Wstęp do uczenia maszynowego

Regresja liniowa (2)

Ewa Szczurek + BW (modyfikacje)

bartek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski

8 kwietnia 2024

Model regresji

$$f(X) = \beta_0 + \sum_{i=1}^p X_i \beta_i,$$

gdzie X_i predyktory, a β_i - nieznane współczynniki.

Zmienne X_i mogą być postaci

- zmiennych ilościowych
- transformacji zmiennych ilościowych, np log
- ullet funkcji wielomianowych zmiennych ilościowych, np $X_2=X_1^2$, $X_3=X_1^3$
- zmiennych kodujących (ang. dummy encoding) predyktory jakościowe (nominalne), np kolor oczu
- ullet zmiennych odpowiadających interakcjom pomiędzy predyktorami, np $X_3=X_1\cdot X_2$

We wszystkich przypadkach f jest liniową funkcją parametrów.

Przykład: Model zadłużenia karty kredytowej (balance)

Tu są predyktory ilościowe. Można rozważać również predyktory jakościowe: 'gender' (płeć), 'status' (małżeński), 'ethnicity' (Afroamerykanin, Azjata, rasa kaukaska (biały)).

Dwupoziomowe predyktory jakościowe

$$x_i = egin{cases} 1, & ext{jeśli i-ta osoba jest kobietą} \ 0, & ext{jeśli i-ta osoba jest mężczyzną} \end{cases}$$

To prowadzi do modelu regresji:

$$y_i = eta_0 + eta_1 x_i + arepsilon_i = egin{dcases} eta_0 + eta_1 + arepsilon_i, \ ext{jeśli i-ta osoba jest kobietą} \ eta_0 + arepsilon_i, \ ext{jeśli i-ta osoba jest mężczyzną} \end{cases}$$

 eta_0 można interpretować jako średni poziom kredytu wśród mężczyzn, eta_0+eta_1 można interpretować jako średni poziom kredytu wśród kobiet, a eta_1 jako średnia różnica pomiędzy poziomami kredytów kobiet i mężczyzn.

Możemy użyć innych wartości do oznaczenia poziomów dla zmiennej x_i . Wówczas estymowane parametry $\hat{\beta}_0$ i $\hat{\beta}_1$ zmienią się, ale predykcje \hat{y}_i pozostana bez zmian.

Różnica w średnim zadłużeniu na karcie nie zależy istotnie od płci

Parametr	Estymacja	Std. błąd	<i>t</i> -statystyka	<i>p</i> -wartość
\hat{eta}_0	509.80	33.13	15.389	< 0.0001
Płeć [kobieta] \hat{eta}_1	19.73	46.05	0.429	0.6690

- Średnie zadłużenie na karcie kredytowej u mężczyzn wynosi 509.80
- Średnie zadłużenie u kobiet jest o 19.73 większe i wynosi 509.80+19.73= 529.53
- Ale różnica ta nie jest statystycznie istotna (duża p-wartość).

Wielopoziomowe predyktory jakościowe

Rozważmy przykład predyktora 'ethinicity' przyjmującego 3 możliwe wartości. Musimy wprowadzić dwie zmienne pomocnicze:

$$x_{i1} = egin{cases} 1, ext{ jeśli } i ext{-ta osoba jest Azjatą} \ 0, ext{ w przeciwnym przypadku} \end{cases}$$

$$x_{i2} = \begin{cases} 1, \text{ jeśli } i\text{-ta osoba jest rasy kaukaskiej} \\ 0, \text{ w przeciwnym przypadku} \end{cases}$$

Wówczas model regresji wygląda następująco (rasa kaukaska= rasa K; Afroamerykanin=Afroam):

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i = \begin{cases} \beta_0 + \beta_1 + \varepsilon_i, \text{ jesli } i\text{-ta osoba jest Azjatą} \\ \beta_0 + \beta_2 + \varepsilon_i, \text{ jesli } i\text{-ta osoba jest rasy K} \\ \beta_0 + \varepsilon_i, \text{ jesli } i\text{-ta osoba jest Afroam} \end{cases}$$

Różnica w średnim zadłużeniu na karcie nie zależy istotnie od rasy

Parametr	Estymacja	Std. błąd	<i>t</i> -statystyka	<i>p</i> -wartość
\hat{eta}_0	531.00	46.32	11.464	< 0.0001
Rasa [Azjata] \hat{eta}_1	-18.69	65.02	-0.287	0.7740
Rasa [kaukaska] \hat{eta}_2	-12.50	56.68	-0.221	0.8260

- Średnie zadłużenie na karcie kredytowej u Afroamerykanina wynosi 531.00
- Średnie zadłużenie u Azjaty jest o 18.69 mniejsze.
- Średnie zadłużenie u człowieka rasy kaukaskiej jest o 12.50 mniejsze niż u Afroamarykanina.
- Ale różnice te nie są statystycznie istotne (duże p-wartości).

Uwzględnianie interakcji (synergii) pomiędzy predyktorami

Model regresji liniowej z dwoma predyktorami:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon.$$

Model regresji liniowej z interakcją predyktorów:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon.$$

Uwaga: regresja tu jest nadal liniowa.

Przykład: Synergia wydatków na reklamę

sales =
$$\beta_0 + \beta_1 \times (TV) + \beta_2 \times (radio) + \beta_3 \times (TV \times radio) + \varepsilon$$
.

Parametr	Estymacja	Std. błąd	<i>t</i> -statystyka	<i>p</i> -wartość
\hat{eta}_0	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
TV imes radio	0.0011	0.0000	20.73	< 0.0001

Zasada hierarchiczności: jeśli model zawiera interakcję predyktorów X_i oraz X_j (czyli term X_iX_j), to musi też zawierać predyktory X_i oraz X_j , bez wzgędu na wielkość p-wartości związanej z tymi predyktorami.

Model z interakcją predyktorów lepiej tłumaczy zmienność w danych reklamowych

- p-wartość dla termu interakcyjnego jest bardzo mała, co sugeruje, że rola tego termu w modelu jest bardzo istotna.
- Statystyka R² dla modelu bez interakcji wynosi 89.7%.
- Statystyka R² dla modelu z interakcją 'TV' oraz 'radio' jest równa 96.8%.
- Większy model ma co do zasady większe R², tutaj ten wzrost jest bardzo duży.
- Można wnioskować, że model uwzględniający interakcję pomiedzy predyktorami dużo lepiej tłumaczy zmienność danych reklamowych.

Regresja wielomianowa (dane 'Auto')

Zależność zużycia paliwa od liczby koni mechanicznych dla samochodów

- pomarańczowy: prosta regresja liniowa
- niebieski: regresja z horsepower²
- zielony: model ze wszystkimi wielomianami horsepower aż do potęgi 5

Regresja do wielomianu kwadratowego

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \varepsilon.$$

- Uwaga: to jest nadal liniowa regresja, czyli metody estymacji parametrów są te same.
- Kwadratowe dopasowanie poprawia jakość modelu: współczynnik ma małą p-wartość, a R^2 mocno wzrasta (przy dopasowaniu liniowym $R^2=0.606$, a dla dopasownia kwadratowego $R^2=0.688$).

Parametr	Estymacja	Std. błąd	<i>t</i> -statystyka	<i>p</i> -wartość
\hat{eta}_0	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
horsepower ²	0.0012	0.0001	10.1	< 0.0001

Potencjalne problemy z liniową regresją

- Nieliniowość związku zmiennych objaśniających i objaśnianych.
- Skorelowane wartości reszt.
- Heteroskedastyczność (zmienność wariancji).
- Obserwacje odstające (outliery).
- Obserwacje o wysokiej dźwigni.
- Współliniowość zmiennych objaśniających

(1) Nieliniowość w danych – rezydualne wykresy

Wykres wartości resztowych to wykres różnic $y_i - \hat{y_i}$ względem przewidzianych wartości $\hat{y_i}$. Takie wykresy mogą sugerować nieliniowe zależności w danych.

Dane 'Auto':

(2) Korelacja pomiędzy resztami obserwacji

- ullet Dla $\epsilon=(\epsilon_1,\ldots,\epsilon_n)^T\in\mathbb{R}^n$ wektora błędów zakładamy, że
 - Macierz wariancji-kowariancji $\mathrm{Var}[\epsilon] = \sigma^2 I_n$, $\sigma^2 < \infty$
 - ullet czyli błędy ϵ_i pochodzące z różnych obserwacji są nieskorelowane
 - ullet czyli wartość ϵ_i nie daje informacji o wartości ϵ_{i+1}
- Tego założenia wymaga w szczególności, aby błąd standardowy dla estymatora $\hat{\beta}_i$ miał postać $SE(\hat{\beta}_i) = \sqrt{v_i}\hat{\sigma}$, gdzie v_i to i-ty element na diagonali macierzy $(X^TX)^{-1}$.
- Przy błędach skorelowanych estymator błędu standardowego będzie go zaniżał, przez co
 - przedziały ufności będą zawężone
 - dany przedział np na poziomie 95% ufności będzie miał mniejsze prawdopodobieństwo zawierania prawdziwej wartości parametru niż 0.95
 - p-wartości dla hipotez $H_1: \beta_i \neq 0$ będą zaniżone

(2) Korelacja pomiędzy resztami obserwacji

- Korelacja pomiędzy błędami pojawia się często w przypadku danych pochodzących z szeregów czasowych – błędy pochodzące z sąsiednich punktów czasowych są często dodatnio skorelowane.
- Takie korelacje widać na wykresach wartości resztowych dla kolejnych obserwacji.
- W przypadku wystąpienia korelacji wartości leżące w sąsiednich punktach czasowych są położone blisko siebie.

Dane symulowane – różne poziomy korelacji dla błędów pomiędzy sąsiednimi punktami czasowymi

(3) Zmienność wariancji reszt

- Zakłada się homoskedastyczność, czyli założenie, że wariancja reszt dla każdej obserwacji jest taka sama: $Var(\varepsilon_i) = \sigma^2$.
- Zdarza się, że wariancja reszt rośnie wraz ze wzrostem obserwowanych wartości.
- Zmienność wariancji (heteroskedastyczność) można zidentyfikować na wykresie wartości resztowych – kształt lejka tego wykresu sugeruje zmienność wariancji.

Identyfikacja zmienności wariancji termów błędu

Zmienność wariancji można poprawić poprzez transformację zmiennej objaśnianej Y wklęsłą funcją taką jak log Y (prawy panel) lub \sqrt{Y} .

(4) Obserwacje odstające $(\mathsf{outliers})$

Obserwacje odstające: o nietypowej wartości objaśnianej (Y) przy typowej wartości predyktora (X).

Usunięcie obserwacji odstającej

- tylko nieznacznie zmienia wynik regresji liniowej (przerywana linia)
- może znacznie zmienić miarę jakości dopasowania: tu RSE zmienia się z 1.09 do 0.77, a R² z 0.805 do 0.892.

Odkrywanie obserwacji odstających

- Przy pomocy wykresów wartości resztowych środkowy panel, lub
- Przy pomocy reszt studentyzowanych (wyjaśnienie w dalszej części wykładu) – prawy panel.
- Przyjmuje się, że dla obserwacji odstających reszty studentyzowane odchylają się od 0 o więcej niż 3

(5) Obserwacje wysokiej dźwigni (high leverage)

- Obserwacje o wysokiej dźwigni: obserwacje o nietypowej wartości predyktora.
- Ich usunięcie powoduje istotne zmiany w przebiegu prostej regresji (lewy panel, przerywana linia).
- Odkrycie obserwacji o wysokiej dźwigni na wykresie resztowym jest łatwe dla prostej regresji liniowej, ale może być nieoczywiste przy większej liczbie predyktorów (panel środkowy).

Obliczanie *dźwigni h_{ii}* dla danej obserwacji *x_i*

 Dźwignia h_{ii} dla obserwacji x_i to pochodna cząstkowa estymowanej i-tej wartości zmiennej objaśnianej po właściwej i-tej wartości zmiennej objaśnianej

$$h_{ii} = \frac{d\hat{y}_i}{dy_i}$$

- Mamy $\hat{y} = Hy$, gdzie $H = X(X^TX)^{-1}X^T$
- ullet Stąd h_{ii} to i-ty element na diagonali macierzy daszkowej H
- Zachodzi $0 \le h_{ii} \le 1$

Własności dźwigni

• Zauważmy, że macierz H jest idempotentna: H² = H

$$\mathsf{H}^2 = \mathsf{X}(\mathsf{X}^T\mathsf{X})^{-1}\mathsf{X}^T\mathsf{X}(\mathsf{X}^T\mathsf{X})^{-1}\mathsf{X}^T = \mathsf{X}\mathsf{I}(\mathsf{X}^T\mathsf{X})^{-1}\mathsf{X}^T = \mathsf{H}$$

- ullet i symetryczna, czyli, $h_{i,j}=h_{j,i}$
- Stąd, przyrównując i-te elementy na diagonali H oraz H²

$$h_{ii}=h_{ii}^2+\sum_{i\neq j}h_{i,j}^2\geq 0$$

a zatem

$$h_{ii} \geq h_{ii}^2 \Rightarrow h_{ii} \leq 1.$$

Własności dźwigni

- Niech rank(X) = k
- ullet Z przemienności operatora śladu tr(AB)=tr(BA) mamy

$$\sum_{i} h_{ii} = tr(X(X^{T}X)^{-1}X^{T}) = tr((X^{T}X)^{-1}X^{T}X) = tr(I_{k}) = k$$

Stąd średnia dźwignia \bar{h} wynosi

$$\bar{h} = k/n$$

- Zatem
 - ullet w modelu bez wyrazu wolnego $ar{h}=p/n$ dla p- liczba predyktorów
 - ullet gdy w modelu mamy wyraz wolny, $ar{h}=(p+1)/n$

Własności dźwigni

• Przy $Var[\epsilon_i] = \sigma^2$ dla reszty $e_i = y_i - \hat{y}_i$ mamy

$$Var[e_i] = (1 - h_{ii})\sigma^2$$

(to wynika z faktu że $\hat{y} = Hy i Var[y] = I\sigma^2$)

• Stąd dla obserwacji o dużej dźwigni reszty mają małą wariancję

Reszta studentyzowana

Reszta unormowana (podzielona przez estymator swojego odchylenia standardowego)

$$t_i = \frac{e_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$$

Odkrywanie obserwacji dźwigniowych

- Obserwacje o dźwigni znacznie przekraczającej średnią wartość $(\geq 2(p+1)/n)$ moga być uznane za **obserwacje dźwigniowe**.
- Tu obserwacja 20 jest odstająca, a obserwacja 41 jest zarówno odstająca, jak i dźwigniowa. Obserwacje odstające, ale nie dźwigniowe są zwykle usuwane (nawet jeżeli nie powstały w wyniku błędu, nie wpłyną znacznie na parametry modelu).

(6) Współliniowość predyktorów

- Jest to sytuacja, w której dwa lub więcej predyktory mają wartości nawzajem ze sobą związane liniowo.
- Dla dwóch predyktorów widać to z ich korelacji, ale mogą zdarzać się mniej oczywiste związki liniowe typu $x_i \sim x_j + x_k$

Przykład z poziomem kredytu: predyktory 'limit' oraz 'rating' sa współliniowe

Predyktory: wiek (ang. age), limit kredytu (ang. limit) oraz ocena kredytobiorcy przez bank (rating).

Większa niepewność estymowanych wartości przy współliniowości predyktorów

Wykresy konturowe dla RSS:

 osie tak dobrane, aby prezentować wartości do 4-krotności odchylenia standardowego estymatorów po obu stronach (odpowiednik przedziałów ufności)

Dwa modele regresji liniowej: z współliniowością predyktorów i bez

Model I: regresja ze względu na niewspółliniowe predyktory:

Parametr	Estymacja	Std. błąd	<i>t</i> -statystyka	<i>p</i> -wartość
$\hat{eta}_{ extsf{0}}$	-173.411	43.828	-3.957	< 0.0001
age	-2.292	0.672	-3.407	0.0007
limit	0.173	0.005	34.496	< 0.0001

Model II: regresja ze względu na współliniowe predyktory:

	Estymacja	Std. błąd	<i>t</i> -statystyka	<i>p</i> -wartość
\hat{eta}_0	-377.537	45.254	-8.343	< 0.0001
rating	2.202	0.952	2.312	0.0213
limit	0.025	0.064	0.384	0.7012

Badanie korelacji wartości par predyktorów może nie wystarczyć

Czynnik inflacji wariancji (variance inflation factor, VIF):

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2},$$

gdzie $R_{X_j|X_{-j}}^2$ jest statystyką R^2 dla liniowej regresji zbudowanej dla zmiennej X_j , traktowanej teraz jako zmienna objaśniana, względem wszystkich pozostałych predyktorów.

Duża wartość VIF (>5 lub 10) sugeruje współliniowość pewnych predyktorów. Na przykład, wartości VIF dla predyktorów age, rating oraz limit wynosi odpowiednio: 1.01, 160.67, oraz 160.59.

Podsumowanie

- Predyktory jakościowe
- Interakcje
- Potencjalne problemy z liniową regresją