PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 10

Álgebra I - MAT2227

Fecha: 2019/10/08

Sea $p(x) \in \mathbb{Q}[x]$ mónico se define un ideal principal $(p(x)) = \{p(x) \cdot q(x) : q(x) \in \mathbb{Q}[x]\}^1$, similarmente sean $q(x), p(x) \in \mathbb{Q}[x]$ mónicos se define un ideal generado por dos elementos $(q(x), p(x)) = \{p(x) \cdot a(x) + q(x) \cdot b(x) : a(x), b(x) \in \mathbb{Q}[x]\}$.

- 1) Dado $p(x), q(x) \in \mathbb{Q}[x]$ mónicos demuestre las siguientes propiedades de (p(x)) y de (p(x), q(x)):
 - (a) Sean $r(x), s(x) \in (p(x))$ entonces $r(x) + s(x) \in (p(x))$ (equivalentemente para (p(x), q(x))).
 - (b) Sea $r(x) \in \mathbb{Q}[x]$ y $s(x) \in (p(x))$ entonces $r(x) \cdot s(x) \in (p(x))$ (equivalentemente para (p(x), q(x))).
- 2) (a) Dado $p(x), q(x) \in \mathbb{Q}[x]$ mónicos tal que $p(x) \mid q(x)$ demuestre que $(q(x)) \subseteq (p(x))$.
 - (b) Use (a) esto para demostrar que sí p(x) es irreducible, no existe $q(x) \in \mathbb{Q}[x]$ tal que $(p(x)) \subseteq (q(x))$, si (p(x)) cumple esta última condición se llama ideal principal maximal.
 - (c) Sea $p(x) \in \mathbb{C}[x]$ mónico, se define (p(x)) de forma equivalente, usando lo anterior demuestre que los únicos ideales principales maximales en $\mathbb{C}[x]$ son de la forma (x-a) con $a \in \mathbb{C}$.
 - (d) Similarmente sea $p(x) \in \mathbb{R}[x]$ mónico se define (p(x)) de forma equivalente, demuestre que los únicos ideales principales maximales en $\mathbb{R}[x]$ son de la forma (p(x)) donde $\deg(p) \leq 2$.

 $^{^{1}}q(x)$ puede ser constante

3) Use el algoritmo de Euclides para polinomios para demostrar que dado $p,q \in \mathbb{Q}[x]$ existen $u,v \in \mathbb{Q}[x]$ tales que $p \cdot u + q \cdot v = \gcd(p,q)$. Use esto para demostrar que dado $p(x), q(x) \in \mathbb{Q}[x]$ mónicos coprimos, entonces $(p(x), q(x)) = \mathbb{Q}[x]$. Use lo anterior para demostrar que dado $p(x) \in \mathbb{Q}[x]$ irreducible mónico, todo polinomio $q(x) \in \mathbb{Q}[x]$ se puede escribir de la siguiente forma q(x) = r(x) + s(x) con $r(x) \in (p(x))$ y $s(x) \in \mathbb{Q}[x] \setminus (p(x)) \cup \{0\}$.