PYNQ是你從未聽說過最酷的Python框架

林明憲(Alex Lin)

linminghsien11@gmail.com

Agenda

- Introduction to The PYNQ Framework
 - What is PYNQ
 - Who is PYNQ for
 - What is the difference
- Exercise: Face & Emotion Recognition
 - Environments
 - Deployment
- Tutorials and Community Projects
- Summary

What is PYNQ

- PYNQ is an open-source project from Xilinx® that makes it easier to use Xilinx platforms. Using the Python language and libraries, designers can exploit the benefits of programmable logic and microprocessors to build more capable and exciting electronic systems.
- PYNQ can be used with *Zynq*, *Zynq UltraScale+*, *Zynq RFSoC*, *Alveo* accelerator boards and AWS-F1 to create high performance applications with:
 - Parallel hardware execution
 - High frame-rate video processing
 - Hardware accelerated algorithms
 - Real-time signal processing
 - High bandwidth IO
 - Low latency control

PYNQ Basics

Why would I want to use it? Has the ability to make some of your slow Python programs run FAST, <u>really really</u> FAST and allows Python to control hardware that other platforms could only dream about. <u>It can also dramatically reduce design time and effort!</u>

Jupyter Notebooks: browser-based development ... with rich, multi-media support

- Designed for
 - Interactive, exploratory computing
 - Reproducible results
- Ideal for
 - Teaching and learning
 - · Projects and research
- Rapid adoption
 - Across multiple disciplines

github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

PS + PL = APSoC(All programmable SoC)

PS = Processing System

PL = Programmable Logic(FPGA)

Overlays

Introduction to Overlays (key differentiation for YOU)

What is an Overlay?

Overlays are FPGA designs, using the design pattern concept, that extend user application from processing system to programmable logic, efficiently pre-processing the data prior to interaction by Arm Processor

- The .bit and .tcl files are generated by using Xilinx Tools
- Files are stored in the PYNQ overlay library
- PYNQ parses the files & recognizes the custom overlay
- Write custom Jupyter notebooks or scripts to interact

Inside PYNQ – the "base overlay"

Inside PYNQ – *Your overlay*

PYNQ – Who is it for?

- Interested in edge computing, IoT, embedded systems, custom designed hardware or signal processing?
- Familiar with Python and want to interact with Xilinx Ultrascale+ Programmable Logic?
- Need to accelerate embedded Python for machine learning inference or any other edge or data science app?
- Looking for a way to communicate technical information through computational notebooks?
- Need an embedded Linux rapid prototyping platform for Python and beyond?
- 6 Already familiar with Raspberry Pi™?

What is the difference

- Embedded system with Full Python
- Scalable Hardware Platform
 - Cortex-A9, Cortex-A53, RFSoC (Cortex-A53+RF), Alveo (x86 + FPGA)
- Hardware and Software Codesign Platform
- Software Defined x Platform
 - x: Networking, Radio, Hardware, storage ... etc
- Full stack development Platform from App to IC design
- Fast

Use case – Machine Learning computer vision on Ultra96

FINN Binary Neural Network (BNN) Demo on Ultra96

• http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Accelerated+Image+Classification+via+Binary+Neural+Network+TechTip

Full 1080p Images per Second in HW: 66.3 Full 1080p Images per Second in *SW: .01

HW Acceleration Factor: *6171

* The SW used for benchmark was running on the Ultra96 ARM Cortex™ A53 cores with same OS as the HW tests @ ~1.3GHz. Other platforms that have somewhat faster ARM cores could do a little better with just SW. Other platforms with their own hardware accelerators will also run faster than pure SW.

Use case - Matrix Multiply Algorithm Acceleration

- 32x32 Matrix Multiply of floats
- Algorithm developed in C
- Then accelerated in programmable logic
- Python can make calls into the C code for this

Daniel Rozwood -- <u>Ultra96 SDSoC Platform for v2018.2</u>

Use case - OpenCV Algorithm Acceleration with stereo BM

- OpenCV library: Stereo Block Matching
- https://github.com/Xilinx/PYNQ-ComputerVision.git

HW 49 vs SW 8 images per second!

Programmable Logic Acceleration vs. CPU/GPU

Domain / Topic	Title /Author /DOI	Improvement vs CPU+GPU	Improvement vs CPU-Only
Digital Signal Processing Sliding Windows	A Performance and Energy Comparison of FPGAs, GPUs, and Multicores for Sliding Window Applications, Fowers, http://dx.doi.org/10.1145/2145694.2145704	11x	57x
Graph Processing Tree-reweighted Message Passing (TRW-S)	GraphGen for CoRAM: Graph Computation on FPGAs, Weisz, http://dx.doi.org/10.1109/FCCM.2014.15	10.3x	14.5x
Monte Carlo Simulation Random Number Generation	A Comparison of CPUs, GPUs, FPGAs, and Massively Parallel Processor Arrays for Random Number Generation, Thomas, http://dx.doi.org/10.1145/1508128.1508139	3x	30x
Machine Vision Moving Average with Local Difference (MALD)	CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm, Hocenski, http://dx.doi.org/10.7305/automatika.2014.01.317	14x	35x
Bioinformatics <i>De Novo</i> Genome Assembly	Hardware Accelerated Novel Optical <i>De Novo</i> Assembly for Large-Scale Genomes, Kastner, http://dx.doi.org/10.1109/FPL.2014.6927499	8.5x	11.9x
Atmospheric Modelling Solvers for Global Atmospheric Equations	Accelerating Solvers for Global Atmospheric Equations through Mixed-Precision Data Flow Engine, Gan, http://dx.doi.org/10.1109/FPL.2013.6645508	4x	100x

Exercise: Face & Emotion Recognition

Refer to: https://www.hackster.io/dnhkng/caffein-ai-tor-711e4e

Hardware Components

- Avnet Ultra96
- Webcam

Software Apps

- Xilinx PYNQ
- SciKit-Learn

Adopted technology

- OpenCV: Laplacian Kernel(Blur Detection),
 Haar Cascade(Face Detetion)
- Deep Learning: Facenet(Face Recognition), Emonet(Emotion Detection)
- Decision tree : Random Forests

How to Start

Required materials

Micro SD card firmware image (urls provided on subsequent slides)

Ultra96 v2 (or v1)

Micro B USB cable: 2.0 (or 3.0)

Micro SD card >= **16GB** (the faster the better but no min speed) Delkin, Sandisk, others? (Samsung EVO won't work)

96boards **12V 4A** international supply!

PYNQ Install and Step

- To proceed PYNQ v2.5 must already be installed and running on the Ultra96
- If not, obtain the v2.5 release from: https://github.com/Avnet/Ultra96-PYNQ/releases
- Follow the setup instructions here (or use the latest under Github releases):

https://github.com/Avnet/Ultra96-PYNQ/releases/download/v2.5.0/U96_PYNQ_Setup_Instructions.pdf

Next....

- Network connection via: http://192.168.2.1:9090/notebooks/common/wifi.ipynb
- OpenCV 3.4.2: https://github.com/opencv/opencv/archive/3.4.3.zip
- PYNQ CV Overlays : https://github.com/Xilinx/PYNQ-ComputerVision.git
- pre-configured Haar Filter:
 https://github.com/opencv/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
- pre-trained BLVC GoogleNet model: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel
- pre-trained EmotiW_VGG_S model: https://drive.google.com/open?id=0BydFau0VP3XSNVYtWnNPMU1TOGM

Results

Tutorials and other resources

PYNQ Tutorials workshop

Video: Control custom IP using Vivado

HLS filter example (FPGA Developer)

Video: Add existing IP to a PYNQ overlay

PYNQ HLS tutorial (Dustin Richmond)

PYNQ RFSoC tutorial workshop

Accelerate FIR function

PYNQ bootcamp (High school level)

PYNQ Community: more Application Notebooks

PYNQ community projects

PYNQ Hello World

Hardware accelerated image resizer example

RISC-V on PYNQ

Extended Kalman filter University Sydney

spoonNN ETH Zurich

FPGA-based neural network inference project

iSmart DNN

FPGA-based neural network inference for DAC 2018 contest

TGIIF

FPGA-based neural network inference for DAC 2018 contest

cv2PYNQ

Accelerated OpenCV image filtering

Video processing

KU Leuven Hardware accelerated videoprocessing

First sides proceeding - Screen splitter [3,2,1]
/ the set ingreen a large arm provides arms of the splitter in the split

* School
Patricipal and Dayon

http://www.pynq.io/community.html

Jupyter Notebook

Python

PYNQ Overlay or PL Bitstream

PYNQ Notebook

Summary

- PYNQ is a Productivity Framework
- PYNQ includes software, libraries & overlays
- Overlays are FPGA designs that extends user application from processing system to programmable logic
- Jupyter notebooks & python programming for quick exploration
- Developers can create custom overlays & package the project making available an hardware library to a wider audience

Learning more: ZYNQ MPSoC and PYNQ

Free e-version or for purchase hard copy available from Amazon:

Exploring Zynq MPSoC with PYNQ and Machine Learning Applications

https://www.zynq-mpsoc-book.com

Free eBook: Exploring Zynq MPSoC with PYNQ and Machine learning applications

The book introduces **Zynq MPSoC** (Multi-Processor System-on-Chip) from Xilinx that combines an **Arm Cortex-A53** based processing systems, **Arm Cortex-R5** real-time processors, and **FPGA** programmable logic.

Topics include Zynq MPSoC architecture, design tools, hardware/software co-design, and software-defined methodologies. It features septial sections on PYNQ (Python-based framework for Zynq) and machine learning.

Download free from www.zyng-mpsoc-book.com or get a hard-copy on Amazon and other booksellers.

Learning more: Open source HLS book

Parallel Programming for FPGAs is an open-source book aimed at teaching hardware and software developers how to efficiently program FPGAs using high-level synthesis

http://kastner.ucsd.edu/hlsbook/

Learning more: PYNQ

PYNQ main website:

https://pynq.io

Documentation:

https://pynq.readthedocs.io/

PYNQ support forums:

https://discuss.pynq.io

Learning more: Ultra96 PYNQ

Github for Ultra96 PYNQ for customers who want to customize the OS:

https://github.com/Avnet/Ultra96-PYNQ

Documentation:

https://ultra96-pynq.readthedocs.io/

Ultra96 PYNQ setup installation video:

https://www.youtube.com/watch?time continue=3&v=is34FBOIDJE

Learning more: Xilinx hardware design

Xilinx XUP on-line:

- PYNQ Z1/Z2 (also mostly applicable to Ultra96) High Level Synthesis (create hardware designs with C/C++)
- Click prior year workshops for additional free materials

https://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-high-level-synthesis-flow-zynq.html

https://github.com/xupgit/High-Level-Synthesis-Flow-on-Zynq-using-Vivado-HLS

Vivado IP Block Design: https://github.com/xupgit/FPGA-Design-Flow-using-Vivado

Vivado FPGA Design Flow on Zyng

README.md

This workshop provides participants the necessary skills to develop digital design in Xilinx FPGA fabric and become familiar with synthesis, implementation, I/O planning, simulation, static timing analysis and debug features of Vivado.

The labs have been developed on a PC running Microsoft Windows 10 professional edition and using **Vivado 2018.2** version tools. These labs can also be run using WebPack edition.