Элементы криптографического анализа

Автор курса: Тимонина Елена Евгеньевна Составитель: Смирнов Дмитрий Константинович

Версия от 14:09, 10 апреля 2022 г.

Оглавление

1	Дог	машние задания	1
	1.1	Введение	1
	1.2	Определение шифра. Простейшие примеры	1
	1.3	Стойкость шифров. Метод полного перебора	3
	1.4	Аналитический метод криптоанализа	6
	1.5	Перекрытия гаммы. Криптоанализ при неравновероятной	
		гамме	10
	1.6	Методы "встреча посередине" и "разделяй и властвуй"	11
2	Ког	нтрольные работы	13
	2.1	Шифры перестановки.	13
	2.2	Корреляционный анализ	20

Часть 1

Домашние задания

1.1 Введение

1.2 Определение шифра. Простейшие примеры.

Задача 2.1 Что такое подстановка?

Решение. Подстановка — это взаимно однозначная функция, которая переводит буквы алфавита в буквы того же самого алфавита.

Задача 2.2 Что такое группа, и почему множество S_m из примера 2.1 образует группу?

Решение. Множество $G \neq \emptyset$ с бинарной операцией " \circ ", называется группой, если выполнены условия:

- 1. $\forall a, b \in G \ a \circ b \in G$;
- 2. $\forall a, b, c \in G \ a \circ (b \circ c) = (a \circ b) \circ c;$
- 3. $\exists e \in G : \forall a \in G \ e \circ a = a \circ e = a;$
- 4. $\forall a \in G \ \exists b \in G : a \circ b = b \circ a = e$

Множество S_m вводится как множество всех подстановок на конечном алфавите $A = \{a_1, ..., a_m\}$. Проверим выполнение аксиом группы:

- 1. Подстановка $k \in S_m$ отображение $k \colon A \to A$. $\forall k_1, k_2 \in S_m$ рассмотрим суперпозицию $k_1 \circ k_2$. Так как $k_1 \circ k_2 \colon A \to A \to A$, то $k_1 \circ k_2 \in S_m$ и первая аксиома верна.
- 2. $\forall k_1, k_2, k_3 \in S_m$ $k_1 \circ (k_2 \circ k_3) = k_1 \circ k_2(k_3(a)) = k_1(k_2(k_3(a))) = k_1(k_2(a)) \circ k_3(a) = (k_1 \circ k_2) \circ k_3.$
- 3. Поскольку S_m множество всех подстановок, то найдётся тождественная подстановка: $\exists e \in S_m \colon \forall a \in A \ e(a) = a$. Тогда $\forall k \in S_m$ верно

```
e \circ k = e(k(a)) = k(a) = k(e(a)) = k \circ e.
```

4. Так как подстановка – взаимно однозначная функция, то $\forall k \in S_m$ существует обратная функция: $\exists k^{-1} \colon A \to A \Rightarrow k^{-1} \in S_m$, для которой будет выполнено равенство $k \circ k^{-1} = k(k^{-1}(a)) = k^{-1}(k(a)) = k^{-1} \circ k$. При этом, $\forall a \in A \ k^{-1}(k(a)) = a = e(a)$.

Выполнены все аксиомы группы, следовательно S_m – группа.

Задача 2.3 Почему группа S_n из примера 2.2 является симметрической?

Решение. Симметрической группой n-го порядка называется множество S(X) всех биективных отображений $f\colon X\to X$, где X – конечное множество из n элементов. Группа S_n в примере 2.2 определяется как группа подстановок на множестве $X=\{1,...,n\}$. Подстановка – это биективное отображение, X – конечное множество из n элементов. Следовательно, по определению, группа S_n является симметрической.

Задача 2.4 Что такое кольцо? Что такое кольцо вычетов по модулю m?

Решение. Множество K называется *кольцом*, если в K определены две операции "+" (сложение) и "·" (умножение) и выполняются следующие условия $\forall a,b,c\in K$:

- 1. $a + b \in K, a \cdot b \in K$;
- 2. a + (b + c) = (a + b) + c, a(bc) = (ab)c;
- 3. a + b = b + a;
- 4. (a + b)c = ac + bc;
- 5. $\exists 0 \in K : a + 0 = a$.

Кольцом вычетов по модулю m называется такое кольцо

 $\mathbb{Z}_{/m} = \{C_0, C_1, ..., C_{m-1}\}$ $(C_r$ – смежный класс вычетов по модулю m), в котором операции сложения и умножения определяются следующими правилами:

- 1. $C_a + C_b = C_r$, где $r \equiv (a+b) \pmod{m}$;
- 2. $C_a C_b = C_r$, где $r \equiv ab \pmod{m}$

То есть, $C_a + C_b$ – это класс, в который входит число a+b, а C_aC_b – класс, в который входит число ab.

Задача 2.5 Какую алгебраическую структуру представляет собой кольцо $\mathbb{Z}_{/m}$ при m=2?

Решение.

Теорема 2.1 Если p – простое число и $p \ge 2$, то $\mathbb{Z}_{/m}$ – поле характеристики p.

По приведённой выше теореме кольцо $\mathbb{Z}_{/2}$ является полем характеристики 2.

1.3 Стойкость шифров. Метод полного перебора.

Задача 3.1 Дан алфавит $A = \{1, 2, ..., n\}$, x – открытый текст в алфавите A. Ключ шифрования (T_1, T_2, T_3) , где T_i – случайные подстановки. Алгоритм шифрования: $T_3(T_2(T_1(x))) = y$. Какова формула для расшифрования? Мощность пространства различных ключей? Сложность МПП?

Решение.

- 1. Формула для расшифрования $x = T_1^{-1}(T_2^{-1}(T_3^{-1}(y)))$.
- 2. В каждой подстановке на первое место можно поставить n различных букв, на второе -n-1, и т.д. В итоге получаем n! вариантов на каждую подстановку, следовательно, $|K| = (n!)^3$ для трёх подстановок.
- 3. Пусть в тексте a букв. Тогда необходимо провести 3a операций подстановки, чтобы проверить один ключ. В среднем нужно проверить количество ключей, равное средней трудоёмкости МПП: $E\tau = \frac{|K|+1}{2} = \frac{(n!)^3+1}{2}$. Следовательно, сложность МПП равна $\frac{3}{2}a[(n!)^3+1]$.

Задача 3.2 Найти минимальную среднюю трудоёмкость в следующей схеме шифрования:

Решение.

В предложенной схеме используется три блока DES с разными ключами. Для одного блока DES $|K|=2^{56}$, тогда для всей схемы: $|K|=(2^{56})^3=2^{168}$. Окончательно, $E\tau=\frac{|K|+1}{2}=\frac{2^{168}+1}{2}\approx 2^{167}$.

Задача 3.3 В сообщении каждая буква записывается два раза. Для шифрования используется шифр перестановки длины 2n. Сложность МПП?

Решение.

В данной схеме используется две подстановки, причём для каждой нечётной буквы применяется первая подстановка, а для каждой чётной – вторая: $T(x) = T(x_1, x_2, ..., x_{2l-1}, x_{2l}) = (T_1(x_1), T_2(x_2), ..., T_1(x_{2l-1}), T_2(x_{2l}))$, где l – половина длины сообщения. Тогда длина ключа для каждой из

подстановок будет равна n, а мощность пространства различных ключей для всей системы будет равна $|K| = (n!)^2$.

Для проверки одного ключа (T_1,T_2) требуется 2l операций подстановки. Тогда сложность МПП равна $2lE\tau=2l\frac{|K|+1}{2}=l[(2n)!+1].$

В данной схеме байт ОТ $x=x_1x_2...x_8$ шифруется с помощью функции F следующим образом:

$$x'_1 = x_1;$$

 $x'_2 = x_2 + f_1(x_1);$
...
 $x'_8 = x_8 + f_8(x_1, x_2, ..., x_7),$

где $f_1, ..., f_7$ – случайные булевы функции, A – невырожденная матрица. Ключом являются F и A. Оценить сложность нахождения ключа с помощью МПП.

Решение.

Определим мощность пространства ключей для F. Так как количество функций, зависящих от n переменных, равно 2^{2^n} , то

$$|K_F| = \prod_{i=1}^{7} 2^{2^i} = 2^{\sum_{i=1}^{7} 2^i} = 2^{\frac{2(2^7 - 1)}{2 - 1}} = 2^{2^8 - 2} = 2^{254}.$$

Теперь рассмотрим матрицу A. Оценим мощность пространства ключей индуктивно по строкам. Для первой строки подходит 2^n-1 вариантов (все, кроме нулевой строки). Для следующей строки не подойдёт предыдущий вариант заполнения (иначе будет линейная зависимость, следовательно, вырожденность матрицы) и нулевое заполнение, то есть, 2^n-2 вариантов. Теперь, для третьей строки нужно не допустить линейной комбинации первых двух: $\alpha a_1 + \beta a_2 \neq a_3$. Вариантов выбрать коэффициенты α и $\beta-2^2$ (при этом, тут уже считается и нулевой случай). Далее, для четвёртой строки, аналогично, 2^3 . Таким образом, получаем формулу:

$$|K| = \prod_{i=0}^{n-1} 2^n - 2^i$$

На матрицу A мы умножаем вектор длины 8 и на выходе тоже получаем вектор длины 8. Следовательно, $n=8, |K_A|\approx 2^{62.21}$

Таким образом,

$$|K| = |K_F| \cdot |K_A| \approx 2^{254} \cdot 2^{62.21} = 2^{316.21}$$

Если бы нам были известны функции $f_1,...,f_7$, то можно было бы рассчитать количество операций на каждый ключ точно. Но нам они неизвестны, поэтому примем за общее число операций для проверки одного ключа за p. Тогда сложность МПП равна $\frac{|K|+1}{2}p\approx 2^{315.21}p$.

Комментарий к задачам о многочлене Жегалкина.

В полином Жегалкина степени не выше m от функции n переменных входит C_n^k различных мономов степени k. При этом перед каждым из них стоит коэффициент, следовательно, $2^{C_n^k}$ – количество различных вариантов выбрать 0 или 1 перед мономами.

Если полином степени ровно m, то хотя бы при одном мономе этой степени стоит коэффициент 1. Это означает, что число различных вариантов выбрать 0 или 1 перед мономами степени m в таком полиноме равно $2^{C_n^m-1}$.

Используя полином Жегалкина степени не выше m, будем считать, что n=m.

Задача 3.5 Ключ шифрования k – многочлен Жегалкина степени 2. Мощность пространства различных ключей? Сложность МПП?

Решение.
$$|K| = 2^{C_n^0 + C_n^1 + C_n^2 - 1} = 2^{n + \frac{(n-1)n}{2}} = 2^{\frac{n^2 + n}{2}}.$$

Количество операций $p=C_n^1(1+1)+C_n^2(1+2)=2n+3\frac{(n-1)n}{2}=\frac{3}{2}n^2+\frac{1}{2}n$

Сложность:
$$pE\tau = (\frac{3}{2}n^2 + \frac{1}{2}n)\frac{2^{\frac{n^2+n}{2}}+1}{2} \approx (3n^2+n)2^{\frac{n^2+n-4}{2}}$$

С учётом последнего комментария получим |K| = 8, $pE\tau = 31.5$.

Задача 3.6 Ключ шифрования k — многочлен Жегалкина степени не выше m. Мощность пространства различных ключей? Сложность МПП? Решение.

$$|K| = 2^{\sum_{i=0}^m C_n^i}.$$

Количество операций $p = \sum_{i=1}^m C_n^i (i+1)$

Сложность:
$$pE\tau = \left[\sum_{i=1}^m C_n^i(i+1)\right] \frac{2^{\sum_{i=0}^m C_n^i}}{2} \approx \left[\sum_{i=1}^m C_n^i(i+1)\right] 2^{\sum_{i=1}^m C_n^i}$$

Задача 3.7 Ключ шифрования k – многочлен вида:

$$\sum_{1 \le i < j \le n} a_{ij} x_i x_j, a_{ij} \in \{0, 1\}.$$

Мощность пространства различных ключей? Сложность МПП? **Решение.**

Множество a_{ij} образует верхнетреугольную матрицу без главной диагонали. Следовательно, $|K|=2^{(n-1)+(n-2)+\dots+1+0}=2^{\frac{(n-1)n}{2}}$. Количество операций $p=\frac{(n-1)n}{2}(1+2)-1=\frac{3}{2}n^2-\frac{3}{2}n-1$ Сложность: $pE\tau=(\frac{3}{2}n^2-\frac{3}{2}n-1)^{\frac{2^{\frac{(n-1)n}{2}}+1}{2}}\approx (3n^2-3n-2)2^{\frac{n^2-n-4}{2}}$

1.4 Аналитический метод криптоанализа.

Задача 4.1 Найти минимальную сложность нахождения ключа в схеме

$$OT \longrightarrow A \longrightarrow IIIT$$

Ключом является невырожденная двоичная матрица A размером $n\cdot n$. Сравнить со сложностью МПП.

Решение.

При решении СЛАУ методом Гаусса сложность оценивается в $\frac{n^3}{3}$ операций. Количество операций, необходимое для проверки одного ключа, равно $p = (n+(n-1)) \cdot n = 2n^2 - n$ – такое количество операций сложения и умножения нужно проделать для умножения вектора на квадратную матрицу. Было установлено, что:

$$|K| = \prod_{i=0}^{n-1} 2^n - 2^i = (2^n)^n + \dots = O(2^{n^2})$$

Следовательно, сложность МПП:

$$E\tau = p\frac{|K|+1}{2} = (2n^2 - n)\frac{2^{n^2} + \dots}{2} = O(n^2 \cdot 2^{n^2})$$

Пусть n=10, тогда для МПП потребуется порядка $10^2 \cdot 2^{10^2} \approx 10^{32.10}$ операций, тогда как для аналитического метода получится $\frac{10^3}{3} \approx 3 \cdot 10^2$ операций.

Задача 4.2 Для ЛРП, задаваемой с помощью характеристического многочлена

 $F(x) = x^4 \oplus x^2 \oplus x \oplus 1$, построить ЛРС, определить матрицу A, и для выходной (после 4-х тактов работы ЛРС) последовательности $\gamma = (1,0,1,0)$ найти начальное заполнение регистра.

Решение.

Из характеристической функции следует, что $\alpha_1=1,\alpha_2=1,\alpha_3=0,\alpha_4=1.$

Тогда
$$\gamma_4=1\cdot\gamma_0+0\cdot\gamma_1+1\cdot\gamma_2+1\cdot\gamma_3$$
. Значит, матрица $A=\begin{bmatrix}0&1&0&0\\0&0&1&0\\0&0&0&1\\1&0&1&1\end{bmatrix}$.

Решим следующее уравнение: $A^4 \gamma^T(0) = \gamma^T$.

$$A^4 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 2 & 1 & 3 & 3 \\ 3 & 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$Cледовательно, \gamma(0) = (0,0,0,1).$$

Задача 4.3 Объяснить равенства (4.11) и (4.12). **Решение.**

Пусть f имеет следующую структуру:

$$f(\gamma_n, \gamma_{n+1}, ..., \gamma_{n+r-1}) = \gamma_n \oplus g(\gamma_{n+1}, \gamma_{n+1}, ..., \gamma_{n+r-1}).$$

Тогда:

$$f(0, x_2, ..., x_r) \oplus f(1, x_2, ..., x_r) = 0 \oplus g(x_2, ..., x_r) \oplus 1 \oplus g(x_2, ..., x_r) = 1$$

Следовательно, $f(0, x_2, ..., x_r) = 1 \oplus f(1, x_2, ..., x_r)$.

Равенство $f(x_1,x_2,...,x_r)=x_1f(1,x_2,...,x_r)\oplus (1\oplus x_1)f(0,x_2,...,x_r)$ проверяется непосредственной подстановкой x_1 . В самом деле, при $x_1=0$ первое слагаемое обращается в ноль, и имеем $f(0,x_2,...,x_r)=f(0,x_2,...,x_r)$. А при $x_1=1$ – второе: $f(1,x_2,...,x_r)=f(1,x_2,...,x_r)$

Задача 4.4 Построить графы отображений для PC, обратные связи которых задаются функциями от 4 переменных:

$$f_1 = x_2 \oplus x_3, f_2 = x_1 \oplus x_2 \oplus x_3, f_3 = x_3 \oplus x_2 * x_4, f_4 = x_1 \oplus x_3 * x_4, f_5 = x_1 * x_3 \oplus x_2 * x_4.$$

Прокомментировать результаты.

Решение.

ЛРС
$$F_1: (x_1, x_2, x_3, x_4) \to (x_2, x_3, x_4, x_2 \oplus x_3)$$

Данный граф имеет структуру "циклы с подходами". Длины циклов: 1, 7. Это отображение не является взаимно однозначным.

ЛРС
$$F_2: (x_1, x_2, x_3, x_4) \to (x_2, x_3, x_4, x_1 \oplus x_2 \oplus x_3)$$

У этого графа полностью цикловая структура. Длины циклов: 1, 1, 7 и 7. Это отображение является взаимно однозначным.

$$\text{JPC } F_3: (x_1, x_2, x_3, x_4) \to (x_2, x_3, x_4, x_3 \oplus x_2 * x_4)$$

Данный граф имеет структуру "циклы с подходами". Длины циклов: 1, 4. Это отображение не является взаимно однозначным.

0110

1111

Граф имеет полностью цикловую структуру. Длины циклов: 1, 2, 4 и 9. Это отображение является взаимно однозначным.

Данный граф имеет структуру "циклы с подходами". Длины циклов: 1, 5. Это отображение не является взаимно однозначным.

1.5 Перекрытия гаммы. Криптоанализ при неравновероятной гамме.

Задача 5.1 Два текста x и x' на русском языке зашифрованы шифром гамирования по $\mod 30$ с помощью одной и той же гаммы γ . Использована следующая таблица соответствия букв числами (здесь – означает пробел):

A	Б	В	Γ	Д	E	Ж	3	И	K	Л	M	Н	О	П
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
Р	С	Т	У	Φ	X	Ц	Ч	Ш	Щ	Ы	Э	Ю	Я	_
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

Получено два шифротекста y = КЛОВБЛЖЗФ и y' = ВУПЗЕР-СВЖ, известна тематика x и x': 'времена года'. Применяя 'протяжку вероятного слова' найти x, x', γ .

Решение.

Переведём векторы y и y' в числа и найдём их разность:

$$y-y'=x+\gamma-x'-\gamma=x-x'=(9-2,10-18,13-14,2-7,1-5,10-15,$$

$$6-16, 7-2, 19-6) = (7, 22, 29, 25, 26, 25, 20, 5, 13) = 34$$
-ЫЭЫЧЕО.

Попробуем подставить в начало x' слово 'ЗИМА-':

$$x = (x - x') + x' = ACHE\Gamma * * * *$$

Видно, что получается осмысленное предложение. Посмотрим, какая гамма:

$$\gamma = y' - x' = BBBBB * * * * *$$

Предположим, что гамма состоит только из этих букв, продлим и получим окончательный ответ:

$$x = 3ИМА - ИДЕТ$$

$$x' = ACHEГОПАД$$

$$\gamma = BBBBBBBBB$$

Задача 5.2 Пусть в шифре гаммирования по mod 30 используется только 6 знаков гаммы $\{17,05,02,15,08,14\}$ (соответствие букв и чисел в таблице):

A	Б	В	Γ	Д	E	Ж	3	И	K	Л	M	Н	О	П
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
Р	С	Т	У	Φ	X	Ц	Ч	Ш	Щ	Ы	Ъ	Э	Ю	Я
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

Получен шифртекст y = ШАССЧАТАИЦОС. Используя "зигзагообразное" чтение дешифровать открытый текст и восстановить гамму.

Решение.

Составим таблицу из возможных результатов гаммирования:

17	Ж	О	Я	Я	Е	О	A	О	Ц	Д	Ъ	Я
05	У	Ы	M	М	\mathbf{T}	Ы	Н	Ы	Γ	С	И	М
02	Ц	Ю	П	П	X	Ю	Р	Ю	Ж	Φ	M	П
15	И	P	Б	Б	3	Р	В	P	Ш	Ж	Ю	Б
08	P	Ч	И	И	П	Ч	K	Ч	Α	О	Е	И
14	K	С	В	В	И	С	Γ	С	Щ	3	Я	В

Легко видеть, $x = \text{КРИПТОГРАФИЯ}, \gamma = \text{ПРИВЕТПРИВЕТ}.$

1.6 Методы "встреча посередине" и "разделяй и властвуй".

Задача 6.1 Найти минимальную среднюю трудоёмкость нахождения ключа в следующей схеме шифрования, длина ключа Γ OCT = 256 бит. Сравнить с МПП.

$$\xrightarrow{x} DES(k_1) \longrightarrow \Gamma OCT(k_2) \xrightarrow{y}$$

Решение.

Средняя трудоёмкость метода "встречи посередине":

$$(|K_1| + |K_2|)(1 + \ln(|K_1| + |K_2|)) = (2^{56} + 2^{256})(1 + \ln(2^{56} + 2^{256})) \approx 10^{79.47}$$

Средняя трудоёмкость полного перебора: $\frac{|K_1||K_2|}{2} = \frac{2^{56} \cdot 2^{256}}{2} = 2^{311} \approx 10^{93.62}$ Метод "встречи посередине" оказывается на 14 порядков эффективнее МПП.

Если предположить, что у нас имеется эффективный критерий, отбраковывающий ключи из K_1 , то можно воспользоваться методом "разделяй и властвуй", средняя трудоёмкость которого равна $\frac{|K_1|+|K_1|}{2}=$ $=2^{55}+2^{255}\approx 10^{76.76}$. Этот метод ещё эффективнее в 1000 раз.

Задача 6.2 Ключом являются начальные заполнения ЛРС в алгоритме получения γ для шифра гаммирования. Предполагается, что имеется

необходимое количество пар (x, y). Оценить сложность нахождения ключа с помощью метода "встречи посередине" и сравнить с МПП.

Решение.

Для каждого ЛРС оценим мощность множеств ключей: $N = |K_1| =$ $=|K_2|=2^n$. Тогда средняя трудоёмкость метода "встречи посередине":

$$\sqrt{N}\ln N = 2^{\frac{n}{2}}\ln 2^n$$

Средняя трудоёмкость полного перебора:

$$\frac{|K_1||K_2|}{2} = \frac{2^n \cdot 2^n}{2} = 2^{2n-1}$$

При n=8 метод "встречи посередине" эффективнее, чем МПП, в 369 раз, а при n = 256 – примерно в 10^{113} раз.

Задача 6.3 В задаче 3.4 найти минимальную среднюю трудоёмкость нахождения ключа и сравнить с МПП. Предполагается, что имеется необходимое количество пар (x, y).

Решение.

Было установлено, что $|K_F|=2^{254}$ и $|K_A|\approx 2^{62.21}$.

Метод "разделяй и властвуй": $\frac{|K_F| + |K_A|}{2} \approx 10^{76.16}$. Метод "встречи посередине": $(|K_A| + |K_F|)(1 + \ln(|K_A| + |K_F|)) \approx 10^{78.71}$. ΜΠΠ: $\frac{|K_F||K_A|}{2} \approx 10^{95.19}$.

Если предположить, что у нас есть эффективный критерий, отбраковывающий ключи из K_F , то минимальная средняя трудоёмкость достигается первым методом, иначе - вторым. Разница по эффективности с МПП от $10^{16.48}$ до $10^{19.03}$ раз.

Часть 2

Контрольные работы

2.1 Шифры перестановки.

```
Задача 1.1 Раскрыть шифр простой замены:
56 73 31 68 52 88 52 70 16 78 16 90 40 49 16 31 78 56 46 28 88 31 40 88 70
68\ 52\ 40\ 19\ 56\ 70\ 73\ 88\ 19\ 94\ 00\ 52\ 31\ 49\ 68\ 78\ 88\ 56\ 90\ 73\ 16\ 31\ 49\ 94\ 88
88 46 36 49 88 52 88 46 68 74 49 16 78 64 94 88 52 40 68 19 94 16 03 20 49
64\ 46\ 88\ 78\ 64\ 13\ 16\ 90\ 40\ 49\ 03\ 16\ 52\ 31\ 78\ 16\ 70\ 88\ 73\ 68\ 78\ 88\ 90\ 40\ 49
20 94 56 66 46 00 88 49 40 68 78 88 73 31 74 87 88 16 83 16 78 68 94 56 16
16\ 52\ 20\ 90\ 68\ 73\ 56\ 70\ 88\ 73\ 68\ 49\ 64\ 49\ 03\ 87\ 56\ 94\ 16\ 73\ 16\ 31\ 16\ 78\ 56
78\ 56\ 31\ 64\ 46\ 00\ 88\ 94\ 56\ 40\ 88\ 40\ 88\ 73\ 88\ 70\ 20\ 16\ 28\ 88\ 73\ 16\ 03\ 94\ 00
66\ 94\ 16\ 70\ 88\ 19\ 68\ 90\ 20\ 52\ 16\ 94\ 56\ 82\ 31\ 83\ 16\ 94\ 11\ 56\ 94\ 68\ 52\ 56\ 90
40\ 49\ 90\ 94\ 68\ 74\ 90\ 40\ 49\ 03\ 49\ 88\ 31\ 78\ 68\ 73\ 88\ 82\ 70\ 68\ 52\ 31\ 87\ 88\ 28
88 20 28 88 70 94 56 87 68 83 68 87 88 46 74 90 68 94 46 88 74 90 94 56 31
40\ 68\ 49\ 64\ 73\ 88\ 70\ 56\ 94\ 88\ 03\ 16\ 31\ 49\ 73\ 16\ 90\ 40\ 49\ 68\ 94\ 16\ 40\ 19\ 56
19\ 88\ 70\ 94\ 88\ 82\ 88\ 90\ 68\ 46\ 88\ 03\ 16\ 94\ 94\ 88\ 31\ 49\ 56\ 49\ 03\ 87\ 68\ 31\ 94
16 70 68 73 94 56 66 40 88 19 13 20 49 56 73 88 73 31 16 31 49 19 68 13 56
78 31 74 90 68 31 00 40 68 49 64 56 90 90 68 40 88 31 49 88 74 94 94 00 66
87 88 13 52 68 19 88 73 49 03 87 66 88 19 88 13 88 16 11 16 90 40 49 03 49
88 88 94 40 88 94 68 49 20 19 16 03 16 78 88 73 16 87 78 16 28 87 88 52 00
31 78 16 94 94 00 82 56 94 16 31 40 88 31 88 46 94 00 82 90 68 97 56 87 78
56\ 73\ 68\ 49\ 64\ 31\ 74\ 94\ 68\ 03\ 16\ 52\ 78\ 56\ 46\ 88\ 90\ 40\ 49\ 56\ 94\ 68\ 03\ 16\ 52
88 83 94 88 56 20 52 88 52 49 19 88 94 20 49 64 31 74
```

ешение.

Для более простого воспроизведения описанных действий буду приводить код на языке Python.

Проанализируем частоты монограмм.

```
>>> sorted(zip(*np.unique(cipher, return_counts = True)), key = lambda x: x[1], reverse = True)[:10]
[('88', 58), ('16', 37), ('94', 36), ('68', 33), ('49', 31), ('56', 29), ('31', 26), ('40', 21), ('73', 19), ('90', 19)]
```

Теперь рассмотрим биграммы:

Наиболее частые моно- и биграммы русского языка:

Предположим, что 88 – это О. В биграммах из текста эта буква встречается дважды: 88 73 и 40 88. В справочной таблице единственное сочетание, в котором О стоит на первом месте – это ОВ. Сравнивая позицию буквы 73 с первой таблицей, можем убедиться, что В действительно подходит.

Допустим также, что 16 – это Е. Поскольку в шифротексте нет явных знаков препинания, предположим, что они записаны в виде ЗПТ и ТЧК. Запятых, скорее всего, больше, чем точек, поэтому рассмотрим триграммы текста и самую частую определим как ЗПТ.

Тогда 49 – это Т. Попробуем найти среди биграмм наиболее частую – СТ: единственный вариант, заканчивающийся на 49, – это 31 49 (40 49 уже занято – ПТ). Пусть 31 будет С.

Итак, попробуем подставить:

	О	В	\mathbf{E}	3	Π	\mathbf{T}	\mathbf{C}
ſ	88	73	16	90	40	49	31

```
>>> key = {'88': '0', '73': 'B', '16': 'E', '90': '3', '40': 'Π',
    '49': 'T', '31': 'C'}
>>> ' '.join([key[x] if x in key else x for x in cipher])
'56 В С 68 52 О 52 70 Е 78 Е 3 П Т Е С 78 56 46 28 О С П О 70 68 52
   П 19 56 70 В О 19 94 00 52 С Т 68 78 О 56 З В Е С Т 94 О О 46
   36 T O 52 O 46 68 74 T E 78 64 94 O 52 Π 68 19 94 E 03 20 T 64
   46 0 78 64 13 E 3 N T 03 E 52 C 78 E 70 0 B 68 78 0 3 N T 20 94
   56 66 46 00 O T II 68 78 O B C 74 87 O E 83 E 78 68 94 56 E E 52
   20 3 68 B 56 70 O B 68 T 64 T 03 87 56 94 E B E C E 78 56 78 56
   С 64 46 00 0 94 56 п 0 п 0 в 0 70 20 е 28 0 в е 03 94 00 66 94
   Е 70 0 19 68 3 20 52 E 94 56 82 C 83 E 94 11 56 94 68 52 56 З П
   T 3 94 68 74 3 N T 03 T O C 78 68 B O 82 70 68 52 C 87 O 28 O
   20 28 0 70 94 56 87 68 83 68 87 0 46 74 3 68 94 46 0 74 3 94 56
   С П 68 Т 64 В О 70 56 94 О 03 Е С Т В Е 3 П Т 68 94 Е П 19 56
   19 0 70 94 0 82 0 3 68 46 0 03 E 94 94 0 C T 56 T 03 87 68 C 94
   Е 70 68 В 94 56 66 П O 19 13 20 Т 56 В O В C E C Т 19 68 13 56
   78 С 74 3 68 С 00 П 68 Т 64 56 3 3 68 П О С Т О 74 94 94 00 66
   87 O 13 52 68 19 O B T 03 87 66 O 19 O 13 O E 11 E 3 N T 03 T O
   О 94 П О 94 68 Т 20 19 E 03 E 78 О В E 87 78 E 28 87 О 52 00 C
   78 E 94 94 00 82 56 94 E C N O C O 46 94 00 82 3 68 97 56 87 78
   56 B 68 T 64 C 74 94 68 03 E 52 78 56 46 O 3 N T 56 94 68 03 E
   52 O 83 94 O 56 20 52 O 52 T 19 O 94 20 T 64 C 74'
```

Обратим внимание на 'ЗПТЕС 78 56', 'ПОПОВО 70 20', 'ПОСТО 74 94 94 *', 'СПОСО 46'. Всё это похоже на ', если', 'по поводу', 'постоянн*' и 'способ'. Попробуем добавить в ключ следующие замены:

Л	И	Д	У	Я	H	Б
78	56	70	20	74	94	46

```
>>> key.update(**{'78': 'Л', '56': 'И', '70': 'Д', '20': 'Y', '74': 'Я', '94': 'Н', '46': 'Б'})
>>> ' '.join([key[x] if x in key else x for x in cipher])
'И В С 68 52 0 52 ДЕЛЕЗПТЕСЛИБ 28 0 СПОД 68 52 П 19 И
ДВ 0 19 Н 00 52 СТ 68 ЛОИЗВЕСТНООБ 36 ТО 52 0 Б
68 ЯТЕЛ64 НО 52 П 68 19 НЕОЗУТ64 БОЛ64 13 ЕЗПТ
03 Е 52 СЛЕДОВ 68 ЛОЗПТУНИ 66 БОООТП 68 ЛОВС
Я 87 ОЕ 83 ЕЛ68 НИЕЕ 52 УЗ 68 ВИДОВ 68 Т64 ТОЗ 87
ИНЕВЕСЕЛИЛИС64 БОООНИПОПОВОДУЕ 28 0 В
Е 03 Н 00 66 НЕДО 19 68 ЗУ 52 ЕНИ 82 С 83 ЕН 11 ИН 68
52 ИЗПТЗН68 ЯЗПТОЗТОСЛ68 ВО 82 Д 68 52 С 87 О
28 ОУ 28 ОДНИ 87 68 83 68 87 ОБЯЗ 68 НБОЯЗНИСП
```

68 T 64 B 0 Д И Н 0 03 E C T B E 3 П T 68 Н Е П 19 И 19 0 Д Н 0 82 0 3 68 Б 0 03 E Н Н 0 С Т И Т 03 87 68 С Н Е Д 68 В Н И 66 П 0 19 13 У Т И В 0 В С Е С Т 19 68 13 И Л С Я 3 68 С 00 П 68 Т 64 И 3 3 68 П 0 С Т 0 Я Н Н 00 66 87 0 13 52 68 19 0 В Т 03 87 66 0 19 0 13 0 Е 11 Е 3 П Т 03 Т 0 0 Н П 0 Н 68 Т У 19 Е 03 Е Л 0 В Е 87 Л Е 28 87 0 52 00 С Л Е Н Н 00 82 И Н Е С П 0 С 0 Б Н 0 82 3 68 97 И 87 Л И В 68 Т 64 С Я Н 68 03 Е 52 Л И Б 0 3 П Т И Н 68 03 Е 52 0 83 Н 0 И У 52 0 52 Т 19 0 Н У Т 64 С Я

Видно, что 'С Т 68 Л О И З В Е С Т Н О О Б 36 Т О 52 О Б 68 Я Т Е Л 64 Н О 52 П 68 19 Н Е' похоже на 'стало известно об этом обаятельном парне', а 'В Е С Е Л И Л И С 64 Б 00 О Н И П О П О В О Д У Е 28 О' — на 'веселились бы они по поводу его', 'В О Д И Н О 03 Е С Т В Е' — 'в одиночестве'

A	Э	M	Ь	P	Ы	Γ	Ч
68	36	52	64	19	00	28	03

>>> key.update(**{'68': 'A', '36': '9','52': 'M','64': 'b','19': 'P','00': 'Ы','28': 'Г', '03': 'Ч'}) >>> ' '.join([key[x] if x in key else x for x in cipher]) ивсамомделезптеслибгосподампридво Р Н Ы М С Т А Л О И З В Е С Т Н О О Б Э Т О М О Б А Я Т Е Л Ь Н Омпарнечуть боль 13 езптчемследовал ОЗПТУНИ 66 БЫОТПАЛОВСЯ 87 ОЕ 83 ЕЛАНИЕЕ музавидоватьтч 87 иневеселились вы о нипоповодуеговечны 66 недоразумени 82 С 83 Е Н 11 И Н А М И З П Т З Н А Я З П Т Ч Т О С Л А В О 82 дамс 87 огоугодни 87 а 83 а 87 обязань оязн испатьводиночествезптанеприродно 82 ОЗАБОЧЕННОСТИТЧ 87 АСНЕДАВНИ 66 ПОР 13 У Т И В О В С Е С Т Р А 13 И Л С Я З А С Ы П А Т Ь И З З А П O C T O Я Н Н Ы 66 87 O 13 M A P O B T Y 87 66 O P O 13 O E 11 ЕЗПТЧТООНПОНАТУРЕЧЕЛОВЕ 87 ЛЕГ 87 ОМЫ Сленны 82 инеспособны 82 за 97 и 87 ливать Сяначемлибозптиначемо 83 ноиумомтр

'ЧУТЬБОЛЬ 13 ЕЗПТ' – 'чуть больше,', 'УНИ 66 БЫ' – 'у них бы', 'В С Я 87 О Е 83 Е Л А Н И Е' – 'всякое желание', 'Н Е Д О Р А З У М Е Н И 82 С 83 Е Н 11 И Н А М И' – 'недоразумений с женщинами', 'З А 97 И 87 Л И В А Т Ь С Я' – 'зацикливаться'.

ОНУТЬСЯ

Ш	X	K	Ж	Й	Щ	Ц
13	66	87	83	82	11	97

```
>>> key.update(**{'13': 'W', '66': 'X', '87': 'K', '83': 'W', '82':
   'Й','11': 'Щ','97': 'Ц'})
>>> ' '.join([key[x] if x in key else x for x in cipher])
ивсамомделезптеслибгосподампридво
  Р Н Ы М С Т А Л О И З В Е С Т Н О О Б Э Т О М О Б А Я Т Е Л Ь Н
  О М П А Р Н Е Ч У Т Ь Б О Л Ь Ш Е З П Т Ч Е М С Л Е Д О В А Л О
  З П Т У Н И Х Б Ы О Т П А Л О В С Я К О Е Ж Е Л А Н И Е Е М У З
  АВИДОВАТЬТЧКИНЕВЕСЕЛИЛИСЬБЫ ОНИПО
  поводуеговечныхнедоразуменийсжен
  щинамизптзнаязптчтославойдамског
  ОУГОДНИКАЖАКОБЯЗАНБОЯЗНИСПАТЬВОД
  иночествезптанеприроднойозабочен
  НОСТИТЧКАСНЕДАВНИХПОРШУТИВОВСЕСТ
  РАШИЛСЯЗАСЫПАТЬИЗЗАПОСТОЯННЫХКОШ
  маровтчкхорошоещезптчтоонпонатур
  ечеловеклегкомы сленный инеспособн
  ый Зацикливать Сяначемлиб 0 Зптиначе
  можноиумомтронуться,
{'88': '0', '73': 'B', '16': 'E', '90': '3', '40': 'Π', '49': 'T',
   '31': 'С', '78': 'Л', '56': 'И', '70': 'Д', '20': 'У', '74':
   'Я', '94': 'H', '46': 'Б', '68': 'A', '36': 'Э', '52': 'M',
   '64': 'Б', '19': 'Р', '00': 'Ы', '28': 'Г', '03': 'Ч', '13':
   'Ш', '66': 'X', '87': 'K', '83': 'Ж', '82': 'Й', '11': 'Щ',
   '97': 'Ц'}
```

Задача 1.2 Раскрыть шифр вертикальной перестановки:

АЕЧСЕ ЛЫЯИЛ ОПЗИЕ СТЫБД ТТДРД ОВИГР ЙВКАЛ МАШЛУ ПЗЖТЯ РОСЗГ ЕНОПЫ ИОМЕО ОЯТТХ ОДАЛР УИВИО ООННИ ОВЫЫБ ИАОРС ОТГАБ СОЕЧД ВУНЛУ НИМОЕ ШШАВН ЕАВМЙ

Решение.

Длина текста 120 букв. Наиболее целесообразно было бы использовать ключ длины 10 или 12 (близкой к $\sqrt{120}$). Проверим различные длины ключей на основе известного соотношения гласных к согласным: 44% к 56%.

```
>>> def get_mse(text, n):
... vn = lambda row: sum([x in list('AEËMOVHJHHH') for x in row])
... table = np.array(list(text)).reshape((n, len(text) // n)).T
... ratio = np.array([vn(row) / len(row) for row in table])
```

Видим, что наименьшая среднеквадратичная ошибка достигается при ключе длины 15.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	И	Т	Д	K	Π	3	О	X	В	О	Р	О	У	A
E	Л	Ы	О	A	3	Γ	М	О	И	В	С	Е	Н	В
Ч	О	Б	В	Л	Ж	E	Е	Д	О	Ы	О	Ч	И	Н
C	П	Д	И	M	Т	Н	О	A	О	Ы	Т	Д	M	Е
E	3	Т	Γ	A	Я	О	О	Л	О	Б	Γ	В	О	A
Л	И	Т	P	Ш	Р	Π	Я	Р	Н	И	A	У	Ε	В
Ы	Е	Д	Й	Л	О	Ы	Т	У	Н	A	Б	Н	Ш	М
Я	С	Р	В	У	С	И	Т	И	И	О	С	Л	Ш	Й

Обратим внимание на столбцы, в которых есть буква 'Ы' — с ними будет проще всего найти невстречающиеся биграммы. Например, столбец 11 сочетается только с 3 и 5 столбцами. Так как, например, 'ДЫМ' встретится чаще, чем 'МЫД', поставим столбцы в порядке 3 - 11 - 5. Во второй строке получаем триграмму 'ЫВА', после которой может быть 'Н', 'Т', 'Е', 'Ю', 'Л', 'Я'. Отметим кандидатами 1, 2, 13 и 14 столбец. В последней строке получается 'РОУЯ', если выбрать первый столбец — отбраковываем, при 14-м столбце в 5-й строке получится 'ТБАО' — отбраковываем. На третьей строке скорее будет 'БЫЛО', чем 'БЫЛЧ', поэтому остановимся на варианте 3 - 11 - 5 - 2.

1	6	3	11	5	2	7	8	9	10	4	12	13	14	15
A	П	\mathbf{T}	О	K	И	3	О	X	В	Д	Р	О	У	A
E	3	Ы	В	A	Л	Γ	М	О	И	О	С	Е	Н	В
Ч	Ж	Б	Ы	Л	О	Е	E	Д	О	В	О	Ч	И	Н
С	Т	Д	Ы	M	П	Н	О	A	О	И	Т	Д	M	Е
E	Я	\mathbf{T}	Б	A	3	О	О	Л	О	Γ	Γ	В	О	A
Л	P	\mathbf{T}	И	Ш	И	Π	Я	Р	Н	P	A	У	E	В
Ы	О	Д	A	Л	\mathbf{E}	Ы	Т	У	Н	Й	Б	Н	Ш	М
Я	С	P	О	У	C	И	Т	И	И	В	С	Л	Ш	Й

В первой строке видно слово 'ВОЗДУХ', 10 - (8, 13) - 7 - 4 - 14 - 9. На

третьей строке оказывается 'ОЕЕ', если выбрать 8-й столбец, и 'ОЧЕ', если выбрать 13-й. Установим столбцы по второму варианту.

1	6	3	11	5	2	12	8	15	10	13	7	4	14	9
A	П	\mathbf{T}	О	K	И	P	О	A	В	О	3	Д	У	X
E	3	Ы	В	A	Л	С	М	В	И	\mathbf{E}	Γ	О	H	О
Ч	Ж	Б	Ы	Л	О	О	Е	Н	О	Ч	\mathbf{E}	В	И	Д
С	Т	Д	Ы	M	П	Т	О	Е	О	Д	Н	И	M	A
Е	Я	\mathbf{T}	Б	A	3	Γ	О	A	О	В	О	Γ	О	Л
Л	Р	\mathbf{T}	И	Ш	И	A	Я	В	Н	У	П	P	\mathbf{E}	P
Ы	О	Д	A	Л	\mathbf{E}	Б	Т	М	Н	Н	Ы	Й	Ш	У
R	С	P	О	У	\mathbf{C}	С	Т	Й	И	Л	И	В	Ш	И

Видно, что эти два блока можно объединить. Кроме того, можно заметить слова 'ПОТОКИ' и 'ОЧЕВИДНО': 9 - 15 - 12, 6 - 8 - 3. Остаётся последний столбец, для которого становится ясно, что он должен находиться в конце таблицы.

Окончательный ответ:

Π	О	\mathbf{T}	О	K	И	В	О	3	Д	У	X	A	P	A
3	M	Ы	В	A	Л	И	\mathbf{E}	Γ	О	Н	О	В	\mathbf{C}	\mathbf{E}
Ж	\mathbf{E}	Б	Ы	Л	О	О	Ч	\mathbf{E}	В	И	Д	Н	О	Ч
\mathbf{T}	О	Д	Ы	M	П	О	Д	H	И	M	A	\mathbf{E}	\mathbf{T}	\mathbf{C}
Я	О	\mathbf{T}	Б	A	3	О	В	О	Γ	О	Л	A	Γ	\mathbf{E}
P	Я	\mathbf{T}	И	Ш	И	Н	У	П	P	\mathbf{E}	P	В	A	Л
О	\mathbf{T}	Д	A	Л	\mathbf{E}	Н	Н	Ы	Й	Ш	У	\mathbf{M}	Б	Ы
\mathbf{C}	\mathbf{T}	P	О	У	С	И	Л	И	В	Ш	И	Й	C	Я

2.2 Корреляционный анализ.

Задача 2.1 Дано:

- 1) Схема, в которой ЛРС длины 5 задаётся характеристической функцией $F(x)=1+x^2+x^5$,
- 2) Функция усложнения $f(x_1, x_2, x_3, x_4, x_5) = x_4x_5$ (операции сложения и умножения в GF(2)),
- 3) z=010101101111100110001011111001000. Задание:
- 1. Провести полный расчет корреляционного метода, включая нахождение требуемого числа линейных соотношений $m, E_0(p^*), E_1(p^*)$.
- 2. Применяя корреляционный метод, найти неизвестное начальное заполнение ЛРС $(x_1, x_2, x_3, x_4, x_5)$.
 - 3. Провести проверку найденного решения.

Решение.

Проведём расчёт метода. Длина вектора \vec{z} : N=31. Длина ЛРС: r=5. Количество слагаемых в линейной рекурренте: t=2. Вероятность того, что функция усложнения будет равна нулю: $P(f=0)=\frac{3}{4}$. Поскольку эта вероятность $\approx 75\%$, можно эффективно применить корреляционную атаку Мейера-Штаффельбаха (алгоритм A) 1 . Необходимое количество уравнений в системе: $m\approx (t+1)\left[\log_2\frac{N}{r}\right]=6$.

Получим линейную рекурренту генератора:

$$a_{n+r} = a_n + a_{n+3}$$

Заменой n+r и n+3 на n дополнительно получим 2 уравнения:

$$\begin{cases} a_n = a_{n+r} + a_{n+3}, \\ a_n = a_{n-r} + a_{n-r+3}, \\ a_n = a_{n-3} + a_{n+r-3}. \end{cases}$$

¹Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J. Cryptol. 1(3), 159–176 (1989)

Подставим a_{n+r} из первого уравнения вместо a_{n-r} во второе уравнение и a_{n+3} вместо a_{n-3} в третье.

$$\begin{cases} a_n = a_{n+r} + a_{n+3}, & (1) \\ a_n = a_{n-r} + a_{n-r+3}, & (2) \\ a_n = a_{n-3} + a_{n+r-3}, & (3) \\ a_n = a_{n-2r} + a_{n-2r+3} + a_{n-r+3}, & (1+2) \\ a_n = a_{n-6} + a_{n+r-6} + a_{n+r-3}. & (1+3) \end{cases}$$

Теперь подставим второе уравнение в пятое.

$$\begin{cases} a_n = a_{n+r} + a_{n+3}, & (1) \\ a_n = a_{n-r} + a_{n-r+3}, & (2) \\ a_n = a_{n-3} + a_{n+r-3}, & (3) \\ a_n = a_{n-2r} + a_{n-2r+3} + a_{n-r+3}, & (1+2) \\ a_n = a_{n-6} + a_{n+r-6} + a_{n+r-3}, & (1+3) \\ a_n = a_{n-r-6} + a_{n-r-3} + a_{n+r-6} + a_{n+r-3}, & (1+2+3) \end{cases}$$
им образом, мы получили систему из $m = 6$ уравнени

Таким образом, мы получили систему из m=6 уравнений. Теперь подставим r, вместо членов последовательности a подставим члены последовательности z, опустим индексы n и получим систему линейных форм:

$$\begin{cases} z + z_5 + z_3 = L_1, \\ z + z_{-5} + z_{-2} = L_2, \\ z + z_{-3} + z_2 = L_3, \\ z + z_{-10} + z_{-7} + z_{-2} = L_4, \\ z + z_{-6} + z_{-1} + z_2 = L_5, \\ z + z_{-11} + z_{-8} + z_{-1} + z_2 = L_6. \end{cases}$$

Каждый z_i представляет собой $a_i \oplus \gamma_i$, где γ_i – это н.о.р.с.в. с $P(\gamma=0)=P(f=0)=\frac{3}{4}$. Пусть b_{ij} – это слагаемые правой стороны уравнений системы с a_i , а y_{ij} – слагаемые левой стороны уравнений системы с z_i , не содержащие z. Тогда уравнения первой системы принимают вид $a+\sum_{j=0}^t b_{ij}=0$, а второй – $z+\sum_{j=0}^t y_{ij}=L_i$. Заметим, что в таком случае $P(z_i=a_i)=P(y_{ij}=b_{ij})=\frac{3}{4}=p$.

Пусть вероятность $s = s(t, p) = P(y_i = b_i)$ не зависит от i. По формуле полной вероятности получим рекуррентное соотношение:

$$\begin{cases} s(t,p) = p \cdot s(t-1,p) + (1-p)(1-s(t-1,p)), \\ s(1,p) = p. \end{cases}$$

Поскольку t=2, то $s=s(2,\frac{3}{4})=\frac{3}{4}\cdot\frac{3}{4}+(1-\frac{3}{4})(1-\frac{3}{4})=\frac{5}{8}$. Определим апостериорную вероятность того, что z=a при условии события B_k : k из m линейных форм L_i равны нулю.

$$P(z = a|B_k) = \frac{\binom{m}{k} p s^k (1-s)^{m-k}}{\binom{m}{k} p s^k (1-s)^{m-k} + \binom{m}{k} (1-p) s^{m-k} (1-s)^k} = p^*$$

Найдём матожидания этой величины в двух разных случаях: z=a и $z \neq a$:

$$E_0(p^*) = E(p^*|z=a) =$$

$$= \sum_{k=0}^m {m \choose k} \frac{ps^k (1-s)^{m-k}}{ps^k (1-s)^{m-k} + (1-p)s^{m-k} (1-s)^k} s^k (1-s)^{m-k} =$$

$$= \sum_{k=0}^6 {6 \choose k} \frac{\frac{3}{4} \cdot (\frac{5}{8})^k (\frac{3}{8})^{6-k}}{\frac{3}{4} \cdot (\frac{5}{8})^k (\frac{3}{8})^{6-k} + \frac{1}{4} \cdot (\frac{5}{8})^{6-k} (\frac{3}{8})^k} \left(\frac{5}{8}\right)^k \left(\frac{3}{8}\right)^{6-k} \approx 0.81$$

$$E_{1}(p^{*}) = E(p^{*}|z \neq a) =$$

$$= \sum_{k=0}^{m} {m \choose k} \frac{ps^{k}(1-s)^{m-k}}{ps^{k}(1-s)^{m-k} + (1-p)s^{m-k}(1-s)^{k}} s^{m-k}(1-s)^{k} =$$

$$= \sum_{k=0}^{6} {6 \choose k} \frac{\frac{3}{4} \cdot (\frac{5}{8})^{k} (\frac{3}{8})^{6-k}}{\frac{3}{4} \cdot (\frac{5}{8})^{k} (\frac{3}{8})^{6-k} + \frac{1}{4} \cdot (\frac{5}{8})^{6-k} (\frac{3}{8})^{k}} \left(\frac{5}{8}\right)^{6-k} \left(\frac{3}{8}\right)^{k} \approx 0.56$$

Составим таблицу в соответствии с последней системой. Записываем последовательность z в том же порядке, в котором она была задана в условии. Далее добавляем столбцы z_i , участвующие в СЛАУ в качестве слагаемых: это будет та же последовательность, но со сдвигом $i.\ i$ положительное – сдвиг "вверх", i отрицательное – сдвиг "вниз". Потом заполняем L_i , исходя из их равенств, уже зная все слагаемые в них.

N	~	~-	~~	~ -	~ .	~ 0	~~	~ 10	~ _	~ .	~ .	~	~ 0	L_1	L_2	L_3	L_4	L_5	L_6
1	$\begin{bmatrix} z \\ 0 \end{bmatrix}$	$\frac{z_5}{1}$	$\frac{z_3}{1}$	$\frac{z_{-5}}{0}$	$\begin{vmatrix} z_{-2} \\ 0 \end{vmatrix}$	$\frac{z_{-3}}{0}$	$\frac{z_2}{0}$	$\frac{z_{-10}}{1}$	$\frac{z_{-7}}{1}$	$\frac{z_{-6}}{0}$	$\frac{z_{-1}}{0}$	$\frac{z_{-11}}{0}$	$\frac{z_{-8}}{1}$	0	$\frac{L_2}{0}$	$\frac{L_3}{0}$	0	$\frac{L_5}{0}$	$\frac{L_6}{1}$
2	1	1	0	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0
3	0	0	1	0	0	0	0	1	0	1	1	1	0	1	0	0	1	0	0
4	1	1	1	0	1	0	1	1	1	0	0	1	0	1	0	0	0	0	1
5	0	1	0	0	0	1	1	0	0	0	1	1	1	1	0	0	0	0	0
6	1	1	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	1
7	1	1	1	1	0	1	1	1	0	0	1	0	0	1	0	1	0	1	1
8	0	0	1	0	1	0	1	0	0	1	1	1	0	1	1	1	1	1	1
9	1	0	1	1	1	1	1	0	1	0	0	0	0	0	1	1	1	0	0
10	1	1	0	0	0	1	1	0	0	1	1	0	1	0	1	1	1	0	0
11	1	1	0	1	1	0	0	0	1	0	1	0	0	0	1	1	1	0	0
12	1	0	1	1	1	1	0	1	0	1	1	0	1	0	1	0	1	1	1
13	0	0	1	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	1
14	0	0	0	1	1	1	1	1	1	0	0	0	1	0	0	0	1	1	0
15	1	1	0	1	0	1	0	0	0	1	0	1	1	0	0	0	1	0	1
16	1	0	0	1	0	0	0	1	1	1	1	0	0	1	0	1	1	1	0
17	0	1	1	1	1	0	0	1	1	1	1	1	1	0	0	0	1	0	1
18	0	1	0	0	1	1	1	0	1	1	0	1	1	1	1	0	0	0	1
19	0	1	1	0	0	1	0	1	1	0	0	0	1	0	0	1	0	0	1
20	1	1	1	1	0	0	1	1	0	0	0	1	1	1	0	0	0	0	0
21	0	0	1	1	0	0	1	1	0	1	1	1	0	1	1	1	1	1	1
22	1	0	1	0	1	0	1	1	1	1	0	1	0	0	0	0	0	1	1
23	1	1	0	0	0	1	1	0	1	0	1	1	1	0	1	1	0	1	1
24	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	0	1
25	1	0	1	1	1	1	0	1	0	0	1	0	0	0	1	0	1	0	0
26	0	0	0	0	1	1	1	1	0	1	1	1	0	0	1	0	0	1	1
27	0	0	0	1	1	1	0	0	1	0	0	1	0	0	0	1	0	0	1
28	1	1	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0
29	0	0	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	0	1
30	0	1	1	1	1	0	0	1	1	1	0	0	1	0	0	0	1	1	1
31	0	0	0	0	0	1	1	0	1	1	0	1	1	0	0	0	1	0	1

Выберем r строк, в которых L_i принимают наибольшее количество нулей. Это строки 2, 1, 5, 20, 28. Выразим a с соответствующими номерами через начальное заполнение регистров.

```
\begin{cases} a_2 = x_2 + x_5 = 1, \\ a_1 = x_1 + x_4 = 0, \\ a_5 = x_1 + x_3 + x_4 + x_5 = 0, \\ a_{20} = x_3 + x_4 + x_5 = 1, \\ a_{28} = x_2 = 1. \end{cases}
```

Решив систему уравнений, получим $\vec{x} = (1, 1, 0, 1, 0)$. Выполним проверку:

К сожалению, не повезло. Значит, надо выбрать другие строки. Попробуем взять 2, 1, 5, 3, 28. Тогда четвёртое уравнение в системе изменится на $a_3 = x_1 + x_3 + x_4 = 0$. Новая система будет иметь два решения: $\vec{x} = (0, 1, 0, 0, 0)$ и $\vec{x} = (1, 1, 0, 1, 0)$. Второе из них уже было проверено выше, проверим первое:

```
>>> x = [0, 1, 0, 0, 0]
>>> check_solution(x)
True
```

Победа.

```
Otbet: m = 6, E_0(p^*) \approx 0.81, E_1(p^*) \approx 0.56, \vec{x} = (0, 1, 0, 0, 0).
```