Теоретическое домашнее задание № 5

Решения

А. Безрукова

Здесь могла бы быть ваша реклама, но нормальную так и не подвезли

Неизвестный маркетолог

Задача 1: Рассмотрим двойственное представление задачи гребневой регрессии:

$$Q(a) = \frac{1}{2} ||Ka - y||^2 + \frac{\lambda}{2} a^T Ka \to \min_a.$$

Покажите, что решение этой задачи записывается как

$$a = (K + \lambda I)^{-1} y.$$

Решение: Найдем проиизводную $\frac{dQ}{da}$ (вспоминаем курс по OMB):

$$\frac{dQ}{da} = d_a \left(\frac{1}{2} ||Ka - y||^2 + \frac{\lambda}{2} a^T K a \right) = d_a \left(\frac{1}{2} ||Ka - y||^2 \right) + d_a \left(\frac{\lambda}{2} a^T K a \right) =$$

$$= \left(\frac{1}{2} \cdot 2 \cdot K^T (Ka - y) \right) + \left(\frac{\lambda}{2} \cdot 2 \cdot K^T a \right) = K^T (Ka - y) + \lambda K^T a =$$

$$= K^T K a - K^T y + \lambda K^T a$$

Тогда:

$$\frac{dQ}{da}=0\Longleftrightarrow K^TKa+\lambda K^Ta=K^Ty$$

$$K^TKa+\lambda K^Ta=K^Ty\Longleftrightarrow K^T\left(Ka+\lambda Ia\right)=K^Ty\Longleftrightarrow \left(K+\lambda I\right)a=y$$
 Следовательно $a=\left(K+\lambda I\right)^{-1}y$

Задача 2: Покажите, что функция

$$K(x,z) = \cos(x-z)$$

для $x, z \in$ является ядром.

Решение: Покажем, что наша функция является суммой двух ядер, а потому и сама является ядром

По теореме Эйлера $K(x,z)=\cos(x-z)=\frac{1}{2}e^{i(x-z)}+\frac{1}{2}e^{-i(x-z)}=K_1(x,z)+K_2(x,z)$

Однако, так как $e^{-i(x-z)}=e^{i(z-x)}$, достаточно показать, что K_1 - ядро. По теореме Мерсера, функция K(x,z) является ядром тогда и только тогда, когда она симметрична и неотрицательно определена. Проверим эти условия для K_1 с тем уточнением, что наша функция - комплексная, а потому придется смотреть не на симметричность, а на сопряженную симметричность

- 1. симметрия: $\overline{K(z,x)} = \overline{\cos(z-x) + i\sin(z-x)} = \cos(x-z) + i\sin(x-z)$ z) = K(x,z)
- 2. неотрицательность: $K = (K(x_i, x_j))_{n=1}^l = \sum_{i=1}^N \sum_{j=1}^N c_i c_j e^{i(x_i x_j)} = \sum_{i=1}^N c_i e^{ix_i} \cdot \sum_{j=1}^N c_j e^{ix_j} = |\sum_{i=1}^N c_i e^{ix_i}|^2 \ge 0$

Таким образом $K_1(x,z)$ - ядро. Следовательно и K(x,z) - ядро.

Задача 3: Рассмотрим функцию, равную косинусу угла между двумя векторами $x,z\in ^d$:

$$K(x,z) = \cos(\widehat{x,z}).$$

Покажите, что она является ядром.

Решение:

Для начала следует отметить, что $K(x,z) = \cos(\widehat{x,z}) = \frac{\langle x,z \rangle}{||x||\cdot||z||}$

Мы знаем, как менять ядро так, чтобы оно соответствовало скалярному произведению нормированных векторов - нужно просто заменить $\varphi(x)$ на $\widetilde{\varphi}(x)=\frac{\varphi(x)}{||\varphi(x)||}$

В таком случае $\widetilde{K}(x,z)$ - ядро, где

$$\widetilde{K}(x,z) = \langle \widetilde{\varphi}(x), \widetilde{\varphi}(z) \rangle = \left\langle \frac{\varphi(x)}{||\varphi(x)||}, \frac{\varphi(z)}{||\varphi(z)||} \right\rangle = \frac{\langle \varphi(x), \varphi(z) \rangle}{||\varphi(x)||||\varphi(z)||}$$

Подставив $\varphi(x)=x$ в $\widetilde{K}(x,z)$, получим желаемое.

Задача 4: Рассмотрим ядра $K_1(x,z)=(xz+1)^2$ и $K_2(x,z)=(xz-1)^2$, заданные для $x,z\in\mathbb{R}$. Найдите спрямляющие пространства для $K_1,\ K_2$ и K_1+K_2 .

Решение:

- 1. найдем спрямляющее пространство для $K_1(x,z)=(xz+1)^2$ $K_1(x,z)=(xz+1)^2=(xz)^2+2xz+1.$ Тогда возьмем $\varphi(x)=(x^2,x\sqrt{2},1):\langle\varphi(x),\varphi(z)\rangle=x^2z^2+2xz+1$
- 2. найдем спрямляющее пространство для $K_2(x,z)=(xz-1)^2$ $K_2(x,z)=(xz-1)^2=(xz)^2-2xz+1.$ Тогда возьмем $\varphi(x)=(x^2,ix\sqrt{2},1):\langle\varphi(x),\varphi(z)\rangle=x^2z^2-2xz+1$
- 3. найдем спрямляющее пространство для $K_1(x,z)+K_2(x,z)$ $K_1(x,z)+K_2(x,z)=2(xz)^2+2$ Тогда возьмем $\varphi(x)=(x^2\sqrt{2},\sqrt{2}):\langle\varphi(x),\varphi(z)\rangle=2x^2z^2+2$

Задача 5: Рассмотрим следующую функцию на пространстве вещественных чисел:

$$K(x,z) = \frac{1}{1 + e^{-xz}}.$$

Покажите, что она не является ядром.

Решение: Покажем, что для этой функции не выполняются условия теоремы Мерсера

1. симметричность:

$$K(x,z)=rac{1}{1+e^{-xz}}=rac{1}{1+e^{-zx}}=K(z,x)$$
 - выполнена

2. неотрицательная определенность:

Возьмем
$$\{x_i\}_{i=1}^2 = \left\{\frac{2}{\sqrt{3}}, \sqrt{3}\right\}$$
 и построим матрицу K
$$K = \begin{bmatrix} \frac{1}{1+e^{-\frac{4}{3}}} & \frac{1}{1+e^{-2}} \\ \frac{1}{1+e^{-2}} & \frac{1}{1+e^{-3}} \end{bmatrix}$$

Первый минор равен
$$\frac{1}{1+e^{-\frac{4}{3}}} > 0$$

Первый минор равен $\frac{1}{1+e^{-\frac{4}{3}}}>0$ Второй минор равен $\frac{1}{1+e^{-\frac{4}{3}}}>0$ проверить, что $1+e^{-\frac{4}{3}}+e^{-3}+e^{-\frac{13}{3}}-\frac{1}{1+2e^{-2}+e^{-4}}<0$ (несложно проверить, что $1+e^{-\frac{4}{3}}+e^{-3}+e^{-\frac{13}{3}}>1+2e^{-2}+e^{-4}$) - не выполнена

Следовательно, функция K(x,z) не является ядром