Exercise 09

$\mathbf{P}\subsetneq\mathbf{E}$

Proof. It is obvious that $P \subseteq E$ holds. Now construct a language $D \in E$, but $D \notin P$.

$$D = \{ \alpha \mid M_{\alpha} \text{ outputs } O \text{ after } \alpha \text{ steps} \}$$

This is obviously decidable in **E** since M_{α} can be simulated for each hier fehlt noch was

Towards a contradiction assume there is a machine M_x that decides D in $\ln^c, c \in \mathbb{N}$. Choose a $x' > x^c$ such that $M_{x'} = M_x$ this is possible since each TM can be represented by infinitely many strings. Now construct a TM M_y that cleans the output, writes x on the onto the output tape and behave like M afterwards, y > x.

Exercise 10

running times	algorithm
$\log \log n$	For $o \le i < \log \log n$
$\log n$	For $0 \le j < \log n$
$T(j) = T(\log n)$	h = H(j)
$2^{\log n} = n$	For $x \in \{0,1\}^*$ with $ x = j$
$(i x ^i)^{1,5} < \psi < n^3$	Run U on i for $i x ^i$ steps. Save output to o
$H(x) \cdot 2^{ x } = n$	Run $M_{\mathbf{SAT}_H}$ on x save output to o'
O(1)	if $o == O'$
O(1)	$\mathrm{return}\ i$

Let T(n) be the running to of H(n). Proof by induction.

Base Case:

 $n \leq 2$: The outer loop is never executed an thus $T(n) \in O(1) \subseteq O(n^3)$.

Induction Step:

```
\begin{split} &T(n) \in O(\log\log(n)\log(n)\left(T(\log(n)) + n(\log(n) \cdot n + n)\right) \\ &\in O\left(/\log^2(n)T(\log(n)) + n^2 \cdot \log^3(n)\right) \\ &\in O\left(\log^2(n)\log\log^3(n) + n^3 \cdot \log^3(n)\right) \\ &\in O\left(n^2 \cdot \log^3(n)\right) \\ &\in O(n^3) \end{split}
```

Exercise 11

Since \mathbf{SAT}_H is \mathbf{NP} -complete, there is a reduction f in polynomial time, say $O(n^i)$ from \mathbf{SAT} to \mathbf{SAT}_H .

We now construct a polynomial time algorithm A that decides **SAT** on φ in $O(n^j)$, $j \ge i$:

Let $N \in \mathbb{N}$ be the number such that H(n) > i for n > N. If $|\varphi| \le N$ solve $\mathbf{SAT}(\varphi)$ using a brute force assignment. This can be done in constant time since the length of φ is bounded. If $|\varphi| > N$, compute $\eta = f(\varphi)$. By construction of $f, \eta \in \mathbf{SAT}_H \Leftrightarrow \varphi \in \mathbf{SAT}$. If η is not of the form $\psi 01^{n^{H(n)}}$ $\eta = \mathbf{SAT}_H$ and thus $\varphi = \mathbf{SAT}_H$, so return false. This check can be done in polynomial time since the length of φ up to the marker can be counted in polynomial time an H can be computed in polynomial time by definition.

Otherwise run $A(\psi)$ and forward its output. Proof by induction.

Base Case:

As described above.

Induction Step:

f runs in polynomial time of $|\varphi|$ so eta has to be in $O(n^j)$. So $|\psi| < |\varphi|$ must be sub linear in size of $|\varphi|$. Otherwise $|\psi|^{H(|\psi|)} \ge |\varphi|^{H(|\varphi|)} > |\varphi|^j < |\varphi|^i$ and f hasn't got enough time to print sufficiently man 1's. On input ψ A runs at most $O(|\psi|)$ steps by the induction step. The reduction can be performed in $O(|\varphi|^i)$ steps and