21. En el mecanismo plano de la figura, la barra OA gira alrededor del punto fijo O con velocidad angular $\dot{\phi} = \text{cte.}$ Un disco de radio R se mueve de forma que desliza sobre el eje X a la vez que rueda sin deslizar sobre la barra OA.

Se pide:

- 1. Velocidad y aceleración angular del disco.
- 2. Velocidad y aceleración del centro C del disco.
- 3. Ecuación de la polar fija referida a OXY.
- 4. Velocidad y aceleración del punto B cuando la barra forma 60° con la horizontal.

(Problema Puntuable, Curso 96/97)

22. Una barra AB de longitud 3R est articulada en sus extremos a los centros de dos discos D_1 y D_2 de radios 2R y R, respectivamente. La barra y los discos se mueven en un plano vertical.

El disco D_1 rueda y desliza sobre un plano horizontal con velocidad angular constante ω_1 y velocidad de deslizamiento del punto de contacto con el plano horizontal P igual a $2R\omega_1$. El disco D_2 rueda sin deslizar sobre el disco D_1 , describiendo su centro una recta vertical.

Se pide:

- 1. Velocidad angular de la barra AB.
- 2. Velocidad del extremo B de la barra.
- 3. Aceleración angular de la barra AB.
- 4. Aceleración del punto B de la barra AB.
- 5. Velocidad angular del disco D_2

(Ejercicio 23, Curso 94/95)

- **23.** Sobre un plano fijo determinado por los ejes cartesianos rectangulares $O_1X_1Y_1$, se considera un segmento AB de longitud 2a que se mueve con las condiciones siguientes:
 - La recta AB pasa por un punto fijo P de coordenadas (a,0)
 - El segmento AB es visto bajo un ángulo de 90° desde el origen de coordenadas O_1 .

Se pide:

- 1. Hallar graficamente el centro instantáneo de rotación I para una posición determinada de AB, compatible con los enlaces.
- 2. Hallar las velocidades instantáneas V_A y V_B de los puntos A y B en función de la velocidad instantánea de rotación.
- 3. Obtener las aceleraciones de A y B en función de la velocidad y aceleración angulares del plano móvil.
- 4. Determinar la posición de AB, para que se verifique $V_A = V_B$ y calcular la velocidad en función de ω .
- 5. Obtener la base y la ruleta del movimiento propuesto.

- **24.** Un círculo que gira con velocidad angular ω alrededor de uno de sus puntos O, tiene radio R y es cortado por un eje Ox fijo, en un punto variable M. Un segundo círculo de radio r rueda sin deslizar sobre el primero de tal forma que siempre se tocan en M. Se pide:
 - 1. Hallar la velocidad de rotación de este segundo disco.
 - 2. Trayectoria del centro del segundo disco.
 - 3. Aceleración de este centro cuando M coincide con O.
 - 4. Base y ruleta del movimiento absoluto del segundo círculo.

(Ejercicio 24, Curso 95/96)

- **25.** Un disco circular de radio R cuyo centro es un punto fijo O gira con movimiento uniforme alrededor de su eje. Un móvil M se desplaza sobre el disco encontrándose en O en el instante inicial; El movimiento de M en relación al disco es tal que el vector velocidad relativa tiene una magnitud constante C y conserva una dirección fija con relación al sistema de referencia al que está referido el movimiento del disco. Se pide:
 - 1. ¿Para qué valores de la velocidad angular de rotación del disco, el punto móvil puede abandonar el disco y para cuáles permanece en él indefinidamente?
 - 2. Estudiar el movimiento absoluto y relativo del punto móvil y dibujar sus trayectorias en ambos casos.