Umelé neurónové siete

- Napodobenie mozgu
- Emergentné správanie
 - Učenie sa z príkladov a paralelné spracovanie signálov mnohými prvkami
- Neurobiológia
 - Pri narodení pozostáva ľudský mozog z približne 10¹² neurónov
 - Každý neurón môže byť spojený s daľšími cca. 10⁵ neurónmi

Bežný počítač: 10⁹ operácií za sekundu
 Mucha domáca: 10¹¹ operácií za sekundu

1

Umelé neurónové siete

- excitačné a inhibičné synapsy
- prah excitácie
- výstupný impulz (cez axón)

Perceptrón

vstupný vektor a vektor váh

výstup perceptrónu (f – aktivačná funkcia)

$$o = f(net) = f(\overline{w.x}) = f(\sum_{j=1}^{n+1} w_j x_j) = f(\sum_{j=1}^{n} w_j x_j - \theta)$$

Umelé neurónové siete

Základným stavebným kameňom ľudského mozgu je neurón:

- neurón pomocou dendritov prijíma signály z okolia od ostatných neurónov,
- neurón spracováva (integruje) prijaté signály,
- neurón pomocou axónu posiela spracované vstupné signály iným neurónom zo svojho okolia.

Umelé neurónové siete

- učenie zmeny váh synáps
- kódovanie a reprezentácia
 - Redundancia

Informácia sa prenáša, prijíma a spracúva nadbytočným počtom neurónov a synáps, aby sa v prípade poškodenia siete nestratila úplne.

Distribuovaná reprezentácia

Každý objekt sa reprezentuje celou danou sieťou neurónov.

Perceptrón

 $\text{Kroková funkcia:} \quad f(net) = step(net) = \begin{cases} 1 & net \geq 0 \Leftrightarrow \sum\limits_{j=1}^n w_j x_j \geq \theta \\ 0 & net < 0 \Leftrightarrow \sum\limits_{i=1}^n w_j x_j < \theta \end{cases}$

 $\begin{aligned} \text{Funkcia Signum:} \quad f(\textit{net}) = \textit{sign}(\textit{net}) = \begin{cases} +1 & \textit{net} \geq 0 \Leftrightarrow \sum\limits_{j=1}^{n} w_j x_j \geq \theta \\ -1 & \textit{net} < 0 \Leftrightarrow \sum\limits_{j=1}^{n} w_j x_j < \theta \end{cases} \end{aligned}$

Sigmoida: $f(net) = sigm(net) = \frac{1}{1 + e^{-\lambda . net}}$

Ę

Perceptrón

klasifikácia:

$$\sum_{j=1}^n w_j x_j - \theta = 0$$

lineárne separovateľné problémy

Boolova funkcia $f(x_1, x_2, \dots, x_n)$ je lineáme separovateľná, ak existuje taká rovina w,x, + w,x, + ... + w,x, - $\beta = 0$, ktorá separuje priestor vstupných aktivít tak, že v jednej časti priestoru sú vrcholy ohodnotené 0, zatlať čo v ďruhej časti priestoru sú vrcholy ohodnotené 1.

Príklad – Perceptrón (funkcia AND)

 $O_{AND}(x_1, x_2) = f(x_1 + x_2 - 2)$

x ₁	X 2	O _{AND} (X ₁ , X ₂)	$X_1 \wedge X_2$
0	0	f(-2)	0
0	1	f(-1)	0
1	0	f(-1)	0
1	1	f(0)	1

Príklad – Perceptrón (funkcia OR)

 $o_{OR}(x_1, x_2) = f(x_1 + x_2 - 1)$

ĺ	x ₁	X 2	O _{OR} (x ₁ , x ₂)	$X_1 \vee X_2$
	0	0	f(-1)	0
	0	1	f(0)	1
	1	0	f(0)	1
	1	1	f(1)	1

Príklad – Perceptrón (funkcia IF-THEN)

$O_{IF-THEN}(x_1, x_2) = f(-x_1 + x_2)$

X ₁	X ₂	$O_{\text{IF-THEN}}(X_1, X_2)$	$X_1 \wedge X_2$
0	0	f(0)	1
0	1	f(1)	1
1	0	f(-1)	0
1	1	f(0)	1

10

Príklad – Perceptrón (funkcia NOT)

 $o_{NOT}(x) = f(-x + 0)$

Х	o _{NOT} (x)	¬ x
0	f(0)	1
1	f(-1)	0

Príklad – Perceptrón (funkcia XOR)

FUNCKIA XOR NIE JE LINEÁRNE SEPAROVATEĽNÁ !!!

$\varphi_{XOR}(x,y) = x \oplus y$			
#	х	y	$\varphi_{XOR}(x,y)$
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

JE JU VŠAK MOŽNÉ REPREZENTOVAŤ POMOCOU VIACVRSTVOVEJ DOPREDNEJ NEURÓNOVEJ SIETE

12

Jednovrstvová sieť

- V dopredných neurónových sietiach existujú iba dopredné spojenia medzi neurónmi
- Každý neurón jednej vrstvy vysiela signály na každý neurón
- nasledujúcej vrstvy.

 Chybová funkcia:

$$E_{p} = \frac{1}{2} \sum_{k=1}^{K} (d_{pk} - o_{pk})^{2}$$

Viacvrstvové dopredné siete

- Pridanie ďalšej vrstvy neurónov vrstva skrytých neurónov
- Neurón vysiela signály každému na nasledujúcej vrstve

14

Príklad - Viacvrstvová sieť (funkcia XOR)

$$\varphi_{XOR}(x_1,x_2) = (\neg x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2)$$

Viacvrstvové dopredné siete

- riešenie nelineárnych problémov
 - učenie spätným šírením chýb

16

Praktické aplikácie

- NETTalk (Sejnowski, Rosenberg 1987)
 - hlasné čítanie anglického textu
 - výslovnosť v kontexte, výnimky
 - 7 vstupných skupín (26 one-hot neur.), 80, resp. 120 na skrytej
 - výstup: fonéma, artikulácia, dôraz, ...
 - úspešnosť: 95% / 78% (98% / 90%)
 - Modifikácie pre:
 - skúmanie dyslexieodšumenie hovorenej reči

15

17

Praktické aplikácie

- podmorské sonarové signály (Gorman, Sejnowski 1988)
 - kovové objekty, skaly
 - predspracovanie signálov
 - vstup 60 čísiel, výstup 2 triedy, 24 skrytá vrstva
 - úspešnosť: 100% / 89% (človek 82%)

18

Praktické aplikácie

- ALVINN autonómne pozemné vozidlo (Pomerleau 1989)
 - vstup video a vzdialenosti, výstup smer (45 uhlov), 29 skrytá vrstva
 - 1/2 hod. tréning,schopné samostatnej jazdy po neznámom teréne (5 km/h)

19