Simple Sample

My Name 2024-10-27

1 Coordenadas no Espaço e Vetores no \mathbb{R}^3

1.1 Plano

1.2 Espaço

Exemplo: Localize no Espaço os pontos P=(1,2,3)e Q=(1,-2,3) Gráfico 3D de um vetor no espaço

1.3 Distancias entre pontos

Exemplo: $E \in \mathbb{R}$, descreva os pontos dados pelas equações:

a.
$$x = 5$$

b.
$$y = 3$$

c.
$$x^2 + y^2 = 1$$
 $d((x, y)(0, 0)) \rightarrow \sqrt{(x - 0)^2 + (y - 0)^2} = 1$
 $\leftrightarrow \sqrt{x^2 + y^2} = 1 \leftrightarrow x^2 + y^2 = 1$

Exemplo: Que superficie em R^3 é representada pela seguinte equação?

a
$$\gamma = 3$$

A equação z = 3 representa o conjunto $\{(x, y, z)/z = 3\}$

b. y = 5

A equação y=5 representa um conjunto de todos os pontos do espaço que tem 2^{0} coordenadas igual a 5.

1.3.1 Formula de Distancias

Figure 1: Descrição da imagem

1.4 Esfera:

Definição Uma esfera de centro (a,b,c) e raio r é o conjunto de todos os pontos no espaço que estão a uma distancia e do ponto (a,b,c) e é descita por:

$$\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} = r^2 \leftrightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 \tag{1}$$

Exemplo: Mostre que $x^2+y^2+z^2+4x-6y+2z+6=0$ é a equação de uma esfera. Identifique seu centro e raio. Solução: Podemos reescrever a e f fornecendo o seguinte modo. $x^2+4x+y^2-6y+z^2+2z+6=0 \leftrightarrow (x+2)^2-4+(y-3)^2-9+(z+1)^2-1+6=0$

 $(x+2)^2+(y-3)^2+(z+1)^2=8 \leftrightarrow (x-(-2))^2+(y-3)^2+(z-(-1))^2=8$ Assim, a e f dado descreve os pontos da esfera de contro (-2,3,-1) e o raio $r=\sqrt{8}$ Exercicio: Determine a região em $\mathbb R$ decrita pelas inequações: $1\leq x^2+y^2+z^2\leq 4$ e $z\geq 0$ Exemplo: $E\in\mathbb R$ qual é a superficie decrita pela equação $x^2+y^2=1$.

03.10.2024

Exemplo: Localize no \mathbb{R}^2 os pontos que satisfazem:

a.
$$(x-1)^2 + (y-2)^2 = 1$$
 e $z = 3$

b.
$$(x-4)(z-2)=0$$
 R: Note que $(x-4)(z-2)=0$ ocorre $\leftrightarrow x-4=0$ ou $z-2=0 \leftrightarrow x=4$ ou $z=2$

Exemplo: Srjam P=(-5,2,3) e Q=(3,4,-1). Determine a esuqeção da esfera que tem \overline{PQ}

Pmédio =
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right) P_u = u + \frac{1}{2}v = (x_1, y_1) + \frac{1}{2}(x_2 - x_1)(y_2 - y_1) = \left(\frac{x_2+x}{2}, \frac{y_2+y_1}{2}\right)$$

1.5 Vetores

Definição: Dados 2 pontos A ou B em \mathbb{R}^3 ou \mathbb{R}^2 , o segmento orientado a \overrightarrow{AB} é o segmento com ponto incicial A, ponto final V e orientado de $A \to B$. **Definição:** Um segmento não nulo de \overrightarrow{AB} é equivalente a \overrightarrow{CD} ou \overrightarrow{AB} e \overrightarrow{CD} tem o mesmo comprimento e direção e sentido Dados dois segmentos orientados \overrightarrow{AB} e \overrightarrow{BC} , definimos: a soma de $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ Em geral, sejam u e v dois segmentos orientados. Para determina u+v, podemos seguir uma das duas abordagens:

FIGURA 12.12 (a) Interpretação geométrica do vetor soma. (b) A regra do paralelogramo da adição de vetores.

Figure 2: Descrição da imagem

Dado um segmento u de reta orientado \overrightarrow{AB} , existe um segmento de reta orientado \overrightarrow{v} , equiavalente a \overrightarrow{AB} e com ponto inicial em (0,0,0). Para especificiar \overrightarrow{v} precisamos apenas fornecer as coordenadas de um ponto final (a,b,c). De modo geral, o vetor $\overrightarrow{v}=\langle x,y,z\rangle$ é definido como o segmento de reta orientada com ponto inicial em (0,0,0) e ponto final (x,y,z).

Observação: Sejam u=< x,y,z> e $v=< x_2,y_2,z_2>$. Então: $u=v\leftrightarrow \{x_1=x_2$

 $y_1 = y_2$
 $z_1 = z_2$

Observação: Dados $A=(x_1,y_1,z_1)$ e $B=(x_2,y_2,z_2)$, o vetor equivalente a \overrightarrow{AB} (ou vetor com representação \overrightarrow{AB}). $v=< x_2-x_1,y_2-y_1,z_2-z_1>$.

Exemplo: Dados $A=\underbrace{(1,4,0)},\ B=(-1,1,-1)$ e C=(3,5,-10), encontre o vetor \overrightarrow{v} equivalente a \overrightarrow{AB} e as coordenadas do ponto D tal que $\overrightarrow{CD}=\overrightarrow{v}$ Solução: Segue se $v=< x_2-x_1, y_2-y_1, z_2-z_1>$ que v=<-1-(1), 1-(4), -1-(0)>=<-2, -3, -1>. Queremos encontrar D=(a,b,c) de tal modo que \overrightarrow{v} seja equiavalente a \overrightarrow{CD} . $<-2, -3, -1>=< a-3, b-5, c-(-10)>\leftrightarrow a-3=-2\to a=1b-5=-3\to b=2c+10=-1\to c=-11$

1.5.1 Operação com Vetores

Soma: Sejam $\overrightarrow{u}=< x_1,y_1,z_1>$ e $\overrightarrow{v}=< x_2,y_2,z_2>$. Definimos a soma $\overrightarrow{u}+\overrightarrow{v}$ por $\overrightarrow{u}+\overrightarrow{v}=< x_1+x_2,y_1+y_2,z_1+z_2>$.

Produto Escalar: Seja $k \in \mathbb{R}$ e $\overrightarrow{u} = \langle x_1, y_1, z_1 \rangle$. Definimos o produto $k * \overrightarrow{u} = \langle kx_1, ky_1, kz_1 \rangle$.

Comprimento: O comprimento de $\overrightarrow{u} = \langle x_1, y_1, z_1 \rangle$ é $||\overrightarrow{u}|| = \sqrt{x_1^2, y_1^2, z_1^2}$

08-10-2024

Exemplo:

$$\overrightarrow{v} = <4, 0, 3 > e\overrightarrow{v} = <-2, 1, 5 >$$

. Determine:

a.

b.

$$\overrightarrow{u} - 2\overrightarrow{v}$$

$$<4,0,3>+(-2)<-2,1,5>$$

1.5.2 Propriedades:

Sejam \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} vetores do \mathbb{R} e $a,b\in\mathbb{R}$. Então:

a.
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$

b.
$$(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$$

c.
$$\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$$

d.
$$\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$$

e.
$$a(\overrightarrow{u} + \overrightarrow{v}) = a\overrightarrow{u} + a\overrightarrow{v}$$

f.
$$(a+b)\overrightarrow{u} = a\overrightarrow{u} + b\overrightarrow{u}$$

g.
$$(ab)\overrightarrow{u} = a(b\overrightarrow{u})$$

h.
$$1\overrightarrow{u} = \overrightarrow{u}$$

1.5.3 Propriedades (Normas):

a.
$$\|\overrightarrow{u}\| \geq$$
e $\|\overrightarrow{u}\| = 0 \leftrightarrow \|u\| = \|0\|$

b.
$$||k\overrightarrow{u}|| = |k| ||\overrightarrow{u}||$$

c.
$$\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\| \quad \text{(designaldade do triângulo}$$

Obs: Dado $\vec{u} = \vec{0}$, posso obter um novo vetor que é nulo.

Temos
$$\vec{u} = \frac{\vec{u}}{\|\vec{u}\|}$$
, que
$$\|\vec{u}\| = 1 \implies \|\lambda \vec{u}\| = \|\vec{u}\| = K\|\vec{u}\|$$
$$= 1 \implies K = \frac{1}{\|\vec{u}\|}$$

Em \mathbb{R}^3 , demonstremos por:

$$\vec{i} = \langle 1, 0, 0 \rangle$$
$$\vec{j} = \langle 0, 1, 0 \rangle$$
$$\vec{k} = \langle 0, 0, 1 \rangle$$

Dai, seja $\langle x, y, z \rangle \in \mathbb{R}^3$ então: TA ERRADO $\langle \vec{x}, \vec{x} \rangle = x \langle \vec{e}_1, \vec{e}_1 \rangle + y \langle \vec{e}_1, \vec{e}_1 \rangle + z \langle \vec{e}_1, \vec{e}_1 \rangle$ $\vec{e}_i \in \{(1,0,0), (0,1,0), (0,0,1)\}$ $\Rightarrow \vec{x} \cdot \vec{x} = x^2 + y^2 + z^2$ Produto escalar Def: Sejam $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$. Definimos o produto escalar (interno) $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$.

2 Plano no R^3

3 pontos não colineares no espaço só definem um plano. Seja π um plano no espaço, $P=(x_0,y_0,z_0)$ um ponto em π e $\overrightarrow{n}=< a,b,c>$ um vetor ortogonal a π . Isto é, $\overrightarrow{n}*\overrightarrow{QR}=0$, quaisquer que sejam Q e R em π

Se Q=(x,y,z) em π então $\overrightarrow{PQ}=< x-x_0, y-y_0, z-z_0>$ é ortogonal a \overrightarrow{n} , isto é:

$$< x - x_0, y - y_0, z - z_0 > * < a, b, c > = 0 \leftrightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
(2)

(2) equação vetorial de π

Podemos então reescrever (2) como:

$$ax + by + xz = ax_0 + by_0 + cz_0 - > d \leftrightarrow ax + by + cz = d$$

$$\tag{3}$$

(3) equação geral de π

Exemplo: Escreva a equação do plano que contém $P=(1,1,-2),\ Q=(0,2,1)$ e R=(-1,-1,0)

Para determinar um vetor ortogonal ao plano, basta tomar o produto vetorial $\overrightarrow{n}=\overrightarrow{PQ}*\overrightarrow{PR}=<-1,1,3>*<-2,-2,2>$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 3 \\ -2 & -2 & 2 \end{vmatrix}$$

= < 8, -4, 4 >

Daí, a equação vetorial do plano que contem P, Q e R é: 8(x-1)-4(y-1)+4(z+2)=0. A equação geral é $8x-4y+4z=8-4-8=-4 \leftrightarrow 8x-4y+8z=-4$

Exemplo: Somente a equação do plano que passa por (1,4,3) e contém a reta:

$$x = \frac{y-1}{2} = z+1 \tag{4}$$

1º Solução: Percebe que $P=(1,4,3),\,Q=(0,1,-1)$ e R=(1,3,0) pertecem ao plano $\pi.$

2.1 Distracia entre um ponto e um plano

Trocando po P uma reta paralela ao vetor normal, (\overrightarrow{n}) ao plano e denotando por R o ponto onde tal reta interecepta o plano π , definindo a distância de P em π por: $d = ||\overrightarrow{RP}|| = ||P - R||$

Assim,
$$d = ||Proj_{\overrightarrow{n}}||Pro$$