

General Description

The MAX872/MAX874 precision 2.5V and 4.096V micropower voltage references consume a maximum of only 10µA and operate from supply voltages up to 20V. The combination of ultra-low quiescent current and low 200mV dropout makes them ideal for battery-powered equipment. They source and sink up to 500µA with only 200mV input voltage headroom, which makes the 2.5V MAX872 ideal for use with a 3V supply and the 4.096V MAX874 ideal for use with a 5V supply.

Initial accuracy of 0.2% at +25°C (±5mV for the MAX872, ±8mV for the MAX874) and low 40ppm/°C max drift make these references suitable for a wide range of precision applications.

Applications

Hand-Held Instruments **Battery-Operated Equipment Power Supplies**

Typical Operating Circuit

Features

- **♦ Output Voltage** 2.500V ±0.2% (MAX872) 4.096V ±0.2% (MAX874)
- ♦ Wide Operating Voltage Range 2.7V to 20V (MAX872) 4.3V to 20V (MAX874)
- ♦ 10µA Max Supply Current
- ♦ 40ppm/°C Max Drift Over Extended Temp. Range
- **♦** Line Regulation Over Temp. 20µV/V (MAX872) 75µV/V (MAX874)
- ♦ Load Regulation Over Temp. 0.6mV/mA Max (MAX872) 1.0mV/mA Max (MAX874)
- ♦ ±500µA Sink/Source Current

Ordering Information

_	
TEMP. RANGE	PIN-PACKAGE
0°C to +70°C	8 Plastic DIP
0°C to +70°C	8 SO
0°C to +70°C	Dice*
-40°C to +85°C	8 Plastic DIP
-40°C to +85°C	8 SO
0°C to +70°C	8 Plastic DIP
0°C to +70°C	8 SO
0°C to +70°C	Dice*
-40°C to +85°C	8 Plastic DIP
-40°C to +85°C	8 SO
	0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C

^{*} Dice are specified at +25°C only.

Pin Configuration

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage24V
Output Short-Circuit DurationContinuous to Either Supply
C _{COMP} Input0.3V to V _{OUT}
TRIM Input0.3V to (V _{IN} + 0.3V)
TEMP Output0.3V to (V _{IN} + 0.3V)
Continuous Power Dissipation (T _A = +70°C)
Plastic DIP (derate 9.09mW/°C above +70°C)727mW
SO (derate 5.88mW/°C above +70°C)

Operating Temperature Ranges	
MAX87_C	0°C to +70°C
MAX87_E	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature Range (Tj)	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX872

($V_{IN} = 2.7V$, $I_L = 0mA$, $T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout		2.495	2.500	2.505	V
Output Voltage Noise	en	0.1Hz to 10Hz		60		µVp-р
Line Regulation	Vout/Vin	V _{IN} = 4.5V to 20V		4	12	\//\/
Line Regulation	VOU1/VIN	V _{IN} = 2.7V to 5.5V		80	250	- μV/V
Load Regulation (Note 1)	V _{OUT} /I _{OUT}	Sourcing 0mA to 0.5mA		0.2	0.5	mV/mA
		Sinking 0mA to -0.5mA		4	12	
Quiescent Supply Current	ΙQ			6.5	10	μΑ
Change in Supply Current vs. VIN	IQ/VIN	V _{IN} = 2.7V to 20V		0.35	0.55	μ A /V
Short-Circuit Output Current	Isc	V _{OUT} short to GND		6	15	mA
		V _{OUT} short to V _{IN}		3	9	IIIA
TEMP Voltage	VTEMP			690		mV
V _{OUT} Adjustment Range	V _{ADJ}	V _{OUT} ≥ V _{OUT} + 0.2V	+75/-20	+100/-25		mV

ELECTRICAL CHARACTERISTICS—MAX874

($V_{IN} = 4.3V$, $I_L = 0mA$, $T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout		4.088	4.096	4.104	V
Output Voltage Noise	en	0.1Hz to 10Hz		90		µVp-р
Line Regulation	V _{OUT} /V _{IN}	V _{IN} = 4.3V to 20V		15	75	μV/V
Load Regulation (Note 1)	Vour/lour	Sourcing 0mA to 0.5mA		0.15	0.9	mV/mA
Load Regulation (Note 1)	V _{OUT} /I _{OUT}	Sinking 0mA to -0.5mA		6	15	IIIV/IIIA
Quiescent Supply Current	IQ			6.5	10	μΑ
Change in Supply Current vs. VIN	IQ/VIN	V _{IN} = 4.3V to 20V		0.35	0.55	μA/V
Short-Circuit Output Current	Isc	V _{OUT} short to GND		6	15	mA
Short-circuit Output current	ISC	V _{OUT} short to V _{IN}		5	25	1111/4
TEMP Voltage	VTEMP			690		mV
V _{OUT} Adjustment Range	V _{ADJ}	V _{OUT} ≥ V _{OUT} + 0.2V	±150	±200		mV

ELECTRICAL CHARACTERISTICS—MAX872C

 $(V_{IN} = 2.7V, I_L = 0mA, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout		2.4905		2.5095	V
Output Voltage Temperature Coefficient	TCV _{OUT}			20	40	ppm/°C
Line Regulation	VOLITAVINI	V _{IN} = 4.5V to 20V			20	μV/V
Line Regulation	V _{OUT} /V _{IN}	$V_{IN} = 2.7V \text{ to } 5.5V$			300	μν/ν
Load Regulation (Note 1)	V _{OUT} /I _{OUT}	Sourcing 0mA to 0.4mA			0.6	mV/mA
Load Regulation (Note 1)		Sinking 0mA to -0.4mA			15	
Quiescent Supply Current	ΙQ				15	μΑ
Change in Supply Current vs. V _{IN}	I _Q /V _{IN}	V _{IN} = 2.7V to 20V			0.7	μΑ/V
V _{OUT} Adjustment Range	V _{ADJ}	V _{IN} ≥ V _{OUT} + 0.2V	+75/-20			mV
TEMP Output Temperature Coefficient	TCVTEMP			2.3		mV/°C

ELECTRICAL CHARACTERISTICS—MAX874C

 $(V_{IN} = 4.3V, I_L = 0mA, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout		4.0805		4.1115	V
Output Voltage Temperature Coefficient	TCVout			20	40	ppm/°C
Line Regulation	Vout/Vin	V _{IN} = 4.3V to 20V			75	μV/V
D (N -+1)	Vout/Iout	Sourcing 0mA to 0.4mA			1.0	mV/mA
Load Regulation (Note 1)	VOU1/1001	Sinking 0mA to -0.4mA			25	IIIV/IIIA
Quiescent Supply Current	IQ				15	μΑ
Change in Supply Current vs. V _{IN}	I _Q /V _{IN}	V _{IN} = 4.3V to 20V			0.7	μA/V
Vout Adjustment Range	VADJ	V _{IN} ≥ V _{OUT} + 0.2V	±150			mV
TEMP Output Temperature Coefficient	TCV _{TEMP}			2.3		mV/°C

Note 1: If the load current exceeds 300μA, connect a minimum of 1000pF from V_{OUT} to GND. Note that if a capacitor larger than 1000pF is used, a compensation capacitor of C_{OUT}/100 must be connected from V_{OUT} to COMP.

ELECTRICAL CHARACTERISTICS—MAX872E

 $(V_{IN} = 2.7V, I_L = 0mA, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout		2.488		2.512	V
Output Voltage Temperature Coefficient	TCVout			20	40	ppm/°C
Line Degulation	\/\c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V _{IN} = 4.5V to 20V			20	\/\/
Line Regulation	Vout/Vin	V _{IN} = 2.7V to 5.5V			300	μV/V
Load Regulation	V _{OUT} /I _{OUT}	Sourcing 0mA to 0.30mA			0.6	mV/mA
Load Regulation		Sinking 0mA to -0.30mA			15	
Quiescent Supply Current	IQ				15	μA
Change in Supply Current vs. VIN	IQ/VIN	V _{IN} = 2.7V to 20V			0.7	μA/V
V _{OUT} Adjustment Range	V _{ADJ}	$V_{IN} \ge V_{OUT} + 0.2V$	+75/-20			mV
TEMP Output Temperature Coefficient	TCV _{TEMP}			2.3		mV/°C

ELECTRICAL CHARACTERISTICS—MAX874E

(V_{IN} = 4.3V, I_L = 0mA, T_A = $-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout		4.077		4.115	V
Output Voltage Temperature Coefficient	TCV _{OUT}			20	40	ppm/°C
Line Regulation	V _{OUT} /V _{IN}	V _{IN} = 4.3V to 20V			75	μV/V
Load Regulation	V _{OUT} /I _{OUT}	Sourcing 0mA to 0.30mA			1.0	mV/mA
		Sinking 0mA to -0.30mA			25	IIIV/IIIA
Quiescent Supply Current	IQ				15	μΑ
Change in Supply Current vs. VIN	IQ/VIN	V _{IN} = 4.3V to 20V			0.7	μA/V
V _{OUT} Adjustment Range	V _{ADJ}	$V_{IN} \ge V_{OUT} + 0.2V$	±150			mV
TEMP Output Temperature Coefficient	TCVTEMP			2.3		mV/°C

Typical Operating Characteristics

 $(V_{IN} = 3V \text{ (MAX872)}, V_{IN} = 5V \text{ (MAX874)}, \text{ no load, } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

_Typical Operating Characteristics (continued)

 $(V_{IN} = 3V \text{ (MAX872)}, V_{IN} = 5V \text{ (MAX874)}, \text{ no load, } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

Pin Description

PIN	NAME	FUNCTION
1, 7	I.C.	Internal Connection. Make no connection to this pin
2	VIN	Input Voltage
3	TEMP	Temperature-Proportional Output Voltage. Generates an output voltage proportional to junction temperature.
4	GND	Ground
5	TRIM	Output Voltage Trim. Connect to the center of a voltage divider for output trimming. Otherwise make no connection.
6	Vout	Reference Output
8	СОМР	Compensation Input. Connect CLOAD/100 capacitor from VOUT to COMP to provide capacitive load compensation.

_Applications Information

Trimming the Output Voltage

The MAX872/MAX874's output voltage is trimmed for 0.2% tolerance at +25°C. If additional V_{OUT} trimming is desired, connect a potentiometer to TRIM, as shown in Figures 1a and 1b. Adjusting V_{OUT} away from its factory-trimmed voltage typically changes the output voltage tempco by 7ppm/°C per 100mV.

Reducing Input Ripple with an Input Filter The Power-Supply Rejection Ratio vs. Frequency graph in the Typical Operating Characteristics shows ripple rejection between 10Hz and 2kHz. As input RC filter with a pole less than 10Hz, as shown in Figure 2, further attenuates input ripple with this band. The voltage drop across the input resistor (due to supply and load current) slightly increases the dropout voltage. The increase is given by [(ILOAD + ISUPPLY) • R].

Choosing the Output and Compensation Capacitors

Connecting a capacitor between Void and GND reduces load transients. If the load exceeds 300µA, connect a minimum of 1000pF from V_{OUT} to GND. The type of capacitor is not critical. If the total load capacitance from V_{OUT} to GND (C_{LOAD} = output capacitor + other capacitive load) is larger than 1000pF, connect a compensation capacitor with a value of C_{LOAD}/100 between COMP and V_{OUT}.

Figure 1a. Adjusting VouT with the TRIM Input on the MAX872

Figure 1b. Adjusting V_{OUT} with the TRIM Input on the MAX874

Figure 2. Input Filter Reduces Input Ripple

TEMP Output

The TEMP output provides a voltage proportional to the MAX872/MAX874 junction temperature. Since the power dissipation of the MAX872/MAX874 is <100µW typ, the junction temperature is within 0.5°C of the ambient temperature. Although it goes unused in most applications, the ambient temperature information given by the TEMP output may be used to control LCD contrast, or to provide ADC gain compensation or thermal out-of-range indication. TEMP must be buffered or connected to a high-impedance input.

Operating Temperature Window Comparator

In Figure 3, a window comparator monitors the TEMP output and indicates if the temperature is out of the nominal operating range. For the resistor values shown, the circuit will indicate an out-of-range condition if the ambient temperature should rise above +85°C or dip below -40°C.

Start-Up

When the input voltage is below the factory-selected output voltage, the MAX872/MAX874 can draw excessive supply current (hundreds of microamps). If the source resistance is too high, the voltage drop across the source resistance can prevent the input voltage to the device from reaching the minimum dropout voltage. Therefore, when using the MAX872/MAX874 in low-dropout applications, ensure that the power supply has a low source resistance.

Figure 3. Operating Temperature Range Window Comparator

_Chip Topography

MAX872/MAX874

*MAKE NO CONNECTIONS TO THESE PADS

TRANSISTOR COUNT: 89

SUBSTRATE CONNECTED TO GND.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600