Work out the Boolean functions of the following circuits. Which standard logic gate does each of them represent?

$$F = \{ [x(xy)']'[y(xy)']'\}'$$

$$= [x(xy)']'' + [y(xy)']''$$

$$= x(xy)' + y(xy)'$$

$$= x(x' + y') + y(x' + y')$$

$$= xy' + yx' = x \oplus y$$

j	Input	5	Output
x	У	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$f(x, y, z) = \sum m(1,3,6,7) = \prod M(0,2,4,5)$$

$$f(x,y,z) = x'y'z + x'yz + xyz' + xyz$$

= $x'z + xy$

- 1. Identify all PIs.
- 2. Select all EPIs.
- 3. Add PIs of remaining minterms.

- 1. Identify all PIs.
- 2. Select all EPIs.
- 3. Add PIs of remaining minterms.

- 1. Identify all PIs.
- 2. Select all EPIs.
- 3. Add PIs of remaining minterms.

Find all minimum sum of products expressions for the following K-map.

Find all minimum sum of products expressions for the following K-map.

$$f = bd + b'd' + a'd' + ac'd$$

$$f = bd + b'd' + a'b + ac'd$$

$$f = bd + b'd' + a'd' + ab'c'$$

$$f = bd + b'd' + a'b + ab'c'$$

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

$$f(a,b,c,d) = \sum m(1,3,4,6,11) + \sum d(0,8,10,12,13)$$

cd	00	01	11	10	cd	00	01	11	10
00	m_0	m_4	m ₁₂	<i>m</i> ₈	00	X	1	X	X
01	<i>m</i> ₁	<i>m</i> ₅	<i>m</i> ₁₃	m_9	01	1		X	
11	<i>m</i> ₃	m ₇	m ₁₅	m ₁₁	11	1			1
10	m ₂	<i>m</i> ₆	m ₁₄	<i>m</i> ₁₀	10		1		X

9

$$f = a'bd' + a'b'd + b'cd$$

$$f = a'bd' + a'b'c' + b'cd$$

$$f = a'bd' + a'b'd + ab'c$$

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

cd ak	00	01	11	10	cd	00	01	11	10
00	X	1	X	X	00	X	1	X	X
01	1	0	X	0	01	1	0	X	0
11	1	0	0	1	11	1	0	0	1
10	0	1	0	X	10	0	1	0	X

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

f = (b' + d')(b + d)

(a'+c)(a'+b')

14

f = (b' + d')(b + d)

(a'+c)(a'+d)

Exercise (Don't Care Case)

Step 1-3 (Partition, Combine, List PIs): Include Don't Care minterms

Simplify $f(a, b, c, d) = \Sigma m(4, 8, 9, 10, 12, 15) + \Sigma d(2, 6, 13)$

Minterms	abcd
m_2	0010 🗸
m_4	0100 🕶
m_8	1000 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🕶
m_{12}	1100 🗸
<i>m</i> ₁₃	1101 🕶
<i>m</i> ₁₅	1111 🗸

Minterms	abcd
m_2, m_6	0-10 Pl ₂
m_2, m_{10}	-010 PI ₃
m_4, m_6	01-0 PI ₄
m_4, m_{12}	-100 PI ₅
m_8, m_9	100- 🗸
m_8, m_{10}	10-0 PI ₆
m_8, m_{12}	1-00 🗸
m_9, m_{13}	1-01
m_{12}, m_{13}	110- 🗸
m_{13}, m_{15}	11-1 PI ₇

Minterms	abcd
m_8, m_9, m_{12}, m_{13}	1-0-Pl ₁

Exercise (Don't Care Case)

Step 4: Generate PI chart

- Exclude Don't Care Minterms

Simplify $f(a, b, c, d) = \Sigma m(4, 8, 9, 10, 12, 15) + \Sigma d(2, 6, 13)$

PI	Minterms	abcd	4	8	9	10	12	15
PI_1	m_8, m_9, m_{12}, m_{13}	1-0-		X	X		X	
PI ₂	$m_2^{}, m_6^{}$	0-10						
PI ₃	m_2, m_{10}	-010				X		
PI ₄	m_4 , m_6	01-0	X					
PI ₅	m_4, m_{12}	-100	X				X	
PI ₆	m_8, m_{10}	10-0		Х		Х		
PI ₇	m_{13}, m_{15}	11-1						х

Step 5-6: Reduce PI chart & express the Boolean Function

Exercise (Don't Care Case)

Step 5-6: Reduce PI chart & express the Boolean Function

PI	Minterms	abcd	4	8	9	10	12	15
PI_1	m_8, m_9, m_{12}, m_{13}	1-0-		Х	X		X	
PI ₂	m_2, m_6	0-10						
PI ₃	m_2, m_{10}	-010				X		
PI ₄	m_4, m_6	01-0	X					
PI ₅	m_4, m_{12}	-100	X				Х	
PI ₆	m_8, m_{10}	10-0		Х		Х		
PI ₇	m_{13}, m_{15}	11-1						X

PI	Minterms	abcd	4	10
PI ₃	m_2, m_{10}	-010		X
PI ₄	m_4, m_6	01-0	Х	
PI ₅	m_4, m_{12}	-100	Х	
PI ₆	m_8, m_{10}	10-0		Х

$$\begin{split} f(a,b,c,d) &= \text{PI}_1 + \text{PI}_3 + \text{PI}_4 + \text{PI}_7 = ac' + b'cd' + a'bd' + abd \\ &= \text{PI}_1 + \text{PI}_3 + \text{PI}_5 + \text{PI}_7 = ac' + b'cd' + bc'd' + abd \\ &= \text{PI}_1 + \text{PI}_4 + \text{PI}_6 + \text{PI}_7 = ac' + a'bd' + ab'd' + abd \\ &= \text{PI}_1 + \text{PI}_5 + \text{PI}_6 + \text{PI}_7 = ac' + bc'd' + ab'd' + abd \end{split}$$