

Syllabus de la asignatura

ASIGNATURA
CÓDIGO
REQUISITOS
CO-REQUISITOS
RÉGIMEN
CARÁCTER
NIVEL
DURACIÓN
CRÉDITOS

Diseño de Algoritmos INS 126 INS 121 Sin Correquisitos Diurno y Vespertino Teórico – Práctico 3er Semestre 96 Horas 6

Carrera: Ingeniería en Computación e Informática

Facultad: Ingeniería **Web:** www.unab.cl

I. DESCRIPCIÓN

Este curso aborda las herramientas para construir y evaluar programas computacionales, usando técnicas de análisis y diseño de algoritmos.

II. OBJETIVOS

Objetivo General

 Construir programas computacionales mediante técnicas de análisis y técnicas de diseño de algoritmos.

Objetivos Específicos

- Analizar la implementación de algoritmos comunes.
- Aplicar técnicas de diseño de algoritmos.
- Aplicar técnicas de análisis de algoritmos.

III. CONTENIDOS

Unidad 1: Eficiencia de Algoritmos

- Concepto de Eficiencia
- Medidas de Eficiencia
- Algoritmos iterativos y recursivos

Unidad 2: Complejidad Computacional

- Clases P y NP.
- Reducciones Polinomiales
- NP Completitud
- Problemas NP completo y NP duro

Unidad 3: Introducción a Grafos

- Grafos Dirigidos.
- Grafos No Dirigidos.

Unidad 4: Técnicas de Diseño de Algoritmos

- Dividir y Conquistar.
- Programación Dinámica.
- Backtracking.
- Ramificación y Poda.

IV. EVALUACIÓN

La evaluación sigue la siguiente distribución, calendarización y porcentaje del curso:

Id	ítem	º/o		
1	Desafíos (S1)	25%		
2	Trabajos Grupales (T)	30%		
3	News (C)	20%		
4	Solemne (S2)	25%		
A	- Nota de Presentación	70%		
В	- Examen	30%		
С	- NOTA FINAL	100%		

Criterios a considerar en Presentaciones de Trabajos:

Id	ítem	%
1	Dominio de Conceptos	20%
2	Claridad en la presentación	20%
3	Calidad del material audiovisual	15%
4	Capacidad de Síntesis	15%
5	Capacidad para responder a preguntas formuladas	30%

NOTA: Los alumnos/as podrán eximir de la rendición de examen con NP mayor o igual a 5.5, siempre y cuando las notas de los Desafíos y Trabajos grupales sean iguales o superiores a 4.0.-

v. PLANIFICACIÓN SEMESTRAL

	Cátedra Cátedra						Ay	rudantías	
Fecha (desde)	Fecha (hasta)	Objetivos de Aprendizaje por Sesión	Contenidos	Actividades	Evaluación	Fecha	Actividades	Evaluación	F
09-Mar	16- Mar	Presentación curso "Describir contenidos a tratar en el curso"	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso		Diagnóstico	09-Mar			
20-Mar	25- Mar	U1. Conocer conceptos básicos de la Unidad 1. Analizar ejemplos de algoritmos del entorno. Conocer y comprender el concepto de Algoritmo en Ciencias de la Computación. Desarrollar concepto Problema-Solución. Ejemplos y ejercicios.	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar)	En sesiones de cátedra			
27-Mar	01-Abr	U1. Conocer concepto de eficiencia. Conocer medidas de eficiencia. Conocer otras técnicas de medición de eficiencia.	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar)	En sesiones de cátedra			
03-Abr	08-Abr	Conocer e Identificar los tipos de algoritmos: Iterativos y recursivos. Evaluar lo aprendido hasta la fecha	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar) - Desafío 01	News y Desafío en sesiones de cátedra			
10-Abr	15-Abr	U2. Conocer conceptos y ejemplos de algoritmos P y NP. Comprender, analizar, aplicar, discutir y evaluar problemas reales respecto de los conceptos aprendidos. Conocer conceptos de Reducciones Polinomiales. Formalizar el concepto de Reducción polinomial.	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar)	En sesiones de cátedra		Desafío 02	

29-May	03-Jun	U3: Presentación de avance TG-5, TG-6, TG-7, TG-8	Documentos presentados por los estudiantes	Presentación de avance trabajos grupales TG5- TG-8	Presentación de News / Trabajo Grupal - Calificación Individual	En sesiones de cátedra	Desafío 09
. 22-May	27-May	Solemne	Todos los contenidos revisados hasta el		Presentación de News (orden al	En sesiones de cátedra	Desafío 08
15-May	20- May	U3-4. Conocer y analizar el problema del camino más corto entre dos nodos cualquiera: Algoritmo de Floyd-Marshall Resumir y Evaluar aprendizajes de los contenidos del curso a la fecha	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar) - Desafío 07	News y Desafío en sesiones de cátedra	
08-May	13- May	U3. Conocer uso de grafos en problemas reales. Conocer las búsquedas de rutas: en profundidad y en anchura. Conocer y analizar el problema del camino más corto desde un origen: Algoritmo de Dijkstra.	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar)	En sesiones de cátedra	Desafío 06
01-May	06- May	U2. Presentar trabajos grupales TG1, TG2, TG3 y TG4	Documentos presentados por los estudiantes y revisados por los profesores	Presentación y defensa de trabajos grupales TG1, TG2, TG3 y TG4	Trabajo Grupal - Calificación Individual	En sesiones de cátedra	Desafío 05
24-Abr	29-Abr	U3. Conocer conceptos relativos a la teoría de grafos. Representar grafos, listas de adyacencias y matriz de adyacencias.	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar)	En sesiones de cátedra	Desafío 04
17-Abr	22-Abr	U2. Conocer conceptos de problemas NP-Completo. Ejemplificar. Buscar ejemplos de problemas NP-Duro y NP-Completo. Discusión y análisis de ejemplos de la vida real de problemas NP-Duro y NP-Completo.	Documentos presentados por los estudiantes	Presentación de avance trabajos grupales TG1, TG2, TG3 y TG4	Presentación de News / Trabajo Grupal - Calificación Individual	En sesiones de cátedra	Desafío 03

			cortos con A					
19-Ju	n 24-	-Jun	U4. Conocer técnicas de diseño de algoritmos: a) Backtracking: Conocer concepto e implementación. b) Ramificación y Poda: Conocer concepto e implementación. Conocer técnicas de diseño de algoritmos: Heurística, búsqueda de caminos más cortos con A*	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Clase expositiva, participativa y práctica.	Presentación de News (orden al azar) - Desafío 12	En sesiones de cátedra	
12-Ju	n 17-	_liin	U3. Presentación de TG-7, TG-8, TG-9, TG-10.	Contenidos mínimos (pdf) disponibles en el aulavirtual del curso	Presentación y defensa de trabajos grupales TG7- TG-10	Presentación de News (orden al azar)	En sesiones de cátedra	Desafío 11
05-Ju	n 10-	-Jun	U3: Presentación de avance TG-9, TG-10 - Presentaciones Finales TG-5, TG-6	Documentos presentados por los estudiantes	Presentación de avance trabajos grupales TG9 y TG-10 / Presentaciones finales y defensas TG-5 y TG-6	Presentación de News / Trabajo Grupal - Calificación Individual	En sesiones de cátedra	Desafío 10

VI. METODOLOGÍA

La metodología de base del desarrollo de esta asignatura será la metodología activa. Lo anterior incluye:

- Clases participativas, lo que implicará que los alumnos deberán prepararse para asistir a cada una de las clases, de manera de contribuir sobre los aprendizajes propios y del grupo.
- Actividades prácticas individuales y/o grupales que denominamos desafíos (controles y tareas), donde los alumnos deban aplicar los conocimientos que van adquiriendo clase a clase.
- Actividad denominada "News" que corresponde a una actividad individual que permite desarrollar competencias de búsqueda de información relevante, de síntesis, de establecimiento de estructuras de presentación, de presentación oral y escrita y aportar valor más allá de la noticia.
- Actividades prácticas grupales, que corresponderán a trabajos grupales donde los alumnos/as deberán desarrollar habilidades de liderazgo, trabajo colaborativo, propuestas de solución, propuesta metodológica que implique aprendizaje por cuenta de los pares y desarrollo de habilidades de presentación y defensa de dichas propuestas de solución.

VII. NOTAS ADICIONALES

- La asistencia a charlas, seminarios, workshop y/o congresos en horario de clases es de carácter obligatorio. Lo anterior, está en directa relación con la formación profesional del futuro ingeniero y el contenido tratado podrá ser evaluado por el profesor de la asignatura. Ello podría alterar el desarrollo del clase a clase definido en este documento.
- Se eliminará la peor calificación de desafío de ayudantía o cátedra. No se recuperará ninguna evaluación del curso. Casos de excepción deberán ser solicitados formalmente (por escrito) por el/la estudiante y serán resueltos por una comisión conformada por los profesores del curso y autoridades de la carrera.
- Las tareas y trabajos grupales deberán ser entregados en fecha y hora definida. Todas estas entregas deberán ser realizadas en formato electrónico y por aulavirtual. No se aceptarán entregas por ninguna otra vía.
- Los trabajos o tareas que contengan plagio, por más mínimo que éste sea, serán calificados con la nota mínima (1.0).

NORMAS Y POLÍTICAS INTERNAS

VIII.

Justificativos:	Expedido por la Dirección de Servicios Académicos (DSA), presentarlo a la brevedad (consultar reglamento interno).
Redondeo de Calificaciones:	Se califica considerando un decimal, si se tiene 3.95 o superior, entonces será considerado como 4.0 (se redondea). Si la calificación es menor a 3.95 la nota es rojo, es decir, 3.9 (el valor se trunca).
Consultas al profesor/a de cátedra o ayudantía	En la sesión de clases correspondiente o por medio del aula virtual. No se atenderán consultas de los contenidos del curso por correo electrónico.
Medios de contacto:	Aula virtual del curso. e-mail de los profesores (ver datos en aulavirtual de la asignatura en www.unabvirtual.cl)

IX. BIBLIOGRAFÍA

Bibliografía Obligatoria

- Lewis H., Papadimitriou C., Elements of the Theory of Computation, Prentice Hall, New Yersey, 1981.
- Baase Van Gelder, Algoritmos Computacionales, Introducción al análisis y el diseño, Addison Wesley, 2002, Tercera Edición.

Bibliografía Complementaria

- Giles Brassard & Paul Bratley, Fundamentals of Algorithmics, Prentice Hall, 1996.
 Primera Edición.
- Cormen, H., Leiserson, Ch., Rivest, R., Stein, C., Introduction to Algorithms, MIT Press, 2001, Segunda Edición

