Chapter 5 The Laws of Motion

Forces

- · Can cause a change in velocity of an object, as it can cause an acceleration
- The net force (or resultant force or total force or unbalanced force) is the vector sum of all the forces acting on an object
- Is a Vector, so must use the rules for vector.

Zero Net Force

- When the net force is equal to zero:
 - · The acceleration is equal to zero
 - · The velocity is constant
- Equilibrium occurs when the net force is equal to zero
 - The object, if at rest, will remain at rest
 - . If the object is moving, it will continue to move

Inertial Frames

- An inertia frame can be stationary or moving with a constant velocity.
- · Any reference frame that moves with constant velocity relative to an inertial frame is itself also an inertial frame.

Newton's First Law

- In the absence of net force, when viewed from an inertial reference frame, an object at rest remains at rest and an object in motion continues in motion with a constant velocity
 - Newton's First Law describes what happens in the absence of the net external forces (resultant force is zero)
 - It tells us that when the **net** force acts on an object is zero, acceleration of the object is zero (acceleration = 0 does not mean that the object is not moving)

Inertia and Mass

The tendency of an object to resist any attempt to change its velocity is called **inertia**Mass is that property of an object that specifies how much resistance an object exhibits to change in its velocity

Bigger mass -> bigger inertia Smaller mass -> smaller inertia

Mass

- Mass is an inherent property
- Independent of the object's surroundings
- Independent of the method used to measure it
- Scalar, SI unit is kg

Mass vs. Weight

- Weight is equal to the magnitude of the gravitational force exerted on the object
- It varies with location.

Newton's Second Law

- When viewed from an inertial frame:
 - $acceleration \propto netforce$
 - $acceleration \propto \frac{1}{mass}$
 - Force is the cause of the change in motion. And the change in motion is measured by the acceleration.
- $\therefore \sum F = ma$
 - Vector sum of all the forces acting on the object
 - Can be expressed in terms of 3 components:
 - ullet $\sum F_x = ma_x$
 - ullet $\sum F_y = ma_y$
 - ullet $\sum F_z = ma_z$
- SI Unit is Newton (N) which is equal to $kg \cdot m/s^2$

Gravitational Force

- ullet The gravitational force, F_q is the force that the Earth exerts on an object
- Directed towards the center of Earth
- Magnitude is called weight
- $\bullet \quad Weight = |F_g| = mg$

Newton's Third Law

- Force always occurs in pairs (action-reaction)
- Thus $F_{12}=-F_{21}$

Applications of Newton's Law

Assumptions

- Objects can be modeled as particles
- Masses of strings or ropes are assumed to be negligible
 - When a rope attached to an object, the magnitude of that force T is the tension in the rope.

Equilibrium

Net force on the lamp is 0. So the lamp does not accelerate

$$\sum F_y = 0
ightarrow T - F_g = 0
ightarrow T = F_g$$

Object Experiencing a Net Force

If an object that can be modeled as a particle experiences an acceleration, there must be a non-zero net force acting on it.

Forces of Friction

- When an object is in motion on a surface or through a viscous (sticky-ness) medium, there will be a resistance to the motion
- This resistance is called force of friction
- $ullet f_s \leq \mu_s \, n ext{ and } f_k = \mu_k \, n$
- The force of static friction is generally greater than the force of kinetic friction
- The coefficient of friction (μ) depends on the surfaces in contact
- $\,\mu$ is an empirical value, can be greater than 1

mg

- The direction of the frictional force is *opposite* to the direction of motion and is *parallel* to the surface in contact
- The coefficients of friction are independent of the area of contact

Static Friction

- Static friction acts to keep the object from moving
- ullet $F \propto f_s$

Kinetic Friction

- The force of kinetic friction acts when the object is in motion
- $ullet f_k = \mu_k \, n$

Sliding Block

- The block is sliding down the plane, so friction acts up the plane
- Can be used to determine the coefficient of friction
- $\mu = \tan \theta$
 - μ_s use the angle where the block just slips
 - μ_k use the angle where the block slides down at a constant speed