

DC:

$$1M = 2V$$
 $1M = 2V$
 $1M = 2V$

$$(io -4)(io -16) = o \rightarrow ip = 4mA$$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mA$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io -4)(io -16) = o \rightarrow ip = 4mS$
 $(io$

- a) Specify the source resistance so that I_D=2.5 mA.
- b) Calculate the voltage gain and the input and the output resistances.

3- Determine a relation for the voltage gain ($A_v = \frac{v_{out}}{v_{in}}$) of the following circuits. Assume that the transistors operate in saturation and $\lambda \neq 0$.

1c.
$$1 + \frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}$$

$$\frac{V_{T}}{1T} = \frac{R_{1}+R_{2}}{R_{2}g_{m_{2}}+1} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \left(R_{2}\right) \left| \frac{1}{g_{m_{2}}} \right|$$

$$R_{2} = V_{02} \left| \left(\frac{R_{1}+R_{2}}{R_{2}} | R_{2}\right) \left| \frac{1}{g_{m_{2}}} \right| \right)$$

$$\frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \left(R_{2}\right) \left| \frac{1}{g_{m_{2}}} \right| \right)$$

$$\frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{1}+R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2$$

$$|T - \frac{1}{4} + \frac{1}{4} +$$

4- Draw the small-signal model of the following circuit and calculate the voltage gain. Assume that all of the transistors are in saturation.

4) 17 a) (, ten limits alon one la s'indot (5.5 moet) tot) gm=loms $\frac{\mathbf{v_0}}{\mathbf{v_{i0}}} = -2$ vgs1 = vin (I) KCI@d2: gm rgs1 = -gm rgs2 1) rgs2 = -vin KCI@53: V53 = 10 9m vg53 = vg53 |II | v53 = vg52 = -vin vg53 = vo - v53 → vo = vg53 + v33 = -2vin

حل با استفاده از پخش جریان

5- Specify a relation for the output resistance of the following circuits. Assume $\lambda \neq 0$.

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o_{2}} || Y_{o_{3}}\right)\right)$$

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o_{2}} || Y_{o_{3}}\right)\right)$$

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o2} || Y_{o_{3}}\right)\right)$$

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o2} || Y_{o_{3}}\right)\right)$$

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o2} || \frac{1}{g_{m_{2}}}\right)\right)$$

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o2} || \frac{1}{g_{m_{2}}}\right)\right)$$

$$R_{o} \simeq Y_{o1} \left(1 + g_{m_{1}} \left(Y_{o2} || \frac{1}{g_{m_{2}}}\right)\right)$$