INFORME LABORATORIO 1 ARQUITECTURA DE COMPUTADORES

ELVER ANDRÉS ARROYAVE BRACAMONTE

JUAN ANDRES LEMA TAMAYO

UNIVERSIDAD DE ANTIOQUIA

FACULTAD DE INGENIERÍA

INGENIERÍA DE SISTEMAS

UDE@

2021

Este es el modelo final del circuito combinacional del laboratorio numero 1, el cual fue elaborado con ayuda de tablas de verdad y mapas de karnaugh para simplificar las expresiones que finalmente formarán el circuito para cada función:

Las restricciones que tuvimos en este laboratorio fueron impuestas por este plano y este orden el cual se resolvió teniendo en cuenta que se debía llegar desde un punto de inicio a un punto final pasando por cada una de las casillas y cuidando el recorrido de los obstáculos:

59	7	34	9	35	40	2
54	39	19	14	4	15	31
36	5	32	20	8	22	38
13	6	52	55	1	62	48
21	46	24	33	58	61	57
45	3	56	51	10	11	23
0	12	27	37	29	41	18

la solución a este fue la siguiente:

59	7	34	③	35	40	2
54	39	19	14 4		15	31
36	5	32	20	8	22	38
13	6	52	55	1	62	48
21	46	24	33	58	61	57
45	3	56	51	10	11	23
o	12	27	37	29	41	18

la cual lleva un orden como se puede ver en la imagen, partiendo el número 18, hasta el 9 como posición final, también se tuvo en cuenta una tabla en la que se decía cuales eran los valores para encender el led de cada movimiento:

Acción	Código
Right + Go	00
Left + Go	11
Go	01
Stop	10

Como contamos con tan solo cuatro acciones, 2 bits nos son suficientes para abarcar todas estas(Go, Right, Left y Stop). Hicimos una tabla de verdad por cada una de las acciones del control de movimiento.

X	Υ	Go	R+Go	L+Go	Stop
0	0	0	1	0	0
0	1	1	0	0	0
1	0	0	0	0	1
1	1	0	0	1	0

Realizamos los mapas de Karnaugh para cada una de las acciones.

El mapa nos dice que necesitamos 4 compuertas **AND** y como ambas variables son negadas en distintos momentos necesitamos dos compuertas **NOT** para cada una de ellas.

Por tanto nuestro circuito queda de la siguiente manera.

Teniendo esto en cuenta, comenzamos a hacer las tablas y los mapas de cada variable, principalmente del 7 segmentos de los números 1 hasta el 9 y una caso específico en el que solo se encendia la línea central, la cual nos ayudará luego a identificar qué posición está errada o inexistente:

a su vez, a partir de una tabla de verdad de 6 variables de entrada y 8 de salidas, adecuamos el circuito de 7 segmentos para que pueda mostrar los números del 0 al 63 con sus correspondientes mapas por variable:

con este, conectamos dos circuitos para dos 7 segmentos:

seguidamente, realizamos las tablas de verdad para el circuito que tendría el recorrido en orden para las posiciones siguientes, de acuerdo a la posición inicial, los mapas para este circuito son los siguientes:

con el circuito resultante de las expresiones de estos mapas y el circuito de los siguientes mapas (que dará órdenes al circuito de los led, según la posición a la que se dirija el robot):

se realizó un nuevo circuito, que daría inicio al control de movimiento del robot:

También se realizó un pequeño circuito que daría luz a los LED dependiendo de su movimiento (Go, Right, Left y Stop):

como última tarea creamos un circuito que permitiera entrar el número de la posición en el que queramos iniciar el recorrido:

el circuito que genera es el que vemos cómo conversor en el circuito principal (main):

El orden que se siguió para los mapas de karnaugh de 6 variables fue el siguiente:

MAPA DE KARNAUGH DE 6 VARIABLES

D,E	,F 000	001	011	010	110	111	101	100
000	0	1	3	2	6	7	5	4
001	8	9	11	10	14	15	13	12
011	24	25	27	26	30	31	29	28
010	16	17	19	18	22	23	21	20
110	48	49	51	50	54	55	53	52
111	56	57	59	58	62	63	61	60
101	40	41	43	42	46	47	45	44
100	32	33	35	34	38	39	37	36