COMP90051 Statistical Machine Learning Semester 2, 2015

Revision

About these Slides

 The aim of these slides is to provide a summary of topics covered in this subject. The slides are NOT a direct indication of the final exam.

- Bayes rule
- Independence
- Expectation
- Bias
- Variance
- Risk analysis (expected loss)

Week 1 cont...

- Supervised vs. Unsupervised
- Parametric vs. Non-Parametric
- Generative vs. Discriminative
 - Model full joint P(X, Y)
 - Model conditional P(Y|X) only
- Frequentist vs. Bayesian

- Linear regression
 - * Model representation: $h_w(x) = \sum_{j=0}^n (w_j x_j) = w'x$
 - * Cost function: $J(\mathbf{w}) = \sum_{i=1}^{m} (h_w(\mathbf{X}_i) y_i)^2$
- Logistic regression
 - Model representation
 - $h_w(\mathbf{x}) = g(\mathbf{w}'\mathbf{x})$
 - $g(z) = \frac{1}{1 + e^{-z}}$
 - * Cost function
 - $y = \{0, 1\}$
 - $J(\mathbf{w}) = \sum_{i=1}^{m} [-y_i \log(h_w(X_i)) (1 y_i) \log(1 h_w(X_i))]$

Bias vs Variance

Week 2 cont...

- Bias vs Variance
 - * Under fitting → High Bias
 - Ver fitting → High Variance
- Regularization
- Linear Regression

$$J(w) = \sum_{i=1}^{m} (h_w(X_i) - y_i)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

Logistic Regression

$$J(\mathbf{w}) = \sum_{i=1}^{m} \left[-y_i \log(h_w(X_i)) - (1 - y_i) \log(1 - h_w(X_i)) \right] + \lambda \sum_{j=1}^{n} w_j^2$$

- Ensemble Learning
 - Reduce variance: results are less dependent on peculiarities of a single training set
 - Reduce bias: a combination of multiple classifiers may learn a more expressive concept class than a single classifier
 - ★ Generally, more diverse → more accurate
- Bagging vs Boosting

Bagging: Resampling

- Bagging reduces variance by averaging
- Bagging has little effect on bias
 - * BUT, it generally won't cause bias.
- Each base classifier is trained on less real data
- Works better with unstable classifiers

Boosting

- Require classifiers that can handle weighted instances
 - * E.g. C4.5 fractional instances
- "hard" instances have higher weights.
- In Bagging, models are built separately.
- In Boosting, models are built iteratively.

- Conditional independence
- Naïve Bayes
- PGM
 - * Representation
 - * CPT
 - Conditional independence in PGMs

Examples

- Are X and Z independent? No
- . Is Z independent of X given Y? Yes

$$P(Z|X,Y) = P(Z|Y)$$

Common cause

- Are *X* and *Z* independent? No
- Are they conditionally independent given *Y*?

Common effect

- Are X and Z independent? Yes
- Are they conditionally independent given Y?

No

- PGM inference
 - * Enumeration
 - * Variable elimination algorithm
 - Steps
 - Complexity analysis
 - Graph reconstruction
 - Cliques

PGM: Model Representation

- Directed acyclic graph
- Conditional probability table (parameters)

Compact: just 10 rows vs 31 rows in a full joint table!

- Undirected PGMs
 - Representation
 - Joint factors as product of clique potentials
 - Normalise joint factors
- Markov property
- Applications
- Directed PGMs vs Undirected PGMs

- Learning ≈ optimisation
 - Find model parameters that minimise discrepancy with training data
- Gradient descent
 - Convergence guaranteed for convex functions
 - Convergence sensitive to learning rate
- Newton-Raphson method
- Regularisation

Week 6 and Week 7

- Artificial Neural Network
 - * Model representation
 - Perceptron Model

- x_1, x_2 inputs
- w_1 , w_2 synaptic weights
- w_0 bias weight
- f transfer function

$$h_w(x)$$

Model Representation

 $a_i^j = \text{activation of unit } i \text{ in layer } j$

 $W^j = \text{matrix of weights}$ from layer j to j+1

Layer1

Layer2

Layer3

$$a_1^2 = f(W_{10}^1 x_0 + W_{11}^1 x_1 + W_{12}^1 x_2)$$

$$a_2^2 = f(W_{20}^1 x_0 + W_{21}^1 x_1 + W_{22}^1 x_2)$$

$$a_3^2 = f(W_{10}^2 a_0^2 + W_{11}^2 a_1^2 + W_{12}^2 a_2^2)$$

If #units in layer $j = s_j$ #units in layer $j + 1 = s_{j+1}$ then, $W^j = (s_j + 1) \times s_{j+1}$

- SVMs
 - Maximum Margin
- A hyperplane is characterised by a normal \vec{w} and offset b:

$$\text{margin} = \frac{2}{||\vec{w}||}$$

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1\\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

Non-Linear SVM

Attribute transformation

- Kernel trick
 - * Kernel = Similarity function
 - Computing similarity in the transformed space using the original attributes

Regularisation and Parameters

- $C = \frac{1}{\lambda}$
 - * Large C: Lower bias, high variance
 - * Small C: Higher bias, low variance.
- \bullet σ^2
 - * Large σ^2 : Features vary more smoothly. Higher bias, lower variance.
 - * Small σ^2 : Features vary less smoothly. Lower bias, higher variance.

- Unsupervised learning
 - * Clustering
 - Association rules mining
- Dimensionality reduction
 - * PCA
 - Reduce #features
 - k-principal components
 - select dimensions that max variance
 - * MDS

- Clustering analysis
 - * Hard clustering: Each document belongs to exactly one cluster
 - Soft clustering: A document can belong to more than one cluster.
- Major Clustering Approaches
 - * <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criterion
 - Hierarchical algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Density-based algorithms: based on connectivity and density functions
 - Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other
 - Probabilistic Clustering: Rather than identifying clusters by "nearest" centroids, fit a Set of k Gaussians to the data

Major Clustering Approaches

- <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criterion
- Hierarchical algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- <u>Density-based algorithms</u>: based on connectivity and density functions
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other
- <u>Probabilistic Clustering</u>: Rather than identifying clusters by "nearest" centroids, fit a Set of *k* Gaussians to the data

Exclusive vs. overlapping clustering

Exclusive (hard clustering,

partition of a set)

Overlapping (fuzzy clustering, soft clustering)

Deterministic clustering is a combinatorial problem

Deterministic vs. probabilistic clustering

Overlapping deterministic

Object	Cluster membership			
1	2			
2	1, 3			
3	4			

Exclusive deterministic

Object	Cluster membership			
1	2			
2	1			
3	4			

Probabilistic

Object	Cluster				
	1	2	3	4	
1	0.01	0.87	0.12	0.00	
2	0.05	0.25	0.67	0.03	
3	0.00	0.98	0.02	0.00	

- Social network analysis
- Community detection algorithms
 - * Edge betweenness
 - * Modularity score
 - * Clique percolation

Edge Betweenness

Girvan-Newman Method

- Remove the edges of highest betweenness first.
- Repeat the same step with the remainder graph.
- Continue this until the graph breaks down into individual nodes.

As the graph breaks down into pieces, the tightly knit community structure is exposed.

Modularity based community detection

- Modularity is a measure that indicates how unexpected a set of communities are
 - * The more unexpected, the more likely those communities are inherent ones
- Note that any random arrangement of graph will result in some form of communities
- Modularity measures the extent of deviation from randomness

Clique Percolation Method CPM?

- Method to find <u>overlapping</u> communities
- Based on concept:
 - internal edges of community likely to form cliques
 - Intercommunity edges unlikely to form cliques
- Clique: Complete graph
 - * k-clique: Complete graph with k vertices

- Semi-supervised learning
 - Training with instances, some of which are labelled
 - * Self-training
 - Co-training
- Active-learning
 - * Iteratively request labels and use the model (trained thus far) to do so
 - Sampling strategies
 - Query strategies