

COMPETITIVE PROGRAMMING PROBLEM RECOMMENDATION SYSTEM

Final Presentation: Al 705

umm actually

BACKGROUND

Competitive Programming:

A mind sport of solving algorithmic problems under time constraints, popular among software engineers and coding enthusiasts.

Codeforces:

A renowned online platform for competitive programming.

CODEFORCES RANKS

- **Contests:** Programming contests where participants solve algorithmic problems within specified time limits.
- Ratings: Assigned to participants based on their performance in contests, reflecting their skill level and progress in competitive programming

Rating Bounds	Color	Title
≥ 3000	Red	Legendary Grandmaster
2600 — 2999	Red	International Grandmaster
2400 — 2599	Red	Grandmaster
2300 — 2399	Orange	International Master
2100 — 2299	Orange	Master
1900 — 2099	Violet	Candidate Master
1600 — 1899	Blue	Expert
1400 — 1599	Cyan	Specialist
1200 — 1399	Green	Pupil
≤ 1199	Gray	Newbie

THE PROBLEM

Programmers waste hours searching for good problems to solve.

Currently there is no personalised recommendation system for competitive programming!

THE SOLUTION

Develop a recommendation system with the goal of increasing a users rating!

Recommend problems tailored to a user's skill level and progress.

Recommend problems tailored to a user's skill level and progress.

Empower users to focus on the most impactful practice problems, accelerating their development as competitive programmers

CHALLENGES

- No user feedback for problems.
- How to decide whether a problem is "good" for a user?
- Just because a user likes a problem, doesn't mean that the problem is good for the user and vice versa.
- Solution: Super Users

SUPER USERS

- Successful users of the platform.
 - They improved their rank in a short span of time
 - They have solved a decent number of practice problems in that span of time.
- Motivation hypothesis: Super Users are practicing the right problems. The widespread popularity of A2OJ and C2 ladders supports this claim
- Idea: Recommend problems that are solved by super users.

IDENTIFICATION OF SUPER USERS

Filtering out alt accounts:

- Users who have obtained ratings without practising are not taken into account.
- Typically, these are secondary or even tertiary accounts of an individual.
- Therefore, we exclude users who have solved minimal problems between changes in rank.
- For example, we have chosen the 66th percentile for this ranking threshold.

IDENTIFICATION OF SUPER USERS

Finding "super" users

- We aimed to discover users who rapidly accumulated ratings.
- We select low percentiles for this group metric, but high enough to ensure that a reasonable amount of users are included.
- For example, we chose the 50th percentile as the benchmark for this ranking.

DATASET CURATION

- Following our EDA, we developed a script utilizing the Codeforces API to identify and extract super users within a specified rank based on predefined constraints.
- For each identified super user, we retrieved a comprehensive list of problems they practiced during the specified time period, including timestamps indicating when each problem was solved.
- The above data was in JSON format, so we wrote another script to convert it to CSV

user_handle	problem_id	timestamp
rgnerdplayer	1538:D	1626961617
devinqu	1538:C	1626959972
akua	1538:B	1626959819
ahsoltan	1538:A	1626959622
Suwan	1520:G	1626959357
Fyind	1520:F1	1626958453
fzx	1520:F2	1626958333
sg78276397	1520:E	1626956581
Fork512Hz	1520:D	1626956431
efishel	1520:C	1626956335
BowTen	1520:B	1626955926
Tx_Lcy	1520:A	1626955812

DATASET CURATION

• Additionally, we collected supplementary user data detailing the distribution of difficulty levels of problems that each user has solved.

Problem Ratings

user_handle	1000	1100	1200	1300
maspy	13	13	23	23
wsyear	15	6	17	8
LXH-cat	16	13	17	12
skittles1412	3	1	3	1
PurpleCrayon	31	22	27	31
maomao90	5	7	17	12
xzc0920	8	4	4	2
AmirAli-Asgari	2	13	5	3
Dominater069	14	10	21	16

DATASET CURATION

• We also collected user data detailing the distribution of topics they've tackled, including categories like ad-hoc, mathematics, binary search, and more.

ıser_handle	binary search	bitmasks	brute force		
naspy	32	11	56		
vsyear	25	15	47		
XH-cat	51	23	84		
skittles1412	3	1	5		
PurpleCrayon	30	28	77		
naomao90	11	4	24		
czc0920	18	8	20		
AmirAli-Asgari	1	4	18		
Dominater069	19	8	41		

• Core ideas:

- Problems solved by super users directly contributed to their success.
- Sequence (order) in which problems are solved matters.
- Based on the above two points, we decided to implement a Seq2Seq approach of predicting the next problem a user to solve.
- Our model of choice: Long Short-Term Memory (LSTM)
- For each super-user, we created timestamp-sorted sequences of the problems they have solved. This data, along with the user features(tags and ratings distribution) is used to train the LSTM.

Hyperparameters

- Number of LSTM layers: 2
- Dropout rate (to prevent over-fitting): 0.2
- Embedding dimension: 128
- GRU hidden layers dimension: 128
- Learning rate: 1.0
- Loss function: Cross Entropy
- Optimiser: Stochastic Gradient Descent
- Number of epochs = 30 (with early stopping)

During Inference:

- The user enters their Codeforces username
- Calls are made to the Codeforces API to get the users data
- Data is processed and fed into the model
- Model outputs the top 10 problems that the user should solve next.

EXAMPLE

Input

```
Enter Your Codeforces Username Here

target_user_handle = 'shlokagrawal'
```

Output

```
Recomendations:
-problem_104687:J
-problem_1812:F
-problem_999:F
-problem_1392:B
-problem_1243:B2
-problem_1169:A
-problem_717:C
-problem_1427:C
-problem_1428:E
```

Input

```
Enter Your Codeforces Username Here

target_user_handle = 'serialcomder'

0.0s
```

Output

```
Recomendations:
-problem_1111:C
-problem_527:B
-problem_1634:E
-problem_1029:A
-problem_501:B
-problem_1447:D
-problem_1695:B
-problem_1929:F
-problem_1929:F
```

THANK YOU

Questions?