

Dipartimento di Matematica e Informatica

Anno Accademico 2016-2017

Corso di Laurea in Informatica (L-31)

Prima prova in itinere di **Elementi di Analisi Matematica 1** (6 CFU)

5 Maggio 2017

Tempo a disposizione. 120 minuti.

1 Siano dati i seguenti insiemi numerici:

$$A=\left\{x\in\mathbb{R}:5^{2|x|}-3\cdot5^{|x|}-4\geq0\right\},\qquad B=\left\{\cos(n\pi)+\frac{5}{n^5},\;n\in\mathbb{N}\right\}.$$

- (a) Determinare l'estremo inferiore e l'estremo superiore di *A* e *B* specificando se si tratta, rispettivamente, di minimo e massimo.
- (b) Determinare il derivato di A e il derivato di B.

2 Determinare l'insieme di definizione delle seguenti funzioni reali di variabile reale:

$$f(x) = \arctan\log_5(4\arctan x - \pi) + \sqrt[4]{\frac{\pi}{3} - \arcsin\frac{x}{2}}, \qquad g(x) = \log_3\left(\sup_{n \in \mathbb{N}} \left(\log_5 x\right)^n\right).$$

3 Calcolare i seguenti limiti:

(a)
$$\lim_{x \to -\infty} \left(\frac{x-1}{x+3} \right)^{x+2}$$
, (b) $\lim_{x \to +\infty} \frac{1-\cos\frac{1}{\sqrt[3]{x+1}}}{\pi^{\frac{1}{\sqrt[5]{2x+3}}}-1} \sin\frac{x^3+5x^2+2}{2x^2+x+10}$.

4 Sia data la funzione reale di variabile reale definita dalla legge

$$f(x) = \frac{2 - \sqrt{4 - x^2}}{x^2 - 2x}.$$

- (a) Determinare l'insieme di definizione di f.
- (b) Studiare la continuità di f, classificare gli eventuali punti di discontinuità e, nel caso di discontinuità eliminabili, indicare il relativo prolungamento per continuità di f.

Svolgimento della prova scritta

(a) Ponendo $5^{|x|} = t$, la disequazione che definisce l'insieme A diventa $t^2 - 3t - 4 \ge 0$ che è risolta per $t \le -1 \lor t \ge 4$. Tornando alla variabile x, si ricava $x \le -\log_5 4 \lor x \ge \log_5 4$. Pertanto

$$A =]-\infty, -\log_5 4] \cup [\log_5 4, +\infty[.$$

Ne viene che l'insieme *A* è illimitato sia inferiormente che superiormente e pertanto non ammette né minimo né massimo. Si ha:

$$\inf A = -\infty$$
, $\sup A = +\infty$.

Per quanto riguarda l'insieme B, visto che $\cos(n\pi) = (-1)^n$ per ogni $n \in \mathbb{N}$, conviene distinguere i due casi: n pari e n dispari. Alla luce di ciò, l'insieme B si può scrivere nel seguente modo:

$$B = B_1 \cup B_2 \equiv \left\{ u_k = 1 + \frac{5}{(2k)^5}, \ k \in \mathbb{N} \right\} \cup \left\{ v_k = -1 + \frac{5}{(2k-1)^5}, \ k \in \mathbb{N} \right\}.$$

Evidentemente le due successioni (u_k) e (v_k) sono decrescenti, quindi:

$$\max B_1 = u_1 = \frac{37}{32}, \quad \inf B_1 = \lim_{k \to +\infty} u_k = 1,$$

 $\max B_2 = v_1 = 4$, $\inf B_1 = \lim_{k \to +\infty} v_k = -1$.

In conclusione:

$$\max B = \max\{\max B_1, \max B_2\} = 4, \quad \inf B = \min\{\inf B_1, \inf B_2\} = -1.$$

In particolare, *B* ammette massimo (che è anche estremo superiore) ma non ammette minimo.

- (b) Evidentemente, il derivato di A è l'insieme $DA =]-\infty, -\log_5 4] \cup [\log_5 4, +\infty[$. Per quanto riguarda l'insieme B, esso è definito dalla successione di termine generale $b_n = \cos(n\pi) + \frac{5}{n^2}$; come si è visto, la sua estratta pari converge a 1 e la sua estratta dispari converge a -1. Si conclude che il derivato di B è l'insieme $DB = \{-1, 1\}$.
- 2 Insieme di definizione di f. Bisogna imporre le seguenti condizioni:

$$\begin{cases} 4\arctan x - \pi > 0 \\ \frac{\pi}{3} - \arcsin \frac{x}{2} \ge 0 \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ -1 \le \frac{x}{2} \le \frac{\sqrt{3}}{2} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ -2 \le x \le \sqrt{3} \end{cases}$$

quindi $\mathcal{D}_f =]1, \sqrt{3}].$

Insieme di definizione di g. Occorre dapprima capire meglio come è fatta la funzione *g*. Allo scopo, bisogna calcolare l'estremo superiore indicato. Si vede subito che:

$$g(x) = \begin{cases} \log_3\left(\log_5 x\right) & \text{se } (0 \le \log_5 x \le 1) \land (\log_5 x > 0) \Leftrightarrow 1 < x \le 5\\ \log_3\left(\log_5 x\right)^2 & \text{se } (-1 \le \log_5 x < 0) \land \left((\log_5 x)^2 > 0\right) \Leftrightarrow \frac{1}{5} \le x < 1 \end{cases}.$$

Quindi $\mathscr{D}_g = [\frac{1}{5}, 1[\cup]1, 5].$

3 *Limite* (*a*).

$$\lim_{x \to -\infty} \left(\frac{x-1}{x+3} \right)^{x+2} = \lim_{x \to -\infty} \left(\frac{x+3-4}{x+3} \right)^{x+2}$$

$$= \lim_{x \to -\infty} \left(1 + \frac{1}{-\frac{x+3}{4}} \right)^{x+2}$$

$$= \lim_{x \to -\infty} \left[\left(1 + \frac{1}{-\frac{x+3}{4}} \right)^{-\frac{x+3}{4}} \right]^{-\frac{4(x+2)}{x+3}} = e^{-4}.$$

Limite (b). Visto che

$$\lim_{x \to +\infty} \frac{x^3 + 5x^2 + 2}{2x^2 + x + 10} = +\infty,$$

conviene calcolare dapprima

$$\lim_{x\to +\infty}\frac{1-\cos\frac{1}{\sqrt[3]{x}+1}}{\pi^{\frac{1}{\sqrt[3]{2x}+3}}-1}.$$

Se tale limite fosse uguale a 0, si potrebbe concludere che pure il limite proposto vale 0 dal momento che è il limite del prodotto tra una funzione infinitesima per $x \to +\infty$ (si tratta di

from the to the e if infine del prodotto tra una funzione infinitesima
$$f(x) = \frac{1-\cos\frac{1}{\sqrt[3]{x+1}}}{\frac{1}{\sqrt[3]{2x+3}}-1}$$
 e di una limitata (si tratta di $g(x) = \sin\frac{x^3+5x^2+2}{2x^2+x+10}$). Si ha:

$$\lim_{x \to +\infty} \frac{1 - \cos\frac{1}{\sqrt[3]{x+1}}}{\pi^{\frac{1}{\sqrt[3]{2x+3}}} - 1} = \lim_{x \to +\infty} \frac{\frac{1 - \cos\frac{1}{\sqrt[3]{x+1}}}{\left(\frac{1}{\sqrt[3]{x+1}}\right)^2} \cdot \left(\frac{1}{\sqrt[3]{x+1}}\right)^2}{\frac{\pi^{\frac{1}{\sqrt[3]{2x+3}}} - 1}{\frac{1}{\sqrt[3]{2x+3}}} \cdot \frac{1}{\sqrt[3]{2x+3}}}$$

$$= \lim_{x \to +\infty} \frac{\frac{1 - \cos\frac{1}{\sqrt[3]{x+1}}}{\frac{1}{\sqrt[3]{2x+3}} - 1}}{\frac{1}{\sqrt[3]{2x+3}} - 1} \cdot \frac{\sqrt[5]{2x} + 3}{\left(\sqrt[3]{x} + 1\right)^2}$$

$$= \lim_{x \to +\infty} \frac{\frac{1 - \cos\frac{1}{\sqrt[3]{x+1}}}{\frac{1}{\sqrt[3]{2x+3}} - 1}}{\frac{1}{\sqrt[3]{2x+3}} - 1} \cdot x^{-\frac{7}{15}} \frac{\sqrt[5]{2} + \frac{3}{\sqrt[5]{x}}}{1 + \frac{1}{\sqrt[3]{x^2}} + \frac{2}{\sqrt[3]{x}}}$$

$$= \frac{\frac{1}{2}}{\ln \pi} \cdot 0 \cdot \sqrt[5]{2} = 0$$

pertanto, per quanto osservato prima, anche il limite proposto vale 0.

$$\begin{cases} 4 - x^2 \ge 0 \\ x^2 - 2x \ne 0 \end{cases} \Leftrightarrow \begin{cases} -2 \le x \le 2 \\ x \ne 0 \land x \ne 2 \end{cases}$$

da cui $\mathcal{D}_f = [-2, 0[\cup]0, 2[.$

4

(b) La funzione f è certamente continua in \mathcal{D}_f in quanto composizione di composizioni continue. Studiamo la continuità alla frontiera di \mathcal{D}_f . Allo scopo di calcolare i limiti, moltiplichiamo e dividiamo l'espressione di f per $2+\sqrt{4-x^2}$, sicché per ogni $x\in\mathcal{D}_f$, si ha

$$f(x) = \frac{(2 - \sqrt{4 - x^2})(2 + \sqrt{4 - x^2})}{(x^2 - 2x)(2 + \sqrt{4 - x^2})} = \frac{x}{(x - 2)(2 + \sqrt{4 - x^2})}.$$

A questo punto, si vede subito che:

$$\lim_{x\to 0^{\pm}} f(x) = 0, \qquad \lim_{x\to 2^{-}} f(x) = -\infty.$$

Ne viene che in x=0 si localizza un punto di discontinuità eliminabile e in x=2 si localizza un punto di infinito (o di discontinuità di seconda specie). Il prolungamento per continuità \widetilde{f} di f in x=0 è

$$\widetilde{f}(x) = \begin{cases} f(x) & \text{se } x \in \mathcal{D}_f \\ 0 & \text{se } x = 0 \end{cases}.$$