#### Bioinformatics II Winter Term 2016/17



## Chapter 6: Visualization Design

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de

E-Mail: <a href="mailto:schultz@cs.uni-bonn.de">schultz@cs.uni-bonn.de</a>

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

December 6/20, 2016

#### **Motivation**

- Lecture so far:
  - Human visual perception
  - Visualization of multidimensional data
  - Dimensionality Reduction
  - Visualization of graphs
- How to use this knowledge to produce software that is useful for collaborators (e.g., biologists):
  - Visualization Design Process
  - Classification of Marks and Channels
  - Visualization Pipelines
  - Example Systems

# Section 6.1: Visualization Design Process

## Methodology for Visualization Design

- Nine-stage design methodology [SedImair et al. 2012]
  - Guidelines for developing visualization software prototypes for scientific collaborators



#### Learn

- Perception: Be aware of limitations of the human visual system
- Techniques: Have a broad perspective of available tools
  - Explains "superficial" treatment of alternative techniques within this lecture
  - Assignments provide opportunity to become familiar with widely applicable software packages
- Methodology: Know how to build collaborations and create systems
  - Today's lecture!
- Read up on literature relevant to your project!

#### **Winnow**

- Selection of collaborators / projects
  - "Talk with many, stay with few"

#### Practical Criteria:

- Does data exist, is it enough, can I have it?
- Can I and can they devote enough time?

#### Intellectual Criteria:

- Is the problem interesting and relevant?
- Do existing solutions suffice?
- Is visualization suitable?

#### Interpersonal Criteria



#### Cast

- Be aware of important roles in the project
  - Front line analyst (e.g., PhD student)
    - User of your tool
    - Performs day-to-day analysis of the data
    - Often generates the data
  - Gatekeeper (e.g., Professor)
    - Grants and denies access to data (and permission to publish about it)
    - Decides on how resources are spent
  - Fellow tool builders
    - Avoid relying on their characterization of the problem alone

#### **Core Stage**



#### **Discover**

 Understand the domain user's research questions, data analysis problems, and tasks

#### Methods:

- Talking: Iterative (get feedback on your abstraction)
- Fly-on-the-wall: Silently observing
- Contextual inquiries: Interrupt and ask
- Reading domain literature

#### **Data Abstraction**



## **Data Abstraction: Dataset Types**



#### **Task Abstraction**



## Design

- Goal of visualization is to create a solution
  - for a specific task
  - performed by a specific group of users
  - on specific data
- Satisfy users, do not attempt to optimize
  - contradictory objectives are the norm



#### **How to Construct a Vis Idiom**



## **Implement**

- Prototypes help confirm that you've correctly analyzed the users' needs
  - Avoid investing lots of time in creating a software that ends up not being used
  - Start with paper prototypes / "mock-ups"
  - Write "throw-away" code simply and rapidly
  - Make use of existing infrastructure
- Find middle ground on usability
  - With too little usability, tool will not be used
  - Usability should not push utility out of focus

### **Deploy**

- Release your software "into the wild"
- Validate benefit from tool:
  - Faster or more accurate analysis
  - New insights (which might enable a higher degree of automation)
- Case study: Solve specific real problem with real users and real data
  - Usage scenario: Real data, analysis done by developer of tool
  - Pair analytics: Insight gained in tandem by computer / data and domain scientist

## **Analysis Stage**



## Reflect / Write

- Reflect on what you've learned from building the tool
  - How to do better next time?
  - Confirm, refine, reject, propose guidelines
- In an academic context, report on your tool in a thesis / scientific paper
  - Describe the tool and evaluation
  - Justify design choices
  - Discuss lessons learned

### **Summary: Nine-Stage Process**

- Nine-stage design methodology provides useful guidance / structure for interdisciplinary collaborations
- Helps avoid missing important steps



## Section 6.2: Marks and Channels

#### What are Marks and Channels?

Marks are geometric primitives



Channels control visual appearance of marks



## **Combining Marks and Channels**

 You can analyze common visualization idioms as combinations of marks and channels:



#### **Effectiveness of Channels**

Channels: Expressiveness Types and Effectiveness Ranks





- Effectiveness Principle:

   Most important attributes
   should use highest ranked
   channels
- Expressiveness Principle: Match channel and data characteristics

[VAD Fig 5.1]

## **Expressiveness: How Many Levels?**

- Some channels only allow us to reliably distinguish between few levels
- Verify that this matches your number of attributes
- Bin if needed



[mappa.mundi.net/maps/maps 014/telegeography.html]

#### **Effectiveness: How do we know?**

Compare
 accuracy (or
 speed) on
 clearly
 defined
 tasks with
 different
 encodings



## **Effectiveness: Why?**

 Differences in accuracy explained by Steven's Psychophysical Power Steven's Psychophysical Power Law: S= I<sup>N</sup>



#### **Combinations of Channels**

Keep in mind separability vs. integrability:

Position Size Width Red + Height + Hue (Color) + Hue (Color) + Green Some interference Fully separable Major interference Some/significant interference 2 groups each 2 groups each 3 groups total: 4 groups total: integral area integral hue

### **Summary: Marks and Channels**

- Marks are the geometrical primitives used for visualization
- Channels control their appearance
- Channels should be matched to data in order to be expressive
- Some channels are more effective than others
  - use those for the most important attributes!

# Section 6.3: Visualization Pipelines

### **Visualization Pipelines: Motivation**

#### Visualization Pipelines

- provide a scheme of how data is read in, filtered, mapped, and rendered during visualization
- are a useful abstraction and common reference for many individually tailored solutions commonly found in visualization
- guide organization of classlibraries



### **Visualization Pipeline**

Most visualizations follow a common scheme:



#### **Examples** of interaction:

- Filter out parts of the data
- Change level of detail
- Reorder PCP axes
- Switch between visualization techniques

A **crucial benefit** of computer-based visualization

## **Import**



## **Filtering**



## **Mapping**



## Rendering



#### **Non-Interactive Visualization**



#### **Interactive Visualization as Post-Process**





## **Computational Steering**



## **Visual Analytics**

Source: Keim et al. 2008



# Section 6.4: Example System 1: Pathline

#### **Pathline**

- Design study by [Meyer et al. 2010]
- Comparative functional genomics
  - How do gene regulation and metabolite levels in pathways evolve over time and across species?
- Specific data: 14 species of yeast
  - Activity of 6000 genes and levels of 140 metabolites at six points in time
  - Metabolic pathways: Directed graph (nodes: metabolites, edges annotated with genes)
  - Similarity scores: Similarities between time series measured by Pearson / Spearman correlation
  - Phylogenetic relationship: Tree (leaves: species) that shows differentiation of the species

#### **Discover: Task Abstraction**

- High-level task: Find commonalities and differences between species in the activation patterns of genes and metabolite levels
  - At which point in evolution were specific cellular processes and regulatory mechanisms introduced?

#### More specific tasks:

- Look for trends in a set of time series for a gene / metabolite across species
- Look for trends across genes / metabolites in a set of time series within a species
- Compare time series to find specific features (e.g., timing of peaks, clusters of time series etc.)

## **Design: Overview of System**

- Two main views:

   Linearized
   Pathways
   vs.

   Curvemap
- Can select genes for analysis in curvemap



## **Design: Linearized Pathways**

- Goal: Emphasize quantitative values along pathways, pathway topology is secondary
  - Unroll loops, disconnect and reinsert branches
  - Gaps indicate branches
  - Only include relevant genes / metabolites
  - Query user in case of ambiguities
  - Lines encode similarity scores of metabolites
  - Circles encode genes
  - Color indicates direction
  - Different pathways shown below each other



#### **Design: Curvemap View**

- Matrix view, curves in cells show protein expression / metabolite levels over time
  - Better than heat maps
- Min/max normalization per cell to make shape obvious
- Aggregate views for each row / column for more detailed comparison (incl. absolute levels)
- Phylogenetic tree shows how species relate



## **Implement**

#### Interaction:

- Mousing over genes / metabolites in pathview shows names and numerical values
- Clicking on them adds them to curvemap
- Mousing over species / gene / metabolite highlights its curve in overlay plots

## **Deploy: Case Study 1**

- Investigate whole-genome duplication
  - g1/g2 are duplicatesin s1-s7
  - Curvemap clearly
     shows how different
     regulation mechanisms
     have evolved
  - Heat maps make it much more difficult to see this



## **Deploy: Case Study 2**

#### Pathway analysis (left)

- Clear trend of reduced similarity in metabolites along the pathway
- Trend suddenly reversed between m18 and m19

#### Gene-level analysis

- g5 and g6 strongly coupled, but time course varies across species
- Discovered previously unknown gene duplication event in s7





# Section 6.5: Example System 2: Overlapping Gene Detection

#### **Task: Discover Overlapping Genes**

Framework by [Simon et al. 2011]

DNA double strands give rise to six reading

frames:



 Task: Based on DNA & RNA sequencing, discover locations where genes overlap (e.g., sense and antisense strand encode different proteins)

#### **User-Defined Filters**

- Challenge: Huge amount of data (2-200 Gbp) and open reading frames (ORFs), noisy data
  - Fully automated analysis impossible
  - Fully manual analysis impossible
- Filter ORFs based on three criteria:
  - Coverage: Percentage of bases that has been counted at least once
  - 2. Transcription: Average counts per basis
  - 3. Fit: Difference between ORF and transcript lengths



## **Visual Analytics Framework**



## **Example Result 1: Known Gene**



## **Example Result 2: Pot. Overlapping Gene**



## **Summary of Chapter 6**

- Topics of Chapter 6 were:
  - Visualization Design Process
  - Classification of Marks and Channels
  - Visualization Pipelines
  - Example Systems: Pathline / OLG Detection
- Concludes first part of lecture: How to use visualization for data analysis

#### References

- Tamara Munzner, Visualization Analysis and Design, A K Peters, 2014
- Sedlmair et al., Design Study Methodology: Reflections from the Trenches and the Stacks, IEEE Trans. On Visualization and Computer Graphics 18(12):2431-2440, 2012
- Meyer et al., Pathline: A Tool For Comparative Functional Genomics, Computer Graphics Forum 29(3), 2010
- Simon et al., Visual Analysis of Next-Generation
   Sequencing Data to Detect Overlapping Genes in Bacterial Genomes, BioVis 2011