EMBARCATECH Curso de Sistemas Embarcados Projeto Final – Segunda Fase

Semáforo Inteligente com Monitoramento por Sensor de Presença

Sistema embarcado para controle automático de passagem de pedestres

Integrantes: Nícolas Marçal Vinícius Esperança Mantovani

Data: Julho de 2025 Local: Campinas/ São Paulo

Problema

Em meio a cidades cada vez mais habitadas, um trânsito cada vez mais caótico e a populações de pessoas cada vez mais apressadas, um problema a ser resolvido é a falta de coordenação de semáforos, principalmente no que tange a atender pedestres. Esse problema ocorre em praticamente todos os semáforos, que são programados para intercalarem a passagem de carros de uma ou outra via que se cruzam e, pedestres que desejam atravessar a rua. Isso porque, esses sinaleiros são programados para abrirem e fecharem baseado exclusivamente em contagens de tempo. Desse modo, é muito comum se observar situações em que não há pedestre algum atravessando a rua, mas o semáforo está aberto para pedestres ou, ao contrário, o semáforo está aberto para carros de uma determinada via, mas não há carros na via. Isso causa perda de tempo para aqueles que esperam a contagem de tempo de uma via vazia e pode ocasionar inclusive problemas para pedestres que se encontram no meio da travessia quando o sinal de passagem fecha. Para isso, se propõe a solução a seguir.

Projeto

A proposta para solução do problema discutido, é um sistema de detecção de presença de pessoas para fechamento do semáforo da via e abertura do semáforo para pedestres. Esse sistema será construído de forma que deve ser usado no mínimo em um par e além do sensor de presença, apresentará avisos sonoros para pessoas com necessidades especiais e se comunicará entre pontas da travessia (de um lado para o outro da rua). Isso ocorre de forma que de cada lado da rua deve haver uma unidade do produto posicionada de maneira que o sensor consiga atuar corretamente e, esses dois dispositivos se comunicarão informando a presença de pedestres à espera de abertura do semáforo. Além disso, após a abertura para passagem de pessoas, os dispositivos de ambas as pontas comunicam um ao outro a saída e chegada de pedestres e, em cada um desses eventos, o temporizador do sistema é resetado a um valor de tolerância que considera o bastante para uma pessoa atravessar (com folga).

Requisitos

O sistema deve:

- Identificar pedestres esperando para atravessar a rua;
- Emitir sinal de fechamento de semáforo da rua e abertura de semáforo para pedestres;
- Identificar a entrada e saída de pessoas da rua;
- Contar um tempo específico a partir da passagem de cada uma das pessoas, de forma que haja tempo o bastante para a última pessoa atravessar a rua;
- Emitir avisos sonoros de abertura e fechamento do sinaleiro;

- Indicar no display a situação do semáforo e, caso esteja fechado para pedestres, indicar se há ou não pessoas no aguardo da abertura.
- Apresentar comunicação ao menos entre um par para garantir a detecção de pedestres em ambas as pontas e impossibilitar abertura ou fechamento indevidos do sinaleiro.

Ademais, apenas para desenvolvimento do projeto:

- Deve simular o comportamento do semáforo em LED RGB.

Componentes

O projeto é composto por duas unidades BitDogLab, cada uma equipada com os seguintes componentes::

Componentes	Imagens	Quantidades	Descrições	Pinagem
Raspberry pi Pico W		1	Microcontrolador RP2040 com conectividade Wi-Fi.	-
LED RGB		1	LED RGB comum (3 cores: vermelho, verde e azul).	GPIO13 (Vermelho), GPIO11 (Verde), GPIO12 (Azul)
Buzzers		2	Emissor de som para feedback sonoro.	GPIO21 (Buzzer A), GPIO10 (Buzzer B)
Sensor de Distância	ADAPTH X X X X X X X X X X X X X X X X X X X	1	Sensor VL53L0X para a detecção de proximidade.	GPIO0 (SDA), GPIO1 (SCL)
Display OLED		1	Tela OLED para exibição de informações.	GPIO14 (SDA), GPIO15 (SCL)

Resistor de		2	Resistor para	Conectados
220 Ω			limitar corrente	entre
			no LED (cores	GPIO11/GPIO13
			verde e	e o LED RGB
			vermelho).	
		_		
Resistor de		1	Resistor para	Conectado
150 Ω			limitar corrente	entre GPIO12 e
			no LED (cor azul).	o LED RGB