Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Отчёт по курсовой работе по дисциплине «Вычислительные комплексы»

Выполнил студент: Густомясов Евгений группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург, 2020г.

Содержание

1.	Постановка задачи	3
2.	Теория	3
3.	Реализация	4
4.	Результаты	4
	4.1. Прямая задача для центров в точках $n_z = 3, n_r = 3$	4
	4.2. Обратная задача (1)	
	4.3. Прямая задача для центров в точках $n_z = 5, n_r = 3$	8
	4.4. Обратная задача (2)	12
5 .	Приложение:	13
6.	Литература:	13

Список иллюстраций

1	Нумерация сегментов в 1-м слое разбиения	3
2	Обратное решение задачи	8
3	Обратное решение задачи	12

1. Постановка задачи

Необходимо провести подготовительную работу для по тороидальному вращению в 3D-геометрии, построенной с разбиением по углу на 6 частей с использованием пиксельного детектора 16х16.

Требуется провести исследование вращения со значениями $n_{\varphi}=1,2,..6.$

Также необходимо изучить возможность решения обратной задачи.

2. Теория

Для разбиения с общим числом элементов $N_z \times N_r \times N_{\varphi}$ последовательная нумерация элементов дается выражением:

$$n = N_r * N_{\varphi} * (n_z - 1) + N_{\varphi} * (n_r - 1) + n_{\varphi}$$
 (1)

где $n_z=1,2,...,N_z,n_r=1,2...N_r,n_{\varphi}=1,2,...N_{\varphi}$

Таким образом, при $N_z=N_r=N_{\varphi}=6$, на каждом слое по z расположено 36 сегментов, и при переходе со слоя на слой нумерация сегментов подобна представленной на рисунке 1 с добавлением каждый раз 36.

Рис. 1. Нумерация сегментов в 1-м слое разбиения

Конкретизируем выражение (1) для разбиения $N_z=N_r=N_{arphi}=6$

$$n = 36 * (n_z - 1) + 6 * (n_r - 1) + n_{\varphi}$$
(2)

Обратное вычисление значений n_z, n_r, n_φ полезно для сопоставления номера переменной со столбцом матрицы СЛАУ:

$$n_z = [n/36] \tag{3}$$

$$n_r = [(n - 36 * (n_z - 1))/6] \tag{4}$$

$$n_{\varphi} = n - 36 * (n_z - 1) - 6 * (n_r - 1) \tag{5}$$

Здесь [] - целая часть результата деления

3. Реализация

Лабораторная выполнена с помощью средств языка matlab. Предварительно преобразован файл с данными с детектора из формат .mat в формат .txt.

4. Результаты

В качестве исследуемого объекта выбран светящийся объект, занимающий один пространственный элемент разбиения рабочей области. Пусть светящаяся точка вращается вокруг центра с координатами (nz, nr), где nz = 3, nr = 3 и nz = 5, nr = 3.

4.1. Прямая задача для центров в точках $n_z = 3, n_r = 3$

1. Для $n_{\varphi}=1$ получаем следующее изображение:

2. Для $n_{\varphi}=2$ получаем следующее изображение:

3. Для $n_{\varphi}=3$ получаем следующее изображение:

4. Для $n_{\varphi} = 4$ получаем следующее изображение:

5. Для $n_{\varphi}=5$ получаем следующее изображение:

6. Для $n_{\varphi}=6$ получаем следующее изображение:

4.2. Обратная задача (1)

Для полученных в предыдущем подпункте значений индикатора проверим качество решения обратной задачи, которое получается с помощью формул (3), (4), (5). Следующее изображение - результат вычисления программы, написаной в среде MATLAB:

Рис. 2. Обратное решение задачи

Как можно заметить, полученные значения $n_z, n_r n_\varphi$ отличаются от заданных в предыдущем пункте, за исключением значений в последней строке при $n_\varphi=6$, в этом случае мы получаем значения $n_z n_r$, совпадающие с исходной задачей.

4.3. Прямая задача для центров в точках $n_z = 5, n_r = 3$

1. Для $n_{\varphi}=1$ получаем следующее изображение:

2. Для $n_{\varphi}=2$ получаем следующее изображение:

3. Для $n_{\varphi}=3$ получаем следующее изображение:

4. Для $n_{\varphi} = 4$ получаем следующее изображение:

5. Для $n_{\varphi}=5$ получаем следующее изображение:

6. Для $n_{\varphi} = 6$ получаем следующее изображение:

4.4. Обратная задача (2)

Для полученных в предыдущем подпункте значений индикатора проверим качество решения обратной задачи, которое получается с помощью формул (3), (4), (5). Следующее изображение - результат вычисления программы, написаной в среде MATLAB:

Рис. 3. Обратное решение задачи

Как можно заметить, полученные значения $n_z, n_r n_\varphi$ отличаются от заданных в предыдущем пункте, за исключением значений в последней строке при $n_\varphi = 6$, в этом случае мы получаем значения $n_z n_r$, совпадающие с исходной задачей.

5. Приложение:

 ${\it Cc}$ ылка на код: https://github.com/YudzhinNSK/VK_labs/tree/main/course_pr

6. Литература:

[1] А.Н.Баженов. Малоракурсная томография. Геометрические и алгебраические аспекты. Применение интервального анализа.