

## Al 230 / Al 302 Dr. Ahmed Zakaria



# Introduction to Embedded System



## **Classification of Embedded System**





## **Embedded System (Evolving Time)**

#### 1- First generation:

- Embedded systems comprising of 8-bit microprocessors or 4-bit microcontrollers belong to the first generation.
- They have hardware circuits and software that includes 8085 microprocessor and programming in machine language.

#### 2- Second generation:

Embedded systems comprising of 16-bit microprocessors or 8- to 16-bit microcontrollers like SCADA systems



## **Embedded System (Evolving Time)**

#### **3- Third generation:**

- Embedded systems comprising of 32-bit processors or 16-bit microcontrollers
- Digital Signal Processors, ASICs, Intel, Pentium, etc.

#### 4- Fourth:

- Embedded systems comprising of 64-bit processors or 32-bit microcontrollers.
- These are powerful in terms of faster computation and higher memory.
- they are built on the concept of System on Chips and multi-core processors.
- Smartphone devices and mobile internet devices.



#### **Embedded System (Performance and Functional Requirements)**

#### 1- Stand-alone:

- This category of embedded systems works alone and does not need a host system
- e.g., digital cameras, microwave ovens, and video game consoles.
- Systems like automobile engine control units are non-stand-alone embedded systems.
- they also communicate with other systems such as transmission control units (TCU) and anti-lock braking systems (ABS)



#### **Embedded System (Performance and Functional Requirements)**

#### 2- Real-time embedded systems:

- This category of embedded systems completes a task in a particular time as instructed by the system.
- e.g., flight control systems, set-top boxes, and missile guidance systems.
- The systems in MP3 players, digital cameras, microwave ovens, washing machines, and refrigerators are not real-time embedded system.



#### **Embedded System (Performance and Functional Requirements)**

#### 3- Networked embedded systems:

- This category of embedded systems is connected to a network to avail the resources.
- Local area network (LAN), wide area network (WAN), and internet are the connected networks.
- e.g., home security system in LAN embedded system.

#### 4- Mobile embedded systems

- This category of embedded systems is used in mobile embedded devices, and sometimes merges with stand-alone embedded systems,
- e.g., smartphone devices, digital cameras, and MP3 players.



#### **Characteristics of Embedded Systems**

- Dedicated Functionality: Designed for a specific task (e.g., washing machines, medical devices, automotive control).
- Real-time Operation: Many embedded systems have real-time constraints, meaning they must respond within strict time limits.
- Low Power Consumption: Often optimized for efficiency since they may run on batteries or limited power.





#### **Characteristics of Embedded Systems**

- Compact and Lightweight: Designed to fit within the physical constraints of the device.
- Firmware-Based: Runs a fixed software program (firmware) stored in non-volatile memory (e.g., ROM, Flash).
- High Reliability: Must operate consistently under varying environmental conditions.





#### **Application of embedded system**

#### **Aerospace Spacecrafts**

Navigation systems, automatic landing systems, flight attitude controls, engine controls, space exploration (e.g., the Mars Pathfinder).

#### **Automotive**

 Fuel injection control, passenger environmental controls, anti-lock braking, air bag controls, GPS mapping.

#### **Communications**

Satellites; network routers, switches, hubs.



#### **Application of embedded system**

## **Anti-lock Brake System (ABS)**





#### **Application of embedded system**

#### **Computer Peripherals**

Printers, scanners, keyboards, displays, modems, hard disk drives, CD-ROM drives.

#### **Home**

 Dishwashers, microwave ovens, HDTV, sound systems, fire/security alarm systems, lawn sprinkler controls, thermostats, cameras, clock digital radios.

#### **Industrial**

Elevator controls, surveillance systems, robots.



#### **Application of embedded system**

#### **Instrumentation**

Data collection, oscilloscopes, signal generators, signal analyzers, power supplies.

#### **Medical**

 Imaging systems (e.g., XRAY, MRI, and ultrasound), patient monitors, and heart pacers.

#### Personal

Tablets, ipads, cell phones, smart-watches



#### **Basic Components of an Embedded System**

 The main components of an embedded system: hardware, software, and real-time operating system (RTOS).





#### **Basic Components of an Embedded System**

#### Three specific categories of functions of these components are

- Reading the input or command from the outside world.
- Processing the information
- Generating necessary signal as output for bringing changes in the environment.

## The hardware of an embedded system consists of

- System a central processing unit (CPU).
- Memory.
- a set of input/output ports.





#### **Basic Components of an Embedded System**

#### **Central Processing Unit (CPU):**

- The CPU is responsible for processing the system inputs and taking decisions which guide the system operation by executing the software instructions.
- It is the main control unit of the system.
- The CPU in most embedded systems is either a microprocessor or a microcontroller.
- It can also be a digital signal processor (DSP), complex instruction set computer (CISC) processor, reduced instruction set computer (RISC) processor, or an advanced RISC machine (ARM) processor depending on the application of the system.



### **Basic Components of an Embedded Sy**

#### **Central Processing Unit (CPU):**





#### **Central Processing Unit (CPU)**

- Now, we focus our attention on the main component of any computer system, the central processing unit (CPU).
- A typical CPU has three major components:
  - Register set.
  - Arithmetic logic unit (ALU).
  - Control unit (CU).
- The register set differs from one computer architecture to another.
- It is usually a combination of general-purpose and special purpose registers.

#### **CPU Register Set**

 A register is a small amount of fast storage memory within the Central Processing Unit (CPU) of a computer.

Registers are used to store data temporarily during the execution of instructions.

Registers are crucial for improving the efficiency and speed of the CPU.

• 8-bit register R7 R6 R5 R4 R3 R2 R1 R0



#### **CPU Register Set**

- Registers can be categorized based on their specific functions. Some common types of registers include:
  - General-purpose registers are used for any purpose, hence the name general purpose.
  - Used for various purposes, such as storing operands or results.
  - Special-purpose registers have specific functions within the CPU.
    - Program Counter (PC): Holds the address of the next instruction to be executed.
    - Instruction Register (IR): Stores the current instruction being executed.
    - Memory Address Register (MAR): Holds the address of a memory location to be read from or written to.
    - **Memory Data Register (MDR):** Temporarily stores data being transferred to or from memory.
    - Accumulator (ACC): Stores intermediate results of arithmetic and logic operations.



### **CPU Register Set**





#### **CPU Register Set (Special-purpose)**

- How Registers Work:
  - When the CPU executes an instruction, it fetches the instruction from memory and stores it in the Instruction Register (IR).
  - The Program Counter (PC) keeps track of the next instruction to be executed.
  - Data required for the operation is loaded into registers like the Accumulator (ACC) or General-Purpose Registers.
  - After processing, the result is stored back in a register or memory.



Basic Instruction Cycle



## Thank You