Dismantling the bulk: examining neuronal heterogeneity using single-cell techniques

Sara Linker, Apu
ã Paquola, Roger Lasken, and Keegan Korthauer Festival of Genomics
 9/19/2016

Hour II: Quality control and normalization

The readout from a RNA-Seq experiment is a mixture of a biological and technical sources.

The goal of quality control is to capture **metrics** and evaluate the **technical quality** of each sample, and help decide which samples to keep and which to exclude from the analysis.

The data from samples with enough quality still carry features that have to do with the technical processing of samples and are unrelated to the biology.

The goal of normalization is to apply a **transformation** to the data to factor out the technical component, making the samples **comparable**.

We will start with quality control, evaluating a set of metrics.

Load libraries

We load R libraries we will use: ggplot2 for general plotting, and scone to evaluate normalization strategies.

```
library(scone)
library(ggplot2)
```

Load data

```
gene_counts is a data frame containing unnormalized read counts per gene ercc_counts is a data frame containing raw read counts per ERCC spike-in cells is a data frame containing metadata for each cell
```

```
gene_counts <- read.csv("../../_m/genes_counts.csv", stringsAsFactors = FALSE, header=TRUE, row.names =
ercc <- read.csv("../../_m/ercc_counts.csv", stringsAsFactors = FALSE, header = TRUE, row.names=1)
cells <- read.csv("../../_m/cell_metadata.csv", stringsAsFactors = FALSE, header = TRUE)
whichTomato <- grep("tdTomato", rownames(ercc))
ercc <- ercc[-whichTomato,]</pre>
```

Examine sizes of data frames

```
gene_counts: 24057 genes x 1679 cells
ercc: 92 spike-ins x 1679 cells
cells: 1679 cells x 16 metadata fields
```

```
dim(gene_counts)

## [1] 24057 1679

dim(ercc)

## [1] 92 1679

dim(cells)

## [1] 1679 16
```

Examine metadata

Some of the metadata fields contain information about the biological sample, some about sequencing metrics.

knitr::kable(head(cells))

long_name	cre	$collection_date$	sequencing_type	$total_reads$	all_mapped_percent	$mRNA_percent$	genom
A01101401	Calb2	11/18/2013	hiseq	23770190	93.50	54.43	
A01101402	Calb2	11/18/2013	hiseq	9694719	92.86	45.69	
A01101403	Calb2	11/18/2013	hiseq	5864322	90.55	48.30	
A01101404	Calb2	11/18/2013	hiseq	22102121	93.25	51.41	
A01101405	Calb2	11/18/2013	hiseq	24057147	93.14	51.06	
A01101406	Calb2	11/18/2013	hiseq	24171169	92.18	49.31	

Select fields from metadata that are useful for QC

Select fields related to sequencing and mapping

```
qc <- cells[,c('total_reads', 'all_mapped_percent', 'mRNA_percent', 'ercc_percent', 'tdt_permillion')]
rownames(qc) <- cells$long_name</pre>
```

Add two more fields to the qc dataframe: number of genes detected and number of ERCC spike-ins detected

```
all.equal(cells$long_name, colnames(gene_counts)) && all.equal(cells$long_name, colnames(ercc))
## [1] TRUE
qc$ercc_detected = colSums(ercc > 0)
qc$genes_detected = colSums(gene_counts > 0)
```

Here's how the QC dataframe looks like

knitr::kable(head(qc))

	$total_reads$	$all_mapped_percent$	$mRNA_percent$	$\operatorname{ercc_percent}$	$tdt_permillion$	$\operatorname{ercc_detected}$	ger
A01101401	23770190	93.50	54.43	4.36	306.1	34	
A01101402	9694719	92.86	45.69	7.84	341.2	29	

	total_reads	all_mapped_percent	mRNA_percent	ercc_percent	tdt_permillion	ercc_detected	gen
A01101403	5864322	90.55	48.30	4.12	106.2	33	
A01101404	22102121	93.25	51.41	4.24	371.1	41	
A01101405	24057147	93.14	51.06	4.98	264.2	34	
A01101406	24171169	92.18	49.31	3.14	205.8	39	

Plot the distribution of these metrics

```
options(repr.plot.width=8, repr.plot.height=8)
ggplot(cells, aes(x=total_reads)) + geom_histogram(bins=100) + ggtitle('Histogram of total_reads')
```

Histogram of total_reads

summary(qc\$total_reads)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 3782000 6901000 8667000 10240000 10930000 84330000

ggplot(qc, aes(x=all_mapped_percent)) + geom_histogram(bins=100) + ggtitle('Histogram of percent mapped

summary(qc\$all_mapped_percent)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 73.36 90.66 91.95 91.43 92.85 97.80
```

ggplot(qc, aes(x=mRNA_percent)) + geom_histogram(bins=100) + ggtitle('Histogram of percent reads mapped

summary(qc\$mRNA_percent)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 23.94 47.36 51.59 51.39 55.39 82.56

ggplot(qc, aes(x=ercc_percent)) + geom_histogram(bins=100) + ggtitle('Histogram of percent reads mapped

summary(qc\$ercc_percent)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.160 0.920 1.370 1.887 2.190 13.900
```

ggplot(qc, aes(x=tdt_permillion)) + geom_histogram(bins=100) + ggtitle('Histogram of reads mapped to td

summary(qc\$tdt_permillion)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0 106.7 185.9 205.7 284.2 1300.0

ggplot(qc, aes(x=ercc_detected)) + geom_histogram(bins=100) + ggtitle('Histogram of number of ERCC spik

summary(qc\$ercc_detected)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15.00 24.00 27.00 27.13 29.00 45.00
```

ggplot(qc, aes(x=genes_detected)) + geom_histogram(bins=100) + ggtitle('Histogram of number of genes detected)

Histogram of number of genes detected

summary(qc\$genes_detected)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2402 6966 7811 7626 8508 13120
```

Other metrics commonly used for QC

- 1. GC content
- 2. k-mer content
- 3. 3' bias
- 4. %reads mapping to mitochondria: high mitochondria/genome ratio suggests apoptotic cell
- 5. %reads mapping to introns or intergenic regions

Identifying outlying samples by PCA of QC metrics

We can use PCA to visualize each sample with respect to QC metrics and pick outliers.

```
qc_pc_obj = prcomp(qc, center = TRUE, scale=TRUE)
#ggplot(as.data.frame(qc_pc_obj$x), aes(x=PC1, y=PC2)) + geom_point()
qc_bp_obj = biplot_colored(qc_pc_obj, y=1, expand = .8, choices=1:2)
title('PCA of QC metrics')
```

PCA of QC metrics

We don't find low quality outliers

The samples on the top left have very high number of reads (and that is good), and this is what causes PC2 to be high.

The authors of the paper had already excluded low-quality samples from this dataset.

Normalization

The purpose of normalization is to make datasets from different cells comparable.

Normalization strategies range from simple scaling (e.g. dividing raw counts by the total number of reads), to a more complex schemes that adjust for batch effects and biological effects.

Too much adjustment can cut away biological signal and/or introduce artifacts.

There is no normalization strategy that is optimal for all datasets.

Many normalization strategies should be considered.

Some common normalization strategies for RNA-Seq

name	long name	notes
RPM	reads per million	(counts / total reads) * 1 million
RPKM or FPKM	fragments per kilobase per million	takes gene aclength into account

name	long name	notes
TPM	transcripts per million	takes gene length into account
FQ	full quantile	match quantiles across samples
UQ	upper quartile	upper quartile of read counts define scaling factor
TMM	trimmed mean of M values (edgeR)	weighted log-fold-change values of a reference sample, removing genes with extreme values
DESeq	DESeq	scales samples to a reference sample based on the geometric mean of read counts across all samples

Testing multiple normalization strategies with SCONE

SCONE (Single-Cell Overview of Normalized Expression) supports a rational, data-driven framework for assessing the efficacy of various normalization workflows, encouraging users to explore trade-offs inherent to their data set prior to finalizing a data normalization strategy. It provides an interface for running multiple normalization workflows in parallel. It also offers tools for ranking workflows and visualizing trade-offs. It imports some common normalization modules used in traditional bulk sequencing, and provide support for integrating user-specified normalization modules.

R package on github:

https://github.com/YosefLab/scone

More information and usage examples:

https://niryosef.wordpress.com/tools/scone/

 $https://www.bioconductor.org/help/course-materials/2016/BioC2016/ConcurrentWorkshops1/Risso/scone. \\ html$

How it works

A normalization strategy is composed of a series of steps, each step being optional and having its specific parameters. SCONE tries all combinations of steps and parameters, evaluating many normalization strategies through metrics.

- 1. imputation replace zeroes by average values options: imputation or no imputation
- 2. scaling scaling normalization strategy options: none, UQ, FQ, DeSeq, .
- 3. RUVg normalization with house keeping genes or spike-ing - options: none, $k=1,\ k=2,\ k=3$ ($k=1,\ k=2,\ k=3$
- 4. batch adjustment whether to adjust for batch effects options: yes or no
- 5. bio adjustment whether to adjust for biological factors options: yes or no

RUV: Remove Unwanted Variation from RNA-Seq Data bioconductor package RUVSeq

Risso D, Ngai J, Speed T and Dudoit S (2014). "Normalization of RNA-seq data using factor analysis of control genes or samples." Nature Biotechnology, 32(9), pp. 896–902. In press, http://www.nature.com/nbt/journal/v32/n9/full/nbt.2931.html.

Make sure column names of genes and ercc matrices are compatible

```
all.equal(colnames(gene_counts), colnames(ercc))
```

[1] TRUE

Create a combined matrix of gene and ercc counts

```
gene_and_ercc_counts <- rbind(gene_counts, ercc)
dim(gene_and_ercc_counts)</pre>
```

[1] 24149 1679

Filter out genes and ERCCs with very low counts over all samples

```
f_gene_and_ercc_counts <- gene_and_ercc_counts[rowSums(gene_and_ercc_counts > 0) >= 50, ]
f_ercc <- rownames(ercc)[rownames(ercc) %in% rownames(f_gene_and_ercc_counts)]</pre>
```

Set up biological and batch factors

For **bio**, we use the dissection layer obtained from metadata.

For batch, we use the month of sample collection, obtained from metadata.

knitr::kable(table(batch, bio))

	All	L1	L2/3	L4	L5	L6	L6a	L6b	lower	upper
$\overline{10/2014}$	114	0	0	0	0	0	0	28	0	0
11/2013	24	0	0	45	0	0	3	0	16	16
11/2014	154	19	31	0	0	0	35	13	0	0
1/2014	31	0	0	61	23	0	30	0	0	0
12/2013	61	0	0	0	0	0	24	0	0	0
12/2014	8	0	0	0	0	13	0	0	34	72
2/2014	8	0	0	80	0	0	0	0	6	0
2/2015	0	0	0	0	0	0	20	0	0	0
3/2014	31	0	0	23	16	0	0	0	0	0
4/2014	0	0	0	0	101	0	0	0	0	0
5/2014	44	0	0	0	0	0	0	0	0	0
6/2014	16	0	24	0	0	0	0	0	44	45
7/2013	0	0	0	0	3	0	0	0	0	0
7/2014	48	19	0	7	0	0	0	0	44	46
8/2013	0	0	8	8	0	0	0	0	0	0
8/2014	157	0	0	0	0	20	0	0	0	0
9/2014	6	0	0	0	0	0	0	0	0	0

Set up a SCONE run

We use (no_normalization, DESeq, TMM, UQ, FQ) as candidate scaling strategies We use the ERCC spike ins for RUVg

Eliminate combinations of steps that are not meaningful

We don't want to adjust for biological factor unless we also adjust for batch factors.

```
is_screened = (params$adjust_biology == "bio") & (params$adjust_batch != "batch")
params = params[!is_screened,]
```

Here are the strategies to be tested

```
params
```

```
##
                                        imputation_method scaling_method
## none,none,no_uv,no_bio,no_batch
                                                     none
                                                                     none
## none, deseq, no_uv, no_bio, no_batch
                                                     none
                                                                    deseq
## none,tmm,no_uv,no_bio,no_batch
                                                     none
                                                                      tmm
## none,uqp,no_uv,no_bio,no_batch
                                                     none
                                                                      uqp
## none,fq,no_uv,no_bio,no_batch
                                                     none
                                                                       fq
## none,none,ruv_k=1,no_bio,no_batch
                                                     none
                                                                     none
## none,deseq,ruv_k=1,no_bio,no_batch
                                                                    deseq
                                                     none
## none,tmm,ruv_k=1,no_bio,no_batch
                                                     none
                                                                      tmm
## none,uqp,ruv_k=1,no_bio,no_batch
                                                     none
                                                                      uqp
## none,fq,ruv_k=1,no_bio,no_batch
                                                     none
                                                                       fq
## none, none, ruv_k=2, no_bio, no_batch
                                                     none
                                                                     none
## none,deseq,ruv_k=2,no_bio,no_batch
                                                     none
                                                                    deseq
## none,tmm,ruv_k=2,no_bio,no_batch
                                                     none
                                                                      tmm
## none,uqp,ruv_k=2,no_bio,no_batch
                                                     none
                                                                      uqp
## none,fq,ruv_k=2,no_bio,no_batch
                                                     none
                                                                       fq
## none, none, ruv k=3, no bio, no batch
                                                     none
                                                                     none
## none,deseq,ruv_k=3,no_bio,no_batch
                                                     none
                                                                    deseq
## none,tmm,ruv_k=3,no_bio,no_batch
                                                     none
                                                                      tmm
## none,uqp,ruv_k=3,no_bio,no_batch
                                                     none
                                                                      uqp
## none,fq,ruv_k=3,no_bio,no_batch
                                                     none
                                                                       fq
## none, none, no_uv, no_bio, batch
                                                     none
                                                                     none
## none, deseq, no_uv, no_bio, batch
                                                     none
                                                                    deseq
## none,tmm,no_uv,no_bio,batch
                                                     none
                                                                      tmm
## none,uqp,no_uv,no_bio,batch
                                                     none
                                                                      uqp
## none,fq,no_uv,no_bio,batch
                                                     none
                                                                       fq
## none, none, ruv_k=1, no_bio, batch
                                                     none
                                                                     none
## none,deseq,ruv_k=1,no_bio,batch
                                                     none
                                                                    deseq
## none,tmm,ruv_k=1,no_bio,batch
                                                     none
                                                                      tmm
## none,uqp,ruv_k=1,no_bio,batch
                                                     none
                                                                      uqp
## none,fq,ruv_k=1,no_bio,batch
                                                     none
                                                                       fq
## none, none, ruv_k=2, no_bio, batch
                                                     none
                                                                     none
## none,deseq,ruv_k=2,no_bio,batch
                                                     none
                                                                    deseq
```

```
## none,tmm,ruv k=2,no bio,batch
                                                       none
                                                                        tmm
## none,uqp,ruv_k=2,no_bio,batch
                                                       none
                                                                        uqp
## none,fq,ruv k=2,no bio,batch
                                                       none
                                                                         fq
## none, none, ruv_k=3, no_bio, batch
                                                       none
                                                                       none
   none, deseq, ruv k=3, no bio, batch
                                                       none
                                                                      deseq
  none, tmm, ruv k=3, no bio, batch
                                                                        tmm
                                                       none
## none,uqp,ruv k=3,no bio,batch
                                                       none
                                                                        uqp
## none,fq,ruv k=3,no bio,batch
                                                       none
                                                                         fq
  none, none, no uv, bio, batch
                                                       none
                                                                       none
## none, deseq, no_uv, bio, batch
                                                       none
                                                                      deseq
## none,tmm,no_uv,bio,batch
                                                       none
                                                                        tmm
## none,uqp,no_uv,bio,batch
                                                       none
                                                                        uqp
## none,fq,no_uv,bio,batch
                                                       none
                                                                         fq
## none, none, ruv_k=1, bio, batch
                                                       none
                                                                       none
## none,deseq,ruv_k=1,bio,batch
                                                       none
                                                                      deseq
## none,tmm,ruv_k=1,bio,batch
                                                       none
                                                                        tmm
## none,uqp,ruv_k=1,bio,batch
                                                       none
                                                                        uqp
## none,fq,ruv k=1,bio,batch
                                                       none
                                                                         fq
## none, none, ruv_k=2, bio, batch
                                                       none
                                                                       none
  none, deseq, ruv k=2, bio, batch
                                                       none
                                                                      deseq
## none,tmm,ruv_k=2,bio,batch
                                                       none
                                                                        tmm
## none,uqp,ruv k=2,bio,batch
                                                       none
                                                                        uqp
## none,fq,ruv_k=2,bio,batch
                                                       none
                                                                         fq
  none, none, ruv k=3, bio, batch
                                                       none
                                                                       none
## none, deseq, ruv k=3, bio, batch
                                                       none
                                                                      deseq
## none,tmm,ruv k=3,bio,batch
                                                       none
                                                                        tmm
  none,uqp,ruv_k=3,bio,batch
                                                       none
                                                                        uqp
##
   none,fq,ruv_k=3,bio,batch
                                                       none
                                                                         fq
##
                                         uv_factors adjust_biology adjust_batch
## none, none, no_uv, no_bio, no_batch
                                                                         no_batch
                                              no_uv
                                                             no bio
## none, deseq, no_uv, no_bio, no_batch
                                              no_uv
                                                             no_bio
                                                                         no_batch
  none,tmm,no_uv,no_bio,no_batch
                                              no_uv
                                                             no_bio
                                                                         no_batch
  none,uqp,no_uv,no_bio,no_batch
                                              no_uv
                                                             no_bio
                                                                         no_batch
## none,fq,no_uv,no_bio,no_batch
                                                             no_bio
                                                                         no_batch
                                              no_uv
   none, none, ruv k=1, no bio, no batch
                                            ruv k=1
                                                                         no batch
                                                             no bio
## none,deseq,ruv_k=1,no_bio,no_batch
                                            ruv_k=1
                                                             no bio
                                                                         no batch
## none,tmm,ruv k=1,no bio,no batch
                                            ruv k=1
                                                             no bio
                                                                         no batch
## none,uqp,ruv_k=1,no_bio,no_batch
                                            ruv_k=1
                                                             no_bio
                                                                         no_batch
  none,fq,ruv k=1,no bio,no batch
                                            ruv k=1
                                                                         no batch
                                                             no bio
                                            ruv_k=2
## none, none, ruv_k=2, no_bio, no_batch
                                                             no_bio
                                                                         no_batch
## none, deseq, ruv k=2, no bio, no batch
                                            ruv k=2
                                                             no bio
                                                                         no batch
  none, tmm, ruv k=2, no bio, no batch
                                            ruv k=2
                                                             no bio
                                                                         no batch
   none, uqp, ruv k=2, no bio, no batch
                                            ruv k=2
                                                             no bio
                                                                         no batch
  none,fq,ruv_k=2,no_bio,no_batch
                                            ruv_k=2
                                                             no_bio
                                                                         no_batch
## none, none, ruv_k=3, no_bio, no_batch
                                            ruv k=3
                                                             no_bio
                                                                         no_batch
## none,deseq,ruv_k=3,no_bio,no_batch
                                            ruv_k=3
                                                             no_bio
                                                                         no_batch
## none,tmm,ruv_k=3,no_bio,no_batch
                                            ruv k=3
                                                             no bio
                                                                         no batch
## none,uqp,ruv_k=3,no_bio,no_batch
                                            ruv_k=3
                                                             no_bio
                                                                         no_batch
                                            ruv_k=3
## none,fq,ruv_k=3,no_bio,no_batch
                                                             no_bio
                                                                         no_batch
## none, none, no_uv, no_bio, batch
                                              no_uv
                                                             no_bio
                                                                            batch
## none, deseq, no_uv, no_bio, batch
                                                             no_bio
                                                                            batch
                                              no_uv
## none,tmm,no_uv,no_bio,batch
                                              no_uv
                                                             no_bio
                                                                            batch
## none,uqp,no_uv,no_bio,batch
                                                             no_bio
                                                                            batch
                                              no_uv
## none,fq,no uv,no bio,batch
                                                             no bio
                                                                            batch
                                              no uv
```

```
## none, none, ruv_k=1, no_bio, batch
                                           ruv_k=1
                                                           no_bio
                                                                          batch
## none,deseq,ruv_k=1,no_bio,batch
                                           ruv_k=1
                                                                          batch
                                                           no_bio
## none,tmm,ruv_k=1,no_bio,batch
                                           ruv_k=1
                                                           no bio
                                                                          batch
## none,uqp,ruv_k=1,no_bio,batch
                                           ruv_k=1
                                                           no_bio
                                                                          batch
## none,fq,ruv_k=1,no_bio,batch
                                           ruv_k=1
                                                           no_bio
                                                                          batch
## none, none, ruv k=2, no bio, batch
                                           ruv k=2
                                                                          batch
                                                           no bio
## none,deseq,ruv_k=2,no_bio,batch
                                           ruv k=2
                                                           no bio
                                                                          batch
## none,tmm,ruv_k=2,no_bio,batch
                                           ruv_k=2
                                                           no bio
                                                                          batch
                                                           no_bio
## none,uqp,ruv_k=2,no_bio,batch
                                           ruv_k=2
                                                                          batch
## none,fq,ruv_k=2,no_bio,batch
                                           ruv_k=2
                                                           no_bio
                                                                          batch
## none, none, ruv_k=3, no_bio, batch
                                           ruv_k=3
                                                           no_bio
                                                                          batch
## none, deseq, ruv_k=3, no_bio, batch
                                           ruv_k=3
                                                           no_bio
                                                                          batch
## none,tmm,ruv_k=3,no_bio,batch
                                           ruv_k=3
                                                                          batch
                                                           no_bio
## none,uqp,ruv_k=3,no_bio,batch
                                           ruv_k=3
                                                           no_bio
                                                                          batch
## none,fq,ruv_k=3,no_bio,batch
                                           ruv_k=3
                                                           no_bio
                                                                          batch
## none, none, no_uv, bio, batch
                                                               bio
                                                                          batch
                                             no_uv
## none, deseq, no_uv, bio, batch
                                                               bio
                                                                          batch
                                             no_uv
## none,tmm,no_uv,bio,batch
                                                               bio
                                             no_uv
                                                                          batch
## none,uqp,no_uv,bio,batch
                                                                          batch
                                             no_uv
                                                               bio
## none,fq,no_uv,bio,batch
                                             no_uv
                                                               bio
                                                                          batch
## none,none,ruv_k=1,bio,batch
                                           ruv_k=1
                                                               bio
                                                                          batch
## none, deseq, ruv_k=1, bio, batch
                                           ruv_k=1
                                                               bio
                                                                          batch
## none,tmm,ruv_k=1,bio,batch
                                           ruv_k=1
                                                               bio
                                                                          batch
## none,uqp,ruv_k=1,bio,batch
                                           ruv_k=1
                                                               bio
                                                                          batch
## none,fq,ruv_k=1,bio,batch
                                           ruv_k=1
                                                               bio
                                                                          batch
## none,none,ruv_k=2,bio,batch
                                           ruv_k=2
                                                               bio
                                                                          batch
## none,deseq,ruv_k=2,bio,batch
                                           ruv_k=2
                                                               bio
                                                                          batch
## none,tmm,ruv_k=2,bio,batch
                                           ruv_k=2
                                                               bio
                                                                          batch
## none,uqp,ruv_k=2,bio,batch
                                           ruv_k=2
                                                               bio
                                                                          batch
## none,fq,ruv_k=2,bio,batch
                                                               bio
                                                                          batch
                                           ruv_k=2
## none, none, ruv_k=3, bio, batch
                                           ruv_k=3
                                                               bio
                                                                          batch
## none,deseq,ruv_k=3,bio,batch
                                           ruv_k=3
                                                               bio
                                                                          batch
## none,tmm,ruv_k=3,bio,batch
                                           ruv_k=3
                                                               bio
                                                                          batch
## none,uqp,ruv_k=3,bio,batch
                                           ruv_k=3
                                                               bio
                                                                          batch
                                           ruv_k=3
## none,fq,ruv_k=3,bio,batch
                                                                          batch
                                                               bio
```

This is the call to SCONE.

It took about 1 hour in a 16-core machine and 48G memory. We are loaded precomputed results here.

```
#res <- scone(expr = as.matrix(f_gene_and_ercc_counts),

# scaling = c(none = identity, deseq = DESEQ_FN, tmm = TMM_FN, uqp = UQ_FN_POS, fq = FQT

# ruv_negcon = f_ercc, k_ruv = 3,

# k_qc = 0,

# bio = bio, adjust_bio = "yes",

# batch = batch, adjust_batch = "yes",

# run = TRUE, eval_kclust = 2:3)

load('res.Rdata')

scores = res$scores[, !(colnames(res$scores) %in% c('EXP_QC_COR', 'EXP_WV_COR', 'mean_score'))]

pc_obj = prcomp(scores, center = TRUE, scale = FALSE)</pre>
```

```
bp_obj = biplot_colored(pc_obj, y = -res$scores[,'mean_score'],expand = .6)
title('PCA of SCONE metrics')
```


High score normalizations

knitr::kable(head(res\$scores))

	BIO_SIL	BATCH_SIL	PAM_SIL	EXP_QC_COR	EXP_UV_COR E
none,deseq,no_uv,no_bio,no_batch	-0.1376663	0.3991757	0.5022178	NA	-0.2892409
none,fq,no_uv,no_bio,no_batch	-0.1417659	0.4081318	0.5101578	NA	-0.3048712
none,uqp,no_uv,no_bio,no_batch	-0.1498649	0.3589001	0.4226251	NA	-0.2534073
$none, deseq, ruv_k=1, no_bio, no_batch$	-0.1397361	0.3583659	0.4723546	NA	-0.2450541
none,none,no_uv,no_bio,no_batch	-0.1586934	0.3363167	0.4312794	NA	-0.2145279
$\underline{none, deseq, ruv_k = 2, no_bio, no_batch}$	-0.1396720	0.3556571	0.4712522	NA	-0.2316802

```
bp_obj = biplot_colored(pc_obj, y = -res$scores[,'mean_score'],expand = .6)

#points(t(bp_obj[grepl("none,deseq,no_uv,no_bio,no_batch",rownames(bp_obj)),]), pch = 1, col = "red", c
#points(t(bp_obj[grepl("none,none,no_uv,no_bio,no_batch",rownames(bp_obj)),]), pch = 1, col = "blue", c
#points(t(bp_obj[grepl("none,deseq,ruv_k=1,no_bio,no_batch",rownames(bp_obj)),]), pch = 1, col = "blue"

text(bp_obj[1:5,], labels=1:5)

title('PCA of SCONE metrics', sub='Top 5 normalizations are numbered')
```


bp_obj = biplot_colored(pc_obj, y = -res\$scores[,'mean_score'],expand = .6)

points(bp_obj[grepl(",bio",rownames(bp_obj)),], pch = 1, col = "red", cex = 1.5)

title('PCA of SCONE metrics', sub='Normalizations with bio adjustment are highlighted')

bp_obj = biplot_colored(pc_obj, y = -res\$scores[,'mean_score'],expand = .6)

points(bp_obj[grepl(",batch",rownames(bp_obj)),], pch = 1, col = "red", cex = 1.5)

title('PCA of SCONE metrics', sub='Normalizations with batch adjustment are highlighted')

Normalizations with batch adjustment are highlighted

SCONE's metrics

BIO_SIL. The average silhouette width of clusters defined by bio, defined with respect to a Euclidean distance metric over the first 3 expression PCs. Positive signature.

BATCH_SIL. The average silhouette width of clusters defined by batch, defined with respect to a Euclidean distance metric over the first 3 expression PCs. Negative signature.

PAM_SIL. The maximum average silhouette width of clusters defined by PAM clustering, defined with respect to a Euclidean distance metric over the first 3 expression PCs. Positive signature.

EXP_QC_COR. Maximum squared Spearman correlation between first 3 expression PCs and first k_qc QPCs. Negative signature.

EXP_UV_COR. Maximum squared Spearman correlation between first 3 expression PCs and first 3 PCs of the negative control (specified by eval_negcon or ruv_negcon by default) sub-matrix of the original (raw) data. Negative signature.

EXP_WV_COR. Maximum squared Spearman correlation between first 3 expression PCs and first 3 PCs of the positive control (specified by eval_poscon) sub-matrix of the original (raw) data. Positive signature.

RLE_MED. The mean squared median Relative Log Expression (RLE). Negative signature.

RLE IQR. The mean inter-quartile range (IQR) of the RLE. Negative signature.

Discussion

It seems like simple normalization strategies like DESeq, and quantile normalization perform better in this dataset.

One possibility is that DESeq's assumption that most genes are not DE across samples is valid. This "internal normalization" migh be better for this dataset than ERCC spike-ins. A median of 27 (out of 93) ERCC spike-ins are detected per cell. Non-DE genes provide a bigger set of genes for normalization.

Adjustment for biological and batch factors did not perform well. These asjustments were also based on ERCC. Using another set of housekeeping genes might improve the performance.

It is important to compare many normalization strategies.

sessionInfo()

```
## R version 3.3.1 (2016-06-21)
## Platform: x86 64-pc-linux-gnu (64-bit)
## Running under: Arch Linux
##
## locale:
    [1] LC CTYPE=en US.UTF-8
                                    LC NUMERIC=C
##
##
    [3] LC_TIME=en_US.UTF-8
                                    LC_COLLATE=en_US.UTF-8
   [5] LC_MONETARY=en_US.UTF-8
                                    LC_MESSAGES=en_US.UTF-8
##
   [7] LC_PAPER=en_US.UTF-8
                                    LC_NAME=C
##
   [9] LC ADDRESS=C
                                    LC_TELEPHONE=C
  [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                     base
##
## other attached packages:
## [1] ggplot2_2.1.0 scone_0.0.7
                                    rmarkdown_1.0
##
## loaded via a namespace (and not attached):
##
   [1] segmented_0.5-1.4
                                    bitops 1.0-6
##
    [3] matrixStats 0.50.2
                                    RColorBrewer 1.1-2
##
   [5] prabclus_2.2-6
                                    GenomeInfoDb_1.8.7
  [7] tools 3.3.1
                                    R6 2.1.3
##
   [9] KernSmooth_2.23-15
                                    DBI_0.5-1
##
## [11] BiocGenerics 0.18.0
                                    colorspace_1.2-6
## [13] trimcluster_0.1-2
                                    nnet_7.3-12
## [15] Biobase_2.32.0
                                    formatR_1.4
## [17] rtracklayer_1.32.2
                                    labeling_0.3
## [19] diptest_0.75-7
                                    caTools_1.17.1
## [21] scales_0.4.0
                                    DEoptimR_1.0-6
  [23] mvtnorm_1.0-5
                                    robustbase_0.92-6
  [25] genefilter_1.54.2
                                    DESeq_1.24.0
## [27] stringr_1.1.0
                                    digest_0.6.10
## [29] Rsamtools_1.24.0
                                    mixtools_1.0.4
## [31] R.utils_2.3.0
                                   XVector_0.12.1
## [33] htmltools 0.3.5
                                    limma 3.28.21
## [35] highr_0.6
                                    RSQLite_1.0.0
## [37] shiny 0.14
                                    hwriter 1.3.2
## [39] mclust_5.2
                                   BiocParallel_1.6.6
                                    R.oo 1.20.0
## [41]
       gtools_3.5.0
## [43] RCurl_1.95-4.8
                                    magrittr_1.5
## [45] modeltools_0.2-21
                                    Matrix_1.2-7.1
## [47] Rcpp_0.12.7
                                    munsell_0.4.3
## [49] S4Vectors_0.10.3
                                    R.methodsS3_1.7.1
## [51] stringi_1.1.1
                                    yaml_2.1.13
```

```
## [53] edgeR_3.14.0
                                   MASS_7.3-45
## [55] SummarizedExperiment_1.2.3 zlibbioc_1.18.0
## [57] flexmix_2.3-13
                                   rhdf5_2.16.0
## [59] gplots_3.0.1
                                   plyr_1.8.4
## [61] grid_3.3.1
                                   parallel_3.3.1
## [63] gdata_2.17.0
                                   miniUI_0.1.1
## [65] lattice_0.20-34
                                   Biostrings_2.40.2
## [67] splines_3.3.1
                                   GenomicFeatures_1.24.5
## [69] annotate_1.50.0
                                   EDASeq_2.6.2
## [71] knitr_1.14
                                   GenomicRanges_1.24.3
## [73] boot_1.3-18
                                   fpc_2.1-10
## [75] geneplotter_1.50.0
                                   biomaRt_2.28.0
## [77] stats4_3.3.1
                                   XML_3.98-1.4
## [79] evaluate_0.9
                                   ShortRead_1.30.0
## [81] latticeExtra_0.6-28
                                   httpuv_1.3.3
## [83] gtable_0.2.0
                                   kernlab_0.9-24
## [85] aroma.light_3.2.0
                                   mime_0.5
## [87] xtable 1.8-2
                                   class_7.3-14
## [89] survival_2.39-5
                                   RUVSeq_1.6.2
## [91] GenomicAlignments_1.8.4
                                   AnnotationDbi_1.34.4
## [93] IRanges_2.6.1
                                   cluster_2.0.4
```