

<u>Help</u> sandipan_dey →

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>MO Index</u>

☆ Course / 11 Nonlinear Differential Equations and Ro... / 11.3 Root finding for nonlinear ...

< Previous

Next >

Discussions

All posts sorted by recent activity

11.3.2 Example: Determining the Jacobian for a system of two equations

☐ Bookmark this page

MO2.8

MO2.10

In this section, we illustrate how to calculate the Jacobian of a system of two equations. Specifically, consider the following two equations,

$$x_0^2 + x_1^2 = 1 (11.9)$$

$$x_1 - \sin(x_0) = 0 (11.10)$$

Write this as a root-finding problem: $oldsymbol{r}_0 = oldsymbol{r}_1 = oldsymbol{0}$ with

$$r_0(x_0,x_1) = x_0^2 + x_1^2 - 1,$$
 (11.11)

$$r_1(x_0, x_1) = x_1 - \sin(x_0).$$
 (11.12)

Then, the Jacobian matrix is

$$J = \nabla \underline{r}(\underline{x}) = \begin{pmatrix} \frac{\partial r_0}{\partial x_0} & \frac{\partial r_0}{\partial x_1} \\ \frac{\partial r_1}{\partial x_0} & \frac{\partial r_1}{\partial x_1} \end{pmatrix} = \begin{pmatrix} 2x_0 & 2x_1 \\ -\cos(x_0) & 1 \end{pmatrix}.$$
(11.13)

A Python code showing the implementation of

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>