Tutorial – Mathematics for Social Scientists

Winter semester 2024/25

Vectors and Matrices

To do

- weekly recap
- real world applications
- hands on practice
- questions

Chapter 12 | Vectors and Matrices

Scalars, vectors, matrices

Scalars x

a quantity that is defined by a numerical value

Vectors \vec{x} (\ddot{x}, x)

 consist of elements and components and can be used to express parallel shifts/linear translations (e.g. movement)

Matrices X

• format: $A_{rows\ x\ columns}$

$$A_{3\times 3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}. \qquad A_{3\times 2} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}.$$

Matrices: Determinants

Matrices X

• format: $A_{rows\ x\ columns}$

$$A_{3\times3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

A quadratic matrix has a determinant!

- the determinant tells us, if A is invertible: if |A| ≠ 0
- if a system of equations has a unique solution
- we typically denote the determinant as det(A) or |A|
- to compute the determinant, apply either the rule of Sarrus (method) or apply Laplace expansion for matrices of large size
- more on that later...

Vectors

Vector addition

Component-wise addition:

• Rule:
$$\vec{x} + \vec{y} = {x_1 \choose x_2} + {y_1 \choose y_2} = {x_1 + y_1 \choose x_2 + y_2}$$

Example: $\vec{x} + \vec{y} = {3 \choose 5} + {2 \choose 1} = {3 + 2 \choose 5 + 1} = {5 \choose 6}$

Scalar multiplication:

• Rule:
$$\lambda \cdot \vec{x} = \lambda \cdot {x_1 \choose x_2} = {\lambda x_1 \choose \lambda x_2}$$

Example: $4 \cdot \vec{x} = {3 \choose 5} = {4 \cdot 3 \choose 4 \cdot 5} = {12 \choose 20}$

Real world applications – back to physics ©

Let's return to physics for a moment!

• Imagine an object e.g., a molecule on which two forces act:

• gravitational force
$$\overrightarrow{f_1} = \begin{pmatrix} 0 \\ 0 \\ -m \cdot g \end{pmatrix} N$$
,

• flow force
$$\overrightarrow{f_2} = \begin{pmatrix} 1N \\ 1N \\ 0 \end{pmatrix}$$

If we add both vectors, we obtain the entire force acting upon the molecule:

$$\vec{f} = \vec{f_1} + \vec{f_2} = \begin{pmatrix} 1N \\ 1N \\ -m \cdot g \end{pmatrix} N$$

 \rightarrow we can now use \vec{f} to obtain the molecules acceleration!

$$m \cdot \vec{a} = \vec{f} \rightarrow \vec{a} = \frac{\vec{f}}{m}$$

Euclidian Norm and scalar product

The 'length' of a vector \vec{x} is computed by squaring all components, summing them up and finally taking the square root of the sum

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Example:
$$\vec{v} = \begin{pmatrix} 3 \\ 7 \\ 2 \end{pmatrix}$$

$$||\vec{v}|| = \sqrt{3^2 + 7^2 + 2^2} = \sqrt{9 + 49 + 4} = \sqrt{62} \approx 7.874$$

The 'scalar product' results, as the name suggests, in a scalar, where matching components are multiplied, and products summed up

$$\langle \vec{x}, \vec{y} \rangle = \left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_3 \end{pmatrix} \right)$$

$$= x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Note: two vectors
$$\vec{x}$$
, \vec{y} are called 'orthogonal', iff $<\vec{x}$, $\vec{y}>=0$ \rightarrow 90° degree angle

Scalar product – useful properties

Symmetry

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle \overrightarrow{y}, \overrightarrow{x} \rangle$$

• Positivity ©

$$\langle \vec{x}, \vec{x} \rangle > 0$$
 for all $\vec{x} \neq 0$

Zero element

$$\langle \vec{x}, 0 \rangle = 0$$

Linearity

$$\langle \vec{x} + \lambda \vec{z}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle + \lambda \langle \vec{z}, \vec{y} \rangle$$

• Note: $\langle \vec{x}, \vec{x} \rangle = ||\vec{x}||^2 \leftarrow \text{scalar product is equal to squared Euclidian norm!}$

Hands on – Euclidian Norm and scalar product

Task: Compute the Euclidian lengths of the following vectors and their scalar products!

•
$$\vec{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

•
$$\vec{y} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$$

•
$$\vec{z} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

Hands on – Euclidian Norm and scalar product

Solution:

$$\|\vec{x}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$
$$\|\vec{y}\| = \sqrt{8^2 + 2^2} = \sqrt{64 + 4} = \sqrt{68} \approx 8.25$$
$$\|\vec{z}\| = \sqrt{4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.12$$

$$\langle \vec{x}, \vec{y} \rangle = 3 \cdot 8 + 4 \cdot 2 = 24 + 8 = 32$$

 $\langle \vec{x}, \vec{z} \rangle = 3 \cdot 4 + 4 \cdot 1 = 12 + 4 = 16$
 $\langle \vec{y}, \vec{z} \rangle = 8 \cdot 4 + 2 \cdot 1 = 32 + 2 = 34$

Cauchy-Schwartz inequality

When \vec{x} and \vec{y} are elements of a real (or complex) vector room with a defined scalar product, then $|\langle \vec{x}, \vec{y} \rangle|^2 \leq \langle \vec{x}, \vec{x} \rangle \cdot \langle \vec{y}, \vec{y} \rangle$ holds

- In other words: the positive, squared scalar product of two vectors $|\langle \vec{x}, \vec{y} \rangle|^2$ \vec{x} and \vec{y} must be smaller than or equal to the product of their inner products $\langle \vec{x}, \vec{x} \rangle \cdot \langle \vec{y}, \vec{y} \rangle$
- Note: Equality holds, when both vectors are linearly dependent!
 →next week ☺
- Substantial to proof the Heisenberg uncertainty principle in quantum mechanics

Matrices

Hands on – Types of matrices

Task: Identify the following matrices as diagonal, identity, square, symmetric, triangular, or none of the above (note all that apply)

$$1) \quad A = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 2 & 5 \\ 1 & 5 & 0 \end{bmatrix}$$

3)
$$C = \begin{bmatrix} -1 & 3 & 1 \\ 6 & -2 & 5 \\ 1 & 5 & -1 \\ 1 & 0 & 7 \end{bmatrix}$$

Hints: If you need a refresher, have a look at Moore & Siegel, 2013, p.284

Hands on – Types of matrices

Solution:

1)
$$A = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \rightarrow diagonal, square, symmetric, triangular$$

2)
$$B = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 2 & 5 \\ 1 & 5 & 0 \end{bmatrix} \rightarrow square, symmetric$$

3)
$$C = \begin{bmatrix} -1 & 3 & 1 \\ 6 & -2 & 5 \\ 1 & 5 & -1 \\ 1 & 0 & 7 \end{bmatrix} \rightarrow none \ of \ the \ above$$

Matrix transposition

• when transposing a matrix, we switch its components over its diagonal

•
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow A^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

• B=
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow B^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

•
$$C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \rightarrow C^T = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

•
$$D = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow D^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Computation with matrices

Addition

matrices must match in dimensions!

$$A + B = (a_{ij} + b_{ij})$$

$$= \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

• Example:

$$C + D = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Subtraction

 same here – otherwise result is undefined!

$$A - B = (a_{ij} - b_{ij})$$

$$= \begin{bmatrix} a_{11} - b_{11} & \dots & a_{1n} - b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} - b_{m1} & \dots & a_{mn} - b_{mn} \end{bmatrix}$$

• Example:

$$C - D = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Computation with matrices

Scalar multiplication

•
$$C = rA$$
 where $c_{ij} = r \cdot a_{ij}$

$$A = \begin{pmatrix} 3 & 1 \\ 5 & 4 \end{pmatrix} \text{ and } r = 3$$
$$3A = \begin{bmatrix} 3 \cdot 3 & 3 \cdot 1 \\ 3 \cdot 5 & 3 \cdot 4 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 15 & 12 \end{bmatrix}$$

Note: the inner dimension must match for result to be valid! Outer dimensions give shape of new matrix!

Multiplication

•
$$C_{n \times p} = A_{n \times m} B_{m \times p} \rightarrow c_{i,j} = \sum_{k=1}^{m} a_{ik} b_{jk}$$

$$A = \begin{pmatrix} 3 & 1 \\ 5 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 6 & -1 \end{pmatrix}$$

$$AB = \begin{pmatrix} 3 \cdot (-2) + (1 \cdot 6) & (3 \cdot 1) + (1 \cdot -1) \\ (5 \cdot (-2)) + (4 \cdot 6) & (5 \cdot 1) + (4 \cdot -1) \end{pmatrix}$$

$$AB = \begin{bmatrix} -6 + 6 & 3 - 1 \\ -10 + 24 & 5 - 4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 0 & 2 \\ 14 & 1 \end{bmatrix}$$

Computation with matrices

Division

$$A \div B = A \cdot B^{-1}$$

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 5 & 2 \\ -1 & 1 \end{bmatrix}$$

$$A \div B = A \cdot B^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ -\frac{2}{7} & \frac{5}{7} \end{bmatrix} = \begin{bmatrix} -\frac{3}{7} & \frac{11}{7} \\ 0 & 1 \end{bmatrix}$$

Hands on – Matrices

Task:

- 1) A^T
- 2) 3 · B
- 3) BC
- 4) CB
- *5) AC*
- 6) D+A

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 7 & 3 & 4 \\ -1 & 1 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} -4 & -7 \\ 4 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 5 & 9 \\ 1 & 3 \\ 4 & 7 \end{bmatrix}$$

$$D = \begin{bmatrix} 2 & -3 & 1 \\ -5 & -2 & -4 \\ -3 & 6 & 2 \end{bmatrix}$$

Hands on - matrices

Solution:

$$1) \quad A^T = \begin{bmatrix} 1 & 7 & -1 \\ 0 & 3 & 1 \\ -2 & 4 & 5 \end{bmatrix}$$

2)
$$3 \cdot B = \begin{bmatrix} -4 \cdot 3 & -7 \cdot 3 \\ 4 \cdot 3 & 3 \cdot 3 \end{bmatrix} = \begin{bmatrix} -12 & -21 \\ 12 & 9 \end{bmatrix}$$

3) $BC = \emptyset \rightarrow dimensions do NOT match!$

4)
$$CB = \begin{bmatrix} 5 & 9 \\ 1 & 3 \\ 4 & 7 \end{bmatrix} \cdot \begin{bmatrix} -4 & -7 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 16 & -8 \\ 8 & 2 \\ 12 & -7 \end{bmatrix}$$

Hands on - matrices

Solution:

5)
$$AC = \begin{bmatrix} 1 & 0 & -2 \\ 7 & 3 & 4 \\ -1 & 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} 5 & 9 \\ 1 & 3 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} -3 & -5 \\ 54 & 100 \\ 16 & 29 \end{bmatrix}$$

6) $D + A = \begin{bmatrix} 2 & -3 & 1 \\ -5 & -2 & -4 \\ -3 & 6 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -2 \\ 7 & 3 & 4 \\ -1 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & -3 & -1 \\ 2 & 1 & 0 \\ -4 & 7 & 7 \end{bmatrix}$

Determinant – Rule of Sarrus

 Rule of Sarrus or 'Butterfly Method' to obtain a matrix' determinant |A| or Det(A)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} a_{11} \quad a_{12}$$

$$a_{21} \quad a_{22}$$

$$a_{31} \quad a_{32} \quad a_{33} \quad a_{31} \quad a_{32}$$

$$|A| = \left[a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}\right] - \left[a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12}\right]$$

Determinant – Rule of Sarrus

 Rule of Sarrus or 'Butterfly Method' to obtain a matrix' determinant |A| or Det(A)

$$\begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} & \mathbf{a_{13}} \\ a_{21} & \mathbf{a_{22}} & \mathbf{a_{23}} \\ a_{31} & a_{32} & \mathbf{a_{33}} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \mathbf{a_{31}} & a_{32} \end{bmatrix}$$

$$|A| = [a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}] - [a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12}]$$

Determinant – Rule of Sarrus

 Rule of Sarrus or 'Butterfly Method' to obtain a matrix' determinant |A| or Det(A)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$|A| = [a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}] - [a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12}]$$

Determinant – Laplace expansion

Laplace expansion via identification of minors

- choose whichever row or column
 preferably one containing 0s
- expansion using i^{th} row:

•
$$|A| = \sum_{j=1}^{n} a_{ij} \cdot (-1)^{i+j} \cdot D_{ij}$$

- expansion using j^{th} column
 - $|A| = \sum_{i=1}^{n} a_{ij} \cdot (-1)^{i+j} \cdot D_{ij}$

Inverse

A matrix $A_{n \times x}$ is invertible, if $Det_A \neq 0$ and there is a matrix $B_{n \times n}$ where AB and $AB = I_{n \times n} \rightarrow AA^{-1} = I_{n \times n}$

General rule:

$$A^{-1} = \frac{1}{|A|}C^T$$

Rule for $A_{2\times 2}$:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Example:

$$A = \begin{bmatrix} 2 & 3 \\ -1 & 3 \end{bmatrix}$$

1) find determinant

$$|A| = (2)(3) - (3)(-1) = 6 + 3 = 9$$

2) switch diagonal elements and signs of a_{12} and a_{21}

$$A^{-1} = \frac{1}{9} \begin{bmatrix} 3 & -3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1/_3 & -1/_3 \\ 1/_9 & 2/_9 \end{bmatrix}$$

Inverse – algorithm

Let's have an example of the general rule $A^{-1} = \frac{1}{|A|}C^T$

1) find Det(A)

•
$$|A| = \begin{bmatrix} 4 & -3 & 2 \\ 2 & 0 & 1 \\ -1 & 6 & 5 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 2 & 0 \\ -1 & 6 \end{bmatrix}$$

• =
$$[(4 \cdot 0 \cdot 5) + ((-3) \cdot 1 \cdot (-1)) + (2 \cdot 2 \cdot 6)] - [((-1) \cdot 0 \cdot 2) + (6 \cdot 1 \cdot 4) + (5 \cdot 2 \cdot (-3))]$$

•
$$= 27 - (-6) = 33$$

Inverse

NOTE: Get rid of row i and column j in a_{ij} , so for M_{11} get rid of row 1 and column 1

2) find all minors of
$$A = \begin{bmatrix} 4 & -3 & 2 \\ 2 & 0 & 1 \\ -1 & 6 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -3 & 2 \\ 2 & \mathbf{0} & \mathbf{1} \\ -1 & \mathbf{6} & \mathbf{5} \end{bmatrix}$$

•
$$M_{11} = (-6)$$
 $M_{12} = 11$ $M_{13} = 12$

$$M_{11} = [0 \cdot 5] - [6 \cdot 1] = (-6)$$

•
$$M_{21} = (-27) M_{22} = 22 M_{23} = 21$$

•
$$M_{31} = (-3)$$
 $M_{32} = 0$ $M_{33} = 6$

3) transform into Cofactors

•
$$C_{11} = (-6)$$
 $C_{12} = (-11)$ $C_{13} = 12$

•
$$C_{21} = 27$$
 $C_{22} = 22$ $C_{23} = (-21)$

•
$$C_{31} = (-3)$$
 $C_{32} = 0$ $C_{33} = 6$

$$\begin{bmatrix} b_{11}(+) & b_{12}(-) & b_{13}(+) \\ b_{21}(-) & b_{22}(+) & b_{23}(-) \\ b_{31}(+) & b_{32}(-) & b_{33}(+) \end{bmatrix}$$

Inverse

4) find adjoint matrix (transpose cofactor matrix)

•
$$C = \begin{bmatrix} -6 & -11 & 12 \\ 27 & 22 & -21 \\ -3 & 0 & 6 \end{bmatrix}$$
 \rightarrow $C^T = \begin{bmatrix} -6 & 27 & -3 \\ -11 & 22 & 0 \\ 12 & -21 & 6 \end{bmatrix}$

5) solve for inverse $A^{-1} = \frac{1}{|A|}C^T$

•
$$A^{-1} = \frac{1}{|A|}C^{T} = \frac{1}{33}\begin{bmatrix} -6 & 27 & -3 \\ -11 & 22 & 0 \\ 12 & -21 & 6 \end{bmatrix} = \begin{bmatrix} -\frac{2}{11} & \frac{9}{11} & -\frac{1}{11} \\ -\frac{1}{3} & \frac{2}{3} & 0 \\ \frac{4}{11} & -\frac{7}{11} & \frac{2}{11} \end{bmatrix}$$

Hands on – Inverse

Task: Find the inverse of the following matrices, when possible!

1)
$$A = \begin{bmatrix} 5 & 2 \\ -1 & 1 \end{bmatrix}$$

2) $B = \begin{bmatrix} 1 & 2 \\ 5 & 10 \end{bmatrix}$
3) $M = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 9 & 1 \\ 5 & 1 & 4 \end{bmatrix}$

Hands on – Inverse

Solution:

1)
$$A = \begin{bmatrix} 5 & 2 \\ -1 & 1 \end{bmatrix}$$

 $|A| = (5 \cdot 1) - ((-1) \cdot 2)$
 $= 5 - (-2) = 7$
 $A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$
 $A^{-1} = \frac{1}{7} \begin{bmatrix} 1 & 1 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ -\frac{2}{7} & \frac{5}{7} \end{bmatrix}$

$$2) B = \begin{bmatrix} 1 & 2 \\ 5 & 10 \end{bmatrix}$$

$$|B| = (1 \cdot 10) - (2 \cdot 5) = 0$$

→ the inverse does not exist!

Hands on – Inverse

Solution:

3)
$$M = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 9 & 1 \\ 5 & 1 & 4 \end{bmatrix}$$

$$|M| = 50$$

$$C = \begin{bmatrix} 35 & 5 & -45 \\ 9 & 7 & -13 \\ -11 & -3 & 27 \end{bmatrix}$$

$$C^{T} = \begin{bmatrix} 35 & 9 & -11 \\ 5 & 7 & -3 \\ -45 & -13 & 27 \end{bmatrix}$$

$$M^{-1} = \frac{1}{|M|}C^T = \frac{1}{50} \begin{bmatrix} 35 & 9 & -11 \\ 5 & 7 & -3 \\ -45 & -13 & 27 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} \frac{35}{50} & \frac{9}{50} & -\frac{11}{50} \\ \frac{5}{50} & \frac{7}{50} & -\frac{3}{50} \\ -\frac{45}{50} & -\frac{13}{50} & \frac{27}{50} \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} \frac{7}{10} & \frac{9}{50} & -\frac{11}{50} \\ \frac{1}{10} & \frac{7}{50} & -\frac{3}{50} \\ \frac{.-9}{50} & -\frac{13}{50} & \frac{27}{50} \end{bmatrix}$$

Properties of matrices and vectors

• p.278

Table 12.1: Matrix and Vector Properties

Associative property	(AB)C = A(BC)
Additive distributive property	(A+B)C = AC + BC
Scalar commutative property	xAB = (xA)B = A(xB) = ABx

Table 12.2: Matrix and Vector Transpose Properties

Inverse	$(A^T)^T = A$
Additive property	$(A+B)^T = A^T + B^T$
Multiplicative property	$(AB)^T = B^T A^T$
Scalar multiplication	$(cA)^T = cA^T$
Inverse transpose	$(A^{-1})^T = (A^T)^{-1}$
If A is symmetric	$A^T = A$

Table 12.3: Matrix Determinant Properties

Transpose property	$\det(A) = \det(A^T)$
Identity matrix	$\det(I) = 1$
Multiplicative property	$\det(AB) = \det(A)\det(B)$
Inverse property	$\det(A^{-1}) = \frac{1}{\det(A)}$
Scalar multiplication $(n \times n)$	$\det(cA) = c^n \det(A)$
If A is triangular or diagonal	$\det(A) = \prod_{i=1}^{n} a_{ii}$

Table 12.4: Matrix Inverse Properties

Inverse	$(A^{-1})^{-1} = A$
Multiplicative property	$(AB)^{-1} = B^{-1}A^{-1}$
Scalar multiplication $(n \times n)$	$(cA)^{-1} = c^{-1}A^{-1}$ if $c \neq 0$

Time for your questions

- Any questions during the week?
 - joerdis.strack@uni-konstanz.de

