Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-2210. Вариант 9

- 1. Пусть $z=\frac{\sqrt{3}}{2}-\frac{i}{2}$. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{2-2\sqrt{3}i}$ имеет аргумент $\frac{5\pi}{4}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(11-8i) + y(4-i) = -163 - 61i \\ x(2+8i) + y(-1+12i) = 201 - 155i \end{cases}$$

- 3. Найти корни многочлена $-3x^6 + 6x^5 + 48x^4 + 504x^3 5100x^2 + 13800x 12000$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 3 i$, $x_2 = -5 + 5i$, $x_3 = 2$.
- 4. Даны 3 комплексных числа: -19-4i, 17-18i, -24+9i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 2i, z_2 = -1 + \sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3-2i| < 1\\ |arg(z-4+4i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-11, 0, -2), b = (-10, -4, 1), c = (4, 4, -2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-14,5,14) и плоскость P: -50x + 36y + 38z + 1208 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-9, -7, -12), $M_1(1, 11, -12)$, $M_2(-9, 1, -12)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 26x - 15y - 17z + 403 = 0 \\ 13x - 4y - 13z + 144 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 11y - 4z + 1483 = 0 \\ x - 7y + 5z + 388 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.