浙江水学

题	<u> </u>	RTD 热电阻传感器实验
姓名等	学号	冯 焯 3120100170
学	院	生工食品学院
专业场	妊级	生物系统工程 1202 班
指导為		王剑平、叶尊忠

RTD 热电阻传感器实验

一、 实验目的:

了解热电阻测量温度的原理,熟悉调理电路工作方式。

二、 实验内容:

本实验主要学习以下几方面的内容

- 1. 了解 RTD 热电阻特性曲线;
- 2. 观察采集到的热信号的实时变化情况。
- 3. 熟悉电阻类传感器调理电路。

三、 实验仪器、设备和材料:

所需仪器

● myDAQ、myboard、nextsenseO3RTD 热电阻实验模块、万用表

注意事项

- 1. 在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯曲,影响模块使用。
- 2. 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。
- 3. 更换模块或插槽前应关闭平台电源。
- 4. 开始实验前,认真检查电阻连接,避免连接错误而导致的输出电压超量程,否则会 损坏数据采集卡。

四、 实验原理:

利用感温材料,将测量温度转化为测量电阻的测温系统,主要有半导体热电阻式和金属热电阻式两大类。前者简称热电阻,后者简称热电阻,简称RTD(Resistance Temperature Detector)。金属铂的物理、化学性能稳定,是目前制造热电阻的最佳材料。

铂丝的电阻值与温度间的关系可以近似表示如下:

在-190~0℃范围内为

 $Rt = R_0 [1 + At + Bt^2 + C(t - 100)t^3]$

在 0~630.755℃范围内为

 $Rt=R_0(1+At+Bt^2)$

式中 Rt,R₀分别是温度为 t \mathbb{C} 和 t₀ \mathbb{C} 时的电阻式; A,B,C 是常数。 本实验采用 PT100 以及 PT1000 作为测试对象。它们的阻值跟温度的变化成正比,当外界温度为 0 \mathbb{C} 时,它的

阻值分别为 $100\,\Omega$ 、 $1000\,\Omega$ 。对于本实验中的热电阻,A,B,C 分别为 $3.92847\times 10^{-3}/$ \mathbb{C} , $-6\times 10^{-7}/$ \mathbb{C} , $-4.22\times 10^{-12}/$ \mathbb{C} 。

铂电阻主要作为标准电阻温度计,广泛用于温度基准。长时间稳定的重现性使它成为目前测温重现性最好的温度计。

五、 实验步骤:

注意: 带*号的步骤为选做部分。

- 1. 关闭平台电源 (nextboard 或者 myboard 或者 ELVISboard), 插上 RTD 热电阻实验模块。 开启平台电源,此时可以看到模块左上角电源指示灯亮。
- 2. 打开 nextpad, 运行 RTD 热电阻实验应用程序
- 3. 查看传感器介绍,了解热电阻的原理以及温度计算公式。
- 4. 在特性曲线页面。移动 A、B 值的滑块,观察系数对特性曲线的影响。移动 R-T 曲线中的任意一个游标,总结波形图中 R、T 的变化趋势。
- 5. 在仿真与测量页面
 - 1) 任意修改恒流源法和分压法仿真电路中的 Vcc 和 Vt,查看温度曲线,熟悉恒流源 法以及分压法的测试方法。
 - 2) 用万用表测量测量备选电阻值,将实际阻值填入图位置。本实验中对备选电阻的精度要求较高,因此推荐填入实际测量的电阻值。

3) 连接备选电阻和热电阻,完成恒流源法或分压法电路,连接提示图如下。**在使用** PT100 测试时,请选用 200 Ω 、300 Ω 或者 500 Ω 的备选电阻,使用 PT1000 时,请 选用 1 K Ω 或 2 K Ω 的备选电阻。

4) 用万用表分别测量恒流源和分压电路的 Vcc 的精确值,填入软件中相应位置。

5) *用万用表测量电路中各参数值,完成测量页面的表格。R-T 特性测量表格中,计

算出 Rt 后,对应的 $T(\mathbb{C})$ 可以通过特性曲线页面获取:将特性曲线上的右上角的 R 修改为 Rt 值后,即可获得对应的 T 值。

—————————————————————————————————————								
T= ℃ 时,更换电阻,并填写下表								
	Vt (V)	i (mA)	Rt(KΩ)	۸				
Ri=200								
Ri=300								
Ri=500				~				
R-T特性手动测量 —								
Ri= KΩ 时,改变温度,并填写下表								
Vt (V)	i (mA)	Rt(KΩ)	T(°C)	^				
				~				

- 6. 在自动测量页面,测量恒流源电路的实际值。
- 7. 在自动测量页面,测量分压电路的实际值。

六、 数据及结论(绘制数据点散图,建立回归方程,分析灵敏度和 线性误差)

1、* 室温下,更换 Ri 阻值,查看测量到的 Rt 值。注意测量过程中不要触碰热电阻或者将 热电阻放置在任何可能使其温度变化的位置。

		11人八皿/人人	,			
		200	300	500	1000	2000
	Vt(V)					
恒流源	Rt(\O)					
PT100	i (A)					
	T (°C)					
	Vt(V)					
分压法	$Rt(\Omega)$					
PT1000	i (A)					
	T (°C)					

绘制热电阻的伏安特性曲线 恒流源电路:

分压电路:

结论:

2、选择恒流源和分压法电路,使用 PT100,固定 Ri=300 Ω,手握住传感器,测量温度及电

压变化,填写下表。时间1分钟,大约间隔6秒钟记录一次数据

		1	2	3	4	5	6	7	8	9	10
恒	T(°C)	26.27	26.45	26.70	26.95	27.03	27.21	27.35	27.44	27.64	27.80
流	$Rt(\Omega)$	110.28	110.35	110.44	110.54	110.57	110.64	110.70	110.73	110.81	110.87
源	i (A)	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066
分	T(°C)	28.48	29.18	29.65	30.07	30.34	30.52	30.70	30.94	31.13	31.16
压	$Rt(\Omega)$	111.14	111.41	111.59	111.76	111.86	111.93	112.00	112.10	112.17	112.18
法	i (A)	0.0122	0.0122	0.0121	0.0121	0.0121	0.0121	0.0121	0.0121	0.0121	0.0121

用恒流源法数据绘制 R-T 曲线

结论: 用SPSS进行相关分析可得上述两个曲线,观察曲线可得:

1、恒流源法所得的曲线,Rt和T呈现线性相关性,所得的回归方程分别为

Rt=0.37T+101, $\pm R^2=0.994$.

2、分压法所得的曲线和恒流源法相似,所得的回归方程为Rt=0.39T+100,且 R2=1.000。

讨论与心得:

- 1、在恒流源法中,曲线末尾有一个明显在曲线外的点,可能是由于操作失误或 外界干扰造成。但在总体上不影响实验结果。
- 2、随着温度的升高,电阻Rt也随之变大,表明了RTD热敏电阻稳定的温度特性。
- 3、在一定的精度和范围要求下,RTD热敏电阻能够较好的反应温度的变化,并进行准确的测量。