Survival Analysis

Abram Hindle

November 4, 2020

Contents

1	Sur	vival A	Analysis	1
	1.1	Copyr	right Statement	1
		1.1.1	License	2
		1.1.2	Alternative version	2
		1.1.3	Init ORG-MODE	2
		1.1.4	Org export	3
		1.1.5	Org Template	3
	1.2	Surviv	val Analysis	4
		1.2.1	Survival Data	4
		1.2.2	Surv object	5
		1.2.3	Plotting Surv object	6
		1.2.4	OK but software engineering?	7
		1.2.5	What about for a lot more bugs?	8
		1.2.6	Cox Proportional-Hazards Model	13
		1.2.7	Pretty Plots with Survminer	15
		1.2.8	Better	15

1 Survival Analysis

1.1 Copyright Statement

If you are in CMPUT201 at UAlberta this code is released in the public domain to you.

Otherwise it is (c) 2020 Abram Hindle

1.1.1 License

Survival Analysis Copyright (C) 2020 Abram Hindle

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITH-OUT ANY WARRANTY; without even the implied warranty of MER-CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see https://www.gnu.org/licenses/.

1.1.2 Alternative version

Checkout the .txt, the .pdf, and the .html version

1.1.3 Init ORG-MODE

```
;; I need this for org-mode to work well
;; If we have a new org-mode use ob-shell
;; otherwise use ob-sh --- but not both!
(if (require 'ob-shell nil 'noerror)
  (progn
    (org-babel-do-load-languages 'org-babel-load-languages '((shell . t))))
  (progn
    (require 'ob-sh)
    (org-babel-do-load-languages 'org-babel-load-languages '((sh . t)))))
(org-babel-do-load-languages
 'org-babel-load-languages
'((R . t)))
(org-babel-do-load-languages 'org-babel-load-languages '((C . t)))
(org-babel-do-load-languages 'org-babel-load-languages '((python . t)))
(setq org-src-fontify-natively t)
(setq org-confirm-babel-evaluate nil) ;; danger!
(custom-set-faces
 '(org-block ((t (:inherit shadow :foreground "black"))))
'(org-code ((t (:inherit shadow :foreground "black")))))
(setq org-startup-with-inline-images t)
(setq org-redisplay-inline-images t)
```

```
(add-hook 'org-babel-after-execute-hook 'org-display-inline-images)
(add-hook 'org-mode-hook 'org-display-inline-images)
```

1.1.4 Org export

```
(org-html-export-to-html)
(org-latex-export-to-pdf)
(org-ascii-export-to-ascii)
```

1.1.5 Org Template

```
summary(runif(100))
```

geom_point()

Min. 1st Qu.

```
0.002381 0.171639 0.526952 0.516076 0.827670 0.986003
library("ggplot2")
ggplot(iris, aes(x = Sepal.Width, y = Sepal.Length, color = Species)) +
```

Mean 3rd Qu.

Max.

Median

1.2 Survival Analysis

https://github.com/therneau/survival https://cran.r-project.org/web/packages/survival/index.html https://cran.r-project.org/web/packages/survival/survival.pdf

1.2.1 Survival Data

Let's try it out from the R package Let's look at what is expected from survival data:

library(survival)
aml

```
2
     13
              1
                    Maintained
3
     13
              0
                    Maintained
4
     18
              1
                    Maintained
5
     23
              1
                    Maintained
6
     28
              0
                    Maintained
7
     31
              1
                    Maintained
8
     34
                    Maintained
9
     45
                    Maintained
10
     48
              1
                    Maintained
11
    161
                    Maintained
              0
              1 Nonmaintained
12
      5
13
      5
              1 Nonmaintained
14
      8
              1 Nonmaintained
15
      8
              1 Nonmaintained
16
     12
              1 Nonmaintained
17
     16
              0 Nonmaintained
18
     23
              1 Nonmaintained
19
     27
              1 Nonmaintained
20
     30
              1 Nonmaintained
21
     33
              1 Nonmaintained
22
     43
              1 Nonmaintained
23
     45
              1 Nonmaintained
```

Time is when an event occurs. Status is alive or dead. x is the factor. This is Leukemia survival data.

1.2.2 Surv object

survfit will fit a model to a survival curve. Surv makes such a curve out of 2 variables, time and status.

Status is either censoring or death. 0 for censor often, or 1 for death?

```
maint <- aml[aml$x=="Maintained",]</pre>
Surv(maint$time, maint$status)
maint[maint$status==0,]
 [1]
       9
            13
                 13+ 18
                            23
                                  28+
                                       31
                                             34
                                                  45+
                                                        48
                                                            161+
   time status
                          Х
3
     13
              0 Maintained
6
     28
              0 Maintained
9
     45
              0 Maintained
11
    161
              0 Maintained
```

1.2.3 Plotting Surv object

You can plot the curve and the confidence interval

maint <- aml[aml\$x=="Maintained",]
plot(Surv(maint\$time, maint\$status))</pre>

So what does it look like with multiple factors?

leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml)
plot(leukemia.surv, lty = 2:3)
legend(100, .9, c("Maintenance", "No Maintenance"), lty = 2:3)</pre>


```
leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml)
summary(leukemia.surv)</pre>
```

Call: survfit(formula = Surv(time, status) ~ x, data = aml)

x=Maintained

time	n.risk	${\tt n.event}$	${\tt survival}$	${\tt std.err}$	lower	95% CI	upper	95% CI
9	11	1	0.909	0.0867		0.7541		1.000
13	10	1	0.818	0.1163		0.6192		1.000
18	8	1	0.716	0.1397		0.4884		1.000
23	7	1	0.614	0.1526		0.3769		0.999
31	5	1	0.491	0.1642		0.2549		0.946
34	4	1	0.368	0.1627		0.1549		0.875
48	2	1	0.184	0.1535		0.0359		0.944

x=Nonmaintained

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
5	12	2	0.8333	0.1076		0.6470		1.000
8	10	2	0.6667	0.1361		0.4468		0.995
12	8	1	0.5833	0.1423		0.3616		0.941
23	6	1	0.4861	0.1481		0.2675		0.883
27	5	1	0.3889	0.1470		0.1854		0.816
30	4	1	0.2917	0.1387		0.1148		0.741
33	3	1	0.1944	0.1219		0.0569		0.664
43	2	1	0.0972	0.0919		0.0153		0.620
45	1	1	0.0000	NaN		NA		NA

1.2.4 OK but software engineering?

Your times should be time since the start of the intervention or the birth of a bug. If you want to track project lifetime, make it another variable. Your record should be if something has quit or if something has finished.

```
library(survival)
bugs <- c()
# time of bug fix
bugs$time <- c(10,10,10,20,20,30,40,50,60,70,80,90,100)
# bugs$status <- c( 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1)
bugs <- data.frame(bugs)
bugs</pre>
```

plot(Surv(bugs\$time))

1.2.5 What about for a lot more bugs?

We're going to invent a dataset where minor revision bugs last longer. They are fixed later. Which means they survive longer.

bugs <- c()
bug survival
bugs\$time <- sort(runif(100)*100)
longer surviving bugs at the end</pre>

```
bugs$time <- c(bugs$time,sort(bugs$time + runif(100)*50))
# the first half are half minor revisions
# the second half are mostly minor revision bugs and they last a long time
bugs$minor <- c(sample(c(0,1),100,replace=TRUE),sample(c(1),100,replace=TRUE))
# this is just noise to show what happens with uncorrelated results
bugs$noise <- sample(c(0,1),200,replace=TRUE)
# minor are censored more
bugs$status <- c(sample(c(1,1,1,0),100,replace=TRUE),sample(c(1,0,0),100,replace=TRUE))
bugs <- data.frame(bugs)
# plot(bugs$time[bugs$status==1])
# plot(bugs$time[bugs$status==0])
plot(Surv(bugs$time,bugs$status))</pre>
```


plot(survfit(Surv(time, status) ~ factor(minor), data = bugs),lty=c(1:2))
legend(100, .9, c("Not minor", "Minor"), lty = 1:2)

summary(survfit(Surv(time,status) ~ factor(minor), data = bugs))

Call: survfit(formula = Surv(time, status) ~ factor(minor), data = bugs)

factor(minor)=0

time	n.risk	${\tt n.event}$	${\tt survival}$	${\tt std.err}$	lower 95% CI	upper 95% CI
1.81	44	1	0.9773	0.0225	0.93421	1.000
4.50	43	1	0.9545	0.0314	0.89494	1.000
5.26	42	1	0.9318	0.0380	0.86024	1.000
7.28	41	1	0.9091	0.0433	0.82800	0.998
9.10	39	1	0.8858	0.0481	0.79637	0.985
11.74	38	1	0.8625	0.0522	0.76605	0.971
12.52	37	1	0.8392	0.0557	0.73675	0.956
15.41	35	1	0.8152	0.0591	0.70726	0.940
15.88	34	1	0.7912	0.0620	0.67856	0.923
18.71	33	1	0.7672	0.0646	0.65053	0.905
19.51	32	1	0.7433	0.0669	0.62309	0.887
22.66	29	1	0.7176	0.0693	0.59387	0.867
25.41	28	1	0.6920	0.0714	0.56528	0.847
28.29	27	1	0.6664	0.0732	0.53725	0.827
37.46	25	1	0.6397	0.0750	0.50840	0.805
39.38	24	1	0.6131	0.0765	0.48012	0.783
40.89	22	1	0.5852	0.0779	0.45081	0.760
42.76	21	1	0.5573	0.0790	0.42212	0.736
43.60	20	1	0.5295	0.0798	0.39400	0.711

45.51	18	1	0.5000	0.0806	0.36455	0.686
52.09	17	1	0.4706	0.0811	0.33578	0.660
54.66	16	1	0.4412	0.0812	0.30766	0.633
55.48	15	1	0.4118	0.0809	0.28019	0.605
57.32	13	1	0.3801	0.0806	0.25080	0.576
58.38	12	1	0.3484	0.0799	0.22230	0.546
75.69	9	1	0.3097	0.0799	0.18686	0.513
76.95	8	1	0.2710	0.0787	0.15339	0.479
77.40	7	1	0.2323	0.0764	0.12193	0.443
83.70	6	1	0.1936	0.0728	0.09262	0.405
93.28	4	1	0.1452	0.0688	0.05732	0.368
95.40	3	1	0.0968	0.0606	0.02840	0.330
95.79	2	1	0.0484	0.0457	0.00761	0.308
96.67	1	1	0.0000	NaN	NA	NA

factor(minor)=1

		Tactor	(111101)-1					
time	n.risk	${\tt n.event}$	survival	${\tt std.err}$	lower	95% CI	upper	95% CI
1.80	154	1	0.994	0.00647		0.981		1.000
3.07	153	1	0.987	0.00912		0.969		1.000
3.13	152	1	0.981	0.01114		0.959		1.000
4.35	151	1	0.974	0.01282		0.949		0.999
4.86	150	1	0.968	0.01428		0.940		0.996
10.11	148	1	0.961	0.01561		0.931		0.992
10.34	147	1	0.954	0.01682		0.922		0.988
13.67	143	1	0.948	0.01798		0.913		0.984
21.87	135	1	0.941	0.01916		0.904		0.979
22.48	134	1	0.934	0.02027		0.895		0.974
24.12	132	1	0.927	0.02131		0.886		0.969
24.45	131	1	0.920	0.02229		0.877		0.964
26.56	129	1	0.912	0.02323		0.868		0.959
26.70	128	1	0.905	0.02412		0.859		0.954
28.85	125	1	0.898	0.02499		0.850		0.948
30.93	124	1	0.891	0.02582		0.842		0.943
34.37	123	1	0.884	0.02660		0.833		0.937
35.80	121	1	0.876	0.02737		0.824		0.932
36.13	119	1	0.869	0.02811		0.816		0.926
36.15	118	1	0.862	0.02882		0.807		0.920
36.66	117	1	0.854	0.02950		0.798		0.914
37.51	116	1	0.847	0.03015		0.790		0.908
38.23	115	1	0.839	0.03077		0.781		0.902

39.57	114	1	0.832 0.03137	0.773	0.896
41.51	111	1	0.825 0.03197	0.764	0.890
43.08	109	1	0.817 0.03256	0.756	0.883
43.23	108	1	0.809 0.03313	0.747	0.877
45.28	107	1	0.802 0.03367	0.739	0.871
47.88	105	1	0.794 0.03421	0.730	0.864
48.09	104	1	0.787 0.03472	0.721	0.858
48.11	103	1	0.779 0.03521	0.713	0.851
49.19	101	1	0.771 0.03570	0.704	0.845
50.69	97	1	0.763 0.03621	0.696	0.838
51.06	95	1	0.755 0.03671	0.687	0.831
51.30	94	1	0.747 0.03718	0.678	0.824
51.40	93	1	0.739 0.03764	0.669	0.817
51.53	92	1	0.731 0.03808	0.660	0.810
51.77	91	1	0.723 0.03850	0.652	0.803
52.01	90	1	0.715 0.03890	0.643	0.796
53.30	89	1	0.707 0.03929	0.634	0.788
58.49	80	1	0.698 0.03978	0.624	0.781
58.81	79	1	0.689 0.04024	0.615	0.773
59.64	77	1	0.680 0.04071	0.605	0.765
60.76	75	1	0.671 0.04116	0.595	0.757
61.55	74	1	0.662 0.04159	0.586	0.749
70.07	66	1	0.652 0.04216	0.575	0.740
71.11	63	1	0.642 0.04274	0.563	0.731
75.05	60	1	0.631 0.04335	0.552	0.722
75.78	59	1	0.621 0.04391	0.540	0.713
75.93	58	1	0.610 0.04444	0.529	0.703
77.52	56	1	0.599 0.04496	0.517	0.694
78.09	55	1	0.588 0.04544	0.505	0.684
80.36	53	1	0.577 0.04592	0.494	0.674
80.47	52	1	0.566 0.04636	0.482	0.664
81.87	51	1	0.555 0.04676	0.470	0.654
84.11	49	1	0.543 0.04715	0.458	0.644
84.82	48	1	0.532 0.04751	0.447	0.634
85.09	47	1	0.521 0.04783	0.435	0.624
89.86	41	1	0.508 0.04832	0.422	0.612
92.47	38	1	0.495 0.04886	0.408	0.600
96.46	32	1	0.479 0.04972	0.391	0.587
96.56	30	1	0.463 0.05057	0.374	0.574
97.75	28	1	0.447 0.05140	0.357	0.560

97.76	27	1	0.430 0.05209	0.339	0.545
99.06	24	1	0.412 0.05291	0.321	0.530
100.28	23	1	0.394 0.05356	0.302	0.515
102.84	21	1	0.376 0.05420	0.283	0.498
104.95	19	1	0.356 0.05484	0.263	0.481
105.31	18	1	0.336 0.05524	0.243	0.464
108.29	15	1	0.314 0.05591	0.221	0.445
112.26	10	1	0.282 0.05846	0.188	0.424
126.96	4	1	0.212 0.07522	0.106	0.425

Survfit basically calculates confidence intervals of survival at each point

1.2.6 Cox Proportional-Hazards Model

The PMM for minor should be lower than not minor. Because it is less risk. It lets bugs survive longer.

The PMM for noise should be near 1.

```
fit <- coxph(Surv(time, status) ~ factor(minor) + factor(noise), data = bugs)</pre>
summary(fit,rr.ci=TRUE)
yates(fit, ~ minor, predict="risk") # hazard ratio
yates(fit, ~ noise, predict="risk") # hazard ratio
Call:
coxph(formula = Surv(time, status) ~ factor(minor) + factor(noise),
    data = bugs)
 n= 200, number of events= 105
                  coef exp(coef) se(coef)
                                               z Pr(>|z|)
factor(minor)1 -1.0992
                          0.3331
                                   0.2189 -5.022 5.13e-07 ***
factor(noise)1 0.1994
                          1.2206
                                   0.1973 1.010
                                                    0.312
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
               exp(coef) exp(-coef) lower .95 upper .95
factor(minor)1
                  0.3331
                                       0.2169
                             3.0018
                                                 0.5116
                  1.2206
factor(noise)1
                             0.8193
                                       0.8291
                                                 1.7970
Concordance= 0.613 (se = 0.03)
                                         p=8e-06
Likelihood ratio test= 23.37 on 2 df,
```

```
Wald test
                     = 26.7 on 2 df, p=2e-06
Score (logrank) test = 29.34 on 2 df, p=4e-07
 factor(minor)
                   pmm
                            std
                                               test chisq df
                                                                    Pr
                                     factor(minor) 11.41 1 0.0007322
             0 2.35565 0.426003
             1 0.78475 0.041541
 factor(noise)
                                             test chisq df
                  pmm
                          std
                                   factor(noise) 0.9356 1 0.3334
             0 1.0375 0.10730
             1 1.2664 0.15896
fit <- coxph(Surv(time,status) ~ factor(minor) + factor(noise), data = bugs)</pre>
par(mfrow=c(3,1))
plot(cox.zph(fit)[1]) # plot minor
plot(cox.zph(fit)[2]) # plot noise
plot(survfit(Surv(time,status) ~ factor(minor), data = bugs),lty=c(1:2))
legend(100, .9, c("Not minor", "Minor"), lty = 1:2)
                                          --- Not minor
```

1.2.7 Pretty Plots with Survminer

```
A pain to install (use docker?) https://rpkgs.datanovia.com/survminer/
You could install devtools and run:

devtools::install_url("https://github.com/wilkelab/cowplot/archive/0.6.3.zip")
devtools::install_url("https://github.com/cran/mvtnorm/archive/1.0-8.zip")
devtools::install_url("https://github.com/kassambara/survminer/archive/v0.4.3.zip")
#install.packages("survminer")

library(survminer)

library(survvival)
library(survvival)
fit <- survfit(Surv(time,status) ~ factor(minor), data = bugs)

ggsurvplot(fit, data = bugs)
```


1.2.8 Better

```
risk.table = TRUE,  # Add risk table
risk.table.col = "strata",# Risk table color by groups
legend.labs =
    c("Not Minor", "Minor"),  # Change legend labels
risk.table.height = 0.25, # Useful to change when you have multiple groups
ggtheme = theme_bw()  # Change ggplot2 theme
)
```

