. The probability that Player 1 shot the target :
$$\frac{1}{5} \Rightarrow K$$

target =
$$(1-\frac{1}{5})\cdot (1-\frac{1}{4})$$

= $\frac{4}{5}\cdot \frac{3}{4}=\frac{3}{5}\Rightarrow R$

. The solution will then b a geometric progression

$$K \cdot R^{\circ} + K \cdot R^{\dagger} + K \cdot R^{\frac{1}{2}} + \cdots + K \cdot R^{\frac{1}{2}}$$

$$= \frac{1}{1 - \frac{3}{5}} = \frac{\frac{1}{5}}{\frac{3}{5}} = \frac{1}{2}$$

$$= \frac{1}{1 - \frac{3}{5}} = \frac{\frac{1}{5}}{\frac{3}{5}} = \frac{1}{2}$$

e.g.: Probability that the person does not have courd receive positive: 0.1

Probability that the person does have courd receives positive: o.p

Probability that a person has could: 0.01

$$P(D|+) = \frac{P(+|D|)P(D)}{P(+)}$$

$$P(H)= 1- P(D)$$

= 1 - 0-01
= 0-PP

$$P(D|+) = \frac{P(+|D|)P(D)}{P(+|D|)P(D) + P(+|H|)P(H)}$$

$$= \frac{(0 \cdot P)(0.01)}{0.P(0.01) + 0.1(0.PP)} = \frac{0.00P}{0.00P + 0.0PP}$$

$$f(x) = \begin{cases} 0 & x < 0 \\ \frac{1+x}{1+x} & x \ge 0 \end{cases}$$

In order to be a propability density function, the area underneath the PDF has to be equal to 1.

$$\int_0^\infty \frac{1}{1+x} dx$$

thouser, the integral is divergent.
Therefore, the tunction is not a paf

4.
$$f(x) = \begin{cases} 2\chi \end{cases}$$

 $f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$

P(x+Y < 1)

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(Y) = \begin{cases} 2Y & \text{if } 0 \le Y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$P(x+Y \le 1) = \int_{0}^{1} \int_{0}^{1-x} 4xy \, dy \, dx$$

$$= \int_{0}^{1} 2x (1-x)^{2} \, dx$$

$$= \int_{0}^{1} 2x - 4x^{2} + 2x^{3} \, dx$$

$$= \left[x^{2} - \frac{4}{3} x^{3} + \frac{1}{2} x^{4} \right]_{0}^{1}$$

$$= 1 - \frac{4}{3} + \frac{1}{2} = \frac{1}{6}$$

Question 5:

$$X \sim Unif(o(1))$$
. Let $Y = g(x) = e^x$
E(Y) = ?

$$f(x)=1 0 < x < 1$$

$$E(Y) = E(g(x)) = \int_{0}^{1} f(x) \cdot g(x) dx$$

$$= \int_{0}^{1} e^{x} dx$$

$$= [e^{x}]_{0}^{1}$$

$$= e^{1} - e^{0} = e^{-1} = 1.7/8$$

Question 6

Suppose that number of errors per computer program has a Poisson distribution with mean 5. We have 125 program submissions. Let $X_1, X_2, \ldots, X_{12r}$ P(X=x) = $\frac{u^x e^{-tt}}{x!}$ denote the number of errors in the program.

Central Limit Theorem:

 $\bar{X}_n = n^{-1} \leq_{\bar{1}} X_{\bar{1}}$ has a distribution which is approximately normal with mean M and variance $\frac{6^2}{n}$.

Let χ_1, \dots, χ_n be fitd with mean M and varioning 6° . Let $\overline{\chi}_n = n^{\circ} \geq_{i=1}^n$ Then $Z_n = \sqrt{n} (\overline{\chi}_n - M) \stackrel{d}{=} Z$ where $Z \sim N(O(1))$

$$M=5$$
 $\hat{6}=Var(X_1)=\lambda=5$

$$Z_{n} = \frac{\sqrt{n}(\overline{X}_{n} - M)}{6} = \frac{\sqrt{25}(\overline{X}_{n} - 5)}{\sqrt{5}} = \frac{5\sqrt{5}(\overline{X}_{n} - 5)}{\sqrt{5}}$$
$$= 5(\overline{X}_{n} - 5) \approx N(O(1))$$

$$P(\bar{X}_n < \delta - 5) = P(5(\bar{X}_n - 5) < (5.5-5)5)$$

$$\approx P (Z_n < 2.5)$$

= 0.9838

Question 7

Let $X_n = f(W_n, X_{n-1})$ for $n=1, \dots, P$, for some function f(.). Let us define the value of variable E as

E = 11 C - Xp 112 for some constant C.

What is the value of the gradient $\frac{\partial E}{\partial x_0}$?

Norms: size of a vector

Vector: Set of was numbers

teature: $X = \{X_1, X_2\}$

a=[4]

12 norm: Euclidean Distance = (& | \gamma_{\text{i=1}}^{\text{k}} | \gamma_{\text{i}}|^2)^{\text{i}}

 $E = (C - f(w_{P}, X_{P-1})) \cdot (C - f(w_{P}, X_{P-1}))$

= $c^{\frac{1}{2}} - 2cf(wp, \chi p-1) + f(wp, \chi p-1)^{\frac{2}{2}}$

 $= c^{2} - 2cf(wp, f(wp-1, xp-2))^{2}$

 $E = c^2 - 2cf(up, f(up-1, f(up-2, ---- f(u), \%o)) + f(up, f(up-1, f(up-2, ---- f(u), \%o))^2$

 $\frac{\partial \hat{c}}{\partial \chi_0} = -2c f'(w_{\tilde{l}}, \chi_{\tilde{p}}) \dots f'(w_0, \chi_0) + 2f'(w_{\tilde{l}}, \chi_{\tilde{p}}) \dots f'(w_0, \chi_0)$

Question &

Let A be the motifix
$$\begin{bmatrix} 2 & 6 & 7 \\ 3 & 1 & 2 \\ 5 & 3 & 4 \end{bmatrix}$$
 and let x

be the column vector $\begin{bmatrix} \frac{1}{3} \\ 4 \end{bmatrix}$. Let A^T and x^T denote

the transpose of A and x respective.

Compute Ax, A^T and x^TA

$$\chi^T = [2 3 4]$$

$$A^{T} = \begin{bmatrix} 2 & 3 & 5 \\ 6 & 1 & 3 \\ 7 & 2 & 4 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 2 & 6 & 7 \\ 3 & 1 & 2 \\ 5 & 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 50 \\ 17 \\ 35 \end{bmatrix}$$

$$\chi^T A = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 6 & 7 \\ 3 & 1 & 2 \\ 5 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 33 & 27 & 36 \end{bmatrix}$$

Question 9

0)
$$A = \begin{bmatrix} 6 & 2 & 3 \\ 3 & 1 & 1 \\ 10 & 3 & 4 \end{bmatrix}$$

$$C_{1:1} = (-1)^{HJ} (4-3) = 1$$

$$C_{1:2} = (-1)^{H2} (12-10) = -2$$

$$C_{1:3} = (-1)^{H2} (9-(0) = -1)$$

$$C_{2:1} = (-1)^{H2} (2y-30) = -6$$

$$C_{2:3} = (-1)^{2+3} (18-20) = 2$$

$$de+A = 6 \begin{vmatrix} 1 & 1 \\ 3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ 10 & 4 \end{vmatrix} + 3 \begin{vmatrix} 3 & 1 \\ 10 & 5 \end{vmatrix}$$

$$= 6(4-3) - 2(12-10) + 3(9-10)$$

$$= 6 - 4 - 3 = -1$$

$$C_{3,1} = (-1)^{3+1} (2-3) = -1$$

$$C_{3,2} = (-1)^{3+2} (6-6) = 3$$

$$C_{3,3} = (-1)^{3+3} (6-6) = 0$$

$$C = \begin{bmatrix} 1 & 1 & -1 \\ -2 & -6 & 3 \\ -1 & 2 & 0 \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det A} = \frac{1}{\cot A} = \frac{1}{\cot$$

$$det A = 1(10-8) - 2(0-2) + 3(0-2)$$

$$= 2 - 2(-2) + 3(-2)$$

$$= 2 + 4 - 6 = 0 \Rightarrow \text{ which is not invertible}$$

Question 10

Let A be an $n \times n$ matrix and let $X \in \mathbb{C}^n$ be a nonzero vector for which $AX = \lambda X$ for some Scalar λ .

Then λ is caused an expensely of A and X is caused an expensely of A associated with λ .

We first find the eigenvalue, and put an identity matrix on the right side of the equation

A X= AIX
Bring all to left hand side.

 $Ax - \lambda IX = 0$ Then we can calculate det the eigenvalues using determinant. With the equation $|A - \lambda I| = 0$ when x is non-zero

Then put in the λ that we got from previous Step into the equation $AX=\lambda X$ Then solve for equations to get eigenvector

$$det \begin{vmatrix} 1-\lambda & 0 & -1 \\ 1 & -\lambda & 0 \\ -2 & 2 & 1-\lambda \end{vmatrix} = 0$$

$$= (1-\lambda)(-\lambda(1-\lambda))-1(2-2\lambda)=0$$

$$(1^{3}-2\lambda+\lambda^{2})(-\lambda)-2+2\lambda=0$$

$$-\lambda+2\lambda^{2}-\lambda^{3}-2+2\lambda=0$$

$$-\lambda^{3}+2\lambda^{2}+\lambda-2=0$$

$$\lambda_i = 1$$