Basic Electronics (ECE113) Assignment 2

(40 marks)

Q1. Calculate the power dissipated in the 40Ω resistor and the voltage labeled v_{c} in each of the circuits depicted in Fig. 1.

Q2. Determine the equivalent capacitance \mathcal{C}_{eq} of the network shown in Fig. 2.

Q3. Determine the equivalent inductance seen looking into the terminals marked a and b of the network represented in Fig. 3.

(5 marks)

Q4. (a) Write nodal equations for the circuit of Fig. 4. (b) Write mesh equations for the same circuit.

(5 marks:2.5+2.5)

Q5. For the circuit represented schematically in Fig. 5, (a) calculate v(t) at t = 0, t = 984 s, and t = 1236 s; (b) determine the energy still stored in the capacitor at t = 100 s.

(5 marks:2.5+2.5)

Q6. For the circuit shown in Fig. 6, (a) obtain an expression for i(t) valid for all time; (b) obtain an expression for $v_R(t)$ valid for all time; and (c) graph both i(t) and $v_R(t)$ over the range of -1 s $\leq t \leq 6$ s.

(5 marks:2+2+1)

Q7. (a) Obtain an expression for v_c in the circuit of Fig. 7 valid for all values of t. (b) Sketch $v_c(t)$ over the range $0 \le t \le 4 \ \mu s$.

(5 marks:3+2)

Q8. Obtain an equation which describes the behavior of i_A as labeled in Fig. 8 over the range of $-1 \text{ ms} \le t \le 5 \text{ ms}$.

(5 marks)