Network Definition

Consider the digraph, G=(V,E). Set of all nodes, V and the set of all edges is given by $E=E_r\cup E_h\cup E_s$. Here, E_r , E_h and E_s are the set of on-ramp, highway and off-ramp links. For node v denote the sets of incoming and outgoing links with $\Gamma^-(v)=\{(i,j):v=j\ \forall (i,j)\in E\}$ and $\Gamma^+(v)=\{(i,j):v=i\ \forall (i,j)\in E\}$ respectively. For link e=(i,j) denote the sets of incoming and outgoing links with $\mathcal{I}(i,j)=\Gamma^-(i)$ and $\mathcal{O}(i,j)=\Gamma^+(j)$ respectively. Let, $M=\bigcup\limits_{v\in V}M_v$ where the set of moves for a node, v is $M_v=\Gamma^-(v)\times\Gamma^+(v)$.