1) Regression

a) Activation Functions

• Linear (No Activation Functions):

Equation:
$$f(x) = x$$

- o **When Used**: Standard regression problems where the output is a real number.
- Tanh:

Equation:
$$f(x) = anh(x) = rac{2}{1+e^{-2x}} - 1$$

- o When Used: Regression problems where the output needs to be scaled between -1 and 1.
- ReLU:

Equation:
$$f(x) = \max(0, x)$$

 When Used: Specific cases of regression problems where non-linearity is needed in the output.

• Leaky ReLU:

Equation:
$$f(x) = \max(0.01x, x)$$

 $_{\circ}$ When Used: To avoid the "dying ReLU" problem in regression tasks.

b) Cost Functions

• Mean Squared Error (MSE):

Equation:
$$ext{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y_i})^2$$

- When Used: Standard regression problems to minimize the squared difference between predicted and actual values.
- Mean Absolute Error (MAE):

Equation:
$$\mathrm{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

- When Used: Regression problems to minimize the absolute difference between predicted and actual values.
- Huber Loss:
 - o Equation:

$$L_\delta(a) = egin{cases} rac{1}{2}a^2 & ext{for } |a| \leq \delta \ \delta(|a| - rac{1}{2}\delta) & ext{for } |a| > \delta \end{cases}$$

When Used: Regression problems to be less sensitive to outliers than MSE.

c) Examples

- Predicting house prices
- Predicting stock prices
- Predicting normalized values that can take both positive and negative values

2) Binary Classification

a. Activation Functions

• Sigmoid:

Equation:
$$f(x)=rac{1}{1+e^{-x}}$$

 When Used: Binary classification problems where the output is a probability between 0 and 1.

b. Cost Functions

• Binary Cross-Entropy (Log Loss):

Equation:
$$ext{BCE} = -rac{1}{n}\sum_{i=1}^n [y_i\log(\hat{y_i}) + (1-y_i)\log(1-\hat{y_i})]$$

- When Used: Binary classification problems to measure the performance of a classification model whose output is a probability value.
- Hinge Loss:

Equation: Hinge
$$\operatorname{Loss} = \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i \cdot \hat{y_i})$$

 When Used: Binary classification problems, often used with Support Vector Machines (SVMs).

c. Examples

- Predicting whether an email is spam or not
- Predicting whether a customer will buy a product (yes/no)

3) Multi-Class Classification

A. Activation Functions

• SoftMax:

Equation:
$$f(x_i) = rac{e^{x_i}}{\sum_j e^{x_j}}$$

 When Used: Multi-class classification problems where the output is a probability distribution over multiple class.

B. Cost Functions

• Categorical Cross-Entropy:

Equation:
$$ext{CCE} = -rac{1}{n}\sum_{i=1}^n\sum_{c=1}^C y_{i,c}\log(\hat{y_{i,c}})$$

- When Used: Multi-class classification problems to measure the performance of a classification model whose output is a probability value over multiple classes.
- Sparse Categorical Cross-Entropy:

Equation:
$$\mathrm{SCCE} = -rac{1}{n}\sum_{i=1}^n \log(\hat{y_{i,c}})$$

 When Used: Multi-class classification problems when labels are integers rather than onehot encoded vectors.

C. Examples

- Classifying images of handwritten digits into one of 10 classes (0-9)
- Classifying types of animals in an image dataset (e.g., cat, dog, horse)

4) Summary

a) Regression:

- Activation Functions: Linear, Tanh, ReLU, Leaky ReLU
 - Linear: f(x) = x
 - Tanh: $f(x) = anh(x) = rac{2}{1+e^{-2x}} 1$
 - ReLU: $f(x) = \max(0, x)$
 - Leaky ReLU: $f(x) = \max(0.01x, x)$
- o Cost Functions: Mean Squared Error (MSE), Mean Absolute Error (MAE), Huber Loss
 - MSE: $ext{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i \hat{y_i})^2$
 - MAE: $\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y_i}|$
 - Huber Loss:

$$L_\delta(a) = egin{cases} rac{1}{2}a^2 & ext{for } |a| \leq \delta \ \delta(|a| - rac{1}{2}\delta) & ext{for } |a| > \delta \end{cases}$$

b) Binary Classification:

- o Activation Function: Sigmoid
 - Sigmoid: $f(x) = \frac{1}{1 + e^{-x}}$
- Cost Functions: Binary Cross-Entropy, Hinge Loss
 - Binary Cross-Entropy: $\mathrm{BCE} = -\frac{1}{n} \sum_{i=1}^n [y_i \log(\hat{y_i}) + (1-y_i) \log(1-\hat{y_i})]$
 - Hinge Loss: Hinge Loss $= \frac{1}{n} \sum_{i=1}^n \max(0, 1 y_i \cdot \hat{y_i})$

c) Multi-Class Classification:

Activation Function: Softmax

• Softmax: $f(x_i) = rac{e^{x_i}}{\sum_j e^{x_j}}$

Cost Functions: Categorical Cross-Entropy, Sparse Categorical Cross-Entropy

• Categorical Cross-Entropy: $ext{CCE} = -rac{1}{n} \sum_{i=1}^n \sum_{c=1}^C y_{i,c} \log(\hat{y_{i,c}})$

• Sparse Categorical Cross-Entropy: $ext{SCCE} = -rac{1}{n} \sum_{i=1}^n \log(\hat{y_{i,c}})$

