Машинное обучение

Лекция 3 Метод k ближайших соседей Линейная регрессия

> Андрей Нарцев andrei.nartsev@gmail.com anartsev@hse.ru

> > НИУ ВШЭ, 2025

План лекции

Overview

Метод k ближайших соседей

- Оценка обобщающей способности и подбор гиперпараметров
- Взвешенный kNN
- kNN для задачи регрессии

Линейная регрессия (intro)

Overview

- Основные понятия:
 - пространство объектов
 - пространство ответов,
 - признаковое описание,
 - обучающая выборка,
 - функционал ошибки
- Типы задач:
 - обучение с учителем: регрессия, классификация, ранжирование
 - обучение без учителя: кластеризация, понижение размерности
- Типы признаков:
 - бинарные
 - порядковые
 - категориальные
 - числовые

Гипотеза компактности и knn

Гипотеза компактности

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача классификация (ответы из множества $\mathbb{Y} = \{1, ..., K\}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сертируем объекты обучающей выберки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Измерение ошибки модели

Вопросы

- Как сравнить две модели?
- Как подобрать k и метрику?

Accuracy

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

- Всегда смотрите на баланс классов!
- Доля верных ответов не обязательно меняется от 0.5 до 1 для разумных моделей

Как выбрать k?

Обучающая выборка

На каком классе чаще всего ездит	Ближайшее к дому метро	Способ оплаты	Согласился повысить категорию?
Эконом	Таганская	Карта	да
Комфорт	Юго-Западная	Наличные	нет
Комфорт	Строгино	Карта	да

Применяем модель:

Эконом Таганская Карта	?
------------------------	---

Как выбрать k?

Обучающая выборка

На каком классе чаще всего ездит	Ближайшее к дому метро	Способ оплаты	Согласился повысить категорию?
Эконом	Таганская	Карта	да
Комфорт	Юго-Западная	Наличные	нет
Комфорт	Строгино	Карта	да

Применяем модель:

	Эконом	Таганская	Карта	да
--	--------	-----------	-------	----

С точки зрения качества на обучающей выборке лучший выбор k=1

Как выбрать k?

1-nearest neighbours

20-nearest neighbours

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Гиперпараметры

- Нельзя подбирать k по обучающей выборке гиперпараметр
- Нужно использовать дополнительные данные

Обобщающая способность

Обобщающая способность

Как готовиться к экзамену?

Заучить все примеры с занятий

Разобраться в предмете и усвоить алгоритмы решения задач

Переобучение (overfitting)

Обобщение (generalization)

Хорошее качество на обучении Низкое качество на новых данных

Хорошее качество на обучении Хорошее качество на новых данных

Отложенная выборка

Отложенная выборка

- Слишком большое обучение тестовая выборка нерепрезентативна
- Слишком большой тест модель не сможет обучиться
- Обычно: 70/30, 80/20

Кросс-валидация

Кросс-валидация

- Надёжнее отложенной выборки, но медленнее
- Параметр количество разбиений n (фолдов, folds)
- Хороший, но медленный вариант $n=\ell$ (leave-one-out)
- Обычно: n=3 или n=5 или n=10

Подбор числа соседей

Чуть больше терминов

• После подбора всех гиперпараметров стоит проверить на совсем новых данных, что модель работает

- Обучающая выборка построение модели
- Валидационная выборка подбор гиперпараметров модели
- Тестовая выборка финальная оценка качества модели

Метод k ближайших соседей с весами

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Проблема с расстояниями

Взвешенный knn

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i [y_{(i)} = y]$$

Варианты:

•
$$w_i = \frac{k+1-i}{k}$$

•
$$w_i = q^i$$

• Не учитывают сами расстояния

Взвешенный knn

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i [y_{(i)} = y]$$

Парзеновское окно:

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

- К ядро
- h ширина окна

Ядра для весов

• Гауссовское ядро:

$$K(z) = (2\pi)^{-0.5} \exp\left(-\frac{1}{2}z^2\right)$$

• И много других:

Ядра для весов

$$h = 0.05$$

$$h = 0.5$$

$$h = 5$$

kNN для регрессии

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача регрессии (ответы из множества $\mathbb{Y} = \mathbb{R}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Усредняем ответы:

$$a(x) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)}$$

• Можно добавить веса:

$$a(x) = \frac{\sum_{i=1}^{k} w_i y_{(i)}}{\sum_{i=1}^{k} w_i}$$

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

• Формула Надарая-Ватсона

kNN: применение

Функция потерь для регрессии

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Функция потерь для регрессии

• Ещё один вариант — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

• Слабее штрафует за серьёзные отклонения от правильного ответа

Резюме

Плюсы kNN

- Если данных много и для любого объекта найдётся похожий в обучающей выборке, то это лучшая модель
- Очень простое обучение
- Мало гиперпараметров
- Бывают задачи, где гипотеза компактности уместна
 - Классификация изображений
 - Классификация текстов на много классов

Минусы kNN

- Часто другие модели оказываются лучше
- Надо хранить в памяти всю обучающую выборку
- Искать к ближайших соседей довольно долго
- Мало способов настроить модель

Линейная регрессия

Парная регрессия

Парная регрессия

Парная регрессия

- Простейший случай: один признак
- Модель: $a(x) = w_1 x + w_0$
- Два параметра: w_1 и w_0
- w_1 тангенс угла наклона
- w_0 где прямая пересекает ось ординат

Много признаков

- Общий случай: d признаков
- Модель

$$a(x) = w_0 + w_1 x_1 + \dots + w_d x_d$$

• Количество параметров: d+1

Много признаков

Запишем через скалярное произведение:

$$a(x) = w_0 + w_1 x_1 + \dots + w_d x_d =$$
$$= w_0 + \langle w, x \rangle$$

Будем считать, что есть признак, всегда равный единице:

$$a(x) = w_1 x_1 + \dots + w_d x_d =$$

$$= w_1 * 1 + w_2 x_2 + \dots + w_d x_d =$$

$$= \langle w, x \rangle$$

Применимость линейной регрессии

Модель линейной регрессии

$$a(x) = w_1 x_1 + \dots + w_d x_d = \langle w, x \rangle$$

- Нет гарантий, что целевая переменная именно так зависит от признаков
- Надо формировать признаки так, чтобы модель подходила

- Признаки: площадь, район, расстояние до метро
- Целевая переменная: рыночная стоимость квартиры
- Линейная модель:

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (район)$ $+ w_3 * (расстояние до метро)$

```
a(x) = w_0 + w_1 * (площадь) + w_2 * (район) + w_3 * (расстояние до метро)
```

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (район)$ $+ w_3 * (расстояние до метро)$

ullet За каждый квадратный метр добавляем w_1 к прогнозу

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (район)$ $+ w_3 * (расстояние до метро)$

• Что-то странное

$$a(x) = w_0 + w_1 * (площадь)$$

 $+ w_2 * (район)$

Кодирование категориальных признаков

- Значения признака «район»: $U = \{u_1, \dots, u_m\}$
- Новые признаки вместо x_j : $[x_j = u_1]$, ..., $[x_j = u_m]$
- One-hot кодирование

Кодирование категориальных признаков

Кодирование категориальных признаков


```
a(x) = w_0 + w_1 * (площадь)
+ w_2 * (квартира в ЦАО?)
+ w_3 * (квартира в ЮАО?)
+ w_4 * (квартира в САО?)
```

$$a(x) = w_0 + w_1 * (площадь)$$

 $+ w_2 * (район)$

$$a(x) = w_0 + w_1 * (площадь)$$

+ $w_2 * (район)$

$$a(x) = w_0 + w_1 * (площадь)$$

+ $w_2 * (район)$

$$a(x) = w_0 + w_1 * ($$
площадь $)$ $+ w_2 * ($ район $)$ $+ w_3 * [t_0 \le x_3 < t_1] + \cdots + w_{3+n}[t_{n-1} \le x_3 < t_n]$

Нелинейные признаки

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

Линейные модели

- Модель линейной регрессии хороша, если признаки сделаны специально под неё
- Пример: one-hot кодирование категориальных признаков или бинаризация числовых признаков