EF2017 MATLAB/statistik aflevering 24. maj 2016

Denne opgave udgør en del af kurset Eksperimentel Fysik 2017 og omhandler databehandling og fremstilling af figurer i MATLAB og statistik. Prøven har i alt 7 opgaver, nogle med flere dele. De 7 opgaver vægtes ens. Alle nødvendige datafiler ligger på kursets Absalon-side under "Afleveringer" / "Filer til Matlab-aflevering".

Hvis man har lavet de ugentlige opgaver i MATLAB og statistik, forventer vi at det tager jer 4 timer at lave afleveringen. Bemærk at det er tilladt at genbruge kode, så længe man ved hvad den gør - ja vi opfordrer endda til at i gør det. Dette gælder også eksempelkode fra de ugentlige opgaver. Hvis man bruger andres kode, skal dette noteres som en kommentar i koden.

Der skal kun afleveres én MATLAB-fil. Altså: Ingen rapport, og ingen forklaringer, evt. ud over simple kommentarer i koden. Opgaven afleveres senest **fredag d. 26. maj kl. 23.59** ved at uploade én .m-fil til Absalon, under "Afleveringer" / "Matlab-aflevering".

Det er ikke tilladt at arbejde sammen om afleveringen.

For at lette rettearbejdet bedømmer vi kun to ting: De producerede figurer, samt ting der printes til terminalen, når jeres script køres. Vi bedømmer altså som udgangspunkt ikke jeres kode i sig selv. Alle steder hvor der skal beregnes tal ønsker vi at i formatterer outputtet så det ligner dette eksempel¹:

```
#### Opgave 1 ####

x: mu = 01.234    sigma = 01.234    sigma_mu = 01.234    gamma = 01.234

y: mu = 01.234    sigma = 01.234    sigma_mu = 01.234    gamma = 01.234

z: mu = 01.234    sigma = 01.234    sigma_mu = 01.234    gamma = 01.234

#### Opgave 2 ####

(intet output udover figur)

#### Opgave 3 ####

f : 01.234 +- 01.234

tau: 01.234 +- 01.234
```

Det er som udgangspunkt ikke muligt at aflevere opgaven i andre sprog (python, R osv.), medmindre man træffer eksplicit aftale herom ved at sende en mail til asgs.itu@gmail.com og aftaler dette.

¹Se de ugentlige opgaver uge 1 for eksempler på hvordan man printer ting pænt i terminalen.

Opgave 1

Datafilen excl.csv indeholder tre kolonner: t (i millisekunder), y (i millivolt) og usikkerheden på y, σ_y (i millivolt). Data antages at følge den teoretisk model:

$$y(t; f, \tau) = e^{-t/\tau} \sin(2\pi f t). \tag{1}$$

Hvor f = 0.629 og $\tau = 19.0$.

Plot de observerede data punkter med errorbars, samt den teoretisk model i én figur. Figuren skal være $7\,\mathrm{cm} \times 7\,\mathrm{cm}$ og leve op til generelle krav om udseende og udformning af figurer, samt kun bruges til en præsentation. Figuren skal eksporteres som en fil i passende format og opløsning.

Opgave 2

Datafilen exc2.csv indeholder tre kolonner med enhedsløse tal: x, y og usikkerheden på y, σ_y . Data antages at følge den teoretiske model:

$$y = ax^2 + b (2)$$

Lav et ikke-lineært fit af modellen til data, og bestem parametrene a og b, samt usikkerhederne på disse. Negliger evt. korrelation mellem parametrene. (Det er ikke nødvendigt at plotte fittet.)

Opgave 3

En alternativ model for data i opgave 2 er givet ved:

$$y = cx^2 + d\sin(ex + f) \tag{3}$$

Lav et ikke-lineært fit af modellen til data, og bestem parametrene c, d, e og f, samt usik-kerhederne på disse. Negliger evt. korrelation mellem parametrene. (Det er ikke nødvendigt at plotte fittet.)

Opgave 4

Udregn chi-kvadrat, χ^2 , og reduceret chi-kvadrat, $\chi^2_{\rm red}$, for fittene fra opgave 2 og 3.

(Hvis du ikke har løst opgave 2 og 3 kan du antage følgende værdier for parametrene: a=2.1, b=-0.5, c=2.0, d=-1.0, e=7.5 og f=-5.8)

Opgave 5

En fysiker forsøger at bestemme en størrelse x ved at interpolere målinger af en anden størrelse y, som kendes for en række andre værdier af x. Sammenhængen mellem x og y er givet ved:

$$y = \sqrt{ax - b} \quad \Rightarrow \quad x = \frac{y^2 + b}{a}.$$
 (4)

Fysikeren har bestemt følgende størrelser med 1σ usikkerheder:

- $y = 1.23 \pm 0.05$
- $a = 0.7 \pm 0.1$
- $b = 6.7 \pm 0.4$

(Note: Udregn gerne dette "i hånden", men print stadig resultatet til terminalen, med det rigtige antal betydende cifre.)

Udregn x, inkl. 1σ usikkerheden på denne, vha. ophobningsloven, under antagelse af at alle parametre og størrelser er ukorrelerede.

Udregn x, inkl. 1σ usikkerheden på denne, vha. ophobningsloven, under antagelse af at a og b er korrelerede med $\rho=0.73$.

Opgave 6

Datafilen exc6.csv indeholder tre kolonner enhedsløse tal: x, y og usikkerheden på y, σ_y . Data antages at følge den teoretiske model:

$$y = ax^b (5)$$

Hvor a = 0.2 og b = 1.9.

Lav et residual plot (forskel mellem teoretisk og observeret data) med errorbars. Plot desuden et histogram over residualerne i et inset (dvs. en "figur i figuren").

Opgave 7

Filen exc7.csv indeholder 2 kolonne med tilfældige, dimensionsløse tal og usikkerhederne på disse.

Udregn middelværdi, μ , og spredning, σ , for tallene. Fjern alle værdier der ligger mere end 3σ fra middelværdien. Her kan der ses bort for usikkerhederne på tallene.

Udregn nu den vægtede middelværdi, $\hat{\mu}$, og den vægtede spredning, $\hat{\sigma}$, for de "rensede" tal.