

Biomecatrónica

Diseño por ubicación de polos

Polos y ceros de un SLIT

Polos

valores de frecuencias

complejas que hacen que la

ganancia de la función de

transferencia sea infinita

Raíces del denominador, *i.e.* los

Ceros

Raíces del numerador, i.e. los valores de frecuencias complejas que hacen que la ganancia de la función de transferencia sea cero

Diagrama de polos y ceros

Es la representación gráfica de los polos y ceros del sistema en el plano complejo s
Los ceros se marcan con un pequeño círculo O y los polos con una pequeña cruz ×

Polos dominantes

Los polos de un sistema que están más próximos al eje imaginario son los que determinan, generalmente, la respuesta transitoria

Reducción de orden

Mediante la ubicación de polos en posiciones no dominantes se puede reducir el orden de un sistema

Segundo orden

Sistema original

$$G(s) = \frac{\alpha \cdot \beta}{(s + \alpha)(s + \beta)}$$
$$\beta \gg \alpha$$

Sistema reducido

$$G(s) \approx \frac{\alpha}{(s+\alpha)}$$

Tercer orden

Sistema original

Sistema reducido

$$G(s) = \frac{\alpha \cdot \omega_n^2}{(s+\alpha)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

$$G(s) = \frac{\alpha \cdot \omega_n^2}{(s+\alpha)(s^2 + 2\zeta\omega_n s + \omega_n^2)} \qquad G(s) \approx \begin{cases} \frac{\alpha}{s+\alpha}, & \alpha \ll \zeta\omega_n \\ \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, & \zeta\omega_n \ll \alpha \end{cases}$$

Ejemplos

Para los siguientes sistemas, halle el sistema reducido equivalente y compare las respuestas al escalón de ambos.

$$G_1(s) = \frac{10}{s^2 + 13s + 12}$$

$$G_2(s) = \frac{8}{s^2 + 14s + 24}$$

$$G_3(s) = \frac{5}{s^3 + 7.3s^2 + 27.1s + 7.5}$$

$$G_4(s) = \frac{25}{s^3 + 42s^2 + 270s + 875}$$

Ubicación de polos

Dadas ciertas especificaciones se puede determinar una función de transferencia de segundo orden que cumpla con esas especificaciones

En caso de tener un sistema de orden mayor, lo que se hace es determinar un par de polos para cumplir con las especificaciones y ubicar el resto de los polos en posiciones no dominantes

Recordemos:

Polos de segundo orden

Recordemos:

Especificaciones de la respuesta temporal

$$t_r \approx \frac{1.8}{\omega_n},$$

$$t_p = \frac{\pi}{\omega_d},$$

$$M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right),$$

$$t_{s_p\%} = \frac{-\ln\left(\frac{p}{100}\right)}{\zeta\omega_n}$$

Relación polos y especificaciones

Figure 3.25

Graphs of regions in the s-plane delineated by certain transient requirements: (a) rise time; (b) overshoot; (c) settling time; (d) composite of all three requirements

Ejemplo

Encuentre una función de transferencia de **tercer orden** que tenga una respuesta al escalón con las siguientes especificaciones:

- $\circ K = 10$
- $\sim M_p < 10~\%$
- $\circ~t_{s1\%} < 0.5~{
 m S}$

Ejemplo

Diseñe un controlador PID para el sistema mostrado, tal que el sistema se estabilice antes de 1 segundo (2 %), con un sobreimpulso máximo del 20 %, ante una entrada tipo escalón

Ejemplo

Diseñe un compensador para el sistema mostrado, tal que la respuesta de lazo cerrado ante un escalón tenga tiempo de subida menor a 0.1 s y tiempo de estabilización menor a 1.5 s (5 %)

