СЛОЖНОСТЬ ВЫЧИСЛЕНИЯ МНОГОЧЛЕНОВ

С. Б. ГАШКОВ, И. С. СЕРГЕЕВ МГУ им. М.В. Ломоносова

I. KJIACCINTECKINE PESYJISTATISI

i.1 Вычисление вещественных многочленов в полном арифметическом базисе $A = \{+, \times, R\}$

Для вычисления многочлена степени *n* достаточно

n аддитивных операций n/2+O(1) умножений $\Omega(n^{1/2})$ нескалярных операций

Эти оценки неулучшаемы (Motzkin, Пан, Белага 1950-е гг. Paterson, Stockmeyer 1973)

I. KJIACCINTECKIJE PESYJISTATISI

i.2 Способ вычисления многочлена за $n/2+O(\log n)$ умножений (метод Винограда)

<u>Идея</u>: пусть f(x) – нормированный многочлен степени 2^{k+1} – 1 Тогда $f(x) = (x^{2^k} + a) f_0(x) + f_1(x)$, (1) где $f_0(x)$, $f_1(x)$ – нормированные многочлены степени 2^k – 1 Разложение (1) применим к $f_0(x)$, $f_1(x)$ и т.д. Проверить: (а) необходимые степени x^{2^k} , $x^{2^{k+1}}$, ..., x^2 вычисляются за k умножений (аддитивной цепочкой); (б) если они вычислены, то любой промежуточный

многочлен степени $2^m - 1$ вычисляется за $2^{m-1} - 1$ умножений

(очевидно из (1))

I. KJIACCINTECKINE PESYJISTATISI

i.3 Способ вычисления многочлена за $2n^{1/2}$ нескалярных умножений

<u>Идея</u>: многочлен f(x) степени rs-1 представляется в виде $f(x) = (...((f_0(x) x^r + f_1(x)) x^r + ...) x^r + f_{s-1}(x), \tag{2}$ (схема Горнера) где $f_k(x)$ – многочлены степени r-1

- (a) степени x^2 , x^3 , ..., x^r вычисляются за r-1 нескалярных умножений; многочлены $f_k(x)$ получаются как линейные комбинации этих степеней;
- (б) для завершения вычислений по формуле (2) достаточно выполнить еще s-1 умножений на x^r

I. KJIACCINTECKIJE PESYJISTATISI

і.4 Эффективные нижние оценки

В 70-90-х гг. Straßen и его ученики (von zur Gathen, Heintz, Schnorr, Stoß, Baur, Halupczok, а также Sieveking, van de Wiele) построили примеры конкретных многочленов, имеющих сложность, близкую к максимально возможной. Коэффициенты таких многочленов, как правило, алгебраически независимые вещественные или быстро растущие рациональные числа. Примеры сложных многочленов:

$$\sum p_i^{1/2} x^i$$
 \sum

$$\sum 2^{2^i} x^i$$
 $\sum i^r x^i$

Здесь: $p_i \in P$, $r \in Q/Z$

I. KJIACCHYECKHE PEЗУЛЬТАТЫ

і.5 Подстановка Кронекера

$$X_i = X^{2^i}$$

устанавливает взаимно однозначное соответствие между многочленами одной переменной степени 2^n-1 и мультилинейными (линейными по каждой переменной) многочленами n переменных

Поэтому если f(x) соответствует $g(x_0, ..., x_{n-1})$, то

$$L(f) \le L(g) + n - 1$$

III. MOHOTOHHAAR CJIOXKHOCTЬ

іі.1 Рассматриваются монотонные многочлены, т.е. с неотрицательными вещественными коэффициентами, и сложность их реализации над монотонным арифметическим базисом $A_+ = \{+, \times, R_+\}$. Содержательной является задача построения сложных многочленов с коэффициентами 0 и 1

іі. 2 Субкспоненциальные нижние оценки

Первая сверхполиномиальная нижняя оценка получена для характеристического многочлена наличия *k*-клики в графе:

$$CL_{n,k} = \sum_{\substack{1 \leq i_1 < \ldots < i_k \leq n \\ L_+(CL_{n,k})}} \prod_{\substack{1 \leq i_1 < \ldots < i_k \leq n \\ L_+(CL_{n,n/2})}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_{\substack{1 \leq n < t \leq k \\ CL_{n,n/2}}} \sum_$$

II. МОНОТОННАЯ СЛОЖНОСТЬ

Помимо Шнорра нижние оценки вида $2^{\Omega(n)}$ для мультилинейных многочленов n переменных в начале 80-х гг. получали Valiant, Jerrum, Snir

іі. З Экспоненциальные нижние оценки

 $2^{n/2} - 1$ Касим-Заде 1983

 $\Omega(2^{2n/3})$ Гашков 1987

(далее подробно)

ііі.1 <u>ОПР</u>. Подмножество M коммутативной полугруппы (G, +) называется (k, l)-редким, где $k \le l$, если для любых подмножеств A, $B \subset G$, таких, что |A| = k и |B| = l выполнено $A \times B = \{a+b \mid a \in A, b \in B\} \not\subset M$

При k=l используем термин k-редкое подмножество.

Пример: Подмножество $\{0, 1, 3\} \subset (Z_7, +)$ является 2-редким

<u>ОПР</u>. Пусть f – многочлен n переменных. Тогда $mon f \subset (N \cup \{0\})^n$ – множество вектор-степеней его мономов.

ііі. 2 ОСНОВНАЯ ТЕОРЕМА

```
Пусть k \ge 1 и mon f - (k, l)-редкое подмножество (N \cup \{0\})<sup>n</sup>,
L_{+}(f) – аддитивная монотонная сложность многочлена f,
L_{\times}(f) – мультипликативная монотонная сложность f,
\alpha(k) – наибольшее число булевых векторов длины k-1, ни
один из которых не равен дизъюнкции нескольких других.
Пусть h = \min \{ (k-1)^3, (l-1)^2 \}.
                                          L_{+}(f) \ge h^{-1} \mid \text{mon } f \mid -1
Тогда:
          (i)
                         L_{\star}(f) \ge C_{k,l} \mid \text{mon } f \mid \alpha(k)/(2\alpha(k)-1) - n - 2
          (ii)
В частности, L_{*}(f) = \Omega(|\text{mon } f|^{2/3}) при k=l=2
```

Эти оценки по порядку неулучшаемы

и $L_{*}(f) = \Omega(|\text{mon } f|^{3/5})$ при k=l=3.

Гашков 1987

ііі. 3 Примеры 2- и 3-редких множеств большой мощности

1. **2**-редкие подмножества \mathbb{Z}_n мощности $\sim n^{1/2}$:

<u>Множество В.Е. Алексеева</u> 1979:

Пусть n=p(p-1), $p\in P$, ζ – порождающий элемент мультипликативной группы поля \mathbf{Z}_p . Тогда

 $M = \{ s_i \mid i = 0, ..., p-2 \}$, где $s_i \equiv i \bmod (p-1)$, $s_i \equiv \zeta^i \bmod p$ \underline{M}

Пусть $n=q^2+q+1$, q – степень простого числа, θ – примитивный элемент поля $GF(q^3)$. Пусть $GF(q)=\{\zeta_1,\ldots,\zeta_q\}$. Тогда $M=\{0\}\cup\{s_i\mid\theta^{s_i}/(\theta+\zeta_i)\in GF(q),\ i=1,\ldots,q\}$

OTTP.
$$E_m = \{ 0, ..., m-1 \}$$
.

2. **2**-редкие подмножества $E_m^{\ \ n}$ мощности $\sim m^{n/2}$:

Пусть
$$q = p^k$$
, $p \in P \setminus \{2\}$. Тогда

$$M = \{ (x, x^2) \mid x \in GF(q) \} \subset GF(q^2) \to E_p^{2k}$$

Пусть $q = 2^k$. Тогда

$$M = \{ (x, x^3) \mid x \in GF(q) \} \subset GF(q^2) \to E_2^{2k}$$

3. **3**-редкие подмножества $E_m^{\ n}$ мощности $\sim m^{2n/3}$:

<u>Множество Брауна</u> 1966:

Пусть $q = p^k$, $p \in P \setminus \{2\}$ и γ – квадратичный невычет в GF(q). Тогда

$$M = \{ (x, y, z) \mid x^2 + y^2 + z^2 = -\gamma, \ x, y, z \in GF(q) \} \subset GF(q^3) \to E_p^{3k}$$

ііі. 4 Следствия для сложности многочленов

Можно эффективно указать многочлен f от n переменных степени не выше m-1 по каждой переменной, такой, что (при определенных ограничениях на m и n)

$$L_{+}(f) \ge (1 - o(1))m^{n/2}$$
 $L_{\times}(f) \ge (2 - o(1))m^{n/3}$

(если в качестве mon f выбирается подходящее 2-редкое множество) или

$$L_{+}(f) \ge (1/8 - o(1))m^{2n/3}$$
 $L_{\times}(f) \ge (2^{-4/5} - o(1))m^{2n/5}$

(если в качестве mon f выбирается подходящее 3-редкое множество)

(в примерах Шнорра и Касим-Заде: 2-редкие множества)

Факт (Erdös, Spencer 1974): любое (k, l)-редкое подмножество $M \subset E_m^n$ имеет мощность $O_{k, l}(m^{n(1-1/k)})$

ііі. 5 Редкие множества экстремальной мощности

Множество Коллара-Роньяи-Жабо 1996:

В группе $(GF(q^t), +)$ множество элементов единичной нормы

$$M = \{ x \mid x^{(q^{t-1})/(q-1)} = 1, x \in GF(q^{t}) \}$$

является (t, t!+1)-редким подмножеством и имеет мощность $(q^t-1)/(q-1)$.

III. МЕТОД РЕДКИХ МНОЖЕСТВ

ііі.6 ЛЕММА 1

Пусть $\psi_{s,t,m}$: $E_m^{st} \rightarrow E_{(2m-1)t}^s$ –

взаимно однозначное отображение:

$$\psi_{s,t,m}(...,a_{it},...,a_{it+t-1},...) = (...,[a_{it},...,a_{it+t-1}]_{2m-1},...)$$

Тогда если $M \subset E_m^{st}$ является (k, l)-редким подмножеством, то $\psi_{s, t, m}(M) \subset E_{(2m-1)t}^{s}$ также является (k, l)-редким подмножеством.

* [a_k , ..., a_0]_m = (...(a_k m + a_{k-1})m + ...)m + a_0 (запись числа в системе счисления с основанием m)

iii.7 ОСНОВНОЕ СЛЕДСТВИЕ (из основной теоремы и технической теоремы 1)

Пусть $m \ge 2$ и $n \ge 1$. Можно эффективно указать многочлен f от n переменных степени не выше m-1 по каждой переменной, такой, что при $m^n \to \infty$

$$L_{+}(f) \ge m^{n(1-o(1))}$$
 $L_{\times}(f) \ge m^{n(1/2-o(1))}$

Обе оценки в таком виде уже неулучшаемы.

IV. MOHOTOHHAЯ И HEMOHOTOHHAЯ СЛОЖНОСТЬ

iv.1 Примеры расхождения между сложностью L(f) в полном базисе $A = \{+, \times, R\}$ и сложностью $L_M(f)$ в монотонном базисе $A_+ = \{+, \times, R_+\}$

f – мультилинейные многочлены n переменных:

$$L(f) = n^{O(1)}$$
 $L_M(f) \ge c^{n1/2}$ Valiant 1979 $L(f) = n^{O(1)}$ $L_M(f) \ge c^n$ Касим-Заде 1983 $L_M(f) / L(f) = n^{\Omega(1)}$ deg $f = 3$ Schnorr 1976

$$L_M(f) \ / \ L(f) \ge 2^{n(1/2-o(1))}$$
 Гашков, Сергеев 2010 $L_M(f) \ / \ L(f) = n^{1-o(1)}$ deg $f = 2$ Гашков, Сергеев 2010

IV. MOHOTOHHAAA IA HEMOHOTOHHAAA CAOXKHOCTЬ

iv.2 Еще один способ построения редких множеств

<u>ОПР</u>. Булева матрица называется (k, l)-редкой, если она не содержит подматриц размера $k \times l$, состоящих из всех единиц ЛЕММА 2

Пусть $M_1 = \{a_1, ..., a_r\}$ и $M_2 = \{b_1, ..., b_r\} - k$ -редкие подмножества E_m^n и $(\mu_{i,j})$ – l-редкая матрица порядка r. Тогда

(i)
$$M = \{ (a_i, b_j) \mid \mu_{i,j} = 1 \} \subset E_m^{2n}$$
(ii)
$$M = \{ (a_i, b_j) \mid \mu_{i,j} = 1 \} \subset E_m^{n}$$

(ii)
$$M = \{ a_i + (2m-1) b_j \mid \mu_{i,j} = 1 \} \subset E_{m^2}^n$$

-((k-1)(l-1)+1)-редкие подмножества

Свойство: $L(f_M) \le L(f_{a_1}, ..., f_{a_r}, f_{b_1}, ..., f_{b_r}) + L(\mu_{i,j}) + O(\log m)$, где

 $M = \operatorname{mon} f_M$, $L(\mu_{i,j})$ – сложность линейного преобразования

IV. MOHOTOHHAЯ И HEMOHOTOHHAЯ СЛОЖНОСТЬ

СЛЕДСТВИЕ (из леммы 1 и результата Kóllar, Rónyai, Szabó)

Можно явно указать $n^{o(1)}$ -редкую циркулянтную матрицу порядка n и веса $n^{2-o(1)}$

СЛЕДСТВИЕ (из леммы 2)

Пусть f – многочлен с коэффициентами 0 и 1, такой, что $M=\operatorname{mon} f$. Пусть $(\mu_{i,j})$ – $r^{o(1)}$ -редкая циркулянтная матрица и пусть $k=r^{o(1)}$ и либо $n\log m=r^{o(1)}$, либо $\deg f=r^{o(1)}$. Тогда $L_M(f)=\Omega(r^{2-o(1)}) \qquad \qquad L(f)\leq r^{1+o(1)}$

IV. MOHOTOHHAM IAM CARANTOMINAM CARANTOMINAM

iv.3 СЛЕДСТВИЕ (о расхождении между монотонной и немонотонной сложностью)

Пусть $m \ge 2$ и $n \ge 1$. Можно эффективно указать многочлен f от n переменных степени не выше m-1 по каждой переменной, такой, что при $m^n \to \infty$

$$L_M(f) / L(f) \ge m^{n(1/2 - o(1))}$$

iv.4 Пример многочлена степени 2

Пусть $(\mu_{i,j})$ – $n^{o(1)}$ -редкая циркулянтная матрица порядка n и веса $n^{2-o(1)}$. Определим

$$f = \sum_{1 \le i < j \le n} \mu_{i,j} x_i y_j$$

Тогда $L_M(f) / L(f) = n^{1-o(1)}$

СЛОЖНОСТЬ ВЫЧИСЛЕНИЯ МНОГОЧЛЕНОВ

С. Б. ГАШКОВ, И. С. СЕРГЕЕВ МГУ им. М.В. Ломоносова