Facultad de Matemática, Astronomía, Física y Computación Universidad Nacional de Córdoba

Modelado automático de trayectorias de aprendizaje: ¿Cuándo generar ayuda personalizada para principiantes en programación?

Marco Moresi

March 20, 2019

Sistemas de corrección automática para la enseñanza de programación

- ► Introducción de las CC en la curricula de la escuela K-12
- ► Falta de docentes capacitados
- Dificultad de capacitar docentes
- Aulas heterogéneas

- ► Introducción de las CC en la curricula de la escuela K-12
- ► Falta de docentes capacitados
- Dificultad de capacitar docentes
- Aulas heterogéneas

- ▶ Introducción de las CC en la curricula de la escuela K-12
- ► Falta de docentes capacitados
- Dificultad de capacitar docentes
- Aulas heterogéneas

- ▶ Introducción de las CC en la curricula de la escuela K-12
- ► Falta de docentes capacitados
- Dificultad de capacitar docentes
- Aulas heterogéneas

¿Qué se necesita de estos sistemas?

¿Qué se necesita de estos sistemas?

- Secuenciación de contenidos
- Corrección automática de ejercicios
- Seguimiento personalizado de estudiantes

¿Qué se necesita de estos sistemas?

¿Qué se necesita de estos sistemas?

- Secuenciación de contenidos
- Corrección automática de ejercicios
- Seguimiento personalizado de estudiantes

¿Qué se necesita de estos sistemas?

¿Qué se necesita de estos sistemas?

- Secuenciación de contenidos
- Corrección automática de ejercicios
- Seguimiento personalizado de estudiantes

Amumuki

- Sistema usado para la enseñanza de programación
- ▶ Código libre
- Desarrollada por docentes universitarios nacionales
- Corrige automáticamente ejercicios de programación
- Brinda asistencia a profesores y estudiantes en el proceso de aprendizaje.

- Sistema usado para la enseñanza de programación
- ▶ Código libre
- Desarrollada por docentes universitarios nacionales
- Corrige automáticamente ejercicios de programación
- Brinda asistencia a profesores y estudiantes en el proceso de aprendizaje.

- Sistema usado para la enseñanza de programación
- Código libre
- Desarrollada por docentes universitarios nacionales
- Corrige automáticamente ejercicios de programación
- Brinda asistencia a profesores y estudiantes en el proceso de aprendizaje.

- Sistema usado para la enseñanza de programación
- Código libre
- Desarrollada por docentes universitarios nacionales
- Corrige automáticamente ejercicios de programación
- Brinda asistencia a profesores y estudiantes en el proceso de aprendizaje.

- Sistema usado para la enseñanza de programación
- Código libre
- Desarrollada por docentes universitarios nacionales
- Corrige automáticamente ejercicios de programación
- Brinda asistencia a profesores y estudiantes en el proceso de aprendizaje.

¿Cómo se usa Mumuki siendo estudiante?

Demo Time

Perspectiva del docente

¿Cómo realiza el seguimiento el docente?

¿Cómo realiza el seguimiento el docente?

Enviada el 2016-09-01 02:34:41

Enviada el 2016-09-01 02:38:06

Enviada el 2016-09-01 02:38:31

Dataset Mumuki

Dataset generado por Mumuki

Cada vez que un estudiante envía una solución, el sistema almacena la siguiente información:

```
content

created at

status

exercise.name

exercise.id

submission.count

{
    "content" : "recortar xs = take 15 x",
    "created_at" : "2018-04-17T02:32:27.374Z",
    "status" : "errored",
    "exercise.name" : "Recortar tuits",
    "exercise.id" : 9,
    "submissions_count" : 1,
}
```

Dataset de Mumuki Mumuki io vs Intro Algo

	Intro Algo 2018		Mumuki io	
Cantidad de submissions	19372		235742	
Estudiantes	75		3915	
Submissions Status	#	%	#	%
Errored (rojo oscuro)	7457	38.5	69249	29.3
Failed (rojo claro)	7855	40.5	86525	36.7
Passed (verde)	4060	21.0	79928	34.0

Estadísticas y definiciones Utilización por días

Figure: Comparación de la utilización del sistema Mumuki por día.

Estadísticas y definiciones Utilización por horas

Figure: Comparación de la utilización del sistema Mumuki por hora.

- Abandono en sesión: consideramos abandono en sesión cuando el estudiante supera el umbral de tiempo de inactividad sobre un ejercicio dejando en rojo su última solución enviada dentro de la sesión.
- Abandono por cambio de ejercicio: durante una sesión el estudiante deja un ejercicio en rojo y cambia a trabajar sobre otro ejercicio dentro de la plataforma Mumuki.

Definiciones Sesión

Definiciones Sesión

Sesión: soluciones enviadas de forma continuada donde el tiempo de inactividad no supera un cierto umbral, 454 segundos (7,56 min) para Intro Algo y 565 segundos (9,41 min) para Mumuki io.

Predicción de abandono

Proceso de anotación

Distribución de las clases luego de anotar el conjunto de datos.

	Mumuki io		Intro Algo	
	#	%	#	%
Abandonos en sesión	32189	13.7	3382	17.5
Abandonos por cambio de ejercicio	39358	16.7	5781	29.9
Total abandonos	71547	30.4	9163	47.4
Total no abandonos	164155	69.6	10134	52.6
Total soluciones	235702	100	19297	100

Aprendizaje supervisado

Aprendizaje supervisado

características para regresión logística

Ingeniería de

Construcción de Características

Dimensiones propuestas

Luego de haber anotado ambos conjunto de datos surge la necesidad de diseñar características que modelan cuándo el estudiante está en un estado de posible abandono del ejercicio. Inspirados en el trabajo de Blikstein et al (2014) propusimos tres dimensiones.

- Dimensión estudiante
- Dimensión ejercicio
- Dimensión estudiante-ejercicio

Construcción de Características

Dimensiones propuestas

Luego de haber anotado ambos conjunto de datos surge la necesidad de diseñar características que modelan cuándo el estudiante está en un estado de posible abandono del ejercicio. Inspirados en el trabajo de Blikstein et al (2014) propusimos tres dimensiones.

- Dimensión estudiante
- ► Dimensión ejercicio
- Dimensión estudiante-ejercicio

Construcción de Características

Dimensiones propuestas

Luego de haber anotado ambos conjunto de datos surge la necesidad de diseñar características que modelan cuándo el estudiante está en un estado de posible abandono del ejercicio. Inspirados en el trabajo de Blikstein et al (2014) propusimos tres dimensiones.

- Dimensión estudiante
- ► Dimensión ejercicio
- Dimensión estudiante-ejercicio

Dimensión Estudiante

Dentro de esta dimensión se propusieron diversos niveles

- ► Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA, EA
- ► Nivel Insistencia
 - PTT, PDL, IPA

Dimensión Estudiante

Dentro de esta dimensión se propusieron diversos niveles

- ► Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA, EA
- ▶ Nivel Insistencia
 - ► PTT, PDL, IPA

- ▶ Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA. EA
- ► Nivel Insistencia
 - PTT, PDL, IPA

- ▶ Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA, EA
- ► Nivel Insistencia
 - ► PTT, PDL, IPA

- ▶ Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA, EA
- ► Nivel Insistencia
 - ► PTT, PDL, IPA

- ► Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA, EA
- ► Nivel Insistencia
 - ► PTT, PDL, IPA

- ▶ Nivel Experiencia
 - ► PCA, PSA
- ▶ Nivel Abandono
 - ► PA, EA
- ► Nivel Insistencia
 - ► PTT, PDL, IPA

- Nivel Dificultad
 - PCSA, APE, CAPE, COMP
- Nivel Conceptual
 - Exercise id

- Nivel Dificultad
 - ► PCSA, APE, CAPE, COMP
- Nivel Conceptual
 - Exercise id

- Nivel Dificultad
 - ► PCSA, APE, CAPE, COMP
- Nivel Conceptual
 - Exercise id

- Nivel Dificultad
 - ► PCSA, APE, CAPE, COMP
- ▶ Nivel Conceptual
 - Exercise id

Dimensión estudiante-ejercicio

Submission count

▶ Content

Dimensión estudiante-ejercicio

- Submission count
- Content

Dimensión estudiante-ejercicio

- Submission count
- Content

Regresión Logística

Ingeniería de características Mejor combinación

Dataset	Intro Algo		Mumuki io		
Baseline	Subm.	Subm.	Subm.	Subm.	
	count	content	count	content	
Dimensión Estudiante					
N. Experiencia	PCA	PSA	PSA	PCA	
N. Abandono	PA	PA	PA	PA	
N. Insistencia	PTT	PDL	PTT	IPA	
Dimesión Ejercicio					
N. Dificultad	APE	APE	COMP	PCSA	
Métrica de clasificación					
F1 Score	0.69	0.67	0.74	0.77	
Dummy Classifier	0.51		0.57		

Ingeniería de caracteristicas Ablation Study

Baseline Submission Count			
Caracteristicas	F1 Score		
PCA + PA + PTT + APE	0.697		
PCA + PA + PTT	0.64		
PCA + PTT + APE	0.65		
PCA + PA + APE	0.694		
PA + PTT + APE	0.697		
PCA + PA	0.64		
PCA + PTT	0.61		
PCA + APE	0.65		
PA + PTT	0.64		
PA + APE	0.696		
PTT + APE	0.64		

Table: Ablation study sobre las características con mejor desempeño en el baseline Submission count para el conjunto de datos Intro Algo

Ingenieria de caracteristicas Modelo general

	Intro Algo	Mumuki io
Dummy classifier	0.51	0.57
Submission Count + PA + APE	0.68	0.75
Mejor combinación obtenida	0.69	0.77

Recordemos que PA es la proporción de abandonos, correspondiente al nivel de abandono de la dimensión de estudiante. Mientras que APE son los abandonos por ejercicio, esta característica está dento del nivel de dificultad de la dimensión de ejercicio.

Redes neuronales profundas seq2seq

Construiremos una red neuronal recurrente con unidades LSTM. Con las siguientes características:

- La entrada es el código generado por estudiantes
- Cada solución se tokeniza con un vocabulario de 35 mil tokens
- ▶ Padding a 100 tokens de longitud
- Cada token es representado por un embedding (128, 256, 512 dimensiones)
- Estos embeddings son la entrada de una capa de 100 unidades LSTM
- Última capa una función de activación sigmoide (Clasificación)

Figure: Wang et. al (2017). Learning to Represent Student Knowledge on Programming Exercises Using Deep Learning

Figure: Estructura propuesta por este trabajo

Una alternativa neuronal

Métrica de éxito F1 para cada una de las configuraciones de la red.

	Intro Algo	Mumuki io	
	F1 Score		
LSTM (Embeddings 128)	0.84	0.78	
LSTM (Embeddings 256)	0.85	0.81	
LSTM (Embeddings 512)	0.85	0.80	

Table: Valores de F1 obtenidos para cada una de las configuraciones de la red.

Comparación de modelos

Análisis de tiempos vs performance

	Intro Algo		Mumuki io	
	Tiempo predicción	F1	Tiempo predicción	F1
Modelo General Sub. count + PA + APE	3.62 μs	0.68	4.23 μs	0.75
LSTM (Embeddings 128)	1.7 ms	0.84	1.7 ms	0.78
LSTM (Embeddings 256)	1.9 ms	0.85	1.8 ms	0.81
LSTM (Embeddings 512)	2.5 ms	0.85	2 ms	0.80

Conclusiones y Trabajo Futuro

Conclusiones

- Pudimos formalizar la tarea de predecir abandonos y se trabajó sobre un conjunto de datos novedoso
- Logramos construir un modelo de regresión lineal con buenos tiempos de respuesta pero la performance se vio claramente superada por la opción neuronal
- A diferencia de los trabajos relacionados en el área en el modelo neuronal obtuvimos un buen desempeño sólo utilizando el texto de la solución

Trabajo Futuro

- Registrar el tiempo de inicio de trabajo
- Probar otra estructura de red neuronal
- Combinar experimentos
- Mejorar representación del texto
- Trayectorias adaptativas

¿Preguntas?

Gracias