gunl

导航

博客园

首页

新随笔

联系

订阅 XML

管理

<	2016年7月					
日	_	=	Ξ	四	五	六
26	27	28	29	30	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31	1	2	3	4	5	6

统计

随笔 - 30 文章 - 0

评论 - 1

引用 - 0

公告

昵称:gunl

园龄:5年11个月 粉丝:8 关注:0

搜索

+加关注

找找看

谷歌搜索

常用链接

我的随笔

我的评论

我的参与

最新评论

我的标签

我的标签

MSI(2)

wifi(2)

WiMAX(1)

wireless(1)

solaris(1)

802.11(1)

linux(1)

mdb(1)

Wireless tools for Linux 的一些资料收集

Wireless tools for Linux介绍

Wireless tools for Linux是一个Linux命令行工具包,用来设置支持Linux Wireless Extension的无线设备。Wireless tools for Linux 和 Linux Wireless Extension 由 Jean Tourrilhes在维护,由Hewlett-Packard(HP惠普)赞助。

大多数基于Linux内核的操作系统都包含Wireless tools。在许多GNU/Linux 发行版中,都缺省安装这个工具包,即使是没有自动安装,也能很容易地找到其二进制代码安装包。

Wireless Extension (WE)是一组通用的API,能在用户空间对通用Wireless LANs 进行配置和统计。它的好处在于仅通过一组单一的工具就能对各种各样的 Wireless LANs进行管理,不过它们是什么类型,只要其驱动支持Wireless Extension就行;另一个好处就是不用重启驱动或Linux就能改变这些参数。

Wireless Tools (WT)就是用来操作Wireless Extensions的工具集,它们使用字符界面,虽然粗糙,但支持所有Wireless Extension。虽然还有很多其他管理Wireless Extensions的工具,但Wireless Tools是参考实现,它包括以下工具:

iwconfig:设置基本无线参数

iwlist:扫描、列出频率,比特率,密钥等

iwspy: 获取每个节点链接的质量

iwpriv:操作Wireless Extensions 特定驱动

ifrename: 基于各种静态标准命名接口

大多数 Linux 发行版本都在其网络初始化脚本中集成Wireless Extension,以便启动时配置无线接口。他们还将Wireless Tools作为其标准封装包。

无线配置也可以使用hotplug或uDev脚本来完成,需要发行版特定的支持,这样能支持任何可移动的无线接口(Pcmcia,CardBus,USB接口...)。

Wireless Tools (从版本19)开始完全支持IEEE 802.11标准参数和设备,支持旧风格的设备和最专有协议,并准备处理HiperLan。较新版本增加了更多802.11支持。但不幸的是,并非所有的驱动程序支持所有这些功能。

最新的稳定版本的Wireless Tools是版本29,大多数愚蠢的错误已被删除,并支持所有的Wireless Extension(从版本v11至v21)。可以从

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/wireless_tools.29.tar.gz下载最新的Wireless Tools。

我们经常会用到的主要是iwlist、iwconfig、 iwpriv:

命令行:(ap不需要验证密码)

iwlist mlan0 scan //搜索ap

iwconfig mlan0 essid "linksys" //连接ap

udhcpc -i mlan0 //获得动态IP

随笔档案

2011年12月 (1)

2011年8月 (15)

2011年7月 (2)

2011年6月 (6)

2010年9月 (5)

2010年8月 (1)

最新评论

1. Re:shell脚本中的特殊变量

引用5. \$@ 与\$#相同,但是使用时加引号,并在引号中返回每个参数这句里面的\$@ 应该是与\$*相同吧,怎么会与\$#相同??...

--wang_yb

阅读排行榜

- 1. linux 路由表 的一些相关资料(33737)
- 2. vim tab键自动补全(8467)
- 3. Wireless tools for Linux 的一些资料收集(8055)
- 4. Solaris内存监控 & solaris查看内存使用情况(6344)
- 5. 使用 kmdb 内核调试程序(4123)

评论排行榜

1. shell脚本中的特殊变量(1)

推荐排行榜

- 1. linux 路由表 的一些相关资料(2)
- 2. vim tab键自动补全(1)
- 3. Wireless tools for Linux 的一些资料收集(1)

命令行:(ap需要验证密码)

iwlist mlan0 scan //搜索ap

iwconfig mlan0 key xxxxxxxxxx // 输入验证密码

iwconfig mlan0 key open //密码验证功能打开

iwconfig mlan0 essid "linksys" //连接ap

udhcpc -i mlan0 //获得动态IP

关于iwconfig 可以看上一篇文章;这里补充一下有关iwpriv: [root@root-//#iwpriv

mlan0 Available private ioctls:

extscan (8BFA): set 0 int & get 2 char hostcmd (8BE4): set 2047 byte & get 2047 byte (8BE6): set 2047 byte & get 2047 byte arpfilter regrdwr (8BE3): set 256 char & get 256 char (8BFE): set 7 byte & get 7 byte sdcmd52rw sdcmd53rw (8BFF): set 0 char & get 0 char setgetconf (8BEA): set 2000 byte & get 2000 byte getcis (8BE1): set 0 & get 512 byte (8BEB): set 8 char & get 8 char scantype (0001): set 1 addr & get 0 deauth getNF (0001): set 1 int & get 1 int getRSSI (0002): set 1 int & get 1 int (0004): set 1 int & get 1 int bgscan enable11d (0005): set 1 int & get 1 int (0006): set 1 int & get 1 int adhocgrate sdioclock (0007): set 1 int & get 1 int (0008): set 1 int & get 1 int wmm uapsdnullgen (000A): set 1 int & get 1 int setcoalescing (000B): set 1 int & get 1 int adhocgprot (000C): set 1 int & get 1 int disable chsw (000F): set 1 int & get 1 int setpowercons (0001): set 1 int & get 1 int wmm_qosinfo (0002): set 1 int & get 1 int lolisteninter (0003): set 1 int & get 1 int psnullinterval (0005): set 1 int & get 1 int (0006): set 1 int & get 1 int bcnmisto Idocfa (0008): set 1 int & get 1 int rtsctsctrl (000F): set 1 int & get 1 int moduletype (000B): set 1 int & get 1 int (000C): set 1 int & get 1 int autodeepsleep enhanceps (000D): set 1 int & get 1 int wakeupmt (000E): set 1 int & get 1 int setrxant (0001): set 1 int & get 0 settxant (0002): set 1 int & get 0 (0004): set 1 int & get 0 authalgs encryptionmode (0005): set 1 int & get 0 setregioncode (0006): set 1 int & get 0 setlisteninter (0007): set 1 int & get 0 setmultipledtim (0008): set 1 int & get 0 setbcnavg (0009): set 1 int & get 0 (000A): set 1 int & get 0 setdataavg associate (000B): set 1 int & get 0

```
getregioncode (0001): set 0
                                  & get 1 int
getlisteninter (0002): set 0
                                & get 1 int
getmultipledtim (0003): set 0
                                 & get 1 int
gettxrate
             (0004): set 0
                               & get 1 int
              (0005): set 0
getbcnavg
                                & get 1 int
              (0006): set 0
                                & get 1 int
getdataavg
              (0007): set 0
                                & get 1 int
getauthtype
               (0008): set 0
getrsnmode
                                 & get 1 int
act_paircipher (0009): set 0
                                 & get 1 int
act groupcipher (000A): set 0
                                  & get 1 int
getdtim
            (000B): set 0
                               & get 1 int
getrxant
             (0001): set 0
                               & get 12 char
gettxant
             (0002): set 0
                               & get 12 char
           (0003): set 0
                             & get 12 char
gettsf
wpssession
               (0004): set 0
                                 & get 12 char
deepsleep
              (8BFB): set 1 char & get 6 char
adhocstop
              (0004): set 0
                                & get 0
radioon
             (0001): set 0
                               & get 0
radiooff
            (0002): set 0
                              & get 0
rmaeskey
              (0003): set 0
                                & get 0
              (0006): set 0
                                & get 0
crypto_test
reasso-on
              (0007): set 0
                                & get 0
reasso-off
             (0008): set 0
                               & get 0
wlanidle-on
              (0009): set 0
                                & get 0
wlanidle-off
             (000A): set 0
                                & get 0
softreset
             (000C): set 0
                               & get 0
               (0002): set 64 char & get 64 char
sleepparams
              (0004): set 64 char & get 64 char
requesttpc
powercap
              (0005): set 64 char & get 64 char
              (000C): set 64 char & get 64 char
measreg
bca-ts
            (0003): set 64 char & get 64 char
               (0006): set 64 char & get 64 char
scanmode
getadhocstatus (0009): set 64 char & get 64 char
setgenie
             (000A): set 64 char & get 64 char
getgenie
             (000B): set 64 char & get 64 char
qstatus
            (000D): set 64 char & get 64 char
ts status
             (000E): set 64 char & get 64 char
setaeskey
              (0001): set 32 char & get 0
              (0001): set 1 int & get 128 char
getaeskey
version
            (0002): set 1 int & get 128 char
            (0003): set 1 int & get 128 char
verext
             (8BE0): set 24 char & get 0
setwpaie
setband
             (0001): set 10 char & get 0
setadhocch
               (0002): set 10 char & get 0
               (0003): set 10 char & get 0
chanswann
             (0001): set 0
getband
                               & get 10 char
               (0002): set 0
                                 & get 10 char
getadhocch
            (8BE9): set 0
                               & get 512 char
getlog
            (0001): set 16 int & get 16 int
tpccfg
               (0006): set 16 int & get 16 int
scanprobes
ledgpio
            (0005): set 16 int & get 16 int
sleeppd
             (0007): set 16 int & get 16 int
             (0008): set 16 int & get 16 int
rateadapt
getSNR
              (0009): set 16 int & get 16 int
getrate
            (000A): set 16 int & get 16 int
getrxinfo
             (000B): set 16 int & get 16 int
```

(000C): set 16 int & get 16 int atimwindow (000D): set 16 int & get 16 int bcninterval (000E): set 16 int & get 16 int sdiopullctrl scantime (000F): set 16 int & get 16 int sysclock (0010): set 16 int & get 16 int (0012): set 16 int & get 16 int txcontrol hscfg (0014): set 16 int & get 16 int (0015): set 16 int & get 16 int hssetpara (0016): set 16 int & get 16 int inactoext (0017): set 16 int & get 16 int dbgscfg drvdbg (0018): set 16 int & get 16 int drvdelaymax (001A): set 16 int & get 16 int (001B): set 16 int & get 16 int intfctrl setquietie (001C): set 16 int & get 16 int (001E): set 16 int & get 16 int ctspowerctrl (001F): set 16 int & get 16 int psmode setuserscan (0001): set 2000 byte & get 2000 byte getscantable (0002): set 2000 byte & get 2000 byte setmrvltlv (0003): set 2000 byte & get 2000 byte (0004): set 2000 byte & get 2000 byte getassocrsp addts (0005): set 2000 byte & get 2000 byte delts (0006): set 2000 byte & get 2000 byte (0007): set 2000 byte & get 2000 byte qconfig (0008): set 2000 byte & get 2000 byte qstats (000C): set 2000 byte & get 2000 byte txpktstats (0009): set 2000 byte & get 2000 byte getcfptable (000A): set 2000 byte & get 2000 byte mefcfg getmem (000B): set 2000 byte & get 2000 byte

通过iwpriv,我们可以得到AP的一些参数设置,也可以设置自己的WIFI参数。

[root@root-/]#iwpriv mlan0 getband

mlan0 getband:bg

1.WIFI介绍

Wi-Fi (WirelessFidelity),即无线保真,与蓝牙技术一样,同属于在办公室和家 庭中使用的短距离无线技术。该技术使用的使2.4GHz附近的频段,该频段目前尚 属没用许可的无线频段。其目前可使用的标准有两个,分别是IEEE802.11a和 IEEE802.11b。Wi-Fi技术突出的优势在于: 其一,无线电波的覆盖范围广,基于 蓝牙技术的电波覆盖范围非常小,半径大约只有50英尺左右约合15米,而Wi-Fi的 半径则可达300英尺左右约合100米。 其二,传输速度非常快,可以达到 11mbps,符合个人和社会信息化的需求。根据无线网卡使用的标准不同,WIFI 的速度也有所不同。其中IEEE802.11b最高为11Mbps (部分厂商在设备配套的情 况下可以达到22Mbps), IEEE802.11a为54Mbps、IEEE802.11g也是54Mbps。 WIFI无线网络由AP(Access Point)和无线网卡组成。AP一般称为网络桥接器或接 入点, AP每100ms将SSID(Service Set Identifier)经由beacons(信号台)封 包广播一次,beacons封包的传输速率是1 Mbit/s,并且长度相当的短,所以这个 广播动作对网络效能的影响不大。因为Wi-Fi规定的最低传输速率是1 Mbit/s ,所 以确保所有的Wi-Fi client端都能收到这个SSID广播封包, client 可以借此决定是 否要和这一个SSID的AP连线。使用者可以设定要连线到哪一个SSID。Wi-Fi系统 总是对用户端开放其连接标准,并支援漫游,这就是Wi-Fi的好处。但亦意味着, 一个无线适配器有可能在性能上优于其他的适配器。由于Wi-Fi通过空气传送信 号,所以和非交换以太网有相同的特点。Wifi加密方式主要有以下三种: WEP(有线等效加密)——采用WEP 64位或者128位数据加密 WPA-PSK [TKIP] ——采用预共享密钥的Wi-Fi保护访问,采用WPA-PSK标准加密技术,加密类型 为TKIP WPA2-PSK [AES]——采用预共享密钥的Wi-Fi保护访问(版本2),采用 WPA2-PSK标准加密技术,加密类型为AES

2.WIFI相关工具安装

在加载wifi驱动之前,我们需要安装应用层的工具,即wireless tools与wpa_supplicant。

2.1 wireless-tools安装

wireless-tools是一组无线网络扫描器及监控工具,可以用于监控、分析、以及测试WiFi网络,支持几乎所有的无线网卡和驱动,它可以支持WEP的AP,但它不能连接到那些只支持WPA的AP。连接AP需要使用它所编译出来的工具。

1、资源下载

下载wireless_tools.29.tar.gz

2、解压

tar zxvf wireless_tools.29.tar.gz

#cd wireless_tools.29

3、修改Makefile

Compiler to use (modify this for cross compile).

CC = mipsel-linux-gcc

4、编译

#make

5、拷贝

将生成的工具:iwlist、iwconfig、iwpriv等拷贝到目标板上,路径为:/root/app/bin/wifitools/

2.3 wpa-supplicant安装

由于wireless tools只能支持连接WEP的AP,所以要支持WPA的AP就需要移植wpa_supplicant。

Rt73的原始驱动中采用的wpa_supplicant的版本比较旧,是0.5.8,我们采用版本。

1、下载资源

本文使用的是:

http://hostap.epitest.fi/releases/wpa_supplicant-0.5.11.tar.gz

最新 wpa-supplicant

http://hostap.epitest.fi/releases/wpa_supplicant-0.6.9.tar.gz

2、文件修改

对照2009_0206_RT73_Linux_STA_Drv.bz2中WPA_Supplicant-0.5.8的文件,修改0.5.11中的对应文件,

3、解压

tar zxvf wpa_supplicant-0.5.11.tar.gz

cd wpa_supplicant-0.5.11

4、编译

#cp defconfig .config #使用默认的config

#export CC=mipsel-linux-gcc

#make

```
将生成的wpa_supplicant 拷贝到目标板上, 路径为:/root/app/bin/wifitools/下
6、编写wpa网络的配置文件wpa_supplicant.conf
在目标板上目录为/root/appb/conf/wifi/下,创建一个wpa_supplicant.conf,键入
以下内容:
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
ap_scan=1
network={
ssid="a" #essid
psk="111" #密码
3. WIFI驱动安装
1、驱动下载
http://www.ralinktech.com.tw/data/drivers/2009 0206 RT73 Linux STA Drv1.1.
0.2.tar.bz2
2、解压
# tar jxvf 2009_0206_RT73_Linux_STA_Drv1.1.0.2.tar.bz2
# cd 2009_2006_RT73_Linux_STA_Drv_1.1.0.2/Module
3、修改Makefile
5 #PLATFORM=PC
6 PLATFORM=CMPC
40 ifeq ($(PLATFORM),CMPC)
41 LINUX_SRC = /opt/smp86xx_kernel_source_2.8.4.1/linux-2.6.15
42 endif
4、编译
# cp Makefile.6 ./Makefile
# make
5、安装
在目标板上,先将生成的rt73.ko以及文件rt73sta.dat与rt73.bin 拷贝到目标板
上。
# cp rt73.ko /root/app/lib/ modules/2.6.15/
# mkdir -p /etc/Wireless/RT73STA
# cp rt73.bin /etc/Wireless/RT73STA
# cp rt73sta.dat /etc/Wireless/RT73STA
# insmod rt73.ko
# Ismod
另:ifrename 的使用
```

5、安装

touch /etc/iftab ifrename -i ra0 -n wlan0 ifrename -i rausb0 -n wlan0 /etc/iftab wlan1 mac http://linux.die.net/man/8/ifrename

移植wireless tools for liunx

要正常使用无线网卡,还要正确配置。linux下的配置工具是wireless-tools,可以在这里下载到它的最新版。

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html

下载后,将源代码解压。再修改其中的makefile文件,将其中的

CC = gcc

AR = ar

RANLIB = ranlib

改为

CC = arm-linux-gcc

AR = arm-linux-ar

RANLIB = arm-linux-ranlib

再执行make,编译完成后,将生成的iwconfig,iwlist文件拷贝到rat-linux for mini2440的根文件系统中的/bin目录下,将

libiw.so.29拷贝到/lib目录下。

启动mini2440开发板,进入linux命令行后,执行ifconfig wlan0 up,启动无线网卡。再执行iwlist scanning,此命令可以搜索到

可用的无线网络接入点。我的无线接入点是一台无线路由器,ESSID是"rat-linux",执行此命令后就会下列输出

wlan0 Scan completed:

Cell 01 - Address: 00:19:C6:53:B9:CE

ESSID:"rat-linux" Mode:Master Channel:2

Frequency:2.417 GHz (Channel 2)

Quality=11/100 Signal level:66/100

Encryption key:on

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s

48 Mb/s; 54 Mb/s Extra:tsf=000000056306469f Extra: Last beacon: 1065ms ago

其中可以看到我的无线接入点是需要密码的。假设密码是123456。使用如下的命令设置密码。

iwconfig wlan0 key 123456

为了能接无线网,还要使用下面的命令设置ESSID

iwconfig wlan0 essid "rat-linux"

其它的参数可以都采用默认的,不用再设了。可以使用下面的命令加入无线网了。

iwconfig wlan0 ap auto

再执行iwconfig wlan0,就可以看到下面的信息。

wlan0 IEEE 802.11bg ESSID:"rat-linux"

Mode:Managed Frequency:2.417 GHz Access Point: 00:19:C6:53:B9:CE

Bit Rate=1 Mb/s Tx-Power=27 dBm

Retry min limit:7 RTS thr:off Fragment thr=2352 B

Encryption key:1234-56 Security mode:open

Power Management:off

Link Quality=100/100 Signal level:66/100

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

这就表示已接入无线网。

最后,为无线网卡指定IP地址。命令如下

ifconfig wlan0 192.168.1.30 netmask 255.255.255.0

我的开发主机和无线网卡处于同一网段,因此是可以相互PING通的。因此可以用从开发主机上PING无线网卡的IP地址的方法来确网

卡是否工作正常。从主机上执行ping 192.168.1.30,正常PING通。

至此,无线网卡安装全部完成。

最后,为了方便配置,可以将上述的配置命令写入linux脚本文件,以后,只要执行此脚本,即可完成上述步骤的配置。脚本文件内容如下。

#! /bin/sh

ifconfig wlan0 up

iwconfig wlan0 key 123456

iwconfig wlan0 essid "rat-linux"

iwconfig wlan0 ap auto

ifconfig wlan0 192.168.1.30 netmask 255.255.255.0

本文来自CSDN博客,转载出

处: http://blog.csdn.net/linweig/archive/2010/01/15/5194761.aspx

标签: linux, wireless

(请您对文章做出评价)

» 下一篇:用shell指令结合获得ip地址

posted on 2010-08-19 15:41 gunl 阅读(8055) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请 登录 或 注册, 访问网站首页。

【推荐】50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库

【推荐】融云即时通讯云 - 豆果美食、Faceu等亿级APP都在用