J. Chem. Soc., Faraday Trans. 1, 1984, 80, 3187-3194

The Mutual Reaction of HO₂ Radicals and the Rate Constants of the Hydrogen + Oxygen Reaction

By Roy R. Baldwin, Christopher E. Dean, the late Malcolm R. Honeyman and Raymond W. Walker*

Chemistry Department, The University of Hull, Hull HU6 7RX

Received 12th March, 1984

The yields of i-butene and H_2 have been measured in the decomposition of tetramethylbutane (TMB) in the presence of O_2 . The relative yields are effectively independent of the concentration of TMB and O_2 and of temperature over the range 440–500 °C. If H_2 formation is due to reaction (10a):

$$HO_2 + HO_2 \rightarrow H_2 + 2O_2 \tag{10a}$$

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2 \tag{10}$$

the value of k_{10a}/k_{10} is obtained as 0.065 ± 0.005 at 480 °C.

However, introduction of reaction (10 a) into the mechanism of the $H_2 + O_2$ reaction at 500 °C has a marked effect on the calculated reaction rate, and a satisfactory interpretation of the variation of rate with mixture composition requires the ratio k_{15}/k_1 to change from 3.9 ± 0.5 to 1.07:

$$OH + H_2 \rightarrow H_2O + H \tag{1}$$

$$OH + H2O2 \rightarrow H2O + HO2$$
 (15)

This latter value is totally inconsistent with values of 3.2 ± 0.5 from studies of the decomposition of H_2O_2 in the presence of H_2 , and 2.7-3.6 from independent measurements of k_1 and k_{15} . Further, studies in KCl-coated vessels do not significantly alter the $[i-C_4H_8]/[H_2]$ ratios, in contrast to the large increase predicted by computer treatment, as a consequence of the much lower HO_2 concentration. It is concluded that reaction (10a) is not the source of H_2 .

Previous papers have shown that the second limit,^{1,2} the induction period^{2,3} and the maximum rate^{1,2} of the H_2+O_2 reaction can be interpreted with a high degree of precision for a wide range of mixture composition using the following reaction scheme.†

$$OH + H_2 \rightarrow H_2O + O \tag{1}$$

$$O + H_2 \rightarrow OH + H \tag{2}$$

$$H + O_2 \rightarrow OH + O$$
 (3)

$$H + O_9 + M \rightarrow HO_9 + M \tag{4}$$

$$H_9O_9 + M' \rightarrow 2OH + M' \tag{7}$$

$$H + HO_2 \rightarrow 2OH$$
 (8)

$$H + HO_2 \rightarrow H_2 + O_2 \tag{8a}$$

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2 \tag{10}$$

[†] The numbering system used in previous papers has been adopted to maintain continuity.

MUTUAL REACTION OF HO2 RADICALS

$$HO_2 + H_2 \rightarrow H_2O_2 + H \tag{11}$$

$$O + H_2O_2 \rightarrow H_2O + O_2 \tag{13}$$

$$O + H_2O_2 \rightarrow OH + HO_2 \tag{13a}$$

$$H + H_2O_2 \rightarrow H_2O + OH \tag{14}$$

$$H + H_2O_2 \rightarrow H_2 + HO_2 \tag{14a}$$

$$OH + H_2O_2 \rightarrow H_2O + HO_2 \tag{15}$$

In this mechanism it is assumed that only the mutual reaction (10) occurs between HO_2 radicals. A number of studies around room temperature⁴⁻⁹ have suggested that the apparent value of k_{10} is dependent on pressure and on the nature of other molecules present, indicating that at these temperatures the reaction process may be more complex, involving an intermediate H_2O_4 species.

However, Sahetchian et al.¹⁰ have detected traces of H_2 in the decomposition of di-n-heptyl peroxide at 220–238 °C in the presence of O_2 . They attribute this to the reaction (10a) of HO_2 radicals produced by the reaction of n-heptoxy radicals with O_2 :

$$HO_9 + HO_9 \rightarrow H_9 + 2O_9$$
. (10a)

Although the very low yields of H_2 did not permit accurate analysis, a value of $k_{10a}/k_{10} \approx 0.1$ was suggested. Since reaction (10a) is a termination reaction, its occurrence to this extent would have a marked effect on the kinetic features of the H_2+O_2 reaction.

Recent studies¹¹⁻¹³ of the decomposition of 2,2,3,3-tetramethylbutane (TMB) in the presence of O_2 between 380 and 540 °C have shown that this system offers a simple and reproducible source of HO_2 radicals. In KCl-coated vessels the basic mechanism involved reactions (21)–(23), while in aged boric-acid-coated vessels the surface process (23) is replaced by reaction (10):

$$(CH_3)_3C - C(CH_3)_3 \rightarrow 2(CH_3)_3C$$
 (21)

$$(CH_3)_3C + O_2 \rightarrow i - C_4H_8 + HO_2$$
 (22)

$$HO_2 \xrightarrow{\text{surface}} {}_{2}^{1}H_2O + {}_{4}^{3}O_2$$
 (23)

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2.$$
 (10)

There is also a small-chain contribution from reactions (24) and (25), the OH radicals being produced by the dissociation reaction (7) of H_2O_2 :

$$OH + (CH_3)_3C - C(CH_3)_3 \rightarrow H_2O + (CH_3)_3C - C(CH_3)_2CH_2$$
 (24)

$$HO_2 + (CH_3)_3C - C(CH_3)_3 \rightarrow H_2O_2 + (CH_3)_3C - C(CH_3)_2CH_2$$
 (25)

$$(CH_3)_3C - C(CH_3)_2CH_2 \rightarrow i - C_4H_8 + (CH_3)_3C$$
 (26)

$$H_2O_2 + M' \rightarrow 2OH + M' \tag{7}$$

$$(CH_3)_3C + O_2 \rightarrow i - C_4H_8O + OH.$$
 (27)

The minor reaction (27), with $k_{27}/k_{22} \approx 0.01$, plays little part but is incorporated in the computer treatment.

Studies both in KCl-coated and in aged boric-acid-coated vessels¹⁴ provide consistent values of the two unknown parameters k_{21} and $k_{25}/k_{10}^{\frac{1}{4}}$ over the temperature

Fig. 1. Yields of H₂ and i-butene in an aged boric-acid-coated vessel at 480 °C. (TMB = 5 Torr, $O_2 = 10$ Torr): \bigcirc , $H_2(\times 100)$; \times , i-butene.

range 400–542 °C, and this confirms the validity of the proposed mechanism. The TMB+ O_2 system thus offers a convenient source of HO_2 radicals, and this paper describes the use of the system to investigate the importance of the possible reaction (10 a). At the same time the implications of the occurrence of this reaction for rate constants previously determined for the H_2+O_2 system are also examined.

EXPERIMENTAL

The apparatus and procedures were as described in previous papers. $^{11-13}$ The boric-acid-coated vessel was aged by repeated reactions of H_2+O_2 mixtures until a standard rate was obtained. i-Butene was determined gas-chromatographically using a Perkin-Elmer Sigma 10 system involving microprocessor control and integration, and H_2 was determined using an Erba-Science permanent gas analyser with helium as the carrier gas and a helium ionisation detector. The main study was made at 480 °C, with more limited studies at 440 and 500 °C. Analysis was restricted to the relatively early stages ($\Rightarrow 20\%$) of reaction to avoid complications resulting from further reactions of the reactive intermediate i-butene. Since small amounts (ca. 1-2%) of C_3H_6 , the main oxidation product from i-butene, were found, the yields of i-butene were corrected to allow for this loss.

RESULTS

Fig. 1 shows yields of H_2 and i-butene at various sample times for the mixture containing 5 Torr of TMB and 10 Torr of O_2 . Fig. 2 shows that the ratio $[i-C_4H_8]/[H_2]$ increases slightly as the sampling time is increased. The experimental scatter of $\pm 4\%$ indicates the difficulty of measuring the extremely low H_2 yields even with the sensitive Erba-Science equipment. No significant variation of the ratio was observed when the

Fig. 2. Relative yields of i-butene and H₂ for different mixtures at 480 °C (aged boric-acid-coated vessel):

symbol	TMB/Torr	${ m O_2/Torr}$	N ₂ /Torr
×	5	10	0
0	5	3	7
•	2.5	12.5	0

Table 1. Yields of H₂ in the TMB+O₂ reaction at 480 °C

	$[i\text{-}C_4H_8]/[H_2]$		
time/s	obs.	calc.	
TMB/Torr = 5	$0, O_2/Torr = 1$	$0.0, N_2/Torr = 0$	
90	55	53	
110	56	54	
130	57	54	
150	59	55	
170	61	56	
TMB/Torr = 2	$.5, O_{2}/Torr = 1$	$2.5, N_2/Torr = 0$	
110	51	48	
130	52	49	
150	53	50	
170	54	50	
190	55	51	
TMB/Torr = 5.	$0, O_2/Torr = 1$	$0, N_2/Torr = 345$	
40	54	60	
45	54	61	
50	54	61	
55	54	62	

concentrations of TMB and O_2 were varied and when the total pressure was increased from 15 to 360 Torr by addition of N_2 .

Table 1 shows the observed and calculated values of the ratio $[i-C_4H_8]/[H_2]$ at various times for the optimum value of $k_{10a}/k_{10}=0.065\pm0.005$ for the three mixtures studied in detail. A value of $k_{10a}/k_{10}=0.063$ is required to interpret the results at 15 Torr and a value of 0.074 for the mixture at 360 Torr total pressure.

	k_{10a}/k_{10}			
	0	0.05	0.10	0.065
parameter				
k_{14}/k_{2}	273	233	195	224
k_{15}/k_1	3.95	1.63	0.08	1.07
$k_{11}/k_{10}^{\frac{1}{2}}$	0.037	0.047	0.056	0.050
k_{15}/k_{1}^{2} k_{11}/k_{10}^{2} $k_{8}/k_{2}k_{10}^{2}$	0.525	0.490	0.450	0.480
$k_{8a}^{9}/k_{2}k_{10}^{\frac{1}{2}}$	0.081	0.074	0.067	0.071
r.m.s. deviation (%) (rate)	3.3	5.6	9.6	6.5
r.m.s. deviation (%) (induction period)	4.3	8.3	12.4	8.5

Table 2. Variation of parameters^a for $H_2 + O_2$ reaction with k_{10a}/k_{10} at 500 °C

Previous papers have shown for a wide range of $H_2 + O_2 + N_2$ mixtures how measurements of the induction period^{2, 3} and maximum rate^{1, 2} of the slow reaction, and of the second limit,^{1, 2} can be used in conjunction with a computer treatment of the mechanism to obtain rate constants, or rate-constant ratios, for the reactions involved. Most rate constants appear as ratios in the computer treatment, which involves the following parameters: k_7 , k_2/k_4 , k_{14}/k_2 , k_{14a}/k_{14} , k_{13}/k_3 , k_{13a}/k_3 , k_{15}/k_1 , k_{11}/k_{10}^1 , k_8/k_2 , k_{10}^2 and k_{8a}/k_2 , k_{10}^3 .

Of these parameters, k_7 is known from direct studies¹⁵ of the homogeneous decomposition of H_2O_2 . In the absence of reaction (10a), the simple mechanism involving reactions (7), (15) and (10) gives a non-chain process with the rate equation

$$-d[H_{2}O_{2}]/dt = 2k_{2}[H_{2}O_{2}][M'].$$
 (i)

However, if reaction (10a) occurs, the rate equation is given by

$$-d[H_2O_2]/dt = (2+\alpha)k_7[H_2O_2][M']$$
 (ii)

where $\alpha = k_{10a}/(k_{10}+k_{10a})$. The previous expression, $k_7 = 1.70 \times 10^{14} \exp{(-23\,300/T)}$, is thus modified to $k_7 = 1.65 \times 10^{14} \exp{(-23\,300/T)}$ dr 3 mol $^{-1}$ s $^{-1}$ (M = H $_2$).

The value of k_2/k_4 can be obtained independently from the second limit in KCl-coated vessels, ¹⁶ where the quadratic branching reaction (8) plays a negligible role, and the value of $k_{14a}/k_{14} = 0.143$ at 450 °C has been obtained ¹⁷ from stadies of the decomposition of H_2O_2 in the presence of H_2 . The Arrhenius parameters for reactions (14) and (14a), obtained by combining this value with lower-temperature values as discussed in an earlier paper, ² indicate that $k_{14a}/k_{14} = 0.12$ at 500 °C.

Reactions (13) and (13a) play only a minor role, as already indicated.² An estimate¹⁸ of the rate constant for $O + H_2O_2$ gives $(k_{13} + k_{13a})/k_3 = 10.4$ at 500 °C but does not distinguish between reactions (13) and (13a). To minimise errors in the other parameters, therefore, it has been assumed that $k_{13}/k_3 = k_{13a}/k_3 = 5.2$.

The remaining parameters are obtained from experimental measurements on the H_2+O_2 reaction. The induction periods are largely determined by $k_{11}/k_{10}^{\frac{1}{2}}$, which is adjusted to give minimum r.m.s. deviation between observed and computed induction periods. The maximum rate is then almost entirely determined by k_{14}/k_2 and k_{15}/k_1 ,

^a Units: dm³ mol s.

which are adjusted to give minimum r.m.s. deviation between observed and computed maximum rates. The rise in the second limit at very low O_2 concentrations, characteristic of the occurrence of quadratic branching, is determined by the parameters $k_8/k_2k_{10}^{\frac{1}{2}}$ and $k_{8a}/k_2k_{10}^{\frac{1}{2}}$, which are adjusted to give minimum r.m.s. deviation between observed and computed limits. The computer programs and the sensitivity of the experimental measurements to the parameters have been discussed elsewhere. 1-3

The analysis was first made with $k_{10a} = 0$. The results, shown in table 2, differ very slightly from those previously published² because of slight adjustments of fixed parameters, particularly k_{14a}/k_{14} , which has been changed from 0.143 to 0.120 at 500 °C.

With $k_{10a}/k_{10}=0.05$, there are significant changes in k_{14}/k_2 , k_{15}/k_1 and $k_{11}/k_{10}^{\frac{1}{2}}$, but the alterations in $k_{8a}/k_2k_{10}^{\frac{1}{2}}$ and $k_8/k_2k_{10}^{\frac{1}{2}}$ are relatively small. With $k_{10a}/k_{10}=0.10$, the value of k_{15}/k_1 becomes unrealistically small, and it is clear that a value of k_{10a}/k_{10} as high as 0.10 cannot be tolerated. The reason for this marked effect of reaction (10 a) is that in its absence the hydrogen+oxygen reaction proceeds essentially by a straight-chain process in which H_2O_2 can be regarded as two chain centres, since it is formed from two chain centres by reaction (10) and decomposes to give two chain centres by reaction (7):

$$OH \xrightarrow{\quad (1) \quad} H \xrightarrow{\quad (4) \quad} HO_2 \xrightarrow{\quad (10) \quad} {}^1_2H_2O_2 \xrightarrow{\quad (7) \quad} OH.$$

Superimposed on this straight chain is branching by reactions (2), (3) and (11), and it is balanced by the termination processes (13), (13a), (14), (14a) and (15). For a typical mixture (e.g. 140 Torr H_2 , 70 Torr O_2 , 290 Torr N_2), the ratio of propagation rate to termination rate for the OH radical is ca. 100 if $k_{15}/k_1 = 4$ (the value when $k_{10a} = 0$), and for H atoms it is ca. 20. Reaction (10a) constitutes a powerful termination process and a value of $k_{10a}/k_{10} = 0.1$ limits the chain length to 10, so that lower values of k_{14}/k_2 , and particularly of k_{15}/k_1 , are needed. The final column in table 2 shows the values of the parameters when k_{10a}/k_{10} is given the value of 0.065 suggested by the TMB+ O_2 studies described earlier.

The values obtained for k_{15}/k_1 in table 2 are dependent on the values taken for k_{13}/k_3 and k_{13a}/k_3 . If $k_{13}=k_{13a}=0$, k_{15}/k_1 increases to 5.0 (with $k_{10a}/k_{10}=0$) and to 2.2 (with $k_{10a}/k_{10}=0.065$). Recent studies of the reaction of O atoms with H_2O_2 over a relatively narrow temperature range by Davis et al. (283–368 K) and by Wine et al. (298–386 K) have given expressions which give extrapolated values of $(k_{13}+k_{13a})/k_3$ of 2.6 and 1.1, respectively, compared with 10.4 calculated from results reported by Albers et al. between 370 and 800 K and used in the calculations of table 2. However, these values would make O atoms less selective than OH, which is inconsistent with other evidence, and the ratio obtained from Albers et al. is considered more reliable. The discrepancy may arise from a non-linear $\ln(k_{13}+k_{13a})$ against 1/T dependence as suggested by Wine et al.

However, the value of $k_{15}/k_1 = 1.07$, required by $k_{10a}/k_{10} = 0.065$, in table 2 is totally inconsistent with studies¹⁷ of the H₂-sensitised decomposition of H₂O₂. In the absence of H₂, the decomposition of H₂O₂ is a non-chain process involving reactions (7), (15) and (10), and the rate is given by eqn (i), given earlier. In the presence of H₂, reactions (1) and (14) create a chain decomposition of H₂O₂, and in the absence of other reactions the rate is given by

$$R_{\rm H} = 2k_7[H_2O_2][M'](1 + k_1[H_2]/k_{15}[H_2O_2]).$$
 (iii)

Eqn (iii) would imply a continuous increase in R_H with increasing [H₂], and

TMD	O ₂ - /Torr	$[\mathrm{i\text{-}C_4H_8}]/[\mathrm{H_2}]^a$	
TMB /Torr		Calc.	Obs.
5.0	10.0	1800	60 + 20
2.5	12.5	5200	50 ± 20
5.0	55.0	350	_
2.5	57.5	640	_
5.0	495.0	84	50 ± 20
2.5	497.5	84	_

Table 3. [i-C₄H₈]/[H₂] ratios at 440 °C in KCl-coated vessels

would give a chain length of almost 200 for $[H_2O_2] = 1$ Torr and atmospheric pressure of H_2 if $k_{15}/k_1 \approx 4$. However, the rate does not increase continuously as H_2 is increased because the chain length is then controlled by the effective termination reaction (14a), and with this reaction included the following rate equation is obtained:

$$R_{\rm H} = 2k_7[{\rm H}_2{\rm O}_2][{\rm M}'] \left(\frac{k_1[{\rm H}_2] + k_{15}[{\rm H}_2{\rm O}_2]}{\beta k_1[{\rm H}_2] + k_{15}[{\rm H}_2{\rm O}_2]} \right)$$
 (iv)

where $\beta = k_{14a}/(k_{14} + k_{14a})$.

From the initial increase in rate with H_2 concentration, the ratio k_{15}/k_1 can be obtained. A computer treatment incorporating all the reactions mentioned, and including an allowance for the increase in [M'] as $[H_2]$ increases, gives $k_{15}/k_1 = 3.9 \pm 0.6$ at 440 °C. From reasonable estimates of activation energy, this corresponds to 3.2 ± 0.6 at 500 °C.

Confirmation of this value of k_{15}/k_1 is obtained from recent studies of reaction (15) by Keyser,²¹ who gives the expression $k_{15}=2.51\times10^9\,{\rm exp}\,[(-126\pm76)/T]\,{\rm dm^3\,mol^{-1}\,s^{-1}}$ over the range 245–423 K, and by Sridharan et~al.,²² who give $k_1=1.78\times10^9\,{\rm exp}\,[(-164\pm52)/T]\,{\rm dm^3\,mol^{-1}\,s^{-1}}$ over the range 250–459 K. Extrapolation of these expressions to 773 K gives $1.28\times10^9\,{\rm and}\,1.44\times10^9\,{\rm dm^3\,mol^{-1}\,s^{-1}}$, respectively. A value of $k_1=(4.0\pm0.4)\times10^8\,{\rm dm^3\,mol^{-1}\,s^{-1}}$ at 773 K has previously been obtained by drawing a smooth curve through the points in the range 300–900 K obtained by Greiner,²³ by Eberius $et~al.^{24}$ and by Westenberg and de Haas.²⁵ A recent study by Tully and Ravishankara²⁶ over the range 298–992 K gives $k_1=4.8\times10^8$ at 773 K. These individual rate constants give the ratio k_{15}/k_1 as 2.7–3.6. The agreement is satisfactory, although the direct determination from the H_2+O_2 and $H_2+H_2O_2$ systems is probably more accurate than that obtained from the individual rate constants.

HYDROGEN YIELDS IN KCl-COATED VESSELS

The values for k_{10a}/k_{10} obtained from the hydrogen yields in the TMB+O₂ system, on the assumption that reaction (10a) is the source of H₂, cannot be reconciled with studies of the H₂+O₂ reaction. Yields of H₂ from the TMB+O₂ system in KCl-coated vessels at 713 K were therefore examined. Because HO₂ radicals are efficiently destroyed in KCl-coated vessels, particularly at low pressures, the yields of H₂ should be much lower than in aged B₂O₃-coated vessels. As the pressure is increased by increasing the O₂ pressure, HO₂ destruction at the surface becomes less marked and

 $^{^{}a}$ The calculated values are for a reaction time of 4000 s, and varied only 5% between 2000 and 6000 s.

the mutual homogeneous reaction (10) of HO₂ radicals, and reaction (10a), if it occurs, becomes increasingly important. This is shown in table 3, which gives the calculated yields of $[i-C_4H_8]/[H_2]$ when $k_{10a}/k_{10}=0.065$. The calculated ratio $[i-C_4H_8]/[H_2]$ changes from ca. 2000 at 15 Torr total pressure to ca. 85 at 500 Torr total pressure. In contrast, the experimental ratios, although less accurate than in B₂O₃-coated vessels because of the slower rate, show little variation with pressure and are little different from the values obtained in B_2O_3 -coated vessels.

This evidence, coupled with the conclusions from the $H_2 + O_2$ and $H_2 + H_2 O_2$ systems already discussed, suggests that reaction (10a) is not the source of H_2 . However, no financial support is available at the present time to enable this problem to be pursued.

S.E.R.C. grants to support M.R.H. and C.E.D. are gratefully acknowledged, as well as a grant for the purchase of the Erba-Science permanent gas analyser.

- ¹ R. R. Baldwin, D. Jackson, R. W. Walker and S. J. Webster, Trans. Faraday Soc., 1967, 63, 1676.
- ² R. R. Baldwin and R. W. Walker, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 140.
- ³ R. R. Baldwin, D. Jackson, R. W. Walker and S. J. Webster, Trans. Faraday Soc., 1967, 63, 1665.
- S. P. Sander, M. Peterson, R. T. Watson and R. Patrick, J. Phys. Chem., 1982, 86, 1236.
- B. A. Thrush and G. S. Tyndall, J. Chem. Soc., Faraday Trans. 2, 1982, 78, 1469.
 B. A. Thrush and G. S. Tyndall, Chem. Phys. Lett., 1982, 92, 232.
- ⁷ R. Patrick and M. J. Pilling, Chem. Phys. Lett., 1982, 91, 343.
- 8 M. Kaufmann and J. Sherwell, Prog. React. Kinet., 1983, 12, 1.
- 9 M. J. Howard and I. W. M. Smith, Prog. React. Kinet., 1983, 12, 55.
- ¹⁰ K. A. Sahetchian, A. Heiss and R. Rigny, Can. J. Chem., 1982, **60**, 2896.
- ¹¹ G. M. Atri, R. R. Baldwin, G. A. Evans and R. W. Walker, J. Chem. Soc., Faraday Trans. 1, 1978,
- ¹² G. A. Evans and R. W. Walker, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 1458.
- ¹⁸ R. R. Baldwin, I. A. Pickering and R. W. Walker, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 2374.
- ¹⁴ R. R. Baldwin, M. W. M. Hisham, A. Keen and R. W. Walker, J. Chem. Soc., Faraday Trans. 1, 1982, **78**, 1165.
- ¹⁵ R. R. Baldwin and D. Brattan, Proc. 8th Int. Combustion Symp. (Williams and Wilkins, Baltimore, 1962), p. 110.
- ¹⁶ B. Lewis and G. von Elbe, Combustion, Flame and Explosions in Gases (Academic Press, London,
- ¹⁷ R. R. Baldwin, D. Brattan, B. Tunnicliffe, R. W. Walker and S. J. Webster, Combust. Flame, 1970,
- ¹⁸ D. D. Davis, W. Wong and R. Schiff, J. Phys. Chem., 1974, 78, 463.
- ¹⁹ P. H. Wine, J. M. Nicovich, R. J. Thompson and A. R. Ravishankara, *J. Phys. Chem.*, 1983, **87**, 3948.
- ²⁰ E. A. Albers, K. Hoyermann, H. Gg. Wagner and J. Wolfrum, Proc. 13th Int. Symp. Combustion (The Combustion Institute, Pittsburgh, 1971), p. 81.
- ²¹ L. F. Keyser, J. Phys. Chem., 1980, 84, 1660.
- ²² U. C. Sridharan, B. Reimann and F. Kaufman, J. Chem. Phys., 1980, 73, 1286.
- ²³ N. R. Greiner, J. Chem. Phys., 1969, 51, 5049.
- ²⁴ K. H. Eberius, K. Hoyermann and H. Gg. Wagner, Proc. 13th Int. Symp. Combustion (The Combustion Institute, Pittsburgh, 1971), p. 713.
- ²⁵ A. Westenberg and N. de Haas, J. Chem. Phys., 1973, 58, 4061.
- ²⁶ F. P. Tully and A. R. Ravishankara, J. Phys. Chem., 1980, 84, 3126.

(PAPER 4/400)