Algoritmia y Complejidad

Titulación: Grado en Informática

Curso: 2023-2024

Trabajo: Ejercicio 7-Cambio de Monedas

Autor: Cárdenas Palacios, Lucía

Cazorla Rodríguez, Rubén

Cotrina Santos, Joaquín

Martín Conejo, Ana

PROBLEMA: CAMBIO DE MONEDAS

Recordamos el ejercicio de programación dinámica del cambio de monedas:

 Pagar cantidad C con el número mínimo de monedas de varios valores v1,v2,...vk.

Datos de entrada:

- C = cantidad a pagar
- Lista con los valores de las monedas:

Donde: vi = valor de la moneda i

K= número de monedas de las que disponemos

Soluciones Posibles

 Si la cantidad a pagar C coincide con el valor de una de las monedas, tendríamos una solución trivial.

 Si no, tendríamos que definir un resultado como secuencia de decisiones que cumplan el principio de optimalidad.

Elementos del Array a calcular

El número de elementos del array que hay que calcular en el problema es el producto del número de diferentes valores de monedas k, y la del tamaño de la cantidad a pagar:

$$k*(C+1)$$

Se construiría entonces una matriz con k filas y C+1 columnas.

Cada celda de esta matriz representa la cantidad mínima de monedas necesarias para pagar esa cantidad específica con los diferentes valores de monedas disponibles.

Ejemplo

 Supongamos que tenemos k=2 tipos de monedas: {1,2} y una cantidad a pagar C=4.

Se rellenarían 10 celdas:

k\C	0	1	2	3	4
Moneda 1	0	1	2	3	4
Moneda 2	0	1	1	2	2

Para cada celda de la matriz, calcularemos la cantidad mínima de monedas necesarias para pagar esa cantidad específica utilizando los diferentes valores de monedas disponibles.

Estudio del crecimiento del espacio

- Si C=32, su representación en memoria ocupará 6 bits para almacenar los números del 1 al 32(el array tendrá 32 columnas)
- Si C=64, su representación en memoria ocupará 7 bits para almacenar los números del 1 al 64(el array tendrá 64 columnas)
- Si C=128, su representación en memoria ocupará 8 bits para almacenar los números del 1 al 128(el array tendrá 128 columnas)

Luego podemos deducir que el espacio que se ocupará en memoria es:

$$b*2^b$$

b= el número de bits a representar C

Estudio del crecimiento del espacio

Como vimos antes, podemos entonces concluir que el crecimiento del espacio será:

$$O(b*2^b)$$

Estudio del crecimiento del tiempo

- El crecimiento del tiempo necesario depende del tamaño de la cantidad a pagar C, ya que es la variable de entrada que no podemos determinar a priori.
- La complejidad del tiempo será:

O(C)