Gamal Abdel Hamid Nasef Nowesar	19015550

Result:

Scaled Efficiency $E\gamma(p) = S\gamma(p)/p$

code flow:

Efficiency Function:

• The efficiency_function(p, delta, f=0.1) function calculates the scaled efficiency using this formula:

$$E_{\gamma=p^{\delta}}(p) = \frac{f + (1-f) \cdot p^{\delta}}{p \cdot f + (1-f) \cdot p^{\delta}}$$

Generate Data Points:

- p_values is created as an array from 1 to 20, representing the range of processing units.
- delta_values is created as an array from 0 to 1, representing the range of scaling ratio exponents.

Create Grid:

• np.meshgrid(p_values, delta_values) generates a 2D grid of (p, delta) coordinates for evaluation of the efficiency function.

Calculate Efficiency Values:

• The efficiency_function is applied to the entire grid of (p, delta) values, resulting in a 2D array of efficiency values.

Create 3D Plot:

- The 3D wireframe is plotted using ax.plot_wireframe(p,
 delta, efficiency, cmap='coolwarm', alpha=0.8), with a
 colormap to represent efficiency values.
- Contour lines are added to the p- δ plane using ax.contour(), highlighting constant efficiency levels.

Code:

□ parallel-lab-2.ipynb