21 Ультрафільтри

§21.1 Ультрафільтр як мажоранта

Лема 21.1

Нехай \mathfrak{M} — лінійно упорядкована непорожня сім'я фільтрів, заданих на множині X, тобто для довільни $\mathfrak{F}_1, \mathfrak{F}_2 \in \mathfrak{M}$ або $\mathfrak{F}_1 \subset \mathfrak{F}_2$, або $\mathfrak{F}_2 \subset \mathfrak{F}_1$. Тоді об'єднання \mathfrak{F} усіх фільтрів сім'ї \mathfrak{M} також буде фільтром на X.

Доведення. Перевіримо виконання аксіом фільтра для об'єднання сім'ї множин \mathfrak{M} . Перші дві аксіоми є очевидними, а тому перевіримо останні дві.

Перетин: якщо $A, B \in \mathfrak{F}$, то знайдуться такі $\mathfrak{F}_1, \mathfrak{F}_2 \in \mathfrak{M}$, що $A \in \mathfrak{F}_1, B \in \mathfrak{F}_2$. За умовою, один з фільтрів \mathfrak{F}_1 і \mathfrak{F}_2 мажорує інший. Нехай, без обмеження загальності, $\mathfrak{F}_1 \subset \mathfrak{F}_2$. Тоді окрім множини B йому належить і множина A, адже $A \in \mathfrak{F}_1 \subset \mathfrak{F}_2$. Оскільки \mathfrak{F}_2 — фільтр, то $A \cap B \in \mathfrak{F}_2 \subset \mathfrak{F}$, тобто сім'я \mathfrak{F} справді замкнена відносно (скінченного) перетину.

Надмножина: якщо $A \in \mathfrak{F}$ і $A \subset B \subset X$, то знайдеться такий $\mathfrak{F}_1 \in \mathfrak{M}$, що $A \in \mathfrak{F}_1$, а тому $B \in \mathfrak{F}_1$, як надмножина елеметну фільтра. Як наслідок, $B \in \mathfrak{F}$ і сім'я \mathfrak{F} виявляється замкненою відносно взяття надмножини.

Означення 21.1. Ультрафільтром на X називається максимальний за включенням фільтр на X. Інакше кажучи, фільтр $\mathfrak A$ на X називається ультрафільтром, якщо будь-який фільтр $\mathfrak F$ на X, що мажорує $\mathfrak A$, збігається з $\mathfrak A$.

Теорема 21.1

Для кожного фільтра \mathfrak{F} на X існує ультрафільтр, що його мажорує.

Доведення. Випливає з леми Цорна. Більш детально, необхідно розглянути частково упорядковану множину (сім'ю) фільтрів, що мажорують \mathfrak{F} . Лемма 21.1 показує, що довільний ланцюг (лінійно впорядкована підмножина) має верхню межу (також кажуть верхню грань або мажоранту).

Тоді лема Цорна стверджує, що у нашій частково упорядкованій множині є максимальний елемент. З одного боку зрозуміло, що він буде ультрафільтром, адже немає іншого фільтра, що його мажорує, а з іншого — зо він буде мажорувати \mathfrak{F} , адже усі елементи нашої частково упорядкованої множини за побудовою мажорують \mathfrak{F} .

§21.2 Властивості і критерій ультрафільтра

Лема 21.2

Нехай $\mathfrak A$ — ультрафільтр, $A\subset X$ і всі елементи ультрафільтр перетинаються з A. Тоді $A\in \mathfrak A$.

¹для якого не існує більшого, але не обов'язково більший за кожен інший

Доведення. Додавши до сім'ї множин $\mathfrak A$ як елемент множину A ми отримаємо центровану систему множин. Справді, для цього достатньо аби $\mathfrak A$ була просто фільтром, а точніше замкненою відносно скінченного перетину. Тоді додавши у цей перетин, який є елементом $\mathfrak A$, ще й A можна просто скористатися умовою на непорожні перетини A із елементами $\mathfrak A$. Зрозуміло, що ці міркування працюють і для ультрафільтрів, адже кожен ультрафільтр є фільтром. Таким чином уся розширена система множин є центрованою.

За теорем. 19.2 звідси випливає, що знайдеться фільтр \mathfrak{F} , який містить усі елементи нашої центрованої системи. Але тоді $\mathfrak{F} \supset \mathfrak{A}$, звідки випливає, що $\mathfrak{F} = \mathfrak{A}$, адже \mathfrak{A} — ультрафільтр, і розширюватися уже нікуди. У той же час, за побудовою, $A \in \mathfrak{F}$, тобто $A \in \mathfrak{A}$.

Зауваження 21.1 — Якщо зняти умову того, що $\mathfrak A$ — ультрафільтр, і сказати що він просто фільтр, то вийде, що його можна розширити до якогось $\mathfrak A'$ щоб додати якийсь новий елемент A, за умови що цей A перетинається із усіма елеменами $\mathfrak A$.

Теорема 21.2 (критерій ультрафільтра)

Для того, щоб фільтр $\mathfrak A$ на X був ультрафільтром, необхідно і достатньо, щоб для довільної множини $A\subset X$ або сама множина A, або її доповнення $X\setminus A$ належало фільтру $\mathfrak A$.

Доведення. **Необхідність.** Нехай \mathfrak{A} — ультрафільтр, і $X \setminus A \notin \mathfrak{A}$. Тоді жодна множина $B \in \mathfrak{A}$ не міститься цілком в $X \setminus A$, тобто будя-яка $B \in \mathfrak{A}$ перетинається з A. Отже, за попередньою лемою, $A \in \mathfrak{A}$.

Достатність. Припустимо що \mathfrak{A} — не ультрафільтр. Тоді існує фільтр $\mathfrak{F} \supset \mathfrak{A}$ і множина $A \in \mathfrak{F} \setminus \mathfrak{A}$. За побудовою, $A \notin \mathfrak{A}$. З іншого боку, $X \setminus A$ не перетинається з $A, A \in \mathfrak{F}$, отже $X \setminus A \notin \mathfrak{F}$, а отже $X \setminus A \notin \mathfrak{A} \subset \mathfrak{F}$.

Наслідок 21.1

Образ ультрафільтра є ультрафільтром.

Доведення. Нехай $f: X \to Y$ і \mathfrak{A} — ультрафільтр на X. Розглянемо довільну множину $A \subset Y$. Тоді або $f^{-1}(A)$ або $f^{-1}(Y \setminus A) = Y \setminus f^{-1}(A)$ належить \mathfrak{A} , отже $A \in f[\mathfrak{A}]$ або $Y \setminus A \in f[\mathfrak{A}]$.

§21.3 Ультрафільтри, збіжність і компактність

Лема 21.3

Нехай $\mathfrak A$ — ультрафільтр на хаусдорфовому топологічному просторі X і $x\in \mathrm{LIM}(\mathfrak A).$ Тоді $x=\lim \mathfrak A.$

Доведення. Нехай $U \in \Omega_x$. Тоді за означенням граничної точки окіл U перетинається зі всіма елементами ультрафільтра \mathfrak{A} . За демм. 21.2 $U \subset \mathfrak{A}$.

21 Ультрафільтри 125

Теорема 21.3 (критерій компактності у термінах ультрафільтрів)

Для хаусдорфового топологічного простору X нижченаведені умови ε еквівалентними:

- X компакт;
- \bullet кожен ультрафільтр на X має граничну точку;
- \bullet кожен ультрафільтр на X має границю.

Доведення. $1 \implies 2$. Фільтр \mathfrak{F} — центрована сім'я множин. Тим більше, центрованою буде сім'я замикань елементів фільтра. Отже, перетин LIM(\mathfrak{F}) цих замикань не є порожнім.

 $2\implies 1$. Нехай $\mathfrak C$ — довільна центромана система замкнених підмножин простору X. За теорем. 19.2 існує фільтр $\mathfrak F\supset \mathfrak C$. Тоді

$$\bigcap_{A\in\mathfrak{C}}\overline{A}\supset\bigcap_{A\in\mathfrak{F}}\overline{A}=\mathrm{LIM}(\mathfrak{F})\neq\varnothing.$$

- $2 \implies 3$. За умовою кожен ультрафільтр має граничну точку, а за лемм. 21.3 ця точка буде його границею.
- $3 \implies 2$. Розглянемо довільний фільтр \mathfrak{F} на X і виберемо (теорем. 21.1) ультрафільтр $\mathfrak{A} \supset \mathfrak{F}$. За умовою ультрафільтр \mathfrak{A} має границю $x \in X$. Згідно твердження 3) теорем. 20.2 точка $x \in \text{граничною точкою фільтра } \mathfrak{F}$.

Наслідок 21.2

Нехай $\mathfrak A$ — ультрафільтр на $E,\,X$ — топологічний простір і образ функції f:E o X лежить в деякому компакті $K\subset X.$ Тоді існує $\lim_{\mathfrak A}f.$

Доведення. Розглянемо f як функцію, що діє з E в K. Оскільки (виснов. 21.1) $f[\mathfrak{A}]$ є ультрафільтром на компакті K, то існує $\lim f[\mathfrak{A}]$. Отже, за означенням, $\lim_{\mathfrak{A}} = \lim f[\mathfrak{A}]$.

§21.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 484–490).