

Content Overview

- Introduction
 - □ Transaction databases, market basket data analysis
- Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- Summerizing Frequent Itemsets
 - Maximal, closed, non-derivable itemsets
- Summary

What is Frequent Itemset Mining?

Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

- Given:
 - \Box A set of items $I = \{i_1, i_2, ..., i_m\}$
 - \square A database of transactions D, where a transaction $T \subseteq I$ is a set of items
- Task 1: find all subsets of items that occur together in many transactions.
 - e.g.: 85% of transactions contain the itemset {milk, bread, butter}
- Task 2: find all rules that correlate the presence of one set of items with that of another set of items in the transaction database.
 - e.g.: 98% of people buying tires and auto accessories also get automotive service done
- Applications:
 - Basket data analysis, cross-marketing, catalog design, clustering, classification, recommendation systems, etc.

Example: Basket Data Analysis

Transaction database

```
T= { {butter, bread, milk, sugar};
  {butter, flour, milk, sugar};
  {butter, eggs, milk, salt};
  {eggs};
  {butter, flour, milk, salt, sugar} }
```


- Question of interest:
 - Which items are bought together frequently?
- Applications
 - Improved store layout; Cross marketing; Focused attached mailings / add-on sales
- Generalization of "association rules" beyond marketing:
 - □ buys(x, "diapers") \rightarrow buys(x, "beers")
 - □ major(x, "CS") $^$ takes(x, "DB") → grade(x, "A")

Basic Notions I

- *Items* $I = \{i_1, i_2, ..., i_m\}$: a set of literals (denoting items)
- *Itemset X:* Set of items $X \subseteq I$
- Database D:
 - \square Set of *transactions T*, each transaction is a set of items $T \subseteq I$
 - \square Transaction *T* contains an itemset *X*: $X \subseteq T$

The items in transactions and itemsets are sorted lexicographically:

• itemset $X = (x_1, x_2, ..., x_k)$, where $x_1 \le x_2 \le ... \le x_k$

Length of an itemset: number of elements in the itemset

k-itemset: itemset of length *k*

Basic Notions II

- *Items* $I = \{i_1, i_2, ..., i_m\}$: a set of literals (denoting items)
- *Itemset X:* Set of items $X \subseteq I$

The *support* of an itemset X is defined as: $support(X) = |\{T \in D | X \subseteq T\}|$ *Frequent itemset: an itemset* X is called frequent for database D iff it is contained in more than minSup many transactions: $support(X) \ge minSup$

Goal 1:

Given a database D and a threshold minSup, find all frequent itemsets $X \in Pot(I)$.

Basic Idea

Naïve Algorithm

- count the frequency of all possible subsets of *I* in the database
- \rightarrow too expensive since there are 2^m such itemsets for |I| = m items

cardinality of power set

Basic Idea

The *Apriori* principle (anti-monotonicity):

Any non-empty subset of a frequent itemset is frequent, too!

 $A \subseteq I \text{ with support}(A) \ge \min \sup \Rightarrow \forall A' \subset A \land A' \ne \emptyset : \text{support}(A') \ge \min \sup$

Any superset of a non-frequent itemset is non-frequent, too!

 $A \subseteq I \text{ with support}(A) < \min \operatorname{Sup} \Rightarrow \forall A' \supset A : \operatorname{support}(A') < \min \operatorname{Sup}$

Method based on the apriori principle

- First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on
- When counting (k+1)-itemsets, only consider those (k+1)-itemsets where all subsets of length k have been determined as frequent in the previous step

The Apriori Algorithm

```
variable C_k: candidate itemsets of size k
          variable L_k: frequent itemsets of size k
         L_1 = \{ frequent items \}
         for (k = 1; L_k !=\varnothing; k++) do begin
// JOIN STEP: join L_k with itself to produce C_{k+1}
// PRUNE STEP: discard (k+1)-itemsets from C_{k+1}
that contain non-frequent k-itemsets as subsets
                      C_{k+1} = candidates generated from L_k
                   for each transaction t in database do
                        Increment the count of all candidates in C_{k+1}
prove that are contained in t

candidates

L_{k+1} = \text{candidates in } C_{k+1} \text{ with min\_support}
          return \cup_{k} L_{k}
```

Generating Candidates (Prune Step)

```
Step 2: Pruning: L_{k+1} = \{X \in C_{k+1} \mid support(X) \ge minSup\}
```

- Naïve: Check support of every itemset in $C_{k+1} \rightarrow$ inefficient for huge C_{k+1}
- Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets which contain a non-frequent k -subset s, i.e., $s \notin L_k$

forall itemsets c in C_{k+1} do forall k-subsets s of c do if (s is not in L_{ν}) then delete c from $C_{\nu+1}$

Example 1

- $L_3 = \{(ACF), (ACG), (AFG), (AFH), (CFG)\}$
- Candidates after the join step: {(ACFG), (AFGH)}
- In the pruning step: delete (AFGH) because (FGH) $\notin L_3$, i.e., (FGH) is not a frequent 3-itemset; also (AGH) $\notin L_3$
 - $\rightarrow C_4 = \{(ACFG)\} \rightarrow \text{check the support to generate } L_4$

Generating Candidates (Join Step)

Requirements for set of all candidate (k+1) -itemsets C_{k+1}

- **Completeness:** Must contain all frequent (k+1) -itemsets (superset property $C_{k+1} \supseteq L_{k+1}$)
- Selectiveness: Significantly smaller than the set of all (k+1)-subsets

Step 1: Joining ($C_{k+1} = L_k \bowtie L_k$ **)**

- Suppose the items are sorted by any order (e.g. lexicograph.)
- Consider frequent k -itemsets p and q
- $\blacksquare p$ and q are joined if they share the same first k-1 items insert into C_{k+1}

```
select p.i_1, p.i_2, ..., p.i_{k-1}, p.i_k, q.i_k
from L_k: p, L_k: q
where p.i_1=q.i_1, ..., p.i_{k-1}=q.i_{k-1}, p.i_k < q.i_k
```

$$p \in L_{k=3}$$
 (A, C, F)
$$\downarrow \qquad \downarrow \qquad \downarrow$$
(A, C, F, G) $\in C_{k+1=4}$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
 $q \in L_{k=3}$ (A, C, G)

Apriori Algorithm – Full Example

Is Apriori Fast Enough? Performance Bottlenecks -

The core of the Apriori algorithm:

- Use frequent (k-1)-itemsets to generate candidate frequent k-itemsets
- Use database scan and pattern matching to collect counts for the candidate itemsets

The bottleneck of *Apriori*: candidate generation

- Huge candidate sets:
 - □ 10⁴ frequent 1-itemsets will generate 10⁷ candidate 2-itemsets
 - \Box To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- Multiple scans of database:
 - \square Needs n or n+1 scans, n is the length of the longest pattern
- → Is it possible to mine the complete set of frequent itemsets without candidate generation?

Mining Frequent Patterns Without Candidate Generation

Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure

- highly condensed, but complete for frequent pattern mining
- avoid costly database scans

Develop an efficient, FP-tree-based frequent pattern mining method

- A divide-and-conguer methodology: decompose mining tasks into smaller ones
- Avoid candidate generation: sub-database test only!

Idea:

- Compress database into FP-tree, retaining the itemset association information
- Divide the compressed database into conditional databases, each associated with one frequent item and mine each such database separately.

Construct FP-tree from a Transaction DB (1)

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order

TID	items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

sort items in the order of descending support

Construct FP-tree (2)

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree starting with most frequent item per transaction

TID	items bought	(ordered) frequent items
100	{f, a, c, d, g, i, m, p}	{f, c, a, m, p}
200	{a, b, c, f, l, m, o}	{f, c, a, b, m}
300	{b, f, h, j, o}	{f, b}
400	{b, c, k, s, p}	{c, b, p}
500	{a, f, c, e, l, p, m, n}	{f, c, a, m, p}

for each transaction only keep its frequent items sorted in descending order of their frequencies

for each transaction built a path in the FP-tree:

- If a path with common prefix exists: increment frequency of nodes on this path and append suffix
- Otherwise: create a new branch

Construct FP-tree (3)

FP-tree

Benefits of the FP-tree Structure

- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining
- Compactness
 - reduce irrelevant information—infrequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)
 - Experiments demonstrate compression ratios over 100

Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree

Method

- ☐ For each item, construct its conditional pattern-base (prefix paths), and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree ...
- ...until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

Major Steps to Mine FP-tree

- Construct conditional pattern base for each node in the FP-tree
- Construct conditional FP-tree from each conditional pattern-base
- Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns

Major Steps to Mine FP-tree: Conditional Pattern Base

1. Construct conditional pattern base for each node in the FP-tree

- Starting at the frequent header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base
 - □ For each item its prefixes are regarded as condition for it being a suffix. These prefixes form the conditional pattern base. The frequency of the prefixes can be read in the node of the item.

header ta	bi	e:
-----------	----	----

f c a	4	•> c:3' b:1> b:1
	4	•> c:3/ b:1> b:1
a		
	3	•
ь	3	• a:3 p:
m	3	•
p	3	m:2\b:1'

conditional pattern base:

item	cond. pattern base
f	€
с	f:3
a	fc:3
Ь	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Properties of FP-tree for Conditional Pattern Bases

- Node-link property
 - \Box For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i's node-links, starting from a_i's head in the FP-tree header
- Prefix path property
 - □ To calculate the frequent patterns for a node a; in a path P, only the prefix sub-path of a_i in P needs to be accumulated, and its frequency count should carry the same count as node a_i .

Major Steps to Mine FP-tree: Conditional FP-tree

- 2. Construct conditional FP-tree from each conditional pattern-base
- The prefix paths of a suffix represent the conditional basis.
 →They can be regarded as transactions of a database.
- Those prefix paths whose support ≥ minSup, induce a conditional FP-tree
- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

conditional pattern base:

_					
18	item	cond. pattern bas	se na	item	frequency
	f	₿	e.d. item	f	3 ,
	C	f:3	e.95.	c	3
	а	fc:3		a	3
	b	fca:1, f:1, c:1		ь	1 X
	m	fca:2, fcab:1			
	p	fcam:2, cb:1			

m-conditional FP-tree

Conditional FP-tree

2. Construct conditional FP-tree from each conditional pattern-base conditional pattern base:

item	cond. pattern base
f	{}
с	f:3
a	fc:3
Ь	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Major Steps to Mine FP-tree

- 3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far
- If the conditional FP-tree contains a single path, simply enumerate all the patterns (enumerate all combinations of sub-paths)

FP-tree: Full Example

database:

	TID	items bought	(ordered) frequ	uent items
	100	{b, c, f}	{f, b, c}	
	200	{a, b, c}	{b, c}	1
	300	{d, f}	{ <i>f</i> }	,
	400	{b, c, e, f}	{f, b, c}	
	500	{f, g}	{ <i>f</i> }	{} {} {} {} {} {} {} {} {} {} {} {} {}
minSu	p=0.4	/ header to	able:	
	-			
		item	frequency	head $\rightarrow f:4 \rightarrow b:1$
	(item	frequency 4	head b:1
	(
	(f	4	head b:1 b:1 b:1
	(f b	4 3	
	(f b	4 3	

conditional pattern base:

item	cond. pattern base
f	€
ь	f:2
c	fb:2, b:1

FP-tree: Full Example

Principles of Frequent Pattern Growth

- Pattern growth property
 - \square Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B.

Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.

- "abcdef" is a frequent pattern, if and only if
 - □ "abcde " is a frequent pattern, and
 - "" is frequent in the set of transactions containing "abcde"

Why Is Frequent Pattern Growth Fast?

Performance study in [Han, Pei&Yin '00] shows

 FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

Reasoning

- No candidate generation, no candidate test
 - Apriori algorithm has to proceed breadth-first
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

Content Overview

- Introduction
 - □ Transaction databases, market basket data analysis
- Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- Summerizing Frequent Itemsets
 - □ Maximal, closed, non-derivable itemsets
- Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- Summary

cf. Zaki's Book!

Maximal & Closed Frequent Itemsets

Big challenge: database contains potentially a huge number of frequent itemsets (especially if minSup is set too low).

■ A frequent itemset of length 100 contains 2¹⁰⁰-1 many frequent subsets

Closed frequent itemset:

An itemset X is *closed* in a data set D if there exists no proper super-itemset Y such that support(X) = support(Y) in D.

■ The set of closed frequent itemsets contains complete information regarding its corresponding frequent itemsets.

Maximal frequent itemset:

An itemset X is *maximal* in a data set D if there exists no proper super-itemset Y such that $support(Y) \geq minSup$ in D.

- The set of maximal itemsets does not contain the complete support information
- More compact representation

Maximal Frequent Itemsets

Given a binary database $\mathbf{D} \subseteq \mathcal{T} \times \mathcal{I}$, over the tids \mathcal{T} and items \mathcal{I} , let \mathcal{F} denote the set of all frequent itemsets, that is,

$$\mathcal{F} = \{ X \mid X \subseteq \mathcal{I} \text{ and } sup(X) \geq minsup \}$$

A frequent itemset $X \in \mathcal{F}$ is called *maximal* if it has no frequent supersets. Let \mathcal{M} be the set of all maximal frequent itemsets, given as

$$\mathcal{M} = \{ X \mid X \in \mathcal{F} \text{ and } \not\exists Y \supset X, \text{ such that } Y \in \mathcal{F} \}$$

The set \mathcal{M} is a condensed representation of the set of all frequent itemset \mathcal{F} , because we can determine whether any itemset X is frequent or not using \mathcal{M} . If there exists a maximal itemset Z such that $X \subseteq Z$, then X must be frequent; otherwise X cannot be frequent.

Example for Maximal Itemsets

Transaction database

Tid	Itemset
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

Frequent itemsets (minsup = 3)

sup	Itemsets
6	В
5	E, BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Mining Maximal Frequent Itemsets

Mining maximal itemsets requires additional steps beyond simply determining the frequent itemsets. Assuming that the set of maximal frequent itemsets is initially empty, that is, $\mathcal{M} = \emptyset$, each time we generate a new frequent itemset X, we have to perform the following maximality checks

- Subset Check: $\exists Y \in \mathcal{M}$, such that $X \subset Y$. If such a Y exists, then clearly X is not maximal. Otherwise, we add X to \mathcal{M} , as a potentially maximal itemset.
- Superset Check: $\exists Y \in \mathcal{M}$, such that $Y \subset X$. If such a Y exists, then Y cannot be maximal, and we have to remove it from \mathcal{M} .

GenMax Algorithm

```
// Initial Call: \mathcal{M} \leftarrow \emptyset,
           P \leftarrow \{\langle i, \mathbf{t}(i) \rangle \mid i \in \mathcal{I}, sup(i) \geq minsup\}
    GENMAX (P, minsup, \mathcal{M}):
 1 Y \leftarrow \bigcup X_i
 2 if \exists Z \in \mathcal{M}, such that Y \subseteq Z then
 3 | return // prune entire branch
 4 foreach (X_i, \mathbf{t}(X_i)) \in P do
          P_i \leftarrow \emptyset
 6
          foreach (X_i, \mathbf{t}(X_i)) \in P, with j > i do
              X_{ii} \leftarrow X_i \cup X_i
 8
           \mathsf{t}(X_{ii}) = \mathsf{t}(X_i) \cap \mathsf{t}(X_i)
           if sup(X_{ii}) \geq minsup then P_i \leftarrow P_i \cup \{\langle X_{ii}, \mathbf{t}(X_{ii}) \rangle\}
 9
          if P_i \neq \emptyset then GENMAX (P_i, minsup, \mathcal{M})
10
          else if \exists Z \in \mathcal{M}, X_i \subseteq Z then
11
             \mathcal{M} = \mathcal{M} \cup X_i // add X_i to maximal set
12
```


Content Overview

- Introduction
 - Transaction databases, market basket data analysis
- Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- Summerizing Frequent Itemsets
 - Maximal, closed, non-derivable itemsets
- Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- Summary

Association Rules: Basic Notions

```
Items I = \{i_1, i_2, ..., i_m\} : a set of literals (denoting items)
Itemset X: Set of items X \subseteq I
Database D: Set of transactions T, each transaction is a set of items T \subseteq I
Transaction T contains an itemset X: X \subseteq T
The support of an itemset X is defined as: support(X) = |\{T \in D | X \subseteq T\}|
Frequent itemset: an itemset X is called frequent iff support(X) \ge minSup
```

Association rule: An association rule is an implication in the form $A \Rightarrow B$ where $A \subset$ I and $B \subset I$ are two itemsets with $A \cap B = \emptyset$

Note: simply enumerating all possible association rules is not meaningful! → What are the interesting association rules w.r.t. D?

Interestingness of Association Rules

Interestingness of an association rule:

Quantify the interestingness of an association rule with respect to a transaction database D:

Support: frequency (probability) of the entire rule with respect to D

$$support(A \Rightarrow B) = P(A \cup B) = \frac{|\{T \in D | A \cup B \subseteq T\}|}{|D|} = support(A \cup B)$$

"probability that a transaction in D contains the itemset $A \cup B''$

Confidence: indicates the strength of implication in the rule

$$confidence(A \Rightarrow B) = P(B|A) = \frac{|\{T \in D | A \cup B \subseteq T\}|}{|\{T \in D | A \subseteq T\}|} = \frac{support(A \cup B)}{support(A)}$$

"conditional probability that a transaction in D containing the itemset A also contains itemset B''

■ Rule form: " $Body \Rightarrow Head$ [support, confidence]"

Association rule examples:

- buys diapers ⇒ buys beers [0.5%, 60%]
- major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]

Mining of Association Rules

Given a database D, determine all association rules having a support $\geq minSup$ and a confidence $\geq minConf$ (so-called strong association rules).

Key steps of mining association rules:

- Find *frequent itemsets*, i.e., itemsets that have at least support = minSup
- Use the frequent itemsets to generate association rules
 - \square n frequent items yield $2^n 2$ association rules

Example

transaction ID	items
2000	А, В, С
1000	A, C
4000	A, D
5000	B, E, F

frequent items	support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For minSup = 50% and minConf = 50% we obtain 2 rules:

- $A \Rightarrow C$: support $(A \Rightarrow C) = 50\%$, confidence $(A \Rightarrow C) = 66.67\%$
- $C \Rightarrow A$: support($C \Rightarrow A$) = 50%, confidence($C \Rightarrow A$) = 100%

Generating Rules

For each frequent itemset *X*

- For each nonempty subset Y of X, form a rule Y \Rightarrow (X Y)
- Delete those rules that do not have minimum confidence

Computation of the confidence of a rule $Y \Rightarrow (X - Y)$

$$confidence(Y \Rightarrow (X - Y)) = \frac{support(X)}{support(Y)}$$

Store the frequent itemsets and their support in a hash table in main memory → no additional database access

Example: $X = \{A, B, C\}, minConf = 60\%$

■ conf (A
$$\Rightarrow$$
 B, C) = 2/2; \checkmark conf (B, C \Rightarrow A) = $\frac{1}{2}$ X

• conf (B
$$\Rightarrow$$
 A, C) = 2/4; \times conf (A, C \Rightarrow B) = 1 \checkmark

• conf (C
$$\Rightarrow$$
 A, B) = 2/5; \times conf (A, B \Rightarrow C) = 2/3 \checkmark

itemset	support
{A}	2
{B}	4
{C}	5
{A, B}	3
{A, C}	2
{B, C}	4
{A, B, C}	2

Interestingness Measurements

Objective measures

- Two popular measurements:
- support and
- confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

- A rule (pattern) is interesting if it is
- unexpected (surprising to the user) and/or
- actionable (the user can do something with it)

Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

Among 5000 students

- 3000 play basketball (=60%)
- 3750 eat cereal (=75%)
- 2000 both play basket ball and eat cereal (=40%)

Rule play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%

Rule play basketball \Rightarrow not eat cereal [20%, 33.3%] is far more accurate, although with lower support and confidence

Observation: play basketball and eat cereal are negatively correlated

Other Interestingness Measures: Correlation

Lift is a simple correlation measure between two items A and B:

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(A|B)}{P(A)} = \frac{P(B|A)}{P(B)}$$

I The two rules $A \Rightarrow B$ and $B \Rightarrow A$ have the same correlation coefficient take both P(A) and P(B) in consideration

- $corr_{AB} > 1$ the two items A and B are positively correlated
- there is no correlation between the two items A and B $corr_{A.B} = 1$
- the two items A and B are negatively correlated $corr_{A.B} < 1$

Summary

Mining Frequent Itemsets

Apriori algorithm, FP-tree

Summerizing Frequent Itemsets

Maximal itemsets

Simple Association Rules

Basic notions, <u>rule generation</u>, <u>interestingness</u> measures