

Digital Talent Scholarship 2022

Time Series 1

Lead a sprint through the Machine Learning Track

Agenda

- Time Series examples
- Common Pattern
- Introduction to Time Series
- Metrics for Evaluating Performance
- Forecasting

Objektif Pembelajaran

- Memahami apa itu Time Series
- Mengenal jenis-jenis Time Series
- Mengetahui jenis-jenis kasus penggunaan Time Series yang tepat
- Membagi data menjadi train, validation, dan test
- Membuat Forecasting sederhana

Are your students ML-ready?

Apa itu Time Series?

Time Series adalah serial dari kumpulan data yang teratur oleh urutan waktu. Frekuensi urutan waktu yang dimiliki oleh Time series data bisa meliputi tahunan, bulanan, jam, atau bahkan mili-detik. Selama data tersebut disimpan dalam urutan waktu, data itu adalah data Time Series.

Contoh Time Series

- Stock
- Cuaca
- Moore's Law

<u>Introduction to Time Series Data and Stationarity - YouTube</u>

Univariate & Multivariate Time Series

Contoh Multivariate Time Series

Contoh Multivariate Time Series

Contoh Multivariate Time Series

Time Series dengan Machine Learning kita bisa:

Forecast : Memprediksi masa depan

Imputation: Memprojeksikan masa lalu / Mengisi data yang

kosong

Detect Anomalies : Mendeteksi potensi service attack

 Sound Recognition : Menganalisis suara untuk memisahkan kata-kata

- Trend
- Seasonality
- Combination
- White noise
- Auto-correlated

Trend

Seasonality

Trend + Seasonality

White Noise

Autocorrelation

- Autocorrelation
 - Lag : Hasil dariInnovation (Garis biru)
 - Innovation : Tidak bisa diprediksi (Garis hitam)

Multiple Autocorrelation

Combination

Trend + Seasonality + Autocorrelation + Noise

Non-Stationary Time Series

Menghadapi Non-Stationary Time Series

Notebook Time Series

Evaluasi Performance

- errors = forecasts actual
- mse = np.square(errors).mean()
- rmse = np.sqrt(mse)
- mae = np.abs(errors).mean()
- mape = np.abs(errors/x_valid).mean()

- Naive Forecasting
- Fixed Partitioning
- Roll-Forward Partitioning

Naive Forecasting

Di mulai dari sampel data ini

Naive Forecasting

Kita set Forecast

$$v(t + 1) = v(t)$$

- Fixed Partitioning
 Langkah selanjutnya
- Retrain using train and val data, setelah hyperparameter tuning
- Kalau sudah bagus, retrain pakai test data

Fixed Partitioning

Roll-forward Partitioning

Train, Validation, dan Test

- Training Period
- Validation Period
- Testing Period
- (Fixed Partitioning, one season)
- Retrain using train and val data, habis hyperparameter tuning
- Kalo dah oke, retrain pakai test data

Moving Average :

Mengambil average di window untuk mengurangi noise

Window:

Range yang akan digunakan untuk mencari rata-rata

• Differencing:

Menghilangkan trend dan seasonality dengan mengurangi season ini dengan season sebelumnya. Di contoh ini, series t dikurangi oleh series(t - 365), series satu tahun sebelumnya, karena di kasus ini, season = tahun

Mencari Moving average pada Difference

 Mengembalikan Trend dan Seasonality dengan menambah kembali series(t - 365)

• Smoothing:

Apply Moving
Average pada hasil
terakhir

Forecasts = trailing moving average of differenced series + centered moving average of past series (t – 365)

Trailing versus centered windows

Trailing Window

Anggap kita ingin memprediksi series(present), maka kita akan menggunakan series(t - 20) sampai series(t - 1). Berguna untuk memprediksikan series masa kini.

Centered Window

Anggap kita ingin memprediksi series(tahun lalu), maka kita akan memprediksinya dengan series(tahun lalu - 10) sampai series(tahun lalu + 10). Lebih akurat dalam memprediksikan series masa lalu.

Time Series Analysis in Python - YouTube

Q & A

Thank You