Video 3 – Langchain Vs Langraph

Today's goals

- 1. Build intuition for **why LangGraph exists** (what problems it solves beyond LangChain).
- 2. Give a **technical overview** of LangGraph.
- 3. Compare LangChain vs. LangGraph and when to use each.

Quick LangChain recap

LangChain simplifies building LLM apps using modular blocks:

- Models (unified interface for OpenAI, Anthropic, Hugging Face, Ollama, etc.)
- **Prompts** (prompt templates & engineering)
- **Retrievers** (RAG: fetch relevant docs from vector stores)
- Chains (compose components into linear multi-step flows)
 With these, you can build chatbots, summarizers, multi-step pipelines, RAG apps, and simple tool-using "agents."

Workflow vs. Agent (important distinction)

- A workflow follows predefined code paths designed by the developer (static flowchart).
- An agent dynamically plans tools/steps and controls its own process (autonomous, changes run to run).

Using the automated hiring scenario (JD creation \rightarrow approval \rightarrow posting \rightarrow waiting \rightarrow monitoring \rightarrow shortlist \rightarrow schedule interviews \rightarrow conduct \rightarrow offer \rightarrow renegotiate \rightarrow onboarding), the speaker shows why this is **complex and non-linear**.

Why complex workflows are hard in LangChain (and how LangGraph helps)

- 1. Control-flow complexity
 - LangChain chains are mostly linear. Complex flows need conditions, loops, and jumps, which force you to write lots of custom "glue code."
 - LangGraph models workflows as a graph of nodes (tasks) and edges (transitions), with built-in branching, looping, and jumps—no glue code.

2. State handling

- Complex workflows track evolving state (JD text, approval flags, counts, thresholds, candidates, offers, onboarding status). LangChain lacks a native key-value workflow state; you end up hacking dictionaries yourself.
- LangGraph is stateful: each node receives and returns a shared, mutable state object (TypedDict/Pydantic). Nodes read/update it naturally.

3. Event-driven execution (pause/resume)

- Real flows pause for time or external triggers (e.g., wait 7 days for applications, wait for candidate to accept). LangChain assumes synchronous, sequential runs. You'd split into multiple chains and pass state manually.
- LangGraph supports pausing with checkpointers and resuming from saved state on external events.

4. Fault tolerance

- Long-running flows need resilience to small faults (API hiccups) and big ones (server crash). LangChain offers no built-in recovery; you typically rerun from the start.
- LangGraph provides retries for transient errors and recovery from checkpoints, resuming from the last completed node.

5. Human-in-the-loop

- Many steps need human approval (e.g., approve JD). LangChain can take short synchronous input, but not indefinite waits.
- LangGraph treats human review as first-class: pause indefinitely, store context, resume when approval arrives.

6. Nested workflows (subgraphs)

- Complex nodes (e.g., "Conduct Interviews") can themselves be full workflows.
- LangGraph allows subgraphs, enabling multi-agent systems and reusable mini-workflows (e.g., a generic "approval" subgraph used in many places).
 LangChain doesn't support this natively.

7. Observability

- Observability (monitoring/debugging/auditing) is essential. LangSmith integrates well with LangChain, but won't see your custom glue code, so visibility is partial.
- LangGraph integrates tightly with LangSmith to record node-level transitions, state diffs, messages, human-in-loop points—yielding end-toend traceability.

What LangGraph is (succinct)

An **orchestration framework** for building **stateful, multi-step, event-driven** LLM workflows and both single-agent and multi-agent systems. Think of it as a **flowchart engine for LLMs** that handles state, branching/loops, pause-resume, and fault recovery.

When to use what

- Use LangChain for simple, linear flows: prompt chains, summarizers, basic RAG.
- **Use LangGraph** for **complex, non-linear** flows: conditions/loops, human-in-loop, multi-agent coordination, asynchronous/event-driven execution.

Do you still need LangChain?

Yes. **LangGraph is built on LangChain.** You still use LangChain components (models, prompts, retrievers, loaders, tools). LangGraph **orchestrates** them cleanly for complex production systems. They work **hand-in-hand**.

Bottom line: After this video, you should be able to look at a use case and decide whether a simple LangChain chain suffices or you need LangGraph's graph-based, stateful orchestration for a robust agentic workflow

Video 4 – Langraph Core Concepts

LangGraph LLM Workflows — Comprehensive Study Notes

A structured, at-a-glance reference for later stages of learning & implementation

1) What is LangGraph?

- Definition: An orchestration framework to design and run intelligent, stateful, multi-step LLM workflows.
- **Key idea:** Model workflows as a **graph** *nodes* (tasks) and *edges* (control flow) then **execute** the graph.
- Why it matters: Enables parallelism, branching, loops, shared state,
 observability, and resumability for production-grade agentic apps.

2) Foundations

2.1 Workflow vs. LLM Workflow

- Workflow: An ordered series of tasks to achieve a goal.
- **LLM Workflow:** A workflow where several tasks depend on LLMs (prompting, reasoning, tool calls, memory access, decision making).

2.2 Mental Model

- Nodes = what to do (a Python function per task)
- Edges = when/where to go next (sequential, conditional, parallel, loop)
- State = the bloodstream (shared, evolving data passed between nodes)

3) Common LLM Workflow Patterns

Pick the pattern that matches your problem. Mix & match when needed.

3.1 Prompt Chaining

• What: Call the LLM multiple times in sequence.

Use when: Complex tasks that benefit from decomposition (e.g., topic → outline → full report).

Good practices:

- o Insert validators/guards (e.g., word count, schema checks).
- Save intermediate artifacts in state for debugging/reuse.

3.2 Routing

- What: A "router" LLM classifies the task and routes it to the right handler/model/tool.
- Use when: Queries span different domains (refunds vs. tech vs. sales).
- Good practices:
 - Keep routing labels explicit; log confidence.
 - o Provide **fallback** or human handoff for low confidence.

3.3 Parallelization

- What: Split into independent subtasks and run simultaneously; then aggregate.
- **Use when:** Subtasks **don't depend** on each other (e.g., policy check, misinformation scan, sensitive-content check).
- Good practices:
 - o Define a merge policy (e.g., weighted score, AND/OR thresholds).
 - Guard against fan-out explosion (limit parallel breadth).

3.4 Orchestrator-Workers

- What: Orchestrator plans dynamically; workers execute variable subtasks in parallel.
- Use when: The plan depends on the query (Scholar vs. News, API vs. DB, etc.).
- Good practices:
 - o Capture the **plan** (tools, sources, criteria) into state for traceability.
 - Timeouts and budgets per worker to avoid stalls.

3.5 Evaluator–Optimizer (Iterative)

- What: Generator proposes, Evaluator accepts/rejects with feedback → loop until criteria met.
- **Use when:** Creative/open-ended tasks (emails, blogs, copywriting) that improve via **iteration**.
- Good practices:
 - Make evaluation criteria explicit (rubric, style, constraints).
 - o Enforce max iterations / early-stop; persist all drafts in state.

4) Graphs, Nodes, and Edges

- Nodes: One task per node; implemented as Python functions that read & update state.
- Edges: Define control flow:
 - o Sequential: $A \rightarrow B \rightarrow C$
 - \circ Conditional/Branching: A \rightarrow (B if cond else C)
 - o **Parallel:** $A \rightarrow \{B, C, D\}$ (simultaneous)
 - \circ **Loops:** A → ... → A (until stop condition)

Example Flow (Essay Practice — UPSC)

- Generate topic → 2. User writes essay → 3. Evaluate on clarity/depth/language (0–5 each) → 4. Aggregate (max 15)
- 2. **Threshold** check (e.g., ≥10 pass) → 6a. Pass: congratulate → end 6b. Fail: return **feedback** → optional **rewrite loop** → re-evaluate

5) State (Shared Memory)

- **Definition:** All workflow data **required for execution** and **evolving over time** (e.g., essay text, per-criterion scores, totals, decisions).
- Behavior:
 - Shared: Every node receives the current state.
 - Mutable: Nodes update parts of the state and pass onward.

- Implementation: Typically a TypedDict (or Pydantic model) defining allowed keys and types.
- **Tip:** Treat state keys as an **API**; version them if they will evolve.

6) Reducers (How Updates Apply)

- **Purpose:** Specify **per-key update policy** to avoid losing context/history.
- Policies:
 - o **Replace:** Overwrite old value (good for latest numeric result or final label).
 - Append/Add: Preserve history (chat transcripts, multiple drafts).
 - Merge/Custom: Combine structured outputs (e.g., union lists, max/min, weighted aggregates).

When it matters:

- o **Chatbots:** Keep all messages (append), not just the latest.
- Drafting loops: Store every draft + feedback (append) to show progress.
- o **Parallel merges:** Define deterministic **merge** to reconcile partial results.

7) Execution Model (How it Runs)

- **Inspiration:** Google **Pregel** (graph processing).
- Lifecycle:
 - 1. **Define**: Nodes, edges, and **state schema**.
 - 2. Compile: Validate structure (no orphan nodes, consistent links).
 - 3. **Invoke**: Provide **initial state** to the **first node** → execution begins.
- Message Passing: Updated state moves along edges to activate next nodes.
- Supersteps: Execution proceeds in rounds; a superstep can include multiple parallel node steps.
- Completion: Stops when no active nodes remain and no messages are in flight.
- Resumability: Persist checkpoints; resume from last consistent point on failure.

8) Design & Implementation Checklist

- Decompose the goal into atomic tasks → map each task to a node.
- **Define edges:** sequential, conditional (branch), parallel, loop.
- State schema: name keys, types, defaults; decide reducers per key.
- Validation & guards: schemas, word/size limits, toxicity checks, cost/time budgets.
- **Observability**: log inputs/outputs, state diffs, routing decisions, tool calls.
- Error handling: retries, circuit breakers, fallbacks, human handoff.
- Resilience: idempotent nodes, checkpoints, resumability.
- **Performance**: batch where possible, cap parallelism, cache repeated calls.
- Security: sanitize inputs, restrict tool scopes, redact secrets in logs.

9) Pitfalls & Anti-Patterns

- Losing context by blindly replacing state values (use reducers wisely).
- Unbounded parallelism causing cost/time blow-ups (set limits/budgets).
- Opaque routing (log criteria/confidence; add fallbacks).
- **Infinite loops** in evaluators (max iterations, early-stops).
- **Orphan nodes** or dead edges (always compile/validate graph).

10) Quick Glossary

- Node: A task (Python function) that reads & writes state.
- **Edge:** A connection dictating next step(s) of execution.
- **State:** Shared, evolving data carried across nodes.
- **Reducer:** Per-key rule for applying updates to state.
- Router: An LLM (or rule) that decides which branch/handler to use.
- Orchestrator: The planner/assigner of dynamic subtasks; workers do the work.

• Superstep: A round that may include multiple parallel node executions.

11) Mini-Template (Planning Aid)

- Goal: ...
- Inputs: ...
- Outputs / Success Criteria: ...
- Nodes:
 - 1. ... (purpose, inputs, outputs)
 - 2. ...
- **Edges:** $A \rightarrow B$, $B \rightarrow \{C,D\}$ (cond), $\{C,D\} \rightarrow E$ (merge), $E \rightarrow$ (loop if not done)
- State keys (+ reducer):
 - messages (append), scores (merge), final_label (replace), ...
- Guards: max tokens/time, schema checks, thresholds
- Observability: logs, metrics, traces
- Failure/Recovery: retries, backoff, resume from checkpoint

12) Worked Example (Essay Practice)

- Nodes: generate_topic → collect_essay → parallel score_clarity/score_depth/score_language → aggregate_score → branch (pass/feedback) → optional loop to collect_essay.
- State keys: topic (replace), essay_drafts (append), scores (merge), total_score (replace), feedback (append).
- Reducers: essay_drafts=append, scores=merge, feedback=append, total_score=replace.
- **Guards:** scoring bounds 0–5; threshold 10/15; max drafts/iterations.
- Observability: store each draft + score + feedback for learning curve.

13) Fast Evaluation Rubrics (for the Evaluator)

- Clarity: structure, coherence, thesis, flow (0–5)
- **Depth:** analysis, evidence, counterpoints (0–5)
- **Language:** grammar, vocabulary, tone (0–5)
- Accept if: total ≥ threshold; else provide targeted feedback bullets.

Keep this sheet nearby when designing new workflows. Start simple, make state/reducers explicit, log everything, and add loops/parallelism only where they pay off.

