Voltando às estruturas de dados

Aula 10 Voltando às estruturas de dados

Pilhas, filas e listas bi-ligadas

Programação II, 2016-2017

v1.1.02-05-2017

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada

Implementação em vector

Listas bi-ligadas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

1 Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada Implementação em vector

2 Listas bi-ligadas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada Implementação em vector

2 Listas bi-ligadas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

 E uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo":

 Estrutura com gestão LIFO: Last In First Out;

 O último elemento a entrar é o primeiro a sair.

como "topo";

• É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Pilhas e filas Definições e tipos de dados abstractos

como "topo";

• É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Pilhas e filas Definições e tipos de dados abstractos

 É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo";

- Estrutura com gestão LIFO: Last In First Out;
 - O último elemento a entrar é o primeiro a sair.

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

 É uma estrutura de dados que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo";

- Estrutura com gestão LIFO: Last In First Out;
 - O último elemento a entrar é o primeiro a sair.

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

implementação em veca

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

....

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

....

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

....

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

. .

Listas bi-ligadas

Pilha: exemplos de utilização

- · Arquitectura de microprocessadores
- Implementação de algoritmos recursivos
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres;
 Detecção de palindromo;
- Análise de expressões matemáticas
- . . .

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada

Implementação em vector

Listas bi-ligadas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Implementação em vecti

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos
 - Torres de Hanoi
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres
 - Detecção de palíndromo
- A . Z !! . . . !
- Análise de expressões matemáticas
- . . .

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

impiementação em vecto

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - Torres de Hanoi;
 - . . .
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres
 - Detecção de palindromo
- · Análise de expressões matemáticas
- . . .

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiernentação em vecto

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - · Torres de Hanoi;
 - . . .
- Algoritmos de tratamento de texto
 - Inversão de cadeias de caracteresDeteccão de palíndromo:
 -
- Análise de expressões matemáticas;
- . . .

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

implementação em vecti

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - · Torres de Hanoi;
 - ...
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres
 Detecção de palíndromo:
 - Detecção de palindromo
- Análise de expressões matemáticas
- . . .

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

impiementação em vece

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - Torres de Hanoi;
 - ...
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres;
 - · Detecção de palíndromo
 - . . .
- Análise de expressões matemáticas
- . . .

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - Torres de Hanoi;
 - ...
- Algoritmos de tratamento de texto:
 - · Inversão de cadeias de caracteres;
 - Detecção de palíndromo
 - ...
- Análise de expressões matemáticas
- . . .

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - Torres de Hanoi;
 - ...
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres;
 - Detecção de palíndromo;
 - . . .
- Análise de expressões matemáticas
- . . .

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - Torres de Hanoi;
 - ...
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres;
 - Detecção de palíndromo;
 - ...
- Análise de expressões matemáticas
- . . .

Pilha: exemplos de utilização

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - · Torres de Hanoi:
 - ...
- Algoritmos de tratamento de texto:
 - Inversão de cadeias de caracteres;
 - Detecção de palíndromo;
 - ...
- Análise de expressões matemáticas;

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Listas bi ligadas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Listas bi-ligaua

- Arquitectura de microprocessadores;
- Implementação de algoritmos recursivos:
 - Torres de Hanoi;
 - ...
- Algoritmos de tratamento de texto:
 - · Inversão de cadeias de caracteres;
 - Detecção de palíndromo;
 - . . .
- Análise de expressões matemáticas;
- ...

Pilha: tipo de dados abstracto

- · Nome do módulo:
- Servicos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada

Implementação em vector

Listas bi-ligadas

Pilha: tipo de dados abstracto

Nome do módulo:

- · Stacl
- Serviços
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - si ze: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiernentação em vecto

Listas bi-ligadas

Pilha: tipo de dados abstracto

Nome do módulo:

- · Stack
- Serviços
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

implementação em vecto

Listas bi-ligadas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

.

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

Nome do módulo:

· Stack

Serviços:

- push: insere (empilha) um elemento no topo da pilha
- pop: remove (desempilha) o elemento no topo da pilha
- top: devolve o elemento no topo da pilha
- isEmpty: verifica se a pilha está vazia
- isFull: verifica se a pilha está cheia
- size: retorna a dimensão actual da pilha
- · clear: limpa a pilha (retira todos os elementos

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

. .

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - Isempty. Verifica se a pilita esta vazio
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - · size: retorna a dimensão actual da pilha
 - · clear: limpa a pilha (retira todos os elementos

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - · clear: limpa a pilha (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

impiomortagao em rec

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - · clear: limpa a pilha (retira todos os elementos

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

- · push(e
- Pós-condição: Liskmety (
- · pop
 - Pře-condição: Listingty (
 Pás-condição: Listin 170)
- top()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada

Implementação em vector

Listas bi-ligadas

· push(e)

```
• Pré-condição: !isFull()
```

Pós-condição: !isEmpty() && (top() == e

· pop(

- Pré-condição: !isEmptv()
- Pós-condição: !isFull(

• top()

Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiementação em veci

Listas bi-ligadas

• push(e)

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == 6

· pop(

- Pré-condição: !isEmptv()
- Pós-condição: !isFull(

• top(

Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiementação em vecto

Listas bi-ligadas

• push(e)

- Pré-condição: !isFull()
- Pós-condição: !isEmpty() && (top() == e)
- pop()
 - Pré-condição: !isEmpty()
 - Pós-condição: !isFull()
- top()
 - Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

.....

Listas bi-ligadas

· push(e)

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

• Pré-condição: !isEmpty()

• Pós-condição: !isFull(

top(

Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

```
· push(e)
```

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

Pré-condição: !isEmpty()

Pós-condição: !isFull(

top(

Pré-condição: !isEmpty(

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

.....

Listas bi-ligadas

· push(e)

Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

Pré-condição: !isEmpty()Pós-condição: !isFull()

top(

Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

.....

Listas bi-ligadas

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

```
push(e)
```

Pré-condição: !isFull()

Pós-condição: !isEmpty() && (top() == e)

pop()

• Pré-condição: !isEmpty()

Pós-condição: !isFull()

top()

Pré-condição: !isEmpty()

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Character Special

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

```
push(e)
```

Pré-condição: !isFull()

Pós-condição: !isEmpty() && (top() == e)

pop()

• Pré-condição: !isEmpty()

Pós-condição: !isFull()

top()

Pré-condição: !isEmpty()

Fila: definição

 É uma estrutura de dados cujo acesso é feito por ambas as extremidades:

Gerida segundo uma política FIFO (First In First Out)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

de dados

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

Gerida segundo uma política FIFO (First In First Out)

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

- Gerida segundo uma política FIFO (First In First Out)
 - extrai-se sempre o valor mais antigo (primeiro).

Implementação em vector

Listas bi-ligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

- Gerida segundo uma política FIFO (First In First Out)
 - extrai-se sempre o valor mais antigo (primeiro).

· Nome do módulo

Servicos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

implementação em vecto

Listas bi-ligadas

Nome do módulo:

- Queue
- Serviços
 - in insere um elemento no fim da fila
 - out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - 3 aFull 1: varifica ca a fila actá chaia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiementação em vecto

Listas bi-ligadas

Nome do módulo:

- Queue
- Serviços
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da fil
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - 1 E 11 varifica co a fila actá chaic
 - size: retorna a dimensão actual da fila
 - · clear: limpa a fila (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

. .

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

impiementação em ve

Listas bi-ligadas

Comparação entre diferentes tipos de listas ligadas

Nome do módulo:

• Queue

Serviços:

- in: insere um elemento no fim da fila
- out: retira elemento do início da fila
- peek: retorna o elemento do inicio da fila
- isEmpty: verifica se a fila está vazia
- isFull: verifica se a fila está cheia
- size: retorna a dimensão actual da fila
- clear: limpa a fila (retira todos os elementos

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Queue
- Serviços:
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da file
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheja
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - Queue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

- Voltando às estruturas de dados
- Pilhas e filas
- Definições e tipos de dados abstractos
- Implementação em lista ligada Implementação em vector
- impiementação em vecto
- Listas bi-ligadas
- Comparação entre diferentes tipos de listas ligadas

- Nome do módulo:
 - Queue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheja
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

- Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - · isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Listas Di-ligada

- Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Listas Di-ligada:

- Nome do módulo:
 - Oueue
- Serviços:
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Listas bi-ligada

- Nome do módulo:
 - Queue
- Serviços:
 - in: insere um elemento no fim da fila
 - · out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - · isEmpty: verifica se a fila está vazia
 - i sFull: verifica se a fila está cheia
 - size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligadas

Listas bi ligada.

- · in(v)
- Pás-condição: Listanty (
- out
- · neek()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

implementagae em veet

Listas bi-ligadas

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty(

· out(

- Pré-condição: !isEmpty()
 Pés-condição: !isEmpty()
- eek()
 - Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiementagae em recio

Listas bi-ligadas

- in(v)
 - Pré-condição: !isFull()
 - Pós-condição: !isEmpty(
- · out(
 - Pré-condição: !isEmpty()
 - Pós-condição: !isFull()
- · peek(
 - Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

impiementação em vecto

Listas bi-ligadas

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty()

· out(

• Pré-condição: !isEmpty()

• peek()

Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

. .

Listas bi-ligadas

- in(v)
 - Pré-condição: !isFull()Pós-condição: !isEmpty()
- out()
 - Pré-condição: !isEmpty(
 Pós-condição: !isFull()
- peek(
 - Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

- in(v)
 - Pré-condição: !isFull()Pós-condição: !isEmpty()
- out()
 - Pré-condição: !isEmpty()
 - Pós-condição: !isFull(
- peek()
 - Pré-condição: !isEmpty(

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Listas Di-ligada

- in(v)
 - Pré-condição: !isFull()Pós-condição: !isEmpty()
- out()
 - Pré-condição: !isEmpty()Pós-condição: !isFull()
- peek()
 - Pré-condição: !isEmptv(

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

- in(v)
 - Pré-condição: !isFull()Pós-condição: !isEmpty()
- out()
 - Pré-condição: !isEmpty()
 - Pós-condição: !isFull()
- peek()
 - Pré-condição: !isEmpty(

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Listas bi-ligada

Fila: semântica

in(v)

 Pré-condição: !isFull() • Pós-condição: !isEmpty()

out()

• Pré-condição: !isEmpty() Pós-condição: !isFull()

peek()

Pré-condição: !isEmpty()

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

- Numa aula anterior estudámos as listas ligadas
- Comparando com os vectores, vimos que
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade
 - A grande desvantagem das listas ligadas é não facilitarem o acesso directo a cada elemento
- No caso particular das pilhas e das filas
 - Pode ser difícil prever o número de elementos
 - Não há necessidade de aceder a elementos abaixo do topo da pilha
 - · Não há necessidade de aceder a elementos no meio da fila
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Numa aula anterior, estudámos as listas ligadas
- Comparando com os vectores, vimos que:
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade
 - A grande desvantagem das listas ligadas é não facilitarem o acesso directo a cada elemento
- No caso particular das pilhas e das filas:
 - Pode ser difícil prever o número de elementos,
 - Não há necessidade de aceder a elementos abaixo do topo da pilha
 - Não há necessidade de aceder a elementos no meio da fila
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

Relembrando: lista ligada simples

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- A lista possui acesso directo ao primeiro e último elementos.
- E possível acrescentar elementos no início e no fim da lista
- É possível remover elementos do início da lista

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

Relembrando: lista ligada com dupla entrada

- A lista possui acesso directo ao primeiro e último elementos
- É possível acrescentar elementos no início e no fim da lista
- · É possível remover elementos do início da lista

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo
- Serviços

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Nome do módulo:

LinkedList

Serviços

- addFirst: insere um elemento no início da list
- · addLast: insere um elemento no fim da lista
- first: retorna o primeiro elemento da lista
- last: retorna o último elemento lista
- removeFirst: retira o elemento no início da lista
- size: retorna a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Nome do módulo:

- LinkedList
- Serviços
 - addFirst: insere um elemento no início da list
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da list
 - i sEmpt v: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Nome do módulo:

LinkedList

· Serviços:

- addFirst: insere um elemento no início da list
- · addLast: insere um elemento no fim da lista
- first: retorna o primeiro elemento da lista
- · last: retorna o último elemento lista
- removeFirst: retira o elemento no início da lista
- size: retorna a dimensão actual da lista
- i sEmpt.v: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- Servicos:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista

Voltando às estruturas de dados

Pilhas e filas

abstractos

Definições e tipos de dados Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - i sEmpt.v: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - · addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - · last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - i sEmpt.v: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- Servicos:
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - last: retorna o último elemento lista.
 - removeFirst: retira o elemento no início da lista

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - · addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - · last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Nome do módulo:
 - LinkedList
- · Serviços:
 - · addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: retorna o primeiro elemento da lista
 - · last: retorna o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - size: retorna a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

Nome do módulo:

LinkedList

Servicos:

- addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: retorna o primeiro elemento da lista
- last: retorna o último elemento lista.
- removeFirst: retira o elemento no início da lista
- size: retorna a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados Implementação em lista

Implementação em vector

Listas bi-ligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (elemento do topo) é o primeiro a desempilhar
- O elemento no topo da pilha fica armazenado no primeiro nó da lista
- O elemento na base da pilha fica armazenado no último nó da lista

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (elemento do topo) é o primeiro a desempilhar
- O elemento no topo da pilha fica armazenado no primeiro nó da lista
- O elemento na base da pilha fica armazenado no último nó da lista

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (elemento do topo) é o primeiro a desempilhar
- O elemento no topo da pilha fica armazenado no primeiro nó da lista
- O elemento na base da pilha fica armazenado no último nó da lista

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- · Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (elemento do topo) é o primeiro a desempilhar
- O elemento no topo da pilha fica armazenado no primeiro nó da lista
- O elemento na base da pilha fica armazenado no último nó da lista

POP 3 7 1 mull

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- · Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (elemento do topo) é o primeiro a desempilhar
- O elemento no topo da pilha fica armazenado no primeiro nó da lista
- O elemento na base da pilha fica armazenado no último nó da lista

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

O último elemento empilhado (top) é o primeiro a desempilhar

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- O último elemento empilhado (top) é o primeiro a desempilhar

Voltando às estruturas de dados

Pilhas e filas

ligada

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- O último elemento empilhado (top) é o primeiro a desempilhar
 - Para empilhar (push) usamos o método addFirst da lista ligada
 - Para desempilhar (pop) usamos o método removeFirst da lista ligada

POP 3 7 1 null top

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- O último elemento empilhado (top) é o primeiro a desempilhar
 - Para empilhar (push) usamos o método addFirst da lista ligada
 - Para desempilhar (pop) usamos o método removeFirst da lista ligada

PUSH 3 7 1 null top

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

```
public class Stack<E> {
   public void push(E element) {
      list.addFirst(element):
  public E top() {
      return list.first();
   public void pop() {
      list.removeFirst();
  public int size() {
      return list.size();
   public boolean isEmpty() {
      return list.isEmpty();
  private LinkedList<E> list = new LinkedList<E>();
```

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Fila: implementação em lista ligada

- Usa uma gestão FIFO (First In First Out
- O primeiro elemento introduzido é o primeiro a remover por isso tem que ficar no primeiro nó da lista
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- O primeiro elemento introduzido é o primeiro a remove por isso tem que ficar no primeiro nó da lista
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Usa uma gestão FIFO (First In First Out)
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Usa uma gestão FIFO (First In First Out)
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

 Cada novo elemento introduzido (in) tem que ir para o fim da fila

Usa-se o método addhast, da lista ligada

Remove-se do início da fila

Usa-se o método remove? i.r.st. da lista ligada.

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Elementos são removidos pela ordem de introdução na fila
- Cada novo elemento introduzido (in) tem que ir para o fim da fila
 - Usa-se o método addLast da lista ligada
- Remove-se do início da fila
 - Usa-se o método removeFirst da lista ligada

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- · Elementos são removidos pela ordem de introdução na fila
- Cada novo elemento introduzido (in) tem que ir para o fim da fila
 - · Usa-se o método addLast da lista ligada
- Remove-se do início da fila
 - Usa-se o método removeFirst da lista ligada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

Fila: implementação em lista ligada

- Elementos são removidos pela ordem de introdução na fila
- Cada novo elemento introduzido (in) tem que ir para o fim da fila
 - Usa-se o método addLast da lista ligada
- Remove-se do início da fila

Usa-se o método removeFirst da lista ligada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- Elementos são removidos pela ordem de introdução na fila
- Cada novo elemento introduzido (in) tem que ir para o fim da fila
 - Usa-se o método addLast da lista ligada
- Remove-se do início da fila:
 - Usa-se o método removeFirst da lista ligada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

- · Elementos são removidos pela ordem de introdução na fila
- Cada novo elemento introduzido (in) tem que ir para o fim da fila
 - Usa-se o método addLast da lista ligada
- Remove-se do início da fila:
 - Usa-se o método removeFirst da lista ligada

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

```
public class Queue<E> {
  public void in(E element) {
      list.addLast(element);
  public E peek() {
      return list.first();
  public void out() {
      list.removeFirst();
  public int size() {
      return list.size();
  public boolean isEmpty() {
      return list.isEmpty();
  private LinkedList<E> list = new LinkedList<E>();
```

Voltando às estruturas

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista

Implementação em vector

Listas bi-ligadas

ligada

- · Procisamos do dois atributos:
 - O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

ligada

Definições e tipos de dados abstractos Implementação em lista

Implementação em vector

Listas bi-ligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Definições e tipos de dados abstractos Implementação em lista

Voltando às estruturas

de dados

ligada Implementação em vector

Listas bi-ligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Definições e tipos de dados abstractos Implementação em lista

Voltando às estruturas

de dados

ligada Implementação em vector

Listas bi-ligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

```
public boolean isEmpty() {
    return size == 0;
}

public boolean isFull() {
    return size == array.length;
}

public int size() {
    return size;
}

public void clear() {
    size = 0;
    assert isEmpty();
}

private E[] array;
private int size;
}
```

Voltando às estruturas de dados

Pilhas e filas

ligada

Definições e tipos de dados abstractos Implementação em lista

Implementação em vector

Listas bi-ligadas

```
public class Stack<E> {
  public Stack(int maxSize) {
     assert maxSize >= 0:
     array = (E[]) new Object[maxSize];
     size = 0:
  public void push(E e) {
     assert !isFull():
     array[size] = e;
     size++:
     assert !isEmpty() && top() == e;
  public void pop() {
     assert !isEmpty();
      size--;
     assert !isFull();
  public E top() {
     assert !isEmpty();
     return array[size-1];
```

```
public boolean isEmpty() {
    return size == 0;
}

public boolean isFull() {
    return size == array.length;
}

public int size() {
    return size;
}

public void clear() {
    size = 0;
    assert isEmpty();
}

private E[] array;
    private int size;
}
```

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada
Implementação em vector

....promontagao om ro

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada
Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Fila: exemplo - empty/full

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Fila: exemplo - empty/full

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Fila: exemplo - empty/full

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligadas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

```
public class Oueue<E> {
  public Oueue(int maxSize) {
      assert maxSize >= 0:
     array = (T[]) new Object[maxSize];
     size = head = tail = 0:
  public void in(E e) {
     assert !isFull():
     array[tail] = e;
     tail = nextPosition(tail);
     size++;
  public void out() {
     assert !isEmpty();
     head = nextPosition(head);
     size--;
  public E peek() {
     assert !isEmpty();
     return array[head];
```

```
public int size() {
   return size:
public boolean isEmpty() {
   return size == 0;
public boolean isFull() {
   return size == array.length;
public void clear() {
   head = tail = size = 0;
private int nextPosition(int p) {
   return (p + 1) % array.length;
private E[] array;
private int size;
private int head, tail,;
```

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

	Pilha	Fila
addLast		
addFirst		
first	top	peek
		out

- Os tipos de dados abstractos das pilhas e filas correspondem a subconjuntos do tipo de dados abstracto da lista ligada
- Podemos dizer que os tipos de dados abstractos das pilhas e filas são açúcar sintático para certos perfis de utilização das listas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Lista	descrição	Pilha	Fila
addLast	acrescenta um elemento no fim da lista	-	in
addFirst	acrescenta um elemento no início da lista	push	-
first	devolve o primeiro elemento da lista	top	peek
removeFirst	remove o primeiro elemento da lista	pop	out

- Os tipos de dados abstractos das pilhas e filas correspondem a subconjuntos do tipo de dados abstracto da lista ligada
- Podemos dizer que os tipos de dados abstractos das pilhas e filas são açúcar sintático para certos perfis de utilização das listas

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Pilhas e filas: complexidade

· Implementação em lista ligada

- Implementação em vector com dimensão fixa
- complexidade constante (O(1))
- Implementação em vector com re-dimensionamento

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Implementação em lista ligada

Definições e tipos de dados shetractos

- Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Pilhas e filas

abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Pilhas e filas: complexidade

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Pilhas e filas: complexidade

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilna ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Definições e tipos de dados

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Pilhas e filas

abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

ligada

Definições e tipos de dados abstractos Implementação em lista

Implementação em vector

Listas bi-ligadas

- Implementação em lista ligada
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com dimensão fixa
 - Todos os métodos do tipo de dados abstracto têm complexidade constante (O(1))
- Implementação em vector com re-dimensionamento
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector
 - Nesses casos, a operação push passa a ter complexidade linear (O(n))
 - Os restantes métodos do tipo de dados abstracto têm complexidade constante (O(1))

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

stas bi-ligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior
 - 9 Lesas faleraticas ferad a velto nul 1 fales à diamenta a que se ratore não exista.
- Ao contrário da lista ligada, permite um acesso sequencial directo do fim para o início
- Facilita a remoção do último elemento (removeLast

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior
 - Essas referências terão o valor null caso o elemento a que se refere não exista
- Ao contrário da lista ligada, permite um acesso sequencial directo do fim para o início
- Facilita a remoção do último elemento (removeLast)

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

istas bi-ligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior
 - Essas referências terão o valor null caso o elemento a que se refere não exista
- Ao contrário da lista ligada, permite um acesso sequencial directo do fim para o início
- Facilita a remoção do último elemento (removeLast)

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

istas bi-ligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior
 - Essas referências terão o valor null caso o elemento a que se refere não exista
- Ao contrário da lista ligada, permite um acesso sequencial directo do fim para o início
- Facilita a remoção do último elemento (removeLast)

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

istas bi-ligadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior
 - Essas referências terão o valor null caso o elemento a que se refere não exista
- Ao contrário da lista ligada, permite um acesso sequencial directo do fim para o início
- Facilita a remoção do último elemento (removeLast)

Lista bi-ligada: nós e ligações

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

ictae bi ligada

Lista bi-ligada: nós e ligações

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligada

Lista bi-ligada: nós e ligações

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-linada

Lista bi-ligada: primeiro e último elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Charles for the above

- Nome do módulo
- Servicos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

· Nome do módulo:

• LinkedList

Serviços

- addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: devolve o primeiro elemento da lista
- last: devolve o último elemento lista
- removeFirst: retira o elemento no inicio da lista
- removeLast: retira o elemento no início da lista.
- size: devolve a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

Nome do módulo:

- LinkedList
- Servicos
 - addFirst: insere um elemento no início da lista
 - addLast: insere um elemento no fim da lista
 - first: devolve o primeiro elemento da lista
 - last: devolve o último elemento lista
 - removeFirst: retira o elemento no inicio da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada:

Nome do módulo:

LinkedList

· Serviços:

- addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: devolve o primeiro elemento da lista.
- last: devolve o último elemento lista.
- removeFirst: retira o elemento no início da lista
- removeLast: retira o elemento no início da lista.
- size: devolve a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

Nome do módulo:

- LinkedList
- · Servicos:
 - · addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista
 - first: devolve o primeiro elemento da lista
 - last: devolve o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada:

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista
 - last: devolve o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - · isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - last: devolve o último elemento lista
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeTast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

- Nome do módulo:
 - LinkedList
- · Serviços:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista
 - isEmpty: verifica se a lista está vazia
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

- Nome do módulo:
 - LinkedList
- · Serviços:
 - · addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removelast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista.
 - isEmpty: verifica se a lista está vazia.
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

∟istas bi-ligadas

Nome do módulo:

- LinkedList
- · Servicos:
 - addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista.
 - isEmpty: verifica se a lista está vazia.
 - clear: limpa a lista (remove todos os elementos)

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

Nome do módulo:

LinkedList

· Serviços:

- addFirst: insere um elemento no início da lista.
- addLast: insere um elemento no fim da lista.
- first: devolve o primeiro elemento da lista.
- · last: devolve o último elemento lista.
- removeFirst: retira o elemento no início da lista.
- removeLast: retira o elemento no início da lista.
- size: devolve a dimensão actual da lista.
- isEmpty: verifica se a lista está vazia.
- clear: limpa a lista (remove todos os elementos).

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligada

addLast(1)

size == 0

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Contract to the same

addLast(1)

size == 0

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

iotoo bi ligodo

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-linad:

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

iotoo bi ligodo

addLast(8)

size > 0

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

ietae hi-linada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

iotoo bi ligada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Contract Contract

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada

Implementação em vector

Listas bi-ligada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

Listas bi-ligada

Lista bi-ligada: remoção do último elemento

removeFirst()

size == 1

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

implementação em vec

istas hi-linada

Lista bi-ligada: remoção do último elemento

Voltando às estruturas de dados

Pilhas e filas

ligada

Definições e tipos de dados abstractos Implementação em lista

Implementação em vector

iotoo bi ligodo

Lista bi-ligada: remoção do último elemento

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

ctac bi ligadae

removeFirst()

size > 1

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

ehenil-id aetai

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

and the second

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos Implementação em lista

ligada Implementação em vector

Listas bi-ligada

Voltando às estruturas de dados

Pilhas e filas

Definições e tipos de dados abstractos

Implementação em lista ligada Implementação em vector

stoo bi ligodor

Ρil	has	e	fila	IS	

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Comparação entre
diferentes tipos de

Tipo de Lista				
Atributos Operações	first	first last	first last	first (last)
insert first				
remove first				
insert last				
remove last				
scan forward				
scan backward				
insert middle				
remove middle				

Pil	has	e f	ilas

Definições e tipos de dados abstractos Implementação em lista ligada

Implementação em vector

Listas bi-ligadas

Comparação entre diferentes tipos de

Tipo de Lista	Simples	Simples	Circular Simples	Bi-ligada	Circular Bi-ligada
Atributos Operações	first	first last	last	first last	first (last)
insert first	<i>O</i> (1)				
remove first	<i>O</i> (1)				
insert last	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
remove last	O(n)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)
scan forward	O(n)	O(n)	O(n)	O(n)	O(n)
scan backward	$O(n^2)$	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
insert middle	O(n)	O(n)	O(n)	O(n)	O(n)
remove middle	O(n)	O(n)	O(n)	O(n)	O(n)