B9.1 (Matrix methods for Linear Systems)

Say we have an equation of the form;

$$x_{2}' = 4x_{1} - 4x_{2}$$

Allows:

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

linear . nomogeneous system in normal form,

express this system on x'= Ax , . where. A .is

the coefficient matrix and Ñ. sdution Vector X The

ue have higher order differential functions of this form,

introduce the following notations

$$X_1 = X$$
 $X_2 = X'$

Second derivative of X' , or X'' , is just X_2''
 $X_3 = Y''$
 $X_4 = Y''$

Second derivative of Y' , or Y'' , is just X_4''

the example below:

①
$$2 \times ^n + 6 \times - 2y = 0$$

Introduce the $\begin{cases} x_1 = x \\ x_2 = x' \end{cases}$

O $y'' + 2y - 2x = 0$

Notation:
$$\begin{cases} x_1 = x \\ x_2 = y' \end{cases}$$

$$\begin{cases} x_1 = x \\ x_2 = y' \end{cases}$$

$$2 \cdot x_{2}' + 6x_{1} - 2x_{3} = 0$$
.

 $x_{4}' + 2x_{2} - 2x_{1} = 0$ normal form

$$\begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ \times 2 \\ \times 3 \\ X_{4} \end{bmatrix}$$

- So, now do we avoidly go about finding a general solution to $X'(t) = A_X(t)$
 - Let $A = [a_{ij}]$ be an nxn constant matrix. The eigenvalue of A are those numbers (real or complex) numbers r for which (A-rI)u=0. Now at least one nontrival (real or complex) solution to u
 - The corresponding nontraine solutions a are called the eigenviront of A associated with r
 - Theorem 5: Suppose the nxn constant matrix A has n linearly internet eigenvectors $u_1, u_2, u_3, ..., u_n$, and let r_i be the eigenvalue corresponding to u_i . Then, $\{e^{r_i t}u_i, e^{r_2 t}u_2, e^{r_3 t}u_3, ..., e^{r_n t}u_n\}$ is a fundamental solution set and $\chi(t) = [e^{r_i t}u_i, e^{r_2 t}u_2, ..., e^{r_n t}u_n]$ is a fundamental matrix on $(-\infty, \infty)$ for homogenous system $\chi' = A\chi$.
- Thus, our general solution of x' = Ax is: $x(\tau) = c_1 e^{c_1 \tau} u_1 + c_2 e^{c_1 \tau} u_2 + ...$ Cherother Theorem 6: If r_1 , rm are distinct eigenvalues of the matrix A and u_1 is an eigenvalue associated with r_1 , then u_1 , up are linearly independent
 - · When solving for eigeniales, always have left site "alore"

Now suppose that when we find the eigenville for $\chi'(\tau) = A_{\chi(\tau)}$ we end up with $r_1 = \lambda + \beta i$ and $r_2 = \lambda - \beta i$ with associated eigenvectors $Z_1 = \alpha + i b$, $Z_2 = \alpha - i b$, then two lineary. Independed real vector solutions to $\chi'(\tau) = A_{\chi(\tau)}$ are:

Recall that a is the <u>real</u> portion of the eigenvector, by

Example: Find the eigenvectors given that $\lambda_1 = -1 + 2i$, $\lambda_2 = -1 - 2i$. $A = \begin{bmatrix} -2 & -1 \\ 5 & 0 \end{bmatrix}$

choose that
$$V_1 = \begin{bmatrix} 1 \\ (-1+2i) \end{bmatrix}$$
 or $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ at $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$