Hyperparameter Tuning for Cross-Validation

Group Week 04

Advanced Topic 5

Agenda

- Objectives
- Theory
- Results
- Conclusions

Cross-validation

Fig.1 Cross validation methodology.

- Evaluation performance technique.
- Main idea:
 - Split the data set into <u>different subsets</u>
 <u>of</u> training and validation sets.
 - Train and evaluate the model repeatedly with different subsets of training and validation sets respectively.
 - Average the performance from all the conducted train-validation process.

Hyperparameters

- Parameters of a machine learning model that are not learned during training, but are set before training begins.
 - Examples:
 - Learning rate and number of layers in neural network
 - Depth and width of a decision tree
 - Regularization strength of a linear regression model
 - Initial population, crossover rate, and mutation rate of the genetic algorithm.
- Parameters is not the same as Hyperparameters. Parameters are learned from the data during the training process.
 - o Examples:
 - Weights in a neural network
 - Coefficient in linear regression

Hyperparameters v. Parameters

Fig.2 Comparison of model parameters and hyperparameters (Source: https://towardsdatascience.com/model-parameters-and-hyperparameters-in-machine-learning-what-is-the-difference-702d30970f6).

Hyperparameters tuning

- Hyperparameter tuning can profoundly influence a model's performance.
 - Learning rate helps increase the speed of model learning.
 - Regularization parameters (L1/L2) help preventing overfitting/underfitting.
 - o Batch size for training helps for resource management.
 - o etc.
- Poor hyperparameter tuning could also lead to instability, inaccuracy, and overall affect the
 effectiveness of a machine learning solution.

Hyperparameter tuning vs. model training

Fig.3 How hyperparameter tuning affect the model training.

Hyperparameters tuning (cross-validation)

Main goal:

Find the combination of hyperparameters that produces the **best performance on the validation** data.

- Main methods used for hyperparameter tuning:
 - o Grid Search
 - Random Search
 - Bayesian Optimization

Hyperparameters tuning (Grid search)

- Grid of hyperparameter values is defined first.
- The model is trained and evaluated for each combination of hyperparameters in the grid.
- The combination of hyperparameters that results in the best performance is then selected as the **optimal parameters.**

Hyperparameters tuning (Random search)

- Hyperparameters are randomly sampled from a specified distribution.
- The model is trained and evaluated for each set of hyperparameters.
- The hyperparameters set that results in the best performance is then selected as the optimal parameters.

Hyperparameters tuning (Bayesian optimization)

- A probabilistic model is used to model the relationship between the hyperparameters and the model's performance.
- The model is updated as new evaluations are made.
- The next set of hyperparameters to be evaluated <u>is selected based on the current</u> model.

Fig.4 Scheme of bayesian optimization.

Hyperparameters tuning

- Dataset: Wine data set from scikit-learn.
- Problem type: Classification
- Method: Random Forest Classifier
- Hyperparameter:
 - o max_depth
 - o max_features
 - o min_samples_leaf
 - o min_samples_split

Fig.10 n_estimators

	alcabal	malic_acid	ash	-11:	.:+	fach			+-+-1	1.	\
_		_		alcall	nity_o		_				\
0	14.23	1.71				15.6		27.0		2.80	
1	13.20	1.78	2.14			11.2	100.0		2.65		
2	13.16	2.36	2.67	2.67			101.0		2.80		
3	14.37	1.95	2.50			16.8	113.0		3.85		
4	13.24	2.59	2.87			21.0	118.0		2.80		
	flavanoi	ds nonflava	noid_ph	nenols	proan	thocya	nins (color	_intensity	hue	. \
0	3.6	96		0.28		:	2.29		5.64	1.04	L
1	2.76			0.26			1.28		4.38	1.05	;
2	3.2	3.24			0.30				5.68	1.03	}
3	3.49			0.24 2			2.18	1.18 7.80			;
4	2.69			0.39			1.82 4.3			1.04	L
	od280/od315_of_diluted_wines proline					target					
0			3.9	92 10	65.0	0					
1			3.4	10 10	50.0	0					
2			3.1	17 11	85.0	0					
3			3.4	45 14	80.0	0					
4			2.9	93 7	35.0	0					

Fig.5 Model's dataset.

Check the code here!

Hyperparameters tuning (Grid search)

Best fitting score: 0.97857

Best hyperparameters:

max_depth : None
max_features : sqrt
min_samples_leaf : 1
min_samples_split: 2
n_estimators : 100

Fig.6 Grid search results.

Kunnskap for en bedre verden

Hyperparameters tuning (Random search)

Best fitting score: 0.97857

Best hyperparameters:

max_depth : 5
max_features : log2
min_samples_leaf : 1
min_samples_split: 10
n_estimators : 98

Fig.7 Randomized search results.

Kunnskap for en bedre verden

Hyperparameters tuning (Bayesian optimization)

• Best fitting score: 0.97857

Best hyperparameters:

max_depth : 15
max_features : log2
min_samples_leaf : 1
min_samples_split: 2
n_estimators : 111

Fig.8 Bayesian optimization results.

Kunnskap for en bedre verden

Conclusions

- Cross validation and hyperparameter tuning are important techniques for improving the performance of machine learning models.
- Hyperparameter tuning helps to find the optimal set of hyperparameters for a model.

Grid Search:

- Pros: Easy to implement.
- Cons: Exhaustive, can be computationally expensive.

Random Search:

- Pros: Faster than grid search, scalable.
- Cons: No guarantees of optimal solution.

Bayesian Search:

- o Pros: Using probabilistic models or heuristic, making search more coefficient.
- Cons: Computational overhead → Not justifed for simple tuning tasks.

Thank you!

