Calibration of computer models A Closer Look at the Discrepancy Function

Pierre BARBILLON

Fall 2023, école ETICS

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

Validation in [Bayarri et al., 2007] by examinning the Discrepancy.

Estimate tolerance bounds by computing: For a fixed level γ , the tolerance bounds $\tau = \tau(\mathbf{x})$ are then computed such that $\gamma \cdot 100\%$ of the samples satisfy:

- for pure simulator predictions $\left|\hat{t}(\mathbf{x}_{\textit{new}},\hat{m{ heta}}) \zeta^{(i)}(\mathbf{x}_{\textit{new}}) \right| < au$
- ullet for bias-corrected predictions $\left|\hat{\zeta}(\mathbf{x}_{\textit{new}}) \zeta^{(i)}(\mathbf{x}_{\textit{new}})
 ight| < au$

where

- $\hat{f}(\mathbf{x}_{new}, \hat{\boldsymbol{\theta}}) = m_D(\mathbf{x}_{new}, \hat{\boldsymbol{\theta}})$ where $\hat{\boldsymbol{\theta}}$ may refer to the posterior mean,
- $F^{(i)}(\mathbf{x}_{new}, \boldsymbol{\theta}^{(i)})$ and $\delta^{(i)}(\mathbf{x}_{new})$ (1 $\leq i \leq N$) are obtained by an MCMC algorithm sampling from the joint posterior predictive distribution,
- $\hat{\zeta}(\mathbf{x}_{new}) = \frac{1}{N} \sum_{i=1}^{N} \left(F^{(i)}(\mathbf{x}_{new}, \boldsymbol{\theta}^{(i)}) + \delta^{(i)}(\mathbf{x}_{new}) \right).$

Note that the discrepancy can be estimated from the posterior model and discrepancy sampling on a set of new locations: \mathbf{X}_{new} :

$$\hat{\delta}_{\hat{\theta}} = \hat{\zeta}_{\text{new}} - \hat{f}(\mathbf{x}_{\text{new}}, \hat{\boldsymbol{\theta}}).$$

4/29

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

L₂ Calibration

Defined in [Tuo and Wu, 2016]:

$$\boldsymbol{\theta}_{L_2} = \underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \|\delta_{\boldsymbol{\theta}}(\cdot)\|_{L_2(\mathcal{X})} = \underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \left(\int_{\mathcal{X}} (\zeta(\mathbf{x}) - f(\mathbf{x}, \boldsymbol{\theta}))^2 d\mathbf{x} \right)^{1/2}.$$

[Tuo et al., 2015] proposes to first obtain an estimate $\hat{\zeta}$ of the reality ζ via a Gaussian stochastic stochastic process and then plug it into the minimization problem to get $\hat{\theta}_{L_2}$. Consistent estimation $\hat{\theta}_{L_2} \to \theta_{L_2}$ provided that $\hat{\zeta}$ is good approximation. An alternative least square :

$$\hat{\boldsymbol{\theta}}_{LS} = \underset{\Theta}{\operatorname{argmin}} \left(\sum_{i=1}^{n_{\theta}} (y_i^{\theta} - f(\mathbf{x}^{\theta}, \boldsymbol{\theta}))^2 \right)$$

[Tuo et al., 2015] proves the convergence $\hat{\theta}_{LS} \to \theta_{L_2}$ [Wong et al., 2017] uses LS calibration as a plug-in estimator for estimating the discrepancy function via a nonparametric regression

6/29

Scaled Gaussian Process

[Gu and Wang, 2018]

$$y_i^e = f(\mathbf{x}_i^e, \boldsymbol{\theta}) + \mu^{\delta}(\mathbf{x}_i^e) + \delta_z(\mathbf{x}_i^e) + \epsilon_i$$

$$\mu^{\delta}(\mathbf{x}) = \sum_{i=1}^q h(\mathbf{x})\beta_i$$

$$\delta_z(\cdot) \sim GP(0, \sigma_{\delta}^2 c_{\delta}(\cdot, \cdot)) \text{ s.t. } \int_{\mathcal{X}} \delta_z(\mathbf{x})^2 d\mathbf{x} = Z$$

$$Z \sim p_{\delta_z}(\cdot), \quad p_{\delta_z}(z) \propto f_z(Z = z|\lambda) \cdot p_{\delta}(z|\boldsymbol{\theta}, \Psi)$$

where $p_{\delta}(z|\theta,\Psi)$ is the implicit prior on Z for a GP on the discrepancy. Then if f_z constant \Rightarrow Model is equivalent to KOH model.

7/29

Comparison GP with SGP

Figure 2. Fifty samples from the GaSP and discretized S-GaSP are graphed in the left and right panels, respectively, where x_i is equally spaced in [0, 1]. For both processes, we let $\mu^{\delta} = 0$, $\sigma^2_{\delta} = 1$ and $\gamma^{\delta} = 1/2$. In the discretized S-GaSP, $\mathbf{x}_i^C = \mathbf{x}_i$ for $i = 1, ..., N_C$, $N_C = n$ and $\lambda = n/2$ are assumed.

from [Gu and Wang, 2018].

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

P. Barbillon

Model Comparison

[Damblin et al., 2016]

• \mathcal{H}_0 : $\zeta(\cdot) = f(\cdot, \theta^*)$ for a "true" θ^* :

$$y_i = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \epsilon_i^0,$$

where $\epsilon_i^0 \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \lambda_0^2)$.

• \mathcal{H}_1 : Code discrepancy term $\delta(\mathbf{x})$ s.t. $\zeta(\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\theta}^*) + \delta(\mathbf{x})$:

$$y_i = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \delta(\mathbf{x}_i) + \epsilon_i^1$$
 where $\delta(.) \sim \mathcal{GP}(0, \sigma_{\delta}^2 \Sigma_{\psi}(., .))$
and $\epsilon_i^1 \stackrel{iid}{\sim} \mathcal{N}(0, \lambda_1^2)$

Bayes Factor

$$B_{0,1}(\mathbf{y}^e) := \frac{p(\mathbf{y}^e | \mathcal{H}_0)}{p(\mathbf{y}^e | \mathcal{H}_1)} \quad \text{where} \quad p(\mathbf{z} | \mathcal{H}_j) = \int_{\mathbf{p}_i} p(\mathbf{y}^e | \mathbf{p}_j, \mathcal{H}_j) \pi(\mathbf{p}_j) d\mathbf{p}_j.$$

11/29

Intrinsic Bayes Factor

[Berger and Pericchi, 1996]

Main issue: Evidence $p(\mathbf{y}^e|\mathcal{H}_j)$ sensitive to priors $\pi(\mathbf{p}_j)$.

- Need to use compatible priors [Celeux et al., 2006] or objective priors [Casella and Moreno, 2006],
- but marginal likelihood ill-defined (up to arbitrary constant) for improper priors (as objective priors often are).

Idea: using a part of data to obtain a proper prior:

Partial Bayes Factor:

$$B_{0,1}(\mathbf{y}^e(-m)|\mathbf{y}^e(m)) = \frac{\int I(\mathbf{p}_0;\mathbf{y}^e(-m)|\mathbf{y}^e(m))\pi(\mathbf{p}_0|\mathbf{y}^e(m))d\mathbf{p}_0}{\int I(\mathbf{p}_1;\mathbf{y}^e(-m)|\mathbf{y}^e(m))\pi(\mathbf{p}_1|\mathbf{y}^e(m))d\mathbf{p}_1} = \frac{B_{0,1}(\mathbf{y}^e)}{B_{0,1}(\mathbf{y}^e(m))}.$$

- $B_{0,1}(\mathbf{y}^e(-m)|\mathbf{y}^e(m))$ well-defined for $|m| \ge n_0$ large enough:
- Intrinsinc Bayes factor obtained by averaging over all $\mathbf{y}^e(m)$ s:

$$B_{0,1}^{A}(\mathbf{y}^{e}) = \frac{B_{0,1}(\mathbf{z})}{C(n,n_{0})} \sum_{|m|=n_{0}} B_{0,1}(\mathbf{y}^{e}(m))^{-1}.$$

IBF computation under linearization of the code

Linear assumption: $f(\mathbf{x}, \theta) = g(\mathbf{x})^{\top} \theta$, with $g(\mathbf{x}) \in \mathbb{R}^d$.

Prior choices and consequences:

• Model H₀ boils down to:

$$\mathcal{H}_0: oldsymbol{y}^e ~\sim ~ \mathcal{N}(Goldsymbol{ heta}_0; \lambda_0^2 I_{n_e}); ~~ oldsymbol{
ho}_0 = (oldsymbol{ heta}_0, \lambda_0^2)$$

where $G = [g(\mathbf{x}_1^e), \cdots, g(\mathbf{x}_{n_e}^e)]^{\top}$ the $n_e \times p$ design matrix.

- \hookrightarrow Under Jeffreys prior: $\pi(\mathbf{p}_0) \propto \lambda_0^{-2}$, $p(\mathbf{y}^e | \mathcal{H}_0)$ explicit.
- Model H₁ boils down to:

$$\begin{split} \mathcal{H}_1: \mathbf{y}^e & \sim & \mathcal{N}(G\theta_1; \sigma^2_\delta V_{k,\psi}); \quad \boldsymbol{p}_1 = (\theta_1, \sigma^2_\delta, \psi, k) \\ & V_{k,\psi}(i,j) = k \delta_{i,j} + e^{-||\boldsymbol{x}_i - \boldsymbol{x}_j||^2/\psi^2} \quad k = \lambda_1^2 \sigma^{-2} \,. \end{split}$$

- Prior choice: $\pi(\mathbf{p}_1) \propto \pi(\psi|k)\pi(k)\sigma^{-2}$ with proper priors for $\pi(\psi|k)\pi(k)$,
- Integration of $p(\mathbf{y}^e|\mathbf{p}_1,\mathcal{H}_1)$: explicit over $(\theta_1,\sigma_{\delta}^2)$, by Gaussian quadrature over (ψ,k) .

Discrepancy

P. Barbillon Fall 2023, école ETICS

13/29

Computation of the IBF

Proposition

If $\pi(\mathbf{p}_1) = \pi(\theta_1, \sigma_{\delta}^2, \psi, k) = \pi(\psi|k)\pi(k)/\sigma_{\delta}^2$, $\pi(\psi, k)$ is proper and m = d + 1 then

$$B_{0,1}^{A}(\mathbf{y}^{e}) = \frac{B_{0,1}(\mathbf{z})}{C(n,n_{0})} \sum_{|m|=n_{0}} B_{0,1}(\mathbf{y}^{e}(m))^{-1} = B_{0,1}(\mathbf{y}^{e})$$

In the following,

$$\pi(\psi|k) = \mathcal{U}([0,1]),$$

$$\pi(k) = Be(1,3).$$

14/29

Synthetic data

Data simulated according to model \mathcal{H}_1 , with $\delta \sim GP(0, \sigma_\delta^2 \Sigma_\psi)$:

$$\mathbf{x}_{i}^{e} = \left(\frac{i}{n_{e}}\right)_{1 \leq i \leq n}, \quad n_{e} = 30, \quad \sigma_{\delta}^{2} = 0.1, \quad k = 0.1.$$

From left to right

- constant trend $g(\mathbf{x}) = 1$; $\theta_1 = 1$,
- linear trend $g(\mathbf{x}) = (1, x)$; $\theta_1 = (1, 1)$,
- quadratic trend $g(\mathbf{x}) = (1, x, x^2)$; $\theta_1 = (1, 1, 1)$.
- Bayes factor $B_{0,1}^A$ expected to decrease with ψ .

Boxplots of $B_{0,1}^A(\mathbf{y}^e)$ values over 100 simulations with constant, linear and quadratic trends (left to right)

Confounding Effect

• $\psi, k, \sigma_{\delta}^2$ estimated by maximum likelihood.

P. Barbillon

• For $\psi = 0.7$, discrepancy indistinguishable from quadratic trend!

Fall 2023, école ETICS

16/29

Discrepancy

Case description

- Industrial computer code predicting the productivity of an electric power plant. based on measurements (temperature, pressure, discharge, ...) throughout the plant
- n = 24 available field measures (results of periodic testing) to validate code Main code features:
 - p = 20 input variables ($\mathbf{x} \in \mathbb{R}^{20}$)
 - d=2 parameters: heat transfer coefficient of the condenser, yield of the main turbine 2.
 - Two outputs of interest (electric power, condenser pressure), seen here as two separate codes
 - Code **linearized** in neighbourhood of reference value θ^* :

$$f(\boldsymbol{x}_i, \boldsymbol{\theta}) \approx f(\boldsymbol{x}_i, \boldsymbol{\theta}^*) + h(\boldsymbol{x}_i)^{\top} (\boldsymbol{\theta} - \boldsymbol{\theta}^*),$$

where $h(\mathbf{x}_i) = \nabla_{\theta} f(\mathbf{x}_i, \theta^*)$ evaluated numerically through finite difference

17/29

P. Barbillon Fall 2023, école ETICS Discrepancy

Calibrated code predictions vs measures

- $B_{0,1}^A = 2 \times 10^{-18}$
- Bias reduced by calibration, but not supressed
- strong evidence for code discrepancy

18/29

 $B_{0.1}^A = 3 \times 10^{-3}$

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

Model selection as a mixture problem

[Kamary et al., 2019] inspired by [Kamary et al., 2014]. Model selection problem:

$$\mathfrak{M}_0: y_i = f(\mathbf{x}_i, \boldsymbol{\theta}_0) + \epsilon_i^0$$

$$\mathfrak{M}_1: y_i = f(\mathbf{x}_i, \boldsymbol{\theta}_1) + \delta(\mathbf{x}_i) + \epsilon_i^1.$$

where $\epsilon_i^0 \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, \lambda_0^2)$ and $\epsilon_i^1 \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, \lambda_1^2)$

converted into a mixture model:

$$\mathfrak{M}_{\alpha}: y_i \sim \alpha \left(\ell_{\mathfrak{M}_0}(\boldsymbol{\theta}_0, \lambda_0^2; y_i, \mathbf{x}_i) \right) + (1 - \alpha) \left(\ell_{\mathfrak{M}_1}(\boldsymbol{\theta}_1, \lambda_1^2, \delta; y_i, \mathbf{x}_i) \right).$$

- Model \mathfrak{M}_{α} is defined under the hypothesis that the likelihood of the model \mathfrak{M}_1 is conditioned on δ .
- δ is considered as a parameter of M₁.
- Conditionnally on δ , the y_i 's are considered independent.
- Posterior distribution on α will provide a decision rule for \mathfrak{M}_0 against \mathfrak{M}_1 .

◆ロ → ◆部 → ◆注 → 注 → りへ○

20/29

Hypotheses and prior distribution

- Linear code: $f(\mathbf{x}, \theta) = g(\mathbf{x})^{\top} \theta$.
- GP prior for discrepancy function:

$$\delta(.) \sim \mathcal{GP}(0, \sigma_{\delta}^2 \Sigma_{\psi}(.,.))$$
.

• Some parameters are common, θ and λ^2 so a common prior distribution is chosen for both.

$$\mathfrak{M}_{\alpha}: \mathbf{y}_{i} \sim \alpha \left(\ell_{\mathfrak{M}_{0}}(\boldsymbol{\theta}, \lambda^{2}; \mathbf{y}_{i}, \mathbf{x}_{i}) \right) + (1 - \alpha) \left(\ell_{\mathfrak{M}_{1}}(\boldsymbol{\theta}, \lambda^{2}, \delta; \mathbf{y}_{i}, \mathbf{x}_{i}) \right).$$

21/29

Posterior distribution

Theorem

Let $g: \mathbb{R}^p \to \mathbb{R}^d$ be a finite-valued function and vector $\mathbf{x}_1^e, \dots, \mathbf{x}_n^e$ such that the rank of $\{g(\mathbf{x}_1^e), \dots, g(\mathbf{x}_n^e)\}$ is d. The posterior distribution associated with the prior $\pi(\theta, \lambda^2) = \frac{1}{\lambda^2}$ and with the likelihood is proper when

- for any 0 < k < 1, the hyperparameter σ_δ^2 of the discrepancy prior distribution is reparameterized as $\sigma_\delta^2 = {\lambda^2}/{k}$ and so $\Sigma_\psi = ({\lambda^2}/{k}) \mathrm{Corr}_{\psi_\delta}$ when $\mathrm{Corr}_{\psi_\delta}$ is the correlation function of δ .
- the mixture weight α has a proper beta prior $\mathcal{B}(a_0, a_0)$;
- ψ_{δ} has a proper Beta prior $\mathcal{B}(b_1, b_2)$.
- proper distribution is used on k.

22/29

Metropolis within Gibbs

Algorithm 1: Metropolis-within-Gibbs algorithm

for $\underline{t=1,\ldots,T}$ do

- a) $\delta^{(t)}$ is sampled from $\pi(\delta|\mathbf{y}^e, \mathbf{X}^e, \boldsymbol{\theta}^{(t-1)}, \lambda^{(t-1)}, k^{(t-1)}, \psi^{(t-1)}_{\delta}, \alpha^{(t-1)})$ as follows.
 - a.1) For $i=1,\ldots,n; j=0,1,$ generate auxiliaire variable $\nu_i^{(t)}$ from

$$\mathbb{P}(\nu_{i} = j | y_{i}^{e}, \mathbf{x}_{i}^{e}, \delta^{(t-1)}, \boldsymbol{\theta}^{(t-1)}, \lambda^{(t-1)}, k^{(t-1)}, \psi_{\delta}^{(t-1)}) .$$

a.2) Generate $\delta^{(t)}$ according to the conditional posterior distribution

$$\boldsymbol{\delta^{(t)}|\mathbf{y^e}, \mathbf{X^e}, \nu^{(t)} = 1, \boldsymbol{\theta^{(t-1)}}, \boldsymbol{\lambda^{(t-1)}}, \boldsymbol{k^{(t-1)}}, \boldsymbol{\psi^{(t-1)}_{\hat{\delta}}}, \boldsymbol{\alpha^{(t-1)}} \sim \mathcal{N}_{\textit{\Pi}}(\hat{\mu}_{\hat{\delta}}, \hat{\Sigma}_{\hat{\delta}}) \,.}$$

- $\text{b)} \quad \text{Generate } \boldsymbol{\theta}^{(t)} | \mathbf{y^e}, \mathbf{X^e}, \boldsymbol{\nu}^{(t)}, \delta^{(t)}, \lambda^{(t-1)}, k^{(t-1)}, \alpha^{(t-1)} \sim \mathcal{N}_{\boldsymbol{\mathcal{G}}}(\hat{\mu}_{\boldsymbol{\theta}}, \hat{\Sigma}_{\boldsymbol{\theta}}).$
- c) Generate $\lambda^{(t)} | \mathbf{y}^e, \mathbf{X}^e, \boldsymbol{\nu}^{(t)}, \delta^{(t-1)}, \boldsymbol{\theta}^{(t)}, k^{(t-1)}, \alpha^{(t-1)} \sim \mathcal{IG}(\hat{a}_\lambda, \hat{b}_\lambda).$
- d) Generate $\alpha^{(t)} | \mathbf{y}^e, \mathbf{X}^e, \boldsymbol{\nu}^{(t)}, \delta^{(t)}, \theta^{(t)}, \lambda^{(t)}, k^{(t-1)} \sim \mathcal{B} eta(n-m+a_0, m+a_0).$
- e) Generate $k^{(t)}$ from a random walk Metropolis-Hastings algorithm conditionally to $(\mathbf{y}^e, \mathbf{X}^e, \mathbf{\nu}^{(t)}, \delta^{(t)}, \theta^{(t)}, \lambda^{(t)}, \alpha^{(t)}, \psi_s^{(t-1)})$.
- f) Generate $\psi_{\delta}^{(t)}$ from a random walk Metropolis-Hastings algorithm conditionally to $(\mathbf{y}^{\mathbf{e}}, \mathbf{X}^{\mathbf{e}}, \boldsymbol{\nu}^{(t)}, \delta^{(t)}, \boldsymbol{\theta}^{(t)}, \lambda^{(t)}, \alpha^{(t)}, k^{(t)}).$

4 D > 4 A > 4 B > 4 B > B 90 0

Synthetic example \mathfrak{M}_0

Code is a quadratic function.

50 datasets of size n = 30 from $\mathfrak{M}_0 : y_i = g(x)^{\top} \theta^* + \epsilon_i$.

Priors as in the theorem, $\alpha \sim \mathcal{B}eta(1,1)$, $\delta \sim \mathcal{GP}(0_n, \Sigma_{\psi})$, $\psi_{\delta} \sim \mathcal{B}eta(1,1)$ and $k \sim \mathcal{B}eta(1,1)$.

Number of MCMC iterations is 10⁴ with a burn-in of 10³ iterations

Figure: Posterior mean estimates of θ , λ^2 , Posterior densities of α , Posterior prediction of the code.

P. Barbillon Fall 2023, école ETICS 24/29 Discrepancy

Synthetic example \mathfrak{M}_1

Code is a quadratic function.

50 samples of size 50 simulated from \mathfrak{M}_1 when ψ_{δ}^* varies between 0.01 and 0.9, $\delta^*(x) \sim \mathcal{GP}(0_n, \Sigma_{\psi}), \lambda^2 * = 0.1 \text{ and } k^* = 0.1.$

Priors as in the theorem, $\alpha \sim \mathcal{B}eta(1,1)$, $\delta \sim \mathcal{GP}(0_n, \Sigma_{\psi})$, $\psi_{\delta} \sim \mathcal{B}eta(1,1)$ and $k \sim \mathcal{B}eta(1,1)$.

Number of MCMC iterations is 10⁴ with a burn-in of 10³ iterations.

Figure: Posterior mean estimates for α and λ^2 .

25/29

P. Barbillon Fall 2023, école ETICS Discrepancy

Hydraulic application: Garonne river

TELEMAC 2D models the flow of the Garonne between Tonneins and la Réole:

$$h_i = f(q_i, \mathbf{K_s}),$$

with:

- h_i water heights,
- K_s = (K_{s1},..., K_{s5}) Strickler coefficients (5 friction coefficients)
- q_i river flow at Tonneins
- Linearization of the model around a reference value for the Strickler coefficient (limited to the most inflential ones).
- Only 7 data points available.

Results

Table: Probability of a code bias for each observation in Marmande

27/29

- Validation
- Robust Calibration
- Model Selection
 - Bayes Factor
 - Mixture model
- Posterior Inclusion Probabilities of input variables in the discrepancy

28/29

Variable selection in the discrepancy function

[Joseph and Yan, 2015]

- perform a sensitivity analysis on the discrepancy function,
- two-step procedure: i) find an optimal $\hat{\theta}$, ii) run an SA on the discrepancy (consequence of the fixed $\hat{\theta}$

[Barbillon et al., 2021]

- run an MCMC algorithm to obtain posterior distribution,
- post-process the posterior samples to compute probabilities of inclusion for each
 of the input variable in the discrepancy.

29/29

Barbillon, P., Forte, A., and Paulo, R. (2021).

Screening the discrepancy function of a computer model.

arXiv preprint arXiv:2109.02726.

Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., Lin, C.-H., and Tu, J. (2007).

A framework for validation of computer models.

Technometrics, 49(2):138-154.

Berger, J. O. and Pericchi, L. R. (1996).

The intrinsic bayes factor for model selection and prediction.

Journal of the American Statistical Association, 91(433):109–122.

Casella, G. and Moreno, E. (2006).

Objective Bayesian variable selection.

Journal of the American Statistical Association, 101(473):157–167.

Celeux, G., Marin, J.-M., and Robert, C. (2006).

Sélection bayésienne de variables en régression linéaire.

Journal de la société française de statistique, 147(1):59–79.

Damblin, G., Keller, M., Barbillon, P., Pasanisi, A., and Parent, É. (2016). Bayesian model selection for the validation of computer codes.

Quality and Reliability Engineering International, 32(6):2043–2054.

Gu, M. and Wang, L. (2018).

Scaled gaussian stochastic process for computer model calibration and prediction.

SIAM/ASA Journal on Uncertainty Quantification, 6(4):1555–1583.

Joseph, V. R. and Yan, H. (2015).

Engineering-driven statistical adjustment and calibration.

Technometrics, 57(2):257-267.

Kamary, K., Keller, M., Barbillon, P., Goeury, C., and Éric Parent (2019). Computer code validation via mixture model estimation.

Kamary, K., Mengersen, K., Robert, C. P., and Rousseau, J. (2014). Testing hypotheses via a mixture estimation model.

arXiv preprint arXiv:1412.2044.

Tuo, R., Wu, C. J., et al. (2015).

Efficient calibration for imperfect computer models.

The Annals of Statistics, 43(6):2331-2352.

Tuo, R. and Wu, J. (2016).

A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties.

SIAM/ASA Journal on Uncertainty Quantification, 4(1):767–795.

Wong, R. K., Storlie, C. B., and Lee, T. (2017).

A frequentist approach to computer model calibration.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(2):635–648.

29/29