

INF 638 Cryptography & Cryptosystems

Section 5: Advanced Encryption System

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu

INF 638: Cryptography & Cryptosystems

- 1- Motivation & Definitions
- 2- Elements of Number theory
- 3- Early Cryptographic methods
- **4-** Symmetrical Cryptography: DES
- 5- Symmetrical Cryptography: AES
- 6- Quantum Cryptography: Key distribution
- 7- Elements of Asymmetrical Cryptography
- 8- Asymmetrical Cryptography: RSA
- 9- ECC Key Distribution
- ❖ 10- PKI & Digital Signatures
- 11- Hash Functions
- 12- Smartcards

5-Advanced Encryption Standard

- ❖ 5-A Finite (Galois) fields
- 5-B Advanced Encryption Standard
 - ❖ AES architecture
 - AES Key generation
 - Summary

AES: Advanced Encryption Standard

- ➤Open call for AES by NIST in **1997** submission of 15 algorithms
- ➤ Winner: Rijndael algorithm in 2000 (by Vincent <u>Rij</u>me<u>n</u> & Joan <u>Dae</u>men from <u>L</u>ouvain/Belgium)
- Adopted in **2001** for commercial use, and by NSA for classified data
- >AES operate on block of 128-bits with a 128, 192, 256-bit key
- ➤ Data manipulation include:
 - > Diffusion, permutation, shift, mixing (use extended Galois Fields)
 - ➤ Logic functions: XOR, AND, OR
 - > Repeat 10, 12, 14 times
- >AES is currently the most important symmetric algorithm with 70% acceptance

Summary AES

AES: Encryption versus Decryption

Use extended Galois Field arithmetic

4 steps per round (not the last one)

- 1. Substitution by byte (core of the encryption)
- 2. Shift rows (Transposition: re-arrange)
- 3. Mix Columns (Substitution & Transposition)
- 4. Add round key (XOR)

3 steps for the last round

- 1. Substitution by byte (core of the encryption)
- 2. Shift rows (Transposition: re-arrange)
- 3. Mix Columns (Substitution & Transposition)
- 4. Add round key (XOR)

AES: description of each round

AES: step-1: Byte substitution; the s-boxes

Description of byte substitution S-box — base 16

$$A_i = X Y$$

$$B_i = S (A_i)$$

$$A_i = C_2$$

			4													
	0	1 2	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	В7	FD	93	26	36	3F	F7	СС	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	А3	40	8F	92	9D	38	F5	вс	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
C	ВА	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	ВВ	16

 $B_i = 25$

Example: $[A_i = 1100\ 0010 = C\ 2] \implies [B_i = 2\ 5 = 0010\ 0101]$

Construction of the byte substitution S-box

1- Conversion to Galois field vector:

(Input bit vector is transformed into a polynomial vector)

$$A_{i} = \{a_{7i}; a_{6i}; a_{5i}; a_{4i}; a_{3i}; a_{2i}; a_{1i}; a_{0i}\}$$

$$\rightarrow A_{i} (X) = a_{7i} X^{7} + a_{6i} X^{6} + a_{5i} X^{5} + a_{4i} X^{4} + a_{3i} X^{3} + a_{2i} X^{2} + a_{1i} X + a_{0i}$$
for $n \in \{0, 7\}$: $a_{ni} \in \{0, 1\}$

2- Find the Galois field inverse of A_i (X): B_i '(X)

$$B_i'(X) = A_i(X)^{-1}$$
 see table $A_i(X) \times B_i'(X) \equiv 1 \mod P(X)$; $P(X)$ is the $GF2^8$ irreducible polynomial: $P_{(x)} = x^8 + x^4 + x^3 + x + 1$

3- Extract B_i from B_i' from the "Affine Mapping" see table

Example: Construction of the byte substitution S-box

Find the Inverse

Example: C 2 2 f 2 5
$$A_{i} = 1100\ 0010 \Rightarrow B_{i}' = 0010\ 1111 \Rightarrow B_{i} = 0010\ 0101$$

$$A_{i}(X) = X^{7} + X^{6} + X \Rightarrow B_{i}'(X) = X^{5} + X^{3} + X^{2} + X + 1 \Rightarrow B_{i}(X) = X^{5} + X^{2} + 1$$

Homework 4-A

Find B'i, the inverse of Ai with GF, and Bi after affine mapping

$\mathbf{A_i}$	B'_{i}	$\boldsymbol{B}_{\mathbf{i}}$
0101 1000		
1101 0001		
1011 1010		
1110 0011		
0110 1000		

AES step -2: Shift Rows

AES step -2: Shift Rows

B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6		
B_3			

No shift
one left
two left
Three left

output matrix

AES step-3: Mix Column

AES step-3: Mix columns transformation

B_0	B_5	B ₁₀	B ₁₅			
MIX						
C_0	C_0 C_1		C_3			

B ₁₂	B_1	B_6	B ₁₁
	M	IX	
C_{12}	C_{12} C_{13}		C_{15}

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

$$\begin{pmatrix} C_4 \\ C_5 \\ C_6 \\ C_7 \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_4 \\ B_9 \\ B_{14} \\ B_3 \end{pmatrix}$$

$$\begin{pmatrix} C_8 \\ C_9 \\ C_{10} \\ C_{11} \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_8 \\ B_{13} \\ B_2 \\ B_7 \end{pmatrix}$$

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix} \qquad \begin{pmatrix} C_4 \\ C_5 \\ C_6 \\ C_7 \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_4 \\ B_9 \\ B_{14} \\ B_3 \end{pmatrix} \qquad \begin{pmatrix} C_8 \\ C_9 \\ C_{10} \\ C_{11} \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_8 \\ B_{13} \\ B_2 \\ B_7 \end{pmatrix} \qquad \begin{pmatrix} C_{12} \\ C_{13} \\ C_{14} \\ C_{15} \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_{12} \\ B_1 \\ B_6 \\ B_{11} \end{pmatrix}$$

Galois Fields matrix transform – Example:

$$C_0$$
= [[02] • B_0] \bigoplus [[03] • B_5] \bigoplus [[01] • B_{10}] \bigoplus [[01] • B_{15}]

$$C_1$$
= [[01] • B_0] \bigoplus [[02] • B_5] \bigoplus [[03] • B_{10}] \bigoplus [[01] • B_{15}]

$$C_2$$
= [[01] • B_0] \bigoplus [[01] • B_5] \bigoplus [[02] • B_{10}] \bigoplus [[03] • B_{15}]

$$C_3 = [[03] \cdot B_0] \oplus [[01] \cdot B_5] \oplus [[01] \cdot B_{10}] \oplus [[02] \cdot B_{15}]$$

Maths: Extended Galois field

$$> 02 \rightarrow (0000\ 0010) \rightarrow x$$

> 03
$$\rightarrow$$
 (0000 0011) \rightarrow $x + 1$

$$P_{(x)} = x^8 + x^4 + x^3 + x + 1$$

Homework 4-B

Find Co, C1, C2, C3 from Bo, B5, B10, C15 with mix column transform

$\boldsymbol{B_0}$	B_5	B_{10}	B_{15}
0101 1000	1101 0001	1011 1010	1110 0011
C_0	c_1	C_2	<i>C</i> ₃
Ş	?	?	?

AES step-4: Key addition (XOR)

AES step-4: Key addition - Add Round key

- ➤ Operation done before the first round, then at every round
- ➤ At round *i* the key generated by the key processor is different
- \triangleright The key K_i is segmented by byte:

$$K_i = \{K_{1i}; K_{2i};; K_{ji};; K_{16i}\}$$

 \triangleright Assuming that the plain text is P_i :

$$P_i = \{P_{1i} ; P_{2i} ; ...; P_{ji} ; ...; P_{16i}\}$$

 \triangleright The encrypted text has also 16 bytes with P'_{ii} given by:

$$P'_{ji} = \{ P_{ji} \oplus K_{ji} \}$$

AES Inverse: decryption

Inverse Mix columns transformation

Encrypt

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

Decrypt

$$\begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix} = \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix}$$

Inverse S-Box

$B_{\rm i} =$	X	y
$A_{i} =$	S (A_i

 $B_i = C 2$

	•		7						7	Į.							
		0	1 (2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9е	81	f3	d7	fb
	1	7с	e3	39	82	9b	2f	ff	87	34	8e	43	44	с4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	с3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
Į,	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
Х	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	e	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	с6	d2	79	20	9a	db	c0	fe	78	$^{\mathrm{cd}}$	5a	f4
	С	1 f	dd (a8	33	88	07	с7	31	b1	12	10	59	27	80	ec	5f
$ \sqrt{} $	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	е	a 0	e0	3b	4d	ae	2a	f5	$\mathbf{b}0$	с8	eb	bb	3с	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0с	7d

	0000	0
	0001	1
	0010	2
	0011	3
	0100	4
	0101	5
	0110	6
	0111	7
	1000	8
	1001	9
	1010	а
	1011	b
	1100	С
	1101	d
	1110	е
	1111	f
_		

 $A_{\rm i} = A 8$

Example: $[B_i = 1100\ 0010 = C\ 2] => [A_i = A\ 8 = 1010\ 1000]$

Advanced Encryption Standard

- 1- Finite fields
- 2- Extended Galois fields
- 3- AES architecture
- 4- AES Key generation
- 5- Summary

AES: Key schedule for each round for 128-bit size

For the left-more word of sub-key $i \in \{1 \text{ to } 10\}$ $W(4i) = W(4(i-1)) \bigoplus g(W(4i-1))$

For the other 3 words of sub-key i; j=1,2,3 $W(4i+j) = W(4(i-1)+j) \bigoplus (W(4i+j-1))$

AES: Function g of round i

RC
$$[1] = x^0 = (0000\ 0001)$$

RC $[2] = x^1 = (0000\ 0010)$
RC $[3] = x^2 = (0000\ 0100)$
RC $[4] = x^3 = (0000\ 1000)$
RC $[5] = x^4 = (0001\ 0000)$
RC $[6] = x^5 = (0010\ 0000)$
RC $[7] = x^6 = (0100\ 0000)$
RC $[8] = x^7 = (1000\ 0000)$
RC $[9] = x^8 = (0001\ 1011)$
RC $[10] = x^9 = (0011\ 0110)$

$$x^{8} = P(x) + RC[9] = (x^{8} + x^{4} + x^{3} + x + 1) + (x^{4} + x^{3} + x^{1} + 1)$$

$$x^{9} = xP(x) + RC[10] = x(x^{8} + x^{4} + x^{3} + x + 1) + (x^{5} + x^{4} + x^{2} + x)$$

Advanced Encryption Standard

- 1- Finite fields
- 2- Extended Galois fields
- 3- AES architecture
- 4- AES Key generation
- 5- Summary

Summary: AES

size

128

192

256

10

12

- ➤ Add round key XOR (128 bits)
- > 10-12-14 rounds of encryption (128bits)
 - Substitute Bytes S-boxes (Galois field)
 - > Shift Row
 - Mixed Columns not in last round
 - ➤ Add round key XOR

Kev	processor:
I/C A	processor.

- \triangleright Key size 128 192 256
- 14
- Create 32-bit words from four bytes
- > Each round key: XOR with a g-function
- Reverse order for decryption

Effect of fault injection on AES - not easy

□Plaintext: 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

128-bit key: 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

Ciphertext: 39 25 84 1d 02 dc 09 fb dc 11 85 97 19 6a 0b 32

☐ One fault in the plaintext: 30 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34 Results in the ciphertext: c0 06 27 d1 8b d9 e1 19 d5 17 6d bc ba 73 37 c1

☐ One fault in the key: 2a 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

Results in the ciphertext: c4 61 97 9e e4 4d e9 7a ba 52 34 8b 39 9d 7f 84

A single-bit error results in a totally scrambled output

Comparing symmetrical methods

DES vs AES

	DES	AES
Date	1976	1999
Block size	64	128
Key length	56	128, 192, 256
Number of rounds	16	10, 12, 14
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but accept open public comment
Source	IBM, enhanced by NSA	Independent cryptographers

Form	Properties	Strength		
DES	One 56-bit key	Weak		
Double DES	Two 56-bit keys	2 X as strong as DES		
Two-Key Triple DES	Two 56-bit keys	16 million times as strong as DES		
Three-Key Triple DES	Three 56-bit keys	10^{17} as strong as DES		
AES	128-bit key	4 10 ²¹ as strong as DES		

Comparing cryptographic methods

Issues with AES

- ➤ Almost 20 year old
- ➤ Sensitive to frequency analysis
 - ➤ Plain text is encrypted 128 bit at the time with the same key
 - ➤ Very long plain text give an opportunity to crypto-analyst
- ➤ Collisions were reported on the Keys:
 - ➤ Key size of 128 bits → 64 bits Not safe
 - ➤ Key size of 256 bits → 128 bits Questionable
- >Alternate encryption methods based on chaos, and random elements

QUESTIONS?

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu