AUDEX

Proof of Concept

Système d'Audit Intelligent et Automatisé pour sites sensibles

Document Technique

Auteur

Ragnang-Newende Yanis Axe DABO Développeur Logiciel, Passionné d'IA

> 16 octobre 2025 Ouagadougou, Burkina Faso Version 1.0

Table des matières

1	Vision et Objectif	2
2	Problématique	2
3	Hypothèse et Proposition AUDEX 3.1 Hypothèse de faisabilité	2 2 2
4	Portée du PoC	2
5	Architecture Simplifiée 5.1 Flux principal	3
6	Données de Test Utilisées	3
7	Indicateurs de Réussite	3
8	Déroulement de la Démonstration8.1 Scénario de démonstration8.2 Points de validation	4 4
9	Résultats Attendus	
10	Limites Assumées du PoC	4
11	Roadmap Post-PoC/MVP 11.1 Phase 1 : Finalisation	4 4 5 5
12	Conclusion	5

1 Vision et Objectif

L'objectif du Proof of Concept (PoC) est de **prouver la faisabilité et l'impact concret** d'AUDEX, une application d'audit intelligent conçue pour accélérer et fiabiliser les audits de sûreté au Burkina Faso.

« Montrer qu'un audit terrain, normalement réalisé en 48 heures, peut être automatisé et analysé par IA en moins de 20 minutes, avec un rapport complet, structuré, traçable et exploitable. »

AUDEX est pensé comme un outil simple, facilement exécutable et évolutif, capable de transformer les méthodes de contrôle de sûreté des institutions et entreprises sensibles.

2 Problématique

Les audits actuels sont manuels, longs et dispersés. Les auditeurs de SURETAS ou ISMR doivent collecter, trier et analyser des données terrain variées :

- Photos et vidéos du site
- Notes et formulaires papier
- Logs IT (optionnel volet secondaire)

Ces processus génèrent des retards importants (jusqu'à +50% du temps optimal) et des risques de non-détection des anomalies. Le manque d'outils d'analyse rapide freine la réactivité et la prévention des incidents de sécurité.

3 Hypothèse et Proposition AUDEX

3.1 Hypothèse de faisabilité

En combinant vision par ordinateur, traitement de texte et IA analytique, il est possible d'automatiser 70% du processus d'audit.

3.2 Proposition AUDEX

AUDEX introduit un système IA + Data capable de :

- 1. Collecter et structurer automatiquement les données d'audit terrain
- 2. **Analyser et classifier** les anomalies selon quatre catégories : Incendie, Malveillance, Hygiène, Cyber
- 3. **Générer un rapport clair** (PDF + carte géovisuelle) prêt à être exploiter

4 Portée du PoC

Le PoC se concentre sur une démonstration réaliste mais simplifiée :

- Jeu de données d'exemple (photos, logs, notes)
- Analyse automatisée IA (OCR + détection visuelle + scoring IA)
- Rapport d'audit généré automatiquement
- Fonctionnement sans dépendance cloud obligatoire

Ce périmètre permet au jury d'évaluer la valeur fonctionnelle, la cohérence technique et la faisabilité opérationnelle.

5 Architecture Simplifiée

Composant	Fonction	Technologie
Ingestion	Upload fichiers terrain	React / FastAPI
Extraction	OCR, EXIF, nettoyage	Tesseract / PIL
Analyse IA	Vision + règles heuristiques	OpenCV / Scikit-learn
Scoring	Pondération par catégorie	Pandas / règles IA
Rapport	PDF + carte interactive	ReportLab / Folium

TABLE 1 – Composants techniques du PoC

5.1 Flux principal

 $\textbf{Donn\'es brutes} \rightarrow \textbf{Extraction} \rightarrow \textbf{Analyse IA} \rightarrow \textbf{Scoring} \rightarrow \textbf{Rapport PDF}$

6 Données de Test Utilisées

Type	Exemple	Objectif
Photos	Images : fissures, sites non hygiéniques,	Détection visuelle
	portes ouvertes, absence de mesures de sé-	
	curité	
Notes (.txt)	« Absence extincteur salle 3 », « Caméra dé-	OCR + analyse textuelle
	fectueuse zone A »	
Logs (.csv/.txt)	15 accès entre 03h00-05h00 depuis IP	Anomalie comportementale
	192.168.x.x, tentatives répétées d'accès	

Table 2 – Jeu de données de test simulées

Ces données simulées illustrent la diversité d'un audit réel sans dépendre de données sensibles ou confidentielles.

7 Indicateurs de Réussite

Indicateur	Cible	Justification
Temps total de traitement	$\leq 20 \text{ minutes}$	Gain de 96% par rapport à un audit manuel
		(48h)
Cohérence IA / humain	$\geq 80\%$	Vérification sur cas terrain simulé, cible MVP à
		88%
Rapport généré	Automatique	1 clic, PDF lisible et complet
Mode offline	Fonctionnel	Adapté aux zones à faible connectivité

Table 3 – Critères d'évaluation du PoC

Ces critères permettent au jury d'évaluer à la fois la **faisabilité technique** et la **pertinence terrain**.

8 Déroulement de la Démonstration

8.1 Scénario de démonstration

- 1. Présentation du contexte 2 minutes
- 2. Chargement des fichiers de test 3 minutes
- 3. Analyse automatique 10 minutes
- 4. Visualisation du rapport PDF + carte 3 minutes

Durée totale estimée : 18-20 minutes

8.2 Points de validation

La démonstration mettra en évidence :

- L'automatisation complète du flux d'audit
- La cohérence des résultats IA avec l'analyse humaine attendue
- Le gain de temps immédiat et mesurable
- La qualité du rapport généré (clarté, exploitabilité)

9 Résultats Attendus

À l'issue de la démonstration, le PoC produira :

- 1. Rapport complet (PDF) contenant scores, anomalies détectées et recommandations priorisées
- 2. Carte géovisuelle Folium avec points de risques géolocalisés et codés par couleur
- 3. Exécution fluide sur PC standard sans connexion internet obligatoire

Valeur prouvée : la faisabilité d'un audit automatisé, précis et traçable en moins de 20 minutes.

10 Limites Assumées du PoC

Ce PoC se concentre sur la preuve de concept du flux principal. Les fonctionnalités suivantes seront développées en phase MVP post-hackathon :

- Analyse approfondie des logs IT (corrélation avancée)
- Intégration API avec systèmes existants
- Alertes SMS automatiques

Cette approche pragmatique permet de valider rapidement le cœur de valeur avant d'investir dans les fonctionnalités complémentaires.

11 Roadmap Post-PoC/MVP

11.1 Phase 1: Finalisation

- Finalisation interface React + IndexedDB pour mode offline
- Amélioration des modèles IA et Chatbot conversationnel (précision cible > 88%)
- Intégration blockchain pour traçabilité

11.2 Phase 2: Pilote

- Déploiement pilote sur 5-10 sites
- Module d'analyse logs IT avancé
- Formation utilisateurs
- Tests utilisateurs avec SURETAS

11.3 Phase 3 : Déploiement et exploitation

- Intégration écosysteme BBS Holding / SURETAS
- Version mobile pour audits terrain en temps réel
- Extension régionale apres itération et amélioration

12 Conclusion

Ce PoC démontre que l'IA et une bonne exploitation des données peuvent moderniser les audits de sûreté au Burkina Faso.

AUDEX n'est pas un concept théorique : c'est une **preuve concrète de faisabilité**, prête à être améliorée pour un déploiement pilote auprès des acteurs majeurs de la sécurité en Afrique de l'Ouest.

« En 20 minutes, AUDEX prouve qu'un audit complet peut être analysé, classé et rapporté automatiquement, sans délai ni papier. »

Contact

Ragnang-Newende Yanis Axel DABO y4nn.dev@gmail.com