## Tools and Technologies

PREZIOSA ALESSIA (590012)

Politecnico di Bari – xTech bip



## Data Platform Architecture



- 1. An external water monitoring system collects data from sensors all over the country and pushes data in real-time: the data stream is integrated into the data platform via a *Pub/Sub* component that permits asynchronous communication. The publisher is, in this case, the external system which sends events regardless of how and when these will be processed.
- 2. Every 15 minutes, *Dataflow* (subscriber of the topic) reads newly arrived records and saves them as a text file (.csv) in lake L0 (Raw Storage) applying an initial elaboration regarding technical data quality. Data is stored in standardized raw format and masked with respect to regulations. A *Cloud Storage* bucket is used: it is not high-performance, but it's economical and can allow the storage of unstructured data in compressed format.
- 3. **Dataflow** performs refinements on data and stores them, in appended mode, in the L1 layer (Curated) of **BigQuery**, a distributed, managed and high-performance Data Warehouse service capable of hosting structured data.
- 4. *Dataflow* aggregates and enriches data based on similar characteristics storing them into the L2 (Ready) *BigQuery* dataset. Here data is consumable and ready for Machine Learning algorithms, it can be analyzed by Data Engineers, published and exported on business tools.
- 4.1 The elaboration pipeline triggers the algorithm deployed (and exposed) on *Google Kubernetes Engine*.
- 5. A custom microservice (*GKE*) predicts the WQI value using L2 dataset.
- 6. New and updated WQI values are stored in L2 dataset to be used and analyzed, along with the corresponding parameters, by the exposure and visualization layers (respectively in *Jupyter Notebook* (9) and *PowerBI* dashboard (10))
- 6.1 *Cloud Functions* is triggered by the operation of UPDATE on L2 dataset after *GKE* writes the newly computed WQI values; the data exposure layer updates data on 3<sup>rd</sup> party system through custom API for real time serving (8)
- 7. *GKE* can also invoke *Cloud Functions* if the new value is lower than 1% compared to the previous value or is lower than the set threshold value and send an email to the External Monitoring Team to warn them (8)



## **BPMN** process

In the following picture, the BPMN process is represented.



The Water monitoring system and the HydroQuality Agency have been designed as black boxes.

## **Running Costs**

| Item                                                                    | Price Driver                                                                                   | Reference                                  | Usage amount per month | Unit price  | Total price per mon | h      |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|-------------|---------------------|--------|
| Pub Sub                                                                 | (first 10GiB is free in the month and all messages are retained for a maximum time of 60 mins) | https://cloud.google.com/pubsub/pricing    |                        |             | \$                  | -      |
| Cloud Dataflow (1 x n1-standard-1 workers in Streaming Mode)            | Usage Time                                                                                     | https://cloud.google.com/dataflow/pricing  | 730 h                  | 0,093 \$/h  | \$                  | 67,69  |
| Cloud Storage (Standard Storage, Multi-Region Asia) with Replication    | Volume                                                                                         | https://cloud.google.com/storage/pricing   | 3 GB                   | 0,106 \$/GB | \$                  | 0,32   |
| BigQuery (On-Demand)                                                    | (first 1TiB is free in the month)                                                              | https://cloud.google.com/bigquery/pricing  |                        |             | \$                  | -      |
| GKE Standard Node Pool (2 VMs n1-standard-1, Regular, Regional Cluster) | Usage Time                                                                                     | https://cloud.google.com/gke/pricing       | 1460 h                 | 0,057 \$/h  | \$                  | 156,30 |
| Cloud Functions                                                         | (first 2 milions invocations are free)                                                         | https://cloud.google.com/functions/pricing |                        |             | \$                  | -      |
|                                                                         |                                                                                                |                                            |                        |             |                     |        |
|                                                                         |                                                                                                |                                            |                        | TOT:        | \$                  | 224.31 |

*Pub/Sub*: daily, 1.25MB of data transit on average and messages (both acknowledged and unacknowledged) are retained for no more than 60 minutes. It doesn't imply any type of costs.

*Dataflow*: Since messages are of few KBs, 1 x n1-standard-1 workers in Streaming Mode is chosen for the job. It must work 24/7 during all month.

*Cloud Storage*: It's a Standard Storage with Multi-Region Replication, with an occupied space of 3GB per month

**BigQuery**: 1<sup>st</sup> TB of query is free; no costs are due.

Google Kubernetes Engine: 2VMs per node pools in a Regional Cluster is established.

Cloud Functions: no costs are due.