

Ingeniería de Sistemas y Computación Pregrado

ISIS-1106 – Lenguajes y Máquinas http://sistemas.uniandes.edu.co/~isis1106

Semestre: 2015-20

Programa del Curso

Información General

Profesor	Correo Electrónico	Atención a estudiantes			
Andrés Moreno	dar-more@uniandes.edu.o	Α	convenir	por	correo
		electrónico.			

En el sitio Web del curso se encuentra la siguiente información:

- Monitores asignados.
- Diseño curricular guiado por habilidades y objetivos pedagógicos, de acuerdo con los criterios ABET para la Facultad de Ingeniería y el Departamento.
- Materiales complementarios, tutoriales, guías y ejemplos.

Introducción y descripción general del curso

El objetivo de este curso es enseñar los conceptos básicos de la teoría de lenguajes a través de los formalismos usados para describir los lenguajes y las máquinas usadas para reconocerlos. Se pretende estudiar el uso de estas máquinas en dominios distintos a los lenguajes. Finalmente se verán otras máquinas abstractas y su utilidad en modelaje.

Objetivos Pedagógicos

Al final del curso el estudiante debe estar en capacidad de:

- Entender los distintos formalismos usados para definir lenguajes.
- Modelar problemas sencillos con distintos tipos de máguinas abstractas.
- Entender las limitaciones de cada una de éstas.
- Usar lenguajes formales para definir las máquinas.
- Demostrar propiedades sobre estas máquinas.

Plan de Temas

Sem	Lu - Mi	Temas	Recursos
1	Jul 28 – Jul 30	Introducción al curso. Visión global del problema, fases, objetivos. Definiciones (alfabeto, lenguajes, gramáticas). Clasificación de las gramáticas Máquinas Abstractas	[1] Capítulo 1
		Expresiones Regulares.	[1] Capítulo 1
2	Ago 4 - Ago 6	Expresiones Regulares Gramáticas Independientes del Contexto.	[1] Capítulo 1
		Gramáticas Independientes del Contexto. Modelando con gramáticas: Ejemplos	[1] Capítulo 2
3	Ago 11 - Ago 13	Extendiendo el formalismo: BNF Extendido. JavaCC: Una herramienta de análisis de lenguajes.	[1] Capítulo 2 [2]
		Taller 1: Uso de JavaCC.	[2]
	Ago 18 - Ago 20	Parcial 1	
4		Autómatas de Estados Finitos. Ejemplos de modelaje. Ejemplos: Reconocimiento de lenguajes.	[1] Capítulo 3
5	Ago 25 - Ago 27	Autómatas de Estados Finitos. Ejemplos: Reconocimiento de lenguajes.	[1] Capítulo 3
		Autómatas Finitos y Expresiones Regulares Limitaciones	[1] Capítulo 3
6	Sep 1 - Sep 3	Ejercicios: Autómatas de Estados Finitos	[1] Capítulo 3
		Taller 2: Autómatas Finitos.	
7	Sep 8 - Sep 10	Autómatas con Respuestas.	[1] Capítulo 3
		Ejercicios: autómatas con Respuestas.	[1] Capítulo 3
8	Sep 15- Sep 17	Taller 3: Autómatas con Respuestas.	
		Parcial 2	
-	Sep 22- Sep 24	Semana de trabajo individual.	
		Semana de trabajo individual.	
9	Sep 29 – Oct 1	Autómatas de Pila: Descripción	[1] Capítulo 4
		Autómatas de Pila:	
10	Oct 6- Oct 8	Autómatas de Pila: Ejercicios	
		Autómatas de Pila: Relación con gramáticas	

11	Oct 12 - Oct 14	Taller 4: Autómatas de Pila.	
		Máquinas de Turing: Descripción.	[1] Capítulo 5
12	Oct 20 - Oct 22	Máquinas de Turing	[1] Capítulo 5
		Máquinas de Turing	[1] Capítulo 5
13	Oct 27 – Oct 29	Máquinas de Turing	
	000 27 - 000 29	Taller 5: Maquinas de Turing.	
14	Nov 3 - Nov 5	Redes de Petri.	[1] Capítulo 6
		Redes de Petri.	[1] Capítulo 6
15	Nov 10 - Nov 12	Taller 6: Redes de Petri.	
		Examen Parcial 3	

Metodología

Presentaciones de la teoría y talleres.

Evaluación y Aspecto Académicos

Generalidades

- Clases: 3 horas semanales (dos sesiones de 1:30), de asistencia obligatoria. Durante las clases el profesor llevará una bitácora de presencia de los estudiantes como registro de asistencia. El estudiante que no asista al menos al 80% de las clases y sesiones de trabajo supervisado no podrá aprobar el curso, de acuerdo con el artículo 42 y 43 del RGRPr.
- Todos los trabajos y las pruebas serán individuales .
- La grabación, por cualquier medio, de este curso NO está autorizada. En caso de requerirla, debe presentar una solicitud por escrito dirigida al profesor del curso justificando las razones.
- El curso tiene como canales oficiales de comunicación el correo electrónico Uniandes, la lista de correo del curso, el sistema de apoyo a la docencia SICUA+ (http://sistemas.uniandes.edu.co) y la página Web del curso (http://sistemas.uniandes.edu.co)

Evaluación del curso

- 1. Exámenes parciales: 54%
 - > Examen 1: 18%
 - > Examen 2: 18%
 - > Examen 3: 18%
- 2. Quizzes: 10%
- 3. **Talleres: 36%**
 - > Talleres Tarea 18%
 - > Talleres Quiz 18%

Política de aproximación de notas finales

Las notas definitivas del curso varían entre 1.50 a 5.00, en intervalos de 0.5. La asignación de la nota se determinará teniendo en cuenta el desempeño de todo el curso. Se ordenarán y agruparán estudiantes según la nota final y a todos los estudiantes de un mismo grupo se les asignará la misma nota. Puede haber grupos vacíos.

Grupo 1	5.0
Grupo 2	4.5
Grupo 3	4.0
Grupo 4	3.5
Grupo 5	3.0
Grupo 6	2.5
Grupo 7	2.0
Grupo 8	1.5

Bibliografía

TEXTOS USADOS EN EL CURSO:

- 1. Takahashi, S. Notas del Curso: Se irán publicando en la WIKI del curso
- 2. Manuales de JavaCC: https://javacc.java.net/
- 3. TEXTOS DE REFERENCIA:
- 4. Harry R. Lewis and Christos H. Papadimitriou. 1997. **Elements of the Theory of Computation (2nd ed.)**. Prentice Hall PTR, Upper Saddle River, NJ, USA.
- 5. Petri nets: http://en.wikipedia.org/wiki/Petri_net
- 6. Aho, A.V., Lam, M., Sethi, R., Ullman J.D. **Compilers Principles, Techniques, & Tools,** 2nd Edition, Addison Wesley, 2007.
- 7. Hopcroft, J.E., Motwani, R., Ullman, J.D., **Introduction to Automata Theory, Languages, and Computation,** 3rd Edition, Addison Wesley, 2007.