A LEMMA ABOUT H-INVARIANT FUNCTION AND BIRKHOFF ERGODIC THEOREM FOR FLOW

RONGHAN YUAN

ABSTRACT. In this week, by introducing the Siegel domain, we proved that $SL(n,\mathbb{Z})$ is a lattice in $SL(n,\mathbb{R})$, and started to study the dynamics on $SL(n,\mathbb{R})/SL(n,\mathbb{Z})$ and ergodicity with respect to a subgroup action is defined. A lemma about essentially H-invariant functions are a.e. equal to H-invariant functions is stated. Also Birkhoff ergodic theorem for flow is mentioned.

Contents

1.	Essentially H-invariant functions are almost H-invariant	1
2.	Birkhoff ergodic theorem for flow	2
3.	bibliography	Ş
References		•

1. Essentially H-invariant functions are almost H-invariant

This is an elementary technical lemma.

Lemma 1.1. G is a locally compact topological group with left Haar measure μ , and H a topological subgroup of G. If f is an essentially H-invariant μ -measurable function, i.e. for $\mu - a.e.$ $x \in X$, f(hx) = f(x) holds for all $h \in H$, then there exists another measurable function F, such that F = f holds almost everywhere, and F is H-invariant, i.e. F(Hx) = F(x) holds for all $x \in X$.

Proof. Choose μ_H to be the right Haar measure on H. Since it might not be a probability measure, we choose a strictly positive function ψ such that $v = \psi d\mu_H$ is a probability measure on H.

For example, we can choose the ψ as follows: Find a increasing exhausting sequence consisted of finite measure set of H, denoted as $E_n, n \in \mathbb{Z}_{>0}, E_0 = \emptyset$. Then

(1.2)
$$\psi = \sum_{i=1}^{\infty} \frac{1}{2^{i} \mu(E_{i} \setminus E_{i-1})} \mathbb{1}_{E_{i} \setminus E_{i-1}}$$

An impotant property of v is that any H-translation of v-null subset of H still has zero measure. This is due to the fact that any v-null set is also μ_H -null, and vise versa.

Define the subset of $H \times X$

(1.3)
$$Q = \{(h, x) | f(hx) \neq f(x) \}$$

According to definition of essentially H-invariant.

(1.4)
$$0 = \int_{H} \int_{X} \mathbb{1}_{Q} = \int_{X} v(\{h \in H | f(hx) \neq f(x)\})$$

Thus for $\mu - a.e. x$, f(hx) = f(x) holds v - a.e., meaning

$$(1.5) X_0 = \{x \in X | f(hx) = f(x), v - a.e. \ h \in H\}$$

has full measure.

Define

(1.6)
$$F(x) = \int_{H} f(hx)dv(h)$$

$$X_{1} = \{x \in X | f(hx) = F(x) \ v - a.e. \ h\}$$

$$\tilde{f}(x) = \begin{cases} F(x) & x \in X_{1} \\ \frac{1}{2} & x \in X \setminus X_{1} \end{cases}$$

Then X_1 is H-invariant. Because if $x \in X_1$, then $v(\{h|f(hx) = f(x)\}) = 0$, and notice $\{h|f(hh_1x) = f(x)\} = \{h|f(hx) = f(x)\}h_1^{-1}$, so it also has zero measure, which implies $h_1x \in X_1$. As a corollary $X \setminus X_1$ is invariant too.

Also $F|_{X_1}$ is H-invariant. Because F(x) equals to 'most of the values' in $\{f(hx)|h \in H\}$, which equals to 'most of the values' in $\{f(hh_1x)|h \in H\}$ (because right H-translation preserves v-null set), and this equals to $F(h_1x)$.

We notice that $X_0 \subset X_1$. Because for $x \in X_0$, f is v - a.e. constant on Hx. So X_1 has full measure too.

So \tilde{f} is H-invariant, then \tilde{f} is the needed function, since it equals f on X_0 . \square

2. Birkhoff ergodic theorem for flow

Theorem 2.1. $a_t, t \geq 0$ is a flow preserving measure μ and ergodic. Assume f is integrable on X, and $f(a_t(x))$ is also an integrable function on $(t, x) \in [0, 1] \times X$. Then

(2.2)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(a_t(x)) dt = \int_X f(y) d\mu(y)$$

holds for $\mu - a.e. \ x \in X$.

Proof. With out loss of generality, we may assume $f \geq 0$. Define

(2.3)
$$\psi(x) = \int_0^1 f(a_t(x))dt$$

Then $\psi \geq 0$, and is measurable on X, due to the Tonelli theorem. Also, its integral over X is equal to the integral of f over X, because

(2.4)
$$\int_{X} \psi(x) d\mu$$

$$= \int_{X} \int_{0}^{1} f(a_{t}(x)) dt d\mu$$

$$= \int_{0}^{1} \int_{X} f(a_{t}(x)) d\mu dt$$

$$= \int_{0}^{1} \int_{X} f(x) d\mu dt$$

$$= \int_{Y} f(x) d\mu < \infty$$

So ψ is finite $\mu - a.e.$ and ψ is integrable over X.

Apply the discrete version of Birkhoff ergodic theorem to ψ , we have for $\mu-a.e.$ x

(2.5)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \psi(a_i(x)) = \int_X f(x) d\mu$$

But according to the definition of ψ , and semi-group property of the flow, the left hand side is just

$$(2.6) \frac{1}{N} \int_0^N f(a_t(x)) dt$$

Similarly, define

(2.7)
$$\psi_k(x) = \int_0^{\frac{1}{2^k}} f(a_t(x)) dt$$

We have for $\mu - a.e. x$

(2.8)
$$\lim_{N \to \infty} \frac{1}{N/2^k} \int_0^{\frac{N}{2^k}} f(a_t(x)) dt = \int_X f(x) d\mu$$

holds for arbitrary k.

If f is bounded, then the proof is completed. For general $f \ge 0$, this follows from that if $\frac{N}{2^k} < T < \frac{N+1}{2^k}$

$$(2.9) \quad \frac{1}{(N+1)/2^k} \int_0^{\frac{N}{2^k}} f(a_t(x))dt \le \frac{1}{T} \int_0^T f(a_t(x))dt \le \frac{1}{N/2^k} \int_0^{\frac{N+1}{2^k}} f(a_t(x))dt$$

3. BIBLIOGRAPHY

Thanks Liu Xuan for telling me the proof of Birkhoff ergodic theorem for the flow.

References

 Manfred Einsiedler and Thomas Ward. Ergodic Theory: with a view towards Number Theory. Springer-Verlag London Limited. 2011.