

- ◆ 频谱分析实验
- 一、实验概述
- 二、生成用于实验的离散时间信号
- 三、对实验信号进行频谱分析
- *四、试对二维信号进行频谱分析

一、实验概述

- 实验目的(1)能利用快速 Fourier 变换(FFT)对有限离散序列进行离散 Fourier 正变换与逆变换。
 - (2) 重点掌握有限离散时间序列的频谱分析方法。
- 实验内容(1)设计并生成用于实验的若干有限离散时间信号。
 - (2) 对实验信号进行频谱分析。
 - 计算实验信号的 DFT 与 IDFT。
 - 对实验信号进行频谱分析。
 - *(3) 试对二维信号进行频谱分析。

一、实验概述

- 实验要求 (1) 编程实现有关实验内容。
 - 编程语言不限;程序规范,通用性强。
 - (2) 完成实验报告,包括:
 - 基本原理与方法;
 - 实验方案与设计;
 - 实验结果与分析;
 - 源程序(必要的注释)。
 - 方法说明、程序说明及使用说明。(可选)

一、实验概述

● 本实验在 Matlab 中所涉及到的部分函数:

fopen 创建或打开文件;

fprintf 将数据以指定的格式写入文件;

fscanf 从文件中读出数据;

fclose 关闭文件;

save 将数据以固定的格式写入文件(.mat);

load 从文件(.mat)中装载数据;

fft, fft2 一维或二维离散信号的快速 Fourier 正变换;

ifft, ifft2 一维或二维离散信号的快速 Fourier 逆变换。

- 1. 实验信号的生成
- 步骤 (1) 具体设计一些含有已知频率成份的连续实验信号。
 - (2) 根据抽样定理分别选取适当的采样间隔。
 - (3) 用所选取的采样间隔分别对连续实验信号进行抽样 并以文件的形式保存。
 - (4) 从文件中读取信号数据,并显示其曲线。
- 注 对于实际的采样信号,将其在计算机上保存时,除了信号数据外,一般还含有一个文件头,用于保存该信号的某些信息,如采样间隔、信号的长度等等。

的.

二、生成用于实验的离散时间信号

2. 实验信号的设计举例

例一 (1) 由频率分别 为 Hz 18 Hz 29 Hz 40 次及 信号合成, 具体如下:

$$x_1(t) = 4\sin(14\pi t) + 3\sin(36\pi t) + 2\sin(58\pi t) + \sin(80\pi t),$$

其中, $0 \le t < 5$,(单位以秒计)。

(2) 采样间隔为 $_1 = 0.01s = 10ms$,即信号长度为 $_500$,得到的离散时间信号为 $_1(n\Delta_1)$, $n = 0, 1, 2, \dots, 499$,它所对应的离散序列记为 $_1(n)$.

2. 实验信号的设计举例

例一 (3) 图形显示如下:

2. 实验信号的设计举例

例二 (1) 由截止频率为0Hz 的抽样信号构成,

$$x_2(t) = \frac{\sin(120\pi t)}{\pi t},$$

其中, $-2 \le t < 2$,(单位以秒计)。

(2) 采样间隔为 $\Delta_2 = 0.005 s = 5 m s$,即信号长度为800,得到的离散时间信号为 $\Delta_2(n\Delta_2)$, $\Delta_2(n\Delta_2)$, $\Delta_3(n)$ 。它所对应的离散序列记为 $\Delta_2(n)$ 。

2. 实验信号的设计举例

例二 (3) 图形显示如下:

1. 计算离散序列的 DFT 与 IDFT

实验内容

- (1) 利用快速 Fourier 变换 (FFT) 计算离散序物) $_{n=0\sim N}$ 的 DFT : $\{X(k)\}_{k=0\sim N}$ 。
- (2) 画出离散序列的振幅谱(k) ,并观察其特点。
- (3) 画出离散序列的功率谱 $\frac{|X(k)|^2}{N}$
- (4) 计算 $\{X(k)\}_{k=0\sim N}$ 的 IDFT $\{X$ 为 为 $k=0\sim N$ 进来 这 或者将 $\{X(k)\}$ 作适当的修改后,再计算其 IDFT 。

1. 计算离散序列的 DFT 与 IDFT

实验结果(一计算离散序列 $\{\tilde{x}_1(n)\}$ 的DFT

1. 计算离散序列的 DFT 与 IDFT

实验结果(一计算离散序列 $\{\tilde{x}_1(n)\}$ 的DFT

1. 计算离散序列的 DFT 与 IDFT

实验结果 (二将 $\{\tilde{X}_1(k)\}$ 修改后,再计算它的 IDFT

具体 (1) 令 $\widetilde{X}_1(80:101) = 0$, $\widetilde{X}_1(181:321) = 0$, $\widetilde{X}_1(401:421) = 0$.

ullet 对 \widetilde{X}_1 进行修改时,要注意保持它的<u>共轭对称性</u>, 其目的是保证 \widetilde{X}_1 的 **IDFT** 仍为实信号。

1. 计算离散序列的 DFT 与 IDFT

实验结果 (二将 $\{\tilde{X}_1(k)\}$ 修改后,再计算它的 IDFT

- 具体 (1) 令 $\widetilde{X}_1(80:101) = 0$, $\widetilde{X}_1(181:321) = 0$, $\widetilde{X}_1(401:421) = 0$.
 - (2) 对修改后的 \tilde{Y}_1 , 计算其 IDFT 并取实部,得到·
 - 取实部是为了消除逆变换中仍然存在的虚部残留。

1. 计算离散序列的 DFT 与 IDFT

实验结果 (二将 $\{\tilde{X}_1(k)\}$ 修改后,再计算它的 IDFT

- 具体 (1) 令 $\widetilde{X}_1(80:101) = 0$, $\widetilde{X}_1(181:321) = 0$, $\widetilde{X}_1(401:421) = 0$.
 - (2) 对修改后的 \tilde{Y}_1 ,计算其 IDFT 并取实部,得到·
 - (3) 将 $\hat{x}(n)$ 与信号 $\sin(14\pi t) + 2\sin(58\pi t)$

1. 计算离散序列的 DFT 与 IDFT

实验结果 (二将 $\{\widetilde{X}_1(k)\}$ 修改后,再计算它的 \mathbf{IDFT}

1. 计算离散序列的 DFT 与 IDFT

实验结果 (二将 $\{\tilde{X}_1(k)\}$ 修改后,再计算它的 IDFT

1. 计算离散序列的 DFT 与 IDFT

实验结果 (三计算离散序列 $\{\tilde{x}_2(n)\}$ 的 DFT

1. 计算离散序列的 DFT 与 IDFT

实验结果 (三计算离散序列 $\{\tilde{x}_2(n)\}$ 的 DFT

- 2. 离散时间序列的频谱分析
- 分析 (1) 连续时间信号(t) 以采样间隔 采样后,得到长为 N 的离散时间信号 $(n\Delta)$,则它的频谱 $(n\Delta)$ 一个以 $(n\Delta)$ 为周期的连续周期函数。
 - (2) 当x(t) 为限带信号,但 满足抽样定理的条件的则 $X_{\Delta}(f)$ 是信 ξt 的频键 的周期延拓。

- 2. 离散时间序列的频谱分析
- $\frac{\partial ff}{\partial t}$ (3) 对于离散序列 $\tilde{t}(n) = x(n\Delta)$,若它的 $\tilde{t}(T)$ 为 则 $\tilde{X}(k)$ 实际上是连续频谱f) 在区间t

的 N 个等分点上的 "值即 $X_{\Delta}(\frac{k}{N\Delta}) = \Delta \widetilde{X}(k)$.

• 因此,将标号 k 换算成真正的频率应为 $k = \frac{k}{N\Delta}$.

- 2. 离散时间序列的频谱分析
- 分析 (4) 若x(t) 为实信号,则有如下的<u>对称性质</u>:

$$|X(f)| = |X(-f)|; \quad |\widetilde{X}(k)| = |\widetilde{X}(N-k)|.$$

- ullet 因此,只须显示 $\widetilde{X}(k)$ 的前面一半即可。
- (5) 如果用零将离散序列(n) 扩充至长度则 $\widetilde{X}(k)$ 是 $X_{\Delta}(f)$ 他, $1/\Delta$) 小内的 个等分点上的"们

2. 离散时间序列的频谱分析

步骤 (1) 记
$$\widetilde{x}(n) = x(n\Delta), n = 0, 1, 2, \dots, N-1.$$

(2) 计算
$$\widetilde{x}(n) \xrightarrow{\mathrm{DFT}(\mathrm{FFT})} \widetilde{X}(k), \quad k = 0, 1, 2, \dots, N-1.$$

(3) 令
$$X(k) = \Delta \widetilde{X}(k)$$
, $k = 0, 1, 2, \dots, \frac{N}{2} - 1$.

计算 $P_k = \frac{|X(k)|^2}{N}$, (离散功率谱)
$$f_k = \frac{k}{N\Lambda}.$$
 (频率节点)

(4) 以 f_k 为横坐标 P_k 为纵坐标作图。

2. 离散时间序列的频谱分析

实验结果 (一计算离散时间信号 $\{x_1(n\Delta_1)\}$ 的频谱

2. 离散时间序列的频谱分析

实验结果 (二计算离散时间信号 $\{x_2(n\Delta_2)\}$ 的频谱

1. 二维信号(图像)示例

灰度图像

彩色图像

- 2. 二维离散 Fourier 变换
 - 考虑二维离散信号x(m,n) $m = 0 \sim M-1$ $n = 0 \sim N-1$
 - DFT(正变换):

$$X(k, l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x(m, n) W_M^{km} W_N^{ln}, \qquad \begin{pmatrix} k = 0 \sim M - 1 \\ l = 0 \sim N - 1 \end{pmatrix}.$$

● IDFT(逆变换):

$$x(m,n) = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} X(k,l) W_M^{km} W_N^{ln}, \quad \binom{m=0 \sim M-1}{n=0 \sim N-1}.$$

其中,
$$W_N = e^{-j2\pi/N}$$
, $W_M = e^{-j2\pi/M}$.

- 2. 二维离散 Fourier 变换
 - 物理意义

- 2. 二维离散 Fourier 变换
- (1) 可分性

$$X(k, l) = \sum_{n=0}^{N-1} \left[\sum_{m=0}^{M-1} x(m, n) W_M^{km} \right] W_N^{ln}, \quad \left(\frac{k = 0 \sim M - 1}{l = 0 \sim N - 1} \right).$$

- 因此,一个二维信号的 DFT 的计算可以依次对行和列进行一维信号的 DFT 来完成。
- (2) 平移性

$$x(m,n)\cdot (-1)^{m+n} \xrightarrow{DFT} X(k-M/2, l-N/2).$$

● 称此为二维信号的中心 DFT 。

3. 二维信号的 DFT 示例

原始图像

对应的频谱

3. 二维信号的 DFT 示例

原始图像

中心 DFT

3. 二维信号的 DFT 示例

受正弦波干扰后的图像

中心 DFT

