

Project 2 – Cache CS6304 Computer Architecture

Chih-An Chang, William Chang, CXC210017, CXC200006
Department of Computer Science

Outline

- 1. Cache Introduction
- 2. Gem5 Setup
- 3. CPI Result
- 4. Optimize CPI Result
- 5. Define Cost Function

Cache Introduction

Overview

What is Cache?

Why it is important?

What is Cache?

- Cache is memory placed in between the processor and main memory.
- Cache is responsible for holding copies of main memory data for faster retrieval by the processor.

Why it so important?

- The processor-memory performance gap and results in a computer that can process data much faster than it can retrieve data from memory.
- Cache memory stores data for faster access times to help bridge the processor-memory performance gap.

Processor-Memory Performance Gap

Performance

Time

Gem5 Cache

Overview

Setup

Configuration

Gem5 Setup

```
{ce6304:~/temp/CS6304/m5out} ls
 {ce6304:~/temp/CS6304/m5out} cd benchmarks/
 {ce6304:~/temp/CS6304/m5out/benchmarks} ls
                                                     470 lbm runGem5 sh
 {ce6304:~/temp/CS6304/m5out/benchmarks} cd 429.mcf/
 {ce6304:~/temp/CS6304/m5out/benchmarks/429.mcf} ls
{ce6304:~/temp/CS6304/m5out/benchmarks/429.mcf} ./runGem5.sh
gem5 Simulator System. http://gem5.org
gem5 is copyrighted software; use the ---copyright option for details.
gem5 compiled Jan 22 2016 11:48:41
gem5 started Oct 30 2022 20:32:38
gem5 executing on ce6304.utdallas.edu, pid 87678
command line: /usr/local/gem5/build/X86/gem5.opt —d /home/013/c/cx/cxc200006/m5out /usr/local/gem5/build/X86/gem5.opt — d /home/013/c/cx/cxc200006/m5out /usr/local/gem5/configs/example/se.py —c ./src/benchmark —o ./data/inp.in —I 100000000 —cpu-ty pe=atomic —caches —12cache —lld_size=1288 —ll_size=1288 —ll_aissoc=
 2 --l1i_assoc=2 --l2_assoc=1 --cacheline_size=64
/usr/local/gem5/configs/common/CacheConfig.py:48: SyntaxWarning: import * only allowed at
  def config_cache(options, system):
Global frequency set at 1000000000000 ticks per second
 warn: DRAM device capacity (8192 Mbytes) does not match the address range assigned (512 M
0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000
 **** REAL SIMULATION ****
info: Entering event queue @ 0. Starting simulation...
 warn: readlink() called on '/proc/self/exe' may yield unexpected results in various setti
       Returning '/home/013/c/cx/cxc200006/temp/CS6304/m5out/benchmarks/429.mcf/src/benchm
info: Increasing stack size by one page.
warn: ignoring syscall access(4909665, ...)
Copyright (c) 1998-2000 Zuse Institut Berlin (ZIB)
Copyright (c) 2000-2002 Andreas Loebel & ZIB
Copyright (c) 2003-2005 Andreas Loebel
```

- Login to CE6304 linux server
- Copy gem5 folder to your local directory cp -rf /usr/local/gem5 /home/<netid>/<proj_folder>
- Downloads the Benchmarks

 git clone https://github.com/timberjack/Project1_SPEC
- Building Gem5 X86 with Scons scons build/X86/gem5.opt -j5
 - Give permission to run the scrip

 chmod +x ./runGem5.sh

Cache Configuration

TimingSimpleCPU Unified Separate L1 Data Cache Size L1 Instruction Cache Size Unified L2 Cache Size 128 KB 128 KB 1 MB Unified L2 cache L1 Data Cache Associativity L1 Instruction Cache Associativity 2-Way 2-Way Direct-mapped Block replacement policy Block size 64 bytes Least Recent Used (LRU)

Command Line Parameters

```
$GEM5_DIR/build/X86/gem5.opt -d ./m5out
$GEM5_DIR/configs/example/se.py -c $BENCHMARK -o $ARGUMENT -I 500000000
## CPU types
--cpu-type=timing
## Cache Level setting
--caches --l2cache
## Setting Cache size
--l1d_size=128kB
--l1i_size=128kB
--l2 size=1MB
## Setting Associativity
--l1d_assoc=2
--l1i_assoc=2
--l2_assoc=1
## Setting cache block size
--cacheline_size=64
```

CPI Result

Overview

429.mcf

401.bzip2

CPI Calculation

- Using "system.cpu.icache.overall_miss_rate::total" × total number of instruction (500,000,000) to get the total miss count is incorrect. We realized that the total number of instructions for D-Cache and L2 Cache can not be 500,000,000.
- Find "system.cpu.icache.overall_misses::total" in "stats.txt"
- Substitute the parameters into the formula below

$$CPI = 1 + \frac{\left(IL1_{num_{miss}} + DL1_{num_{miss}}\right) \times 6 + L2num_{miss} \times 50}{Total\ num\ instruction}$$

CPI for 429.mcf

CPI for 401.bzip2

Optimize CPI Result

Overview

How Do We Get Lowest Configuration? Lowest CPI Configuration

How Do We Get Lowest CPI Configuration?

- We changed each parameter one at a time, and select the lowest CPI setting
- Except for Cacheline size and associativity, the rest of the parameters match the trend that the bigger the size the lower the CPI.

How Do We Get Lowest CPI Configuration? – cont.

Lowest CPI Configuration

	L1 I-Cache Size	L1 D-Cache Size	L2 Cache	Cacheline Size	L1 I-Cache Associativity	L1 D-Cache Associativity	L2 Cache Associativity	СРІ	Cost
401.bzip 2	128 KB	128 KB	4 MB	512 KB	16	8	4096	1.07636	260.8
429.mcf	128 KB	128 KB	4 MB	256 KB	16	8	4096	1.25182	260.8

Define Cost Function

Overview

Cost Function
Smallest Cost Configuration

Cost Function

Smallest Cost Configuration

	L1 I-Cache Size	L1 D-Cache Size	L2 Cache	Cacheline Size	L1 I-Cache Associativity	L1 D-Cache Associativity	L2 Cache Associativity	СРІ	Cost
401.bzip 2	2 KB	2 KB	1 MB	512 KB	1	1	1	1.61455	0.58
429.mcf	2 KB	2 KB	1 MB	512 KB	1	1	1	2.34459	0.58

Best Cost-Performance Ratio Configuration

Overview

Cost vs. CPI

Analysis and Conclusion

Best Cost-Performance Ratio Configuration

CPI vs. Price

• Based on the plotted chart, we can choose the best cost performance ratio configuration

Bad cacheline size config Bad associativity size config Best config

Analysis and Conclusion

- Associativity does not affect much for both benchmarks. In 429.mcf, an extremely high L2 associativity might even increase overall miss count.
- Choosing an appropriate Cacheline Size is important. It can reduce the compulsory misses, but if Cacheline Size is set too big, it starts increasing the overall miss count.
- For both L1 and L2 cache size, the rule is the bigger the better. However, increasing the size of L1 I-Cache is not wise because instruction misses in both benchmarks are low even when the L1 I-Cache size is small, and the cost of L1 cache is high.
- Besides anomalies like extremely high associativity and inappropriate cache line size, investing more cost will give better performance.

Best Cost-Performance Ratio Configuration

	L1 I-Cache Size	L1 D-Cache Size	L2 Cache	Cacheline Size	L1 I-Cache Associativity	L1 D-Cache Associativity	L2 Cache Associativity	СРІ	Cost
401.bzip 2	32 KB	32 KB	1 MB	512 KB	2	2	1	1.12874	3.7
429.mcf	32 KB	32 KB	4 MB	256 KB	2	2	1	1.26722	4.3

Thank you

THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science