仓储管理子系统分析与设计

1 软件需求概述

1.1 任务概述

(1) 软件名称

基于 SPC 技术的仓储管理子系统

(2) 目标

该子系统为整个基于紫光云平台的工业互联网 APP 的一部分,作为原 APP 的第二个核心模块来构建。该模块主要面向汽车工业领域,与第一模块——汽车零部件过程控制子系统相互配合,有序衔接,以质量过程控制为主,共同形成一个"供应链管理"→"仓储管理"→"流水线产品各质量参数测量"→"物联网数据收集"→ "SPC 实时过程监管与质量监控"→"SPC 异常报告与追溯"→"仓储管理"→"供应链管理"的汽车零部件工业互联网过程链。

而该子系统作为仓储管理的核心模块,旨在让用户利用系统对仓储的信息做出控制,完成对仓库中的汽车零部件零件信息的增删查改、仓库相关人员的信息管理、零件质量相关信息的管控等功能,让汽车零部件在脱离生产阶段和抽查质检阶段后,在仓库中也能进行质量控制。

1.2 系统用户

(1) 仓库管理员

仓库管理员是仓库信息管理的主要负责人,能够对单据信息、仓库信息、入库信息、货物信息、出库信息进行增删查改。同时,仓库管理员也负责接收出入库通知,接收来自系统的统计分析信息、日报月报等。

仓库管理员还是质量控制的主要负责人,能够对零件的测量信息、 损耗信息、维保信息、报废信息,接收质量统计分析、质量预警报警 信息、质量阶段报告等,从而对仓库中的零件质量做出把控。

(2) 超级管理员

超级管理员有着最大的权限,由开发人员在数据库中指定账户和 密码,其他人不得随意增加和修改。超级管理员除了拥有一般仓库管 理员的权限之外,还能够管理人员信息,对仓库管理员人员名单进行

增删查改。

(3) Timer

Timer 是一个定时器,用于定期以前一个阶段的仓储信息作为数据源,生成仓储统计报告、质量阶段性报告、日报、月报等。

1.3 功能描述

(1) 登录功能

完成用户的登录操作,负责核审用户身份、识别用户类型,并针对不同类型的用户显示不同的管理界面。各个用户功能重复的部分将复用这些功能。

(2) 仓储信息的增删查改

由仓库管理员负责,对单据信息、库房信息、入库信息、货物信息、出库信息进行增删查改。下面对各类信息做出规定。

单据信息又包括入库单、出库单、报废单、退货单、退仓单等, 所有零件的进出都要形成单据,系统用相应子模块来进行单据的管理。

库房信息包括库房位置信息、库房类型、库房环境信息,其中库 房环境信息包括库房的温度、湿度等,对零件的质量控制中的原因分 析有很大的作用。

入库信息包括供货商信息、货位信息、库房信息、货物来源信息、 供应计划、到货信息、入库清单、采购计划、入库日报月报等。供货 商与货物信息就在这里发生交汇,入库信息是管理员上溯货物来源的 核心。

货物信息是仓库信息的重点,与系统所面向的领域有紧密的关联,包括汽车的零件属性测量、库存信息、类型信息、用途、级别、材料。该子系统的第二分模块——质量控制,所基于的信息就主要来源于货物信息。

出库信息包括采购商信息、货物位置信息、货物流通信息、销售计划、出库清单、需求信息、出货信息、出库日报月报等。采购商与货物信息在这里发生交互,出库信息是管理员追踪货物流向的核心。

(3) 零件参数定期收集

第一,数据收集。系统定期对仓库中的零件进行测量参数的收集,

以便后续绘制控制图,进行质量管控。参数收集有几种方式,包括人工测量、物联网测量、与外部系统交互收集等。

人工测量录入由仓库管理员负责,将具体子任务分配到测量工人,工人采用专业测量仪器,对仓库中已经贮藏的零部件进行抽样测量,将参数记录成表。仓库管理员收集各个参数记录,从零部件种类、批次、参数类型几个方面对数据汇总整理。

物联网测量采集由自动测量机器负责,此过程不在本系统功能 范围之内。机器将自动抽样,测量指定的零件参数数据,由物联网传 递到本系统,系统将对机器收集的数据进行处理。

外部系统交互考虑到仓储系统是货物流通环节中的一环,而现有流通环节中的其他系统——比如采购商的系统、专业质量测量系统——大部分也有参数收集这一功能,于是本系统可以与外部系统交互,复用外部系统所收集的数据,减少总开销,节约成本。

第二,数据格式化。系统将收集来的数据转化成系统其他模块可以处理的数据。比如统计模块、控制图绘制模块,其所需要的均是格式化过的标准数据。

另外,对于物联网采集的、外部系统复用的数据,在数据格式 化中还将对其进行清洗,以免产生误差。

(4) 质量信息增删查改

由仓库管理员负责,对零件的测量信息、损耗信息、维保信息、 报废信息进行增删查改。下面对各类信息做出规定。

测量信息与货物信息相关联,是货物信息的拓展与外延,包括货物基本信息,测量批次信息、各类参数的具体数据、测量方式、测量人员等。

损耗信息记录了零件的损耗状态,包括货物基本信息、损耗类型、 申报日期、损耗程度、具体损耗情况等信息。

维保信息记录了维修保养的相关信息,包括货物基本信息、维保 时间、维保人员、维保具体情况等。

报废信息记录了已报废零件,包括货物基本信息、报废时间、报 废类型、鉴定人员等。

(5) 质量控制

第一,控制图的绘制。此功能与原系统另一个核心模块——过程质量实时监控模块功能有重复,将复用原系统的控制图绘制模块。本子系统将充分利用 SPC 技术,基于收集来的测量信息,绘制控制图。仓库管理员可以创建控制计划,系统根据控制计划绘制相应的控制图。

第二,异常预警与报告生成。系统根据定期测量结果,结合 SPC 中的安全限,对零件的质量进行分析,一旦发现异常,将生成异常分析报告,及时通知仓库管理员。如果没有异常,系统将分析零件当前状态,预判可能产生的风险,对风险做出预警,将预警信息整理成报告,一并发送给仓库管理员。

(6) 统计数据与报告生成

Timer 定期对仓储信息进行数据汇总,运用统计学知识,对货物的数量、出入库时间、供货商位置、销售渠道等信息进行统计汇总,绘制统计表和统计图,生成统计报告,发送给仓库管理员,以便仓库管理员对仓库的运营状况有总体上的把握。

(7) 人员管理

只能由超级管理员进行,包括对仓库管理员信息的增删查改,对 仓库管理员的权限作出管理。

2 用例建模

2.1 顶层用例图

2.1.1 用例图简述

仓库管理员可以登录系统、对仓储信息和质量信息进行管理,对于所有的仓储信息和质量信息都可以查看并打印统计报告。统计报告由 Timer 定期对各类数据进行统计汇总,整理后打印而成。此外,仓库管理员还能对仓库中的零件进行质量控制,包括控制图的绘制,而具体的控制图则是由本项目的另一个子系统来完成绘制。仓库管理员和自动化设备均可以录入测量的数据。超级管理员继承自仓库管理员,拥有更大的权限,可以对各个仓库的管理员进行分配、设置等,还可以设置系统的参数,即一个零件有哪些属性,属性对应的控制图的类型。

2.1.2 登录用例描述

表 2.1.2 登录用例描述表

用例名称	登录
用例编号	UC01
用例说明	仓库管理员或超级管理员通过账号和密码来登录仓储管理子
	系统。
参与者	仓库管理员
前置条件	系统显示登录界面,生成验证码
基本事件流	1.【仓库管理员】输入账号、密码、验证码
	2.【仓库管理员】点击"登录"按钮
	3.【系统】验证用户权限
	4.【系统】显示功能界面
	4a. 如果仓库管理员的权限为超级管理员:
	4a1.【系统】显示扩展的功能界面
	4b. 如果仓库管理员的权限为普通:
	4b1.【系统】显示普通功能界面
可选事件流	1a.【用户】点击"看不清,换一个"
	1a1.【系统】生成新的验证码,刷新验证码
	2a. 如果账号不存在:
	2a1.【系统】提示错误信息,生成新验证码,返回步骤 1
	2b. 如果密码错误:
	2b1. (密码错误)【系统】提示错误信息,生成新验证码,
	返回步骤1
	2b2. (密码输入次数限制)【系统】如果连续输入 5 次密码,
	锁死账户 15 分钟,用例结束
	2b3. (密码累计输入次数限制)【系统】如果当日密码输错
	次数累计达到 20 次,锁死账户一天,用例结束
后置条件	系统将用户的登录时间、地点等信息格式化为登录记录,上
	传到数据库

2.1.3 生成统计报告用例描述

表 2.2.2 生成统计报告用例描述表

用例名称	生成统计报告
用例编号	UC02
用例说明	系统定期对仓储信息进行汇总,运用统计学方法对汇总的信
	息进行统计分析,绘制统计图和统计表,生成统计报告。
参与者	Timer (定时器)
前置条件	系统已经运行到超级管理员设定的统计阶段
基本事件流	1.【Timer】调用"生成统计报告"功能
	2.【Timer】将统计对象以参数的形式传入系统
	3.【系统】根据统计对象对数据库进行检索
	4.【系统】对出入库货物进行分类,计算金额、比例,按照超
	级管理员设置的系统参数来绘制相应的统计表、统计图
	5.【系统】将统计报告发送给仓库管理员
可选事件流	3a. (统计对象数据不存在)【系统】生成错误日志,将日志发
	送给超级管理员。
后置条件	Timer 将统计报告备份到服务器相应位置

2.2 细化的用例图

2.2.1 仓储信息管理用例图

2.2.1.1 用例图简述

仓库管理员可以对仓库的信息进行增删查改,包括设置库房的位置、状态信息、储位信息等;可以通过提交单据来修改出入库信息,具体为入库单、出库单、退仓单、退货单、拣货单;可以查询并修改货物的一些信息,如数量、单价、重量。

2.2.2 质量信息管理用例图

2.2.2.1 用例图简述

仓库管理员可以对存储在仓库中零件的质量数据进行增删查改,包括选择零件、录入测量信息、维保信息和报废信息。对这些信息的管理依然通过单据进行,测量信息通过测量计划来控制,录入测量数据严格按照测量计划。维保信息和报废信息分别通过维保单和报废单来管理。

2.2.3 录入测量数据用例图

2.2.3.1 用例图简述

仓库管理员和自动化设备均可以创建测量计划,测量计划描述了要测量哪个零件,测量这个零件的哪些属性、批容量、批次、采样间隔等参数信息,测量计划可以被打印,以便提交上级。

录入测量数据时先绑定一个测量计划,按照测量计划上的参数进行测量 数据的录入,系统会验证数据的合法性、数据格式化、计算参数、数据加入 数据库。

2.2.3.2 创建测量计划用例描述

表 2. 2. 3. 2 创建测量计划用例描述表(仓库管理员)

用例名称	创建测量计划
参与者	仓库管理员
前置条件	仓库管理员已登录系统
基本事件流	1.【仓库管理员】点击"创建测量计划"按钮
	2.【系统】弹出创建测量计划浮窗
	3.【仓库管理员】选择零件,选择零件属性,填写批次、批容
	量等测量参数
	4.【系统】验证零件和测量参数的合法性
	5.【系统】显示测量计划创建成功
可选事件流	4a. (零件不存在或测量参数设定不合法)【系统】显示错误信
	息,返回步骤3
	5a.【仓库管理员】点击"打印测量计划"按钮
	5a1.【系统】将测量计划格式化
	5a2.【系统】将测量计划打印成 pdf 并发送到仓库管理员
	5b.【仓库管理员】点击"立即录入数据"按钮
	5b1.【系统】转跳到数据录入页面,用例结束
后置条件	系统将测量计划加入数据库

表 2.2.3.3 创建测量计划用例描述表(自动化设备)

用例名称	创建测量计划
参与者	自动化设备
前置条件	自动化设备连接正常
基本事件流	1.【自动化设备】调用系统接口,申请创建测量计划
	2.【系统】检查自动化设备编号,校验合法性
	3.【自动化设备】将测量计划信息以参数的形式传入系统
	4.【系统】格式化参数信息,验证参数信息合法性
	5.【系统】创建成功,返回成功状态码给自动化设备
可选事件流	2a. (自动化设备不在合法设备列表)【系统】生成错误日志,
	发送给超级管理员,返回异常状态码,用例结束
	4a. (参数信息不合法)【系统】返回异常状态码,用例结束
后置条件	系统将测量计划加入数据库

2.2.4 质量控制用例图

2.2.4.1 用例图描述

仓库管理员可以对零件进行质量控制,首先创建仓储控制计划,仓储控制计划与测量计划绑定,针对一次测量来绘制控制图,提交仓储控制计划给SPC 质量控制子系统后,其返回相应的控制图和异常分析报告,仓库管理员可以分析并打印报告,上交给上级人员。

2.2.4.2 创建仓储控制计划用例描述

表 2.2.4.2 创建仓储控制计划用例描述表

用例名称	创建仓储控制计划
参与者	仓库管理员
前置条件	仓库管理员已登录
基本事件流	1.【仓库管理员】点击"创建控制计划"按钮
	2.【系统】弹出创建控制计划按钮浮窗
	3.【仓库管理员】选择零件,填写控制计划信息
	4.【仓库管理员】选择一个测量计划与本次控制计划关联
	5.【系统】验证填写数据的合法性,向 SPC 质量控制子系统
	确认此零件参数有相应的控制图
	6.【系统】显示控制计划创建成功
可选事件流	5a. (数据不合法)【系统】显示错误信息,返回步骤 3
	6a.【仓库管理员】点击"用该控制计划生成控制图"按钮
	6a1.【系统】调用生成控制图的接口,本用例结束
后置条件	系统将控制计划加入数据库

2.2.4.3 查看控制图用例描述

表 2.2.4.3 查看控制图用例描述表

用例名称	查看控制图
参与者	仓库管理员
前置条件	仓库管理员已登录
基本事件流	1.【仓库管理员】点击"查看控制图"按钮
	2.【系统】显示控制图选项
	3.【仓库管理员】选择控制计划
	4.【系统】根据控制计划从数据库获取测量数据
	5.【系统】将控制计划和测量数据传入 SPC 质量控制子系统,
	获取控制图
	6.【系统】显示控制图
可选事件流	5a. (SPC 质量控制子系统发现异常)【系统】生成异常分析报
	告
后置条件	系统将控制图、异常分析报告备份,将本次活动写入日志

3 静态建模

3.1 类模型

3.1.1 仓储管理子功能类图

类图描述:

- a) 仓库管理员管理仓库,每个仓库都有一个状态。
- b) 仓库由多个储位聚合。
- c) 一个储位可以储存多种零件,一种零件可以放在多个储位中。
- d) 一种零件可以拥有多个属性。
- e) 仓库管理员可以创建单据。
- f) 单据可以泛化为入库单、退仓单、出库单、退货单、拣货单。入库单、退仓单与供货商挂钩; 出库单、退货单与销售商挂钩。
- g) 单据由多个单据条目组成,每个单据条目与零件对应。
- h) 超级管理员可以设置 Timer 的统计间隔。
- i) 仓库管理员调用 Timer 来获取统计日报、月报等。

3.1.2 仓储质量控制子功能类图

类图描述:

- a) 仓库管理员与自动化设备可以创建测量计划。
- b) 仓库管理员与自动化设备录入数据时需要创建测量单,每个测量单都与 一个测量计划挂钩。
- c) 测量单由测量单条目组成。
- d) 测量计划包含了测量的零件,零件拥有一个或多个属性。
- e) 仓库管理员可以创建控制计划,控制计划与一个测量计划绑定,对其中 的测量数据进行质量控制,绘制控制图,生成质量分析报告。
- f) 仓库管理员还能创造检查单,具体泛化为损耗检查单、维保单、报废单。 损耗检查单由检查人员对一个或多个储位的零件进行检查后,反馈的损 耗情况。维保单是维修保养人对零件进行维修保养后反馈的结果情况。 报废单是检查人员核查后发现零件已达到报废标准,登记报废时的单据。