MIL-HDFBK-217F 15. JULY 2025 Created for Al usage Creator: Andres Toll Lück

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

A short summary of the base failure rates

1 Introdruction

The handbook is a summary of basefailurerates extracted from the [1] created by the department of defense in washington. The [1] last creationdate was 02. december 1991. The quality of the document is very bad, which makes any systematically analysis of the document very difficult. With the reworked version containing only tables for base failure rates written with LaTeX it should help for any automated processes to extract information from the document.

Contents

1	Intro	odruction	I
2		nnical parts	1
	2.1	DIODES, LOW FREQUENCY	2
		2.1.1 Base Failure Rate λ_b	2
	2.2	DIODES, HIGH FREQUENCY (MICROWAVE, RF)	3
		2.2.1 Base Failure Rate λ_b	3
	2.3	TRANSISTORS, LOW FREQUENCY, BIPOLAR	4
		2.3.1 Base Failure Rate λ_b	4
	2.4	TRANSISTORS, LOW FREQUENCY, SI FET	5
		2.4.1 Base Failure Rate λ_b	5
	2.5	TRANSISTORS, UNIJUNCTION	6
		2.5.1 Base Failure Rate λ_b	6
	2.6	TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR	7
		2.6.1 Base Failure Rate λ_b	7
	2.7	TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR	8
		2.7.1 Base Failure Rate λ_b	8
	2.8	TRANSISTORS, HIGH FREQUENCY, GaAs FET	9
		2.8.1 Base Failure Rate λ_b	9
	2.9		10
			10
	2.10	THYRISTORS AND SCRS	11
		2.10.1 Base Failure Rate λ_b	11
	2.11	OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS	12
			12
	2.12	OPTOELECTRONICS, ALPHANUMERIC DISPLAYS	13
			13
	2.13		14
			14
	2.14	,	15
			15
	2.15	·	16
			16
	2.16		17
			17
	2.17		18
			18
	2.18	,	19
			19
	2.19	,	20
		2.19.1 Base Failure Rate λ_b	20

2.20	RESISTORS, FIXED, FILM	 	 		21
	2.20.1 Base Failure Rate λ_b				21
2.21	RESISTORS, FIXED, FILM, POWER	 	 		22
	2.21.1 Base Failure Rate λ_b				22
2.22	RESISTORS, FIXED, WIREWOUND				23
	2.22.1 Base Failure Rate λ_b				23
2.23	RESISTORS, FIXED, WIREWOUND, POWER				24
	2.23.1 Base Failure Rate λ_b				24
2.24	RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED				25
	2.24.1 Base Failure Rate λ_b				25
2.25	RESISTORS, THERMISTOR	 	 		26
	2.25.1 Base Failure Rate λ_b				26
2.26	RESISTORS, VARIABLE, WIREWOUND				27
0	2.26.1 Base Failure Rate λ_b				27
2 27	RESISTORS, VARIABLE, WIREWOUND, PRECISION				28
,	2.27.1 Base Failure Rate λ_b				28
2 28	RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION				29
0	2.28.1 Base Failure Rate λ_b				29
2 29	RESISTORS, VARIABLE, WIREWOUND, POWER				30
2.23	2.29.1 Base Failure Rate λ_b				30
2 3N	RESISTORS, VARIABLE, NONWIREWOUND				31
2.50	2.30.1 Base Failure Rate λ_b				31
2 21	RESISTORS, VARIABLE, COMPOSITION				32
2.51	2.31.1 Base Failure Rate λ_b				32
o 20	RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION .				33
2.52	2.32.1 Base Failure Rate λ_b				33
2 2 2	CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC	 	 •	•	34
2.33	2.33.1 Base Failure Rate λ_b				34
2 24	CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINIUM				35
2.34					35
0.05	2.34.1 Base Failure Rate λ_b				36
2.33	CAPACITORS, VARIABLE, AIR TRIMMER				36
0 00	2.35.1 Base Failure Rate λ_b				
2.36	INDUCTIVE DEVICES, TRANSFORMERS				37
0 07	2.36.1 Base Failure Rate λ_b				37
2.37	INDUCTIVE DEVICES, COILS				38
0 00	2.37.1 Base Failure Rate λ_b				38
2.38					39
0 00	2.38.1 Base Failure Rate λ_b				39
2.39	ROTATING DEVICES, ELAPSED TIME METERS				40
	2.39.1 Base Failure Rate λ_b				40
2.40	RELAYS, MECHANICAL				41
	2.40.1 Base Failure Rate λ_b				41
2.41	RELAYS, SOLID STATE AND TIME DELAY				42
	2.41.1 Base Failure Rate λ_b	 	 	•	42
2.42	SWITCHES, TOGGLE OR PUSHBUTTON				43
	2.42.1 Base Failure Rate λ_b	 	 		43
2.43	SWITCHES, BASIC SENSITIVE				44
	2.43.1 Base Failure Rate λ_b	 	 		44

2.44	SWITCHES, ROTARY	45
	2.44.1 Base Failure Rate λ_b	45
2.45		46
	2.45.1 Base Failure Rate λ_b	46
2.46	SWITCHES, CIRCUIT BREAKERS	47
	2.46.1 Base Failure Rate λ_b	47
2.47		48
		48
2.48	CONNECTORS, INTEGRATED CIRCUIT SOCKETS	49
	2.48.1 Base Failure Rate λ_b	49
2.49		50
		50
2.50		51
		51
2.51		52
	ů	52
2.52		53
		53
2.53		54
		54
2.54	ELECTRONIC FILTERS, NON-TUNABLE	55
	2.54.1 Base Failure Rate λ_b	55
2.55		56
	2.55.1 Race Failure Rate \.	56

List of Figures

List of Tables

2.1	Base Failure Rate λ_b of diodes, low frequency				2
2.2	Base Failure Rate λ_b of diodes, high frequency $\ldots \ldots \ldots \ldots$				3
2.3	B Base Failure Rate λ_b of transistors, low frequency, bipolar $\ldots \ldots \ldots$				4
2.4	Base Failure Rate λ_b of transistors, low frequency, si fet $\ldots \ldots \ldots$				5
2.5	Base Failure Rate λ_b of transistors, low frequency, si fet $\ldots \ldots \ldots$				6
2.6	Base Failure Rate λ_b of transistors, low noise, high frequency, bipolar				7
2.7	Base Failure Rate λ_b of transistors, high power, high frequency, bipolar				8
2.8	B Base Failure Rate λ_b of transistors, high frequency, GaAs FET				9
2.9	Base Failure Rate λ_b of transistors, high frequency, si fet $\ldots \ldots \ldots$				10
2.10	0 Base Failure Rate λ_b of thyristors and scrs				11
2.11	1 Base Failure Rate λ_b of Photodetectors				12
2.12	2 Base Failure Rate λ_b of Opto-Isolators				12
2.13	3 Base Failure Rate λ_b of Emitters				12
2.14	4 Base Failure Rate λ_b of optoelectronics, alphanumeric displays				13
2.15	5 Base Failure Rate λ_b of optoelectronics, laser diode				14
2.16	6 Base Failure Rate λ_b of tubes, all types except twt and magnetron Part 1 .				16
2.17	7 Base Failure Rate λ_b of tubes, all types except twt and magnetron Part 2 $$.				16
2.18	8 Base Failure Rate λ_b of tubes pulsed Klystron				17
2.19	9 Base Failure Rate λ_b of tubes CW Klystron				17
2.20	20 Base Failure Rate λ_b of tubes traveling wave $\dots \dots \dots \dots \dots$				18
2.21	21 Base Failure Rate λ_b of tubes magnetron $\dots \dots \dots \dots \dots \dots$				19
2.22	22 Base Failure Rate λ_b of resistors fixed composition $\ldots \ldots \ldots \ldots$				20
2.23	23 Base Failure Rate λ_b of resistors fixed film				
	(MIL-R-22684 and MIL-R-39017)				21
2.24	24 Base Failure Rate λ_b of resistors fixed film				
	(MIL-R-10509 and MIL-R-55182)				21
2.25	25 Base Failure Rate λ_b of resistors, fixed, film, power				22
2.26	26 Base Failure Rate λ_b of resistors, fixed, wirewound $\ldots \ldots \ldots \ldots$				23
2.27	27 Base Failure Rate λ_b of resistors, fixed, wirewound, power				24
2.28	28 Base Failure Rate λ_b of resistors, fixed, wirewound, power, chassis mounte	d			25
2.29	29 Base Failure Rate λ_b of resistors thermistor $\ldots \ldots \ldots \ldots$				26
2.30	30 Base Failure Rate λ_b of resistors, variable, wirewound $\ldots \ldots \ldots$				27
2.31	B1 Base Failure Rate λ_b of resistors, variable, wirewound, precision				28
2.32	32 Base Failure Rate λ_b of resistors, variable, wirewound, semiprecision				29
	33 Base Failure Rate λ_b of resistors, variable, wirewound, power				30

2.34	Base Failure I	Hate λ_b of resistors, variable, nonwirewound $\dots\dots\dots\dots\dots\dots$	31
2.35	Base Failure F	Rate λ_b of resistors, variable, composition	32
2.36	Base Failure I	Rate λ_b of resistors, variable, nonwirewound, film and precision (RQ Style	
	Only)		33
2.37	Base Failure F	Rate λ_b of resistors, variable, nonwirewound, film and precision (RVC Style	
			33
			34
		· · · · · · · · · · · · · · · · · · ·	35
			36
		v ,	37
		,	38
		• • • • • • • • • • • • • • • • • • •	39
		9 , I	40
		· · · · · · · · · · · · · · · · · · ·	41
		• • • • • • • • • • • • • • • • • • • •	42
			43
		,	44
		· · · · · · · · · · · · · · · · ·	45
		,	46
2.51	Base Failure I	Rate λ_b of switches, circuit breakers	47
		71	48
		, 9	49
2.54	Base Failure I	•	50
		· ·	51
		· /1	52
			53
		ÿ	54
2.59	Base Failure I	Rate λ_b of electronic filters, non-tunable	55
2 60	Rasa Failura F	Rate), of fuses	56

2 Technical parts

The representation of the base failure rates is taken from the tables in MIL-HDBK-217F [1]. In this document, one page is used for each technical component. The selection of components is based on the intended use of this document. It is important that the base failure rate can be clearly assigned and that all variations of the generic term are summarized in one table. Other components are not initially considered in this document.

2.1 DIODES, LOW FREQUENCY

SPECIFICATION DESCRIPTION

MIL-S-19500 Low Frequency Diodes: General Purpose Analog, Switch-

ing, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voltage Reference

2.1.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Diode Type/Application	λ_b				
General Purpose Analog	0.0038				
Switching	0.001				
Power Rectifier, Fast Recovery	0.069				
Power Rectifier/Schottky Power Diode	0.003				
Power Rectifier with High Voltage Stacks	0.005/Junction				
Transient Suppressor/Varistor	0.0013				
Current Regulator	0.0034				
Voltage Regulator and Voltage Reference	0.002				
(Avalanche and Zener)					

Table 2.1: Base Failure Rate λ_b of diodes, low frequency

Quelle

MIL-HDBK-217F, Seite 48, Abschnitt 6-3

2.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

SPECIFICATION DESCRIPTION

SI IMPATT, Bulk Effect, Gunn, Tunnel, Back, Mixer, Detector, PIN, Schottky, Varactor, Step Recovery MIL-S-19500

2.2.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Diode Type	λ_b
Si IMPATT (≤ 35 GHz)	0.22
Gunn/Bulk Effect	0.18
Tunnel and Back (Including Mixers, Detectors)	0.0023
PIN	0.0081
Schottky Barrier (Including Detectors) and Point Contact (200	0.027
$MHz \leq Frequency \leq 35 GHz)$	
Varactor and Step Recovery	0.0025

Table 2.2: Base Failure Rate λ_b of diodes, high frequency

Quelle

MIL-HDBK-217F, Seite 50, Abschnitt 6-4

2.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

SPECIFICATION DESCRIPTION

NPN (Frequency < 200 MHz) PNP (Frequency < 200MHz) MIL-S-19500

2.3.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
NPN and PNP	0.00074

Table 2.3: Base Failure Rate λ_b of transistors, low frequency, bipolar

Quelle

MIL-HDBK-217F, Seite 52, Abschnitt 6-6

2.4 TRANSISTORS, LOW FREQUENCY, SI FET

SPECIFICATION DESCRIPTION

MIL-S-19500 N-Channel and P-Channel Si FET (Frequency ≤ 400 MHz)

2.4.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Transistor Type	λ_b
MOSFET	0.012
JFET	0.0045

Table 2.4: Base Failure Rate λ_b of transistors, low frequency, si fet

Quelle

MIL-HDBK-217F, Seite 54, Abschnitt 6-8

2.5 TRANSISTORS, UNIJUNCTION

SPECIFICATION DESCRIPTION

MIL-S-19500 Unijunction Transistors

2.5.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
All Unijunctions	0.0083

Table 2.5: Base Failure Rate λ_b of transistors, low frequency, si fet

Quelle

MIL-HDBK-217F, Seite 55, Abschnitt 6-9

2.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

SPECIFICATION DESCRIPTION

MIL-S-19500 bipolar, Microwave RF Transistor

(Frequency > 200 MHz, Power < 1 W)

2.6.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
All Types	0.18

Table 2.6: Base Failure Rate λ_b of transistors, low noise, high frequency, bipolar

Quelle

MIL-HDBK-217F, Seite 56, Abschnitt 6-10

2.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

SPECIFICATION DESCRIPTION

MIL-S-19500 Power, Microwave, RF Bipolar Transistors

(Average Power ≤ 1 W)

2.7.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Frequency	Output Power (Watts)										
(GHz)	1.0	5.0	10	50	100	200	300	400	500	600	
≤ 0.5	0.038	0.039	0.04	0.05	0.067	0.12	0.2	0.36	0.62	1.1	
1	0.046	0.047	0.048	0.06	0.08	0.14	0.24	0.42	0.74	1.3	
2	0.065	0.067	0.069	0.086	0.11	0.2	0.35				
3	0.093	0.095	0.098	0.12	0.16	0.28					
4	0.13	0.14	0.14	0.17	0.23						
5	0.19	0.19	0.2	0.25							

Table 2.7: Base Failure Rate λ_b of transistors, high power, high frequency, bipolar

Quelle

MIL-HDBK-217F, Seite 58, Abschnitt 6-12

2.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

SPECIFICATION DESCRIPTION

MIL-S-19500 GaAs Low Noise, Driver and Power FETs (≥ 1GHz)

2.8.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Operating		Average Output Power (Watts)						
Frequency (GHz)	<0.1	0.1	0.5	1	2	4	6	
1	0.052	_	_	_	_	_	_	
4	0.052	0.054	0.066	0.084	0.14	0.36	0.96	
5	0.052	0.083	0.1	0.13	0.21	0.56	1.5	
6	0.052	0.13	0.16	0.2	0.32	0.85	2.3	
7	0.52	0.2	0.24	0.3	0.5	1.3	3.5	
8	0.052	0.3	0.37	0.47	0.76	2.0	_	
9	0.052	0.46	0.56	0.72	1.2	_	_	
10	0.052	0.71	0.87	1.1	1.8	_	_	

Table 2.8: Base Failure Rate λ_b of transistors, high frequency, GaAs FET

Quelle

MIL-HDBK-217F, Seite 60, Abschnitt 6-14

2.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION DESCRIPTION

MIL-S-19500 Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

2.9.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Transistor Type	λ_b
MOSFET	0.06
JFET	0.023

Table 2.9: Base Failure Rate λ_b of transistors, high frequency, si fet

Quelle

MIL-HDBK-217F, Seite 62, Abschnitt 6-16

2.10 THYRISTORS AND SCRS

SPECIFICATIONMIL-S-19500

Thyristors
SCRs, Triacs

2.10.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Device Type	λ_b
All Types	0.0022

Table 2.10: Base Failure Rate λ_b of thyristors and scrs

Quelle

MIL-HDBK-217F, Seite 63, Abschnitt 6-17

2.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

SPECIFICATION DESCRIPTION

MIL-S-19500 Photodetectors, Opto-isolators, Emitters

2.11.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Photodetectors	λ_b
Photo-Transistor	0.0055
Photo-Diode	0.004

Table 2.11: Base Failure Rate λ_b of Photodetectors

Opto-Isolators	λ_b
Photodiode Output, Single Device	0.0025
Phototransistor Output, Single Device	0.013
Photodarlington Output, Single Device	0.013
Light Sensitive resistor, Single Device	0.0064
Photodiode Output, Dual Device	0.0033
Phototransistor Output, Dual Device	0.017
Photodarlington Output, Dual Device	0.017
Light Sensitive Resistor, Dual Device	0.0086

Table 2.12: Base Failure Rate λ_b of Opto-Isolators

Emitters	λ_b
Infrared Light Emitting Diode (IRLD)	0.0013
Light Emitting Diode (LED)	0.00023

Table 2.13: Base Failure Rate λ_b of Emitters

Quelle

MIL-HDBK-217F, Seite 65, Abschnitt 6-19

2.12 OPTOELECTRONICS, ALPHANUMERIC DISPLAYS

SPECIFICATION DESCRIPTION

MIL-S-19500 Alphanumeric Display

2.12.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Number of Characters	λ_b Segment Display	λ_b Diode Array Display
1	0.00043	0.00026
1 w/Logic Chip	0.00047	0.0003
2	0.00086	0.00043
2 w/Logic Chip	0.0009	0.00047
3	0.0013	0.0006
3 w/Logic Chip	0.0013	0.00064
4	0.0017	0.00077
4 w/Logic Chip	0.0018	0.00081
5	0.0022	0.00094
6	0.0026	0.0011
7	0.003	0.0013
8	0.0034	0.0015
9	0.0039	0.0016
10	0.0043	0.0018
11	0.0047	0.002
12	0.0052	0.0021
13	0.0056	0.0023
14	0.006	0.0025
15	0.0065	0.0026

Table 2.14: Base Failure Rate λ_b of optoelectronics, alphanumeric displays

Quelle

MIL-HDBK-217F, Seite 66, Abschnitt 6-20

2.13 OPTOELECTRONICS, LASER DIODE

SPECIFICATION DESCRIPTION

MIL-S-19500 Laser Diodes with Optical Flux Densities < 3 MW/ cm^2

and Forward Current < 25 amps

2.13.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Laser Diode Type	λ_b
GaAs/Al GaAs	3.23
In GaAs/In GaAsP	5.65

Table 2.15: Base Failure Rate λ_b of optoelectronics, laser diode

Quelle

MIL-HDBK-217F, Seite 67, Abschnitt 6-21

2.14 DISCRETE SEMICONDUCTORS, EXAMPLE

SPECIFICATION DESCRIPTION

NA NA

2.14.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

 λ_b = 0.00074 Failures/ 10^6 hours

Quelle

MIL-HDBK-217F, Seite 71, Abschnitt 6-25

2.15 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron

2.15.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Tube Type	λ_b
Receiver	
Triode, Tetrode, Pentode	5
Power Rectifier	10
CRT	9.6
Thyratron	50
Crossed Field Amplifier	
QK681	260
SFD261	150
Pulsed Gridded	
2041	140
6952	390
7835	140
Transmitting	
Triode, Peak Pwr. \leq 200 KW, Avg. Pwr.	75
\leq 2KW, Freq. \leq 200 MHz	
Tetrode & Pentode, Peak Pwr. ≤ 200	100
KW, Avg. Power \leq 2KW, Freq. \leq 200	
KW	
If any of the above limits exceeded	250
Vidicon	
Antimony Trisulfide (Sb_2S_3) Photocon-	51
ductive Material	
Silicon Diode Array Photoconductive	48
Twystron	
VA144	850
VA145E	450
VA145H	490
VA913A	230
Klystron, Pulsed*	
4KMP10000LF	43
8568	230
L3035	66
L3250	69
L3403	93
SAC42A	100
VA842	18
Z5010A	150
ZM3038A	190

^{*} If the pulsed Klystron of interest is not listed above, use the Alternate Pulsed Kystron λ_b Table on the following page.

Table 2.16: Base Failure Rate λ_b of tubes, all types except twt and magnetron Part 1

Tuba Tura	`
Tube Type	λ_b
Klystron, Low Power, (e.g. Local Oscila-	30
tor)	
Klystron, Continous wave*	_
3K3000LQ	9
3K50000LF	54
3K210000LQ	150
3KM300LA	64
3KM3000LA	19
3KM50000PA	110
3KM50000PA1	120
3KM50000PA2	150
4K3CC	610
4K3SK	29
4K50000LQ	30
4KM50LB	28
4KM50LC	15
4KM50SJ	38
4KM50SK	37
4KM3000LR	140
4KM50000LQ	79
4KM50000LR	57
4KM170000LA	15
8824	130
8825	120
8826	280
VA800E	70
VA853	220
VA856B	65
VA888E	230

 $^{^{\}star}$ If the CW Klystron of interest is not listed above, use the Alternate CW Klystron $lambda_b$ Table on the following page.

Table 2.17: Base Failure Rate λ_b of tubes, all types except twt and magnetron Part 2

Quelle

MIL-HDBK-217F, Seite 72, Abschnitt 7-1

2.16 TUBES, PULSED KLYSTRON, CW KLYSTRON

SPECIFICATION DESCRIPTION

MIL-S-19500 Pulsed Klystron, CW Klystron

2.16.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

P(MW)	F(GHz)							
	.2	0.4	0.6	0.8	1	2	4	6
0.01	16	16	16	16	16	16	16	16
0.3	16	16	17	17	17	18	20	21
0.8	16	17	17	18	18	21	25	30
1	17	17	18	18	19	22	28	34
3	18	20	21	23	25	34	51	_
5	19	22	25	28	31	45	75	_
8	21	25	30	35	40	63	110	_
10	22	28	34	40	45	75	-	_
25	31	45	60	75	90	160	_	_

Table 2.18: Base Failure Rate λ_b of tubes pulsed Klystron

P(KW)	F(MHz)							
	300	500	800	1000	2000	4000	6000	8000
0.1	30	31	33	34	38	47	57	66
1	31	32	33	34	39	48	57	66
3	32	33	34	35	40	49	58	_
5	33	34	35	36	41	50	_	_
8	34	35	37	38	42	_	_	_
10	35	36	38	39	43	_	_	_
30	45	46	48	49	_	_	_	_
50	55	56	58	59	_	_	_	_
80	70	71	73	_	_	_	_	_
100	80	81	_	_	_	_	_	_

Table 2.19: Base Failure Rate λ_b of tubes CW Klystron

Quelle

MIL-HDBK-217F, Seite 73, Abschnitt 7-2

2.17 TUBES TRAVELING WAVE

DESCRIPTION

Traveling Wave Tubes

2.17.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Power(W)	F(MHz)								
	0.1	1	2	4	6	8	10	14	18
100	11	12	13	16	20	24	29	42	61
500	11	12	13	16	20	24	29	42	62
1000	11	12	14	16	20	24	29	43	62
3000	12	13	14	17	21	25	30	44	65
5000	12	13	15	18	22	26	32	46	68
8000	13	14	16	19	23	28	33	49	72
10000	14	15	16	20	24	29	35	51	75
15000	15	16	18	22	26	32	39	56	83
20000	17	18	20	24	29	35	43	62	91
30000	20	22	24	29	36	43	52	76	110
40000	25	27	30	36	43	53	64	93	140

Table 2.20: Base Failure Rate λ_b of tubes traveling wave

Quelle

MIL-HDBK-217F, Seite 74, Abschnitt 7-3

2.18 TUBES, MAGNETRON

SPECIFICATION DESCRIPTION

MIL-S-19500 Magnetrons, Pulsed and Continuous Wave (CW)

2.18.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

P(MW)		Frequency(GHz)												
	0.1	0.5	1	5	10	20	30	40	50	60	70	80	90	100
0.01	1.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
0.05	1.9	6.3	10	34	56	93	120	150	180	210	230	260	280	300
0.1	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
0.3	2.8	9	15	48	80	130	180	220	260	300	330	370	400	430
0.5	3.1	10	17	54	89	150	200	240	290	330	370	410	440	480
1	3.5	11	19	62	100	170	230	280	330	380	420	470	510	550
3	4.4	14	24	77	130	210	280	350	410	470	530	580	630	680
5	4.9	16	26	85	140	230	310	390	460	520	580	640	700	760

Table 2.21: Base Failure Rate λ_b of tubes magnetron

Quelle

MIL-HDBK-217F, Seite 75, Abschnitt 7-4

2.19 RESISTORS, FIXED, COMPOSITION

SPECIFICATION STYLE DESCRIPTION

MIL-R-39008 RCR Resistors, Fixed, Composition (insulated,

MIL-R-11 RC Established Reliability)

Resistors, Fixed, Composition (insulated)

2.19.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (℃)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.00007	0.0001	0.00015	0.0002	0.00028
10	0.00011	0.00015	0.00021	0.0003	0.00043
20	0.00015	0.00022	0.00031	0.00045	0.00064
30	0.00022	0.00031	0.00046	0.00066	0.00096
40	0.00031	0.00045	0.00067	0.00098	0.0014
50	0.00044	0.00066	0.00098	0.0014	0.0021
60	0.00063	0.00095	0.0014	0.0021	0.0032
70	0.0009	0.0014	0.0021	0.0032	0.0048
80	0.0013	0.002	0.0031	0.0047	_
90	0.0018	0.0029	0.0045	_	_
100	0.0026	0.0041	0.0065	_	_
110	0.0038	0.006	_	_	_
120	0.0054	_	_	_	_

Table 2.22: Base Failure Rate λ_b of resistors fixed composition

Quelle

MIL-HDBK-217F, Seite 83, Abschnitt 9-2

2.20 RESISTORS, FIXED, FILM

MIL-R-39017 RLR Fixed, Film, Insulated, Established Reliability

MIL-R-22684 RL Fixed, Film, Insulated

MIL-R-55182 RN (R, C, or N) Fixed, Film, Established Reliability

MIL-R-10509 RN Fixed, Film, High Stability

2.20.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)	Stress						
	0.1	0.3	0.5	0.7	0.9		
0	0.00059	0.00073	0.00089	0.0011	0.0013		
10	0.00063	0.00078	0.00096	0.0012	0.0014		
20	0.00067	0.00084	0.001	0.0013	0.0016		
30	0.00072	0.0009	0.0011	0.0014	0.0018		
40	0.00078	0.00098	0.0012	0.0016	0.0019		
50	0.00084	0.0011	0.0014	0.0017	0.0022		
60	0.00092	0.0012	0.0015	0.0019	0.0024		
70	0.001	0.0013	0.0017	0.0021	0.0027		
80	0.0011	0.0014	0.0018	0.0024	_		
90	0.0012	0.0016	0.0021	0.0027	_		
100	0.0013	0.0018	0.0023	_	_		
110	0.0015	0.002	0.0026	_	_		
120	0.0017	0.0023	_	_	_		
130	0.0019	_	_	_	_		
140	0.0022	_	_	_	_		

Table 2.23: Base Failure Rate λ_b of resistors fixed film (MIL-R-22684 and MIL-R-39017)

<i>T</i> _A (°C)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.00061	0.00074	0.00091	0.0011	0.0014
10	0.00067	0.00082	0.001	0.0012	0.0015
20	0.00073	0.00091	0.0011	0.0014	0.0017
30	0.0008	0.001	0.0013	0.0016	0.0019
40	0.00088	0.0011	0.0014	0.0017	0.0022
50	0.00096	0.0012	0.0015	0.002	0.0025
60	0.0011	0.0013	0.0017	0.0022	0.0028
70	0.0012	0.0015	0.0019	0.0025	0.0032
80	0.0013	0.0016	0.0021	0.0028	0.0036
90	0.0014	0.0018	0.0024	0.0031	0.004
100	0.0015	0.002	0.0026	0.0035	0.0045
110	0.0017	0.0022	0.0029	0.0039	0.0051
120	0.0018	0.0024	0.0033	0.0043	0.0058
130	0.002	0.0027	0.0036	0.0049	0.0065
140	0.0022	0.003	0.004	0.0054	_
150	0.0024	0.0033	0.0045	_	_
160	0.0026	0.0036	_	_	_
170	0.0029	_	_	ı	_

Table 2.24: Base Failure Rate λ_b of resistors fixed film (MIL-R-10509 and MIL-R-55182)

Quelle

MIL-HDBK-217F, Seite 84, Abschnitt 9-3

2.21 RESISTORS, FIXED, FILM, POWER

SPECIFICATION STYLE DESCRIPTION

MIL-R-11804 RD Fixed, Film, Power Type

2.21.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.0089	0.0098	0.011	0.013	0.015
10	0.009	0.01	0.011	0.013	0.015
20	0.0092	0.01	0.012	0.014	0.016
30	0.0094	0.01	0.012	0.014	0.017
40	0.0096	0.011	0.012	0.015	0.017
50	0.0098	0.011	0.013	0.015	_
60	0.01	0.011	0.013	0.016	_
70	0.01	0.012	0.014	0.016	_
80	0.01	0.012	0.014	0.017	_
90	0.011	0.012	0.015	_	_
100	0.011	0.013	0.015	_	_
110	0.011	0.013	0.016	_	_
120	0.012	0.014	0.016	_	_
130	0.012	0.014	0.017	_	_
140	0.012	0.014	_	_	_
150	0.013	0.015	_	_	_
160	0.013	0.016	_	_	_
170	0.014	0.016	_	_	_
180	0.014	_	_	_	_
190	0.015	_	_	_	_
200	0.015	_	_	_	_
210	0.016	_	_	_	_

Table 2.25: Base Failure Rate λ_b of resistors, fixed, film, power

Quelle

MIL-HDBK-217F, Seite 86, Abschnitt 9-5

2.22 RESISTORS, FIXED, WIREWOUND

SPECIFICATION STYLE DESCRIPTION

MIL-R-39005 RBR Fixed, Wirewound, Accurate, Established Reliability

MIL-R-93 RB Fixed, Wirewound, Accurate

2.22.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.0033	0.0037	0.0045	0.0057	0.0075
10	0.0033	0.0038	0.0047	0.0059	0.0079
20	0.0034	0.0039	0.0048	0.0062	0.0084
30	0.0034	0.004	0.005	0.0066	0.009
40	0.0035	0.0042	0.0052	0.007	0.0097
50	0.0037	0.0043	0.0055	0.0075	0.011
60	0.0038	0.0046	0.0059	0.0081	0.012
70	0.0041	0.0049	0.0064	0.0089	0.013
80	0.0044	0.0053	0.007	0.0099	0.015
90	0.0048	0.0059	0.0079	0.011	0.017
100	0.0055	0.0068	0.0092	0.013	0.02
110	0.0065	0.008	0.011	0.016	0.025
120	0.0079	0.0099	0.014	0.021	0.033
130	0.01	0.013	0.018	0.028	_
140	0.014	_	_	_	_

Table 2.26: Base Failure Rate λ_b of resistors, fixed, wirewound

Quelle

MIL-HDBK-217F, Seite 88, Abschnitt 9-7

2.23 RESISTORS, FIXED, WIREWOUND, POWER

SPECIFICATION STYLE DESCRIPTION

MIL-R-39007 RWR Fixed, Wirewound, Power Type, Established Reliability

MIL-R-26 RW Fixed, Wirewound, Power Type

2.23.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.0042	0.0062	0.0093	0.014	0.021
10	0.0045	0.0068	0.01	0.016	0.024
20	0.0048	0.0074	0.011	0.017	0.027
30	0.0052	0.0081	0.013	0.02	0.031
40	0.0056	0.0089	0.014	0.022	0.035
50	0.0061	0.0097	0.016	0.025	0.04
60	0.0066	0.011	0.017	0.028	_
70	0.0072	0.012	0.02	0.032	_
80	0.0078	0.013	0.022	0.037	_
90	0.0085	0.014	0.025	0.042	_
100	0.0093	0.016	0.028	0.048	_
110	0.01	0.018	0.031	0.055	_
120	0.011	0.02	0.036	0.063	_
130	0.012	0.022	0.04	_	_
140	0.014	0.025	0.046	_	_
150	0.015	0.028	0.052	_	_
160	0.017	0.032	0.06	_	_
170	0.019	0.036	0.068	_	_
180	0.021	0.04	0.078	_	_
190	0.023	0.046	_	_	_
200	0.026	0.052	_	_	_
210	0.029	0.059	_	_	_
220	0.033	0.068	_	_	_
230	0.037	0.077	_	_	_
240	0.042	0.088	_	_	_
250	0.047	0.01	_	_	_
260	0.054	_	_	_	_
270	0.061	_	_	_	_
280	0.06	_	_	_	_
290	0.079	_	_	_	_
300	0.091	_	_	_	_
310	0.01	_	_	_	_

Table 2.27: Base Failure Rate λ_b of resistors, fixed, wirewound, power

Quelle

MIL-HDBK-217F, Seite 89, Abschnitt 9-8

2.24 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

SPECIFICATION STYLE DESCRIPTION

MIL-R-39009 RER Fixed, Wirewound, Power Type, Chassis Mounted,

MIL-R-18546 RE Established Reliability

Fixed, Wirewound, Power Type, Chassis Mounted

2.24.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.0021	0.0032	0.0049	0.0076	0.012
10	0.0023	0.0036	0.0056	0.0087	0.014
20	0.0025	0.004	0.0064	0.01	0.016
30	0.0028	0.0045	0.0072	0.012	0.019
40	0.0031	0.005	0.0082	0.013	0.022
50	0.0034	0.0056	0.0093	0.016	0.026
60	0.0037	0.0063	0.011	0.018	_
70	0.0041	0.007	0.012	0.021	_
80	0.0045	0.0079	0.014	0.024	_
90	0.005	0.0088	0.016	0.028	_
100	0.0055	0.0098	0.018	0.032	_
110	0.006	0.011	0.02	_	_
120	0.0066	0.012	0.023	_	_
130	0.0073	0.014	0.026	_	_
140	0.0081	0.015	0.03	_	_
150	0.0089	0.017	0.034	_	_
160	0.0098	0.019	_	_	_
170	0.011	0.022	_	_	_
180	0.012	0.024	_	_	_
190	0.013	0.027	_	_	_
200	0.014	0.03	_	_	_
210	0.016	_	_	_	_
220	0.017	_	_	_	_
230	0.019	_	_	_	_
240	0.021	_	_	_	_
250	0.023	_	_	_	_

Table 2.28: Base Failure Rate λ_b of resistors, fixed, wirewound, power, chassis mounted

Quelle

MIL-HDBK-217F, Seite 91, Abschnitt 9-10

2.25 RESISTORS, THERMISTOR

SPECIFICATION STYLE DESCRIPTION

MIL-T-23648 RTH Thermally Sensitive Resistor, Insulated, Bead, Disk and Rod

Types

2.25.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
Bead (Styles 24, 26, 28, 30, 32, 34, 36, 38, 40)	0.021
Disk (Styles 6, 8, 10)	0.065
Rod (Styles 12, 14, 16, 18, 20, 22, 42)	0.105

Table 2.29: Base Failure Rate λ_b of resistors thermistor

Quelle

MIL-HDBK-217F, Seite 93, Abschnitt 9-12

2.26 RESISTORS, VARIABLE, WIREWOUND

SPECIFICATION STYLE DESCRIPTION

MIL-R-39015 RTR Variable, Wirewound, Lead Screw Actuated,

MIL-R-27208 RT Established Reliability

Variable, Wirewound, Lead Screw Actuated

2.26.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (℃)			Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.0089	0.011	0.013	0.016	0.02
10	0.0094	0.012	0.014	0.017	0.021
20	0.01	0.012	0.015	0.019	0.024
30	0.011	0.013	0.017	0.021	0.026
40	0.012	0.015	0.018	0.023	0.029
50	0.013	0.016	0.02	0.026	0.033
60	0.014	0.018	0.023	0.029	0.037
70	0.016	0.02	0.026	0.033	0.043
80	0.018	0.023	0.03	0.039	0.05
90	0.021	0.027	0.035	0.046	0.06
100	0.024	0.032	0.042	0.055	_
110	0.029	0.038	0.051	_	_
120	0.035	0.047	_	_	_
130	0.044	0.059	_	_	_
140	0.056	_	_	_	_

Table 2.30: Base Failure Rate λ_b of resistors, variable, wirewound

Quelle

MIL-HDBK-217F, Seite 94, Abschnitt 9-13

2.27 RESISTORS, VARIABLE, WIREWOUND, PRECISION

SPECIFICATION STYLE DESCRIPTION

MIL-R-12934 RR Variable, Wirewound, Precision

2.27.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (℃)	Stress					
	0.1	0.3	0.5	0.7	0.9	
0	0.1	0.11	0.12	0.13	0.14	
10	0.11	0.12	0.13	0.14	0.15	
20	0.12	0.13	0.14	0.16	0.17	
30	0.13	0.14	0.16	0.17	0.19	
40	0.14	0.15	0.17	0.2	0.22	
50	0.15	0.17	0.2	0.22	0.26	
60	0.17	0.19	0.22	0.26	0.3	
70	0.19	0.22	0.26	0.3	0.36	
80	0.21	0.25	0.3	0.36	0.43	
90	0.24	0.3	0.36	0.44	0.54	
100	0.28	0.35	0.44	0.54	_	
110	0.33	0.42	0.54	_	_	
120	0.4	0.52	_	_	_	
130	0.49	0.65	_	_	_	
140	0.6	_	_	_	_	

Table 2.31: Base Failure Rate λ_b of resistors, variable, wirewound, precision

Quelle

MIL-HDBK-217F, Seite 96, Abschnitt 9-15

2.28 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

SPECIFICATION STYLE DESCRIPTION

MIL-R-19 RA Variable, Wirewound, Semiprecision (Low Operating

MIL-R-39002 RK Temperature)

Variable, Wirewound, Semiprecision

2.28.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (℃)	Stress					
	0.1	0.3	0.5	0.7	0.9	
0	0.055	0.063	0.072	0.083	0.095	
10	0.058	0.069	0.081	0.095	0.11	
20	0.063	0.076	0.092	0.11	0.13	
30	0.069	0.086	0.11	0.13	0.17	
40	0.076	0.098	0.13	0.16	0.21	
50	0.085	0.11	0.15	0.2	0.27	
60	0.096	0.13	0.19	0.26	0.37	
70	0.11	0.16	0.24	0.35	0.52	
80	0.13	0.2	0.31	0.48	0.75	
90	0.16	0.26	0.42	0.69	1.1	
100	0.19	0.34	0.59	1	_	
110	0.24	0.45	0.85	_	_	
120	0.31	_	_	_	_	
130	0.42	_	_	_	_	

Table 2.32: Base Failure Rate λ_b of resistors, variable, wirewound, semiprecision

Quelle

MIL-HDBK-217F, Seite 98, Abschnitt 9-17

2.29 RESISTORS, VARIABLE, WIREWOUND, POWER

SPECIFICATION STYLE DESCRIPTION

MIL-R-22 RP Variable, Wirewound, Power Type

2.29.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (℃)	Stress				
	0.1	0.3	0.5	0.7	0.9
0	0.064	0.074	0.084	0.097	0.11
10	0.067	0.078	0.091	0.11	0.12
20	0.071	0.084	0.099	0.12	0.14
30	0.076	0.091	0.11	0.13	0.16
40	0.081	0.099	0.12	0.15	_
50	0.087	0.11	0.14	0.17	_
60	0.095	0.12	0.15	_	_
70	0.1	0.14	0.18	_	_
80	0.12	0.15	_	_	_
90	0.13	0.18	_	_	_
100	0.15	_	_	_	_
110	0.17	_	_	_	_
120	0.2	_	_	_	_

Table 2.33: Base Failure Rate λ_b of resistors, variable, wirewound, power

Quelle

MIL-HDBK-217F, Seite 100, Abschnitt 9-19

2.30 RESISTORS, VARIABLE, NONWIREWOUND

SPECIFICATION STYLE DESCRIPTION

MIL-R-22097 RJ Variable, Nonwirewound (Adjustment Types)
MIL-R-39035 RJR Variable, Nonwirewound (Adjustment Types),

Established Reliability

2.30.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

T_A (°C)		Stress				
	0.1	0.3	0.5	0.7	0.9	
0	0.021	0.023	0.024	0.026	0.28	
10	0.021	0.023	0.025	0.027	0.03	
20	0.022	0.024	0.026	0.029	0.031	
30	0.023	0.025	0.028	0.03	0.033	
40	0.024	0.026	0.029	0.032	0.036	
50	0.025	0.028	0.031	0.035	0.039	
60	0.026	0.03	0.033	0.038	0.043	
70	0.028	0.032	0.036	0.042	0.047	
80	0.03	0.035	0.04	0.046	0.053	
90	0.034	0.039	0.045	0.053	0.061	
100	0.038	0.044	0.052	0.061	_	
110	0.043	0.051	0.06	_	_	
120	0.05	0.06	_	_	_	
130	0.06	0.073	_	_	_	
140	0.074	_	_	_	_	

Table 2.34: Base Failure Rate λ_b of resistors, variable, nonwirewound

Quelle

MIL-HDBK-217F, Seite 102, Abschnitt 9-21

2.31 RESISTORS, VARIABLE, COMPOSITION

SPECIFICATION STYLE DESCRIPTION

MIL-R-94 RV Variable, Composition, Low Precision

2.31.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (℃)	Stress				
	0.1	0.3	0.5	0.7	0.9
0	0.027	0.03	0.032	0.035	0.038
10	0.028	0.031	0.034	0.038	0.042
20	0.029	0.033	0.037	0.042	0.048
30	0.031	0.036	0.041	0.048	0.056
40	0.033	0.039	0.047	0.056	0.067
50	0.036	0.044	0.054	0.067	0.082
60	0.039	0.05	0.065	0.083	0.11
70	0.045	0.06	0.08	0.11	0.14
80	0.053	0.074	0.1	0.15	_
90	0.065	0.096	0.14	_	_
100	0.084	0.13	_	_	_
110	0.11	_	_	_	_

Table 2.35: Base Failure Rate λ_b of resistors, variable, composition

Quelle

MIL-HDBK-217F, Seite 104, Abschnitt 9-23

2.32 RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION

SPECIFICATION STYLE DESCRIPTION

MIL-R-39023 RQ Variable, Nonwirewound, Film, Precision

MIL-R-23285 RVC Variable, Nonwirewound, Film

2.32.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)	Stress				
	0.1	0.3	0.5	0.7	0.9
0	0.023	0.024	0.026	0.028	0.031
10	0.024	0.026	0.029	0.031	0.034
20	0.026	0.029	0.032	0.035	0.039
30	0.028	0.032	0.036	0.04	0.045
40	0.032	0.036	0.041	0.047	0.053
50	0.037	0.042	0.049	0.057	0.065
60	0.044	0.051	0.06	0.07	0.083
70	0.053	0.064	0.076	0.091	0.11
80	0.068	0.083	0.1	0.12	_
90	0.092	0.11	0.14	_	_
100	0.13	0.17	_	_	_
110	0.2	_	_	_	_

Table 2.36: Base Failure Rate λ_b of resistors, variable, nonwirewound, film and precision (RQ Style Only)

/II (00)			04		
$T_A(^{\circ}\mathbf{C})$		1	Stress		
	0.1	0.3	0.5	0.7	0.9
0	0.028	0.031	0.033	0.036	0.039
10	0.029	0.032	0.035	0.038	0.042
20	0.03	0.033	0.037	0.041	0.046
30	0.031	0.035	0.04	0.045	0.051
40	0.032	0.037	0.043	0.05	0.058
50	0.034	0.04	0.047	0.056	0.066
60	0.036	0.044	0.053	0.064	0.078
70	0.039	0.049	0.06	0.075	0.093
80	0.043	0.055	0.07	0.09	0.11
90	0.048	0.063	0.083	0.11	0.15
100	0.055	0.075	0.1	0.014	0.019
110	0.064	0.091	0.13	0.18	0.26
120	0.077	0.11	0.17	0.25	0.37
130	0.096	0.15	0.23	0.36	0.55
140	0.12	0.2	0.33	0.53	-
150	0.17	0.29	0.5	-	-
160	0.24	0.44	_	_	_
170	0.37	_	_	_	_

Table 2.37: Base Failure Rate λ_b of resistors, variable, nonwirewound, film and precision (RVC Style Only)

Quelle

MIL-HDBK-217F, Seite 106, Abschnitt 9-25

2.33 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC

SPECIFICATION STYLE DESCRIPTION

MIL-C-83421 CRH Super-Metallized Plastic, Est. Rel.

2.33.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)	Stress				
	0.1	0.3	0.5	0.7	0.9
0	0.00055	0.00068	0.0022	0.0096	0.032
10	0.00055	0.00068	0.0022	0.0096	0.032
20	0.00056	0.00069	0.0023	0.0097	0.033
30	0.00056	0.00069	0.0023	0.0098	0.033
40	0.00057	0.0007	0.0023	0.0099	0.033
50	0.00058	0.00072	0.0024	0.01	0.034
60	0.00061	0.00075	0.0025	0.011	0.036
70	0.00065	0.00081	0.0026	0.011	0.38
80	0.00073	0.00091	0.003	0.013	0.043
90	0.00089	0.0011	0.0036	0.015	0.052
100	0.0012	0.0015	0.0049	0.021	0.07
110	0.0019	0.0024	0.0078	0.033	0.11
120	0.004	0.005	0.016	0.07	0.24

Table 2.38: Base Failure Rate λ_b of capacitors, fixed, super-metallized plastic

Quelle

MIL-HDBK-217F, Seite 121, Abschnitt 10-11

2.34 CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINIUM

SPECIFICATION STYLE DESCRIPTION

MIL-C-62 CE Aluminium, Dry Electrolyte, Polarized

2.34.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _A (°C)	Stress				
	0.1	0.3	0.5	0.7	0.9
0	0.0064	0.0074	0.011	0.02	0.034
10	0.0078	0.009	0.014	0.024	0.042
20	0.0099	0.011	0.017	0.03	0.053
30	0.013	0.015	0.023	0.04	0.07
40	0.018	0.021	0.031	0.055	0.096
50	0.026	0.03	0.046	0.08	0.14
60	0.041	0.047	0.071	0.12	0.22
70	0.068	0.078	0.12	0.21	0.36
80	0.12	0.14	0.21	0.37	0.65

Table 2.39: Base Failure Rate λ_b of capacitors, fixed, electrolyte (dry), aluminium

Quelle

MIL-HDBK-217F, Seite 136, Abschnitt 10-26

2.35 CAPACITORS, VARIABLE, AIR TRIMMER

SPECIFICATIONSTYLEDESCRIPTIONMIL-C-92CTVariable, Air Trimmer

2.35.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

T_A (°C)	Stress				
	0.1	0.3	0.5	0.7	0.9
0	0.0074	0.013	0.032	0.076	0.15
10	0.01	0.017	0.044	0.1	0.21
20	0.014	0.023	0.059	0.14	0.28
30	0.018	0.031	0.08	0.19	0.38
40	0.025	0.042	0.11	0.26	0.52
50	0.034	0.057	0.15	0.35	0.7
60	0.046	0.078	0.2	0.47	0.94
70	0.062	0.1	0.27	0.63	1.3
80	0.083	0.14	0.36	0.85	1.7

Table 2.40: Base Failure Rate λ_b of capacitors, variable, air trimmer

Quelle

MIL-HDBK-217F, Seite 139, Abschnitt 10-29

2.36 INDUCTIVE DEVICES, TRANSFORMERS

SPECIFICATION STYLE DESCRIPTION

MIL-T-27 TF Audio, Power and High Power Pulse

MIL-T-21038 TP Low Power Pulse
MIL-T-55631 - IF, RF and Discriminator

2.36.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T_{HS}</i> (℃)	Maximum Rated Operating Temperature (℃)					
	85^{1}	105^2	130^3	155^4	170^{5}	$ >170^6$
30	0.0024	0.0023	0.0022	0.0021	0.0018	0.0016
35	0.0026	0.0023	0.0023	0.0022	0.0018	0.0016
40	0.0028	0.0024	0.0024	0.0022	0.0019	0.0016
45	0.0032	0.0025	0.0025	0.0022	0.0019	0.0016
50	0.0038	0.0027	0.0026	0.0023	0.002	0.0017
55	0.0047	0.0029	0.0027	0.0023	0.0021	0.0017
60	0.006	0.0032	0.0029	0.0023	0.0021	0.0017
65	0.0083	0.0035	0.003	0.0024	0.0021	0.0017
70	0.012	0.004	0.0033	0.0025	0.0022	0.0017
75	0.02	0.0047	0.0035	0.0026	0.0023	0.0017
80	0.036	0.0057	0.0039	0.0027	0.0024	0.0017
85	0.075	0.0071	0.0043	0.0028	0.0024	0.0017
90	_	0.0093	0.0048	0.0029	0.0025	0.0018
95	_	0.013	0.0054	0.0031	0.0026	0.0018
100	_	0.0019	0.0062	0.0033	0.0027	0.0018
105	_	0.03	0.0072	0.0035	0.0028	0.0018
110	_	_	0.0085	0.0038	0.003	0.0019
115	_	_	0.01	0.0042	0.0031	0.0019
120	_	_	0.013	0.0046	0.0032	0.0019
125	_	_	0.016	0.0052	0.0034	0.002
130	_	_	0.02	0.0059	0.0036	0.002
135	_	_	_	0.0068	0.0038	0.0021
140	_	_	_	0.0079	0.004	0.0021
145	_	_	_	0.0095	0.0042	0.0022
150	_	_	_	0.011	0.0044	0.0023
155	_	_	-	0.014	0.0047	0.0024
160	_	_	-	_	0.005	0.0025
165	_	_	-	_	0.0053	0.0026
170	_	_	_	-	0.0056	0.0027
175	_	_	_	-	-	0.0029
180	_	_	_	_	_	0.003
185	_	_	_	_	_	0.0032

Table 2.41: Base Failure Rate λ_b of inductive devices, transformers

Quelle

MIL-HDBK-217F, Seite 143, Abschnitt 11-1

2.37 INDUCTIVE DEVICES, COILS

SPECIFICATION STYLE DESCRIPTION

MIL-C-15305 - Fixed and Variable, RF MIL-C-39010 - Molded, RF, Est. Rel.

2.37.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T_{HS}</i> (℃)	Maximum Operating Temperature (°C)					
	85^{1}	105^2	125^{3}	150^4		
30	0.00044	0.00043	0.00039	0.00037		
35	0.00048	0.00044	0.0004	0.00037		
40	0.00053	0.00046	0.00042	0.00037		
45	0.0006	0.00048	0.00043	0.00038		
50	0.00071	0.00051	0.00045	0.00038		
55	0.00087	0.00055	0.00048	0.00039		
60	0.0011	0.0006	0.00051	0.0004		
65	0.0015	0.00067	0.00054	0.00041		
70	0.0023	0.00076	0.00058	0.00042		
75	0.0037	0.00089	0.00063	0.00043		
80	0.0067	0.0011	0.00069	0.00044		
85	0.014	0.0013	0.00076	0.00046		
90	_	0.0018	0.00085	0.00047		
95	_	0.0024	0.00096	0.0005		
100	_	0.0036	0.0011	0.00052		
105	_	0.0057	0.0013	0.00055		
110	_	_	0.0015	0.00059		
115	_	_	0.0018	0.00063		
120	_	_	0.0022	0.00068		
125	_	_	0.0028	0.00075		
130	_	_	_	0.00083		
135	_	_	_	0.00093		
140	_	_	_	0.0011		
145	_	_	_	0.0012		
150	_	_	_	0.0014		

Table 2.42: Base Failure Rate λ_b of inductive devices, coils

Quelle

MIL-HDBK-217F, Seite 145, Abschnitt 11-3

2.38 ROTATING DEVICES, SYNCHROS AND RESOLVERS

SPECIFICATION DESCRIPTION

- Rotating Synchros and Resolvers

2.38.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _F (℃)	λ_b
30	0.0083
35	0.0088
40	0.0095
45	0.01
50	0.011
55	0.013
60	0.014
65	0.016
70	0.019
75	0.022
80	0.027
85	0.032
90	0.041
95	0.041
100	0.069
105	0.094
110	0.13
115	0.19
120	0.29
125	0.45
130	0.74
135	1.3

Table 2.43: Base Failure Rate λ_b of rotating devices, synchros and resolvers

Quelle

MIL-HDBK-217F, Seite 150, Abschnitt 12-3

2.39 ROTATING DEVICES, ELAPSED TIME METERS

SPECIFICATION DESCRIPTION
- DESCRIPTION
Elapsed Time Meters

2.39.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Table 2.44: Base Failure Rate λ_b of rotating devices, elapsed time meters

Quelle

MIL-HDBK-217F, Seite 151, Abschnitt 12-4

2.40 RELAYS, MECHANICAL

SPECIFICATION

MIL-R-5757

MIL-R-6106

MIL-R-19523

MIL-R-39016

MIL-R-19648

MIL-R-83725

MIL-R-83726 (Except Class C, Solid State Type)

2.40.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T_{HS}</i> (℃)	Rated Temperature (°C)	
	85^{1}	125^2
25	0.006	0.0059
30	0.0061	0.006
35	0.0063	0.0061
40	0.0065	0.0062
45	0.0068	0.0064
50	0.0072	0.0066
55	0.0077	0.0068
60	0.0084	0.0071
65	0.0094	0.0074
70	0.011	0.0079
75	0.013	0.0083
80	0.016	0.0089
85	0.02	0.0097
90	_	0.011
95	_	0.012
100	_	0.013
105	_	0.015
110	_	0.018
115	_	0.021
120	_	0.025
125		0.031

DESCRIPTION

Mechanical Relay

Table 2.45: Base Failure Rate λ_b of relays mechanical

Quelle

MIL-HDBK-217F, Seite 153, Abschnitt 13-1

2.41 RELAYS, SOLID STATE AND TIME DELAY

SPECIFICATIONMIL-R-28750

DESCRIPTION
Relay, Solid State

MIL-R-83726 Relay, Time Delay, Hybrid and Solid State

2.41.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Relay Type	λ_b
Solid State	0.4
Solid State Time Delay	0.5
Hybrid	0.5

Table 2.46: Base Failure Rate λ_b of relays, solid state and time delay

Quelle

MIL-HDBK-217F, Seite 155, Abschnitt 13-3

2.42 SWITCHES, TOGGLE OR PUSHBUTTON

SPECIFICATION DESCRIPTION

MIL-S-3950 Snap-action, Toggle or Pushbutton,

MIL-S-8805 Single Body

MIL-S-8834 MIL-S-22885 MIL-S-83731

2.42.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Relay Type	MIL-SPEC λ_b	Lower Quality λ_b
Snap-action	0.00045	0.034
Non-snap Action	0.0027	0.04

Table 2.47: Base Failure Rate λ_b of relays, solid state and time delay

Quelle

MIL-HDBK-217F, Seite 156, Abschnitt 14-1

2.43 SWITCHES, BASIC SENSITIVE

SPECIFICATIONMIL-S-8805

DESCRIPTION
Basic Sensitive

2.43.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Description	MIL-SPEC	Lower Quality
λ_{bE}	0.1	0.1
λ_{bC}	0.00045	0.23
λ_{b0}	0.0009	0.63

Table 2.48: Base Failure Rate λ_b of switches, basic sensitive

Quelle

MIL-HDBK-217F, Seite 157, Abschnitt 14-2

2.44 SWITCHES, ROTARY

SPECIFICATION DESCRIPTION

MIL-S-3786 Rotary, Ceramic or Glass Water, Silver Alloy Contacts

2.44.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Description	MIL-SPEC	Lower Quality
λ_{bE}	0.0067	0.1
λ_{bF}	0.00003	0.02
λ_{bG}	0.00003	0.06

Table 2.49: Base Failure Rate λ_b of switches, rotary

Quelle

MIL-HDBK-217F, Seite 158, Abschnitt 14-3

2.45 SWITCHES, THUMBWHEEL

SPECIFICATION DESCRIPTION

MIL-S-22710 Switches, Rotary (Printed Circuit) (Thumbwheel, In- and Push-

Line button)

2.45.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Description	MIL-SPEC	Lower Quality
λ_{b1}	0.0067	0.086
λ_{b2}	0.062	0.089

Table 2.50: Base Failure Rate λ_b of switches, thumbwheel

Quelle

MIL-HDBK-217F, Seite 159, Abschnitt 14-4

2.46 SWITCHES, CIRCUIT BREAKERS

SPECIFICATION DESCRIPTION

MIL-C-55629 Circuit Breakers, Magnetic, Unsealed, Trip-Free
MIL-C-83383 Circuit Breakers, Remote Control, Thermal, Trip-Free

MIL-C-39019 Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service W-C-375 Circuit Breakers, Molded Case, Branch Circuit and Service

2.46.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Description	λ_b
Magnetic	0.02
Thermal	0.038
Thermal-Magnetic	0.038

Table 2.51: Base Failure Rate λ_b of switches, circuit breakers

Quelle

MIL-HDBK-217F, Seite 160, Abschnitt 14-5

2.47 CONNECTORS, PRINTED CIRCUIT BOARD

SPECIFICATIONDESCRIPTIONMIL-C-21097One-Piece ConnectorMIL-C-55302Two-Piece Connector

2.47.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

<i>T</i> _O (℃)	λ_b
0	0.00012
10	0.00017
20	0.00022
30	0.00028
40	0.00037
50	0.00047
60	0.00059
70	0.00075
80	0.00093
90	0.0012
100	0.0015
110	0.0018
120	0.0022
130	0.0028
140	0.0035
150	0.0044
160	0.0055
170	0.0069
180	0.0088
190	0.011
200	0.015

Table 2.52: Base Failure Rate λ_b of connectors, printed circuit board

Quelle

MIL-HDBK-217F, Seite 164, Abschnitt 15-4

2.48 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

SPECIFICATIONMIL-S-83734

DESCRIPTION
IC Sockets, Plug-in

2.48.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
All MIL-S-83734	0.00042

Table 2.53: Base Failure Rate λ_b of connectors, integrated circuit sockets

Quelle

MIL-HDBK-217F, Seite 166, Abschnitt 15-6

2.49 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

SPECIFICATION DESCRIPTION

Circuit Boards, Printed (PCBs) and Discrete Wiring

2.49.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Technology	λ_b
Printed Wiring Assembly/Printed Circuit Boards	0.000041
with PTHs	
Discrete Wiring with Electroless Deposited PTH	0.00026
$(\leq$ Levels of Circuitry)	

Table 2.54: Base Failure Rate λ_b of interconnection assemblies with plated through holes

Quelle

MIL-HDBK-217F, Seite 167, Abschnitt 16-1

2.50 CONNECTIONS

SPECIFICATION DESCRIPTION

- Connections Used on All Assemblies Except Those Using

Plated Through Holes (PTH)

2.50.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Connection Type	λ_b
Hand Solder, w/o Wrapping	0.0026
Hand Solder, w/Wrapping	0.00014
Crimp	0.00026
Weld	0.00005
Solderless Wrap	0.0000035
Clip Termination	0.00012
Reflow Solder	0.000069

Table 2.55: Base Failure Rate λ_b of connections

Quelle

MIL-HDBK-217F, Seite 168, Abschnitt 17-1

2.51 METERS, PANEL

SPECIFICATION DESCRIPTION

MIL-M-10304 Meter, Electrical Indicating, Panel Type, Ruggedized

2.51.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
All	0.09

Table 2.56: Base Failure Rate λ_b of meters, panel

Quelle

MIL-HDBK-217F, Seite 169, Abschnitt 18-1

2.52 QUARTZ CRYSTALS

SPECIFICATIONDESCRIPTIONMIL-C-3098Crystal Units, Quartz

2.52.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Frequency, f(MHz)	λ_b
0.5	0.011
1	0.013
5	0.019
10	0.022
15	0.024
20	0.026
25	0.027
30	0.028
35	0.029
40	0.03
45	0.031
50	0.032
55	0.033
60	0.033
65	0.034
70	0.035
75	0.035
80	0.036
85	0.036
90	0.037
95	0.037
100	0.037
105	0.038

Table 2.57: Base Failure Rate λ_b of quartz crystals

Quelle

MIL-HDBK-217F, Seite 170, Abschnitt 19-1

2.53 LAMPS

SPECIFICATION DESCRIPTION

MIL-L-6363 Lamps, Incandescent, Aviation Service

W-L-111 Lamps, Incandescent, Miniature, Tungsten-Filament

2.53.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Rated Voltage, V_r (Volts)	λ_b
5	0.59
6	0.75
12	1.8
14	2.2
24	4.5
28	5.4
37.5	7.9

Table 2.58: Base Failure Rate λ_b of lamps

Quelle

MIL-HDBK-217F, Seite 171, Abschnitt 20-1

2.54 ELECTRONIC FILTERS, NON-TUNABLE

SPECIFICATION DESCRIPTION

MIL-F-15733 Filters, Radio Frequency Interference

MIL-F-18327 Filters, High Pass, Low Pass, Band Pass, Band Suppression,

and Dual Functioning (Non-tunable)

2.54.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
MIL-F-15733, Ceramic-Ferrite	0.022
Construction (Styles FL 10-16,	
22, 24, 30-32, 34, 35, 38, 41-43,	
45, 47-50, 61-65, 70, 81-93, 95,	
96)	
MIL-F-15733, Discrete LC Com-	0.12
ponents, (Styles FL 37, 53, 74)	
MIL-F-18327, Discrete LC Com-	0.12
ponents (Composition 1)	
MIL-F-18327, Discrete LC and	0.27
Crystal Components (Composi-	
tion 2)	

Table 2.59: Base Failure Rate λ_b of electronic filters, non-tunable

Quelle

MIL-HDBK-217F, Seite 172, Abschnitt 21-1

2.55 FUSES

SPECIFICATION DESCRIPTION

W-F-1726 Fuse, Cartridge Class H

W-F-1814 Fuse, Cartridge, High Interrupting Capactiy

MIL-F-5372 Fuse, Current Limiter Type, Aircraft

ML-F-23419 Fuse, Instrument Type

MIL-F-15160 Fuse, Instrument, Power and Telephone (Nonindicating), Style F01

2.55.1 Base Failure Rate λ_b

The measurement of the base failure rate λ_b is given in failures per 10^6 hours.

Туре	λ_b
W-F-1726, W-F-1814, MIL-F-5372,	0.01
MIL-F-23419, ML-F-15160	

Table 2.60: Base Failure Rate λ_b of fuses

Quelle

MIL-HDBK-217F, Seite 173, Abschnitt 22-1

Bibliography

[1] Department of Defense.

MIL-HDBK-217F: Reliability Prediction of Electronic Equipment.

Washington, DC, December 1991.