

INTERNATIONAL QUALIFICATIONS

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM01) Unit FP1 Pure Mathematics

Wednesday 3 January 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

Answer all questions in the spaces provided	Answer all	questions	in the space	es provided
--	-------------------	-----------	--------------	-------------

1	(a)	(i)	It is given that
---	-----	-----	------------------

$$w = (a+3i)(2-i)$$

where a is a real constant.

Express w in the form u+iv where u and v are real.

Give your answer in terms of a

[2 marks]

Answer			

1 (a) (ii) Hence, or otherwise, express the complex number

$$\frac{a+3i}{2+i}$$

in the form x + iy where x and y are real.

Give your answer in its simplest form in terms of a

[2 marks]

Answer

1 (b)	The complex number z satisfies the equation				
	$3z^* + iz = 23 + 13i$				
	Find z				
		[5 marks]			
	z =				

9

2 (a)		Expand $(1+h)^5$	
			[1 mark]
		Answer	
2	(b)	A curve has equation $y = x^5$	
_	(2)		
2	(b) (i)	A line passes through two points on the curve, one where $x = 1$	
		and the other where $x = 1 + h$ with $h > 0$	
		Find the gradient of this line in the form $a+bh+ch^2+dh^3+h^4$	
		where a , b , c and d are constants.	
			[3 marks]
		Answer	
		Answer	

Do not write outside the box

2	(b) (ii)	Use your answer to part (b)(i) to find the gradient of the curve at the point where $x = 1$, showing the limiting process used.	
		[2 marks]	
			· -
		Answer	L
		Turn over for the next question	

3	(a)	Find the genera	I solution of the	he equation
---	-----	-----------------	-------------------	-------------

$$\cos\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

Give your answer in terms of $\,\pi\,$

[3 marks]

-		

Answer ____

3 (b) Find the number of solutions of the equation

$$\cos\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

in the range $-m\pi < x \le m\pi$ where m is a positive integer.

Give your answer in terms of $\, \it m \,$

[2 marks]

Answer____

5

ļ.	By considering the derivative of $y = x^{\frac{1}{4}}$ when $x = 81$, find an estimate for $\sqrt[4]{75}$				
	Give your answer to three decimal places.	6 marks]			
	Answer				

5	(a)	Show that	
		$\sum_{r=1}^{n} (6r^2 - 4r + 1) = n^2 (an + b)$	
		where a and b are integers.	[4 marks]

5 ((b)) Hence	show	that
•	\ ~	1 101100	CITOW	uiui

$$\sum_{r=p+1}^{2p} (6r^2 - 4r + 1) = p^2(cp + d)$$

where c and d are integers.	[3 marks]

Turn over for the next question

0		The complex numbers α and β are the roots of the quadratic equation	
		$z^2 + bz + c = 0$ where b and c are real constants.	
6	(a) (i)	Write down b and c in terms of α and β	[2 marks]
		b = c =	
6	(a) (ii)	It is given that $\alpha = x + iy$ where x and y are real and non-zero.	
		Write down β in terms of x and y	[1 mark]
		Answer	
6	(b)	In the case when $b=6$, the roots α and β are represented by the points on an Argand diagram.	P and Q
		The number 8 is represented by the point R on the same Argand diagram.	
		The area of triangle PQR is $11\sqrt{3}$	
6	(b) (i)	Find $lpha$ and eta	[4 marks]

								Do not write outside the box
								-
								-
		Answer_			and _			_
6	(b) (ii)	Hence find the value o	f <i>c</i>				[2 marks	1
								-
			Ans	swer				-
6	(b) (iii)	Express $lpha$ and eta i						
	, , , ,			(*****)	,	_ •	[4 marks	1
								-
								-
								-
		_						-
								-
								-
								-
		Answer		and				13

7 A curve C has equation

$$y = \frac{2}{x^2 - 3}$$

7 (a) Find the equations of the three asymptotes of C

[3 marks]

Asymptote 1

Asymptote 2

Asymptote 3

7 (b) One section of the graph of C and its vertical asymptotes are shown below.

The *y*-intercept shown below is the only stationary point of *C*

On the axes below, complete the sketch of the graph of C

[2 marks]

7 (c)	The point $(2,2)$ is a point of intersection of C with the line $y=x$	
	Find the coordinates of the other point where the line $y = x$ meets C	[3 marks]
	Answer	
7 (d)	Hence sketch the line $y = x$ on the axes in part (b) .	[1 mark]
' (e)	Hence, or otherwise, solve the inequality $\frac{2}{x^2-3} \ge x$	
	λ 3	[3 marks]

12

8		The integral I_n is defined by	
		$I_n = \int_0^4 x^n \mathrm{d}x$	
		where n is a constant.	
8	(a)	Explain why I_n is an improper integral when $n < 0$	[1 mark]
8	(b)	Find the exact value of I_n when $n=-\frac{3}{4}$, showing the limiting process.	[3 marks]
		Answer	

8 (c)	Write down a value of n for which I_n does not have a finite value.	Do not write outside the box
		_
	n =	5
	Turn over for the next question	

9		The locus of a point P is such that the distance from P to the point $(4,0)$ is twice the distance from P to the line with equation $x=1$
		The locus of P is the curve C_1
9	(a)	Show that the equation of C_1 is
		$\frac{x^2}{m} - \frac{y^2}{n} = 1$
		where m and n are constants. [4 marks]
9	(b)	Write down the equations of the asymptotes of C
9	(D)	Write down the equations of the asymptotes of C_1
		Give your answers in the form $y = f(x)$ [2 marks]
		Answer

9 (c) Ske	tch C₁	on the axes	below.
-----------	--------	-------------	--------

Include the asymptotes and label the axis intercepts.

[2 marks]

9 (d) The locus of a point Q is such that the distance from Q to the point (4,c) is twice the distance from Q to the line with equation x=1

The locus of Q is the curve C_2

Write down the equations of the asymptotes of $\,{\it C}_{2}\,$

Give your answer in terms of $\ c$

[2 marks]

Answer

10

10	The quadratic equation $2x^2 + x + m = 0$ has roots α and β
	The quadratic equation $3x^2 + nx + m = 0$ has roots $\alpha^2 \beta$ and $\beta^2 \alpha$
	The constants m and n are both positive.
40 (5)	
10 (a)	Find the exact value of m [3 marks]
	Answer

Do not write outside the

	[4 marks
Answer	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Do not write outside the