Proofs of Results in Chapter 7

Proof of Result 7.2 Before the response $Y = Z\beta + \varepsilon$ is observed, it is a random vector. Now,

$$\hat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'(\mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\varepsilon}$$

$$\hat{\boldsymbol{\varepsilon}} = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\mathbf{Y}$$

$$= [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'][\mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}] = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}$$

since
$$[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\mathbf{Z} = \mathbf{Z} - \mathbf{Z} = \mathbf{0}$$
. From (2-24) and (2-45),
 $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'E(\varepsilon) = \boldsymbol{\beta}$
 $\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\operatorname{Cov}(\varepsilon)\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1} = \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}$
 $= \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}$
 $E(\hat{\varepsilon}) = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']E(\varepsilon) = \mathbf{0}$
 $\operatorname{Cov}(\hat{\varepsilon}) = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\operatorname{Cov}(\varepsilon)[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']'$
 $= \sigma^2[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$

where the last equality follows from (7-6). Also,

$$Cov(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\varepsilon}}) = E[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\hat{\boldsymbol{\varepsilon}}'] = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}')[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$$
$$= \sigma^{2}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{0}$$

because $\mathbf{Z}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{0}$. From the definition of $\hat{\varepsilon}$ above, (7-6) and Result 4.9,

$$\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = \boldsymbol{\varepsilon}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'][\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}$$

$$= \boldsymbol{\varepsilon}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}$$

$$= \operatorname{tr}[\boldsymbol{\varepsilon}'(\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}')\boldsymbol{\varepsilon}]$$

$$= \operatorname{tr}([\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}')$$

Now, for an arbitrary $n \times n$ random matrix W,

$$E(\operatorname{tr}(\mathbf{W})) = E(W_{11} + W_{22} + \dots + W_{nn})$$

= $E(W_{11}) + E(W_{22}) + \dots + E(W_{nn}) = \operatorname{tr}[E(\mathbf{W})]$

Thus, using Result 2A.12, we obtain

$$E(\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}) = \operatorname{tr}([\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'))$$

$$= \sigma^{2} \operatorname{tr}[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$$

$$= \sigma^{2} \operatorname{tr}(\mathbf{I}) - \sigma^{2} \operatorname{tr}[\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$$

$$= \sigma^{2}n - \sigma^{2} \operatorname{tr}[(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}]$$

$$= n\sigma^{2} - \sigma^{2} \operatorname{tr}\left[\frac{\mathbf{I}}{(r+1)\times(r+1)}\right]$$

$$= \sigma^{2}(n-r-1)$$

and the result for $s^2 = \hat{\varepsilon}' \hat{\varepsilon}/(n-r-1)$ follows.

Proof of Result 7.4 Given the data and the normal assumption for the errors, the likelihood function for β , σ^2 is

$$L(\boldsymbol{\beta}, \sigma^2) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi} \sigma} e^{-\varepsilon_j^2/2\sigma^2} = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\varepsilon' \varepsilon/2\sigma^2}$$
$$= \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})/2\sigma^2}$$

For a fixed value σ^2 , the likelihood is maximized by minimizing $(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})$. But this minimization yields the least squares estimate $\hat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$, which does not depend upon σ^2 . Therefore, under the normal assumption, the maximum likelihood and least squares approaches provide the same estimator $\hat{\boldsymbol{\beta}}$. Next, maximizing $L(\hat{\boldsymbol{\beta}}, \sigma^2)$ over σ^2 [see (4-18)] gives

$$L(\hat{\boldsymbol{\beta}}, \hat{\sigma}^2) = \frac{1}{(2\pi)^{n/2} (\hat{\sigma}^2)^{n/2}} e^{-n/2} \quad \text{where} \quad \hat{\sigma}^2 = \frac{(\mathbf{y} - \mathbf{Z}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{Z}\hat{\boldsymbol{\beta}})}{n}$$

As shown in the proof of Result 7.2, we can express $\hat{\beta}$ and $\hat{\epsilon}$ as linear combinations of the normal variables ϵ . Specifically,

$$\begin{bmatrix}
\hat{\boldsymbol{\beta}} \\
\hat{\boldsymbol{\varepsilon}}
\end{bmatrix} = \begin{bmatrix}
\boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\varepsilon} \\
[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}
\end{bmatrix} = \begin{bmatrix}
\boldsymbol{\beta} \\
\mathbf{0}
\end{bmatrix} + \begin{bmatrix}
(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}' \\
\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'
\end{bmatrix} \boldsymbol{\varepsilon} = \boldsymbol{\alpha} + \mathbf{A}\boldsymbol{\varepsilon}$$

Because **Z** is fixed, Result 4.3 implies the joint normality of $\hat{\beta}$ and $\hat{\epsilon}$. Their mean vectors and covariance matrices were obtained in Result 7.2. Again, using (7-6), we get

$$\operatorname{Cov}\left(\left\lceil\frac{\hat{\boldsymbol{\beta}}}{\hat{\boldsymbol{\varepsilon}}}\right\rceil\right) = \mathbf{A} \operatorname{Cov}(\boldsymbol{\varepsilon}) \mathbf{A}' = \sigma^2 \left\lceil\frac{(\mathbf{Z}'\mathbf{Z})^{-1}}{\mathbf{0}'}\right\rceil \frac{\mathbf{0}}{\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'}\right]$$

Since $Cov(\hat{\beta}, \hat{\epsilon}) = 0$ for the normal random vectors $\hat{\beta}$ and $\hat{\epsilon}$, these vectors are independent. (See Result 4.5.)

Next, let (λ, \mathbf{e}) be any eigenvalue-eigenvector pair for $\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$. Then, by (7-6), $[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']^2 = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$ so

$$\lambda \mathbf{e} = [\mathbf{I} - \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'] \mathbf{e} = [\mathbf{I} - \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}']^2 \mathbf{e} = \lambda [\mathbf{I} - \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'] \mathbf{e} = \lambda^2 \mathbf{e}$$

That is, $\lambda = 0$ or 1. Now, $\text{tr}[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = n - r - 1$ (see the proof of Result 7.2), and from Result 4.9, $\text{tr}[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \lambda_1 + \lambda_2 + \cdots + \lambda_n$, where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the eigenvalues of $[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$ Consequently, exactly n - r - 1 values of λ_i equal one, and the rest are zero. It then follows from the spectral decomposition that

$$[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{e}_1\mathbf{e}_1' + \mathbf{e}_2\mathbf{e}_2' + \cdots + \mathbf{e}_{n-r-1}\mathbf{e}_{n-r-1}'$$

where $e_1, e_2, \dots, e_{n-r-1}$ are the normalized eigenvectors associated with the eigenvalues $\lambda_1 = \lambda_2 = \dots = \lambda_{n-r-1} = 1$. Let

$$\mathbf{V} = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_{n-r-1} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{e}_1'}{\mathbf{e}_2'} \\ \vdots \\ \mathbf{e}_{n-r-1}' \end{bmatrix} \varepsilon$$

Then V is normal with mean vector 0 and

$$Cov(V_i, V_k) = \begin{cases} \mathbf{e}'_i \sigma^2 \mathbf{I} \mathbf{e}_k = \sigma^2 \mathbf{e}'_i \mathbf{e}_k = \sigma^2, & i = k \\ 0, & \text{otherwise} \end{cases}$$

That is, the V_i are independent $N(0, \sigma^2)$ and

$$n\hat{\sigma}^2 = \hat{\varepsilon}'\hat{\varepsilon} = \varepsilon'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\varepsilon = V_1^2 + V_2^2 + \dots + V_{n-r-1}^2$$

is distributed $\sigma^2 \chi_{n-r-1}^2$.

Proof of Result 7.10 According to the regression model, the likelihood is determined from the data $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_n]'$ whose rows are independent, with \mathbf{Y}_j distributed as $N_m(\boldsymbol{\beta}'\mathbf{z}_j, \boldsymbol{\Sigma})$. We first note that $\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta} = [\mathbf{Y}_1 - \boldsymbol{\beta}'\mathbf{z}_1, \mathbf{Y}_2 - \boldsymbol{\beta}'\mathbf{z}_2, ..., \mathbf{Y}_n - \boldsymbol{\beta}'\mathbf{z}_n]'$ so

$$(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta}) = \sum_{i=1}^{n} (\mathbf{Y}_{i} - \boldsymbol{\beta}'\mathbf{z}_{i})(\mathbf{Y}_{i} - \boldsymbol{\beta}'\mathbf{z}_{i})'$$

and

$$\sum_{j=1}^{n} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j}) = \sum_{j=1}^{n} \operatorname{tr} [(\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})]$$

$$= \sum_{j=1}^{n} \operatorname{tr} [\boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j}) (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})']$$

$$= \operatorname{tr} [\boldsymbol{\Sigma}^{-1} (\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})]$$

Another preliminary calculation will enable us to express the likelihood in a simple form. Since $\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}}$ satisfies $\mathbf{Z}'\hat{\boldsymbol{\varepsilon}} = \mathbf{0}$ [(see 7-29)],

$$(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})$$

$$= [\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}} + \mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]'[\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}} + \mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]$$

$$= (\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

$$= \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

Using the results above, we obtain the likelihood

$$L(\boldsymbol{\beta}, \boldsymbol{\Sigma}) = \prod_{j=1}^{n} \frac{1}{(2\pi)^{m/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})' \boldsymbol{\Sigma}^{-1}(\mathbf{y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})}$$

$$= \frac{1}{(2\pi)^{mn/2}} \frac{1}{|\boldsymbol{\Sigma}|^{n/2}} e^{-\frac{1}{2} \text{tr}[\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}} + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{Z}' \mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]}$$

$$= \frac{1}{(2\pi)^{mn/2}} \frac{1}{|\boldsymbol{\Sigma}|^{n/2}} e^{-\frac{1}{2} \text{tr}[\boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}}] - \frac{1}{2} \text{tr}[\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{Z}']}$$

The matrix $\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'$ is the form $\mathbf{A}'\mathbf{A}$, with $\mathbf{A} = \boldsymbol{\Sigma}^{-1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'$, and, from Exercise 2.16, it is nonnegative definite. Therefore, its eigenvalues are nonnegative also. Since, by Result 4.9, $\mathrm{tr}[\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}']$ is the sum of its eigenvalues, this trace will equal its minimum value, zero, if $\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}$. This choice is unique because \mathbf{Z} is of full rank and $\hat{\boldsymbol{\beta}}_{(i)} - \boldsymbol{\beta}_{(i)} \neq \mathbf{0}$, implies that $\mathbf{Z}(\hat{\boldsymbol{\beta}}_{(i)} - \boldsymbol{\beta}_{(i)}) \neq \mathbf{0}$, in which case $\mathrm{tr}[\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'] \geq \mathbf{c}'\boldsymbol{\Sigma}^{-1}\mathbf{c} > 0$, where \mathbf{c}' is any nonzero row of $\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$. Applying Result 4.10 with $\mathbf{B} = \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}$, b = n/2, and p = m, we find that $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\Sigma}} = n^{-1}\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}$ are the maximum likelihood estimators of $\boldsymbol{\beta}$ and $\boldsymbol{\Sigma}$, respectively, and

$$L(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\Sigma}}) = \frac{1}{(2\pi)^{mn/2}} \frac{(n)^{mn/2}}{|\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}|^{n/2}} e^{-nm/2} = \frac{e^{-nm/2}}{(2\pi)^{mn/2} |\hat{\boldsymbol{\Sigma}}|^{n/2}}$$

It remains to establish the distributional results. From (7-33), we know that $\hat{\boldsymbol{\beta}}_{(i)}$ and $\hat{\boldsymbol{\varepsilon}}_{(i)}$ are linear combinations of the elements of $\boldsymbol{\varepsilon}$. Specifically,

$$\hat{\boldsymbol{\beta}}_{(i)} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\varepsilon}_{(i)} + \boldsymbol{\beta}_{(i)}$$

$$\hat{\boldsymbol{\varepsilon}}_{(i)} = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}_{(i)}, \qquad i = 1, 2, ..., m$$

Therefore, by Result 4.3, $\hat{\boldsymbol{\beta}}_{(1)}$, $\hat{\boldsymbol{\beta}}_{(2)}$,..., $\hat{\boldsymbol{\beta}}_{(m)}$, $\hat{\boldsymbol{\varepsilon}}_{(1)}$, $\hat{\boldsymbol{\varepsilon}}_{(2)}$,..., $\hat{\boldsymbol{\varepsilon}}_{(m)}$ are jointly normal. Their mean vectors and covariance matrices are given in Result 7.9. Since $\hat{\boldsymbol{\varepsilon}}$ and $\hat{\boldsymbol{\beta}}$ have a zero covariance matrix, by Result 4.5 they are independent. From the proof

of Result 7.4, $[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \sum_{\ell=1}^{n-r-1} \mathbf{e}_{\ell}\mathbf{e}'_{\ell}$, where $\mathbf{e}'_{\ell}\mathbf{e}_{k} = 0$, $\ell \neq k$, and $\mathbf{e}'_{\ell}\mathbf{e}_{\ell} = 1$. Set

 $\mathbf{V}_{\ell} = \boldsymbol{\mathcal{E}}' \mathbf{e}_{\ell} = [\boldsymbol{\varepsilon}'_{(1)} \mathbf{e}_{\ell}, \boldsymbol{\varepsilon}'_{(2)} \mathbf{e}_{\ell}, \dots, \boldsymbol{\varepsilon}'_{(m)} \mathbf{e}_{\ell}]' = e_{\ell 1} \boldsymbol{\varepsilon}_{1} + e_{\ell 2} \boldsymbol{\varepsilon}_{2} + \dots + e_{\ell n} \boldsymbol{\varepsilon}_{n}$. Because \mathbf{V}_{ℓ} , $\ell = 1, 2, \dots, n - r - 1$, are linear combinations of the elements of $\boldsymbol{\mathcal{E}}$, they have a joint normal distribution with $E(\mathbf{V}_{\ell}) = E(\boldsymbol{\mathcal{E}}') \mathbf{e}_{\ell} = \mathbf{0}$. Also, by Result 4.8, \mathbf{V}_{ℓ} and \mathbf{V}_{k} have covariance matrix $(\mathbf{e}'_{\ell}\mathbf{e}_{k})\boldsymbol{\Sigma} = (0)\boldsymbol{\Sigma} = \mathbf{0}$ if $\ell \neq k$. Consequently, the \mathbf{V}_{ℓ} are independently distributed as $N_{m}(\mathbf{0}, \boldsymbol{\Sigma})$. Finally,

$$\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = \boldsymbol{\varepsilon}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon} = \sum_{\ell=1}^{n-r-1} \boldsymbol{\varepsilon}'\mathbf{e}_{\ell}\mathbf{e}'_{\ell}\boldsymbol{\varepsilon} = \sum_{\ell=1}^{n-r-1} \mathbf{V}_{\ell}\mathbf{V}'_{\ell}$$

which has the $W_{p,n-r-1}(\Sigma)$ distribution, by (4-22).