Practice with Recurrence Relations

Don't forget to go through the more recurrence relation examples pdf file to see more examples.

Solve the following recurrence relations using the iteration technique:

1)
$$T(n) = T(n-1) + 2$$
, $T(1) = 1$

$$T(n) = T(n-2) + 2 + 2$$

 $T(n) = T(n-3) + 2 + 3$
 $T(n) = T(n-3) + 2 + 3$

Substituting Equations
$$T(n-1) = T(n-2)+2$$

$$T(n-2)=T(n-3)+2$$

$$T(n-3)=T(n-4)+2$$

2) $T(n) = 2T(n/2) + n$, $T(1) =$	=]	l
------------------------------------	-----	---

Substituting Equations

3)
$$T(n) = 2T\left(\frac{n}{2}\right) + 1, T(1) = 1$$

 $\frac{Substituting\ Equations}{n\ \to\ n/2}$

4) T(n) = T(n-1) + n, T(1) = 1

 $\frac{\text{Substituting Equations}}{\text{n} \ \rightarrow \ \text{n-1}}$

5.

Use the iteration technique to find a Big-Oh bound for the recurrence relation below. Note you may find the following mathematical result helpful: $2^{\log_3 n} = n^{\log_3 2}$,

$$\sum_{i=0}^{\infty} (2/3)^{i} = 3 T(n) = 2T(n/3) + cn$$