# The application of SoftMaxlayer

基科 31 白可 2013012245

这次作业,在 multilayer perception 的最后的 evaluation function 中加入了 softlayer. 上次作业我采用了控制变量的方法,调整各层的权重,分别讨论了两层、三层的 Relu 和 sigmoid。先看实验结果再讨论内容。但是效果不是很好,最终的实验报告显得有些混乱,意义不大。因此这次作业中,我将以得到的结论为主,顺带分析实验数据,也解释了我实验一没有弄明白的几个点。

### 1. 多层的 hidden layer 网络不一定优于单层的网络。

类型: sigmoid + softmaxlayer

步长: 0.08-0.03-0.01

|                     | 训练准确度  | 测试准确度  | 训练损失 | 测试损失  |  |
|---------------------|--------|--------|------|-------|--|
| 784 x 256 x 10 x 10 | 97.28% | 96.37% | 0.14 | 0.137 |  |
| 784 x 256 x 10      | 98.62% | 97.44% | 0.05 | 0.089 |  |

步长: 0.08-0.03-0.01

|                     | 训练准确度  | 测试准确度  | 训练损失  | 测试损失  |  |
|---------------------|--------|--------|-------|-------|--|
| 784 x 256 x 64 x 10 | 98.14% | 97.00% | 0.069 | 0.102 |  |
| 784 x 256 x 10      | 98.62% | 97.44% | 0.05  | 0.089 |  |

收敛速度: 左侧为三层模型,右侧为两层模型。差别不大。





#### 原因 1:

backpropagation 中,我们能够发现,过程是个"乘法",尤其在 sigmoid 中,(1-y)y, 是一个小于零的值,两层过后,这个值可能会非常小,因此对第一层的影响就不大了。无法达到调整权重的目的。

但是这里我们只有两层,有时不会影响很大。

#### 原因 2:

两层的 hidden layer 的参数自由度更大,容易"过拟合"

### 2. Softmaxlayer 的效果要优于 euclidenlayer.

#### Sigmoid

步长: 0.08-0.03 两层

|         | 训练准确度   | 测试准确度  | 训练损失  | 测试损失  | 速度   |
|---------|---------|--------|-------|-------|------|
| euclid  | 95.09 % | 94.31% | 0.089 | 0.105 | 106s |
| Softmax | 98.62%  | 97.44% | 0.05  | 0.089 | 100s |

#### Relu

步长: 0.08-0.03 两层

|         | 训练准确度   | 测试准确度  | 训练损失   | 测试损失   | 速度  |
|---------|---------|--------|--------|--------|-----|
| euclid  | 99.14 % | 97.98% | 0.0028 | 0.039  | 87s |
| Softmax | 100.00% | 98.15% | 0.0027 | 0.0687 | 84s |

准确率提升,训练损失减小,速度相近。

#### 原因:

我看来,结构上,这两者是相似的: fc 层 + 转化为 0-1 之间的"概率"。有一点不太一样。在最后一层,sigmoid 结构始终是在自己的输入上变化。但是 softmax 加入了归一化因子,这意味着每个神经元的输出与其他的神经元相关。这也更加符合生理模型。这可以解释更高的正确率。

速度的优化可能是因为在计算第二层的 fc layer 时候,eucliden distance 的类型,需要计算乘法即 $\delta$  = (output – right answer) × (1 - f(x))(f(x)),且多了一层,会增加参数传递,函数调用的时间。

#### 收敛速度:

左侧为 sigmoid + softmaxlayer 右侧为 sigmoid + euclidenlayer,可以看到,softmax 的收敛速度更快,最后的准确度也更高。







左侧为 Relu + softmaxlayer 右侧为 Relu + euclidenlayer,可以看到,softmax 最后的准确度 也更高,收敛速度相对较快,不过由于 Relu 本身收敛就较快,所以两者差异不明显。

### 3. softmaxlayer 和 euclidenlayer 在步长较小时都会进入局部极小值

步长: 0.001-0.001 两层

|         | 训练准确度  | 测试准确度  | 训练损失   | 测试损失 | 速度   |
|---------|--------|--------|--------|------|------|
| euclid  | 84.76% | 85.11% | 0.211  | 0.20 | 116s |
| Softmax | 88.63% | 89.32% | 0.4145 | 0.39 | 112s |

#### 收敛速度:



左侧是 euclid ,右侧是 softmax,可以看到,他们最后的准确度不是很高,但是 softmax 稍微优于 EUCLID,但不是很明显。

#### 分析:

两者结构类似,步长较小,陷入局部极小值是正常。因此需要寻找合适的步长。

## 4. relu 的效果好于 sigmoid

这个上一回实验报告我们曾经讨论过,根据 section 2 的实验结果也可以看到 relu 的训练正确率已经到了 100%。但是上回没有说清楚。

#### 原因一:

Relu 函数是"稀疏"的一种表现,与人脑的神经元类似。稀疏特征处在高维特征空间中。而 relu 函数可以从数据集中抽象出鲁棒性更强的特征。可能某一个特征就决定了某个关

键步骤, 优化分类。

但是这样的稀疏性也是有一定限制的。我在 Relu 中,将原函数变成了

$$\begin{cases} x & x > 2 \\ 0 & x < 2 \end{cases}$$

收敛速度和正确率有所下降。

#### 原因二:

减轻了 vanish gradient problem. 使用 sigmoid 时两端饱和较快,想到这里我把激活函数 变成了线性(完全去掉了激活函数),正确率大概 40%,因此,可以看到非线性带来的良好效果。

且反向传播时,error 成倍衰减。这解释了我在实验一中,为什么当第一层的步长取相对第二层较大时,效果较好。但是在 Relu 中就不存在这样的问题。单端饱和,梯度变化较快,收敛速度很快。

#### 总结:

Softmaxlayer 的思想在于他定义了一种可以被当做误差函数计算的"概率"。考虑到一个 cell 在整个群体中所起到的作用,因为最后的概率是一个输出值除以所有的加和。让我体会到了生理模型在 ANN 的神奇之处。

但是 Relu 的值域趋近于无穷。显然是不符合生理模型的。但我想也可以这么理解。可能被激活的函数所对应的不是一个 Neuron 而是一群,他们的和就可以表达一个任意大的输出。