Math 1010 - Homework 5

Milan Capoor

Problem 1

Assume (a_n) and (b_n) are Cauchy sequences. Use a triangle inequality argument to prove $c_n = |a_n - b_n|$ is Cauchy

Let $\varepsilon > 0$. Since (a_n) is Cauchy, $\exists N \in \mathbb{N}$ such that $m, n \geq N$ implies $|a_m - a_n| < \frac{\varepsilon}{2}$. Similarly, since (b_n) is Cauchy, $\exists M \in \mathbb{N}$ such that $m, n \geq M$ implies $|b_m - b_n| < \frac{\varepsilon}{2}$. Let $K = \max\{N, M\}$. Then $m, n \geq K$ implies

$$|c_n - c_m| = |(a_n - b_n) - (a_m - b_m)|$$

$$= |a_n - a_m - b_n + b_m|$$

$$\leq |a_n - a_m| + |b_n - b_m|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Therefore, (c_n) is Cauchy.

Problem 2

If (x_n) and (y_n) are Cauchy sequences, then one easy way to prove that $(x_n + y_n)$ is Cauchy is to use the Cauchy Criterion: (x_n) and (y_n) must be convergent, and the Algebraic Limit Theorem then implies $(x_n + y_n)$ is convergent and hence Cauchy.

1. Give a direct argument that $(x_n + y_n)$ is a Cauchy sequence that does not use the Cauchy Criterion or the Algebraic Limit Theorem.

Let $\varepsilon > 0$. Since (x_n) is Cauchy, $\exists N \in \mathbb{N}$ such that $m, n \geq N$ implies $|x_m - x_n| < \frac{\varepsilon}{2}$. Similarly, since (y_n) is Cauchy, $\exists M \in \mathbb{N}$ such that $m, n \geq M$ implies $|y_m - y_n| < \frac{\varepsilon}{2}$. Let $K = \max\{N, M\}$. Then $m, n \geq K$ implies

$$|(x_n + y_n) - (x_m + y_m)| = |x_n - x_m + y_n - y_m| \le |x_n - x_m| + |y_n - y_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Therefore, $(x_n + y_n)$ is Cauchy.

2. the same for the product $(x_n \cdot y_n)$.

Let $\varepsilon > 0$. Since (x_n) and (y_n) are Cauchy, they are bounded. Let $B = \max\{|x_n|, |y_n|\}$.

Further, since (x_n) is Cauchy, $\exists N \in \mathbb{N}$ such that $m, n \geq N$ implies $|x_m - x_n| < \frac{\varepsilon}{2B}$ Similarly, since (y_n) is Cauchy, $\exists M \in \mathbb{N}$ such that $m, n \geq M$ implies $|y_m - y_n| < \frac{\varepsilon}{2B}$. Let $K = \max\{N, M\}$. Then $m, n \geq K$ implies

$$|x_n y_n - x_m y_m| = |x_n y_n - x_n y_m + x_n y_m - x_m y_m|$$

$$= |x_n (y_n - y_m) + y_m (x_n - x_m)|$$

$$\leq |x_n| |y_n - y_m| + |y_m| |x_n - x_m|$$

$$< |x_n| \frac{\varepsilon}{2B} + |y_m| \frac{\varepsilon}{2B}$$

$$= \frac{\varepsilon}{2B} (|x_n| + |y_m|)$$

$$\leq \frac{\varepsilon}{2B} (B + B) = \varepsilon$$

Therefore $(x_n y_n)$ is Cauchy.

Problem 3

Given a series $\sum_{n=1}^{\infty} a_n$ with $a_n \neq 0$, the Ratio Test states that if (a_n) satisfies

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = r < 1$$

then the series converges absolutely.

1. Let r' satisfy r < r' < 1 (Why must such an r' exist?) Explain why there exists an N such that $n \ge N$ implies $|a_{n+1}| \le |a_n| r'$

 $(r' \text{ exists by density of } \mathbb{R})$

Suppose $\lim \left|\frac{a_{n+1}}{a_n}\right| = r < r' < 1$. Then $\exists N \in \mathbb{N}$ such that $n \geq N$ implies $\left|\frac{a_{n+1}}{a_n}\right| < r'$ by definition of convergence. Then

$$\left| \frac{a_{n+1}}{a_n} \right| = |a_{n+1}| \cdot \left| \frac{1}{a_n} \right| = |a_{n+1}| \cdot \frac{1}{|a_n|}$$

Since $\left| \frac{a_{n+1}}{a_n} \right| < r'$,

$$|a_{n+1}| \le |a_n| r'$$

2. Why does $|a_N| (r')^n$ necessarily converge?

Since $|a_N|$ is a constant and r' < 1, $\sum_{n=1}^{\infty} |a_N| (r')^n$ is a geometric series and converges. Since the series converges, $|a_N| (r')^n$ converges.

3. Now show that $\sum |a_n|$ converges

From part 1, for all n > N, $|a_{n+1}| \le |a_n| r'$.

Then,

$$|a_{n+2}| \le |a_{n+1}| r' \le |a_n| (r')(r')$$

By induction,

$$|a_{n+k}| \le |a_n| (r')^k$$

Then, for n > N,

$$|a_n| \le |a_N| (r')^{n-N}$$

From part 2, $\sum_{n=1}^{\infty} |a_N| (r')^n$ converges and an identical argument shows that $\sum_{n=1}^{\infty} |a_N| (r')^{n-N}$ converges. Thus, by the series comparison test, $\sum_{n=1}^{\infty} |a_n|$ converges.

Problem 4

1. (Summation by parts) Let (x_n) and (y_n) be sequences, and let $s_n = x_1 + x_2 + \cdots + x_n$. Use the observation that $x_j = s_j - s_{j-1}$ to verify the formula

$$\sum_{j=m+1}^{n} x_j y_j = s_n y_{n+1} - s_m y_{m+1} + \sum_{j=m+1}^{n} s_j (y_j - y_{j+1})$$

$$\sum_{j=m+1}^{n} x_{j}y_{j} = \sum_{j=m+1}^{n} (s_{j} - s_{j-1})y_{j}$$

$$= \sum_{j=m+1}^{n} s_{j}y_{j} - \sum_{j=m+1}^{n} s_{j-1}y_{j}$$

$$= \sum_{j=m+1}^{n} s_{j}y_{j} - \left(-s_{n}y_{n+1} - s_{m}y_{m+1} + \sum_{j=m+1}^{n+1} s_{j-1}y_{j}\right)$$

$$= s_{n}y_{n+1} - s_{m}y_{m+1} + \sum_{j=m+1}^{n} s_{j}y_{j} - \sum_{j=m+1}^{n} s_{j}y_{j+1}$$

$$= s_{n}y_{n+1} - s_{m}y_{m+1} + \sum_{j=m+1}^{n} s_{j}(y_{j} - y_{j+1})$$

- 2. (Dirichlet's Test) Dirichlet's Test for convergence states that if the partial sums of $\sum_{n=1}^{\infty} x_n$ are bounded (but not necessarily convergent), and if (y_n) is a sequence satisfying $y_n \geq y_2 \geq \cdots \geq 0$ and $\lim y_n = 0$, then $\sum_{n=1}^{\infty} x_n y_n$ converges.
 - (a) Let M > 0 be an upper bound for the partial sums of $\sum_{n=1}^{\infty} x_n$. Use part 1 to show that

$$\left| \sum_{j=m+1}^{n} x_j y_j \right| \le 2M \left| y_{m+1} \right|$$

$$\left| \sum_{j=m+1}^{n} x_{j} y_{j} \right| = \left| s_{n} y_{n+1} - s_{m} y_{m+1} + \sum_{j=m+1}^{n} s_{j} (y_{j} - y_{j+1}) \right|$$

$$\leq \left| s_{n} y_{n+1} - s_{m} y_{m+1} \right| + \left| \sum_{j=m+1}^{n} s_{j} (y_{j} - y_{j+1}) \right|$$

$$\leq M \left| y_{n+1} - y_{m+1} \right| + \left| \sum_{j=m+1}^{n} M (y_{j} - y_{j+1}) \right|$$

$$= M \left| y_{n+1} - y_{m+1} \right| + M \left| (y_{m+1} - y_{m+2}) + (y_{m+2} - y_{m+3}) + \dots + (y_{n} - y_{n+1}) \right|$$

$$= M \left| y_{n+1} - y_{m+1} \right| + M \left| y_{m+1} - y_{n+1} \right|$$

$$= 2M \left| y_{m+1} - y_{n+1} \right|$$

Since
$$y_n > 0$$
, $2M |y_{m+1} - y_{n+1}| \le 2M |y_{m+1}|$.

(b) Prove Dirichlet's Test

Since $\lim y_n = 0$, $\exists N \in \mathbb{N}$ such that $m, n \geq N$ implies $|y_n| < \frac{\varepsilon}{2M}$. Now let $S_n = \sum_{j=1}^n x_j y_j$ so

$$|S_n - S_m| = \left| \sum_{j=m+1}^n x_j y_j \right| \le 2M |y_{m+1}| < 2M \frac{\varepsilon}{2M} = \varepsilon$$

Then by the Cauchy Criterion, (S_n) converges so $\sum_{k=m+1}^n x_j y_j$ converges.