ML Cheat Sheet

1 Math Prerequisites

1.1 Derivatives

$$\begin{array}{l} - \ \partial(\mathbf{XY}) = (\partial\mathbf{X})\mathbf{Y} + \mathbf{X}(\partial\mathbf{Y}) \\ - \ \frac{\partial\mathbf{f}(\mathbf{g}(\mathbf{u}(\mathbf{x})))}{\partial\mathbf{x}} = \frac{\partial\mathbf{u}(\mathbf{x})}{\partial\mathbf{x}} \frac{\partial\mathbf{g}(\mathbf{u})}{\partial\mathbf{u}} \frac{\partial\mathbf{f}(\mathbf{g})}{\partial\mathbf{g}} \end{array}$$

$$- \frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$- \frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T$$

$$- \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T$$

 $-\frac{\partial \mathbf{X}}{\partial \mathbf{Y}} = \mathbf{J}^{ij}$, J^{ij} is the single entry matrix

$$- \frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} \left(\mathbf{b} \mathbf{c}^T + \mathbf{c} \mathbf{b}^T \right)$$
$$- \frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}^T} = \left(\mathbf{B} + \mathbf{B}^T \right) \mathbf{x}$$

$$-\frac{\partial}{\partial \mathbf{x}}(\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W}(\mathbf{x} - \mathbf{A}\mathbf{s}) = 2\mathbf{W}(\mathbf{x} - \mathbf{A}\mathbf{s})$$

$$- \frac{\partial}{\partial \mathbf{X}} \|\mathbf{X}\|_{\mathrm{F}}^2 = \frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left(\mathbf{X} \mathbf{X}^H \right) = 2\mathbf{X}$$

1.2 Linear Algebra

- positive definite (pd) if
$$\mathbf{a}^T \mathbf{V} \mathbf{a} > 0$$

$$- (\mathbf{x} - \mathbf{b})^T (\mathbf{x} - \mathbf{b}) = \|\mathbf{x} - \mathbf{b}\|_2^2$$

$$- \|\mathbf{X}\|_{F} = \|\mathbf{X}^{T}\|_{F}$$

1.3 Distributions Valid distribution p(x)>0, $\forall x$ and $\sum p(x)=1$ Model is identifiable iff $\theta_1=\theta_2\to P_{\theta_1}=P_{\theta_2}$

Gaussian (Not convex):

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$\mathcal{N}(x|\mu, \Sigma^2) = \frac{\exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))}{\sqrt{(2\pi)^D \det(\Sigma)}}$$

- **Poisson**: P(k events in interval) = $e^{-\lambda} \frac{\lambda^k}{k!}$
- Bernoulli: $p(y|\mu) = \mu^{y}(1-\mu)^{1-y}$

1.4 Convexity

A function f(x) is convex if

- for any
$$\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{X}$$
 and $0 \le \lambda \le 1$, we have : $f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$

- it is a sum of convex functions
- composition of convex and linear functions - f(x) = g(h(x)), g,h are convex, g increasing
- the Hessian H is positive semi-definite

1.5 Others

Production of independent variables:

$$\operatorname{Var}(xy) = \mathbb{E}(x^2) \mathbb{E}(y^2) - [\mathbb{E}(x)]^2 [\mathbb{E}(y)]^2$$

Covariance matrix of a data vector x

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \mathbb{E}(\mathbf{x})) (\mathbf{x}_n - \mathbb{E}(\mathbf{x}))^T$$

- Multi-class x

$$p(\mathbf{y}|\mathbf{X}, \beta) = \prod_{N} p(\mathbf{y}_{n}|\mathbf{x}_{n}, \beta)$$
$$= \prod_{N} \prod_{N} [p(\mathbf{y}_{n} = k|\mathbf{x}_{n}, \beta)]^{\bar{y}_{n}k}$$

2 Cost functions

Mean square error (MSE):

$$MSE(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2$$

- MSE is strictly convex thus it has only one global minumum value.
- MSE is very prone to outliers.

Mean Absolute Error (MAE):

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |y_n - f(\mathbf{x}_n)|$$

- MAE is more robust to outliers than MSE

Huber loss

$$Huber = \left\{ \begin{array}{cc} \frac{1}{2}z^2 & , |z| \leq \delta \\ \delta|z| - \frac{1}{2}\delta^2 & , |z| > \delta \end{array} \right.$$

- Huber loss is convex, differentiable, and also robust to outliers but hard to set δ .

Tukey's bisquare loss

$$L(z) = \begin{cases} z(\delta^2 - z^2)^2 &, |z| < \delta \\ 0 &, |z| \ge \delta \end{cases}$$

Non-convex, non-diff., but robust to outliers. Hinge loss:

 $[1 - y_n f(\mathbf{x}_n)]_+ = \max(0, 1 - y_n f(\mathbf{x}_n))$ **Logistic loss**: $\log(1 - \exp(y_n f(\mathbf{x}_n)))$

3 Linear Regression

- Model that assume linear relationship

$$\mathbf{y}_n \approx f(\mathbf{x}_n) := \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_{n1} + \dots = \mathbf{w}_0 + \mathbf{x}_n^T \mathbf{w}$$

 $\approx \tilde{\mathbf{x}}_{n}^{T} \mathbf{w}$,where \tilde{x} contains offset comp.

D > N problem: task is underdetermined.

4 Optimization

- Local minimum:
- $L(w^*) \le L(w) \ \forall w : \|w w^*\| < \epsilon$ - Global minimum: $L(w^*) \leq L(w) \ \forall w$

4.1 Grid search

- Compute the cost over a grid of V points. Exponential Complexity $\mathcal{O}(|V|^D)$, D is the dimension. Hard to find a good range of values. No guarantee to converge.

4.2 GD - Gradient Descent (Batch)

- GD uses only first-order information and takes steps in the opposite direction of the gradient
- Given cost function L(w) we want to find w $\mathbf{w} = \arg\min \mathcal{L}(\mathbf{w})$
- Take steps in the opposite direction of the

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}(\mathbf{w}^{(t)})$$

- With γ too big, method might diverge. With γ too small, convergence is slow.
- Very sensitive to ill-conditioning ⇒ always $normalize features \Rightarrow allow different$ directions to converge at same speed.

4.3 SGD - Stochastic Gradient Descent

SGD update rule (only n-th training example):

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}_n(\mathbf{w}^{(t)})$$

Idea: Cheap but unbiased estimate of grad.

$$\mathbb{E}[\nabla \mathcal{L}_n(\mathbf{w})] = \nabla(\mathbf{w})$$

Robbins-Monroe condition:
$$-\gamma^{(t)}: \sum_{t=1}^{\infty} \gamma^{(t)} = \infty; \sum_{t=1}^{\infty} (\gamma^{(t)})^2 < \infty$$
 - e.g. $\gamma^{(t)} = 1/(t+1)^r, r \in (0.5,1)$

4.4 Mini-batch SGD

Update direction $(B \subset [N])$:

$$\boldsymbol{g}^{(t)} := \frac{1}{|B|} \sum_{n \in B} \boldsymbol{\nabla} \mathcal{L}_n(\mathbf{w}^{(t)})$$

Update rule: $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \gamma \mathbf{g}^{(t)}$

4.5 Gradients for MSE

We define the error vector e:

$$e := y - Xw$$

and MSE as follows:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{y}_n - \tilde{\mathbf{x}}_n^T \mathbf{w})^2 = \frac{1}{2N} \mathbf{e}^T \mathbf{e}$$

then the gradient is given by

$$\nabla \mathcal{L}(\mathbf{w}) = -\frac{1}{N} \mathbf{X}^T \mathbf{e}$$

- - 1. necessary: gradient equal zero:
 - $d\mathcal{L}(\mathbf{w}^*) = 0$
- 2. sufficient: Hessian matrix is positive definite: $\mathbf{H}(\mathbf{w}^*) = \frac{d^2 \mathcal{L}(\mathbf{w}^*)}{d\mathbf{w} d\mathbf{w}^T} = \frac{1}{N} X^T X$

4.6 Subgradients (Non-Smooth OPT)

A vector $\mathbf{g} \in \mathbb{R}^D$ s.t.

$$\mathcal{L}(\mathbf{u}) \ge \mathcal{L}(\mathbf{w}) + \mathbf{g}^T(\mathbf{u} - \mathbf{w}) \quad \forall \mathbf{u} \in \mathbb{R}^D$$

$$\mathcal{L}(\mathbf{u}) \geq \mathcal{L}(\mathbf{w}) + \mathbf{g}^{-}(\mathbf{u} - \mathbf{w}) \quad \forall \mathbf{u} \in \mathbb{R}^{-}$$

is the subgradient to \mathcal{L} at \mathbf{w} . If \mathcal{L} is differentiable at \mathbf{w} , we have $\mathbf{g} = \nabla \mathcal{L}(\mathbf{w})$

4.7 Constrained Optimization

Find solution min $\mathcal{L}(\mathbf{w})$ s.t. $\mathbf{w} \in \mathcal{C}$

- Add proj. onto
$$\mathcal C$$
 after each step:
$$P_{\mathcal C}(\mathbf w') = \arg\min |\mathbf v - \mathbf w'|, \, \mathbf v \in \mathcal C$$

$$\mathbf{w}^{(t+1)} = P_{\mathcal{C}}[\mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}(\mathbf{w}^{(t)})]$$

- Use penalty functions
- $\min \mathcal{L}(\mathbf{w}) + I_{\mathcal{C}}, I_{\mathcal{C}} = 0 \text{ if } \mathbf{w} \in \mathcal{C}, \text{ ow } + \infty$
- $-\min \mathcal{L}(\mathbf{w}) + \lambda |\mathbf{A}\mathbf{w} \mathbf{b}|$
- Stopping criteria when $\mathcal{L}(\mathbf{w})$ close to 0

4.8 Complexities for MSE/MAE per iteration

- $GD = \mathcal{O}(ND)$
- MB-GD= $\mathcal{O}(BD)$
- $SGD = \mathcal{O}(D)$

5 Least Squares

- Use the first optimality conditions:

$$\nabla L(\mathbf{w}^*) = 0 \Rightarrow \mathbf{X}^T \mathbf{e} = \mathbf{X}^T (\mathbf{y} - \mathbf{X} \mathbf{w}) = 0$$

When $\mathbf{X}^T \mathbf{X}$ is invertible, we have the closed-form expression

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

 thus we can predict values for a new x_m $\mathbf{y}_m := \mathbf{x}_{\mathbf{m}}^{\mathbf{T}} \mathbf{w}^* = \mathbf{x}_{\mathbf{m}}^{\mathbf{T}} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

- The Gram matrix X^TX is pd and is also invertible iff X has full column rank.
- Complexity: $O(ND^2 + D^3) \equiv O(ND^2)$
- **X** can be rank deficient when D > N or when the comlumns $\bar{\mathbf{x}}_d$ are nearly collinear. \Rightarrow matrix is ill-conditioned.
- Can still solve using a linear system solver using normal equations:

$$\mathbf{X}^{\top}\mathbf{X}\mathbf{w} = \mathbf{X}^{\top}\mathbf{v}$$

6 Maximum Likelihood (MLE)

Let define the noise ε_n ~ N(0, σ²).

$$\rightarrow \mathbf{y}_n = \mathbf{x}_n^T \mathbf{w} + \epsilon_n$$

Another way of expressing this:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(\mathbf{y}_{n}|\mathbf{x}_{n}, \mathbf{w})$$
$$= \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_{n}|\mathbf{x}_{n}^{T}\mathbf{w}, \sigma^{2})$$

which defines the likelihood of observating y given \mathbf{X} and \mathbf{w}

Define cost with log-likelihood

$$\mathcal{L}_{MLE}(\mathbf{w}) = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w})$$

$$= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (\mathbf{y}_n - \mathbf{x}_n^T \mathbf{w})^2 + cnst$$

 Maximum likelihood estimator (MLE) gives another way to design cost functions

$$\operatorname*{argmin}_{\mathbf{w}} \mathcal{L}_{MSE}(\mathbf{w}) = \operatorname*{argmax}_{\mathbf{w}} \mathcal{L}_{MLE}(\mathbf{w})$$

- MLE can also be interpreted as finding the model under which the observed data is most likely to have been generated from.
- $\mathbf{w}_{\mathrm{MLE}} \to \mathbf{w}_{\mathrm{true}}$ for large amount of data

7 Ridge Regression and LASSO

- Add regularization term

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) + \Omega(\mathbf{w})$$

- This corresponds to MAP estimate with prior on weights - L_2 -Reg. (Ridge): $\Omega(\mathbf{w}) = \lambda ||\mathbf{w}||_2^2$
- → small values of w_i, not sparse $-\rightarrow \mathbf{w}^{\star} = (\mathbf{X}^T \mathbf{X} + \lambda' \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} \text{ with } \lambda' = 2N\lambda$

- $\rightarrow (\mathbf{X}^T \mathbf{X} + \lambda' \mathbf{I})^{-1}$ exists (lifted eigenvalues)
- L_1 -Reg. (Lasso): $\Omega(\mathbf{w}) = \lambda ||\mathbf{w}||_1$
- → sparsity of weight vector
- → implicit model selection
- Maximum-a-posteriori (MAP)

$$p(\mathbf{y}|\mathbf{X}\mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_{n}|\mathbf{x}_{n}^{T}\mathbf{w}, \sigma_{n}^{2})$$
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \sigma_{n}^{2}\mathbf{I}_{D})$$

then
$$\to \mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w}} p(\mathbf{y}|\mathbf{X}\mathbf{w}) \cdot p(\mathbf{w})$$

$$\mathbf{w}^{\star} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \frac{1}{2\sigma_{n}^{2}} (\mathbf{y}_{n} - \mathbf{x}^{T} \mathbf{w})^{2} + \frac{1}{2\sigma_{0}^{2}} ||\mathbf{w}||^{2}$$

8 Bias-Variance decomposition

- Simple (e.g. large λ) → large bias but low variance
- Complex (e.g. small λ) → low bias but large variance
- The expected squared loss between true model and learned model is a sum of three non-negative terms

$$\mathbb{E}_S[(f(x) + \epsilon - f_S(x))^2] = Var[\epsilon] + bias + variance:$$

- Bias = $(f(x) \mathbb{E}_{S'}[f_{S'}(x)])^2$: Difference between actual value and expected
- Variance = $\mathbb{E}_S[(\mathbb{E}_{S'}[f_{S'}(x)] f_S(x)])^2]$: variance of predictions between training
- All terms are lower bounds for the error.
- Cannot do better than Var[ε].

9 Logistic Regression

- Classification relates input variables x to discrete output variable y
- Binary classifier: we use y = 0 for C_1 and
- y = 1 for C_2 . Can use least-squares to predict \hat{y}_{*}
- $\hat{y} = \begin{cases} \mathbf{C}_1 & \hat{y}_* < 0.5\\ \mathbf{C}_2 & \hat{y}_* \ge 0.5 \end{cases}$

- Logistic function
$$\sigma(x) = \frac{\exp(x)}{1 + \exp(x)}$$

$$p(\mathbf{y}_n = \mathbf{C}_1 | \mathbf{x}_n) = \sigma(\mathbf{x}^T \mathbf{w})$$

$$p(\mathbf{y}_n = \mathbf{C}_2 | \mathbf{x}_n) = 1 - \sigma(\mathbf{x}^T \mathbf{w})$$

- The probabilistic model:
$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} \sigma(\mathbf{x}_{n}^{T}\mathbf{w})^{\mathbf{y}n} (1 - \sigma(\mathbf{x}_{n}^{T}\mathbf{w}))^{1-\mathbf{y}n}$$

- The negative log-likelihood (w.r.t. MLE):
$$\mathcal{L}(\mathbf{w}) = -\sum_{n=1}^{N} \mathbf{y}_n \ln \sigma(\mathbf{x}_n^T \mathbf{w}) + (1 - \mathbf{y}_n) \ln (1 - \sigma(\mathbf{x}_n^T \mathbf{w})) \frac{\exp((\frac{\mu}{\sigma^2}, \frac{-1}{2\sigma^2})(\mathbf{y}_n^T \mathbf{w}))}{(i) \text{ link function}}$$

$$= \sum_{n=1}^{N} \ln[1 + \exp(\mathbf{x}_n^T \mathbf{w})] - \mathbf{y}_n \mathbf{x}_n^T \mathbf{w}$$
- We can use the fact that
$$\frac{d}{dz} \ln(1 + \exp(z)) = \sigma(z)$$
- Gradient of the log-likelihood

adient of the log-likelihood
$$\mathbf{g} = \nabla \mathcal{L}(\mathbf{w}) = \sum_{n=1}^{N} \mathbf{x}_{n} (\sigma(\mathbf{x}_{n}^{T}\mathbf{w}) - \mathbf{y}_{n})$$

 $= \mathbf{X}^T [\sigma(\mathbf{X}w) - \mathbf{y}]$

- The neg. log-likelihood $-\mathcal{L}_{mle}(w)$ is convex - Hessian of the neg. log-likelihood

– We know that
$$\frac{d\sigma(t)}{dt} = \sigma(t)(1-\sigma(t))$$

- Hessian is the derivative of the gradient

$$\mathbf{H}(\mathbf{w}) = \frac{d\mathbf{g}(\mathbf{w})}{d\mathbf{w}^T} = \sum_{n=1}^{N} \frac{d}{d\mathbf{w}^T} \mathbf{x}_n \sigma(\mathbf{x}_n^T \mathbf{w})$$
$$= \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \sigma(\mathbf{x}_n^T \mathbf{w}) (1 - \sigma(\mathbf{x}_n^T \mathbf{w}))$$
$$= \tilde{\mathbf{v}}^T \mathbf{g} \tilde{\mathbf{v}}$$

where S is a $N \times N$ diagonal matrix with diagonals

$$S_{nn} = \sigma(\mathbf{x}_n^T \mathbf{w}) (1 - \sigma(\mathbf{x}_n^T \mathbf{w}))$$
 – The neg. log-likelihood is not strictly

convex. ?

Newton's Method

- Uses second-order information and takes steps in the direction that minimizes a quadratic approximation (Taylor)

$$\mathcal{L}(\mathbf{w}) = \mathcal{L}(\mathbf{w}^{(k)}) + \nabla \mathcal{L}_k^T (\mathbf{w} - \mathbf{w}^{(k)}) + (\mathbf{w} - \mathbf{w}^{(k)})^T \mathbf{H}_k (\mathbf{w} - \mathbf{w}^{(k)})$$

and it's minimum is at $\mathbf{w}^{k+1} = \mathbf{w}^{(k)} - \gamma_k \mathbf{H}_k^{-1} \nabla \mathcal{L}_k$

- Complexity: $O((ND^2 + D^3)I)$

- Regularized Logistic Regression - If data is linearly separable, there is no best weight vector ⇒ optimisation does not stop.

$$\underset{\mathbf{w}}{\operatorname{argmin}} - \sum_{n=1}^{N} \ln p(\mathbf{y}_{n} | \mathbf{x}_{n}^{T} \mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

10 Exponential family distribution & Generalized Linear Model

Exponential family distribution

$$p(\mathbf{y}|\boldsymbol{\eta}) = h(y) \exp(\boldsymbol{\eta}^T \boldsymbol{\phi}(\mathbf{y}) - A(\boldsymbol{\eta}))$$
- For proper normalisation $(\int p = 1)$:

 $A(\boldsymbol{\eta}) = \ln[\int h(y) \exp(\boldsymbol{\eta}^T \boldsymbol{\phi}(\mathbf{y}))]$

 $\rightarrow \exp(\log(\frac{\mu}{1-\mu})y + \log(1-\mu)))$ (i) there is a relationship between n and μ

through the link function
$$\eta = \log(\frac{\mu}{1-\mu}) \leftrightarrow \mu = \frac{e^{\eta}}{1+e^{\eta}}$$

(ii) Note that μ is the mean parameter of ν

(iii) Relationship between the mean
$$\mu$$
 and η is defined using a link function g

$$\begin{split} & \boldsymbol{\eta} = \mathbf{g}(\boldsymbol{\mu}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{g}^{-1}(\boldsymbol{\eta}) \\ & \mathbf{Gaussian} \text{ distribution example} \\ & \exp((\frac{\mu}{\sigma^2}, \frac{-1}{2\sigma^2})(y, y^2)^T - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)) \end{split}$$

$$\eta = (\eta_1 = \mu/\sigma^2, \eta_2 = -1/(2\sigma^2))^T$$

$$\mu = -\eta_1/(2\eta_2)$$
; $\sigma^2 = -1/(2\eta_2)$

First and second derivatives of $A(\eta)$ are related to the mean and the variance

 $\frac{dA(\eta)}{d\eta} = \mathbb{E}[\phi(\eta)], \quad \frac{d^2A(\eta)}{d\eta^2} = \operatorname{Var}[\phi(\eta)]$

- The generalized maximum likelihood cost to $\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = -\sum_{n=1}^{N} \log(p(\mathbf{y}_{n} | \mathbf{x}_{n}^{T} \mathbf{w}))$

where $p(\mathbf{y}_n | \mathbf{x}_n^T \mathbf{w})$ is an exponential family distribution

 We obtain the solution $\frac{d\mathcal{L}}{d\mathbf{w}} = \mathbf{X}^T [\mathbf{g}^{-1} (\mathbf{X} \mathbf{w}) - \phi(\mathbf{y})]$

- $A(\eta)$ is convex

11 k-Nearest Neighbor (k-NN)

- Performs best in low dimensions.
- Assumes close points have similar values
- The k-NN regressor:

$$f(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{x}_n \in nbh_k(\mathbf{x})} \mathbf{y}_n$$

The k-NN classifier:

$$f(\mathbf{x}) = modusx_n | \mathbf{x}_n \in nbh_k(\mathbf{x})$$

- Large k → smoothing over large area
- Small k → averaging over small area
- Curse of dimensionality:
- a) As dimensionality grows fixed-size training set covers dwindling fraction of input space \Rightarrow If we want to consider fixed fraction α of points and increase dimension, we need to explore almost whole range in each dimension.
- b) In high dimensions, points are far from each other ⇒ choice of NN becomes essentially random. Need radius

$$r = \sqrt[d]{\left(1 - \frac{1}{\sqrt[N]{2}}\right)}$$

to have at least one data point in r^d rectangle with $p \geq \frac{1}{2}$.

- NN performance:
- Optimal classifier: $f_*(x) = \mathbb{FP}[y = 1|x] > \frac{1}{2}$
- $-\mathbb{E}_{S}[L(f_{S})] < 2L(f_{*}) + 4c\sqrt{d}N^{\frac{-1}{1+d}}$

12 Support Vector Machine

- Assume $y_n \in \{-1, 1\}$
- SVM optimizes the following cost

$$\mathcal{L}(\mathbf{w}) = \min_{\mathbf{w}} \sum_{n=1}^{N} [1 - \mathbf{y}_n x_n^T \mathbf{w}]_+ + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Can be optimised using subgradient descent. Case: Linear separability: We get a
- seperating hyperplane, no point in the margin and w, s.t margin is maximised (2/||w||).
- This is called hard-margin compared to soft-margin formulation.

- Hard to minimize $g(\mathbf{w})$ so we define $\mathcal{L}(\mathbf{w}) = \max G(\mathbf{w}, \boldsymbol{\alpha})$
- we use the property that

$$[\mathbf{v}_n]_+ = \max(0, \mathbf{v}_n) = \max_{\alpha_n \in [0, 1]} \alpha_n \mathbf{v}_n$$

- We can rewrite the problem as

$$\min_{\mathbf{w}} \max_{\alpha} \sum_{n=1}^{N} \alpha_n (1 - \mathbf{y}_n \boldsymbol{\phi}_n^T \mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- This is differentiable, convex in \boldsymbol{w} and concave in α
- Minimax theorem:

 $\min_{\mathbf{w}} \max_{\mathbf{\alpha}} G(\mathbf{w}, \mathbf{\alpha}) = \max_{\mathbf{\alpha}} \min_{\mathbf{w}} G(\mathbf{w}, \mathbf{\alpha})$

because G is convex in \mathbf{w} and concave in

Derivative w.r.t. w:

$$\nabla_{\mathbf{w}} G(\mathbf{w}, \boldsymbol{\alpha}) = -\sum_{n=1}^{N} \alpha_n \mathbf{y}_n \mathbf{x}_n + \lambda \mathbf{w}$$

$$\mathbf{w}(\alpha) = \frac{1}{\lambda} \sum_{n=1}^{N} \alpha_n \mathbf{y}_n \mathbf{x}_n = \frac{1}{\lambda} \mathbf{X}^T \mathbf{Y} \alpha$$

Plugging w* back in the dual problem

$$\max_{\boldsymbol{\alpha} \in [0,1]^N} \boldsymbol{\alpha}^T \mathbf{1} - \frac{1}{2\lambda} \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{X} \mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}$$

- Data only enters as K = X^TX.
- Non support vector: Example that lies on the correct side, outside margin $\alpha_n = 0$

- Essen. support vector: Example that lies on the margin $\alpha_n \in (0,1)$
- Bound support vector: Example that lies strictly inside the margin or wrong side
- Use Coordinates Descent to find α. Update one coordinate (argmin) at the time and others constant

13 Kernel Ridge Regression

- The following is true for ridge regression $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_D)^{-1} \mathbf{X}^T \mathbf{y} , (1)$

$$\mathbf{w} = (\mathbf{X} \ \mathbf{X} + \lambda \mathbf{I}_D) \ \mathbf{X} \ \mathbf{y} \ , (1)$$
$$= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_N)^{-1} \mathbf{y} = \mathbf{X}^T \boldsymbol{\alpha}^* \ , (2)$$

Complexity of computing w: (1) $O(D^2N + D^3)$, (2) $O(DN^2 + N^3)$

- Thus we have

 $\mathbf{w}^* = \mathbf{X}^T \boldsymbol{\alpha}^*$, with $\mathbf{w}^* \in \mathbb{R}^D$ and $\boldsymbol{\alpha}^* \in \mathbb{R}^N$

The representer theorem allows us to write an equivalent optimization problem in terms

$$\boldsymbol{\alpha} = \operatorname*{argmax}_{\boldsymbol{\alpha}} \left(-\frac{1}{2} \boldsymbol{\alpha}^T (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_N) \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \mathbf{y} \right)$$

- $K = XX^T$ is called the **kernel matrix** or Gram matrix.
- If K is positive definite and symmetric, then it's called a Mercer Kernel.
- $\mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j)$ If the kernel is Mercer, then there exists a function $\phi(\mathbf{x})$ s.t.

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$$

- Kernel trick:
 - compute dot-product in \mathbb{R}^m while remaining in \mathbb{R}^n
 - Replace (x, x') with k(x, x').
- Common Kernel
- $x \in \mathbb{R}, k(\mathbf{x}, \mathbf{x}') = (xx')^2 \Rightarrow \phi(x) = x^2$ Radial Basis function kernel (RBF)

$$k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T(\mathbf{x} - \mathbf{x}'))$$

- Thus we get

$$\mathbf{y} = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^K \alpha_i \mathbf{x}_i^T \mathbf{x} = \sum_{i=1}^K \alpha_i k(\mathbf{x}, \mathbf{x}_i)$$

14 Unsupervised

Learn pattern without labels.

- word2vec: map every word to a vector $w_i \in \mathbb{R}^K$, K large, that captures its semantics.
- Topic model: Documents consist of collections of topics
 - topic = probability distribution over
 - use clustering to pick out respresentative topics

15 K-means

$$\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) = \sum_{k=1}^K \sum_{n=1}^N z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||_2^2$$

such that $z_{nk} \in \{0,1\}$ and $\sum_{k=1}^{K} z_{nk} = 1$

- K-means algorithm (Coordinate Descent): Initialize μ_k , then iterate
- 1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$

$$\boldsymbol{z}_{nk} = \left\{ \begin{array}{ll} 1 & \text{ if } k = \operatorname{argmin}_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}||_{2}^{2} \\ 0 & \text{ otherwise} \end{array} \right.$$

2. For all k, compute μ_k given ${\bf z}$

$$u_k = \frac{\sum_{n=1}^N z_{nk} \mathbf{x}_n}{\sum_{n=1}^N z_{nk}}$$

 A good initialization procedure is to choose the prototypes to be equal to a random subset of K data points.

Probabilistic model

$$p(\mathbf{z}, \boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \mathbf{I}) \right]^{z_{nk}}$$

- $-\log p(\mathbf{x}_{n}|\mu, z) = \sum_{n=1}^{N} \sum_{n=1}^{N} \frac{1}{2} ||\mathbf{x}_{n} \mu_{k}||^{2} \mathbf{z}_{nk} + c'$
- K-means as a Matrix Factorization
 - $\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) = ||\mathbf{X} \mathbf{M}\mathbf{Z}^T||_{\text{Frob}}^2$
- Computation can be heavy, each example can belong to only on cluster and clusters have to be spherical.

16 Gaussian Mixture Models

Clusters can be elliptical using a full covariance matrix instead of isotropic

$$p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]^{z_{nk}}$$

Soft-clustering: Points can belong to several cluster by defining z_n to be a random

$$p(z_n = k) = \pi_k \text{ where } \pi_k > 0, \forall k, \sum_{k=1}^K \pi_k = 1$$

- Joint distribution of Gaussian mixture model

$$p(\mathbf{X},\mathbf{z}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{r}_n,\boldsymbol{\mu},\boldsymbol{\Sigma}) p(\mathbf{z}_n|\boldsymbol{\pi})$$

$$= \prod_{n=1}^{N} \prod_{k=1}^{K} [(\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))^{z_{nk}}] \prod_{k=1}^{K} [\pi_k]^{z_{nk}}$$

- $-z_n$ are called *latent* unobserved variables
- Unknown parameters are given by $\theta = \{\mu, \Sigma, \pi\}$
- We get the marginal likelihood by marginalizing z_n out from the likelihood

$$p(\mathbf{x}_n|\boldsymbol{\theta}) = \sum_{k=1}^K p(\mathbf{x}_n, z_n = k|\boldsymbol{\theta})$$
$$= \sum_{k=1}^K p(z_n = k|\boldsymbol{\theta}) p(\mathbf{x}_n|z_n = k, \boldsymbol{\theta})$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Without a latent variable model, number of parameters grow at rate O(N)
- After marginalization, the growth is reduced to $O(D^2K)$
- To get maximum likelihood estimate of θ , we

$$\max_{\pmb{\theta}} \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \pmb{\mu}_k, \pmb{\Sigma}_k)$$

17 Expectation Maximization Algorithm

- [ALGORITHM] Start with $\theta^{(1)}$ and iterate
- 1. Expectation step: Compute a lower bound to the cost such that it is tight at the previous $\boldsymbol{\theta}^{(t)}$ with equality when,

$$q_{kn} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$
 2. Maximization step: Update $\boldsymbol{\theta}$

$$\boldsymbol{\mu}_{k}^{(t+1)} = \frac{\sum_{n=1}^{N} \gamma^{(i)}(r_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} q_{n}^{(t)}}$$

 $\boldsymbol{\theta}^{(t+1)} = \operatorname{argmax} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$

$$\Sigma_k^{(t+1)} = \frac{\sum_{n=1}^{N} q_{kn}^{(t)} (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)})^T}{\sum_{n=1}^{N} q_{kn}^{(t)}}$$

$$\pi_k^{(t+1)} = \frac{1}{N} \sum_{n=1}^N q_{kn}^{(t)}$$

If covariance is diagonal → K-means

18 Matrix factorization

- − Find $X \approx WZ^{\top}$
- \mathbf{X} is $D \times N$ (e.g movies \times user)
- \mathbf{Z} a $N \times K$, \mathbf{W} a $D \times K$ matrix

$$\mathcal{L}(\mathbf{W}, \mathbf{Z}) = \frac{1}{2} \sum_{(d,n) \in \Omega} [x_{dn} - (\mathbf{W}\mathbf{Z}^T)_{dn}]^2$$

$$+ \frac{\lambda_w}{2} \left\| \mathbf{W} \right\|_{\operatorname{Frob}}^2 + \frac{\lambda_z}{2} \left\| \mathbf{Z} \right\|_{\operatorname{Frob}}^2$$

entry (d', k) of **W** (if d = d' oth. 0):

$$\frac{\partial}{\partial w_{d',k}} f_{d,n}(\mathbf{W}, \mathbf{Z}) = -[x_{dn} - (\mathbf{W}\mathbf{Z}^T)_{dn}] z_{nk}$$

And of **Z** (if n = n' oth. 0):

$$\frac{\partial}{\partial z_{n',k}} f_{d,n}(\mathbf{W}, \mathbf{Z}) = -[x_{dn} - (\mathbf{W}\mathbf{Z}^T)_{dn}] w_{nk}$$

$$\mathbf{W}^{t+1} = \mathbf{W}^t - \gamma \nabla_w f_{d,n}(\mathbf{W}^t, \mathbf{Z}^t)$$

 $\mathbf{Z}^{t+1} = \mathbf{W}^t - \gamma \nabla_z f_{d,n}(\mathbf{W}^t, \mathbf{Z}^t)$ We can use coordinate descent algorithm, by first minimizing w.r.t. Z given W and then minimizing W given Z. This is called

Alternating least-squares (ALS):

$$\mathbf{Z}^{T} \leftarrow (\mathbf{W}^{T}\mathbf{W} + \lambda_{z}\mathbf{I}_{K})^{-1}\mathbf{W}^{T}\mathbf{X}$$

$$\mathbf{W}^T \leftarrow (\mathbf{Z}^T \mathbf{Z} + \lambda_w \mathbf{I}_K)^{-1} \mathbf{Z}^T \mathbf{X}^T$$

- Complexity: $O(DNK^2 + NK^3) \rightarrow O(DNK^2)$

19 Singular Value Decomposition

Matrix factorization method

- U is a unitary D × D matrix
- \mathbf{V} is a unitary $N \times N$ matrix - S is a non-negative diagonal matrix of size $D \times N$ which are called singular values
- appearing in a descending order. - Columns of U and V are the left and right singular vectors respectively.
- Assuming D < N we have

$$\mathbf{X} = \sum_{d=1}^{D} s_d \mathbf{u}_d \mathbf{v}_d^T$$

This tells you about the spectrum of X where higher singular vectors contain the low-frequency information and lower singular values contain the high-frequency information.

Truncated SVD: Take the matrix $\mathbf{S}^{(K)}$ with the K first diagonal elements non zero. Then, rank-Kapprox:

$$\mathbf{X} \approx \mathbf{X}_K = \mathbf{U}\mathbf{S}^{(K)}\mathbf{V}^T$$

20 Principal Component Analysis

- PCA is a dimensionality reduction method and a method to decorrelate the data $\mathbf{X} \approx \tilde{\mathbf{X}} = \mathbf{W}\mathbf{Z}^T$ such that columns of \mathbf{W} are orthogonal.
- If the data is zero mean

$$\Sigma = \frac{1}{N} \mathbf{X} \mathbf{X}^T \Rightarrow \mathbf{X} \mathbf{X}^T = \mathbf{U} \mathbf{S}^2 \mathbf{U}^T$$

$$\Rightarrow \mathbf{U}^T \mathbf{X} \mathbf{X}^T \mathbf{U} = \mathbf{U}^T \mathbf{U} \mathbf{S}^2 \mathbf{U}^T \mathbf{U} = \mathbf{S}^2$$

- Thus the columns of matrix U are called the principal components and they decorrelate the covariance matrix.

- Using SVD, we can compute the matrices in
the following way
$$\mathbf{W} = \mathbf{US}_{D}^{1/2}, \mathbf{Z}^{T} = \mathbf{S}^{1/2}\mathbf{V}^{T}$$

Not invariant under scalings of the feature = arbitrariness, \rightarrow normalize X

21 Neural Net

 Basic structure: One input layer of size D, L hidden layers of size K, and one output layer. (feedforward network).

$$x_j^{(l)} = \phi\left(\sum_i w_{i,j}^{(l)} x_i^{(l-1)} + b_j^{(l)}\right).$$
- NN can represent the Rienmann sum with

- only two layers ⇒ It's powerful!

$$\frac{1}{N} \sum_{n=1}^{N} \left(y_n - f^{(L+1)} \circ \dots \circ f^{(1)}(\boldsymbol{x}_n^{(0)}) \right)^2$$
We can use SGD to minimize the cost

21.1 Backpropagation Algorithm

- Forward pass: Compute

$$\boldsymbol{z}^{(l)} = \left(\boldsymbol{W}^{(l)}\right)^T \boldsymbol{x}^{(l-1)} + \boldsymbol{b}^{(l)}$$
 with

$$\begin{aligned} \mathbf{x}^{(0)} &= \mathbf{x}_n \text{ and } \mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)}). \\ Backward \ pass: \ \text{Set} \\ \delta^{(L+1)} &= -2(y_n - \mathbf{x}^{(L+1)})\phi'(z^{(L+1)}) \ \text{(if} \\ \text{squared loss)}. \ \text{Then compute} \\ \delta^{(l)}_j &= \frac{\partial \mathcal{L}_n}{\partial z_z^{(l)}} = \sum_k \frac{\partial \mathcal{L}_n}{\partial z_z^{(l+1)}} \frac{\partial z_k^{(l+1)}}{\partial z_z^{(l)}} \end{aligned}$$

$$\begin{aligned} \boldsymbol{\delta}_{j}^{(l)} &= \frac{\partial \mathcal{D}_{n}}{\partial z_{j}^{(l)}} = \sum_{k} \frac{\partial \mathcal{D}_{n}}{\partial z_{k}^{(l+1)}} \frac{\partial \boldsymbol{z}_{k}}{\partial z_{j}^{(l)}} \\ &= \sum_{k} \boldsymbol{\delta}_{k}^{(l+1)} \boldsymbol{W}_{j,k}^{(l+1)} \boldsymbol{\phi}'(z_{j}^{(l)}) \end{aligned}$$

$$\frac{\partial \mathcal{L}_n}{\partial w_{i,j}^{(l)}} = \sum_k \frac{\partial \mathcal{L}_n}{\partial z_k^{(l)}} \frac{\partial z_k^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \mathcal{L}_n}{\partial z_j^{(l)}} \frac{\partial z_j^{(l)}}{\partial w_{i,j}^{(l)}}$$
$$= \delta_i^{(l)} \mathbf{x}_i^{(l-1)}$$

$$\frac{\partial \mathcal{L}_n}{\partial b_j^{(l)}} = \sum_k \frac{\partial \mathcal{L}_n}{\partial z_k^{(l)}} \frac{\partial z_k^{(l)}}{\partial b_j^{(l)}} = \frac{\partial \mathcal{L}_n}{\partial z_j^{(l)}} \frac{\partial z_j^{(l)}}{\partial b_j^{(l)}}$$
$$= \delta_j^{(l)} \cdot 1 = \delta_j^{(l)}$$

21.2 Activation Functions

Sigmoid $\phi(x) = \frac{1}{1+e^{-x}}$ Positive, bounded

 $\phi'(x) \simeq 0$ for large $|x| \Rightarrow$ Learning slow. Tanh $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \phi(2x) - 1/2.$

Balanced, bounded. Learning slow too. ReLU $(x)_{+} = max 0, x Positive, unbounded.$

Derivate = 1 if x > 0, 0 if x < 0Leaky ReLU $f(x) = \max \alpha x, x$ Remove 0

derivative.

 $f(x) = max \mathbf{x}^T \mathbf{w}_1 + b_1, ..., \mathbf{x}^T \mathbf{w}_k + b_k$

(Generalization of ReLU

21.3 Convolutional NN Sparse connections and weights sharing: reduce complexity. (e.g. pixels in pictures only depend

on neighbours) 21.4 Reg, Data Augmentation and

- Regularization term: $\frac{1}{2} \sum_{l=1}^{L+1} \mu^{(l)} ||W^{(l)}||_F^2$

- Weight decay is $\Theta[t](1-\eta\mu)$ in: $\Theta[t+1] = \Theta[t] + \eta(\nabla \mathcal{L} + \mu \Theta[t])$

- Data Augm.: e.g. shift or rotation of pics - Dropout: avoid overfit. Drop nodes

22 Bayes Net

- randomly. (Then average multiple drop-NN) - Graph example: p(x, y, z) = p(y|x)p(z|x)p(x) $(y \leftarrow x \rightarrow z)$
- D-Separation X and Y are D-separated by Z if every path from $x \in X$ to $y \in Y$ is
- blocked by Z. $(\rightarrow independent)$ Blocked Path contains a variable that
- is in Z and is **head-to-tail** or **tail-to-tail** - the node is head-to-head and neither the
- node nor any of its descendants are in Z. Markov Blanket (which blocks node A from the rest of the net) contains:

 parents of A children of A parents of children of A 		