Chapter 7, Solution 65.

Since $v_s = 10[u(t) - u(t-1)]$, this is the same as saying that a 10 V source is turned on at t = 0 and a -10 V source is turned on later at t = 1. This is shown in the figure below.

For
$$0 < t < 1$$
, $i(0) = 0$, $i(\infty) = \frac{10}{5} = 2$

$$R_{th} = 5 || 20 = 4, \tau = \frac{L}{R_{th}} = \frac{2}{4} = \frac{1}{2}$$

$$i(t) = i(\infty) + \left[i(0) - i(\infty) \right] e^{-t/\tau}$$

$$i(t) = 2 \left(1 - e^{-2t} \right) A$$

$$i(1) = 2 \left(1 - e^{-2} \right) = 1.729$$

For
$$t > 1$$
, $i(\infty) = 0$ since $v_s = 0$
 $i(t) = i(1) e^{-(t-1)/\tau}$
 $i(t) = 1.729 e^{-2(t-1)} A$

Thus,

$$i(t) = \begin{cases} 2(1 - e^{-2t})A & 0 < t < 1\\ 1.729e^{-2(t-1)}A & t > 1 \end{cases}$$