# **Unsupervised Learning in Python**

# 3). Decorrelating your data and dimension reduction:

```
a). Corelated data in nature
# Perform the necessary imports
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
# Assign the 0th column of grains: width
width = grains[:,0]
# Assign the 1st column of grains: length
length = grains[:,1]
# Scatter plot width vs length
plt.scatter(width, length)
plt.axis('equal')
plt.show()
# Calculate the Pearson correlation
correlation, pvalue = pearsonr(width, length)
# Display the correlation
print(correlation)
<script.py> output:
  0.860414937714
```







Chapter 3

```
b). Decorrelating the grain measurements with PCA
# Import PCA
from sklearn.decomposition import PCA
# Create PCA instance: model
model = PCA()
# Apply the fit_transform method of model to grains: pca_features
pca_features = model.fit_transform(grains)
# Assign 0th column of pca_features: xs
xs = pca_features[:,0]
# Assign 1st column of pca_features: ys
ys = pca_features[:,1]
# Scatter plot xs vs ys
plt.scatter(xs, ys)
plt.axis('equal')
plt.show()
# Calculate the Pearson correlation of xs and ys
correlation, pvalue = pearsonr(xs, ys)
# Display the correlation
print(correlation)
<script.py> output:
  0.0
```







## c). The first Principal component

# Make a scatter plot of the untransformed points

plt.scatter(grains[:,0], grains[:,1])

# Create a PCA instance: model

model = PCA()

# Fit model to points

model.fit(grains)

# Get the mean of the grain samples: mean

mean = model.mean\_

# Get the first principal component: first\_pc

first\_pc = model.components\_[0,:]

# Plot first\_pc as an arrow, starting at mean

 $plt.arrow(mean[0], mean[1], first\_pc[0], first\_pc[1], color='red', width=0.01)$ 

# Keep axes on same scale

plt.axis('equal')

plt.show()



#### d). Variance of the PCA features

# Perform the necessary imports

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make\_pipeline

import matplotlib.pyplot as plt

# Create scaler: scaler

scaler = StandardScaler()

# Create a PCA instance: pca

pca = PCA()

# Create pipeline: pipeline

pipeline = make\_pipeline(scaler, pca)

# Fit the pipeline to 'samples'

pipeline.fit(samples)

# Plot the explained variances

features = range(pca.n\_components\_)

plt.bar(features, pca.explained\_variance\_)

plt.xlabel('PCA feature')

plt.ylabel('variance')

plt.xticks(features)

plt.show()



Chapter 3

```
e). Dimension reduction in the fish measurement
```

# Import PCA

from sklearn.decomposition import PCA

# Create a PCA model with 2 components: pca pca = PCA(n\_components=2)

# Fit the PCA instance to the scaled samples pca.fit(scaled\_samples)

# Transform the scaled samples: pca\_features
pca\_features = pca.transform(scaled\_samples)

# Print the shape of pca\_features
print(pca\_features.shape)

<script.py> output:

(85, 2)

Chapter 3

```
f). A tf-idf word-frequency array
# Import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
# Create a TfidfVectorizer: tfidf
tfidf = TfidfVectorizer()
# Apply fit_transform to document: csr_mat
csr_mat = tfidf.fit_transform(documents)
# Print result of toarray() method
print(csr_mat.toarray())
# Get the words: words
words = tfidf.get_feature_names()
# Print words
print(words)
<script.py> output:
  [[ 0.51785612 0.
                       0.
                               0.68091856 0.51785612 0.
  [ 0.
           0.
                   0.51785612 0.
                                      0.51785612 0.68091856]
  [ 0.51785612  0.68091856  0.51785612  0.
                                               0.
                                                      0.
                                                             ]]
```

['cats', 'chase', 'dogs', 'meow', 'say', 'woof']

Chapter 3

# g). Clustering Wikipedia part I

# Perform the necessary imports

from sklearn.decomposition import TruncatedSVD

from sklearn.cluster import KMeans

from sklearn.pipeline import make\_pipeline

# Create a TruncatedSVD instance: svd

svd = TruncatedSVD(n\_components=50)

# Create a KMeans instance: kmeans

kmeans = KMeans(n\_clusters=6)

# Create a pipeline: pipeline

pipeline =make\_pipeline (svd,kmeans)

```
Machine Learning with the Experts: School Budgets
```

Chapter 3

```
h). Clustering Wikipedia part II
```

# Import pandas

import pandas as pd

# Fit the pipeline to articles

pipeline.fit (articles)

# Calculate the cluster labels: labels

labels = pipeline.predict(articles)

# Create a DataFrame aligning labels and titles: df

df = pd.DataFrame({'label': labels, 'article': titles})

# # Display df sorted by cluster label

print(df.sort\_values(['label']))

<script.py> output:

|    | article label           |
|----|-------------------------|
| 59 | Adam Levine 0           |
| 57 | Red Hot Chili Peppers 0 |
| 56 | Skrillex 0              |
| 55 | Black Sabbath 0         |
| 54 | Arctic Monkeys 0        |
| 53 | Stevie Nicks 0          |
| 52 | The Wanted 0            |
| 51 | Nate Ruess 0            |
| 50 | Chad Kroeger 0          |
| 58 | Sepsis 0                |
| 0  | HTTP 404 1              |
| 9  | LinkedIn 1              |
| 1  | Alexa Internet 1        |
| 2  | Internet Explorer 1     |
| 3  | HTTP cookie 1           |