빅분기 실습 프로젝트

황삭기 MES 데이터 분석

데이터 시각화

01. 시각화 라이브러리

matplotlib

설치(cmd)

pip install matplotlib

사용

import matplotlib.pyplot as plt

특장점

- Python의 가장 오래된 시각화 라이브러리
- 고도로 커스터마이징 가능
- matplotlib.pyplot 서브모듈 중심 사용

seaborn

pip install seaborn

import seaborn as sns

- 통계적 데이터 시각화 라이브러리
- Matplotlib 기반, 간결하고 미려한 그래프 제공
- 다양한 테마와 컬러 팔레트 제공

import matplotlib.pyplot as plt

import seaborn as sns

02. 설치 방법

윈도우 검색창 > 명령 프롬프트 (또는 cmd)

> pip install matplotlib seaborn

• • • •

03. 기본적인 시각화 유형

막대 그래프 (Bar Chart)

범주형 데이터 비교

x: category

y:value

히스토그램 (Histogram)

데이터 분포 확인

x:value

y: frequency

bins = 범위

산점도 (Scatter Plot)

x-y 상관관계

x:value

y:value

선 그래프 (Line Chart)

선 그래프는 시간에 따른 변화

x:value(시간 등)

y:value

박스플롯 (Box Plot)

데이터의 분포와 이상치

x : columns

y:value

히트맵 (Heatmap)

행렬 형태의 데이터를 색상으로 표현

。 x**,** y조합으로 나타나는 값

04. 시각화 그래프 용어

Figure	Axes (좌표축)	Axis	
전체 그림을 나타내는 컨테이너	실제 플롯이 그려지는 영역	Axes 내의 축(X축과 Y축)	
하나 이상의 Axes 포함 가능	X축, Y축, 타이틀 등 포함	데이터의 범위와 눈금 설정 가능	
plt.figure()로 생성	fig.add_subplot() 또는 plt.subplot()로	ax.set_xlim(), ax.set_ylim()으로 범위	
plt.subplots() 여러 플롯 배치	생성	설정	

05. figure와 axes

figure, axes 에 대한 설정 없이 자동으로 현재 공간, 범위에 그래프를 그림 > 1 figure, 1 axe

figure, axes 에대한 값을 설정

원하는 figure 객체 (=그릴 공간, 종이)에 원하는 axes 객체(= 위치, figure 내 axs[행, 열] 지정)

Figure와 Axes 객체 생성 fig, axs = plt.subplots(2, 3, figsize=(18, 10))

향후 업데이트 예정..

BOXPLOT

상자 (Box)

- **중앙값 (Median)**: 상자의 가운데에 그려진 선 → 데이터의 중앙값(50th percentile)
- **1사분위수 (Q1)**: 상자의 아래쪽 경계 → 데이터의 25th percentile
- **3사분위수 (Q3)**: 상자의 위쪽 경계 → 데이터의 75th percentile
- 상자 너비: Q1과 Q3 사이의 거리로, 데이터의 IQR (Interquartile Range)을 나타냅니다.

수염 (Whiskers)

- 수염은 상자에서 확장된 선 → 데이터의 최소값과 최대값 범위
- 데이터가 이상치(outlier)를 포함하는 경우, 수염의 끝은 Q1 1.5 * IQR과 Q3 + 1.5 * IQR 범위로 제한

이상치 (Outliers)

- 상자와 수염의 범위를 넘어서는 개별 데이터 포인트
- Q1 1.5 * IQR보다 작거나 Q3 + 1.5 * IQR보다 큰 값을 가진 데이터 포인트로, 개별 점으로 표시

IQR (Interquartile Range)

● 상자의 너비 → 데이터의 중간 50% 범위

[মাণার...] interactive 3D graph _ Heatmap (df.corr())

	INPUT_ED	INPUT_LENGTH	INPUT_QTY	DIRECTION_ED	OUTPUT_ED	diff
INPUT_ED	1.00000	-0.62267	-0.13687	0.99855	0.71561	-0.08587
INPUT_LENGTH	-0.62267	1.00000	-0.02741	-0.62209	-0.45215	0.04079
INPUT_QTY	-0.13687	-0.02741	1.00000	-0.13510	-0.09600	0.08367
DIRECTION_ED	0.99855	-0.62209	-0.13510	1.00000	0.71670	-0.08464
OUTPUT_ED	0.71561	-0.45215	-0.09600	0.71670	1.00000	-0.06076
diff	-0.08587	0.04079	0.08367	-0.08464	-0.06076	1.00000

https://github.com/millim1983/bigdata_project01/blob/main/interactive_3d_test_colormapping.py