

What is Sarcasm?

The use of remarks that clearly mean the opposite of what they say, made in order to hurt someone's feelings or to criticize something in a humorous way

What is Sarcasm?

The use of remarks that clearly mean the opposite of what they say, made in order to hurt someone's feelings or to criticize something in a humorous way

What is Sarcasm?

Mean the opposite of what is on the surface

Problem of Sarcasm in Sentiment Analysis

Problem of Sarcasm in Sentiment Analysis

Problem of Sarcasm in Sentiment Analysis

Given the sentence...

Wow! Sarcasm detection using ML is **soooooo easy**, even a baby can do it!!!!!

Unaware of Sarcasm -> Positive

Enhanced Sentiment analysis

Enhanced Sentiment analysis

General Approach

Data Exploration

Dataset Columns

Comment

Given text to check for sarcasm

Author

Writer of the comment

Parent Comment

Text that comment is replying to

SubReddit

General topic that comment falls under

Score

Number of upvotes minus the number of downvotes

Created Time

Time that comment was posted

Dataset Columns

Comment

Given text to check for sarcasm

Author

Writer of the comment

Parent Comment

Text that comment is replying to

SubReddit

General topic that comment falls under

Score

Number of upvotes minus the number of downvotes

Created Time

Time that comment was posted

Columns dropped as the text to be predicted on **does not include these features**

Exploration of *Comment* column

Missing Data

53 rows of data with comments **missing**

48479

repeated comments

Most common words

the, a, to, it, i, and, you, is, of, that, in

Numerical Comments

1277 numerical comments after removing punctuation

Common text-preprocessing techniques

- Drop rows with null values
- Remove punctuations
- Lowercase all text
- Tokenize into words
- Remove stopwords
- Stem words
- Lemmatize words
- Drop numerical data

Pre-processing effects

Original Comment "How about a No Lives Matter, for the incurably misanthropic?"

Tokenize into words

Drop if comment is numeric

Stem words

#How about a No Lives Matter; for the incurably misanthropic? Remove punctuation

Lowercase all text how about a no lives matter for the incurably misanthropic

Remove safe stopwords [how, about, a, no, lives, matter, for, the, incurably, misanthropic]

[how, no, live, matter, incurably, misanthropic]

[how, no, life/live, matter, incurably, misanthropic]

[how, about, a, no, lives, matter, for, the, incurably, misanthropic]

Lemmatize words [how, no, life, matter, incurably, misanthropic]

Pre-processing impact on sarcasm detection

Removing punctuation

Comments may use punctuation to express the idea of so-called , which implies sarcasm Eg. How are you so "smart".....?

Removing stopwords

Context will shift if stopwords that contribute to sentiment are missing. To difficult to predict all possibilities

Eg. He is totally not feeling sick

Pre-processing impact on sarcasm detection

Stemming

Stemming is a technique used to contract words to their roots forms. For instance, connections, connected, connects, stems to "connect".

Lemmatization

Lemmatization is another text normalization technique to change words to their base root form. For instance, the words leafs and leaves become "leaf".

Why is it a problem?

The extent of a word and its implication is lost. The "smartest" man is no longer the "smartest"!

Feature
Extraction &
Engineering

Vectorizers and Word embedding

Bag of Bigrams

TF.IDF

GloVe word embedding

Keras tokenizer

Features from Literature [2]

Frequencies of:

- 1. Consecutive Alphabets
- 2. Exclamation Marks
- 3. Dots
- 4. Question Marks
- 5. Capital Letters
- 6. Quotation Marks

Correlation Matrix

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

PCA plot of Literature Features

New Augmented Features

Frequencies of:

- l. Consecutive Alphabets (same as literature)
- 2. Consecutive Exclamation Marks
- 3. Consecutive Dots
- 4. Consecutive Question Marks
- 5. Consecutive Capital Letters
- 6. Consecutive Punctuations

Consecutive: More than 2 occurrences in a row

Correlation Matrix of New Features

PCA plot of New Features

Cropped plot for viewing important region

Models Explored

- 1. Logistic Regression
- 2. Recurrent Neural Networks (RNN)
- 3. Convolutional Neural Network (CNN)
- 4. Bidirectional Encoder Representations from Transformers (BERT)

LOGISTIC REGRESSION

Motivation & Architecture

- Large reddit dataset thus using logistic regression would reduce training time significantly
- TF-IDF outputs words which are most representative of sarcasm (using 200 most frequent words as vocabulary) [2]

LOGISTIC REGRESSION

Motivation & Architecture

- More than 1 million data points thus using logistic regression would reduce training time significantly
- TF-IDF outputs words which are most
 representative of sarcasm (using 200 most
 frequent words as vocabulary) [2]

Results

	Accuracy	Precision	Recall	F1 score
Features from paper	63.55 %	0.659	0.562	0.607
Combined with custom features	63.99%	0.654	0.595	0.623

Cropped plots for viewing important regions

Models Explored

- 1. Logistic Regression
- 2. Recurrent Neural Networks (RNN)
- 3. Convolutional Neural Network (CNN)
- 4. Bidirectional Encoder Representations from Transformers (BERT)

Motivation & Architecture

- More than 1 million data points encourages deep learning with Neural Networks
- GloVe allows us to understand vector embeddings of words
- LSTM allows us to keep track of long term and short term memory

Motivation & Architecture

- More than 1 million data points encourages deep learning with Neural Networks
- GloVe allows us to understand vector embeddings of words
- LSTM allows us to keep track of long term and short term memory

Motivation & Architecture

- More than 1 million data points encourages deep learning with Neural Networks
- GloVe allows us to understand vector embeddings of words
- LSTM allows us to keep track of long term and short term memory

Forget and Input Gates allows for removal and insertion for important keywords respectively in our Long-Term Memory.

Baseline Model Structure

Rationale

GloVe vectorizes the word tokens to build an **embedding layer of 100 dimensions**.

Baseline Model Structure

Rationale

LSTM stores the **important keywords** and captures **relationships** between words.

Baseline Model Structure

Rationale

Sigmoid function maps our output to a sarcasm probability from 0 to 1.

	Acc.	Prec.	Recall	F1
Baseline	70.6%	0.717	0.682	0.700

Augmented Model Structure

Rationale

Bidirectional LSTM learns the reversed sequencing for pattern recognition.

	Acc.	Prec.	Recall	F1
Baseline	70.6%	0.717	0.682	0.700
Bidirectional	71.6%	0.731	0.683	0.707

Stacked Bidirectional LSTM Based Framework for Sarcasm Identification (Aytug Onan, 2020)

0.25 Recurrent Dropout

Rationale

Addition of features allow our model to use other indicators of sarcasm.

	Acc.	Prec.	Recall	F1
Baseline	70.6%	0.717	0.682	0.700
Bidirectional	71.6%	0.731	0.683	0.707
Combined	71.8%	0.755	0.683	0.700

DenseSigmoid Activation

2400 more correctly classified instances.

27B Tokens 100 Dimensions

128 Neurons 0.25 Recurrent Dropout

Models Explored

- 1. Logistic Regression
- 2. Recurrent Neural Networks (RNN)
- 3. Convolutional Neural Network (CNN)
- 4. Bidirectional Encoder Representations from Transformers (BERT)

Convolutional Neural Networks (CNN)

Motivation & Architecture

- CNN uses convolutions along with non-linear activation function like ReLU to capture sentiments within sentences
- Word embedding enables to represent text with similar meaning
- Convolution Filters and Hidden layers of neural network act as a feature extractor for the word vectors

Convolutional Neural Networks (CNN)

Motivation & Architecture

- **CNN** uses convolutions along with non-linear activation function like ReLU to capture sentiments within sentences
- Word embedding enables to represent text with similar meaning
- **Convolution Filters and Hidden layers** of neural network act as a feature extractor for the word vectors

Male-Female

Verb Tense

_

Convolutional Neural Networks (CNN)

Motivation & Architecture

- **CNN** uses convolutions along with non-linear activation function like ReLU to capture sentiments within sentences
- Word embedding enables to represent text with similar meaning
- Convolution Filters and Hidden layers of neural network act as a feature extractor for the word vectors

Embedding Layer

Vector space - 50000 Output vector - 64 Input length - 75

Conv1d Layer

Output filters - 256 Kernel size - 5

GlobalMaxPooling 1d Layer Dropout layer

Dense Layers

Activation Function - ReLU, Sigmoid Units - 512, 1

Tuning Hyperparameters

Choose the parameters to optimize

For our CNN model we decided to optimize the hidden layers, embedding layers, kernel size, filters, batch size, learning rate and dropout

Hyperparameter search

After selecting the hyperparameters we decided to use random search to get our hyperparameters. Random search although might not give the best set of hyperparameters it is still much faster than grid search

Tuning Hyperparameters

Optimal parameters obtained

Hidden Layers	Embedding Layers	Kernel Size	Filters	Batch Size	Learning Rate	Dropout
512	64	5	256	32	0.0006	0.05

Results

	Accuracy	Precision	Recall	F1 score
Before Tuning	73.02 %	0.786	0.680	0.700
After Tuning	73.68 %	0.761	0.689	0.723
With Custom Features	74.21 %	0.758	0.712	0.734

Results

Data pre processing type	Accuracy	Precision	Recall	F1 Score
Preprocessing data	0.719607	0.716061	0.731468	0.723682
Without preprocessing data	0.736848	0.761048	0.689230	0.723361
With Custom Features	0.742163	0.758208	0.712466	0.734626

Models Explored

- 1. Logistic Regression
- 2. Recurrent Neural Networks (RNN)
- 3. Convolutional Neural Network (CNN)
- 4. Bidirectional Encoder Representations from Transformers (BERT)

BERT

Motivation & Architecture

- Contextual, bidirectional word embeddings (vs context-free in GloVe)
- Pre-trained transformer encoder that can be used to to solve other problems (transfer learning)

BERT

Motivation & Architecture

- Contextual, bidirectional word embeddings (vs context-free in GloVe)
- Pre-trained transformer encoder that can be used to to solve other problems (transfer learning)

Results

Data pre processing type	Accuracy	Precision	Recall	F1 Score
No pre-processing	0.7603	0.7558	0.7704	0.7630
Removing repeating symbols	0.7642	0.7735	0.7484	0.7607
Removing repeating symbols +				
no contractions	0.7588	0.7457	0.7866	0.7656

Results

Data pre processing type	Accuracy	Precision	Recall	F1 Score
	Accuracy	Precision	Recall	ri scole
No pre-processing	0.7603	0.7558	0.7704	0.7630
Removing repeating symbols	0.7642	0.7735	0.7484	0.7607
Removing repeating symbols +				
no contractions	0.7588	0.7457	0.7866	0.7656

Results Interpretation

Micro and Macro Evaluation

Macro-Evaluation

Macro-Evaluation Approach

Macro Evaluation

Summary

Model	Accuracy	Precision	Recall	F1 score
Logistic Regression	63.99%	0.654	0.595	0.623
RNN	71.80%	0.731	0.683	0.700
CNN	74.21 %	0.758	0.712	0.734
BERT	76.03%	0.756	0.770	0.763

Micro-Evaluation

In terms of different categories for sarcasm

Micro-Evaluation Approach

Embedded

Sarcastic Sentences that showcase **extremities** within the same statement.

E.g. If had a dollar for every **smart** thing you say. I'll be **poor**.

Types of Sarcasm

'Like'-Prefixed

Sarcastic statements that **begin with 'like' or 'as if'** to showcase a difference in intentions.

E.g. **Like** you care.

Propositional

Sarcastic statements that may **require some form of contextual knowledge** to understand.

E.g. Your plan sounds **fantastic**!

Embedded Sarcasm

If had a dollar for every **smart** thing you say. I'll be **poor**.

Embedded Sarcasm

Since you've already made so many **scintillating** points this evening, I think you should let someone else voice their opinion.

Embedded Sarcasm

Because he's been **such** a **fine** friend, I've struck him off my list.

'Like'-Prefixed Sarcasm

Like you care

'Like'-Prefixed Sarcasm

Like that's a good idea.

'Like'-Prefixed Sarcasm

She was **like**, you are so totally embarrassing me right now

Propositional Sarcasm

Your plan sounds fantastic.

Propositional Sarcasm

This looks like a perfect plan!

Prediction: Not Sarcastic

Propositional Sarcasm

To whom it may concern: John's handwriting is excellent and his attendance at departmental events is punctual.

Conclusion

Model	Accuracy	Precision	Recall	F1 score
Logistic Regression	63.99%	0.654	0.595	0.623
RNN				
CNN	74.21 %	0.758	0.712	0.734
BERT	76.03%	0.756	0.770	0.763

Improvement in models

Discarding preprocessing

Preventing the loss of important information

Feature engineering

Enhancing models' ability to generalise better

Findings & Future Improvements Q

Finding #1

Poor LIME
Interpretation
prediction for
Propositional Sarcasm

Improvement #1
Contextualization with parent comment

	Accuracy	Precision	Recall	F1 score
Baseline RNN	69.01%	0.633589	0.635086	0.634336
RNN with parent comment	69.92%	0.669575	0.571175	0.616473

Findings & Future Improvements Q

Finding #1

Poor LIME Interpretation prediction for Propositional Sarcasm

Contextualization with parent comment

Finding #2

Prediction for Embedded
Sarcasm can be further
improved using
sentiment based
features

Improvement #2

Evaluating **positive** and **negative** words to identify **polarity shifts** in sentences

Improvement #3

Evaluating **positive** and **negative** words to identify **polarity shifts** in sentences

Sentiment-based features:

Count of:

- 1. Positive words
- 2. Negative words
- Highly emotional positive words
- Highly emotional negative words

Based on:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3384025

References

[1] Use of Punctuation in Sarcasr	[1]	Use	of	Punctu	ation	in	Sarcasn
-----------------------------------	-----	-----	----	--------	-------	----	---------

https://style.mla.org/scare-quotes-origins/

[2] Literature on sarcasm detection

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3384025

[3] How sarcasm impedes sentiment analysis

https://www.researchgate.net/publication/267265686 Irony and Sarcasm Corpus Generation and Analysis Using Crowdsourcing

[4] Literature on sarcasm detection

https://nlp.stanford.edu/seminar/details/pbhattacharyya.pdf

[5] Types of sarcasm

https://www.sas.upenn.edu/~campe/Papers/Camp.Sarcasm.pdf

[6] Stacked Bidirectional LSTM Based Framework for Sarcasm Identification

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9316208