Méthodologie Fonctions Sinus et Cosinus

Fonctions Sinus et Cosinus

1 Définitions à partir du cercle trigonométrique

Le cercle trigonométrique est le cercle de centre l'origine O et de rayon unité.

- $\cos\theta$ est l'abscisse du point représentatif de l'angle θ sur le cercle trigonométrique.
- $\sin\theta$ est l'ordonnée du point représentatif de l'angle θ sur le cercle trigonométrique

2 Valeurs remarquables

Annimation bilan: https://phet.colorado.edu/sims/html/trig-tour/latest/trig-tour fr.html

3 Formulaire

3.1 Angles associés

Une lecture efficace du cercle trigonométrique permet de retrouver les relations suivantes :

Exercice : En dessinant un cercle trigonométrique, résoudre dans $\mathbb R$ les équations suivantes :

3.2 Dérivées

$$(\cos x)' = -\sin x \qquad (\sin x)' = \cos x$$

Exercice: déterminer les dérivées des fonctions $f: x \mapsto \cos(3x)$ et $g: x \mapsto \sin\left(\frac{x}{a}\right)$ avec $a \in \mathbb{R}^*$.

3.3 Intégrales

$$\int_{a}^{b} \cos x dx = [\sin x]_{a}^{b} = \sin b - \sin a$$

$$\int_a^b \sin x \mathrm{d}x = [-\cos x]_a^b = -\cos b + \cos a$$

On rappel aussi que l'intégrale est linéaire :

$$\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

3.4 Formules d'addition

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \quad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b) \quad \sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

3.5 Formules de linéarisation (utiles pour intégrer)

On peut démontrer à partir des formules d'addition dans le cas particulier où b=a les 2 formules suivantes :

$$\cos^2(a) = \frac{1 + \cos(2a)}{2} \quad \sin^2(a) = \frac{1 - \cos(2a)}{2}$$

On peut aussi démontrer les formules suivantes, toujours à partir des formules d'addition :

$$\begin{aligned} \cos(a)\cos(b) &= \frac{1}{2}\left[\cos(a-b) + \cos(a+b)\right] \\ \sin(a)\sin(b) &= \frac{1}{2}\left[\cos(a-b) - \cos(a+b)\right] \\ \sin(a)\cos(b) &= \frac{1}{2}\left[\sin(a-b) + \sin(a+b)\right] \end{aligned}$$

Exercice:	calculer l'intégrale $I = \int_0^{\pi} \sin^2(4x) dx$

3.6 Formules de factorisation

$$\begin{split} \cos(p) + \cos(q) &= 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) & \sin(p) + \sin(q) &= 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \cos(p) - \cos(q) &= -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) & \sin(p) - \sin(q) &= 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \end{split}$$

Exercice:	Exprimer $\cos(\omega t) + \cos(\omega t + \varphi)$ sous la forme d'un produit de 2 cosinus