

Chemistry Fundamentals

Lecture 18: Basic Stoichiometry

Mohamed Kamal

Introduction to Stoichiometry - Recipe Chemistry

Definition: Quantitative relationship between reactants and products in chemical reactions

Etymology: From Greek "stoicheion" (element) + "metron" (measure)

Key Concept: Balanced equations provide molar ratios

Real-World Importance:

- Drug manufacturing dosages
- Industrial chemical production
- Environmental impact calculations
- Economic considerations in manufacturing

Cooking Analogy: Like following a recipe - need right proportions

Recipe: 2 slices bread + 1 slice cheese → 1 sandwich

Chemistry: $2H_2 + O_2 \rightarrow 2H_2O$

Mole-to-Mole Calculations - The Foundation

Basic Relationship: Coefficients in balanced equations = molar ratios

Example Equation: $N_2 + 3H_2 \rightarrow 2NH_3$

Molar Ratios

- 1 mol N_2 : 3 mol H_2 : 2 mol NH_3
- 1 mol N₂ produces 2 mol NH₃
- 3 mol H₂ produces 2 mol NH₃

Conversion Factor Method

- Use coefficients as conversion factors
- Example: mol NH₃ = mol N₂ × (2 mol NH₃/1 mol N₂)

Worked Problem: How many moles of NH₃ from 4.5 mol N₂?

 $4.5 \text{ mol N}_2 \times (2 \text{ mol NH}_3/1 \text{ mol N}_2) = 9.0 \text{ mol NH}_3$

Reverse Calculation: How many moles N₂ needed for 7.2 mol NH₃?

7.2 mol NH₃ × (1 mol N₂/2 mol NH₃) = 3.6 mol N₂

Mass-to-Mass Calculations - Practical Applications

Step 1

Mass of given substance → moles of given substance

Step 2

Moles of given substance → moles of desired substance

Step 3

Moles of desired substance

→ mass of desired substance

Example Reaction: $2Al + 3CuSO_4 \rightarrow Al_2(SO_4)_3 + 3Cu$

Problem: How many grams of Cu from 15.0 g Al?

Step-by-Step Solution:

Step 1: 15.0 g Al × (1 mol Al/26.98 g Al) = 0.556 mol Al

Step 2: 0.556 mol Al × (3 mol Cu/2 mol Al) = 0.834 mol Cu

Step 3: 0.834 mol Cu × (63.55 g Cu/1 mol Cu) = 53.0 g Cu

One-Line Setup:

15.0 g Al × (1 mol Al/26.98 g Al) × (3 mol Cu/2 mol Al) × (63.55 g Cu/1 mol Cu) = 53.0 g Cu

Limiting Reagent Concept - The Bottleneck

Definition: Reactant that is completely consumed first, limiting product formation

Sandwich Analogy

- 10 slices bread, 3 slices cheese
- Can make only 3 sandwiches
- Cheese is limiting reagent
- Bread is excess reagent (4 slices left over)

Chemical Example: 2H₂ + O₂ → 2H₂O

- Given: 5 mol H₂ and 2 mol O₂
- Ratio needed: 2 mol H₂: 1 mol O₂
- Available: 5 mol H_2 : 2 mol O_2 = 2.5:1 ratio
- O₂ is limiting (need 2:1 ratio, have 2.5:1)

Identification Method:

- 1. Calculate moles of each reactant
- 2. Determine which runs out first based on stoichiometry
- 3. Use limiting reagent for product calculations

Economic Importance: Minimize waste, maximize profit in industrial processes

Limiting Reagent Calculations - Step-by-Step

Problem Setup: 2Al + 3Br₂ → 2AlBr₃

Given: 25.0 g Al and 100.0 g Br₂

1

Convert to moles

Al: $25.0 g \div 26.98 g/mol = 0.927 mol Al$

 Br_2 : 100.0 g ÷ 159.8 g/mol = 0.626 mol Br_2

2

Calculate required ratios

Need 2 mol Al : 3 mol Br₂

For 0.927 mol Al: need 0.927 × (3/2) = 1.39 mol

Br₂

Have only 0.626 mol Br₂

Br₂ is limiting reagent

3

Calculate products using limiting reagent

AlBr₃ produced: $0.626 \text{ mol Br}_2 \times (2 \text{ mol AlBr}_3/3 \text{ mol Br}_2) = 0.417 \text{ mol AlBr}_3$

Mass AlBr₃: $0.417 \text{ mol} \times 266.7 \text{ g/mol} = 111 \text{ g}$ AlBr₃

4

Calculate excess reagent remaining

Al used: $0.626 \text{ mol Br}_2 \times (2 \text{ mol Al}/3 \text{ mol Br}_2) = 0.417 \text{ mol Al}$

Al remaining: 0.927 - 0.417 = 0.510 mol Al = 13.8 g Al

Theoretical and Percent Yield

Key Concepts:

- Theoretical Yield: Maximum amount of product possible based on limiting reagent
- Actual Yield: Amount of product actually obtained in experiment
- **Percent Yield**: (Actual yield/Theoretical yield) × 100%

Why Yields Are Less Than 100%:

- Incomplete reactions
- Side reactions
- Product lost during purification
- Measurement errors
- Reversible reactions

Example Calculation:

- Theoretical yield: 111 g AlBr₃
- Actual yield: 95.2 g AlBr₃
- Percent yield: (95.2 g/111 g) × 100% = 85.8%

Interpreting Percent Yield:

- 90%: Excellent yield
- 70-90%: Good yield
- 50-70%: Fair yield
- <50%: Poor yield (investigate problems)

Industrial Considerations: Higher yields = greater profitability

Gas Stoichiometry - Working with Gas Volumes

Key Relationships at STP

- 1 mole of any gas = 22.4 L
- Gas volumes are directly proportional to moles

Modified Stoichiometry Steps

- Convert gas volume to moles (÷ 22.4
 L/mol)
- 2. Use molar ratios from balanced equation
- 3. Convert back to volume if needed (× 22.4 L/mol)

Example Reaction: $2H_2 + O_2 \rightarrow 2H_2O$

Problem: What volume of O_2 (at STP) reacts with 15.0 L H_2 ?

Step-by-Step Solution:

- 1. $15.0 L H_2 \div 22.4 L/mol = 0.670 mol H_2$
- 2. $0.670 \text{ mol H}_2 \times (1 \text{ mol O}_2/2 \text{ mol H}_2) = 0.335$ mol O₂
- 3. $0.335 \text{ mol } O_2 \times 22.4 \text{ L/mol} = 7.50 \text{ L } O_2$

Direct Volume Ratio:

At same T and P. volume ratios = molar ratios

 $15.0 L H_2 \times (1 L O_2/2 L H_2) = 7.50 L O_2$

Real-World Application: Industrial gas reactions,

fuel combustion calculations

Complex Stoichiometry Problems - Putting It All Together

1

Multi-Step Problem Strategy

Write and balance the equation

2

Identify given information and what to find

3

Determine limiting reagent if multiple reactants given

4

Use appropriate stoichiometric relationships

`

Check units and significant figures

5

Comprehensive Example: Combustion of propane

Equation: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Given: 50.0 g C_3H_8 burns in 120.0 g O_2

Find: Mass of CO₂ produced and percent yield if 125 g CO₂ obtained

Solution:

- 1. Convert to moles:
 - C₃H₈: 50.0 g ÷ 44.10 g/mol = 1.134 mol
 - o O₂: 120.0 g ÷ 32.00 g/mol = 3.75 mol
- 2. Find limiting reagent:
 - Need 1.134 mol $C_3H_8 \times (5 \text{ mol } O_2/1 \text{ mol} C_3H_8) = 5.67 \text{ mol } O_2$
 - ∘ Have only 3.75 mol $O_2 \rightarrow O_2$ is limiting

- 1. Calculate theoretical yield:
 - \circ CO₂: 3.75 mol O₂ × (3 mol CO₂/5 mol O₂) = 2.25 mol CO₂
 - Mass: 2.25 mol × 44.01 g/mol = 99.0 g CO₂
- 2. Calculate percent yield:
 - Percent yield: (125 g/99.0 g) x 100% = 126%
 - Error Check: >100% suggestsexperimental error

I hope that you all enjoyed the course

Looking forward to seeing you soon!

Mohamed Kamal

