A new general nearest neighbor classification based on the mutual neighborhood information

저널: Knowledge-Based System 121, 17 January 2017, Pages 142-152

저자: Zhibin Pan, Yidi Wang, Weiping Ku

18510049 오순묵 18512084 이도현 18512112 한동기

목차

- 1. 논문 선택 이유
- 2. 기존 방법론
- 3. 관련 연구
- 4. 개선 아이디어
- 5. 실험
- 6. 결론

1. 논문 선택 이유

- 기존 논문
- 데이터 간의 individual,
 neighborhood distance를 각각 정의
- 목적함수를 설계하고 최적화하여
 두 가지 기준을 결합하는 방법 제안

- 본 논문
- training sample, testing sample에 대한 neighborhood를 각각 정의
- 두 가지 기준에 대한 합집합을 사용하는
 kGNN 방식 제안

각 논문에서 제시하는 neighborhood에 대한 정의 및 여러 기준을 통합하는 방법의 차이

2. 기존 방법론

- k개의 최근접 이웃 데이터를 찾고 다수결 방식으로 분류하는 알고리즘
- k-NN의 성능에 영향을 주는 세 가지 요소
 - 1) value of k
 - 2) distance metric
 - 3) sample size

3. 관련 연구

연구 주제	논문 제목	저자				
Size of l	A proposal for local k values for k -nearest neighbor rule	N. Garcia-Pedrajas, J.A. Del- Castillo, G. Cerruela-Garcia				
Size of k	Neighborhood size selection in the k -nearest neighbor rule using statistical confidence	Wang J., P. Neskovic, L.N. Co oper				
Distance	The distance-weighted k -nearest neighbor rule	S.A. Dudani				
Distance Function	IKNN: informative k -nearest neighbor pattern classification	Y. Song, J. Huang, D. Zhou, et al.				
Outlier.	A local mean-based nonparametric classifier	Y. Mitani, Y. Hamamoto				
Outlier	Pseudo nearest neighbor rule for pattern classification	Zeng Y., Yang Y., Zhao L.				

3. 관련 연구

Distance function										
Euclidean	Euclidean $ \mathbf{p}-\mathbf{q} = p \big p-q \big = \sqrt{(p-q)\cdot(p-q)} = \sqrt{ p ^2 + q ^2 - 2p\cdot q}$									
Distance- weighted k- nearest neighbor		가까운 순서대로 weight 추가								
FN <i>k</i> NN	x_1 x_3	일정 Neighborhood(δ) 안에서 Test sample과 Train sample 사이의 샘플 수를 고려								

3. 관련 연구

A local mean-based nonparametric classifier

$X^i = \{x^i_j | j = 1, ..., N_i\}$ $class\ i$ 에 대한 value 집합 $j = sample\ number$

$$y^i = \frac{1}{k} \sum_{j=1}^r x_{kj}^i$$

- 임의의 NN 개수 설정 (k)
- distance를 더하고 r로 나눠 local mean vector생성 (y_i)
- ullet 각 클래스에 대한 y_i 값 비교

Outlier (k = 5)

- Class 1
- Class 2

Pseudo nearest neighbor rule

$$w_{i} = \frac{1}{i}, i = 1, ..., k$$

$$y^{i} = \frac{1}{k} \sum_{j=1}^{r} x_{kj}^{i} * w_{k}$$

- local mean 과정과 동일
- NN 순서별로 weight 설정하여 각 distance에 대한 weighted average를 구함
- $oldsymbol{\cdot}$ 각 클래스에 대한 y_i 값 비교

- Class 1
- Class 2

MRO (Mutual Relationship Observation)

$$MRO(\boldsymbol{x}, \boldsymbol{y_i}) = \left(ra_{\boldsymbol{x}, \boldsymbol{y_i}}, ra_{\boldsymbol{y_i}, \boldsymbol{x}}\right)$$

$$MRO(\boldsymbol{x}, \boldsymbol{y_1}) = (1, 2)$$

$$MRO(\boldsymbol{x}, \boldsymbol{y_2}) = (2, 2)$$

$$MRO(\boldsymbol{x}, \boldsymbol{y_3}) = (3, 5)$$

$$MRO(\boldsymbol{x}, \boldsymbol{y_4}) = (4, 1)$$

Training sample 측면에서의 NN이 다름을 지적

GNN (General Nearest Neighbor)

Put a Test sample into Train Samples

$$TS^* = \{y_1, y_2, y_i, \dots, y_N, x | y_i \in TS, 1 \le i \le N\}$$

 $y_i^* \in TS^*, 1 \le i \le N+1, y_i^* \text{ can be either } x \text{ or } y_i \in TS^*$

The neighborhood Information of y_i^* in the feature space R^P

$$N^{\delta_{y_i^*}}(y_i^*) = \{y | \forall y \in R^P \cap d(y_i^*, y) \le \delta_{y_i^*} \}$$

GNN (General Nearest Neighbor)

• Testing Sample의 NN

$$N^{\delta_{y_i}}(oldsymbol{y_i})$$

$$N^{\delta_x}(\boldsymbol{x})$$

GNN Rule :
$$\left[m{x} \in N^{\delta_{y_i}}(m{y_i}) \right] \lor \left[m{y_i} \in N^{\delta_x}(m{x}) \right], \quad 1 \leq i \leq N$$

GNN (General Nearest Neighbor)

GNN Rule

$$\left[\boldsymbol{x} \in N^{\delta_{\boldsymbol{y_i}}}(\boldsymbol{y_i})\right] \vee \left[\boldsymbol{y_i} \in N^{\delta_{\boldsymbol{x}}}(\boldsymbol{x})\right], \quad 1 \leq i \leq N$$

Symmetrical Relation

$$y_i \in \mathit{GNN}(x) \quad \Leftrightarrow \quad x \in \mathit{GNN}(y_i)$$

Train sample Test sample

• kGNN Classifier

- 1. Train sample 전체와 Test sample 하나의 합집합 U를 생성한다
- 2. 합집합 U의 각 Sample 측면에서의 kNN을 구한다
- 3. GNN Rule에 기반하여 kGNN을 구한다

$$\textit{GNN}^k(oldsymbol{x}) = \left[oldsymbol{x} \in N^k(oldsymbol{y_i})
ight] ee \left[oldsymbol{y_i} \in N^k(oldsymbol{x})
ight], \quad 1 \leq i \leq N$$

4. 구한 kGNN에 대해 majority voting 방식으로 Test sample의 클래스를 결정한다

Real World Datasets

Table 1Dataset description.

Dataset	Database	Samples	Attributes	Classes	Training set
Australian	KEEL	690	14	2	230
Balance	UCI	625	4	3	200
Banana	KEEL	5300	2	2	1800
Breast	UCI	277	9	2	90
German	KEEL	1000	20	2	300
Glass	KEEL	214	9	7	70
Heart	UCI	303	13	2	100
Iris	UCI	150	4	3	50
Landsat	UCI	2000	36	6	700
Liver	UCI	345	6	2	115
Monk-2	KEEL	432	6	2	144
Newthyroid	KEEL	215	5	3	70
Optdigits	KEEL	5620	64	10	1800
Segment	KEEL	2310	19	7	770
Spambase	KEEL	4597	57	2	1500
Thyroid	KEEL	7200	21	3	2400
Wine	UCI	178	13	3	60
Wpbc	UCI	198	33	2	66
Vehicle	UCI	846	18	4	282
Vote	UCI	435	16	2	145

- UCI, KEEL의 데이터 활용
- 다양한 수의 Sample, Feature, Class

Artificial Datasets

특정 평균과 공분산을 가지는 두 가우시안 분포에서 데이터 생성

I-I Datasets

$$\mu_1 = 0$$
 $\mu_2 = \begin{bmatrix} 2.56 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ $\Sigma_1 = \Sigma_2 = I_p$

Ness Datasets

$$m{\mu_1} = 0 \quad m{\mu_2} = egin{bmatrix} 0.5\Delta \\ 0 \\ \vdots \\ 0 \\ 0.5\Delta \end{bmatrix} \qquad m{\Sigma_1} = m{I_p} \qquad m{\Sigma_2} = egin{bmatrix} m{I_{rac{p}{2}}} & m{O} \\ m{O} & m{I_{rac{p}{2}}} \end{bmatrix}$$

● kGNN과 kNN 비교

Table 2 Comparison of kNN and kGNN in terms of the error rate (%) using Euclidean norm (L_2 norm) and Manhattan norm (L_1 norm) when k = 1, 5 and 9.

Dataset			1	L_2								
	k = 1		k = 5		k = 9		k=1		k = 5		k = 9	
	kNN	kGNN										
Australian	36.74	36.52	33.87	31.96	33.26	32.61	36.74	35.22	35.43	33.70	34.35	31.08
Balance	22.01	19.53	16.64	13.73	14.11	12.40	21.55	19.34	15.34	13.19	13.28	12.78
Banana	12.97	12.24	11.34	11.17	10.97	9.86	12.80	12.14	11.34	11.05	10.83	10.03
Breast	32.70	30.25	28.10	27.46	26.79	26.25	34.65	32.28	29.76	29.38	27.33	27.13
German	33.84	33.21	29.64	29.10	28.92	28.00	35.79	35.19	31.79	31.52	31.66	30.25
Glass	31.98	31.90	35.24	34.34	38.82	38.22	35.80	34.13	37.71	35.59	39.79	39.34
Heart	23.47	22.64	19.24	19.06	19.83	19.20	24.70	23.82	21.63	21.05	22.26	21.50
Iris	6.20	6.05	5.40	5.05	5.95	5.55	6.20	6.20	5.05	4.10	6.20	5.45
Landsat	13.64	12.92	13.21	12.35	13.29	13.00	13.57	13.48	13.80	12.14	14.69	13.78
Liver	40.70	40.39	36.17	34.82	35.89	34.91	40.50	40.26	37.02	34.97	36.15	34.95
Monk-2	13.39	7.08	6.08	3.91	4.91	4.09	13.32	7.22	6.20	4.32	5.59	4.60
Newthyroid	8.38	8.21	12.21	9.93	15.34	12.37	8.97	8.65	13.10	11.10	16.66	14.06
Optdigits	2.74	2.66	2.47	2.20	2.66	2.50	2.36	2.36	2.07	1.90	2.30	2.15
Segment	4.74	4.61	6.43	6.16	7.79	7.40	6.83	6.68	9.75	9.15	11.30	10.84
Spambase	19.57	19.37	20.60	19.30	20.72	19.98	22.76	21.08	23.42	22.28	24.32	22.79
Thyroid	7.33	7.27	6.40	6.22	6.46	6.25	7.89	7.81	6.60	6.33	6.54	6.39
Wine	24.87	24.87	25.85	25.21	26.52	25.29	30.38	30.55	30.08	29.40	30.33	29.06
Wpbc	33.59	32.87	25.98	24.50	24.54	23.75	33.48	32.53	26.40	25.11	25.00	23.82
Vehicle	32.94	32.64	32.70	31.00	32.76	31.99	34.24	33.97	34.02	33.09	35.13	34.18
Vote	8.74	8.18	7.91	6.72	8.63	7.17	9.77	9.43	9.03	7.65	9.79	8.27
Average	20.53	19.67	18.77	17.70	18.91	18.03	21.62	20.62	19.98	18.85	20.18	19.12

대부분의 Datasets 종류, k값, 거리 함수 (L_1, L_2) 에 대해 성능 향상

kGNN과 kNN 비교

- 다양한 조건에 대해 성능 향상
- N값을 증가시킬수록
 오차율의 차이가 커지는 경향

● kGNN과 kNN 비교

Fig. 5. Influences of the dimensionality p on the error rate (%).

차원 p를 증가시킬수록 오차율의 차이가 커지는 경향

● kGNN과 다른 Classifier 비교

Table 3 Comparison of kGNN and other classifiers in terms of the error rate (%) with the optimized value of k.

Dataset	LMKNN	MKNN	PNN	WKNN	CFKNN	FRNN	HBKNN	kGNN
Australian	32.83(6)	30.43(2)	29.78(1)	35.65(7)	31.09(3.5)	35.86(8)	31.95(5)	31.09(3.5
Balance	11.20(1)	13.02(5)	12.95(4)	13.26(6)	12.02(2)	13.33(7)	13.77(8)	12.69(3)
Banana	9.88(3)	9.74(2)	10.20(4)	12.34(6)	27.68(8)	26.71(7)	11.25(5)	9.51(1)
Breast	28.18(4)	28.93(6)	27.99(3)	27.54(2)	29.76(7)	31.73(8)	28.20(5)	27.14(1)
German	30.90(7)	30.56(5)	30.75(6)	30.42(4)	29.64(2)	28.58(1)	31.50(8)	29.99(3)
Glass	35.80(6)	33.92(3)	34.72(5)	34.38(4)	36.83(8)	36.49(7)	33.49(2)	32.88(1)
Heart	20.02(2)	22.19(8)	20.83(4)	22.05(7)	20.88(5)	19.04(1)	20.89(6)	20.69(3)
Iris	4.60(2)	4.85(3)	5.05(5)	4.90(4)	10.70(8)	10.10(7)	5.25(6)	4.10(1)
Landsat	12.18(4)	11.94(1)	12.74(5)	12.87(6)	17.50(8)	16.34(7)	12.15(3)	12.14(2)
Liver	34.79(3)	35.87(7)	35.28(5)	35.58(6)	34.22(2)	41.15(8)	35.23(4)	34.19(1)
Monk-2	4.62(4)	4.65(5)	4.60(3)	6.09(6)	8.35(8)	7.21(7)	2.88(1)	4.32(2)
Newthyroid	8.69(2.5)	8.96(5.5)	8.96(5.5)	8.79(4)	12.58(7)	8.69(2.5)	13.58(8)	8.65(1)
Optdigits	1.49(1)	1.78(2)	1.89(5)	1.86(3)	1.96(6)	2.95(8)	2.48(7)	1.88(4)
Segment	6.59(4.5)	6.59(4.5)	6.72(6)	6.83(7)	11.62(8)	6.33(3)	5.93(1)	6.12(2)
Spambase	20.72(2)	22.35(8)	21.13(3)	21.74(7)	21.36(5)	21.38(6)	21.25(4)	20.67(1)
Thyroid	6.23(3)	6.18(2)	6.42(5)	6.37(4)	8.33(8)	7.39(7)	6.77(6)	6.17(1)
Wine	28.43(4)	28.43(4)	28.81(6)	29.61(7)	32.07(8)	14.49(1)	28.43(4)	27.92(2)
Wpbc	23.39(4)	25.75(7)	23.26(2)	23.58(6)	22.00(1)	27.19(8)	23.40(5)	23,33(3)
Vehicle	30.72(2)	32.61(5)	33.07(6.5)	33.07(6.5)	29.57(1)	34.45(8)	31.80(3)	32.59(4)
Vote	7.22(1)	8.38(6)	9.00(8)	8.93(7)	7.60(3)	8.01(4)	8.03(5)	7.44(2)
Ranking*	3.30	4.55	4.60	5.48	5.43	5.78	4.80	2.08
Average	17.92	18.36	18.20	18.79	20.28	19.87	18.41	17.66

^{*}Ranking stands the average ranking score of each classifier over twenty real-world datasets, where "1" is for the best and "8" is for the worst.

- 평균 순위 및 평균 오차율 모두 최상위
- 모든 데이터에 대해 최소 4순위 이상의 성능

- kGNN과 다른 Classifier 비교
 - Bonferroni-Dunn test

$$CD = q_{\alpha} \sqrt{\frac{n_1(n_1+1)}{6n_2}} = 2.69 \sqrt{\frac{8 \cdot (8+1)}{6 \cdot 20}} = 2.08$$

● kGNN의 특성

(a) Using L_1 -norm measure

- $NN_{k-}Q(x)$ 보다 $NN_{k-}T(x)$ 가 대체적으로 오차율이 크다
- kGNN 방식은 각각을 따로
 사용하는 경우보다 오차율이 작다
- kGNN 방식의 상호보완적 특성

(b) Using L_2 -norm measure

Fig. 7. Complementary analysis of $NN_k = Q(x)$ and $NN_k = T(x)$ in kGNN in terms of the error rate (%) when k = 5.

● kGNN의 특성

Fig. 8. Comparison of $|NN_k = Q(x)|$ and $|NN_k = T(x)|$ when k varies from 1 to 15.

k를 증가시킬수록 $|NN_{k}_{-}T(x)|$ 의 비율이 줄어드는 경향

● kGNN과 kNN* 비교

Table 4 Comparison of kGNN and kNN*in terms of the error rate (%) using Euclidean norm (L_2 norm) and Manhattan norm (L_1 norm) when k = 1,5, and 9.

-			-1	L_2								
	k = 1		k = 5		k = 9		k = 1		k = 5		k = 9	
	kNN*	kGNN										
Balance	19.71	19.53	14.25	13.73	13.52	12.40	19.47	19.34	13,31	13.19	13,33	12.78
Breast	33,39	30.25	29.43	27.46	27.43	26.25	34.72	32.28	29.40	29.38	28.06	27.13
Landsat	12.95	12.92	12.46	12.35	13.15	13.00	13.69	13.48	13.46	12.14	13.85	13.78
Liver	40.43	40.39	36,04	34.82	35.63	34.91	40.33	40.26	36.24	34.97	36.20	34.95
Vote	8.25	8.18	8.03	6.72	8.97	7.17	9.43	9.43	8.84	7.65	9.55	8.27

동일한 k에 대해 kGNN 방식이 더 낮은 오차율을 보인다

5. 결론

- training sample과 testing sample 각각의 neighborhood의 차이를 지적
- training sample과 testing sample 모두를 고려한 kGNN 방식 제안
- 다양한 실험을 통해 kGNN 방식의 성능, 타당성 및 특성을 보임

