תרגילים: סיבוכיות

שאלה 1 הבעיית קליקה מוגדרת באופן הבא:

.kטבעי ומספר וG=(V,E)אמכוון גרף לא

k מכיל קליקה בגודל G מכיל פלט: האם

 $CLIQUE = \{\langle G, k \rangle \mid k$ מכיל קליקה בגודל $G\}$.

הבעיית כיסוי בקדקודים מוגדרת:

.kטבעי טבעי ומספר G=(V,E)א מכוון קלט: גרף לא

k מכיל כיסוי בקדקודים מכיל פלט: האם G

 $VC = \{\langle G, k \rangle \mid k$ מכיל כיסוי בקדקודים בגודל $G\}$.

כלומר אוכיחו כי קיימת רדוקציה זמן-פולינומיאלית מבעיית CLIQUE לבעיית הוכיחו

$$CLIQUE \leq_p VC$$
.

שאלה 2

G=(V,E) בהינתן גרף לא מכוון

תת-קבוצת קודקודים $S\subseteq V$ היא קבוצת בלתי תלויה אם התנאי הבא מתקיים:

 $.(u_1,u_2) \notin E$ אם $u_1,u_2 \in S$ אם

:תקרא הבא התנאי הבא אם התנאי אם תקרא ליקה תקרים תקרים תת-קבוצת קודקודים תקרא $C\subseteq V$

 $.(u_1,u_2)\in E$ אם $u_1,u_2\in C$ אם

:הבעיית IS מוגדרת

 $IS = \{ \langle G, k
angle \mid$ גרף לא מכוון המכיל קבוצה בלתי תלויה בגודל לפחות $G \}$

:הבעיית CLIQUE מוגדרת

 $CLIQUE = ig\{ \langle G, k
angle \mid$ גרף לא מכוון המכיל קליקה בגודל G

הוכיחו כי

 $IS <_P CLIQUE$.

CLIQUE כלומר, הראו כי קיימת רדוקציית התאמה פולינומיאלית מהשפה IS לשפה יש להראות כי הרדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי.

שאלה 3

G = (V, E) בהינתן גרף לא מכוון

מתקיים: הבא התנאי הבא קבוצת קבוצת היא הבא היא הבא הרנאי הבא תת-קבוצת הדקודים $S\subseteq V$

 $(u_1,u_2)\notin E$ אם $u_1,u_2\in S$ אם

מתקיים: מתקידים אם התנאי קודקודים היא כיסוי היא $U\subseteq V$ הידקודים אם תת-קבוצת תת-קבוצת

 $u_1\in U$ או $u_1\in U$ או $(u_1,u_2)\in E$ אם

השפה IS מוגדרת:

$$IS = ig\{ \langle G, k
angle \mid$$
 גרף לא מכוון המכיל קבוצה בלתי תלויה בגודל לפחות G

:השפה VC מוגדרת

$$VC = ig\{ \langle G, k
angle \mid$$
 גרף לא מכוון המכיל כיסוי קודקודים בגודל לכל מכוון המכיל $G \ ig\}$

הוכיחו כי

$$IS \leq_P VC$$
.

NC לשפה IS לשפה פולינומיאלית התאמה ליימת רדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי. יש להראות כי הרדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי

שאלה 4

באיית PARTITION מוגדרת באופן

 $.S = \{x_1, x_2, \dots, x_n\}$ קלט: קבוצת מספורים

-פלט: האם קיימת חלוקה של S לשתי קבוצות S_1,S_2 כך ש

- $S_1 \cap S_2 = \emptyset \bullet$
- $S_1 \cup S_2 = S \bullet$
- $\sum_{x_i \in S_1} x_i = \sum_{x_i \in S_2} x_i = \frac{1}{2} \sum_{x_i \in S} x_i \bullet$

$$PARTITION = \left\{ \langle S
angle \; \mid \; \sum_{y \in Y} y = \sum_{y \in S \backslash Y} y \; ext{-u - } Y \subseteq S \;$$
 כך שר $Y \subseteq S$ קבוצת שלמים, וקיימת תת-קבוצה $S
ight\}$

בעיית SubSetSum מוגדרת באופן הבא:

t ומספר ומספר $S=\{x_1,x_2,\ldots,x_n\}$ ומספר קלט: קבוצת

t איבריה איבריה איבריה S שסכום איבריה פלט: פלט:

$$SubSetSum = \left\{ \langle S, t
angle \; | \; t = \sum_{y \in Y} Y$$
 כך ש- $Y \subseteq S$ קבוצת שלמים, t שלם וקיימת תת-קבוצה S

 $.SubSetSum \leq_{P} PARTITION$ הוכיחו כי

שאלה 5 בהינתן גרף G=(V,E) את הקודקודים שלו ב- k צבעים (או פחות) כך ששני קודקודים סמוכים אינם צבועים באותו צבע. k נגדיר את השפות הבאות:

$$3COLOR = \left\{ \langle G \rangle \mid \text{ צביע } - 3$$
 גרף לא מכוון $G \right\}$ 4 $COLOR = \left\{ \langle G \rangle \mid \text{ צביע } - 4$ גרף לא מכוון $G \right\}$

הוכיחו:

תשובות

שאלה VC ע"י פונקצית הרדוקציה, (G',k'), ניצור אוג אין פונקצית פונקצית הרדוקציה עבור אוג אין הקלט של C

$$\langle G, k \rangle \in CLIQUE \implies \langle G', k' \rangle \in VC$$

 $\langle G, k \rangle \in CLIQUE \iff \langle G', k' \rangle \in VC$

הגדרת הרדוקציה

 $:\!ar{G}(V,ar{E})$ נגדיר את להיות הגרף להיות הגרף להיות •

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = |V| - k נגדיר •

נכונות הרדוקציה

⇒ כיוון

 $\langle G, k \rangle \in CLIQUE$ נניח כי

- k מכיל קליקה מכיל מכיל מכיל מכיל $G \Leftarrow$
- $.u_2 \notin C$ או $u_1 \notin C$ ולכן $(u_1,u_2) \notin E$ מתקיים, $ar{G}$ של של $(u_1,u_2) \in ar{E}$ לכל \Leftarrow
 - $.u_2 \in V \backslash C$ או $u_1 \in V \backslash C$, \bar{G} -ב u_1, u_2 הודקודים לכל \Leftarrow
- .k' = |V| k בגודל של בקודקודים יסטוי היא ריסטוי היא $V \backslash C$ הקובצת קודקודים \Leftarrow
 - $.\langle G', k' \rangle \in VC \Leftarrow$

 \Rightarrow כיוון

 $\langle G', k' \rangle \in VC$ נניח כי

- .k' = |V| k מכיל כיסוי בקדקודים מכיל מכיל מכיל מכיל מכיל בקדקודים מ
- $u_2\in S$ או $u_1\in S$ אז $(u_1,u_2)\in ar E$ אם u_1,u_2 של u_1,u_2 או $u_1,u_2\in E$ לכל שני קודקודים $u_1,u_2\notin E$ אז $u_1\notin S$ וגם $u_1\notin E$ אז $u_2\notin E$ אז השלילה הלוגית של גרירה זו היא: אם
 - $.(u_1,u_2)\in ar{E}$ אם $u_1\in V\backslash S$ וגם $u_1\in V\backslash S$ אם eq
 - .k = |V| k' בגודל G-ב היא קליקה ע\S היא $V \backslash S$ הקבוצת הקבוצת \Leftarrow
 - k מכיל קליקה בגודל $G \Leftarrow$

שאלה 2

פונקצית הרדוקציה:

 $\langle G',k'
angle \in CLIQUE$ אנחנו נגדיר פונקצית הרדוקציה f שבהינתן זוג אנחנו (נגדיר פונקצית הרדוקציה אנחנו f שבהינתן אוג (CLIQUE), כלומר

$$f(\langle G, k \rangle) = \langle G', k' \rangle . \tag{*1}$$

כך שהתנאי הבא מתקיים:

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in CLIQUE \ .$$
 (*2)

הפונקציית הרדוקציה מוגדרת לפי התנאים הבאים:

.G = (V, E) בהינתן גרף (1

אז $ar{G}=(V,ar{E})$ כאשר הגרף המשלים G' אז

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = k (2

כדוגמה: בהינתן הגרף G=(V,E) שמכיל קבוצה בלתי תלוייה בגודל k=3. הפונקציית הרדוקציה יוצרת את הגרף הארף המספר $\bar{G}=(V,E)$, כמתואר בתרשים למטה:

$$\bar{G} = (V, \bar{E})$$

$$G = (V, E)$$

נכונות הרדוקציה

 $.\langle G,k\rangle \in IS \quad \Leftrightarrow \quad \langle G',k'\rangle \in CLIQUE$:כעת נוכיח שמתקיים

\Leftarrow כיוון

.k בהינתן גרף G=(V,E) ושלם נניח כי $(G,k)\in IS$ נניח כי

תלויה בגודל לפחות. בלתי קבוצה בלתי קבוצה לפחות. G

k בגודל מכיל מכיל בלתי בלתי מכיל קבוצה מכיל $G \Leftarrow$

 $.(u_1,u_2) \notin E$ אם $u_1,u_2 \in S$ אם \Leftarrow

G כלומר, כל שני קדקודים ב- S לא מחוברים בצלע של

$$.(u_1,u_2)\in ar E$$
 אם $u_1,u_2\in S$ אם \Leftarrow . $ar G$ כלומר, כל שני קדקודים ב-

- $ar{G}$ של א בגודל בגודל היא קליקה היא S הקבוצה \Leftarrow
- $G'=ar{G}$ של איל א k'=k בגודל היא קליקה היא הקבוצה G'=B'
 - $.\langle G', k' \rangle \in CLIQUE \Leftarrow$

\Rightarrow כיוון

 $.k^\prime$ בהינתן גרף G^\prime ושלם

 $\langle G', k' \rangle \in CLIQUE$ נניח כי

- .(k'=k -ו $G'=ar{G}$ ו- $G'=ar{G}$ ו- (כי על פי ההגדרה של הפונקצית הרדוקציה, $\langle ar{G},k
 angle \in CLIQUE$
 - מכיל קליקה בגודל k לפחות. $ar{G} \Leftarrow$
 - k מכיל קליקה מכיל מכיל מכיל מכיל מכיל מכיל
 - $.(u_1,u_2)\in \bar E$ אז $u_2\in C$ וגם $u_1\in C$ אם \Leftarrow . ar G טלומר, כל שני קדקודים ב- מחוברים בצלע של
 - $.(u_1,u_2) \notin E$ אז $u_2 \in C$ אם $u_1 \in C$ אם $u_2 \in C$ כלומר, כל שני קדקודים ב- $u_1 \in C$ לא מחוברים בצלע של הגרף
 - G של k של בגודל בלתי תלוייה בגודל היא קבוצה בלתי הקבוצה היא
 - $.\langle G, k \rangle \in IS \Leftarrow$

שאלה 3

פונקצית הרדוקציה:

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC \ .$$
 (*2)

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

- G=(V,E) הוא אותו גרף G=(V,E), אז הגרף (1
 - .k' = |V| k (2)

נכונות הרדוקציה

 $\langle G,k \rangle \in IS \quad \Leftrightarrow \quad \langle G',k' \rangle \in VC$ כעת נוכיח שמתקיים:

 \Leftarrow כיוון

$$k$$
 בהינתן גרף $G=(V,E)$ ושלם נניח כי $G,k \in IS$ נניח כי

- $|S| \geq k$ מכיל קבוצה בלתי תלוייה S בגודל מכיל קבוצה בלתי $G \Leftarrow$
 - $.(u_1,u_2) \notin E$ אז $u_1,u_2 \in S$ אם \Leftarrow .G -כלומר, כל שני קדקודים ב- S לא מחוברים בצלע
 - השלילה הלוגית של הגרירה הזאת: \Leftarrow

$$.u_2 \notin S$$
 או $u_1 \notin S$ אם $(u_1,u_2) \in E$ אם

$$.u_2 \in V \backslash S$$
 או $u_1 \in V \backslash S$ או $(u_1,u_2) \in E$ אם \Leftarrow

.Gשל קודקודים כיסוי היא $V \backslash S$ התת-קבוצה \Leftarrow

$$|V \backslash S| \leq |V| - k$$
 לכן $|V \backslash S| = |V| - S$ - ו $|S| \geq k$

- . לכל היותר מכיל מכיל מכיל אודל ע בגודל קודקודים מכיל לכל מכיל מכיל מכיל מכיל $G'=G \Leftarrow$
 - $.\langle G', k' \rangle \in VC \Leftarrow$

\Rightarrow כיוון

 $.k^\prime$ ושלם G^\prime בהינתן גרף

$$\langle G',k'
angle \in VC$$
 נניח כי

- - $u_2 \in U$ או $u_1 \in U$ או $(u_1, u_2) \in E$ אם \Leftarrow
 - ⇒ השלילה הלוגית של הגרירה הזאת:

$$u_1,u_2)\notin E$$
 אם $u_1\notin U$ וגם $u_1\notin U$ אם $u_1\notin U$

⇒ השלילה הלוגית של הגרירה הזאת:

$$u_1,u_2)
otin E$$
 אז $u_2 \in V \backslash U$ אם $u_1 \in V \backslash U$ אם

. היא קבוצה בלתי תלויה S=Vackslash U התת-קבוצה היא התת-קבוצה

$$.|S| \geq |V| - k'$$
 אז $|U| \leq k'$ -ו $|S| = |V| - |U|$

תפחות. אפחות קבוצה אכיל קבוצה בלתי תלויה לעורה אכיל קבוצה בלתי מכיל קבוצה לעורה G'=G

$$.\langle G, k \rangle \in IS \Leftarrow$$

שאלה 4

פונקצית הרדוקציה:

.Partition :בהינתן אופן הבא: PARTITION, קלט של אינתן אופן הבא: הבא: SubSetSum, קלט של בהינתן אופן הבא:

$$.s = \sum\limits_{x \in S} x$$
יהי (1

S לקבוצה s-2t לקבוצה הוספת על ידי על איז החדשה את נגדיר את הקבוצה (2

$$S' = S \cup \{s - 2t\} .$$

 $\langle S,t \rangle \in SubSetSum \quad \Leftrightarrow \quad \langle S' \rangle \in PARTITION$ נוכיח כי

 \Leftarrow כיוון

 $.\langle S,t
angle \in SubSetSum$ -נניח ש

 $.t = \sum\limits_{y \in Y} y$ יימת כך א $Y \subseteq S$ בוצה תת-קבוצה \Leftarrow

לכן:

$$\sum_{y \in (Y \cup \{s-2t\})} y = |Y| + s - 2t$$
$$= t + s - 2t$$
$$= s - t.$$

$$\sum_{y \in S' \setminus (Y \cup \{s-2t\})} y = |S'| - (|Y| + s - 2t)$$

$$= |S'| - |Y| - s + 2t$$

$$= |S| + s - 2t - |Y| - s + 2t$$

$$= |S| - |Y|$$

$$= s - t.$$

S' הקבוצה של הקבות חלקוה א $S' \backslash \left(Y \cup \{s-2t\} \right)$ והתת-קבוצה והתת-קבוצה אוות הת-קבוצה התת-קבוצה אוות הת

 $.\langle S' \rangle \in PARTITION \Leftarrow$

כיוון \Rightarrow

 $.\langle S'
angle \in PARTITION$ -נניח ש

קיים אמתקיים $S_1', S_2' \subseteq S'$ כך שמתקיים \Leftarrow

$$S_1' \cup S_2' = S' \tag{1*}$$

-1

$$\sum_{x \in S_1'} x = \sum_{x \in S_2'} x \ . \tag{2*}$$

 $.S' = S \cup \{s-2t\}$ היחס על ידי על איז לקבוצה Sקשור לקבוצה לכן לכן

$$S_1' \cup S_2' = S \cup \{s - 2t\} \tag{3*}$$

להיות אנחנו נגדיר את התת-קבוצה $S_1\subseteq S$ של הקבוצה אנחנו נגדיר את אנחנו ללא הגבלת כלליות אנחנו לא

$$S_1 = S_1' \cup \{s - 2t\} ,$$

היות את הקבוצה אל $S_2\subseteq S$ התת-קבוצה את ואנחנו נגדיר את ואנחנו

$$S_2 = S_2' .$$

נובע ממשוואה (*3) ש:

$$S_1 \cup S_2 = S_1' \cup S_2' + \{s - 2t\} = S \cup \{s - 2t\}$$
 \Rightarrow $S_1 \cup S_2 = S$. (4*)

ניתן לרשום משוואה (∗2) בצורה הבאה: ←

$$\sum_{x \in (S_1 \cup \{s-2t\})} x = \sum_{x \in S_2} x . \tag{5*}$$

ניתן לפצל את הסכום בצד השמאול של המשווה (*5), באופן הבא:

$$\sum_{x \in S_1} x + s - 2t = \sum_{x \in S_2} x . {(6*)}$$

נוסיף את הסכום לשני האגפים לשני לשני $\sum_{x \in S_1} x$ ונקבל נוסיף את נוסיף ל

$$\sum_{x \in S_1} x + \sum_{x \in S_1} x + s - 2t = \sum_{x \in S_2} x + \sum_{x \in S_1} x . \tag{7*}$$

. $\sum_{x \in (S_1 \cup S_2)} x$ הסכום בצד הימין של משוואה (7*) הא הסכום בצד הימין

. $\sum_{x\in (S_1\cup S_2)} x = \sum_{x\in S} x$ לכן לכן $S_1\cup S_2 = S$ (4*), בנוסף, לפי המשוואה

.Sשל משוואה כל הסכום הסכום אהוא , $\sum\limits_{x \in S} x$ הוא (**) האיברים של כל הסכום בצד הימין של

-באה: בצורה (**) אנחנו מסמנים את לכן לכן לכן $\sum_{x \in S} x = s$ ה הסכום האה אנחנו מסמנים אנחנו

$$\sum_{x \in S_1} x + \sum_{x \in S_1} x + s - 2t = s . \tag{8*}$$

אפשר את ימין ולקבל את המשוואה: אפשר לבטל s בצד שמאול ובצד ימין ולהעביר את אפשר לבטל

$$\sum_{x \in S_1} x + \sum_{x \in S_1} x = 2t , \qquad (9*)$$

זאת אומרת

$$2\sum_{x\in S_1}x=2t \qquad \Rightarrow \qquad \sum_{x\in S_1}x=t \ . \tag{10*}$$

 $\sum\limits_{x \in S_1} x = t$ את התנאי את שמקיימת Sשל של $S_1 \subseteq S$ בוצה \Leftarrow

$$.\langle S, t \rangle \in SubSetSum \Leftarrow$$

שאלה 5

פונקצית הרדוקציה:

הקלט של ,G'=(V',E') מכוון חדש גרף לא מכוון ,הקלט של ,הקלט של ,G=(V,E) בהינתן גרף לא מכוון ,הקלט של ,G=(V,E')

בהינתן G' = (V', E') כאשר: G = (V, E) כאשר:

- u^* מלומר הוספנו קודקוד אחד חדש, $V'=V\cup\{u^*\}$
- . בצלע. ע* מחובר ע
 הקודקודים בקבוצת כל קודקוד כלומר כל .
 $E'=E \cup \big\{(u,u^*) \ \big| \ u \in V\big\}$

נכונות הרדוקציה:

 $\{1,2,3\}$ -ב G של הקודקודים של צבעים ונסמן c(u)ע"י ע"י $u\in V$ קודקודים אל נסמן נסמן בלומר כלומר $c(u)\in\{1,2,3\}$ כלומר כלומר

 $\{1,2,3,4\}$ -ב G' באופן דומה, נסמן צבע של קודקוד $u' \in V'$ ע"י ע"י $u' \in V'$ ע"י באופן דומה, נסמן צבע של הקודקודים של בי $c(u') \in \{1,2,3,4\}$ כלומר כלומר

נוכיח ש:

$$\langle G \rangle \in 3COLOR \quad \Leftrightarrow \quad \langle G' \rangle \in 4COLOR \ .$$

⇒ כיוון

 $.\langle G
angle \in 3COLOR$ נניח כי

 $.c(u_1) \neq c(u_2)$ אז $(u_1,u_2) \in E$ אם ,
 $u \in V$ לכל לכל $c(u) \in \{1,2,3\}$ אם \Leftarrow

כלומר, ניתן לצבוע כל קודקוד ב-3 צבעים שונים כך שני קודקודים סמוכים אינם צבועים באותו צבע.

 $.c(u)
eq c(u^*) = 4$ מתקיים $u \in V$ אז לכל $c\left(u^*\right) = 4$ אם \Leftarrow

 \mathcal{N} שונה מהצבעים של כל הקודקודים של u^*

- $c(u_1')
 eq c(u_2')$ אז $(u_1',u_2') \in E'$ מתקיים שאם $u_1',u_2' \in V'$ לכל \Leftarrow
- . ניתן לצבוע את הקודקודים של G' ב- G' צבעים שך ששני קודקודים סמוכים אינם צבועים באותו צבע \Leftarrow
 - $.\langle G' \rangle \in 4COLOR \Leftarrow$

\Rightarrow כיוון

 $\langle G' \rangle \in 4COLOR$ נניח כי

- $.c(u_1')
 eq c(u_2')$ אז $(u_1',u_2') \in E'$ אם , $u' \in V'$ לכל כל $c(u') \in \{1,2,3,4\}$ אם \Leftarrow
- . כלומר, ניתן לצבוע כל קודקוד ב-4 צבעים שונים כך שני קודקודים סמוכים אינם צבועים באותו צבע
- $u\in V$ אז בהכרח לכל $c\left(u^*
 ight)=4$ אם $u\in V$ ו- u^* ו- u^* ו- $v'=V\cup\{u^*\}$ אז בהכרח לכל כל מתקיים c(u)=1,2,3
- $u\in V$ האבות בצבע 4 בין הצבוע בצבע וקיים וצלע אוקיים וצלע האבוה $u\in V$ האבות קיים קודקוד (אחרת G' -ש- G' הוא G' בסתירה לכך ש- G'

- המחבר בין קודקודים $E=\big\{(u_1,u_2)\ \big|\ u_1,u_2\in V\big\}$ בין צלע ב- הכרח אין צביע אז בהכרח הוא G' -ש מכיוון ש- בעלי אותו צבע.
 - . אביע -3 הוא הוא $G=(V,E) \Leftarrow$
 - $.\langle G \rangle \in 3COLOR \Leftarrow$