Finite Automata

Automata

Finite Automata

Example: Vending Machines - with the computing power)

Finite Automata

The simplest form of automata.

Transition Graph 8930015 bringer menor Input string: abba a,b วไม่กรริงใน้า (4)11/2000/10/20 (1) Wesser is a remained a 27231 initial state state transition "accept" Mani Flago Mother Language 11010823218 216

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Output: "accept"

Rejection

 $igsplus_{i}$

a b a

Input finished

Another Rejection

 λ

Output:

"reject"

Another Example

Input finished

Rejection

Input finished

Output: "reject"

Formalities mountainte automata

Deterministic Finite Accepter (DFA) machine
$$= (Q, \Sigma, \delta, q_0, F)$$

Mayor

: set of states handing

: input alphabet

: transition function

: initial state

: set of final states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

$$a,b$$

$$a,b$$

$$a_1,b$$

$$a_2,b$$

$$a_3,b$$

$$a_4,b$$

$$a_1,b$$

$$a_2,b$$

$$a_3,b$$

$$a_4,b$$

$$a_4,$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

Transition Function δ

$$S: Q \times \Sigma \longrightarrow Q$$
state input at next state

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

			_
δ /	inpul a h-	b	เครง เมาคมนอเบอ-ไลวา C
q_0	q_1	q_5	
q_1	<i>q</i> ₅	<i>q</i> ₂	
92	q_5	<i>q</i> ₃	
<i>q</i> ₃	<i>q</i> ₄	<i>q</i> ₅	a,b
94	q ₅	<i>q</i> ₅	
<i>q</i> ₅	q 5	<i>q</i> ₅	q_5
b a b a,b			
$- (q_0) \xrightarrow{a} (q_1) \xrightarrow{b} (q_2) \xrightarrow{b} (q_3) \xrightarrow{a} (q_4)$			

Extended Transition Function δ^*

$$\delta^*(q_0,ab)=q_2$$
 annition was f^{51}

2135/21/10/2017 180 - 2135/21/11/0/2014/1/0/2014/11/0/20

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q to q' with label w small w

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Languages Accepted by DFAs

Take DFA M grands more than the same M

Definition:

The language L(M) contains all input strings accepted by $\,M\,$

set wosstring months DFAM (always final state) $L(M) = \{ \text{ strings that drive } M \text{ to a final state} \}$

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

Formally

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Observation

Language rejected by M:

$$\widehat{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \not\in F \}$$

More Examples

 $L(M) = \{a^n b : n \geq 0\}$ auab quinoblings a, b LUIJ (YITM) a,b *q*₁ trap state accept

L(M)= { all strings with prefix ab }

บอยมครั้ง โรม แสดมโรตัง

L(M) = { all strings without intropostate substring 001 }

Regular Languages

99095WW

A language L is regular if there is a DFA M such that L = L(M)

มาลายและ DE Y ลู้เลา เลาสามาใย กาณ Fa-เอกานคน Ledina บารา

All regular languages form a language family

Examples of regular languages:

$$\{abba\}$$
 $\{\lambda, ab, abba\}$ $\{a^nb: n \ge 0\}$

```
{ all strings with prefix ab }
{ all strings without substring 001 }
```

There exist automata that accept these Languages (see previous slides).

Another Example

The language $L = \{awa : w \in \{a,b\}^*\}$ { a,a, acu, aba, acua, acuba, a.s. 3 is regular: L = L(M)a *q*₂ (b) witrap lolar Interson a q_4

There exist languages which are not Regular:

Example:
$$L = \{a^n b^n : n \ge 0\}$$

In the regular -> Paloren DFA a limit memory

 $A = \{a^n b^n : n \ge 0\}$

There is no DFA that accepts such a language

(we will prove this later in the class)