Lecture 23: Firewalls

- □ Introduce several types of firewalls
- Discuss their advantages and disadvantages
- Compare their performances
- Demonstrate their applications

What is a Digital Firewall?

- A digital firewall is a system of hardware and software components designed to restrict access between or among networks, most often between the Internet and a private Internet.
- □ The firewall is part of an overall security policy that creates a perimeter defense designed to protect the information resources of the organization.

A Physical Firewall

- 1. What is the firewall composed of?
- 2. What are the hardware and software components of this firewall?
- 3. What is the defence perimeter?

What a Firewall can do

- Implement security policies at a single point
- Monitor security-related events (audit, log)
- Provide strong authentication for access control purpose

What a Firewall cannot do

- Protect against attacks that bypass the firewall
 - Dial-out from internal host to an ISP
- Protect against internal threats
 - o disgruntled employee
 - Insider cooperates with an external attacker
- Protect against the transfer of virusinfected programs or files

Firewall - Typical Layout

A firewall denies or permits access based on policies and rules

Watching for Attacks

Firewall Technologies

They may be classified into four categories:

- OPacket filtering firewalls
- OCircuit level gateways
- Application gateways (or proxy servers)
- ODynamic packet filtering firewalls
 - Oa combination of the three above
- □ These technologies operate at different levels of detail, providing varying degrees of network access protection.

Filtering Types

- Packet filtering
 - Packets are treated individually
 - No state information is memorized
- Session filtering or dynamic packet filtering
 - Packets are grouped into connections
 - Packets in a connection are detected
 - State information is memorized

Packet Filtering

- Decisions made on per-packet basis
- No state information saved
- Works at the network level of the OSI model
- Applies packet filters based on access rules defined by the following parameters:
 - Source address
 - Destination address
 - Application or protocol/next header (TCP, UDP, etc)
 - Source port number
 - Destination port number

Packet Filtering Policy Example

	My host		Other h			
action	name	port	name	port	comments	
block	*	*	microsoft.com	*	Block everything from MS	
allow	My-gateway 25		* *		Allow incoming mail	

Packet Filtering Policy Example

Rule	Direction	Source Address	Destination Address	Protocol	# Source Port	# Destin. Port	Action
1 2 3 4 5 6 7 8	Out Out In In & Out In In In In	* 10.56* 10.122* * * 201.32.4.76 *	10.56.199* 10.122* 10.56.199* 10.56.199* * 10.56.199*	* TCP TCP TCP * TCP TCP TCP	* 23 (Telnet) * * * * * *	* 23 (Telnet)	Drop Pass Pass Pass Drop Drop Pass Drop

Packet Filtering Firewalls

Packet Filtering Firewalls

- Advantages:
 - Simple, low cost, fast, transparent to user
- Disadvantages:
 - They cannot prevent attacks that employ applicationspecific vulnerabilities or functions
 - because they do not examine upper-layer data.
 - Most packet filter firewalls do not support advanced authentication schemes
 - due to the lack of upper-layer functionality
 - It is easy to accidentally configure a packet filtering firewall to allow traffic types, sources, and destinations that should be denied based on an organization's policy
 - · due to the small number of variables used for decision

Session Filtering

- Traditional packet filters do not examine higher layer context
 - o ie matching return packets with outgoing flow
- Dynamic packet filtering examines data at all levels
- □ They examine each IP packet in context
 - Keep track of client-server connection
 - Check each packet validly belongs to one
- Hence are more able to detect bogus packets out of context

Session Filtering

- Packet decision made in the context of a connection
- If packet is a new connection, check again policy
- If packet is part of an existing connection, match it up in the state table and update table.
 - A connection table is maintained

Example of Session Establishment

- (1) The Client opens channel to the Server, tells its port number. The ACK bit is not set while establishing the connection but will be set on the remaining packets.
 - (2) Server acknowledges.

Example of Connection State Table

Source address	Source port	Destination Address	Destination port	Connection state
192.168.1.100	1030	210.9.88.29	80	established
192.168.1.102	1031	216.32.42.123	25	established

- In general, when an application that uses TCP creates a session with a remote host, it creates a TCP connection in which the TCP port number for the remote (server) application is a number less than 1024 and the TCP port number for the local (client) application is a number between 1024 and 16383.
- □ The numbers less than 1024 are the well-known port numbers and are assigned permanently to particular applic.

Using ACK in Session Filtering

action	src	port	dest	port	flags	comment
allow allow	{our hosts}	* 25	*	25	ACK	our packets to their SMTP port their replies

- □ The ACK signifies that the packet is part of an ongoing conversation
- Packets without the ACK are connection establishment messages

Dynamic Packet Filtering Firewalls

- Packets inspected between data link layer and network layer
- State tables are created to maintain connection context

Dynamic Packet Filtering Firewalls Example

Dynamic Packet Filtering Implementation

Dynamic Packet Filtering Strengths

- Monitors the state of all data flows
- Transparent to users
- □ Low CPU overheads
 - □ For the second and later packets belong to the same connection, no table look-up of the policy database is done.

Designing the Physical Firewall

- How do you design it into a packet filtering firewall?
- 2. How do you design it into a session filtering firewall?

Circuit Level Gateways

- □ Circuit level gateways work at the session layer of the OSI model, or the TCP layer of TCP/IP
- Monitor TCP handshaking between packets to determine whether a requested session is legitimate.
- Do not permit an end-to-end TCP connection
 - Rather, the gateway sets up two TCP connections, one between itself and a TCP user on an inner host and one between itself and a TCP user on an outside host.
 - Once the two connections are established, the gateway typically relays TCP segments from one to the other without examining the contents

Circuit Level Gateway Example

Circuit Level Gateways

Application Gateways

- □ Similar to circuit-level gateways except that they are application specific (i.e., tailored to a specific application program).
- Every connection between two networks is made via an application program called a proxy.
- Connection state is maintained and updated.
- Proxies are application or protocol specific
- Only protocols that have specific proxies configured are allowed through the firewall; all other traffic is rejected.
 - E.g., a gateway that is configured to be a web proxy will not allow any ftp, gopher, telnet or other traffic through

Application Gateways

- ☐ It filters packets on application data as well as on IP/TCP/UDP fields.
- Example: It allows selected internal users to telnet outside.

- 1. Require all telnet users to telnet through gateway.
- 2. For authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. Router filter blocks all telnet connections not originating from gateway.

Application Gateway Example

Application Gateways

Application Gateways

(b) Application-level gateway

Application Gateway Strengths

- □ More secure than packet filtering firewalls
 - Rather than trying to deal with the numerous possible combinations that are to be allowed and forbidden at the TCP and IP level, the application gateway need only scrutinize a few allowable applications.
- It is easy to log and audit all incoming traffic at the application level.

Application Gateway Weaknesses

- □ Very CPU intensive
 - There are two spliced connections between the end users, with the gateway at the splice point, and the gateway must examine and forward all traffic in both directions.
- □ Requires high performance host computer
- Expensive

Network Configuration Examples

Protected Private Network

- Allow all access from private network to the Internet
- Deny all access from the Internet to the private network

Semi-Militarised Zone

Concluding Remarks

- ☐ All that a firewall can do is to control network activities between OSI levels 2 and 7.
- □ They cannot keep out data carried inside applications, such as viruses within email messages:
 - there are just too many ways of encoding data to be able to filter out this kind of threat.
- Although firewalls provide a high level of security in today's private networks to the outside world we still need the assistance of other related security components in order to guarantee proper network security.