Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 20. L'Hopitalovo pravilo. Osnovne teoreme diferencijalnog računa.

Rolleov teorem:

Neka je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija na intervalu [a,b] i diferencijabilna na intervalu (a,b) takva da je f(a) = f(b). Tada postoji $c \in (a,b)$ takvo da je f'(c) = 0.

Geometrijsko značenje: postoji tangenta na krivu paralelna x-osi

- [1] U kojoj je tački tangenta krive $y = 4 x^2$ paralelna tetivi AB, A(-2,0), B(1,3).
- [2] Da li funkcija $f(x) = 1 \sqrt[3]{x^2}$ ispunjava uslove Rolleovog teorema na intervalu [-1,1]?
- [3] Data je realna funkcija $f(x) = (x-1)(x-2) \dots (x-100)$. Dokazati da jednačina f'(x) = 0 ima bar 99 različitih rješenja i odrediti intervale u kojima se ta rješenja nalaze.

Lagrangeov teorem: (poopćenje Rolleovog teorema)

Neka je $f:[a,b]\to\mathbb{R}$ neprekidna funkcija na intervalu [a,b] i diferencijabilna na intervalu (a,b). Tada postoji $c\in(a,b)$ takvo da je $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Geometrijsko značenje: postoji tangenta na krivu paralelna pravoj koja prolazi kroz tačke (a, f(a)), (b, f(b)).

[4] Dokazati da za
$$\forall a > 0$$
 vrijedi $\frac{1}{a+1} < \ln\left(1 + \frac{1}{a}\right) < \frac{1}{a}$.

<u>Cauchyev teorem:</u> (poopćenje Lagrangeovog teorema)

Neka su $f,g:[a,b]\to\mathbb{R}$ neprekidne funkcije na intervalu [a,b] i diferencijabilne na intervalu (a,b) takve da je $g'(x)\neq 0$ i $f'(x)\neq 0$ za sve $x\in (a,b)$ i vrijedi $g(a)\neq g(b)$. Tada postoji $c\in (a,b)$ takvo da je $\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

[5] Dokazati nejednakost
$$\frac{xy+1}{y} < \frac{\ln \frac{x}{y}}{\arctan x} < \frac{xy+1}{x}$$
 za sve $0 < x < y$.

<u>L'Hopitalovo pravilo</u>: Ako su f i g diferencijabilne funkcije na intervalu $(a,b)(-\infty \le a < b \le +\infty)$ (osim eventualno u tački $c \in (a,b)$) i ako je $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0, \pm \infty$ i $g'(x) \ne 0$ za sve $x \in C$

 $(a,b), x \neq c$ i ako postoji $\lim_{x \to c} \frac{f'^{(x)}}{g'(x)}$ onda je:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Ukratko: kod situacija $\frac{0}{0}$, $\frac{\infty}{\infty}$ vrijedi da je (osim u iznimnim situacijama):

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Situacije $0\cdot\infty$, 1^{∞} , 0^{0} , ∞^{0} se jednostavno svode na $\frac{0}{0}$, $\frac{\infty}{\infty}$.

- [6] Izračunati limese upotrebom L'Hopitalovog pravila:
 - a) $\lim_{x \to 0} \frac{\sin x}{x}$
 - $b) \quad \lim_{x \to 0} \frac{1 \cos x}{x^2}$
 - c) $\lim_{x \to 0} \frac{\ln(1+x)}{x}$
 - d) $\lim_{x \to +\infty} \frac{e^x}{x^3 + 3x^2 4}$
 - e) $\lim_{x \to 0} \frac{\ln x}{\operatorname{ctg} x}$
 - f) $\lim_{x\to 0} x \ln x$
 - g) $\lim_{x\to 0} x^x$
- [7] Može li se primijeniti L'Hopitalovo pravilo na limes

$$\lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{\sin x}?$$

Koliko iznosi taj limes?

Zadaci za samostalan rad

- [1] Korištenjem Lagrangeovog teorema dokazati da vrijedi $\frac{b-a}{\cos^2 a} \le \operatorname{tg} b \operatorname{tg} a \le \frac{b-a}{b}$ za $0 < a \le b < \frac{\pi}{2}$.
- [2] Jesi li ispunjeni uslovi Cauchyevog teorema za funkcije $f(x) = \sin x$ i $g(x) = \cos x$ na intervalu $[0, \frac{\pi}{2}]$? Ako jesu, primijeniti teorem i odrediti vrijednost broja c.
- [3] Izračunati limese:

a)
$$\lim_{x \to 0} \frac{e^x - 2^x}{x}$$

b)
$$\lim_{x\to 0} \frac{\operatorname{tg} x - \sin x}{x - \sin x}$$

b)
$$\lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{x - \sin x}$$
c)
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\operatorname{th} x} - \frac{1}{\operatorname{tg} x} \right)$$

[4] Preraditi sljedeće lekcije iz zbirke Miličić-Uščumlić (iz poglavlja vezanog za diferencijalni račun): 1 (izvodi), 2 (diferencijal i njegova primjena), 3 (viši izvodi i diferencijali), 5 (teoreme o argumentu funkcije), 6 (L'Hopitalovo pravilo)