Final Project

Sign Language Symbol Detection

Agenda ->

- 1) Problem we're facing
- 2) Some General Statistics
- 3) Our Data
- 4) Modelling
- 5) Results
- 6) Conclusions

SIGN LANGUAGE IS NOT A POPULAR LANGUAGE

THE MOTIVATION BEHIND THIS PROJECT IS TO HELP REDUCE
THE COMMUNICATION GAP WITH THE HEARING IMPARED

CAN DEEP LEARNING METHODS HELP IDETIFY SIGN LANGUAGE?

GENERAL -> STATISTICS

Disabling hearing loss		466M
Deaf people worldwide	3	72M
Access to education		2%
Lack Communication		77%
Difficulty communication with drivers		51%

The Dataset Source

- Dataset represent different angles, background and other sentiments of sign language letters.
- Created in 2015.
- Containing 24,300 Training images and 2,700
 Test images, divided into 26 categories (for each letter) and 1 blank category.

CREATING OUR DATA ->

O1

LOWERING THE TRAINING
SET TO 4850 IMAGES

O2
CREATING VALUE

CREATING VALIDATION
SET OUT OF OUR
TRAINING IMAGES

03

RESIZING IMAGES FROM 513X512 TO 48X48.

04

NORMALAIZING THE DATE

Our Data Set

Training Images per category

150

Validation Images per category

50

Test Images per caetgopry

100

EDA -> IMAGE SHARPNESS

Category	Average Sharpness	STD of Sharpness	
Α	0.001609	0.001165	
В	0.001987	0.001258	
С	0.002089	0.001386	
D	0.002306	0.001528	
E	0.00159	0.000886	
F	0.002452	0.002004	
G	0.002424	0.001606	
H	0.002694	0.002343	
1	0.00171	0.001462	
J	0.001715	0.000954	
K	0.001903	0.001126	
L	0.002006	0.001324	
M	0.001936	0.001247	

Category	Average Sharpness	STD of Sharpness	
N	0.001603	0.001111	
О	0.002145	0.001498	
P	0.001911	0.001218	
Q	0.001823	0.001703	
R	0.002112	0.00089	
S	0.001651	0.001095	
Т	0.001663	0.000987	
U	0.001762	0.001039	
v	0.001739	0.001081	
W	0.002122	0.001081	
X	0.002077	0.001419	
Υ	0.001908	0.001329	
Z	0.001807	0.001146	
Blank	0.001332	0.00121	

EDA -> IMAGE AVERAGES

Project Limitations -->

Given various computing and data limitations we think there is much room to increase accuracy in the future using this model.

- Small training set size.
- Reduced image quality.
- Various backgrounds that may cause noise.
- Different symbols with high similarities.

MODEL ARCHITECHTUERS

	CNN	LINEAR LAYERS	BATCH NORM	DROP OUT
MODEL 1				
MODEL 2				
MODEL 3				
MODEL 4				
MODEL 5				
MODEL 6				

INPUT LAYER

48*48*3
RESIZED PICTURES IN RGB

HIDDEN LAYERS

VARIOUS AMOUNTS OF LAYERS AND SIZES

OUTPUT LAYER

27
AMOUNT OF DIFFERENT SYMBOLS IN THE DATA

MODEL LAYERS

BEST MODEL RESULTS

Visualizing Loss

Accuracy Per Symbol

Symbol Confusion Matrix

PROJECT CONCLUSIONS

01

63% Accuracy > 3.7% Baseline

02

10 symbols with over 70% Accuracy

03

Only 2 Symbols with under 50% Accuracy

A LITTLE TEST WE RAN

OUTPUT

Your Word is: DATA

Whats Next?

60% is not an exceptional accuracy but we think this is a great starting point for a field that has barely been explored.

- Increase computing power to evolve the model.
- Figure out how to separate and optimize specific symbols.
- Help Implement model into educational tools.
- Evolve the model to take video as an input.

THE TOTAL STATE OF THE PARTY OF

THANK YOU:)

