Name:	Student ID:	
ROBLEM SHEET 2 FO	OR ADVANCED MACHINE LEARNING (COMP	5208)
1		
(a) To find the minimu	m of a 1-d function, we can do an iterative updat	e
(,	$x^{(t+1)} = x^{(t)} - rf'(x^{(t)})$	
where r is a learning minimising. Suppo	ng rate and $f'(t)$ is the derivative of the function,	, $f(x)$ we are
	$f(x) = \frac{c}{2}(x - x^*)^2$	
where $c > 0$. Write	e down a recursion formula for $x^{(t+1)}$ and $x^{(t)}$.	[2 marks]
(b) Show by induction to the recursion reconvergence.	In that $x^{(t)}=F(t)=x^*+(x^{(0)}-x^*)(1-cr)^t$ elation. Hence find a condition on the value of	is a solution r to ensure [5 marks]

$$g(\boldsymbol{x}) = \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^*)^\mathsf{T} \mathbf{Q}(\boldsymbol{x} - \boldsymbol{x}^*)$$

where ${\bf Q}$ is a symmetric, positive-definite matrix. The Hessian, ${\bf H},$ of $g({\bm x})$ is a matrix with components

$$H_{ij} = \frac{\partial^2 g(\boldsymbol{x})}{\partial x_i \partial x_j}.$$

By writing out g(x) as a double sum over the components compute the Hessian [2 marks]

 $\frac{1}{2}$

(d) Gradient descent in \mathbb{R}^n is given by

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - r \boldsymbol{\nabla} g(\boldsymbol{x}).$$

Using the definition of g(x) write down a recursion relation between $x^{(t+1)}$ and $x^{(t)}$. [2 marks]

 $\overline{2}$

(e) Defining $\Delta^{(t)}=(x^{(t)}-x^*)$ obtain a recursion relation between $\Delta^{(t+1)}$ and $\Delta^{(t)}$. (This is easy if you subtract x^* from both sides of the recursion equation for $x^{(t+1)}$.)

 $\overline{2}$

In the eigenvalue decomposition $\mathbf{Q} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ and defining $\mathbf{z}^{(t)} = \mathbf{V}^T \mathbf{\Delta}^t$ write a recursion relation between $\mathbf{z}^{(t+1)}$ and $\mathbf{z}^{(t)}$. (This is helped by multiplying recursion relation on the left by \mathbf{V}^T and using the fact that \mathbf{V} is an orthogonal rix.) [3 marks]
ix.) [5 marks]
we the recursion relation to obtain a formula for $x^{(t)}$ in terms of the initial $\mathbf{x}^{(0)}$. Express this formula for the i^{th} component of $x^{(t)}$ and hence find a dition on the learning rate r to ensure convergence. [4 marks]

End of question 1

(a)
$$\frac{}{2}$$
 (b) $\frac{}{5}$ (c) $\frac{}{2}$ (d) $\frac{}{2}$ (e) $\frac{}{2}$ (f) $\frac{}{3}$ (g) $\frac{}{4}$ Total $\frac{}{20}$

2

(a) Consider the non-quadratic minimum at x^* given by

$$f(x) = \frac{c}{2}(x - x^*)^2 + \frac{d}{6}(x - x^*)^3$$

where we use Newton's method

$$x^{(t+1)} = x^{(t)} - \frac{f'(x^{(t)})}{f''(x^{(t)})}.$$

by computing the derivatives and expanding for small $x^{(t)}-x^*$ show that $x^{(t+1)}-x^*=O\left(\left(x^{(t)}-x^*\right)^2\right)$.

(To do this we need to expand a term with the structure

$$\frac{r+s\epsilon}{u+v\epsilon}.$$

Note that we can use the geometric series expansion to write

$$\frac{1}{u+v\epsilon} = \frac{1}{u} \frac{1}{1+\frac{v}{u}\epsilon} = \frac{1}{u} \left(1 - \frac{v}{u}\epsilon + \left(\frac{v}{u}\epsilon\right)^2 - \cdots\right)$$

which is convergent provided $|\frac{v}{u}\epsilon| < 1$.)

[5 marks]

 $\overline{5}$

(b) Consider the function

$$h(x) = -x\log(x)$$

defined for $0 < x \le 1$. By computing h'(x) and setting h'(x) = 0 compute the value of x^* that maximises h(x). [2 marks]

(c) Compute h''(x) and thus compute the Newton update function

$$n(x) = x - \frac{h'(x)}{h''(x)}$$

(the answer is rather surprising and in no way general).

[3 marks]

-

(d) On the axes given below plot $x^{(t)}$ for $t=0,1,2,\ldots,10$, starting from $x^{(0)}=0.5$ where we use the gradient ascent updates

$$x^{(t+1)} = x^{(t)} + rh'(x^t)$$

for $r = \{0.3, 0.4, 0.5\}$ (that is you should plot three curves).

Also plot $x^{(t)}$ where $x^{(t+1)}=n(x^{(t)})$ (that is using Newton's update formula) for t=0,1,2,3 and 4—note that to machine precision $x^{(5)}=x^*$. [10 marks]

10

End of question 2

(a)
$$\frac{}{5}$$
 (b) $\frac{}{2}$ (c) $\frac{}{3}$ (d) $\frac{}{10}$ Total $\frac{}{20}$

3

(a) Show that for $p_i > 0$ the function

$$h(\boldsymbol{p}) = -\sum_{i} p_{i} \log(p_{i})$$

is strongly convex-down. Hint: show that the Hessian matrix is negative-definite.
[3 marks]

(b) Write down the Lagrangian, \mathcal{L} , for the problem of maximising h(p) subject to the constraints

$$\sum_{i} p_i = 1 \qquad \sum_{i} p_i E_i = U.$$

Then explain why there is a unique solution to this constrained optimisation problem.

[2 marks]

3

-	the Lagrange multipliers. Use the constraint $\sum_i p_i = 1$ to eliminate the Lagrange multiplier that enforces this constraint. [5 marks]

End of question 3

(a)
$$\frac{}{3}$$
 (b) $\frac{}{2}$ (c) $\frac{}{5}$ Total $\frac{}{10}$