ON THE ACTION OF THE DUAL GROUP ON THE COHOMOLOGY OF PERVERSE SHEAVES ON THE AFFINE GRASSMANNIAN

E. Vasserot

ABSTRACT. It was proved by Ginzburg and Mirkovic-Vilonen that the G(O)-equivariant perverse sheaves on the affine grassmannian of a connected reductive group G form a tensor category equivalent to the tensor category of finite dimensional representations of the dual group G^{\vee} . The proof use the Tannakian formalism. The purpose of this paper is to construct explicitly the action of G^{\vee} on the global cohomology of a perverse sheaf. It would be interesting to find a q-analogue of this construction. It would give the global counterpart to [BG].

1. Notations and reminder on Affine Grassmanians

- 1.1. Let G be a connected reductive complex algebraic group. Let B, T, be a Borel and a Cartan subgroup of G. Let $U \subset B$ be the unipotent radical of B. Let B^- a Borel subgroup such that $B \cap B^- = T$. Set $X_T = \operatorname{Hom}(T, \mathbb{G}_m)$ and $X_T^\vee = \operatorname{Hom}(\mathbb{G}_m, T)$ be the weight an the coweight lattice of G. For simplicity we write $X = X_T$ and $X^\vee = X_T^\vee$. Let $(\ ,\): X \times X^\vee \to \mathbb{Z}$ be the natural pairing. Let R be the set of roots, R^\vee the set of coroots. Let $R_\pm \subset R$, $R_\pm^\vee \subset R^\vee$, be the subsets of positive and negative roots and coroots. Let $X_+ \subset X$, $X_+^\vee \subset X^\vee$, be the subsets of dominant weights and coweights. Let $\rho_G \in X$ be half the sum of all positive roots. If there is no ambiguity we simply write ρ instead of ρ_G . Let G^\vee and Z(G) be the dual group and the center of G. Let α_i, α_i^\vee , $i \in I$, be the simple roots and the simple coroots, and let ω_i, ω_i^\vee be the fundamental weights and coweights. For any root $\alpha \in R$ let $U_\alpha \subset G$ be the corresponding root subgroup. If $\alpha = \alpha_i$, $i \in I$, we simply set $U_i = U_{\alpha_i}$ and $U_i^- = U_{-\alpha_i}$. Let W be the Weyl group of G. For any $i \in I$ let s_i be the simple reflexion corresponding to the simple root α_i .
- 1.2. Let $K = \mathbb{C}((t))$ be the field of Laurent formal series, and let $O = \mathbb{C}[[t]]$ be the subring of integers. Recall that G(O) is a group scheme and that G(K) is a group ind-scheme. The quotient set $\operatorname{Gr}^G = G(K)/G(O)$ is endowed with the structure of an ind-scheme. We may write Gr instead of Gr^G , hoping that it makes no confusion. For any coweight $\lambda^{\vee} \in X^{\vee}$, let $t^{\lambda^{\vee}} \in T(K)$ be the image of t by the group homomorphism $\lambda^{\vee} : \mathbb{G}_m(K) \to T(K)$. If λ^{\vee} is dominant, set $e_{\lambda^{\vee}} = t^{\lambda^{\vee}}G(O)/G(O) \in \operatorname{Gr}$. The G(O)-orbit $\operatorname{Gr}_{\lambda^{\vee}} = G(O) \cdot e_{\lambda^{\vee}}$ is connected and simply connected. Let $\overline{\operatorname{Gr}}_{\lambda^{\vee}}$ be its Zariski closure. Let \mathcal{P}_G be the category of

The author is partially supported by EEC grant no. ERB FMRX-CT97-0100.

G(O)-equivariant perverse sheaves on Gr. For any λ^{\vee} let $\mathcal{IC}_{\lambda^{\vee}}$ be the intersection cohomology complex on $Gr_{\lambda^{\vee}}$ with coefficients in \mathbb{C} . Consider the fiber product $G(K) \times_{G(O)} Gr$. It is the quotient of $G(K) \times Gr$ by G(O), where $u \in G(O)$ acts on $G(K) \times Gr$ by $(g, x) \mapsto (gu^{-1}, ux)$. The map

$$\tilde{p}: G(K) \times_{G(O)} Gr \to Gr, \quad (g, x) \mapsto ge_0$$

is the locally trivial fibration with fiber Gr associated to the G(O)-bundle

$$p: G(K) \to Gr.$$

Thus $G(K) \times_{G(O)} Gr$ is an ind-scheme : it is the inductive limit of the subschemes $p^{-1}(\overline{Gr}_{\lambda_{1}^{\vee}}) \times_{G(O)} \overline{Gr}_{\lambda_{2}^{\vee}}$. Consider also the map

$$m: G(K) \times_{G(O)} Gr \to Gr, \quad (g, x) \mapsto gx.$$

For any $\lambda_1^{\vee}, \lambda_2^{\vee} \in X_+^{\vee}$ let $\mathcal{IC}_{\lambda_1^{\vee}} \star \mathcal{IC}_{\lambda_2^{\vee}}$ be the direct image by m of the intersection cohomology complex of the subvariety

$$p^{-1}(\overline{\operatorname{Gr}}_{\lambda_1^{\vee}}) \times_{G(O)} \overline{\operatorname{Gr}}_{\lambda_2^{\vee}} \subset G(K) \times_{G(O)} \operatorname{Gr}.$$

The complex $\mathcal{IC}_{\lambda_1^{\vee}} \star \mathcal{IC}_{\lambda_2^{\vee}}$ is perverse (see [MV], and [NP, Corollaire 9.7] for more details). It is known that the cohomology sheaves of the complex $\mathcal{IC}_{\lambda^{\vee}}$ are pure by the argument similar to [KT] (see also [KL]). It is also known that any object in \mathcal{P}_G is a direct sum of complexes $\mathcal{IC}_{\lambda^{\vee}}$ (see [BD, Proposition 5.3.3.(i)] for a proof). Thus we get a convolution product \star : $\mathcal{P}_G \times \mathcal{P}_G \to \mathcal{P}_G$. It is the convolution product defined by Mirkovic and Vilonen.

1.3. Let $P \subset G$ be a parabolic subgroup of $G, N \subset P$ be the unipotent radical, M = P/N be the Levi factor. Let M' = [M, M] be the semisimple part of M. Consider the diagram

$$\operatorname{Gr}^G \stackrel{\gamma}{\leftarrow} \operatorname{Gr}^P \stackrel{\pi}{\rightarrow} \operatorname{Gr}^M$$
.

where the maps γ and π are induced by the embedding $P \subset G$ and the projection $P \to M$. The fibers of π are N(K)-orbits. Observe that Gr^M is not connected. The connected components of Gr^M are labelled by characters of the center of the dual group M^\vee . Let $\operatorname{Gr}^{M,\theta^\vee} \subset \operatorname{Gr}^M$ be the component associated to $\theta^\vee \in X_{Z(M^\vee)}$. By definition, $e_{\lambda^\vee} \in \operatorname{Gr}^{M,\theta^\vee}$ if and only if the restriction of λ^\vee to $Z(M^\vee)$ coincides with θ^\vee . The element $\rho - \rho_M$ belongs to $X_{Z(M^\vee)}^\vee$. Put

$$\operatorname{Gr}^{M,n} = \bigsqcup_{2(\theta, \rho - \rho_M) = n} \operatorname{Gr}^{M,\theta^{\vee}}.$$

The following facts are proved in [BD, Section 5.3].

Proposition. (a) The functor $\pi_! \gamma^*$ gives a map res $^{GM}: \mathcal{P}_G \to \tilde{\mathcal{P}}_M = \bigoplus_n \mathcal{P}_{M,n}[-n]$, where $\mathcal{P}_{M,n}$ is the subcategory of M(O)-equivariant perverse sheaves on $Gr^{M,n}$.

- (b) For any $\mathcal{E}, \mathcal{F} \in \mathcal{P}_G$ we have $res^{\widetilde{GM}}(\mathcal{E} \star \mathcal{F}) = (res^{GM}\mathcal{E}) \star (res^{GM}\mathcal{F})$.
- (c) For any $\mathcal{E} \in \mathcal{P}_G$ we have $H^*(Gr, \mathcal{E}) = H^*(Gr^M, res^{GM}\mathcal{E})$.
- (d) If $P_1 \subset P$ is a parabolic subgroup and M_1 is its Levi factor then res^{MM_1} maps $\tilde{\mathcal{P}}_M$ to $\tilde{\mathcal{P}}_{M_1}$, and $res^{GM_1} = res^{MM_1} \circ res^{GM}$.

1.4. Let $\tilde{\mathfrak{g}}$ be the affine Kac-Moody Lie algebra associated to G. Let $\tilde{\omega}_0$ be the fundamental weight of $\tilde{\mathfrak{g}}$ which is trivial on Lie(T). Let W_0 be the irreducible integrable highest weight module of $\tilde{\mathfrak{g}}$ with higest weight $\tilde{\omega}_0$. Let π be the corresponding group homomorphism $G(K) \to PGL(W_0)$ (see [Ku, Appendix C] for instance). The central extension $\tilde{G}(K)$ of G(K) is the pull-back $\pi^*GL(W_0)$, where $GL(W_0)$ must be viewed as a \mathbb{C}^\times -principal bundle on $PGL(W_0)$. The restriction of the central extension to G(O), denoted by $\tilde{G}(O)$, splits, i.e. $\tilde{G}(O) = G(O) \times \mathbb{C}^\times$. Fix a highest weight vector $w_0 \in W_0$. Let \mathcal{L}_G be the pull-back of $O_{\mathbb{P}}(1)$ by the embedding of ind-schemes ι : $Gr^G \hookrightarrow \mathbb{P}(W_0)$ induced by the map

$$G(K) \to \mathbb{P}(W_0), g \mapsto [\mathbb{C} \cdot gw_0].$$

The sheaf \mathcal{L}_G is obviously algebraic.

1.5. For any $i \in I$ let P_i be the corresponding subminimal parabolic subgroup of G. Let $N_i \subset P_i$ be the unipotent radical and put $M_i = P_i/N_i$. Hereafter we set ires $= res^{GM_i}$, $\pi_i = \pi$, $\gamma_i = \gamma$, $Z_i = Z(M_i)$ and $\mathcal{L}_i = \mathcal{L}_{M_i}$. The product by the first Chern class of \mathcal{L}_i gives a map

$$l_i: H^*(\operatorname{Gr}^{M_i}, \mathcal{E}) \to H^{*+2}(\operatorname{Gr}^{M_i}, \mathcal{E}),$$

for any $\mathcal{E} \in \mathcal{P}_{M_i}$.

1.6. For any $\mu^{\vee} \in X^{\vee}$ set $S_{\mu^{\vee}} = U(K) \cdot e_{\mu^{\vee}}$. It was proved by Mirkovic and Vilonen that if $\mathcal{E} \in \mathcal{P}_G$ then

(a)
$$H^*(Gr, \mathcal{E}) = \bigoplus_{\mu^{\vee} \in X^{\vee}} H_c^{2(\rho, \mu^{\vee})}(S_{\mu^{\vee}}, \mathcal{E}),$$

(see [MV], and [NP] for more details). For any $i \in I$ and any $\mu^{\vee} \in X^{\vee}$ set also $S_{\mu^{\vee}}^{M_i} = U_i(K) \cdot e_{\mu^{\vee}} \subset \operatorname{Gr}^{M_i}$. The grassmanian Gr^{M_i} may be viewed as the set of points of Gr which are fixed by the action of the group Z_i by left translations. This fixpoints subset is denoted by Z_i Gr. In particular, $S_{\mu^{\vee}}^{M_i}$ may be viewed as a subset of Gr.

2. Construction of the operators e_i , f_i , h_i

2.1. To avoid useless complications, hereafter we assume that G is semi-simple. The generalization to the reductive case is immediate. For any $i \in I$ and $\mathcal{E} \in \mathcal{P}_G$, let \mathbf{e}_i be the composition of the chain of maps

$$H^*(Gr, \mathcal{E}) = H^*(Gr^{M_i}, ires \mathcal{E}) \xrightarrow{l_i} H^{*+2}(Gr^{M_i}, ires \mathcal{E}) = H^{*+2}(Gr, \mathcal{E}).$$

Moreover, set

$$\mathbf{h}_i = \bigoplus_{\lambda^{\vee} \in X^{\vee}} (\alpha_i, \lambda^{\vee}) id_{H_c^*(S_{\lambda^{\vee}}, \mathcal{E})} : H^*(Gr, \mathcal{E}) \to H^*(Gr, \mathcal{E}).$$

By the hard Lefschetz theorem there is a unique linear operator $\mathbf{f}_i: H^*(Gr, \mathcal{E}) \to H^{*-2}(Gr, \mathcal{E})$ such that $(\mathbf{e}_i, \mathbf{h}_i, \mathbf{f}_i)$ is a $\mathfrak{sl}(2)$ -triple.

Theorem. For any $\mathcal{E} \in \mathcal{P}_G$, the operators $\mathbf{e}_i, \mathbf{f}_i, \mathbf{h}_i$, with $i \in I$, give an action of the dual group G^{\vee} on the cohomology $H^*(Gr, \mathcal{E})$.

2.2. The rest of the paper is devoted to the proof of the theorem.

Lemma. For all $\lambda^{\vee} \in X^{\vee}$ we have

$$\mathbf{e}_i(H_c^*(S_{\lambda^\vee},\mathcal{E})) \subset H_c^*(S_{\lambda^\vee + \alpha_i^\vee},\mathcal{E}) \quad and \quad \mathbf{f}_i(H_c^*(S_{\lambda^\vee},\mathcal{E})) \subset H_c^*(S_{\lambda^\vee - \alpha_i^\vee},\mathcal{E}).$$

Proof. It is sufficient to check the first claim. Since

$$S_{\lambda^{\vee}} = N_i(K)U_i(K) \cdot e_{\lambda^{\vee}} = \pi_i^{-1}(S_{\lambda^{\vee}}^{M_i}),$$

we get, for any $\mathcal{E} \in \mathcal{P}_G$,

(a)
$$H_c^*(S_{\lambda^{\vee}}, \mathcal{E}) = H_c^*(S_{\lambda^{\vee}}^{M_i}, ires \mathcal{E}).$$

Now, if $\mathcal{E} \in \mathcal{P}_{M_i}$ then

$$l_i(H_c^*(S_{\lambda^\vee}^{M_i},\mathcal{E})) = l_i(H_c^{(\alpha_i,\lambda^\vee)}(S_{\lambda^\vee}^{M_i},\mathcal{E})) \subset H_c^{2+(\alpha_i,\lambda^\vee)}(\mathrm{Gr}^{M_i},\mathcal{E}).$$

Moreover, for all $\mu^{\vee} \in X^{\vee} \simeq X_{T^{\vee}}$ we have

$$S_{\mu^{\vee}} \cap \operatorname{Gr}^{M_i,\theta^{\vee}} \neq \emptyset \iff \mu^{\vee}|_{Z(M_i^{\vee})} = \theta^{\vee}.$$

Thus, if $\mathcal{E} \in \mathcal{P}_{M_i}$ then

$$l_i(H_c^*(S_{\lambda^{\vee}}^{M_i}, \mathcal{E})) = \bigoplus_{\mu^{\vee}} H_c^{(\alpha_i, \mu^{\vee})}(S_{\mu^{\vee}}^{M_i}, \mathcal{E}),$$

where the sum is over all $\mu^{\vee} \in X^{\vee} \simeq X_{T^{\vee}}$ such that

$$\mu^{\vee}|_{Z(M_i^{\vee})} = \lambda^{\vee}|_{Z(M_i^{\vee})}$$
 and $(\alpha_i, \mu^{\vee}) = (\alpha_i, \lambda^{\vee} + \alpha_i^{\vee}).$

The only possibility is $\mu^{\vee} = \lambda^{\vee} + \alpha_i^{\vee}$.

The lemma implies that $[\mathbf{h}_i, \mathbf{e}_j] = (\alpha_i, \alpha_j^{\vee}) \, \mathbf{e}_j$ for all $i, j \in I$. Since $\mathbf{e}_i, \mathbf{f}_i$, are locally nilpotent and since $[\mathbf{e}_i, \mathbf{f}_i] = \mathbf{h}_i$ by construction, if $[\mathbf{e}_i, \mathbf{f}_j] = 0$ for any $i \neq j$ then the operators $\mathbf{e}_i, \mathbf{f}_i, \mathbf{h}_i$, give a representation of the Lie algebra \mathfrak{g}^{\vee} of G^{\vee} on the cohomology group $H^*(Gr, \mathcal{E})$ for any $\mathcal{E} \in \mathcal{P}_G$ (see [Ka, Section 3.3]). The action of the operators \mathbf{h}_i lifts to an action of the torus of G^{\vee} . Thus, the representation of the Lie algebra \mathfrak{g}^{\vee} lifts to a representation of the group G^{\vee} . By (1.3.d), in order to check the relation $[\mathbf{e}_i, \mathbf{f}_j] = 0$ for $i \neq j$ we can assume that the group G has rank 2.

2.3. Recall that any complex $\mathcal{IC}_{\lambda^{\vee}}$ is a direct factor of a product $\mathcal{IC}_{\lambda^{\vee}_{1}} \star \mathcal{IC}_{\lambda^{\vee}_{2}} \star \cdots \star \mathcal{IC}_{\lambda^{\vee}_{n}}$ such that the coweights λ^{\vee}_{i} are either minuscule or quasi-minuscule (see [NP, Proposition 9.6]). Observe that [NP, Lemmes 10.2, 10.3] imply indeed that if the set of minuscule coweights is non empty, then we can find such a product with all the λ^{\vee}_{i} 's beeing minuscule. Recall also that for any $\mathcal{E}, \mathcal{F} \in \mathcal{P}_{G}$ there is a canonical isomorphism of graded vector spaces

(a)
$$H_c^*(S_{\lambda^{\vee}}, \mathcal{E} \star \mathcal{F}) \simeq \bigoplus_{\mu^{\vee} + \nu^{\vee} = \lambda^{\vee}} H_c^*(S_{\mu^{\vee}}, \mathcal{E}) \otimes H_c^*(S_{\nu^{\vee}}, \mathcal{F}),$$

(see [MV], and [NP, Proof of Theorem 3.1] for more details). Let $\Delta(\mathbf{e}_i)$, $\Delta(\mathbf{f}_i)$, $\Delta(\mathbf{h}_i)$, be the composition

$$H^*(Gr, \mathcal{E}) \otimes H^*(Gr, \mathcal{F}) = H^*(Gr, \mathcal{E} \star \mathcal{F}) \xrightarrow{\mathbf{e}_i, \mathbf{f}_i, \mathbf{h}_i} H^*(Gr, \mathcal{E} \star \mathcal{F}) = H^*(Gr, \mathcal{E}) \otimes H^*(Gr, \mathcal{F}),$$

where the equalities are given by (1.6.a) and (a).

Lemma. If
$$x = \mathbf{e}_i, \mathbf{f}_i, \mathbf{h}_i$$
, then $\Delta(x) = x \otimes 1 + 1 \otimes x$.

Proof. If $x = \mathbf{h}_i$ the equation is obvious. If $x = \mathbf{f}_i$ it is a direct consequence of the two others since a $\mathfrak{sl}(2)$ -triple $(\mathbf{e}_i, \mathbf{h}_i, \mathbf{f}_i)$ is completely determined by \mathbf{e}_i and \mathbf{h}_i . Thus, from (2.3.a), (1.3.b) and (1.3.c), it suffices to check the equality when $G = \mathrm{SL}(2)$ and $x = \mathbf{e}_i$. Then, the operator \mathbf{e}_i is the product by the 1-st Chern class of the line bundle $\mathcal{L}_{\mathrm{SL}(2)}$ on $\mathrm{Gr^{\mathrm{SL}(2)}}$. More generally, for any simply connected group G, the G(O)-equivariant line bundle \mathcal{L}_G on the grassmannian Gr lifts uniquely to a G(K)-equivariant line bundle on the ind-scheme $G(K) \times_{G(O)} \mathrm{Gr}$. Let denote it by \mathcal{L}_2 . The group G(O) acts on the pull-back of \mathcal{L}_G by the projection $G(K) \times \mathrm{Gr} \to \mathrm{Gr}$. The quotient is the bundle \mathcal{L}_2 . The vector bundle \mathcal{L}_2 is algebraic, i.e. its restriction to the subscheme $p^{-1}(\overline{\mathrm{Gr}}_{\lambda_1^\vee}) \times_{G(O)} \overline{\mathrm{Gr}}_{\lambda_2^\vee}$ is an algebraic vector bundle for any λ_1^\vee , λ_2^\vee . Indeed, there is a normal pro-unipotent closed subgroup H of G(O) such that G(O)/H is finite dimensional and H acts trivialy on $\overline{\mathrm{Gr}}_{\lambda_2^\vee}$. Since H is pro-unipotent, the restriction of \mathcal{L}_G to $\overline{\mathrm{Gr}}_{\lambda_2^\vee}$ is identified with the algebraic sheaf on

$$(p^{-1}(\overline{\operatorname{Gr}}_{\lambda_1^{\vee}})/H) \times_{G(O)/H} \overline{\operatorname{Gr}}_{\lambda_2^{\vee}}$$

induced by the restriction of \mathcal{L}_G to $\overline{\operatorname{Gr}}_{\lambda_2^{\vee}}$. Consider also the pull-back \mathcal{L}_1 of the line bundle \mathcal{L}_G by the 1-st projection $\tilde{p}: G(K) \times_{G(O)} \operatorname{Gr} \to \operatorname{Gr}$. We claim that

$$(b) m^* \mathcal{L}_G = \mathcal{L}_1 \otimes \mathcal{L}_2.$$

Let $\mu: G(K) \times G(K) \to G(K)$ be the multiplication map. The product in the group $\tilde{G}(K)$ gives an isomorphism of bundles

$$\mu^* p^* \mathcal{L}_G \simeq p^* \mathcal{L}_G \boxtimes p^* \mathcal{L}_G$$

on $G(K) \times G(K)$. This isomorphism descends to the fiber product $G(K) \times_{G(O)} Gr$ and implies (b). Observe now that (a) is induced by the canonical isomorphism

$$\left(p^{-1}(\overline{\operatorname{Gr}}_{\lambda_1^\vee})\times_{G(O)}\overline{\operatorname{Gr}}_{\lambda_2^\vee}\right)\cap m^{-1}(S_{\lambda^\vee})\simeq \bigsqcup_{\mu^\vee+\nu^\vee=\lambda^\vee}(S_{\mu^\vee}\cap\overline{\operatorname{Gr}}_{\lambda_1^\vee})\times (S_{\nu^\vee}\cap\overline{\operatorname{Gr}}_{\lambda_2^\vee})$$

resulting from the local triviality of p. Let $l_{\mathcal{E}}$ be the product by the 1-st Chern class of \mathcal{L}_G on the global cohomology of the perverse sheaf $\mathcal{E} \in \mathcal{P}_G$. Then (a) and (b) give $l_{\mathcal{E}\star\mathcal{F}} = l_{\mathcal{E}} \otimes 1 + 1 \otimes l_{\mathcal{F}}$.

2.4. From Section 2.3 and (1.3.d) we are reduced to check the relation $[\mathbf{e}_i, \mathbf{f}_j] = 0$, $i \neq j$, on the cohomology group $H^*(Gr, \mathcal{E})$ when G has rank 2 and $\mathcal{E} = \mathcal{IC}_{\lambda^\vee}$, with λ^\vee minuscule or quasi-minuscule. For any dominant coroot λ^\vee let $\Omega(\lambda^\vee) \subset X^\vee$ be the set of weights of the simple G^\vee -module with highest weight λ^\vee . Recall that

- (a) the coweight $\lambda^{\vee} \in X_{+}^{\vee} \{0\}$ is minuscule if and only if $\Omega(\lambda^{\vee}) = W \cdot \lambda^{\vee}$, if and only if $(\alpha, \lambda^{\vee}) = 0, \pm 1$, for all $\alpha \in R$,
- (b) the coweight $\lambda^{\vee} \in X_{+}^{\vee} \{0\}$ is quasi-minuscule if and only if $\Omega(\lambda^{\vee}) = W \cdot \lambda^{\vee} \cup \{0\}$, if and only if λ^{\vee} is a maximal short coroot. Moreover if λ^{\vee} is quasi-minuscule then $(\alpha, \lambda^{\vee}) = 0, \pm 1$, for all $\alpha \in R \{\pm \lambda\}$.

For any coweight λ^{\vee} we consider the isotropy subgroup $G_{\lambda^{\vee}}$ of $e_{\lambda^{\vee}}$ in G. Thus

$$G_{\lambda^{\vee}} = T \prod_{(\alpha, \lambda^{\vee}) \le 0} U_{\alpha}.$$

In particular $B^- \subset G_{\lambda^{\vee}}$ if λ^{\vee} is dominant, and we can consider the line bundle $\mathcal{L}(\lambda)$ on $G/G_{\lambda^{\vee}}$ associated to the weight λ . The structure of $\overline{\mathrm{Gr}}_{\lambda^{\vee}}$ for λ^{\vee} minuscule or quasi-minuscule is described as follows in [NP].

Proposition. (c) If $S_{\mu^{\vee}} \cap \overline{Gr}_{\lambda^{\vee}} \neq \emptyset$, then $\mu^{\vee} \in \Omega(\lambda^{\vee})$.

- (d) If $\mu^{\vee} \in W \cdot \lambda^{\vee}$, then $S_{\mu^{\vee}} \cap \overline{Gr_{\lambda^{\vee}}} = S_{\mu^{\vee}} \cap Gr_{\lambda^{\vee}}$.
- (e) If $\lambda^{\vee} \in X_{+}^{\vee}$ is minuscule, then

$$\overline{Gr_{\lambda^{\vee}}} = Gr_{\lambda^{\vee}} = G/G_{\lambda^{\vee}} \quad and \quad S_{w \cdot \lambda^{\vee}} \cap Gr_{\lambda^{\vee}} \simeq UwG_{\lambda^{\vee}}/G_{\lambda^{\vee}} \quad \forall w \in W.$$

(f) Assume that $\lambda^{\vee} \in X_{+}^{\vee}$ is quasi-minuscule. Then $Gr_{\lambda^{\vee}} \simeq \mathcal{L}(\lambda)$ and $\overline{Gr}_{\lambda^{\vee}} \simeq \mathcal{L}(\lambda) \cup \{e_0\}$ as a G-varieties. Moreover,

$$S_{w \cdot \lambda^{\vee}} \cap Gr_{\lambda^{\vee}} \simeq \begin{cases} UwG_{\lambda^{\vee}}/G_{\lambda^{\vee}} & \text{if } w \cdot \lambda \in R_{-}, \\ \mathcal{L}|_{UwG_{\lambda^{\vee}}/G_{\lambda^{\vee}}} & \text{if } w \cdot \lambda \in R_{+}. \end{cases}$$

3. Proof of the relation $[\mathbf{e}_i, \mathbf{f}_i] = 0$

- **3.1.** Assume that G has rank two and set $I = \{1, 2\}$. The Bruhat decomposition for M_i implies that $M_i e_{\lambda^{\vee}} = U_i e_{s_i \cdot \lambda^{\vee}} \cup U_i U_{-\alpha_i^{\vee}} e_{\lambda^{\vee}}$. Thus,
 - (a) if $(\alpha_i, \lambda^{\vee}) > 0$ then $M_i e_{\lambda^{\vee}} = M_i e_{s_i \cdot \lambda^{\vee}} = U_i e_{\lambda^{\vee}} \cup \{e_{s_i \cdot \lambda^{\vee}}\},$
- (b) if $(\alpha_i, \lambda^{\vee}) = 0$ then $M_i e_{\lambda^{\vee}} = \{e_{\lambda^{\vee}}\}.$
- **3.2.** Assume that λ^{\vee} is a minuscule dominant coweight. Fix $\mu^{\vee} = w \cdot \lambda^{\vee}$ with $w \in W$, and fix $i \in I$. One of the following three cases holds
 - (a) we have $(\alpha_i, \mu^{\vee}) = 1$, and

$$S^{M_i}_{\mu^\vee} \cap \operatorname{Gr}_{\lambda^\vee} = U_i e_{\mu^\vee}, \quad S^{M_i}_{\mu^\vee - \alpha_i^\vee} \cap \operatorname{Gr}_{\lambda^\vee} = \{e_{\mu^\vee - \alpha_i^\vee}\}, \quad \operatorname{Gr}^{M_i}_{\mu^\vee} = U_i e_{\mu^\vee} \cup \{e_{\mu^\vee - \alpha_i^\vee}\},$$

(b) we have $(\alpha_i, \mu^{\vee}) = -1$, and

$$S_{\mu^{\vee}+\alpha^{\vee}}^{M_i} \cap \operatorname{Gr}_{\lambda^{\vee}} = U_i e_{\mu^{\vee}+\alpha^{\vee}_i}, \quad S_{\mu^{\vee}}^{M_i} \cap \operatorname{Gr}_{\lambda^{\vee}} = \{e_{\mu^{\vee}}\}, \quad \operatorname{Gr}_{\mu^{\vee}}^{M_i} = U_i e_{\mu^{\vee}+\alpha^{\vee}_i} \cup \{e_{\mu^{\vee}}\},$$

(c) we have $(\alpha_i, \mu^{\vee}) = 0$, and

$$S^{M_i}_{\mu^\vee} \cap \operatorname{Gr}_{\lambda^\vee} = \operatorname{Gr}^{M_i}_{\mu^\vee} = \{e_{\mu^\vee}\}.$$

Obviously, the sheaf $i \operatorname{res} \mathcal{IC}_{\lambda^{\vee}}$ is supported on $\operatorname{Gr}_{\lambda^{\vee}} \cap \operatorname{Gr}^{M_i}$. Thus, by (2.2.a) and Lemma 2.2, if $\mathbf{f_2e_1}(H_c^*(S_{\mu^{\vee}}, \mathcal{IC}_{\lambda^{\vee}})) \neq \{0\}$ then

$$S^{M_1}_{\mu^\vee}\cap\operatorname{Gr}_{\lambda^\vee},\quad S^{M_1}_{\mu^\vee+\alpha_1^\vee}\cap\operatorname{Gr}_{\lambda^\vee},\quad S^{M_2}_{\mu^\vee+\alpha_1^\vee}\cap\operatorname{Gr}_{\lambda^\vee},\quad S^{M_2}_{\mu^\vee+\alpha_1^\vee-\alpha_2^\vee}\cap\operatorname{Gr}_{\lambda^\vee}$$

are non empty. In particular, we get

$$(\alpha_1, \mu^{\vee}) = -1, \qquad (\alpha_2, \mu^{\vee} + \alpha_1^{\vee}) = 1.$$

Since λ^{\vee} is minuscule, $\mu^{\vee} \in W \cdot \lambda^{\vee}$, and $(\alpha_2, \alpha_1^{\vee}) \leq 0$, we get

$$(\alpha_2, \mu^{\vee}) = 1, \quad (\alpha_1, \mu^{\vee}) = -1, \quad (\alpha_2, \alpha_1^{\vee}) = 0.$$

Similarly,

$$\mathbf{e}_1 \mathbf{f}_2(H_c^*(S_{\mu^{\vee}}, \mathcal{IC}_{\lambda^{\vee}})) \neq \{0\} \Rightarrow (\alpha_2, \mu^{\vee}) = 1, \quad (\alpha_1, \mu^{\vee}) = -1, \quad (\alpha_1, \alpha_2^{\vee}) = 0.$$

Thus we are reduced to the case where $G = \mathrm{SL}(2) \times \mathrm{SL}(2)$, $M_1 \simeq \mathrm{SL}(2) \times \{1\}$, $M_2 = \{1\} \times \mathrm{SL}(2)$, $\lambda^{\vee} = \omega_1^{\vee} + \omega_2^{\vee}$, $\mu^{\vee} = -\omega_1^{\vee} + \omega_2^{\vee}$, and $\mathcal{IC}_{\lambda^{\vee}}$ is the constant sheaf on $\mathrm{Gr}_{\lambda^{\vee}}$. Then,

$$\operatorname{Gr}_{\lambda^{\vee}} \simeq \mathbb{P}^1 \times \mathbb{P}^1, \quad \operatorname{Gr}^{M_1} \cap \operatorname{Gr}_{\lambda^{\vee}} \simeq \mathbb{P}^1 \times \{0, \infty\}, \quad \operatorname{Gr}^{M_2} \cap \operatorname{Gr}_{\lambda^{\vee}} \simeq \{0, \infty\} \times \mathbb{P}^1.$$

Recall that, with the notations of Section 1.4, the fiber of \mathcal{L}_G^{-1} at $e_{\lambda^{\vee}}$ is identified with $\mathbb{C}t^{\lambda^{\vee}}w_0$. Recall also that the extended affine Weyl group $W \ltimes X^{\vee}$ acts on the lattice $\operatorname{Hom}(T \times \mathbb{G}_m, \mathbb{G}_m)$ in such a way that $\lambda^{\vee} \cdot \tilde{\omega}_0 = \lambda + \tilde{\omega}_0$ for all $\lambda^{\vee} \in X^{\vee}$ (see [PS, Proposition 4.9.5] for instance). Thus, for any dominant coweight λ^{\vee} the restriction of \mathcal{L}_G to the G-orbit $G \cdot e_{\lambda^{\vee}}$ is the line bundle $\mathcal{L}(\lambda)$ on $G/G_{\lambda^{\vee}}$. In particular the restriction of the line bundle \mathcal{L}_i to $\operatorname{Gr}_{\lambda^{\vee}}^{M_i}$ is $O_{\mathbb{P}^1}(1)$. Thus $\mathbf{e}_1 = l \otimes id$ and $\mathbf{e}_2 = id \otimes l$, where l is the product by the 1-st Chern class of $O_{\mathbb{P}^1}(1)$. The relation is obviously satisfied.

3.3. Assume that λ^{\vee} is a quasi-minuscule dominant coweight. Observe that if G is of type $A_1 \times A_1$, A_2 or B_2 , then the set of minuscule coweights is non empty. Thus, from Section 2.3 we can assume that G is of type G_2 . Let α_1^{\vee} be the long simple coroot, and let α_2^{\vee} be the short one. Then

$$\lambda^{\vee} = \alpha_1^{\vee} + 2\alpha_2^{\vee}, \qquad (\alpha_2, \alpha_1^{\vee}) = -3, \qquad (\alpha_1, \alpha_2^{\vee}) = -1.$$

Set $\mathcal{L} = \mathcal{L}(\lambda)$ and $\bar{\mathcal{L}} = \mathcal{L} \cup \{e_0\}$. Then $\overline{\mathrm{Gr}}_{\lambda^{\vee}} \cap \mathrm{Gr}^{M_i}$ is the fixpoints set of Z_i on $\bar{\mathcal{L}}$, i.e.

$$\overline{\operatorname{Gr}}_{\lambda^{\vee}} \cap \operatorname{Gr}^{M_i} = \{e_0\} \cup \bigcup_{\mu^{\vee} \in W \cdot \lambda^{\vee}} \operatorname{Gr}_{\mu^{\vee}}^{M_i} \quad \text{where} \quad \operatorname{Gr}_{\mu^{\vee}}^{M_i} = {}^{Z_i} \mathcal{L}|_{M_i e_{\mu^{\vee}}}.$$

Assume that $\mu^{\vee} = w \cdot \lambda^{\vee}$ with $w \in W$.

- (a) If $(\alpha_i, \mu^{\vee}) = 0$ then $\operatorname{Gr}_{\mu^{\vee}}^{M_i} = {}^{Z_i} \mathcal{L}|_{e_{\mu^{\vee}}}$. The torus T acts on the fiber $\mathcal{L}|_{e_{\mu^{\vee}}}$ by the character μ . Since $\mu^{\vee} \neq 0$ and $(\alpha_i, \mu^{\vee}) = 0$, necessarily $\mu(Z_i)$ is non-trivial. Thus, $\operatorname{Gr}_{\mu^{\vee}}^{M_i} = e_{\mu^{\vee}}$.
- (b) If $(\alpha_i, \mu^{\vee}) = 2$ then $\mu^{\vee} = \alpha_i^{\vee}$ and $Gr_{\mu^{\vee}}^{M_i} = \mathcal{L}|_{M_i e_{\alpha_i^{\vee}}}$. Moreover, since λ^{\vee} is short and α_1^{\vee} is long we have i = 2.

(c) If $(\alpha_i, \mu^{\vee}) = 1$ then $\operatorname{Gr}_{\mu^{\vee}}^{M_i} = M_i e_{\mu^{\vee}}$ because

$$(\mu(Z_i) = 1 \text{ and } \mu^{\vee} \in R^{\vee}) \Rightarrow \mu^{\vee} \in \mathbb{Z}\alpha_i^{\vee} \Rightarrow (\alpha_i, \mu^{\vee}) \neq 1.$$

In Case (b) we get (i = 2)

$$\begin{split} S^{M_i}_{\alpha_i^\vee} \cap \overline{\operatorname{Gr}}_{\lambda^\vee} &= \mathcal{L}|_{U_i e_{\alpha_i^\vee}}, \quad S^{M_i}_{-\alpha_i^\vee} \cap \overline{\operatorname{Gr}}_{\lambda^\vee} = e_{-\alpha_i^\vee}, \quad S^{M_i}_0 \cap \overline{\operatorname{Gr}}_{\lambda^\vee} = \bar{\mathcal{L}}^\times|_{e_{-\alpha_i^\vee}}, \\ \text{and} \quad \overline{\operatorname{Gr}}^{M_i}_{\alpha_i^\vee} &= \bar{\mathcal{L}}|_{M_i e_{\alpha_i^\vee}}, \end{split}$$

where the upperscript \times means than the zero section has been removed. In Case (c) we get

$$S^{M_i}_{\mu^\vee} \cap \overline{\operatorname{Gr}}_{\lambda^\vee} = U_i e_{\mu^\vee}, \quad S^{M_i}_{\mu^\vee - \alpha_i^\vee} \cap \overline{\operatorname{Gr}}_{\lambda^\vee} = e_{\mu^\vee - \alpha_i^\vee}, \quad \text{and} \quad \overline{\operatorname{Gr}}^{M_i}_{\mu^\vee} = U_i e_{\mu^\vee} \cup e_{\mu^\vee - \alpha_i^\vee}.$$

Thus, for any $\mu^{\vee} \in X^{\vee}$, Claim (2.2.a) and Lemma 2.2 imply that

(d) if
$$\mathbf{e}_1(H_c^*(S_{\mu^{\vee}}, \mathcal{IC}_{\lambda^{\vee}})) \neq \{0\}$$
 then $(\alpha_1, \mu^{\vee}) = -1$, or $\mu^{\vee} = 0$, or $\mu^{\vee} = -\alpha_1^{\vee}$,

(e) if
$$\mathbf{f}_2(H_c^*(S_{\mu^{\vee}}, \mathcal{IC}_{\lambda^{\vee}})) \neq \{0\}$$
 then $(\alpha_2, \mu^{\vee}) = 1$, or $\mu^{\vee} = 0$, or $\mu^{\vee} = \alpha_2^{\vee}$.

Observe that in Case (d) the identity (2.4.c) and Lemma 2.2 imply indeed that $\mu^{\vee} \neq 0, -\alpha_{1}^{\vee}$, because

$$H^*_c(S_{\alpha_1^\vee},\mathcal{IC}_{\lambda^\vee})=H^*_c(S_{-\alpha_1^\vee},\mathcal{IC}_{\lambda^\vee})=\{0\}.$$

Thus, if $\mathbf{f}_2\mathbf{e}_1(H_c^*(S_{\mu^\vee}, \mathcal{IC}_{\lambda^\vee})) \neq \{0\}$ then $(\alpha_1, \mu^\vee) = -1$ and $(\alpha_2, \mu^\vee + \alpha_1^\vee) = 1$. We get $(\alpha_2, \mu^\vee) = 4$. This is not possible since $\mu^\vee \in \Omega(\lambda^\vee)$ and λ^\vee is quasi-minuscule. Similarly, if $\mathbf{e}_1\mathbf{f}_2(H_c^*(S_{\mu^\vee}, \mathcal{IC}_{\lambda^\vee})) \neq 0$ then $(\alpha_1, \mu^\vee) = -2$. This is not possible either. Thus, the relation $[\mathbf{e}_1, \mathbf{f}_2] = 0$ is obviously satisfied. The relation $[\mathbf{e}_2, \mathbf{f}_1] = 0$ is proved in the same way.

Acnowledgements. The author would like to thank A. Beilinson and B.C. Ngô for discussion on this subject.

References

- [BD] Beilinson, A., Drinfeld, V., Quantization of Hitchin's Hamiltonians and Hecke eigensheaves, preprint.
- [BG] Braverman, A., Gaitsgory, D., Crystals via the affine grassmannian, preprint/alg-geom 9909077.
- [Ka] Kac, V., Infinite dimensional Lie algebras, Cambridge University Press, 1990.
- [KL] Kazhdan, D., Lusztig, G., Schubert varieties and Poincaré duality, Proc. Sympos. Pure Maths. 36 (1980), 185-203.
- [KT] Kashiwara, M., Tanisaki, T., Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras II, Prog. Math. 92 (1990), Birkhauser, 159-195.
- [Ku] Kumar, S., Infinite grassmannians and moduli spaces of G-bundles, Lecture Notes in Math. 1649 (1997), 1-49.
- [MV] Mirkovic, I., Vilonen, K., Perverse sheaves on affine grassmannians and Langlands duality, preprint/alg-geom 9911050.

- [NP] Ngô, B.C., Polo, P., Autour des faisceaux pervers sphériques sur la grassmanienne affine, preprint (1999).
- [PS] Pressley, A., Segal, G., Loop groups, Oxford Mathematical Monographs, 1986.

Eric Vasserot Département de Mathématiques Université de Cergy-Pontoise 2 Av. A. Chauvin 95302 Cergy-Pontoise Cedex France email: eric.vasserot@u-cergy.fr