1 unit conversion

see http://physics.nist.gov/cuu/Units/units.html and [1] page T-5

Description	Name	Symbol	convert	SI
Force	Newton	N		$\frac{m \ kg}{s^2}$
energy, work, quantity of heat	joule	J	N m	$\frac{m^2 kg}{s^2}$
power	Watt	W	$\frac{J}{s}$	$\frac{m^2 kg}{s^3}$
pressure, stress	pascal	Pa	$\frac{N}{m^2}$	$\frac{kg}{m\ s^2}$
electric charge, quantity of electricity	coulomb	C		s A
electric potential difference, electromotive force	volt	V	W/A	$\frac{m^2 \ kg}{s^3 \ A}$
capacitance	farad	F	C/V	$\frac{s^4}{m^2} \frac{A^2}{kg}$
electric resistance	ohm	Ω	V/A	$\frac{m^2 \ kg}{s^3 \ A^2}$
magnetic field	Tesla	T	$\frac{V\ s}{m}$	$\frac{m\ kg}{s^2\ A}$

1Joule = $6.24150974 \ 10^{18}$ electron volts

$$k_{Boltzmann}T_{room}=\frac{1}{40}\;\mathrm{eV}$$

$$T_{room} = 293.15K$$

2 constants

see http://en.wikipedia.org/wiki/Physical_constant and http://physics.nist.gov/cuu/Constants/

Universal constants:

Description	Symbol		SI value		
speed of light in vacuum	c	2997	$92458 \frac{m}{s}$		
Newtonian constant of gravitation	G	6.67428(67)	$10^{11} \frac{m^3}{kg \ s^2}$		
Planck's constant	h	6.62606896(33)	$10^{34}~J~s$		
reduced Planck constant	$\hbar = \frac{h}{2\pi}$	1.054571628(53)	$10^{34} J s$		
Description	S	ymbol, definition		SI value	
magnetic constant (vacuum permea	ability)	μ_0		$4\pi \ 10^7 \frac{N}{A^2}$	
electric constant (vacuum permittiv	vity)	$\epsilon_0 = \frac{1}{\mu_0 c^2}$		$8.854187817 \ 10^{12} \ \frac{F}{m}$	
elementary charge		e		$1.602176487(40)\ 10^{19}\ C$	
Bohr radius		$a_0 = \frac{\alpha}{4\pi R_{\infty}}$	($0.5291772108(18) \ 10^{10} \ m$	
classical electron radius		$r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2}$	4	$2.8179402894(58) \ 10^{15} \ m$	
electron mass		m_e	9.1093821	$15(45)\ 10^{31}\ kg = 511\frac{KeV}{c^2}$	
fine-structure constant proton mass	α	$a = \frac{\mu_0 e^2 c}{2h} = \frac{e^2}{4\pi\epsilon_0 \hbar c}$ m_p		$7.2973525376(50) 10^{3}$ $1.672621637(83) 10^{27} kg$	
Rydberg constant		$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$		$10973731.568525(73) \ \frac{1}{m}$	
atomic mass unit (unified atomic mass unit)		$m_u = \frac{1}{u}$		$1.66053886(28)\ 10^{27}\ kg$	
Avogadro's number		N_{Av}		$6.0221415(10)\ 10^{23}\ \frac{1}{mol}$	
Boltzmann constant		$k_B = \frac{R}{N_{Av}}$		$1.3806505(24)\ 10^{23}\ \tfrac{J}{K}$	
gas constant		R		$8.314472(15) \frac{J}{K \ mol}$	
standard atmosphere		atm		$101325 \ Pa = 14.7 \ Psi$	
Miscellaneous:	eV = 1.60	$02 \ 10^{-19} J$		(1)	
standard temperature is $293.15\ K$					
	$\frac{m_{proton}}{m_e} =$	= 1836		(2)	

3 Symbol notations

See page 631-642 of [5] $C_v \equiv$ specific heat for constant volume $k_b \equiv \text{Boltzmann constant}$ $\vec{E} \equiv \text{electric field}$ $\vec{B} \equiv \text{magnetic field}$ $\vec{D} \equiv$ electric displacement, equ 4.21, page 175 [2] $\vec{N} \equiv \text{torque}$ $W \equiv \text{work}$ $\vec{v} \equiv \text{velocity}$ $V \equiv$ electrostatic potential [Volts] $V \equiv \text{volume}$ $U \equiv \text{potential energy [Volts]}$ $\vec{P} \equiv \text{polarization}, \text{ page 166 [2]}$ $I \equiv \text{current [Amps]}$ $\vec{F} \equiv \text{force [Newtons, } \frac{kg \cdot m}{c^2}]$ $E \equiv \text{energy}$ $T \equiv \text{kinetic energy}$ $T \equiv \text{temperature}$ $L \equiv lagrangian$ $L \equiv \text{capacitance}$ $\vec{L} \equiv \text{classical (orbital) angular momentum}$ $l \equiv$ quantum (orbital) angular momentum $\vec{p} \equiv \text{linear momentum}$ $\omega \equiv \text{angular frequency}$ $z \equiv \text{single particle partition function}$ $Z \equiv \text{total partition function}$

References

- [1] Sears, Zemansky, Young University Physics, Fifth edition, (1976)
- [2] Griffith Intro to Electrodynamics, (1999)
- [3] Jackson Classical Electrodynamics, (1999)
- [4] Goldstein *Classical Mechanics*, (1980) (second edition) Available from Aaron
- [5] Reif Fundamentals of statistical and thermal physics, (1965)
- [6] Parris's book on *Quantum mechanics*, (2008) 463 course page
- [7] Liboff Introduction to Quantum mechanics, (2003) Fourth edition
- [8] Marion *Classical Dynamics of Particles and systems*, (1970) Second edition. Available from Prof Waddill, Elizabeth

[9] Tipler, Llewellyn Modern Physics, (1999)