Psycho Cipher

Participants:

- Alice Sender
- Bob Receiver

Assumptions:

- Plaintext represents original/decrypted message.
- Ciphertext represents encrypted message.
- The key is used to encrypt the plaintext.
- Key is known to both sender and receiver. (symmetric)
- There are only alphabets which are used as plaintext letters.
- Noise bit 0

Key Formation:

- The key is dynamic. It will be calculated as follows.
 - Number of plaintext letters = N
 - Bits per alphabet = 7
 - o total bits = N * 7
 - key length = sqrt (total bits) + 1

For eg.

```
Plaintext = ABC N = 3

Bits = 100000110000101000011

N * 7 = 21

sqrt(21) = 4

Key Length = 4 + 1 = 5

Key = 97531 (distinct digits upto length 9, after that key will be repeated)
```

Encryption:

Letters = 'HELLO'

In bits = $100100\010001\011001\100100\110010\01111$

Key length = 6

Random key = 240153

Random key in bits

- 2 = 0110010
- 4 = '0110100'
- 0 = '0110000'
- 1 = '0110001'
- 5 = '0110101'
- 3 = '0110011'

How to encrypt message : Layer 1

1	0	0	1	0	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	1	0	0
1	1	0	0	1	0
0	1	1	1	1	0(noise)

Now Distribute Key:

1(2)	0	0	1	0	0
0	1(4)	0	0	0	1
0	1	1(0)	0	0	1
1	0	0	1(1)	0	0
1	1	0	0	1(5)	0
0	1	1	1	1	0(noise)(3)

Layer 2.a:

1(2) →	0 →	0 →	1 →	0 →	0 →
0	1(4) →	0 →	0 ->	0 →	1 →
0	1	1(0) →	0 →	0 →	1 →
1	0	0	1 (1) →	0 →	0 →
1	1	0	0	1(5) →	0 →
0	1	1	1	1	0(noise)(3)→

Write Encrypted message after layer 2.a:

Order: Blue, Brown, Orange, Magenta, Red, Green

100110010010001000110

Layer 2.b:

1(2)	0	0	1	0	0
0	1(4)	0	0	0	1
0	1→	1(0)	0	0	1
1→	0→	0→	1(1)	0	0
1→	1→	0→	0→	1(5)	0
0>	1→	1→	1→	1→	0(noise)(3)

Write Encrypted message after layer 2.b:

Order: Blue, Brown, Magenta, Red, Green

011000111101100

Complexity of the algorithm:

For eg : N = 21

Void spaces = 22

Key Length = sqrt(21 * 7) + 1 = 13

Ways of Distribution : 22 Permute in 13 Probability of trudy getting right = 1 / ways

Length equation for Receiver / Trudy :

• (total length + Key Length) * 7

Decryption:

- Recover Key
- Extract (ciphertext encrypted key)
- Arrange in the form of matrix of dim key length * key length
- Number the diagonal of matrix as per the key
- Reverse layer 2 encryption.