Lecture 15: Object Detectors (II)

Last Time: Transfer Learning

1. Train on ImageNet

Last Time: Localization Tasks

Classification

No spatial extent

Semantic Segmentation

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

Last Time: R-CNN

Classify each region

Bounding box regression:

Predict "transform" to correct the

Rol: 4 numbers (t_x, t_y, t_h, t_w)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Last Time: R-CNN

Classify each region

Bounding box regression:

Predict "transform" to correct the

Rol: 4 numbers (t_x, t_y, t_h, t_w)

Problem: Very slow! Need to do 2000 forward passes through CNN per image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Last Time: R-CNN

Classify each region

Bounding box regression: Predict "transform" to correct the Rol: 4 numbers (t_x, t_y, t_h, t_w)

Problem: Very slow! Need to do 2000 forward passes through CNN per image

Idea: Overlapping proposals cause a lot of repeated work: same pixels processed many times. Can we avoid this?

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

"Backbone" network: AlexNet, VGG, ResNet, etc Image features Run whole image through ConvNet ConvNet Input image

Regions of Interest (Rols) from a proposal method Image features "Backbone" Run whole image through ConvNet network: AlexNet, VGG, ConvNet ResNet, etc Input image

Regions of Interest (Rols) from a proposal Crop + Resize features method Image features "Backbone" Run whole image through ConvNet network: AlexNet, VGG, ConvNet ResNet, etc Input image

Per-Region network is relatively lightweight

Most of the computation happens in backbone network; this saves work for overlapping region proposals

Category and box **Bbox** Bbox Bbox transform per region Class Class Class Regions of Per-Region Network NN NNO Interest (Rols) from a proposal Crop + Resize features method Image features Run whole image "Backbone" through ConvNet network: AlexNet, VGG, ConvNet ResNet, etc Input image

Example: When using AlexNet for detection, five conv layers are used for backbone and two FC layers are used for perregion network

Example:
For ResNet, last
stage is used as
per-region
network; the rest
of the network is
used as backbone

How to crop features?

17

Every position in the output feature map depends on a 3x3 receptive field in the input

3x3 Conv Stride 1, pad 1

Input Image: 8 x 8

Every position in the output feature map depends on a 3x3 receptive field in the input

3x3 Conv Stride 1, pad 1

Input Image: 8 x 8

Every position in the output feature map depends on a <u>5x5</u> receptive field in the input

3x3 Conv Stride 1, pad 1

3x3 Conv Stride 1, pad 1

Input Image: 8 x 8

Moving one unit in the output space also moves the receptive field by one

3x3 Conv Stride 1, pad 1 3x3 Conv Stride 1, pad 1

Input Image: 8 x 8

Projecting Points

Projecting Points

Same logic holds for more complicated CNNs, even if spatial resolution of input and output are different

Projecting Points

Same logic holds for more complicated CNNs, even if spatial resolution of input and output are different

Projecting Boxes

We can use this idea to project bounding boxes between an input image and a feature map

Input Image (e.g. 3 x 640 x 480)

Want features for the box of a fixed size (2x2 in this example, 7x7 or 14x14 in practice)

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

Want features for the box of a fixed size (2x2 in this example, 7x7 or 14x14 in practice)

Want features for the box of a fixed size (2x2 in this example, 7x7 or 14x14 in practice)

(e.g. 3 x 640 x 480)

(e.g. 512 x 20 x 15)

grid cells Project proposal onto features **CNN** Image features

"Snap" to grid of (roughly) grid cells equal subregions

Want features for the box of a fixed size (2x2 in this example, 7x7 or 14x14 in practice)

Input Image (e.g. 3 x 640 x 480)

(e.g. 512 x 20 x 15)

"Snap" to grid cells Project proposal onto features **CNN** Image features Input Image (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice 512x7x7)

Region features always the same size even if input regions have different sizes!

"Snap" to grid cells Project proposal onto features **CNN** Image features Input Image

(e.g. 3 x 640 x 480)

(e.g. 512 x 20 x 15)

Problem: Slight misalignment due to snapping; different-sized subregions is weird

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice 512x7x7)

Region features always the same size even if input regions have different sizes!

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Want features for the box of a fixed size (2x2 in this example, 7x7 or 14x14 in practice)

He et al, "Mask R-CNN", ICCV 2017.

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Sample features at regularly-spaced points in each subregion using bilinear interpolation

He et al, "Mask R-CNN", ICCV 2017

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid₃cells:

 $f_{6.5,5.8} = (f_{6,5} * 0.5 * 0.2) + (f_{7,5} * 0.5 * 0.2)$

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Divide into equal-sized subregions (may not be aligned to grid!)

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid₂çells:

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid, cells:

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid, gells:

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring $grid_4$ ells:

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid₄cells:

He et al, "Mask R-CNN", ICCV 2017

Fast R-CNN: Apply differentiable cropping to shared image features

"Slow" R-CNN: Apply differentiable cropping to shared image features

Recall: Region proposals computed by heuristic "Selective Search" algorithm on CPU -- let's learn them with a CNN instead!

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

loss

Insert Region Proposal **Network (RPN)** to predict proposals from features

Otherwise same as Fast R-CNN: Crop features for each proposal, classify each one

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 5 x 6)

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Imagine an anchor box of fixed size at each point in the feature map

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Imagine an anchor box of fixed size at each point in the feature map

Run backbone CNN to get features aligned to input image

CNN Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Imagine an anchor box of fixed size at each point in the feature map

Run backbone CNN to get features aligned to input image

(e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Imagine an anchor box of fixed size at each point in the feature map

Run backbone CNN to get features aligned to input image

CNN Input Image

(e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Imagine an anchor box of fixed size at each point in the feature map

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Imagine an anchor box of fixed size at each point in the feature map

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Predict object vs not object scores for all anchors with a conv layer (512 input filters, 2 output filters)

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

For positive anchors, also predict a transform that converting the anchor to the GT box (like R-CNN)

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

For positive anchors, also predict a transform that converting the anchor to the GT box (like R-CNN)

Predict transforms with conv

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here K = 6)

Run backbone CNN to get features aligned to input image

 $(e.g. 3 \times 640 \times 480)$

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here K = 6)

During training, supervised positive / negative anchors and box transforms like R-CNN

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here K = 6)

Positive anchors: >= 0.7 IoU with some GT box (plus highest IoU to each GT)

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here K = 6)

Negative anchors: < 0.3 IoU with all GT boxes. Don't supervised transforms for negative boxes.

Run backbone CNN to get features aligned to input image

 $(e.g. 3 \times 640 \times 480)$

Each feature corresponds to a point in the input

Image features $(e.g. 512 \times 5 \times 6)$ In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here K = 6)

Neutral anchors: between 0.3 and 0.7 IoU with all GT boxes; ignored during training

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here K = 6)

At test-time, sort all K*5*6 boxes by their positive score, take top 300 as our region proposals

Jointly train with 4 losses:

- **RPN classification**: anchor box is object / not an object
- RPN regression: predict transform from anchor box to proposal box
- **Object classification**: classify proposals as background / object class
- **Object regression**: predict transform from proposal box to object box

R-CNN Test-Time Speed

Faster R-CNN is a

Two-stage object detector

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Dealing with Scale

We need to detect objects of many different scales. How to improve *scale invariance* of the detector?

Dealing with Scale: Image Pyramid

Classic idea: build an image pyramid by resizing the image to different scales, then process each image scale independently.

Dealing with Scale: Image Pyramid

Classic idea: build an image pyramid by resizing the image to different scales, then process each image scale independently.

Problem: Expensive! Don't share any computation between scales

Dealing with Scale: Multiscale Features

CNNs have multiple *stages* that operate at different resolutions. Attach an independent detector to the features at each level

Dealing with Scale: Multiscale Features

CNNs have multiple *stages* that operate at different resolutions. Attach an independent detector to the features at each level

Problem: detector on early features doesn't make use of the entire backbone; doesn't get access to high-level features

224 x 224 Image

224 x 224 Image

Add top down connections that feed information from high level features back down to lower level features

Efficient multiscale features where all levels benefit from the whole backbone! Widely used in practice

Add top down connections that feed information from high level features back down to lower level features

Efficient multiscale features where all levels benefit from the whole backbone! Widely used in practice

Lin et al, "Feature Pyramid Networks for Object Detection", ICCV 2017

from all levels route to a shared second stage

Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a

Two-stage object detector

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Run backbone CNN to get features aligned to input image

 $(e.g. 3 \times 640 \times 480)$

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6) Similar to RPN – but rather than classify anchors as object/no object, directly predict object category (among C categories) or background

Lin et al, "Focal Loss for Dense Object Detection", ICCV 2017

Problem: class imbalance – many more background anchors vs non-background

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Run backbone CNN to get features aligned to input image

 $(e.g. 3 \times 640 \times 480)$

Each feature corresponds to a point in the input

Image features $(e.g. 512 \times 5 \times 6)$ Problem: class imbalance – many more background anchors vs non-background

Solution: new loss function (Focal Loss); see paper

$$ext{CE}(p_{ ext{t}}) = -\log(p_{ ext{t}}) \ ext{FL}(p_{ ext{t}}) = -(1-p_{ ext{t}})^{\gamma} \log(p_{ ext{t}})$$

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

Single-Stage detectors can be much faster than two-stage detectors

Single-Stage detectors can be much faster than two-stage detectors

Faster R-CNN with Feature Pyramid Network

"Anchor-free" detector

Single-Stage Detectors: FCOS

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

CNN

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

"Anchor-free" detector

Classify points as positive if they fall into a GT box, or negative if they don't

Train independent percategory logistic regressors

CNN

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

"Anchor-free" detector

For positive points, also regress distance to left, right, top, and bottom of ground-truth box (with L2 loss)

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

"Anchor-free" detector

For positive points, also regress distance to left, right, top, and bottom of ground-truth box (with L2 loss)

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

"Anchor-free" detector

Finally, predict "centerness" for all positive points (using logistic regression loss)

$$centerness = \sqrt{\frac{\min(L,R)}{\max(L,R)} \cdot \frac{\min(T,B)}{\max(T,B)}}$$

Ranges from 1 at box center to 0 at box edge

Run backbone CNN to get features aligned to input image

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

"Anchor-free" detector

Test-time: predicted "confidence" for the box from each point is product of its class score and centerness

$$centerness = \sqrt{\frac{\min(L,R)}{\max(L,R)} \cdot \frac{\min(T,B)}{\max(T,B)}}$$

Ranges from 1 at box center to 0 at box edge

FCOS also uses a Feature Pyramid Network with heads shared across stages

Summary: Beyond Image Classification

Classification

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

Summary

"Slow" R-CNN: Run CNN independently for each region

Fast R-CNN: Apply differentiable cropping to shared image features

Faster R-CNN: Compute proposals with CNN **Single-Stage**: Fully convolutional detector

With anchors: RetinaNet

Anchor-Free: FCOS

Next time: Image and Instance Segmentation