Лабораторная работа №4

Линейная алгебра

Легиньких Г.А.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Легиньких Галина Андреевна
- НФИбд-02-21
- Российский университет дружбы народов
- · 1032216447@pfur.ru
- https://github.com/galeginkikh

Основная информация

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 4.2.
- 2. Выполните задания для самостоятельной работы (раздел 4.4).

Выполнение

Поэлементные операции над многомерными массивами

Примеры поэлементной суммы.

Так же повторила примеры поэлементного произведения.

Для работы со средними значениями можно воспользоваться возможностями пакета Statistics.

```
[5]: # Массив 4х3 со случайными цельми числами (от 1 до 20):
     a = rand(1:20,(4,3))
[5]: 4x3 Matrix(Int64):
      12 20 12
       9 16 14
      16 3 3
       7 8 12
[7]: # Поэлеменяная сумма:
      sum(a)
[7]: 132
[9]: # Поэлементная сумма по столбцам:
      sum(a,dims=1)
[9]: 1x3 Matrix(Int64):
       44 47 41
[11]: # Поэлементная сумма по строкам:
      sum(a,dims=2)
11]: 4x1 Matrix{Int64}:
      39
      22
      27
```

Транспонирование, след, ранг, определитель и инверсия матрицы

Для выполнения таких операций над матрицами, как транспонирование, диагонализация, определение следа, ранга, определителя матрицы и т.п. можно воспользоваться библиотекой (пакетом) LinearAlgebra.

Рис. 2: Ранг, инверсия, определитель, псевдобратная

Вычисление нормы векторов и матриц, повороты, вращения

Вычисление евклидовой нормы и р-нормы для векторов.

Рис. 3: Нормы для векторов

Вычисление нормы векторов и матриц, повороты, вращения

Вычисление нормы для двумерной матрицы.

Рис. 4: Нормы для матрицы

Матричное умножение, единичная матрица, скалярное произведение

Произведение матриц А и В:

```
[71]: # Матрица 2х3 со случайными цельми значениями от 1 до 10:
      A = rand(1:10,(2.3))
[71]: 2x3 Matrix{Int64}:
       8 6 3
       3 4 3
[73]: # Матрица 3х4 со случайными целыми значениями от 1 до 10:
      B = rand(1:10,(3,4))
[73]: 3x4 Matrix{Int64}:
       9 6 3 10
       8 1 1 7
       7 6 8 3
[75]: # Произведение матриц А и В:
[75]: 2x4 Matrix{Int64}:
       141 72 54 131
        80 40 37 67
[77]: # Единичная матрица 3х3:
      Matrix(Int)(I, 3, 3)
[77]: 3x3 Matrix{Int64}:
       1 0 0
      0 1 0
       0 0 1
```

Рис. 5: Произведение

Матричное умножение, единичная матрица, скалярное произведение

Скалярное произведение векторов X и Y:

Рис. 6: Скалярное произведение

Факторизация. Специальные матричные структуры

Решение систем линейный алгебраических уравнений 🖟 🖟 = 🖟:

```
[83]: # Задаём квадратную матрицу 3х3 со случайными значениями:
      A = rand(3, 3)
[83]: 3x3 Matrix(Float64):
       0.564215 0.269493 0.101435
       0.195662 0.434349 0.294503
       0.0847998 0.704377 0.1274
[85]: # Задаём единичный вектор:
      x = fill(1.0, 3)
[85]: 3-element Vector(Float64):
       1.0
       1.0
       1.0
[87]: # Задаём вектор b:
      b = A*x
[87]: 3-element Vector(Float64):
       0.9245150405663181
       0.9165767302780387
[89]: # Решение исходного уравнения получаем с помощью функции \
      # (убеждаемся, что х - единичный вектор):
[89]: 3-element Vector(Float64):
       1.0
       1.0
       1.0
```

Факторизация. Специальные матричные структуры

Julia позволяет вычислять LU-факторизацию и определяет составной тип факторизации для его хранения.

Julia позволяет вычислять QR-факторизацию и определяет составной тип факторизации для его хранения.

Факторизация. Специальные матричные структуры

Исходная система уравнений [☐] = ☐ может быть решена или с использованием исходной матрицы, или с использованием объекта факторизации:

[101]:	# Решение СЛАУ через матрицу А: A\b
[101]:	3-element Vector(Float64): 1.0 1.0
[103]:	# Решение СЛАУ через объект факторизации: Alu\b
[103]:	3-element Vector(Float64): 1.0 1.0
[105]:	# Детерминант матрицы A: det(A)
[105]:	-0.07556391453190962
[107]:	# Детерминант матрицы А через объект факторизации: det(Alu)
[107]:	-0.07556391453190962

Рис. 8: СЛАУ

Общая линейная алгебра

В следующем примере показано, как можно решить систему линейных уравнений с рациональными элементами без преобразования в типы элементов с плавающей запятой (для избежания проблемы с переполнением используем BigInt).

Произведение векторов. Задание 1.1 - 1.2

```
| 3 January 1.1 | 12 January 1.2 | 12 January 1.2 | 14 | 175] | 14 | 175] | 15 January 1.2 | 175] | 17 January 1.2 | 175] | 18 January 1.2 | 175] | 18 January 1.2 | 18 January
```

Рис. 9: Задание 1.1 - 1.2

Системы линейных уравнений. Допустим пример Задание 2.1.f

Рис. 10: Задание 2.1.f

Операции с матрицами. Задание 3.1.а - 3.1.с

```
[255]: # Задание 3.1.а
      A = [1 -2; -2 1]
       eig A = eigen(A)
      D =diagm(eig A.values)
[255]: 2x2 Matrix(Float64):
        -1.0 0.0
         0.0 3.0
[257]: # Задание 3.1.b
      A = [1 -2; -2 3]
       eig A = eigen(A)
      D =diagm(eig A.values)
[257]: 2x2 Matrix{Float64}:
        ·0.236068 0.0
         0.0 4.23607
[259]: # Задание 3.1.с
      A = [1 -2 0; -2 1 2; 0 2 0]
       eig A = eigen(A)
      D =diagm(eig_A.values)
[259]: 3x3 Matrix(Float64):
        -2.14134 0.0
         0.0 0.515138 0.0
         0.0
                          3,6262
                 0.0
```

Рис. 11: Задание 3.1.а - 3.1.с

Операции с матрицами. Задание 3.2.a - 3.2.d

```
[261]: # Задание 3.2.а
       A = [1 -2; -2 1]
       A pow 10 = A^10
[261]: 2x2 Matrix(Int64):
         29525 -29524
        -29524 29525
[265]: # Задание 3.2.b
        A = [5 -2: -2 5]
        A_sqrt = sqrt(A)
[265]: 2x2 Matrix(Float64):
         2.1889 -0.45685
        -0.45685 2.1889
[267]: # Задание 3.2.с
       A = [1 -2; -2 1]
       A_pow = A^{(1/3)}
[267]: 2x2 Symmetric(ComplexF64, Matrix(ComplexF64)):
         0.971125+0.433013im -0.471125+0.433013im
        -0.471125+0.433013im 0.971125+0.433013im
[269]: # Задание 3,2,d
       A = [1 \ 2: 2 \ 3]
       A_sqrt = sqrt(A)
[269]: 2x2 Matrix{ComplexF64}:
        0.568864+0.351578im 0.920442-0.217287im
        0.920442-0.217287im 1.48931+0.134291im
```

Рис. 12: Задание 3.2.а - 3.2.d

Операции с матрицами. Задание 3.3

```
[271]: # Задание 3.3
       A - [140 97 74 168 131;
          97 106 89 131 36;
          74 89 152 144 71;
          168 131 144 54 142:
          131 36 71 142 36
        # Собственные значения
       eig A = eigen(A)
       eigevalues = eig_A.values
[271]: 5-element Vector(Float64):
        -128,49322764802136
         -55.88778455305702
          42.75216727931888
          87.16111477514494
         542.4677301466138
[273]: D = diagm(eigevalues)
[273]: 5x5 Matrix(Float64):
        -128,493 0.0
           0.0 -55.8878 0.0
                                    0.0
                          42,7522 0.0
                 0.0
                                             0.0
                0.0
                                  87,1611
                                           0.0
           0.0
                 0.0
                                   0.0
                                           542,468
[275]: L = tril(A)
[275]: 5x5 Matrix(Int64):
        168 131 144 54 0
        131 36 71 142 36
[279]: Stime eigmax(A)
         2.267 us (11 allocations: 2.61 KiB)
[279]: 542.4677301466143
```

Линейные модели экономики. Приведу один пример, остальные в отчете. Задание 4.2

```
[291]: # Задание 4.2
        function productive 2(A)
            E - I
            B = E - A
            if det(B) \leftarrow 0
               return false
            inv B - inv(B)
           return all(inv B.>=0)
       A = [1 2; 3 1]
       productive_2(A)
[291]: false
[293]: # b
       A = 0.5° [1 2: 3 1]
       productive_2(A)
[293]: false
[295]: # c
       A - 0.1 * [1 2; 3 1]
       productive 2(A)
[295]: true
```

Рис. 14: Задание 4.2

Вывод

Изучила возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.