Linear Regression with multiple variables

- Mutilple Features
 - Twp Practice
- Method
 - Normal equation

Mutilple Features

Notation:

n = number of features

 $x^{(i)}$ = input(features) of i^{th} training example.

 $x_i^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

$$\begin{array}{l} h_{\theta}(x) = \sum_{i=0}^n \theta_i x_i = \theta^T x \\ \text{CostFunction } J = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 \\ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta) = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m [(h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}] \end{array}$$

Twp Practice

- 1. Feature Scaling
- 2. Learning Rate

Further, Feature Scaling can be devided into Feature Scaling & Mean Normalization.

Feature Scaling:

Idea: Make sure features are on a similar scale.

Get every feature into approximately $-1 \leqslant x_i \leqslant 1$ range.

Mean Normalization:

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean.(Do not apply to $x_0 = 1$).

Learning Rate:

If α is too small: slow convergence.

If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

Method

Here are two methods to fitting the targer:

- 1. Gradient descent
- 2. Normal equation

Normal equation

$$\begin{array}{l} \frac{\partial}{\partial \theta_j} J(\theta) = 0 \text{ for every } j \\ \text{Solve for } \theta_i \\ \text{which means } 0 = \frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m [(h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}] \\ X^T(X\theta - Y) = 0 \Rightarrow \theta = (X^TX)^{-1} X^TY \text{, while it's often substitute } pinv(X^TX) \text{ for } (X^TX)^{-1}. \end{array}$$

Mehtod	Character
Gradient Descent	Need to choose α Need many Operations. Work well even when n is large.
Normal Equation	No need to choose α . Don't need to iterate. Need to compute $(X^TX)^{-1}$, whose time complexity is $O(n^3)$ Slow if n is very large.