Math 152 - Statistical Theory - Homework 3

Ethan Ashby

Due: Friday, September 11, midnight PDT

- 8: R Baseball & Bayes Consider the baselball problem we discussed in class. (See website for a copy of the handout.) Let α_0 and β_0 be your prior parameters.
 - a. What are your choices of α_0 and β_0 ? [Use α_0 and β_0 values that were **not** discussed in class.] What features of the plot of the prior density function made you think these were good choices? I wrote a function below that you can use to try out different options for the prior.

alpha= 2.5, beta= 30

I choose $\alpha_0 = 2.5$ and $\beta_0 = 30$ for it's center and spread. I'm skeptical that this player is capable of performing at a major league level. This distributions' center and (prior expected batting average=0.08) and probability of exceeded a barely adequate level (P(batting at 0.2)=0.0175) jive with my prior belief that this player would not succeed in the majors.

b. Using properties of expectation [that is, consider both estimates as functions of X, not of θ], find the bias and variance of $\hat{\theta}_f$ and $\hat{\theta}_b$. You are a frequentist here, and your answers should both be functions of θ .

(i)
$$MSE(\hat{\theta}_f) = E[(\hat{\theta}_f - \theta)^2] = Var(\hat{\theta}_f) + [E(\hat{\theta}_f) - \theta]^2$$

$$E(\hat{\theta}_f) = \frac{1}{n}E(x) = \frac{1}{n}(n\theta) = \theta$$

$$Var(E(\hat{\theta}_f)) = \frac{1}{n^2}Var(X) = \frac{1}{n^2}n\theta(1 - \theta) = \frac{\theta(1 - \theta)}{n}$$

$$Bias: [E(\hat{\theta}_f) - \theta]^2 = [\theta - \theta]^2 = 0$$

$$Variance: Var(E(\hat{\theta}_f)) = \frac{\theta(1 - \theta)}{10}$$

(ii) Note that X denotes the number of successful trials: i.e. base hits

$$\hat{\theta}_b = \frac{X + \alpha}{n + \alpha + \beta}$$

$$E(\hat{\theta}_b) = \frac{E(X) + \alpha}{n + \alpha + \beta} = \frac{n\theta + \alpha}{n + \alpha + \beta}$$

$$Var(E(\hat{\theta}_b)) = Var(\frac{X + \alpha}{n + \alpha + \beta}) = \frac{Var(X)}{(n + \alpha + \beta)^2} = \frac{n\theta(1 - \theta)}{(n + \alpha + \beta)^2}$$

$$\text{Bias} : [E(\hat{\theta}_b) - \theta]^2 = \frac{n\theta + \alpha}{n + \alpha + \beta} - \theta = \frac{-(\alpha + \beta)\theta + \alpha}{n + \alpha + \beta} = \frac{-32.5\theta + 2.5}{42.5}$$

$$\text{Variance} : Var(E(\hat{\theta}_b)) = \frac{n\theta(1 - \theta)}{(n + \alpha + \beta)^2} = \frac{10\theta - 10\theta^2}{42.5^2}$$

c. Based on your comparison of the MSE, do you recommend using $\hat{\theta}_f$ or $\hat{\theta}_b$? Explain. [Hint: first determine whether one estimator has a smaller MSE. Over what region?]

I would use the bayesian estimator in this case. The bayesian estimator has a lower MSE over the range $\theta \in [0.02, 0.25]$ which seems like a reasonable range of batting average for this not super accomplished batter.

MSE for different estimators of batting average

d. If John Spurrier gets three hits in ten at bats, what is your estimate of θ ? (Given your answer to c.)

$$\hat{\theta}_b = \frac{X+\alpha}{n+\alpha+\beta} = \frac{3+2.5}{10+2.5+30} = 0.129$$

e. Show that in the beta-binomial family, $\hat{\theta}_b$ is a weighted average of $\hat{\theta}_f$ and the prior mean.

$$\hat{\theta}_b = \frac{X + \alpha}{n + \alpha + \beta}$$

$$\hat{\theta}_f = \frac{X}{n}$$

$$E[\xi(\theta)] = \frac{\alpha}{\alpha + \beta}$$

$$\hat{\theta}_b = \frac{n}{n + \alpha + \beta} * \frac{X}{n} + \frac{\alpha + \beta}{n + \alpha + \beta} * \frac{\alpha}{\alpha + \beta} = \gamma(\frac{X}{n}) + (1 - \gamma)(\frac{\alpha}{\alpha + \beta})$$

This is a weighted average of the prior mean and frequentist estimator.