Naloga: FIB Fibonaccijeve predstavitve

CEOI 2018, dan 2. Omejitev pomnilnika: 256 MB.

16.08.2018

Zaporedje Fibonaccijevih števil je definirano kot:

$$\begin{split} F_1 &= 1 \\ F_2 &= 2 \\ F_n &= F_{n-1} + F_{n-2} \text{ za } n \geq 3 \end{split}$$

Prvi členi zaporedja so 1, 2, 3, 5, 8, 13, 21, ...

Pozitivno celo število p lahko vedno zapišemo kot vsoto **različnih** Fibonaccijevih števil na vsaj en način. Število različnih načinov označimo zX(p). Dva načina smatramo za različna, če je neko Fibonaccijevo število v enem načinu prisotno, v drugem pa ne.

Dano je zaporedje n pozitivnih celih števil a_1, a_2, \ldots, a_n . Za neprazen začetek zaporedja a_1, a_2, \ldots, a_k , definiramo $p_k = F_{a_1} + F_{a_2} + \ldots + F_{a_k}$. Vaša naloga je najti vrednosti $X(p_k)$ po modulu $10^9 + 7$ za vse možne začetke, torej za $k = 1, \ldots, n$.

Vhod

Prva vrstica standardnega vhoda vsebuje celo število $n \ (1 \le n \le 100\,000)$. Druga vrstica vsebuje n s presledkom ločenih števil $a_1, a_2, \ldots, a_n \ (1 \le a_i \le 10^9)$.

Izhod

Na standardni izhod izpišite n vrstic. V k-ti vrstici izpišite vrednost $X(p_k)$ modulo $10^9 + 7$.

Primer

Za vhodne podatke:	je pravilen rezultat:	
4	2	
4 1 1 5	2	
	1	
	2	

Razlaga primera: V primeru imamo naslednje vrednosti p_k :

$$\begin{aligned} p_1 &= F_4 = 5 \\ p_2 &= F_4 + F_1 = 5 + 1 = 6 \\ p_3 &= F_4 + F_1 + F_1 = 5 + 1 + 1 = 7 \\ p_4 &= F_4 + F_1 + F_1 + F_5 = 5 + 1 + 1 + 8 = 15 \end{aligned}$$

Število $p_1 = 5$ lahko izrazimo na dva načina: kot $F_2 + F_3$ ali kot F_4 (tj. 2 + 3 ali 5). Zatorej, $X(p_1) = 2$. Rezultat $X(p_2) = 2$ dobimo, ker je $p_2 = 1 + 5 = 1 + 2 + 3$.

Edini način, da izrazimo $p_3 = 7$ kot vsoto različnih Fibonaccijevih števil je 2 + 5.

Število $p_4 = 15$ lahko izrazimo na dva načina, in sicer kot 2 + 13 ali kot 2 + 5 + 8.

Ocenjevanje

Testni primeri so razdeljeni v sledeče podnaloge z dodatnimi omejitvami. Vsaka podnaloga vsebuje eno ali več skupin testnih primerov. Vsaka skupina prav tako lahko vsebuje enega ali več testnih primerov.

podnaloga	omejitve	točke
1	$n, a_i \le 15$	5
2	$n, a_i \le 100$	20
3	$n \leq 100, a_i$ so kvadrati različnih naravnih števil	15
4	$n \le 100$	10
5	a_i so različna soda števila	15
6	brez dodatnih omejitev	35