STA3007: Tutorial 6

Yue Ju, Yanmeng Wang

School of Science and Engineering The Chinese University of Hong Kong, Shenzhen

November 4, 2020

Outline

- Question 1
- Question 2
- 3 Question 3
- 4 Question 4

Question 1

True/False

In a one-way layout with k treatments, let

- $\tau_1, ..., \tau_k$ denote the effects of treatments 1, ..., k, respectively, where a larger value of τ_j corresponds to a greater effect of treatment j, j = 1, ..., k;
- R_j the sum of ranks of the observations in treatment j, j = 1,...,k;
- A_p^* the standardized Mack-Wolfe statistic for umbrella alternatives with known peak p and \hat{p} an estimate of the unknown p.

Then the following statements are valid:

(a) If k = 5 and $n_1 = \cdots = n_5 = 4$, then the Kruskal-Wallis test statistic for general alternatives can be calculated by

$$H = \frac{R_1^2 + \dots + R_5^2 - 8820}{140}$$

(b) $\Pr(A_{\hat{p}}^* \ge a) = \Pr(A_4^* \ge a)$ for any real value a if $\hat{p} = 4$.

Question 2(Textbook Problem 6.29)

In many settings, a doseresponse relationship needs not be monotonic in the dosage. In in vitro mutagenicity assays, for example, experimental organisms may not survive the toxic side effects of high doses of the test agent, thereby actually reducing the number of organisms at risk of mutation and leading to a downturn (i.e., umbrella pattern) in the doseresponse curve. The date in Table 6.10 are a subset of the data considered by Simpson and Margolin (1986) in a discussion of the analysis of Ames test results. Plates containing Salmonella bacteria of strain TA98 were exposed to various doses of Acid Red 114. The tabled observations are the numbers of visible revertant colonies on the 18 plates in the study.

Question 2(Textbook Problem 6.29)

Test the null hypothesis H_0 against the alternative that the peak of the doseresponse curve for Salmonella bacteria of strain TA98 exposure to Acid Red 114 occurs at dosage level $1000 \mu g/ml$. (Use the Mack-Wolfe tests for umbrella alternatives with known peak at dosage level $1000 \mu g/ml$ at a significance level of 0.05.)

Table 6.10 Number of Revertant Colonies of Salmonella Bacteria of Strain TA98 under Exposure to Various Doses of Acid Red 114, with Hamster Liver Activation

	Dose, μg/ml							
0	100	333	1000	3333	10,000			
22	60	98	60	22	23			
23	59	78	82	44	21			
35	54	50	59	33	25			

Source: D. G. Simpson and B. H. Margolin (1986).

Question 3(Textbook Problem 6.38)

Consider the Acid Red 114 revertant colonies data in Table 6.10. Test the hypothesis of no differences in the number of revertant colonies over the dosage levels against a general umbrella alternative. (Use the Mack-Wolfe tests for umbrella alternatives with unknown peak at a significance level of 0.05.)

Table 6.10 Number of Revertant Colonies of Salmonella Bacteria of Strain TA98 under Exposure to Various Doses of Acid Red 114, with Hamster Liver Activation

Dose, μg/ml						
0	100	333	1000	3333	10,000	
22	60	98	60	22	23	
23	59	78	82	44	21	
35	54	50	59	33	25	

Source: D. G. Simpson and B. H. Margolin (1986).

Question 3(Textbook Problem 6.38)

U_{1i}	U_{2i}	U_{3i}	U_{4i}	U_{5i}
$U_{12} = 9$				
$U_{13} = 9$	$U_{23} = 6$			
$U_{14} = 9$	$U_{24} = 7$	$U_{34} = 4$		
$U_{15} = 5.5$	$U_{25} = 0$	$U_{35} = 0$	$U_{45} = 0$	
$U_{16} = 3.5$	$U_{26} = 0$	$U_{36} = 0$	$U_{46}=0$	$U_{56} = 2$

Table 1: Mann-Whitney statistics

• Apply the approximate procedure of the Steel-Dwass-Critchlow-Fligner (SDCF) two-sided all-treatment multiple comparison at 0.05 level of significance to the psychotherapeutic attraction data of Table 6.2.

 Table 6.2
 Raw Scores Indicating the Degree of Psychotherapeutic

 Attraction for Each Experimental Condition

Control	Reading (TR)	Videotape (VTP)	Group (RII)		
0	0	0	1		
1	6	5	5		
3	7	8	12		
3	9	9	13		
5	11	11	19		
10	13	13	22		
13	20	16	25		
17	20	17	27		
26	24	20	29		

Source: S. R. Sauber (1971).

- Apply the approximate procedure of the Steel-Dwass-Critchlow-Fligner (SDCF) two-sided all-treatment multiple comparison at 0.05 level of significance to the psychotherapeutic attraction data of Table 6.2.
- **2** Estimate the simple contrast $\theta = \tau_4 \tau_1$ for the psychotherapeutic attraction data in Table 6.2.

 Table 6.2
 Raw Scores Indicating the Degree of Psychotherapeutic

 Attraction for Each Experimental Condition

Control	Reading (TR)	Videotape (VTP)	Group (RII)		
0	0	0	1		
1	6	5	5		
3	7	8	12		
3	9	9	13		
5	11	11	19		
10	13	13	22		
13	20	16	25		
17	20	17	27		
26	24	20	29		

Source: S. R. Sauber (1971).

- Apply the approximate procedure of the Steel-Dwass-Critchlow-Fligner (SDCF) two-sided all-treatment multiple comparison at 0.05 level of significance to the psychotherapeutic attraction data of Table 6.2.
- **2** Estimate the simple contrast $\theta = \tau_4 \tau_1$ for the psychotherapeutic attraction data in Table 6.2.
- **Solution** Find a set of approximate simultaneous 95% confidence intervals for the simple contrast $\tau_2 \tau_1$.

 Table 6.2
 Raw Scores Indicating the Degree of Psychotherapeutic

 Attraction for Each Experimental Condition

Control	Reading (TR)	Videotape (VTP)	Group (RII)
0	0	0	1
1	6	5	5
3	7	8	12
3	9	9	13
5	11	11	19
10	13	13	22
13	20	16	25
17	20	17	27
26	24	20	29

Source: S. R. Sauber (1971).

Control	Reading
0(1.5)	0(1.5)
1(3)	6(7)
3(4.5)	7(8)
3(4.5)	9(9)
5(6)	11(11)
10(10)	13(12.5)
13(12.5)	20(15.5)
17(14)	20(15.5)
26(18)	24(17)

Table 2: Data and ranks of population 1&2

tied group	element	size
1	0	2
2	3	2
3	13	2
4	20	2

Table 3: Size of tied groups

(1)-(9)	-26	-20	-19	-17	-17	-15	-13	-13	-11
(10)-(18)	-10	-10	-8	-7	-6	-6	-6	-6	-5
(19)-(27)	-4	-4	-4	-3	-3	-3	-2	-2	-1
(28)-(36)	-1	0	0	1	1	2	3	3	3
(37)-(45)	3	3	4	4	4	5	6	6	6
(46)-(54)	6	6	7	7	7	7	8	8	8
(55)-(63)	8	9	10	10	10	10	10	11	11
(64)-(72)	12	13	14	15	15	17	17	17	17
(73)-(81)	19	19	19	20	20	21	21	23	24

Table 4: Ordered pairwise differences for population 1 & 2