TD 5 à 6 (projet à rendre) calibration, ESILV

Travail à rendre avant le 24 janvier à minuit. A faire par groupe de deux étudiants (avec possibilité d'avoir un groupe de 1 s'il y a un nombre impair d'étudiants). Vous enverrez par mail un unique fichier pdf contenant vos réponses à chaque question, avec les graphiques que vous aurez générés, ainsi que le code en annexe du pdf (un pdf généré en LaTeX sera apprécié positivement). Analysez et commentez vos résultats à chaque question.

1/ Le modèle d'Heston (modèle à volatilité stochastique dont le processus de variance est un modèle CIR) a cinq paramètres (en incluant la volatilité initiale). Cela permet-il (avec un seul jeu de paramètres) de retrouver les prix de marchés de n'importe quel ensemble de cinq options sur le même sous-jacent et de maturité identique ?

- Faire un pricer par Monte Carlo utilisant ce modèle.
- Répondre à la question empiriquement avec des données fixées arbitrairement et qui, pour un modèle à volatilité constante, produisent :
 - o un smile plat;
 - o un vrai smile;
 - o un forward skew: typique des options sur commodities, volatilité implicite décroît faiblement pour titres très dans la monnaie, puis augmente fortement selon strike.
 - un smirk (reverse skew): apparaît pour options longue maturité ou options sur indices, volatilité implicite décroît selon strike puis remonte très faiblement très en dehors de la monnaie.

A partir de maintenant, on travaille avec les données suivantes de prix de call de <u>maturité un an</u> sur une même action de prix actuel 100 :

Strike	95	96	97	98	99	100	101	102	103	104
Prix	12.40	9.59	8.28	7.40	6.86	6.58	6.52	6.49	6.47	6.46

On complète avec d'autres maturités résiduelles :

- pour des options de maturité 9 mois :

Strike	95	96	97	98	99	100	101	102	103	104
Prix	11.79	8.95	8.07	7.03	6.18	6.04	5.76	5.50	5.50	5.39

- pour des options de maturité 6 mois :

Strike	95	96	97	98	99	100	101	102	103	104
Prix	10.71	8.28	6.91	6.36	5.29	5.07	4.76	4.47	4.35	4.14

- pour des options de maturité 3 mois :

Strike	95	96	97	98	99	100	101	102	103	104
Prix	8.67	7.14	5.98	4.93	4.09	3.99	3.43	3.01	2.72	2.53

2/ Calculez la volatilité implicite (modèle de Black-Scholes) de chacune des 40 options et représentez la surface de volatilité.

3/ Proposez une version régularisée du smile (d'abord avec la maturité 1 ans seulement puis avec les 4 maturités). Calculez alors l'écart entre prix de modèle et prix de marché.

4/ Calibrez un mouvement brownien fractionnaire géométrique sur les données (d'abord avec la maturité 1 ans seulement puis avec les 4 maturités), en régularisant la surface de volatilité implicite et l'exposant de Hurst implicite. Calculez alors l'écart entre prix de modèle et prix de marché

- 5/ Calibrez le modèle d'Heston sur les données (d'abord avec la maturité 1 ans seulement puis avec les 4 maturités), avec une version régularisée de chaque jeu de paramètre. Calculez alors l'écart entre prix de modèle et prix de marché et comparez à ce que vous obtenez aux deux questions précédentes.
- 6/ Pour les données fixées précédemment, calibrer une densité risque neutre en utilisant la formule de Breeden-Litzenberger et la technique de Shimko. Comparer avec une densité gaussienne.
- 7/ Vérifier, en faisant des tirages dans cette loi implicite, si l'on trouve un prix de modèle proche du prix de marché pour toutes les options. Comparez aux résultats précédents et analysez.