Testes de hipóteses

Samuel Martins de Medeiros

Introdução

De maneira geral, existem duas grandes áreas na inferência Estatística: a estimação de parâmetros (Para mais informações sobre estimação, verifique nosso post sobre função de Verossimilhança), e o teste de hipóteses. Em particular, o teste de hipoteses consiste em avaliar uma afirmação a respeito de um parâmetro (média, variância, proporção, etc.) ou um conjunto de parâmetros. Tal afirmação recebe o nome de Hipótese Nula (Denotado por H_0), a afirmação alternativa recebe o nome de Hipótese Alternativa (Denotado por H_1).

Para deixar essa ideia um pouco mais clara, suponha que queremos saber se uma determinada marca de blusa A, possui um tempo médio de duração (Denotado por θ) igual ou superior a 5 anos. Conseguimos reescrever essa indagação na forma de um sistema de hipóteses, a saber:

$$\begin{cases} H_0: \theta \ge 5 \\ H_1: \theta < 5 \end{cases}$$

Para realizar o teste, assumimos que é possível obter uma amostra aleatória de blusas da marca $A, X_1, ..., X_n$, de uma distribuição $f(.;\theta)$.

Tambem é necessário definir a estatística de teste (T) e região de rejeição (R). Estatística de teste é um valor calculado a partir da amostra, seu valor define a regra de rejeição para uma hipótese, ele mostra o quanto seus dados observados correspondem à distribuição esperada sob a hipótese nula desse teste estatístico, denotamos por R os possíveis valores para θ em que, dado a regra de rejeição, rejeitamos H_0 . Estamos interessados em saber se o tempo de duração da marca A é igual ou maior que 5 anos, ou em outras palavras $H_0: \theta \geq 5$. Um possível teste seria rejeitar H_0 se $\overline{x} < 5 - 10/\sqrt{n}$, onde \overline{x} é a estatística de teste T, nesse caso nossa estatística acaba por ser o estimador de θ , digamos média amostral. No exemplo em questão, nossa região de rejeição são todos os possíveis valores de $\overline{x} < 5 - 10/\sqrt{n}$. Assumiremos δ como representação do procedimento de testes de hipótese no dercorrer do post.

Um teste pode ser tanto aleatório quanto não aleatório. O exemplo anterior, por exemplo, é um ótimo exemplo de teste não aleatório. Já um teste aleatório poderia ser "jogue uma moeda para o alto, caso cara rejeite a hipótese nula".

Tão importante quanto conhecer os tipos de teste é a verificação da "qualidade" de um teste, ou o quão correto estamos ao rejeitar uma hipótese. Podemos analisar esses resultados observando a função poder bem como os tipos de erros que podemos cometer dentro de um procedimento de testes de hipóteses

Função Poder e Tipos de Erros

Para cada teste aplicado sobre uma amostra obtida de uma distribuição $f(.;\theta)$ onde $\theta \in \Theta$ em que Θ representa o espaço paramétricos de possíveis valores para θ , teremos uma função poder associada. A função poder define a probabilidade, dado um valor de θ , de rejeitar H_0 dado que a mesma é falsa, ou seja, o quão acertivo foi nossa escolha dado o espaço paramétrico. Suponha um procedimento de teste δ , ou seja,

possuímos uma regra de rejeição e uma estatística de teste obtidos através de uma amostra aleatória. A função $\pi(\theta|\delta)$ é chamada função poder do teste δ . Se S_1 denota a região de rejeição de δ , então a função poder é determinada pela relação:

$$\pi(\theta|\delta) = \Pr(X \in S_1|\theta)$$

Se δ é descrito em função da estatística de teste T e da região de rejeição R, então

$$\pi(\theta|\delta) = \Pr(T \in R|\theta)$$

para todo $\theta \in \Theta$.

Sendo a função poder, a probabilidade de rejeitar a hipótese nula dado os possíveis valores do parâmetro em estudo θ , buscamos o teste δ que minimize $\pi(.)$ para os valores de θ pertencentes ao espaço paramétrico de H_0 e a maximize quando θ pertence ao espaço paramétrico de H_1 , ou em outras palavras, $\pi(\theta \in \Theta_0|\delta) = 0$ e $\pi(\theta \in \Theta_1|\delta) = 1$, onde Θ_0 representa o espaço paramétrico sob a hipótese nula e Θ_1 o espaço paramétrico sob a hipótese alternativa.

Retomando o exemplo inicial onde rejeitamos a hipótese nula para $\overline{x} < 5 - 10/\sqrt{n}$, suponha que uma amostra aleatória do produto A, $X_1, ..., X_{20}$ foi obtida de uma distribuição Normal (θ, σ^2) , com σ^2 conhecido e igual a 2, onde \overline{x} é o estimador de máxima verossimilhaça para média amostral. Obtendo, assim, a seguinte função poder,

$$\begin{split} \pi(\theta|\delta) &= P\left(\overline{x} < 5 - \frac{10}{\sqrt{20}} = c \mid \theta\right) \\ &= P\left(\frac{\overline{x} - \theta}{\sqrt{2/20}} < \frac{c - 5}{\sqrt{2/20}} \mid \theta\right) = P(Z < z_c \mid \theta) \end{split}$$

onde Z segue uma distribuição Normal(0,1), obtendo assim:

Perceba que, para os valores de θ dentro do espaço paramétrico de H_0 ($\theta \ge 5$) o valor para função poder é 0. Ao considerar como possível escolha, rejeição ou não rejeição da hipótese nula, testamos uma hipótese contra a outra. Dentro deste cenário encontramos dois tipos de erros, os chamados:

- Erro do Tipo I: rejeitar a hipótese nula quando a mesma é verdadeira. Para o exemplo em questão, assumir que a marca A dura em média menos que 5 anos, quando o tempo é superior a 5 anos.
- Erro do Tipo II: aceitar a hipótese nula quando a mesma é falsa. Assumindo por exemplo que o tempo de duração é superior ou igual a 5 anos quando na verdade o tempo é inferior.

É possível indicar a probabilidade de ocorrência de cada erro, para o exemplo trabalhado na sessão, por meio da seguinte notação para o Erro do Tipo I:

P(
$$\overline{x} < 5 - 10/\sqrt{n} \mid H_0 \text{ verdadeira}) = \alpha$$

e para o Erro do Tipo II:

$$P(\overline{x} > 5 - 10/\sqrt{n} \mid H_0 \text{ Falsa}) = \beta$$

Dado que β é a probabilidade de não rejeitar H_0 quando a mesma é falsa, 1 - β pode ser definido como a probabilidade de rejeitar H_0 quando falsa, sendo também nossa função poder.

É relacionado para cada regra de rejeição, ou valor crítico de \overline{x} , um valor para α e β . No procedimento de teste de hipótese à medida que um dos erros é minimizado, o outro tipo de erro é incrementado. Podemos optar pela escolha de uma regra de rejeição que equilibre os dois tipos de erro, ou seja $\beta=\alpha$, ou o mais usual e mais aplicado, a escolha de um valor arbitrário fixo para α , também chamado de nível de significância do teste, digamos valores como 10%, 5% ou 1%. Há também casos em que o erro do tipo II é o fixado, digamos: o erro não é a melhor alternativa, mas caso haja algum erro, que seja por rejeitar a hipótese nula quando a mesma é verdadeira. Esse tipo de abordagem pode ser vista em estudos de eficácia de remédio ou em outras aplicações na área da saúde. Por isso um bom entendimento do problema aplicado é necessário em todo caso.

Tipos de Hipóteses

As hipóteses de um teste podem ser da forma simples ou composta. Uma hipótese simples, é aquela onde o espaço de possíveis valores de θ é definido em apenas um ponto, dessa forma a distribuição do parâmetro é completamente especificada $(H_0: \theta = \theta_0, f(.; \theta_0))$, ou ainda $H_0: \theta = 0$). Por outro lado, uma hipótese composta é aquela cuja distribuição não é especificada completamente e θ pode assumir um conjunto de valores Θ ($H_0: \theta \in \Theta$, $f(.; \Theta)$), ou $H_0: \theta \geq 0$). Uma forma de introduzir o tema, é observar primeiro o contexto de Hipóteses simples versus Hipótese simples, ou em outras palavras:

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 \end{cases}$$

Testes de razão de verossimilhança simples Suponha que temos uma amostra aleatória $X_1, ..., X_n$ de uma distribuição com parâmetro θ que pode ser θ_0 ou θ_1 . Para testar a hipótese nula $H_0: \theta = \theta_0$ versus a hipótese alternativa $H_1: \theta = \theta_1$, podemos utilizar um teste de razão de verossimilhança. Esse teste envolve a comparação da função de verossimilhança $L(x_1, ..., x_n)$ associada à densidade $f(\cdot)$, utilizando a razão $\lambda = L_0(\cdot)/L_1(\cdot)$, onde $L_0(\cdot)$ e $L_1(\cdot)$ representam as funções de verossimilhança quando $\theta = \theta_0$ e $\theta = \theta_1$, respectivamente. Se λ é menor do que uma constante não negativa k, rejeitamos a hipótese nula, sugerindo que a amostra pode vir de uma população com distribuição $f_1(\cdot)$ em vez de $f_0(\cdot)$. Por exemplo, podemos testar a duração da marca de blusa, agora digamos $H_0: \theta = 5$ versus $H_1: \theta = 7$ (onde θ ainda representa o tempo de duração médio em anos), para uma amostra aleatória de uma distribuição normal $N(\theta, 1)$, utilizando a função de verossimilhança.

$$L(\theta; X_1, \dots, X_n) = \left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\sum_{i=1}^n \frac{(X_i - \theta)^2}{2}\right\}$$

Obtendo o teste de razão de verossimilhança,

$$\lambda = \frac{L_0(X_1, \dots, X_n)}{L_1(X_1, \dots, X_n)} = \frac{\left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\sum_{i=1}^n \frac{(X_i - 5)^2}{2}\right\}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\sum_{i=1}^n \frac{(X_i - 7)^2}{2}\right\}}$$

$$= exp\left\{-\sum_{i=1}^{n} \frac{(X_i - 5)^2}{2} + \sum_{i=1}^{n} \frac{(X_i - 7)^2}{2}\right\} < k$$

Que pode ser reescrito como

$$\sum_{i=1}^{n} X_i > \frac{2n - \log(k)}{2} = k*$$

Ou seja, rejeitamos H_0 para um somatório de X_i maior que alguma constante k^* . Suponha uma amostra de $\sum_{i=1}^6 X_i = 36$, rejeitamos H_0 se $36 > (12 - \log(k))/2$ ou $k < 8,75 \times 10^{-27}$, note que, para a amostra em questão, temos um valor para λ extremamente baixo, logo podemos rejeitar a hipótese de tempo de duração igual a 5 anos, optando pela alternativa de 7 anos de duração. Ou em outras palavras, os dados obtidos pela amostra mostram indícios de que a distribuição original da população não siga a proposta pela hipótese nula, e sim pela alternativa.

Para cada k fixado é tido um teste diferente. Uma forma de verificar o melhor k descrito é pela análise da função poder discutida anteriormente para cada um dos testes, que pode ser visto também pela análise do teste Mais Poderoso, que minimize o erro proveniente do processo de teste de hipótese.

Antes de falar sobre os testes mais poderosos, uma definição deve ser esclarecida: o tamanho do teste. Vamos admitir um teste δ cuja hipótese nula seja $H_0: \theta \in \Theta_0$ ($H_0: \theta < \theta_0$, ou $H_0: \theta = \theta_0$ por exemplo), em que

 $\Theta_0 \subset \Theta$ (ou seja, Θ_0 é um subconjunto do espaço paramétrico Θ). Assim, o tamanho do teste é definido como sup $[\pi(\theta \mid \delta)]$ onde $\pi(\theta \mid \delta)$ é a função poder de θ dado o procedimento de teste δ . Ou em outras palavras, o valor para θ dentro do espaço paramétrico da hipótese nula que maximiza a função poder associada ao procedimento de teste de hipótese δ .

Esclarecida essa definição, daremos prosseguimento ao assunto. Assim como já comentado, queremos um teste δ em que $\pi(\theta_0 \mid \delta) = P(\text{Rejeitar } H_0 \mid H_0 \text{ verdadeiro})$ seja a menor possível e que $\pi(\theta_1 \mid \delta) = P(\text{Rejeitar } H_0 \mid H_0 \text{ falsa})$ seja a maior possível. Em um mundo ideal, $\pi(\theta_1) = 1$ e $\pi(\theta_0) = 0$, isto é, quando os erros do tipo I e II são minimizados simultâneamente. Entretanto, na prática, uma das metodologias aplicadas, como já citado, de forma a definir o melhor teste possível é minimizar o erro do tipo II fixando o erro do tipo I.

Teste Mais Poderoso: Um teste $\delta *$ em que $H_0: \theta = \theta_0$ contra $H_1: \theta = \theta_1$ é definido como teste mais poderoso de tamanho α , com $0 < \alpha < 1$, se e somente se:

- i. $\sup_{\theta \in \Theta^0} \pi(\theta | \delta *) = \alpha;$
- ii. $\pi(\theta_1|\delta^*) > \pi(\theta_1|\delta)$, para qualquer outro teste δ onde $\pi(\theta_0|\delta) \leq \alpha$.

Ou seja, podemos considerar um teste $\delta*$ como sendo o teste mais poderoso se, para qualquer outro teste de tamanho α ou menor do que α , ele possuir o maior poder.

O lemma a seguir é muito útil para encontrar testes mais poderosos.

• Lemma Neyman-Pearson: seja $X_1, ..., X_n$ uma amostra aleatória de uma distribuição com densidade $f(x; \theta)$, onde θ pode assumir os valores θ_1 ou θ_0 e $0 < \alpha < 1$. Considere k* uma constante positiva e C^* um subconjunto do espaço de valores para X_i . Assim,

(i)
$$P_{\theta_0}(X_1 \dots X_n \in C^*) = \alpha$$

$$(ii) \qquad \lambda = \frac{L(\theta_0; X_1, \dots, X_n)}{L(\theta_1; X_1, \dots, X_n)} = \frac{L_0}{L_1} \le k^*$$

e $\lambda > k^*$ se $(x_1, ..., x_n) \in \overline{C}*$. Onde C* é a região de rejeição e $\overline{C}*$ seu complementar.

Então, considerando um teste de hipóteses simples, temos que o teste para essa região de rejeição é o teste mais poderoso. Vamos mostrar um exemplo para melhor compreensão.

Seja $X_1, ..., X_n$ uma amostra aleatória da marca A, onde estamos interessados em saber se o motivo do baixo tempo de duração foi erro da fábrica ou não, para isso suponha que a amostra segue distribuição Bernoulli (θ) , onde $X_i = 1$, foi erro da fábrica e $X_i = 0$ caso contrário. Seja o teste $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1, \theta_1 > \theta_0$, onde θ representa a proporção de blusas com baixo tempo de duração por erro da fábrica. Então

$$\frac{L_0}{L_1} = \frac{\theta_0^{\sum X_i} (1 - \theta_0)^{n - \sum X_i}}{\theta_1^{\sum X_i} (1 - \theta_1)^{n - \sum X_i}}$$

$$= \left(\frac{\theta_0 (1 - \theta_1)}{\theta_1 (1 - \theta_0)}\right)^{\sum X_i} \left(\frac{1 - \theta_0}{1 - \theta_1}\right)^n$$

$$= \lambda$$

Rejeitamos H_0 para um $\lambda \leq k*$, note porém, que λ varia em função da amostra X_1, \ldots, X_n . Podendo considerar as outras informações como constantes, nos levando a rejeitar H_0 se $\sum X_i \geq k'$. Para compreender suponha $\theta_0 = 0.3$ e $\theta_1 = 0.5$ e uma amostra de tamanho 10.

$$\lambda = \left(\frac{\theta_0(1-\theta_1)}{\theta_1(1-\theta_0)}\right)^{\sum X_i} \left(\frac{1-\theta_0}{1-\theta_1}\right)^n$$

$$= \left(\frac{0.3(1-0.5)}{0.5(1-0.3)}\right)^{\sum X_i} \left(\frac{1-0.3}{1-0.5}\right)^{10}$$

$$= (0.43)^{\sum X_i} (1.4)^n \le k*$$

Conforme incrementamos o valor do somatório, diminuimos o valor de λ , logo rejeitamos H_0 para um valor do somatório maior que uma constante k', ou seja, rejeitamos a hipótese de que a proporção de blusas por erro da fabrica seja 0.3 e optamos pela proporção de 0.5 caso o número de blusas com defeito por culpa da fábricação seja relativamente alto.

Perceba porém, que ao trabalharmos com uma variável de contagem $(\sum X_i \sim Binomial(n,\theta))$, não se torna tão simples assim fixar o valor de α de forma arbitrária como fariamos em um teste para variáveis contínuas para encontrar o teste mais poderoso, já que k* pode assumir apenas valores inteiros. Lembrando que $\alpha = P(\sum X_i \geq k' \mid \theta = 0.3)$, fazendo o processo inverso, onde fixamos os possíveis valores de k' $(0 \leq k' \leq 10)$, obtemos os seguintes tamanhos de teste α :

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7
Valores de α	0.851	0.617	0.35	0.15	0.047	0.011	0.002

Ou seja, o teste mais poderoso de tamanho $\alpha=0.15$ é aquele em que rejeitamos H_0 para um $\sum X_i \geq 4$, e assim sucessivamente.

Note que o teste mais poderoso de tamanho α , dado o lemma de Neyman-Pearson é necessariamente um teste de razão de verossimilhança simples.

Testes para hipóteses compostas

Generalizaremo, agora, para os teste de hipóteses compostas. O método mais geral para testar hipóteses, que, geralmente não é o que fornece resultados mais precisos, mas é aplicável em todo tipo de situação, é o Teste de Razão de Verossimilhança Generalizado. Considere $X_1, ..., X_n$ uma amostra aleatória obtida de uma função de densidade $f(.;\theta)$, $\theta \in \Theta$, e um teste do tipo $H_0: \theta \in \Theta_0$ contra $H_1: \theta \in \Theta_1 = \Theta - \Theta_0$.

• Teste de Razão de Verossimilhança Generalizado: suponha $L(\theta; X_1, ..., X_n)$ a função de verossimilhança para a amostra $X_1, ..., X_n$. O teste de razão de verossimilhança generalizada, denotado por λ , é definido como:

$$\lambda = \frac{\sup_{\theta \in \Theta_0} L(\theta; X_1, \dots, X_n)}{\sup_{\theta \in \Theta} L(\theta; X_1, \dots, X_n)}.$$

Onde λ se torna uma função da amostra definida no intervalo [0,1]. Assim como no Teste de Razão de Verossimilhança para hipóteses simples, rejeitamos a hipótese nula (H_0) se o valor de λ for menor ou igual a uma constante k^* definida no intervalo [0,1]. Quanto mais próximo de 1 for o valor de λ , mais difícil será rejeitar a hipótese nula, pois indica que o valor que maximiza a função de verossimilhança dentro do espaço paramétrico da hipótese nula está se aproximando do valor que maximiza para o espaço paramétrico total.

- Testes Uniformemente Mais Poderosos (UMP): um teste $\delta *$ do tipo $H_0: \theta \in \Theta_0$ contra $H_1: \theta \in \Theta_1 = \theta \Theta_0$ é definido como UMP de tamanho α se e somente se
- (i) $\sup_{\theta \in \Theta^0} [\pi(\theta \mid \delta *)] = \alpha$
- (ii) $\pi(\theta \mid \delta *) > \pi(\theta \mid \delta)$

para todo $\theta \in \Theta - \Theta_0$ e para qualquer teste δ de tamanho menor ou igual a α .

Suponha o exemplo onde testamos $H_0: \theta \geq 0.5$ versus $H_1: \theta < 0.5$, sendo θ a proporção de blusas com pouco tempo de duração por culpa da fábrica, e que possuimos uma amostra $X_1,...X_{20} \sim Bernoulli(\theta)$, onde $\sum_{i=1}^{20} X_i = 12$. Primeiro, faremos de forma geral onde $0.5 = \theta_0$ e depois substituiremos pelos valores propostos. Então, o valor que maximímiza a função de verossimilhança no espaço paramétrico geral e sob H_0 seguem da forma:

$$\sup_{0 \le \theta \le 1} L(\theta; X_1, \dots, X_n) = \sup_{0 \le \theta \le 1} \left[\theta^{\sum_{i=1}^n X_i} (1 - \theta)^{n - \sum_{i=1}^n X_i} \right]$$

$$= \frac{\sum_{i=1}^n X_i}{n}$$

$$\sup_{\theta_0 \le \theta \le 1} L(\theta; X_1, \dots, X_n) = \sup_{\theta_0 \le \theta \le 1} \left[\theta^{\sum_{i=1}^n X_i} (1 - \theta)^{n - \sum_{i=1}^n X_i} \right]$$

$$= \begin{cases} \frac{\sum_{i=1}^n X_i}{n} &, \text{ se } \theta_0 \le \frac{\sum_{i=1}^n X_i}{n} \\ \theta^{\sum_{i=1}^n X_i} (1 - \theta)^{n - \sum_{i=1}^n X_i} &, \text{ se } \theta_0 \ge \frac{\sum_{i=1}^n X_i}{n} \end{cases}$$

Conclusão

Na literatura, podemos encontrar formas diferentes de testar hipóteses das vistas neste tutorial, mas elas fogem do escopo deste post e por isso não foram abordadas. Ainda assim, fomos capazes de aprender alguns dos métodos para testar hipóteses estatísticas mais utilizados, além de métodos para achar o melhor tipo de teste. Espero que o texto tenha sido esclarecedor e de ajuda ao leitor. Para mais informações ou dúvidas, escreva-nos em : comunicacao@observatorioobstetricobr.org