What's Next?

Date	Session	Topics	
April 16	13	VAE, Denoised Diffusion; Latent Diffusion; Diffusion Transforme	
April 30, 11:59pm	N.A.	Scribed Lecture Notes Due	
May 11, 11:59pm	N.A.	Project Paper, Slides, and Code Due	
May 13	N.A.	I need to submit the grades to DOT Department	

- \bullet We will NOT schedule project presentations in class, but feel free to schedule individual meetings with me to discuss about your projects.
- The scribed lecture notes, project papers, slides, and code will be shared with the students who take this course for credit.

1

Session	Date	Торіс	Key Words	Wh	
1	1.09	AI/ML in a Nutshell	Course Intro, ML Models, Model Evaluations	the	
2	1.16	Intro to DL	DL Intro, Neural Nets, Computational Issues in DL		
3	1.23	Prediction and Traditional NLP	Prediction in Biz Research, Pre-processing	A lot d	
4	1.30	NLP (II): Traditional NLP	$\it N$ -gram, NLP Performance Evaluations, Naïve Bayes	Proces	
5	2.06	NLP (III): Word2Vec	CBOW, Skip Gram	6 .	
6	2.20	NLP (IV): RNN	Glove, Language Model Evaluation, RNN	Some	
7	2.27	NLP (V): Seq2Seq	LSTM, Seq2Seq, Attention Mechanism		
7.5	3.05	NLP (V.V): Transformer	The Bitter Lesson, Attention is All You Need	Some	
8	3.12	NLP (VI): Pre-training	Computational Tricks in DL, BERT, GPT	Learni	
9	3.19	NLP (VII): LLM	Emergent Abilities, Chain-of-Thought, In-context Learning, GenAl in Business Research		
10	3.26	CV (I): Image Classification	CNN, AlexNet, ResNet, ViT	Decen	
11	4.02	CV (II): Image Segmentation and Video Analysis	R-CNN, YOLO, 3D-CNN	applica resear	
12	4.09	Unsupervised Learning (I): Clustering & Topic Modeling	GMM, EM Algorithm, LDA		
13	4.16	Unsupervised Learning (II): Diffusion Models	VAE, DDPM, LDM, DiT		

What Happened in the Past 3 Months?

A lot of Natural Language Processing.

Some Computer Vision.

Some Unsupervised Learning.

Decent amount of their applications in biz/econ research.

2

Our Goal

- 1. Have a basic understanding of the fundamental concepts/methods in machine learning (ML) and artificial intelligence (AI) that are used (or potentially useful) in business research.
- 2. Understand how business researchers have utilized ML/AI and what managerial questions have been addressed by ML/AI in the recent decade.
- 3. Nurture a taste of what the state-of-the-art AI/ML technologies can do in the ML/AI community and, potentially, in your own research field.

Δ

Course Takeaways

- The necessary knowledge of AI/ML that could help you:
 - Keep up with the literature development in the relevant domains in both CS and business;
 - Develop the necessary sense to do rigorous business research using the relevant methods;
 - Identify important and interesting questions in your own field where AI technologies are useful;
 - Invent new applied methods (most likely without any theoretical guarantee) in your own research.

Impact of a CS Paper = Problem Importance * Technical Novelty * Performance Improvement

Impact of a Business Paper = Problem Importance * Identification Rigor * Insight Novelty

- · Academic research is a kind of craft: You can only learn by doing it on your own.
 - · So, take your final projects seriously!

5

When Will Things Go Wrong?

· Most AI applications are only useful if actionable insights can be derived:

$$\frac{d\pi(X_0, Y)}{dX_0} = \frac{\partial \pi}{\partial X_0} \underbrace{(Y)}_{\text{prediction}} + \frac{\partial \pi}{\partial Y} \underbrace{\frac{\partial Y}{\partial X_0}}_{\text{causation}}.$$

Your prediction of Y is not accurate.

Your causal identification is not clean.

- You should be able to judge whether you should seek for accurate prediction and/or clean identification.
- Empirical model: $Y = a + b \cdot D + g(X) + \epsilon$
 - Key parameter of interest: b
 - If D is predicted by a ML model, the prediction error is likely to be correlated with ϵ , giving rise to the bias to estimate b.

6

The Bitter Lesson

- Reference: http://www.incompleteideas.net/IncIdeas/BitterLesson.html
- The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin.
- Leveraging domain knowledge (short-term & specific) vs. Leveraging computation (long-term & general).
- Bitter lesson: Leveraging domain knowledge is self-satisfying and intellectually inspiring, but plateaus in the long-run or even inhibits further progress.
- · Are you ready to control the machine intelligence to create great knowledge?

7

What to Expect Next Year?

- This course will be offered again in the next AY.
- · What to expect:
 - · Deep Dive into Generative AI
 - Use AI to (a) generate strategies/content valuable to business; and (b) simulate human behaviors in response to business strategies.
 - AI/ML-based Causal Inference (https://causalml-book.org/)
 - Reinforcement Learning
 - AI Ethics/Safety/Society (not sure whether AI will become a new species then.....) https://www.aisafetybook.com/
- · Stay tuned and hope to see you all again!

8

Keep in Touch

- Stay in contact and keep me posted of your academic and career successes.
- Feel free to send me an email/WeChat message. I am always happy to discuss topics related to AI research and business. We may work on something interesting together ©
- Let me know if you need a job referral from me to comment on your academic/career potential.

9

9

Finally

Thank You & All the Best!

Renyu (Philip) Zhang 张任宇

谢谢! 祝前程似锦!

Hope to see you all again!