Causally Disentangled Generative Variational AutoEncoder

26th European Conference on Artificial Intelligence ECAI 2023

Seunghwan An¹, Kyungwoo Song², and Jong-June Jeon^{1*}

¹Department of Statistics, University of Seoul, S. Korea

²Department of Applied Statistics, Department of Statistics and Data Science, Yonsei University, S. Korea

^{*}Corresponding Author. Email: jj.jeon@uos.ac.kr.

Introduction

Overview

Goal: Learning a causally disentangled (causally-aware) generative model

Contribution:

The disentangled decoder is required to achieve the causally disentangled generative model.

- Assumption (in this presentation): The disentangled representation is already obtained.
- \mathbf{z}_1 : sunlight, \mathbf{z}_2 : pendulum, \mathbf{z}_3 : shadow

Proposal: CDG-VAE

Data Generating Process (DGP)

Assumption 1 (Blocked representation)

There are (block) causal relationships, $g_j \to x_j$, where g is the ground-truth factors and $j = 1, \dots, d$.

Conventional representation

Blocked representation

Definition 1 (Causally Disentangled Generation (CDG))

Let $D(\cdot): \mathbb{R}^d \mapsto \mathbb{R}^p$ be a decoder mean vector of the model where the input is denoted as $\mathbf{z} \in \mathbb{R}^d$. Then the model is causally disentangled generative if, for $i=1,\cdots,d$, $D(\mathbf{z})_i$ is independent to $\mathbf{z}_s, s \neq i$, given \mathbf{z}_i .

Ground-truth DGP

DGP of the decoder

= The disentangled decoder

Why do we need the disentangled decoder?

Entangled decoder ⇒ **Causally Implausible**

Disentangled decoder ⇒ **Causally Plausible**

Definition 2 (Average Causal Effect (ACE))

Suppose that $\mathbf{z}_i, i=1,\cdots,d$ is intervened with $z_i^{(1)}$ and $z_i^{(2)}$. Then, for $c=1,\cdots,d$, the average causal effect of \mathbf{z}_i on the annotation \mathbf{u}_c given $z_{ND(i)}$ is defined as

$$ACE(\mathbf{u}_c, \mathbf{z}_i, \mathbf{z}_{ND(i)} = z_{ND(i)}) := \left| \mathbb{E}[\mathbf{u}_c | z_{ND(i)}, do(\mathbf{z}_i := z_i^{(1)})] - \mathbb{E}[\mathbf{u}_c | z_{ND(i)}, do(\mathbf{z}_i := z_i^{(2)})] \right|.$$

⇒ The causal effect is measured by the difference of the annotation vector.

How can we construct the disentangled decoder?

Proposition 1 (Sufficient Condition for CDG)

Let $D(\cdot;\theta): \mathbb{R}^d \to \mathbb{R}^p$ be a decoder mean vector of the model. If the decoder structure of the model satisfies $D(\mathbf{z};\theta):=\Big(D(\mathbf{z}_1;\theta_1),\cdots,D(\mathbf{z}_d;\theta_d)\Big)$, where $\theta=(\theta_1,\cdots,\theta_d)$, and $D(\cdot;\theta_j)$ is a function parameterized with θ_j for $j=1,\cdots,d$, then the model satisfies Definition 1.

• a generated image

$$\begin{split} D(\mathbf{z};\theta) &= \left(\begin{array}{ccc} D(\mathbf{z};\theta)_1 &, & D(\mathbf{z};\theta)_2 &, & D(\mathbf{z};\theta)_3 \end{array} \right) \\ & & & & & & \downarrow \\ D(\mathbf{z};\theta) &= \left(\begin{array}{ccc} D(\mathbf{z}_1;\theta_1) &, & D(\mathbf{z}_2;\theta_2) &, & D(\mathbf{z}_3;\theta_3) \end{array} \right) \\ & & & \text{sunlight image} & \text{pendulum image} & \text{shadow image} \end{split}$$

What is the property of CDG?

Proposition 2 (Necessary Conditions for CDG)

For $i=1,\cdots,d$, assume that arbitrary x and $z_{ND(i)}$ are given. $z_{(i,z_{ND(i)},x)}^{(j)}$ denotes the value of \mathbf{z} under intervention $do(\mathbf{z}_i\coloneqq z_i^{(j)})$ given x and $z_{ND(i)}$, for j=1,2. For $c=1,\cdots,d$, under the faithfulness assumption, if the model satisfies CDG (Definition 1) and

1. $c \in ND(i)$, then

$$ACE(\mathbf{u}_c, \mathbf{z}_i, z_{ND(i)}) = 0.$$

- ⇒ Non-descendants are NOT affected by the intervention.
- 2. there is a directed path from \mathbf{z}_i to \mathbf{z}_c where $c \in Des(i)$, then

$$0 < ACE(\mathbf{u}_c, \mathbf{z}_i, z_{ND(i)}) \le \mathbb{E}_{p(\mathbf{x})} \Big| \mathbb{E}[\mathbf{u}_c | z_{(i, z_{ND(s)}, \mathbf{x})}^{(1)}] - \mathbb{E}[\mathbf{u}_c | z_{(i, z_{ND(s)}, \mathbf{x})}^{(2)}] \Big|,$$

where $p(\mathbf{x})$ is the probability density function of \mathbf{x} .

⇒ Descendants are affected by the intervention.

How to evaluate CDG?

Definition 3 (Causal Disentanglement Metric (CDM))

For $c,i=1,\cdots,d$, the causal disentanglement metric (CDM) is defined as

$$CDM(c, i) := \mathbb{E}[ACE(\mathbf{u}_c, \mathbf{z}_i, \mathbf{z}_{ND(i)})],$$

where \mathbb{E} indicates the expectation with respect to $\mathbf{z}_{ND(i)}$.

- ⇒ Expected value of the average causal effect.
- 1. interventional robustness [Suter et al., 2019]
- 2. counterfactual generativeness [Reddy et al., 2022]

Experiments

Pendulum Dataset

Figure 1: (a) DAG of the ground-truth factors: $g_1(light angle)$, $g_2(pendulum angle)$, $g_3(shadow length)$, and $g_4(shadow position)$. (b) From left to right, $x_1(light)$, $x_2(pendulum)$, and $x_3(shadow)$.

⇒ CDG-VAE under Proposition 1 enables CDG!

Table 1: Numbers in parentheses are lower and upper bounds of CDM. 'L' and 'NL' denote the model with linear and nonlinear f, and '*' denotes the semi-supervised learned model. Mean and standard deviation values are obtained from 10 repeated experiments. 'pos' denotes shadow position. \uparrow denotes higher is better and \downarrow denotes lower is better.

	Interventional Robustness \downarrow		Counterfactual Generativeness ↑	
Model	CDM(light, length)	CDM(angle, pos)	CDM(length, angle)	CDM(pos,pos)
VAE(L)	$(0.44, 0.44)_{\pm(0.35, 0.35)}$	$(0.28, 0.28)_{\pm(0.30, 0.31)}$	$(0.31, 0.32)_{\pm(0.16, 0.15)}$	$(0.27, 0.28)_{\pm(0.25, 0.24)}$
VAE(NL)	$(0.38, 0.40)_{\pm(0.28, 0.27)}$	$(0.27, 0.33)_{\pm(0.25, 0.24)}$	$(0.33, 0.34)_{\pm(0.12, 0.12)}$	$(0.31, 0.34)_{\pm(0.21, 0.20)}$
InfoMax(L)	$(0.42, 0.43)_{\pm(0.39, 0.38)}$	$(0.38, 0.38)_{\pm(0.34, 0.34)}$	$(0.40, 0.40)_{\pm(0.26, 0.25)}$	$(0.29, 0.31)_{\pm(0.22, 0.20)}$
InfoMax(NL)	$(0.37, 0.39)_{\pm(0.32, 0.30)}$	$(0.26, 0.33)_{\pm(0.28, 0.25)}$	$(0.44, 0.44)_{\pm(0.21, 0.21)}$	$(0.31, 0.34)_{\pm(0.19, 0.16)}$
CausalVAE	$(0.28, 0.28)_{\pm(0.11, 0.10)}$	$(0.17, 0.17)_{\pm(0.09, 0.08)}$	$(0.10, 0.10)_{\pm(0.04, 0.04)}$	$(0.29, 0.29)_{\pm(0.09, 0.09)}$
DEAR	$(0.21, 0.23)_{\pm(0.16, 0.15)}$	$(0.26, 0.29)_{\pm(0.25, 0.24)}$	$(0.23, 0.25)_{\pm(0.23, 0.23)}$	$(0.16, 0.20)_{\pm(0.18, 0.16)}$
CDG-VAE(L)	$(0.00, 0.00)_{\pm(0.00, 0.00)}$	$(0.00, 0.00)_{\pm(0.00, 0.00)}$	$(0.24, 0.25)_{\pm(0.10, 0.09)}$	$(0.69, 0.69)_{\pm(0.25, 0.25)}$
CDG-VAE(NL)	$(0.00, 0.00)_{\pm(0.00,0.00)}$	$(0.00, 0.00)_{\pm(0.00,0.00)}$	$(0.35, 0.36)_{\pm(0.16, 0.15)}$	$\textbf{(0.78, 0.78)}_{\pm(0.24,0.24)}$
CDG-VAE(L)*	$(0.00, 0.00)_{\pm(0.00, 0.00)}$	$(0.00, 0.00)_{\pm(0.00, 0.00)}$	$(0.21, 0.22)_{\pm(0.09, 0.07)}$	$(0.66, 0.66)_{\pm(0.22, 0.22)}$
CDG-VAE(NL)*	$(0.00, 0.00)_{\pm(0.00, 0.00)}$	$(0.00, 0.00)_{\pm(0.00,0.00)}$	$(0.29, 0.30)_{\pm(0.12, 0.11)}$	$(0.79, 0.79)_{\pm(0.21, 0.21)}$

References

References i

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., and Bachem, O. (2020). Disentangling factors of variations using few labels.

In International Conference on Learning Representations.

Reddy, A. G., Balasubramanian, V. N., et al. (2022).

On causally disentangled representations.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 8089-8097.

Shen, X., Liu, F., Dong, H., Lian, Q., Chen, Z., and Zhang, T. (2022).

Weakly supervised disentangled generative causal representation learning.

Journal of Machine Learning Research, 23:1–55.

Suter, R., Miladinovic, D., Schölkopf, B., and Bauer, S. (2019).

Robustly disentangled causal mechanisms: Validating deep representations for interventional robustness.

In International Conference on Machine Learning, pages 6056-6065. PMLR.

References ii

Yang, M., Liu, F., Chen, Z., Shen, X., Hao, J., and Wang, J. (2021).

Causalvae: Disentangled representation learning via neural structural causal models.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9593–9602.

Thank you!

Figure 2: GitHub repository link of CDG-VAE.