

Grupo 10:

Yuri Shumyatsky - 231012826

1 Introdução

O estudo de circuitos elétricos é fundamental para a compreensão dos princípios que regem o funcionamento de diversos dispositivos e sistemas eletrônicos. Neste experimento, o foco foi a utilização de equipamentos essenciais de laboratório, como a fonte de alimentação DC e o multímetro, ferramentas indispensáveis para a medição de grandezas elétricas. Além disso, o experimento visa confirmar, de forma prática, a aplicação de leis básicas dos circuitos elétricos, como as Leis de Ohm e de Kirchhoff.

2 Materiais

- Multímetro
- Fonte 6V
- Protoboard
- 2 resistores de 1,5k Ω
- 1 resistor de 1,2k Ω

Montados na seguinte configuração:

Foi definido que $R_1=1,5k\Omega,\ R_2=1,2k\Omega,\ R_3=1,5k\Omega$

3 Experimento

O primeiro passo é a determinação da resistência nominal de cada resistor.

Resistor	Valor Nominal	Valor medido	Erro (%)
R_1	$1,5k\Omega$	$1,4778k\Omega$	1,48
R_2	$1,2k\Omega$	$1,1832k\Omega$	1,4
R_3	$1,5k\Omega$	$1,4800k\Omega$	1,33

Tabela 1

O segundo passo é medir as voltagens entre os pontos a e c, b e c, a e b.

Tensão	Valor Calculado	Valor medido	Erro (%)
V_{ac}	6V	6,0042V	0,07
V_{ab}	$4{,}1525\mathrm{V}$	4,1568V	0,10
V_{bc}	1,8475V	1,8472V	0,10
$V_{ac} - V_{ab} - V_{bc}$	0V	0,0002V	-

Tabela 2

Com esse resultado, podemos confirmar a Lei das Tensões de Kirchhoff.

Em seguida, usamos o multímetro como amperímetro para identificar as correntes.

Corrente	Valor Calculado	Valor medido	Erro (%)
I_1	2,77mA	2,8099mA	1,47
I_2	1,54 mA	1,5629 mA	1,59
I_3	1,23mA	1,14198mA	7,21
$I_1 - I_2 - I_3$	$0 \mathrm{mA}$	0,10502 mA	-

Tabela 3

Em seguida verificamos a Lei de Ohm.

Corrente	Valor Calculado	Valor medido
$V_{ab} - R_1 I_1$	0	0,00432978
$V_{bc} - R_2 I_2$	0	-0,00202328
$Vbc - R_3I_3$	0	0,1570696

Tabela 4

Esses resultados são satisfatórios para comprovar a Lei de Ohm.

Após isso, é feito o cálculo das resistências equivalentes e de entrada, e as medidas com os valores experimentais.

Resistência	Valor Calculado	Valor medido	Erro (%)
R_{eq}	$0,666666667k\Omega$	$0,65753079k\Omega$	1,37
R_{in}	$2,166666667k\Omega$	$2,13533079k\Omega$	1,45

Tabela 5

Podemos conferir que, de fato, $\frac{V_{bc}}{I_1} \approx R_{eq}$ e $\frac{V_{ac}}{I_1} \approx R_{in}$ para os valores encontrados, sendo razoável comprovar com isso a sua igualdade.

Por fim, o cálculo das potências dissipadas pelas resistências e fornecidas pela fonte, verificando com os valores teóricos.

Potência	Valor Calculado	Valor medido	Erro (%)
Fornecida por $V_s(V_{ac}I_1)$	$16,62 \mathrm{mW}$	16,871mW	1,51
Dissipada em $R_1(V_{ab}I_1)$	11,51mW	$11,668 \mathrm{mW}$	1,37
Dissipada em $R_2(V_{bc}I_2)$	$2,85 \mathrm{mW}$	2,890mW	1,40
Dissipada em $R_3(V_{bc}I_3)$	$2,26 \mathrm{mW}$	$1,930 { m mW}$	14,98
P_{V_s} - P_{R_1} - P_{R_2} - P_{R_3}	0	0,383	-

Tabela 6

Apesar da discrepância, principalmente na medição da potência dissipada em R_3 , que pode ser razoavelmente atribuída a falhas durante o processo de medida e/ou ao equipamento, é possível ver que $\sum P = 0$.

4 Conclusão

Os resultados alcançados confirmaram as previsões teóricas, demonstrando a validade de leis fundamentais no estudo de circuitos elétricos, como as Leis de Kirchhoff, de Ohm, etc. Além disso, a potência fornecida pela fonte de tensão correspondeu à soma das potências dissipadas nos resistores, comprovando a conservação da energia elétrica no circuito.