

### **Motivation**

- Multi-modality approaches are of big interest of the SOTA research.
- Dimensionality reduction is important task in ML/DL.
- Managed synthesis is key issue in generative models applications.

### **Tasks**

- dimensionality reduction
- embedding clustering
- disentanglement and managed synthesis



### **Dimensionality Reduction**

### Alexey Kolosov, Ekaterina Orlova

**Task**: Investigate dimensionality reduction methods and show that for the presented data there exist such embedding dimensionality D' < D which doesn't decrease embeddings correspondence quality (top-1 accuracy).





### **Neural MDS**

Alexey Kolosov

#### **Problems statements**

- 1. COCO, isometric, val
- 2. COCO, isotonic, val

$$d(i,j) = e(g(i),g(j))$$

Top-1 accuracy

COCO, isometric, val

5000 pairs, 200 epochs

for 512 dim - 1639 pairs



### **Neural MDS**

Alexey Kolosov

Isotonic problem result

$$egin{aligned} d(i,j) &< d(k,l) \Rightarrow \ e(g(i),g(j)) &< e(g(k),g(l)) \end{aligned}$$

Top-1 accuracy

COCO, isotonic, val

8000000 quads, 200 epochs

for 512 dim - 1639 pairs

# **Embeddings clusterization**

Abdullaeva Uma, Anna Dmitrienko, Sergey Skorik, Anna Rudenko

**Task**: Investigate the clusterization methods and show that there exist clusters in the embeddings data. Perform the visualization of these data clusters.

Deep embedded clustering (DEC) model



Let "S"- set of n element  $X = \{X1, X2, \dots, Xn\}$ — the division into classes  $Y = \{Y1, Y2, \dots, Yn\}$  - the resulting division into clusters

| $X^{Y}$ | $Y_1$    | $Y_2$    |     | $Y_s$    | Sums  |
|---------|----------|----------|-----|----------|-------|
| $X_1$   | $n_{11}$ | $n_{12}$ | ••• | $n_{1s}$ | $a_1$ |
| $X_2$   | $n_{21}$ | $n_{22}$ | ••• | $n_{2s}$ | $a_2$ |
| :       | :        | :        | ٠.  | :        | :     |
| $X_r$   | $n_{r1}$ | $n_{r2}$ |     | $n_{rs}$ | $a_r$ |
| Sums    | $b_1$    | $b_2$    |     | $b_s$    | n     |

$$p_{ij}=rac{n_{ij}}{n}, p_i=rac{a_i}{n}, p_j=rac{b_j}{n}$$

### Metrics

Adjusted Index
$$\widehat{ARI} = \underbrace{\sum_{ij} \binom{n_{ij}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}] ! \binom{n_{j}}{2}}_{\text{Max Index}} \underbrace{\sum_{ij} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2} ! ! \binom{n_{j}}{2}}_{\text{Expected Index}}$$
Expected Index
$$\underbrace{\sum_{ij} \binom{n_{ij}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}] ! \binom{n_{j}}{2}}_{\text{Max Index}} \underbrace{\sum_{ij} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2} ! ! \binom{n_{j}}{2}}_{\text{Expected Index}}$$

$$ext{ARI} = rac{ ext{RI} - E[ ext{RI}]}{ ext{max}( ext{RI}) - E[ ext{RI}]} \quad ext{RI} = rac{a+b}{C_2^{n_{samples}}}$$

$$ext{NMI}(U,V) = rac{ ext{MI}(U,V)}{ ext{mean}(H(U),H(V))}$$

### Results

|         | AMI  | ARI  | FMI  | NMI  |
|---------|------|------|------|------|
| K-Means | 0.72 | 0.63 | 0.67 | 0.72 |

| Auto -<br>encoder | 0.74 | 0.67 | 0.70 | 0.76 |
|-------------------|------|------|------|------|
|-------------------|------|------|------|------|

| DEC 0.82 0.77 0.79 0.82 |
|-------------------------|
|-------------------------|

### Visualizing clusters using T-SNE



### Benchmark



# **Advantages of DEC model**

- DEC method is linear in the number of data points and scales gracefully to large datasets
- DEC employs deep neural networks to perform non-linear embedding that is necessary for more complex data
- CLIP + DEC show SOTA results in clustering

# **Disentanglement**

Ekaterina Orlova, Anna Dmitrienko, Sergey Skorik, Anna Rudenko, Abdullaeva Uma



Embedding in latent space:

$$z = E(x) \in \mathbb{R}^{H imes W imes C}$$

Invertible Interpretation Network:

$$T(z)=ar{z}$$

Modified latent vector z:

$$z o z^\star:=T^{-1}(T(z)^\star)$$

Loss function:

$$\mathcal{L} = \sum_{F=1}^{K} \mathbb{E}_{\left(x^{a}, x^{b}
ight) \sim p\left(x^{a}, x^{b} \mid F
ight)} \ell\left(E\left(x^{a}
ight), E\left(x^{b}
ight) \mid F
ight),$$

where l – per-example loss

### **Process**



-1,99

1,94

-0,82

1,06

0,32

-1,65

-0,82

-1,06

-1,23

2,52

-0,28

-0,40

0,18



-1,65

-1,99

1,94

-0,82

-1,23

1,06

0,32

2,52

0,18

-0,82

-1,06

T-1



20 30 10

-0,28

-3,00

### SelebA - Glasses



### SelebA - Race



### SelebA - Sex



## Semantic analysis by CLIP

### Cosine similarity between text and image features



# Correlation of semantic features and embeddings



### **Conclusions**

- Proposed new method for dimensionality reduction of CLIP embeddings
- Proposed and evaluated new method for clusterization, close to SOTA
- Interpreted latent representations of various VAE

### What's next?

- Automatic data augmentation with text descriptions
- Improving managed image synthesis

