

(11) EP 0 885 923 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 23.12.1998 Patentblatt 1998/52
- (21) Anmeldenummer: 98118225.6
- (22) Anmeldetag: 06.04.1995

- (51) Int CL⁶: **C08K 5/15**, C08K 3/00, C08K 5/00 // (C08K5/15, 5:15, 3:00), (C08K5/15, 5:15, 5:00)
- (84) Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB IT LI NL PT SE
- (30) Priorität: 15.04.1994 CH 1143/94
- (62) Dokumentnummer(n) der früheren Anmeldung(en) nach Art. 76 EPÜ: 95810226.1 / 0 677 549
- (71) Anmelder: Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)
- (72) Erfinder:
 - Wehner, Wolfgang
 64372 Ober-Ramstadt (DE)

- Drewes, Rolf
- 79415 Bad Bellingen (DE)
- Kuhn, Karl Josef
 64686 Lautertal (DE)
- Sander, Hans-Jürgen
- 64653 Lorsch (DE)
 Kolb, Markus
 68723 Plankstadt (DE)
- Bemerkungen:

Diese Anmeldung ist am 25 - 09 - 1998 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.

- (54) Stabilisierte halogenhaltige Polymere
- (57) Durch Verwendung von Maltit oder Laktit und einer anorganischen oder organischen Zink-, Alumini-

um- oder Seltenerd-Verbindung wird eine hohe Stabilisierung von einem halogenhaltigen Polymeren oder Polymer-Recyclaten erreicht.

EP 0 885 923 A1

Beschreibung

5

15

20

25

30

40

Die Erfindung betrifft stabilisierte halogenhaltige Polymere oder deren Recyclate, vorzugsweise Polyvinylchlorid (PVC) oder dessen Recyclate, und eine Stabilisatormischung enthaltend Maltit oder Laktit und ein Verfahren zur Herstellung von stabilisierten halogenhaltigen Polymeren.

Neben Zinn- und Bleiverbindungen werden zur Stabilisierung von PVC auch Fettsäuresalze sogenannte Metallseifen verwendet, wobei es sich üblicherweise bei den Metallen um Barium, Cadmium, Zink, Magnesium oder Calcium handelt. Im Hinblick auf die unterschiedlichen Stabilisierungseigenschaften (Anfangsfarbe, Farbhaltung und Langzeitstabilität) wird zur Erreichung einer ausgewogenen Stabilisierung jeweils eine Kombination von zwei verschiedenen Metallseifen eingesetzt, wie beispielsweise Ba/Cd-Seifen. Zur Vermeidung von Barium, Blei oder Cadmium enhaltenden Verbindungen wurden auch Ca/Zn-Seifen vorgeschlagen; vergleiche hierzu beispielsweise "Taschenbuch der Kunststoff-Additive", Herausgeber R. Gächter und H. Müller, (abgekürzt im folgenden als "KA'e G&M") Hanser Verlag, 3.Auflage, 1990, Seiten 308-309 und Kunststoff Handbuch PVC, Band 1 und 2, Beck/Braun, Carl Hanser Verlag, 2. Auflage, 1985/1986.

Weiterhin werden als Costabilisatoren für PVC in Gegenwart einer Kombination von Calcium- und Zinkseifen unter anderem auch Polyole oder Maltit vorgeschlagen; Beispiele finden sich in JP63-063,737.

Es besteht jedoch weiterhin das Bedürfnis ein physiologisch unbedenkliches Stabilisatorsystem zur Verfügung zu haben, das gleichzeitig eine hohe Stabilisierung ermöglicht. Insbesondere sind Stabilisatorsysteme, welche Barium, Blei oder Cadmium enthalten, zu vermeiden.

Es wurde nun gefunden, dass Maltit und Laktit in Mischung mit einer Zink-, Aluminium- oder Seltenerd-Verbindung einem halogenhaltigen Polymer eine hervorragende Langzeitstabilität bei guter Anfangsfarbe und Farbhaltung verleihen.

Gegenstand der Erfindung ist somit ein stabilisiertes halogenhaltiges Polymer enthaltend

- (a) ein halogenhaltiges Polymer oder dessen Recyclat,
- (b) Maltit oder Laktit

und (c) eine anorganische oder organische Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn Komponente (b) Maltit ist.

Ein solchermassen stabilisiertes halogenhaltiges Polymer enthält vorzugsweise keine Barium-, Blei- oder Cadmiumverbindungen. Als halogenhaltige Polymere oder deren Recyclate sind chlorhaltige bevorzugt beispielsweise: Polymere des Vinylchlorides, Vinylharze, enthaltend Vinylchlorideinheiten in deren Struktur, wie Copolymere des Vinylchlorids und Vinylester von aliphatischen Säuren, insbesondere Vinylacetat, Copolymere des Vinylchlorids mit Estern
der Acryl- und Methycrylsäure und mit Acrylnitril, Copolymere des Vinylchlorids mit Dienverbindungen und ungesättigten Dicarbonsäuren oder deren Anhydride, wie Copolymere des Vinylchlorids mit Diethylmaleat, Diethylfumarat oder
Maleinsäureanhydrid, nachchlorierte Polymere und Copolymere des Vinylchlorids, Copolymere des Vinylchlorids und
Vinylidenechlorids mit ungesättigten Aldehyden, Ketonen und anderen, wie Acrolein, Crotonaldehyd, Vinylmethylketon,
Vinylmethylether, Vinylisobutylether und ähnliche; Polymere des Vinylidenchlorids und Copolymere desselben mit
Vinylchlorid und anderen polymerisierbaren Verbindungen; Polymere des Vinylchloracetates und Dichlordivinylethers;
chlorierte Polymere des Vinylacetates, chlorierte polymerische Ester der Acrylsäure und der alpha-substituierten Acrylsäure; Polymere von chlorierten Styrolen, zum Beispiel Dichlorstyrol; chlorierte Gummis; chlorierte Polymere des Ethylens; Polymere und nachchlorierte Polymere von Chlorbutadiens und deren Copolymere mit Vinylchlorid, Gummi-Hydrochlorid und chloriertes Gummi-Hydrochlorid; sowie Mischungen der genannten Polymere unter sich oder mit anderen polymerisierbaren Verbindungen.

Ferner sind umfasst die Pfropfpolymerisate von PVC mit EVA, ABS und MBS. Bevorzugte Substrate sind auch Mischungen der vorstehend genannten Homo-und Copolymerisate, insbesondere Vinylchlorid-Homopolymerisate, mit anderen thermoplastischen oder/und elastomeren Polymeren, insbesondere Blends mit ABS, MBS, NBR, SAN, EVA, CPE, MBAS, PMA, PMMA, EPDM und Polylactonen.

Weiterhin bevorzugt sind Suspensions- und Massepolymere, sowie Emulsionspolymere. Als chlorhaltiges Polymerisat ist Polyvinylchlorid besonders bevorzugt, insbesondere Suspensionspolymerisat und Massepolymerisat.

Im Rahmen dieser Erfindung sind unter (a) PVC auch Copolymerisate oder Pfropfpolymerisate von PVC mit polymerisierbaren Verbindungen wie Acrylnitril, Vinylacetat oder ABS zu verstehen, wobei es sich um Suspensions-, Masse- oder Emulsionspolymerisate handeln kann. Bevorzugt ist PVC Homopolymer auch in Kombination mit Polyacrylaten.

Weiterhin sind im Rahmen dieser Erfindung unter (a) auch insbesondere Recyclate halogenhaltiger Polymere zu verstehen, wobei es sich hierbei um die oben näher beschriebenen Polymere handelt, welche durch Verarbeitung, Gebrauch oder Lagerung eine Schädigung erfahren haben. Besonders bevorzugt ist PVC-Recyclat. In den Recyclaten können auch kleine Mengen an Fremdstoffen enthalten sein, wie z.B. Papier, Pigmente, Klebstoffe, die oft schwierig

zu entfernen sind. Diese Fremdstoffe können auch aus dem Kontakt mit diversen Stoffen während des Gebrauchs oder der Aufarbeitung stammen, wie z.B. Treibstoffreste, Lackanteile, Metallspuren, Initiatorreste oder auch Wasserspuren.

Die erfindungsgemäss als Komponente (b) verwendbaren Maltit oder Laktit sind allgemein bekannt.

5

20

25

30

35

45

50

Der erfindungsgemäss als Komponente (b) verwendbaren Maltit oder Laktit kann in einer Menge von beispielsweise 0,01 bis 10, zweckmässig 0,01 bis 5, besonders bevorzugt 0,01 bis 3 Gew.-Teilen, bezogen auf 100 Gew.-Teile halogenhaltiges Polymer, eingesetzt werden.

Zweckmässig ist ein stabilisiertes halogenhaltiges Polymer, wie oben beschrieben, enthaltend als (c) mindestens eine anorganische Zinkverbindung, wie beispielsweise Zinkoxid, hydroxid, -chlorid, -sulfid oder überbasische Zinkoxid/ hydroxid Additionsverbindungen, oder eine organische Zinkverbindung aus der Reihe der aliphatischen gesättigten C₂-C₂₂-Carboxylate, der aliphatischen ungesättigten C₃-C₂₂-Carboxylate, der aliphatischen C₂-C₂₂-Carboxylate, die mit wenigstens einer OH-Gruppe substituiert sind oder deren Kette wenigstens durch ein O-Atom unterbrochen ist (Oxasäuren), der cyclischen und bicyclischen Carboxylate mit 5-22 C-Atomen, der unsubstituierten, mit wenigstens einer OH-Gruppe substituierten und/oder C₁-C₁₆-alkylsubstituierten Phenylcarboxylate, der unsubstituierten, mit wenigstens einer OH-Gruppe substituierten und/oder C₁-C₁₆-alkylsubstituierten Naphthylcarboxylate, der Phenyl-C₁-C₁₆-alkylcarboxylate oder der gegebenenfalls mit C₁-C₁₂-Alkyl substituierten Phenolate.

Namentlich zu erwähnen sind, als Beispiele, die Zinksalze der monovalenten Carbonsäuren, wie Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Hexansäure, Önanthsäure, Octansäure, Neodecansäure, 2-Ethylhexansäure, Pelargonsäure, Decansäure, Undecansäure, Dodecansäure, Tridecansäure, Myristylsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, 12-Hydroxystearinsäure, 9,10-Dihydroxystearinsäure, 3,6-Dioxaheptansäure, 3,6,9-Trioxadecansäure, Behensäure, Benzoesäure, p-tert-Butylbenzoesäure, Dimethylhydroxybenzoesäure, 3,5-Di-tert-butyl-4-hydroxybenzoesäure, Tolylsäure, Dimethylbenzoesäure, Ethylbenzoesäure, n-Propylbenzoesäure, Salicylsäure, p-tert-Octylsalicylsäure, und Sorbinsäure; Zinksalze der Monoester der divalenten Carbonsäuren, wie Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Fumarsäure, Pentan-1,5-dicarbonsäure, Hexan-1,6-dicarbonsäure, Heptan-1,7-dicarbonsäure, Octan-1,8-dicarbonsäure, 3,6,9-Trioxadecan-1,10-dicarbonsäure, Polyglykol-dicarbonsäure (n=10-12), Phthalsäure, Isophthalsäure, Terephthalsäure und Hydroxyphthalsäure; und der Di- oder Triester der tri-oder tetravalenten Carbonsäuren, wie Hemimellithsäure, Trimellithsäure, Pyromellithsäure, Zitronensäure sowie Zn-Salze der 1-fach und 2-fach veresterten Phosphorsäure oder der 1-fach veresterten phosphorigen Säure, wie in JP-A-3,275,570 beschrieben.

Bevorzugt sind Zusammensetzungen, wie beschrieben, enthaltend als (c) eine organische Zinkverbindung, insbesondere ein organisches Zinkcarboxylat einer Carbonsäure mit 7 bis 18 C-Atomen (Zinkseifen), wie beispielsweise Benzoate oder Alkanoate, bevorzugt Stearat, Oleat, Laurat, Palmitat, Behenat, Hydroxystearate, Dihydroxystearate oder (Iso)octanoat, Besonders bevorzugt sind Stearat, Oleat, Benzoat und 2-Ethylhexanoat.

Neben den genannten Zink-Verbindungen kommen als Komponente (c) auch anorganische oder organische Aluminium-Verbindungen in Frage, für welche die oben für die Zink-Verbindungen gemachten Angaben gelten. Zu den verwendbaren und bevorzugten Aluminium-Verbindungen finden sich weiter Erläuterungen in US-A-4,060,512.

Neben den genannten Zink-Verbindungen kommen als Komponente (c) auch anorganische oder organische Seltenerd-Verbindungen in Frage, für welche die oben für die Zink-Verbindungen gemachten Angaben gelten. Unter dem Begriff Seltenerd-Verbindung sind vorallem Verbindungen der Elemente Cer, Praseodym, Neodym, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium, Lanthan und Yttrium zu verstehen, wobei Gemische insbesondere mit Cer bevorzugt sind. Weitere bevorzugte Seltenerd-Verbindungen finden sich in der EP-A-0108023.

Gegebenenfalls kann ein Gemisch von Zink-, Aluminium-, Lanthan- oder Lanthanoid-Verbindung unterschiedlicher Struktur eingesetzt werden. Auch können organische Zink-, Aluminium-, Lanthan- oder Lanthanoid-Verbindungen auf einen Hydrotalcit, Zeolith oder Dawsonit gecoatet sein; siehe hierzu auch DE-A-4031818.

Die anorganische oder bevorzugt organische Zink-, Aluminium-, oder Seltenerd-Verbindung kann in einer Menge von beispielsweise 0,001 bis 5, zweckmässig 0,01 bis 3, besonders bevorzugt 0,1 bis 2 Gew.-Teilen, bezogen auf 100 Gew.-Teile halogenhaltiges Polymer, eingesetzt werden.

Das erfindungsgemäss stabilisierte PVC kann weitere Additive enthalten. Es handelt sich beispielsweise um anorganische oder organische Calcium- oder Magnesium-Verbindungen, Zeolithe, Hydrotalcite, Dawsonite, Magadiite, Kenyaite, Kanemite, 1,3-Diketoverbindungen, Polyole, N-haltige Verbindungen z.B. β-Aminocrotonate wie in EP-A-0465405, S.6 Z.9-14 erwähnt, α-Phenylindol, Pyrrole, sterisch gehinderte Amine (HALS), Dihydropyridine sowie deren Polymere, Perchlorate, Epoxide, phenolische Antioxidantien (HANDBOOK OF PVC FORMULATING E.J.Wickson John Wiley & Sons, Inc., 1993 SS.505-515), Naphthole, Thiophosphate, Weichmacher (HANDBOOK OF PVC FORMULATING E.J.Wickson John Wiley & Sons, Inc., 1993 SS.163-303), Füllstoffe (HANDBOOK OF PVC FORMULATING E.J.Wickson John Wiley & Sons, Inc., 1993 SS.393-449) und Verstärkungsmittel (TASCHENBUCH der KA'e R.Gächter & H.Müller, Carl Hanser, 1990, SS.549-615) (wie beispielsweise Calciumcarbonat, Magnesiumoxid, Magnesiumhydro-

xid, Silikate, Glasfasern, Talk, Kaolin, Kreide, Glimmer, Metalloxide und -hydroxide, Russ oder Graphit), Phosphite, Chelatoren (TASCHENBUCH der KA'e R.Gächter & H.Müller, Carl Hanser, 1990, SS.109-131), Lichtschutzmittel, UV-Absorber (HANDBOOK OF PVC FORMULATING E.J. Wickson John Wiley & Sons, Inc., 1993 SS.355-369), Gleitmittel (HANDBOOK OF PVC FORMULATING E.J.Wickson John Wiley & Sons, Inc., 1993 SS.369-393), Impact-Modifier (IMPACT MODIFIERS FOR PVC J.T.LUTZ & D.L.DUNKELBERGER John Wiley & Sons, Inc., 1992) und Verarbeitungshilfen (TASCHENBUCH der KA'e R.Gächter & H.Müller, Carl Hanser, 1990, SS.505-524), Fettsäureester, Paraffine, Treibmittel (HANDBOOK OF PVC FORMULATING E.J. Wickson John Wiley & Sons, Inc., 1993 SS.525-551), optische Aufheller (TASCHENBUCH der KA'e R.Gächter & H.Müller, Carl Hanser, 1990, SS.807-821), Gelierhilfen, Farbstoffe (HANDBOOK OF PVC FORMULATING E.J. Wickson John Wiley & Sons, Inc., 1993 SS.449-475), Pigmente (TASCHENBUCH der KA'e R.Gächter & H.Müller, Carl Hanser, 1990, SS.663-735), Flammschutzmittel und Rauchverminderer (HANDBOOK OF PVC FORMULATING E.J. Wickson John Wiley & Sons, Inc., 1993 SS.551-579), Antistatika (HANDBOOK OF PVC FORMULATING E.J.Wickson John Wiley & Sons, Inc., 1993 SS.487-505), Antifoggingagents (HANDBOOK OF PVC FORMULATING E.J.Wickson John Wiley & Sons, Inc., 1993 SS.475-487), Biocide, Thiodipropionsäure und deren Ester, Dialkyldisulfide (HANDBOOK OF PVC FORMULATING E.J. Wickson John Wiley & Sons, Inc., 1993 SS.515-525), Mercaptocarbonsäureester, peroxidzerstörende Verbindungen, Modifikatoren und weitere Komplexbildner für Lewis-Säuren.

Als anorganische oder organische Calcium- und Magnesium-Verbindungen kommen die bei den Zinkverbindungen erwähnten analogen Verbindungen in Frage. Bevorzugt sind organische Calcium- oder Magnesium-Verbindungen, insbesondere Calcium- oder Magnesiumseifen, sowie Calciumoxid, Calciumhydroxid und überbasische Calcium-Verbindungen wie sie z.B. in den EP-A-0446685, EP-A-0394547 und EP-A-0279493 beschrieben sind.

Neben den Komponenten (b) und (c) dieser Erfindung können auch Epoxyverbindungen, wie 1,2-Epoxide und Oxirane, in Mengen von beispielsweise bis zu 10 Gew.-Teilen, bezogen auf 100 Gew.-Teile Zusammensetzung, zweckmässig bis zu 5 Gew.-Teilen und vorzugsweise von 0,01 bis zu 2 Gew.-Teilen, angewendet werden. Beispiele dafür sind epoxidiertes Polybutadien, epoxidiertes Sojabohnenöl, epoxidiertes Leinsamenöl, epoxidiertes Fischöl, epoxidierter Talg, Methylbutyl- oder 2-Ethylhexylepoxystearat, Tris(epoxypropyl)isocyanurat, epoxidiertes Ricinusöl, epoxidiertes Sonnenblumenöl, 3-(2-Phenoxy)-1,2-epoxypropan, Bisphenol-A-polyglycidylether, Vinylcyclohexendiepoxyd, Dicyclopentadiendiepoxyd und 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexancarboxylat.

Weitere im Rahmen der Erfindung verwendbaren Epoxidverbindungen können eine aliphatische, aromatische, cycloaliphatische, araliphatische oder heterocyclische Struktur haben; sie enthalten Epoxidgruppen als Seitengruppen. Die Epoxidgruppen sind vorzugsweise als Glycidylgruppen über Ether- oder Esterbindungen mit dem Restmolekül verbunden, oder es handelt sich um N-Glycidylderivate von heterocyclischen Aminen, Amiden oder Imiden. Epoxidverbindungen dieser Typen sind allgemein bekannt und im Handel erhältlich.

Die Epoxidverbindungen enthalten wenigstens einen Epoxyrest, insbesondere solche der FormellI

$$\begin{array}{c|c}
H & CH_2 \\
\hline
R_1 & R_2 & R_3
\end{array}$$
(II)

wobei dieser direkt an Kohlenstoff, Sauerstoff-, Stickstoff- oder Schwefel atome gebunden ist, worin R₁ und R₃ beide Wasserstoff sind, R₂ Wasserstoff oder Methyl und n=0 ist, oder worin R₁ und R₃ zusammen -CH₂-CH₂- oder -CH₂-CH₂- bedeuten, R₂ dann Wasserstoff und n=0 oder 1 ist.

Beispielhaft für Epoxidverbindungen sind zu erwähnen:

15

20

30

35

40

45

50

55

I) Glycidyl- und β-Methylglycidylester erhältlich durch Umsetzung einer Verbindung mit mindestens einer Carboxylgruppe im Molekūl und Epichlorhydrin bzw. Glycerindichlorhydrin bzw. β-Methyl-epichlorhydrin. Die Umsetzung erfolgt zweckmässig in der Gegenwart von Basen.

Als Verbindungen mit mindestens einer Carboxylgruppe im Molekül können aliphatische Carbonsäuren verwendet werden. Beispiele für diese Carbonsäuren sind Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebazinsäure oder dimerisierte bzw. trimerisierte Linolsäure, Acryl- und Methacrylsäure, Capron-, Capryl-, Laurin-, Myristin-, Palmitin-, Stearin- und Pelargonsäure, sowie die bei den organischen Zinkverbindungen erwähnten Säuren.

Es können aber auch cycloaliphatische Carbonsäuren eingesetzt werden, wie beispielsweise Cyclohexancarbonsäure, Tetrahydrophthalsäure, 4-Methyltetrahydrophthalsäure, Hexahydrophthalsäure oder 4-Methylhexahydrophthalsäure.

Weiterhin können aromatische Carbonsäuren Verwendung finden, wie beispielsweise Benzoesäure, Phthalsäure,

Isophthalsäure, Trimellithsäure oder Pyromellithsäure.

15

25

30

35

40

45

50

55

Ebenfalls können auch carboxylterminierte Addukte, z.B. von Trimellithsäure und Polyolen, wie beispielsweise Glycerin oder 2,2-Bis-(4-hydroxycyclohexyl)-propan verwendet werden.

Weitere im Rahmen dieser Erfindung verwendbare Epoxidverbindungen finden sich in der EP-A-0506617.

II) Glycidyl- oder (β-Methylglycidyl)-ether erhältlich durch Umsetzung einer Verbindung mit mindestens einer freien alkoholischen Hydroxygruppe und/oder phenolischen Hydroxygruppe und einem geeignet substituierten Epichlorhydrin unter alkalischen Bedingungen, oder in Anwesenheit eines sauren Katalysators und anschliessender Alkalibehandlung.

Ether dieses Typs leiten sich beispielsweise ab von acyclischen Alkoholen, wie Ethylenglykol, Diethylenglykol und höheren Poly-(oxyethylen)-glykolen, Propan-1,2-diol, oder Poly-(oxypropylen)-glykolen, Propan-1,3-diol, Butan-1,4-diol, Poly-(oxytetramethylen)-glykolen, Pentan-1,5-diol, Hexan-1,6-diol, Hexan-2,4,6-triol, Glycerin, 1,1,1-Trimethylol-propan, Bistrimethylolpropan, Pentaerythrit, Sorbit, sowie von Polyepichlorhydrinen, Butanol, Amylalkohol, Pentanol, sowie von monofunktionellen Alkoholen wie Isooctanol, 2-Ethylhexanol, Isodecanol sowie C₇-C₉-Alkanol- und C₉-C₁₁-Alkanolgemischen.

Sie leiten sich aber auch beispielsweise ab von cycloaliphatischen Alkoholen wie 1,3- oder 1,4-Dihydroxycyclohexan, Bis-(4-hydroxycyclohexyl)-methan, 2,2-Bis-(4-hydroxycyclohexyl)-propan oder 1,1-Bis-(hydroxymethyl)-cyclohex-3-en oder sie besitzen aromatische Kerne wie N,N-Bis-(2-hydroxyethyl)-anilin oder p,p'-Bis-(2-hydroxyethylamino)-diphenylmethan.

Die Epoxidverbindungen können sich auch von einkernigen Phenolen ableiten, wie beispielsweise von Phenol, Resorcin oder Hydrochinon; oder sie basieren auf mehrkernigen Phenolen wie beispielsweise auf Bis-(4-hydroxyphenyl)-methan, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan, 4,4'-Dihydroxydiphenylsulfon oder auf unter sauren Bedingungen erhaltene Kondensationsprodukte von Phenolen mit Formaldehyd wie Phenol-Novolake.

Weitere mögliche endständige Epoxide sind beispielsweise: Glycidyl-1-naphthylether, Glycidyl-2-phenylphenylether, 2-Biphenylglycidylether, N-(2,3-epoxypropyl)-phthalimid und 2,3-Epoxypropyl-4-methoxyphenylether.

III) (N-Glycidyl)-Verbindungen erhältlich durch Dehydrochlorierung der Reaktionsprodukte von Epichlorhydrin mit Aminen, die mindestens ein Aminowasserstoffatom enthalten. Bei diesen Aminen handelt es sich zum Beispiel um Anilin, N-Methylanilin, Toluidin, n-Butylamin, Bis-(4-aminophenyl)-methan, m-Xylylendiamin oder Bis-(4-methylaminophenyl)-methan, aber auch N,N,O-Triglycidyl-m-aminophenol oder N,N,O-Triglycidyl-p-aminophenol.

Zu den (N-Glycidyl)-Verbindungen zählen aber auch N,N'-Di-, N,N',N"-Tri- und N,N',N"-N"-Tetraglycidylderivate von Cycloalkylenharnstoffen, wie Ethylenharnstoff oder 1,3-Propylenharnstoff, und N,N'-Diglycidylderivate von Hydantoinen, wie von 5,5-Dimethylhydantoin oder Glykoluril und Triglycidylisocyanurat.

IV) S-Glycidyl-Verbindungen, wie beispielsweise Di-S-glycidylderivate, die sich von Dithiolen, wie beispielsweise Ethan-1,2-dithiol oder Bis-(4-mercaptomethylphenyl)-ether ableiten.

V) Epoxidverbindungen mit einem Rest der Formelll, worin R₁ und R₃ zusammen -CH₂-CH₂-bedeuten und n 0 ist, sind Bis-(2,3-epoxycyclopentyl)-ether, 2,3-Epoxycyclopentylglycidylether oder 1,2-Bis-(2,3-epoxycyclopentyloxy)-ethan. Eine Epoxidverbindung mit einem Rest der Formelll, worin R₁ und R₃ zusammen -CH₂-CH₂- sind und n 1 bedeutet, ist beispielsweise 3,4-Epoxy-6-methyl-cyclohexancarbonsäure-(3',4'-epoxy-6'-methyl-cydohexyl)-methylester

Geeignete endständige Epoxide sind beispielsweise:

- a) flüssige Bisphenol-A-didlycidylether wie Araldit®GY 240, Araldit®GY 250, Araldit®GY 260, Araldit®GY 266, Araldit®GY 2600, Araldit®MY 790;
- b) feste Bisphenol-A-didlycidylether wie Araldit®GT 6071, Araldit®GT 7071, Araldit®GT 7072, Araldit®GT 6063, Araldit®GT 7203, Araldit®GT 6064, Araldit®GT 7304, Araldit®GT 7004, Araldit®GT 6084, Araldit®GT 1999, Araldit®GT 7077, Araldit®GT 6097, Araldit®GT 7097, Araldit®GT 7008, Araldit®GT 6099, Araldit®GT 6608, Araldit®GT 6609, Araldit®GT 6610;
- c) flüssige Bisphenol-F-diglycidylether wie Araldit®GY 281, Araldit®PY 302, Araldit®PY 306; d)feste Polyglycidylether von Tetraphenylethan wie CG Epoxy Resin®0163;
- e) feste und flüssige Polyglycidylether von Phenolformaldehyd Novolak wie EPN 1138, EPN 1139, GY 1180, PY 307
- f) feste und flüssige Polyglycidylether von o-Cresolformaldehyd Novolak wie ECN 1235, ECN 1273, ECN 1280, ECN 1299;
- g) flüssige Glycidylether von Alkoholen wie Shell® Glycidylether 162, Araldit®DY 0390, Araldit®DY 0391;
- h)flüssige Glycidylether von Carbonsäuren wie Shell®Cardura E Terephthalsäureester, Trimellithsäureester, Araldit®PY 284;
- i) feste heterocyclische Epoxidharze (Triglycidylisocyanurat) wie Araldit® PT 810;
- j) flüssige cycloaliphatische Epoxidharze wie Araldit®CY 179:

k) flûssige N,N,O-Triglycidylether von p-Aminophenol wie Araldit®MY 0510;

5

10

15

20

30

35

45

I) Tetraglycidyl-4-4'-methylenbenzamin oder N,N,N',N'-Tetraglycidyldiaminophenylmethan wie Araldit®MY 720, Araldit®MY 721.

Vorzugsweise finden Epoxidverbindungen mit zwei funktionellen Gruppen Verwendung. Es können aber auch prinzipiell Epoxidverbindungen mit einer, drei oder mehr funktionellen Gruppen eingesetzt werden.

Vorwiegend werden Diglycidylverbindungen mit aromatischen Strukturen, wie beispielsweise Phenylresten, eingesetzt.

Gegebenenfalls kann auch ein Gemisch von Epoxidverbindungen unterschiedlicher Struktur eingesetzt werden. Besonders bevorzugt sind als mehrfunktionelle Epoxidverbindungen Diglycidylether auf der Basis von Bisphenolen, wie beispielsweise von 2,2-Bis-(4-hydroxyphenyl)-propan (BisphenolA), Bis-(4-hydroxyphenyl)-methan oder Mischungen von Bis-(ortho/para-hydroxyphenyl)-methan (BisphenolF).

Verwendbare 1,3-Diketoverbindungen können lineare oder cyclische Dicarbonylverbindungen sein. Bevorzugt werden Diketoverbindungen der Formel (III) verwendet,

 $R_{1} = CHR_{2} = R_{3}$ (III)

worin R₁ C₁-C₂₂-Alkyl, C₅-C₁₀-Hydroxyalkyl, C₂-C₁₈-Alkenyl, Phenyl, durch OH, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiertes Phenyl, C₇-C₁₀-Phenylalkyl, C₅-C₁₂-Cycloalkyl, durch C₁-C₄-Alkyl substituiertes C₅-C₁₂-Cycloalkyl oder eine Gruppe -R₅-S-R₆ oder -R₅-O-R₆ bedeutet, R₂ Wasserstoff, C₁-C₈-Alkyl, C₂-C₁₂-Alkenyl, Phenyl, C₇-C₁₂-Alkylphenyl, C₇-C₁₀-Phenylalkyl oder eine Grupe -CO-R₄ bedeutet, R₃ eine der für R₁ gegebenen Bedeutungen hat oder C₁-C₁₈-Alkoxy bedeutet, R₄ C₁-C₄-Alkyl oder Phenyl bedeutet,

 $\rm H_5$ C₁-C₁₀-Alkylen bedeutet und $\rm H_6$ C₁-C₁₂-Alkyl, Phenyl, C₇-C₁₈-Alkylphenyl oder C₇-C₁₀-Phenylalkyl bedeutet. Hierzu gehören die Hydroxylgruppen enthaltenden Diketone der EP-A-346 279 und die Oxa- und Thia-diketone der EP-A-307 358.

R₁ und R₃ als Alkyl können insbesondere C₁-C₁₈-Alkyl sein, wie z.B. Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, tert. Butyl, Pentyl, Hexyl, Heptyl, Octyl, Decyl, Dodecyl oder Octadecyl.

 R_1 und R_3 als Hydroxyalkyl stellen insbesondere eine Gruppe -(CH_2)_n-OH dar, worin n 5, 6 oder 7 ist.

R₁ und R₃ als Alkenyl können beispielsweise Vinyl, Allyl, Methallyl, 1-Butenyl, 1-Hexenyl oder Oleyl bedeuten, vorzugsweise Allyl.

R₁ und R₃ als durch OH, Alkyl, Alkoxy oder Halogen substituiertes Phenyl können beispielsweise Tolyl, Xylyl, tert. Butylphenyl, Methoxyphenyl, Ethoxyphenyl, Hydroxyphenyl, Chlorphenyl oder Dichlorphenyl sein.

 $\rm H_1$ und $\rm H_3$ als Phenylalkyl sind insbesondere Benzyl. $\rm H_2$ und $\rm H_3$ als Cycloalkyl oder Alkylcycloalkyl sind insbesondere Cyclohexyl oder Methylcyclohexyl.

 R_2 als Alkyl kann insbesondere C_1 - C_4 -Alkyl sein. R_2 als C_2 - C_{12} -Alkenyl kann insbesondere Allyl sein. R_2 als Alkylphenyl kann insbesondere Tolyl sein. R_2 als Phenylalkyl kann insbesondere Benzyl sein. Vorzugsweise ist R_2 Wasserstoff. R_3 als Alkoxy kann z.B. Methoxy, Ethoxy, Butoxy, Hexyloxy, Octyloxy, Dodecyloxy, Tridecyloxy, Tetradecyloxy oder Octadecyloxy sein. R_5 als C_1 - C_{10} -Alkylen ist insbesondere C_2 - C_4 -Alkylen. R_6 als Alkyl ist insbesondere C_4 - C_{12} -Alkyl, wie z.B. Butyl, Hexyl, Octyl, Decyl oder Dodecyl. R_6 als Alkylphenyl ist insbesondere Tolyl. R_6 als Phenylalkyl ist insbesondere Benzyl.

Beispiele für 1,3-Dicarbonylverbindungen der Formel (III) sind Acetylaceton, Acetylcyclopentanon, Benzoylcyclopentanon, Acetylbutyrolacton, Benzoylbutyrolacton, Butanoylaceton, Heptanoylaceton, Stearoylaceton, Palmitoylaceton, Lauroylaceton, 7-tert.Nonythioheptandion-2,4, Benzoylaceton, Dibenzoylmethan, Lauroylbenzoylmethan, Palmitoylbenzoylmethan, Stearoyl-benzoylmethan, 5-Hydroxycapronyl-benzoylmethan, Tribenzoylmethan, Bis(4-methylbenzoyl)methan, Benzoyl-p-chlorbenzoylmethan, Bis(2-hydroxybenzoyl)methan, 4-Methoxybenzoyl-benzoylmethan, Bis(4-methoxybenzoyl)methan, 1-Benzoyl-1-acetylnonan, Benzoyl-acetyl-phenylmethan, Stearoyl-4-methoxybenzoyl)methan, Bis(4-tert-butylbenzoyl)methan, Benzoyl-formylmethan, Benzoyl-phenylacetylmethan, Bis(cyclohexanoyl)methan, Di(pivaloyl)methan, Acetessigsäure-methylester, -ethylester, -hexylester, -octylester, -dodecylester oder -octadecylester, Benzoylessigsäure-ethylester, -butylester, -2-ethylhexylester, -dodecylester oder -octadecylester, Stearoylessigsäure-ethyl-, -propyl-, -butyl-, -hexyl- oder -octylester und Dehydracetsäure sowie deren Magnesium-, Calcium-, Zink- oder Aluminiumsalze.

Bevorzugt sind 1,3-Diketoverbindungen der Formel (III), worin R_1 C_1 - C_{18} -Alkyl, Phenyl, durch OH, Methyl oder Methoxy substituiertes Phenyl, C_7 - C_{10} -Phenylalkyl oder Cyclohexyl ist, R_2 Wasserstoff ist und R_3 eine der für R_1 gegebenen Bedeutungen hat.

Besonders bevorzugt sind Magnesium- und Calciumacetylacetonate, sowie Zn- und Al-acetylacetonate, Stearoylbenzoylmethan, Dibenzoylmethan, Benzoyloctanoylmethan sowie der Trisacetessigester des Trisethylisocyanurats wie in US4,339,383 beschrieben. Eine zusammenfassende Übersicht über 1,3-Diketoverbindungen ist in EP-A-006318, EP-A-0046161, EP-A-0035268 und EP-A-0040286 gegeben.

Die 1,3-Diketoverbindungen können in einer Menge von beispielsweise 0,01 bis 10, zweckmässig 0,01 bis 2 und insbesondere 0,05 bis 1 Gew.-Teilen, bezogen auf 100 Gew.- Teile PVC, angewendet werden.

Weitere mögliche zusätzlich verwendbare Stabilisatoren sind 1,3-Ketoester der Formel(IV)

 $\begin{bmatrix} O & O \\ R & C & O \\ H_2 & O \end{bmatrix} X$ (IV)

worin n1, 2, 3, 4 oder 6 ist und, wenn n=1 ist, R Phenyl und X eine Alkylgruppe mit 10 bis 20 C-Atomen, wenn n = 2 ist, R Alkyl mit 1 bis 4 C-Atomen oder Phenyl und X Alkylen mit 4 bis 12 C-Atomen, Alkylen mit 2 bis 12 C-Atomen, das mit wenigstens einer C₁-C₈-Alkylgruppe substituiert ist, -CH₂-CH₂-S-CH₂-CH₂-S-CH₂-CH₂-Oder -CH₂-CH₂-S-CH₂-S

CH₂- CH₂-H₃C-(CH₂)_m-C-O-C-(CH₂)_m-CH₃, CH₂- CH₂-

worin m0 oder 1 ist, und wenn n=6 ist, R Alkyl mit 1 bis 4 C-Atomen oder Phenyl undX die Gruppe

CH 2-CH 2--CH 2-C-O-C-CH 2--CH 2- CH 2-

darstellen

5

10

15

20

25

30

35

40

45

50

55

R als Alkyl mit 1 bis 4 C-Atomen bedeutet z.B. Methyl, Ethyl, Propyl oder Butyl.

X als Alkyl mit 10 bis 20 C-Atomen kann geradkettig oder verzweigt sein und bedeutet beispielsweise n-Decyl, n-Dodecyl oder n-Octadecyl.

X bedeutet als C_4 - C_{12} -Alkylen, resp. als C_2 - C_{12} -Alkylen, das durch wenigstens eine C_1 - C_8 -Alkylgruppe substituiert ist, zum Beispiel 1,2-Di-tert-butyl-dimethylen, Tetramethylen, Hexamethylen, 2,2-Dimethyltrimethylen, 2-Ethyl-2-butyl-trimethylen, 2-Methyl-2-propyltrimethylen, Octamethylen, Nonamethylen, Decamethylen oder Dodecamethylen.

Die Variable n bedeutet bevorzugt 1, 2 oder3 wie in EP 0433230 beschrieben.

Weitere mögliche zusätzlich verwendbare Stabilisatoren sind Verbindungen der Formel(V)

7

worin X eine Gruppe

-C(O)-, -S-, -S(O)- oder -S(O)₂-

15

20

25

30

35

40

45

50

55

5

10

bedeutet, R_1 und R_2 unabhängig voneinander C_1 - C_{20} -Alkyl, durch Hydroxy und/oder Halogen substituiertes C_1 - C_{10} -Alkyl, C_3 - C_{20} -Alkenyl, C_5 - C_{12} -Cycloalkyl, durch C_1 - C_4 -Alkyl substituiertes C_5 - C_8 -Cycloalkyl, Phenyl oder durch 1 bis 3 Reste A_1 substituiertes Phenyl sind, wobei die Reste A_1 unabhängig voneinander C_1 - C_{10} -Alkyl, Halogen, Hydroxy, Methoxy oder Ethoxy bedeuten,

R₁ und R₂ ferner C₇-C₁₀-Phenylalkyl oder am Phenyl durch 1 bis3 Reste A₂ substituiertes C₇-C₁₀-Phenylalkyl sind, wobei die Reste A₂ unabhängig voneinander C₁-C₂₀-Alkyl, Halogen, Hydroxy, Methoxy oder Ethoxy bedeuten, und

 R_3 Phenyl oder durch 1 bis 3 Reste A_3 substituiertes Phenyl ist, wobei die Reste A_3 unabhängig voneinander C_1 - C_{10} -Alkyl, Halogen, Hydroxy, Methoxy, Ethoxy oder (C_1 - C_8 -Alkyl)oxycarbonyl sind, mit den Bedingungen, dass mindestens einer der Reste R_1 und R_2 Phenyl oder definitionsgemäss substituiertes Phenyl ist und R_1 verschieden von Methyl ist, wenn R_2 Phenyl bedeutet.

Die Verbindungen der obigen Formel zeichnen sich durch eine sehr gute stabilisierende Wirkung sowohl gegen thermischen als auch lichtinduzierten Abbau aus. Besonders bemerkenswert ist die langzeitstabilisierende Wirkung gegen thermischen Abbau.

Vorzugsweise ist R_1 verschieden von C_1 - C_3 -Alkyl, insbesondere C_1 - C_{20} -Alkyl, wenn R_2 Phenyl bedeutet. Halogen bedeutet bevorzugt Chlor.

Alkyl mit bis zu 20 C-Atomen bedeutet zum Beispiel Methyl, Ethyl, Propyl, Butyl, t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, i-Octyl, i-Nonyl, Decyl, Dodecyl oder Octadecyl.

Durch Hydroxy und/oder Halogen substituiertes C₁-C₁₀-Alkyl bedeutet zum Beispiel 5-Hydroxypentyl, 2,3,5-Tri-hydroxypentyl oder 5-Chlorpentyl.

C₃-C₂₀-Alkenyl ist beispielsweise Allyl, 2-Methallyl, 3-Methylbut-2-enyl, 3-Methybut-3-enyl, Hexenyl, Decenyl, Undecenyl, Heptadecenyl oder Oleyl. Bevorzugte Bedeutungen sind Allyl, Methallyl und Oleyl.

 C_5 - C_{12} -Cycloalkyl bedeutet zum Beispiel Cyclopentyl, Cyclohexyl, Cycloheptyl, Cycloactyl, Cyclodecyl oder Cyclododecyl. C_5 - C_7 -Cycloalkyl, insbesondere Cyclohexyl, ist bevorzugt.

C₅-C₈-Cycloalkyl, welches durch C₁-C₄-Alkyl, insbesondere Methyl substituiert ist, bedeutet zum Beispiel Methylcyclohexyl oder tert-Butylcyclohexyl.

Beispiele für Phenyl, welches durch 1 bis 3 definitionsgemässe Reste substituiert ist, sind o-, m- oder p-Methylphenyl, 2,3-Dimethylphenyl, 2,4-Dimethylphenyl, 2,5-Dimethylphenyl, 2,6-Dimethylphenyl, 3,4-Dimethylphenyl, 3,5-Dimethylphenyl, 2-Methyl-6-ethylphenyl, 2-Methyl-4-tert-butylphenyl, 2-Ethylphenyl, 2,6-Diethylphenyl, 2,6-Diethylphenyl, 2,6-Diisopropylphenyl, 4-tert-Butylphenyl, p-Nonylphenyl, o-, m- oder p-Chlorphenyl, 2,3-Dichlorphenyl, 2,3-Dichlorphenyl, 2,4-Dichlorphenyl, 2,4,5-Trichlorphenyl, 2,4,6-Trichlorphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Methoxyphenyl, o- oder p-Ethoxyphenyl, 2,4-Dimethoxyphenyl, 2,5-Dimethoxyphenyl, o-, m- oder p-Methoxycarbonyl, 2-Chlor-6-methylphenyl, 3-Chlor-2-methylphenyl, 3-Chlor-2-methylphenyl, 2,6-Dichlor-3-methylphenyl, 2-Hydroxy-4-methylphenyl, 4-Chlor-2-methylphenyl, 2-Methoxy-5-methylphenyl, 4-Methoxy-2-methylphenyl, 3-Chlor-4-methoxyphenyl, 3-Chlor-4-fermethoxyphenyl, 3-Chlor-4-fermethoxyphenyl, 3-Chlor-4-fermethoxyphenyl, 3-Chlor-4-fermethoxyphenyl, 3-Chlor-4-fermethoxyphenyl, 3-Chlor-2-fermethoxyphenyl, 3-Chlor-2-fe

C₇-C₁₀-Phenylalkyl ist zum Beispiel Benzyl oder 2-Phenylethyl. Benzyl ist bevorzugt. Falls die Phenylgruppe in diesen Resten durch 1 bis 3 definitionsgemässe Gruppen substituiert ist, kann sie die oben angegebenen Bedeutungen annehmen. An der Phenylgruppe durch C₁-C₂₀-Alkyl, bevorzugt C₈-C₁₄-Alkyl, substituiertes C₇-C₁₀-Phenylalkyl ist eine der bevorzugten Bedeutungen. Als Beispiel ist femer Dodecylbenzyl zu nennen. Eine genauere Ausführung ist EP0465405 zu entnehmen.

Weitere mögliche zusätzlich verwendbare Stabilisatoren sind Pyrrole der Formel(VI)

10 worin R1 Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkoxycarbonylmethyl, gegebenenfalls verestertes α-Hydroxyalkyl, gegebenenfalls verestertes α -Hydroxycycloalkylmethyl, gegebenenfalls verestertes α -Hydroxyaralkyl, Alkoxymethyl, Alkylthiomethyl, Aryloxymethyl, Arylthiomethyl, Cycloalkoxymethyl, Cycloalkylthiomethyl, Aralkoxymethyl, Aralkylthiomethyl, Alkoxy, Alkylthio, Cycloalkoxy, Cycloalkylthio, Aralkoxy, Arylalkythio, Aryloxy, Arylthio, Halogen, Mercapto, Mercaptomethyl oder Hydroxy ist, R₂ Wasserstoff, Alkyl, Cycloalkyl, Aryl, gegebenenfalls verestertes α-Hydroxyalkyl, wobei dessen Alkylteil zusammen mit R₁ Alkylen sein kann, gegebenenfalls verestertes α-Hydroxycycloalkylmethyl, gegebenenfalls verestertes α-Hydroxyaralkyl, Alkoxy, Cycloalkyloxy, Aralkoxy, Aryloxy, Alkylthio, Cycloalkylthio, Aralkylthio, Arylthio, Alkoxymethyl, Alkylthiomethyl, Aryloxymethyl, Arylthiomethyl, Cycloalkoxymethyl, Cycloalkylthiomethyl, Aralkoxymethyl, Arylalkylthiomethyl, Hydroxy, Cyano, Carboxyl, versalztes, verestertes oder amidiertes Carboxyl oder Acyl ist, wobei Acyl zusammen mit R1 -CO- Alkylen sein kann, worin -CO- in 3-Stellung gebunden ist, oder Halogen, Mercapto oder Mercaptomethyl ist, und R3 Alkyl, Cycloalkyl, Aralkyl, Aryl, gegebenenfalls verestertes Hydroxymethyl, Alkoxymethyl, Alkylthiomethyl, Cycloalkoxymethyl, Cycloalkylthiomethyl, Aralkoxymethyl, Arylalkylthiomethyl, Aryloxymethyl oder Arylthiomethyl, Alkoxy, Alkylthio, Cycloalkoxy, Cycloalkylthio, Aralkoxy, Aralkylthio, Aryloxy, Arylthio, Halogen, Mercapto oder Mercaptomethyl ist, oder wenn R2 versalztes Carboxyl ist, R3 Wasserstoff ist und R1 die angegebene Bedeutung hat, oder worin R₃ Hydroxy ist, und R₁ Wasserstoff, Alkyl oder Aryl ist und R₂ Wasserstoff, 25 Alkyl, Aryl oder Acyl ist, oder ein Salz davon. Eine Ausführung hierzu gibt EP0022087.

Weitere mögliche zusätzlich verwendbare Stabilisatoren sind Verbindungen der Formel(VII)

$$\begin{array}{c|c} & & H & & \\ & & & \\ & & & \\ R_1 & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

worin n 1 oder 2 ist, R₁ C₁-C₄-Alkyl bedeutet, R₂ eine Gruppe der Formel IIa, Ilb, Ilc oder Ild darstellt, -C(O)OX₁-, IIa, -C(O)NHX₂, Ilb, -C(S)NHX₂, Ilc, -C(O)X₃ Ild,

 X_1 Wasserstoff, C_1 - C_{20} -Alkyl, durch ein oder zwei Sauerstoffatome oder Schwefelatome unterbrochenes oder/und durch OH substituiertes C_3 - C_6 -Alkyl, C_3 - C_{20} -Alkenyl, C_5 - C_{12} -Cycloalkyl, durch C_1 - C_4 -Alkyl substituiertes C_5 - C_{12} -Cycloalkyl, Phenyl, durch C_1 - C_{10} -Alkyl, Chlor, Hydroxy, Methoxy oder/und Ethoxy substituiertes Phenyl, C_7 - C_{10} -Phenyl-alkyl oder am Phenylrest durch C_1 - C_{20} -Alkyl, Chlor, Hydroxy, Methoxy oder/und Ethoxy substituiertes C_7 - C_{10} -Phenyl-alkyl ist, X_2 Phenyl oder durch 1 bis 3 Reste substituiertes Phenyl darstellt, wobei die Reste ausgewählt werden aus der Gruppe bestehend aus C_1 - C_4 -Alkyl, Chlor, Hydroxy, Methoxy, Ethoxy und Acetylamino, X_3 C_1 - C_8 -Alkyl oder Phenyl bedeutet, wenn n 1 ist, R_3 eine Gruppe der Formeln IIIa bis IIIg bedeutet,

55

50

5

30

35

10

5

 X_0 ein Sauerstoffatom oder Schwefelatom ist, Y_1 und Y_2 unabhängig voneinander -CN, Benzoyl, C_2 -C₄-Alkanoyl oder C_2 -C₄-Alkoxycarbonyl sind, Y_3 C₁-C₂₀-Alkyl, C_3 -C₂₀-Alkenyl, Phenyl, durch C_1 -C₄-Alkyl, Chlor, -NO₂, Methoxy oder/und Ethoxy substituiertes Phenyl, 2-Phenylethenyl, Di(C₁-C₄-alkyl)amino, Diphenylamino, C_1 -C₂₀-Alkylamino, C₃-C₈-Cycloalkylamino, Phenylamino, am Phenylring durch C_1 -C₄-Alkyl, Chlor, Hydroxy, Methoxy oder/und Ethoxy substituiertes Phenylamino, Benzylamino, Benzolsulfonamido oder Toluolsulfonamido darstellt, Y_4 Di(C₁-C₄-alkyl)amino, Diphenylamino, C_1 -C₈-Alkylamino, Phenylamino, am Phenylring durch C_1 -C₄-Alkyl, Chlor, Hydroxy, Methoxy oder/und Ethoxy substituiertes Phenylamino oder Benzylamino ist, Y_5 C₁-C₂₀-Alkyl, durch ein oder zwei Sauerstoffatome unterbrochenes C_3 -C₆-Alkyl, C_5 -C₁₂-Cycloalkyl, durch C_1 -C₄-Alkyl substituiertes C_5 -C₁₂-Cycloalkyl, Phenyl, C_7 -C₁₀-Phenylalkyl oder am Phenylrest durch C_1 -C₂₀-Alkyl substituiertes C_7 -C₁₀-Phenylalkyl bedeutet, Y_6 C₁-C₄-Alkoxy, Phenylamino oder an der Phenylgruppe durch C_1 -C₄-Alkyl, Chlor, Hydroxy, Methoxy oder/und Ethoxy substituiertes Phenylamino ist, Y_7 C₁-C₄-Alkyl, Phenyl oder durch C_1 -C₄-Alkyl, Chlor, -NO₂, (C_1 -C₁₂-Alkyl)-oxycarbonyl und/oder Phenyloxycarbonyl substituiertes Phenyl darstellt, die Reste Y_8 unabhängig voneinander C_1 -C₄-Alkoxy oder Allyloxy bedeuten, und wenn n 2 ist, R_3 eine Gruppe der Formel IVa, IVb, IVc oder IVd darstellt, -C(X_0)-, IVa, -C(O)-C₂-O-C(O)-, IVb, -C(X_0)NH-Z₃-NH-C(X_0)-, IVc,

25

20

30

35

40

45

50

X₀ die oben angegebene Bedeutung besitzt, Z₁ eine direkte Bindung, C₁-C₁₂-Alkylen oder Phenylen bedeutet, Z₂ C₂-C₁₂-Alkylen oder 3-Oxapentylen ist, Z₃ C₄-C₈-Alkylen oder Phenylen und Z₄ C₁-C₄-Alkoxy oder Allyloxy darstellen. Alkyl mit bis zu 20 C-Atomen bedeutet zum Beispiel Methyl, Ethyl, Propyl, Butyl, t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, i-Octyl, i-Nonyl, Decyl, Dodecyl oder Octadecyl.

R₁ bedeutet vorzugsweise geradkettiges C₁-C₄-Alkyl, insbesondere Methyl.

Eine bevorzugte Bedeutung von X_1 ist C_1 - C_{18} -Alkyl, insbesondere C_1 - C_{12} -Alkyl, z.B. Methyl oder Ethyl.

X₃ bedeutet als Alkyl vorzugsweise Methyl oder Ethyl, insbesondere Methyl.

Y₅ besitzt als Alkyl vorzugsweise 1 bis 4 Kohlenstoffatome. Methyl und Ethyl sind besonders bevorzugte Bedeutungen für Y₅.

C₁-C₄-Alkoxy ist z.B. Methoxy, Ethoxy, Propoxy oder Butoxy.

C₃-C₆-Alkyl, welches durch 1 oder 2 Sauerstoffatome unterbrochen ist, bedeutet beispielsweise 3-Oxabutyl, 3-Oxapentyl, 3-Oxaheptyl, 3-6-Dioxaheptyl oder 3,6-Dioxaoctyl.

 ${
m C_3\text{-}C_6\text{-}Alkyl}$, welches durch 1 oder 2 Sauerstoffatome oder Schwefelatome unterbrochen oder/und durch OH substituiert ist, kann zum Beispiel ausser den im vorangehenden Absatz angegebenen Resten auch 3-Thiabutyl, 3-Thiapentyl, 3,6-Dithiaheptyl, 3,6-Dithiaheptyl, 5-Hydroxy-3-oxapentyl, 5-Hydroxy-3-thiapentyl oder 4-Hydroxybutyl bedeuten

C₃-C₂₀-Alkenyl ist beispielsweise Allyl, 2-Methallyl, 3-Methylbut-2-enyl, 3-Methylbut-3-enyl, Hexenyl, Decenyl, Undecenyl, Heptadecenyl oder Oleyl. Bevorzugte Bedeutungen sind Allyl, Methallyl und Oleyl.

C₅-C₁₂-Cycloalkyl, welches gegebenenfalls durch C₁-C₄-Alkyl, insbesondere Methyl, substituiert sein kann, bedeutet zum Beispiel Cyclopentyl, Cyclohexyl, Cyclohetyl, Cyclodecyl, Cyclodecyl, Cyclodecyl oder Methylcyclohexyl. Unsubstituiertes oder substituiertes C₅-C₈-Cycloalkyl, insbesondere Cyclohexyl, ist bevorzugt.

Beispiele für Phenyl, welches durch, bevorzugt 1 bis 3, definitionsgemässe Reste substituiert ist, sind o-, m- oder p-Chlorphenyl, 2,3-Dichlorphenyl, 2,4-Dichlorphenyl, 2,5-Dichlorphenyl, 2,6-Dichlorphenyl, 3,4-Dichlorphenyl, 2,4-Dichlorphenyl, 2,4-Dichlorphenyl, 2,4-Dimethylphenyl, 2,4-Dimethylphenyl, 2,5-Dimethylphenyl, 2,6-Dimethylphenyl, 3,4-Dimethylphenyl, 3,5-Dimethylphenyl, 2-Methyl-6-ethylphenyl, 2-Meth

4-tert-butylphenyl, 2-Ethylphenyl, 2,6-Diethylphenyl, 2,6-Diethyl-4-methylphenyl, 2,6-Diisopropylphenyl, 4-tert-Butylphenyl, p-Nonylphenyl, 2-Chlor-6-methylphenyl, 3-Chlor-2-methylphenyl, 3-Chlor-4-methylphenyl, 4-Chlor-2-methylphenyl, 5-Chlor-2-methylphenyl, 0-, m- oder p-Methoxyphenyl, 0-oder p-Ethoxyphenyl, 2,4-Dimethoxyphenyl, 2,5-Diethoxyphenyl, 2-Methoxy-5-methylphenyl, 4-Methoxy-2-methylphenyl, 3-Chlor-4-methoxyphenyl, 3-Chlor-6-methoxyphenyl, 3-Chlor-4,6-dimethoxyphenyl, 4-Chlor-2,5-dimethoxyphenyl, 0-, m- oder p-Hydroxyphenyl, 2-Hydroxy-4-methylphenyl, 3-Hydroxy-4-methylphenyl, 0-, m- oder p-Acetylaminophenyl, 0-, m- oder p-Nitrophenyl, p-(C₁-C₁₂-Alkyl)oxycarbonylphenyl und p-Phenybxycarbonylphenyl.

Bedeuten Y₃, Y₄ und Y₆ Phenylamino, welches am Phenylrest durch, bevorzugt 1 bis 3, definitionsgemässe Reste substituiert ist, so kann der substituierte Phenylrest z.B. die oben angegebenen Bedeutungen besitzen.

 C_7 - C_{10} -Phenylalkyl ist zum Beispiel Benzyl oder 2-Phenylethyl. Benzyl ist bevorzugt. Falls die Phenylgruppe in diesen Resten durch, bevorzugt 1 bis 3, definitionsgemässe Gruppen substituiert ist, kann sie die oben angegebenen Bedeutungen annehmen. An der Phenylgruppe durch C_1 - C_{20} -Alkyl, bevorzugt C_8 - C_{14} -Alkyl, substituiertes C_7 - C_{10} -Phenylalkyl ist eine der bevorzugten Bedeutungen. Als Beispiel ist ferner Dodecylbenzyl zu nennen.

C2-C4-Alkanoyl bedeutet beispielsweise Acetyl, Propanoyl oder Butanoyl. Acetyl ist bevorzugt.

C₂-C₄-Alkoxycarbonyl ist zum Beispiel Methoxycarbonyl, Ethoxycarbonyl der Propoxycarbonyl. Methoxycarbonyl und Ethoxycarbonyl sind bevorzugt.

Di(C₁-C₄-alkyl)amino bedeutet zum Beispiel Dimethylamino, Diethylamino, Dipropylamino oder Dibutylamino.

C₁-C₂₀-Alkylamino, bevorzugt C₁-C₈-Alkylamino, insbesondere C₄-C₈-Alkylamino, ist beispielsweise Butylamino, Pentylamino, Hexylamino, Heptylamino oder Octylamino.

C3-C8-Cycloalkylamino ist zum Beispiel Cyclopropylamino, Cyclohexylamino oder Cyclooctylamino.

Alkylen mit bis zu 12 Kohlenstoffatomen bedeutet zum Beispiel Methylen, Dimethylen, Trimethylen, Butylen, Pentamethylen, Hexamethylen, Octamethylen, Decamethylen oder Dodecamethylen. Alkylen mit bis zu 8 Kohlenstoffatomen ist bevorzugt. Eine Zusammenfassung ist in US5155152 enthalten.

Weitere mögliche zusätzlich verwendbare Stabilisatoren sind Verbindungen der Formel a und b

$$R_{2}$$
 H
 R_{1} -O-CO-O
 H
 R_{2}
 CO - R_{3}
 R_{2}
 CO - R_{3}
 R_{2}

worin R¹ C₁-C₂₂-Alkyl, Phenyl, durch ein oder zwei C₁-C₉-Alkyl substituiertes Phenyl, C₅-C₇-Cycloalkyl oder eine Gruppe der Formeln A oder B ist

oder R1 eine Gruppe der Formeln ca oder cb ist

10

15

20

25

30

35

40

45

50

55

$$R_2$$
 H
(ca),
 $-R_4$ -O-CO-O-C CO- R_3

R₂ und R₃ unabhängig voneinander C₁-C₂₀-Alkyl, Phenyl, durch ein oder zwei C₁-C₉-Alkyl substituiertes Phenyl oder C₅-C₇-Cycloalkyl sind und R₄ C₂-C₁₂-Alkylen ist. Weiterführende Erläuterungen, Beispiele und Bevorzugungen sind der EP 224 438 zu entnehmen.

Weitere Stabilisatoren sind Triazole der Formel

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & &$$

oder der Formel

10

15

20

25

30

35

45

50

worin R₁ Wasserstoff, Hydroxy, C₁-C₆-Alkoxy, Carboxy, C₂-C₆-Alkoxycarbonyl, Merkapto, C₁-C₆-Alkylthio oder eine Gruppe -S-CH₂-COOH oder -S-CH₂-COO-Alkyl(C₁-C₆) bedeutet, X Thio, Methylen oder die Gruppe -COO- oder -S-CH₂-COO-, jeweils durch das Estersauerstoffatom an das Alkyl gebunden, ist, m eine ganze Zahl von 1 bis 20 ist, n 1 oder 2 ist, R₂, falls einwertig, Wasserstoff, Hydroxy oder Merkapto bedeutet und, falls zweiwertig eine direkte Bindung, Imino, C₁-C₆-Alkylimino, Oxy, Thio oder Methylen ist, R₃ Wasserstoff, Amino, Merkapto oder C₁-C₁₂-Alkylthio ist und, falls R₃ Wasserstoff bedeutet, R₄ Wasserstoff, -COOR₅, worin R₅ Wasserstoff, C₁-C₈-Alkyl oder -CH₂-COO-Alkyl(C₁-C₈) ist, oder -S-R₆, wobei R₆ Wasserstoff, C₁-C₁₂-Alkyl, -CH₂-COO-Alkyl(C₁-C₈) oder C₁-C₁₂-Alkylthio ist oder -NH-X'-NH-

ist, worin X' für die Gruppe -CO-NH-Alkylen-NH-CO-, -CO- Alkylen-S-Alkylen-CO mit jeweils 1-12 C-Atomen in der Alkylenkette oder für (C₁-C₁₂)-Alkylen steht, falls R₃ NH₂ ist, R₄ C₁-C₄-Alkyl, Merkapto, C₁-C₄-Alkylthio oder -S-Alkylen-S-

mit 1-12 C-Atomen in der Alkylenkette bedeutet, falls R₃ Merkapto ist, R₄ gegebenenfalls substituiertes Phenyl bedeutet, und falls R₃ C₁-C₁₂-Alkylthio ist, R₄ für C₁-C₄-Alkyl, C₁-C₁₂-Alkylthio oder für gegebenenfalls substituiertes Phenyl steht

Solche Stabilisatoren, weitere Ausführungsformen, Beispiele und Bevorzugungen sind aus der DE 30 48 659 ersichtlich.

Stabilisatorgemische bestehend aus einem Thioäther der Formel(VIII)

15

20

35

5

10

- 25 worin
 - n die Zahlen Null oder 1 bedeutet,
 - $R \quad C_1 C_{18} \text{Alkyl, } C_5 C_8 \text{Cycloalkyl, gegebenenfalls mit } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl substituiertes } C_6 C_{10} \text{Aryl und } C_1 C_4 \text{Alkyl und } C_1 C_4 \text{Alk$
 - R₁ Wasserstoff oder C₁-C₄-Alkyl sind,
- 30 X als wiederholt vorkommendes Symbol gleich oder verschieden Wasserstoff oder eine Gruppe der Formel

bedeutet,

Y als wiederholt vorkommendes Symbol gleich oder verschieden C₁-C₆-Alkylen oder eine Gruppe der Formel

ist, wobei die -(CH₂)_m Gruppe an das Sauerstoffatom gebunden ist und worin R₂ Wasserstoff oder eine Gruppe der Formel

bedeutet, n die Zahlen 1 bis 4 und p die Zahlen Null bis 3 sein können, Z C1-C6-Alkylen oder eine Gruppe der Formel

-CH 2-CH-CH 2-

ist, und

5

15

20

30

40

45

50

b) einem ein Metall aus der Gruppe Zink, Calcium, Magnesium oder Antimon oder femer auch Zink kombiniert mit mindestens einem der vorgenannten Metalle enthaltenden Stabilisator.

Weitere Ausführungen dazu, Beispiele und Bevorzugungen sind der EP-A-19 576 zu entnehmen.

Verbindungen der Formel(IX)

(Hal) (Y-NHR)

25 in welcher (IX)

m eine Zahl 0, 1 oder 2,

n eine Zahl 0, 2 oder 3 und

p eine Zahl 1 oder 2 sind

Hal für -F, -Cl, -Br oder -I steht,

35 X -NH₂, -NHCH₃ und/oder -OCH₃ oder OC₂H₅,

Y -CO- oder -SO₂- und

R -H, -OH, -NH₂, unsubstituiertes oder beispielsweise durch eine bis drei HO- und/oder C₁-C₄-Alkoxy- oder Phenoxygruppen substituiertes C₁-C₁₈-Alkyl, Phenyl, Benzyl oder Phenäthyl, oder R ferner eine Gruppe der Formel

wobei

X, Y, m, n und Hal die oben angegebene Bedeutung haben. Detaillierte Beschreibungen, Beispiele und Bevorzugungen sind der EP 122 228 und der EP 174 412 zu entnehmen.

Stabilisatorengemische erhältlich durch Mischen mindestens einer Verbindung der Formel(X)

 $[\mathsf{ROOC}\text{-}\mathsf{C}_{\mathsf{n}}\mathsf{H}_{\mathsf{2n}}\mathsf{S}\text{-}]_{\mathsf{3}}\;\mathsf{PX},\tag{X}$

in der X O oder S, n eine ganze Zahl von 1 bis 5 und R geradkettiges oder verzweigtes C₁-C₁₈-Alkyl oder substituiertes oder unsubstituiertes Cyclohexyl bedeuten, und mindestens eines PVC-Stabilisators vom Typ Me(II)-Carboxylat und/oder Me(II)-Phenolat, wobei Me(II) ein oder mehrere Metalle aus der Reihe Ba, Sr, Ca, Mg, Zn und Cd bedeutet, und wobei, bezogen auf das PVC, 0,01 - 2 Gew.-% der Verbindung der Formel I und 0,1-4 Gew.-% des Me(II)-Carboxylates und/oder Me(II)-Phenolates eingesetzt werden. Solche Stabilisatorgemische sind weiterführend in der EP 90 770 beschrieben, woraus auch Beispiele und Bevorzugungen ersichtlich sind.

Als organische Weichmacher kommen beispielsweise solche aus den folgenden Gruppen in Betracht:

A) Phthalate (Phthalsäureester)

5

10

15

20

25

30

35

40

45

50

55

Beispiele für solche Weichmacher sind Dimethyl-, Diethyl-, Dibutyl-, Dihexyl-, Di-2-ethylhexyl-, Di-n-octyl-, Di-iso-octyl-, Di-iso-nonyl-, Di-iso-decyl-, Di-iso-tridecyl-, Dicyclohexyl-, Di-methylcyclohexyl-, Dimethylglycol-, Dibutyl-glycol-, Benzylbutyl- und Diphenyl-phthalat sowie Mischungen von Phthalaten wie C₇-C₉- und C₉-C₁₁-Alkylphthalate aus überwiegend linearen Alkoholen, C₆-C₁₀-n-Alkylphthalate und C₈-C₁₀-n-Alkylphthalate. Bevorzugt sind davon Dibutyl-, Di-exyl-, Di-2-ethylhexyl-, Di-n-octyl-, Di-iso-octyl-, Di-iso-nonyl-, Di-iso-decyl-, Di-iso-tridecyl- und Benzylbutyl-phthalat sowie die genannten Mischungen von Alkylphthalaten. Besonders bevorzugt ist Di-2-ethylhexyl-, Di-iso-nonyl- und Di-iso-decylphthalat.

B) <u>Ester aliphatischer Dicarbonsäuren</u>, insbesondere Ester von Adipin-, Azelain- und Sebazinsäure Beispiele für solche Weichmacher sind Di-2-ethylhexyladipat, Di-isooctyladipat (Gemisch), Di-iso-nonyladipat (Gemisch), Di-iso-decyladipat (Gemisch), Benzylbutyladipat, Benzyloctyladipat, Di-2-ethylhexylazelat, Di-2-ethylhexylsebacat und Di-iso-decylsebacat (Gemisch). Bevorzugt sind Di-2-ethylhexyladipat und Di-iso-octyladipat.

C) Trimellithsäureester,

beispielsweise Tri-2-ethylhexyltrimellithat, Tri-iso-decyltrimellithat (Gemisch), Tri-iso-tridecyltrimellithat, Tri-iso-octyltrimellithat (Gemisch) sowie Tri- C_6 - C_8 -alkyl, Tri- C_6 - C_{10} -alkyl-, Tri- C_7 - C_9 -alkyl- und Tri- C_9 - C_{11} -alkyl-trimellithate. Die letztgenannten Trimellithate entstehen durch Veresterung der Trimellithsäure mit den entsprechenden Alkanolgemischen. Bevorzugte Trimellithate sind Tri-2-ethylhexyltrimellithat und die genannten Trimellithate aus Alkanolgemischen.

D) <u>Epoxyweichmacher</u> wie 1,2-Epoxide und Oxirane; Beispiele dafür sind epoxidiertes Polybutadien, epoxidiertes Sojabohnenöl, epoxidiertes Leinsamenöl, epoxidiertes Fischöl, epoxidierter Talg, Methylbutyl- oder 2-Ethylhexyl-epoxystearat, Tris(epoxypropyl)isocyanurat, epoxidiertes Ricinusöl, epoxidiertes Sonnenblumenöl, 3-(2-Phenoxy)-1,2-epoxypropan, Bisphenol-A-polyglycidylether, Vinylcyclohexendiepoxyd, Dicyclopentaliendiepoxyd und 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexancarboxylat.

E) Polymerweichmacher

Eine Definition dieser Weichmacher und Beispiele für solche sind im "Taschenbuch der Kunststoff-Additive", Herausgeber R. Gächter und H. Müller, Hanser Verlag, 1990, Seite 412, Kapitel 5.9.6 sowie in "PVC Technology", Herausgeber W.V. Titow, 4th. Ed., Elsevier Publ., 1984, Seiten 165-170 angegeben. Die gebräuchlichsten Ausgangsmaterialien für die Herstellung der Polyesterweichmacher sind: Dicarbonsäuren wie Adipin-, Phthal-, Azelain- und Sebacinsäure; Diole wie 1,2-Propandiol, 1,3-Butandiol, 1,4-Butandiol, 1,6-Hexandiol, Neopentylglycol und Diethylenglykol; Monocarbonsäuren wie Essig-, Capron-, Capryl-, Laurin-, Myristin-, Palmitin-, Stearin-, Pelargon-und Benzoesäure; monofunktionelle Alkohole wie Isooctanol, 2-Ethylhexanol, Isodecanol sowie C₇-C₉-Alkanol- und C₉-C₁₁-Alkanolgemische. Besonders vorteilhaft sind Polyesterweichmacher aus den genannten Dicarbonsäuren und monofunktionellen Alkoholen.

F) Phosphorsäureester

Eine Definition dieser Ester ist im vorstehend genannten "Taschenbuch der Kunststoff-Additive" auf Seite 408, Kapitel 5.9.5 zu finden. Beispiele für solche Phosphorsäureester sind Tributylphosphat, Tri-2-ethylbutylphosphat, Tri-2-ethylbutylphosphat, Tri-2-ethylphosphat, Tri-2-ethylphosphat, Tri-2-ethylphosphat, Tri-2-ethylphosphat, Tri-2-ethylphosphat, Tri-2-ethylphosphat und Trixylenylphosphat. Bevorzugt ist Tri-2-ethylphosphat und ®Reofos

G) Chlorierte Kohlenwasserstoffe bzw. chlorierte Paraffine

H) Kohlenwasserstoffe (Paraffine)

5

10

15

20

25

30

35

40

45

50

55

- I) Monoester, z.B. Butyloleat, Phenoxyethyloleat, Tetrahydrofurfuryloleat und Alkylsulfonsäureester.
- J) Glykolester, z.B. Diglykolbenzoate oder allgemein Polyolvoll- und partialester.

Definitionen und Beispiele für Weichmacher der Gruppen G) bis J) sind den folgenden Handbüchern zu entnehmen:

"Taschenbuch der Kunststoff-Additive", Herausgeber R. Gächter und H. Müller, Hanser Verlag, 1990, Seite 422, Kapitel 5.9.14.2 (Gruppe G)), und Kapitel 5.9.14.1 (Gruppe H)).

"PVC Technology", Herausgeber W.V. Titow, 4th. Ed., Elsevier Publishers, 1984, Seiten 171-173, Kapitel 6.10.2 (Gruppe G)), Seite 174, Kapitel 6.10.5 (Gruppe H)), Seite 173, Kapitel 6.10.3 (Gruppe I)) und Seiten 173-174, Kapitel 6.10.4 (Gruppe J)).

Besonders bevorzugt sind Weichmacher aus den Gruppen A) bis F), insbesondere A) bis D) und F), vor allem die in diesen Gruppen als bevorzugt herausgestellten Weichmacher.

Es können auch Mischungen unterschiedlicher Weichmacher verwendet werden.

Die Weichmacher können in einer Menge von beispielsweise 1 bis 120, zweckmässig 1 bis 100 und insbesondere 2 bis 70 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewendet werden.

Als Dihydropyridine kommen monomere und oligomere Verbindungen z.B. wie in EP-A-0362012, EP-A-0286887 und EP-A-0024754 beschrieben in Frage.

Als Perchlorate kommen Alkali- und Erdalkaliperchlorate sowie Zink- und Aluminiumperchlorate oder Perchlorate deren Kation aus einem tensidischen Ammonium- oder Phosphonium-Kation besteht, auch auf Trägern aufgezogen, z.B. wie in US5,034,443 beschrieben in Betracht. Zum Einsatz kommen können auch Addukte dieser Perchlorate mit ein- und mehrwertigen Alkoholen.

Als Antioxidantien kommen beispielsweise in Betracht:

- 1. Alkylierte Monophenole, z.B. 2,6-Di-tert-butyl-4-methylphenol, 2-butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butyl-4-n-butylphenol, 2,6-Di-tert-butyl-4-iso-butylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2,6-Di-tert-butyl-4-methylphenol, 2,4-Di-tert-butyl-4-methylphenol, 2,6-Di-tert-butyl-4-methylphenol, 2,6-Di-nonyl-4-methylphenol, 2,4-Dimethyl-6-(1'-methyl-undec-1'-yl)-phenol, 2,4-Dimethyl-6-(1'-methyl-heptadec-1'-yl)-phenol, 2,4-Dimethyl-6-(1'-methyl-tridec-1'-yl)-phenol, Nonylphenol und Mischungen davon.
- <u>2. Alkylthiomethylphenole</u>, z.B. 2,4-Di-octylthiomethyl-6-tert-butylphenol, 2,4-Di-octylthiomethyl-6-methylphenol, 2,4-Di-octylthiomethyl-6-ethylphenol, 2,6-Di-dodecylthiomethyl-4-nonylphenol.
- 3. Hydrochinone und alkylierte Hydrochinone, z.B. 2,6-Di-tert-butyl-4-methoxyphenol, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-4-ctadecyloxyphenol, 2,6-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyphenyl-stearat, Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipat.
- 4. Hydroxylierte Thiodiphenylether, z.B. 2,2'-Thio-bis-(6-tert-butyl-4-methylphenol), 2,2'-Thio-bis-(4-octylphenol), 4,4'-Thio-bis-(6-tert-butyl-3-methylphenol), 4,4'-Thio-bis-(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis-(3,6-di-sec.-amylphenol), 4,4'-Bis-(2,6-dimethyl-4-hydroxyphenyl)-disulfid.
- 5. Alkyliden-Bisphenole, z.B. 2,2'-Methylen-bis-(6-tert-butyl-4-methylphenol), 2,2'-Methylen-bis-(6-tert-butyl-4-ethylphenol), 2,2'-Methylen-bis-(4-methyl-6-cyclohexylphenol), 2,2'-Methylen-bis-(6-nonyl-4-methylphenol), 2,2'-Methylen-bis-(4-di-tert-butylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(6-tert-butyl-4-isobutylphenol), 2,2'-Methylen-bis-[6-(α-methylbenzyl)-4-nonylphenol], 2,2'-Methylen-bis-[6-(α-methylbenzyl)-4-nonylphenol], 4,4'-Methylen-bis-(6-tert-butyl-2-methylphenol), 1,1-Bis-(5-tert-butyl-4-hydroxy-2-methylphenol), 1,1-Bis-(5-tert-butyl-4-hydroxy-2-methylphenol), 1,1-Bis-(5-tert-butyl-4-hydroxy-2-methylphenol), 1,1-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutan, Ethylengly-col-bis-[3,3-bis-(3'-tert-butyl-4'-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-hydroxy-5-methyl-phenyl)-terephthalat, 1,1-Bis-(3,5-dimethyl-2-hydroxyphenyl)-butan, 2,2-Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)-propan, 2,2-Bis-(4-hydroxy-2-methylphenyl)-propan, 2,2-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercapto-butan, 1,1,5,5-Tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)-pentan.

5

10

25

30

40

45

55

- <u>6. O-, N- und S-Benzylverbindungen</u>, z.B. 3,5,3',5'-Tetra-tert-butyl-4,4'-dihydroxydibenzylether, Octadecyl-4-hydroxy-3,5-dimethylbenzyl-mercaptoacetat, Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-amin, Bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithioterephthalat, Bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-sulfid, Isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetat.
- 7. Hydroxybenzylierte Malonate, z.B. Dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonat, Di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonat, Di-dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonat, Di-[4-(1,1,3,3-tetramethylbutyl)-phenyl]-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonat
- <u>8. Hydroxybenzyl-Aromaten</u>, z.B. 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, 1,4-Bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzol, 2,4,6-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-phenol.
- 9. Triazinverbindungen, z.B. 2,4-Bis-octylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis-(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazin, 2,4,6-Tris-(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazin, 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxyphenoxy)-isocyanurat, 1,3,5-Tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 2,4,6-Tris-(3,5-di-tert-butyl-4-hydroxyphenylpro-pionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris-(3,5-dicyclohexyl-4-hydroxybenzyl)-isocyanurat.
 - 10. Phosphonate, Phosphite und Phosphonite, z.B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hydroxybenzylphosphonat, Ca-Salz des 3,5-Di-tert-butyl-4-hydroxybenzylphosphonsäuremonoethylesters, Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris-(nonylphenyl)-phosphit, Trilaurylphosphit, Trioctadecylphosphit, Distearyl-pentaerythritdiphosphit, Tris-(2,4-di-tert-butylphenyl)-phosphit, Diisodecylpentaerythrit-diphosphit, Bis-(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit, Bis-(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit, Bis-(2,4-di-tert-butyl-6-methylphenyl)-pentaerythritdiphosphit, Bis-(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit, Tristearyl-sorbit-triphosphit, Tetrakis-(2,4-di-tert-butylphenyl)-4,4'-biphenylen-diphosphonit, 6-Isooctyloxy-2,4,8,10-tetra-tert-butyl-12-methyl-dibenz[d,g]-1,3,2-dioxaphosphocin, Bis-(2,4-di-tert-butyl-6-methylphenyl)-methylphosphit, Bis-(2,4-di-tert-butyl-6-methylphenyl)-ethylphosphit, (CgH₁₉-C₆H₄)_{1,5}-P-(O-C₁₂₋₁₃H₂₅₋₂₇)_{1,5}.
- 35 11. Acylaminophenole, z.B. 4-Hydroxy-laurinsäureanilid, 4-Hydroxystearinsäureanilid, N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbaminsäureoctylester.
 - 12. Ester der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxyethyl)-isocyanurat, N,N'-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
 - 13. Ester der β-15-tert-Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N'-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
- 50 14. Ester der β-(3,5-Dicyclohexyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N'-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylopropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
 - 15. Ester der 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N'-

Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.

16. Amide der β-(3.5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure, wie z.B. N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-trimethylendiamin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin.

17. Ester der Thiodiessigsäure und Thiodipropionsäure

5

10

15

20

25

30

35

40

45

50

55

Bevorzugt sind Antioxidantien der Gruppen 5, 10 und 14 insbesondere 2,2-Bis-(4-hydroxyphenyl)-propan, Ester der 3,5-Di-tert-butyl-4-hydroxyphenylpropionsäure mit Octadecanol oder Pentaerythrit oder Tris-(2,4-di-tert-butylphenyl)-phosphit.

Gegebenenfalls kann auch ein Gemisch von Antioxidantien unterschiedlicher Struktur eingesetzt werden.

Die Antioxidantien können in einer Menge von beispielsweise 0,01 bis 10, zweckmässig 0,1 bis 10 und insbesondere 0,1 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewendet werden.

Als UV-Absorber und Lichtschutzmittel kommen beispielsweise in Betracht:

- 1.2-(2'-Hydroxyphenyl)-benztriazole, wie z.B. 2-(2'-Hydroxy-5'-methylphenyl)-benztriazol, 2-(3',5'-Di-tert-butyl-2'-hydroxyphenyl)-benztriazol, 2-(3',5'-Di-tert-butyl-2'-hydroxyphenyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxyphenyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxyphenyl)-5-chlor-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-methylphenyl)-5-chlorbenztriazol, 2-(3'-sec-Butyl-5'-tert-butyl-2'-hydroxyphenyl)-benztriazol, 2-(2'-Hydroxy-4'-octoxyphenyl)-benztriazol, 2-(3',5'-Di-tert-amyl-2'-hydroxyphenyl)-benztriazol, 2-(3',5'-Bis-(α,α-dimethylbenzyl)-2'-hydroxyphenyl)-benztriazol, Mischung aus 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-5-chlor-benztriazol, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)-carbonylethyl]-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-5-chlor-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-benztriazol, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-isooctyloxycarbonylethyl)phenyl-benztriazol, 2,2'-Methylen-bis[4-(1,1,3,3-tetramethylbutyl)-6-benztriazol mit Polyethylenglycol 300; [R-CH 2CH 2-COO(CH 2)3] R= 3'-tert-Butyl-4'-hydroxy-5'-2H-benztriazol-2-yl-phenyl.
- 2. 2-Hydroxybenzophenone, wie z.B. das 4-Hydroxy-, 4-Methoxy-, 4-Octoxy-, 4-Decyloxy-, 4-Dodecyloxy-, 4-Benzyloxy-, 4,2',4'-Trihydroxy-, 2'-Hydroxy-4,4'-dimethoxy-Derivat.
- 3. Ester von gegebenenfalls substituierten Benzoesäuren, wie z.B. 4-tert-Butyl-phenylsalicylat, Phenylsalicylat, Octylphenyl-salicylat, Dibenzoylresorcin, Bis-(4-tert-butylbenzoyl)-resorcin, Benzoylresorcin, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-2,4-di-tert-butylphenylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-butyl-4-hydroxybenzoesäure-2-methyl-4,6-di-tert-butylphenylester.
- 4. Acrylate, wie z.B. α-Cyan-β,β-diphenylacrylsäure-ethylester bzw. -isooctylester, α-Carbomethoxy-zimtsäure-methylester, α-Cyano-β-methyl-p-methoxy-zimtsäuremethylester bzw.-butylester, α-Carbomethoxy-p-methoxy-zimtsäure-methylester, N-(β-Carbomethoxy-β-cyanovinyl)-2-methyl-indolin.
- 5. Nickelverbindungen, wie z.B. Nickelkomplexe des 2,2'-Thio-bis-[4-(1,1,3,3-tetramethylbutyl)-phenols], wie der 1:1- oder der 1:2-Komplex, gegebenenfalls mit zusätzlichen Liganden, wie n-Butylamin, Triethanolamin oder N-Cyclohexyl-diethanolamin, Nickel-dibutyldithiocarbamat, Nickelsalze von 4-Hydroxy-3,5-di-tert-butylbenzylphos-phonsäuremonoalkylestern, wie vom Methyl- oder Ethylester, Nickelkomplexe von Ketoximen, wie von 2-Hydroxy-4-methyl-phenyl-undecylketoxim, Nickelkomplexe des 1-Phenyl-4-lauroyl-5-hydroxy-pyrazols, gegebenenfalls mit zusätzlichen Liganden.
- 6. Sterisch gehinderte Amine, wie z.B. Bis-(2,2,6,6-tetramethyl-piperidyl)-sebacat, Bis-(2,2,6,6-tetramethyl-piperidyl)-succinat, Bis-(1,2,2,6,6-pentamethyl-piperidyl)-sebacat, n-Butyl-3,5-di-tert-butyl-4-hydroxybenzyl-malonsäure-bis(1,2,2,6,6-pentamethyl-piperidyl)-ester, Kondensationsprodukt aus 1-Hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernsteinsäure, Kondensationsprodukt aus N,N'-Bis-(2,2,6,6-Tetramethyl-4-piperidyl)-hexamethylendiamin und 4-tert-Octylamino-2,6-dichlor-1,3,5-s-triazin, Tris-(2,2,6,6-tetramethyl-4-piperidyl)-nitrilotriacetat, Tetrakis-(2,2,6,6-tetramethyl-4-piperidyl)-l,2,3,4-butantetraoat, 1,1'-(1,2-Ethandiyl)-bis-(3,3,5,5-tetramethyl-4-piperidyl)-nitrilotria-

piperazinon), 4-Benzoyl-2,2,6,6-tetramethylpiperidin, 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, Bis-(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)-malonat, 3-n-Octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion, Bis-(1-octyloxy-2,2,6,6-tetramethylpiperidyl)-sebacat, Bis-(1-octyloxy-2,2,6,6-tetramethylpiperidyl)-succinat, Kondensationsprodukt aus N,N'-Bis-(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylendiamin und 4-Morpholino-2,6-dichlor-1,3,5-triazin, Kondensationsprodukt aus 2-Chlor-4,6-di-(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazin und 1,2-Bis-(3-aminopropylamino)äthan, Kondensationsprodukt aus 2-Chlor-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazin und 1,2-Bis-(3-aminopropylamino)-äthan, 8-Acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion, 3-Dodecyl-1-(2,2,6,6-pentamethyl-4-piperidyl)-pyrrolidin-2,5-dion, sowie Chimassorb966.

7. Oxalsäurediamide, wie z.B. 4,4'-Di-octyloxy-oxanilid, 2,2'-Di-octyloxy-5,5'-di-tert-butyl-oxanilid, 2,2'-Di-odecyloxy-5,5'di-tert-butyl-oxanilid, 2-Ethoxy-2'-ethyl-oxanilid, N,N'-Bis-(3-dimethylaminopropyl)-oxalamid, 2-Ethoxy-5-tert-butyl-2'-ethyloxanilid und dessen Gemisch mit 2-Ethoxy-2'-ethyl-5,4'-di-tert-butyl-oxanilid, Gemische von o-und p-Methoxy- sowie von o- und p-Ethoxy-di-substituierten Oxaniliden.

<u>8. 2-(2-Hydroxyphenyl)-1,3,5-triazine</u>, wie z.B. 2,4,6-Tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis-(2,4-dimethyphenyl)-1,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2,4-Bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-hydroxy-4-(2-hydroxy-3-butyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-hydroxy-4-(2-hydroxy-3-octyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin.

Als peroxidzerstörende Verbindungen kommen beispielsweise in Betracht:

Ester der β-Thio-dipropionsäure, beispielsweise der Lauryl-, Stearyl-, Myristyl- oder Tridecylester, Mercaptobenzimidazol, das Zinksalz des 2-Mercaptobenzimidazols, Zinkdibutyl-dithiocarbamat, Dioctadecyldisulfid, Pentaerythrit-tetrakis-(β-dodecylmercapto)propionat oder Ethylenglykolbismercaptoacetat.

Als Gleitmittel kommen beispielsweise in Betracht:

Montanwachs, Fettsäureester, PE-Wachse, Amidwachse, Polyolpartialester, teilverseifte PE-Wachse, sogenannte Komplexester Chlorparaffine, Glycerinester, Erdalkaliseifen oder Fettketone wie in DE4204887 beschrieben. Verwendbare Gleitmittel sind auch in "Taschenbuch der Kunststoff-Additive", Herausgeber R. Gächter und H. Müller, Hanser Verlag, 3.Auflage, 1990, Seiten 443-503 beschrieben. Weitere Gleitmittelausführungen insbesondere Kombinationen sind zu entnehmen in EP-A-0062813 und EP 0336289.

Als Polyole kommen beispielsweise in Betracht:

Pentaerythrit, Dipentaerythrit, Tripentaerythrit, Trimethylolethan, Bistrimethylolethan, Trimethylolpropan, Bistrimethylolpropan, Sorbit, Mannit, Xylit, Lactose, Leucrose, Tris(hydroxyethyl)-isocyanurat, Tris-(dihydroxypropyl)-isocyanurat, Inosite, Tetramethylolcyclohexanol, Tetramethylolcyclopentanol, Tetramethylolcyclopyranol, Glycerin, Diglycerin, Polyglycerin, Thiodiglykol, Thiodiglycerin, Bishydroxyethylweinsäureamid, Hexakishydroxyethyl-melamin, Bis-trihydroxymethyloxamid, Tris-trihydroxymethylcitramid sowie α-, β- und γ-Cyclodextrine.

Die Polyole können in einer Menge von beispielsweise 0,01 bis 20, zweckmässig 0,1 bis 20 und insbesondere 0,1 bis 10 Gew.-Teilen, besonders bevorzugt 0,1 bis 3 Teile, bezogen auf 100 Gew.-Teile PVC, angewendet werden.

Als Verbindungen aus der Reihe der Hydrotalcite, Zeolithe, Dawsonite, Magadiite, Kenyaite oder Kanemite kommen sowohl die natürlich vorkommenden Mineralien wie auch synthetisch hergestellte Verbindungen in Betracht.

Verbindungen aus der Reihe der Hydrotalcite können durch die allgemeine Formel (XIII),

 $M^{2+}_{1-x} \circ M^{3+}_{x} \circ (OH)_{2} \circ (A^{n-})_{x/n} \circ mH_{2}O$ (XIII)

wobei

5

10

15

20

25

30

40

45

50

55

M²⁺ = Mg, Ca, Sr, Zn und/oder Sn ist,

M3+ = AI, B oder Bi ist,

An- ein Anion mit der Valenz n darstellt,

n eine Zahl von 1-4 ist,

x eine Zahl von 0-0,5 ist und

m eine Zahl von 0-2 ist,

beschrieben werden.

5

10

15

20

25

30

40

50

55

An- ist bevorzugt OH-, Cl-, Br, I-, ClO₄-, HCO₃-, CH₃COO-, C₆H₅COO-, CO₃²⁻, SO₄²⁻,

coo . | coo .

 $(CHOHCOO)_2^{2-}$, $(CHOH)_4CH_2OHCOO^-$. $C_2H_4(COO)_2^{2-}$, $(CH_2COO)_2^{2-}$, $CH_3CHOHCOO^-$, SiO_3^{2-} , SiO_4^{4-} , $Fe(CN)_6^{3-}$, $Fe(CN)_6^{4-}$, HPO_3^{2-} oder HPO_4^{2-} .

Weitere Beispiele für Hydrotalcite finden sich in DE 4106403.

Andere Hydrotalcite, die zweckmässig eingesetzt werden können, sind Verbindungen mit der allgemeinen Formel (XIIIa),

$$M^{2+}_{x}AL_{2}(OH)_{2x+6nz}(A^{n+})_{2}$$
 mH₂O (XIIIa)

wobei in vorliegender Formel (XIIIa) M^2 + wenigstens ein Metall aus der Reihe von Mg und Zn darstellt und Mg bevorzugt ist, A^{n-} ein Anion, beispielsweise aus der Reihe von CO_3^{2-} , CO_3^{2-} ,

500 500

OH- und S²⁻ darstellt, wobei n die Valenz des Anions ist, m eine positive Zahl, vorzugsweise von 0,5 bis 5, darstellt und x und z positive Zahlen darstellen, wobei x vorzugsweise 2 bis 6 ist und z kleiner als 2 ist.

Bevorzugt sind Verbindungen aus der Reihe der Hydrotalcite der allgemeinen Formel (XIII),

$$M^{2+}_{1-x} \cdot M^{3+}_{x} \cdot (OH)_{2} \cdot (A^{n-})_{x/n} \cdot mH_{2}O$$
 (XIII)

wobei M²+ die Bedeutung von Mg oder einer festen Lösung von Mg und Zn hat, An- für CO₃²- steht, x eine Zahl von 0 bis 0,5 ist und m eine Zahl von 0 bis 2 ist.

Ganz besonders bevorzugt sind Hydrotalcite der Formeln

Al₂O₃.6MgO.CO₂.12H₂O,

Mg_{4.5}Al₂(OH)₁₃.CO₃.3,5H₂O,

4MgO.Al₂O₃.CO₂.9H₂O,

45 4MgO.Al₂O₃.CO₂.6H₂O,

ZnO.3MgO.Al₂O₃.CO₂.8-9H₂O oder

ZnO.3MgO.Al₂O₃.CO₂.5-6H₂O.

Zeolithe können durch die allgemeine Formel (XIV)

$$\mathsf{M}_{\mathsf{x/n}}[(\mathsf{AIO}_2)_{\mathsf{x}}(\mathsf{SiO}_2)_{\mathsf{y}}].\mathsf{wH}_2\mathsf{O} \tag{XIV}$$

wobei n die Ladung des Kations M,

M ein Element der ersten oder zweiten Hauptgruppe, sowie Zink,

y:x eine Zahl zwischen 0,8 und unendlich, vorzugsweise zwischen 0,8 und 10,5 und w eine Zahl zwischen 0 und 300 ist,

beschrieben werden.

5

10

15

25

35

40

45

50

55

Weiter sind verwendbare Zeolithe aus "Atlas of Zeolite Structure Types", W.M. Meier und D.H. Olson, Verlag Butterworths, 3. Auflage 1992 bekannt.

Zu Zeolithen im weiteren Sinne sind auch Aluminiumphosphate mit Zeolithstruktur zu rechnen.

Die bevorzugten an sich bekannten Zeolithe weisen einen durchschnittlichen wirksamen Porendurchmesser von 3-5Å auf und können nach bekannten Methoden hergestellt werden.

Besonders bevorzugt sind Zeolithe vorn Typ NaA, die einen durchschnittlichen wirksamen Porendurchmesser von 4Å besitzen, weshalb sie auch als Zeolithe 4A bezeichnet werden.

Besonders bevorzugt sind kristalline Natriumalumosilikate, deren Teilchengrösse wenigstens weitaus überwiegend im Bereich von 1-10µ liegt.

In einer bevorzugten Ausführung können auch Natriumalumosilikate mit abgerundeten Ecken und Kanten verwendet werden.

Bevorzugt sind Verbindungen der Formeln

Na₁₆Al₁₆Si₂₄O₈₀ . 16 H₂O,

$$Na_{16}AI_{16}Si_{32}O_{96}$$
. 16 H_2O ,

oder die durch teilweisen bzw. vollständigen Austausch der Na-Atome durch Li-, K-, Mg-, Ca-, Sr- oder Zn-Atome darstellbaren Zeolithe wie

$$K_9Na_3[(AIO_2)_{12}(SiO_2)_{12}]$$
. 27 H_2O

Geeignete Dawsonite oder allgemeiner Alumosalzverbindungen beispielsweise der Formel (XV) $\{(Mt_2O)_m, (Al_2O_3)_n, Z_0, pH_2O\}$, worin Mt H, Na, K, Li $Mg_{1/2}$, $Ca_{1/2}$, $Sr_{1/2}$ oder $Zn_{1/2}$; ZCO_2 , SO_2 , $(Cl_2O_7)_{1/2}$, B_4O_6 , S_2O_2 (Thiosulfat) oder C_2O_2 (Oxalat); m eine Zahl zwischen 1 und 3; n eine Zahl zwischen 1 und 4; o eine Zahl zwischen 2 und 4; und p eine Zahl zwischen 0 und 30 ist; können natürlich vorkommende Mineralien sein oder synthetisch hergestellte Verbindungen. Die Metalle können partiell gegeneinander ausgetauscht sein. Die genannten Dawsonite sind kristallin, teilkristallin oder amorph oder können als getrocknetes Gel vorliegen. Die Dawsonite können auch in selteneren, kristallinen Modifikationen vorliegen. Ein Verfahren zur Herstellung solcher Verbindungen ist in EP-A-0394670 angegeben. Beispiele für natürlich vorkommende Alumosalzverbindungen sind Indigirit, Tunisit, Alumohydrocalcit, Para-Alumohydrocalcit, Strontiodresserit und Hydro-Strontiodresserit. Weitere Beispiele für Alumosalz-Verbindungen sind Kaliumalumocarbonat $\{(K_2O).(Al_2O_3).(CO_2)_2.2H_2O\}$, Natriumalumothiosulfat $\{(Na_2O).(Al_2O_3).(S_2O_2)_2.2H_2O\}$, Kaliumalumosulfit $\{(K_2O).(Al_2O_3).(SO_2)_2.2H_2O\}$, Calciumalumooxalat $\{(CaO).(Al_2O_3).(CO_2)_2.5H_2O\}$, Magnesiumalumotetraborat $\{(MgO).(Al_2O_3).(B_4O_6)_2.5H_2O\}$, $\{((Mg_0.2Na_0.6]_2O).(Al_2O_3).(CO_2)_2.4.1H_2O)$, $\{((Mg_0.2Na_0.6]_2O).(Al_2O_3).(CO_2)_2.2.4.9H_2O)$.

Geeignet ist ein Magadiit der Formel Na₂Si₁₄O₂₉.nH₂O oder Na₂Si₈O₁₇.nH₂O, worin n eine Zahl 0-30 ist.

Geeignet ist ein Kenyait der Formel Na₂Si₂₂O₄₅.nH₂O, worin n eine Zahl 0-30 ist.

Geeignet ist ein Kanemit der Formel Na₂Si₂O₅.nH₂O, NaHSi₂O₅.nH₂O oder Na₂Si₄O₉.nH₂O, worin n eine Zahl

0-30 ist

Die verwendbaren Magadiite, Kenyaite oder Kanemite können natürlich vorkommende Mineralien sein oder synthetisch hergestellte Verbindungen. Ein Verfahren zur Herstellung solcher Verbindungen findet sich beispielsweise in EP-A-0472144, EP-A-0615955, EP-A-0615956, EP-A-0627383 und DE-A-4107955.

Die gemischten Alumosalz-Verbindungen können nach an sich bekannten Verfahren durch Kationenaustausch, bevorzugt aus den Alkali-Alumosalz-Verbindungen oder durch Kombinationsfällung (siehe beispielsweise US-A-5,194,458) erhalten werden.

Bevorzugt sind Alumosalz-Verbindungen der Formel (XV),

worin Mt Na oder K; Z CO₂, SO₂ oder (Cl₂O₇)_{1/2}; m 1-3; n 1-4; o 2-4 und p 0-20 bedeuten. Besonders bevorzugt bedeutet Z CO₂.

Weiter sind Verbindungen bevorzugt, welche sich durch folgende Formeln darstellen lassen:

$$Mt_2O.Al_2O_3.(CO_2)_2 \cdot pH_2O$$
 (XVa)

15

5

10

$$(Mt_2O)_2.(Al_2O_3)_2.(CO_2)_2.pH_2O$$
 (XVb)

20

25

30

35

40

45

50

55

$$Mt_2O.(Al_2O_3)_2.(CO_2)_2. pH_2O$$
 (XVc)

wobei Mt ein Metall wie Na, K, Mg_{1/2}, Ca_{1/2}, Sr_{1/2} oder Zn_{1/2} und p eine Zahl zwischen 0 und 12 bedeutet. Weiterhin sind bevorzugt ein Magadiit der Formel Na₂Si₁₄O₂₉.6H₂O und ein Kenyait der Formel Na₂Si₂₂O₄₅.7H₂O Bevorzugt ist ein stabilisiertes halogenhaltiges Polymer enthaltend

- (a) PVC oder dessen Recyclat,
- (b) Maltit oder Laktit,

und (c) 0,001-5,0 Teile je 100 Teile PVC einer anorganischen oder organischen Zink-Verbindung; sowie gegebenenfalls ein phenolisches Antioxidans, insbesondere 0,1-5,0 Teile je 100 Teile PVC.

Bevorzugt ist femer ein stabilisiertes halogenhaltiges Polymer, das zusätzlich ein β-Diketon und/oder dessen Mg-, Ca- bzw. Zn-Salze oder einen β-Ketoester enthält.

Bevorzugt ist femer ein stabilisiertes halogenhaltiges Polymer, das zusätzlich ein Epoxid enthält.

Bevorzugt ist ferner ein stabilisiertes halogenhaltiges Polymer, das zusätzlich ein monomeres, oligomeres oder polymeres Dihydropyridin enthält.

Bevorzugt ist ferner ein stabilisiertes halogenhaltiges Polymer, das zusätzlich eine anorganische oder organische Calciumverbindung enthält.

Bevorzugt ist ferner ein stabilisiertes halogenhaltiges Polymer, das zusätzlich ein Phosphit, eine Perchlorat-Verbindung, ein Polyol, einen Hydrotalcit, einen Zeolith, einen Dawsonit, einen Magadiit, einen Kenyait oder einen Kanemit enthält.

Besonders bevorzugt ist ein stabilisiertes halogenhaltiges Polymer, das neben (a), (b) und (c), ein β-Diketon und/ oder dessen Mg-, Ca-, bzw. Zn-Salz oder einen β-Ketoester und ein monomeres, oligomeres oder polymeres Dihydropyridin enthält.

Besonders bevorzugt ist ferner ein stabilisiertes halogenhaltiges Polymer, das neben (a), (b) und (c), ein β-Diketon und/oder dessen Mg-, Ca-, bzw. Zn-Salz oder einen β-Ketoester und ein Polyol, einen Hydrotalcit, einen Zeolith, einen Dawsonit, einen Magadiit, einen Kenyait oder einen Kanemit enthält.

Besonders bevorzugt ist ferner ein stabilisiertes halogenhaltiges Polymer, das neben (a), (b) und (c), eine Perchlorat-Verbindung und ein Polyol, einen Hydrotalclt, einen Zeolith, einen Dawsonit, einen Magadiit, einen Kenyait oder einen Kanemit enthält.

Besonders bevorzugt ist ferner ein stabilisiertes halogenhaltiges Polymer, das neben (a), (b) und (c), ein Epoxid und eine Perchlorat-Verbindung enthält.

Die beiden letztgenannten Kombinationen können zusätzlich ein β-Diketon, dessen Mg-, Ca-, bzw. Zn-Salz oder einen β-Ketoester oder Mischungen hieraus enthalten.

Sämtliche Kombinationen können zusätzlich eine Calciumseife, und/oder ein Gleitmittel enthalten.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Stabilisatormischung enthaltend Maltit oder Laktit und eine anorganische oder organische Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn der Disaccharidalkohol Maltit ist. Für die einzelnen

Mischungsbestandteile gelten die vorstehend erläuterten Bevorzugungen, ebenso kann die Stabilisatormischung die oben beschriebenen weiteren Bestandteile enthalten.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Maltit oder Laktit in Kombination mit einer anorganischen oder organischen Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn der Disaccharidalkohol Maltit ist, zur Stabilisierung eines halogenhaltigen Polymers oder Polymer-Recyclates. Für die einzelnen Stabilisatoren sowie das halogenhaltige Polymer selber gelten die vorstehend erläuterten Bevorzugungen, ebenso kann zusätzlich einer der oben beschriebenen weiteren Bestandteile verwendet werden.

Das erfindungsgemässe stabilisierte halogenhaltige Polymer kann auf an sich bekannte Weise hergestellt werden, wozu man unter Verwendung an sich bekannter Vorrichtungen, wie Kalander, Mischer, Kneter, Extruder und dergleichen, die genannten Stabilisatoren und gegegbenenfalls weitere Zusätze mit dem halogenhaltrigen Polymer vermischt.

Das nach vorliegender Erfindung stabilisierte halogenhaltige Polymer kann auf bekannte Weisen in die gewünschte Form gebracht werden. Solche Verfahren sind beispielsweise Mahlen, Kalandrieren, Extrudieren, Spritzgiessen, Sintern oder Spinnen, ferner Extrusions-Blasen oder eine Verarbeitung nach dem Plastisol-Verfahren. Das stabilisierte halogenhaltige Polymer kann auch zu Schaumstoffen verarbeitet werden.

Das erfindungsgemässe halogenhaltige Polymer eignet sich besonders für Halbhart- und Weich-Rezepturen, insbesondere in Form von Weichrezepturen für Drahtummantelungen, Kabelisolierungen, welche besonders bevorzugt ist. In Form von Halbhart-Rezepturen eignet sich das erfindungsgemässe halogenhaltige Polymer besonders für Dekorationsfolien, Schaumstoffe, Agrarfolien, Schläuche, Dichtungsprofile und Bürofolien.

In Form von Hart-Rezepturen eignet sich das erfindungsgemäss stabilisierte halogenhaltige Polymer besonders für Hohlkörper (Flaschen), Verpackungsfolien (Tiefziehfolien), Blasfolien, Crash pad-Folien (Automobile), Rohre, Schaumstoffe, Schwerprofile (Fensterrahmen), Lichtwandprofile, Bauprofile, Sidings, Fittings, Bürofolien und Apparatur-Gehäuse (Computer, Haushaltsgeräte).

Beispiele für die Anwendung des erfindungsgemässen halogenhaltigen Polymers als Plastisol sind Kunstleder, Fussböden, Textilbeschichtungen, Tapeten, Coil-Coatings und Unterbodenschutz für Kraftfahrzeuge.

Beispiele für Sinter-Anwendungen des erfindungsgemäss stabilisierten halogenhaltigen Polymers sind Slush, Slush Mould und Coil-Coatings.

Die folgenden Beispiele erläutern die Erfindung weiter, ohne sie darauf zu beschränken. Teile und Prozente beziehen sich, wie auch in der übrigen Beschreibung, auf das Gewicht, sofern nicht anders angegeben.

Beispiele:

20

25

30

35

40

45

50

55

Eine PVC-Zusammensetzung wird durch Vermischen der einzelnen Komponenten gemäss nachfolgender Tabelle 1 hergestellt (Mengenangaben in Gew.-Teilen).

Die Bestandteile werden während 5 Minuten auf einem Mischwalzwerk bei 180°C homogenisiert, so dass man einen 0,3-0,5mm dicken Film erhält.

Die Bestimmung der Langzeitstabilität erfolgt nach DIN53381, wobei das Probestück bei 180°C in einem Testofen gelagert wird und die Zeit bis zur Schwärzung der Probe bestimmt wird (Test 1).

Eine weitere Bestimmung der Stabilität erfolgt durch den Dehydrochlorierungstest, welcher in Anlehnung an DIN 53381, BI.3 durchgeführt wird. Hierbei wird bei 180°C die Zeit bis zum Anstieg der Dehydrochlorierungskurve (Überschreiten einer Leitfähigkeit von 200μS) bestimmt (Test 2).

Eine weitere Bestimmung der Stabilität erfolgt durch Verpressen der Filme bei 180°C und 200bar während 2 Minuten zu 2mm dicken Platten, deren Yellowness-Index gemäss ASTM D 1925-70 bestimmt wird (Test 3).

Ta	hal	ما	1.

100000				
Komponente	V-1	V-2	Bsp. 1	Bsp. 2
PVC-1	100	100	100	100
GI-1	0,6	0,6	0,6	0,6
GI-2	0,2	0,2	0,2	0,2
ESO	2	2	2	2
Zn-1	0,4	0,4	0,4	0,4
MSA		0,4		
DSA-1			0,4	

Tabelle 1: (fortgesetzt)

Komponente	V-1	V-2	Bsp. 1	Bsp. 2
DSA-2				0,4
Test-1 (Minuten)	30	55	65	65
Test-2 (Minuten)	18	44	46	46
Test-3 (Y)	-	83	76	77

Gegenüber den Vergleichsproben (V-1 und V-2) zeigen die erfindungsgemässen PVC-Mischungen eine höhere Stabilität.

Beispiele 3-4:

5

10

15

20

25

30

40

45

50

55

Eine PVC-Zusammensetzung wird durch Vermischen der einzelnen Komponenten gemäss nachfolgender Tabelle3 hergestellt (Mengenangaben in Gew.-Teilen).

Die Bestandteile werden während 5 Minuten auf einem Mischwalzwerk bei 170°C homogenisiert, sodass man einen 0,3-0,5mm dicken Film erhält.

Die Bestimmung der Thermostabilität erfolgt nach DIN53381, wobei das Probestück bei 170°C in einem Testofen gelagert wird und die Zeit bis zur Schwärzung der Probe bestimmt wird.

Tabelle 3:

Komponente	V-5	Bsp. 3	Bsp.4
PVC	100	100	100
DOP	57	57	57
ESO	3	3	3
Zn-1	0,4	0,4	0,4
DSA-1	-	0,4	
DSA-2	-		0,4

Nach 20 Minuten hat sich die Probe V-5 dunkel verfärbt, wohingegen die erfindungsgemässen Proben (Bsp. 3-4) erst nach 50 Minuten dunkel gefärbt sind.

In obigen Beispielen werden folgende Substanzen eingesetzt:

PVC-1: Evipol SH 7020 (S-PVC, K-Wert 71)

Ca-1: Calciumstearat

DOP: Dioctylphthalat

DSA-1: Maltit

DSA-2: Laktit

ESO: epoxidiertes Sojabohnenöl

GI-1: Gleitmittel Loxiol G 16

GI-2: PE-Wachs MSA: Sorbit Zn-1: Zinkstearat

Patentansprüche

- 1. Stabilisiertes halogenhaltiges Polymer, enthaltend
 - (a) halogenhaltiges Polymer oder dessen Recyclat,
 - (b) Maltit oder Laktit

und (c) eine anorganische oder organische Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn Komponente (b) Maltit ist.

- 2. Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend als Komponente (a) PVC oder dessen Recyclat, sowie gegebenenfalls ein phenolisches Antioxidans, insbesondere 0,1-5,0 Teile je 100 Teile PVC.
- Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein β-Diketon und/oder dessen
 Mg-, Ca- bzw. Zn-Salze oder einen β-Ketoester.
 - 4. Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein Epoxid.
- Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein monomeres, oligomeres
 oder polymeres Dihydropyridin.
 - 6. Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich eine anorganische oder organische Calciumverbindung.
- Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein Phosphit, eine Perchlorat-Verbindung, ein Polyol, einen Hydrotalcit, einen Zeolith, einen Dawsonit, einen Magadiit, einen Kenyait oder einen Kanemit
- Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein β-Diketon und/oder dessen
 Mg-, Ca-, bzw. Zn-Salz oder einen β-Ketoester und ein monomeres, oligomeres oder polymeres Dihydropyridin.
 - 9. Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein β-Diketon und/oder dessen Mg-, Ca-, bzw. Zn-Salz oder einen β-Ketoester und ein Polyol, einen Hydrotalcit, einen Zeolith, einen Dawsonit, einen Magadiit, einen Kenyait oder einen Kanemit.
 - 10. Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich eine Perchlorat-Verbindung und ein Polyol, einen Hydrotalcit, einen Zeolith, einen Dawsonit, einen Magadiit, einen Kenyait oder einen Kanemit.
- Stabilisiertes halogenhaltiges Polymer gemäss Anspruch 1, enthaltend zusätzlich ein Epoxid und eine Perchlorat Verbindung.
 - 12. Stabilisatormischung enthaltend

Maltit oder Laktit;

und eine anorganische oder organische Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn der Disaccharidalkohol Maltit ist.

13. Verwendung einer Stabilisatormischung, enthaltend

Maltit oder Laktit;

und eine anorganische oder organische Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn der Disaccharidalkohol Maltit ist; zur Stabilisierung von einem halogenhaltigen Polymer oder Polymer-Recyclat.

- 45 14. Verfahren zur Herstellung von einem stabilisierten halogenhaltigen Polymer, dadurch gekennzeichnet, dass man unter Verwendung von Vorrichtungen, wie Kalander, Mischer, Kneter, Extruder und dergleichen, eine Stabilisatormischung enthaltend
- Maltit oder Laktit und eine anorganische oder organische Zink-, Aluminium- oder Seltenerd-Verbindung, wobei die Zusammensetzung keine Kombination einer Calcium- und Zinkseife enthält, wenn der Disaccharidalkohol Maltit ist;
 - als solche oder in Form ihrer einzelnen Bestandteile und gegebenenfalls weiterer Zusätze mit einem halogenhaltigen Polymer oder Polymer-Recyclat vermischt.

25

35

40

Europäisches Patentamt EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 11 8225

ategorie	Kennzeichnung des Dokum der maßgeblicht	ents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.C1.6)
A.D	DATABASE WPI Derwent Publication AN 88-116659 XP002082429 & JP 63 063737 A (D , 22. März 1988 * Zusammenfassung *	s Ltd., London, GB; AINIPPON INK CHEM KK)	1-14	C08K5/15 C08K3/00 C08K5/00 //(C08K5/15, 5:15,3:00). (C08K5/15, 5:15,5:00)
А	DE 19 00 314 A (UNI 4. September 1969 * Ansprüche 1.15 *	LEVER-EMERY N.V.)	1-14	
A	EP 0 167 174 A (LON * Anspruch 1 *	ZA AG) 8. Januar 1986 	1-14	
			- 1	RECHERCHIERTE
				SACHGEBIETE (Int.Cl.6)
Der vo		de für alle Patentansprüche erstellt		
	DEN HAAG	Abachiußdatum der Recherche 28. Oktober 1998	Sie	ens, T
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOKL besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung iren Veröffentlichung derselben Katag nologischer Hinlergrund tschriffliche Offenbarung ichenkteratur	MENTE T: der Erfindung zu E 'älteres Patentdo nach dem Anme mit einer D: in der Anmekur orle L: aus anderen Grü	grunde liegende kument, das jede idedatum veröffei og angeführtes De inden angeführte	Theorien oder Grundsätze ich erst am oder ntlicht worden ist okument

EPO FORM 1563 03.82 (P04003)