Neural Networks and Deep Learning

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Regression

Goal: Estimate response from features

Optimal estimator: Conditional mean

Problem: Intractable to compute due to curse of dimensionality

Linear regression

Response y is approximated as an linear (affine) function of the features x

$$y \approx \sum_{i=1}^{d} \beta[i]x[i] + \alpha$$

Assumption: Response increases or decreases proportionally to each feature (if we fix other features)

Example

Response: Temperature in Manhattan (Kansas)

Features:

(1) Hour of the day (0-23)

(2) Day of the year (1-365)

Training data: 2015

Test data: 2016

Training data

Test data

Linear model: 0.25 hour + 0.03 day + 5.85

Response increases or decreases proportionally to each feature (if we fix other features)

Linear model: 0.25 hour + 0.03 day + 5.85

Training error: 10.8°C Test error: 11.0°C

Challenge

How to learn nonlinear model?

Neural network: Interleave

- ► Linear (affine) transformations
- Nonlinearity

Hidden variables (a.k.a. feature or activation maps)

$$h[1] := 0.049x_{\text{hour}} - 0.037x_{\text{day}} + 13.0$$

Hidden variables (a.k.a. feature or activation maps)

 $h[2] := -0.006x_{\text{hour}} - 0.049x_{\text{day}} + 10.1$

Hidden variables

$$h := \underbrace{\begin{bmatrix} 0.049 & -0.037 \\ -0.006 & -0.049 \end{bmatrix}}_{W_1} \begin{bmatrix} x_{\text{hour}} \\ x_{\text{day}} \end{bmatrix} + \underbrace{\begin{bmatrix} 13.0 \\ 10.1 \end{bmatrix}}_{\alpha_1}$$

Activation function

Nonlinearity applied to each hidden variable

Rectified Linear Unit (ReLU): Sets negative entries to zero

$$a_+ := egin{cases} a & \quad \text{if} \quad a \geq 0 \\ 0 & \quad \text{otherwise} \end{cases}$$

ReLU

$$h_+ := \begin{bmatrix} h[1]_+ \\ h[2]_+ \end{bmatrix}$$

Output layer

$$n\ell_{\text{nnet}}\left(\begin{bmatrix} x_{\text{hour}} \\ x_{\text{day}} \end{bmatrix}\right) := 4.76h[1]_{+} - 7.00h[2]_{+} + 0.22$$

Output layer

Affine transformation that adapts to different inputs

Depends on which ReLUs are active

Which ReLUs are active?

$$h[1] := 0.049x_{\mathsf{hour}} - 0.037x_{\mathsf{day}} + 13.0$$
 is positive if $x_{\mathsf{day}} < 351 + 1.32x_{\mathsf{hour}}$

$$h[2] := -0.006x_{\mathsf{hour}} - 0.049x_{\mathsf{day}} + 10.1$$
 is positive if $x_{\mathsf{day}} < 206 - 0.12x_{\mathsf{hour}}$

Since
$$x_{\text{hour}} \ge 0$$

$$206 - 0.12x_{\text{hour}} < 351 + 1.32x_{\text{hour}}$$

$x_{\text{day}} < 206 - 0.12x_{\text{hour}}$

Both ReLUs are active

$x_{\text{day}} < 206 - 0.12x_{\text{hour}}$

$$n\ell_{\mathsf{nnet}}\left(\begin{bmatrix}x_{\mathsf{hour}}\\x_{\mathsf{dav}}\end{bmatrix}\right) = 0.28x_{\mathsf{hour}} + 0.17x_{\mathsf{day}} - 8.6$$

$351 + 1.32x_{\text{hour}} > x_{\text{day}} > 206 - 0.12x_{\text{hour}}$

$$h[1] := 0.049x_{\mathsf{hour}} - 0.037x_{\mathsf{day}} + 13.0$$
 is positive if
$$x_{\mathsf{day}} < 351 + 1.32x_{\mathsf{hour}}$$

$$h[2] := -0.006x_{\mathsf{hour}} - 0.049x_{\mathsf{day}} + 10.1$$
 is negative if
$$x_{\mathsf{day}} > 206 - 0.12x_{\mathsf{hour}}$$

$351 + 1.32x_{\text{hour}} > x_{\text{day}} > 206 - 0.12x_{\text{hour}}$

Only the first ReLU is active

$351 + 1.32x_{\text{hour}} > x_{\text{day}} \ge 206 - 0.12x_{\text{hour}}$

$$n\ell_{\mathsf{nnet}}\left(\begin{bmatrix}x_{\mathsf{hour}}\\x_{\mathsf{day}}\end{bmatrix}\right) = 0.23x_{\mathsf{hour}} - 0.18x_{\mathsf{day}} + 62.1$$

$x_{\rm day} > 351 + 1.32x_{\rm hour}$

$$h[1] := 0.049x_{\rm hour} - 0.037x_{\rm day} + 13.0$$
 is negative if
$$x_{\rm day} > 351 + 1.32x_{\rm hour}$$

$$h[2] := -0.006x_{\mathsf{hour}} - 0.049x_{\mathsf{day}} + 10.1$$
 is negative if
$$x_{\mathsf{day}} > 206 - 0.12x_{\mathsf{hour}}$$

Since
$$x_{hour} \ge 0$$

206 - 0.12 $x_{hour} < 351 + 1.32x_{hour}$

$x_{\rm day} > 351 + 1.32 x_{\rm hour}$

Neither ReLU is active

$$x_{\rm day} > 351 + 1.32x_{\rm hour}$$

$$n\ell_{\mathsf{nnet}}\left(\begin{bmatrix} \mathsf{x}_{\mathsf{hour}} \\ \mathsf{x}_{\mathsf{day}} \end{bmatrix}\right) = \mathbf{0.22}$$

Function implemented by the neural network

Affine transformation that adapts to different inputs

► If $x_{\text{day}} < 206 - 0.12x_{\text{hour}}$

$$n\ell_{\text{nnet}}\left(\begin{bmatrix} x_{\text{hour}} \\ x_{\text{day}} \end{bmatrix}\right) = 0.28x_{\text{hour}} + \mathbf{0.17}x_{\text{day}} - 8.6$$

► If $206 - 0.12x_{\text{hour}} \le x_{\text{day}} < 351 + 1.32x_{\text{hour}}$

$$n\ell_{\text{nnet}}\left(\begin{bmatrix} x_{\text{hour}} \\ x_{\text{day}} \end{bmatrix}\right) = 0.23x_{\text{hour}} - \mathbf{0.18}x_{\text{day}} + 62.1$$

► If $x_{\text{day}} > 351 + 1.32x_{\text{hour}}$

$$n\ell_{\text{nnet}} \left(\left| \begin{array}{c} x_{\text{hour}} \\ x_{\text{day}} \end{array} \right| \right) = 0.22$$

Neural network

Training error: 6.32°C Test error: 6.25°C

Linear model

Training error: 10.8°C Test error: 11.0°C

How to train a neural network

Learn parameters Θ (weights / biases of linear layers) from training set of feature vectors / responses: $(x_1, y_1), (x_2, y_2), \ldots$

By minimizing residual sum of squares (RSS)

$$\mathsf{RSS}(\Theta) := \sum_{i=1}^n \left(y_i - n \ell_{\mathsf{nnet}}^{[\Theta]}(x_i) \right)^2$$

Nonconvex function of network parameters

General strategy: Minimize iteratively via gradient descent

Stochastic gradient descent

Problem: Training sets are usually too large

Solution: Separate into batches of size n_B

Compute gradient of batch RSS (via backpropagation)

$$\mathsf{RSS}(\Theta) := \sum_{i=1}^{n_B} \left(y_i - n \ell_{\mathsf{nnet}}^{[\Theta]}(x_i) \right)^2$$

Take a step in the direction opposite to the gradient

$$\Theta_b := \Theta_{b-1} - \eta \nabla_{\Theta} \operatorname{RSS} (\Theta_{b-1})$$

Adjusting learning rate η is *crucial*

Automatic adaption via e.g. Adam (Kingma and Ba, 2014) is often helpful

Training

How can we improve the model?

Training error: 6.32°C Test error: 6.25°C

Make network deeper!

4-layer network

$$h^{[1]} := W_1 x + \alpha_1 \qquad W_1 \in \mathbb{R}^{100 \times 2}, \alpha_1 \in \mathbb{R}^{100}$$

$$h^{[2]} := W_2 h_+^{[1]} + \alpha_2 \qquad W_2 \in \mathbb{R}^{100 \times 100}, \alpha_2 \in \mathbb{R}^{100}$$

$$h^{[3]} := W_3 h_+^{[2]} + \alpha_3 \qquad W_3 \in \mathbb{R}^{100 \times 100}, \alpha_3 \in \mathbb{R}^{100}$$

$$n\ell_{\mathsf{nnet}}^{[\Theta]}(x) := W_4 h_+^{[3]} + \alpha_4 \qquad W_4 \in \mathbb{R}^{1 \times 100}, \alpha_4 \in \mathbb{R}$$

Network parameters: $\Theta := \{W_1, W_2, W_3, W_4, \alpha_1, \alpha_2, \alpha_3, \alpha_4\}$

Deep learning

Number of data: 8,760

Number of parameters in 4-layer network: 20,601!

Overparametrization

Large vision models have up to billions of parameters

Large language models up to trillions

But what about overfitting?

Early stopping mitigates overfitting

Training error: 5.30°C
Test error: 6.06°C

Training error: 4.78°C Test error: 6.25°C

2-layer network: Training error: 6.32°C Test error: 6.25°C

What function does the 4-layer network implement?

 $W_1 \in \mathbb{R}^{100 \times 2}, \alpha_1 \in \mathbb{R}^{100}$

$$h^{[2]} := W_2 h_+^{[1]} + \alpha_2 \qquad W_2 \in \mathbb{R}^{100 \times 100}, \alpha_2 \in \mathbb{R}^{100}$$

$$h^{[3]} := W_3 h_+^{[2]} + \alpha_3 \qquad W_3 \in \mathbb{R}^{100 \times 100}, \alpha_3 \in \mathbb{R}^{100}$$

$$n\ell_{\mathsf{nnet}}^{[\Theta]}(x) := W_4 h_+^{[3]} + \alpha_4 \qquad W_4 \in \mathbb{R}^{1 \times 100}, \alpha_4 \in \mathbb{R}$$

 $h^{[1]} := W_1 x + \alpha_1$

Possible activation states? $2^{300} > 10^{90}$!

No idea...

300 ReLUs

Classification

Classification

Data: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Each feature x_i is a d-dimensional vector

The label y_i indicates the class (e.g. Canadian, Kama, or Rosa)

Goal: Assign class to new data

Probabilistic modeling

Model features as random vector \tilde{x} and label as random variable \tilde{y}

For new data vector x:

$$\hat{y} := \arg\max_{y \in \{1,2,\dots,c\}} p_{\widetilde{y} \,|\, \widetilde{x}}(y \,|\, x)$$

Is classification easy? No, due to curse of dimensionality!

Discriminative classification

Goal: Approximate
$$p_{\tilde{y} \mid \tilde{x}}(k \mid x)$$
 for $1 \leq k \leq c$

Logistic and softmax regression:

Linear function of features mapped to probabilities

Neural network:

Nonlinear function of features mapped to probabilities

Neural-network classifier

Softmax regression

$$p_{\Theta}(x)_{k} := \frac{\exp\left(\beta_{k}^{T} x + \alpha_{k}\right)}{\sum_{l=1}^{c} \exp\left(\beta_{l}^{T} x + \alpha_{l}\right)} \qquad 1 \le k \le c$$

Neural network

$$p_{\Theta}(x)_{k} := \frac{\exp\left(n\ell_{\mathsf{nnet}}(x)[k]\right)}{\sum_{l=1}^{c} \exp\left(n\ell_{\mathsf{nnet}}(x)[l]\right)} \qquad 1 \le k \le c$$

Likelihood

We model ith feature and label as random variables \tilde{x}_i and \tilde{y}_i

Assumption 1:

Labels are conditionally independent given the features

Assumption 2:

 $ilde{y}_i$ is conditionally independent from $\{ ilde{x}_m\}_{m
eq i}$ given $ilde{x}_i$

$$\mathcal{L}_{XY}(\Theta) := P\left(\tilde{y}_1 = y_1, ..., \tilde{y}_n = y_n \mid \tilde{x}_1 = x_1, ..., \tilde{x}_n = x_n\right)$$

$$= \prod_{i=1}^n P\left(\tilde{y}_i = y_i \mid \tilde{x}_1 = x_1, ..., \tilde{x}_n = x_n\right)$$

$$= \prod_{i=1}^n P\left(\tilde{y}_i = y_i \mid \tilde{x}_i = x_i\right)$$

$$= \prod_{k=1}^c \prod_{\{i: y_i = k\}} p_{\Theta}\left(x_i\right)_k, \quad \Theta: \text{ neural network parameters}$$

Likelihood and log-likelihood

$$\mathcal{L}_{XY}(\Theta) = \prod_{k=1}^{c} \prod_{\{i: y_i = k\}} p_{\Theta} (x_i)_k$$

$$\log \mathcal{L}_{XY}(\Theta) = \sum_{k=1}^{c} \sum_{\{i: y_i = k\}} \log p_{\Theta} (x_i)_k$$

Maximized via stochastic gradient ascent

 $-\mathcal{L}_{XY}(\Theta)$ often referred to as cross-entropy loss

Wheat varieties

Linear logits: Canadian

Estimated probability: Canadian

Nonlinear logits: Canadian

Estimated probability: Canadian

Linear logits: Kama

Estimated probability: Kama

Nonlinear logits: Kama

Estimated probability: Kama

Linear logits: Rosa

Estimated probability: Rosa

Nonlinear logits: Rosa

Estimated probability: Rosa

How to build nonlinear regression and classification models using neural networks

Framework for training neural networks

The power of overparametrization

To be careful about overfitting!