

# **COMP9020**

Foundations of Computer Science Term 3, 2024

**Lecture 9: Propositional Logic** 

### Outline

Propositional Logic, informally

Propositional Logic, formally

CNF and DNF Revisited

Beyond Propositional Logic

1

## Outline

Propositional Logic, informally

Propositional Logic, formally

CNF and DNF Revisited

Beyond Propositional Logic

# Propositions

A **proposition** (or sentence) is a declarative statement; something that is either true or false.

#### **Examples**

- Richard Nixon was president of Ecuador.
- A square root of 16 is 4.
- Euclid's program gets stuck in an infinite loop if you input 0.
- $x^n + y^n = z^n$  has no nontrivial integer solutions for n > 2.
- 3 divides 24.
- $K_5$  is planar.

3

# Propositions

#### **Examples**

The following are *not* declarative sentences:

- Gubble gimble goo
- For Pete's sake, take out the garbage!
- Did you watch MediaWatch last week?
- Please waive the prerequisites for this subject for me.
- x divides y.
- x = 3 and x divides 24.

# Propositions

#### **Examples**

The following are *not* declarative sentences:

- Gubble gimble goo
- For Pete's sake, take out the garbage!
- Did you watch MediaWatch last week?
- Please waive the prerequisites for this subject for me.
- x divides y. R(x, y)
- x = 3 and x divides 24. P(x)

4

# Logical connectives

**Logical connectives** join together propositions to build larger, **compound** propositions.

#### **Examples**

- Chef is a bit of a Romeo and Kenny is always getting killed.
- Either Bill is a liar or Hillary is innocent of Whitewater.
- It is not the case that this program always halts.
- If it is raining then I have an umbrella.

# Logical connectives

#### Common logical connectives:

| Symbol            | Default           | Also known as            |
|-------------------|-------------------|--------------------------|
| $\land$           | and               | but, ";"                 |
| V                 | or                | "either or"              |
|                   | not               | not the case             |
| $\rightarrow$     | "if then"         | implies                  |
|                   |                   | whenever                 |
|                   |                   | is sufficient for        |
| $\leftrightarrow$ | " if and only if" | bi-implies               |
|                   |                   | necessary and sufficient |
|                   |                   | exactly when             |
|                   |                   | just in case             |

# Compound propositions

The **truth** of a compound proposition depends on the truth of its components (**atomic propositions**):

| Example                                                                |       |       |  |
|------------------------------------------------------------------------|-------|-------|--|
| P: Chef is a bit of a Romeo <b>and</b> Kenny is always getting killed. |       |       |  |
| Chef is a bit of a Romeo   Kenny is always getting killed   P          |       |       |  |
| True                                                                   | True  | True  |  |
| False                                                                  | True  | False |  |
| True                                                                   | False | False |  |
| False                                                                  | False | False |  |

7

# Compound propositions

| Α     | В     | $A \wedge B$ | $A \vee B$ | $\neg A$ | $A \rightarrow B$ | $A \leftrightarrow B$ |
|-------|-------|--------------|------------|----------|-------------------|-----------------------|
|       |       |              |            |          | True              |                       |
| False | True  | False        | True       | True     | True              | False                 |
| True  | False | False        | True       | False    | False             | False                 |
| False | False | False        | False      | True     | True              | True                  |

#### Vacuous truth

How to interpret  $A \rightarrow B$  when A is false?

$$A \rightarrow B$$
 If A (premise) then B (conclusion)

Material implication is false *only when* the premise holds and the conclusion does not.

If the premise is false, the implication is true no matter how absurd the conclusion is.

Both the following statements are true:

- If February has 30 days then March has 31 days.
- If February has 30 days then March has 42 days.

9

#### **Exercises**

#### **Exercises**

#### LLM: 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

#### Translate into logical notation:

- (a) You get an HD in the course although you do not do every exercise in the book.
- (c) To get an HD in the course, you must get an HD on the exam.
- (d) You get an HD on your exam, but you don't do every exercise in this book; nevertheless, you get an HD in this course.

#### **Exercises**

#### **Exercises**

#### LLM: 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

#### Translate into logical notation:

- (a) You get an HD in the course although you  $r \land \neg q$  do not do every exercise in the book.
- (c) To get an HD in the course, you must get  $r \rightarrow q$  an HD on the exam.
- (d) You get an HD on your exam, but you don't p ∧ ¬q ∧ r do every exercise in this book; nevertheless, you get an HD in this course.

# Tautologies, Contradictions and Contingencies

#### **Definition**

A proposition is:

- a tautology if it is always true,
- a contradiction if it is always false,
- a contingency if it is neither a tautology or a contradiction,
- satisfiable if it is not a contradiction.

#### **Example**

- Contingency: It is raining
- Tautology: It is raining or it is not raining
- Contradiction: It is raining and it is not raining

# Applications I: Constraint Satisfaction Problems

These are problems such as timetabling, activity planning, etc. Many can be understood as showing that a formula is satisfiable.

#### **Example**

You are planning a party, but your friends are a bit touchy about who will be there.

- Sarah hates John's jokes. She will not come to the party if John is invited.
- Kim loves John's jokes, and says she will not come unless John does.
- 3 Sarah is shy, and will only come to the party if her best friend Kim will be there.

Who can you invite without making someone unhappy?

Translation to logic: let J, S, K represent "John (Sarah, Kim) comes to the party". Then the constraints are:

- $\mathbf{2} \ K \rightarrow J$
- $\mathbf{3} \ S \to K$

Thus, for a successful party to be possible, we want the formula  $\varphi = (J \to \neg S) \land (S \to K) \land (K \to J)$  to be satisfiable. Truth values for J, S, K making this true are called *satisfying assignments*, or *models*.

13

We can use logical reasoning to work out what options are available:

- If Kim comes, then John must, and Sarah must not.
- If Kim doesn't come, then Sarah cannot come. John may or may not come.

Conclusion: a party satisfying the constraints can be held. Invite nobody, or invite John only, or invite Kim and John.

# Logical equivalence

#### **Definition**

Two propositions are **logically equivalent** if they are true for the same truth values of their atomic propositions.

#### **Example**

A: "It is raining"

is logically equivalent to '

 $\neg(\neg A)$ : "It is not the case that it is not raining"

| Α     | $\neg A$ | $\neg(\neg A)$ |
|-------|----------|----------------|
| True  | False    | True           |
| False | True     | False          |

# Applications II: Program Logic

#### **Example**

if 
$$x > 0$$
 or  $(x <= 0 \text{ and } y > 100)$ :

Let 
$$p \stackrel{\text{def}}{=} (x > 0)$$
 and  $q \stackrel{\text{def}}{=} (y > 100)$ 

$$p \vee (\neg p \wedge q)$$

| р | q | $\neg p$ | $\neg p \land q$ | $p \lor (\neg p \land q)$ |
|---|---|----------|------------------|---------------------------|
| F | F | T        | F                | F                         |
| F | T | T        | T                | T                         |
| T | F | F        | F                | T                         |
| T | T | F        | F                | T                         |

This is equivalent to  $p \lor q$ . Hence the code can be simplified to

if 
$$x > 0$$
 or  $y > 100$ :

# Entailment and Validity

An **argument** consists of a set of propositions called **premises** and a declarative sentence called the **conclusion**.

#### **Example**

Premises: Frank took the Ford or the Toyota.

If Frank took the Ford he will be late.

Frank is not late.

Conclusion: Frank took the Toyota

# Entailment and Validity

An argument is **valid if the conclusions are true whenever all the premises are true**. Thus: if we believe the premises, we should also believe the conclusion.

(Note: we don't care what happens when one of the premises is false.)

Other ways of saying the same thing:

- The conclusion *logically follows* from the premises.
- The conclusion is a *logical consequence* of the premises.
- The premises **entail** the conclusion.

# Entailment and Validity

The argument above is valid. The following is invalid:

| Example     |                                                                                             |  |
|-------------|---------------------------------------------------------------------------------------------|--|
| Premises:   | Frank took the Ford or the Toyota.  If Frank took the Ford he will be late.  Frank is late. |  |
| Conclusion: | Frank took the Ford.                                                                        |  |

#### **Example**

You are on a spaceship with **crewmates** – who always tell the truth; and **imposters** – who always lie.

Premises: Red says: "Blue is an imposter"

Green says: "Red and Blue are both crewmates"

Blue says: "Red is a crewmate, or

Green is an imposter"

Everyone is either a crewmate, or an imposter,

but not both

Conclusion: Green is an imposter.

Proof: ...

# Applications III:

# Reasoning About Requirements/Specifications

Suppose a set of English language requirements R for a software/hardware system can be formalised by a set of formulas  $\{\varphi_1, \dots \varphi_n\}$ .

Suppose C is a statement formalised by a formula  $\psi$ . Then

- **1** The requirements cannot be implemented if  $\varphi_1 \wedge \ldots \wedge \varphi_n$  is not satisfiable.
- 2 If  $\varphi_1, \ldots \varphi_n$  entails  $\psi$  then every correct implementation of the requirements R will be such that C is always true in the resulting system.
- 3 If  $\varphi_1, \dots \varphi_{n-1}$  entails  $\varphi_n$ , then the condition  $\varphi_n$  of the specification is redundant and need not be stated in the specification.

#### **Example**

Requirements R: A burglar alarm system for a house is to operate as follows. The alarm should not sound unless the system has been armed or there is a fire. If the system has been armed and a door is disturbed, the alarm should ring. Irrespective of whether the system has been armed, the alarm should go off when there is a fire.

Conclusion C: If the alarm is ringing and there is no fire, then the system must have been armed.

#### Questions

- Will every system correctly implementing requirements R satisfy C?
- 2 Is the final sentence of the requirements redundant?

#### **Example**

Expressing the requirements as formulas of propositional logic, with

- S =the alarm sounds =the alarm rings
- $\bullet$  A =the system is armed
- D = a door is disturbed
- F =there is a fire

we get

#### Requirements:

- $(A \wedge D) \to S$
- $\mathbf{3} \ F \rightarrow S$

**Conclusion:**  $(S \land \neg F) \rightarrow A$ 

#### **Example**

Our two questions then correspond to

- $\textbf{1} \ \mathsf{Does} \ S \to (A \vee F), \ (A \wedge D) \to S, \ F \to S \ \mathsf{entail} \\ (S \wedge \neg F) \to A \ ?$
- 2 Does  $S \to (A \lor F)$ ,  $(A \land D) \to S$  entail  $F \to S$ ?

### Outline

Propositional Logic, informally

Propositional Logic, formally

CNF and DNF Revisited

Beyond Propositional Logic

# Syntax vs Semantics

The first step in the formal definition of logic is the separation of **syntax** and **semantics** 

- Syntax is how things are written: what defines a formula
- Semantics is what things mean: what does it mean for a formula to be "true"?

#### **Example**

"Rabbit" and "Bunny" are syntactically different, but semantically the same.

# Syntax: Well-formed formulas

Let  $PROP = \{p, q, r, \ldots\}$  be a set of propositional letters. Consider the alphabet

$$\Sigma = \text{Prop} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}.$$

The **well-formed formulas** (wffs) over PROP is the smallest set of words over  $\Sigma$  such that:

- $\bullet$   $\top$ ,  $\bot$  and all elements of PROP are wffs
- If  $\varphi$  is a wff then  $\neg \varphi$  is a wff
- If  $\varphi$  and  $\psi$  are wffs then  $(\varphi \wedge \psi)$ ,  $(\varphi \vee \psi)$ ,  $(\varphi \to \psi)$ , and  $(\varphi \leftrightarrow \psi)$  are wffs.

The following are well-formed formulas:

- $(p \land \neg \top)$
- $\neg(p \land \neg\top)$
- $\neg\neg(p \land \neg\top)$

The following are **not** well-formed formulas:

- p ∧ ∧
- p ∧ ¬T
- $(p \land q \land r)$
- $\bullet \neg (\neg p)$

# Syntax: Conventions

To aid readability some conventions and binding rules can and will be used [not in proof assistant].

- Parentheses omitted if there is no ambiguity (e.g.  $p \land q$ )
- $\neg$  binds more tightly than  $\land$  and  $\lor$ , which bind more tightly than  $\rightarrow$  and  $\leftrightarrow$  (e.g.  $p \land q \rightarrow r$  instead of  $((p \land q) \rightarrow r)$
- $\land$  and  $\lor$  associate to the left:  $p \lor q \lor r$  instead of  $((p \lor q) \lor r)$

# Syntax: Conventions

To aid readability some conventions and binding rules can and will be used [not in proof assistant].

- Parentheses omitted if there is no ambiguity (e.g.  $p \wedge q$ )
- $\neg$  binds more tightly than  $\land$  and  $\lor$ , which bind more tightly than  $\rightarrow$  and  $\leftrightarrow$  (e.g.  $p \land q \rightarrow r$  instead of  $((p \land q) \rightarrow r)$
- $\land$  and  $\lor$  associate to the left:  $p \lor q \lor r$  instead of  $((p \lor q) \lor r)$

Other conventions (rarely used/assumed in this lecture):

- $\bullet$  ' or  $\bar{\cdot}$  for  $\neg$
- $\bullet$  + for  $\lor$
- ullet or juxtaposition for  $\wedge$
- ∧ binds more tightly than ∨
- ullet o and  $\leftrightarrow$  associate to the right: p o q o r instead of (p o(q o r))

# Syntax: Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

#### **Example**

$$((P \land \neg Q) \lor \neg (Q \to P))$$



# Syntax: Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

# **Example** $((P \land \neg Q) \lor \neg (Q \rightarrow P))$

# Syntax: Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

# Example $((P \land \neg Q) \lor \neg (Q \rightarrow P))$

## Syntax: Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.



## Syntax: Parse trees

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.



## Syntax: Parse trees formally

Formally, we can define a parse tree as follows:

A parse tree is either:

- (B) A node containing ⊤;
- (B) A node containing ⊥;
- (B) A node containing a propositional variable;
- (R) A node containing with a single parse tree child;
- (R) A node containing \( \times \) with two parse tree children;
- (R) A node containing ∨ with two parse tree children;
- ullet (R) A node containing  $\to$  with two parse tree children; or
- (R) A node containing  $\leftrightarrow$  with two parse tree children.

# Semantics: Boolean Algebras

Recall the two-element Boolean Algebra  $\mathbb{B}=\{\text{true},\text{false}\}=\{\mathcal{T},\mathcal{F}\}=\{1,0\} \text{ together with the operations }!, \&\&, \parallel.$ 

Define  $\rightsquigarrow$ ,  $\iff$  as derived boolean functions:

- $x \rightsquigarrow y = (!x) \parallel y = \max\{1 x, y\}$
- $x \leftrightarrow y = (x \leadsto y) \&\& (y \leadsto x) = (1 + x + y) \% 2$

## Semantics: Truth valuations

A truth assignment is a function  $v : Prop \rightarrow \mathbb{B}$ .

We can extend a *truth valuation*, *v*, which assigns a value to *all wffs* of propositional logic as follows:

- $v(\top) = \text{true}$ ,
- $v(\perp) = false$ ,
- $v(\neg \varphi) = !v(\varphi)$ ,
- $v(\varphi \wedge \psi) = v(\varphi) \&\& v(\psi)$
- $v(\varphi \lor \psi) = v(\varphi) \parallel v(\psi)$
- $v(\varphi \to \psi) = v(\varphi) \leadsto v(\psi)$
- $v(\varphi \leftrightarrow \psi) = v(\varphi) \leftrightsquigarrow v(\psi)$

## Semantics: Truth valuations

A truth assignment is a function  $v : Prop \rightarrow \mathbb{B}$ .

We can extend a truth valuation, v, to all wffs of propositional logic as follows:

- $v(\top) = 1$ ,
- $v(\bot) = 0$ ,
- $v(\neg \varphi) = 1 v(\varphi)$ ,
- $v(\varphi \wedge \psi) = \min\{v(\varphi), v(\psi)\}$
- $v(\varphi \lor \psi) = \max\{v(\varphi), v(\psi)\}$
- $v(\varphi \rightarrow \psi) = \max\{1 v(\varphi), v(\psi)\}$
- $v(\varphi \leftrightarrow \psi) = (1 + v(\varphi) + v(\psi)) \% 2$

## Semantics: Exercises

#### **Exercises**

Evaluate the following formulas with the truth assignment

$$v(p) = v(q) = false$$

- ullet p o q
- $(p \rightarrow q) \rightarrow (p \rightarrow q)$
- ¬¬p
- $\bullet \quad \top \wedge \neg \bot \to p$

## Semantics: Exercises

#### **Exercises**

Evaluate the following formulas with the truth assignment

$$v(p) = v(q) = false$$

ullet p o q true

•  $(p \rightarrow q) \rightarrow (p \rightarrow q)$  true

•  $\neg \neg p$  false

•  $\top \land \neg \bot \rightarrow p$  false

## Semantics: Truth tables

- Row for every truth assignment assignment of T/F to elements of Prop
- Columns for subformulas

#### **Example**

| р  | q | $\neg p$ | $\neg p \land q$ | $p \lor (\neg p \land q)$ |
|----|---|----------|------------------|---------------------------|
| F  | F | Т        | F                | F                         |
| F  | T | T        | T                | T                         |
| Τ. | F | F        | F                | T                         |
| Т  | Т | F        | F                | Т                         |

# Satisfiability, Validity and Equivalence

#### A formula $\varphi$ is

- satisfiable if  $v(\varphi) = \text{true}$  for some truth assignment v (v satisfies  $\varphi$ )
- a **tautology** if  $v(\varphi) = \text{true}$  for all truth assignments v
- unsatisfiable or a contradiction if  $v(\varphi) = false$  for all truth assignments v

# Example: Party invitations

Translation to logic: let J, S, K represent "John (Sarah, Kim) comes to the party". Then the constraints are:

- $\mathbf{2} S \to K$
- $\mathbf{3} \ K \rightarrow J$

Thus, for a successful party to be possible, we want the formula  $\phi = (J \to \neg S) \land (S \to K) \land (K \to J)$  to be satisfiable. Truth values for J, S, K making this true are called *satisfying assignments*, or *models*.

38

We figure out where the conjuncts are false, below. (so blank = T)

| J | K | S | J 	o  eg S | $S \rightarrow K$ | $K \rightarrow J$ | $\phi$ |
|---|---|---|------------|-------------------|-------------------|--------|
| F | F | F |            |                   |                   |        |
| F | F | Т |            | F                 |                   | F      |
| F | Т | F |            |                   | F                 | F      |
| F | Т | Т |            |                   | F                 | F      |
| T | F | F |            |                   |                   |        |
| T | F | Т | F          | F                 |                   | F      |
| T | Т | F |            |                   |                   |        |
| T | Т | Т | F          |                   |                   | F      |

Conclusion: a party satisfying the constraints can be held. Invite nobody, or invite John only, or invite Kim and John.

### Exercise

#### **Exercises**

RW: 2.7.14 (supp)

Which of the following formulas are always true?

(a) 
$$(p \land (p \rightarrow q)) \rightarrow q$$

(b) 
$$((p \lor q) \land \neg p) \rightarrow \neg q$$

(e) 
$$((p \rightarrow q) \lor (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

(f) 
$$(p \land q) \rightarrow q$$

### Exercise

#### **Exercises**

RW: 2.7.14 (supp)

Which of the following formulas are always true?

(a)  $(p \land (p \rightarrow q)) \rightarrow q$ 

always true

(b)  $((p \lor q) \land \neg p) \rightarrow \neg q$ 

- not always true
- (e)  $((p \rightarrow q) \lor (q \rightarrow r)) \rightarrow (p \rightarrow r)$  not always true

(f)  $(p \land q) \rightarrow q$ 

always true

#### **Definition**

Two formulas,  $\varphi$  and  $\psi$ , are **logically equivalent**,  $\varphi \equiv \psi$ , if  $v(\varphi) = v(\psi)$  for all truth assignments v.

#### **Fact**

 $\equiv$  is an equivalence relation.

### **Example**

For all propositions P, Q, R:

Commutativity: 
$$P \lor Q \equiv Q \lor P$$

$$P \wedge Q \equiv Q \wedge P$$

Associativity: 
$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$

$$(P \wedge Q) \wedge R \equiv P \wedge (Q \wedge R)$$

Distributivity: 
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Identity: 
$$P \lor \bot \equiv P$$

$$P \wedge \top \equiv P$$

Complement: 
$$P \lor \neg P \equiv \top$$
  
 $P \land \neg P \equiv \bot$ 

### **Example**

Other properties:

- Implication:  $p \rightarrow q \equiv \neg p \lor q$
- Double negation:  $\neg \neg p \equiv p$
- Contrapositive:  $(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$
- De Morgan's:  $\neg(p \lor q) \equiv \neg p \land \neg q$

#### **Fact**

 $\varphi \equiv \psi$  if, and only if,  $(\varphi \leftrightarrow \psi)$  is a tautology.

Strategies for showing logical equivalence:

- Compare all rows of truth table.
- Show  $(\varphi \leftrightarrow \psi)$  is a tautology.
- ullet Use transitivity of  $\equiv$ .

#### **Examples**

RW: 2.2.18 Prove or disprove:

$$\overline{(\mathsf{a})\ p \to (q} \to r) \equiv (p \to q) \to (p \to r)$$

(c) 
$$(p \rightarrow q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$$

## **Examples**

$$\begin{array}{c} \text{(a) } (p \to q) \to (p \to r) \\ \equiv \end{array}$$

## **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv$ 

[Implication]

## **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$   
 $\equiv$ 

[Implication] [Implication]

### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$   
 $\equiv (\neg \neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv$ 

[Implication] [Implication] [De Morgan's]

### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$  [Implication]  
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$  [Implication]  
 $\equiv (\neg \neg p \land \neg q) \lor (\neg p \lor r)$  [De Morgan's]  
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$  [Distributivity]

### **Examples**

$$\begin{array}{l} \text{(a) } (p \rightarrow q) \rightarrow (p \rightarrow r) \\ & \equiv \neg (p \rightarrow q) \lor (p \rightarrow r) \\ & \equiv \neg (\neg p \lor q) \lor (\neg p \lor r) \\ & \equiv (\neg \neg p \land \neg q) \lor (\neg p \lor r) \\ & \equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r)) \\ & \equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r) \\ & \equiv \end{array} ] \begin{array}{l} \text{[Implication]} \\ \text{[De Morgan's]} \\ \text{[Distributivity]} \\ & \equiv \end{array}$$

### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$   
 $\equiv (\neg \neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$   
 $\equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r)$   
 $\equiv \top \land ((\neg q \lor \neg p) \lor r))$   
 $\equiv$ 

[Implication]
[Implication]
[De Morgan's]
[Distributivity]
[Associativity]
[Complement]

### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$   
 $\equiv (\neg \neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$   
 $\equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r)$   
 $\equiv \top \land ((\neg q \lor \neg p) \lor r))$   
 $\equiv (\neg q \lor \neg p) \lor r$   
 $\equiv$ 

[Implication]
[Implication]
[De Morgan's]
[Distributivity]
[Associativity]
[Complement]
[Identity]

### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$   
 $\equiv (\neg \neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$   
 $\equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r)$   
 $\equiv \top \land ((\neg q \lor \neg p) \lor r))$   
 $\equiv (\neg q \lor \neg p) \lor r$   
 $\equiv (\neg p \lor \neg q) \lor r$   
 $\equiv$ 

[Implication]
 [Implication]
 [De Morgan's]
 [Distributivity]
 [Associativity]
 [Complement]
 [Identity]
[Commutativity]

### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg(p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg(p \lor q) \lor (\neg p \lor r)$   
 $\equiv (\neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$   
 $\equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r)$   
 $\equiv \top \land ((\neg q \lor \neg p) \lor r))$   
 $\equiv (\neg q \lor \neg p) \lor r$   
 $\equiv (\neg p \lor \neg q) \lor r$   
 $\equiv \neg p \lor (\neg q \lor r)$   
 $\equiv$ 

[Implication]
 [Implication]
 [De Morgan's]
 [Distributivity]
 [Associativity]
 [Complement]
 [Identity]
 [Commutativity]

#### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (\neg p \lor q) \lor (\neg p \lor r)$   
 $\equiv (\neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$   
 $\equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r)$   
 $\equiv \top \land ((\neg q \lor \neg p) \lor r))$   
 $\equiv (\neg p \lor \neg q) \lor r$   
 $\equiv \neg p \lor (\neg q \lor r)$   
 $\equiv p \rightarrow (q \rightarrow r)$ 

[Implication] [Implication] [De Morgan's] [Distributivity] [Associativity] [Complement] [Identity] [Commutativity] [Associativity] [Implication]

#### **Examples**

(a) 
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
  
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv \neg (p \rightarrow q) \lor (p \rightarrow r)$   
 $\equiv (\neg p \land \neg q) \lor (\neg p \lor r)$   
 $\equiv (p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r))$   
 $\equiv ((p \lor \neg p) \lor r) \land ((\neg q \lor \neg p) \lor r)$   
 $\equiv (\neg q \lor \neg p) \lor r$   
 $\equiv (\neg p \lor \neg q) \lor r$   
 $\equiv p \rightarrow (q \rightarrow r)$   
(c)  $(p \rightarrow q) \rightarrow r \not\equiv p \rightarrow (q \rightarrow r)$ 

[Implication] [Implication] [De Morgan's] [Distributivity] [Associativity] [Complement] [Identity] [Commutativity] [Associativity] [Implication]

#### Counterexample:

| р | q | r | $(p \rightarrow q) \rightarrow r$ | p 	o (q 	o r) |
|---|---|---|-----------------------------------|---------------|
| F | Т | F | F                                 | Т             |

### Theories and entailment

A set of formulas is a theory

A truth assignment v satisfies a theory T if  $v(\varphi)=\mathtt{true}$  for all  $\varphi\in T$ 

A theory T entails a formula  $\varphi$ ,  $T \models \varphi$ , if  $v(\varphi) = \text{true}$  for all truth assignments v which satisfy T

#### **Take Notice**

Other notation (when  $T = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$ )

- $\bullet \varphi_1, \varphi_2, \ldots, \varphi_n \models \varphi$
- $\bullet \varphi_1, \varphi_2, \ldots, \varphi_n, \quad \therefore \varphi$
- $\bullet \varphi_1, \varphi_2, \ldots, \varphi_n \Longrightarrow \varphi$

# **Entailment and Implication**

#### **Theorem**

The following are equivalent:

- $\bullet \varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$
- $\emptyset \models ((\varphi_1 \land \varphi_2) \land \dots \varphi_n) \rightarrow \psi$
- $((\varphi_1 \land \varphi_2) \land \dots \varphi_n) \rightarrow \psi$  is a tautology
- $\emptyset \models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\ldots \rightarrow \varphi_n) \rightarrow \psi))\ldots)$
- $\varphi_1 \models \varphi_2 \rightarrow (\ldots \rightarrow \varphi_n) \rightarrow \psi))\ldots)$

These last two equivalences can be proven using the following fact.

#### **Fact**

Let T be a theory, and A and B be propositions. Then  $T \models A \rightarrow B$  is equivalent to  $T \cup \{A\} \models B$ .

# Showing entailment

Strategies for showing  $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$ :

- Draw a truth table with columns for  $\varphi_1, \ldots, \varphi_n$  and  $\varphi$ . Check  $\varphi$  is true in rows where **all** the  $\varphi_i$  are true.
- Show  $((\varphi_1 \wedge \varphi_2) \wedge \dots \varphi_n) \to \psi$  is a tautology.
- Show  $\varphi_1 \to (\varphi_2 \to (\ldots \to \varphi_n) \to \psi)) \ldots)$  is a tautology.
- Show  $\varphi_1 \models \varphi_2 \rightarrow (\ldots \rightarrow \varphi_n) \rightarrow \psi))\ldots)$
- Syntactic techniques: Natural deduction, Resolution, etc (not covered here)

## Entailment example

### **Example**

Premises: Frank took the Ford or the Toyota.

If Frank took the Ford he will be late.

Frank is not late.

Conclusion: Frank took the Toyota

## Entailment example

### **Example**

We mark only true locations (blank = F)

| Frd | Tyta | Late | Frd ∨ Tyta | $\mathit{Frd} 	o Late$ | $\neg Late$ | Tyta |
|-----|------|------|------------|------------------------|-------------|------|
| F   | F    | F    |            | Т                      | Т           |      |
| F   | F    | T    |            | Т                      |             |      |
| F   | Т    | F    | Т          | T                      | T           | Т    |
| F   | Т    | T    | Т          | T                      |             | T    |
| T   | F    | F    | Т          |                        | Т           |      |
| Т   | F    | T    | Т          | Т                      |             |      |
| Т   | Т    | F    | Т          |                        | Т           | Т    |
| Т   | Т    | Т    | Т          | Т                      |             | Т    |

This shows  $Frd \lor Tyta$ ,  $Frd \to Late$ ,  $\neg Late \models Tyta$ 

### Entailment example

### **Example**

The following row shows  $\mathit{Frd} \lor \mathit{Tyta}$ ,  $\mathit{Frd} \to \mathit{Late} \not\models \mathit{Frd}$ 

| ١ | Frd Tyta Late Frd $\vee$ Tyta Frd $\rightarrow$ Late Late |   |   |   |   |   |   |  |  |
|---|-----------------------------------------------------------|---|---|---|---|---|---|--|--|
|   | F                                                         | T | Т | T | Т | Т | F |  |  |

#### **Example**

Premises: Everyone is either a crewmate, or an imposter,

but not both

Red: "Blue is an imposter"

Green: "Red and Blue are both crewmates"

Blue: "Red is a crewmate, or Green is an imposter"

#### **Example**

Translation to logic: Let R, G, B represent "Red (Green, Blue) is a crewmate".

Then the constraints are:

Premises: Everyone is either a crewmate, or an imposter,

but not both

Red: "Blue is an imposter"

Green: "Red and Blue are both crewmates"

Blue: "Red is a crewmate, or Green is an imposter"

#### **Example**

Translation to logic: Let R, G, B represent "Red (Green, Blue) is a crewmate".

Then the constraints are:

Premises: Everyone is either a crewmate, or an imposter,

but not both

 $\varphi_1 = R \leftrightarrow \neg B$ 

Green: "Red and Blue are both crewmates"

Blue: "Red is a crewmate, or Green is an imposter"

#### **Example**

Translation to logic: Let R, G, B represent "Red (Green, Blue) is a crewmate".

Then the constraints are:

Premises: Everyone is either a crewmate, or an imposter,

but not both

 $\varphi_1 = R \leftrightarrow \neg B$ 

 $\varphi_2 = G \leftrightarrow (R \land B)$ 

Blue: "Red is a crewmate, or Green is an imposter"

#### **Example**

Translation to logic: Let R, G, B represent "Red (Green, Blue) is a crewmate".

Then the constraints are:

Premises: Everyone is either a crewmate, or an imposter,

but not both

 $\varphi_1 = R \leftrightarrow \neg B$ 

 $\varphi_2 = G \leftrightarrow (R \land B)$ 

 $\varphi_3 = B \leftrightarrow (R \lor \neg G)$ 

### **Example**

Translation to logic: Let R, G, B represent "Red (Green, Blue) is a crewmate".

Then the constraints are:

Premises: Everyone is either a crewmate, or an imposter,

but not both

 $\varphi_1 = R \leftrightarrow \neg B$ 

 $\varphi_2 = G \leftrightarrow (R \land B)$ 

 $\varphi_3 = B \leftrightarrow (R \vee \neg G)$ 

Conclusion:  $\psi = \neg G$ 

| G | R | В | $\varphi_1$ | $R \wedge B$ | $\varphi_2$ | $R \vee \neg G$ | $\varphi_3$ | $\psi$ |
|---|---|---|-------------|--------------|-------------|-----------------|-------------|--------|
| F | F | F |             |              |             |                 |             | Т      |
| F | F | Т |             |              |             |                 |             | T      |
| F | Т | F |             |              |             |                 |             | Т      |
| F | Т | Τ |             |              |             |                 |             | Т      |
| T | F | F | F           |              |             |                 |             | F      |
| T | F | Т | Т           | F            | F           |                 |             | F      |
| T | Т | F | Т           | F            | F           |                 |             | F      |
| Т | Т | Т | F           |              |             |                 |             | F      |

### **Example**

Recall the alarm specification:

- Requirement 1:  $R_1 = S \rightarrow (A \lor F)$
- Requirement 2:  $R_2 = (A \land D) \rightarrow S$
- Requirement 3:  $R_3 = F \rightarrow S$
- Conclusion:  $C = (S \land \neg F) \rightarrow A$

Questions:

- **1** Does  $R_1, R_2, R_3 \models C$  ?
- **2** Does  $R_1, R_2 \models R_3$  ?

- **1** Does  $R_1, R_2, R_3 \models C$  ?
- **2** Does  $R_1, R_2 \models R_3$  ?
- -: not relevant

| Α | D | F | S | $R_1$ | $R_2$ | $R_3$ | C |
|---|---|---|---|-------|-------|-------|---|
| F | - | - | Т | F     | -     | -     | - |
| - | - | F | Т | F     | -     | -     | - |
| Т | T | - | F | -     | F     | -     | - |
| - | - | Т | F | -     | -     | F     | - |

- **1** Does  $R_1, R_2, R_3 \models C$  ?
- **2** Does  $R_1, R_2 \models R_3$  ?
- -: not relevant

| Α | D | F | S | $R_1$ | $R_2$ | R <sub>3</sub> | C |
|---|---|---|---|-------|-------|----------------|---|
| F | - | - | Т | F     | -     | -              | - |
| - | - | F | Т | F     | -     | -              | - |
| Т | Т | - | F | -     | F     | -              | - |
| - | - | Т | F | -     | -     | F              | - |
| _ | - | - | F | -     | -     | -              | Т |

- **2** Does  $R_1, R_2 \models R_3$  ?
- -: not relevant

| Α | D | F | S | $R_1$ | $R_2$ | $R_3$ | C |
|---|---|---|---|-------|-------|-------|---|
| F | - | - | Т | F     | -     | -     | - |
| - | - | F | Т | F     | -     | -     | - |
| Т | T | - | F | -     | F     | -     | - |
| - | - | Τ | F | -     | -     | F     | - |
| - | - | - | F | -     | -     | -     | Т |
| Т | Т | Т | Т | T     | Т     | Т     | Т |
| T | F | Т | Т | Т     | Т     | Т     | Т |

- **2** Does  $R_1, R_2 \models R_3$  ? No
- -: not relevant

| Α | D | F | S | $R_1$ | $R_2$ | R <sub>3</sub> | C |
|---|---|---|---|-------|-------|----------------|---|
| F | - | - | Т | F     | -     | -              | - |
| - | - | F | Т | F     | -     | -              | - |
| Т | T | - | F | -     | F     | -              | - |
| - | - | Т | F | -     | -     | F              | - |
| - | - | - | F | -     | -     | -              | Т |
| T | Т | Т | Т | Т     | Т     | Т              | Т |
| T | F | Т | Т | T     | Т     | T              | T |
| F | F | Т | F | Т     | Т     | F              |   |

### Outline

Propositional Logic, informally

Propositional Logic, formally

CNF and DNF Revisited

Beyond Propositional Logic

#### CNF and DNF revisited

#### **Definition**

- A **literal** is an expression p or  $\neg p$ , where p is a propositional atom.
- A propositional formula is in CNF (conjunctive normal form) if it has the form

$$\bigwedge_i C_i$$

where each **clause**  $C_i$  is a disjunction of literals e.g.  $p \lor q \lor \neg r$ .

 A propositional formula is in DNF (disjunctive normal form) if it has the form

$$\bigvee_{i} C_{i}$$

where each **clause**  $C_i$  is a conjunction of literals e.g.  $p \land q \land \neg r$ .

### CNF and DNF revisited

#### **Take Notice**

CNF and DNF are syntactic forms.

#### **Theorem**

For every Boolean expression  $\varphi$ , there exists an equivalent expression in conjunctive normal form and an equivalent expression in disjunctive normal form.

### Outline

Propositional Logic, informally

Propositional Logic, formally

CNF and DNF Revisited

Beyond Propositional Logic

## Limitations to Propositional Logic

Propositional logic is unable to capture several useful phenomena:

- Spatial/temporal dependence (e.g. P holds after Q holds)
- Belief and knowledge (e.g. I know that you know that X holds)
- Relationships between propositions (e.g. "The sky is blue" and "my eyes are blue")
- Quantification (e.g. "All men are mortal")

**Modal logic**: Introduce **modalities** to capture statement qualifying.

#### **Example**

#### Temporal logic:

- $\mathcal{F} \varphi$ :  $\varphi$  will be true at some point in the future
- $\mathcal{G} \varphi$ :  $\varphi$  will be true at all points in the future
- $\varphi \mathcal{U} \psi$ :  $\varphi$  will be true until  $\psi$  holds

**First order logic/Predicate logic**: Add relations (predicates) and quantifiers to capture relationships between propositions.

#### **Example**

- P: All men are mortal:
- Q: Socrates is a man:
- R: Socrates is mortal:

In propositional logic, there is no connection between P, Q and R: it is not the case that P,  $Q \models R$ .

**First order logic/Predicate logic**: Add relations (predicates) and quantifiers to capture relationships between propositions.

#### **Example**

- P: All men are mortal:  $\forall x \operatorname{Man}(x) \to \operatorname{Mortal}(x)$
- Q: Socrates is a man:
- R: Socrates is mortal:

In propositional logic, there is no connection between P, Q and R: it is not the case that P,  $Q \models R$ .

**First order logic/Predicate logic**: Add relations (predicates) and quantifiers to capture relationships between propositions.

#### **Example**

- P: All men are mortal:  $\forall x \operatorname{Man}(x) \to \operatorname{Mortal}(x)$
- Q: Socrates is a man: Man(Socrates)
- R: Socrates is mortal:

In propositional logic, there is no connection between P, Q and R: it is not the case that P,  $Q \models R$ .

**First order logic/Predicate logic**: Add relations (predicates) and quantifiers to capture relationships between propositions.

#### **Example**

- P: All men are mortal:  $\forall x \operatorname{Man}(x) \to \operatorname{Mortal}(x)$
- Q: Socrates is a man: Man(Socrates)
- R: Socrates is mortal: Mortal(Socrates)

In propositional logic, there is no connection between P, Q and R: it is not the case that P,  $Q \models R$ .

In first-order logic you can show  $P, Q \models R$ .

**First order logic/Predicate logic**: Add relations (predicates) and quantifiers to capture relationships between propositions.

#### **Example**

- P: All men are mortal:  $\forall x \operatorname{Man}(x) \to \operatorname{Mortal}(x)$
- Q: Socrates is a man: Man(Socrates)
- R: Socrates is mortal: Mortal(Socrates)

In propositional logic, there is no connection between P, Q and R: it is not the case that P,  $Q \models R$ .

In first-order logic you can show  $P, Q \models R$ .

**Second order logic**: Add quantification of relations.

### Limitations

More expressive logics require more complex semantics.

- Logical equivalence harder to show
- Entailment harder to show
- Connections between different concepts not so straightforward

### **Example**

In Temporal Logic, a valuation is a function  $v: \operatorname{PROP} \times \mathbb{N} \to \mathbb{B}$  – i.e. truth tables that change over time.

64