Tools & Models for Data Science Introduction to Unsupervised Learning

Chris Jermaine & Risa Myers

Rice University

Learning From Unlabeled Data

Raiders of the Lost Ark	3									1
Aliens		4						4		5
The Twilight Zone	1	4			2					
Psycho						5				
Frankenstein						3				
When Harry Met Sally	4		5							
Titanic			5						5	
The Incredibles	5	3						4		
SW: Phantom Menance	1	3								1
SW: A New Hope	5	4								1
	Risa	Chris	Latrina	Ricardo	Ü	John	Beth	Luis	Angel	Claudia

- Sometimes you have a data set without labels
 - (height, weight, age, shoe size) quadruples for this class
 - Register transactions from Wal-Mart
 - User-Movie rating matrix

Learning From Unlabeled Data

- The goal is explanatory:
 - What to learn a model to help "understand" the data, in some sense
 - Goal is not to predict some value(s) (though that might be a by-product)
 - Movie Example
 - Group movies together
 - Group viewer together
 - Identify types of movies

Raiders of the Lost Ark	3									1
Aliens		4						4		5
The Twilight Zone	1	4			2					
Psycho						5				
Frankenstein						3				
When Harry Met Sally	4		5							
Titanic			5						5	
The Incredibles	5	3						4		
SW: Phantom Menance	1	3								1
SW: A New Hope	5	4								1
	Risa	Chris	Latrina	Ricardo	Ü	John	Beth	Luis	Angel	Claudia

Classically Two Types of Unsupervised Learning

- 1 Clustering
 - Grouping similar points together
- 2 Latent Variable methods
 - Learning a model where some unseen variable helps describe the data
 - Example: Gaussian Mixture Model cluster identity
 - Cluster identity is an unseen variable
 - Algorithm is grouping points together

Clustering

- Goal is to group similar points together
 - Classic method is hierarchical clustering
 - Also known as agglomerative clustering
 - Recursively combine similar items
 - Using a distance measure
 - Results in a so-called "Dendrogram"
 - example...

Hierarchical Clustering

- Define a distance measure
- Combine the closest clusters
- Repeat

Hierarchical Clustering

■ Basic Algorithm:

```
while num_clusters > 1 \operatorname{do} // D is the distance function find clusters X, Y that minimize D(X,Y) \operatorname{join} them end
```

- Super-simple
- ? How to define cluster distance?

- "Optimistic"
 - D(X,Y) is distance between two closest points in X,Y
 - That is,

$$D(X,Y) = \min_{x \in X, y \in Y} d(x,y)$$

Basically Kruskal's algorithm

- "Optimistic"
- Bottom up
 - lacktriangleq D(X,Y) is distance between two closest points in X,Y
 - That is,

$$D(X,Y) = \min_{x \in X, y \in Y} d(x,y)$$

- Basically Kruskal's algorithm
 - Computes a minimum-spanning tree
 - Finds the lowest weight edge between two nodes
 - Greedy algorithm

Minimum Spanning Tree

- Subset of edges in a weighted, undirected graph
- Connects all the vertices
- Using the minimum edge weights

- Goal: Find the highest value path to the bottom of the tree
- Greedy Approach: Pick the best available option

- Goal: Find the highest value path to the bottom of the tree
- Greedy Approach: Pick the best available option

- Goal: Find the highest value path to the bottom of the tree
- Greedy Approach: Pick the best available option

? Advantages?

? Disadvantages?

- Advantages?
 - Simple
 - Fast

- Disadvantages?
 - Often don't find the best solution
 - Non-recoverable

■ Each point is in its own cluster

 Compute the distance between EVERY pair of points

	p 01 0 .	
Point	Point	Distance
Α	В	105
Α	С	260
В	С	236

- Cluster together the two closest points
- Use the distance from the closest point in each cluster to the closest point in the other clusters
- Repeat until the number of clusters= 1

- "Optimistic"
 - D(X,Y) is distance between two closest points in X,Y
 - That is,

$$D(X,Y) = \min_{x \in X, y \in Y} d(x,y)$$

- Basically Kruskal's algorithm
- Drawbacks?
 - Naive solution $O(n^3)$
 - ...Possible to use variant of Prim's algorithm to get $O(n^2)$
 - "Chaining"

Single-Linkage Example

- How would you cluster this data, if you grouped the closest points / groups each time?
- Show the penultimate 2 groups

Single-Linkage Drawback: Chaining

Single-Linkage Drawback: Chaining

Complete-Linkage Clustering

- "Pessimistic"
- Also known as farthest neighbor clustering
- Start with each point in its own cluster
 - D(X,Y) is distance between two most distant points in X,Y
 - That is,

$$D(X,Y) = \max_{x \in X, y \in Y} d(x,y)$$

- Tends to produce more compact clusterings
- Best solution is also $O(n^2)$

Single vs. Complete-Linkage Clustering

Complete-linkage clustering

What About The Distance?

- How to compute d(x,y)?
 - Classical method: if x, y vectors, use l_p norm of x-y
 - ? Drawbacks?

What About The Distance?

- How to compute d(x,y)?
 - Classical method: if x, y vectors, use l_p norm of x-y
 - Drawbacks?
 - All factors have the same weight
 - Consider shoe size: child: 4 13 basketball player
 - Versus weight: child: 40 lbs 250 lbs basketball player

Normalize the factors

- Frequently addressed by performing a Z-transform on the data
- Subtract out the mean
- \blacksquare Divide every factor, x_i by the standard deviation of the data

$$z_i = \frac{x_i - \bar{x}}{s}$$

What About The Distance?

- Mahalanobis distance is more robust
 - Let μ be the mean vector of the data set
 - Let S be the observed covariance matrix of data set
 - That is, let *X* be the matrix where the *i*th row is $x_i \mu$
 - Then $S = \frac{1}{n-1}X^TX$
 - Mahalanobis computed as:

$$d(x,y) = ((x-y)^T S^{-1}(x-y))^{\frac{1}{2}}$$

Intuition?

Mahalanobis Distance Intuition

Scenario

- Have a number of points in a set
- Want to know if a new point belongs or not
- Take into consideration the spread of the points in the set
- If the new point is close to the center, it more likely belongs
- If the set is not spherical in nature, we need to look at the covariance matrix
- The Mahalanobis distance measure the distance from the new point to the weighted center of mass of the set

Mahalanobis Distance Illustrated

https://www.theinformationlab.co.uk/2017/05/26/mahalanobis-distance/

Mahalanobis Distance Intuition

- Alternative to clustering
- Latent Variable Methods

Latent Variable Methods (instead of Clustering)

- What is a Latent Variable Method?
 - By postulating the existence of "latent" variables
 - Latent: missing or unobserved
 - Difference: latent variables typically imagined
 - Used to help simplify/explain the data
 - Often probabilistic (MLE, Bayesian)
 - Can be optimization-based

Classic Example: NNMF

- NonNegative Matrix Factorization
- Motivation:
 - Have a 2-D table
 - Entries in table describe outcome of interaction
 - Example: Netflix challenge
 - Want to recommend movies a user will like
 - This is **NOT** supervised learning
 - We do this by mapping into a latent space

Raiders of the Lost Ark	3									1
Aliens		4						4		5
The Twilight Zone	1	4			2					
Psycho						5				
Frankenstein						3				
When Harry Met Sally	4		5							
Titanic			5						5	
The Incredibles	5	3						4		
SW: Phantom Menance	1	3								1
SW: A New Hope	5	4								1
	Risa	Chris	Latrina	Ricardo	Ü	John	Beth	Luis	Angel	Claudia

Classic Example: NNMF

- NonNegative Matrix Factorization
- Motivation:
 - Have a 2-D table
 - Entries in table describe outcome of interaction
 - Example: Netflix challenge
 - Want to recommend movies a user will like
 - This is **NOT** supervised learning
 - We do this by mapping into a latent space

Raiders of the Lost Ark	3									1
Aliens		4						4		5
The Twilight Zone	1	4			2					
Psycho						5				
Frankenstein						3				
When Harry Met Sally	4		5							
Titanic			5						5	
The Incredibles	5	3						4		
SW: Phantom Menance	1	3								1
SW: A New Hope	5	4								1
_	Risa	Chris	Latrina	Ricardo	Ü	John	Beth	Luis	Angel	Claudia

Movie-User Latent Space

- Assume there is some latent feature(s) that specify a user's rating
 - Could be the stars
 - Could be the genre
 - Could be the era
 - ...
- lacktriangle Assume that the number of latent features is \ll the size of the rating matrix

Classic Example: NNMF

- Motivation:
 - Have a 2-D table
 - Entries in table describe outcome of interaction
 - Example: Netflix challenge
- We have a bunch of (movie, user, score) triples
- Stored in an n by m matrix V (n movies, m users)
 - Idea: map *i*th movie to a latent k-dimensional point m_i
 - And map jth user to a latent k-dimensional point u_j
 - Such that the score user i gives to movie $j \approx m_i \cdot u_j$
 - Higher scores indicate higher rating
- Many formulations; one is:

$$\min_{\{m_1, m_2, \dots, u_1, u_2, \dots\}} \sum_{i, j} (V_{i, j} - m_i \cdot u_j)^2$$

Classic Example: NNMF

Many formulations; one is:

$$\min_{\{m_1, m_2, \dots, u_1, u_2, \dots\}} \sum_{i, j} (V_{i, j} - m_i \cdot u_j)^2$$

- Where m_i and u_j are the latent movie and user positions
- This is basically an optimization problem
- Where we are minimizing the loss of the squared error
- Can be solved many ways, including gradient descent
- "Non-negative" since often we want all latent vectors to be positive
- Turns out that the latent space is often meaningful!

Data Tend to Cluster

- Ex: users score movies on 0-5 scale
- Imagine mapping movies, users to 2-D latent space
 - Imagine Action movies map near to (0,2.5)
 - Rom Coms near to $\langle 2.5, 0 \rangle$
- Then users will cluster according to prefs. Why?
 - If I like only Action, I map close to $\langle 0,2\rangle$... since $\langle 0,2.5\rangle \cdot \langle 0,2\rangle = 5$ rating
 - So people who like only Action cluster around (0,2.5)
 - If I like only Rom Coms, I map close to $\langle 2,0\rangle$... since $\langle 2.5,0\rangle \cdot \langle 2,2\rangle = 5$ rating
 - So people who like Rom Coms cluster around (0,2.5)
 - If I like both, map to $\langle 2,2\rangle$... will give me 5 rating for both
 - So people who like both cluster around (2.5, 2.5)

Why Called "Matrix Factorization"?

- View *M* matrix as latent positions of movies
- \blacksquare View U matrix as latent positions of users
- We are trying to learn M, U from V

Closing Comments

- "Supervised" vs. "Unsupervised" distinction not always hard
- "Clustering" vs. "Latent Variable" distinction not always hard
 - All but the most ad-hoc clustering algorithms can be written as latent variable problems
 - Example: NNMF is unsupervised
 - There's no "Rom-com" label
 - But it is a predictive model for scores
 - Once you map the user and movies, you can get a score indicating if someone will like a movie

Questions?

- What do we know now that we didn't know before?
 - We know what unsupervised learning is
 - We know some techniques for clustering data
 - We have seen some variations on how to cluster
 - We know about the Netflix challenge
- How can we use what we learned today?
 - We can try clustering data!