VE 320 Fall 2021

Introduction to Semiconductor Devices

Instructor: Rui Yang (杨睿)

Office: JI Building 434

rui.yang@sjtu.edu.cn

Lecture 14

MOSFET (Chapter 11)

Short channel MOSFETs, large electric field

Previously, current saturation for NMOSFET:

$$V_{DS} = V_{DS}(\text{sat}) = V_{GS} - V_T$$

When velocity saturation occurs: $I_{D(sat)}$ is smaller than the ideal case

$$I_D(\text{sat}) = WC_{\text{ox}}(V_{GS} - V_T)v_{\text{sat}}$$

Typical saturation velocity for Si: 10⁷ cm/s Electric field: 10^4 V/cm, that is $V_{\rm DS}$ =1 V across 1µm channel length $I_{D(sat)}$ is a linear function with V_{GS} , instead of the square law

$$\mu = \frac{\mu_{\text{eff}}}{\left[1 + \left(\frac{\mu_{\text{eff}}E}{v_{\text{sat}}}\right)^2\right]^{1/2}}$$

Transconductance

$$g_{ms} = \frac{\partial I_D(\text{sat})}{\partial V_{GS}} = WC_{\text{ox}} v_{\text{sat}}$$
 Not dependent on V_G or V_D

Cutoff frequency (ignore parasitic) $f_T = \frac{g_m}{2\pi C_C} = \frac{WC_{\rm ox}v_{\rm sat}}{2\pi (C_{\rm ox}WL)} = \frac{v_{\rm sat}}{2\pi L}$

Short channel MOSFETs, large electric field

Short channel MOSFETs, large electric field

Small velocity: drift velocity $v=\mu E$ But ν cannot increase forever... Large velocity: μ is not a constant

Short channel MOSFETs, large electric field

Temperature-dependent $v_{\rm sat}$

Short channel MOSFETs, large electric field

We can measure mobility of transistors, how to measure velocity v_{sat} ?

$$\nu_{\rm d} = \frac{\mu F}{\left[1 + (\mu F/\nu_{\rm sat})^{\gamma}\right]^{1/\gamma}}$$

y is a fitting factor with values between 0.6 to 2, F is the electric field

Drift velocity v_d can be measured $\nu_d = J/(en)$

Then perform fitting, with v_{sat} and γ as the fitting parameters

Short channel MOSFETs, large electric field

We can measure mobility of transistors, how to measure velocity v_{sat} ?

$$\nu_{\rm d} = \frac{\mu F}{\left[1 + (\mu F/\nu_{\rm sat})^{\gamma}\right]^{1/\gamma}}$$

MOSFET: Ballistic transport

Still: Short channel MOSFETs

In long channel device, channel length L » mean free path l

In short channel device, channel length L < mean free path l, then a large fraction of carriers travel from S to D without experiencing a scattering event: ballistic transport

Carriers with ballistic transport travel faster than the average drift velocity or the saturation velocity

Can lead to very fast devices

MOSFET: Ballistic transport

Still: Short channel MOSFETs

LETTER

doi:10.1038/nature12952

Exceptional ballistic transport in epitaxial graphene nanoribbons

Graphene nanoribbons 40 nm wide, grown on SiC

MOSFET: Ballistic transport

Still: Short channel MOSFETs

LETTER

doi:10.1038/nature12952

Exceptional ballistic transport in epitaxial graphene

nanoribbons

Ballistic for length scale of more than 10 μ m $R_{\rm s}$ < 1 Ω /sq

MOSFETs continue to scale down, Moore's law

Constant-field scaling: size shrink, and voltage also shrinks. Dennard's law

Typically, k 0.7 per generation of a given technology

MOSFETs continue to scale down, Moore's law

Constant-field scaling: size shrink, and voltage also shrinks. Dennard's law

	Device and circuit parameters	Scaling factor $(k < 1)$
Scaled parameters	Device dimensions (L, t_{ox}, W, x_j) Doping concentration (N_a, N_d) Voltages	k 1/k k
Effect on device parameters	Electric field Carrier velocity Depletion widths Capacitance $(C = \epsilon A/t)$ Drift current	1 1 k k k
Effect on circuit parameters	Device density Power density Power dissipation per device $(P = IV)$ Circuit delay time $(\approx CV/I)$ Power—delay product $(P\tau)$	$1/k^{2}$ 1 k^{2} k k^{3}

MOSFETs continue to scale down, Moore's law

Constant-field scaling: size shrink, and voltage also shrinks. Dennard's law

The depletion region width $x_D = \sqrt{\frac{2\epsilon(V_{bi} + V_D)}{eN_a}}$

Since the channel length is being reduced, the depletion widths also need to be reduced.

If the substrate doping concentration is increased by the factor (1/k), then the depletion width is reduced by approximately the factor k since V_D is reduced by k.

Drain current per channel width is nearly a constant

$$\frac{I_D}{W} = \frac{\mu_n \epsilon_{\text{ox}}}{2t_{\text{ox}} L} (V_G - V_T)^2 \rightarrow \frac{\mu_n \epsilon_{\text{ox}}}{2(kt_{\text{ox}})(kL)} (kV_G - V_T)^2 \approx \text{constant}$$

 I_D scales by k, power reduced by k^2 , power density is constant

MOSFETs continue to scale down, Moore's law

Constant-field scaling: size shrink, and voltage also shrinks. Dennard's law

Threshold voltage $V_T = V_{FB} + 2\phi_{fp} + \frac{\sqrt{2\epsilon e N_a (2\phi_{fp})}}{C_{\rm ox}}$

The first two terms are functions of material parameters that do not scale and are only very slight functions of doping concentration

The last term is approximately proportional to $k^{1/2}$, so V_T does not scale

So, shall the voltage be scaled by k?

MOSFETs continue to scale down, Moore's law

Constant-field scaling: size shrink, and voltage also shrinks. Dennard's law

Threshold voltage $V_T = V_{FB} + 2\phi_{fp} + \frac{\sqrt{2\epsilon e N_a(2\phi_{fp})}}{C_{\rm ox}}$

The first two terms are functions of material parameters that do not scale and are only very slight functions of doping concentration

The last term is approximately proportional to $k^{1/2}$, so V_T does not scale

So, shall the voltage be scaled by k?

Actually, increased electric field

Threshold voltage
$$V_{TN} = \left(\left| Q_{SD}'(\max) \right| - Q_{ss}' \right) \left(\frac{t_{ox}}{\epsilon_{ox}} \right) + \phi_{ms} + 2\phi_{fp}$$

Long channel

Short channel

Threshold voltage
$$V_{TN} = \left(\left| Q_{SD}'(\max) \right| - Q_{ss}' \right) \left(\frac{t_{ox}}{\epsilon_{ox}} \right) + \phi_{ms} + 2\phi_{fp}$$

Diffusion length of the junction r_i

Assume: bulk charge in the trapezoidal region under the gate is controlled by the gate

$$\chi_{\scriptscriptstyle S} pprox \chi_{\scriptscriptstyle d} pprox \chi_{\scriptscriptstyle dT} \equiv \chi_{\scriptscriptstyle dT}$$

Bulk charge per unit area

$$|Q_B'| \cdot L = eN_a x_{dT} \left(\frac{L + L'}{2}\right)$$

From geometry

$$\frac{L+L'}{2L} = \left[1 - \frac{r_j}{L} \left(\sqrt{1 + \frac{2x_{dT}}{r_j}} - 1\right)\right]$$

Threshold voltage
$$V_{TN} = \left(\left| Q_{SD}'(\max) \right| - Q_{ss}' \right) \left(\frac{t_{ox}}{\epsilon_{ox}} \right) + \phi_{ms} + 2\phi_{fp}$$

Diffusion length of the junction r_i

Assume: bulk charge in the trapezoidal region under the gate is controlled by the gate

$$|Q'_B| = eN_a x_{dT} \left[1 - \frac{r_j}{L} \left(\sqrt{1 + \frac{2x_{dT}}{r_j}} - 1 \right) \right]$$

Since $|Q'_{SD}(\max)| = eN_ax_{dT}$

The threshold voltage shift due to short channel

$$\Delta V_T = V_{T ({
m short \; channel})} - V_{T ({
m long \; channel})}$$

$$\Delta V_T = -\frac{eN_a x_{dT}}{C_{\text{ox}}} \left[\frac{r_j}{L} \left(\sqrt{1 + \frac{2x_{dT}}{r_j}} - 1 \right) \right]$$

Threshold voltage

$$V_{TN} = \left(\left| Q_{SD}'(\text{max}) \right| - Q_{ss}' \right) \left(\frac{t_{\text{ox}}}{\epsilon_{\text{ox}}} \right) + \phi_{ms} + 2\phi_{fp}$$

$$\Delta V_T = -\frac{eN_a x_{dT}}{C_{\text{ox}}} \left[\frac{r_j}{L} \left(\sqrt{1 + \frac{2x_{dT}}{r_j}} - 1 \right) \right]$$

MOSFET: narrow channel effects

OXIDE THICKNESS, T_{ox} region at each end of the channel width, also controlled by gate voltage

$$Q_B = Q_{B0} + \Delta Q_B$$

 $Q_{\rm B}$ is the total bulk charge, $Q_{\rm B0}$ is the ideal bulk charge, and $\Delta Q_{\rm B}$ is the additional bulk charge at the ends of the channel width

$$|Q_{B0}| = eN_aWLx_{dT}$$

$$\Delta Q_B = e N_a L x_{dT} (\xi x_{dT})$$

 ξ is the fitting parameter that accounts for the lateral space charge width

Lateral space charge width may not be the same as the vertical width $x_{\rm dT}$ due to the thicker field oxide at the ends, and /or due to the nonuniform semiconductor doping created by an ion implantation

MOSFET: narrow channel effects

OXIDE THICKNESS, T_{ox} region at each end of the channel width, also controlled by gate voltage

$$Q_B = Q_{B0} + \Delta Q_B$$

$$|Q_B| = |Q_{B0}| + |\Delta Q_B| = eN_a WL x_{dT} + eN_a Lx_{dT} (\xi x_{dT})$$
$$= eN_a WL x_{dT} \left(1 + \frac{\xi x_{dT}}{W}\right)$$

The effect of the end space charge regions becomes significant as the width W decreases and the factor (ξx_{dT}) becomes a significant fraction of the width W.

$$\Delta V_T = \frac{eN_a x_{dT}}{C_{\text{ox}}} \left(\frac{\xi x_{dT}}{W} \right)$$

The shift in threshold voltage due to a narrow channel is in the positive direction for the n-channel MOSFET.

As the width W becomes smaller, the shift in threshold voltage becomes larger.

