Review for Midterm 2

Contents

1 Preliminaries (Lee 11 ~ 13) F-P numbers

Conditioning

Stability

2 Square Linear Systems

(5 lee.) [$A \stackrel{?}{\times} = \overline{b}$ where $A \in \mathbb{R}^{N \times N}$. Gaussian elimination $\longrightarrow LU$ factorization (With partial pivoting) (P)

3 Overdetermined Linear Systems (5 Lu.)

Preliminaries

Two Types of Errors

- absolute error
- relative error

Floating-Point Numbers

binary scientific notation:

$$\pm \left(1 + \frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_d}{2^d}\right) 2^E,$$

where b_i is 0 or 1 and E is an integer.

- d determines the resolution
- the range of *E* determines the *scope* or *extent*
- IEEE Standard (double-precision; 64 bits)
 - d = 52 and $-1022 \le E \le 1023$
 - $eps = 2^{-52} \approx 2 \times 10^{-16}$
 - realmin, realmax

Floating-Point Numbers (cont')

- Key features
 - On any interval of the form $[2^E,2^{E+1})$, there are 2^d evenly-spaced f-p numbers.
 - The spacing between two adjacent f-p numbers in $[2^E,2^{E+1})$ is $2^{E-d}=2^E$ eps .
 - The gap between 1 and the next f-p number is eps, the machine epsilon.
 - Representation error (in relative sense) is bounded by $\frac{1}{2}$ eps.

Conditioning (of a problem)

- The condition number measures the ratio of error in the result (or output) to error in the data (or input).
- Recall the definition of condition number $\kappa_f(x)$
- A large condition number implies that the error in a result may be much greater than the round-off error used to compute it.
- Catastrophic cancellation is one of the most common sources of loss of precision.

Stability (of an algorithm)

• When an algorithm produces much more error than can be explained by the condition number, the algorithm is unstable.

Square Linear Systems

Polynomial Interpolation

 Polynomial interpolation leads to a square linear system of equations with a Vandermonde matrix.

Gaussian Elimination and (P)LU Factorization

- A triangular linear system is solved by backward substitution or forward elimination.
- A general linear system is solved by Gaussian elimination.
- Gaussian elimination (with partial pivoting) is equivalent to (P)LU factorization.
- Solving a triangular linear system of size $n \times n$ takes $\sim n^2$ flops.
- PLU factorization takes $\sim \frac{2}{3}n^{\cancel{Y}}$ flops.

Norms

A norm generalizes the notion of length for vectors and matrices.

Vector p-norm

$$\|\mathbf{v}\|_{p} = \left(\sum_{i=1}^{n} |b_{i}|^{p}\right)^{1/p}, \quad p \in [1, \infty)$$

and

$$\|\mathbf{v}\|_{\infty} = \max_{i} |v_i|$$

Matrix p-norm (induced)

$$\|A\|_p = \max_{\|\mathbf{x}\| = 1} \|A\mathbf{x}\|_p, \quad p \in [1, \infty]$$

Frobenius norm (non-induced)

$$||A||_F = \left(\sum_i \sum_j |a_{i,j}|^2\right)^{1/2}$$

MATLAB: norm can calculate both vector and matrix norms

Row and Column Operations

Various row and column operations can be emulated by matrix multiplications. ("Left-multiplication for row actions, right-multiplication for column actions")

- row/column extraction (unit vector)
- row/column swap (elementary permutation matrix)
- row/column rearrangement (permutation matrix)
- row replacement $R_i \rightarrow R_i + cR_j$ (Gaussian transformation matrix)

Conditioning/Stability

- Partial pivoting is needed for numerical stability.
- The matrix condition number is equal to the condition number of solving a linear system of equations.

Programming Notes

- Built-in functionalities
 - backslash (\)
 - lu
 - norm
 - cond, condest, linsolve
- Demonstration/Instructional codes
 - backsub and forelim
 - GEnp and GEpp
 - mylu and myplu

Overdetermined Linear Systems

Polynomial Approximation

- The most common solution to overdetermined systems is obtained by *least squares*, which minimizes the 2-norm of the residual vector.
- Least squares is used to find fitting functions that depend linearly on the unknown parameters.
- Equivalence of the LLS problem and the normal equation
 - linear algebra proof
 - calculus proof

QR Factorization

- Orthogonal sets of vectors are preferred to nonorthogonal ones in computing. (no catastrophic cancellation)
- Matrices with orthonormal columns and orthogonal matrices enjoy many nice analytical properties.
- QR factorization plays a role in LLS similar to that of LU factorization in square linear systems.

$$\cdot Q^{-1} = Q^{T} \leftarrow Q^{T}Q = QQ^{T} = I$$

$$\cdot \quad \left\| \left(\overrightarrow{Q} \overset{\times}{\times} \right\|_{2} = \left\| \overrightarrow{X} \right\|_{2}$$

Two Types of QR Factorization

For $A \in \mathbb{R}^{m \times n}$, $m \geqslant n$:

- Thick QR factorization: A = QR
 - $Q \in \mathbb{R}^{m \times m}$ orthogonal
 - $R \in \mathbb{R}^{m \times n}$ upper triangular
 - obtained by using successive Householder transformation matrices for triangularization
- Thin: $A = \hat{Q}\hat{R}$
 - $\hat{Q} \in \mathbb{R}^{m \times n}$ orthonormal columns
 - $\hat{R} \in \mathbb{R}^{n \times n}$ upper triangular
 - obtained by Gram-Schmidt orthonormalization procedure

Householder Transformation Matrices

- A Householder transformation matrix H (associated with a vector \mathbf{z}) is a reflection matrix which is
 - symmetric,
 - orthogonal, and
 - transforms \mathbf{z} to $\pm \|\mathbf{z}\|_2 \mathbf{e}_1$.

$$H = I - 2 \frac{\overrightarrow{J} \overrightarrow{J}^T}{\overrightarrow{J}^T}$$

3(c) Show that Hz=11岁11克. (Recall: V=11岁112克一克.)

Soln

Note that

 $H = I - \frac{2\vec{V}\vec{V}^T}{\vec{V}^T\vec{V}}$ = = = 2 \(\frac{1}{2} \)

Programming Notes

- Built-in functionalities
 - backslash (\)
 - qr
- Demonstration/Instructional codes
 - lsqrfact: solving least squares using QR
 - gs: Gram-Schmidt (for homework)

Visualization of matrix p-norm

- · Writ vectors
- $\cdot \|A\|_{p} := \max_{\vec{x} \neq 0} \frac{\|A\vec{x}\|_{p}}{\|\vec{x}\|_{p}} = \max_{\|\vec{x}\|_{p=1}} \|A\vec{x}\|_{p}$

f (dr. yr): k=1, ..., m}. Given data

$$(\chi - c_1)^2 + (\gamma - c_2)^2 = \Gamma^2$$

$$\chi^2 - 2\chi + \zeta^2 + \chi^2 - 2\chi + \zeta^2 = r^2$$

$$t^2 - 2x + 6^2 + y^2 - 2y + 6 = r^2$$

$$x^2 + y^2 = 2x c_1 + 2y c_2 + x^2 - c_1^2 - c_2^2$$

Note
$$C_3 = r^2 - c_1^2 - c_2^2$$

 $\Rightarrow r = \sqrt{c_1^2 + c_2^2 + c_3}$

$$\begin{bmatrix} 2x_{1} & 2y_{1} & 1 \\ 2x_{2} & 2y_{2} & 1 \\ \vdots & \vdots & \vdots \\ 2x_{m} & 2y_{m} & 1 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} + y_{1}^{2} \\ x_{2}^{2} + y_{2}^{2} \\ \vdots \\ x_{m}^{2} + y_{m}^{2} \end{bmatrix}$$

Parametric Rep'n
$$\begin{cases} N(0) = C_1 + \Gamma \cos(0) \\ y(0) = C_2 + \Gamma \sin(0) \end{cases}$$

for $\theta \in [0, 2\pi]$