CS-1 August 2010 QE

CS-1 page 1 of 1

1. If X_1, X_2, X_3 are independent and identically distributed exponential random variables with parameter λ , compute

(a) (10 points)
$$P(\min(X_1, X_2, X_3) \le a)$$
.

(b) (10 points)
$$P(\max(X_1, X_2, X_3) \le a)$$
.

2. Consider the sum of two complex sinusoids with random coefficients:

$$X(t) = X_1 e^{j\omega_1 t} + X_2 e^{j\omega_2 t}$$

where $\omega_1 \neq \omega_2$, and X_1 and X_2 are complex-valued random variables.

(a) (15 points) Find the autocorrelation function of X(t).

(b) (15 points) Find conditions on X_1 and X_2 that make X(t) a wide-sense stationary process.

3. Let A_n be a real-valued wide-sense stationary zero-mean discrete-time random process that has auto-correlation function

$$R_A(k) = \sigma_1^2 \rho_1^{|k|}$$

A decimator takes every other sample to form the random process V_m , m = 1, 2, ...

$$A_1 A_3 A_5 A_7 A_9 A_{11} \dots$$

(a) (10 points) Find the autocorrelation function of V_m .

(b) (10 points) An interpolator takes the sequence V_m and inserts zeros between samples to form the sequence W_k :

$$A_10A_30A_50A_70A_90A_{11}\dots$$

Find the autocorrelation function of W_k .

(c) (10 points) Is V_m wide-sense stationary? Is W_k wide-sense stationary?

4. (20 points) Let X_n converge in distribution to a constant a and let Y_n converge in distribution to a constant b. If X_n and Y_n are independent sequences, does $X_n + Y_n$ converge in distribution to a + b? You must justify your answer.

