第六章习题答案

1. 简述文法的分类以及相应的定义.

答: 文法分为四类:0型文法、1型文法、2型文法和3型文法。

0型文法: 也称为无约束文法或短语结构文法,其产生式具有

$$\alpha \rightarrow \beta$$

的形式. 其中, $\alpha \in \Sigma^+$ 和 $\beta \in \Sigma^*$. 这类文法对产生式没有任何限制.

1型文法: 也称为上下文有关文法,其产生式具有

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

的形式. 其中, $\alpha_1, \alpha_2 \in \Sigma^*, \beta \in \Sigma^+$ 以及 $A \in N$.

2型文法: 也称为上下文无关文法, 其产生式具有

$$A \rightarrow \beta$$

的形式. 其中, $A \in N$, $\beta \in \Sigma^+$.

3型文法: 也称为有限状态文法或正则文法, 其产生式具有

$$A \rightarrow aB$$
 或 $A \rightarrow b$

的形式. 其中, $A,B \in N, a,b \in T$.

2 李青	₹ 	(NTD	c) #HM	_ (C / D) T	(a, b, a) NBD.		
2. ′与於	S义法G	=(N,I,P,	3), 共甲 N	$= \{S, A, B\}, T =$	={a,b,c}, 以及P:		
(1) S -	$\rightarrow aAc$	$(2) A \to c$	Bb (3) B -	<i>aBa</i> (4) <i>B</i> −	<i>→ b</i>		
1) 文法	去 <i>G</i> 是什	一么型文法	?				
2) 文治	去 <i>G</i> 可り	人生成的语	言是什么?(要求详细推导	过程)		
解:							
	去 G 是二	二型文法.					
2) 文3	生G可じ	生成的语	:言是 <i>L(G</i>) =	$\{aca^nba^nbc n$	= 0.1.2 }		
			п д <i>Д</i> СВ(и) —	(aca ba beja	— 0,1,2, j		
推导过	程如下:	:					
(1)	(2)	(4)					
$S \Longrightarrow aA$	$Ac \Rightarrow acB$	$Bbc \Rightarrow acb$	bc				
G	G	G					
(1)	(2)	(3)	(4)				
$S \Rightarrow aAc \Rightarrow acBbc \Rightarrow acaBabc \Rightarrow acababc$							
G	G	G	G				
(1)	(2)	(3)	(3)	(4)			
$S \Longrightarrow aA$	$Ac \Rightarrow acB$	$Bbc \Rightarrow aca$	Babc ⇒ acaa	$Baabc \Rightarrow acaab$	aabc		
G	G	G	G	G			
(1)	(2)	(3)	(3)	(3)	(4)		
$S \Longrightarrow aA$	$Ac \Rightarrow acB$	$Bbc \Rightarrow aca$	Babc ⇒ acaa	Baabc ⇒ acaaa.	Baaabc ⇒ acaaaba	aabc	
G	G	G	G	G	G		
• • • • • •							
所以,	由文法	G 生成的 i	吾言是				
L(C)	- (a a b b -	aaababa	aa^2ba^2ba	a^3ba^3ba	$aa^nba^nba =0.1.2$	1	
L(G) =	- { <i>acooc</i> ,	acavavc, a	ica va vc,ace	$i \ va \ vc, \cdots \} = \{a$	$ca^nba^nbc \mid n=0,1,2,$	•••}	

3. 已知一个非确定的有限状态自动机 $A=(Q,\Sigma,\delta,q_0,F)$, 其中:

 $Q = \{q_0, q_1, q_2\}, \ \Sigma = \{0,1\}, \ F = \{q_2\}, \ 以及 \delta$:

$$(1) \ \delta(q_0,0) = \{q_0,q_1\} \qquad (2) \ \delta(q_0,1) = \{q_0,q_2\}$$

(2)
$$\delta(q_0, 1) = \{q_0, q_2\}$$

(3)
$$\delta(q_1, 0) = \{q_2\}$$
 (4) $\delta(q_1, 1) = \{q_1\}$

$$(4) \delta(q_1, 1) = \{q_1\}$$

(5)
$$\delta(q_2, 0) = \{q_2\}$$
 (6) $\delta(q_2, 1) = \{q_2\}$

(6)
$$\delta(q_2, 1) = \{q_2\}$$

- 1) 画出该非确定有限状态自动机的状态转移图.
- 2) 构造对应的确定的有限状态自动机,并给出状态转移图. 解:

1) 状态转移表:

符号 状态	0	1
$\cdot q_{\scriptscriptstyle 0}$	$\left\{ \mathbf{\dot{q}}_{\scriptscriptstyle 0}, \mathbf{q}_{\scriptscriptstyle 1} \right\}$	$\left\{ \mathbf{\dot{q}}_{\scriptscriptstyle{0}},\mathbf{\dot{q}}_{\scriptscriptstyle{2}}\right\}$
$q_{_1}$	$q_{_{2\bullet}}$	$q_{_1}$
$q_{_{2ullet}}$	$q_{_{2ullet}}$	$q_{_{2ullet}}$

状态转移图:

- 2) 设所求的确定有限状态自动机 $A' = (Q', \Sigma, \delta', q'_0, F')$, 其可按照以下步骤获得:
- ① A'的初态为[q_0].

② 考虑初始状态 $[q_0]$ 在输入符号为 0, 1 情况下的状态转移情况. 因在 δ 中有 $\delta(q_0,0)=\{q_0,q_1\}$. 而 A 中无对应的转移状态,故新增状态 $[q_0,q_1]$,又因在 δ 中有 $\delta(q_0,1)=\{q_0,q_2\}$,而在 A 中无对应的转移状态,故增加状态 $[q_0,q_2]$,由于 $\{q_0,q_2\}$ 中含有A 的终结状态 q_2 ,故 $[q_0,q_2]$ 为A 的终结状态.

③ 考虑状态[q_0,q_1]在输入符号为 0,1 情况下的状态转移情况. 在 δ 中有

$$\begin{split} & \mathcal{S}(\{q_0,q_1\},0) = \{q_0,q_1,q_2\} \\ & \mathcal{S}(\{q_0,q_1\},1) = \{q_0,q_1,q_2\} \end{split}$$

而在 A[·] 中无对应的转移状态,故新增状态 $[q_0,q_1,q_2]$,由于 $\{q_0,q_1,q_2\}$ 中含有 A 的终结状态 q_2 ,故 $[q_0,q_1,q_2]$ 为 A[·] 的终结状态.

④ 考虑 $[q_0,q_2]$ 在输入符号为0,1情况下的状态转移情况.

$$\begin{split} & \delta(\{q_0,q_2\},0) = \{q_0,q_1,q_2\} \\ & \delta(\{q_0,q_2\},1) = \{q_0,q_2\} \end{split}$$

而在A·中已有状态 $[q_0,q_2]$ 和 $[q_0,q_1,q_2]$,故利用已有的状态.

⑤ 考虑 $[q_0,q_1,q_2]$ 在输入符号为0,1情况下的状态转移情况.

$$\delta(\{q_0, q_1, q_2\}, 0) = \{q_0, q_1, q_2\}$$
$$\delta(\{q_0, q_1, q_2\}, 1) = \{q_0, q_1, q_2\}$$

而在A·中已有状态[q_0,q_1,q_2],故利用已有的状态.

至此, A·中所有的状态已被遍历, 故所得状态转移图即为所求状态转移图.

