Fondamentaux théoriques du machine learning

First principal component

We look for w, ||w|| = 1 such that

$$\sum_{i=1}^{n} \left(w^{T} x_{i} \right)^{2} \tag{1}$$

is maximal.

Proposition

w is the eigenvector of X^TX with largest eigenvalue λ_{max} .

First principal component

We look for w, ||w|| = 1 such that

$$\sum_{i=1}^{n} \left(w^{\mathsf{T}} x_i \right)^2 \tag{2}$$

is maximal.

Proposition

w is the eigenvector of X^TX with largest eigenvalue λ_{max} .

Exercice 1: Show the proposition.

First principal component

$$\sum_{i=1}^{n} (w^{T} x_{i})^{2} = ||Xw||^{2}$$
$$= \langle Xw, Xw \rangle$$
$$= \langle (X^{T} X)w, w \rangle$$

This quantity is always smaller that λ_{max} , and it attained for an eigenvector in the eigenspace with norm 1, since we impose that ||w||=1.