(19) 世界知的所有権機關 國際事務局

(43) 国際公開日 2001年3月15日(15.03.2001)

(10) 国際公開番号 WO 01/18572 A1

(51) 国際特許分類":

(74) 代理人: 長谷川芳樹,外(HASEGAWA, Yoshiki et al.); 〒104-0061 東京都中央区銀座二丁目6番12号 大倉本

館 創英国際特許法律事務所 Tokyo (JP).

(21) 国際出頭番号:

PCT/JP00/05713

G02B 6/10, 6/44

(81) 指定国 (国内): CN, JP, KR.

(22) 国際出願日:

2000 年8月24日 (24.08.2008)

(25) 国際出願の言語:

日本語

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CII, CY, DE, DK, ES, FL FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(26) 国際公開の言語:

日本語

派付公開書類: 國際開奏報告書

(30) 優先権データ: 特願平11/251580

1999年9月6日 (06.09.1999)

2 文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(79) 出願人: 住友電気工業株式金社 (SUMITOMO ELEC-TRIC INDUSTRIES, LTD.) [JP/JP]; 〒541-0041 大阪府 大阪市中央区北浜四丁目5番33号 Osaka (JP).

(72) 発明者: 西村正年 (NISHIMURA, Masayuki);)〒244-B5BB 神奈川県横浜市業区谷町1番地住友電気工業株 式会社 檢承製作所內 Kanagawa (JP).

(54) TIU: OPTICAL FIBER LINE, OPTICAL TRANSMISSION LINE, PRODUCTION METHOD OF OPTICAL CABLES AND METHOD OF LAYING OPTICAL TRANSMISSION LINES

(54) 発明の名称: 光ファイパ線路、光伝送路、光ケーブルの製造方法及び光伝送路の布設方法

(57) Abstract: An optical fiber line for transmitting multi-wavelength optical signals in a wavelength multiplexing transmission system, an optical transmission line, a production method of optical cables, and a method of laying optical transmission lines. An optical fiber line comprising a plurelity of positive-dispersion optical fibers, selected from a group of positive-dispersion optical Of fibers of which cumulative dispersion is based on the distributions of average value D. (>0) and standard deviation of a and having a positive wavelength dispersion in a signal wavelength band, and a plurality of negative-dispersion optical fibers, selected from a group of negative-dispersion optical fibers of which cumulative dispersion is based on the distributions of average value D_B (<0) and standard deviation of and having a negative wavelength dispersion in a signal wavelength band, positive-dispersion optical fibers and negative-dispersion optical fibers being alternately disposed in a longitudinal direction and connected together, thereby providing a high-transmission-quality, low-cost optical fiber line.

(57) 要約:

本発明は、波長多重伝送システムにおいて多波長の光信号を伝送する光フィア バ線路、光伝送路、光ケーブルの製造方法及び光伝送路の布設方法に関するもの である。本発明に係る光ファイバ線路は、累積分散が平均値 D_A (>0)、標準偏 差σ₄の分布に従う正分散光ファイバ群から選択された、信号波長帯域において 正の液長分散を有する複数の正分散光ファイバと、累積分散が平均値DB(<0)、 標準偏差σηの分布に従う負分散光ファイバ群から選択された、信号波長帯域に おいて負の液長分散を有する複数の負分散光ファイバと、を備え、正分散光ファ イバと負分散光ファイバとが長手方向に交互に配置されて接続されている。この 光ファイバ線路は、伝送品質が高く、安価に構成することができる。

15

20

25

明細醬

光ファイバ線路、光伝送路、光ケーブルの製造方法及び光伝送路の布設方法 技術分野

本発明は、波長多重(WDM: Wavelength Division Multiplexing)伝送システムにおいて多波長の光信号を伝送する光ファイバ線路、光伝送路、光ケーブルの製造方法及び光伝送路の布設方法に関するものである。

背景技術

光通信の高速化・大容量化の要求に伴い、多波長の光信号を重ねて伝送する波 長多重伝送技術が用いられるようになってきている。

かかる波長多重伝送の伝送品質を高めるためには、伝送媒体となる光ファイバ線路について以下のような特性が要求される。すなわち、信号波長帯域(例えば波長1.55μm帯)における光ファイバ線路の波長分散の絶対値が大きいと、光信号のバルス波形が崩れて伝送品質が劣化する。従って、かかる観点からは光ファイバ線路の波長分散の絶対値が小さいことが望ましい。一方、信号波長帯域における光ファイバ線路の波長分散の絶対値が小さいと、非線形光学現象の一種である四光波混合が発生しやすくなり、これにより漏話や雑音が生じて伝送品質が劣化する。従って、かかる観点からは光ファイバ線路の波長分散の絶対値が大きいことが望ましい。

上述の相反する2つの要求にこたえるべく、例えば文献1「K.Nakajima, et al., "Design of Dispersion Managed Fiber and its FWM suppression Performance", OFC '99 Technical Digest, ThG3(1999)」には、波長分散を長手方向に周期的に正負に変化させ、線路全体としては波長分散の絶対値を十分小さくするとともに、局所的には波長分散の絶対値の大きい光ファイバ線路が開示されている。また、文献1には、光ファイバ線路の波長分散を周期的に正負に変化させる方法として、コア径、クラッド径を周期的に変化させる、添加物濃度を周期的に変化させる方法などが記載されている。

15

20

25

発明の関示

発明者らは、上述の従来技術を検討した結果、以下のような課題を発見した。 すなわち、上記従来技術にかかる光ファイバ線路は、コア径、クラッド径を周期 的に変化させる、あるいは、添加物濃度を周期的に変化させるという複雑な製造 工程を必要とし、その制御も極めて困難である。また、製造工程の複雑さ、制御 の困難さに伴って製造コストも大きくなる。従って、さらなる大容量の光通信を 実現すべく、光ファイバ線路を複数含む光伝送路を構成する際に、かかる光伝送 路を上記従来技術にかかる光ファイバ線路を用いて構成した場合は、製造コスト が多大になるという問題点がある。

そこで本発明は、上記問題点を解決し、伝送品質が高く、安価に構成できる光 ファイバ線路、光伝送路、光ケーブルの製造方法及び光伝送路の布設方法を提供 することを目的とする。

本発明に係る光ファイバ線路は、累積分散が平均镇 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバと、を備え、正分散光ファイバと負分散光ファイバとが長手方向に交互に配置されて接続されている、ことを特徴とする。

この光ファイバ線路は、複雑な製造工程、困難な制御を伴うことなく、正分散 光ファイバと負分散光ファイバとを交互に接続することによって、光ファイバ線 路全体としては累積する波長分散の絶対値を十分小さくできるとともに、局所的 には波長分散がゼロにならないようにすることができる。また、正分散光ファイ バおよび負分散光ファイバはそれぞれ正分散光ファイバ群および負分散光ファイ バ群から選択されているため、平均位 D_A および D_B 、標準偏差 σ_A および σ_B を適 切に調整することで、光ファイバ線路全体での累積分散を所定範囲に収めること

15

20

25

ができる。

ここで、上記正分散光ファイバ各々の波長分散は2ps/nm/km以上であり、上記負分散光ファイバ各々の波長分散は-2ps/nm/km以下であると好ましい。このようにすれば、局所的には波長分散の絶対値を大きくすることができる。

また、上記複数の正分散光ファイバの分散スロープの平均値と、上記複数の負分散光ファイバの分散スロープの平均値とは、異符号であると好ましい。このようにすれば、光ファイバ線路全体として波長分散の絶対値が十分小さくなる波長域を広げることができる。

また、上記正分散光ファイバ各々の実効断面積と、上記負分散光ファイバ各々の実効断面積とは、50μm²より大きいと好ましい。このようにすれば、非線形光学現象の発生を抑制することができる。

また、上記正分散光ファイバ各々の分散スロープの絶対値と、上記負分散光ファイバ各々の分散スロープの絶対値は、0.03ps/nm²/kmより小さいと好ましい。このようにすれば、光ファイバ線路全体として波長分散の絶対値が十分小さくなる波長域を広げることができる。

また、上記正分散光ファイバのうちいずれかのモードフィールド径に対する上記負分散光ファイバのうちいずれかのモードフィールド径の比が、0.8以上1.2以下であると好ましい。このようにすれば、正分散光ファイバと負分散光ファイバとの接続点における損失を小さくすることができる。

また、上記正分散光ファイバの長さと上記負分散光ファイバの長さのそれぞれは、5km以下であると好ましい。光ファイバ線路が結ぶ2つの中継器の間隔は通常数10km程度であるため、正分散光ファイバおよび負分散光ファイバの長さをそれぞれ5km以下とすることで、2つの中継器間には正分散光ファイバと負分散光ファイバとのそれぞれを複数交互に接続した光ファイバ線路が布設されることになる。従って、個々の光ファイバの波長分散が多少ばらついていても、

15

20

光ファイバ線路全体としての波長分散の絶対値を統計的に十分小さくすることができる。

上記した光ファイバ線路を複数含むことで光伝送路が構成される。

この光伝送路は、累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバと、をそれぞれ含む複数の光ケーブルが長手方向に隣接するように配置されており、光ケーブルのうちから選択された互いに隣接する第1光ケーブルと第2光ケーブルにおいて、第1光ケーブルに含まれる正分散光ファイバと第2光ケーブルに含まれる負分散光ファイバとが互いに接続されていると共に、第1光ケーブルに含まれる負分散光ファイバと第2光ケーブルに含まれる自分散光ファイバと第2光ケーブルに含まれる正分散光ファイバとが互いに接続されているという特徴的側面を有する。

また光伝送路は、累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバを含む正分散光ケーブルと、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを含む負分散光ケーブルと、が長手方向に交互に隣接して配置されており、正分散光ケーブルに含まれる正分散光ファイバと、負分散光ケーブルに含まれる前記負分散光ファイバとが互いに接続されているという特徴的側面を有する。

また、上記した光伝送路が備える光ケーブルは、以下のようにして製造すると 好ましい。

25 すなわち、累積分散が平均値 D_A (> 0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から、信号波長帯域において正の波長分散を有する複数の正分散光フ

15

20

25

アイバを選択し、累積分散が平均値 D_R (< 0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを選択し、複数の正分散光ファイバと複数の負分散光ファイバとを用いて、正分散フィアバと負分散光ファイバとをそれぞれ含む複数の光ケーブルを生成する。

あるいは、累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から、信号波長帯域において正の波長分散を有する複数の正分散光ファイバを選択し、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを選択し、正分散光ファイバを用いて正分散光ケーブルを生成すると共に、負分散光ファイバ用いて負分散光ケーブルを生成する。

また、上記した光伝送路は、以下のようにして布設すると好ましい。

すなわち、累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、累積分散が平均値 D_B (<0)、標準偏差 σ_3 の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバと、をそれぞれ含む複数の光ケーブルを用意し、光ケーブルを長手方向に隣接するように配置して、光ケーブルのうち互いに隣接する第1光ケーブルと第2光ケーブルにおいて、第1光ケーブルに含まれる正分散光ファイバと第2光ケーブルに含まれる負分散光ファイバとを互いに接続すると共に、第1光ケーブルに含まれる負分散光ファイバとを互いに接続する。

あるいは、累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバを含む正分散光ケーブルと、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された、信号波長帯域にお

ŏ

15

20

いて負の波長分散を有する複数の負分散光ファイバを含む負分散光ケーブルと、 を用意し、正分散光ケーブルと負分散光ケーブルとを長手方向に交互に隣接して 配置して、正分散光ケーブルに含まれる正分散光ファイバと、負分散光ケーブル に含まれる負分散光ファイバとを互いに接続する。

本発明は以下の詳細な説明および添付図面によりさらに十分に理解可能となる。 これらは単に例示のために示されるものであって、本発明を限定するものと考え るべきではない。

図面の簡単な説明

図1は、本発明に係る光ファイバ線路を複数含む光伝送路の第1の実施形態を 示す構成図である。

図2は、正分散光ファイバ群と負分散光ファイバ群を説明するためのグラフである。

図3は、第1の実施形態に係る光伝送路において、隣接する光ケーブル内に含まれる正分散光ファイバと負分散光ファイバとを接続する接続例を示す図である。

図4は、光ケーブルの数が偶数の場合において、光ファイバ線路全体に累積する分散の分布を示すグラフである。

図5は、光ケーブルの数が奇数の場合において、光ファイバ線路全体に累積する分散の分布を示すグラフである。

図6は、本発明に係る光ファイバ線路を複数含む光伝送路の第2の実施形態を 示す構成図である。

発明を実施するための最良の形態

以下、添付図面を参照して本発明に係る光ファイバ線路、光伝送路、光ケーブルの製造方法及び光伝送路の布設方法の好適な実施形態を説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。

25 まず、本発明に係る光ファイバ線路を複数含む光伝送路の第1の実施形態について説明する。図1は本実施形態に係る光伝送路10の構成を示す図である。

15

光伝送路10は、図1に示すように、複数の光ケーブル12を互いに接続して 構成され、光中継器100間に布設されている。

複数の光ケーブル12それぞれは、信号波長帯域である波長1.55 μ m帯において正の波長分散を有する複数の正分散光ファイバ14と、同じく信号波長帯域である波長1.55 μ m帯において負の波長分散を有する複数の負分散光ファイバ16とを含んで構成される。光ケーブル12に含まれる正分散光ファイバ14の数と負分散光ファイバ16の数は互いに等しくなっている。

正分散光ファイバ14各々は、所定の波長(例えば1550 nm)における累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された光ファイバである。また、負分散光ファイバ16各々は、所定の波艮(例えば1550 nm)における累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された光ファイバである。この正分散光ファイバ群と負分散光ファイバ群については後述する。

ここで、正分散光ファイバ14の波長1、55 μ m帯における波長分散は2 μ s/ μ m/km以上であり、また、負分散光ファイバ16の波長1.55 μ m帯における波長分散は μ 0 を μ

20 また、複数の正分散光ファイバ14の波長1.55μm帯における分散スロープ(波長分散の波長による微分)の平均値と複数の負分散光ファイバ16の波長1.55μm帯における分散スロープの平均値とは、異符号であると好ましい。また、正分散光ファイバ14と負分散光ファイバ16とは、実効断面積が50μm²より大きいと好ましく、また、分散スロープの絶対値が0.03ps/nm²/kmより小さいと好ましい。また、正分散光ファイバ14のモードフィールド径に対する負分散光ファイバ16のモードフィールド径の比は0.8以上1.

10

2以下であると好ましい好ましい。

一例を挙げれば、表1に示す特性を有する正分散光ファイバ14と負分散光ファイバ16とを用いると好適である。

【表1】

特 性	正分散光ファイバ14	負分散光ファイバ16
ファイバタイプ	分散フラットファイバ	分散フラットファイバ
実効断面積 (m²)	50~55	50-55
波長分散 (ps/nm/km)	+2~+5	-25
波長分散の平均値 (ps/nm/km)	+3.5	-3.7
分散スロープ〈ps/nm²/km〉	+0.01~+0.03	-0.01~+0.01
分散スロープの平均値 (ps/nm²/km)	+0.015	-0.05

正分散光ファイバ14および負分散光ファイバ16それぞれは長さがほぼ等しく、その長さは5km以下となっている。

これら複数の光ケーブル12は長手方向に隣接するように配置されており、複数の光ケーブル12のうちから選択された互いに隣接する第1光ケーブルと第2光ケーブルにおいて、第1光ケーブルに含まれる正分散光ファイバ14と第2光ケーブルに含まれる自分散光ファイバ16とは互いに接続されていると共に、第1光ケーブルに含まれる自分散光ファイバ16と第2光ケーブルに含まれる正分散光ファイバ16と第2光ケーブルに含まれる正分散光ファイバ14とは互いに接続されている。その結果、光伝送路10は、正分散光ファイバ14と自分散光ファイバ16とが交互に接続されてなる光ファイバ線路11を複数含んでいる。

15 次に、本実施形態に係る光伝送路10が備える光ケーブル12の製造方法について説明する。

光ケーブル12を製造するためには、図2に示すように、まず、信号波長帯域である1.55μm帯において正の波長分散を有する複数の正分散光ファイバ14を含む正分散光ファイバ群Aと、信号波長帯域である1.55μm帯において

15

20

25

負の波長分散を有する複数の負分散光ファイバ16を含む負分散光ファイバ群B を用意する。

正分散光ファイバ群Aは、所定の波長(例えば1550nm)における累積分散が平均値 D_A (>0)、標準偏差 σ_A のガウス分布に従う。また、負分散光ファイバ群Bは、所定の波長(例えば1550nm)における累積分散が平均値 D_B (<0)、標準偏差 σ_B のガウス分布に従う。

ここで、平均値 D_A と平均値 D_B の和の絶対値が平均値 D_A の20%以内にあり、且つ標準偏差 σ_A と標準偏差 σ_B の差の絶対値が標準偏差 σ_A の20%以内にあると好ましい。

また、平均値 D_A は $5\sim50$ ps/nmの範囲にあり、標準偏差 σ_A は $0\sim5$ ps/nmの範囲にあると好ましい。また、平均値 D_3 は $-50\sim-5$ ps/nmの範囲にあり、標準偏差 σ_3 は $0\sim5$ ps/nmの範囲にあると好ましい。

理想的には、平均値 D_A の絶対値と平均値 D_B の絶対値が等しく、且つ標準偏差 σ_A と標準偏差 σ_B とが等しいと好ましい。

かかる正分散光ファイバ群Aの中から複数の正分散光ファイバ14を選択し、 また負分散光ファイバ群Bの中から複数の負分散光ファイバ16を選択し、選択 した正分散光ファイバ14と負分散光ファイバ16とを束ねて、複数の光ケープ ル12を生成する。

続いて、本実施形態に係る光伝送路10の布設方法について説明する。本実施 形態にかかる光伝送路10を布設するためには、まず上記した光ケーブルの製造 方法により製造された複数の光ケーブル12を用意する。

そして、複数の光ケーブル12を長手方向に隣接するように配置し、複数の光ケーブル12のうち互いに隣接する第1光ケーブルと第2光ケーブルにおいて、第1光ケーブルに含まれる正分散光ファイバ14と第2光ケーブルに含まれる負分散光ファイバ16とを互いに接続すると共に、第1光ケーブルに含まれる負分散光ファイバ16と第2光ケーブルに含まれる止分散光ファイバ14とを互いに

20

25

接続する。

このとき、例えば図3に示すように、光ケーブル12に含まれる正分散光ファイバ14と負分散光ファイバ16とをアレイ状に束ねてリボシ17を形成しておき、リボン17の正分散光ファイバ14の側、あるいは負分散光ファイバ16の側に印を付しておけば、隣接する光ケーブル12に含まれる正分散光ファイバ14と負分散光ファイバ16とを容易に接続することができる。

次に、本実施形態に係る光伝送路10に含まれる各光ファイバ線路11の総累 積分散について考察する。

簡単のため、正分散光ファイバ群Aの累積分散の平均値 D_A を D_0 とし、標準偏差 σ_A を σ_D とする。また、負分散光ファイバ群Bの累積分散の平均値 D_B を $-D_0$ とし、標準偏差 σ_B を σ_D とする。そして、光ケーブル12の数をm個とし、m個の光ケーブル12のうち i 番目の光ケーブル中に含まれる光ファイバの累積分散値 D_1 [ps/nm] とする。このとき、光伝送路10に含まれる各光ファイバ線路11の総累積分散値 D_{lost} は、

$$D_{total} = \sum_{i=1}^{m} D_i$$

と表される。

ここで、光ケーブル 12 の個数 m が 2n (n は自然数) の場合、図 4 に示すように、 D_{mn} は統計的性質から平均値 D_{ave} が 0 [ps/nm] で標準偏差 σ_{ave} が $m^{1/2} \cdot \sigma_0$ [ps/nm] に従って分布する。

また、光ケーブル 12の個数 mが 2n+1 (nは自然数) の場合、図 5に示すように、正分散光ファイバ 14 が多いか負分散光ファイバ 16 が多いかにより、 D_{total} は統計的性質から平均値 D_{eve} が $+D_{o}$ または $-D_{o}$ [ps/nm] で標準偏差 σ_{eve} が $m^{1/2} \cdot \sigma_{o}$ [ps/nm] に従って分布する。

より具体的には、正分散光ファイバ群Aの波長1550nmにおける分散の平 均値が3.5 [ps/nm/km] で標準偏差が0.5 [ps/nm/km] で

15

あるとする。また、負分散光ファイバ群Bの波長1550nmにおける分散の平均値が-3.5 「ps/nm/km」で標準偏差が0.5 [ps/nm/km] であるとする。そして、正分散光ファイバ群Aおよび負分散光ファイバ群Bに含まれる光ファイバの長さを4 [km] とする。そうすると、正分散光ファイバ群Aの累積分散の平均値 D_0 は14 [ps/nm] となり、標準偏差 σ_0 は2 [ps/nm] となる。また、負分散光ファイバ群Bの累積分散の平均値 $-D_c$ は-14 [ps/nm] となり、標準偏差 σ_0 は2 [ps/nm] となる。

光ケーブル 12の個数mが20 個で偶数の場合、各光ファイバ線路 11 の長さは80 [km] となる。そして、各光ファイバ線路 11 の総累積分散値 D_{total} は、平均値 D_{total} が 0 [ps/nm] で標準偏差 σ_{total} が 8.9 [ps/nm] に従って分布する。

各光ファイバ線路 11 の総累積分散値 D_{loral} の最大パラッキを平均値 D_{ave} 生 (標準偏差 σ_{ave} × 3) で見積もった場合、各光ファイバ線路 11 の総累積分散値 D_{loral} は ± 27 [ps/nm] (± 0.34 [ps/nm/km]) の範囲内に収まると推定される。

一方、光ケーブル 12の個数 m が 21 個で奇数 の場合、光ファイバ線路 11 の長さは 84 [km] となる。そして、各光ファイバ線路 11 の総累積分散値 D_{total} は、平均値 D_{we} が +14 または -14 [ps/nm] で標準偏差 σ_{we} が 9.2 [ps/nm] に従って分布する。

20 各光ファイバ線路 1 1 の総累積分散値 D_{rosl} の最大バラツキを平均値 D_{ros} ± (標準偏差 σ_{ros} × 3) で見積もった場合、各光ファイバ線路 1 1 の総累積分散値 D_{total} は ± 4 2 [ps/nm](±0.5 [ps/nm/km]) の範囲内に収まると推定される。

なお、光ファイバ線路11の長さが例えば82 [km] の場合は、1個の光ファイバの長さが2 [km] となるが、総累積分散値 D_{total} は上記した主42 [ps/mm] の範囲を越えないものである。

15

20

25

このように、上記した総累積分散値 D_{conl} が± 42 [ps/nm] である全民が 84 kmの光ファイバ線路 11 を複数含む光伝送路 10 を光増幅中継の 1 スパン とし、例えば 6 スパン(5 0 4 km)の光伝送路を構築した場合、総累積分散は 最悪でも ± 252 [ps/nm] である。これは、10 Gb/sの伝送速度での伝送に要求される許容累積分散値 1000 [ps/nm] よりも十分に小さい。

なお、光伝送路10に含まれる各光ファイバ線路11の総累積分散を考察する に当たっては、簡単のため各光ファイバの長さを一定とし、各光ファイバの単位 長さ当たりの分散がばらつく場合を考えたが、これに光ファイバの長さのバラッ キをも含めて各光ファイバ線路11の総累積分散を考察することもできる。

続いて、本実施形態にかかる光伝送路の作用及び効果について説明する。本実施形態にかかる光伝送路10は、複数の正分散光ファイバ14と複数の負分散光ファイバ16とを含む複数の光ケーブル12を長手方向に隣接するように配置し、正分散光ファイバ14と負分散光ファイバ16とを互いに接続して構成しているため、正分散光ファイバ14と負分散光ファイバ16とが交互に接続された光ファイバ線路11を複数含んでいる。従って、光伝送路10は、複雑な製造工程、困難な制御を伴うことなく、累積分散の絶対値が十分小さく局所的には波長分散の絶対値がゼロにならないような光ファイバ線路11を複数含む構成となる。その結果、バルス波形が崩れることが防止されるとともに四光波混合の発生が抑圧されて光伝送路10の伝送品質を高めることが可能となり、かつ、光伝送路10を安価に構成することが可能となる。

また、正分散光ファイバ14各々は、累積分散が平均値 D_A (>0)、標準偏差 σ_A のガウス分布に従う正分散光ファイバ群Aから選択された光ファイバであり、 気分散光ファイバ16各々は、累積分散が平均値 D_B (<0)、標準偏差 σ_3 のガウス分布に従う負分散光ファイバ群Bから選択された光ファイバである。よって、 平均値 D_A および D_B 、標準偏差 σ_A および σ_B を適切に調整することで、光ファイバ線路11全体での累積分散を所定範囲内に収めることができ、光伝送路10の

15

20

25

伝送品質が向上され、高ピットレートおよび波長多重方式を用いた大容量光通信 に適した光伝送路 10を構築することができる。

また、本実施形態にかかる光伝送路10においては、正分散光ファイバ14の 波長1.55 μ m帯における波長分散を2 μ s μ m以上とし、負分散光 ファイバ16の波長1.55 μ m帯における波長分散を-2 μ s μ m以下とすることで、局所的には波長分散の絶対値を大きくすることができる。その 結果、四光波混合の抑圧効果が増大し、伝送品質がさらに向上する。

また、複数の正分散光ファイバ14の波長分散の平均値と複数の負分散光ファイバ16の波長分散の平均値とを、概ね絶対値が等しくすることで、正分散光ファイバ14と負分散光ファイバ16とが交互に接続されて構成される光ファイバ線路11全体としては波長分散をほぼ0とすることができる。その結果、光信号のバルス波形が崩れることほとんどなくなり、伝送品質がさらに向上する。

また、本実施形態にかかる光伝送路10においては、複数の正分散光ファイバ14の分散スローブの平均値と複数の負分散光ファイバ16の分散スローブの平均値とを異符号とすることで、正分散光ファイバ14と負分散光ファイバ16とが交互に接続されて構成される光ファイバ線路11全体として波長分散の絶対値が十分小さくなる波長域を広げることができる。その結果、波長多重数を増やすことが可能となり、光通信のさらなる大容量化が実現する。

また、本実施形態にかかる光伝送路10においては、正分散光ファイバ14と 負分散光ファイバ16との実効断面積を50μm²より大きくすることで、非線 形光学現象の発生を抑制することができる。

また、本実施形態にかかる光伝送路10においては、正分散光ファイバ14と 負分散光ファイバ16との分散スローブの絶対値を0.03 p s / n m²/k mよ り小さくすることで、光ファイバ線路11全体として波長分散の絶対値が十分小 さくなる波長域を広げることができる。

また、本実施形態にかかる光伝送路10においては、正分散光ファイバ14の

15

20

モードフィールド径に対する負分散光ファイバ16のモードフィールド径の比を 0.8以上1.2以下とすることで、正分散光ファイバ14と負分散光ファイバ 16との接続点における損失を小さくすることができる。

また、本実施形態にかかる光伝送路10においては、正分散光ファイバ14および負分散光ファイバ16の長さをそれぞれ5km以下とし、多くの正分散光ファイバ14および負分散光ファイバ16が交互に接続された光ファイバ線路11を構成することで、個々の光ファイバの波長分散が多少ばらついていても、光ファイバ線路11全体としての波長分散の絶対値を統計的に十分小さくすることができる。

次に、本発明に係る光ファイバ線路を複数含む光伝送路の第2の実施形態について説明する。図6は本実施形態に係る光伝送路30の構成を示す図である。本実施形態にかかる光伝送路30が上記第1の実施形態にかかる光伝送路10と異なる点は以下の通りである。すなわち、上記実施形態にかかる光伝送路10は、複数の正分散光ファイバ14と複数の負分散光ファイバ16とを含む複数の光ケーブル12を長手方向に隣接するように配置し、正分散光ファイバ14と負分散光ファイバ16とを互いに接続していた。これに対し、本実施形態にかかる光伝送路30は、図6に示すように、複数の正分散光ファイバ14を含む止分散光ケーブル32と、複数の負分散光ファイバ16を含む負分散光ケーブル31とを長手方向に交互に隣接して配置し、止分散光ファイバ14と負分散光ファイバ16

ここで、正分散光ケーブル32に含まれる正分散光ファイバ14の数と負分散 光ケーブル34に含まれる負分散光ファイバ16の数とは同数となっている。ま た、正分散光ファイバ14および負分散光ファイバ16それぞれは、すべて長さ がほぼ等しく、その長さは5km以下となっている。

25 次に、本実施形態にかかる光伝送路30が備える正分散光ケーブル32および 負分散光ケーブル34の製造方法について説明する。

15

20

25

本実施形態に係る正分散光ケーブル32および負分散光ケーブル34を製造するためには、上記第1の実施形態と同様に、図2に示すように、信号波長帯域である1.55μm帯において正の波長分散を有する複数の正分散光ファイバ14を含む正分散光ファイバ群Aと、信号波長帯域である1.55μm帯において負の波長分散を有する複数の負分散光ファイバ16を含む負分散光ファイバ群Bを用意する。

正分散光ファイバ群Aは、所定の波長(例えば1550nm)における累積分散が平均値 D_A (>0)、標準偏差 σ_A のガウス分布に従う。また、負分散光ファイバ群Bは、所定の波長(例えば1550nm)における累積分散が平均値 D_B (<0)、標準偏差 σ_B のガウス分布に従う。

かかる正分散光ファイバ群Aから複数の正分散光ファイバ14を選択して正分散光ケーブル32を生成すると共に、負分散光ファイバ群Bから複数の負分散光ファイバ16を選択して負分散光ケーブル34を生成する。

続いて、本実施形態にかかる光伝送路30を布設する方法について説明する。 本実施形態に係る光伝送路30を布設するためには、上記した製造方法により製造された正分散光ケーブル32と負分散光ケーブル34とを長手方向に交互に隣接して配置し、正分散光ケーブル32に含まれる正分散光ファイバ14と負分散光ケーブル34に含まれる負分散光ファイバ16とを互いに接続する。

本実施形態にかかる光伝送路30は、複数の正分散光ファイバ14を含む正分 版光ケーブル32と、複数の負分散光ファイバ16を含む負分散光ケーブル34 とを長手方向に交互に隣接して配置し、正分散光ファイバ14と負分散光ファイ バ16とを互いに接続して構成しているため、正分散光ファイバ14と負分散光 ファイバ16とが交互に接続された光ファイバ線路31を複数含んでいる。従っ て、光伝送路30は、複雑な製造工程、困難な制御を伴うことなく、累積分散の 絶対値が十分小さく局所的には波長分散の絶対値がゼロにならないような光ファ イバ線路31を複数含む構成となる。その結果、バルス波形が崩れることが防止

15

されるとともに四光波混合の発生が抑圧されて光伝送路30の伝送品質を高める ことが可能となり、かつ、光伝送路30を安価に構成することが可能となる。

また、正分散光ファイバ14各々は、累積分散が平均値 D_A (>0)、標準偏差 σ_A のガウス分布に従う正分散光ファイバ群Aから選択された光ファイバであり、負分散光ファイバ16各々は、累積分散が平均値 D_3 (<0)、標準偏差 σ_B のガウス分布に従う負分散光ファイバ群Bから選択された光ファイバである。よって、平均値 D_A および D_B 、標準偏差 σ_A および σ_B を適切に調整することで、光ファイバ線路31全体での累積分散を所定範囲内に収めることができ、光伝送路30の伝送品質が向上され、高ピットレートおよび波長多重方式を用いた大容量光通信に適した光伝送路30を構築することができる。

さらに、本実施形態にかかる光伝送路30は、複数の正分散光ファイバ14を含む複数の正分散光ケーブル32と複数の負分散光ファイバ16を含む負分散光ケーブル34とを用いて構成されているため、正分散光ケーブル32と負分散光ケーブル34とを長手方向に交互に隣接して配置し、これらに含まれる光ファイバを互いに接続するのみで、必然的に正分散光ファイバ14と自分散光ファイバ16とが互いに接続される。従って、光ファイバの接続誤り(例えば、正分散光ファイバ14同士を互いに接続する等の誤り)の発生を防止でき、布設工事の確実度、安定度が向上する。

20 以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのような変形は、本発明の思想および範囲から逸脱するものとは認めることはできず、すべての当業者にとって巨明である改良は、以下の請求の範囲に含まれるものである。

25 産業上の利用可能性

本発明の光ファイバ線路は、複雑な製造工程、困難な制御を伴うことなく、正

分散光ファイバと負分散光ファイバとを交互に接続することによって、光ファイバ線路全体としては累積する波長分散の絶対値を十分小さくできるとともに、局所的には波長分散の絶対値がゼロにならないようにすることができる。その結果、パルス波形が崩れることが防止されるとともに匹光波混合の発生が抑圧されて光ファイバ線路の伝送品質を高めることが可能となり、かつ、光ファイバ線路を安価に構成することが可能となる。

また、正分散光ファイバ各々は、累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された光ファイバであり、負分散光ファイバ各々は、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された光ファイバであるため、平均値 D_A および D_B 、標準偏差 σ_A および σ_B を適切に調整することで、光ファイバ線路全体での累積分散を所定範囲内に収めることができ、光ファイバ線路の伝送品質が向上され、高ビットレートおよび波灵多重方式を用いた大容量光通信に適した光ファイバ線路を構築することができる。

請求の範囲

-1. 累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、

累積分散が平均値 D_B (<0)、標準偏差 σ_Bの分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバと、を備え、

前記正分散光ファイバと前記負分散光ファイバとが長手方向に交互に配置されて接続されている、ことを特徴とする光ファイバ線路。

- 2. 前記正分散光ファイバ各々の波長分散は2ps/nm/km以上であり、 前記負分散光ファイバ各々の波長分散は-2ps/nm/km以下である、 ことを特徴とする請求項1に記載の光ファイバ線路。
- 3. 前記複数の正分散光ファイバの分散スロープの平均値と、前記複数の負 15 分散光ファイバの分散スロープの平均値とは、異符号である、
 - ことを特徴とする請求項1に記載の光ファイバ線路。
 - 4. 前記正分散光ファイバ各々の実効断面積と、前記負分散光ファイバ各々の実効断面積とは、50 μm²より大きい、
 - ことを特徴とする請求項1に記載の光ファイバ線路。
- 20 5. 前記正分散光ファイバ各々の分散スロープの絶対値と、前記負分散光ファイバ各々の分散スロープの絶対値は、0.03ps/nm³/kmより小さい、ことを特徴とする請求項1に記載の光ファイバ線路。
 - 6. 前記正分散光ファイバのうちいずれかのモードフィールド径に対する前 記負分散光ファイバのうちいずれかのモードフィールド径の比が、0.8以上1.
- 25 2以下である、
 - ことを特徴とする請求項1に記載の光ファイバ線路。

20

- 7. 前記正分散光ファイバの長さと前記負分散光ファイバの長さのそれぞれは、5km以下であることを特徴とする請求項1に記載の光ファイバ線路。
 - 8. 請求項1に記載の光ファイバ線路を複数含む光伝送路であって、

果積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、累積分散が平均位 D_3 (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバと、をそれぞれ含む複数の光ケーブルが長手方向に隣接するように配置されており、

前記光ケーブルのうちから選択された互いに隣接する第1光ケーブルと第2光ケーブルにおいて、該第1光ケーブルに含まれる前記正分散光ファイバと該第2光ケーブルに含まれる前記負分散光ファイバとが互いに接続されていると共に、該第1光ケーブルに含まれる前記負分散光ファイバと該第2光ケーブルに含まれる前記正分散光ファイバとが互いに接続されている、

- 15 ことを特徴とする光伝送路。
 - 9. 請求項1に記載の光ファイバ線路を複数含む光伝送路であって、

累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバを含む正分散光ケーブルと、累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを含む負分散光ケーブルと、が長手方向に交互に隣接して配置されており、

前記正分散光ケーブルに含まれる前記正分散光ファイバと、前記負分散光ケーブルに含まれる前記負分散光ファイバとが互いに接続されている、

- 25 ことを特徴とする光伝送路。
 - 10. 請求項8に記載の光伝送路が備える光ケーブルを製造する方法であっ

ŏ

15

25

~ (

累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から、信号波長帯域において正の波長分散を有する複数の正分散光ファイバを選択し、

累積分散が平均値 D_a (< 0)、標準偏差 σ₃の分布に従う負分散光ファイバ群 から、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを選択し、

前記複数の正分散光ファイバと前記複数の負分散光ファイバとを用いて、正分散ファイバと負分散光ファイバとをそれぞれ含む複数の光ケーブルを生成する、 ことを特徴とする光ケーブルの製造方法。

11. 請求項9に記載の光伝送路が備える正分散光ケーブルおよび負分散光・ケーブルを製造する方法であって、

累積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から、信号波長帯域において正の波長分散を有する複数の正分散光ファイバを選択し、

累積分散が平均値 D_B (<0)、標準偏差 σ_B の分布に従う負分散光ファイバ群から、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを選択し、

前記正分散光ファイバを用いて正分散光ケーブルを生成すると共に、前記負分 20 散光ファイバ用いて負分散光ケーブルを生成する、

ことを特徴とする光ケーブルの製造方法。

12. 請求項8に記載の光伝送路を布設する方法であって、

累積分散が平均値 D_s (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、累積分散が平均値 D_s (<0)、標準偏差 σ_s の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負

15

分散光ファイバと、をそれぞれ含む複数の光ケーブルを用意し、

前記光ケーブルを長手方向に隣接するように配置して、

前記光ケーブルのうち互いに隣接する第1光ケーブルと第2光ケーブルにおいて、該第1光ケーブルに含まれる前記正分散光ファイバと該第2光ケーブルに含まれる前記負分散光ファイバとを互いに接続すると共に、該第1光ケーブルに含まれる前記負分散光ファイバと該第2光ケーブルに含まれる前記正分散光ファイバとを互いに接続する、

ことを特徴とする光伝送路の布設方法。

13. 請求項9に記載の光伝送路を布設する方法であって、

果積分散が平均値 D_A (>0)、標準偏差 σ_A の分布に従う正分散光ファイバ群から選択された、信号被長帯域において正の波長分散を有する複数の正分散光ファイバを含む正分散光ケーブルと、

累積分散が平均値 D_3 (<0)、標準偏差 σ_8 の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバを含む負分散光ケーブルと、を用意し、

前記正分散光ケーブルと前記負分散光ケーブルとを長手方向に交互に隣接して 配置して、

前記正分散光ケーブルに含まれる前記正分散光ファイバと、前記負分散光ケーブルに含まれる前記負分散光ファイバとを互いに接続する、

20 ことを特徴とする光伝送路の布設方法。

要約書

本発明は、波長多重伝送システムにおいて多波長の光信号を伝送する光フィアバ線路、光伝送路、光ケーブルの製造万法及び光伝送路の布設方法に関するものである。本発明に係る光ファイバ線路は、累積分散が平均値 D_{λ} (>0)、標準偏差 σ_{A} の分布に従う正分散光ファイバ群から選択された、信号波長帯域において正の波長分散を有する複数の正分散光ファイバと、累積分散が平均値 D_{B} (<0)、標準偏差 σ_{B} の分布に従う負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバ群から選択された、信号波長帯域において負の波長分散を有する複数の負分散光ファイバと、を備え、正分散光ファイバと負分散光ファイバとが長手方向に交互に配置されて接続されている。この光ファイバ線路は、伝送品質が高く、安価に構成することができる。

図2

累積分散値[PS/nm]

図3

図4

総累積分散値[PS/nm]

図5

_			_
	C (統き).	関連すると認められる文献	関連する
	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
-	M / - / - +	ion Conference and Exhibit, 22-27 February 1998, San Jose, California, Technical Digest, Vol.2, TuD2, pp.21-22	1 10
	Y	NAKAJIMA K. ET AL.: "Desgin of Dispersion Managed Fiber and its FWM suppression Performance"; OFC/IOOC'99, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, 21-26 February 1999, San Diego, California, Technical Digest, Vol. 3, ThG3, pp. 87-89	1-13
	A	JP, 8-286219, A, 1. 11月、1996 (01. 1 1. 96), 要約, 第1図 (ファミリーなし) po? ハルサリリ	1-13
	· A	US. 5764841, A(IWATSUKI K.), 9. 6月. 1998 (09. 06. 98) &JP, 10-56423, A	1-13
	А	KUWAKI N. ET AL.: "Evaluation of Longitudinal Chromatic Dispersion": JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 8, NO. 10, OCTO BER 1990, pp. 1476-1481	1-13
	A	EP, 737873, A2 (CORNING INC.), 16. 10Л. 19 96(16. 10. 96) &AU, 5046196, A, &AU, 693329, A, &BR, 9601344, A, &CA, 2174055, A &CN, 1165305, A&JP, 8-320419, A &US, 5894537, A&US, 6044191, A	1-13
	A	JP、11-30725、A (株式会社フジクラ)、2. 2月. 1999 (02. 02. 99) (ファミリーなし) アピー(870b0	1-13

国際調査報告

国際出願番号 PCT/JP00/05713

発明の属する分野の分類(国際特許分類(IPC))

Int.Cl' G02B 6/10, 6/44

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.C17 G02B 6/00-6/54

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国美用新案公報

1922-1998年

日本国公開実用新案公報

1971-2000年

日本国登録実用新案公報

1994-2000年

日本国实用新案登録公報

1996-2000年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の				
カテゴリー	* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
Y	US, 5611016, A (FANGMANN, E.F.), 11. 3月. 199 7 (11. 03. 97) &EP, 812076, A1&JP, 10-62639, A	1-13		
Y	春原禎光ほか「長距離光増幅中継伝送における四光波混合の抑制の一検討」;1992年電子情報通信学会秋季大会講演論文集, 15.9月.1992, B-660, page 4-53	1-13		
Y	BHAGAVATULA, V.A. ET AL.: "Novel fibers for dispersion-managed high-bit-rate systems": OFC'98, Opitical Fiber Communicat	1-13		
区欄の船	きととう文献が列挙されている。	紙を参照。		

引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公安されたもの
- 「L」優先揺主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願
- の日の後に公表された文献
- 「T」国際出版日又は優先日後に公安された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

21. 11. 00

国際調査報告の発送日

05,12,00

国際調査機関の名称及びあて先

月本国特許庁 (ISA/JP)

郵便番号100-8915

東京都下代田区艦が関三丁目4番3号

特許庁審査官 (権限のある職員) 福田 聡

2 K 9514 即。

電話番号 03-3581-1101 内線 3253

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/05713

	INTERNATIONAL SEARCH AND STATE	PCT/JP00/	05713
Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	where appropriate, of the releva	an hansaile	vant to claim No.
A	Citation of document, with management (1) California, Technical Digest, Vol.3, ThG3, JP, 8-286219, A, Ol November, 1996 (01.11.96) Abstract; Fig.i (Family: none)	рр. а 7 - 05	1-13
A	Abstract; Fig.1 (1200-1) US, 5764841, A (IWATSUKI K.), 09 June, 1998 (09.06.98) & JP, 10-56423, A		1-13
A	KUWAKI N. ET AL: "Evaluation of Longitudina Dispersion"; JOURNAL OF LIGHTWAVE TECHNOLONO.10, OCTOBER 1990, pp.1476-1481	Chromatic	1-13
A	EF, 737873, A2 (CORNING INC.), 16 October, 1996 (16.10.96) & AU, 5046196, A & AU, 693329, A & ER, 9601344, A & CA, 2174055, A & CN, 1165305, A & UP, 8-320419, A & US, 5894537, A & US, 6044191, A		1-13
A	JP, 11-30725, A (Fujikura Ltd.), 02 February, 1999 (02.02.99) (Pamily: not	ne)	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05713

A. CLASSIFICATION OF SUBJECT MATTER			
Int	Cl' G02B 6/10, 6/44		
İ			
According	to International Patent Classification and		
B. FIELI	to International Patent Classification (IPC) or to both DS SEARCHED	national classification and IPC	
Minimum	documentation searched (classification system follow		
Int	.C1 G02B 6/00-6/54	ed by classification symbols)	
•	· ·		
<u> </u>		•	
Document	ation searched other than minimum documentation to Buyo Shinan Koho 1922-1956	the extent that such documents are included	in the Galda sound ad
Kok	suyo Shinan Koho 1922-1956 ai Jitsuyo Shinan Koho 1971-2000	TOTOKU UICSUYO Shinan	Kobo 1994-2000
		viesnyo shinan Toroku j	Koho 7996-anna
Electronic	data base consulted during the international search (no	arne of data base and, where practicable, se-	arch terms used)
l		•	
2 22 2			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		· · · · · · · · · · · · · · · · · · ·
Category*	Citation of document, with indication, where	and an arrangement of the releases many and	8-1
Y	US, 5611016, A (PANGMANN R &) .	Relevant to claim No.
	11 March, 1997 (11.03.97)	•	1-13
	& BP, 812076, A1 & JP, 10-	62639, A	
Y	Sadamitsu Haruhara, et al., "C	Thousever it in a second	
			1-13
		Times Mastrian	
	the Institute of Blectronics, Communication Engineers, 15 Se	TRESPONDENCE 3	u
	(15.09.92), B-660, pp. 4-53	brewner 1992	
Y			
•	BHAGAVATULA, V.A. ET AL.: dispersion-managed high-bit-1	"Novel fibers for	1-13
	LANGETER LIDEL CUMMINICACION	Confesses I	
		, California, Technical	
	Digest, Vol.2, TuD2, pp.21-22		
Y	NAKAJIMA K. ET AL.: "Desgin of	Dispersion Manager 125	
			1-13
	CARCAGO FINGE COMMUNICATION CA	WED	j
1	International Conference on Inte Fiber Communication, 21-26 Fel		†
Further	documents are listed in the continuation of Box C.		
		See patent family annex.	
"У" фостин	categories of cited documents: at defining the general state of the art which is not	Inter document published after the inter-	petional filing date or
COURSIDE	ed to be of particular relevance locument but published on or after the international filing	priority date and not in conflict with the understand the priociple or theory under	Name the investion
CHIC.	continent of particular relevance; the claimed invention cannot be		
cited to	nt which may throw doubts on pruntry claim(s) or which is establish the publication date of another citation or other	Such when the discussiont is taken alone	
SDECEN I	tenson (as specified) At referring to an eral disclosure, use, exhibition or other	considered to involve an inventive sten	When the dominant in
HIPCHIS.	•	CONTROLLED MAIN DUE OF BRUITE BUTTER STACK A	Commente assis
document published prior to the international filing date but later than the priority date claimed combination being obvious to a person skilled in the art document member of the same patent family			
Date of the actual completion of the international search			
21 November, 2000 (21.11.00) Date of mailing of the international search report 05 December, 2000 (05.12.00)			
Vame and ma	iling address of the ISA/	Authorized officer	
Japar	nese Patent Office)	1
acsimile No.		Telmhone Ma	
207755		Telephone No.	