1. feladatsor: Halmazok

Az olyan feladatokban, amelyekben halmazokra vonatkozó azonosságot/állítást kell bizonyítani, a logikai műveletek, illetve a halmazműveletek előadáson tanult tulajdonságait használhatjuk, illetve olyan állításokat, melyeket gyakorlaton bizonyítottunk.

1. feladat

Legyen az alaphalmaz $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, továbbá legyen $A = \{x \mid x \in \mathbb{N} \land 1 \le x \le 4\}$, $B = \{0, 2, 4, 8\}$, $C = \{\text{az egyjegyű prímszámok}\}$.

(a) Határozza meg a következő halmazokat:

$$A \cap B$$
 $B \cup C$ $A \setminus C$ \overline{C}

(b) Tekintsük az $X = \{A, B, C\}$ halmaz
rendszert. Határozza meg a következő halmazokat.

$$\cap X \cup X$$

(c) Állapítsa meg a következő kijelentések logikai értékét, ha $Y = \{\{x \mid x \in U \text{ és } x \text{ páros}\}, \{x \mid x \in U \text{ és } x \text{ páratlan}\}\}.$

$4 \in B$	$A \subseteq B$	$\{\emptyset\} \subseteq X \cup Y$	$3 \in A \cap B$
$\{1,2\}\subseteq A$	$A \in X \cup Y$	$A \subseteq X \cup Y$	$C\cap\emptyset=\emptyset$
$2 \subseteq A$	$\{2\} \subseteq A$	$2 \in X \cup Y$	$\{2\} \in X \cap Y$

2. feladat

Keressünk olyan A, B, C halmazokat, melyekre egyszerre teljesülnek a következők:

$$A \cap B \neq \emptyset$$
, $A \cap C = \emptyset$, $(A \cap B) \setminus C = \emptyset$.

3. feladat

Legyen $A = \{a, b, c, d\}, B = \{c, d\}, C = \{a, e\}$. Mutassuk meg, hogy ekkor $A \setminus (B \setminus C) = (A \setminus B) \cup (B \cap C)$. Igaz-e ez az állítás tetszőleges A, B, C halmazokra?

4. feladat

Tekintsük az $X = \{\{1,2,3\},\{2,3,4,5\},\{0,2,3,7\}\}$ halmazrendszert. Határozza meg a következő halmazokat:

- (a) $\cap X$
- (b) $X \cup \{\{3, 5, 7\}, \{1\}, \{2\}\}$
- (c) $\cup (X \cup \{\{3, 5, 7\}, \{1\}, \{2\}\})$
- (d) $\cap (X \cup \{\{3,5,7\},\{1\},\{2\}\})$

5. feladat

Legyen $\mathcal{A} = \{\{a, b, c\}, \{a, d, e\}, \{a, f\}\}$. Mi lesz $\cup \mathcal{A}$ és $\cap \mathcal{A}$?

6. feladat

Határozza meg az A, B, C halmazok elemeit, ha tudjuk, hogy $A \setminus B = \{1, 3, 5\}, A \cup B \cup C = \{1, 2, 3, 4, 5, 6\}, (A \cap C) \cup (B \cap C) = \emptyset, C \setminus B = \{2, 4\}$ és $(A \cap B) \setminus C = \{6\}.$

7. feladat

Legyenek A,B,C tetszőleges halmazok, U az alaphalmaz, $A,B,C\subseteq U$. A logikai műveletek előadáson tanult tulajdonságai segítségével (lásd mellékelt összefoglaló) igazoljuk a következő azonosságokat.

(a)
$$A \cup B = B \cup A$$

(b)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

(c)
$$A \cap B = B \cap A$$

(d)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

(e)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(f)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(g)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

(h)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

(i)
$$A \cup \overline{A} = U$$

$$(j) \quad A \cap \overline{A} = \emptyset$$

(k)
$$\overline{\overline{A}} = A$$

8. feladat

Igazolja a következő azonosságokat.

(a)
$$A \triangle \emptyset = A$$

(b)
$$A \triangle A = \emptyset$$

(c) *
$$A \triangle (B \triangle C) = (A \triangle B) \triangle C$$

(d)
$$A \triangle (A \triangle B) = B$$

9. feladat

Legyenek A,B,C tetszőleges halmazok. Igazoljuk a következő állításokat.

(a) ha
$$A \subseteq C$$
 és $B \subseteq C$ akkor $A \cup B \subseteq C$

(b) ha
$$A \subseteq B$$
 és $A \subseteq C$ akkor $A \subseteq B \cap C$

(c)
$$A \cup (\overline{B} \cap A) = \overline{A}$$

10. feladat

Legyen A és B nemüres halmazok. Igazolja a következő egyenlőségeket.

(a)
$$(A \setminus B) \cap B = \emptyset$$

(b)
$$(A \cup \overline{B}) \cap (\overline{A} \cup \overline{B}) = \overline{B}$$

11. feladat

Hozzuk egyszerűbb alakra a következő kifejezést: $(A \cup (A \cap B) \cup (A \cap B \cap C)) \cap (A \cup B \cup C)$.

12. feladat

Legyen az alaphalmaz Utovább
á $A,B,C\subseteq U$ tetszőleges halmazok. Igazolja a következő egyenlőségeket.

(a)
$$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$$

(b)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

(c)
$$A \setminus (A \setminus (B \setminus C)) = A \cap B \cap \overline{C}$$

13. feladat

Legyen $A = \{1, 2\}, B = \{a, b, c\}$ és $C = \{2, 3, 4\}$. Határozza meg az $A \times A, A \times B, A \times A \times B, B \times A, (A \times A) \times B, A \times (A \times B), A \triangle B, A \triangle C$ halmazokat.

14. feladat

Legyenek A,B,C nemüres halmazok. Igazolja a következő egyenlőséget: $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

15. feladat

Legyenek A, B, C, D nemüres halmazok. Bizonyítsuk be, hogy $A \times B \subseteq C \times D$ akkor és csak akkor teljesül, ha $A \subseteq C$ és $B \subseteq D$.

16. feladat

Bizonyítsa be a következő összefüggést: $\overline{(\overline{A \cap B} \cup C) \cap \overline{A}} \cup \overline{B} \cup \overline{C} = A \cup \overline{B} \cup \overline{C}$.

17. feladat

Legyenek A és B tetszőleges halmazok. Bizonyítsuk be, hogy $P(A \cap B) = P(A) \cap P(B)$, ahol P(A) jelöli A hatványhalmazát. Igaz-e az állítás unióval?

18. feladat

Döntse el, hogy igazak-e a következő egyenlőségek tetszőleges A,B,C halmazokra. Állításait bizonyítsa.

- (a) $\overline{A} \cap B = B \setminus A$
- (b) $(A \cap B) \setminus C = (A \setminus B) \cap C$
- (c) $(A \cup B) \cap (B \setminus A) = (A \cup B) \setminus (A \setminus B)$
- (d) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
- (e) $(A \cup B) \setminus A = B$
- (f) $(A \cup B) \setminus C = A \cup (B \setminus C)$

Nehezebb, illetve szorgalmi feladat

19. feladat

A 8 (c) feladat alapján tetszőleges A, B és C halmazokra: $A \triangle (B \triangle C) = (A \triangle B) \triangle C$. Így bevezethető a következő jelölés: $A \triangle B \triangle C = A \triangle (B \triangle C) = (A \triangle B) \triangle C$. Bizonyítsuk be, hogy ekkor tetszőleges A, B, C és D halmazokra: $A \triangle (B \triangle C \triangle D) = (A \triangle B \triangle C) \triangle D$.