# Οργάνωση Υπολογιστών

Συστήματα Υπολογιστών

Παναγιώτης Παπαδημητρίου

papadimitriou@uom.edu.gr

https://sites.google.com/site/panagpapadimitriou/

#### Στοιχεία Συστημάτων Υπολογιστών

- Υλικό: παρέχει τους βασικούς υπολογιστικούς πόρους (επεξεργαστής, μνήμη, συσκευές εισόδου-εξόδου)
- Λειτουργικό σύστημα: ελέγχει και συντονίζει τη χρήση του υλικού μεταξύ των διαφόρων προγραμμάτων των χρηστών
- Προγράμματα εφαρμογών: καθορίζουν τους τρόπους με τους οποίους χρησιμοποιούνται οι πόροι για τη διεκπεραίωση εργασιών των χρηστών

#### Υλικό Υπολογιστών

- Βασικά τμήματα του υλικού του υπολογιστή:
  - Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)
  - Κεντρική Μνήμη
  - Συσκευές Εισόδου/Εξόδου (Ε/Ε)



## Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)

- Αριθμητική και Λογική Μονάδα (ΑΛΜ)
  - Εκτελεί αριθμητικές, λογικές και πράξεις μετατόπισης (ολίσθησης)
- Καταχωρητές
  - Θέσεις προσωρινής αποθήκευσης (π.χ. για την εκτέλεση πράξεων)
- Μονάδα Ελέγχου
  - Ελέγχει τη λειτουργία του κάθε υποσυστήματος της ΚΜΕ



Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)

#### Καταχωρητές

- Καταχωρητές δεδομένων:
  - Αποθηκεύουν δεδομένα εισόδου και αποτελέσματα πράξεων
- Καταχωρητής εντολών (Instruction Register IR):
  - Αποθηκεύει την επόμενη εντολή που θα εκτελέσει η ΚΜΕ
- Μετρητής προγράμματος (Program Counter PC):
  - Δείχνει στη διεύθυνση μνήμης όπου είναι αποθηκευμένη η επόμενη εντολή

## Κεντρική Μνήμη (RAM)

- Η κεντρική μνήμη είναι προσωρινός αποθηκευτικός χώρος για τις εντολές ενός προγράμματος και τα δεδομένα που αυτό διαχειρίζεται
  - Αποτελείται από ένα σύνολο θέσεων αποθήκευσης σε καθένα από το οποίο αντιστοιχεί μία μοναδική διεύθυνση



Διεύθυνση

Περιεχόμενο

# Οργάνωση Κεντρικής Μνήμης



Η στοίβα αποθηκεύει τη διεύθυνση επιστροφής (στο κύριο πρόγραμμα),
όταν ολοκληρωθεί η εκτέλεση μίας ρουτίνας του προγράμματος

## Κρυφή Μνήμη (Cache)

- Η κρυφή μνήμη είναι ενσωματωμένη στην ΚΜΕ και επιτρέπει την αποθήκευση και ταχύτατη πρόσβαση σε ένα μικρό όγκο δεδομένων (πολύ πιο γρήγορα από στην κύρια μνήμη)
  - Τα δεδομένα αναζητούνται πρώτα στην κρυφή μνήμη και (αν δεν βρεθούν) μετά στην κεντρική μνήμη
  - Οι σύγχρονες ΚΜΕ έχουν κρυφή μνήμη 2 ή 3 επιπέδων (L1, L2, L3)

| Πυρήνας 1 | Πυρήνας 2 | Πυρήνας 3 | Πυρήνας 4 |  |  |
|-----------|-----------|-----------|-----------|--|--|
| L1        | L1 L1     |           | L1        |  |  |
| L         | 2         | L2        |           |  |  |
| L3        |           |           |           |  |  |

Κρυφή μνήμη 3 επιπέδων σε 4-πύρηνο επεξεργαστή

# Ιεραρχία Μνήμης



## Επικοινωνία ΚΜΕ με Μνήμη

- Δίαυλος δεδομένων:
  - Το εύρος του διαύλου καθορίζεται από το μήκος της λέξης (π.χ. 32 bits για 32-bit λέξη)
- Δίαυλος διευθύνσεων:
  - Το εύρος του διαύλου καθορίζεται από το σύνολο θέσεων της μνήμης (n bits για 2<sup>n</sup> θέσεις μνήμης)
- Δίαυλος ελέγχου:
  - Το εύρος του διαύλου καθορίζεται από το σύνολο των εντολών ελέγχου (m bits για 2<sup>m</sup> εντολές)

| KME |                     | Μνήμη |
|-----|---------------------|-------|
|     | Δίαυλος δεδομένων   |       |
|     |                     |       |
|     |                     |       |
|     | Δίαυλος διευθύνσεων | •     |
|     | Δίαυλος ελέγχου     |       |

## Κύκλος Μηχανής

- Ανάκληση:
  - Αντιγράφεται η επόμενη εντολή (όπου δείχνει ο μετρητής προγράμματος)στον καταχωρητή εντολών
  - Αυξάνεται ο μετρητής προγράμματος κατά 1
- Αποκωδικοποίηση:
  - Αποκωδικοποιείται η εντολή (π.χ. LOAD, ADD) και οι τελεστές της (π.χ. καταχωρητές δεδομένων, διευθύνσεις μνήμης)



#### Παράδειγμα Μορφής Εντολών



| Κωδ. λειτ/γίας | Δ/νση-R | Δ/νση-R Δ/νση- | R | Κωδ. λειτ/γίας | Διεύθυνσ | η μνήμης | Δ/νση-R   |
|----------------|---------|----------------|---|----------------|----------|----------|-----------|
| Κωδ. λειτ/γίας | Δ/νση-R | Δ/νση-R        |   | Κωδ. λειτ/γίας | Δ/νση-R  | Διεύθυνο | τη μνήμης |
| Κωδ. λειτ/γίας | Δ/νση-R |                |   | Κωδ. λειτ/γίας | Δ/νση-R  | n        | 0 ή 1     |
|                |         | Κωδ. λειτ/γίας |   |                |          |          |           |

β. Τύποι εντολών

 Η μορφή και οι τύποι εντολών διαφέρουν μεταξύ αρχιτεκτονικών υπολογιστών (π.χ. x86, MIPS)

#### Παράδειγμα Εντολών

| Εντολή — | Κωδ.  | Τελεστέοι      |                 | ρι              | Ευέρυσια                                          |  |
|----------|-------|----------------|-----------------|-----------------|---------------------------------------------------|--|
|          | $d_1$ | 1/2            | 13              | $d_4$           | Ενέργεια                                          |  |
| HALT     | 0     |                |                 |                 | Διακόπτει την εκτέλεση του προγράμματος           |  |
| LOAD     | 1     | R <sub>D</sub> | Ms              |                 | $R_D \leftarrow M_S$                              |  |
| STORE    | 2     | M <sub>D</sub> | $R_S$           |                 | $M_D \leftarrow R_S$                              |  |
| ADDI     | 3     | R <sub>D</sub> | R <sub>S1</sub> | R <sub>S2</sub> | $R_D \leftarrow R_{S1} + R_{S2}$                  |  |
| ADDF     | 4     | R <sub>D</sub> | R <sub>S1</sub> | R <sub>S2</sub> | $R_D \leftarrow R_{S1} + R_{S2}$                  |  |
| MOVE     | 5     | R <sub>D</sub> | R <sub>S</sub>  |                 | $R_D \leftarrow R_S$                              |  |
| NOT      | 6     | R <sub>D</sub> | $R_S$           |                 | $R_D \leftarrow \overline{R}_S$                   |  |
| AND      | 7     | R <sub>D</sub> | R <sub>S1</sub> | R <sub>S2</sub> | $R_D \leftarrow R_{S1} AND R_{S2}$                |  |
| OR       | 8     | R <sub>D</sub> | R <sub>S1</sub> | R <sub>S2</sub> | $R_D \leftarrow R_{S1} OR R_{S2}$                 |  |
| XOR      | 9     | R <sub>D</sub> | R <sub>S1</sub> | R <sub>S2</sub> | $R_D \leftarrow R_{S1} XOR R_{S2}$                |  |
| INC      | А     | R              |                 |                 | R ← R + 1                                         |  |
| DEC      | В     | R              |                 |                 | $R \leftarrow R-1$                                |  |
| ROTATE   | С     | R              | n               | 0 ή 1           | $Rot_n R$                                         |  |
| JUMP     | D     | R              | n               |                 | Av $R_0 \neq R$ τότε PC = $n$ , ειδάλλως συνέχισε |  |

Υπόμνημα: R<sub>s</sub>, R<sub>s1</sub>, R<sub>s2</sub>: Δεκαεξαδική διεύθυνση των καταχωρητών προέλευσης

R<sub>D</sub>: Δεκαεξαδική διεύθυνση του καταχωρητή προορισμού M<sub>S</sub>: Δεκαεξαδική διεύθυνση της θέσης μνήμης προέλευσης

Μ<sub>D</sub>: Δεκαεξαδική διεύθυνση της θέσης μνήμης προορισμού

η: δεκαεξαδικός αριθμός

 $d_1$ ,  $d_2$ ,  $d_3$ ,  $d_4$ : 10, 20, 30, και 40 δεκαεξαδικό ψηφίο

#### Εκτέλεση Προγράμματος

- Πρόσθεση δύο αριθμών σε γλώσσα μηχανής:
  - 1. Φόρτωση 1ου αριθμού από τη μνήμη σε καταχωρητή (R<sub>0</sub>)
  - 2. Φόρτωση 2ου αριθμού από τη μνήμη σε καταχωρητή (R₁)
  - 3. Πρόσθεση των τιμών των δύο καταχωρητών  $(R_0,R_1)$  και αποθήκευση του αποτελέσματος σε τρίτο καταχωρητή  $(R_2)$
  - 4. Αποθήκευση της τιμής του τρίτου καταχωρητή (R<sub>2</sub>) στη μνήμη
  - 5. Τερματισμός της εκτέλεσης

# Εκτέλεση Εντολής 1 (LOAD)



# Εκτέλεση Εντολής 2 (LOAD)



## Εκτέλεση Εντολής 3 (ADD)



# Εκτέλεση Εντολής 4 (STORE)



#### Εκτέλεση Εντολής 5 (HALT)



Ερωτήσεις