Medical Informatics

Lecture 10: More RDF

Dr Areti Manataki

Nanjing Medical University

In the previous lecture

RDF data model

In the previous lecture

- In RDF we use URIs to uniquely identify resources and predicates.
- Vocabularies: FOAF (e.g. foaf:knows, foaf:name, foaf:based_near, etc.)
- Serialisation: Turtle, XML

```
@prefix dbp: <http://dbpedia.org/property/> .
@prefix usherres: <http://usher.ed.ac.uk/medinf/resource/> .
@prefix ushervoc: <http://usher.ed.ac.uk/medinf/vocab/> .
usherres:aroast dbp:name "Artisan Roast" .
usherres:aroast dbp:locatedIn usherres:eastEdinburgh .
usherres:aroast ushervoc:stars "5" .
```

In this lecture

- Turtle serialisation
- A short introduction to RDFS

Turtle serialisation

URIs and QNames in Turtle

Full URIs are enclosed in < >.

```
# this is a comment
<http://dbpedia.org/resource/Robert_Burns> <http://xmlns.com/foaf/0.1/name> "Robert Burns" .
```

 QNames can be used, as long as QName-URI bindings are provided.

```
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
dbr:Robert_Burns foaf:name "Robert Burns" .
```

Literals and Datatypes in Turtle

- Literals are written with double quotes.
- Typed literal values consist of a literal appended by ^^ and a URI – usually from XML Schema.
 - Example datatypes: xsd:string, xsd:integer, xsd:double, xsd:date, xsd:dateTime, xsd:boolean, xsd:decimal
- Turtle has a shorthand syntax for writing integer, decimal values, and double values.

```
@prefix dbp: <http://dbpedia.org/property/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix usherres: <http://usher.ed.ac.uk/medinf/resource/> .
@prefix ushervoc: <http://usher.ed.ac.uk/medinf/vocab/> .
usherres:aroast dbp:name "Artisan Roast"^^xsd:string .
usherres:aroast ushervoc:stars "5"^^xsd:integer .
usherres:aroast ushervoc:numberOfEmployees 12 .
```

Instance-of in RDF

Class membership is expressed via rdf:type

Instance-of in RDF

Jerome's and Leo's class membership

```
@prefix : <http://zoo.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
:jerome rdf:type :Giraffe .
:leo rdf:type :Lion .
```

Leonardo DiCaprio's class membership

```
@prefix : <http://usher.ed.ac.uk/medinf/resource/> .
@prefix ushervoc: <http://usher.ed.ac.uk/medinf/vocab/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
:Leonardo_DiCaprio rdf:type ushervoc:Actor .
ushervoc:Actor rdf:type rdfs:Class .
```

Instance-of in RDF

We use a as an abbreviation of rdf:type

```
@prefix : <http://zoo.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
:jerome a :Giraffe .
:leo a :Lion .
@prefix : <http://usher.ed.ac.uk/medinf/resource/> .
@prefix ushervoc: <http://usher.ed.ac.uk/medinf/vocab/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
:Leonardo DiCaprio a ushervoc:Actor.
ushervoc:Actor a rdfs:Class .
```

Abbreviating groups of triples

We can use, to abbreviate repeated subjects and predicates

Triples about Leonardo DiCaprio, in full form.

```
dbpedia:Leonardo_DiCaprio :playedIn dbpedia:The_Wolf_of_Wall_Street .
dbpedia:Leonardo_DiCaprio :playedIn dbpedia:Inception .
```

Triples about Leonardo DiCaprio, in abbreviated form.

Abbreviating groups of triples

We can use; to abbreviate repeated subjects

Triples about Leonardo DiCaprio, in full form.

```
dbpedia:Leonardo_DiCaprio rdf:type :Actor .
dbpedia:Leonardo_DiCaprio :playedIn dbpedia:The_Wolf_of_Wall_Street .
```

Triples about Leonardo DiCaprio, in abbreviated form.

Abbreviating groups of triples

Combining both abbreviations

Triples about Leonardo DiCaprio, in full form.

```
dbpedia:Leonardo_DiCaprio rdf:type :Actor .
dbpedia:Leonardo_DiCaprio :playedIn dbpedia:The_Wolf_of_Wall_Street .
dbpedia:Leonardo_DiCaprio :playedIn dbpedia:Inception .
```

Triples about Leonardo DiCaprio, in abbreviated form.

Assertion statements

- RDF allows us to make factual statements, i.e. statements about individuals. (ABox)
- We can say that Leonardo DiCaprio is an Actor, or that he played in The Wolf of Wall Street.
- But we can't say things like:
 - Actors are artists.
 - If you are a friend of someone then you know that person.

Introduction to RDFS

Terminological statements with RDFS

- RDF Schema (RDFS) allows us to define our own vocabulary, and thus specify classes, their hierarchy and relations between them. (TBox)
- RDFS is expressed in RDF, i.e. as a set of triples.
- Basic idea is to allow statements like the following:
 - Every instance of Woman is an instance of Person.
 - The subject of 'age' must be a Agent.
 - The object of 'age' must be a literal.

Some RDF / RDFS classes

RDF:

- rdf:type an instance of rdf:Property used to state that a resource is an instance of a class
- rdf:Property the class of properties

RDFS:

- rdfs:Class the class of classes
- rdfs:subClassOf the subject is a subclass of a class
- rdfs:subPropertyOf the subject is a subproperty of a property
- rdfs:domain a domain of the subject property
- rdfs:range a range of the subject property

Our animal kingdom in RDFS: classes

Declaring classes: Giraffe and Herbivore

```
terms:Giraffe rdf:type rdfs:Class .
terms:Herbivore rdf:type rdfs:Class .
```

Declaring instances: Jerome is an instance of Giraffe

```
myzoo:jerome rdf:type terms:Giraffe .
myzoo:jerome a terms:Giraffe .
```


 Declaring class hierarchy: Giraffe is a subclass of Herbivore

```
terms:Giraffe rdfs:subClassOf terms:Herbivore.
```

Our animal kingdom in RDFS: properties

Declaring properties: eats

```
terms:eats rdf:type rdf:Property .
terms:eats a rdf:Property .
```

Declaring property domains and ranges: animals eat plants

```
terms:eats rdfs:domain terms:Animal .

terms:eats rdfs:range terms:Plant .

Domain eats

Animal Plant
```

RDFS provides meaning

- RDF allows us to express statements in the form of triples.
- But it has no way of telling which URIs can semantically act as predicates.
 - For example, the following is a valid RDF statement: :areti terms:birthPlace "dog" .
- RDFS helps provide meaning to RDF data.
- It allows for inference, so that you get out more than what is directly asserted.

Type propagation in RDFS

- Jerome is a Giraffe and Giraffes are Mammals.
- Therefore Jerome is a Mammal.
- We get this with the use of the following type propagation rule:

```
?A rdfs:subClassOf ?B .
AND
   ?x rdf:type ?A .
THEN
   ?x rdf:type ?B .
```

Conclusions

- Turtle serialisation
 - Full URIs or Qnames
 - Several abbreviations
- RDFS
 - It allows us to define simple vocabularies
 - We're going to be using: rdfs:Class, rdf:Property, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range
 - In the next lecture we'll be introduced to the SPARQL query language.

Acknowledgements

The content of these slides was originally created for the Medical Informatics course from The University of Edinburgh, which is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

These lecture slides are also licensed under a CC BY-SA 4.0 license.

