Problems for the course "Implementation of algorithms in software"

A partition (or an assignment) of (the elements of) a set (of jobs, or items, or vertices) Y into sets J_1, J_2, \ldots, J_m must satisfy $\bigcup_{1 \leq i \leq m} J_i = Y$, and for any $1 \leq i_1 < i_2 \leq m$, $J_{i_1} \cap J_{i_2} = \emptyset$ (every element of Y belongs to exactly one subset). For some problems (such as scheduling), the value m is fixed in advance, and for some problems it is not fixed (for example, bin packing). We will use a partition to describe a schedule (without specifying the exact times allocated to the jobs), where J_i is the set of jobs of machine i. A different way to define a schedule or assignment for the set of jobs J is a function $A: J \to \{1, 2, \ldots, m\}$. In this case we let $J_i = \{j \in J | A(j) = i\}$. The definitions are similar for bin packing etc.

1. Scheduling problems

1. Scheduling with few conflicts on identical machines to minimize makespan.

Input: A set of n jobs $J = \{1, 2, ..., n\}$, where job j has an integer processing time $p_j > 0$, and a integer number of (identical) machines $m \geq 2$. A bipartite undirected graph $G = (V_1, V_2, E)$ where $V_1 \cup V_2 = J$ (there are no edges between pairs of vertices of V_ℓ for $\ell = 1, 2$), and $0 \leq |E| \leq 2|V|$.

Goal: Find an assignment of the jobs to the m machines, J_1, J_2, \ldots, J_m , such that if $j_1, j_2 \in J_i$, then $(j_1, j_2) \notin E$.

Objective: Minimize $\max_{1 \le i \le m} \sum_{j \in J_i} p_j$.

2. Scheduling on favorite machines to minimize makespan.

Input: A set of n jobs $J = \{1, 2, ..., n\}$, where job j has an integer size $p_j > 0$, an integer number of (identical) machines $m \ge 2$, and an integer $s \ge 2$. Job j also has a machine index i_j $(1 \le i \le m)$ such that its processing time on machine i_j is p_j , and its processing time on any machine $i \ne i_j$ is $s \cdot p_j$ (that is, larger by a factor of s).

Goal: Find an assignment σ of the jobs to the m machines, J_1, J_2, \ldots, J_m . Let $C_i(\sigma)$ be defined as follows: $C_i(\sigma) = s \cdot \sum_{j \in J, \sigma(j) = i, i_j \neq i} p_j + \sum_{j \in J, \sigma(j) = i, i_j = i} p_j$ (this is the completion time of machine i).

Objective:: Minimize $\max_{1 \leq i \leq m} C_i(\sigma)$.

3. Scheduling with favorite machines to maximize the minimum completion time.

Input: A set of n jobs $J = \{1, 2, ..., n\}$, where job j has an integer size $p_j > 0$, an integer number of (identical) machines $m \geq 2$, and an integer $s \geq 2$. Job j also has a machine index i_j $(1 \leq i \leq m)$ such that its processing time on machine i_j is $s \cdot p_j$, and its processing time on any machine $i \neq i_j$ is p_j .

Goal: Find an assignment σ of the jobs to the m machines, J_1, J_2, \ldots, J_m . Let $C_i(\sigma)$ be defined as follows: $\sum_{j \in J, \sigma(j) = i, i_j \neq i} p_j + s \cdot \sum_{j \in J, \sigma(j) = i, i_j = i} p_j$.

Objective: Maximize $\max_{1 \le i \le m} C_i(\sigma)$.

4. Scheduling with five types to minimize the makespan.

Input: An integer number of (identical) machines $m \ge 2$. A set of n jobs $J = \{1, 2, ..., n\}$, where every job j has an integer processing time $p_j > 0$ and a type $t_j \in \{1, 2, 3, 4, 5\}$.

Goal: Find a partition of the jobs of to the machines, J_1, J_2, \ldots, J_m , such that every subset has jobs of at most three types (for any i there are two values $k_{1i}, k_{2i} \in \{1, 2, 3, 4, 5\}$, such that if $j \in J_i$, then $t_j \neq k_{1i}, k_{2i}$).

Objective:: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

5. Scheduling with five types to to maximize the minimum completion time.

Input: An integer number of (identical) machines $m \ge 2$. A set of n jobs $J = \{1, 2, ..., n\}$, where every job j has an integer processing time $p_j \ge 0$ and a type $t_j \in \{1, 2, 3, 4, 5\}$.

Goal: Find a partition of the jobs of to the machines, J_1, J_2, \ldots, J_m , such that every subset has jobs of at least four types (for any $i, |\bigcup_{j \in J_i} \{t_j\}| \ge 4$).

Objective: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

6. Scheduling with special jobs on identical machines to minimize the makespan.

Input: A set of n jobs $J = \{1, 2, ..., n\}$, where job j has an integer processing time $p_j > 0$. An integer number of (identical) machines $m \ge 2$ (where $n \ge 2m$).

Jobs $1, 2, \ldots, m$ are called special, jobs $m+1, \ldots, 2m$ are called unique, all other jobs are called regular.

Goal: Find a partition (assignment) of the jobs to the (m) machines, I_1, I_2, \ldots, I_m , such that for any i $(1 \le i \le m)$, $J_{\ell} \cap \{1, \ldots, m\} \ne \emptyset$ and $J_{\ell} \cap \{m+1, \ldots, 2m\} \ne \emptyset$ (every machine has at least one special job and one unique job).

Objective:: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

7. Tradeoff scheduling.

Input: A set of n jobs $J = \{1, 2, ..., n\}$, where job j has an integer processing time $p_j > 0$.

Goal: Find a partition (assignment) of the jobs into non-empty subsets, I_1, I_2, \dots, I_k (for any $1 \le i \le k$, $|I_i| \ne 0$).

Objective: Minimize $k + \max_{1 \le i \le k} \sum_{j \in J_i} p_j$. (There is a cost to every machine that receives at least one job.)

8. Scheduling with even cardinality sets on identical machines to minimize the makespan.

Input: A set of 2n jobs $J = \{1, 2, \dots, 2n\}$, where job j has an integer processing time $p_j > 0$. An integer number of (identical) machines $m \ge 2$.

Goal: Find a partition (assignment) of the jobs to the (m) machines, I_1, I_2, \ldots, I_m , such that for any $i \ (1 \le i \le m)$, $|J_i|$ is even (for each machine, the number of jobs of received by it is divisible by 2).

Objective: Minimize $\min_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

9. Scheduling with three types on identical machines to minimize makespan.

Input: Three sets of jobs, each consisting of n jobs $J_1 = \{1, 2, ..., n\}$, $J_2 = \{n + 1, n + 2, ..., 2n\}$, $J_3 = \{2n + 1, 2n + 2, ..., 3n\}$, where job j has an integer processing time $p_j > 0$. An integer number of (identical) machines $m \ge 2$.

Let the type of j be denoted by $t_j \in \{1, 2, 3\}$, where $t_j = 1$ if $1 \le j \le n$, $t_j = 2$ if $n+1 \le j \le 2n$, and $t_j = 3$ if $2n+1 \le j \le 3n$.

Goal: Find a partition (assignment) of the jobs to the (m) machines, I_1, I_2, \ldots, I_m , such that for any pair i, ℓ $(1 \le i \le m, \ell = 1, 2, 3), I_i \cap J_\ell \ne \emptyset$ (every machine has at least one job of each type).

Objective: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

10. Fair scheduling with two types on identical machines to minimize makespan.

Input: Two sets of jobs, each consisting of n jobs $J_1 = \{1, 2, ..., n\}$, $J_2 = \{n + 1, n + 2, ..., 3n\}$, where job j has an integer processing time $p_j > 0$. An integer number of (identical) machines $m \ge 2$.

Let the type of j be denoted by $t_j \in \{1, 2\}$, where $t_j = 1$ if $1 \le j \le n$, and $t_j = 2$ if $1 \le j \le 3n$.

Goal: Find a partition (assignment) of the jobs to the (m) machines, I_1, I_2, \ldots, I_m , such that for any i $(1 \le i \le m)$, $|I_i \cap J_1| = 2 \cdot |I_i \cap J_2|$ (every machine has twice as many jobs of the second types as its has of the first type).

Objective:: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.

11. Almost equitable scheduling.

Input: An integer number of (identical) machines $m \ge 2$. A set of $m \cdot n$ jobs $J = \{1, 2, \dots, mn\}$, where job j has an integer processing time $p_j > 0$.

Goal: Find a partition (assignment) of the jobs into non-empty subsets, I_1, I_2, \ldots, I_m (where $|I_i| \in \{n-1, n, n+1, n+2\}$, and for any $1 \le i_1 < i_2 \le m$, $I_{i_1} \cap I_{i_2} = \emptyset$).

3

Objective: Minimize $\max_{1 \leq i \leq k} \sum_{j \in J_i} p_j$.

12. Almost equitable covering.

Input: An integer number of (identical) machines $m \ge 2$. A set of $m \cdot n$ jobs $J = \{1, 2, \dots, mn\}$, where job j has an integer processing time $p_j > 0$.

Goal: Find a partition (assignment) of the jobs into non-empty subsets, I_1, I_2, \ldots, I_m , where for any $1 \le i \le k$, $|I_i| \in \{n-1, n, n+2\}$).

Objective:: Maximize $\min_{1 \le i \le k} \sum_{j \in J_i} p_j$.

13. Equitable pair scheduling.

Input: An even integer number of (identical) machines $m \ge 2$. A set of $m \cdot n$ jobs $J = \{1, 2, \dots, mn\}$, where job j has an integer processing time $p_j > 0$.

Goal: Find a partition (assignment) of the jobs into non-empty subsets, I_1, I_2, \ldots, I_m (where $\bigcup_{1 \le i \le m} I_i = J$, for any $1 \le i \le m/2$, $|I_{2i-1} \cup I_{2i}| = 2n$).

Objective: Minimize $\max_{1 \leq i \leq k} \sum_{j \in J_i} p_j$.

14. Scheduling with cardinality constraints.

Input: An integer number of (identical) machines $m \ge 2$. A set of n jobs $J = \{1, 2, ..., n\}$, where job j has an integer processing time $p_j > 0$. An integer parameter k (where $k \ge \lceil \frac{n}{m} \rceil$).

Goal: Find a partition (assignment) of the jobs into non-empty subsets, I_1, I_2, \dots, I_m (where for any $1 \le i \le m$, $|I_i| \le k$).

Objective:: Minimize $\max_{1 \le i \le k} \sum_{j \in J_i} p_j$.

2. Graph problems

1. Maximum partition into four parts.

Input: An undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$, such that |V| is divisible by 4, and a positive integral weight function $w : E \to \mathbb{N}$ (on edges).

Goal: Find a partition of the vertices into four disjoint sets U_1 , U_2 , U_3 , and U_4 (where $U_i \cap U_j = \emptyset$ for $i \neq j$, and $U_1 \cup U_2 \cup U_3 \cup U_4 = V$), such that $U_i = \frac{|V|}{4}$ for i = 1, 2, 3, 4.

Objective:: Maximize $\sum_{i=1,2,3,4} \sum_{u,v \in U_i,(u,v) \in E} w((u,v))$.

2. Minimum partition into three parts.

Input: An undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$, such that |V| is divisible by 4, and a positive integral weight function $w : E \to \mathbb{N}$ (on edges).

Goal: Find a partition of the vertices into three disjoint sets U_1, U_2 , and U_3 (where $U_i \cap U_j = \emptyset$ for $i \neq j$, and $U_1 \cup U_2 \cup U_3 = V$), such that $|U_1| = |U_2| = \frac{|V|}{4}$ and $|U_3| = \frac{|V|}{2}$.

4

Objective: Minimize $\sum_{i=1,2,3} \sum_{u,v \in U_i,(u,v) \in E} w((u,v))$.

3. Double vertex cover.

Input: An connected undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$, and a positive integral weight function $w : V \to \mathbb{N}$ (on vertices).

Goal: A vertex cover is a subset $X \subseteq V$, such that for any $e = (u, v) \in E$, $u \in X$ or $v \in X$ (or both). Find two distinct vertex covers X and X' (such that $X \neq X'$).

Objective: Minimize $\sum_{v \in X} w(v) + \sum_{u \in X'} w(u)$.

3. Packing problems

1. Bin packing with special items.

Input: An integer bin capacity C > 0. A set of n items $I = \{1, 2, ..., n\}$, where item i has an integer size s_i such that $0 < s_i \le C$. A subset $I' \subseteq I$ of special items.

Goal: Find a partition of the items to bins, B_1, B_2, \ldots, B_k , where $\sum_{i \in B_\ell} s_i \leq C$ and $|B_i \cap I'| \leq 2$ (any bin has at most two special items) hold for any $1 \leq \ell \leq k$.

Objective: Minimize k.

2. Bin covering with special items.

Input: An integer bin capacity C > 0. A set of n items $I = \{1, 2, ..., n\}$, where item i has an integer size s_i such that $0 < s_i \le C$. A subset $I' \subseteq I$ of special items.

Goal: Find a partition of the items to bins, B_1, B_2, \ldots, B_k , where $\sum_{i \in B_\ell} s_i \ge C$ and $|J_i \cap I'| \le 3$ (no bin has more than three special items) hold for any $1 \le \ell \le k$.

Objective: Maximize k.

4. Two stage problems (could be harder than other problems)

A vertex cover is a subset $X \subseteq V$, such that for any $e = (u, v) \in E$, $u \in X$ or $v \in X$ (or both). [I am sure that you already know the definition of a simple path.]

1. Path bin packing (PBP).

Input: An connected undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$. An integer bin size C > 0. A set of n items I = V, where item i has an integer size $0 < s_i \le C$. Two designated vertices $x, y \in V$.

Goal: Find a simple path P between x and y, and let $V_P \subseteq V$ be its vertices (a subset of V). Find a partition of the set of items V_P to bins, B_1, B_2, \ldots, B_k , where $\sum_{i \in B_\ell} s_i \leq C$ for any $1 \leq \ell \leq k$.

Objective: Minimize k.

2. Vertex cover bin packing (VCBP).

Input: An undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$. An integer bin size C > 0. A set of n items I = V, where item i has an integer size $0 < s_i \le C$.

Goal: Find a vertex cover X, and let $V_{VC} \subseteq V$ be its vertices (a subset of V). Find a partition of the set of items V_{VC} to bins, B_1, B_2, \ldots, B_k , where $\sum_{i \in B_\ell} s_i \leq C$ for any $1 \leq \ell \leq k$.

Objective:: Minimize k.

3. Path scheduling (PS).

Input: An connected undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$. Two designated vertices $x, y \in V$. A set of n jobs J = V, where job j has an integer processing time $p_j > 0$, and a integer number of (identical) machines $m \ge 2$.

Goal: Find a simple path P between x and y, and let $V_P \subseteq V$ be its vertices (a subset of V). Find an assignment of the set of jobs V_P to the m machines, J_1, J_2, \ldots, J_m .

Objective: Minimize $\max_{1 \le i \le m} \sum_{j \in J_i} p_j$.

4. Vertex cover scheduling (VCS).

Input: An undirected graph G=(V,E) where $V=\{1,2,\ldots,n\}$. A set of n jobs J=V, where job j has an integer processing time $p_j>0$, and a integer number of (identical) machines $m\geq 2$.

Goal: Find a vertex cover X, and let $V_{VC} \subseteq V$ be its vertices (a subset of V). Find a an assignment of the set of jobs V_{VC} to the m machines, J_1, J_2, \ldots, J_m .

Objective: Minimize $\max_{1 \leq i \leq m} \sum_{j \in J_i} p_j$.