Definitions

Natural logarithm. The natural logarithm function is defined as

$$\ln x = \int_1^x \frac{1}{t} \, dt$$

where x is an element of $(0, \infty)$.

Euler's number. Euler's number, denoted e, is the unique number satisfying $\ln e = 1$. In other words, e is the number satisfying

$$1 = \int_1^e \frac{1}{t} dt.$$

Theory

Properties of the natural logarithm. The following properties hold:

1. The natural logarithm is differentiable (hence also continuous) on $(0, \infty)$ and satisfies

$$\frac{d}{dx}\ln x = \frac{1}{x}.$$

for all x in $(0, \infty)$.

2. The natural logarithm is increasing on $(0, \infty)$ and hence one-to-one. The graph of \ln is always concave down.

3. We have

$$\lim_{x \to \infty} \ln x = \infty$$
$$\lim_{x \to 0^+} \ln x = -\infty$$

4. The domain of $\ln is (0, \infty)$; the range of $\ln is (-\infty, \infty)$.

- 5. $\ln 1 = 0$.
- 6. We have

$$\ln(ab) = \ln a + \ln b$$
, for all $a, b \in (0, \infty)$.
 $\ln(a/b) = \ln a - \ln b$, for all $a, b \in (0, \infty)$, $b \neq 0$.
 $\ln a^r = r \ln a$, for all $a \in (0, \infty)$ and r rational.

Corollary. The function $f(x) = \ln|x|$ is an antiderivative of 1/x on its entire domain $D = (-\infty, 0) \cup (0, \infty)$: i.e., we have

$$\int \frac{1}{x} \, dx = \ln|x| \, dx + C.$$

Further trigonometric antiderivative formulas. The following antiderivative formulas hold:

1.
$$\int \tan x \, dx = -\ln|\cos x| + C = \ln|\sec x| + C$$

- $2. \int \cot x \, dx = \ln|\sin x| + C$
- 3. $\int \sec x \, dx = \ln|\sec x + \tan x| + C$
- $4. \int \csc x \, dx = -\ln|\csc x + \cot x| + C$