ECEN620: Network Theory Broadband Circuit Design Fall 2014

Lecture 8: Charge Pump Circuits

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements & Agenda

- HW2 is due Oct 6
- Exam 1 is on Wed. Oct 8
 - Covers Lectures 1-6
 - One double-sided 8.5x11 notes page allowed
 - Bring your calculator
 - Previous exams are posted for reference
- Charge pump circuits
 - Basic operation
 - Techniques to improve static and dynamic current source matching

References

- Design of Integrated Circuits for Optical Communications, B. Razavi, McGraw-Hill, 2003.
- First Time, Every Time Practical Tips for Phase-Locked Loop Design, D. Fischette, IEEE Tutorial, 2009.
- PLL/charge-pump papers posted on the website

Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider

Charge Pump

VSS

 Converts PFD output signals to charge

 Charge is proportional to PFD pulse widths

Un - Averaged Charge - Pump Gain =
$$I_{CP}$$
 (Amps)

Averaged Charge - Pump Gain =
$$\frac{I_{CP}}{2\pi} \left(\frac{\text{Amps}}{\text{rad}} \right)$$

Total PFD & Charge - Pump Gain =
$$\frac{I_{CP}}{2\pi} \left(\frac{\text{Amps}}{\text{rad}} \right)$$

This gain can vary if a different phase detector is used

w/ XOR PD:
$$\frac{2I_{CP}}{\pi}$$
, w/ J - K FF PD: $\frac{I_{CP}}{\pi}$

Charge Pump Implementations

Single-Ended

up(t)

down(t)

cp

[Perrott]

Simple Charge Pump

- Issues
 - Skew between UPB and DN control signals
 - Matching of UP/DN current sources
 - Clock feedthrough and charge injection from switches onto V_{ctrl}
 - Charge sharing between current source drain nodes' capacitance and V_{ctrl}

Simple Charge Pump Skew Compensation

 Adding a transmission gate in the DN signal path helps to equalize the delay with the UPB signal for better overlap between the UP and DN current sources

Charge Pump Mismatch

Ideal locked condition, but CP mismatch

Actual locked condition w/ CP mismatch

- Recall that in order to eliminate the PLL deadzone, both UP and DN current sources should be on for a minimum period
- PLL will lock with static phase error if there is a charge pump mismatch
- Extra "ripple" on Vctrl
 - Results in frequency domain spurs at the reference clock frequency offset from the carrier

PLL Output Spectrum w/ Spurs

- 5GHz clock synthesized with a PLL utilizing a 200MHz ref clk
- Spurs appear at ±f_{ref} relative to the carrier frequency
- In order to minimize this, it is not only important to match the DC value of I_{UP}=I_{DN}, but also address dynamic current mismatches
 - Charge Sharing
 - Charge injection and clock feedhrough

Charge Sharing on V_{ctrl}

- When switches are off, the PMOS current source drain discharges to VDD and the NMOS current source drain discharges to GND
- When switches are on, charge sharing occurs between the loop filter capacitance and these current source drain nodes, causing a level-dependent disturbance on V_{ctrl}

Charge Pump w/ Improved Matching

- Parallel path keeps current sources always on
- Amplifier keeps current source Vds voltages constant resulting in reduced transient current mismatch (charge sharing)

[Young JSSC 1992]

Charge Pump w/ Reversed Switches

- Swapping switches reduces charge injection
 - MOS caps (Md1-4) provide extra charge injection cancellation
- Helper transistors Mx and My quickly turn-off current sources
- Dummy branch helps to match PFD loading
- Helps with charge injection, but charge sharing is still an issue

[Ingino JSSC 2001]

Fully-Differential Charge Pump

 CMFB loop adjusts the top current sources to match I_{CP} at the differential loop filter common-mode level

Everything But The Kitchen Sink

- This fully-differential charge pump uses many techniques to match the UP/DN current sources and mitigate charge injection and charge sharing
 - Dummy path M2 and M4 w/ feedback amps to match current source V_{DS}
 - Dummy switches M1' and M3' provide charge injection cancellation
 - CMFB circuit matches UP/DN current at the filter common-mode output
 - Left and right-most feedback loop improve matching considering the differential loop filter control voltage
 - Additional PMOS current sources M11 & M12 extend matching over a wide voltage range

Improved Matching w/ Differential Output

[Cheng TCAS2 2006]

Fig. 4. Output currents with and without mismatch suppression.

- The CMFB loop compensates for current source mismatch at the common-mode level
- However, it cannot compensate for current source mismatch due to the differential control output voltage, as this voltage is symmetric with the common-mode
- Additional feedback networks (OP1 & OP2) provide for improved matching with the differential control output voltage

Discharging Current

Additional Current Variation Suppression

[Cheng TCAS2 2006]

- While matching is good at the control voltage extremes, the absolute current value falls due to finite current source output resistance
- Additional PMOS current sources M1 and M2 provide additional NMOS current when the single-ended control voltage is low, which the main PMOS current source then tracks via feedback
- This extends the voltage range over which the absolute charge pump current matches its nominal value

Next Time

Loop Filter Circuits