AMENDMENTS TO THE CLAIMS:

Please amend claim 1 as follows:

Claim 1 (Currently amended): A nematic liquid crystal composition comprising a liquid crystal component A composed of two or more kinds of compounds represented by two or three or more general formulas selected from the general formulas (I-1) to (I-5):

$$(I-1) \atop R^{1} \stackrel{A}{\longrightarrow} K^{1} \stackrel{A}{\longrightarrow} K^{2} \atop k^{1} \stackrel{A}{\longrightarrow} K^{2} \atop k^{1} \stackrel{A}{\longrightarrow} K^{3} \atop k^{2} \stackrel{A}{\longrightarrow} K^{3} \atop k^{4} \stackrel{A}{\longrightarrow} K^{2} \atop k^{3} \stackrel{A}{\longrightarrow} K^{2} \atop k^{4} \stackrel{A}{\longrightarrow} K^{2} \stackrel{A}{\longrightarrow} K^{2} \xrightarrow{K^{2}} \stackrel{A}{\longrightarrow} K^{2} \stackrel{A}{\longrightarrow} K^{$$

(wherein one, or two or more CH groups, which are present in a naphthalene-2,6-diyl ring, may be substituted with a N group,

one, or two or more $-CH_2$ - groups, which are present in a decahydronaphthalene-2,6-diyl ring, may be substituted with $-CF_2$ -, one, or two or more $-CH_2$ - CH_2 - groups, which are present in said ring, may be substituted with $-CH_2O$ -, -CH=CH-, -CH=CF-, -CF=CF-, -CH=N- or -CF=N-, one, or two or more $>CH-CH_2$ -groups, which are present in said ring, may be substituted with >CH-O-, >C=CH-, >C=CF-, >C=N- or $>N-CH_2$ -, a >CH-CH< group, which is present in the ring, may be substituted with >CH-CF<, >CF-CF< or >C=C<, and at least one C in said non-substituted or substituted ring may be substituted with Si;

R¹ each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, said alkyl or alkenyl group can have one, or two or more F, Cl, CN, CH₃ or CF₃ as a non-substituent or substituent group, and one, or two or more CH₂ group, which are present in said alkyl or alkenyl group, may be substituted with O, CO or COO, while O atoms do not bond with each other directly;

Q¹ each independently represents F, Cl, CF₃, OCF₃, OCF₂H, OCFH₂, or NCS, or CN; X¹ to X³ each independently represents H, F, Cl, CF₃, OCF₃, or CN;

W¹ to W⁶ each independently represents H, F, Cl, CF₃, OCF₃, or CN, and also W⁴ each independently represents CH₃;

 K^1 to K^5 each independently represents, a single bond, -COO-, -OCO-, -CH₂O-, -OCH₂-, -CH=CH-, -CF=CF-, -C=C-, -(CH₂)₂-, -(CH₂)₄-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CH=N-,

=CH=N-N=CH-, or -N(O)=N-;

rings A¹ to A⁴ each independently represents 1,4-phenylene, 2- or 3-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 3,5-difluoro-1,4-phenylene, 2- or 3-chloro-1,4-phenylene, 2,3-dichloro-1,4-phenylene, 3,5-dichloro-1,4-phenylene, pyrimidine-2,5-diyl, trans-1,4-cyclohexylene, trans-1,4-cyclohexenylene, trans-1,3-dioxane-2,5-diyl, trans-1-sila-1,4-cyclohexylene, trans-4-sila-1,4-cyclohexylene, naphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, and naphthalene-2,6-diyl and 1,2,3,4-tetrahydronaphthalene-2,6-diyl can have one, or two or more F, Cl, CF₃ or CH₃ as a non-substituent or substituent group;

one, or two or more hydrogen atoms, which are present in a naphthalene-2,6-diyl ring, a 1,2,3,4-tetrahydronaphthalene-2,6-diyl ring, a decahydronaphthalene-2,6-diyl ring, a side chain group R¹, a polar group Q¹, linking groups K¹ to K⁵ and rings A¹ to A⁴, may be substituted with a deuterium atom;

 k^1 to k^8 each independently represents 0 or 1, $k^3 + k^4$ is 0 or 1, and $k^5 + k^6 + k^7 + k^8$ is 0, 1 or 2; and

atoms, which constitute the compounds of the general formulas (I-1) to (I-5), may be substituted with isotope atoms thereof); 0 to 99.9% by weight of a liquid crystal component B composed of a compound having a dielectric constant anisotropy of +2 or more as a liquid crystal component excluding the compounds of the general formulas (I-1) to (I-5); and 0 to 85% by weight of a liquid crystal component C composed of a compound having a dielectric constant anisotropy within a range from -10 to +2; the sum total of said liquid crystal component B and said liquid

U.S. Patent Application Serial No. 09/787,614 Response filed September 24, 2004

Reply to OA dated July 1, 2004

crystal component C being within a range from 0 to 99.9% by weight.

Claim 2 (Original): A nematic liquid crystal composition according to claim 1, wherein said

liquid crystal component A satisfies at least one of the following conditions:

(i) said liquid crystal component A contains one, or two or more kinds of compounds selected

from compounds represented by the general formula (I-1) and one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-2), the content of said

selected compounds in said liquid crystal component A being within a range from 5 to 100% by

weight;

(ii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1) and one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-3), the content of said

selected compounds in said liquid crystal component A being within a range from 5 to 100% by

weight;

(iii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1) and one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-4), the content of said

selected compounds in said liquid crystal component A being within a range from 5 to 100% by

weight;

-5-

U.S. Patent Application Serial No. 09/787,614 Response filed September 24, 2004

Reply to OA dated July 1, 2004

(iv) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-1) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-5), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

- (v) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-2) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-3), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;
- (vi) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-2) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-4), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;
- (vii) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-2) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-5), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

U.S. Patent Application Serial No. 09/787,614

Response filed September 24, 2004

Reply to OA dated July 1, 2004

(viii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-3) and one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-4), the content of said

selected compounds in said liquid crystal component A being within a range from 5 to 100% by

weight;

(ix) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-3) and one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-5), the content of said

selected compounds in said liquid crystal component A being within a range from 5 to 100% by

weight;

(x) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-4) and one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-5), the content of said

selected compounds in said liquid crystal component A being within a range from 5 to 100% by

weight;

(xi) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-2) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-3), the

-7-

content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xii) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-1), one, or two or more kinds of compounds selected from compounds represented by the general formula (I-2) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-4), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xiii) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-1), one, or two or more kinds of compounds selected from compounds represented by the general formula (I-2) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-5), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xiv) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-1), one, or two or more kinds of compounds selected from compounds represented by the general formula (I-3) and one, or two or more kinds of compounds selected from compounds represented by the general formula (I-4), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xv) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-3) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-5), the

content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xvi) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-4) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-5), the

content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xvii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-2), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-3) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-4), the

content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xviii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-2), one, or two or more kinds of

-9-

compounds selected from compounds represented by the general formula (I-3) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-5), the

content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xix) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-2), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-4) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-5), the

content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xx) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-3), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-4) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (I-5), the

content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xxi) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-2), one, or two or more

kinds of compounds selected from compounds represented by the general formula (I-3) and one, or

-10-

two or more kinds of compounds selected from compounds represented by the general formula (I-4),

the content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xxii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-2), one, or two or more

kinds of compounds selected from compounds represented by the general formula (I-3) and one, or

two or more kinds of compounds selected from compounds represented by the general formula (I-5),

the content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xxiii) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-2), one, or two or more

kinds of compounds selected from compounds represented by the general formula (I-4) and one, or

two or more kinds of compounds selected from compounds represented by the general formula (I-5),

the content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xxiv) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-3), one, or two or more

-11-

Reply to OA dated July 1, 2004

kinds of compounds selected from compounds represented by the general formula (I-4) and one, or

two or more kinds of compounds selected from compounds represented by the general formula (I-5),

the content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xxv) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-2), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-3), one, or two or more

kinds of compounds selected from compounds represented by the general formula (I-4) and one, or

two or more kinds of compounds selected from compounds represented by the general formula (I-5),

the content of said selected compounds in said liquid crystal component A being within a range from

5 to 100% by weight;

(xxvi) said liquid crystal component A contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (I-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (I-2), one, or two or more

kinds of compounds selected from compounds represented by the general formula (I-3), one, or two

or more kinds of compounds selected from compounds represented by the general formula (I-4) and

one, or two or more kinds of compounds selected from compounds represented by the general

formula (I-5), the content of said selected compounds in said liquid crystal component A being

within a range from 10 to 100% by weight;

(xxvii) said liquid crystal component A contains one, or two or more kinds of compounds

-12-

Reply to OA dated July 1, 2004

selected from compounds represented by the general formula (I-1), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xxviii) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-2), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xxix) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-3), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight;

(xxx) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-4), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight; and

(xxxi) said liquid crystal component A contains one, or two or more kinds of compounds selected from compounds represented by the general formula (I-5), the content of said selected compounds in said liquid crystal component A being within a range from 5 to 100% by weight.

Claim 3 (Previously Presented): A nematic liquid crystal composition according to claim 1, wherein said liquid crystal component A contains one to twenty kinds of compounds selected from one, two, or three or more sub-groups among the following sub-groups (1-ai) to (1-avii), the content of said compounds being within a range from 10 to 100% by weight:

(I-ai) compound in which R¹ is an alkyl or alkenyl group having 2 to 7 carbon atoms,

(I-aii) compound in which Q¹ is F, Cl, CF₃, OCF₃, OCF₂, or CN,

(I-aiii) compound in which K^1 to K^5 represent -(CH₂)₂-, -COO-, or -C=C-,

(I-aiv) compound in which rings A¹ to A⁴ represent trans-1,4- cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, or 3,5- difluoro-1,4-phenylene, and

(I-av) compound in which one, or two or more hydrogen atoms, which are present in naphthalene-2,6-diyl ring, a 1,2,3,4- tetrahydronaphthalene-2,6-diyl ring, a decahydronaphthalene-2,6-diyl ring, a side chain group R¹, a polar group Q¹, linking groups K¹ to K⁵ and rings A¹ to A⁴, are substituted with deuterium atoms, in the general formulas (I-1) to (I-5);

(I-avi) compound in which W¹ to W³ represent H, F, Cl, CF₃, or OCF₃ in the general formulas (I-1) to (I-3) and (I-5); and

(I-avii) compound in which X^1 and X^2 represent H, F, Cl, CF_3 , or OCF_3 in the general formulas (I-2) to (I-4).

Claim 4 (Previously presented): A nematic liquid crystal composition according to claim 1, wherein said liquid crystal component A contains one to twenty kinds of compounds selected from one, two, or three or more sub-groups among the following sub-groups (I-bi) to (I-bvii), the content of said compounds being within a range from 5 to 100% by weight:

(I-bi) compound in which $k^1=k^2=0$, the ring A^1 is trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, naphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, K^1 is a single bond, $-(CH_2)_2-$, -COO-, or -C=C-, and

(I-bii) compound in which $k^1=1$, $k^2=0$, rings A^1 and A^2 represent trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5-difluoro-1,4-phenylene, naphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, K^1 is a single bond, -(CH_2)₂-, -COO-, or -C=C-, K^1 and K^2 represent a single bond, -(CH_2)₂-, -COO-, or -C=C-, in the general formula (I-1) in which K^1 is an alkyl or alkenyl group having 2 to 7 carbon atoms, K^2 is K^3 or K^4 or $K^$

(I-biii) compound in which $k^3=k^4=0$, the ring A^1 is trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, or 3,5-difluoro-1,4-phenylene, and K^1 and K^4 represent a single bond, $-(CH_2)_2$ -, -COO-, or $-C \equiv C$ -, in the general formula (I-2) in which R^1 is an alkyl or alkenyl group having 2 to 7 carbon atoms, Q^1 is F, Cl, CF_3 , OCF_3 , or CN, X^1 and X^2 represent H, F, Cl, CF_3 , or OCF_3 , and W^1 to W^3 represent H, F, Cl, CF_3 , or OCF_3 ;

(I-biv) compound in which $k^1=k^2=0$, K^3 is a single bond, -COO-, or -C=C-, and

(I-bv) compound in which $k^1=1$, $k^2=0$, the ring A^1 is 1,4-phenylene, 3-fluoro-1,4-phenylene, or a 3,5-difluoro-1,4-phenylene, K^1 and K^3 represent -COO- or -C=C-, in the general formula (I-3) in which R^1 is an alkyl or alkenyl group having 2 to 7 carbon atoms, Q^1 is F, Cl, CF₃, OCF₃, or C, X^1 and X^2 represent H, F, Cl, CF₃, or OCF₃, and W^1 to W^3 represent H, F, Cl, CF₃, or OCF₃;

(I-bvi) compound in which $k^5=k^6=k^7=k^8=0$, K^5 is a single bond, $-(CH_2)_2-$, $-(CH_2)_4-$, -COO-, or -C=C-,

(I-bvii) compound in which $k^5=1$, $k^6=k^7=k^8=0$, the ring A^1 is trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, or 3,5-difluoro-1,4-phenylene, K^1 and K^5 represent a single bond, $-(CH_2)_2$, -COO-, or -C = C-,

(I-bviii) compound in which $k^7=1$, $k^5=k^6=k^8=0$, the ring A^3 is trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, or 3,5-difluoro-1,4-phenylene, K^3 and K^5 represent a single bond, $-(CH_2)_2-$, -COO-, or $-C\equiv C$ -, and

(I-bix) compound in which the decahydronaphthalene-2,6-diyl ring has at least one substituent among substituents $-CF_2^-$, $-CH_2^-$ O-, $-CH_2^-$ CH-CH-, $-CH_2^-$ CF-CF-, $-CH_2^-$ CH-CF-, $-CH_2^-$ CH-CF-, -CH

(I-bx) compound in which $k^1=k^2=0$, the ring A^1 is trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5-difluoro-1,4-phenylene, naphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, K^1 is a single bond, $-(CH_2)_2$, $-(CH_2)_4$, or -COO, and (I-bxi) compound in which $k^1=1$, $k^2=0$, rings A^1 and A^2 represent trans-1,4-cyclohexylene, 1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5-difluoro-1,4-phenylene, naphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, and K^1 and K^2 eac represents a single bond, $-(CH_2)_2$, $-(CH_2)_4$, or -COO, in the general formula (I-5) in which R^1 is an alkyl or alkenyl group having 2 to 7 carbon atoms, Q^1 is F, Cl, CF_3 , OCF_3 , or CN, and W^1 and W^2 represent H, F, Cl, CF_3 , or OCF_3 .

Claim 5 (Withdrawn): A nematic liquid crystal composition according to claim 1, wherein said liquid crystal component B contains one, or two or more kinds of compounds selected from the group of compounds represented by the general formulas (II-1) to (II-4):

(II-1)
$$R^{1}$$
 P^{1} P^{2} P^{2} Q^{1} Q^{1}

(wherein R1 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, said alkyl or alkenyl group can have one, or two or more F, Cl, CN, CH₃ or CF₃ as a non-substituent or substituent group, and one, or two or more CH₂ group, which

are present in said alkyl or alkenyl group, may be substituted with O, CO or COO, while O atoms do not bond with each other directly;

Q¹ each independently represents F, Cl, CF₃, OCF₂H, OCFH₂, NCS, or CN;

W¹ to W⁴ each independently represents H, F, Cl, CF₃, OCF₃, or CN, and also W⁴ each independently represents CH₃;

Y¹ and Y² each independently represents H, F, Cl, CF₃, OCF₃, or CN;

V represents CH or N;

 p^1 to p^3 each independently represents, a single bond, -COO-, -OCO-, -CH₂O-, -OCH₂-, -(CH₂)₂-,

-(CH₂)₄-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CH=N-, =CH=N-N=CH-, or -N(O)=N-, and p^1 and p^3 each independently represents -CH=CH-, -CF=CF-, or C =C-;

rings B¹ to B³ each independently represents trans-1,4-cyclohexylene, trans-1,4-cyclohexylene, trans-1,3-dioxane- 2,5-diyl, trans-1-sila-1,4-cyclohexylene, or trans-4-sila-1,4-cyclohexylene, and the ring B³ may also be 1,4-phenylene, 2- or 3-fluoro-1,4-phenylene, 3, 5-difluoro-1,4-phenylene, 2- or 3-chloro-1,4-phenylene, 2, 3-dichloro-1,4-phenylene, or 3,5-dichloro-1,4-phenylene;

one, or two or more hydrogen atoms, which are present in a side chain group R¹, a polar group Q¹, linking groups P¹ to P³ and rings B¹ to B³, may be substituted with a deuterium atom;

 p^1 to p^3 each independently represents 0 or 1, and $p^2 + p^3$ is 0 or 1; and

atoms, which constitute the compounds of the general formulas (II-1) to (II-4), may be substituted with isotope atoms thereof).

Claim 6 (Withdrawn): A hematic liquid crystal composition according to claim 5, wherein said liquid crystal component B contains one to twenty knids of compounds selected from one, two, or three or more sub-groups among the following sub-groups (II-ai) to (II-zxii), the content of said compounds being within a range from 10 to 100% by weight:

(II-ai) compounds in which R¹ is an alkyl or alkenyl group having 2 to 5 carbon atoms, in the general formulas (II-1) to (II-4);

(II-aii) compounds in which Q1 is F, Cl, or -OCF3, in the general formulas (II-1) to (II-4);

(II-aiii) compounds in which P^2 is $-(CH_2)_2$ - or $-(CH_2)_4$ -, in the general formula (II-1);

(II-aiv) compound in which p¹ is 1, in the general formula (II-1);

(II-av) compound in which at least one of Y1, Y2, W1 and W2 is F, in the general formula (II-

2);

(II-avi) compound in which p¹ is 1 and P¹is -C≡C-, in the general formula (II-2);

(II-avii) compound in which P^2 is a single bond or $-(CH_2)_2$ - and P^1 is -COO-, in the general formula (II-2);

(II-aviii) compound in which at least one of Y¹, Y², and W¹ to W⁴ is F, in the general formula (II-3);

(II-aix) compound in which P^3 is -C = C-, in the general formula (II-3);

(II-ax) compound in which P¹ is a single bond or -C≡C- and P³ is -COO-, in the general formula (II-3);

(II-axi) compound represented by the general formula (II-4); and

(II-axii) compound in which at least one of rings B^1 to B^3 is substituted with a deuterium atom if the rings B^1 to B^3 represent trans-1,4-cyclohexylene, in the general formulas (II-1), (II-2) and (II-4).

Claim 7 (Withdrawn): A nematic liquid crystal composition according to claim 5, wherein said liquid crystal component B contains one to twenty kinds of compounds selected from one, two, or three or more sub-groups among the following sub-groups (II-bi) to (II-bviii), the content of said compounds being within a range from 10 to 100% by weight:

(II-bi) compound in which R^1 is an alkyl or alkenyl group having 2 to 5 carbon atoms, p^1 is 0, and Q^1 is -CN, in the general formula (II-1);

(II-bii) compound in which R¹ is an alkyl or alkenyl group having 2 to 5 carbon atoms, p¹ is 1, O¹ is F or -CN, and Y1 and Y2 represent H or F, in the general formula (II-1);

(II-biii) compound in which R¹ is an alkyl or alkenyl group having 2 to 5 carbon atoms, p¹ is 0, Q¹ is -CN, and Y¹, Y², W¹ and W² represent H or F, in the general formula (II-2);

(II-biv) compound in which R^1 is an alkyl or alkenyl group having 2 to 5 carbon atoms, p^1 is 1, P^2 is a single bond, $-(CH_2)_2$, or -COO, P^1 is a single bond, -COO, or $-C \equiv C$, Q^1 is F or -CN, and Y^1 , Y^2 , W^1 and W^2 represent H or F, in the general formula (II-2);

(II-bv) compound in which R^1 is an alkyl or alkenyl group having 2 to 5 carbon atoms, and one of P^1 and P^3 is a single bond and other one is a single bond, -COO-, or -C=C-, in the general formula (II-3);

(II-bvi) compound in which R¹ is an alkyl or alkenyl group having 2 to 5 carbon atoms, and Y¹, Y² and W¹ to W⁴ represent H or F, in the general formula (II-3);

(II-bvii) compound in which R^1 is an alkyl or alkenyl group having 2 to 7 carbon atoms, and $p^2+p^3=0$, in the general formula (II-4); and

(II-bviii) compounds of the general formulas (II-1) to (II-2) in which at least one hydrogen atom of rings B^1 and B^2 is substituted with a deuterium atom if rings B^1 and B^2 represent trans-1,4-cyclohexylene.

Claim 8 (Withdrawn): A nematic liquid crystal composition according to claim 5, wherein said liquid crystal component B contains one to twenty kinds of compounds selected from one, two, or three or more sub-groups among the following sub-groups (II-ci) to (II-civ), the content of said compounds being within a range from 10 to 100% by weight:

(II-ci) compound in which R^1 is an alkyl or alkenyl group having 2 to 5 carbon atoms, p^1 is 1, one of P^1 and P^2 is a single bond and other one is a single bond, -COO-, -(CH₂)₂-, or -(CH₂)₄, Q^1

is F, Cl, CF₃, OCF₃, or OCF₂H, and one, or two or more of Y¹ and Y² represent F, in the general formula (II-2);

(II-cii) compound in which R^1 is an alkyl or alkenyl group having 2 to 5 carbon atoms, p^1 is 1, P^2 is a single bond, $-(CH_2)_2$, or -COO, P^1 is a single bond, -COO, or $-C \equiv C$, Q^1 is F, Cl, CF_3 , OCF₃, or OCF₂H, one, or two or more of Y^1 and Y^2 represent F, and W^1 and W^2 represent H or F, in the general formula (II-2);

(II-ciii) compound in which R^1 is an alkyl or alkenyl group having 2 to 5 carbon atoms, one of P^1 and P^3 is a single bond and the other one is a single bond, -COO-, or -C=C-, Q^1 is F, Cl, CF₃, OCF₃, or OCF₂H, one, or two or more of Y^1 and Y^2 represent F, and W^1 to W^4 represent H or at least one of them is F, in the general formula (II-3); and

(II-civ) compound of the general formulas (II-1) and (II-2) in which at least three hydrogen atoms of rings B¹ and B² are substituted with a deuterium atom if rings B¹ and B² represent trans-1,4-cyclohexylene.

Claim 9 (Withdrawn): A nematic liquid crystal composition according to claim 1, wherein said liquid crystal component C contains compounds selected from the group of compounds represented by the general formulas (III-1) to (III-4):

(III-1)
$$R^{2} \underbrace{\left\{C^{l}\right\}}_{m} M^{l} \underbrace{\left\{C^{2}\right\}}_{m} M^{2} \underbrace{\left\{C^{2}\right\}}_{Z^{3}} R^{3}$$

(III- 2)
$$R^{2} \underbrace{C^{2}}_{M^{2}} \underbrace{M^{2}}_{M^{2}} \underbrace{M^{1}}_{m^{1}} \underbrace{R^{3}}_{M^{2}}$$

(III-3)
$$R^{2} \underbrace{ \begin{bmatrix} C^{l} \\ -M^{l} \end{bmatrix}_{m^{l}}^{W^{3}} \underbrace{W^{1}}_{W^{2}} \underbrace{Z^{3}}_{Z^{2}}^{Z^{1}} \underbrace{Z^{1}}_{Z^{2}}^{R^{3}} }$$

(III-4)
$$R^{2} \underbrace{ \begin{bmatrix} C^{l} \end{bmatrix}_{m^{2}}^{W^{3}} \underbrace{W^{1}}_{W^{2}} \underbrace{ \begin{bmatrix} C^{3} \end{bmatrix}_{m^{3}}^{R^{3}}}$$

(wherein W1 to W3 each independently represents H, F, Cl, CF3, OCF3, or CN;

V represents CH or N;

R² and R³ each independently represents an alkyl or alkoxy group having 1 to 10 carbon atoms or an alkenyl or alkenyloxy group having 2 to 10 carbon atoms, said alkyl, alkoxy, alkenyl or alkenyloxy group can have one, or two or more F, Cl, CN, CH₃ or CF₃ as a non-substituent or substituent group, and one, or two or more CH₂ group, which are present in said alkyl, alkoxy, alkenyl or alkenyloxy group, may be substituted with O, CO or COO, while O atoms do not bond with each other directly;

 Z^1 to Z^3 each independently represents H, F, Cl, CF₃, OCF₃, or CN, and Z^3 each independently represents -CH₃;

 M^1 to M^3 each independently represents, a single bond, -COO-, -OCO-, -CH₂O-, -OCH₂- -(CH₂)₂-, -(CH₂)₄-, -CH=CH- (CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-CH=CH-, -CH=N-, =CH=N-N=CH-, or -N(O)=N-, and

M¹ and M³ each independently represents -CH=CH-, -CF=CF-, or C≡C-;

rings C¹ to C³ each independently represents trans-1,4-cyclohexylene, trans-1,4-cyclohexenylene, trans-1,3-dioxane- 2,5-diyl, trans-1-sila-1,4-cyclohexylene, trans-4-sila-1,4- cyclohexylene, naphthalene-2,6-diyl, 1,2,3,4- tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, naphthalene-2,6-diyl and 1,2,3,4-tetrahydronaphthalene- 2,6-diyl can have one, or two or more F, C1, CF₃ or CH₃ as a non-substituent or substituent group, and rings C¹ and C³ may also be 1,4-phenylene, 2,3-difluoro-1,4-phenylene, 3,5-difluoro-1,4-phenylene, 2- or

3-chloro-1,4-phenylene, 2,3- dichloro-1,4-phenylene, or 3,5-dichloro-1,4-phenylene; one, or two or more hydrogen atoms, which are present in side chain groups R^2 and R^3 , linking groups M^1 to M^3 and rings C^1 to C^3 , may be substituted with a deuterium atom; m^1 to m^3 each independently represents 0 or 1, and $m^2 + m^3$ is 0 or 1; and atoms, which constitute the compounds of the general formulas (III-1) to (III-4), may be substituted with isotope atoms thereof).

Claim 10 (Withdrawn): A nematic liquid crystal composition according to claim 9, wherein said liquid crystal component C satisfies at least one of the following conditions:

- (i) said liquid crystal component C contains one, or two or more kinds of compounds selected from compounds represented by the general formula (III-1), the content of said selected compounds in said liquid crystal component C being within a range from 5 to 100% by weight;
- (ii) said liquid crystal component C contains one, or two or more kinds of compounds selected from compounds represented by the general formula (III-2), the content of said selected compounds in said liquid crystal component C being within a range from 5 to 100% by weight;
- (iii) said liquid crystal component C contains one, or two or more kinds of compounds selected from compounds represented by the general formula (III-3), the content of said selected compounds in said liquid crystal component C being within a range from 5 to 100% by weight;

U.S. Patent Application Serial No. 09/787,614

Response filed September 24, 2004

Reply to OA dated July 1, 2004

(iv) said liquid crystal component C contains one, or two or more kinds of compounds

selected from the compounds represented by the general formula (III-4), the content of said selected

compounds in said liquid crystal component C being within a range from 5 to 100% by weight;

(v) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1) and one, or two or more kinds

of compounds selected from compounds represented by the general formula (III-2), the content of

said selected compounds in said liquid crystal component C being within a range from 5 to 100%

by weight;

(vi) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1) and one, or two or more kinds

of compounds selected from compounds represented by the general formula (III-3), the content of

said selected compounds in said liquid crystal component C being within a range from 5 to 100%

by weight;

(vii) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1) and one, or two or more kinds

of compounds selected from compounds represented by the general formula (III-4), the content of

said selected compounds in said liquid crystal component C being within a range from 5 to 100%

by weight;

(viii) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-2) and one, or two or more kinds

-26-

U.S. Patent Application Serial No. 09/787,614

Response filed September 24, 2004

Reply to OA dated July 1, 2004

of compounds selected from compounds represented by the general formula (III-3), the content of

said selected compounds in said liquid crystal component C being within a range from 5 to 100%

by weight;

(ix) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-2) and one, or two or more kinds

of compounds selected from compounds represented by the general formula (III-4), the content of

said selected compounds in said liquid crystal component C being within a range from 5 to 100%

by weight;

(x) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-3) and one, or two or more kinds

of compounds selected from compounds represented by the general formula (III-4), the content of

said selected compounds in said liquid crystal component C being within a range from 5 to 100%

by weight;

(xi) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (III-2) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (III-3), the

content of said selected compounds in said liquid crystal component C being within a range from

5 to 100% by weight;

-27-

Reply to OA dated July 1, 2004

(xii) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (III-2) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (III-4), the

content of said selected compounds in said liquid crystal component C being within a range from

5 to 100% by weight;

(xiii) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1), one, or two or more kinds of

compounds selected from compounds represented by the general formula (III-3) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (III-4), the

content of said selected compounds in said liquid crystal component C being within a range from

5 to 100% by weight;

(xiv) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-2), one, or two or more kinds of

compounds selected from compounds represented by the general formula (III-3) and one, or two or

more kinds of compounds selected from compounds represented by the general formula (III-4), the

content of said selected compounds in said liquid crystal component C being within a range from

5 to 100% by weight;

(xv) said liquid crystal component C contains one, or two or more kinds of compounds

selected from compounds represented by the general formula (III-1), one, or two or more kinds of

-28-

compounds selected from compounds represented by the general formula (III-2), one, or two or more kinds of compounds selected from compounds represented by the general formula (III-3) and one, or two or more kinds of compounds selected from compounds represented by the general formula

(III-4), the content of said selected compounds in said liquid crystal component C being within a

range from 5 to 100% by weight.

Claim 11 (Withdrawn): A nematic liquid crystal composition according to claim 9, wherein

said liquid crystal component C contains one to twenty kinds of compounds selected from one, two,

or three or more sub-groups among the following sub-groups (III-ai) to (III-axii), the content of said

compounds being within a range from 10 to 100% by weight:

(III-ai) compounds in which R² is an alkenyl group having 2 to 5 carbon atoms, in the general

formulas (Π -1) to (Π -4);

(III-aii) compounds in which R³ is a straight-chain alkenyl or alkenyloxy group having 2 to 7 carbon

atoms, in the general formula (III-1);

(III-aiii) compounds in which m¹ is 0 and M² is a single bond or -(CH₂)₂-, in the general formula

 $(\Pi - 1);$

(III-aiv) compound in which m¹ is 1, in the general formula (III-1);

(III-av) compound represented by the general formula (III-2);

(III-avi) compound in which at least one of Z¹, Z² and W¹ to W³ is F, in the general formula (III-3);

(III-avii) compound in which Z³ is F or -CH₃, in the general formula (III-3);

(III-aviii) compound in which m^1 is 0 and M^3 is a single bond, in the general formula (III-3); (III-aix) compound in which m^1 is 1, M^1 is a single bond, -OCO-, -CH₂O-, -OCH₂-, -(CH₂)₂-, -(CH₂)₄-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CH=N-, -CH=N-N=CH-, -N(O)=N-, -CH=CH-, or -CF=CF-, in the general formula (III-3);

(III-ax) compound in which M^1 is COO- or $-C \equiv C$ - and M^3 is -OCO-, $-CH_2O$ -, $-OCH_2^-$, $-(CH_2)_2^-$, $-(CH_2)_4^-$, $-CH=CH-(CH_2)_2^-$, $-(CH_2)_2^-$, -(CH

(III-axi) compound represented by the general formula (III-4); and

(III-axii) compounds in which at least one hydrogen atom of rings C^1 to C^3 is substituted with a deuterium atom if rings C^1 to C^3 represent trans-1,4-cyclohexylene, in the general formulas (III-1) to (III-4).

Claim 12 (Withdrawn): A nematic liquid crystal composition according to claim 9, wherein said liquid crystal component C contains one to twenty kinds of compounds selected from one, two, or three or more sub-groups among the following sub-groups (III-bi) to (III-bix), the content of said compounds being within a range from 10 to 100% by weight:

(III-bi) compound in which R^2 is an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, R^3 is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl or alkenyloxy group having 2 to 5 carbon atoms, m^1 is 0, and M^2 is a single bond, -COO-, or -(CH₂)₂, in the general formula (III-1);

(III-bii) compound in which R^2 is an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, R^3 is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl or alkenyloxy group having 2 to 5 carbon atoms, m^1 is 1, the ring C^1 is trans-1,4-cyclohexylene, and one of M^1 and M^2 is a single bond and other one is a single bond, -COO-, or a -(CH₂)₂-, in the general formula (III-1);

(III-biii) compound in which R^2 is an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, R^3 is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl or alkenyloxy group having 2 to 5 carbon atoms, the ring C^2 is trans-1,4-cyclohexylene or trans-1,4-cyclohexenylene, m^1 is 0, and M^2 is a single bond, -COO-, or -(CH₂)₂-, in the general formula (III-2);

(III-biv) compound in which R^2 is an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, R^3 is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl or alkenyloxy group having 2 to 5 carbon atoms, the ring C^2 is trans-1,4-cyclohexylene or trans-1,4-cyclohexenylene, m^1 is 1, and one of M^1 and M^2 is a single bond, in the general formula (III-2); (III-bv) compound in which R^2 is an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, R^3 is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl or alkenyloxy group having 2 to 5 carbon atoms, R^3 is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl or alkenyloxy group having 2 to 5 carbon atoms, R^3 is a single bond, R^3 is a

(III-bvi) compound in which R² is an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, R³ is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl

Reply to OA dated July 1, 2004

or alkenyloxy group having 2 to 5 carbon atoms, m¹ is 1, M¹ is a single bond, -(CH₂)₂-, -COO-, or

-C≡C-, and M² is a single bond, -COO-, or -C≡C-, in the general formula (III-3);

(III-bvii) compound in which R² is an alkyl group having 1 to 5 carbon atoms or an alkenyl group

having 2 to 5 carbon atoms, R³ is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl

or alkenyloxy group having 2 to 5 carbon atoms, m¹ is 1, one of M¹ and M³ is a single bond and

other one is a single bond or -C=C-, and at least one of W1 and W2 is F, in the general formula (III-3);

(III-bviii) compound in which R² is an alkyl group having 1 to 5 carbon atoms or an alkenyl group

having 2 to 5 carbon atoms, R³ is an alkyl or alkoxy group having 1 to 5 carbon atoms, or an alkenyl

or alkenyloxy group having 2 to 5 carbon atoms, and any one of Z² and Z³ is substituted with F or

CH₃, in the general formula (III-3); and

(III-bix) compound in which R² is an alkyl group having 1 to 5 carbon atoms or an alkenyl group

having 2 to 5 carbon atoms, R³ is an alkyl or alkyloxy group having 1 to 5 carbon atoms, or an

alkenyl or alkenyloxy group having 2 to 5 carbon atoms, and m²+m³=0, in the general formula (III-

4).

Claim 13 (Previously Presented): A nematic liquid crystal composition according to claim

1, wherein said liquid crystal composition contains one, or two or more kinds of core-structure

compounds which have four six-membered rings and a liquid crystal phase- isotropic liquid phase

transition temperature of 100°C or higher.

-32-

Reply to OA dated July 1, 2004

4 0-

Claim 14 (Previously Presented): A nematic liquid crystal composition according to claim

1, wherein said liquid crystal composition has a dielectric constant anisotropy within a range from

2 to 40, a birefringent index within a range from 0.02 to 0.40, a nematic phase-isotropic liquid phase

transfer temperature within a range from 50 to 180°C or higher, and a crystal phase-, smectic phase-

or glass phase-nematic phase transfer temperature within a range from -200 to 0°C.

Claim 15 (Previously Presented): A nematic liquid crystal composition according to claim

1, wherein said liquid crystal composition contains a compound having an optically active group

capable of securing an induced helical pitch within a range from 0.5 to $1000\mu m$.

Claim 16 (Previously Presented): An active matrix, twisted nematic or super twisted

nematic liquid display device using the nematic liquid crystal composition of claim 1.

Claim 17 (Previously Presented): A light scattering type liquid display device comprising

a light modulation layer which contains the liquid crystal composition of claim 1 and a transparent

solid substance.

Claim 18 (Original): A light scattering type liquid display device according to claim 17,

wherein said liquid crystal composition formed a continuous layer in said light modulation layer and

-33-

said transparent solid substance formed a uniform three-dimensional network in said continuous layer.

Claim 19 (Previously Presented): A nematic liquid crystal composition comprising a liquid crystal component A composed of one kind of compound represented by a general formula selected from the general formulas (I-1) to (I-5):

$$(I-1) \atop R^{1} \stackrel{L}{\stackrel{L}{\stackrel{}}} \stackrel{K^{1}}{\stackrel{}} \stackrel{K^{2}}{\stackrel{}} \stackrel{K^{2}}{\stackrel{}} \stackrel{K^{2}}{\stackrel{}} \stackrel{K^{3}}{\stackrel{}} \stackrel{K^{3}}{\stackrel{}} \stackrel{W^{5}}{\stackrel{}} \stackrel{W^{3}}{\stackrel{}} \stackrel{W^{1}}{\stackrel{}} \stackrel{W^{5}}{\stackrel{}} \stackrel{W^{3}}{\stackrel{}} \stackrel{W^{1}}{\stackrel{}} \stackrel{W^{5}}{\stackrel{}} \stackrel{W^{3}}{\stackrel{}} \stackrel{W^{1}}{\stackrel{}} \stackrel{K^{2}}{\stackrel{}} \stackrel{K^{2}}{\stackrel{K^{2}}} \stackrel{K^{2}}} \stackrel{K^{2}}{\stackrel{K^{2}}} \stackrel{K^{2}}} \stackrel{K^{2}}{\stackrel{K^{2$$

e ot

(wherein one, or two or more CH groups, which are present in a naphthalene-2,6-diyl ring, may be substituted with a N group,

one, or two or more -CH₂- groups, which are present in a decahydronaphthalene-2,6-diyl ring, may be substituted with -CF₂-, one, or two or more -CH₂- CH₂- groups, which are present in said ring, may be substituted with -CH₂O-, -CH=CH-, -CH+CF-, -CF=CF-, -CH=N- or -CF=N-, one, or two or more >CH-CH₂- groups, which are present in said ring, may be substituted with >CH-O-, >C=CH-, >C=CF-, >C=N- or .N-CH₂-, a >CH-CH< group, which is present in the ring, may be substituted with >CH-CF<, >CF-CF< or >C-C<, and at least one C in said non-substituted or substituted ring may be substituted with Si;

R¹ each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, said alkyl or alkenyl group can have one, or two or more F, C1, CN, CH₃ or CF₃ as a non-substituent or substituent group, and one, or two or more CH₂ groups may be substituted with O, CO or COO, while O atoms do not bond with each other directly;

Q¹ each independently represents F, C1, CF₃, OCF₂H, OCFH₂, NCS, or CN; X¹ to X³ each independently represents H, F, C1, CF₃, OCF₃, or CN;

W¹ to W⁶ each independently represents H, F, C1, CF₃, OCF₃, or CN, and also W⁴ each independently represents CH₃, and at least one of W¹ to W⁶ is F, C1, CF₃, OCF₃, or CN;

 K^1 to K^5 each independently represents, a single bond, -COO-, OCO-, -CH₂O-, -CH=CH-, -CF=CF-, =C \equiv C-, -(CH₂)₂-, -(CH₂)₄-, -CH=CH-(CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-CH=CH-, -CH=N-, -CH=N-CH-, or -N(O)=N-;

· 01 .

rinds A¹ to A⁴ each independently represents 1,4-phenylene, 2- or 3-fluor-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 3,5-difluoro-1,4-phenylene, 2- or 3-chloro-1,4-phenylene, 2,3-dichloro-1,4-phenylene, 3,5-dichloro-1,4-phenylene, pyrimidine-2,5-diyl, trans-1,4-cyclohexylene, trans-1,4-cyclohexylene, trans-1,3-dioxane-2,5-diyl, trans-1-sila-1,4-cyclohexylene, trans-4-sila-1,4-cyclohexylene, naphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, or decahydronaphthalene-2,6-diyl, and naphthalene-2,6-diyl and 1,2,3,4-tetrahydronaphthalene-2,6-diyl can have one, or two or more F, C1, CF₃ or CH₃ as a non-substituent or substituent group;

one, or two or more hydrogen atoms, which are presetn in a naphthalene-2,6-diyl ring, a 1,2,3,4-tetrahydronaphthalene-2,6-diyl ring, a decahydronaphthalene-2,6-diyl ring a side chain group R¹, a polar group Q¹, linking groups K¹ to K⁵ and rings A¹ to A⁴, may be substituted with a deuterium atom;

 k^1 to k^8 each independently represents 0 or 1, $k^3 + k^4$ is 0 or 1, and $k^5 + k^6 + k^7 + k^8$ is 0, 1 or 2; and

atoms, which constitute the compounds of the general formulas (I-1) to (I-5), may be substituted with isotope atoms thereof; 0 to 99.9% by weight of a liquid crystal component B composed of a compound having a dielectric constant anisotropy of +2 or more as a liquid crystal component excluding the compounds of the general formulas (I-1) to (I-5); and 0 to 85% by weight of a liquid crystal component C composed of a compound having a dielectric constant anisotropy within a range from -10 to +2; the sum total of said liquid crystal component B and said liquid crystal component C being within a range from 0 to 99.9% by weight.