Deep Learning

CNN: Padding

Learning goals

- Valid Padding
- Same Padding

VALID PADDING

Suppose we have an input of size 5×5 and a filter of size 2×2 .

VALID PADDING

The filter is only allowed to move inside of the input space.

VALID PADDING

That will inevitably reduce the output dimensions.

In general, for an input of size i (\times i) and filter size k (\times k), the size of the output feature map o (\times o) claculated by:

$$o = i - k + 1$$

Suppose the following situation: an input with dimensions 5 \times 5 and a filter with size 3 \times 3.

We would like to obtain an output with the same dimensions as the input.

Hence, we apply a technique called zero padding. That is to say "pad" zeros around the input:

That always works! We just have to adjust the zeros according to the input dimensions and filter size (ie. one, two or more rows).

PADDING AND NETWORK DEPTH

Figure: "Valid" versus "same" convolution. *Top*: Without padding, the width of the feature map shrinks rapidly to 1 after just three convolutional layers (filter width of 6 shown in each layer). This limits how deep the network can be made. Bottom: With zero padding (shown as solid circles), the feature map can remain the same size after each convolution which means the network can be made arbitrarily deep. (Goodfellow, *et al.*, 2016, ch. 9)