Свойства кратных интегралов 1.

Теорема 1. Если $\Omega \subset \mathbb{E}^m$ - измеримая область, то $\int_{\Omega} = m(\Omega)$ $f(x) \equiv 1$ на $\overline{\Omega}. \forall x \in \overline{\Omega}, \ \Omega$ - измеримое множество.

Теорема 2 (интегрируемость подмнож.). Пусть $\Omega \subset \mathbb{E}^m$ и $\Omega' \subset \Omega$ измеримые области и функция $\omega = f(x)$ интегрируема на Ω , тогда f интегрируема на множестве Ω'

Доказательство. $\Omega' \neq \Omega$; f интегрируема на Ω . $T = \{\Omega_k\}, T' = \{\Omega_k'\},$ где $\Omega_k' = \Omega_k \cap \Omega'$ тогда $\forall \varepsilon > 0 \; \exists T : S^*(T) - S_*(T) < \varepsilon;$

$$M'_k = \sup_{\overline{\Omega}'_k} f \le \sup_{\overline{\Omega}_k} f = M_k; m'_k = \inf_{\overline{\Omega}'_k} f \ge \inf_{\overline{\Omega}_k} f = m_k \Rightarrow$$

$$S^*(T') - S_*(T') \le S^*(T) - S_*(T) < \varepsilon \tag{1}$$

Теорема 3 (аддитивность интеграла). Пусть Ω и Ω' измеримые области в \mathbb{E}^m , $\Omega' \subset \Omega$ и $\Omega'' = \Omega \backslash \overline{\Omega}'$. Если функция $\omega = f(x)$ интегрируема на Ω , то f интегрируема на Ω' и Ω'' и $\int f d\omega = \int \Omega' f d\omega + \int \Omega'' f d\omega$

 $\H{\mathcal{A}}$ оказательство. Из теоремы $2\Rightarrow f$ интегрируема на Ω' и Ω'' и существует интеграл в 1. T' - разбиение Ω' . T'' - разбиение Ω'' . Тогда $T=T'\cup T''$ -разбиение множества Ω .

$$\Delta_t = \max\{\Delta_{T'}, \Delta_{T''}\}. \ \forall \xi', \xi'' : \xi = \xi' \cup \xi'' \to I\{T, \xi\} = I\{T', \xi'\} + I\{T'', \xi''\} \ \Delta_T \to 0 \Rightarrow 1$$

Теорема 4 (линейность интеграла). Пусть $\Omega \subset \mathbb{E}^m$ измеримая область. $\omega = f(x)$ и $\omega = g(x)$ интегрируемые на Ω функции. Тогда $\forall \alpha, \beta \in \mathbb{R}$ функция $\omega = \alpha f(x) + \beta g(x)$ интегрируема на Ω :

$$\int_{\Omega} \left[\alpha f + \beta g \right] d\omega = \alpha \int_{\Omega} f d\omega + \beta \int_{\Omega} g d\omega$$

 $\int\limits_{\Omega} \big[\alpha f + \beta g\big] d\omega = \alpha \int\limits_{\Omega} f d\omega + \beta \int\limits_{\Omega} g d\omega$ Кроме того функция $\omega = f \cdot g$ так же интегрируема на Ω

Теорема 5 (Инт. от положительной функции). Пусть $\Omega \subset \mathbb{E}^m$ измеримая область. Функция $\omega=f(x)$ определена на $\overline{\Omega},\ f(x)\geq 0 \forall x\in\Omega$ и f интегр на $\Omega.$ Тогда: $\int\limits_{\Omega}fd\omega\geq 0$

Теорема 6. Если f и g интегрируема на измеримой области $\Omega \subset \mathbb{E}^m$ и $\forall x \in \overline{\Omega} \to f(x) \geq$ $g(x), mo \int_{\Omega} f d\omega \ge \int_{\Omega} g d\omega$

Теорема 7. Если f интегрируемость на измеримой области $\Omega \subset \mathbb{E}$, то функция |f|интегрируема на Ω и выполнено: $|\int\limits_{\Omega} f d\omega| \leq \int\limits_{\Omega} |f| d\omega \leq cm(\Omega), \ \textit{где } c: \forall x \in \overline{\Omega} \to |f(x)| \leq c$

Замечание: В обратную сторону не верно. Контрпример - функция Дирихле.

Теорема 8. Если $\Omega \subset \mathbb{E}$ и $\Omega' \subset \mathbb{E}$: $\Omega' \subset \Omega$, $\omega = f(x)$ интегрируема на Ω и $f(x) \geq 0 \ \forall x \in \Omega$ $\Omega, mor\partial a \int_{\Omega'} f d\omega \leq \int_{\Omega} f d\omega$

Теорема 9. Пусть функции $\omega = f(x)$ и $\omega = g(x)$ интегрируемы на измеримой области $\Omega\subset\mathbb{E}.\ g$ не меняет знак на $\overline{\Omega},\,m\leq f(x)\leq M\ \forall x\in\overline{\Omega},\ mor\partial a\ \exists \mu:m\leq\mu\leq M:\int fgd\omega=0$ $\mu\int\limits_{\Omega}gd\omega$. Если же f непрерывна на $\overline{\Omega}$, то $\exists x^{0}\in\overline{\Omega}:\int\limits_{\Omega}fgd\omega=f(x^{0})\int\limits_{\Omega}gd\omega$

Теорема 10. Пусть $\Omega \subset \mathbb{E}^m$ - измеримая область $\Omega_1 \subset \Omega_2 \subset \Omega_3 \cdots \subset \Omega$

 \mathcal{A} оказательство. $\forall x \in \overline{\Omega} \to |f(x)| \leq C, \widetilde{\Omega}_k = \Omega \backslash \overline{\Omega}_k$ - измеримое множество и $m(\widetilde{\Omega}_k) = m(\Omega) \backslash m(\overline{\Omega}) \backslash m(\overline{\Omega}) \xrightarrow{k \to \infty} 0 \Leftrightarrow \forall \varepsilon > 0 \; \exists k_0 : m(\widetilde{\Omega}_{k_0}) < \frac{\varepsilon}{4c}$ Ω_{k_0}, f интегрируема на $\Omega_{k_0} \Rightarrow \exists T^{k_0}$ область $\Omega_{k_0} : S^*(T^{k_0}) - S_*(T^{k_0}) < \frac{\varepsilon}{2}$ $\exists T = T^{k_0} \cup \widetilde{T}^{k_0}, \; \text{где } \widetilde{T}^{k_0}$ разбиение множества $\Omega \backslash \overline{\Omega}_{k_0} = \widetilde{\Omega}_{k_0}$ $S^*(T) - S_*(T) = S^*(T^{k_0}) - S^*(T^{k_0}) + S^*(\widetilde{\Omega}^{k_0}) - S_*(\widetilde{\Omega}^{k_0}) < \frac{\varepsilon}{2} + 2c\frac{\varepsilon}{4c} = \varepsilon$ $|\int_{\Omega} f d\omega - \int_{\Omega_k} f d\omega| = |\int_{\widetilde{\Omega}} f d\omega| < cm(\widetilde{\Omega}) \xrightarrow{k \to \infty} 0$