CHAPITRE 4

LES SUITES NUMÉRIQUES

4.1 Définitions :

4.1.1 Activité:

1) Soit f la fonction définie sur \mathbb{R} par : f(x) = 2x + 1

a) Déterminer :
$$f(0)$$
 ; $f(1)$; $f(-1)$; $f\left(\frac{1}{2}\right)$ et $f(\sqrt{2})$

b) Déterminer en fonction de x : f(x+1) et f(x-1) et f(x) + 1

2) Soit U la fonction définie sur \mathbb{N} par : U(n) = 3n - 1, on note U(n) par U_n

a) Calculer : U_0 ; U_1 ; U_2 et U_{10}

b) Déterminer U_{n+1} en fonction de n.

Solution de l'activité

1) f(x) = 2x + 1

a)
$$f(0) = 2 \times 0 + 1 = 1$$
 ; $f(1) = 2 \times 1 + 1 = 2 + 1 = 3$; $f(-1) = 2 \times -1 + 1 = -2 + 1 = -1$ $f\left(\frac{1}{2}\right) = 2 \times \frac{1}{2} + 1 = 1 + 1 = 2$; $f(\sqrt{2}) = 2\sqrt{2} + 1$

b)
$$f(x) = 2x + 1$$
 donc: $f(x+1) = 2(x+1) + 1 = 2x + 2 + 1 = 2x + 3$
et $f(x-1) = 2(x-1) + 1 = 2x - 2 + 1 = 2x - 1$ et $f(x) + 1 = 2x + 1 + 1 = 2x + 2$

2) Si on pose : $U(n) = U_n$ alors : $U_n = 3n - 1$

a)
$$U_0 = 3 \times 0 - 1 = 0 - 1 = -1$$
 ; $U_1 = 3 \times 1 - 1 = 3 - 1 = 2$; $U_2 = 3 \times 2 - 1 = 6 - 1 = 5$; $U_3 = 3 \times 3 - 1 = 9 - 1 = 8$; $U_{10} = 3 \times 10 - 1 = 30 - 1 = 29$;

b) $U_n = 3n - 1$ donc : $U_{n+1} = 3(n+1) - 1 = 3n + 3 - 1 = 3n + 2$

4.1.2 Définition et exemples :

Définition 4.1

On dit une suite numérique toute fonction définie sur \mathbb{N} (ou une partie de \mathbb{N}).

$$U: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto U(n) = U_n$

On note l'image de n par la fonction U par : U_n (au lieu de U(n)).

Exemple 4.1

Soit (U_n) la suite définie par : $U_n = 5n - 3$

- 1) Déterminer U_0 ; U_1 ; U_2 et U_3
- 2) Déterminer U_{n+1} en fonction de n.

Solution:

1)
$$U_0 = 5 \times 0 - 3 = -3$$
; $U_1 = 5 \times 1 - 3 = 5 - 3 = 2$; $U_2 = 5 \times 2 - 3 = 10 - 3 = 7$

2)
$$U_{n+1} = 5(n+1) - 3 = 5n + 5 - 3 = 5n + 2$$

Exercice 25

Soit (U_n) la suite définie par : $U_n = 4n - 5$

- 1) Calculer : U_0 ; U_1 et U_{20}
- 2) Déterminer U_{n+1} en fonction de n
- 3) Déterminer U_{n+1} en fonction de U_n

4.2 La suite arithmétique

Définition 4.2

Soit $r \in \mathbb{R}$,

- Toute suite définie par : $U_{n+1} = U_n + r$ pour tout $n \in \mathbb{N}$ est une suite **Arithmétique**.
- Le nombre r ne dépend pas de n est appelé la raison de la suite (U_n) .

Exemple 4.2

1) Soit (U_n) la suite définie par : $U_n = 3n + 2$: Montrons que la suite (U_n) est arithmétique de raison r = 3 : On a :

$$U_{n+1} = 3(n+1)+2$$

= $3n+3+2$
= $3n+2+3$
= U_n+3

Donc : (U_n) est une arithmétique de raison r = 3.

2) Soit (U_n) la suite définie par : $U_n = 6n + 3$: Montrons que la suite (U_n) est arithmétique On a :

$$U_{n+1} = 6(n+1)+3$$

= $6n+6+3$
= $6n+3+6$
= U_n+6

Donc : (U_n) est une arithmétique de raison r = 6.

3) Soit (U_n) la suite définie par : $U_n = -7n + 8$: Montrons que la suite (U_n) est arithmétique de raison r = -7 : On a :

$$U_{n+1} = -7(n+1) + 8$$

$$= -7n - 7 + 8$$

$$= -7n + 8 - 7$$

$$= U_n - 7$$

Donc : (U_n) est une arithmétique de raison r = -7.

Remarque 4.1

Pour montrer qu'une suite (U_n) est arithmétique de raison r il suffit de calculer $U_{n+1} - U_n$ et que $U_{n+1} - U_n = r$.

Exemple 4.3

Soit
$$(U_n)$$
 la suite définie par : $U_n = -2n+5$ on a : $U_{n+1} - U_n = -2(n+1) + 5 - [-2n+5] = -2n-2+5+2n-5 = -2$ donc (U_n) est arithmétique de raison $r = -2$

Exercice 26

Montrer que (U_n) est une suite arithmétique de raison r (a déterminera) dans les cas suivants :

1)
$$U_n = 9n + 5$$

2)
$$U_n = -3n + 1$$

3)
$$U_n = \frac{1}{2}n + 4$$

4)
$$U_n = -\frac{1}{3}n + 2$$

Exercice 27

Soit
$$(U_n)$$
 la suite définie par :
$$\begin{cases} U_0 = 2 \\ U_{n+1} = U_n + 4 \end{cases}$$

- 1) Calculer U_1 ; U_2 et U_4 .
- 2) Qu'on peut dire sur la nature de la suite (U_n)

4.2.1 Le terme général d'une suite arithmétique :

Proprieté 4.1

Si (U_n) est une suite arithmétique de raison r alors :

•
$$U_n = U_0 + n \times r$$

•
$$U_n = U_1 + (n-1)r$$

• Pour tout $p \in \mathbb{N}$ tel que $p \le n : U_n = U_p + (n-p)r$

Exemple 4.4

- 1) Soit (U_n) une suite arithmétique de raison r=5 et de premier terme $U_0=2$: On a : $U_n = U_0 + n \times r$ donc : $U_n = 2 + 5n = 5n + 2$
- 2) Soit (U_n) une suite arithmétique de raison r=3 et de premier terme $U_1=8$: On a: $U_n = U_1 + (n-1)r$ donc: $U_n = 8 + 3(n-1) = 8 + 3n - 3 = 3n + 5$
- 3) Soit (U_n) une suite arithmétique de raison r = -2 et $U_5 = 6$: On a: $U_n = U_5 + (n-5)r$ donc: $U_n = 6 - 2(n-5) = 6 - 2n + 10 = -2n + 16$

Exercice 28

Suite (U_n) une suite arithmétique de raison : r, déterminer U_n en fonction de n dans les suivants :

1)
$$r = 4$$
 et $U_0 = 8$

2)
$$r = \frac{1}{2}$$
 et $U_1 = 2$

3)
$$r = -5$$
 et $U_2 = 1$

3)
$$r = -5$$
 et $U_2 = 1$
4) $\begin{cases} U_3 = 8 \\ U_{n+1} = U_n + 4 \end{cases}$

4.2.2 La somme des termes successives d'une suite arithmétique

Proprieté 4.2

Soit (U_n) une suite arithmétique alors on a : $U_0 + U_1 + \cdots + U_n = (n+1) \left(\frac{U_0 + U_n}{2} \right)$

c'est à dire:

La somme des termes = (le nombre des termes) $\left(\frac{\text{le premier terme} + \text{le dernier terme}}{2}\right)$

On a aussi:
$$U_1 + U_2 + \cdots + U_n = n \left(\frac{U_1 + U_n}{2} \right)$$

et
$$U_p + U_{p+1} + \dots + U_n = (n-p+1) \left(\frac{U_p + U_n}{2} \right)$$

Exemple 4.5

1) Soit (U_n) la suite définie par : $U_n = 2n$, on a (U_n) est une suite arithmétique de raison r = 2, et on a :

$$U_0 + U_1 + \dots + U_n = (n+1) \left(\frac{U_0 + U_n}{2} \right) = (n+1) \left(\frac{0+2n}{2} \right) = (n+1)n, \quad \text{car} : U_0 = 0 \quad \text{et} \quad U_n = 2n$$
On a aussi : $U_0 + U_1 + \dots + U_{20} = 21 \left(\frac{U_0 + U_{20}}{2} \right) = 21 \left(\frac{0+40}{2} \right) = 21 \times 20 = 420,$

- 2) Soit (U_n) la suite définie par : $U_n = 3n + 1$, on a (U_n) est une suite arithmétique de raison r = 3.
 - a) Déterminons la somme : $U_0 + U_1 + \cdots + U_n$ en fonction de n.
 - b) Déterminons la somme : $U_1 + U_2 + \cdots + U_n$ en fonction de n.
 - c) Déterminons la somme : $U_5 + U_6 + \cdots + U_n$ en fonction de n.
 - d) Calculons la somme : $U_1 + U_2 + \cdots U_{14}$.
 - e) Calculons la somme : $U_4 + U_5 + \cdots U_{16}$.

Solution:

a)
$$U_0 + U_1 + \dots + U_n = (n+1) \left(\frac{U_0 + U_n}{2} \right) = (n+1) \left(\frac{1+3n+1}{2} \right) = (n+1) \left(\frac{3n+2}{2} \right)$$
 car: $U_0 = 3 \times 0 + 1 = 1$

b)
$$U_1 + U_2 + \dots + U_n = n\left(\frac{U_1 + U_n}{2}\right) = n\left(\frac{4 + 3n + 1}{2}\right) = n\left(\frac{3n + 5}{2}\right)$$
 car : $U_1 = 4$

c)
$$U_5 + U_6 + \dots + U_n = (n - 5 + 1) \left(\frac{U_5 + U_n}{2} \right) = (n - 4) \left(\frac{16 + 3n + 1}{2} \right) = (n - 4) \left(\frac{3n + 17}{2} \right)$$

car: $U_5 = 16$

d)
$$U_1 + U_2 + \dots + U_{14} = (14 - 1 + 1) \left(\frac{U_1 + U_{14}}{2} \right) = 14 \left(\frac{4 + 43}{2} \right) = 14 \left(\frac{47}{2} \right) = 329$$

e)
$$U_4 + U_5 + \dots + U_{16} = (16 - 4 + 1) \left(\frac{U_4 + U_{16}}{2} \right) = 13 \left(\frac{17 + 49}{2} \right) = 13 \left(\frac{64}{2} \right) = 416$$

Exercice 29

Soit (U_n) la suite définie par : $U_n = 4n - 2$,

- 1) Déterminer : U_0 et U_{25}
- 2) Montrer que (U_n) est une suite arithmétique,
- 3) Calculer la somme : $U_0 + U_1 + \cdots + U_{25}$
- 4) Calculer la somme : $U_8 + U_9 + \cdots + U_{30}$
- 5) Déterminer en fonction de *n* la somme : $U_3 + U_4 + \cdots + U_n$

4.3 La suite géométrique :

4.3.1 Définitions :

Définition 4.3

- Toute suite définie par : $U_{n+1} = U_n \times q$ pour tout $n \in \mathbb{N}$ est une suite **géométrique**
- Le nombre q ne dépend pas de n est appelé la raison de la suite (U_n) .

Exemple 4.6

- 1) Soit (U_n) la suite définie par : $U_n = 3 \times 2^n$, on a $U_{n+1} = 3 \times 2^{n+1} = 3 \times 2^n \times 2 = U_n \times 2$: donc (U_n) est une suite géométrique de raison q = 2.
- 2) Soit (U_n) la suite définie par : $U_n = 5 \times 3^n$, on a $U_{n+1} = 5 \times 3^{n+1} = 5 \times 3^n \times 3 = U_n \times 3$: donc (U_n) est une suite géométrique de raison q = 3.
- 3) Soit (U_n) la suite définie par : $U_n = 4 \times \left(\frac{1}{2}\right)^n$, on a $U_{n+1} = 4 \times \left(\frac{1}{2}\right)^{n+1} = 4 \times \left(\frac{1}{2}\right)^n \times \frac{1}{2} = U_n \times \frac{1}{2}$: donc (U_n) est une suite géométrique de raison $q = \frac{1}{2}$.

Remarque 4.2

Pour montrer que (U_n) est une suite géométrique de raison q il suffit de montrer que : $\frac{U_{n+1}}{U_n} = q$.

4) Soit
$$(U_n)$$
 la suite définie par : $U_n = -2 \times 4^n$, on a :
$$\frac{U_{n+1}}{U_n} = \frac{-2 \times 4^{n+1}}{-2 \times 4^n} = 4^{n+1-n} = 4 : \text{donc donc } (U_n) \text{ est une suite géométrique de raison } q = 4.$$

Exercice 30

Montrer que la suite (U_n) est géométrique dans les cas suivants :

- 1) $U_n = -3 \times 5^n$
- 2) $U_n = 3 \times 6^n$
- $3) U_n = 5 \times \frac{1}{3^n}$
- $2) \ U_n = \frac{1}{2} \times 7^n$

4.3.2 Le terme général d'une suite géométrique :

Proprieté 4.3

Si (U_n) est une suite arithmétique de raison q alors :

- $U_n = U_0 \times q^n$
- $U_n = U_1 \times q^{n-1}$
- Pour tout $p \in \mathbb{N}$ tel que $p \le n : U_n = U_p \times q^{n-p}$

Exemple 4.7

- 1) Soit (U_n) une suite géométrique de raison q=2 et de premier terme $U_0=3$, déterminons U_n en fonction de n: On a : $U_n=U_0\times q^n=3\times 2^n$, donc : $U_n=3\times 2^n$
- 2) Soit (U_n) une suite géométrique de raison q=5 et $U_1=10$, déterminons U_n en fonction de n: On a : $U_n=U_1\times q^{n-1}=10\times 5^{n-1}=10\times \frac{5^n}{5}=2\times 5^n$ donc : $U_n=2\times 5^n$
- 3) Soit (U_n) une suite géométrique de raison q=3 et $U_4=20$, déterminons U_n en fonction de n: On a : $U_n=U_4\times q^{n-4}=20\times 3^{n-4}$, donc : $U_n=20\times 3^{n-4}$

Exercice 31

Soit (U_n) une suite géométrique, déterminer U_n en fonction de n dans les cas suivants :

1)
$$U_0 = 2$$
 et $q = 7$

2)
$$U_0 = -3$$
 et $q = 4$

3)
$$U_0 = 4$$
 et $q = \frac{1}{2}$

4)
$$U_1 = \frac{1}{3}$$
 et $q = 6$

5)
$$U_5 = 16$$
 et $q = 2$

La somme des termes successives d'une suite géométrique

Proprieté 4.4

 $U_0 + U_1 + \dots + U_n = U_0 \left(\frac{1 - q^{n+1}}{1 - a} \right)$ Soit (U_n) une suite géométrique alors on a :

c'est à dire:

La somme des termes = (le premier terme) $\left(\frac{1-q^{\text{le nombre des termes}}}{1-q}\right)$ On a aussi : $U_1+U_2+\cdots+U_n=U_1\left(\frac{1-q^n}{1-q}\right)$

 $U_p + U_{p+1} + \dots + U_n = U_p \left(\frac{1 - q^{n-p+1}}{1 - q} \right)$ et

Exemple 4.8

1) Soit (U_n) la suite définie par : $U_n = 3 \times 2^n$, on a (U_n) est une suite géométrique de raison q = 2 et $U_0 = 3$ et $U_1 = 6$ et $U_3 = 24$:

a)

$$U_0 + U_1 + \dots + U_{10} = U_0 \left(\frac{1 - 2^{10 + 1}}{1 - 2} \right)$$
$$= 3 \left(\frac{1 - 2^{11}}{-1} \right)$$
$$= 6141$$

b)

$$U_1 + U_2 + \dots + U_{15} = U_1 \left(\frac{1 - 2^{15}}{1 - 2} \right)$$
$$= 6 \left(\frac{1 - 2^{15}}{-1} \right)$$
$$= 6(2^{15} - 1) = \dots$$

c)

$$U_3 + U_4 + \dots + U_{11} = U_3 \left(\frac{1 - 2^{11 - 3 + 1}}{1 - 2} \right)$$
$$= 24 \left(\frac{1 - 2^9}{-1} \right)$$
$$= 24(2^9 - 1) = \dots$$

2) Soit (U_n) la suite définie par : $U_n = 2 \times 5^n$, on a (U_n) est une suite géométrique de raison q = 5 et $U_0 = 2$ et $U_1 = 10$ et $U_4 = 1250$:

$$U_0 + U_1 + \dots + U_8 = U_0 \left(\frac{1 - 5^{8+1}}{1 - 5} \right)$$

$$= 2 \left(\frac{1 - 5^9}{-4} \right)$$

$$= 2 \left(\frac{5^9 - 1}{4} \right) = \frac{5^9 - 1}{2} = \dots$$

b)

$$U_1 + U_2 + \dots + U_{11} = U_1 \left(\frac{1 - 5^{11}}{1 - 5} \right)$$

$$= 10 \left(\frac{1 - 5^{11}}{-4} \right)$$

$$= 5 \left(\frac{5^{11} - 1}{2} \right) = \dots$$

c)

$$U_4 + U_5 + \dots + U_{10} = U_4 \left(\frac{1 - 5^{10 - 4 + 1}}{1 - 5} \right)$$

$$= 1250 \left(\frac{1 - 5^7}{-4} \right)$$

$$= 625 \left(\frac{5^7 - 1}{2} \right) = \dots$$

Exercice 32

Soit (U_n) la suite définie par : $U_n = \frac{1}{2} \times 4^n$

1) Calculer : U_0 ; U_1 et U_2 .

2) Montrer que (U_n) est une suite géométrique et déterminer sa raison.

3) a) Calculer: $U_0 + U_1 + \cdots + U_6 = \dots$

b) Calculer: $U_2 + U_3 + \cdots + U_9 = \dots$

c) Calculer: $U_1 + U_2 + \cdots + U_{10} = \dots$

Résumer:

	La suite arithmétique	La suite géométrique
La relation	$U_{n+1}=U_n+r; r\in\mathbb{R}$	$U_{n+1}=U_n\times q$; $q\in\mathbb{R}$
Le terme U_n	$U_n = U_0 + n \times r$	$U_n = U_0 \times q^n$
Le terme U_n (en général)	$U_n = U_p + (n-p)r$	$U_n = U_p \times q^{n-p}$
La somme	$U_0 + U_1 + \cdots + U_n = (n+1) \left(\frac{U_0 + U_n}{2} \right)$	$U_0 + U_1 + \cdots + U_n = U_0 \left(\frac{1 - q^{n+1}}{1 - q} \right)$
La somme (en général)	$U_p + U_{p+1} + \cdots + U_n = (n-p+1)\left(\frac{U_p + U_n}{2}\right)$	$U_p + U_{p+1} + \cdots + U_n = U_p \left(\frac{1 - q^{n-p+1}}{1 - q}\right)$