

One Vision-Language-Action Model for GUI Visual Agent

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan Wang, Mike Zheng Shou, Show Lab, National University of Singapore, Microsoft

Multimodal Assistants: from Chatbots to Agents

What is unusual about this image?

The image shows a man ironing clothes on an ironing board placed atop a taxi, ...

Chatbot – Perception

Please help me send a message to Kevin?

Agent – Action

Project Overview

Language Agent v.s. Visual Agent

Language Agent: API + Tools

- Rely on API + Tools, expensive
- AssistGUI (CVPR'24), MindAct (ICML'24)

Language Agent v.s. Visual Agent

See and Act Like Humans?

Building **One End2end Vision-Language-Action Model** in Digital World.

Visual Agent

- Training one purely vision input model
- CogAgent (CVPR'24), SeeClick (ACL'24)

Challenges by Developing GUI Visual-centric Agent

Q1: What differentiates UI from natural vision?

V.S.

- Unpredictable patterns
- Rich in *Semantic*

- Structured layout
- Key Elements with Redundancy

Q1: What differentiates UI from natural vision?

Building Patch-wise UI Graph on RGB space

Screenshot 1344 x 756

Screenshot 1344 x 756

Patchified (28 x 28) #1296 Tokens

Example1: Google Search

Patchified (28 x 28) #1296 Tokens

Example2: Overleaf Template

UI Connected Graph #291 Components

UI Connected Graph #986 Components

Q1: How to model visual redundancy?

- Computation bottleneck
 - self-attention block O(L^2)
- Token Merging by UI-Graph?
 - Lose position relationship!
 - Harm UI Grounding

Method	Strategy	#Vis.Ctx.	Train.Speedup	Test-time?	Screenspot
Baseline	N/A	1344.0	1×	N/A	70.8
Token Merge	UI-Graph	852.8	1.6×	/	42.3 34.7
Token Selection	Random	941.5	1.5×	/	65.3 56.2
	UI-Graph	947.4	1.5×	/	70.4 64.9

(a) Comparison between different visual tokens compression methods. '#Vis.ctx' represents the avg. length of visual tokens across all layers. 'Train.Speedup' denotes the training efficiency improvement over the baseline. 'Inference' denotes whether this method is applicable at test time.

Q1: How to model visual redundancy?

- Computation bottleneck
 - Self-attention block O(L^2)
- Token Merging by UI-Graph
- Token Selection by UI-Graph
 - Maintain original position relationship

Method	Strategy	#Vis.Ctx.	Train.Speedup	Test-time?	Screenspot
Baseline	N/A	1344.0	1×	N/A	70.8
Token Merge	UI-Graph	852.8	1.6×	1	42.3 34.7
Token Selection	Random	941.5	1.5×	/	65.3 56.2
	UI-Graph	947.4	1.5×	/	70.4 64.9

(a) Comparison between different visual tokens compression methods. '#Vis.ctx' represents the avg. length of visual tokens across all layers. 'Train.Speedup' denotes the training efficiency improvement over the baseline. 'Inference' denotes whether this method is applicable at test time.

Q2: What differentiates Action from natural text?

- Action is a tuple
 - TYPE: CLICK / TYPE
 - Position: [x,y] for CLICK
 - Value: string for TYPE, direction for SCROLL
- Actions are diverse across
 - 1. Device: CLICK on PC, PRESS_HOME on Mobile.
 - 2. Parameter: SCROLL {up/down} on PC, {up/down/left/right} on Mobile
 - 3. Novel Unseen: PASTE

Q2: What differentiates Action from natural text?

- Action is a tuple
 - TYPE: CLICK / TYPE
 - Position: [x,y] for CLICK
 - Value: string for TYPE, direction for SCROL

Structure Action as JSON

{'action': 'action type', 'value': 'element', 'position': [x,y]}

- Actions are diverse across
 - 1. Device: CLICK on PC, PRESS_H(
 - 2. Parameter: SCROLL {up/down}
 - 3. Novel Unseen: PASTE

You are an assistant trained to navigate the {device}. Given a task instruction, a screen observation, and an action history sequence, output the next action and wait for the next observation.

Here is the action space:

- # templated by action_type with action description.
- 1. 'CLICK': Click on an element, value is the element to click and the position [x,y] is required.
- 2. 'TYPE': Type a string into an element, value is the string to type and the position [x,y] is not applicable.

. . .

Format the action as a dictionary with the following keys: {'action':'action_type', 'value':'element', 'position':[x,y]}
Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1.

Document Action space by README

Q2: How to model Action with visual?

- UI navigation conditioned on HISTORY
 - Past Action Sequence
 - Past Observation

(i) About Lis 🚦 Find Hy Trip Popular Destinations 🗸 🚨 Sign in

13

Q2: How to manage Action with other modalities?

Interleaved Vision-Language-Action Streaming

Q2: Gains by Interleaved VLA Streaming

Improve Training data utilization

Figure 10. Impact by Interleaved action-query streaming on Grounding task: trained with 119K grounding data, Eval with Screenspot.

Figure 11. Impact by Interleaved action-visual streaming on Navigation task: trained with GUIAct, Eval with AITW.

History by	History Len.	AITW Avg.		
N/A	0	66.8		
[Action]	1	67.9		
[Action]	2	68.5		
[Action]	4	68.6		
[Visual][Action]	1	69.4		
[Visual][Action]	2	70.0		

Table 2. Ablation studies on GUI navigation history modeling, including history composition and history length.

Q3: How to Prepare the Training data?

- Massive Data v.s. A well-selected small training set
- Augment original UI Annotations by GPT-4o
- Data rebalancing is important

Usage	Device	Source	#Sample	#Ele.	#Cls. (len.)	Highlights
Grounding		Self-collected AMEX [8] OmniAct [22]	97K	576K 926K 8K		Visual-based Functionality Diverse query
Navigation	Web Mobile	GUIAct [10] GUIAct [10]	72K 65K	569K 585K	9 (7.9) 5 (9.0)	One / Multi-step Multi-step
Total	Diverse		256K	2.7M		B

Table 1. Overview of our instruction-tuning data. **#Sample** indicates the number of the task instance (screenshot in grounding, task in navigation); **#Ele.** indicates the number of the element (*i.e.*, bbox in grounding); **#Cls.** represents the number of action classes, and **len.** indicates the average trajectory length per task.

Query by GPT-4o:

Appearance: A blue chat card contains a capital letter A.

Spatial-relationship: Located

above Clara's chat box.

Intention: Send a picture to Ash.

ShowUI – a Lightweight (2B) Vision-Language-Action Model

Method	Cina	#Train	Mobile		Desktop		Web		A
Method	Size		Text	Icon	Text	Icon	Text	Icon	Avg.
Qwen2-VL-2B [41]	2B	-	24.2	10.0	1.4	9.3	8.7	2.4	9.3
Fuyu [5]	8B	-	41.0	1.3	33.0	3.6	33.9	4.4	19.5
CogAgent [17]	18B	400K	67.0	24.0	74.2	20.0	70.4	28.6	47.4
SeeClick [11]	9.6B	364K	78.0	52.0	72.2	30.0	55.7	32.5	53.4
OmniParser [31]	*	_	93.9	57.0	91.3	63.6	81.3	51.0	73.0
UGround [15]	7B	1.3M	82.8	60.3	82.5	63.6	80.4	70.4	73.3
ShowUI-G	2B	119K	91.6	69.0	81.8	59.0	83.0	65.5	74.9
ShowUI	2B	256K	92.3	75.5	76.3	61.1	81.7	63.6	75.1

Table 2. Zero-shot grounding on Screenspot. * means Omniparser use

FT?	General	Install	G.Apps	Single	WebShop.	Overall
-	5.9	4.4	10.5	9.4	8.4	7.7
_	_	_		_	_	39.6
*	48.3	57.8	51.6	77.4	52.9	57.7
/	54.0	66.4	54.9	63.5	57.6	59.3
1	61.4	71.8	62.6	73.7	66.7	67.2
/	63.5	72.3	66.0	72.3	65.8	68.3
1	63.9	72.5	69.7	77.5	66.6	70.0
X	32.1	47.7	42.0	20.1	37.4	35.9
	- * / /	- 5.9 - 48.3 ✓ 54.0 ✓ 61.4 ✓ 63.5 ✓ 63.9	- 5.9 4.4 * 48.3 57.8 ✓ 54.0 66.4 ✓ 61.4 71.8 ✓ 63.5 72.3 ✓ 63.9 72.5	- 5.9 4.4 10.5 * 48.3 57.8 51.6 ✓ 54.0 66.4 54.9 ✓ 61.4 71.8 62.6 ✓ 63.5 72.3 66.0 ✓ 63.9 72.5 69.7	- 5.9 4.4 10.5 9.4 * 48.3 57.8 51.6 77.4 ✓ 54.0 66.4 54.9 63.5 ✓ 61.4 71.8 62.6 73.7 ✓ 63.5 72.3 66.0 72.3 ✓ 63.9 72.5 69.7 77.5	* 48.3 57.8 51.6 77.4 52.9 \$\sqrt{48.3} 57.8 51.6 77.4 52.9 \$\sqrt{54.0} 66.4 54.9 63.5 57.6 \$\sqrt{61.4} 71.8 62.6 73.7 66.7 \$\sqrt{63.5} 72.3 66.0 72.3 65.8 \$\sqrt{63.9} 72.5 69.7 77.5 66.6

Table 3. Performance of Mobile Navigation [36], where gray color in-

Open-source ShowUI for Local Computer Use

- Model&Demo are live: https://github.com/showlab/ShowUI (10K+ download)
- Easy Computer Use Solution: https://github.com/showlab/computer_use_ootb

Thanks for Listening!

https://github.com/showlab/ShowUI