ECONOMIA ED ORGANIZZAZIONE AZIENDALE

a.a. 2014/2015 03/09/2015

COGNOME E NOME	NUMERO DI MATRICOLA

Esercizio 1

Dopo aver scritto la generica equazione di MDCT=f(RT) della Banti S.r.L. e averne disegnato il grafico su un riferimento cartesiano, si identifichi il punto RT₀, corrispondente all'attuale livello dei ricavi.

Alla Banti si presenta l'opportunità di accettare un ordine di ΔQ pezzi aggiuntivi rispetto all'attuale produzione, senza aumentare i CF e al minimo prezzo di convenienza economica.

- 1) Individuare sul grafico il punto che identifica la nuova posizione della Banti a seguito dell'accettazione dell'ordine;
- 2) Indicare a quanto corrisponde la variazione del reddito operativo RO (se >, =, < di 0).
- 3) Qualora, contrariamente a quanto ipotizzato precedentemente, l'accettazione dell'ordine portasse ad un aumento dei CF, come dovrebbe modificarsi la funzione MDCT=f(RT)?

Esercizio 2

Un circondario di 6 comuni dislocati nel raggio di 20 Km conta 300.000 abitanti. La localizzazione dei comuni consente di installare un'unica centrale per la produzione di energia elettrica da biomasse per i consumi pubblici. Tale produzione di energia, avente un costo di 0,040 €, consente due vantaggi economici:

- i 6 comuni consumano in totale circa 75.000.000 di KWh all'anno, finora forniti da ENEL ad un costo medio di 0,080 €/KWh;
- la produzione di energia eccedente il fabbisogno dei 6 comuni può essere acquistata da ENEL (che ha l'obbligo di acquistarla) a 0,045 €/KWh.

Nel caso di produzione annua di 100.000.000 KWh e sapendo che l'investimento iniziale è di 22.000.000 €, qual è il tempo di recupero dell'investimento?

Calcolare poi il NPV dopo le imposte, considerando un'aliquota fiscale del 40%, una vita utile di 8 anni e un tasso di attualizzazione del 10%.

Soluzione esercizio 1

- 2) Non c'è variazione del RO (ΔRO=0)
- 3) La funzione MDCT, dovessero i CF aumentare a seguito dell'accettazione dell'ordine, ruoterrebbe in senso anti orario (a partire dal punto RT_0 e rispetto alla retta tratteggiata di cui al punto 1 in cui, essendo il prezzo dell'ordine pari a CVu, il MDCm è nullo): infatti, il prezzo dovrebbe aumentare per coprire non solo il CVu, ma anche l'incremento dei CF, e ciò porterebbe ad un aumento del MDCm (MDCm = 1 CVu/p) quindi

Soluzione esercizio 2

Punto 1): calcolo del PBT

È necessario fare alcune precisazioni:

- Produzione destinata al consumo dei 6 comuni (75.000.000 KWh)
 - o Risparmio nel consumo di energia per i comuni: $75.000.000 \text{KWh} \cdot (0.080 0.040) = 3.000.000 \text{ euro/anno}$
- Produzione eccedente il fabbisogno interno (25.000.000 KWh)
 - o Ricavi di vendita della produzione eccedente: 25.000.000KWh·0,045=1.125.000 euro/anno;
 - Costi per la produzione eccedente: 25.000.000KWh $\cdot 0,040 = 1.000.000$ euro/anno;

L'investimento consente quindi, a fronte di un'uscita iniziale di 22.000.000, di ottenere vantaggi annui di: 3.000.000 + 1.125.000 - 1.000.000 = 3.125.000

$$PBT = \frac{22.000.000}{3.125.000} = 7,04$$

 $0.04 \text{ anni} \rightarrow 0.04: 1 = x: 360$ $x = 360 \cdot 0.04 = 15 \text{ giorni}$ PBT = 7 anni e 15 giorni

Punto 2) calcolo del NPV

t	$R_t - (C_t)$	$(R_t - C_t) \cdot (1 - t)$	I_{o}	AMM_t	$t \cdot AMM_t$	NCF _t	$\frac{1}{(+i)}$	DCF _t
0			22.000.000			- 22.000.000	1	- 22.000.000,00
1	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,91	2.704.545
2	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,83	2.458.678
3	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,75	2.235.162
4	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,68	2.031.965
5	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,62	1.847.241
6	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,56	1.679.310
7	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,51	1.526.645
8	125.000 - (- 3.000.000)	1.875.000		2.750.000	1.100.000	2.975.000	0,47	1.387.859
NPV								- 6.128.595

L'investimento non risulta conveniente dal punto di vista economico (NPV < 0).