Πανεπιστήμιο Δυτικής Μακεδονίας

Θεωρία Σημάτων & Συστημάτων 2^η ΕΡΓΑΣΙΑ - ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2022-2023

Μετασχηματισμός Fourier

- 1. Να υπολογιστεί ο μετασχηματισμός Fourier του σήματος: $x(t) = (1 + cos(\pi t))\Pi_k(t m)$.
- 2. Αν $\mathcal{F}\{x(t)\} = X(\omega)$ και $x_m(t) = x(t)cos(k\pi t)sin(m\pi t + \pi/3)$ να βρεθεί ο $\mathcal{F}\{x_m(t)\}$.
- 3. Να υπολογιστεί ο μετασχηματισμός Fourier του σήματος: $g(t) = te^{-mt}cos(kt) u(t)$.
- 4. Αν $x(t) \stackrel{F}{\longleftrightarrow} X(\omega)$, τότε για κάθε πραγματικό αριθμό ω_0 ισχύει: $e^{j\omega_0 t} \, x(t) \stackrel{F}{\longleftrightarrow} X(\omega-\omega_0)$ (ιδιότητα της ολίσθησης στη συχνότητα). Με βάση αυτή την ιδιότητα αποδείξτε ότι: $cos(\omega_0 t) x(t) \stackrel{F}{\longleftrightarrow} \frac{1}{2} \big(X(\omega-\omega_0) + X(\omega+\omega_0) \big)$

Να γίνουν οι γραφικές παραστάσεις των σημάτων και των φασμάτων πλάτους για τα 1, 2 και 3, σε μια εικόνα με 3 γραμμές και 2 στήλες.

Οι τιμές των παραμέτρων k και m προκύπτουν από τα δύο δεξιότερα μη μηδενικά ψηφία του AM (π.χ. για AM=1470 θα είναι k =4 και m=7). Av ο AM περιλαμβάνει μόνο ένα μη-μηδενικό ψηφίο, τότε k=m+1 (π.χ. για AM = 2000 θα είναι m=2 και k=2+1=2).

Παρατηρήσεις:

- 1. Η εργασία είναι ατομική και υποχρεωτική, και υπολογίζεται 15% στον τελικό βαθμό.
- 2. Η εργασία θα παραδοθεί ηλεκτρονικά (μέσω eclass) και θα περιλαμβάνει MONO:
 - a. Ένα αρχείο docx με τις λύσεις (όχι φωτογραφίες από χειρόγραφές λύσεις!) και εικόνες των γραφικών παραστάσεων.
 - b. Ένα αρχείο .m με τον κώδικα για την δημιουργία <u>όλων</u> των γραφικών παραστάσεων.
- 3. Η εργασία θα παραδοθεί μέχρι την Κυριακή 4/6/2023 (αρχείο με λύσεις & κώδικες).