterasi	a	b	С	b - c	f(c)
1	1.0000	2.0000	1.5000	0.5000	8.8906
2	1.0000	1.5000	1.2500	0.2500	1.5647
3	1.0000	1.2500	1.1250	0.1250	-0.0977
4	1.1250	1.2500	1.1875	0.0625	0.6167
5	1.1250	1.1875	1.1562	0.0312	0.2333
6	1.1250	1.1562	1.1406	0.0156	0.0616
7	1.1250	1.1406	1.1328	0.0078	-0.0196
8	1.1328	1.1406	1.1367	0.0039	0.0206
9	1.1328	1.1367	1.1348	0.0020	0.0004
10	1.1328	1.1348	1.1338	0.00098	-0.0096

Metode Terbuka

- Tidak memerlukan selang yang mengurung akar
- Memerlukan tebakan awal akar atau lebih dari dua yang tidak perlu mengurung akar
- Hampiran akar didasarkan pada hampiran akar sebelumnya
- Iterasi bisa lebih cepat dibandingkan tertutup namun nilai bisa mencapai konvergen pada akar atau malah divergen

Metode Iterasi titik tetap

- Sering disebut dengan metode iterasi sedarhana, dilakukan secara langsung
- Kesederhanaan metode ini karena pembentukan prosedur iterasinya mudah dibentuk sebagai berikut:
 - Susun persamaan f(x) = 0 menjadi bentuk x = g(x). Lalu lakukan prosedur iterasi:
 - $-x_{r+1} = g(x_r)$. Terka nilai x berikutnya sampai dengan konvergen sampai ditemukan akar s sedemikian sehingga f(s) = 0 atau s = g(s) dengan kondisi berhenti adalah $|x_{r+1}-x_r| < \varepsilon$

Metode Iterasi titik tetap

- Tentukan akar persamaan $f(x) = x^2 2x 3 = 0$ dengan metode iterasi titik tetap dengan ε =0.000001
- Algoritme:
 - Konversi f(x) = 0 menjadi x = g(x)
 - Terka misal nilai $x_0 = a$
 - Prosedur iterasi $x_1 = g(a)$

Metode Newton

- Metode ini paling banyak digunakan dalam mencari akar – akar dari suatu persamaan.
- Jika perkiraan awal dari akar adalah X_i , suatu garis singgung dapat dibuat dari titik $(Xi\ (f(xi))$
- Titik dimana garis singgung tersebut memotong sumbu x biasanya memberikan perkiraan yang lebih dekat dari nilai akar
- Turunan pertama pada Xi adalah ekivalen dengan kemiringan

Metode Newton

- metode pendekatan yang menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut. Titik pendekatan ke n+1 dituliskan dengan :
- Jenis I (Raphson)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Metode Newton

$$f'(x_n) = slope = \frac{f(x_n)}{x_n - x_{n+1}}$$

Algoritma Metode Newton

- 1. Definisikan fungsi f(x) dan turunanya f'(x)
- 2. Tentukan toleransi error (€) dan iterasi maksimum
- 3. Tentukan nilai pendekatan awal x_0
- 4. Hitung $f(x_0)$ dan $f'(x_0)$ 5. Untuk iterasi 1 s/d n atau $|x_{i+1} x_i| > \epsilon$
 - Hitung f(xi) dan f'(xi)

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

6. Nilai minimizer (akar persamaan) adalah nilai x_i yang terakhir diperoleh.

Tugas Mandiri

Konversikan algoritme metode newton menggunakan Proogram R untuk menentukan akar dari

$$f(x) = x^3 + \sin^2 x - \ln x$$

Nilai inisial $x_0 = 1$, toleransi error (e) dan iterasi maksimum (n) adalah $\varepsilon = 10^{-5}$

Tugas dikumpulkan di LMS dalam file *.doc yang berisikan:

- Penghitungan manual
- Script program R dan scrshoot hasilnya
- Plot fungsi untuk skuens 1:3 dengan beda nilai 0.1

Referensi

- Victor A. Bloomfield. 2014. Using R for Numerical Analysis in Science and Engineering. 1 edition. Chapman and Hall/CRC
- Elementary Numerical Analysis, Second edition, Kendall Atkinson