

Day 1 Lecture 2

The Perceptron

Organizers

Image Processing Group

+ info: TelecomBCN.DeepLearning.Barcelona

[course site]

Santiago Pascual

Outline

- 1. Supervised learning: Regression/Classification
- 2. Linear regression
- 3. Logistic regression
- 4. The Perceptron
- 5. Multi-class classification
- 6. The Neural Network
- 7. Metrics

Machine Learning techniques

We can categorize three types of learning procedures:

1. Supervised Learning:

$$y = f(x)$$

2. Unsupervised Learning:

$$f(\mathbf{x})$$

3. Reinforcement Learning:

$$\mathbf{y} = f(\mathbf{x})$$

Z

We have a labeled dataset with pairs (\mathbf{x}, \mathbf{y}) , e.g. classify a signal window as containing speech or not: $\mathbf{x1} = [\mathbf{x}(1), \mathbf{x}(2), ..., \mathbf{x}(T)]$ $\mathbf{y1} = \text{`no''}$ $\mathbf{x2} = [\mathbf{x}(T+1), ..., \mathbf{x}(2T)]$ $\mathbf{y2} = \text{`yes''}$ $\mathbf{x3} = [\mathbf{x}(2T+1), ..., \mathbf{x}(3T)]$ $\mathbf{y3} = \text{`yes''}$...

Supervised Learning

Build a function: y = f(x), $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$

Depending on the type of outcome we get...

- Regression: y is continous (e.g. temperature samples $y = \{19^{\circ}, 23^{\circ}, 22^{\circ}\}$)
- Classification: y is discrete (e.g. y = {1, 2, 5, 2, 2}).
 - Beware! These are unordered categories, not numerically meaningful outputs: e.g. code[1] = "dog", code[2] = "cat", code[5] = "ostrich", ...

Regression motivation

Text to Speech: Textual features → Spectrum of speech (many coefficients)

Classification motivation

Automatic Speech Recognition: Acoustic features → Textual transcription (words)

What "deep-models" means nowadays

Learn the representations as well, not only the final mapping → end2end

Model maps raw inputs to raw outputs, no intermediate blocks.

Linear Regression

Function approximation $y = \omega \cdot x + \beta$, with learnable parameters $\theta = \{\omega, \beta\}$

Linear Regression

We can also make the function more complex for ${\bf x}$ being an M-dimensional set of

```
features: y = \omega 1 \cdot x1 + \omega 2 \cdot x2 + \omega 3 \cdot x3 + ... + \omega M \cdot xM + \beta
```

e.g. we want to predict the price of a house based on:

```
x1 = square-meters (sqm)

x2,3 = location (lat, lon)

x4 = year of construction (yoc)

price = \omega 1 \cdot (\text{sqm}) + \omega 2 \cdot (\text{lat}) + \omega 3 \cdot (\text{lon}) + \omega 4 \cdot (\text{yoc}) + \beta
```

- Fitting $f(\mathbf{x})$ means adjusting (learning) the values $\theta = \{\omega 1, \omega 2, \dots, \omega M, \beta\}$
 - How? Will see in training chapter, stay tunned!

Logistic Regression

In the classification world we talk about **Probabilities**, and more concretely:

Given **x** input data features → Probability of y being:

- a dog $P(y=dog|\mathbf{x})$
- a cat P(y=cat|x)
- a horse P(y=horse|x)
- whatever P(y=whatever|x).

We achieve so with the **sigmoid function!**

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \cdot \mathbf{x} + b}}$$

Note: This is a binary classification approach

Bounded $\sigma(\mathbf{x}) \in (0, 1)$

Logistic Regression

Interpretation: build a delimiting boundary between our data classes + apply the sigmoid function to estimate a probability in every point in the space.

The Perceptron

Both operations, linear regression and logistic regression, follow the scheme in

Depending on the Activation function f we have a linear/non-linear behavior:

if $f == identity \rightarrow linear regression$ if $f == sigmoid \rightarrow logistic regression$

The Perceptron

The output is then derived by a weighted sum of the inputs plus a bias term.

Weights and bias are the parameters we keep (once learned) to define a neuron.

The Perceptron

Actually the artificial neuron is seen as an analogy to a biological one.

Real neuron fires an impulse once the sum of all inputs is over a threshold.

The sigmoid emulates the thresholding behavior \rightarrow act like a switch.

Figure credit: Introduction to Al

Multi-class classification

Natural extension: put many neurons in parallel, each processing its binary output out of N possible classes.

The XOR problem: sometimes a single neuron is not enough → Just a single decision split doesn't work

Solution: arrange many neurons in a first intermediate **non-linear** mapping (Hidden Layer), **connecting everything** from layer to layer in a **feed-forward** fashion.

Input Hidden Ouput

Warning! Inputs are not neurons, but they are usually depicted like neurons.

The i-th layer is defined by a matrix **Wi** and a vector **bi**, and the activation is simply a dot product plus **bi**:

$$h_i = f(W_i \cdot h_{i-1} + b_i)$$

Num parameters to learn at i-th layer:

$$N_{params}^i = N_{inputs}^i \times N_{units}^i + N_{units}^i$$

Slide Credit: Hugo Laroche NN course

The i-th layer is defined by a matrix **Wi** and a vector **bi**, and the activation is simply a dot product plus **bi**:

$$h_i = f(W_i) \cdot h_{i-1} + b_i$$

Num parameters to learn at i-th layer:

$$N_{params}^{i} = N_{inputs}^{i} \times N_{units}^{i} + N_{units}^{i}$$

Slide Credit: Hugo Laroche NN course

Important remarks:

- We can put as many hidden layers as we want whenever training can be effectively done and we have enough data (next chapters)
 - The amount of parameters to estimate grows very quickly with the num of layers and units! → There is no formula to know the amount of units per layer nor the amount of layers, pitty...
- The power of NNets comes from non-linear mappings: hidden units must be followed by a non-linear activation!
 - sigmoid, tanh, relu, leaky-relu, prelu, exp, softplus, ...

Regression metrics

In regression the metric is chosen based on the task:

- For example in TTS there are different metrics for the different predicted parameters:
 - Mel-Cepstral Distortion, Root Mean Squared Error F0, duration, ...

<u>Confusion matrices</u> provide a by-class comparison between the results of the automatic classifications with ground truth annotations.

		Automatic		ic
		class1	class2	class3
	class1	12	1	0
Manual	class2	3	13	0
	class3	0	0	20

		Automatic		
		class1	class2	class3
	class1	100%	0%	0%
Manual	class2	0%	100%	0%
	class3	0%	0%	100%

Correct classifications appear in the <u>diagonal</u>, while the rest of cells correspond to errors.

		Prediction		
		Class 1	Class 2	Class 3
	Class 1	x(1,1)	x(1,2)	x(1,3)
Ground Truth	Class 2	x(2,1)	x(2,2)	x(2,3)
	Class 3	x(3,1)	x(3,2)	x(3,3)

Special case: Binary classifiers in terms of "Positive" vs "Negative".

The <u>"accuracy"</u> measures the proportion of correct classifications, not distinguishing between classes.

Accuracy	_	TP + TN
		$\overline{TP + TN + FP + FN}$

		Prediction		
		Class 1	Class 2	Class 3
	Class 1	x(1,1)	x(1,2)	x(1,3)
Ground Truth	Class 2	x(2,1)	x(2,2)	x(2,3)
	Class 3	x(3,1)	x(3,2)	x(3,3)

		Prediction	
		Positives	negative
Ground	Positives	True positive (TP)	False negative (FN)
Truth	Negative	gative False positives (FP)	True negative (TN)

true negatives

false positives

0

0

Classification metrics

Given a reference class, its <u>Precision (P)</u> and <u>Recall (R)</u> complementary measures of relevance.

<u>Example</u>: Relevant class is "Positive" in a binary classifier.

selected elements How many selected How many relevant items are relevant? items are selected? Precision = Recall =

relevant elements

false negatives

true positives

"Precisionrecall" by Walber - Own work. Licensed under Creative Commons Attribution-Share Alike 4.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Precisionrecall.svg#media viewer/File:Precisionrecall.svg

Binary classification results often depend from a parameter (eg. decision threshold) whose value directly impacts precision and recall.

For this reason, in many cases a <u>Receiver Operating Curve</u> (ROC curve) is provided as a result.

True Positive Rate =
$$\frac{TP}{TP + FN}$$
 = Recall = Sensitivity

True Positive Rate =
$$\frac{TP}{TP+FN}$$
 = Recall = Sensitivity

False Positive Rate = $\frac{FP}{TP+FN}$ = 1 - specificity

Slide credit: Xavi Giró

Thanks! Q&A?

