

State-Space Models (SSMs)

Rowel Atienza, PhD
University of the Philippines
github.com/roatienza
2024

Why SSMs

- Transformers has $O(L^2)$ inference complexity with sequence length though O(1) training complexity
- RNNs has O(1) inference complexity with sequence length but $O(L^2)$ training complexity

Transformers: Any token can attend to any other token

Attention as measured by the width of the arrow

What comes after "its": Next token prediction

Attention as measured by the width of the arrow

GPT – Generative Pre-trained Transformers

Attention Matrix

	The	cat	opened	its	mouth
The					
cat					
opened					
its					
mouth					

$GPT - L^2$ complexity

Transformers – Fast Training Slow Inference

	Training	Inference	
Transformers	Fast	Slow 🛻	

Recurrent Neural Networks - RNNs

SSMs

Deep Learning, University of the Philippines

Transformers vs RNNs

	Training	Inference	
Transformers	Fast	Slow 🛻	
RNNs	Slow 🛻	Fast	

State Space Models

SSMs

	Training	Inference	
SSMs	Fast 💮	Fast	

Key Idea – Output is a function of Input and Hidden State

State Update: h'(t)

State: h(t)

Output: y(t)

Altitude, Speed, Location, etc

Input: x(t)

Throttle, Flap, etc

SSM in Continuous Time

State Space Equations

State Update:
$$h'(t) = Ah(t) + Bx(t)$$

State: h(t)

Output: y(t) = Ch(t) + Bx(t)

Input: x(t)

State Update

$$h'(t) = Ah(t) + Bx(t)$$

How the current state affects the next state

How the current input affects the next state

Architecture

Output

$$y(t) = Ch(t) + Dx(t)$$

How the current state affects the output

How the current input affects the output

Simplified Architecture w/o Skip Connection

SSM in Discrete Time

Sequence to Sequence - Translation

How are you? ── Kumusta ka?

Discrete Tokens

Discrete Tokens

Sequence to Sequence - Text to Speech

the association was organized under the most promising auspices

Discrete Tokens

Discrete waveform signal

Continuous to Discrete State Space

- By default, SSM applies to a continuous system (analog)
- Our problems are mostly discrete (digital)
- Solution : Discretize the SS equation

Zero-Order Hold (ZOH) Technique

Discretized Matrices

$$\bar{A} = e^{\Delta A}$$

$$\bar{B} = (\Delta A)^{-1} (e^{\Delta A} - I) \Delta B$$

https://en.wikipedia.org/wiki/Discretization#discrete_function

State Update – Recurrent Operation

$$h_k = \bar{A}h_{k-1} + \bar{B}x_k$$

How the current How the current state affects the input affects the next state

next state

Discretized Matrices

$$\bar{C} = C$$

$$\overline{D} = D$$

Output

$$y_k = \bar{C}h_k + \bar{D}x_k$$

How the current How the current state affects the output

input affects the output

Output – No Skip Connection

$$y_k = \bar{C}h_k$$

How the current state affects the output

SSMs using Convolution Operation

Output (No skip connection), Using x_k

$$y_k = \bar{C}h_k$$

$$y_k = \bar{C}(\bar{A}h_{k-1} + \bar{B}x_k)$$

$$y_k = \bar{C}\bar{A}h_{k-1} + \bar{C}\bar{B}x_k$$

Output using x_{k-1} and x_k

$$y_k = \bar{C}\bar{A}(\bar{A}h_{k-2} + \bar{B}x_{k-1}) + \bar{C}\bar{B}x_k$$

$$y_k = \bar{C}\bar{A}\bar{A}h_{k-2} + \bar{C}\bar{A}\bar{B}x_{k-1} + \bar{C}\bar{B}x_k$$

Output using x_{k-n} to x_k

$$y_k = \bar{C}\bar{A}^{n+2}h_{k-n-1} +$$

$$\overline{CA^nB}x_{k-n} + \cdots + \overline{CAB}x_{k-1} + \overline{CB}x_k$$

Kernel: K

Output as product of convolution

$$y_k \approx x * K$$

Kernel Convolution

SSMs

	Training	Inference
SSMs	Convolution	Recurrent

Matrix \bar{A}

$$h_k = \bar{A}h_{k-1} + \bar{B}x_k$$

 $ar{A}$: Captures all previous information to build a new state. How do we create $ar{A}$ that can retain a large context (memory)?

Hungry Hungry HiPPO!

• HiPPO - High-order Polynomial Projection Operator

HiPPO

$$\overline{A_{nk}} = \begin{cases} (2n+1)^{\frac{1}{2}}(2k+1)^{\frac{1}{2}} & below diagonal\\ n+1 & diagonal\\ 0 & above diagonal \end{cases}$$

HiPPO - Example

$$\bar{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 3 & 5 & 4 \end{bmatrix} \quad k$$

Structured State Space for Sequences (S4)

- State Space Models
- HiPPO for handling long-range dependencies
- Discretization for creating recurrent and convolution representations

S4 is unable to focus on specific inputs that are relevant to the task

Mamba

- A selective scan algorithm, which allows the model to filter (ir)relevant information
- A hardware-aware algorithm that allows for efficient storage of (intermediate) results through parallel scan, kernel fusion, and recomputation.

Selective Copying

- SSM performs poorly in this task since it is Linear Time Invariant (LTI)
 - Same \bar{A} , \bar{B} and \bar{C}
- Result SSM cannot perform content-aware reasoning

Induction Heads

- SSM performs poorly induction heads or reproducing patterns in the input because it is LTI
 - Same \bar{A} , \bar{B} and \bar{C}
- Result SSM cannot perform in-context-learning

State Update – Recurrent Operation

S4 $ar{A}$, $ar{B}$ and $ar{C}$ Matrices are Input Independent

Mamba $\overline{\Delta}$, \overline{B} and \overline{C} Matrices are Input Dependent

Size of $\overline{\Delta}$

- Small $\overline{\Delta}$ focus on context
- Large $\overline{\Delta}$ focus on recent tokens

- GPU SRAM Small and Fast
- GPU DRAM Large and Slow

Slow Computation

- Keep all computations within GPU SRAM and copy only when done.
- Re-ordering of operation using a new kernel

Copy Keep Copy SRAM SRAM DRAM Initial tensors Calculate Calculate Save results

- Keep all computations within GPU SRAM and copy only when done.
- Re-ordering of operation using a new kernel

Copy Keep Copy SRAM SRAM DRAM Initial tensors Calculate Calculate Save results

 h_k : Keep in fast SRAM

Simplified Architecture w/o Skip Connection

SSMs

Deep Learning, University of the Philippines

SSM Kernel

- \bullet Discretization step with step size Δ
- Selective scan algorithm
- Multiplication with C

Selective SSM (S6) or Mamba Block

Mamba Decoder for Autoregressive Modelling

Mamba Block

N Blocks

References

- A Visual Guide to Mamba and State Space Models -https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
- Mamba code and paper https://github.com/state-spaces/mamba

End