# 6. Polinomok gyökei, Horner-algoritmus

## 6.1. Feladat

Számítsuk ki a  $P(x)=3x^4+2x^3+x+2$  polinom értékeit a megadott  $\xi$  helyeken a Horner-algoritmus segítségével:

(a) 
$$\xi = \frac{1}{2}$$
,

(b) 
$$\xi = 2$$
.

(a)  $P\left(\frac{1}{2}\right)$  értékének meghatározásához írjuk fel a következő táblázatot:

| $a_i$       | 3 | 2 | 0 | 1 | 2 |
|-------------|---|---|---|---|---|
| $\xi_i$     |   |   |   |   |   |
| $a_i^{(1)}$ |   |   |   |   |   |

Itt az  $a_i =: a_i^{(0)}$  számok a polinom együtthatóit jelölik, azaz  $P(x) = \sum_{i=0}^4 a_i x^i$ . Az első oszlop megfelelő soraiba írjuk be a  $\xi$  helyettesítendő értéket, illetve a polinom főegyütthatóját, azaz  $a_n^{(1)} := a_n^{(0)}$ .

| $a_i$       | 3             | 2 | 0 | 1 | 2 |
|-------------|---------------|---|---|---|---|
| $\xi_i$     | $\frac{1}{2}$ |   |   |   |   |
| $a_i^{(1)}$ | 3             |   |   |   |   |

A további oszlopok kitöltéséhez használjuk a következő szabályokat:

$$\xi_i := a_{i+1}^{(1)} \cdot \xi,$$
  
$$a_i^{(1)} := \xi_i + a_i^{(0)}.$$

A fentiek szerint balról jobbra haladva minden üres cella kitölthető.

| $a_i$       | 3             | 2                                   | 0 | 1 | 2 |
|-------------|---------------|-------------------------------------|---|---|---|
| $\xi_i$     | $\frac{1}{2}$ | $3 \cdot \frac{1}{2} = \frac{3}{2}$ |   |   |   |
| $a_i^{(1)}$ | 3             | $\frac{3}{2} + 2 = \frac{7}{2}$     |   |   |   |

A polinom helyettesítési értékét a táblázat jobb alsó sarkából tudjuk leolvasni, eszerint  $P\left(\frac{1}{2}\right)=\frac{47}{16}$ .

(b) P(2) meghatározásához az előző feladatrészhez hasonlóan járunk el.

| $a_i$       | 3 | 2 | 0  | 1  | 2                 |
|-------------|---|---|----|----|-------------------|
| $\xi_i$     | 2 | 6 | 16 | 32 | $33 \cdot 2 = 66$ |
| $a_i^{(1)}$ | 3 | 8 | 16 | 33 | 66 + 2 = 68       |

Így P(2) = 68.



## 6.2. Feladat

Írjuk fel az előző feladatban megadott P polinom első deriváltjának értékét a  $\xi=2$  helyen!

Egy tetszőleges P polinomot fel tudunk írni

$$P(x) = a_0^{(1)} + (x - \xi) \cdot \underbrace{\left(a_1^{(1)} + \dots + a_n^{(1)}x^{n-1}\right)}_{P_1(x)}$$

alakban, ahol az  $a_i^{(1)}$ együtthatókat a Horner-algoritmus adja. Vegyük észre, hogy

$$P'(\xi) = P_1(\xi) = a_1^{(2)}$$

ahol  $a_i^{(2)}$  ugyanúgy Horner-algoritmussal számolható, ahogy  $a_i^{(1)}$ . Tehát a korábbiakhoz hasonlóan legyen  $a_n^{(2)}:=a_n^{(1)}=a_n$ , valamint

$$\xi_i := a_{i+1}^{(2)} \cdot \xi,$$
  
$$a_i^{(2)} := a_i^{(1)} + \xi_i.$$

A fenti formulát, valamint az előző feladatban kiszámított  $a_i^{(1)}$  együtthatókat felhasznállva írjuk fel a kibővített táblázatot!

|             |       | $a_i$       | i  | 3   | 2     | 0     | 1    |   | 2  |   |    |
|-------------|-------|-------------|----|-----|-------|-------|------|---|----|---|----|
|             |       | $\xi_i$     |    | 2   | 6     | 16    | 32   | ( | 66 |   |    |
|             | -     | $a_i^{(1)}$ | l) | 3   | 8     | 16    | 33   | ( | 68 |   |    |
|             |       | $\xi_i$     | ;  | 2   |       |       |      |   |    |   |    |
|             | -     | $a_i^{(2)}$ | 2) | 3   |       |       |      |   |    |   |    |
| а           | $b_i$ | 3           |    |     | 2     |       | 0    |   | 1  |   | 2  |
| ξ           |       | 2           |    |     | 6     |       | 16   | ; | 32 | ( | 66 |
| $a_i^{(}$   | 1)    | 3           |    |     | 8     |       | 16   | ; | 33 | ( | 68 |
| ξ           |       | 2           |    | 3   | • 2 = | = 6   |      |   |    |   |    |
| $a_i^{(}$   | 2)    | 3           |    | 6 + | - 8 = | = 14  |      |   |    |   |    |
| $a_i$       |       | 3           | 4  | 2   |       | 0     |      |   | 1  |   | 2  |
| $\xi_i$     |       | 2           | (  | 3   |       | 16    |      |   | 32 |   | 66 |
| $a_i^{(1)}$ | )     | 3           | 8  | 3   |       | 16    |      |   | 33 |   | 68 |
| <i>C</i> :  |       | 2           | (  | j j | 14    | • 2 = | = 28 |   |    |   |    |
| $a_i^{(2)}$ | )     | 3           | 1  | 4   | 28 -  | + 16  | = 44 |   |    |   |    |

| $a_i$       | 3 | 2  | 0  | 1                 | 2  |
|-------------|---|----|----|-------------------|----|
| $\xi_i$     | 2 | 6  | 16 | 32                | 66 |
| $a_i^{(1)}$ | 3 | 8  | 16 | 33                | 68 |
| $\xi_i$     | 2 | 6  | 28 | $44 \cdot 2 = 88$ |    |
| $a_i^{(2)}$ | 3 | 14 | 44 | 88 + 33 = 121     |    |

Azaz P'(2) = 121.



### 6.3. Feladat

Határozzuk meg a  $P(x)=x^3-x^2+x-1$  polinom  $\xi=3$  körüli Taylor-polinomját a Horner-algoritmus segítségével!

Tudjuk, hogy a Taylor-polinom

$$\frac{P^{(j)}(\xi)}{j!} = P_j(\xi) = a_j^{(j+1)}$$

együtthatói ellőállíthatók a Horner-algoritmus segítségével, az együtthatók ismeretében pedig felírható a P polinom tetszőleges  $\xi$  pont körüli Taylor-polimomja. Legyen most  $\xi=3$  és számítsuk ki P(3)-at:

Tehát P(3) = 20. Felhasználva az  $a_i^{(1)}$  együtthatókat határozzuk meg P'(3)-at.

| $a_i$       | 1 | -1              | 1                | -1               |
|-------------|---|-----------------|------------------|------------------|
| $\xi_i$     | 3 | $1 \cdot 3 = 3$ | $2 \cdot 3 = 6$  | $7 \cdot 3 = 21$ |
| $a_i^{(1)}$ | 1 | 2               | 7                | 20               |
| $\xi_i$     | 3 | $1 \cdot 3 = 3$ | $5 \cdot 3 = 15$ |                  |
| $a_i^{(2)}$ | 1 | 3 + 2 = 5       | 15 + 7 = 22      |                  |

Eszerint P'(3)=22, továbbá a most meghatározott  $a_i^{(2)}$  együtthatók segítségével kiszámíthatjuk  $\frac{P''(3)}{2!}$  értékét.

| $a_i$       | 1 | -1              | 1  | -1 |
|-------------|---|-----------------|----|----|
| $\xi_i$     | 3 | 3               | 6  | 21 |
| $a_i^{(1)}$ | 1 | 2               | 7  | 20 |
| $\xi_i$     | 3 | 3               | 15 |    |
| $a_i^{(2)}$ | 1 | 5               | 22 |    |
| $\xi_i$     | 3 | $1 \cdot 3 = 3$ |    |    |
| $a_i^{(3)}$ | 1 | 3 + 5 = 8       |    |    |

Vagyis  $\frac{P''(3)}{2!}=8,$  végül pedig kiszámíthatjuk  $\frac{P'''(3)}{3!}$ értékét.

| $a_i$                     | 1 | -1 | 1  | -1 |
|---------------------------|---|----|----|----|
| $\xi_i$                   | 3 | 3  | 6  | 21 |
| $a_i^{(1)}$               | 1 | 2  | 7  | 20 |
| $\xi_i$                   | 3 | 3  | 15 |    |
| $a_i^{(2)}$               | 1 | 5  | 22 |    |
| $\xi_i$                   | 3 | 3  |    |    |
| $\frac{a_i^{(3)}}{\xi_i}$ | 1 | 8  |    |    |
|                           | 3 |    |    |    |
| $a_i^{(4)}$               | 1 |    |    |    |

A kiszámított együtthatók segítségével felírhatjuk a P polinom $\xi=3$ körüli Taylorpolinomját:

$$P(x) = x^3 - x^2 + x - 1 =$$

$$20 + 22 \cdot (x - 3) + 8 \cdot (x - 3)^2 + 1 \cdot (x - 3)^3.$$



#### 6.4. Feladat

Vizsgáljuk meg a  $P(x) = x^4 + 2x^3 + x + 2$  gyökeinek elhelyezkedését.

P bármely (komplex) gyökének abszolútértékét becsülhetjük az alábbi tétel segítségével.

## 6.1. Tétel (Polinomok gyökeinek elhelyezkedéséről)

Ha  $P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_0$ , valamint  $a_0 \neq 0$  és  $a_n \neq 0$ , akkor P bármely  $x_k$  gyökére:

$$r < |x_k| < R$$

ahol

$$r = \frac{1}{1 + \frac{\max_{i=1}^{n} |a_i|}{|a_0|}}, \qquad R = 1 + \frac{\max_{i=0}^{n-1} |a_i|}{|a_n|}.$$

## 6.1. Megjegyzés

A tételben az  $a_0 \neq 0$  és  $a_n \neq 0$  feltételek nem jelentik azt, hogy ezekben az esetekben nem mondhatunk semmit a gyökök elhelyezkedéséről.

- Ha  $a_0 = 0$ , akkor P-nek gyöke a 0. Emeljük ki tehát a 0-hoz tartozó gyöktényezőt P-ből, legyen P(x) = (x 0)Q(x). A P-nek egy gyöke a 0, a többi pedig éppen Q gyökeivel esik egybe. Könnyen látható, hogy a felső becslésünk ebben a helyzetben is használható, és a P polinom  $x_k$  gyökeire  $|x_k| < R$  teljesül.
- Ha  $a_n = 0$ , akkor a P polinom nem n-edfokú. Ha n-et a P polinom fokszámának rögzítjük, akkor a fenti képletek használhatók.

Alkalmazzuk a tételt a feladatban megadott P polinomra. Mivel jelen esetben

$$\max_{i=1}^{4} |a_i| = \max \{|1|, |0|, |2|, |1|\} = 2,$$
  
$$\max_{i=0}^{3} |a_i| = \max \{|2|, |1|, |0|, |2|\} = 2,$$

továbbá  $|a_0| = 2$  és  $|a_4| = 1$ , ezért

$$r = \frac{1}{1 + \frac{2}{2}} = \frac{1}{2}, \qquad R = 1 + \frac{2}{1} = 3.$$

Ez azt jelenti, hogy P valamennyi (valós és komplex komplex) gyöke a (0,0) középpontú,  $\frac{1}{2}$ , illetve 3 sugarú körök körvonalai között helyezkedik el a komplex számsíkon.



Könnyen ellenőrizhető, hogy a megadott P polinom gyöke a -1 és a -2. Az (x+1) és az (x+2) gyöktényezők kiemelése után pedig a másodfokú egyenlet megoldóképlete segítségével meghatározhatjuk a maradék két gyököt, melyek  $\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ . A fenti ábrán megtekinthető, hogy a gyökök tényleg az origó középpontú  $r = \frac{1}{2}$  és R = 3 sugarú körök között helyezkednek el. Szaggatott vonallal az egységkört is feltüntettük.

#### 6.5. Feladat

Tekintsük a  $P(x) = x^3 - 9x^2 + 23x - 15$  polinomot. Tudjuk, hogy a P polinom gyökei nemnegatív egész számok. A gyökök elhelyezkedésére vonatkozó becslésekkel és a Horner-algoritmus segítségével határozzuk meg a gyököket!

Először is a tételt felhasználva vizsgáljuk meg P gyökeinek elhelyezkedését:

$$R = 1 + \frac{23}{1} = 24, \qquad r = \frac{1}{1 + \frac{23}{15}} = \frac{1}{\frac{38}{15}} = \frac{15}{38}.$$

Tudjuk tehát, hogy a keresett gyökök a  $(\frac{15}{38}, 24)$  intervallumban vannak, valamint a feladat alapján egész számok. Vizsgáljuk meg az intervallum egész számait, legyen  $\xi = 1$ .

A fentiek alapján  $\xi = 1$  az egyik (és a feladat feltételei alapján egyben a legkisebb) gyöke P-nek. Ezt felhasználva kiemelhetjük P(x)-ből (x-1)-et, azaz

$$P(x) = (x - 1) \cdot Q(x),$$
  
 $Q(x) = x^2 - 8x + 15.$ 

Itt felhasználhatjuk, hogy az előző jelöléseink használatával:

$$P(x) = (x-1) \cdot Q(x) = 0 + (x-1) \cdot P_1(x).$$

azaz a  $P_1 = Q$  maradék polinom együtthatói a táblázat alsó sorában található  $a_i^{(1)}$  számok (i > 0). P további gyökeinek megtalálásáhosz elegendő Q gyökeit megtalálni. Ezt megtehetnénk a másodfokú egyenlet megoldóképletének használatával, de gondolkozzunk most algoritmikusan, és folytassuk az eljárásunkat. Becsüljük meg Q gyökeinek elhelyezkedését:

$$R = 1 + \frac{15}{1} = 16, \qquad r = \frac{1}{1 + \frac{8}{15}} = \frac{1}{\frac{15}{15} + \frac{8}{15}} = \frac{1}{\frac{23}{15}} = \frac{15}{23}.$$

Az előzőeknek megfelelően a gyökök meghatározásához elegendő a  $\left(\frac{15}{23}, 16\right)$  intervallum egészeit vizsgálni. Vizsgáljuk meg a  $\xi = 1$  esetet Horner-algoritmussal.

$$\begin{array}{c|cccc} a_i & 1 & -8 & 15 \\ \hline \xi_i & 1 & 1 \cdot 1 = 1 & 1 \cdot (-7) = -7 \\ \hline a_i^{(2)} & 1 & 1 + (-8) = -7 & (-7) + 15 = 8 \end{array}$$

Tehát  $Q(1) \neq 0$ , vagyis Q-nak az 1 nem gyöke. Tekintsük most a  $\xi = 2$  esetet.

Mivel  $Q(2) \neq 0$ , ezért kénytelenek vagyunk tovább keresni. A meghatározott intervallumban a következő egész szám a  $\xi = 3$ , így folytassuk ezzel az eljárásunkat.

$$\begin{array}{c|c|c} a_i & 1 & -8 & 15 \\ \hline \xi_i & 3 & 3 \cdot 1 = 3 & 3 \cdot (-5) = -15 \\ \hline a_i^{(2)} & 1 & 3 + (-8) = -5 & (-15) + 15 = 0 \\ \hline \end{array}$$

Ez azt jelenti, hogy Q(3) = 0, emiatt pedig az eddigieknek megfelelően P(3) = 0. Eszerint a Q polinomból az (x-3) gyöktényező kiemelhető, és a kiemelés után kapott  $P_2$  maradék polinom együtthatói éppen az  $a_i^{(2)}$  számok (i > 1), ezért tehát

$$Q(x) = 0 + (x - 3) \cdot P_2(x) = (x - 3)(x - 5),$$

innen pedig:

$$Q(x) = (x-3) \cdot (x-5),$$
  
 
$$P(x) = (x-1) \cdot Q(x) = (x-1) \cdot (x-3) \cdot (x-5).$$

Azaz a kiemeléssel megkaptuk P mindhárom keresett gyökét:

$$x_0 = 1,$$
  
 $x_1 = 3,$   
 $x_2 = 5.$ 

