Physically-Based Simulation Exercise Session

Exercise 1 & Project Introduction

Byungsoo Kim, kimby@inf.ethz.ch

Exercise 1

- Mass-spring systems and numerical integration
- In each time step, update position
 p and velocity v of all mass points
 - e.g., explicit Euler

$$\mathbf{p}(t+h) = \mathbf{p}(t) + h\dot{\mathbf{p}}(t) = \mathbf{p}(t) + h\mathbf{v}(t)$$
$$\mathbf{v}(t+h) = \mathbf{v}(t) + h\dot{\mathbf{v}}(t) = \mathbf{v}(t) + h\frac{\mathbf{F}(t) - \gamma\mathbf{v}(t)}{m}$$

Problem 1

- Integration Schemes:
 - This week: Explicit Euler, Midpoint
 - Next week: Symplectic Euler, (Semi-) Implicit Euler

Problem 2

Analytic Solution

$$-y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) - L - \frac{mg}{k}$$

- with
$$\alpha = -\frac{\gamma}{2m}$$
 , $\beta = \frac{\sqrt{4km - \gamma^2}}{2m}$

Error Convergence & Stability Analysis

Problem 3

- Collision Handling
 - Apply repulsive spring force
 - Try with Explicit Euler
 - Changes to Symplectic Euler are minimal

Flags

- -method flags
 - euler
 - symplectic_euler
 - midpoint
 - backwards euler
 - analytic

- -testcase flags
 - Spring1d
 - falling
 - error measurement
 - stability measurement

Numerical parameters: -step, -damp, -mass, -stiff

Submission

- Hand-in
 - CPP and PDF (or DOC/TXT)
 - email to: <u>kimby@inf.ethz.ch</u> (with [PBS17] header)
 - until October 11 (midnight)
- Groups
 - work in groups of 2 or 3 people (groups of 3 preferred)
 - same groups for all exercises and project
 - if you cannot find a group: contact me as soon as possible

Project

- Occupies second half of the semester
- Timeline
 - November 1: Project Plan Due
 - November 29: Milestone Presentations
 - December 20: Project Due & Final Presenations

