3 Groups

Learning Objectives:

- $\bullet\,$ Determine whether binary structures are groups
- Prove that groups satisfy certain properties, use these to solve equations
- Recognize whether a table represents a group, determine properties of groups from Cayley Tables

Thinking back to the very first day of class, we said that	was

Now that we have stripped algebraic manipulation down to its fundamentals, it is time to build up the kind of structures in which it make sense to "do algebra". Consider the following algebraic structures:

*	a	b	c
\overline{a}	c	a	b
b	a	b	c
\overline{c}	b	c	a

*	a	b	c
a	a	a	a
\overline{b}	b	b	b
\overline{c}	b	b	b

There are only three pr	coperties that make this possible –	, the existe	ence of an	
element, and th	e ability to solve the equation	and	for all	

Defin	nition 1. Let	be a			with operation	. Then	is a
	if	it satisfies t	he following three			:	
1.	For all		we have				
2.	there is	an element	in suc	ch that			
3.	for wac	h	there is an	element		such that	
Exan	nple 1. We no	ow turn our	heads to our motiv	vating exa	mples, namely $\langle U$	$\langle U, \cdot \rangle$ and $\langle U_n, \cdot \rangle$	> .
Rema	ark 1. When	speaking ab	out a		, one	usually drop	s theand
simply	y writes	. If we nee	d to specify what	the	is, we	e say "the gro	up under under
	, for example	le " the grou	p	under	."		
Defin	nition 2. A gr	roupi	s called	if i	ts binary operati	on is	
Dom	onle 9 This is	in honor of	Norwagian matha	matician N	Jiola Hanrila Abal	l (1009 1090)	

Remark 2. This is in honor of Norwegian mathematician Niels Henrik Abel (1802-1829).

Example 2. We now present several examples and non-examples.
1.
2.
3.
4.
•
5.
6.

Example 3. We now present several examples related to Linear algebra. 1. Let V be a vector space. 2. Let $M_{m\times n}(\mathbb{R})$ be the set of $m\times n$ matrices with real entries. 3. Let $M_n(\mathbb{R})$ be the set of $n \times n$ matrices with real entries. 4. Claim: The subset of $M_n(\mathbb{R})$ consisting of all *invertible* matrices forms a group under multiplication. Proof. of **Definition 3.** The subset of matrices is called the Remark 3. Note that is the set of all invertible linear transformations from to More generally, for any set you can interpret the set of invertible functions as a group under

Exercise 1. Prove that \mathbb{Q}^+ under $*$ is a group, where $*$ is defind by $a*b = \frac{ab}{3}$.	
Proof.	
3.1 Properties of Groups	
We now make precise what it means "cancel" something in algebra.	
Theorem 1. (Cancellation Laws)	
If is a group with binary operation, then the left and right ca	ancellation laws hold in
. That is, for all we have	
Proof.	

The next	result is	related	to solutı	ons "line	ear" equ	iations.	For ex	kample ———					
Theorem	2. If [is	a group	with bir	nary ope	eration		, and if				then th	ie linear
equations			and _			have un	ique s	olutions		and	iı	n	
Proof.													
Remark not be the			the abo	ve theor	em, the	solutio	ons			and [need
Theorem	3. (Ur	niquene	ss of Id	entity a	and Inv	verse E	lemer	ats)					
In a group	p	$\left \text{with op} \right $	eration	, 1	there is	only or	ne ider	ntity ele	ement.	That	is, the	ere is c	only one
element	suc	th that											
Given in	suc	th that	ere is o	nly one			of		Γhat i	s, there	e is on	ly one	element

Proof.
Corollary 1. (Inverse Formula)
Suppose that is a group and . Then
Proof.
3.2 Finite Groups and Cayley Tables
We will now examine all the possible groups of low cardinality. A general theme of group theory is to $classify$ all groups – that is, describe every possible group structure on a given set.
Let G be a group with $ G < \infty$. Let's examine the possible group structures for low values of $ G $. $ G = 0$:
G = 1:

G	= 2:
1.01	
G	<u>= 3:</u>
Dama	and E. Carra things to notice.
nem	ark 5. Some things to notice:
•	
•	
•	