Advanced Database Management Systems

Lecture 5 – Chapter 7
ER to Relational Schema Translation

NEXT UP

skip ahead to Chapter 7:

Translating ER Schemas to Relational Schemas

then back to Chapter 6:

The Relational Algebra: operations on relations

REVIEW

Specify all foreign keys for the following schema:

```
STUDENT(SID, Name, Major, BirthDate)

COURSE(CID, Name, Dept)

ENROLL(Student, Course, Semester, Grade)

BOOK_ADOPTION(Course, Semester, ISBN)

TEXTBOOK(ISBN, Title, Publisher, Author)
```

REVIEW

Reverse engineer this relational schema to find an equivalent ER schema.

PREVIEW: ER to Relational

EER Bank Schema

Step 1: Regular Entities

- Regular entity types become relations
 - include all simple attributes
 - include only components of compound attributes
 - keys become primary keys
 - if multiple keys (candidates) select a primary key

CUSTOMER(Ssn, Name, Addr, Phone)

Step 1: Regular Entities

BANK(Code, Name, Addr)

ACCOUNT(Acct no, Type, Balance)

LOAN(Loan no, Type, Amount)

Step 2: Weak Entities

- Weak entity types become relations
 - include all simple attributes
 - include only components of compound attributes
 - create a primary key from partial key and key of owning entity type (through identifying relationship)
 - attributes acquired through identifying relationship become a foreign key*

Step 2: Weak Entities

Weak entity types become relations

Step 3: Binary 1:1 Relationships

- Approach 1: Foreign Key
 - Chose one of the related entity types to hold the relationship (chose one with total participation, if possible)
 - add FK to other relation
 - move all relationship attributes to this relation
 - this approach is preferable, except as noted below
- Approach 2: Merged Relation
 - combine the relations for the related entities into a single relation
 - use only when both participations are total
- Approach 3: Separate Relation
 - same as binary M:N relationship (see step 5)
 - not generally a good option

Step 3: Binary 1:1 Relationships

Approach 1: Foreign Key

EMPLOYEE(<u>Ssn</u>, Name, ...)

FK

DEPARTMENT(<u>Name</u>, <u>Number</u>, Mgr, Mgr_start_date)

Step 3: Binary 1:1 Relationships

Approach 2: Merged Relation

or

Step 4: Binary 1:N Relationships

- 1:N Relationships become foreign key at N side
 - any relationship attributes also go to N side

LOAN(Loan no, Type, Amount,
Bank, Branch)

BANK_BRANCH(Bank code, Branch No,
Addr)

Step 4: Binary 1:N Relationships

- 1:N Relationships become foreign key at N side
 - any relationship attributes also go to N side

Step 5: Binary M:N Relationships

- M:N Relationships must become a new relation
 - contains FKs to both related entities
 - combined FKs become PK for new relations
 - relationship attributes go in new relation


```
CUSTOMER(<u>Ssn</u>, Name, Addr, Phone)

A_C(<u>Acct</u>, <u>Cust</u>)

ACCOUNT(<u>Acct no</u>, Type, Balance, Bank, Branch)
```

Step 6: Multivalued Attributes

- Multivalued attributes must become new relations
 - FK to associated entity type
 - PK is whole relation

DEPARTMENT(Name, Number, Mgr, Mgr_start_date)

DEPT_LOCATIONS(DName, Dno, Location)

Step 7: N-ary Relationships

- Non-Binary Relationships become new relations
 - FKs to all participating entity types
 - Combine FKs to make a PK (exclude entities with max participation of 1)
 - Include any relationship attributes

Completed Bank Schema

```
CUSTOMER(Ssn, Name, Addr, Phone)
BANK(Code, Name, Addr)
ACCOUNT(Acct no, Type, Balance, Bank, Branch)
LOAN(Loan no, Type, Amount, Bank, Branch)
BANK_BRANCH(Bank code, Branch No, Addr)
A_C(Acct, Cust)
L_C(Loan, Cust)
BANK BRANCH(Bank_code) refers to BANK
LOAN(Bank, Branch) refers to BANK BRANCH
ACCOUNT(Bank, Branch) refers to BANK BRANCH
A C(Acct) refers to ACCOUNT
A C(Cust) refers to CUSTOMER
L C(Loan) refers to LOAN
L C(Cust) refers to CUSTOMER
```

Bank Schema: MS Access

- Option a: Each entity type becomes a relation
 - all have same PK (from superclass)
 - PKs in subclasses are FKs to superclass
 - most general solution

PERSON(ID, Name)

STUDENT(<u>ID</u>, Major, Class)

PROFESSOR(<u>ID</u>, Dept, Office)

STUDENT(ID) refers to PERSON

PROFESSOR(ID) refers to PERSON

STUDENT

STUDENT

PROFESSOR

Office

- Option b: Each subclass becomes a relation
 - all have same PK (from superclass)
 - each relation gets all superclass attributes
 - restriction: only works for covering inheritance
 - problem: need to join tables to find all PERSONs

- Option c: Single relation with a type discriminator
 - PK from superclass
 - all attributes from all classes
 - restriction: only works for disjoint inheritance
 - problem: lots of NULL values

- Option d: Single relation with multiple discriminators
 - PK from superclass
 - all attributes from all classes
 - works for overlapping inheritance
 - problem: lots of NULL values

PERSON(ID, isStudent, isProfessor,
Name, Major, Class, Dept, Office)

dom(isStudent) = Boolean
dom(isProfessor) = Boolean

- Union types become a new relation of surrogate keys
 - surrogate keys are added to all defining classes
 - attributes of the union type go in the new relation


```
PERSON(<u>Driver license no</u>, Ssn, Name,
Address, Owner_id)
BANK(<u>Bname</u>, Baddress, Owner_id)
COMPANY(<u>Cname</u>, Caddress, Owner_id)
OWNER(<u>ID</u>)
```

PERSON(Owner_id) refers to OWNER BANK(Owner_id) refers to OWNER COMPANY(Owner_id) refers to OWNER

add surrogate key to REGISTERED_VEHICLE

CAR(Vehicle_id) refers to REGISTERED_VEHICLE
TRUCK(Vehicle_id) refers to REGISTERED_VEHICLE

in this case, we don't need to invent a surrogate key, since the domains of CAR keys and TRUCK keys are the same (and non-overlapping)

OWNS relation uses the surrogate keys

OWNS(<u>Owner_id</u>, <u>Vehicle_id</u>, Purchase_date, Lien_or_regular)

OWNS(Owner_id) refers to OWNER
OWNS(Vehicle_id) refers to REGISTERED_VEHICLE

EXERCISES

Create relational schema from the following:

Preview: Queries works_on Essn Pno Hours 123456789 1 32.5

EMPLOYEE

						_			
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX		30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT_LOCATIONS

Dnumber	Dlocation	
1	Houston	
4	Stafford	
5	Bellaire	
5	Sugarland	
5	Houston	

Essn	Pno	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	NULL	

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn		Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Preview: Queries

- Which employee has no supervisor?
- Which employees are supervised by Franklin Wong?
- Which employees have dependents?
- Which employees have daughters?
- Which employees in department 5 work more than 10 hours/week on ProductX?
- Which department has the highest paid manager?
- What is the average salary of all department managers?
- Which employees don't have daughters?