Table 3: Benchmarks - Problems with correlated variables

LSF significance	Case Limit State function(s) No.	Stochastic variable(s)	R_x	β	Ref
Beam deflection	(1) $g(X) = 0.02 - 8\frac{X_1}{X_2 X_3}$	$X_1: LN(1000, 200)$ $X_2: LN(2 \times 10^{10}, 1 \times 10^9)$ $X_3: LN(3.9025 \times 10^{-5}, 3.9025 \times 10^{-6})$	$\begin{bmatrix} 1.0 & 0.2 & 0.2 \\ 0.2 & 1.0 & 0.2 \\ 0.2 & 0.2 & 1.0 \end{bmatrix}$	4.0	[1]
RxS	$(2) \qquad g(X) = x_1 - x_2$	$X_1:N(150,20)\ X_2:N(120,25)$	$\begin{bmatrix} 1.0 & 0.75 \\ 0.75 & 1.0 \end{bmatrix}$	1.809	[2]
Moment in beam	(3) $g(X) = x_1 x_2 - x_3$	$X_1: N(40,5) \ X_2: N(50,2.5) \ X_3: N(1000,200)$	$\begin{bmatrix} 1.0 & 0.4 & 0.0 \\ 0.4 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix}$	2.862	[3]
Moment in beam	$(4) g(X) = x_1 x_2 - x_3$	$X_1:LN(40,5) \ X_2:LN(50,2.5) \ X_3:G(1000,200)$	$\begin{bmatrix} 1.0 & 0.4 & 0.0 \\ 0.4 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix}$	2.658	[3]

References

- [1] RASHKI, M. Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability. *Appl. Math. Model.*, v. 60, p. 220–234, 2018.
- [2] ANG, A. H.-S.; TANG, W. H. Probability Concepts in Engineering: Emphasis on Applications in Civil and Environmental Engineering. 2. ed. New York: Wiley, 2007.
- [3] ANG, A. H.-S.; TANG, W. H. Probability Concepts in Engineering Planning and Design. Volume II: Decision, Risk and Reliability. New York: John Wiley & Sons, 1984.