

Optimisation: Saxpy

Pierre Aubert

The Single precision A X plus Y (saxpy)

$$z_i = a \cdot x_i + y_i, \quad \forall i \in 1, N, a \in \mathbb{R}$$

The Single precision A X plus Y (saxpy)

You already know how to make the performances test!

- Do not forget :
 - To include asterics_hpc.h in the main.cpp
 - To call target_link_libraries(saxpy_03 asterics_hpc)

The Saxpy: base performances

Total Elapsed Time (cy)

Elapsed Time per element (cy/el)

Speed up of 12 between -O0 and -O3 or -Ofast

The Saxpy: vectorized Performances

Total Elapsed Time (cy)

Elapsed Time per element (cy/el)

The Saxpy: intrinsics performances

Total Elapsed Time (cy)

Elapsed Time per element (cy/el)

The Saxpy: summary

Total Elapsed Time (cy)

Elapsed Time per element (cy/el)

The Saxpy: Python

Total Elapsed Time (cy)

Elapsed Time per element (cy/el)

The Saxpy: Python summary

Total Elapsed Time (cy)

Elapsed Time per element (cy/el)

