Apellidos_	Nombre_	
· –		

1.- (3.5 *puntos*)

a) Obteniendo la expresión de I_L como función de v_i , demostrar que el siguiente circuito con A.O. ideal (trabajando en la región lineal) se comporta como una fuente de corriente ideal para la carga R_L , con corriente nominal proporcional al voltaje de entrada, v_i .

Grupo___

b) Deducir las corrientes suministradas por la fuente de tensión v_i y por el A.O en función de R y R_L .

2.- (3 puntos) En el circuito de la figura los diodos rectificadores de unión D_1 y D_2 tienen idénticas características, con tensión umbral de conducción de valor $V\gamma$ y resistencia dinámica despreciable ($R_d=0$). Calcular la característica de transferencia (v_o como función de v_i) para todos los posibles valores de v_i , indicando claramente los intervalos de validez de cada tramo (en v_i) y esbozándola gráficamente.

- 3.- (3.5 puntos) Considerando que el AO del circuito es ideal
 - a) Obtener la expresión de la ganancia en voltaje del circuito en forma módulo argumento.
 - b) Obtener la frecuencia o frecuencias de corte del filtro, así como el valor máximo del módulo de la ganancia y representar el diagrama de Bode de la ganancia (plantilla adjunta). Usando <u>sólo</u> para este apartado los siguientes valores de los elementos pasivos:

$$C=120nF; R_{1}=1k\Omega; \; R_{2}=30k\Omega; \; R_{3}=4k\Omega.$$

