

Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

# FCC 47 CFR PART 15 SUBPART C 15.247

### **TEST REPORT**

### **FOR**

Embedded computer / module

Model: EC3100, SBC3100, H310, H330, D120

Trade Name: N/A

Issued to

IC NEXUS CO., LTD.

6F-1, No. 3-2 Park Street, Nan-Kang Dist., Taipei, Taiwan Post Code: 11503 Issued by

WH Technology Corp.





| EMC<br>Test<br>Site |           | 7F., No.262, Sec. 3, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.) |
|---------------------|-----------|------------------------------------------------------------------------------------|
|                     | Tel.: +88 | 6-2-7729-7707 Fax: +886-2- 8648-1311                                               |

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of WH Technology Corp. This document may be altered or revised by WH Technology Corp. Personnel only, and shall be noted in the revision section of the document.

Page No. : 1 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## Contents

| App | endix | <b>A.</b>                                                  |    |
|-----|-------|------------------------------------------------------------|----|
| 1.  | Gene  | eral Information                                           | 3  |
| 2.  | Repo  | ort of Measurements and Examinations                       | 4  |
|     | 2.1   | List of Measurements and Examinations                      | 5  |
| 3.  | Test  | Configuration of Equipment under Test                      | 6  |
|     | 3.1   | Description of the tested samples                          | 6  |
|     | 3.2   | Carrier Frequency of Channels                              | 7  |
|     | 3.3   | Test Mode and Test Software                                | 8  |
|     | 3.4   | TEST Methodology & General Test Procedures                 | 9  |
|     | 3.5   | Measurement Uncertainty                                    | 10 |
|     | 3.6   | Description of the Support Equipments                      | 10 |
| 4.  | Test  | and measurement equipment                                  | 12 |
|     | 4.1   | calibration                                                | 12 |
|     | 4.2   | equipment                                                  | 12 |
| 5.  | Ante  | enna Requirements                                          | 15 |
|     | 5.1   | Standard Applicable                                        | 15 |
|     | 5.2   | Antenna Construction and Directional Gain                  | 15 |
| 6.  | Test  | of Conducted Emission                                      | 16 |
|     | 6.1   | Test Limit                                                 | 16 |
|     | 6.2   | Test Procedures                                            | 16 |
|     | 6.3   | Typical Test Setup                                         | 17 |
|     | 6.4   | Test Result and Data                                       | 18 |
| 7.  | Test  | of Radiated Emission                                       | 20 |
|     | 7.1   | Test Limit                                                 | 20 |
|     | 7.2   | Test Procedures                                            | 20 |
|     | 7.3   | Typical Test Setup                                         | 22 |
|     | 7.4   | Test Result and Data (9kHz ~ 30MHz)                        | 23 |
|     | 7.5   | Test Result and Data (30MHz ~ 1GHz, worst emissions found) | 23 |
|     | 7.6   | Test Result and Data (Above 1GHz)                          | 25 |
| 8.  | 6dB   | Bandwidth Measurement Data                                 | 28 |
|     | 8.1   | Test Limit                                                 | 28 |
|     | 8.2   | Test Procedures                                            | 28 |
|     | 8.3   | Test Setup Layout                                          | 28 |
|     | 8.4   | Test Result and Data                                       | 29 |
| 9.  | Max   | imum Peak and Average Output Power                         | 35 |
|     | 9.1   | Test Limit                                                 | 35 |
|     | 9.2   | Test Procedures                                            | 35 |



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

|     | 9.3   | Test Setup Layout                       | 35 |
|-----|-------|-----------------------------------------|----|
|     | 9.4   | Test Result and Data                    | 36 |
| 10. | Powe  | er Spectral Density                     | 40 |
|     | 10.1  | Test Limit                              |    |
|     | 10.2  | Test Procedures                         | 40 |
|     | 10.3  | Test Setup Layout                       | 40 |
|     | 10.4  | Test Result and Data                    | 41 |
| 11. | Band  | Edges Measurement                       | 47 |
|     | 11.1  | Test Limit                              | 47 |
|     | 11.2  | Test Procedure                          | 47 |
|     | 11.3  | Test Setup Layout                       | 47 |
|     | 11.4  | Test Result and Data                    | 48 |
|     | 11.5  | Restrict Band Emission Measurement Data | 52 |
| 12. | Resti | ricted Bands of Operation               | 56 |
|     |       | Labeling Requirement                    |    |



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 1. General Information

Applicant : IC NEXUS CO., LTD.

Address : 6F-1, No. 3-2 Park Street, Nan-Kang Dist., Taipei, Taiwan

**Post Code: 11503** 

Manufacturer : IC NEXUS CO., LTD.

Address : 6F-1, No. 3-2 Park Street, Nan-Kang Dist., Taipei, Taiwan

Post Code: 11503

EUT : Embedded computer / module

Model Name : EC3100, SBC3100, H310, H330, D120

Model Differences : For marketing purpose

Is here with confirmed to comply with the requirements set out in the FCC Rules and Regulations Part 15 Subpart C and the measurement procedures were according to ANSI C63.10:2013. The said equipment in the configuration described in this report shows the maximum emission levels emanating

#### FCC part 15 subpart C

Receipt Date: 11/02/2018 Final Test Date: 12/14/2018

Tested By: Reviewed by:

Dec. 14, 2018 Dec. 14, 2018

Date Bing Chang / Engineer Date Bell Wei / Manager
Designation Number: TW2954

Page No. : 4 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 2. Report of Measurements and Examinations

### 2.1 List of Measurements and Examinations

| FCC Rule                             | Description of Test                        | Result |
|--------------------------------------|--------------------------------------------|--------|
| 15.203                               | . Antenna Requirement                      | Pass   |
| 15.207                               | . Conducted Emission                       | Pass   |
| 15.209<br>15.247(d)                  | . Radiated Emission                        | Pass   |
| 15.247(a)(2)                         | . 6dB Bandwidth                            | Pass   |
| 15.247(b)                            | . Maximum Peak Output Power                | Pass   |
| 15.247(d)                            | . 100kHz Bandwidth of Frequency Band Edges | Pass   |
| 15.247(e)                            | . Power Spectral Density                   | Pass   |
| 1.1307<br>1.1310<br>2.1091<br>2.1093 | . RF Exposure Compliance                   | Pass   |

Page No. : 5 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 3. Test Configuration of Equipment under Test

### 3.1 Description of the tested samples

EUT Name : Embedded computer / module

Model Number : EC3100

FCCID : 2ACLCECNSDSBC310H80

Receipt Date : 11/02/2018

Power From : □Inside ☑Outside

☑Adaptor □Battery □AC Power Source □DC Power Source

□Support Unit PC

Operate Frequency : Refer to the channel list as described below (2.412 ~2.462 GHz)

Modulation Technique : 802.11b : 11 Mbps

802.11g : 54 Mbps

802.11n HT20: 130 Mbps

Number of Channels : 802.11b, 802.11g, 802.11n, HT20 : 11

Channel spacing : □N/A ☑ 5 MHz

Operating Mode : □Simplex ☑ Half Duplex

Antenna Type : dipole antenna

Channel bandwidth : 5 MHz

Antenna gain : 2 dBi

Page No. : 6 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 3.2 Carrier Frequency of Channels

802.11b, 802.11g, 802.11n HT 20 (2412MHz~2462MHz)

| Channel | Frequency(MHz) | Channel | Frequency(MHz) |
|---------|----------------|---------|----------------|
| 01      | 2412           | 07      | 2442           |
| 02      | 2417           | 08      | 2447           |
| 03      | 2422           | 09      | 2452           |
| 04      | 2427           | 10      | 2457           |
| 05      | 2432           | 11      | 2462           |
| 06      | 2437           |         |                |

Page No. : 7 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 3.3 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.10.
- b. The complete test system included Notebook and EUT for RF test.
- c. An executive "QATool.exe" under WIN7 was executed to keep transmitting and receiving data via Wireless.
- d. The following test modes were performed for test:
  - 802.11b/g/n HT20: CH01: 2412MHz, CH06: 2437MHz, CH11: 2462MHz

Page No. : 8 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 3.4 TEST Methodology & General Test Procedures

All testing as described bellowed were performed in accordance with ANSI C63.10 and FCC CFR 47 Part 15 Subpart C.

#### **Conducted Emissions**

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.10. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors.

#### **Radiated Emissions**

The EUT is a placed on a turn table, which is 0.8 m above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

- 1) Putting the EUT on the platform and turning on the EUT (on/off button on the bottom of the EUT).
- 2) Setting test channel described as "Channel setting and operating condition", and testing channel by channel.
- 3) For the maximum output power measurement, we followed the method of measurement KDB558074 D01.
- 4) For the spurious emission test based on ANSI(2014), at the frequency where below 1GHz

used quasi-peak detector mode; where above 1GHz used the peak and average detector mode. IF the peak value may be under average limit, the average mode will not be performed.

Page No. : 9 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 3.5 Measurement Uncertainty

| Measurement Item             | Uncertainty |
|------------------------------|-------------|
| Radiated emission            | ±4.11dB     |
| Peak Output Power(conducted) | ±1.38dB     |
| Peak Output Power(Radiated)  | ±1.70dB     |
| Power Spectral Density       | ±1.39dB     |
| Radiated emission(3m)        | ±4.11dB     |
| Radiated emission(10m)       | ±3.89dB     |

# 3.6 Description of the Support Equipments

## Setup Diagram

## CE



## RE



Page No. : 10 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### **Support Equipment**

Peripherals Devices:

|     | T elipherais De |                 | OUTSIDE SUI                     | PPORT EQUIP        | PMENT         |                        |                    |
|-----|-----------------|-----------------|---------------------------------|--------------------|---------------|------------------------|--------------------|
| No. | Equipment       | Model           | Serial No.                      | FCC ID/<br>BSMI ID | Trade<br>name | Data Cable             | Power Cord         |
| E-2 | Monitor         | S2817Qt         | NA                              | R43004             | DELL          | Shielded<br>1.8m       | Unshielded<br>1.8m |
| E-4 | Mouse           | MS116p          | CN-04DW<br>DN-73826<br>-5CM-012 | R41108             | DELL          | Shielded<br>1.8m / USB | N/A                |
| E-1 | Notebook        | B470            | WB06048<br>23                   | R33B65             | Lenovo        | N/A                    | Unshielded<br>1.8m |
| E-3 | Adaptor         | LTE-12WS-S<br>2 | N/A                             | N/A                | LTE           | N/A                    | N/A                |
| E-5 | SD Card         | 16G             | N/A                             | N/A                | SanDisk       | N/A                    | N/A                |
|     |                 |                 |                                 | EUT                |               |                        |                    |
| No. | Equipment       | Model           | Serial No.                      | FCC ID/<br>BSMI ID | Trade<br>name | Data Cable             | Power Cord         |
| 1   | DDR RAM         | 4GB             | NA                              | NA                 | NA            | NA                     | NA                 |
| 2   | Flash ROM       | 16GB            | NA                              | NA                 | NA            | NA                     | NA                 |

**Note:** All the above equipment /cable were placed in worse case position to maximize emission signals during emission test

**Grounding:** Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.

Page No. : 11 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 4. Test and measurement equipment

#### 4.1 calibration

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

### 4.2 equipment

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

Page No. : 12 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### TABLELIST OF TEST AND MEASUREMENT EQUIPMENT

| Test Site Instrument |                                           | Manufacturer                          | Model No.              | S/N                     | Next Cal.<br>Date |
|----------------------|-------------------------------------------|---------------------------------------|------------------------|-------------------------|-------------------|
|                      | Spectrum (9K3GHz)                         | R&S                                   | FSP3                   | 833387/01<br>0          | 2019/12/07        |
|                      | EMI Receiver                              | R&S                                   | ESHS10                 | 830223/00<br>8          | 2019/06/06        |
| Conduction           | LISN                                      | Rolf Heine<br>Hochfrequenztech<br>nik | NNB-2/16z              | 98062                   | 2019/06/11        |
|                      | ISN                                       | Schwarzbeck                           | 8-Wire ISN CAT5        | CAT5-8158<br>-0094      | 2019/10/19        |
|                      | RF Cable                                  | N/A                                   | N/A                    | EMI-3                   | 2019/10/17        |
|                      | Bilog antenna(30M-                        | ETC                                   | MCTD2786B              | BLB16M0<br>4004/JB-5-   | 2019/05/18        |
|                      | 1G)                                       |                                       |                        | 004                     |                   |
|                      | Double Ridged Guide Horn antenna(1G-18 G) | ETC                                   | MCTD 1209              | DRH15N0<br>2009         | 2019/11/28        |
|                      | Horn antenna (18G-26G)                    | com-power                             | AH-826                 | 81000                   | 2019/08/16        |
| Radiation            | LOOP Antenna (Below 30M)                  | com-power                             | AL-130                 | 17117                   | 2019/11/12        |
|                      | Pre amplifier (30M-1G)                    | EMC<br>INSTRUMENT                     | EMC9135                | 980334                  | 2019/05/03        |
|                      | Microwave Preamplifier (1G-18G)           | EMC<br>INSTRUMENT                     | EMC051845              | 980108&A<br>T<br>-18001 | 2019/11/27        |
|                      | Pre amplifier (18G~26G)                   | MITEQ                                 | JS4-18002600-30-<br>5A | 808329                  | 2019/08/09        |
|                      | EMI Test                                  | R&S                                   | ESVS30                 | 826006/002              | 2019/11/07        |

Page No. : 13 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

|          | Receiver    |            | (20M-1000MHz)     |            |            |  |
|----------|-------------|------------|-------------------|------------|------------|--|
|          | RF Cable    | EMCI       | N male on end of  | 30m        | 2019/11/09 |  |
|          | (open site) | EWICI      | both sides (EMI4) | SUIII      | 2019/11/09 |  |
|          | RF CABLE    | HARBOUT    | LL142MI(4M+4M)    | NA         | 2010/04/17 |  |
|          | (1~26G)     | INDUSTRIES | LL142WII(4WI+4WI) | NA         | 2019/04/17 |  |
|          | RF CABLE    | HARBOUR    | LL142MI(7M)       | NA         | 2019/08/09 |  |
|          | (1~26G)     | INDUSTRIES | EE142WII(7WI)     | NA         | 2019/06/09 |  |
|          | Spectrum    | R&S        | FSP7              | 830180/006 | 2019/04/14 |  |
|          | (9K7GHz)    | K&S        | rsr/              | 830180/000 | 2019/04/14 |  |
|          | Spectrum    | AGILENT    | 8564EC            | 4046A0032  | 2019/03/01 |  |
|          | (9K40GHz)   | AGILLIVI   | 8304EC            | 4040A0032  | 2019/03/01 |  |
| Software | e3          | AUDIX      | N/A               | N/A        | N/A        |  |
|          | SINGAL      |            |                   | 2610110042 |            |  |
| SG       | GENTERATOR  | HP         | 8648A             | 3619U0042  | N/A        |  |
|          | (100k-1GHz) |            |                   | 6          |            |  |

\*CALIBRATION INTERVAL OF INSTRUMENTS LISTED ABOVE IS ONE YEAR

Page No. : 14 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 5. Antenna Requirements

### 5.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

# 5.2 Antenna Construction and Directional Gain: Meet FCC 47 CFR Section 15.203 requirement.

#### 802.11b/g/n:

Antenna Type:dipole antenna

Antenna Gain: 2 dBi

The EUT and antenna incorporate non-standard connector (Reversed SMA connector), which the antenna connector not readily available to general public.

Page No. : 15 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 6. Test of Conducted Emission

#### 6.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

| Frequency<br>(MHz) | Quasi Peak<br>(dB µ V) | Average<br>(dB µ V) |
|--------------------|------------------------|---------------------|
| 0.15 – 0.5         | 66-56*                 | 56-46*              |
| 0.5 - 5.0          | 56                     | 46                  |
| 5.0 – 30.0         | 60                     | 50                  |

<sup>\*</sup>Decreases with the logarithm of the frequency.

#### 6.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Page No. : 16 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

## 6.3 Typical Test Setup



Page No. : 17 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 6.4 Test Result and Data

| Power :     | AC 110V           | Pol/Phase :   | LINE  |
|-------------|-------------------|---------------|-------|
| Test Mode : | TX b CH11 2462MHz | Temperature : | 24 °C |
| Memo :      |                   | Humidity :    | 53 %  |



| Remarks       |      |                        | or=Insr | tion los | s+Cable       |               |         |
|---------------|------|------------------------|---------|----------|---------------|---------------|---------|
|               | Freq | Read<br>Le <b>v</b> el | Level   | Factor   | Over<br>Li∎it | Limit<br>Line | Remark  |
|               | MHz  | dBu₹                   | dBu₹    | dB       | dB            | dBu₹          |         |
| 1             | 0.15 | 4.59                   | 14.69   | 10.10    | -41.13        | 55.82         | Average |
| 2<br>3 A      | 0.15 | 31.30                  | 41.40   |          | -24.42        | 65.82         |         |
|               | 0.22 | 22.82                  | 32.91   |          | -19.97        | 52.88         | Average |
| 4 @           | 0.22 | 33.16                  | 43.25   | 10.09    | -19.63        | 62.88         | QP      |
| 4 @<br>5<br>6 | 0.43 | 4.52                   | 14.62   | 10.10    | -32.71        | 47.33         | Average |
| 6             | 0.43 | 17.78                  | 27.88   | 10.10    | -29.45        | 57.33         | OP      |
| 7             | 1.10 | 5.77                   | 15.90   |          | -30.10        |               | Average |
| 8             | 1.10 | 10.79                  | 20.92   |          | -35.08        | 56.00         |         |
| 8             | 2.24 | -3.61                  | 6.58    | 10.19    | -39.42        |               | Average |
| 10            | 2.24 | 10.02                  | 20.21   |          | -35.79        | 56.00         |         |
| 11            | 5.28 | 2.11                   | 12.40   |          | -37.60        |               | Äverage |
| 12            | 5.28 | 8.42                   | 18.71   | 10.29    | -41.29        | 60.00         |         |



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

| Power                | :   | AC 1  | 10V        |                 |               | Pol      | /Pha              | se    | :                | NEUTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٩L             |
|----------------------|-----|-------|------------|-----------------|---------------|----------|-------------------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Test Mode            | :   | TX b  | CH11 24    | 62MHz           |               | Ten      | nper              | ature | :                | 24 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Memo                 | :   |       |            |                 |               | Hur      | nidit             | у     | :                | 53 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| evel (dBuV)          |     |       |            |                 |               |          |                   |       |                  | Date: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18-12-1        |
|                      |     |       |            |                 |               |          |                   |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |     |       |            |                 |               |          |                   |       | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |     |       |            |                 |               |          |                   |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |     |       |            |                 |               |          |                   |       | -                | CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS-B QP        |
|                      |     |       |            |                 |               |          |                   |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |     |       |            |                 |               |          |                   |       | +                | CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS-B AV        |
| Lill Aliza           |     |       |            |                 |               |          |                   |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Maria Maria          |     |       |            |                 |               |          |                   |       | +                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| HILL OF BUILDING     |     |       |            |                 |               |          |                   |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| indi da di Malilla 🕅 |     | Mak   | J. J. Mak. | Mhuhhai         |               |          | ıl ı              | M     | <del>     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |     | , 149 | Nuvara san | f Nikharlahara) | LAUREN PARTIE | No. Japa | WY <sub>N</sub> K | 12\   | I۸               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∧              |
| 3                    | 6   |       |            |                 | 10            | Late.    |                   | 11    | al C             | halladd of the state of the sta | <b>***</b> *** |
|                      |     |       | 7          |                 |               |          |                   | 1     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |     |       |            |                 | 9             |          |                   |       | ++-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      | 5   |       |            |                 |               |          |                   |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 0.150.2              | 0.5 |       | 1          | 2               |               |          | 5                 |       | 10               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20             |

| Remarks | : Factor=Insrtic |       |       |
|---------|------------------|-------|-------|
|         | Read             | 0 ver | Limit |

|        | Freq           | Level           | Level          | Factor         | Limit            | Line  | Remark                |
|--------|----------------|-----------------|----------------|----------------|------------------|-------|-----------------------|
|        | MHz            | dBu₹            | dBu∀           | ——dB           | dB               | dBu₹  |                       |
| 1      | 0.15           | 4.38            | 14.46          | 10.08          |                  |       | Average               |
| 2      | $0.15 \\ 0.22$ | 31.36<br>10.36  | 41.44<br>20.44 | 10.08          | -24.52<br>-32.30 | 65.96 | QP<br><b>Av</b> erage |
| 4 @    |                | 34.08           | 44.16          |                | -32.50           | 62.74 |                       |
| 5      | 0.50           | -7.21           | 2.89           | 10.10          | -43.11           |       | Average               |
| 6      | 0.50           | 9.16            | 19.26          |                | -36.74           | 56.00 |                       |
| 7 ▲    | 1.15           | 6.10            | 16.23          | 10.13          |                  |       | ∆verage               |
| 8<br>9 | 1.15           | 11.80           | 21.93          | 10.13          |                  | 56.00 |                       |
| 10     | 3.40<br>3.40   | $0.42 \\ 10.21$ | 10.63<br>20.42 | 10.21<br>10.21 | -35.37<br>-35.58 | 56.00 | Average               |
| 11     | 7.06           | 6.76            | 17.08          |                |                  |       | Ųr<br>Average         |
| 12     | 7.06           | 12.97           | 23.29          |                | -36.71           | 60.00 |                       |

Frequency (MHz)

Page No. : 19 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 7. Test of Radiated Emission

#### 7.1 Test Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

| Frequency<br>(MHz) | Field Strength (microvolt/meter) | Measurement Distance (meters) |
|--------------------|----------------------------------|-------------------------------|
| 0.009 ~ 0.490      | 2400/F(kHz)                      | 300                           |
| 0.490 ~ 1.705      | 24000/F(kHz)                     | 30                            |
| 1.705 ~ 30.0       | 30                               | 30                            |
| 30 ~ 88            | 100                              | 3                             |
| 88 ~ 216           | 150                              | 3                             |
| 216 ~ 960          | 200                              | 3                             |
| Above 960          | 500                              | 3                             |

#### 7.2 Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than

Page No. : 20 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

i. "Cone of radiation" has been considered to be 3dB bandwidth of the measurement antenna.

Page No. : 21 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 7.3 Typical Test Setup

For radiated emissions below 30MHz



#### For radiated emissions above 30MHz



#### For radiated emissions above 1GHz



Page No. : 22 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 7.4 Test Result and Data (9kHz ~ 30MHz)

The 9kHz - 30MHz spurious emission is under limit 20dB more.

### 7.5 Test Result and Data (30MHz ~ 1GHz, worst emissions found)





.....

Remarks : 1.Result=Read Value+Factor

: 2.Factor=Antenna Factor-Cable loss-

: Amplifier Factor

|       | Freq   |       | Factor |        |                     | Over<br>Limit | Remark |
|-------|--------|-------|--------|--------|---------------------|---------------|--------|
|       | MHz    | dBuV  | dB/m   | dBuV/m | $\overline{dBuV/m}$ | dB            |        |
| 1     | 119.89 | 51.43 | -15.19 | 36.24  | 54.00               | -17.76        | OP     |
| 1 2 3 | 250.93 |       |        |        |                     |               |        |
| 3     | 450.23 | 52.08 | -10.07 | 42.01  | 56.90               | -14.89        | OP     |
| 4     | 649.00 | 52.14 | -7.13  | 45.01  | 56.90               | -11.89        | OP     |
| 5 @   | 750.56 |       |        |        |                     |               |        |
| 6     | 900.03 | 46.85 | -3.76  | 43.09  | 56.90               | -13.81        | QP     |



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

| Power     | : | AC 110V           | Pol/Phase   | : | VERTICAL |
|-----------|---|-------------------|-------------|---|----------|
| Test Mode | : | TX b CH11 2462MHz | Temperature | : | 17 °C    |
| Memo      | : |                   | Humidity    |   | 72 %     |



\_-----:

Remarks

: 1.Result=Read Value+Factor

: 2.Factor=Antenna Factor-Cable loss-

: Amplifier Factor

|         |        | Read  |        |        | Limit  | Over   |           |
|---------|--------|-------|--------|--------|--------|--------|-----------|
|         | Freq   | Level | Factor | Level  | Line   | Limit  | Remark    |
| -       | MHz    | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     |           |
| 1 @     | 119.74 | 59.44 | -15.20 | 44.24  | 54.00  | -9.76  | OP        |
| 1 @ 2 3 | 250.13 | 53.61 | -15.42 | 38.19  | 56.90  | -18.71 | <b>OP</b> |
| 3       | 375.96 |       |        |        |        |        |           |
| 4 5     | 625.39 | 49.65 | -8.07  | 41.58  | 56.90  | -15.32 | QP        |
| 5       | 750.00 | 50.55 | -5.84  | 44.71  | 56.90  | -12.19 | QP        |
| 6       | 931.12 | 43.27 | -2.14  | 41.13  | 56.90  | -15.77 | OP        |



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 7.6 Test Result and Data (Above 1GHz)

| Power :       | AC 110V | Test Date : | 2018/12/14 |
|---------------|---------|-------------|------------|
| Temperature : | 17 °C   | Humidity :  | 72 %       |
| Test Mode     | 802.11b |             |            |

|            | <b>'</b>                                |                   |               | •             |            | 1           |                |          |
|------------|-----------------------------------------|-------------------|---------------|---------------|------------|-------------|----------------|----------|
|            |                                         | 1GHz—2            | 25GHz Radiate | ed emission T | est result |             |                |          |
| Channel 1  |                                         |                   |               |               | Fundar     | nental Fred | quency: 2      | 2412 MHz |
| Frequency  | Ant-Pol                                 | Meter             | Corrected     | Result        |            | Limit (dE   | BuV/m)         | Margin   |
| (MHz)      | H/V                                     | Reading<br>(dBuV) | Factor (dB)   | (dBuV/m)      | Remark     | Peak        | Ave            | (dB)     |
| 4824.00    | Н                                       | 53.38             | -5.26         | 48.12         | Peak       | 74          | 54             | -25.88   |
|            | Н                                       |                   |               |               | Ave        | 74          | 54             |          |
| 4824.00    | V                                       | 53.25             | -5.26         | 47.99         | Peak       | 74          | 54             | -26.01   |
|            | V                                       |                   |               |               | Ave        | 74          | 54             |          |
| Channel 6  |                                         |                   |               |               | Fundam     | nental Freq | uency: 2       | 437 MHz  |
| Frequency  | Ant-Pol                                 | Meter             | Corrected     | Result        | Remark     | Limit (dE   | Limit (dBuV/m) |          |
| (MHz)      | H/V                                     | Reading<br>(dBuV) | Factor (dB)   | (dBuV/m)      | Remark     | Peak        | Ave            | (dB)     |
| 4874.00    | Н                                       | 54.15             | -5.10         | 49.05         | Peak       | 74          | 54             | -24.95   |
|            | Н                                       |                   |               |               | Ave        | 74          | 54             |          |
| 4874.00    | V                                       | 53.83             | -5.10         | 48.73         | Peak       | 74          | 54             | -25.27   |
|            | V                                       |                   |               |               | Ave        | 74          | 54             |          |
| Channel 11 |                                         |                   |               |               | Fundar     | nental Fred | quency: 2      | 2462 MHz |
| Frequency  | Ant-Pol                                 | Meter             | Corrected     | Result        |            | Limit (dE   | BuV/m)         | Margin   |
| (MHz)      | H/V                                     | Reading<br>(dBuV) | Factor (dB)   | (dBuV/m)      | Remark     | Peak        | Ave            | (dB)     |
| 4924.00    | Н                                       | 53.39             | -4.93         | 48.46         | Peak       | 74          | 54             | -25.54   |
|            | Н                                       |                   |               |               | Ave        | 74          | 54             |          |
| 4924.00    | V                                       | 53.29             | -4.93         | 48.36         | Peak       | 74          | 54             | -25.64   |
|            | V                                       |                   |               |               | Ave        | 74          | 54             |          |
| 1. Emis    | 100 100 100 100 100 100 100 100 100 100 |                   |               |               |            |             |                |          |

- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. Measuring frequency from 1GHz to 25GHz
- 4. Measurements above 1000 MHz, Peak detector setting: 1 MHz RBW with 1 MHz VBW.
- 5. Measurements above 1000 MHz, Average detector setting: 1 MHz RBW with 10Hz VBW.
- 6. Peak detector measurement data will represent the worst case results.
- 7. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 8. The other emission levels were 20dB below the limit.

Page No. : 25 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

| Power :       | AC 110V | Test Date : | 2018/12/14 |
|---------------|---------|-------------|------------|
| Temperature : | 17 °C   | Humidity :  | 72 %       |
| Test Mode     | 802.11g |             |            |

|            |         | 1GHz—2            | 5GHz Radiate | d emissison 7 | Test result |                |           |          |  |
|------------|---------|-------------------|--------------|---------------|-------------|----------------|-----------|----------|--|
| Channel 1  |         |                   |              |               | Fundar      | mental Fred    | quency: 2 | 2412 MHz |  |
| Frequency  | Ant-Pol | Meter<br>Reading  | Corrected    | Result        | Remark      | Limit (de      | BuV/m)    | Margin   |  |
| (MHz)      | H/V     | (dBuV)            | Factor (dB)  | (dBuV/m)      | rtomant     | Peak           | Ave       | Ave (dB) |  |
| 4824.00    | Н       | 54.22             | -5.26        | 48.96         | Peak        | 74             | 54        | -25.04   |  |
|            | Н       |                   |              |               | Ave         | 74             | 54        |          |  |
| 4824.00    | V       | 53.90             | -5.26        | 48.64         | Peak        | 74             | 54        | -25.36   |  |
|            | V       |                   |              |               | Ave         | 74             | 54        |          |  |
| Channel 6  |         |                   |              |               | Fundam      | nental Freq    | uency: 2  | 437 MHz  |  |
| Frequency  | Ant-Pol | Meter             | Corrected    | Result        | Damark      | Limit (dBuV/m) |           | Margin   |  |
| (MHz)      | H/V     | Reading<br>(dBuV) | Factor (dB)  | (dBuV/m)      | Remark      | Peak           | Ave       | (dB)     |  |
| 4874.00    | Н       | 54.51             | -5.10        | 49.41         | Peak        | 74             | 54        | -24.59   |  |
|            | Н       |                   |              |               | Ave         | 74             | 54        |          |  |
| 4874.00    | V       | 54.21             | -5.10        | 49.11         | Peak        | 74             | 54        | -24.89   |  |
|            | V       |                   |              |               | Ave         | 74             | 54        |          |  |
| Channel 11 |         |                   |              |               | Fundar      | mental Fred    | quency: 2 | 2462 MHz |  |
| Frequency  | Ant-Pol | Meter             | Corrected    | Result        | Domork      | Limit (dBuV/m) |           | Margin   |  |
| (MHz)      | H/V     | Reading<br>(dBuV) | Factor (dB)  | (dBuV/m)      | Remark      | Peak           | Ave       | (dB)     |  |
| 4924.00    | Н       | 54.82             | -4.93        | 49.89         | Peak        | 74             | 54        | -24.21   |  |
|            | Н       |                   |              |               | Ave         | 74             | 54        |          |  |
| 4924.00    | V       | 54.41             | -4.93        | 49.48         | Peak        | 74             | 54        | -24.52   |  |
|            | V       |                   |              |               | Ave         | 74             | 54        |          |  |

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. Measuring frequency from 1GHz to 25GHz
- 4. Measurements above 1000 MHz, Peak detector setting: 1 MHz RBW with 1 MHz VBW.
- 5. Measurements above 1000 MHz, Average detector setting: 1 MHz RBW with 10Hz VBW.
- 6. Peak detector measurement data will represent the worst case results.
- 7. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 8. The other emission levels were 20dB below the limit.

Page No. : 26 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

| Power :       | AC 110V      | Test Date : | 2018/12/14 |
|---------------|--------------|-------------|------------|
| Temperature : | 17 °C        | Humidity :  | 72 %       |
| Test Mode     | 802.11n HT20 |             |            |

|            |                                                     | 1GHz—2                               | 5GHz Radiate | d emissison 7 | Test result |                |           |          |
|------------|-----------------------------------------------------|--------------------------------------|--------------|---------------|-------------|----------------|-----------|----------|
| Channel 1  |                                                     |                                      |              |               | Fundar      | mental Free    | quency: 2 | 2412 MHz |
| Frequency  | Ant-Pol H/V Meter Corrected Result (dBuV/m) Remains |                                      | Corrected    | Result        | Pomark      | Limit (dBuV/m) |           | Margin   |
| (MHz)      |                                                     | Remark                               | Peak         | Ave           | (dB)        |                |           |          |
| 4824.00    | Н                                                   | 54.91                                | -5.26        | 49.65         | Peak        | 74             | 54        | -24.35   |
|            | Н                                                   |                                      |              |               | Ave         | 74             | 54        |          |
| 4824.00    | V                                                   | 54.53                                | -5.26        | 49.27         | Peak        | 74             | 54        | -24.73   |
|            | V                                                   |                                      |              |               | Ave         | 74             | 54        |          |
| Channel 6  |                                                     |                                      | ,            |               | Fundam      | nental Freq    | uency: 2  | 437 MHz  |
| Frequency  | Ant-Pol                                             | nt-Pol Meter Corrected Result Remove | Remark       | Limit (dl     | BuV/m)      | //m) Margin    |           |          |
| (MHz)      | H/V                                                 | Reading<br>(dBuV)                    | Factor (dB)  | (dBuV/m)      | Remark      | Peak           | Ave       | (dB)     |
| 4874.00    | Н                                                   | 55.09                                | -5.10        | 49.99         | Peak        | 74             | 54        | -24.01   |
|            | Н                                                   |                                      |              |               | Ave         | 74             | 54        |          |
| 4874.00    | V                                                   | 54.80                                | -5.10        | 49.70         | Peak        | 74             | 54        | -24.30   |
|            | V                                                   |                                      |              |               | Ave         | 74             | 54        |          |
| Channel 11 |                                                     |                                      |              |               | Fundar      | mental Fred    | quency: 2 | 2462 MHz |
| Frequency  | Ant-Pol                                             | Ant-Pol Meter                        | Corrected    | Result        | Remark      | Limit (dBuV/m) |           | Margin   |
| (MHz)      | H/V                                                 | Reading<br>(dBuV)                    | Factor (dB)  | (dBuV/m)      |             | Peak           | Ave       | (dB)     |
| 4924.00    | Н                                                   | 55.23                                | -4.93        | 50.30         | Peak        | 74             | 54        | -23.70   |
|            | Н                                                   |                                      |              |               | Ave         | 74             | 54        |          |
| 4924.00    | V                                                   | 54.93                                | -4.93        | 50.00         | Peak        | 74             | 54        | -24.00   |
|            | V                                                   |                                      |              |               | Ave         | 74             | 54        |          |

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. Measuring frequency from 1GHz to 25GHz
- 4. Measurements above 1000 MHz, Peak detector setting: 1 MHz RBW with 1 MHz VBW.
- 5. Measurements above 1000 MHz, Average detector setting: 1 MHz RBW with 10Hz VBW.
- 6. Peak detector measurement data will represent the worst case results.
- 7. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 8. The other emission levels were 20dB below the limit.

Page No. : 27 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 8. 6dB Bandwidth Measurement Data

#### 8.1 Test Limit

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

#### 8.2 Test Procedures

- a. The transmitter output was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to  $1\sim5\%$  of the emission bandwidth and VBW  $\geq 3x$  RBW.
- c. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.
- d. The 6dB Bandwidth was measured and recorded.

### 8.3 Test Setup Layout



Page No. : 28 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 8.4 Test Result and Data

Test Date: Dec. 13, 2018 Temperature: 22  $^{\circ}$ C Atmospheric pressure: 1002 pha Humidity: 57  $^{\circ}$ 

| Modulation Standard       | Channel | Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) |  |
|---------------------------|---------|--------------------|------------------------|--|
|                           | 01      | 2412               | 8.56                   |  |
| 802.11b (11Mbps)          | 06      | 2437               | 8.08                   |  |
|                           | 11      | 2462               | 8.16                   |  |
|                           | 01      | 2412               | 16.24                  |  |
| 802.11g (6Mbps)           | 06      | 2437               | 16.36                  |  |
|                           | 11      | 2462               | 16.24                  |  |
| 000 44 - 11700            | 01      | 2412               | 17.52                  |  |
| 802.11n HT20<br>(6.5Mbps) | 06      | 2437               | 17.48                  |  |
| (o.Jivibps)               | 11      | 2462               | 17.52                  |  |

Page No. : 29 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11b (11Mbps)

Channel: 01



Date: 13.DEC.2018 15:18:56

Modulation Standard: 802.11b (11Mbps)

Channel: 06



Date: 13.DEC.2018 15:19:56

Page No. : 30 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11b (11Mbps)

Channel: 11



Date: 13.DEC.2018 15:21:04

Modulation Standard: 802.11g (6Mbps)

Channel: 01



Date: 13.DEC.2018 15:22:29

Page No. : 31 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11g (6Mbps)

Channel: 06



Date: 13.DEC.2018 15:24:07

Modulation Standard: 802.11g (6Mbps)

Channel: 11



Date: 13.DEC.2018 15:26:08

Page No. : 32 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 01



Date: 13.DEC.2018 15:29:43

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 06



Date: 13.DEC.2018 15:30:35

Page No. : 33 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 11



Page No. : 34 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 9. Maximum Peak Output Power

#### 9.1 Test Limit

The Maximum Peak Output Power Measurement is 30dBm.

#### 9.2 Test Procedures

- a. The transmitter output was connected to spectrum analyzer.
- b. The spectrum analyzer's resolution bandwidth were set at 1MHz RBW and 3MHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- c. Use the spectrum analyzer's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some analyzers, this may require a manual override to ensure use of peak detector).
- d. Employ trace averaging in power averaging (RMS) mode over a minimum of 100 traces.
- e. Use the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.
- f. The peak and average output power was measured and recorded.

### 9.3 Test Setup Layout



Page No. : 35 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 9.4 Test Result and Data

Test Date: Dec. 14, 2018 Temperature: 22  $^{\circ}$ C Atmospheric pressure: 1002 pha Humidity: 57 %

| Modulation<br>Standard | Channel | Frequency<br>(MHz) | Peak Power Output (dBm) | Peak Power<br>Output(mW) |  |
|------------------------|---------|--------------------|-------------------------|--------------------------|--|
| 802.11b<br>(11Mbps)    | 01      | 2412               | 15.98                   | 39.627                   |  |
|                        | 06      | 2437               | 16.33                   | 42.953                   |  |
|                        | 11      | 2462               | 16.22                   | 41.879                   |  |
| 802.11g<br>(6Mbps)     | 01      | 2412               | 21.24                   | 133.045                  |  |
|                        | 06      | 2437               | 21.38                   | 137.404                  |  |
|                        | 11      | 2462               | 21.47                   | 140.281                  |  |

| Modulation<br>Standard    | Channel | Frequency<br>(MHz) | Peak Power Output (dBm) | Peak Power Output (mW) |
|---------------------------|---------|--------------------|-------------------------|------------------------|
| 802.11n HT20<br>(6.5Mbps) | 01      | 2412               | 21.28                   | 134.276                |
|                           | 06      | 2437               | 21.43                   | 138.995                |
|                           | 11      | 2462               | 21.53                   | 142.232                |

Page No. : 36 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### **Peak Output Power**

Modulation Standard: 802.11b (11Mbps)

Channel: 01



Modulation Standard: 802.11b (11Mbps)

Channel: 06



Modulation Standard: 802.11b (11Mbps)

Channel: 11



Page No. : 37 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11g (6Mbps)

Channel: 01



Modulation Standard: 802.11g (6Mbps)

Channel: 06



Modulation Standard: 802.11g (6Mbps)

Channel: 11



Page No. : 38 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 01



Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 06



Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 11



Page No. : 39 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

### 10. Power Spectral Density

#### 10.1 Test Limit

The Maximum of Power Spectral Density Measurement is 8dBm

#### **10.2 Test Procedures**

- g. The transmitter output was connected to spectrum analyzer.
- h. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 10KHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- i. The power spectral density was measured and recorded.

#### 10.3 Test Setup Layout



Page No. : 40 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 10.4 Test Result and Data

Test Date: Dec. 14, 2018 Temperature: 22  $^{\circ}$ C Atmospheric pressure: 1002 pha Humidity: 57%

| Modulation Standard | Channel | Frequency<br>(MHz) | Measured Power Density (dBm) |
|---------------------|---------|--------------------|------------------------------|
|                     | 01      | 2412               | -9.15                        |
| 802.11b (11Mbps)    | 06      | 2437               | -9.03                        |
| , ,                 | 11      | 2462               | -8.74                        |
|                     | 01      | 2412               | -12.02                       |
| 802.11g (6Mbps)     | 06      | 2437               | -12.02                       |
|                     | 11      | 2462               | -12.33                       |

| Modulation Standard       | Channel | Frequency<br>(MHz) | Measured Power Density (dBm) |
|---------------------------|---------|--------------------|------------------------------|
| 000 44 a LITO             | 01      | 2412               | -14.36                       |
| 802.11n HT20<br>(6.5Mbps) | 06      | 2437               | -12.13                       |
| (0.0.0000)                | 11      | 2462               | -12.99                       |

Page No. : 41 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11b (11Mbps)

Channel: 01



Modulation Standard: 802.11b (11Mbps)

Channel: 06



Page No. : 42 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11b (11Mbps)

Channel: 11



Modulation Standard: 802.11g (6Mbps)

Channel: 01



Page No. : 43 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11g (6Mbps)

Channel: 06



Modulation Standard: 802.11g (6Mbps)

Channel: 11



Page No. : 44 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 01



Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 06



Page No. : 45 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 11



Page No. : 46 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 11. Band Edges Measurement

#### 11.1 Test Limit

Below –20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

#### 11.2 Test Procedure

- a. The transmitter output was connected to the spectrum analyzer via a low lose cable.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.
- d. The band edges was measured and recorded.

#### 11.3 Test Setup Layout



Page No. : 47 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 11.4 Test Result and Data

Test Date: Feb. 07, 2018 Temperature: 22  $^{\circ}$ C Atmospheric pressure: 1002 pha Humidity: 57 %

| Modulation<br>Standard | Channel | Frequency<br>(MHz) | maximum value in frequency (MHz) | maximum value<br>(dBm) |
|------------------------|---------|--------------------|----------------------------------|------------------------|
| 802.11b                | 01      | 2412               | 2397.2                           | -38.83                 |
| (11Mbps)               | 11      | 2462               | 2483.5                           | -46.05                 |
| 802.11g                | 01      | 2412               | 2397.2                           | -37.43                 |
| (6Mbps)                | 11      | 2462               | 2483.5                           | -41.77                 |
| 802.11n HT20           | 01      | 2412               | 2398.4                           | -34.34                 |
| (6.5Mbps)              | 11      | 2462               | 2484.3                           | -40.30                 |

Page No. : 48 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11b (11Mbps)

Channel: 01



Modulation Standard: 802.11b (11Mbps)



Page No. : 49 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11g (6Mbps)

Channel: 01



Modulation Standard: 802.11g (6Mbps)



Page No. : 50 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

Modulation Standard: 802.11n HT20 (6.5Mbps)

Channel: 01



Modulation Standard: 802.11n HT20 (6.5Mbps)



Page No. : 51 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 11.5 Restrict Band Emission Measurement Data

| Power     | : | AC 110V | Pol/Phase   | : | H/V   |
|-----------|---|---------|-------------|---|-------|
| Test Mode | : | 802.11b | Temperature | : | 17 °C |
| Memo      | : |         | Humidity    | : | 72 %  |

| Channel 1  |         |                   |             |          | Fundam  | nental Fred | quency: 2 | 2412 MHz |
|------------|---------|-------------------|-------------|----------|---------|-------------|-----------|----------|
| Frequency  | Ant-Pol | Meter<br>Reading  | Corrected   | Result   | Remark  | Limit (dE   | BuV/m)    | Margin   |
| (MHz)      | H/V     | (dBuV)            | Factor (dB) | (dBuV/m) | Remark  | Peak        | Ave       | (dB)     |
| 2386.00    | Н       | 60.96             | -12.94      | 48.02    | Peak    | 74          | 54        | -25.98   |
|            | Н       |                   |             |          | Ave     | 74          | 54        |          |
| 2386.00    | V       | 58.22             | -12.94      | 45.28    | Peak    | 74          | 54        | -28.72   |
|            | V       |                   |             |          | Ave     | 74          | 54        |          |
| Channel 11 |         |                   |             |          | Fundam  | nental Fred | quency: 2 | 2462 MHz |
| Frequency  | Ant-Pol | Meter             | Corrected   | Result   | Downauk | Limit (d    | BuV/m)    | Margin   |
| (MHz)      | H/V     | Reading<br>(dBuV) | Factor (dB) | (dBuV/m) | Remark  | Peak        | Ave       | (dB)     |
| 2483.50    | Н       | 58.58             | -12.50      | 46.08    | Peak    | 74          | 54        | -27.92   |
|            | Н       |                   |             |          | Ave     | 74          | 54        |          |
| 2483.50    | V       | 56.80             | -12.50      | 44.30    | Peak    | 74          | 54        | -29.70   |
|            | V       |                   |             |          | Ave     | 74          | 54        |          |

Page No. : 52 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

| Power :     | AC 110V | Pol/Phase :   | H/V   |
|-------------|---------|---------------|-------|
| Test Mode : | 802.11g | Temperature : | 17 °C |
| Memo :      |         | Humidity :    | 72 %  |

| Channel 1  |         |                   |             |          | Fundan    | nental Fred | quency: 2 | 2412 MHz |
|------------|---------|-------------------|-------------|----------|-----------|-------------|-----------|----------|
| Frequency  | Ant-Pol | Meter             | Corrected   | Result   | esult 5 . | Limit (dE   | BuV/m)    | Margin   |
| (MHz)      | H/V     | Reading<br>(dBuV) | Factor (dB) | (dBuV/m) | Remark    | Peak        | Ave       | (dB)     |
| 2390.00    | Н       | 63.03             | -12.91      | 50.12    | Peak      | 74          | 54        | -23.88   |
|            | Н       |                   |             |          | Ave       | 74          | 54        |          |
| 2390.00    | V       | 61.65             | -12.91      | 48.74    | Peak      | 74          | 54        | -25.26   |
|            | V       |                   |             |          | Ave       | 74          | 54        |          |
| Channel 11 |         |                   |             |          | Fundan    | nental Fred | quency: 2 | 2462 MHz |
| Frequency  | Ant-Pol | Meter             | Corrected   | Result   | Deved     | Limit (d    | BuV/m)    | Margin   |
| (MHz)      | H/V     | Reading<br>(dBuV) | Factor (dB) | (dBuV/m) | Remark    | Peak        | Ave       | (dB)     |
| 2483.50    | Н       | 63.24             | -12.50      | 50.74    | Peak      | 74          | 54        | -23.26   |
|            | Н       |                   |             |          | Ave       | 74          | 54        |          |
| 2483.50    | V       | 62.25             | -12.50      | 49.75    | Peak      | 74          | 54        | -24.25   |
|            | V       |                   |             |          | Ave       | 74          | 54        |          |

Page No. : 53 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

| Power :     | AC 110V      | Pol/Phase :   | H/V   |
|-------------|--------------|---------------|-------|
| Test Mode : | 802.11n HT20 | Temperature : | 17 °C |
| Memo :      |              | Humidity :    | 72 %  |

| Channel 1 Fundamental Frequency: 2412 MHz |         |                   |             |          |        |             |           |          |
|-------------------------------------------|---------|-------------------|-------------|----------|--------|-------------|-----------|----------|
| Frequency                                 | Ant-Pol | Meter<br>Reading  | Corrected   | Result   | Remark | Limit (dE   | BuV/m)    | Margin   |
| (MHz)                                     | H/V     | (dBuV)            | Factor (dB) | (dBuV/m) | Remark | Peak        | Ave       | (dB)     |
| 2390.00                                   | Н       | 64.17             | -12.91      | 51.26    | Peak   | 74          | 54        | -22.74   |
|                                           | Н       |                   |             |          | Ave    | 74          | 54        |          |
| 2390.00                                   | V       | 63.40             | -12.91      | 50.49    | Peak   | 74          | 54        | -23.51   |
|                                           | V       |                   |             |          | Ave    | 74          | 54        |          |
| Channel 11                                |         |                   |             |          | Fundam | nental Fred | quency: 2 | 2462 MHz |
| Frequency                                 | Ant-Pol | Meter             | Corrected   | Result   | Domork | Limit (dE   | BuV/m)    | Margin   |
| (MHz)                                     | H/V     | Reading<br>(dBuV) | Factor (dB) | (dBuV/m) | Remark | Peak        | Ave       | (dB)     |
| 2483.50                                   | Н       | 64.71             | -12.50      | 52.21    | Peak   | 74          | 54        | -21.79   |
|                                           | Н       |                   |             |          | Ave    | 74          | 54        |          |
| 2483.50                                   | V       | 63.49             | -12.50      | 50.99    | Peak   | 74          | 54        | -23.01   |
|                                           | V       |                   |             |          | Ave    | 74          | 54        |          |

Page No. : 54 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### Note:

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. Measurements above 1000 MHz, Peak detector setting:
  - 1 MHz RBW with 1 MHz VBW.
- 4. Measurements above 1000 MHz, Average detector setting:
  - 1 MHz RBW with 10Hz VBW.
- 5. Peak detector measurement data will represent the worst case results.
- Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 7. The other emission levels were 20dB below the limit.

Page No. : 55 of 56



Date of Issue: Dec. 14, 2018 Report No.: WH-FCC-R18110203

#### 12. Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

| _                   |                       |                 | T               |
|---------------------|-----------------------|-----------------|-----------------|
| MHz                 | MHz                   | MHz             | GHz             |
| 0.09000 - 0.11000   | 16.42000 - 16.42300   | 399.9 – 410.0   | 4.500 - 5.150   |
| 0.49500 - 0.505**   | 16.69475 - 16.69525   | 608.0 - 614.0   | 5.350 - 5.460   |
| 2.17350 - 2.19050   | 16.80425 - 16.80475   | 960.0 – 1240.0  | 7.250 – 7.750   |
| 4.12500 - 4.12800   | 25.50000 - 25.67000   | 1300.0 – 1427.0 | 8.025 - 8.500   |
| 4.17725 – 4.17775   | 37.50000 - 38.25000   | 1435.0 – 1626.5 | 9.000 - 9.200   |
| 4.20725 - 4.20775   | 73.00000 - 74.60000   | 1645.5 – 1646.5 | 9.300 - 9.500   |
| 6.21500 - 6.21800   | 74.80000 - 75.20000   | 1660.0 – 1710.0 | 10.600 – 12.700 |
| 6.26775 - 6.26825   | 108.00000 - 121.94000 | 1718.8 – 1722.2 | 13.250 – 13.400 |
| 6.31175 – 6.31225   | 123.00000 - 138.00000 | 2200.0 - 2300.0 | 14.470 – 14.500 |
| 8.29100 - 8.29400   | 149.90000 - 150.05000 | 2310.0 - 2390.0 | 15.350 – 16.200 |
| 8.36200 - 8.36600   | 156.52475 - 156.52525 | 2483.5 – 2500.0 | 17.700 – 21.400 |
| 8.37625 - 8.38675   | 156.70000 - 156.90000 | 2655.0 - 2900.0 | 22.010 – 23.120 |
| 8.41425 - 8.41475   | 162.01250 - 167.17000 | 3260.0 - 3267.0 | 23.600 - 24.000 |
| 12.29000 - 12.29300 | 167.72000 - 173.20000 | 3332.0 - 3339.0 | 31.200 – 31.800 |
| 12.51975 – 12.52025 | 240.00000 - 285.00000 | 3345.8 - 3358.0 | 36.430 - 36.500 |
| 12.57675 – 12.57725 | 322.00000 - 335.40000 | 3600.0 - 4400.0 | Above 38.6      |
| 13.36000 - 13.41000 |                       |                 |                 |

<sup>\*\*:</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

#### 12.1 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Page No. : 56 of 56