

MBECN: Enabling ECN with Microburst in Multi-queue Datacenter

Kexi Kang

Southeast University

Outline

- Background & Motivation
- Analysis
- Solution
- Evaluation
- Conclusion

Data Center Network (DCN)

- Intra DC
 - Distributed applications
 - High throughput & Low latency

Multi-queue Data center

- Why Multi-queue?
 - Multi-queue Switch in industry
 - Multi-queue to isolate cloud services
- Main principle
 - Weighted Fair Share
- Main method
 - AQM (Active Queue Management)

Standard ECN marking in DCNs

Standard ECN marking

- DCTCP, ECN*, DCQCN,
- Single ECN threshold, Instant queue length
 - If Qlen > K, mark packets with ECN
- Senders slow down according to ECN feedbacks
 Widely use
 low latency
 high throughput
 Sender 1
 Switch

Sender 2

Receiver

Micro-burst in DCN

- Reducing CPU overhead: batching
 - Large Segment Offload: TSO, GSO
 - Receive Side Offload: RSC, LRO, GRO
 - Interrupt Coalescing (IC)
 - Jumbo Frame

— . . .

Micro-burst in DCN

 One minute averages hide these short bursts.

Outline

- Background & Motivation
- Analysis
- Solution
- Evaluation
- Conclusion

Micro-burst causes serious queue oscillations

Micro-burst causes serious mismarkings

 Micro-burst causes serious buffer underflow

 Serious buffer underflow results in throughput loss

How to set ECN threshold

- Higher ECN threshold
 - Enough room to absorb micro-burst

- Dynamic ECN threshold
 - Adapt to dynamic network
 - Deal with packet backlog

Outline

- Background & Motivation
- Analysis
- Solution
- Evaluation
- Conclusion

Model

Two basic constraints

$$-q_{min}^{j}(t) \le K_{j} \le q_{max}^{j}(t)$$

Enough room to absorb micro-burst

$$-q_{min}^j(t) \ge 0$$

Avoid queue underflow

- Two lemmas
 - Packets distribution based on ON/OFF pattern

Lemma 1

$$q_{min}^{j}(t) = Nw_{i}(t) - \theta_{j}Cd - NB_{i}(t)$$

Lemma 2

$$q_{max}^{j}(t) = Nw_{i}(t) - \theta_{j}Cd - (\theta_{j}\frac{c}{c_{i}} + 1)B_{i}(t)$$

- ECN*
 - Based on two constraints and two lemmas

$$K_j^{bound} = \frac{(1+\beta)N-2\Phi\beta}{N(1-\beta)}\theta_j Cd$$

– Where
$$\Phi = \theta_j \frac{c}{c_i} + 1$$

DCTCP

Based on two constraints and two lemmas

$$\boldsymbol{K_{j}^{bound}} = \begin{cases} \frac{(N - \Phi\beta)^{2}}{8\beta} + \frac{\beta(N - \Phi)}{N(1 - \beta)} \theta_{j}Cd & if \ w^{*} \leq \frac{K_{j} + \theta_{j}Cd}{N(1 - \beta)} \\ \frac{\Psi + \sqrt{\Psi^{2} + 8\theta_{j}Cd\Psi}}{4} & if \ w^{*} > \frac{K_{j} + \theta_{j}Cd}{N(1 - \beta)} \end{cases}$$

- Where
$$\Phi = \theta_j \frac{c}{c_i} + 1$$
, $\Psi = N(N - \Phi)(1 - \beta)$

$$w^* = \frac{N - \Phi\beta}{8\beta} + \frac{\theta_j Cd + K_j}{N - \Phi\beta}$$

MBECN—Threshold Baseline

Base on ideal GPS model

- When
$$\sum K_j^{bound} > K_{port}$$

$$K_j^{baseline} = K_j^{bound} - \theta_j \times (\sum K_j^{bound} - K_{port})$$

- When $\sum K_j^{bound}$ ≤ K_{port}

$$K_{j}^{baseline} = K_{j}^{bound} + \theta_{j} \times (K_{port} - \sum K_{j}^{bound})$$

MBECN—Threshold Baseline

- Why need to tune the threshold?
 - Queue isolations
 - Avoid mismatch between input rate and output rate

- Aim to fully utilize the room buffer
- Predefine:
 - K_j^{room} : The room buffer of $queue_j$ If $q_j \ge K_j, K_j^{room} = 0$; If $q_j < K_j, K_j^{room} = K_j - q_j$
 - K_j^{over} : The part of $queue_j$ overflow If $q_j \ge K_j$, $K_j^{over} = q_j K_j$; If $q_j < K_j$, $K_j^{over} = 0$

Heuristic algorithm

1) When $q_j > K_j$ and $\sum q_j \geq K_{port}$,

$$K_j^{new} = K_j^{baseline} + \frac{q_j}{\sum q_j} \times \sum K_j^{room}$$

2) When $q_j \leq K_j$ and $\sum q_j \geq K_{port}$,

$$K_j^{new} = q_j + \frac{q_j}{\sum q_j} \times \sum K_j^{room}$$

3) When $q_j > K_j$ and $\sum q_j < K_{port}$,

$$K_j^{new} = q_j - \frac{q_j}{\sum q_i} \times \sum K_j^{over}$$

4) When $q_j \leq K_j$ and $\sum q_j < K_{port}$,

$$K_j^{new} = K_j^{baseline} - \frac{q_j}{\sum q_j} \times \sum K_j^{over}$$

 Could dynamical threshold bring extra latency?

Reasons:

- Expand threshold for high-load queues
 - More scheduling time or rounds
- Heuristic algorithm needs several CPU cycles

Outline

- Background & Motivation
- Analysis
- Solution
- Evaluation
- Conclusion

Evaluations

- Large-scale Simulations
 - NS-2
 - Realistic workload

- Testbed Experiments
 - Server-emulated Switch
 - Realistic workload

Simulations

- Topology
 - 144 hosts, 12 leaf (ToR) switches and 6 spine (Core) switches.

Simulations-Throughput

(a) Throughput with DCTCP and dif-(b) Throughput with ECN* and differferent flow number ent flow number

Simulation-FCT with DCTCP

(b) (0, 100KB]: Average

(c) (100KB, 10MB]: Average

(d) (10MB, \propto): Average

Simulation-FCT with ECN*

Testbed Experiment

- Topology
 - 8 senders, 1 receiver, 1 server-emulated switch

Testbed-Throughput

(a) Throughput in balanced traffic (b) Throughput in unbalanced traffic

Testbed-FCT with DCTCP

1.3

1.2

(a) Overall: Average

(b) (0, 100KB]: Average

(c) (100KB, 10MB]: Average

(d) (10MB, \propto): Average

Testbed-FCT with ECN*

(a) Overall: Average

(b) (0, 100KB]: Average

(c) (100KB, 10MB]: Average

(d) (10MB, \propto): Average