STATS 310B: Theory of Probability II

Winter 2016/17

Lecture 6: January 26

Lecturer: Sourav Chatterjee

Scribes: Kenneth Tay

6.1 Uniform Integrability

Definition 6.1 A sequence of random variables $\{X_n\}$ is uniformly integrable if:

1. $\mathbb{E}|X_n| < \infty$ for all n, and

2.

$$\lim_{a \to \infty} \sup_{n} \mathbb{E}(|X_n|; |X_n| \ge a) = 0.$$

Recall the following lemma from last lecture:

Lemma 6.2 If $\{X_n\}$ is uniformly integrable, then $\sup_n \mathbb{E}|X_n| < \infty$.

Lemma 6.3 If $\{X_n\}$ is uniformly integrable, then for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$A \in \mathcal{F} \text{ with } P(A) < \delta \quad \Rightarrow \quad \mathbb{E}(|X_n|; A) < \varepsilon \text{ for all } n.$$

(**Note:** The reverse implication is also true, left as an exercise.)

Proof: Given $\varepsilon > 0$, we can find a so large that for all n,

$$\mathbb{E}(|X_n|;|X_n|\geq a)<\frac{\varepsilon}{2}.$$

Pick δ so small such that $a\delta < \frac{\varepsilon}{2}$. Then, for any $A \in \mathcal{F}$,

$$\mathbb{E}(|X_n|; A) = \mathbb{E}(|X_n|; \{|X_n| < a\} \cap A) + \mathbb{E}(|X_n|; \{|X_n| \ge a\} \cap A)$$

$$\leq aP(A) + \frac{\varepsilon}{2}$$

$$< \varepsilon.$$

Lemma 6.4 If $\{X_n\}$ is uniformly integrable and $X_n \stackrel{a.s.}{\to} X$, then $X_n \stackrel{L^1}{\to} X$.

(Note: Actually we don't need almost sure convergence; $X_n \stackrel{P}{\to} X$ will do.)

Proof: Take any $\varepsilon > 0$. Find a so large that

$$\mathbb{E}(|X_n|;|X_n|\geq a)<\frac{\varepsilon}{2}.$$

Note that

$$\mathbb{E}|X| \leq \liminf_{n} \mathbb{E}|X_{n}|$$
 (by Fatou's Lemma)
$$\leq \sup_{n} \mathbb{E}|X_{n}|$$

$$< \infty.$$
 (by Lemma 6.2)

So X is integrable, and hence uniformly integrable. Thus, a can be chosen large enough so that $\mathbb{E}(|X|;|X|>a)<\frac{\varepsilon}{2}$ as well.

Consider the function

$$\phi(x) = \begin{cases} -a & \text{if } x < -a \\ x & \text{if } -a \le x \le a \\ a & \text{if } x > a. \end{cases}$$

We have the decomposition

$$\mathbb{E}|X_n - X| \leq \underbrace{\mathbb{E}|X_n - \phi(X_n)|}_{(1)} + \underbrace{\mathbb{E}|\phi(X_n) - \phi(X)|}_{(2)} + \underbrace{\mathbb{E}|\phi(X) - X)|}_{(3)}.$$

We can bound each component of the RHS:

- (2): $X_n \to X$ a.s. and ϕ is continuous implies that $\phi(X_n) \to \phi(X)$ a.s. In addition, ϕ is a bounded function, so by the Bounded Convergence Theorem, $\mathbb{E}|\phi(X_n) \phi(X)| \to 0$.
- (1):

$$\mathbb{E}|X_n - \phi(X_n)| \le \mathbb{E}(|X_n|; |X_n| \ge a) < \frac{\varepsilon}{2}.$$

• (3): Similarly,

$$\mathbb{E}|X - \phi(X)| \le \mathbb{E}(|X|, |X| \ge a) < \frac{\varepsilon}{2}.$$

Thus, $\mathbb{E}|X_n - X| < 2\varepsilon$ for all large enough n.

Corollary 6.5 If $\{Z_n, \mathcal{F}_n\}$ is a uniformly integrable martingale (or sub/super-martingale), then there is a random variable Z which is finite a.s. and $\lim Z_n = Z$ a.s. and $Z_n \to Z$ in L^1 .

Proof: Since $\sup_n \mathbb{E}|Z_n| < \infty$, the Martingale Convergence Theorem establishes the existence of Z such that $Z_n \to Z$ almost surely. By Fatou's Lemma, $\mathbb{E}|Z| \le \liminf_n \mathbb{E}|Z_n| < \infty$, which implies $|Z| < \infty$ a.s. Since $\{Z_n\}$ is uniformly integrable, we can apply Lemma 6.4 to get $Z_n \to Z$ in L^1 .

Lecture 6: January 26 6-3

6.2 Lévy's Upward Convergence Theorem

Theorem 6.6 (Lévy's Upward Convergence Theorem) Let $\{\mathcal{F}_n\}$ be a filtration and $\mathcal{F}_{\infty} = \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_n\right)$.

Let Y be a random variable such that $\mathbb{E}|Y| < \infty$.

Then
$$\mathbb{E}(Y \mid \mathcal{F}_n) \to \mathbb{E}(Y \mid \mathcal{F}_{\infty})$$
 a.s. and in L^1 .

Proof: Let $Z_n = \mathbb{E}[Y \mid \mathcal{F}_n]$.

Step 1: $\{Z_n\}$ is a martingale, $Z = \lim Z_n$ exists and is finite a.s.

By the tower property of expectation,

$$\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[\mathbb{E}[Y \mid \mathcal{F}_{n+1}] \mid \mathcal{F}_n] = \mathbb{E}[Y \mid \mathcal{F}_n] = Z_n.$$

By Jensen's inequality,

$$\mathbb{E}|Z_n| = \mathbb{E}(|\mathbb{E}(Y \mid \mathcal{F}_n)|)$$

$$\leq \mathbb{E}(\mathbb{E}(|Y|| \mathcal{F}_n))$$

$$= \mathbb{E}|Y|$$

$$< \infty,$$

i.e. $\sup \mathbb{E}|Z_n|$ is finite. Therefore $Z = \lim Z_n$ exists (Martingale Convergence Theorem) and is finite a.s. (Fatou's Lemma).

Step 2: $\{Z_n\}$ is uniformly integrable, and so $Z_n \to Z$ in L^1 .

Take any a > 0. Then

$$aP(|Z_n| \ge a) \le \mathbb{E}(|Z_n|; |Z_n| \ge a)$$

$$= \mathbb{E}(|\mathbb{E}[Y \mid \mathcal{F}_n]|; |Z_n| \ge a)$$

$$\le \mathbb{E}(\mathbb{E}[|Y|| \mathcal{F}_n]; |Z_n| \ge a)$$

$$= \mathbb{E}(|Y|; |Z_n| \ge a)$$

$$\le \mathbb{E}|Y| < \infty.$$
(Jensen's Inequality)
$$\le \mathbb{E}|Y| < \infty.$$

Therefore, for every $\delta > 0$ there is some a > 0 such that $P(|Z_n| \ge a) < \delta$ for all n.

The random variable Y is uniformly integrable, so by Lemma 6.3, for every $\varepsilon > 0$, there is a $\delta > 0$ such that

$$P(A) < \delta \implies \mathbb{E}(|Y|; A) < \varepsilon.$$

Combining these 2 facts: for all $\varepsilon > 0$, there exists some a > 0 such that for all n, $\mathbb{E}(|Y|; |Z_n| \geq a) < \varepsilon$.

In the chain of inequalities above, we have $\mathbb{E}(|Z_n|;|Z_n|\geq a)\leq \mathbb{E}(|Y|;|Z_n|\geq a)$. Therefore, $\mathbb{E}(|Z_n|;|Z_n|\geq a)<\varepsilon$, which is what we need to show uniform integrability.

Havin shown uniform integrability, we can use Corollary 6.5 to conclude that $Z_n \to Z$ in L^1 .

Step 3:
$$\mathbb{E}(Y;A) = \mathbb{E}(Z;A)$$
 for all $A \in \mathcal{F}_{\infty}$, so $Z = \mathbb{E}[Y \mid \mathcal{F}_{\infty}]$.

Take any $A \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$. This means that $A \in \mathcal{F}_n$ for some n. For any $m \geq n$, $A \in \mathcal{F}_m$ and so

$$\mathbb{E}(Y; A) = \mathbb{E}(\mathbb{E}(Y \mid \mathcal{F}_m); A) = \mathbb{E}(Z_m; A).$$

Thus, for large m,

$$\begin{split} |\mathbb{E}(Y;A) - \mathbb{E}(Z;A)| &= |\mathbb{E}(Z_m;A) - \mathbb{E}(Z;A)| \\ &= |\mathbb{E}(Z_m - Z) \mathbf{1}_A| \\ &\leq \mathbb{E}(|Z_m - Z| \mathbf{1}_A) \\ &\leq \mathbb{E}|Z_m - Z| \\ &\to 0, \end{split} \tag{Jensen's inequality}$$

as $m \to \infty$ since $Z_n \to Z$ in L^1 . Therefore, $\mathbb{E}(Y;A) = \mathbb{E}(Z;A)$ for all $A \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$.

Let $\mathcal{G} = \{A \in \mathcal{F} : \mathbb{E}(Y;A) = \mathbb{E}(Z;A)\}$. The above argument shows that $\bigcup_{n=1}^{\infty} \mathcal{F}_n \subseteq \mathcal{G}$. Since $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is a π system and we can show that \mathcal{G} is a λ system, by the $\pi - \lambda$ theorem, $\mathcal{F}_{\infty} \subseteq \mathcal{G}$.

We conclude that $\mathbb{E}(Y; A) = \mathbb{E}(Z; A)$ for all $A \in \mathcal{F}_{\infty}$, so $Z = \mathbb{E}(Y \mid \mathcal{F}_{\infty})$.

6.2.1 Examples

- (Kolmogorov 0-1 Theorem) If X_1, X_2, \ldots are independent, A is tail measurable, then A is independent of $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ for all n. So $\mathbb{E}[1_A \mid \mathcal{F}_n] = P(A)$ for all n. However, by Lévy's Theorem, $\mathbb{E}[1_A \mid \mathcal{F}_n] \to 1_A$ a.s.! Therefore $P(A) \to 1_A$ a.s., which means that P(A) = 0 or 1.
- Suppose we have independent X_1, X_2, \ldots , and suppose Y depends on infinitely many X_i (and so is \mathcal{F}_{∞} -measurable). Then Lévy's Theorem says that $\mathbb{E}(Y \mid \mathcal{F}_n) \to Y$ in L^1 and a.s. That is, if you take conditional expectation of Y with a large number of X_i 's, you get something "close" to Y.

There is no equivalent statement when Y depends on a very large (but finite) number of X_i .

6.3 Radon-Nikodym Theorem for Probability Measures

Definition 6.7 Let (Ω, \mathcal{F}) be a measurable space. Let P and Q be two probability measures on this space. We say that Q is absolutely continuous w.r.t. P, and write Q << P, if

$$P(A) = 0 \quad \Rightarrow \quad Q(A) = 0.$$

Lemma 6.8 Assume that Q << P. Then for all $\varepsilon > 0$, there exists $\delta > 0$ such that $P(A) < \delta \Rightarrow Q(A) < \varepsilon$.

Proof: Suppose not. Then there is some $\varepsilon > 0$ such that for all n, there is some set A_n such that

$$P(A_n) < 2^{-n}$$
 and $Q(A_n) > \varepsilon$.

Lecture 6: January 26 6-5

Let
$$A = \limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
. Then

$$P(A) = \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} A_k\right)$$

$$\leq \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k)$$

$$\leq \lim_{n \to \infty} \sum_{k=n}^{\infty} 2^{-k} = 0.$$

On the other hand,

$$Q(A) = \lim_{n \to \infty} Q\left(\bigcup_{k=n}^{\infty} A_k\right)$$

$$\geq \limsup_{n \to \infty} Q(A_n)$$

$$\geq \varepsilon.$$

Contradiction! Thus the lemma is true.

Theorem 6.9 (Radon-Nikodym) Let (Ω, \mathcal{F}) be a measurable space and suppose that \mathcal{F} is countably generated. Let P and Q be two probability measures on this space such that Q << P.

Then, there exists a non-negative random variable L on this space such that for all $A \in \mathcal{F}$,

$$Q(A) = \int_{A} dQ = \int_{A} LdP.$$

We write $L := \frac{dQ}{dP}$.

Proof: \mathcal{F} is countably generated implies that there exist events A_1, A_2, \ldots such that $\mathcal{F} = \sigma(A_1, A_2, \ldots)$. Let $\mathcal{F}_n = \sigma(A_1, \ldots, A_n)$, and $\mathcal{F} = \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_n\right)$.

Take any n. Let B_{n1}, \ldots, B_{nk_n} be the partition generated by A_1, \ldots, A_n , i.e. all non-empty sets of the form $C_1 \cap \ldots \cap C_n$, where $C_i = A_i$ or A_i^c . Then $\mathcal{F}_n = \{\text{all possible unions of } B_{n1}, \ldots, B_{nk_n}\}$.

Step 1: Define a P-martingale $\{L_n, \mathcal{F}_n\}$ such that $Q(A) = \int_A L_n dP$ for $A \in \mathcal{F}_n$.

Define

$$L_n(\omega) := \begin{cases} \frac{Q(B_{ni})}{P(B_{ni})} & \text{if } \omega \in B_{ni} \text{ and } P(B_{ni}) > 0, \\ 0 & \text{if } \omega \in B_{ni} \text{ and } P(B_{ni}) = 0. \end{cases}$$

For any $A \in \mathcal{F}_n$, there is an index set I such that $A = \bigcup_{i \in I} B_{ni}$. Let $I' = \{i \in I : P(B_{ni}) > 0\}$. Then

$$\begin{split} Q(A) &= \sum_{i \in I} Q(B_{ni}) = \sum_{i \in I'} Q(B_{ni}) \\ &= \sum_{i \in I'} \frac{Q(B_{ni})}{P(B_{ni})} P(B_{ni}) \\ &= \sum_{i \in I'} \int_{B_{ni}} L_n dP = \sum_{i \in I} \int_{B_{ni}} L_n dP \\ &= \int_A L_n dP. \end{split}$$

Note that L_n is \mathcal{F}_n -measurable, non-negative, and

$$\mathbb{E}_{P}[L_{n}] = \int_{\Omega} L_{n} dP = Q(\Omega) = 1 < \infty.$$

In addition, for any $A \in \mathcal{F}_{n-1}$,

$$\mathbb{E}_{P}(L_{n}; A) = \int_{A} L_{n} dP \qquad (\text{since } A \in \mathcal{F}_{n-1} \subseteq \mathcal{F}_{n})$$

$$= Q(A)$$

$$= \int_{A} L_{n-1} dP \qquad (\text{since } A \in \mathcal{F}_{n-1})$$

$$= \mathbb{E}_{P}(L_{n-1}; A).$$

Thus $L_{n-1} = \mathbb{E}_P(L_n \mid \mathcal{F}_{n-1})$, and therefore, under $P, \{L_n, \mathcal{F}_n\}$ is a martingale.

Step 2: $L_n \to L$ P-a.s. for some P-a.s. finite L.

Since $\{L_n, \mathcal{F}_n\}$ is a non-negative supermartingale, By the Martingale Convergence Theorem, there exists an L such that $L_n \to L$ P-a.s., and by Fatou's Lemma,

$$\mathbb{E}_P L < \liminf \mathbb{E}_P L_n = 1 < \infty,$$

i.e. L is finite P-a.s.

Step 3: $\{L_n\}$ is uniformly integrable under P, so $L_n \to L$ in L^1 .

For any a > 0 and n,

$$aP(L_n \ge a) \le \mathbb{E}_P(L_n; L_n \ge a)$$

$$= Q(L_n \ge a) \qquad \text{(since } \{L_n \ge a\} \in \mathcal{F}_n)$$

$$\le 1,$$

$$P(L_n \ge a) \le \frac{1}{a}.$$

Lecture 6: January 26

Take any $\varepsilon > 0$. By Lemma 6.8, we can find $\delta > 0$ such that $P(A) < \delta \Rightarrow Q(A) < \varepsilon$. Let $a = \frac{1}{\delta}$. Then

$$P(L_n \ge a) \le \frac{1}{a} = \delta,$$

$$\Rightarrow \quad \varepsilon \ge Q(L_n \ge a)$$

$$= \mathbb{E}_P(L_n; L_n \ge a).$$

This proves the uniform integrability of L_n under P.

By Lemma 6.4, L_n is a uniformly integrable martingale under P, so $L_n \to L$ in L^1 .

Step 4: For any $A \in \mathcal{F}$, $Q(A) = \int_A L dP$.

Take any $A \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$. Then $A \in \mathcal{F}_n$ for some n, so $A \in \mathcal{F}_m$ for all $m \ge n$. Thus $Q(A) = \int_A L_m dP$ for all $m \ge n$.

But since

$$\left| \int_{A} L_{n} dP - \int_{A} L dP \right| = \left| \int_{A} (L_{n} - L) dP \right|$$

$$\leq \int_{A} |L_{n} - L| dP$$

$$\leq \int_{\Omega} |L_{n} - L| dP$$

$$\to 0,$$

we conclude that $Q(A) = \int_A L dP$.

As in the proof of Lévy's Upward Convergence Theorem, we can apply $\pi - \lambda$ Theorem to conclude that the same holds for all $A \in \mathcal{F}$.