IC152: Assignment 5

Mean, Median and Correlation

From this assignment and onwards, the assignments will be evaluated via viva TAs will take.

- Save a python file with the name "problem<n>.py" where <n> should be replaced with a problem number.
- Put all the python files in "<RollNo>assignment5.zip" and submit the zip file on LMS, <RollNo> should be replaced with the roll number of the student submitting the assignment. Only one student per group has to submit the assignment on LMS.

Problem 1: Write a python program to take a list of 10 numbers from the user and find the mean of the numbers in the input list. Print the output on the console/shell. You <u>cannot</u> use any inbuilt function for finding the mean, feel free to use other inbuilt functions.

Problem 2: Write a python program to take a list of 10 numbers from the user and find the median of the numbers in the input list. Print the output on the console/shell. In case of multiple medians you should print the range. You <u>cannot</u> use any inbuilt function for finding the median, feel free to use other inbuilt functions.

Problem 3: Show through the code that the mean is the minimizer of the sum S: $\sum_{i=1}^{N} (\mathbf{X} - \mathbf{X}_i)^2$ for the example in problem 1, where \mathbf{X}_i represents each array in the input list/array. In order to show that S is minimum for mean, find S for different values of x. Print a list containing x and the corresponding S, including one of the x as mean.

Problem 4: Show through code that the median is the minimizer of the sum S: $\sum_{i=1}^{N} |\mathbf{X} - \mathbf{X}_i|$ for the example in problem 2, where \mathbf{X}_i represents each array in the input list/array. In order to show that S is minimum for median, find S for different values of x. Print a list containing x and the corresponding S, including one of the x as the median.

Problem 5: Write a python program to take a 2D array from the user in the form of a list and find the mean of each **row**. Print the output in the form of a list.

Algorithm:

Input: 2 D Array or Matrix of dimension m X n

Output: 1D Array or Vector of dimension m x 1

Algo:

Create an empty output array.

Repeat m times following:

For ith row in input array, find its mean

Append the mean to the output array.

Algo find mean of an array/row:

Add all elements in the row/array

Divider the above sum by number of elements in the row/array

Code:

```
#Code for finding mean of each row in a matrix/2d array:
def checkIntegersInList(myRowList):
  #homework
def averageOfRow(myRowList):
  if len(myRowList) > 0:
    if checkIntegersInList(myRowList) == True:
          return sum(myRowList)/len(myRowList)
  return []
inputList = [[ 1,2,3], [], ["5634","25","23"]]
m = len(inputList)
outputList = []
for i in range(m): #0 to m-1, m will not be included
     mthRow = inputList[i]
     avgi = averageOfRow(mthRow)
     outputList.append(avgi)
print(outputList)
```

Problem 6: Correlation

Consider two vectors: $X = [x_1 - \mu_x, x_2 - \mu_x, ..., x_n - \mu_x]$ and $Y = [y_1 - \mu_y, y_2 - \mu_y, ..., y_n - \mu_y]$. μ_x is the mean of x_i 's, and μ_y of y_i 's. The cosine of the angle between these two vectors can be given by ratio of dot product of these two vectors with their magnitude, i.e. ratio of X.Y and |X||Y|.

Interestingly, correlation is a statistical method that measures the similarity of the variation between two random vectors. The correlation coefficient (value in between -1 to +1 similar to cosine) in between two vectors can be calculated with the help of the given formula:

$$n \sum_{i} x_{i} y_{i} - \sum_{i} x_{i} \sum_{i} y_{i}$$

$$r = \frac{1}{\left[n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}\right]^{\frac{1}{2}} \left[n \sum_{i} y_{i}^{2} - \left(\sum_{i} y_{i}\right)^{2}\right]^{\frac{1}{2}}}$$

Where, n = sample size, x_i and y_i are the sample points with index i.

- a. Write a python code that takes 5 values of x and 5 values of y from the user in the form of a list and find the correlation using the formulae given above.
- b. Prove that the ratio of X.Y and |X||Y| is equal to r given in above equation (X and Y are vectors defined in the starting of problem 6). Show your proof to the lab TAs for evaluation. Reason why correlation will always lie between -1 and + 1.
- c. With the same values given in part a by the user, find the correlation using method given in part b, and verify that you are getting the same correlation as in part a.

Create a single python file for problem 6.