

法律声明

本课件包括演示文稿、示例、代码、题库、视频和声音等内容,深度之眼和讲师 拥有完全知识产权;只限于善意学习者在本课程使用,不得在课程范围外向任何 第三方散播。任何其他人或者机构不得盗版、复制、仿造其中的创意和内容,我 们保留一切通过法律手段追究违反者的权利。

课程详情请咨询

■ 微信公众号: 深度之眼

■ 客服微信号: deepshare0920

公众号

微信

AlexNet: ImageNet Classification with Deep Convolutional Neural Networks

导师: 余老师

《ImageNet Classification with Deep Convolutional Neural Network》

基于深度卷积神经网络的图像分类

作者: Alex Krizhevsky (第一作者)

单位:加拿大多伦多大学

前期知识储备

Pre-knowledge reserve

前期知识储备

Pre-knowledge reserve

机器学习

了解机器学习基本原理及概念,如数据集划分,损失函数,优化方法等

神经网络

了解神经网络基本知识,特 别是卷积神经网络的工作原 理等

图像分类

了解图像分类的概念,掌握 图像分类的流程

PyTorch

了解PyTorch基本使用方法, 如数据读取处理,模型构建, 损失优化等

论文总览

Summary of Papers

论文总览

Summary of Papers

摘要 Abstruct

介绍背景及提出AlexNet 模型,获得ILSVRC-2012 冠军

研究的成功得益于大量数 据及高性能GPU;介绍本 论文主要贡献

The Dataset

ILSVRC数据集简介; 图片预处理细节 Details of learning

实验参数设置:超参调整,权重初始化

Reducing Overfitting

防过拟合技术,数据增强和dropout

The Architecture

AlexNet网络结构及其内部细节: ReLU、GPU、LRN、Overlapping Pooling Results

AlexNet比赛指标、成绩 及其详细设置

Qualitative Evaluations

实验探究,分析卷积核模式, 模型输出合理性,高级特征 的相似性

Discussion

强调网络结构之间的强关联 提出进一步研究方向

关注公众号深度之眼,后台回复论文 ,获取人工智能必学经典论文及前沿篇目

8

学习目标

Learning objectives

课程安排

The schedule of course

第一课:论文导读

The first lesson: the paper guide

- 1/ 论文研究背景
- 2/ 论文研究成果及意义
- 3/本节回顾
- 4/下节预告

研究背景、成果及意义

Background、Results and Meanings

研究背景

Research background

Mnist Cifar-10 ILSVRC-2012

	类别	训练数据	测试数据	图片格式
Mnist	10	50000	10000	Gray
Cifar-10	10	50000	10000	RGB
ILSVRC-2012	1000	1200000	150000	RGB

研究背景

Research background

ILSVRC: 大规模图像识别挑战赛

ImageNet Large Scale Visual Recognition Challenge 是李飞飞等人于2010年创办的图像识别挑战赛,自2010起连续举办8年,极大地推动计算机视觉发展

比赛项目涵盖: 图像分类(Classification)、目标定位(Object localization)、目标检测(Object detection)、视频目标检测(Object detection from video)、场景分类(Scene classification)、场景解析(Scene parsing)

竞赛中脱颖而出大量经典模型: alexnet, vgg, googlenet, resnet, densenet等

http://www.image-net.org

深度之眼 deepshare.net

Research background

ILSVRC: 大规模图像识别挑战赛

ImageNet 数据集包含 21841 个类别, 14,197,122张图片

其通过WordNet对类别进行分组,使数据集 的语义信息更合理,非常适合图像识别

ILSVRC-2012 从ImageNet中挑选1000类的 1,200,000张作为训练集

研究背景

Research background

强大计算资源 —— GPU

高性能计算资源使得大型神经网络可以快速训练

研究背景、成果及意义

Background、Results and Meanings

研究成果

Research Results

AlexNet在ILSVRC-2012以超出第二名10.9个百分点夺冠

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs[7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

SIFT+FVS: ILSVRC-2012 分类任务第二名

1CNN: 训练一个AlexNet

5CNNs: 训练五个AlexNet取平均值

1CNN*在最后一个池化层之后,额外添加第六个卷积层, 并使用ImageNet 2011 (秋)数据集上预训练

7CNNs* 两个预训练微调,与5CNNs取平均值

研究意义

Research Meaning

AlexNet历史意义

- 拉开卷积神经网络统治计算机视觉的序幕
- 加速计算机视觉应用落地

机器学习领域

特征提取-->特征筛选-->输入分类器

2012

深度学习领域

特征工程和分类集成于一体

基于特征工程

里程碑AlexNet

基于神经网络

深度之眼

deepshare.net

关注公众号深度之眼,后台回复 论文 ,获取人工智能必学经典论文及前沿篇目

重点 重点来了!

研究意义

Research Meaning

AlexNet历史意义

- 拉开卷积神经网络统治计算机视觉的序幕
- 加速计算机视觉应用落地

花瓣长度, 花瓣宽度, 花萼宽度, 花萼长度

鸢尾花图片 ──── 特征工程 ─── 分类模型 ── 分类结果

研究意义

Research Meaning

AlexNet历史意义

- 拉开卷积神经网络统治计算机视觉的序幕
- 加速计算机视觉应用落地

应用领域:

安防领域的人脸识别、行人检测、智能视频分析、行人 跟踪等,交通领域的交通场景物体识别、车辆计数、逆 行检测、车牌检测与识别,以及互联网领域的基于内容 的图像检索、相册自动归类等

本课回顾

Review in the lesson

本课回顾

Review in the lesson

课程安排: 3个课时,导读、精读和代码,6个部分

知识回顾

论文总览: 论文包含9个主要部分

研究背景: ILSVRC挑战赛, 高性能计算资源GPU

成果意义: ILSVRC冠军, 推动CV、ML、DL的发展

下节预告

Preview of next lesson

下节预告

Preview of next lesson

01 AlexNet网络结构及参数计算

讲解AlexNet网络的构成,为什么是8层,哪里用了LRN,哪里用了 Pooling Layer,6000万网络参数如何计算

02 AlexNet网络特色及训练技巧

AlexNet网络结构特色及关键操作介绍,同时学习训练技巧,包含数据增强操作

03 实验设置及结果分析

网络超参数设置,学习率,batchsize等 实验结果分析对比

04 论文总结

总结论文中创新点、关键点及启发点

下节预告

深度之眼 deepshare.net

Preview of next lesson

下节课前准备

- 下载论文
- 泛读论文
- 筛选出自己不懂的部分,带着问题进入下一课时

结语-

在这次课程中,介绍了AlexNet研究背景及历史意义

在下次课程中,我们将会学习

AlexNet论文详细内容

联系我们:

电话: 18001992849

邮箱: service@deepshare.net

Q Q: 2677693114

公众号

客服微信