Содержание

1	Лег	кция от 08.02.17. Случайные блуждания	1
	1.1	Понятие случайного блуждания	1
	1.2	Случайные блуждания	2
	1.3	Исследование случайного блуждания с помощью характери-	
		стической функции	5
2	Лекция от 15.02.17. Ветвящиеся процессы и процессы вос-		
	ста	новления	6
	2.1	Модель Гальтона-Ватсона	6
	2.2	Процессы восстановления	9
3	Лекция от 22.02.17. Пуассоновские процессы		10
	3.1	Процессы восстановления (продолжение)	10
	3.2	Сопоставление исходного процесса восстановления со вспомо-	
		гательным	11
	3.3	Элементарная теория восстановления	12
	3.4	Пуассоновский процесс как процесс восстановления	13
П	редм	иетный указатель	16

1 Лекция от 08.02.17

Случайные блуждания

1.1 Понятие случайного блуждания

Определение 1.1. Пусть V- множество, а $\mathscr{A}-\sigma$ -алгебра его подмножеств. Тогда (V,\mathscr{A}) называется измеримым пространством.

Определение 1.2. Пусть есть (V, \mathscr{A}) и (S, \mathscr{B}) — два измеримых пространства, $f \colon V \to S$ — отображение. f называется $\mathscr{A} \mid \mathscr{B}$ -измеримым, если $\forall B \in \mathscr{B} \ f^{-1}(B) \in \mathscr{A}$. Обозначение: $f \in \mathscr{A} \mid \mathscr{B}$.

Определение 1.3. Пусть есть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — отображение. Если $Y \in \mathscr{F}|\mathscr{B}$, то Y называется *случайным элементом*.

Определение 1.4. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — случайный элемент. Pac-пределение вероятностей, индуцированное случайным элементом Y, - это функция на множествах из \mathscr{B} , задаваемая равенством

$$\mathsf{P}_Y(B) := \mathsf{P}(Y^{-1}(B)), \quad B \in \mathscr{B}.$$

Определение 1.5. Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ — семейство измеримых пространств. Случайный процесс, ассоциированный с этим семейством, — это семейство случайных элементов $X = \{X(t), t \in T\}$, где X(t): $\Omega \to S_t$, $X(t) \in \mathscr{F}|\mathscr{B}_t$ $\forall t \in T$. Здесь T— это произвольное параметрическое множество, (S_t, \mathscr{B}_t) — произвольные измеримые пространства. Замечание. Если $T \subset \mathbb{R}$, то $t \in T$ интерпретируется как время. Если $T = \mathbb{R}$, то время непрерывно; если $T = \mathbb{Z}$ или $T = \mathbb{Z}_+$, то время дискретно; если $T \subset \mathbb{R}^d$, то говорят о случайном поле.

Определение 1.6. Случайные элементы X_1, \dots, X_n называются *независи-мыми*, если $\mathsf{P}\left(\bigcap_{k=1}^n \left\{X_k \in B_k\right\}\right) = \prod_{k=1}^n \mathsf{P}(X_k \in B_k) \ \forall \, B_1 \in \mathscr{B}_1, \dots, \, B_n \in \mathscr{B}_n.$

Теорема 1.1 (Ломницкого-Улама). Пусть $(S_t, \mathcal{B}_t, Q_t)_{t \in T}$ — семейство вероятностных пространств. Тогда на некотором $(\Omega, \mathcal{F}, \mathsf{P})$ существует семейство независимых случайных элементов $X_t \colon \Omega \to S_t, \ X_t \in \mathcal{F}|\mathcal{B}_t$ таких, что $\mathsf{P}_{X_t} = Q_t, \ t \in T$.

Замечание. Это значит, что на некотором вероятностном пространстве можно задать независимое семейство случайных элементов с наперед указанными распределениеми. При этом T по-прежнему любое, как и $(S_t, \mathcal{B}_t, \mathbb{Q})_{t \in T}$ — произвольные вероятностные пространства. Независимость здесь означает независимость в совокупности \forall конечного поднабора.

1.2 Случайные блуждания

Определение 1.7. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные векторы со значениями в \mathbb{R}^d . Случайным блужданием в \mathbb{R}^d называется случайный процесс с дискретным временем $S = \{S_n, n \geq 0\}$ $(n \in \mathbb{Z}_+)$ такой, что

$$S_0 := x \in \mathbb{R}^d$$
 (начальная точка); $S_n := x + X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$

Определение 1.8. Простое случайное блуждание в \mathbb{Z}^d — это такое случайное блуждание, что

$$P(X = e_k) = P(X = -e_k) = \frac{1}{2d},$$

где
$$e_k = (0, \dots, 0, \underbrace{1}_k, 0, \dots, 0), k = 1, \dots, d.$$

Определение 1.9. Введем $\mathbf{N}:=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\}\ (\leqslant\infty)$. Это, по сути, число попаданий нашего процесса в точку 0. Простое случайное блуждание $S==\{S_n,n\geqslant 0\}$ называется возвратным, если $\mathsf{P}(N=\infty)=1;$ невозвратным, если $\mathsf{P}(N<\infty)=1.$

Замечание. Следует понимать, что хотя определение подразумевает, что $P(N=\infty)$ равно либо 0, либо 1, пока что это является недоказанным фактом. Это свойство будет следовать из следующей леммы.

3амечание (от наборщика). Судя по всему, в лемме ниже подразумевается, что начальная точка нашего случайного блуждания — это 0.

Определение 1.10. Число $\tau := \inf\{n \in \mathbb{N} : S_n = 0\}$ ($\tau := \infty$, если $S_n \neq 0$ $\forall n \in \mathbb{N}$) называется моментом первого возвращения в 0.

Лемма 1.2. Для $\forall n \in \mathbb{N} \ \mathsf{P}(N=n) = \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1}$.

Доказательство. При n=1 формула верна: $\{N=1\}=\{\tau=\infty\}$. Докажем по индукции.

$$\begin{split} \mathsf{P}(N = n+1, \tau < \infty) &= \sum_{k=1}^{\infty} \mathsf{P}(N = n+1, \tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_{m+k} - S_k = 0\} = n, \tau = k\right) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_m = 0\} = n\right) \mathsf{P}(\tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}(N' = n) \, \mathsf{P}(\tau = k), \end{split}$$

где N' определяется по последовательности $X_1'=X_{k+1},\,X_2'=X_{k+2}$ и так далее. Из того, что X_i — независиые одинаково распределенные случайные векторы, следует, что N' и N распределены одинаково. Таким образом, получаем, что

$$P(N = n + 1, \tau < \infty) = P(N = n) P(\tau < \infty).$$

Заметим теперь, что

$$P(N = n + 1) = P(N = n + 1, \tau < \infty) + P(N = n + 1, \tau = \infty),$$

где второе слагаемое обнуляется из-за того, что $n+1\geqslant 2.$ Из этого следует, что

$$\mathsf{P}(N=n+1) = \mathsf{P}(N=n)\,\mathsf{P}(\tau<\infty).$$

Пользуемся предположением индукции и получаем, что

$$P(N = n + 1) = P(\tau = \infty) P(\tau < \infty)^n,$$

что и завершает доказательство леммы.

Следствие. $\mathsf{P}(N=\infty)$ равно 0 или 1. $\mathsf{P}(N<\infty)=1\Leftrightarrow\mathsf{P}(\tau<\infty)<1.$

Доказательство. Пусть $\mathsf{P}(\tau < \infty) < 1$. Тогда

$$\begin{array}{l} \mathsf{P}(N<\infty) = \sum\limits_{n=1}^{\infty} \mathsf{P}(N=n) = \sum\limits_{n=1}^{\infty} \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \frac{\mathsf{P}(\tau=\infty)}{1-\mathsf{P}(\tau<\infty)} = \\ = \frac{\mathsf{P}(\tau=\infty)}{\mathsf{P}(\tau=\infty)} = 1. \end{array}$$

Это доказывает первое утверждение следствия и импликацию справа налево в формулировке следствия. Докажем импликацию слева направо.

$$\mathsf{P}(\tau < \infty) = 1 \Rightarrow \mathsf{P}\left((\tau = \infty) = 0\right) \Rightarrow \mathsf{P}(N = n) = 0 \; \forall \, n \in \mathbb{N} \Rightarrow \mathsf{P}(N < \infty) = 0.$$

Следствие доказано.

Теорема 1.3. Простое случайное блуждание в \mathbb{Z}^d возвратно \Leftrightarrow $\mathsf{E} N = \infty$ (соответственно, невозвратно \Leftrightarrow $\mathsf{E} N < \infty$).

Доказательство. Если E $N<\infty,$ то P $(N<\infty)=1.$ Пусть теперь P $(N<\infty)=1.$ Это равносильно тому, что P $(\tau<\infty)<1.$

$$\mathsf{E} N = \sum_{n=1}^\infty n \, \mathsf{P}(N=n) = \sum_{n=1}^\infty n \, \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} =$$

$$= \mathsf{P}(\tau=\infty) \sum_{n=1}^\infty n \, \mathsf{P}(\tau<\infty)^{n-1}.$$

Заметим, что

$$\sum_{n=1}^{\infty} np^{n-1} = (\sum_{n=1}^{\infty} p^n)' = (\frac{1}{1-p})' = \frac{1}{(1-p)^2}.$$

Тогда, продолжая цепочку равенств, получаем, что

$$\mathsf{P}(\tau = \infty) \sum_{n=1}^{\infty} n \, \mathsf{P}(\tau < \infty)^{n-1} = \frac{\mathsf{P}(\tau = \infty)}{(1 - \mathsf{P}(\tau < \infty))^2} = \frac{1}{1 - \mathsf{P}(\tau < \infty)},$$

что завершает доказательство теоремы.

3амечание. Заметим, что поскольку $N=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\},$ то

$$\mathsf{E} N = \sum_{n=0}^{\infty} \mathsf{E} \mathbb{I} \{ S_n = 0 \} = \sum_{n=0}^{\infty} \mathsf{P} (S_n = 0),$$

где перестановка местами знаков матожидания и суммы возможна в силу неотрицательности членов ряда. Таким образом,

S возвратно
$$\Leftrightarrow \sum_{n=0}^{\infty} P(S_n = 0) = \infty.$$

Следствие. S возвратно при d = 1 и d = 2.

Доказательство.
$$\mathsf{P}(S_{2n}=0)=(\frac{1}{2d})^{2n}\sum_{\substack{n_1,\dots,n_d\geqslant 0\\n_1+\dots+n_d=n}}\frac{(2n)!}{(n_1!)^2\dots(n_d!)^2}$$

Случай
$$d=1$$
: $P(S_{2n}=0)=\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{2n}$.

Согласно формуле Стирлинга,

$$m! \sim \left(\frac{m}{e}\right)^m \sqrt{2\pi m}, \quad m \to \infty.$$

Соответственно,

$$P(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}} \Rightarrow$$

 \Rightarrow ряд $\sum\limits_{n=0}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \Rightarrow$ блуждание возвратно. Аналогично рассматривается случай d=2: $\mathsf{P}(S_{2n}=0)=\ldots=\left\{\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{2n}\right\}^2\sim \frac{1}{\pi n}\Rightarrow$ ряд тоже разойдется \Rightarrow блуждание возвратно. Теорема доказана.

1.3 Исследование случайного блуждания с помощью характеристической функции

Теорема 1.4. Для простого случайного блуждания в \mathbb{Z}^d

$$\mathsf{E}N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} \, \mathrm{d}t,$$

 $r \partial e \varphi(t) - x a p a \kappa m e p u c m u ч e c \kappa a s \phi y h \kappa u u s X, t \in \mathbb{R}^d.$

Доказательство. $\int_{[-\pi,\pi]} \frac{e^{inx}}{2\pi} dx = \begin{cases} 1, & n=0\\ 0, & n\neq 0 \end{cases}$. Следовательно,

$$\mathbb{I}\{S_n = 0\} = \prod_{k=1}^d \mathbb{I}\{S_n^{(k)} = 0\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{iS_n^{(k)}t_k}}{2\pi} dt_k = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} dt.$$

По теореме Фубини

$$\mathsf{E}\mathbb{I}(S_n=0) = \mathsf{E}\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} \; \mathrm{d}t = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \mathsf{E}e^{i(S_n,t)} \; \mathrm{d}t.$$

Заметим, что

$$\mathsf{E}e^{i(S_n,t)} = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi(t))^n.$$

Тогда

$$\mathsf{EI}(S_n = 0) = \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \left(\varphi\left(t\right)\right)^n \, \mathrm{d}t.$$

Из этого следует, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n \, \, \mathrm{d}t, \quad \text{где } 0 < c < 1.$$

Поскольку $|c\varphi| \leqslant c < 1$, то

$$\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} dt$$

по формуле для суммы бесконечно убывающей геометрической прогрессии. Осталось только заметить, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n=0) \to \sum_{n=0}^{\infty} \mathsf{P}(S_n=0) = \mathsf{E} N, \quad c \uparrow 1,$$

что и завершает доказательство теоремы.

Следствие. При $d \geqslant 3$ простое случайное блуждание невозвратно.

3амечание. Можно говорить и о случайных блужданиях в \mathbb{R}^d , если $X_i:\Omega\to\mathbb{R}^d$. Но тогда о возвратности приходится говорить в терминах бесконечно частого попадания в ε -окрестность точки x.

Определение 1.11. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *мно*жество возвратности случайного блуждания S — это множество

 $R(S) = \{x \in \mathbb{R}^d :$ блуждание возвратно в окрестности точки $x\}$.

Определение 1.12. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *точ*- κu , достижимые случайным блужданием S,—это множество P(S) такое, ОТР

$$\forall z \in P(S) \ \forall \varepsilon > 0 \ \exists n: \ P(\|S_n - z\| < \varepsilon) > 0.$$

Теорема 1.5 (Чжуна-Фукса). Если $R(S) \neq \emptyset$, то R(S) = P(S).

Следствие. Если $0 \in R(S)$, то R(S) = P(S); если $0 \notin R(S)$, то $R(S) = \emptyset$.

2 Лекция от 15.02.17

Ветвящиеся процессы и процессы восстановления

2.1Модель Гальтона-Ватсона

Описание модели Пусть $\{\xi, \xi_{n,k}, n, k \in \mathbb{N}\}$ — массив независимых одинаково распределенных случайных величин,

$$P(\xi = m) = p_m \ge 0, \ m \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

Такие существуют в силу теоремы Ломницкого-Улама. Положим

$$Z_0(\omega) \coloneqq 1,$$
 $Z_n(\omega) \coloneqq \sum_{k=1}^{Z_{n-1}(\omega)} \xi_{n,k}(\omega)$ для $n \in \mathbb{N}.$

Здесь подразумевается, что если $Z_{n-1}(\omega)=0$, то и вся сумма равна нулю. Таким образом, рассматривается сумма случайного числа случайных величин. Определим $A=\{\omega\colon \exists\, n=n(\omega)\,\, Z_n(\omega)=0\}-c$ обытие вырождения *популяции*. Заметим, что если $Z_n(\omega) = 0$, то $Z_{n+1}(\omega) = 0$. Таким образом, $\{Z_n=0\}\subset \{Z_{n+1}=0\}$ и $A=\bigcup_{n=1}^\infty \{Z_n=0\}.$ По свойству непрерывности вероятностной меры,

$$\mathsf{P}(A) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0).$$

Определение 2.1. Пусть дана последовательность $(a_n)_{n=0}^{\infty}$ неотрицательных чисел такая, что $\sum\limits_{n=0}^{\infty}a_n=1$. Производящая функция для этой последовательности — это

$$f(s) := \sum_{k=0}^{\infty} s^k a_k, \quad |s| \le 1$$

(нас в основном будут интересовать $s \in [0, 1]$).

Заметим, что если $a_k = \mathsf{P}(Y = k), \, k = 0, 1, \dots$, то

$$f_Y(s) = \sum_{k=0}^{\infty} s^k \, \mathsf{P}(Y = k) = \mathsf{E} s^Y, \quad s \in [0, 1].$$

Лемма 2.1. Вероятность P(A) является корнем уравнения $\psi(p) = p$, где $\psi = f_{\xi} \ u \ p \in [0,1].$

Доказательство.

$$\begin{split} f_{Z_n}(s) &= \mathsf{E} s^{Z_n} = \mathsf{E} \left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^j \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right]. \end{split}$$

Поскольку $\sigma\{Z_r\}\subset \sigma\{\xi_{m,k},\ m=1,\ldots,r,\ k\in\mathbb{N}\}$, которая независима с $\sigma\{\xi_{n,k},\ k\in\mathbb{N}\}$ (строгое и полное обоснование остается в качестве упражнения), то

$$\begin{split} \sum_{j=0}^{\infty} \mathsf{E} \left[\left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{E} \mathbb{I} \{ Z_{n-1} = j \} = \\ &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{P} (Z_{n-1} = j) = \sum_{j=0}^{\infty} \prod_{k=1}^{j} \mathsf{E} s^{\xi_{n,k}} \, \mathsf{P} (Z_{n-1} = j) = \\ &= \sum_{j=0}^{\infty} \psi_{\xi}^{j}(s) \, \mathsf{P} (Z_{n-1} = j) = f_{Z_{n-1}} \left(\psi_{\xi}(s) \right) \end{split}$$

в силу независимости и одинаковой распределенности $\xi_{n,k}$ и определения производящей функции. Таким образом,

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\mathcal{E}}(s)), \quad s \in [0, 1].$$

Подставим s = 0 и получим, что

$$f_{Z_n}(0) = f_{Z_{n-1}}\left(\psi_{\xi}\left(0\right)\right)$$

Заметим, что

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)) = f_{Z_{n-2}}\left(\psi_{\xi}\left(\psi_{\xi}\left(s\right)\right)\right) = \ldots = \underbrace{\psi_{\xi}(\psi_{\xi}\ldots(\psi_{\xi}(s))\ldots)}_{n \text{ итераций}} = \psi_{\xi}(f_{Z_{n-1}}(s)).$$

Тогда при s=0 имеем, что

$$\mathsf{P}(Z_n=0)=\psi_{\xi}\left(\mathsf{P}\left(Z_{n-1}=0\right)\right).$$

Но $\mathsf{P}(Z_n=0)\nearrow\mathsf{P}(A)$ при $n\to\infty$ и ψ_ξ непрерывна на [0,1]. Переходим к пределу при $n\to\infty$. Тогда

$$P(A) = \psi_{\varepsilon}(P(A)),$$

то есть P(A) — корень уравнения $p = \psi_{\xi}(p), p \in [0, 1]$.

Теорема 2.2. Вероятность р вырождения процесса Гальтона-Ватсона есть **наименьший** корень уравнения

$$\psi(p) = p, \quad p \in [0, 1],$$
 (1)

 $r\partial e \ \psi = \psi_{\xi}.$

Доказательство. Пусть $p_0 := P(\xi = 0) = 0$. Тогда

$$\mathsf{P}(\xi\geqslant 1)=1,\quad \mathsf{P}\left(\bigcap_{n,k}\left\{\xi_{n,k}\geqslant 1\right\}\right)=1.$$

Поэтому $Z_n\geqslant 1$ при $\forall\, n,$ то есть $\mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть теперь $p_0=1.$ Тогда $\mathsf{P}(\xi=0)=1\Rightarrow \mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть, наконец, $0< p_0<1.$ Из этого следует, что $\exists\, m\in \mathbb{N}:\ p_m>0,$ а значит, ψ строго возрастает на [0,1]. Рассмотрим

$$\Delta_n = [\psi_n(0), \psi_{n+1}(0)), n = 0, 1, 2, \dots,$$

где $\psi_n(s)$ — это производящая функция Z_n . Пусть $s \in \Delta_n$. Тогда из монотонности ψ на [0,1] получаем, что

$$\psi(s) - s > \psi(\psi_n(0)) - \psi_{n+1}(0) = \psi_{n+1}(0) - \psi_{n+1}(0) = 0,$$

что означает, что у уравнения (1) нет корней на $\Delta_n \ \forall n \in \mathbb{Z}_+$. Заметим, что

$$\bigcup_{n=0}^{\infty} \Delta_n = [0, P(A)), \quad \psi_n(0) \nearrow P(A).$$

По лемме 2.1 P(A) является корнем уравнения (1). Следовательно, показано, что P(A) — наименьший корень, что и требовалось доказать.

Теорема 2.3.

- 1. Вероятность вырождения P(A) есть нуль $\iff p_0 = 0$.
- 2. Пусть $p_0 > 0$. Тогда при $\mathsf{E}\xi \leqslant 1$ имеем $\mathsf{P}(A) = 1$, при $\mathsf{E}\xi > 1$ имеем $\mathsf{P}(A) < 1$.

Доказательство. Докажем 1. Пусть P(A) = 0. Тогда $p_0 = 0$, потому что иначе была бы ненулевая вероятность вымирания $P(A) > P(Z_1 = 0) = p_0$. В другую сторону, если $p_0 = 0$, то вымирания не происходит (почти наверное) из-за того, что у каждой частицы есть как минимум один потомок (почти наверное).

Докажем 2. Пусть $\mu = \mathsf{E}\xi \leqslant 1$. Покажем, что в таком случае у уравнения (1) будет единственный корень, равный 1.

$$\psi_\xi'(z) = \sum_{k=1}^\infty k z^{k-1} \, \mathsf{P}(\xi=k) \ \Rightarrow \ \psi_\xi'(z) > 0 \text{ при } z > 0,$$

если только ξ не тождественно равна нулю (в противном случае утверждение теоремы выполнено). Заметим также, что $\psi'_{\xi}(z)$ возрастает на z>0. Воспользуемся формулой Лагранжа:

$$1 - \psi_{\xi}(z) = \psi_{\xi}(1) - \psi_{\xi}(z) = \psi'_{\xi}(\theta)(1 - z) < \psi'_{\xi}(1)(1 - z) \leqslant 1 - z,$$

где $z \in (0,1)$, в силу монотонности $\psi'_{\varepsilon}(z)$. Следовательно, если z < 1, то

$$1 - \psi_{\xi}(z) < 1 - z,$$

то есть z=1— это единственный корень уравнения (1). Значит, P(A)=1. Пусть $\mu=\mathsf{E}\xi>1$. Покажем, что в таком случае у уравнения (1) есть два корня, один из которых строго меньше единицы.

$$\psi_{\xi}''(z) = \sum_{k=2}^{\infty} k(k-1)z^{k-2} P(\xi = k),$$

следовательно, $\psi_\xi''(z)$ монотонно возрастает и больше нуля при z>0. Из этого следует, что $1-\psi_\xi'(z)$ строго убывает, причем

$$1 - \psi'_{\xi}(0) = 1 - P(\xi = 1) > 0,$$

$$1 - \psi'_{\xi}(1) = 1 - \mu < 0.$$

Рассмотрим теперь $z-\psi_{\xi}(z)$ при z=0. Поскольку $1-\psi_{\xi}(1)=0$, производная этой функции монотонно убывает, а $0-\psi_{\xi}(0)=-\mathsf{P}(\xi=0)<0$, то график функции $z-\psi_{\xi}(z)$ пересечет ось абсцисс в двух точках, одна из которых будет лежать в интервале (0,1). Так как вероятность вырождения $\mathsf{P}(A)$ равна наименьшему корню уравнения (1), то $\mathsf{P}(A)<1$, что и требовалось доказать.

Следствие. Пусть $\mathsf{E}\xi < \infty$. Тогда $\mathsf{E}Z_n = (\mathsf{E}\xi)^n, \ n \in \mathbb{N}$.

Доказательство. Доказательство проводится по индукции.

База индукции: $n = 1 \Rightarrow \mathsf{E} Z_1 = \mathsf{E} \xi$.

Индуктивный переход:

$$\mathsf{E} Z_n = \mathsf{E} \left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k} \right) = \sum_{j=0}^{\infty} j \, \mathsf{E} \xi \, \mathsf{P} (Z_{n-1} = j) = \mathsf{E} \xi \, \mathsf{E} Z_{n-1} = (\mathsf{E} \xi)^n \, .$$

Определение 2.2.

При $\mathsf{E}\xi < 1$ процесс называется докритическим.

При $\mathsf{E}\xi=1$ процесс называется $\mathit{критическим}.$

При $\mathsf{E}\xi > 1$ процесс называется надкритическим.

2.2 Процессы восстановления

Определение 2.3. Пусть $S_n = X_1 + \ldots + X_n, n \in \mathbb{N}, X, X_1, X_2, \ldots$ независимые одинаково распределенные случайные величины, $X \geqslant 0$. Положим

$$Z(0) := 0;$$

 $Z(t) := \sup\{n \in \mathbb{N} : S_n \le t\}, \quad t > 0.$

(здесь считаем, что $\sup \varnothing := \infty$). Таким образом,

$$Z(t,\omega) = \sup \{ n \in \mathbb{N} : S_n(\omega) \leqslant t \}.$$

Иными словами,

$$\{Z(t) \geqslant n\} = \{S_n \leqslant t\}.$$

Так определенный процесс Z(t) называется npoцессом восстановления.

Замечание. Полезно заметить, что

$$Z(t) = \sum_{n=1}^{\infty} \mathbb{I}\{S_n \leqslant t\}, \ t > 0.$$

Определение 2.4. Рассмотрим процесс восстановления $\{Z^*(t), t \ge 0\}$, который строится по Y, Y_1, Y_2, \ldots независимым одинаково распределенным случайным величинам, где $\mathsf{P}(Y=\alpha)=p\in(0,1), \ \mathsf{P}(Y=0)=1-p.$ Исключаем из рассмотрения случай, когда Y=C=const: если C=0, то $Z(t)=\infty \ \forall \, t>0$; если же C>0, то $Z(t)=\left[\frac{t}{c}\right]$.

Лемма 2.4. Для l = 0, 1, 2, ...

$$\mathsf{P}(Z^{\star}(t) = m) = \begin{cases} C_m^j \, p^{j+1} q^{m-j}, \ \text{ide } j = \left[\frac{t}{\alpha}\right], & \text{ecau } m \geqslant j; \\ 0, & \text{ecau } m < j. \end{cases}$$

3 Лекция от 22.02.17. Пуассоновские процессы

3.1 Процессы восстановления (продолжение)

Определение 3.1. Будем говорить, что дискретная случайная величина U имеет геометрическое распределение с параметром $p \in (0,1)$, если для $k = 0, 1, 2, \dots$ $P(U = k) = (1 - p)^k p$.

Лемма 3.1. Рассмотрим независимые геометрические величины U_0,\dots,U_j с параметром $p\in(0,1),$ где $j=\left[\frac{t}{\alpha}\right].$ Тогда

$$P(j + U_0 + ... + U_j = m) = P(Z^*(t) = m)$$

Доказательство. Обозначим $M = \{(k_0, \dots, k_j) : k_j \in \mathbb{Z}_+, \sum_{i=0}^j k_j = m - j\}.$

$$\begin{split} \mathsf{P}\left(U_0 + \ldots + U_j = m - j\right) &= \sum_{(k_0, \ldots, k_j) \in M} \mathsf{P}(U_0 = k_0, \ldots, U_j = k_j) = \\ &= \sum_{(k_0, \ldots, k_j) \in M} \mathsf{P}(U_0 = k_0) \ldots \mathsf{P}(U_j = k_j) = \sum_{(k_0, \ldots, k_j) \in M} p(1 - p)^{k_0} \ldots p(1 - p)^{k_j} = \\ &= \sum_{(k_0, \ldots, k_j) \in M} = p^{j+1} (1 - p)^{k_0 + \ldots + k_j} = \\ &= p^{j+1} (1 - p)^{m-j} \# M = C_m^j p^{j+1} (1 - p)^{m-j}. \end{split}$$

3.2 Сопоставление исходного процесса восстановления со вспомогательным

Лемма 3.2. Пусть $t \geqslant \alpha$. Тогда $\mathsf{E} Z^\star(t) \leqslant At \ u \ \mathsf{E} Z^\star(t)^2 \leqslant Bt^2$, где $A = A(p,\alpha) > 0$, $B = B(p,\alpha) > 0$.

Доказательство. По лемме 3.1 $EZ^*(t) = E(j + U_0 + \ldots + U_j) = j + (j + 1)EU$, где $EU =: a(p) < \infty$ — математическое ожидание геометрического распределения.

Тогда

$$\begin{split} \mathsf{E} Z^\star(t) &= j + (j+1)a(p) \leqslant (j+1) \big(a(p) + 1 \big) \leqslant \\ & \leqslant \frac{t+\alpha}{\alpha} \big(a(p) + 1 \big) \leqslant \frac{2t}{\alpha} \big(a(p) + 1 \big) = At, \end{split}$$

где $A := \frac{2(a(p)+1)}{\alpha}$. Далее,

$$\begin{split} \mathsf{E} Z^{\star}(t)^2 &= \mathrm{var} \, Z^{\star}(t) + \left(\mathsf{E} Z^{\star}(t) \right)^2 \leqslant (j+1) \underbrace{\mathrm{var} \, U}_{\sigma^2(p)} + (j+1)^2 \left(a(p)+1 \right)^2 \leqslant \\ & \leqslant (j+1)^2 \left(\sigma^2(p) + \left(a(p)+1 \right)^2 \right) \leqslant \frac{4}{\alpha^2} \left(\sigma^2(p) + \left(a(p)+1 \right)^2 \right) t^2 = B t^2, \end{split}$$
 где $B := \frac{4}{\alpha^2} \left(\sigma^2(p) + \left(a(p)+1 \right)^2 \right).$

Заметим, что для любой невырожденной (не равной константе почти наверное) случайной величины $X\geqslant 0$ найдется такое $\alpha>0$, что $\mathsf{P}(X>>\alpha)=p\in(0,1)$. Тогда построим процесс Z^\star , как в определении 2.4, по независимым одинаково распределенным случайным величинам

$$Y_n = \begin{cases} \alpha, & \text{если } X_n > \alpha, \\ 0, & \text{если } X_n \leqslant \alpha. \end{cases}$$

По построению $Y_n \leqslant X_n$, откуда $Z(t) \leqslant Z^{\star}(t), t \geqslant 0$.

Следствие. $\mathsf{E} Z(t) \leqslant At \ u \ \mathsf{E} Z(t)^2 \leqslant Bt^2 \ \mathit{dist} \ \mathit{nnoforo} \ t \geqslant \alpha. \ B \ \mathit{частностu}, \ Z(t) < \infty \ \mathit{n. n. npu} \ \mathit{scex} \ t \geqslant 0.$

Следствие. $P(\forall t \ge 0 \ Z(t) < \infty) = 1.$

Доказательство. Поскольку Z(t) является неубывающим процессом, т. е. $\forall\,s\leqslant t\,\,Z(s)\leqslant Z(t),$ то достаточно доказать, что $\mathsf{P}\left(\forall\,n\in\mathbb{N}\,\,Z(n)<\infty\right)=1.$ Но

$$\left\{\forall\,n\in\mathbb{N}\;Z(n)<\infty\right\}=\bigcap_{n\in\mathbb{N}}\left\{Z(n)<\infty\right\}-$$

счетное пересечение событий вероятности 1 (см. предыдущее следствие). Оно тоже имеет вероятность 1.

3.3 Элементарная теория восстановления

Пемма 3.3. Пусть $X, X_1, X_2, \ldots - n$. о. р. случайные величины, $X \geqslant 0$. Тогда $\frac{S_n}{n} \xrightarrow{n.n.} \mu \in [0,\infty]$ при $n \to \infty$, где $\mu = \mathsf{E} X$ (конечное или бесконечное).

Доказательство. Если $\mu < \infty$, то утверждение леммы представляет собой усиленный закон больших чисел А. Н. Колмогорова.

Пусть $\mu = \infty$. Положим для c > 0

$$V_n(c) := X_n \mathbb{I} \left\{ X_n \leqslant c \right\}.$$

Тогда снова по УЗБЧ А. Н. Колмогорова $\frac{1}{n}\sum_{k=1}^n V_k \xrightarrow{\text{п. н.}} \mathsf{E} X \mathbb{I}\left\{X_n \leqslant c\right\}.$

Возьмем $c=m\in\mathbb{N}.$ Тогда с вероятностью 1

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\geqslant \lim_{m\to\infty}\mathsf{E}X\mathbb{I}\left\{X\leqslant m\right\}=\mathsf{E}X.$$

В последнем равенстве использовалась теорема о монотонной сходимости (для бесконечного предельного интеграла).

Введем определение, которое понадобится нам в дальнейшем.

Определение 3.2. Семейство случайных величин $\{\xi_{\alpha}, t \in \Lambda\}$ называется равномерно интегрируемым, если

$$\lim_{c \to \infty} \sup_{\alpha \in \Lambda} \int_{\left\{|\xi_\alpha| \geqslant c\right\}} \left| \xi_\alpha \right| \mathrm{d} \mathsf{P} = 0.$$

Известно, что если семейство $\{\xi_n, n \geqslant 1\}$ равномерно интегрируемо и $\xi_n \to \xi$ почти наверное, то ξ тоже интегрируема и $\mathsf{E}\xi_n \to \mathsf{E}\xi$. Для неотрицательных случайных величин $\xi_n, \, n \geqslant 1$, таких, что $\xi_n \to \xi$ п. н., где $\mathsf{E}\xi < \infty$, имеет место и обратная импликация

 $\mathsf{E}\xi_n \to \mathsf{E}\xi \implies$ семейство $\{\xi_n, n\geqslant 1\}$ равномерно интегрируемо.

Следующая теорема принимается без доказательства

Теорема 3.4 (Де ла Валле Пуссен). Семейство случайных величин $\{\xi_{\alpha}, \alpha \in \Lambda\}$ является равномерно интегрируемым тогда и только тогда, когда найдется измеримая функция $g \colon \mathbb{R}_+ \to \mathbb{R}_+$, т. е. $g \in \mathscr{B}(\mathbb{R}_+) | \mathscr{B}(\mathbb{R}_+)$, такая, что

$$\lim_{t\to\infty}\frac{g(t)}{t}=\infty\quad u\quad \sup \mathsf{E} g(|\xi_\alpha|)<\infty.$$

Теорема 3.5. Пусть $Z = \{Z(t), t \geqslant 0\}$ — процесс восстановления, построенный по последовательности н. о. р случайных величин X, X_1, X_2, \ldots Тогда

1.
$$\frac{Z(t)}{t} \xrightarrow{n.n.} \frac{1}{\mu} npu \ t \to \infty;$$

$$EZ(t) \qquad 1$$

2.
$$\frac{\mathsf{E} Z(t)}{t} \to \frac{1}{\mu} \operatorname{npu} t \to \infty, \ \mathit{rde} \ \frac{1}{0} := \infty, \ \frac{1}{\infty} := 0.$$

Доказательство. Если $\mu=0$, то $X_n=0$ п. н., поэтому $\forall\, t>0$ $Z(t)=\infty$ и утверждение теоремы очевидно.

Далее $\mu > 0$. Заметим, что

$$S_{Z(t)} \leqslant t < S_{Z(t)+1} \tag{2}$$

Для фиксированного ω рассмотрим последовательность $t_n:=S_n(\omega)$. Поскольку $Z(t_n,\omega)=n$ и траектория $Z(t,\omega)$ монотонна, $Z(t,\omega)\to\infty$. Будем рассматривать те (t,ω) , для которых $0< Z(t,\omega)<\infty$ (при всех t_n , а значит, вообще при всех t это выполнено почти наверное). Для этих (t,ω) разделим обе части 2 на Z(t). Получим

$$\frac{S_{Z(t)}}{Z(t)} \leqslant \frac{t}{Z(t)} < \frac{S_{Z(t)+1}}{Z(t)+1} \frac{Z(t)+1}{Z(t)}.$$

Но поскольку $Z(t) \to \infty$, то $\frac{S_{Z(t)}}{Z(t)} \xrightarrow{\text{п.н.}} \mu$, $\frac{S_{Z(t)+1}}{Z(t)+1} \xrightarrow{\text{п.н.}} \mu$ и $\frac{Z(t)+1}{Z(t)} \to 1$. Следовательно, $\frac{t}{Z(t)} \xrightarrow{\text{п.н.}} \mu$ при $t \to \infty$, т. е. $\frac{Z(t)}{t} \xrightarrow{\text{п.н.}} \frac{1}{\mu}$, что завершает доказательство утверждения 1.

Для доказательства утверждения 2 используем теорему 3.4. А именно, рассмотрим семейство $\{\xi_t, t \geqslant \alpha\}$ и функцию $g(t) = t^2$, где $\xi_t = \frac{Z(t)}{t}$. По лемме 3.2

$$\mathsf{E}\xi_t^2 = \frac{\mathsf{E}Z(t)^2}{t^2} \leqslant \frac{Bt^2}{t^2} = B < \infty.$$

Все условия теоремы 3.4 выполнены. Поэтому из нее вытекает, что семейство $\{\xi_t, t \geqslant \alpha\}$ равномерно интегрируемо. Тогда можно совершить предельный переход под знаком математического ожидания, и из утверждения 1 получаем, что

$$\mathsf{E} rac{Z(t)}{t} o \mathsf{E} rac{1}{\mu} = rac{1}{\mu}, \quad t o \infty.$$

3.4 Пуассоновский процесс как процесс восстановления

Определение 3.3. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные величины с экспоненциальным распределением $X \sim \text{Exp}(\lambda)$, т. е.

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{если } x \geqslant 0, \\ 0, & \text{если } x < 0. \end{cases}$$

Пуассоновским процессом $N = \{N(t), t \ge 0\}$ называется процесс восстановления, построенный по X_1, X_2, \ldots

Для t>0 введем случайные величины

$$X_1^t := S_{N(t)+1} - t;$$

 $X_k^t := S_{N(t)+k}, \quad k \ge 2.$

Лемма 3.6. Для любого t>0 случайные величины $N(t),~X_1^t,~X_2^t,$... являются независимыми, причем $N(t)\sim {\rm Pois}(\lambda t),~X_k^t\sim {\rm Exp}(\lambda)$ для $k=1,2,\ldots$

Доказательство. Чтобы доказать независимость указанных случайных величин, достаточно проверить, что для $\forall n \in \mathbb{Z}_+ \ \forall u_1, \dots, u_k \geqslant 0$ выполнено

$$P(N(t) = n, X_1^t > u_1, \dots, X_k^t > u_k) = P(N(t) = n) P(X_1^t > u_1) \dots P(X_k^t > u_k).$$

Доказываем это индукцией по k.

База индукции: k=1. Напомним (было в курсе теории вероятностей), что случайная величина S_n имеет плотность

$$p_{S_n}(x) = \begin{cases} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!}e^{-\lambda x}, & \text{если } x \geqslant 0; \\ 0, & \text{если } x < 0. \end{cases}$$

Итак,

$$\begin{split} \mathsf{P}(N(t) = n, X_1^t > u_1) &= \mathsf{P}(S_n \leqslant t, S_{n+1} > t, S_{N(t)+1} - t > u_1) = \\ &= \mathsf{P}(S_n \leqslant t, S_{n+1} > t, S_{n+1} > t + u_1) = \mathsf{P}(S_n \leqslant t, S_{n+1} > t + u_1) = \\ &= \mathsf{P}(S_n \leqslant t, S_n + X_{n+1} > t + u_1) = \\ &= \mathsf{P}\left((S_n, X_{n+1}) \in \left\{(x, y) \colon x \leqslant t, x + y > t + u_1\right\}\right) = \\ &\iint\limits_{\substack{x \leqslant t \\ x + y > t + u_1}} p_{(S_n, X_{n+1})}(x, y) \, \mathrm{d}x \, \mathrm{d}y = \left(\text{независимость } S_n \text{ и } X_{n+1}\right) = \\ &= \iint\limits_{\substack{x \leqslant t \\ x + y > t + u_1}} p_{S_n}(x) p_{X_{n+1}}(y) \, \mathrm{d}x \, \mathrm{d}y = \int\limits_{\substack{0 \leqslant x \leqslant t, y \geqslant 0 \\ x + y > t + u_1}} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y = \\ &= (\text{теорема } \Phi \text{убини}) = \int\limits_{0}^{t} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \, \mathrm{d}x \int\limits_{t+u_1-x}^{+\infty} \lambda e^{-\lambda y} \, \mathrm{d}y = \\ &= \int\limits_{0}^{t} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda(t+u_1-x)} \, \mathrm{d}x = e^{-\lambda(t+u_1)} \int\limits_{0}^{t} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} \, \mathrm{d}x = \\ &= \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda t} e^{-\lambda u_1}. \end{split}$$

Положим $u_1 = 0$, получим

$$\mathsf{P}(N(t)=n,X_1^t>0)=\mathsf{P}(N(t)=n)=\frac{(\lambda t)^n}{n!}e^{-\lambda t},\quad n\in\mathbb{Z}_+,$$

т. е. $N(t) \sim \text{Pois}(\lambda t)$. Далее,

$$\mathsf{P}(X_1^t > u_1) = \sum_{n=0}^{\infty} \mathsf{P}(N(t) = n, X_1^t > u_1) = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} \cdot e^{-\lambda u_1} = 1 \cdot e^{-\lambda u_1},$$

т. е. $X_1^t \sim \text{Exp}(\lambda)$ и база установлена.

Индукционный переход: пусть $k \geqslant 2$.

$$\begin{split} \mathsf{P}(N(t) = n, X_1^t > u_1, \dots, X_k^t > u_k) = \\ & \mathsf{P}(S_n \leqslant t, S_{n+1} > t, S_{n+1} > t + u_1, X_{n+2} > u_2, \dots, X_{n+k} > u_k) = \\ & = (\text{cm. предыдущеe}) = \mathsf{P}(N(t) = n) \, \mathsf{P}(X_1^t > u_1) e^{-\lambda u_2} \dots e^{-\lambda u_k} = \\ & = \mathsf{P}(N(t) = n) e^{-\lambda u_1} \dots e^{-\lambda u_k}. \end{split}$$

Снова положим $u_1=\ldots=u_{k-1}=0$ и просуммируем по всем $n\in\mathbb{Z}_+$. Получим $\mathsf{P}(X_k^t>u_k)=e^{-\lambda u_k},$ откуда $X_k^t\sim \mathsf{Exp}(\lambda),$ индукционный переход завершен. \square

Пусть $X_j \sim \text{Exp}(\lambda)$ — интервалы между временами прихода автобусов на данную остановку. Тогда случайная величина $X_1^t = S_{N(t)+1} - t$ соответствует времени ожидания прибытия ближайшего автобуса. Мы только что доказали, что она распределена так же, как и интервалы: $X_1^t \sim \text{Exp}(\lambda)$. Мы будем в среднем ждать автобуса столько же времени, сколько в среднем проходит времени между двумя автобусами. В этом состоит парадокс времени ожидания. Никакого противоречия здесь на самом деле нет, так как сами моменты прихода автобусов также случайные.

Предметный указатель

```
Вырождение, 6
Измеримое
   отображение, 1
    пространство, 1
Множество
    возвратности, 6
    достижимости, 6
Модель Гальтона-Ватсона, 6
Парадокс времени ожидания, 15
Производящая функция, 6
Процесс
    восстановления, 9
    пуассоновский, 13
Пуассоновский процесс, 13
Распределение
    геометрическое, 10
    случайного элемента, 1
Случайное блуждание, 2
    простое, 2
      возвратное, 2
Случайный
    процесс, 1
   элемент, 1
Теорема
    Де ла Валле Пуссена, 12
    Ломницкого-Улама, 2
    Чжуна-Фукса, 6
```