

The 24th Conference of Open Innovations Association - FRUCT

Moscow, Russia, April 11, 2019

Building Detection on Aerial Images Using U-NET Neural Networks

Leonid IvanovskyVladimir Khryashchev
Vladimir Pavlov

Anna Ostrovskaya

Purpose

Development of effective algorithm for building detection on satellite images based on convolutional neural network

Algorithm requirements

Take into account the small size of objects

Be invariant to rotation

Have enough training examples

Have an ability to handle huge pictures

Cope with noise

Trainable parameters: 7.8 mil

Trainable parameters: 17.2 mil

Planet database

- 14 samples in JPG format
- Resolution: 16384x16384 px, 0.5 m/pixel
- 3 Russian cities: Moscow, Yaroslavl, Rybinsk

Dataset preparation

- Cropped image resolution: 512x512 px
- Training set: 2611 images
- Test set: 653 photos

Training and testing

Loss function: binary cross-entropy

Optimizer: Adam

Batch size: 18 samples

Epochs (E): 96

demid.ai

Numerical results

Model	Accuracy
U-Net	96.31%
LinkNet	95.85%

Model	Sorensen-Dice coefficient (DSC)
U-Net	0.77
LinkNet	0.72

Numerical results

$$DSC = \frac{2I}{S}, \qquad I = \sum_{\substack{x \in X \\ y \in Y}} xy, \qquad S = \sum_{\substack{x \in X \\ y \in Y}} (x+y)$$

Examples of detection

Examples of detection

Conclusions

 Convolutional neural networks can be effectively used for building detection on aerial photos

 Dice similarity coefficient (DSC) shows the difference in application of various algorithms of deep learning

The best performance was given by using U-Net

Acknowledgment

The work was prepared with the financial support of the Ministry of Education of the Russian Federation as part of the research project No. 14.575.21.0167 connected with the implementation of applied scientific research id. RFMEFI57517X0167

The 24th Conference of Open Innovations Association - FRUCT

Moscow, Russia, April 11, 2019

Building Detection on Aerial Images Using U-NET Neural Networks

Leonid IvanovskyVladimir Khryashchev
Vladimir Pavlov

Anna Ostrovskaya

