Name:

Problem 1. Let $f, g: D \to \mathbb{R}$ be continuous at an accumulation point $x_0 \in D$.

- (a) Use limit laws to justify that f + g and fg are continuous at x_0 .
- (b) Explain in detail how this leads to the conclusion that polynomials at continuous.

Solution. We have seen that f is continuous at x_0 if and only if $\lim x \to x_0 f(x) = f(x_0)$.

(a) Since f and g are continuous at x_0 , $\lim_{x\to x_0} f(x) = f(x_0)$ and $\lim_{x\to x_0} g(x) = g(x_0)$. Since the limit of the sum is the sum of the limits when they exist, $\lim_{x\to x_0} (f+g)(x) = (f+g)(x_0)$ Thus f+g is continuous at x_0 .

The proof for product is completely analogous.

(b) We wish to show that every polynomial function is continuous.

This is tedious but obviously important. We build it gradually.

Claim 1: The constant function f(x) = C, where $C \in \mathbb{R}$, is continuous.

Let $x_0 \in \mathbb{R}$ and let $\epsilon > 0$. Set $\delta = 1$. Then if $|x - x_0| < \delta$, we have $|f(x) - f(x_0)| = 0 < \epsilon$. Thus f is continuous in

Claim 2: The identity function f(x) = x is continuous.

Let $x_0 \in \mathbb{R}$ and let $\epsilon > 0$. Set $\delta = \epsilon$. Then if $|x - x_0| < \delta$, we have $|f(x) - f(x_0)| = |x - x_0| < \delta = \epsilon$, so f is continuous in this case.

Claim 3: The function $f(x) = x^n$ is continuous.

By induction on n. For n=1, the function q(x)=x is the identity function, and so it is continuous. By induction, $h(x) = x^{n-1}$ is continuous. Since the product of continuous functions is continuous, f = qh is continuous in this case.

Claim 4: The monomial function $f(x) = a_n x^n$ is continuous, where $a_n \in \mathbb{R}$ is constant.

By Claim 1, $g(x) = a_n$ is continuous, and by Claim 3, $h(x) = x^n$ is continuous, so there product f = gh is continuous. Claim 5: The polynomial function $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ is continuous.

By induction on n, the degree of the polynomial.

For n = 0, f(x) is constant and therefore continuous.

Assume that $g(x) = a_0 + \cdots + a_{n-1}x^{n-1}$ is continuous. By Claim 4, $h(x) = a_nx^n$ is continuous. Then f = g + his continuous, because the sum of continuous functions is continuous.

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is discontinuous at every real number.

Solution. Let $x_0 \in \mathbb{R}$. Let $\epsilon = \frac{1}{2}$ and let $\delta > 0$. Suppose x_0 is rational. Then $f(x_0) = 1$. But there exists $x \in (x_0 - \delta, x_0 + \delta)$ which is irrational, so f(x) = 0, and $|f(x) - f(x_0)| = |1 - 0| = 1 > \frac{1}{2} = \epsilon$. So f is not continuous at x_0 .

Similarly, if x_0 is irrational, there exists $x \in (x_0 - \delta, x_0 + \delta)$ which is rational, and $|f(x) - f(x_0)| = |0 - 1| = 1 > 1$ $\frac{1}{2} = \epsilon$. So f is not continuous at x_0 .

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is continuous at x = 0 and discontinuous at all nonzero real numbers.

Solution. Let $x_0 \in \mathbb{R} \setminus \{0\}$; we show that f is discontinuous at x_0 . Let $\epsilon = \frac{|x_0|}{2}$ and let $\delta > 0$. Then there exists both a rational and an irrational in $(x_0 - \delta, x_0 + \delta)$. If x_0 is rational, let x_1 be an irrational in this interval, and we have $|f(x_1) - f(x_0)| = |x_0| > \epsilon$. If x_0 is irrational, let x_2 be a rational in this interval such that $|x_2| > |x_0|$ and we still have $|f(x_2) - f(x_0)| = |x_2| > |x_0| > \epsilon$. Thus f is not continuous at x_0 .

Now we consider the behavior of f at zero. Let $\epsilon > 0$ and let $\delta = \epsilon$. Then if $|x - 0| < \delta$, we have |f(x) - f(0)| = 0if x is irrational and |f(x) - f(0)| = |x| if x is rational; in either case, $|f(x) - f(0)| \le |x| < \delta = \epsilon$, so f is continuous at zero.

Problem 4. If $r \in \mathbb{Q}$, there exists $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ such that $r = \frac{p}{q}$. Define $q : \mathbb{Q} \to \mathbb{R}$ by

$$q(r) = \min\{q \in \mathbb{N} \mid r = \frac{p}{q} \text{ for some } p \in \mathbb{Z}\}.$$

Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{q(x)} & \text{if } x \text{ is rational} \end{cases}$$

Show that f is discontinuous at every rational and continuous at every irrational.

Solution. Suppose that x_0 is rational. We wish to show that f is not continuous at x_0 . It suffices to find $\epsilon > 0$ such

that for every $\delta > 0$ there exists $x_1 \in (x_0 - \delta, x_0 + \delta)$ with $|x_0 - x_1| > \epsilon$. Since x_0 is rational, we have $x_0 = \frac{p}{q(x_0)}$ for some $p \in \mathbb{Z}$. Let $\epsilon = \frac{1}{2q(x_0)}$ and let $\delta > 0$. Then $(x_0 - \delta, x_0 + \delta)$ contains an irrational number, say x_1 ; then $|x_0 - x_1| < \delta$ but $|f(x_0) - f(x_1)| = \frac{1}{q(r)} > \epsilon$. Thus f cannot be continuous

Suppose that x_0 is irrational. Let $\epsilon > 0$. It suffices to find $\delta > 0$ such that $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$.

Let $N \in \mathbb{N}$ be so large that $\frac{1}{N} < \epsilon$. Let a be the greatest integer which is less than x_0 and b be the least integer which is greater than x_0 ; then b = a + 1 and $x_0 \in [a, b]$.

For $q \in \mathbb{Q}$, there exist only finitely many points in the set $[a,b] \cap \{\frac{k}{q} \mid k \in \mathbb{Z}\}$ (in fact, this set contains no more than q points). Thus the set

$$D = [a, b] \cap \left\{ \frac{k}{q} \mid k \in \mathbb{Z}, q \le N \right\}$$

is finite (there are no more than $\frac{N(N+1)}{2}$ points in this set). Let

$$\delta = \min\{|x_0 - d| \mid d \in D\};$$

since this set is a finite set of positive real numbers, the minimum exists as a positive real number. Then $(x_0 - \delta, x_0 +$ δ) \subset [a,b]. Let $x \in (x_0 - \delta, x_0 + \delta)$. If x is irrational, we have $|f(x) - f(x_0)| = 0 < \epsilon$, and if x is rational, we have $|f(x)-f(x_0)|=\frac{1}{q(x)}<\frac{1}{N}<\epsilon$. Thus f is continuous at x_0 .

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying

- (1) f(0) = 1;
- (2) f is differentiable at 0 and f'(0) = 1;
- (3) f(x+y) = f(x)f(y).

Show that f is differentiable on \mathbb{R} and that f'(x) = f(x) for every $x \in \mathbb{R}$.

Solution. As we apply the limit as h goes to zero, we see the f(x) is a constant; thus

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 by definition of derivative at x

$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$
 by Property (3)
$$= f(x) \lim_{n \to \infty} \frac{f(h) - 1}{h}$$
 factoring out the constant $f(x)$

$$= f(x) \lim_{n \to \infty} \frac{f(h) - f(0)}{h}$$
 by Property (1)
$$= f(x)f'(0)$$
 by definition of derivative at 0
$$= f(x)$$