1. Вступ

У даній курсовій роботі необхідно виконати синтез автомата і синтез комбінаційних схем. Розробка виконується на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ».

2. Синтез автомата

2.1. Побудова графічної схеми алгоритму і розмітка станів автомата

Відповідно до «Технічного завдання ІАЛЦ.463626.002 ТЗ» складаємо графічну схему алгоритму з урахуванням тривалості сигналів і виконуємо розмітку станів автомата (рисунок 4.1).

Рисунок 4.1 – Графічна схема алгоритму з розміченими станами

Зм.	Арк.	№ докум.	Підп.	Дата

2.2. Побудова графу автомата

Згідно з графічною схемою алгоритму побудуємо граф автомата і виконаємо кодування станів автомата (рисунок 4.2).

Рисунок 4.2 – Граф автомата з закодованими вершинами

2.3. Побудова таблиці переходів

Для синтезу логічної схеми автомату необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 7 кількість тригерів знайдемо за формулою К>=]log₂ N[=]log₂ 7[= 3. Так як для побудови даного автомата необхідно використовувати ЈК-тригери, запишемо таблицю переходів цього типу тригерів (рисунок 4.3).

JK

Рисунок 4.3 – Таблиця переходів ЈК-тригера

						Арк.
					I	
Зм.	Арк.	№ докум.	Підп.	Дата	<i>I</i> Л/IЦ.40J0Z0.004 11J	3

2.4. Синтез комбінаційних схем для функцій збудження пригерів та вихідних сигналів

Використовуючи дані з рисунку 4.2, заповнимо структурну таблицю автомата (таблиця 4.1).

Таблиця 4.1 – Структурна таблиця автомата

Переходи	Старий стан			Новий стан		Вхідні сигнали		Вихідні сигнали			Функції эбудження тригерів							
	Q3	Q2	Q1	Q3	Q2	Q1	X1	X2	Y1	<i>Y2</i>	<i>Y3</i>	<i>Y</i> 4	<i>J3</i>	<i>K3</i>	J2	<i>K2</i>	<i>J1</i>	K1
z1-z2	0	0	0	0	0	1	1	-	1	0	0	0	0	1	0	-	1	_
z2-z1	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	-	1	1
z2-z3	0	0	1	0	1	0	1	-	0	0	1	0	0	1	1	-	-	1
<i>z3–z4</i>	0	1	0	0	1	1	-	-	0	0	1	0	0		-	0	1	-
z4-z5	0	1	1	1	0	0	-	-	0	1	0	0	1		-	1	-	1
<i>z5-z6</i>	1	0	0	1	0	1	-	1	0	0	0	1	ı	0	0	-	1	_
<i>z5-z6</i>	1	0	0	1	0	1	1	0	0	0	0	0	ı	0	0	-	-	0
z6-z7	1	0	1	1	1	0	1	ı	0	0	0	0	1	0	1	-	1	1
z7-z1	1	1	0	0	0	0	1	-	0	1	0	0	_	1	1	1	0	_
z7-z1	1	1	0	0	0	0	0	-	1	0	0	0	-	1	_	1	0	_

2.5. Синтез комбінаційних схем для функцій збудження тригерів та вихідних сигналів

На основі структурної таблиці автомата (таблиці 4.1) виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій збудження тригерів є коди станів та вхідні сигнали, для вихідних сигналів — тільки коди станів. Виконаємо мінімізацію функцій методом діаграм Вейча. Враховуючи задан<u>ий</u> елементний базис (31, 41—НЕ) мінімізувати функцію будемо за ДДНФ

3M.	Арк.	№ докум.	Підп.	Дата

<i>IA/ILI.463626.004</i>	ПЗ