

***Amendments to the Claims***

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Currently amended) Compounds A compound of the formula (I)



in which

W represents alkoxy, haloalkoxy, alkoxyalkoxy, alkoxybisalkoxy, bisalkoxyalkoxy or optionally substituted cycloalkylalkanediyoxy which may optionally be interrupted by heteroatoms,  
X represents halogen,  
Y represents alkyl,  
CKE represents one of the groups



(1),



(2),



(3),



(4),



(5),



(6),



(7) or



in which

- A represents hydrogen, in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, saturated or unsaturated, optionally substituted cycloalkyl in which optionally at least one ring atom is replaced by a heteroatom, or in each case optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano- or nitro-substituted aryl, arylalkyl or hetaryl,
- B represents hydrogen, alkyl or alkoxyalkyl, or  
A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains at least one heteroatom,
- D represents hydrogen or an optionally substituted radical selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, saturated or unsaturated cycloalkyl in which optionally one or more ring members are replaced by heteroatoms, arylalkyl, aryl, hetarylalkyl or hetaryl or  
A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle which optionally (only in the case of CKE = 1) contains at least one heteroatom and which is unsubstituted or substituted in the A,D moiety, or

A and Q<sup>1</sup> together represent alkanediyl or alkenediyl optionally substituted by

hydroxyl or by in each case optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy or aryl or

Q<sup>1</sup> represents hydrogen or alkyl,

Q<sup>2</sup>, Q<sup>4</sup>, Q<sup>5</sup> and Q<sup>6</sup> independently of one another represent hydrogen or alkyl,

Q<sup>3</sup> represents hydrogen, represents optionally substituted alkyl, alkoxyalkyl, alkylthioalkyl, optionally substituted cycloalkyl-(in which optionally one methylene group is replaced by oxygen or sulphur), or optionally substituted phenyl, or

Q<sup>3</sup> and Q<sup>4</sup> together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains a heteroatom,

G represents hydrogen (a) or represents one of the groups



in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

R<sup>1</sup> represents in each case optionally halogen-substituted alkyl,

alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or optionally

halogen-, alkyl- or alkoxy-substituted cycloalkyl which may be interrupted in which optionally at least one ring member is replaced by at least one a heteroatom, in each case optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl,

R<sup>2</sup> represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, polyalkoxyalkyl or represents in each case optionally substituted cycloalkyl, phenyl or benzyl,

R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup> independently of one another represent in each case optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio and represent in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio,

R<sup>6</sup> and R<sup>7</sup> independently of one another represent hydrogen, in each case optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent optionally substituted phenyl, represent optionally substituted benzyl, or together with the N atom to which they are attached represent a cycle which is optionally interrupted by oxygen or sulphur. in which optionally one methylene group is replaced by oxygen or sulphur.

2. (Currently amended) Compounds A compound of the formula (I) according to Claim 1 in which

- W represents C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy-bis-C<sub>2</sub>-C<sub>4</sub>-alkoxy or C<sub>3</sub>-C<sub>6</sub>-cycloalkyl-C<sub>1</sub>-C<sub>2</sub>-alkanediyl oxy which is optionally mono- to trisubstituted by fluorine, chlorine, C<sub>1</sub>-C<sub>3</sub>-alkyl or C<sub>1</sub>-C<sub>3</sub>-alkoxy and in which optionally one methylene group of the ring may be interrupted replaced by oxygen or sulphur,
- X represents halogen,
- Y represents C<sub>1</sub>-C<sub>4</sub>-alkyl,
- CKE represents one of the groups



(1),



(2),



(3),



(4),



(5),



(6),



(7),



(8),

- A represents hydrogen or in each case optionally halogen-substituted C<sub>1</sub>-C<sub>12</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-alkenyl, C<sub>1</sub>-C<sub>10</sub>-alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl,

C<sub>1</sub>-C<sub>10</sub>-alkylthio-C<sub>1</sub>-C<sub>6</sub>-alkyl, optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl- or  
C<sub>1</sub>-C<sub>6</sub>-alkoxy-substituted C<sub>3</sub>-C<sub>8</sub>-cycloalkyl in which optionally one or two  
not directly adjacent ring members are replaced by oxygen and/or or  
sulphur or represents in each case optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl-,  
C<sub>1</sub>-C<sub>6</sub>-haloalkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy-, cyano- or nitro-  
substituted phenyl or naphthyl, hetaryl having 5 to 6 ring atoms,  
phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl or naphthyl-C<sub>1</sub>-C<sub>6</sub>-alkyl,

- B represents hydrogen, C<sub>1</sub>-C<sub>12</sub>-alkyl or C<sub>1</sub>-C<sub>8</sub>-alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, or  
A, B and the carbon atom to which they are attached represent saturated  
C<sub>3</sub>-C<sub>10</sub>-cycloalkyl or unsaturated C<sub>5</sub>-C<sub>10</sub>-cycloalkyl in which optionally  
one ring member is replaced by oxygen or sulphur and which are  
optionally mono- or disubstituted by C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>3</sub>-C<sub>10</sub>-cycloalkyl,  
C<sub>1</sub>-C<sub>8</sub>-haloalkyl, C<sub>1</sub>-C<sub>8</sub>-alkoxy, C<sub>1</sub>-C<sub>8</sub>-alkylthio, halogen or phenyl, or  
A, B and the carbon atom to which they are attached represent C<sub>3</sub>-C<sub>6</sub>-cycloalkyl  
which is substituted by an alkylenedithietyl or by an alkylenedioxyl or by  
an alkylenediyl group which optionally contains one or two not directly  
adjacent oxygen and/or or sulphur atoms and which is optionally  
substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl, which, together with the carbon atom to which  
it is attached, forms a further five- to eight-membered ring, or  
A, B and the carbon atom to which they are attached represent  
C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>5</sub>-C<sub>8</sub>-cycloalkenyl in which two substituents  
together with the carbon atoms to which they are attached represent in  
each case optionally C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy- or halogen-substituted

C<sub>2</sub>-C<sub>6</sub>-alkanediyl, C<sub>2</sub>-C<sub>6</sub>-alkenediyl or C<sub>4</sub>-C<sub>6</sub>-alkanedienediyl in which  
optionally one methylene group is replaced by oxygen or sulphur,  
D represents hydrogen, in each case optionally halogen-substituted  
C<sub>1</sub>-C<sub>12</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-alkynyl,  
C<sub>1</sub>-C<sub>10</sub>-alkoxy-C<sub>2</sub>-C<sub>8</sub>-alkyl, optionally halogen-, C<sub>1</sub>-C<sub>4</sub>-alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-alkoxy- or C<sub>1</sub>-C<sub>4</sub>-haloalkyl-substituted C<sub>3</sub>-C<sub>8</sub>-cycloalkyl in which  
optionally one ring member is replaced by oxygen or sulphur or in each  
case optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>6</sub>-haloalkyl-,  
C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy-, cyano- or nitro-substituted phenyl,  
hetaryl having 5 or 6 ring atoms, phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl or  
hetaryl-C<sub>1</sub>-C<sub>6</sub>-alkyl having 5 or 6 ring atoms, or  
A and D together represent in each case optionally substituted C<sub>3</sub>-C<sub>6</sub>-alkanediyl  
or C<sub>3</sub>-C<sub>6</sub>-alkenediyl in which optionally (only in the case of CKE = (1))  
one methylene group is replaced by a carbonyl group, oxygen or sulphur,  
~~possible substituents being in each case:~~ optionally substituted in each  
case by  
halogen, hydroxyl, mercapto or in each case optionally  
halogen-substituted C<sub>1</sub>-C<sub>10</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio,  
C<sub>3</sub>-C<sub>7</sub>-cycloalkyl, phenyl or benzyloxy, or a further C<sub>3</sub>-C<sub>6</sub>-alkanediyl  
grouping, C<sub>3</sub>-C<sub>6</sub>-alkenediyl grouping or a butadienyl grouping which is  
optionally substituted by C<sub>1</sub>-C<sub>6</sub>-alkyl or in which optionally two adjacent  
substituents together with the carbon atoms to which they are attached

form a further saturated or unsaturated cycle having 5 or 6 ring atoms (in the case of the compound of the formula (I-1), A and D together with the atoms to which they are attached then represent, for example, the groups AD-1 to AD-10 mentioned below) comprising groups AD-1 to AD-10



AD-1



AD-2



AD-3



AD-4



AD-5



AD-6



AD-7



AD-8



AD-9



AD-10

which may contain oxygen or sulphur, or which optionally contains one of the following groups



or

A and Q<sup>1</sup> together represent C<sub>3</sub>-C<sub>6</sub>-alkanediyl or C<sub>4</sub>-C<sub>6</sub>-alkenediyl, each of which is optionally mono- or disubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, of C<sub>1</sub>-C<sub>10</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>3</sub>-C<sub>7</sub>-cycloalkyl each of which is optionally mono- to trisubstituted by identical or different halogen, and of benzyloxy and phenyl, each of which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of halogen, C<sub>1</sub>-C<sub>6</sub>-alkyl and C<sub>1</sub>-C<sub>6</sub>-alkoxy, which C<sub>3</sub>-C<sub>6</sub>-alkanediyl or C<sub>4</sub>-C<sub>6</sub>-alkenediyl moreover optionally contains one of the groups below



or is bridged by a C<sub>1</sub>-C<sub>2</sub>-alkanediyl group or by an oxygen atom or

Q<sup>1</sup> represents hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl,

Q<sup>2</sup>, Q<sup>4</sup>, Q<sup>5</sup> and Q<sup>6</sup> independently of one another represent hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl,

Q<sup>3</sup> represents hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl,  
C<sub>1</sub>-C<sub>6</sub>-alkylthio-C<sub>1</sub>-C<sub>2</sub>-alkyl, optionally C<sub>1</sub>-C<sub>4</sub>-alkyl- or C<sub>1</sub>-C<sub>4</sub>-alkoxy-  
substituted C<sub>3</sub>-C<sub>8</sub>-cycloalkyl in which optionally one methylene group is  
replaced by oxygen or sulphur or represents phenyl which is optionally  
substituted by halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>2</sub>-haloalkyl,  
C<sub>1</sub>-C<sub>2</sub>-haloalkoxy, cyano or nitro, or

Q<sup>3</sup> and Q<sup>4</sup> together with the carbon atom to which they are attached represent a  
C<sub>3</sub>-C<sub>7</sub>-ring which is optionally substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy  
or C<sub>1</sub>-C<sub>2</sub>-haloalkyl and in which optionally one ring member is replaced  
by oxygen or sulphur,

G represents hydrogen (a) or represents one of the groups



in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

R<sup>1</sup> represents in each case optionally halogen-substituted C<sub>1</sub>-C<sub>20</sub>-alkyl,

C<sub>2</sub>-C<sub>20</sub>-alkenyl, C<sub>1</sub>-C<sub>8</sub>-alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-alkylthio-

C<sub>1</sub>-C<sub>8</sub>-alkyl, poly-C<sub>1</sub>-C<sub>8</sub>-alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl or optionally halogen-,

C<sub>1</sub>-C<sub>6</sub>-alkyl- or C<sub>1</sub>-C<sub>6</sub>-alkoxy-substituted C<sub>3</sub>-C<sub>8</sub>-cycloalkyl in which

optionally one or more not directly adjacent ring members are replaced by

oxygen and/or sulphur,

represents optionally halogen-, cyano-, nitro-, C<sub>1</sub>-C<sub>6</sub>-alkyl-,

C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>6</sub>-haloalkyl-, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy-, C<sub>1</sub>-C<sub>6</sub>-alkylthio-

or C<sub>1</sub>-C<sub>6</sub>-alkylsulphonyl-substituted phenyl,

represents optionally halogen-, nitro-, cyano-, C<sub>1</sub>-C<sub>6</sub>-alkyl-,

C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>6</sub>-haloalkyl- or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy-substituted

phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl,

represents optionally halogen- or C<sub>1</sub>-C<sub>6</sub>-alkyl-substituted 5- or 6-membered hetaryl,

represents optionally halogen- or C<sub>1</sub>-C<sub>6</sub>-alkyl-substituted phenoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl or

represents optionally halogen-, amino- or C<sub>1</sub>-C<sub>6</sub>-alkyl-substituted 5- or 6-membered hetaryloxy-C<sub>1</sub>-C<sub>6</sub>-alkyl,

R<sup>2</sup> represents in each case optionally halogen-substituted C<sub>1</sub>-C<sub>20</sub>-alkyl,

C<sub>2</sub>-C<sub>20</sub>-alkenyl, C<sub>1</sub>-C<sub>8</sub>-alkoxy-C<sub>2</sub>-C<sub>8</sub>-alkyl,

poly-C<sub>1</sub>-C<sub>8</sub>-alkoxy-C<sub>2</sub>-C<sub>8</sub>-alkyl,

represents optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl- or C<sub>1</sub>-C<sub>6</sub>-alkoxy-substituted C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or

represents in each case optionally halogen-, cyano-, nitro-, C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>6</sub>-haloalkyl- or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy-substituted phenyl or benzyl,

R<sup>3</sup> represents optionally halogen-substituted C<sub>1</sub>-C<sub>8</sub>-alkyl or represents in each case optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>4</sub>-haloalkyl-, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy-, cyano- or nitro-substituted phenyl or benzyl,

R<sup>4</sup> and R<sup>5</sup> independently of one another represent in each case optionally halogen-substituted C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>1</sub>-C<sub>8</sub>-alkoxy, C<sub>1</sub>-C<sub>8</sub>-alkylamino, di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)amino, C<sub>1</sub>-C<sub>8</sub>-alkylthio, C<sub>2</sub>-C<sub>8</sub>-alkenylthio,

C<sub>3</sub>-C<sub>7</sub>-cycloalkylthio or represent in each case optionally halogen-, nitro-, cyano-, C<sub>1</sub>-C<sub>4</sub>-alkoxy-, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy-, C<sub>1</sub>-C<sub>4</sub>-alkylthio-, C<sub>1</sub>-C<sub>4</sub>-haloalkylthio-, C<sub>1</sub>-C<sub>4</sub>-alkyl- or C<sub>1</sub>-C<sub>4</sub>-haloalkyl-substituted phenyl, phenoxy or phenylthio,

R<sup>6</sup> and R<sup>7</sup> independently of one another represent hydrogen, represent in each case optionally halogen-substituted C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>1</sub>-C<sub>8</sub>-alkoxy, C<sub>3</sub>-C<sub>8</sub>-alkenyl, C<sub>1</sub>-C<sub>8</sub>-alkoxy-C<sub>1</sub>-C<sub>8</sub>-alkyl, represent optionally halogen-, C<sub>1</sub>-C<sub>8</sub>-haloalkyl-, C<sub>1</sub>-C<sub>8</sub>-alkyl- or C<sub>1</sub>-C<sub>8</sub>-alkoxy-substituted phenyl, represent optionally halogen-, C<sub>1</sub>-C<sub>8</sub>-alkyl-, C<sub>1</sub>-C<sub>8</sub>-haloalkyl- or C<sub>1</sub>-C<sub>8</sub>-alkoxy-substituted benzyl or together represent an optionally C<sub>1</sub>-C<sub>4</sub>-alkyl-substituted C<sub>3</sub>-C<sub>6</sub>-alkylene radical in which optionally one carbon atom is replaced by oxygen or sulphur,

R<sup>13</sup> represents hydrogen, represents in each case optionally halogen-substituted C<sub>1</sub>-C<sub>8</sub>-alkyl or C<sub>1</sub>-C<sub>8</sub>-alkoxy, represents optionally halogen-, C<sub>1</sub>-C<sub>4</sub>-alkyl- or C<sub>1</sub>-C<sub>4</sub>-alkoxy-substituted C<sub>3</sub>-C<sub>8</sub>-cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur or represents in each case optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>4</sub>-haloalkyl-, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy-, nitro- or cyano-substituted phenyl, phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl or phenyl-C<sub>1</sub>-C<sub>4</sub>-alkoxy,

R<sup>14a</sup> represents hydrogen or C<sub>1</sub>-C<sub>8</sub>-alkyl, or

R<sup>13</sup> and R<sup>14a</sup> together represent C<sub>4</sub>-C<sub>6</sub>-alkanediyl,

R<sup>15a</sup> and R<sup>16a</sup> are identical or different and represent C<sub>1</sub>-C<sub>6</sub>-alkyl, or

R<sup>15a</sup> and R<sup>16a</sup> together represent a C<sub>2</sub>-C<sub>4</sub>-alkanediyl radical which is optionally substituted by C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl or by optionally by halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>4</sub>-haloalkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy-, nitro- or cyano-substituted phenyl,

R<sup>17a</sup> and R<sup>18a</sup> independently of one another represent hydrogen, represent optionally halogen-substituted C<sub>1</sub>-C<sub>8</sub>-alkyl or represent optionally halogen-, C<sub>1</sub>-C<sub>6</sub>-alkyl-, C<sub>1</sub>-C<sub>6</sub>-alkoxy-, C<sub>1</sub>-C<sub>4</sub>-haloalkyl-, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy-, nitro- or cyano-substituted phenyl, or

R<sup>17a</sup> and R<sup>18a</sup> together with the carbon atom to which they are attached represent a carbonyl group or represent optionally halogen-, C<sub>1</sub>-C<sub>4</sub>-alkyl- or C<sub>1</sub>-C<sub>4</sub>-alkoxy-substituted C<sub>5</sub>-C<sub>7</sub>-cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur,

R<sup>19a</sup> and R<sup>20a</sup> independently of one another represent C<sub>1</sub>-C<sub>10</sub>-alkyl, C<sub>2</sub>-C<sub>10</sub>-alkenyl, C<sub>1</sub>-C<sub>10</sub>-alkoxy, C<sub>1</sub>-C<sub>10</sub>-alkylamino, C<sub>3</sub>-C<sub>10</sub>-alkenylamino, di-(C<sub>1</sub>-C<sub>10</sub>-alkyl)amino or di-(C<sub>3</sub>-C<sub>10</sub>-alkenyl)amino.

3. (Currently amended) Compounds A compound of the formula (I) according to Claim 1 in which

W represents C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy, C<sub>1</sub>-C<sub>3</sub>-alkoxy-C<sub>2</sub>-C<sub>3</sub>-alkoxy, C<sub>1</sub>-C<sub>2</sub>-alkoxy-bis-C<sub>2</sub>-C<sub>3</sub>-alkoxy or C<sub>3</sub>-C<sub>6</sub>-cycloalkyl-C<sub>1</sub>-C<sub>2</sub>-alkanediylxy

in which optionally one methylene group of the ring ~~may be~~ is replaced by oxygen,

X represents chlorine or bromine,

Y represents methyl, ethyl or propyl,

CKE represents one of the groups



(1),



(2),



(3),



(4),



(5),



(6),



(7),



(8),

A represents hydrogen, represents C<sub>1</sub>-C<sub>6</sub>-alkyl or

C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl, each of which is optionally mono- to

trisubstituted by fluorine or chlorine, represents C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which

is optionally mono- to disubstituted by C<sub>1</sub>-C<sub>2</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy or

(but not in the case of the compounds of the formulae (I-3), (I-4), (I-6) and

(I-7)) represents phenyl or benzyl, each of which is optionally mono- to  
disubstituted by fluorine, chlorine, bromine, C<sub>1</sub>-C<sub>4</sub>-alkyl,

C<sub>1</sub>-C<sub>2</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>2</sub>-haloalkoxy, cyano or nitro,

B represents hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl, or

A, B and the carbon atom to which they are attached represent saturated or  
unsaturated C<sub>5</sub>-C<sub>7</sub>-cycloalkyl in which optionally one ring member is  
replaced by oxygen or sulphur and which is optionally mono- to  
disubstituted by C<sub>1</sub>-C<sub>6</sub>-alkyl, trifluoromethyl or C<sub>1</sub>-C<sub>6</sub>-alkoxy, with the

proviso that in this case Q<sup>3</sup> represents hydrogen or methyl, or

A, B and the carbon atom to which they are attached represent

C<sub>5</sub>-C<sub>6</sub>-cycloalkyl which is optionally substituted by an alkylenedithiol  
group or by an alkylenedioxyl group or by an alkylenediyl group which  
optionally contains one or two not directly adjacent oxygen or sulphur  
atoms and which is optionally substituted by methyl or ethyl, which  
group, together with the carbon atom to which it is attached, forms a  
further five- or six-membered ring, with the proviso that in this case Q<sup>3</sup>  
represents hydrogen or methyl,

A, B and the carbon atom to which they are attached represent

C<sub>3</sub>-C<sub>6</sub>-cycloalkyl or C<sub>5</sub>-C<sub>6</sub>-cycloalkenyl in which two substituents  
together with the carbon atoms to which they are attached represent in  
each case optionally C<sub>1</sub>-C<sub>2</sub>-alkyl- or C<sub>1</sub>-C<sub>2</sub>-alkoxy-substituted

C<sub>2</sub>-C<sub>4</sub>-alkanediyl, C<sub>2</sub>-C<sub>4</sub>-alkenediyl or butadienediyl, with the proviso

that in this case Q<sup>3</sup> represents hydrogen or methyl,

D represents hydrogen, represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-alkenyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>3</sub>-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which is optionally mono- to disubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>2</sub>-haloalkyl and in which optionally one methylene group is replaced by oxygen or (but not in the case of the compounds of the formula (I-1)) represents phenyl or pyridyl, each of which is optionally mono- to disubstituted by fluorine, chlorine, bromine, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy, or

A and D together represent optionally mono- to disubstituted C<sub>3</sub>-C<sub>5</sub>-alkanediyl in which optionally (only in the case of CKE = (1)) one methylene group may be replaced by oxygen or sulphur, ~~possible substituents being~~ optionally substituted by C<sub>1</sub>-C<sub>2</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy, or

A and D (in the case of the compounds of the formula (I-1)) together with the atoms to which they are attached represent one of the groups AD-1 to AD-10:





AD-4



AD-5



AD-6



AD-7



AD-8



AD-9



AD-10

or

A and Q<sup>1</sup> together represent C<sub>3</sub>-C<sub>4</sub>-alkanediyl which is optionally mono- or disubstituted by identical or different substituents from the group consisting of C<sub>1</sub>-C<sub>2</sub>-alkyl and C<sub>1</sub>-C<sub>2</sub>-alkoxy or

Q<sup>1</sup> represents hydrogen,

Q<sup>2</sup> represents hydrogen,

Q<sup>4</sup>, Q<sup>5</sup> and Q<sup>6</sup> independently of one another represent hydrogen or C<sub>1</sub>-C<sub>3</sub>-alkyl,

Q<sup>3</sup> represents hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl or C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which is optionally mono- to disubstituted by methyl or methoxy, or

$Q^3$  and  $Q^4$  together with the carbon to which they are attached represent a saturated C<sub>5</sub>-C<sub>6</sub>-ring which is optionally substituted by C<sub>1</sub>-C<sub>2</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy and in which optionally one ring member is replaced by oxygen or sulphur, with the proviso that in this case A represents hydrogen or methyl, or

G represents hydrogen (a) or represents one of the groups



in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

R<sup>1</sup> represents C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>2</sub>-C<sub>8</sub>-alkenyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkylthio-C<sub>1</sub>-C<sub>2</sub>-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, or C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which is optionally mono- to disubstituted by fluorine, chlorine, C<sub>1</sub>-C<sub>2</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy and in which optionally one or two not directly adjacent ring members are replaced by oxygen,

represents phenyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, cyano, nitro, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>2</sub>-haloalkyl or C<sub>1</sub>-C<sub>2</sub>-haloalkoxy,

R<sup>2</sup> represents C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>2</sub>-C<sub>8</sub>-alkenyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>4</sub>-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which is optionally monosubstituted by C<sub>1</sub>-C<sub>2</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy or represents phenyl or benzyl, each of which is optionally mono- to disubstituted by fluorine, chlorine, bromine, cyano, nitro, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy, trifluoromethyl or trifluoromethoxy,

R<sup>3</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl which is optionally mono- to trisubstituted by fluorine or represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,

R<sup>4</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylamino, di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)amino, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>3</sub>-C<sub>4</sub>-alkenylthio, C<sub>3</sub>-C<sub>6</sub>-cycloalkylthio or represents phenyl, phenoxy or phenylthio, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, cyano, C<sub>1</sub>-C<sub>3</sub>-alkoxy, C<sub>1</sub>-C<sub>3</sub>-haloalkoxy, C<sub>1</sub>-C<sub>3</sub>-alkylthio, C<sub>1</sub>-C<sub>3</sub>-haloalkylthio, C<sub>1</sub>-C<sub>3</sub>-alkyl or trifluoromethyl,

R<sup>5</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-alkylthio,

R<sup>6</sup> represents hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>3</sub>-C<sub>6</sub>-alkenyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, trifluoromethyl, C<sub>1</sub>-C<sub>4</sub>-alkyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy, represents benzyl which is optionally monosubstituted by fluorine, chlorine, bromine, C<sub>1</sub>-C<sub>4</sub>-alkyl, trifluoromethyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy,

R<sup>7</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-alkenyl or C<sub>1</sub>-C<sub>6</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, R<sup>6</sup> and R<sup>7</sup> together represent a C<sub>4</sub>-C<sub>5</sub>-alkylene radical which is optionally substituted by methyl or ethyl and in which optionally one methylene group is replaced by oxygen or sulphur.

4. (Currently amended) Compounds- A compound of the formula (I) according to Claim 1 in which

W represents methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, methoxyethoxy, ethoxyethoxy, cyclopropylmethoxy, cyclopentylmethoxy or cyclohexylmethoxy,

X represents chlorine or bromine,

Y represents methyl or ethyl,

CKE represents one of the groups





- A represents hydrogen, represents C<sub>1</sub>-C<sub>4</sub>-alkyl or C<sub>1</sub>-C<sub>2</sub>-alkoxy-C<sub>1</sub>-C<sub>2</sub>-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents cyclopropyl, cyclopentyl or cyclohexyl and (only in the case of the compounds of the formula (I-5)) represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,
- B represents hydrogen, methyl or ethyl, or
- A, B and the carbon atom to which they are attached represent saturated C<sub>5</sub>-C<sub>6</sub>-cycloalkyl in which optionally one ring member is replaced by oxygen or sulphur and which is optionally monosubstituted by methyl, ethyl, propyl, isopropyl, trifluoromethyl, methoxy, ethoxy, propoxy or butoxy, with the proviso that in this case Q<sup>3</sup> represents hydrogen, or

A, B and the carbon atom to which they are attached represent C<sub>6</sub>-cycloalkyl which is substituted by an alkylene dioxy group having two not directly adjacent oxygen atoms, with the proviso that in this case Q<sup>3</sup> represents hydrogen, or

A, B and the carbon atom to which they are attached represent C<sub>5</sub>-C<sub>6</sub>--cycloalkyl or C<sub>5</sub>-C<sub>6</sub>-cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent C<sub>2</sub>-C<sub>4</sub>-alkanediyl or C<sub>2</sub>-C<sub>4</sub>-alkenediyl or butadienediyl, with the proviso that in this case Q<sup>3</sup> represents hydrogen,

D represents hydrogen, represents C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>4</sub>-alkenyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>3</sub>-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents cyclopropyl, cyclopentyl or cyclohexyl or (but not in the case of the compounds of the formula (I-1)) represents phenyl or pyridyl, each of which is optionally monosubstituted by fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy or trifluoromethyl,

or

A and D together represent C<sub>3</sub>-C<sub>5</sub>-alkanediyl which is optionally monosubstituted by methyl or methoxy and in which optionally (only in the case of CKE = (1)) one carbon atom is replaced by oxygen or sulphur, or represents the group AD-1,

A and Q<sup>1</sup> together represent C<sub>3</sub>-C<sub>4</sub>-alkanediyl which is optionally mono- or disubstituted by methyl or methoxy, or

Q<sup>1</sup> represents hydrogen,

Q<sup>2</sup> represents hydrogen,

Q<sup>4</sup>, Q<sup>5</sup> and Q<sup>6</sup> independently of one another represent hydrogen or methyl,

Q<sup>3</sup> represents hydrogen, methyl, ethyl or propyl, or

Q<sup>3</sup> and Q<sup>4</sup> together with the carbon to which they are attached represent a saturated C<sub>5</sub>-C<sub>6</sub>-ring which is optionally monosubstituted by methyl or methoxy, with the proviso that in this case A represents hydrogen,

G represents hydrogen (a) or represents one of the groups



in which

E represents an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

R<sup>1</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>1</sub>-C<sub>2</sub>-alkoxy-C<sub>1</sub>-alkyl,

C<sub>1</sub>-C<sub>2</sub>-alkylthio-C<sub>1</sub>-alkyl or represents C<sub>3</sub>-C<sub>6</sub>-cyclopropyl which is

optionally monosubstituted by fluorine, chlorine, methyl or methoxy or

represents C<sub>1</sub>-C<sub>4</sub>-alkyl which is monosubstituted by chlorine,

represents phenyl which is optionally monosubstituted by fluorine,

chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or

trifluoromethoxy,

R<sup>2</sup> represents phenyl or benzyl, C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>3</sub>-alkyl, each of which is optionally mono- to trisubstituted by fluorine,

R<sup>3</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl.

5. (Currently amended) Compounds A compound of the formula (I) according to Claim 1 in which

W represents methoxy, ethoxy, n-propoxy, methoxyethoxy or cyclopropylmethoxy,

X represents chlorine,

Y represents methyl,

CKE represents one of the groups



(1) or



(2),

A represents methyl, isopropyl, isobutyl or cyclopropyl,

B represents hydrogen, methyl or ethyl,

A, B and the carbon atom to which they are attached represent saturated C<sub>5</sub>-C<sub>6</sub>-cycloalkyl in which optionally one ring atom is replaced by oxygen and which is optionally monosubstituted by methyl or methoxy,

D represents hydrogen, methyl or ethyl,

G represents hydrogen (a) or represents one of the groups



(b),



(c),



(d) or (E)

(f)

E represents an ammonium ion,

R<sup>1</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>2</sub>-alkoxy-C<sub>1</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkyl which is monosubstituted by chlorine or represents phenyl which is optionally monosubstituted by chlorine,

R<sup>2</sup> represents C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-alkenyl or benzyl,

R<sup>3</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkyl.

6. (Currently amended) Process A process for preparing compounds a compound of the formula (I) according to Claim 1, ~~characterized in that, to obtain comprising~~
- (A) obtaining a compound compounds of the formula (I-1-a)



in which

A, B, D, W, X and Y are as defined above,

by the intramolecular condensation of a compound compounds of the formula (II)



in which

A, B, D, W, X and Y are as defined above,

and

$R^8$  represents alkyl,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

- (B) obtaining a compound compounds of the formula (I-2-a)



in which

A, B, W, X and Y are as defined above,

by the intramolecular condensation of a compound compounds of the formula (III)



in which

A, B, W, X, Y and  $R^8$  are as defined above,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

- (C) obtaining a compound compounds of the formula (I-3-a)



in which

A, B, W, X and Y are as defined above,

by the intramolecular cyclization of a compound eompoounds of the formula (IV)



in which

A, B, W, X, Y and R<sup>8</sup> are as defined above and

V represents hydrogen, halogen, alkyl or alkoxy,

are cyclized intramolecularly, if appropriate in the presence of a diluent and in the presence of an acid,

(D) obtaining a compound eompoounds of the formula (I-4-a)



in which

A, D, W, X and Y are as defined above,

by reacting a compound eompoounds of the formula (V)



in which

A and D are as defined above,

or compounds of the formula (Va)



in which

A, D and  $\text{R}^8$  are as defined above,

~~are reacted with compounds with a compound~~ of the formula (VI)



in which

W, X and Y are as defined above and

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid acceptor,

(E) obtaining a compound eompounds of the formula (I-5-a)



in which

A, W, X and Y are as defined above,

by the reaction of a compound eompounds of the formula (VII)



in which

A is as defined above,

~~are reacted with compounds~~ with a compound of the formula (VI)



in which

Hal, W, X and Y are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid acceptor,

(F) obtaining a compound ~~compounds~~ of the formula (I-6-a)



in which

A, B, Q<sup>1</sup>, Q<sup>2</sup>, W, X and Y are as defined above,

by the intramolecular cyclization of a compound ~~compounds~~ of the formula (VIII)



in which

A, B, Q<sup>1</sup>, Q<sup>2</sup>, W, X and Y are as defined above, and

R<sup>8</sup> represents alkyl,

are cyclized intramolecularly, if appropriate in the presence of a diluent and if appropriate in the presence of a base,

- (G) obtaining a compound compounds of the formula (I-7-a)



in which

A, B, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above,

by the intramolecular condensation of a compound compounds of the formula (IX)



in which

A, B, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above

and

R<sup>8</sup> represents alkyl,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

- (H) obtaining a compound compounds of the formula (I-8-a)



in which

A, D, W, X and Y are as defined above,

by the reaction of a compound compounds of the formula (X)



in which

A and D are as defined above,

~~a) are reacted with compounds with a compound of the formula (VI)~~



in which

Hal, X, Y and W are as defined above,

if appropriate in the presence of a diluent and if appropriate in the

presence of an acid acceptor, or

~~b) b) are reacted with compounds with a compound of the formula (XI)~~



in which

W, X and Y are as defined above,

and U represents NH<sub>2</sub> or O-R<sup>8</sup>, where R<sup>8</sup> is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a base, or

~~v) c)~~ are reacted with compounds with a compound of the formula (XII)



in which

A, D, W, X, Y and R<sup>8</sup> are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a base,

(I) obtaining a compound ~~compounds~~ of the formulae ~~formula~~ (I-1-b) to (I-8-b) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, R<sup>1</sup>, W, X and Y are as defined above, by the reaction of a compound ~~compounds~~ of the formulae ~~formula~~ (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above are in each case

~~(α) (a) reacted with acid halides~~ an acid halide of the formula (XIII)



in which

R<sup>1</sup> is as defined above and

Hal represents halogen,

or

(B) (b) reacted with a carboxylic anhydrides anhydride of the formula (XIV)



in which

$R^1$  is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(J) obtaining a compound eompounds of the formulae formula (I-1-c) to (I-8-c) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, R<sup>2</sup>, M, W, X and Y are as defined above and L represents oxygen, by the reaction of a compound eompounds of the formulae formula (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above are in each case

reacted with a chloroformic esters ester or a chloroformic thioesters thioester of the formula (XV)



in which

$R^2$  and M are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(K) obtaining a compound eompounds of the formulae formula (I-1-c) to (I-8-c) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, R<sup>2</sup>, M, W, X

and Y are as defined above and L represents sulphur, by the reaction of a compound compounds of the formulae formula (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above are in each case reacted with a chloromonothioformic esters ester or a chlorodithioformic esters ester of the formula (XVI)



in which

M and R<sup>2</sup> are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

and

- (L) obtaining a compound compounds of the formulae formula (I-1-d) to (I-8-d) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, R<sup>3</sup>, W, X and Y are as defined above, by the reaction of a compound compounds of the formulae formula (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above are in each case reacted with a sulphonyl chlorides chloride of the formula (XVII)



in which

R<sup>3</sup> is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

- (M) obtaining a compound eompounds of the formulae formula (I-1-e) to (I-8-e) shown above in which A, B, D, L, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, R<sup>4</sup>, R<sup>5</sup>, W, X and Y are as defined above, by the reaction of a compound eompounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above are in each case reacted with a phosphorus eompounds compound of the formula (XVIII)



in which

L, R<sup>4</sup> and R<sup>5</sup> are as defined above and

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

- (N) obtaining a compound eompounds of the formulae formula (I-1-f) to (I-8-f) shown above in which A, B, D, E, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above, by the reaction of a compound eompounds of the formulae formula (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above are in each case reacted with a metal eompounds or amines compound or an amine of the formulae formula (XIX) and (XX), respectively,



in which

Me represents a mono- or divalent metal,

t represents the number 1 or 2 and

$\text{R}^{10}$ ,  $\text{R}^{11}$ ,  $\text{R}^{12}$  independently of one another represent hydrogen or alkyl,  
if appropriate in the presence of a diluent,

(O) obtaining a compound compounds of the formulae formula (I-1-g) to (I-8-g) shown above in which A, B, D, L,  $\text{Q}^1$ ,  $\text{Q}^2$ ,  $\text{Q}^3$ ,  $\text{Q}^4$ ,  $\text{Q}^5$ ,  $\text{Q}^6$ ,  $\text{R}^6$ ,  $\text{R}^7$ , W, X and Y are as defined above, by the reaction of a compound compounds of the formulae formula (I-1-a) to (I-8-a) shown above in which A, B, D,  $\text{Q}^1$ ,  $\text{Q}^2$ ,  $\text{Q}^3$ ,  $\text{Q}^4$ ,  $\text{Q}^5$ ,  $\text{Q}^6$ , W, X and Y are as defined above are in each case

(α) reacted with isocyanates or isothiocyanates an isocyanate or isothiocyanate of the formula (XXI)



in which

$\text{R}^6$  and L are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

(β) reacted with carbamoyl chlorides or thiocarbamoyl chlorides a carbamoyl chloride or a thiocarbamoyl chloride of the formula (XXII)



in which

L, R<sup>6</sup> and R<sup>7</sup> are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

- (P) obtaining a compound compounds of the formulae formula (I-1-a) to (I-8-a) shown above in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above, by the reaction of a compound compounds of the formulae formula (I-1-a') to (I-8-a') in which A, B, D, Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, X and Y are as defined above and W' represents bromine





~~are reacted with alcohols with an alcohol~~ of the formula



in which

W is as defined above, if appropriate in the presence of a solvent, a Cu(I) salt and a strong base.

7. (Currently amended) A compound selected from the group consisting of:  
Compounds compounds of formula (II)



in which

$R^8$ , A, B, D, W, X and Y are as defined above.

compounds of formula (III)



in which

$R^8$ , A, B, W, X and Y are as defined above.

compounds of formula (IV)



in which

A, B, W, X, Y and  $R^8$  are as defined above and

V represents hydrogen, halogen, alkyl or alkoxy.

compounds of formula (VI)



in which

W, X and Y are as defined above and

Hal represents halogen.

compounds of formula (VII) (VIII)



in which

A, B, Q<sup>1</sup>, Q<sup>2</sup>, R<sup>8</sup>, W, X and Y are as defined above.

compounds of formula (IX)



in which

A, B, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X, Y and R<sup>8</sup> are as defined above.

compounds of formula (XII)



in which

A, D, W, X, Y and R<sup>8</sup> are as defined above.

compounds of formula (XXV)



in which

~~A, B, D, W, X and Y~~ are as defined above.

compounds of the formula (XXIV)



in which

~~W, X, Y and Z~~ are as defined above.

compounds of formula (XXVII)



in which

~~W, X and Y~~ are as defined above.

compounds of formula (XXIX)



in which

~~A, B, D, W, X and Y~~ are as defined above.

compounds of formula (XXXI)



(XXXI);

in which

W, X, Y and R<sup>8</sup> are as defined above.

compounds of formula (XXXIII)



(XXXIII);

in which

W, X and Y are as defined above.

compounds of formula (XI)



(XI);

in which

W, X and Y are as defined above

and

U represents NH<sub>2</sub> or OR<sup>8</sup>,

where R<sup>8</sup> is as defined above.

compounds of formula (XXXIV)



(XXXIV)i

in which

~~W, X, Y, A, B, Q<sup>1</sup> and Q<sup>2</sup>~~ are as defined above.

compounds of formula (XXXV)



(XXXV)i

in which

~~A, B, Q<sup>1</sup>, Q<sup>2</sup>, W, X and Y~~ are as defined above

and

R<sup>8</sup> and R<sup>8'</sup> represent alkyl

and, if the compound of the formula (XXXVII-a) is employed, R<sup>8</sup> represents hydrogen.

compounds of formula (XXXVIII)



(XXXVIII)i

in which

~~A, B, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y~~ are as defined above.

compounds of formula (XXXIX)



in which

A, B, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, W, X and Y are as defined above

and

R<sup>8</sup> and R<sup>8'</sup> represent alkyl

and, if the compound of the formula (XXXVII-b) is employed, R<sup>8</sup> represents hydrogen.

and

compounds of formula (XLII)



in which

W, X and Y are as defined above.

W represents alkoxy, haloalkoxy, alkoxyalkoxy, alkoxybisalkoxy,

bisalkoxyalkoxy or optionally substituted cycloalkylalkanediyl oxy which may optionally be interrupted by heteroatoms,

X represents halogen,

Y represents alkyl,

A represents hydrogen, in each case optionally halogen-substituted alkyl,

alkenyl, alkoxyalkyl, alkylthioalkyl, saturated or unsaturated, optionally substituted cycloalkyl in which optionally at least one ring atom is

replaced by a heteroatom, or in each case optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano- or nitro-substituted aryl,  
arylalkyl or hetaryl,

B represents hydrogen, alkyl or alkoxyalkyl, or  
A and B together with the carbon atom to which they are attached represent a  
saturated or unsaturated, unsubstituted or substituted cycle which  
optionally contains at least one heteroatom,

D represents hydrogen or an optionally substituted radical selected from the  
group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, saturated or  
unsaturated cycloalkyl in which optionally one or more ring members are  
replaced by heteroatoms, arylalkyl, aryl, hetarylalkyl or hetaryl or

A and D together with the atoms to which they are attached represent a saturated  
or unsaturated cycle which optionally (only in the case of CKE = 1)  
contains at least one heteroatom and which is unsubstituted or substituted  
in the A,D moiety, or

A and Q<sup>1</sup> together represent alkanediyl or alkenediyl optionally substituted by  
hydroxyl or by in each case optionally substituted alkyl, alkoxy, alkylthio,  
cycloalkyl, benzyloxy or aryl or

Q<sup>1</sup> represents hydrogen or alkyl,

Q<sup>2</sup>, Q<sup>4</sup>, Q<sup>5</sup> and Q<sup>6</sup> independently of one another represent hydrogen or alkyl,

Q<sup>3</sup> represents hydrogen, represents optionally substituted alkyl, alkoxyalkyl,  
alkylthioalkyl, optionally substituted cycloalkyl in which optionally one

methylene group is replaced by oxygen or sulphur, or optionally substituted phenyl, or

$Q^3$  and  $Q^4$  together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains a heteroatom,

Z represents a leaving group

Hal represents halogen,

$R^8$  and  $R^{8'}$  are alkyl, provided that in the case of a compound of formula



or



$R^8$  represents hydrogen,

$U$  represents  $NH_2$  or  $OR^8$ , and

$V$  represents hydrogen, halogen, alkyl or alkoxy.

- 8-26. (Cancelled)
27. (Currently amended) ~~Pesticides and/or herbicides, characterized in that they comprise~~  
A pesticide or herbicide comprising at least one compound of the formula (I)  
according to Claim 1.
28. (Currently amended) ~~Method for controlling animal pests and/or unwanted vegetation,~~  
Atty. Dkt. No. 2400.0800000/VLC/CMB

~~characterized in that compounds A method for controlling animal pests or unwanted vegetation comprising contacting a compound of the formula (I) according to Claim 1 are allowed to act on pests and/or with the pests or their habitat.~~

29. (Cancelled)

30. (Currently amended) ~~Process for preparing pesticides and/or herbicides, characterized in that compounds A process for preparing pesticides or herbicides comprising mixing at least one compound of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants. with an extender or a surfactant or a combination thereof.~~

31. (Currently amended) Compositions ~~A composition~~, comprising an effective amount of an active compound combination comprising:

a') at least one substituted cyclic ketoenol of the formula (I) in which CKE, W, X and Y are as defined above

and

(b') at least one compound which improves crop plant tolerance and which is selected from the following group of compounds:

4-dichloroacetyl-1-oxa-4-aza-spiro[4.5]-decane (AD-67, MON-4660),

1-dichloroacetylhexahydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-

6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-

methyl-2H-1,4-benzoxazine (benoxacor), 1-methyl-hexyl 5-chloro-

quinolin-8-oxy-acetate (~~cloquintocet mexyl cf. also related compounds~~

~~in EP-A-86750, EP-A-94349, EP-A-191736, EP-A-492366~~), 3-(2-chloro-

benzyl)-1-(1-methyl-1-phenyl-ethyl)-urea (cumyluron),  $\alpha$ -

(cyanomethoximino)-phenylacetonitrile (cyometrinil), 2,4-dichloro-

phenoxyacetic acid (2,4-D), 4-(2,4-dichloro-phenoxy)-butyric acid (2,4-DB), 1-(1-methyl-1-phenyl-ethyl)-3-(4-methyl-phenyl)-urea (daimuron, dymron), 3,6-dichloro-2-methoxy-benzoic acid (dicamba), S-1-methyl-1-phenyl-ethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)-ethyl)-N-(2-propenyl)-acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenyl-acetamide (dichlormid), 4,6-dichloro-2-phenyl-pyrimidine (fenclorim), ethyl 1-(2,4-dichloro-phenyl)-5-trichloromethyl-1H-1,2,4-triazole-3-carboxylate (~~fenchlorazole-ethyl~~ cf. also related compounds in EP-A-174562 and EP-A-346620), phenylmethyl 2-chloro-4-trifluoromethyl-thiazole-5-carboxylate (flurazole), 4-chloro-N-(1,3-dioxolan-2-yl-methoxy)- $\alpha$ -trifluoro-acetophenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyl-oxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate (~~isoxadifen-ethyl~~ cf. also related compounds in WO-A-95/07897), 1-(ethoxycarbonyl)-ethyl-3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-o-tolyloxy)-acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)-propionic acid (mecoprop), diethyl 1-(2,4-dichloro-phenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (~~mefenpyr-diethyl~~ cf. also related compounds in WO-A-91/07874), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl-1-oxa-4-azaspiro[4.5]decane 4-carbodithioate (MG-838), 1,8-naphthalic anhydride,  $\alpha$ -(1,3-dioxolan-2-yl-methoximino)-phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3-dioxolan-2-yl-methyl)-N-(2-propenyl)-acetamide (PPG-1292), 3-dichloroacetyl-2,2-

dimethyl-oxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyl-oxazolidine (R-29148), 4-(4-chloro-o-tolyl)-butyric acid, 4-(4-chlorophenoxy)-butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chloro-phenyl)-5-phenyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-(1,1-dimethyl-ethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-phenyl-1H-pyrazole-3-carboxylate (cf. also ~~related compounds in EP-A 269806 and EP-A 333131~~), ethyl 5-(2,4-dichloro-benzyl)-2-isoxazoline-3-carboxylate, ethyl 5-phenyl-2-isoxazoline-3-carboxylate, ethyl 5-(4-fluoro-phenyl)-5-phenyl-2-isoxazoline-3-carboxylate (cf. also ~~related compounds in WO A 91/08202~~), 1,3-dimethyl-but-1-yl 5-chloro-quinolin-8-oxy-acetate, 4-allyloxy-butyl 5-chloro-quinolin-8-oxy-acetate, 1-allyloxy-prop-2-yl 5-chloro-quinolin-8-oxy-acetate, methyl 5-chloro-quinoxalin-8-oxy-acetate, ethyl 5-chloro-quinolin-8-oxy-acetate, allyl 5-chloro-quinoxalin-8-oxy-acetate, 2-oxo-prop-1-yl 5-chloro-quinolin-8-oxy-acetate, diethyl 5-chloro-quinolin-8-oxy-malonate, diallyl 5-chloro-quinoxalin-8-oxy-malonate, diethyl 5-chloro-quinolin-8-oxy-malonate (cf. also ~~related compounds in EP-A 582198~~), 4-carboxy-chroman-4-yl-acetic acid (AC-304415, cf. EP-A 613618), 4-chloro-phenoxy-acetic acid, 3,3'-dimethyl-4-methoxy-benzophenone, 1-bromo-4-chloromethylsulphonyl-benzene, 1-[4-(N-2-methoxybenzoylsulphamoyl)-phenyl]-3-methyl-urea (alias N-(2-

methoxy-benzoyl)-4-[(methylamino-carbonyl)-amino]-  
benzenesulphonamide), 1-[4-(N-2-methoxybenzoylsulphamoyl)-phenyl]-  
3,3-dimethyl-urea, 1-[4-(N-4,5-dimethylbenzoylsulphamoyl)-phenyl]-3-  
methyl-urea, 1-[4-(N-naphthylsulphamoyl)-phenyl]-3,3-dimethyl-urea, N-  
(2-methoxy-5-methyl-benzoyl)-4-(cyclopropylaminocarbonyl)-  
benzenesulphonamide,

and/or one of the following compounds (~~defined by general formulae~~)  
of the general formula (IIa)



or of the general formula (IIb)



or of the formula (IIc)



where

m is 0, 1, 2, 3, 4 or 5,

A<sup>1</sup> represents one of the divalent heterocyclic groups outlined hereinbelow,



n is 0, 1, 2, 3, 4 or 5,

A<sup>2</sup> represents alkanediyl having 1 or 2 carbon atoms which is optionally substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or or C<sub>1</sub>-C<sub>4</sub>-alkoxy-carbonyl and/or or C<sub>1</sub>-C<sub>4</sub>-alkenyloxy-carbonyl,

R<sup>14</sup> represents hydroxyl, mercapto, amino, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-alkylamino or di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino,

R<sup>15</sup> represents hydroxyl, mercapto, amino, C<sub>1</sub>-C<sub>7</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkenyloxy, C<sub>1</sub>-C<sub>6</sub>-alkenyloxy-C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-alkylamino or di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino,

R<sup>16</sup> represents C<sub>1</sub>-C<sub>4</sub>-alkyl which is optionally substituted by fluorine, chlorine and/or or bromine,

R<sup>17</sup> represents hydrogen, or represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, dioxolanyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, furyl, furyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, thienyl, thiazolyl, piperidinyl, each of which is optionally substituted by fluorine, chlorine and/or or bromine, or represents phenyl which is optionally substituted by fluorine, chlorine and/or or bromine or C<sub>1</sub>-C<sub>4</sub>-alkyl,

R<sup>18</sup> represents hydrogen, or represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, dioxolanyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, furyl,

furyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, thienyl, thiazolyl, piperidinyl, each of which is optionally substituted by fluorine, chlorine and/or or bromine, or represents phenyl which is optionally substituted by fluorine, chlorine and/or or bromine or C<sub>1</sub>-C<sub>4</sub>-alkyl, or R<sup>17</sup> and R<sup>18</sup> together also represent C<sub>3</sub>-C<sub>6</sub>-alkanediyl or C<sub>2</sub>-C<sub>5</sub>-oxaalkanediyl, each of which is optionally substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are bonded, form a 5- or 6-membered carbocycle,

R<sup>19</sup> represents hydrogen, cyano, halogen, or represents C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl or phenyl, each of which is optionally substituted by fluorine, chlorine and/or or bromine,

R<sup>20</sup> represents hydrogen, or represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl or tri(C<sub>1</sub>-C<sub>4</sub>-alkyl)silyl, each of which is optionally substituted by hydroxyl, cyano, halogen or C<sub>1</sub>-C<sub>4</sub>-alkoxy,

R<sup>21</sup> represents hydrogen, cyano, halogen, or represents C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl or phenyl, each of which is optionally substituted by fluorine, chlorine and/or or bromine,

X<sup>1</sup> represents nitro, cyano, halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy,

X<sup>2</sup> represents hydrogen, cyano, nitro, halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy,

X<sup>3</sup> represents hydrogen, cyano, nitro, halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy,

and/or or the following compounds (defined by general formulae)

of the general formula (IId)



(IId)

or of the general formula (IIe)



(IIe)

(IIe)

where

t is 0, 1, 2, 3, 4 or 5,

v is 0, 1, 2, 3, 4 or 5,

R<sup>22</sup> represents hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl,

R<sup>23</sup> represents hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl,

R<sup>24</sup> represents hydrogen, or represents C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-alkylamino or di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, each of which is optionally substituted by cyano, halogen or C<sub>1</sub>-C<sub>4</sub>-alkoxy, or represents C<sub>3</sub>-C<sub>6</sub>-cycloalkyl,

C<sub>3</sub>-C<sub>6</sub>-cycloalkyloxy, C<sub>3</sub>-C<sub>6</sub>-cycloalkylthio or C<sub>3</sub>-C<sub>6</sub>-cycloalkylamino, each of which is optionally substituted by cyano, halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl,

R<sup>25</sup> represents hydrogen, or represents C<sub>1</sub>-C<sub>6</sub>-alkyl which is optionally substituted by cyano, hydroxyl, halogen or C<sub>1</sub>-C<sub>4</sub>-alkoxy, or represents C<sub>3</sub>-C<sub>6</sub>-alkenyl or C<sub>3</sub>-C<sub>6</sub>-alkynyl, each of which is optionally substituted by cyano or halogen, or represents C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which is optionally substituted by cyano, halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl,

R<sup>26</sup> represents hydrogen, or represents C<sub>1</sub>-C<sub>6</sub>-alkyl which is optionally substituted by cyano, hydroxyl, halogen or C<sub>1</sub>-C<sub>4</sub>-alkoxy, or represents C<sub>3</sub>-C<sub>6</sub>-alkenyl or C<sub>3</sub>-C<sub>6</sub>-alkynyl, each of which is optionally substituted by cyano or halogen, or represents C<sub>3</sub>-C<sub>6</sub>-cycloalkyl which is optionally substituted by cyano, halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl, or represents phenyl which is optionally substituted by nitro, cyano, halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy, or together with R<sup>25</sup> represents C<sub>2</sub>-C<sub>6</sub>-alkanediyl or C<sub>2</sub>-C<sub>5</sub>-oxaalkanediyl, each of which is optionally substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl,

X<sup>4</sup> represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy, and

X<sup>5</sup> represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy.

32. (Currently amended) Composition A composition according to Claim 31, in which the compound which improves crop plant tolerance is selected from the following group of compounds:  
cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron or the compounds IIe-5 or IIe-11.
33. (Currently amended) Method A method for controlling unwanted vegetation, characterized in that comprising contacting a composition according to Claim 31 is allowed to act on with the plants or their habitat.
34. (Cancelled)
35. (Currently amended) Composition A composition according to Claim 31 in which the compound which improves crop plant tolerance is cloquintocet-mexyl or mefenpyr-diethyl.