Lookahead-Bounded Q-learning

Ibrahim El Shar, Daniel Jiang

University of Pittsburgh

IE Department

Presented at ICML 2020

Vienna, Austria

June 11, 2020

Introduction

- Q-learning and its variants are known to be challenging to apply to real world settings, due to the cost of collecting experience.
- Information relaxation is a framework for obtaining upper bounds on MDPs by assuming the future is "known" and solving a related problem.
- In this work, we propose a new algorithm, lookaheadbounded Q-learning, that leverages information relaxation to make Q-learning more effective.

Infinite Horizon Markov Decision Problem

• Consider a γ -discounted infinite horizon problem with finite state and action spaces, \mathcal{S} and \mathcal{A} respectively.

Definitions:

- **Policy:** a mapping $\pi: \mathcal{S} \to \mathcal{A}$,
- The **state-action value function** of a policy π is:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s, a_0 = a, \pi\right]$$

An optimal policy selects actions according to

$$\pi^*(s) = \operatorname{argmax}_{a \in \mathcal{A}} Q^*(s, a)$$

where $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$ is the optimal action-value function.

RL Setting

Popular solution:

Q-learning (Watkins, 1989)

- most widely-used
- conceptual simplicity
- ease of implementation, and convergence guarantees

However...

Q-learning

Q-learning is hard to use in real-world problems (expensive simulations/real-world interactions)

$$Q_{n+1}(s, a) = Q_n(s, a) + \alpha_n(s, a)[r(s, a) + \gamma \max_{a} Q(s', a) - Q(s, a)]$$

Goal: make better use of collected experience

Approach: use upper and lower bounds derived using information relaxation techniques

But how...

Q-learning

- Question 1: If we knew upper and lower bounds on Q*, could we improve this algorithm?
- Question 2: Can we dynamically estimate upper and lower bounds that get better over time?

Other Usages of Bounds in RL

- Optimistic RL with Certificates (Dann et al., 2018) and Episodic Upper Lower Exploration in RL (Zanette & Brunskill, 2019)
 - Study finite horizon problems
 - Main goal: achieve better exploration
- Bounded RTDP (McMahan et al., 2005), Bayesian RTDP (Sanner et al., 2009) & Focused RTDP (Smith & Simmons, 2006)
 - Largely use heuristics to obtain bounds
- Faster Deep RL by Optimality Tightening (He et al., 2016)
 - Exploit multistep returns to construct bounds
 - No theoretical guarantees are provided

Partially Known Dynamics

It is often the case

Transition function
$$f(s_t, a_t, w_{t+1})$$

Reward function $r(s_t, a_t, w_{t+1})$ known form

What is often not known is the random noise w_{t+1}

range of values? distribution?

But it is observable...

Partially Known Dynamics

- Typical assumption in the OR and control theory literature
- Backed by abundant real-world applications
- Examples:
 - Inventory problems
 - Car-sharing problems
 - Vehicle routing
 - Renewable energy
 - Maintenance problems
 - Production and scheduling problems
 - Pricing options and trading stocks
- Significant practical interest

Information Relaxation and Duality Theory

- Proposed by Brown et al. 2010, 2017
- A flexible framework to compute upper bounds on DP values
- Idea: relaxing non-anticipativity constraint
- Perfect information relaxation
- Solve a deterministic DP for each sample path $W = \{w_1, w_2, w_3, \dots\}$:

$$V^*(s) \le \mathbf{E} \left[\max_{a} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s \right]$$

Recall:
$$V^*(s) = \max_{\pi} \mathbf{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t)) \mid s_0 = s]$$

• Absorption time formulation: $\mathbf{W} = \{w_1, w_2, \dots, w_{\tau}\}, \tau \sim \text{Geom}(1 - \gamma)$

$$V^*(s) \le \mathbf{E} \left[\max_{a} \sum_{t=0}^{\tau} r(s_t, a_t) \mid s_0 = s \right]$$
 (undiscounted)

Perfect Information Relaxation is Too Loose

Brown et al. propose the use of penalties to create a tighter bound.

Perfect Information Relaxation is Too Loose

Brown et al. propose the use of penalties to create a tighter bound.

Perfect Information Relaxation is Too Loose

Brown et al. propose the use of penalties to create a tighter bound.

Perfect information relaxation

Penalized perfect information relaxation (penalties that use approx. of Q*)

Optimal Value (penalty that uses Q*)

Information Relaxation and Duality Theory

- Given φ an approx. of Q* we can construct penalties
- We use penalties of the form

$$\zeta_t^{\pi}(s_t, a_t, w_{t+1} | \varphi) \coloneqq \gamma^{t+1} \left(\varphi(s_{t+1}, \pi(s_{t+1})) - \mathbf{E} \left[\varphi(h(s_t, a_t, w), \pi(h(s_t, a_t, w))) \right] \right)$$

• Weak duality: for any feasible π and bounded φ :

$$Q^{\pi}(s_0, a_0) \leq \mathbf{E} \left[\max_{\substack{a \\ t=0}}^{\tau-1} r(s_t, a_t) - \zeta_t^{\pi_{\varphi}}(s_t, a_t, w_{t+1} | \varphi) \right]$$

Strong duality:

$$Q^*(s_0, a_0) = \inf_{\varphi} \mathbf{E} \left[\max_{a} \sum_{t=0}^{\tau-1} r(s_t, a_t) - \zeta_t^{\pi_{\varphi}}(s_t, a_t, w_{t+1} | \varphi) \right]$$

with the infimum attained at $\varphi = Q^*$

Information Relaxation and Duality Theory

• Empirical penalty: given $\{w_{t+1}^1, w_{t+1}^2, ..., w_{t+1}^K\}$ (black box simulator)

$$\hat{\zeta}_{t}^{\pi}(s_{t}, a_{t}, w_{t+1} | \varphi) \coloneqq \gamma^{t+1} \left(\varphi(s_{t+1}, \pi(s_{t+1})) - \frac{1}{K} \sum_{k=1}^{K} \varphi(h(s_{t}, a_{t}, w_{t+1}^{k}), \pi(h(s_{t}, a_{t}, w_{t+1}^{k}))) \right)$$

- Given a sample path $W = \{w_1, w_2, \dots, w_{\tau}\}$:
- Noisy Upper Bound: solve a sampled "inner" DP via the backward recursion

$$\hat{Q}_{t}^{U}(s_{t}, a_{t}) = r(s_{t}, a_{t}) - \hat{\zeta}_{t}^{\pi_{\varphi}}(s_{t}, a_{t}, w_{t+1} | \varphi) + \max_{a} \hat{Q}_{t+1}^{U}(s_{t+1}, a)$$
for $t = \tau - 1, ..., 0$ with $s_{t+1} = h(s_{t}, a_{t}, w_{t+1})$ and $\hat{Q}_{\tau}^{U} \equiv 0$

• Noisy Lower Bound: inner DP given by π_{φ} and the recursion

$$\hat{Q}_{t}^{L}(s_{t}, a_{t}) = r(s_{t}, a_{t}) - \hat{\zeta}_{t}^{\pi_{\varphi}}(s_{t}, a_{t}, w_{t+1} | \varphi) + \hat{Q}_{t+1}^{L}(s_{t+1}, \pi_{\varphi}(s_{t+1}))$$
for $t = \tau - 1, ..., 0$ with $s_{t+1} = h(s_{t}, a_{t}, w_{t+1})$ and $\hat{Q}_{\tau}^{U} \equiv 0$

Our Approach...

Systematic approach to obtain the optimal policy

Q-learning with Lookahead Upper and Lower Bounds

Main idea: Generate improving upper & lower bounds such that the Q-iterates are "squeezed" toward optimality by setting φ to the current Q-iterate.

Q improves \Rightarrow bounds improve \Rightarrow Q improves more \Rightarrow bounds improve more

Convergence Guarantees

Theorem (Convergence of LBQL). Suppose that:

1.
$$\sum_{n=0}^{\infty} \alpha_n(s, a) = \infty, \sum_{n=0}^{\infty} \alpha_n^2(s, a) < \infty$$

2.
$$\sum_{n=0}^{\infty} \beta_n(s,a) = \infty$$
, $\sum_{n=0}^{\infty} \beta_n^2(s,a) < \infty$

3. Each state $s \in S$ is visited infinitely often w.p. 1

The following hold:

- 1. With probability one, $Q'_n(s, a)$ converges to the optimal action-value function $Q^*(s, a)$ for all state-action pairs (s, a).
- 2. If the penalty terms were computed exactly, then w.p. 1, the iterates $L_n(s,a)$, $Q'_n(s,a)$, $U_n(s,a)$ converges to the optimal action-value function $Q^*(s,a)$ for all state-action pairs (s,a).

Behavior of LBQL

Q improves \Rightarrow bounds improve \Rightarrow Q improves more \Rightarrow bounds improve more

(A) Windy Gridworld

(B) Stormy Gridworld

(C) Pricing for car-sharing (2 stations)

LBQL with Experience Replay

Main changes:

- A noise buffer \mathcal{B} is used to record observed w. The buffer \mathcal{B} is then used to generate the sample path and the batch samples.
- Similar convergence results are obtained.
- Need to account for the additional bias due to sampling from the buffer.

Numerical Illustrations

- Windy Gridworld (Sutton & Barto, 2018)
 - Gridword + upward wind with random intensity
 - Agent is affected by the wind
- Stormy Gridworld
 - Windy gridworld + additional complexity of random rain (negative reward) and multi-directional wind
- Repositioning in Two Location Car-sharing (He et al., 2019)
 - Balance cars between stations by direct repositioning
 - One-way rentals, maximize revenue under lost sales cost
- Spatial Pricing in Two Location Car-sharing (Bimpikis et al., 2019)
 - Set a price at each station, which influence stochastic demand for rentals
- Spatial Pricing in Four Location Car-sharing
 - Four stations
 - One-way + return rentals
 - Two sources of randomness (demand & rentals distribution)

Comparison to Other Algorithms

700

400

Relative Error = $||V - V^*||_2 / ||V^*||_2$

Relative Error 8.0 8.0 8.0 0.0 Number of steps x1000 Number of steps x1000

1.0

(D) Pricing for car-sharing (2 stations)

(E) Pricing for car-sharing (4 stations)

LBQL is Robust to Hyperparameters

Polynomial learning rate: $\alpha_n(s, a) = 1/\nu_n(s, a)^r$

 ϵ -greedy exploration strategy: $\epsilon(s) = 1/\nu(s)^e$

v(s, a) and v(s) are the number of times (s, a) and s, have been visited, respectively

n: average number of iterations

t (s): CPU time

'-' indicates that the % RE was not achieved throughout training

			% Relative error							
	e r		20%		10%		5%		1%	
			n	t (s)	n	t (s)	n	t (s)	n	t (s)
LBQL	0.4	0.5	9,323.6	4.6	13,439.0	6.5	18,456.6	8.9	33,054.0	15.7
		8.0	9,321.8	4.4	14,253.8	6.8	20,860.0	9.9	53,752.6	25.6
	0.6	0.5	7,129.0	3.3	9,871.8	4.6	13,046.0	6.2	23,822.0	11.2
		8.0	8,431.0	4.1	11,551.2	5.6	17,809.2	8.5	114,032.8	54.2
Q	0.4	0.5	38,114.2	8.2	66,647.2	14.4	93,303.4	20.2	136,851.4	29.6
		8.0	-	-	-	-	-	-	-	-
	0.6	0.5	24,877.2	5.4	44,818.4	9.7	63,777.8	13.7	96,402.0	20.8
		8.0	-	-	-	-	-	-	-	
SQL	0.4	0.5	37,889.8	9.1	66,583.8	16.0	93,820.0	22.5	141,171.0	33.8
		8.0	-	-	-	-	-	-	-	-
	0.6	0.5	24,989.0	6.0	45,120.2	10.8	64,605.4	15.4	98,554.6	23.6
		0.8	-	-	-	-	-	-	-	
Double QL	0.4	0.5	-	-	-	-	-	-	-	-
		8.0	-	-	-	-	-	-	-	-
	0.6	0.5	-	-	-	-	-	_	-	-
		0.8	-	-	-	-	-	_	-	-
BCQL	0.4	0.5	22,455.0	7.0	43,866.8	13.6	65,329.0	20.3	107,785.6	33.7
		0.8	-	-	-	-	-	-	-	-
	0.6	0.5	11,639.6	3.6	23,267.0	7.2	35,763.0	11.1	61,249.0	19.0
		8.0	297,368.6	17.9	-	-	-	-	-	-

Conclusions

- LBQL makes more efficient use of the collected experience by additionally using it to estimate bounds.
- LBQL converges almost surely to the optimal actionvalue function.
- Experiments show that LBQL outperforms other related algorithms and is robust to learning rates and exploration strategies.

