Flip Graphs on Self-Complementary Ideals of Chain Products

Serena An and Holden Mui

Mentor: Elisabeth Bullock

SPUR Conference

August 4, 2023

A family of sets is intersecting if every pair of sets share an element.

A family of sets is *intersecting* if every pair of sets share an element.

Example

The family $\{\{1,2\},\{1,3\},\{2,3\}\}$ is intersecting.

A family of sets is *intersecting* if every pair of sets share an element.

Example

The family $\{\{1,2\},\{1,3\},\{2,3\}\}$ is intersecting.

A family of subsets of $\{1, \ldots, n\}$ is *maximally intersecting* if adding any other subset to the family makes it no longer intersecting.

A family of sets is *intersecting* if every pair of sets share an element.

Example

The family $\{\{1,2\},\{1,3\},\{2,3\}\}$ is intersecting.

A family of subsets of $\{1, \ldots, n\}$ is *maximally intersecting* if adding any other subset to the family makes it no longer intersecting.

Example

For n = 3, the family $\{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ is maximally intersecting.

A family of sets is *intersecting* if every pair of sets share an element.

Example

The family $\{\{1,2\},\{1,3\},\{2,3\}\}$ is intersecting.

A family of subsets of $\{1, \ldots, n\}$ is *maximally intersecting* if adding any other subset to the family makes it no longer intersecting.

Example

For n = 3, the family $\{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ is maximally intersecting.

Our project stems from a generalization of maximal intersecting families. Flip graphs on maximally intersecting families have been studied before, and our goal is to generalize these results.

Ideals

Let ℓ_1, \ldots, ℓ_d be a sequence of positive integers. Define

$$P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}.$$

Ideals

Let ℓ_1, \ldots, ℓ_d be a sequence of positive integers. Define

$$P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}.$$

Definition

A subset $I \subseteq P$ is an *ideal* if

$$(a_1,\ldots,a_d)\in I$$
 and $b_1\leq a_1,\ldots,b_d\leq a_d \implies (b_1,\ldots,b_d)\in I$.

Ideals

Let ℓ_1,\ldots,ℓ_d be a sequence of positive integers. Define

$$P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}.$$

Definition

A subset $I \subseteq P$ is an *ideal* if

$$(a_1,\ldots,a_d)\in I$$
 and $b_1\leq a_1,\ldots,b_d\leq a_d \implies (b_1,\ldots,b_d)\in I$.

Example

Self-Complementary Ideals

Let
$$P = \{1, \ldots, \ell_1\} \times \cdots \times \{1, \ldots, \ell_d\}.$$

Definition

An ideal $I \subset P$ is *self-complementary* if for every $(a_1, \ldots, a_d) \in P$, exactly one of (a_1, \ldots, a_d) or $(\ell_1 + 1 - a_1, \ldots, \ell_d + 1 - a_d)$ lies in I.

Self-Complementary Ideals

Let
$$P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}$$
.

Definition

An ideal $I \subset P$ is *self-complementary* if for every $(a_1, \ldots, a_d) \in P$, exactly one of (a_1, \ldots, a_d) or $(\ell_1 + 1 - a_1, \ldots, \ell_d + 1 - a_d)$ lies in I.

Example

Flips

Let $P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}$, and let I and J be two self-complementary ideals of P.

Definition

I and J differ by a *flip* if $|I \setminus J| = |J \setminus I| = 1$.

Flips

Let $P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}$, and let I and J be two self-complementary ideals of P.

Definition

I and J differ by a *flip* if $|I \setminus J| = |J \setminus I| = 1$.

Flip Graphs on Self-Complementary Ideals

Definition

The flip graph on self-complementary ideals of P is the graph whose vertices are the self-complementary ideals of P, and whose edges connect pairs of ideals that differ by a flip.

Flip Graphs on Self-Complementary Ideals

Definition

The flip graph on self-complementary ideals of P is the graph whose vertices are the self-complementary ideals of P, and whose edges connect pairs of ideals that differ by a flip.

Flip Graph Examples

Let G be a connected graph.

Let G be a connected graph.

• The *eccentricity* of a vertex *v* is the maximum distance from *v* to another vertex.

Let G be a connected graph.

- The *eccentricity* of a vertex *v* is the maximum distance from *v* to another vertex.
- The diameter of G is the maximum eccentricity of a vertex.

Let G be a connected graph.

- The *eccentricity* of a vertex *v* is the maximum distance from *v* to another vertex.
- The *diameter* of *G* is the maximum eccentricity of a vertex.
- The radius of G is the minimum eccentricity of a vertex.

Diameter of Flip Graphs on Self-Complementary Ideals

Let $P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}$, and let G denote the flip graph on self-complementary ideals of P.

Theorem

The diameter of G is

$$\begin{cases} 0 & \text{if all of } \ell_1, \dots, \ell_d \text{ are odd,} \\ \frac{1}{4} \, |P| & \text{if at least two of } \ell_1, \dots, \ell_d \text{ are even, and} \\ \frac{1}{4} (|P| - \ell_k) & \text{if } \ell_k \text{ is even and the rest are odd.} \end{cases}$$

Diameter of Flip Graphs on Self-Complementary Ideals

Let $P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}$, and let G denote the flip graph on self-complementary ideals of P.

Theorem

The diameter of G is

$$\begin{cases} 0 & \text{if all of } \ell_1, \dots, \ell_d \text{ are odd,} \\ \frac{1}{4} |P| & \text{if at least two of } \ell_1, \dots, \ell_d \text{ are even, and} \\ \frac{1}{4} (|P| - \ell_k) & \text{if } \ell_k \text{ is even and the rest are odd.} \end{cases}$$

Radius of Flip Graphs on Self-Complementary Ideals

Let $P = \{1, \dots, \ell_1\} \times \dots \times \{1, \dots, \ell_d\}$, and let G denote the flip graph on self-complementary ideals of P.

Theorem

Suppose ℓ_1,\dots,ℓ_d are even. Assuming Chvátal's conjecture, G's radius is

$$\left\lceil \left(\frac{1}{4} - \frac{1}{2^{d+1}} \binom{d-1}{\left\lfloor \frac{1}{2}(d-1) \right\rfloor} \right) |P| \right\rceil.$$

Cyclically Symmetric Self-Complementary Ideals

Let
$$P = \{1, ..., 2r\} \times \{1, ..., 2r\} \times \{1, ..., 2r\}.$$

Definition

A self-complementary ideal $I \subset P$ is cyclically symmetric if

$$(a_1, a_2, a_3) \in I \implies (a_2, a_3, a_1) \in I \text{ and } (a_3, a_1, a_2) \in I$$

Cyclically Symmetric Self-Complementary Ideals

Let
$$P = \{1, \dots, 2r\} \times \{1, \dots, 2r\} \times \{1, \dots, 2r\}.$$

Definition

A self-complementary ideal $I \subset P$ is cyclically symmetric if

$$(a_1, a_2, a_3) \in I \implies (a_2, a_3, a_1) \in I \text{ and } (a_3, a_1, a_2) \in I$$

Example

CSSC Flips

Let $P = \{1, ..., 2r\}^3$, and let I and J be two CSSC ideals of P.

Definition

I and J differ by a CSSC flip if $|I \setminus J| = |J \setminus I| = 3$.

CSSC Flips

Let $P = \{1, ..., 2r\}^3$, and let I and J be two CSSC ideals of P.

Definition

I and J differ by a CSSC flip if $|I \setminus J| = |J \setminus I| = 3$.

Example

Flip Graphs on CSSC Ideals

Let $P = \{1, \dots, 2r\}^3$.

Definition

The *flip graph on CSSC ideals of P* is the graph whose vertices are the CSSC ideals of P, and whose edges connect pairs of ideals that differ by a CSSC flip.

Flip Graphs on CSSC Ideals

Let
$$P = \{1, \dots, 2r\}^3$$
.

Definition

The flip graph on CSSC ideals of P is the graph whose vertices are the CSSC ideals of P, and whose edges connect pairs of ideals that differ by a CSSC flip.

Diameter of Flip Graphs on CSSC Ideals

Let $P = \{1, ..., 2r\}^3$, and let G denote the flip graph on CSSC ideals of P.

Theorem

The diameter of G is

$$\frac{1}{3}(r-1)(r)(r+1)$$
.

Diameter of Flip Graphs on CSSC Ideals

Let $P = \{1, ..., 2r\}^3$, and let G denote the flip graph on CSSC ideals of P.

Theorem

The diameter of G is

$$\frac{1}{3}(r-1)(r)(r+1)$$
.

Radius of Flip Graphs on CSSC Ideals

Let $P = \{1, ..., 2r\}^3$, and let G denote the flip graph on CSSC ideals of P.

Theorem

The radius of G is

$$\frac{1}{6}(r-1)(r)(r+1)$$
.

Radius of Flip Graphs on CSSC Ideals

Let $P = \{1, ..., 2r\}^3$, and let G denote the flip graph on CSSC ideals of P.

Theorem

The radius of G is

$$\frac{1}{6}(r-1)(r)(r+1)$$
.

Totally Symmetric Self-Complementary Ideals

Let
$$P = \{1, \dots, 2r\}^3$$
.

Definition

A self-complementary ideal $I \subset P$ is *totally symmetric* if for every permutation $\sigma \in S_3$,

$$(a_1,a_2,a_3)\in I \implies (a_{\sigma(1)},a_{\sigma(2)},a_{\sigma(3)})\in I.$$

Totally Symmetric Self-Complementary Ideals

Let
$$P = \{1, \dots, 2r\}^3$$
.

Definition

A self-complementary ideal $I \subset P$ is *totally symmetric* if for every permutation $\sigma \in S_3$,

$$(a_1, a_2, a_3) \in I \implies (a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}) \in I.$$

Example

Properties of Flip Graphs on TSSC Ideals

Let $P = \{1, ..., 2r\}^3$. It is possible to define a flip graph G on TSSC ideals of P.

Properties of Flip Graphs on TSSC Ideals

Let $P = \{1, ..., 2r\}^3$. It is possible to define a flip graph G on TSSC ideals of P.

Theorem

The diameter of G is

$$\frac{1}{6}(r-1)(r)(2r-1)$$
.

Properties of Flip Graphs on TSSC Ideals

Let $P = \{1, ..., 2r\}^3$. It is possible to define a flip graph G on TSSC ideals of P.

Theorem

The diameter of G is

$$\frac{1}{6}(r-1)(r)(2r-1).$$

Conjecture

The radius of G is

$$\left[\frac{1}{12}(r-1)(r)(2r-1)\right]$$
.

Future Directions

What we studied:

- vertex count
- diameter
- radius

Future Directions

What we studied:

- vertex count
- diameter
- radius

Other properties of interest:

- maximum degree
- edge count and average degree
- set of vertices with minimum eccentricity (center)
- set of vertices with maximum eccentricity (perimeter)

We would like to thank

We would like to thank

 Elisabeth Bullock, our mentor, for her continuous support and guidance

We would like to thank

- Elisabeth Bullock, our mentor, for her continuous support and guidance
- Prof. David Jerison, for organizing SPUR and for his thoughtful comments about our research

We would like to thank

- Elisabeth Bullock, our mentor, for her continuous support and guidance
- Prof. David Jerison, for organizing SPUR and for his thoughtful comments about our research
- Prof. Alexander Postnikov, for suggesting this project