

Pentaho Analysis for OLAP Developers

Vitor Valerio de Souza Campos

Instalação e inicialização

- Baixar para seu computador, pelo link disponível no AVA o:
 - Pentaho BI Server
 - Pentaho Schema Workbench
- Descompacte os softwares baixados no diretório de sua escolha ou no c:\pentaho.

- Adicionar o arquivo postgresql-42.1.1.jar existente no site (Ambiente moodle) POSTGRES DRIVER EM JAR nos seguintes diretórios
 - C:\pentaho\biserver-ce\tomcat\lib
 - C:\pentaho\schema-workbench\drivers
- Nota: Disponível no tópico: Apresentação da disciplina

Instalação e Inicialização

- Adicione no diretório .pentaho localizado em usuários (observar a versão do sistema operacional) o diretório simple-jndi localizado no AVA.
- Observa as configurações do arquivo default.properties localizado dentro da pasta simple-jndi:
 - dwsample/type=javax.sql.DataSource dwsample/driver=org.postgresql.Driver dwsample/user=wcm dwsample/password=password dwsample/url=jdbc:postgresql://localhost:5432/sample_data

Instalação e Inicialização

- Copie o diretório simple-jndi localizado em usuários (.pentaho) para o diretório C:\pentaho\schema-workbench\
- Copiar o arquivo simple-jndi-0.0.0.jar que esta disponível no AVA para a pasta schema-workbench\lib.
- Atualize no diretório C:\pentaho\biserverce\tomcat\webapps\pentaho\META-INF o arquivo context.xml disponível no ambiente AVA.
- Nota: Disponível no tópico: Apresentação da disciplina

Instalação e Inicialização

- Adicione no Postgres um usuário chamado wcm com senha password utilizando pgAdmin.
- Na aba Previlégios selecione e ative todas as propriedades.
- Crie um banco de dados chamado sample_data.
- Execute o SQL contido no arquivo dwsample.sql que se encontra no site (ambiente Moodle) no banco de dados sample_data.
- Nota: Disponível no tópico: Apresentação da disciplina

Start Pentaho

- Execute start-pentaho.bat
- Ele abrirá uma janela.

Instalação e inicialização

Departamento Computação

- No Web Browser, abra a página http://localhost:8080/pentaho
- Faça o login como Administrador (Admin), a senha é password

 Execute o Workbench.bat no diretório C:\pentaho\schemaworkbench ou onde você instalou.

Conexão para o Postgres

Abra Options → Connection

Conexão para o Postgres

Preencha a seguinte informação JDBC.

Verifique a conexão Postgres

Veja a lista de tabelas.

Schema Workbench

Vitor Valerio de Souza Campos

Schema Workbench

 Uma aplicação visual para construir e testar esquemas Mondrian.

- Esquemas Mondrian parecem com a estrutura do XML Schema.
 - Benefícios
 - Quase todas as características estão disponíveis na GUI para serem configuradas.
 - Desvantagem
 - Irá requerer conhecimento de atributos específicos do Mondrian durante a configuração.

Os três maiores modos

- Schema Design
 - Projetos de Dimensões, Cubos, Medidas, Agregados, etc.
- JDBC Explorer
 - Navega na estrutura do banco de dados.
- MDX Query
 - Permite o usuário executar consultas MDX e revisar os resultados.

JDBC

- Setup para
 - Usar JDBC Explorer
 - Usar o MDX Query
 - Tem caixa de seleção drop down quando entrando em colunas
- Steps
 - Adiciona arquivos JAR para banco de dados no diretório drivers
 - Entrar com conexões JDBC

Schema Design

Associado com um arquivo XML. Opções do Editor

- File → new → Schema
- File → Open
- File → Save
- File → Save as
- File → Recent Files

Schema Design

- Toolbar
 - Botões para adicionar Cubos, dimensões, etc.
 - Cut, Delete, etc
- Estrutura
 - Mostra os elementos dos esquemas

- Edição de atributos
 - Permite editar atributos
 - Mudanças baseados na seleção da estrutura da árvore

Toolbar

- Adicione Cube
- **Adicione Dimension**
- Adicione Dimension Usage
- Adicione Hierarquia
- Adicione Named Set
- Adicione User Defined Function
- Adicione Calculated Member
- Adicione Measure

- Adicione Level
- Adicione Property
- Adicione Virtual Cube
- Adicione Virtual Dimension
- Adicione Virtual Measure

Toolbar

- Cut
- Copy
- Paste
- Delete
- Show XML

Show XML

- Troca o painel de edição de atributos para uma saída textual em XML que o objeto configurado representa
- Muito útil para ver que tipo de XML o Work Bench está gerando
- Ele gera o XML no nível que você tem selecionado na estrutura

MDX Query

- Você deve ter uma conexão
- Selecione um "schema"
 - A lista está na Schemas windows que estão correntemente abertas na aplicação.
 - Conecte para verificar o Schema/Conection
 - Em file entre no MDX Query
 - Entre com sua consulta e execute.

■ MDX Query - connected to ordermdx.mon 🗗 🔟			
Schema	3 ordermdx.mondrian.xml ▼	Connect	
select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Quantity]} ON COLUMNS, NON EMPTY {[Product]} ON ROWS from [Order]			
Execute			

SCHEMA DESIGN: BASICS

Mondrian Schema

- Um arquivo XML que define
 - Cubos e Dimensões
- Ele define a visão Lógica
- Ele mapeia esta visão lógica para Física

XML

- Ele define coisa em XML
- Tags, attributes, etc
- <Something>
 - <Child attribute="value">
 - <Subchild attribute="value"/>
 - </Child>
- </Something>
- Mondrian requer um XML válido e bem formado.

- Na prática
 - XML é gerado via Workbench, não sendo necessário escrever seu próprio XML na "mão".

Schema – Alto nível

- Define esquema lógico
 - <Cube> (Sales, Expenditures, Event, Calls)
 - <Dimension> (Time, Customer, Geography)
- Mapeamento físico
 - <Table> (sales_fact, expenditures_fact)
 - Foreignkey="column"
 - Column=mycolumn
- Cube
 - É uma coleção de measures e dimensions
 - Pode ter N dimensões
 - Measures avaliam a interseção de todas as N dimensões

Measures

- Colunas da tabela de fatos <Measure>
- Requerido
 - Name = Nome da measures
 - Column = coluna para agregar
 - Agregador = sum/count/min/max/avg/distinct-count

Opcional

- Datatype = String, Numeric, Integer, Boolean, Date, Time, Timestamp
- formatString formata string de acordo com o Visual Basic format()
- Visible = para ser mostrado para o usuário
- Etc.

Measures - Agregação

- Agregação
 - SUM = sum(column)
 - COUNT = count(column)
 - MIN = min(column)
 - MAX = max(column)
 - AVG = sum(column) / count(column)

- Agregadores podem usar outros resultados para calcular valores
 - Sum(Q12004) +
 - Sum(Q22004) +
 - Sum(Q32004) +
 - Sum(Q42004)
 - = sum(2004)

Measure Expression

- Column= atributo não é requerido e uma expressão do banco de dados pode ser usada
 - <Measure>
 - <Measure Expression>
 - <SQL>
 - Dialect= generic, oracle, postgres, etc
 - SQL Fragment
- Será passado para o banco de dados
 - Select sum(QTY_ORDERED*COST_PER) from fact_table

Dimensions

- Duas maneiras de definir dimensões
 - Privada
 - Definida dentro do cubo
 - Partilhada
 - Definida fora do cubo
 - Cada cubo referência dimensões com uma coluna de chave estrangeira

Dimensões privadas

- Dimensões somente disponível dentro de um cubo específico.
- Exemplo
 - O Cubo Sales pode ser somente o local onde se usa a dimensão Shipment Status.
- Chave Estrangeira
 - Chave da tabela de fatos para fazer a junção.

- Dimensão definida antes do cubo
- O cubo referência a dimensão usando <DimensionUsage>
- Exemplo
 - O cubo sales pode ser um de muitos cubos que usam a dimensão Product

ESTUDO DE CASO: SEQUÊNCIA DE ATIVIDADES PARA CRIAR UM CUBO

Criando um novo Cubo

- Inicie o Postgres (se ele n\u00e3o estiver em execu\u00fa\u00e3o)
- Inicie o Pentaho (se ele n\u00e3o estiver em execu\u00fa\u00e3o)
- Abra o Schema Workbench (se ele n\u00e3o estiver aberto
 - Exemplo: C:\pentaho\schema-workbench\workbench.bat
 - File → new → Schema.

Criando um Cubo

• Criar um novo cubo

 Selecione o cubo e digite em name "Pedido"

_ Cı	Cube	
Attribute	Value	
name	Pedido	
description		
caption		
cache		
enabled	✓	
visible	✓	

 Selecione a tabela e atribua para o nome da tabela o nome "orderfact".

Salve o Esquema

Departamento Computação

- Salve o esquema no diretório de sua escolha
 - pedido.xml

Selecione o cubo Pedido, clique no botão

na barra de ferramentas

Selecione new Measure e set as propriedades abaixo

Adicione a dimensão Embarque

Adicione a dimensão chamada "Embarque"

Adicione a propriedade Hierarchy como mostrado abaixo

Adicione um Level

Selecione Hierarchy e adicione um Level

Nomei o nível Status, baseado na coluna status na orderfact.

Salve e teste seu cubo

- Salve seu cubo
- File → new → MDX Query
- Execute a seguinte Query

Adicione a medida Revenue

 Selecione o cubo Pedido, clique no botão ferramentas

• Selecione new Measure e set as propriedades abaixo

Adicione a medida Quantidade média

 Selecione o cubo Pedido, clique no botão ferramentas

na barra de

Selecione new Measure e set as propriedades abaixo

Salve e publique no Pentaho

- Salve o esquema
- Vá em File → Publish...

Criando a conexão no Pentaho para o DW sample_data

- Digite no Browser http://localhost:8080/pentaho/
- Log como admin
- Senha: password
- Clique em Manage Data Sources

Browse Files

Create New

Manage Data Sources

Documentation

Criando a conexão no Pentaho para o DW sample_data

Manage Data Sources

Datasource	Туре	
AgileBI	JDBC	^
dmpresidencia	JDBC	
New Schema1	Analysis	
SampleData	Analysis	
SampleData	JDBC	
		~

Close

 Clique na roda dentata para criar uma nova conexão

Manage Data Sources

		Q٠	New Data Sourc	e
Datasource	Туре	Ed	it	
AgileBI	JDBC	De	lete	^
dmpresidencia	JDBC	- Fac	port	
New Schema1	Analysis	EX	Export	
SampleData	Analysis	lm	port Analysis	
SampleData	JDBC	lm	port Metadata	
		Ne	w Connection	~

Criando a conexão no Pentaho para o DW sample_data

- Escolha o tipo do banco de dados, no caso PostgreSQL.
- Digite os dados apresentados na figura e teste a conexão

Database Connection

Test

Acessando o Jpivot View

 Selecione o esquema Nota Fiscal, o Cubo Pedido e clique em Ok.

New JPivot View		
Schema		
Notas Fiscal	~	
Cube		
Pedido v		
	Ok	

Jpivot

• Tela inicial do cubo.

Laboratório

- Adicione outras medidas para o pivot view.
- Clique em Measures para selecionar Revenue e Avg Quantity

Slicer:

CLIENTE JPIVOT

VISÃO DO JPIVOT

- Ferramenta de navegação OLAP para usuário final baseado em browser.
 - Esconde a complexidade do MDX dos usuários finais
 - Provê uma interface intuitiva para usuários de negócios
 - Integra análise com processos de negócios
- Utiliza uma pivot-table
 - Linhas e colunas multidimensionais
 - Funcionalidades de Drill-down, pivot, slicing, sorting
- Habilita charting para dados OLAP

 A página que você vê é uma aplicação que permite você navegar e construir relatórios OLAP em um web browser.

- Nos próximos slides iremos conduzir você através da exploração do Jpivot.
- Nota: Será usado o cubo SteelWheels nos exemplos para nossos exercícios JPivot

Jpivot: navegador OLAP

DC Departamento Computação

- O navegador OLAP provê uma interface gráfica para navegar cubos OLAP.
- Faça mudanças, e click OK para fazer um relatório.
- Por exemplo, Measures representam os dados organizados por dimensões incluídas no cubo.

	Measures			
Time	•	Quantity	•	Sales
± All Years		105.331	10	.645.949

Jpivot: Seleção de membros

Navegador OLAP

	Measures			
Markets	•	Quantity	•	Sales
∃Japan		4.923	ļ	503.958
⊕ EMEA		49.578	5.4	008.224
* APAC		12.878	1	281.706

Jpivot: Ordenação de membros

Navegador OLAP

Jpivot: Drilling Up/Down

- Dá a você a habilidade de subir ou descer na hierarquia
- PLUS (+) desce na hierarquia
- MINUS (-) sobe na hierarquia
- Dimensão
 - Mais alto nível
 - Outro nível
 - Mais baixo nível

Jpivot: Editor de consulta MDX

- Clicando a opção Show MDX Editor mostra o MDX Query Editor onde a consulta de sua escolha pode ser incluída.
- Use para consultas MDX Customizadas

Jpivot: Sorting

- A opção Sort permite a você:
 - Manter a hierarquia de classificação o quebrar a hierarquia para classificação
 - O número de linhas para classificação
 - Os 10 consumidores top.

Jpivot: Sorting

Manter a hierarquia intacta

	Measures
Markets	 Sales
□ All Markets	10.645.949
□Japan	503.958
☐ Hong Kong	48.784
± #null	5.896.856
□Japan	188.168
± Osaka	67.605
⊞ Tokyo	120.563
Philippines	94.016
# #null	5.896.856
Singapore	288.488
± #null	5.896.856

Slicer:

Quebrar a hierarquia

Jpivot: Trocar eixos

A opção Swap Axes troca a linha por colunas.

	Markets		
Measures	⊞Japan	⊞ EMEA	⊕ APAC
Sales	503.958	5.008.224	1.281.706

Jpivot: Show Chart

- Departamento
- O opção Show Chart mostra um gráfico utilizando dados da tabela
- Se a tabela estiver expandida o gráfico também vai fazer o mesmo.
 Similarmente se a tabela esta na forma resumida o gráfico será construído de forma resumida.

Jpivot: Chart Properties

 A opção Chart Properties permite você customizar a saída do gráfico em termos das propriedades que serão mostradas no gráfico.

JPivot

LABORATÓRIO

Inicie o Pentaho/PostgreSQL

- Inicie o PostgreSQL (se ele n\u00e3o estiver em execu\u00fa\u00e3o)
- Inicie o Pentaho (se ele n\u00e3o estiver em execu\u00fa\u00e3o)
 - Nota: Será usado o cubo SteelWheels nos exemplos para nossos exercícios JPivot

Acessando o Jpivot View

 Selecione o esquema SteelWheels, o Cubo StellWhellsSales e clique em Ok.

New JPivot View		
Schema		
SteelWheels V		
Cube		
SteelWheelsSales 🗸		
Ok		

Pivot Viewer

 Verifique se você vê a seguinte figura:

 Ela é apresentada pela opções aqui apresentadas.

 Usando os operadores "+/-", faça o relatório se parecer com as visões abaixo.

	Measures	
Time	•	Quantity
□ All Years		105.331
± 2003		36.439
± 2004		49.417
± 2005		19.475

	Measures
Time	 Quantity
□ All Years	105.331
□ ₂₀₀₃	36.439
⊕ QTR1	4.561
⊕ QTR2	5.695
⊕ QTR3	6.629
⊕ QTR4	19.554
□2004	49.417
⊕ QTR1	8.694
⊕ QTR2	8.443
⊕ QTR3	11.311
⊕ QTR4	20.969
□2005	19.475
⊕QTR1	10.995
⊕ QTR2	8.480

	Measures
Time	 Quantity
□ All Years	105.331
□2003	36.439
⊕QTR1	4.561
⊕QTR2	5.695
□QTR3	6.629
Jul	2.145
Aug	1.974
Sep	2.510
⊕ QTR4	19.554
± 2004	49.417
□2005	19.475
⊕QTR1	10.995
⊕QTR2	8.480

Departamento Computação

 Selecione os anos de 2003, 2004 e 2005 da dimensão Tempo

	Measures	
Time	•	Quantity
± 2003		36.439
± 2004		49.417
± 2005		19.475

Adicione vendas como uma medida

Measures					
Time	 Quantity 	Sales			
± 2003	36.439	3.677.384			
± 2004	49.417	4.987.740			
⊕2005	19.475	1.980.825			

Departamento Computação

Use o "Swap Axes" para inverter o relatório

	Time		
Measures	± 2003	⊕2004	± 2005
Quantity	36.439	49.417	19.475
Sales	3.677.384	4.987.740	1.980.825

 Inverter novamente, e classificar de forma ascendente e descendente por Vendas

	Measures				
Time	•	Quantity	•	Sales	
±2004		49.417	4.	987.740	
±2003		36.439	3.	677.384	
± 2005		19.475	1.	980.825	

- Use o navegador e os três ícones posicionais para mover a dimensão Markets para linhas, Time para Filter e mantenha Measures na coluna.
- Expanda Markets

	Measures		
Markets	•	Quantity	▼ Sales
□ All Markets		105.331	10.645.949
⊞ EMEA		49.578	5.008.224
±NA		37.952	3.852.061
[⊕] APAC		12.878	1.281.706
⊞Japan		4.923	503.958

Departamento *Computação

- Usando o navegador, mude a ordem das regiões para igualar a ordem abaixo no relatório
- Remova o "All Markets"

	Measures			
Markets	• Qua	antity	• Sal	les
⊕NA	37	.952	3.852.	061
± EMEA	49	.578	5.008.	224
⊞Japan	4	.923	503.	958
[⊕] APAC	12	.878	1.281.	706

Usando o navegador obtenha uma base pivot view como esta

Markets ● Quantity ● Sales

+ All Markets 105.331 10.645.949

 Adicione a dimensão Time (com somente 2003, 2004, 2005) para o eixo da coluna, assim há duas dimensões para este eixo.

	Measure	s				
	Quantity		Sales			
	Time		Time			
Markets	● [±] 2003	● [±] 2004	● [±] 2005	● ± 2003	● [±] 2004	● ± 2005
⊕ All Markets	36.439	49.417	19.475	3.677.384	4.987.740	1.980.825

 Mude a ordem da dimensão no eixos da coluna colocando Time em primeiro e Measures em segundo

- Use o navegador, iniciando com a seguinte visão
- Mude o Drill para "Drill Replace"

 Use a linhas up e down para navegar para cima e para baixo na hierarquia

Measures

Quantity

10.995

8.480

[®]Time

₽QTR1

₽QTR2

	N	Measures
Time	•	Quantity
+ All Years		105.331

	Measures	
⊕Time	•	Quantity
₩2003		36.439
₩2004		49.417
₩2005		19.475

Drill on 2005

	Measures	
[®]Time	 Quantity 	
₩2003	36.439	
₩2004	49.417	
₽ 2005	19.475	

Drill on 2004

	Measures		
[®]Time	•	Quantity	
₽QTR1		8.694	
 QTR2		8.443	
₽QTR3		11.311	
₽QTR4		20.969	

Departamento computação

• Add um gráfico de barras para os 4 trimestres de

2004

	1	Measures
⊕ Time	•	Quantity
₽QTR1		8.694
₽ QTR2		8.443
₽QTR3		11.311
₽QTR4		20.969

- Defina a opção gráfico para criar um gráfico de pizza
- 300 x 300 dimensões

- Gráfico de pizza por linha
- Título
 - 2004 Quantidade por Trimestre

2004 Quantidade por Trimestre

- Inicie com esta visão
- Edite o MDX para incluir all Members no Year Level

MDX Query Editor

select NON EMPTY {[Measures].[Quantity]} ON COLUMNS, NON EMPTY {[Time].[All Years]} ON ROWS from [SteelWheelsSales]

MDX Query Editor

select NON EMPTY {[Measures].[Quantity]} ON COLUMNS, NON EMPTY {[Time].[Years].Members} ON ROWS from [SteelWheelsSales]

Projetando esquemas: Hierarquias e níveis

Criando uma estrela

Estudo de Caso

Criando um novo Cubo

Abra o Schema Workbench

Inicie o Pentaho (se ele n\u00e3o estiver em

execução)

File → New → Schema

Criar um Cubo

Selecionar o cubo e atribuir o nome "Order"

Atribuir a tabela para o cubo

Selecione a Tabela e atribua para o nome da tabela "orderfact"

 Adicione a medida "Gross Revenue" e configure suas propriedades com mostrado abaixo

Adicione a dimensão Product

 Selecione o Cubo Order, e adicione uma nova dimensão atribuindo as propriedades mostradas abaixo

para o Cubo

 Nota: A chave estrangeira é o nome da coluna na tabela de fatos que ira ser usada para junção para a dimensão produto.

Dimensão Product: atribuir tabela

- Desça na hierarquia Product e atribua a "Table" products
- Nota: Esta é a tabela que será usada para esta dimensão.

Dimensão Product: Atribua os atributos da Hierarquia

- Atribua as propriedades para a Hierarquia abaixo
- Nota: primaryKeyTable e primaryKey indica que coluna (ie, id da dimensão) que será usada na tabela DIMENSÃO.

 Selecione a hierarquia Product, e adicione um level com as seguintes propriedades

Dimensão Product: Product

 Selecione a hierarquia Product, e adicione um level propriedades

com as seguintes

 Nota: Column (usada para agrupamento e agregação) é diferente do nome que será mostrado (productname)

Adicione a dimensão Customer

 Selecione o Cubo Order, e adicione uma nova dimensão atribuindo as propriedades mostradas abaixo

para o Cubo

 Nota: A chave estrangeira é o nome da coluna na tabela de fatos que ira ser usada para junção para a dimensão customer.

Dimensão Customer: Atribua Table

- Desça na hierarquia e atribua "Table" para customers
- Nota: Esta é uma tabela que será usada para esta dimensão

▲ Table for 'New Hierarchy 0' Hierarchy		
Attribute Value		
schema	public	
name	customers	
alias		

Dimensão Customer: Atributos da hierarquia

- Atribua as propriedades para a hierarquia como mostrado abaixo
- Nota: primaryKeyTable e primaryKey indica que a coluna (ie, o id da dimensão) será usado na tabela DIMENSÃO

Dimensão Customer: Country

Selecione a hierarquia Customer e adicione um level propriedades

com as seguintes

Dimensão Customer: State

 Selecione a hierarquia Customer e adicione um level propriedades

com as seguintes

 Selecione a hierarquia Customer e adicione um level propriedades

com as seguintes

Dimensão Customer: A ordem é importante

- O Pivot Viewer mostrara relatórios que igualam esta ordem
- Country
 - State
 - City

- Ordenação dos níveis é importante
- A ordem diz ao Mondrian qual é o relacionamento entre eventos

Product: Verifique a hierarquia

- Verifique usando a capacidade de navegação que você está vendo os dois níveis em questão
- Line (Ships)
 - Product (The mayflower)
- Nota: As consultas para o banco de dados atualmente usa group por clausulas sobre o productcode MAS o Viewer mostra para você o nome do produto (pela nossa configuração

	Measures
Product	 Gross Revenue
☐ All Products	10.646.007,00
[±] Classic Cars	4.091.447,00
** Motorcycles	1.274.136,00
[±] Planes	1.076.763,00
□Ships	748.680,00
1999 Yamaha Speed Boat	79.664,00
18th century schooner	117.716,00
The Schooner Bluenose	67.592,00
The Mayflower	84.190,00
HMS Bounty	83.023,00
The USS Constitution Ship	77.875,00
The Titanic	90.869,00
The Queen Mary	83.695,00
Pont Yacht	64.056,00
[±] Trains	234.465,00
Trucks and Buses	1.154.282,00
+ Vintage Cars	2.066.234,00

 Use o navegador OLAP para trocar para Customer na Rows em vez de Products na Rows

	Measures	
Customer	•	Gross Revenue
* All Customers		10.646.007,00

Customer: Verifique a hierarquia

- Verifique que você esta vendo a hierarquia com os levels configurados no esquema
- Use o operador Drill down para expandir seções
- Country (USA)
 - State (CA)

□USA	3.627.997,00
□ca	1.505.547,00
Brisbane	50.221,00
Burbank	46.084,00
Burlingame	120.783,00
Glendale	9.129,00
Los Angeles	48.048,00
Pasadena	104.563,00
San Diego	87.488,00
San Francisco	224.359,00
San Jose	160.007,00
San Rafael	654.865,00
±cт	238.663,00
± MA	666.449,00
±NH	131.686,00
±NJ	83.227,00
± _{NV}	82.755,00
± _{NY}	646.342,00
± _{PA}	273.328,00

Projeto do esquema: Dimensões ++

Estudo de Caso

Role Playing Dimensions and Multiple Hierarchies

Criando um novo Cubo

Abra o Schema Workbench

Inicie o Pentaho (se ele n\u00e3o estiver em

execução)

File → New → Schema

Criar um Cubo

Selecionar o cubo e atribuir o nome "Order"

Atribuir a tabela para o cubo

Selecione a Tabela e atribua para o nome da tabela "orderfact"

 Adicione a medida "Gross Revenue" e configure suas propriedades com mostrado abaixo

Salve o esquema

• Salve o esquema como "order mais.xml" no diretório de sua escolha.

Parte I: Adicione a dimensão Product

- Selecione o Cubo Order, e adicione uma nova dimensão atribuindo as propriedades mostradas abaixo
- para o Cubo
- Nota: Garanta que a dimensão que você adicionou esteja fora da definição do cubo.

<u> </u>	△ Shared Dimension		
Attribute	Value		
name	Product		
description			
foreignKey			
type	StandardDimension		
usagePrefix			
caption			
visible			

- Atribua para Table na hierarquia da dimensão Product o nome products
- Nota: Esta é a tabela que será usada para esta dimensão.

Parte I: Hierarquia Product Line

- Atribua as propriedades para a Hierarquia abaixo
- Nota: primaryKeyTable e primaryKey indica que coluna (ie, id da dimensão) que será usada na tabela DIMENSÃO.

Part I: Level Line

• Selecione a hierarquia Product Line, e adicione um level com as seguintes propriedades

▲ Level for 'Product Line' Hierarchy				
Attribute	Value			
name	Line			
description				
table	products			
column	productline			
nameColumn		▼		
parentColumn				
nullParentValue				
ordinalColumn				
type				
internalType				

Part I: Level Product

 Selecione a hierarquia Product Line, e adicione um level seguintes propriedades

Dimensão Product: Product

- Selecione a hierarquia Product, e adicione um level propriedades
- com as seguintes
- Nota: Column (usada para agrupamento e agregação) é diferente do nome que será mostrado (productname)

- Atribua para Table na hierarquia da dimensão Product Vendor o nome products
- Nota: Esta é a tabela que será usada para esta dimensão.

Parte I: Hierarquia Product Vendor

- Atribua as propriedades para a Hierarquia abaixo
- Nota: primaryKeyTable e primaryKey indica que coluna (ie, id da dimensão) que será usada na tabela DIMENSÃO.

Part I: Level Vendors

 Selecione a hierarquia Product Vendors, e adicione um level seguintes propriedades

com as

Part I: Level Product

 Selecione a hierarquia Product Vendors, e adicione um level seguintes propriedades

Part I: Adicione Dimension Usage para Product

- Adicione uma "Dimension Usage" para o cubo Order para usar a dimensão Product que foi definida
- Nota: Mesmo que nós estejamos vendo diferentes hierarquias no Pivot Viewer nós ligamos somente uma dimensão usando nosso id da Dimensão "productcode"

△ Dimension Usage for 'Order' Cube ▼			
Attribute	Value		
name	Product		
foreignKey	productcode		
source	Product		
level			
usagePrefix			
caption			
visible			

Part I: Revisão

- Salve seu esquema.
- Finalizando a parte I nós devemos ter duas hierarquias para tratar da dimensão Product.
- Este é um exemplo clássico de como tratar de multiplas maneiras o "roll up" do mesmo produto, empregado, tempo, periodo, ... De multiplas formas

Part I: Salve e revise no Pentaho

- Salve seu esquema.
- Publique no Pentaho
- Acesse o cubo pelo JPivot view no Pentaho e faça alguma consulta.

MDX

Lab: MDX

Iniciar o Pivot Viewer

- Abra o Schema Workbench
- Inicie o Pentaho (se ele n\u00e3o estiver em execu\u00e7\u00e3o)
- File → Open → ordermdx.xml
- Publique no pentaho.
- Inicie a consulta.

 Navegar para starting Pivot View

	Measures		
Product Line	•	Gross Revenue	
± All Lines		10.646.007,00	

Slicer:

MDX 1: Adicione Measure

- Abra "MDX Editor" e adicione uma nova medida para a coluna.
- Nota: Arquivo com as consultas disponível no AVA.

	Measures			
Product Line ● Gross Revenue ● Quantity				
⊕ All Lines		10.646.007,00		105.331

Slicer:

MDX 2: Referência a Membro

- Vamos explicitamente mudar a linha para somente mostrar a data de 2004.
- Nota: Isto é como nós referenciamos um membro explicitamente

	Measures			
Time	•	● Gross Revenue ● Quantity		
± 2004		4.987.762,00		49.417

- Em vez de referenciar justo um ano, vamos dizer que nós queremos que as linhas sejam um conjunto de anos.
- Cada nível tem uma função (.Members) que retorna um conjunto (conjunto ordenado de membros) que são parte daquele nível.

	Measures		
Time	 Gross Revenue 	•	Quantity
± 2003	3.677.406,00		36.439
⊕2004	4.987.762,00		49.417
⊕2005	1.980.839,00		19.475

MDX 4: Funções que operam sobre conjuntos

- Vamos dizer que queremos somente os dois últimos anos. Nós queremos os últimos dois anos do conjunto de anos.
- Nós podemos usar Tail(<Set>, # of Members) para obter os últimos # anos.

	Measures		
Time	Gross Revenue	 Quantity 	
± 2004	4.987.762,00	49.417	
⊕2005	1.980.839,00	19.475	

MDX 5: Conjunto são ordenados

 Mude a ordem de um conjunto de Membros nas linhas para ver que ordem importa no conjunto

select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Quantity]} ON COLUMNS, NON EMPTY {[Time].[2003],[Time].[2004],[Time].[2005]} ON ROWS from [Order]

	Measures		
Time	 Gross Revenue 	•	Quantity
±2003	3.677.406,00		36.439
±2004	4.987.762,00		49.417
±2005	1.980.839,00		19.475

select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Quantity]} ON COLUMNS, NON EMPTY {[Time].[2004],[Time].[2003],[Time].[2005]} ON ROWS

from [Order]

	Measures		
Time	 Gross Revenue 	 Quantity 	
± 2004	4.987.762,00	49.417	
± 2003	3.677.406,00	36.439	
± 2005	1.980.839,00	19.475	

- Adicione uma simples medida Quantity calculada mais 3
- Com membro é uma maneira de construir um novo membro quase sempre na dimensão Measure.

with member [Measures].[Quantity plus 3] as '[Measures].[Quantity] + 3' select NON EMPTY {[Measures].[Quantity], [Measures].[Quantity plus 3]} ON COLUMNS, NON EMPTY {Tail([Time].[Year].Members, 3)} ON ROWS from [Order]

	Measures		
Time	Quantity	 Quantity plus 3 	
± 2003	36.439	36.442	
± 2004	49.417	49.420	
± 2005	19.475	19.478	

MDX 7: Referência posicional PrevMember

Adicione o Membro calculado "Previous Gross Revenue" o qual é o prévio valor do membro.

with member [Measures].[Previous Gross Revenue] as '[Time].PrevMember' select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Previous Gross Revenue]} ON COLUMNS, NON EMPTY {Tail([Time].[Year].Members, 3.0)} ON ROWS from [Order]

	Measures			
Time	 Gross Revenue 	 Previous Gross Revenue 		
± 2003	3.677.406,00			
⊕2004	4.987.762,00	3.677.406		
⊕2005	1.980.839,00	4.987.762		

- Note que nosso Previous Gross Revenue não explicitamente menciona qual nível (prev year, prev month, etc)
- Mude os membros nas linhas para meses (os últimos três meses para todo o tempo) em vez de anos e veja se ela esta calculando apropriadamente.

with member [Measures].[Previous Gross Revenue] as '[Time].PrevMember' select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Previous Gross Revenue]} ON COLUMNS, NON EMPTY {Tail([Time].[Month].Members, 3.0)} ON ROWS from [Order]

	Measures		
Time	Gross Revenue	 Previous Gross Revenue 	
3	413.535,00	358.191	
4	385.526,00	413.535	
5	484.038,00	385.526	

MDX 8: Parent

- Acesse valores em diferentes níveis da hierarquia
- Use CurrentMember para obter o membro corrente na dimensão e então usar a função Parent() para obter o valor de um membro um nível acima.

with member [Measures].[Parent Gross Revenue] as '[Shipment Status].CurrentMember.Parent' select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Parent Gross Revenue]} ON COLUMNS, NON EMPTY Hierarchize(Union({[Shipment Status].[All Statuses]}, [Shipment Status].[Status].Members)) ON ROWS

from [Order]

	Measures	
Shipment Status	 Gross Revenue 	 Parent Gross Revenue
☐ All Statuses	10.646.007,00	
Cancelled	262.327,00	10.646.007
Disputed	72.212,00	10.646.007
In Process	144.731,00	10.646.007
On Hold	178.976,00	10.646.007
Resolved	150.721,00	10.646.007
Shipped	9.837.040,00	10.646.007

- Obtenha o conjunto de membros que são crianças de outro membro
- Em vez de obter todos os membros de nível "Status", vamos obter todas as crianças do membro "All Statuses".

with member [Measures].[Parent Gross Revenue] as '[Shipment Status].CurrentMember.Parent' select NON EMPTY {[Measures].[Gross Revenue], [Measures].[Parent Gross Revenue]} ON COLUMNS, NON EMPTY Hierarchize(Union({[Shipment Status].[All Statuses]}, [Shipment Status].[All Statuses].Children)) ON ROWS from [Order]

	Measures	
Shipment Status	 Gross Revenue 	Parent Gross Revenue
□ All Statuses	10.646.007,00	
Cancelled	262.327,00	10.646.007
Disputed	72.212,00	10.646.007
In Process	144.731,00	10.646.007
On Hold	178.976,00	10.646.007
Resolved	150.721,00	10.646.007
Shipped	9.837.040,00	10.646.007