diction $\phi(1) = 0$. Hence $-\infty < \omega$ and $\exp(\omega t) \in P\sigma(T(t)')$ for every $t \in \mathbb{R}_{\perp}$. Thus $\omega \in \sigma(A)$ or $\omega = s(A)$.

Remark 1.2. (a) If we consider the nilpotent translation semigroup on the C*-algebra $C_{\circ}([0,1))$ then $\sigma(A) = \emptyset$ and $\omega = -\infty$. This

(b) $'s(A) = \omega'$ still holds for positive semigroups on commutative C*-algebras without unit (see B-IV, Rem.1.2.b).

Theorem 1.3. Let M be a W*-algebra with predual M_{\star} and let $(T(t))_{t\geq 0}$ be a positive semigroup on M_{\star} . Then $s(A)=\omega$.

Proof. For all $\lambda > s(A)$ and $\phi \in M_{\star}$

shows that the existence of a unit is essential.

$$R(\lambda, A) \phi = \int_{0}^{\infty} e^{-\lambda t} T(s) \phi ds$$

which follows as in C-III, Section 1 or [Greiner-Voigt-Wolff (1981), Theorem 3]. Since $\|\phi\| = \phi(1)$ for every $\phi \in M_{\star}^{+}$ and since the norm is additive on the positive cone of M* the integral

$$\int_{0}^{\infty} e^{\lambda t} \| \mathbf{T}(s) \phi \| ds$$

exists for all $\phi \in M_\star$ and all λ > s(A) . From this the assumption follows by A-IV, Thm.1.11.

Corollary 1.4. Let M be a C*-algebra and $(T(t))_{t\geq 0}$ a positive semigroup on M'. Then $s(A) = \omega$ holds.

This follows from the fact that the bidual of a C*-algebra is a W*algebra (see [Takesaki (1979), Theorem III.2.4.]).

Remark 1.5. A simple modification of A-III, Example 1.4 (take c instead of ℓ^2) shows that Theorem 1.3 is no longer true for nonpositive semigroups (for details see [Groh-Neubrander (1981), Beispiel 2.5]).

While the growth bound ω characterizes uniform exponential stability of the semigroup there are other (and weaker) stability concepts (cf. A-IV, Section 1).