NB-IoT

BIG DATA & NETWORK ENGINEERING

李杰

jie.14.li@Nokia.com

Introduction

NB-IoT 200kHz - Modes of operation

3GPP defines 3 different modes of operation for NB-IoT:

- "In-band模式"与传统LTE小区共享软硬件 资源,利用原有LTE小区的一个或几个PRB作 为NB-IoT载波(FL17SP)
- "Stand-alone模式"不与传统LTE小区共享软硬件资源,利用例如GERAN系统中的频段资源,替换其中的1个或几个GSM载频,作为NB-IoT载波;或者建立一个全新的NB-IoT小区(FL17A)
- "Guard-band模式"与传统LTE小区共享软硬件资源,利用LTE载波保护频带内未用资源作为NB-IoT载波(FL17A+)

LTE 3071 NB-IoT Overview

- LTE 3071 采用 3GPP Rel. 13 in-band NB-IoT 技术.
- New cell concept and deployment options for LTE:
 - 只支持FDD半双工模式,不支持TDD
 - 上下行各使用180 kHz的带宽(即一个PRB)
 - 下行使用OFDMA,15kHz子载波宽度,目前只可配置2TX模式,最大编码QPSK
 - 上行使用SC-FDMA,目前只支持15kHz single-tone, 2RX, 支持BPSK和QPSK
 - 数据传输通过SRB,不再建立DRB。可以使用IP和NoneIP

FL17A LTE3543

GSM carriers standalone

FL17A+ LTE3570

LTE carrier guard band

LNCEL: nbIoTMode

Channel Raster

- 3GPP中规定分配给LTE载频间隔为100kHz,并且在信道中心子载波中有一个15kHz的DC载波。 NB-IoT 载 波中心与PRB中心对齐。因此在选择下行PRB时,需要选择频率靠近整100kHz的PRB
- NB的中心频率与LTE频率中心即100kHz的位置存在一定的偏移量,偶数PRB与奇数PRB偏移量

PRB selection for in-band operation

- NB-IoT UE 遵循 3GPP 栅格搜索; 意味着不会延每个PRB中心搜索, 而是 100kHz 的步长重复搜索
- NB-IoT 载波需要用于UE初始接入,因为频率误差必须控制到最小。同时PRB索引偏移量为(+/-7.5 or 2.5 kHz)作为锚载波(NBIOT FDD: inbandPRBIndexDL),不能占用带宽中间6个PRB,因为有同步信道和广播信道。

PRB index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
PRB offset	12	11	10	9	8	7	6	5	4	3	2	1		1	2	3	4	5	6	7	8	9	10	11	12
PRB frequency	5832.5	6012.5	6192.5	6372.5	6552.5	6732.5	6912.5	7092.5	7272.5	7452.5	7632.5	7812.5		8187.5	8367.5	8547.5	8727.5	8907.5	9087.5	9267.5	9447.5	9627.5	9807.5	9987.5	10168
		:£	ladd ba	di.d+	h and a	ffcat <0) EDI -	lelta = -	100*	7 5 6 6	1-				:£ /	odd ba	ndwidtl	h and a	ffcat >0	\ EDL	lalta = 1	100****	7 Ek		
		- 11	(ouu ba	illuwiu	ii aiiu u	mset <u< td=""><td>") FDL_C</td><td>ieita – -</td><td>TOOLIII</td><td>- 7.3KF</td><td>12</td><td></td><td></td><td></td><td>11 (</td><td>(ouu ba</td><td>nawiati</td><td>ii aiiu o</td><td>iiset >u</td><td><i>)</i></td><td>ieita – T</td><td>TOOLII</td><td>I + /.5K</td><td>72</td><td></td></u<>	") FDL_C	ieita – -	TOOLIII	- 7.3KF	12				11 ((ouu ba	nawiati	ii aiiu o	iiset >u	<i>)</i>	ieita – T	TOOLII	I + /.5K	72	

LTE system bandwidth		10 MHz	15 MHz	20 MHz
DL PRB indices	2, 7, 17, 22	4, 9, 14, 19, 30, 35 40, 45	2, 7, 12, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72	4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95

- NB-IoT UL PRB *(NBIOT_FDD: inbandPRBIndexUL)*可以配置到除PRACH/PUCCH以及host小区中动态PUCCH的区域外任何.
 - PRB from the outer region outside area in host LTE cell by PUCCH blanking.
 - PRB from the inner region of PUSCH. The adjacent PRB near PUCCH is preferred to avoid uplink resource fragment if dynamic PUCCH is not enabled.

NB-IoT - In-Band链路预算

• 最大小区损耗 (MCL) 为164dB

Channel	NPBCH	NPDCCH	NPDSCH	NPUSCH	NPUSCH	NPRACH
Data rate (kbps)			0.44	0.31	0.36	
Transmitter						
Max Tx power (dBm)	46	46	46	23	23	23
(1) Actual Tx power (dBm)	35	35	35	23	23	23
Receiver						
(2) Thermal noise density (dBm/Hz)	-174	-174	-174	-174	-174	-174
(3) Receiver noise figure (dB)	5	5	5	3	3	3
(4) Interference margin (dB)	0	0	0	0	0	0
(5) Occupied channel bandwidth (Hz)	180,000	180,000	180,000	15,000	3,750	3,750
(6) Effective noise power	-116.4	-116.4	-116.4	-129.2	-135.3	-135.3
$= (2) + (3) + (4) + 10 \log ((5)) (dBm)$	ST (ST-SEP ST) 7	10. 00000	0.0000000000000000000000000000000000000		27 (200)	
(7) Required SINR (dB)	-12.6	-13.0	-13.7	-12.8	-6.6	-5.8
(8) Receiver sensitivity = (6) + (7) (dBm)	-129.0	-129.4	-130.1	-142.0	-141.9	-141.1
(9) Rx processing gain	0	0	0	0	0	0
(10) MCL = (1) –(8) + (9) (dB)	164.0	164.4	165.1	165.0	164.9	164.1

升级准备及步骤

NB-IoT网络拓扑图示

NB-IoT配置要求

Release information

Release/version	RL release	eNodeB	NetAct
FDD LTE	FDD-LTE 17SP		NA17.2+SP1706,OMS17 CORR12
TDD LTE	-	-	-
Flexi Zone Micro (FZM/FZP)	-	-	-
Flexi Zone Controller (FZC)	-	-	-
Single RAN	_	-	-

Core:

需要新建vEPC: IoT Optimized EPC

Release information – general

HW & IOT	HW requirements	MME	SAE GW	UE	Specified by 3GPP
	FSMF System Module, (AirScale System Module support is planned as a separate feature)	vEPC		Rel. 13 Cat-NB1	Rel-13 TR 45.820

IN-BAND软件版本及相关介绍

0.5TD及以上版本全部默认支持CRs,请注意终端是否开启CRs功能

NO.	in-band software sho	rt name	supported function	alities	eNB file name	BTS Site n	nanager	recommande d SCF only for NB-loT	Stability and Perform	ance from LAB	SW Repository ID
	in-band E2(172) FS17S	P 0.2TD	in-band IoT Cell Setup + UE transfer with restrictions. So single UE. Supported only F	upported only	FL17SP_ENB_0000_00017 2_000001_release_ BTSSM_downloadable.zip	FL17SP_BTSSI 292_0000		ng_20170315	Attach is st		https://onli ne.networks. nokia.com/SW D/?access ke
								.zip	(20s – 3 mins),need rese UL DL 10k bit/s; CUC:	t UE. CMCC LAB	: <u>y=MTI1NDMy</u>
		TD((0D)	in-band IoT Cell Setup, UE	E Attach and	FL17SP_ENB_0000_00030 2_000000_release	FL17SP BTSSI	M 0000 000	NB-IoT_ Recommende		t could continue	ne. networks.
2	in-band E2(302) FS17SP 0.3	IID(W/o CRS)	data transfer Only single platform only	0 = 0	2_000000_release_ BTSSM_downloadable.zip	300_0000	air ann	dCommissioni ng_20170403 .zip		bit/s; CUC: UL DL	nokia.com/SW D/?access_ke y=MTI40TQy
3	in-band E2-2(496) FS17SP CRs)	0.5TD(with	include 2 new 3GPf	P CRs	FL17SP_ENB_0000_00049 6_000002_release_ BTSSM_downloadable.zip	FL17SP_BTSSI 313_0000	M_0000_000	NB- loT_Recomm endedCommi ssioning_ FL17SP_479 _05_2.zip	verify quacomm 920		https://onli ne.networks. nokia.com/SW D/?access ke y=MTI4MDY5
4	FL17SP 1.0TD(with	CRs)	no new functionalities i	in NB-IoT	FL17SP_ENB_0000_00064 5_000000_release _BTSSM_downloadable.zip	FL17SP_BTSSI 322_0000			a little stable about DS HuNan CUC, Pl achieve LTE FDD UL 37. Mbps in NB ho	R241384. 29Mbps DL 86.42	https://onli ne.networks. nokia.com/SW
5	FL17A_0.0TD		Interworking with legacy LTI call/data transfer from n support LTE3668 coverage with restriction	nacro cell;	FL17A_ENB_0000_000063 000000 _release_BTSSM_downloa dable.zip	FL17A_BTSSM 03_0000		LTE3668_Ex ampleCommi sioning_64re pNPRACH .zip	L 900 download th	roughput is	https://onli ne.networks. nokia.com/SW
6	FL17A 1.0TD	3-Jul-17	support RF Sharing		L17A_ENB_0000 000204_000019	BTSSiteEM- FL17A- 0000_000302 000009	Commissionir	ng_LTE3669De 9.zip	emo_2017062 no many to on site no		ne. networks. n com/SWD

Standalone软件版本及相关介绍

如果需要使用No.1-9 版本需要在enb上打knife, E5-1(No.10)以上版本直接升级即可(带CRs)

请注意终端是否开启CRs功能

NO.	stand-alone software short name	supported functionalities	eNB file name	BTS Site manager	recommanded SCF only for NB-IoT	Stability and Performance from LAB
1	stand-alone E5(191973)+(0305_036028) + Knife 0329(CTC only)	stand-alone base function	FL00 FSM3 9999 170305 03		1. use recommanded parameter from R&D(download with software)	Attach is stable. Data transfer perform as well as in-band 0.3TD.
2	stand-alone E5(0305_036028) + Knife 0329(for CMCC and CUC)	stand-alone base function	6028	0000_000284+knife	2. SCF_collection folder:https://sharenet- ims. int. net. nokia.com/Open/5 54794330	CMCC LAB: UL DL 11.2k bit/s with 1400 bytes TP;
3	stand-alone E5(0421_036761) + Knife 0426(w/o CRs)	stand-alone base function with +20db code				Achieve attah and data transfer. NPDSCH repetition = 16(DL MCS = 10), NPUSCH = 4(UL MCS = 5), which we can
4	stand-alone E5(0421_036761) + Knife 0426(with CRs)	stand-alone base function with +20db code				attach UE and also transfer UL/DL traffic.
5	stand-alone E5(0421_036761) + Knife 0426(w/o CRs)+Knife0509	support MCL=154db coverage enhancement;	FL00_FSM3_9999_170421_03	BTSSiteEM-FL00-		Achieve MCL=154db in CMCC lab and CUC lab. And could
6	stand-alone E5(0421_036761) + Knife 0426(with CRs)+Knife0509	Fix the NRS power over SIB	6761	0000_000294_000000 + 294 knife(need change frenquency by SCF in CTC)		see 3db increace in SIB NRS power information.
7	stand-alone E5(0421_036761) + knife0511 (w/o CRs)	support MCL=164db coverage enhancement;				Attach is successful and IP traffic can work with MCL=164
8	stand-alone E5(0421_036761) + knife0511 (with CRs)	support NPRACH format 0(CP=66.7us)				but not stable in CMCC LAB.(without CRs)
9	stand-alone E5(0421_036761) + knife 0523(with CRs)				3 recommanded SCFs with SW	verify S111 scenario;support NPDCCH AL=1
10	Stand-alone E5(0421_207571) E5-1	support NPRACH 3 coverage level and paging	FL00_FSM3_9999_170421_20 7571		no formal recommanded SCF now	support NPRACH 3 coverage level and paging
11	E5-2 Stand- alone(170421_214683)	support SIB3,4,5,14,16;GAP;enhance paging;eDRX and single-UE t- put in 3 coverage level	FL00_FSM3_9999_170421_21 4683	294 + knife	get detail from early drop introduction	get DL 20Kbps, UL 13Kbps single UE t-put in CE0.

CRs介绍

3GPP CRs (non-backward compatible):

- R1-1703913 36.211 CR0337r2 Cat-F Correction on the scrambling of NPDSCH carrying the BCCH - targeted to active mid of April (scrambled one),
- R1-1703964 36.211 CR0353 Cat-F NPBCH symbol rotation for interference randomization in NB-IoT

NB-IoT升级路径

注:升级过程中,必须带着TRS传输配置文件升级,升级到LN7.0后先配置传输数据再进行后续的升级工作。不然一旦遇到本地LMP ping不通,同时TRS丢失而无法远程登录,导致BBU将无法恢复,只能返厂维修!!根据需要IN-BAND或standalone选择相对应的基站软件版本,下载地址:https://online.networks.nokia.com/SWD?command_id=5802&IS_POSTED_BACK=Y

In-band模式软件升级路径

可参考如下软件升级路径:

- ①LN_WN_FDSW1.0(FSMF出厂版本)
- ② LN7.0 (563_13) 或者 LN7.0_ENB_1407_581_42
- (3) FL16_ENB_0000_001566_000000 >FL16A_ENB_0000_002227_000000
- ④ FL17SP_ENB_0000_000172_000001或者 FL17SP ENB 0000 000302 000000
- 5 FL17SP_ENB_0000_000496_000002
- 6 FL17A_ENB_0000_000063_000000

Stand-alone模式软件升级路径

可参考如下软件升级路径:

- ① LN_WN_FDSW1.0(FSMF出厂版本)
- ② LN7.0 (563_13)或者 LN7.0 ENB 1407 581 42
- ③ FL16_ENB_0000_001566_000000 >FL16A_ENB_0000_002227_000000
- ④ FL17SP_ENB_0000_000172_000001或者 FL17SP_ENB_0000_000302_000000
- 5 FL00_FSM3_9999_170421_036761+0523 knife
- 6 FL00_FSM3_9999_170421_207571

1.设定本机IP地址

2. 本地PC通过<mark>网线</mark>连接eNodeB,连接PC (SiteManager)至 eNB的本地维护口 (LMP)

3. 使用BTS Site Manager输入用户名、密码并连接到BBU进行软件版本升级;用户名:Nemuadmin ,密码:nemuuser。

4. 登陆至Site Manager后,会出现 Autoconfiguration的对话框,这时基 站可以通过自连接自配置的方式从网 管上下载软件包和配置文件,目前不 通过这种方式对基站进行升级和配置, 所以点击Disable,后再点击Close, 将其关闭即可。

5. 点击菜单栏上Software->Update SW to BTS Site,或者点击工具栏中的升

6. 检查并记录当前BTS的active和passive版本,选择目标软件包(参考软件升级路径章节进行软件包选择并升级),电脑上的软件路径建议为全英文路径,点击Open。

7. 勾选软件激活的选项,软件下载完成后直接执行软件激活,点击Update执行,file download completed完成后,基站会执行reset操作。(注意从出厂版本升级后立刻配

置好TRS数据)

8. 基站重启完成后,点击菜单栏上Software-> SW Versions,查看软件版本;或者点击BTS Hardware中"Flexi LTE BTS",查看SW release version

1. 点击Commissioning,选择BTS site中选 "TRS" Commissioning type选 "Template" Commissioning file选择提供的TRS配置文件。

2. 检查确认并修改eNodeB name、BTS ID (eNodeBID) Primary/Secondary OAM system IP地址和NTP server IP地址

Commissioning -	Snapshot	Page 2/36 (1
Na <u>m</u> e:	N841798NBYZYuanshilushiyanzhan1NB	A
Location:		₽
Description:		&
BTS <u>I</u> D:	[01048575]	
BTS subnet interface:		DHCP Server
External addresses		
Primary OAM system:	10.212.2.1	
Secondary OAM system:		
OAM system preference:	Automatic ▼	
NTP server:	10.212.193.124	NTP Servers
Primary DNS server:		
Secondary DNS server:		

3. 选择物理传输端口,选择FSM2,即EIF2/RF6口。在RF6口需要连接RRU, 开启RFShareing的情况下一定要勾选Enable FSM EIF2 as RP3-01 interface

4. 配置基站IP,检查确认基站的VLAN ID、IP地址及子网掩码(根据传输规划填写),并点选Enable QOS(业务面VLAN)。

5. 检查站点的用户面、控制面、管理 面、同步面IP地址

Commissioning - Si	napshot	Application Addresses	Page 11/36 🗓 🗸
☐ Dual stack IPv4/IPv6 in	use for user plane ar	nd control plane	
Dual user plane IP add	dresses in use		
☐ IPv <u>6</u> in use for manage	ement plane		
<sele<u>ct same IP interfac</sele<u>	e for all planes> 🔻		
	IPv4:	IPv6:	
<u>U</u> ser plane:	100.67.2.72		<select interface="" ip=""> ▼</select>
Secondary user plane:			<select interface="" ip=""> ▼</select>
Control plane:	100.67.2.72		<select interface="" ip=""> ▼</select>
Secondary control plane:			<select interface="" ip=""> ▼</select>
	IPv4/IPv6:		
Management plane:	100.67.2.72		<select interface="" ip=""> ▼</select>
Synchronization plane:	100.67.2.72		<select interface="" ip=""> ▼</select>
CMP/CRL source:	100.67.2.72		<select interface="" ip=""> ▼</select>
Main transport networ <u>k</u> ID:	0 🔻		
Additional user plane and	control plane addres	ses	

6. 传输路由配置,确认站点Gateway设置。并下发

BTS配置

1. BTS级的参数, BTS name, 时区。设置时钟源

In-band NB-IoT无线配置

In-band NB-IoT配置

In-band NB-IoT配置

SA NB-IoT配置

SA基于inband的模式打入knife后可以在配置中设置为

SA NB-IoT配置

Sitemanager打knife,只需将替换对应SM文件夹中的文件后可以再配置页选择带宽为1.4MHz

Local cell	Frequency band	Bandwidth	EARFCN	Frequency (MHz)				
1	900MHz (E-UTRA 8)	1.4 MHz 🔻	3775 -	957.5				
2	900MHz (E-UTRA 8)	1.4 MHz +	3775 -	957.5	Itebtsmanager.jar	2017/5/3 1	Executable	9,39
3	900MHz (E-UTRA 8)	1.4 MHz →	3775 -	957.5	Itecommon.jar	2017/5/3 1	Executable	8,17
4	NA	0.2 MHz ▼	NA -	NA				
	NA	0.2 MHz -	NA -	NA		1		
	NA	0.2 MHz ~	N.I.A					
llowed EAR 00MHz (E-U ne EARFCN	FCN values JTRA 8, FXDB): [345037 I value must be at a bandw		NA *	NA e lower and upper lin	C:\Program Files (x hits of the allowed range. Site\BTS Site			
llowed EAD	FCN values JTRA 8, FXDB): [345037 I value must be at a bandw				Sife/B12 Sife			
llowed EAR 00MHz (E-U ne EARFCN plink (RX) c	FCN values JTRA 8, FXDB): [345037 I value must be at a bandw				C:\Program Files (x Site\BTS Site Manager\NodeMa			
owed EAR 0MHz (E-U e EARFCN link (RX) c	FCN values ITRA 8, FXDB): [345037 I value must be at a bandw carriers Frequency band 900MHz (E-UTRA 8)	99] vidth-dependent di	stance from th EARFCN 21775	e lower and upper lin Frequency (MHz) 912.5	Manager\NodeMa			
lowed EAR DOMHz (E-U DIE EARFCN Dlink (RX) c	FCN values ITRA 8, FXDB): [345037 I value must be at a bandw carriers Frequency band 900MHz (E-UTRA 8) 900MHz (E-UTRA 8)	99] /idth-dependent di: Bandwidth	stance from th	e lower and upper lin Frequency (MHz) 912.5 912.5	Sife/B12 Sife			
llowed EAR DOMHz (E-U ne EARFCN plink (RX) c Local cell 1	FCN values ITRA 8, FXDB): [345037 I value must be at a bandw carriers Frequency band 900MHz (E-UTRA 8)	99] vidth-dependent di Bandwidth 1.4 MHz	stance from th EARFCN 21775	e lower and upper lin Frequency (MHz) 912.5	Manager\NodeMa			
llowed EAR DOMHz (E-Une EARFCN plink (RX) co Local cell 1	FCN values ITRA 8, FXDB): [345037 I value must be at a bandw carriers Frequency band 900MHz (E-UTRA 8) 900MHz (E-UTRA 8)	Bandwidth 1.4 MHz 1.4 MHz	stance from th EARFCN 21775 21775	e lower and upper lin Frequency (MHz) 912.5 912.5	Manager\NodeMa			
llowed EAR 00MHz (E-U he EARFCN	FCN values TRA 8, FXDB): [345037 I value must be at a bandw carriers Frequency band 900MHz (E-UTRA 8) 900MHz (E-UTRA 8)	Bandwidth 1.4 MHz 1.4 MHz 1.4 MHz	EARFCN 21775 21775 21775	e lower and upper lin Frequency (MHz) 912.5 912.5 912.5	Manager\NodeMa			

修改BTSID及

NB-IoT网络的MME与现网的分别配置

NB小区与HOST小区PCI必须一致

NB-FDD关键配置

建议使用PRB: 20M→4 (上下行一致)5M→2 1.4M→1 覆盖等级切换门限设置

> 覆盖等级配置数量及 paging起始等级

Configuration Management

- New NBIOT_FDD MOC grouping NB-IoT relevant parameters
- NBIOTPR Profiles for IoT 'semi-static' parameters
 - With LTE3071 parameters for first level coverage only
 - Second and third coverage levels with LTF3840

Note: As NB-IoT cell reconfiguration is not supported in current release all parameters (new NB-IoT parameter, re-used LNCEL and LNBTS parameters) used for NB-IoT cell requires cell lock to take effects.

dlPwrBoost

nbIoTProfId = {profile #1}

NB-IoT配置

公共搜索空间参数

TIPUCCTIMAXIVU 个用户的上行或下行,严重影响同时传送		npdcchMaxNumRepRa等于iniNpdcchNumRepRa使得每个搜索周期只能调度一个用户的上行或下行,严重影响同时传送用户数。改为r4并将npdcchStartSfRa改为 v2后出现Attach不成功问题
npdcchS a	StartSfR I	设为v16影响下行调度频度和速率,但尝试改到V2和V8后出现Attach不成功问题

NB-IoT配置

nprach参数 •

nprachNumSubcar riers	Follow北京实验室设置,没有尝试过n48
nprachSubcarrierO ffset	可能会导致NPRACH和UCI时频冲突;设置为n12不起效,甚至无法接入
nprachPeriod	感觉NPRACH周期过小、重复次数过多可能导致Ping时延急剧增加,但不确定,未来得及尝试
nprachNumRepPre amble	感觉NPRACH周期过小、重复次数过多可能导致Ping时延急剧增加,但不确定,未来得及尝试
nprachStartTime	MCL164配置中设置到256ms时,大部分情况下,Attach走到ID RESP后可能RLC层收到了AUTH REQ的DL Data但NAS层不显示,无法走下去了。改为8ms后Attach正常。

NB-IoT配置

物理信道重复次数及初始MCS

Scheduler profile in NB-IoT first coverage level Sorting: Alphabetical * Scheduler profile in NB-IoT first coverage level-1 Scheduler profile in NB-IoT second coverage level Scheduler profile in NB-IoT first coverage level-1 Properties Scheduler profile in NB-IoT third coverage level Initial MCS in downlink: 3 Initial MCS in uplink: Initial repetition number of NPDCCH for RA: г2 Initial repetition number of NPDSCH: r1 Initial repetition number of NPUSCH: r1 Repetition Number of ACK/NACK for NB-IoT: r1 Repetition Number of Msg4 ACK/NACK for NB-IoT: r1

iniMcsDl	MCL164参数在极限点(MCL>157)测试发现上下行MCS从0改为1以后Attach成功率明显提升、Ping时延明显缩短
iniMcsUl	MCL164参数在极限点(MCL>157)测试发现上下行MCS从0改为1以后Attach成功率明显提升、Ping时延明显缩短
iniNpuschNumRep	NPUSCH重复非常耗时,所以在MCL154中兼顾性能和覆盖情况下,尽量少用NPUSCH重复

[0...10

[0...10

~

•

Technical Details

In-band部署对传统LTE的影响

Technical Details

In-band部署对传统LTE的影响—容量下降

• 在诺基亚实现方案中,与NB-IoT PRB冲突的整个RBG都不能使用

• 即便NB-IoT小区中没有业务

RBG Size PRB Total

5 MHz	10 MHz	15 MHz	20 MHz
2	3	4	4
25	50	75	100

In-band部署对传统LTE的影响—发射功率下降

基站发射功率下降

- NB-IoT PRB下行功率 可以Boost最多6 dB。
- 这些功率都是从传统 LTE PRB中获取的
- 对传统LTE PRB功率只 会有少量影响

NB-IoT Power Boost

5 MHz	10 MHz	15 MHz	20 MHz	_
2	3	4	4	PRB
25	50	75	100	
20	20	20	20	Watts
0.80	0.40	0.27	0.20	Watts

NB IoT PRB Tx Power
Unused PRB within RBG
Unused DL Power
Power Deficit

6	6	6	6	dB
3.18	1.59	1.06	0.80	Watts
1	2	3	3	PRB
0.8	0.8	0.8	0.6	Watts
1.58	0.39	0.00	0.00	Watts
23	47	71	96	PRB
0.07	0.01	0.00	0.00	Watts
0.4	0.1	0.0	0.0	dB

- In-band部署时, NB-IoT上行PRB号可以与其下行PRB号不同,即采用非对称的上下行PRB
- 如果上行NB-IoT PRB位于PUSCH区域的中间部位,将PUSCH分为两块区域,那么将会导致传统
 LTE 只能分配其中的一块的PUSCH资源给UE,称为PUSCH碎片
 - 只有R10 UE在支持双PUSCH资源集
 - 对于UE来说,这是一个可选功能

- 如果动态PUCCH分配(LTE1800: Dynamic PUCCH Allocation)没有激活,上行NB-IoT PRB可以简单置于PUSCH PRB的一端,介于PUCCH PRB与PUSCH PRB区域之间
- - 注意避开PRACH区域(有参数prachFreqOffset决定)

 也可以利用LTE768: Flexible UL Bandwidth功能,清空最外端的两个PRB,将NB-IoT置于其中 一个PRB上,这样另一端的一个PRB将被浪费掉

- 如果动态PUCCH分配(LTE1800: Dynamic PUCCH Allocation)没有激活,上行NB-IoT PRB可以简单置于PUSCH PRB的一端,介于PUCCH PRB与PUSCH PRB区域之间
- - 注意避开PRACH区域(有参数prachFreqOffset决定)

• 也可以利用LTE768: Flexible UL Bandwidth功能,清空最外端的两个PRB,将NB-IoT置于其中一个PRB上,这样另一端的一个PRB将被浪费掉

- 如果动态PUCCH分配已激活,上行NB-IoT PRB位置有两种选择:
- - 可以在PUSCH PRB区域远端选择一个PUCCH不可能用到的PRB用作NB-IoT。
- 也可以利用LTE768: Flexible UL Bandwidth功能,清空最外端的两个PRB,将NB-IoT置于其中一个PRB上,这样另一端的一个PRB将被浪费掉。

In-band部署对传统LTE的影响—部分功能禁用

以诺基亚为例,部署In-band NB-IoT以后,下面功能在传统LTE小区上需要被关闭:

- MBSFNCEL: mbsfnCelld, actMBMS, eMBMS需要被关闭,即在LNCEL中不配置MBSFNCEL
 Object
- · LNBTS: actCRAN=false ,如果一个eNB中配置了NB-IoT小区的话,该eNB将不能支持CRAN
- · ULCOMP: ulCoMpCellList, actUlCoMp,NB-IoT小区及其LTE施主小区不能进入上行CoMP小区列表中
- LNCEL: actEicic=false, NB-IoT会对elCIC ABS子帧产生干扰
- LNCEL: actMicroDtx=false, MicroDTX会影响NB-IoT
- LNCEL: actOtdoa=false, OTDOA PRS与NB-IoT见会互相干扰
- · LNCEL: csgType=openAccess, NB-IoT的LTE施主小区不能设置为CSG小区
- LNCEL_FDD: actCatM=false, NB-IoT和Cat-M不能在同一个小区中激活
- LNCEL_FDD: actCombSuperCell=false, Combined Supercell需要特别的DSP部署
- · LNCEL_FDD: actLiquidCell=false, LNCEL_FDD: actSuperCell=false, Super Cell和Liquid cell需要特别的DSP部署;另外,Liquid cell的TM9 CSI-RS会干扰NB-IoT

NOKIA