Lec 20 - More PyMC3

Statistical Computing and Computation

Sta 663 | Spring 2022

Dr. Colin Rundel

Demo 1 - Bayesian Lasso

```
n = 50
k = 100

np.random.seed(1234)
X = np.random.normal(size=(n, k))

beta = np.zeros(shape=k)
beta[[10,30,50,70]] = 10
beta[[20,40,60,80]] = -10

y = X @ beta + np.random.normal(size=n)
```

Naive Model

```
with pm.Model() as bayes lasso:
   b = pm.Laplace("beta", 0, 1, shape=k)#lam*tau, shape=k)
   v = X @ b
   s = pm.HalfNormal('sigma', sd=1)
   likelihood = pm.Normal("v", mu=v_est, sigma=s, observed=v)
   trace = pm.sample(return_inferencedata=True, random_seed=1234)
##
## Auto-assigning NUTS sampler...
## Initializing NUTS using jitter+adapt_diag...
## Multiprocess sampling (4 chains in 4 jobs)
## NUTS: [sigma, beta]
## Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 19 seconds.
## There were 2 divergences after tuning. Increase `target_accept` or reparameterize.
## The acceptance probability does not match the target. It is 0.878942077718847, but should be close to 0.8. T
   increase the number of tuning steps.
## The estimated number of effective samples is smaller than 200 for some parameters.
```

az.summary(trace)

```
##
                        sd
                            hdi_3%
                                    hdi_97%
                                              mcse_mean
                                                          mcse_sd
                                                                   ess_bulk
                                                                              ess_tail
                                                                                         r hat
              mean
## beta[0]
                            -1.650
                                      1.681
                                                                     3234.0
                                                                                1938.0
             0.067
                     0.861
                                                  0.015
                                                            0.015
                                                                                         1.00
## beta[1]
             0.215
                                      1.693
                                                  0.012
                                                            0.013
                                                                     3632.0
                                                                                2284.0
                                                                                         1.00
                    0.729
                            -1.133
## beta[2]
            -0.080
                     0.852
                            -1.789
                                      1.501
                                                  0.014
                                                            0.015
                                                                      3866.0
                                                                                2652.0
                                                                                         1.00
## beta[3]
            -0.290
                    0.814
                            -1.926
                                      1.193
                                                  0.016
                                                            0.015
                                                                     2870.0
                                                                                1729.0
                                                                                         1.00
## beta[4]
             0.079
                     0.809
                            -1.479
                                      1.691
                                                  0.014
                                                            0.014
                                                                      3577.0
                                                                                2158.0
                                                                                         1.00
## ...
                . . .
                       . . .
                                         . . .
                                . . .
                                                                         . . .
                                                     . . .
                                                              . . .
                                                                                   . . .
                                                                                           . . .
## beta[96]
             0.106
                     0.726
                            -1.271
                                      1.542
                                                  0.013
                                                            0.013
                                                                      3471.0
                                                                                2487.0
                                                                                         1.00
## beta[97] -0.156
                    0.716
                            -1.591
                                      1.160
                                                  0.013
                                                            0.013
                                                                     3188.0
                                                                                1798.0
                                                                                         1.00
## betaΓ98]
             0.289
                    0.763
                            -1.076
                                      1.827
                                                  0.014
                                                            0.015
                                                                     3107.0
                                                                                2408.0
                                                                                         1.00
## beta[99] -0.278
                    0.768
                            -1.747
                                      1.205
                                                  0.013
                                                            0.013
                                                                     3575.0
                                                                                2568.0
                                                                                         1.00
             0.980
                    0.478
                             0.275
                                      1.859
                                                  0.046
                                                            0.032
                                                                      102.0
                                                                                 211.0
                                                                                         1.05
## sigma
##
## [101 rows x 9 columns]
```

az.summary(trace).iloc[[0,10,20,30,40,50,60,70,80,100]]

##	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
## beta[0]	0.067	0.861	-1.650	1.681	0.015	0.015	3234.0	1938.0	1.00
## beta[10]	8.327	1.242	5.945	10.622	0.027	0.019	2075.0	2710.0	1.00
## beta[20]	-8.288	1.335	-10.697	-5.733	0.030	0.021	2003.0	1746.0	1.00
## beta[30]	8.610	1.023	6.678	10.447	0.023	0.017	2011.0	1702.0	1.00
## beta[40]	-8.765	1.507	-11.485	-5.929	0.030	0.022	2461.0	2531.0	1.00
## beta[50]	8.966	1.016	6.995	10.860	0.023	0.016	2035.0	1842.0	1.00
## beta[60]	-9.248	1.121	-11.381	-7.162	0.022	0.015	2708.0	2371.0	1.00

```
ax = az.plot_forest(trace)
plt.tight_layout()
plt.show()
```


Plot helper

Weakly Informative Prior

```
with pm.Model() as bayes weak:
   b = pm.Normal("beta", 0, 10, shape=k)
  v = x = x @ b
   s = pm.HalfNormal('sigma', sd=2)
   likelihood = pm.Normal("y", mu=y_est, sigma=s, observed=y)
   trace = pm.sample(return_inferencedata=True, random_seed=12345)
##
## Auto-assigning NUTS sampler...
## Initializing NUTS using jitter+adapt_diag...
## Multiprocess sampling (4 chains in 4 jobs)
## NUTS: [sigma, beta]
## Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 57 seconds.
## The acceptance probability does not match the target. It is 0.9760397075294559, but should be close to 0.8.
   increase the number of tuning steps.
## The chain reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
## There was 1 divergence after tuning. Increase `target_accept` or reparameterize.
## There were 15 divergences after tuning. Increase `target_accept` or reparameterize.
## The acceptance probability does not match the target. It is 0.7066410867916934, but should be close to 0.8.
   increase the number of tuning steps.
## There was 1 divergence after tuning. Increase `target_accept` or reparameterize.
```

```
ax = az.plot_forest(trace)
plt.tight_layout()
plt.show()
```


Demo 2 - Gaussian Process

```
np.random.seed(12345)
n = 50
x = np.linspace(0, 1, n)
X = x.reshape(-1,1)
nugget = 0.75
sigma2\_true = 4.0
1 true = 10
cov_func = sigma2_true * pm.gp.cov.ExpQuad(1, 1/l_true)
mean_func = pm.gp.mean.Zero()
y_true = np.random.multivariate_normal(
   mean_func(X).eval(), cov_func(X).eval(), 1
).flatten()
y = y_true + nugget * np.random.randn(n)
```

```
fig = plt.figure(figsize=(12, 5))
plt.plot(X, y_true, "-b", lw=3)
plt.plot(X, y, "ok", ".")
plt.show()
```

