Hands-On Session: Regression Analysis

File: afni05_regression.pdf

SSCC/NIMH/NIH/HHS

Overview

•What we have learned so far

- Use data viewer 'afni' interactively
- Model HRF with a fixed-shape basis function (e.g., Gamma variate)
 - □ Assume the brain responds with the **same shape**
 - Across subjects and any activated regions
 - \Box Differ in magnitude: β (and its significance) is focus

•What we will do in this hands-on session

- Data pre-processing overview for time series regression analysis
- Basic concepts
 - □ Regressors, design matrix, and confounding effects
 - □ Statistical significance testing in regression analysis
- > Navigation with GUI 'afni'
 - □ Spot check for the original data
 - \square Statistic thresholding with data viewer 'afni' (two-sided vs. one-sided with t)
 - \square Model performance (visual check of curve fitting and test via full F or R^2)

FMRI Regression Analysis

- •Voxel-wise regression model: $y = X\beta + \varepsilon$
 - oy: signal (time series) at a voxel different across voxels
 - OX: explanatory (independent) variables (regressors) same across voxels
 - Oβ: regression coefficients (response strength) different across voxels
 - Oε: residuals (anything we can't account for) different across voxels
- •Regressors in design matrix $X = [x_1, x_2, ..., x_k]$
 - ORegressors of interest: hemodynamic responses (HDR)
 - ORegressors of no interest: drift effect (polynomials), head motion, etc.
- •Association between stimulus and BOLD signal: HDR/HRF
 - OFixed shape regardless of subjects, brain regions, stimuli: regression
 - ONo assumption about the HDR shape: deconvolution + regression
 - OMiddle ground: regression
- •Residuals
 - OWhite noise: OLS 3dDeconvolve
 - OSerially correlated: ARMA(1,1)+REML 3dREMLfit

A Case Study

- Speech Perception Task: Subjects were presented with audiovisual speech presented in a predominantly auditory or predominantly visual modality.
- A digital video system was used to capture auditory and visual speech from a female speaker.
- 2 types of stimulus conditions:

(1) **Auditory-Reliable**

Example: Subjects can clearly *hear* the word "cat," but the video of a woman mouthing the word is degraded.

(2) Visual-Reliable

Example: Subjects can clearly *see* the video of a woman mouthing the word "cat," but the audio of the word is degraded.

Experiment Design

- 3 runs in a scanning session
- Each run consisted of randomized 10 blocks:
 - 5 blocks contained Auditory-Reliable (Arel) stimuli, and
 - 5 blocks contained Visual-Reliable (*Vrel*) stimuli
- Each block contained 10 trials of *Arel* OR *Vrel* stimuli
 - Each block lasted for 20s (1s for stimulus presentation, followed by a 1s inter-stimulus interval)
- Each baseline block consisted of a 10s fixation point

Data Collected

- 2 anatomical datasets for each subject from a 3T
 - 175 sagittal slices
 - voxel dimensions = $1.0 \times 0.938 \times 0.938 \text{ mm}^3$

- 3 time series (EPI) datasets for each subject
 - 33 axial slices \times 152 volumes (TRs) per run
 - TR = 2s; voxel dimensions = $2.75 \times 2.75 \times 3.0 \text{ mm}^3$
- Sample size, $\underline{n} = 10$ (all right-handed subjects)
 - 10 is far too few for most modern experiments

Data Quality Check

- To look at the data: type cd AFNI_data6/afni, then afni
- Switch Underlay to dataset epi_r1
 - Then Axial Image and Graph
 - > FIM→Pick Ideal; then click afni/epi_r1_ideal.1D; then Set
 - > Right-click in image, Jump to (ijk), then 26 72 4, then Set

- •Data clearly has activity in sync with reference
 - 20s blocks
- •Data also has a big spike at 89s
 - Head motion
 - •Spike at t = 0
 - •Some tricks with keyboard
 - oa: automatic scaling
 - ov: video mode
 - om/M: voxel matrix sizing on Graph window

Preparing Data for Analysis

- Following preparatory steps are common (e.g., afni proc.py):
 - Outliers: 3dToutcount, 3dDespike
 - Temporal alignment or slice timing correction (sequential/interleaved):
 3dTshift
 - > EPI Image/volume registration (head motion correction): **3dvolreg**
 - EPI to anatomy registration: align_epi_anat.py
 - Spatial normalization (standard space conversion): @auto_tlrc, auto_warp.py
 - > Blurring/smoothing: 3dmerge, 3dBlurToFWHM, 3dBlurInMask
 - Masking: 3dAutomask
 - > Temporal mean scaling: 3dTstat and 3dcalc
- Not all steps are necessary or desirable in any given case

Regression Analysis

- •Regression model: $y = X\beta + \varepsilon$
- •Run script by typing **tcsh rall_regress** (takes a few minutes)

```
3dDeconvolve -input rall_vr+orig -polort 1
    -concat '1D: 0 150 300'
    -num stimts 8
    -stim times 1 stim AV1 vis.txt 'BLOCK(20,1)' -stim label 1 Vrel
    -stim_times 2 stim_AV2_aud.txt 'BLOCK(20,1)' -stim_label 2 Arel
    -stim_file 3 motion.1D'[0]' -stim_base 3 -stim_label 3 roll
    -stim_file 4 motion.1D'[1]' -stim_base 4 -stim_label 4 pitch
    -stim_file 5 motion.1D'[2]' -stim_base 5 -stim_label 5 yaw
    -stim file 6 motion.1D'[3]' -stim base 6 -stim label 6 dS
    -stim_file 7 motion.1D'[4]' -stim_base 7 -stim_label 7 dL
    -stim_file 8 motion.1D'[5]' -stim_base 8 -stim_label 8 dP
    -gltsym 'SYM: Vrel -Arel' -glt_label 1 V-A
    -tout -x1D rall_X.xmat.1D -xjpeg rall_X.jpg
    -fitts rall fitts -bucket rall func
    -iobs 2
•2 audiovisual stimulus classes were given using -stim_times
•Important to include motion parameters as regressors?
    May remove the confounding effects due to motion artifacts
    >6 motion parameters as covariates via -stim_file + -stim_base
    >motion.1D generated from 3dvolreg with the -1Dfile option
    Test the significance of head motion parameters
         >Add -bout or remove -stim base
         >Use -gltsym 'SYM: roll \ pitch \yaw \dS \dL \dP'
```

Modeling Serial Correlation in the Residuals

- Temporal correlation exists in the residuals of the time series regression model
- Within-subject variability (or statistical value) would get deflated (or inflated) if temporal correlation is not accounted for in the model
- Better correct for the temporal correlation if bringing both effect size and withinsubject variability to group analysis
- ARMA(1, 1) assumed in 3dREMLfit
- Script automatically generated by 3dDeconvolve (may use -x1D stop)
 - * File rall_func.REML_cmd under AFNI_data6/afni
 - *Run it by typing tcsh -x rall_func.REML_cmd

```
3dREMLfit -matrix rall_X.xmat.1D -input rall_vr+orig \
-tout -Rbuck rall_func_REML -Rvar rall_func_REMLvar \
-Rfitts rall_fitts_REML -verb
```

Regressor Matrix X for This Script (via -xjpeg)

- 6 drift effect regressors
 - > linear baseline
 - > 3 runs times 2 params/run
- 2 regressors of interest
- 6 head motion regressors
 - > 3 rotations and 3 shifts

Showing All Regressors (via -x1D)

All regressors: 1dplot -sepscl rall_X.mat.1D

<u>Plotting Regressors of Interest</u>

Regressors of Interest: 1dplot rall_X.mat.1D'[6..7]'

Options in 3dDeconvolve - 1

```
-concat '1D: 0 150 300'
```

- "File" that indicates where distinct imaging runs start inside the input file
 - > Numbers are the time (TR) indexes inside the dataset file for start of runs
 - These time points are considered as discontinuities in the model
 - In this case, a text format .1D file put directly on the command line
 - Could also be a filename, if you want to store that data externally

```
-num_stimts 8
```

- 2 audiovisual stimuli (+6 motion), thus 2 -stim_times below
- Times given in the -stim_times files are local to the start of each run

```
-stim_times 1 stim_AV1_vis.txt 'BLOCK(20,1)' -stim_label 1 Vrel
```

Content of stim_AV1_vis.txt

60 90 120 180 240

120 150 180 210 270

0 60 120 150 240

★ Each of 3 lines specifies start time in seconds for stimuli within the run

Options in 3dDeconvolve - 2

-gltsym 'SYM: Vrel -Arel' -glt_label 1 V-A

- GLTs: General Linear Tests
- 3dDeconvolve provides test statistics for each regressor separately, but to test combinations of the β weights in each voxel, we need -gltsym option
- Example above tests the difference between the β weights for the Virual-reliable and the Audio-reliable responses
 - > SYM: means symbolic input is on command line
 - Otherwise inputs will be read from a file
 - Symbolic names for each regressor taken from -stim_label options
 - Stimulus label can be preceded by + or to indicate sign to use in combination of β weights
 - Leave space after each label!
- Goal is to test a linear combination of the β weights
 - Null hypothesis $\beta_{\text{Vrel}} = \beta_{\text{Arel}}$
 - e.g., does Vrel get different response from Arel?
- What do 'SYM: 0.5*Vrel +0.5*Arel' and 'SYM: Vrel \ Arel'test?

Options in 3dDeconvolve - 3

- -fout -tout = output both F- and t-statistics for each
 stimulus class (-fout) and stimulus coefficient (-tout) —
 but not for the baseline coefficients (use -bout for baseline)
- The full model statistic is an *F*-statistic that shows how well all the regressors of interest explain the variability in the voxel time series data
 - Compared to how well just the baseline model time series fit the data times (in this example, we have 12 baseline regressor columns in the matrix — 6 for the linear drift, plus 6 for motion regressors)
 - $F = [SSE(r) SSE(f)]/df(n) \div [SSE(f)/df(d)]$
- The individual stimulus classes also will get individual *F* (if **-fout** added) and/or *t*-statistics indicating the significance of their individual *incremental* contributions to the data time series fit
 - If DF=1 (e.g., F for a single regressor), t is equivalent to F: $t(n) = F^2(1, n)$

Results of rall regress Script

- #0 Full_Fstat Vrel#O_Coef Vrel#0_Tstat Arel#O_Coef Arel#0_Tstat V-A_GLT#0_Coef V-A GLT#0 Tstat Set
- Menu showing labels from 3dDeconvolve
- Play with these results yourself!

Compare 3dDeconvolve and 3dREMLfit

Group Analysis: will be carried out on β or **GLT** coef (+t-value) from single-subject analysis