Devoir surveillé n°11

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 -

Dans tout l'énoncé, n désigne un entier naturel non nul.

La transposée d'une matrice M sera notée ^tM.

On rappelle des résultats aux matrices définies par blocs. Si A,B,C,D,A',B',C',D' sont des matrices de $\mathcal{M}_n(\mathbb{R})$, on peut effectuer des produits par blocs

$$\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) \left(\begin{array}{c|c} A' & B' \\ \hline C' & D' \end{array}\right) = \left(\begin{array}{c|c} AA' + BC' & AB' + BD' \\ \hline CA' + DC' & CB' + DD' \end{array}\right)$$

De plus la transposée de la matrice définie par blocs $\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$ est $\left(\begin{array}{c|c} {}^tA & {}^tC \\ \hline {}^tB & {}^tD \end{array}\right)$.

On note respectivement 0_n et I_n la matrice nulle et la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

Partie I – Matrices symplectiques

On note J la matrice de $\mathcal{M}_{2n}(\mathbb{R})$ définie par $J=\left(\begin{array}{c|c} 0_n & -I_n \\ \hline I_n & 0_n \end{array}\right)$. On note

$$\mathcal{SP}_{2n} = \left\{ M \in \mathcal{M}_{2n}(\mathbb{R}), \ ^tMJM = J \right\}$$

- $\textbf{1.} \ \ \text{Calculer} \ J^2 \ \text{et} \ ^t J \ \text{en fonction de } I_{2n} \ \text{et } J. \ \text{En d\'eduire que } J \ \text{est inversible et identifier son inverse}.$
- **2.** Vérifier que $J \in \mathcal{SP}_{2n}$ et que pour tout $\alpha \in \mathbb{R}$,

$$K(\alpha) = \begin{pmatrix} I_n & \alpha I_n \\ \hline 0_n & I_n \end{pmatrix} \in \mathcal{SP}_{2n}$$

3. Montrer que pour tout $U \in GL_n(\mathbb{R})$,

$$L_{U} = \left(\frac{U \mid 0_{n}}{0_{n} \mid {}^{t}U^{-1}}\right) \in \mathcal{SP}_{2n}$$

4. Si $M \in \mathcal{SP}_{2n}$, préciser les valeurs possibles de det(M).

http://lgarcin.github.io

- 5. Montrer que le produit de deux éléments de \mathcal{SP}_{2n} est un élément de \mathcal{SP}_{2n} .
- **6.** Montrer qu'un élément de \mathcal{SP}_{2n} est inversible et que son inverse appartient à \mathcal{SP}_{2n} .
- 7. Montrer que si $M \in \mathcal{SP}_{2n}$, alors ${}^tM \in \mathcal{SP}_{2n}$.
- **8.** Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ avec $(A, B, C, D) \in \mathcal{M}_n(\mathbb{R})^4$. Déterminer des relations sur A, B, C, D caractérisant l'appartenance de M à S_{2n} .
- **9.** Dans cette question uniquement, on considère que n = 1. Montrer que

$$\mathcal{SP}_2 = \{M \in \mathcal{M}_2(\mathbb{R}), \ \det(M) = 1\}$$

Partie II – Centre de SP_{2n}

On s'intéresse ici au centre $\mathcal Z$ de \mathcal{SP}_{2n} , c'est-à-dire

$$\mathcal{Z} = \{M \in \mathcal{SP}_{2n}, \ \forall N \in \mathcal{SP}_{2n}, \ MN = NM\}$$

10. Justifier que I_{2n} et $-I_{2n}$ appartiennent à \mathcal{Z} .

Réciproquement, soit $M \in \mathcal{Z}$ de la forme $M = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right)$ avec $(A,B,C,D) \in \mathcal{M}_n(\mathbb{R})^4$.

- **11.** En utilisant $L = \left(\frac{I_n \mid I_n}{\mathfrak{0}_n \mid I_n} \right)$ et sa transposée, montrer que $B = C = \mathfrak{0}_n$ et A = D.
- **12.** Justifier que *A* est inversible.
- **13.** Soit $U \in GL_n(\mathbb{R})$. En utilisant $L_U = \left(\frac{U \mid 0_n}{0_n \mid {}^t U^{-1}} \right)$, montrer que A commute avec toute matrice $U \in GL_n(\mathbb{R})$.
- **14.** On note $(E_{i,j})_{1\leqslant i,j\leqslant n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$. Justifier que A commute avec les matrices $I_n+E_{i,j}$ puis que $A\in\{I_n,-I_n\}$. En déduire que $\mathcal{Z}=\{-I_{2n},I_{2n}\}$.

Partie III - Déterminant d'une matrice symplectique

Dans cette partie, on se donne $M \in \mathcal{SP}_{2n}$ que l'on décompose à nouveau sous forme de matrices blocs $M = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \text{avec } (A,B,C,D) \in \mathcal{M}_n(\mathbb{R})^4.$

15. On suppose dans cette question que D est *inversible*. Justifier qu'il existe quatre matrices Q, U, V, W de $\mathcal{M}_n(\mathbb{R})$ telles que

$$\left(\begin{array}{c|c} I_n & Q \\ \hline 0_n & I_n \end{array}\right) \left(\begin{array}{c|c} U & 0_n \\ \hline V & W \end{array}\right) = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$$

16. On suppose encore D inversible. En utilisant la question I.8, montrer que BD^{-1} est symétrique, puis que

$$\det(M) = \det({}^{t}AD - {}^{t}CB) = 1$$

On suppose dans tout le reste de cette partie que D est *non inversible* et on cherche à nouveau à calculer le déterminant de M.

- **17.** Montrer que Ker $B \cap \text{Ker } D = \{0\}.$
- 18. Montrer que l'application

$$(U, V) \in \mathcal{M}_{n,1}(\mathbb{R})^2 \mapsto \langle U, V \rangle = {}^t UV$$

définit un produit scalaire sur l'ensemble des matrices colonnes $\mathcal{M}_{n,1}(\mathbb{R})$.

Dans la suite, $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de ce produit scalaire.

19. On se donne $(P,Q) \in \mathcal{M}_n(\mathbb{R})^2$ tel que ^tPQ soit symétrique. On suppose qu'il existe deux réels *distincts* s_1 et s_2 et deux matrices colonnes *non nulles* V_1 et V_2 de $\mathcal{M}_{n,1}(\mathbb{R})$ tels que

$$(Q - s_1 P)V_1 = (Q - s_2 P)V_2 = 0$$

Montrer que le produit scalaire $\langle QV_1, QV_2 \rangle$ est nul.

20. On suppose qu'il existe des réels non nuls s_1, \ldots, s_m distincts deux à deux et des matrices colonnes non nulles v_1, \ldots, V_m de $\mathcal{M}_{n,1}(\mathbb{R})$ telles que

$$\forall i \in [1, m], (D - s_i B) V_i = 0$$

Montrer que pour tout $i \in [1, m]$, $DV_i \neq 0$ et que la famille (DV_1, \dots, DV_m) est libre.

- **21.** En déduire qu'il existe α tel que $D \alpha B$ soit inversible.
- **22.** En utilisant les matrices $K(\alpha)$ de la question **I.2**, montrer que det(M) = 1.
- **23.** Donner une matrice de $\mathcal{M}_4(\mathbb{R})$ de déterminant 1 non symplectique.