Implementation and Performance Analysis of Attribute-Based Encryption(ABE) in ICN

Project Presentation

Nurefşan Sertbaş and Samet Aytaç January 6, 2017

Boğaziçi University

Table of contents

- 1. Introduction
- 2. Project Work
- 3. Implementation Details
- 4. Experimental Results
- 5. Case Study for Demonstration
- 6. Conclusion and Future Works

Introduction

ICN in a nutshell

Figure 1: ICN vs traditional networks [4]

What is ICN

- In ICN, request has been done by identifying the content instead of identifying the content owner's address.
- · Basic principle: name based routing
 - * User asks for an object by name
 - * Network delivers desired object from a nearby cache
- · Network is aware of content
- Multiple copies of the content is cached in network

Attribute Based Encryption

Figure 2: Ciphertext Policy Attribute Based Encryption block

ABE as a candidate security solution

Potential Problems in ICN

- Security of data object
- Access control
- Distributed caches

ABF Solution

- No need to encrypt the data separately for each user
- Will be decrypted only by clients that have the correct set of attributes

Project Work

Problem Description

Figure 3: Block diagram for the implementation adapted from [3].

Two main phases:

- 1. ABE encryption on sensor devices
- 2. Transport of sensor data over an ICN network

Discussions

Outcomes

- No need to establish a secure end-to-end connection such as TLS
- Enables delay tolerant networking derived from store-and-forward mechanism [3].

Limitations

- Feasibility of ABE on resource constrained devices
 - Memory
 - · Energy consumption
 - · Processing load

Implementation Details

Simulation Environment

- · CCN-lite for ICN environment [2]
- Cpabe Toolkit for ABE implementation [1]

Figure 4: Users with attributes

Experimental Results

Experimental Results-I

Figure 5: Processing time with various number of attributes

Experimental Results-II

Figure 6: Processing time with various file sizes

Case Study for Demonstration

Case Study for Demonstration

Figure 7: Users with attributes

Access policies for objects

	Content 1	Content 2
Gürkan	•	•
Samet	•	x
Nurefşan	x	•
Alice	x	x

Conclusion and Future Works

Conclusion and Future Works

We implement CP-ABE scheme over ICN to ensure object security As future work,

- Implementation in real sensor devices
- · Therefore, more realistic measurements
- · Optimization to decrease the energy consumption of sensors

Source code available at

https://github.com/sertbasn1/ABE_ICN_Project.git

References I

Cn-uofbasel.
Cn-uofbasel/ccn-lite.

A. M. Malik, J. Borgh, and B. Ohlman.

Attribute-based encryption on a resource constrained sensor in an information-centric network.

In Proceedings of the 2016 conference on 3rd ACM Conference on Information-Centric Networking, pages 217–218. ACM, 2016.

M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf.

Enabling information centric networking in ip networks using sdn, 2013.