Notion d'algorithmique

I/ Des exemples d'algorithmes au quotidien

Sans le savoir, on utilise quotidiennement des algorithmes comme la recette de cuisine ci-dessous.

EXEMPLE 1: UNE RECETTE DE CUISINE

Voici une recette tirée d'un livre de cuisine :

Se procurer 250 g de chocolat noir, 250 g de beurre, 4 œufs, 250 g de sucre et 75 g de farine.

- a. Faire fondre le chocolat au bain-marie; ajouter le beurre, mélanger; ajouter la farine.
- b. Battre les œufs en omelette; ajouter le sucre et mélanger.
- c. Mélanger les deux préparations.
- d. Verser dans un moule et faire cuire 45 minutes au four à 220 °C.

Laisser refroidir, puis servir le gâteau.

Ce texte décrit les opérations à réaliser successivement pour faire un moelleux au chocolat.

A partir des ingrédients de la recette, avec les quantités requises, le texte donne les règles à suivre : il s'agit des étapes a, b, c et d qui s'enchaînent. Le résultat est le gâteau fini.

EXEMPLE 2 : LA TIRELIRE DE CORALIE

Pour ses 7 ans, Coralie reçoit une tirelire contenant 10 €.

Pour ses 8 ans, elle reçoit 20 € qu'elle met dans la tirelire.

Pour ses 9 ans, elle reçoit 30 € qu'elle met dans la tirelire.

Elle casse alors sa tirelire et récupère l'argent.

Au départ, Coralie a une tirelire garnie. Après deux étapes au cours desquelles le contenu de la tirelire se modifie, elle découvre le résultat en cassant sa tirelire.

EXEMPLE 3 : UN PROGRAMME DE CALCUL

Choisir un nombre de départ Multiplier ce nombre par -2 Ajouter 5 au produit Multiplier le résultat par 3 Écrire le résultat obtenu Ce programme de calcul demande d'abord de choisir un nombre. Si on choisit 10, on calcule d'abord: $10 \times (-2) = -20$. Puis on ajoute 5, ce qui donne -15. On multiplie le nombre par 3, ce qui donne -45. L'application de la suite des règles données a conduit au résultat que l'on écrit: -45.

lgorithme :	

<u>A noter</u> : Le mot « algorithme » vient du nom mathématicien persan **Al-Khwarizmi** (780 – 850). il a écrit en langue arabe le plus ancien traité d'algèbre dans lequel il décrivait des procédures de résolution pas à pas d'équations.

II/ Ecriture d'un algorithme

1/ Structure d'un algorithme

Un algorithme comprend:

- une phase d'initialisation : on déclare et initialise les variables et on entre les données ;
- une phase de traitement du problème ;
- une phase de sortie des résultats.

Exemple:

Soit deux nombres réels a et b.

- (1) Calculer $(a + b)^2$ et affecter à c le résultat.
- (2) Calculer $(a b)^2$ et affecter à d le résultat.
- (3) Calculer $\frac{c-d}{4}$ et affecter à s le résultat.

Donner le résultat obtenu.

- La phase d'initialisation est le choix de *a* et *b* : on dit qu'on entre les données *a* et *b*. On écrira : **Saisir a**, **b**.
- La phase de traitement est formée des trois calculs successifs décrits en (1), (2), (3).
- La phase de sortie permet de donner le nombre obtenu après cette suite de calculs. On écrira: Afficher s.
 On a utilisé dans cet algorithme les variables a, b, c, d et s.

2/ Formalisme d'écriture d'un algorithme

Ecriture d'un algorithme en langage naturel

Soit deux nombres réels a et b.

- (1) Calculer $(a + b)^2$ et affecter à c le résultat.
- (2) Calculer $(a b)^2$ et affecter à d le résultat.
- (3) Calculer $\frac{c-d}{4}$ et affecter à s le résultat.

Donner le résultat obtenu.

En langage formel

Variables a, b, c, d, s sont des réels

Entrées Saisir *a* et *b*

Traitement Affecter à *c* la valeur $(a + b)^2$

Affecter à d la valeur $(a - b)^2$

Affecter à s la valeur (c - d)/4

Sortie Afficher s

Exemple:

Voici un algorithme.

- (1) x, y et z sont des nombres réels
- (2) Saisir x et y
- (3) z prend la valeur x + y
- (4) x prend la valeur $x^2 + 1$
- (5) y prend la valeur z/x
- (6) Afficher y

1/ Quelles sont les variables ?

2/ **Déterminer** dans l'algorithme la (ou les) ligne(s) qui correspondent aux étapes :

les entrées :;

le traitement :;

la sortie:......

Exercice 1	<u>L</u> :		Ex	ercice 2 :		
				Voici un algo	rithme écrit en langage	naturel.
V E T	i un algorit ariables ntrée raitement ortie	thme: u, x et y sont des entiers Saisir x u prend la valeur x + 4 y prend la valeur u × x Afficher y		Lui ajo Double Enleve Donne	er le résultat précédent er 3 au résultat r le résultat obtenu	
1		Tenue en sortie pour $x = 3$, p	tu	re ci-dessous.	ne précédent en utilisar	it la struc-
pour x = -		ende en sortie pour x = 3, p		Variables Entrée Traitement Sortie	x est Saisir x prend la valeur x prend la valeur Afficher	
Exercice 3	<u>3</u> :		<u>Ex</u>	ercice 4 :		
Ecrire un	algorithm	ie affichant la somme S e	t le Ec i	r <mark>ire</mark> un algorith	ıme qui demande uı	ne
produit P	de deux e	entiers a et b donnés.	tei	mpérature C (e	exprimée en degrés	Celsius), puis
			la	transforme en	degrés Fahrenheit F	f, sachant que
			l'o	n a la relation	$F = 1.8 \times C + 32.$	

III/ Instruction conditionnelle

Une **instruction conditionnelle** permet d'exécuter **une partie** d'un algorithme en fonction d'une **condition** (vérifiée ou non) fixée par le programmeur.

Voici la structure :

Si {condition C}
| Alors {instructions A}
| Sinon {instructions B}
Fin Si

Si la condition C est vérifiée, seules les instructions A sont exécutées.

Si la condition C n'est pas vérifiée, seules les instructions B sont exécutées.

Remarque: on peut aussi utiliser la structure incomplète: «Si ... Alors ... » : dans ce cas, si la condition C n'est pas vérifiée, l'exécution de l'algorithme continue après le Fin Si.

Exemple:

On considère l'algorithme ci-dessous:

A et B sont des nombres réels **Variables** Saisir A et B Entrées Si A < BTraitement Alors afficher A et sortie Sinon afficher B Fin Si

1/ Pour chacune des entrées suivantes, déterminer
a valeur affichée par l'algorithme de sortie :
a) A = 4 at D = 7.

b)	A =	12	et	В	=	9,2	:			•••		•••								,
----	-----	----	----	---	---	-----	---	--	--	-----	--	-----	--	--	--	--	--	--	--	---

2/ Que fait cet algorithme ?	
	•

Exercice 1:

La directrice d'un commerce de reprographie a créé un algorithme permettant de déterminer le montant payé par un client à partir du nombre de photocopies effectuées.

Variables N est un entier. P est un nombre réel Entrée Saisir N Traitement Si A < 30

Alors P prend la valeur $A \times 0.2$ **Sinon** P prend la valeur $6 + (A - 30) \times 0.1$

Fin Si Afficher P Sortie

1/	Que	l est le	prix payé	þ par	un	client	effectu	iant :
	۵١	20 nha	+0000100					

a)	28 photocopies :	,	•••••
b)	30 photocopies ?	?	

52 photocopies ?

2/ **Déterminer** le prix unitaire des 30 premières photocopies et celui des photocopies suivantes.

3/ La commerçante décide de changer ses tarifs : les 20 premières photocopies seront facturées 0,25 euros et les suivantes 0,10 euros. Modifier l'algorithme.

Exercice 2:

Voici un algorithme:

Variables A, B, C et D sont des réels

Entrées Saisir A et B

Traitement C prend la valeur A - BSi $C \leq 0$

> **Alors** Affecter à D la valeur B - A**Sinon** Affecter à D la valeur A - B

Fin Si

- 1/ Pour chacune des entrées suivantes, déterminer la valeur affichée en sortie :
 - a) A = 5 et B = 9:.....
 - b) A = 2 et B = -2 :
 - c) A = -3 et B = -7:.....
 - d) A = 8 et B = 2:.....

2/ Que fait cet algorithme?

Sortie	Amener D	

Exercice 3:

Ecrire un algorithme permettant de calculer le prix à payer pour un utilisateur de téléphone portable lorsque celui-ci bénéficie d'une forfait de 2 heures pour 8 euros et où chaque minute au-delà du forfait est facturée 0,20 euro.

••••	•••	• • •	••••	••••	••••	•••	••••	•••	• • • •	•••	• • •	••••	•••	••••	•••	••••	•••	•••	•••	•••	••
••••																					
••••	•••	•••	••••	• • • •	••••	•••	••••	•••	• • • •	•••	•••	• • • •	•••	••••	•••	••••	•••	•••	•••	•••	••
•••••																					
••••																					
••••																					••
••••																					••
••••																					••
••••																					
••••																					
••••	•••	•••	••••	••••	••••	•••	• • • •	•••	• • • •	•••	•••	• • • •	•••	• • • •	•••	• • • •	•••	•••	•••	•••	••

IV/ Instruction itérative : boucle « POUR »

Une **boucle « POUR »** est utilisée lorsque l'on veut **recommencer plusieurs fois** un même **bloc d'instructions**. Cette boucle est finie.

Voici sa structure:

On peut donner n'importe quel nom à la variable. A chaque tour de la boucle, sa valeur augmente constamment de 1, on appelle cela un « pas » Pour variable variant de début à fin faire | instruction(s)
Fin Pour

Exemple:

Traitement et sortiePour i variant de 1 à 5 faire
| Afficher «bonjour! »

Fin Pour

Que permet d'obtenir l'algorithme suivant	t ?		
	•••••	••••	••••
	• • • • • •	• • • • •	• • • •

Exercice 1:

Voici un algorithme:

Sortie

Variables n et S sont des entiers

Entrée Saisir nInitialisation S prend la valeur 0Traitement Pour i variant de 1 à n faire S prend la valeur S+iFin Pour

Afficher S

1. Exécuter cet algorithme avec n = 5 en entrée en remplissant un tableau du type suivant, où chaque colonne correspond à une étape:

i	1	2	3	4	5
5	ud d				

2. Que ca	ilcule cet algo	orithme?	
•••••	• • • • • • • • • • • • • • • • • • • •		
			•••••

Exercice 2:

Compléter la deuxième ligne de l'algorithme suivant pour qu'il affiche successivement:

a. 0, 7, 14, 21 et 28; **b.** 21, 28, 35, 42, 49, 56 et 63.

Variable	P est un entier
Traitement	Pour i variant de à faire
et sortie	P prend la valeur $7 \times i$
	Afficher P
	Fin Pour

a)	 et	•••	••	••	• •	••	• •	•	•	 • •	
h١	Δŧ										

Exercice 3:

Exécuter l'algorithme suivant avec n = 6 en entrée.

Variables	E et n sont des entiers
Entrée	Saisir n
Initialisation	E prend la valeur 1
Traitement	Pour i variant de 1 à n faire
	E prend la valeur $E + 10^i$
	Fin Pour
Sortie	Afficher E

		•••••	
•••••	•••••	•••••	•••••

On trouve

Exercice 4: Ecrire un algorithme qui permette d'obtenir la somme des *n* premiers carrés 1² + 2² + 3² + ... + n²

V/ Instruction itérative : boucle « TANT QUE »

La boucle « TANT QUE » est une structure itérative avec fin de boucle conditionnelle. Elle est utilisée quand on ne sait pas à l'avance combien d'itérations il y aura.

Voici sa structure:

<u>Remarque</u>: La condition C est testée en début de boucle, donc, si elle n'est pas vérifiée au départ, la boucle n'est jamais effectuée.

Tant que {condition C vraie} faire | instruction(s) Fin Tant que

Exemple:

Voici un algorithme :

Compléter l'algorithme pour qu'il affiche tous les multiples entiers naturels de l'entier A strictement inférieurs à 1000.

Exercice 1:

On considère l'algorithme suivant :

VariableU est un entierEntréeSaisir UTraitementTant que U > 7 faire
U prend la valeur U - 7
Fin Tant queSortieAfficher U

- **1.** Faire fonctionner cet algorithme avec U = 25.
- 2. Proposer deux nombres entiers différents qui donnent le nombre 5 en sortie.
- 3. Peut-on obtenir le nombre 11 en sortie? Justifier.

Exercice 2:

Compléter l'algorithme suivant afin qu'il donne en sortie la plus petite valeur de l'entier N pour laquelle la somme des N premiers entiers naturels dépasse $10\,000$.

Variables N et S sont des entiers
Initialisation S prend la valeur 0
N prend la valeur 0
Traitement Tant que faire
| N prend la valeur N + 1
| S prend la valeur
Fin Tant que
Sortie Afficher N