## **SPRAWOZDANIE**

# PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI

### PROJEKT 2 GRAFY

| lmię i nazwisko   | Maciej Pająk                                             |
|-------------------|----------------------------------------------------------|
| Nr indeksu        | 241632                                                   |
| Data              | 15.05.2019 r.                                            |
| Nazwa kursu       | Projektowanie algorytmów i metody sztucznej inteligencji |
| Dane prowadzącego | Dr inż. Łukasz Jeleń                                     |
| Termin zajęć      | ŚR 11:15-13:00                                           |

#### 1 Wprowadzenie

Celem projektu było zaimplementować algorytm Dijkstry oraz przeprowadzić badanie jego efektywności dla grafów reprezentowanych na dwa sposoby: listę incydencji oraz macierz sąsiedztwa.

#### 2 Eksperyment

Eksperyment został przeprowadzony dla grafów o liczbie wierzchołków: 20, 40, 60, 80, 100 oraz dla różnych gęstości: 25%, 50%, 75%, 100%. Górna granica liczby wierzchołków jest podyktowana skończoną pamięcią przydzielaną przez procesor dla uruchomionego programu, dlatego została ona dobrana eksperymentalnie dla grafu opartego na macierzy sąsiedztwa, 100 wierzchołków oraz 100% gęstości.

Pomiary przeprowadzono dla losowo wygenerowanych 100 instancji, następnie wyniki uśredniono.

#### 2.1 Lista incydencji

Tab. 1. Uśrednione pomiary czasu wykonywania algorytmu dla grafu opartego na liście incydencji. Czas podany w μs.

| Liczba<br>wierzchoł-<br>ków                              | 20       | 40       | 60       | 80       | 100      |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|--|--|
| Gęstość                                                  |          |          |          |          |          |  |  |
| 25%                                                      | 0,018491 | 0,052799 | 0,097028 | 0,157564 | 0,293618 |  |  |
| 50%                                                      | 0,021579 | 0,071043 | 0,142389 | 0,305976 | 0,511485 |  |  |
| 75%                                                      | 0,024035 | 0,080448 | 0,206506 | 0,427598 | 0,735983 |  |  |
| 100%                                                     | 0,030741 | 0,100825 | 0,259571 | 0,519874 | 0,895468 |  |  |
| 1,2<br>SS 1<br>0,8<br>0,6<br>0,4<br>0,2                  |          |          |          |          |          |  |  |
| 0                                                        | 20       |          | 80       | 100      | 120      |  |  |
| Liczba wierzchołków  ■ 25% ■ 75% ■ 100%                  |          |          |          |          |          |  |  |
| Wielom. (25%) Wielom. (50%) Wielom. (75%) Wielom. (100%) |          |          |          |          |          |  |  |

Wykres 1. Zależność czasu od liczby wierzchołków dla różnych gęstości grafu.

#### 2.2 Macierz sąsiedztwa

Tab. 2. Uśrednione pomiary czasu wykonywania algorytmu dla grafu opartego na macierzy sąsiedztwa. Czas podany w  $\mu$ s.

| Liczba<br>wierzchoł-<br>ków<br>Gęstość | 20       | 40       | 60      | 80      | 100     |
|----------------------------------------|----------|----------|---------|---------|---------|
| 25%                                    | 0,073336 | 0,539019 | 1,5252  | 3,36542 | 6,49582 |
| 50%                                    | 0,162907 | 1,29463  | 4,14016 | 9,67138 | 18,0596 |
| 75%                                    | 0,309416 | 2,02982  | 6,41092 | 15,9168 | 31,3412 |
| 100%                                   | 0,389448 | 2,81223  | 8,95314 | 21,8895 | 41,0685 |



Wykres 2. Zależność czasu od liczby wierzchołków dla różnych gęstości grafu.

#### 2.3 Porównanie dwóch reprezentacji



Wykres 3. Zależność czasu od liczby wierzchołków dla różnych reprezentacji grafu dla gęstości 25%.



Wykres 4. Zależność czasu od liczby wierzchołków dla różnych reprezentacji grafu dla gęstości 50%.



Wykres 5. Zależność czasu od liczby wierzchołków dla różnych reprezentacji grafu dla gęstości 75%.



Wykres 6. Zależność czasu od liczby wierzchołków dla różnych reprezentacji grafu dla gęstości 100%.

#### 3 Wnioski

- Grafy zajmują spore ilości pamięci co ogranicza możliwości testowania. Grafy oparte na macierzy sąsiedztwa zajmują więcej pamięci niż te oparte na liście incydencji.
- Algorytm Dijkstry jest szybszy dla grafów opartych na liście incydencji, bez względu na gęstość grafu lub liczbę wierzchołków.
- Ze względu na mały zakres liczby wierzchołków trudno ocenić czy program posiada oczekiwaną złożoność obliczeniową O(VlogV+E).
- Grafy oparte na liście incydencji są efektywniejsze dla algorytmu Dijkstry.

#### 4 Bibliografia

1. Jerzy Wałaszek, Najkrótsza ścieżka w grafie ważonym – algorytm Dijkstry, <a href="https://eduinf.waw.pl/inf/alg/001">https://eduinf.waw.pl/inf/alg/001</a> search/0138.php (dostęp: 15.05.2019r.)