NAME - ARGHYADIP GHOSH

UID - 18BCS6081

SECTION - AIML-1 (GROUP-A)

CASE STUDY - 2 (TITANIC CHALLENGE)

```
In [285]:
```

```
import warnings
warnings.filterwarnings('ignore')
```

In [286]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [287]:

```
# importing the train dataset
train=pd.read_csv("train.csv")
```

In [288]:

```
#importing the test dataset
test=pd.read_csv("test.csv")
```

In [289]:

train

Out[289]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [290]:

test

Out[290]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
			***					•••			
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

⁴¹⁸ rows × 11 columns

In [291]:

Let us consider all the attributes of the train dataset as the Target varriable:

```
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Survived
              891 non-null int64
Pclass
               891 non-null object
              891 non-null object
Sex
                714 non-null float64
Age
         891 non-null int64
891 non-null int64
891 non-null object
SibSp
Parch
Ticket
               891 non-null float64
Fare
Cabin
                204 non-null object
Cabin 204 non-null object Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 66.2+ KB
```

Checking for Outliers:

Outliers are extreme values that deviate from other observations on data, they may indicate a variability in a measurement, experimental errors or a novelty. In other words, an outlier is an observation that diverges from an overall pattern on a sample.

```
In [292]:
train.describe(percentiles=[.25,.2,.75,.90,.95,.99])
```

Out[292]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429

min	Passengerld 1.000000	Survived 0.000000	Pclass 1.000000	Age 0.420000	SibSp 0.000000	Parch 0.000000	Fare 0.000000
20%	179.000000	0.000000	1.000000	19.000000	0.000000	0.000000	7.854200
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
90%	802.000000	1.000000	3.000000	50.000000	1.000000	2.000000	77.958300
95%	846.500000	1.000000	3.000000	56.000000	3.000000	2.000000	112.079150
99%	882.100000	1.000000	3.000000	65.870000	5.000000	4.000000	249.006220
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

From the distribution shown above, we can see that there are no outliers in our data as the numbers are gradually increasing.

```
In [293]:
train.shape

Out[293]:
(891, 12)
```

Lets check whether any columns contain any NULL values

```
In [294]:
train.isnull().sum()
Out[294]:
PassengerId 0
```

Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64

It means that there are in total three columns named as : "Age" , "Cabin" , "Embarked" which has NULL values. so we will perform data cleaning one by one.

DATA PREPERATION

Survival as the target varriable

```
In [295]:
```

```
# here we will evaluate the survival ratio of the assengers on Titanic
# 0 means died
# 1 means survived
train.Survived.value_counts()

Out[295]:
0 549
1 342
Name: Survived, dtype: int64
```

```
In [296]:
```

```
# here we will find the survival percentage
train.Survived.value_counts(normalize=True)*100
```

Out[296]:

0 61.616162 1 38.383838

Name: Survived, dtype: float64

It means that there are total 549+342=891 passengers and only 342 (38%) survived and rest all have died.

In [297]:

```
import seaborn as sns
```

In [298]:

```
sns.countplot(x="Survived", data=train)
```

Out[298]:

<matplotlib.axes._subplots.AxesSubplot at 0xd7d10f0>

Pclass as the target varriable:

In [299]:

```
# here we will evaluate the survivval ratio in comparison to Pclass of the
# people travelling
pd.crosstab(train.Pclass,train.Survived)
```

Out[299]:

Survived 0 1

Pclass		
1	80	136
2	97	87
3	372	119

In [300]:

```
train[["Pclass", "Survived"]].groupby("Pclass").mean()*100
```

Out[300]:

Pclass Pclass 2 47.282609 3 24.236253

From this data, we can infer that there is 62.96% Survival chance for the people travelling in 1st class. It means that the people in the 3rd class are given the least priority and have died the most.

```
In [301]:
```

```
sns.factorplot(x="Pclass",data=train,col="Survived",kind="count")
```

Out[301]:

<seaborn.axisgrid.FacetGrid at 0xd7c6dd0>

Sex as the target varriable:

```
In [302]:
```

```
# here we will evaluate the survival ratio in comparison to the sex of
# the people
pd.crosstab(train.Sex,train.Survived)
```

Out[302]:

Survived 0 1

Sex

female 81 233 male 468 109

In [303]:

```
pd.crosstab(train.Sex,train.Survived,normalize="index")*100
```

Out[303]:

Survived 0 1

Sex

female 25.796178 74.203822

```
Survivale 61.109185 18.890815
```

It means that almost Female survival probability is almost 74% which is almost 4 times that of the men. so we can infer that the females have more chances of survival.

In [304]:

```
sns.countplot(x="Sex",data=train,hue="Survived")
```

Out[304]:

<matplotlib.axes._subplots.AxesSubplot at 0xd9830f0>

Age as the target varriable:

The attribute "Age" contains NULL values so firstly we need to perform data cleaning here

We will use KDEplot here as Age is a continuous varraible so Kernel Density Estimate (KDE) depicts the probability density of a continuous varriable.

In [305]:

```
sns.kdeplot(train.Age,shade=True)
```

Out[305]:

<matplotlib.axes._subplots.AxesSubplot at 0xdab09f0>

As Age has null values so we will fill it with its median values as we know that for a dataset with great outliers, it is advised to fill the Null values with median.

```
In [306]:
```

```
print("Median: "+str(train.Age.median()))
```

Median: 28.0

```
In [307]:
```

```
train["Age"].fillna(train.Age.median(),inplace=True)
```

In [308]:

```
sns.kdeplot(train.Age,shade=True)
```

Out[308]:

<matplotlib.axes. subplots.AxesSubplot at 0xdaf5f50>

We see that the peak is very much close to 30 or in between 20 and 40. so from this we can say tht majority of the people on Titanic had age close to 30.

In [309]:

```
sns.boxplot(x="Sex", y="Age", data=train, hue="Survived")
```

Out[309]:

<matplotlib.axes._subplots.AxesSubplot at 0xdb31ab0>

From the boxplot we can infer that among all the people who had survived in Titanic are in between the age from 20 to 30.

Fare as the target varriable:

```
In [310]:
```

```
sns.factorplot(x="Embarked",y="Fare",data=train,hue="Survived",kind="bar")
```

Out[310]:

From this we can infer that those people who had highly paid are likely to survive more.

Embarked as the target varriable:

We know that Embarked also has null varriables, so we need to perform data cleaning

So here we will fill the null values with Mode

```
In [311]:
```

```
train["Embarked"].fillna(train["Embarked"].mode()[0],inplace=True)
```

```
In [312]:
```

```
train.Embarked.count()
```

Out[312]:

891

In [313]:

```
pd.crosstab([train.Sex,train.Survived],[train.Pclass,train.Embarked])
```

Out[313]:

Pclass	1			2			3		
Embarked	С	Q	s	С	Q	s	С	Q	s

Sex	Survived									
female	0	1	0	2	0	0	6	8	9	55
remaie	1	42	1	48	7	2	61	15	24	33
mala	0	25	1	51	8	1	82	33	36	231
male	1	17	0	28	2	0	15	10	3	34

In [314]:

```
sns.violinplot(x='Embarked' , y='Pclass' , data=train , hue='Survived' )
```

```
Out[314]:
```


We can see that those who embarked at C with First Class ticket had a good chance of Survival. Whereas for S, it seems that all classes had nearly equal probability of Survival. And for Q, third Class seems to have Survived and Died with similar probabilities.

SibSp as the target varriable:

```
In [315]:
```

```
# here we will evaluate the comparison between the individuals who have or not have
# siblings with the survival ratio
train[["SibSp", "Survived"]].groupby("SibSp").mean()
```

Out[315]:

Survived

SibSp	
0	0.345395
1	0.535885
2	0.464286
3	0.250000
4	0.166667
5	0.000000
8	0.000000

It means that those individuals having 1 or 2 siblins / spouses had the highest priority of survival followed by those who are alone

Parch:

```
In [316]:
```

```
# just like sibsp column we will perform similar analysis
train[["Parch","Survived"]].groupby("Parch").mean()
```

Out[316]:

Survived

Parch	
0	0.343658
1	0.550847
2	0.500000
3	0.600000
4	0 000000

```
Survived
5 0.200000
Parch
6 0.000000
```

From this we can infer that the individuals having 1,2 or 3 family members have higher probability to survive more.

W e can infer from Sibsp and Parch column that those individuls having more social relations with family members , siblinga have more chances of survival

In [317]:

```
train.head()
```

Out[317]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [318]:

```
train["Cabin"].isnull().sum()
```

Out[318]:

687

In [319]:

```
display(train.Age.describe())
```

```
count 891.000000
mean 29.361582
std 13.019697
min 0.420000
25% 22.000000
50% 28.000000
75% 35.000000
max 80.000000
Name: Age, dtype: float64
```

In [320]:

```
def categorical_age(x):
    if 0 < x <= 22:
        return 0
    elif 22 < x <= 26:
        return 1
    elif 26 < x <= 36.5:
        return 2
    else:
        return 3

train['categorical_age'] = train['Age'].apply(categorical_age)</pre>
```

In [321]:

```
# Convert age into a categorical variables using the quartiles display(train.Fare.describe())
```

```
count 891.000000
mean 32.204208
std 49.693429
min 0.000000
25% 7.910400
50% 14.454200
75% 31.000000
max 512.329200
Name: Fare, dtype: float64
```

In [322]:

```
def categorical_fare(x):
    if 0 < x <= 7.9:
        return 0
    elif 7.9 < x <= 14.5:
        return 1
    elif 14.5 < x <= 31:
        return 2
    else:
        return 3

train['categorical_fare'] = train['Fare'].apply(categorical_fare)</pre>
```

In [323]:

```
train.head()
```

Out[323]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	categorical_age	categ
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	0	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	3	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	2	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	2	
4														Þ

Converting Catagorical features:

We'll need to convert categorical features to dummy variables using pandas! Otherwise our machine learning algorithm won't be able to directly take in those features as inputs.

```
In [324]:
```

```
train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 14 columns):
```

PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64

```
891 non-null object
Name
Sex
                     891 non-null object
                     891 non-null float64
Age
SibSp
                    891 non-null int64
                    891 non-null int64
Parch
Ticket
                     891 non-null object
Fare
                     891 non-null float64
                     204 non-null object
Cabin
Embarked
                    891 non-null object
categorical_age
                   891 non-null int64
categorical_fare 891 non-null int64
dtypes: float64(2), int64(7), object(5)
memory usage: 80.1+ KB
```

In [325]:

```
categorical_features = ['Pclass', 'Sex', 'Embarked']
train[categorical_features] = train[categorical_features].apply(lambda x: x.astype('category'))
```

In [326]:

```
train.info()
```

```
RangeIndex: 891 entries, 0 to 890
Data columns (total 14 columns):
PassengerId
                  891 non-null int64
Survived
                   891 non-null int64
                  891 non-null category
Pclass
                  891 non-null object
Name
Sex
                  891 non-null category
                  891 non-null float64
Age
                   891 non-null int64
SibSp
                  891 non-null int64
Parch
Ticket
                  891 non-null object
                  891 non-null float64
                  204 non-null object
Cabin
Embarked
                   891 non-null category
                  891 non-null int64
categorical age
categorical_fare 891 non-null int64
```

<class 'pandas.core.frame.DataFrame'>

dtypes: category(3), float64(2), int64(6), object(3)

memory usage: 69.0+ KB

In [327]:

```
# creating dummy variables
train = pd.get_dummies(data=train, columns=['Sex', 'Embarked', 'Pclass', 'categorical_age', 'categorical_fare'], drop_first=True)
```

In [328]:

```
train.head()
```

Out[328]:

	Passengerld	Survived	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Sex_male	Embarked_Q	Embarked_S	Pclass_2
0	1	0	Braund, Mr. Owen Harris	22.0	1	0	A/5 21171	7.2500	NaN	1	0	1	0
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	1	0	PC 17599	71.2833	C85	0	0	0	0
2	3	1	Heikkinen, Miss. Laina	26.0	0	0	STON/O2. 3101282	7.9250	NaN	0	0	1	0
2	А	1	Futrelle, Mrs. Jacques	2E N	1	0	112002	E2 1000	C122	0	0	4	0

```
113003 33.1000
                        Name Age SibSp Parch
                                                            Cabin Sex_male Embarked_Q Embarked_S Pclass_2
   Passengerld Survived
                        Peel)
                      Allen Mr
           5
                       William 35.0
                                           0
                                               373450 8.0500
                                                                                                     0
                                     0
                                                             NaN
                                                                        1
                        Henry
                                                                                                      F
In [329]:
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 20 columns):
PassengerId
                      891 non-null int64
                      891 non-null int64
Survived
Name
                       891 non-null object
Age
                      891 non-null float64
SibSp
                      891 non-null int64
Parch
                      891 non-null int64
Ticket
                      891 non-null object
Fare
                      891 non-null float64
Cabin
                      204 non-null object
                      891 non-null uint8
Sex male
Embarked Q
                     891 non-null uint8
Embarked S
                     891 non-null uint8
                      891 non-null uint8
Pclass 2
Pclass 3
                       891 non-null uint8
categorical age 1
                      891 non-null uint8
                   891 non-null uint8
categorical_age_2
categorical age 3
                     891 non-null uint8
categorical_fare_1
                      891 non-null uint8
categorical_fare_2
                       891 non-null uint8
categorical_fare_3
                      891 non-null uint8
dtypes: float64(2), int64(4), object(3), uint8(11)
memory usage: 61.8+ KB
In [330]:
train.drop(['Name', 'Ticket', 'Age', 'Fare'], axis=1, inplace=True)
In [331]:
display(train.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 16 columns):
                      891 non-null int64
PassengerId
                      891 non-null int64
Survived
SibSp
                      891 non-null int64
Parch
                      891 non-null int64
                      204 non-null object
Cabin
Sex male
                      891 non-null uint8
Embarked Q
                      891 non-null uint8
                     891 non-null uint8
Embarked S
                      891 non-null uint8
Pclass 2
                    non-null uint8
891 non-null uint8
891 non-null "'
Pclass 3
categorical_age_1
categorical_age_2
                      891 non-null uint8
categorical age 3
categorical fare 1
                      891 non-null uint8
categorical fare 2
                      891 non-null uint8
categorical_fare_3
                    891 non-null uint8
dtypes: int64(4), object(1), uint8(11)
memory usage: 41.0+ KB
```

None

In [332]:

```
train.drop(["Cabin"],axis=1,inplace=True)
#keeping a copy of the initial dataset into another dataset
df=train.copy()
In [334]:
train.drop("PassengerId",axis=1,inplace=True)
In [335]:
train.head()
Out[335]:
   Survived SibSp Parch Sex_male Embarked_Q Embarked_S Pclass_2 Pclass_3 categorical_age_1 categorical_age_2 categorical_age_1
                                                               0
0
         0
                      0
                                          0
                                                                                       0
                                                                                                       0
 1
         1
               1
                      0
                                                      0
                                                                                                       0
2
                      0
                               0
                                          0
                                                               0
 3
         1
               1
                      0
                               0
                                          0
                                                      1
                                                               0
                                                                        0
                                                                                                       1
         0
                                                               0
 4
               0
                      0
                                           0
```

Noe our dataset is ready to build Supervised learning Estimators

Supervised Learning Estimators(applying Logistic Regression):

```
In [336]:

x_train = train.drop(['Survived'],axis=1)
y_train = train['Survived']
```

```
In [337]:
import statsmodels.api as sm
```

```
In [338]:
logm1 = sm.GLM(y_train, (sm.add_constant(x_train)), family = sm.families.Binomial())
logm1.fit().summary()
```

Out[338]:

891	No. Observations:	Survived	Dep. Variable:
877	Df Residuals:	GLM	Model:
13	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-394.93	Log-Likelihood:	IRLS	Method:
789.86	Deviance:	Mon, 24 Aug 2020	Date:
905.	Pearson chi2:	23:57:30	Time:
		5	No. Iterations:
		nonrobust	Covariance Type:
025 0.97	z P> z [0.	coef std err	

```
const 2.9423
                        0.501
                               5.871 0.000 1.960 3.925
          SibSp -0.3736
                        0.123 -3.048 0.002 -0.614 -0.133
          Parch -0.1030
                        0.127
                               -0.809 0.418 -0.352 0.146
                        0.201 -13.522 0.000 -3.107 -2.321
       Sex_male -2.7139
     Embarked Q -0.0409
                        0.398
                               -0.103 0.918 -0.821 0.739
     Embarked_S -0.4822
                               -2.047 0.041 -0.944 -0.020
                        0.236
        Pclass_2 -0.7070
                               -2.193 0.028 -1.339 -0.075
                        0.322
        Pclass_3 -1.7721
                        0.356
                               -4.985 0.000 -2.469 -1.075
                               -1.789 0.074 -1.303 0.059
 categorical_age_1 -0.6219
                        0.348
 categorical_age_2 -0.4952
                        0.238
                               -2.084 0.037 -0.961 -0.029
 categorical_age_3 -1.2092
                        0.290
                               -4.175 0.000 -1.777 -0.641
                               0.545 0.585 -0.443 0.785
 categorical_fare_1 0.1709
                        0.313
 categorical_fare_2 0.7175
                        0.352
                               2.036 0.042 0.027 1.408
 categorical_fare_3 0.6620
                        0.437
                               1.514 0.130 -0.195 1.519
In [339]:
from sklearn.linear model import LogisticRegression
logreg = LogisticRegression()
In [340]:
 from sklearn.feature_selection import RFE
rfe = RFE(logreg, 15) # running RFE with 13 variables as output
rfe = rfe.fit(x_train, y_train)
In [341]:
rfe.support
Out[341]:
array([ True, True, True, True, True, True, True, True, True,
         True, True, True, True])
In [342]:
list(zip(x train.columns, rfe.support_, rfe.ranking_))
Out[342]:
[('SibSp', True, 1),
 ('Parch', True, 1),
 ('Sex_male', True, 1),
 ('Embarked_Q', True, 1),
 ('Embarked_S', True, 1),
 ('Pclass_2', True, 1),
 ('Pclass_3', True, 1),
 ('categorical_age_1', True, 1),
 ('categorical_age_2', True, 1), ('categorical_age_3', True, 1),
 ('categorical_fare_1', True, 1),
 ('categorical_fare_2', True, 1),
 ('categorical_fare_3', True, 1)]
In [343]:
 col = x_train.columns[rfe.support_]
In [344]:
x train.columns[~rfe.support ]
```

Out[344]: Index([], dtype='object') In [345]: x_train_sm = sm.add_constant(x_train[col]) logm2 = sm.GLM(y_train,x_train_sm, family = sm.families.Binomial()) res = logm2.fit() res.summary()

Out[345]:

Generalized Linear Model Regression Results

Generalized Linear IVI	Judi regre	5551011110	Juito			
Dep. Variable:	:	Survived	No. Obs	ervatio	ns:	891
Model:		GLM	Df I	Residua	als:	877
Model Family:		Binomial		Df Mod	lel:	13
Link Function:		logit		Sca	ale: 1.	0000
Method:		IRLS	Log-L	ikeliho.	od: -39	94.93
Date:	Mon	, 24 Aug 2020		Devian	ce : 78	39.86
Time:	:	23:57:32	Pea	rson ch	ni2:	905.
No. Iterations:		5				
Covariance Type:	n	onrobust				
	coef	std err	z	P> z	[0.025	0.975]
const	2.9423	0.501	5.871	0.000	1.960	3.925
SibSp	-0.3736	0.123	-3.048	0.002	-0.614	-0.133
Parch	-0.1030	0.127	-0.809	0.418	-0.352	0.146
Sex_male	-2.7139	0.201	-13.522	0.000	-3.107	-2.321
Embarked_Q	-0.0409	0.398	-0.103	0.918	-0.821	0.739
Embarked_S	-0.4822	0.236	-2.047	0.041	-0.944	-0.020
Pclass_2	-0.7070	0.322	-2.193	0.028	-1.339	-0.075
Pclass_3	-1.7721	0.356	-4.985	0.000	-2.469	-1.075
categorical_age_1	-0.6219	0.348	-1.789	0.074	-1.303	0.059
categorical_age_2	-0.4952	0.238	-2.084	0.037	-0.961	-0.029
categorical_age_3	-1.2092	0.290	-4.175	0.000	-1.777	-0.641
categorical_fare_1	0.1709	0.313	0.545	0.585	-0.443	0.785
categorical_fare_2	0.7175	0.352	2.036	0.042	0.027	1.408
categorical_fare_3	0.6620	0.437	1.514	0.130	-0.195	1.519

When observing the p-values we can see that there are many insignificant features in our first model built with p-values more than 0.05 which marks them as insignificant. We can go for backward approach now by removing each of those features one by one, rebuilt and see for the model.

```
In [346]:
```

```
x_train_sm.drop(["Parch"],axis=1,inplace=True)
```

```
In [347]:
```

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
model2.fit().summary()
```

Out[347]:

Generalized Linear Model Regression Results

Dan Variables - Sunited No Observations - 904

Dep. variable:		ourviveu	NO. UDS	ervauo	ns:	091
Model:		GLM	Df I	Residua	ıls:	878
Model Family:		Binomial		Df Mod	lel:	12
Link Function:		logit		Sca	ale: 1.0	0000
Method:		IRLS	Log-L	ikeliho.	od: -39	5.26
Date:	Mon	, 24 Aug 2020		Devian	ce : 79	0.52
Time:		23:57:32	Pea	rson ch	ni2:	909.
No. Iterations:		5				
Covariance Type:	n	onrobust				
	coef	std err	z	P> z	[0.025	0.975]
const	2.9940	0.498	6.009	0.000	2.017	3.971
SibSp	-0.3798	0.122	-3.101	0.002	-0.620	-0.140
Sex_male	-2.6823	0.196	-13.669	0.000	-3.067	-2.298
Embarked_Q	-0.0280	0.397	-0.071	0.944	-0.806	0.750
Embarked_S	-0.4816	0.235	-2.046	0.041	-0.943	-0.020
Pclass_2	-0.7662	0.315	-2.432	0.015	-1.383	-0.149
Pclass_3	-1.8646	0.339	-5.503	0.000	-2.529	-1.201
categorical_age_1	-0.6146	0.349	-1.763	0.078	-1.298	0.068
categorical_age_2	-0.4707	0.236	-1.998	0.046	-0.932	-0.009
categorical_age_3	-1.2176	0.289	-4.209	0.000	-1.785	-0.651
categorical_fare_1	0.1554	0.312	0.498	0.619	-0.457	0.768
categorical_fare_2	0.6350	0.338	1.878	0.060	-0.028	1.298
categorical_fare_3	0.5344	0.410	1.303	0.192	-0.269	1.338

In [348]:

```
x_train_sm.drop(["Embarked_Q"],axis=1,inplace=True)
```

In [349]:

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
model2.fit().summary()
```

Out[349]:

						004
Dep. Variable:	,	Survived	No. Obs	ervatio	ns:	891
Model:		GLM	Df I	Residua	ıls:	879
Model Family:		Binomial		Df Mod	lel:	11
Link Function:		logit		Sca	ile: ´	1.0000
Method:		IRLS	Log-L	ikeliho.	od: -3	395.26
Date:	Mon	, 24 Aug 2020		Devian	ce: 7	790.53
Time:	:	23:57:33	Pea	rson ch	i2:	910.
No. Iterations:		5				
Covariance Type:	n	onrobust				
	coef	std err	z	P> z	[0.02	5 0.975
const	2.9841	0.478	6.241	0.000	2.04	7 3.92
SibSp	-0.3801	0.122	-3.105	0.002	-0.62	0 -0.14
Sex_male	-2.6806	0.195	-13.766	0.000	-3.06	2 -2.29
Embarked_S	-0.4739	0.209	-2.270	0.023	-0.88	3 -0.06

```
      Pclass_3
      -1.8676
      0.336
      -5.555
      0.000
      -2.526
      -1.209

      categorical_age_1
      -0.6137
      0.348
      -1.762
      0.078
      -1.296
      0.069

      categorical_age_2
      -0.4733
      0.233
      -2.033
      0.042
      -0.930
      -0.017

      categorical_age_3
      -1.2193
      0.288
      -4.229
      0.000
      -1.784
      -0.654

      categorical_fare_1
      0.1608
      0.303
      0.531
      0.596
      -0.433
      0.755

      categorical_fare_2
      0.6398
      0.331
      1.933
      0.053
      -0.009
      1.289

      categorical_fare_3
      0.5400
      0.402
      1.343
      0.179
      -0.248
      1.328
```

In [350]:

```
x_train_sm.drop(["Embarked_S"],axis=1,inplace=True)
```

In [351]:

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
model2.fit().summary()
```

Out[351]:

Generalized Linear Model Regression Results

Dep. Variable:	Survived	No. Observations:	891
Model:	GLM	Df Residuals:	880
Model Family:	Binomial	Df Model:	10
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-397.84
Date:	Mon, 24 Aug 2020	Deviance:	795.68
Time:	23:57:33	Pearson chi2:	907.
No. Iterations:	5		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	2.8109	0.467	6.025	0.000	1.896	3.725
SibSp	-0.4004	0.122	-3.274	0.001	-0.640	-0.161
Sex_male	-2.7330	0.194	-14.085	0.000	-3.113	-2.353
Pclass_2	-0.8850	0.309	-2.860	0.004	-1.491	-0.279
Pclass_3	-1.9294	0.333	-5.795	0.000	-2.582	-1.277
categorical_age_1	-0.6004	0.347	-1.731	0.084	-1.280	0.080
categorical_age_2	-0.4300	0.230	-1.867	0.062	-0.881	0.022
categorical_age_3	-1.2325	0.287	-4.292	0.000	-1.795	-0.670
categorical_fare_1	0.0249	0.294	0.085	0.932	-0.551	0.600
categorical_fare_2	0.5545	0.326	1.701	0.089	-0.085	1.194
categorical_fare_3	0.4553	0.396	1.150	0.250	-0.321	1.231

In [352]:

```
x_train_sm.drop(["categorical_age_1"],axis=1,inplace=True)
```

In [353]:

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
model2.fit().summary()
```

Out[353]:

Model:		GLM	Df Residuals:		ıls:	881
Model Family:	Binomial			lel:	9	
Link Function:		logit		Sca	ale: 1.0	0000
Method:		IRLS	Log-L	ikeliho	od : -39	9.36
Date:	Mon	, 24 Aug 2020		Devian	ce : 79	8.72
Time:	;	23:57:33	Pea	rson ch	ni2:	909.
No. Iterations:		5				
Covariance Type:	n	onrobust				
	coef	std err	z	P> z	[0.025	0.975]
const	2.5979	0.447	5.810	0.000	1.722	3.474
SibSp	-0.3843	0.121	-3.174	0.002	-0.622	-0.147
Sex_male	-2.7304	0.193	-14.116	0.000	-3.110	-2.351
Pclass_2	-0.8896	0.309	-2.875	0.004	-1.496	-0.283
Pclass_3	-1.8833	0.331	-5.692	0.000	-2.532	-1.235
categorical_age_2	-0.2570	0.208	-1.237	0.216	-0.664	0.150
categorical_age_3	-1.0490	0.266	-3.939	0.000	-1.571	-0.527
categorical_fare_1	0.0375	0.293	0.128	0.898	-0.536	0.611
categorical_fare_2	0.5628	0.325	1.734	0.083	-0.074	1.199
categorical_fare_3	0.4757	0.394	1.208	0.227	-0.296	1.247

Survived **No. Observations:** 891

In [354]:

Dep. Variable:

```
x_train_sm.drop(["categorical_age_2"],axis=1,inplace=True)
```

In [355]:

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
model2.fit().summary()
```

Out[355]:

Dep. Variable:	;	Survived	No. Obs	ervatio	ns:	891
Model:		GLM	Df I	Residua	ıls:	882
Model Family:		Binomial		Df Mod	lel:	8
Link Function:		logit		Sca	ale: 1.0	0000
Method:		IRLS	Log-L	.ikeliho	od: -40	0.13
Date:	Mon	, 24 Aug 2020		Devian	ce : 80	0.26
Time:	;	23:57:34	Pea	rson ch	ii2:	906.
No. Iterations:		5				
Covariance Type:	n	onrobust				
		. 4 . 4		D. I.I	TO 005	0.0751
	coef	std err	z	P> z	[0.025	0.975]
const	2.4183	0.420	5.751	0.000	1.594	3.242
SibSp	-0.3661	0.118	-3.107	0.002	-0.597	-0.135
Sex_male	-2.7373	0.193	-14.170	0.000	-3.116	-2.359
Pclass_2	-0.8620	0.308	-2.800	0.005	-1.465	-0.259
Pclass_3	-1.8462	0.328	-5.621	0.000	-2.490	-1.202
categorical_age_3	-0.8912	0.233	-3.825	0.000	-1.348	-0.435
categorical_fare_1	0.0543	0.292	0.186	0.852	-0.517	0.626
categorical fare 2	0.5493	0.324	1.698	0.090	-0.085	1.184

```
In [356]:
```

```
x_train_sm.drop(["categorical_fare_1"],axis=1,inplace=True)
```

In [357]:

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
model2.fit().summary()
```

Out[357]:

Generalized Linear Model Regression Results

Dep. Variable:	:	Survived	No. Obs	ervatio	ns:	891
Model:	GLM		Df I	Residua	ıls:	883
Model Family:		Binomial		Df Mod	lel:	7
Link Function:		logit		Sca	ale: 1.0	0000
Method:		IRLS	Log-L	ikeliho.	od: -40	0.15
Date:	Mon	, 24 Aug 2020		Devian	ce : 80	0.29
Time:	:	23:57:34	Pearson chi2:			909.
No. Iterations:		5				
Covariance Type:	n	onrobust				
	coef	std err	z	P> z	[0.025	0.975]
const	2.4557	0.370	6.638	0.000	1.731	3.181
SibSp	-0.3633	0.117	-3.110	0.002	-0.592	-0.134
Sex_male	-2.7391	0.193	-14.194	0.000	-3.117	-2.361
Pclass_2	-0.8543	0.305	-2.800	0.005	-1.452	-0.256
Pclass_3	-1.8564	0.324	-5.728	0.000	-2.492	-1.221
categorical_age_3	-0.8888	0.233	-3.820	0.000	-1.345	-0.433
categorical_fare_2	0.5122	0.255	2.009	0.044	0.013	1.012
categorical_fare_3	0.4526	0.332	1.363	0.173	-0.198	1.103

In [358]:

```
x_train_sm.drop(["categorical_fare_3"],axis=1,inplace=True)
```

In [359]:

```
model2 = sm.GLM(y, (sm.add_constant(x_train_sm)), family=sm.families.Binomial())
model2.fit().summary()
```

Out[359]:

891	No. Observations:	Survived	Dep. Variable:
884	Df Residuals:	GLM	Model:
6	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-401.06	Log-Likelihood:	IRLS	Method:
802.12	Deviance:	Mon, 24 Aug 2020	Date:
917.	Pearson chi2:	23:57:34	Time:
		5	No. Iterations:
		nonrohust	Coverience Type:

```
        covariance type:
        std err
        z
        P>|z|
        [0.025
        0.975]

        const
        2.8037
        0.271
        10.360
        0.000
        2.273
        3.334

        SibSp
        -0.2833
        0.099
        -2.871
        0.004
        -0.477
        -0.090

        Sex_male
        -2.7487
        0.193
        -14.270
        0.000
        -3.126
        -2.371

        Pclass_2
        -1.0801
        0.257
        -4.198
        0.000
        -1.584
        -0.576

        Pclass_3
        -2.1604
        0.238
        -9.092
        0.000
        -2.626
        -1.695

        categorical_age_3
        -0.8738
        0.232
        -3.771
        0.000
        -1.328
        -0.420

        categorical_fare_2
        0.2995
        0.201
        1.493
        0.135
        -0.094
        0.693
```

In [360]:

```
x_train_sm.drop(["categorical_fare_2"],axis=1,inplace=True)
```

In [361]:

```
model2 = sm.GLM(y,(sm.add_constant(x_train_sm)),family=sm.families.Binomial())
result=model2.fit()
result.summary()
```

Out[361]:

Generalized Linear Model Regression Results

Dep. Variable:		Survived	No. Obs	servatio	ns:		891	
Model:		GLM	Df	Residua	als:		885	
Model Family:		Binomial		Df Mod	lel:		5	
Link Function:		logit		Sca	ale:	1.0	0000	
Method:		IRLS	Log-l	_ikeliho	od:	-40	2.17	
Date:	Mor	n, 24 Aug 2020		Devian	ce:	80	4.35	
Time:		23:57:35	Pea	ırson cl	ni2:		915.	
No. Iterations:		5						
Covariance Type:	n	onrobust						
	coef	std err	z	P> z	[0.0	25	0.97	5]
const	2.8984	0.267	10.871	0.000	2.3	76	3.42	21
SibSp	-0.2631	0.095	-2.756	0.006	-0.4	50	-0.07	'6
Sex_male	-2.7652	0.193	-14.319	0.000	-3.1	44	-2.38	37
Pclass_2	-1.0660	0.257	-4.143	0.000	-1.5	70	-0.56	32
Pclass_3	-2.1912	0.238	-9.216	0.000	-2.6	57	-1.72	25
categorical age 3	-0.8704	0.232	-3.755	0.000	-1.3	25	-0.41	16

Now all the features looks significant. Now we can go ahead and see for the Variance Inflation Factor for thes features and make a decision

In [362]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [363]:

```
# Create a dataframe that will contain the names of all the feature variables that w used before a
nd their respective VIFs
vif = pd.DataFrame()
vif['Features'] = x_train_sm.columns
vif['VIF'] = [variance_inflation_factor(x_train_sm.values, i) for i in range(x_train_sm.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
```

```
vif = vif.sort_values(by = "VIF", ascending = False)
vif
Out[363]:
         Features VIF
            const 7.03
0
         Pclass_3 1.68
3
         Pclass_2 1.52
5 categorical_age_3 1.12
         Sex_male 1.04
           SibSp 1.03
In [364]:
x_train_sm.drop("const",axis=1,inplace=True)
In [365]:
# Create a dataframe that will contain the names of all the feature variables that w used before a
nd their respective VIFs
vif = pd.DataFrame()
vif['Features'] = x train sm.columns
vif['VIF'] = [variance_inflation_factor(x_train_sm.values, i) for i in range(x_train_sm.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
Out[365]:
         Features VIF
1
         Sex_male 2.35
3
         Pclass_3 2.10
2
         Pclass_2 1.27
           SibSp 1.20
4 categorical_age_3 1.19
So the final features are "Sex_male", "Pclass_3", "Pclass_2", "SibSP", "categorical_age_3".
In [366]:
y_train_pred = result.predict(sm.add_constant(x_train_sm)).values.reshape(-1)
In [367]:
y_train_pred[:10]
Out[367]:
array([0.08939138, 0.85383015, 0.6697825 , 0.93310007, 0.11324449,
       0.11324449, 0.32361891, 0.05482487, 0.6697825 , 0.82769109])
In [368]:
df.head()
Out[368]:
   Passengerld Survived SibSp Parch Sex_male Embarked_Q Embarked_S Pclass_2 Pclass_3 categorical_age_1 categorical_age
0
                                                   0
                                                                       0
                                                                                              0
                                0
```

```
Passengerld Survived SibSp Parch Sex_male Embarked_Q Embarked_S Pclass_2 Pclass_3 categorical_age_1 categorical_age
2
             4
                                   0
                                             0
                                                         0
                                                                               0
                                                                                        0
                                                                                                         0
 3
                      1
                             1
                                                                      1
 4
             5
                      0
                             0
                                                         0
                                                                               0
                                                                                                         0
4
In [369]:
```

```
df1=df[["PassengerId","Survived"]]
```

In [370]:

```
df1["Predicted Survival"]=y train pred
```

In [371]:

```
df1.head()
```

Out[371]:

	Passengerld	Survived	Predicted_Survival
0	1	0	0.089391
1	2	1	0.853830
2	3	1	0.669783
3	4	1	0.933100
4	5	0	0.113244

Find the optimal cut-off point:

In [372]:

```
# Let's create columns with different probability cutoff
numbers = [float(x)/10 \text{ for } x \text{ in } range(10)]
for i in numbers:
    df1[i] = df1["Predicted_Survival"].map(lambda x: 1 if x > i else 0)
df1.head()
```

Out[372]:

	Passengerld	Survived	Predicted_Survival	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	1	0	0.089391	1	0	0	0	0	0	0	0	0	0
1	2	1	0.853830	1	1	1	1	1	1	1	1	1	0
2	3	1	0.669783	1	1	1	1	1	1	1	0	0	0
3	4	1	0.933100	1	1	1	1	1	1	1	1	1	1
4	5	0	0.113244	1	1	0	0	0	0	0	0	0	0

In [373]:

```
# Now let's calculate accuracy sensitivity and specificity for various probability cutoffs.
cutoff_df = pd.DataFrame(columns=['probability','accuracy','sensitivity','specificity'])
from sklearn.metrics import confusion matrix
num = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for i in num:
    cm1 = confusion matrix(df1.Survived,df1[i])
    total1=sum(sum(cm1))
    accuracy = (cm1[0,0]+cm1[1,1])/total1
    sensi = cm1[1,1] / (cm1[1,0]+cm1[1,1])
speci = cm1[0,0] / (cm1[0,0]+cm1[0,1])
    cutoff df.loc[i] = [i,accuracy,sensi,speci]
```

Out[373]:

	probability	accuracy	sensitivity	specificity
0.0	0.0	0.383838	1.000000	0.000000
0.1	0.1	0.479237	0.956140	0.182149
0.2	0.2	0.698092	0.853801	0.601093
0.3	0.3	0.756453	0.786550	0.737705
0.4	0.4	0.791246	0.760234	0.810565
0.5	0.5	0.804714	0.728070	0.852459
0.6	0.6	0.810325	0.654971	0.907104
0.7	0.7	0.782267	0.456140	0.985428
8.0	0.8	0.769921	0.418129	0.989071
0.9	0.9	0.675645	0.160819	0.996357

In [374]:

```
cutoff_df.plot.line(x='probability',y=['accuracy','sensitivity','specificity'])
plt.title('Selecting the Cutoff Probability')
plt.show()
```


From the above graph we can infer that the cut-off probability lies in between 0.3 and 0.4 so lets consder it to be 0.35

In [375]:

```
df1['Predicted'] = df1["Predicted_Survival"].map(lambda x : 1 if x > 0.35 else 0 )
```

In [376]:

```
dfl.head()
```

Out[376]:

	Passengerld	Survived	Predicted_Survival	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	Predicted
0	1	0	0.089391	1	0	0	0	0	0	0	0	0	0	0
1	2	1	0.853830	1	1	1	1	1	1	1	1	1	0	1
2	3	1	0.669783	1	1	1	1	1	1	1	0	0	0	1
3	4	1	0.933100	1	1	1	1	1	1	1	1	1	1	1
4	5	0	0.113244	1	1	0	0	0	0	0	0	0	0	0

In [377]:

```
from sklearn import metrics
```

```
In [378]:

# Let's check the overall accuracy.
print(round(100* metrics.accuracy_score(dfl.Survived,dfl.Predicted),2))
confusion = confusion_matrix(dfl['Survived'],dfl['Predicted'])
print(confusion)

78.45
[[438 111]
[ 81 261]]

Predicted not_survived survived Actual not_survived 438 111 survived 81 261

Metrics Beyond Simple Accuracy:
In [379]:
```

```
In [379]:
TP = confusion[1,1] # true positive
TN = confusion[0,0] # true negatives
FP = confusion[0,1] # false positives
FN = confusion[1,0] # false negatives
In [380]:
#Sensitivity
round(100*(TP / float(TP+FN)), 2)
Out[380]:
76.32
In [381]:
#Specificity
round(100*(TN / float(TN+FP)), 2)
Out[381]:
79.78
In [382]:
#False Positive Rate
round(100*(FP / float(FP+TN)), 2)
Out[382]:
20.22
In [383]:
#Positive Predictive Value
round(100*(TP / float(TP+FP)), 2)
Out[383]:
70.16
In [384]:
#Negative Predictive Value
round(100*(TN / float(TN+FN)), 2)
Out[384]:
84.39
```

ROC CURVE

```
In [385]:
```

```
from sklearn import metrics
```

```
In [386]:
```

In [387]:

```
fpr, tpr, thresholds = metrics.roc_curve(df1.Survived,df1.Predicted, drop_intermediate = False)
```

In [388]:

```
draw_roc(df1.Survived,df1.Predicted)
```


Precision And Recall

```
In [389]:
```

```
precision = TP / float(TP+FP)
```

In [390]:

```
recall = TP / float(TP+FN)
```

In [391]:

```
from sklearn.metrics import precision_score, recall_score
```

```
In [392]:
```

precision_score(df1.Survived,df1.Predicted)

Out[392]:

0.7016129032258065

In [393]:

recall_score(df1.Survived,df1.Predicted)

Out[393]:

0.7631578947368421

In [394]:

from sklearn.metrics import precision_recall_curve

In [395]:

```
p, r, thresholds = precision_recall_curve(df1.Survived, df1.Predicted)
plt.plot(thresholds, p[:-1], "g-")
plt.plot(thresholds, r[:-1], "r-")
plt.show()
```


Test Dataset Computations:

```
In [396]:
```

test.head()

Out[396]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

We need to keep the test dataset ready to run our previous model which we built and predict the passengers here in test dataset whether they survived or not. For this we can run the same transformations and set of operations that ran in train.

```
test.shape
Out[404]:
(418, 12)
In [405]:
test.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):
                 418 non-null int64
PassengerId
Pclass
                  418 non-null int64
                  418 non-null object
Name
Sex
                  418 non-null object
Age
                  418 non-null float64
                  418 non-null int64
SibSp
Parch
                 418 non-null int64
Ticket
                 418 non-null object
Fare
                  417 non-null float64
                  91 non-null object
Cabin
Embarked
                  418 non-null object
categorical_age 418 non-null int64
dtypes: float64(2), int64(5), object(5)
memory usage: 31.1+ KB
In [406]:
print("Median: "+str(test.Age.median()))
Median: 27.0
In [407]:
test["Age"].fillna(test.Age.median(),inplace=True)
In [408]:
test["Embarked"].fillna(test["Embarked"].mode()[0],inplace=True)
In [409]:
display(test.Age.describe())
count 418.000000
         29.599282
mean
std
        12.703770
          0.170000
min
         23.000000
25%
50%
         27.000000
75%
         35.750000
         76.000000
max
Name: Age, dtype: float64
In [410]:
def categorical age(x):
   if 0 < x <= 23:
       return 0
    elif 23 < x <= 27:
       return 1
    elif 27 < x <= 36.5:
       return 2
    else:
       return 3
```

```
test['categorical_age'] = test['Age'].apply(categorical_age)

In [411]:
# Convert age into a categorical variables using the quartiles
display(test.Fare.describe())
```

 count
 417.000000

 mean
 35.627188

 std
 55.907576

 min
 0.000000

 25%
 7.895800

 50%
 14.454200

 75%
 31.500000

 max
 512.329200

Name: Fare, dtype: float64

In [412]:

```
def categorical_fare(x):
    if 0 < x <= 7.9:
        return 0
    elif 7.9 < x <= 14.5:
        return 1
    elif 14.5 < x <= 32:
        return 2
    else:
        return 3

test['categorical_fare'] = test['Fare'].apply(categorical_fare)</pre>
```

In [413]:

test.head()

Out[413]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	categorical_age	categorical_fare
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q	2	0
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S	3	0
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q	3	1
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S	1	1
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S	0	1

In [414]:

```
test.drop("Cabin",axis=1,inplace=True)
```

In [415]:

```
categorical_features = ['Pclass', 'Sex', 'Embarked']
test[categorical_features] = test[categorical_features].apply(lambda x: x.astype('category'))
```

In [416]:

bur of the animate /are bur of the form the transfer the first transfer to the first transfer transfer to the first transfer tran

```
test = pa.get_aummles(aata=test, columns=['Sex', 'Embarked', 'PClass', 'Categorical_age', 'Categori
cal_fare'], drop_first=True)

In [417]:
test.drop(['Name', 'Ticket', 'Age', 'Fare'], axis=1, inplace=True)

In [418]:
test.head()
Out[418]:
```

	Passengerld	SibSp	Parch	Sex_male	Embarked_Q	Embarked_S	Pclass_2	Pclass_3	categorical_age_1	categorical_age_2	catego
0	892	0	0	1	1	0	0	1	0	1	
1	893	1	0	0	0	1	0	1	0	0	
2	894	0	0	1	1	0	1	0	0	0	
3	895	0	0	1	0	1	0	1	1	0	
4	896	1	1	0	0	1	0	1	0	0	
4											Þ

Now basically we have done all the transformations in test as same as what we have done in train dataset including the imputing of missing values with new level, Binning the values, dummy variables for some features, maping for binary level features etc.

Now we can select only those selected columns with which we build the model and apply the model on the test dataset.

```
In [420]:
```

```
final_features=[]
final_features_index = x_train_sm.columns
for i in final_features_index:
    final_features.append(i)
```

In [421]:

```
final_features
```

Out[421]:

```
['SibSp', 'Sex_male', 'Pclass_2', 'Pclass_3', 'categorical_age_3']
```

In [1200]:

```
df_test = test[final_features]
df_final =test['PassengerId']
```

In [1201]:

```
df_test.head()
```

Out[1201]:

	SibSp	Sex_male	Pclass_2	Pclass_3	categorical_age_3
0	0	1	0	1	0
1	1	0	0	1	1
2	0	1	1	0	1
3	0	1	0	1	0
4	1	0	0	1	0

In [1202]:

```
y_test_pred = result.predict(sm.add_constant(df_test)).values.reshape(-1)
```

```
In [1203]:
y test pred[:10]
Out[1203]:
array([0.11324449, 0.39502962, 0.14146763, 0.11324449, 0.60924336,
       0.11324449, 0.6697825 , 0.23221064, 0.6697825 , 0.070165 ])
In [1204]:
df_final = pd.DataFrame(df_final)
df final['Survived_Prob'] = y_test_pred
In [1205]:
#We can use the same cut-off probability of 0.4 to predict whether the passenger survived or not.
df final['Survived'] = df final['Survived Prob'].map(lambda x : 1 \text{ if } x > 0.35 \text{ else } 0)
In [1206]:
df_final.drop(['Survived_Prob'],axis=1,inplace=True)
In [1207]:
df_final.sort_values(by=['PassengerId'], ascending=True, inplace=True)
In [1208]:
df_final
Out[1208]:
    Passengerld Survived
  1
           893
                     1
           894
  3
           895
                     0
           896
                     1
  ...
            ...
413
          1305
                     0
414
          1306
                     1
415
          1307
                     0
416
          1308
                     0
          1309
                     0
417
418 rows × 2 columns
In [1209]:
df final.shape
Out[1209]:
(418, 2)
In [1210]:
df final.to csv('Titanic.csv',header=True,index=False)
```

(: THANK YOU :)