- Caraduação

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Arquiteturas Disruptivas e Big Data PROF. ANTONIO SELVATICI

SHORT BIO

É engenheiro eletrônico formado pelo Instituto Tecnológico de Aeronáutica (ITA), com mestrado e doutorado pela Escola Politécnica (USP), e passagem pela Georgia Institute of Technology em Atlanta (EUA). Desde 2002, atua na indústria em projetos nas áreas de robótica, visão computacional e internet das coisas, aliando teoria e prática no desenvolvimento de soluções baseadas em Machine Learning, processamento paralelo e modelos probabilísticos. Desenvolveu projetos para Avibrás, IPT e Systax.

PROF. ANTONIO SELVATICI profantonio.selvatici@fiap.com.br

INTERNET DAS COISAS

Rede de sensores

- Dentro do ecossistema da Internet das Coisas, a rede de sensores é composta pelas tecnologias que fazem a interface com o mundo real
 - Identificação de objetos
 - Formação de redes de comunicações com/entre objetos
 - M2M: Machine To Machine Communication
 - WSN: Wireless Sensor Network
 - Computação Ubíqua
 - Interação com o ambiente
 - Sensores
 - Atuadores
- Para realizar a comunicação com os objetos, são cada vez mais importantes as tecnologias que fazem a transmissão por radiofrequência

Comunicação por radiofrequência

- A comunicação por radiofrequência emprega radiação eletromagnética para a transmissão de informação. Esse fenômeno foi demonstrado por Guglielmo Marconi, conhecido como inventor do rádio, e também pelo padre Roberto Landell de Moura
- A radiação eletromagnética é consequência da oscilação do campo eletromagnético. A luz é uma radiação eletromagnética. A sua natureza é a mesma das ondas de rádio emitidas pelas emissoras de rádio e TV, ou das micro-ondas que aquecem a comida
- Qual a diferença entre essas diferentes modalidades de ondas eletromagnéticas? A sua frequência, ou seja, a rapidez com que elas "vibram".

As diferentes aplicações das radiação eletromagnética

Modulação

- As informações são "gravadas" nas ondas de radiofrequência através de um processo de modulação, ou seja, de modificação dessas ondas de acordo com a informação desejada
- As formas de modulação analógica mais tradicionais são:
 - AM: Amplitude Modulation
 - FM: Frequency Modulation
- Para informações digitais, outras formas mais eficientes de modulação são usadas

Modulação digital (codificação)

- Na transmissão digital, a modulação da onda codifica os bits através da variação de amplitude, frequência e fase da onda
 - PSK: phase-shift keying
 - ASK: amplitude-shift keying
 - Pouco usada por ser muito suscetível a ruído
 - FSK: frequency-shift keying
- Para aumentar a capacidade de transmissão ou ainda dificultar a detecção do sinal por rádios não autorizados, outros esquemas de modulação e codificação foram criados, como QAM e o Spread Spectrum

Codificação ASK

Codificação FSK

Codificação PSK

Tecnologias de comunicação

RFID

- Radio-Frequency Identification
- Um sistema de RFID possui 3 componentes
 - Transceptor (emissor e receptor): a leitora RFID
 - Transponder: a etiqueta RFID
 - Antena: permite o envio e o recebimento do sinal eletromagnético
- A leitora envia uma mensagem para a etiqueta, que recebe esse sinal, processa, eventualmente grava a informação, e retorna seu conteúdo
- Tem origem nos sistemas IFF (Identification Friend-or-Foe), que enviavam sinais de radares em direção aos aviões sobrevoando o espaço aéreo, desenvolvido em 1937. Caso esses sinais voltassem amplificados e modulados corretamente, identificava-se a aeronave amiga.

Exemplos de Tags

Source: www.rfidprivacy.org

Tipo de etiquetas RFID

Etiquetas passivas

- Não necessitam de bateria, pois usam energia vindo da leitora
- Baixa capacidade de armazenamento (até 4KB) e pouca segurança
- Alcance de leitura mais baixo
- Geralmente Write-Once-Read-Many/Read-Only tags
- Baixo custo: desde 25 centavos a poucos dólares

Etiquetas semi-passivas (ou battery-assisted)

- Retiram energia de uma bateria
- Compatíveis com as leitoras de tags passivas
- Maior alcance, memória e menor latência
- Mais caras

Etiquetas ativas

- Alimentadas por bateria
- Maior capacidade de memória (512 KB)
- Maior alcance de leitura
- Autonomia para envio do sinal
- Alto custo: a partir de 50 dólares

TIPOS DE RFID POR FREQUÊNCIA

Frequency Ranges	LF 125 KHz	HF 13.56 MHz	UHF 868 - 915 MHz	Microwave 2.45 GHz & 5.8 GHz
Typical Max Read Range (Passive Tags)	Shortest 1"-12"	Short 2"-24"	Medium 1'-10'	Longest 1'-15'
Tag Power Source	Generally passive tags only, using inductive coupling	Generally passive tags only, using inductive or capacitive coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling
Data Rate	Slower	Moderate	Fast	Faster
Ability to read near metal or wet surfaces	Better	Moderate	Poor	Worse
Applications	Access Control & Security Identifying widgets through manufacturing processes or in harsh environments Ranch animal identification Employee IDs	Library books Laundry identification Access Control Employee IDs	supply chain tracking Highway toll Tags	Highway toll Tags Identification of private vehicle fleets in/out of a yard or facility Asset tracking

Padrões de RFID - Padrão Gen-2

http://www.gs1.org/epcrfid/epc-rfid-uhf-air-interface-protocol/2-0-0

- O padrão Gen2 se refere mais especificamente às etiquetas da frequência de UHF de classe 1 da segunda geração de protocolos da EPC Global, (quase) totalmente compatível com o padrão ISO 18000-6C.
- Características:
 - Possui uma senha de segurança (32 bits) para travar (lock) a etiqueta contra a escrita de informação
 - Permite a inutilização da tag se for o caso, através de senha específica
 - Possui controle de sessão
 - Proporciona grande agilidade e alcance na leitura da etiqueta
 - Código EPC de 12 bits específico de cada etiqueta, visível a qualquer leitor
 - Memória de usuário opcional
- A princípio, é o padrão adotado pelo Siniav (Sistema de Identificação Automática de Veículos), com algumas características de segurança a mais

PADRÕES DE RFID

Etiquetas Mifare

- Produto que agrega características de segurança mais robustas às especificações de etiquetas passivas RFID
- Operam em frequência HF (13,56 MHz)
- Aplicação em cartões pré-pagos e contactless smartcards (padrão ISSO 14443)
- Vários modelos, com diferentes níveis de segurança e memória de armazenamento
 - MIFARE Classic
 - MIFARE 4K
 - MIFARE Plus
 - MIFARE DESFire EV1

NFC

Near-Field Communication

- Tecnologia interoperável com o RFID, operando na faixa de 13,56MHz
- Consiste em uma leitora de baixo alcance (tipicamente até 20 cm) que consegue comunicar-se com outra leitora, com cartões específicos para NFC e com cartões RFID de 13,56MHz
- Um leitor NFC pode operar de três formas:
 - Modo de leitora: o dispositivo NFC pode ler e escrever tags, de modo compatível com o padrão ISO 14443 (contacless smartcards)
 - Modo Peer-to-Peer: dois dispositivos NFC podem trocar dados entre si, operando de acordo com o padrão ISO/IEC 18092.
 - Modo de emulação de cartão: opera como se fosse um cartão RFID, respondendo a comandos de outras leitoras.

NFC

Aplicações em smartphones

- API do Android comporta os três modos de operação, incluido o suporte à leitura de vários padrões de NFC card bem como da MifareClassic e MifareUltraLight (RFID descartável).
 - Outros modelos RFID tag de 13,56MHz podem ser lidos a partir de comandos de baixo nível
- API do iOS é bem mias limitada, podendo ser acessada somente para funções de pagamento por enquanto.
- Uso no bilhete único (aplicativo PontoCerto)
 - Aparentemente, trata-se de um Mifare Classic 1K (!!!)
 - http://sao-paulo.estadao.com.br/noticias/geral,falha-de-seguranca-permite-fraudar-bilhete-unico-em-apenas-5-segundos,835002

REDE ZIGBEE

Introdução

- Rede sem fio que utiliza rádios padrão IEEE 802.15.4
 - Rádio semelhante ao Bluetooth, com menor consumo
- Considerada uma rede WPAN, ou seja uma Wireless Personal Area Network
- Banda de transmissão estreita, de até 250kbps
 - Muito limitada para voz e imagem
- Primeira especificação data de 2006, e vem evoluindo desde então
 - Zigbee Pro: evolução da especificação original que permite maior segurança de comunicação e virtualmente dezenas de milhares de dispositivos na rede
- Formação mesh: roteamento automático dos dados de um sensor para o outro até o destino

ELEMENTOS DE UMA REDE ZIGBEE

Uma rede Zigbee é formada por três tipos de dispositivos, de acordo com o seu papel na rede

- Coordenador (Coordinator)
 - Tem a capacidade de iniciar a formação da rede
 - Em geral, é o nó que faz o papel de central de segurança da rede
 Zigbee, autorizando ou negando a entrada de novos nós
 - Em redes sem a central de segurança, o coordenador pode até ser desligado após a formação inicial da rede
 - Seu endereço de rede é sempre 0 (zero)
- Roteadores (Routers)
 - Dispositivos que podem retransmitir os pacotes de dados a outros dispositivos
 - Se não houver a necessidade de aprovação de uma central, o próprio roteador pode admitir a entrada de outros dispositivos na rede
 - Tirando suas funções específicas, o coordenador comporta-se como um roteador

ELEMENTOS DE UMA REDE ZIGBEE

End Device

- End Devices: dispositivos móveis e de menor consumo, que podem se movimentar pela rede
 - Necessitam estar conectadas a um Roteador ou ao Coordenador, podendo receber mensagens apenas desse dispostivo
 - Não podem enviar mensagens senão pelo Roteador ou Coordenador a que está conectado
 - Caso perca contato com seu Roteador, deve procurar outro para se conectar (mobilidade na rede)
 - Diferentemente dos demais dispositivos, pode ficar em estado de baixa energia, sendo reativado por um evento externo ou por um temporizador interno
 - Pode ser alimentado por bateria, enquanto os demais costumam ser alimentados pela rede elétrica por ficarem ligados indefinidamente

ELEMENTOS DE UMA REDE ZIGBEE

ZIGBEE ALIANCE

Associação de fabricantes e pesquisadores que definem os padrões de protocolo Zigbee

- A especificação Zigbee é bastante abrangente, e abarca desde a camada física e de link de dados, especificada pelo padrão IEEE 802.15.4, até as camadas de rede e de aplicação
- As especificações da camada de rede englobam a definição dos três tipos de dispositivos e do protocolo de roteamento e troca de mensagens no nível da rede
- Com relação ao nível da aplicação, a Zigbee Aliance define diversos perfis de aplicação (Application Profiles), que especificam as mensagens que cada dispositivo pode trocar na rede a depender do tipo de papel que ele implementa. Dentre os principais perfis, temos:
 - Home Automation: automação residencial
 - Building Automation: automação predial
 - Smart Grid: automação da rede elétrica
 - Health care: comunicação entre dispositivos médicos
 - Light Link: controle da iluminação, especialmente LED

Zigbee e outras tecnologias no modelo da IoT

Fonte: www.internet-of-things-research.eu [5]

ENDEREÇAMENTO DAS APLICAÇÕES

Como enviar comandos para um dispositivo na rede Zigbee

- O protocolo de rede Zigbee define dois tipos de endereçamento para o nó:
 - Endereço de rede, ou Short Address: endereçamento de 16 bits que é único dentro da rede. É gerado toda vez que algum nó é admitido na rede Zigbee.
 - Endereço IEEE, ou Extended Address: endereçamento de 64 bits que é único para cada dispositivo Zigbee. Cada fabricante possui uma faixa de endereços que pode utilizar, e fornece esse endereço de fábrica para todos os chips ou dispositivos que vende
 - Recentemente foi lançada a especificação Zigbee IP que permite o endereçamento de dispositivos com IPv6, porém com aplicação muito limitada
- Cada aplicação dentro de um dispositivo Zigbee possui uma identificação interna ao nó, para que possa receber comandos no nível da aplicação. Essa identificação interna é chamada End Point, que pode variar de 0 a 253.
- O End Point 0 é reservado para o Zigbee Device Object (ZDO), que fornece informações a respeito do nó em si, e permite as operações de entrada e saída na rede, descoberta de aplicações, etc.

MENSAGENS DE APLICAÇÃO

- Cada aplicação ocupa um End Point dentro de um nó Zigbee
- Em geral, temos um end point com a aplicação principal, que executa a tarefa a que o nó se destina, e o end point do ZDO
- No entanto, as mensagens que podem ser enviadas ou recebidas para uma determinada aplicação dependem:
 - 1. do perfil de aplicação a que a aplicação pertence (definido pelo ProfileId)
 - 2. da aplicação específica dentro do perfil de aplicação (DeviceID)
- Cada aplicação em um nó Zigbee tem uma identificação denominada DeviceID, que indica qual é a função que ela ocupa dentro do perfil de aplicação. Assim, dentro do perfil Home Automation, temos os devices "On/Off output", "Light", "Dimmable Light", "Switch", "Dimmer Switch", etc.
 - Cada DeviceID possui uma lista de mensagens que podem ser recebidas ou enviadas. Assim, um "On/Off output" pode receber mensagens de "ON", "OFF" e "TOGGLE", por exemplo

Bluetooth

- Tecnologia criada pela Ericsson em 1994, com o objetivo de padronizar a comunicação entre celulares e computadores, foi encampada pela SIG (Special Interest Group) em 1999.
- O nome foi inspirado no rei Harald Bluetooth, que unificou a Noruega e a Dinamarca no século X
- Opera na faixa não licenciada de 2,4GHz
- PAN (Persona Area Network): Tem a finalidade de conexão entre dispositivos pessoais
- Forma uma rede em topologia estrela conhecida como "piconet", onde um dispositivo central (mestre) se conecta a, no máximo 7 dispositivos periféricos (escravos).
 - O papel do dispositivo mestre é definir os parâmetros da comunicação

Piconet

Formação de uma Scatternet

- Em uma piconet toda comunicação ocorre entre mestre e escravos.
- Não existe comunicação direta entre escravos em uma *piconet*.
- Em um determinado local podem existir várias piconets independentes, com seu próprio canal de comunicação.
- Um dispositivo Bluetooth pode participar ao mesmo tempo em duas ou mais piconets, não podendo ser mestre de mais de uma piconet.
- Um dispositivo pode ser escravo em várias piconets independentes, desde que mude o canal de comunicação de tempos em tempos.
- Um dispositivo Bluetooth que é um membro de duas ou mais piconets é dito estar envolvido em uma scatternet, o que não implica necessariamente em qualquer função ou capacidade de roteamento no dispositivo Bluetooth
- Os protocolos do Bluetooth não oferecem esta funcionalidade, que é responsabilidade de protocolos de mais alto nível.

Scatternet

Bluetooth BR/EDR

- Os dispositivos Bluetooth mais comuns empregam a versão 2.1 da tecnologia, conhecida como Basic Rate/Enhanced Data Rate (BR/EDR)
 - Permite o uso de pareamento seguro através de PIN ou de confirmação do outro dispositivo através do pressionamento de um botão
- Enquanto a BR permite comunicação de até 1 Mbps, essa taxa de transmissão dobra para a versão EDR, mantendo um baixo consumo de energia em dispositivos que apenas transmitem dados, como mouse e teclado

Bluetooth Low Energy

- Embora a especificação Bluetooth se preocupe com a transmissão de dados ponto a ponto com baixa potência, visando conectar dispositivos móveis, as versões tradicionais da tecnologia não se encaixam nas necessidades energéticas mais gerais da IoT
 - Os perfis de aplicação envolvidos estão mais relacionados com a transmissão de mídia de áudio, o roteamento de conexões de internet e a transferência de arquivos
- A partir da versão 4.0, foi introduzido um novo protocolo, denominado GATT (Generic Attribute), com foco na transmissão de pequenos pacotes de dados contendo o valor de atributos
 - As aplicações que conversam usando o GATT são conhecidas como BLE, ou Bluetooth Low Energy, já que este permite que o rádio transmissor fique latente na maior parte do tempo
 - As aplicações que usam os protocolos da BR/EDR não podem migrar para o GATT

Os perfis de aplicação do BLE

- Bluetooth, assim como o Zigbee, define seus perfis de aplicação (Application Profiles)
 - A lista desses perfis pode ser encontrada em:
 https://www.bluetooth.com/specifications/adopted-specifications
- Os perfis que usam BR/EDR não são compatíveis com o BLE.
- Os perfis que usam a tecnologia BLE são baseados no GAP Generic Attribute Profile.
 - Esses perfis definem diversos atributos que serão enviados ou recebidos pelos dispositivos.
 - Cada atributo possui um identificador numérico e um ou mais pares de nome/valor de propriedades
 - Os diferentes atributos definidos pelo SIG podem ser encontrados em: https://www.bluetooth.com/specifications/gatt/characteristics
- As aplicações mas comuns usando GATT são os Beacons e os dispositivos de monitoramento de sinais biológicos

Avanços da tecnologia Bluetooth

- Recentemente foi lançada a versão Bluetooth 5, que incrementam o alcance e a capacidade de transmissão de dados por dispositivos BLE
- Diversos fabricantes têm desenvolvido soluções para criação de redes Mesh com BLE, dentre elas a Estimote, a Qualcomm e a Mindtree, porém essas solução não são interoperáveis, de forma que a Bluetooth ainda não rivaliza com Z-Wave e Zigbee, em produtos de prateleira, embora se mostre uma solução um pouco mais barata.
- No entanto, dada a disseminação da tecnologia Bluetooth em smartphones, uma futura especificação oficial de rede mesh poderá transformar BLE no padrão de-facto para IoT, depreciando as demais.

iBeacons e Eddystone

Protocolos de envio de localização criados pela Apple e Google para a localização de smartphones em áreas internas

- A localização de dispositivos em áreas internas, onde o sinal do GPS é muito fraco ou inexistente, é denominada indoor localization
- Para esse tipo de navegação, para além das informações dos access point WiFi, a Apple criou um padrão para comunicação entre dispositivos BLE (Bluetooth Low Energy, ou Bluetooth 4.0) e dispositivos móveis dotados de BLE que permite que estes últimos calculem sua localização
 - Uso da API Core Location em dispositivos com iOS 7 ou superior
 - A Google em seguida lançou o protocolo aberto Eddystone
 - A partir da versão 4.4, celulares Android podem notificar a proximidade de beacons (iBeacons quanto Eddystone) anunciando informações
- Diversos dispositivos BLE alimentados por bateria (beacons) são instalados no ambiente (seja um loja, um shopping, um estacionamento, etc.), emitindo uma mensagem a intervalos regulares de tempo
 - Topologia: self-positioning
- Técnica de localização:
 - Trilateração a partir do RSSI, ou
 - Localização por proximidade (não é necessário saber a posição exata dos beacons)

Pontos a observar

- Tecnologias de comunicação voltadas para a rede de sensores de IoT em geral possuem baixa largura de transmissão e baixos requisitos de energia, diminuindo o alcance
 - Etiquetas RFID usam a energia da leitora (passivas), ou apenas acionam sua própria bateria quando percebem a presença da leitora (semi-passivas)
 - Dispositivos Zigbee, BLE, e outros ficam em estado de latência com baixíssimo consumo de energia, ligando o rádio de tempos em tempos e em curtos intervalos. Dessa forma, sua bateria pode durar de 6 meses a alguns anos
 - A Wi-Fi Aliance lançou em 2016 o padrão 802.15.11ah, com baixo consumo de energia, porém não é compatível com as aplicação Wi-Fi atuais
 - Padronização de protocolos e a disponibilidade de redes de comunicação tipo mesh são outros fatores importantes para a implantação da tecnologia em larga escala
 - Bluetooth ainda não superou essas dificuldades
- Um promessa para os próximos anos são as tecnologias de longo alcance (1 a 2km) para IoT, funcionando na faixa de 850 – 950 MHz, como SigFox e LoRaWAN
 - Comercialização de serviços de dados especificamente para IoT e com grande confiabilidade

REFERÊNCIAS

- Rapapport, T. Comunicações sem fio: Princípios e Práticas. 2ª. Ed. Ed. Pearson-Prentice Hall, 2009.
- Zigbee.org
- http://www.teleco.com.br/tutoriais/tutorialblue/pagina_1.asp
- https://www.bluetooth.com/what-isbluetooth-technology/how-it-works/br-edr
- https://www.bluetooth.com/specifications/g eneric-attributes-overview
- https://www.bluetooth.com/what-isbluetooth-technology/bluetooth-fact-orfiction

Copyright © 2017 Prof. Antonio Selvatici

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).