Областная олимпиада по математике, 2019 год, 9 класс

- **1.** Для пяти попарно различных натуральных чисел вычислили всевозможные суммы каждых трех из этих чисел. Какое наименьшее число различных сумм могло получиться при этом?
- **2.** Найдите целую часть отношения $\frac{A}{B}$ для чисел $A=\frac{1}{1\cdot 2}+\frac{1}{3\cdot 4}+...+\frac{1}{997\cdot 998}+\frac{1}{999\cdot 1000}$ и $B=\frac{1}{501\cdot 1000}+\frac{1}{502\cdot 999}+...+\frac{1}{999\cdot 502}+\frac{1}{1000\cdot 501}.$ (Целой частью числа x называется наибольшее целое число, не превышающее x.)
- **3.** Окружность с центром в точке I, вписанная в неравнобедренный треугольник ABC, касается сторон AB, BC и AC в точках D, E и F соответственно. Прямые AI и BI пересекают прямую EF в точках M и N соответственно. Пусть G середина отрезка AB. Докажите, что точки M, N, D и G лежат на одной окружности.
- **4.** Две окружности Γ_1 и Γ_2 с центрами в точках O_1 и O_2 соответственно, пересекаются в точках A и B. Прямая O_1A пересекает Γ_2 во второй раз в точке C, а прямая O_2A пересекает Γ_1 во второй раз в точке D. Прямая ℓ , параллельная AD, пересекает Γ_1 в точках B и E. Известно, что $O_1A \parallel DE$. Докажите, что $CD \perp O_2C$.
- **5.** Сколькими способами можно раскрасить все клетки таблицы 2019×2019 в черный и белый цвета так, чтобы в каждом квадрате 2×2 было ровно две белые и две черные клетки?
- **6.** Найдите все такие пары натуральных чисел n и k, что число $2^k + 10n^2 + n^4$ является полным квадратом.