## Глава 4. Восходящий синтаксический анализ

## 4.6. LR-таблицы разбора

## **4.6.1.** *LR*(0)-грамматики

Рассмотрим самый легкий в реализации, но наименее мощный LR(0)-метод построения LR-таблицы разбора, основанный на применении LR(0)-грамматик. Для таких грамматик основа распознается без исследования предварительно просматриваемого символа, а пункт не содержит предпросмотра, т. е. LR(0)-пункт  $[A \to \alpha \bullet \beta]$  представляет собой только продукцию с маркерной точкой.

Процесс построения LR(0)-автомата начинается с исходного пункта  $[S' \to \bullet S \bot]$ , где S' – начальный символ пополненной грамматики, которая включается в исходное состояние автомата. Затем выполняется операция замыкания, которая заключается в следующем. Если пункт вида  $[A \to \alpha \bullet B\beta], B \in V_N$ , входит в некоторое состояние, то все пункты вида  $[B \to \bullet \gamma], \gamma \in (V_T \cup V_N)^*$ , включаются в это же состояние (если их еще там нет). Этот процесс продолжается рекурсивно до тех пор, пока в состояние не будут включены все возможные пункты. Таким образом, если в пункте маркерная точка стоит перед нетерминалом B, то в текущее состояние включаются все пункты, в которых маркерная точка стоит перед первым символом правой части продукции с нетерминалом В в левой части. Если в каком-то из добавленных пунктов маркерная точка стоит перед нетерминалом, процесс повторяется. Такое выполнение операции замыкания объясняется следующим образом. Наличие  $[A \to \alpha \bullet B \beta]$  в некотором состоянии указывает, что в данный момент в процессе синтаксического анализа предполагается, что во входном потоке может встретиться подстрока, выводимая из  $B\beta$ . Но если имеется продукция  $B \rightarrow \gamma$ , то, естественно, в этот момент может встретиться и строка, выводимая из  $\gamma$ . Поэтому  $[B \to \bullet \gamma]$  должна быть включена в это же состояние (пункты  $[A \to \alpha \bullet B\beta]$  и  $[B \to \bullet \gamma]$  являются неразличимыми).

Из заданного состояния I, содержащего хотя бы один пункт, не соответствующий окончанию продукции, строится переход в другое состояние  $I^{\prime}$  по символу грамматики, перед которым стоит маркерная точка. При этом точка перемещается на одну позицию вправо, т. е. будет стоять после этого символа. Состояние  $I^\prime$  называется преемником состояния І. Новый пункт, который получается при образовании преемника, называется базовым для состояния I'. Таким образом, если пункт  $[A \to \alpha \bullet X\beta]$ ,  $X \in V_T \cup V_N$  принадлежит состоянию I, то базовым пунктом для состояния I' будет пункт  $[A \to \alpha X \bullet \beta]$  (переход по символу X). Затем для базового пункта выполняется операция замыкания, чтобы включить в новое состояние все остальные неразличимые пункты. Следует отметить, что если состояние I содержит несколько пунктов, в которых точка стоит перед одним и тем же символом X, то в состоянии I' будет множество базовых пунктов, в которых точка будет стоять после X. Это связано с тем, что LR(0)-автомат должен быть детерминированным, а в таких автоматах не допускается, чтобы из одного состояния существовал переход по одному и тому же символу в разные состояния.

Процесс последовательного выполнения операций замыкания и образования преемника продолжается до тех пор, пока все возможные пункты грамматики не окажутся включенными в какие-либо состояния. Следует иметь в виду, что автомат не должен иметь несколько состояний с одинаковыми множествами пунктов.

Рассмотрим процесс построения LR(0)-автомата для грамматики со следующими продукциями (перед продукцией указан ее порядковый номер):

- 1)  $S \rightarrow SbA$
- 2)  $S \rightarrow A$
- $3) A \rightarrow a$

Поскольку мы рассматриваем пополненные грамматики, то имеется еще продукция  $S' \to S \bot$ . LR(0)-автомат для данной грамматики представлен на рис. 4.6. Для удобства записи в пунктах квадратные скобки опущены.

- 1)  $S \rightarrow SbA$
- 2)  $S \rightarrow A$
- 3)  $A \rightarrow a$



Рис. 4.6. *LR*(0)-автомат

Образуем исходное состояние  $I_0$ . Базовым пунктом является начальный пункт  $[S' \to \bullet S \bot]$ . Выполним операцию замыкания. Поскольку маркерная точка стоит перед нетерминалом S, в состояние  $I_0$  необходимо включить пункты  $[S \to \bullet SbA]$  и  $[S \to \bullet A]$  для продукций с нетерминалом S в левой части. Среди добавленных пунктов появился нетерминал A, перед которым стоит точка, следовательно, необходимо включить в  $I_0$  пункт  $[A \to \bullet a]$ . Операция замыкания выполнена, и определены все пункты для состояния  $I_0$ .

В состоянии  $I_0$  перед тремя разными символами стоит маркерная точка, т. е. будет три состояния-преемника:  $I_1$  по символу S (базовые пункты  $[S' \to S \bullet \bot]$  и  $[S \to S \bullet bA]$ ),  $I_2$  по символу A (базовый пункт  $[S \to A \bullet]$ ) и  $I_3$  по символу a (базовый пункт  $[A \to a \bullet]$ ). Следует отметить, что состояния  $I_1$ ,  $I_2$  и  $I_3$  исчерпываются базовыми пунктами, так как в них нет пунктов с маркерными точками перед нетерминалами. Пункты в состояниях  $I_2$  и  $I_3$  соответствуют окончаниям продукций, поэтому они не имеют преемников. Это означает, что в этих состояниях должна выполняться свертка для соответствующих продукций. На рис. 4.6 действия свертки обозначены так же, как и элементы свертки в таблице разбора. Например, в состоянии  $I_2$  выполняется свертка для продукции  $S \to A$  с номером два (обозначено R2).

У состояния  $I_1$  имеются два состояния-преемника: stop по символу  $\bot$  (базовый пункт  $[S' \to S \bot \bullet]$ ) и  $I_4$  по символу b (базовый пункт  $[S \to Sb \bullet A]$ ). Состояние stop означает, что процесс разбора завершен. Операция замыкания базового пункта в состоянии  $I_4$  добавляет в него пункт  $[A \to \bullet a]$ . Преемниками состояния  $I_4$  являются состояния  $I_3$  по символу a и  $I_5$  по символу A (базовый пункт  $[S \to SbA \bullet]$ ). В состоянии  $I_5$  выполняется свертка R1 для продукции  $S \to SbA$ .

На этом процесс построения LR(0)-автомата завершен, поскольку все возможные пункты заданной грамматики включены в соответствующие состояния. Следует отметить, что один пункт может входить в более чем одно состояние. Например, пункт  $[S \to \bullet a]$  содержится в состояниях  $I_0$  и  $I_4$ .

В полученном автомате никаких конфликтов нет — это особенность LR(0)-грамматик. Конфликт «свертка/свертка» возникает, если в одном состоянии возможно несколько сверток. Конфликт «перенос/свертка» возникает, если в состоянии есть свертка и возможен переход в другое состояние.

LR(0)-автомат удобно представлять в табличной форме. Пример такого представления полученного LR(0)-автомата показан в табл. 4.6. Очевидно, что для состояния stop нет смысла выделять специальную строку в таблице, поскольку это состояние не предполагает никаких действий, а только сигнализирует об успешном завершении разбора.



Таблича 4.6 Табличное представление LR(0)-автомата

| Состояние | Пункты                                      | Символ<br>перехода | Состояние- | Свертка    |  |
|-----------|---------------------------------------------|--------------------|------------|------------|--|
| $I_0$     | $S' \to \bullet S \bot$ $S \to \bullet SbA$ | S                  | $I_1$      |            |  |
|           | $S \to \bullet SOA$ $S \to \bullet A$       | A                  | $I_2$      |            |  |
|           | $A \rightarrow \bullet a$                   | а                  | $I_3$      |            |  |
| $I_1$     | $S' \rightarrow S \bullet \bot$             | <u>L</u>           | stop       |            |  |
|           | $S \to S \bullet bA$                        | b                  | $I_4$      |            |  |
| $I_2$     | $S \to A \bullet$                           |                    |            | R2         |  |
| $I_3$     | $A \rightarrow a \bullet$                   |                    |            | R3         |  |
| $I_4$     | $S \to Sb \bullet A$                        | A                  | $I_5$      |            |  |
|           | $A \rightarrow \bullet a$                   | а                  | $I_3$      |            |  |
| $I_5$     | $S \rightarrow SbA \bullet$                 |                    |            | <i>R</i> 1 |  |

По LR(0)-автомату легко строится таблица разбора. Сначала заносятся элементы переноса. Переход из одного состояния в другое соответствует действию переноса. Поэтому элементы переноса вносятся в таблицу разбора на основании информации о состояниях и переходах автомата. Если из состояния  $I_i$  существует переход в состояние  $I_j$  по символу X, то на пересечении строки i и столбца X записывается элемент переноса  $S_j$ . Если осуществляется переход в состояние  $S_j$ , то в таблицу разбора вносится элемент останова  $S_j$ . Следует отметить, что внесение элементов переноса не зависит от рассматриваемой  $S_j$ . Поскольку для  $S_j$  состояния и в учитывается предварительно просматриваемый символ, а в  $S_j$  состояние  $S_j$  остояние в любом состоянии, соответствующем окончанию продукции (табл. 4.7).



Таблица 4.7

| LR(0)-таблица разбора |            |            |            |            |            |            |  |  |  |
|-----------------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Номер<br>состояния    | S'         | S          | A          | а          | b          | $\perp$    |  |  |  |
| 0                     |            | <i>S</i> 1 | <i>S</i> 2 | <i>S</i> 3 |            |            |  |  |  |
| 1                     |            |            |            |            | <i>S</i> 4 | stop       |  |  |  |
| 2                     | <i>R</i> 2 | <i>R</i> 2 | <i>R</i> 2 | <i>R</i> 2 | <i>R</i> 2 | <i>R</i> 2 |  |  |  |
| 3                     | <i>R</i> 3 | <i>R</i> 3 | <i>R</i> 3 | <i>R</i> 3 | <i>R</i> 3 | <i>R</i> 3 |  |  |  |
| 4                     |            |            | <i>S</i> 5 | <i>S</i> 3 |            |            |  |  |  |
| 5                     | <i>R</i> 1 |  |  |  |

Построенная рассмотренным выше методом таблица разбора называется LR(0)-таблицей разбора, а соответствующая грамматика — LR(0)-грамматикой. Таким образом, чтобы определить, обладает ли грамматика признаком LR(0), необходимо попытаться построить LR(0)-таблицу разбора. Если это можно осуществить без возникновения каких-либо конфликтов (элементы свертки можно включить в каждый столбец в любом состоянии, соответствующем окончанию продукции), то грамматика является LR(0)-грамматикой. Если же конфликты возникают, грамматика не относится к классу LR(0) и следует применить более универсальные методы.