UNIVERSIDAD DEL VALLE DE GUATEMALA Facultad de Ingeniería

Interfaz Biomédica para el Control de Sistemas Robóticos Utilizando Señales EMG

Trabajo de graduación presentado por María Fernanda Girón Arevalo para optar al grado académico de Licenciado en Ingeniería Mecatrónica

Guatemala,

UNIVERSIDAD DEL VALLE DE GUATEMALA Facultad de Ingeniería

Interfaz Biomédica para el Control de Sistemas Robóticos Utilizando Señales EMG

Trabajo de graduación presentado por María Fernanda Girón Arevalo para optar al grado académico de Licenciado en Ingeniería Mecatrónica

Guatemala,

Vo.Bo.:	
	(f) Ing. Luis Rivera
Tribunal	Examinador:
	(f) Ing. Luis Rivera
	(f) MSc. Carlos Esquit

Fecha de aprobación: Guatemala, 5 de diciembre de 2020.

Ing. Luis Pedro Montenegro

Prefacio

Esta investigación inició debido a mi interés en la ingeniería biomédica y a la oportunidad que surgió en la Universidad de Valle de pertenecer a esta línea de investigación. El interés de participar en el desarrollo de una interfaz biomédica para el control de dispositivos robóticos usando señales electromiográficas, surgió principalmente porque se espera que esta investigación contribuya en un futuro al desarrollo de herramientas que permitan el control de dispositivos de asistencia médica. Por lo que a través de este trabajo puedo aportar al crecimiento del área científica en Guatemala y retribuir un poco a la sociedad.

Agradezco a Dios, por brindarme sabiduría, guía y esperanza en los momentos en que no creía en mi misma. A mi familia, es especial a mi madre Rosalva y a mi abuela Margoth por brindarme su apoyo incondicional. Por creer en mí, confiar en mis capacidades, ser mi soporte y motivarme siempre a luchar por mis metas. A mis hermanos Alba, Majo y Daniel por apoyarme y escuchar mis logros y frustraciones. A mis amigos y compañeros por acompañarme en este camino de aprendizaje y crecimiento. A la fundación Juan Bautista Gutiérrez por el privilegio que me brindaron de pertenecer a esta familia.

Finalmente, a la comunidad de la Universidad del Valle de Guatemala y a mi asesor Dr. Luis Albero Rivera por su dedicación, sus consejos académicos y sus criticas tan certeras que me guiaron a culminar este trabajo de graduación.

Índice

Pr	refacio	V
Li	sta de figuras	X
Li	sta de cuadros	XI
Re	esumen	XIII
Al	ostract	XV
1.	Introducción	1
2.	Antecedentes	3
3.	Justificación	5
4.	Objetivos	7
5 .	Alcance	9
6.	Marco teórico	11
7.	Bitalino 7.1. Planteamiento del Proyecto	
8.	Adquisición de señales sEMG 8.1. Desarrollo de algoritmo para lectura de datos	. 24 . 24
9.	Creación de base de datos para entrenamiento	29
	9.1. Determinación de movimientos/gestos	. 29

10. Clasificación de movimientos/gestos	31
10.1. Investigación inicial	31
10.2. Base de datos pública	
10.3. Base de datos propia	
10.4. Entrenamiento de clasificadores	39
10.5. Pruebas y resultados	39
11.Extracción de características	41
12.Desarrollo de interfaz	43
12.1. Robotics Toolbox	43
12.2. Simulación con base de datos	44
12.3. Simulación con datos obtenidos en timpo real	44
13. Conclusiones	45
14.Recomendaciones	47
15.Bibliografía	49
16. Anexos	51

Lista de figuras

1. 2. 3.	Señal miográfica normal y con patologías neuromusculares [4]
4. 5. 6.	Conexión Bitalino y OpenSignals
7. 8. 9.	Diseño filtro pasa banda tipo Butterworth. 25 Diseño filtro rechaza banda tipo Butterworth. 25 Filtrado señal de prueba. 26
10.	Tipos de agarre incluídos en la base de datos
11.	Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 2 características
12.	Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 3 características
13.	Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 5
14.	características
15.	características
10.	clases, 2 características
16.	Matriz de confusión obtenida con SVM polinomial para clasificación de 6 clases, 3 características
17.	Matriz de confusión obtenida con SVM polinomial para clasificación de 6
18.	clases, 5 características
	clases, 7 características
19.	Matriz de confusión obtenida con la Neuronal Network App para clasificación de 6 clases, 2 características
20.	de 6 clases, 2 características
	de 6 clases, 3 características

21.	Matriz de confusión obtenida con la Neuronal Network App para clasificación	
	de 6 clases, 5 características	37
22.	Matriz de confusión obtenida con la Neuronal Network App para clasificación	
	de 6 clases, 7 características	38
23.	Comparación de resultados entre distintos tipos de clasificadores	38
24.	Comparación de resultados entre distintos tipos de clasificadores	39
25.	Manipulador serial R17 de 5 GDL más carrera [12]	43
	Código para definir el manipulador R17 como objeto SerialLink	
27.	Versión interactiva del manipulador R17	44

Lista de cuadros

Resumen

Con el fin de separar las señales sEMG según su clase, se implementará un algoritmo de clasificación mediante el entrenamiento de una máquina de vectores de soporte (SVM) y de una red neuronal (RN), utilizando los vectores de características extraídos de la señal.

Al tener un modelo de clasificación que presente un alto rendimiento, se hará uso de la simulación de un sistema robótico y un algoritmo que traduzca los resultados del clasificador en comandos, para visualizar la manipulación del sistema según la señal sEMG adquirida. La implementación de esta interfaz biomédica contribuirá al desarrollo de nuevas metodologías que promuevan el aprendizaje enfocado en *Machine Learning* y a futuras investigaciones sobre el control de dispositivos de asistencia médica utilizando señales bioeléctricas.

Abstract

CAPÍTULO 1

Introducción

El uso de señales bioeléctricas ha contribuido significativamente al desarrollo de dispositivos de asistencia médica, cuyo principal fin es mejorar el bienestar humano tanto físico como psicológico, de personas con discapacidades motrices. Las señales electromiográficas de superficie forman parte importante en estos estudios, dado que permiten adquirir información proveniente del cerebro, a través de los músculos, de manera no invasiva.

A través de esta investigación se plantea el desarrollo de una interfaz biomédica que permita el control de dispositivos robóticos disponibles en la Universidad del Valle de Guatemala, mediante la adquisición y filtrado en tiempo real de señales electromiográficas de superficie. También se espera que este documento contribuya a fomentar el aprendizaje enfocado en técnicas de *Machine Learning*, al desarrollar algoritmos para clasificación de movimientos basados en reconocimiento de patrones y extracción de características.

Por otra parte, este documento tiene como objetivo sentar las bases y fundamentos para la continuación y desarrollo de nuevas fases para este tipo de proyectos. Y se espera que en un futuro los resultados de esta investigación puedan contribuir a la comunidad científica de la Universidad del Valle y al desarrollo de dispositivos de asistencia médica, controlados mediante señales bioeléctricas.

Antecedentes

El estudio de señales bioeléctricas ha contribuido al avance de distintos proyectos que buscan mejorar el bienestar humano. En particular, la señales electromiográficas de superficie (EMG) representan una herramienta muy importante y muy utilizada debido a que se pueden obtener fácilmente de forma no invasiva y sin necesidad de supervisión médica **AlvaCA**. El objetivo de estudio de estas señales radica principalmente en el desarrollo de metodologías que permitan el control de dispositivos de rehabilitación, como se realizó en [1] y [2], en donde se implementa una prótesis de mano cuyos movimientos se controlan mediante señales EMG. Así como el desarrollo de algoritmos de reconocimiento de patrones en aplicaciones en tiempo real, como en **dialnet** donde mediante el reconocimiento de patrones en señales EMG se identifican seis tipos de movimientos de la mano, entre otros.

Las señales electromiográficas proveen información acerca de la actividad neuromuscular que se produce en la fibra muscular durante la contracción o relajación de un músculo. Esta información es interpretada mediante la extracción de características en el dominio del tiempo y frecuencia. En investigaciones anteriores se ha estudiado el proceso de extracción de características con el fin de determinar cuáles son más relevantes y efectivas para el reconocimiento de patrones en señales EMG. En el caso de investigaciones como la realizada en [3], se establece que la extracción de características temporales utiliza un menor tiempo de procesamiento que las características en el dominio de la frecuencia y las de tiempo-frecuencia. Y se recomienda el uso de características en tiempo-frecuencia sobre las que se basan únicamente en el dominio de la frecuencia, ya que estas últimas presentan una limitación al trabajar con señales no estacionarias, cuyas propiedades cambian a lo largo del tiempo como lo son las señales EMG.

Finalmente, la ubicación de los electrodos para la extracción de señales electromiográficas también se ha estudiado con el fin de determinar la mejor ubicación según el tipo de movimiento a estudiar. Como en [1], donde se realiza un estudio de las formar correctas de ubicación de electrodos para reducir el ruido que registran los electrodos de superficie y poder obtener registros más selectivos.

Justificación

En la comunidad científica se puede encontrar una variedad de investigaciones relacionadas con el estudio de señales biomédicas, realizadas con el fin de mejorar el bienestar humano. El enfoque principal que toman estas investigaciones se basa en implementar metodologías para el control de dispositivos como prótesis. Tomando como apoyo la información recolectada en estas investigaciones, se plantea el desarrollo de una interfaz biomédica que mediante la interpretación de señales electromiográficas permita el control de sistemas robóticos con los que cuenta la Universidad del Valle de Guatemala.

A través de este proyecto se plantea fomentar el aprendizaje enfocado en *Machine Learning* para desarrollar distintas técnicas de reconocimiento de patrones. Dada la importancia y facilidad que estas técnicas tiene en la actualidad para resolver problemas complejos, empleando métodos y algoritmos que reduzcan las dificultades. Y la importancia que este tipo de aprendizaje está tomando como tema de investigación dada la evolución en la automatización de procesos **patrones**.

El enfoque principal del proyecto es implementar mediante la adquisición de señales EMG y métodos de clasificación basados en reconocimiento de patrones una herramienta que permita el control de robots y dispositivos disponibles en la Universidad del Valle. Como el brazo robótico articulado R17 o el robot humanoide NAO, contribuyendo también a fomentar el interés en ciencia y tecnología mediante herramientas modernas y atractivas al público como lo sería la interfaz biomédica de control.

Es importante destacar que en un futuro los resultados de este proyecto pueden contribuir en el desarrollo de herramientas que permitan el control de sistemas de asistencia médica. Como lo es el accionamiento y manejo de prótesis mediante la actividad eléctrica generada en un músculo específico, como se menciona en [1] y [3]. La gran ventaja que presenta el control mioeléctrico tanto en prótesis, como en otro tipo de dispositivos, radica en que ofrece un control automático. Es decir, que no se requiere la activación o control manual mediante interruptores como ocurre con dispositivos de asistencia o prótesis que requieren control mecánico. Por otra parte, la adquisición de señales de manera no invasiva mediante electrodos de superficie, contribuye a la comodidad de los usuarios que controlan dichos

dispositivos. Lo que en conjunto ayuda a mejorar la calidad de vida de las personas que requieran de dispositivos de asistencia médica.

CAPÍTULO 4

Objetivos

Objetivo General

Diseñar e implementar una interfaz para el manejo de sistemas robóticos usando señales electromiográficas.

Objetivos Específicos

- Establecer un mecanismo de adquisición y filtrado en tiempo real de señales electromiográficas (EMG) de superficie.
- Seleccionar características adecuadas para el reconocimiento de patrones en señales EMG.
- Evaluar e implementar algoritmos para la clasificación de movimientos o gestos, a partir de características y patrones de señales EMG.
- Desarrollar una interfaz que traduzca los resultados de la clasificación de señales en comandos para un sistema robótico.

CAPÍTULO 5

Alcance

Este proyecto forma parte de una fase inicial de investigación, que tiene como fin el desarrollo de una interfaz biomédica que mediante la adquisición y procesamiento de señales sEMG permita el control de sistemas robóticos. En específico, sistemas robóticos con los que cuenta la Universidad del Valle de Guatemala, como el brazo robótico articulado R17.

El desarrollo de este proyecto se divide en cuatro etapas principales. La primera consiste en el desarrollo de un algoritmo de adquisición y filtrado en tiempo real de señales electromiográficas de superficie, en esta etapa se implementa también un algoritmo de detección de actividad. La segunda etapa consiste en la extracción y selección de características adecuadas que permitan un uso eficiente de algoritmos de identificación de patrones. Derivado de esta etapa, la tercera utiliza como base el aprendizaje automático, para la implementación de dos tipos de clasificadores (SVM y RN) que permitan diferencias a partir de características y patrones distintos movimientos/gestos especificados con anterioridad. Por último, la cuarta etapa tiene como fin la creación de una interfaz, en la cual los resultados de la clasificación se traduzcan a comandos de control para el sistema robótico.

Con el desarrollo de este proyecto se espera establecer las bases para futuros proyectos o fases enfocadas en el uso de señales bioeléctricas para el control de sistemas robóticos.

Marco teórico

Señales Electromiográficas EMG

Este tipo de señales biomédicas representan el campo de potencial eléctrico que se crea por la despolarización de la membrana de fibra muscular externa.

Estas señales bioeléctricas se generan debido a la actividad eléctrica que se produce en la fibra muscular durante la contracción o relajación del músculo. Siendo de suma utilidad para la detección de patologías relacionadas con la actividad neuromuscular y enfermedades como la distrofia muscular, inflamación de los músculos, daños en los nervios de las manos y pies, entre otras.

Figura 1: Señal miográfica normal y con patologías neuromusculares [4].

Para detectar este tipo de señales usualmente se utilizan electrodos intramusculares o de superficie. Estos se colocan a cierta distancia de las fuentes que generan la señal. Estas fuentes se ubican en las zonas despolarizadas de las fibras musculares. Al tejido biológico que separa estas zonas de los electrodos se le llama conductor de volumen y las propiedades del mismo son de gran importancia para determinar ciertas características de la señal EMG detectada. Entre ellas el contenido de frecuencia y la distancia a la cual la señal deja de detectarse [5].

Estas señales producidas por las neuronas motoras al activar los músculos del cuerpo son de naturaleza aleatoria y sus voltajes se encuentran usualmente entre 0 y 6 mV. Con frecuencias entre 0 a 500 HZ, destacando en el rango de 50 a 150 Hz las señales de mayor intensidad [4].

La medición de estas señales se puede realizar de manera superficial o intramuscular. De manera superficial los electrodos se colocan sobre la superficie de la piel que recubre el músculo de interés. Mientras que la manera intramuscular implica insertar electrodos de aguja a través de la piel en el músculo que se desea examinar. Además, existen cinco tipos de electromiografía basadas en el tipo de electrodo e instrumento que se utiliza, estos tipos son:

- Electromiografía Convencional
- Electromiografía Cuantitativa
- Electromiografía de Fibra Simple
- Macro EMG
- EMG de superficie y estudio del espectro de frecuencias

Entre las mediciones importantes de una electromiografía destacan los potenciales de unidad motora (PUM). Ya que la amplitud y duración de estos potenciales varía según la actividad eléctrica muscular. Por lo que, al presentarse alguna enfermedad muscular, suelen presentarse anomalías en los PUM aunque el número de unidades motoras permanezca normal [6].

Electrodos

Los electrodos son un instrumento que permite transformar las corrientes iónicas del cuerpo humano en corrientes eléctricas, por lo que en electromiografía se utilizan para detectar
la actividad eléctrica en la fibra muscular. Los electrodos se componen de una superficie
metálica y un electrolito, el cual entra en contacto con la piel. Por lo que la señal bioeléctrica transita por dos interfaces, una es la que relaciona el electrolito y la parte mecánica del
electrodo y la otra corresponde al contacto entre la piel y el electrolito [1].

Los electrodos más utilizados en electromiografía son los electrodos de aguja y los de superficie. La ventaja de los electrodos de aguja, usada en electromiografía invasiva, es que permiten registrar el potencial eléctrico directamente de las unidades motoras, por lo que se minimiza la presencia de ruido en la señal. Con este tipo de electrodos la amplitud de la señal depende tanto del área que ocupan, como de la distancia entre el electrodo y la fuente de la señal. La desventaja de los electrodos de aguja radica en que, al ser insertados directamente en el músculo, se requiere de supervisión médica y el proceso de inserción resulta doloroso.

Por otra parte, los electrodos de superficie son más comunes debido a que se colocan en contacto con la piel se forma rápida y sencilla, además de ser más cómodos de usar

y no requerir supervisión médica. Estos electrodos registran como actividad eléctrica una superposición de señales provenientes de varias unidades motoras presentes en músculos superficiales, por lo que presentan dificultades para detectar señales de forma selectiva en músculos pequeños. Otra desventaja de este tipo de electrodos es el alto nivel de ruido que presentan los registros obtenidos [3].

Localización de los Electrodos

Las características de una señal electromiográfica, como su amplitud y ancho de banda, dependen en parte del tipo, tamaño, orientación y espaciamiento entre electrodos. Con el fin de normalizar estos factores, en 1996 surgió la iniciativa SENIAM (Surface Electromiography for Noninvasive Assessment of Muscles), que presenta una técnica popular para la estandarización de características de los electrodos.

Tamaño de los electrodos: La SENIAM define el tamaño de un electrodo como el tamaño de su zona conductora. Este debe ser los suficientemente grande para detectar un número considerable de unidades motoras y a la vez lo suficientemente pequeño para evitar la diafonía de otros músculos. Por lo que se recomienda un tamaño máximo de 10mm en el sentido de las fibras.

Distancia entre electrodos: El espaciamiento entre electrodos es de gran importancia para determinar el volumen de registro o recepción del tejido, por lo que menores distancias resultan en registros más selectivos. Este espaciamiento, conocido como distancia interelectrodo, se define como la distancia entre centros de las áreas conductivas de los electrodos.

La normativa SENIAM recomienda que para electrodos bipolares la distancia interelectrodo sea entre 20 y 30mm. En caso de que los electrodos se ubiquen sobre músculos relativamente pequeños, el espaciamiento no debe superar 1/4 de la longitud de la fibra muscular.

Posición de los electrodos: Es importante colocar los electrodos en una ubicación estable donde se pueda obtener una señal EMG de calidad, la ubicación se puede realizar de manera longitudinal o transversal [1].

- Longitudinal: El electrodo se ubica en la zona media del músculo, es decir, entre la terminación de la neurona motora que envía el impulso eléctrico y el tendón distal.
- Transversal: El electrodo se ubica en la zona media del músculo, de forma que la línea que uno los electrodos sea paralela al eje longitudinal del músculo.

Características de las Señales Electromiográficas

Existen diferentes técnicas para la extracción de características de señales EMG, de esta forma se puede obtener información relevante e identificar patrones en las señales. Se pueden obtener características mediante un análisis en el dominio del tiempo, en el dominio de la frecuencia y en el dominio de tiempo-frecuencia [3].

Características en el dominio del tiempo

En este tipo de análisis temporal la información es extraída en cada segmento de tiempo y no se requiere de ninguna transformación anticipada de los datos. Razón por la cual es uno de los métodos más utilizados en aplicación que requieren análisis de datos en tiempo real[7].

Entre las características más importantes en el dominio del tiempo se encuentran las siguientes:

Valor Medio Absoluto (MAV)

Estima el promedio del valor absoluto en un conjunto de datos obtenidos en un tiempo determinado. El valor N representa el tamaño del segmento y x_i el valor de cada elemento del segmento.

$$MAV = \frac{1}{N} \sum_{i=1}^{N} |x_i| \tag{1}$$

Valor Integrado de EMG (IEMG)

Tiene como fin integrar la señal mediante la sumatoria de cada elemento en un segmento de tiempo específico.

$$IEMG = \sum_{i=1}^{N} |x_i| \tag{2}$$

Cruces por Cero (ZC)

Este parámetro expresa el número de veces que la señal pasa por cero en un segmento dado. Usualmente se incluye un umbral de amplitud para evitar contar como cruces por cero el ruido de la señal. Este parámetro representa un forma simple de estimar la frecuencia de la señal.

Raíz Media Cuadrada (RMS)

Esta característica modela a la señal electromiográfica como un proceso aleatorio Gaussiano, en donde el valor de la raíz media cuadrada se relaciona a la fuerza aplicada bajo condiciones de no fatiga.

$$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} \tag{3}$$

Desviación Estándar (STD)

Este parámetro se utiliza para cuantificar la variación o dispersión de un grupo de datos, representando qué tan separados están los mismos respecto a la media de la señal (\bar{x}) .

$$STD = \sqrt{\frac{1}{N} \sum_{i=1}^{N-1} (x_i - \bar{x})^2}$$
 (4)

Varianza (VAR)

Este parámetro al igual que la desviación estándar otorga información acerca de la dispersión y variabilidad de una serie de datos respecto a la media (\bar{x}) .

$$VAR = \frac{1}{N} \sum_{i=1}^{N-1} (x_i - \bar{x})^2$$
 (5)

Longitud de Forma de Onda (WL)

Esta característica hace referencia a la longitud de onda de la señal EMG acumulada en un segmento de tiempo. Su importancia radica en que ofrece un estimado de la media de la amplitud, frecuencia y duración de la señal.

$$WL = \sum_{i=1}^{N-1} |x_{i+1} - x_i| \tag{6}$$

Características en el dominio de la frecuencia

Debido a la naturaleza no estacionaria de las señales electromiográficas las características en el dominio de la frecuencia no son las más recomendadas para este estudio. Ya que se requiere de alguna transformación para realizar un análisis espectral, lo que origina perdidas de información de la señal en el dominio del tiempo, limitando la capacidad de detectar cuando un nuevo evento se lleva a cabo [3].

Sin embargo, durante cierto tipo de contracciones de bajo nivel las señales electromiográficas pueden ser consideradas como estacionarias por un corto período de tiempo. Por lo que se pueden considerar las siguientes características en el dominio frecuencial [8].

Frecuencia Mediana (FMD)

En donde PSD es el espectro de densidad de potencia y M la longitud del PSD.

$$FMD = \frac{1}{2} \sum_{i=1}^{M} PSD_i \tag{7}$$

Frecuencia Media (FMN)

$$FMN = \frac{\sum_{i=1}^{M} f_i PSD_i}{\sum_{i=1}^{M} PSD_i}$$
 (8)

$$f_i = \frac{(i * \text{samplingrate})}{(2 * M)} \tag{9}$$

Características en el dominio de tiempo-frecuencia

Es importante tener una herramienta que proporcione información de la señal en el domino de tiempo-frecuencia, debido a las limitaciones del análisis espectral para señales estacionarias como las señales EMG. Estas características permiten realizar un análisis más fiable y completo. Sin embargo, debido a su complejidad matemática, presentan la desventaja de requerir un procesamiento más avanzado y más tardado [3].

Frecuencia Media Instantánea (MNIF)

Es una medida de la frecuencia media de la señal, que combina la frecuencia media ponderada (WMNF) con información de las amplitudes de la señal.

$$MNIF = \frac{\sum_{i=1}^{n} ||a_i|| WMIF(i)}{\sum_{i=1}^{n} ||a_i||}$$
 (10)

En donde:

$$WMNF(i) = \frac{\sum_{j=1}^{N} f_i(j) a_i^2(j)}{\sum_{j=1}^{N} a_i^2(j)}$$
(11)

Aprendizaje Automático

El aprendizaje automático (Machine Learning) es una rama de la inteligencia artificial que permite a las computadoras aprender y cambiar su comportamiento de manera autónoma basándose en su experiencia. Las técnicas de aprendizaje automatizado se emplean

principalmente para clasificar y predecir datos, en base a sus características distintivas, en diferentes tipos de aplicaciones.

Entre los tipos de clasificadores más comunes se encuentran las máquinas de vectores de soporte (SVM) y las redes neuronales artificiales (RNA).

Máquinas de Vectores de Soporte

Las máquinas de vectores de soporte o SVM (Support Vector Machines) son parte de un tipo de algoritmos de aprendizaje automatizado. Inicialmente, se crearon para resolver problemas de clasificación binaria en los que las clases eran linealmente separables. Sin embargo, es posible utilizar esta herramienta para resolver problemas de regresión y clasificación multiclase [9].

Uno de los principales objetivos de las máquinas de soporte vectorial es encontrar un hiperplano óptimo de separación en donde se maximiza el margen de separación entre las muestras de cada clase. Esto se logra mediante un entrenamiento previo con una serie de datos dispuestos especialmente para esta aplicación [9].

En los casos en donde los datos no sean linealmente separables, es decir, no se puedan separar por un hiperplano porque se encuentran mezclados en una región del espacio. Se realizan transformaciones a los datos, por medio de funciones Kernel, que transforman el espacio a uno de mayor dimensión. De esta forma aumenta la posibilidad de que los datos entre clases sean linealmente separables [10].

Una de las ventajas de las máquina de vectores de soporte es que proporcionan soluciones con un número reducido de datos, además de presentar una mejor generalización al fundamentarse en teorías de aprendizaje estadístico [10].

Figura 2: Datos no separables linealmente [10].

Redes Neuronales

Las redes neuronales (RNAs) son una de las ramas más destacadas de la inteligencia artificial. Estas redes buscan modelar el comportamiento del cerebro humano, que se caracteriza por el aprendizaje a través de la experiencia. Por ello, estos modelos son capaces de resolver problemas de clasificación, identificación de patrones, diagnóstico, optimización o predicción de datos, por medio de algoritmos de aprendizaje supervisado o no supervisado [2].

Al ser inspiradas por comportamientos biológicos y el sistema nervioso, las redes neuronales se modelan como un sistema de interconexiones en capas. En donde las neuronas artificiales colaboran entre sí para generar salidas que ayuden a resolver problemas, por medio del procesamiento de ciertos datos de entrada [11].

Figura 3: Estructura de un sistema de redes neuronales [11].

Las redes neuronales presentan una gran ventaja dada su capacidad de adaptarse y modificar su arquitectura según su entorno. Además, de ser capaces de trabajar en paralelo, según la cantidad de neuronas artificiales que intervienen en el proceso. Por lo que pueden procesar gran cantidad de información rápidamente [11].

Bitalino

7.1. Planteamiento del Proyecto

El primer paso para el desarrollo de este proyecto consistió en la selección de una línea de investigación y la familiarización con los proyectos realizados anteriormente dentro de esta línea en la universidad del Valle de Guatemala. Al seleccionar la línea de "Biomédica", se procedió a investigar acerca de señales bioeléctricas (electromiográficas, encefalográficas y electrocardiográficas), así como el procesamiento de las mismas y los instrumentos que se utilizan para su medición.

Después de esta investigación previa, se planteó como proyecto la creación de una interfaz biomédica para el control de dispositivos robóticos utilizando señales bioeléctricas. Dado que la universidad del Valle cuenta con el dispositivo Bitalino, un módulo basado en el microcontrolador de Arduino, que permite recoger datos biomédicos a través de una serio de módulos individuales. Entre ellos un módulo que permite medir la actividad eléctrica producida por los músculos del cuerpo. Se concluyó utilizar esta herramienta para medir señales electromiográficas, enfocando el proyecto en el desarrollo de una interfaz biomédica que mediante la adquisición, filtrado y un posterior proceso de clasificación automática de señales electromiográficas de superficie, sea capaz que controlar dispositivos robóticos con los que cuenta la universidad del Valle.

7.2. Familiarización con el Bitalino y OpenSignals

Dado que no existen fases anteriores de este proyecto en la universidad del Valle, se inició con la familiarización de las herramienta disponibles para la medición de señales EMG.

El Bitalino es un módulo que permite recoger datos biomédicos a través de una serio de módulos individuales. Cuenta con cuatro canales, de los cuales dos permiten llevar a cabo la medición de señales electromiográficas. Para una interacción directa con la información

proveniente del Bitalino se utilizó la herramienta OpenSignals, un software que permite la visualización en tiempo real de los datos mediante una conexión bluetooth con el Bitalino. Además, permite generar un registro de los datos adquiridos, almacenándolos en un archivo de texto al finalizar la sesión.

Figura 4: Conexión Bitalino y OpenSignals

Al hacer la conexión entre el software OpenSignals y el Bitalino, se procedió a realizar pruebas de adquisición de señales EMG en tiempo real, como se observa en las figuras 5 y 6. Para estas primeras pruebas se conectó un electrodo de referencia en el hueso pisiforme y dos electrodos en los músculos superiores del brazo derecho. Estas pruebas se realizaron únicamente para verificar la factibilidad del uso del Bitalino y para familiarizarse con las señales sEMG.

Figura 5: Señal electromiográfica de prueba visualizada con OpenSignals

La herramienta OpenSignals es de mucha utilidad para un primer acercamiento en el ámbito de la ingeniería biomédica y la visualización de señales bioeléctricas en tiempo real. Sin embargo, para el desarrollo de este proyecto se necesita interactuar con los datos numéricos en tiempo real, para poder realizar un proceso de filtrado y análisis posterior a la adquisición. Por lo que se planteó el uso de un Arduino Uno, para extraer los datos directamente

Figura 6: Señal electromiográfica de prueba visualizada con Open Signals

del Bitalino.

Adquisición de señales sEMG

8.1. Desarrollo de algoritmo para lectura de datos

Como se mencionó anteriormente OpenSignals no permite interactuar con los datos numéricos en tiempo real, por lo que se utilizó un Arduino Uno para extraer estos datos directamente del Bitalino para un análisis posterior.

El enlace entre el Bitalino y Arduino se realizó mediante la conexión de las salidas analógicas del Bitalino con los puertos analógicos del Arduino. Sin embargo, esto solo constituyó un proceso intermedio para la adquisición de señales. Se requería de una herramienta de programación más avanzada para el procesamiento y la clasificación autónoma. Por lo que se evaluó trabajar con los siguientes lenguajes de programación Matlab y Python, para el desarrollo del algoritmo de adquisición de señales.

Luego de evaluar las alternativas se decidió utilizar Matlab por las siguientes razones. Primero, la experiencia que ya se tenía en cuanto al desarrollo de filtros y procesamiento de señales. Segundo, esta opción cuenta con más documentación acerca de algoritmos de clasificación automática. Además, de poseer distintas herramientas y librerías que facilitan la implementación de clasificadores como redes neuronales y máquinas de vectores de soporte. Y por último, esta plataforma cuenta con herramientas como la *Robotics Toolbox* de Peter Corke para diseñar, simular y probar manipuladores seriales. Lo cual es de mucha utilidad para el desarrollo de la interfaz biomédica.

El algoritmo de adquisición de señales se inició estableciendo la conexión entre Arduino y Matlab mediante comunicación serial. El código de matlab se comenzó estableciendo el puerto y el baudaje a utilizar para la comunicación serial, para este caso se utilizó el ÇOM15z 115200 baudios/s. Con la función fwrite, al ejecutar el programa se envía a través del puerto serial a arduino el comando "0", el cual activa la lectura y transmisión de datos de arduino hacia matlab. Luego de enviar este comando, se inició un bucle en donde utilizando la función fscanf se lee constantemente la información enviada por el arduino. Dado que las entradas análogicas del Arduino Uno disponen de 10 bits de resolución, los valores recibidos

corresponden a valores entre 0-1024, por lo que posteriormente se realizó en matlab una conversión a estos para tener su valor correspondiente entre 0-5 voltios.

En el caso del código desarrollado en Arduino, primero se importó la librería *TimerOne*, se prosiguió realizando la inicialización de variables, estableciendo las entradas analógicas y la inicialización de la comunicación serial. Al haber realizado la conexión, se utilizó la función *Serial.read* con la cual se espera a recibir el comando "0" para inicializar la lectura y envió de datos. Utilizando la librería *TimerOne* y las funciones *analogRead* y *Serial.println* se realiza la lectura y envió de datos cada 1 ms.

8.2. Procesamiento de señales

Dada la naturaleza de las señales electromiográficas y que estas son obtenidas utilizando electrodos de superficie, los registros presentan un alto nivel de ruido. Por lo que, después de obtener los datos numéricos del bitalino, se requirió un proceso de filtrado para obtener las mismas señales que se observan gráficamente con la herramienta OpenSignals.

Según la investigación realizada anteriormente sobre señales bioeléctricas, se determinó que las señales EMG presentan frecuencias que van desde 0 hasta 500 Hz, destacando mayor actividad en el rango de 50 a 150 Hz. Además, el ruido generado por el movimiento de los cables se encuentra entre 0 a 15 Hz. Por lo que se planteó el uso de un filtro pasa banda, para eliminar el efecto de frecuencias no deseadas y minimizar cualquier ruido proveniente de los artefactos. Por otra parte, se planteó el uso de un filtro rechaza banda para eliminar el ruido generado por la corriente alterna que circula a 60 Hz en los aparatos conectados a la red eléctrica.

Para llevar a cabo esta tarea se utilizó la herramienta Filter Designer disponible en la Signal Processing Toolbox de matlab.

8.2.1. Signal Processing Toolbox

Signal Processing Toolbox es una herramienta disponible en matlab que proporciona una variedad de funciones y apps para analizar, procesar y extraer características de señales. Dentro de esta toolbox se encuentran herramienta como Filter Designer, que mediante una interfaz gráfica permite al usuario diseñar rápidamente filtros FIR o IIR digitales, ofreciendo además la opción de generar el código correspondiente para implementar el filtro diseñado.

Antes de iniciar con el proceso de diseño de filtros se determinó qué tipo de filtros de utilizaría. Se decidió trabajar con filtros IIR ya que usualmente presentan funciones de transferencia más simples que las de los filtros FIR para operaciones similares, lo que implica que demandan menos poder computacional y se ejecutan más rápido. Posteriormente, se determinó utilizar filtros tipo *Butterwoth* dado que se caracterizan por presentar una respuesta en frecuencia suave, sin ondulaciones en la banda de paso o de rechazo.

El primer filtro que se diseñó fue un filtro pasa banda con frecuencias de corte en 20 y 450 Hz. Con el fin de obtener únicamente las frecuencias correspondientes a señales EMG y

delimitar el ruido de los aparatos. El segundo filtro consistió en un filtro rechaza banda con frecuencias de corte en 58 y 62 Hz, para eliminar el ruido de la red eléctrica. En las figuras 7 y 8 se pueden observar las especificaciones de diseño que se establecieron para cada filtro mencionado anteriormente. Cabe destacar que pasa cada filtro de especificó la frecuencia de muestreo igual a 1 kHz.

Figura 7: Diseño filtro pasa banda tipo Butterworth.

Figura 8: Diseño filtro rechaza banda tipo Butterworth.

Para verificar el funcionamiento de los filtros se realizó una prueba filtrando una señal conocida. En este caso se creó una señal conformada por un sinusoide de 60 Hz amplitud 1, un sinusoide de 100 Hz amplitud 1 y un sinusoide de 200 Hz amplitud 0.7. A continuación, se le aplicó a esta señal con la función *filter* un filtro pasa banda previamente diseñado con frecuencias de corte en 20 y 150 Hz. A la señal resultante de esta primera etapa de procesamiento se le aplicó un filtro rechaza banda con frecuencias de corte en 58 y 61 Hz. Los resultados de esta prueba se observan en la figura 9 donde en el extremo izquierdo se observa la señal original de color rojo, en el medio la señal después de aplicar el filtro pasa

banda de color verde y en el extremo derecho el resultado de aplicar el filtro rechaza banda de color azul. Además, en esta figura se observa el espectro de frecuencias que conforma cada señal, demostrando que los filtros remueven efectivamente las frecuencias estipuladas.

Figura 9: Filtrado señal de prueba.

8.3. Desarrollo de algoritmo de identificación de actividad

Con el fin de hacer más eficiente el algoritmo de lectura de datos, se planteó el desarrollo de un algoritmo de identificación de actividad. Este algoritmo tiene como objetivo realizar una lectura continua de datos y al momento de detectar actividad eléctrica proveniente de los músculos iniciar el filtrado y almacenamiento de la señal. Al detectar actividad, dentro del algoritmo se especifica la ventana de tiempo que se quiere grabar, al concluir el tiempo especificado el algoritmo continúa con la lectura continua de datos, hasta detectar de nuevo actividad.

El primer paso para desarrollar este algoritmo consistió en la identificación de un umbral que determine el valor máximo de voltaje correspondiente al ruido de la señal. Para determinar este umbral, se requiere que el usuario permanezca un segundo sin realizar ningún movimiento mientras se captura la señal. Luego, se rectifica la señal transformando los voltajes negativos a positivos y se obtiene el valor máximo. Al obtener el valor del umbral se inicia el algoritmo de lectura de datos, donde continuamente se realiza la lectura del puerto serial. Al detectar un valor de voltaje mayor al umbral, más cierto nivel de tolerancia, se inicia el proceso de centrado y filtrado de la señal.

Para evitar la pérdida de información, se creó un buffer que almacena una ventana de tiempo con información previa a la actividad. Por lo que la señal resultante se compone de una ventana de información previa a la actividad y una ventana de información posterior

a la detección de actividad, el tiempo de duración de cada ventana se declara previamente al inicio del código. Superado el tiempo de captura estipulado, la señal se almacena y se gráfica. Este proceso se encuentra dentro de un ciclo, por lo que al haber almacenado la señal final, se regresa a la lectura continua del puerto serial, para seguir en la espera de actividad muscular generada por la ejecución de un movimiento/gesto.

Creación de base de datos para entrenamiento

9.1. Determinación de movimientos/gestos

Clasificación de movimientos/gestos

10.1. Investigación inicial

10.2. Base de datos pública

Para hacer pruebas preliminares de entrenamiento de clasificadores se utilizó una base de datos pública que reúne información sobre distintas señales electromiográficas que representan el movimiento realizado al ejecutar un tipo de agarre específico. La base de datos cuenta con información sobre seis tipos de agarre, los cuales se muestran en la figura 10. La información proviene de dos canales y se cuenta con 30 muestras para cada tipo de agarre.

Figura 10: Tipos de agarre incluídos en la base de datos.

Para realizar la clasificación de señales cada tipo de agarre corresponde a una clase. En total se tienen 180 muestras para clasificar entre las distintas 6 clases, 30 muestras por clase.

Se realizaron pruebas con dos tipos de clasificadores, máquinas de vectores de soporte y redes neuronales. Para cada clasificador, se realizaron entrenamientos con distintos sets de características, con el fin de evaluar su rendimiento. Los resultados se muestran a continua-

ción mediante matrices de confusión.

Máquinas de vectores de soporte

Se utilizó la librería libsvm en matlab, para realizar la clasificación de señales. Se implementó la técnica five fold cross validation para garantizar que los resultados son independientes de la partición entre datos de entrenamiento y de validación. Tomando en cada corrida el 80 % de datos para entrenamiento y el 20 % para validación. Además, se realizaron pruebas con dos tipos de Kernel, lineal y polinomial.

Kernel Lineal

Resultados con 2 características: MAV y ZC.

Figura 11: Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 2 características.

Resultados con 3 características: MAV, ZC y WL

Figura 12: Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 3 características.

Resultados con 5 características: MAV, ZC, IEMG, WL y RMS.

Figura 13: Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 5 características.

Resultados con 7 características: MAV, ZC, IEMG, WL, RMS, VAR y STD.

Figura 14: Matriz de confusión obtenida con SVM lineal para clasificación de 6 clases, 7 características.

Kernel Polinomial

Resultados con 2 características: MAV y ZC.

Figura 15: Matriz de confusión obtenida con SVM polinomial para clasificación de 6 clases, 2 características.

Resultados con 3 características: MAV, ZC y WL

Figura 16: Matriz de confusión obtenida con SVM polinomial para clasificación de 6 clases, 3 características.

Resultados con 5 características: MAV, ZC, IEMG, WL y RMS.

Figura 17: Matriz de confusión obtenida con SVM polinomial para clasificación de 6 clases, 5 características.

Resultados con 7 características: MAV, ZC, IEMG, WL, RMS, VAR y STD.

Figura 18: Matriz de confusión obtenida con SVM polinomial para clasificación de 6 clases, 7 características.

Redes neuronales

Se utilizó la Neural Pattern Recognition App de matlab para implementar el clasificador, utilizando un 70% de los datos para entrenamiento y un 15% para validación y prueba.

Resultados con 2 características: MAV y ZC.

Figura 19: Matriz de confusión obtenida con la Neuronal Network App para clasificación de 6 clases, 2 características.

Figura 20: Matriz de confusión obtenida con la Neuronal Network App para clasificación de 6 clases, 3 características.

Figura 21: Matriz de confusión obtenida con la Neuronal Network App para clasificación de 6 clases, 5 características.

Figura 22: Matriz de confusión obtenida con la Neuronal Network App para clasificación de 6 clases, 7 características.

Figura 23: Comparación de resultados entre distintos tipos de clasificadores.

En la figura 24 se observa de manera más clara y comparativa el rendimiento de cada tipo de clasificador, según el set de características temporales empleadas.

10.3. Base de datos propia

Resultados pruebas realizadas con cuatro clases.

Figura 24: Comparación de resultados entre distintos tipos de clasificadores.

10.4. Entrenamiento de clasificadores

10.5. Pruebas y resultados

capítulo 11

Extracción de características

Desarrollo de interfaz

Con el objetivo de desarrollar una interfaz que permita la traducción de los resultados del clasificador en comandos que puedan ser interpretados y realizados por un sistema robótico, se utilizó la herramienta GUIDE de matlab junto a la *Robotic Toolbox* de Peter Corke, para simular el brazo robótico R17 situado en el departamento de Ingeniería Electrónica, Mecatrónica y Biomédica de la universidad del Valle de Guatemala.

12.1. Robotics Toolbox

La *Robotics Toolbox* es un herramienta desarrollada por Peter Corke que provee una variedad de funciones orientadas al estudio y simulación de sistemas robóticos, que requiere específicamente del entorno de matlab para ejecutarse. Esta herramienta se utilizó para el desarrollo de la simulación del manipulador serial de 5 grados de libertad (GDL) más carrera R17.

Figura 25: Manipulador serial R17 de 5 GDL más carrera [12].

Como paso inicial se descargó e instaló el *toolbox* del siguiente enlace https://petercorke.com/toolboxes/robotics-toolbox/. Al finalizar este proceso se inició con la creación del manipulador R17, para ello se definió cada una de las juntas del robot bajo la convención de

Denavith-Hartenberg empleando objetos de tipo Link. Para luego unirlos y obtener el modelo final del robot de tipo SerialLink. En este caso específico el robot R17 cuenta con 5 juntas revolutas, definidas mediante la función Revolute. Y una junta prismática que representa la carrera y se define mediante la función Prismatic.

```
%% Creación Manipulador Serial R17
%Dimensiones robot
al = 0: a2 = 0: a3 = 375: a4 = 375: a5 = 0: a6 = 0:
d2 = -355; d3 = 0; d4 = 0; d5 = 0; d6 = 0;
alpha1 = -pi/2; alpha2 = -pi/2; alpha3 = 0; alpha4 = 0; alpha5 = -pi/2; alpha6 = 0;
theta1 = 0; theta2 = pi/2; theta3 = pi/2; theta4 = 0; theta5 = -pi/2; theta6 = pi/2;
q0 = zeros(1,6);
% Definición de links y creación del robot como objeto SerialLink
L1 = Prismatic('a', al, 'alpha', alphal ,'theta',0,'offset',thetal);
Ll.qlim = [0,625/2]; %Topes de la primera junta
L2 = Revolute('d', d2, 'a', a2, 'alpha', alpha2, 'offset', theta2);
L3 = Revolute('d', d3, 'a', a3, 'alpha', alpha3, 'offset', theta3);
L4 = Revolute('d', d4, 'a', a4, 'alpha', alpha4, 'offset', theta4);
L5 = Revolute('d', d5, 'a', a5, 'alpha', alpha5, 'offset', theta5);
L6 = Revolute('d', d6, 'a', a6, 'alpha', alpha6, 'offset', theta6);
R17 = SerialLink([L1,L2,L3,L4,L5,L6], 'name', 'R17');
% Transformación de base (rotación -pi/2 en x)
R17.base = transl(0, 0, d2)*trotx(-pi/2);
```

Figura 26: Código para definir el manipulador R17 como objeto SerialLink.

Posteriormente, al tener ya definido el manipulador se utilizó la función teach que toma como argumentos el nombre del objeto tipo SerialLink y el vector de configuración q, el cual reúne los parámetros necesarios para describir la configuración del manipulador R17. Con esta función se generó una versión interactiva del robot que permite observar su comportamiento al cambiar los valores de la configuración de forma gráfica, como se observa en la figura ??, esto con el fin de visualizar los movimientos que se quiere que ejecute el robot R17 y posteriormente establecer los valores para el vector de configuración según cada clase.

Figura 27: Versión interactiva del manipulador R17.

12.2. Simulación con base de datos

12.3. Simulación con datos obtenidos en timpo real

capítulo 13

Conclusiones

capítulo 14

Recomendaciones

Bibliografía

- [1] J. Brazeiro, S. Petraccia y M. Valdés, *Mano controlada por señales musculares*, Recuperadode: https://iie.fing.edu.uy/publicaciones/2015/BPV15/BPV15.pdf, 2015.
- [2] H. Romo, J. Realpe y P. Jojoa, "Análisis de Señales EMG Superficiales y su Aplicación en Control de Prótesis de Mano", Revista Avances en Sistemas e Informática, vol. 4, 2007.
- [3] I. Cifuentes, Extracción de Características y Clasificación de Señales Electromiográficas Utilizando la Transformada Hilbert-Huang y Redes Neuronales, Recuperadode: https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/743/1/ CifuentesGIA.pdf, 2012.
- [4] L. Sarmiento, Interfaces Cerebro-Computadora para el Reconocimiento Automático del Habla Silenciosa. Colombia: Universidad Pedagógica Nacional, 2019.
- [5] R. Merletti y P. Parker, *Electromyography*. USA: A John Wiley Sons, INC., 2004.
- [6] J. Gárate, Instrumentación en Electromiografía, Recuperadode: http://gecousb.com.ve.
- [7] S. Osuna, J. Gonzalez y A. Ilzarbe, Procesado de Señales EMG en Trastornos Neuromusculares, 2013.
- [8] J. Figueroa, E. Morales, J. Huerta, J. González y C. Cárdenas, "Sistema de Adquisición de Señales SEMG para la Detección de Fatiga Muscular", Revista Mexicana de Ingeniería Biomédica, vol. 37, 2016.
- [9] F. Valle, Implementación Eficiente de Clasificadores Prior-SVM para Matlab, 2010.
- [10] J. Muñoz, Inteligencia Computacional Inspirada en la Vida, 2010.
- [11] R. Flórez y J. Fernández, Las Redes Neuronales Artificiales. España: Netbiblo, 2008.
- [12] Brazos robóticos de ST Robotics, Recuperadode:https://es.rs-online.com/web/generalDisplay.html?id=i%2Fst-robotics.

capítulo 16

Anexos