

Infectious Diarrhea in Travel and Military

OL Kent E. Kester
October 2013

Definition of Travelers' Diarrhea

- Cramps, nausea, vomiting, fever, blood in stools
- Classic passage of > 3 unformed stools in 24 hours plus at least one of above symptoms
 - Moderate: 1-2 unformed stools in 24 hours plus one of above symptom
 - Mild: passage of one or two unformed stools in 24 hours without other symptoms
- Typically acquired within first few weeks of travel/ deployment.

Impact of Diarrheal Diseases in Modern Military Campaigns

- World War II: 'A few months of the year, malaria would cause more man-days lost, but on the calendar-year average, gastrointestinal infections were well ahead.'1
- Vietnam War: Diarrhea/dysentery largest single disease threat, leading to 4 times more hospitalizations than malaria²
- OIF: Acute enteric illness was leading cause of hospital admission among British forces during first 12 months of operations in Iraq³ (1) Ward TG: *History of Preventive Medicine*, US Army Forces in the Middle East, 190ct41 - 23Jun44, Vol. 111.

[Official record.]

(3) Grange, C: I Royal Army Medical Corps, 2005:151(2):101-104.

⁽²⁾ Wells RF, GI Diseases: Background and Buildup. In: Internal Medicine in Vietnam Vol II: General Medicine and ID, US Army Medical Dept 0:345-354.

Force Health Impacts

Diarrhea with fever 9-25%
Dysentery 2-8%
Severe diarrhea
Iraq 21-27%
Afghanistan 13-14%
Vomiting only 5-15%

clinical presentations

Job performance	45%
Confined to bedres	t 13%
Hospitalized	2%
IV fluids	15-17%
Missed patrol	9-13%
Back-fill needed	12%
Grounded	6-12%
Fecal incontinence	32%

Incidence Rates of Travelers' Diarrhea per 2-week Stay

Epidemiology

- 90% of travelers' diarrhea caused by bacteria
- Most occur between 4-14 days after arrival
- Highest risk area Asia (except for Singapore), Africa (outside South Africa), South and Central America, Mexico
- Stress of travel and hot temperature may make symptoms less tolerable
- Most are self limited, dehydration is main cause of morbidity

Epidemiology in Children

- Major cause of morbidity and mortality
- > 10 illness per child per year
- Asia, Africa, Latin America 4 million deaths per year
- Up to 50% of childhood deaths

Acute Watery Diarrhea

- 1). Enterotoxigenic Escherichia coli (ETEC)
- 2).Enteroaggregative Escjerochia coli (EAEC)
- 3). Vibrio cholerae
- 4). GI viruses
- 5). Parasites
- 6). Food poisoning

Bristol Stool Chart

Acute Bloody Diarrhea (dysentery)

- 1). Shigella species
- 2). Campylobacter species (may be non bloody)
- 3). Enterohemorrhagic *E.coli* (EH
- 4). Enteroinvasive *E.coli* (EIEC)
- 5). Nontyphoidal Salmonella
- 6). Entamoeba histolytica Fever

Tenesmus

Mucoid stools

Grossly bloody stools

Causative Agents

- Bacterial agents (80-90%)
- Common
 - Enterotoxigenic E coli (ETEC)
 - Enteroaggregative E coli (EAEC)
 - Campylobacter
 - Shigella
 - Salmonella
- Less common
 - EIEC / EHEC
 - Vibrio cholerae

- Viral agents (5-10%)
 - Norovirus
 - Rotavirus
 - Astrovirus

- Parasites (uncommon)
 - Giardia lamblia
 - Cryptosporidium spp.
 - Cyclospora cayatanensis
 - Entamoeba histolytica

Etiology of Diarrheal Diseases: U.S. Military on Deployment

MS Riddle et al. Am. J. Trop. Med. Hyg., 74(5), 2006

Clinico-pathological Considerations: Acute Travelers' Diarrhea

	Watery diarrhea	Dysentery	Gastroenteritis
Mechanism	Non- inflammatory (enterotoxin)	Inflammatory (invasion or cytotoxin)	Villus blunting (delayed gastric
Location	Proximal small bowel	Colon or distal small	emptying) Small bowel
Usual Pathogens	All causative pathogens; most commonly ETEC, EAEC	bowel C. jejuni Shigella spp. Salmonella (non-typhi) EHEC	Norovirus Rotavirus

Pathogenic Mechanisms

- Inoculum size
 - < 10
 - Norovirus
 - 10-100 organisms
 - Shigella species
 - <1000 organisms</p>
 - EHEC
 - Campylobacter jejuni
 - > 1,000,000
 - Vibro cholera
 - Nontyphoidal salmonella
- Adherence
- Toxin Production
- Tissue invasiveness

Risk Factors

- Crowding and poor sanitation
 - Epidemic diarrhea
 - Shigella dysenteriae
 - Vibro cholerae
- Lower gastric acid secretion
 - Those taking histamine blockers and PPI
 - Those with altered upper GI anatomy
- Immunocompromised host
 - HIV, steroids, autoimmune condition

Types of *E.coli*

- E. coli consists of a diverse group of bacteria.
- Pathogenic *E. coli* strains are categorized into pathotypes.
- Six pathotypes are associated with diarrhea
- 1). Enterotoxigenic E.coli (ETEC)
- 2). Shiga toxin-prod. E. coli (STEC) / Enterohemorrhagic
- E. coli (EHEC).
- 3). Enteroaggregative *E. coli* (EAEC)
- 4). Enteroinvasive *E. coli* (EIEC)
- 5). Enteropathogenic *E. coli* (EPEC)
- 6). Diffusely adherent *E. coli* (DAEC)

Enterotoxigenic *E. coli* (ETEC): Features

Transmissi on inoculum

inoculum size

populations at risk

Estimated no. cases annually

typical clinical syndrome

> phenotypic diversity .

sequel ae foodborne (food, water)

High ($\geq 5 \times 10^6$ organisms)

infants, LDC; travelers to endemic regions

200 million worldwide; > 500,000 under five death per year watery diarrhea; dehydration in

watery diarrhea; dehydration in moderate-severe disease

2 enterotoxins; > 20 fimbrial types physical and cognitive retardation; malnutrition

Escherichia coli Common in Travelers

ETEC

- Fimbrial colonization factors mediate enterocyte adherence
- Elaboration of secretory heat-labile (LT), heat-stable (ST) enterotoxins

EAEC

- Enterocyte adherence and biofilm formation
- Elaboration of secretory enterotoxins and cytotoxins

STEC / EHEC

- Induction of attaching and effacing (AE) lesions in the colonic epithelium
- Elaboration and absorption of

adapted from Kaper J high at Rev Microbiol 200

Campylobacter jejuni: Features

Transmissi on inoculum size

populations at risk

foodborne (food, water)

low ($\geq 5 \times 10^2$ organisms)

infants, LDC; travelers to hyperendemic regions; young people, HDC

geographic SE Asia, North Africa (Morocco) 'hotspots'

typical clinical syndrome

serotypic diversity sequel

ae

acute inflammatory enteritis

multiple (108 Lior, 47 Penner serotypes) reactive arthritis; Guillain-Barré syndrome; irritable bowel syndrome

Shigellosis: Features

```
transmisperson-to-person; foodborne (food, water)
          inoculum low (10-200 organisms)
           reservoi humans only
                      toddlers living in and travelers to LDC;
populations at high
                      crowding, poor sanitation (e.g., day
               risk
          care, institutions)
serotypi@ver 50 different serotypes (determinant, LPS)
          diversity
                      invasion, spread, inflammatory
    key pathogenic
                      response; cytotoxicity (S. dysenteriae
         processes
                      type 1, Shiga toxin)
     typical clinical
                      dysentery (most commonly)
         syndrome
            natura Medium-term, serotype-specific immunity
         immunity
                      Reiter's syndrome; reactive
            sequel
                      arthropathy; hemolytic uremic
                 ae
                      syndrome
```

LDC, less developed countries

Differential Morbidity Associated with Major Bacterial Pathogens of Travelers' Diarrhea

Pathogen profile	ETEC	С	Shigella
Global prevalence 2	2 (17-28)	<i>jejuni</i> 10 (5- 15)	7 (3- 10)
liness duration w/o treatment (mean, d)	3.6	8.0	7.1
Probability of causing	21-27	47	56-92
inaepsaitation wite treatment (mean, d)		2.5	1.2

Salmonella

- Typhoidal Salmonella
 - S. typhi or S. paratyphi
 - Typhoid or Enteric fever
 - Colonized humans, fecal-oral transmission
 - Systemic illness with very little or no diarrhea (small bowel disease)
- Non-typhoidal Salmonella
 - Several species
 - Not common cause of traveler's diarrhe
 - Animal or human fecal material
 - Poultry, pets
 - Invasive, bloody stools

Virbrio cholerae Toxigenic serogroups 01 or 0139

- Free living organisms in brackish water
- Epidemics throughout human history
 - Spreads quickly
- Acute watery diarrhea
- Food or water contaminated with human fecal material
- Cholera enterotoxin
 - Stimulates secretory mechanism of intestinal mucosa
- 1/5 infected will have severe disease, diagnose by culture
- Rehydration is key
- Tetracyclines, doxycycline, ciprofloxacin reduces illness
- Oral vaccine available (not in U.S)
 - Incomplete, short protection

Broad (Broadwick) Street Pump

Medical Societies.

MEDICAL SOCIETY OF LONDON.

MR. HEADLAND, PRESIDENT.

SATURDAY, OCTOBER 14TH, 1854.

Dr. Snow considered that the cholera poison acted upon the alimentary canal, and not on the blood or nervous system. In every case which he had seen, the evacuations had been sufficient to account for the collapse, without reference to any other cause. There was no poison in the blood in a case of cholera; in the consecutive fever, as it was called, the blood became poisoned from urea getting into the circulation in consequence of the kidneys not acting, but not from any poison having been present from the beginning. There was nothing in the atmosphere to account for the spread of cholers, which he believed was spread from person to person; and that in all cases it could be traced in this manner. If atmospheric, why did it attack one or two persons only in a locality, and these having direct communication with each other? Such cases he had seen at Sydenham, where there had been only two instances of the disease. The first case in the outbreak of 1849 had occurred to a sailor in Bermondsey; the second affected person was the successor to the sailor in the room in which he died. He thought he had collected evidence enough to show that in all cases cholera was propagated by swallowing some portion of the evacuations of an affected person. These, as was well known, flowed into the bed, &c., and persons attending on the sick might easily take the poison unawares. With respect to the class of persons affected by the disease, he believed that the very poor and vagabonds suffered less, in proportion, than decent, respectable persons. He regarded the cholers and diarrhosa, as lately prevalent, to be the same disease in different degrees of intensity. We observed the same difference in scarlatina and other diseases.

Dr. John Snow

Comparison of clinical feature of epidemic dysentery and cholera **Epidemic**

Cholora

	Dysentery	Cholera	
Causative organism	Shigella dysenteriae type 1	Vibrio cholerae 01 (Vibrio cholerae 0139)	
Infective dose	10 to 100 organisms	1000 to 1,000,000 organisms	
Clinical features	Bloody diarrhea Abdominal cramps Fever Rectal pain	Watery diarrhea Dehydration Vomiting	
Complications	Seizures Rectal prolapse Hemolytic-uremic syndrome Sepsis	Severe hypovolemia/shock Electrolyte abnormalities	
Treatment	Antibiotics	Rehydration	
Transmission	Food and water Person-to-person	Food and water	
Case fatality rate	10 to 20 percent (untreated) 5 percent (treated)	40 percent (untreated) <1 percent (treated)	

Noroviruses: Features

transmissoodborne (food, water); person-to-person (crowdi

inoculumow (as few as 10 viral particles)

reses formans only; hardy virus, persists on fomites

populations at high risk diversity key pathogenic processes

> typical clinical syndrome

> > natural immunity sequel ae

All age groups; outbreak potential in semiclosed populations - military populations, genotypi& genogroups, and ≥ 25 genotypes

> Limited to small intestine, broadening/blunting of proximal intestinal villi: transient malabsorption Sudden onset of vomiting and noninflammatory diarrhea; duration typically ≤72 hours

Short-term homologous immunity; possible long-term immunity with repeated exposure

No evidence of serious long-term sequelae

Acute Water

Watery stools of <14 days duration, with no visible blood constitutes acute watery diarrhea.

- (A) Green watery stool. Green colored stool, often seen in rotavirus gastroenteritis.
- (B) Rice water stool. White colored stool characteristic of severe cholera.

Clinical and Diagnostic Evaluation

- Assess for dehydration
 - Mild (3-5%): dry mouth, decreased sweat and urine output
 - Moderate (6-9%): orthostasis, skin tenting, sunken eyes
 - Severe (>10%): hypotension, tachycardia, confusion, shock
- Consider setting of illness
 - Host factors
 - Environment, geographic region
 - Pathogen
- Define the clinical syndrome
 - Watery diarrhea
 - Dysentery
 - Gastroenteritis with recurrent vomiting
 - Persistent diarrhea

Considerations for Laboratory Workup

- With military deployments, available laboratory capabilities may be austere
- Several common pathogens are not detectable with routine laboratory diagnostic tests
 - Diarrheagenic E. coli (ETEC, EAEC, EIEC)
 - Norovirus
- Differentiate inflammatory vs. noninflammatory diarrhea
 - Clinical indicators of inflammatory disease include fever, tenesmus, visible blood in stool
 - Gross and microscopic examination of stool for blood and fecal leucocytes

Considerations for Laboratory Work-up (level III)

- Stool culture: clinical indications
 - Severe diarrhea (≥ 6 loose/liquid stools/24 hrs, incapacitating illness)
 - Febrile enteritis and/or dysentery
 - Persistent diarrhea (≥ 14 days duration)
 - Bloody diarrhea (at risk for Shigella, STEC)
 - Inflammatory enteritis (by stool diagnostics)
- Stool parasitology: clinical indications
 - Persistent diarrhea (≥ 14 days duration)
 - Diarrhea in traveler returning from known high risk region

Therapeutics: Water and Electrolyte Replacement

- Cornerstone of diarrhea treatment
- Military settings, insensible fluid losses increased with high ambient temperature, intense physical activity
- Oral rehydration
 - Physiological principle: Integrity of coupled transport of Na+ (plus H₂O and other electrolytes) with glucose or amino acids
 - Effective in majority of patients
- Intravenous rehydration
 - Severe dehydration
 - Altered sensorium
 - Intractable vomiting

Oral Rehydration Therapy

- Mild dehydration
 - Potable water or appropriate ORS
- Moderate-severe disease
 - ORS (Oral Hydration Salts)

	CHO g/L	Na mmol/L	CHO:Na	K mmol/L	OSM mOsm/kg
Rehydration Formulas					
WHO ORS	13.5	75	1.2	20	245
Pedialyte	25	45	3.1	20	250
Sports Drinks					
Gatorade	45	20	13	3	330
Powerade	60-80	~10	~6	~3	346-391
Other fluids					
Red Bull	108	35	~3	0	601
Apple Juice	690	3	230	32	694-773
Chicken Broth	0	250	-	8	500

Non-Antibiotic Therapy

- Consider with mild diarrhea for symptomatic relief
- Loperamide (imodium): antimotility agent of choice
 - Slows down peristalsis, intestinal transit
 - Increased fluid and salt absorption
 - 4 mg by mouth, then 2 mg after each liquid movement (up to 16 mg per day)
 - Okay to use for non-bloody, non-febrile diarrhea.
- Bismuth subsalicylate (Pepto Bismol)
 - Reduces number of passes stools
 - Does not limit duration of disease
 - 525 mg (2 tabs) every 30 min for 8 doses
 - Contraindicated in persons on salicylates, warfarin
 - Can interfere with doxycycline absorption (malaria prophylaxis)

Empiric Antibiotic Therapy

- Indicated for patients with moderate to severe diarrhea/dysentery
- Combination of antibiotic PLUS loperamide leads to rapid resolution of illness
- Re-evaluate patient if no improvement after 1 wk

Antibiotic (po) Dosage (adult)

Considerations

Fluoroquinolones

Norfloxacin 800 mg once or 400 mg bid

Ciprofloxacin 750 mg once or 500 mg bid

Ofloxacin 400 mg once or 200 mg bid

Levofloxacin 500 mg once or 500 qd

Re-evaluate 12-24 h after single dose. Continue for up to 3 d if diarrhea not resolved

Azithromycin 1000 mg once or 500 mg bid x 3 d/se when C. jejuni suspected

Rifaximin 200 mg tid

Effective for non-invasive *E*

coii

Effectiveness of Antibiotics, and Additive Effect of Loperamide)

Placebo vs antibiotics alone (outcome: cure at 72 hours) Bruyn G et al Cochrane Collab 2004

Antibiotics alone or plus **loperamide**

(outcome: cure at 24 hours)

Riddle MS et al, CID 2008

TLUS ~ 12 hours

Increasing Fluoroquinolone Resistance among *Campylobacter* in Travele

		1994-2000				2001-2006			
Region	No.	isolates	No. resistant isolates	t Resistance rate (%)		isolates		ntResistance rate (%)	
Africa		162	22	13.6		114	36	31.6	
Asia		208	74	35.6		95	67	70.5	
Caribbean, Central & S America	o. U	³⁶ se Azi	10 thromyci	27.8 in in SE	AS	33 SIA, 10	20 000 mg	60.6 x 1 may	

Study site: Travel clinic, Antwerp, Belgium

be enough

 Erythromycin resistance showed modest increase over same period to 8.6% resistance in 2006

Vlieghe ER et al, J Travel Med 2008;15:419-25

EDUCATIONAL REVIEW

Enterohaemorrhagic *Escherichia coli* and *Shigella dysenteriae* type 1-induced haemolytic uraemic syndrome

C. Mark Taylor

Abstract Haemolytic uraemic syndrome (HUS) can be classified according to the aetiology of the different disorders from which it is composed. The most prevalent form is that induced by shigatoxin producing Escherichia coli (STEC) and, in some tropical regions, by Shigella dysenteriae type 1. STEC cause a zoonosis, are widely distributed in nature, enter the food chain in different ways, and show regional differences. Not all STEC are human pathogens. Enterohaemorrhagic E. coli usually cause attachment and effacing lesions in the intestine. This is not essential, but production of a shigatoxin (Stx) is. Because Stx are encoded by a bacteriophage, this property is transferable to naïve strains. Laboratory methods have improved by identifying STEC either via the toxin or its bacteriophage. Shigella dysenteriae type 1 produces shigatoxin, identical to Stx-1, but also has entero-invasive properties that enterohaemorrhagic Escherichia coli (EHEC) do not. Shigella patients risk bacteremia and benefit from early antibiotic treatment, unlike those with EHEC.

Complications of Bacterial Diarrhea

Complication	Associated Bacterial Agents	Clinical
Dehydration	Any bacterial pathogen	Considerations Most important complication of watery
Bacteremia	Salmonella spp., C. fetus	diarrhea Certain conditions predispose to systemic <i>Salmonella</i>
Hemolytic- uremic	STEC, S. dysenteriae type	infection Pathogenesis due to shiga toxin absorption and damage
syndrome (HUS) syndrome	Campylobacter jejuni	40% cases of GBS caused by <i>C. jejuni;</i> molecular mimicry
Reactive arthritis	C. jejuni, Salmonella, S.	Occurs in 2.1 per 100 000 Campylobacter infections
Irritable bowel syndrome	<i>flexneri</i> Most bacterial pathogens	≤ 10% incidence following bacterial enteric infection

Antibiotic associated GI problems

- Any antibiotic can cause upset stomach, loose stools
- Clostridium difficile infection happens when normal bacteria are killed
- C.difficle patients have high fever, highly elevated WBC's, large volume smelly stools, and appear sick (not always).
- C.difficile may be 'community onset'
- Treatment is metronidazole

Intestinal parasites

Postinfectious Irritable Bowel Syndrome (PI-IBS)

- First described among British Forces during WWII (Stewart. *Br Med J* 1950; 1(4650):405-9)
- Approx. 1 in 12 people develop PI-IBS after infectious diarrhea
- Higher risk
 associated with
 prolonged illness and
 invasive pathogens
 - Onset usually occurs within 6 months after infection
- Can persists 5-6

Halvorson et al, Am J Gastroenterol. 2006;

Persistent Travelers' Diarrhea

- Travelers' diarrhea is often self-limited, resolving in the majority of cases after several days
- Illness lasting >1 week: 10% of cases
- Illness lasting >1 month: 2% of cases
- Etiological considerations with persistent diarrhea
 - EAEC (occasionally, Campylobacter, Salmonella)
 - Parasitic diarrhea
 - Giardia lamblia
 - Cryptosporidium parvum
 - Cyclospora cayatanensis

Giardiasis: Life Cycle

Giardiasis: Features

transmissiontaminated water; infected food handlers inoculum low (as few as 10-25 cysts)

reses 76 Humans and other mammals

populations at high risk

variation

key pathogenic

processes

typical clinical syndrome

treatment

risk with travel to Russia, Mexico, SE Asia,

South America antigenion-off switch of variant specific surface proteins (

backpackers; young children LDC; higher

Attachment to intestinal epithelium via ventral disc; flagellar motility; VSP

switching evades IgA watery diarrhea; epigastric abdominal pain, bloating, malabsorption, nausea, weight loss

Self-limited. Metronidazole, tinidazole

sequel

Functional gastrointestinal disorders

(IBS) ae

Cryptosporidium: Features

transmissiontaminated water and food; person-to-person inoculum low (as few as 10 oocysts)

reservation and other mammals (including livestock)

rs populations at high risk

HIV/AIDS; urban populations, municipal water contamination; children in LDC; travelers speciesajority of human cases due to *C. hominis, C. paru*

diversity key pathogenic processes

Localizes in parasitophorous vacuoles in intestinal epithelium; distal small intestine; villous atrophy watery diarrhea, abdominal cramps, vomiting, mild fever, and loss of appetite

typical clinical syndrome

ent Self limited. None great, nitazoxanide

treatment

sequel intractable diarrhea in ae immunocompromised patients

Cyclosporiasis: Features

transmission taminated food and water; no person-to-perso

inoculum

undefined

resestantionmental; may be host species-specific types

populations at high risk

speciesC.

diversity

key pathogenic

processes

typical clinical syndrome

treatment

sequel

ae

young children in LDC; travelers (especially Peru, Nepal, Haiti, Guatemala (*); immunocompromised cayatanensis found only in humans

not well understood; localizes to small intestinal epithelium, partial villous atrophy, crypt hyperplasia persistent diarrhea, anorexia, nausea/vomiting, abd cramps, flatulence, low grade fever, weight loss Self-limited,

Trimethoprim-sulfamethoxazole

(TMP/SMX) Chronic diarrhea in immunocompromised

patients

Amebiasis

- Protozoan parasite Entamoeba histolytica
- Not common traveler's diarrhea pathogen
- Longer stays in tropical endemic area
- Fecal oral spread
- Most infections (90%) have no symptoms or mild diarrhea
- Amebic dysentery is severe infection
 - Fever, bloody stools
 - Look for trophozoite in stool
 - May be confused with non-pathogenic species
- Liver abscess and systemic infection
- Treatment: iodoquinol, paromomycin, metronidazole

Entamoeba histolytica

COMPENDIUM OF ACUTE FOODBORNE AND WATERBORNE DISEASES

Diseases typified by vomiting after a short incubation period with little or no fever							
Agent	Incubation period	Clinical Syndrome	Pathophysiology	Characteristic Foods	<u>Specimens</u>		
A. Staphylococcus aureus	30 min - 8 hours; usually 2-4 hours	Vomiting diarrhea	preformed enterotoxin	sliced/chopped ham and meats, custards, cream fillings	Food: enterotoxin assay (FDA), culture for quantitation and phage typing of staph, gram stain Handlers: culture nares, skin, skin lesions, and phage type Staph. Cases: culture stool and vomitus, phage type Staph.		
B. Bacillus cereus	1-6 hours	Vomiting; some patients with diarrhea; fever uncommon	? preformed enterotoxin	cooked rice	Food: culture for quantitation Cases: stool culture		
C. Heavy metals	5min-8 hours; usually <1 hour	Vomiting, often metallic taste		foods and beverages prepared / stored / cooked in containers coated / lined / contaminated with	Toxicologic analysis of food container, vomitus, stomach contents, urine, blood, feces		

http://www.cdc.gov/eis/casestudies/xoswego.401.303.compendium.pdf

offending metal

II. Diseases typified by diarrhea after a moderate to long incubation period, often with fever							
<u>Agent</u>	Incubation period	Clinical Syndrome	Pathophysiology	Characteristic Foods	Specimens		
A. Clostridium perfringens	6-24 hours	Diarrhes abdominal cramps; vomiting and fever uncommon	enterotoxin formed in vivo	meat, poultry	Food: enterotoxin assay done as research procedure by FDA, culture for quantitation and serotyping <u>Cases:</u> culture stool for quantitation and serotyping of <i>C. perfringens</i> ; test for enterotoxin in stool. <u>Controls:</u> culture stool for quantitation and serotyping of <i>C. perfringens</i>		
B. Bacillus cereus	6-24 hours	Diarrhea abdominal cramps, and vomiting in some patients; fever uncommon	?enterotoxin	custards, cereals, puddings, sauces, meat loaf	Food: culture Cases: stool culture		
C. Vibrio parahemolyticus	4-30 hours	Diarrhea	tissue invasion, ?enterotoxin	seafood	<u>Food:</u> culture on TCBS, serotype, Kanagawa test <u>Cases:</u> stool cultures on TCBS, serotype, Kanagawa test		
D. Salmonella (non- tyhpoid)	6 hours-10 days; usually 6-48 hours	Diarrhea, often with fever and abdominal cramps	tissue invasion	poultry, eggs, meat, raw milk (cross- contamination important)	Food: culture with serotyping Cases: stool culture with serotyping Handlers: stool culture with serotyping as secondary consideration		

II. Diseases typified by diarrhea after a moderate to long incubation period, often with fever - continued

Agent	Incubation period	Clinical Syndrome	Pathophysiology	Characteristic Foods	Specimens
E. Norovirus (formerly, "Norwalk-like viruses")	15-77 hours; usually 24-48 hours	Vomiting, cramps, diarrhea, headache, fever	unknown	raw or undercooked shellfish; water; many others	Detection of viral RNA in stool or vomitus by reverse transcriptase- polymerase chain reaction (RT-PCR)
F Rotavirus	16-48 hours	Vomiting, chills, and diarrhea, especially in infants and children	unknown	foodborne transmission not well documents	<u>Cases:</u> stool examination by EM or ELISA; serology <u>Food:</u> culture and serotype
G. Escherichia coli enterotoxigenic (ETEC)	6-48 hours	Diarrhea, abdominal cramps, nausea; vomiting and fever less common	enterotoxin	uncooked vegetables, salads, water, cheese	<u>Cases:</u> stool culture; serotype and demonstration of enterotoxin production; invasiveness assay
H. Escherichia coli enteroinvasive (EIEC)	Variable	diarrhea (might be bloody), fever, abdominal cramps	tissue invasion	same as ETEC above	same as ETEC above
Listeria monocytogenes - Invasive Disease	2-6 weeks	Meningitis, neonatal sepsis, fever	?	Milk, soft cheeses	<u>Food:</u> culture, serotype <u>Cases:</u> stool / blood cultures, serotype, serology
Listeria monocytogenes, Diarrheal Disease	Unknown (3-70 days?)	Diarrhea, fever, abdominal cramps	?	Milk, soft cheeses	same as above
J. Vibrio cholerae non-01 and non-0139	1-5 days	Watery diarrhea	enterotoxin formed <i>in</i> vivo,, ?tissue invasion	shellfish	<u>Food:</u> culture on TCBS, serotype <u>Cases:</u> stool cultures on TCBS, serotype

<u>Agent</u>	Incubation period	Clinical Syndrome	Pathophysiology	Characteristic Foods	Specimens
K. Vibrio cholerae O1 or 0139	1-5 days	Watery diarrhea, often accompanied by vomiting	enterotoxin formed in vivo	shellfish, water or foods contaminated by infected person or obtained from contaminated environmental source	<u>Food:</u> culture on TCBS, serotype <u>Cases:</u> stool culture on TCBS, serotype
L. Shigella spp.	12 hours - 6 days; usually 2-4 days	Diarrhea (often bloody), often accompanied by fever and abdominal cramps	tissue invasion	foods contaminated by infected foodhandler; usually not foodborne	Food: culture and serotype Cases: stool culture and serotype Handlers: stool culture and serotype
M. Escherichia coli enterohemorrhagic (E. coli O157:H7 and others)	1-10 days; usually 3-4 days	Diarrhea (often bloody), abdominal cramps (often severe), little or no fever	cytotoxin	beef, raw milk, water, apple cider, lettuce	<u>Cases:</u> stool culture on sorbitol- MacConkey; isolation of <i>E. coli</i> 0157:H7 or other Shiga-like toxin- producing <i>E. coli</i> from clinical specimen
N. Yersinia enterocolitica	1-10 days; usually 4-6 days	Diarrhea, abdominal pain (often severe)	tissue invasion, ?enterotoxin	pork products, milk, food contaminated by infected human or animal	<u>Food</u> : culture on CIN agar, cold enrichment <u>Cases</u> : stool culture on CIN
O. Cyclospora cayetanensis	1-11 days; median: 7 days	Fatigue, protracted diarrhea, often relapsing	tissue invasion	raw produce; water	Food/water: consult DPD Cases: stool examination for organisms; PCR (developmental) and testing for oocyste sporulation at DPD
P. Cryptosporidium parvum	2-28 days; median: 7 days	Diarrhea, nausea, vomiting; fever	tissue invasion	uncooked foods; water	Food/water: consult DPD Cases: stool examination for organisms or antigen; PCR and serologic test developmental (consult DPD)
Q. Giardia lamblia	3-25 days; median: 7 days	Diarrhea, gas, cramps, nausea, fatigue	?	uncooked foods; water	Food/water: consult DPD Cases: detection of antigen or organism in stool, duodenal contents, or small- bowel biopsy specimen

IV. Diseases most readily diagnosed from history of eating a particular type of food

<u>Agent</u>	Incubation period	Clinical Syndrome	Pathophysiology	Characteristic Foods	Specimens
A. Poisonous mushrooms	variable	Usually vomiting and diarrhea, other symptoms differ with toxin		wild mushrooms	Food: speciation by mycetologist
B. Other poisonous plants	variable	variable		wild plant	<u>Cases</u> : vomitus, blood, urine. <u>Food</u> : speciation by botanist; stool may sometimes be helpful in confirmation.
C. Scombroid toxin (histamine)	1 min-3 hours; usually <1 hour	Flushing, dizziness, burning of mouth and throat, headache, gastrointestinal symptoms, urticaria, and generalized pruritus	histamine	scombroid fish (tuna, mackeral, etc.); mahi-mahi, others	Food: histamine levels
D. Ciguatoxin	1-48 hours; usually 2-8 hours	Usually GI symptoms (diarrhea, nausea, vomiting) followed by neurologic symptoms (including paresthesia of lips, tongue, throat, or extremities) and reversal of hot and	ciguatoxin	large ocean fish, e.g., grouper, barracuda	<u>Food:</u> stick test for ciguatoxin (not widely available)
E. Paralytic shellfish poisoning	< 1 hour	vomiting, diarrhea, paresthesias of face and extremities, sometimes more severe neurologic symptoms	saxitoxin	mussels, clams, scallops, oysters	<u>Food:</u> Detection of toxin in epidemiologically implicated food
F. Pufferfish poisoning (tetrodotoxin)	10 min - 3 hours	Nausea, vomiting, paresthesias, dizziness, may progress to paralysis and death in hours	tetrodotoxin	pufferfish, others	<u>Food:</u> Detection of toxin in epidemiologically implicated food

Prevention – Food and Water

- Boil it, cook it, peel it, or forget it
- Avoid ice
- Wash hand when possible
- Condiments on table can be contaminated
- It is difficult to do but have to

Rifaximin and Chemoprophylaxis of Travelers' Diarrhea

Pros

- Poorly adsorbed oral antibiotic
 - Absent side effects
- Low levels of rifaximin resistance among enteric pathogens
- Prophylaxis against travelers' diarrhea for short-term travelers
 - ETEC predominant regions
 - ≥70% protection conferred

Cons

- Limited studies to date
 - Geographically delimited
 - Predominance of ETEC/EAEC
 - Short duration travel
- Impact of widespread usage for prophylaxis unknown

Prevention of Enteric Diseases in Deployed Personnel

- Pre-deployment counseling of troops
 - Avoid exposure to pathogens transmitted by soiled food and drink
 - Seek early treatment with diarrhea
- Administer appropriate enteric vaccines
 - Typhoid vaccines (oral or IM)
 - Hepatitis A vaccine [Havrix, Avaxim]; Hepatitis B vaccine
- Probiotics
 - No official recommendation
- Antibiotic chemoprophylaxis
 - Not recommended for routine travel or deployment

Thank You

