

Chapter 12: 질의 처리

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 12: 질의처리

- □개요
- □ 질의 비용산정
- □ 비용 산정을 위한 카타로그 정보
- □ 선택 연산
- □ 정렬
- □ 죠인 연산
- □ 기타 연산
- □ 표현식의 평가

질의처리의 기본절차

- 1. 구문 분석 및 변환
- 2. 최적화
- 3. 평가

관계대수 연산자 (복습)

Symbol (Name)	Example of Use
σ (Sologtion)	^σ salary>=85000 ^(instructor)
(Selection)	Return rows of the input relation that satisfy the predicate.
[] (Projection)	П _{ID, salary} (instructor)
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
M	instructor ⋈ department
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.
×	instructor imes department
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Cinon)	Output the union of tuples from the two input relations.

선택연산 (Selection of tuples) - 복습

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- ☐ Select tuples with A=B and D > 5
 - \square $\sigma_{A=B \text{ and } D>5}$ (r)

SELECT *
FROM r
WHERE A=B and D>5;

A	В	C	D
α	α	1	7
β	β	23	10

추출 연산 (Selection of Columns) -복습

□ Relation r.

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

- □ Select A and C
 - Projection
 - \square Π _{A,C} (r)

SELECT A, C FROM r ;

A	C		A	C
α	1		α	1
α	1	=	β	1
β	1		β	2
β	2			

자연 조인 (Natural Join) - 복습

Relations r, s:

A	В	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
		r	

В	D	Ε
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	S	

- Natural Join
 - \square $r \bowtie s$

SELECT * FROM r NATURAL JOIN s ;

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

질의 처리의 기본 절차 (계속)

- 구문 분석 및 변환
 - 구문 분석기는 문법을 체크하고 릴레이션을 검사한다.
 - 질의를 내부 형식으로 변환한다. 즉, 관계형 대수로 변환된다.
- 평가
 - 질의 실행 엔진은 질의 실행 계획을 취해, 그 계획을 실행하고 결과를 돌려준다.

질의처리의 기본절차 : 최적화

- □ 주어진 관계형 대수 표현식은 동등한 많은 표현식을 가질 수 있다.
 - Select salary from instructor where salary<75000</p>

SELECT salary FROM instructor WHERE salary < 75000;

■ E.g., $\sigma_{salary<75000}(\prod_{salary}(instructor))$ is equivalent to $\prod_{salary}(\sigma_{salary<75000}(instructor))$

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

- 각각의 관계형 대수 연산은 많은 서로 다른 방법으로 평가될 수 있다.
 - □ 따라서 임의의 관계형 대수 표현식은 많은 서로 다른 방법으로 평가될 수 있다.
- □ 상세한 평가 전략을 명시하고 있는 주석이 붙은 표현식을 평가 계획(evaluationplan)이라 한다.
 - □ 예를 들어, 연봉이 75000불보다 적은 강사를 찾기 위해 salary 인덱스를 사용할 수 있다
 - 또는 릴레이션 전체를 검색해 연봉이 75000불 이상인 강사 정보는 고려하지 않을 수 있다.

기본 절차: 최적화 (계속)

- □ 질의 최적화 (Query Optimization): 모든 동등한 표현식 중에서 가장 비용이 적게 드는 평가 계획을 선택하도록 한다.
 - 계획의 비용 산정은 DBMS 카타로그내의 통계 정보에 의거한다.
 - ▶ e.g. 릴레이션의 튜플 수, 튜플의 크기 등
- □ 이 장에서의 학습 내용
 - □ 질의 비용 산정 방법
 - □ 관계 표현식 평가 알고리즘
 - □ 각 알고리즘의 결합/연결 수행 방법
- In Chapter 13
 - 최소의 비용을 가진 평가 계획을 구하는 방법에 대하여 학습함

질의 최적화?

음악 대학의 모든 교수 이름과 그 교수들이 가르치는 과목명을 찾으시오.

SELECT name, title

FROM instructor NATURAL JOIN teaches NATURAL JOIN course WHERE instructor.dept_name="Music";

 $\Pi_{\textit{name, title}}(\sigma_{\textit{dept_name= "Music"}} \ (\textit{instructor} \bowtie (\textit{teaches} \bowtie (\textit{course}))))$

- 주어진 질의를평가하는 서로 다른 방법
 - □ 동일 표현식
 - 각 연산에 대한 서로 다른 알고리즘을 사용할 수 있음

평가 계획(evaluation plan)의 예

2009년에 강의를 한 음악 대학의 모든 교수 이름과 그 교수들이 가르친 과목명을 찾으시오.

SELECT name, title FROM instructor NATURAL JOIN teaches NATURAL JOIN course WHERE instructor.dept_name='Music' and year=2009;

 $\Pi_{\textit{name, title}}(\sigma_{\textit{dept_name= 'Music"} \land \textit{year= 2009}} (\textit{instructor} \bowtie (\textit{teaches} \bowtie (\textit{course}))))$

 평가 계획은 각 연산에 어떤 알고리즘이 사용되고 연산들의 실행이 어떻게 협력하는지를 정확히 정의한다.

질의 처리 비용 산정

- □ 비용은 질의에 대한 답을 얻기까지 걸린 총 시간을 나타낸다. 비용을 산정을 하는 데는 많은 가능한 방법이 있는데, 그 예로는 디스크 액세스, CPU 시간 및 분산 또는 병렬 시스템에서의 통신 비용 등이 있다.
- □ 디스크 액세스가 일반적으로 가장 유력한 비용이며, 또한 산정하기가 비교적 쉽다. 다음 요소들로 이루어진다.
 - Number of seeks

- * average-seek-cost
- Number of blocks read
- * average-block-read-cost
- Number of blocks written
 - * average-block-write-cost
 - ▶ 블록 쓰기 연산은 블록 읽기 연산에 비하여 비용이 많이 든다.
 - 데이터 쓰기 연산 후, 쓰기 연산 수행이 성공적으로 수행되었는지를 확인하기 위하여 읽기 연산을 재수행한다.

자기 디스크 구조 (복습)

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

질의 처리 비용 산정 (계속)

- □ 일반적으로 디스크로부터의 블록 전송 수(number of block transfers)와 탐색 수 (number of seeks)가 평가의 실질적인 비용산정으로 사용된다.
 - t_T time to transfer one block
 - \Box $t_{\rm S}$ time for one seek
 - □ b개의 블록 전송과 S번의 탐색 비용
 b * t_T + S * t_S
- CPU 비용은 일반적으로 무시한다.
 - □ 실시간 시스템에서는 CPU 비용을 산정하여야 한다.
- 이후, 비용 산정에 있어 디스크에 결과를 쓰기 연산하는 비용을 포함시키지 않는다고 가정한다.

질의 처리 비용 산정 (계속)

- 알고리즘의 비용은 많은 메모리를 가지면 디스크 액세스를 줄일수 있으므로, 메인 메모리 내 버퍼의 크기에 따른다.
- 따라서, 비용을 산정할 때 메모리의 크기가 파라미터가 되어야 한다 : 흔히 최악의 경우의 비용을 사용한다.

비용 산정을 위한 카타로그 정보

- n_r: 릴레이션 r내의 튜플의 수
- b_r: r의 튜플들을 내포하고 있는 블록의 수
- s_r: r의 한 튜플의 바이트 단위의 크기
- f_r: r의 블록킹 요인 즉, 한 블록에 들어가는 r의 튜플 수
- r의 튜플들이 파일내에 물리적으로 함께 저장되면, 다음과 같다.

$$b_r = \left[\frac{n_r}{f_r} \right]$$

- V(A, r): 애트리뷰트 A에 대해 r에 나타나는 서로 다른 값의 수 ; $\Pi_A(r)$ 의 크기와 같다.
- f_i: B+-트리와 같은 트리 구조 인덱스에 있어, 인덱스 i의 내부 노드의 평균 전개
- h_i: 인덱스 i의 계층 수 즉, i의 높이이다.

 - 해쉬 인덱스에 있어 h;는 1이다.

Thank You