The Second Exam on Linear Algebra Dec 6, 2021

(1) (20%) Let
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

- (a) Determine a basis for the subspace of $R(A^T)$
- (b) Determine a basis for the subspace of N(A)
- (c) Determine a basis for the subspace of $N(A^T)$
- (d) Determine a basis for the subspace of R(A).
- (2) (20%) (a) Find the best least squares fit to the following data by a quadratic polynomial

X	-1	0	1	2
у	0	1	3	9

(3) (20%) Let
$$u_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ and $v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

and let L be a linear operator from R^2 whose matrix representation with respect to the ordered basis $[u_1, u_2]$ is $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$

- (a) Determine the transition matrix from the basis $[v_1, v_2]$ to the basis $[u_1, u_2]$.
- (b) Find the matrix representation L with respect to $[v_1, v2]$.
- 4. (10%) Let L be the linear operator on R^3 defined by

L:
$$(\mathbf{x}) = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_3 - x_1 \end{bmatrix}$$
 and let S=Span ([1 0 1]^T)

- (a) (5%)Determine the kernel of L
- (b) (5%) Determine L(S)
- 5.(20%) The linear transformation L on P_3 defined by L(p(x)) = xp'(x) + p''(x)
 - (a) Find the matrix A representation L with respect to the ordered basis $[1, x, x^2]$
 - (b) Find the matrix B representation L with respect to the ordered basis $[1, x, 1 + x^2]$
 - (c) Find the matrix S such that $B = S^{-1}AS$
 - (d) If $p(x) = a_0 + a_1 x + a_2 (1 + x^2)$ calculate $L^n(p(x))$
- 6. (10%) Given $\mathbf{x} = [3 \ 4]^T$ and $\mathbf{y} = [1 \ 0]^T$, find the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y} and verify that \mathbf{p} and \mathbf{x} - \mathbf{p} are orthogonal.