Ivar Haugaløkken Stangeby

March 10, 2017

Exercise 3.1

In this exercise we wish to show the linear independence of two cubic B-splines on the knot vector $\hat{\mathfrak{t}} \coloneqq (0,0,1,3,4,5)$ over the interval [1,3). Using the knot dependecies, these two B-splines are

$$\hat{B}_{1,3}(x \mid 0,0,1,3,4),$$
 $\hat{B}_{2,3}(x \mid 0,1,3,4,5).$

In order to show the linear independence, we wish to apply Theorem 3.9, restated here:

Theorem. Suppose that t is a p+1-extended knot vector. Then the B-splines in $\mathbb{S}_{p,t}$ are linearly independent on the interval $[t_{p+1},t_{n+1})$.

Note that the vector $\hat{\mathbf{t}}$ is *not* p+1-extended, so we introduce the new knot vector $\mathbf{t} := (0,0,0,1,3,4,5,5)$. We now have enough knots to define four cubic B-splines, and these are

$$\begin{array}{ll} B_{1,3}(x \mid 0,0,0,1,3), & B_{2,3}(x \mid 0,0,1,3,4), \\ B_{3,3}(x \mid 0,1,3,4,5), & B_{4,3}(x \mid 1,3,4,5,5). \end{array}$$

By the above theorem, we now know that the B-splines $B_{i,3,t}$ for $i=1,\ldots,4$ are linearly independent on the interval $[t_4,t_5)$. And by examining the knot dependencies, we see that $B_{2,3}=\hat{B}_{1,3}$ and $B_{3,3}=\hat{B}_{2,3}$. Hence, the two B-splines on the coarses knot vector are linearly independent on the interval [1,3).