SI152: Numerical Optimization

Lecture 5: Duality

Hao Wang Email: haw309@gmail.com

ShanghaiTech University

October 16, 2024

Outline

1 The dual LP

2 Duality

3 Dual Simplex Method

Outline

1 The dual LP

2 Duality

3 Dual Simplex Method

Constrained to unconstrained

Constrained optimization

min
$$x^2 + y^2$$

s.t. $x + y = 1$.

 Formulate the unconstrained problem

$$L(x, y, p) = x^2 + y^2 + \lambda(1 - x - y)$$

The minimizer is

$$x = y = \frac{\lambda}{2}$$

$$\min_{x} c^{T} x$$
 s.t. $a_{i}^{T} x \leq b_{i}, i = 1, ..., m$.

Lagrange function (Lagrangian):

$$L(x,\lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

Fixed $\lambda \geq 0$, unconstrained problem :

$$\min_{x} L(x, \lambda) = c^{T}x + \sum_{i=1}^{m} \lambda_{i} (a_{i}^{T}x - b_{i})$$

- Allow the violation of constraints: $a_i^T x \leq b_i \implies a_i^T x > b_i$
- This violation $a_i^T x > b_i$ yields a cost: $\lambda_i (a_i^T x b_i)$
- λ_i is the price per unit of violation

The primal problem

$$L(x,\lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

Given x, the cost:

$$f(x) := \max_{\lambda \ge 0} L(x, \lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

- Given x, the dual player maximize his revenue by manipulating λ , i.e., find the best price λ_i for violation to maximize the revenue: $L(x, \lambda)$.
- Now x is prescribed parameter. Optimal λ depends on x: $\lambda = \lambda(x)$

$$\min_{x} f(x) = \min_{x} \max_{\lambda \ge 0} L(x, \lambda) = c^{T} x + \sum_{i=1}^{m} \lambda_{i} (a_{i}^{T} x - b_{i})$$

• The primal player want to minimize his penalty when seeing the price λ .

The dual problem

$$L(x,\lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

Given $\lambda \geq 0$, the cost:

$$g(\lambda) := \min_{x} L(x, \lambda) = c^{T} x + \sum_{i=1}^{m} \lambda_{i} (a_{i}^{T} x - b_{i})$$

- Given $\lambda \geq 0$, the primal player minimize his cost by manipulating x, possibly violating the constraints, to minimize $L(x,\lambda)$.
- Now $\lambda \geq 0$ is the prescribed parameter. Optimal x depends on λ : $x = x(\lambda)$

$$\max_{\lambda \ge 0} g(\lambda) = \max_{\lambda \ge 0} \min_{x} L(x, \lambda) = c^T x + \sum_{i=1}^{m} \lambda_i (a_i^T x - b_i)$$

• The dual player want to maximize his revenue when seeing the action x.

Game Theory

min max v.s. max min

Primal problem (min-max):

$$\min_{x} f(x) = \min_{x} \max_{\lambda \ge 0} L(x, \lambda)$$

- Primal objective: $f(x) = \max_{\lambda \ge 0} L(x, \lambda)$
- Primal variable: x
- Dual problem:

$$\max_{\lambda \geq 0} g(\lambda) = \max_{\lambda \geq 0} \min_x L(x, \lambda)$$

- Dual objective: $g(\lambda) = \min_x L(x, \lambda)$
- Dual variable: λ
- Dual feasibility: $\lambda > 0$

Primal problem:

$$\min_{x} \max_{\lambda \ge 0} L(x, \lambda) = c^T x + \sum_{i=1}^{m} \lambda_i (a_i^T x - b_i)$$

Let's take a closer look:

$$f(x) \begin{cases} = +\infty & \text{if } \exists i, a_i^T x > b_i \implies \text{We don't care about this case.} \\ < +\infty & \text{if } \forall i, a_i^T x \leq b_i \implies \text{This implies primal feasibility.} \end{cases}$$

This is equivalent to the original LP:

min
$$c^T x$$
 s.t. $a_i^T x \le b_i, i = 1, ..., m$

Notice that:

If
$$\exists i, a_i^T < b_i \implies \text{This implies } \lambda_i = 0.$$

Dual problem:

$$\max_{\lambda \ge 0} \min_{x} L(x, \lambda) = c^{T} x + \sum_{i=1}^{m} \lambda_{i} (a_{i}^{T} x - b_{i}) = (c + \sum_{i=1}^{m} \lambda_{i} a_{i})^{T} x - b^{T} \lambda_{i}$$

Let's take a closer look:

$$g(\lambda) \begin{cases} = -\infty & \text{if } c + \sum_{i=1}^m \lambda_i a_i \neq 0 \implies \text{We don't care about this case.} \\ > -\infty & \text{if } c + \sum_{i=1}^m \lambda_i a_i = 0 \implies \text{This implies dual feasibility.} \end{cases}$$

This is equivalent to:

$$\max -b^T \lambda$$
 s.t. $c + A^T \lambda = 0, \lambda \ge 0$.

Split the equality: $Ax = b \implies Ax \ge b, Ax \le b$ The Lagrangian $(u \ge 0, w \ge 0, v \ge 0)$ is:

$$\begin{split} L(x,u,w,v) &= c^T x + u^T (-Ax+b) + w^T (Ax-b) - v^T x, \\ &= c^T x - (u-w)^T (Ax-b) - v^T x \\ &= c^T x - \underbrace{\lambda^T}_{\text{It is free!}} (Ax-b) - v^T x \end{split}$$

The dual objective is then:

$$g(\lambda,v) = \min_{x} L(x,\lambda,v) = \min_{x} (c - A^T\lambda - v)^Tx + b^T\lambda$$

Maximize $g(\lambda,v)$, only care about $g(\lambda,v)>-\infty$, meaning $c-A^T\lambda-v=0$ Dual problem is:

$$\max b^T \lambda$$
, s.t. $A^T \lambda \leq c$.

minimize
$$-x_1 - 4x_2 - 3x_3$$

subject to $2x_1 + 2x_2 + x_3 = 4$
 $x_1 + 2x_2 + 2x_3 \le 6$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

$$L(x, \lambda) = -x_1 - 4x_2 - 3x_3 + \lambda_1(2x_1 + 2x_2 + x_3 - 4) + \lambda_2(x_1 + 2x_2 + 2x_3 - 6) - \mu_1x_1 - \mu_2x_2 - \mu_3x_3$$

$$= (-1 + 2\lambda_1 + \lambda_2 - \mu_1)x_1 + (-4 + 2\lambda_1 + 2\lambda_2 - \mu_2)x_2 + (-3 + \lambda_1 + 2\lambda_2 - \mu_3)x_3 - 4\lambda_1 - 6\lambda_2$$

$$\lambda_1 \text{ is free }, \lambda_2 \ge 0, \ \mu_1 \ge 0, \ \mu_2 \ge 0, \ \mu_3 \ge 0$$

Given
$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$$

• The primal problem:

$$\min c^T x$$
s.t. $Ax = b, x \ge 0$

• Variables: $x \in \mathbb{R}^n$

• The dual problem:

$$\max b^T \lambda$$
 s.t. $A^T \lambda \le c$

- Variables: $\lambda \in \mathbb{R}^m$
- Show the dual problem of the dual problem is the primal problem.
- Careful about the dual variables, dual feasibility, dual objective, dual problem, duality, and duality gap.

Explanation

Primal:

$$\begin{array}{ll} \text{minimize} & c_1x_1+c_2x_2+\cdots+c_nx_n\\ \text{subject to} & a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\geq b_1\\ & a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\geq b_2\\ & \vdots\\ & a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\geq b_m\\ & x_1\geq 0, x_2\geq 0, \cdots, x_n\geq 0 \end{array}$$

Dual:

$$\begin{array}{ll} \text{maximize} & \lambda_1b_1 + \lambda_2b_2 + \cdots + \lambda_mb_m \\ \text{subject to} & \lambda_1a_{11} + \cdots + \lambda_ma_{m1} \leq c_1 \\ & \lambda_1a_{12} + \cdots + \lambda_ma_{m2} \leq c_2 \\ & \vdots \\ & \lambda_1a_{1n} + \cdots + \lambda_ma_{mn} \leq c_n \\ & \lambda_i > 0, i = 1, \cdots, m. \end{array}$$

Duality Scheme

$$\min c^T x$$

$$Ax \begin{cases} \geq \\ = \\ \leq \\ \leq \\ \end{cases} b$$

$$x \begin{cases} \geq \\ \leq \\ \leq \\ \end{cases} 0$$

$$\max b^T y$$

$$A^T y \begin{cases} \geq \\ \leq \\ \leq \\ \end{cases} c$$

$$y \begin{cases} \geq \\ \leq \\ \end{cases} 0$$

Primal problem	Dual problem
minimize	maximize
Constraints	Variables
$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$	$y_i \geq 0$
$\sum_{j=1}^{n} a_{ij}x_j = b_i$ $\sum_{j=1}^{n} a_{ij}x_j \le b_i$	y_i is free $y_i \leq 0$
Variables	Constraints
x_j is free	$a_j^T y = c_j$
$x_j \ge 0$	$a_j^T y = c_j$ $a_j^T y \le c_j$ $a_j^T y \ge c_j$
$x_j \leq 0$	$a_j^T y \geq c_j$
$x_j = 0$	no constraint

Example

$$egin{array}{ll} ext{minimize} & x_1 + 2x_2 + 3x_3 \ ext{subject to} & -x_1 + 3x_2 = 5 \ 2x_1 - x_2 + 3x_3 \geq 6 \ x_3 \leq 4 \ x_1 \geq 0 \ x_2 \leq 0 \ x_3 ext{ is free} \end{array}$$
 $egin{array}{ll} ext{maximize} & 5\lambda_1 + 6\lambda_2 + 4\lambda_3 \ ext{subject to} & \lambda_1 ext{ is free} \ \lambda_2 \geq 0 \ \lambda_3 \leq 0 \ -\lambda_1 + 2\lambda_2 \leq 1 \ 3\lambda_1 - \lambda_2 \geq 2 \ 3\lambda_2 + \lambda_3 = 3 \end{array}$

Weak Duality

$$\min \ c^T x \quad \text{s.t. } Ax = b, x \ge 0$$

$$\max \ b^T \lambda \quad \text{s.t. } A^T \lambda \leq c$$

Theorem 1 (Weak duality)

 $c^T x \ge \lambda^T b$ for any primal-dual feasible (x, λ) .

For any primal-dual feasible (x, λ) :

$$f(x) = \max_{\lambda \ge 0} L(x,\lambda) \ge L(x,\lambda) \ge \min_x L(x,\lambda) = g(\lambda).$$

Corollary 2

If $c^Tx=b^T\lambda$ holds at primal-dual feasible (x,λ) , then x is primal optimal and λ is dual optimal.

Corollary 3

If the primal (dual) problem is unbounded, then the dual (primal) problem is infeasible.

Outline

1 The dual LP

2 Duality

3 Dual Simplex Method

Strong Duality

$$\min c^T x \quad \text{s.t. } Ax = b, x \ge 0$$

$$\max \ b^T \lambda \quad \text{s.t.} \ A^T \lambda \leq c$$

Theorem 4

Let x^* be the optimal solution of the standard form LP and B be the optimal basis. Then

$$\lambda^* = (c_B^T B^{-1})^T$$

is the optimal dual variable.

Hint:
$$r = c - A^T (c_B^T B^{-1})^T = c - A^T B^{-T} c_B = c - A^T \lambda$$

Strong Duality

Theorem 5

If the primal (dual) problem is feasible, then the dual (primal) is also feasible and the optimal values are equal (duality gap = 0).

Primal Prob Dual Prob	Infeasible	Unbounded below	Optimal
Infeasible	\checkmark		×
Unbounded above	√	×	×
Optimal	×	×	V

Question: write the dual problem of the Phase I problem. Is it feasible? Does it have optimal solution?

Relationship to the Simplex method

Optimal
$$\lambda^* = (c_B^T B^{-1})^T$$

Where is the reduced cost?

$$\begin{array}{lll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b \\ & x \geq 0 & \\ & x \geq 0 & \\ & x \geq 0 & \\ & & \\$$

Relationship to the Simplex method

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \ge 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & b^T \lambda \\ \text{subject to} & \lambda^T A + r^T = c^T \\ & r \geq 0 \end{array}$$

Complementary condition

$$\min \ c^T x \quad \text{s.t. } Ax = b, x \ge 0$$

$$\max \ b^T \lambda \quad \text{s.t. } A^T \lambda \le c$$

We need to solve

$$Ax = b x \ge 0$$

$$A^{T}\lambda + r = c r \ge 0$$

$$b^{T}\lambda = c^{T}x$$

The last condition $b^T \lambda = c^T x$ can be written as

$$0 = c^{T}x - b^{T}\lambda = c^{T}x - (Ax)^{T}\lambda = (c - A^{T}\lambda)^{T}x = r^{T}x$$

Becase $r \ge 0$ and $x \ge 0$, the condition $r^T x = 0$ implies

$$r_i x_i = 0, \quad \forall i$$

Complementary condition

minimize
$$c^T x$$

subject to $Ax = b$ λ complementary: $r^T x = 0$
 $x \ge 0$ r

• It means the inactive constraint at x^* has a 0 multiplier:

$$x_i^* > 0 \implies r_i^* = 0$$

For general LP

min
$$c^T x$$
 s.t. $a_i^T x \le b_i, i = 1, ..., m$

Recall from writing the dual, $a_i^Tx^*-b_i<0 \implies \lambda_i^*=0$, i.e., $(a_i^Tx^*-b_i)\lambda_i^*=0$

The strictly satisfied constraint, the penalty should be 0

$$L(x,\lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

Complementary condition

$$\begin{array}{l} \text{Primal feasible} \\ \text{Dual feasible} \\ \text{Duality Gap = Primal-Dual = 0} \end{array} \iff \text{Primal-dual optimal}$$

Outline

1 The dual LP

2 Duality

3 Dual Simplex Method

Duality and simplex

Primal minimize
$$-x_1-4x_2-3x_3$$
 subject to $2x_1+2x_2+x_3\leq 4$ $x_1+2x_2+2x_3\leq 6$ $x_1\geq 0, x_2\geq 0, x_3\geq 0$ Dual maximize $4\lambda_1+6\lambda_2$ subject to $2\lambda_1+\lambda_2\leq -1$ $2\lambda_1+2\lambda_2\leq -4$ $\lambda_1+2\lambda_2\leq -3$ $\lambda_1\leq 0, \lambda_2\leq 0$

Duality and simplex

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
	2	2	1	1	0	4
	1	2	2	0	1	6
$m{r}^{ ext{T}}$	- 1	-4	-3	0	0	0

x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
1	1	$\frac{1}{2}$	$\frac{1}{2}$	0	2
-1	0	1	-1	1	2
r^{T} 3	0	-1	2	0	8

	x_1	x_2	x_3	$oldsymbol{x_4}$	x_5	$B^{-1}b$
	$\frac{3}{2}$	1	0	1	$-\frac{1}{2}$	1
	$-\bar{1}$	0	1	-1	$\overline{1}$	2
r	^T 2	0	0	1	1	10

Optimal primal

$$x_1^* = 0 \ x_2^* = 1 \ x_3^* = 2$$

Optimal multipliers

$$\begin{array}{l} \lambda_1^* = -1 \\ \lambda_2^* = -1 \end{array}$$

_why?

Duality simplex

$$\max b^T \lambda$$

s.t. $\lambda^T A \le c^T$

It would be perfect to know the active constraints

Definition 6

Suppose $x_B=B^{-1}b$ is a basic solution (possibly infeasible) for Ax=b. If $\lambda^T=c_B^TB^{-1}$ is feasible for the dual problem, i.e., $(r^T=)c^T-\lambda^TA\geq 0$, then we call x is the dual feasible solution for the standard form.

- How about an algorithm: Dual BS \implies Dual BS \implies Primal feasible
- In the tableau, complementarity is always satisfied!
 Dual feasible + Primal feasible + Complementary = Optimal

Duality simplex

This is called the Duality Simplex Method:

$$r_j' = r_j + \frac{r_q}{y_{pq}} y_{pj} \ge 0$$

$$\begin{array}{ll} \text{minimize} & 3x_1 + 4x_2 + 5x_3 \\ \text{subject to} & x_1 + 2x_2 + 3x_3 \geq 5 \\ & 2x_1 + 2x_2 + x_3 \geq 6 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{array}$$

The first tableau:

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
_	-1	-2	-3	1	0	- 5
[-	-2	- 2	-1	0	1	-6
$m{r}^{ ext{T}}$	3	4	5	0	0	0

Example

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
	0	-1	$-\frac{5}{2}$	1	$-\frac{1}{2}$	-2
	1	1	$\frac{ar{1}}{2}$	0	$-\frac{1}{2}$	3
r^{T}	0	1	$rac{ar{7}}{2}$	0	$-\frac{1}{2}$	-9
	x_1	$oldsymbol{x_2}$	x_3	x_4	x_5	$B^{-1}b$
	0	1	$\frac{5}{2}$	-1	$\frac{1}{2}$	2
	1	0	$-ar{2}$	1	$-ar{1}$	1
r^{T}	0	0	1	1	1	-11

Optimal primal solution: $x^* = (1, 2, 0)^T$

Dual iterates: $(0,0) \rightarrow (0,3/2) \rightarrow (1,1)$

Summary

 Initialization: see textbook. If every dual feasible BS has positive reduced cost, then the dual simplex method terminates finitely.

- The primal simplex has two cases: optimal solution exists, or unbounded
- The dual simplex has two cases: optimal solution exists, or infeasible

- Two Phase method: can handle every case.
 - Infeasibility is detected in Phase I.
 - Unboundedness is detected in Phase II.

All algorithms for LP keep a part of the optimality criteria valid while working towards the others.