Exercise 2.3-5

Jack Maney

August 19, 2013

Here is the main algorithm for Binary Search (found in BinarySearch.java), which includes begin and end indices (note that there's an overloaded version with values of 0 and list.size() - 1 for begin and end, respectively):

```
public static <T extends Comparable<T>> int search(AbstractList<T> list
                    ,T element, int begin, int end) {
3
            if(begin > end || begin < 0 || end >= list.size()){
                    throw new IllegalArgumentException();
            }
            int result = -1;
            if(begin == end){
                    result = list.get(begin).equals(element) ? begin : -1;
11
            }
12
            else{
                    int middle = (begin + end) / 2;
14
15
                    int comparison = list.get(middle).compareTo(element);
16
                    if(comparison == 0){
18
                            result = middle;
                    }
20
                    else if(comparison < 0){ //element is on the right (if it exists)
                            result = search(list,element,middle + 1,end);
22
                    else{ //element is on the left (if it exists)
24
26
                              * We use upperIndex to avoid the edge case of when
                             * our beginning and ending indices are adjacent.
28
                              * In such a case, middle == begin, so we can't go
                              * from begin to middle - 1 == begin - 1.
30
31
```

```
int upperIndex = begin + 1 == end ? begin : middle - 1;

result = search(list,element,begin,upperIndex);

result = search(list,ele
```

Again, since this algorithm is recursive, we'll compute the cost for one iteration and use induction to view the larger picture.

cost	times
c_4	1
c_8	1
c_{10}	1
c_{11}	0 or 1
c_{14}	1
c_{16}	1
c_{18}	1
c_{19}	0 or 1
c_{21}	1
$T\left(\lfloor \frac{n}{2} \rfloor\right)$ if we reach this branch of code	1
c_{24}	1
c_{32}	1
$T\left(\lfloor \frac{n}{2} \rfloor\right)$ if we reach this branch of code	1
c ₃₈	1

So, let's consider the worst-case scenario: namely that the element that we seek isn't within our list. We have a total of $\lfloor lg(n) + 1 \rfloor$ iterations of our algorithm (where n is the length of our list) since

- $\lfloor lg(n) \rfloor$ is the smallest integer power of 2 that does not exceed n-and hence the largest number of sublists that we can pick, and
- a list with only one element obviously undergoes only one iteration

Since the only source of non-constant cost in our binary search algorithm above is due to recursion, it follows that the worst case running time is

$$\Theta(|lg(n) + 1|) = \Theta(lg(n) + 1) = \Theta(lg(n)).$$