Π екция 27.5.2021

1 Детерминанта на Грам. Обем на паралелепипед и на симплекс — продължение

Припомняне от миналия път

Детерминанта на Грам

Нека U е евклидово линейно пространство.

Определение 1 *Матрица на Грам на системата вектори* $u_1, \ldots, u_k \in U$ се нарича $k \times k$ -матрицата $G(u_1, \ldots, u_k)$, чийто (i, j)-ти елемент е $\langle u_i, u_j \rangle$, тоест

$$G(u_1, \dots, u_k) = \begin{pmatrix} \langle u_1, u_1 \rangle & \langle u_1, u_2 \rangle & \dots & \langle u_1, u_k \rangle \\ \langle u_2, u_1 \rangle & \langle u_2, u_2 \rangle & \dots & \langle u_2, u_k \rangle \\ \vdots & \vdots & & \vdots \\ \langle u_k, u_1 \rangle & \langle u_k, u_2 \rangle & \dots & \langle u_k, u_k \rangle \end{pmatrix}.$$

 $\det G(u_1,\ldots,u_k)$ се нарича детерминанта на Грам на системата вектори $u_1,\ldots,u_k.$

Лема 1 Нека $u_1, \ldots, u_k, v \in U$ и v^{\perp} е ортогоналната към $l(u_1, \ldots, u_k)$ компонента на v (която съществува, защото $l(u_1, \ldots, u_k)$ е крайномерно). Тогава $\det G(u_1, \ldots, u_k, v) = \det G(u_1, \ldots, u_k) . |v^{\perp}|^2$.

Дотук беше припомнянето от миналия път.

Детерминанта на Грам — продължение

Теорема 1 Ако $u_1, \ldots, u_k \in U$, то $\det G(u_1, \ldots, u_k) \geq 0$ $u = \Leftrightarrow u_1, \ldots, u_k$ са линейно зависими.

Доказателство: Индукция по k.

При k=1 имаме $\det G(u_1)=\langle u_1,u_1\rangle=|u_1|^2\geq 0$ и = $\Leftrightarrow u_1=0$, тоест когато u_1 е линейно зависим. Следователно твърдението е вярно за k=1.

Нека твърдението е вярно за k. Ще го докажем за k+1.

От Лема 1 имаме $\det G(u_1,\ldots,u_k,u_{k+1}) = \det G(u_1,\ldots,u_k). \left|u_{k+1}^{\perp}\right|^2$, където u_{k+1}^{\perp} е ортогоналната към $l(u_1,\ldots,u_k)$ компонента на u_{k+1} (която съществува, защото $l(u_1,\ldots,u_k)$ е крайномерно). От индукционното предположение $\det G(u_1,\ldots,u_k) \geq 0$ и = $\Leftrightarrow u_1,\ldots,u_k$ са линейно зависими. Освен това $\left|u_{k+1}^{\perp}\right|^2 \geq 0$ и = $\Leftrightarrow u_{k+1}^{\perp} = 0$, тоест когато $u_{k+1} \in l(u_1,\ldots,u_k)$. Значи $\det G(u_1,\ldots,u_k,u_{k+1}) = \det G(u_1,\ldots,u_k). \left|u_{k+1}^{\perp}\right|^2 \geq 0$ и = $\Leftrightarrow u_1,\ldots,u_k$ са линейно зависими или u_1,\ldots,u_k са линейно независими и u_{k+1} е тяхна линейна комбинация, тоест когато u_1,\ldots,u_k,u_{k+1} са линейно зависими. Следователно твърдението е вярно и за k+1.

Забележка 1 При k=2 горната теорема дава неравенството на Коши-Буняковски-Шварц.

Това е така, защото

$$0 \le \det G(u_1, u_2) = \langle u_1, u_1 \rangle \langle u_2, u_2 \rangle - \langle u_1, u_2 \rangle \langle u_2, u_1 \rangle = |u_1|^2 |u_2|^2 - \langle u_1, u_2 \rangle^2,$$

тоест $|\langle u_1, u_2 \rangle| \le |u_1||u_2|$, и = $\Leftrightarrow \det G(u_1, u_2) = 0$, тоест когато u_1, u_2 са линейно зависими.

Твърдение 1 Нека $e = (e_1, \ldots, e_n)$ е ортонормиран базис в $U, u_1, \ldots, u_k \in U$ и T е матрицата $n \times k$, чишто стълбове са координатните вектори на u_1, \ldots, u_k относно e, тоест $(u_1, \ldots, u_k) = e.T$. Тогава $G(u_1, \ldots, u_k) = T^t T$.

B частност, ако k=n, то T е квадратна $n\times n$ $u \det G(u_1,\ldots,u_n)=(\det T)^2$.

Доказателство: Първата част всъщност сме я видели в доказателството на Твърдение 4 от въпроса за смяна на координатната система:

Ако $T=(t_{ij})_{j=1,\dots,k}^{i=1,\dots,n}$, то $T^t=(s_{ij})_{j=1,\dots,n}^{i=1,\dots,k}$, където $s_{ij}=t_{ji}$. Следователно за $i,j=1,\dots,k$ имаме

$$(i,j)$$
-тият елемент на $T^tT = \sum_{l=1}^n s_{il} t_{lj} = \sum_{l=1}^n t_{li} t_{lj}.$

За $i=1,\ldots,k$ координатният вектор на u_i спрямо e е i-тият стълб на T, тоест $\begin{pmatrix} t_{1i} \\ \vdots \\ t_{ni} \end{pmatrix}$.

Тъй като базисът e е ортонормиран, то за $i,j=1,\ldots,k$ получаваме $\langle u_i,u_j\rangle=\sum_{l=1}^n t_{li}t_{lj}.$ Значи

$$(i,j)$$
-тият елемент на $G(u_1,\ldots,u_k) = \langle u_i,u_j \rangle = \sum_{l=1}^n t_{li} t_{lj} = (i,j)$ -тият елемент на $T^t T$.

Следователно $G(u_1,\ldots,u_k)=T^tT$.

В частност, ако k=n, то T е квадратна $n\times n$ и

$$\det G(u_1,\ldots,u_n) = \det (T^t T) = \det T \cdot \det T = \det T \cdot \det T = (\det T)^2.$$

Забележка 2 Горното твърдение също дава доказателство на Теорема 1:

Ако u_1, \ldots, u_k са линейно независими, то в ролята на U взимаме $l(u_1, \ldots, u_k)$. Тогава n = k, T е $k \times k$ и е обратима (защото (u_1, \ldots, u_k) е базис на $l(u_1, \ldots, u_k)$), тоест $\det T \neq 0$, така че $\det G(u_1, \ldots, u_k) = (\det T)^2 > 0$.

Ако u_1, \ldots, u_k са линейно зависими, то тяхна нетривиална линейна комбинация е 0 и следователно линейната комбинация със същите коефициенти на редовете (а и на стълбовете) на $G(u_1, \ldots, u_k)$ е 0, тоест редовете (а и стълбовете) на $G(u_1, \ldots, u_k)$ са линейно зависими и значи $\det G(u_1, \ldots, u_k) = 0$.

Обем на паралелепипед и на симплекс

Нека A е евклидово афинно пространство, моделирано върху линейното пространство U.

Определение 2 Нека $P_0 \in A$ и $u_1, \ldots, u_k \in U$. Нека Π е k-мерният паралелепипед, определен от P_0 и u_1, \ldots, u_k , а Δ е k-мерният симплекс, определен от P_0 и u_1, \ldots, u_k (тоест от точките P_0, P_1, \ldots, P_k , където P_i са точките, за които $P_0 P_i = u_i, i = 1, \ldots, k$). (k-мерен) обем на Π се нарича числото $V(\Pi) = \sqrt{\det G(u_1, \ldots, u_k)}$. (k-мерен) обем на Δ се нарича числото $V(\Delta) = \frac{1}{k!} \sqrt{\det G(u_1, \ldots, u_k)}$. При k = 1 и k = 2 вместо обем се казва съответно ∂ ължина и лице. (Дефиницията важи и за изродени паралелепипеди и симплекси и е коректна, защото по Теорема $1 \det G(u_1, \ldots, u_k) \geq 0$ (за неизродени > 0, за изродени = 0).)

Теорема 2 Нека $P_0 \in A$, $u_1, \ldots, u_k \in U$, Π u Δ са съответно k-мерните паралелепипед u симплекс, определени от P_0 u u_1, \ldots, u_k , а Π' u Δ' са съответно (k-1)-мерните паралелепипед u симплекс, определени от P_0 u u_1, \ldots, u_{k-1} . Тогава $V(\Pi) = V(\Pi')|u_k^{\perp}|$, $V(\Delta) = \frac{1}{k}V(\Delta')|u_k^{\perp}|$, където u_k^{\perp} е ортогоналната към $l(u_1, \ldots, u_{k-1})$ компонента на u_k .

Доказателство: По Лема 1 имаме $\det G(u_1,\ldots,u_k) = \det G(u_1,\ldots,u_{k-1}). \left|u_k^{\perp}\right|^2$ и следователно $\sqrt{\det G(u_1,\ldots,u_k)} = \sqrt{\det G(u_1,\ldots,u_{k-1})}. \left|u_k^{\perp}\right|$. От това получаваме

$$V(\Pi) = \sqrt{\det G(u_1, \dots, u_k)} = \sqrt{\det G(u_1, \dots, u_{k-1})} \cdot |u_k^{\perp}| = V(\Pi')|u_k^{\perp}|,$$

$$V(\Delta) = \frac{1}{k!} \sqrt{\det G(u_1, \dots, u_k)} = \frac{1}{k} \cdot \frac{1}{(k-1)!} \sqrt{\det G(u_1, \dots, u_{k-1})} \cdot |u_k^{\perp}| = \frac{1}{k} V(\Delta')|u_k^{\perp}|. \quad \Box$$

Забележка 3 $|u_k^{\perp}|$ е "височината" на П и Δ към "основите" П' и Δ' , защото $|u_k^{\perp}|$ е разстоянието от "върха" P_k , тоест точката, за която $\overrightarrow{P_0P_k}=u_k$, до афинното подпространство, определено от P_0 и u_1,\ldots,u_{k-1} .

Твърдение 2 Нека $K = Oe_1 \dots e_n$ е ортонормирана координатна система в A, $P_0 \in A, u_1, \dots, u_n \in U$ и T е матрицата, чиито стълбове са координатните вектори на u_1, \dots, u_n относно e, тоест $(u_1, \dots, u_n) = e.T$. Тогава обемите на n-мерните паралелениед Π и симплекс Δ , определени от P_0 и u_1, \dots, u_n , са съответно $V(\Pi) = |\det T|$ и $V(\Delta) = \frac{1}{n!} |\det T|$.

Доказателство: По Твърдение 1 имаме $\det G(u_1,\ldots,u_n)=(\det T)^2$ и следователно $\sqrt{\det G(u_1,\ldots,u_n)}=|\det T|.$ От това получаваме

$$V(\Pi) = \sqrt{\det G(u_1, \dots, u_n)} = |\det T|, \qquad V(\Delta) = \frac{1}{n!} \sqrt{\det G(u_1, \dots, u_n)} = \frac{1}{n!} |\det T|. \quad \Box$$

Пример 1 k=1: И едномерният паралелепипед Π , и едномерният симплекс Δ са отсечката P_0P_1 , където $\overrightarrow{P_0P_1}=u_1$, и

$$V(\Pi) = \sqrt{\det G(u_1)} = \sqrt{\langle u_1, u_1 \rangle} = |u_1| = |P_0 P_1|,$$

$$V(\Delta) = \frac{1}{1!} \sqrt{\det G(u_1)} = \sqrt{\langle u_1, u_1 \rangle} = |u_1| = |P_0 P_1|,$$

тоест получава се обичайната дължина на отсечка.

k=2: Двумерният паралелепипед П и двумерният симплекс Δ са съответно успоредникът и триъгълникът, определени от P_0 и $u_1,u_2,$ и от Теорема 2 и случая k=1 получаваме

$$V(\Pi) = V(\Pi')|u_2^{\perp}| = |u_1||u_2^{\perp}| =$$
(дължината на основата).(височината),

$$V(\Delta) = \frac{1}{2}V(\Delta')|u_2^\perp| = \frac{1}{2}|u_1||u_2^\perp| = \frac{1}{2}$$
(дължината на основата).(височината),

тоест обичайните формули за лице на успоредник и триъгълник.

k=3: Тримерният паралелепипед Π и тримерният симплекс Δ са съответно паралелепипедът и тетраедърът, определени от P_0 и $u_1,u_2,u_3,$ и от Теорема 2 и случая k=2 получаваме

$$V(\Pi) = V(\Pi')|u_3^{\perp}| =$$
(лицето на основата).(височината),

$$V(\Delta) = \frac{1}{3}V(\Delta')|u_3^{\perp}| = \frac{1}{3}$$
(лицето на основата).(височината),

тоест обичайните формули за обем на паралелепипед и тетраедър.

2 Афинни изображения, еднаквости, подобности

Матрица на линейно изображение (припомняне от алгебрата)

Нека U и V са крайномерни реални линейни пространства, $\dim U = m$, $\dim V = n$, $e = (e_1, \ldots, e_m)$ и $f = (f_1, \ldots, f_n)$ са базиси съответно на U и V и $\Phi: U \to V$ е линейно изображение. Тогава всеки от векторите $\Phi(e_1), \ldots, \Phi(e_m) \in V$ е линейна комбинация на f_1, \ldots, f_n , тоест съществуват числа $t_{ij} \in \mathbb{R}, i = 1, \ldots, n, j = 1, \ldots, m$, такива че

тоест

(2)
$$\Phi(e_j) = \sum_{i=1}^{n} t_{ij} f_i, \quad j = 1, \dots, m.$$

Означаваме $T = (t_{ij})_{j=1,\dots,m}^{i=1,\dots,n}$, тоест T е матрицата $n \times m$, чиито стълбове са координатните вектори на $\Phi(e_1),\dots,\Phi(e_m)$ спрямо базиса f, тоест (i,j)-тият елемент на T е i-тата координата на $\Phi(e_j)$ спрямо базиса f.

Разглеждайки $f=(f_1,\ldots,f_n)$ и $\Phi(e)=(\Phi(e_1),\ldots,\Phi(e_m))$ като вектор-редове и считайки, че вектор може да се умножава с число отдясно, получаваме, че (1) (и еквивалентното му (2)) се записва в матричен вид като

$$\Phi(e) = f.T.$$

Матрицата T се нарича матрица на Φ относно базисите e на U и f на V. Когато U = V и e = f, матрицата T се нарича матрица на Φ относно базиса e на U.

Нека $u \in U$ има спрямо базиса e координатен вектор $x \in \mathbb{R}^m$, а $\Phi(u) \in V$ има спрямо базиса f координатен вектор $y \in \mathbb{R}^n$. Тогава y = Tx.

(Защото от
$$u = \sum_{j=1}^m x_j e_j$$
 следва $\Phi(u) = \sum_{j=1}^m x_j \Phi(e_j) = \sum_{j=1}^m \sum_{i=1}^n x_j t_{ij} f_i = \sum_{i=1}^n \left(\sum_{j=1}^m t_{ij} x_j\right) f_i$ и

значи
$$y_i = \sum_{j=1}^m t_{ij} x_j$$
, $i = 1, \ldots, n$, което е равенството $y = Tx$, написано покомпонентно.)

Чрез координатните изображения това равенство се записва като $\varkappa_f(\Phi(u)) = T.\varkappa_e(u)$. От това е ясно, че за всяка $n \times m$ матрица T съществува единствено линейно изображение $\Phi: U \to V$, на което T е матрицата относно базисите e и f, а именно изображението, дефинирано с $\Phi(u) = \varkappa_f^{-1}(T.\varkappa_e(u))$.

От връзката между координатните вектори също така лесно следва:

- 1. Ако матрицата на линейното изображение $\Phi: U \to V$ спрямо базисите e на U и f на V е S, а матрицата на линейното изображение $\Psi: V \to W$ спрямо базисите f на V и g на W е T, то матрицата на линейното изображение $\Psi \circ \Phi: U \to W$ спрямо базисите e на U и g на W е TS.
- 2. Ако матрицата на линейното изображение $\Phi: U \to V$ спрямо базисите e на U и f на V е T, то Φ е линеен изоморфизъм \Leftrightarrow матрицата T е обратима. В тоя случай матрицата на $\Phi^{-1}: V \to U$ относно базисите f на V и e на U е T^{-1} .
- 3. Ако матрицата на линейното изображение $\Phi: U \to V$ спрямо базисите e на U и f на V е T, а матриците на прехода от e към базиса e' на U и от f към базиса f' на V са съответно R и S, то матрицата на Φ спрямо базисите e' на U и f' на V е $T' = S^{-1}TR$. В частност, при U = V, e = f, e' = f' имаме R = S и следователно получаваме: Ако матрицата на линейното изображение $\Phi: U \to U$ спрямо базиса e на U е T, а матрицата на прехода от e към базиса e' на U е S, то матрицата на Φ спрямо базиса e' на U е $T' = S^{-1}TS$.

Афинни изображения, еднаквости, подобности

Определение 3 Нека A и B са афинни пространства, $\dim A = m$, $\dim B = n$, K и L са афинни координатни системи съответно в A и B и $F:A\to B$ е изображение. Нека изображението $\varphi:\mathbb{R}^m\to\mathbb{R}^n$ е такова, че ако $P\in A$ има координатен вектор $x\in\mathbb{R}^m$ спрямо K, то $F(P)\in B$ има координатен вектор $y=\varphi(x)\in\mathbb{R}^n$ спрямо L. Тогава казваме, че $y=\varphi(x)$ е уравнение на F спрямо K и L и пишем $F:y=\varphi(x)$. Ако A=B и K=L, то казваме, че $y=\varphi(x)$ е уравнение на F спрямо K.

Забележка 4 $\varphi = \varkappa_L \circ F \circ \varkappa_K^{-1}$, така че φ се определя еднозначно от F. Това е така, защото $x = \varkappa_K(P), \ y = \varkappa_L(F(P))$ и следователно равенството $y = \varphi(x)$ е всъщност $\varkappa_L(F(P)) = \varphi(\varkappa_K(P))$, тоест $\varkappa_L \circ F = \varphi \circ \varkappa_K$, което е еквивалентно на $\varkappa_L \circ F \circ \varkappa_K^{-1} = \varphi$.

Пример 2 Нека A е крайномерно афинно пространство и K е афинна координатна система в A. Тогава тъждественото изображение $A \to A, P \mapsto P$, има спрямо K уравнение y = x.

Това е така, защото образът на P си е същата точка P и значи координатният му вектор спрямо K е координатният вектор на P спрямо K.

Пример 3 Нека A е крайномерно афинно пространство, моделирано върху линейното пространство U, K е афинна координатна система в $A, u \in U$ и координатният вектор на u спрямо K е s. Дефинираме $F: A \to A$ по следния начин: ако $P \in A$, то F(P) = Q, където $Q \in A$ е единствената точка, за която $\overrightarrow{PQ} = u$. F се нарича m ранслация c вектора u и има спрямо K уравнение y = s + x.

Това е така, защото ако P(x), Q(y), то $\overrightarrow{PQ}(y-x)$ и значи равенството $\overrightarrow{PQ}=u$ е еквивалентно на y-x=s, тоест на y=s+x.

Всяка транслация е биекция — обратното изображение на транслацията с вектора u е транслацията с вектора -u.

Това е така, защото от $\overrightarrow{PQ} = u$ следва $\overrightarrow{QP} = -u$.

Пример 4 Нека A е крайномерно афинно пространство, $K = Oe_1 \dots e_n$ е афинна координатна система в A, $C \in A$ има координатен вектор ζ спрямо K и $c \in \mathbb{R}$, c > 0. Дефинираме $F: A \to A$ по следния начин: ако $P \in A$, то F(P) = Q, където $Q \in A$ е единствената точка, за която $\overrightarrow{CQ} = c.\overrightarrow{CP}$. F се нарича хомотетия c център C и коефициент c и има спрямо K уравнение y = s + cx, където $s = (1 - c)\zeta$.

Това е така, защото ако P(x), Q(y), то $\overrightarrow{CP}(x-\zeta)$, $\overrightarrow{CQ}(y-\zeta)$ и значи равенството $\overrightarrow{CQ}=c.\overrightarrow{CP}$ е еквивалентно на $y-\zeta=c(x-\zeta)$, тоест на $y=(1-c)\zeta+cx$.

Обратно, при $c \neq 1$ уравнението y = s + cx е уравнение спрямо K на някоя хомотетия (а именно на тая, чийто център C има спрямо K координатен вектор $\zeta = \frac{1}{1-c} \cdot s$ и коефициентът ѝ е c).

Когато C = O, то $\zeta = 0$ и хомотетията с център O и коефициент c има спрямо K уравнение y = cx.

Всяка хомотетия е биекция — обратното изображение на хомотетията с център C и коефициент $\frac{1}{c}$.

Това е така, защото от $\overrightarrow{CQ} = c.\overrightarrow{CP}$ следва $\overrightarrow{CP} = \frac{1}{c} \cdot \overrightarrow{CQ}$.

Пример 5 Нека A е крайномерно евклидово афинно пространство, $K = Oe_1 \dots e_n$ е ортонормирана координатна система в A и $d \in \mathbb{R}$, d > 0. Фиксираме едно $i \in \{1, \dots, n\}$. Изображението $F : A \to A$, което спрямо K има уравнения

$$F: \left\{ \begin{array}{ll} y_i = d.x_i \\ y_j = x_j & \text{при } j \neq i \end{array} \right.,$$

се нарича дилатация по i-тата координатна ос на K с коефициент d.

(F е изображението, при което всички координати остават същите с изключение на i-тата, която се "свива" (при d < 1) или "разтяга" (при d > 1) с коефициент на пропорционалност d. При d = 1 имаме тъждественото изображение.)

Уравненията на F могат да се напишат във вида $F: y = D_i x$, където D_i е диагоналната квадратна матрица от ред n, на която i-тият елемент по диагонала е d, а всички останали елементи по диагонала са 1.

Всяка дилатация е биекция — обратното изображение на дилатацията по i-тата координатна ос на K с коефициент d е дилатацията по i-тата координатна ос на K с коефициент $\frac{1}{d}$.

Това е така, защото от $y_i=d.x_i$ и $y_j=x_j$ при $j\neq i$ следва $x_i=\frac{1}{d}\cdot y_i$ и $x_j=y_j$ при $j\neq i.$

Определение 4 Нека A и B са афинни пространства, моделирани съответно върху линейните пространства U и V. Изображението $F:A\to B$ се нарича $a\phi$ инно изображение, ако съществува линейно изображение $\Phi:U\to V$ такова, че за всеки $P_1,P_2\in A$ е изпълнено $\overline{F(P_1)F(P_2)}=\Phi\left(\overrightarrow{P_1P_2}\right)$. Ако освен това F е биекция, то F се нарича $a\phi$ инен изоморфизъм или $a\phi$ инна mpanc ϕ ормация.

Пример 6 Тъждественото изображение и транслациите в афинно пространство са афинни изоморфизми — при тях $\Phi: U \to U$ е тъждественото изображение на U. Това е така защото: Ако F е тъждественото изображение, то $F(P_1) = P_1$, $F(P_2) = P_2$ и следователно $\overline{F(P_1)F(P_2)} = \overline{P_1P_2}$. Ако пък F е транслация с вектора u, то $\overline{P_1F(P_1)} = u$, $\overline{P_2F(P_2)} = u$ и значи $\overline{P_1F(P_1)} = \overline{P_2F(P_2)}$, откъдето от свойството на успоредника следва $\overline{P_1P_2} = \overline{F(P_1)F(P_2)}$. А че транслациите са биекции го знаем от Пример 3.

(Всъщност обяснението за транслациите покрива и тъждественото изображение, защото тъждественото изображение е транслация с вектора u=0.)

Пример 7 Хомотетиите в афинно пространство са афинни изоморфизми — при тях $\Phi: U \to U$ е умножението с c.

Това е така защото $\overrightarrow{CF(P_1)}=c.\overrightarrow{CP_1},\ \overrightarrow{CF(P_2)}=c.\overrightarrow{CP_2}$ и значи

$$\overrightarrow{F(P_1)F(P_2)} = \overrightarrow{CF(P_2)} - \overrightarrow{CF(P_1)} = c.\left(\overrightarrow{CP_2} - \overrightarrow{CP_1}\right) = c.\overrightarrow{P_1P_2}.$$

А че хомотетиите са биекции го знаем от Пример 4.

Пример 8 Нека A е афинно пространство, моделирано върху линейното пространство U, и $O \in A$ е фиксирана точка. Изображението paduyc-вектор c начало O

$$r_O: A \to U, \quad P \mapsto r_O(P) = \overrightarrow{OP}$$

(тоест на точка се съпоставя радиус-векторът ѝ спрямо O), е афинен изоморфизъм — съответното $\Phi: U \to U$ е тъждественото изображение на U.

Това е така защото

$$\overrightarrow{r_O(P_1)r_O(P_2)} = r_O(P_2) - r_O(P_1) = \overrightarrow{OP_2} - \overrightarrow{OP_1} = \overrightarrow{P_1P_2}.$$

А че r_O е биекция следва от това, че за всеки вектор $u \in U$ съществува единствена точка $P \in A$, за която $\overrightarrow{OP} = u$.

Пример 9 Нека U и V са линейни пространства и $\Phi: U \to V$ е линейно изображение. Тогава, разглеждайки U и V като афинни пространства, Φ е афинно изображение, като съответното линейно изображение е Φ . При това Φ е афинен изоморфизъм тогава и само тогава, когато е линеен изоморфизъм.

Това е така защото

$$\overrightarrow{\Phi(u_1)\Phi(u_2)} = \Phi(u_2) - \Phi(u_1) = \Phi(u_2 - u_1) = \Phi(\overrightarrow{u_1 u_2}).$$

При това Φ е афинен изоморфизъм $\Leftrightarrow \Phi$ е биекция $\Leftrightarrow \Phi$ е линеен изоморфизъм.

Пример 10 Успоредното проектиране на геометричното пространство в равнина е афинно изображение, което не е афинен изоморфизъм (тоест не е биекция). Същото важи за успоредното проектиране на геометричното пространство или геометричната равнина върху права.

Това са частни случаи на следната по-обща ситуация:

Нека A е афинно пространство, моделирано върху линейното пространство U, B е афинно подпространство на A, моделирано върху линейното подпространство V на U и W е допълнение на V в U, тоест $U=V\oplus W$. Тогава за всяка точка $P\in A$ съществува единствена точка $P'\in B$, за която $\overrightarrow{P'P}\in W$. Това се доказва аналогично на съществуването и единствеността на ортогоналната проекция, като вместо V^\perp се пише W. Точката P' се нарича проекция на P в B успоредно на W. Така получаваме изображение $F:A\to B,\ P\mapsto P'$, което се нарича проекция на A в B успоредно на W. Това изображение е афинно изображение, което е афинен изоморфизъм само когато B=A (и в тоя случай е тъждественото изображение).

Това е така, защото: Нека $P_1, P_2 \in A$. Тогава $F(P_1), F(P_2) \in B$ и $\overrightarrow{F(P_1)P_1}, \overrightarrow{F(P_2)P_2} \in W$. От $F(P_1), F(P_2) \in B$ следва $\overrightarrow{F(P_1)F(P_2)} \in V$. Имаме

$$\overrightarrow{P_1P_2} = \overrightarrow{P_1F(P_1)} + \overrightarrow{F(P_1)F(P_2)} + \overrightarrow{F(P_2)P_2} = -\underbrace{\overrightarrow{F(P_1)P_1}}_{\in W} + \underbrace{\overrightarrow{F(P_1)F(P_2)}}_{\in V} + \underbrace{\overrightarrow{F(P_2)P_2}}_{\in W}$$

$$= \underbrace{\overrightarrow{F(P_1)F(P_2)}}_{\in V} + \underbrace{\left(-\overrightarrow{F(P_1)P_1} + \overrightarrow{F(P_2)P_2}\right)}_{\in W}.$$

Следователно $\overrightarrow{F(P_1)F(P_2)}$ е компонентата на $\overrightarrow{P_1P_2}$ във V, тоест $\overrightarrow{F(P_1)F(P_2)} = \Phi\left(\overrightarrow{P_1P_2}\right)$, където $\Phi:U\to V$ е проекцията на U във V относно разлагането $U=V\oplus W$, тоест $\Phi(u)$ е компонентата на u във V относно разлагането $U=V\oplus W$. Лесно се вижда, че Φ е линейно изображение и значи F е афинно изображение.

Ако $B \neq A$, то $V \neq U$ и следователно $W \neq \{0\}$. Нека $w \in W$, $w \neq 0$. Нека $P \in A$ е произволна точка и $Q \in A$ е точката, за която $\overrightarrow{PQ} = w$. Тъй като $w \neq 0$, имаме $Q \neq P$. Нека F(P) = P'. Значи $P' \in B$ и $\overrightarrow{P'P} \in W$. Тогава $P' \in B$ и $\overrightarrow{P'Q} = \underbrace{\overrightarrow{P'P}}_{\in W} + \underbrace{\overrightarrow{PQ}}_{\in W} \in W$.

Следователно F(Q) = P'. Значи $P \neq Q$, но F(P) = F(Q). Това означава, че F не е биекция и следователно не е афинен изоморфизъм.

Ако B=A, то V=U и следователно $W=\{0\}$. Тогава за произволна точка $P\in A$ имаме $P\in B$ и $\overrightarrow{PP}=0\in W$. Значи F(P)=P, тоест F е тъждественото изображение на A и следователно е афинен изоморфизъм.

Частен случай на успоредна проекция е ортогоналната проекция върху афинно подпространство B на крайномерно евклидово афинно пространство A (в тоя случай $W=V^{\perp}$). Значи ортогоналната проекция също е афинно изображение, което е афинен изоморфизъм само когато B=A (и в тоя случай е тъждественото изображение).

Твърдение 3 Нека A и B са афинни пространства, моделирани съответно върху линейните пространства U и V, а $F:A\to B$ е афинно изображение със съответно линейно изображение $\Phi:U\to V$.

- 1. Нека $O \in A$ е произволна точка. Тогава $r_{F(O)} \circ F = \Phi \circ r_O$.
- 2. F е афинен изоморфизъм $\Leftrightarrow \Phi$ е линеен изоморфизъм.

Доказателство:

- 1. За $P \in A$ имаме $\overrightarrow{F(O)F(P)} = \Phi\left(\overrightarrow{OP}\right)$, тоест $r_{F(O)}(F(P)) = \Phi(r_O(P))$. Следователно $r_{F(O)} \circ F = \Phi \circ r_O$.
- 2. От $r_{F(O)} \circ F = \Phi \circ r_O$ и това, че r_O и $r_{F(O)}$ са биекции (това го видяхме в Пример 8) следва, че F е биекция $\Leftrightarrow \Phi$ е биекция. Следователно F е афинен изоморфизъм $\Leftrightarrow \Phi$ е линеен изоморфизъм.

Следствие 1 Нека A и B са крайномерни афинни пространства. Тогава съществува афинен изоморфизъм $F: A \to B \Leftrightarrow \dim A = \dim B$.

Нека $F:A\to B$ е афинен изоморфизъм. Тогава от 2. на Твърдение 3 следва, че съответното линейно изображение $\Phi:U\to V$ е линеен изоморфизъм. Следователно $\dim U=\dim V$, тоест $\dim A=\dim B$. С това е доказана правата посока.

Обратно, нека $\dim A = \dim B$. Значи $\dim U = \dim V$, така че съществува линеен изоморфизъм $\Phi: U \to V$. Фиксираме произволни точки $O \in A$ и $P \in B$ и дефинираме изображението $F: A \to B$ чрез равенството $F = r_P^{-1} \circ \Phi \circ r_O$. Тогава $r_P \circ F = \Phi \circ r_O$. Значи за всяко $Q \in A$ имаме $r_P(F(Q)) = \Phi(r_O(Q))$, тоест $\overline{PF(Q)} = \Phi\left(\overrightarrow{OQ}\right)$. Тогава за $Q_1, Q_2 \in A$ получаваме

$$\overrightarrow{F(Q_1)F(Q_2)} = \overrightarrow{PF(Q_2)} - \overrightarrow{PF(Q_1)} = \Phi\left(\overrightarrow{OQ_2}\right) - \Phi\left(\overrightarrow{OQ_1}\right) = \Phi\left(\overrightarrow{OQ_2} - \overrightarrow{OQ_1}\right) = \Phi\left(\overrightarrow{Q_1Q_2}\right).$$

Следователно F е афинно изображение със съответно линейно изображение Φ . От 2. на Твърдение 3 тогава следва, че F е афинен изоморфизъм. С това е доказана и обратната посока.

Теорема 3 Нека A и B са крайномерни афинни пространства, моделирани съответно върху линейните пространства U и V, а $K = Oe_1 \dots e_m$ и $L = Pf_1 \dots f_n$ са афинни координатни системи съответно в A и B. Тогава:

- 1. Изображението $F: A \to B$ е афинно \Leftrightarrow уравнението на F спрямо K и L е от вида y = s + Tx. При това s е координатният вектор на F(O) спрямо L, а T е матрицата на съответното на F линейно изображение $\Phi: U \to V$ спрямо базисите $e = (e_1, \ldots, e_m)$ на U и $f = (f_1, \ldots, f_n)$ на V.
- 2. Афинното изображение $F:A\to B$ е афинен изоморфизъм \Leftrightarrow матрицата T в 1. е обратима.

Доказателство:

1. Нека F е афинно изображение. Нека координатният вектор на F(O) спрямо L е s, а матрицата на съответното на F линейно изображение $\Phi: U \to V$ спрямо базисите $e = (e_1, \ldots, e_m)$ на U и $f = (f_1, \ldots, f_n)$ на V е T. Нека координатният вектор спрямо K на $Q \in A$ е x, а координатният вектор на F(Q) спрямо L е y. Следователно координатният вектор спрямо базиса e на \overrightarrow{OQ} е x - 0 = x, а координатният вектор спрямо базиса f на f(O)F(Q) е f(O)F(Q)

Обратно, нека уравнението на F спрямо K и L е y=s+Tx. Нека $\Phi:U\to V$ е линейното изображение, чиято матрица спрямо базисите e и f е T. Нека точките $Q_1,Q_2\in A$ имат координатни вектори спрямо K съответно x_1,x_2 . Тогава точките $F(Q_1),F(Q_2)\in B$ имат координатни вектори спрямо L съответно y_1,y_2 , където $y_1=s+Tx_1,y_2=s+Tx_2$. Векторът $\overline{Q_1Q_2}$ има спрямо координатният базис e на K координатен вектор x_2-x_1 , а векторът $\overline{F(Q_1)F(Q_2)}$ има спрямо координатният базис f на f координатен вектор f0 има спрямо координатният на f1 спрямо f2 има спрямо f3. Следователно f3 е афинно изображение със съответно линейно изображение f4. С това е доказана и обратната посока.

2. От 2. на Твърдение 3 следва, че афинното изображение $F:A\to B$ е афинен изоморфизъм \Leftrightarrow съответното му линейно изображение $\Phi:U\to V$ е линеен изоморфизъм \Leftrightarrow матрицата T на Φ спрямо базисите e и f е обратима.

Пример 11 Дилатациите в крайномерно евклидово афинно пространство са афинни изоморфизми.

Това е така, защото от вида на уравнението им от Пример 5 и 1. на Теорема 3 следва, че са афинни изображения, а че са биекции също го знаем от Пример 5. Последното следва и от 2. на Теорема 3, защото за матрицата D_i от уравнението им от Пример 5 имаме $\det D_i = d > 0$ и значи D_i е обратима.

Пример 12 Нека A е n-мерно афинно пространство и K е афинна координатна система в A. Тогава координатното изображение $\varkappa_K: A \to \mathbb{R}^n$ е афинен изоморфизъм. Това следва от Теорема 3, защото уравнението му спрямо K и стандартната координатна система K^0 на \mathbb{R}^n е y=x.

Определение 5 Нека A и B са евклидови афинни пространства. Изображението $F:A\to B$ се нарича еднаквост или метрична трансформация или изометрия, ако е биекция и запазва разстоянието между точките, тоест ако за всеки $P_1,P_2\in A$ е изпълнено $|F(P_1)F(P_2)|=|P_1P_2|$.

Забележка 5 В горното определение "биекция" може да се замени със "сюрекция", защото от $|F(P_1)F(P_2)|=|P_1P_2|$ следва, че F е инекция. Това е така, защото ако $F(P_1)=F(P_2)$, то $0=|F(P_1)F(P_2)|=|P_1P_2|$ и следователно $P_1=P_2$.

Пример 13 В евклидово афинно пространство тъждественото изображение, транслациите и изображението радиус-вектор са еднаквости.

Това е така, защото: За тъждественото изображение е очевидно. Ако F е транслация, то в Пример 6 видяхме, че $\overrightarrow{P_1P_2} = \overrightarrow{F(P_1)F(P_2)}$ (от свойството на успоредника) и следователно $|P_1P_2| = |F(P_1)F(P_2)|$. А за изображението радиус-вектор в Пример 8 също видяхме, че $\overrightarrow{r_O(P_1)r_O(P_2)} = \overrightarrow{P_1P_2}$ и следователно $|r_O(P_1)r_O(P_2)| = |P_1P_2|$.

Теорема 4 Нека A и B са крайномерни евклидови афинни пространства, а K и L са ортонормирани координатни системи съответно в A и B. Тогава изображението $F:A\to B$ е еднаквост \Leftrightarrow уравнението на F спрямо K и L е от вида y=s+Tx, където матрицата T е ортогонална (и следователно $\dim A=\dim B$).

Доказателството на тая теорема оставяме за следващия път.

Пример 14 От Теорема 4 още веднъж се вижда, че тъждественото изображение и транслациите в крайномерно евклидово афинно пространство са еднаквости, защото те имат уравнение от вида y = s + Tx, където T = E.

Пример 15 Нека A е n-мерно евклидово афинно пространство и K е ортонормирана координатна система в A. Тогава координатното изображение $\varkappa_K : A \to \mathbb{R}^n$ е еднаквост. Това следва от Теорема 4, защото уравнението му спрямо K и стандартната координатна система K^0 на \mathbb{R}^n е y = x и K^0 е ортонормирана.