HybridBOSSE Manual (Improvements)

Overview

HybridBOSSE (Hybrid Balance of System Systems Engineering) is a is a semi process-based, ground-up model that first estimates the engineering and physical calculations of a utility-scale hybrid (Solar + Storage + Wind) plant (> 1 MW), and then calculates cost estimates based on these engineering results. HybridBOSSE is semi-based on the LandBOSSE code architecture.

Assumptions

- Substation costs are empirically estimated. (Not processed based)
- Shared collection cost is based off the shortest distance in between each manual placement node to each-other.
- Changing project modes, changes substation type (AC/DC) and cable types as shown in the images below. which directly affects substation costs.

Improvements

Project Modes:

• AC mode (HybridBOSSE's previous running mode) [1]

AC coupled mode [2]

• DC coupled mode [3]

• Hybrid coupled mode [4]

Shared collection costs:

- As seen above, shared collection costs can be clearly seen in AC mode versus AC coupled mode.
- Shared collection costs can be turned off to have each module run separately as hybridBOSSE once did.

Manual placement:

Manual placements of each module such as: wind, solar, storage, the substation; can be
given a coordinate system in order to calculate the shortest distance of cabling as well as
using different spaced setups.

Additional notes:

- Added a DC substation calculation (Empirically based)
- Started the process of creating hybridBOSSE level input files (Used for sharing)

Inputs

The inputs for this version of HybridBOSSE are built upon the original inputs of HybridBOSSE. The additional inputs are broken down by the list below

- Project_data
 - Additional sheets: cable_specs_ac, cable_specs_dc, collection_layout
- Project list
 - "Collection mode": [auto/manual]

There will be a set of test inputs included with this manual, important inputs to look for are: "collection_layout_file_name", "collection_layout_path", "path_to_project_list", and "name_of_project_list" as these are the inputs that select the folder location.

Running HybridBOSSE

HybridBOSSE is currently located in the hybrid_manual_improvements branch of HybridBOSSE located at this git repository: https://github.com/parangat94/HybridBOSSE/tree/ hybrid_manual_improvements.

HybridBOSSE can be run from ./HybridBOSSE/main.py. The lines required to run StorageBOSSE are:

```
hybrids_scenario_dict = dict()
    #hybrids_scenario_dict = dict()
    # hybrids scenario dict = {
```

```
"project name": 'Hybrid BOSSE',
"project mode": 2,
"shared interconnection": True,
"shared collection system": True,
"distance to interconnect mi": 1.5,
"line frequency hz": 60,
"collection layout file name": 'project data defaults',
"collection layout path": '/Users/ccampos/Desktop/'
'hybrid manual inputs/project data',
"new switchyard": True,
"grid interconnection rating MW": 7.5,
"interconnect voltage kV": 15,
"shared substation": True,
"hybrid substation rating MW": 7.5,
"wind dist interconnect mi": 0,
"num turbines": 5,
"turbine rating MW": 1.5,
"wind construction time months": 5,
"project id": "ge15 public dist",
"path_to_project_list": "/Users/abarker/Desktop/Hybrid Model/Code/bin",
"name_of_project_list": "project_list_ge15_dist_05",
"solar system size MW DC": 100,
"dc ac ratio": 1.2,
"solar_construction_time_months": 5,
"solar dist interconnect mi": 5,
"storage system size MW DC": 50,
"storage system size MWh": 5,
"storage construction time months":5,
"path to storage project list": "/Users/abarker/Desktop/Hybrid Model/Code/
bin/StorageBOSSE/project_list_test.xlsx",
"storage_project_list": "project_list_test"
}
Or, you can read from the hybrid inputs.YAML file:
hybrids_input_dict:
  project_name: 'Hybrid_BOSSE'
  project_mode: 1 # 1: Auto, 2: AC coupled, 3: DC coupled, 4: Hybrid coupled
  shared interconnection: True
  shared collection system: True
  distance_to_interconnect_mi: 3
  new_switchyard: True
  grid_interconnection_rating_MW: 7.5
  interconnect voltage kV: 15
  shared_substation: True
  hybrid substation rating MW: 7.5
  collection_layout_file_name: 'project_data_defaults'
```

```
collection_layout_path: '/Users/ccampos/Desktop/hybrid_manual_inputs/
project data'
  line_frequency_hz: 60
  # Wind farm required inputs
  wind dist interconnect mi: 0 # Gets over-ridden when
'shared interconnection' is True
  num turbines: 100
  turbine rating MW: 1
  wind construction time months: 5
  project id: 'foundation validation ge15'
  path_to_project_list: '/Users/ccampos/Desktop/hybrid_manual_inputs/
project data'
  name of project list: 'project list ge15 dist 05'
  # Solar farm required inputs
  solar system size MW DC: 100
  dc ac ratio: 1
  solar_construction_time_months: 5 # Optional. Overrides Has a scaling MW
v. construction time relationship
  solar_dist_interconnect_mi: 5 # Gets over-ridden when
'shared interconnection' is True
  # Storage required inputs
  storage system size MW DC: 50
  storage_system_size_MWh: 1
  storage_construction_time_months: 5
  path to storage project list: '/Users/abarker/Desktop/Hybrid Model/Code/
bin/StorageBOSSE/project list test.xlsx'
  storage_project_list: 'project_list_test'
```