Fort Street High School

4 unit mathematics

Trial DSC Examination 1986

- 1. (i) Sketch the following on the Argand diagram and describe in geometric terms the locus represented by:
- (a) $\left| \frac{z-4}{z+3i} \right| = 1$ (b) $\arg(z+1-i) = \frac{\pi}{3}$
- (ii) (a) State de Moivre's Theorem.
- **(b)** Hence, prove that $\cos 5\theta = 16 \cos^5 \theta 20 \cos^3 \theta + 5 \cos \theta$
- (c) Solve the equation $\cos 5\theta = 1$ for $0 \le \theta < \pi$ and hence show that the roots of the equation $16x^5 20x^3 + 5x 1 = 0$ are $x = \cos \frac{2k\pi}{5}$ for k = 0, 1, 2, 3, 4.
- (d) Hence prove that $\cos \frac{\pi}{5} \cos \frac{2\pi}{5} = \frac{1}{4}$ and $\cos \frac{\pi}{5} \cos \frac{2\pi}{5} = \frac{1}{2}$.
- (iii) Solve the equation $z^6 + 1 = 0$, giving the roots in the form a + ib. Show these roots on an Argand diagram.
- (iv) If $w = \frac{1+z}{1-z}$ and |z| = 1 where z and w are complex numbers, determine the locus of w.
- **2.** (i) The ellipse E, is given in terms of the complex number z by: |z+3|+|z-3|=10.
- (a) Sketch E and determine the Cartesian equation of E.
- (b) Prove that the area enclosed by E is 20π unit².
- (ii) Prove that if z is a complex number then $\arg(\frac{z-i}{z+2}) = \frac{\pi}{2}$ represents the locus of a circle. Hence state the centre and radius of this circle.
- (iii) Determine the factors of $6x^4 + 7x^3 + 21x^2 + 28x 12$ over the field of
- (a) rational numbers, \mathbb{Q} .
- (b) complex numbers, \mathbb{C} .
- 3. (i) Decompose $\frac{6x^3-3x^2+22x-5}{(x-1)^2(x^2+9)}$ into partial fractions over the field of real numbers.
- (ii) Write $\sqrt{5-12i}$ in the form a+ib, where a and b are real numbers.
- (iii) (a) Find the coordinates of the foci and equations of the directrices and asymptotes of the hyperbola $5x^2 4y^2 = 20$. Sketch the curve.
- (b) The tangent at a variable point P on this hyperbola meets a directrix at T. Show that PT subtends a right angle at the corresponding focus.
- (iv) Prove that the polynomial $P(x) = \frac{x^4}{4} \frac{x^3}{3} 2x^2 + 4x + c$ has no real zeros if $c > 9\frac{1}{3}$.
- **4.** (i) The curve y = f(x) may be represented parametrically by: $x = \sin t 1$ and $y = t \cos t$.

- (a) If the arc length of this curve between t=0 and $t=\pi$ is given by: $L=\int_0^\pi \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}\ dt$ show that $L=\sqrt{2}\int_0^\pi \sqrt{1+\sin t}\ dt$.
- (b) Use seven evenly spaced ordinates from t = 0 to $t = \pi$ and Simpson's rule to estimate L to two decimal places.
- (ii) Evaluate the following:
- (a) $\int_{-\pi}^{\pi} \frac{\sin^5 x}{1 + \cos^2 x} dx$ (b) $\int_{0}^{\pi} x \cos 2x dx$ (c) $\int_{4}^{\infty} \frac{dx}{16 + 4x^2}$
- **5.** (i) Determine the following integrals:

(a)
$$\frac{(4\tan x - 1)\sec^2 x \ dx}{(\tan x - 1)^2}$$
 (b) $\int \frac{dx}{3 + 4\cos x}$ (c) $\int \frac{dx}{(3x^2 - 5x + 4)^{\frac{1}{2}}}$ (d) $\int \csc^3 x \ dx$.

- (ii) If $I_n = \int x^n e^x dx$, prove that $I_n = x^n e^x nI_{n-1}$. Hence evaluate $\int_0^1 x^3 e^x dx$.
- **6.** (a) Outline Newton's Method for estimating a root r, of the equation P(x) = 0. In your answer include an appropriate diagram and derivation of the expression for the 2nd approximation z_2 of r in terms of the 1st approximation z_1 .
- (b) Use Newton's Method to estimate the first positive solution of $\tan x = -\frac{1}{x}$ correct to two decimal places.
- (c) Sketch the curve $y = \frac{x}{\cos x}$ for $-\frac{3\pi}{2} \le x \le \frac{3\pi}{2}$ using part (b) or otherwise. In your answer consider odd/even properties, vertical asymptotes, limits, stationary points, points of inflexion and the extreme values of the curve.
- 7. (a) The area bounded by the curve $y = 4x^2 x^4$ and the x-axis between x = 0 and x = 2 is rotated about the y-axis. By slicing perpendicular to the y-axis show that the area of a cross-sectional slice is of the form $A(y) = 2\pi(4-y)^{\frac{1}{2}}$. Hence calculate the volume of the solid generated.
- (b) A solid sphere is formed by the rotation of the circle $x^2 + y^2 = 16$ about the y-axis (units are in cm). A cylindrical hole of diameter 4cm is bored through the centre of the sphere in the direction Oy.
- (i) By considering a slice perpendicular to the x-axis use the method of cylindrical shells to determine the volume of the solid remaining.
- (ii) Also determine the volume of the section cut out from the sphere.
- **8.** (a) A sequence u_1, u_2, u_3, \ldots is defined by the relations: $u_1 = 1, u_2 = 5$ and $u_n = 5u_{n-1} 6u_{n-2}$ for $n = 2, 3, \ldots$ Prove using the method of mathematical induction that $u_n = 3^n 2^n$.
- (b) In a triangle ABC the altitudes AD, BE and CF meet in the point H. The altitude AD also intersects the circumcircle of triangle ABC in X.
- (i) Explain why *HDCE* and *AEDB* are cyclic quadrilaterals.
- (ii) Prove that the triangles BDH and BDX are congruent.
- (c) If $\sin^{-1} x$, $\cos^{-1} x$ and $\sin^{-1} (1-x)$ are acute show that $\sin(\sin^{-1} x \cos^{-1} x) = 2x^2 1$. Hence solve $\sin^{-1} x \cos^{-1} x = \sin^{-1} (1-x)$.