Contents

Pr	Preface		
1	Intr	roduction	1
1 II 11 11 12 IF 22 22 22 22 22 22 23 33 33 33 33 4 II 44 44	1.1	Before You Start	1
	1.2	Initial Data Analysis	2
		When to Use Regression Analysis	6
	1.4	History	7
2	Esti	mation	11
	2.1	Linear Model	11
	2.2	Matrix Representation	12
	2.3	Estimating β	12
	2.4	Least Squares Estimation	13
	2.5	Examples of Calculating $\hat{\beta}$	14
	2.6	Gauss–Markov Theorem	15
	2.7	Goodness of Fit	16
	2.8	Example	18
	2.9	Identifiability	21
3	Inference		25
	3.1	Hypothesis Tests to Compare Models	25
	3.2	Testing Examples	27
	3.3	Permutation Tests	32
	3.4	Confidence Intervals for β	34
	3.5	Confidence Intervals for Predictions	36
	3.6	Designed Experiments	39
	3.7	Observational Data	43
	3.8	Practical Difficulties	47
4	Diagnostics		53
	4.1	Checking Error Assumptions	53
	4.2	Finding Unusual Observations	64
	4.3	Checking the Structure of the Model	72
5	Pro	blems with the Predictors	77
	5 1	Errors in the Predictors	77

vi		CONTENTS
	5.2 Changes of Scale	81
	5.3 Collinearity	83
	•	
6	Problems with the Error	89
	6.1 Generalized Least Squares	89
	6.2 Weighted Least Squares	92
	6.3 Testing for Lack of Fit	94
	6.4 Robust Regression	98
7	Transformation	109
	7.1 Transforming the Response	109
	7.2 Transforming the Predictors	112
8	Variable Selection	121
	8.1 Hierarchical Models	121
	8.2 Testing-Based Procedures	122
	8.3 Criterion-Based Procedures	125
	8.4 Summary	130
9	Shrinkage Methods	133
	9.1 Principal Components	133
	9.2 Partial Least Squares	140
	9.3 Ridge Regression	143
10	Statistical Strategy and Model Uncertainty	147
	10.1 Strategy	147
	10.2 An Experiment in Model Building	148
	10.3 Discussion	149
11	Insurance Redlining — A Complete Example	151
	11.1 Ecological Correlation	151
	11.2 Initial Data Analysis	153
	11.3 Initial Model and Diagnostics	156
	11.4 Transformation and Variable Selection	158
	11.5 Discussion	161
12	Missing Data	163
13	Analysis of Covariance	167
	13.1 A Two-Level Example	168
	13.2 Coding Qualitative Predictors	172
	13.3 A Multilevel Factor Example	174
14	One-Way Analysis of Variance	181
	14.1 The Model	181
	14.1 The Model	

CC	ONTENTS	vii
	14.2 An Example	182
	14.3 Diagnostics	185
	14.4 Pairwise Comparisons	186
15	Factorial Designs	189
	15.1 Two-Way ANOVA	189
	15.2 Two-Way ANOVA with One Observation per Cell	190
	15.3 Two-Way ANOVA with More than One Observation per Cell	193
	15.4 Larger Factorial Experiments	197
16	Block Designs	203
	16.1 Randomized Block Design	204
	16.2 Latin Squares	208
	16.3 Balanced Incomplete Block Design	212
A	R Installation, Functions and Data	217
В	Quick Introduction to R	219
	B.1 Reading the Data In	219
	B.2 Numerical Summaries	219
	B.3 Graphical Summaries	220
	B.4 Selecting Subsets of the Data	221
	B.5 Learning More about R	222
Bil	bliography	223
Inc	dex	227

Preface

There are many books on regression and analysis of variance. These books expect different levels of preparedness and place different emphases on the material. This book is not introductory. It presumes some knowledge of basic statistical theory and practice. Readers are expected to know the essentials of statistical inference such as estimation, hypothesis testing and confidence intervals. A basic knowledge of data analysis is presumed. Some linear algebra and calculus are also required.

The emphasis of this text is on the practice of regression and analysis of variance. The objective is to learn what methods are available and more importantly, when they should be applied. Many examples are presented to clarify the use of the techniques and to demonstrate what conclusions can be made. There is relatively less emphasis on mathematical theory, partly because some prior knowledge is assumed and partly because the issues are better tackled elsewhere. Theory is important because it guides the approach we take. I take a wider view of statistical theory. It is not just the formal theorems. Qualitative statistical concepts are just as important in statistics because these enable us to actually do it rather than just talk about it. These qualitative principles are harder to learn because they are difficult to state precisely but they guide the successful experienced statistician.

Data analysis cannot be learned without actually doing it. This means using a statistical computing package. There is a wide choice of such packages. They are designed for different audiences and have different strengths and weaknesses. I have chosen to use R (Ref. Ihaka and Gentleman (1996) and R Development Core Team (2003)). Why have I used R? There are several reasons.

- Versatility. R is also a programming language, so I am not limited by the procedures that are preprogrammed by a package. It is relatively easy to program new methods in R.
- 2. *Interactivity*. Data analysis is inherently interactive. Some older statistical packages were designed when computing was more expensive and batch processing of computations was the norm. Despite improvements in hardware, the old batch processing paradigm lives on in their use. R does one thing at a time, allowing us to make changes on the basis of what we see during the analysis.
- 3. Freedom. R is based on S from which the commercial package S-plus is derived. R itself is open-source software and may be obtained free of charge to all. Linux, Macintosh, Windows and other UNIX versions are maintained and can be obtained from the R-project at www.r-project.org. R is mostly compatible with S-plus, meaning that S-plus could easily be used for most of the examples provided in this book.

x PREFACE

4. *Popularity*. SAS is the most common statistics package in general use but R or S is most popular with researchers in statistics. A look at common statistical journals confirms this popularity. R is also popular for quantitative applications in finance.

Getting Started with R

R requires some effort to learn. Such effort will be repaid with increased productivity. You can learn how to obtain R in Appendix A along with instructions on the installation of additional software and data used in this book.

This book is not an introduction to R. Appendix B provides a brief introduction to the language, but alone is insufficient. I have intentionally included in the text all the commands used to produce the output seen in this book. This means that you can reproduce these analyses and experiment with changes and variations before fully understanding R. You may choose to start working through this text before learning R and pick it up as you go. Free introductory guides to R may be obtained from the R project Web site at www.r-project.org. Introductory books have been written by Dalgaard (2002) and Maindonald and Braun (2003). Venables and Ripley (2002) also have an introduction to R along with more advanced material. Fox (2002) is intended as a companion to a standard regression text. You may also find Becker, Chambers, and Wilks (1998) and Chambers and Hastie (1991) to be useful references to the S language. Ripley and Venables (2000) wrote a more advanced text on programming in S or R.

The Web site for this book is at www.stat.lsa.umich.edu/~faraway/LMR where data described in this book appear. Updates and errata will appear there also.

Thanks to the builders of R without whom this book would not have been possible.