CSE 2500 - Homework 6

Mike Medved

November 5th, 2021

1. (15 points) Exercise Set 4.6, Question 28
If true, prove the following statement or find a counterexample if the statement is false, but do not use Theorem 4.6.1 in your proof. For any odd integer n,

$$\left\lfloor \frac{n^2}{4} \right\rfloor = \left(\frac{n-1}{2}\right) \left(\frac{n+1}{2}\right)$$

(a) For an odd integer n, let n=2k+1 for an integer k. Substituting n back into the given expression yields $\lfloor \frac{(2k+1)^2}{4} \rfloor \implies \lfloor \frac{4k^2+4k}{4} + \frac{1}{4} \rfloor \implies \lfloor k^2+k+\frac{1}{4} \rfloor \implies k(k+1)$.

Now, moving onto the right side, n can be substituted in to yield $(\frac{(2k+1)-1}{2})(\frac{(2k+1)+1}{2})$ which ultimately simplifies down to k(k+1).

k(k+1) is a known form for an integer, and since both the left and right hand sides are equal to k(k+1), they must equal each other.

2. (20 points) Exercise Set 4.6, Question 29 If true, prove the following statement or find a counterexample if the statement is false, but do not use Theorem 4.6.1 in your proof. For any odd integer n,

$$\left\lceil \frac{n^2}{4} \right\rceil = \frac{n^2 + 3}{4}$$

(a) For an odd integer n, let n=2k+1 for an integer k. Substituting n back into the given expression yields $\lceil \frac{(2k+1)^2}{4} \rceil \implies \lceil \frac{4k^2+1+4k}{4} \rceil \implies \lceil (k^2+k)+\frac{1}{4} \rceil \implies k^2+k+1$.

Now, moving onto the right side, n can be substituted in to yield $\frac{(2k+1)^2+3}{4}$ which ultimately simplifies down to k^2+k+1 .

Since both the sides of this expression are equal, the expression must be equal.

1

- 3. (20 points) Exercise Set 4.8, Question 23. Prove that for any integer $a, 9 \not| (a^2 3)$
 - (a) $9|(a^2+3)$ can be expressed as $a^2-3=9b$ for an integer b. With this, it can be arranged hat $a^2=9b+3$, and further that $a^2=3(1+3b)$. This confirms that both a and a^2 are multiples of 3. Therefore $a^2=9c^2$ for some integer c.

This demonstrates that $9|a^2$, and by supposition, that $9|(a^2-3)$. However, by the properties of divisibility, it can be expressed as $9|(a^2-(a^2-3))$, which when evaluated, 9|3, cannot be true.

This means that the supposition that was just created was false. This discovery contradicts the statement, and as a result proves $9 / (a^2-3)$.

- 4. (15 points) Exercise Set 5.2, Question 2.
 Use mathematical induction to show that any postage of at least 12¢ can be obtained using 3¢ and 7¢ stamps.
 - (a) Let P(n) represent that n¢ can be made up of 3¢ and 7¢ coins; since P(n) should be true for all integers $n \ge 12$, let a = 12.

To demonstrate that P(12) holds true, 12 = 4 * 3, which clearly demonstrates that $12\mathfrak{q}$ can be accumulated using four $3\mathfrak{q}$ coins. Therefore P(12) is true.

Now with this baseline truth, it must be shown that for all integers $k \geq 12$, P(k+1) must hold true. To accomplish this, the problem must be visualized; if k¢ can be made up using 7¢ twice or more, then replace two 7¢ stamps by using five 3¢ stamps. In this way, the total amount of cents has increased by one, resulting in (k+1).

Using this logic, if k¢ can be made using a single 7¢ stamp, and if less than two 3¢ stamps are used, it result in at the most 10¢. Given at most two 3¢ stamps, you could replace two 3¢ using one 7¢, then the total amount of cents that can be made increased by one, resulting in the aforementioned (k+1). If k¢ cannot be made using 7¢ stamps, then k¢ can only be made using 3¢ stamps, and at that, at least four 3¢ stamps are required to make the minimum 12¢. Continuing, the four 3¢ stamps can be replaced by a single 7¢ stamp, and two 3¢ stamps. In this way, the total amount of cents also increases by one, yielding the same (k+1) quantity. In this way, P(k+1) holds true.

... n¢ can be made of 3¢ and 7¢ stamps for any $n \ge 12$.

5. (15 points) Exercise Set 5.2, Question 14. Prove the following statement by mathematical induction.

$$\sum_{i=1}^{n+1} i * 2^i = n * 2^{n+2} + 2$$
, for all integers $n \ge 0$.

(a) Let P(n) represent $\sum_{i=1}^{n+1} i * 2^i = n * 2^{n+2} + 2$; since P(n) should be true for all integers $n \ge 0$, let a = 0.

To demonstrate that P(0) holds true, $\sum_{i=1}^{n+1} i * 2^i = 0 * 2^2 + 2$, wherein the left-hand side equals 0, the right-hand side can be represented as $0 * 2^2 + 2 = 0 + 2$, which also equals 2. This demonstrates that P(0) holds true for this statement.

Now with this baseline truth, it must be shown that for all integers $k \geq 0$, P(k) must hold true. To accomplish this, the discrete sum can be represented as $\sum_{i=1}^{k+1} i * 2^i = k * 2^{k+2} + 2$ by substituting in k for n. Additionally, it can be demonstrated that for all values of k+1 the statement holds true by inserting k+1 into the same discrete sum; $\sum_{i=1}^{(k+1)+1} i * 2^i = (k+1) * 2^{(k+1)+2} + 2$.

Using the same principle as the baseline truth, the left-hand side of the k+1 substitution can be represented as $\sum_{i=1}^{(k+1)+1} i * 2^i = \sum_{i=1}^{k+2} i * 2^i \Longrightarrow \sum_{i=1}^{k+1} i * 2^i + (k+2) * 2^{k+2} \Longrightarrow k * 2^{k+2} + 2 + (k+2) * 2^{k+2} \Longrightarrow k * 2^{k+2} + (k+2) * 2^{k+2} + 2 \Longrightarrow 2^{k+2} (2k+2) + 2 \Longrightarrow (k+1) * 2^{(k+1)+2} + 2$ which equals the right-hand side of the expression. In this way, P(k+1) is also true.

Since both the baseline and induction truths are valid, the property P(n) must be true for all integers $n \ge 0$.

$$\therefore \sum_{i=1}^{n+1} i * 2^i = n * 2^{n+2} + 2$$
 for all integers $n \ge 0$.

6. (15 points) Exercise Set 5.3, Question 14. Prove the following statement by mathematical induction.

 $n^3 - n$ is divisible by 6, for each integer $n \ge 0$.

(a) Let P(n) represent $n^3 - n|6$, thus P(n) should hold true for all integers $n \ge 0$, let a = 0.

To demonstrate that P(0) holds true, $n^3 - n \implies 0^3 - 0 = 0$. In this case, 0|6, thus $n^3 - n|6$ for n = 0, in this way, P(0) holds true.

Now, with this baseline truth, it must be shown that for all integers $k \ge 0$, P(k) must hold true. To accomplish this, the expression can be rewritten as $k^3 - k = 6a$ for some integer a. In order to accomplish this, we must prove that P(n) must be true for any value of n = k + 1, so for k + 1, $n^3 - n = 6m + 3k(k + 1)$.

With this substitution in mind, and the fact that k(k+1) is the product of two consecutive integers, this implies that either one of k or k+1 must be an even integer. Therefore, this product of k(k+1) must be an even integer. In this way, it can be assumed that k(k+1) = 2b, for some integer b. By substituting b into the previous expression, we are left with $n^3 - n = 6(m+b)$. By using the rules of integers, it is known that the sum of two integers must also be an integer, therefore by this logic, b must be an integer. Further, this implies that $n^3 - n|6$ for n = k+1, and that P(n) must be true for n = k+1.

 \therefore By mathematical induction, P(n) is true for all integers $n \geq 0$, thus, $n^3 - n|6$ for $n \geq 0$.