1 Følger og rekker

Regresjonsanalyse (Regneark)

Analyse av tallfølge skrevet inn i regnearket for å finne en eksplisitt formel.

Eksempel

Finn den eksplisitte formelen til følgen

2,6,22,56,114,202,...

Svar:

Vi velger Vis ► Regneark og skriver tallene inn i en tabell med leddnummeret i første kolonne og verdien i andre.

▼ Regneark		
f_x	FK	
	А	В
1	1	2
2	2	6
3	3	22
4	4	56
5	5	114
6	6	202

Vi markerer så hele tabellen, i verktøymenyen som da dukker opp, velger vi Regresjonsanalyse.

På vinduet som da kommer velger vi Analyser, og trykker deretter på Vis statistikk $(\ \)$. I analysevinduet søker vi nå å finne en Regresjonsmodell hvor vi får a $R^2=1$ i statistikkvinduet. I dette tilfellet gir et tredjegradspolynom det vi ønsker:

Av $y = x^3 - 3x + 4$ i figuren over konkluderer vi med at den eksplisitte formelen til følgen er:

$$a_n = n^3 - 3n + 4$$

 $^a\,{\bf R}^2$ er et mål på hvor godt modellen samsvarer med inputen, gitt som en skala mellom 0 og 1. 1 betyr fullstendig samsvar.

Sum(<Uttrykk>, <Variabel>, <Start>, <Slutt>) (CAS)

Finner summen av en rekke med en løpende variabel på et intervall.

Eksempel

Finn summen av den uendelige rekka

$$1 + \frac{1}{5} + \frac{1}{25} + \dots$$

Svar:

Dette er en geometrisk rekke med $k = \frac{1}{5}$ og eksplisitt formel gitt som:

$$a_n = \frac{1}{5^{(n-1)}}$$

for $n \in \mathbb{N}$.

I CAS skriver vi da (∞ -tegnet finner du ved å trykke på α -tegnet oppe i høyre hjørne):

$$\begin{array}{c}
1 \\
0 \\
0
\end{array}$$
Sum[1/5^(n-1), n, 1, \infty]

2 Trigonometri

Løs(<Likning med x>) (CAS)

Løser en likning med x som ukjent.

Eksempel 1

Sin(3x)=1

Løs:
$$\left\{ \mathbf{x} = \frac{2}{3} \ \mathbf{k_1} \ \pi + \frac{1}{6} \ \pi \right\}$$

I Før Kalkulus; Teoridel brukes $n \in \mathbb{Z}$ som heltallsvariabel, GeoGebra bruker en indeksert k (her $k_1 \in \mathbb{Z}$).

Merk: Du kan også løse ligningen ved å skrive den inn i en celle og deretter trykke på Løs.

Eksempel 2

Løs ligningen

$$\cos^2(3x) - 3\cos(3x) - 4 = 0$$

Svar:

CAS
$$\cos^{2}(3x)-3\cos(3x)-4=0$$

$$\cos^{2}(3x)-3\cos(3x)-4=0$$

$$\cos^{2}(3x)-3\cos(3x)-4=0$$

$$\cos^{2}(3x)-3\cos(3x)-4=0$$

$$\cos^{2}(3x)-3\cos(3x)-4=0$$

$$\cos^{2}(3x)-3\cos(3x)-4=0$$

$$\cos^{2}(3x)-3\cos(3x)-4=0$$

Merk: Løsningen kan komprimeres til (forklar for deg selv hvorfor):

$$x = \frac{1}{3}\pi(2k+1)$$

for $k \in \mathbb{Z}$.

TrigKombiner(<Funksjon>, sin(x))

Skriver om en funksjon på formen $a\sin(kx) + b\cos(kx)$ til et kombinert uttrykk på formen $r\sin(kx+c)$.

Eksempel

RegSin(<Liste>)

Bruker regresjon med en sinusfunksjon for å tilpasse punkt gitt i en liste.

Eksempel

Gitt tabellen

x	f(x)
0	0
1	-2.12
2	-2.73
3	-0.62
4	2.37
5	2.88

Bruk regresjon for å finne en tilnærming til f(x) uttrykt som en sinusfunksjon.

Svar:

Vi velger Vis ► Regneark og skriver inn tabellen. Vi markerer så begge kolonner, høyreklikker innenfor markeringsfeltet og velger

Lag ▶ Liste med punkt:

Om vi ønsker at alle punktene skal vises i grafikkfeltet, høyreklikker vi på grafikken og velger Vis alle objekt. Deretter skriver vi RegSin[Liste1] i kommandolinjen, og får funksjonen f(x) i algebrafeltet og grafen til f i grafikkfeltet. Denne funksjonen er en tilnærming til f(x) gitt i oppgaven.

3 Vektorer i rommet

Punkt(<Liste>)

Lager et punkt med koordinater gitt som liste.

Merk: For å lage punktet (x, y, z) kan man liksågodt skrive (x,y,z) i inntastingsfeltet. Skriver man (x,y,z) i CAS lager man vektoren [x,y,z].

Vektor(<Punkt>)

Lager vektoren fra origo til et gitt punkt.

Merk: I CAS kan man lage vektoren [x, y, z] ved å skrive (x, y, z), dette anbefales.

Eksempel

Gitt vektorene $\vec{u} = [-4, 2, 7], \ \vec{v} = [4, 6+s, -(s+t)] \text{ og } \vec{w} = [12, 2t-9s, 3s-t].$

- a) Finn s og t slik at $\vec{v}||\vec{w}$.
- **b)** Bestem s slik at $\vec{u} \perp \vec{v}$ når t = -2.

Svar:

a) Det er en litt spesiell sak i CAS at en vektor [x, y, z] definert ved å skrive (x, y, z) vil ha en bedre funksjonalitet enn hvis den defineres ved Vektor-kommandoen. Vi starter derfor med å definere \vec{v} og \vec{w} på følgende måte (se Definere variabler):

CAS
$$V:=(4,6+s, -(s+t))$$

$$v:=\begin{pmatrix} 4\\ s+6\\ -s-t \end{pmatrix}$$

$$w:=(12, 2t-9s, 3s-t)$$

$$w:=\begin{pmatrix} 12\\ 2t-9s\\ 3s-t \end{pmatrix}$$

Vi utnytter videre at $\vec{v}||\vec{w}|$ hvis $r\vec{v} = \vec{w}$, for en konstant r. Vi skriver denne ligningen inn i CAS og trykker så på Løs:

3 |
$$r^*V=W$$
 | Løs: $\{\{r=3, s=-1, t=3\}\}$

Vi har altså at s = -1 og t = 3.

b) Skal $\vec{u} \perp \vec{v}$, må vi ha at $\vec{u} \cdot \vec{v} = 0$. Vi definerer \vec{u} og bruker ByttUt-

6

kommandoen for å sette t=2 i uttrykket til \vec{v} . Med det endrede uttrykket løser vi ligningen for skalarprduktet (se kommandoen Skalarprodukt på s. ??. CAS fjerner * når vi skriver u*\$5).

$$u := (-4, 2, 7)$$

$$4 \quad \rightarrow \quad \mathbf{u} := \begin{pmatrix} -4 \\ 2 \\ 7 \end{pmatrix}$$

$$ByttUt[v, t, 2]$$

$$5 \quad \rightarrow \quad \begin{pmatrix} 4 \\ \mathbf{s} + \mathbf{6} \\ -\mathbf{s} - \mathbf{2} \end{pmatrix}$$

$$0 \quad \downarrow \$5 = 0$$

$$0 \quad \downarrow \$5 : \left\{ \mathbf{s} = -\frac{18}{5} \right\}$$

Skalarprodukt(<Vektor>, <Vektor>)

Finner skalarproduktet av to vektorer.

Merk: For to vektorer u og v kan man like gjerne skrive u*v.

Vektorprodukt(<Vektor>, <Vektor>) (CAS)

Finner vektorproduktet av to vektorer. (Merk: For to vektorer u og v kan man like gjerne skrive $u \otimes v$. Hurtigtast for \otimes er alt+shift+8).

Vinkel(<Vektor>, <Vektor>)

Gir vinkelen mellom to vektorer. Kan også brukes for vinkel mellom plan/linjer, plan/plan og linje/linje

4 Romgeometrier

Pyramide(<Punkt>, <Punkt>, ...)

Framstiller en pyramide i Grafikkfelt 3D. Pyramide [A,B,C,D] lager en pyramide med grunnflate A,B,C og toppunkt D, mens Pyramide [A,B,C,D, E] har grunnflate A,B,C,D og toppunkt E. Under kategorien Pyramide i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

Høyde(<Objekt>)

Gir avstanden fra toppunkt til grunnflate i et objekt.

Merk: Avstanden har retning, og derfor kan den noen ganger være negativ. Tallverdien er den geometriske høyden.

Eksempel

Finn volumet og høyden til tetraetedet med grunnflate gitt ved punktene A = (3, 2, 1), B = (6, 2, 1), C = (3, 6, 1) og toppunkt D = (5, 4, 3).

Svar:

Vi skriver inn punktene og bruker deretter kommandoen Pyramide [A, B, C, D] for å lage tetraedet a. Algebrafeltet gir oss da at volumet til a er 4. I celle 1 finner vi høyden, som er 2.

Prisme(<Punkt>, <Punkt>, ...)

Framstiller en prisme i Grafikkfelt 3D. Prisme [A,B,C,D] lager en prisme med grunnflate ABC og tak DEF, Prisme [A,B,C,D,E] har grunnflate ABCD og tak EFG. F, G og eventelt E blir konstruert av GeoGebra slik at hver sideflate er et parallellogram. Under kategorien Prisme i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

```
Kurve( <Uttrykk>, <Uttrykk>, <Uttrykk>,
<Parametervariabel>, <Start>, <Slutt> )
```

Viser parameteriseringen av en kurve i Grafikkfelt 3D på et gitt intervall. Uttrykkene er henholdsvis uttrykkene for x, y og z-koordinatene, bestemt av en gitt parametervariabel.

Merk: Med mindre et bestemt intervall av kurven er ønsket, er det bedre å skrive parameteriseringen direkte inn i inntastingsfeltet som A+t*u, hvor A er et punkt på linja og u er en retningsvektor.

Linje(<Punkt>, <Punkt>)

Gir uttrykket til en linje mellom to punkt. Hvis punktene har tre koordinater besår uttrykket av et punkt på linja og en fri variabel λ mulitplisert med en retningsvektor.

Eksempel

Finn parameteriseringen til linjen som går mellom punktet (-2, 1, 3) og (-5, -1, 4).

Svar:

Vi skriver punktene i inntastingsfeltet og får punktene A og B. Etterpå skriver vi Linje [A, B] og får da linjen f.

Av dette finner vi at parameteriseringen til linjen er gitt som:

$$f: \begin{cases} x = -2 - 3t \\ y = 1 - 2t \\ z = 3 + t \end{cases}$$

Kule(<Punkt>, <Radius>)

Viser en kule i Grafikkfelt 3D med sentrum i et gitt punkt og med en gitt radius.

Eksempel

En linje l med parameteriseringen

$$l: \begin{cases} x = -3 - 2t \\ y = 1 + t \\ z = 4 + 2t \end{cases}$$

skjærer en kule med med sentrum i (-1, 2, 6) og radius lik 3.

- a) Tegn kulen og linjen.
- b) Finn skjæringspunktet mellom kulen og linjen.

Svar:

Vi skal her se på to løsningsmetoder. Den første metoden er helt klart den raskeste, men den andre metoden er tatt med for å illustrere bruken av Kurve-kommandoen, i tillegg til å presentere en metode som vil sikre oss eksaktverdier.

Løsningsmetode 1

a)

Vi starter med å tegne kulen. I inntastingsfeltet skriver vi Kule[(-1, 2, 6), 3] og får kulen a i algebrafelt og grafikkfelt 3D. For å tegne linjen, skriver vi (-3, 1, 4)+t*(2,1,2) i inntastingsfeltet, resultatet er kurven f.

b)

I inntastingsfeltet skriver vi Skjæring[a, f] og får de to punktene A og B.

Merk: Hadde vi tegnet linjen ved hjelp av Kurve-kommandoen, ville ikke dette funket. Skjæring er ikke kompatibel med Kurve, og i dette tilfellet heller ikke med CAS.

Løsningsmetode 2

a)

For å tegne linjen, skriver vi Kurve [-3 + 2t, 1 + t, 4 + 2t, t, -10, 10] i inntastingsfeltet. At $t \in [-10, 10]$ velger vi ut ifra inspeksjon i grafikkfelt 3D. Det gjelder å velge et intervall som viser begge skjæringspunktene mellom kulen og linjen (man kan velge $t \in [-\infty, \infty]$, men da blir ikke kurven vist grafikkfeltet). Resultatet er kurven b.

b) (Se Høyre- og venstresiden)

I celle 1 lager vi oss en ny funksjon k(x, y, z) med et uttrykk tilsvarende venstresiden til kuleligningen. For at linjen skal skjære kulen, må parameteriseringen til linjen oppfylle kuleligningen. I celle 2 setter vi derfor

uttrykkene for x, y og z fra parameteriseringen inn i k, og krever at dette uttrykket skal bli lik 3^2 . Vi trykker så på Løs-knappen og får to svar for t. I celle 3 og 4 finner vi punktene for dissse valgene av t.

Plan(<Punkt>, <Punkt>, <Punkt>)

Viser et plan i Grafikkfelt 3D, utspent av to av vektorene mellom tre gitte punkt.

5 Derivasjon og funksjonsdrøfting

Deriverte(<Funksjon>)

Gir den deriverte av en funksjon.

Merk: For en definert funksjon f(x), kan man like gjerne skrive f'(x).

Eksempel

→ CAS		
1	f(x):= x^2	
•	$\rightarrow f(x) := x^2$	
2	Derivert[f]	
	→ 2 x	
3	f'(x)	
0	→ 2 x	

Vendepunkt(<Polynom>)

Finner vendepunktene til et polynom.

Eksempel

Maks(<Funksjon>, <Start x-verdi>, <Slutt x-verdi>)

Finner absolutt maksimum og maskimalpunkt for en funksjon f på et gitt intervall.

Min(<Funksjon>, <Start x-verdi>, <Slutt x-verdi>)

Finner absolutt minimum og minimumspunkt for en funksjon f på et gitt intervall.

Ekstremalpunkt(<Funksjon>, <Start>, <Slutt>)

Finner alle lokale ekstremalpunkt og ekstremalverdier for en funksjon f på et gitt intervall.

6 Integrasjon

Integral(<Funksjon>)

Gir uttrykket til det ubestemte integralet av en funksjon. (Merk: Hvis kommandoen skrives i inntastingsfeltet, blir konstantleddet utelatt).

Eksempel

 c_1 er en vilkårlig konstant.

Integral(<Funksjon>, <Start>, <Slutt>)

Gir det bestemte integralet av en funksjon på et intervall.

Eksempel 1

Eksempel 2

Finn volumet av omdreiningslegemet til $f(x) = x^2$ på intervallet [0, 1].

Svar:

I celle 1 definerer vi f(x). Volumet er gitt som $\pi \int_{0}^{1} (f(x))^{2} dx$, som vi finner i celle 2.

7 Differensialligninger

LøsODE(<Likning>) (CAS)

Finner generell løsning av en gitt differensialligning av første eller andre orden.

Eksempel 1

Løs ligningen:

$$y' + 2y = 2$$

Svar:

 c_1 er en vilkårlig konstant.

Eksempel 2

Løs ligningen:

$$y' + 5y^2 = 0$$

Svar:

 c_1 er en vilkårlig konstant.

Eksempel 3

Løs ligningen:

$$y'' + y' - 6y = 0$$

Svar:

 c_1 og c_2 er vilkårlige konstanter.

LøsODE(<Likning>, <Punkt på f>, <Punkt på f'>) (CAS)

Finner løsningen av en gitt differensialligning av første eller andre orden, for randverdier gitt som punkter.

Eksempel 1

Finn løsningen av ligningen

$$y' - 3y = 0$$

med randbetingelsen y(0) = 5.

Svar:

Randbetingelsen gir oss punktet $(x_0, y(x_0)) = (0, 5)$:

Eksempel 2

Løs ligningen:

$$y'' + y - 6 = 0$$
 , $y(0) = -1, y'(0) = 0$

Svar:

Punktet på y er (0,-1) og punktet på y' er (0,0). Løsningen kan vi da finne via CAS:

Retningsdiagram(f(x,y)) (Inntastingsfelt)

Lager et retningsdiagram for en differensialligning hvor f(x,y) = y'.

Eksempel

Gitt differensialligningen

$$y' + xy = x$$

- a) Tegn et retningsdiagram for løsningene av ligningen.
- b) Tegn integralkurven for løsningen som krysser vertikalaksen når y=2.

Svar:

a) Vi starter med å finne y':

$$y' = x - xy$$

I inntastingsfeltet skvriver vi så Retnigsdiagram [x-x y] og får dette bildet i grafikkfeltet ($Obs!\ x$ og y må skilles med mellomrom eller gangetegn):

b) Vi starter med å løse ligningen for punktet (0, 2):

Trykker vi på den hvite markøren (som blir blå) i celle 1, vil en funksjon bli definert og vist i grafikkfeltet:

