清华大学第三届人工智能挑战赛 清华大学自动化系第十八届新生 C 语言大赛 参赛手册

指导单位

共青团清华大学委员会 清华大学学生科学技术协会 共青团清华大学自动化系委员会

承办单位

清华大学自动化系学生科协

大赛官网

https://www.thuasta.cn

目录

Ι	大赛概况	2
II	比赛规则	2
1	角色说明	2
	1.1 塔	2
	1.1.1 概述	2
	1.1.2 具体说明	4
	1.2 作战兵团	5
	1.2.1 概述	5
	1.2.2 具体说明	6
	1.3 工程兵团	7
	1.3.1 建造者	7
	1.3.2 开拓者	8
2	计分规则	8
3	你需要做什么	8
	3.1 概述	8
	3.2 玩家添加命令示例	9
	3.2.1 塔	9
	3.2.2 作战兵团	9
	3.2.3 工程兵团: 建造者	10
	3.2.4 工程兵团: 开拓者	10
4	规则具体实现逻辑	11
5	相关数据表	11

Part I

大赛概况

略。

Part II

比赛规则

作为塔防游戏,每个势力在开始时各在一角拥有一座塔,塔周围的一定区域是自己的领地。玩家需要利用塔的生产力,完成生产兵团或升级塔的任务。生产出的作战兵团可以在场上移动,攻击其他势力的塔或兵团(减少他们的生命值);生产出的工程兵团则可以完成修改地形、修理塔(恢复塔的生命值)的任务。其中,塔的等级越高,就会拥有更高的生产力、战斗力、生命值上限。塔也可以攻击敌方的兵团,如果塔内有己方兵团驻扎,则塔的战斗力会更强。

1 角色说明

游戏中有以下角色: 塔 Tower, 作战兵团 (分为战士 Warrior、弓箭手 Archer、法师), 工程兵团 (分为建设者 Builder、开拓者 Extender)。

1.1 塔

1.1.1 概述

塔是在地图上固定的,具有对一定范围内(距离为 2 及以内,即 5*5 的方形内)敌对势力塔或兵团自动攻击能力的建筑,每个势力最初时拥有 1 座塔,每个地图方格内最多有 1 座塔,每个势力最多拥有 10 座塔。当某势力没有塔时,该势力将被判为失败。地图上每个方格都有属于每个势力的占有属性值。每回合都将进行方格所属势力的判定,方格将属于 4 个势力中对该方格占有属性最高的一方。占有属性值由修建防御塔产生。防御塔可向周围地图附加己方的占有属性值,该属性值随着与防御塔距离的增加而衰减,并在 5 格外衰减为 0,具体数据见表1。若有 2 方占有属性值同为最高,则该方格判定为过渡区域,过渡区域不允许建筑防御塔。

塔有以下属性:

(1) 等级 N。

5	5	5	5	5	5	5	5	5	5	5
5	4	4	4	4	4	4	4	4	4	5
5	4	3	3	3	3	3	3	3	4	5
5	4	3	2	2	2	2	2	3	4	5
5	4	3	2	1	1	1	2	3	4	5
5	4	3	2	1	塔	1	2	3	4	5
5	4	3	2	1	1	1	2	ಌ	4	5
5	4	3	2	2	2	2	2	3	4	5
5	4	3	3	3	3	3	3	3	4	5
5	4	4	4	4	4	4	4	4	4	5
5	5	5	5	5	5	5	5	5	5	5

图 1: 距离计算示意图

表 1: 塔周围领地占有值

距防御塔距离 d	0	1	2	3	4	5	6+
施加占有属性值	inf	100	80	50	20	10	0

- (2) 生产力 W_N 。
- (3) 等级生命力上限 HP_N , 当前生命力 hp。
- (4) 等级战斗力 F_N , 实际战斗力 f。

```
1
2 struct TowerInfo {
3
4 TTowerID ID; //防御塔ID
5 TPlayerID ownerID; //所属玩家ID
6 TPoint position; //位置
7 TProductPoint productPoint; //生产力
8 TProductPoint productConsume; //当前生产任务尚需完成的剩余生产力值
9 TBattlePoint battlePoint; //战斗力
10 THealthPoint healthPoint; //生命值
11 TLevel level; //等级
12 productType pdtType; //当前生产任务类型
13 };
```

防御塔结构体

1.1.2 具体说明

- 1) 塔的等级 N 为 1-8 的正整数, 从等级 N 升级到 N+1 需要消耗的生产力值为 $40 \cdot N$ 。
- 2) 塔会根据自身的等级状况获得一个生产力数值 W_N ,代表其一个回合能产生的生产力,具体的数据如表2所示。生产力 W_N 每回合更新,如果该回合没有使用生产力,下一回合不会累积。在同一时刻,塔可以选择一种生产任务(包括生产战士、生产弓箭手、生产法师、生产建造者、生产开拓者、升级塔自身)每一种任务需要消耗不同的生产力点数,具体情况见表3。兵团生产任务完成之后,塔所在的方格将立即生成一个对应兵团。防御塔所在方格内允许存在多个兵团,不必遵循同一单元格仅能存在一个兵团的限制。在 struct TowerInfo中,可以访问到该塔当前未完成的生产任务 productType pdtType; 和该任务有待完成的工作余量 TProductPoint productConsume;
- 3) 等级生命力上限 HP_N 仅与等级正相关,具体的数据如表2所示。实际生命力 hp 会受到进攻而减小(具体结算方式如式2和式5所示)、由于建设者的维护而增加。当实际生命力 hp 被进攻方降低至 0 以下时,对方获得 5 分的击杀分,我方丧失该塔,塔等级下降 4 级:等级下降后,若不足 1 级,则塔消失,该单位恢复原来地形;若塔尚存在,则降级后的塔主权归对方所有(塔被俘虏)。
- 4) 实际战斗力 f 为战斗中的战斗力。f 是 F_N 、当前生命值 hp、等级生命值上限 HP_N 、兵团驻扎情况带来战斗力增益 f_c (具体增益规则如表4所示)的函数。具体计算方法如下:

$$f = F_N \cdot \frac{hp}{HP_N} + \Sigma f_b \tag{1}$$

兵团攻击塔时,生命值的结算方式如下:

$$hp_{\mbox{\mathbb{H}}} -= 30 \cdot k_c \cdot e^{0.04(f_{\mbox{\mathbb{H}}} - f_{\mbox{\mathbb{H}}})};$$
 $hp_{\mbox{\mathbb{H}}} -= 28 \cdot e^{0.04(f_{\mbox{\mathbb{H}}} - f_{\mbox{\mathbb{H}}})},$ 当兵团非弓箭手 (2)
 $hp_{\mbox{\mathbb{H}}} -= 0,$ 当兵团为弓箭手

塔只能攻击距离为2及以内的兵团。塔攻击兵团时,生命值的结算方式如下:

$$hp_{\text{兵团}} -= 30 \cdot e^{0.04(f_{\mbox{\tiny fk}} - f_{\mbox{\tiny fk}})},$$
对于所有兵团种类
$$hp_{\mbox{\tiny fk}} -= 0 \eqno(3)$$

5) 兵团驻扎(无需给兵团添加过驻扎到塔的命令,只要兵团在塔的位置,自动判定为驻扎)到塔,则被塔护卫。如果兵团驻扎到塔,则对该兵团发起的进攻会与塔结算,而不是与该兵团。但是,如果进攻发起方是防御塔,服从之前的规则,不存在塔与塔结算这一说,这次攻击兵团判定失败(塔不可以攻击驻扎在别人塔中的兵团)。具体见4。

你可以为塔添加以下操作:

(1) 生产:在命令中指定命令类型为塔命令,塔操作类型为生产,塔 ID,塔生产任务类型(<enum productType>)。

(2) 攻击:在命令中指定命令类型为塔类型,塔操作类型为攻击,塔 ID,塔的攻击对象序号,即可指定某一做塔攻击某一个对象。

另外,请注意:

- (1) 每回合,每座塔最多可以添加一个操作。如果该回合玩家给一个塔添加了多个操作,则第二个及以后的操作会被自动忽略,且占用 50 个操作的余额(相当于填了废志愿),所以请不要添加大于一个操作。
- (2) 如果你的操作是无效操作,则也不会起任何作用。无效操作包括试图攻击自己的对象、试图攻击超出攻击范围的对象、不存在对应序号的对象等。
- (3) 如果上一回合塔选择了生产,但未完成该生产任务,本回合选择攻击,则上一回合的生产进度会被保留,这样在下一回合假如继续添加生产该任务的命令,会在上一回合基础上继续生产。
- (4) 若防御塔的某个生产任务尚未完成,玩家又指定了新任务,则未完成的生产任务的完成度将被缓存起来,然后进行新的任务。之后再选择有一定完成度的任务的时候,只需要完成未完成的部分,即完成剩余的生产力消耗值。即如果上一回合塔选择了生产任务 A,但未完成该生产任务 A,本回合选择生产任务 B,则上一回合的生产进度也会被保留,这样在下一回合假如继续添加生产任务 A 的命令,会在上一回合基础上继续生产。但是,由于接口所限,你只能通过 TowerInfo 访问到最近一次尚未完成的任务类型和余量,所以我们推荐一旦开始一种生产任务,中途不要切换别的生产任务(虽然你仍可以正常地生产它们)。

1.2 作战兵团

在同一个时间,同一个地图方格(防御塔所在方格除外)内的作战兵团、工程兵团数量各自不能超过1个。当某个方格内同时存在一个势力的一个作战兵团和工程兵团,则称工程兵团被作战兵团护卫。任何战斗,都优先与作战兵团结算。若在某次战斗中,该护卫队中的作战兵团阵亡。此时进行一次判定,若敌方作战兵团也在作战中阵亡,则护卫队中的工程兵团仍属于原来的玩家;若敌方作战兵团未阵亡,则护卫队中的工程兵团将被敌方俘虏,所属玩家变更为敌方。

1.2.1 概述

兵团有三个种类:战士(近战单位)、弓箭手(远程单位)、法师(高级进攻单位)。其中,弓箭手可以远程轰炸其他单位且自身不受伤害。法师具有较高的移动力。 作战兵团有以下属性:

(1) 行动力 Mc。

- (2) 满血战斗力 F_c , 实际战斗力 f。
- (3) 生命力上限 HP_c , 当前生命力 hp。
- (4) 攻击距离 d_c 。
- (5) 所属玩家 ID。

```
struct CorpsInfo

{

//不需要,如果不存在就不录入信息了bool exist; //是否存在

TPoint pos; //兵团坐标

int level; //兵团等级

TCorpsID ID; //兵团ID

THealthPoint HealthPoint; //生命值

TBuildPoint BuildPoint; //劳动力

TPlayerID owner; //所属玩家ID

corpsType type; //兵团种类

TMovePoint movePoint; //行动力

battleCorpsType m_BattleType; //战斗兵用

constructCorpsType m_BuildType; //建造兵用

};

29
```

兵团结构体

1.2.2 具体说明

- 1)行动力 M_c 表示兵团在某一回合的进行行动的能力,具体见表4。兵团从一个单元格移动到另一个相邻单元格(即上下左右四个方向)将消耗一定行动力。(取决于单元格地形情况,计算方式为:一次移动经过的两个单元格的行动力消耗取平均值,并向上取整,具体见表5)值得注意的是,如果移动后行动力至少还有 1 点则则还能发起进攻,而一旦选择进攻将消耗所有行动力。行动力在新回合开始将重置。
- 2)生命力上限 HP_c 仅与兵团种类有关,具体见表4。实际生命力 hp 会受到进攻而减小(具体结算方式如式5所示),直至实际生命力 hp 被进攻方降低至 0 以下时,兵团死亡,对方获得 5 分的击杀分。
- 3) 实际战斗力 f 为战斗中的战斗力。f 是满血战斗力 F_c 、当前生命值 hp、生命值上限 HP_c 、兵团所处地形情况带来战斗力增益 f_t (具体增益规则如表5所示)的函数。具体计算方法如下:

$$f = F_c \cdot \frac{hp}{HP_c} + f_t \tag{4}$$

兵团只能攻击在攻击范围内的对象,不同兵团的攻击距离 d_c 如表4所示。兵团 B 受到兵团 A 攻击时,生命值的结算方式如下:

$$hp_B -= 30 \cdot e^{0.04(f_A - f_B)};$$

 $hp_A -= 28 \cdot e^{0.04(f_B - f_A)},$ 当兵团 A 非弓箭手
 $hp_A -= 0,$ 当兵团 A 为弓箭手

4)补充说明:若 A 兵团发起对 B 兵团的进攻操作且 B 兵团被消灭,A 兵团存活,则 A 兵团(除弓箭手外)会移动到 B 兵团所在的方格。若 A 兵团为弓箭手则不会移动。

作战兵团能进行的操作有: 在地图上移动、对敌方军团发起进攻、对敌方防御塔发起进攻。

1.3 工程兵团

工程兵团分为: 建造者、开拓者。建造者用来进行特定的工程建造,而开拓者则用于修建新的防御塔。工程兵团是脆弱的功能性单位。在工程兵团没有受到作战兵团的护卫时,任何敌方作战兵团对其的进攻操作,会直接将其俘虏。俘虏时,直接将所属玩家更改为发起该次进攻的作战兵团的所属玩家,本回合就可以直接操控它。

工程兵团与作战兵团共用 CorpsInfo 结构体。其中,兵团坐标、兵团 ID、行动力 M_c 、所属玩家 ID 为共有属性;生命值 HP、战斗兵兵种为作战兵团属性;工程兵兵种为工程兵团属性。

1)行动力 M_c 表示兵团在某一回合的进行行动的能力,具体见表4。在移动后,建造者、 开拓者的行动力至少为 1 的情况下才能进行建造的操作。且一旦进行建造的操作,行动力 都会被清空,直到下一个回合才会重置。

1.3.1 建造者

开拓者有关参数为行动力 M_c , 劳动力 B 和玩家所属 ID。

- 2) 劳动力 *B* 是建造者特有的属性值,表示能够进行工程建造的次数。建造者的劳动力大小初始值为 3。每回合可以消耗劳动力,对所在的单元格进行某项工程建设。建造者发起操作后,建造者扣除一点劳动力。若劳动力为 0,则该建造者单位立刻消失(阻塞赋值)。
- 3) 建造者可以进行地形修改(只能实现平原-森林的互换)和防御塔维修(单次修理将恢复防御塔该等级最大生命值的 1/3(向下取整))两种操作,两种操作各自需要 1 点劳动力消耗。发起地形修改操作时,建造者必须位于欲修改地形的方格上。发起防御塔维修操作时,建造者必须位于欲维修的防御塔的方格上。地形修改是我方小回合所有命令输入结束统一修改(相当于数电非阻塞赋值),而生命值修复则是立刻进行(相当于数电阻塞赋值),修复后当回合之后塔的命令可以用新的生命值。

1.3.2 开拓者

开拓者有关参数为行动力 Mc 和玩家所属 ID。

4) 开拓者可以进行防御塔建造的工作。在开拓者被生产出来时,生产其的防御塔等级下降 1 (本来为 1 则不再下降)。开拓者可以在己方领土的任一无防御塔的方格上进行防御塔建造,发起建造操作时必须位于目标单元格上。建造操作是立即完成的,且会使得开拓者单位立刻消失。

2 计分规则

在游戏进程中防御塔数量降为 0 的玩家,判定出局。第一位出局的玩家获得最低位次, 第二位出局的玩家获得次低位次,依次类推。

当游戏进行至300回合后,场上还未出局的玩家将按照得分进行排名。

- 1. 防御塔得分:单个防御塔得分 = 防御塔等级数 *10。防御塔得分为所有单个防御塔得分之和。
 - 2. 兵团得分: 单个兵团得分 =4 分。兵团得分为所有单个兵团得分之和。
- 3. 击杀分:每当消灭一个敌方的作战兵团/塔/俘虏一个敌方的工程兵团时,都可以得5分。

得分相同的按防御塔攻占数、消灭敌方军团数、俘虏敌方军团数排名。若再相同随机决 定排名。

另外规定: 塔最多 10 座,作战兵团最多 10 个,工程兵团最多 10 个,一次最多添加 50 个命令。(如果己方兵团已经有 10 个,此时俘虏了一个敌方兵团,则敌方兵团直接消失,而不是转换为我方兵团。塔同理。)

3 你需要做什么

3.1 概述

所有玩家的 AI 都可以从 Info 中读取当前场上各方势力的兵团、塔的信息,并设计算法,并按照统一的接口 CommandList 给裁判程序回传命令,操控己方势力;在游戏中,选手只需要在 ai.cpp 文件中的 void player_ai(Info& info) 函数中填写自己的代码,并最终只需要提交 ai.cpp 文件。

```
30 class CommandList
31 {
32 public:
33  void addCommand(commandType _FC18type, initializer_list<int>
    _FC18parameters);
```

```
yoid removeCommand(int n); //【FC18】移除第n条命令

vector<Command> getCommand() { return m_commands; } //【FC18】获取所有命令

36 };
```

添加命令有关代码

3.2 玩家添加命令示例

玩家通过 info.myCommandList.addCommmand(< 命令类型 >,< 参数列表: 参数 1, 参数 2...>) 添加命令。

3.2.1 塔

防御塔攻击兵团:info.myCommandList.addCommmand(towerCommand, {TAttackCorps, 本塔 ID, 目标兵团 ID})

防御塔设定生产任务:info.myCommandList.addCommmand(towerCommand, {TProduct, 本塔 ID, 生产任务类型 (见下方枚举类型)})

生产任务类型

说明:新建的兵团需要从下一回合开始可以起作用。

3.2.2 作战兵团

移动: info.myCommandList.addCommmand(corpsCommand, {CMove, 本兵团 ID, 方向(Cup / Cdown / Cleft / Cright)})

兵团攻击兵团:info.myCommandList.addCommmand(corpsCommand, {CAttackCorps, 本兵团 ID, 目标兵团 ID})

兵团攻击防御塔:info.myCommandList.addCommmand(corpsCommand, {CAttackTower, 本兵团 ID, 目标防御塔 ID})

说明:在单个回合中,对于单个作战兵团,仅能添加:若干移动指令(也可以不移动) +攻击命令(添加攻击命令需要还有剩余 >0 的行动力。如果移动命令完成后,行动力为 0,则该回合无法进攻。如果输入的命令无效,无效命令会被直接忽略。)

注意:若攻击命令有效,在发动攻击后兵团的行动力将被置为 0,即本回合不能再进行其他操作。对于兵团驻扎在塔内,任何兵团处在己方势力塔的方格上即视为驻扎在塔内,只有当离开该方格才视为退出驻扎。

移动命令无效的情形包括:超出地图范围,行动力为零,目标方格存在对方势力(兵团和塔),目标方格内己方兵团数量不符合要求。

3.2.3 工程兵团: 建造者

移动: info.myCommandList.addCommmand(corpsCommand, {CMove, 本兵团 ID, 方向编号(Cup / Cdown / Cleft / Cright)})

修复防御塔: info.myCommandList.addCommmand(corpsCommand, {CRepair, 本兵团 ID})

修改地形: info.myCommandList.addCommmand(corpsCommand, {CChangeTerrain, 本兵团 ID, 目标地形 (见下方枚举类型)})

说明:仅支持地形"平原-森林"之间的相互转换。在单个回合中,对于单个建造者,仅能添加:若干移动指令(也可以不移动)+修复防御塔/修改地形(二选一。此时需要还有剩余>0的行动力。如果移动命令完成后,行动力为0,则该回合无法修复/修改。如果输入的命令无效,无效命令会被直接忽略。)

修改地形需要在该回合结束之后统一起作用。如果该回合两个兵团对同一个地形执行 了更改,以最后一个传入的更改为准。

生产任务类型

3.2.4 工程兵团: 开拓者

移动: info.myCommandList.addCommmand(corpsCommand, {CMove, 本兵团 ID, 方向(Cup / Cdown / Cleft / Cright)})

建立新防御塔: info.myCommandList.addCommmand(corpsCommand, { CBuild, 本兵团 ID })

说明:在单个回合中,对于单个开拓者,仅能添加:若干移动指令(也可以不移动)+ 建立新防御塔(此时需要还有剩余 >0 的行动力。如果移动命令完成后,行动力为 0,则该 回合无法新建防御塔。一旦执行了新建防御塔命令后,兵团即消失。建立新防御塔的条件: 该方格是己方领地,该方格尚未建立防御塔。)

新建的防御塔需要从下一回合开始可以起作用。

4 规则具体实现逻辑

- (1) 兵团被攻击时,裁判程序的判定逻辑为:首先判断目标兵团是否驻扎到塔(即是否在自己的塔中)。若是,则与塔结算(但是,如果进攻发起方是防御塔,服从之前的规则,不存在塔与塔结算这一说,这次攻击兵团判定失败。塔攻击驻扎别人塔里的兵团是废命令,被忽略);若否,则判断,是否是工程兵且被作战兵护卫。然后判断目标兵团是否是工程兵且被作战兵护卫。若是,则与作战兵结算,若否,则直接与目标兵团结算。
- (2) 攻击塔命令(塔被占领或摧毁的情况): 塔所在方格的所有敌方兵团(不允许兵团进入别人塔所在方格,因此塔中所有兵团都是本塔方的兵团),都直接杀死。
- (3) 攻击塔命令(塔被占领的情况): 若发起攻击的兵团与被攻击的塔同时生命值减为 0,则不会由攻方占领塔。这一点,我们与兵团攻击兵团时同时死亡的情况保持一致。

5 相关数据表

表 2: 塔等级表

HP_N
_

表 3: 塔生产任务表

V 31 1 1 1 1	11171 114
生产任务	所需的生产力值
战士	40
弓箭手	60
法师	100
建造者	40
开拓者	40
升级 (N 升级到 N+1)	N*40

表 4: 兵团参数表

兵种 Crops	战士	弓箭手	法师	建设者	开拓者
战斗力增益系数 f_c	2	2	4	NA	NA
攻城系数 k_c	0.4	0.7	0.5	NA	NA
攻击距离 d_c	1	2	1	NA	NA
一一行动力 M_c	2	2	4	2	2
生命力上限 HPc	60	50	70	NA	NA
一 满血战斗力 F _c	36	30	44	NA	NA
劳动力 B	NA	NA	NA	3	NA
m_BattleType	0	1	2	NA	NA
m_BuildType	NA	NA	NA	0	1

表 5: 地形参数表

地形	平原	山地	森林	沼泽	道路
地形战斗力增益 f_t	0	5	3	-3	0
地形行动力消耗 m_t	2	4	3	4	1