NPZDA-nitrogen-isotope model, adapted from Sarmiento and Gruber (2006) and Yoshikawa et al. (2005).

(c) NPZD-A2 model

NPZDA-model:

$$\begin{split} \frac{dPHY}{dt} &= Photosynthesis - Grazing - Mortality_{PHY} \\ \frac{dZOO}{dt} &= Grazing - Excretion - Egestion - Mortality_{ZOO} \\ \\ \frac{dNO_3}{dt} &= -Photosynthesis \times F + Nitrification - entr \times \left([NO_3] - [NO_{3_{low}}] \right) \end{split}$$

$$\frac{dNH_4}{dt} = -Photosynthesis \times (1-F) + Excretion + Remineralization - Nitrification$$

$$\frac{dDET}{dt} = Egestion + Mortality_{PHY} + Mortality_{ZOO} - Remineralization - Sinking$$

With each biological process is determined as follows:

$$Photosynthesis = V_{max} \times \left[\frac{[NO_3]}{[NO_3] + K_{NO_3}} \times e^{-\Psi \times [NH_4]} + \frac{[NH_4]}{[NH_4] + K_{NH_4}} \right] \times \frac{\bar{I}}{\bar{I} + KI} \times [PHY]$$

$$Grazing = g \times [ZOO] \times \frac{[PHY] - P_0}{K_P + ([PHY] - P_0)}$$

$$Excretion = (\alpha - \beta) \times Grazing$$

$$Egestion = (1 - \alpha) \times Grazing$$

$$Sinking = \frac{W_{sink}}{MLD} \times [DET]$$

$$Mortality_{PHY} = \lambda_P \times [PHY]$$

$$Mortality_{ZOO} = \lambda_Z \times [ZOO]$$

Remineralization = $\lambda_D \times [DET]$

 $Nitrification = Nit \times [NH_4]$

NPZDA-14N model:

$$\frac{d^{14}PHY}{dt} = Photosynthesis \times [^{14}PHY] - Grazing \times [^{14}PHY] - Mortality_{PHY} \times [^{14}PHY]$$

$$\frac{d^{14}Z00}{dt} = Grazing \times [^{14}PHY] - Excretion \times [^{14}Z00] - Egestion \times [^{14}Z00]$$

$$- Mortality_{Z00} \times [^{14}Z00]$$

$$\frac{d^{14}NO_3}{dt} = -Photosynthesis \times \begin{bmatrix} ^{14}PHY \end{bmatrix} \times F + Nitrification \times \begin{bmatrix} NH_4 \end{bmatrix} \times \begin{bmatrix} ^{14}NH_4 \end{bmatrix}$$
$$-entr \times \left(\begin{bmatrix} NO_3 \end{bmatrix} \times \begin{bmatrix} ^{14}NO_3 \end{bmatrix} - \begin{bmatrix} NO_3_{low} \end{bmatrix} \times \begin{bmatrix} ^{14}NO_3_{low} \end{bmatrix} \right)$$
$$\frac{d^{14}NH_4}{dt} = -Photosynthesis \times \begin{bmatrix} ^{14}PHY \end{bmatrix} \times (1-F) + Excretion \times \begin{bmatrix} ^{14}ZOO \end{bmatrix}$$

$$\frac{d^{14}DET}{dt} = Egestion \times [^{14}ZOO] + Mortality_{PHY} \times [^{14}PHY] + Mortality_{ZOO} \times [^{14}ZOO] - Remineralization \times [^{14}DET] - Sinking \times [^{14}DET]$$

+ Remineralization \times [14DET] - Nitrification \times [NH₄] \times [14NH₄]

NPZDA-¹⁵N model:

$$\frac{d^{15}PHY}{dt} = Photosynthesis \times [^{15}PHY] \times \alpha_{uptake} - Grazing \times [^{15}PHY]$$
$$- Mortality_{PHY} \times [^{15}PHY]$$
$$\frac{d^{15}Z00}{dt} = Grazing \times [^{15}PHY] - Excretion \times [^{15}Z00] \times \alpha_{excretion}$$

$$\frac{d^{-200}}{dt} = Grazing \times [^{15}PHY] - Excretion \times [^{15}Z00] \times \alpha_{excretion}$$
$$- Egestion \times [^{15}Z00] \times \alpha_{egestion} - Mortality_{Z00} \times [^{15}Z00]$$

 $-\textit{Nitrification} \times [\textit{NH}_4] \times [^{15}\textit{NH}_4] \times \alpha_{nitrification}$

$$\begin{split} \frac{d^{15}NO_3}{dt} &= -Photosynthesis \times [^{15}PHY] \times F \times \alpha_{uptake} \\ &\quad + Nitrification \times [NH_4] \times [^{15}NH_4] \times \alpha_{nitrification} \\ &\quad - entr \times \left([NO_3] \times [^{15}NO_3] - [NO_{3_{low}}] \times [^{15}NO_{3_{low}}]\right) \end{split}$$

$$\begin{split} \frac{d^{15}NH_4}{dt} &= -Photosynthesis \times [^{15}PHY] \times (1-F) \times \alpha_{uptake} \\ &\quad + Excretion \times [^{15}Z00] \times \alpha_{excretion} \\ &\quad + Remineralization \times [^{15}DET] \times \alpha_{remineralization} \end{split}$$

$$\begin{split} \frac{d^{15}DET}{dt} &= Egestion \times [^{15}ZOO] \times \alpha_{egestion} + Mortality_{PHY} \times [^{15}PHY] \\ &\quad + Mortality_{ZOO} \times [^{15}ZOO] \\ &\quad - Remineralization \times [^{15}DET] \times \alpha_{remineralization} - Sinking \times [^{15}DET] \end{split}$$

Model parameters:

Simulation of environment parameters with time:

Seasonal MLD:

$$MLD(t) = h_0 + h_1 \left(1 + \cos \left(\frac{2\pi t}{360} \right) \right)$$

$$dMLDdt = -h_1 \left(\frac{2\pi}{360}\right) \sin\left(\frac{2\pi}{360}\right)$$

Entrainment:

$$Entr = \frac{dMLDdt}{MLD}(if \ dMLDdt > 0) + c$$

Seasonal light:

$$I_O(t) = f_{PAR} \left(I_0 + I_1 \left(\cos \left(\frac{2\pi t}{360} \right) \right) \right)$$

Average ML light:

$$\bar{I} = I_0(t) \frac{z_I}{MLD(t)}$$

Ratio of nitrate to total nitrogenous nutrient assimilation by phytoplankton:

$$F = \frac{\frac{[NO_3]}{[NO_3] + K_{NO_3}} \times e^{-\Psi \times [NH_4]}}{\left[\frac{[NO_3]}{[NO_3] + K_{NO_3}} \times e^{-\Psi \times [NH_4]} + \frac{[NH_4]}{[NH_4] + K_{NH_4}}\right]}$$

Natural abundance of ¹⁵N in a sample relative to the isotopic composition of a standard reference material:

$$\delta^{15}N = \left(\frac{R_{sample}}{R_{standard}} - 1\right) \times 1000$$

Isotope ratio, R_{standard} of atmospheric nitrogen is 0.00366:

$$R = \frac{^{15}N}{^{15}N + ^{14}N}$$

Isotopic fractionation coefficient:

$$\alpha = e^{\frac{\varepsilon}{1000}}$$

V _{max}	Phytoplankton maximum photosynthetic rate	2	day ⁻¹
K _{NUT}	Phytoplankton half saturation constant	2	μmol/m ³
lp	Phytoplankton mortality rate	0.05	day ⁻¹
Ψ	Phytoplankton ammonium inhibition coefficient	1	1/ µmol
Kp	Phytoplankton grazing half saturation constant	2.8	μmol/m ³
P0	Phytoplankton grazing threshold	0.04	μmol/m ³
α	Zooplankton assimilation efficiency	0.7	nodim
β	Zooplankton growth efficiency	0.3	nodim
g	Zooplankton grazing rate	1.4	day-1
lz	Zooplankton mortality rate	0.12	day ⁻¹
lD	Detritus remineralization rate	0.05	day-1
Wsink	Detritus sinking rate	20	day-1
c	Background mixing rate	0.01	day ⁻¹
ZI	Average mixed layer depth	20	M
Kı	Light half saturation constant	80	W/m ²
f PAR	Phytoplankton radiation utilization fraction	0.4	Nodim
15N _{low}	Natural abundance of deep water ¹⁵ N	1.005	
Euptake	Discrimination factor of nitrate uptake	-5	% 0
Eexcretion	Discrimination factor of zooplankton excretion	-1	% 0
Eegestion	Discrimination factor of zooplankton egestion	-1	% 0
Eremineralization	Discrimination factor of remineralization	-1	% 0