Constructing an Iterated Fibre Bundle: A Simple Example

Introduction

This document demonstrates the explicit construction of an iterated fibre bundle through a simple example. The goal is to construct a two-layer fibre bundle where the base space of the first fibre bundle serves as the total space of the second.

Construction of the Iterated Fibre Bundle

We construct the iterated fibre bundle in the following steps:

Step 1: Define the First Fibre Bundle

Choose the base space $B = S^1$ (a circle). Let the fibre $F_1 = S^1$. Define the total space $E_1 = S^1 \times S^1$, which is a torus T^2 . Define the projection map $\pi_1 : T^2 \to S^1$ as:

$$\pi_1(\theta_1, \theta_2) = \theta_1,$$

where (θ_1, θ_2) are points on T^2 . Check the fibre structure:

• For any $\theta_1 \in S^1$, the fibre is:

$$\pi_1^{-1}(\theta_1) = \{\theta_1\} \times S^1,$$

which is homeomorphic to S^1 . Thus, $F_1 \to E_1 \to B$ forms a fibre bundle.

Step 2: Define the Second Fibre Bundle

Let the total space of the first fibre bundle $E_1 = T^2$ serve as the base space for the second fibre bundle. Choose the fibre $F_2 = \mathbb{R}$. Define the total space $E_2 = T^2 \times \mathbb{R}$. Define the projection map $\pi_2 : T^2 \times \mathbb{R} \to T^2$ as:

$$\pi_2((\theta_1, \theta_2), r) = (\theta_1, \theta_2),$$

where $((\theta_1, \theta_2), r)$ are points in E_2 . Check the fibre structure:

• For any $(\theta_1, \theta_2) \in T^2$, the fibre is:

$$\pi_2^{-1}((\theta_1, \theta_2)) = \{(\theta_1, \theta_2)\} \times \mathbb{R},$$

which is homeomorphic to \mathbb{R} . Thus, $F_2 \to E_2 \to E_1$ forms a fibre bundle.

Step 3: The Iterated Fibre Bundle

Combining the two layers of fibre bundles, we obtain the iterated fibre bundle:

$$F_2 \to E_2 \to B$$
,

where $E_2 = T^2 \times \mathbb{R}$ is the total space, $B = S^1$ is the base space, and the final fibre is $F_2 = \mathbb{R}$.

Verification

1. The first fibre bundle $F_1 \to E_1 \to B$ is valid because for each $\theta_1 \in S^1$, the fibre $\pi_1^{-1}(\theta_1) \cong S^1$ is a connected space. 2. The second fibre bundle $F_2 \to E_2 \to E_1$ is valid because for each $(\theta_1, \theta_2) \in T^2$, the fibre $\pi_2^{-1}((\theta_1, \theta_2)) \cong \mathbb{R}$ is a trivial fibre. 3. Since fibre bundles can be composed, the resulting iterated fibre bundle $F_2 \to E_2 \to B$ satisfies the definition.

Conclusion

This construction explicitly demonstrates a simple example of an iterated fibre bundle, where $F_2 = \mathbb{R}$, $E_2 = T^2 \times \mathbb{R}$, and $B = S^1$.