A FAST introduction to The $\underline{\mathbf{F}}$ ast $\underline{\mathbf{M}}$ ultipole $\underline{\mathbf{M}}$ ethod

A FAST ALGORITHM FOR PARTICLE SIMULATIONS

Authors: GREENGARD L, ROKHLIN V, Journal: JCP, and

Published: DEC 1987

presented by Claudio Torres

January 7, 2014

An intro to N-Body problem

Let's recall the Newton's law of universal gravitation for 2 point masses

$$\mathbf{F}_{1,2} = G \frac{m_1 m_2 (\mathbf{x}_2 - \mathbf{x}_1)}{\|\mathbf{x}_2 - \mathbf{x}_1\|^3}.$$
 (1)

An intro to N-Body problem

Let's recall the Newton's law of universal gravitation for 2 point masses

$$\mathbf{F}_{1,2} = G \frac{m_1 m_2 (\mathbf{x}_2 - \mathbf{x}_1)}{\|\mathbf{x}_2 - \mathbf{x}_1\|^3}.$$
 (1)

where it takes the following form for N point masses(N Bodies)

$$m_j \ddot{\mathbf{q}}_j = \sum_{k \neq j} \mathbf{F}_{k,j} \tag{2}$$

An intro to N-Body problem

Let's recall the Newton's law of universal gravitation for 2 point masses

$$\mathbf{F}_{1,2} = G \frac{m_1 m_2 (\mathbf{x}_2 - \mathbf{x}_1)}{\|\mathbf{x}_2 - \mathbf{x}_1\|^3}.$$
 (1)

where it takes the following form for N point masses(N Bodies)

$$m_j \ddot{\mathbf{q}}_j = \sum_{k \neq j} \mathbf{F}_{k,j} \tag{2}$$

or

$$m_j \ddot{\mathbf{q}}_j = \sum_{k \neq j} \mathbf{F}_{k,j} = \gamma \sum_{k \neq j} \frac{m_j m_k (\mathbf{q}_k - \mathbf{q}_j)}{|\mathbf{q}_k - \mathbf{q}_j|^3}, \quad j = 1 \dots N.$$
 (3)

Now, let's go to FMM

Figure: Two dimensional problem, where the interactions are pairwise

Now, let's go to FMM

Figure: Two dimensional problem, where the interactions are pairwise

From now on, let's define log(z) as the potential due to a charge.

Lemma

Let a point charge of intensity q be located at z_0 . Then for any z such that $|z| > |z_0|$,

$$\phi_{z_0}(z) = q \log(z - z_0) = q \left(\log(z) - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_0}{z} \right)^k \right) \tag{4}$$

Lemma

Let a point charge of intensity q be located at z_0 . Then for any z such that $|z| > |z_0|$,

$$\phi_{z_0}(z) = q \log(z - z_0) = q \left(\log(z) - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_0}{z} \right)^k \right) \tag{4}$$

Proof.

Since
$$\log(z-z_0)=\log(z)+\log(1-z_0/z)$$
, for $\omega:=|z_0/z|<1$, and

$$\frac{1}{1-\omega} = \sum_{k=0}^{\infty} \omega^k \quad \Rightarrow_{\int \text{and shifting log}} \log(1-\omega) = (-1) \sum_{k=1}^{\infty} \frac{\omega^k}{k} \quad (5)$$

Theorem

[Multipole Expansion] Suppose that m charges of strengths q_i are located at points z_i for i=1:m, with $|z_i| < r$. Then for any $z \in \mathbb{C}$ with |z| > r, the potential $\phi(z)$ is given by

$$\phi(z) = Q\log(z) + \sum_{k=1}^{\infty} \frac{a_k}{z^k}$$
 (6)

where

$$Q = \sum_{i=1}^{m} q_i \quad \text{and} \quad a_k = \sum_{k=1}^{m} \frac{-q_i z_i^k}{k}$$
 (7)

N-Body problem Introduction The tricks A Matlab example Why is it fast? More notation The FMM FMM nowadays

Theorem

[Multipole Expansion] Suppose that m charges of strengths q_i are located at points z_i for i=1:m, with $|z_i| < r$. Then for any $z \in \mathbb{C}$ with |z| > r, the potential $\phi(z)$ is given by

$$\phi(z) = Q\log(z) + \sum_{k=1}^{\infty} \frac{a_k}{z^k}$$
 (6)

where

$$Q = \sum_{i=1}^{m} q_i \quad \text{and} \quad a_k = \sum_{k=1}^{m} \frac{-q_i z_i^k}{k}$$
 (7)

Furthermore, for any $p \ge 1$,

$$\left|\phi(z) - Q\log(z) - \sum_{k=1}^{p} \frac{a_k}{z^k}\right| \le \left(\frac{A}{c-1}\right) \left(\frac{1}{c}\right)^p \tag{8}$$

Furthermore, for any $p \ge 1$,

$$\left|\phi(z) - Q\log(z) - \sum_{k=1}^{p} \frac{a_k}{z^k}\right| \le \left(\frac{A}{c-1}\right) \left(\frac{1}{c}\right)^p$$

where

$$c = \left| \frac{z}{r} \right|$$
 and $A = \sum_{i=1}^{m} |q_i|$ (9)

L. 1
$$q \log(z - z_0) = q \left(\log(z) - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_0}{z} \right)^k \right)$$
$$= q \log(z) + \sum_{k=1}^{\infty} \frac{-qz_0^k}{k} \frac{1}{z^k}$$

L. 1
$$q \log(z - z_0) = q \left(\log(z) - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_0}{z} \right)^k \right)$$
$$= q \log(z) + \sum_{k=1}^{\infty} \frac{-qz_0^k}{k} \frac{1}{z^k}$$

Now, let us consider that we have m charges with q_i strength and located at z_i

L. 1
$$q \log(z - z_0) = q \left(\log(z) - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_0}{z} \right)^k \right)$$

= $q \log(z) + \sum_{k=1}^{\infty} \frac{-qz_0^k}{k} \frac{1}{z^k}$

Now, let us consider that we have m charges with q_i strength and located at z_i

Thm. 1
$$\phi(z) = Q \log(z) + \sum_{k=1}^{\infty} \frac{a_k}{z^k}$$

= $Q \log(z) + \sum_{k=1}^{\infty} a_k \frac{1}{z^k}$

L. 1
$$q \log(z - z_0) = q \left(\log(z) - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_0}{z} \right)^k \right)$$

= $q \log(z) + \sum_{k=1}^{\infty} \frac{-qz_0^k}{k} \frac{1}{z^k}$

Now, let us consider that we have m charges with q_i strength and located at z_i

Thm. 1
$$\phi(z) = Q \log(z) + \sum_{k=1}^{\infty} \frac{a_k}{z^k}$$

= $Q \log(z) + \sum_{k=1}^{\infty} a_k \frac{1}{z^k}$

So, it is easy to see,

$$Q = \sum_{i=1}^{m} q_i$$
 and $a_k = \sum_{k=1}^{m} \frac{-q_i z_i^k}{k}$

Figure: Set up of experiment with 787 sources and 1 target

The experiment try to give numerical evidence that the p-sum is a good idea to approximate potential fields.

$$\phi(z) = Q \log(z) + \sum_{k=1}^{\infty} \frac{a_k}{z^k} \approx Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} =: \phi(z, p)$$
 (10)

The experiment try to give numerical evidence that the p-sum is a good idea to approximate potential fields.

$$\phi(z) = Q \log(z) + \sum_{k=1}^{\infty} \frac{a_k}{z^k} \approx Q \log(z) + \sum_{k=1}^{p} \frac{a_k}{z^k} =: \phi(z, p)$$
 (10)

Figure: Numerical simulation

recall: p-error bound

$$|\phi(z) - \phi(z, p)| \le \left(\frac{A}{c-1}\right) \left(\frac{1}{c}\right)^p$$

with

$$c = \left| \frac{z}{r} \right|$$

and

$$A = \sum_{i=1}^{m} |q_i|$$

Figure: Numerical simulation

Why do we call it *Fast* multipole method?

Figure: m sources at x_i (blue) and n targets at y_i (red)

Direct evaluation of potential field, due to m charges located at x_i , evaluated at y_i is $\mathcal{O}(nm)$.

• First, we have to compute the multipole expansion, which is $\mathcal{O}(pm)$, since we have m sources and we are using p terms of the sum.

- First, we have to compute the multipole expansion, which is $\mathcal{O}(pm)$, since we have m sources and we are using p terms of the sum.
- Second, we have to compute the number of operations that we use to evaluate the field at y_i , which is $\mathcal{O}(pn)$, since we have n targets and we *only* have to use p terms of the multipole series at each y_i .

- First, we have to compute the multipole expansion, which is $\mathcal{O}(pm)$, since we have m sources and we are using p terms of the sum.
- Second, we have to compute the number of operations that we use to evaluate the field at y_i , which is $\mathcal{O}(pn)$, since we have n targets and we *only* have to use p terms of the multipole series at each y_i .

Therefore, the work has been reduced from $\mathcal{O}(nm)$ to $\mathcal{O}(pm+pn)!$, and since p is constant we only have $\mathcal{O}(m+n)$.

N-Body problem Introduction The tricks A Matlab example Why is it fast? More notation The FMM FMM nowadays

Shifting the multipole expansion

Lemma

Suppose that

$$\phi(z) = a_0 \log(z - z_0) + \sum_{k=1}^{\infty} \frac{a_k}{(z - z_0)^k}$$
 (11)

is a multipole expansion of the potential due to a set of m charges of strengths q_i , with i=1: m, all of which are located inside the circle D of radius R with center at z_0 . Then for z outside the circle D_1 of radius $(R+|z_0|)$ and center at the origin we have the following multipole expansion,

$$\phi(z) = a_0 \log(z) + \sum_{l=1}^{\infty} \frac{b_l}{z^l}$$
 (12)

where

$$b_{l} = \left(\sum_{k=1}^{l} a_{k} z_{0}^{l-k} {l-1 \choose k-1}\right) - \frac{a_{0} z_{0}^{l}}{l}$$
 (13)

Furthermore, for any $p \ge 1$

$$\left|\phi(z) - a_0 \log(z) - \sum_{l=1}^{\infty} \frac{b_l}{z^l}\right| \le \left(A \left/ \left(1 - \left|\frac{|z_0| + R}{z}\right|\right)\right) \left|\frac{|z_0| + R}{z}\right|^{p+1}$$
(14)

where

$$b_{l} = \left(\sum_{k=1}^{l} a_{k} z_{0}^{l-k} {l-1 \choose k-1}\right) - \frac{a_{0} z_{0}^{l}}{l}$$
 (13)

Furthermore, for any $p \ge 1$

$$\left|\phi(z) - a_0 \log(z) - \sum_{l=1}^{\infty} \frac{b_l}{z^l}\right| \le \left(A \left/ \left(1 - \left|\frac{|z_0| + R}{z}\right|\right)\right) \left|\frac{|z_0| + R}{z}\right|^{p+1}$$
(14)

Remark: Computing b_l from a_k is exact!, \Rightarrow we are able to shift a truncated multipole expansions without losing accuracy.

From multipole to local Taylor series

Lemma

Suppose that m charges of strength q_i are located inside the circle D_1 with radius R and center at z_0 , and that $|z_0| > (c+1)R$ with c>1. Then the corresponding multipole expansion (11) converges inside the circle D_2 of radius R centered about the origin. Inside D_2 , the potential due to the charges is described by a power series:

$$\phi(z) = \sum_{l=0}^{\infty} b_l z^l \tag{15}$$

where

$$b_0 = \sum_{k=1}^{\infty} \frac{a_k}{z_0^k} (-1)^k + a_0 \log(-z_0)$$
 (16)

From multipole to local Taylor series

Lemma

Suppose that m charges of strength q_i are located inside the circle D_1 with radius R and center at z_0 , and that $|z_0| > (c+1)R$ with c>1. Then the corresponding multipole expansion (11) converges inside the circle D_2 of radius R centered about the origin. Inside D_2 , the potential due to the charges is described by a power series:

$$\phi(z) = \sum_{l=0}^{\infty} b_l z^l \tag{15}$$

where

$$b_{l} = \left(\frac{1}{z_{0}^{l}} \sum_{k=1}^{\infty} \frac{a_{k}}{z_{0}^{k}} \binom{l+k-1}{k-1} (-1)^{k}\right) - \frac{a_{0}}{l z_{0}^{l}}, \quad \text{for} \quad l \geq 1. \quad (16)$$

Furthermore, for any $p \ge \max(2, 2c/(c-1))$, an error bound for the truncated series is given by

$$\left|\phi(z) - \sum_{l=0}^{p} b_l z^l\right| < \frac{A(4e(p+c)(c+1) + c^2)}{c(c-1)} \left(\frac{1}{c}\right)^{p+1} \tag{17}$$

Lemma

For any complex z_0 , z, and $\{a_k\}$, for k=0: n

$$\sum_{k=0}^{n} a_k (z - z_0)^k = \sum_{l=0}^{n} \left(\sum_{k=l}^{n} a_k \binom{k}{l} (-z_0)^{k-l} \right) z^l \qquad (18)$$

① Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).
- 3 Shift multipole expansion from finest level to the next level recursively till you reach coarsest level by lemma (3)

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).
- Shift multipole expansion from finest level to the next level recursively till you reach coarsest level by lemma (3)
- **4** Form $\widetilde{\Psi}_{I,i}$

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).
- Shift multipole expansion from finest level to the next level recursively till you reach coarsest level by lemma (3)
- **4** Form $\widetilde{\Psi}_{I,i}$
- **5** Add interaction list to $\widetilde{\Psi}_{n,i}$ at the finest level.

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).
- Shift multipole expansion from finest level to the next level recursively till you reach coarsest level by lemma (3)
- **4** Form $\widetilde{\Psi}_{I,i}$
- **5** Add interaction list to $\widetilde{\Psi}_{n,i}$ at the finest level.
- **o** Evaluate far field at each box of finest level by $\widetilde{\Psi}_{n,i}$.

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).
- Shift multipole expansion from finest level to the next level recursively till you reach coarsest level by lemma (3)
- **4** Form $\widetilde{\Psi}_{I,i}$
- **5** Add interaction list to $\widetilde{\Psi}_{n,i}$ at the finest level.
- **o** Evaluate far field at each box of finest level by $\widetilde{\Psi}_{n,i}$.
- Evaluate near field at each box by direct computation with it nearest neighbors.

- Choose refinement level $n \approx \log_4(N)$, a precision ε , and set $p \approx \log_2(\varepsilon)$.
- ② Form multipole expansion at finest mesh level $\Phi_{n,i}$ by theorem (2).
- Shift multipole expansion from finest level to the next level recursively till you reach coarsest level by lemma (3)
- **4** Form $\Psi_{I,i}$
- **5** Add interaction list to $\widetilde{\Psi}_{n,i}$ at the finest level.
- **o** Evaluate far field at each box of finest level by $\widetilde{\Psi}_{n,i}$.
- Evaluate near field at each box by direct computation with it nearest neighbors.
- Add far field and near field interactions.

So, is it really famous?

So, is it really famous?

• It is one of the best algorithm of the 20th Century!!, among Simplex, Krylov subspaces, QR algorithm, FFT, etc

So, is it really famous?

- It is one of the best algorithm of the 20th Century!!, among Simplex, Krylov subspaces, QR algorithm, FFT, etc
- 2 It has been \sim 1313 times cited!!*.
- * Source: Web of Science.

The End