Lista de Exercícios 7: Resolução

Guilherme de Abreu (nUSP: 12543033) Hélio Cardoso (nUSP: 10310227) Laura Camargos (nUSP: 13692334) Sandy Dutra (nUSP: 12544570) Theo dos Santos (nUSP: 10691331)

14 de abril de 2025

Exercício 1: Criar uma tabela sintática para a gramática abaixo.

$$\begin{array}{l} S \rightarrow AS' \\ S' \rightarrow S \mid \lambda \\ A \rightarrow a \mid b \mid \lambda \end{array}$$

Resolução:

Iniciamos pela construção da Tabela de Primeiros e Seguidores:

Regra	Primeiro	Seguidor
$S \to AS'$	$a, b, +, \lambda$	λ
$S' \to S \mid \lambda$	$+, \lambda$	λ
$A \rightarrow a \mid b \mid \lambda$	a, b, λ	$+, \lambda$

Com base nesta, determinamos as regras de transição para obtenção dos símbolos terminais a partir dos terminais, que orienta a análise preditiva não recursiva:

	a	b	+	λ
S	$S \to AS'$	$S \to AS'$	$S \to AS'$	$S \to AS'$
S'	$S' \to +S$		$S' \to +S$	$S' \to \lambda$
A	$A \rightarrow a$	$A \rightarrow b$		$A \rightarrow \lambda$

Exercício 2: Construa a tabela sintática para a gramática abaixo e reconheça a cadeia $id + id \cdot id$ utilizando análise sintática preditiva não recursiva. A cada passo, mostre o estado da pilha, da cadeia de entrada e a regra utilizada na derivação. Mostre a implementação deste analisador sintático.

$$\begin{split} E &\rightarrow TE' \\ E' &\rightarrow +TE' \mid \lambda \\ T &\rightarrow FT' \\ T' &\rightarrow \cdot FT' \mid \lambda \\ F &\rightarrow \mid id \end{split}$$

Resolução:

Seguindo os passos vistos no exercício anterior, temos:

Regra	Primeiro	Seguidor
$E \to TE'$	(,id	$), \lambda$
$E' \rightarrow +TE' \mid \lambda$	$+,\lambda$	$), \lambda$
T o FT'	(,id	$+,\lambda$
$T' \rightarrow \cdot FT' \mid \lambda$	\cdot, λ	$+,\lambda$
$F \to (E) \mid id$	(,id	\cdot, λ

E a seguinte tabela sintática:

	()	+	•	id	λ
E	$\rightarrow TE'$				$\rightarrow TE'$	
E'		$\rightarrow \lambda$	$\rightarrow +TE'$			$\rightarrow \lambda$
T	$\rightarrow FT'$		$\rightarrow FT'$		$\rightarrow FT'$	
T'			$\rightarrow \lambda$	$\rightarrow FT'$		$\rightarrow \lambda$
F	$\rightarrow (E)$				$\rightarrow id$	

O que nos leva ao seguinte processo de análise sintática não recursivo:

Stack	String	Regra
λE	$id + id \cdot id\lambda$	$E \to TE'$
$\lambda E'T$	$id + id \cdot id\lambda$	T o FT'
$\lambda E'T'F$	$id + id \cdot id\lambda$	F o id
$\lambda E'T'$	$+id \cdot id\lambda$	$T' o \lambda$
$\lambda E'$	$+id \cdot id\lambda$	$E' \rightarrow +TE'$
$\lambda E'T$	$id \cdot id\lambda$	T o FT'
$\lambda E'T'F$	$id \cdot id\lambda$	F o id
$\lambda E'T'$	$-id\lambda$	$T' \rightarrow \cdot FT'$
$\lambda E'T'F$	$\int id\lambda$	F o id
$\lambda E'T'$	λ	$T' o \lambda$
$\lambda E'$	λ	$E' \to \lambda$
λ	λ	Sucesso