COMPLEMENTOS de MATEMÁTICA

Aula Teórico-Prática - Ficha 7

INTEGRAIS DE SUPERFÍCIE; FLUXO

- 1. Dados os vectores não nulos $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ e $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$, determine o integral de superfície do campo escalar h(x,y,z) = xy sobre a superfície, S, parametrizada através da função vectorial a duas variáveis reais $\vec{r}(u,v) = u\vec{a} + v\vec{b}$, $(u,v) \in \Omega$, em que $\Omega = \{(u,v) : 0 \le u \le 1, 0 \le v \le 1\}$.
- 2. Calcule o integral $\iint_S (2y) dS$ sobre a superficie, S, definida por $z = y^2/2$, $(x, y) \in \Omega$, em que $\Omega = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$.
- 3. Calcule o integral $2\iint_S dS$ sobre a superficie, S, definida por $z=y^2/2$, $(x,y)\in\Omega$, em que $\Omega=\left\{(x,y):0\leq x\leq 1,\ 0\leq y\leq 1\right\}$.
- 4. Calcule o integral $\iint_S 4\sqrt{x^2 + y^2} dS$ sobre a superficie, S, definida por z = xy, $(x, y) \in \Omega$, em que $\Omega = \{(x, y) : 0 \le x^2 + y^2 \le 1\}$.
- 5. Calcule o integral $\iint_S (xyz) dS$ sobre a superficie, S, que corresponde ao primeiro octante do plano x + y + z = 1.
- 6. Calcule o integral $\iint_S (x^2 z) dS$ sobre a superficie cilíndrica, S, definida por $x^2 + z^2 = 1$, tal que $1 \le y \le 4$ e $z \ge 0$.

- 10. Seja a superficie, S, parametrizada através da função vectorial a duas variáveis reais $\vec{r}(u,v) = (u+v)\vec{i} + (u-v)\vec{j} + u\vec{k}$, $(u,v) \in \Omega$, em que $\Omega = \{(u,v) : 0 \le u \le 1, 0 \le v \le 1\}$. Admita que a densidade, em cada um dos seus pontos, é dada por $\lambda(x,y,z) = kz$ (k>0). Calcule:
 - a) A sua área.

b) As coordenadas do seu centroide.

c) A sua massa.

- d) As coordenadas do seu centro de massa.
- e) Os momentos de inércia em relação aos eixos coordenados, I_x , I_y e I_z .
- 11. Seja a superficie triangular, S, com vértices nos pontos (a,0,0), (0,a,0) e (0,0,a), tal que a>0. Calcule:
 - a) A sua área.

- b) As coordenadas do seu centroide.
- 12. Admitindo que a densidade em cada ponto da superfície do exemplo 11 é dada por $\lambda(x,y,z) = kx^2 \ (k>0)$, calcule:
 - a) A sua massa.

- b) As coordenadas do seu centro de massa.
- 16. Calcule o fluxo do campo vectorial $\vec{f}(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k}$ através da superfície cilíndrica, S, parametrizada através da função vectorial a duas variáveis reais $\vec{r}(u,v) = a\cos(u)\vec{i} + a\sin(u)\vec{j} + v\vec{k}$, com $u \in [0,2\pi]$, $v \in [0,1]$ e a > 0, no sentido de dentro para fora da superfície.
- 17. Calcule o fluxo do campo vectorial $\vec{f}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$ através da superfície do paraboloide, S, definida por $z = 1 (x^2 + y^2)$, $z \ge 0$, no sentido de dentro para fora da superfície.
- 18. Determine o fluxo do campo vectorial $\vec{f}(x,y,z) = -y\vec{i} + x\vec{j} + z\vec{k}$, através da superfície cónica, S, definida por $z = \sqrt{x^2 + y^2}$, $z \le 4$, no sentido de dentro para fora da superfície.
- 19. Seja S a superfície parametrizada através da função vectorial a duas variáveis reais $\vec{r}(u,v) = u\cos(v)\vec{i} + u\sin(v)\vec{j} + v\vec{k}$, com $u \in [0,1]$ e $v \in [0,2\pi]$. Calcule o integral de fluxo $\iint_S x dy \wedge dz$ através de S, no sentido definido pelo seu produto vectorial fundamental.

- **20.** Seja a superfície triangular, S, do exemplo 11.. Calcule o fluxo do campo vectorial $\vec{f}(x,y,z) = x^2 \vec{i} y^2 \vec{j}$ através de S, no sentido definido pelo semieixo positivo dos zz.
- 22. Considere a superficie, S, definida por z = xy, $(x,y) \in \Omega$, tal que $\Omega = \{(x,y) : 0 \le x \le 1, 0 \le y \le 2\}$. Determine o fluxo do campo vectorial $\vec{f}(x,y,z) = -xz\vec{j} + xy\vec{k}$ através de S, no sentido definido pelo semieixo negativo dos zz.
- 23. Seja a superficie fechada, S, limitada pelas superficies $x^2 + y^2 = 1$, z = 0 e z = 1. Calcule o fluxo do campo vectorial $\vec{f}(x, y, z) = x\vec{i} + 2y\vec{j} + z^2\vec{k}$ através de S, no sentido de fora para dentro da superficie.
- **24.** Considere a superficie fechada, S, que limita o cubo unitário, T, situado no quarto octante $T = \{(x, y, z) : 0 \le x \le a, -a \le y \le 0, 0 \le z \le a\}$ (a > 0). Em cada uma das alíneas seguintes, determine o fluxo do campo vectorial $\vec{f}(x, y, z)$ através de S, no sentido de dentro para fora da superficie.

a)
$$\vec{f}(x,y,z) = y\vec{i} - x\vec{j}$$
.

b)
$$\vec{f}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$$
.

c)
$$\vec{f}(x, y, z) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$
.

d)
$$\vec{f}(x, y, z) = -2x^2\vec{i} - 2xz\vec{j} + z^2\vec{k}$$
.

e)
$$\vec{f}(x, y, z) = xz\vec{i} + 4xyz^2\vec{j} + 2yz\vec{k}$$
.

- **26.** Considere a superficie fechada, S, limitada pelas superficies $z = x^2 + y^2$ e z = 4. Determine o fluxo do campo vectorial $\vec{f}(x, y, z) = x\vec{i} + xy\vec{j} + z^2\vec{k}$ através de S, no sentido de dentro para fora da superficie.
- 28. Seja a superficie fechada, S, limitada pelas superficies $(x+1)^2 + y^2 = 1$, z = 0 e z = 2. Determine o fluxo do campo vectorial $\vec{f}(x,y,z) = (2x+ze^y)\vec{i} + (y+\sin(z))\vec{j} + (3z+e^{xy})\vec{k}$ através de S, no sentido de dentro para fora da superficie.

- 29. Considere a superficie fechada, S, situada no primeiro octante, limitada pelos planos coordenados e vectorial superficie $x + y + z = a \ (a > 0)$. Determine fluxo $\vec{f}(x, y, z) = 3x^2\vec{i} + 2xy\vec{i} - 5xz\vec{k}$ através de S, no sentido de fora para dentro da superfície.
- **30.** Calcule $\nabla \cdot \vec{f}$ (divergência) e $\nabla \times \vec{f}$ (rotacional), sendo \vec{f} o campo vectorial:

a)
$$\vec{f}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$$
.

b)
$$\vec{f}(x, y, z) = -2x\vec{i} + 4y\vec{j} - 6z\vec{k}$$
.

c)
$$\vec{f}(x, y, z) = xyz\vec{i} + xz\vec{j} + z\vec{k}$$
.

b)
$$\vec{f}(x, y, z) = -2x\vec{i} + 4y\vec{j} - 6z\vec{k}$$
.
d) $\vec{f}(x, y, z) = x^3y\vec{i} + y^3z\vec{j} + xy^3\vec{k}$.

e)
$$\vec{f}(x, y, z) = x^2 y \vec{i} + (z - x - y) \vec{j} + 2xy \vec{k}$$
.
f) $\vec{f}(x, y, z) = xz \vec{i} + 4xyz^2 \vec{j} + 2yz \vec{k}$.

f)
$$\vec{f}(x, y, z) = xz\vec{i} + 4xyz^2\vec{j} + 2yz\vec{k}$$

g)
$$\vec{f}(\vec{r}) = e^{r^2} (\vec{i} + \vec{j} + \vec{k})$$
.

h)
$$\vec{f}(\vec{r}) = r^{-2}\vec{r}$$
.

i)
$$\vec{f}(x,y,z) = \frac{\alpha x}{x^2 + y^2} \vec{i} + \frac{\alpha y}{x^2 + y^2} \vec{j}$$
, $\alpha \in \mathbb{R}$

$$\mathbf{i)} \ \vec{f}(x,y,z) = \frac{\alpha x}{x^2 + y^2} \vec{i} + \frac{\alpha y}{x^2 + y^2} \vec{j} \ , \ \alpha \in \mathbb{R} \ . \qquad \mathbf{j)} \ \vec{f}(x,y,z) = \frac{\alpha y}{x^2 + y^2} \vec{i} + \frac{\alpha x}{x^2 + y^2} \vec{j} \ , \ \alpha \in \mathbb{R} \ .$$

k)
$$\vec{f}(x, y, z) = (2x + ze^y)\vec{i} + (y + \operatorname{sen}(z))\vec{j} + (3z + e^{xy})\vec{k}$$
.

31. Mostre que a divergência e o rotacional são operadores lineares, isto é, se \vec{f} e \vec{g} são campos vectoriais e $\alpha, \beta \in \mathbb{R}$, então:

a)
$$\nabla \cdot (\alpha \vec{f} + \beta \vec{g}) = \alpha (\nabla \cdot \vec{f}) + \beta (\nabla \cdot \vec{g})$$

a)
$$\nabla \cdot (\alpha \vec{f} + \beta \vec{g}) = \alpha (\nabla \cdot \vec{f}) + \beta (\nabla \cdot \vec{g})$$
. **b**) $\nabla \times (\alpha \vec{f} + \beta \vec{g}) = \alpha (\nabla \times \vec{f}) + \beta (\nabla \times \vec{g})$.

- 32. Mostre que o campo vectorial $\vec{f}(x, y, z) = 2x^3y\vec{i} y^2z\vec{j} + (yz^2 6x^2yz)\vec{k}$ é solenoidal.
- 33. Mostre que o campo vectorial $\vec{f}(x, y, z) = (2xy + z^2)\vec{i} + (x^2 2yz)\vec{j} + (2xz y^2)\vec{k}$ é irrotacional.
- 34. Mostre que se φ é um campo escalar e \vec{f} um campo vectorial, então:

a)
$$\nabla \cdot (\varphi \vec{f}) = (\nabla \varphi) \cdot \vec{f} + \varphi(\nabla \cdot \vec{f})$$
.

b)
$$\nabla \times (\varphi \vec{f}) = (\nabla \varphi) \times \vec{f} + \varphi(\nabla \times \vec{f})$$
.

39. Resolva os exercícios 23. a 29. recorrendo ao teorema da divergência.

- **40.** Considere a superficie fechada, S, que limita o sólido, V, definido por $V = \left\{ (x, y, z) : 1 \ge z \ge \sqrt{x^2 + y^2} \right\}$ e o campo vectorial $\vec{f}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$. Verifique o teorema da divergência.
- 41. Considere a superficie fechada, S, que limita o sólido, V, definido pelos planos x=0, y=-1, y=1, z=0 e x+z=2 e o campo vectorial $\vec{f}(x,y,z)=y\vec{j}$. Verifique o teorema da divergência.
- **42.** Recorrendo ao teorema adequado, determine o fluxo do campo vectorial $\vec{f}(x,y,z) = -x^2y\vec{i} + 3y\vec{j} + 2xyz\vec{k}$ através da superficie fechada, S, que limita o volume $V = \left\{ (x,y,z) : \sqrt{x^2 + y^2} \le z \le 2 \sqrt{x^2 + y^2} \right\}$, no sentido de dentro para fora da superficie.
- **43.** Considere o campo vectorial $\vec{f}(x,y,z) = xy^2\vec{i} + x^2y\vec{j} + z\vec{k}$ e seja a superfície fechada, S, limitada pelas superfícies $x^2 + y^2 = 1$, z = 0 e z = 1. Calcule $\oiint_S (\vec{f} \cdot \vec{n}) dS$:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema da divergência.
- **44.** Calcule o fluxo do campo vectorial $\vec{f}(x, y, z) = 2xy\vec{i} + y^2\vec{j} + 3yz\vec{k}$ através da superfície esférica, S, definida por $x^2 + y^2 + z^2 = a^2$ (a > 0), no sentido de dentro para fora da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema da divergência.
- **45.** Sejam o campo vectorial $\vec{f}(x,y,z) = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$ e a superficie fechada, S, limitada pelas superficies $x^2 + y^2 = 2y$, z = 0 e z = 2. Usando o teorema adequado, determine o fluxo do campo vetorial $\vec{f}(x,y,z)$ através de S, no sentido de dentro para fora da superficie.

- **46.** Seja a superficie fechada $S = \left\{ (x, y, z) : (x^2 + y^2 + z^2 = 4, z \ge 0) \lor (x^2 + y^2 \le 4, z = 0) \right\}$. Recorrendo ao teorema adequado, determine o fluxo do campo vectorial $\vec{f}(x, y, z) = \frac{x^3}{y^2} \vec{i} + 5 \frac{x^2}{y} \vec{j} + 2z \left(\frac{x^2}{y^2} + 1 \right) \vec{k}$ através de S, no sentido de dentro para fora da superficie.
- **52.** Seja o campo vectorial $\vec{f}(x, y, z) = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$. Verifique o teorema de Stokes sobre a superfície $S = \{(x, y, z) : z + 1 = x^2 + y^2, z \in [-1, 0]\}$.
- 53. Considere a superficie triangular, S, com vértices nos pontos A = (2,0,0), B = (0,2,0) e C = (0,0,2). Calcule o fluxo do rotacional de $\vec{f}(x,y,z) = x^3\vec{i} + 2xy\vec{j} + z^2\vec{k}$ através de S, no sentido definido pelo semieixo positivo dos zz:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.
- **54.** Seja S a superfície $z = \sqrt{x^2 + y^2}$, limitada por $2z = x^2 + y^2$. Calcule o fluxo do rotacional de $\vec{f}(x,y,z) = z\vec{i} + x\vec{j} + 2\vec{k}$ através de S, no sentido de fora para dentro da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.
- 55. Seja S a superfície definida por $z=1-x^2-y^2$, $z \ge 0$. Calcule o fluxo do rotacional de $\vec{f}(x,y,z)=y\vec{i}+z\vec{j}+x\vec{k}$ através de S, no sentido de dentro para fora da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.
- **56.** Seja S a superfície definida por $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Calcule o fluxo do rotacional de $\vec{f}(x,y,z) = z^2\vec{i} + 2x\vec{j} y^3\vec{k}$ através de S, no sentido de dentro para fora da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.

- 57. Seja S a superfície $z=x^2+y^2$, limitada superiormente pelo plano z=2x. Calcule o fluxo do rotacional de $\vec{f}(x,y,z)=y^2\vec{i}-\vec{k}$ através de S, no sentido de dentro para fora da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.
- **58.** Seja S a superfície definida por $z=4-x^2-y^2$, $z \ge -2$. Calcule o fluxo do rotacional de $\vec{f}(x,y,z)=(2xyz+2z)\vec{i}+xy^2\vec{j}+xz\vec{k}$ através de S, no sentido de fora para dentro da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.
- **59.** Seja S a superfície definida por $z=x^2+y^2$, $z\leq -2$, $y\geq 0$. Calcule o fluxo do rotacional de $\vec{f}(x,y,z)=(x^2+xz)\vec{i}+yz\vec{j}$ através de S, no sentido de dentro para fora da superfície:
 - a) Por cálculo directo do integral de fluxo.
- b) Recorrendo ao teorema de Stokes.
- **61.** Seja o campo vectorial $\vec{f}(x,y,z) = y\vec{i} + zx\vec{j} + zy\vec{k}$. Verifique o teorema de Stokes sobre a superfície $S = \{(x,y,z) : z = 5 (x^2 + y^2), z \ge 1\}$.

Soluções: Consultar o manual "Noções sobre Análise Matemática", Efeitos Gráficos, 2019. ISBN: 978-989-54350-0-5.

16. ----

17.
$$A(S) = \frac{\sqrt{2}\pi}{4} \left[\sqrt{6} + \frac{1}{2} \ln(\sqrt{2} + \sqrt{3}) \right] \text{ m}^2.$$

18.
$$A(S) = \frac{a^2}{2} \left[\sqrt{1 + 2e^{4\pi}} - \sqrt{3} + 2\pi + \ln(1 + \sqrt{3}) - \ln(\sqrt{1 + 2e^{4\pi}} + 1) \right] \text{ m}^2.$$

Integrais de Superfície

1.
$$\iint_{S} h(x, y, z) dS = \left\| \vec{a} \times \vec{b} \right\| \left[\frac{1}{3} a_{1} a_{2} + \frac{1}{4} (a_{1} b_{2} + b_{1} a_{2}) + \frac{1}{3} b_{1} b_{2} \right].$$

2.
$$\frac{2}{3}(2\sqrt{2}-1)$$
.

3.
$$\sqrt{2} + \ln(\sqrt{2} + 1)$$
.

4.
$$\pi \left[3\sqrt{2} - \ln(\sqrt{2} + 1) \right]$$
.

5.
$$\frac{\sqrt{3}}{120}$$
.

7.
$$28\sqrt{2}\pi$$
.

8.
$$\frac{\pi}{60} \Big[10a^2 (1+4a^2)^{3/2} - (1+4a^2)^{5/2} + 1 \Big].$$
 9. $\frac{4}{3}\pi a^4 + \pi a^3.$

9.
$$\frac{4}{3}\pi a^4 + \pi a^3$$

10. a)
$$\sqrt{6}$$
 m².

$$\mathbf{b})\left(1,0,\frac{1}{2}\right).$$

c)
$$\frac{\sqrt{6}k}{2}$$
 Kg.

$$\mathbf{d})\left(\frac{7}{6},\frac{1}{6},\frac{2}{3}\right).$$

e)
$$I_x = \frac{\sqrt{6}k}{3} \text{ Kgm}^2$$
, $I_y = \sqrt{6}k \text{ Kgm}^2$ e $I_z = \frac{5\sqrt{6}k}{6} \text{ Kgm}^2$.

11. a)
$$\frac{\sqrt{3}a^2}{2}$$
 m².

b)
$$\left(\frac{a}{3}, \frac{a}{3}, \frac{a}{3}\right)$$
.

12. a)
$$\frac{\sqrt{3}ka^4}{12}$$
 Kg.

 $\mathbf{b}) \left(\frac{3a}{5}, \frac{a}{5}, \frac{a}{5} \right).$

13. a)
$$\lambda(x, y, z) = k\sqrt{x^2 + y^2}$$
, $k > 0$.

b) $\frac{2\sqrt{2}k\pi}{3}$ Kg.

$$\mathbf{c})\left(0,0,\frac{3}{4}\right).$$

d) $I_x = I_y = \frac{3\sqrt{2}k\pi}{5} \text{ Kgm}^2 \text{ e } I_z = \frac{2\sqrt{2}k\pi}{5} \text{ Kgm}^2.$

14.
$$\frac{k}{15} (9\sqrt{3} - 8\sqrt{2} + 1) \text{ Kg}.$$

15. $I_z = \frac{8\pi a^4}{3} \text{ Kgm}^2$.

16.
$$2\pi a^2$$
.

17. $\frac{3\pi}{2}$.

18.
$$-\frac{128\pi}{3}$$
.

19. 0.

21. $-\frac{8}{35}$.

22.
$$-\frac{3}{2}$$
.

23. -4π .

b) $3a^3$.

c) a^4 .

d)
$$-a^4$$
.

e)
$$\frac{a^4}{6}(4a^2-3)$$
.

25. a)
$$-\frac{8\pi a^3}{3}$$
.

b)
$$-4\pi a^3$$
.

c) 0.

e)
$$4\pi a^3$$
.

26.
$$\frac{152\pi}{3}$$
.

27.
$$-\frac{4\sqrt{2}\pi}{3}$$
.

28.
$$12\pi$$
 .

29.
$$-\frac{a^4}{8}$$
.

30. a)
$$\nabla \cdot \vec{f} = 3 \text{ e } \nabla \times \vec{f} = \vec{0}$$
.

b)
$$\nabla \cdot \vec{f} = -4 \text{ e } \nabla \times \vec{f} = \vec{0}$$
.

c)
$$\nabla \cdot \vec{f} = 1 + yz$$
 e $\nabla \times \vec{f} = -x\vec{i} + xy\vec{j} + (z - xz)\vec{k}$.

d)
$$\nabla \cdot \vec{f} = 3x^2y + 3y^2z \text{ e } \nabla \times \vec{f} = (3xy^2 - y^3)\vec{i} - y^3\vec{j} - x^3\vec{k}$$
.

e)
$$\nabla \cdot \vec{f} = 2xy - 1$$
 e $\nabla \times \vec{f} = (2x - 1)\vec{i} + (-2y)\vec{j} + (-1 - x^2)\vec{k}$.

f)
$$\nabla \cdot \vec{f} = z + 4xz^2 + 2y$$
 e $\nabla \times \vec{f} = (2z - 8xyz)\vec{i} + x\vec{j} + 4yz^2\vec{k}$.

g)
$$\nabla \cdot \vec{f} = 2e^{x^2 + y^2 + z^2} (x + y + z)$$
 e $\nabla \times \vec{f} = 2e^{x^2 + y^2 + z^2} ((y - z)\vec{i} + (z - x)\vec{j} + (x - y)\vec{k})$.

h)
$$\nabla \cdot \vec{f} = \frac{1}{x^2 + y^2 + z^2} = \frac{1}{r^2} e \nabla \times \vec{f} = \vec{0}$$
.

i)
$$\nabla \cdot \vec{f} = 0$$
 e $\nabla \times \vec{f} = \vec{0}$.

j)
$$\nabla \cdot \vec{f} = \frac{-4\alpha xy}{\left(x^2 + y^2\right)^2} e \nabla \times \vec{f} = \frac{-2\alpha(x^2 - y^2)}{\left(x^2 + y^2\right)^2} \vec{k}$$
.

k)
$$\nabla \cdot \vec{f} = 6 \text{ e } \nabla \times \vec{f} = \left(xe^{xy} - \cos(z) \right) \vec{i} + (e^y - ye^{xy}) \vec{j} + (-ze^y) \vec{k}$$
.

32.
$$\nabla \cdot \vec{f} = 0$$
.

33.
$$\nabla \times \vec{f} = \vec{0}$$
.

35. a)
$$\nabla f = (2y + \text{sen}(y))\vec{i} + (2x + x\cos(y))\vec{j}$$
.

b)
$$\nabla f = 3(x^2\vec{i} + y^2\vec{j} + z^2\vec{k})$$
.

c)
$$\nabla f = -2x(2yz\vec{i} + xz\vec{j} + xy\vec{k})$$
.

d)
$$\nabla f = x^3 yz^2 (4 yz\vec{i} + 2xz\vec{j} + 3xy\vec{k})$$
.

 $e) \nabla f = r^{-1}e^r \vec{r} .$

g) $\nabla f = r^{-2} \vec{r}$.

f) $\nabla f = r^{-1} \cos(r) \vec{r}$.

36. a) $\nabla^2 f = -x \text{sen}(y)$.

 $\mathbf{c}) \nabla^2 f = -4yz.$

e) $\nabla^2 f = e^r (1 + 2r^{-1})$.

 $\mathbf{g}) \nabla^2 f = r^{-2}.$

37. ----

39. ----

43. a) $\oiint_S(\vec{f} \cdot \vec{n}) dS = \frac{3\pi}{2}$.

44. a) $\oiint_S (\vec{f} \cdot \vec{n}) dS = 0$.

45. $\iiint_V (\nabla \cdot \vec{f}) \ dV = 8\pi.$

47. - - - -

b) $\nabla^2 f = 6(x + y + z)$.

d) $\nabla^2 f = 2x^2 z (6y^2 z^2 + x^2 z^2 + 3x^2 y^2)$.

f) $\nabla^2 f = 2r^{-1}\cos(r) - \sin(r)$.

38. ----

42. $\iiint_V (\nabla \cdot \vec{f}) \ dV = 2\pi \ .$

b) $\iiint_V (\nabla \cdot \vec{f}) \ dV = \frac{3\pi}{2}.$

b) $\iiint_V (\nabla \cdot \vec{f}) \ dV = 0.$

46. $\iiint_V (\nabla \cdot \vec{f}) \ dV = \frac{32\pi}{3}.$

48. Seja, por exemplo, o campo vectorial $\vec{f}(x, y, z) = z^3 \vec{k}$, tal que $\nabla \cdot \vec{f} = 3z^2$. Assim, o teorema da divergência permite escrever $\iiint_V 3z^2 dV = \oiint_S (\vec{f} \cdot \vec{n}) dS = \frac{4\pi}{5}$.

49. $\oiint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = \iiint_{V} \nabla \cdot (\nabla \times \vec{f}) \ dV = 0$, uma vez que $\nabla \cdot (\nabla \times \vec{f}) = 0$ (teorema 3.3).

50. a)
$$\oiint_S (\vec{f} \cdot \vec{n}) dS = -4\pi$$
.

 $\mathbf{b}) \, -\!\!\iiint_V (\nabla \cdot \vec{f}) \; dV = -4\pi \, .$

51. a)
$$\oiint_S (\vec{f} \cdot \vec{n}) dS = 2\pi$$
.

b) $\iiint_V (\nabla \cdot \vec{f}) \ dV = 2\pi \ .$

52.
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = \oint_{C} \vec{f} \cdot d\vec{r} = 0.$$

53. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = \frac{8}{3}.$$

 $\mathbf{b}) \ \oint_C \vec{f} \cdot d\vec{r} = \frac{8}{3}.$

54. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = 4\pi.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = 4\pi$.

55. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = -\pi.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = -\pi$.

56. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = 2\pi.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = 2\pi$.

57. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = 0.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = 0$.

58. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = -9\pi.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = -9\pi$.

59. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = 0.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = 0$.

60. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = -2\pi.$$

b) $\oint_C \vec{f} \cdot d\vec{r} = -2\pi$.

61.
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = \oint_{C} \vec{f} \cdot d\vec{r} = 0.$$

62. $\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = \oint_{C} \vec{f} \cdot d\vec{r} = \frac{3\pi}{2}.$

63.
$$\oint_C \vec{f} \cdot d\vec{r} = -4.$$

64.
$$\oint_C \vec{f} \cdot d\vec{r} = -6\pi.$$

65. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = -\pi.$$

b)
$$\oint_C \vec{f} \cdot d\vec{r} = -\pi$$
.

66. a)
$$\iint_{S} (\nabla \times \vec{f}) \cdot \vec{n} \ dS = 4.$$

b)
$$\oint_C \vec{f} \cdot d\vec{r} = 4$$
.

67. O integral $\oiint_S (\nabla \times \vec{f}) \cdot \vec{n} \ dS$ é igual à soma dos integrais sobre as duas superfícies que definem a superfície fechada S, isto é:

Designando, respectivamente, por C_1 e C_2 as linhas que limitam as superfícies S_1 e S_2 , recorrendo ao teorema de Stokes obtém-se:

Sendo C_1 e C_2 a mesma linha (a circunferência $C: x^2 + y^2 = 1$, z = 0) e devendo ser percorridas em sentidos opostos nos dois integrais de linha (é indiferente que o versor \vec{n} aponte para o exterior ou para o interior em ambas as superfícies S_1 e S_2), então:

$$\oint_{C_1} \vec{f} \cdot d\vec{r} = -\oint_{C_2} \vec{f} \cdot d\vec{r} \implies \oiint_S (\nabla \times \vec{f}) \cdot \vec{n} \ dS = 0.$$

68.
$$\oint_C \vec{f} \cdot d\vec{r} = \iint_S (\nabla \times \vec{f}) \cdot \vec{n} \ dS = \frac{\pi}{8}.$$