Цель 6: Обеспечение наличия и рационального использования водных ресурсов и санитарии для всех

Задача 6.4: К 2030 году существенно повысить эффективность водопользования во всех секторах и обеспечить устойчивый забор и подачу пресной воды для решения проблемы нехватки воды и значительного сокращения числа людей, страдающих от нехватки воды

Показатель 6.4.2: Уровень нагрузки на водные ресурсы: забор пресной воды в процентном отношении к имеющимся запасам пресной воды

Институциональная информация

Организация (и):

Продовольственная и сельскохозяйственная организация Объединенных Наций (ФАО)

Понятия и определения

Определение:

Уровень нагрузки на водные ресурсы: забор пресной воды, выраженный в виде доли доступных ресурсов пресной воды - это соотношение между общим объемом пресной воды, забранным всеми основными секторами, и общими возобновляемыми ресурсами пресной воды с учетом требований экологического стока. Основные секторы, определенные стандартами МСОК, включают сельское хозяйство, лесоводство и рыболовство; обрабатывающая промышленность; снабжение электроэнергией, газом, паром и кондиционированным воздухом; и услуги. Этот показатель также известен как интенсивность водозабора.

Понятия:

Этот показатель дает оценку воздействия всех секторов на возобновляемые ресурсы пресной воды в стране. Низкий уровень нагрузки на водные ресурсы указывает на ситуацию, когда совокупный забор всеми секторами является незначительным по отношению к ресурсам и, следовательно, оказывает незначительное потенциальное влияние на устойчивость ресурсов или на потенциальную конкуренцию между пользователями. Высокий уровень нагрузки на водные ресурсы указывает на ситуацию, когда совокупный водозабор всеми секторами представляет собой значительную долю от общего объема возобновляемых ресурсов пресной воды, что может оказать более значительное воздействие на устойчивость ресурсов и на создание потенциальных ситуаций, приводящих к конфликтам и конкуренции между пользователями.

Общие возобновляемые ресурсы пресной воды (ОБРПВ) выражаются как сумма внутренних и внешних возобновляемых ресурсов пресной воды. Термины "ресурсы воды" и "водозабор" понимаются здесь как ресурсы и забор пресной воды.

Внутренние возобновляемые водные ресурсы определяются как долгосрочный среднегодовой сток рек и пополнение для данной страны грунтовых вод эндогенного (глубинного) отложения.

Page: 1 of 11

Внешние возобновляемые водные ресурсы означают стоки воды, поступающие в страну, с учетом количества стоков, зарезервированных для стран, расположенных в верховьях и низовьях рек, на основании соглашений или договоров.

Общий забор пресной воды (ОЗПВ) - это объем пресной воды, извлеченной из ее источника (реки, озера, водоносные горизонты) для сельского хозяйства, промышленности и сферы услуг. [1]-Он оценивается на страновом уровне для следующих трех основных секторов: сельское хозяйство, услуги (включая водозабор для бытовых нужд) и промышленность (включая охлаждение ТЭЦ). Забор пресной воды включает ископаемые подземные воды. Он не включает нетрадиционные источники воды, т.е. прямое использование очищенных сточных вод, прямое использование сельскохозяйственных дренажных вод и опресненной воды.

Оптимальный экологический дебит (ОЭД) определяются как количество и время поступления пресной воды и уровни, необходимые для поддержания аквариальных экосистем, которые, в свою очередь, поддерживают человеческую культуру, экономику, устойчивые средства к существованию и благополучие. Качество воды, а также связанные с этим экосистемные услуги исключаются из этой формулировки, которая ограничивается объемами воды. Это не означает, что качество и поддержка обществ, зависящих от экологических потоков, не важны и о них не следует заботиться. [2] Методы расчета ОЭД чрезвычайно разнообразны и варьируются от глобальных оценок до всеобъемлющих оценок для участков рек. Для показателя ЦУР объемы воды могут быть выражены в тех же единицах, что и ОВРПВ, а затем в процентах от доступных водных ресурсов.

- 1 В AQUASTAT забор воды для сектора услуг отражается как забор воды для муниципальных нужд. <u>& # x2191;</u>
- ² Они действительно учитываются в других целях и показателях, таких как 6.3.2, 6.5.1 и 6.6.1. <u>& # x2191;</u>

Обоснование:

Цель этого показателя - отразить степень использования водных ресурсов для удовлетворения потребностей страны в воде. Показатель оценивает страновую нагрузку на водные ресурсы и, следовательно, проблему устойчивости системы водопользования. Показатель отслеживает прогресс в отношении "забора и поставки пресной воды для решения проблемы нехватки воды", то есть экологического компонента задачи 6.4.

Показатель отражает, в каких пределах уже используются водные ресурсы, и сигнализирует о важности эффективной политики управления спросом и предложением. Показатель указывает на вероятность усиления конкуренции и конфликтов между различными водопользователями и пользователями в ситуации растущего дефицита воды. Повышенная нагрузка на водные ресурсы, о которой свидетельствует увеличение значения показателя, потенциально отрицательно сказывается на устойчивости природных ресурсов и на экономическом развитии. С другой стороны, низкие значения показателя указывают на то, что вода не представляет особой проблемы для экономического развития и устойчивости.

Комментарии и ограничения:

Забор пресной воды, выраженный в процентах от возобновляемых ресурсов пресной воды, является хорошим показателем нагрузки на ограниченные водные ресурсы, один из наиболее важных природных ресурсов. Однако он лишь частично решает вопросы, связанные с устойчивым управлением водными ресурсами.

Дополнительные показатели, охватывающие множество аспектов управления водными ресурсами, будут объединять данные об управлении спросом на воду, изменениях поведения в отношении водопользования и наличии соответствующей инфраструктуры, а также отражать прогресс в повышении эффективности и устойчивости водопользования, в частности в отношении населения и экономического роста. Они также будут выявлять различные климатические условия, которые влияют на водопользование в странах, в частности в сельском хозяйстве, которое является основным пользователем воды. Оценка устойчивости также связана с критическими порогами, установленными для этого показателя. Хотя универсального консенсуса по таким пороговым значениям нет, но предложение изложено ниже.

Тенденции забора пресной воды показывают относительно медленные изменения. Обычно период от трех до пяти лет - это минимальная периодичность, чтобы можно было обнаружить существенные изменения, поскольку маловероятно, что показатель будет демонстрировать значимые колебания от года к году.

Оценка забора воды по секторам может ограничивать расчет показателя. Немногие страны фактически публикуют данные по водозабору по секторам на регулярной основе.

Не существует универсально согласованного метода расчета входящих потоков пресной воды, возникающих за пределами границ страны. Также не существует стандартного метода учета возвратных стоков, части воды, забираемой из источника и возвращающейся в речную систему после использования. В странах, где возвратный сток составляет значительную часть забора воды, показатель имеет тенденцию занижать доступную воду и, следовательно, переоценивать уровень нагрузки на водные ресурсы.

К другим ограничениям, влияющим на интерпретацию показателя нагрузки на водные ресурсы, относятся:

- сложность получения точных, полных и актуальных данных;
- потенциально большой разброс субнациональных данных;
- отсутствие учета сезонных колебаний водных ресурсов;
- недостаточное внимание к распределению воды между водопользователями;
- отсутствие внимания к качеству воды и ее пригодности для использования; и
- показатель может быть выше 100 процентов, когда происходит водозабор невозобновляемой воды (ископаемые подземные воды), когда годовой забор подземных вод превышает годовое пополнение (чрезмерный отбор) или когда водозабор включает часть или весь набор воды, не беря в расчёт оптимальный экологический дебит воды.

Некоторые из этих проблем можно решить путем дезагрегирования показателя на уровне гидрологических единиц и проведения различия между различными секторами использования. Однако из-за сложности водных потоков, как внутри страны, так и между странами, следует проявлять осторожность, чтобы избежать двойного учета.

Методология

Метод расчета:

Метод расчета: показатель рассчитывается как общий объем забора пресной воды (ООЗПВ), деленный на разницу между общими возобновляемыми ресурсами пресной воды (ОВРПВ) и оптимальными экологическими дебитами (ОЭД), умноженный на 100. Все переменные выражаются в куб. км / год (10^9 м 3 / год).

Нагрузка (%) = ООЗПВ/ (ОВРПВ - ОЭД) * 100

Исходя из опыта первых пяти лет применения показателя и в соответствии с подходом, принятым в рамках программы ЦРТ, порог в 25% был определен как верхний предел для полной и безоговорочной безопасности нагрузки на водные ресурсы, как оценивается показателем 6.4.2.

Это означает, что, с одной стороны, значения ниже 25% можно считать безопасными в любом случае (без нагрузки); с другой стороны, значения выше 25% следует рассматривать как потенциально и все более проблематичные, и их следует уточнять и / или снижать.

Для уровней нагрузки на водные ресурсы выше 25% были определены четыре класса, которые сигнализируют о различных уровнях серьезности нагрузки:

ОТСУТСТВИЕ НАГРУЗКИ & # xA0; & lt; 25% & # xA0;

НИЗКИЙ УРОВЕНЬ 25% - 50% & # xA0;

СРЕДНИЙ УРОВЕНЬ 50% - 75% & # хА0;

ВЫСОКИЙ УРОВЕНЬ 75-100%

КРИТИЧЕСКИЙ УРОВЕНЬ & gt; 100% & # хА0;

Обработка отсутствующих значений:

• На страновом уровне:

На страновом уровне используются три типа условного исчисления для заполнения отсутствующих лет во временных рядах:

- - перенос на будущий период: после последних имеющихся данных и до 10 лет
 - Вертикальное вменение: в случае имеющихся данных по общему объему забора пресной воды, но без разбивки по источникам, и если данные по существующей разбивке имелись за предыдущие годы, соответствующий коэффициент по источникам применяется к имеющемуся общему количеству.
- На региональном и глобальном уровнях:

Благодаря методам вменения на страновом уровне данные будут доступны для всех временных рядов (если только последнее официальное значение не было получено более 10 лет назад).

Региональные агрегаты:

Региональные и глобальные оценки будут производиться путем суммирования национальных показателей по возобновляемым ресурсам пресной воды и общему объему забора пресной воды с учетом только внутренних возобновляемых водных ресурсов каждой страны во избежание двойного учета, а также внешних возобновляемых ресурсов пресной воды региона в целом, если таковые имеются. В случае регионального агрегирования без физической непрерывности (например, группировки по доходам или группа наименее развитых стран и т. д.), общие возобновляемые водные ресурсы суммируются. Оптимальный экологический дебит (ОЭД) на региональном уровне оценивается как среднее по странам значение ОЭД, выраженное в процентах, и распространяется на региональные водные ресурсы.

Источники расхождений:

Различия могут возникать, в частности, из-за следующего: для национальных оценок поступающая пресная вода считается частью имеющихся пресноводных ресурсов страны, в то время как глобальные оценки могут быть выполнены только путем суммирования внутренних возобновляемых водных ресурсов (воды, произведенной в стране) всех стран во избежание двойного счета. Более того, внешние ресурсы пресной воды рассчитываются в соответствии с договорами, если таковые имеются, что может привести к различным значениям по сравнению с фактическими ресурсами пресной воды, оцененными с помощью гидрологии.

Доступные странам методы и руководства для составления данных на национальном уровне:

Этот показатель дает оценку нагрузки всех секторов на возобновляемые ресурсы пресной воды страны. Низкий уровень нагрузки на водные ресурсы указывает на ситуацию, когда комбинированный водозабор всеми секторами является маргинальным по отношению к ресурсам и, следовательно, имеет небольшое потенциальное влияние на устойчивость ресурсов или на потенциальную конкуренцию между пользователями. Высокий уровень нагрузки на водные ресурсы указывает на ситуацию, когда комбинированный забор всеми секторами представляет собой значительную долю от общих возобновляемых ресурсов пресной воды, что потенциально оказывает большее влияние на устойчивость ресурсов и потенциальные ситуации конфликтов и конкуренции между пользователями.

Показатель рассчитывается на основе трех компонентов:

Общие возобновляемые ресурсы пресной воды (ОВРПВ)

Общий объем забора пресной воды (ООЗПВ)

Оптимальный экологический дебит (ОЭД)

Нагрузки на водные ресурсы (%) = $OO3\Pi B/(OBP\Pi B - OЭД) * 100$

Существует несколько документов, которые можно использовать для поддержки стран в расчете этого показателя. Среди них:

Понимание AQUASTAT - глобальной системы информации о водных ресурсах ФАО Эта информационная заметка охватывает двадцатилетнюю историю сбора и анализа данных, связанных с водой, и их распространения в качестве международного общественного блага в свободном доступе для всех. Процесс сбора и проверки данных привел к созданию уникальной сети сотрудников, которые предоставляют данные, используют данные из других стран для сравнительных целей и обмениваются мнениями и опытом о том, как лучше всего определять и учитывать использование по вопросам, относящимся к воде. Пользователи варьируются от международных частных компаний до неправительственных организаций, и практически все важные отчеты, касающиеся воды, зависят от данных, предоставленных AQUASTAT. http://www.fao.org/3/a-bc817e.pdf

Учет экологических стоков в "нагрузке на водные ресурсы" показателя 6.4.2 - Рекомендации по минимальному стандартному методу глобальной отчетности.

Это руководство призвано помочь странам участвовать в оценке показателя ЦУР 6.4.2, касающейся нагрузки на водные ресурсы, путем предоставления данных и информации об экологических стоках (ЭС). Оно предоставляет минимальный стандартный метод, в основном на основе Глобальной системы информации об экологических стоках (ГСИЭС), доступ к которой можно получить через http://eflows.iwmi.org < / a>.

https://www.unwater.org/app/uploads/2019/01/SDG6 EF LOW2.pdf

<- Оценка возобновляемых водных ресурсов - обзор методологии AQUASTAT, 2015 год http://www.fao.org/3/a-bc818e.pdf

Глобальная база данных по производству, сбору, очистке, сбросу и прямому использованию муниципальных сточных вод в сельском хозяйстве & # xA0;

В этом документе описываются обоснование и метод создания и использования базы данных AQUASTAT по производству, сбору, обработке, сбросу или прямому использованию городских сточных вод в сельском хозяйстве. Были проанализированы наилучшие доступные источники информации, в том числе рецензируемые статьи, протоколы семинаров, конференций и совещаний экспертов, глобальные или региональные базы данных, а также краткие справки по странам, национальные отчеты и прямые контакты с государственными должностными лицами и экспертами стран. http://www.fao.org/3/a-bc823e.pdf

Охлаждающая вода, используемая для производства энергии, и ее влияние на национальную статистику водных ресурсов # xA0;

Эта техническая записка, описывающая проблему охлаждающей воды, используемой для производства энергии и ее влияние на национальную статистику водных ресурсов, преследует две цели: 1) действовать в качестве общего информационного ресурса и 2) побуждать правительственные учреждения, ответственные за водопользование, собирать и представлять информацию с разбивкой по подсекторам (разделение заборов водопотребления для нужд теплоэлектроэнергетики от водозаборов для промышленных целей и гидроэлектростанций), а также для определения точки, в которой проекты с меньшим водозабором более предпочтительны, даже если требуемые капитальные затраты выше. http://www.fao.org/3/a-bc822e.pdf

Моделирование водозабора муниципальных и промышленных предприятий на 2000 и 2005 годы с использованием статистических методов & # xA0;

В этом документе описываются усилия по созданию моделей, которые оценивают водозабор муниципальных и промышленных предприятий на 2000 и 2005 годы. & # xA0; <u>http://www.fao.org/3/a-bc821e.pdf</u>

Устранение неоднозначности статистики водных ресурсов & # хА0;

Номенклатура, относящаяся к информации о водных ресурсах, часто вносит путаницу и приводит к различным толкованиям и, следовательно, к недоразумениям. При обсуждении способа использования возобновляемых водных ресурсов часто используются термины «водопользование, использование, водозабор, потребление, забор, извлечение, использование, предложение и спрос» без четкого указания того, что имеется в виду. & # XA0; < a href = "http://www.fao.org/3/a-bc816e.pdf"> http://www.fao.org/3/a-bc816e.pdf

Вопросник ФАО-AQUASTAT по водным ресурсам и сельскому хозяйству

Эти ежегодные Руководящие принципы и вопросники были подготовлены специально для сбора данных по ЦУР 6.4. связанных с водными переменными, и, следовательно, для обновления основных переменных в базе данных AQUASTAT. http://www.fao.org/aquastat/en/overview/methodology/

< Международные рекомендации по статистике водных ресурсов

Международные рекомендации по статистике водных ресурсов (MPCBP) были разработаны, чтобы помочь укрепить национальные информационные системы по воде в поддержку проектирования и оценки политики интегрированного управления водными ресурсами (ИУВР). https://unstats.un.org/UNSD/envaccounting/ irws /

< Вопросник СОООН / ЮНЕП по статистике окружающей среды & # x2013; Водный сектор

http://unstats.un.org/unsd/environment/questionnaire.htm http://unstats.un. org / unsd / environment / qindicators.htm < COOOH & # x2018; База данных основных агрегатов национальных счетов & # x2019; http://unstats.un.org/unsd/snaama/selbasicFast.asp

Гарантия качества:

Все данные в AQUASTAT проходят тщательный процесс валидации.

Перед загрузкой данные сравниваются с другими переменными, чтобы убедиться, что они логически верны (другими словами: 1+2=3) и не ведет ли использованная ссылка к самому AQUASTAT. Другими словами, AQUASTAT часто находит данные за 2014 год, которые на самом деле являются данными AQUASTAT за 2000 год с измененным годом (скорее всего, когда данные были собраны).

Также в процессе валидации каждая новая единица данных сравнивается с другими данными, уже имеющимися для этой переменной в другие годы или в том же году. Если невозможно согласовать или увязать разные данные, то одну или другую единицу данных необходимо удалить из базы данных.

Во время загрузки в основную базу данных выполняется еще один процесс валидации с использованием набора из примерно 300 правил валидации. Из них около 100 правил являются обязательными, что означает, что, если единица данных не подчиняется этому правилу, процесс валидации не может продолжаться. Например, посевная площадь страны не может превышать общую площадь страны. Другой набор из примерно 200 правил валидации - это предупреждающие знаки для человека, выполняющего валидацию. Например, в целом площадь, оборудованная для орошения с использованием технологии поверхностного орошения, составляет не менее половины общей площади, оборудованной для орошения. Однако в некоторых странах площадь локального орошения или площадь орошения дождеванием может быть больше площади поверхностного орошения. Если это так, то во время валидации появляется предупреждение, чтобы аналитик мог проверить, возможно ли это для этой страны.

Помимо обычной валидации AQUASTAT, описанной выше, при составлении показателей страны будут призывать и оказывать им поддержку в создании их собственной системы контроля качества, гарантирующей, что все данные, используемые в расчетах, будут проверены, и что согласованность сохраняется в течение многих лет, чтобы гарантировать сопоставимость и надежное определение тенденций.

Для показателя необходимы данные из разных областей знаний. На международном уровне они доступны из различных наборов данных от различных организаций, таких как ФАО, СОООН и Международного института управления водными ресурсами (ИВМИ). У каждого из этих институтов есть собственный установленный механизм для консультаций и валидации данных со странами.

Данные, полученные от FAOSTAT и AQUASTAT, собираются в странах посредством обследований, состоящих из сбора данных и странового описания с помощью подробных вопросников, где ссылка на источник и комментарии связаны с каждым значением, а сбор информации осуществляется через официально назначенных национальных консультантов. Критический анализ информации и обработка данных проводится сотрудниками ФАО.

Однако для процесса достижения ЦУР будет введен в действие конкретный механизм, состоящий в определении в каждой стране национальным правительством национального координатора и технической группы, отвечающей за сбор и расчет показателя, в тесной консультации с ФАО. Эта система была успешно протестирована на начальном этапе проекта GEMI (Глобальная инициатива по управлению окружающей средой), осуществляемого ФАО и другими семью агентствами ООН при координации со стороны ООН-Водные ресурсы.

Тем странам, которые первоначально могут столкнуться с трудностями при составлении и вычислении показателя, ФАО окажет поддержку и в конечном итоге сможет разработать показатель, исходя из данных, доступных на международном уровне. Однако никакие данные не будут публиковаться без предварительного разрешения соответствующих национальных органов.

Источники данных

Описание:

Данные для этого показателя обычно собираются национальными министерствами и учреждениями, в компетенции которых входят вопросы, связанные с водными ресурсами, такими как национальные статистические управления, министерства водных ресурсов, сельского хозяйства или окружающей среды. Официальными партнерами на страновом уровне являются национальное статистическое управление и / или отраслевое министерство водных ресурсов. В частности, ФАО просит страны назначить национального корреспондента, который будет выполнять функции координатора сбора и передачи данных. Данные в основном публикуются в национальных статистических ежегодниках, национальных генеральных планах по водным ресурсам и ирригации и других отчетах (например, по проектам, международным исследованиям или результатам и публикациям национальных и международных исследовательских центров).

Данные для показателя собираются с помощью вопросников, на которые отвечают соответствующие учреждения в каждой стране. Примеры вопросников, которые могут быть использованы, можно найти по адресам:

AQUASTAT

www.fao.org/nr/water/aquastat/sets/aq-5yr-quest_eng.xls

Статистический отдел ООН/Программа ООН по окружающей среде

http://unstats.un.org/unsd/environment/Questionnaires/q2013Water English.xls

ОЭСР/Евростат

http://ec.europa.eu/eurostat/ramon/coded_files/OECD_ESTAT_JQ_Manual_version_2_21.pdf

Процесс сбора:

- 1. Официальными партнерами на страновом уровне являются отраслевое министерство водных ресурсов и национальное статистическое управление. ФАО просит страны назначить национального корреспондента, который будет выполнять функции координатора сбора и передачи данных.
- 2. Ожидается, что страны введут в действие процесс контроля качества (КК), обеспечения качества (ОК) и проверки данных. Для части контроля качества процесс должен выполняться внутри компании, гарантируя, что все запланированные шаги должным образом выполняются на каждом этапе сбора данных. Обеспечение качества должно проводиться независимыми экспертами, национальными или международными, для оценки согласованности и надежности сформированных данных. Наконец, по возможности полученные данные следует проверить путем сравнения с аналогичными данными из других источников.

Page: 8 of 11

3. После сбора данных потребуется согласование возможных различий в определениях и агрегировании данных.

Доступность данных

Описание:

Страны (с 2010 года по настоящее время):

Азиатско-Тихоокеанский регион 23

Африка 18

Латинская Америка и Карибский бассейн 17

Европа, Северная Америка, Австралия, Новая Зеландия и Япония 41

Страны (2000-2009 годы):

Азиатско-Тихоокеанский регион 42

Африка 49

Латинская Америка и Карибский бассейн 27

Европа, Северная Америка, Австралия, Новая Зеландия и Япония 47

Временные ряды:

Данные за1961–2017 годы (прерванные ряды, в зависимости от страны) интерполируются для создания временных рамок.

Дезагрегирование:

Хотя показатель основан на общем объеме воды, необходимы отраслевые данные, чтобы можно было его дезагрегировать, чтобы показать соответствующий вклад различных секторов в нагрузку на водные ресурсы страны, и, следовательно, относительную важность действий, необходимых для сдерживания потребности в воде в различных секторах (сельское хозяйство, сфера услуг и промышленность).

На национальном уровне водные ресурсы и водозаборы оцениваются или измеряются на уровне соответствующих гидрологических единиц (бассейны рек, водоносные горизонты). Таким образом, можно получить географическое распределение нагрузки на водные ресурсы по гидрологическим единицам, что позволит более целенаправленно осуществлять регулирование спроса на водные ресурсы.

Календарь

Сбор данных:

Ежегодно

Выпуск данных:

Планируется, что данные по показателю будут выпускаться по большинству стран ежегодно с 2018 года и в большинстве случаев публиковаться в AQUASTAT каждый год в январе.

Поставщики данных

Описание:

Национальные статистические управления через национальных корреспондентов AQUASTAT. Учреждения, ответственные за сбор данных на национальном уровне, различаются в зависимости от страны. Однако в целом данные по этому показателю предоставляются Министерством сельского хозяйства, Министерством водных ресурсов и Министерством окружающей среды, а также другими отраслевыми министерствами.

Составители данных

Продовольственная и сельскохозяйственная организация Объединенных Наций (Φ AO) через AQUASTAT, ее глобальную информационную систему по водным ресурсам (http://www.fao.org/aquastat/en/).

Ссылки

URL:

www.fao.org/nr/aquastat

Ссылки:

Продовольственная и сельскохозяйственная организация Объединенных Наций (ФАО). AQUASTAT, Глобальная информационная система ФАО по водным ресурсам. Рим. Веб-сайт http://www.fao.org/aquastat/en/.

На этих сайтах доступны следующие ресурсы, представляющие особый интерес для этого показателя:

Глоссарий AQUASTAT (http://www.fao.org/aquastat/en/databases/glossary/)

AQUASTAT Основная база данных по странам (http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en)

AQUASTAT Использование воды (http://www.fao.org/aquastat/en/overview/methodology/water-use/)

Page: 10 of 11

AQUASTAT Водные ресурсы (http://www.fao.org/aquastat/en/overview/methodology/water-resources/)

AQUASTAT Публикации, касающиеся концепций, методологий, определений, терминологии, метаданных и т. д. (http://www.fao.org/aquastat/en/resources/publications/reports/)

ИВМИ: Оценка глобальных экологических стоков http://eflows.iwmi.org/

ИВМИ - Информация о глобальных экологических стоках для достижения целей в области устойчивого развития

http://www.iwmi.cgiar.org/Publications/IWMI Research Reports/PDF/pub168/rr168.pdf

Вопросник СОООН / ЮНЕП по статистике окружающей среды: Раздел о воде (http://unstats.un.org/unsd/environment/qindicators.htm)

Базовые принципы развития статистики окружающей среды (ПРСОС 2013) (Глава 3) http://unstats.un.org/unsd/environment/FDES/FDES-2015-supporting-tools/FDES.pdf

Вопросник ОЭСР / Евростата по статистике окружающей среды: Раздел о воде

Связанные показатели

- 6.4.1: Динамика изменения эффективности водопользования
- 6.1.1: Доля населения, пользующегося услугами водоснабжения, организованного с соблюдением требований безопасности
- 6.3.1: Доля безопасно очищаемых сточных вод
- 6.6.1: Динамика изменения площади связанных с водой экосистем
- 6.5.1: Степень внедрения комплексного управления водными ресурсами (от 0 до 100)
- 2.4.1: Доля площади сельскохозяйственных угодий, на которых применяются продуктивные и неистощительные методы ведения сельского хозяйства
- 15.3.1: Площадь деградировавших земель в процентном отношении к общей площади суши
- 1.5.1: Число погибших, пропавших без вести и пострадавших непосредственно в результате бедствий на 100 000 человек [а]
- 11.5.1: Число погибших, пропавших без вести и пострадавших непосредственно в результате бедствий на $100\ 000$ человек [a]

Page: 11 of 11