a small language

Lambda calculus

Johan Montelius

KTH

VT21

ullet a domain: $\mathbb Z$ i.e. ... -2,-1,0,1,2...

• a set of primitive functions: +, -, *, mod, div

• syntax: symbols, precedence, parentheses i.e. a way to write expressions

evaluation of expressions

8 * (6 − 3)

8 * 3

24

• (3+5)*(6-3) • (3+5)*(6-3)

• (3+5)*3

8 * 3

24

• (3+5)*3

• (9 + 15)

24

how about this

5*(4+2)

 $17 \mod 5$

 $7 \mod 0$

1/1

bottoms

strict functions

 $5 \mod 0 \equiv \perp$

 \perp is called *bottoms*, *undefined* or ... *exception*

We extend the domain: $\mathbb{Z} \cup \{\bot\}$

How should we interpret: 5 * \perp

A function that is defined to be \bot if any of its arguments is \bot , is called a *strict function*,

All of our regular arithmetic functions are strict.

ok, I get it

5/1

evaluation of expressions

What is the value of: (x - x) * 5

• $(\sqrt[3]{3+5^4})*(6-6)$

• $(\sqrt[3]{3+5^4})*0$

• 0

• $(512 \operatorname{div} 0) * (6-6)$

• (512 div 0) * 0

• 0

hmmm, not so good

order of evaluation

if-then-else

If all functions are strict:

- then all arguments of the function must be evaluated
- the order does not matter,... or does it?

Assume we have a function if(test, then, else) with the obvious definition.

Do we want this function to be a *strict function*?

variables and functions

functions

9/1

Too make life more interesting, we introduce

and functions:
$$\lambda x \rightarrow x + 5$$

Most often written $\lambda x.x + 5$ but we will use \rightarrow .

So far, functions do not have names.

•
$$\lambda x \rightarrow x + 5$$

•
$$(\lambda x \rightarrow x + 5)$$
 7

12

application

examples

We apply a function to an argument (or actual arguments),

•
$$(\lambda x \rightarrow \langle E \rangle)7$$

by substituting the parameter (or formal argument) of the function with the argument.

• [x/7](x+5) 7+5

•
$$[x/7]\langle \lambda y \to y + x \rangle$$
 $\lambda y \to y + 7$

•
$$[x/(\lambda z \to z+2)]\langle \lambda y \to (xy)*2\rangle$$
 $\lambda y \to ((\lambda z \to z+2)y)*2$

But, things could go wrong.

13/1

14 / 1

scope of declaration

In an expression $\lambda x \to \langle E \rangle$, the *scope* of x is $\langle E \rangle$.

We say that x is free in $\langle E \rangle$ but bound in $\lambda x \to \langle E \rangle$.

We can write $\lambda x \to (\lambda x \to (x * x))$, which does complicate things.

substitution

A substitution $[x/\langle F \rangle]\langle E \rangle$ is possible if $\langle F \rangle$ does not have any free variables that become bound in $[x/\langle F \rangle]\langle E \rangle$.

$$(\lambda x \to (\lambda y \to (y+x)))(y+5)$$

$$[x/(y+5)](\lambda y \to (y+x))$$

$$(\lambda x \to (\lambda z \to (z+x)))(y+5)$$

$$[x/(y+5)](\lambda z \to (z+x))$$

$$\lambda y \to (y+(y+5))$$

$$\lambda z \to (z+(y+5))$$

We have to be careful but renaming variables solves the problem.

functions

 λ calculus

A function is:

 \dots a many to one mapping from one domain to another: $A \mapsto B$

... a description of the expression that should be evaluated: $\lambda x \rightarrow x + 2$

In mathematics we can work with functions even if we do not know how to compute them.

ullet The λ calculus was introduced in the 1930s by Alonzo Church.

- Easy to define:
 - only three types of expressions: variable, lambda abstraction, application
 - only one rule: evaluation of application
 - you don't even need data structures nor named functions
- ullet Anything that is *computable* can be expressed in λ calculus, it is as powerful as a *Turing machine*.
- We will use some extensions to the language when we describe functional programming.

17 / 1

18 / 1

currying

let expressions

A function of two arguments, can be described as function of one argument that evaluates to another function of a second argument.

•
$$(\lambda x \rightarrow (\lambda y \rightarrow x + y))$$
 7 8

•
$$(\lambda y \rightarrow 7 + y)$$
 8

7+8

We can write:

•
$$\lambda xy \rightarrow x + y$$

- $\lambda x \rightarrow (x+2) + (x+2)$ do we have to evaluate (x+2) twice?
- $\lambda x \to ((\lambda y \to y + y)(x + 2))$ (x + 2) only evaluated once
- $\lambda x \to \text{let } y = x + 2 \text{ in } y + y$ more readable

no recursive definitions

this is ok

• $\lambda x \to \text{let } y = x + y \text{ in } y + y$

What does this mean?

• $\lambda x \rightarrow ((\lambda y \rightarrow y + y)(x + y))$

So is this.

•
$$\lambda x \rightarrow \text{let } y = x + 2, y = y + 5 \text{ in } y + y$$

• $\lambda x \to \text{let } y = x + 2, z = y + 5 \text{ in } z + z$ • $\lambda x \to ((\lambda y \to (\lambda z \to z + z)(y + 5))(x + 2))$

•
$$\lambda x \rightarrow ((\lambda y \rightarrow (\lambda y \rightarrow y + y)(y + 5))(x + 2))$$

functional programming languages

Elixir

21 / 1

- λ-calculus
 - not the best syntax not important
 - no "data structures" functions are all you need
 - no need for named named functions
 - no defined evaluation order
- functional programming languages:
 - different syntax, some good some strange
 - almost always provide built-in or user defined data structures
 - named function i.e. the program
 - defines the evaluation order

All functional programming languages have a core that can be expressed in λ -calculus.

- uses the Erlang virtual machine
- ullet a Ruby like syntax
- a small set of built-in data structures, no user defined
- an "eager evaluation" order i.e. arguments are evaluated before the function is applied

Elixir/Erlang is extended to be able to model concurrency. In the first part of this course we will only use the functional subset.

lambda expression

let expression

$$\lambda x \rightarrow 2 + x$$

 $fn x \rightarrow 2 + x end$

$$(\lambda y \rightarrow 2 + y)4$$

 $(fn y \rightarrow 2 + y end).(4)$

$$\lambda x \rightarrow \text{let } y = x + 2, y = y + 5 \text{ in } y + y$$

fn x -> y = x + 2; y = y + 5; y + y end

let x = 2, y = x + 3 in y + y

$$x = 2; y = x + 3; y + y$$

difference Erlang/Elixir

function definition

x = 2; x = 3; x + x

let x = 2, x = 3 in x + x

 $(\lambda x \rightarrow (\lambda x \rightarrow x + x)3)2$

 $(\lambda z \rightarrow z + z)$ 3

3 + 3

Erlang: not allowed, interpreted as 2 = 3, ...

$$inc \equiv \lambda x \rightarrow x + 1$$

def inc(x) do x + 1 end

multiple arguments

$$add \equiv \lambda xy \rightarrow x + y$$

$$\label{eq:defadd} \mbox{def add(x, y) do x + y end}$$