Enseignant · e · s : Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 10 – Théorème de Bochner

Définition (Fonction définie-positive). Une fonction $f: \mathbb{R}^d \to \mathbb{C}$ est dite définie-positive si pour tout $n \in \mathbb{N}^*$, pour tout $x_1, \ldots, x_n \in \mathbb{R}^d$ et pour tout $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ on a : $\sum_{1 \le i,k \le n} \lambda_j \overline{\lambda_k} f(x_k - x_j) \ge 0$.

Ici et dans la suite, on note $z \ge 0$ pour signifier que $z \in \mathbb{C}$ est en fait réel et positif. Le but des exercices suivants est de prouver le théorème de Bochner ci-dessous.

Théorème (Bochner). Une distribution tempérée est la transformée de Fourier d'une mesure de probabilité si et seulement si elle est définie par une fonction f vérifiant les conditions suivantes :

1.
$$f(0) = 1$$
,

2. f est continue,

3. f est définie-positive.

Exercice 1 (Transformée de Fourier des mesures de proba). Soit μ une mesure de probabilité sur \mathbb{R}^d .

- 1. Justifier que $\mu \in \mathcal{S}'(\mathbb{R}^d)$.
- 2. Montrer que $\hat{\mu}$ est une fonction et en déterminer une expression intégrale.
- 3. Vérifier que la fonction $\hat{\mu}$ satisfait les conditions 1, 2 et 3 dans le théorème de Bochner.

Exercice 2 (Fonctions définies-positives). Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction continue et définie-positive.

- 1. Montrer que $f(0) \ge 0$.
- 2. Soit $x \in \mathbb{R}^d$, montrer que pour tout $\alpha \in \mathbb{C}$, on a $(1 + |\alpha|^2)f(0) + \overline{\alpha}f(x) + \alpha f(-x) \ge 0$. En déduire que $f(-x) = \overline{f(x)}$.
- 3. Interpréter la condition de définie-positivité de f en termes de matrices hermitiennes. En déduire que f est bornée par f(0).
- 4. Soit $\varphi \in \mathcal{S}(\mathbb{R}^d)$, montrer que $\int_{\mathbb{R}^d \times \mathbb{R}^d} f(y-x)\varphi(x)\overline{\varphi(y)} \, \mathrm{d}x \, \mathrm{d}y \geqslant 0$.

Exercice 3 (Distributions multiplicativement positives). On dit que $S \in \mathcal{S}'(\mathbb{R}^d)$ est multiplicativement positive si, pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$, on a $\langle S, \varphi \overline{\varphi} \rangle \geqslant 0$.

- 1. Soit $S \in \mathcal{S}'(\mathbb{R}^d)$ une distribution positive, au sens où $\langle S, \psi \rangle \geqslant 0$ pour tout $\psi \in \mathcal{D}(\mathbb{R}^d)$ à valeurs positives. Montrer que S est multiplicativement positive.
- 2. Soit $\psi \in \mathcal{D}(\mathbb{R}^d)$ à valeurs positives, montrer qu'il existe une suite $(\psi_n)_{n \in \mathbb{N}^*}$ d'éléments de $\mathcal{D}(\mathbb{R}^d)$ tels que $\psi_n \overline{\psi_n} \xrightarrow[n \to +\infty]{\mathcal{D}} \psi$.
- 3. Soit $S \in \mathcal{S}'(\mathbb{R}^d)$ multiplicativement positive, montrer que S est une distribution positive.

Exercice 4 (Théorème de Bochner). Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction vérifiant les conditions 1, 2 et 3 dans l'énoncé du théorème de Bochner.

- 1. Montrer que $f \in \mathcal{S}'(\mathbb{R}^d)$ et que \widehat{f} est une distribution multiplicativement positive.
- 2. Conclure qu'il existe μ mesure de probabilité sur \mathbb{R}^d telle que $\widehat{\mu} = f$.