SMUO 2024

lista 9: the Voter model

1. Niech ν i π będą miarami probabilistycznymi na $\{0,1\}^V$. Załóżmy, że dla każdego skończonego $A\subseteq V$,

$$\lim_{t\to\infty} \mathbf{P}_{\nu}[\eta_t \equiv 1 \text{ and } A] = \pi(\eta : \eta \equiv 1 \text{ na } A).$$

Pokaż, że π jest miarą stacjonarną.

2. Niech μ będzie miarą probabilistyczną na $\{0,1\}^V$, $V=\mathbb{Z}^d$. Załóżmy, że dla pewnego $\rho\in[0,1]$,

$$\lim_{t\to\infty} \mathbb{E}_{x_1,\ldots,x_n}[\mu(\eta : \eta \equiv 1 \text{ na } \{X_1(t),\ldots X_n(t)\})] = \rho^n$$

dla każdego $n \in \mathbb{N}$ i każdych $x_1, \dots x_n \in \mathbb{Z}^d$. Przypomnijmy, że $\{X_j\}_j$ to niezależne spacery losowe zapoczątkowane w $\{x_j\}_j$. Pokaż, że

$$\mathbf{P}_{\mu}[\eta_t \in \cdot] \Rightarrow \mu_{\rho}(\cdot).$$

3. Niech μ będzie mieszająca na $\{0,1\}^V,\,V=\mathbb{Z}^d.$ Niech $\rho=\mu(\eta\,:\,\eta(0)=1).$ Połóżmy

$$W_t(x,\eta) = \sum_{y \in V} p_t(x,y)\eta(y).$$

• Pokaż, że

$$\lim_{t \to \infty} W_t(x, \eta) = \rho$$

w $L_2(\mu)$ dla każdego $x \in V$.

• Pokaż, że

$$\mathbf{P}_{\mu}[\eta_t \in \cdot] \Rightarrow \mu_{\rho}(\cdot).$$

4. Niech $Z = \mathbb{Z}$. Niech dla $\rho \in [0, 1]$,

$$\nu_{\rho} = \bigotimes_{k \in \mathbb{Z}} ((1 - \rho)\delta_0 - \rho\delta_1).$$

Rozważmy the Voter model w którym $q(x,y) = \mathbf{1}_{\{|x-y|=1\}}$.

• Wykorzystując zasade odbicia znajdź

$$\lim_{t \to \infty} \sqrt{t} \mathbf{P}_{\nu_{\rho}} [\eta_t(1) \neq \eta_t(0)].$$

• Znadź

$$\lim_{t \to \infty} \operatorname{Var} \left[\frac{1}{t} \int_0^t \eta_s(0) \mathrm{d}s \right].$$

5. Załóżmy, że prawdopodobieństwa przejścia p_t stowarzyszonego spaceru są podwójnie stochastyczne, tj.

$$\sum_{x \in V} p_t(x, y) = 1$$

dla każdego $y \in V$. Dla $\eta \in \{0,1\}^V$ niech

$$|\eta| = \sum_{x \in V} \eta(x).$$

- Pokaż, że $|\eta_t|$ jest \mathbf{P}_{η} martyngałem dla każdego $\eta \in \{0,1\}$ takiego, że $|\eta| < \infty$.
- Wywnioskuj, że $\eta_t \equiv 0$ dla dostatecznie dużych t, \mathbf{P}_{η} prawie wszędzie, dla każdej $\eta \in \{0,1\}^V$ takiej, że $|\eta| < \infty$.

1