

Deep Queue-Learning: A Quest to Optimize Office Hours

CS 221

CS 229

Shrug loss reduces offset of

Avoy Datta, Dian Ang Yap, Zheng Yan CS 229 | Autumn 2018

Introduction

- OHs often suffer from overcrowding and long wait times, stressing both students and instructors.
- If we could accurately predict the expected workload at a given OH, TAs can be better allocated.
- QueueStatus, Carta, and course syllabi provide a wealth of information that can be used.
- We trained a **neural network model that predicts student load influx (expected serve time * # sign-ups)** at OH on an hourly basis, for any course.
- With these predictions, we now **optimize TA scheduling** given realistic constraints.

Class Statistics

Table 1: Statistics for sample of classes (4/8 shown)

Class	Quarter & Year	#OH-Active TAs	Total # Students	Total OH Hours	Total Served	Total Load Influx
CS107	Spring 2017	13	184	415	1722	21873.09
CS161	Spring 2017	6	93	204	875	15380.68
CS110	Spring 2018	20	187	223	1749	35459.1
CS229	Autumn 2018	17	634	369	1390	31733.7

Features and Preliminary Statistics

- Load influx is significantly and positively correlated with:
 Week number (r = 0.07) and Number of servers (r = 0.32)
- Significantly and negatively correlated with:

Days left until assignment due (r = -0.08), Hour of day (r = -0.10), Weekday (r = -0.09), Days until next exam (r = -0.06)

Methodology

We defined a new loss (Shrug loss) and used smoothing on labelled data to reduce penalty on outliers.

$$\mathcal{L}_{\delta} = \begin{cases} \frac{1}{2} (y - \hat{y})^2, & \text{if } |y - \hat{y}| \leq \\ \\ \sqrt{\delta (y - \hat{y}) - \frac{1}{2} \delta} & \text{otherwise} \end{cases}$$

To reduce contributions by outliers, we smooth out the data through convolution with a *Hann* window:

$$w(n) = rac{1}{2} \; \left(1 - \cos\!\left(rac{2\pi n}{N-1}
ight)
ight)$$

Experiments

Both classification (SVMs, Random Forest) and regression (fully connected nets, LSTMs) were experimented for predictions.

Shrug yields significantly lower RMSE on test set, but poorer convergence during training.

Scheduler

- We use **Gibbs Sampling** to assign TAs to each individual time slot.
- The Gibbs sampler optimizes:

$$P(X_{ij} = x) = T_{assigned} \cdot T_{predicted} \mid X_{ij} = x$$

 $T_{assigned} \cdot T_{predicted}$ measures the **cosine similarity** between the number of Tas assigned each office hour and the predicted loads

Weight of sampling is proportional to *increase* in cosine similarity of the full assignment for each value assigned.

Results

Visualization of smoothed y-labels

- Smoothing reduces spikes in erratic data.
- Less effective in predicting actual magnitude.

Loss Functions w/ FCN	RMSE (Load Influx)	
MSE	69.89	
MAE	62.65	
Huber (δ = 1)	62.61	
Shrug (δ = 18)	48.0	

Cosine similarity, actual schedule	Cosine similarity, optimized schedule
0.794	0.789

Summary

- Using data scraped off of Stanford course resources, a fully connected NN, and Gibbs sampling, we have come up with a system that schedules TA hours (within realistic constraints) that appears to correlate well with student demand.
- Major challenges for inference: figuring out a model that balanced bias with variance and coming up with a loss that didn't penalize outliers excessively.
- This model can serve as a recommender system for office hours for newly introduced courses. We tested it on one quarter of a course not used in the train set and found correlation between assigned hours and predicted influx were similar to actual load influx and server correlation.