RESOLUCIÓN DE ALGUNOS EJERCICIOS DEL TRABAJO PRÁCTICO N°7- parte 1

Estadística CA -C- D 2020

Cuadro Resumen de los estadísticos de prueba que deben usarse en una prueba de hipótesis para µ

	σ ² conocida	Para cualquier valor de "n"	
		$Z = \frac{\bar{\lambda}}{c}$	$(\overline{r} - \mu)$ $(\overline{r})/\sqrt{n}$
Población Normal	σ^2 desconocida	$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \text{Si n} \ge 30 \ Z$	$S = \frac{\bar{X} - \mu}{S/\sqrt{n}}$ (optativo)
Población no Normal	σ ² conocida	n≥30	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$
	σ^2 desconocida	n≥30	$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}}$

Ejercicio 1

*Planteo 1	Planteo 2
H_0 : $\mu = 120$	H_0 : $\mu \le 120$
H_1 : $\mu > 120$	H ₁ : μ >120

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

Con $\alpha = 0.01$

Estadístico de prueba $Z = (\overline{X} - \mu)/(\sigma / \sqrt{n})$

Del gráfico vemos que el eje z queda dividido en 2 intervalos, 2 zonas, separadas por el punto crítico Z_c: 2.33

Regla de decisión

 $NRH_0 \text{ si } Z < 2.33$

Para concluir, debemos comparar el valor Z (estadístico de prueba) con el punto crítico Z_c para determinar si Z cayó en la zona de rechazo o no.

En nuestro ejemplo, $Z = (\overline{X} - \mu) / (\sigma / \sqrt{n})$.

Los datos muestrales son: n =80, \overline{X} = 126. Dado que partimos de suponer que la hipótesis verdadera es H₀ entonces μ = 120 y se conoce σ = 22

Luego, $Z = (126-120) / (22/\sqrt{80}).) = 2.43>2.33$

Se concluye Rechazar H₀ con un riesgo o error del 1%.

Hay evidencia estadística suficiente como para concluir que el vuelo programado es redituable con un riesgo o error del 1 %.

Ejercicio 2

 H_0 : $\mu = 750$ H_1 : $\mu \neq 750$

Con $\alpha = 0.05$

Estadístico de prueba $Z = (\overline{X} - \mu)/(\sigma / \sqrt{n})$

Zona de Rechazo Zona de No Rechazo Zona de Rechazo

Del gráfico vemos que el eje Z queda dividido en 3 intervalos pero 2 zonas, separadas por 2 puntos críticos

 $Z_c = \pm 1,96$

Regla de Decisión:

Rechazar H_0 si Z > 1,96 ó Z < -1,96No Rechazar H_0 si -1,96 < Z < 1,96

Para concluir, según lo establecido en la Regla de Decisión, debemos comparar el valor Z (estadístico de prueba) con los puntos críticos Zc y –Zc para determinar si Z cayó en la zona de rechazo o no Estadístico de prueba: Z = $(\overline{X}-\mu)$ / (σ/\sqrt{n}) . Datos: n =100, \overline{X} = 790 y σ =180. Dado que partimos de suponer que H₀ es la hipótesis verdadera entonces μ = 750

Luego, Z = (790 - 750) / (180/2100) = 2,22 > 1,96. Se concluye Rechazar H₀ con riego del 5%.

Hay evidencia estadística suficiente como para concluir que el monto promedio de ventas con tarjeta ha cambiado con un riego del 5 %.

Ejercicio 3

<u>a)</u>

*Planteo 1	Planteo 2
H_0 : $\mu = 2800$	$H_0: \mu \ge 2800$
H_1 : μ < 2800	H_1 : $\mu < 2800$

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

 $\text{Con }\alpha=0.05$

Estadístico de prueba $Z = (\overline{X} - \mu)/(\sigma / \sqrt{n})$

Del gráfico vemos que el eje Z queda dividido en 2 intervalos, 2 zonas, limitadas por el punto crítico -Zo:- 1.65

$$Z_c = -1,65$$

Regla de Decisión:

 $RH_0 \text{ si Z} < -1,65$

 $NRH_0 \text{ si Z} > -1,65$

Datos: n =28, \overline{X} = 2736 y σ =1700. Dado que partimos de suponer que H₀ es la hipótesis verdadera entonces μ = 2800. Calculamos el estadístico de prueba:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{2736 - 2800}{1700 / \sqrt{28}} = -0.199$$

Como -0.199 > -1.65. Se concluye No Rechazar H₀ con un nivel de significación del 5%.

No hay evidencia estadística suficiente como para concluir que la campaña publicitaria sirvió para reducir el consumo promedio de combustible con un nivel de significación del 5%.

Ejercicio 4 a)

*Planteo 1	Planteo 2
H_0 : $\mu = 110$	H_0 : $\mu \le 110$
H_1 : $\mu > 110$	H ₁ : μ >110

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

 $\text{Con }\alpha=0.01$

Estadístico de prueba $\, Z = (\overline{X} - \mu)/(S \, / \, \sqrt{n}) \,$

Realizar la prueba.

b)

Ejercicio 5 a)

*Planteo 1	Planteo 2
H_0 : $\mu = 28$	H ₀ : µ ≥ 28
H ₁ : μ <28	H ₁ : μ <28

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

Con $\alpha = 0.01$

Estadístico de prueba $t=(\overline{X}-\mu)/(S/\sqrt{n})$ (Al ser $n\geq 30$ tambíen se podría optar por usar Z, por lo que en ese caso el estadístico de prueba sería: $\mathbf{Z}=\frac{\overline{X}-\mu}{S/\sqrt{n}}$, observer que con un n=625 el valor critic de t converge al de Z)

Regla de decisión

 $RH_0 \text{ si } t < -2,33$ $NRH_0 \text{ si } t > -2,33$

Datos: n =625, \overline{X} = 26,9 y S=8. Dado que partimos de suponer que H₀ es la hipótesis verdadera entonces μ = 28. Calculamos el estadístico de prueba:

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}} = \frac{26.9 - 28}{8 / \sqrt{625}} = -3.43$$

Como -3,43 < -2,33. Se concluye Rechazar H_0 con un error del 1%.

Hay evidencia estadística suficiente como para concluir que los cambios fueron efectivos con una probabilidad de error del 1%.

Ejercicio 6

*Planteo 1	Planteo 2
H ₀ : μ = 90	H₀: μ ≤ 90
H ₁ : μ >90	H ₁ : μ >90

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

Con $\alpha = 0.10$

Estadístico de prueba $t = (\overline{X} - \mu)/(S / \sqrt{n})$

Del gráfico vemos que el eje t queda dividido en 2 intervalos, 2 zonas, separadas por el punto crítico t_c: 1.328

Regla de decisión

 $RH_0 \text{ si t} > 1.328$ $NRH_0 \text{ si t} < 1.328$

Datos: n =20, \overline{X} = 94 y S=22. Dado que partimos de suponer que H₀ es la hipótesis verdadera entonces μ = 90. Calculamos el estadístico de prueba:

$$t = \frac{X - \mu}{S / \sqrt{n}} = \frac{94 - 90}{22 / \sqrt{20}} = 0.81$$

Como 0.81 < 1.328. Se concluye No Rechazar H₀ con un nivel de significación del 10%.

No hay evidencia estadística suficiente como para concluir que el tiempo promedio de venta ha aumentado trabajando con un nivel de significación del 10 %.

Ejercicio 7

*Planteo 1	Planteo 2
H_0 : $\mu = 15000$ H_1 : $\mu < 15000$	H_0 : $\mu \ge 15000$ H_1 : $\mu < 15000$

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

 $\alpha = 0.05$

Estadístico de prueba $\,t=(\overline{X}-\mu)/(S\,/\,\sqrt{n})\,$

Realizar la prueba.

Ejercicio 8

*Planteo 1	Planteo 2
H _o : p =0,20	H₀: p ≤0,20
H_1 : p > 0,20	H_1 : p > 0,20

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

 α = 0,05

Estadistico de prueba $\, Z = \, \, \hat{p} - p \, / \, \sqrt{pq \, / \, n} \,$

Realizar la prueba.

Ejercicio 9 a)

*Planteo 1	Planteo 2
H_0 : p = 0.17	H _o : p ≥ 0.17
H ₁ : p < 0.17	H₁: p < 0.17

^{*}Los dos planteos estan bien, elegir solo uno de ellos a la hora de plantear las hipotesis del problema.

 α = 0,05

Estadístico de prueba $Z = \hat{p} - p / \sqrt{p q / n}$

Regla de Decisión:

Rechazar H_0 si $Z_0 < -1,65$;

No Rechazar H_0 si $Z_0 > -1,65$

Calculamos el estadístico de prueba:

$$Z = \frac{0,14 - 0,17}{\sqrt{\frac{0,17 \times 0,83}{500}}} = \frac{-0,03}{0,0168} = -1,786$$

Como -1,786< -1,65 Se concluye Rechazar H₀ con un riesgo del 5%.

Hay evidencia estadística suficiente para concluir que la proporción de clientes del banco que giran en descubierto ha disminuido, con un riesgo o error del 5%.

b)

Ejercicio 10

 $H_o: p = 0.30$

H₁: p ≠ 0,30

α= 0,05

Estadístico de prueba $\, Z = \, \hat{p} - p \, / \, \sqrt{p \, q \, / \, n} \,$

Realizar la prueba