Statistics Concepts Every Data Analyst Should Know

Master these essential statistics concepts to excel in data analysis and make data-driven decisions with confidence

BY Vaibhav Giri

What is Statistics?

The science of collecting, analyzing, interpreting, and presenting data to make informed decisions

COLLECT INTERPRET PRESENT ANALYZE Gather Communicate Process and Draw relevant data examine data meaningful findings from various patterns insights effectively sources

Types of Statistics

Descriptive Statistics

Summarizes and describes the main features of data using measures like mean, median, and standard deviation

Inferential Statistics

Makes predictions and inferences about populations based on sample data using hypothesis testing

Types of Data

Types of Variables

Population & Sample

POPULATION

N

The complete group of individuals or items that we want to study and draw conclusions about

SAMPLE

A smaller subset of the population that is selected for analysis and research purposes

We study samples to make inferences about populations because studying entire populations is often impractical or impossible

Sampling Techniques

Random Sampling

Every member has equal chance of selection

Systematic Sampling

Select every nth member

Stratified Sampling

Population divided into

Measures of Central Tendency

MEAN

MEDIAN

arranged in order

MODE

X

Average of all values in the

dataset

Middle value when data is

Mo

Most frequently occurring value

These measures help us understand the center or typical value of our data distribution

Measures of Dispersion

Range Difference between max and min values

IQR Interquartile Range: Q3 - Q1 Variance & Std Dev

Measure spread around the mean

Frequency Analysis

FREQUENCY

Count of how often each value occurs in the dataset

RELATIVE

Proportion of each frequency to the total count

CUMULATIVE

Running total of frequencies up to each point

Outlier Detection & Treatment

Relationships in Data

Shows direction of linear relationship between two variables

VS

CORRELATION

Shows strength and direction of relationship (-1 to +1)

Remember: Correlation does NOT imply Causation

Data Scaling Techniques

Essential preprocessing step for machine learning algorithms

Inferential Statistics

Confidence Interval

Range of values likely to contain population parameter

Hypothesis Testing

Statistical method to test

Central Limit Theorem

Foundation of statistical

Hypothesis Testing Framework

One-Tailed Test

Tests for effect in one specific direction

Two-Tailed Test

Tests for effect in either direction

Was This Helpful?

If you found these statistics concepts valuable for your data analysis journey, I'd love to hear from you!

Thank you for learning with me!

Follow for more data analytics content and insights that will help you excel in your data career.

What statistics concept would you like me to explain next?