

CSCE 771: Computer Processing of Natural Language

Lecture 9: Semantics

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 15TH SEPTEMBER, 2022

Carolinian Creed: "I will practice personal and academic integrity."

Acknowledgement: Used materials by Jurafsky & Martin,

Organization of Lecture 9

- Opening Segment
 - Announcement
 - Review of Quiz 1
 - Project Report Format

- Concluding Segment
 - Reading material:
 - About Next Lecture Lecture 10

Main Section

- Semantics
 - Shallow: similarity, relatedness; frames
 - Propbank
 - Deep: AMR
 - ConceptNet
- Review projects

7	Sep 8 (Th)	Statistical Parsing, QUIZ
8	Sep 13 (Tu)	Review Parsing, Quiz review, Review Project, Introduce Evaluation
9	Sep 15 (Th)	Semantics
10	Sep 20 (Tu)	Review: Machine Learning for NLP, Evaluation – Metrics
11	Sep 22 (Th)	Language Model – Vector embeddings, CNN/ RNN
12	Sep 27 (Tu)	Guest Lecture – Dr. Amitava Das: Glove, Word2Vec, Transformer Review: Reasoning for NLP
13	Sep 29 (Th)	Representation: Ontology, Knowledge Graph, QUIZ
14	Oct 4 (Tu)	Representation: Embeddings, Language Models
15	Oct 6 (Th)	Entity extraction
16	Oct 11 (Tu)	Guest Lecture – Dr. Amitava Das: Using lang models to solve NLP tasks

Announcements

GUEST LECTURES ON LANGUAGE MODELS BY DR. AMITAVA DAS

Project Report Format (A Starting Point*)

- Problem
- Related Work
- Data Sources
- Method / Solution Steps/ Algorithm
- Evaluation
- Significance of work / Discussion
- References

^{*} Exact format depends on your project details. So, please change as appropriate.

Main Lecture

Semantics, Parsing and Representation

Semantics

- lexical semantics: studies word meanings and word relations, and
- *formal semantics*: studies the logical aspects of meaning, such as sense, reference, implication, and logical form
- conceptual semantics: studies the cognitive structure of meaning

Source: Jurafsky & Martin,

Wikipedia (https://en.wikipedia.org/wiki/Semantics)

From Text to Meaning

- Shallow semantics
 - Input: text
 - Output: *lexical semantics*
- Deep semantics
 - Input: text
 - Output: formal semantics

Source: Abstract Meaning Representation for Sembanking, https://amr.isi.edu/a.pdf

LOGIC format:

```
\exists w, b, g:
instance(w, want-01) \land instance(g, go-01) \land
instance(b, boy) \land arg0(w, b) \land
arg1(w, g) \land arg0(g, b)
```

AMR format (based on PENMAN):

GRAPH format:

Figure 1: Equivalent formats for representating the meaning of "The boy wants to go".

Review: Common Definitions

- Corpus (plural corpora): a computer-readable corpora collection of text or speech.
- •Lemma: A lemma is a set of lexical forms having the same stem, the same major part-of-speech, and the same word sense. Example: Cat and cats have same lemma.
- **Word form**: The word form is the full inflected or derived form of the word. Example: Cat and cats have <u>different</u> word forms.
- Word type: Types are the number of distinct words in a corpus. if the set of words is V, the number of types is the word token vocabulary size |V|.
- Word tokens: The total number N of running words in the sentence / document of interest.
- **Code switching**: use multiple languages in a code switching single communicative act Example: Hindlish (Hindi English), Spanish (Spanish English)

"They picnicked by the pool, then lay back on the grass and looked at the stars."

• 16 tokens, 14 word types

Source: Jurafsky & Martin

Lexical Semantics

- Lemma
 - Sing, Mouse
- Word form
 - Sing, sang, sung
 - Mouse, mice
- Word sense
 - Mouse: a rodent
 - Mouse: an electronic pointing device

A lemma having many senses is called **Polysemous**

Synonymous and Similar Words

- Synonym one word has a sense whose meaning is identical to a sense of another word
 - Two words are **synonymous** if they are substitutable one for the other in any sentence without changing the truth conditions of the sentence, the situations in which the sentence would be true
 - Propositional meaning synonym words have the same propositional meaning (truth preserving)
- **Principle of contrast** An assumption in linguistics is that difference in linguistic form (e.g., word form) is always associated with at least some difference in meaning
 - Water and H20 are truth preserving but used in different context
 - Synonym words are used for approximate synonymy. Then, how similar are the words?

Source: Jurafsky & Martin

Word Similarity - SimLex-999

• Captures similarity between word pairs, mining the opinions of 500 annotators via Amazon Mechanical Turk on a scale of 1 to 10

Note: similarity, rather than relatedness or association

- Contains
 - 666 Noun-Noun pairs,
 - 222 Verb-Verb pairs
 - 111 Adjective-Adjective pairs

vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

Source: Jurafsky & Martin

 Usage: Evaluation of learning based approaches for finding word similarity by correlation

SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. 2014. Felix Hill, Roi Reichart and Anna Korhonen. *Computational Linguistics*. 2015 Website: https://fh295.github.io/simlex.html

Meaning (Semantics) versus Structure (Lexical)

Pair	Simlex-999 rating	WordSim-353 rating
coast - shore	9.00	9.10
clothes - closet	1.96	8.00

Example courtesy: https://fh295.github.io/simlex.html

Word Relatedness/ Association

- **Semantic Field:** related words from the same particular domain and bear structured relations with each other.
 - Example 1: cup, coffee
 - Example 2: scalpel, surgeon
 - · Usually determined by experts in a field
- Word Association Test/ Task: how word meaning is stored in memory
 - Have people respond to word associations as a game; e.g., say the first word that comes to mind when one says "Doctor"
 - Applications
 - Used in marketing
 - Also evaluation of learning procedures discovering meaning (e.g., word embedding)

Sources:

- https://psychology.jrank.org/pages/656/Word-Association-Test.html,
- Establishing the Reliability of Word Association Data for Investigating Individual and Group Differences,

Tess Fitzpatrick, David Playfoot, Alison Wray, Margaret J. Wright *Applied Linguistics*, Volume 36, Issue 1,

February 2015, Pages 23–50, https://doi.org/10.1093/applin/amt020

Source: Jurafsky & Martin

Discovering Word Relatedness

- **Topic model**: a statistical notion of related words in a document. Hope is that meaningful topics will be from the same semantic field, but there is no guarantee
- Key idea
 - Topic: group of words
 - Counting words and grouping similar word patterns to infer topics within unstructured data.
 - Assumptions
 - · Distributional hypothesis: similar topics make use of similar words
 - Statistical mixture hypothesis: documents talk about several topics
 - Perform unsupervised analysis/ clustering: given a corpus and number of topics (k), find k topics that are representative of key ideas in the corpus

References:

- Blog: https://monkeylearn.com/blog/introduction-to-topic-modeling/
- Tool: Gensim
- Paper: https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

Frames, Slots: Frame Semantics

- Examples
 - "John sold a car to Mary"
 - "Mary bought a car from John"
 - "Mary paid John a undisclosed amount to get his car"
- To understand a word, one needs to understand the knowledge related to the word
 - In example: sell, buy, pay
- Capture knowledge in structures called **semantic frames** which have placeholders called slots (variables)
 - · During parsing of sentences, values are filled
- •Frame semantics is a theory of linguistic meaning developed by Charles J. Fillmore; related notion is semantic parsing

PropBank FrameSet

 A repository of formalized predicates https://propbank.github.io/

Example: Care

 $\underline{https://github.com/propbank/propbank-frames/blob/main/frames/care.xml}$

Hindi – भेजा - **Beja**

Credits: https://verbs.colorado.edu/propbank/framesets-hindi/Beja-v.html

Example: Hindi Propbank

Roleset id: Beja.01, to send, transport, ship something

Arg0: the one who sends something

Arg2: the recipient to whom something is sent

Arg1: the thing that is sent

Roleset id: Beja.02, to send, transport, ship something

Arg0: the one who sends something

Arg2-gol: the place where something is sent

Arg1: the thing that is sent

Roleset id: Beja.03, to make someone send something to someone

Argc: the causer- the one who makes someone send something

Arga: the intermediate causer

Arg0: the agent- the one who sends something

Arg2: the one to whom something is sent

Arg1: the thing that is sent

Roleset id: Beja.04, to make someone send something to someplace

Argc: the causer- the one who makes someone send something

Arga: the intermediate causer

Arg0: the agent- the one who sends something **Arg2-goI**: the place where something is sent

Arg1: the thing that is sent

Abstract Meaning Representation (AMR)

- Example: "The boy wants to go"
- AMR concepts are
 - English words ("boy"),
 - · PropBank framesets ("want-01"), or
 - special key-words.
- Keywords include special entity types("date-entity", "world-region", etc.), quantities("monetary-quantity", "distance-quantity", etc.)
- logical conjunctions ("and", etc).
- AMR uses approximately 100 relations

Source: Abstract Meaning Representation for Sembanking, https://amr.isi.edu/a.pdf

LOGIC format:

```
\exists w, b, g:
instance(w, want-01) \land instance(g, go-01) \land
instance(b, boy) \land arg0(w, b) \land
arg1(w, g) \land arg0(g, b)
```

AMR format (based on PENMAN):

GRAPH format:

Figure 1: Equivalent formats for representating the meaning of "The boy wants to go".

PENMAN Notation

Credit: https://penman.readthedocs.io/en/latest/structures.html

Credit: https://penman.readthedocs.io/en/latest/notation.html

Sample Code – PENMAN/ AMR

Sample code:

https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l9-semantics/PENMAN%20Notation%20-%20AMR.ipynb

AMR Demo

http://amparser.coli.uni-saarland.de:8080/

Exercise: 5 mins

- Try your sentences online
- Look at output in different formats

Semantic Parsing

- Shallow semantic parsing
 - · Also called: slot-filling or frame semantic parsing
 - "show me flights from Boston to Dallas"
- Deep semantic parsing
 - "show me flights from Boston to anywhere that has flights to Dallas"
 - Reference to quantifiers

Applications

- Paraphrasing
- Machine comprehension
- Question-answering
- Dialog

References:

- ACL 2020 Tutorial on Semantic Parsing
- https://en.wikipedia.org/wiki/Semantic_parsing

Semantic Parsing

Language to Meaning

Task-specific parsing

Source:

ACL 2020 Tutorial on Semantic Parsing

Resources: Semantic Parsing Libraries

- Open Sesame
 - Given English sentence, predicts FrameNet frames
 - https://github.com/swabhs/open-sesame
- AMRLib
 - Python library for AMR parsing, generation and visualization simple
 - https://github.com/bjascob/amrlib

Review: Lexical Meaning – Common Terms

- Synonym: same/ similar meaning
 - start-begin, finish-end, far-distant
- Antonym: opposite meaning
 - Far near, clever stupid, high low, big small
- Homonym: identical in spelling and pronunciation
 - bear, bank, ...
- Homophones: sounds identical but are written differently
 - site-sight, piece-peace.
- Homograph: written identically but sound differently
 - · Potato, tomato, lead, wind, minute
- Polysemy: a word or phrase which has two (or more) different meanings (i.e., senses)
 - Duck, sharp

Source: Mausam

More Terms

- Affective meanings or connotation: word's meaning that are related to a writer or reader's emotions, sentiment, opinions, or evaluations
 - Positive evaluation: good, happy
 - Negative evaluation:
- Sentiment: Positive or negative evaluation expressed through language
 - Scherer's Typology of Affective States

Source: Jurafsky & Martin

ConceptNet

- NLP focused graph knowledge graph that connects words and phrases of natural language with labeled edges.
- Concepts collected from experts, crowdsourcing, and games with a purpose
- Supports multiple languages
- Provides "loose" semantics relatedness

Details: http://conceptnet.io/,

https://github.com/commonsense/conceptnet5/wiki,

Paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewFile/14972/14051

Demonstration - ConceptNet

Examples:

- Concepts:
 - Word: http://conceptnet.io/c/en/word,
 - duck: http://conceptnet.io/c/en/duck
- Relationships:
 - http://conceptnet.io/s/resource/wordnet/rdf/3.1

Project CYC

- A large ontology to capture the world and human common sense
 - · Doug Lenat lead team of computer scientists, computational linguists, philosophers, and logicians
 - Identify and formally axiomatize the tens of millions of rules about world
 - 35+ years effort by Cycorp
- Reasoners on the ontology to make decisions
 - 1000+ specialized reasoners

Details: https://www.cyc.com/

Source: Cyc White Paper

Cyc Details

- Ontology of about 1.5 million general concepts (e.g., taxonomically "placing" terms like eyes, sleep, night, person, unhappiness, hours, posture, being woken up, etc.);
- More than 25 million general rules and assertions involving those concepts
 - "Most people sleep at night, for several hours at a time, lying down, with their eyes closed, they can be awakened by a loud noise but don't like that, "
- Domain-specific extensions to the common sense ontology and knowledge base
 - healthcare, intelligence, defense, energy, transportation and financial services.
- Promoting synergistic use of ontology and learning based approaches (now)

Source: White Paper – Cyc Technology Overview

Lecture 9: Concluding Comments

- We reviewed how to give semantics to words and documents
- Can be human supervised or learning based or combined
- Can be generic or task-oriented

Concluding Segment

About Next Lecture – Lecture 10

Lecture 10 Outline

- Machine Learning for NLP
 - Supervised learning
 - Unsupervised learning
 - Neural methods