Testi degli Esami di Analisi Matematica

Fabio Ferrario

2022

Indice

1	Ger	nnaio 2020													2
	1.1	Domande Chiuse													2
	1.2	Domande Aperte													4
2	Ger	nnaio 2021													5
	2.1	Domande Chiuse													5
	2.2	Domande Aperte													6
3	Feb	braio 2021													6
	3.1	Domande Chiuse													6
4	Lug	glio 2021													7
	4.1	Domande Chiuse													7
		Domande Aperte													8
5	Lug	glio 2022													9
	5.1	Domande Chiuse													9
		Domande Aperte													10
6	Set	tembre 2019													11
	6.1	Domande Chiuse													11
7	Set	tembre 2019													11
	7.1	Domande Chiuse													11
	7.2	Domande Aperte													12
8	Set	tembre 2020													13
	8.1	Domande Chiuse													13
		Domande Aperte													14

9 Settembre 2021 9.1 Domande Chiuse	15
1 Gennaio 2020	
1.1 Domande Chiuse	
$ \underline{1} $ La funzione $f(x) = \begin{cases} \frac{\ln(1-x)}{2x} & x < 0 \\ x^2 + \frac{1}{2} & x \ge 0 \end{cases}$	a in x = 0:
(a) Una discontinuità di prima spe-	(c) un punto di continuità
cie (b) una discontinuità eliminabile	(d) una discontinuità di seconda specie
$\frac{\mathbf{1b}}{\text{la funzione } f(x) = \begin{cases} \frac{\ln(1+x)}{2x} & x < 0 \\ x^2 + \frac{1}{2} & x \ge 0 \end{cases}} \text{ has}$	a in $x = 0$:
(a) Una discontinuità di prima specie(b) una discontinuità eliminabile	(c) un punto di continuità (d) una discontinuità di seconda specie
$\underline{\underline{2}}$ Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile e tale che $\sqrt{f^2(x) + 7}$ allora $g'(2)$ vale:	f(2) = 3 e f'(2) = 4. Se $g(x) = 6$
(a) 1 (b) 2	(c) 3 (d) 4
$\frac{2\mathbf{b}}{\text{Sia } f : \mathbb{R}} \to \mathbb{R} \text{ derivabile e tale che} \\ \sqrt{f^2(x) + 5} \text{ allora } g'(2) \text{ vale:}$	e f(2) = 2 e f'(2) = 3. Se $g(x) =$
(a) 1 (b) 2	(c) 3 (d) 4

La funzione $f(x) = x^2 + 2x + k \ln x$ è strettamente convessa in $(0, +\infty)$ se

(a) k = -3

(b) k = -1

(c) k = 1(d) k = -2

La funzione $f(x) = -x^2 + 2x + k \ln x$ è strettamente convessa in $(0, +\infty)$ se

(a) k = 3

(b) k = 1

Sia $f(x) = x + e^x + \cos x$. Il polinomio di Mc Laurin del secondo ordine di f

(a) $2 + 2x + \frac{x^2}{2}$ (b) $2 + 2x + x^2$

(c) 2+2x(d) $2+2x-\frac{x^2}{2}$

 $\frac{{\bf 4b}}{{\rm Sia}} \ f(x) = -\frac{x^2}{2} + e^x + \sin x.$ Il polinomio di Mc Laurin del secondo ordine di fè:

L'integrale definito $\int_1^2 \frac{2e^x}{e^x+2} dx$ vale:

Tintegrale definito $\int_{\frac{1}{2}}^{1} \frac{4e^{2x}}{e^{2x}+2} dx$ vale

L'insieme $A = \{\frac{2+2^{-n}}{3-3^{-n}}, n = 1, 2, ...\}$

- (a) Ha massimo 15/16(b) Ha minimo 2/3
- (c) Non è superiormente limitato(d) non è inferiormente limitato

Ξ

Ξ

 $\overline{\text{L'insieme}} \ A = \{\frac{2-2^{-n}}{3+3^{-n}}, n = 1, 2, ...\}$

(a) Ha minimo 9/20

(c) Non è superiormente limitato

(b) Ha massimo 2/3

(d) non è inferiormente limitato

 $\frac{7}{\lim_{n\to +\infty} \frac{n\ln^3 n - \sqrt{n} + n^{3/2}}{2n + 3\sqrt[3]{n} - n\ln^4 n}}$ vale

$$\frac{7\mathbf{b}}{\lim_{n \to +\infty} \frac{n \ln^3 n - \sqrt{n} - n^{1/3}}{2n^2 + 3\sqrt[3]{n} - n \ln^4 n}}$$
 vale

(a)
$$-\frac{1}{3}$$
 (c) $+\infty$ (d) $-\infty$

$$\underline{8}$$
 La somma della serie $\sum_{n=0}^{+\infty} \frac{3}{4^{n+2}}$ è:

$$\underline{8b}$$
La somma della serie $\sum_{n=0}^{+\infty} \frac{4}{3^{n+2}}$ è:

1.2 Domande Aperte

1 Data la funzione:

$$f(x) = \frac{e^x}{x^2 - 1}$$

Se ne tracci un grafico qualitativo (in particolaresi determinino: dominio, limiti agli estremi, eventuali asintoti, monotonia, estremanti relativi e assoluti. Non è richiesto lo studio della derivata seconda). Qual è il più grande intervallo del tipo $(-\infty, a)$ su cui f è monotona crescente

- **2** Si dia la definizione di primitiva di una funzione $f: I \to \mathbb{R}$, con I intervallo. Si determini, se esiste, una primitiva $\phi: \mathbb{R} \to \mathbb{R}$ della funzione $f: (-1, +\infty) \to \mathbb{R}$, f(x) = 2x + ln(x+1) tale che $\phi(1) = 2\phi(0)$
- 3 Data la successione definita per ricorrenza:

$$\begin{cases} a_1 = 3\\ a_{n+1} = \sqrt{a_n + 2} \end{cases}$$

- 1. Si provi per induzione che $a_n \geq 2$ per ogni $n \in \mathbb{N}$;
- 2. si provi senza usare l'induzione che $\{a_n\}$ è monotona decrescente;
- 3. si calcoli $\lim_{n\to+\infty} a_n$

2 Gennaio 2021

2.1 Domande Chiuse

La somma della serie $\sum_{n=1}^{+\infty} 2^{1-3n}$ vale:

(a) 1/7

(b) 16/7

(c) 2/7 (d) 8/7

 $\lim_{n \to +\infty} \frac{n^2 \ln^6 n - n^3 \ln^2 n + \sin n}{n^3 \ln^2 n - n^2 \ln^4 n - 3^{-n^2}} \text{ vale}$

(a) $-\infty$

(c) non esiste(d) -1

(b) $+\infty$

La funzione $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1\\ 2 & x = 1 \end{cases}$

- (a) Ha una discontinuità eliminabile
- (c) ha una discontinuità di prima specie

(b) è continua su R

(d) ha una discontinuità di seconda specie

Ξ

Sia $f(x) = x - 2e^x + \sin(x^2)$. Il polinomio di Mclaurin del secondo ordine di

(a) $-2 - x - x^2$ (b) $-x - x^2$

(c) -2 - x(d) $-2 - x^2$

Tra le primitive di $e^x \sin x$ c'è:

- (a) $\frac{1}{2}e^x(\sin x + \cos x)$
- (c) $\frac{1}{2}e^x(\sin x \cos x)$ (d) $e^{2x}(\sin x \cos x)$
- (b) $e^x(\sin x \cos x)$

La funzione $f(x) = \sqrt{x-4} - \frac{x}{2}$ è crescente sse

(a) $x \in [5, +\infty)$

(b) $x \in [4, 8]$

 $\frac{7}{\text{la derivata di }}f(x) = \frac{x \ln x - 1}{x^2} \text{ in } x = 1 \text{ è:}$

(a) -1

(c) 0

(b) 3

 (\mathbf{d}) 1

<u>8</u>

 $\overline{\lim}_{x\to\pm0}$

(a) 0(b) 1

(c) non esiste

 $(\mathbf{d}) \pm \infty$

2.2 Domande Aperte

1 Studia la funzione

$$f(x) = \ln x - \arctan(x - 1)$$

In particolare: Dominio, limiti, asintoti, punti di massimo/minimo (stazionari).

Qual'è l'equazione della retta tangente al grafico nel punto di ascissa x = 1?

- **2** Data la funzione $f(x) = 2x \ln x : (0, +\infty) \to \mathbb{R}$, Si scrivano tutte le primitive. Si determini la primitiva ϕ tale che $\phi(e) = 2\phi(1)$. Si calcoli $\int_1^2 f(x) dx$.
- 3 Sia $\sum_{n=1}^{+\infty} a_n$ una serie numerica. Si enunci una condizione necessaria per la convergenza. La condizione enunciata è sufficiente? si motivi la risposta

3 Febbraio 2021

3.1 Domande Chiuse

 $\frac{1}{2}$ Sia data la serie $\sum_{n=1}^{+\infty}a_n,$ con $a_n\geq 0.$ Per la convergenza della serie la condizione $a_n\sim \frac{1}{n^2}$ è

- (a) sufficiente ma non necessaria
- (c) necessaria ma non sufficiente
- (b) necessaria e sufficiente
- (d) nè necessaria nè sufficiente

 $\overline{\text{Sia}}$ data la serie $\sum_{n=1}^{+\infty} a_n$, con $a_n \geq 0$. Per la convergenza della serie la condizione $a_n \sim \frac{1}{n}$ è

(a) sufficiente ma non necessaria

(b) necessaria e sufficiente

(c) necessaria ma non sufficiente

Ξ

Ξ

Ξ

Ξ

(d) nè necessaria nè sufficiente

 $\underline{\mathbf{2}}$

La funzione $f_{a,b}(x) = \begin{cases} ax + x^2 & x \le 0 \\ be^x + \sin(x) - 1 & x > 0 \end{cases}$ è continua in x = 0 sse:

(a) b = 1 e per ogni a

(b) a = 0, b = 1

(c) per ogni $a, b \in \mathbb{R}$ (d) per nessun valore di a, b

La funzione $f_{a,b}(x) = \begin{cases} x + ax^2 & x \le 0 \\ e^x + \sin(x) - b & x > 0 \end{cases}$ è continua in x = 0 sse:

(a) b = 1 e per ogni a

(b) a = 0, b = 1

(c) per ogni $a, b \in \mathbb{R}$ (d) per nessun valore di a, b

Luglio 2021 $\mathbf{4}$

4.1 Domande Chiuse

La funzione $f(x) = \begin{cases} \sin x^2 + a & x \le 0 \\ \frac{\ln(1+x)}{2x} + \frac{3}{2} & x > 0 \end{cases}$ è continua se:

(a) a = 3/2

(b) a = 2

 $\overline{\text{Sia}} f(x) = x^2 + 2x + 2$. allora $\frac{d}{dx} \ln(f(x))$ per x = 1 è

(a) 1

(c) 2/5 (d) 4/5

(b) 4

La funzione $f(x) = x^5 + x^3 - 1$ ha quanti flessi?

(a) Ha 5 flessi

(c) non ha flessi

(b) Ha 1 flesso

(d) ha 3 flessi

 $\frac{\mathbf{O4}}{\int_0^1 x e^x dx} =$

Ξ

La funzione $f(x) = \begin{cases} -|x+3| & -6 < x < -1 \\ -2x^2 & -1 \le x < 1 \end{cases}$

(a) non è limitata

(b) ha minimo

(c) ha un unico punto di massimo (d) ha come immagine un intervallo

O6 Sia $f(x) = x \ln(x+1) - x^2$, il rapporto incrementale di f relativo all'intervallo [0, e - 1] vale)

(a)
$$(e-2)(e-1)$$

(b) $(2-e)(e-1)$

(c)
$$e - 2$$

(b)
$$(2-e)(e-1)$$

(d)
$$2 - e$$

 $\frac{O7}{\text{La serie } \sum_{n=1}^{+\infty} \frac{n^2}{n \ln n + 2n^{\alpha+1}}}$

- (a) converge per ogni $\alpha > 0$
- (c) converge se e solo se $\alpha > 2$

Ξ

- **(b)** diverge per ogni $\alpha > 0$
- (d) converge se $0 < \alpha < 1$

4.2 Domande Aperte

- 1 Data la funzione $f(x) = \ln x \ln^2 x$, si studi:
 - 1. Dominio
 - 2. Limiti ai punti di frontiera del dominio
 - 3. Eventuali asintoti
 - 4. Estremanti (specificando se relativi o assoluti)
 - 5. Monotonia
 - 6. Punti di flesso
 - 7. Tangente di flesso

- 2 data la funzione $f(x) = x \sin x$
 - 1. Si scrivano tutte le primitive
 - 2. Si determini, se esiste, la primitiva ϕ tale che $\phi(\pi) = 2\phi(0)$
 - 3. si calcoli $\int_0^{\pi} f(x) dx$
- 3 Sia $\sum_{n=1}^{+\infty} \cos(\pi n) \sin \frac{1}{n}$.
 - 1. Per studiare la serie uso il critedio:
 - 2. La successione $\sin \frac{1}{n}$ è strettamente:
 - 3. La serie data:
 - 4. E la serie $\sum_{n=1}^{+\infty} \sin \frac{1}{n}$:

Luglio 2022 5

5.1Domande Chiuse

La serie $\sum_{n=1}^{+\infty} \frac{1}{n^{(\alpha+1)/2} \ln^2 n}$

- (a) Converge sse $\alpha \geq 1$
- (b) Converge sse $\alpha > 1$

- CONVERGENZA DI UNA SERIE
- (c) converge $\forall \alpha \in \mathbb{R}$
- (d) diverge sse $\alpha \leq 1$

 $\underline{\mathbf{2}}$ DERIVABILITÀ La funzione $f(x) = \begin{cases} a \sin x - b^2 & -2 \le x \le 0 \\ 1 - e^x 0 < x \le 3 \end{cases}$ è derivabile in x = 0 sse

- (a) a = -1, b = 1(b) a = -1, b = 0

- (c) $a = -1, \forall b \in \mathbb{R}$ (d) $\forall a \in \mathbb{R}, b = 0$

COMPOSIZIONE DI FUNZIONI Date le funzioni $f(x) = \ln(x), g(x) = x^3, h(x) = 2 - x$, la funzione composta $(h \circ g \circ f)(x)$ è:

- (a) $2 \ln(x^3)$ (b) $2 x^3 \ln x$

- (c) $(2 \ln x)^3$ (d) $2 (\ln x)^3$

INTERVALLI

Quali dei seguenti insiemi è un intervallo?

(a)
$$\{x \in \mathbb{R} : 3|x| \ge 1\}$$

$$| (\mathbf{c}) \{ x \in \mathbb{R} : 2|x| \ge x^2 \}$$

(b)
$$\{x \in \mathbb{R} : |x^2 - 1| < 1\}$$

(a)
$$\{x \in \mathbb{R} : 3|x| \ge 1\}$$

(b) $\{x \in \mathbb{R} : |x^2 - 1| < 1\}$
(c) $\{x \in \mathbb{R} : 2|x| \ge x^2\}$
(d) $\{x \in \mathbb{R} : |x^2 - 1| \ge 1\}$

LIMITI DI SERIE

 $\lim_{n \to +\infty} n^2 \sin(\frac{1}{n+n^2}) \text{ vale}$

(a) 1

 $\begin{array}{c} (\mathbf{c}) + \infty \\ (\mathbf{d}) \ 0 \end{array}$

(b) non esiste

INTEGRALI Una primitiva della funzione $f(x) = \frac{e^{2x}}{e^{2x}+1}$ è:

(a) $2\ln(e^x+1)+3$

(b) $2\ln(e^x+1)+1$

(c) $\ln(e^{2x} + 1) - 4$ (d) $\frac{\ln(e^{2x} + 1)}{2} + 7$

MASSIMO/MINIMO

La funzione e^{-x^2} ha in x = 0:

(a) Un punto di massimo

(c) Un punto di flesso

(b) Un punto di minimo

(d) Un punto di discontinuità

Ξ

La funzione $f(x) = e^{3x-x^3}$ è monotona decrescente sse:

(a)
$$x \in [-1, 1]$$

$$\begin{array}{|c|c|} \hline (\mathbf{c}) & x \in (-\infty, -1] \lor [1, +\infty) \\ \hline (\mathbf{d}) & x \in [-1, +\infty) \\ \hline \end{array}$$

(b)
$$x \in (-\infty, 1]$$

(d)
$$x \in [-1, +\infty)$$

Domande Aperte

1 Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = (x^2 - 2x)e^{-x}$. Allora:

- Dominio
- Limiti
- Asintoti
- Massimi/Minimi
- Più grosso intervallo di convessità del tipo $(k, +\infty)$

- Polinomio di Mclaurin del secondo ordine:
- La funzione $g(x) = f(x) + \sqrt{x^2 x}$ per $x \to +\infty$ ha asintoto obliquo di equazione:
- 2 Data la funzione $f(x) = \frac{1}{x \ln^x} : (1, +\infty) \to \mathbb{R}$,
 - Si scrivano tutte le primitive e il loro dominio di definizione
 - Si determini la primitiva che assume in x = e lo stesso valore della funzione $g(x) = \frac{e}{x}$
 - La media integrale di f(x) sull'intervallo $[e, e^3]$ vale

Settembre 2019 6

Domande Chiuse 6.1

Settembre 2019 7

Domande Chiuse 7.1

La serie $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^3}$

- (a) converge asolutamente
- (b) converge, ma non assolutamente
- (c) diverge
- (d) è irregolare

 $\lim_{n \to +\infty} \frac{n^3 + 5ln^2 n - n^2 \sqrt{n^3 + 1}}{-n^3 + e^{1/n} - n^2 \sqrt{n}} \ e^{-n^3 + e^{1/n} - n^2 \sqrt{n}}$

(a) $-\infty$

(b) $+\infty$

(c) 1 (d) 0

La funzione $f(x) = x^2 + 2 \ln x$ è convessa se e solo se

(a) $x \in (-1,1)$

(c) $x \in (1, +\infty)$ (d) $x \in (0, +\infty)$

(b) $x \in (0,1)$

La funzione $f(x) = \begin{cases} \frac{\ln(1+x^2)}{x} & x > 0\\ 1 + k\cos x & x \le 0 \end{cases}$ è continua in x = 0 se e solo se

- (a) k=0
- (b) k=1

L'insieme delle soluzioni della disequazione $\sqrt{4-x^2} \leq \sqrt{3}$ è

- (a) $[-2, -1] \cup [1, 2]$ (b) $(-\infty, -1] \cup [1, +\infty]$
- (c) [-1,1](d) $(-2,-1] \cup [1,2)$

la funzione $f(x) = xe^x - 3e^x$ ha

- (a) un punto di massimo globale
- (b) un punto di minimo globale
- (c) un punto di minimo locale ma non globale
- (d) un punto di massimo locale ma non globale

Ξ

Ξ

 $\frac{7}{\text{Sia }}a_n = \frac{1}{n^2 + n} \text{ e } b_n = \frac{1}{n}.$ Allora

- (a) $a_n \sim b_n$ (b) $a_n = o(b_n)$

- (c) $b_n = o(a_n)$ (d) nessuna delle alternative propo-

 $\frac{8}{\text{L'integrale}} \int_{-2}^{5} \sqrt[3]{x+3} dx \text{ vale}$

- (a) 3
- **(b)** 315/4

- (c) 45/4 (d) 7/8

7.2Domande Aperte

1 Data la funzione

$$f(x) = \frac{\ln x}{4x^2}$$

1. Si studi f e se ne tracci un grafico qualitativo (dominio, limiti ai punti di frontiera del dominio, eventuali asintoti, monotonia, punti di estremo relativo e/o assoluto, convessità/concavità);

- 2. si scriva l'equazione della retta tangente al grafico di f nel upnto di ascissa x = e;
- 3. si calcoli $\int_1^4 f(x)dx$
- 2 Data la serie

$$\sum_{n=2}^{+\infty} \left(\frac{1}{x-1}\right)^n$$

- 1. Si determinino i valori di $x \in \mathbb{R}\{1\}$ per cui la serie converge;
- 2. per i valori determinati al punto 1, si calcoli la somma della serie.

Settembre 2020 8

Domande Chiuse 8.1

 $\underline{\mathbf{1}}$ Dato l'insieme $A=\{\frac{(-1)^n2n}{n+1}, n\geq 1\},$ allora

(a) inf A = -2(b) sup A = 4/3

Ξ

 $\lim_{n \to +\infty} \cos \frac{1}{n} \cdot \frac{\ln(1 + \frac{1}{n})}{\frac{2}{n} + \frac{1}{n^3}} =$

(a) 1/2

(c) $+\infty$ (d) 0

(b) 1

La somma della serie $\sum_{n=2}^{+\infty} \frac{4}{3^n}$ vale

(a) 2/3

(b) 6

 $\underline{\underline{4}}$ sia $(x) = \frac{1}{x} + \sqrt{x}$. Allora $\frac{d}{dx} \ln(f(x))$ per x = 4 è

(a) 1/12

(b) 7/36

sia f(x) $\begin{cases} x^2 - x & x \le 1 \\ \frac{e^x - e}{3(x - 1)^2} & x > 1 \end{cases}$ Allora in x = 1 la funzione f:

(a) Ha discontinuità di seconda spe- | (c) Ha discontinuità eliminabile

(b) Ha discontinuità di prima specie (d) Ha punto di continuità

Siano $f(x) = e^x - 2$ e $g(x) = e^{|x|}$. Allora $g \circ f(x) =$

(a) $e^{|e^x-2|}$ (b) $e^{|x|-2}$

(c) $e^{e^{|x|}} - 2$ (d) $(e^x - 2) \cdot e^{|x|}$

 $\frac{7}{\text{Sia }}f(x)=x^2\ln x.$ Allora f è crescente in:

Ξ

Ξ

(a) $(0, e^{-1/2})$ (b) $(e^{-1/2}, +\infty)$

 $\frac{8}{\int_0^1 \frac{3x}{x^2+1}} dx =$

(a) $\frac{3}{2} \ln 2$ (b) $3 \ln 2$

 $\begin{array}{|c|c|} (\mathbf{c}) & \frac{\pi}{12} \\ (\mathbf{d}) & \frac{\pi}{4} \end{array}$

8.2 Domande Aperte

1 data la funzione $f(x) = (1-x)e^{\frac{1}{x}}$,

1. il suo dominio è:

2. i limiti ai punti di frontiera del dominio sono (4):

3. GLi eventuali asintoti verticali sono

4. Gli eventuali asintoti obliqui sono

5. il più ampio intervallo di monotonia del tipo $(-\infty, k)$ si ha per $k = \dots$ (la monotonia è del tipo?)

2 Data la funzione $f(x) = \frac{\ln x}{x} : (0, +\infty) \to \mathbb{R}$

- 1. Si scivano le primitive Φ :
- 2. si determini la primitiva Φ tale che $\Phi(e^2) = 2\Phi(e)$
- 3. si calcoli $\int_{e}^{e^2} \frac{\ln x}{x} dx =$

3 Sia $\sum_{n=1}^{+\infty}$ una serie numerica

- 1. La serie si dice convergente se:
- 2. se $a_n = \ln n \ln(n+1)$, si calcoli la somma parziale s_n :
- 3. Usando la definizione di serie convergente, si verifichi se la serie $\sum_{n=1}^{+\infty} (\ln n$ ln(n+1)) converge oppure no:

Settembre 2021 9

Domande Chiuse 9.1

 $\frac{1}{\text{La serie}} \sum_{n=1}^{+\infty} (-1)^n \frac{1}{2n^4}$

- (a) converge assolutamente
- (c) diverge
- (b) converge, ma non assolutamente
 - (d) è irregolare

 $\lim_{n+\to+\infty} \frac{n^3 + 5ne^{-n^2} - n^2\sqrt{n^3 + 2}}{-n^3 + \cos n - n^2\sqrt{n}} \ \text{è:}$

(a) $-\infty$

(b) $+\infty$

(c) 1 (d) 0

La funzione $f(x) = \ln x + \frac{x^4}{12}$ è convessa se e solo se

(a) $x \in (-1,1)$

 $\begin{array}{|c|c|} (\mathbf{c}) & x \in (1, +\infty) \\ (\mathbf{d}) & x \in (0, +\infty) \end{array}$

Ξ

(b) $x \in (0,1)$

la funzione $f(x) = \begin{cases} \frac{\ln(1-x^2)}{x^2} & x > 0\\ 1 + k\cos x & x \le 0 \end{cases}$ è continua in x = 0 se e solo se:

(a) k = 0

(b) k = -1

(c) k = -2(d) per nessun valore di k

L'insieme delle soluzioni della disequazione $x(e^{2x} - 3) < 0$ è:

 $\begin{array}{c} (\mathbf{c}) \ (-\infty, 0) \cup (\frac{\ln 3}{2}, +\infty) \\ (\mathbf{d}) \ (\frac{\ln 3}{2}, +\infty) \end{array}$

(a) $(0, \frac{\ln 3}{2})$ (b) $(-\infty, \frac{\ln 3}{2})$

La funzione $f(x) = e^x - xe^x$ ha:

- (a) un punto di minimo globale
- (b) un punto di massimo globale
- (c) un punto di massimo locale ma non globale

Ξ

(d) un punto di minimo locale ma non globale

 $\frac{7}{\text{Sia } a_n = \frac{1}{3n^2 - n}}$ e $b_n = \frac{1}{n}$. Allora

- (a) $a_n \sim b_n$
- $(\mathbf{b}) \ a_n = o(b_n)$

- (c) $b_n = 0(a_n)$ (d) nessuna delle alternative propo-

 $\underline{8}$ L'integrale $\int_{-2}^{5} \sqrt[3]{x+3} dx$ vale:

- (a) 3
- **(b)** 315/4

- (c) 45/4 (d) 7/8

Domande Aperte 9.2

1 Data la funzione

$$f(x) = \ln x + \frac{2}{x}$$

- 1. Il dominio è:
- 2. I limiti agli estremi del dominio sono:

- 3. Ha asintoti? Se sì quali?
- 4. Quali sono gli intervalli di monotonia?
- 5. Ci sono estremanti? se si quali? Assoluti o relativi?
- 6. Si determinino gli intervalli di concavità/convessità
- 7. La retta tangente al graico di f nel punto di ascissa x=1 ha equazione:
- 8. $\int_1^e f(x)dx$ vale
- 2 Data la serie $\sum_{n=2}^{+\infty} \left(\frac{1}{x-4}\right)^n$,
 - 1. Si determinino i valori di $x \in \mathbb{R} \backslash \{4\}$ per cui la serie converge:
 - 2. Per i valori determinati al punto precedente si calcoli la somma della serie: