

J.R. Jeffrey 1925.

Preface

With the keener appreciation of the value of artificial illumination has come, quite naturally, a demand for lighting systems which will meet requirements far more exacting than those that earlier systems were expected to satisfy. Not only are more foot-candles of illumination required but refinement in illumination design has become necessary; considerations which were looked upon as relatively unimportant when lighting was judged by the old standards, have taken on a new significance; the selection and spacing of lighting units, the coefficient of utilization, depreciation of the system, and similar fundamental factors which influence the result must be handled with more careful attention to the conditions and requirements of the individual installation. To take the several essential factors properly into account, has appeared so complicated a task that many designers have adhered to rule-of-thumb methods which, while adequate in some cases, are likely to lead to unsatisfactory results when applied generally.

The method of design presented in this bulletin is known as the "lumen method" and will be found fully as simple as any of the common short-cuts. It has the decided advantage that the technical considerations which are important as influencing the result and which require the experienced judgment of the engineer, have been taken into account in the preparation of the charts and tables and therefore automatically receive due allowance in the lighting design. The data apply in interiors where standard types of reflecting equipment are used to obtain general lighting of substantially uniform intensity.

DEFINITIONS

SYSTEMS OF ILLUMINATION

General Overhead Lighting: A system of overhead light sources or luminaires usually symmetrically arranged to produce approximately uniform illumination throughout a room or area. If properly designed, this lighting enables equally good vision in any location or position as in well distributed daylight.

Group or Localized Overhead Lighting: A modification of general overhead lighting employing an arrangement of light sources placed with respect to machines, benches, or desks, to provide increased illumination or a preferred direction of light for the more important points in the room or area—sometimes termed localized general lighting.

Local Lighting: A system by which a single luminaire or lamp is depended upon to illuminate small areas, such as benches, desks or machines. The lamps are usually placed close to the work so that little, if any, general illumination of the room or area results. Local lighting is, therefore, rarely suitable, except as a supplement to general overhead lighting.

ILLUMINATION DESIGN TERMS

Lumen: The lumen is the unit of light flux quantity. The number of lumens required to light a given surface depends upon the desired illumination in foot-candles and upon the area of the surface in square feet. Mazda lamps are rated in lumens.

Foot-Candle: The degree to which a surface is illuminated is measured in foot-candles. One lumen will light a surface of 1 square foot to an average intensity of 1 foot-candle.

Coefficient of Utilization: (Percentage of Lumens Effective): The proportion of the lumens generated by the lamps which reaches the plane of work is known as the Coefficient of Utilization. It is dependent upon the type of diffusing and reflecting equipment, color of walls and ceiling and also the proportions of the room, that is, the size and shape of the room and the height of the light source above the plane of work. These room proportions are classified in this bulletin by the **Room Index** table. The plane of work, unless otherwise specified, is ordinarily considered to be horizontal and $2\frac{1}{2}$ feet above the floor.

Depreciation Factor: This represents a safety factor which provides added initial illumination sufficient to compensate for aging of the lamps and the falling off in reflecting efficiency of the reflectors, walls and ceilings due to deterioration and the collection of dust and dirt. A depreciation factor should always be applied to the recommendations for foot-candles of illumination since these are always stated in terms of average service, or sustained illumination.

H. Jeffrey 1925.

ILLUMINATION DESIGN DATA

for Industrial and Commercial Interiors

The difference between good illumination which cheers the mind and comforts the senses, and poor lighting with its gloom and glare, obviously is nothing more than the difference in results as produced by modern equipment—reflectors and lamps—properly installed, and the results produced by mediocre equipment installed without regard or knowledge of principle and good practice. The data in this bulletin point out, first, the desirable standard of illumination for many classes of interiors, and then, by a few simple steps show how this standard illumination is obtained.

The Four Steps in the Design of a Lighting System

- 3. Determine the proper location of outlets.

 The proper spacing of units with respect to their mounting height can be determined directly from Table 3.......Page 15
- 4. Ascertain the size of MAZDA lamp necessary to provide the foot-candles desired.
 - A. Classify the interior by referring to Room Index Table 4......Pages 18–19

 - C. Select proper lamp size by referring to Table 6

For purposes of calculation a table of lumen outputs of MAZDA lamps and a simple formula are given on Page 24.

Foot-Candle Illumination

Table 1, following, lists the foot-candle values, corresponding to present standards, for different classes of industrial operations, offices, stores, etc. The desirable illumination varies rather widely, depending on the conditions in any particular installation, such as the accuracy of the operation and fineness of detail to be observed, the color of goods worked on or handled and, in the case of stores, the advertising value resulting from the attractiveness of a well lighted interior. The foot-candle values recommended in the table are the minimum to be adhered to if fully satisfactory lighting is to be assured. Under particular conditions considerably higher illumination is often desirable.

TABLE No. 1

Present Standards of Foot-Candles Illumination for STORES, COMMERCIAL and PUBLIC INTERIORS

	Foot-	-Candles		Foot-	Candles
	Recom- mended	Under Some Conditions		Recom- mended	Under Some Conditions
Department Stores and Large Specialty Stores: Main Floors Basement Store	10 10	6–12 6–12	Small Stores: Art Automobile Supply Bake Shop. Book	8 6 6 6	5-10 4-8 4-8 4-8
Other Floors Show Windows: Large Cities—	8	5-10	China. Cigar. Clothing. Confectionery. Dairy Products. Decorator.	6 8 8 8 6	4-8 $ 5-10 $ $ 5-10 $ $ 5-10 $ $ 4-8 $ $ 5-10$
Brightly Lighted District Secondary Business Loca- tions	100 50 25	\$50-150 25-75 10-50	Drug Dry Goods Electrical Supply Florist Furrier	8 8 8 6 8	5-10 $5-10$ $5-10$ $4-8$ $5-10$
Medium Cities— Brightly Lighted District Neighborhood Stores	50 25	25-75 $10-50$	Grocery Haberdashery Hardware Hat Jewelry	6 8 6 8	4-8 $ 5-10 $ $ 4-8 $ $ 5-10 $ $ 5-10$
Small Cities and Towns Lighting to Eliminate Day- light Window Reflections.	25	10-50 200-1000	Leather, Handbags and Trunks Meat Millinery	6 8 8	$ \begin{array}{r} 4-8 \\ 4-8 \\ 5-10 \end{array} $
Stores of Medium Size: Clothing, Dry Goods, Furni- ture, Etc	8	5-10	Music . Notions . Piano . Shoe . Sporting Goods .	6 6 8	4- 8 4- 8 4- 8 5-10 4- 8
Exclusive Small Stores: Light Goods Dark Goods	8 12	5–10 8–16	Tailor	8	5-10 5-10 6-12

TABLE No. 1 (Continued)

Present Standards of Foot-Candles Illumination for STORES, COMMERCIAL and PUBLIC INTERIORS

	Foot-	Candles		Foot-	Candles
	Recom- mended	Under Some Conditions		Recom- mended	Under Some Conditions
Armories, Public Halls Auditoriums Automobile Show Room	5 3 8	3- 6 2- 4 5-10	Indoor Recreations: Basketball and Indoor Baseball Bowling (On Alley, Runway	10	6–12
Bank: Lobby Cages and Offices	6 10	$\begin{array}{c} 4-8 \\ 6-12 \end{array}$	and Seats)	5 15 4	$ \begin{array}{r} 3 - 6 \\ 10 - 20 \\ 3 - 6 \end{array} $
Barber Shop Cars:	8	5-10	(On Table)	15 15	10-20
Baggage Daycoach, Dining, and Pull- man	8	5–10 6–12	Skating Rinks	5 8	4- 8 5-10
Mail— Bag Racks Letter Cases Storage	8 10 6	6-12 $8-16$ $5-10$	Reading Rooms	44	3- 6 3- 6
Street Railway, Subway Churches: Auditorium	8	6-12	Lunch Room Market Moving Picture Theatre:	8	5–10 5–10
Sunday School Room	3 5 4	3- 6 3- 6	During Intermission During Pictures Museum (General)	$\begin{matrix} 3\\0.1\\5\end{matrix}$	$\begin{array}{c} 2-4 \\ 0.1-0.2 \\ 4-8 \end{array}$
Dance Halls Dental Office: Waiting Room	4	3- 6 3- 6	(On Walls) Office Buildings:	8	5–10
Office Depot—Waiting	15 4	10–20 3– 6	General Office Private Offices File Room.	10 4	6-12 $6-12$ $3-6$
Drafting RoomElevators—Freight and Passenger.	15	10–20 3– 6	Stenographer and Bookkeep- ing Rooms	4	$\begin{array}{ccc} 6-12 \\ 3-6 \end{array}$
Garage—Automobiles: Storage—Dead	2	$\begin{array}{ccc} 1-&2\\ 4-&8 \end{array}$	Restaurants Schools:	-	4- 8 2- 4
Live Repair Department and Washing		5-10	Auditorium Class Rooms, Library and Office Corridors and Stairways	10	6-12 2- 4
Gymnasiums: Main Exercising Floor. Swimming Pool. Shower Rooms. Locker Rooms.	4 4	5-10 3-6 3-6 3-6 5-10	Drawing	10 10 10 15	10-20 6-12 6-12 10-20
Fencing, Boxing, Wrestling Halls, Passageways in Interior		/ 1- 4	DesksBlackboards	. 10	6–12 4– 8
Hospitals: Lobby and Reception Room Corridors Wards and Private Rooms—	1 4 . 3	$\begin{array}{ccc} 3- & 6 \\ 2- & 4 \end{array}$	Studio: Art and Photographic Portrait Photography — (Photographic Daylight		6-12 50-200
With local illumination. With no local illumination. Night illumination	6 . 0.1	$\begin{array}{c} 2-4 \\ 4-8 \\ 0.1-0.2 \end{array}$	(Photographic Daylight Moving Picture—General . Moving Picture—Sets (Pho tographic Daylight)	. 5 -	3-6 500-2000
Operating Table Operating Room Laboratories	10	50-100 56-12 6-12	Telephone: Manual Exchanges Automatic Exchanges	. 5	$\begin{array}{ccc} 3 - & 6 \\ 6 - 12 \end{array}$
Hotels: Lobby. Dining Room. Kitchen. Bedrooms. Corridors. Writing Room.	. 6	3-6 4-8 4-8 4-8 1-2 5-10	Theatres: Auditorium	. 3 . 5 . 8	2- 4 3- 6 5-10 3- 6

TABLE No. 1 (Continued)

Present Standards of Foot-Candles Illumination for INDUSTRIAL INTERIORS

	Foot-	Candles		Foot-	Candles
	Recom- mended	Under Some Conditions		Recom- mended	Under Some Conditions
Offices: Private, General Drafting Room Industrial:	10 15	6-12 10-20	Cloth Products: Cutting, Inspecting, Sewing— Light Goods Dark Goods Pressing, Cloth, Treating (Oil Cloth, etc.)—	10 20	6-12 10-50
Aisles, Stairway, Passage- ways and Corridors Assembling—	2	1- 2	(Oil Cloth, etc.)— Light Goods Dark Goods	8 12	5-10 8-16
Rough	$\begin{array}{c} 5 \\ 8 \\ 10 \\ 10-50 \end{array}$	3- 6 5-10 8-16	Coal Breaking and Washing, Screening	3	2- 4
Automobile Storage (See			Construction—Indoor General.	3	2- 4
Garage) Bakeries	8	5-10	Dairy Products	8	5-10
Boilers, Engine Rooms and Power Houses: Boilers, Coal and Ash Han-			Electric Manufacturing: Storage Battery, Molding of Grids, Charging Room. Coil and Armature Wind-	6	4-8
dling, Storage Battery	3	2- 4	ing, Mica Working, Insulating Processes	10	8-16
Auxiliary Equipment, Oil Switches and Transformers Switch Boards, Engines,		3- 6	Elevator, Freight and Passenger	5	3- 6
Generators, Blowers, Compressors	6	4-8	Engraving	20	10-50
Book Binding: Folding, Assembling, Pasting, etc	5	3- 6 5-10	Forge Shops and Welding: Rough Forging Fine Forging and Welding	6 10	4- 8 6-12
Cutting, Punching, Stitching Embossing	10	8-12	Foundries: Charging Floor, Tumbling, Cleaning, Pouring* and		
Candy Making	8	5-10	Shaking Out*	5	3- 6
Canning and Preserving Chemical Works: Hand Furnaces, Boiling Tanks, Stationary Driers, Stationary or Gravity Crystallizing		5-10 2- 4	*Since Pouring and Shaking on in the same location as ei Fine Molding, different illuming be secured for these operations some of the lighting circuits used for the former.	ither F ation le by cu	Rough or evels may tting out
Mechanical Furnaces, Gen- erator and Stalls, Mechan- ical Driers, Evaporators.			Rough Molding and Core Making Fine Molding and Core	6	4-8
Filtration, Mechanical Crystallizing, Bleaching.	4	3- 6	Making	10	6–12
Tanks for Cooking, Extractors, Percolators, Nitrators, Electrolytic Cells		4-8	Glass Works: Mix and Furnace Rooms, Pressing and Lehr, Glass Blowing Machines	6	4-8
Clay Products and Cements: Grinding, Filter Pressing. Kiln Rooms	3	2- 4	Grinding, Cutting Glass to Size, Silvering	8	5-10
Molding, Pressing, Cleaning and Trimming Enamelling	5 6	3- 6 4- 8 6-12	Beveling, Inspection, Etching and Decorating Glass Cutting (Cut Glass), Inspecting Fine	10 10–50	6-12
Coloring and Glazing	10	6-12	Inspecting Fine	10 00	

TABLE No. 1 (Continued)

Present Standards of Foot-Candles Illumination for INDUSTRIAL INTERIORS

	Foot-	Candles		Foot-	Candles
	Recom- mended	Under Some Conditions		Recom- mended	Under Some Conditions
Glove Manufacturing: Light Goods— Cutting, Pressing, Knitting	8	5-10	Machine Shops: Contd. Fine Bench and Machine Work, Fine Automatic Machines, Medium Grind-		
Sorting, Stitching, Trimming and Inspecting Dark Goods— Cutting, Pressing, Knit-	10	8–16	ing, Fine Buffing and Polishing Extra Fine Bench and Ma- chine Work, Grinding (Fine	12	8–16
Sorting, Stitching, Trimming and Inspecting	10 20	6–12 10–50	Work)	10-50	
Hat Manufacturing: Dyeing, Stiffening, Braiding,			Slaughtering Cleaning, Cutting, Cooking, Grinding, Canning, Pack-	5	3- 6
Cleaning and Refining— Light Dark Dark Forming, Sizing, Pounc-	6 10	$\begin{array}{c} 4-8 \\ 6-12 \end{array}$	Milling and Grain Foods:	8	5–10
ing, Flanging, Finishing, Ironing— Light Dark	8 10	5-10 6-12	Cleaning, Grinding or Roll- ing Baking or Roasting Flour Grading	5 8 16	$\begin{array}{c} 3-6 \\ 5-10 \\ 10-20 \end{array}$
Sewing— Light Dark	10 10-50	8–16	Packing: CratingBoxing	6	3- 6 4- 8
Ice Making: Engine and Compressor Room	6	4-8	Paint Manufacturing Paint Shops:	6	4-8
Inspecting: Rough	6 10	4- 8 6-12	Dipping, Spraying, Firing Rubbing, Ordinary Hand Painting and Finishing	5 8	3- 6 5-10
Medium Fine Extra Fine	$15 \\ 10-50$	10 - 20	Fine Hand Painting and Finishing	10	8-16
Jewelry and Watch Manufacturing	10-50 8	5–10	and Finishing (Automobile Bodies, Piano Cases, etc.)	15	10-50
Leather Manufacturing:	Ü	0 10	Paper Box Manufacturing: Light	6	4-8
Vats	3 4	2- 4 3- 6	Dark Storage of Stock	8 3	5-10 2- 4
Cutting, Fleshing and Stuff- ing Finishing and Scarfing	6	$\begin{array}{c} 4-8 \\ 6-12 \end{array}$	Paper Manufacturing: Beaters, Machine, Grinding Calendering	6	3- 6 4- 8
Leather Working:			Finishing, Cutting and Trimming	8	6-12
Pressing and Winding— Light Dark		$5-10 \\ 6-12$	Plating	5	3- 6
Grading, Matching, Cutting, Scarfing, Sewing—		8–16	Polishing and Burnishing	8	5-10
$egin{array}{cccc} ext{Light.} & \dots & \dots & \dots & \dots \\ ext{Dark.} & \dots & \dots & \dots & \dots \end{array}$	10-50		Printing Industries: Matrixing and Casting,		
Locker Rooms	4	2- 4	Miscellaneous Machines,	8	5-10
Machine Shops: Rough Bench and Machine Work. Medium Bench and Machine Work, Ordinary Automatic	0	4-8	Proof Reading, Lithographing, Electrotyping Linotype, Monotype, Typesetting, Imposing Stone, Engraving	10	6–12
Machines, Rough Grinding, Medium Buffing and Polishing	l	6-12	Receiving and Shipping		3- 6

TABLE No. 1 (Continued)

Present Standards of Foot-Candles Illumination for INDUSTRIAL INTERIORS

	Foot-(Candles		Foot-	Candles
	Recom- mended	Under Some Conditions		Recom- mended	Under Some Conditions
Rubber Manufacturing and			Store and Stock Rooms:	3	2- 4
Products: Calenders, Compounding			Rough	6	$\frac{2}{4}$ 8
Mills, Fabric Preparation,			Structural Steel Fabrication	6	4-8
Stock Cutting, Tubing Ma-			Sugar Grading	15	10 - 20
chines, Solid Tire Opera- tions, Mechanical Goods Building, Vulcanizing Bead Building, Pneumatic Tire Building and Finish-	8	5-10	Telephone: Manual Exchanges Automatic Exchanges Testing:	5 10	3- 6 6-12
ing, Inner Tube Operation, Mechanical Goods Trim-			Rough	5	3- 6
ming, Treading	10	6-12	Fine	10	6-12
Sheet Metal Works:			Extra Fine Instruments, Scales, etc	20	10 - 50
Miscellaneous Machines, Or-			Textile Mills:		
dinary Bench Work Punches, Presses, Shears, Stamps, Welders, Spinning, Fine Bench Work Tin Plate Inspection	8 10 15	5–10 8–16 10–20	(Cotton)— Opening and Lapping, Carding, Drawing, Frame Roving, Dyeing Spooling, Spinning, Drawing, in, Warping, Weav-	5	3- 6
Shoe Manufacturing: Hand Turning, Miscella-			ing, Quilling, Inspecting, Knitting, Slashing (Over beam end)	8	5-10
neous Bench and Machine Work	8	5-10	(Silk)— Winding, Throwing, Dye- ing	12	8-16
Material, Cutting, Lasting and Welting (Light) Inspecting and Sorting Raw Material, Cutting, Stitch-	10	6-12	Quilling, Warping, Weaving and Finishing— Light Goods Dark Goods	8 10	5-10 8-16
ing (Dark)	10-50		(Woolen)—	20	
Soap Manufacturing: Kettle Houses, Cutting, Soap Chip and Power	5	3- 6	Carding, Picking, Washing and Combing Twisting and Dyeing Drawing in, Warping—	4 6	3- 6 4- 8
Stamping, Wrapping and			Light Goods	$\frac{6}{10}$	$\frac{4-8}{8-16}$
Packing, Filling and Packing Soap Powder	6	4-8	Dark Goods	10	0-10
			Weaving— Light Goods	8	5-10
Steel and Iron Mills, Bar, Sheet and Wire Products:			Dark Goods	12	10 - 20
Soaking Pits and Reheating			Knitting Machine	10	6-12
Furnaces	2	1- 3	Tobacco Products:	2	1-3
Charging and Casting Floors	4	3- 6	Drying, Stripping, General. Grading and Sorting	$\overline{15}$	10-20
Muck and Heavy Rolling, Shearing, rough by gauge,			Upholstering:		
Pickling and Cleaning	5	3- 6	Automobile, Coach and		6 10
Plate Inspection	15	10-20	Furniture	8	6-12 $3-6$
Automatic Machines, Rod, Light and Cold Rolling,			Toilet and Wash Rooms	$\frac{4}{2}$	3- 0 1- 2
Wire Drawing, Shearing, fine by line	8	5-10	Warehouse	2	1- 2
•			Rough Sawing and Bench		
Stone Crushing and Screening:			Work	5	3- 6
Belt Conveyor Tubes, Main LineShaftingSpaces, Chute Rooms, Inside of Bins		1- 2	Sizing, Planing, Rough Sand- ing, Medium Machine and Bench Work, Gluing	l ,	5 10
Primary Breaker Room,			Veeneering, Cooperage Fine Bench and Machine	8	5-10
Auxiliary Breakers under Bins	3	2-4	Working, Fine Sanding and		
Sorgen Rooms	5	3- 6	Finishing		6-12

Type of Lighting Unit

The selection of the type of lighting unit depends not only upon the requirements of the work, but in some cases upon the construction of the room and the color of the ceiling and walls. For example, semi- and totally indirect lighting is unsuited to rooms with very dark ceilings. Likewise it is important to specify the type of lamp to be used; in general, white bowl lamps should be used wherever open reflectors are installed at mounting heights less than 20 feet.

Other factors may enter into the choice of the lighting unit in certain instances, for example, in stores, offices and other public installations, decorative effect is often an important item.

Lighting Units Rated

Various lighting units are rated in accordance with seven fundamentals, illustrated on Page 12. The importance of these criteria is different for different classes of work. It must be emphasized that the relative importance of the various criteria should be carefully weighed with respect to the particular problem at hand. For instance, in an office the criteria of major importance would rank: (1) Direct glare; (2) Reflected glare; (3) Shadows. On the other hand, where lamps are to be hung above a crane in a foundry, the order of importance would be: (1) Efficiency based upon illumination on horizontal; (2) Vertical illumination; (3) Maintenance.

In the chart, Table 2, the best rating given is A+, which denotes the highest degree of excellence, while D, the lowest, indicates that an installation of units so rated in any particular, will very likely prove unsatisfactory in an installation where this factor is important. The ratings B and C, while indicating a result not equal to A, are decidedly superior to rating D. In other words, a rating B, C+, or C in certain respects does not disqualify a unit provided that in the essential requirements of a given location, the unit is rated A or B+.

Note: It is important that good reflecting equipment be installed. The luminaires shown in these charts illustrate certain types. For example, No. 9 is a unit of a general type of which there are a great variety made by various manufacturers. Of two or more units of the same type the choice should be governed by considerations of brightness, diffusion, absorption, appearance, and cost, and not by cost alone. Of two samples of glass enclosing globes, outwardly identical, one may absorb 30% of the light and the other only 15% for the same degree of diffusion. The safest plan is to choose products of reliable manufacturers.

TABLE 2

	LIGHTING U	NIT	EFFIC BASED ILLUMINATION ON HORIZONTAL	UPON	APPEARANCE Of Lighted Room	DIRECT GLARE	REFLECTED GLARE	SHADOWS	MAINTENANCI
					AIN ENAMEL REFLEC	TORS			
1	R L M DOME	90° to 180°—0%	A+	B+	C +	С	D	C+	A+
	Clear I amp	0° to 90°—76% 90° to 180°—0%		Use white-l	oowl lamps v	when mount	ed lower tha	n 20 feet.	
2	R L M DOME	×1 (6 130 = 0.2	A-	В	B For gone	B+	B	B+	A-
	White Bowl Lamp	0° to 90°—66% 90° to 180°—7%			For gene	rai industria	ii fighting.	1	
3	GLASSTEEL DIFFUSER		B+	В	A—	A—	B+	A-	B+
	PORCELAIN ENAMEL	0° to 90°-60% 90° to 180°-0%			1 Of Dest	arac mads	ng,rearg.		1
4	BOWL		B+	В-	C	C+	D -	С	A
	Clear Lamp	0° то 90°—65%					· emcient.		
		90° to 180°—16%	I	RECT LIGHTING OPE	N GLASS REFLECTOR	1	T	1	_
5	DENSE OPAL GLASS		B+	В-	A—	B+	B—	В	В
	Diffusing Buth Lamp MIRRORED GLASS	0° to 90°—60% 90° to 180°—0%			1 of famps o	100-84((3	and smaner	1	1
6	Clear Lamp		A	В	C	C+	D in high bay	C C	A-
	PRISMATIC INDUSTRIAL	0° to 90°—68% 90° to 180°—18%							T
7	(DISTRIBUTIVE)		A+	A—	B+	C+	D unting height	C+	В-
_	Clear Lamp PRISMATIC INDUSTRIAL	0 ° to 90° —73% 90° to 180° — 19 «			Tor relativ	1 10% 1110	ditting neight	T	
8	(CONCENTRATED)		A+	В	B+	B-	D	С	В-
	Maria Linda	0° to 90° — 70°			r or re	latively high	mounting.		
	90° to 180°	19.	В-	В	D	D Gloom and g	D	D	A+
_	0° 10 90°- LAMP CLI 90° 10 180 0° 10 90°	JISTER -0%	В	В	С	D re and ineff	D	C +	A —
	FLAT Cl Clear L 90° to 180° 0° to 90°-	DNE amp	В	C +	C Gla	B are and inef	C+	C +	B +
	FLAT Co Shielding Clear L 90° to 180° 0° to 90°-	Band amp	В	C +	C + Unit No. 2 a	C+	D enerally prefe	C crable.	В+
	DEEP B Bowl-Ena Larr	OWL imeled	В	В	С	D lighting — U	D	С	A+

TABLE 2

	LIGHTING U	NIT	EFFICI BASED ILLUMINATION ON HORIZONTAL	UPON ILLUMINATION	APPEARANCE OF LIGHTED ROOM	DIRECT	REFLECTED GLARE	SHADOWS	MAINTENANCE
			DIRECT LIGHT	ING ENCLOSING A	IND SEMI-ENCLOSING	UNITS			
9	WHITE GLASS ENCLOSING GLOBE Flattened	90° to 180°—35%	В	В	A For store and	B	B	A-	A-
10	PRISMATIC ENCLOSING	90° to 180°—27%	B+	В	A	B	В-	В+	В
11	SEMI-ENCLOSING Metal Reflector	90° to 180°-20%	В	B	A	В	B e with Unit	B+	В-
12	TWO-PIECE GLASS Reflector and Bowl	90° to 180°—56%	В	В	A	B +	B+	A-	В-
	7	0° to 90°—53%	SEMI-I		DIRECT LIGHTING UN		with Cint	110. 77	
13	SEMI-INDIRECT DENSE GLASS OR METAL AND DENSE GLASS	90° to 180°-69° c	C+	C	A high grade	A+	A ommercial lig	A+	С
14	DUST-TIGHT SEMI-INDIRECT (PRISMATIC)	90° to 180° –58%	B -	C+	A high grade	A office and c	A—	A—	В
15	DUST-TIGHT SEMI-INDIRECT (CLEAR TOP)	90° to 180° – 58%	C+	C See as Unit	A No. 14 — U	A se white bo	A wi lamps to	A keep bright	B tness low.
16	MIRRORED INDIRECT	90° to 180°—80%	C+	С	В+	A+		A+	С
		0° to 90°—0%		FOI	mgn grade	office and c	ommerciai ng	gnung.	
	LIGHT DENSI Clear L. 90° to 180°. 0° to 90°.–	amp -33%	B +	В	B+ Units No	C+	D 9 preferable.	В-	В
1	DENSE (Clear L 90° to 180° 0° to 90°-	amp -15% -67%	A+	B +	B+ Use white-	B bowl lamp	D or Unit No.	C+	A-
	90° to 180° 0° to 90°-	(-35% -40%	В—	В-	A Unit No	B—	B ner efficiency.	B +	B+
7	LIGHT 0 SEMI-IND 90° to 180° 0° to 90°- ENAMELED	-60% -25%	B—	C+ Too	A bright — De	B+	B+ ferable (Unit	A— No. 13).	С
Till I	90° to 180° 0° to 90° to 90° to 90° to	CT -74%	C	С	B+ Somewhat lo	A+	A than Unit N	A+ o. 16.	С

ILLUMINATION ON VERTICAL SURFACES of work or machine parts is fully as important as the lighting of the surface in the horizontal plane. In a consideration of the amount of light necessary for factory illumination, the criterion must be the intensity on all working surfaces whether vertical, horizontal or oblique.

FAVORABLE APPEARANCE OF LIGHTED ROOM refers only to the general or casual effect produced by the complete system, and is not intended to rate the unit as to satisfaction from the standpoint of good vision or freedom from eye fatigue.

DIRECT GLARE is the most frequent and serious cause of bad lighting. It results among other things from unshaded or inadequately shaded light sources located within the field of vision, or from too great contrast between the bright light source and a dark background or adjacent surfaces. Glare should be avoided by the use of proper reflecting and diffusing equipment.

REFLECTED GLARE from polished working surfaces is particularly annoying because of the necessity of directing the eyes toward those surfaces, and further because the eyes are by nature especially sensitive to light rays from below. The harmful effects of this specular reflection can be minimized by properly shielding from below or diffusing the source.

SHADOWS, that is, differences in brightness of surfaces, are essential in observing objects in their three dimensions, but are of little or no value in the observation of flat surfaces. Where shadows are desirable, they should be soft and luminous, not so sharp and dense as to confuse the object with its shadow.

MAINTENANCE depends upon contour of reflector, construction of fixture, and condition of ceiling. The rating is based upon the likelihood of breakage, the labor involved in maintaining the units at comparable degrees of efficiency, and indication given of need of cleaning.

Reflection Factors

The proportion of light reflected by walls and ceilings of various colors, that is, their Reflection Factors, has an important bearing on both the natural and the artificial lighting. The proportion reflected will depend somewhat upon the color of the incident light. The figures here given show what proportion of

of Colored Surfaces

* the light of Mazda lamps these painted surfaces reflect. Reflection Factors are of special usefulness in determining the Coefficient of Utilization (ratio of light delivered at the work to total light of lamps) applicable to an interior. The Reflection Factor of any colored surface can be approximated by comparing it with these samples.

Influence of Interior Finish on Illumination Result

The interior finish of a building, that is, the color of the ceiling, ceiling beams, sidewalls, columns, etc., has a considerable influence upon the illumination result. The accompanying Color Chart shows the percentage of light which the various colors will reflect. These values are in turn taken into account in Table 5 which gives the Coefficients of Utilization for several conditions of interior finish.

Certain types of reflectors, due to their contour and quality of materials, will direct light more efficiently to the area to be lighted than will others. It will be seen from Table 5 that, with open type enameled steel reflectors such as the RLM Dome, the influence of the color of walls and ceiling is at a minimum; the effect of this factor becomes of increasing importance as open glass reflectors, enclosing light-directing and simple diffusing luminaires, are considered in turn, and with semi-indirect and indirect types the color of walls and ceiling is of major importance.

It is obvious that where the reflection factor of the ceiling and walls is high, a greater proportion of the light which strikes these surfaces will be reflected to the working area than where the interior is finished in dark colors. Where goods or materials are stored on shelves or close to the walls, as is the case in many stores and industrial interiors, the color of such materials will alter the illumination result. In buildings having large window areas, or in offices having glass partitions, the walls should be considered dark since the light which strikes these glass parts is transmitted through the glass and very little is reflected to the working area. The average reflection from side walls in any interior rarely exceeds 50 per cent, allowing, of course, for the proportion of wall area usually occupied by windows and doors. The reflection from ceilings, however, may be as high as 70 per cent and in some instances even higher.

Location of Outlets, Mounting Height and Number of Lighting Units

The cost of a lighting installation is largely made up of wiring costs, therefore it is imperative that the wiring be adequate for both present and possible future needs; when once the outlets are properly installed as regards both spacing and size of wire, a change in type of reflector, or in size of lamp may be made without undue complication, but where the spacing of outlets is too great or the wiring is inadequate, satisfactory results can never be obtained without considerable alteration.

Table 3 gives the spacing and mounting height for both direct and indirect units to provide uniform illumination. The procedure in using this table is to determine the greatest possible mounting height above the plane of work and find the spacing between units corresponding to this mounting height,* and then spot the outlets on an actual diagram or blueprint of the floor area. Locate the units as nearly symmetrically as possible without exceeding the permissible spacing.

Units may be spaced at any distance less than the given permissible spacing, and, in fact, this is often desirable from the standpoint of soft shadows, appearance, and arrangement of the work. For example, if the permissible spacing is found to be 15 feet and the room is 20 feet square, one unit in the center of the room would not be satisfactory, and some symmetrical arrangement, such as 4 units (10-foot spacing) would be employed, The same holds true in large interiors which may be divided by posts into 20-foot spaces or bays.

In narrow interiors, such as small stores, it is often best to use two rows of units even though the permissible spacing distance may indicate one row allowable. Similarly in small rooms, offices, etc., one unit would hardly be recommended since all the light would come predominantly from one direction, with the likelihood of harsh shadows, and inconvenience in case of a lamp failure.

After the outlets have been carefully spotted, determine the area per outlet by dividing the total floor area by the number of units employed.

^{*} Note: With indirect units use the distance from work plane to ceiling; see sketch.

TABLE No. 3—SPACING MOUNTING HEIGHT

	Lighting los. 1-12		and Totally ing Units No		Bety	e Distance ween d Sidewalls
Height of Unit Above Plane of Work	Permissible Distance Between Outlets	Ceiling Height Above Plane of Work	Permissible Distance Between Outlets	Suspension Distance Ceiling to Top of Reflector	In Usual Locations Where Aisles and Storage are Next to Wall	In Offices or Where Work Benches are Next to Wall
(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet) W	(Feet) W
5	$7\frac{1}{2}$	5	$7\frac{1}{2}$	$1\frac{1}{4}$	$3\frac{1}{2}$	$2\frac{1}{2}$
.6	9	6	9	$1\frac{1}{2}$	$4\frac{1}{2}$	3
7	$10\frac{1}{2}$	7	$10\frac{1}{2}$	$1\frac{3}{4}$	5	$3\frac{1}{2}$
8	12	8	12	2	6	4
9	$13\frac{1}{2}$	9	$13\frac{1}{2}$	$\frac{1}{2}\frac{1}{4}$	$6\frac{1}{2}$	$4\frac{1}{2}$
10	15	10	15	$\frac{2\frac{1}{2}}{2}$	$7\frac{1}{2}$	5
11	$16\frac{1}{2}$	11	$16\frac{1}{2}$	$2\frac{5}{4}$	8	$5\frac{1}{2}$
12	18	12	18	$\frac{23\overline{4}}{3}$	9	6
13	$19\frac{1}{2}$	13	$19\frac{1}{2}$	$3\frac{1}{4}$	$9\frac{1}{2}$	$6\frac{1}{2}$
14	21	14	21	$3\frac{1}{2}$	$10\frac{1}{2}$	7
15	${22\frac{1}{2}}$	15	$\frac{22\frac{1}{2}}{2}$	33/4	11	$\frac{7\frac{1}{2}}{}$
16	24	16	24	4	12	8
18	27	18	27	$4\frac{1}{2}$	$13\frac{1}{2}$	9
20	30	20	30	5	15	10
\times \subset 22	33	22	33	$5\frac{1}{2}$	$16\frac{1}{2}$	11
24	36	24	36	6	18	12
27	$40\frac{1}{2}$	27	$40\frac{1}{2}$	63/4	20	$13\frac{1}{2}$
30	45	30	45	$7\frac{1}{2}$	$22\frac{1}{2}$	15
35	$52\frac{1}{2}$	35	$52\frac{1}{2}$	83/4	26	$17\frac{1}{2}$
40	60	40	60	10	30	20

Remember: In general, to get uniform illumination, units should not be spaced more than 1½ times the mounting height. Unit No. 7 will produce uniform illumination when spaced twice the mounting height, but because of resulting shadows this wider spacing is not recommended. Unit No. 8 on the other hand, because of its concentrated light distribution, requires a spacing no greater than the mounting height.

Size of Lamp Required

It will be noted that, in determining the proper location of outlets from the previous table, no mention was made of the size of lamp required; if it were not for the fact that provision for adequate wiring, and the selection of the luminaire of proper size, depends upon the size of lamp to be used, any general lighting system could be planned and installed without regard to the lamp size. However, since these factors, particularly adequate wiring, are so important, it is necessary to ascertain in advance the size of lamp required to furnish the desired foot-candle level of illumination.

It is indeed shortsighted to specify wiring that is not adequate to permit the use of the next larger size lamp to provide for higher standards of illumination that may be desired in the future.

As has been stated, in designing a lighting system, draw a plan of the area to be lighted, and show the location of outlets in a manner similar to the sketch below. Determine the area in square feet per outlet.

The prime consideration is to determine the percentage of light that actually gets down and is useful on the working plane. This percentage is affected by:

1. The room size and its proportions with regard to height of the units;

	-					120						
	¤ -5'+-10	Ø+ 	¤	р 	¤	Ø	Q	a	Ø	g	¤	¤
	p	p. 10	p	¤ ¦	¤	¤ ¦	¤	¤	¤	¤	¤	¤
	a	α l	n	¤	¤ 	¤	¤	¤ ====	¤	¤ 	¤ ====	¤ ====
60'	¤	¤	¤	¤	¤	¤	l ¤	¤	¤	¤	¤	¤
	¤	¤ ¦	¤.	p	¤	¤	 ¤ 	¤	g !	p	 ¤ 	¤
	¤	¤	¤	¤	¤	¤	 ¤	¤	 ¤ 	¤	 ¤ 	¤

Ovitet for I-150 watt bowl enameled MAZDA C lamp, equipped with an RLM Standard Dome Reflector, with suitable holder Reflector located II fect above the floor

- 2. The color of walls and ceiling;
- 3. The character of the reflector used;
- 4. Depreciation due to dust and dirt.

After the outlets have been located on the plan, the size of lamp which will be required to furnish the desired foot-candles can be determined by reference in turn to the tables which follow. These tables take into account all of the items mentioned above.

Table 4—Room Index. This classifies the room according to its proportions. From this table find the Room Index corresponding most nearly to the dimensions of the installation. Apply this in the use of Table 5.

Table 5—Coefficient of Utilization. This is the proportion of the generated light from the lamps which reaches the plane of work. The Coefficient of Utilization for the installation of the type of lighting unit selected will be found in the proper column of wall and ceiling color opposite the correct Room Index.

Table 6—Computed Illumination Values. This table shows the foot-candles obtained with various sizes of lamps depending on the area per lamp and the Coefficient of Utilization for any given installation. A depreciation factor of 1.4 or approximately 30% has been allowed.

Having determined the area per outlet and the Coefficient of Utilization for any installation, the foot-candles resulting from the use of any size of lamp can be obtained directly from this table. The lamp used should produce approximately the number of foot-candles decided upon from Table 1 as desirable.

Calculating Illumination Results

The foot-candle values given in Table 6 have been computed for a wide variety of conditions purely for convenience. For other conditions such as the use of lamps of other lumen ratings, to provide for greater or less depreciation, or, in fact, for all cases not provided for in Table 6, the foot-candles can easily be computed from the formula

 $Foot-candles = \frac{Coefficient of Utilization \times Lumens of Lamp}{Area per Outlet \times Depreciation Factor^*}$

Table 7, Page 24 gives the lumen output of the various sizes and types of multiple Mazda lamps.

^{*}Note—Use 1.3 for fairly clean location; 1.4 for average, and 1.5 for dirty locations or where cleaning is infrequent.

TABLE 4—ROOM INDEX

Classify the room according to the proportions and the mounting height above the plane of work. Use upper column headings for direct-lighting units;

Room	the pla	ane or	WOI	DIRE			colu IG UN	ITS—	Height						
Width	Length	4	5	6	7	8	9	$\frac{-\text{Fe}}{10}$	12	14	16	20	24	30	40
Feet	Feet 10	1.0	0.8	0.8	0.6	0.6	0.6	7							• • •
	$\begin{array}{c c} 12 \\ 14 \end{array}$	$1.25 \\ 1.25$	$\begin{array}{c c} 0.8 \\ 1.0 \end{array}$	0.8	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	0.6							
	16	1.25	1.0	8.0	0.6	0.6	$0.6 \\ 0.6$	0.6	0.6						• • •
8	$\begin{array}{c c} 18 \\ 20 \end{array}$	$\frac{1.25}{1.5}$	$\frac{1.0}{1.0}$	$\frac{0.8}{1.0}$	$\frac{8.0}{8.0}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	0.6	0.6	0.6						
Ů	24	1.5	1.25	1.0	$\frac{8.0}{8.0}$	$\begin{array}{c} 0.6 \\ 0.8 \end{array}$	$\frac{0.6}{0.6}$	0.6	0.6	0.6					
	$\begin{vmatrix} 30 \\ 35 \end{vmatrix}$	$\begin{array}{ c c } 1.5 \\ 1.5 \end{array}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.25}$	1.0	8.0	8.0	0.6	0.6	0.6	0.6				
	40 50	$\begin{vmatrix} 2.0 \\ 2.0 \end{vmatrix}$	$\begin{array}{c} 1.5 \\ 1.5 \end{array}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\begin{bmatrix} 0.8 \\ 1.0 \end{bmatrix}$	$\begin{array}{c c} 8.0 \\ 0.8 \end{array}$	0.6	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{bmatrix} 0.6 \\ 0.6 \end{bmatrix}$:::	
	10	1.25	1.0	8.0	0.6	0.6	0.6	0.6							
	$\begin{array}{c c} 12 \\ 14 \end{array}$	1.25 1.5	$\begin{array}{c c} 1.0 \\ 1.0 \end{array}$	$\begin{array}{c c} 0.8 \\ 1.0 \end{array}$	$\begin{bmatrix} 8.0 \\ 0.8 \end{bmatrix}$	0.6	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	0.6						
	16	1.5	1.25	1.0	0.8	0.6	0.6	0.6	0.6						
10	$\begin{array}{c c} 18 \\ 20 \end{array}$	1.5 1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\begin{bmatrix} 0.8 \\ 0.8 \end{bmatrix}$	$\begin{array}{c c} 0.8 \\ 0.8 \end{array}$	0.6	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$0.6 \\ 0.6$	0.6					
10	24	1.5	1.25	1.25	1.0	8.0	8.0	0.6	0.6	0.6	0.6				• • •
	30 35	$\frac{2.0}{2.0}$	$\begin{array}{c} 1.5 \\ 1.5 \end{array}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\begin{array}{c} 0.8 \\ 1.0 \end{array}$	$\begin{array}{c c} 8.0 \\ 0.8 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.8 \end{array}$	0.6	0.6	0.6				
	40	2.0	1.5	1.5	1.25	1.0	$\frac{1.0}{1.0}$	$\begin{bmatrix} 8.0 \\ 0.8 \end{bmatrix}$	0.6	0.6	0.6	0.6			
	50 60	$\begin{vmatrix} 2.0 \\ 2.0 \end{vmatrix}$	$\frac{1.5}{1.5}$	1.5 1.5	$\frac{1.25}{1.25}$	1.0 1.0	1.0	0.8	8.0	0.6	0.6	0.6			
	70	2.0	1.5	1.5	1.25	1.25	0.6	0.6	0.8	8.0	0.6	0.6			
	$\begin{array}{c c} 12 \\ 14 \end{array}$	1.25	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{8.0}{0.8}$	$\frac{8.0}{0.8}$	0.6	0.6	0.6						
	16	1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.25}$	$\frac{0.8}{1.0}$	0.8	$\begin{bmatrix} 8.0 \\ 0.8 \end{bmatrix}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	0.6					
	$\frac{18}{20}$	1.5 1.5	1.5	1.25	1.0	8.0	8.0	8.0	0.6	0.6	0.6				
12	$\begin{array}{c c} 24 \\ 30 \end{array}$	$\begin{array}{ c c c } 2.0 \\ 2.0 \end{array}$	1.5 1.5	$\frac{1.25}{1.5}$	$\frac{1.0}{1.25}$	$\frac{1.0}{1.0}$	$\begin{array}{c c} 0.8 \\ 1.0 \end{array}$	$\begin{array}{c c} 0.8 \\ 0.8 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	0.6 0.6	$\frac{0.6}{0.6}$				
12	35	2.0	1.5	1.5	1.25	1.0	1.0	8.0	0.6	0.6	0.6	0.6			
	40 50	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{0.8}{1.0}$	$\frac{0.6}{0.8}$	$\frac{0.6}{0.6}$	$\frac{0.6}{0.6}$	0.6 0.6	0.6		
	60	2.0	2.0	1.5	1.5	1.25	1.25	1.0	8.0	8.0	0.6	0.6 0.6	0.6 0.6		• • •
	70 80	$\begin{vmatrix} 2.0 \\ 2.0 \end{vmatrix}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	1.5 1.5	$\frac{1.25}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.25}$	$\frac{0.8}{1.0}$	$\frac{8.0}{0.8}$	$\frac{0.6}{0.8}$	0.6	0.6		
	100	2.0	2.0	1.5	1.5	1.5	1.25	1.25	0.6	0.8	0.8	0.6	0.6		
	$\begin{array}{c c} 14 \\ 16 \end{array}$	$\begin{array}{ c c c } 1.5 \\ 2.0 \end{array}$	1.5 1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{0.8}{1.0}$	$\begin{array}{c c} 0.8 \\ 0.8 \end{array}$	0.6	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	0.6					
	18	2.0	1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{1.0}{1.0}$	$\frac{0.8}{0.8}$	8.0 0.8	0.6	0.6	$\frac{0.6}{0.6}$				
	$\begin{array}{c} 20 \\ 24 \end{array}$	$\begin{bmatrix} 2.0 \\ 2.0 \end{bmatrix}$	$\frac{1.5}{1.5}$	1.5	1.25	1.0	1.0	8.0	0.6	0.6	0.6				
14	30	$\begin{vmatrix} 2.0 \\ 2.5 \end{vmatrix}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	1.25 1.5	$\frac{1.0}{1.25}$	$\frac{1.0}{1.0}$	$\frac{0.8}{1.0}$	$\frac{0.8}{0.8}$	$\frac{0.6}{0.6}$	$\frac{0.6}{0.6}$	0.6			
14	35 40	2.5	2.0	1.5	1.5	1.25	1.0	1.0	8.0	0.6	0.6	0.6	0.6		
	50 60	2.5 2.5	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.5}{1.5}$	1.25 1.25	$\frac{1.0}{1.25}$	$\frac{0.8}{1.0}$	$\frac{8.0}{8.0}$	$\frac{0.6}{0.6}$	0.6	$\frac{0.6}{0.6}$		
	70	2.5	2.0	2.0	1.5	1.5	1.25	1.25	$\frac{1.0}{1.0}$	$\frac{8.0}{8.0}$	$\frac{0.8}{0.8}$	0.6	0.6		
	100	$\begin{vmatrix} 2.5 \\ 2.5 \end{vmatrix}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5 1.5	$\frac{1.5}{1.5}$	1.5 1.5	$\frac{1.25}{1.5}$	$\frac{1.0}{1.25}$	0.8	0.8	0.6	0.6		
	16	11 2.0	1.5	1.25	1.25	1.0	0.8	$\frac{8.0}{8.0}$	0.6 0.6	$\frac{0.6}{0.6}$	0.6				
	$\begin{array}{c c} 18 \\ 20 \end{array}$	$\begin{vmatrix} 2.0 \\ 2.0 \end{vmatrix}$	1.5 1.5	1.25 1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{1.0}{1.0}$	0.8	8.0	0.6	0.6				
	24	2.5	2.0	1.5	1.25	1.25 1.25	$\frac{1.0}{1.0}$	$\frac{0.8}{1.0}$	0.8	$\frac{0.6}{0.6}$	0.6	0.6			
16	$\begin{vmatrix} 30 \\ 35 \end{vmatrix}$	2.5 2.5	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	1.5 1.5	1.25 1.5	1.25	1.0	8.0	0.6	0.6	0.6	0.6		
	40 50	2.5 2.5	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5 1.5	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.25}$	$0.8 \\ 1.0$	$\frac{0.8}{0.8}$	0.6	0.6	0.6	0.6	
	60	2.5	2.0	2.0	2.0	1.5	1.5	1.25	1.0	0.8	0.8	0.6	0.6	0.6	
	70 80	2.5 2.5	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	$1.5 \\ 1.5$	1.25 1.5	1.25 1.25	$\frac{1.0}{1.0}$	0.8	0.6	0.6	0.6	
	100	$\parallel 2.5$	2.0	2.0	2.0	2.0	1.5	1.5	1.25	1.0	1.0	0.8	0.6	0.6	
	$\begin{array}{c c} & 18 \\ 20 \end{array}$	$\begin{bmatrix} 2.0 \\ 2.5 \end{bmatrix}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	1.25 1.25	$1.0 \\ 1.25$	$\begin{bmatrix} 1.0 \\ 1.0 \end{bmatrix}$	$0.8 \\ 1.0$	8.0	0.6	0.6				
	24	2.5 2.5	$\frac{2.0}{2.0}$	1.5 1.5	$ \begin{array}{c c} 1.25 \\ 1.5 \\ 1.5 \end{array} $	1.25 1.25	1.0	$1.0 \\ 1.0$	0.8	0.6	0.6	$0.6 \\ 0.6$			
	30 35	3.0	2.5	2.0	1.5	1.5	1.25	1.0	1.0	0.8	0.6	0.6	0.6		
18	40 50	3.0	2.5 2.5	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	1.25 1.5	1.25 1.25		$\frac{0.8}{0.8}$	0.6	0.6	0.6	0.6	
	60	3.0	2.5	2.0	2.0	1.5	1.5	1.25	1.0	1.0	8.0	0.6	0.6	0.6	
	70 80	3.0	2.5	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5 1.5	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$		0.8 0.8	$0.6 \\ 0.8$	0.6	0.6	
	100	3.0	2.5	2.0	2.0	2.0	1.5 1.5	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$		1.0	0.8 0.8	0.6	0.6	
	120	3.0 6	$\frac{2.5}{7\frac{1}{2}}$	2.0	$\frac{2.0}{10\frac{1}{2}}$	12.0	$13\frac{1}{2}$	1.5	18	21	24	30	36	45	60
	1	11			, -			F	eet -						
		SEN	/II- Al	או עא	DIKEC	I LIC	HTIN 1.9	UNI	15-0	eiiing	rieigh	ADOV	e Plan	e or V	, OIK

TABLE 4—ROOM INDEX

for semi-indirect and totally indirect units choose column at bottom of page. Wherever the circumstances are such that the room index falls between two given figures, interpolate or use the smaller number.

		mte	DIRECT LIGHTING UNITS—Height Above Plane of Work												
Room Width	Room Length			DIKE	CI LI			— Fe		ADOVE					
Feet	Feet	4	5	6	7	8	9	10	12	14	16	20	24	30	40
	$\begin{bmatrix} 20 \\ 24 \end{bmatrix}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$	$\begin{array}{c c} 1.0 \\ 1.25 \end{array}$	$\frac{1.0}{1.0}$	$\begin{array}{c c} 8.0 \\ 0.8 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.8 \end{array}$	$\frac{0.6}{0.6}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$:::	
	30	3.0	2.5	2.0	1.5	1.5	1.25	1.25	1.0	8.0	0.6	0.6	0.6		
	35	3.0	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$	$\frac{1.25}{1.5}$	1.0 1.0	$\frac{0.8}{0.8}$	$\begin{array}{c} 8.0 \\ 0.8 \end{array}$	$\begin{array}{c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c} 0.6 \\ 0.6 \end{array}$	• • •	
20	40 50	$\frac{3.0}{3.0}$	2.5	$\frac{2.0}{2.0}$	2.0	2.0	1.5	1.5	1.25	1.0	0.8	0.6	0.6	0.6	
	60	3.0	2.5	2.5	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5 1.5	$\frac{1.5}{1.5}$	1.25	$\frac{1.0}{1.0}$	0.8	0.6	0.6	0.6	
	70 80	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.3}{2.0}$	1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.25}$	$\frac{1.0}{1.0}$	$\begin{array}{c} 8.0 \\ 0.8 \end{array}$	0.6	0.6	0.6
	100	3.0	2.5	2.5	2.0	2.0	2.0	1.5	1.5	1.25	1.0	8.0	0.6	0.6	0.6
	$\begin{array}{c c} 120 \\ 140 \end{array}$	3.0	$\frac{2.5}{2.5}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\begin{array}{c} 1.5 \\ 1.5 \end{array}$	$\begin{array}{c} 1.5 \\ 1.5 \end{array}$	$\frac{1.25}{1.25}$	1.0 1.0	$\begin{array}{c c} 0.8 \\ 1.0 \end{array}$	$\frac{0.8}{0.8}$	0.6	$\frac{0.6}{0.6}$
	24	3.0	2.5	2.0	1.5	1.5	1.25 1.5	1.25	1.0	0.8	0.8	0.6	0.6		
	30	3.0 3.0	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$1.5 \mid 1.5 \mid$	1.5 1.5	1.25	$\frac{1.0}{1.25}$	$\begin{array}{c} 0.8 \\ 1.0 \end{array}$	$\begin{array}{c c} 0.8 \\ 0.8 \end{array}$	$\begin{bmatrix} 0.6 \\ 0.6 \end{bmatrix}$	0.6		
	35 40	$\frac{3.0}{3.0}$	$\frac{2.3}{3.0}$	2.5	2.0	1.5	1.5	$\frac{1.25}{1.5}$	$\frac{1.25}{1.25}$	1.0	0.8	0.8	0.6	0.6	
	50	3.0	3.0	2.5	2.0	2.0	1.5	1.5 1.5	1.25	$\frac{1.0}{1.25}$	1.0	8.0	0.6	0.6	
24	60 70	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\begin{array}{c} 8.0 \\ 0.8 \end{array}$	$\begin{array}{c c} 0.6 \\ 0.6 \end{array}$	$\begin{array}{c} 0.6 \\ 0.6 \end{array}$	0.6
	80	3.0	3.0	2.5	2.5	2.0	2.0	2.0	1.5	1.25	1.25	8.0	0.6	0.6	0.6
	$\begin{array}{c c} 100 \\ 120 \end{array}$	$\frac{3.0}{3.0}$	3.0 3.0	$\frac{2.5}{2.5}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5 1.5	$1.5 \\ 1.5$	$\frac{1.25}{1.25}$	$\begin{bmatrix} 1.0 \\ 1.0 \end{bmatrix}$	$\frac{8.0}{8.0}$	$0.6 \\ 0.6$	$\frac{0.6}{0.6}$
	140	3.0	3.0	$\frac{2.5}{2.5}$	2.5	2.0	2.0	2.0	1.5	1.5	1.25	1.0	0.8	8.0	0.6
	30	4.0	3.0	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{1.0}{1.0}$	$\begin{array}{c c} 0.8 \\ 0.8 \end{array}$	0.6	0.6	
	35 40	$\begin{array}{ c c } 4.0 \\ 4.0 \end{array}$	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	2.5	2.0	2.0	1.5	1.5	1.25	$1.0 \\ 1.0$	0.8	8.0	0.6	
	50	4.0	3.0	3.0	2.5	2.5	2.0	1.5	1.5	1.25	1.0	1.0	8.0	0.6	
30	60 70	$\begin{array}{ c c } 4.0 \\ 4.0 \end{array}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\begin{vmatrix} 2.5 \\ 3.0 \end{vmatrix}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\begin{array}{c} 8.0 \\ 0.8 \end{array}$	$0.6 \\ 0.6$	$0.6 \\ 0.6$
	80	4.0	3.0	3.0	3.0	2.5	2.0	$^{2.0}$	1.5	1.5	1.25	1.0	8.0	0.6	0.6
	$\begin{array}{ c c }\hline 100 \\ 120 \\ \end{array}$	$\begin{array}{ c c } 4.0 \\ 4.0 \end{array}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.5}{1.5}$	$\frac{1.0}{1.25}$	$\begin{array}{c} 0.8 \\ 1.0 \end{array}$	$\frac{0.6}{0.8}$	$\frac{0.6}{0.6}$
	140	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0	1.5	1.25	1.0	8.0	0.6
	35	4.0	3.0	3.0	$\begin{array}{c c} 2.5 \\ 2.5 \end{array}$	$\frac{2.0}{2.5}$	$\begin{bmatrix} 2.0 \\ 2.0 \end{bmatrix}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	$1.25 \\ 1.25$	1.0 1.25	$\begin{array}{c c} 0.8 \\ 0.8 \end{array}$	$\begin{bmatrix} 8.0 \\ 0.8 \end{bmatrix}$	$\frac{0.6}{0.6}$	
	40 50	$5.0 \\ 5.0$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	$\frac{2.3}{3.0}$	2.5		$\frac{2.0}{2.0}$	1.5	1.5	1.25 1.25 1.25	1.0	0.8	0.6	0.6
0.5	60	5.0	4.0	3.0	3.0	2.5	2.5	2.0	1.5	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$	$\frac{1.0}{1.0}$	$\begin{bmatrix} 8.0 \\ 0.8 \end{bmatrix}$	$\frac{0.6}{0.6}$	$0.6 \\ 0.6$
35	70 80	5.0	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	3.0	$\frac{3.0}{3.0}$	2.0 2.5 2.5 2.5 2.5 2.5 2.5	$\frac{2.0}{2.5}$	$\frac{2.0}{2.0}$	1.5	$\frac{1.5}{1.5}$	1.25	1.0	$0.0 \\ 0.8$	9.6
	100	5.0	4.0	3.0	3.0	3.0	2.5	$\frac{2.5}{2.5}$	2.0	$\frac{2.0}{2.0}$	1.5	$\frac{1.25}{1.25}$	1.0 1.0	8.0	0.6
	120 140	$\begin{bmatrix} 5.0 \\ 5.0 \end{bmatrix}$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\begin{vmatrix} 2.5 \\ 2.5 \end{vmatrix}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.23}{1.5}$	$\frac{1.0}{1.25}$	$\frac{8.0}{0.8}$	$0.6 \\ 0.6$
	40	5.0	4.0	3.0	3.0	2.5	2.0	2.0	1.5	1.5	1.25	1.0	0.8	0.6	0.6
	50 60	5.0	$\frac{4.0}{4.0}$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	3.0 3.0	$\frac{2.5}{2.5}$	$\frac{2.0}{2.5}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$	$\frac{1.0}{1.25}$	$\begin{array}{c c} 0.8 \\ 1.0 \end{array}$	$\frac{8.0}{8.0}$	$\frac{0.6}{0.6}$
40	70	5.0	4.0	4.0	3.0	3.0	2.5	2.5	2.0	1.5	1.5	1.25	1.0	8.0	0.6
	80 100	5.0	$\frac{4.0}{4.0}$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{2.5}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.5}$	$\frac{1.0}{1.25}$	$\frac{0.8}{1.0}$	$0.6 \\ 0.6$
	120	5.0	4.0	$\frac{4.0}{4.0}$	3.0	3.0	3.0	2.5	2.5	2.0	2.0	1.5	1.25	1.0	0.6
	140	5.0	4.0	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	1.5	1.25	0.8	0.8
	50 60	$\begin{bmatrix} 5.0 \\ 5.0 \end{bmatrix}$	5.0 5.0	$\frac{4.0}{4.0}$	$\left egin{array}{c} 4.0 \ 4.0 \end{array} \right $	$\frac{3.0}{3.0}$	$\begin{array}{ c c c c }\hline 2.5 \\ 3.0 \\ \end{array}$	$\frac{2.5}{2.5}$	2.0	2.0	1.5	1.25 1.25	1.0	0.8	0.6
	70	5.0	5.0	4.0	4.0	$\frac{3.0}{2.0}$	3.0	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	1.5 1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{0.6}{0.8}$
	80 100	5.0 5.0	$\frac{5.0}{5.0}$	$\frac{4.0}{4.0}$	$\begin{vmatrix} 4.0 \\ 4.0 \end{vmatrix}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	2.5	2.5	$^{2.0}$	1.5	1.25	1.0	0.8
50	120	5.0	5.0	4.0	4.0	3.0	3.0	3.0	$\frac{2.5}{2.5}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$	$\frac{8.0}{0.8}$
	$\begin{array}{c c} 140 \\ 170 \end{array}$	5.0 5.0	5.0 5.0	$\frac{4.0}{4.0}$	$\begin{array}{ c c c } 4.0 \\ 4.0 \end{array}$	$\frac{3.0}{3.0}$	3.0	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	2.5	$\frac{2.0}{2.0}$	$\frac{2.0}{2.0}$	1.5	$\frac{1.25}{1.25}$	0.8
	200	5.0	5.0	4.0	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	1.5	1.25	1.0
	$\begin{vmatrix} 60 \\ 70 \end{vmatrix}$	$\begin{bmatrix} 5.0 \\ 5.0 \end{bmatrix}$	$5.0 \\ 5.0$	5.0 5.0	$\begin{vmatrix} 4.0 \\ 5.0 \end{vmatrix}$	$\frac{4.0}{4.0}$	$\begin{vmatrix} 3.0 \\ 3.0 \end{vmatrix}$	$\frac{3.0}{3.0}$	$2.5 \\ 2.5$	$\begin{bmatrix} 2.0 \\ 2.0 \end{bmatrix}$	$\frac{2.0}{2.0}$	1.5 1.5	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$	$\frac{0.8}{0.8}$
	80	5.0	5.0	5.0	5.0	4.0	4.0	3.0	2.5	2.0 2.5 2.5 2.5 2.5	2.0	1.5	1.25 1.5	1.0	0.8
60	$\begin{array}{c c} 100 \\ 120 \end{array}$	$\begin{bmatrix} 5.0 \\ 5.0 \end{bmatrix}$	$\frac{5.0}{5.0}$	5.0 5.0	5.0 5.0	$\frac{4.0}{4.0}$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	2.5	$\frac{2.0}{2.5}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.25}{1.25}$	$\frac{1.0}{1.0}$
	140	5.0	5.0	5.0	5.0	4.0	4.0	3.0	3.0	3.0	2.5	2.0	1.5	1.25	1.0
	$\begin{array}{c c} 170 \\ 200 \end{array}$	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	$\frac{4.0}{4.0}$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	$\frac{1.5}{1.5}$	$\frac{1.0}{1.0}$
	80	5.0 5.0	+5.0	5.0	5.0	5.0	4.0	4.0	3.0	3.0	2.5	2.0	1.5	1.25	1.0
80	$\frac{140}{200}$	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	$\frac{5.0}{5.0}$	5.0 5.0	$\frac{4.0}{4.0}$	$\frac{4.0}{4.0}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\frac{2.5}{2.5}$	$\frac{2.0}{2.0}$	$\frac{1.5}{2.0}$	$\frac{1.25}{1.5}$
	100	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	4.0	3.0	2.5	2.0	1.5	1.25
100	$\frac{150}{200}$	$\begin{bmatrix} 5.0 \\ 5.0 \end{bmatrix}$	5.0 5.0	5.0 5.0	5.0 5.0	$\frac{5.0}{5.0}$	5.0 5.0	$\frac{5.0}{5.0}$	$\frac{4.0}{4.0}$	$\begin{array}{ c c }\hline 4.0\\ 4.0\\ \end{array}$	$\frac{3.0}{3.0}$	$\frac{3.0}{3.0}$	$\begin{array}{c c} 2.5 \\ 2.5 \end{array}$	$\frac{2.0}{2.0}$	1.5 1.5
120	120 160	5.0	5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	$\frac{4.0}{5.0}$	$\frac{4.0}{4.0}$	3.0 3.0	2.5 2.5	$\frac{2.0}{2.0}$	1.5 1.5
	200	5.0 6	$\frac{5.0}{7\frac{1}{2}}$	5.0 9	$10^{\frac{1}{2}}$	5.0 12	$\frac{5.0}{13\frac{1}{2}}$	5 0 15	5.0 18	5.0 21	4.0 24	3.0	3.0	2.5 45	60
					DIRECT			F	et-	'		'	1		
		SEM	11- AN	ו ע INL	JIKECI	LIGI	THING	UINI	13-C	ening t	reignt	Moove	ı lalle	OI W	UIR

TABLE 5—COEFFICIENTS OF UTILIZATION

Find Room Index from Table 4. Check Reflection Factors on Color Chart

	COLOR	CEILING	VE	RY LIGHT (70%	()	FA	IRLY LIGHT (509	%) ~	FAIRLY DARK (30%)	
	COLOR _ REFLECTION FACTOR	WALLS	FAIRLY LIGHT (50%)	FAIRLY Dark (30%)	VERY Dark (10%)	FAIRLY LIGHT (50%)	FAIRLY Dark (30%)	VERY DARK (10%)	FAIRLY Dark (30%)	VERY Dark (10%)
REFLEC	CTOR TYPE	ROOM INDEX		COE	FFICIE	NTS (OF UTI	ILIZAT	ION	
1 R L M DOME Clear Lamp 90° to 180°-0% 0° to 90°-76%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.34 .42 .46 .50 .53 .58 .62 .64 .67	.29 .38 .43 .47 .50 .55 .59 .61 .65	.24 .34 .39 .43 .46 .51 .56 .58 .63	.34 .42 .45 .49 .52 .57 .61 .63 .66 .67	.29 .37 .42 .46 .49 .54 .58 .60 .64	.24 .33 .39 .43 .46 .51 .56 .58 .62	.28 .37 .42 .45 .48 .53 .58 .60 .63	.24 .33 .39 .42 .45 .51 .56 .58 .61
2 R L M DOMÉ White Bowl Lamp 90° to 180°-0% 0° to 90°-66%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.32 .40 .43 .46 .48 .52 .56 .57 .60	.28 .36 .39 .43 .45 .50 .54 .55 .58	.25 .34 .37 .41 .43 .48 .52 .53 .56	.32 .39 .42 .45 .47 .51 .55 .56 .59	.28 .35 .39 .43 .45 .49 .53 .54 .57 .58	.25 .33 .37 .41 .43 .47 .51 .52 .55	.27 .35 .39 .43 .45 .49 .53 .54 .57	.25 .33 .37 .41 .43 .47 .51 .52 .55
3 GLASSTEEL DIFFUSER 90° to 180°7 % 0° to 90°60 %		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.29 .36 .39 .42 .45 .49 .53 .54 .57	.25 .32 .36 .39 .42 .46 .50 .52 .55 .56	.21 .29 .33 .36 .39 .43 .47 .49 .53	.28 .35 .38 .41 .43 .48 .51 .52 .55 .56	.24 .31 .35 .38 .40 .45 .49 .50 .53	.21 .28 .33 .36 .38 .43 .47 .49 .51 .53	.23 .31 .34 .37 .39 .44 .47 .49 .51	.21 .28 .32 .35 .38 .42 .46 .47 .50 51
4 PORCELAIN ENAMEL BOWL Clear Lamp 90° to 180°—0多 0° to 90°—65%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	31 38 41 44 47 51 54 56 58 69	26 .34 .38 .41 .44 .48 .51 .54 .56 .58	.23 .31 .35 .38 .41 .45 .49 .51 .54	.30 .37 .41 .44 .46 .50 .53 .55 .57	.26 .34 .38 .41 .43 .47 .51 .53 .55	.23 .31 .35 .38 .41 .45 .49 .51 .54	.25 .33 .37 .40 .43 .47 .51 .53 .55	.23 .31 .35 .38 .41 .45 .49 .51 .53
5 DENSE OPAL GLASS Diffusing Bulb Lamy 90° to 180°—16% 0° to 90°—60%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.29 .35 .39 .43 .46 .51 .55 .57 .60	.24 .31 .35 .39 .42 .47 .51 .54 .57	.20 .28 .32 .36 .38 .44 .48 .50 .54	.28 .34 .38 .41 .44 .48 .52 .54 .57 .58	.23 .30 .34 .38 .40 .45 .49 .51 .54	.20 .27 .32 .35 .37 .42 .46 .48 .52 .54	.22 .29 .33 .36 .38 .43 .47 .48 .51	.20 .27 .31 .34 .36 .41 .45 .46' .50
6 MIRRORED GLASS Clear Lamp 90° to 180° - 0% 0° to 90° - 68%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.32 .39 .13 .46 .49 .53 .57 .58 .61	.27 .35 .39 .43 .46 .50 .54 .56 .59	.24 .32 .37 .40 .43 .48 .52 .54 .57	.31 .39 .42 .46 .48 .52 .56 .57 .60	.27 .35 .39 .43 .45 .50 .54 .55 .58 .39	.24 .32 .37 .40 .43 .48 .52 .54 .56	.27 .35 .39 .42 .45 .49 .53 .54 .57	.24 .32 .37 .40 .43 .48 .52 .53 .56 .57
PRISMATIC INDUSTRIA (DISTRIBUTIVE) Clear Lamp 90° to 180°—18% 0° to 90°—7.3%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.33 .41 .45 .50 .52 .58 .63 .66 .71	.26 .35 .40 .44 .48 .51 .59 .62 .67	21 .30 .35 .39 .43 .49 .54 .58 .63 .66	.31 .39 .43 .47 .50 .56 .60 .63 .67	.25 .33 .39 .42 .45 .51 .56 .59 .63	.21 .29 .34 .38 .42 .47 .53 .56 .61	.24 .32 .37 .40 .43 .49 .54 .56 .60	.20 .29 .33 .37 .40 .46 .51 .54 .58
PRISMATIC INDUSTRIA (CONCENTRATE) Clear Lamp 90° to 180°—19% 6° to 90°—70%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.36 .44 .48 .53 .56 .61 .65 .68 .71	31 39 44 48 52 57 61 64 68 70	.27 .36 .41 .45 .48 .52 .58 .60 .65	.34 .42 .46 .50 .53 .58 .62 .64 .67	.30 .38 .43 .47 .50 .55 .59 .61 .64	.27 .35 .40 .41 .47 .52 .56 .58 .62	.28 .37 .41 .44 .47 .52 .56 .58 .61	.26 .34 .39 .43 .45 .50 .55 .56 .60

TABLE 5—COEFFICIENTS OF UTILIZATION

Find Room Index from Table 4. Check Reflection Factors on Color Chart

	COLOR	CEILING	VI	ERY LIGHT (70%	3)	FA	IRLY LIGHT (50	FAIRLY DARK (30%)		
	REFLECTION FACTOR	WALLS	FAIRLY LIGHT (50%)	FAIRLY Dark (30%)	VERY DARK (10%)	FAIRLY LIGHT (50%)	FAIRLY DARK (30%)	VERY Dark (10%)	FAIRLY Dark (30%)	VERY DARK (10%)
REFLECTOR TYPE ROOM				COE	FFICIE	NTS	OF UT	ION		
9 WHITE GLASS ENCLOSING GLOBE Flattened 90° to 180°—35% 0° to 90°—45%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.22 .27 .31 .35 .38 .42 .46 .49 .53 .55	.17 .22 .26 .30 .33 .38 .41 .45 .48	.14 .19 .23 .26 .29 .33 .37 .40 .44 .47	.20 .25 .28 .31 .34 .38 .41a .43 .47 .49	.16 .21 .24 .27 .30 .34 .37 .39 .43 .45	.13 .18 .21 .24 .27 .31 .34 .36 .40 .42	.14 .19 .22 .25 .27 .31 .34 .36 .38 .40	.12 .17 .19 .22 .24 .28 .31 .33 .36 .38
10 PRISMATIC ENCLOSING DIRECT 90° to 180°-27% 0° to 90°-59%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.28 .35 .38 .43 .46 .51 .55 .58 .62	.22 .29 .33 .37 .41 .46 .51 .54 .58	.18 .25 .29 .33 .36 .42 .46 .50 .55	.26 .33 .36 .40 .43 .47 .51 .54 .57	.21 .28 .32 .35 .38 .43 .47 .50 .54	.17 .24 .28 .31 .34 .40 .44 .47 .51	.19 .26 .30 .33 .35 .40 .44 .46 .50	.16 .23 .27 .30 .33 .38 .42 .44 .48 .50
11 SEMI-ENCLOSING Metal Reflector 90° to 180°—20% 0° to 90°—56%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.22 .28 .31 .35 .38 .43 .46 .49 .54	.17 .22 .26 .30 .33 .38 .41 .44 .49 .51	.13 .19 .23 .26 .28 .33 .37 .40 .44 .47	.21 .26 .30 .32 .36 .40 .44 .46 .50	.16 .21 .25 .28 .31 .36 .39 .42 .45	.13 .18 .22 .25 .27 .32 .36 .38 .42 .45	.15 .21 .24 .27 .30 .34 .37 .40 .43	.13 .18 .21 .24 .26 .30 .34 .37 .40 .43
12 TWO-PIECE GLASS Reflector and Bowl 90° to 180°—12% 0° to 90°—53%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.22 .27 .30 .33 .36 .41 .44 .46 .49	.17 .23 .26 .29 .32 .37 .40 .42 .45	.14 .20 .23 .26 .29 .33 .36 .38 .42	.21 .26 .29 .32 .35 .39 .42 .43 .47	.17 .22 .26 .28 .31 .35 .38 .40 .43 .45	.14 .19 .23 .26 .28 .32 .35 .37 .41 .43	.16 .22 .25 .29 .31 .34 .37 .39 .42	.14 .19 .22 .25 .27 .31 .35 .37 .40 .41
13 SEMI-INDIRECT DENSE GLASS OR METAL AND DENSE GLASS 90° to 180°—69% 0° to 90°—6%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.16 .19 .22 .25 .27 .31 .34 .36 .40	.13 .16 .19 .22 .24 .28 .31 .33 .37	.11 .14 .17 .19 .21 .25 .28 .31 .34	.12 .15 .17 .20 .21 .24 .25 .27 .29	.10 .13 .15 .17 .18 .21 .23 .25 .28 .29	.08 .11 .13 .15 .16 .19 .22 .23 .26 .28	.07 .08 .10 .11 .12 .14 .15 .16 .18	.06 .08 .09 .10 .11 .13 .15 .15 .17
14 DUST-TIGHT SEMI-INDIRECT (PRISMATIC) 90° to 180°—58% 0° to 90°—19%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.17 .21 .24 .28 .30 .34 .37 .40 .44	.13 .17 .20 .24 .26 .30 .33 .36 .40 .42	.11 .15 .17 .20 .23 .27 .30 .33 .37 .39	.14 .17 .20 .23 .25 .28 .30 .32 .35 .37	.11 .14 .16 .19 .21 .24 .27 .29 .32 .34	.09 .12 .14 .17 .19 .22 .24 .26 .30	.08 .11 .13 .14 .16 .18 .21 .22 .24	.07 .09 .11 .13 .14 .17 .19 .20 .23 .24
15 DUST-TIGHT SEMI-INDIRECT (CLEAR 109) 90° to 180°—58% 0° to 90°—16%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.16 .20 .23 .26 .29 .32 .35 .38 .41	.12 .16 .19 .22 .25 .29 .32 .34 .38 .40	.10 .14 .17 .19 .22 .26 .29 .31 .35 .38	.13 .16 .18 .21 .23 .26 .28 .30 .33	.10 .13 .15 .18 .20 .23 .25 .27 .30 .32	.08 .11 .13 .16 .18 .20 .23 .25 .28 .30	.07 .10 .12 .13 .15 .17 .19 .20 .22	.06 .09 .10 .12 .13 .15 .17 .19 .21
16 MIRRORED INDIRECT 90° to 180°—80% 0° to 90°—0%		0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.15 .18 .22 .25 .27 .30 .34 .36 .40 .42	.12 .15 .19 .22 .24 .27 .31 .33 .37	.10 .13 .16 .19 .21 .25 .28 .30 .34 .37	.11 .13 .15 .18 .20 .22 .24 .26 .28	.09 .11 .13 .15 .17 .19 .22 .24 .26	.07 .09 .11 .13 .15 .17 .20 .22 .24	.05 .07 .08 .09 .10 .11 .13 .14 .15	.04 .06 .07 .08 .09 .10 .12 .13 .14

TABLE 6—COMPUTED ILLUMINATION VALUES Using Depreciation Factor of 1.4

1	1	1	COEFFICIENT OF UTILIZATION																
Area in Square	Size of	Lamp	.14	.16	.18	.20	.22	.25	.28		T	36	.40	.45	1	.55	.60	.65	.70
Ft. per Lamp	Watts L	umens				1	1	F	00	T - () L	ES	-				
60	100 150 200 300	1350 2200 3200 5100	2.2 3.7 5.4 8.5	2.6 4.2 6.1 9.7	$\begin{array}{c} 2.9 \\ 4.7 \\ 6.8 \\ 10.9 \end{array}$	$\begin{array}{c} 3.2 \\ 5.2 \\ 7.6 \\ 12.1 \end{array}$	$egin{array}{c} 3 . 5 \ 5 . 8 \ 8 . 4 \ 13 . 4 \end{array}$	6.5 9.5	7. 10.	$\frac{3}{3} \frac{8}{12}$.	4 2 13 4 21	3.7 1.8	15.2 24.4	11. 17. 27.	$ \begin{vmatrix} 2 & 8 & 0 \\ 8 & 13 & 1 \\ 1 & 19 & 0 \\ 4 & 30 & 4 \end{vmatrix} $	$\begin{vmatrix} 14.3 \\ 21.0 \\ 33.4 \end{vmatrix}$	$\begin{vmatrix} 15.7 \\ 22.8 \\ 36.4 \end{vmatrix}$	17.0 24.8 39.4	$ \begin{array}{r} 26.6 \\ 42.6 \end{array} $
70	100 150 200 300	1350 2200 3200 5100	$ \begin{array}{r} 1.9 \\ 3.1 \\ 4.6 \\ 7.3 \end{array} $	2.2 3.6 5.2 8.3	2.5 4.0 5.9 9.4		$ \begin{array}{r} 3.0 \\ 4.9 \\ 7.2 \\ 11.5 \end{array} $	5.6 8.2	6. 9. 14.	3 7. 1 10. 3 16.	2 8 4 11 9 18	3.1 1.8 3.7	13.0 20.8	10. 14. 23.	$ \begin{array}{c cccc} 1 & 11 & .2 \\ 7 & 16 & .3 \\ 4 & 26 & .0 \end{array} $	12.4 18.0 28.6	$\begin{vmatrix} 19.6 \\ 31.2 \end{vmatrix}$	$ \begin{array}{c} 14.6 \\ 21.2 \\ 33.8 \end{array} $	15.9 22.8 36.4
80	$ \begin{array}{ c c c c } \hline 100 \\ 150 \\ 200 \\ 300 \\ \end{array} $	1350 2200 3200 5100	$ \begin{array}{c} 1.7 \\ 2.7 \\ 4.0 \\ 6.4 \end{array} $	$ \begin{array}{c} 1.9 \\ 3.1 \\ 4.6 \\ 7.3 \end{array} $	$ \begin{array}{c} 2.2 \\ 3.5 \\ 5.1 \\ 8.2 \end{array} $	$2.4 \\ 3.9 \\ 5.7 \\ 9.1$	$\begin{bmatrix} 2.7 \\ 4.3 \\ 6.3 \\ 10.0 \end{bmatrix}$	$\begin{bmatrix} 7.1 \\ 11.4 \end{bmatrix}$	5. 8. 12.	6 6. 9 9. 3 14.	3 7 1 10 5 16	6.4	11.4 18.2	$\begin{array}{c} 8 \ . \\ 12 \ . \\ 20 \ . \end{array}$	$ \begin{array}{c c} 8 & 9.8 \\ 8 & 14.3 \\ 5 & 22.8 \end{array} $	$15.7 \\ 25.0$	$ \begin{array}{c c} 11.8 \\ 17.1 \\ 27.3 \end{array} $	12.8 18.6 29.6	$ \begin{array}{r} 13.7 \\ 20.0 \\ 31.9 \end{array} $
90	100 150 200 300	1350 2200 3200 5100	$ \begin{array}{r} 1.5 \\ 2.4 \\ 3.6 \\ 5.7 \end{array} $	$ \begin{array}{c} 1.7 \\ 2.8 \\ 4.1 \\ 6.5 \end{array} $	1.9 3.1 4.6 7.3	$ \begin{array}{c} 2.1 \\ 3.5 \\ 5.1 \\ 8.1 \end{array} $	$\begin{bmatrix} 2.4 \\ 3.8 \\ 5.6 \\ 8.9 \end{bmatrix}$	4.4	4.	9 5. 1 8.	6 6	3.9 5.3 9.1 4.6	$\begin{array}{c} 4.3 \\ 7.0 \\ 10.1 \\ 16.2 \end{array}$	$\frac{7}{11}$.		9.6	$\frac{10.5}{15.2}$	11.3 16.5	$\frac{12.2}{17.8}$
100	$ \begin{array}{ c c c c } \hline 100 \\ 150 \\ 200 \\ 300 \\ \end{array} $	$\begin{array}{c c} 1350 \\ 2200 \\ 3200 \\ 5100 \end{array}$	$ \begin{array}{c c} 1.4 \\ 2.2 \\ 3.2 \\ 5.1 \end{array} $	1.5 2.5 3.7 5.8	1.7 2.8 4.1 6.6	$ \begin{array}{c} 1.9 \\ 3.1 \\ 4.6 \\ 7.3 \end{array} $		$\frac{3.9}{5.7}$	6.	1 5. 1 7.	$\begin{vmatrix} 0 \\ 3 \end{vmatrix} = 3$	3.5 5.7 3.2 3.1		$\frac{7}{10}$.		8.6 12.6	$\frac{9.4}{13.7}$	14.8	$11.0 \\ 16.0$
110	$ \begin{array}{ c c c c } \hline 100 \\ 150 \\ 200 \\ 300 \\ \end{array} $	1350 2200 3200 5100	1.2 2.0 2.9 4.6	1.4 2.3 3.3 5.3	$\frac{2.6}{3.7}$	1.7 2.9 4.2 6.6	$\begin{vmatrix} 1.9 \\ 3.1 \\ 4.6 \\ 7.3 \end{vmatrix}$	3.6	5.	$\begin{bmatrix} 0 & 4 \\ 8 & 6 \end{bmatrix}$	6 3	3.2 5.1 7.5 1.9	$ \begin{array}{r} 3.5 \\ 5.7 \\ 8.2 \\ 13.3 \end{array} $	6.		7.9	8.6 12.4	9.3 13.5	11.0
120	$ \begin{array}{ c c c c } \hline 100 \\ 150 \\ 200 \\ 300 \\ \end{array} $	1350 2200 3200 5100	1.1 1.8 2.7 4.2	1.3 2.1 3.1 4.9	1.4 2.4 3.4 5.5	1.6 2.6 3.8 6.1	2.9 4.2	3.3	3 . 3 . 5 . 8 .	7 4. 3 6. 5 9.	$\begin{array}{c c} 2 & 4 \\ 1 & 6 \\ 7 & 10 \end{array}$	2.9 4.7 6.9	$ \begin{array}{r} 3.2 \\ 5.2 \\ 7.6 \\ 12.1 \end{array} $	5. 8. 13.	9 6.5 6 9.5 6 15.2	$ \begin{array}{c c} 7.2 \\ 10.5 \\ 16.7 \end{array} $	7 . 8 5 11 . 4 7 18 . 2	8.5 12.4 19.7	$9.2 \\ 13.3 \\ 21.2$
130	$ \begin{array}{ c c c c } \hline 100 \\ 150 \\ 200 \\ 300 \\ \end{array} $	1350 2200 3200 5100	$ \begin{array}{ c c c } 1.0 \\ 1.7 \\ 2.5 \\ 3.9 \end{array} $	1.2 1.9 2.8 4.5	2.2 3.2 5.0	3.5 5.6	2.7 3.9 6.2	$\begin{vmatrix} 3.0 \\ 4.4 \\ 7.0 \end{vmatrix}$	3. 4 4. 7.	4 3 . 9 5 . 8 8 .	9 6 6 9 10			5. 7. 12.	$ \begin{array}{c cccc} 4 & 6.0 \\ 9 & 8.7 \\ 6 & 14.0 \end{array} $	6.6 9.7 15.4	$\begin{bmatrix} 7.2 \\ 10.5 \\ 16.8 \end{bmatrix}$	7.8 11.4 18.2	8.5 12.3 19.6
140	$ \begin{array}{ c c c } \hline 100 \\ 150 \\ 200 \\ 300 \end{array} $	$\begin{array}{c c} 1350 \\ 2200 \\ 3200 \\ 5100 \end{array}$	$ \begin{vmatrix} 1.0 \\ 1.6 \\ 2.3 \\ 3.6 \end{vmatrix} $	1.1 1.8 2.6 4.2	2.0 2.9 4.7	2.2 3.3 5.2	$\begin{vmatrix} 2.5 \\ 4.6 \\ 5.7 \end{vmatrix}$	2.8 4.0 6.5	3 . 3 . 4 . 5 7 .	1 3 6 5 3 8	6 2 3			5 . 7 . 11 .	$ \begin{array}{c c} 0 & 5.6 \\ 3 & 8.2 \\ 7 & 13.0 \end{array} $	6.2 9.0 14.3	2 6.7 9.7 3 15.6	$ \begin{array}{c c} 7.3 \\ 10.6 \\ 16.9 \end{array} $	7.8 11.4 18.2
150	$ \begin{array}{ c c c } \hline 100 \\ 150 \\ 200 \\ 300 \end{array} $	1350 2200 3200 5100	$\begin{bmatrix} 0.9 \\ 1.5 \\ 2.1 \\ 3.4 \end{bmatrix}$	1.0 1.7 2.3 3.9	$\frac{1.9}{2.7}$	$\frac{2.1}{3.0}$	2.3	3.8	5 2. 3 4. 1 6.	9 3 3 4 8 7	.3 .9 .7 .7	2 . 3 3 . 8 5 . 5 8 . 7		4. 6. 10.	$ \begin{array}{c c} 7 & 5.2 \\ 9 & 7.6 \\ 9 & 12.1 \end{array} $	8.4	6.3 9.1 14.6	6.8 9.9 15.8	7.3 10.7 17.0
160	$ \begin{array}{ c c c c } \hline 150 \\ 200 \\ 300 \\ 500 \\ \end{array} $	2200 3200 5100 9400	$ \begin{array}{ c c c } 1.4 \\ 2.0 \\ 3.2 \\ 5.9 \end{array} $	$ \begin{array}{c} 1.6 \\ 2.3 \\ 3.6 \\ 6.7 \end{array} $	$\frac{2.6}{4.1}$	2.9 4.5	3.1	3.6	6.	$\begin{bmatrix} 0 & 4 \\ 4 & 7 \end{bmatrix}$	6 3	3.5 5.1 8.2 5.1	16.8	6. 10. 18.	$ \begin{array}{c cccc} 4 & 7.1 \\ 2 & 11.4 \\ 9 & 21.0 \end{array} $	$ \begin{array}{c c} 7.9 \\ 12.5 \\ 23.0 \end{array} $	$ \begin{array}{c c} 8.6 \\ 13.6 \\ 25.2 \end{array} $	9.3 14.8 27.3	10.0 15.9 29.4
170	$ \begin{array}{ c c c } \hline 150 \\ 200 \\ 300 \\ 500 \end{array} $	2200 3200 5100 9400	$\begin{bmatrix} 1.3 \\ 1.9 \\ 3.0 \\ 5.5 \end{bmatrix}$	2.2	2.4	2.7 4.3 7.9	3.0 4.7 8.7	3.4 7 5.3 7 9.9	4 3. 3 6. 9 11.	$ \begin{array}{c c} 8 & 4 \\ 0 & 6 \\ 0 & 12 \end{array} $	8 1	4.8 7.7 4.2		6. 6 9. 3 17.	0 6.7 6 10.7 8 19.7	$\begin{bmatrix} 7.4\\11.8\\21.7\end{bmatrix}$	$\begin{bmatrix} 4 & 8 & 1 \\ 3 & 12 & 8 \\ 7 & 23 & 7 \end{bmatrix}$	8.7 13.9 25.6	$9.4 \\ 15.0 \\ 27.6$
180	$ \begin{array}{ c c c } \hline 150 \\ 200 \\ 300 \\ 500 \end{array} $	$2200 \\ 3200 \\ 5100 \\ 9400$	$ \begin{array}{ c c c } 1.2 \\ 1.8 \\ 2.8 \\ 5.2 \end{array} $	2.0 3.2 6.0	2.3 3.6 6.7	$\begin{array}{c c} 2.5 \\ 4.0 \\ 7.5 \end{array}$	$\begin{vmatrix} 2.8 \\ 4.5 \\ 8.2 \end{vmatrix}$	3 3 . 5 . 6 5 . 6 9 . 3	$ \begin{bmatrix} 2 & 3 & 0 \\ 5 & 0 & 0 \\ 3 & 10 & 0 \\ \end{bmatrix} $	6 4 7 6 4 11	5 1	4.6 7.3 3.4	5.] 8.] 14.9	5. 1 9. 16.	7 6.3 1 10.1 8 18.6	$\begin{bmatrix} 7.0 \\ 11.1 \\ 20.5 \end{bmatrix}$	$ \begin{array}{c c} 7.6 \\ 1.2.1 \\ 5.22.4 \end{array} $	$\begin{bmatrix} 8.2 \\ 13.1 \\ 24.2 \end{bmatrix}$	8.9 14.2 26.1
190	$ \begin{array}{c c} 150 \\ 200 \\ 300 \\ 500 \end{array} $	$2200 \\ 3200 \\ 5100 \\ 9400$	$\begin{bmatrix} 1.2 \\ 1.7 \\ 2.7 \\ 5.0 \end{bmatrix}$	3.1	$\begin{vmatrix} 2.2\\ 3.5\\ 6.4 \end{vmatrix}$	2 . 4 3 . 8 7 . 1	$\begin{bmatrix} 2 & 3 \\ 4 & 3 \\ 7 & 8 \end{bmatrix}$	7 3.0 2 4.3 3 8.3	8 5. 8 9.	$\begin{array}{c c} 4 & 3 \\ 4 & 6 \\ 9 & 11 \end{array}$. 3 1	$\frac{4.3}{6.9}$	4.8 7.7 14.1	3 5 . 7 8 . 1 15 .	4 6.0 6 9.6 9 17.6	6.6 6.10.3 6.19.4	$ \begin{bmatrix} 7.2 \\ 5.11.5 \\ 4.21.2 \end{bmatrix} $	$\begin{bmatrix} 7.8 \\ 12.4 \\ 23.0 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
200	$ \begin{array}{c c} 150 \\ 200 \\ 300 \\ 500 \end{array} $	2200 3200 5100 9400	$ \begin{array}{ c c c } 1.1 \\ 1.6 \\ 2.5 \\ 4.7 \end{array} $	1.8	3 2.1	2.3	$\begin{vmatrix} 2.5 \\ 4.6 \\ 7.4 \end{vmatrix}$	5 2.9 0 4.3 1 8.4	9 3. 5 5. 4 9.	$ \begin{array}{c c} 2 & 3 \\ 1 & 5 \\ 4 & 10 \end{array} $. 7 . 8 . 7	2.1	$\frac{4.6}{7.3}$	5 . 3 8 . 4 15 .	1 5.7 2 9.1 1 16.8	6 .3 10 .6 18 .3	$\begin{vmatrix} 10.9 \\ 20.1 \end{vmatrix}$	$\begin{vmatrix} 7.4 \\ 11.8 \\ 21.8 \end{vmatrix}$	$ \begin{array}{c c} 8.0 \\ 12.7 \\ 23.5 \end{array} $
220	$ \begin{array}{ c c c } \hline 150 \\ 200 \\ 300 \\ 500 \end{array} $	2200 3200 5100 9400	$ \begin{vmatrix} 1.0 \\ 1.5 \\ 2.3 \\ 4.3 \end{vmatrix} $	1.7	1.9 5 3.0 5 5.5	2.1 3.3 6.1	$\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$	3 2. 6 4. 7 7.	6 2. 1 4. 6 8.	9 3 6 5 5 9	. 3 . 3 . 8 1	6.0 1.0	4.1 6.6 12.2	$ \begin{array}{c cccc} 1 & 4 & . \\ 6 & 7 & . \\ 2 & 13 & . \end{array} $	5 8.3 7 15.3	2 5.1 3 9. 3 16.	7 6.2 1 9.9 8 18.3	2 6.7 9 10.7 3 19.8	$\begin{bmatrix} 11.6 \\ 21.4 \end{bmatrix}$
240	200 300 500 750	$3200 \\ 5100 \\ 9400 \\ 14500$	$ \left\ \begin{array}{c} 1.3 \\ 2.1 \\ 3.9 \\ 6.0 \end{array} \right. $	2.4	2.7 5.6) = 5.6	$\begin{bmatrix} 3 \\ 6 \end{bmatrix}$	$\begin{array}{c c} 3 & 3 \\ 2 & 7 \end{array}$	0 7.	2 4 8 8	.8	0.1	6.11.	1 6. 2 12	3 4.8 8 7.6 6 14.6 4 21.6	$\begin{bmatrix} 8 & 1 \\ 0 & 15 \end{bmatrix}$	3 9.1 4 16.8	1 9.8 3 18.2	

TABLE 6—COMPUTED ILLUMINATION VALUES Using Depreciation Factor of 1.4

	1	COEFFICIENT OF UTILIZATION										
Area in Square	Size of Lamp	.14 .16 .18 .20 .22 .25 .28 .32 .36 .40 .45 .50 .55 .60 .65 .3	70									
Ft. per Lamp	Watts Lumens	FOOT-CANDLES	_									
260	$ \begin{array}{c cccc} 200 & 3200 \\ 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
280	$ \begin{array}{ c c c c } \hline 200 & 3200 \\ \hline 300 & 5100 \\ \hline 500 & 9400 \\ \hline 750 & 14500 \\ \hline \end{array} $		5.9									
320	$ \begin{array}{ c c c c c } \hline 200 & 3200 \\ \hline 300 & 5100 \\ \hline 500 & 9400 \\ \hline 750 & 14500 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.0 3.0 4.7 2.6									
360	$\begin{array}{ c c c c }\hline 200 & 3200 \\ 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 . 4 7 . 1 3 . 1 0 . 2									
400	$ \begin{array}{c cccc} 200 & 3200 \\ 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.0 6.4 1.7 8.1									
450	$ \begin{array}{c cccc} 200 & 3200 \\ 300 & 5100 \\ 500 & 9490 \\ 750 & 14500 \\ \end{array} $	1 1 1 3 1 5 1 6 1 8 2 0 2 3 2 6 2 9 3 2 3 6 4 0 4 5 4 9 5 3 5	3 . 6 5 . 7 0 . 4 6 . 1									
500	$ \begin{array}{ c c c c c c }\hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
600	$ \begin{array}{ c c c c c }\hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.2 7.8 2.1 6.7									
700	$ \begin{array}{ c c c c c }\hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
800	$ \begin{array}{ c c c c c } \hline 300 & 5100 \\ 500 & 9400 \\ \hline 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.2 5.9 9.1 2.5									
900	$ \begin{array}{c cccc} 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \end{array} $	$ \begin{bmatrix} 1.0 & 1.2 & 1.3 & 1.5 & 1.6 & 1.9 & 2.1 & 2.4 & 2.7 & 3.0 & 3.4 & 3.7 & 4.1 & 4.5 & 4.8 & 5 \\ 1.6 & 1.8 & 2.1 & 2.3 & 2.5 & 2.9 & 3.2 & 3.7 & 4.1 & 4.6 & 5.2 & 5.8 & 6.3 & 6.9 & 7.5 & 8 \\ 2.2 & 2.5 & 2.8 & 3.2 & 3.5 & 4.0 & 4.4 & 5.1 & 5.7 & 6.3 & 7.1 & 7.9 & 8.7 & 9.5 & 10.3 & 13 \\ \end{bmatrix} $	2.8 5.2 8.0 1.1									
1000	$ \begin{vmatrix} 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \end{vmatrix} $	$ \begin{bmatrix} 0.9 & 1.1 & 1 & 2 & 1.3 & 1.5 & 1.7 & 1.9 & 2.1 & 2.4 & 2.7 & 3.0 & 3.4 & 3.7 & 4.0 & 4.4 & 4.4 & 4.4 & 4.4 & 4.7 & 1.9 & 2.1 & 2.3 & 2.6 & 2.9 & 3.3 & 3.7 & 4.1 & 4.7 & 5.2 & 5.7 & 6.2 & 6.7 &$										
1200	$ \begin{vmatrix} 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \end{vmatrix} $	$ \begin{bmatrix} 0.3 & 0.9 & 1.0 & 1.1 \\ 1.2 & 1.4 & 1.6 & 1.7 \\ 1.7 & 1.9 & 2.1 & 2.4 \\ 2.6 & 3.0 & 3.3 \\ 3.3 & 3.8 & 4.3 \\ 4.3 & 4.8 & 5.4 \\ 5.9 & 6.5 & 7.1 \\ 7.7 & 7.9 & 8.5 \\ 7.1 & 7.7 & 8.5 \\ 7.1 & 7$	2.1 3.9 6.0 8.3									
1400	$ \begin{array}{ c c c c c }\hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{bmatrix} 0.7 & 0.4 & 0.9 & 0.5 & 0.0 & 0.1 \\ 0.7 & 0.8 & 0.9 & 1.0 & 1.1 & 1.2 & 1.3 & 1.5 & 1.7 & 1.9 & 2.2 & 2.4 & 2.6 & 2.9 & 3.1 & 3 \\ 1.0 & 1.2 & 1.3 & 1.5 & 1.6 & 1.8 & 2.1 & 2.4 & 2.7 & 3.0 & 3.3 & 3.7 & 4.1 & 4.4 & 4.8 & 3 \\ 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.5 & 2.9 & 3.3 & 3.7 & 4.1 & 4.6 & 5.1 & 5.6 & 6.1 & 6.6 & 3 \\ \end{bmatrix} $	1.8 3.4 5.2 7.1									
1600	$ \begin{array}{ c c c c c }\hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{bmatrix} 0.6 & 0.7 & 0.8 & 0.8 & 0.9 & 1.0 & 1.2 & 1.3 & 1.5 & 1.7 & 1.9 & 2.1 & 2.3 & 2.5 & 2.7 & 2$	$ \begin{array}{c} 1.6 \\ 2.9 \\ 4.5 \\ 6.2 \end{array} $									
2000	$ \begin{array}{ c c c c c } \hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{bmatrix} 0.5 & 0.5 & 0.6 & 0.7 & 0.7 & 0.8 & 0.9 & 1.1 & 1.2 & 1.3 & 1.5 & 1.7 & 1.8 & 2.0 & 2.2 & 3 & 3.1 & 3.4 & 3.1 & 3.4$	$ \begin{array}{c} 1.3 \\ 2.4 \\ 3.6 \\ 5.0 \\ \hline \end{array} $									
2500	$ \begin{array}{ c c c c c } \hline 300 & 5100 \\ 500 & 9400 \\ 750 & 14500 \\ 1000 & 20000 \\ \hline \end{array} $	$ \begin{bmatrix} 0.2 & 0.2 & 0.3 & 0$	1.0 1.9 2.9 4.0									

Typical Multiple Mazda Lamps

TABLE 7-LUMEN OUTPUT OF MULTIPLE MAZDA LAMPS

Subject to change without notice

110-115- Standard Lig Clear I	hting Service Sta	andard Lig	120 Volt hting Service light Lamps	220-230-240-250 Volt Service Clear Lamps			
Size of	T	Size of	Τ	Size of	Τ		
Lamp in Watts	Lumen Output	Lamp in Watts	Lumen Output	Lamp in Watts	Lumen Output		
50	500			50	440		
75	-900 //00	75	600				
100	1350 /600	100	900	100	1060		
150	2200 2600	150	1460				
200	-3200 3700	200	2100	200	2600		
300	5100 5900	300	3500	300	4300		
500	9400 /0000	500	6400	500	8000		
750	14400 14500		•	750	12800		
1000	20000 2/200			1000	18000		

After the outlets have been properly located and the area in square feet per outlet determined, the following is a method of calculating the size of lamp, or rather the lumens required per outlet to produce the desired foot-candles:

 $\begin{array}{ll} \text{Lamp Lumens required} & = \frac{\text{Foot-candles} \times \text{Depreciation Factor} \times \text{Area per Outlet}}{\text{Coefficient of Utilization}} \\ \end{array}$

Referring to Table 7 in which the lumen output of lamps is given, the lamp size of the proper type can be selected, which will give most nearly the number of lumens required per outlet.

The formula given on page 17 is used in calculating the foot-candles which will be obtained for any given size of lamp; the above formula is merely transposed to indicate the lamp size for any given foot-candle illumination.

BULLETINS OF THE NATIONAL LAMP WORKS

The purpose of the series of bulletins published by the National Lamp Works of General Electric Co. is to supply authoritative information on artificial lighting. A number of typical bulletins selected from the series are listed below.

- 7C—Fundamentals of Illumination Design

 This bulletin presents the principles of light—its measurement, its control and distribution—together with essentials of illumination design.—44 pages.
- 41B—Illumination Design Data

 This bulletin presents a simple method of illumination design adapted to general lighting systems where standard equipment is to be used. Charts and tables simplify the work and make for accuracy in the design.—24 pages.
- 42A—Factory Lighting Designs

 Ready-made illumination designs for the more common bay sizes found in industrial interiors are presented in this bulletin.—48 pages.
- 45A—Lighting Designs for Stores

 Presents lighting recipes for a number of typical store interiors both large and small, together with designs and notes on lighting of the display windows.—48 pages.
- 46—Street Lighting and Public Safety

 This bulletin presents significant data on the relation of street lighting to traffic accidents and crime, with a discussion of effective street illumination systems for business, residence and outlying districts.—22 pages.
- 47—Better Electric Lighting in the Home
 A practical guide for lighting the home, replete with sketches illustrating the use of various types of lighting fixtures to obtain desirable lighting effects in the different rooms.—32 pages.
- 48—Stop and Direction Signals for Motor Vehicles
 A practical discussion of the problems involved in electrically lighted motor vehicle signal systems.—20 pages.
- 49—Lighting the Motor Bus

 This bulletin discusses the lighting of the bus interior, the electrical circuits, and various exterior lighting units—headlights, tail-lights, signals, markers, etc.—24 pages.
- 50—Electrical Advertising—Its Forms, Characteristics and Designs

 This bulletin contains a discussion of the requirements, characteristics, and adaptabilities of the principal forms of electrical advertising, simple approximate rules to guide the sign user and builder, and many new ideas in picture and story for those interested in this most rapidly growing publicity media.—40 pages.
- 51—Night Lighting for Outdoor Sports

 This bulletin discusses the various types of equipment and gives comprehensive lighting plans for tennis, volley ball, race tracks, bathing beaches, and a number of other common outdoor recreations.—24 pages.

In addition to the bulletins listed above, publications are available on various subjects such as motion picture projection, lamp temperatures, automobile headlighting, school lighting and other subjects of general interest to the lighting industry.

Those-requesting bulletins are asked to state the subjects in which they are interested.

THE SALES ORGANIZATION OF THE NATIONAL LAMP WORKS OF GENERAL ELECTRIC CO. IS AS FOLLOWS:

BRYAN-MARSH DIVISION	. BOSTON, MASS.
MIDLAND LAMP DIVISION	. CHICAGO, ILL.
MICHIGAN LAMP DIVISION	. DETROIT, MICH
ATLANTIC LAMP DIVISION	. NEW YORK CITY
THE BUCKEYE ELECTRIC DIVISION	. CLEVELAND, OHIO
ALLEGHENY LAMP DIVISION	. PITTSBURGH, PA.
THE COLUMBIA LAMP DIVISION	. ST. LOUIS, MO
FEDERAL LAMP DIVISION	. NEW YORK CITY
FEDERAL LAMP DIVISION	. CHICAGO, ILL.
THE FOSTORIA INCANDESCENT LAMP DIVISION	. FOSTORIA, OHIO
NORTHERN LAMP DIVISION	MINNEAPOLIS, MINN.
PACIFIC LAMP DIVISION	. OAKLAND, CAL.
THE PEERLESS-BRILLIANT LAMP DIVISION .	. WARREN, OHIO
EMPIRE LAMP DIVISION	. BUFFALO, N. Y.
SOUTHERN LAMP DIVISION	. ATLANTA, GA.
SOUTHWESTERN LAMP DIVISION	KANSAS CITY, MO.
THE STERLING ELECTRIC LAMP DIVISION .	. WARREN, OHIO
SUNBEAM INCANDESCENT LAMP DIVISION .	. CHICAGO, ILL
SUNBEAM INCANDESCENT LAMP DIVISION .	. NEW YORK CITY

ENGINEERING DEPARTMENT

NATIONAL LAMP WORKS

OF GENERAL ELECTRIC CO. NELA PARK, CLEVELAND

