Eine Übersicht über Crossover-Operationen für genetische Algorithmen Seminar Organic Computing

Gerald Siegert Matrikelnummer: 1450117

Universität Augsburg Lehrstuhl für Organic Computing student@organic-computing.org

Abstract. Zusammenfassung des Inhalts des Papers in ca. 200 Wörtern.

1 Einführung in genetische Algorithmen

Einführung in genetische Algorithmen, wie funktionieren die Überhaupt

2 Klassifizierungen von Crossover-Operationen

Klassifizierung von Crossover

3 Eindimensionale Repräsentation

Eindimensionales

3.1 Binäre Codierung

Binär

3.2 Codierung als Ganzzahlen

Integer

 ${\bf Operationen}$ für ganzzahlige Werte Integer, die nicht als Binär gehandhabt werden

Operationen für Permutationen Permutationen von Integer-Werten (zB TSP)

3.3 Codierung als Fließkommazahl

Fließkommazahlen

3.4 Codierung als Zeichenkette

String-Codierungen

4 Mehrdimensionale Repräsentation

Mehrdimensionale

4.1 Codierung als Baum

Bäume und deren nutzen

4.2 Codierung als Array

Array und deren Nutzen

4.3 Weitere Codierungen für mehrdimensionale Daten

Kurz weiteres wie Matrizen und modularisierte Codierung

5 Anwendungsspezifische Codierung der Daten

Kurz anwendungsspezifisches

6 Universale Crossover-Operationen

Kurz auf weitere, universal einsetzbare Operationen eingehen (besser am Anfang?)

7 Zusammenfassung und Ausblick

Kurze Zusammenfassung

References

1. Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.): Organic Computing - A Paradigm Shift for Complex Systems. Birkhäuser (2011)

8 Motivation

Einführung ins Thema. Was bestehen für Probleme, wie soll das gelöst werden?

Wieso braucht man vorgestellte Technik/System/Algorithmus?

9 Stand der Technik

Wie andere Verfahren das Problem zu lösen versuchen. [1]

10 Hauptteil

10.1 Grundlagen

Text zu Fig. 1. Siehe Formel 1

Advantages and Challenges Eine Subsubsection.

Fig. 1: Ein Beispielbild.

$$\bar{e} = \frac{1}{N} \sum_{i=1}^{N} |f_i - x_i| \tag{1}$$

11 Evaluation

(a) Beispielbild 1

(b) Beispielbild 2

Fig. 2: Zwei Beispielbilder.