

Sumário

- Redes Wireless
 - Ligações IEEE802.11
 - Interligação entre redes Wireless e redes Cabladas
 - Implantação de redes wireless de alta densidade

Normas de Redes Wireless

- As redes wireless são normalizadas pelo IEEE
 - Comité de normas 802 LAN MAN
- NOTA: Redes wireless são diferentes de redes móveis
 - Essas são normalizadas pelo 3GPP

18/06/23

Redes Wireless

- São instaladas conforme o número de utilizadores e a área de cobertura
- Tendo em conta esses dois parâmetros, a escala das redes varia:
 - Personal Area Networks (PAN): Bluetooth, Zigbee

• Local Area Networks (LAN): IEEE 802.11

• Regional/Wide Area Networks (WAN): GSM, UMTS, LTE

• Worldwide: Satellite: Iridium

WLANs: Perspetiva Geral

- Dois tipos
 - Infra-estrutura
 - Ad-hoc
- Vantagens
 - Instalação flexível (mínimo de cabos)
 - Mais robusta (sem problemas de cabos)
 - Instalação única (conferências, edifícios históricos)
- Problemas
 - Muitas soluções proprietárias
 - Restrições do espetro eletromagnético
 - Largura de banda inferior à redes cabladas

Componentes

- Estação (STA)
 - Terminal móvel
- Ponto de Acesso/Access Point (AP)
 - STA ligada a pontos de acesso (redes infraestruturadas)
- Basic Service Set (BSS)
 - STA e AP com a mesma cobertura formam uma BSS
 - Grupo de estações IEEE802.11 associadas a um AP
 - Conhecido através do SSID Service Set Identifier
- Extended Service Set (ESS)
 - Diferentes BSS's ligadas por AP's formam uma ESS

Redes Ad-Hoc (IBSS)

- Conjunto temporário de estações
- A formação de uma rede ad-hoc (ou *Independent BSS* <u>IBSS</u>)
 - Significa que não tem ligação a nenhuma rede cablada
- Não há AP's
- Não há função de relé (ligação direta)
- Implantação simples

Serviços IEEE 802.11

- Estações (similar a uma rede cablada)
 - Autenticação (login)
 - De-autenticação (logout)
 - Privacidade
 - Entrega de dados

Associação

- Criação de uma ligação lógica entre o AP e a STA
 - O AP não vai receber dados de uma STA antes da associação

• Re-associação (similar à associação)

- Envio repetido de dados ao AP
- Auxilia o AP a saber se a STA se moveu de/para outra BSS
- Depois de Power Saving

• <u>De-associação</u>

• Desconexão manual (PC desligado ou o adaptador é ejetado)

Ligação a uma BSS

- A STA encontra uma BSS/AP através de Scanning/Probing
- Quando a BSS tem AP:
 - Tanto a Autenticação como a Associação são necessárias para entrar numa BSS

18/06/23

Fase 1: Scanning

- Deteção de APs por parte da STA
- Forma 1
 - Scanning Passivo
 - A STA analisa os canais à procura de pacotes *Beacon* que são enviados periodicamente pelo AP, anunciando a sua presença e o SSID
 - Scanning Ativo
 - A STA envia pacotes *Probe Request* para todos os canais, em sequência
 - As AP's em escuta nos diferentes canais respondem com uma *Probe Response* (podem enviar outros dados, como as taxas de transmissão suportadas)

Fase 2: Autenticação

- Depois de encontrado e/selecionado um AP, a STA tem que se autenticar no mesmo. 2 forma:
- Forma 1: Open System Authentication
 - É o procedimento realizado por omissão, realizado em 2 passos
 - 1 A STA envia uma trama de autenticação com a sua identidade
 - 2 O AP envia a trama como um Ack/NAck
- Forma 2: Shared Key Authentication
 - A STA tem um segredo partilhado com o AP, obtido de forma independente
 - 1 A STA envia um pedido inicial de autenticação
 - 2 O AP responde com um desafio ao STA
 - 3 A STA cifra o desafio com a sua chave e envia-o ao AP
 - 4 O AP usa a sua própria chave para decifrar e compara

Fase 3: Associação

- Depois de estar autenticada, a STA inicia o processo de **associação**, i.e., troca de informação acerca das capacidades e roaming da STA e do AP
- Procedimento:
 - 1 A STA envia uma **Associate Request** ao AP, indicando taxas de transmissão suportadas e o SSID da rede pretendida para associação
 - 2 O AP aloca recursos e decide se aceita ou rejeita a STA
 - 3 O AP envia uma **Association Response**, indicando o <u>identificador de associação</u> e taxas de transmissão suportadas, caso a associação seja <u>aceite</u>
 - 4 (opcional) Se se tratar de uma situação de transição da STA entre dois AP's diferentes (handover), o AP novo informa o AP antigo
- Só depois da STA estar associada ao AP, é que consegue transmitir e receber dados

Evolução das normas WLAN

Standard	Year	Band	Bandwidth	Modulation	Antenna Technology	Data Rate
802.11b	1999	2.4 GHz	20 MHz	CCK	-	11 Mb/s
802.11a	1999	5 GHz	20 MHz	OFDM	_	54 Mb/s
802.11g	2003	2.4 GHz	20 MHz	CCK, OFDM	_	54 Mb/s
802.11n	2009	2.4 GHz, 5 GHz	20 MHz, 40 MHz	OFDM (up to 64-QAM)	MIMO with up to four spatial streams, beamforming	600 Mb/s
802.11ac	1::	5 GHz	40 MHz, 80 MHz, 160 MHz	OFDM (up to 256-QAM)	MIMO, MU- MIMO with up to eight spatial streams, beamforming	6.93 Gb/s
802.11ad (WiGig)	-	2.4 GHz, 5 GHz, 60 GHz	2.16 GHz	SC/OFDM	Beamforming	6.76 Gb/s

Como é gerida a rede WLAN?

- Camada MAC proporciona
 - Suporte de múltiplas camadas físicas
 - Suporta a sobreposição de diferentes redes na mesma área
 - Suporte de serviços em tempo real
 - Suporte de roaming
 - Ultrapassa o problema dos nós escondidos

Como é gerida a rede WLAN?

- Transmissão em simultâneo
 - Nó 'A' e 'B' escutam o canal de transmissão durante algum tempo
 - Ambos detetam o canal vazio
 - Ambos enviam dados ao mesmo tempo

O emissor deteta colisão

- As interfaces de radio funcionam em *half-duplex*
- Não detetam a colisão

Comparação

MAC Ethernet

- Carrier Sense Multiple Access / Collision Detection
- Quando o meio é detetado livre, a informação é enviada
- Emissor mantém-se à escuta para detetar colisões potenciais

MAC Wireless

- A potência do sinal diminui com o quadrado da distância
- O Emissor pode aplicar *Carrier Sensing* e *Colision Detection*
 - Mas as colisões podem ocorrer do lado do recetor
- O Emissor pode não escutar a colisão (CD não funciona)
- O CS pode também não funcionar devido a nós escondidos

O problema dos nós escondidos

- Terminais escondidos
 - A e B não se escutam um ao outro
 - Existe uma colisão no AP, se A e B enviarem ao mesmo tempo
 - Nem A nem B percebem que houve uma colisão
- Solução
 - Detetar colisões no recetor
 - "Virtual Carrier Sensing"
 - O emissor potencial pergunta ao recetor se está a receber trafego
 - No caso de não haver resposta, o emissor assume que o canal está ocupado

O problema dos nós expostos

- B transmite a A
- O nó C pretende transmitir ao nó D mas, erradamente, pensa que tal irá interferir com a transmissão de B para A
 - Então C acaba por não transmitir
 - O D está fora do alcance de B e A não está ao alcance de C
 - Portanto, afinal, os dados poderiam ter sido transmitidos
- B e C são assim, terminais expostos
- Este problema leva à perca de eficiência da rede

18/06/23 TRC 2022-2023

Solução?

MACA: Multiple Access with Collision Avoidance

- Evita colisões, usando pacotes de sinalização adicionais
 - Request to Send (RTS)
 - Enviado antes da transmissão
 - Clear to Send (CTS)
 - O recetor dá o direito ao emissor de transmitir, quando o primeiro tem capacidade para receber tráfego

- Os pacotes RTS e CTS contêm
 - Endereço do emissor
 - Endereço do recetor
 - Tamanho do pacote a ser transmitido
- Usado em cenários de rede onde existe muito tráfego e um grande número de colisões

Vantagens – Nó escondido

- Sem este mecanismo, as transmissões de A→C e B→C causam colisões
- No entanto, se, p.ex., A enviar um RTS a C, e C enviar um CTS a A
 - B ouve o CTS de C
 - B espera um período indicado na transmissão de A

18/06/23

Vantagens – Nós expostos

- Como?
 - B quer comunicar com A
 - C quer comunicar com outro nó
 - C já não precisa de esperar, pois não recebe o CTS de A

PROBLEMA!

• Os dados que C recebe do outro nó e o CTS do A podem colidir em B

Fiabilidade em Wireless

- Ligações wireless são dadas a erros
 - O transporte não é fiável
- Solução: utilização de Acknowledgements
 - Quanto um nó recebe dados de outro, responde com ACK
 - Se o segundo não recebe o ACK, volta a retransmitir
 - Outros nós em alcance não transmitem até ao ACK chegar (evita colisões)
 - A duração esperada total (incluindo o ACK) é indicada nos pacotes RTS/CTS.

 Octets
 2
 2
 6
 6
 4

 RTS Frame
 Frame Control
 Duration 1 = DA
 Address 2 = SA
 CRC

 Octets
 2
 2
 6
 4

 CTS Frame
 Frame Control
 Duration Address 1 = DA
 CRC

- O cabeçalho das tramas varia conforme o seu tipo
 - Controlo: RTS, CTS, ACK
 - Gestão
 - Dados

24

18/06/23

Canais WiFi

- Para as redes 802.11, ou redes wireless em geral
 - O AR é o meio de propagação
- Como o AR não é limitado como um cabo, não é possível limitar fisicamente o envio da informação nem o domínio de colisão de um sinal de Rádio-Frequência
 - Ou separar transmissões de outros rádios a operar no mesmo espetro
- Desta forma, WiFi utiliza <u>CANAIS</u>
 - Planeamento de separação da banda que divide o espetro em grupos diferentes
 - Um canal representa uma célula
 - Utilizando uma analogia: uma célula representa um domínio de colisão

Canais WiFi

- Os diferentes canais <u>sobrepõem-se</u> (se forem adjacentes)
 - Colisões!
 - Apesar da atenuação, e outros mecanismos, permitirem usar canais adjacentes, é preferível deixar 3-4 canais de separação para evitar colisões.

Non-Overlapping Channels for 2.4 GHz WLAN 802.11b (DSSS) channel width 22 MHz

18/06/23

TRC 2022-2023

Interligação entre redes Wireless e redes Cabladas

Redes Wireless

- As tecnologias de redes wireless deverão ter um ponto de integração na camada core ou de distribuição
- Em termos de arquitetura de rede, uma WLAN pode ser vista como uma LAN
 - Exceto que temos que ter suporte de mobilidade (i.e., cobertura) de forma impercetível para o utilizador

VLANs em APs

- APs podem ter trunks para switches da camada de core ou de distribuição
- As VLANs "cabladas" devem/podem ser estendidas até ao domínio wireless
 - i.e., a VLAN30 e a VLAN10
- Cada SSID pode ser mapeado para uma VLAN
 - Diferentes SSID/VLAN podem ter diferentes políticas de segurança

Implantação de redes wireless de alta densidade

Desafio

• Acesso a WLAN por parte de um grande número de utilizadores

• Num espaço físico pequeno

Problemas

- Equipamentos
 - A vasta maioria dos dispositivos dos utilizadores, é feita para utilizar a gama
 2.4GHz
 - **Resultado:** Congestionamento do espectro (i.e., a simples adição de mais AP's não resolve o problema!)
- Dispositivos de rede (Routers SOHO)
 - A maioria é feita a pensar no caso mais comum: escritório com poucos utilizadores
 - Resultado: falta de meios para lidar com alta densidade de utilizadores
- Largura de banda por utilizador
 - Depende do movimento, tipo de interface, banda, sinal e ruído)
 - Resultado: o meio "wireless" apresenta diferentes desafios de propagação

Problemas em densidade

- Cenário normal
 - Escritório (Dezenas de utilizadores)
 - Zonas com menos densidade (corredores), necessitam de menor cobertura (menos utilizadores)
 - Zonas com mais densidade (salas de reunião), necessitam de maior cobertura (mais utilizadores)
- Cenário denso
 - Ex: Auditórios de aulas (centenas de utilizadores)
 - Sentados muito próximos uns dos outros (causam interferência uns aos outros)
 - Degradação do sinal devido a interferência na utilização do mesmo canal (ou adjacentes) por parte de outros dispositivos
 - Menos margem de manobra / variação com o ambiente
 - Qual a percentagem de utilizadores ligados em rede?
 - Num estádio? Numa Universidade?
 - São diferentes! É NECESSÁRIO PLANEAR!

Estratégia para implantação de redes wireless de alta densidade

- Obviamente, também aplicável nos outros casos
- 1 Planeamento
 - Determinar requisitos da(s) aplicação(ões) e dispositivos
 - Largura de banda, protocolos, frequências, SLA, etc.
- 2 Desenho
 - Determinar densidade, tamanho das células, antenas, cobertura, tipo de local, etc.
- 3 Implementação
 - Instalar, testar, ajustar, estabelecer limiar mínimo, etc.
- 4 Otimização
 - Monitorizar, relatar, ajustar, rever limiar mínimo para SLA
- 5 Operação
 - Sistemas de controlo e monitorização de redes wireless (WCS), ferramentas de depuração de problemas, ferramentas de análise e relato de monitorização, etc.

1 - Planeamento

- Perceber o que se quer fazer
 - Qual o objetivo (aplicação) de se ter rede ali
 - Quais os requisitos de throughput dessa aplicação
 - E de outras que possam estar a ocorrer simultaneamente
 - Calcular:
 - (I) Largura de banda necessária por utilizador
 - (II) Largura de banda agregada
 - <u>= (I) x #ligações esperadas</u>

Application by Use Case	Nominal Throughput
Web - Casual	500 kilobits per second (Kbps)
Web - Instructional	1 Megabit per second (Mbps)
Audio - Casual	100 Kbps
Audio - Instructional	1 Mbps
On-demand or Streaming Video - Casual	1 Mbps
On-demand or Streaming Video - Instructional	2-4 Mbps
Printing	1 Mbps
File Sharing - Casual	1 Mbps
File Sharing - Instructional	2-8 Mbps
Online Testing	2-4 Mbps
Device Backups	10-50 Mbps

Nota: Estes valores podem variar por imensos motivos (sw/hw, etc.)

2- Desenho -> Throughput Agregado

- Throughput → taxa de transmissão de mensagens bem sucedidas num canal de transmissão, em kbps, pacotes/s
- Throughput Agregado -> Soma de todas as taxas de transmissão de todos os nós ligados a uma rede
- Antes de fazer este cálculo, é preciso ter em conda nas WLANs:
 - O que conta é o número de ligações e não o número de utilizadores
 - É comum os utilizadores terem vários dispositivos que usam várias aplicações
 - A rede wireless é um meio partilhado e que funciona a half-duplex
 - Apenas uma STA consegue transmitir num canal, num determinado momento
 - Tanto em uplink como em downlink (apenas 1 pacote no ar)
 - Cada canal representa uma célula \rightarrow unidade de largura de banda potencial
 - Tal como uma ligação a um switch Ethernet
 - É necessário determinar o comportamento das aplicações e utilizadores
 - É comum as redes de acesso serem desenhadas com um fator de 20:1

18/06/23		TRC 2022-2023

2 − Desenho → Heterogenia de utilizadores

 802.11n é mais eficaz, pois faz uso de um novo esquema de codificação, agregação de canis, e aumento da largura de manda

No entanto nem todos os clientes suportam, e então temos

ambientes heterogéneos

A existência de diferentes protocolos WiFi impactua a performance e eficiência até dos protocolos mais rápidos! Há um problema de eficiência vs. suporte de protocolos mais antigos!

2 − Desenho → Impacto do número de utilizadores

Protocol	Data Rate (Mbps)	Aggregate Throughput (Mbps)	Example User Count	Average Per User Throughput
802.11b	11	7.2	10	720 Kbps
802.11b	11	7.2	20	360 Kbps
B02.11b	11	7.2	30	240 Kbps
802.11b/g	54	13	10	1.3 Mbps
802.11b/g	54	13	20	650 Kbps
802.11b/g	54	13	30	430 Kbps
802.11a	54	25	10	2.5 Mbps
802.11a	54	25	20	1.25 Mbps
802.11a	54	25	30	833 Kbps
802.11n MCS7	72	35	10	3.5 Mbps
802.11n MCS7	72	35	20	1.75 Mbps
802.11n MCS7	72	35	30	1.16 Mbps

2 – Desenho -> Interferência entre canais

• APs num mesmo canal, interferem um com o outro

• Uma forma de evitar isto, é atenuar o sinal quanto maior for a taxa de transmissão

• Com esta estratégia, podemos aproveitar bloqueios (paredes, etc.) para reutilizar o mesmo canal em áreas diferentes

2 – Desenho → Canais em 5 GHz (802.11a/h/j/n/ac)

- 5GHz → 300Mbps
- 2.4GHz tem um sinal com mais alcance e menos atenuação que 5GHz
 - Mas, mesmo adicionando mais APs (reduzir o número de utilizadores por célula) e aumentando a cobertura, o reduzido número de canais traduz-se na criação de uma "super célula" com largura de banda limitada e ligações esporádicas para todos
- 5GHz possui muitos mais canais (entre 19 a 21, dependendo da região)
 - Nem todos são iguais (diferentes potências máximas)
 - Próximo de outras tecnologias:
 - I.e., 5GHz possui um mecanismo (Dynamic Frequency Selection) para detetar interferência com radares
 - Se for detetado, esse canal não pode ser usado
 - Podem existir falsos positivos \rightarrow Menos canais disponíveis para o nosso desenho
- 5GHz é mais indicado para cenários muito densos
 - Mas é necessário determinar um plano de seleção de canais

2 − Desenho → Colocação de APs

- Podemos deixar os APs à vista, ou terão que ficar escondidos?
 - Debaixo dos bancos ou do chão
- Podemos usar antenas exteriores?
- Será necessário utilizar antenas direcionais?
- Ideal:
 - fazer uma análise do espaço de instalação
 - Testar!
- Antenas Omnidirecionais
 - Melhor cobertura teto-para-chão (reduz reflecção do sinal em objetos do chão)
 - Indicado para montagens no teto, em espaços reduzidos
 - Evitar antenas omni de alto ganho
 - A célula fica maior horizontalmente, mas menor verticalmente (pior para tetos altos)
 - Célula maior = mais users a dividir a largura de banda
 - · Antenas omni de baixo ganho
 - Menor cobertura horizontal
 - · Permite configurar minuciosamente o número de utilizadores numa pequena área de cobertura
 - · Providencia melhor qualidade de sinal

2 – Desenho → Colocação de APs

- Antenas Direcionais
 - Quando uma WLAN requer reutilização de canais num mesmo espaço
 - Quando cobertura é necessária para áreas de formato incomum
 - A utilização destas antenas aumenta a complexidade do desenho!
 - Ganho muito maior que as omnis: 3-6dB
- Instalação em Tetos altos
 - Melhor cobertura até ao chão
 - Cria células reduzidas com cobertura diretamente debaixo do AP
 - Reduz interferência entre canais
- Instalação nas paredes, lateralmente
 - Quando o teto é muito alto ou não é possível lá montar
 - Requer que a antena tenha algum ângulo para melhor controlar a área de cobertura

3 – Implementação

- Melhores práticas para testar
 - Usar adaptadores USB externos, preferencialmente
 - Utilizar sempre a mesma ferramenta de medição
 - Utilizar sempre o mesmo HW e driver
 - Quando atualizarem drivers, comparem com os resultados anteriores
 - Registar que adaptadores, plataformas, drivers e software são usados, quando estiverem a recolher dados.

Conclusão

- A performance de uma WLAN está dependente dos requisitos
- Perceber bem os mesmos permite desenhar a rede, projetando-a e permitindo a sua modificação quando necessário

- Mais informação:
 - "Wireless LAN Design Guide for High Density Client Environments in Higher Education", Cisco, November, 2013

Fim

- Obrigado pela atenção.
- Questões?
- Comentários?

E é tudo...

- Questões?
- Comentários?

