Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	ЭМ СУиР 2.1.1	К работе допущен
	Румянцев А. А., Овчинников ненко Д. А.	Работа выполнена
Преподава	тель <u> Боярский К. К.</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.08

Эффект Холла в примесных полупроводниках

Цель работы

Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла

Задачи

- 1. Измерить продольное напряжение между точками 1 и 2 при разных температурах
- 2. Построить график зависимости натурального логарифма электропроводности от обратных значений температур и определить диапазон температур, соответствующий одному типу проводимости
- 3. Исследовать зависимость ЭДС Холла от величины магнитного поля при постоянной силе тока и постоянной температуре
- 4. Исследовать зависимость ЭДС Холла от величины тока при постоянной величине магнитного поля и постоянной температуре
- 5. Исследовать зависимость ЭДС Холла от температуры при постоянной величине магнитного поля и постоянном токе
- 6. Оценить значения постоянных Холла, концентрации свободных электронов и подвижностей носителей тока для различных температур
- 7. Определить тип полупроводника по знаку напряжения Холла

Экспериментальная установка

- 1. Блок амперметра-вольтметра АВ1– 1 шт.
- 2. Блок генератора напряжений ГН3 1шт.
- 3. Стенд с объектами исследования С3-ЭХ01 1 шт.
- 4. Соединительные провода с наконечниками 6 шт.

Метод экспериментального исследования

Многократные измерения

Измерительные приборы

<i>№</i>	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора		
1	Вольтметр	Электроизмерительный	0 - 3,50 B	0,10 B		
2	Амперметр	Электроизмерительный	$0 - 1,50 \cdot 10^{-2} \mathrm{A}$	0,10 A		

Схема установки

Генератор тока

Рис. 1 Рабочая схема для исследования электропроводности образца (1, 2, 3 и 4 – точки на образце)

Результаты прямых измерений и их обработки

Таблица 1

Результаты измерения продольного напряжения U_{12} при разных значениях температуры T при постоянном значении силы тока I=1 мA и вычислений $\frac{1}{T}$, электропроводности σ и $ln(\sigma)$

Пример вычисления электропроводности, где $L_{12}=10~{\rm мкm}$ – расстояние между точками 1 и 2 образца, $bd=2~{\rm ha}~2~{\rm mm}$ – площадь поперечного сечения образца:

$$\sigma = \frac{IL_{12}}{U_{12}bd} = \frac{1 \cdot 10^{-3} \cdot 1 \cdot 10^{-5}}{2,30 \cdot 4 \cdot 10^{-6}} = 1,09 \cdot 10^{-3}$$

<i>T,K</i>	300	305	310	315	320	325	330	335	340	345	350	355	360
U_{12} , B	2,30	2,38	2,48	2,55	2,63	2,73	2,80	2,91	2,98	3,08	3,16	3,27	3,35
$^{1}/_{T'}$ $^{1}/_{K}$	3,33	3,28	3,23	3,17	3,13	3,08	3,03	2,99	2,94	2,90	2,86	2,82	2,78
/ 1 / K	$\cdot 10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$	$\cdot 10^{-3}$							
σ,	1,09	1,05	1	0,98	0,95	0,92	0,89	0,86	0,84	0,81	0,79	0,76	0,75
сименс	$\cdot 10^{-3}$	· 10 ⁻³	$\cdot 10^{-3}$										
$ln(\sigma)$	-6,82	-6,86	-6,90	-6,93	-6,96	-7	-7,02	-7,06	-7,08	-7,12	-7,14	-7,18	-7,20

Таблица 2

Результаты исследования зависимости ЭДС Холла U_x от величины магнитного поля B при постоянной силе тока $I=1000~{
m M}{
m KA}$ и постоянной температуре T=300~K и вычислений напряжения Холла U_x

Пример вычисления U_x :

$$U_x = \frac{U_{34}' - U_{34}''}{2} = \frac{1,32 \cdot 10^{-1} - 1,11 \cdot 10^{-1}}{2} = 0,11 \cdot 10^{-1} \text{ B}$$

В, мТл	0	1	2	3	4	5	6	7	8	9	10	11	12
U_{34}' , B	1,20	1,32	1,41	1,50	1,60	1,70	1,80	1,90	1,98	2,08	2,17	2,27	2,37
	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$	$\cdot 10^{-1}$									
$U_{34}^{\prime\prime}$, B	1,20	1,11	1,01	0,91	0,81	0,72	0,63	0,53	0,43	0,35	0,24	0,15	0,05
	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$										
U_x , B	0	0,11	0,20	0,30	0,40	0,49	0,59	0,69	0,78	0,87	0,97	1,06	1,16
		$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$									

Таблица 3

Результаты исследования зависимости ЭДС Холла U_x от величины тока I при постоянной величине магнитного поля $B=5~{\rm MT}_{\rm Л}$ и постоянной температуре T=300~K и вычислений напряжения Холла U_x (аналогично примеру в таблице 2)

<i>I</i> , мкА	0	500	1000	1500	2000	2500	3000	3500	4000	4500	4950
U_{34}^{\prime} , B	0	0,74	1,03	2,43	3,20	3,98	4,67	5,34	5,95	6,55	6,85
		$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$				
$U_{34}^{\prime\prime}$, B	0	0,26	0,63	0,95	1,23	1,50	1,70	1,85	1,99	2,02	1,93
		$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$				
U_x , B	0	0,24	0,20	0,74	0,99	1,24	1,49	1,75	1,98	2,27	2,46
		$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$				

Таблица 4

Результаты исследования зависимости ЭДС Холла U_x от температуры при постоянной величине магнитного поля $B=5~{\rm MT}\pi$ и постоянном токе $I=1000~{\rm M}{\rm K}A$ и вычислений напряжения Холла U_x , постоянной Холла $R_x=\frac{U_xb}{IB}$, где $b=2\cdot 10^{-3}~{\rm M}$ — толщина образца, концентрации свободных электронов $n=\frac{a}{q_eR_x}$, где a=1,93 — поправочный множитель для учитывания механизма рассеяния носителей тока в полупроводнике, q_e — заряд электрона, подвижности носителей тока $\mu=\frac{\sigma}{q_en}$

Примеры вычисления R_x , n и μ :

$$R_{x} = \frac{0.82 \cdot 10^{-1} \cdot 2 \cdot 10^{-3}}{1 \cdot 10^{-3} \cdot 5 \cdot 10^{-3}} = 32,60 \qquad n = \frac{1.93}{1.60 \cdot 10^{-19} \cdot 32,60} = 3,70 \cdot 10^{17}$$

$$\mu = \frac{1.09 \cdot 10^{-3}}{1.60 \cdot 10^{-19} \cdot 3.70 \cdot 10^{17}}$$

T, K	302	305	310	315	320	325	330	335	340	345	350	355	360
U_{34}^{\prime} , B		1,51	1,29	1,18	1,16	1,18	1,24	1,29	1,24	1,33	1,34	1,31	1,35
	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$
$U_{34}^{\prime\prime}$, B	0	0,50	0,31	0,20	0,17	0,21	0,31	0,34	0,27	0,30	0,38	0,39	0,40
		$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$
U_x , B	0,82	0,51	0,49	0,49	0,50	0,49	0,47	0,48	0,49	0,52	0,48	0,46	0,48
	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$	$\cdot 10^{-1}$
R_{x}	32,60	20,20	19,60	19,60	19,80	19,40	18,60	19	19,40	20,60	19,20	18,40	19
n	3,70	5,96	6,15	6,15	6,08	6,21	6,48	6,34	6,21	5,85	6,27	6,55	6,34
	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	$\cdot 10^{17}$	· 10 ¹⁷	· 10 ¹⁷
μ	0,18	0,11	0,10	0,10	0,10	0,09	0,09	0,08	0,08	0,09	0,08	0,07	0,07
•	$\cdot 10^{-1}$	$\cdot 10^{-1}$	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	$\cdot 10^{-1}$	· 10 ⁻¹	$\cdot 10^{-1}$	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	$\cdot 10^{-1}$

Знак $U_{x}>0\Rightarrow$ полупроводник примесный p-типа

Графики

График зависимости $ln(\sigma)$ от $\frac{1}{T}$ (см. таблицу 1)

Выводы и анализ результатов работы

В ходе работы был изучен эффект Холла в примесных проводниках, определен тип проводника и изучен метод измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью этого эффекта; построен график $ln(\sigma)$ от $\frac{1}{T}$