INFO 103 OBLIG 1 | Hallvard Moan Kristiansen - hkr017

1.83

0 1 2 3 4 5 0.03 0.18 0.24 0.28 0.10 0.17

a.
$$P(3 + 4 + 5) = (0.28 + 0.10 + 0.17) = 0.55$$

b.
$$P(0+1+2+3+4) = (0.03+0.18+0.24+0.28+0.10) = 0.83$$

c.
$$P(4+5) = (0.10+0.17) = 0.27$$

1.84

Р	Ramada Inn	Sherton	Lakeview Motor Lodge
Α	20%	50%	30%
В	5%	4%	8%

Ramada Inn: 0.2 * 0.05 = 0.01 = 1%

Sherton: 0.5 * 0.04 = 0.02 = 2%

Lakeview Motor Lodge: 0.3 https://www.youtube.com/watch?v=MKeTuZ-zoeA 0.08 = 0.024 =

2.4%

a. <u>1.8 %</u>

b. <u>2.4 %</u>

1.85

1 2 3

80% 80% 80%

4/5 4/5 4/5

0.8 0.8 0.8

X = 3 total operations.

Y = **0.8** probability of survival.

Z = Chance of not surviving 1-0.8 = **0.2**

- a. Svar: Sannsynligheten for at de neste 2/3 pasientene overlever operasjonen er 64% (0.8 * 0.8)
- **b.** 0.8 * 0.8 * 0.8 = 51%

1.88

	_	_
I A	I D	I C
I A	D	
	<u>'</u>	

0.40	0.35	0.25
0.05	0.03	0.15

$$A = 0.40 * 0.05 = 0.02 = 2\%$$

$$C = 0.25 * 0.15 = 0.0375 = 3.75\%$$

Cost overrun = 0.02 + 0.0105 + 0.0375 = 0.068

a. If cost overrun happens the chances for $\underline{\mathbf{C}}$ is estimated to be 55%.

$$0.375/0.068 = 0.55147 = 55\%$$
.

b. If cost overrun happens, the chances for <u>A</u> is esimated to be 29%.

0.02/0.68 = 0.2941.

1.93

	Engineer 1	Engineer 2
Workload	70% 0.7	30% 0.7
Probability of error	0.02	0.04

<u>Answer:</u> I would assumme its engineer 1 who is responsible for the failures, because he is handling a heavier workload at 70% so if you add that up his failure rate gets higher as a result of the heavy workload.

1.94

80% success rate.

20% defective rate.

a. The probability that all three items in production is defective is 0.8%.

<u>1.96</u>

?

1.97

A:
$$(100 / 13 + 10)) * 13 = 56.52\%$$
.

B:
$$(100 / (40 + 13 + 4 + 2)) * 2 = 3.39\%$$
.