In the Specification:

Please amend the specification as shown:

Please delete the paragraph on page 57, line 20 to page 58, line 2 and replace it with the following paragraph:

In another embodiment of the invention, natural, modified, or recombinant polynucleotides encoding KPP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric KPP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of KPP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His (SEQ ID NO: 87), FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His (SEQ ID NO: 87) enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the KPP encoding sequence and the heterologous protein sequence, so that KPP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

Please delete the paragraph on page 106, line 30 to page 107, line 6 and replace it with the following paragraph:

In most expression systems, KPP is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His (SEQ ID NO: 87), permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26- kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences). Following purification, the GST moiety can be proteolytically cleaved from KPP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6- His (SEQ ID NO: 87), a

stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel et al. (*supra*, ch. 10 and 16). Purified KPP obtained by these methods can be used directly in the assays shown in Examples XVII, XVIII, XIX, XX, and XXI, where applicable.