SEP-Nets: Small and Effective Pattern Networks

 $\hbox{Zhe Li}^{\dagger,\ddagger} \\ \hbox{Xiaoyu Wang}^\dagger, \hbox{Xutao Lv}^\dagger \hbox{ and Tianbao Yang}^\ddagger$

[†]Snap Research, [‡]The University of Iowa

Thursday 24th August, 2017

- Motivation
- 2 The Proposed Method
- The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- The Proposed SEP-Nets
- 5 Experimental Results
- **6** Conclusion

Outline

- Motivation
- 2 The Proposed Method
- The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- 4 The Proposed SEP-Nets
- 5 Experimental Results
- 6 Conclusion

The success of deep learning

Three aspects of deep learning

• Performance (Test accuracy): Almost Done

Three aspects of deep learning

- Performance (Test accuracy): Almost Done
- Computation (Number of floating point operations): Not Yet

Three aspects of deep learning

- Performance (Test accuracy): Almost Done
- Computation (Number of floating point operations): Not Yet
- Memory (Number of parameters): Not Yet

Let's see performance and memory

What's wrong?

Not affordable for large neural network models

Mobile device

Highly require small and effective neural networks

What's wrong?

Not affordable for large neural network models

- Mobile device
- Embeded device

Highly require small and effective neural networks

Outline

- Motivation
- 2 The Proposed Method
- The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- 4 The Proposed SEP-Nets
- 5 Experimental Results
- 6 Conclusion

Where to start?

Let's review the most successful nerual network structures:

AlexNet	VGG-Net	Inception-Net	Res-Net	
2012	2013	2014	2015	

 Fully connected layers and convolution layers have most parameters in neural network models.

Focus on convolutional layers

Where to start?

Let's review the most successful nerual network structures:

AlexNet	VGG-Net	Inception-Net	Res-Net	
2012	2013	2014	2015	

- Fully connected layers and convolution layers have most parameters in neural network models.
- Fully connected layers have been removed in modern deep CNN (Incpetion-Net, ResNets)

Focus on convolutional layers

• $7 \times 7, 5 \times 5, 3 \times 3$ filters

- $7 \times 7, 5 \times 5, 3 \times 3$ filters
- ullet 1 imes 1 filters

Pattern Binarization

• $k \times k(k > 1)$ filters serve as spatial pattern extraction.

A trained 3×3 filter from GoogleNet (Left) and its binarized version (right)

Pattern Binarization

- $k \times k(k > 1)$ filters serve as spatial pattern extraction.
- 1×1 filters serve as data transformation.

A trained 3×3 filter from GoogleNet (Left) and its binarized version (right)

Pattern Binarization

- $k \times k(k > 1)$ filters serve as spatial pattern extraction.
- ullet 1 imes 1 filters serve as data transformation.
- Reduced number of parameters in model dramatically.

A trained 3×3 filter from GoogleNet (Left) and its binarized version (right)

How to use Pattern Binarization?

Easily adopted to any successful networks structures such as GoogleNet, ResNet including the designed SEP-Nets as following procedure:

 Train a full neural network such as GoogleNet, ResNet and SEP-Net from scratch

How to use Pattern Binarization?

Easily adopted to any successful networks structures such as GoogleNet, ResNet including the designed SEP-Nets as following procedure:

- Train a full neural network such as GoogleNet, ResNet and SEP-Net from scratch
- Binarize $k \times k(k > 1)$ convolutional filters in the well-trained neural network model

How to use Pattern Binarization?

Easily adopted to any successful networks structures such as GoogleNet, ResNet including the designed SEP-Nets as following procedure:

- Train a full neural network such as GoogleNet, ResNet and SEP-Net from scratch
- Binarize $k \times k(k > 1)$ convolutional filters in the well-trained neural network model
- Fine-tune the scaling factors of all binarized $k \times k$ filters and the floating point representation of all 1×1 filters by back-propagation on the same dataset.

Outline

- Motivation
- 2 The Proposed Method
- 3 The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- The Proposed SEP-Nets
- Experimental Results
- 6 Conclusion

Pattern Residient Block SEP-Net Module Group-wise Convolution

Pattern Residient Block

Pattern Residient Block SEP-Net Module Group-wise Convolution

Pattern Residient Block

Pattern Residient Block

 Consists of 1 × 1 and k × k convolutions, which are executed in parallel and their feature map are added together.

Pattern Residient Block

- Consists of 1 × 1 and k × k convolutions, which are executed in parallel and their feature map are added together.
- Additive 1×1 convolutions act the residual between fully 3×3 filters maps and binarized 3×3 filtered maps.

Pattern Residient Block

- Consists of 1 × 1 and k × k convolutions, which are executed in parallel and their feature map are added together.
- Additive 1×1 convolutions act the residual between fully 3×3 filters maps and binarized 3×3 filtered maps.

Pattern Residient Block SEP-Net Module Group-wise Convolution

Pattern Residient Block SEP-Net Module Group-wise Convolution

Pattern Residient Block SEP-Net Module Group-wise Convolution

SEP-Net Module

• 1 × 1 convolution layer: dimension reduction

- 1 × 1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels

- 1 × 1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
- 1 × 1 convolution layer: dimension recovery

- 1 × 1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
- 1 × 1 convolution layer: dimension recovery
- Skip connection

SEP-Net Module

- 1 × 1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
- 1 × 1 convolution layer: dimension recovery
- Skip connection

Pattern Residient Block SEP-Net Module Group-wise Convolution

Pattern Residient Block SEP-Net Module Group-wise Convolution

Pattern Residient Block SEP-Net Module Group-wise Convolution

Group-wise Convolution

 Adopt group convolution to reduce the model size.

- Adopt group convolution to reduce the model size.
- Split the input features maps into N groups and apply convolution to each group.

- Adopt group convolution to reduce the model size.
- Split the input features maps into N groups and apply convolution to each group.
- Set group number as the number of input channels, it degenerates to depth-wise convolutions (Used in Google's MobileNets)

- Adopt group convolution to reduce the model size.
- Split the input features maps into N groups and apply convolution to each group.
- Set group number as the number of input channels, it degenerates to depth-wise convolutions (Used in Google's MobileNets)

Outline

- Motivation
- 2 The Proposed Method
- The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- The Proposed SEP-Nets
- Experimental Results
- 6 Conclusion

The Proposed SEP-Net structures

Proposed two small SEP-Nets for mobile/embeded devices.

The Proposed SEP-Net structures

- Proposed two small SEP-Nets for mobile/embeded devices.
- One model has 1.3M parameters while the other 1.7M.

The Proposed SEP-Net structures

- Proposed two small SEP-Nets for mobile/embeded devices.
- One model has 1.3M parameters while the other 1.7M.
- Shared same following structure with slightly difference (group number, output dimension of the last convolution layer)

Outline

- Motivation
- 2 The Proposed Method
- The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- 4 The Proposed SEP-Nets
- **5** Experimental Results
- 6 Conclusion

Experimental Results

 Justify that pattern binarization can reduce number of parameters dramtically. (Small)

- Justify that pattern binarization can reduce number of parameters dramtically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50

- Justify that pattern binarization can reduce number of parameters dramtically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
 - ImageNet with GoogleNet, Costomize-Inception-Net

- Justify that pattern binarization can reduce number of parameters dramtically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
 - ImageNet with GoogleNet, Costomize-Inception-Net
- Justify that fine-tuning other parameters of the binraized network with fixed binarized patter could achieve comparable performance. (Effective)

- Justify that pattern binarization can reduce number of parameters dramtically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
 - ImageNet with GoogleNet, Costomize-Inception-Net
- Justify that fine-tuning other parameters of the binraized network with fixed binarized patter could achieve comparable performance. (Effective)
 - same as the above setting.

- Justify that pattern binarization can reduce number of parameters dramtically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
 - ImageNet with GoogleNet, Costomize-Inception-Net
- Justify that fine-tuning other parameters of the binraized network with fixed binarized patter could achieve comparable performance. (Effective)
 - same as the above setting.
- Show that the designed SEP-Net structures could achive better or comparable performance on ImageNet than using similar sized networks such as MobileNet. (Small & Effective)

Experimental Results-Training strategy

CIFAR10

Preprocessed by Global Contrast Normalization and ZCA whitening.

Experimental Results-Training strategy

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- \bullet 32 \times 32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration 32K, 48K.

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration 32K, 48K.
- Maximum number of iteration is 64K.

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration 32K, 48K.
- Maximum number of iteration is 64K.
- The momentum is 0.9 and the weight decay is 0.0001.

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration 32K, 48K.
- Maximum number of iteration is 64K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 256.

Effective on CIFAR10

Model	Acc	Ref	Full	BiPattern	Refined
ResNet-20	Top-1	0.9125	0.9118	0.1546	0.8649
Residet-20	Top-5	-	0.9974		0.9941
ResNet-32	Top-1	0.9249	0.9276		0.9021
Residet-32	Top-5	-	0.9972		0.9962
ResNet-44	Top-1	0.9283	0.9283	0.4825	0.9145
Residet-44	Top-5	-	0.9982	0.8765	0.9965
ResNet-56	Top-1	0.9303	0.9375	0.5382	0.9302
ivesiver-30	Top-5	_	0.9977	0.9574	0.9971

Small on CIFAR10.

Model	Full Network	Pattern Network
ResNet-20	292K	55K
ResNet-32	487K	78K
ResNet-44	682K	100K
ResNet-56	876K	123K

Small on CIFAR10.

Full Network	Pattern Network
292K	55K
487K	78K
682K	100K
876K	123K
	292K 487K 682K

• Use one number to represent a binarized 3×3 .

Experimental Results-Training strategy

ImageNet on GoogleNet

• Initial learning rate is 0.01 and follow a polynomial decay.

Experimental Results-Training strategy

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.

Experimental Results-Training strategy

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 128.

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 128.

ImageNet on C-InceptionNet

 Initial learning rate is 0.1 and divided learning rate 10 time after every 24 epochs.

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 128.

- Initial learning rate is 0.1 and divided learning rate 10 time after every 24 epochs.
- Train total 90 epochs.

Effective on ImageNet

Model	Acc	Ref	Full	BiPattern	Refined	Multicrop
GoogLeNet				1x1 pattern:		
				0.0013	0.6117	0.636
				0.0075	0.8395	0.856
				2-8 3x3 pattern:		
				0.3706	0.6797	0.6893
	Top-1	-	0.6865	0.6290	0.8827	0.8898
	Top-5	0.8993	0.8891	5x5 pattern:		
				0.5141	0.6917	0.6984
				0.7619	0.8904	0.8965
				3x3 & 5x5 pattern:		
				0.1428	0.6694	0.6812
				0.31738	0.8763	0.8844
C-InceptionNet	Top-1		0.648	0.0476	0.6400	0.6521
C-inceptionivet	Top-5		0.863	0.1464	0.8550	0.8626

Small on ImageNet

Model	Full Network	Pattern Network	
		3 × 3	4.43M
${\sf GoogLeNet}$	6.99M	5 × 5	6.43M
		3×3 and 5×5	3.87M
C-InceptionNet	5.10M		2.43M

Small on ImageNet

Model	Full Network	Pattern Network	
		3 × 3	4.43M
${\sf GoogLeNet}$	6.99M	5 × 5	6.43M
		3×3 and 5×5	3.87M
C-InceptionNet	5.10M		2.43M

• Use one number to represent a 3×3 or 5×5 kernel.

Experimental Results for the Designed SEP-Nets

Small and Effective on the designed SEP-Nets

Model	Parameter Number	Size (bytes)	Top-1 Acc
MobileNet	1.3M	5.2MB	0.637
	2.6M	10.4MB	0.684
SEP-Net-R	1.3M (small)	5.2MB	0.658
	1.7M (large)	6.7MB	0.667
-	-	-	-
SqueezeNet	1.2M	4.8MB	0.604
MobileNet	1.3M	5.2MB	0.637
SEP-Net-R (small)	1.3M	5.2MB	0.658
SEP-Net-B (small)	1.1M	4.2MB	0.637
SEP-Net-BQ (small)	1.1M	1.3MB	0.635

SEP-Net-R: SEP-Net with raw valued weights

SEP-Net-B: SEP-Net with pattern binarization

SEP-Net-BQ: SEP=Net with pattern binarization and other weights quantized using linear quantization with 8 bits

Analyze the effect of binarizing 1×1 filters and $k \times k$ filter from the view of quantization error:

• Let W denote an $c \times k \times k$ convolutional filter.

Analyze the effect of binarizing 1×1 filters and $k \times k$ filter from the view of quantization error:

- Let W denote an $c \times k \times k$ convolutional filter.
- binarization seeks to approximate it by αB , where B is a binary filter with entries from $\{1,-1\}$ and α is a scaling factor.

Analyze the effect of binarizing 1×1 filters and $k \times k$ filter from the view of quantization error:

- Let W denote an $c \times k \times k$ convolutional filter.
- binarization seeks to approximate it by αB , where B is a binary filter with entries from $\{1,-1\}$ and α is a scaling factor.
- From the viewpoint of minimizing the quantization error, α, B can be sought by solving the following problem:

$$\min_{\alpha \in \mathbb{R}, B \in \{1, -1\}^{c \times k \times k}} E(W, B, \alpha) \triangleq \|W - \alpha B\|_F^2$$
 (1)

Analyze the effect of binarizing 1×1 filters and $k \times k$ filters from the view of quantization error:

• The optimal B^* can be found by thresholding, i.e., $B^*_{i,j,l}=1$ if $W_{i,j,l}\geq 0$ and $B^*_{i,j,l}=-1$ if $W_{i,j,l}<0$.

Analyze the effect of binarizing 1×1 filters and $k \times k$ filters from the view of quantization error:

- The optimal B^* can be found by thresholding, i.e., $B^*_{i,j,l}=1$ if $W_{i,j,l}\geq 0$ and $B^*_{i,j,l}=-1$ if $W_{i,j,l}<0$.
- The optimal α_* can be computed by $\alpha_* = \frac{\sum_{i,j,l} |W_{i,j,l}|}{c \times k \times k}$.

Analyze the effect of binarizing 1×1 filters and $k \times k$ filters from the view of quantization error:

- The optimal B^* can be found by thresholding, i.e., $B^*_{i,j,l}=1$ if $W_{i,j,l}\geq 0$ and $B^*_{i,j,l}=-1$ if $W_{i,j,l}<0$.
- The optimal α_* can be computed by $\alpha_* = \frac{\sum_{i,j,l} |W_{i,j,l}|}{c \times k \times k}$.
- To quantitatively understand the effect of binarizing 1×1 filters and $k \times k$ filters, we compute the quantization error for all filters in the well-trained GoogleNet and obtain averaged quantization error for different filters:

1×1	3 × 3	5×5
0.0462	0.0029	0.0056

Outline

- Motivation
- 2 The Proposed Method
- The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
- 4 The Proposed SEP-Nets
- Experimental Results
- **6** Conclusion

Conclusion

• Proposed pattern binarization method.

- Proposed pattern binarization method.
- Designed a new pattern residual block.

- Proposed pattern binarization method.
- Designed a new pattern residual block.
- Designed a novel SEP-Net Module.

- Proposed pattern binarization method.
- Designed a new pattern residual block.
- Designed a novel SEP-Net Module.
- Proposed Small and Effective Pattern Networks.

- Proposed pattern binarization method.
- Designed a new pattern residual block.
- Designed a novel SEP-Net Module.
- Proposed Small and Effective Pattern Networks.
- Achieved the-state-of-art performance.

Future future following this work

• Train the pattern network with binarized $k \times k$ filters from scratch?

Future future following this work

- Train the pattern network with binarized $k \times k$ filters from scratch?
- Reduce computation cost (number of floating point operation)?

Question?