Caractérisation des développements de Taylor de λ -termes

Fanny He LMFI

Pierre Boudes et Michele Pagani

17 Septembre 2012

Préliminaires

Le λ -calcul...

Evaluation/Réduction

Vers la problématique

La problématique

Calcul avec ressources Développement de Taylor d'un λ -terme Théorème de Ehrhard-Régnier

Une caractérisation pour les arbres de Böhm

Arbres de Böhm Idéal

Un premier théorème

Conclusions et futurs développements

Plan

Préliminaires

Le λ-calcul... Evaluation/Réduction Vers la problématique

La problématique

Calcul avec ressources Développement de Taylor d'un λ -terme Théorème de Ehrhard-Régnier

Une caractérisation pour les arbres de Böhm

Arbres de Böhm Idéal Un premier théorème

Conclusions et futurs développements

Contexte

Introduction du λ -calcul

Par Alonzo Church (1930):

- Fournit un cadre formel exprimant fonctions et calculs
- Définit et caractérise les fonctions récursives

Sert de base formelle pour :

- Des langages de programmation fonctionnelle
- Un métalangage pour preuves assistées par ordinateur

Syntaxe

Termes:

- *x* variable
- $\lambda x.M$ abstraction
- \blacksquare (M)N application

Dans le terme $\lambda x.M$, λ est appelé le *lieur* de x.

Une variable non liée est dite libre.

Un terme *clos* est sans variable libre.

Exemples

- $T_1 = \lambda y \lambda x.(x)y = \lambda yx.(x)y : x,y$ tous deux liés par des λ
- $T_2 = (\lambda x.(x)x)y : x \text{ liée, } y \text{ libre}$

Substitution, réduction

Mécanisme à la base du calcul des λ -termes :

Substitution et réduction en λ -calcul

- \blacksquare $T, M, T' ::= x \mid \lambda x.M \mid (M)N$
- **R**ègle de β -réduction :

$$\underbrace{\overline{(\lambda x.M)N} \longrightarrow_{\beta} M\{N/x\}}_{\text{rédex}}$$

• On note $\twoheadrightarrow_{\beta}$ la clôture réflexive transitive de \longrightarrow_{β} .

Exemple

- \blacksquare $\underline{2} = \lambda f x.(f)(f) x$
- $\underline{succ} = \lambda n f x.((n)f)(f) x$
- $(\underline{succ})\underline{2} \rightarrow_{\beta} \underline{3} = \lambda fx.(f)(f)(f)x.$

$$\underbrace{(\lambda n f x.((n)f)(f)x) \lambda f x.(f)(f)x}_{\beta \lambda f x.((\lambda f x.(f)(f)x)f)} \xrightarrow{\beta} \lambda f x.\underbrace{(\lambda f x.(f)(f)x)f}_{\beta \lambda f x.(f)(f)x)(f)x}_{\beta \lambda f x.(f)(f)(f)x}$$

Un terme est en forme normale si aucune réduction n'est possible.

Contre-exemple

$$\omega = (\lambda x.(x)x)\lambda x.(x)x$$

Réduction de tête :
$$\lambda \vec{x}$$
. $(\lambda x.M)N \vec{P}$

Exemple

$$Y = \lambda f. \underbrace{(\lambda x.(f)(x)x)\lambda x.(f)(x)x}_{\lambda f.(f)} \rightarrow_{\beta}$$
$$\lambda f.(f) \underbrace{(\lambda x.(f)(x)x)\lambda x.(f)(x)x}_{\lambda f.(f)(x)} \rightarrow_{\beta} \dots$$

λ -calcul avec ressources

Introduit pour décomposer l'évaluation de λ -termes, décrivant ainsi la consommation de ressources :

Termes du calcul avec ressources

- Réduction : $(\lambda x.s)[t_1,...,t_k]$

chaque t_i remplace un seul x via réduction linéaire de tête

Développement de Taylor

But : étudier le comportement quantitatif d'un programme

Développement de Taylor (Ehrhard-Régnier) :

 λ -terme : \longrightarrow ensemble de termes avec ressources :

$$(\lambda x.T) \ U \longrightarrow \{(\lambda x.t) [u^n] \mid n \in \mathbb{N}\}$$

Question:

Soit $\mathbb E$ un ensemble de termes avec ressources. Quand peut-on trouver un λ -terme $\mathcal T$ tel que $\mathbb E$ converge vers $\mathcal T$?

On veut caractériser les ensembles de termes avec ressources qui sont exactement le développement de Taylor de λ -termes.

Plan

Préliminaires

Le λ-calcul... Evaluation/Réduction Vers la problématique

La problématique

Calcul avec ressources Développement de Taylor d'un λ -terme Théorème de Ehrhard-Régnier

Une caractérisation pour les arbres de Böhm Arbres de Böhm Idéal Un premier théorème

Conclusions et futurs développements

λ -calcul avec ressources

Termes du calcul avec ressources $\Delta^{(!)}$

Par induction:

■ Termes simples :

$$\Delta = s, \ t ::= x \mid \lambda x.s \mid s[t_1, \ldots, t_k]$$

■ Poly-termes simples :

$$\Delta^! = S, \ T ::= 1$$

$$[s]$$
 $TS = [t_1, \dots, t_k][s_1, \dots, s_l] = [t_1, \dots, t_k, s_1, \dots, s_l]$

Réduction

Exemple

- $\mathbf{1}_r = \lambda f x. f[f[x]]$
- $succ_{2_r} = \lambda nfx.(n[f, f])[f[x]] = \lambda nfx.(n[f^2])[f[x]]$
- $succ_{2_r}[2_r] \rightarrow_r 3_r = \lambda fx.f[f[f[x]]].$

$$\underbrace{(\lambda n f x.(n[f,f])[f[x]]) [\lambda f x.f[f[x]]]}_{\rightarrow_{f} \lambda f x.} \underbrace{(\lambda f x.f[f[x]])[f,f]}_{\rightarrow_{f} \lambda f x.} \underbrace{(\lambda x.f[f[x]]) [f[x]]}_{\rightarrow_{f} \lambda f x.f[f[x]])}_{\rightarrow_{f} \lambda f x.f[f[x]]}$$

Réduction

Avec ressources

- Règle de réduction : Soit $r = \underbrace{(\lambda x.s) [s_1, \dots, s_k]}_{\text{rédex}}$.
 - \square Si $k \neq \#OL_s(x)$, alors $r \longrightarrow_r \emptyset$.
 - □ Sinon, $r \longrightarrow_r \{s \ll s_1/x_{f(1)}, ..., s_k/x_{f(k)} \gg | f \in \sigma_k\}$ où $\{x_1, ..., x_k\} = OL_s(x)$.
- Fermeture réflexive transitive : $\twoheadrightarrow_r \subseteq \mathcal{P}(\Delta^{(!)}) \times \mathcal{P}(\Delta^{(!)})$.

Forme normale dans $\Delta^{(!)}$

 λ -calcul : souvent, les termes n'ont pas de forme normale.

Forte normalisation dans le calcul avec ressources

La procédure de réduction de tout terme dans $\Delta^{(!)}$ (vers une forme normale unique) est toujours finie.

Fonction forme normale

On peut introduire une fonction $NF : \mathcal{P}(\Delta^{(!)}) \longrightarrow \mathcal{P}(\Delta^{(!)})$ qui associe à un terme sa forme normale.

Exemple

$$NF(\{(\lambda x.x[x^2])[(\lambda x.x[x])^3]\}) = NF(\{(\lambda x.x[x])[\lambda x.x[x], \lambda x.x[x]]\}) = NF(\{(\lambda x.x[x])[\lambda x.x[x], \lambda x.x[x]]\}) = \emptyset.$$

Développement de Taylor d'un λ -terme

Règles

Soit T un λ -terme ($T \in \Lambda$). Le développement de Taylor de T, $\tau(T)$, $\tau: \Lambda \longrightarrow \mathcal{P}(\Delta)$ est :

- Si T = x, $\tau(T) = \{x\}$;
- Si $T = \lambda x.U$, $\tau(T) = \{\lambda x.u \mid u \in \tau(U)\}$;
- Si T = (U)V,

$$\tau(T) = \{u \ \mathcal{V} = u[v_1, \ldots, v_k] \mid u \in \tau(U); k \in \mathbb{N}; v_1, \ldots, v_k \in \tau(V)\}$$

Développement de Taylor : Exemples

$$\tau(\underline{2}) = \tau(\lambda fx.(f)(f)x)$$

$$= \{\lambda fx.f[f[x^{l_1}], \dots, f[x^{l_m}]] \mid m \in \mathbb{N}; l_1, \dots, l_k \in \mathbb{N}\}$$

$$\tau(\underline{succ}) = \tau(\lambda nfx.((n)f)(f)x)$$

$$= \{\lambda nfx.(n[f^k])[f[x^{l_1}], \dots, f[x^{l_m}]] \mid k, m, l_1, \dots, l_m \in \mathbb{N}\}$$

Ce que l'on veut caractériser

Soit $\mathcal E$ un ensemble de termes avec ressources. On veut savoir à quelles conditions $\mathcal E$ provient d'un λ -terme.

Caractérisation

Précisément, on veut connaître les ensembles $\mathcal E$ de termes sous forme normale tels qu'il existe $M\in\Lambda$ tel que

$$\mathcal{E} = NF(\tau(M))$$

Exemples

- \emptyset provient de $\omega = (\lambda x.(x)x) \lambda x.(x)x$.
- $\{\lambda n fx.(n[f^k])[f[x^{l_1}],\ldots,f[x^{l_m}]] \mid k,m,l_1,\ldots,l_m \in \mathbb{N}\}$ provient de succ.
- $\{x_1 \ 1, x_1[x_2 \ 1], x_1[x_2[x_3 \ 1]], \ldots\}, \{x, y\}$ ne proviennent d'aucun λ -terme.

Théorème de Ehrhard-Régnier

Vers la caractérisation : les arbres de Böhm (BT)

Théorème

Soit $M \in \Lambda$. Alors:

$$\tau(BT(M)) = NF(\tau(M))$$

Pourquoi étudier les arbres de Böhm?

- $\tau(M)$: raffinement quantitatif de BT(M)
- Il existe une caractérisation due à Barendregt des BT (en tant qu'arbres) provenant de λ -termes
- On cherche une caractérisation des BT en tant qu'ensembles

Plan

Préliminaires

Le λ-calcul... Evaluation/Réduction Vers la problématique

La problématique

Calcul avec ressources Développement de Taylor d'un λ -terme Théorème de Ehrhard-Régnier

Une caractérisation pour les arbres de Böhm Arbres de Böhm Idéal Un premier théorème

Conclusions et futurs développements

Arbres élémentaires

Arbres élémentaires (EBT)

EBT :
$$b, c ::= \Omega \mid \lambda x_0 \dots x_{n-1}.(y)b_0 \dots b_{k-1}$$

Munis d'une relation d'ordre ⊑ définie par induction :

- $\Omega \sqsubseteq b$ $\forall b \in \mathsf{EBT}$
- $\lambda x_0 \dots x_{n-1} \cdot (y) b_0 \dots b_{k-1} \sqsubseteq c$ si $c = \lambda x_0 \dots x_{n-1} \cdot (y) c_0 \dots c_{k-1}$ et $b_j \sqsubseteq c_j \forall j$.

Arbres de Böhm

Arbres de Böhm

Soit $M \in \Lambda$. On définit par induction sur n, $BT_n(M) \in EBT$:

- $\blacksquare BT_0(M) = \Omega;$
- $BT_{n+1}(\lambda x_0 \dots x_{p-1}.(y)M_0 \dots M_{l-1}) = \lambda x_0 \dots x_{p-1}.(y)BT_n(M_0) \dots BT_n(M_{l-1});$
- $BT_{n+1}(\lambda x_0 \dots x_{p-1}.((\lambda y.Q)R)M_0 \dots M_{l-1}) = BT_n(\lambda x_0 \dots x_{p-1}.(Q\{R/y\})M_0 \dots M_{l-1}).$

Finalement,

$$BT(M) = \downarrow \{BT_n(M), n \in \mathbb{N}\} \subseteq EBT$$

Exemple

$$Y' = (Y_0)Y_0 = (\lambda x.(f)(x)x)\lambda x.(f)(x)x$$

- $BT_0(Y') = \Omega = BT_1(Y)$
- $\blacksquare BT_2(Y') = (f)\Omega$
- $BT_3(Y') = (f)(f)\Omega$ etc...
- $\blacksquare BT(Y') = \{\Omega, (f)\Omega, (f)(f)\Omega, (f)(f)(f)\Omega \ldots\}$

Théorèmes de caractérisation

Théorème (Barendregt) :

 $\forall \mathcal{B} \; \mathsf{BT} :$

 $\exists T \ \lambda$ -terme tel que $BT(T) = \mathcal{B} \Leftrightarrow \mathcal{B}$ r.e. et $FV(\mathcal{B})$ fini.

Théorème:

 $\forall \mathcal{B}$ ensemble d'EBTs :

 $\exists T \ \lambda$ -terme tel que $BT(T) = \mathcal{B} \Leftrightarrow \mathcal{B}$ r.e., $FV(\mathcal{B})$ fini et $\mathcal{B} \sqsubseteq$ -idéal.

Idéal d'EBTs

Dans notre cas les deux critères de Barendregt sont insuffisants.

Idéal

 $\mathcal{B} \subseteq \mathit{EBT}$ est un idéal si :

- $\mathbf{\Omega} \in \mathcal{B}$;
- si pour tout $c \in \mathcal{B}$, $b \sqsubseteq c$ implique $b \in \mathcal{B}$;
- si $b, b' \in \mathcal{B}$, alors il existe $c \in \mathcal{B}$ tel que $b, b' \sqsubseteq c$.

Un premier théorème

Théorème:

 $\forall \mathcal{B}$ ensemble d'EBTs :

 $\exists T \ \lambda$ -terme tel que $BT(T) = \mathcal{B} \Leftrightarrow \mathcal{B}$ r.e., $FV(\mathcal{B})$ fini et $\mathcal{B} \sqsubseteq$ -idéal.

⇒ : se vérifie facilement.

⇐ : reprendre le théorème de Barendregt et adapter au cadre ensembliste.

Exemple

Soit $\overline{b = \lambda y.(y)(y)x}$

Son BT est $\mathcal{B} = \{\Omega, \lambda y.(y)\Omega, \lambda y.(y)(y)\Omega, \lambda y.(y)(y)x\}$

Figure: L'arbre de \mathcal{B} , $\{\Omega, (y)\Omega, (y)x\}$ et $\{\Omega, x\}$

Préliminaires

Le λ-calcul... Evaluation/Réduction Vers la problématique

La problématique

Calcul avec ressources Développement de Taylor d'un λ -terme Théorème de Ehrhard-Régnier

Une caractérisation pour les arbres de Böhm

Arbres de Böhm Idéal Un premier théorèm

Conclusions et futurs développements

Conclusion

- Notion d'idéal insuffisante : ordre sur {y1, y[x], y[x,x], y[x,x,x]...}? pour décrire le développement de Taylor on utilise une relation de cohérence
- A montrer : caractérisation du développement de Taylor de λ -termes