一、單一選擇題

1. ()如圖所示,一質量為 m 的棒球以速度 v 水平飛向擊球手,擊球手揮棒擊球,使球以速度 v 鉛垂向上飛出,設水平飛行方向為+x,鉛垂向上飛出方向為+y,則球所受到衝量的量值 及方向為下列何者?(A) 2mv,向+y 方向 (B) mv,與+x 方向成 45° (C) mv,與+x 方向成 135° (D) $\sqrt{2}$ mv,與+x 方向成 45° (E) $\sqrt{2}$ mv,與+x 方向成 135°

- 2. ()質量 m 之球以 v_0 向東運動,受一向北之變力作用,此力與時間之關係為 F=kt,則經時間 T 後速度之變化量為何? (A) $\sqrt{\frac{m^2 {v_0}^2 + k^2 T^2}{m}}$ (B) $\frac{kT^2}{2m}$ (C) $v_0 + \frac{kT}{m}$ (D) $\frac{kT^2}{m}$ (E) 0 。
- 3. ()將質量為 1 kg 的雞蛋由距地面高 5 m 處水平方向拋出,已知初速為 10 m/s、重力加速度為 10 m/s^2 ,忽略空氣阻力,則由拋出至落地期間,雞蛋的動量變化量值為多少 kg·m/s? (A)1 (B)10 (C)5 (D)0。

二、多重選擇題

1. ()如圖所示,一理想單擺系統的擺錘質量為 m、擺長為 ℓ ,由擺角 $\theta=60^\circ$ 處靜止釋放,若擺錘在最低點時速率為 v,擺錘由釋放處運動到最低點需時 T ,重力加速度為 g ,則此時距內 (A)擺錘的動量變化量值為 mv (B)重力對擺錘造成衡量為 mgT ,方向向下 (C)張力對擺錘造成的衡量為 0 (D)張力對擺錘造成的衡量量值為 mv-mgT (E)重力及張力對擺錘造成的衡量和之量值為 mv 。

2. ()將質量 0.5 公斤的小球,由離地高 80 公尺處,以速度 20 公尺 / 秒水平抛出,則(g=10 公尺 / 秒 2) (A)小球著地的時間為 4 秒 (B)小球的水平位移為 80 公尺 (C)小球初拋出時的動量量值為 20 公斤·公尺 / 秒 (D)小球著地時的動量量值為 20 公斤·公尺 / 秒 (E)小球於第 2 秒時的動量量值為 $10\sqrt{2}$ 公斤·公尺 / 秒。

單一選擇題

1.答案:(E)

解析:衝量-動量定理:淨力對物體所施加的衝量=物體的動量變化量

 $\Rightarrow \vec{J} = (\Sigma \vec{F}) \times \Delta t = \Delta \vec{p} = \vec{p}_2 - \vec{p}_1 \Rightarrow \vec{J} = mv (\uparrow) - mv (\rightarrow) = \sqrt{2} mv (\nwarrow)$ 如圖所示, $\Delta \vec{p}$ 與+x 軸夾角 135°

⇒球所受到衝量的量值為 $\sqrt{2}$ mv,方向與+x 方向成 135°

2.答案:(B)

解析: 衝量 $\overrightarrow{J} = \overrightarrow{F} \cdot \Delta t = \Delta \overrightarrow{p}$ (動量變化)

力與時間關係圖之面積表示動量變化

$$\frac{1}{2}kT^{2} = \Delta p = m\Delta v \Rightarrow \Delta v = \frac{kT^{2}}{2m}$$

3.答案:(B)

解析:雞蛋達地面時,鉛直方向速度 $v_v = \sqrt{2g \times 5} = 10 \text{ (m/s)}$

雞蛋在水平方向速度保持 10 m/s,水平動量不改變。

動量變化 $\Delta p = mv_v = 1 \times 10 = 10 (kg \cdot m / s)$

多重選擇題

1.答案:(A)(B)(E)

解析:(A) $\Delta \vec{p} = \vec{p}_f - \vec{p}_i = m\vec{v} - 0 = m\vec{v} \Rightarrow |\Delta \vec{p}| = mv$

(B) $\vec{J}_{\text{1}} = mgx\Delta t = mgT$,方向向下

(C)(D)(E)因張力 F 作用方向及量值不固定,由衡量—動量定理

 $\vec{J}_F + \vec{J}_{mg} = \Delta \vec{p} \Rightarrow \vec{J}_F = \Delta \vec{p} - \vec{J}_{mg} = mv \ (-\vec{i}) \ -mgT \ (-\vec{j}) = -mv\vec{i} + mgT\vec{j}$

$$\therefore |\overrightarrow{J}_{F}| = \sqrt{(-mv)^{2} + (mgT)^{2}} \neq mv - mgT \qquad |\overrightarrow{J}_{F} + \overrightarrow{J}_{mg}| = |\Delta\overrightarrow{p}| = mv$$

2.答案:(A)(B)(E)

解析:(A)由 $h = \frac{1}{2}gt^2 \implies 80 = \frac{1}{2} \times 10 \times t^2$

可得 t=4(秒)

(B)
$$x=v_xt=20x4=80$$
 (公尺)

(B)
$$x=v_xt=20x4=80$$
 (公尺) (C) $p_0=mv_0=0.5x20=10$ (公斤·公尺/秒)

$$v_y = gt = 10 \times 4 = 40 \ (\text{公R} / \text{秒})$$
 $v = \sqrt{v_x^2 + v_y^2} = 20^{\sqrt{5}} \ (\text{公R} / \text{秒})$

$$p = mv = 0.5 \times 20^{\sqrt{5}} = 10^{\sqrt{5}} (公斤 \cdot 公尺 / 秒)$$

(E) $v_v'=gt'=10x2=20$ (公尺/秒), $v_x'=v_x$

$$v' = \sqrt{v_x^2 + v_y'^2} = 20\sqrt{2} \ (\text{公R} / \text{秒})$$
 $p' = mv' = 0.5 \times 20\sqrt{2} = 10\sqrt{2} \ (\text{公F} \cdot \text{公R} / \text{秒})$