Essential norms of weighted composition operators between Hardy spaces H^p and H^q for $1 \le p, q \le \infty$

R. Demazeux

Univ Lille Nord de France, FRANCE UArtois, Laboratoire de Mathématiques de Lens EA 2462, Fédération CNRS Nord-Pas-de-Calais FR 2956, F-62 300 LENS, FRANCE

E-mail: romain.demazeux@euler.univ-artois.fr

Abstract

We complete the different cases remaining in the estimation of the essential norm of a weighted composition operator acting between the Hardy spaces H^p and H^q for $1 \le p, q \le \infty$. In particular we give some estimates for the cases $1 = p \le q \le \infty$ and $1 \le q .$

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ denote the open unit disk in the complex plane. Given two analytic functions u and φ defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subset \mathbb{D}$, one can define the weighted composition operator uC_{φ} that maps any analytic function f defined on \mathbb{D} into the function $uC_{\varphi}(f) = u(f \circ \varphi)$. In [10], de Leeuw showed that the isometries in the Hardy space H^1 are weighted composition operators, while Forelli [8] obtained this result for the Hardy space H^p when $1 , <math>p \neq 2$. Another example is the study of composition operators on the half-plane. A composition operator in a Hardy space of the half-plane is bounded if and only if a certain weighted composition operator is bounded on the Hardy space of the unit disk (see [13] and [14]).

²⁰¹⁰ Mathematics Subject Classification: Primary 47B33; Secondary 30H10, 46E15. Key words and phrases: weighted composition operator, essential norm, Carleson measure, Hardy space.

When $u \equiv 1$, we just have the composition operator C_{φ} . The continuity of these operators on the Hardy space H^p is ensured by the Littlewood's subordination principle, which says that $C_{\varphi}(f)$ belongs to H^p whenever $f \in H^p$ (see [4], Corollary 2.24). As a consequence, the condition $u \in H^{\infty}$ suffices for the boundedness of uC_{φ} on H^p . Considering the image of the constant functions, a necessary condition is that u belongs to H^p . Nevertheless a weighted composition operator needs not to be continuous on H^p , and it is easy to find examples where $uC_{\varphi}(H^p) \nsubseteq H^p$ (see Lemma 2.1 of [3] for instance).

In this note we deal with weighted composition operators between H^p and H^q for $1 \leq p, q \leq \infty$. Boundedness and compactness are characterized in [3] for $1 \leq p \leq q < \infty$ by means of Carleson measures, while essential norms of weighted composition operators are estimated in [5] for $1 by means of an integral operator. For the case <math>1 \leq q , boundedness and compactness of <math>uC_{\varphi}$ are studied in [5], and Gorkin and MacCluer in [9] gave an estimate of the essential norm of a composition operator acting between H^p and H^q .

The aim of this paper is to complete the different cases remaining in the estimation of the essential norm of a weighted composition operator. In section 2 and 3, we give an estimate of the essential norm of uC_{φ} acting between H^p and H^q when p=1 and $1 \leq q < \infty$ and when $1 \leq p < \infty$ and $q=\infty$. Sections 4 and 5 are devoted to the case where $\infty \geq p > q \geq 1$.

Let $\overline{\mathbb{D}}$ be the closure of the unit disk \mathbb{D} and $\mathbb{T} = \partial \mathbb{D}$ its boundary. We denote by $\mathrm{d} m = \mathrm{d} t/2\pi$ the normalised Haar measure on \mathbb{T} . If A is a Borel subset of \mathbb{T} , the notation m(A) as well as |A| will design the Haar measure of A. For $1 \leq p < \infty$, the Hardy space $H^p(\mathbb{D})$ is the space of analytic functions $f: \mathbb{D} \to \mathbb{C}$ satisfying the following condition

$$||f||_p = \sup_{0 < r < 1} \left(\int_{\mathbb{T}} |f(r\zeta)|^p dm(\zeta) \right)^{1/p} < \infty.$$

Endowed with this norm, $H^p(\mathbb{D})$ is a Banach space. The space $H^{\infty}(\mathbb{D})$ is consisting of every bounded analytic function on \mathbb{D} , and its norm is given by the supremum norm on \mathbb{D} .

We recall that any function $f \in H^p(\mathbb{D})$ can be extended on \mathbb{T} to a function f^* by the following formula: $f^*(e^{i\theta}) = \lim_{r \nearrow 1} f(re^{i\theta})$. The limit exists almost everywhere by Fatou's theorem, and $f^* \in L^p(\mathbb{T})$. Moreover, $f \mapsto f^*$ is an into isometry from $H^p(\mathbb{D})$ to $L^p(\mathbb{T})$ whose image, denoted by $H^p(\mathbb{T})$ is the closure (weak-star closure for $p = \infty$) of the set of polynomials in $L^p(\mathbb{T})$. So

we can identify $H^p(\mathbb{D})$ and $H^p(\mathbb{T})$, and we will use the notation H^p for both of these spaces. More on Hardy spaces can be found in [11] for instance.

The essential norm of an operator $T: X \to Y$, denoted $||T||_e$, is given by

$$||T||_e = \inf\{||T - K|| \mid K \text{ is a compact operator from } X \text{ to } Y\}.$$

Observe that $||T||_e \le ||T||$, and $||T||_e$ is the norm of T seen as an element of the space B(X,Y)/K(X,Y) where B(X,Y) is the space of all bounded operators from X to Y and K(X,Y) is the subspace consisting of all compact operators.

Notation: we will write $a \approx b$ whenever there exists two positive universal constants c and C such that $cb \leq a \leq Cb$. In the sequel, u will be a non-zero analytic function on $\mathbb D$ and φ will be a non-constant analytic function defined on $\mathbb D$ satisfying $\varphi(\mathbb D) \subset \mathbb D$.

2
$$uC_{\varphi} \in B(H^1, H^q)$$
 for $1 \le q < \infty$

Let us first start with a characterization of the boundedness of uC_{φ} acting between H^p and H^q :

Theorem 2.1 (see [5, Theorem 4]). Let u be an analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Let $0 . Then the weighted composition operator <math>uC_{\varphi}$ is bounded from H^p to H^q if and only if

$$\sup_{a\in\mathbb{D}} \int_{\mathbb{T}} |u(\zeta)|^q \left(\frac{1-|a|^2}{|1-\bar{a}\varphi(\zeta)|^2}\right)^{q/p} dm(\zeta) < \infty.$$

As a consequence uC_{φ} is a bounded operator as soon as uC_{φ} is uniformly bounded on the set $\{k_a^{1/p} \mid a \in \mathbb{D}\}$ where k_a is the normalized kernel defined by $k_a(z) = (1-|a|^2)/(1-\bar{a}z)^2, \ a \in \mathbb{D}$. Note that $k_a^{1/p} \in H^p$ and $||k_a^{1/p}||_p = 1$. These kernels play a crucial role in the estimation of the essential norm of a weighted composition operator:

Theorem 2.2 (see [5, Theorem 5]). Let u be an analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Assume that the weighted composition operator uC_{φ} is bounded from H^p to H^q with 1 . Then

$$||uC_{\varphi}||_{e} \approx \limsup_{|a| \to 1^{-}} \left(\int_{\mathbb{T}} |u(\zeta)|^{q} \left(\frac{1 - |a|^{2}}{|1 - \bar{a}\varphi(\zeta)|^{2}} \right)^{q/p} dm(\zeta) \right)^{\frac{1}{q}}.$$

The aim of this section is to give the corresponding estimate for the case p = 1. We shall prove that the previous theorem is still valid for p = 1:

Theorem 2.3. Let u be an analytic function on \mathbb{D} and φ an analytic selfmap of \mathbb{D} . Suppose that the weighted composition operator uC_{φ} is bounded from H^1 to H^q for a certain $1 \leq q < \infty$. Then we have

$$||uC_{\varphi}||_{e} \approx \limsup_{|a| \to 1^{-}} \left(\int_{\mathbb{T}} |u(\zeta)|^{q} \left(\frac{1 - |a|^{2}}{|1 - \bar{a}\varphi(\zeta)|^{2}} \right)^{q} dm(\zeta) \right)^{\frac{1}{q}}.$$

Let us start with the upper estimate:

Proposition 2.4. Let $uC_{\varphi} \in B(H^1, H^q)$ with $1 \leq q < \infty$. Then there exists a positive constant γ such that

$$||uC_{\varphi}||_{e} \leq \gamma \lim \sup_{|a| \to 1^{-}} \left(\int_{\mathbb{T}} |u(\zeta)|^{q} \left(\frac{1 - |a|^{2}}{|1 - \bar{a}\varphi(\zeta)|^{2}} \right)^{q} dm(\zeta) \right)^{\frac{1}{q}}.$$

The main tool of the proof is the use of Carleson measures. Assume that μ is a finite positive Borel measure on $\overline{\mathbb{D}}$ and let $1 \leq p, q < \infty$. We say that μ is a (p,q)-Carleson measure if the embedding $J_{\mu}: f \in H^p \mapsto f \in L^q(\mu)$ is well defined. In this case, the closed graph theorem ensures that J_{μ} is continuous. In other words, μ is a (p,q)-Carleson measure if there exists a constant $\gamma_1 > 0$ such that for every $f \in H^p$,

(2.1)
$$\int_{\overline{\mathbb{D}}} |f(z)|^q d\mu(z) \le \gamma_1 ||f||_p^q.$$

Let I be an arc in \mathbb{T} . By S(I) we denote the Carleson window given by

$$S(I) = \{ z \in \mathbb{D} \mid 1 - |I| \le |z| < 1, \ z/|z| \in I \}.$$

Let us denote by $\mu_{\mathbb{D}}$ and $\mu_{\mathbb{T}}$ the restrictions of μ to \mathbb{D} and \mathbb{T} respectively. The following result is a version of a theorem of Duren (see [7], p.163) for measures on $\overline{\mathbb{D}}$:

Theorem 2.5 (see [1, Theorem 2.5]). Let $1 \le p < q < \infty$. A finite positive Borel measure μ on $\overline{\mathbb{D}}$ is a (p,q)-Carleson measure if and only if $\mu_{\mathbb{T}} = 0$ and there exists a constant $\gamma_2 > 0$ such that

(2.2)
$$\mu_{\mathbb{D}}(S(I)) \leq \gamma_2 |I|^{q/p} \quad \text{for any arc } I \subset \mathbb{T}.$$

Notice that the best constants γ_1 and γ_2 in (2.1) and (2.2) are comparable, meaning that there is a positive constant β independent of the measure μ such that $(1/\beta)\gamma_2 \leq \gamma_1 \leq \beta\gamma_2$.

The notion of Carleson measure was introduced by Carleson in [2] as a part of his work on the corona problem. He gave a characterization of measures μ on \mathbb{D} such that H^p embeds continuously in $L^p(\mu)$.

Examples of such Carleson measures are provided by composition operators. Let $\varphi: \mathbb{D} \to \mathbb{D}$ be an analytic map and let $1 \leq p, q < \infty$. The boundedness of the composition operator $C_{\varphi}: f \mapsto f \circ \varphi$ between H^p and H^q can be rephrased in terms of (p,q)-Carleson measures. Indeed, denote by m_{φ} the *pullback measure* of m by φ , which is the image of the Haar measure m of \mathbb{T} under the map φ^* , defined by

$$m_{\varphi}(A) = m\left(\varphi^{*^{-1}}(A)\right)$$

for every Borel subset A of $\overline{\mathbb{D}}$. Then

$$||C_{\varphi}(f)||_q^q = \int_{\mathbb{T}} |f \circ \varphi|^q \, \mathrm{d}m = \int_{\overline{\mathbb{D}}} |f|^q \, \mathrm{d}m_{\varphi} = ||J_{m_{\varphi}}(f)||_q^q$$

for all $f \in H^p$. Thus C_{φ} maps H^p boundedly into H^q if and only if m_{φ} is a (p,q)-Carleson measure.

In the sequel we will denote by $r\mathbb{D}$ the open disk of radius r, in other words $r\mathbb{D} = \{z \in \mathbb{D} \mid |z| < r\}$ for 0 < r < 1. We will need the following lemma concerning (p, q)-Carleson measures:

Lemma 2.6. Take 0 < r < 1 and let μ be a finite positive Borel measure on $\overline{\mathbb{D}}$. Let

$$N_r^* := \sup_{|a| > r} \int_{\overline{\mathbb{D}}} |k_a(w)|^{\frac{q}{p}} d\mu(w).$$

If μ is a (p,q)-Carleson measure for $1 \leq p \leq q < \infty$ then so is $\mu_r := \mu_{|\mathbb{D} \setminus r\mathbb{D}}$. Moreover one can find an absolute constant M > 0 satisfying $\|\mu_r\| \leq MN_r^*$ where $\|\mu_r\| := \sup_{I \subset \mathbb{T}} \frac{\mu_r(S(I))}{|I|^{q/p}}$.

We omit the proof of Lemma 2.6 here, which is a slight modification of the proof of Lemma 1 and Lemma 2 in [5] using Theorem 2.5.

In the proof of the upper estimate of Theorem 2.2 in [5], the authors use a decomposition of the identity on H^p of the form $I = K_N + R_N$ where K_N is the partial sum operator defined by $K_N \left(\sum_{n=0}^{\infty} a_n z^n\right) = \sum_{n=0}^{N} a_n z^n$, and they use the fact that (K_N) is a sequence of compact operators that is uniformly bounded in $B(H^p)$ and that R_N converges pointwise to zero on

 H^p . Nevertheless the sequence (K_N) is not uniformly bounded in $B(H^1)$. In fact, (K_N) is uniformly bounded in $B(H^p)$ if and only if the Riesz projection $P: L^p \to H^p$ is bounded [15, Theorem 2], which occurs if and only if 1 . Therefore we need to use a different decomposition for the case <math>p = 1. Since K_N is the convolution operator by the Dirichlet kernel on H^p , we shall consider the Fejér kernel F_N of order N. Let us define $K_N: H^1 \to H^1$ to be the convolution operator associated to F_N that maps $f \in H^1$ to $K_N f = F_N * f \in H^1$ and $R_N = I - K_N$. Then $||K_N|| \le 1$, K_N is compact and for every $f \in H^1$, $||f - K_N f||_1 \to 0$ following Fejér's theorem. If $f(z) = \sum_{n>0} \hat{f}(n) z^n \in H^1$, then

$$K_N f(z) = \sum_{n=0}^{N-1} \left(1 - \frac{n}{N}\right) \hat{f}(n) z^n.$$

Lemma 2.7. Let $1 \leq q < \infty$ and suppose that $uC_{\varphi} \in B(H^1, H^q)$. Then

$$||uC_{\varphi}||_{e} \leq \liminf_{N} ||uC_{\varphi}R_{N}||.$$

Proof.

$$||uC_{\varphi}||_{e} = ||uC_{\varphi}K_{N} + uC_{\varphi}R_{N}||_{e}$$

$$= ||uC_{\varphi}R_{N}||_{e} \quad \text{since } K_{N} \text{ is compact}$$

$$\leq ||uC_{\varphi}R_{N}||$$

and the result follows taking the lower limit.

We will need the following lemma for an estimation of the remainder R_N :

Lemma 2.8. Let $\varepsilon > 0$ and 0 < r < 1. Then $\exists N_0 = N_0(r) \in \mathbb{N}, \ \forall N \geq N_0$,

$$|R_N f(w)|^q < \varepsilon ||f||_1^q,$$

for every |w| < r and for every f in H^1 .

Proof. Let $K_w(z) = 1/(1 - \bar{w}z)$, $w \in \mathbb{D}$, $z \in \mathbb{D}$. K_w is a bounded analytic function on \mathbb{D} . It is easy to see that for every $f \in H^1$,

$$\langle R_N f, K_w \rangle = \langle f, R_N K_w \rangle$$

where $|w| < r, N \ge 1$ and

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\theta$$

for $f \in H^1$ and $g \in H^{\infty}$. Then we have $|R_N f(w)| = |\langle R_N f, K_w \rangle| = |\langle f, R_N K_w \rangle| \leq ||f||_1 ||R_N K_w||_{\infty}$. Take |w| < r and choose $N_0 \in \mathbb{N}$ so that for every $N \geq N_0$ one has $r^N \leq \varepsilon^{1/q} (1-r)/2$ and $1/N \sum_{n=1}^{N-1} n r^n \leq (1/2) \varepsilon^{1/q}$. Since

$$R_N K_w(z) = R_N \left(\sum_{n=0}^{\infty} \bar{w}^n z^n \right) = \sum_{n=0}^{N-1} \frac{n}{N} \bar{w}^n z^n + \sum_{n=N}^{\infty} \bar{w}^n z^n,$$

one has

$$||R_N K_w||_{\infty} < \frac{1}{N} \sum_{n=0}^{N-1} n r^n + \sum_{n=N}^{\infty} r^n \le \varepsilon^{1/q}.$$

Thus $|R_N f(w)|^q \le \varepsilon ||f||_1^q$ for every f in H^1 .

Proof of Proposition 2.4. Denote by μ the measure which is absolutely continuous with respect to m and whose density is $|u|^q$, and let $\mu_{\varphi} = \mu \circ \varphi^{-1}$ be the pullback measure of μ by φ . Fix 0 < r < 1. For every $f \in H^1$, we have

$$\|(uC_{\varphi}R_{N})f\|_{q}^{q} = \int_{\mathbb{T}} |u(\zeta)|^{q} |((R_{N}f) \circ \varphi)(\zeta)|^{q} dm(\zeta)$$

$$= \int_{\mathbb{T}} |((R_{N}f) \circ \varphi)(\zeta)|^{q} d\mu(\zeta)$$

$$= \int_{\overline{\mathbb{D}}} |R_{N}f(w)|^{q} d\mu_{\varphi}(w)$$

$$= \int_{\overline{\mathbb{D}}\backslash r\mathbb{D}} |R_{N}f(w)|^{q} d\mu_{\varphi}(w) + \int_{r\mathbb{D}} |R_{N}f(w)|^{q} d\mu_{\varphi}(w)$$

$$= I_{1}(N, r, f) + I_{2}(N, r, f).$$
(2.3)

Let us first show that $\lim_{N} \sup_{\|f\|_1=1} I_2(N,r,f) = 0$. For $\varepsilon > 0$, Lemma 2.8 gives us an integer $N_0(r)$ such that for every $N \geq N_0(r)$,

$$I_{2}(N, r, f) = \int_{r\mathbb{D}} |R_{N}f(w)|^{q} d\mu_{\varphi}(w)$$

$$\leq \varepsilon ||f||_{1}^{q} \mu_{\varphi}(r\mathbb{D})$$

$$\leq \varepsilon ||f||_{1}^{q} \mu_{\varphi}(\overline{\mathbb{D}})$$

$$\leq \varepsilon ||f||_{1}^{q} ||u||_{q}^{q}.$$

So, r being fixed, we have $\lim_{N} \sup_{\|f\|_1=1} I_2(N, r, f) = 0$.

Now we need an estimate of $I_1(N,r,f)$. The continuity of $uC_{\varphi}: H^1 \to H^q$ ensures that μ_{φ} is a (1,q)-Carleson measure, and therefore $\mu_{\varphi,r}:=\mu_{\varphi_{\mid_{\overline{\mathbb{D}}\backslash r\mathbb{D}}}}$

is also a (1, q)-Carleson measure by using Lemma 2.6 for p = 1. It follows that

$$\int_{\overline{\mathbb{D}}\backslash r\mathbb{D}} |R_N f(w)|^q d\mu_{\varphi,r}(w) \le \gamma_1 ||R_N f||_1^q$$

$$\le \beta ||\mu_{\varphi,r}|| ||R_N f||_1^q$$

$$\le 2^q \beta M N_r^* ||f||_1^q$$

using Lemma 2.6 and the fact that $||R_N|| \le 1 + ||K_N|| \le 2$ for every $N \in \mathbb{N}$. We take the supremum over B_{H^1} and take the lower limit as N tends to infinity in (2.3) to obtain

$$\liminf_{N\to\infty} \|uC_{\varphi}R_N\|^q \le 2^q \beta M N_r^*.$$

Now as r goes to 1 we have:

$$\lim_{r \to 1} N_r^* = \lim_{|a| \to 1^-} \sup_{\int_{\overline{\mathbb{D}}}} |k_a(w)|^q d\mu_{\varphi}(w)$$
$$= \lim_{|a| \to 1^-} \sup_{|a| \to 1^-} \int_{\mathbb{T}} |u(\zeta)|^q \left(\frac{1 - |a|^2}{|1 - \bar{a}\varphi(\zeta)|^2}\right)^q dm(\zeta)$$

and we obtain the estimate announced using Lemma 2.7.

Now let us turn to the lower estimate in Theorem 2.2. Let $1 \le q < \infty$. Consider F_N the Fejér kernel of order N, and define $K_N : H^q \to H^q$ the convolution operator associated to F_N and $R_N = I - K_N$. Then $(K_N)_N$ is a sequence of uniformly bounded compact operators in $B(H^q)$, and $||R_N f||_q \to 0$ for all $f \in H^q$.

Lemma 2.9. There exists $0 < \gamma \le 2$ such that whenever uC_{φ} is a bounded operator from H^1 to H^q with $1 \le q < \infty$, one has

$$\frac{1}{\gamma} \limsup_{N} \|R_N u C_{\varphi}\| \le \|u C_{\varphi}\|_e.$$

Proof. Take $K \in B(H^1, H^q)$ a compact operator. Since (K_N) is uniformly bounded, one can find $\gamma > 0$ satisfying $||R_N|| \le 1 + ||K_N|| \le \gamma$ for all N > 0, and we have:

$$||uC_{\varphi} + K|| \ge \frac{1}{\gamma} ||R_N(uC_{\varphi} + K)||$$

$$\ge \frac{1}{\gamma} ||R_N uC_{\varphi}|| - \frac{1}{\gamma} ||R_N K||.$$

Now use the fact that (R_N) goes pointwise to zero in H^q , and consequently (R_N) converges strongly to zero over the compact set $\overline{K(B_{H^1})}$ as N goes to infinity. It follows that $||R_NK|| \xrightarrow{N} 0$, and

$$||uC_{\varphi} + K|| \ge \frac{1}{\gamma} \limsup_{N} ||R_N uC_{\varphi}||$$

for every compact operator $K: H^1 \to H^q$.

Proposition 2.10. Let u be an analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Assume that $uC_{\varphi} \in B(H^1, H^q)$ with $1 \leq q < \infty$. Then

$$||uC_{\varphi}||_{e} \ge \frac{1}{\gamma} \limsup_{|a| \to 1^{-}} \left(\int_{\mathbb{T}} |u(\zeta)|^{q} \left(\frac{1 - |a|^{2}}{|1 - \bar{a}\varphi(\zeta)|^{2}} \right)^{q} dm(\zeta) \right)^{\frac{1}{q}}.$$

Proof. Since k_a is a unit vector in H^1 ,

$$(2.4) ||R_N u C_{\varphi}|| = ||u C_{\varphi} - K_N u C_{\varphi}|| \ge ||u C_{\varphi} k_a||_q - ||K_N u C_{\varphi} k_a||_q.$$

First case: q > 1

Since (k_a) converges to zero for the topology of uniform convergence on compact sets in \mathbb{D} as |a| goes to 1, so does $uC_{\varphi}(k_a)$. The topology of uniform convergence on compact sets in \mathbb{D} and the weak topology agree on H^q , therefore it follows that $uC_{\varphi}(k_a)$ goes to zero for the weak topology in H^q as |a| goes to 1. Since K_N is a compact operator, it is completely continuous and carries weak-null sequences to norm-null sequences. So $||K_N(uC_{\varphi}(k_a))||_q \to 0$ when $|a| \to 1$, and

$$||R_N u C_{\varphi}|| \ge \limsup_{|a| \to 1^-} ||u C_{\varphi}(k_a)||_q.$$

Taking the upper limit as $N \to \infty$, we obtain the result using Lemma 2.9. For the second case we will need the following computational lemma:

Lemma 2.11. Let φ be an analytic self-map of \mathbb{D} . Take $a \in \mathbb{D}$ and $N \geq 1$ an integer. Denote by $\alpha_p(a)$ the p-th Fourier coefficient of $C_{\varphi}(k_a/(1-|a|^2))$, so that for every $z \in \mathbb{D}$ we have

$$k_a(\varphi(z)) = (1 - |a|^2) \sum_{p=0}^{\infty} \alpha_p(a) z^p.$$

Then there exists a positive constant M = M(N) > 0 depending on N such that $|\alpha_p(a)| \leq M$ for every $p \leq N$ and every $a \in \mathbb{D}$.

Proof. Write $\varphi(z) = a_0 + \psi(z)$ with $a_0 = \varphi(0) \in \mathbb{D}$ and $\psi(0) = 0$. If we develop $k_a(z)$ as a Taylor series and replace z by $\varphi(z)$ we obtain:

$$k_a(\varphi(z)) = (1 - |a|^2) \sum_{n=0}^{\infty} (n+1)(\bar{a})^n \varphi(z)^n.$$

Then

$$\alpha_p(a) = \left\langle \sum_{n=0}^{\infty} (n+1)(\bar{a})^n \varphi(z)^n, z^p \right\rangle$$
$$= \sum_{n=0}^{\infty} (n+1)(\bar{a})^n \sum_{j=0}^n \binom{n}{j} a_0^{n-j} \left\langle \psi(z)^j, z^p \right\rangle.$$

where $\langle f, g \rangle = \int_{\mathbb{T}} f \bar{g} \, dm$. Note that $\langle \psi(z)^j, z^p \rangle = 0$ if j > p since $\psi(0) = 0$, and consequently

$$\alpha_p(a) = \sum_{n=0}^{\infty} (n+1)(\bar{a})^n \sum_{j=0}^{\min(n,p)} \binom{n}{j} a_0^{n-j} \left\langle \psi(z)^j, z^p \right\rangle$$
$$= \sum_{j=0}^p \sum_{n=j}^{\infty} (n+1)(\bar{a})^n \binom{n}{j} a_0^{n-j} \left\langle \psi(z)^j, z^p \right\rangle$$
$$= \sum_{j=0}^p \left\langle \psi(z)^j, z^p \right\rangle \sum_{n=j}^{\infty} (n+1)(\bar{a})^n \binom{n}{j} a_0^{n-j}.$$

In the case where $a_0 \neq 0$ we obtain

$$\alpha_{p}(a) = \sum_{j=0}^{p} \left\langle \psi(z)^{j}, z^{p} \right\rangle a_{0}^{-j} \sum_{n=j}^{\infty} (n+1) \binom{n}{j} (\bar{a}a_{0})^{n}$$

$$= \sum_{j=0}^{p} \left\langle \psi(z)^{j}, z^{p} \right\rangle a_{0}^{-j} \frac{(j+1)(\bar{a}a_{0})^{j}}{(1-\bar{a}a_{0})^{j+2}}$$

$$= \sum_{j=0}^{p} \left\langle \psi(z)^{j}, z^{p} \right\rangle \frac{(j+1)(\bar{a})^{j}}{(1-\bar{a}a_{0})^{j+2}}$$

using the following equalities for $x = \bar{a}a_0 \in \mathbb{D}$:

$$\sum_{n=j}^{\infty} (n+1) \binom{n}{j} x^n = \left(\sum_{n=j}^{\infty} \binom{n}{j} x^{n+1}\right)' = \left(\frac{x^{j+1}}{(1-x)^{j+1}}\right)' = \frac{(j+1)x^j}{(1-x)^{j+2}}$$

Note that the last expression obtained for $\alpha_p(a)$ is also valid for $a_0 = 0$.

Thus, for $0 \le p \le N$ we have the following estimates:

$$|\alpha_{p}(a)| \leq \sum_{j=0}^{p} |\langle \psi(z)^{j}, z^{p} \rangle| \frac{j+1}{(1-|a_{0}|)^{j+2}}$$

$$\leq \sum_{j=0}^{p} ||\psi^{j}||_{\infty} \frac{N+1}{(1-|a_{0}|)^{N+2}}$$

$$\leq \frac{(N+1)^{2}}{(1-|a_{0}|)^{N+2}} \max_{0 \leq j \leq N} ||\psi^{j}||_{\infty}$$

$$\leq M,$$

where M is a constant independent from a.

Second case: q = 1

In this case, it is no longer for the weak topology but for the weak-star topology of H^1 that $uC_{\varphi}(k_a)$ tends to zero when $|a| \to 1$. Nevertheless, it is still true that $||K_N uC_{\varphi}(k_a)||_1 \to 0$ as $|a| \to 1$. Indeed if $f(z) = \sum_{n \ge 0} \hat{f}(n)z^n \in H^1$, then

$$K_N f(z) = \sum_{n=0}^{N-1} \left(1 - \frac{n}{N}\right) \hat{f}(n) z^n.$$

We have the following development:

$$k_a(\varphi(z)) = (1 - |a|^2) \sum_{n=0}^{\infty} \alpha_n(a) z^n.$$

Denote by u_n the n-th Fourier coefficient of u, so that

$$uC_{\varphi}(k_a)(z) = (1 - |a|^2) \sum_{n=0}^{\infty} \left(\sum_{p=0}^{n} \alpha_p(a) u_{n-p} \right) z^n, \ \forall z \in \mathbb{D}.$$

It follows that

$$||K_N u C_{\varphi}(k_a)||_1 \le (1 - |a|^2) \sum_{n=0}^{N-1} \left(1 - \frac{n}{N}\right) \left| \sum_{p=0}^n \alpha_p(a) u_{n-p} \right| ||z^n||_1.$$

Now using estimates from Lemma 2.11, one can find a constant M > 0 independent from a such that $|\alpha_p(a)| \leq M$ for every $a \in \mathbb{D}$ and $0 \leq p \leq N-1$. Use the fact that $||z^n||_1 = 1$ and $|u_p| \leq ||u||_1$ to deduce that there is a constant M' > 0 independent from a such that

$$||K_N u C_{\varphi}(k_a)||_1 \le M'(1-|a|^2)||u||_1$$

for all $a \in \mathbb{D}$. Thus $K_N u C_{\varphi}(k_a)$ converges to zero in H^1 when $|a| \to 1$, and take the upper limit in 2.4 when a tends to 1^- to obtain

$$||R_N u C_{\varphi}|| \ge \limsup_{|a| \to 1} ||u C_{\varphi}(k_a)||_1, \quad \forall N \ge 0.$$

We conclude with Lemma 2.9 and observe that $\gamma = \sup ||R_N|| \le 2$ since $||R_N|| \le 1 + ||K_N|| \le 2$.

3
$$uC_{\varphi} \in B(H^p, H^{\infty})$$
 for $1 \leq p < \infty$

Let u be a bounded analytic function. Characterizations of boundedness and compactness of uC_{φ} as a linear map between H^p and H^{∞} have been studied in [3] for $p \geq 1$. Indeed,

$$uC_{\varphi} \in B(H^p, H^{\infty})$$
 if and only if $\sup_{z \in \mathbb{D}} \frac{|u(z)|^p}{1 - |\varphi(z)|^2} < \infty$

and

$$uC_{\varphi}$$
 is compact if and only if $\|\varphi\|_{\infty} < 1$ or $\lim_{|\varphi(z)| \to 1} \frac{|u(z)|^p}{1 - |\varphi(z)|^2} = 0$.

In the case where $\|\varphi\|_{\infty} = 1$ we let

$$M_{\varphi}(u) = \limsup_{|\varphi(z)| \to 1} \frac{|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{1}{p}}}.$$

As regarding Theorem 1.7 in [12], it seems reasonable to think that the essential norm of uC_{φ} is equivalent to the quantity $M_{\varphi}(u)$. We first have a majorization:

Proposition 3.1. Let u be an analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Suppose that uC_{φ} is a bounded operator from H^p to H^{∞} , where $1 \leq p < \infty$ and that $\|\varphi\|_{\infty} = 1$. Then

$$||uC_{\varphi}||_{e} \le 2M_{\varphi}(u).$$

Proof. Let ε be a real positive number, and pick r < 1 satisfying

$$\sup_{|\varphi(z)| \ge r} \frac{|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{1}{p}}} \le M_{\varphi}(u) + \varepsilon.$$

We approximate uC_{φ} by $uC_{\varphi}K_N$ where $K_N: H^p \to H^p$ is the convolution operator by the Fejér kernel of order N, where N is chosen so that $|R_N f(w)| < \varepsilon ||f||_1$ for every $f \in H^1$ and every |w| < r (Lemma 2.8 for

q=1). We want to show that $||uC_{\varphi}-uC_{\varphi}K_N|| = ||uC_{\varphi}R_N|| \leq \max(2M_{\varphi}(u)+2\varepsilon,\varepsilon||u||_{\infty})$, which will prove our assertion. If f is a unit vector in H^p , then the norm of $uC_{\varphi}R_N(f)$ is equal to

$$\max \left(\sup_{|\varphi(z)| \ge r} |u(z)(R_N f) \circ \varphi(z)|, \sup_{|\varphi(z)| < r} |u(z)(R_N f) \circ \varphi(z)| \right).$$

We want to estimate the first term. If $\omega \in \mathbb{D}$, we denote by δ_{ω} the linear functional on H^p defined by $\delta_{\omega}(f) = f(\omega)$. Then $\delta_{\omega} \in (H^p)^*$ and $\|\delta_w\|_{(H^p)^*} = 1/(1-|w|^2)^{1/p}$ for every $w \in \mathbb{D}$. Therefore

$$\sup_{|\varphi(z)| \ge r} |u(z)(R_N f) \circ \varphi(z)| \le \sup_{|\varphi(z)| \ge r} |u(z)| \|\delta_{\varphi(z)}\|_{(H^p)^*} \|R_N f\|_p$$

$$\le 2 \sup_{|\varphi(z)| \ge r} \frac{|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{1}{p}}}$$

$$\le 2 (M_{\varphi}(u) + \varepsilon),$$

using the fact that $||R_N f||_p \leq 2$.

For the second term, since $|\varphi(z)| < r$ we have

$$|u(z)R_N f(\varphi(z))| \le ||u||_{\infty} |R_N f(\varphi(z))| \le \varepsilon ||u||_{\infty} ||f||_1 \le \varepsilon ||u||_{\infty}$$

which ends the proof.

On the other hand, we have the lower estimate:

Proposition 3.2. Let u be an analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} satisfying $\|\varphi\|_{\infty} = 1$. Suppose that uC_{φ} is a bounded operator from H^p to H^{∞} , where $1 \leq p < \infty$. Then

$$\frac{1}{2}M_{\varphi}(u) \le ||uC_{\varphi}||_{e}.$$

Proof. Assume that uC_{φ} is not compact, implying $M_{\varphi}(u) > 0$. Let (z_n) be a sequence in \mathbb{D} satisfying

$$\lim_{n} |\varphi(z_n)| = 1 \quad \text{and} \quad \lim_{n} \frac{|u(z_n)|}{(1 - |\varphi(z_n)|^2)^{\frac{1}{p}}} = M_{\varphi}(u).$$

Consider the sequence (f_n) defined by

$$f_n(z) = k_{\varphi(z_n)}(z)^{1/p} = \frac{(1 - |\varphi(z_n)|^2)^{\frac{1}{p}}}{\left(1 - \overline{\varphi(z_n)}z\right)^{\frac{2}{p}}}.$$

Each f_n is a unit vector of H^p . Let $K: H^p \to H^\infty$ be a compact operator.

First case: p > 1

Since the sequence (f_n) converges to zero for the weak topology of H^p and K is completely continuous, the sequence (Kf_n) converges to zero for the norm topology in H^{∞} . Use that $\|uC_{\varphi} + K\| \ge \|uC_{\varphi}(f_n)\|_{\infty} - \|Kf_n\|_{\infty}$ and take the upper limit when n tends to infinity to obtain

$$||uC_{\varphi} + K|| \ge \limsup_{n} ||uC_{\varphi}(f_{n})||_{\infty}$$

$$\ge \lim_{n} \sup_{n} |u(z_{n})| ||f_{n}(\varphi(z_{n}))||$$

$$\ge \lim_{n} \sup_{n} \frac{|u(z_{n})|}{(1 - |\varphi(z_{n})|^{2})^{\frac{1}{p}}}$$

$$\ge M_{\varphi}(u).$$

Second case: p = 1

Let $\varepsilon > 0$. Since the sequence (f_n) is no longer weakly convergent to zero in H^1 , we cannot assert that $(Kf_n)_n$ goes to zero in H^{∞} . Nevertheless, passing to subsequences, one can assume that $(Kf_{n_k})_k$ converges in H^{∞} , and hence is a Cauchy sequence. So we can find an integer N > 0 such that for every k and m greater than N we have $||Kf_{n_k} - Kf_{n_m}|| < \varepsilon$. We deduce that

$$\|uC_{\varphi} + K\| \ge \left\| (uC_{\varphi} + K) \left(\frac{f_{n_k} - f_{n_m}}{2} \right) \right\|_{\infty}$$

$$\ge \frac{1}{2} \|uC_{\varphi}(f_{n_k} - f_{n_m})\|_{\infty} - \frac{\varepsilon}{2}$$

$$\ge \frac{1}{2} |u(z_{n_k})| |f_{n_k} (\varphi(z_{n_k})) - f_{n_m} (\varphi(z_{n_k}))| - \frac{\varepsilon}{2}$$

$$\ge \frac{|u(z_{n_k})|}{2 (1 - |\varphi(z_{n_k})|^2)} - \frac{|u(z_{n_k})| (1 - |\varphi(z_{n_m})|^2)}{2 |1 - \overline{\varphi(z_{n_m})} \varphi(z_{n_k})|^2} - \frac{\varepsilon}{2}$$

Now take the upper limit as m goes to infinity (k being fixed) and recall that $\lim_{m} |\varphi(z_{n_m})| = 1$ and $|\varphi(z_{n_k})| < 1$ to obtain

$$||uC_{\varphi} + K|| \ge \frac{|u(z_{n_k})|}{2(1 - |\varphi(z_{n_k})|^2)} - \frac{\varepsilon}{2}$$

for every $k \geq N$. It remains to make k tend to infinity to have

$$||uC_{\varphi} + K|| \ge \frac{1}{2}M_{\varphi}(u) - \frac{\varepsilon}{2}.$$

Combining Proposition 3.1 and Proposition 3.2 we obtain the following estimate:

Theorem 3.3. Let u be an analytic function on \mathbb{D} and φ an analytic selfmap of \mathbb{D} satisfying $\|\varphi\|_{\infty} = 1$. Suppose that uC_{φ} is a bounded operator from H^p to H^{∞} , where $1 \leq p < \infty$. Then $\|uC_{\varphi}\|_e \approx M_{\varphi}(u)$. More precisely, we have the following inequalities:

$$\frac{1}{2}M_{\varphi}(u) \le ||uC_{\varphi}||_{e} \le 2M_{\varphi}(u).$$

Note that if p > 1 one can replace the constant 1/2 by 1.

4
$$uC_{\varphi} \in B(H^{\infty}, H^q)$$
 for $\infty > q \ge 1$

In this setting, boundedness of the weighted composition operator uC_{φ} is equivalent to saying that u belongs to H^q , and uC_{φ} is compact if and only if u=0 or $|E_{\varphi}|=0$ where $E_{\varphi}=\{\zeta\in\mathbb{T}\mid \varphi^*(\zeta)\in\mathbb{T}\}$ is the extremal set of φ (see [3]). We give here some estimates of the essential norm of uC_{φ} that appear in [9] for the special case of composition operators:

Theorem 4.1. Let $u \in H^q$, with $\infty > q \ge 1$ and φ be an analytic self-map of \mathbb{D} . Then $\|uC_{\varphi}\|_e \approx \left(\int_{E_{\varphi}} |u(\zeta)|^q dm(\zeta)\right)^{\frac{1}{q}}$. More precisely,

$$\frac{1}{2} \left(\int_{E_{\varphi}} |u(\zeta)|^q \, \mathrm{d}m(\zeta) \right)^{\frac{1}{q}} \leq ||uC_{\varphi}||_e \leq 2 \left(\int_{E_{\varphi}} |u(\zeta)|^q \, \mathrm{d}m(\zeta) \right)^{\frac{1}{q}}.$$

We start with the upper estimate:

Proposition 4.2. Let $u \in H^q$, with $\infty > q \ge 1$ and φ be an analytic self-map of \mathbb{D} . Then

$$||uC_{\varphi}||_e \le 2 \left(\int_{E_{\varphi}} |u(\zeta)|^q dm(\zeta) \right)^{\frac{1}{q}}.$$

Proof. Take 0 < r < 1. Since $||r\varphi||_{\infty} \le r < 1$, the set $E_{r\varphi}$ is empty and therefore the operator $uC_{r\varphi}$ is compact. Thus $||uC_{\varphi}||_{e} \le ||uC_{\varphi} - uC_{r\varphi}||$. But

$$(4.1) ||uC_{\varphi} - uC_{r\varphi}||^q = \sup_{\|f\|_{\infty} \le 1} \int_{\mathbb{T}} |u(\zeta)|^q |f(\varphi(\zeta)) - f(r\varphi(\zeta))|^q dm(\zeta).$$

If $|E_{\varphi}| = 1$ then the integral in (4.1) coincides with

$$\int_{E_{\varphi}} |u(\zeta)|^{q} |f(\varphi(\zeta)) - f(r\varphi(\zeta))|^{q} dm(\zeta)$$

which is less than $2^q \int_{E_{\varphi}} |u(\zeta)|^q dm(\zeta)$. If $|E_{\varphi}| < 1$ we let $F_{\varepsilon} = \{\zeta \in \mathbb{T} \mid |\varphi^*(\zeta)| < 1 - \varepsilon\}$ for $\varepsilon > 0$, which is a nonempty set for ε sufficiently small.

(Let us mention here that an element $\zeta \in \mathbb{T}$ needs not to satisfy neither $\zeta \in E_{\varphi}$ nor $\zeta \in \bigcup_{\varepsilon>0} F_{\varepsilon}$. It can happen that the radial limit $\varphi^*(\zeta)$ does not exist, but this happens only for ζ belonging to a set of measure zero). We will use the pseudohyperbolic distance ρ defined for z and w in the unit disk by $\rho(z,w) = |z-w|/|1-\bar{w}z|$. The Pick-Schwarz's theorem ensures that $\rho(f(z), f(w)) \leq \rho(z, w)$ for every function $f \in B_{H^{\infty}}$. As a consequence the inequality $|f(z) - f(w)| \leq 2\rho(z, w)$ holds for every w and z in \mathbb{D} . If ζ is an element of F_{ε} then

$$\rho(\varphi(\zeta), r\varphi(\zeta)) = \frac{(1-r)|\varphi(\zeta)|}{1-r|\varphi(\zeta)|^2} \le \frac{1-r}{1-r(1-\varepsilon)^2}.$$

One can choose 0 < r < 1 satisfying $\sup_{F_{\varepsilon}} \rho(\varphi(\zeta), r\varphi(\zeta)) < \varepsilon/2$, and therefore

$$|f(\varphi(\zeta)) - f(r\varphi(\zeta))| \le 2 \sup_{F_{\varepsilon}} \rho(\varphi(\zeta), r\varphi(\zeta)) \le \varepsilon$$

for all $\zeta \in F_{\varepsilon}$ and for every function f in the closed unit ball of H^{∞} . It follows from these estimates and (4.1) that

$$||uC_{\varphi} - uC_{r\varphi}||^{q} \leq \sup_{\|f\|_{\infty} \leq 1} \left(\int_{F_{\varepsilon}} |u(\zeta)|^{q} \varepsilon^{q} \, dm(\zeta) + \int_{\mathbb{T} \setminus F_{\varepsilon}} 2^{q} |u(\zeta)|^{q} \, dm(\zeta) \right)$$
$$\leq \varepsilon^{q} ||u||_{q}^{q} + 2^{q} \int_{\mathbb{T} \setminus F_{\varepsilon}} |u(\zeta)|^{q} \, dm(\zeta).$$

Make ε tend to zero to deduce the upper estimate.

Let us turn to the lower estimate:

Proposition 4.3. Suppose that φ is an analytic self-map of \mathbb{D} and $u \in H^q$ with $\infty > q \geq 1$. Then

$$||uC_{\varphi}||_e \ge \frac{1}{2} \left(\int_{E_{\varphi}} |u(\zeta)|^q dm(\zeta) \right)^{\frac{1}{q}}.$$

Proof. Take a compact operator $K \in B(H^{\infty}, H^q)$. Since the sequence $(z^n)_{n \in \mathbb{N}}$ is bounded in H^{∞} , there exists an increasing sequence of integers $(n_k)_{k \geq 0}$ such that $(K(z^{n_k}))_{k \geq 0}$ converges in H^q . For any $\varepsilon > 0$ one can find $N \in \mathbb{N}$ such that for every $k, m \geq N$ we have $||Kz^{n_k} - Kz^{n_m}||_q < \varepsilon$. If 0 < r < 1, we let $g_r(z) = g(rz)$ for a function g defined on \mathbb{D} . Take $k \geq N$. Then there exists 0 < r < 1 such that

$$\|(u\varphi^{n_k})_r\|_q \ge \|u\varphi^{n_k}\|_q - \varepsilon.$$

For all $m \geq N$ we have

$$||uC_{\varphi} + K|| \ge ||(uC_{\varphi} + K)\left(\frac{z^{n_k} - z^{n_m}}{2}\right)||_q$$

$$\ge \frac{1}{2} ||u(\varphi^{n_k} - \varphi^{n_m})||_q - \frac{\varepsilon}{2}$$

$$\ge \frac{1}{2} ||(u\varphi^{n_k})_r - (u\varphi^{n_m})_r||_q - \frac{\varepsilon}{2}$$

$$\ge \frac{1}{2} \left(||(u\varphi^{n_k})_r||_q - ||(u\varphi^{n_m})_r||_q\right) - \frac{\varepsilon}{2}$$

$$\ge \frac{1}{2} \left(||u\varphi^{n_k}||_q - ||(u\varphi^{n_m})_r||_q\right) - \varepsilon.$$

Let us make m tend to infinity, keeping in mind that 0 < r < 1 and $\|\varphi_r\|_{\infty} < 1$:

$$\|(u\varphi^{n_m})_r\|_q \le \|u\|_q \|(\varphi_r)^{n_m}\|_{\infty} \le \|u\|_q \|\varphi_r\|_{\infty}^{n_m} \longrightarrow 0.$$

Thus $||uC_{\varphi} + K|| \ge (1/2)||u\varphi^{n_k}||_q - \varepsilon$ for all $k \ge N$. We conclude noticing that

$$||u\varphi^{n_k}||_q = \left(\int_{\mathbb{T}} |u(\zeta)\varphi(\zeta)^{n_k}|^q \, \mathrm{d}m(\zeta)\right)^{\frac{1}{q}} \xrightarrow{k} \left(\int_{E_{\varphi}} |u(\zeta)|^q \, \mathrm{d}m(\zeta)\right)^{\frac{1}{q}}.$$

5
$$uC_{\varphi} \in B(H^p, H^q)$$
 for $\infty > p > q \ge 1$

In [9], the authors give an estimate of the essential norm of a composition operator between H^p and H^q for $1 < q < p < \infty$. The proof makes use of the Riesz projection from L^q onto H^q , which is a bounded operator for $1 < q < \infty$. Since it is not bounded from L^1 to H^1 (H^1 is not even complemented in L^1) there is no way to use a similar argument. So we need a different approach to get some estimates for q = 1. A solution is to make use of Carleson measures. First, we give a characterization of the boundedness of uC_{φ} in terms of a Carleson measure. In the case where p > q, Carleson measures on $\overline{\mathbb{D}}$ are characterized in [1]. Denote by $\Gamma(\zeta)$ the Stolz domain generated by $\zeta \in \mathbb{T}$, *i.e.* the interior of the convex hull of the set $\{\zeta\} \cup (\alpha \mathbb{D})$, where $0 < \alpha < 1$ is arbitrary but fixed.

Theorem 5.1 (see [1, Theorem 2.2]). Let μ be a measure on $\overline{\mathbb{D}}$, $1 \leq q and <math>s = p/(p-q)$. Then μ is a (p,q)-Carleson measure on $\overline{\mathbb{D}}$

if and only if $\zeta \mapsto \int_{\Gamma(\zeta)} \frac{\mathrm{d}\mu(z)}{1-|z|^2}$ belongs to $L^s(\mathbb{T})$ and $\mu_{\mathbb{T}} = F\mathrm{d}m$ for a function $F \in L^s(\mathbb{T})$.

This leads to a characterization of the continuity of a weighted composition operator between H^p and H^q :

Corollary 5.2. Let u be an analytic function on \mathbb{D} and φ an analytic selfmap of \mathbb{D} . For $1 \leq q , the weighted composition operator <math>uC_{\varphi}:$ $H^p \to H^q$ is bounded if and only if $G: \zeta \in \mathbb{T} \mapsto G(\zeta) = \int_{\Gamma(\zeta)} \frac{\mathrm{d}\mu_{\varphi}(z)}{1-|z|^2}$ belongs to $L^s(\mathbb{T})$ for s = p/(p-q) and $\mu_{\varphi|_{\mathbb{T}}} = F\mathrm{d}m$ for a certain $F \in L^s(\mathbb{T})$, where $\mathrm{d}\mu = |u|^q \mathrm{d}m$ and $\mu_{\varphi} = \mu \circ \varphi^{-1}$ is the pullback measure of μ by φ .

Proof. uC_{φ} is a bounded operator if and only if there exists $\gamma > 0$ such that for any $f \in H^p$, $\int_{\mathbb{T}} |u(\zeta)|^q |f \circ \varphi(\zeta)|^q dm(\zeta) \leq \gamma ||f||_p^q$, which is equivalent (via a change of variables) to $\int_{\overline{\mathbb{D}}} |f(z)|^q d\mu_{\varphi}(z) \leq \gamma ||f||_p^q$ for every $f \in H^p$. This exactly means that μ_{φ} is a (p,q)-Carleson measure. This is equivalent by Theorem 5.1 to the condition announced.

If $f \in H^p$, the Hardy-Littlewood maximal nontangential function Mf is defined by $Mf(\zeta) = \sup_{z \in \Gamma(\zeta)} |f(z)|$ for $\zeta \in \mathbb{T}$. For 1 , <math>M is a bounded operator from H^p to L^p and we will denote its norm by $||M||_p$. The following lemma is the analogue version of Lemma 2.6 for the case p > q.

Lemma 5.3. Let μ be a positive Borel measure on $\overline{\mathbb{D}}$. Assume that μ is a (p,q)-Carleson measure for $1 \leq q . Let <math>0 < r < 1$ and $\mu_r := \mu_{|\overline{\mathbb{D}} \setminus r\mathbb{D}}$. Then μ_r is a (p,q)-Carleson measure, and there exists a positive constant γ such that for every $f \in H^p$,

$$\int_{\overline{\mathbb{D}}} |f(z)|^q d\mu_r(z) \le (\|F\|_s + \gamma \|M\|_p^q \|\widetilde{G}_r\|_s) \|f\|_p^q$$

where $d\mu_{\mathbb{T}} = F dm$ and $\widetilde{G}_r(\zeta) = \int_{\Gamma(\zeta)} \frac{d\mu_r(z)}{1-|z|^2}$. In addition, $\|\widetilde{G}_r\|_s \to 0$ as $r \to 1$.

We use the notation $\widetilde{G_r}$ to avoid any confusion with the notation introduced before for φ and its radial function φ_r .

Proof. Being a (p,q)-Carleson measure only depends on the ratio p/q (see [1, Lemma 2.1]), so we have to show that μ_r is a (p/q,1)-Carleson measure. From the definition it is clear that $\widetilde{G}_r \leq G \in L^s(\mathbb{T})$. Moreover $\mathrm{d}\mu_{r|_{\mathbb{T}}} =$

 $d\mu_{\mathbb{T}} = Fdm \in L^s(\mathbb{T})$. Corollary 5.2 ensures the fact that μ_r is a (p,q)-Carleson measure.

Let f be in H^p . Then

$$\int_{\mathbb{T}} |f(\zeta)|^q d\mu_r(\zeta) = \int_{\mathbb{T}} |f(\zeta)|^q d\mu(\zeta) = \int_{\mathbb{T}} |f(\zeta)|^q F(\zeta) dm(\zeta)$$

$$\leq \left(\int_{\mathbb{T}} |f(\zeta)|^p dm(\zeta)\right)^{\frac{q}{p}} ||F||_s$$

$$\leq ||f||_p^q ||F||_s$$
(5.1)

using Hölder's inequality with conjugate exponents p/q and s.

For $z \neq 0$, $z \in \mathbb{D}$, let $\tilde{I}(z) = \{\zeta \in \mathbb{T} \mid z \in \Gamma(\zeta)\}$. In other words $\zeta \in \tilde{I}(z) \Leftrightarrow z \in \Gamma(\zeta)$. Then

(5.2)
$$m\left(\tilde{I}(z)\right) \approx 1 - |z|$$

and

$$\int_{\mathbb{D}} |f(z)|^{q} d\mu_{r}(z) \approx \int_{\mathbb{D}} |f(z)|^{q} \left(\int_{\tilde{I}(z)} dm(\zeta) \right) \frac{d\mu_{r}(z)}{1 - |z|^{2}}$$

$$= \int_{\mathbb{T}} \int_{\Gamma(\zeta)} |f(z)|^{q} \frac{d\mu_{r}(z)}{1 - |z|^{2}} dm(\zeta)$$

$$\leq \int_{\mathbb{T}} Mf(\zeta)^{q} \int_{\Gamma(\zeta)} \frac{d\mu_{r}(z)}{1 - |z|^{2}} dm(\zeta)$$

where $Mf(\zeta) = \sup_{z \in \Gamma(\zeta)} |f(z)|$ is the Hardy-Littlewood maximal nontangential function. We apply Hölder's inequality to obtain

(5.3)
$$\int_{\mathbb{D}} |f(z)|^q d\mu_r(z) \le \gamma \|Mf\|_p^q \|\widetilde{G_r}\|_s \le \gamma \|M\|_p^q \|\widetilde{G_r}\|_s \|f\|_p^q,$$

where γ is a positive constant that appears in (5.2). Combining (5.1) and (5.3) it follows that

$$\int_{\overline{\mathbb{D}}} |f(z)|^q d\mu_r(z) \le (\|F\|_s + \gamma \|M\|_p^q \|\widetilde{G}_r\|_s) \|f\|_p^q.$$

It remains to show that $\|\widetilde{G}_r\|_s \to 0$ when $r \to 1$. We will make use of Lebesgue's dominated convergence theorem. Clearly we have $0 \le \widetilde{G}_r \le G \in L^s(\mathbb{T})$, so we need to show that $\widetilde{G}_r(\zeta) \to 0$ as $r \to 1$ for m-almost every $\zeta \in \mathbb{T}$. Let $A = \{\zeta \in \mathbb{T} \mid G(\zeta) < \infty\}$. It is a set of full measure (m(A) = 1) since $G \in L^s(\mathbb{T})$. Write $\widetilde{G}_r(\zeta) = \int_{\Gamma(\zeta)} \widetilde{f}_r(z) d\mu(z)$ with $\widetilde{f}_r(z) = \mathbb{I}_{\overline{\mathbb{D}} \setminus r\mathbb{D}}(z)(1 - |z|^2)^{-1}$, $z \in \Gamma(\zeta)$. For every $\zeta \in A$ one has

$$\left| \tilde{f}_r(z) \right| \le \frac{1}{1 - |z|^2} \in L^1\left(\Gamma(\zeta), \mu\right) \text{ since } \zeta \in A,$$

 $\tilde{f}_r(z) \xrightarrow[r \to 1]{} 0 \text{ for all } z \in \Gamma(\zeta) \subset \mathbb{D}.$

Lebesgue's dominated convergence theorem in $L^1(\Gamma(\zeta), \mu)$ ensures that $\widetilde{G_r}(\zeta) = \|\widetilde{f_r}\|_{L^1(\Gamma(\zeta),\mu)}$ tends to zero as r tends to 1 for m-almost every $\zeta \in \mathbb{T}$, which ends the proof.

Theorem 5.4. Let u be an analytic function on \mathbb{D} and φ an analytic self-map of \mathbb{D} . Assume that uC_{φ} is a bounded operator from H^p to H^q , with $\infty > p > q \ge 1$. Then

$$||uC_{\varphi}||_{e} \le 2||C_{\varphi}||_{p/q}^{1/q} \left(\int_{E_{\varphi}} |u(\zeta)|^{\frac{pq}{p-q}} dm(\zeta) \right)^{\frac{p-q}{pq}},$$

where $||C_{\varphi}||_{p/q}$ denotes the norm of C_{φ} acting on $H^{p/q}$.

Proof. We follow the same lines as in the proof of the upper estimate in Proposition 2.4: we have the decomposition $I = K_N + R_N$ in $B(H^p)$, where K_N is the convolution operator by the Fejér kernel, and

$$||uC_{\varphi}||_{e} \le \liminf_{N} ||uC_{\varphi}R_{N}||.$$

We also have, for every 0 < r < 1,

$$\|(uC_{\varphi}R_N)f\|_q^q = \int_{\overline{\mathbb{D}}\backslash r\mathbb{D}} |R_N f(w)|^q d\mu_{\varphi}(w) + \int_{r\mathbb{D}} |R_N f(w)|^q d\mu_{\varphi}(w)$$
$$= I_1(N, r, f) + I_2(N, r, f).$$

As in the $p \leq q$ case, we show that

$$\lim_{N} \sup_{\|f\|_{p} \le 1} I_{2}(N, r, f) = 0.$$

The measure μ_{φ} being a (p,q)-Carleson measure, we use Lemma 5.3 to have the following inequality

$$I_1(N, r, f) \le (\|F\|_s + \gamma \|M\|_p^q \|\widetilde{G}_r\|_s) \|R_N f\|_p^q$$

for every $f \in H^p$. As a consequence

$$||uC_{\varphi}||_{e} \leq \liminf_{N} \left(\sup_{\|f\|_{p} \leq 1} I_{1}(N, r, f) \right)^{\frac{1}{q}} \leq 2(||F||_{s} + \gamma ||M||_{p}^{q} ||\widetilde{G}_{r}||_{s})^{\frac{1}{q}}$$

using the fact that $\sup_N ||R_N|| \le 2$. Now we make r tend to 1, keeping in mind that $||\widetilde{G_r}||_s \to 0$. We obtain

$$||uC_{\varphi}||_e \le 2||F||_s^{1/q}.$$

It remains to see that we can choose F in such a way that

$$||F||_s \le ||C_{\varphi}||_{p/q} \left(\int_{E_{\varphi}} |u(\zeta)|^{\frac{pq}{p-q}} dm(\zeta) \right)^{1/s}.$$

Indeed, if $f \in C(\mathbb{T}) \cap H^{p/q}$, we apply Hölder's inequality with conjugates exponents p/q and s to have

$$\left| \int_{\mathbb{T}} f \, d\mu_{\varphi,\mathbb{T}} \right| = \left| \int_{E_{\varphi}} |u|^{q} f \circ \varphi \, dm \right|$$

$$\leq \int_{E_{\varphi}} |u|^{q} |f \circ \varphi| \, dm$$

$$\leq \|C_{\varphi}(f)\|_{p/q} \left(\int_{E_{\varphi}} |u|^{sq} \, dm \right)^{1/s},$$

meaning that $\mu_{\varphi,\mathbb{T}} \in (H^{p/q})^*$, which is isometrically isomorphic to $L^s(\mathbb{T})/H_0^s$, where H_0^s is the subspace of H^s consisting of functions vanishing at zero. If we denote by $N(\mu_{\varphi,\mathbb{T}})$ the norm of $\mu_{\varphi,\mathbb{T}}$ viewed as an element of $(H^{p/q})^*$, then one can choose $F \in L^s(\mathbb{T})$ satisfying

$$||F||_s = N(\mu_{\varphi,\mathbb{T}}) \le ||C_{\varphi}||_{p/q} \left(\int_{E_{\varphi}} |u|^{pq/(p-q)} dm \right)^{1/s}$$

and $\mu_{\varphi,\mathbb{T}} = F \, dm$ (see for instance [11], p. 194). Finally we have

$$||uC_{\varphi}||_{e} \le 2||C_{\varphi}||_{p/q}^{1/q} \left(\int_{E_{\varphi}} |u(\zeta)|^{\frac{pq}{p-q}} dm(\zeta) \right)^{\frac{p-q}{pq}}.$$

Although we have not be able to give a corresponding lower bound of this form for the essential norm of uC_{φ} , we have the following result:

Proposition 5.5. Let $1 \le q , and assume that <math>uC_{\varphi} \in B(H^p, H^q)$. Then

$$||uC_{\varphi}||_{e} \ge \left(\int_{E_{\varphi}} |u(\zeta)|^{q} dm(\zeta)\right)^{\frac{1}{q}}.$$

Proof. Take a compact operator K from H^p to H^q . Since it is completely continuous, and the sequence (z^n) converges weakly to zero in H^p , $(K(z^n))_n$ converges to zero in H^q . Hence

$$||uC_{\varphi} + K|| \ge ||(uC_{\varphi} + K)z^{n}||_{q} \ge ||uC_{\varphi}(z^{n})||_{q} - ||K(z^{n})||_{q}$$

for every $n \geq 0$. Taking the limit as n tends to infinity, we have

$$||uC_{\varphi}||_{e} \ge \left(\int_{E_{\varphi}} |u(\zeta)|^{q} dm(\zeta)\right)^{\frac{1}{q}}.$$

Acknowledgements

The author is grateful to the referee for his careful reading and for the several suggestions made for improvement.

References

- [1] O. Blasco and H. Jarchow. A note on Carleson measures for Hardy spaces. Acta Sci. Math. (Szeged) 71 (2005), 371–389.
- [2] L. Carleson Interpolations by bounded analytic functions and the corona problem. Ann. of Math. (2) **76** (1962), 547–559.
- [3] M. D. Contreras and A. G. Hernández-Díaz Weighted Composition Operators between Different Hardy Spaces. Integr. eq. oper. theory 46 (2003), 165–188.
- [4] C. C. Cowen and B. D. MacCluer. Composition operators on spaces of analytic functions. CRC Press, Boca Raton, 1995.
- [5] Ž. Čučković and R. Zhao. Weighted composition operators between different weighted Bergman spaces and different Hardy spaces. Illinois J. Math. 51 no. 2 (2007), 479–498.
- [6] Ž. Čučković and R. Zhao. Weighted composition operators on the Bergman spaces. J. London Math. Soc. (2) 51 (2004), 499–511.
- [7] P. Duren. Theory of H^p spaces. Academic Press, New York, 1970.
- [8] F. Forelli. The isometries of H^p . Canad. J. Math. 16 (1964), 721–728.
- [9] P. Gorkin and B. D. MacCluer. Essential Norms of Composition Operators. Integr. eq. oper. theory 48 (2004), 27–40.
- [10] K. Hoffman. Banach spaces of analytic functions. Dover Publications, Inc., 1988

- [11] P. Koosis. Introduction to H_p spaces. Cambridge University Press, 1980.
- [12] P. Lefèvre. Generalized Essential Norm of Weighted Composition Operators on some Uniform Algebras of Analytic Functions. Integr. eq. oper. theory 63 (2009), 557–569.
- [13] V. Matache. Composition operators on Hardy Spaces of a half-plane. Proc. Amer. Math. Soc. 127 (1999), 1483–1491.
- [14] S. D. Sharma and R. K. Singh. Composition operators on Hardy spaces of the upper half-plane. Bull. Allahabad Math. Soc. 14 (1999), 129– 145.
- [15] K. Zhu. Duality of Bloch Spaces and Norm Convergence of Taylor Series. Michigan Math. J. **38** (1991), no. 1, 89–101.