Exercise. Show that any 3- form on $T_p \mathbf{R}^4$ can be written as the product of three 1-forms.

Proof. Any three form on $T_p \mathbf{R}^4$ can be expressed as

$$a_1 dx \wedge dy \wedge dz + a_2 dx \wedge dy \wedge dw + a_3 dx \wedge dz \wedge dw + a_4 dy \wedge dz \wedge dw. \tag{1}$$

(1) is equivalent to

$$dx \wedge (a_1 dy \wedge dz + a_2 dy \wedge dw + a_3 dz \wedge dw) + a_4 dy \wedge dz \wedge dw. \tag{2}$$

We know that there exists p_1, p_2, p_3 and q_1, q_2, q_3 , such that

$$a_1dy \wedge dz + a_2dy \wedge dw + a_3dz \wedge dw = (p_1dy + p_2dz + p_3dw) \wedge (q_1dy + q_2dz + q_3dw),$$

so

$$dx \wedge (a_1 dy \wedge dz + a_2 dy \wedge dw + a_3 dz \wedge dw) + a_4 dy \wedge dz \wedge dw$$

= $dx \wedge (p_1 dy + p_2 dz + p_3 dw) \wedge (q_1 dy + q_2 dz + q_3 dw) + a_4 dy \wedge dz \wedge dw.$

For the intersection of any two three dimensional subspace of a four dimensional linear space exists and the intersection is a two dimensional subspace of the four dimensional space, so when (p_1, p_2, p_3) and (q_1, q_2, q_3) are linearly independent, then there exists n_1, n_2, n_3 such that

$$dy \wedge dz \wedge dw = (p_1 dy + p_2 dz + p_3 dw) \wedge (q_1 dy + q_2 dz + q_3 dw) \wedge (n_1 dy + n_2 dz + n_3 dw).$$

So

$$dx \wedge (a_1 dy \wedge dz + a_2 dy \wedge dw + a_3 dz \wedge dw) + a_4 dy \wedge dz \wedge dw = dx \wedge (p_1 dy + p_2 dz + p_3 dw) \wedge (q_1 dy + q_2 dz + q_3 dw) + a_4 dy \wedge dz \wedge dw = (p_1 dy + p_2 dz + p_3 dw) \wedge (q_1 dy + q_2 dz + q_3 dw) \wedge (dx + a_4 n_1 dy + a_4 n_2 dz + a_4 n_3 dw).$$

When (q_1, q_2, q_3) and (p_1, p_2, p_3) are linearly dependent, then

$$dx \wedge (a_1 dy \wedge dz + a_2 dy \wedge dw + a_3 dz \wedge dw) + a_4 dy \wedge dz \wedge dw$$

= $a_4 dy \wedge dz \wedge dw$.