

PROJECT ORGANIZATION

Brainstorming

- Review of state-of-the-art bibliography
- Look for related problems and how they are solved, the relevant libraries
- Intuitions at that stage

•Main steps:

- Preprocessing
- Text processing
- ML model choice

Tasks distribution

PROJECT ORGANIZATION

FEATURES SELECTION

Data Cleaning:

We dropped unusable columns like 'Urls' and 'mention'

 Statistical correlation analysis over numerical features:

to Choose the most important variables:

- Correlation matrix
- Scatter Plot
- Feature Importance Scikit-Learn

FEATURES SELECTION

• Simple models testing (LinearRegressors, KNNRegressor)

	MSE	MAE	MSLE	R2	Model
0	8364.878058	6.400095	0.259403	0.945214	RFRegressor
4	8007.420985	6.699376	0.364185	0.709554	MLPRegressor
2	8956.462569	6.891657	0.321614	0.812682	KNeighborsRegressor
1	8143.490857	7.128499	0.776982	0.891920	GradientBoosting
3	9766.441500	9.646227	1.174634	0.686163	LinRegressor

TEXT PROCESSING

- 1) Sentiment Analysis:
 - Interesting, why?
 - Categorical value
 - Textblob package

- 2) TF-IDF Analysis
 - Useful 1st approach
 - 100 words

TEXT PROCESSING

3) Hashtags processing:

- Carry interesting information
- 18% of data
- Crammed

4) Word2Vec

- Used in NLP, uses NN
- Pretrained by Google
- Captures word similarity
- Implemented using mean vector over tweet

TEXT PROCESSING

- 5) Candidate/Name Extraction:
 - Maybe tweets about Macron are more appreciated?
 - Maybe news about the Ukraine are interesting to spread?
 - Extract using Flair-NER package
 - Find similarity to already found names
 - Classify or add new names
 - Gives back a number as class e.g. Macron = 3.

DIMENSIONALITY REDUCTION

- PCA (explained variance ratio curve)
- KMeans Clustering (Unsupervised Learning, creates categorical feature)

1) Regression Models ++:

After:

- Data Pre-processing
- Selection of the final predictors
- Data Transformation (Standardization/Normalization for distance-based algorithms)

We retested regression models:

- We even tried gradient boosting regressor

Worse performance!!

Probably because: + features needs more data.

2) Deep learning:

- Keras
- Architecture
 - Infinite possibilities
 - Sticking to the basics (ReLu)
 - ❖ FCNN
- Optimizing GD using SGD and Adam
- Extremely good results by Keras on the training set MAE ≈ 1.9

FINAL MODEL AND DEPLOYMENT

- 1) Predictors:
- Clusters(tweets similarity after applying KMeans)
- The number of users that clicked the (like) button for this tweet.
- The number of followers the user has
- 2) Model: Random Forest
- Reasons:
 - Categorical Data(Clusters, Sentiment, Candidate, Verified)
 - Aggregates the result of many decision trees and then outputs the most unbiased result (uses averaging).
 - A random forest produces good predictions that can be understood easily.
- Hyperparameter tuning (Grid Search using Scikit Learn)

CONCLUSION - Q-

THANK YOU FOR YOUR ATTENTION