

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

ОТЧЕТ

о прохождении учебной практики Технологической (проектно-технологической) практики направление подготовки 02.03.01 «Математика и компьютерные науки» профиль «Сквозные цифровые технологии»

		Выполнил студент гр. Б9122-02.03.01 сцт Винницкая Д.С	
Отчет защищен: с оценкой		младший научный сотрудник лаб. 3/2 ТОИ ДВО РАН (должность, уч. звание) Сорокин М. А (подпись)	
		«»2024г.	
Per. №	2024 г.	Практика пройдена в срок с «8» апреля 2024 г. по «28» мая 2024 г.	

г. Владивосток 2024

Оглавление

Введение	3
Актуальность	3
Задачи	3
Цель	3
Теоретическая часть	4
Основы акустики океана	4
Практическая часть	6
Моделирование	6
Методология	6
Формула для расчета скорости звука	6
Результаты моделирования	7
Распространение звука вдоль подводного звукового канала	7
Образование зоны геометрической тени	7
Итог	8
Заключение	8
Индивидуальный вклад членов команды	10
Список используемых источников	11
Приложение	12
Приложение 1	12
Приложение 2	12

Введение

Актуальность

Исследование акустики океана является важной задачей современной науки, поскольку точные и надежные системы подводной навигации необходимы для выполнения различных морских операций. Изучение основ акустики океана позволяет понять, как звук распространяется в воде и какие факторы, такие как температура, соленость и давление, влияют на его скорость. Это знание необходимо для оптимизации подводных навигационных и коммуникационных систем. Обработка экспериментальных данных включает анализ и интерпретацию результатов полевых исследований, что позволяет улучшить точность и надежность акустических моделей. Моделирование акустических полей с использованием виртуальных моделей помогает прогнозировать поведение звуковых сигналов в различных условиях. Эти задачи способствуют развитию технологий для эффективного исследования океанов, повышения безопасности морских операций и улучшения экологического мониторинга.

Задачи

1. Изучение основ акустики океана

• Понимание распространения звука в воде.

2. Обработка экспериментальных данных

• Анализ вводных данных

3. Моделирование акустических полей

Цель:

Смоделировать акустическое поле в среде разработки МАТНLАВ

Теоретическая часть

Основы акустики океана

В рамках производственной практики была выполнена научно-исследовательская работа, сфера которой охватывает акустику океана, что позволило применить теоретические знания на практике и углубить в вышеуказанной области. За время прохождения практики были рассмотрены и изучены теоретические основы в обозреваемой области науки, а также было проведено исследование, заключающееся в моделировании акустических полей с последующим анализом полученного и выявление закономерностей в зависимости от входных данных.

Акустика океана – это раздел акустики, направленный на изучение распространения звуковых волн в океане. Одной из ключевых задач в этой области является разработка систем подводной акустической навигации, необходимых для работы автономных подводных аппаратов (АПА), которые не могут использовать GPS под водой. В связи с этим моделирование распространения звука в океане приобретает особое значение.

Распространение звука в океане

Звук в океане распространяется в виде волн, и скорость их распространения зависит от температуры, солености и давления.

Акустическая навигация и ее значимость

Системы подводной акустической навигации крайне важны для автономных подводных аппаратов, поскольку позволяют им ориентироваться и выполнять задачи на больших глубинах. Такие системы используют гидроакустические сигналы для определения местоположения объектов, что делает их незаменимыми для подводных исследований и операций.

Моделирование звуковых полей

Моделирование акустических полей в океане необходимо для прогнозирования поведения звуковых волн и оптимизации навигационных систем. Одним из методов моделирования является использование широкоугольных параболических уравнений, которые позволяют учитывать сложные условия распространения звука в неоднородной среде.

Экспериментальные методы и их ограничения

Хотя экспериментальные методы исследований океана, такие как акустические измерения и наблюдения, являются важными, они могут быть сложными, дорогостоящими

и иногда невозможными из-за особенностей морской среды. Поэтому использование математических моделей и вычислительных методов особенно важно для эффективного и экономичного проведения исследований.

Изучение основ акустики океана и разработка моделей распространения звука имеют большое значение для создания точных и надежных систем подводной навигации. Эти системы необходимы для работы автономных подводных аппаратов, что делает исследования в области акустики океана актуальными и востребованными в современной науке.

Практическая часть

Моделирование

Для выполнения необходимого ряда задач была выбрана такая интегрированная среда разработки, как MATLAB. Перед непосредственным проведением исследований были изучен синтаксис языка, а также основы разработки алгоритмов и визуализации данных.

В рамках данной работы была выполнена научно-исследовательская работа по моделированию акустических полей в океане. Использование математических моделей для исследования распространения звука в морской среде позволяет глубже понять механизмы передачи звуковых волн.

Методология

Моделирование акустического поля проводилось с использованием следующих параметров:

- Частота звука $f = 400\Gamma$ ц
- Глубина источника $z_s = 20$ м
- Максимальное расстояние $r_{max} = 140 \text{км}$
- Максимальная глубина $z_{max} = 3000$ м
- Порядок аппроксимации пр = 5
- Шаг сетки по расстоянию dr = 2м
- Шаг сетки по глубине dz = 1м
- Справочная скорость звука $c_0 = 1500 \text{м/c}$
- Шаг сетки для профилей дна и гидрологии равная 5000 м.
- Глубина для сохранения вычисленного поля равная 3000 м.

Исследования охватывали волноводы мелкого и глубокого моря, включая переходные зоны.

Формула для расчета скорости звука

Для моделирования использовалась формула для расчета скорости звука, учитывающая вертикальное распределение:

$$c(z) = c_1(1 + \varepsilon (\eta(z) + e^{\eta(z)} - 1))$$
, где $\eta = \frac{2(z - z_1)}{B}$

где z_1 — глубина оси подводного звукового канала, c_1 — скорость звука на оси подводного звукового канала, B и ε — параметр профиля, отвечающий за кривизну графика данной зависимости.

В рассматриваемом в данной исследовательской работе наборе данных получаем $c_0 = 1480 \text{ м/c}$ $\varepsilon = 0.0005, B = 95, z_1 = 200 \text{ м}.$

Результаты моделирования

На представленном графике изображено смоделированное акустическое поле, показывающее распространение звуковых волн в условиях перехода от мелкого моря к глубокому. (Приложение 1) График демонстрирует значительное изменение звукового поля при переходе от мелкой к глубокой воде. В мелком море звук распространяется преимущественно на небольших глубинах, в то время как в глубоководной части звуковые волны могут распространяться на большие расстояния благодаря подводному звуковому каналу (ПЗК).

Распространение звука вдоль подводного звукового канала

Подводный звуковой канал представляет собой слой воды, в котором скорость звука минимальна. Это создает условия для удержания звуковых волн внутри канала и их распространения на большие расстояния с минимальными потерями. В глубоком море ПЗК позволяет звуковым волнам распространяться на тысячи километров, что крайне важно для подводной навигации и связи.

Образование зоны геометрической тени

На графике также видно образование зоны геометрической тени, которая возникает из-за перепадов глубин и свойств водной среды. В этой зоне звуковые волны не могут распространяться прямо, что приводит к снижению интенсивности звука. Такие зоны особенно важны при планировании подводных миссий, так как они могут существенно влиять на качество связи и точность навигации.

Исследования показали, что в волноводах мелкого моря потери на распространение звука оказываются ниже, когда подводный звуковой канал располагается над источником звука.

Итог

Результатом выполненной работы стало успешное моделирование акустических полей, что позволило глубже понять процессы распространения звука в океане. Полученные результаты важны для разработки точных систем подводной навигации и связи. Выполненная работа также позволила приобрести опыт научной деятельности и изучить основы акустики и гидроакустики.

Заключение

Результатом выполнения данной практики стало успешное проведение исследовательской работы, направленной на моделирование акустических полей в океане. В ходе работы были достигнуты важные результаты и приобретены ценные навыки, способствующие развитию как теоретических, так и практических аспектов научной деятельности.

Во-первых, был получен ценный опыт научной работы, который включал в себя все этапы исследовательского процесса: от постановки задачи и формулировки гипотез до анализа полученных данных и их интерпретации. Работа с научной литературой, знакомство с последними исследованиями в области акустики океана и гидроакустики позволили углубить знания и лучше понять современные тенденции и подходы в этой области.

Во-вторых, практика предоставила возможность приобрести навыки работы в команде. Совместная работа над проектом требовала эффективного взаимодействия, обмена идеями и конструктивного решения возникающих проблем. Это способствовало развитию коммуникативных навыков и умений работать в коллективе, что является важным аспектом любой научной деятельности.

Одним из ключевых аспектов практики было изучение и использование инструментов для моделирования и программирования в среде MATLAB. Были изучены основные возможности этого программного обеспечения, включая написание скриптов, использование встроенных функций и создание визуализаций данных. Эти навыки являются фундаментальными для проведения вычислительных экспериментов и анализа данных в научных исследованиях.

Кроме того, в ходе работы были изучены основы акустики. Понимание фундаментальных принципов распространения звука в водной среде, а также факторов,

влияющих на скорость звука, таких как температура, соленость и давление, позволило более глубоко понять процессы, происходящие в океане.

Практика также включала моделирование распространения звука в различных условиях, что позволило изучить влияние различных параметров на акустическое поле. Было показано, как изменения в скорости звука, вызванные вариациями в температуре и солености, могут влиять на распространение звуковых волн и создавать зоны геометрической тени. Эти результаты важны для понимания процессов, происходящих в океане, и для разработки эффективных систем подводной навигации.

В заключение, практика предоставила уникальную возможность применить теоретические знания на практике, что способствовало закреплению и углублению полученных знаний. Выполнение исследовательской работы позволило не только приобрести новые навыки и знания, но и подготовиться к дальнейшей научной деятельности. Полученные результаты и приобретенные навыки будут полезны в будущих исследованиях и профессиональной деятельности в области акустики океана и гидроакустики.

Индивидуальный вклад членов команды

Винницкая Дина Сергеевна

- 1. Программирование, написание вычислительного алгоритма;
- 2. Работа со списками используемых источников;
- 3. Структуризация и оформление отчета;

Пшенник Вячеслав Романович

- 1. Программирование, участие в написании вычислительного алгоритма
- 2. Написание отчета;

Список используемых источников

- Экспериментальное и теоретическое исследование времен прихода и эффективных скоростей при дальнем распространении импульсных акустических сигналов вдоль кромки шельфа в мелком море, Петров П. С., Голов А. А., Безответных В. В., Буренин А. В., Козицкий С. Б., Сорокин М. А., Моргунов Ю. Н., Акустический журнал. 2020. Т. 66. № 1. С. 20-33.
- Оценка влияния синоптических вихрей на точность решения задач акустической дальнометрии, Сорокин М.А., Петров П.С., Каплуненко Д.Д., Степанов Д.В., Моргунов Ю.Н., Подводные исследования и робототехника. 2020. № 4(34). С. 53-60.
- Исследование влияния гидрологических условий на распространение псевдослучайных сигналов из шельфа в глубокое море, Моргунов Ю.Н., Безответных В.В., Буренин А.В., Войтенко Е.А., Акустический журнал. 2016. Т. 62. № 3. С. 341-347.
- Исследования пространственно-временной структуры акустического поля, формируемого в глубоком море источником широкополосных импульсных сигналов, расположенным на шельфе Японского моря, Моргунов Ю.Н., Голов А.А., Буренин А.В., Петров П.С., Акустический журнал. 2019. Т. 65. № 5. С. 641-649.
- Прогноз эффективной скорости распространения акустических сигналов на основе модели циркуляции океана, Сорокин М.А., Петров П.С., Каплуненко Д.Д., Голов А.А., Моргунов Ю.Н., Акустический журнал. 2021. Т. 67. № 5. С. 521–532.
- Разработка систем акустической навигации и акустической дальнометрии, Петров П.
 С., Моргунов Ю. Н., Безответных В. В., Буренин А. В., Акустический журнал. 2020. Т.
 № 1. С. 20-33.

Приложение 1

Приложение 2

