MEU303 - Algèbre Cours 1

Rappel de cours

Definition 1. Bla bla

MEU303 - Algèbre Cours 1

II.1 Exercice 1

??

II.1 Proposition 1.1

??

II.3 Proposition 1.1

Soit P une matrice de passage de \mathcal{B} vers \mathcal{B}' et Q une matrice de passage de \mathcal{B}' vers \mathcal{B} . On a P.Q = I, en effet appliquer le passage d'un vecteur \overrightarrow{u} d'une base vers une autre et inversement retourne le même vecteur \overrightarrow{u} . Donc $Q = P^{-1}$, ce qui montre que la matrice P est inversible.

II.3 Exercice 2.1

 $GL_n(\mathbb{R})$ est un groupe multiplicatif (pour la multiplication des matrices) si la multiplication est associative, il existe un élément neutre et un inverse pour chaque élément de $GL_n(\mathbb{R})$.

- Une matrice de passage est une matrice et la multiplication de matrice est associative
- La matrice identité est dans l'ensemble $GL_n(\mathbb{R})$. C'est la matrice de passage de la base \mathcal{B} vers la base \mathcal{B} .
- une matrice de passage est inversible (voir exercice préc'edent).

Donc $GL_n(\mathbb{R})$ est un groupe multiplicatif (pour la multiplication des matrices).

II.3 Exercice 2.2

 $\mathcal{M}_{n,p}(\mathbb{R})$ n'est pas un groupe multiplicatif car il existe des matrices non inversibles.

Un ensemble S est stable par rapport à une opération * si $\forall a,b \in S, a*b \in S$. $\mathcal{M}_{n,p}(\mathbb{R})$ est n'est pas stable pour la multiplication car la multiplication de la matrice $\mathcal{M}_{1,2}$ et $\mathcal{M}_{4,5}$ n'existe pas.

II.4 Exercice 4

??

II.4 Exercice 5

Il peut y avoir 0, 1 ou plusieurs applications linéaire pour passer d'une famille de vecteurs à l'autre. (voir TD).

II.4 Exercice 6

??

III.1 Propriété 1.3

??