MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2019-20

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>três grupos</u> utilizando <u>folhas de capa distintas</u>. Na resolução da prova deve utilizar uma esferográfica azul ou preta.

GRUPO I

- **1.** [**7,5**] Seja o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^4$, onde $\vec{a} = (1, 2, -1, -2)$, $\vec{b} = (3, 2, -2, -3)$, $\vec{c} = (0, 2, -1, -1)$ e $\vec{d} = (1, 4, -2, -3)$. Sejam os vetores $\vec{e} = (1, 1, -1, 1)$ e $\vec{f} = (2, 1, 1, -1)$, e o subespaço $H = \{(x, y, z, w) \in \mathbb{R}^4 : z = x + y \land w = -z\}$. Determine:
 - a) O subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço que apenas inclua elementos de S e conclua em relação à sua dimensão. Justifique.
 - **b**) Uma base ortogonal, W, para L(S) que inclua um elemento de H.
 - c) Uma base, V, para o espaço \mathbb{R}^4 que inclua os vetores $\vec{e} \in \vec{f}$.

GRUPO II

- **2.** [**2,6**] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $S = \{\vec{a} \times \vec{b}, \vec{c}\}$ é um conjunto ortogonal, $\|\vec{a}\| = \|\vec{b}\|$, $\|\vec{a} \times \vec{b}\| = 2$, $\vec{a} \cdot \vec{b} = 2\sqrt{3}$, $\|\vec{a} \vec{c}\| = 2$, $\angle(\vec{a} \cdot \vec{c}) = \pi/3$ e $\vec{c} + \vec{d} = \vec{b} \times \vec{a}$. Calcule:
 - a) As normas dos vetores $\vec{a} \in \vec{d}$.
 - **b**) O ângulo, α , formado pelos vetores $\vec{a}+\vec{d}$ e $\vec{a}\times\vec{b}$ (se não resolveu a alínea anterior considere $\left\|\vec{d}\right\|=2\sqrt{2}$).

.....(continua no verso)

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2019-20

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- **3.** [5,3] Sejam o plano M: x-y=3, o ponto R=(-1,0,1) e a reta, r, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(1,0,1) e $\vec{a}=(1,-1,1)$.
 - a) Calcule a distância do ponto R à reta r e o ponto, I, desta reta mais próximo de R.
 - **b**) Determine a equação vetorial de uma reta s que passa no ponto R, é paralela ao plano M e é concorrente com a reta r. Qual o valor do ângulo, β , que a reta s faz com a reta r?
- **4.** [2,0] Seja B = $\{\vec{b}_1, \vec{b}_2, \vec{b}_3, \dots, \vec{b}_k\}$ um conjunto de k vetores do espaço \mathbb{R}^n .
 - a) Defina dim L(B), dimensão do subespaço, L(B), gerado pelo conjunto B. Qual a dimensão máxima que o subespaço L(B) pode assumir e em que circunstâncias é que tal ocorrerá.
 - **b**) Seja o vetor $\vec{v} \in L(B)$. Mostre que se B é linearmente independente, então o conjunto $B_1 = \{\vec{b_1}, \vec{b_2}, \vec{b_3}, ..., \vec{b_k}, \vec{v}\}$ é linearmente dependente.

GRUPO III

5. [2,6] Sejam os dados apresentados na pergunta 3.. Obtenha as equações vetoriais das retas, h e h_1 , que são paralelas ao plano M_1 : x + y - z = 3, fazem o ângulo $\alpha = \pi/6$ com M e passam no ponto, H, de interseção de M com o eixo dos xx.