Metody oceny jakości klasyfikacji

Dr inż. Urszula Libal

Metody oceny jakości klasyfikacji

SPIS TREŚCI:

- ☐ Macierz pomyłek
- ☐ Miary oceny jakości klasyfikacji
- ☐ Krzywa ROC
- ☐ Kroswalidacja

Z=1.2.3 ... X 5

1. Zbiór uczący i zbiór testowy

1. Zbiór uczący

— służy do konstrukcji (treningu) klasyfikatora w procesie uczenia

2. Zbiór testowy

- służy do weryfikacji jakości klasyfikatora

Podział zbioru danych na zbiór uczący i testowy zależy od liczności tego zbioru.

Zbiory uczący i testowy są rozłączne (zawierają inne obrazy).

Częsty podział dla dużych zbiorów danych to:

- 2/3 (zbiór uczący), 1/3 (zbiór testowy) lub
- 75% (zbiór uczący), 25% (zbiór testowy).

2. Metody oceny jakości klasyfikatora

Ocena klasyfikacji na podstawie zbioru testowego:

- 1. Macierz pomyłek (confusion matrix)
- 2. Miary oceny jakości klasyfikacji:
 - ryzyko,
 - błąd klasyfikacji,
 - trafność klasyfikacji,
 - współczynniki TP, TN, FP, FN, ...
- 3. Krzywa ROC
- 4. Kroswalidacja (cross-validation)

3. Macierz pomyłek

Przypadek klasyfikacji do wielu klas $\mathcal{M} = \{1, 2, \dots, m\}$:

	klasa wskazana przez klasyfikator			
klasa pochodzenia obrazu	C_1	<i>C</i> ₂		C_m
C_1	r_{11}	r ₁₂		r_{1m}
C_2	r_{21}	r_{22}		r_{2m}
:	÷	:	٠	i i
C_m	r_{m1}	r_{m2}		r_{mm}

 r_{ij} - liczba obrazów testowych z klasy C_i , przypisana do klasy C_j ,

 N_i - liczność obrazów z klasy C_i (zbiór testowy)

Liczność zbioru testowego:

$$#test = \sum_{i=1}^{m} N_i$$

Łączna liczba **poprawnie** zaklasyfikowanych obrazów testowych:

$$\#correct = \sum_{i=1}^{m} r_{ii}$$

Łączna liczba **błędnie** zaklasyfikowanych obrazów testowych:

$$\#error = \#test - \#correct$$

Przypadek klasyfikatora binarnego:

	klasa wskazana przez klasyfikator			
klasa pochodzenia obrazu	C_1 (+)	C ₂ (-)		
C ₁ (+)	r ₁₁ (TP)	r ₁₂ (FN)		
C ₂ (-)	r ₂₁ (FP)	r ₂₂ (TN)		

TP (true positive) - liczba poprawnie zaklasyfikowanych obrazów z klasy C₁

FP (false positive) - liczba błędnie zaklasyfikowanych obrazów z klasy \emph{C}_2 do klasy

 C_1

FN ($false\ negative$) - liczba błędnie zaklasyfikowanych obrazów z klasy C_1 do klasy C_2

TN (true negative) - liczba poprawnie zaklasyfikowanych obrazów z klasy C2

Rysunek 1. Współczynniki TP, FP, FN i TN dla klasyfikacji binarnej.

4. Miary oceny jakości klasyfikacji

Miary uniwersalne (dla dowolnej liczby klas):

— trafność (accuracy)

$$\frac{\#correct}{\#test}$$

— błąd klasyfikacji (error rate)

$$\frac{\#error}{\#test} = 1 - \frac{\#correct}{\#test}$$

Miary w przypadku klasyfikacji binarnej:

trafność

$$\frac{TP+TN}{N_1+N_2} = \frac{TP+TN}{TP+FN+FP+TN}$$

- błąd klasyfikacji

$$\frac{FP+FN}{N_1+N_2} = \frac{FP+FN}{TP+FN+FP+TN}$$

— Ryzyko klasyfikatora szacujemy za pomocą błędu klasyfikacji (patrz rys. 1)

— współczynnik TP (TP rate, czułość)

$$TPR = \frac{TP}{N_1} = \frac{TP}{TP + FN}$$

— współczynnik TN (TN rate, specyficzność)

$$TNR = \frac{TN}{N_2} = \frac{TN}{FP + TN}$$

— współczynnik FP (FP rate)

$$FPR = \frac{FP}{N_2} = \frac{FP}{FP + TN}$$

5. Krzywa ROC

Rysunek 2. Krzywa ROC.

11

6. K-krotna kroswalidacja

Dzielimy dane na k możliwie równych, wzajemnie rozłącznych, części. Do uczenia wykorzystujemy k-1 części, do testowania pozostałą jedną część. Procedurę powtarzamy k razy, za każdym razem zmieniając zbiór testowy na kolejną niewykorzystaną dotychczas część.

Rysunek 3. K-krotna kroswalidacja: U-uczenie, T-testowanie.

12

Sumaryczna liczba poprawnych klasyfikacji podzielona przez liczność zbioru danych N stanowi **oszacowanie trafności klasyfikacji**.

— Szczególny przypadek:

N-krotna kroswalidacja (*leave-one-out cross-validation*), gdzie *N* to liczność zbioru danych przed podziałem na zbiór uczący i testowy.