CLATMS

- A method for calibrating at least one or more amplifiers (100,200),
 - characterised in:
- 5 i) generating a noise signal (N_a+N_i) produced by said one or more amplifiers (100,200) when no input signal (S_1+N_i) is connected (Alt. 2) to at least one amplifier of said one or more amplifiers (100,200);
- ii) using said noise signal (N_a+N_1) as a calibrating signal for estimating a corresponding gain (G) of said one or more amplifiers (100,200) by measuring (600) at least one output of said one or more amplifiers (100,200) the amount of noise (S_{tot}) of said one or more amplifiers (100,200).
- 15 2. A method for calibrating at least one or more amplifiers (100.200) according to claim 1.
 - c h a r a c t e r i s e d in that further is said gain (G) adjusted in accordance with said calibrating signal.
 - 3. A method for calibrating a receiver (1,2),
- 20 characterised in:
 - i) generating a noise signal (N_a+N_1) produced by one or more amplifiers (100,200) of said receiver when an input signal (S_i+N_1) is disconnected (Alt. 2) to said receiver;
- 25 ii) using said noise signal (N_0+N_1) as a calibrating signal for estimating a corresponding gain (G) of said one or more amplifiers in said receiver by measuring (600) at the output of the receiver the amount of noise $(S_{\rm tot})$ of said one or more amplifiers (100,200).
- A method for calibrating a receiver according to claim
 3,
 - characterised in that further is said gain (G) adjusted in accordance with said calibrating signal.

2.0

- A calibration arrangement (1,2) comprising: one or more amplifiers (100,200) for amplifying a radio signal (S_i+N_i);
- estimating means (600) for estimating a gain (G) of said one or more amplifiers (100,200);
 - c haracter is ed in that disconnecting said radio signal (S_i+N_i) , while at least one amplifier of said one or more amplifiers (100,200) is producing a calibrating signal (N_a+N_i) as a reference signal into said estimating means (600) for estimating said gain (G) of said radio signal (S_i+N_i) .
 - 6. A calibration arrangement (1,2) comprising: one or more amplifiers (100,200) for amplifying a radio signal (S_i+N_i);
- estimating means (600) for estimating a gain (G) of said one or more amplifiers (100,200);
 - characterised in that said calibration arrangement (1,2) further comprises:
 - a switching means (10,30+100) for disconnecting said radio signal (S_i+N_i) , while at least one amplifier of said one or more amplifiers (100,200) is producing a calibrating signal (N_a+N_i) as a reference signal into said estimating means (600) for estimating said gain (G) of said radio signal (S_i+N_i) .
- 25 7. A calibration arrangement (1,2) according to any one of claims 5-6, $c\ h\ a\ r\ a\ c\ t\ e\ r\ i\ s\ e\ d\ in\ that\ said\ calibrating signal\ is\ a\ pure\ noise\ signal\ (N_a+N_i)\ of\ at\ least\ one amplifier\ of\ said\ one\ or\ more\ amplifiers\ (100,200)\ .$
- 30 8. A calibration arrangement (2) according to any one of claims 5-7, $\,$
 - character is ed in that disconnecting said one or more amplifiers (100,200) from said radio signal (S_1+N_1) by disconnecting a power supply (500) from at

20

least one amplifier of said one or more amplifiers (100,200).

- A calibration arrangement (2) according to any one of claims 6-7,
- 5 c haracterised in that said switching means (30+100) is disconnecting said one or more amplifiers (200) from said radio signal (S_1+N_1) by disconnecting a power supply (500) from at least one amplifier of said one or more amplifiers (100,200).
- 10 10. A calibration arrangement (1) according to any one of claims 5-7,

c h ar acter is ed in that disconnecting said one or more amplifiers (100,200) from said radio signal (S_i+N_i) by connecting at least one input of said one or more amplifiers (100,200) to a reference potential (20).

- A calibration arrangement (1) according to any one of claims 6-7,
 characterised in that said switching means
 - (10) is disconnecting said one or more amplifiers (200) from said radio signal (S_1+N_1) by connecting at least one input of said one or more amplifiers (100,200) to a reference potential (20).
- A calibration arrangement (1) according to any one of claims 10-11,
- 25 characterised in that said reference potential is a resistance (20) through ground.
 - A calibration arrangement (1,2) according to any one of claims 5-12,
- characterised in that the calibration arrangement (1,2) further comprises:
 - more than one amplifiers (100+200) in a chain for amplifying said received radio signal (S_1+N_1) .

15

14. A calibration arrangement (1,2) according to any one of claims 6--7,

c h a r a c t e r i s e d in that said switching means (10,30+100) is disconnecting said one or more amplifiers (100,200) from said radio signal (S_i+N_i) by disconnecting at least one input of said one or more amplifiers (100,200) which is closest to where said radio signal (S_i+N_i) is inputted.

- 15. A calibration arrangement (1,2) according to any one of claims 5-14.
 - characterised in that said calibrating signal is a noise power (kTBF) from said one or more amplifiers (100,200) that comprises:
 - a known Boltzman constant (k);
 - a known bandwith (B) of said noise power;
 - a known noise figure of said noise power;
 - a measured temperature (T) of said receiver.
 - A calibration arrangement (1,2) according to any one of claims 5-15,
- characterised in that an output from the last one of said one or more amplifiers (100,200) in a chain is connected to an analog-digital-converter (400) for converting analog signals into digital signals.
- 17. A calibration arrangement (1,2) according to claim 15, c h a r a c t e r i s e d in that said gain (G) of said radio signal (S_1+N_1) is estimated from said calibrating signal (N_a+N_1) including said noise power (kTBF) when an output signal $(S_{\rm tot})$ is measured at least one output of said one or more amplifiers (100,200).
- 30 18. A calibration arrangement (1,2) according to any one of claims 5-16,
 - c h a r a c t e r i s e d in that said gain (G) of said radio signal (S_1+N_1) is estimated from said calibrating

20

signal (N_a+N_i) when an output signal (S_{tot}) is measured at least one output of said one or more amplifiers (100,200).

19. A calibration arrangement (1,2) according to any one of claims 15-16.

c h a r a c t e r i s e d in that said gain (G) of said radio signal (S_1+N_1) is estimated from said calibrating signal (N_a+N_1) when an output signal (S_{tot}) is measured after said analog-digital-converter (400).

10 20. A receiver (1,2) comprising:

means (300) for receiving a radio signal (S_i+N_i) ;

one or more amplifiers (100,200) for amplifying said received radio signal $(S_1 \! + \! N_1)$;

estimating means (600) for estimating a gain (G) of said receiver (12):

c h a r a c t e r i s e d in that said receiver further comprises:

a switching means (10,100) for disconnecting said received signal (S_i+N_i) , while at least one amplifier of said one or more amplifiers (100,200) is producing a calibrating signal (N_a+N_i) as a reference signal into said estimating means (600) for estimating said gain (G) of said radio signal (S_i+N_i) .

- 21. A receiver (1,2) according to claim 20,
- 25 characterised in that said calibrating signal is a pure noise signal (N_a+N_1) of at least one amplifier of said one or more amplifiers (100,200).
- 22. A receiver (1) according to any one of claims 20-21, c h a r a c t e r i s e d in that said switching means (10) is disconnecting said radio signal (S₁+N₁) by connecting at least one input of said one or more amplifiers (100) to a reference potential (20).

20

25

- 23. A receiver (1) according to claim 22, characterised in that said reference potential is a resistance (20) through ground.
- 24. A receiver (2) according to any one of claims 20-21, characterised in that said switching means (100) is disconnecting said one or more amplifiers (100,200) from said radio signal (S_i+N_i) by disconnecting a power supply (500) from at least one amplifier of said one or more amplifiers (100,200).
- 10 25. A receiver (1,2) according to any one of claims 20-24, characterised in that the receiver (1,2) further comprises:

 more than one amplifiers (100+200) in a chain for

amplifying said received radio signal (S_i+N_i) .

- 15 26. A receiver (1,2) according to any one of claims 20-25, characterised in that said calibrating signal is a noise power (kTBF) from said one or more amplifiers (100,200) that comprises:
 - a known Boltzman constant (k);
 - a known bandwith (B) of said noise power;
 - a known noise figure of said noise power;
 - a measured temperature (T) of said receiver.
 - 27. A receiver (1,2) according to any one of claims 20-26, character is ed in that an output from the last one of said one or more amplifiers (200) in a chain is connected to an analog-digital-converter (400) for converting analog signals into digital signals.
- 28. A receiver (1,2) according to claim 26, $c \ h \ a \ r \ a \ c \ t \ e \ r \ i \ s \ e \ d \ in \ that \ said \ gain \ (G) \ of \ said$ $received \ radio \ signal \ (S_1+N_1) \ is \ estimated \ from \ said$ $calibrating \ signal \ (N_0+N_1) \ including \ said \ noise \ power$ $(kTBF) \ when \ an \ output \ signal \ (S_{tot}) \ is \ measured \ at \ least$ $one \ output \ of \ said \ one \ or \ more \ amplifiers \ (100,200) \, .$

10

~ ·2 ·

- 29. A receiver (1,2) according to any one of claims 20-27, c h a r a c t e r i s e d in that said gain (G) of said received radio signal (S_1+N_1) is estimated from said calibrating signal (N_a+N_1) when an output signal (S_{tot}) is measured at least one output of said one or more amplifiers (100,200).
- 30. A receiver (1,2) according to any one of claims 20-27, character is edin that said gain (G) of said received radio signal (S_1+N_1) is estimated from said calibrating signal (N_0+N_1) when an output signal (S_{tot}) is measured after said analog-digital-converter (400).