Problem 4

Problem: Let \sim be a relation on $\mathbb{N} \times \mathbb{N}$ under the lexicographical order. We say (a, b) is a child of (c, d) if $(a, b) \sim (c, d)$ and $(a, b) \prec (c, d)$, where \prec is the lexicographical order.

We have two definitions for "descendant" below. Which one is the correct one?

- (1) We say (a, b) is a descendant of (c, d) if (a, b) is a child of (c, d) or (a, b) is a descendant of a child of (c, d).
- (2) We say (a, b) is a descendant of (c, d) if (a, b) is a child of (c, d) or (a, b) is a child of a descendant of (c, d).

Solution. Definition (1) is the correct definition. We let

$$C((m, n)) = \{(a, b) \mid (a, b) \text{ is a child of } (m, n)\}.$$

Define

$$D: \mathbb{N} \times \mathbb{N} \times P(\mathbb{N} \times \mathbb{N}), D((m, n)) = C((m, n)) \cup \bigcup_{((a,b)) \in C((m,n))} D((a,b))$$
 (*)

We want to show that there exists a unique function D that satisfies condition (*).

If this is not the case, pick the smallest (m, n) for which there is no such D. So, for every $(a, b) \in C(m, n)$, D(a, b) is defined and satisfies (*).

Define

$$D(m,n) = C(m,n) \cup \bigcup_{(a,b) \in C((m,n))} D((a,b)).$$

Problem 5

Problem: Let S be well-ordered by \prec . Then, for every $x \in S$, if x is non-maximal, then x has a successor. The successor is defined by

$$\exists y > x \text{ s.t. } \neg \exists z \text{ } x < z < y.$$

Solution. Let $x \in S$ be nomaximal. Set

$$T = \{ y \in S \mid x \prec y \}.$$

Since x is nonmaximal, T is nonempty, meaning there exists a least element z. Then, z is a successor of x, because for all y, x < y, then $y \in T$, meaning y = z or z < y, since z is the least element of T.

Problem 6

Problem: Every $S \subseteq \mathbb{R}$ well-ordered by the traditional < relation is countable.

Solution. Let $S \subseteq \mathbb{R}$ be well-ordered. It is enough to show that $S \cap [z, z+1]$ is countable for every $z \in \mathbb{Z}$, as

$$S = \bigcup_{z \in \mathbb{Z}} S \cap [z, z+1]$$

is a countable union of countable sets.

For every $x \in S$, let $f(x) = x^+ - x$, where x^+ is the successor of x in S. If x has no successor, we let f(x) = 0.

It is enough to show that $S_0 = S \cap [0, 1]$ is countable. We have S_0 is well-ordered.

For every $k \in \mathbb{Z}_{>0}$, define

$$A_k = \left\{ x \in S_0 \mid f(x) > \frac{1}{k} \right\}.$$

Notice that $|A_k| \le k$ for all k, since S is well-ordered by <.

Remark ("Converse" to Problem 6): The previous problem states that we cannot embed an uncountable well-ordered set into \mathbb{R} . Here, an embedding means that there is a function $f:S\to\mathbb{R}$ such that f is injective and f preserves order. In other words, S and $f(S)\subseteq\mathbb{R}$ are order-isomorphic.

A question we may be interested in is if every countable ordinal can be embedded into \mathbb{R} .