Math 636 Henry Woodburn

Homework 1

13.1 Let X be a topological space and $A \subset X$. Suppose for each $x \in A$ there is an open set U_x with $x \in U_x \subset A$. Then I claim $U := \bigcup_{x \in A} U_x = A$. Since each $x \in A$ is in some U_x , clearly $A \subset U$. Conversely, each U_x is a subset of A, so their union must be. Then A is a union of open sets and is open.

13.3 Let X be any set. Let \mathcal{T}_c be the collection of subsets U of X such that $X \setminus U$ is either countable or all of X. \mathcal{T}_c contains the empty set and X since $X \setminus \emptyset = X$ and $X \setminus X = \emptyset$, which is countable. Also, if $\{U_{\alpha}\}_{{\alpha} \in A}$ is any collection of open sets, we have

$$X \setminus \bigcup_{\alpha \in A} U_{\alpha} = X \cap \left(\bigcup_{\alpha \in A} U_{\alpha}\right)^{c} = X \cap \bigcap_{\alpha \in A} U_{\alpha}^{c} = \bigcap_{\alpha \in A} X \cap U_{\alpha}^{c} = \bigcap_{\alpha \in A} X \setminus U_{\alpha}$$

by De Morgan's laws, and thus $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_c$, since any intersection of countable sets is countable.

Similarly, if $i_1, \ldots, i_n \in A$, we have

$$X\setminus\bigcap_{1}^{n}U_{i_{n}}=\bigcup A\setminus U_{i_{n}},$$

which is a finite union of countable sets and is countable. Then $\bigcap_{1}^{n} U_{i_n} \in \mathcal{T}_c$.

Then we have shown that \mathcal{T}_c is a topology.

Now let \mathcal{T}_{∞} be the subsets U of X such that $X \setminus U$ is infinite, empty, or all of X. \mathcal{T}_{∞} is not a topology. For example, let $X = \mathbb{N}$. Then $\{x\}$ is open for $x \in X$, but $V := \bigcup_{x \notin \{0\}} \{x\}$ is a union of open sets that is not open, as $X \setminus V = \{0\}$.

13.6 Let \mathbb{R}_{ℓ} be the reals equipped with the lower limit topology, and let \mathbb{R}_{K} be the reals equipped with the K-topology. Here $K := \{1/z : z \in \mathbb{Z}\}$ and the K topology is generated by the collection of open intervals (a,b) along with sets of the form $(a,b) \setminus K$.

To show that the topologies on \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable, we must show the existence of sets $U, V \in \mathbb{R}$ such that U is open in the K-topology and not in the lower limit topology, and V is open in the lower limit topology but not the K-topology.

Let $U = (-2,2) \setminus K$. U is clearly open in the K-topology, but it is not open in the lower limit topology. For $0 \in U$, suppose there is an interval [a,b) containing 0. Then 0 < b, so there is some $n \in \mathbb{Z}$ such that 0 < 1/n < b and thus $[a,b) \not\subset U$. Then U is not open in the lower limit topology, which is generated by all such half-open intervals.

Let V = [2025, 2026). Then V is not open in the K-topology since there is no open interval containing 2025 which is contained in V, and the only basic open sets from the K-topology contained in V are open intervals.

16.1 Let X be a topological space, Y a subspace, and A a subset of Y. Let \mathcal{T}_Y be the topology A inherets as a subspace of Y and let \mathcal{T}_X be the topology A inherets as a subspace of X.

If U is in \mathcal{T}_Y , then $U = W \cap A$ for some W open in Y. We can write $W = K \cap Y$ for some K open in X since Y is a subspace of X. Then we have $U = K \cap Y \cap A = K \cap A$, showing that U is open in \mathcal{T}_X .

Likewise if V is in \mathcal{T}_X , Then $V = W \cap A$ for some W open in X. Since $A \subset Y$, $V = W \cap Y \cap A = (W \cap Y) \cap A$. Then $W \cap Y$ is open in Y and V is in \mathcal{T}_Y .

16.4 Let X and Y be topological spaces, and give $X \times Y$ the product topology. Let $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ be the projection maps.

Let U be open in $X \times Y$ and let $x \in \pi_1(U) \subset X$. Then choose a point $z \in U$ such that $\pi_1(z) = x$ using the surjectivity of π_1 . Since U is open, there is a basic open set $A \times B$ for open sets $A \subset X$ and $B \subset Y$, such that $z \in A \times B \subset U$.

Then $x = \pi_1(z) \in \pi_1(A \times B) = A \subset \pi_1(U)$, showing that $\pi_1(U)$ is open.

A similar argument shows that π_2 is an open map.

16.9 Let \mathcal{T}_d be the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ and let \mathcal{T}_p be the product topology on $\mathbb{R}_d \times \mathbb{R}$ where \mathbb{R}_d is \mathbb{R} with the discrete topology and \mathbb{R} has the standard topology. Let \mathcal{B}_d be the basis for \mathcal{T}_d consisting of intervals of the form $(a \times b, c \times d)$ where either a < c or a = c and b < d. Let \mathcal{B}_p be the basis for \mathcal{T}_d consisting of intervals $(a \times b, a \times c)$ for b < c, possibly $\pm \infty$.

Since $\mathcal{B}_p \subset \mathcal{B}_d$, we must have $\mathcal{T}_p \subset \mathcal{B}_d$.

In the other direction, we can write $(a \times b, c \times d) = (a \times b, a \times \infty) \cup \bigcup_{x \in (a,c)} (x \times -\infty, x \times \infty) \cup (c \times -\infty, c \times c)$. Then $\mathcal{B}_d \subset \mathcal{T}_p$ and thus $\mathcal{T}_d \subset \mathcal{T}_p$.

I claim that \mathcal{T}_d is strictly finer than the standard topology on $\mathbb{R} \times \mathbb{R}$. All products of intervals $A \times B$ are unions $\bigcup_{x \in A} x \times B$, but the interval $(a \times b, a \times c)$ cannot contain any product of intervals $A \times B$ since this would imply $B \subset \{a\}$, which is not possible.