Reading

Sipser: Chapter 8; or

Hopcroft et al.: 11.2, 11.3

Space Complexity

Space: a measure of the working storage (memory) used by Turing machines.

A simple definition: A Turing machine M operates within space bound f(n) if for any input x of length n, M reads/writes at most f(n) tape squares.

- This definition treats the input as part of the working storage. In other words, $f(n) \ge n$.
- E.g., To check whether a binary string has odd parity, we don't need any working storage, yet any Turing machine for this problem operates in space ≥ n.

A better definition

We consider Turing machines with at least 2 tapes.

- first tape: contains the input; read only;
- other tapes: read/write working tapes.

We measure the space (working storage) used by a Turing machine with respect to the read/write tapes only.

Definition: A Turing machine M is said to operate within space bound f(n) if for any input x of length n, M reads/writes a total of at most f(n) tape squares on non-input tapes.

Space Complexity Classes

Let f(n) be an integer function.

- SPACE (f(n)) = { L | L is a language decided by a deterministic Turing machine operating in space O(f(n)) }.
- NSPACE (f(n)) = { L | L is a language decided by a nondeterministic Turing machine operating in space O(f(n)) }.

Example 1

Recall that SAT is the set of all satisfiable Boolean formulas.

 $SAT \in NP$

SAT \in TIME (20(n)) (We believe that SAT \notin P)

What is the (deterministic) space complexity of SAT? $SAT \in SPACE$ (?)

Example 1

```
SAT \in TIME(2^{O(n)}) (We believe that SAT \notin P)
```

What is the (deterministic) space complexity of SAT? $SAT \in SPACE(n)$

```
Input: a Boolean Formula F
```

For every truth assignment A to the variables of F, evaluate F w.r.t. A; if "true" then accept.

Reject.

NB. Space for storing A and evaluation: O(n)

Example 2

Graph connectivity problem.

Given (G,s,t), an undirected graph G with n vertices (and at most n^2 edges) and two designated vertices s and t, determine whether there is a path from s to t.

This problem is in SPACE (n).

Example 3: nondeterministic space

The graph connectivity problem is in NSPACE (log n).

NB. u, v, count occupies O(log n) bits.

Remarks on graph connectivity

Undirected graphs:

```
SPACE (n)

\rightarrow SPACE (log^2 n) today's lecture

\rightarrow SPACE (log^{3/2} n) [FOCS 1989]

\rightarrow SPACE (log^{4/3} n) [STOC 96; JACM 2000]

\rightarrow SPACE (log n loglog n) [STOC 05]

\rightarrow SPACE (log n) [STOC 05]
```

Directed graphs:

```
SPACE(n) \rightarrow SPACE(log^2 n)
```

Trivial facts on Time versus Space

True or False:

TIME
$$(f(n)) \subseteq NTIME (f(n))$$

$$SPACE(f(n)) \subseteq NSPACE(f(n))$$

TIME
$$(f(n)) \subseteq SPACE (f(n))$$

Roughly speaking, using time t, a Turing machine can read/write at most t squares.

NTIME
$$(f(n)) \subseteq NSPACE (f(n))$$

TIME $(f(n)) \subseteq NTIME (f(n)) \subseteq SPACE (f(n)) \subseteq NSPACE (f(n))$

Theorem: NTIME $(f(n)) \subseteq SPACE (f(n))$

Theorem (Savitch): NSAPCE (f(n)) \subseteq SPACE ($f^2(n)$), where $f(n) \ge \log n$.

Theorem. NTIME $(f(n)) \subseteq SPACE (f(n))$.

Let L be any language in NTIME (f(n)). By definition, L can be decided by an NTM T using O(f(n)) time.

c f(n), where c is some constant.

T is nondeterministic. In one step, T has more than one choice to move. Let d denote the maximum number of choices T can make in one step.

 $d = \max \{ |\delta(q, a_1, a_2, ..., a_k)| |$ $q \in Q \text{ and } a_i \in \Gamma \}.$

For any input x, the computation of T defines a tree.

If $x \in L$ and |x|=n, then there is a path from the start configuration to an accepting configuration within c f(n) steps.

Consider the computation tree of an input in x.

How can we represent such a path?

Answer 1: a sequence of c f(n) configurations.

Note that each configuration occupies O(f(n)) space and the whole sequence uses $O(f^2(n))$ space.

Answer 2: start configuration + a sequence of move choices in each subsequent step.

Note that each choice can be represented by a number in the range [1..d], occupying O(1) space. The whole sequence uses O(f(n)) space.

Deterministic Searching of an accepting path of an NTM T

```
Let n = |x| and m = c f(n).
For all possible sequences S = (a_1 \ a_2 \ ... \ a_m) numbers, where each a_i \in
  {1, 2, ..., d}.
   \Box i = 1; C = the start configuration of T for input x.
   ☐ Repeat m times
         C' = Based on the transition function \delta of T,
               determine the next configuration from C if
               T follows the a<sub>i</sub>-th choice.
          Accept if C is an accepting configuration of T;
         C = C'; i=i+1;
   □ Reject
```

Analysis of space

Note that the whole procedure can be implemented on a deterministic Turing machine M.

At any time, we need to represent the following variables:

S: O(f(n)) space;

C,C': O(f(n)) space;

i: log c f(n) space

Thus, M can accept/reject an input x using O(f(n)) space.

In conclusion, for any NTM T using O(f(n)) time, we can construct a TM M using O(f(n)) space deciding the same language.

```
TIME ( f(n) ) \subseteq NTIME ( f(n) ) \subseteq SPACE ( f(n) ).

|\text{NSPACE} ( f(n) )

SPACE ( f^2(n) )
```

Theorem: NTIME $(f(n)) \subseteq SPACE (f(n))$.

(Savitch's) Theorem: $NSAPCE(f(n)) \subseteq SPACE(f^2(n))$, where $f(n) \ge \log n$.

Savitch's Theorem

Theorem: $NSAPCE(f(n)) \subseteq SPACE(f^2(n))$

Consider any language L that can be decided by a k-tape NTM T using O(f(n)) space.

c f(n), where c is some constant.

We want to show that L in SPACE ($f^2(n)$). I.e., L can be decided by a (D)TM T using O($f^2(n)$) space.

For any input x of length n, the computation of T defines a tree.

If $x \in L$, then this computation tree contains a path, say, P, ending with an accepting configuration.

If $x \notin L$, the **no** paths accepting configuration.

How many steps (configurations) are involved in in accepting "path" P?

Note that we can choose P in such a way that <u>no two</u> <u>configurations on P are the same</u>.

To prove: at most $2^{O(f(n))}$ steps.

Idea. Bound the number of distinct configurations.

A configuration of T is characterised by 3 components:

- tape contents;
- tape head positions;
- · current state.

T uses c f(n) space \Rightarrow every configuration on P contains at most c f(n) non-blank squares on the working tapes.

The number of configurations on P is at most

$$(|\Gamma|^{c f(n)})^k \times (c f(n))^k \times n \times |Q|$$

Input tape head position

of possible tape symbols;

 Γ is the tape alphabet

k working tape head positions

which is $2^{d f(n)}$, where d is a big enough constant. In other words, P takes at most $2^{d f(n)}$ steps.

Deciding L deterministically: using recursion

Given T, we construct a TM T' to decide L as follows:

For any input x (of length n),

- Let $t_0 = 2^{d f(n)}$.
- Let S be the start configuration of T for x.
- For every possible accepting configuration C_a for x,

T' verifies whether T can move from S to C_a within t_o steps.

[T' uses a recursive function CanReach (S, C_a , t_o).]

If yes, T' accepts x immediately.

Can C_1 reach C_2 using t or fewer steps?

CanReach (C_1, C_2, t)

- If t = 1, if $C_1 = C_2$ or if T can move from C_1 to C_2 in one step, return "YES";
- If t > 1, then for every possible configuration C, if CanReach (C_1 ,C, t/2) and CanReach (C, C_2 , t/2), then return "YES"
- Return "NO"

CanReach uses 4 local variables: C, C_1 , C_2 occupies O(f(n)) space and t needs $log(2^{d f(n)}) = O(f(n))$ space.

CanReach(C_1 , C_2 , t) is working deterministically.

It is a recursive procedure, the depth of recursion depends on t, precisely, at most log t.

In other words, the space required for the stack is at most $log t \times O(f(n))$.

Thus, CanReach (S, C_a, t_o) uses $O(f^2(n))$ space.

Popular space complexity classes

PSPACE = U_{i>0} SPACE (ni)

What about NPSPACE? It can be defined as $U_{i>0}$ NSPACE (n^i).

Lemma: PSPACE = NPSPACE.

- Obviously, PSPACE ⊆ NPSPACE.
- By Savitch's theorem, for any i > 0, NSPACE $(n^i) \subseteq SPACE (n^{2i}) \subseteq PSPACE$.
- Therefore, $NPSPACE = U_{i>0} NSPACE (n^i) \subseteq U_{i>0} SPACE (n^i) = PSPACE.$

P, NP, PSPACE

$$P \subseteq PSPACE$$
 (since TIME (f(n)) $\subseteq SPACE$ (f(n)))

NP ⊆ PSPACE

Two possible ways to prove it:

- (a) NP \subseteq NPSPACE (since NTIME (f(n)) \subseteq NSPACE (f(n))) = PSPACE
- (b) NTIME $(n^i) \subseteq SPACE(n^i)$; thus, NP = $U_{i>0}$ NTIME $(n^i) \subseteq U_{i>0}$ SPACE $(n^i) \subseteq PSPACE$

PSPACE Complete

A language L is PSPACE-complete if

- L is in PSPACE, and
- every language L' in PSPACE is polynomial-time reducible to L.

Fact. Let L be a PSPACE-complete language. If L is in NP, then every language L' in PSPACE is also in NP, and PSPACE = NP.

Quantified Boolean formulas (QBF)

A QBF is a formula whose variables are quantified.

Two types of quantifiers:

Universal quantifier (for all): ∀ x f(x) is true iff for every value of the variable x, f(x) is true.

Example:
$$\forall x [x \lor \neg x]$$

 $\forall x \forall y [x \land y]$

• Existential (there exists): $\exists x f(x)$ is true iff for some value of the variable x, f(x) is true (or equivalently, f(x) is satisfiable).

Example: $\exists x \forall y [x \lor y]$

TBQF: Decide whether a given QBF is true.

Example:
$$\forall x \exists y [(x \lor y) \land (\neg x \lor \neg y)]$$

 $\exists y \forall x [(x \lor y) \land (\neg x \lor \neg y)]$

Other popular space complexity classes

L = SPACE (log n)

NL = NSPACE (log n)

It is believed that L is a proper subset of NL.

By Savitch's Theorem, $NL \subseteq SPACE(log^2 n)$.

Futhermore, $NL \subseteq P$.

Consider the language PATH = $\{(G,s,t) \mid G \text{ is a directed graph containing a path from vertex } s to vertex t \}.$

As shown before, PATH is in NL.

In fact, PATH is NL-complete. (Every language L in NL is log-space reducible to PATH).