DMLab2 report

113062571 CS 張原鳴

Data Preparation

Initial data: Each row data corresponds to one tweet id

- data identification.csv: Classify the data into train and test data
- emotion.csv: Label the data in different kind of emotion
- tweets_DM.json: Include _score, _index, _source, _crawldata and _type, _source include:
 - tweet id
 - hashtag
 - text

Data Preparation

I extract the csv files into train_data.csv and test_data.csv in data_create.py.

- Feature selection:
 - \circ id
 - o text
 - hashtag
 - _score
- I focus on only text part during the training in the end.

```
ort pandas as pd
df = pd.read json('tweets DM.json', lines=True)
data_identification = pd.read csv('data identification.csv')
data emotion = pd.read csv('emotion.csv')
src = df[' source']
df src = pd.DataFrame([]
    'hashtags': item['tweet']['hashtags'],
    'tweet id': item['tweet']['tweet id'],
    'text': item['tweet']['text']
  for item in src])
tweet df = pd.concat([df src, df[' score']], axis=1)
df result = pd.merge(tweet df, data identification, on='tweet id')
df train = df result[df result['identification'] == 'train']
df test = df result[df result['identification'] == 'test']
df train = pd.merge(df train, data emotion, on='tweet id')
df_train = df_train[['tweet_id', 'text', 'hashtags', '_score', 'emotion']]
df test = df test[['tweet id', 'text', 'hashtags', ' score']]
df train.to csv('train data.csv', index=False)
df test.to csv('test data.csv', index=False)
 print(df train)
 orint(df test)
```

Data Preprocessing

- TfidfVectorizer:
 - Transform a collection of text data in train data into a numerical matrix based on the TF-IDF (Term Frequency-Inverse Document Frequency) score.
 - Limits the vocabulary size to the top 25,000 most important words across all documents, ranked by their TF-IDF score.
- Stop_word = 'english':
 - Automatically removes common English stop words (e.g., "the", "is", "and") from the text before computing TF-IDF, ignoring words that are meaningless.

Data Preprocessing

- Split and transform the training data into train and validation part (8:2).
 - We can observe the results not only in training phase but also in validation phase.
- LabelEncoder:
 - Models cannot process text labels (e.g., "anticipation") directly and need numerical inputs, so I use
 LabelEncoder for one-hot encoding.

In [7]:

LabelEncoder()

Dimension of y_train: 1 to 8 (number of target class).

Create the Model

- Model: Deep neural network (DNN) with six hidden layers
- Regularization:
 - Batch Normalization ensures stable and faster training.
 - Dropout reduces overfitting and prevents the network from becoming overly reliant on specific neurons.

(type)	Output Shape	Param #	
_layer (InputLayer)	(None, 25000)	0	
(Dense)	(None, 1024)	25,601,024	
_normalization hNormalization)	(None, 1024)	4,096	
(ReLU)	(None, 1024)	0	
out (Dropout)	(None, 1024)	0	
_1 (Dense)	(None, 512)	524,800	
_normalization_1 hNormalization)	(None, 512)	2,048	
_1 (ReLU)	(None, 512)	0	
out_1 (Dropout)	(None, 512)	0	
_2 (Dense)	(None, 256)	131,328	
_normalization_2 hNormalization)	(None, 256)	1,024	
_2 (ReLU)	(None, 256)	0	
out_2 (Dropout)	(None, 256)	0	
e_3 (Dense)	(None, 128)	32,896	
_normalization_3 hNormalization)	(None, 128)		
ı_3 (ReLU)	(None, 128)	0	
e_4 (Dense)	(None, 64)	8,256	
_normalization_4 hNormalization)	(None, 64)	256	
_4 (ReLU)	(None, 64)	0	
e_5 (Dense)	(None, 32)	2,080	
_normalization_5 :hNormalization)	(None, 32)	128	
_5 (ReLU)	(None, 32)	0	
e_6 (Dense)	(None, 8)	264	

Training the Model

- Epoch: 30, batch size: 256
- Early_Stopping: Stop the training process when the model's performance on a

validation dataset stops improving.

Generate the output result into submission.csv

```
epochs = 30
batch size = 256
from tensorflow.keras.callbacks import EarlyStopping
# Define EarlyStopping
early_stopping = EarlyStopping(
    monitor='val_accuracy',
    patience=2.
    mode='max'.
    restore_best_weights=True
# training!
history = model.fit(
   X_train, y_train,
    epochs=epochs,
    batch_size=batch_size,
    validation_data=(X_val, v_val),
    callbacks=[early_stopping]
```

Trying for Improvement

I try some methods, but the score just dropped, so I put in here.

Process data balancing.

Counts of every class in training data:

Speculation of the worse result:

1. Bad quality of generating data

because text data is hard to simulate.

emotion		emotion	
joy	516017	surprise	516017
anticipation	248935	disgust	516017
trust	205478	trust	516017
sadness	193437	anger	516017
disgust	139101	fear	516017
fear	63999	sadness	516017
surprise	48729	anticipation	516017
anger	39867	joy	516017
Name: count. c	Itype: int64	Name: count. d	type: int6

e: count, dtype: int64 Name: count, dtype: int64

2. Overfitting problem.

Trying for Improvement

- Try different models:
 - Random Forest
 - Transformer embeddings
- Speculation of the worse result:
 - The size of training data is too big, Random Forests are effective on smaller datasets, they may not scale well with such a large amount of data.
 - Lack of fine-tune in pretrained Transformer model, may not align perfectly with our task.