

Bachelorarbeit

Implementation und Auswertung von Single Active Gene Mutation in CGP

> Henri Johannes Lübeck 1. Februar 2019

Betreuer:

Prof. Dr. Günter Rudolph Roman Kalkreuth

Fakultät für Informatik
Algorithm Engineering (LS 11)
Technische Universität Dortmund
http://ls11-www.cs.tu-dortmund.de

Inhaltsverzeichnis

T	Ein	leitung	1
	1.1	Motivation und Hintergrund	1
	1.2	Aufbau der Arbeit	1
2	Gru	ındlagen	3
	2.1	Cartesian Genetic Programming	3
	2.2	Mutationsalgorithmen	3
		2.2.1 Traditioneller Mutationsalgorithmus	5
		2.2.2 Der Algorithmus single active gene mutation	5
	2.3	Probleme	6
		2.3.1 Parität	6
		2.3.2 3-Bit-Multiplizierer	6
3	Ver	suche	9
	3.1	Versuchskonfiguration	9
	3.2	Ergebnisse für das Paritätsproblem	10
	3.3	Ergebnisse für den 3-Bit-Multiplizierer	10
	3.4	Diskussion	12
		3.4.1 Analyse der Hypothese	14
4	Zus	ammenfassung und Ausblick	2 1
\mathbf{A}	bild	lungsverzeichnis	2 3
\mathbf{A}	gori	thmenverzeichnis	25
Sy	mbo	olverzeichnis	27
Li	terat	curverzeichnis	3 0
Ei	dess_{1}	tattliche Versicherung	3 0

Kapitel 1

Einleitung

Künstliche Intelligenz hat in den letzten Jahren immer mehr an Bedeutung gewonnen und mit ihr Themen wie neuronale Netzwerke, Evolutionary Programming (EP) und Genetic Programming (GP). Diese Bachelorarbeit befasst sich mit Cartesian Genetic Programming (CGP), eine von Miller et al. [10] eingeführte neue Form des GP die anstelle eines Baumes einen gerichteten azyklischen Graphen als repräsentative Datenstruktur nutzt.

1.1 Motivation und Hintergrund

Seit dem Vorstellen von CGP im Jahr 2000, hat sich an seiner Optimierung nicht viel verändert. Daher untersucht diese Bachelorarbeit einen neuen Mutationsalgorithmus, die 'single active gene mutation', den Julian F. Miller im Gespräch mit meinem Betreuer Roman Kalkreuth vorgestellt hat. In einem CGP sind ein Großteil der Knoten nicht aktiv, also nicht relevant für die Ausgabe des Graphen, können aber durch Mutationen aktiviert werden. Das führt dazu, dass ein Großteil der Mutationen auf nicht aktiven Knoten stattfindet, welche die Ausgabe nicht direkt unmittelbar beeinflussen. Daher haben Miller et al. die Theorie aufgestellt, dass das zu unnötigen Auswertungen führt, da Graphen verglichen werden, die eine identische Ausgabe haben [9]. Der Mutationsalgorithmus soll diese Problematik lösen, indem er sich auf den aktiven Teil des Graphen konzentriert, eine genau Erklärung des Algorithmus folgt später.

1.2 Aufbau der Arbeit

Im Rahmen dieser Bachelorarbeit soll ein neuer Mutationsalgorithmus in Java implementiert, untersucht und mit dem traditionellen Mutationsalgorithmus verglichen werden. Hierzu werden, neben dem traditionellen Algorithmus, mehrere Konfigurationen und Variationen des Algorithmus auf zwei Problemstellungen getestet. Das Ziel der Arbeit ist es, herauszufinden, wie gut 'single active gene mutation' im Verhältnis zum traditionellen

Algorithmus abschneidet und bei diesem Vergleich abzuschätzen, wie sehr die unnötigen Auswertungen ins Gewicht fallen.

In dem ersten Kapitel der Arbeit wird das Thema vorgestellt. Hierfür werden Motivation, Hintergrund und Ziel der Arbeit erläutert. Das zweite Kapitel beschäftigt sich mit den Grundlagen. Dabei werden die notwendigen Algorithmen und Problemstellungen beschrieben. Kapitel drei beschäftigt sich mit den Versuchen. Es enthält dabei die Versuchskonfiguration, die Ergebnisse der Versuche sortiert nach Problemen und eine anschließende Diskussion der Ergebnisse. Das letzte Kapitel enthält eine Zusammenfassung der Arbeit, sowie einen Ausblick auf Fragen die durch diese Bachelorarbeit aufgeworfen wurden und nicht behandelt werden konnten.

Kapitel 2

Grundlagen

2.1 Cartesian Genetic Programming

Genetic Programming (GP), wie von Koza [3] [4] [5] verbreitet, nutzt Bäume zur Darstellung und Entwickelung von Programmen. Neue Generationen werden produziert, indem zufällig gewählte Teilbäume getauscht werden. Ursprünglich wurden Bäume als Datenstruktur gewählt, um Crossover zu unterschiedlich langer Genotypen zu ermöglichen. Später hat sich jedoch herausgestellt, dass Crossover nicht immer der beste genetische Operator ist um neue Generationen zu produzieren [6] [7] [11].

Im Gegensatz zu GP benutzt CGP eine Liste aus Integern die auf gerichtete azyklische Graphen abgebildet werden. Durch eine fest bestimmte Anzahl an Knoten wird CGP vor 'aufblähen' geschützt, was ein Charakteristisches Problem von GP darstellt. Die Knoten sind in einem Gitter angeordnet und können nicht mit Knoten in der selben Spalte verbunden sein 2.1 Der gebräuchlichste Ansatz ist es, die Knoten in einer Reihe anzuordnen, sodass sich keine zwei Knoten in der selben Spalte befinden und für die Generierung der einer neuen Generation den (1+4) CGP Algorithmus () zu verwenden. Dieser nutzt das Individuum mit der geringsten Fitness und erzeugt aus diesem vier Nachkommen [10]. Vor kurzem ist jedoch ein Paper erschienen, das sich mit einem Ansatz beschäftigt hat, bei dem ein rechteckiges Gitter und ein $(\mu+\lambda)$ CGP Algorithmus verwendet werden [2]. Während dieser bessere Resultate für boolsche und symbolische Regressionsfunktionen erzielt hat, wurde in dieser Arbeit der gebräuchliche (1+4) Ansatz verwendet, da dieser sich weiterhin für boolsche Benchmarks eignet.

2.2 Mutationsalgorithmen

Die folgenden Mutationsalgorithmen unterscheiden sich lediglich in der Auswahl der zu mutierenden Knoten. Sind ein oder mehrere Knoten ausgewählt, wird zufällig bestimmt ob

```
1: procedure (1+\lambda)-CGP
       initialisiere(P)
                                                             // Initialisiere Eltern Individuum
 2:
3:
       \mathbf{while} \; \mathrm{true} \; \mathbf{do}
                                                       // Bis das Abbruchkriterium erfüllt ist
           Q \leftarrow \text{erzeugen}(P)
                                                  // Erzeuge \lambda Nachkommen durch Mutation
 4:
           Evaluiere(Q)
                                                    // Evaluiere die Fitness der Nachkommen
 5:
           if Q das Abbruchkriterium erfüllt then
 6:
 7:
               return Q
           end if
 8:
           if mindestens ein Individuum von Q eine bessere Fitness hat als P then
9:
               P \leftarrow \mathbf{Q} // Ersetze das Eltern Inividuum durch den besten Nachkommen
10:
           end if
11:
       end while
12:
13: end procedure
```

Algorithmus 2.1: $(1+\lambda)$ -CGP Algorithmus

0130 1047 3522 8501 6832 4260 61072 911 101 8862 9101375 13141116 1010142 131617

Abbildung 2.1

sich eine der input Kanten ändert, oder ob die Funktion innerhalb des Knoten ausgetauscht wird.

2.2.1 Traditioneller Mutationsalgorithmus

Dies ist die Standardmethode für CGP. Es wird eine Mutationswahrscheinlichkeit angegeben (z.B. 0,01) und jeder Knoten hat diese Wahrscheinlichkeit zu mutieren. Somit kann es passieren, das die Hälfte der Knoten, oder gar kein Knoten mutiert. Da ein Großteil der Knoten nicht aktiv ist, passiert es bei einer geringen Mutationsrate häufig, das kein aktiver Knoten mutiert wird und sich somit die Fitness nicht ändert. Eine zu große Mutationsrate ist allerdings für viele Probleme ungeeignet, da das Zufallselement zu groß ist und eine Schrittweise Annäherung an das Ziel schwieriger wird.

```
1: procedure Mutationsalgorithmus für CGP
                                                            // Initialisiere den Graph
2:
     initialisiere(G)
     initialisiere(W)
                                                     // Initialisiere die Mutationsrate
3:
     for all E in G do
                                     // Für jede Kante und jeden Knoten im Graphen
4:
                                                     // mit der Wahrscheinlichkeit W
         if Wahr(W) then
5:
                                                                        // mutiere E
            gib E einen zufälligen passenden Wert
6:
         end if
7:
     end for
8:
9: end procedure
```

Algorithmus 2.2: traditioneller CGP Mutationsalgorithmus

2.2.2 Der Algorithmus single active gene mutation

Bei der 'single active gene mutation' gibt es keine Mutationswahrscheinlichkeit. Stattdessen wird bei jedem Mutationsvorgang genau ein aktiver Knoten zufällig ausgewählt und dieser wie vorher beschrieben mutiert. Dabei ist es weiterhin möglich teile des Graphen zu aktivieren und zu deaktivieren, allerdings hat jede Mutation eine direkte Auswirkung auf das Ergebnis und somit auf die Fitness. Das soll das Problem der traditionellen Mutation lösen, bei der es sein kann, dass eine Mutation über mehrere Generationen keine Auswirkung auf die Fitness hat. Der Nachteil an 'single active gene mutation' ist, dass es nicht mit der Anzahl an Knoten im Graphen wächst. Ein mutierter Knoten pro Generation mag für einen Graphen mit 50 Knoten ausreichend sein, ist für einen Graphen mit 500 Knoten jedoch viel zu langsam. Außerdem wird sich 'single active gene mutation' wahrscheinlich nicht so gut auf Probleme anwenden lassen, die lokale Optima haben, da sich teile des Graphen zwar aktivieren und deaktivieren, jedoch nicht im inaktiven zustand verändern lassen.

Daher testen wir den Algorithmus auch mit mehreren mutierenden knoten. Dabei geben wir einen Parameter wie die Mutationswahrscheinlichkeit bei der traditionellen Mutation und in ganzen positiven Zahlen an.

Der Algorithmus partial active gene mutation

Bei der Mutation von Individuen kann es passieren das der aktive Teil des Graphen stark fluktuiert. Bei der traditionellen Mutationsmethode automatisch mehr aktive knoten mutiert werden, da die Wahrscheinlichkeit einen aktiven knoten zu treffen größer ist, wenn mehr vorhanden sind. Hierfür wird eine Variation der 'single active gene mutation' eingeführt, die 'partial active gene mutation'. Die 'partial active gene mutation' verhält sich wie die 'single active gene mutation', bestimmt allerdings für jedes Individuum die Mutationsrate neu um sie auf die Anzahl der aktiven knoten anzupassen. Dies geschieht mithilfe der derzeitigen Anzahl an aktiven Knoten und einem zu Beginn eingegebenen Mutationsbruchteil. Hierbei ist zu beachten, dass immer aufgerundet wird um zu verhindern das die Mutationsrate auf 0 sinkt wodurch wir feststecken würden. Ist der Bruchteil beispielsweise 0,02 und die Anzahl an aktiven Knoten 55, würden 2 aktive Knoten mutiert werden.

2.3 Probleme

Da 'Cartesian Genetic Programming' eignet sich besonders gut um boolsche Probleme [8] und Probleme mit mehreren Outputs zu lösen. Daher nutzen wir zwei boolsche Probleme um den Mutationsalgorithmus zu testen, von denen eines mehrere Ausgaben und das andere eine Ausgabe hat.

2.3.1 Parität

Als boolsches Problem mit einer Ausgabe, verwenden wir das Paritätsproblem. Hierbei erhält das CGP eine Bitfolge und gibt TRUE aus, falls die Parität der Bitfolge gerade ist, also falls sich eine gerade Anzahl an Einsen in der Bitfolge befinden, andernfalls gibt das Programm FALSE aus. Das CGP hat also X Inputknoten und einen Outputknoten, wobei X die Länge der Bitfolge ist. Dieses Problem lässt sich in unterschiedlichem Umfang anwenden, da mit steigender Länge des Eingabebits die Anzahl der Generationen bis das CGP das Problem lösen kann zunimmt. Wir verwenden unterschiedliche Varianten des Paritätsproblems, mit einer Eingabe von 4, 5, 6 und 7 Bits. Mehr erfahren wir später.

2.3.2 3-Bit-Multiplizierer

Das 3-Bit-Multiplizierer Problem (ebenfalls boolsches Problem) ist besonders spannend, da sich die Graphen basierte Struktur des CGP anbietet Schaltkreise darzustellen. Hierbei versuchen wir aus dem CGP einen 3-Bit-Multiplizierer zu machen. Wir brauchen also 2

2.3. PROBLEME 7

Bitfolgen die jeweils 3 Bits lang sind. Mit 3 Bits lässt sich 7 als größte Zahl darstellen. sieben mal sieben ist gleich 49, welche sich mit 6 Bits darstellen lässt, also brauchen wir 6 Bits für die Ausgabe. Unser Graph braucht also 6 Inputknoten und 6 Ouputknoten.

Kapitel 3

Versuche

3.1 Versuchskonfiguration

Zur Versuchsdurchführung nutzen wir zwei boolsche Probleme genutzt, 3-Bit-Multiplizierer und Parität, wobei wir die Varianten Parität 4, Parität 5, Parität 6 und Parität 7 verwenden. Um zu bewerten, wie Effizient die Mutationsalgorithmen arbeiten, lassen wir uns die Anzahl der Generationen ausgeben, bis ein Graph gefunden wurde, der das Problem löst. Das Ziel ist es die Anzahl der Generationen zu verringern, da mehr Generationen mehr Auswertungen der Graphen bedeuten was wiederum Rechenzeit in Anspruch nimmt. Verglichen werden der traditionelle Mutationsalgorithmus, 'single active gene mutation', sowie 'partial active gene mutation'.

Als Ursprungspopulation werden zufällig generierte Graphen genutzt. Eine neue Generation wird nach dem (1 + 4) CGP Algorithmus generiert. Dabei wird das Individuum mit der niedrigsten Fitness ausgewählt und viermal mutiert, somit besteht eine Generation immer aus einem Individuum aus der vorherigen Generation und 4 Nachkommen von diesem. Bei der Auswahl eines Individuums werden bei gleicher Fitness Nachkommen bevorzugt.

Hypothesis. Der 'single active gene mutation' Algorithmus benötigt weniger Generationen um Probleme aus allen Bereichen zu lösen als der traditionelle Wahrscheinlichkeitsbasierte Mutationsalgorithmus.

Um die Hypothese zu testen, lassen wir die Algorithmen auf den jeweiligen Probleme mit 50, 100, 200, 500 und 1000 Knoten 60 mal laufen, mit Ausnahme von Parität 7, welches wir nur mit 200 Knoten und 30 Durchläufen testen. Da einige Durchläufe nicht innerhalb von 999999 Generationen fertig geworden sind, machen wir eine zweite Reihe von Versuchen. Dafür verwenden wir die Konfigurationen der Versuche, die vorher mindestens ein drittel der Durchläufe nicht innerhalb der 999999 Generationen beenden konnten. Hierbei benutzen wir allerdings nur ein Budget von 999999 Generationen und lassen uns, falls dieses erreicht wird die Fitness des besten Individuums, ausgeben.

Problem	Algorithmus	Mutations	Anzahl der	Durchläufe
		rate	Knoten	
	traditionelle Mutation	0.04	50 - 1000*	60
Parität 4 / 5 / 6	single active gene mutation	1/2/3/4	50 - 1000*	60
	partial active gene mutation	0.01/0.03	50 - 1000*	60
	traditionelle Mutation	0.03	200	30
Parität 7	single active gene mutation	1/2/3/4	200	30
	partial active gene mutation	0.01/0.03	200	30
	traditionelle Mutation	0.01	50 - 1000*	60
3-Bit-Multiplizierer	single active gene mutation	1/2/3/4	50 - 1000*	60
	partial active gene mutation	0.01/0.03	50 - 1000*	60

Tabelle 3.1: Konfiguration der Versuche für das Paritätsproblem mit 4, 5, 6 und 7 Eingabeknoten.

{50, 100, 200, 500, 1000}.

Die Implementation ist in Java, mithilfe des ECJ Evolutionary Computation Research System und der zugehörigen CGP Erweiterung geschehen. Die Versuche wurden auf dem Batchsystem des LS 11 der Fakultät Informatik an der TU Dortmund ausgeführt. Für die zweite Reihe von Versuchen wurde ein Computer mit folgender Hardware genutzt: AMD Ryzen 5 1500X Quad-Core Processor, 3.5 GHz, 18 MB cache per core; 8GB RAM DDR4@2133 MHz

3.2 Ergebnisse für das Paritätsproblem

Obwohl viele unterschiedliche Variablen gesetzt wurden, führen alle Versuche für das Paritätsproblem zu einem sehr ähnlich Ergebnis. Wie in Tabelle 3.2 zu sehen ist, schneidet die 'single active gene mutation' wesentlich besser ab, die Generationenanzahl des traditionellen Algorithmus sind im Median doppelt bis fasst viermal so groß. Bezüglich der Mutationsrate ist aber kein Muster zu erkennen. Weder ist eine bestimmte Mutationsrate besonders erfolgreich, noch scheint es sich proportional oder antiproportional zu der Knotenanzahl zu verhalten. Während die 'partial active gene mutation' zwar ebenfalls weniger Generationen benötigt als der traditionelle Algorithmus, verhält er sich dennoch für die meisten versuche nicht so effizient wie die 'single active gene mutation'. Allerdings scheint hier die niedrigere Mutationsrate bessere Ergebnisse zu erzielen.

3.3 Ergebnisse für den 3-Bit-Multiplizierer

Für das 3-Bit-Multiplizierer Problem ist das Ergebnis nicht sehr eindeutig. Während viele Durchläufe der 'single active gene mutation' und der 'partial active gene mutation' nicht innerhalb der 9999999 Generationen das Problem lösen konnten, hatte der traditionelle Mutationsalgorithmus immer Erfolg, mit Ausnahme von 3 Durchläufen auf dem 50 Kno-

Tabelle 3.2: Resultate der Versuchsreihe für das Paritätsproblem mit vier Eingabeknoten.

Knoten	Algorithmus	Mutations	min	unteres	Median	oberes	max
		rate		quartil		quartil	
	traditionelle Mutation	0.04	2502	17343.25	26748.50	45067.50	131069
	single active gene mutation	1	2198	7322.75	13181.00	21272.50	41109
	single active gene mutation	2	1092	9059.75	12741.00	22042.50	68551
50	single active gene mutation	3	1413	5637.25	9359.50	16637.00	149940
	single active gene mutation	4	3042	7411.75	13443.50	23293.00	70787
	partial active gene mutation	0.01	2155	9312.25	16398.50	21842.00	84162
	partial active gene mutation	0.03	2956	8523.75	16926.00	27037.50	166452
	traditionelle Mutation	0.04	3472	11533.50	17073.00	29156.75	66681
	single active gene mutation	1	2211	4268.25	6837.50	11410.75	36836
	single active gene mutation	2	2391	4149.75	7614.00	12833.25	49861
100	single active gene mutation	3	932	4122.25	7574.50	14948.75	39941
	single active gene mutation	4	1795	6201.00	9558.00	14735.25	72646
	partial active gene mutation	0.01	1302	6082.25	9521.00	15979.50	61606
	partial active gene mutation	0.03	1612	6426.00	10895.5	16346.00	29200
	traditionelle Mutation	0.04	4464	9778.00	15021.50	20934.50	49779
	single active gene mutation	1	558	2881.75	5506.00	8266.75	20606
	single active gene mutation	2	434	3324.25	4915.00	9501.00	33647
200	single active gene mutation	3	515	3914.75	5686.00	9553.75	28427
	single active gene mutation	4	1425	3329.00	5889.50	9790.00	25937
	partial active gene mutation	0.01	936	5002.75	7904.00	13101.25	46147
	partial active gene mutation	0.03	1468	5418.00	7435.50	13910.50	36396
	traditionelle Mutation	0.04	1972	8576.00	12490.00	19928.25	98274
	single active gene mutation	1	663	2622.75	4258.00	6622.50	18702
	single active gene mutation	2	676	2209.75	3905.00	6450.50	16996
500	single active gene mutation	3	491	2729.75	4196.50	6933.00	16982
	single active gene mutation	4	567	2687.25	3752.00	6323.75	16082
	partial active gene mutation	0.01	850	3239.75	5362.50	9609.75	24918
	partial active gene mutation	0.03	805	4159.75	7377.00	14285.75	27501
	traditionelle Mutation	0.04	1450	5813.00	11499.00	19757.25	67705
	single active gene mutation	1	663	1764.50	3566.00	7230.25	22658
	single active gene mutation	2	974	2540.25	3740.00	5920.00	30927
1000	single active gene mutation	3	755	2298.50	3238.50	5131.25	14659
	single active gene mutation	4	758	2298.50	3806.00	5639.00	19191
	partial active gene mutation	0.01	1300	3718.00	6019.00	8050.25	15084
	partial active gene mutation	0.03	903	3732.00	6051.50	10089.75	27084

ten Graph. Mit zunehmender Größe des Graphen, sind 'single active gene mutation' und 'partial active gene mutation' Erfolgreicher geworden, allerdings haben sie nie 60 von 60 Durchläufen innerhalb von 9999999 Generationen geschafft. Interessant ist aber, dass für 1000 Knoten, bei dem die 'single active gene mutation' über 50 der Durchläufe rechtzeitig beenden konnte, für die Mutationsraten 1 und 2 bessere Ergebnisse erzielen konnte als die traditionelle Mutation.

Tabelle 3.3: Resultate der Versuchsreihe für das Paritätsproblem mit fünf Eingabeknoten.

Knoten	Algorithmus	Mutations	min	unteres	Median	oberes	max
		rate		quartil		quartil	
	traditionelle Mutation	0.04	14420	79036.50	131375.00	234888.50	883025
	single active gene mutation	1	7821	26325.25	52114.00	89874.75	229080
	single active gene mutation	2	8108	33631.00	52251.00	78270.00	309113
50	single active gene mutation	3	3617	32635.50	56789.50	92668.75	247193
	single active gene mutation	4	5074	33785.25	56548.00	80488.50	345667
	partial active gene mutation	0.01	14255	50575.50	76934.00	113499.50	342851
	partial active gene mutation	0.03	9002	57307.50	94587.00	190504.50	539069
	traditionelle Mutation	0.04	10050	43432.00	64054.50	123934.20	762828
	single active gene mutation	1	8448	24485.75	32460.50	48301.25	121953
	single active gene mutation	2	2347	26255.25	34373.00	52626.50	218644
100	single active gene mutation	3	3283	19364.50	35372.50	57732.50	159130
	single active gene mutation	4	3998	14561.25	23677.00	49354.75	312394
	partial active gene mutation	0.01	4835	28415.00	53055.50	71386.00	214309
	partial active gene mutation	0.03	9735	36568.75	68544.00	123667.00	287047
	traditionelle Mutation	0.04	18457	44458.75	63742.00	90995.50	326978.00
	single active gene mutation	1	3376	16104.25	22043.00	34467.50	89430.00
	single active gene mutation	2	2614	13555.50	20917.00	32370.25	104281.00
200	single active gene mutation	3	3451	14334.25	21260.00	30351.00	76023.00
	single active gene mutation	4	3496	13844.50	21860.00	37714.50	122635
	partial active gene mutation	0.01	4123	18474.00	33972.50	58223.00	196569
	partial active gene mutation	0.03	7590	35797.50	49306.00	74395.25	276860
	traditionelle Mutation	0.04	16086	47853.00	70756.00	100628.80	276977
	single active gene mutation	1	4496	8806.75	14873.00	25155.25	64016
	single active gene mutation	2	3076	9335.75	13591.00	23677.25	88436
500	single active gene mutation	3	3527	11014.50	18751.50	29077.50	64083
	single active gene mutation	4	2747	8852.25	14934.00	24295.00	76286
	partial active gene mutation	0.01	4283	15321.00	29576.00	50473.50	108426
	partial active gene mutation	0.03	10151	24992.25	43397.00	74513.75	206447
	traditionelle Mutation	0.04	13028	54985.00	105839.00	163160.80	646226
	single active gene mutation	1	2480	9096.50	12259.50	20135.75	73618
	single active gene mutation	2	2021	7196.75	11434.50	19332.00	43256
1000	single active gene mutation	3	4665	9066.75	14160.00	21748.50	47843
	single active gene mutation	4	3190	8239.25	13942.00	20980.00	97955
	partial active gene mutation	0.01	6551	16809.75	26701.50	39634.25	121868
	partial active gene mutation	0.03	10244	32186.50	46186.00	83316.00	192520

3.4 Diskussion

die 'single active gene mutation' hat eindeutige Vorteile, beim lösen des Paritätsproblem bewiesen. Auch wenn anzunehmen ist, dass bei einem kleineren Graphen eine kleinere Mutationsrate effektiver ist, lies sich das für 'single active gene mutation' auf dem Paritätsproblem nicht erkennen (Bsp. Figur 2). Dies gilt jedoch nicht für das 3-Bit-Multiplizierer

3.4. DISKUSSION

Tabelle 3.4: Resultate der Versuchsreihe für das Paritätsproblem mit sechs Eingabeknoten.

Knoten	Algorithmus	Mutations	min	unteres	Median	oberes	max
		rate		quartil		quartil	
	traditionelle Mutation	0.04	162550	401197.00	698242.50	1232138.50	6181056
	single active gene mutation	1	20973	104689.20	161482.00	257618.00	716348
	single active gene mutation	2	37665	124028.00	186777.50	399768.80	2320344
50	single active gene mutation	3	20791	138583.80	212872.50	301570.20	621723
	single active gene mutation	4	23834	106537.80	215655.00	321488.50	1799202
	partial active gene mutation	0.01	35055	164097.20	268906.00	492241.00	2169102
	partial active gene mutation	0.03	92581	220825.50	426964.50	587954.00	1038598
	traditionelle Mutation	0.04	82090	240667.00	392821.00	628589.20	2134465
	single active gene mutation	1	22908	70538.00	104221.50	148968.00	482618
	single active gene mutation	2	23606	54632.00	96516.00	160370.20	648324
100	single active gene mutation	3	29737	79339.00	128264.50	213873.80	533257
	single active gene mutation	4	10963	58809.00	118958.50	181560.20	638987
	partial active gene mutation	0.01	10963	58809.00	118958.50	181560.20	638987
	partial active gene mutation	0.03	33518	124603.50	250020.50	387999.80	1250051
	traditionelle Mutation	0.04	63125	177016.80	379967.00	538201.00	1633500
	single active gene mutation	1	29949	55460.50	87846.00	126130.20	325626.0
	single active gene mutation	2	12803	35799.00	48643.00	77012.00	223461
200	single active gene mutation	3	4565	34661.25	64311.00	104867.75	451110.00
	single active gene mutation	4	14800	39245.00	58058.50	107041.80	384339.0
	partial active gene mutation	0.01	16208	91772.00	151467.50	215949.0	1264939.0
	partial active gene mutation	0.03	40233	124840.80	211505.00	351461.2	1052083.0
	traditionelle Mutation	0.04	39567	235274.80	336767.50	558199.20	1898404
	single active gene mutation	1	2367	26372.00	47225.50	62354.75	205153
	single active gene mutation	2	6901	32062.75	46302.00	67944.00	166649
500	single active gene mutation	3	7719	27645.75	48333.50	62789.50	259724
	single active gene mutation	4	6557	22584.25	36786.50	63866.25	169185
	partial active gene mutation	0.01	13083	83752.75	131489.00	186689.75	543667
	partial active gene mutation	0.03	44180	101847.80	181634.50	239310.80	699155
	traditionelle Mutation	0.04	55929	196029.00	392648.00	755801.50	3791696
	single active gene mutation	1	6859	24890.75	48989.00	84916.00	161041
	single active gene mutation	2	8863	30956.50	40323.50	55002.25	244595
1000	single active gene mutation	3	12674	23586.00	39146.00	53965.25	131046
	single active gene mutation	4	4217	23000.75	33705.00	56526.50	153440
	partial active gene mutation	0.01	27477	74334.75	123277.50	155749.25	298473
	partial active gene mutation	0.03	23604	113788.20	168672.00	204687.20	532422

Problem, hier konnten viele Durchläufe nicht unter 10000000 Generationen zu einem angemessenen Ergebnis kommen. Hierbei war vor allem die Anzahl der Knoten im Graphen relevant, wobei erst ab 500 Knoten knapp zwei-drittel der Jobs und bei 1000 Knoten über 50 von 60 Jobs vor 10000000 Generationen beendet werden konnten. Somit war der traditionelle Algorithmus der einzige, welcher in jedem Job rechtzeitig beendet hat. Setzt man jedoch die fehlenden Durchläufe auf 10000000, so gibt es dennoch einige Konfigurationen,

Knoten	Algorithmus	Mutations	min	unteres	Median	oberes	max
		rate		quartil		quartil	
	traditionelle Mutation	0.04	124567	436288.2	634488.5	1059998.2	2820908
	single active gene mutation	1	22352	111105.5	161770.5	261551.2	665617
	single active gene mutation	2	109471	190298.0	285827.0	445818.2	893501
200	single active gene mutation	3	104382	291610.5	496746.0	758641.5	1954774
	single active gene mutation	4	258224	758563.5	1252484.0	2098167.2	3977927
	partial active gene mutation	0.01	72282	182464.0	315020.0	662906.2	1676310
	partial active gene mutation	0.03	NA	NA	NA	NA	NA

Tabelle 3.5: Resultate der Versuchsreihe für das Paritätsproblem mit sieben Eingabeknoten.

bei denen die 'single active gene mutation' besser abgeschnitten hat als der traditionelle Algorithmus.

Dies ist besonders interessant, wenn man diesen Algorithmus mit dem aus [1] vergleicht, diese hatten einen ähnlichen Mutationsalgorithmus, welcher ebenfalls genau ein aktiven knoten mutiert hat, allerdings auch eine Mutationswahrscheinlichkeit genutzt hat um nicht aktive knoten zu mutieren. Bei ihnen war der traditionelle Algorithmus auf dem Paritätsproblem ungefähr gleich gut, teilweise sogar besser, allerdings war der traditionelle Algorithmus auf dem Multiplizierer Problem deutlich schlechter als ihre Variante der 'single active gene mutation'.

die 'partial active gene mutation' hatte auf dem 3-Bit-Multiplizierer ähnliche Probleme wie die 'single active gene mutation', konnte jedoch bei den Paritätsproblemen nicht so gut abschneiden. Somit scheint die 'single active gene mutation' bei einer wachsenden Anzahl aktiver knoten kein problem damit zu haben, dass die Anzahl der Mutationen gleich bleibt, während die menge auf der mutiert wird potenziell steigt oder sinkt. Im Gegenteil scheint das sogar (zumindest bei dem Paritätsproblem) etwas gutes zu sein.

3.4.1 Analyse der Hypothese

Das Resultat zeigt, dass 'single active gene mutation' dem traditionellen Mutationsalgorithmus nicht in allen Bereichen überlegen ist. Da die 'partial active gene mutation' für das Paritätsproblem besser als der traditionelle Algorithmus, bei beiden problem jedoch schlechter als 'single active gene mutation' funktionierte, ist naheliegend, dass 'single active gene mutation' kein problem mit einer fluktuierenden Menge aktive Knoten hat.

Auffällig ist jedoch, dass trotz der nicht beendeten Durchläufe bei 1000 Knoten im Graphen die Versuche mit ;utationsraten von einem und zwei knoten genauso gut bzw. bessere Median und Quartile haben, wie der traditionelle Algorithmus. ein denkbarer Grund wäre, dass für das multiplizierer problem geringe Mutationsraten bessere erfolge bringen. Da die Idee hinter single active mutation ist, dass sich bei jeder Mutation der Phenotyp ändert,

3.4. DISKUSSION 15

Tabelle 3.6: Resultate der Versuchsreihe für das 3-Bit-Multiplizierer Problem.

Knoten	Algorithmus	Mutations	min	unteres	Median	oberes	max	erfolgreiche
		rate		quartil		quartil		Durchläufe
	traditionelle Mutation	0.01	431968	1719044	2875706	4622349	9788671	57
	single active gene mutation	1	1266243	2289996	3097329	3721428	4195482	4
	single active gene mutation	2	1785404	2051025	2316645	2582266	2847886	2
50	single active gene mutation	3	NA	NA	NA	NA	NA	0
	single active gene mutation	4	NA	NA	NA	NA	NA	0
	partial active gene mutation	0.01	1786115	2666488	4087698	6435972	7990053	7
	partial active gene mutation	0.03	NA	NA	NA	NA	NA	0
	traditionelle Mutation	0.01	135643	504087.8	937019.0	1549036.2	7013110	60
	single active gene mutation	1	141354	691599.8	2038621.0	3361744.2	5805518	18
	single active gene mutation	2	1145640	2523350.0	4237568.0	7490687.0	9588978	19
100	single active gene mutation	3	4673171	5605263.0	6882593.0	8804816.0	9943430	7
	single active gene mutation	4	201543	602876.2	841131.5	2179561.5	5603055	18
	partial active gene mutation	0.01	536027	863463.0	1269341.0	1883979.0	4157641	15
	partial active gene mutation	0.03	NA	NA	NA	NA	NA	0
	traditionelle Mutation	0.01	223306	562212.5	856224.5	1365357.0	4225565	60
	single active gene mutation	1	122220	310125.5	768310.0	1357256.0	9492150	31
	single active gene mutation	2	143617	445965.2	1255046.0	2519122.2	5680812	28
200	single active gene mutation	3	521841	970334.0	2112416.0	4470282.0	7662831	25
	single active gene mutation	4	679818	2490560.0	4034151.0	6226977.0	9930660	23
	partial active gene mutation	0.01	229360	881457.5	1502186.0	2195214.0	9242970	23
	partial active gene mutation	0.03	NA	NA	NA	NA	NA	0
	traditionelle Mutation	0.01	58731	447144.0	647578.5	1132215.8	4596187	60
	single active gene mutation	1	128550	294074.8	466417.0	1122317.2	7015353	44
	single active gene mutation	2	139483	315436.5	539040.0	1351385.5	8099228	51
500	single active gene mutation	3	300118	804610.0	1539596.0	2742555.0	7488389	44
	single active gene mutation	4	494177	1188102.0	1902067.0	2874906.0	5920928	40
	partial active gene mutation	0.01	536027	863463.0	1269341.0	1883979.0	4157641	46
	partial active gene mutation	0.03	NA	NA	NA	NA	NA	0
	traditionelle Mutation	0.01	188176	463056.2	920585.0	1501029.8	2301688	60
	single active gene mutation	1	103586	185947.8	373487.0	634736.8	6670319	52
	single active gene mutation	2	92791	342256.2	516886.5	845090.2	5247156	52
1000	single active gene mutation	3	145699	598128.5	1348047.0	2530826.0	5416870	51
	single active gene mutation	4	299218	907879.0	1697263.0	2984646.0	8961237	53
	partial active gene mutation	0.01	236670	715287.5	1217716.5	2358767.0	4697031	52
	partial active gene mutation	0.03	NA	NA	NA	NA	NA	0

kann nicht weniger als ein aktiver knoten mutieren, wodurch die Mindestmutationsrate bei Graphen mit einer kleinen Anzahl knoten automatisch sehr hoch ist.

Testläufe für Parität 4

Abbildung 3.1

3.4. DISKUSSION 17

Testläufe für Parität 5

Abbildung 3.2

Testläufe für Parität 6

Abbildung 3.3

3.4. DISKUSSION 19

Parität mit 7 Eingabeknoten

Abbildung 3.4

Testläufe für den 3-Bit-Multiplizierer mit 1000 Knoten

Abbildung 3.5

Kapitel 4

Zusammenfassung und Ausblick

nicht aktive teile mutieren

wie häufig treten unnötige berechnungen (aufgrund von unterschiedlichem genotyp aber selber fitness) tatsächlich auf?

was für einen effekt hat: "viel mutation bei vielen aktiven knoten, wenig mutation bei wenig aktiven knoten"?

Das Fazit der Arbeit...

Abbildungsverzeichnis

2.1	Beispielhafter Aufbau eines CGP	4
3.1	Testläufe Parität 4	16
3.2	Testläufe Parität 5	17
3.3	Testläufe Parität 6	18
3.4	Testläufe Parität 7, 200 Knoten	19
3.5	Testläufe 3-Bit-Multiplizierer, 1000 Knoten	20

Algorithmenverzeichnis

2.1	$(1+\lambda)$ -CGP Algorithmus										4
2.2	traditioneller CGP Mutationsalgorithmus										ļ

${\bf Symbol verzeichnis}$

Literaturverzeichnis

- [1] GOLDMAN, BRIAN W. und WILLIAM F. PUNCH: Reducing Wasted Evaluations in Cartesian Genetic Programming. In: Krawiec, Krzysztof, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar und Bin Hu (Herausgeber): Genetic Programming 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013. Proceedings, Band 7831 der Reihe Lecture Notes in Computer Science, Seiten 61–72. Springer, 2013.
- [2] Kaufmann, Paul und Roman Kalkreuth: Parametrizing Cartesian Genetic Programming: An Empirical Study. In: Kern-Isberner, Gabriele, Johannes Fuernkranz und Matthias Thimm (Herausgeber): KI 2017: Advances in Artificial Intelligence 40th Annual German Conference on AI, Dortmund, Germany, September 25-29, 2017, Proceedings, Band 10505 der Reihe Lecture Notes in Computer Science, Seiten 316–322. Springer, 2017.
- [3] Koza, J.: Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STAN-CS-90-1314, Dept. of Computer Science, Stanford University, Juni 1990.
- [4] Koza, John R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
- [5] KOZA, JOHN R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts, Mai 1994.
- [6] LUKE, SEAN und LEE SPECTOR: A Comparison of Crossover and Mutation in Genetic Programming. In: KOZA, JOHN R., KALYANMOY DEB, MARCO DORIGO, DAVID B. FOGEL, MAX GARZON, HITOSHI IBA und RICK L. RIOLO (Herausgeber): Genetic Programming 1997: Proceedings of the Second Annual Conference, Seiten 240–248, Stanford University, CA, USA, 13-16 Juli 1997. Morgan Kaufmann.
- [7] LUKE, SEAN und LEE SPECTOR: A Revised Comparison of Crossover and Mutation in Genetic Programming. In: KOZA, JOHN R., WOLFGANG BANZHAF, KUMAR CHELLAPILLA, KALYANMOY DEB, MARCO DORIGO, DAVID B. FOGEL, MAX H. GARZON,

- DAVID E. GOLDBERG, HITOSHI IBA und RICK RIOLO (Herausgeber): Genetic Programming 1998: Proceedings of the Third Annual Conference, Seiten 208–213, University of Wisconsin, Madison, Wisconsin, USA, 22-25 Juli 1998. Morgan Kaufmann.
- [8] MILLER, JULIAN F.: An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic Programming approach. In: BANZHAF, WOLFGANG, JASON DAIDA, AGOSTON E. EIBEN, MAX H. GARZON, VASANT HONAVAR, MARK JAKIELA und ROBERT E. SMITH (Herausgeber): Proceedings of the Genetic and Evolutionary Computation Conference, Band 2, Seiten 1135–1142, Orlando, Florida, USA, 13-17 Juli 1999. Morgan Kaufmann.
- [9] MILLER, JULIAN F. und STEPHEN L. SMITH: Redundancy and Computational Efficiency in Cartesian Genetic Programming. IEEE Trans. Evolutionary Computation, 10(2):167–174, 2006.
- [10] MILLER, JULIAN F. und PETER THOMSON: Cartesian Genetic Programming. In: POLI, RICCARDO, WOLFGANG BANZHAF, WILLIAM B. LANGDON, JULIAN F. MILLER, PETER NORDIN und TERENCE C. FOGARTY (Herausgeber): Genetic Programming, Proceedings of Euro GP'2000, Band 1802 der Reihe LNCS, Seiten 121–132, Edinburgh, 15-16 April 2000. Springer-Verlag.
- [11] WHITE, D. R. und S. POULDING: A rigorous evaluation of crossover and mutation in genetic programming. Lecture Notes in Computer Science, Seiten 220–231. Springer Verlag, April 2009.

Eidesstattliche Versicherung

Lubeck, Henri Johannes	175377
Name, Vorname	Matrnr.
Ich versichere hiermit an Eides statt, dass ich d	ie vorliegende Bachelorarbeit mit dem Titel
Implementation und Auswertung von S	ingle Active Gene Mutation in CGP
selbstständig und ohne unzulässige fremde Hilf- die angegebenen Quellen und Hilfsmittel benu kenntlich gemacht. Die Arbeit hat in gleicher o behörde vorgelegen.	atzt sowie wörtliche und sinngemäße Zitate
Dortmund, den 1. Februar 2019	
Ort, Datum	Unterschrift
Belehrung:	
Wer vorsätzlich gegen eine die Täuschung übe einer Hochschulprüfungsordnung verstößt, han keit kann mit einer Geldbuße von bis zu 50.000 tungsbehörde für die Verfolgung und Ahndun ler/ die Kanzlerin der Technischen Universität sonstigen schwerwiegenden Täuschungsversuch werden. (§ 63 Abs. 5 Hochschulgesetz - HG -)	ndelt ordnungswidrig. Die Ordnungswidrig-,00 € geahndet werden. Zuständige Verwalg von Ordnungswidrigkeiten ist der Kanz-Dortmund. Im Falle eines mehrfachen oder des kann der Prüfling zudem exmatrikuliert
Die Abgabe einer falschen Versicherung an Ei Jahren oder mit Geldstrafe bestraft.	ides statt wird mit Freiheitsstrafe bis zu 3
Die Technische Universität Dortmund wird gr z.B. die Software "turnitin") zur Überprüfung fahren nutzen.	- ` `
Die oben stehende Belehrung habe ich zur Ker	antnis genommen:
Dortmund, den 1. Februar 2019	
Ort, Datum	${\bf Unterschrift}$