5T1: Sinusoidal model (1 of 3)

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University

Index

- Sinusoidal model
- Spectrum of sinewave
- Sinewaves as spectral peaks

Sinusoidal model

$$y[n] = \sum_{r=1}^{R} A_r[n] \cos(2\pi f_r[n]n)$$

R: number of sinewaves

 $A_r[n]$: instantaneous amplitude

 $f_r[n]$: instantaneous frequency (Hz)

Spectrum of sinewave

$$\begin{split} x[n] &= A\cos(2\pi k_0 n/N + \varphi) \\ X[k] &= A \sum_{n=0}^{N-1} w[n] \frac{1}{2} (e^{j2\pi k_0 n/N} + e^{-j2\pi k_0 n/N}) e^{-j2\pi k n/N} \\ &= \frac{A}{2} \sum_{n=0}^{N-1} w[n] e^{j2\pi k_0 n/N} e^{-j2\pi k n/N} + \frac{A}{2} \sum_{n=0}^{N-1} w[n] e^{-j2\pi k_0 n/N} e^{-j2\pi k n/N} \\ &= \frac{A}{2} \sum_{n=0}^{N-1} w[n] e^{-j2\pi (-k_0 + k) n/N} + \frac{A}{2} \sum_{n=0}^{N-1} w[n] e^{-j2\pi (k_0 + k) n/N} \\ &= \frac{A}{2} W[k - k_0] + \frac{A}{2} W[k + k_0] \end{split}$$

Sinewaves as spectral peaks

- Sinusoid → peak in magnitude spectrum
- Frequency resolution: 1/2 bin
- Improvement of frequency resolution by:
 - zero-padding
 - spectral interpolation

Spectral peaks and window-size

If
$$B_f = B_s f_s / M$$
 and $\Delta = |f_{k+1} - f_k|$

 $B_s = \text{main-lobe bandwidth of window}$

 f_s = sampling rate in Hz

M =window size

 f_k and f_{k+1} = frequency of sinusoids in Hz

$$M \geqslant B_s \frac{f_s}{\Delta} = B_s \frac{f_s}{|f_{k+1} - f_k|}$$

If $f_0 = \Delta$, then $B_f \le f_0$ and $M \ge B_s f_s / f_0$, or $M \ge B_s P$, where P = period in samples

Hamming window: $B_s = 4$

$$f_s = 44100 \,\text{Hz}$$

 $f_k = 440 \,\text{Hz}$; $f_{k+1} = 490 \,\text{Hz}$

$$M \ge B_s \frac{f_s}{|f_{k+1} - f_k|} = 4 \frac{44100}{|490 - 440|} = 3528$$

References and credits

- More information in:
 - http://en.wikipedia.org/wiki/Sinusoidal_model
- Reference on sinusoidal modeling by Julius O. Smith: https://ccrma.stanford.edu/~jos/sasp/Spectrum_Analysis_Sinusoids.html
- Sounds from: http://www.freesound.org/people/xserra/packs/13038/
- Slides and code released using the CC Attribution-Noncommercial-Share Alike license or the Affero GPL license and available from https://github.com/MTG/sms-tools

5T1: Sinusoidal model (1 of 3)

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University