

Instituto Superior de Engenharia de Coimbra Conhecimento e Raciocínio

Trabalho Prático Estudo de Redes Neuronais Feedforward Licenciatura em Engenharia Informática 2024 / 2025

Nuno Tomás Paiva a2023131763@isec.pt

Rui Martins dos Santos a2023145822@isec.pt

ÍNDICE

1. Introdução	3
2. Alínea A) - Start	4
3. Alínea B) - Train	5
4. Alínea C) - Start, Train, Test	10
6. Alínea D)	19
7. Alínea E)	21
8. Experiências feitas por nós	21
9. Conclusão	22

1. Introdução

O presente trabalho prático foi desenvolvido no âmbito da unidade curricular de Conhecimento e Raciocínio, tendo como principal objectivo explorar e aprofundar os conceitos associados às redes neuronais *feedforward*, recorrendo ao ambiente de desenvolvimento MATLAB e à toolbox de Deep Learning.

Neste projecto, o foco incide na aplicação de redes *feedforward* para a classificação de formas geométricas a partir de imagens binárias, representando seis classes distintas: círculo, papagaio (kite), paralelogramo, quadrado, trapézio e triângulo.

O trabalho foi desenvolvido em várias fases experimentais, onde se testaram diferentes configurações de redes neuronais ao variar-se a topologia (número de camadas e neurônios), as funções de ativação, os algoritmos de treino e os rácios de divisão de treino, validação e teste. Foi igualmente desenvolvida uma aplicação gráfica que permite configurar, treinar e aplicar redes de forma simples e intuitiva.

Com este projecto pretendeu-se não só implementar redes com bom desempenho, mas também compreender a influência dos diferentes parâmetros no comportamento e na capacidade de raciocínio das redes neuronais.

2. Alínea A) - Start

Na alínea A), utilizou-se a pasta start, contendo apenas 5 imagens de cada forma geométrica para treino. Inicialmente, as imagens foram convertidas em matrizes binárias de 25×25 pixels.

Na alínea ii) é nos pedido para usar todos os exemplos para treino, e então, a divisão automática dos dados em conjuntos de treino, validação e teste tornou-se irrelevante, uma vez que todas as amostras foram utilizadas exclusivamente para treinamento.

			Alínea A) - Mudar	topologia				
Conf1	1	10	tansig, tansig, purelin	trainlm	100% Treino	20	100.00	NaN
Conf2	1	30	tansig, tansig, purelin	trainlm	100% Treino	20	100.00	NaN
Conf3	2	10, 10	tansig, tansig, purelin	trainlm	100% Treino	20	100.00	NaN
Conf4	2	30, 30	tansig, tansig, purelin	trainlm	100% Treino	20	100.00	NaN
Conf5	2	10, 30	tansig, tansig, purelin	trainlm	100% Treino	20	100.00	NaN

Como era de esperar obteve-se sempre 100% de treino e não houve nenhuma precisão de teste, pois não usamos nenhuma percentagem nos parâmetros de divisão para o teste.

Na alínea iii) já não nos restringe a 100% de uso de todos os exemplos para treino para podermos fazer a comparação.

		A	Nínea A) iii Muda	ır topologi	a				
Conf1	1	10	tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	80.00% (±6.67)	40.00% (±0.00)	40.00%
Conf2	1	30	tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	79.33% (±3.65)	28.00% (±22.80)	60.00%
Conf3	2	10, 10	tansig, tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	66.00% (±14.79)	28.00% (±17.89)	40.00%
Conf4	2	30, 30	tansig, tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	78.67% (±1.83)	32.00% (±10.95)	40.00%
Conf5	2	10, 30	tansig, tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	76.00% (±6.83)	32.00% (±30.33)	80.00%

Como era de esperar já que agora estamos a usar 15% (valor default) para os exemplos para teste, já conseguimos obter uma percentagem para o teste, mas em comparação à percentagem global fica um pouco abaixo da alínea anterior.

Em termos de topologia, foi possível observar que o aumento do número de camadas escondidas tende a piorar o desempenho da rede, especialmente no caso da pasta Start, que contém um número muito reduzido de imagens por classe.

Por outro lado, aumentar o número de neurónios por camada geralmente contribui para uma melhoria nos resultados, até certo ponto. No entanto, quando o número de neurónios é excessivo, a rede torna-se propensa a overfitting, ou seja, ajusta-se demasiado aos dados de treino e perde capacidade de generalização para novos dados.

3. Alínea B) - Train

Nesta alínea vamos comparar várias configurações de rede com diferentes mudanças em todos os parâmetros e verificar o seu desempenho, deixando os outros valores default.

Ao utilizar **diferentes topologias** na pasta *Train*, verificou-se que, ao contrário do que acontece na pasta *Start*, o aumento do número de camadas e de neurónios não teve um impacto negativo nos resultados. No entanto, também não se registou uma melhoria significativa no desempenho. Isto poderá indicar que, apesar de haver mais imagens por classe, a complexidade adicional da rede não traz benefícios claros na tarefa de classificação das formas geométricas.

									1
Conf1	1	10	tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	90.33% (±2.32)	68.44% (±10.93)	86.
Conf2	1	30	tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	90.47% (±0.80)	63.11% (±6.96)	73
Conf3	2	10, 10	tansig, tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	89.53% (±2.12)	70.67% (±4.82)	77.
Conf4	2	30, 30	tansig, tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	90.87% (±1.97)	68.89% (±6.85)	80
Conf4	2	30, 30 10, 30	tansig, tansig, purelin	trainIm		20			

Ao utilizar diferentes **funções de ativação**, não se verificaram diferenças significativas na melhor repetição de teste. No entanto, observou-se uma discrepância acentuada na precisão global e na média de teste, com as funções *logsig* e *tansig* a apresentarem um desempenho substancialmente superior em comparação com *purelin* e *softmax*.

As funções logsig e tansig são mais eficazes neste contexto porque introduzem não-linearidade e produzem saídas compatíveis com a codificação one-hot, essencial para classificação. Em contraste, purelin (linear) é mais adequada

para regressão, enquanto softmax pode destabilizar o treino quando combinada com o algoritmo trainlm.

		Alínea B)	· diferentes funçõ	es de ativa	ção - Train				
Conf1	1	10	logsig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	90.47% (±2.91)	72.89% (±3.98)	77
Conf2	1	10	tansig, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	91.33% (±2.35)	69.33% (±6.74)	77
Conf3	1	10	purelin, purelin	trainlm	dividerand = {0.7, 0.15, 0.15}	20	71.07% (±24.29)	57.33% (±15.51)	77
Conf4	1	10	softmax, purelin	trainIm	dividerand = {0.7, 0.15, 0.15}	20	65.80% (±20.21)	52.44% (±16.67)	73

Nesta alteração das **funções de treino**, observamos que a função **'trainlm'** se destaca em relação às demais, apresentando desempenhos significativamente superiores tanto nos resultados globais quanto nos de teste.

Vale destacar, contudo, que a função **'trainlm'** também foi a que apresentou o maior tempo de execução, sendo consideravelmente mais lenta do que as demais. Esse maior tempo de processamento pode ter contribuído para o seu melhor desempenho, uma vez que permite uma otimização mais precisa durante o processo de aprendizagem.

		Alinea B)	- diferentes funç	oes de treii	no - Irain				
					dividerand = {0.7,		89.07%	68.44%	
Conf1	1	10	tansig, purelin	trainlm	0.15, 0.15}	20	(±2.13)	(±3.65)	71
					dividerand = {0.7,		21.40%	23.56%	
Conf2	1	10	tansig, purelin	traingd	0.15, 0.15}	20	(±5.02)	(±6.40)	33
					dividerand = {0.7,		46.60%	40.00%	
Conf3	1	10	tansig, purelin	trainscg	0.15, 0.15}	20	(±3.52)	(±3.51)	44
					dividerand = {0.7,		25.13%	21.33%	
Conf4	1	10	tansig, purelin	trainrp	0.15, 0.15}	20	(±7.73)	(±10.95)	35.

Ao alterarmos os valores dos **rácios de divisão**, observamos que os melhores resultados são obtidos quando atribuímos uma percentagem maior ao conjunto de treino.

No entanto, é importante salientar que esta percentagem não pode ser de 100%, pois, nesse caso, não haveria dados reservados para validação e teste, o que resultaria em valores 'NaN' e inviabilizaria a avaliação do desempenho da rede.

Alínea B) - diferentes i	rácios de divisão er	n treino/validação/	teste - Train
--------------------------	----------------------	---------------------	---------------

					dividerand = {0.7,		89.07%	68.44%
Conf1	1	10	tansig, purelin	trainlm	0.15, 0.15}	20	(±2.13)	(±3.65)
					dividerand = {0.8,		93.67%	74.67%
Conf2	1	10	tansig, purelin	trainlm	0.1, 0.1}	20	(±1.13)	(±7.30)
					dividerand = {0.6,		86.00%	64.33%
Conf3	1	10	tansig, purelin	trainlm	0.2, 0.2}	20	(±1.75)	(±5.35)
					dividerand = {0.4,		76.53%	61.56%
Conf4	1	10	tansig, purelin	trainlm	0.3, 0.3}	20	(±1.35)	(±4.94)

71.11%

Nesta alínea é nos pedido também para gravar as 3 melhores redes neuronais. As três melhores redes neuronais foram:

- alineaB_diferentTopo_Conf1.mat Conf1 das diferentes topologias com 86.67% de teste:
 - o número de camadas escondidas: 1
 - o número de neurónios: 10
 - o funções de ativação: tansig, purelin
 - o função de treino: trainlm
 - \circ divisão dos exemplos: dividerand = $\{0.7, 0.15, 0.15\}$
 - o número de épocas: 20

Matriz de confusão:

- alineaB_diferentTopo_Conf3.mat Conf3 das diferentes topologias com 77.78% de teste:
 - o número de camadas escondidas: 2
 - o número de neurónios: 10 10
 - o funções de ativação: tansig, tansig, purelin
 - o função de treino: trainlm
 - o divisão dos exemplos: dividerand = {0.7, 0.15, 0.15}
 - o número de épocas: 20

Matriz de confusão:

- alineaB_diferentFuncAtiv_Conf2.mat Conf2 das diferentes funções de ativação com 77.78% de teste:
 - o número de camadas escondidas: 1

- o número de neurónios: 10
- o funções de ativação: purelin, purelin
- o função de treino: trainlm
- \circ divisão dos exemplos: dividerand = $\{0.8, 0.1, 0.1\}$
- o número de épocas: 20

Matriz de confusão:

4. Alínea C) - Start, Train, Test

Nesta alínea i), é solicitado que utilizemos as melhores redes previamente guardadas na alínea anterior. Sem treinar as redes, devemos compará-las com os desempenhos obtidos na alínea b). Para essa comparação, as imagens a serem

utilizadas encontram-se na pasta 'test', sendo importante garantir que as redes carregadas mantenham os pesos e parâmetros previamente ajustados, de forma a permitir uma avaliação justa e objetiva da sua capacidade de generalização.

Com a rede: alineaB_diferentRatios_Conf3.mat e a seguinte matriz de confusão:

Obteve-se uma precisão de teste de 63.33%, que foi inferior à precisão de teste de 68.33% da alínea b).

Com a rede: alineaB_diferentTopo_Conf1.mat e a seguinte matriz de confusão:

	n (plotconfu						- 0
Edit	View Inse	rt Tools	Desktop V	Vindow He	elp		
		r	Matriz de	Confusã	o - Rede	2	
1	10	1	0	0	2	0	76.9%
	16.7%	1.7%	0.0%	0.0%	3.3%	0.0%	23.1%
2	0	9	0	0	0	1	90.0%
	0.0%	15.0%	0.0%	0.0%	0.0%	1.7%	10.0%
3	0	0	7	0	2	3	58.3%
s	0.0%	0.0%	11.7%	0.0%	3.3%	5.0%	41.7%
Output Class	0	0	1	10	0	1	83.3%
	0.0%	0.0%	1.7%	16.7%	0.0%	1.7%	16.7%
õ	0	0	0	0	5	0	100%
	0.0%	0.0%	0.0%	0.0%	8.3%	0.0%	0.0%
6	0	0	2	0	1	5	62.5%
	0.0%	0.0%	3.3%	0.0%	1.7%	8.3%	37.5%
	100%	90.0%	70.0%	100%	50.0%	50.0%	76.7%
	0.0%	10.0%	30.0%	0.0%	50.0%	50.0%	23.3%
		2	ი	⊳ arget Cla	6	6	

Obteve-se uma precisão de teste de 76.67%, que foi inferior à precisão de teste de 86.67% da alínea b).

Com a rede: *alineaB_diferentFuncAtiv_Conf3.mat* e a seguinte matriz de confusão:

4		n (plotconfu						- 0	X
File	Edit	View Inse	rt Tools	Desktop V	Vindow He	elp			
			r	//atriz de	Confusã	o - Rede	3		
	1	6 10.0%	0 0.0%	0 0.0%	0 0.0%	3 5.0%	1 1.7%	60.0% 40.0%	
	2	0 0.0%	9 15.0%	0 0.0%	0 0.0%	0 0.0%	1 1.7%	90.0% 10.0%	
	3 S	0 0.0%	0 0.0%	4 6.7%	0 0.0%	3 5.0%	0 0.0%	57.1% 42.9%	
	Output Class	4 6.7%	1 1.7%	5 8.3%	10 16.7%	0 0.0%	4 6.7%	41.7% 58.3%	
	õ	0 0.0%	0 0.0%	1 1.7%	0 0.0%	4 6.7%	1 1.7%	66.7% 33.3%	
	6	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	3 5.0%	100% 0.0%	
		60.0% 40.0%	90.0% 10.0%	40.0% 60.0%	100% 0.0%	40.0% 60.0%	30.0% 70.0%	60.0% 40.0%	
		^	ν	∿ Ta	⊳ arget Cla	ં ss	6		

Obteve-se uma precisão de teste de 60.00%, que foi inferior à precisão de teste de 77.78% da alínea b).

Na **alínea ii)**, o objetivo é treinar e testar novamente as melhores redes identificadas na alínea b), desta vez utilizando exclusivamente as imagens contidas na pasta 'test'.

Após o processo de treino, as redes devem ser utilizadas para classificar as imagens presentes em cada uma das seguintes pastas: 'start', 'train' e 'test'. Em seguida, deve-se registar as precisões de teste obtidas na classificação de cada

conjunto, permitindo assim uma análise comparativa do desempenho das redes em diferentes subconjuntos de dados.

A **Rede 1**, carregada a partir do ficheiro *alineaB_diferentRatios_Conf3.mat*, obteve uma precisão de 53.33% para as imagens da pasta start, 69.33% para a pasta train e 95.00% para a pasta test, destacando-se com um desempenho muito elevado no conjunto de teste, embora com desempenhos mais baixos nos restantes conjuntos.

A **Rede 2**, proveniente de *alineaB_diferentTopo_Conf1.mat*, apresentou uma precisão de 73.33% na pasta start, 93.67% na train e 76.67% na test, mostrando um desempenho equilibrado com melhor generalização sobre os dados de treino.

Já a **Rede 3**, carregada de *alineaB_diferentFuncAtiv_Conf3.mat*, alcançou 66.67% na start, 82.33% na train e 85.00% na test, revelando um comportamento intermédio entre as duas anteriores.

Edit	View Inse	rt Tools	Desktop V	Vindow He	elp		
		Matr	iz de Cor	nfusão - F	Rede 3 (T	EST)	
1	10	0	0	0	2	0	83.3%
	16.7%	0.0%	0.0%	0.0%	3.3%	0.0%	16.7%
2	0	10	0	0	1	0	90.9%
	0.0%	16.7%	0.0%	0.0%	1.7%	0.0%	9.1%
3	0	0	7	0	1	1	77.8%
9	0.0%	0.0%	11.7%	0.0%	1.7%	1.7%	22.2%
Output Class	0	0	1	9	0	0	90.0%
	0.0%	0.0%	1.7%	15.0%	0.0%	0.0%	10.0%
∂	0	0	2	0	6	0	75.0%
	0.0%	0.0%	3.3%	0.0%	10.0%	0.0%	25.0%
6	0	0	0	1	0	9	90.0%
	0.0%	0.0%	0.0%	1.7%	0.0%	15.0%	10.0%
	100%	100%	70.0%	90.0%	60.0%	90.0%	85.0%
	0.0%	0.0%	30.0%	10.0%	40.0%	10.0%	15.0%
		2	ъ т.	⊳ arget Cla	6	6	

A análise das matrizes de confusão guardadas para cada rede permitiu verificar que a **Rede 1** teve a melhor precisão de acerto na pasta test, indicando uma adaptação mais eficaz aos dados com que foi treinada, enquanto apresentou menor capacidade de generalização.

A **Rede 2** demonstrou uma elevada precisão na pasta train e um desempenho relativamente equilibrado nos outros conjuntos, sugerindo maior robustez.

Na alínea iii), foi realizado o treino e teste das melhores redes identificadas na alínea b), agora utilizando a totalidade das imagens disponíveis, ou seja, combinando os conjuntos das pastas start, train e test.

A Rede 1, guardada com o nome "rede_top_92_172919.mat", revelou um desempenho bastante equilibrado e robusto. Com uma precisão global de 92.31%, destacou-se pela sua consistência nos diferentes conjuntos de dados: alcançou 93.33% de precisão na pasta *start*, 92.33% na pasta *train* e 91.67% na pasta *test*.

Estes resultados demonstram que a rede foi capaz de aprender eficazmente os padrões das diferentes formas geométricas, mantendo uma forte capacidade de generalização. O seu desempenho consistente nos três conjuntos reforça a fiabilidade da rede e confirma-a como uma das melhores soluções obtidas ao longo deste estudo.

Edit	View Inse	rt Tools	Desktop V	Vindow He	elp		
		Matriz	de Confi	usão - Re	de 3 (GL	OBAL)	
1	63	0	0	0	1	0	98.4%
	16.2%	0.0%	0.0%	0.0%	0.3%	0.0%	1.6%
2	0	63	0	0	1	1	96.9%
	0.0%	16.2%	0.0%	0.0%	0.3%	0.3%	3.1%
3	0	0	53	0	3	4	88.3%
	0.0%	0.0%	13.6%	0.0%	0.8%	1.0%	11.7%
Output Class	1	1	10	64	1	0	83.1%
	0.3%	0.3%	2.6%	16.4%	0.3%	0.0%	16.9%
ರ	1	0	1	1	59	2	92.2%
5	0.3%	0.0%	0.3%	0.3%	15.1%	0.5%	7.8%
6	0	1	1	0	0	58	96.7%
	0.0%	0.3%	0.3%	0.0%	0.0%	14.9%	3.3%
	96.9%	96.9%	81.5%	98.5%	90.8%	89.2%	92.3%
	3.1%	3.1%	18.5%	1.5%	9.2%	10.8%	7.7%
		2	° Т:	⊳ arget Cla	6	6	

A **Rede 2**, armazenada como *rede_top_85_171052.mat*, destacou-se com a melhor precisão global de 94.87%, alcançando 90.00% na start, 97.33% na train e 85.00% na test, demonstrando forte capacidade de aprendizagem e generalização.

Edit	View Inser	rt Tools	Desktop V	Vindow He	elp		
		Matriz	de Confi	usão - Re	de 2 (GL	OBAL)	
1	65	1	0	0	2	2	92.9%
	16.7%	0.3%	0.0%	0.0%	0.5%	0.5%	7.1%
2	0	63	0	0	0	2	96.9%
	0.0%	16.2%	0.0%	0.0%	0.0%	0.5%	3.1%
3	0	0	63	0	2	2	94.0%
9	0.0%	0.0%	16.2%	0.0%	0.5%	0.5%	6.0%
Output Class	0	0	0	64	2	1	95.5%
	0.0%	0.0%	0.0%	16.4%	0.5%	0.3%	4.5%
o	0	0	0	0	58	1	98.3%
5	0.0%	0.0%	0.0%	0.0%	14.9%	0.3%	1.7%
6	0	1	2	1	1	57	91.9%
	0.0%	0.3%	0.5%	0.3%	0.3%	14.6%	8.1%
	100%	96.9%	96.9%	98.5%	89.2%	87.7%	94.9%
	0.0%	3.1%	3.1%	1.5%	10.8%	12.3%	5.1%
		2	ზ	⊳ arget Cla	6	0	

Já a **Rede 3**, salva como *rede_top_83_171120.mat*, obteve uma precisão global de 89.49%, com 73.33% na start, 92.33% na train e 83.33% na test, mantendo um desempenho estável e próximo ao da Rede 2, embora ligeiramente inferior.

A análise dos resultados mostra que a Rede 2 apresenta o melhor compromisso entre precisão e capacidade de generalização, destacando-se com a melhor precisão global entre as três. Esta rede demonstrou um excelente desempenho na pasta *train* (97.33%) e manteve resultados consistentes nas pastas *start* e *test*, o que indica uma forte capacidade de aprendizagem sem comprometer a generalização.

Já a Rede 3, apesar de apresentar uma precisão global ligeiramente inferior, manteve um desempenho estável nos diferentes conjuntos, sendo também uma solução fiável. Estes dados evidenciam a importância de uma configuração equilibrada da rede e da utilização de um conjunto de dados diversificado durante o treino, garantindo um desempenho sólido em diferentes contextos de classificação.

6. Alínea D)

Nesta alínea, pretende-se avaliar a capacidade de generalização das redes neuronais treinadas através da classificação de imagens desenhadas manualmente que estão na pasta *draw*. Para isso, foram criadas 5 imagens de cada categoria (círculo, papagaio, paralelogramo, quadrado, trapézio e triângulo), com características visuais semelhantes às utilizadas no treino da rede. Estas imagens foram posteriormente convertidas para matrizes binárias, de forma a poderem ser processadas pelas redes. Não desenvolvemos nenhum programa para carregar estas imagens e classificá-las recorrendo às melhores redes obtidas na alínea c iv), usamos a aplicação gráfica para tal.

O objetivo é verificar se as redes conseguem reconhecer corretamente formas novas, desenhadas fora do conjunto original de dados, analisando os resultados obtidos e retirando conclusões sobre o desempenho da rede em dados reais. Usamos apenas a seguinte rede: rede_top_92_172919.mat.

Circle:

- Imagem 0: Acertou (Confiança: 59.87%).
- Imagem 1: Não acertou, previu uma classe de trapézio (Confiança: 57.79%).
- Imagem 2: Não acertou, previu uma classe de triângulo (Confiança: 36.33%).

- Imagem 3: Não acertou, previu uma classe de trapézio (Confiança: 94.11%).
- Imagem 4: Não acertou, previu uma classe de trapézio (Confiança: 84.13%).

Kite:

- Imagem 0: Acertou (Confiança: 63.69%).
- Imagem 1: Não acertou, previu uma classe de círculo (Confiança: 36.29%)
- Imagem 2: Não acertou, previu uma classe de triângulo (Confiança: 83.57%)
- Imagem 3: Não acertou, previu uma classe de triângulo (Confiança: 78.30%)
- Imagem 4: Acertou (Confiança: 87.89%).

Parallelogram:

- Imagem 0: Não acertou, previu que era um trapézio (Confiança: 81.18%).
- Imagem 1: Não acertou, previu que era um trapézio (Confiança: 71.40%).
- Imagem 2: Não acertou, previu que era um trapézio (Confiança: 97.04%).
- Imagem 3: Não acertou, previu que era um trapézio (Confiança: 60.58%).
- Imagem 4: Não acertou, previu que era um trapézio (Confiança: 62.52%).

Square:

- Imagem 0: Não acertou, previu que era um trapezoid (Confiança: 91.49%)
- Imagem 1: Não acertou, previu que era um circle (Confiança: 87.58%)
- Imagem 2: Não acertou, previu que era um triangle (Confiança: 46.98%)
- Imagem 3: Não acertou, previu que era um circle (Confiança: 69.52%)
- Imagem 4: Não acertou, previu que era um circle (Confiança: 57.44%)

Trapezoid:

- Imagem 0: Acertou, previu que era um trapezoid (Confiança: 91.49%)
- Imagem 1: Acertou, previu que era um trapezoid (Confiança: 51.70%)
- Imagem 2: Acertou, previu que era um trapezoid (Confiança: 100%)
- Imagem 3: Acertou, previu que era um trapezoid (Confiança: 100%)
- Imagem 4: Acertou, previu que era um trapezoid (Confiança: 75.91%)

Triangle:

- Imagem 0: Não acertou, previu que era um parallelogram (Confiança: 72.17%)
- Imagem 1: Não acertou, previu que era um parallelogram (Confiança: 96.92%)
- Imagem 2: Não acertou, previu que era um kite (Confiança: 85.32%)
- Imagem 3: Não acertou, previu que era um trapezoid (Confiança: 64.82%)
- Imagem 4: Acertou, previu que era um triangle (Confiança: 98.54%)

Verificou-se que a rede revelou uma tendência acentuada para classificar as imagens desenhadas manualmente como pertencentes à classe trapézio, mesmo quando estas correspondiam a outras formas geométricas. Este comportamento pode indicar que as imagens desenhadas têm semelhanças visuais com a classe "trapézio" ou que a rede é mais sensível aos padrões dessa classe.

7. Alínea E)

Nesta alínea, foi solicitado o desenvolvimento de uma aplicação gráfica em MATLAB que permita ao utilizador interagir com redes neuronais de forma simples e intuitiva, reunindo as funcionalidades exploradas nas alíneas anteriores.

A aplicação deve permitir configurar a topologia da rede, selecionar funções de treino e de ativação, treinar redes neuronais, bem como carregar e guardar redes previamente treinadas. Além disso, o utilizador deve poder aplicar uma rede a conjuntos de dados predefinidos, desenhar manualmente uma nova forma ou carregar uma imagem com a figura já desenhada, e classificar essa figura utilizando uma rede previamente treinada. Por fim, é possível visualizar os resultados da classificação e, se necessário, gerar e guardar ficheiros com os resultados obtidos.

Um dos outputs para servir de exemplo é:

Global: 83.33% | Teste: 40.00%

Repetição 4/5

Global: 86.67% | Teste: 40.00%

Repetição 5/5

Global: 80.00% | Teste: 20.00%

Médias (5 repetições): Global: 81.33% (±6.91) Teste: 40.00% (±14.14) Melhor: 1 (Teste: 60.00%)

8. Experiências feitas por nós

Aqui pretende-se analisar se a alteração do número de épocas influencia os resultados obtidos pela rede, e de que forma essa alteração impacta positiva ou negativamente o seu desempenho.

		М	udar número de é	pocas - Tra	in				
					dividerand = {0.7,		87.38%	66.44%	
Conf1	1	10	tansig, purelin	trainlm	0.15, 0.15}	20	(±8.13)	(±10.06)	7:
					dividerand = {0.7,		88.67%	65.76%	
Conf2	1	10	tansig, purelin	trainlm	0.15, 0.15}	40	(±4.58)	(±7.71)	71
					dividerand = {0.7,		89.93%	68.00%	
Conf3	1	10	tansig, purelin	trainlm	0.15, 0.15}	60	(±1.48)	(±5.12)	73
					dividerand = {0.7,		90.60%	64.00%	
Conf4	1	10	tansig, purelin	trainlm	0.15, 0.15}	100	(±1.75)	(±6.36)	73

Como era de esperar, a partir das 20 épocas não se observaram melhorias significativas no desempenho da rede, uma vez que o processo de treino é frequentemente interrompido antes desse limite devido ao critério de *early stopping* com base na validação.

De seguida, pretende-se analisar de que forma a alteração da pasta de imagens utilizada para treino influencia os resultados obtidos pela rede, avaliando se essa mudança tem um impacto positivo ou negativo no seu desempenho.

		Muda	ar a pasta de imag	gens para t	reino				
					dividerand = {0.7,		73.33%	32.00%	
Conf1 - Start	1	10	tansig, purelin	trainIm	0.15, 0.15}	20	(±12.69)	(±17.89)	60.00
					dividerand = {0.7,		85.00%	55.56%	
Conf2 - Test	1	10	tansig, purelin	trainlm	0.15, 0.15}	20	(±2.64)	(±11.11)	66.67
					dividerand = {0.7,		89.40%	63.11%	
Conf3 - Train	1	10	tansig, purelin	trainIm	0.15, 0.15}	20	(±1.42)	(±3.37)	69.67
					dividerand = {0.7,		89.03%	68.47%	
Conf4 - All	1	10	tansig, purelin	trainIm	0.15, 0.15}	20	(±2.47)	(±7.91)	79.66

Como era expectável, o uso de pastas com um maior número de imagens por classe resultou em melhores desempenhos da rede. No entanto, ao passar da pasta *Train* para o conjunto completo (*All*), não se verificou uma melhoria significativa nos resultados. Este comportamento poderá estar relacionado com o número reduzido de camadas escondidas, limitando a capacidade da rede para tirar pleno proveito do aumento do volume de dados.

9. Conclusão

Em suma, o trabalho desenvolvido permitiu compreender em profundidade o funcionamento das redes neuronais feedforward e os diversos fatores que influenciam o seu desempenho na tarefa de classificação de formas geométricas.

Através das várias alíneas, foi possível observar como diferentes parâmetros como a topologia da rede, as funções de ativação, os algoritmos de treino e os rácios de divisão dos dados, afetam diretamente a capacidade de generalização e a precisão das redes.

Verificou-se que redes com estruturas mais simples, especialmente quando o número de exemplos por classe é reduzido, tendem a apresentar melhor desempenho, evitando o sobreajuste. Por outro lado, com conjuntos de dados maiores, o uso de redes mais complexas pode ser vantajoso, desde que haja um equilíbrio adequado entre os conjuntos de treino, validação e teste. A função de treino *trainlm* destacou-se de forma consistente, evidenciando melhor desempenho, embora à custa de maior tempo de processamento.

As redes testadas nas diferentes combinações de pastas (start, train, test) demonstraram variações relevantes na capacidade de generalização. Notou-se que, embora algumas redes tenham tido um excelente desempenho nos dados de treino, nem sempre conseguiram manter esse nível nos dados de teste, o que reforça a importância da validação cruzada e da análise das matrizes de confusão.

Através da comparação entre as melhores redes, foi possível identificar quais apresentam melhor equilíbrio entre desempenho e robustez. Conclui-se que o sucesso de uma rede não depende apenas da sua configuração, mas também da distribuição e diversidade dos dados com que é treinada. Este projeto revelou-se essencial para consolidar os conhecimentos teóricos sobre redes neuronais e para adquirir experiência prática no seu desenvolvimento e análise no contexto do MATLAB.