$$f(x) = x^3 - 3x + 1 \qquad T = \mathbb{R}$$

$$f'(x) = 3x^2 - 3$$

× I	- 10	-1	+1	+00
el	+	•	- 6	+
		3,		7
-			7-1	_

$$f(-1) = (-1)^3 - 3(-1) + 1 = -1 + 3 + 1 = 3$$

$$f(1) = 1 - 3 + 1 = -1$$

Ex 87

x est toujours positif sur I

e * est tovjour positif sur I

Done x+e-x est torjav positit sur I.

Tobles de variations i

×	6 + \infty
f1	+
+	1

$$f(x) = x + \frac{1}{x}$$
 $I = Jo; +\infty[$

$$f'(x) = 1 - \frac{1}{x^2}$$

Signe de
$$f': 1 - \frac{1}{g^2} > 0 \implies \frac{x^2-1}{x^2} > 0$$

× 10	1	-	+00
x-1 []	- (+	
x2	+	+	

Tablezu de venishions:

1 × 10		1	+0
1 1	-	0	+
0 131		0	7

$$f(1) = 1 + \frac{1}{1} = 2$$