Álgebra Linear Aula 12

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Teorema (3.1.1)

Se \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são vetores em \mathbb{R}^n e α e β escalares, então:

1.
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$
;

2.
$$(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w});$$

3.
$$\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u}$$
;

4.
$$\overrightarrow{u} + (-\overrightarrow{u}) = (-\overrightarrow{u}) + \overrightarrow{u} = \overrightarrow{0}$$
;

5.
$$\alpha(\overrightarrow{u} + \overrightarrow{v}) = \alpha \overrightarrow{u} + \alpha \overrightarrow{v}$$
;

6.
$$(\alpha + \beta)\overrightarrow{u} = \alpha \overrightarrow{u} + \beta \overrightarrow{u}$$
;

7.
$$\alpha(\beta \overrightarrow{v}) = (\alpha \beta) \overrightarrow{v}$$
;

8.
$$1\overrightarrow{u} = \overrightarrow{u}$$
.

Descubra qual o vetor \overrightarrow{x} abaixo para que a igualdade seja verdade

$$\overrightarrow{x} + \overrightarrow{a} = 2\overrightarrow{x} + \overrightarrow{b}$$
.

É possível escrever o vetor $\overrightarrow{v}=(1,2)$ em função dos vetores $\overrightarrow{e_1}=(1,0)$ e $\overrightarrow{e_2}=(0,1)$?

É possível escrever o vetor $\overrightarrow{v}=(1,2)$ em função dos vetores $\overrightarrow{e_1}=(1,0)$ e $\overrightarrow{e_2}=(0,1)$?

Combinação Linear

Um vetor \overrightarrow{w} em \mathbb{R}^n é uma combinação linear dos vetores v_1, \ldots, v_r se existirem escalares $\alpha_1, \ldots, \alpha_r$ tais que

$$w = \alpha_1 v_1 + \dots + \alpha_r v_r.$$

Calcule o comprimento do vetor $\overrightarrow{v} = (3,4)$.

Calcule o comprimento do vetor $\overrightarrow{v} = (3,4)$.

Norma de um vetor

A norma de um vetor \overrightarrow{v} em \mathbb{R}^n é definida como

$$\|\overrightarrow{v}\| = \sqrt{v_1^2 + \dots + v_n^2}.$$

Calcule o comprimento do vetor $\overrightarrow{v} = (3,4)$.

Norma de um vetor

A norma de um vetor \overrightarrow{v} em \mathbb{R}^n é definida como

$$\|\overrightarrow{v}\| = \sqrt{v_1^2 + \dots + v_n^2}.$$

Teorema (3.2.1)

Se \overrightarrow{v} for um vetor em \mathbb{R}^n e α um escalar então

- 1. $\|\overrightarrow{v}\| \geq 0$;
- 2. $\|\overrightarrow{v}\| = 0$ se e somente se $\overrightarrow{v} = \overrightarrow{0}$.
- 3. $\|\alpha\overrightarrow{v}\| = |\alpha|\|\overrightarrow{v}\|$.

Dado um vetor $\overrightarrow{v} \neq \overrightarrow{0}$ em \mathbb{R}^n . O vetor normalizado de \overrightarrow{v} é definido como $\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}$.

Dado um vetor $\overrightarrow{v} \neq \overrightarrow{0}$ em \mathbb{R}^n . O vetor normalizado de \overrightarrow{v} é definido como $\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}$.

Propriedade

Temos que $\|\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}\| = 1$.

Dado um vetor $\overrightarrow{v} \neq \overrightarrow{0}$ em \mathbb{R}^n . O vetor normalizado de \overrightarrow{v} é definido como $\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}$.

Propriedade

Temos que $\|\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}\| = 1$.

Vetor unitário

Dizemos que um vetor \overrightarrow{v} é unitário se $\|\overrightarrow{v}\| = 1$.

Dado um vetor $\overrightarrow{v} \neq \overrightarrow{0}$ em \mathbb{R}^n . O vetor normalizado de \overrightarrow{v} é definido como $\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}$.

Propriedade

Temos que $\|\frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}\| = 1$.

Vetor unitário

Dizemos que um vetor \overrightarrow{v} é unitário se $\|\overrightarrow{v}\| = 1$.

Vetores canônicos

Para um n>0 fixo. Denotamos por $\overrightarrow{e_1},\ldots,\overrightarrow{e_n}$ os vetores canônicos de \mathbb{R}^n no qual o vetor e_i é igual ao vetor linha da i-ésima linha da matriz identidade I_n .

Distância entre pontos Vs Norma de vetores

Sejam A e B pontos do \mathbb{R}^n . A distância d(A, B) entre os pontos A e B é definida como a norma do vetor \overrightarrow{AB} .

Distância entre pontos Vs Norma de vetores

Sejam A e B pontos do \mathbb{R}^n . A distância d(A, B) entre os pontos A e B é definida como a norma do vetor \overrightarrow{AB} .

Distância entre pontos

Temos que

$$d(A, B) = \sqrt{(B_1 - A_1)^2 + \dots + (B_n - A_n)^2}.$$

Calcule o ângulo entre os vetores $\overrightarrow{v}=(1,2)$ e $\overrightarrow{w}=(2,0)$.

Calcule o ângulo entre os vetores $\overrightarrow{v}=(1,2)$ e $\overrightarrow{w}=(2,0)$.

Exemplo 6

Calcule o ângulo entre os vetores $\overrightarrow{v} = (v_1, v_2)$ e $\overrightarrow{w} = (w_1, w_2)$.

Produto Interno entre Vetores

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . O produto interno entre \overrightarrow{u} e \overrightarrow{v} é definido como

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||u|| ||v|| \cos \theta = u_1 v_1 + \dots + u_n v_n.$$