

24.1 Vamos?

Fique por dentro da nossa Jornada de Avaliação!

Prof^a Orientadora: Antonia Vanessa

Quarta (19 ás 22h)

80h/semestre - 4ha/semanal

UNIDADES DE INFORMAÇÃO: BIT, BYTE E WORD

Mas, como esses dados de entrada e informações de saída são representados nas entranhas eletrônicas do computador?

UNIDADES DE INFORMAÇÃO: BIT, BYTE E WORD

UNIDADES DE INFORMAÇÃO

- A forma básica de representação de dados em componentes eletrônicos se baseia na linguagem binária
- Ela contém dois dígitos apenas, os quais vão corresponder aos dois estados básicos, 0 ou 1.
- À unidade de dígito binário (zero ou um) se dá o nome de bit, termo vindo do inglês binary digital unit.

UNIDADES DE INFORMAÇÃO: BIT, BYTE, WORD

- bits isolados podem conter apenas dois estados (0, 1)
- números e palavras são representados por **diversos bits**, de acordo com determinada convenção.
 - Conjunto de 8 bits byte
 - Conjunto de 16, 32, 64 bits Word

UNIDADES DE INFORMAÇÃO: BIT

- Cada Bit, pode ter dois estados (0,1)
- Cada Bit adicionado multiplica por 2 a capacidade de Armazenamento de um sistema.

1 bit =
$$0 \Rightarrow 2^1 = 2$$

2 bit =
$$01 \Rightarrow 2^2 = 4$$

3 bit =
$$010 \Rightarrow 2^3 = 8$$

.

10 bit
$$=> 2^{10} = 1.024$$

**20 bit =>
$$2^{20}$$
 = 1.048.576**

**30 bit =>
$$2^{30}$$
 = 1.073.741.824**

BIT

• Cresce exponencialmente, em fator de 2 (Base Binária).

1 bit =
$$0 \Rightarrow 2^1 = 2$$
 bit

2 bit =
$$01 \Rightarrow 2^2 = 4$$

3 bit =
$$010 \Rightarrow 2^3 = 8$$
 byte

1 bit	
0	
1	
$2^1 = 2$ estados	

2 bits			
0	0		
0	1		
1	0		
1	1		
$2^2 =$ 4 estados			
4 estados			

3 bits		
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$2^3 =$$
 8 estados

UNIDADES DE INFORMAÇÃO: BYTE - B 1 byte

1 byte 001011

- Byte conjunto de 8 bits combinados (octeto)
- Representa a codificação de um caractere qualquer do teclado.
- Unidade de armazenamento de dados padrão em mídias (HD, SSD, etc) e de medida de tamanho de arquivos.
- 1 Byte = 8 bits = 2⁸ = 256 => Combinações possíveis de valores.

Nibble, Crumb e Word

- Conjuntos de Bits de tamanhos variados, diferentes do byte.
 - Nibble: 4 bits (½ byte), informação contida em um digito Hexadecimal
 - Crumb: 2 bits (1/4 byte), usados em sistemas antigos de 8 bits.
 - Word (palavra): bloco de bits de tamanho fixo(16, 32, 48, 64).

UNIDADES DE INFORMAÇÃO: BIT, BYTE E WORD

UNIDADES DE INFORMAÇÃO: BIT, BYTE E WORD

Posição de bits:

Para 1 byte:

7 6 5 4 3 2 1 0 0 1 0 1 0 1 0 1

Para 1 word:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1
byte alto (high byte) | byte baixo (low byte)

Endereço	Conteúdo
4MB	10110101
1048576	01001010
1765	01001101
4	01010000
3	11111111
2	11101001
1	11011010
0	01100100
'	

Words são armazenados em bytes consecutivos em memórias de 8 bits.

Byte baixo = byte inferior ou byte de menor ordem -> endereço N

Byte alto = byte superior ou byte de maior ordem -> endereço N+1

Multiplos: unidades e prefixos Decimais (SI)

Prefixo	Símbolo	Multiplica por	Notação Exponencial
kilo	k	1.000	x 10 ³
mega	M	1.000.000	x 10 ⁶
giga	G	1.000.000.000	x 10 ⁹
tera	Т	1.000.000.000	x 10 ¹²
peta	Р	1.000.000.000.000	x 10 ¹⁵
exa	E	1.000.000.000.000.000	x 10 ¹⁸
zetta	Z	1.000.000.000.000.000.000	x 10 ²¹
yotta	Υ	1.000.000.000.000.000.000.000	x 10 ²⁴

Multiplos: unidades e prefixos Binários (IEC)

Prefixo	Símbolo	Multiplica por	Notação Exponencial
kibi	Ki	1.024	x 2 ¹⁰
mebi	Mi	1.048.576	x 2 ²⁰
gibi	Gi	1.073.741.824	x 2 ³⁰
tebi	Ti	1.099.511.627.776	x 2 ⁴⁰
pebi	Pi	1.125.899.906.842.624	x 2 ⁵⁰
exbi	Ei	1.152.921.504.606.846.976	x 2 ⁶⁰
zebi	Zi	1.180.591.620.717.411.303.424	x 2 ⁷⁰
yobi	Yi	1.208.925.819.614.629.174.706.176	x 2 ⁸⁰

Comparações

"Minha internet é de 100 Mbits"

100 Mb = 100.000.000 de bits ou 100 Mbits

Transmissão sequencial bits...

```
1 \text{ kB} = 1000 \text{ bytes}
```

1 kiB = 1.024 bytes (diferença 2,4%)

1 TB = 1.000.000.000.000 bytes

1 TiB = 1.099.511.627.776 bytes (diferença 9,95%)

Comparações

Ao consultar a capacidade do dispositivo no sistema operacional, qual a real a capacidade??

Exercitando...

 $1 \text{ TB} = 1000^{12}$ or 1,000,000,000,000,000 bytes

1 TiB = 1024^12 or 1,099,511,627,776 bytes

1 TB = 0.9095 TiB

Comparações


```
1 \text{ TB} = 1000^{12} or 1,000,000,000,000,000 bytes
```

1 TB = 0.9095 TiB

Apresenta a menor unidade de informação armazen ável em um computador:

A)Caractere

B)Word

C)Byte

D)Bit

E)Ponto

Apresenta a denominação utilizada para "um grupo ordenado de 8 bits, tratados de forma individual, como unidade de armazenamento e transferência"

A)Caractere

B)Word

C)Byte

D)Bit

E)Ponto

APRENDIZASO TINUO

Utilizando-se a base binária, com 3 dígitos, teremos:

A)Seis números distintos (2x3): 001, 010, 011, 100, 101, 110

B)Dez números distintos (2x3+4): 000, 001, 010, 011, 100, 101, 110, 111, 101, 011

C)Oito números distintos (23): 000, 001, 010, 011, 100, 101, 110, 111

D)Quatro números distintos (2x2): 100, 101, 110, 111

E)Nove números distintos (3²): 000, 001, 010, 011, 100, 101, 110, 111, 101

Responder as questões de fixação disponíveis no livro **Introdução à Organização de Computadores**, capítulo 2, páginas 51 a 53.

Bibliografia Básica ...

MONTEIRO, Mário. Introdução à Organização de Computadores. 5 ed. Rio de Janeiro: LTC, 2010.

Disponível em:

https://integrada.minhabiblioteca.com.br/#/books/978-85-216-1973-4/recent

POLLI, Marco. Organização de Computadores. 1 ed. Rio de Janeiro: SESES, 2014.

Disponível em:

http://api.repositorio.savaestacio.com.br/api/objetos/efetuaDownload/e96bc69e-73ca-4147-997d-14b601acb8d5

STALLINGS, William. Arquitetura e organização de computadores. 10 ed. São Paulo: Pearson, 2017.

Disponível em:

https://plataforma.bvirtual.com.br/Leitor/Publicacao/151479/pdf

