

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1969

Evaluation and updating of LORAC navigation system on Monterey Bay

Durkee, Andrew Franklin

Monterey, California. U.S. Naval Postgraduate School

http://hdl.handle.net/10945/12134

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1969 DURKEE, A.

EVALUATION AND UPDATING OF LORAC NAVIGATION SYSTEM ON MONTEREY BAY

Andrew Franklin Durkee

United States Naval Postgraduate School

THESIS

EVALUATION AND UPDATING OF LORAC

NAVIGATION SYSTEM ON MONTEREY BAY

by

Andrew Franklin Durkee

DEC 1969

This document has been approved for public release and sale; its distribution is unlimited. LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIF. 93940

Evaluation and Updating of LORAC

Navigation System on Monterey Bay

by

Andrew Franklin Durkee
Lieutenant, United States Coast Guard
B.S., United States Coast Guard Academy, 1963

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1969 NPS ARCHIVE 1969 DUKKEE, A. the colds

ABSTRACT

A LORAC system of navigation has been established in the Monterey Bay area and is intended for use in the field of ocean sciences research. It operates on a phase comparison principle and provides highly accurate navigational fixes without complex timing circuitry. Short-term phase stability of the system was studied and methods of remote control and lane identification were investigated. Some equipment modifications were made to incorporate desirable features in the system, but further modernization may be necessary if long periods of continued use are expected. A general plotting program for the CALCOMP-563 plotter was written to produce chart overlays for existing nagivational charts and is included as Appendix B. The overlays can be tailored to fit any scale chart in the area of intended operation and the inputs to the grid generation program can be varied if the system parameters are changed.

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5101

TABLE OF CONTENTS

			Page
I.	INTRODUCTION		7
	Α.	POSITION FINDING	7
	В.	THE LORAC -A SYSTEM	9
	C.	SYSTEM HISTORY AND EQUIPMENT DESCRIPTION	13
II.	SYSTEM PERFORMANCE		
	Α.	PHASE STABILITY MEASUREMENTS	15
		1. Data Processing	18
		2. Evaluation of Data	19
	В.	FREQUENCY STABILITY	21
	C.	EQUIPMENT RELIABILITY	23
III.	CHART OVERLAY PREPARATION		26
	Α.	CHOOSING A COORDINATE SYSTEM	26
	В.	POINT GENERATION PROGRAM	27
		1. Input Data	27
		2. Subroutines	28
	C.	PLOTTING PROGRAM	30
IV.	UPDATING THE SYSTEM		
	Α.	MODIFICATION AND TESTING	37
	В.	REMOTE CONTROL	38
	С.	LANE IDENTIFICATION	41
V.	RESULTS AND RECOMMENDATIONS		
ADDE	YI CUN'	A. DATA PROCESSING PROGRAM	46

		Paye
APPENDIX B: PLOTTING PROGRAM	4	48
LIST OF REFERENCES	70	
INITIAL DISTRIBUTION LIST		71
FORM DD 1473		73

sulfil) on a region

LIST OF DRAWINGS

Figure	e	Page
1.	Hyperbolic Grid System	10
2.	GREEN Half of Switching Cycle	11
3.	RED Half of Switching Cycle	12
4.	Monitor Station	16
5.	Average Phase Variations	20
6.	RMS Error Variations	22
7.	Plot Program Flow Diagram	33
8.	Sample Chart Overlay	36

ACKNOWLEDGEMENTS

The author wishes to thank Dean C. E. Menneken for providing a complete electronic system for evaluation, and an opportunity to study hardware as well as theory. Appreciation is extended to Mr. R. C. Smith, Mr. J. P. Bly, and Mr. H. W. Oren for valuable technical assistance and to Mr. W. L. Landaker for assistance in data processing and computer programming techniques.

I. INTRODUCTION

LORAC uses the principle of phase comparison of two radio frequency signals which have the same origin, but travel to the phase measuring equipment over two different paths. The radio frequencies, generated by two continuous—wave transmitters, produce, by heterodyning, audio signals between which the actual phase measurements are made. The two transmitters operate at frequencies f_1 and f_2 respectively and the audio frequency is $(f_1 - f_2)$. A reference signal is established by receiving and detecting this audio frequency at a fixed point and using it to amplitude modulate a third transmitter. This transmitter operates at a frequency f_3 and is called the reference transmitter.

A. POSITION FINDING

Positions are determined by the use of a mobile receiver. This receiver is tuned to the average frequency of f_1 and f_2 . It receives and detects the audio frequency (f_1-f_2) and this is called the position signal. The receiver is also tuned to the third frequency, f_3 , and the reference signal is detected. The phase angle between the position signal and the reference signal is measured. These signals were each produced by the same two continuous-wave transmitters, but traveled to the receiver over two different paths.

The phase of the reference signal at the reference transmitter will be constant because the transmitter is fixed. The amplitude

modulation on the carrier f_3 is of constant phase if the distance from the mobile receiver to the reference transmitter is not too great (less than 5) nautical miles). However, if the receiver is moved, the position signal changes phase quite rapidly because the relative phase of the two continuous-wave radio frequencies changes rapidly.

The phase difference between the position signal and the reference signal depends on the location of the mobile receiver. If the receiver is moved so that the phase difference remains constant, the path followed will be a hyperbola with the two continuous-wave transmitters as the foci. As long as the difference in the distances to the transmitters remains constant there will be no change in phase. If the receiver moves in a path other than this hyperbola, a change of phase will occur.

There is an infinite set of constant phase hyperbolas generated by the two continuous-wave transmitters. If a receiver is placed in the network, it will lie along one particular hyperbola of the set. The midpoint of the line joining the two transmitters is chosen as a reference. The unique hyperbola passing through this point (a straight line) is assigned an arbitrary value, and all other hyperbolas in the network are assigned values using this central hyperbola as reference. The central hyperbola and each hyperbola differing from the central hyperbola by 360 degrees of phase form the boundaries of LORAC lanes. As the receiver crosses one lane it indicates a phase change of 360 degrees. The location of the receiver within each lane can be

determined by measuring the amount of phase change since crossing the boundary. A hyperbolic network with lane boundaries is shown in Figure 1(a).

Absolute positioning has not been accomplished since location along a hyperbola determines only one line of position. A second line of position is obtained by duplicating the entire network just described. The second set of transmitters is located so that the two sets of hyperbolas form a positioning grid in the area of intended use. Figure 1(b) shows the second set of hyperbolas and Figure 1(c) shows the grid formed by superposition of the two sets. One focus is common to both sets of hyperbolas. One set of hyperbolas and its associated equipment is called the GREEN half of the system and the other is called the RED half. The mobile receiver makes two phase measurements, one for each half of the system. Each of these measurements corresponds to a line of position in the appropriate set of hyperbolas. The position of the receiver is determined by the intersection of these lines of position.

B. THE LORAC -A SYSTEM

The basic LORAC system with two sets of hyperbolas would require six transmitters and four frequency channel assignments.

LORAC-A offers a savings in equipment and frequency channels required. Three transmitters produce both sets of hyperbolas on a time-shared basis as shown in Figures 2 and 3.

Figure 1. Hyperbolic Grid System

Figure 2. GREEN Half of Switching Cycle

Figure 3. RED Half of Switching Cycle

During the GREEN half-cycle, the center station and the GREEN station transmit continuous-wave radio frequencies and the RED station acts as the reference transmitter. During the RED half-cycle, the center station and the RED station transmit continuous-wave and the GREEN station acts as the reference transmitter. The frequency of the center station determines the particular half-cycle in operation. Only one set of hyperbolas is being produced at any given instant and the center station switches periodically between two continuous-wave frequencies. The switching rate is rapid enough so that at the receiver it appears that both sets of hyperbolas are being produced simultaneously. The center station is a focus in both halves of the network, acting alternately with the GREEN and then the RED transmitter to generate the hyperbolas.

C. SYSTEM HISTORY AND EQUIPMENT DESCRIPTION

The present LORAC system was surplus and given to the Postgraduate School for operational use. The transmitters, receivers,
recorder, and test equipment were manufactured by LORAC Service
Corporation, a division of Seismograph Service Corporation, Tulsa,
Oklahoma. Considerable time and effort was spent in restoring the
equipment to operating condition. The equipment is about fifteen
years old and uses tubes in most of the circuits. The transmitters
are designed for a maximum output power of 300 watts. Four mobile
receivers, one chart recorder, and numerous spare parts are available
in the present system.

In 1968 LT Richard E. Shrum, USCG, undertook the system as a thesis project. Transmitters were installed in Santa Cruz, Moss Landing, and Monterey to provide LORAC coverage of Monterey Bay. His thesis, "Installation and Evaluation of LORAC Precise Navigation System," was used as a reference and to provide some of the groundwork for further investigations and testing.

II. SYSTEM PERFORMANCE

Performance of the system can be measured by observing two general parameters, stability and accuracy. Stability is measured by fixing as many of the variables involved as is considered practical and recording the variations due to the rest. Accuracy is measured by comparing theoretical receiver readings with those actually observed.

Stability measurements were made by establishing a monitor station in a fixed location and observing the variations in the receiver dial readings. Instrumental error was previously determined to be plus or minus one-half of a dial division (1/100th of a lane). This includes transmitter and receiver stability. Geometrical error is introduced by assuming that the earth is flat and the transmitting and receiving antennas are at the same elevation. This error for the vicinity of Monterey Bay was determined to be less than one meter and remains constant for a fixed receiver. Changes in the velocity of propagation will produce most of the error in a monitor station and the relative magnitude of these changes can be observed if dial readings are recorded over a period of time.

A. PHASE STABILITY MEASUREMENTS

The block diagram in Figure 4 shows the interconnection of components for data collection. The receiving antenna was a fifteen-foot whip mounted in a relatively clear area. No antenna coupler was used

Figure 4. Monitor Station

with the receiver because signal strength was not increased with the coupler in the circuit. A shielded coaxial cable connected the antenna to the receiver. The shaft positions of the indicator unit were relayed to the chart recorder by synchro transmitters. These transmitters are included in the indicator circuit to drive external equipment. The recorder was used as a visual aid in evaluation of the dial reading variations and as a backup device in the event of a failure of the primary method of data collection.

The primary method of data collection was a digitizer which converts an analog shaft position to a digital readout. Two digitizers were connected directly to the indicator dial shafts by flexible control cables and couplings. Each has a resolution of 3.6 degrees, or 100 increments for one revolution. The output to the data processor can vary from 000 to 999 corresponding to ten revolutions of the digitizer shaft. The data processor converts each digitizer reading to serial commands to a flexowriter, first the GREEN reading, then the RED. Each dial on the indicator has a lane counter which changes with each revolution of the pointer. This counter indicates the lane location of the receiver and the pointer indicates the fractional location within that lane. The digitizers are calibrated so that the first digit corresponds to the last number on the lane counter. The second and third digits correspond to the pointer reading in hundredths of a lane. The flexowriter generates a typed copy of the readings and at the same time punches the data on paper tape. The typed copy was used as a check on the digitizer accuracy and the paper tape was used for processing the data. A timing and counting unit was built to control the frequency of the observations and tabulate the number of readings taken during the recording period. A frequency of one observation per minute was considered more than adequate to detect a change in the average velocity of propagation. Random variations from minute to minute were assumed to be generated by noise superimposed on the radio frequency signals. This noise was taken into consideration in the data processing program.

1. <u>Data Processing</u>

A computer program has been written to process the data tape punched by the flexowriter. The complete program is included as Appendix A. Processing was done on a CDC-160 digital computer which accepts punched paper tape as input data. The CDC-160 has available a small FORTRAN II compiler stored on magnetic tape. The desired FORTRAN II program is punched on paper tape with a flexowriter, adhering to the format in the CDC-160 FORTRAN manual. This tape is called a source tape and is read by the compiler to produce an object tape. The object tape contains all the subprograms necessary for execution of the program. The source tape is no longer needed unless changes are to be made in the program. Each time the program is to be run all that is necessary is to read the object tape and any data tape required by the statements in the program. Output from the computer is on paper tape and can be read by a flexowriter to produce a typewritten copy.

The program written to process the data from the digitizers handles the readings in one-hour segments. The following computations are made for each block of 60 readings:

Mean (average)

Maximum

Time of maximum

Minimum

Time of minimum

Standard deviation (RMS component)

The standard deviation can be considered a noise error similar to a noise voltage on a D.C. level. It should be interpreted as the expected fluctuation of any reading about the average for that hour. If the RMS, or noise, error is relatively constant or varies with some periodic pattern over a regular interval of time, then some predictions can be made as to the expected noise level at any given time. Similar predictions may be possible for the average values.

2. Evaluation of Data

Variations in the average value of phase meter readings should reflect direct changes in the velocity of propagation. Figure 5 shows a plot of average values for a typical recording period (62 hours) in 24-hour intervals. All readings were taken with respect to an arbitrary reference since the charts for the system were not prepared at the time the data was taken. The plots show a considerable amount of drift during the first twelve hours followed by a periodic variation pattern. The initial drift can be attributed to a period of receiver stabilization and was evident in most of the extended periods of data collection. The periodic variations can be attributed to changes in velocity of propagation. The two plots do not show the same pattern

Figure 5. Average Phase Variations

for the RED and GREEN halves of the system. This is explained by the fact that the signals travel to the receiver over different paths. The direction and magnitude of phase change depends on the orientation of the receiver with respect to the transmitters. The amount of variation in phase for both halves of the system due to changes in the velocity of propagation was determined to be plus or minus two dial divisions within the area of intended operation.

Variations in the calculated RMS error reflect changes in the noise level of the system. A plot of error for a 24-hour period is shown in Figure 6. The plots for the RED and GREEN halves of the system are very similar and appear to be periodic. The maximum noise level occurs between 2000 and 0600 and the minimum between 0800 and 1400. The error due to noise was determined to be about one dial division for a reading taken at any time. Closer predictions could be made, but the noise level at any one time changes widely from day to day and it would be more reliable to use an overall average as an estimate.

B. FREQUENCY STABILITY

The oscillator frequencies of the transmitters were initially set with a highly stable frequency counter and periodically verified with the same instrument. System accuracy is not highly dependent on frequency stability; in fact, the audio frequencies would have to drift outside the filters to produce any noticeable error. The center station was found to be the most stable of the three transmitters. After initial adjustment, the two frequencies of the center station did not drift

Figure 6. RMS Error Variations

more than plus or minus two cycles. The center station frequencies were considered constant during the remainder of the evaluation period.

After any adjustment was made to a transmitter, the audio frequencies were monitored to detect any drift. Frequency measurement was made by using the audio output from the monitor circuits in a receiver together with an adjustable audio oscillator output to produce a stable Lissajous pattern on an oscilloscope. A counter was used to measure the oscillator frequency. The audio signal from the system could not be measured directly due to the switching cycles. Most of the frequency drift occurred within six hours after energizing the transmitters. After the first few hours of operation, drift was negligible and settled to a rate of one or two cycles per week. Therefore, the best operation results if the oscillators are kept in operation. Adjustments in frequency during long periods of operation do not affect the drift rate and each oscillator should not have to be adjusted more than once a month.

C. EQUIPMENT RELIABILITY

Prior to energizing the entire system, each of the three transmitters were inspected for any visible defects in cable connections,
antenna couplings, or similar items. Fuses were checked to insure
that the correct size was being used. Prior to applying full power to
the stations a variac was used to apply a low voltage to the power
supplies and bring the units up slowly to the required line voltage.
This allowed a period of time for moisture to evaporate and any

defects in the heater circuits to be observed. This precaution was used when energizing any of the transmitters after an inoperative period.

The entire system was placed in operation in August 1969 and as of November 1969, has been operating about 50% of the time. The inoperative time has been due to occasional failures and testing periods. Failures of the stations were due primarily to aging components and exposure to moisture. The transmitter at Santa Cruz had the most failures and this was attributed to its location at the end of the municipal wharf. Moisture was allowed to accumulate during the eight-month period that the system was not in operation. No single component in that transmitter was at fault. In contrast, the transmitter at Moss Landing is located in a furnace room which remains relatively warm and dry. Similarly, the transmitter in Monterey is well protected and a reasonable distance from the shoreline. Failures in the latter two stations have been infrequent, and mostly tubes and fuses have been at fault.

A spare parts box has been made up from the numerous spares available for the system. It contains tubes, fuses, and a few miscellaneous parts for the transmitters. This box is kept in the transmitter building at Monterey along with appropriate test equipment.

During the tuning of each transmitter about half the maximum power was coupled to the antenna. This was found to produce sufficient signal strength to operate the receivers in the Monterey Bay area. If operation is to be outside this area, additional power is available.

Operation is efficient and the standing wave ratios of the transmitting antennas are kept under 1.50. These ratios can be reduced if maximum power output is desired.

III. CHART OVERLAY PREPARATION

If the LORAC system is to be used for absolute position finding, then charts for the network must be prepared. If LORAC is used for repeatability of position, no chart is needed since all that is necessary is to move the receiver until the dials indicate a previously recorded reading.

A. CHOOSING A COORDINATE SYSTEM

The mathematical equations for the hyperbolic constant phase contours can be written in a number of coordinate systems. The simplest to use in a digital computer program is a two-dimensional rectangular coordinate system with perpendicular axes and identical scales in both directions. Most navigational charts, however, are constructed using a mercator projection and the result is a set of geographical coordinates. A hyperbolic grid cannot be conveniently constructed in geographical coordinates since the equation for a hyperbola in this system can only be approximated. A solution to the problem is to calculate points along a hyperbola in a rectangular coordinate system and then convert each point to geographical coordinates. LORAC grids are commonly generated in Universal Transverse Mercator (UTM) coordinates, a rectangular system with units of meters. Army Map Service charts, in UTM coordinates, are available for the Monterey Bay area and the coordinates of the transmitting sites can be easily estimated.

B. POINT GENERATION PROGRAM

A computer program has been written to generate points in the LORAC network for plotting, and has been used on the SDS-9300 digital computer. It follows the general description for generation of hyperbolic grid charts found in the Computer's Manual published by the LORAC Service Corporation. The program outputs data points on magnetic tape for plotting on a CALCOMP-563 plotter and is flexible enough to allow updating if the transmitting antennas are moved or the frequencies changed.

1. Input Data

The following information is read by the program into the computer from data cards:

GREENX, GREENY	Coordinates of the GREEN station (UTM)
CENTERX, CENTERY	Coordinates of the center station (UTM)
REDX, REDY	Coordinates of the RED station (UTM)
FREQ (1)	Frequency of the GREEN transmitter (hz)
FREQ (2)	Frequency of the RED transmitter (hz)
CENFR (1)	Frequency of the center station when operating with the GREEN station (hz)
CENFR (2)	Frequency of the center station when operating with the RED station (hz)
FREQM (1)	GREEN modulation (audio) frequency (hz)
FREQM (2)	RED modulation (audio) frequency (hz)
VELPROP	Velocity of propagation
Ll	First row of conversion tables to be read
L2	Last row of conversion tables to be read
CI, CVII, CVIII, CIX, CX	One row of conversion tables

The dimensions and constants of the LORAC network are then calculated and arbitrary lane numbers are assigned to the center lane in each half of the network. The following chart parameters are introduced:

in geographical coordinates

XMAX The eastern boundary of the chart

YMIN The southern boundary of the chart

YMAX The northern boundary of the chart

XSCALE Scale of the chart in the X direction

YSCALE Scale of the chart in the Y direction

DELU Determines point density

UMAX Determines size of the network

generated

M The interval of plotted lanes

The chart parameters are read from a single data card and a set of points for a complete chart is generated by each data card included in the program deck. Using magnetic tape as the output medium, there is essentially no limit to the number of sets of points that can be generated with one program run. The lane numbers of the points generated are listed by the line printer along with the graph number and the limits of the graph. The coordinates of the transmitter sites are also written on the magnetic tape for use in a point-plot. The entire program does not have to be rerun to duplicate a chart since the plotter is not an online output device and the data for the charts is stored on magnetic tape.

2. Subroutines

SUBROUTINE CONVERT is used in the main program to convert each hyperbolic set of points from UTM to geographical coordinates.

The subprogram is written using 36-00N and 123-00W as the origin for any point to be converted. A row of the conversion tables must be read into the program for every minute of latitude in the desired chart and linear interpolation is used for values between each minute. UTM coordinates are calculated to the nearest tenth of a meter and the conversion process carries out calculations to the nearest hundredth of a second of latitude (about one foot), losing little or no resolution in the conversion process.

The main program retains only those points that lie within the boundaries of the desired chart, and stores all lanes with more than one point. Since the latitude and longitude scales are not the same on a mercator projection, the horizontal units are reduced by the appropriate scaling factor found in mercator construction tables.

SUBROUTINE TAPEOUT prepares and writes the points on magnetic tape. The SDS-9300 is a 24-bit word digital computer which uses 2's complement arithmetic and the small computer that controls the plotter, the CDC-160, is a 12-bit word computer which uses 1's complement arithmetic. Some changes in format are necessary so that the output from the SDS-9300 can be read by the CDC-160. The subroutine scales the chart according to the values of XSCALE and YSCALE, limits the output points if they are too large for the CDC-160, and stacks the coordinates for more efficient use of magnetic tape. Each data point is stacked so that the first twelve bits of the SDS-9300 word contain the X coordinate and the last twelve contain the Y coordinate. The result

is a higher density of output points and an easier format for the CDC-160 to read. This subroutine can be used with any set of points and called with the following arguments:

X The horizontal coordinate of each point

Y The vertical coordinate of each point

IPC The number of points

XSCALE Scale in the X direction

YSCALE Scale in the Y direction

MWIDE Width of the horizontal field before

scaling

MHIGH Height of the vertical field before

scaling

After scaling, the values of X and Y will be limited to plus or minus 2,047.

C. PLOTTING PROGRAM

The SDS-9300 computer does not have a plotter as an output device, so the points to be plotted were stored on magnetic tape. A CALCOMP-563 plotter was available and offered a plotting surface 30 inches wide and up to 100 feet in length. The plotter is controlled by commands from a CDC-160 computer and a general program was written for plotting lines, points, borders, and axes. The program will be discussed in some detail since no previous program was available and it may prove useful as a reference for future use of this system.

The CALCOMP-563 plotter will accept any one of ten instructions from the CDC-160:

Move carriage 0.005" in +X direction

Move carriage 0.005" in -X direction

Rotate drum 0.005" in +Y direction

Rotate drum 0.005" in -Y direction

Four combinations of the X and Y commands above to produce diagonal motion

Move pen down to paper

Move pen away from paper

Any program written must consist of combinations of these building blocks repeated the required number of times to move the intended distance and the intended direction.

The PLOT program will accept data points from any of the following sources:

Output from the CDC-160 FORTRAN II package
Paper tape output from the SDS-9300
Magnetic tape output from the SDS-9300
Manual entry from the CDC-160 console

The CDC-160 FORTRAN II package was described briefly in Chapter II.

Using an OUTPUT statement in a program produces a punched paper tape in binary which can be read into a plotting program. Binary output is also produced by the SDS-9300 paper tape and magnetic tape outputs if an unformatted WRITE statement is used in a FORTRAN IV program.

These last two formats are identical except for the END FILE characters which are used to separate sets of points. Data points may be entered in memory at the CDC-160 console, but this is a time-consuming process if more than a few points are needed.

The PLOT program selects the proper input device (paper tape reader or magnetic tape unit) then reads and stores all the points in memory for one line or point plot. Figure 7 illustrates the major control instructions in the program and the use of various subroutines. The pen is moved to the initial point and lowered to the paper. If the point-plot mode was selected, the pen draws a cross through the point and moves away from the paper; if the line-plot mode was chosen, the pen remains on the paper. The direction to the next point is determined by a slope calculation, and this slope determines which of sixteen different subroutines moves the pen. Each subroutine covers about twenty degrees of arc about the pen and is made up from the basic building blocks to move in a direction to bisect the arc. The slope is calculated after each movement of 0.005" and the appropriate subroutine is again chosen. This technique results in a relatively smooth curve if the line-plot is used with a data density of four or five points per inch. Much smoother curves are obtained as the density increases to the limit of 200 points per inch.

A general plotting program should utilize the entire 30-inch width of the paper and the largest integer that can be stored in the CDC-160 is 2,047 (positive or negative). A plotter step size of 0.005" makes available 200 addressable points per inch and if both positive and negative integers are utilized, the maximum graph width and height is 20.47 inches. To expand the graph size to the limits of the paper width, the addressable point density was reduced to 100 points per inch.

Figure 7. Plot Program Flow Diagram

This is done in the program by giving each pen movement command twice or doubling the distance between adjacent points. The higher density plotting mode is retained, however, and can be used if the graph is less than 20.47 inches square. The point density is determined by the starting address of the program.

Two graph sizes are available as a result of the change in point density. One graph is 20.47 inches square and has 200 addressable points per inch and the other is 30 inches wide, 40.94 inches high and has 100 addressable points per inch. The origin is located in the center of both graphs.

Two plotting modes were written into the program, one for plotting lines and the other for plotting points. Either mode can be used with either graph size. The subprogram for plotting lines reads and stores all the points for one line, draws a continuous line through the points, then returns to the origin and reads the next set of points. The subprogram for plotting points reads and stores one set of points, draws a plus sign at each point, then returns to the origin and stops.

The overall program has some restrictions. The maximum number of points that can be stored at any one time is 1,275, but any number of lines or sets of points can be plotted. The initial point on a line or the first of a set of points can be anywhere on the graph, but the change in successive coordinates cannot exceed 3.41" due to the slope calculating routines. This does not present a problem when drawing lines since the data density should be a few points per inch for a smooth curve.

It must be kept in mind, however, when using the point plot. An example of a prepared chart overlay is shown in Figure 8, illustrating the results of both the line plot and point plot modes.

Figure 8. Sample Chart Overlay

IV. UPDATING THE SYSTEM

The present LORAC-A system was the first type in a series of hyperbolic phase comparison navigation systems manufactured by LORAC Service Corporation. Newer systems incorporate additional features such as lane identification and remote control to eliminate lane ambiguity and to make operation easier. The possibility of adding these two features to the existing system was investigated.

A. MODIFICATION AND TESTING

There are four receiver-indicator units for use with the system and each receiver was connected to its indicator by an eight-foot shielded cable. The two units were not easily separated and some difficulty was encountered in transporting the receivers. The cables were removed from three of the receivers and connecting jacks were mounted on the rear of the receivers and indicators. Short cables with connectors were made up to join the two jacks and these allow separation of the receiver and indicator when transporting or repairing. This modification also allows interchangeability of units which before was not easily accomplished.

A LORAC chart recorder for the system was repaired and an additional chart recorder was modified for use with the system.

Installation of a LORAC receiver on the Naval Postgraduate School research boat has been desirable since the navigation system was placed

in operation and some projects conducted in Monterey Bay require precise fixes, repeatability, and station keeping. A receiver was used on this boat in the past and some difficulty was experienced in positioning the indicator so that the dials were clearly visible to the helmsman. Disassembly of the indicator unit was considered undesirable due to the number of connections between components.

A remote indicator unit has been constructed to duplicate the dial and counter readings of the indicator. This unit has four synchro repeaters, two for the dials and two for the lane counters, which are driven by two synchro transmitters in the indicator. A multiple-conductor cable is connected to the output terminal board of the indicator.

A small chart recorder was adapted for use with the on-board receiver and a record of readings can be maintained. The recorder is connected by a six-foot cable to a jack mounted on the back of the indicator.

B. REMOTE CONTROL

It is desirable to place the three transmitters in a standby condition when the system is not being used. Standby condition may be defined as consisting of all heaters and blowers operating in the power supply, modulator, and RF amplifier, and the reference receiver and oscillator in full operation. These conditions insure frequency stability and minimize unnecessary radiation and warm-up time when full operation is desired. Available methods of remote control require

additional frequency assignments or leasing of landlines. The method proposed uses the frequencies already in use and has proven successful in laboratory tests.

Each mobile receiver contains two signal loss alarm circuits to indicate failure of either audio signal of the network. When a transmitter fails or signal strength falls below a certain level, an alarm lamp is energized on the indicator front panel. The signal loss alarm circuit uses the AGC level in the audio portion of the receiver to bias the grid of a relay control tube. A small relay in the plate circuit of this tube is held open under normal signal conditions. If the signal fails, the AGC voltage changes, the tube is cutoff, and the relay closes providing a return to ground for the indicator lamps.

The reference receivers in the transmitters at Santa Cruz and Monterey are essentially one half of a mobile receiver. The AGC circuits are the same but no signal loss alarm is used. The circuit boards are identical to those in the mobile receiver, however, with relay socket, tube socket, and wiring to a terminal strip. By simply inserting the proper tube and relay, the circuit operates the same as in the mobile receiver. This small relay can now be used to control the high voltage switches in the modulator and power supply.

Remote relays can be put in parallel with the high voltage switches and controlled by the relay in the reference receiver. This was done with the transmitter in Santa Cruz. The power supply in the reference receiver provides 250 volts d.c. which is used through dropping

resistors to energize the remote relays. The small relay in the reference receiver is single-pole, double-throw and has contacts rated at 250 ma. The relays used in the modulator and power supply each require five milliamps to energize and were wired in series to increase the voltage drop. Connections between units were made by using the spare wires in the wiring harness.

Limited success was attained with this circuit as a remote control device. The presence of an audio signal produced by the transmitters in Monterey and Moss Landing will hold the relays closed and keep the Santa Cruz transmitter in operation. When the signal is lost, however, the receiver noise level is high enough to also trigger the relays. The receiver used in the laboratory tests had a much lower noise level. Since all the circuit boards are interchangeable, it may solve the problem to exchange the AGC FILTER circuit boards in the two receivers.

This method of remote control has proven in theory that the presence of one signal is sufficient to control another. If the Monterey transmitter was placed in the standby condition, the loss of audio would be detected by the receiver at Santa Cruz and that transmitter would be placed in standby. The receiver would remain on and would be able to energize the rest of the units if the audio signal was again detected. If a similar circuit was placed in the transmitter at Monterey, then both transmitters could be controlled from the center station at Moss Landing. The system could also be controlled from one of the end stations but a receiver would have to be installed at Moss Landing.

C. LANE IDENTIFICATION

The LORAC-A system of position finding contains some lane ambiguities. Unless continuous reception and tracking of the signals is maintained, there is a possibility of losing track of the lane in which the mobile receiver is located. To reset the receiver to the proper lane number, its position must be known to within one lane width. On the baselines this is most critical since the lane widths are at a minimum of about 65 meters. Normal navigation methods such as radar, RDF, or LORAN do not offer this degree of fineness and some other method must be used.

Some methods of lane identification were investigated using the system itself. If another set of hyperbolic grids could be established with a lane width about ten times that of the basic system, it would be possible to use first a coarse lane reading then a fine lane reading for position finding.

One such method is based on a time difference principle similar to LORAN A. The end stations are transmitting continuously either CW or amplitude modulated. The center station switches periodically between two frequencies and the presence of the center station frequency produces both the reference signal and the position signal. The position signal is produced at the receiver as soon as the signal from the center station is received. The reference signal reaches the receiver at some later time because it took a longer path via the reference transmitter. If the time difference between the reception

of these two signals could be measured, it would produce two sets of hyperbolas using the same baselines as in the basic system.

There are inherent difficulties in trying to measure this time difference, however. The multivibrator that controls the switching rate in the center transmitter has a slow rise time compared to the time differences involved. In order to distinguish between lanes, a resolution of less than 65 meters is required. This distance is equivalent to about 0.2 microseconds resolution. A second drawback in the method is obvious; to measure time differences on the order of microseconds requires a bandwidth in megahertz, and the differences are only available at audio frequencies through audio filters.

Another method could be investigated using phase comparison techniques. The frequency difference between the red and green halves of the network is arbitrary. Presently, the difference is about 80 khz. If the two halves were separated by some audio frequency other than the ones already in the system, two more hyperbolic grids would be established. The basic frequencies would have to be adjacent assignments to avoid outside interference. This method is similar to LORAC-C which incorporates an additional transmitter to produce the audio signals for a coarse lane network.

V. RESULTS AND RECOMMENDATIONS

The LORAC system of hyperbolic phase comparison has shown to be a feasible and desirable navigation network for use on Monterey Bay. The transmitters and receivers have been reasonably reliable and the majority of failures were attributed to aging components combined with an eight-month inoperative period. If the system is kept in operation, the frequency of failure decreases and the stability of the system improves.

The most significant variational error in the system was caused by changes in the velocity of propagation of the transmitted signals.

Direct observation showed a periodic variation due to these changes of plus or minus two dial divisions on the receiver. This variation produces a maximum error in the area of intended operation of plus or minus 20 feet. Since no reference position is required for repeatability of position, a receiver can be returned to a previously held position to within about 20 feet.

If an absolute position is to be determined, the coordinates of the transmitting antennas become important since they are used in the chart-producing program. Until the location of the antenna sites can be more precisely determined, the accuracy of an absolute position found with this LORAC system will be about 100 feet.

Considerable time and effort was spent on chart overlay preparation so that the system can be used for absolute position finding. The

accuracy of the overlays depends mainly on the accuracy of the data read into the program and the stability of the overall system. Sets of overlays have been made for the two most used charts of Monterey Bay, Coast and Geodetic Survey charts 5402 and 5403. On some overlays the lanes were plotted in colors (red and green) corresponding to the color designations of the two halves of the network. The plotting paper used is opaque and performs satisfactorily as an overlay, but clear mylar sheets for the plotter could be obtained if desired. The lanes could be plotted directly on the existing navigation charts, but a new chart would have to be plotted if a change in frequency or antenna location was made.

A general plotting program for the CALCOMP-563 was a secondary result of this project and can be used for any desired line or point plot within the integer limits of the CDC-160 computer.

It is recommended that the LORAC system as presently installed be kept in operation and used in conjunction with the ocean sciences research program at the Postgraduate School. Continued investigations of lane identification and remote control methods may prove valuable, but direct application may present some difficulties since the system is not designed with these features and is about fifteen years old.

Definite consideration should be given to the possibility of replacing the present system with a more reliable and up-to-date LORAC system.

The prepared chart overlays should be compared to actual receiver readings and areas of disagreement investigated. Deviations are to be

expected where the signals pass over land or near large metallic structures. The areas in the vicinity of the transmitting antennas are also of interest.

The number of potential users of a navigational system on Monterey Bay is unlimited. Various research projects are being conducted by a number of organizations and a permanent, reliable navigation system, such as LORAC, would benefit many.

APPENDIX A

DATA PROCESSING PROGRAM

100	FORMAT (213)
101	FORMAT (2(3F8.2, I4, F8.2, I4, 4X))
102	FORMAT (17X,5HGREEN, 40X,3HRED)
103	FORMAT (2(44H;;;AVE;;;;RMS;;;;;MAX;;TIME;;;MIN;;TIME;;;))
	DIMENSION IX(60), IY(60)
	PUNCH 102
	PUNCH 103
60	XSUM=0.0
	YSUM=0.0
	DO 10 I=1,60
	READ 100, IX(I), IY(I)
	XSUM=XSUM+IX(I)
	YSUM=YSUM+IY(I)
10	CONTINUE
10	XAVE=XSUM/60.0
	YAVE=YSUM/60.0
	XMAX=0.0
	XMIN=1000.
400	DO 20 N=1,60
100	IF(XMAX-IX(N))300,301,301
300	XMAX=IX(N)
	N l=N
301	IF (XMIN-IX(N))20,20,401
401	XMIN=IX(N)
	N2=N
20	CONTINUE
	YMAX=0.0
	YMIN=1000.
600	DO 30 $N=1,60$
	IF(YMAX-IY(N))500,501,501
500	YMAX=IY(N)
	N3=N
501	IF(YMIN-IY(N))30,30,601
601	YMIN=IY(N)
	N4=N
30	CONTINUE
	XSQSM=0.0
	DO 40 K=1,60
	XSQ=(XAVE-IX(K))''2
	XSQSM=XSQSM+XSQ

```
40
      CONTINUE
      XRMS=SQRTF(XSQSM/60.0)
      YSQSM=0.0
      DO 50 K=1,60
      YSQ = (YAVE - IY(K))''2
      YSQSM=YSQSM+YSQ
50
      CONTINUE
      YRMS=SQRTF(YSQSM/60.0)
      PUNCH 101, XAVE, XRMS, XMAX, N1, XMIN, N2, YAVE, YRMS, YMAX,
     xN3,YMIN,N4
      PAUSE 7777
      GO TO 60
      END
      END
```

APPENDIX B
PLOTTING PROGRAM

Memory Location	Instruction Word	Machine Language	Memory Location	Instruction Word	Mac Lang	
0000 0001	7022 7023	jpi 22 jpi 23	0046 0047	2450 2466		
0002 0003 0004	7024 7025 7026	jpi 24 jpi 25 jpi 26	0050 0051	2315 2350		
0005 0006 0007	7027 7030 7031	jpi 27 jpi 30	0052 0053 0054	0264 0370 2400		
0010	7500 1161	jpi 31 exc 1161	0055 0056 0057	0231 2200 2400		
0012 0013	7700 0000	hlt	0060 0061	0532 0577		
0014 0015 0016 0017	7037 7036 7035 0000	jpi 37 jpi 36 jpi 35	0062 0063 0064	1325 1363 0263		
0020 0021	0000		0065 0066 0067	0310 2453 0100		
0022 0023 0024 0025 0026	2130 2133 2136 2141 2144		0070 0071 0072 0073 0074	7774 0000 4104 0013 7703		
0027 0030 0031	2147 2152 2155		0075 0076 0077	2600 0076 7715		
0032 0033 0034	0412 4161 7067	ldn 12 sti 61 jpi 67	0100 0101 0102	2200 3000 4213		3000 13
0035 0036 0037	2351 1625 2000		0103 0104	7500 4102	exc	4102
0040 0041 0042 0043 0044 0045	0000 0000 2534 2500 2504 2530		0105 0106 0107	7600 6401 7600	ina zjb ina	01

0110	0111	ls6		0165	7402	otn	02
0111	4077	std	77	0166	0601	adn	01
0112	7600	ina		0167	6503	nzb	03
0113	5077	rad	77			1122	00
0114	4100	stm	•	0170	2100	ldm	
0115	3000	Still	2000			ldm	0007
		,	3000	0171	3001		3001
0116	5701	aob	01	0172	6013	zjf	13
0117	4207	stf	07	0173	6306	njf	06
0120	7600	ina		0174	0300	nop	
				0175	7404	otn	04
0121	0111	ls6		0176	0701	sbn	01
0122	4077	std	77	0177	6503	nzb	03
0123	7600	ina		01//	0000	112.0	00
0124	5077	rad	77	0000	6005	_ : c	٥٢
0125	4100	stm		0200	6005	zjf	05
0126	3012		0000	0201	0300	nop	
0127	5701	aob	01	0202	7410	otn	10
0127	0701	dOD	01	0203	0601	adn	01
0130	4313	stb	13	0204	6503	nzb	03
0131	0702	sbn	02	0205	7101	jfi	01
0132	4100	stm		0206	0210		0210
0133	0226		0226	0207	0701		
0134	7600	ina		020,	0,01		
0135	6526	nzb	26	0210	2200	ldc	
						lac	2000
0136	7101	jfi	01	0211	3000		3000
0137	0150		0150	0212	4221	stf	21
0140	1001			0213	2200	ldc	
0141	6012			0214	3002		3002
0142	6211			0215	4220	stf	20
				0216	2200	ldc	
0143	6311			0217	3001		3001
0144	2100						
0145	1001			0220	4227	stf	27
0146	6007			0221	2200	ldc	
0147	6206			0222	3003	iao	3003
01.0	7500	03/0		0223	4226	stf	26
0150		exc	4.4.0.7				
0151	4401		4401	0224	2207	ldf	07
0152	7440	otn	40	0225	3600	sbc	
0153	2100	ldm		0226	3236		0000
0154	3000		3000	0227	6103	nzf	03
0155	6013	zjf	13	0220	7101	: 4:	0.1
0156	6306	njf	06	0230		jfi	01
0157	7401	otn	01	0231	0532	,	0000
				0232	2500	lcm	0000
0160	0300	nop		0233	3236		0.000
0161	0701	sbn	01	0234	3100	adm	
0162	6503	nzb	03	0235	3240		0000
0163	6005	zjf	05	0236	4100	stm	
0164	0300	nop		0237	1000		1000

0240	0300	nop		0316 ,	1001		1001
0241	0300	nop		0317	6015	zjf	15
0242	5707	aob	07	0320	6017		1 77
0243	5710	aob	10		6317	njf	17
0244	5707	aob	07	0321	6215	pjf	15
0245	5710	aob	10	0322	2100	ldm	
0246	2500	lcm		0323	1001		1001
0247	3237		0000	0324	6012	zjf	12
				0325	6211	pjf	11
0250	3100	adm		0326	6311	njf	11
0251	3241		0000	0327	2100	ldm	
0252	4100	stm		0330	1001		1001
0253	1001		1001	0331	6007	- : c	
0254	0300	nop				zjf	07
0255	0300	nop		0332	6206	pjf	06
0256	5707	aob	07	0333	6306	njf	06
0257	5710	aob	10	0334	7101	jfi	01
				0335	0224		0224
0260	5707	aob	07	0336	7104	jfi	04
0261	5710	aob	10	0337	7104	jfi	04
0262	7101	jfi	01	0340	7104	: c:	0.4
0263	0310		0310			jfi	04
0264	2200	ldc		0341	7104	jfi	04
0265	7401		7401	0342	0400		
0266	4100	stm		0343	1200		
0267	0160		0160	0344	0700		
				0345	1500		
0270	4100	stm		0346	4100	stm	
0271	0551		0551	0347	0201		0201
0272	0601	adn	01	0350	4100	atm	
0274	0164		0164			stm	0564
0275	4100	stm		0351	0564	1.1	0564
0276	0544		0544	0352	2200	ldc	- 700
0277	0602	adn		0353	5100		5100
				0354	4100	stm	
0300	4100	stm		0355	0240		0240
0301	0174		0174	0356	4100	stm	
0302	4100	stm		0357	0254		0254
0303	0571		0571	0360	2200	ldc	
0304	0604	adn	04	0361	1000	iac	1000
0305	7101	jfi	01			a ton	1000
0306	0346		0346	0362	4100	stm	0047
0307	0000			0363	0241	- 1	0241
	0.7.0.0	1.3		0364	0606	adn	01
0310	2100	ldm		0365	4100	stm	
0311	1000		1000	0366	0255		0255
0312	6003	zjf	03	0367	7101	jfi	01
0313	6207	pjf	07				
0314	6313	njf	13				
0315	2100	ldm					

0370 0371 0372 0373 0374 0375 0376	2510 0000 0000 0000 0000 0000 0000		0000	0440 0441 0442 0443 0444 0445 0446 0447	1001 6347 6016 6215 0101 7101 0600 0101	njf zjf pjf pta jfi	1001 47 16 15 01 0600
0400 0401 0402 0403 0404 0405 0406 0407	7500 4401 7420 2100 1001 3100 1001 3100	exc otn ldm adm	4401 20 1001 1001	0450 0451 0452 0453 0454 0455 0456	7101 0403 0101 7101 0613 0101 7101 0403	jfi pta jfi pta jfi	01 0403 01 0613 01 0403
0410 0411 0412 0413 0414 0415 0416 0417	1001 3500 1000 6331 6052 3500 1000 6347	sbm njf zjf sbm njf	1001 1000 31 52 1000 47	0460 0461 0462 0463 0464 0465 0466	0101 7101 0644 0101 7101 0403 0101 7101	pta jfi pta jfi pta jfi	01 0644 01 0403
0420 0421 0422 0423 0424 0425 0426 0427	6040 3500 1000 6335 6034 2100 1000 3100	zjf sbm njf zjf ldm	40 1000 35 34 1000	0470 0471 0472 0473 0474 0475 0476	0600 0101 7101 0644 0101 7101 0600 0101	pta jfi pta jfi pta	0600 01 0644 01 0600
0430 0431 0432 0433 0434 0435 0436 0437	1000 3100 1000 3500 1001 6315 6052 3500	adm sbm njf zjf sbm	1000 1000 1001 15 52	0500 0501 0502 0503 0504 0505 0506 0507	7101 0644 0101 7101 0600 0101 7101 0403	jfi pta jfi pta jfi	01 0644 01 0600 01 0403

0510 0511 0512 0513 0514 0515 0516 0517	0101 7101 0613 0101 7101 0644 0101 7101	pta jfi pta jfi pta jfi	01 0613 01 0644	0550 0551 0552 0553 0554 0555 0556 0557	6005 0300 7401 0601 6503 2100 0247 4202	zjf nop otn adn nzb ldm	05 01 01 03 0247 02
0520 0521 0522 0523 0524 0525 0526 0527	0613 0101 7101 0644 0101 7101 0613 0101	pta jfi pta jfi pta	0613 01 0644 01 0613	0560 0561 0562 0563 0564 0565 0566	2100 3237 6013 6306 0300 7410 0701 6503	ldm zjf njf nop otn sbn nzb	0000 13 06 10 01 03
0530 0531 0532 0533 0534 0535 0536 0537	7101 0403 7500 4401 7440 2100 0233 4202	jfi exc otn ldm	01 0403 4401 40 0233 02	0570 0571 0572 0573 0574 0575 0576	6005 0300 7404 0601 6503 0300 7101 2523	zjf nop otn adn nzb nop jfi	05 04 01 03 01 0000
0540 0541 0542 0543 0544 0545 0546 0547	2100 3236 6013 6306 0300 7402 0701 6503	ldm zjf njf nop otn sbn nzb	0000 13 06 02 01 03				

0600	0603	adn	03	0650	1000		1000
0601	4211	stf	11	0651	0701	sbn	01
0602	7401	otn	01	0652	4100	stm	
0603	2100	ldm		0653	1000		1000
0604	1000		1000	0654	2100	ldm	2000
0605	0701	sbn	01	0655	1001		1001
0606	4100	stm		0656	0701	sbn	01
0607	1000		1000	0657	4100	stm	0 1
				0007	1100	Still	
0610	6025	zjf	25	0660	1001		1001
0611	7101	jfi	01	0661	6433	zjb	33
0612	0447	,	0447	0662	7101	jfi	01
0613	0603	adn	03	0663	0463	,	0463
0614	4211	stf	11	0664	0000		0100
0615	7404	otn	04	0665	0000		
0616	2100	ldm	0 1	0666	0000		
0617	1001	idii	1001	0667	0000		
0017	1001		1001	0007	0000		
0620	0701	sbn	01	0670	0000		
0621	4100	stm	0.1	0671	0000		
0621	1001	Still	1001	0672	0000		
		-46	03	0673	0000		
0623	6003	zjf					
0624	7101	jfi	01	0674	0000		
0625	0455	1.1	0455	0675	0000		
0626	2100	ldm	1000	0676	0000		
0627	1000		1000	0677	0000		
0630	6003	aif	03	0700	7500	OVG	
		zjf		0701	4401	exc	4403
0631	7101	jfi	01			0.4.0	4401
0632	0403	1.61	0403	0702	7420	otn	20
0633	7101	jfi	01	0703	2100	ldm	1001
0634	0224	1.1	0224	0704	1001	- 1	1001
0635	2100	ldm	7.007	0705	3100	adm	1001
0636	1001	1.6	1001	0706	1001	,	1001
0637	6003	zjf	03	0707	3100	adm	
0040	7101	: C:	0.7	0710	1001		1001
0640	7101	jfi	01	0710	1001	1	1001
0641	0403	1.61	0403	0711	3100	adm	1000
0642	7101	jfi	01	0712	1000	~ if	1000
0643	0224	- 3	0224	0713	6331	njf	31
0644	0603	adn	03	0714	6047	zjf	47
0645	4216	stf	16	0715	3100	adm	1000
0646	7405	otn	05	0716	1000		1000
0647	2100	ldm		0717	6344	njf	44

0720 0721 0722 0723 0724 0725 0726 0727	6036 3100 1000 6333 6032 2100 1000 3100	zjf adm njf zjf ldm	1000	0770 0771 0772 0773 0774 0775 0776	1144 0101 7101 1100 7101 1002 0000 0000	pta jfi jfi	1144 01 1100 01 1002
0730 0731 0732 0733 0734 0735 0736 0737	1000 3100 1000 3100 1001 6214 6054 3100	adm adm pjf zjf adm	1000 1000 1001 14 54	1000 1001 1002 1003 1004 1005 1006	0000 0000 0101 7101 1144 0101 7101 1100	pta jfi pta jfi	01 1144 01 1100
0740 0741 0742 0743 0744 0745 0746	1001 6251 6014 6313 0101 7101 1100 7101	pjf zjf njf pta jfi	1001 51 14 13 01 1100 01	1010 1011 1012 1013 1014 1015 1016 1017	7101 0703 0101 7101 1113 0101 7101 1144	jfi pta jfi pta jfi	01 0703 01 1113 01 1144
0750 0751 0752 0753 0754 0755 0756	0703 0101 7101 1113 7101 0703 0101 7101	pta jfi jfi pta jfi	1113 01 0703	1020 1021 1022 1023 1024 1025 1026 1027	0101 7101 1113 0101 7101 1144 0101 7101	pta jfi pta jfi pta jfi	01 1113 01 1144
0760 0761 0762 0763 0764 0765 0766	1144 7101 0703 0101 7101 1100 0101 7101	jfi pta jfi pta jfi	1144 01 0703 01 1100	1030 1031 1032 1033 1034 1035 1036 1037	1113 7101 0703 0603 4217 7440 2440 6013	jfi adn. stf otn lcd zjf	1113 01 0703 03 17 40 40

1040	4207	stf	07	1110	6025	zjf	25
1041	2600	lcc		1111	7101	jfi	01
1042	0144		0144	1112	0747	7	0747
1043	7402	otn	02	1113	0603	adn	03
1044	0601	adn	01	1114	4211	stf	11
1045	6502	nzb	02	1115	7404	otn	04
1046	2200	ldc		1116	2100	ldm	0 1
1047	0000		0000	1117	1001	tam	1001
				,	-00-		1001
1050	5701	aob	01	1120	0701	sbn	01
1051	6510	nzb	10	1121	4100	stm	
1052	7101	jfi	01	1122	1001	1001	
1053	1651		1651	1123	6003	zjf	03
1054	0603	adn	03	1124	7101	jfi	01
1055	4217	stf	17	1125	1015	,	1015
1056	7440	otn	40	1126	2100	ldm	1010
1057	2441	lcd	41	1127	1000	ta	1000
-00.	2-12	200		110,	2000		1000
1060	6013	zjf	13	1130	6003	zjf	03
1061	4207	stf	07	1131	7101	jfi	01
1062	2600	lcc		1132	0703	,	0703
1063	0144	100	0144	1133	7101	jfi	01
1064	7404	otn	04	1134	0224	,	0224
1065	0601	adn	01	1135	2100	ldm	0 – – -
1066	6502	nzb	02	1136	1001	- 0.0	1001
1067	2200	ldc		1137	6003	zjf	03
1007	2200	100					
1070	0000		0000	1140	7101	jfi	01
1071	5701	aob	01	1141	0703		0703
1072	6510	nzb	10	1142	7101	jfi	01
1073	7101	jfi	01	1143	0224		0224
1074	1673	,	1673	1144	0603	adn	03
1075	0000			1145	4216	stf	16
1076	0000			1146	7406	otn	06
1077	0000			1147	2100	ldm	
20							
1100	0603	adn	03	1150	1000		1000
1101	4211	stf	11	1151	0601	adn	01
1102	7402	otn	02	1152	4100	stm	
1103	2100	ldm		1153	1000		1000
1104	1000		1000	1154	2100	ldm	
1105	0601	adn	01	1155	1001		1001
1106	4100	stm		1156	0701	sbn	01
1107	1000		1000	1157	4100	stm	

1160 1161 1162 1163 1164 1165 1166 1167	1001 6433 7101 0761 0000 0000 0000	zjb jfi	1001 33 01 0761	12 12 12 12	31 32 33 34 35 36	1000 3100 1000 3100 1001 6314 6046 3100	adm adm njf zjf adm	1000 1000 1001 14 46
1170 1171 1172 1173 1174 1175 1176 1177	0000 0000 0000 0000 0000 0000			12- 12- 12- 12- 12- 12- 12- 12-	41 6 42 6 43 6 44 6 45 1	1001 6343 6014 6213 0101 7101 1400	njf zjf pjf pta jfi	1001 43 14 13 01 1400 01
1200 1201 1202 1203 1204 1205 1206 1207	7500 4401 7420 2100 1001 3100 1001 3100	exc otn ldm adm	4401 20 1001 1001	12: 12: 12: 12: 12: 12: 12:	51 0 52 7 53 7 54 7 55 7	1203 0101 7101 1413 7101 1203 0101 7101	pta jfi jfi pta jfi	1203 01 1413 01 1203
1210 1211 1212 1213 1214 1215 1216 1217	1001 3100 1000 6231 6047 3100 1000 6244	adm pjf zjf adm pjf	1001 1000 31 47 1000 44	12 12 12 12 12 12 12 12	61 3 62 3 63 6 64 3 65 3 66 0	1444 7101 1203 0101 7101 1400 0101 7101	jfi pta jfi pta jfi	1444 01 1203 01 1400
1220 1221 1222 1223 1224 1225 1226 1227	6036 3100 1000 6233 6032 2100 1000 3100	zjf adm pjf zjf ldm	36 1000 33 32 1000	12° 12° 12° 12° 12° 12° 12°	71 (72 73 73 74 (75 76 76 77	1444 0101 7101 1400 0101 7101 1444	pta jfi pta jfi pta	1444 01 1400 01 1444

1300	7101	jfi	01	1350	6502	nzb	02
1301	1400		1400	1351	2200	ldc	02
1302	7101	jfi	01	1352	0024	ide	0004
1303	1203	,	1203				0024
1304	0101	nto	1203	1353	7410	otn	10
1305	7101	pta	0.1	1354	0701	sbn	01
		jfi	01	1355	6502	nzb	02
1306	1413		1413	1356	0412	ldn	12
1307	0101	pta		1357	7404	otn	05
1210	7101		0.7				
1310	7101	jfi	01	1360	0701	sbn	01
1311	1444		1444	1361	6502	nzb	02
1312	0101	pta		1362	7101	jfi	01
1313	7101	jfi	01	1363	0532		0000
1314	1413		1413	1364	0000		
1315	0101	pta		1365	0000		
1316	7101	jfi	01	1366	0000		
1317	1444		1444	1367	0000		
1320	0101	pta		1370	0000		
1321	7101	jfi	01	1371	0000		
1322	1413		1413	1372	0000		
1323	7101	jfi	01	1373	0000		
1324	1203	,	1203	1374	0000		
1325	7500	exc	1200	1375	0000		
1326	4401	exc	4401	1376	0000		
1327	7420	otn	20	1370	0000		
1347	7420	otn	20	13//	0000		
1330	0412	ldn	12	1400	0603	adn	03
1331	7401	otn	01	1400	4211	stf	11
1332				1401	7401		
	0701	sbn	01			otn	01
1333	6502	nzb	02	1403	2100	ldm	3000
1334	2200	ldc	0.004	1404	1000		1000
1335	0024		0024	1405	0701	sbn	01
1336	7402	otn	02	1406	4100	stm	
1337	0701	sbn	01	1407	1000		1000
1340	6502	nzb	02	1410	6025	zjf	25
1341	0412	ldn	12	1411	7101	jfi	01
1342	7401	otn	01	1412	1266		1266
1343	0701	sbn	01	1413	0603	adn	03
1344	6502	nzb	02	1414	4211	stf	11
1345	0412	ldn	12	1415	7410	otn	10
1346	7404	otn	04	1416	2100	ldm	
1347	0701	sbn	01	1417	1001		1001

1420	0601	adn	01		1470	0000		
1421	4100	stm			1471	0000		
1422	1001		1001		1472	0000		
1423	6003	zjf	03		1473	0000		
1424	7101	jfi	01		1474	0000		
		111	1254			0000		
1425	1254	1 -1	1234		1475			
1426	2100	ldm	1000		1476	0000		
1427	1000		1000		1477	0000		
	0000		0.0		1 = 0 0			
1430	6003	zjf	03		1500	7500	exc	
1431	7101	jfi	01		1501	4401		4401
1432	1203		1203		1502	7420	otn	20
1433	7101	jfi	01		1503	2100	ldm	
1434	0224		0224		1504	1001		1001
1435	2100	ldm			1505	3100	adm	
1436	1001		1001		1506	1001		1001
1437	6003	zjf	03		1507	3100	adm	1001
1407	0000	2)1	00		1007	0100	dam	
1440	7101	jfi	01		1510	1000		1000
1441	1203)11	1203		1511	3500	sbm	1000
1442	7101	; ; ;	01		1512	1000	SDIII	1000
		jfi						
1443	0224		0224		1513	6231	pjf	31
1444	0603	adn	03		1514	6047	zjf	47
1445	4216	stf	16		1515	3500	sbm	
1446	7411	otn	11		1516	1000		1000
1447	2100	ldm			1517	6244	pjf	44
1450	1000		1000		1520	6036	zjf	36
1451	0701	sbn	01	′	1521	3500	sbm	
1452	4100	stm			1522	1000		1000
1453	1000		1000		1523	6233	pjf	33
1454	2100	ldm			1524	6032	zjf	32
1455	1001		1001		1525	2100	ldm	
1456	0601	adn	01		1526	1000	- 0.111	1000
1457	4100	stm	01		1527	3100	adm	1000
1407	4100	Still			1027	3100	aam	
1460	1001		1001		1530	1000		1000
		rih.					292	1000
1461	6433	zjb	33		1531	3100	adm	1000
1462	7101	jfi	01		1532	1000	,	1000
1463	1261		1261		1533	3500	abm	
1464	0000 :				1534	1001		1001
1465 .	0000				1535	6214	pjf	14
1466	0000				1536	6046	zjf	46
1467	0000				1537	3500	sbm	

1540 1541	1001 6243	nif	1001	1610	7101	jfi	01
1542	6014	pjf	43 14	1611	1744		1744
1543	6313	zjf	13	1612	0101	pta	0.1
1544	0101	njf		1613	7101	jfi	01
		pta	0.1	1614	1713		1713
1545	7101	jfi	01	1615	0101	pta	
1546	1700	1.51	1700	1616	7101	jfi	01
1547	7101	jfi	01	1617	1744		1744
1550	1503		1503	1620	0101	pta	
1551	0101	pta		1621	7101	jfi	01
1552	7101	jfi	01	1622	1713) ++	1713
1553	1713	,	1713	1623	7101	jfi	01
1554	7101	jfi	01	1624	1503	7.4.	1503
1555	1503	,	1503	1625	7500	exc	1000
1556	0101	pta	-000	1626	4401	Ono	4401
1557	7101	jfi	01	1627	0101	pta	1101
200.	, 101	7.2	0.1	1027	0101	ptd	
1560	1744		1744	1630	7101	jfi	01
1561	7101	jfi	01	1631	1033		1033
1562	1503		1503	1632	7420	otn	20
1563	0101	pta		1633	2440	lcd	40
1564	71.01	jfi	01	1634	4207	stf	07
1565	1700		1700	1635	2600	lcc	
1566	0101	pta		1636	0310		0310
1567	7101	jfi	01	1637	7401	otn	01
1570	1744		1744	1640	0601	adn	01
1571	0101	pta		1641	6502	nzb	02
1572	7101	jfi	01	1642	2200	ldc	
1573	1700		1700	1643	0000		0000
1574	0101	pta		1644	5701	aob	01
1575	7101	jfi	01	1645	6510	nzb	10
1576	1744		1744	1646	0101	pta	
1577	0101	pta		1647	7101	jfi	01
1600	7101	161	01	1650	1033		1033
1600	7101	jfi					1033
1601	1700	;£:	1700	1651	0101	pta	0.1
1602	7101	jfi	01	1652	7101	jfi	01
1603	1503		1503	1653	1054	c.4	1054
1604	0101	pta	0.1	1654	7420	otn	20
1605	7101	jfi	01	1655	2441	lcd	41
1606	1713		1713	1656	4207	stf	07
1607	0101	pta		1657	2600	lcc	

1660 1661 1662 1663 1664 1665 1666	0310 7410 0601 6502 2200 0000 5701 6510	otn adn nzb ldc aob nzb	0310 10 01 02 0000 01 10	1730 1731 1732 1733 1734 1735 1736 1737	6003 7101 1503 7101 0224 2100 1001 6003	zjf jfi jfi ldm zjf	03 01 1503 01 0224 1001 03
1670 1671 1672 1673 1674 1675 1676	0101 7101 1054 7700 0000 0000 0000	pta jfi hlt	01 1054	1740 1741 1742 1743 1744 1745 1746 1747	7101 1503 7101 0224 0603 4216 7412 2100	jfi jfi adn stf otn ldm	01 1503 01 0224 03 16 12
1700 1701 1702 1703 1704 1705 1706 1707	0603 4211 7402 2100 1000 0601 4100 1000	adn stf otn ldm adn stm	03 11 02 1000 01	1750 1751 1752 1753 1754 1755 1756	1000 0601 4100 1000 2100 1001 0601 4100	adn stm ldm adn stm	1000 01 1000 1001 01
1710 1711 1712 1713 1714 1715 1716 1717	6025 7101 1566 0603 4211 7410 2100 1001	zjf jfi adn stf otn ldm	25 01 1566 03 11 10	1760 1761 1762 1763 1764 1765 1766	1001 6433 7101 1571 0000 0000 0000	zjb jfi	1001 33 01 1571
1720 1721 1722 1723 1724 1725 1726 1727	0601 4100 1001 6003 7101 1607 2100 1000	adn stm zjf jfi ldm	01 1001 03 01 1607	1770 1771 1772 1773 1774 1775 1776	0000 0000 0000 0000 0000 0000		

2000	7500	exc		2050	6510	nzb	10
2001	4401		4401	2051	2420	lcd	20
2002	7440	otn	40	2052	4207	stf	07
2003	2421	lcd	21	2053	2600	lcc	
2004	6013	zjf	13	2054	0310	.00	0310
2005	4207	stf	07	2055	7402	otn	02
2006	2600	lcc		2056	0601	adn	01
2007	0144	100	0144	2057	6502	nzb	02
2007	0111		0144	2037	0302	1120	02
2010	7410	otn	10	2060	2200	ldc	
2011	0601	adn	01	2061	0000		0000
2012	6502	nzb	02	2062	5701	aob	01
2013	2200	ldc	0.2	2063	6510	nzb	10
2014	7766	iac	0000	2064	2421	lcd	21
2015	5701	aob	01	2065	4207		
2016			10			stf	07
		nzb		2066	2600	lcc	0030
2017	2420	lcd	20	2067	0310		0310
2020	6015	zjf	15	2070	7410	otn	10
2021	4210	stf	10	2071	0601	adn	01
2022	7420	otn	20	2072	6502		02
2022	2600		20			nzb	UZ
		lcc	0144	2073	2200	ldc	0000
2024	0144		0144	2074	0000	,	0000
2025	7401	otn	01	2075	5701	aob	01
2026	0601	adn	01	2076	6510	nzb	10
2027	6502	nzb	02	2077	2420	lcd	20
2030	2200	ldc		2100	4207	stf	07
		luc	0000				07
2031	0000	a a la	0000	2101	2600	lcc	0144
2032	5701	aob	01	2102	0144		0144
2033	6510	nzb	10	2103	7401	otn	01
2034	6002	zjf	02	2104	0601	adn	01
2035	7700	hlt		2105	6502	nzb	02
2036	2421	lcd	21	2106	2200	ldc	
2037	4207	stf	07	2107	0000		0000
2040	0.000	1		2110	г 7 01	l-	0.3
2040	2600	lcc	0010	2110	5701	aob	01
2041	0310		0310	2111	6510	nzb	10
2042	7404	otn	04	2112	7440	otn	40
2043	0601	adn	01	2113	2421	lcd	21
2044	6502	nzb	02	2114	4207	stf	07
2045	2200	ldc		2115	2600	lcc	
2046	0000		0000	2116	0144		0144
2047	5701	aob	01	2117	7404	otn	04

2120 2121 2122 2123 2124 2125 2126 2127	0601 6502 2200 0000 5701 6510 7700 0000	adn nzb ldc aob nzb hlt	01 02 0000 01 10	2170 2171 2172 2173 2174 2175 2176 2177	0000 0000 0000 0000 0000 0000		
2130 2131 2132 2133 2134 2135 2136 2137	2057 4054 7044 2057 4054 7043 2057 4054	ldd std jpi ldd std jpi ldd std	57 54 44 57 54 43 57 54	2200 2201 2202 2203 2204 2205 2206 2207	7500 4102 2200 3000 4070 7600 6401 0111	exc ldc std ina zjb ls6	4102 3000 70 01
2140 2141 2142 2143 2144 2145 2146 2147	7042 2057 4054 7045 2056 4054 7044 2056	jpi ldd std jpi ldd std jpi ldd	42 57 54 45 56 54 44 56	2210 2211 2212 2213 2214 2215 2216 2217	4076 7600 5076 1600 5725 6112 7600 0111	std ina rad scc nzf ina ls6	76 76 5725 12
2150 2151 2152 2153 2154 2155 2156 2157	4054 7043 2056 4054 7042 2056 4054 7045	std jpi ldd std jpi ldd std jpi	54 43 56 54 42 56 54 45	2220 2221 2222 2223 2224 2225 2226 2227	4076 7600 5076 1600 4626 6046 6103 7600	std ina rad scc zjf nzf ina	76 76 4626 46 03
2160 2161 2162 2163 2164 2165 2166 2167	0000 0000 0000 0000 0000 0000 0000			2230 2231 2232 2233 2234 2235 2236 2237	7600 7600 7600 7600 7600 0532 4075 7600	ina ina ina ina ina ina ita the len std ina	32 75

2240	4074	std	74	2310	2304	ldb	04
2241	3600	sbc		2311	4100	stm	
2242	0100		0100	2312	0226		0226
2243	6302	njf	02	2313	7101	jfi	01
2244	4074	std	74	2314	0150	,	0150
2245	2074	ldd	74	2315	2200	ldc	0100
2246	0111	ls6	, +	2316	0300	iuc	0300
2247	4077	std	77	2317	4100	atm	0300
2241	40//	sia	/ /	2317	4100	stm	
2250	7600	ina		2320	0160		0160
2251	4074	std	74	2321	4100	stm	0100
2252	3600	sbc	7-1	2322	0164	Still	0164
2253	0100	SDC	0100	2323	4100	stm	0104
2254	6302	njf	02	2323		Still	0174
2255		-	74		0174	a+ ~~	0174
	4074	std		2325	4100	stm	0201
2256	2074	ldd	74	2326	0201		0201
2257	5077	rad	77	2327	4100	stm	
2260	4170	-44	70	2220	0040		0240
2260	4170	sti	70	2330	0240		0240
2261	5470	aod	70	2331	4100	stm	0043
2262	5475	aod	75	2332	0241		0241
2263	7600	ina		2333	4100	stm	
2264	6524	nzb	24	2334	0254		0254
2265	0524	lcn	24	2335	4100	stm	
2266	4077	std	77	2336	0255		0255
2267	7600	ina		2337	4100	stm	
2270	6561	nzb	61	2340	0544		0544
2271	5477	aod	77	2341	4100	stm	
2272	6503	nzb	03	2342	0551		0551
2273	2075	ldd	75	2343	4100	stm	
2274	6004	zjf	04	2344	0564		0564
2275	2070	ldd	70	2345	4100	stm	
2276	0702	sbn	02	2346	0571		0571
2277	6112	nzf	12	2347	7101	jfi	01
2300	2070	ldd	70	2350	2510		0000
2301	0702	sbn	02	2351	7500	exc	
2302	4202	stf	02	2352	4401		4401
2303	2100	ldm		2353	7440	otn	40
2304	4004		0000	2354	2600	lcc	
2305	6103	nzf	03	2355	3720		3720
2306	2302	ldb	02	2356	7402	otn	02
2307	6506	nzb	06	2357	7402	otn	02
	- 0 0 -						

2360 7402 2361 0601 2362 6504 2363 2600 2364 2703 2365 7401 2366 7401 2367 0601	otn 0: adn 0 nzb 04 lcc 2: otn 0 otn 0 adn 0:	1 2 4 2 703 2 1 2	2431 · S 2432 · S 2433 · G 2434 · 2 2435 · G 2436 · 4	5473 1471 5506 2071 0705 1326	aod acd nzb ldd sbn stb	75 73 71 06 71 05 26
	nzb 03	1 2 000 2 2 2 2 2	2441 (2442 4 2443 7 2444 2 2445 2 2446 (24	0701 1070	abn std jfi	70 01 70 01 2273
2400 2200 2401 3000 2402 4206 2403 7500 2404 2131 2405 7203 2406 7770 2407 6102	stf 06	000 2 6 2 131 2 3 2	2451 7 2452 6 2453 2 2454 7 2455 4	7440 5103 2200 7420 1100 0402		7420 0402
2410 3240 2411 4071 2412 7500 2413 1141 2414 7600 2415 0320 2416 6022 2417 0533	std 7:	1 2 141 2 0 2 2 2	2461 4 2462 1 2463 4 2464 1 2465 7 2466 2	1202 1100 1502	stm stm jfi (0702 1202 1502 01 0000
2420 4075 2421 2311 2422 4070 2423 0604 2424 4073 2425 2173 2426 4170 2427 5470	std 75 ldb 13 std 70 adn 04 std 73 ldi 73 sti 70 aod 70	1 2 0 2 4 2 3 2 3 2	2471 0 2472 0 2473 0 2474 0 2475 0 2476 0	0000 0000 0000 0000 0000 0000		

2500	0101	pta		2550	4164	sti	64
2501	0610	adn	10	2551	2065	ldd	65
2502	4153	sti	53	2552	4163	sti	63
2503	7052	jpi	52	2553	7054	jpi	54
2504	0101	pta		2554	2060	ldd	60
2505	0604	adn	04	2555	4163	sti	63
2506	4151	sti	51	2556	0101		0.5
2507	7050	jpi	50			pta	0.4
2007	, 000) PI	30	2557	0604	adn	04
2510	0101	pta		2560	4363	i	C 3
2511	0604	adn	04	2560	4161	sti	61
2512	4147		47	2561	7062	jpi	62
		sti		2562	7700	hlt	
2513	7066	jpi	66	2563	7101	jfi	01
2514	2060	ldd	60	2564	2544		2544
2515	4155	sti	55	2565	0000		
2516	2065	ldd	65	2566	0000		
2517	4164	sti	64	2567	0000		
2520	0101	pta		2570	0000		
2521	0603	adn	03	2571	0000		
2522	4161	sti	61	2572	0000		
2523	7054	jpi	54	2573	0000		
2524	0000			2574	0000		
2525	0000			2575	0000		
2526	0000			2576	0000		
2527	0000			2577	0000		
202.				2077	0000		
2530	0101	pta					
2531	0610	adn	10				
2532	4153	sti	53				
2533	7052	jpi	52				
2534	0101		32				
		pta	04				
2535	0604	adn					
2536	4151	sti	51				
2537	7050	jpi	50				
2540	0101	pta	0.4				
2541	0604	adn	04				
2542	4147	sti	47				
2543	7046	jpi	46				
2544	0101	pta					
2545	0610	adn	10				
2546	4155	sti	55				
2547	2062	ldd	62				

```
LORAC GRID GENERATION PROGRAM
          DIMENSION FREQ(2), BASE(2), HBASE(2), COSA(2), SINA(2), *WIDTH(2), TOTAL(2), MIDLN(2), ZH(2), ZK(2), X(1500), *Y(1500), CENFR(2), FREQM(2), *CI(100), CVIII(100), CIX(100), CX(100) READ(5,101) GREENX, GREENY, CENTERX, CENTERY, REDX, REDY, *FREQ(1), FREQ(2), CENFR(1), CENFR(2), FREQM(1), FREQM(2), *VELPROP
     READ (5,102) XMIN, XMAX, YMIN, YMAX, XSCALE, YSCALE, DELU,
1000
      *UMAX,M
OUTPUT(6) IPLOT
MWIDE=(XMAX-XMIN)/1.243
MHIGH=YMAX-YMIN
IWIDE=MWIDE/XSCALE
IHIGH=MHIGH/YSCALE
OUTPUT (6) IWIDE, IHIGH
OUTPUT STATION COORDINATES FOR PLOTTING
Y/11=GREENY
             X(1)=GREENX
Y(1)=GREENY
IPS=1
              CALL CONVERT(X,Y,CI,CVII,CVIII,CIX,CX,L1,L2,IPS)
             X(1)=(X(1)-XMIN)/1.243
Y(1)=Y(1)-YMIN
CALL TAPEJUT (X,Y,IPC,XSCALE,YSCALE,MWIDE,MHIGH)
X(1)=CENTERX
Y(1)=CENTERY
IPS=1
              IPC=1
             CALL CONVERT(X,Y,CI,CVII,CVIII,CIX,CX,L1,L2,IPS)
IPC=1
X(1)=(X(1)-XMIN)/1.243
Y(1)=Y(1)-YMIN
CALL TAPEDUT (X,Y,IPC,XSCALE,YSCALE,MWIDE,MHIGH)
X(1)=REDX
Y(1)=REDY
```

```
CALL CONVERT(X,Y,CI,CVII,CVIII,CIX,CX,L1,L2,IPS)
       IPC=1
X(1) = (X(1) - XMIN)/1.243
Y(1) = Y(1) - YMIN
CALL TAPEDUT (X,Y,IPC,XSCALE,YSCALE,MWIDE,MHIGH)
CALCULATE THE NUMBER OF POINTS PER LINE
IF(UMAX.NE.O.O)GO TO 20
UMAX=2.0
20 ICALC=UMAX/DFLU+1.0
              ICALC=UMAX/DELU+1.0
ICALM=ICALC-1
_CULATE THE POINTS TO BE PLOTTED, LANE BY LANE
       CALCULATE
       DO 100, K=1,2
NCALC=TOTAL(K)/(2*M)+1
NCALM=NCALC-1
FIND LANE NUMBER OF THE FIRST LANE TO BE PLOTTED
DO 200, L=1,NCALC
LANE=MIDLN(K)-(NCALC-L)*M
       A=(MIDLN(K)-LANE)*WIDTH(K)
B=SQRT(HBASE(K)**2-A**2)
OUTPUT(6) LANE
CALCULATE POINTS IN THE SECOND QUADRANT
               CULATE PUINTS IN THE IP=1
DO 300 IMU=1, ICALC
U=UMAX-(IMU-1)*DELU
E1=A*COSH(U)*COSA(K)
N1=A*COSH(U)*SINA(K)
E2=B*SINH(U)*SINA(K)
N2=B*SINH(U)*COSA(K)
XX=ZH(K)-E1-E2
YY=ZK(K)-N1+N2
X(IP)=XX
Y(IP)=YY
IPS=IP
IP=IP+1
                IP=IP+1
     300 CONTINUE
       CALCULATE THE POINTS IN THE THIRD QUADRANT
DO 400 IMU=1,ICALM
U=UMAX-(ICALM-IMU)*DELU
E1=A*COSH(U)*COSA(K)
N1=A*COSH(U)*SINA(K)
E2=B*SINH(U)*SINA(K)
N2=B*SINH(U)*COSA(K)
                XX=ZH(K)-E1+E2
YY=ZK(K)-N1-N2
X(IP)=XX
Y(IP)=YY
                IPS=IP
                IP=IP+1
CONTINUE
CALL CONVERT(X,Y,CI,CVII,CVIII,CIX,CX,L1,L2,IPS)
IPC=0
IPC=0
IPC=0
     400
             DO 30 N=1, IPS
IF(.NOT.((XMIN.LE.X(N).LE.XMAX).AND.
*(YMIN.LE.Y(N).LE.YMAX)))GO TO 30
IPC=IPC+1
                X(IPC) = (X(N) - XMIN)/1.243

Y(IPC) = Y(N) - YMIN
               Y(IPC)=Y(N)-YMIN
CONTINUE
IF(IPC.LE.1)GO TO 200
CALL TAPEDUT (X,Y,IPC,XSCALE,YSCALF,MWIDE,MHIGH)
CONTINUE
DO 500 L=1,NCALM
LANE=MIDLN(K)+L*M
A=(LANE-MIDLN(K))*WIDTH(K)
B=SQRT(HBASE(K)**2-A*A)
OUTPUT(6) LANE
TP=1
30
     200
                 IP=1
        CALCULATE PDINTS IN THE FIRST QUADRANT DO 600 IMU=1.ICALC U=UMAX-(IMU-1)*DELU
                 E1=A*COSH(U)*COSA(K)
```

```
N1 = A * COSH(U) * SINA(K)
E2 = B * SINH(U) * SINA(K)
N2 = B * SINH(U) * COSA(K)
XX = ZH(K) + E1 - E2
YY = ZK(K) + N1 + N2
X(IP) = XX
Y(IP) = XX
Y(IP) = YY
               \(\frac{1}{1}\) = \(\frac{1}{1}\) \(\frac{1}\) \(\frac{1}{1}\) \(\frac{1}\) \(\frac{1}{1}\) \(\frac{1}{1}\) \(\frac{1}\) 
                                                      CONTINUE
                                                       CALL CONVERT(X,Y,CI,CVII,CVIII,CIX,CX,L1,L2,IPS)
IPC=0
                                              DO 40 N=1, IPS
IF(.NDT.((XMIN.LE.X(N).LE.XMAX).AND.
*(YMIN.LE.Y(N).LE.YMAX)))GO TO 40
                                                     (YMIN.LE.Y(N).LE.YMAX)))GO TO 40

IPC=IPC+1

X(IPC)=(X(N)-XMIN)/1.243

Y(IPC)=Y(N)-YMIN

CONTINUE

IF(IPC.LE.1)GO TO 500

CALL TAPEOUT (X,Y,IPC,XSCALE,YSCALE,MWIDE,MHIGH)

CONTINUE

CONTINUE

CONTINUE

DO 75 N=1,20

X(N)=(N-1)*MWIDE/20.

Y(N)=0

DO 76 N=21,40

X(N)=MWIDE

Y(N)=(N-21)*MHIGH/20.

DO 77 N=41,60

X(N)=(60-N)*MWIDE/19.

Y(N)=MHIGH

DO 78 N=61,80

X(N)=0.
40
                    500
                   100
75
76
77
                                                         X(N)=0.
Y(N)=(80-N)*MHIGH/20.
 78
                                                      IPC=80
CALL TAPEOUT (X,Y,IPC,XSCALE,YSCALE,MWIDE,MHIGH)
IPLOT=IPLOT+1
GO TO 1000
FORMAT(2F20.1)
FORMAT(6F10.2,2F6.3,I3)
FORMAT(2I3)
FORMAT(5F12.3)
FORMAT(5F12.3)
101
102
103
105
                                                         END
                                                      SUBROUTINE TAPEOUT (X,Y,IPC,XSCALE,YSCALE,MWIDE,MHIGH)
DIMENSION IX(1500),IY(1500),IXY(1500),X(1500),Y(1500)
DO 25 N=1,IPC
IX(N)=(X(N)-MWIDE/2.0)/XSCALE
IY(N)=(Y(N)-MHIGH/2.0)/YSCALE
IF(-2047.LT.IX(N)) GO TO 1
IX(N)=-2047
IF(2047.GT.IX(N))GO TO 2
IX(N)=2047
IF(-2047.LT.IY(N))GO TO 3
IY(N)=-2047
IF(2047.GT.IY(N))GO TO 4
 1
 2
 3
```

```
IY(N)=2047
IF(IX(N).GE.0)GD TO 5
IX(N)=IX(N)+4095
IX(N)=IX(N)*4096
4
5
                 IF(IY(N).GE.O)GO TO 6
IY(N)=IY(N)+4095
IXY(N)=IX(N)+IY(N)
6
25
                CONTINUE
                DO 10 I = 1, 10
IF(((I-1)*128.LE.IPC).AND.(((I-1)*128+13).GT.IPC))
             *GO TO 15
CONTINUE
10
                GO TO 7
DO 20 K=(IPC+1),((I-1)*128+13)
IXY(K)=0
15
20
                IPC=(I-1)*128+13
WRITE (4) IXY(N), N=1+IPC
END FILE 4
7.
                 RETURN
                 END
             SUBROUTINE CONVERT(X,Y,CI,CVII,CVIII,CIX,CX,L1,L2,IPS)
DIMENSION X(1500),Y(1500),CI(100),CVII(100),
*CVIII(100),CIX(100),CX(100)
DO 17 N=1,IPS
E=X(N)-500000.
Q=E*1.F-06
QSQ=Q*Q
QCUBE=QSQ*Q
QFOURTH=QCUBE*Q
IF(Y(N).GT.CI(L1))GO TO 14
Y(N)=CI(L1)
X(N)=0.
                 X(N)=0.
                GO TO 17
IF(Y(N).LT.CI(L2))GO TO 16
Y(N)=CI(L2)
14
                X(N)=0.

GO TO 17

DO 27 K=L1,L2

IF(Y(N).LE.CI(K))GO TO 28

CONTINUE
16
27
28
                L=K-1

DELTA=(Y(N)-CI(L))/(CI(K)-CI(L))

YP=(L-1)*60.+DELTA*60.

DVII=CVII(L)+DELTA*(CVII(K)-CVII(L))

Y(N)=(YP-)VII*QSQ+CVIII(L)*QFDURTH)*100.

DIX=CIX(L)+DELTA*(CIX(K)-CIX(L))

DX=CX(L)+DELTA*(CX(K)-CX(L))

X(N)=(DIX*Q-DX*QCUBE)*100.
17
                 CONTINUE
                 RETURN
END
```

LIST OF REFERENCES

Deetz, C. H. and Adams, O. S., <u>Elements of Map Projection</u>, 5th ed., p. 103-124, U. S. Government Printing Office, 1945.

Department of the Army Technical Manual TM 5-241-4/1, <u>Universal Transverse Mercator Grid Tables for Latitude 0-80</u>, v. I, p. 74-76, July 1958.

Shrum, R. E., <u>Installation and Evaluation of LORAC Precise</u>
<u>Navigation System</u>, M. S. Thesis, U. S. Naval Postgraduate
School, Monterey, 1968.

Seismograph Service Corporation, Computer's Manual, 1959.

INITIAL DISTRIBUTION LIST

		Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20
2.	Library Naval Postgraduate School Monterey, California 93940	2
3.	Commander, Naval Ship Systems Command Department of the Navy Washington, D. C. 20360	1
4.	Commandant Headquarters, U.S. Coast Guard Washington, D.C. 20591	1
5.	Professor Carl E. Menneken (Thesis Advisor) Dean of Research Administration Naval Postgraduate School Monterey, California 93940	5
6.	CDR J. E. Geary Naval Postgraduate School (Code 58) Monterey, California 93940	2
7.	LT Andrew F. Durkee 3725 Canyon Way Martinez, California 94553	1

Security Classification	DOL DATA DO			
(Security classification of title, body of abstract and indexing a			a overeil report is classified	
ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION		
No. 1. De atomo deseta Cale e l		Unclassified		
Naval Postgraduate School		. GROUP		
Monterey, California 93940				
Evaluation and Updating of LORAC Naviga	ation System o	n Monte	erey Bay	
Master's Thesis; December 1969 5. Author(s) (First name, middle initial, last name)				
5. AUTHOR(S) (First name, middle initial, last name)				
Andrew Franklin Durkee				
5. REPORT DATE	76. TOTAL NO. OF F	PAGES	7b. NO. OF REFS	
December 1969	73		4	
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S R	EPORT NUM	IBER(S)	
b. PROJECT NO.				
2h OTHER		REPORT NO(S) (Any other numbers that may be sesigned		
c.	this report)	,	•	
d.				
10. DISTRIBUTION STATEMENT				
This document has been approved for pub unlimited.	lic release an	d sale;	its distribution is	
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL	ITARY ACT	IVITY	
Naval Postgraduate School		School		
		Monterey, California 93940		
	Wonterey,			
A LORAC system of navigation has been established in the Monterey Bay area and is intended for use in the field of ocean sciences research. It operates on a phase comparison principle and provides highly accurate navigational fixes without complex timing circuitry. Short-term phase stability of the system was studied and methods of remote control and lane identification were investigated. Some equipment modifications were made to incorporate desirable features in the system, but further modernization may be necessary if long periods of continued use are expected. A general plotting program for the CALCOMP-563 plotter was written to produce chart overlays for existing navigational charts and is included as Appendix B. The overlays can be tailored to fit any scale chart in the area of intended operation and the inputs to the grid generation program can be varied if the system parameters are changed.				

DD FORM 1473 (PAGE 1)

73

Security Classification

Security Classification LINK A LINK B LINK C KEY WORDS ROLE , WT ROLE ROLE 1. Navigation System, Precise 2. LORAC 3. Position Fixing Hyperbolic Navigation System 4.

thesD85
Evaluation and updating of LORAC navigat

3 2768 000 98590 7 DUDLEY KNOX LIBRARY