

[Q1] A) Choose the correct answer:

- (1) The sum of interior angles of cyclic quadrilateral =°
- a) 90
- b) 180
- c) 360
- d) 720
- (2) The area of circle 25 π cm², straight line L of distant 5 cm of its center, then L is
- a) Outside circle

c) Tangent to circle

b) Secant of circle

- d) Passing through center
- (3) If ABCDEF is regular hexagon drawn inside circle, m (\overline{AB}) =...
- a) 60°
- b) 90°
- c) 180°
- d) 360°

[B] In the opposite figure:

ABCD is quadrilateral drawn inside circle M $m (\angle BMD) = m (\angle BCD).$

⋄ Find m (∠A) in degrees

[Q2] Choose the correct answer:

In the opposite figure: If $E \in \overrightarrow{AB}$, m ($\angle EBC$) = 85°, m(\widehat{AB}) = 110°

Then $m(\angle BDC) = \dots$

- 30 a)
- b) 55
- 85
- d) 110
- (2) The altitudes of obtuse triangle intersect at point lies
- a)
- Inside triangle c) On one of its vertices
- b)
- Outside triangle d) Midpoint of opposite side to obtuse angle
- (3) Length of arc of half circle = Unit length
- a) 2πr

- b) πr c) $\frac{1}{2}\pi r$ d) $\frac{1}{3}\pi r$
- [B] ABCD is parallelogram, AC = BC, prove that \overrightarrow{CD} is tangent to the circumcircle of Δ ABC

[Q3] [A] In the opposite figure:

 \overline{AB} is diameter in circle M, $\overline{AB} \cap \overline{CD} = \{E\}$ m $(\widehat{AD}) = m (\widehat{BD}) = 3 m (\widehat{AC})$ Find m $(\angle AEC)$

[B] In the opposite figure

Two concentric circles, Δ ABC is drawn in which its vertices lie on greater circle and its sides touch the smaller circle in X, Y, Z.

Prove that: Δ ABC is an equilateral triangle.

[Q4] [A] In the opposite figure:

Two circles M, N, their radii 10 cm, 6 cm Respectively and touching internally at A, \overline{AB} is common tangent at A, if area of Δ BMN = 24 cm², Find the length of \overline{AB}

[B] \overline{AB} , \overline{CD} are two parallel chords in circle M, $\overline{AD} \cap \overline{CD} = \{E\}$ Prove that: Δ EAB is an isosceles triangle.

[Q5] [A] In the opposite figure:

 \overline{AB} , \overline{AC} are two tangent of circle M at B, C $\overline{AM} \cap \overline{BC} = \{D\}$, AB = 8 cm, m(\angle CAM) = 30° Find: ① Perimeter of \triangle ABC ② m (\angle E)

[B] In the opposite figure:

ABCD is quadrilateral, \overrightarrow{AX} , \overrightarrow{BY} , \overrightarrow{CZ} , \overrightarrow{DL} Bisects \angle A, \angle B, \angle C, \angle D respectively

Prove that: the figure XYZL is cyclic quadrilateral

End of the questions

[Q1] A) Choose the correct answer:

- (1) If the longest chord in a circle is 12 cm, its circumference =......
- a) 6 π
- b) 12 π
- c) 24π
- d) 144 π
- (2) The radius of two circles M, N are 6 cm, 8 cm and MN = 14 cm, then the two circles are
- a) Intersecting b) Distant
- c) One inside other
- Touching externally
- (3) The inscribed angel in half circle is
- a) Acute
- b) Straight
- c) Right
- d) obtuse

B): In the opposite figure:

ABCD is a cyclic quadrilateral, $E \in \overrightarrow{CB}$ $m(\angle ABE) = 110^{\circ}$, $m(\angle CAD) = 35^{\circ}$ Prove that: $m(\widehat{CD}) = m(\widehat{AD})$

[Q2] A) Choose the correct answer:

- (1) A chord of length 8 cm drawn in a circle of diameter 10 cm, then the distance between the chord and the center of circle = cm
- a)

b) 3

c) 4

- d) 6
- (2) Number of common tangents for two touching internally circles is
- a) Zero
- b) 1

c) 2

- d) 3
- (3) ABCD is cyclic quadrilateral, m(∠A) = 2 m (∠C), then m(∠A) = ...
- 30° a)
- b) 60°
- c) 90°
- d) 120°

B): In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two tangents of the circle $M(\angle A) = 70^{\circ}$, $m(\angle D) = 125^{\circ}$

- ⊕ Find m (∠ABC)
- ② Prove that: BC = EB

Math questions bank

[Q3] A) In the opposite figure:

 \overline{AB} is diameter in the circle M \overline{CD} // \overline{AB} , X is midpoint of \overline{MY} $\overline{MY} \perp \overline{AB}$. Find m(\widehat{AC}), m (\widehat{YC})

B) In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two equal chords in circle M $\overrightarrow{MD} \perp \overrightarrow{AB}$, and cut the circle in X $\overrightarrow{ME} \perp \overrightarrow{AC}$, and cut the circle in Y Prove that: XD = YE

[Q4] A) In the opposite figure:

 \overrightarrow{AO} is a tangent to the circle M at A \overrightarrow{AO} // \overrightarrow{ED} . Prove that: DEBC is cyclic quadrilateral

B) In the opposite figure:

Two concentric circles at M \overline{AB} is chord in the greatest circle And touch the smallest circle at C If AB = 14 cm. Find the area between two circles

[Q5] A) In the opposite figure:

The circle M passes through vertices

Of \triangle ABC, m(\angle AMB) = 120°, \overrightarrow{CD} // \overrightarrow{AB} . Prove that: \triangle ABC is equilateral triangle

B) In the opposite figure:

m (\angle MAB) = 60°, m (\angle MCD) = 70° Find by prove m (\angle AMC)

[Q1]: A) Choose the correct answer:

- (1) The two tangents which are drawn from the two endpoints of a diameter of a circle are
- a) Parallel

- b) Intersecting c) Equals d) Perpendicular
- (2) A chord of length 8 cm, in a circle of radius 5 cm, then the distance between chord and the center of circle is Cm

b) 2

- c) 3
- (3) The measure of the central angle which is opposite to an arc of
- a) 30
- b) 60
- c) 120
- d) 240

B): In the opposite figure:

 \overline{BC} is a diameter of circle M, $m(\angle A) = 20^{\circ}$, $m(\widehat{CE}) = 80^{\circ}$, find $m(\widehat{DE})$

[Q2]: A) Choose the correct answer:

- (1) Number of symmetric axes of two touching circles externally is...
- a) 0

- d) ∞
- (2) If point A lies on surface of circle M and length of its diameter is 6 cm, then m ∈

- a) $]-\infty, 6]$ b) $]-\infty, 3]$ c) [0,3] d) $]3,\infty[$
- (3) ABCD is a quadrilateral inscribed in a circle, $m(\angle A) = 70^{\circ}$, then m(BAD) =
- a) 35
- b) 55
- c) 140
- d) 220

B): In the opposite figure:

 \overline{AB} is diameter in circle M, m ($\angle BMD$) = 30° Find: ① m (\angle BCD) ② m (\angle ACD)

Math questions bank

[Q3] A): In the opposite figure:

ABCD is a quadrilateral inscribed in a circle,

 $E \in \overrightarrow{CB}$, $m (\angle ABE) = 100^{\circ}$,

D is midpoint of \widehat{AC} , Find m (\angle DAC)

The Third Preparatory- Geometr

B): In the opposite figure:

 \overline{AB} , \overline{AC} are two tangent segments To the circle at B and C, AB = 2 X - 1

AC = X + 2, BC = 7 - X, find:

① The value of X
② The perimeter of △ ABC

[Q4] A): In the opposite figure:

ABCD is a parallelogram, $E \in \overrightarrow{CD}$, BE = BC

Prove that: ① ABDE is cyclic quadrilateral

 $@m(\angle AEB) = m(\angle DBC)$

B): In the opposite figure:

Two concentric circles at M, \overline{AB} and \overline{AC} are two chords in the greater circle and two tangent to smaller circle at D , E respectively, m (\angle A) = 50°

① Find m (∠EMD) ② Prove that: AB = AC

[Q5] A): In the opposite figure:

 \overline{AB} is chord in circle M, D midpoint of \overline{AB}

 \overline{AC} bisects \angle BAM, prove that $\overline{DM} \perp \overline{CM}$

B): In the opposite figure:

 \overrightarrow{EA} , \overrightarrow{EB} are two tangents to the circle at A and B, $m(\angle E) = 70^{\circ}$, $m(\angle D) = 125^{\circ}$.

Prove that: \bigcirc AB = AC

② AC is tangent to the circle which passing through vertices of ∆ ABE

[Q1] A) Choose the correct answer:

- (1) A circle of radius 4 cm and its center is origin point, which of the following points not belong to the circle?
- a) (0,4)
- b) (4,0)
- c) (0,-4) d) (4,4)
- (2) If straight line L lies outside circle of diameter 10 cm, and the distance between L and center of circle is X, then X ∈
- a) [0,5]
- b)]0,5[
- c) [0,5[
- d)]5,∞[

(3) In the opposite figure: C is midpoint of \widehat{AB} , Then AB 2 AC

b) <

c) ≥

- d) =
- B): In the opposite figure: Two concentric circles at M, \overline{AB} is chord in greater circle and cut smaller circle at X , Y, \overline{AC} is chord in greater circle cut smaller circle in D , E , if AB = AC, Prove that: DE = XY

[Q2] A) Choose the correct answer:

(1) In the opposite figure: $M(\angle A) = 55^{\circ}$, m ($\angle (MCB) =$

- b) 90
- 100
- d) 110

(2) In the opposite figure:

 \overrightarrow{AD} is tangent to circle M at A, $m(\angle DAB) = 130^{\circ}$, Then $m(\angle C) =^{\circ}$

b) 65

- 130
- d) 260
- (3) We can't draw circle passing through vertices of
- a) Parallelogram b) Square
- c) Rectangle
- Isosceles d) trapezium

Math questions bank

The Third Preparatory- Geometry

B): In the opposite figure:

$$\overline{AB} \cap \overline{EC} = \{D\}, m(\angle EDB) = 42^{\circ}$$

 $M(\widehat{EB}) = (2 X + 6)^{\circ}, m(\widehat{AC}) = (3 X - 2)^{\circ}$
 \Rightarrow Find the value of C?

[Q3] A) In the opposite figure:

ABCD is a rectangle drawn in a circle CD = CE, prove that: AE = BC

B) In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two tangents at B, C $M(\angle E) = 110^{\circ}$, $m(\angle BDC) = 70^{\circ}$ Prove that: ① \overrightarrow{BC} bisects \angle ABD

TD is tangent to circle passes through vertices of \triangle ABC

[Q4] A) In the opposite figure:

ABCD is cyclic quadrilateral, \overline{AB} is diameter in circle M, m(\angle B) = 60°, Length of \widehat{AC} = length of \widehat{CD} Prove that: \overrightarrow{AD} bisects \angle BAC

B) XYZL is a Parallelogram, \angle X is acute angle, $F \in \overrightarrow{ZL}$, $F \notin \overline{ZL}$ where YF = XL. Prove that XYLF is cyclic quadrilateral.

[Q5] A) In the opposite figure:

 \overline{AB} is diameter in circle M, \overline{CD} is tangent to circle D If $\overline{CE} \perp \overline{AB}$, prove that: CX = CD

B) In the opposite figure:

AB is diameter in circle M, its radius is 5 cm, $m(\angle B) = 50^{\circ}$, $m(\angle A) = 70^{\circ}$, find the length of \overline{CD} End of the question

[Q1] A) Choose the correct answer:

- (1) If ABCD is square drawn in a circle, then m (\widehat{AB}) =°
- b) 90
- c) 120
- d) 180
- (2) Number of common tangent for two touching internally circles is
- a) 1

b) 2

- d) Zero
- (3) Center of all circles passes through two points A , B lies on
- a) \overline{AB}

b) Axis of \overline{AB}

c) Midpoint of \overline{AB}

d) Perpendicular on axis of \overline{AB}

B): In the opposite figure:

 \overline{AB} , \overline{AC} are two chords in circle M of radius 7 cm , D, E midpoints of \overline{AB} , \overline{AC} , m($\angle BAC$) = 120°, Draw \overrightarrow{DM} , \overrightarrow{EM} cut circle in F, L find length of \overrightarrow{LF}

[Q2] A) Choose the correct answer:

- (1) Circle of area $X \pi \text{ cm}^2$, straight line L of distant (X + 1) cm form its center, then L lies Circle
- a) Outside the
- b) Secant of c) Tangent of d) Axis of

(2) In the opposite figure:

 $MA \perp MB$,

Then $m(\angle ACB) =$ °

- a) 90
- b) 135
- c) 110
- d) 270
- (3) The center of circumcircle of a triangle is intersection point of c) Axes of its
- a) Medians
- b) Altitudes
- sides
- Bisectors of its angles

B): In the opposite figure:

 $M(\widehat{AB}) = m(\widehat{DB}) = m(\widehat{DC})$

 $M(\angle C) = 40^{\circ}$, find $m(\widehat{AC})$

Math questions bank

The Third Preparatory- Generaltry

[Q3] A) In the opposite figure:

ABC is triangle drawn in a circle,

 \overrightarrow{BD} is tangent, \overrightarrow{BD} // \overrightarrow{XY}

Prove that: AXYC is cyclic quadrilateral.

B) In the opposite figure:

X is midpoint of \overline{AC} , Y is midpoint of \overline{AB}

- ① Prove that: $m (\angle MYX) = m (\angle MCX)$
- ② AM is diameter in circle passes A, Y, X, M

[Q4] A) In the opposite figure:

 \overrightarrow{BA} is tangent of circle M at A, $\overrightarrow{AC} \perp \overrightarrow{MB}$,

 $MA = 8 \text{ cm, m } (\angle B) = 30^{\circ}$

Find the length of \overline{AB} , \overline{AC}

B) In the opposite figure:

 \overline{BC} is diameter in circle M, $\overline{BD} \cap \overline{CE} = \{A\}$

 $\overline{MX} \perp \overline{AB}$, $\overline{MY} \perp \overline{AC}$, if AB = AC,

Prove that AD = AE

[Q5]

A) In the opposite figure:

E is a point outside the circle

Prove that: m(E) < m (BCD)

B) In the opposite figure:

M, N are two circles intersecting at A, B

 \overrightarrow{EC} is tangent of circle M at C,

 \overrightarrow{DC} is tangent of circle N at D

Prove that ECBD is cyclic quadrilateral

End of the question

Prep. 3 Model (11)

[Q1] A) Choose the correct answer:

- (1) M, N are two intersecting circles with radius 6 cm, 4 cm, then m $n \in \dots$
- a)]10,∞[b)]2,10[c)]0,2[d)]4,6[

- (2) A circle of radius 5 cm, \overline{AB} is chord with length 8 cm, then the distance between \overline{AB} and the center of circle is
- a) 3 cm
- b) 6 cm
- c) 8 cm
- d) 10 cm
- (3) In the opposite figure: $ED \cap CB = \{A\}$, $m(\widehat{DB}) = 30^{\circ}$ $m(\angle A) = 28^{\circ}$, then $m(\widehat{EC}) =$
- 56° a)
- b) 30°
- c) 86°
- d) 28°

AB, AC are two chords in circle M and D, E are midpoints of \overline{AB} , \overline{AC} , m ($\angle BAC$) = 120° draw \overrightarrow{DM} , \overrightarrow{EM} cut the circle in O , L Prove that: L O = length of the radius of M

[Q2] A) Choose the correct answer:

In the opposite figure:

m (∠A) =

- 20° a)
- b) 40°
- c) 50°

А

d) 80°

(2) In the opposite figure:

ED is tangent, m($\angle DAB$) = 110° Then m (\angle ACB) =°

- a) 35
- b) 55
- c) 60
- d) 70
- (3) If ABCD is cyclic quadrilateral, m (∠A) = 3 m (∠C), then m(∠A) =...
- 45 a)
- b) 90
- c) 135
- d) 180

Exercises T2 - 2021)

(21)

B): In the opposite figure:

 \overline{BC} is diameter of circle M, $\overline{BD} \cap \overline{CE} = \{A\}$ $\overline{MX} \perp \overline{AB}$, $\overline{MY} \perp \overline{AC}$, if AB = AC Prove that AD = AE

[Q3] A) In the opposite figure:

ABCD is a rectangle drawn in a circle M E ∈ circle M where DC = CE Prove that: AE = BC

B) In the opposite figure:

ABCD is square, \overrightarrow{AX} bisects \angle BAC

 \overrightarrow{AY} bisects \angle BDC. Prove that:

- ① AXYD is cyclic quadrilateral
- ② Find m (∠AYX)

[Q4] A) In the opposite figure:

ABCD is a cyclic quadrilateral, $E \in \overrightarrow{CB}$ $m(\angle ABE) = 100^{\circ}$, $m(\angle CAD) = 40^{\circ}$ Prove that: $m(\widehat{CD}) = m(\widehat{AD})$

B) \overline{BC} is a diameter in a circle M, \overline{BY} is chord, $E \in \overline{BY}$ where BE = EY. Prove that: m (\angle YMC) = 2 m (BEC)

[Q5] In the opposite figure

 \overline{AB} , \overline{AC} are two tangents to circle M at B, C m(\angle E) = 110°, m (\angle BDC)= 70°

Prove that:

- ① \overrightarrow{BC} bisects $\angle ABD$
- ② \overrightarrow{CD} is tangent to the circle Which passes through the vertices of Δ ABC.

••• End of the questions •••

Prep. 3 Model (12)

[Q1] A) Choose the correct answer:

- (1) The line of centers of two intersecting circles is perpendicular on common and bisect it
- a) Diameter b) Tangent c) Chord
- d) Arc
- (2) The measure of inscribed angle drawn in quarter circle =°
- a) 135
- b) 120
- c) 90
- d) 45
- (3) The center of the inscribed circle of triangle is the intersection point of
- a)

- Medians b) Axis of sides c) Altitudes d) Bisectors angles

B): In the opposite figure:

 \overline{AB} , \overline{AC} are two equal chords in circle N $\overrightarrow{N}\overrightarrow{X} \perp \overrightarrow{AB}$, $\overrightarrow{N}\overrightarrow{Y} \perp \overrightarrow{AC}$ and $\overrightarrow{N}\overrightarrow{X}$, $\overrightarrow{N}\overrightarrow{Y}$ intersect Circle N at D, O. Prove that DX = OY

[Q2] A) Choose the correct answer:

- (1) If the circumference of circle is 8 π cm and straight line L is on distance 3 cm from its center, then L is Circle
- a) Outside the b) Secant to c) Tangent to d) Passes through

- (2) If ABCD is cyclic quadrilateral, m (∠A) = 3 m (∠C), then m(∠A) =...
- a) 180
- b) 135
- c) 90
- d) 45

(3) In the opposite figure:

 \overline{ED} is tangent, m($\angle DAB$) = 110° Then m (\angle ACB) =°

- a) 35
- c) 60

B): In the opposite figure:

BC is diameter of circle L , LA // \overline{CE}

[Q3] A) In the opposite figure:

ABCD is quadrilateral drawn in a circle, $O \in \overline{AB}$, if we draw \overline{OE} // \overline{BC} and cut \overline{CD} in E. Prove that AOED is a cyclic quadrilateral

B) In the opposite figure:

 \overline{AB} , \overline{BC} are two chords in circle M And were bisected at D, E and m (\angle BAC) = 120° IF \overline{DM} , \overline{EM} were drawn and cut the circle At O, L Prove that: \triangle MLO is equilateral triangle

[Q4] A) In the opposite figure:

Two circles are intersecting at A , B

 \overrightarrow{AC} cut small circle at C and the greatest circle at Y

AD cut small circle at D and the greatest circle at X

Prove that: $m (\angle CBD) = m (\angle XBY)$

B) In the opposite figure:

Two circles are touching externally at A

 \overrightarrow{BC} is a tangent to them at B , C

 \overrightarrow{AD} is a common tangent at A and cut \overrightarrow{BC} in D

Prove that: ① D is midpoint of \overline{BC}

 $\bigcirc \overline{AB} \perp \overline{AC}$

[Q5] A)

 \overline{AB} is a diameter in a circle in which its area is 36 π cm², draw \overline{BC} tangent to the circle at B, if m (\angle ACB) = 60°, calculate the area of the Δ ABC

B) In the opposite figure:

ABCD is a quadrilateral, $\overline{AC} \perp \overline{AB}$, $\overline{BD} \perp \overline{CD}$ Prove that: ABCD is a cyclic quadrilateral If X is midpoint of BC, m (\angle ABD) = 24° Find m (\angle AXD)

••• End of the questions •••

Prep. 3 Model (13)

[Q1] A) Choose the correct answer:

- (1) If the circumference of circle is 8 π cm and straight line L is on distance 3 cm from its center, then L is Circle

- a) Outside the b) Secant to c) Tangent to d) Passes through
- (2) The measure of central angles in a circle measure of inscribed angle subtended by the same arc
- a) Supplements b) Equal
- c) Half
- d) Double
- (3) The center of inscribed circle of triangle is intersection point of

- a) Medians b) Axis of sides c) Altitudes d) Bisectors angles

B): In the opposite figure:

EA is a tangent to circle M at A $m (\angle BAD) = X - 30^{\circ}, m(\angle E) = 40^{\circ}$ $m(\angle D) = X, m(\angle C) = Y, BA = BE$ Find the value of X, Y

[Q2] A) Choose the correct answer:

- The length of the arc which represents half circle is
- a) πr

- b) $2\pi r$ c) $\frac{1}{2}\pi r$ d) $\frac{1}{4}\pi r$
- (2) The number of common tangents for two distant circles is
- a) 1

b) 2

c) 3

- d) 4
- (3) If AB = 6 cm, then the number of circle which passes through A, B and the length of its radius 3 cm is
- a)

- c) Zero
- d) Infinite

B): In the opposite figure:

 \overline{AB} , \overline{AC} are two equal chords in circle N X is midpoint of AB, MX cut circle M in D $\overrightarrow{MY} \perp \overrightarrow{AC}$, and cut the circle in E

Prove that: ① XD = YE ② $m(\angle YXB) = m(\angle XYC)$

Exercises T2 - 2021)

[Q3] A) In the opposite figure:

 \overline{BC} is a diameter in circle M, \overline{DE} // \overline{BC} $\overline{BD} \cap \overline{CE} = \{A\}$, m ($\angle A$) = 50°. Find m (\widehat{BD})

B) In the opposite figure:

 $\overline{X} \overline{Y}$ is a tangent to circle M, XY = 12 cm, ZY = 8 cm Find the length of the $\overline{X} \overline{M}$.

[Q4] A) In the opposite figure:

 \triangle ABC is inscribed triangle in a circle, $\mathsf{E} \in \overline{AB}$ where AC = AE, \overrightarrow{AD} bisects \angle BAC and Cut the circle in D and cut \overrightarrow{BC} in O Prove that: m (\angle DBO)= m (\angle DEO)

B) In the opposite figure:

ABCD is a quadrilateral, AB = AD, D B = D C $m(\angle ABD) = X$, $m(\angle CBD) = 2 X$

[Q5] A) In the opposite figure:

 \overline{AB} is a diameter in circle M, \overline{MC} // \overline{AC} , m (BCD) = 25°. Find m (\angle BAC)

B) In the opposite figure:

 \overrightarrow{AD} bisects \angle BAC, \overrightarrow{OE} bisects \angle O $\overrightarrow{OE} \perp \overrightarrow{AD}$ Prove that: \overrightarrow{AO} is tangent to the circle which passes through points A , B , c

· · · End of the questions · · ·

Prep. 3 Model (14)

[Q1] A) Choose the correct answer:

- If the longest chord in a circle is 12 cm, its circumference =......
- a) 6 π
- b) 12 π
- c) 24 π
- d) 144 π
- (2) The radius of two circles M, N are 6 cm, 8 cm and MN = 14 cm, then the two circles are
- a) Intersecting b) Distant
- One inside c) other
- Touching d) externally
- (3) The inscribed angel in half circle is
- a) Acute
- b) Straight c) Right
- d) obtuse

B): In the opposite figure:

ABCD is a cyclic quadrilateral, $E \in \overrightarrow{CB}$ $m(\angle ABE) = 110^{\circ}$, $m(\angle CAD) = 35^{\circ}$ Prove that: m (\widehat{CD}) = m (\widehat{AD})

[Q2] A) Choose the correct answer:

- (1) A chord of length 8 cm drawn in a circle of diameter 10 cm, then the distance between the chord and the center of circle = cm
- a)

b) 3

c) 4

- (2) Number of common tangents for two touching internally circles is
- a) Zero
- b) 1

c) 2

- d) 3
- (3) ABCD is cyclic quadrilateral, m(∠A) = 2 m (∠C), then m(∠A) = ...
- a) 30°
- b) 60°
- c) 90°
- d) 120°

B): In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two tangents of the circle $M(\angle A) = 70^{\circ}$, $m(\angle D) = 125^{\circ}$

- ① Find m (∠ABC)
- ② Prove that: BC = EB

Prep 3- Geometry (Prep

 \overline{AB} is diameter in the circle M \overline{CD} // \overline{AB} , X is midpoint of \overline{MY} $\overline{MY} \perp \overline{AB}$. Find m(\widehat{AC}), m (\widehat{YC})

B) In the opposite figure:

 \overline{AB} , \overline{AC} are two equal chords in circle M $\overline{MD} \perp \overline{AB}$, and cut the circle in X

 $\overrightarrow{ME} \perp \overline{AC}$, and cut the circle in Y

Prove that: XD = YE

[Q4] A) In the opposite figure:

 \overrightarrow{AO} is a tangent to the circle M at A

AO // ED. Prove that: DEBC is cyclic quadrilateral

B) In the opposite figure:

Two concentric circles at M \overline{AB} is chord in the greatest circle And touch the smallest circle at C If AB = 14 cm. Find the area between two circles

[Q5] A) In the opposite figure:

The circle M passes through vertices

Of \triangle ABC, m(\angle AMB) = 120°,

 \overrightarrow{C} \overrightarrow{D} is tangent to the circle M at C

 \overrightarrow{CD} // \overrightarrow{AB} . Prove that: \triangle ABC is equilateral triangle

B) In the opposite figure:

m (\angle MAB) = 60°, m (\angle MCD) = 70° Find by prove m (\angle AMC)

••• End of the questions •••

Prep. 3 Model (15)

[Q1] A) Choose the correct answer:

- ABCD is cyclic quadrilateral, m (∠A) = 3 m(∠C), then m(∠A) = .
- 90° a)
- b) 45°
- c) 135°
- d) 120°
- (2) If the radii of two circles M, N are 6 cm, 3 cm, and MN = 2 cm, then the two circles are
- a) Intersecting b) Distant
- One inside c) other
- Touching externally
- (3) Circle of radius 2 x cm, straight line of distance x+1 cm from its center, then the straight line iscircle
- a)

- Tangent to b) Axis of c) Secant to d) Outside the

 \overline{AD} , \overline{EB} are two equal chords in circle

Prove that: CA = CE

[Q2] A) Choose the correct answer:

- Number of common tangent for two concentric circles is
- a) 3

b) 2

c) 1

- d) Zero
- (2) Measure of inscribed angle in semicircle =°
- a) 360
- b) 180
- c) 120
- d) 90
- (3) The center of the inscribed circle of triangle is the intersection point of
- - Medians b) Axis of sides c) Altitudes
- Bisectors angles

B): In the opposite figure:

ABC is an equilateral triangle,

m (\angle BDC) = 120°

Prove that: ABCD is a cyclic quadrilateral

[Q3] A) In the opposite figure:

The circumference of the circle = 44 cm \overline{AB} is diameter, BC is tangent at B, m (\angle C)= 60° Find the length of \overline{BC} . ($\pi = \frac{22}{7}$)

B) In the opposite figure:

 \overline{CD} is diameter in circle M, $\overline{E} \ \overline{F}$ is chord such that $\overline{XY} \ // \ \overline{EF}$, m (\angle D) = 70°, Find m ($\widehat{E} \ X$)

[Q4] A) \overline{BC} is diameter in circle M, \overline{BY} is chord, $E \in \overline{BY}$ such that BY = YE. Prove that: m (\angle YMC) = 2 m (\angle BEC)

B) In the opposite figure:

ABCD is a parallelogram, $E \in \overrightarrow{BC}$ such that DE = DCProve that:

- ① ABED is cyclic quadrilateral
 - ② \overrightarrow{DA} is tangent to the circle Which passes through vertices of Δ DEC

[Q5] In the opposite figure

A) In the opposite figure:

 \overline{AB} , \overline{CD} are two parallel chords in circle M M(\angle BAC) = 100°. Find m (\angle DMA)

B) In the opposite figure:

 \overline{AB} \overline{AC} are two tangents of circle M,

$$M (\angle A) = 70^{\circ}, m (\angle D) = 125^{\circ}$$

- ① Find m (∠ABC)
- ② Prove that CB = BE

· · · End of the questions · · ·

Prep. 3 Model (16)

Q1] A) Choose the correct answer:

- (1) If the radii of two circles M, N are 9 cm, 4 cm, and MN = 5 cm, then the two circles are
- a) Intersecting b) Distant
- c) Touching internally
- d) Touching externally
- (2) The centers of circles which passes through two points A,B lies on
- a) \overline{AB}
- b) $\frac{\text{Midpoint}}{\text{of }\overline{AB}}$
- c) Axis of \overline{AB}
- d) Perpendicular on \overline{AB} at B
- (3) Measure of inscribed angle in semicircle =°
- a) 360
- b) 180
- c) 120

d) 90

B): In the opposite figure:

 \overline{AB} is diameter in circle M, m (\angle D) = 30°, m (\angle ACE) = 50° Find by proof m(\angle CBA)

[Q2] A) Choose the correct answer:

(1) In the opposite figure:

 \overline{CB} , \overline{CD} are two tangents to circle at B, D

m (\angle C) = 70° then measure of smaller arc (\widehat{BD}) =

- a) 180
- b) 90
- c) 100
- d) 110
- (2) \overline{AB} , \overline{CD} are two equal arcs in circle M, X , Y are midpoints of \overline{AB} , \overline{CD} , MX = 3 cm, then MY =
- a) 3

b) 6

- c) $\frac{3}{2}$
- d) 4
- (3) The length of arc which represents quarter of circle is
- a) 4πr
- b) 2πr
- c) πr
- d) $\frac{1}{2}\pi r$

B): In the opposite figure:

 \overline{AB} , \overline{AC} are two tangents to circle M \overline{AB} // \overline{CD} , m (\angle BMD) = 130°

Prove that: ① \overrightarrow{CB} bisects \angle ACD

② Find by proof m (∠A)

Exercises T2 - 2021)

(31)

[Q3]

A) By using geometric tools, draw line segment \overline{AB} of length 6 cm then draw \overline{AC} where m (\angle CAB) = 60°, draw a circle passing through two points A , B and its center lies on \overline{AC} . Then calculate the length of its center (don't remove arcs)

B) In the opposite figure:

M, N are two intersecting circle at B, C

 $A \in (M \ N)$ Prove that: BD = CE

[Q4] A) In the opposite figure:

 \overline{FB} is tangent to circle M, \overline{AB} is diameter

D midpoint of A C

Prove that: ① DOBM is cyclic quadrilateral

 \bigcirc m(\angle AFB) = 2 M (BAE)

B) In the opposite figure:

 \overline{XY} is diameter in circle M, \overline{EF} is chord \overline{XY} // \overline{EF} , m ($\angle D$) = 70°, Find m ($\angle X$)

[Q5]

A) In the opposite figure:

AE = AC, \overline{AD} bisects \angle BAC

Prove that:

EBDF is cyclic quadrilateral

B)

 \overline{AB} is diameter in circle M, \overline{AC} is chord, m (\angle CAB) = 30°

AC Cuts the tangent at B in D

Prove that:

BA is tangent to the circle passes through Δ BCD

••• End of the questions •••

Prep. 3 Model (17)

[Q1] A) Choose the correct answer:

- One of the following identify unique circle if know
- Length of radius and point b) Two points a)
- c) One point

- d) Center and point
- (2) Circle of diameter 6 cm, straight line of distant 6 cm, is
- a) Outside
- Cut it in two points
- c) Tangent
- Passes the center
- diameter in circle passes through its points
- a) D O
- b) $\overline{E} F$
- c) FD

d) \overline{DE}

B): In the opposite figure:

 \overline{AB} is chord in circle M, $\overline{MX} \perp \overline{AB}$ cut it in X MX = 5 cm, KA = 13 cmFind length of \overline{AB} .

[Q2] A) Choose the correct answer:

In the opposite figure: $M(\angle A) = 55^{\circ}$, then m ($\angle MCB$) =

- 180 a)
- b) +0
- c) 100
- 110 d)
- (2) Number of axes of symmetry of two congruent circles and touching externally is
- a) 4

c) 1

- d) Infinite
- (3) Two circles of radius 5 cm, 8 cm, are touching if the distance between their centers ∈

- a)] 13,3[b)] 3,13[c) R [3,13] d) {3,13}

B):

 \overline{AB} , is diameter in the circle M, \overline{AC} is chord, draw \overline{BE} tangent to the circle cut \overrightarrow{AC} at E. Prove that \overrightarrow{AB} is tangent to the circle passes through the points B, C, E.

[Q3]

A) In the opposite figure:

ABCD is cyclic quadrilateral, m(\angle ACD) = 35° m(\angle (CAD) = 25°, E $\in \overrightarrow{CB}$, E $\notin \overline{CB}$. Find m (\angle ABE)

B) In the opposite figure:

XYZ is an equilateral triangle drawn in circle $\mathsf{E} \in \overline{XY}$, $\mathsf{D} \in \overline{EZ}$ where $\mathsf{ED} = \mathsf{EX}$ Prove that: $\mathsf{XD} = \mathsf{ED}$

[Q4]

A) In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two tangents to circle M at B, C $_{\text{C}}$ m(\angle E) = 110°, m(\angle A) = 40°

Prove that: \overrightarrow{BC} bisects \angle ABD

B) M, N are two circles are touching externally at A, Draw \overrightarrow{BA} , \overrightarrow{CA} cut M at B, C and cut N in D, E, If m(\angle BMC) = 140°. Find m (\widehat{ED})

[Q5]

A) In the opposite figure:

M, N are two circles intersecting at A, B $Y \in AC$, \overline{MY} cut the circle M in X \overline{MN} cut \overline{AB} in E and cut circle M in D If AE = AY. Prove that DE = XY

B) XYZL is a parallelogram, \angle X is acute angle. $F \in \overline{ZL}$, $F \notin \overline{ZL}$ where YF = XL. Prove that: XYLF is cyclic quadrilateral

••• End of the questions •••

Prep. 3 Model (18)

[Q1] A) Choose the correct answer:

- Two intersecting circles their radii are 5 cm, 3cm, then MN∈.....
-]8,∞[a)
- b)]2,∞[
- c) [0,2]

- (2) Can't draw circle passes through vertices of
- a) Triangle
- b) Rectangle c) Rhombus
- d) Square
- (3) The minor arc in the circle is opposite to inscribed angle
- a) Acute b) Obtuse c) Right

B):

In the opposite figure:

The radius of circle M is 13 cm. \overline{AB} is chord in circle of 24 cm. C is midpoint of \overline{AB} , $\overline{MC} \cap \text{circle} = \{D\}$ Find by proof area of Δ ADB

[Q2] A) Choose the correct answer:

- (1) The center of the inscribed circle of triangle is the intersection point of
- a) Medians

- b) Axis of sides c) Altitudes d) Bisectors angles
- (2) The number of common tangents of concentric circles is
- a) Zero
- b) One
- c) Two
- d) Three
- (3) The radius length of the smallest circle passes through endpoints of line segment Half its length
- a) Less than b) More than c) Equal d) double

B):

In the opposite figure:

 $\overrightarrow{X}\overrightarrow{Y}$, $\overrightarrow{X}\overrightarrow{Z}$ are two tangents to circle M, $m (\angle D) = 110^{\circ}, m (\angle X) = 40^{\circ}$

Prove that: $m(ZY) = m(\angle ZDE)$

[Q3] A) In the opposite figure:

 \overline{AB} is a diameter in circle M, \overline{AC} is chord D is midpoint in \overline{AC} , m ($\angle A$) = 30° Prove that:

- ① \overline{MD} // \overline{BC} ② Δ MBC is equilateral triangle

B) \overline{XY} is diameter in circle M, \overline{XZ} is chord, E is midpoint of \overline{XZ} , draw \overrightarrow{YD} tangent to circle cut \overrightarrow{XZ} in D, draw \overrightarrow{EM} cut the circle in F. ① MEDY is cyclic quadrilateral prove that:

$$\bigcirc$$
 m (\angle D) = 2 m (\angle FXY)

[Q4]

A) In the opposite figure:

ABCD is cyclic quadrilateral, \overrightarrow{AX} bisects \angle BAC,

- ① AXYD is cyclic quadrilateral ② $\overline{X} \overline{Y} // \overline{B} \overline{C}$

B) In the opposite figure:

 \overline{AB} is diameter in circle M, \overline{CM} // \overline{AB}

$$\overline{CB} \cap \overline{AM} = \{ E \}$$

Prove that: $\overline{BE} < \overline{AE}$

[Q5]

- A) \overline{AB} is a diameter in circle M, AC is chord in it, draw BD tangent to circle M cut AC in D, m (\angle D) = 50°. Prove that: \overline{AB} is tangent to circle passes through vertices of Δ CBD
- B) In the opposite figure:

$$AB = AD$$
, $DB = DC$,

$$m (\angle ABD) = X, m (\angle CBD) = 2 X$$

Prove that: ABCD is cyclic quadrilateral

*** End of the questions ***

Prep. 3 Model (19)

[Q1] A) Choose the correct answer:

- (1) The two tangents drawn to the circle at the endpoints of its diameter are.....
- a) Parallel

- b) Equal c) Coincides d) Intersecting
- (2) Circle of diameter 8 cm, straight line of distant 3 cm from its center is the circle
- a) Outside b) Touch
- c) Secant to d) Axis of symmetry
- (3) In the opposite figure:

MA, MB are to perpendicular radii

 \overrightarrow{DE} is axis of symmetry of \overrightarrow{MA} , then m (\overrightarrow{BD}) =

- a) 30
- b) 45
- c) 90
- d) 135

B): In the opposite figure:

 \overline{AB} is diameter in circle. M ($\angle ACD$) = 115° Find by proof m ($\angle BAD$)

[Q2] A) Choose the correct answer:

In the opposite figure:

 $\overline{MA} \perp \overline{MB}$, then m (\angle ACB) =

- a) 90
- b) 135
- c) 110
- d) 270
- (2) The measure of arc which represents third the circle equal ...
- a) 60
- c) 120
- d) 240

(3) In the opposite figure:

 \overrightarrow{AE} , \overrightarrow{AC} are two tangent to the circle $M(\widehat{CE}) = \dots$

- 100 a)
- b) 120
- c) 130
- d) 50

B): In the opposite figure:

 \overline{AB} is diameter in circle M, $\overline{ED} \perp \overline{AD}$ Prove that AEDC is cyclic quadrilateral

Exercises T2 - 2021

[Q3] A) In the opposite figure:

Two concentric circles at center M, AB, AC two chords in greatest circle Touching the smallest circle in D, E Draw \overrightarrow{MD} , \overrightarrow{ME} cut the greatest circle in X , Y

 $M(\angle DAE) = 60^{\circ}$. ① Find m ($\angle DME$)

② Prove that: XD = YE

A circle M, m (\angle BCD) = 120°, Find by proof: $m(\angle BAD)$, $m(\angle BCD)$

[Q4]

A) In the opposite figure:

A circle M, \overline{AB} , \overline{AC} are two tangent at B, C $M(\angle A) = 45^{\circ}$, Prove that: AD = AB + MB

B) In the opposite figure:

 \overline{AF} is tangent to circle M, \overline{DE} // \overline{AF} And cut \overline{AB} in X, cut \overline{AC} in Y Prove that: XBCY is cyclic quadrilateral

[Q5]

- A) Draw \overline{AB} of length 6 cm, then draw a circle passing through A, B and its radius 5 cm. (find possible solution)
- B) In the opposite figure:

 \overline{AB} is a diameter in circle M, \overline{YB} is tangent.

Prove that: DCXY is cyclic quadrilateral

••• End of the questions •••

Prep. 3 Model (20)

[Q1] A) Choose the correct answer:

(1) In the opposite figure: If $m(\angle A) = 30^{\circ}$, $m(\angle AEC) = 110^{\circ}$ Then m (A D) =

- a) 40
- b) 55
- c) 80
- d) 110
- (2) If AB = 6 cm, then the area of the smallest circle passing through A, B = cm²
- a) 3π
- b) 6 π
- c) 8 π
- d) 9 π

(3) In the opposite figure: $M(\angle AMC) = 120^{\circ}$

Then m (∠ ABC)=°

- a) 60
- b) 120
- c) 240
- - d) 360

B): In the opposite figure:

ABCD is trapezium, \overline{AD} // \overline{BC} , $\overline{AC} \cap \overline{BD}$ = {E}. If E B = E C Prove that: ABCD is cyclic quadrilateral

[Q2] A) Choose the correct answer:

- (1) The center of the circumcircle of triangle is the intersection point of
- a) Medians

- b) Axis of sides c) Altitudes d) Bisectors angles
- (2) In the opposite figure:

 \overline{AB} , \overline{AC} are two tangents to circle M $M(\angle MBC) = 25^{\circ}$, then $m(\angle BAC) =$

- a) 75°
- b) 50°
- c) 25°
- d) 12° 30\

(3) In the opposite figure:

AB is tangent to circle AB = 6 cm, AC = 4 cm

a)

b) 9

- c) 12
- d) 36

B): Two intersecting circles in A , B. Draw AC tangent to first circle cut the second circle in C, BD tangent to second circle cut the first in D

Prove that: $\overline{AD} // \overline{BC}$

[Q3] A) In the opposite figure:

M, N are two intersecting circles in A, B $\overline{MX} \perp \overline{AD}$, $\overline{MY} \perp \overline{BD}$

Prove that: M X = M Y

B) In the opposite figure:

E is point outside the circle

Prove that: $m (\angle E) < m (\angle BCD)$

[Q4] A) In the opposite figure:

M, N are two intersecting circles in A, B \overrightarrow{E} is tangent to the circle M at C, \overrightarrow{DC} is tangent to the circle N at D, Prove that: ECDB is cyclic quadrilateral

B) By using geometric tools, draw ∆ ABC in which A B = 4 cm, BC = 5 cm, AC = 6 cm, then draw the circle passing through A, B, C.

[Q5]

A) In the opposite figure:

 $AB = AC = AD, m (\angle BAD) = 50^{\circ}$ Find m (\angle BCD)

B) In the opposite figure:

 \overline{XY} , \overline{XZ} are two tangents to the circle $M (\angle YXZ) = 40^{\circ}, m (\angle ZDE) = 110^{\circ}$ Prove that: Z E = Z Y

... End of the questions ...

المتعانات المعاصرGeometry الصف الثالث الاعراوي الاترم الثاني (١) منترى توجيه الرياضيات

Giza Governorate

Answer the following questions:

- V					
	Choose	41		A-4 0881A84	NE.
	I noose	me	COFFECI	answer	-

- (1) The measure of the inscribed angle is the measure of the central angle, subtended by the same arc.
 - (a) half
- (b) third
- (c) quarter
- (d) double
- (2) It is possible to draw a circle passing through the vertices of a
 - (a) trapezium.
- (b) parallelogram.
- (c) rectangle.
- (d) rhombus.
- (3) The centre of the inscribed circle of any triangle is the point of intersection of its
 - (a) altitudes.

- (b) medians.
- (c) axes of symmetry of its sides.
- (d) bisectors of its interior angles.
- - (a) 12
- (b) 11
- (c) 6
- (d) 5

(5) In the opposite figure:

If $E \in \overrightarrow{BC}$, \overrightarrow{CX} bisects \angle DCE

, m (
$$\angle$$
 XCE) = 62°

, then m $(\angle A) = \cdots$

- (a) 62°
- (b) 118°
- $(c) 56^{\circ}$
- (d) 124°

(6) In the opposite figure:

If C is the midpoint of \widehat{AB}

- , then AB 2 AC
- (a) <

(b) >

- (c) ≥
- (d) =

[2] [a] In the opposite figure:

If E is the midpoint of \overline{XY}

- $m (\angle EMN) = 130^{\circ}$
- , then find: $m(\angle C)$

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (٢) منترى توجيه الرياضيات

[b] In the opposite figure:

If \overrightarrow{AB} , \overrightarrow{AC} are two tangents to the circle at B, C

, m (
$$\angle$$
 D) = 70°, CB = CD

- (1) Find: $m(\angle A)$
- (2) Prove that : $\overline{BD} // \overline{AC}$

3 [a] In the opposite figure :

$$\overline{XB}$$
 // \overline{CY} , $\overline{MA} \perp \overline{XC}$

$$,\overline{\mathrm{MD}}\perp\overline{\mathrm{BY}}$$

Prove that: MA = MD

[b] In the opposite figure:

 $\overrightarrow{CE} \perp \overrightarrow{AB}$, $\overrightarrow{AD} \perp \overrightarrow{BC}$ and intersects the circle at X

Prove that:

- (1) AEDC is a cyclic quadrilateral.
- (2) \overrightarrow{CB} bisects \angle ECX

4 [a] In the opposite figure:

If m (
$$\angle$$
 DEF) = 115°

, then find: m (\(DMF \)

[b] In the opposite figure:

Inscribed circle of the triangle ABC touches

its sides at X, Y and Z

If AX = 3 cm., XB = 4 cm., AC = 8 cm.

Find: The length of \overline{BC}

[5] [a] In the opposite figure :

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$$
, m ($\angle C$) = 25°

• m (
$$\angle$$
 E) = 40°

Find: m(ZADC)

المتعانات العاصرGeometry الصف الثالث الاعرادي الترم الثاني (٣) منترى توجيه الرياضيات

[b] In the opposite figure:

AB is a diameter in the circle M

- , CF is a tangent to the circle at C
- $\overrightarrow{DF} \perp \overrightarrow{AB}$ and intersects \overrightarrow{BC} at E

Prove that:

- (1) ADEC is a cyclic quadrilateral.
- (2) \triangle FCE is an isosceles triangle.

Alexandria Governorate

Answer the following questions:

1 Choose the correct answer from those given :

- (1) The two opposite angles in the cyclic quadrilateral are
 - (a) equal.
- (b) supplementary. (c) complementary. (d) alternate.
- (2) The opposite figure represents a semicircle its centre is M and its radius length is r length unit, then the area of the opposite figure = square units.

- (a) $2\pi r$
- (b) π r
- (c) πr^2
- (d) $\frac{\pi r^2}{}$
- (3) In a regular hexagon, the measure of the angle of its vertex equals
 - (a) 60°
- (b) 108°
- (c) 120°
- (d) 135°
- (4) If AB is a line segment, then the number of circles can be drawn passing through

A and B equals

(a) 1

- (c) 3
- (d) an infinite number.

(5) In the opposite figure:

The length of $\overline{AB} = \cdots \cdots cm$.

(a) $10\sqrt{3}$

(b) 10

(c) 5

(d) $5\sqrt{3}$

- (B) The inscribed angle which is opposite to the minor arc in a circle is
 - (a) acute.
- (b) right.
- (c) obtuse.
- (d) reflex.

[a] In the opposite figure:

AB = AD

- $m (\angle ABC) = 20^{\circ}$
- $, m (\angle ADB) = 70^{\circ}$

Find: $m (\angle C)$, $m (\angle BDC)$

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٤) منترى توجيه الرياضيات

[b] In the opposite figure:

$$m (\angle BAC) = m (\angle BDC) = 90^{\circ}$$

- , H is the midpoint of \overline{BC} and m (∠ AHD) = 48°
- (1) Prove that: ABCD is a cyclic quadrilateral.
- (2) Find: $m (\angle ABD)$

[3] [a] In the opposite figure:

A circle M of circumference 44 cm.

- , \overline{AB} is a diameter , \overline{BC} is a tangent at B
- and m (\angle ACB) = 30°

Find: The length of \overline{BC} $\left(\pi = \frac{22}{7}\right)$

[b] In the opposite figure :

If M is a circle, $m (\angle A) = 48^{\circ}$

Find: m (BD the major)

[4] [a] In the opposite figure :

AD is a diameter in a circle M

, \overrightarrow{CA} and \overrightarrow{CB} are two tangents to the circle M , touch it at A and B respectively.

Prove that : $m (\angle DMB) = m (\angle ACB)$

[b] In the opposite figure:

ABC is a triangle in which AB = AC

- \overline{BC} is a chord in the circle M
- , if \overline{AB} and \overline{AC} cut the circle at D and H respectively.

Prove that : $m(\widehat{DB}) = m(\widehat{HC})$

[a] In the opposite figure :

M and N are two congruent circles

AB = CD

Prove that: The figure MXYN is a rectangle.

المتمانات المعاصرGeometry الصف الثالث الاحراوي الترم الثاني (٥) منترى توجيه الرياضيات

- [b] ABCD is a quadrilateral inscribed in a circle, H is a point outside the circle and \overrightarrow{HA} and \overrightarrow{HB} are two tangents to the circle at A and B, if m (\angle AHB) = 70° and m (\angle ADC) = 125°, prove that:
 - (1)AB = AC
 - (2) AC is a tangent to the circle passing through the points A, B and H

El-Kalyoubia Governorate

Answer the following questions:

1 Choose the correct answer:

- (1) If the area of the circle is $9 \, \pi \, \text{cm}^2$, then its radius length = cm.
 - (a)9

(b) 2

- (c)(-3)
- (d)3
- (2) The number of symmetric axes of a square =
 - (a) 1

(b) 2

(c)3

- (d)4
- (3) If M is a circle of a diameter length equals 14 cm., MA = (2 X + 3) cm. where A lies on the circle, then $X = \cdots$
 - (a) 5

(b)3

(c)2

- (d) 1
- (4) The raito between the measure of the inscribed angle and the measure of the central angle subtended by the same arc =
 - (a) 1:2
- (b) 2:1
- (c) 1 : 1
- (d) 1:3
- (5) If ABCD is a cyclic quadrilateral and m (\angle B) = $\frac{1}{2}$ m (\angle D), then m (\angle B) =
 - $(a) 90^{\circ}$
- (b) 60°
- $(c) 120^{\circ}$
- $(d) 180^{\circ}$
- (6) If the figure ABCD ~ the figure XYZL, then m (\angle B) = m (\angle )
 - (a) X

(b) Y

- (c) Z
- (d)L

[2] [a] In the opposite figure:

Two concentric circles at M

, m (\angle ABE) = m (\angle AEB)

Prove that : CD = ZL

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (١) منترى توجيه الرياضيات

[b] In the opposite figure:

AB is a tangent to the circle M

$$_9 \text{ m } (\angle \text{ A}) = 40^\circ$$

Find with proof: $m (\angle BDC)$

[3] [a] Using your geometric tools, draw \overline{AB} with a length of 4 cm., then draw a circle passing through the two points A and B whose radius length is 3 cm.

What are the possible solutions? (Don't remove the arcs)

[b] In the opposite figure:

AB is a diameter in the circle M

, X is the midpoint of \overline{AC} and \overline{XM} intersecting

the tangnet of the circle at B in Y

Prove that: The figure AXBY is a cyclic quadrilateral.

[4] [a] In the opposite figure:

 \overrightarrow{XY} and \overrightarrow{XZ} are two tangents to the circle

at the two points Y and Z, $m(\angle X) = 40^{\circ}$

$$m (\angle D) = 110^{\circ}$$

Prove that : $m (\angle ZYE) = m (\angle ZEY)$

[b] In the opposite figure:

$$m (\angle E) = 40^{\circ}, m (\angle C) = 25^{\circ}$$

Find with proof:

$$(2) \operatorname{m}(\widehat{AC})$$

[5] [a] In the opposite figure:

AD is the tangent to the circle M at A

$$m (\angle DAC) = 130^{\circ}$$

Find with proof: $m (\angle B)$

[b] ABCD is a quadrilateral drawn in a circle $, E \in \overrightarrow{AB}$, $E \notin \overrightarrow{AB}$

$$, m(\widehat{AB}) = 110^{\circ} , m(\angle CBE) = 85^{\circ}$$

Find with proof : m (∠ BDC)

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٧) منترى توجيه الرياضيات

El-Sharkia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given:

- (1) The two tangents which are drawn from the two endpoints of a diameter of a circle are
 - (a) parallel.
- (b) perpendicular.
- (c) coincide.
- (d) intersecting.
- (2) The number of the axes of symmetry of the semicircle the number of the axes of symmetry of the isosceles triangle.
 - (a) >

(b) <

- (c) =
- (d) ≥

(3) In the opposite figure:

 $\overline{AB} // \overline{CD}$, m ($\angle AWC$) = 40° ,

then m (\angle DEB) =

(a) 50°

(b) 40°

 $(c) 30^{\circ}$

(d) 45°

- (4) A circle, its radius length $(2 \times + 6)$ cm. and the straight line L is at distance (x + 2) cm. from its centre where x > 0, then L is
 - (a) outside the circle.

(b) a tangent to the circle.

(c) a secant to the circle.

- (d) passing through the centre.
- (5) If the straight line $\overrightarrow{AB} \cap$ the circle $M = \{A, B\}$
 - , then $\overrightarrow{AB} \cap$ the surface of the circle M =
 - (a) $\{A, B\}$
- (b) \overline{AB}
- (c) \overrightarrow{AB}
- (d) \overrightarrow{BA}

(6) In the opposite figure :

 $CD = 3 \text{ cm.}, \overline{MC} \perp \overline{AB}$

, D is the midpoint of \overline{MA}

then the area of the circle $M = \cdots \pi \text{ cm}^2$.

(a) 3

(b) 6

- (c) 9
- (d) 36

[2] [a] In the opposite figure:

AB and AC are two chords equal in length at the circle M

- , X is the midpoint of \overline{AB}
- , Y is the midpoint of \overline{AC} , m ($\angle A$) = 70°
- (1) Find: $m (\angle DME)$
- (2) Prove that : XD = YE

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (١٠) منترى توجيه الرياضيات

[b] In the opposite figure :

AB is a diameter in the circle M

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$$
, m ($\angle E$) = 30°, m (\overrightarrow{AC}) = 80°

Find: $m(\widehat{CD})$

- [3] [a] Complete: The measure of the inscribed angle equals the measure of the central angle by the same arc.
 - [b] In the opposite figure:

M is a circle, $m (\angle MAB) = 50^{\circ}$

Find: $m (\angle C)$

[a] In the opposite figure :

$$m (\angle ABE) = 100^{\circ}$$

$$m (\angle CAD) = 40^{\circ}$$

Prove that : \triangle DAC is an isosceles triangle.

[b] In the opposite figure:

 \overline{AB} and \overline{AC} are two tangent-segments

to the circle at B and C

$$, m (\angle A) = 50^{\circ}, m (\angle D) = 115^{\circ}$$

Prove that : (1) \overrightarrow{BC} bisects $\angle ABE$

- [5] [a] Complete: The measure of the inscribed angle in a semicircle equals°
 - [b] In the opposite figure:

ABC and DCE are two equilateral triangles

- , E is the midpoint of \overrightarrow{BC} , $\overrightarrow{AE} \cap \overrightarrow{BD} = \{W\}$
- (1) **Prove that :** AC is a tangent-segment to the circle which passes through the vertices of Δ CED
- (2) Prove that: CDWE is a cyclic quadrilateral.
- (3) **Find**: The centre of the circle which passes through the vertices of the quadrilateral CDWE

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (٩) منترى توجيه الرياضيات

El-Monofia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer:

(1) In the opposite figure:

 $H \in \overrightarrow{DA}, \overrightarrow{AO}$ bisects $\angle HAB$

- $, m (\angle HAO) = 55^{\circ}$
- , then m (\angle C) =
- (a) 55°
- (b) 75°
- (c) 110°

(d) 125°

(2) In the opposite figure:

If the side length of the square ABCD = 7 cm. and the side length of the square XYZL = 3 cm.

- , then the area of the shaded part = cm².
- (a) (7-3)

(b) 4(7-3)

(c) $(7-3)^2$

(d) $(7^2 - 3^2)$

- (3) If $\overrightarrow{AB} \cap$ the circle $M = \{A, B\}$, then $\overrightarrow{AB} \cap$ the surface of the circle $M = \cdots$
 - (a) \overrightarrow{AB}
- (b) AB
- (c) $\{A, B\}$
- (d) \overrightarrow{AB}

(4) In the opposite figure:

Two concentric circles with centre M

, the radii lengths of them are 6 cm. and 3 cm.

- (a) 60°
- (b) 30°
- (c) 120°
- (d) 40°
- (5) If \overline{MA} and \overline{MB} are two perpendicular radii in a circle M and the area of triangle $AMB = 8 \text{ cm}^2$, then the length of radius of this circle =
 - (a) 8 cm.
- (b) 16 cm.
- (c) 4 cm.
- (d) 2 cm.

(6) In the opposite figure:

CA = CB, $\overline{CX} \perp \overline{AB}$

- AB = 2 CX
- , then m ($\angle A$) =
- (a) 30°
- (b) 60°
- (c) 90°

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (١٠) منترى توجيه الرياضيات

[a] In the opposite figure:

ABCD is a quadrilateral inscribed in the circle M

$$M \in \overline{AB}, CB = CD$$

$$m (\angle BCD) = 120^{\circ}$$

Find:
$$(1)$$
 m $(\angle A)$

[b] In the opposite figure:

If
$$m(\widehat{HC}) = 100^{\circ}$$
, $m(\widehat{BD}) = 30^{\circ}$

Find:
$$m(\angle A)$$

[3] [a] In the opposite figure :

Two concentric circles at M

, \overline{AB} and \overline{AC} are two tangents to the smaller circle

$$m (\angle A) = 70^{\circ}$$

(1) Find: $m (\angle DMH)$

[b] In the opposite figure :

Two intersecting circles at A and B, m (\angle C) = 70°

- (1) Find: $m(\angle \cdot O)$
- (2) Prove that : $\overline{CD} // \overline{HO}$

- [a] \overline{AB} is a diameter in the circle M, \overline{AC} is a chord such that m ($\angle BAC$) = 30°
 - , draw \overline{BC} and draw $\overline{MD} \perp \overline{AC}$ and cut it at D
 - (1) Prove that : $\overline{MD} // \overline{BC}$
 - (2) Porve that: The length \overline{BC} = the length of the radius of this circle.

[b] In the opposite figure:

AB is a diameter in the circle M

, m (
$$\angle$$
 B) = 40°, \overrightarrow{DH} is a tangent at D

, DH // BC

Find: m (DC)

[a] If circle with radius length 5 cm., A is a point in its plane where MA = (2 X - 3) cm.

Find the value of x if A is located outside the circle.

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (١١) منترى توجيه الرياضيات

[b] In the opposite figure:

 \overline{AB} is a diameter of the circle M, H is a midpoint of a chord \overline{AC}

- , BD is a tangent to the circle at B
- , \overrightarrow{HM} cuts the circle at X , porve that :
- (1) MHDB is a cyclic quadrilateral.
- (a) $m (\angle BAX) = \frac{1}{2} m (\angle D)$
- (3) \overrightarrow{AB} is a tangent to the circle passing through the points B, C and D

El-Gharbia Governorate

Answer the following questions:

Choose the correct answer from those given:

- (1) If the length of a diameter of a circle is 8 cm. and the straight line L at a distance of 4 cm. from its centre, then L is
 - (a) a secant to the circle at two points.
 - (c) a tangent to the circle.

- (b) lying outside the circle.
- (d) an axis of symmetry to the circle.

(2) In the opposite figure :

If M is the centre of the circle

$$, m (\angle BMD) = 110^{\circ}$$

- , then m (\angle C) =
- (a) 70°
- (b) 110°

(d) 55°

(3) In the opposite figure:

AB is a tangent of the circle M

- , then m (\angle ABC) =
- (a) 120°

(b) 110°

 $(c) 90^{\circ}$

- (d) 30°
- (4) The centre of the inscribed circle of any triangle is the intersection point
 - (a) its medians.

- (b) its heights.
- (c) the symmetric axes of its sides.
- (d) bisectors of its interior angles.

(5) In the opposite figure :

$$m(\widehat{AC}) = 50^{\circ}, \overline{AB} // \overline{CD}$$

, then the value of $y = \cdots$

(a) 5°

 $(c) 15^{\circ}$

- (b) 10°
- $(d) 20^{\circ}$

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۱۲) منترى توجيه الرياضيات

(6) In the opposite figure:

$$MX = MY \cdot m (\angle B) = 50^{\circ}$$

- then m ($\angle A$) =
- (a) 50°
- (b) 60°
- (c) 70°

[2] [a] In the opposite figure :

$$\overline{CM} / \overline{AB} , \overline{BC} \cap \overline{AM} = \{E\}$$

Prove that : BE > AE

[b] In the opposite figure:

AB and BC are two chords in the circle M

- , its radius of length 5 cm. , $\overrightarrow{MD} \perp \overrightarrow{AB}$ and cuts \overrightarrow{AB}
- at D and cuts the circle at E, X is midpoint of BC
- $AB = 8 \text{ cm. and m} (\angle ABC) = 56^{\circ}$

Find: (1) m (\angle DMX)

[3] [a] In the opposite figure :

m (
$$\angle$$
 ABE) = 100°

$$_{9}$$
 m (\angle CAD) = 40°

Prove that : $m(\widehat{CD}) = m(\widehat{AD})$

[b] In the opposite figure:

 \overline{AB} is a chord in the circle M

- , AC bisects \(\triangle \text{ BAM and cuts the circle M at C} \)
- , D is midpoint of \overline{AB}

Prove that : $\overline{DM} \perp \overline{CM}$

[4] [a] In the opposite figure :

$$\overrightarrow{CB} \cap \overrightarrow{ED} = \{A\}, m (\angle A) = 40^{\circ}$$

$$,\overline{DC}\cap \overline{BE} = \{X\}, m (\angle BCD) = 26^{\circ}$$

Find: (1) m (CE)

(2) m (\(\neq\) EXC)

امتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (۱۳) منترى توجيه الرياضيات

[b] In the opposite figure:

 \overrightarrow{XY} and \overrightarrow{XZ} are two tangents to the circle from the point X , $m (\angle X) = 40^{\circ}$

• m (
$$\angle$$
 D) = 110°

Prove that : $m(\widehat{ZDE}) = m(\widehat{ZY})$

5 [a] In the opposite figure:

ABC is a triangle drawn in a circle

 $\overline{BX} \perp \overline{AC}$, $\overline{AY} \perp \overline{BC}$ cuts it at Y and cuts the circle at Z

Prove that:

- (1) ABYX is a cyclic quadrilateral.
- (2) BC bisects \angle XBZ

[b] In the opposite figure:

ABC is a right-angled triangle at A

$$AC = 3 \text{ cm. } BC = 6 \text{ cm.}$$

, m (
$$\angle$$
 BAD) = 60°

AD is a tangent to the circle passing through the vertices of the triangle ABC

El-Dakahlia Governorate

- (1) M and N are two circles of radii lengths 9 cm., 4 cm., 4 cm., MN = 5 cm.
 - then the two circles are
 - (a) intersecting.

- (b) touching internally.
- (c) touching externally.
- (d) distant.
- (2) The centres of all circles passing through the points A and B lie on
 - (a) AB

- (b) midpoint of AB
- (c) the symmetry axis of AB
- (d) the perpendicular to AB from B
- (3) The measure of the inscribed angle which is drawn in a semicircle equals
 - (a) 180°
- (b) 90°
- (c) 45°
- (d) 100°

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (١٤) منترى توجيه الرياضيات

[b] In the opposite figure:

AB is a diameter in the circle M

$$m (\angle D) = 30^{\circ} m (\angle ACE) = 50^{\circ}$$

Find by proof: $m (\angle CBA)$

[2] [a] Choose the correct answer from the given answers:

(1) In the opposite figure:

CB and CD are two tangent-segments at B and D

$$m (\angle C) = 70^{\circ}$$

, then m (\widehat{DB}) the minor =

- (a) 180°
- (b) 90°
- (c) 100°
- (d) 110°

√70°

- (2) \overline{AB} and \overline{CD} are two equal chords in length in the circle M, X and Y are the two midpoints of \overline{AB} and \overline{CD} respectively, $\overline{MX} = 3$ cm., then $\overline{MY} = \cdots = cm$.
 - (a) 3
- (b) 6

- (c) $\frac{3}{2}$
- (d) 4
- (3) The length of the arc which represents $\frac{1}{4}$ of the circle equals
 - (a) $4\pi r$
- (b) $2 \pi r$
- (c) **T** r
- (d) $\frac{1}{2} \pi r$

[b] In the opposite figure:

AB and AC are two tangent-segments to the circle M at B and C

$$\overline{AB} / \overline{CD}$$
, m ($\angle BMD$) = 130°

- (1) Prove that : CB bisects ∠ ACD
- (2) Find by proof : $m(\angle A)$

[3] [a] Using the geometric tools, draw \overrightarrow{AB} with length 6 cm., then draw \overrightarrow{AC} where m ($\angle CAB$) = 60° , draw the circle that passes through the points A, B and its centre lies on \overrightarrow{AC} and calculate the length of its radius (Don't reomve the arcs).

[b] In the opposite figure:

M and N are two intersecting circles at B and C

 $A \in \overline{MN}$

Prove that : BD = CE

[a] In the opposite figure:

OB is a tangent-segment to the circle M at B

 \overline{AB} is a diameter \overline{AC} D is the midpoint of \overline{AC}

Prove that:

- (1) DOBM is a cyclic quadrilateral.
- (2) m (\angle AOB) = 2 m (\angle BAE)

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (١٥) منترى توجيه الرياضيات

[b] In the opposite figure:

 \overline{XY} is a diameter in the circle

, \overline{EO} is a chord in it, where \overline{XY} // \overline{EO}

$$, m (\angle D) = 70^{\circ}$$

Find: $m(\widehat{EX})$

[5] [a] In the opposite figure :

AE = AC, \overrightarrow{AD} bisects $\angle BAC$

Prove that: EBDO is a cyclic quadrilateral.

[b] \overrightarrow{AB} is a diameter in a circle, \overrightarrow{AC} is a chord in it, m ($\angle CAB$) = 30°

, draw AC to cut the tangent to the circle at B at D.

Prove that: BA touches the circle passing through the vertices of the triangle BCD

Ismailia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given:

- (1) A circle its radius length is 5 cm., then its circumference = cm.
 - (a) 5π
- (b) 7 T
- (c) 10 π
- (d) $25 \, \pi$
- (2) We can draw a circle passes through the vertices of
 - (a) rectangle.
- (b) rhombus.
- (c) trapezium.
- (d) parallelogram.
- (3) The number of axes of symmetry of the circle =
 - (a) one axis.

(b) two axes.

(c) three axes.

- (d) an infinite number of axes.
- (4) M is a circle with radius length r, $\overrightarrow{MA} \perp$ straight line L where $\overrightarrow{MA} \cap L = \{A\}$ If MA > r, then L is
 - (a) a tangent to the circle.

(b) a diameter in the circle.

(c) outside the circle.

(d) a secant to the circle.

(5) In the opposite figure :

Two concentric circles.

If the lengths of their radii are 2 cm. and 5 cm.

- (a) $\frac{2}{5}$
- (b) 1

- (c) $\frac{2}{3}$
- (d) $\frac{3}{5}$

المتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (١٦) منتري توجيه الرياضيات

- (a) The sum of measures of the interior angles of the quadrilateral =
 - (a) 90°
- (b) 180°
- (c) 270°
- (d) 360°

[2] [a] In the opposite figure :

ABCD is a cyclic quadrilateral in which

$$m (\angle A) = 120^{\circ}, \overline{BE} \text{ bisects } \angle HBC$$

$$m (\angle EBC) = 65^{\circ}$$

Find with proof: (1) m (\angle C)

[b] In the opposite figure:

M is a circle, AM = AC = BC

Prove that:

AB is a tangent to the circle at A

3 [a] In opposite figure :

X is the midpoint of \overline{AB} , $\overline{MN} \cap \overline{EC} = \{Y\}$

- (1) Prove that: CXMY is a cyclic quadrilateral.
- (2) Find: The centre of the circle which passes through the vertices of the figure CXMY

[b] In the opposite figure:

AB, AC are two tangents to a circle

- \overline{ED} is a tangent to the circle at H such that AE = 10 cm.
- , EH = 3 cm, , AD = 9 cm.

Find: The length of ED

[4] [a] In the opposite figure:

 $\overline{\text{ME}} \perp \overline{\text{AB}}$, $\overline{\text{MH}} \perp \overline{\text{CD}}$

, EX = YH

Prove that : AB = CD

[b] Using geometric tools. Draw \overline{AB} its length is 6 cm., then draw a circle passing through the two points A, B and its radius length is 3 cm.

How many circles can be drawn?

امتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۱۷) منترى توجيد الرياضيات

[5] [a] In the opposite figure :

 \overline{AB} and \overline{AC} are two tangent-segments drawn from A

 $m (\angle AMB) = 70^{\circ}$

Find: (1) m $(\angle ABC)$

(a) $m (\angle ACD)$

[b] \overline{AB} and \overline{CD} are two equal chords in length in a circle

 $\overline{AB} \cap \overline{CD} = \{E\}$, $m(\widehat{AD}) = 50^{\circ}$

- (1) Prove that: $m(\widehat{AD}) = m(\widehat{BC})$
- (2) Find: m (Z AED)

Suez Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given:

(1) In the opposite figure:

 \overrightarrow{AB} is a tangent to the circle M

- , MB = 6 cm. , AB = 8 cm.
- , then $AM = \dots cm$.
- (a)5

- (b) 10
- (c) 12
- (d) 13

(a) 4

(b) 5

- (c) 9
- (d) 14

(3) In the opposite figure:

If m $(\widehat{AC}) = 50^{\circ}$, m $(\widehat{BD}) = 110^{\circ}$

- , then m ($\angle E$) =°
- (a) 60

(b) 50

(c)40

(d)30

- (4) A circle can be drawn passing the vertices of a
 - (a) rhombus.
- (b) rectangle.
- (c) trapezoid.
- (d) parallelogram.

(5) In the opposite figure:

ABCD is a cyclic quadrilateral, $m (\angle D) = X^{\circ}, (\angle B) = 2 X^{\circ}$

- , then $X = \cdots$
- (a) 120°

(b) 100°

(c) 60°

(d) 50°

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۱۸) منترى توجيه الرياضيات

(6) In the opposite figure:

In a circle M, AB//CD

- $, m (\angle BMD) = 80^{\circ}$
- then m $(\widehat{AC}) = \cdots$
- (a) 20°
- (b) 40°
- $(c) 80^{\circ}$

2 [a] In the opposite figure :

ABC is an equilateral triangle drawn inside a circle M

Find: (1) m $(\angle BAC)$

(2) m $(\angle BMC)$

[b] In the opposite figure:

AD is a diameter of the circle M

- , \overrightarrow{AB} is a tangent touches it at A
- $m (\angle ABC) = 50^{\circ}$
- , E is the midpoint of DC

Find with proof: $m (\angle AME)$

[a] In the opposite figure :

$$m (\angle ABE) = 100^{\circ}$$

$$m (\angle CAD) = 40^{\circ}$$

Prove that: ADC is an isosceles triangle.

[b] In the opposite figure:

AB, AC are two tangents to the circle at B, C

• m (
$$\angle$$
 D) = 70°

Find: (1) m $(\angle ABC)$

(2) m $(\angle A)$

4 [a] In the opposite figure :

M is a circle with radius length 7 cm.

$$m (\angle AMB) = 120^{\circ}$$

Find: The length of $(\widehat{AB})(\pi = \frac{22}{7})$

[b] In the opposite figure:

$$m (\angle BDC) = 90^{\circ}, m (\angle ACB) = 30^{\circ}$$

• m (
$$\angle$$
 ABC) = 60°

Prove that:

The points A, B, C and D have one circle passing through them. c

المتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (١٩) منترى توجيه الرياضيات

[a] In the opposite figure:

Triangle ABC is inscribed in the circle M, in which

 $m (\angle B) = m (\angle C)$, D is the midpoint of \overline{AB}

 $,\overline{\text{ME}}\perp\overline{\text{AC}}$

Prove that : MD = ME

[b] In the opposite figure:

AB is a diameter of the circle M

 $m (\angle C) = 50^{\circ}$

Find with proof : $m (\angle CAE)$

Port Said Governorate

Answer the following questions:

1 Choose the correct answer from those given :

(1) In the opposite figure:

If m (\angle CBD) = 50°

- , then m (\angle AMD) =
- (a) 40°

(b) 50°

(c) 80°

(d) 100°

- - (a) a secant to the circle at two points.
- (b) lying outside the circle.

(c) a tangent to the circle.

(d) an axis of symmetry to the circle.

(3) In the opposite figure:

If AB is a diameter in circle

, m
$$(\widehat{AC})$$
 = m (\widehat{CD}) = m (\widehat{DE}) = m (\widehat{EF}) = m (\widehat{FB})

- then m (\angle DXE) = ·············
- (a) 72°
- (b) 54°
- (c) 36°
- (d) 18°
- (4) M and N are two intersecting circles their radii lengths are 5 cm., 2 cm., then MN \(\int_{\cdots}\).
 - (a) [3, 7]
- (b)]3,7[
- (c)]3,7]
- (d) [3, 7]

المتعانات المعاصرGeometry الصف الثالث اللاعراوي الترم الثاني (۲۰) منتري توجيه الرياضيات

(5) In the opposite figure:

If m (\angle BAD) = 120°

- , then m (\angle CBD) =
- (a) 15°
- (b) 30°
- (c) 45°
- C M B (d) 60°
- (6) The number of all common tangents drawn to two distant circles equals
 - (a) 4

(b) 3

- (c)2
- (d) 1

[2] [a] Using the given data in the opposite figure :

- (1) Prove that : $\overline{DE} // \overline{CB}$
- (2) Find: DE

[b] In the opposite figure:

$$m (\angle A) = 40^{\circ}, m (\widehat{BD}) = 60^{\circ}$$

and $m(\widehat{BC}) = m(\widehat{DE})$

Find with proof:

 $m(\widehat{EC})$ and $m(\widehat{BC})$

[3] [a] Using the given data in the opposite figure :

Prove that :

ABCD is a cyclic quadrilateral.

[b] ABCD a parallelogram in which AC = BC

Prove that: \overrightarrow{CD} is a tangent to the circumcircle of the triangle ABC

4 [a] In the opposite figure :

AB is a chord in the circle M

$$\overline{CM} / \overline{AB}, \overline{BC} \cap \overline{AM} = \{E\}$$

Prove that: BE > AE

[b] In the opposite figure:

 \overrightarrow{AB} and \overrightarrow{AC} are two tangents to the circle M touch it at B and C respectively and m (\angle BAM) = 25°

- (1) Prove that: MA bisects (∠ BMC)
- (2) **Find**: m (∠ BMC).

المتعانات المعاصر Geometry الصف الثالث الاعراوي الترم الثاني (٢١) منترى توجيه الرياضيات

[5] [a] In the opposite figure :

The two circles M and N intersect at A and B

- \overline{CD} is a chord in the circle M cuts \overrightarrow{MN} at E
- , if E is the midpoint of $\overline{\text{CD}}$

Prove that: AB // CD

Prove that: AXYD is a cyclic quadrilateral.

Damietta Governorate

E

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from the given ones:

- (1) ABC is a triangle having one symmetric line and its side lengths are 10
 - , 5 and X cm. , then $X = \cdots$ cm.
 - · (a) 5

(b) 8

- (c) 10
- (d) 12
- - (a) 5

(b) 11

- (c)6
- (d) 12
- (3) If the ratio between the measures of the angles of a triangle is 2:3:4, then the measure of the greatest angle is
 - (a) 40°
- (b) 90°
- (c) 45°
- $(d) 80^{\circ}$

(4) In the opposite figure :

M is a circle, $m (\angle MBC) = 32^{\circ}$

- , then m (\widehat{BC}) the minor =
- (a) 116°
- (b) 23°
- (c) 58°
- (d) 64°

- (5) A rectangular picture its length is 60 cm. and its width is 40 cm. We need to make a wooden frame its width is 5 cm., then its total area is cm².
 - (a) 3050
- (b) 3500
- (c) 2925
- (d) 3250

(6) In the opposite figure:

 $m (\angle A) = X^{\circ}, m (\angle C) = 2 X^{\circ}$

- , then $X = \cdots$
- $(a) 60^{\circ}$
- (b) 50°
- $(c) 80^{\circ}$
- (d) 20°

امتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (۲۲) منترى توجيد الرياضيات

- [a] A, B are two points where AB = 6 cm., draw a circle of radius length 5 cm. and passes through the two points A, B
 - Find: (1) The number of circles can be drawn.
 - (2) The distance from the centre to \overline{AB} by proof.

[b] In the opposite figure:

- M, N are two intersecting circles at A, B, $\overrightarrow{MN} \cap \overline{AB} = \{Y\}$
- AB = AC , if X is the midpoint of \overline{AC}
- Prove that : NX = NY

[3] [a] \overline{AB} , \overline{AC} are two chords in a circle

- If X and Y are the two midpoints of \widehat{AB} , \widehat{AC} respectively, \overline{XY} cuts \overline{AB}
- at D, AC at H
- Prove that : AD = AH

[b] In the opposite figure:

- $\overline{AD} // \overline{BC}$, m ($\angle B$) = 74°, m ($\angle DCF$) = 53°
- , CF bisects ∠ DCE

Prove that: ABCD is a cyclic quadrilateral.

[4] [a] In the opposite figure :

- AB and AC are two tangent-segments to the circle M
- $\overline{AB} / \overline{CD}$, m ($\angle BMD$) = 130°

Prove that : \overrightarrow{CB} bisects \angle ACD

[b] In the opposite figure:

- $m (\angle BAC) = 90^{\circ}, m (\angle DAB) = 60^{\circ}$
- AC = 3 cm., BC = 6 cm.

Prove that:

AD is a tangent to the circle passing through the vertices of the triangle ABC

[a] In the opposite figure :

- \overline{AD} and \overline{BE} are two equal chords in length in the circle
- $\overrightarrow{AD} \cap \overrightarrow{BE} = \{C\}$
- Prove that : CD = CE

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۲۳) منترى توجيه الرياضيات

[b] In the opposite figure:

Two intersecting circles at A and B

, CD passes through the point B and intersects

the two circles at C and D

Prove that : AFXE is a cyclic quadrilateral.

Kafr El-Sheikh Governorate

Answer the following questions: (Calculator is allowed)

1 [a] Choose the correct answer from those given:

(1) In the opposite figure:

If
$$m(\widehat{AC}) = 30^{\circ}$$
, $\overline{AB} // \overline{CD}$

- then m (\angle BED) = ················
- (a) 10°
- (b) 15°
- (c) 30°

- (2) The two tangents drawn from the two ends of a diameter of a circle are
 - (a) parallel.
- (b) equal in length. (c) congruent.
- (d) intersecting.
- (3) M and N are two intersecting circles their radii lengths are 5 cm., 2 cm.
 - , then MN \in
 - (a)]3,7[
- (b) [3, 7]
- (c) [3,7]
- (d) [3,7]

[b] In the opposite figure:

AB, AC are two chords in the circle M,

D, E are the two midpoints of \overline{AB} , \overline{AC} respectively

and m (\angle BAC) = 65°

Find: $m (\angle DME)$

2 [a] Choose the correct answer from those given:

(1) In the opposite figure:

AB is a tangent to the circle M

, if MB = 5 cm. , AC = 8 cm. , then $AB = \dots$ cm.

- (a) 5
- (b) 10

- (c) 12
- (d) 13

8cm.

- (a) the interior bisectors of its angles. (b) the exterior bisectors of its angles.
 - (c) its heights.

- (d) the symmetric axes of its sides.
- (3) The measure of the arc which represents $\frac{1}{3}$ the measure of the circle equals
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 240°

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۲٤) منترى توجيد الرياضيات

[b] In the opposite figure:

M and N are two intersecting circles at A and B

- $, C \in \overrightarrow{BA}, D \in \text{the circle N}$
- , m (\angle MND) = 125° and m (\angle BCD) = 55°

Prove that: \overrightarrow{CD} is a tangent to the circle N at D

- [3] [a] State three cases of the cyclic quadrilateral.
 - [b] ABCD is a quadrilateral in which AB = AD, $m (\angle ABD) = 30^{\circ}$ and $m (\angle C) = 60^{\circ}$ Prove that: ABCD is a cyclic quadrilateral.
- [4] [a] Prove that: The two tangent-segments drawn to a circle from a point outside it are equal in length.

[b] In the opposite figure:

AB and AC are two tangent-segments to the circle M

- $\overline{AB} / \overline{CD}$, m ($\angle BMD$) = 130°
- (1) Prove that : \overrightarrow{CB} bisects \angle ACD
- (2) Find: $m (\angle A)$ with proof.

[5] [a] In the opposite figure :

 $\overline{AB} \cap \overline{CD} = \{E\}, EA = ED$

Prove that: EB = EC

[b] In the opposite figure :

AB is a diameter of a circle M, $C \in$ the circle

, m (
$$\angle$$
 CÅB) = 30°, D is the midpoint of \widehat{AC} , $\overline{DB} \cap \overline{AC} = \{E\}$

- (1) **Find**: $m (\angle BDC)$, $m (\angle ABD)$ with proof.
- (2) Prove that : \triangle ABE is an isosceles triangle.

📆 💮 El-Beheira Governorate

Answer the following questions: (Calculators are permitted)

- Choose the correct answer from those given:
 - (1) The distance between the two points (6,0), (-4,0) equals length units.
 - (a) 10
- (b) 10
- (c) 2

(d) 24

المتعانات المعاصرGeometry الصف الثالث الاعراوي الاترم الثاني (٢٥) منترى توجيه الرياضيات

- - (a) a secant to the circle at two points.
- (b) lying outside the circle.
- (c) a tangent to the circle.
- (d) an axis of symmetry to the circle.
- (3) If \overline{AB} is a diameter of a circle, where A (3, -5), B (5, 1), then the centre of the circle is
 - (a) (4, -2)
- (b) (4, 2)
- (c)(2,2)
- (d) (8, -2)
- (4) The inscribed angle which is opposite to the minor arc in a circle is
 - (a) reflex.
- (b) right.
- (c) obtuse.
- (d) acute
- (5) It is possible to draw a circle passing through the vertices of a
 - (a) trapezium.
- (b) rhombus.
- (c) parallelogram. (d) rectangle.
- (6) The number of tangents can be drawn from a point lies on a circle equals
 - (a) one.
- (b) two.
- (c) four.
- (d) infinite number.

[2] [a] In the opposite figure :

ABC is a triangle drawn inside a circle of centre M

- $,\overline{\mathrm{MD}}\perp\overline{\mathrm{AC}},\overline{\mathrm{ME}}\perp\overline{\mathrm{AB}}$
- , BC = 8 cm.
- (1) Prove that : $\overrightarrow{DE} / / \overrightarrow{CB}$ (2)
 - (2) Find : DE

[b] In the opposite figure:

ABC is a triangle drawn inside a circle, $\overline{BX} \perp \overline{AC}$

 $\overrightarrow{AY} \perp \overrightarrow{BC}$ cuts it at Y and cuts the circle at Z

Prove that:

- (1) ABYX is a cyclie quadrilateral.
- (2) BC bisects \angle XBZ

[3] [a] In the opposite figure :

Two concentric circles of centre M

- , EC is a tangent to the greater circle
- , EB cuts the smaller circle at A, B
- , D is the midpoint of AB and m (\angle CED) = 40°

Find with proof : $m (\angle DMC)$

[b] \overline{AB} , \overline{CD} are two parallel chords in a circle M, E is the midpoint of \overline{AB} , \overline{EM} is drawn to cut \overline{CD} at F **Prove that**: FC = FD

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٢٦) منتري توجيه الرياضيات

[4] [a] In the opposite figure :

 $\overrightarrow{MC} \cap \overrightarrow{AB} = \{C\}, \overrightarrow{MC} \perp \overrightarrow{AB}$

 \overline{MC} intersects the circle at D

$$m (\angle MAB) = 20^{\circ}$$

Find: (1) m (\widehat{AD})

(2) m (\(\subseteq \text{DEB} \)

[b] In the opposite figure:

AB is a diameter of a circle M

, \overrightarrow{CF} is a tangent of the circle at C and $\overrightarrow{DE} \perp \overrightarrow{AB}$

Prove that: (1) ADEC is a cyclic quadrilateral.

(2)
$$FE = FC$$

[5] [a] Find the measure of the arc which represents $\frac{1}{3}$ its circle, then calculate the length of this arc if the length of the radius is 7 cm. $(\pi = \frac{22}{7})$

[b] In the opposite figure:

 \overline{AB} , \overline{AC} are two tangents to the circle at B, C and m ($\angle A$) = 40°

Find with proof: $m (\angle D)$

14 El-Fayoum Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

- - (a) 3

(b) 4

- (c) 6
- (d) 8
- (2) The angle whose measure is 50° complements an angle of measure
 - (a) 90°
- (b) 130°
- (c) 50°
- (d) 40°
- (3) The inscribed angle which is opposite to the minor arc in a circle is
 - (a) reflex.
- (b) obtuse.
- (c) right.
- (d) acute.
- (4) ABC is a triangle in which AB = AC , m (\angle C) = 40°, then m (\angle A) =
 - (a) 40°
- (b) 80°
- (c) 100°
- (d) 120°
- (5) The number of the symmetry axes of square is
 - (a) 1

(b) 2

- (c) 3
- (d)4

امتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (۲۷) منترى توجيه الرياضيات

(6) In the opposite figure:

In the circle M, if m (\angle AMC) = 140°

- , then m (\angle ADC) =
- (a) 40°
- (b) 70°
- (c) 110°

[2] [a] In the opposite figure :

Triangle ABC is inscribed in circle M, in which:

$$m (\angle B) = m (\angle C)$$
, X is the midpoint of \overline{AB}

$$,\overline{\mathrm{MY}}\perp\overline{\mathrm{AC}}$$

Prove that : MX = MY

[b] In the opposite figure:

$$E \in \overrightarrow{AB}$$
, $E \notin \overrightarrow{AB}$, $m(\widehat{AB}) = 110^{\circ}$

$$m (\angle CBE) = 85^{\circ}$$

Find: m (∠ BDC)

[3] [a] In the opposite figure:

AC is a diameter in a circle M, B ∈ the circle M

$$m (\angle BAC) = 40^{\circ}$$

Find: m (∠ CBM)

[b] In the opposite figure:

ABC is an inscribed triangle inside a circle

$$\overline{XY} / \overline{BC}$$

Prove that: $m (\angle XAC) = m (\angle BAY)$.

[4] [a] In the opposite figure:

M and N are two intersecting circles at A and B, $C \in \overline{BA}$

- , D ∈ the circle N and m (\angle MND) = 125°
- $, m (\angle BCD) = 55^{\circ}$

Prove that: CD is a tangent to circle N at D

[b] In the opposite figure:

AB and AC are two tangent-segments to the circle M

- $\overline{AB} / \overline{CD}$, m ($\angle BMD$) = 130°
- (1) Prove that : CB bisects ∠ ACD

(2) Find: $m(\angle A)$

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۲۸) منتري توجيه الرياضيات

[5] [a] In the opposite figure :

ABC is a triangle in which AB = AC

- \overline{BX} bisects $\angle B$ and intersect \overline{AC} at X
- \overline{CY} bisects $\angle C$ and intersect \overline{AB} at Y

Prove that: BCXY is a cyclic quadrilateral

and prove that: XY // BC

[b] ABC is a triangle inscribed in a circle, AD is a tangent to the circle at A $X \in \overline{AB}$, $Y \in \overline{AC}$ where $\overline{XY} / \overline{BC}$ Prove that : \overline{AD} is a tangent to the circle passing through the points A, X and Y

Beni Suef Governorate

Answer the following questions: (Calculator is allowed)

Choose the correct answer from those given :

- (1) It is impossible to draw a circle passing through the vertices of
 - (a) a triangle.
- (b) a square.
- (c) a rhombus.
- (d) a rectangle.
- (2) If m₁ and m₂ are the slopes of two perpendicular straight lines, then
 - (a) $m_1 + m_2 = 0$
- (b) $m_1 m_2 = -1$ (c) $m_1 = m_2$
- (d) $m_1 \times m_2 = -1$
- (3) M and N are two circles touching internally, their radii lengths are 3 cm., and 5 cm. • then $MN = \cdots cm$.
 - (a) 2

(b) 3

- (c) 5
- (d) 8
- (4) The point of concurrence of the medians of the triangle divides each median in the ratio from its base.
 - (a) 2:1
- (b) 1:2
- (c) 2:3
- (d) 1:3
- (5) The measure of the arc which represents $\frac{1}{3}$ the measure of the circle equals
 - (a) 60°
- (b) 90°
- (c) 120°
- (6) The area of the rhombus whose diagonal lengths are 8 cm. and 10 cm. equalscm².
 - (a) 2
- (b) 18
- (c) 40
- (d) 80

[2] [a] In the opposite figure :

 $\overline{\text{MX}} \perp \overline{\text{AB}}$, $\overline{\text{MY}} \perp \overline{\text{CD}}$, $\overline{\text{MX}} = \overline{\text{MY}}$

and AX = 3 cm.

Find: The length of CD

امتمانات المعاصرGeometry الصف الثالث الاعراوي الاترم الثاني (۲۹) منترى توجيه الرياضيات

[b] Two concentric circles M, \overline{AB} is a chord in the larger circle and intersects the smaller circle at C, D, draw $\overline{ME} \perp \overline{AB}$ Prove that: AC = BD

[3] [a] In the opposite figure:

In the circle M, $m (\angle A) = 60^{\circ}$

 $, \overline{MD} \perp \overline{BC}, MB = 6 \text{ cm}.$

Find with proof: The length of MD

AC is a diameter in the circle M

AB = AD

Prove that: $m(\widehat{BC}) = m(\widehat{CD})$

[a] In the opposite figure:

AB and AC are two tangent-segments

to the circle at B and C

 $, m (\angle ABC) = 65^{\circ}$

Find with proof: $m (\angle A)$ and $m (\angle D)$

[b] In the opposite figure:

ABC is a triangle in which $\overrightarrow{AB} = \overrightarrow{AC}$, \overrightarrow{BX} bisects $\angle B$

and intersects \overline{AC} at X

 \overrightarrow{CY} bisects \angle C and intersects \overrightarrow{AB} at Y

Prove that: The figure BCXY is a cyclic quadrilateral.

[a] In the opposite figure :

 $\overline{\mathrm{AD}}$ is a diameter in a circle of centre M

, \overrightarrow{CA} and \overrightarrow{CB} are two tangents to the circle at A, B

Prove that : $m (\angle DMB) = m (\angle ACB)$

[b] In the opposite figure:

BA = BC, $m (\angle DAC) = 140^{\circ}$

and m (\angle B) = 40°

Prove that:

 \overrightarrow{AD} is a tangent to the circle passing through the vertices of \triangle ABC

امتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (۳۰) منترى توجيه الرياضيات

El-Menia Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer from those given :

- (1) The two angles A and C in the right-angled triangle at B are
 - (a) complementary.

(b) supplementary.

(c) adjacent.

- (d) vertically opposite angles.
- (2) The length of the opposite to the angle of measure 30° in the right-angled triangle is the length of the hypotenuse.
 - (a) $\frac{1}{2}$
- (b) $\frac{\sqrt{3}}{2}$
- (c)√2
- (d) 2
- (3) The area of the rhombus whose diagonal lengths are 6 cm., 8 cm. is cm?
 - (a) 2

(b) 14

- (c) 24
- (d) 48
- (4) The number of circles passing through three non-collinear points is
 - (a) 1

- (b) zero
- (c)2
- (d) 3

(5) In the opposite figure :

In the circle M,

if
$$m (\angle M) - m (\angle A) = 50^{\circ}$$

- then m ($\angle A$) =
- (a) 40°
- (b) 50°
- (c) 100°
- (d) 130°

- (6) Which of the following shapes is a cyclic quadrilateral?
 - (a) rhombus
- (b) rectangle
- (c) parallelogram
- (d) trapezium

[a] In the opposite figure :

Two congruent circles M and N are intersecting at A and B

[b] In the opposite figure:

BCDH is a cyclic quadrilateral in the circle M

$$, m (\angle D) = 70^{\circ}, A \in \overrightarrow{CB}, m (\angle C) = \frac{1}{2} m (\angle H)$$

Find by proof : $m (\angle ABH)$, $m (\angle H)$

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۳۱) منترى توجيه الرياضيات

[3] [a] In the opposite figure:

Two concentric circles at M

$$AB = AC$$

Prove that : XY = ZL

[b] In the opposite figure:

 \overrightarrow{AB} , \overrightarrow{AC} are two tangents to the circle M

$$m (\angle BAC) = 70^{\circ}$$
, BC = BD

Find: $m (\angle ABD)$

4 [a] In the opposite figure:

 \overline{AB} is a diameter in the circle M

$$\overline{DC} // \overline{AB}$$
, m ($\angle AMD$) = 70°

Find by proof: $m (\angle ACD)$, $m (\angle ABC)$

[b] In the opposite figure:

AB is a diameter in the circle M

$$\overline{AB} / \overline{DC}$$
, m $(\widehat{DC}) = 80^{\circ}$

$$m(\widehat{AH}) = 100^{\circ}$$

Find by proof: $m (\angle DHB)$, $m (\angle AOH)$

5 In the opposite figure :

ABCD is a parallelogram

- $, H \in \overline{BC}$ such that AB = AH, $m (\angle BAH) = 40^{\circ}$
- (1) Find: $m (\angle AHB) \cdot m (\angle D)$
- (2) Prove that: AHCD is a cyclic quadrilateral.
- (3) Prove that : \overrightarrow{AD} is a tangent to the circle passing through the vertices of $\triangle ABH$

Assiut Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer:

- (1) The chord which passes through the centre of the circle is called
 - (a) tangent.
- (b) diameter.
- (c) radius.
- (d) side.

امتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۲۲) منترى توجيد الرياضيات

- (2) The number of symmetry axes of a square
 - (a) 2

(b) 3

- (c) 4
- (d) 5
- (3) The inscribed angle which is opposite to the minor arc in a circle is
 - (a) reflex.
- (b) right.
- (c) obtuse.
- (d) acute.

(4) In the opposite figure:

ABC is a triangle, AB = AC

$$m (\angle B) = 50^{\circ}$$

- then m $(\angle A) = \cdots$
- (a) 100°
- (b) 90°
- (c) 80°
- (d) 70°
- (5) A tangent to a circle of diameter length 8 cm, is at a distance of cm, from its centre.
 - (a) 4

(b) 3

- (c) 8
- (d) 6

(6) In the opposite figure :

$$m (\angle B) = 140^{\circ}$$

- then m (\angle D) =
- (a) 40°
- (b) 60°
- (c) 30°
- (d) 50°

[2] [a] In the opposite figure :

A circle M, $\overline{MX} \perp \overline{AB}$

$$MY \perp \overline{AC}, m (\angle B) = 70^{\circ}$$

- (1) Prove that : $\overline{XY} // \overline{BC}$
- (2) Find with proof : $m (\angle YXM)$

[b] In the opposite figure:

 $\overline{XY} / / \overline{CB}$,

 \overrightarrow{AD} is a tangent to the circle at A

Prove that:

AD is a tangent to the circle passing through the points A, X and Y

[3] [a] In the opposite figure :

 \overrightarrow{CA} , \overrightarrow{CB} are two tangents to the circle M

• m (
$$\angle$$
 C) = 50°

Find with proof : $m (\angle AMB)$

امتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٣٣) منترى توجيه الرياضيات

[b] In the opposite figure:

 \overrightarrow{AB} is a tangent to the circle M at A and MA = 8 cm.

 $m (\angle ABM) = 30^{\circ}$

Find: (1) The length of MB

(2) m (CA)

4 [a] In the opposite figure:

 \overrightarrow{AB} is a tangent to the circle at B, m ($\angle A$) = 40°

AM intersects the circle M at C and D

Find with proof : $m (\angle BDC)$

[b] In the opposite figure:

AB is a diameter in the circle M

, \overrightarrow{CO} is a tangent to the circle at C and $\overrightarrow{DO} \perp \overrightarrow{AB}$

Prove that: (1) ADEC is a cyclic quadrilateral.

(a)
$$OE = OC$$

[a] In the opposite figure:

 $E \in \overline{AB}, E \notin \overline{AB}$

 $m(\widehat{AB}) = 120^{\circ} , m(\angle CBE) = 85^{\circ}$

Find: $m (\angle BDC)$

[b] In the opposite figure:

 \overrightarrow{XY} , \overrightarrow{XZ} are two tangents to the circle

from the point X, m ($\angle X$) = 40°

 $m (\angle D) = 110^{\circ}$

Prove that : $m(\widehat{ZE}) = m(\widehat{ZY})$

Souhag Governorate

Answer the following questions: (Calculator is allowed)

Choose the correct answer:

- (1) The two tangents which are drawn from the two endpoints of a diameter of a circle arc
 - (a) parallel.
- (b) equal in length. (c) congruent.
- (d) intersecting.
- (2) The number of the axes of symmetry in the equilateral triangle =
 - (a) 1
- (b) 2

- (c)3
- (d) an infinite number.

امتمانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (۳٤) منترى توجيه الرياضيات

- (3) M and N are two intersecting circles, their radii lengths are 5 cm., 2 cm., then MN ∈
 - (a) [3, 7]
- (b) [3, 7]
- (c)]3 ,7] (d)]3 ,7[
- (4) The number of common tangents of two distant circles is
 - (a) 1

(b) 2

- (c) 3
- (5) The length of side opposite to the angle of measure 30° in the right-angled triangle equals the length of the hypotenuse.
 - (a) 2
- (b) $\frac{1}{2}$

(6) In the opposite figure:

$$\overline{AM}$$
 // \overline{CD} , $\overline{MD} = \overline{DB}$, $\overline{MD} = \overline{DB}$, $\overline{MD} = \overline{DD}$, then $\overline{MD} = \overline{DD}$

(a) 45°

(b) 60°

(c) 30°

(d) 90°

- [2] [a] Find the measure of the arc which represents $\frac{1}{2}$ its circle, then calculate the length of this arc if the length of the radius is 7 cm. $(\pi = \frac{22}{7})$
 - [b] In the opposite figure:

Two concentric circle at M, AB and AC are two tangents to the smaller circle at D and E \cdot m (\angle . A) = 70°

- (1) **Find**: m (∠ DME)
- (2) Prove that : AB = AC

[a] In the opposite figure:

$$m (\angle CED) = 140^{\circ}$$

, m (
$$\angle$$
 A) = 80°

Find: $m (\angle C)$

[b] In the opposite figure :

AB and AC are two tangents to the circle at B and C

• m (
$$\angle$$
 A) = 40°

Find with proof: $m (\angle D)$

[4] [a] In the opposite figure:

AB is a diameter of the circle M,

$$m (\angle ACD) = 115^{\circ}$$

Find with proof: $m (\angle DAB)$

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٣٥) منتري توجيه الرياضيات

[b] In the opposite figure :

AB is a diameter of the circle M

- , AC is a tangent touches it at A
- , if AC = 9 cm. and BM = 6 cm.

Find: The lengths of \overline{BC} and \overline{AD}

[a] State three cases of cyclic quadrilateral.

[b] In the opposite figure:

$$m (\angle A) = 60^{\circ} , \overrightarrow{BE} \text{ bisects } \angle ABC$$

- $, m (\angle B) = 70^{\circ}, \overrightarrow{CD} \text{ bisects } \angle ACB$
- (1) Find: $m (\angle BMC)$
- (2) Prove that : ADME is a cyclic quadrilateral.

المالة المالة المالة

Qena Governorate

Answer the following questions: (Calculators are Permitted)

1 Choose the correct answer:

- (1) If the area of the circle $M = 16.\pi \text{ cm}^2$, A is a point on its plane where MA = 8 cm.
 - , then A is
 - (a) outside the circle.

(b) inside the circle.

(c) on the circle.

- (d) on the centre of the circle.
- (2) A tangent to a circle of diameter length 6 cm. is at distance of cm. from its centre.
 - (a) 6

- (b) 12
- (c) 3
- (d) 2
- (3) The centre of the circumcircle of the triangle is the intersection point of its
 - (a) altitudes of triangle.

- (b) medians of a triangle.
- (c) perpendicular bisectors of the sides of a triangle.
- (d) bisectors of its angles.
- (4) The inscribed angle drawn in a semicircle is angle.
 - (a) acute.
- (b) obtuse.
- (c) right.
- (d) straight.
- (5) The two tangent-segments drawn from a point outside a circle are
 - (a) equal in length.

(b) not equal in length.

(c) perpendicular.

- (d) parallel.
- (6) The figure is said to be cyclic quadrilateral if the measure of any exterior angle at any vertex equal to of the interior angle at the opposite vertex.
 - (a) the measure.

(b) half the measure.

(c) twice the measure.

(d) third the measure.

المتعانات المعاصرGeometry الصف الثالث اللاعراوي الترم الثاني (٣٦) منترى توجيه الرياضيات

[2] [a] In the opposite figure:

AB is a dimeter in the circle M

, \overrightarrow{CF} is a tangent to the circle at C, $\overrightarrow{DE} \perp \overrightarrow{AB}$

Prove that:

- (1) ADEC is a cyclic quadrilateral.
- (2) FE = FC

[3] [a] In the opposite figure:

AD is a diameter in the circle M

, CA and CB are two tangents to the circle M at A and B respectively

Prove that : $m (\angle DMB) = m (\angle ACB)$

[b] In the opposite figure:

AB and AC are two equal chords in length in circle M and X is the midpoint of AB, MX intersects the circle at D $\overline{MY} \perp \overline{AC}$ intersects it at Y and intersects the circle at E

Prove that : XD = YE

[4] [a] In the opposite figure :

Two concentric circles M

, AB is a chord in the larger circle intersecting the smaller circle at C and D, $ME \perp \overline{AB}$ Prove that : AC = BD

[b] In the opposite figure:

M and N are two intersecting circles at A and B

, AC intersects the circle M at C

and intersects the circle N at D,

AE intersects the circle M at E

and intersects the circle N to F

Prove that: $m (\angle EBC) = m (\angle FBD)$

 $oldsymbol{5}$ ABC is an acute-angled triangle drawn inside a circle, draw AD $oldsymbol{\perp}$ BC to cut \overline{BC} at D and cuts the circle at E , then draw $\overline{CN} \perp \overline{AB}$ to cut \overline{AB} at N Porve that: (1) ANDC is a cyclic quadrilateral.

(2) m (\angle BND) = m (\angle BED)

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٣٧) منترى توجيه الرياضيات

20 Luxor

Luxor Governorate

Answer the following questions:

1 Choose the correct answer:

- - (a) 80

- (b) 120
- (c) 360
- (d) 630

(2) In the opposite figure:

If m (
$$\angle$$
 AMB) = 52°

- , then $m(\widehat{ADB}) = \cdots$ °
- (a) 52

- (b) 104
- (c) 128
- (d) 308

- (3) The length of side opposite to the angle of measure 30° in the right-angled triangle equals the hypotenuse length.
 - (a) $\frac{1}{2}$

- (b) $\frac{1}{4}$
- (c) $\frac{\sqrt{3}}{2}$
- (d) 2

(4) In the opposite figure:

AB is a diameter in the circle M

$$, m (\angle ABD) = 25^{\circ}$$

- , then m (\angle C) =
- (a) 50°

- (b) 100°
- (c) 115°
- (d) 125°

- (5) The sum of lengths of any two sides of a triangle the length of the third side.
 - (a) <

- (b) >
- (c) =
- $(d) \leq$
- (6) The number of circles pass by three non-collinear points =
 - (a) infinite number.
- (b) 3
- (c) 1
- (d) 0

[a] In the opposite figure :

 \overrightarrow{AD} is a tangent to the circle at D,

H is the midpoint of \overline{BC}

, m (
$$\angle$$
 A) = 50°

Find with proof : $m (\angle DMH)$

[b] In the opposite figure:

$$m (\angle ABH) = 100^{\circ}$$

, m (
$$\angle$$
 DAC) = 40°

Prove that : $m(\widehat{CD}) = m(\widehat{AD})$

المتعانات المعاصر Geometry الصف الثالث الاعراوي الترم الثاني (٣٨) منتري توجيه الرياضيات

[a] In the opposite figure:

AB is a diameter in the circle M

$$\overline{AC} / \overline{MD}$$
, m ($\angle CAB$) = 50°

Find: m (∠ MDB)

[b] In the opposite figure:

AH and CH are two tangents to the two circles M and N

touch the circle M at A and C

touch the circle N at B and D

Prove that : AB = CD

[4] [a] In the opposite figure :

ABCD is a parallelogram $H \in \overrightarrow{CD}$

where BH = AD

prove that: ABDH is a cyclic quadrilateral.

[b] In the opposite figure :

D is the midpoint of \overline{AB}

, H is the midpoint of BC,

$$m (\angle A) = 55^{\circ}$$
, $MD = MH$

Find: m (∠B)

[5] [a] In the opposite figure :

 $\overrightarrow{MC} \perp \overrightarrow{AB}$ and intersects the circle M at D

which is the midpoint of AB

 $m (\angle MAB) = 20^{\circ}$

Find: (1) m (\widehat{AD})

(2) m (∠ DHB)

[b] In the opposite figure :

AD is a tangent to the circle at A

$$, m (\angle B) = 70^{\circ}, m (\widehat{BC}) = 120^{\circ}$$

Find: m (\(\text{BAD} \)

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (۳۹) منترى توجيه الرياضيات

Aswan Governorate

(Calculator is allowed) Answer the following questions:

1 Choose the correct answer from the given ones:

(1) In the opposite figure :

$$m (\angle A) = 48^{\circ}$$
, then

the measure of major arc \widehat{BD} =

- (a) 260°
- (b) 265°
- (c) 264°

(d) 262°

(2) In the opposite figure:

ABC is an equilateral triangle inscribed in circle M

- , then m (\angle BMC) =
- (a) 50°
- (b) 120°
- (c) 60°

(3) In the opposite figure:

D is the midpoint of \overline{AB} , H is the midpoint of \overline{AC}

- , m (\angle A) = 55°
- , then m (\angle DMH) =
- (b) 130°
- (c) 135°
- (d) 125°

- (a) zero
- (b) one
- (c) infinite number.
- (d)4

- (a) $\frac{\sqrt{3}}{2}$
- (b) $\frac{1}{2}$
- (c)1/2

(d) 2

(6) In the opposite figure:

AC is a tangent to circle M at C

if MC = 5 cm. AB = 8 cm.

- , then $AC = \cdots cm$.
- (a) 5
- (b) 10
- (c) 13

(d) 12

[a] M and N are two circles of radii length 9 cm, and 4 cm, respectively.

Show the position of each of them with respect to the other if:

(1) MN = 5 cm.

(a) MN = 10 cm.

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (• ٤) منترى توجيه الرياضيات

[b] In the opposite figure:

ABCD is a quadrilateral inscribed in circle M

$$\overrightarrow{BF} / \overrightarrow{DC}$$
, m ($\angle EBF$) = 65°, m ($\angle BAD$) = 120°

Find: $m (\angle ADC)$

[3] [a] In the opposite figure:

ABC is a triangle inscribed in circle M,

$$m (\angle B) = m (\angle C)$$
, X is the midpoint of \overline{AB} , $\overline{MY} \perp \overline{AC}$

Prove that: MX = MY

[b] In the opposite figure:

 \overrightarrow{AB} is a diameter in circle M, $\overrightarrow{AB} \cap \overrightarrow{CD} = \{H\}$,

$$m (\angle AHC) = 30^{\circ}, m (\widehat{AC}) = 80^{\circ}$$

Find: m(CD)

[4] [a] In the opposite figure:

AB and AC are two tangent-segments to the circle M

at B and C,
$$\overline{AB}$$
 // \overline{CD} , m ($\angle BMD$) = 130°

- (1) Find: $m (\angle ABC)$
- (2) Prove that : CB bisccts ∠ ACD

[b] In the opposite figure:

In the circle M,

if m (
$$\angle$$
 BCD) = 130°

Find: $m (\angle BMD)$

[5] [a] In the opposite figure:

Two concentric circles at M

 \overline{AB} and \overline{AC} are two tangent-segments to smaller circle at D and H

$$m (\angle BAC) = 70^{\circ}$$

Prove that : (1) AB = AC

المتعانات المعاصرGeometry الصف الثالث الاعراوي الترم الثاني (٤١) منترى توجيد الرياضيات

[b] In the opposite figure:

ABC is a triangle inscribed in a circle,

AD is a tangent to a circle at A

 $, X \in \overline{AB}, Y \in \overline{AC}, \overline{XY} // \overline{BC}$

AD is a tangent to the circle which passes through the points A, X, Y

South Sinai Governorate

M

Answer the following questions:

1 Choose the correct answer from the given ones:

(1) In the opposite figure:

AB is a diameter in the circle M

$$m (\angle ABC) = 50^{\circ}$$
, then $m (\widehat{BC}) = \dots$

- (a) 40
- (b) 50
- (c) 80
- (d) 100

- (a) 12
- (b) 14
- (c) 24
- (d) 48

(3) If M is a circle of radius length r cm. , then the length of the simicircle = cm.

- (a) 2 TT r
- (b) $\frac{1}{4} \pi r$
- (c) $\frac{1}{2} \pi r$
- (d) T r

(4) The longest chord in the circle is called

- (a) diameter.
- (b) tangent.
- (c) secant.
- (d) radius.

(5) The image of the point (2,3) by rotation R (O, 180°) is the point

- (a) (2,3)
- (b) (-2,3)
- (c) (2, -3) (d) (-2, -3)

- (a) 180
- (b) 120
- (c) 100
- (d) 30

[2] [a] In the opposite figure :

AB is a diameter in the circle M

, the length of (\widehat{AX}) = the length of (\widehat{XY}) = the length of (\widehat{BY})

find with proof : $m(\angle C)$

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (٤٢) منترى توجيه الرياضيات

[b] In the opposite figure:

 \overline{AB} and \overline{AC} are two chords in the circle M

, D is the midpoint of \overline{AB} and E is the midpoint of \overline{AC} ,

$$m (\angle BAC) = 55^{\circ}$$

Find with proof: m (∠ DME)

[3] [a] In the opposite figure:

M is a circle and m (\angle AMC) = 120°

Find with proof: $m (\angle ABC)$

[b] Two circles M and N with radii lengths of 7 cm, and 4 cm, respectively

Show the position of each of them respect to the other in the following cases:

(1)
$$MN = 8 \text{ cm}$$
.

(a)
$$MN = 3 \text{ cm}$$
.

(3)
$$MN = 12 \text{ cm}$$
.

[4] [a] In the opposite figure :

 $\triangle ABC$, $\overline{BE} \perp \overline{AC}$, $\overline{CF} \perp \overline{AB}$

 $\overrightarrow{AM} \cap \overrightarrow{BC} = \{D\}$

Prove that: MDCE is a cyclic quadrilateral.

[b] In the opposite figure :

M is a circle, AB and AC are two chords,

 $\overline{MX} \perp \overline{AB}$, $\overline{MY} \perp \overline{AC}$, AB = 6 cm., MX = MY

Find with proof: The length of \overline{AY}

[5] [a] In the opposite figure:

M is an inscribed circle in the triangle ABC and touches its sides at D $_{2}$ E and F

, AD = 3 cm., CE = 2 cm., BD = 4 cm.

Find with proof: The perimeter of \triangle ABC

[b] In the opposite figure:

 \overrightarrow{AB} and \overrightarrow{AC} are two tangents of the circle M • m (\angle D) = 65°

Find with proof: $m(\angle A)$

Red Sea Governorate

Answer the following questions:

1 Choose the correct answer from the given ones:

- (1) Number of the circles that pass through three non-collinear points equals
 - (a) zero
- (b) one
- (c) three
- (d) an infinite number

(2) In the opposite figure:

AB is a diameter in the circle M

, m (
$$\angle$$
 ABC) = 40°, then m (\widehat{BC}) =

(a) 40°

(b) 50°

(c) 90°

(d) 100°

- (3) If the two circles M and N are touching externally, their radii lengths are 9 cm., r cm.
 - , and MN = 14 cm. , then $r = \cdots \cdots \cdots cm$.
 - (a) 5

(b)7

- (c) 10
- (d) 23

(4) In the opposite figure:

If m (\angle BAD) = 60°, then m (\angle BCE) =

(a) 30°

(b) 60°

(c) 80°

(d) 120°

(5) In the opposite figure :

If BD is a tangent to the circle M

$$, m (\angle BAM) = 25^{\circ}$$

- , then m (\angle ABD) =
- (a) 25°
- (b) 50°
- $(c) 65^{\circ}$

- (6) Circumference of a circle is 6π cm. , L is a straight line at a distance of 3 cm. from its centre , then L is
 - (a) a tangent to the circle.

(b) a secant to the circle.

(c) outside the circle.

(d) the diameter to the circle.

[2] [a] In the opposite figure:

Two concentric circles M,

 \overline{AB} , \overline{AC} are two tangents to the smaller circle, m ($\angle A$) = 60°

(1) Find: $m (\angle DME)$

(2) Prove that : AB = AC

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (٤٤) منترى توجيه الرياضيات

[b] In the opposite figure:

 \overline{AB} , \overline{CD} are two parallel chords

$$m (\angle BED) = 20^{\circ}$$

Find: $m(\widehat{AC})$

[3] [a] In the opposite figure :

ABCD is a quadriteral inscribed in a circle M

where
$$M \in \overline{AB}$$

• m (
$$\angle$$
 BCD) = 130°

Find: $m(\angle A)$, $m(\angle ABD)$

[b] In the opposite figure :

In the circle M:

$$m (\angle BMC) = 100^{\circ}$$

$$m (\angle ABD) = 120^{\circ}$$

Find with proof : m (∠ DCB)

[4] [a] In the opposite figure :

Two concentric circle M

 \overline{AB} is a chord in the large circle intersecting the small circle at C and D

Prove that : AC = BD

[b] In the opposite figure:

 \overrightarrow{XA} and \overrightarrow{XB} are two tangents to a circle at A and B

, m (
$$\angle$$
 AXB) = 70°, m (\angle DCB) = 125°

Prove that : \overrightarrow{AB} bisects $\angle DAX$

[5] [a] In the opposite figure :

AB is a tangent to a circle M at B

$$AB = 8 \text{ cm.} AM = 10 \text{ cm.}$$

Find: The area of \triangle ABM

[b] ABC is a triangle inscribed in a circle, BD is a tangent to the circle at B

$$X \in \overline{AB}$$
, $Y \in \overline{BC}$ where $\overline{XY} // \overline{BD}$

Prove that: AXYC is a cyclic quadrilateral.

المتعانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (٥٥) منترى توجيه الرياضيات

Matrouh Governorate

Answer the following questions: (Calculator is allowed)

1 Choose the correct answer:

- (1) The perimeter of the square whose area is 81 cm² is
 - (a) 24 cm.
- (b) 8 cm.
- (c) 9 cm.
- (d) 36 cm.
- (2) The two opposite angles in the cyclic quadrilateral are
 - (a) equal.
- (b) complementary.
- (c) supplementary.
- (d) alternate.
- (3) ABC is a triangle where $(AB)^2 = (AC)^2 + (BC)^2$, $m(\angle B) = 40^\circ$, then $m(\angle A) = \cdots$
 - (a) 40°
- (b) 50°

- (c) 90°
- (d) 130°
- (4) The measure of the arc which represents $\frac{1}{3}$ the measure of the circle equals
 - (a) 60°
- (b) 90°

- (c) 120°
- (d) 240°
- (5) The area of the triangle whose base length is 10 cm. and its height is 6 cm. equals cm²
 - (a) 6

(b) 10°

(c) 30

- (d) 60
- (6) If the two circles M, N are touching internally, the radius length of one of them is 3 cm., and MN = 8 cm., then the radius length of the other circle equals
 - (a) 5 cm.
- (b) 6 cm.
- (c) 11 cm.
- (d) 12 cm.

[2] [a] In the opposite figure:

M is a circle whose radius length is 5 cm.

XY = 12 cm $MY \cap \text{ the circle } M = \{Z\}$

and ZY = 8 cm.

Prove that: XY is a tangent to the circle M at X

[b] In the opposite figure:

Δ ABC is inscribed in the circle M

- , in which m $(\angle B) = m (\angle C)$
- , X is the midpoint of \overline{AB} , $\overline{MY} \perp \overline{AC}$

Prove that : MX = MY

[3] [a] Prove that: The measure of the angle of tangency is equal to the measure of the inscribed angle subtended by the same arc.

المتمانات العاصرGeometry الصف الثالث الاعراوي الترم الثاني (٤٦) منترى توجيد الرياضيات

- **[h]** ABCD is a quadrilateral drawn in a circle ${}_{2}F \in \overline{AB}$
 - , draw \overrightarrow{FE} // \overrightarrow{CB} to cut \overrightarrow{CD} at \overrightarrow{E} , $\overrightarrow{DF} \cap \overrightarrow{CB} = \{X\}$

Prove that: (1) AFED is a cyclic quadrilateral.

(a) m (\angle BXF) = m (\angle EAD)

[4] [a] In the opposite figure :

AB is a diameter in the circle M

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$$

$$m (\angle AEC) = 30^{\circ}, m (\widehat{AC}) = 80^{\circ}$$

Find: $m(\widehat{CD})$

[b] In the opposite figure:

XA and XB are two tangents to the circle at A and B

$$m (\angle AXB) = 70^{\circ} m (\angle DCB) = 125^{\circ}$$

Prove that : AB bisects \(\triangle DAX \)

[a] Mention three cases of the cyclic quadrilateral.

[b] In the opposite figure:

ABCD is a quadrilateral inscribed in the circle M

where
$$M \in \overline{AB}$$
, $CB = CD$

• m (
$$\angle$$
 BCD) = 140°

Find: (1) m (\(\alpha \) A)

