Project 2

Jesse Adams, Dominic Orsi, Ben Puryear

September 14th, 2023

Let an FSA, M be defined as follows:

$$Q = \{q_1, q_2, q_3\}$$

$$\Sigma = 0, 1$$

$$F = q_2$$

$$a_{0} = a_{1}$$

$$q_s = q_1$$

$$\delta = \begin{vmatrix} & & 0 & 1 \\ q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{vmatrix}$$

1 Draw M using nodes and arcs.

2 Characterize L(M) in words, the more formal the better.

The language L(M) can be characterized as any string built from the characters $\{0,1\}$ containing at least one 1, and ending with either a 1 or an even number of 0s.

 $L(M)\{s \text{ ends with a 1 or 00}\}\$

The formal description of a DFA M_1 is:

$$Q = \{q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{u,d\}$$

 δ : is described in the table below

$$q_s = q_3$$

$$q_s = q_3$$
$$F = \{q_3\}$$

 q_2 q_2 $q_1 \mid q_3$ Here is δ : q_3 q_2

Why is F a set, whereas q_s is not? 3

F is a set because it is all the accept states where as q_s is the start state and in an FSA there is only one start stat but there can be multiple accept states.

Give the state diagram of M_1 4

5 Suppose we have a machine, M_2 , an DFA, whose alphabet is $\{a,b\}$. Suppose further that $L(M_2) = \{w|w \text{ has an odd number of the symbol a and ends with the symbol b}. Give the state diagram of <math>M_2$

6 Suppose we have a machine, M_3 , a DFA, whose alphabet is $\{a,b\}$. Suppose further that $L(M_3) = \{w|w \text{ is not in } a^*b^*\}$. $L(M_3)$ is the complement of a simpler language. Construct the DFA for the simpler language, then use it to give the state diagram of $L(M_3)$.

 $\begin{array}{l} M_3: \Sigma = a, b \\ L(M_3) = \{w | w \text{ is not in } a^*b^*\} \\ L(M_{3_0}) = \{w | w \text{ is in } a^*b^*\} \rightarrow \{a, b, ab, abb, aabb, \ldots\} \end{array}$

7 Suppose we have a machine, M_4 , a DFA, whose alphabet is $\{0,1\}$. Suppose further that $L(M_4) = \{w|w \text{ contains an even number of 0s or contains exactly two 1s}. Give the state diagram for <math>M_4$

 $\begin{array}{l} M_4: \Sigma = \{0,1\} \\ L(M_4) = \{w|w \text{ contains even } \# \text{ of 0s of exactly 2 1s } \} \\ \{w|w \text{ contains even } \# \text{ of 0s of exactly 2 1s } \} = \{00,11,00011,0110,11001,\ldots\} \end{array}$

