Fiche de modélisations n°6

Variables et classes latentes

Kim Antunez

Table des matières

1	1 Objectif	1
2	2 Analyses	1
3	3 Code et résultats	1
	3.1 Correlation coefficients	2
	3.2 Exploratory Factor Analysis (EFA)	4
	3.3 Latent Categorical Variables	8
	3.4 Confirmatory factor analysis (CFA) des dimensions de la pauvreté	11
	3.5 CFA avec des covariables (MIMIC)	29
	3.6 Structural equation models (SEM)	29
	3.7 Figures rapport	30
4	4 Notes méthodologiques	32
Bi	Bibliographie	33

1 Objectif

L'objectif de cette sixième série de modèles est de . . .

2 Analyses

TODO

3 Code et résultats

```
#chargement des packages
library(knitr)
library(dplyr) #manipuler les bases de données
library(psych) #EFA
library(lavaan) #CFA et SEM
library(semPlot) #path draw CFA SEM
library(poLCA) #pour les Latent Categorical Variables
```

```
library(ade4) #pour la fonction s5 de plot des classes de CAH
library(RColorBrewer) #palettes de couleur
library(ggplot2) #graphiques corrplot
library(tidyr) #pour pivot_longer / wider
library(tibble) #pour rownames_to_column
```

3.1 Correlation coefficients

A correlation coefficient suited for dichotomous data and based on this underlying normal strategy is the tetrachoric correlation. It gives us a single number describing the degree of dependence in the table above with the extreme values of 1 if the off-diagonals are 0 and -1 if the diagonals are 0. In addition, we get estimates for the thresholds tau1 and tau2. polycholoric existe aussi pour deux items polytomous.

We print out the last six eigenvalues and see that the last eigenvalue is negative. Thus, this matrix does not fulfill the properties of a correlation matrix. The trick is now to apply some smoothing on the correlations.

The final criterion is interpretability.

3.1.1 Indicatrices

3.1.2 Variables catégorielles (plus de 2 modalités possibles)

3.2 Exploratory Factor Analysis (EFA)

However, in order to get an even clearer picture, in EFA we typically apply a rotation on the loadings matrix. Such a rotation does not change the fit of the model; it is only done for interpretation purposes by transforming the loadings. We distinguish between two basic types of rotations: orthogonal (qui implique que les facteurs sont indépendants) and nonorthogonal rotation (comme oblimin).

In practice, EFA with oblique rotation is often used prior to a CFA in order to explore whether the underlying latent structure theory is reflected by the data.

Différences entre EFA et ACP - Les ACP reposent sur des estimations bien plus simples que les EFA (ML, LS). - L'EFA se concentrent sur l'explication des termes en dehors de la diagonales

des éléments de grand sigma (explique les covariances) alors que l'ACP se concentre sur la diagonale (explique principalement la variance, même si pas totalement aveugle aux covariances). - Les scores des facteurs sont calculés post hoc alors que ceux de l'ACP est une conséquence directe du SVD. - En EFA, on fixe p avant de faire tourner le modèle, dans l'ACP on choisit le nombre d'axes a posteriori. - En EFA, les rotations peuvent aider à mieux interpréter sans changer la solution, contrairement à la PCA pour laquelle la solution est changée.

PCA et EFA sont deux techniques de réduction de dimensions mais elles ont des différences.

On utilise la PCA quand les variables sont très corrélées cela permet de réduire le nombre de variables observées en un plus petit nombre de composantes principales qui résument un maximum de variances des variables observées On utilise l'EFA pour identifier le nombre de variables latentes (non mesurée directement) et la structure des facteurs qui découlent d'un ensemble de variables. Elle permet d'estimer les facteurs qui influencent les réponses des variables observées.

Unlike factor analysis, principal components analysis or PCA makes the assumption that there is no unique variance, the total variance is equal to common variance. Recall that variance can be partitioned into common and unique variance. If there is no unique variance then common variance takes up total variance (see figure below). Additionally, if the total variance is 1, then the common variance is equal to the communality.

- PCA suppose l'absence d'outliers. L'EFA suppose une distribution normale multivariée quand la méthode de ML est utilisée
- Les axes de la PCA tiennent compte de la variance maximale des variables observées alors que les facteurs de l'EFA tiennent compte de la variance commune
- La PCA utilise une matrice de corrélation alors que l'EFA utilise une matrice de corrélation ajustée
- Dans une PCA il y a des 1 sur la diagonale de la matrice de corrélation alors que dans l'EFA la diagonale est ajustée avec les facteurs uniques.
- La PCA minimise la somme des carrés perpendiculaire à la distance aux axes des composantes. L'EFA estime des facteurs qui influencent la réponse à des variables observées.
- Les scores des composantes de la PCA est une combinaison linéaire des variables observées pondérées par les vecteurs propres. Les variables observées de l'EFA sont une combinaison linéaire des facteurs uniques

n alternative to factor analysis, which is unfortunately frequently confused withfactoranalysis, isprincipal components analysis. Although the goals of PCA and FA are similar, PCA is a descriptive model of the data, while FA is a structural model. Psychologist stypically use PCA in a manner similar to factor analysis and thus the principal function produces output that is perhaps more understandable than that produced by princompin the stat spackage. Table 4 shows a PCA of the Thurstone 9 variable problem rotated using the Promax function. Note how the loadings from the factor model are similar but smaller than the principal component loadings. This is because the PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts for just the common variance. This distinction becomes most important for small correlation matrices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements, is much worse than the fasolution.

[1] 42.54 11.24 9.20 8.16 7.20 6.44 4.64 4.10 3.31 1.90 1.26

Scree plot

Factor analysis with Call: fa(r = bdd_poLCA_poly\$rho, nfactors = 2, rotate = "oblimin",
 scores = "regression", missing = TRUE, impute = "median",
 fm = "ml", cor = "poly")

Test of the hypothesis that 2 factors are sufficient. The degrees of freedom for the model is 34 and the objective function was 0.81

The root mean square of the residuals (RMSA) is 0.07 The df corrected root mean square of the residuals is 0.09

With factor correlations of $$\operatorname{ML}2$$ $\operatorname{ML}1$

```
ML2 1.00 0.61
ML1 0.61 1.00
```

Loadings:

	ML2	ML1
s_sentpauvrisque	0.539	
s_infminidecla	0.901	
<pre>m_quantilenivie_inv</pre>	0.668	
m_locatif_inv	0.513	
m_financier_inv	0.590	
i_log		1.001
i_rsa		0.522
i_chom		
i_handi		0.349
i_bourse		0.550
i_hlm		0.457
ML	2 ML1	
SS loadings 2.29	4 2.114	

Proportion Var 0.209 0.192 Cumulative Var 0.209 0.401

m_locatif_inv	n_quantilenivie_inv	s_infminidecla	s_sentpauvrisque
0.34	0.74	0.69	0.43
i_chom	i_rsa	i_log	<pre>m_financier_inv</pre>
0.12	0.48	1.00	0.39
	i_hlm	i_bourse	i_handi
	0.40	0.05	0.40

Premier type de clustering (de variables et non d'individus) avec iclust

ICLUST using polychoric correlations

3.3 Latent Categorical Variables

Source: https://m-clark.github.io/sem/mixture-models.html

 $Documentation\ https://raw.githubusercontent.com/dlinzer/poLCA/master/inst/doc/poLCA-manual-1-4.pdf$

Classe A : part de la population = 12.8 %

Classe B : part de la population = 30.5 %

Classe C.1 : part de la population = 23.3 %

Classe C.2 : part de la population = 7.2 %

Classe D.1 : part de la population = 9.9 %

Classe D.2 : part de la population = 16.3 %

A1(bleu foncé) : Très riches A2(bleu moyen) : Riches B1 (violet foncé) : Q1 Q3 / pas infminidecla / pauvetrisque / insti B2(violet clair): Q1 Q3 / infminidecla enorm / pauvetrisque / pas insti C2(rose clair): Q1/ infminidecla / sent pauv et risque / peu insti C1(rose foncé) : Q2 / infminidecla / sent pauv / inst

3.4 Confirmatory factor analysis (CFA) des dimensions de la pauvreté

EFA and CFA are mathematically very similar, since we have the same fundamental equation in both cases. In EFA we assumed uncorrelated factors by setting

3.4.1 Modèle sans dimensions de la pauvreté

lavaan 0.6-8 ended normally after 19 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	26
Number of observations	13359

Model Test User Model:

	Standard	Robust
Test Statistic	1142.455	1398.800
Degrees of freedom	44	44
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.819
Shift parameter		3.550
simple second-order correction		

Model Test Baseline Model:

Test statistic	53597.773	43159.977
Degrees of freedom	55	55
P-value	0.000	0.000
Scaling correction factor		1.242

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.979	0.969
Tucker-Lewis Index (TLI)	0.974	0.961

Robust Comparati						NA NA
Root Mean Square E	rror of Ap	proximati	on:			
RMSEA 90 Percent confid 90 Percent confid P-value RMSEA <=	dence inte			0.043 0.041 0.045 1.000	0.0 0.0 0.0 0.9	46 50
Robust RMSEA 90 Percent confid 90 Percent confid	dence inte	rval - up	per			NA NA NA
Standardized Root 1	Mean Squar	e Residua	1:			
SRMR				0.079	0.0	79
Parameter Estimates	3:					
Standard errors Robust.sem Information Expected Information saturated (h1) model Unstructured						
Latent Variables:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
<pre>pauvrete =~ s_sentpauvrisq</pre>	1.000				0.645	0.645
s_infminidecla		0.018	64.093	0.000	0.736	
m_quantilnv_nv						
m_locatif_inv	0.921					
m_financier_nv		0.024	39.561	0.000	0.607	0.607
i_log	1.241	0.018	68.625	0.000	0.800	0.800
i_rsa	1.092	0.021	51.013	0.000	0.704	0.704
i_chom	0.518	0.022	23.300	0.000	0.334	0.334
i_handi	0.519	0.026	20.002	0.000	0.335	0.335
i_bourse	0.632	0.027	23.774	0.000	0.408	0.408
i_hlm	0.956	0.018	51.721	0.000	0.616	0.616
Intercepts:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauvrisq		Stu.EII	Z-varue	r (> 2)	0.000	0.000
.s_infminidecla					0.000	0.000
.m_quantilnv_nv	0.000				0.000	0.000
.m_quantiinv_nv	0.000				0.000	0.000
.m_financier_nv	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_rsa	0.000				0.000	0.000
.i_chom	0.000				0.000	0.000

.i_handi .i_bourse .i_hlm pauvrete	0.000 0.000 0.000 0.000				0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpvrsq t1	0.267	0.011	24.326	0.000	0.267	0.267
s_sentpvrsq t2	1.020	0.013	77.484	0.000	1.020	1.020
s_infmindcl t1	-0.123	0.011	-11.357	0.000	-0.123	-0.123
m_qntlnv_nv t1	-0.852	0.012	-68.664	0.000	-0.852	-0.852
m_qntlnv_nv t2	-0.266	0.011	-24.223	0.000	-0.266	-0.266
m_qntlnv_nv t3	0.252	0.011	22.964	0.000	0.252	0.252
m_qntlnv_nv t4	0.836	0.012	67.760	0.000	0.836	0.836
m_locatf_nv t1	-1.435	0.016	-89.369	0.000	-1.435	-1.435
m_finncr_nv t1	-1.380	0.016	-88.614	0.000	-1.380	-1.380
i_log t1	0.693	0.012	58.531	0.000	0.693	0.693
i_rsa t1	1.543	0.017	90.111	0.000	1.543	1.543
i_chom t1	1.139	0.014	82.368	0.000	1.139	1.139
i_handi t1	1.451	0.016	89.539	0.000	1.451	1.451
i_bourse t1	1.593	0.018	90.139	0.000	1.593	1.593
i_hlm t1	0.675	0.012	57.238	0.000	0.675	0.675
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauvrisq	0.584				0.584	0.584
.s_infminidecla	0.458				0.458	0.458
.m_quantilnv_nv	0.246				0.246	0.246
.m_locatif_inv	0.647				0.647	0.647
.m_financier_nv	0.631				0.631	0.631
.i_log	0.359				0.359	0.359
.i_rsa	0.504				0.504	0.504
.i_chom	0.888				0.888	0.888
.i_handi	0.888				0.888	0.888
.i_bourse	0.834				0.834	0.834
.i_hlm	0.620				0.620	0.620
pauvrete	0.416	0.010	40.495	0.000	1.000	1.000
Scales y*:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$s_sentpauvrisq$	1.000				1.000	1.000
$s_{infminidecla}$	1.000				1.000	1.000
${\tt m_quantilnv_nv}$	1.000				1.000	1.000
${\tt m_locatif_inv}$	1.000				1.000	1.000
m_financier_nv	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
i_handi	1.000				1.000	1.000

i_bourse	1.000	1.000	1.000
i_hlm	1.000	1.000	1.000

3.4.2 Modèle avec 3 dimensions de la pauvreté (i,m,s)

lavaan 0.6-8 ended normally after 22 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	29
Number of observations	13359

Model Test User Model:

	Standard	Robust
Test Statistic	792.116	979.597
Degrees of freedom	41	41
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.811
Shift parameter		2.975
simple second-order correction		

Model Test Baseline Model:

Test statistic	53597.773	43159.977
Degrees of freedom	55	55
P-value	0.000	0.000
Scaling correction factor		1.242

User Model versus Baseline Model:

Comparative Fit I)		0.986 0.981	0.9 0.9		
Robust Comparativ						NA NA	
Root Mean Square En	eror of Ap	proximati	on:				
RMSEA 0.037 90 Percent confidence interval - lower 0.035 90 Percent confidence interval - upper 0.039 P-value RMSEA <= 0.05 1.000						39 44	
Robust RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper						NA NA NA	
Standardized Root N	Mean Squar	e Residua	1:				
SRMR				0.073	0.0	73	
Parameter Estimates	Parameter Estimates:						
Standard errors Robust.sem Information Expected Information saturated (h1) model Unstructured							
Latent Variables:							
s =~	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
s_sentpauvrisq	1.000				0.674	0.674	
s_infminidecla		0.018	63.490	0.000	0.763	0.763	
m =~							
${\tt m_quantilnv_nv}$	1.000				0.846	0.846	
${\tt m_locatif_inv}$	0.698	0.019	36.523	0.000	0.590	0.590	
m_financier_nv	0.714	0.018	39.366	0.000	0.604	0.604	
i =~							
	4 000				0 000	0 000	
i_log	1.000	0.015	FF 000	0.000	0.880	0.880	
i_rsa	0.847	0.015	55.299	0.000	0.746	0.746	
i_rsa i_chom	0.847 0.401	0.017	23.587	0.000	0.746 0.353	0.746 0.353	
i_rsa i_chom i_handi	0.847 0.401 0.403	0.017 0.020	23.587 20.465	0.000	0.746 0.353 0.355	0.746 0.353 0.355	
i_rsa i_chom i_handi i_bourse	0.847 0.401 0.403 0.497	0.017 0.020 0.020	23.587 20.465 25.268	0.000 0.000 0.000	0.746 0.353 0.355 0.437	0.746 0.353 0.355 0.437	
i_rsa i_chom i_handi	0.847 0.401 0.403	0.017 0.020	23.587 20.465	0.000	0.746 0.353 0.355	0.746 0.353 0.355	
i_rsa i_chom i_handi i_bourse	0.847 0.401 0.403 0.497 0.746	0.017 0.020 0.020 0.013	23.587 20.465 25.268 56.923	0.000 0.000 0.000 0.000	0.746 0.353 0.355 0.437 0.656	0.746 0.353 0.355 0.437 0.656	
i_rsa i_chom i_handi i_bourse i_hlm	0.847 0.401 0.403 0.497	0.017 0.020 0.020	23.587 20.465 25.268	0.000 0.000 0.000	0.746 0.353 0.355 0.437	0.746 0.353 0.355 0.437	

i m ~~	0.462	0.009	50.563	0.000	0.779	0.779
i.	0.681	0.008	90.677	0.000	0.916	0.916
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauvrisq	0.000				0.000	0.000
.s_infminidecla	0.000				0.000	0.000
.m_quantilnv_nv	0.000				0.000	0.000
.m_locatif_inv	0.000				0.000	0.000
.m_financier_nv	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_rsa	0.000				0.000	0.000
.i_chom	0.000				0.000	0.000
.i_handi	0.000				0.000	0.000
.i_bourse	0.000				0.000	0.000
.i_hlm	0.000				0.000	0.000
s	0.000				0.000	0.000
m	0.000				0.000	0.000
i	0.000				0.000	0.000
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpvrsq t1	0.267	0.011	24.326	0.000	0.267	0.267
s_sentpvrsq t2	1.020	0.013	77.484	0.000	1.020	1.020
$s_{infmindcl}$	-0.123	0.011	-11.357	0.000	-0.123	-0.123
$m_qntlnv_nv t1$	-0.852	0.012	-68.664	0.000	-0.852	-0.852
$m_qntlnv_nv t2$	-0.266	0.011	-24.223	0.000	-0.266	-0.266
m_qntlnv_nv t3	0.252	0.011	22.964	0.000	0.252	0.252
$m_qntlnv_nv t4$	0.836	0.012	67.760	0.000	0.836	0.836
m_locatf_nv t1	-1.435	0.016	-89.369	0.000	-1.435	-1.435
m_finncr_nv t1	-1.380	0.016	-88.614	0.000	-1.380	-1.380
i_log t1	0.693	0.012	58.531	0.000	0.693	0.693
i_rsa t1	1.543	0.017	90.111	0.000	1.543	1.543
i_chom t1	1.139	0.014	82.368	0.000	1.139	1.139
i_handi t1	1.451	0.016	89.539	0.000	1.451	1.451
i_bourse t1	1.593	0.018	90.139	0.000	1.593	1.593
i_hlm t1	0.675	0.012	57.238	0.000	0.675	0.675
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$.s_sentpauvrisq$	0.546				0.546	0.546
.s_infminidecla	0.418				0.418	0.418
$.{\tt m_quantilnv_nv}$	0.285				0.285	0.285
$.{\tt m_locatif_inv}$	0.652				0.652	0.652
$.{\tt m_financier_nv}$	0.635				0.635	0.635
.i_log	0.226				0.226	0.226
.i_rsa	0.444				0.444	0.444
.i_chom	0.875				0.875	0.875

.i_handi	0.874				0.874	0.874
.i_bourse	0.809				0.809	0.809
.i_hlm	0.569				0.569	0.569
S	0.454	0.012	37.338	0.000	1.000	1.000
m	0.715	0.015	46.200	0.000	1.000	1.000
i	0.774	0.014	55.899	0.000	1.000	1.000
Scales y*:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$s_sentpauvrisq$	1.000				1.000	1.000
$s_{\tt infminidecla}$	1.000				1.000	1.000
${\tt m_quantilnv_nv}$	1.000				1.000	1.000
${\tt m_locatif_inv}$	1.000				1.000	1.000
m_financier_nv	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
i_handi	1.000				1.000	1.000
i_bourse	1.000				1.000	1.000
i_hlm	1.000				1.000	1.000

- p-valeur du test du chi-2 de 0, très mauvais car un résultat non significatif veut dire que le modèle "fits" mais il ne faut pas faire très attention à cette statistique car elle est très souvent significative quand l'échantillon est grand.
- Le CFI doit être supérieur à 0,95.
- Le RMSEA doit être dans l'intervalle [0.05,0.10].
- Le SRMR doit être inférieur à 0.08.

3.4.3 Comment améliorer le modèle ?

4 0.187

		_				_			
	lhs op	rhs	est	se	Z	pvalue	ci.lower	ci.upper	
1	s =~	${ t s_sentpauvrisque}$	1.000	0.000	NA	NA	1.000	1.000	
2	s =~	$s_{\tt infminidecla}$	1.132	0.018	63.490	0	1.097	1.167	
3	m =~	<pre>m_quantilenivie_inv</pre>	1.000	0.000	NA	NA	1.000	1.000	
4	m =~	m_locatif_inv	0.698	0.019	36.523	0	0.660	0.735	
5	m =~	m_financier_inv	0.714	0.018	39.366	0	0.679	0.750	
6	i =~	i_log	1.000	0.000	NA	NA	1.000	1.000	
	id	lhs	rl	ns nol	os row	col obs	.freq obs	nron est	nron
1						1	-).354
	_	entpauvrisque s_infm							
2	1 s_s	${ t entpauvrisque s_infm}$	inidec	la 133	59 2	1	1038 (0.078 (0.074
3	1 s_s	entpauvrisque s_infm	inidec	la 133	59 3	1	281 (0.021 (0.023
4	1 s_s	entpauvrisque s_infm	inidec	la 133	59 1	2	3383	0.253	0.251
5	1 s_s	entpauvrisque s_infm	inidec	la 133	59 2	2	2179	0.163 (0.167
6	1 s_s	entpauvrisque s_infm	inidec	la 133	59 3	2	1774	0.133 (0.131
	X2								
1	0.133								
2	2.975								
3	2.725								

5 1.3116 0.484

```
lhs
                                            rhs
                                                              epc sepc.lv sepc.all
                                                        \mathtt{mi}
                       op
44
    s_sentpauvrisque ~*~
                              s_sentpauvrisque 32617.545 47.544
                                                                    47.544
                                                                               1.000
1
                              s_sentpauvrisque 32617.545 47.544
                                                                    32.032
                                                                              32.032
78
                              s_sentpauvrisque 12979.550 13.128
                                                                    11.101
                                                                              11.101
86
                              s_sentpauvrisque
                                                 3597.071
                                                            3.394
                                                                     2.986
                                                                               2.986
                                                  926.292
101
      s_infminidecla
                       ~~ m_quantilenivie_inv
                                                            0.378
                                                                     0.378
                                                                               1.097
45
      s_infminidecla ~*~
                                s_{infminidecla}
                                                  657.697
                                                            0.587
                                                                     0.587
                                                                               1.000
    sepc.nox
44
       1.000
1
      32.032
78
      11.101
86
       2.986
101
       1.097
45
       1.000
```

3.4.4 Modèle avec 2 dimensions de la pauvreté (i,m+s) comme dans EFA

lavaan 0.6-8 ended normally after 20 iterations

Estimator	DWLS	
Optimization method	NLMINB	
Number of model parameters	27	
Number of observations	13359	
Model Test User Model:		
	Standard	Robust
Test Statistic	857.410	1054.887

Degrees of freedom P-value (Chi-square) Scaling correction factor Shift parameter simple second-order correction	43 0.000	43 0.000 0.815 3.368
Model Test Baseline Model:		
Test statistic Degrees of freedom P-value Scaling correction factor	53597.773 55 0.000	
User Model versus Baseline Model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.985 0.981	
Robust Comparative Fit Index (CFI) Robust Tucker-Lewis Index (TLI)		NA NA
Root Mean Square Error of Approximation:		
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.038 0.035 0.040 1.000	0.040 0.044
Robust RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper		NA NA NA
Standardized Root Mean Square Residual:		
SRMR	0.072	0.072
Parameter Estimates:		
Standard errors Information Information saturated (h1) model	Robust.sem Expected Unstructured	
Latent Variables:		
m_financier_nv 0.677 0.016 42.	lue P(> z) 376 0.000 759 0.000 919 0.000	Std.1v Std.all 0.900 0.900 0.595 0.595 0.610 0.610 0.654 0.654

s_infminidecla	0.823	0.011	74.334	0.000	0.741	0.741
i =~	1 000				0 001	0.001
i_log	1.000	0.045	FF 4F4	0 000	0.881	0.881
i_rsa	0.847	0.015	55.154	0.000	0.746	0.746
i_chom	0.401	0.017	23.604	0.000	0.353	0.353
i_handi	0.403	0.020	20.519	0.000	0.355	0.355
i_bourse	0.495	0.020	25.172	0.000	0.436	0.436
i_hlm	0.743	0.013	56.793	0.000	0.655	0.655
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
m_s ~~						
i	0.670	0.007	89.840	0.000	0.845	0.845
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$.{\tt m_quantilnv_nv}$	0.000				0.000	0.000
$.{\tt m_locatif_inv}$	0.000				0.000	0.000
$.{\tt m_financier_nv}$	0.000				0.000	0.000
$.\mathtt{s_sentpauvrisq}$	0.000				0.000	0.000
$.s_infminidecla$	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_rsa	0.000				0.000	0.000
$.i_{\tt chom}$	0.000				0.000	0.000
.i_handi	0.000				0.000	0.000
.i_bourse	0.000				0.000	0.000
.i_hlm	0.000				0.000	0.000
m_s	0.000				0.000	0.000
i	0.000				0.000	0.000
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$m_qntlnv_nv t1$	-0.852	0.012	-68.664	0.000	-0.852	-0.852
$m_qntlnv_nv t2$	-0.266	0.011	-24.223	0.000	-0.266	-0.266
m_qntlnv_nv t3	0.252	0.011	22.964	0.000	0.252	0.252
$m_qntlnv_nv t4$	0.836	0.012	67.760	0.000	0.836	0.836
$m_locatf_nv t1$	-1.435	0.016	-89.369	0.000	-1.435	-1.435
<pre>m_finncr_nv t1</pre>	-1.380	0.016	-88.614	0.000	-1.380	-1.380
s_sentpvrsq t1	0.267	0.011	24.326	0.000	0.267	0.267
s_sentpvrsq t2	1.020	0.013	77.484	0.000	1.020	1.020
s_infmindcl t1	-0.123	0.011	-11.357	0.000	-0.123	-0.123
i_log t1	0.693	0.012	58.531	0.000	0.693	0.693
i_rsa t1	1.543	0.017	90.111	0.000	1.543	1.543
i_chom t1	1.139	0.014	82.368	0.000	1.139	1.139
i_handi t1	1.451	0.016	89.539	0.000	1.451	1.451
i_bourse t1	1.593	0.018	90.139	0.000	1.593	1.593
$i_hlm t1$	0.675	0.012	57.238	0.000	0.675	0.675

Variances:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$.{\tt m_quantilnv_nv}$	0.189				0.189	0.189
$.{\tt m_locatif_inv}$	0.646				0.646	0.646
$.{\tt m_financier_nv}$	0.628				0.628	0.628
$.s_sentpauvrisq$	0.572				0.572	0.572
$.s_infminidecla$	0.451				0.451	0.451
.i_log	0.224				0.224	0.224
.i_rsa	0.443				0.443	0.443
.i_chom	0.875				0.875	0.875
.i_handi	0.874				0.874	0.874
.i_bourse	0.810				0.810	0.810
.i_hlm	0.571				0.571	0.571
m_s	0.811	0.010	82.529	0.000	1.000	1.000
i	0.776	0.014	55.869	0.000	1.000	1.000
Scales y*:						
200_02 j .	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
m_quantilnv_nv	1.000				1.000	1.000
m_locatif_inv	1.000				1.000	1.000
m_financier_nv	1.000				1.000	1.000
s_sentpauvrisq	1.000				1.000	1.000
$s_{\tt infminidecla}$	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
: 1	1 000				1 000	1 000

CFA hiérarchique

i_handi

 i_hlm

i_bourse

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

lavaan 0.6-8 ended normally after 30 iterations

Estimator	DWLS	
Optimization method Number of model parameters	NLMINB 29	
Number of moder parameters	29	
Number of observations	13359	
Madal Tart Hans Madal		
Model Test User Model:	Standard	Robust
Test Statistic	792.116	
Degrees of freedom	41	41
P-value (Chi-square)	0.000	0.000
Scaling correction factor	0.000	0.811
Shift parameter		2.975
simple second-order correction		2.010
Model Test Baseline Model:		
Test statistic	53597.773	43159.977
Degrees of freedom	55	55
P-value	0.000	0.000
Scaling correction factor		1.242
-		
User Model versus Baseline Model:		
Comparative Fit Index (CFI)	0.986	0.978
Tucker-Lewis Index (TLI)	0.981	0.971
Robust Comparative Fit Index (CFI)		NA
Robust Tucker-Lewis Index (TLI)		NA
Root Mean Square Error of Approximation:		
RMSEA	0.037	0.041
90 Percent confidence interval - lower	0.035	0.039
90 Percent confidence interval - upper	0.039	0.044
P-value RMSEA <= 0.05	1.000	1.000
Robust RMSEA		NA
90 Percent confidence interval - lower		NA
90 Percent confidence interval - upper		NA
Standardized Root Mean Square Residual:		
SRMR	0.073	0.073

Parameter Estimates:

Standard errors	Robust.sem
Information	Expected
Information saturated (h1) model	Unstructured

Istout Westshire						
Latent Variables:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s =~				- (1-1)		
s_sentpauvrisq	1.000				0.674	0.674
s_infminidecla		0.018	63.490	0.000	0.763	0.763
m =~						
m_quantilnv_nv	1.000				0.846	0.846
m_locatif_inv	0.698	0.019	36.523	0.000	0.590	0.590
m_financier_nv		0.018	39.366	0.000	0.604	0.604
i =~						
i_log	1.000				0.880	0.880
i_rsa	0.847	0.015	55.299	0.000	0.746	0.746
i_chom	0.401	0.017	23.587	0.000	0.353	0.353
i_handi	0.403	0.020	20.465	0.000	0.355	0.355
i_bourse	0.497	0.020	25.268	0.000	0.437	0.437
i_hlm	0.746	0.013	56.923	0.000	0.656	0.656
pauvrete =~						
S	1.000				0.938	0.938
m	1.476	0.026	57.362	0.000	1.103	1.103
i	1.156	0.019	62.405	0.000	0.830	0.830
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$. { t s_sentpauvrisq}$					0.000	0.000
$.\mathtt{s_infminidecla}$	0.000				0.000	0.000
$.{\tt m_quantilnv_nv}$	0.000				0.000	0.000
$.{\tt m_locatif_inv}$	0.000				0.000	0.000
.m_financier_nv	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_rsa	0.000				0.000	0.000
.i_chom	0.000				0.000	0.000
.i_handi	0.000				0.000	0.000
.i_bourse	0.000				0.000	0.000
.i_hlm	0.000				0.000	0.000
.s	0.000				0.000	0.000
.m	0.000				0.000	0.000
.i	0.000				0.000	0.000
pauvrete	0.000				0.000	0.000
Thresholds:						
IIIT EPHOTOP.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpvrsq t1	0.267	0.011	24.326	0.000	0.267	0.267
s_sentpvrsq t1 s_sentpvrsq t2	1.020	0.011	77.484	0.000	1.020	1.020
s_sentpvrsq\t2 s_infmindcl t1	-0.123	0.013	-11.357	0.000	-0.123	-0.123
m_qntlnv_nv t1	-0.123 -0.852	0.011	-11.35 <i>1</i> -68.664	0.000	-0.123 -0.852	-0.123 -0.852
m-dnormo-mo101	-0.652	0.012	-00.004	0.000	-0.002	-0.632

m_qntlnv_nv t2	-0.266	0.011	-24.223	0.000	-0.266	-0.266
m_qntlnv_nv t3	0.252	0.011	22.964	0.000	0.252	0.252
m_qntlnv_nv t4	0.836	0.012	67.760	0.000	0.836	0.836
m_locatf_nv t1	-1.435	0.016	-89.369	0.000	-1.435	-1.435
m_finncr_nv t1	-1.380	0.016	-88.614	0.000	-1.380	-1.380
i_log t1	0.693	0.012	58.531	0.000	0.693	0.693
i_rsa t1	1.543	0.017	90.111	0.000	1.543	1.543
i_chom t1	1.139	0.014	82.368	0.000	1.139	1.139
i_handi t1	1.451	0.016	89.539	0.000	1.451	1.451
i_bourse t1	1.593	0.018	90.139	0.000	1.593	1.593
i_hlm t1	0.675	0.012	57.238	0.000	0.675	0.675
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$.s_sentpauvrisq$	0.546				0.546	0.546
$.s_infminidecla$	0.418				0.418	0.418
$.{\tt m_quantilnv_nv}$	0.285				0.285	0.285
$.{\tt m_locatif_inv}$	0.652				0.652	0.652
$.{\tt m_financier_nv}$	0.635				0.635	0.635
.i_log	0.226				0.226	0.226
.i_rsa	0.444				0.444	0.444
.i_chom	0.875				0.875	0.875
.i_handi	0.874				0.874	0.874
.i_bourse	0.809				0.809	0.809
.i_hlm	0.569				0.569	0.569
.s	0.055	0.010	5.614	0.000	0.120	0.120
.m	-0.155	0.018	-8.516	0.000	-0.216	-0.216
.i	0.240	0.013	17.828	0.000	0.310	0.310
pauvrete	0.399	0.011	36.427	0.000	1.000	1.000
Scales y*:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$s_sentpauvrisq$	1.000				1.000	1.000
$s_{infminidecla}$	1.000				1.000	1.000
${\tt m_quantilnv_nv}$	1.000				1.000	1.000
${\tt m_locatif_inv}$	1.000				1.000	1.000
${\tt m_financier_nv}$	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
i_handi	1.000				1.000	1.000
i_bourse	1.000				1.000	1.000
i_hlm	1.000				1.000	1.000

lavaan 0.6-8 ended normally after 20 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	28
Number of observations	13359

Model Test User Model:

	Standard	Robust
Test Statistic	857.410	857.410
Degrees of freedom	42	42
P-value (Chi-square)	0.000	0.000
Scaling correction factor		NA
Shift parameter		
		Robust

Model Test Baseline Model:

Test statistic	53597.773	43159.977
Degrees of freedom	55	55
P-value	0.000	0.000
Scaling correction factor		1.242

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.985	0.981
Tucker-Lewis Index (TLI)	0.980	0.975

Robust Comparative Fit Index (CFI) NA

Robust	Tucker-Lewis	Index	(TLI)
100000	TOUTOT HOWEN		(/

NA

Root Mean Square Error of Approximation:

RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.038 0.036 0.040 1.000	0.038 0.036 0.040 1.000
Robust RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper		NA NA NA

Standardized Root Mean Square Residual:

SRMR 0.072 0.072

Parameter Estimates:

Standard errors Robust.sem
Information Expected
Information saturated (h1) model Unstructured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
m_s =~						
${\tt m_quantilnv_nv}$	1.000				0.900	0.900
${\tt m_locatif_inv}$	0.660	NA			0.595	0.595
m_financier_nv	0.677	NA			0.610	0.610
$s_sentpauvrisq$	0.727	NA			0.654	0.654
$s_{\tt infminidecla}$	0.823	NA			0.741	0.741
i =~						
i_log	1.000				0.881	0.881
i_rsa	0.847	NA			0.746	0.746
i_chom	0.401	NA			0.353	0.353
i_handi	0.403	NA			0.355	0.355
i_bourse	0.495	NA			0.436	0.436
i_hlm	0.743	NA			0.655	0.655
pauvrete =~						
m_s	1.000				1.041	1.041
i	0.763	NA			0.812	0.812

Intercepts:

	Estimate	Std.Err	z-value	P(> z)	${\tt Std.lv}$	Std.all
.m_quantilnv_nv	0.000				0.000	0.000
$.{\tt m_locatif_inv}$	0.000				0.000	0.000
.m_financier_nv	0.000				0.000	0.000
.s_sentpauvrisq	0.000				0.000	0.000
.s_infminidecla	0.000				0.000	0.000

.i	i_log	0.000				0.000	0.000
.i	i_rsa	0.000				0.000	0.000
.i	i_chom	0.000				0.000	0.000
.i	i_handi	0.000				0.000	0.000
.i	i_bourse	0.000				0.000	0.000
. i	i_hlm	0.000				0.000	0.000
.n	n_s	0.000				0.000	0.000
. i	i	0.000				0.000	0.000
F	pauvrete	0.000				0.000	0.000
Thres	sholds:						
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
n	n_qntlnv_nv t1	-0.852	NA			-0.852	-0.852
	n_qntlnv_nv t2	-0.266	NA			-0.266	-0.266
	n_qntlnv_nv t3	0.252	NA			0.252	0.252
	n_qntlnv_nv t4	0.836	NA			0.836	0.836
	n_locatf_nv t1	-1.435	NA			-1.435	-1.435
	n_finncr_nv t1	-1.380	NA			-1.380	-1.380
	s_sentpvrsq t1	0.267	NA			0.267	0.267
	s_sentpvrsq t2	1.020	NA			1.020	1.020
	s_infmindcl t1	-0.123	NA			-0.123	-0.123
	i_log t1	0.693	NA			0.693	0.693
	i_rsa t1	1.543	NA			1.543	1.543
	i_chom t1	1.139	NA			1.139	1.139
	i_handi t1	1.451	NA			1.451	1.451
	i_bourse t1	1.593	NA			1.593	1.593
	i_bodrbo;or i_hlm t1	0.675	NA			0.675	0.675
_		0.010				0.070	0.010
Varia	ances:						
· ar re		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
. π	n_quantilnv_nv	0.189	Dourer	L varao	1 (* 121)	0.189	0.189
	n_locatif_inv	0.646				0.646	0.646
	n_financier_nv					0.628	0.628
	s_sentpauvrisq					0.572	0.572
	s_infminidecla					0.451	0.451
	i_log	0.224				0.224	0.224
	i_rsa	0.443				0.443	0.443
	i_chom	0.445				0.875	0.875
	i_handi	0.874				0.874	0.874
	i_bourse	0.810				0.810	0.810
	i_bodrse i_hlm	0.571				0.571	0.571
	n_s	-0.067	NA			-0.083	-0.083
 .i		0.265	NA NA			0.341	0.341
I	pauvrete	0.878	NA			1.000	1.000
Scale	es y*:						
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
	n_quantilnv_nv	1.000				1.000	1.000
n	n_locatif_inv	1.000				1.000	1.000

m_financier_nv	1.000	1.000	1.000
${ t s_sentpauvrisq}$	1.000	1.000	1.000
$s_{\tt infminidecla}$	1.000	1.000	1.000
i_log	1.000	1.000	1.000
i_rsa	1.000	1.000	1.000
i_chom	1.000	1.000	1.000
i_handi	1.000	1.000	1.000
i_bourse	1.000	1.000	1.000
i_hlm	1.000	1.000	1.000

3.5 CFA avec des covariables (MIMIC)

MIMIC stands for multiple indicators multiple independent causes (Jöreskog and Goldberger, 1975) and is a general structural latent variable concept where CFA is extended in terms of linking covariates with latent variables. MIMIC models can be used to control for sociodemographic or other types of covariates in CFA and more general SEM specifications.

Remarque : ne marche qu'avec les covariates exogènes de moins de 2 facteurs (à transformer en indicatrices j'imagine)

3.6 Structural equation models (SEM)

Structural equation models (SEM) integrate confirmatory factor analysis (CFA) into a larger path analytic framework. Formally, we extend the basic CFA expression (measurement model) by an additional linear specification reflecting dependencies among the latent variables (structural model).

Remarque : ne marche pas pour les facteurs non ordonnés (en gros, considère les facteurs comme des variables numériques)

Remarque: estimator ML for ordered data is not supported yet. Use WLSMV instead.

3.7 Figures rapport

4 Notes méthodologiques

Pour ces modèles cinq vagues du Baromètre ont été empilées : 2015, 2016, 2017, 2018 et 2019 (15 137 observations). Le nombre d'observations utilisées est différent dans chaque modèle, il s'agit uniquement des individus où toutes les variables utilisées dans les modèles sont renseignées (voir notes en bas des tableaux).

Bibliographie

- https://stats.idre.ucla.edu/spss/seminars/efa-spss/ https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/203-30.pdf https://community.jmp.com/t5/JMP-Blog/Principal-components-or-factor-analysis/ba-p/38347 bases de l'EFA
- En bouquins : https://books.google.es/books?hl=fr&lr=&id=qKrumJ4CsboC&oi=fnd&pg=PT 180&ots=TDmmzvQP5X&sig=7gFjzxbPC49Tz7IkGT-4gXMzx8U&redir_esc=y#v=onepage &q&f=false et slides https://slideplayer.com/slide/5080/
- https://m-clark.github.io/posts/2020-04-10-psych-explained/
- https://cran.r-project.org/web/packages/psychTools/vignettes/factor.pdf
- https://rstudio-pubs-static.s3.amazonaws.com/363499_73a1c1a94da148b6ad81e6eb8dc1b771. html
- https://en.wikipedia.org/wiki/Factor_analysis
- Analyse en facteurs communs et spécifiques docs en Français. https://www.rocq.inria.fr/axis/m odulad/archives/numero-37/Chaventetal-37/Chaventetal-37.pdf http://grumlidesforets.free.fr/cours%20psycho/M1%20psycho/chapitre2/chapitre2.pdf http://jeanalain.monfort.free.fr/Dico stat2005/A/Analyse_en_facteurs_communs_etc.pdf https://www.google.com/url?sa=t&rct=j &q=&esrc=s&source=web&cd=&ved=2ahUKEwjX-NWssbbxAhUNxoUKHXMzBxEQFno ECAkQAA&url=http%3A%2F%2Fwww.normalesup.org%2F~carpenti%2FNotes%2FAnalyse-factorielle%2FAnalyse-Factorielle-2011.doc&usg=AOvVaw04RFWMowmry0JRVMNZqR7h http://jeanalain.monfort.free.fr/Dicostat2005/A/Analyse_en_facteurs_communs_etc.pdf https://www.psychometrie.jlroulin.fr/cours/aide_quizz.html?H.html https://www.persee.fr/doc/hism_0982-1783_1997_num_12_3_1544 http://psychologie.psyblogs.net/2012/01/cours-theories-de-lintelligence-en.html