

Description

The FDN338P is the high cell density trenched P-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications.

The FDN338P meet the RoHS and Green Product requirement with full function reliability approved.

- Green Device Available
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology

Product Summary

Vps	-20	V
RDS(ON),typ	89	mΩ
lo	-3	Α

SOT23 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	-20	V
Vgs	Gate-Source Voltage	±12	V
Id@Ta=25°C	Continuous Drain Current, Vgs @ -4.5V1	-3	А
Id@Ta=70°C	Continuous Drain Current, Vgs @ -4.5V1	-2.4	А
Ідм	Pulsed Drain Current2	-12	А
Pb@Ta=25°C	Total Power Dissipation3	1	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
RеJA	Thermal Resistance Junction-ambient 1		125	°C/W
Reuc	Thermal Resistance Junction-Case ₁		80	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVpss	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-20			V
Process	Static Drain-Source On-Resistance2	Vgs=-4.5V , ID=-3A		89	100	m()
RDS(ON)	Static Dialii-Source Off-Resistance2	Vgs=-2.5V , ID=-2A		130	140	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =-250uA	-0.3	-0.5	-1.0	V
Ipss	Drain Source Leakage Current	V _{DS} =-16V , V _{GS} =0V , T _J =25°C			-1	uA
IDSS	Drain-Source Leakage Current	V _{DS} =-16V , V _{GS} =0V , T _J =55°C			-5	uA
lgss	Gate-Source Leakage Current	Vgs=±12V, Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-3A		12.2		S
Qg	Total Gate Charge (-4.5V)			10.1		
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V , I _D =-3A		1.21		nC
Qgd	Gate-Drain Charge			2.46		
Td(on)	Turn-On Delay Time			5.6		
Tr	Rise Time	V_{DD} =-10 V , V_{GS} =-4.5 V , R_{G} =3.3 Ω		32.2		
Td(off)	Turn-Off Delay Time	ID=-3A		45.6		ns
Tf	Fall Time			29.2		
Ciss	Input Capacitance			677		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		82		pF
Crss	Reverse Transfer Capacitance			73		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current _{1,4}	Vg=VD=0V, Force Current			-3	Α
Vsb	Diode Forward Voltage ₂	Vgs=0V , Is=-1A , T _J =25°C			-1	V

Note:

^{1.}The data tested by surface mounted on a 1 inch₂ FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$

^{3.}The power dissipation is limited by 150 °C junction temperature

^{4.} The data is theoretically the same as I_D and I_{DM}, in real applications, should be limited by total power dissipation.

FDN338P

P-Ch 20V Fast Switching MOSFETs

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

-V_{GS}

Qg

Fig.10 Switching Time Waveform

Fig.11 Gate Charge Waveform

Ordering Information

Part Number	Package code	Packaging
FDN338P	SOT-23	3000/Tape&Reel

C	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950	TYP	0.037	TYP
e1	1.800	2.000	0.071	0.079
L	0.550 REF		0.022	REF
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°