

Human Centred Systems Design

Part 3: Information Modelling

http://staffwww.dcs.shef.ac.uk/people/A.Simons/ Home ⇒ Teaching ⇒ HCSD

© Anthony J H Simons, University of Sheffield 2016

1

Bibliography

- Unified Modelling Language
 - M Fowler, UML Distilled: A Brief Guide to the Standard Object Modelling Language, Addison-Wesley, 3rd ed., 2004.
 - S Bennett, S McRobb R Farmer, Object-Oriented Systems Analysis and Design using UML, 3rd ed., McGraw-Hill, 2005.
- Entity-Relationship Models
 - P Chen, The ERM towards a unified view of data, ACM Trans.
 Database Sys., 1(1), 1976, 9-36.
 - T J Teorey, D Yang and J P Fry, A logical design methodology for relational databases using the extended entity-relationship model, ACM Comp. Surveys, 18(2), 1986.

© Anthony J H Simons, University of Sheffield 2016

Outline

- What information to model
- Building a dictionary of terms
- Cleaning up the information
- UML Class Diagram
- Classes, attributes and services
- Generalisation, association, aggregation
- Building an information model

Reading: Fowler chapters 3, 5, 6; Bennett et al. chapters 7, 8

© Anthony J H Simons, University of Sheffield 2016

3

Information Modelling

- An analysis activity
 - build an information model of the business domain
 - a conceptual model of data types, their attributes, relationships and services
- Why do this?
 - identifies the main business concepts and relationships
 - helps the developer to understand the business domain
 - allows specification of important business constraints
- When to build?
 - during initial requirements capture (conceptual model)
 - designing the database for the application (data model)

© Anthony J H Simons, University of Sheffield 2016

What Information?

- Business information
 - core data on which the business depends
 - people, things, activity that must be recorded
 - often, provides the commercial advantage
- Kinds of information
 - people: customers, suppliers, personnel...
 - products: goods, materials, stock...
 - processes: orders, invoices, contracts...
 - attributes: name, quantity, price...
 - relationships: who ordered which goods, which materials required to make what product...

© Anthony J H Simons, University of Sheffield 2016

5

Dictionary of Terms

- Business domain is unfamiliar
 - contains many unfamiliar terms to the developer
 - the customer may use words in a technical sense
 - an over-confident developer may pick the wrong terms
- How to create a dictionary
 - allow the customer to lead the description of the business domain – vocabulary must reflect his/her view
 - developer enters each new term in a dictionary
 - developer identifies any ambiguous, redundant or missing terms and resolves this with the customer
 - one term should refer uniquely to each important concept

© Anthony J H Simons, University of Sheffield 2016

Study: Lending Library

- Actors
 - borrower, reader services clerk, ...

people products

- Objects
 - book, journal, magazine, ...
- Attributes
 - name (of author), name (of book), date (of loan)
- Events
 - borrow, issue, discharge, reserve...

processes relationships

- Relationships
 - loan, reservation (of book by borrower)

© Anthony J H Simons, University of Sheffield 2016

7

Term	Category	Definition
Book	Object	Literature available for borrowing
Borrower	Actor	Member of the library
Borrow	Event	Take a book out of the library
Issue	Event	Loans a book to a borrower
Loan	Relationship	In which a borrower borrows a book
Discharge	Event	Cancels a loan to a borrower
Date (of Loan)	Attribute	The end of the loan period

Categories: Object, Actor, Event, Attribute, Relationship

© Anthony J H Simons, University of Sheffield 2016

Two terms describe the same concept!

Term	Category	Definition
Book	Object	Literature available for borrowing
Borrower	Actor	Member of the library
Borrow	Event	Take a book out of the library
Issue	Event	Loans a book to a borrower
Loan	Relationship	In which a borrower borrows a book
Discharge	Event	Cancels a loan to a borrower
Date (of Loan)	Attribute	The end of the loan period

Strategy: pick the term that alternates with other business terms

9

Select Preferred Term

Term	Category	Definition
Book	Object	Literature available for borrowing
Borrower	Actor	Member of the library
Loan	Relationship	In which a borrower has a book
Issue	Event	Initiates a loan to a borrower
Discharge	Event	Cancels a loan to a borrower
Date (of Loan)	Attribute	The end of the loan period

Solution: "issue" alternates with "discharge" in the domain Revision: delete "borrow" and harmonise definitions

© Anthony J H Simons, University of Sheffield 2016

Missing Information

Term	Category	Definition
Book	Object	Literature available for borrowing
Borrower	Actor	Member of the library
Loan	Relationship	In which a borrower has a book
Issue	Event	Initiates a loan to a borrower
Discharge	Event	Cancels a loan to a borrower
Date (of Loan)	Attribute (The end of the loan period

Existence of an "end" implies a "start"?

Strategy: try to complete whole concept spaces

© Anthony J H Simons, University of Sheffield 2016

1

Complete Concept Space

Term	Category	Definition
Book	Object	Literature available for borrowing
Borrower	Actor	Member of the library
Loan	Relationship	In which a borrower has a book
Issue	Event	Initiates a loan to a borrower
Discharge	Event	Cancels a loan to a borrower
Issue date (of Loan)	Attribute	The start of the loan period
Due date (of Loan)	Attribute	The end of the loan period

Solution: uses better terms "issue date", "due date" from domain

© Anthony J H Simons, University of Sheffield 2016

Same term describes two different concepts!

Term	Category	Definition
Loan	Relationship	In which a borrower has a book
Issue	Event	Initiates a loan to a borrower
Discharge	Event	Cancels a loan to a borrower
Name (of Book)	Attribute	The name of the book
Issue date (of Loan)	Attribute	The start of the loan period
Due date (of Loan)	Attribute	The end of the loan period
Name (of Book)	Attribute	The name of the book's author

Strategy: agree a unique term for each item with the customer

© Anthony J H Simons, University of Sheffield 2016

13

Select Unique Terms

Term	Category	Definition
Loan	Relationship	In which a borrower has a book
Issue	Event	Initiates a loan to a borrower
Discharge	Event	Cancels a loan to a borrower
Title (of Book)	Attribute	The name of the book's title
Author (of Book)	Attribute	The name of the book's author
Issue date (of Loan)	Attribute	The start of the loan period
Due date (of Loan)	Attribute	The end of the loan period

Solution: pick better terms "title" and "author" from the domain

© Anthony J H Simons, University of Sheffield 2016

Lab 1: Library Dictionary

- Extend the example dictionary
 - use information from p7 only
- Include all about reservations
 - what kinds of events?
 - what kinds of relationships?
- Include other kinds of literature
 - what else can be lent by the library?
 - what attribute properties do they have?

© Anthony J H Simons, University of Sheffield 2016

15

Structuring Information

- Entity-Relationship Model [Chen, 1976]
 - identify structured concepts as entities, owning attributes
 - identify non-decomposable data items as attributes
 - establish how many instances of each entity are related to each other via binary, n-ary relationships
- Extended ERM [Teorey, et al. 1986]
 - identify generalisation relationships (super/subtype)
- Unified Modelling Language [Booch et al. 1997]
 - identify aggregation relationships (whole/part)
 - identify operations (services, methods)

© Anthony J H Simons, University of Sheffield 2016

Attributes and Services

- Attributes
 - are the data managed by the class
 - are included on a "need-to-know" basis
 - are typically of simple types like Integer, Real
 - typically take individual values in each instance
 - the values depend uniquely on the particular instance
- Services
 - are the business operations owned by the class
 - are written using the standard functional syntax
 - directly read or write the attributes of the class

© Anthony J H Simons, University of Sheffield 2016

Attribute or Association?

- Relationships
 - model as either an attribute or association
 - please don't model as both at the same time!
- Association
 - if the related type has structure it is another class
 - if the related type is modelled in the business domain
 - use the relationship-name as one of the end roles
- Attribute
 - if the related type has no structure, like *Integer*
 - if the related type is not modelled in this domain
 - to abbreviate relationships with standard String, Date, etc.

© Anthony J H Simons, University of Sheffield 2016

33

Attributes of What?

- Problem: want to add an attribute core: Boolean to describe whether a Module is core/optional for each Degree – but assign to which class?
 - cannot belong to Module, because value varies according to Degree
 - cannot belong to Degree, because value varies according to Module
 - must be an attribute of the association itself how to show this?

© Anthony J H Simons, University of Sheffield 2016

Study: Lending Library

- Borrowers
 - members of the library who may borrow books
 - record name, address, membership no. ...
- Books
 - literature that may be borrowed from the library
 - record name, author, ISBN, Dewey number, ...
- Business information
 - jargon: "issue" and "discharge" (not borrow, return)
 - a book copy is either on the shelf, or on loan
 - a borrower may be issued with up to 6 books the limit
 - which books have been issued to which borrowers?

© Anthony J H Simons, University of Sheffield 2016

Lab 2: Library Class Diagram

- Extend the example class diagram
 - use information from p7, p37
 - what about journals, magazines?
 - do they share anything in common with books?
- Business rules for reservations
 - a borrower may reserve many books
 - a book may be reserved by many borrowers
 - when reserving, you don't care about which copy
 - the first reserving borrower gets the reserved book

© Anthony J H Simons, University of Sheffield 2016

Review of UML Syntax

Account

Account
number : Integer
balance : Real
deposit(money : Real)
withdraw(money : Real)

1..* 0..1 end1 end2 **Class (outline)** – defines a datatype whose instances behave in the same way

Class (detail) – with drop-down boxes for attributes, services, possibly with types

Attributes – named values with basic types

Services – operations that affect the class's attributes, possibly with types

Generalisation - "a kind of" relationship

Aggregation – "a part of" relationship

Association – general relationship, with end roles and multiplicities

© Anthony J H Simons, University of Sheffield 2016

45

Summary

- Information models capture information about people, products, attributes, processes, and relationships
- A dictionary of terms helps you clean up redundant, ambiguous, missing terms in the vocabulary of the business domain
- A UML Class Diagram is used to structure the information model in terms of classes, attributes, services and associations
- Classes can be generalised by a superclass the subclasses need only specify additions and modifications
- Attribute values must depend uniquely on the given instance use this rule to decide when a new class is needed
- Associations are undirected paths linking classes read off the end-role and multiplicity at the destination end
- Aggregation and composition are whole/part associations

© Anthony J H Simons, University of Sheffield 2016