Indian Institute of Information Technology Chittoor, SriCity Discrete Mathematics - Mid Semester 1 examination

Total marks: 50; Time: 1 hour 30 minutes Instructions All the questions are to be attempted. All the answers should be written in formal way. All questions have the equal weightage. This is a closed book, closed notes exam. (6) Calculators (non-programming) may be allowed in the exam hall. Examine the validity of the following argument, using mathematical logic: (a) The IIITS students can be of three kinds: either BTech or MS or PhD students. (b) For all MS students the primary goal is research. (ϵ) For all PhD students the primary goal is research. -(d) For any IIITS student, if the primary goal is not research then he/she is a BTech student. Z. Prove that $((p \rightarrow r) \land (q \rightarrow r)) \leftarrow \rightarrow ((p \lor q) \rightarrow r)$ is a tautology. Z. You and your brother are playing a game. You toss a coin. Whoever wins, will get a chocolate. If you get a chocolate, then you will gift it to your father. If your brother gets a chocolate, then he will gift it to your mother. Using Mathematical logic, prove that either of your parents will get a chocolate. (3+2 marks) Prove that (not using truth table) $\neg (p \leftrightarrow q)$ and $(\neg p \leftrightarrow q)$ are logically equivalent. Find the Prenix Normal Form of the statement: $\checkmark \exists x P(x) \rightarrow \forall x Q(x)$. equivalent. Find the Prenix Normal Form of the statement: $\forall \exists x P(x) \Rightarrow \forall x Q(x)$.

5. Obtain PDNF of the given expression: $((p \lor q) \land (q \Rightarrow r)) \leftarrow \Rightarrow r$.

(4+1 marks) Prove that, if n is an even integer, then there is a unique integer k such that n can be represented as a sum of k-5 and k+5. Prove further that the integer 5 can be replaced can be represented as a sum of k-5 and k+5. Prove further that the integer 5 can be replaced by any integer t.

(2+3 marks) Prove or disprove the following statements:

(a) For any two positive real numbers x and y, $\lceil x \rceil + \lvert y \rvert = \lvert x \rvert = 0$.

For any two positive real numbers x and y, $\lceil x \rceil + \lvert y \rvert = 0$. by any integer t. (a) For any two positive real numbers x and y, $\lceil x \rceil + \lvert y \rvert = \lvert x + y \rvert$. So G = G=(6) For any two positive real numbers x and y, $[x]+|y| \ge |x+y|$ 8: (3+2 marks) Prove the following: (a) For each integer x, either $x^2+1>3$ or x<2. (كل) Negative of any irrational number is irrational. (pvq) ~ (7qv7p) 9. (3+2 marks) (a) Prove that the integer xy is an odd integer iff x and y both are odd integers. (b) Find the mistake in the following proof: (5+5)*(5-5) = 5*(5-5)=>5+5=5[Right cancellation law for integers] =>10=510. (4+1 marks) (a) Prove that, for any three sets A, B and C, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (b) Find $\prod A_i$, where $A_i = (-i, i)$ for all integer i. ((p^72)v(q,7p)) 7(7pvq)v(7p1q)

Indian Institute of Information Technology Chittoor Sri City, Chittoor District, Andhra Pradesh - 517588, India.

8 Pages

٦	1	7	1	,

Э.:

0./

Answer Booklet

_Sem Examination (✓whichever applicable)		Valua_Sem / □ End_Sem Examination (✓ whichever applicable)
--	--	--

Pro	grammeCSE	Roll No. 2016 DI	D()	
 D	00.00.	Roll No. 2016 01	Subject and Code	<u>DM</u>
Date	08.09.2016	No. of Addl. Sheets	lead the state	meel
Roo	m Na /c		Invigilator's Signature	
	ii No./Seat No.	305, A1	7	
			1	

			-				_					
	-	Q1	Q2	Q3	Q4	Q5	Q6	07				1
	Maximum					45	Q0	Q7	Q8	Q9	Q10	Total
ł	Marks Marks											
-	Obtained	2_	6 5	3.5	3	0	5	2	4	3	,	200
	Signature of	46 - 7						æ	5			29.5

e of the Faculty for the course (after evaluation) :

Please start writing here

let x be students (1.)

P(n): Students study at IIITS

Q(n): Students study BTech course

R(n): Students study Ms course

S(n): Students study PhD course

T(n): Main goal of student is research! why XOR?

P(n) -> Q(n) A R(n) A S(n) is tour D: X-OR

 $R(n) \rightarrow T(n) \equiv \neg T(n) \rightarrow \neg R(n)$ (b) is truce; nep(n)

co S(n) → T(n) = TT(n) → TS(n) is true; n∈P(n)

For alt T(n) to be true

=> -1R(n) is foul

- S(n) is bue

I mompute Proof For P(n) -> Q(n) AR(n) AS(n) to be true when

R(n) is false and S(n) is false

Q(n) must be true (Must be a B. Tech Student) Hence it proves that for any IIITS student, if primary goal

is not research, helbre is a BTech Student.

Indian Institute of in-

T: true F: false

(2)	
	$((p\rightarrow h)\wedge(q\rightarrow h)) \longleftrightarrow ((p\vee q)\rightarrow h)$
	1 (9) ((pv2))) ((pv2)))
-	

"Eument form, "

of the fallect of affirming the conclusion,

	Ρ	9		s.	(P→h)		(p->2) ^	(pvq)	(pvq)→ r	((p-2), (q-2)), ((pvq)-1,
	T	T	-	Γ.				T	Т	T
//-	Τ	Т	F		T F	T	T .	T	Ė	Т
\\ -	Т	F	T	-	T	T	T	T	Т	T
_	Γ	F	F		F	T	F	Т	F	T
F	-	T	T,		Т	Т	Т	Т	/T	T
F	-	Τ	F		T	F	F	1	F	T
F		F	T		Т	Т	Т	F	Т	Т
F		F	F		Т	Т	Т	F	(5)	T

Since all final outcomes of the truth table are True (T) hence ((p->r) \wedge (q->r)) \leftrightarrow ((pvq)->r) is a tautology.

P: I win, I get a chocolate p->q: Considering P is true.

Let x = I(me) y = Ny brother.(3)

p(a): a wirs

Q(a): a gets a chocolate

R(a): a gifts the chocolate to

m: nother, f: father gets chocolate geti chocolate

In a coin toss, there can be only two cases, either I win, or my brother wins. Case 1: I win P(n) is true. (Hypothetical $P(n) \rightarrow Q(n)$ is true. syllogism) $Q(n) \to R(n)$ is true. $P(n) \to R(n)$ According to question: When I win, I gift the chocolate to my father $R(n) \rightarrow f$; $p(n) \rightarrow f$ (Hypothetical Eyllogism) Result 1: Father gets chocolate. Case 2: Brother wins P(y) is bue $P(y) \rightarrow Q(y)$ is true Q(y) -> R(y) is true P(y) -> R(y) Syllogism) According to question: When my brother wins, he gifts the chocolate to my mother. $R(y) \rightarrow m$ P(y) → m (typothetical syllogism) Result 2: Mether gets Chocolate. Seeing both results we can easily conclude that whichever case may occur (whether I win or my brother wins), either, parent would get a chocolate. Case 1 & Case 2 (Beth cannot win simultaneously) $(P(n) \rightarrow f) \Delta (P(y) \rightarrow m)$ D: X-OR = . Inompute You had to your Hence proved.

```
(-1p 6-99)
        (4.)
              7 (pesq) and
  (2)
                                       : per 9 = (p-> 9) 1 (2 > p)
clu
            7 (perg): LHS
                                        .: a-b = 7avb
          = 7 ((p-19) 1 (9->p))
                                          .. T(anb) = TavTL
          = 7[(7pvq) 1(7qvp))
         = [- (-pvq)] av (- (-qvp)]
                                          ·: -1(7a) = a
                                             Distributive law
         = (p \wedge \neg q) \vee (q \wedge \neg p)
  T
         = [pv(q~p)]~[~qv(q~~p)]
                                             av (bnc) = (avb) 1/6
 T
        = [(pvq) \(pv\p)] \[(\nevq) \(\nev\p))
T
                                                  : a 1 - a = T
        = ((pvq) rT) r( Tr(-qv7p))
 F
                                                     a \wedge T = a
           (pvq) 1 (7qv7p) -D
F
 F
         (7p4): RHS
       = (7(7p) vq) V
 F
           (\neg p \rightarrow q) \wedge (q \rightarrow \neg p)
  Si
                                           · (a←b) = (a→b) 1(b+1
 h
         (7(7p)v2) 1 (7qv7p)
                                          ~ (a>b) = (7avb)
         (pvg) 1 (7gv7p) >
 (3)
                                           : 7(1a) =a
       Since (D=0)
      Hence proved that 7(perg) and (7perg)
       logically equivalent.
        FrP(n) → +aQ(n)
                                           · (a-b) = 7avb
      = [-(FnP(n))]v (YnQ(n)]
      = [Yn-P(n)]v[tnQ(n)]
                                           · 7 Ja(P(a)) = tanpla
          4x[ ¬P(n)vQ(n)]
```

(5) $((pvq) \wedge (q \rightarrow r)) \leftrightarrow r$ = [(pvq) ^ (7qv2)] 6x (a->b) = 7avb (pra) 1 [pr(79v2) v (9r(79v2))] +> 2 (pn72) v(pnr) v, (gn72) v (qn2) ((prig) v (pra) v(q12)) Es (q12) PTO (6.) By the direct method:

let n= 2c where cEI

Hence n is an even number h = 2c = c + cAdding and subtracting 5 from RHS h = c + (c + 5) - 5 (comm

(commutative law) (Associative law)

= (k+5) + (k-5)Where k=4

= (c+5)+(c-5)

there there exists a unique integer k for every c such that n = k-5+k+5 = 2k (even)

As both +5 and -5 are being added in 2k; +5-5=0 so here any integer t could be taken because +t-t=0 for all integers tence n=(k-t)+(k+t)

n and t can be any integer.

(7). (a) [n] +(y] = [n+y]

This is not be true:

(71+y) = [12.9] = 13

As 14 = 13; it is not true.

(8)(a) n^2+173 O4 n<2For n<2(-00,1] condition satisfies

For $n\geq 2$ $[2,\infty)$:

P(2): 4+1=5>3P(3): 9+1=1073

As 2<3<4...<0; the condition is always true thence for each integer: either

27+173 or >162; xEI is true.

(b) By using contra-positive method:

we take two rational numbers $\frac{\rho}{q}$ and $\frac{q}{s}$; $q \neq 0$; $s \neq 0$ $\frac{\rho}{q} = \frac{r}{s} = 0$

Date PS-99=0 Maxir PS = 92 Signa = = 2) Nos are equal in magnitude Plea As $\frac{1}{9} = -\frac{2}{5}$ Negative of any For any rational no; its negative is rational => Negative of any irrational no is irrational. ï (9)(a) let n= 2a+1; aEI Y=26+1; bEI ny = (2a+1)(2b+1) = 4ab + 2a+2b+1 = 2 (2ab+a+b)+1 = 2h'+1 = odd k'= 2ab+a+b thence when nhy are odd, my is odd. (5+5) × (5-5) = 5 × (5-5) (p·) => 5+5=5 By Right Cancellation hou we cannot apply right Cancellation belows 5-5=9 and we cannot divide by o Hence the proof is invalid.