ECS 20 Homework 3

ECS 20 — Fall 2016 Section A01

Geoffrey Mohn ID: 912568148

October 25, 2016

Problem 1

Show that this implication is a tautology, by using a table of truth: $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$.

Let LHS be $[(\mathbf{p}\ \lor q) \land (p \to r) \land (q \to r)]$

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$LHS = [(p \lor q) \land (p \to r) \land (q \to r)]$	$LHS \rightarrow r$
T	T	T	T	T	Т	T	T
T	$\mid T \mid$	F	T	F	F	${ m F}$	T
T	F	$\mid T \mid$	T	Γ	Т	${ m T}$	T
T	F	\mathbf{F}	T	F	Т	${ m F}$	T
F	T	$\mid T \mid$	T	T	Т	${ m T}$	T
F	T	$\mid \mathbf{F} \mid$	Γ	T	F	${ m F}$	T
F	F	$\mid T \mid$	F	Т	Т	${ m F}$	T
F	F	F	F	T	Γ	F	T

Problem 2

Show that $[(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology

Let LHS be $(p \lor q) \land (\neg p \lor r)$

p	q	r	$p \lor q$	$\neg p \lor r$	$LHS = (p \lor q) \land (\neg p \lor r)$	$q \lor r$	$LHS \to (q \lor r)$
T	Т	Τ	T	Τ	T	T	Т
T	$\mid T \mid$	F	T	F	${ m F}$	Γ	T
T	F	Γ	Γ	T	${ m T}$	$\mid T \mid$	T
T	F	F	Γ	F	${ m F}$	F	T
F	$\mid T \mid$	Γ	Γ	${ m T}$	${ m T}$	$\mid T \mid$	T
F	$\mid T \mid$	F	Γ	T	${ m T}$	$\mid T \mid$	T
F	\mathbf{F}	Γ	F	T	${ m F}$	$\mid T \mid$	T
F	F	F	F	Т	F	F	T

a) Let x be a real number. Show that "if x^2 is irrational, it follows that x is irrational."

Let $p: x^2$ is irrational let q: x is irrational. prove $p \to q$. Use indirect proof $(\neg q \to \neg p)$.

 $\neg q = x$ is rational. There exists an integer a and a non-zero integer b such that $x = \frac{a}{b}$. Then $x^2 = \frac{a^2}{b^2}$. Since a^2 and b^2 are integers, x^2 is a rational number. $\neg p$ is true. Then $\neg q \to \neg p$ is true, thus $p \to q$ is true.

b) Based on question a), can you say that " if x is irrational, it follows that x^2 is irrational."

It is not a valid proposition. The statement in a) can be simplified as $p \to q$, while the second statement is $q \to p$ so they are not equivalent.

Problem 4

Prove that a square of an integer ends with a 0, 1, 4, 5 6 or 9. (Hint: let n = 10k + l, where l = 0, 1, ..., 9)

Let n be an integer; there exists two integers k and l such that n=10k+l where $0 \le l \le 9$. We get:

$$n^{2} = (10k + l)^{2}$$

$$= 100k + 20kl + l^{2}$$

$$= k \times 100 + 2kl \times 10 + l^{2}$$

 $k \times 100$ and $2kl \times 10$ are multiples of 10. Therefore, n^2 ends as l^2 . In the following table, we show that l^2 always end with a 0, 1, 4, 5, 6, or 9.

1	l^2	end
0	0	0
1	1	1
2	4	4
3	9	9
4	16	6
5	25	5
6	36	6
7	49	9
8	64	4
9	81	1

Prove that if n is a positive integer, then n is even if and only if 5n + 6 is even.

Let p be the proposition "n is even"

q be the proposition "5n + 6 is even".

show that $p \leftrightarrow q$, which is logically equivalent to show that $p \to q$ and $q \to p$.

a) show $p \to q$:

Assue p is true, i.e. n is even, when n is even, there exists an integer k such that n = 2k.

$$5n+6 = 5(2k)+6$$

= $10k+6$
= $2 \times (5k+3)$

Since 5k + 3 is an integer, and 5n + 6 is a multiple of 2, it is always even.

b) show $q \to p$:

Assume q is true, i.e. 5n + 6 is even. As 5n + 6 is even, there exists an integer k such that 5n + 6 = 2k.

$$5n = 2k - 6$$

$$n = 2k - 6 - 4n$$

$$n = 2 \times (k - 3 - 2n)$$

Since k-3-2n is an integer, n is a multiple of 2: it is even. n is even $\leftrightarrow 5n+6$ is even.

Problem 6

Prove that either $3 \times 100^{450} + 15$ or $3 \times 100^{450} + 16$ is not a perfect square.

Let $n = 3 \times 100^{450} + 15$. The two numbers are n and n + 1.

Prove through contradiction: Assume that both n and n+1 are perfect squares:

$$\exists k \in \mathbb{Z}, k^2 = n$$
$$\exists l \in \mathbb{Z}, l^2 = n + 1$$

Then

$$l^2 = k^2 + 1$$
$$(l-k)(l+k) = 1$$

Since l and k are integers, there are only two cases:

- l-k=1 and l+k=1, i.e. l=1 and k=0. Then we would have $k^2=0$, n=0: contradiction
- l-k=-1 and l+k=-1, i.e. l=-1 and k=0. contradiction.

The proposition is true.

Prove or disprove that if a and b are rational numbers, then a^b is also rational.

It is not true. Let a=2 and b=1/2, both a and b are rational numbers. $a^b=\sqrt{2}$ which is irrational.

Problem 8

Prove that at least one of the real numbers $a_1, a_2, \dots a_n$ is greater than or equal to the average of these numbers. What kind of proof did you use?

proof through contradiction.

Assume none of the real numbers $a_1, a_2, ..., a_n$ is greater than or equal to the average of these numbers, shown by E

By definition

$$E = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Assume

$$\begin{array}{ccc} a_1 & < & E \\ a_2 & < & E \end{array}$$

 $a_n < E$ take sum

$$a_1 + a_2 + \dots + a_n < n * E$$

put E the equivalence of E

$$a_1 + a_2 + \dots + a_n < a_1 + a_2 + \dots + a_n$$

a number cannot be smaller than itself so it is not possible. If the contradiction assumption is wrong then the original proposition is correct.

Problem 9

The proof below has been scrambled. Please put it back in the correct order statements order: 3, 5, 4, 2, 1.

Prove that these four statements are equivalent: (i) n^2 is odd, (ii) 1 - n is even, (iii) n^3 is odd, (iv) $n^2 + 1$ is given four propositions are:

- $p: n^2$ is odd
- q: 1-n is even
- $r: n^3$ is odd
- $s: n^2 + 1$ is even

then show that:

- $\bullet \ q \leftrightarrow p$
- \bullet $q \leftrightarrow r$
- \bullet $q \leftrightarrow s$

If these three are logical equivalent then the propositions are true.

- 1) **Proof 1**: 1 n is even $\leftrightarrow n^2$ is odd. two implications: (1) 1 - n is even implies n^2 is odd
 - two implications: (1) 1 n is even implies n^2 is odd n^2 is odd implies that 1 n is even.
 - a) Implication 1: $q \to p$

direct proof.

Assume q is true, i.e. 1 - n is even.

There exists an integer k such that 1 - n = 2k. n = 1 - 2k. Squares on each side:

$$n^{2} = (1 - 2k)^{2} = 4k^{2} - 2k + 1 = 2(2k^{2} - k) + 1$$

 n^2 is odd, so $q \to p$.

b) **Implication 2**: $p \to q$. indirect proof: $\neg q \to \neg p$.

 $\neg q$: 1 - n is odd $\neg p$: n^2 is even.

assume 1-n is odd. There exists an integer k such that 1-n=2k+1; n=-2k. square: $n^2=4k^2$, so n^2 is even.

 $\neg q \rightarrow \neg p$ is true so $p \rightarrow q$ is true.

 $q \to p$ and $p \to q$, then $p \Leftrightarrow q$.

2) **Proof 2**: 1 - n is even $\leftrightarrow n^3$ is odd. $q \leftrightarrow r$

two implications: (1) 1-n is even implies n^2 is odd and (2), n^2 is odd implies that 1-n is even.

a) Implication 1: $q \rightarrow r$

direct proof.

Assume q is true, i.e. 1-n is even. There exists an integer k such that 1-n=2k. n=1-2k. Take cubes

$$n^{3} = (1 - 2k)^{3} = -8k^{3} + 12k^{2} - 6k + 1 = 2(-4k^{3} + 6k^{2} - 3k) + 1$$

 n^3 is odd. $q \to r$.

b) Implication 2: $r \to q$.

indirect proof, $\neg q \rightarrow \neg r$.

- · $\neg q$: 1 n is odd
- $\cdot \neg p$: n^3 is even.

Assume 1-n is odd. There exists an integer k such that 1-n=2k+1; so n=-2k. The cube: $n^3=8k^3=2(4k^3)$, thus n^3 is even.

 $\neg q \rightarrow \neg r$; then $r \rightarrow q$ is true.

 $q \to r$ and $r \to q$, then $r \Leftrightarrow q$.

1) **Proof 3**: 1 - n is even $\leftrightarrow n^2 + 1$ is even.

two implications: (1) 1 - n is even implies $n^2 + 1$ is even and (2), $n^2 + 1$ is even implies that 1 - n is even.

a) Implication 1: $q \rightarrow s$

direct proof.

Assume q is true, i.e. 1-n is even. There exists an integer k such that 1-n=2k. Therefore n=1-2k. Squares on each side:

$$n^{2} = (1 - 2k)^{2} = 4k^{2} - 2k + 1 = 2(2k^{2} - k) + 1$$

Therefore:

$$n^{2} + 1 = 2(2k^{2} - k) + 1 + 1 = 2 * (2k^{2} - k + 1)$$

 n^2+1 is even. so $q\to s$.

b) **Implication 2**: $s \to q$.

indirect proof: $\neg q \rightarrow \neg s$.

- $\cdot \neg q$: 1 n is odd
- $\cdot \neg s$: $n^2 + 1$ is odd.

Assume 1-n is odd. There exists an integer k such that 1-n=2k+1; therefore n=-2k. Take square so that $n^2=4k^2$, then $n^2+1=4k^2+1$. n^2+1 is odd. $\neg q \to \neg s$; is true so $s \to q$ is true.

 $q \to s$ and $p \to s$, so $s \Leftrightarrow q$.

Extra Credit

Use Exercise 8 to show that if the first 10 strictly positive integers are placed around a circle, in any order, then there exist three integers in consecutive locations around the circle that have a sum greater than or equal to 17.

Let $a_1, a_2, ..., a_{10}$ be an order of 10 positive integers from 1 to 10 being placed around a circle the ten numbers a relate first 10 positive integers to get:

$$a_1 + a_2 + \dots + a_{10} = 1 + 2 + \dots + 10 = 55$$
 (1)

 $a_1, a_2, ..., a_{10}$ are not order 1, 2, ..., 10 but the sum is 55

There are 10 sums:

$$S_1 = a_1 + a_2 + a_3$$

$$S_2 = a_2 + a_3 + a_4$$

$$S_3 = a_3 + a_4 + a_5$$

$$S_4 = a_4 + a_5 + a_6$$

$$S_5 = a_5 + a_6 + a_7$$

$$S_6 = a_6 + a_7 + a_8$$

$$S_7 = a_7 + a_8 + a_9$$

$$S_8 = a_8 + a_9 + a_{10}$$

$$S_9 = a_9 + a_{10} + a_1$$

$$S_{10} = a_{10} + a_1 + a_2$$

compute the sum of these numbers:

$$S_1 + S_2 + \dots + S_{10} = (a_1 + a_2 + a_3) + (a_2 + a_3 + a_4) + \dots + (a_{10} + a_1 + a_2)$$

$$= 3 * (a_1 + a_2 + \dots + a_{10})$$

$$= 3 * 55$$

$$= 165$$

The average of $S_1, S_2, ..., S_{10}$ is:

$$\overline{S} = \frac{S_1 + S_2 + \dots + S_{10}}{10}$$

$$= \frac{165}{10}$$

$$= 16.5$$

at least one of S_1 , S_2 , ..., S_{10} is greater than or equal to \overline{S} , S_1 . It cannot be equal to 16.5. So at least one of S_1 , S_2 , ..., S_{10} is greater to or equal to 17.