THE UNIVERSITY OF SYDNEY MATH1902 LINEAR ALGEBRA (ADVANCED)

Semester 1

Board Tutorial for Week 4

2017

- Given that \mathbf{v} and \mathbf{w} are vectors such that $\mathbf{v} \times \mathbf{w} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$ find 8.
 - (i) $\mathbf{w} \times \mathbf{v}$
- (ii) $(\mathbf{v} + 3\mathbf{w}) \times (2\mathbf{w} \mathbf{v})$
- 9. Calculate $|\mathbf{a} \times \mathbf{b}|$ given that $|\mathbf{a}| = 7$, $|\mathbf{b}| = 4$ and $\mathbf{a} \cdot \mathbf{b} = -21$.
- 10. Use the algebraic definition of the cross product to verify the following properties for any vectors \mathbf{v} and \mathbf{w} :
 - (i) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{v} = 0$
- (ii) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{w} = 0$
- (iii) $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$ (iv) $\mathbf{v} \times \mathbf{v} = \mathbf{0}$
- Use the parallelogram property of the cross product to deduce quickly that vectors ${\bf u}$ 11. and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- **12**. Let **a** and **b** be the following vectors in the page:

True or false:

- $\mathbf{a} \times \mathbf{b}$ points upwards, away from the page, towards the ceiling
- $\mathbf{b} \times (\mathbf{a} \mathbf{b})$ points downwards, away from the page, towards the floor
- $\mathbf{a} \times (\mathbf{b} \times \mathbf{a})$ is perpendicular to \mathbf{a} but not to \mathbf{b}
- $\mathbf{b} \times (\mathbf{b} \times \mathbf{a})$ is the zero vector
- Does the expression $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ make sense? Does the equation $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ imply 13. $\mathbf{v} = \mathbf{w}$ whenever $\mathbf{u} \neq \mathbf{0}$?
- A tetrahedron has four faces. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 be vectors perpendicular to the faces, pointing outwards, of length equal to the respective areas of the faces. Verify that

$$\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 = \mathbf{0} .$$

Verify that, for any geometric vectors **a**, **b**, **c**,

$$\mathbf{a}\cdot \left(\mathbf{b}\times\mathbf{c}\right) \;=\; \left(\mathbf{a}\times\mathbf{b}\right)\cdot\mathbf{c} \;.$$

Give both algebraic and geometric verifications. Use anticommutativity of the crossproduct to deduce that

$$\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})\ =\ -(\mathbf{b}\times\mathbf{a})\cdot\mathbf{c}\ .$$

Important Ideas and Useful Facts:

(i) Algebraic definition of cross product: If $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ and $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$ then

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2) \mathbf{i} + (v_3 w_1 - v_1 w_3) \mathbf{j} + (v_1 w_2 - v_2 w_1) \mathbf{k}$$
.

which can be evaluated by

- (a) using the "up-and-down-diagonal" method;
- (b) using the "expanding brackets" method and the facts that

$$\mathbf{i} \times \mathbf{j} = \mathbf{k} = -(\mathbf{j} \times \mathbf{i}), \quad \mathbf{j} \times \mathbf{k} = \mathbf{i} = -(\mathbf{k} \times \mathbf{j}), \quad \mathbf{k} \times \mathbf{i} = \mathbf{j} = -(\mathbf{i} \times \mathbf{k}),$$

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0;$

- (c) evaluating a 3×3 determinant (explained later): $\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$.
- (ii) The cross product $\mathbf{v} \times \mathbf{w}$ is always perpendicular to both \mathbf{v} and \mathbf{w} so that

$$(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{v} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{w} = 0$$
.

- (iii) Anti-commutativity of cross product: $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$.
- (iv) Distributivity of cross over plus: $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$.
- (v) If \mathbf{v} and \mathbf{w} are vectors and λ is a scalar then

$$(\lambda \mathbf{v}) \times \mathbf{w} = \lambda (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \times (\lambda \mathbf{w})$$
 and $\mathbf{v} \times \mathbf{v} = \mathbf{0}$.

- (vi) The area of the parallelogram inscribed by \mathbf{v} and \mathbf{w} is $|\mathbf{v} \times \mathbf{w}|$.
- (vii) The area of the triangle inscribed by \mathbf{v} and \mathbf{w} is $\frac{|\mathbf{v} \times \mathbf{w}|}{2}$.
- (viii) Geometric formula for cross product: if θ is the angle between vectors \mathbf{v} and \mathbf{w} chosen so that $0 \le \theta \le \pi$ then

$$\mathbf{v} \times \mathbf{w} = |\mathbf{v}||\mathbf{w}|\sin\theta \ \mathbf{u} ,$$

where \mathbf{u} is the unit vector perpendicular to both \mathbf{v} and \mathbf{w} such that the triple \mathbf{u} , \mathbf{v} , \mathbf{w} is right-handed. In particular

$$|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}|\sin\theta$$
.

(ix) Triple product: If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

and its magnitude is the volume of the parallelopiped spanned by the three vectors, when placed tail-to-tail in space. If nonzero, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is positive if and only if the triple \mathbf{u} , \mathbf{v} , \mathbf{w} is right-handed.

2