Category Integration and Evaluation

Robert Ward Georgia Institute of Technology

This talk

- 1. Theorize about category integration in evaluation
- 2. New methods to quantify integration
- 3. Evidence for theory from scientific marketplace

Dominant View

Alternate view

Topology mediates human expectations

Lynn et al. 2020

within / cross boundary transitions key

Predictions

- Integration moderates the perceived ambiguity of category spanning offerings
- 2. But is independent of the evaluative mechanism
- 3. Implies, relationship between aggregate ambiguity (spanning + integration) and evaluation has diminishing marginal returns.

Data

Full-Text Corpus

Semantic scholar open access corpus (S2ORC)

Supplemented by:

Citation data from Web of Science

Sequence of cited references parsed from full-text

Directed edges between neighboring references

Network of cited references projected onto disciplines

Quantifying Integration and Related Constructs

Manipulate this to get: category spanning, category integration, aggregate ambiguity, weighted KL divergence

Spanning and Integration are Non-redundant

Descriptive statistics for weighted KL Divergence

Mean normalized KL divergence: 40740129.315313876

Variance of normalized KL divergence: 3072391507090305.0

Minimum normalized KL divergence: 373

Maximum normalized KL divergence: 215721446

Deciles:

10 percent of data lies below 3285255.4000000004

20 percent of data lies below 6068310.6

30 percent of data lies below 10092982.4

40 percent of data lies below 14299086.6

50 percent of data lies below 17783499.0

60 percent of data lies below 24218642.0

70 percent of data lies below 36740981.39999999

80 percent of data lies below 53304913.6

90 percent of data lies below 122157857.4

Weighted KL Divergence between combinatorial and structural model of stimulus

C Global Ambiguity

Aggregate relationship

Negative Binomial

	Model 1	Model 2	Model 3	Model 4
Interdisciplinarity		$-0.016^{\bullet \bullet \bullet}$	$0.084^{\bullet \bullet \bullet}$	$0.084^{\bullet \bullet \bullet}$
		(0.001)	(0.004)	(0.004)
$Interdisciplinarity^2\\$			$-0.012^{\bullet \bullet \bullet}$	$-0.012^{\bullet\bullet\bullet}$
			(0.001)	(0.001)
Team Size	$0.018^{\bullet \bullet \bullet}$	0.021***	0.020	0.020
	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Journal Impact Factor	$0.084^{\bullet \bullet \bullet}$	$0.081^{\bullet \bullet \bullet}$	0.080	0.080
	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Constant	2.375 ***	2.571 •••	2.403 ••••	2.493***
	(0.137)	(0.165)	(0.165)	(0.017)
Discipline FE?	Yes	Yes	Yes	Yes
Year FE?	Yes	Yes	Yes	No
Observations	307713	278081	278081	278081
Log Likelihood	-1237271.000	-1123108.000	-1122734.000	-1123335.000
heta	1.314 ••• (0.003)	1.337*** (0.004)	$1.340^{\bullet\bullet\bullet} (0.004)$	1.335*** (0.004)
AIC	2474606.000	2246282.000	2245536.000	2246708.000

Unexponentiated coefficients with standard errors in parentheses below.

 $^{^{\}bullet}$ p < .05; $^{\bullet\bullet}$ p < .01; $^{\bullet\bullet\bullet}$ p < .001

Table S3. Chi-Squared Values for Likelihood Ratio Tests (Linear v.s. Quadratic)

Full	759.766***	
Agricultural sciences	3.626^{\bullet}	
Astronomy	0.051	
Biology	101.968***	
Chemistry	1.225	
Computer sciences	42.817***	
Engineering	32.937***	
Geosciences	0.212	
Mathematical sciences	26.249	
Humanities	30.596***	
Medical sciences	195.871***	
Physics	35.507***	
Professional fields	4.428°°	
Psychology	61.015***	
Social sciences	30.627***	

[•]p < .1; •• p < .05; ••• p < .01

See tables S1 and S2.

Summary of contributions

- 1. Extend theories of categorization, evaluation consistent with understanding of underlying cognitive mechanisms
- 2. Strong evidence for mechanism and aggregate effects
- 3. Contrary to prevailing wisdom, to maximize their appeal, the authors

Thank You!

End of slides