

School of Electrical Engineering and Robotics

EGB348 Electronics

Filter Approximation
Jasmine Banks

Recommended Readings:

Filter Gain Characteristics

low pass filter

- Filter attenuation characteristic must stay outside the shaded region.
- A_{max} maximum attenuation that is allowed in the passband.
- A_{min} minimum attenuation that is required in the stopband.

low pass filter

Standard Butterworth function:

$$\left|T(j\Omega)\right|^{2} = \frac{1}{1+\Omega^{2n}} \qquad \dots (1)$$

$$\left|T(j\Omega)\right| = \frac{1}{\sqrt{1+\Omega^{2n}}}$$

• The Butterworth function is called maximally flat, because the first 2n-1 derivatives of the denominator are zero at $\Omega = 0$.

"Adjustable" Butterworth function:

$$\Omega = \varepsilon^{\frac{1}{n}} \frac{\omega}{\omega_p}$$

$$|T(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 (\omega/\omega_p)^{2n}}$$

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 (\omega/\omega_p)^{2n}}}$$

 ε = adjustment factor for max. passband attenuatio n ω_{p} = cut off frequency at edge of passband

low pass filter

Consider the relationship:

$$|T(j\omega)|^2 = T(j\omega)T(j\omega)^*$$
$$= T(j\omega)T(-j\omega)$$

• Since $s = j\omega$:

$$|T(j\omega)|^2 = T(s)T(-s) \qquad \dots (1)$$

Butterworth Pole Locations (n=1)

Equation (1):

$$\left| T(j\Omega) \right|^2 = T(S)T(-S) \qquad \dots (1)$$

Standard Butterworth equation (2):

$$\left| T(j\Omega) \right|^2 = \frac{1}{1 + \Omega^{2n}} \qquad \dots (2)$$

• Equate (1) and (2), and substitute in $\Omega = S/j$:

$$T(S)T(-S) = \frac{1}{1 + (-1)^n S^{2n}}$$

Butterworth Pole Locations (n=1)

We have:

$$T(S)T(-S) = \frac{1}{1 + (-1)^n S^{2n}}$$

Let n=1. The above becomes:

$$T(S)T(-S) = \frac{1}{1-S^2}$$

$$T(S)T(-S) = \frac{1}{1+S} \times \frac{1}{1-S}$$

$$T(S) = \frac{1}{1+S} \times \frac{1}{1-S}$$

Butterworth Pole Locations (n=1)

To find the poles, set the denominator = 0 and solve for S:

$$1-S^2 = (1+S)(1-S) = 0$$

- Therefore the poles are located at S=±1.
- Plotting the poles in the s-plane:

- The pole in the right half splane (S=1) corresponds to an unstable system.
- Therefore we select T(S) with the pole in the left half plane

$$T(S) = \frac{1}{S+1}$$

Butterworth Pole Locations (n=2)

$$T(S)T(-S) = \frac{1}{1 + (-1)^n S^{2n}}$$

Let n=2. The above becomes:

$$|T(j\Omega)|^{2} = T(S)T(-S) = \frac{1}{1+S^{4}}$$

$$T(S)T(-S) = \frac{1}{(S^{2} + \sqrt{2}S + 1)} \times \frac{1}{(S^{2} - \sqrt{2}S + 1)}$$

$$T(S)$$

Butterworth Pole Locations (n=2)

To find the poles, set the denominator = 0 and solve for S:

$$S^4 + 1 = 0$$

There are 4 solutions:

$$S = 0.707 + j0.707, \quad S = 0.707 - j0.707$$

 $S = -0.707 + j0.707, \quad S = -0.707 - j0.707$

 We again select T(S) with the poles in the left half plane:

$$T(S) = \frac{1}{(S+0.707+j0.707)(S+0.707-j0.707)}$$

$$T(S) = \frac{1}{S^2 + \sqrt{2}S + 1}$$

Butterworth Pole Locations (n=3)

$$|T(j\Omega)|^2 = T(S)T(-S) = \frac{1}{1 + (-1)^n S^{2n}}$$

Let n=3. The above becomes:

$$|T(j\Omega)|^{2} = T(S)T(-S) = \frac{1}{1-S^{6}}$$

$$T(S)T(-S) = \frac{1}{(1+S)(S^{2}+S+1)} \times \frac{1}{(1-S)(S^{2}-S+1)}$$

Butterworth Pole Locations (n=3)

To find the poles, set the denominator = 0 and solve for S:

$$1 - S^6 = 0$$

• There are 6 solutions: 1\(\neg 0\), 1\(\neg 10\), 1\(\ne

 We again select T(S) with the poles in the left half plane:

$$T(S) = \frac{1}{(S+1)\left(S+\frac{1}{2}+j\frac{\sqrt{3}}{2}\right)\left(S+\frac{1}{2}-j\frac{\sqrt{3}}{2}\right)}$$

$$T(S) = \frac{1}{(S+1)(S^2+S+1)}$$

Butterworth Pole Locations

- For the standard Butterworth, the poles are always on the unit circle.
- there are never any poles on the $j\omega$ axis.
- If n is odd there is always a pole at S=-1.
- Poles are separated by 180°/n.

Butterworth functions:

n	Butterworth function
1	(s+1)
2	(s ² +1.414s+1)
3	$(s+1)(s^2+s+1)$
4	(s ² +0.76537s+1)(s ² +1.8477s+1)
5	(s+1)(s ² +0.61803s+1)(s ² +1.61803s+1)

low pass filter

Attenuation or Loss in dB using the standard Butterworth function:

$$20\log_{10}\sqrt{1+\Omega^{2n}}$$

 We can adjust this to our specifications for loss at the edge of the passband and cutoff frequency by substituting:

$$\Omega = \varepsilon^{\frac{1}{n}} \frac{\omega}{\omega_p}$$

Therefore, attenuation in dB becomes:

$$20\log_{10}\sqrt{1+\varepsilon^2(\omega/\omega_p)^{2n}}$$

- Attenuation in dB: $20 \log_{10} \sqrt{1 + \varepsilon^2 (\omega/\omega_p)^{2n}}$
- At the edge of the passband, $\omega = \omega_p$, and the loss = A_{max} :

$$A_{\text{max}} = 20 \log_{10} \sqrt{1 + \varepsilon^2 (\omega_p / \omega_p)^{2n}}$$

$$A_{\text{max}} = 10 \log_{10} (1 + \varepsilon^2)$$

$$10^{0.1A_{\text{max}}} = 1 + \varepsilon^2$$

$$\varepsilon = \sqrt{10^{0.1A_{\text{max}}} - 1}$$

At the edge of the stopband, ω=ω_s, and the minimum loss is A_{min}:

$$A_{\min} = 20 \log_{10} \sqrt{1 + \varepsilon^2 (\omega_s / \omega_p)^{2n}}$$

$$A_{\min} = 10 \log_{10} (1 + \varepsilon^2 (\omega_s / \omega_p)^{2n})$$

$$10^{0.1A_{\min}} = 1 + \varepsilon^2 (\omega_s / \omega_p)^{2n}$$

$$\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2} = (\omega_s / \omega_p)^{2n}$$

$$\log_{\omega_s / \omega_p} (\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2}) = 2n$$

Use the rule:
$$\log_b a = \frac{\log_{10} a}{\log_{10} b}$$

$$n = \frac{\log_{10} \left(\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2} \right)}{2\log_{10} \left(\frac{\omega_s}{\omega_p} \right)}$$

• Given A_{max} , A_{min} , ω_p and ω_s , the order of Butterworth filter required can be calculated.

Example 3(a)

 Find the Butterworth approximation for a low pass filter whose requirements are characterised by:

$$A_{\text{max}} = 0.5 \text{dB}, \ A_{\text{min}} = 12 \text{dB}, \ \omega_{\text{p}} = 1, \ \omega_{\text{s}} = 4 \text{rad/s}$$
 Loss (dB)

Example 3(a)

First find ε:

$$\varepsilon = \sqrt{10^{0.1A_{\text{max}}} - 1} = \sqrt{10^{0.05} - 1} = 0.35$$

Now find order of filter required:

$$n = \frac{\log\left(\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2}\right)}{2\log\left(\frac{\omega_s}{\omega_p}\right)} = \frac{\log\left(\frac{10^{1.2} - 1}{\varepsilon^2}\right)}{2\log\left(\frac{400}{100}\right)} = 1.73$$

Therefore we will choose n = 2.

Example 3(a)

Second order Butterworth function:

$$T(S) = \frac{1}{S^2 + \sqrt{2}S + 1}$$

• Substitute
$$S = \left(\frac{\varepsilon^{1/n}}{\omega_p}\right) s = \left(\frac{0.35^{1/2}}{1}\right) s = Bs$$
:

$$T(s) = \frac{1}{B^2 s^2 + \sqrt{2}Bs + 1} = \frac{1/B^2}{s^2 + (\sqrt{2}/B)s + 1/B^2}$$

$$T(s) = \frac{2.863}{s^2 + 2.393s + 2.863}$$

Example 3(a)

In Matlab:

```
Amax = 0.5;
Amin = 12;
wp = 1;
ws = 4;
epsilon = sqrt(10^{(0.1*Amax)} - 1);
n = log10((10^{(Amin*0.1)} - 1) / (10^{(0.1*Amax)} - 1)) /
(2*log10(ws/wp));
n = ceil(n);
B = epsilon^{(1/n)};
t1 = tf([0\ 0\ 1/(B*B)], [1\ sqrt(2)/B\ 1/(B*B)]);
figure(1);
bodeplot(t1);
grid on;
```


Example 3(b)

• Design a prototype Sallen-Key circuit for this filter, with a gain of 10 in the passband, $\omega_p = 1 \, \text{rad/s}$, and $C_1 = C_2 = 1 \, \text{F}$.

$$T(s) = \frac{10 \times 2.863}{s^2 + 2.393 s + 2.863}$$

Circuit transfer function:

$$\frac{V_o(s)}{V_{in}(s)} = \frac{\frac{K}{R_1 R_2 C_1 C_2}}{s^2 + s \left(\frac{1}{R_1 C_2} + \frac{1}{R_2 C_2} + \frac{1}{R_2 C_1} - \frac{K}{R_2 C_1}\right) + \frac{1}{R_1 R_2 C_1 C_2}} \qquad K = 1 + \frac{R_4}{R_3}$$

Example 3(b)

• Let $C_1 = C_2 = 1 \,\mathrm{F}$

Equating denominator coefficients we have:

$$K = 1 + \frac{R_4}{R_3} = 10 \qquad \dots (1)$$

$$\frac{1}{R_1} + \frac{(2-K)}{R_2} = \sqrt{2} \qquad \dots (2)$$

$$\frac{1}{R_1 R_2} = 1 \tag{3}$$

Example 3(b)

Substituting (3) in (2):

$$R_2 + \frac{(2-K)}{R_2} = \sqrt{2}$$
$$R_2^2 - \sqrt{2}R_2 + (2-K) = 0$$

Solution of a quadratic:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 3(b)

Therefore:

$$R_2 = \frac{\sqrt{2} \pm \sqrt{2 - 4(2 - K)}}{2}$$

Since K=10:

$$R_2 = \frac{\sqrt{2} \pm \sqrt{2 - 4(2 - 10)}}{2}$$

$$R_2 = 3.6\Omega$$
 or -2.2Ω

(use positive answer)

Example 3(b)

Use eqn(3) to calculate R₁:

$$R_1 = \frac{1}{R_2} = 0.276\Omega$$

- Now calculate R₃ and R₄.
- To reduce offset current effect, resistance seen by each input should be equal at DC:

$$\frac{R_3 /\!/ R_4 = R_1 + R_2}{\frac{R_3 R_4}{R_3 + R_4}} = R_1 + R_2$$

Example 3(b)

• However, we know that: $K = 1 + \frac{R_4}{R_3} = \frac{R_3 + R_4}{R_2}$

Therefore:

$$\frac{R_4}{K} = R_1 + R_2$$

$$R_4 = K(R_1 + R_2) = 10(3.62 + 0.276) = 38.98\Omega$$

and from re-arranging
$$K = 1 + \frac{R_4}{R_3}$$
:
 $R_3 = \frac{R_4}{K_1} = \frac{38.98}{\Omega} = 4.33\Omega$

Example 3(b)

The component values now are:

$$C_1 = 1F$$

 $C_2 = 1F$
 $R_1 = 0.276\Omega$
 $R_2 = 3.6\Omega$
 $R_3 = 4.33\Omega$
 $R_4 = 38.98\Omega$

• These values will now be scaled to new values:

$$C_{1}', C_{2}', R_{1}', R_{2}', R_{3}' \text{ and } R_{4}'$$

Example 3(c)

- Choose a value for the capacitors, and scale the circuit so that the edge of the passband (f_p) is at 2kHz.
- Frequency scale factor:

$$K_f = \frac{\text{new cutoff freq.}}{\text{old cutoff freq.}} = \frac{2\pi 2k}{1} = 2\pi 2k$$

Example 3(c)

• Choose C_1' and C_2' , using rough rule:

new value of
$$C = \frac{10}{f_c} \mu F$$

Therefore:

$$C_1' = C_2' = \frac{10}{f_c} \mu F = \frac{10}{2k} \mu F = 0.005 \mu F = 5nF$$

Example 3(c)

- Work out magnitude scale factor.
- Since:

$$C_1' = \frac{C_1}{K_m K_f}$$

The magnitude scale factor can be calculated:

$$K_m = \frac{C_1}{K_f C_1'} = \frac{1F}{(2\pi 2k)5nF} = 15.9k$$

Example 3(c)

The new component values are as follows:

$$C_1' = \frac{C_1}{K_m K_f} = 5 \text{nF}$$

$$C_2' = \frac{C_2}{K_m K_f} = 5 \text{nF}$$

$$R_1' = K_m R_1 = 0.276 \times 15.9 \text{k} = 4.39 \text{k}\Omega$$

$$R_2' = K_m R_2 = 3.62 \times 15.9 \text{k} = 57.6 \text{k}\Omega$$

$$R_3' = K_m R_3 = 4.33 \times 15.9 \text{k} = 68.9 \text{k}\Omega$$

$$R_4' = K_m R_4 = 38.98 \times 15.9 \text{k} = 620.4 \text{k}\Omega$$

Frequency response in LTSpice:

Example 3(c)

Transfer function:

$$\frac{V_o}{V_{in}} = \frac{\frac{K}{R_1 R_2 C_1 C_2}}{s^2 + s \left(\frac{1}{R_1 C_2} + \frac{1}{R_2 C_2} + \frac{1}{R_2 C_1} - \frac{K}{R_2 C_1}\right) + \frac{1}{R_1 R_2 C_1 C_2}}$$

$$\frac{V_o}{V_{in}} = \frac{1.58 \times 10^9}{s^2 + 17.8 \times 10^3 s + 1.58 \times 10^8}$$

To display Bode plot in Matlab:

```
t1 = tf([1.58e9],[1 17.8e3 1.58e8]);
bode (t1);
grid on;
```


Example 3(c)

To display Bode plot in Matlab:

```
K1 = 1 + R4A/R3A;
num = K1/(R1A*R2A*C1A*C2A);
den1 = 1/(R1A*C2A) + 1/(R2A*C2A) + (1-K1)/(R2A*C1A);
den2 = 1/(R1A*R2A*C1A*C2A);

t1 = tf([0 0 num],[1 den1 den2]);
figure(2);
h = bodeplot(t1);
setoptions(h,'FreqUnits','Hz');
grid on;
```


Example 3(c)

- Butterworth approximation is maximally flat at DC.
- The approximation to a flat passband gets progressively poorer as ω approaches ω_p .
- Chebyshev uses an equiripple characteristic in the passband.
- Usually requires a lower order than Butterworth for same stopband attenuation.

Chebyshev filter:

$$|T(j\Omega)| = \frac{1}{\sqrt{1+\varepsilon^2 C_n^2(\Omega)}}$$

where $C_n(\Omega)$ is Chebyshev polynomial of the first kind of degree n.

Ω is the standardised frequency:

$$\Omega = \frac{\omega}{\omega_p}$$

low pass filter

- The function $C_n(\Omega)$ needs to oscillate over ±1.
- One function that will oscillate over ±1 is the sinusoid:

$$C(x) = \cos(nx)$$

where n is an integer.

• To limit to $|x| \le \pm 1$, we introduce:

$$x = \cos^{-1}(\Omega)$$

Therefore we have:

$$C_n(\Omega) = \cos(n\cos^{-1}(\Omega))$$
 for $|\Omega| \le 1$

Chebyshev function:

$$C_n(\Omega) = \cos(n\cos^{-1}(\Omega))$$
 for $|\Omega| \le 1$

- For $\Omega > 1$, assume: $\cos^{-1} \Omega = jz$...(1)
- Therefore we have: $\Omega = \cos jz = \frac{1}{2} \left(e^{j(jz)} + e^{-j(jz)} \right) = \cosh z$ $z = \cosh^{-1} \Omega$
- Substituting in (1): $\cos^{-1} \Omega = j \cosh^{-1} \Omega$
- The Chebyshev function becomes:

$$C_n(\Omega) = \cos(nj\cosh^{-1}(\Omega)) = \cosh(n\cosh^{-1}(\Omega))$$
 for $|\Omega| > 1$

Chebyshev functions:

$$C_n(\Omega) = \begin{cases} \cos(n\cos^{-1}(\Omega)) & \text{for } |\Omega| \le 1\\ \cosh(n\cosh^{-1}(\Omega)) & \text{for } |\Omega| > 1 \end{cases}$$

Hyperbolic functions: sinh, cosh, tanh

$$\sinh x = \frac{1}{2} (e^x - e^{-x}); \qquad \cosh x = \frac{1}{2} (e^x + e^{-x}); \qquad \tanh x = \frac{\sinh x}{\cosh x}$$

Trigonometric functions:

$$\sin x = \frac{1}{2j} (e^{jx} - e^{-jx})$$
; $\cos x = \frac{1}{2j} (e^{jx} + e^{-jx})$; $\tan x = \frac{\sin x}{\cos x}$

- This function can be expressed as a polynomial.
- Consider:

$$C_{n+1}(\Omega) + C_{n-1}(\Omega) = \cos[(n+1)\cos^{-1}(\Omega)] + \cos[(n-1)\cos^{-1}(\Omega)]$$

Using the identity:

$$\cos(A+B)+\cos(A-B)=2\cos A\cos B$$

We get:

$$C_{n+1}(\Omega) + C_{n-1}(\Omega) = 2\cos(n\cos^{-1}(\Omega))\cos(\cos^{-1}(\Omega))$$
$$= 2\cos(n\cos^{-1}(\Omega))\Omega$$
$$= 2\Omega C_n(\Omega)$$

 Therefore we obtain a recursive relationship that allows us to determine each polynomial C_n.

$$C_{n+1}(\Omega) = 2\Omega C_n(\Omega) - C_{n-1}(\Omega)$$

• Since:
$$C_0(\Omega) = \cos(0) = 1$$

 $C_1(\Omega) = \cos(\cos^{-1}(\Omega)) = \Omega$

Polynomials can be calculated for successive n:

$$C_{2}(\Omega) = 2\Omega(\Omega) - 1 = 2\Omega^{2} - 1$$

$$C_{3}(\Omega) = 2\Omega(2\Omega^{2} - 1) - \Omega = 4\Omega^{3} - 3\Omega$$

$$C_{4}(\Omega) = 2\Omega(4\Omega^{2} - 3\Omega) - (2\Omega^{2} - 1) = 8\Omega^{4} - 8\Omega^{2} + 1$$

$$C_{5}(\Omega) = 2\Omega(8\Omega^{4} - 8\Omega^{2} + 1) - (4\Omega^{3} - 3\Omega) = 16\Omega^{5} - 20\Omega^{3} + 5\Omega$$

Chebyshev functions:

$$\Omega = \omega/\omega_p$$
 standardised frequency

$$C_n(\Omega) = \begin{cases} \cos(n\cos^{-1}(\Omega)) & \text{for } |\Omega| \le 1\\ \cosh(n\cosh^{-1}(\Omega)) & \text{for } |\Omega| > 1 \end{cases}$$

-	
n	Chebychev Polynomial
0	$C_0(\Omega)=1$
1	$C_1(\Omega) = \Omega$
2	$C_2(\Omega) = 2\Omega^2 - 1$
3	$C_3(\Omega) = 4\Omega^3 - 3\Omega$
4	$C_4(\Omega) = 8\Omega^4 - 8\Omega^2 + 1$
5	$C_5(\Omega) = 16\Omega^5 - 20\Omega^3 + 5\Omega$
n	$C_{n+1}(\Omega) = 2\Omega C_n(\Omega) - C_{n+1}(\Omega)$

Chebyshev Approximation

The Chebyshev functions:

$$C_n(\Omega) = \begin{cases} \cos(n\cos^{-1}(\Omega)) & \text{for } |\Omega| \le 1\\ \cosh(n\cosh^{-1}(\Omega)) & \text{for } |\Omega| > 1 \end{cases}$$

are equivalent to the Chebyshev polynomial for each n.

Hyperbolic functions: sinh, cosh, tanh

$$\sinh x = \frac{1}{2} (e^x - e^{-x}); \qquad \cosh x = \frac{1}{2} (e^x + e^{-x}); \qquad \tanh x = \frac{\sinh x}{\cosh x}$$

Trigonometric functions:

$$\sin x = \frac{1}{2j} (e^{jx} - e^{-jx})$$
; $\cos x = \frac{1}{2j} (e^{jx} + e^{-jx})$; $\tan x = \frac{\sin x}{\cos x}$

Chebyshev Approximation

• Chebyshev functions: for $|\Omega| \le 1$

$$C_1(\Omega) = \Omega$$

$$C_2(\Omega) = 2\Omega^2 - 1$$

$$C_3(\Omega) = 4\Omega^3 - 3\Omega$$

$$C_n(1) = 1$$
 for all n

Plot of loss function:

0.3

0.4

0.5

0.6

0.7

0.8

Chebyshev Pole Locations

• We need to find the roots of the denominator of T(S).

$$|T_n(j\Omega)|^2 = \frac{1}{1+\varepsilon^2 C_n^2(\Omega)} = T(S)T(-S)$$

• The roots are: $s_k = \sigma_k \pm j\omega_k$ k = 1, 2, ..., n

where
$$\sigma_k = \pm \sinh(a) \sin\left(\frac{2k-1}{2n}\pi\right)$$

$$\omega_k = \cosh(a)\cos\left(\frac{2k-1}{2n}\pi\right)$$
 $a = \frac{1}{n}\sinh^{-1}\frac{1}{\varepsilon}$

Chebyshev Pole Locations

Chebyshev Pole Locations

- As with the Butterworth approximation only the left half plane poles are associated with T(S).
- Furthermore:

$$\left(\frac{\sigma_k}{\sinh a}\right)^2 + \left(\frac{\omega_k}{\cosh a}\right)^2 = 1$$

 This means that the roots of the Chebyshev approximation lie on an ellipse in the s-plane.

• Tables are available giving pole locations for Chebyshev filters for values of A_{max} and n.

$$A_{\text{max}} = 0.25 \,\text{dB}$$

n	Denominator of T(s)	Numerator, K
1	(s+4.10811)	4.10811
2	$(s^2 + 1.79668 \ s + 2.11403)$	2.05405
3	$(s^2 + 0.76722 \ s + 1.33863)(s + 0.76722)$	1.02702
4	$(s^2 + 0.42504 \ s + 1.16195)(s^2 + 1.02613 \ s + 0.45485)$	0.51352
5	$(s^2 + 0.27005 \ s + 1.09543)(s^2 + 0.70700 \ s + 0.53642)(s + 0.43695)$	0.25676

$$A_{\text{max}} = 0.5 \text{dB}$$

n	Denominator of T(s)	Numerator, K
1	(s+2.86278)	2.86278
2	$(s^2 + 1.42562 \ s + 1.51620)$	1.43138
3	$(s^2 + 0.62646 \ s + 1.14245)(s + 0.62646)$	0.71570
4	$(s^2 + 0.35071 s + 1.06352)(s^2 + 0.84668 s + 0.356412)$	0.35785
5	$(s^2 + 0.22393 \ s + 1.03578)(s^2 + 0.58625 \ s + 0.47677)(s + 0.362332)$	0.17892

$$A_{\text{max}} = 1.0 \text{dB}$$

n	Denominator of T(s)	Numerator, K
1	(s+1.96523)	1.96523
2	$(s^2 + 1.09773 \ s + 1.10251)$	0.98261
3	$(s^2 + 0.49417 \ s + 0.99420)(s + 0.49417)$	0.49130
4	$(s^2 + 0.27907 \ s + 0.98650)(s^2 + 0.67374 \ s + 0.27940)$	0.24565
5	$(s^2 + 0.17892 \ s + 0.98831)(s^2 + 0.46841 \ s + 0.42930)(s + 0.28949)$	0.12283

Attenuation or Loss in dB for the Chebyshev filter:

$$20\log_{10}\sqrt{1+\varepsilon^2C_n^2(\Omega)}$$

 We can adjust this to our cutoff frequency by substituting:

$$\Omega = \frac{\omega}{\omega_p}$$

Therefore, attenuation in dB becomes:

$$20\log_{10}\sqrt{1+\varepsilon^2C_n^2(\omega/\omega_p)}$$

- Attenuation in dB: $20\log_{10}\sqrt{1+\varepsilon^2C_n^2(\omega/\omega_p)}$
- At the edge of the passband, $\omega = \omega_p$, and the loss = A_{max} :

$$A_{\text{max}} = 20 \log_{10} \sqrt{1 + \varepsilon^2 C_n^2 (\omega_p / \omega_p)}$$

• Since $C_n(1) = 1$ for all n:

$$A_{\text{max}} = 10\log_{10}(1+\varepsilon^2)$$

$$\varepsilon = \sqrt{10^{0.1A_{\text{max}}} - 1}$$

At the edge of the stopband, the minimum loss is A_{min}.

$$A_{\min} = 20\log_{10} \sqrt{1 + \varepsilon^2 C_n^2 (\omega_s / \omega_p)}$$

$$A_{\min} = 10\log_{10} (1 + \varepsilon^2 C_n^2 (\omega_s / \omega_p))$$

$$10^{0.1A_{\min}} = 1 + \varepsilon^2 C_n^2 \left(\omega_s / \omega_p \right)$$

$$\sqrt{\frac{10^{0.1A_{\min}}-1}{\varepsilon^2}} = C_n(\omega_s/\omega_p)$$

$$\sqrt{\frac{10^{0.1A_{\min}}-1}{\varepsilon^2}} = C_n(\omega_s/\omega_p)$$

• Since $C_n(\Omega) = \cosh (n \cosh^{-1}\Omega)$, for $|\Omega| > 1$:

$$\sqrt{\frac{10^{0.1 A_{\min}} - 1}{\varepsilon^2}} = \cosh(n \cosh^{-1}(\omega_s/\omega_p))$$

$$n = \frac{\cosh^{-1} \sqrt{\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2}}}{\cosh^{-1}(\omega_s/\omega_p)}$$

Example 4

 Find the Chebyshev approximation for a low pass filter whose requirements are:

Amax = 0.5dB, Amin = 20dB, ω_p = 200, ω_s = 600rad/s

Example 4

First find ε:

$$\varepsilon = \sqrt{10^{0.1A_{\text{max}}} - 1} = \sqrt{10^{0.05} - 1} = 0.35$$

Now find order of filter required:

$$n = \frac{\cosh^{-1} \sqrt{\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2}}}{\cosh^{-1} (\omega_s/\omega_p)} = \frac{\cosh^{-1} \sqrt{\frac{10^{2.0} - 1}{\varepsilon^2}}}{\cosh^{-1} (600/200)} = 2.3$$

Therefore we will choose n = 3.

(Note that Butterworth would have required n=4)

Example 4

From tables, for A_{max}=0.5dB, and n=3:

$$T(s) = \frac{0.71570}{\left(s^2 + 0.62646s + 1.14245\right)\left(s + 0.62646\right)}$$

• Substitute $\frac{S}{\omega_p} = \frac{S}{200}$:

$$T(s) = \frac{5725600}{\left(s^2 + 125.3s + 45698\right)\left(s + 125.3\right)}$$

Example 4

$$T(s) = \frac{5725600}{\left(s^2 + 125.3s + 45698\right)\left(s + 125.3\right)}$$

Inverse Chebyshev Approximation

Given the Chebyshev magnitude response:

$$|T_n(j\omega)|^2 = \frac{1}{1+\varepsilon^2 C_n^2(\omega)}$$

We subtract this function from 1, resulting in:

$$1 - \left| T_n(j\omega) \right|^2 = \frac{\varepsilon^2 C_n^2(\omega)}{1 + \varepsilon^2 C_n^2(\omega)}$$

Inverse Chebyshev Approximation

 Finally we invert frequency by replacing ω with 1/ω, giving the inverse Chebyshev response:

$$|T(j\omega)|^2 = \frac{\varepsilon^2 C_n^2(1/\omega)}{1 + \varepsilon^2 C_n^2(1/\omega)}$$

Equiripple in the stop band and maximally flat in the passband.

Inverse Chebyshev Approximation

 Typical plot of gain and attenuation functions:

$$|T(j\omega)|^2 = \frac{\varepsilon^2 C_n^2(\omega)}{1 + \varepsilon^2 C_n^2(\omega)}$$
(3)

 zeros in gain function are poles in loss function

Gain

$$10\log\frac{1+\varepsilon^2C_n^2(\omega)}{\varepsilon^2C_n^2(\omega)}$$

Elliptic (Cauer) Approximation

- Have a flatter stopband attenuation than the Butterworth or Chebyshev
- Elliptic approximation is a rational function of poles and zeros.
- For a given filter requirement, generally the elliptic approximation will result in a lower order than a Butterworth or Chebyshev.

Elliptic (Cauer) Approximation

Elliptic (Cauer) Approximation

- Designers of elliptic filters can use extensive tables, or computerised algorithms.
- Tables are normalised for ω_s/ω_p , and give the poles, zeros and A_{min} .
- A different table is needed for each A_{max}.
- A portion of such tables is shown.

$$A_{\text{max}} = 0.5 \text{dB}$$

$$A_{\rm max} = 0.5 {\rm dB}$$

 $\omega_s/\omega_p = 1.5$

n	Numerator K	Numerator and Denominator of T(s)	A _{min}
2	0.38540	$N \left(s^2 + 3.92705 \right)$	8.3
3	0.31410	$N \left(s^2 + 2.80601 \right)$	21.9
		$D \left(s^2 + 0.45286 \ s + 1.14917 \right) \left(s + 0.766952 \right)$	
4	0.015397	N $(s^2 + 2.53555)(s^2 + 12.09931)$	36.3
5	0.019197	N $(s^2 + 2.42551)(s^2 + 5.43764)$	50.6

$$A_{\text{max}} = 0.5 \text{dB}$$

$$A_{\rm max} = 0.5 {\rm dB}$$

 $\omega_s/\omega_p = 2.0$

n	Numerator K	Numerator and Denominator of T(s)	A _{min}
2	0.20133	$ N (s^2 + 7.4641)$	13.9
		$D \left(s^2 + 1.24504 \ s + 1.59179 \ \right)$	
3	0.15424	$N(s^2 + 5.15321)$	31.2
		$D \left(s^2 + 0.53787 \ s + 1.14849 \ \right) \left(s + 0.69212 \ \right)$	
4	0.0036987	$N(s^2 + 4.59326)(s^2 + 24.22720)$	48.6
		$ D \left(s^2 + 0.30116 \ s + 1.06258 \right) \left(s^2 + 0.88456 \ s + 0.41032 \right) $	
5	0.0046205	$N \left(s^2 + 4.36495\right) \left(s^2 + 10.56773\right)$	66.1
		$ D \left(s^2 + 0.19255 \ s + 1.03402 \ \right) \left(s^2 + 0.58054 \ s + 0.52500 \ \right) \left(s + 0.392612 \ \right) $	

Example

 Find the Elliptic approximation for a low pass filter whose requirements are characterised by:

$$A_{max} = 0.5dB$$
, $A_{min} = 20dB$, $\omega_p = 200$, $\omega_s = 600 rad/s$

• First find
$$\omega_s/\omega_p$$
: $\frac{\omega_s}{\omega_p} = \frac{600}{200} = 3$

• From tables for ω_s/ω_p =3, A_{max} =0.5dB and A_{min} =20dB:

$$T(s) = \frac{0.083974(s^2 + 17.48528)}{s^2 + 1.35715s + 1.55532}$$

• Substitute
$$\frac{s}{\omega_p} = \frac{s}{200}$$
:
$$T(s) = \frac{0.083974(s^2 + 699411.2)}{s^2 + 271.43s + 62212.8}$$

$$T(s) = \frac{0.083974(s^2 + 699411.2)}{s^2 + 271.43s + 62212.8}$$

$$T(s) = \frac{0.083974(s^2 + 699411.2)}{s^2 + 271.43s + 62212.8}$$

Phase, deg

Frequency Transformations

- Last few sections dealt with design of low pass filters.
- These approximations can be adapted to high pass, band pass, and band stop filters.

High Pass

 High pass filter can be transformed to a low pass with the transformation:

$$S = \frac{\omega_{p(hp)}}{s}$$

• Since $S = j\Omega$ and $s = j\omega$:

$$\Omega = -rac{\omega_{p(hp)}}{\omega}$$

LP filter requirements:

$$\Omega_{p(lp)} = 1$$

$$\Omega_{s(lp)} = \omega_{p(hp)} / \omega_{s(hp)}$$

Loss

High Pass

high pass

low pass

 Find a Butterworth approximation for the following high pass filter requirements:

$$A_{min} = 15dB, A_{max} = 3dB, \omega_{p(hp)} = 1000 \text{ rad/s}, \omega_{s(hp)} = 500 \text{ rad/s}$$

The equivalent LP filter requirements are:

$$\Omega_{p(lp)} = \frac{\omega_{p(hp)}}{\omega_{p(hp)}} = 1 \text{ rad/s} \qquad \Omega_{s(lp)} = \frac{\omega_{p(hp)}}{\omega_{s(hp)}} = \frac{1000}{500} = 2 \text{ rad/s}$$

As previously, first find ε:

$$\varepsilon = \sqrt{10^{0.1A_{\text{max}}} - 1} = \sqrt{10^{0.3} - 1} = 1$$
 (since A_{max} = 3dB)

Now find order of filter required:

$$n = \frac{\log\left(\frac{10^{0.1A_{\min}} - 1}{\varepsilon^2}\right)}{2\log\left(\frac{\Omega_{s(lp)}}{\Omega_{p(lp)}}\right)} = \frac{\log\left(\frac{10^{1.5} - 1}{\varepsilon^2}\right)}{2\log\left(\frac{2}{1}\right)} = 2.47$$

Therefore we will choose n = 3.

Third order Butterworth function:

$$T(S) = \frac{1}{(S^2 + S + 1)(S + 1)}$$

Now substitute:

$$S = \left(\varepsilon^{1/n}/\Omega_p\right)s = \left(1^{1/2}/1\right)s = s$$

$$T(s) = \frac{1}{(s^2+s+1)(s+1)}$$

To convert LP function to HP, substitute:

$$S = \frac{\omega_{p(hp)}}{S} = \frac{1000}{S}$$

$$T(s) = \frac{1}{\left(\left(\frac{1000}{s}\right)^2 + \frac{1000}{s} + 1\right)\left(\frac{1000}{s} + 1\right)}$$

$$T(s) = \frac{s^3}{\left(s^2 + 1000s + 10^6\right)\left(s + 1000\right)}$$

$$T(s) = \frac{s^3}{\left(s^2 + 1000 \, s + 10^6\right)\left(s + 1000\right)}$$

To plot in Matlab:

```
t1 = tf([1 0 0 0],[1 2000 2e6 1e9]);
bode (t1);
grid on;
```


$$T(s) = \frac{s^3}{\left(s^2 + 1000 \, s + 10^6\right)\left(s + 1000\right)}$$

Magnitude,dB

 Band pass filter can be transformed to a low pass with the transformation:

where

$$S = \frac{s^{2} + \omega_{o}^{2}}{BWs}$$

$$BW = \omega_{p2} - \omega_{p1} = \frac{\omega_{0}}{Q}$$

$$\omega_{o} = \sqrt{\omega_{p1}\omega_{p2}}$$

• Since $S = j\Omega$ and $s = j\omega$:

$$\Omega = \frac{\omega^2 - \omega_o^2}{(\omega_{p2} - \omega_{p1})\omega}$$

band pass

low pass

$$\Omega_{s(bp)} = \min \left(|\Omega_{s1}|, |\Omega_{s2}| \right)$$

Transform BP cutoff frequencies to LP:

$$\Omega_{s1} = \frac{\omega_{s1}^{2} - \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})\omega_{s1}} \qquad \Omega_{p2} = \frac{\omega_{p2}^{2} - \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})\omega_{p2}} = 1$$

$$\Omega_{p1} = \frac{\omega_{p1}^{2} - \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})\omega_{p1}} = -1$$

$$\Omega_{s2} = \frac{\omega_{s2}^{2} - \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})\omega_{s2}} = 1$$

• Choose steeper specification, ie, whichever of Ω_{s1} or Ω_{s2} has the smaller absolute value.

If the band pass filter is symmetrical:

$$\omega_0^2 = \omega_{p1}\omega_{p2} = \omega_{s1}\omega_{s2}$$

The equations simplify to:

$$\Omega_{s1} = \frac{\omega_{s1} - \omega_{s2}}{\omega_{p2} - \omega_{p1}}$$

$$\Omega_{p2} = 1$$

$$\Omega_{p1} = -1$$

$$\Omega_{s2} \to \frac{\omega_{s2} - \omega_{s1}}{\omega_{p2} - \omega_{p1}} = -\Omega_{s1}$$

 Find a Butterworth approximation for the following band pass filter requirements:

 A_{min} = 12dB, A_{max} = 1dB, ω_{s1} =500 rad/s, ω_{p1} =1000 rad/s, ω_{p1} =2000 rad/s, ω_{s1} =3500 rad/s

Transform BP frequencies to LP:

$$\Omega_{s1} = \frac{\omega_{s1}^2 - \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})\omega_{s1}} = \frac{500^2 - 1000 \times 2000}{(2000 - 1000)500} = -3.5$$

$$\Omega_{s2} = \frac{\omega_{s2}^2 - \omega_{p1}\omega_{p2}}{(\omega_{p2} - \omega_{p1})\omega_{s2}} = \frac{3500^2 - 1000 \times 2000}{(2000 - 1000)3500} = 2.93$$

The equivalent LP filter requirements are:

Take steeper requirement:

$$\Omega_{p(bp)} = 1 \text{ rad/s}$$
 $\Omega_{s(bp)} = 2.93 \text{ rad/s}$

As previously, first find ε:

$$\varepsilon = \sqrt{10^{0.1A_{\text{max}}} - 1} = \sqrt{10^{0.1} - 1} = 0.5088$$

Now find order of filter required:

$$n = \frac{\log_{10} \left(\frac{10^{0.1A_{\min}} - 1}{\varepsilon^{2}}\right)}{2\log_{10} \left(\frac{\Omega_{s}}{\Omega_{p}}\right)} = \frac{\log_{10} \left(\frac{10^{1.2} - 1}{\varepsilon^{2}}\right)}{2\log_{10} \left(\frac{2.93}{1}\right)} = 1.88$$

Therefore we will choose n = 2.

Second order Butterworth function:

$$T(S) = \frac{1}{S^2 + \sqrt{2}S + 1}$$

Now substitute:

$$S = (\varepsilon^{1/n}/\Omega_p)s = (0.5088^{1/2}/1)s = 0.7133s = Bs$$

$$T(s) = \frac{1}{B^2 s^2 + \sqrt{2}Bs + 1} = \frac{1/B^2}{s^2 + (\sqrt{2}/B)s + 1/B^2}$$

$$T(s) = \frac{1.965}{s^2 + 1.983s + 1.965}$$

To convert LP function to BP, substitute:

$$s = \frac{s^2 + \omega_o^2}{(\omega_{p2} - \omega_{p1})s} = \frac{s^2 + 1000 \times 2000}{(2000 - 1000)s} = \frac{s^2 + 2 \times 10^6}{1000s}$$

Therefore:

$$T(s) = \frac{1.965}{\left(\frac{s^2 + 2 \times 10^6}{10^3 s}\right)^2 + 1.983 \left(\frac{s^2 + 2 \times 10^6}{10^3 s}\right) + 1.965}$$

$$T(s) = \frac{1.965 \times 10^6 \, s^2}{s^4 + 1.983 \times 10^3 \, s^3 + 5.965 \times 10^6 \, s^2 + 3.965 \times 10^9 \, s + 4 \times 10^{12}}$$

To plot in Matlab:

```
t1 = tf([0 0 1.965e6 0 0 ],[1 1983 5.965e6 3.965e9 4e12]);
bode (t1);
grid on;
```


$$T(s) = \frac{1.965 \times 10^6 \, s^2}{s^4 + 1.983 \times 10^3 \, s^3 + 5.965 \times 10^6 \, s^2 + 3.965 \times 10^9 \, s + 4 \times 10^{12}}$$

Magnitude,dB

 Band stop filter can be transformed to a low pass with the transformation:

where

$$S = \frac{BWs}{s^2 + \omega_o^2}$$

$$BW = \omega_{p2} - \omega_{p1} = \frac{\omega_0}{Q}$$

$$\omega_o = \sqrt{\omega_{p1}\omega_{p2}}$$

• Since $S = j\Omega$ and $s = j\omega$:

$$\Omega = \frac{\left(\omega_{p2} - \omega_{p1}\right)\omega}{\omega_{o}^{2} - \omega^{2}}$$

band stop

low pass

$$\Omega_{s(bs)} = \min \left(|\Omega_{s1}|, |\Omega_{s2}| \right)$$

Transform BP cutoff frequencies to LP:

$$\Omega_{p1} = \frac{(\omega_{p2} - \omega_{p1})\omega_{p1}}{\omega_{p1}\omega_{p2} - \omega_{p1}^{2}} = 1 \qquad \Omega_{s2} = \frac{(\omega_{p2} - \omega_{p1})\omega_{s2}}{\omega_{p1}\omega_{p2} - \omega_{s2}^{2}} \\
\Omega_{s1} = \frac{(\omega_{p2} - \omega_{p1})\omega_{s1}}{\omega_{p1}\omega_{p2} - \omega_{s1}^{2}} \qquad \Omega_{p2} = \frac{(\omega_{p2} - \omega_{p1})\omega_{p2}}{\omega_{p1}\omega_{p2} - \omega_{p2}^{2}} = -1$$

• Choose steeper specification, ie, whichever of Ω_{s1} or Ω_{s2} has the smaller absolute value.

If the band stop filter is symmetrical:

$$\omega_0^2 = \omega_{p1}\omega_{p2} = \omega_{s1}\omega_{s2}$$

The equations simplify to:

$$\Omega_{p1} = 1$$

$$\Omega_{s2} = \frac{\omega_{p2} - \omega_{p1}}{\omega_{s1} - \omega_{s2}} = -\Omega_{s1}$$

$$\Omega_{s1} = \frac{\omega_{p2} - \omega_{p1}}{\omega_{s2} - \omega_{s1}}$$

$$\Omega_{p2} = -1$$