

Algoritmos y Computabilidad

Estrategia de Ramificación y Acotación (Branch and Bound)

- Asignación de tareas a recursos limitados a lo largo del tiempo
- Ejemplos:
 - Máquinas en un taller
 - Pistas en aeropuertos
 - Unidades de procesamiento en un programa computacional
- Cada tarea puede tener distintos niveles de prioridad
- Una tarea se puede subdividir en subtareas que deben ser ejecutadas de forma secuencial
- Objetivo:
 - Minimizar tiempo de finalización de todas las tareas (time span)
 - Minimizar el retraso total de ejecución
 - ...

Ejemplo de JSP

- Se desean ejecutar *n tareas (Jobs)*
- Cada tarea tiene un tiempo de ejecución (*Duration*)
- Cada tarea debe ejecutarse antes de una fecha determinada (*Due Date*), a partir de la cual se entra en retraso
- Se desea minimizar el número de días de retraso

Job	Duration (days)	Due Date
Α	6	Day 8
В	4	Day 4
С	5	Day 12

Ejemplo JSP

Por ejemplo, si ejecutamos (A,B,C)

lob	Duration (days)	Due Date
A	6	Day 8
В	4	Day 4
С	5	Day 12

Job	Completion Day	Delay
Α	6	$d_1 = 6 - 8 = -2 \rightarrow 0$
A, B	6+4=10	d ₂ =10-4=6
A, B, C	6+4+5=15	d ₃ =15-12=3

Y un retraso total =
$$d_1 + d_2 + d_3 = 9$$

Ejemplo JSP con Branch and Bound

Definimos:

$$x_{ij} = \begin{cases} 1, si \ se \ ejecuta \ el \ trabajo \ j \ en \ la \ posición \ i \\ 0, en \ caso \ contrario \end{cases}$$

$$j = A,B,C$$

 $i = 1,2,3$

Job	Duration (days)	Due Date
•A	6	Day 8
В	4	Day 4
С	5	Day 12

Job	Duration (days)	Due Date
Α	6	Day 8
В	4	Day 4
C	5	Day 12

TSP con Branch and Bound

 Dado el siguiente gráfico, partiendo del nodo 1, ¿cuántos nodos habrá que visitar usando Branch and Bound, con una estrategia DFS?

TSP con Branch and Bound

 Dado el siguiente gráfico, partiendo del nodo 1, ¿cuántos nodos habrá que visitar usando Branch and Bound, con una estrategia DFS?

15 nodos

