P8160 - Project 3 Baysian modeling of hurricane

Renjie Wei, Hao Zheng, Xinran Sun Wentong Liu, Shengzhi Luo

2022-05-09

Introduction

- Hurricanes can result in death and economical damage
- ► There is an increasing desire to predict the speed and damage of the hurricanes
- Use Bayesian Model and Markov Chain Monte Carlo algorithm
 - Predict the wind speed of hurricanes
 - > Study how hurricanes is related to death and financial loss

Dataset

- ► Hurrican703 dataset: 22038 observations × 8 variables
 - ▶ 702 hurricanes in the North Atlantic area in year 1950-2013 with tra
- Processed dataset: add 5 more variables into hurrican703
- \blacktriangleright Hurricanoutcome2 dataset: 43 observations \times 14 variables

EDA - Count of Hurricanes in Each Month

EDA - Average Speed (knot) of Hurricanes in Each Month

EDA - Count of Hurricanes in Each Year

EDA - Average Speed (knot) of Hurricanes in Each Year

`geom_smooth()` using formula 'y ~ x'

EDA - Count of Hurricanes in Each Nature

EDA - Average Speed (knot) of Hurricanes in Each Nature

Joint posterior

$$\pi(\Theta|Y)$$

$$= \pi(\mathbf{B}^{\top}, \mu^{\top}, \sigma^{2}, \Sigma \mid Y)$$

$$\propto \prod_{i=1}^{n} f(Y_i \mid \boldsymbol{\beta}_i, \sigma^2) \prod_{i=1}^{n} \pi(\boldsymbol{\beta}_i \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) P(\sigma^2) P(\boldsymbol{\mu}) P(\boldsymbol{\Sigma}^{-1})$$

$$\propto \prod_{i=1}^{n} f(Y_i \mid \beta_i, \sigma^2) \prod_{i=1}^{n} \pi(\beta_i \mid \mu, \Sigma) P(\sigma^2) P(\mu) P(\Sigma^{-1})$$

$$\propto \prod_{i=1}^{n} \left\{ (2\pi\sigma^2)^{-m_i/2} \exp\left\{ -\frac{1}{2} (Y_i - X_i \beta_i^\top)^\top (\sigma^2 I)^{-1} (Y_i - Y_i \beta_i^\top)^\top (T_i - Y$$

$$\propto \prod_{i=1}^{n} \Big\{ (2\pi\sigma^2)^{-m_i/2} \exp \big\{ -\frac{1}{2} (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^\top)^\top (\sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^\top) (\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^\top$$

$$\times \prod_{i=1}^{n} \left\{ \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2}(\beta_i - \mu)\Sigma^{-1}(\beta_i - \mu)^\top \right\} \right\} \times \frac{1}{\sigma^2}$$

$$\times \prod_{i=1}^{n} \left\{ \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\big\{ -\frac{1}{2} (\boldsymbol{\beta}_i - \boldsymbol{\mu}) \boldsymbol{\Sigma}^{-1} (\boldsymbol{\beta}_i - \boldsymbol{\mu})^\top \big\} \right\} \times \frac{1}{\sigma^2} \times$$

MCMC algorithm

Conditional Posterior

➤ To apply MCMC using Gibbs sampling, we need to find conditional posterior distribution of each parameter, then we can implement Gibbs sampling on these conditional posterior distributions.

- $\pi(\sigma^2|Y,\mathbf{B}^\top,\mu^\top,\Sigma)$

Seasonal Difference Exploration

	Beta 0		Beta 1		Beta 2		Beta 3		Beta 4	
	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)	Estimate	Pr(> t)
(Intercept)	4.5142875	0.0000000	1.3448481	0.0000000	-0.1056332	0.8629385	-1.0267628	0.001781	0.3051312	0.3817170
season	-0.0003543	0.0497902	-0.0002178	0.0001332	0.0000878	0.7757368	0.0003188	0.053474	0.0000902	0.6072986

Fitted results of beta models

Seasonal Difference Exploration

	Beta 0		Beta 1		Beta 2		Beta	3	Beta 4		
	Estimate	Pr(> t)									
(Intercept)	4.4810021	0.0000000	1.3431063	0.0000000	0.0413063	0.9506172	-0.8336700	0.0185275	0.2890273	0.4482640	
monthApril	0.0232609	0.8346449	0.0147943	0.6696787	0.0165579	0.9306863	0.0416468	0.6796126	0.0361823	0.7393892	
monthMay	0.0259813	0.7827813	-0.0001180	0.9967888	0.0708822	0.6597505	0.0632772	0.4581672	-0.0162907	0.8594231	
monthJune	0.0275693	0.7650618	0.0053935	0.8509869	-0.0070875	0.9641298	0.0556884	0.5047909	0.0237694	0.7918014	
monthJuly	0.0125400	0.8914489	0.0154032	0.5901741	-0.0090910	0.9538180	0.0361214	0.6640154	0.0130817	0.8840332	
monthAugust	-0.0198034	0.8284715	0.0233206	0.4124181	-0.0522548	0.7378961	0.0123691	0.8811234	0.0312427	0.7261962	
monthSeptember	-0.0070528	0.9384385	0.0261005	0.3585599	-0.0361073	0.8169707	0.0212965	0.7966351	0.0444835	0.6177631	
monthOctober	0.0093435	0.9185853	0.0210829	0.4587183	-0.0286163	0.8546050	0.0341549	0.6796975	0.0350505	0.6944480	
monthNovember	0.0145692	0.8748155	0.0246144	0.3925264	0.0239972	0.8792681	0.0263450	0.7529105	0.0209069	0.8168323	
monthDecember	0.0057977	0.9526542	0.0088244	0.7715305	-0.0543131	0.7447475	0.0422468	0.6326060	0.0114196	0.9046290	
season	-0.0003419	0.0717253	-0.0002252	0.0001471	0.0000365	0.9101708	0.0002184	0.2032812	0.0000905	0.6249586	
natureET	0.0008449	0.9774141	0.0037334	0.6877086	-0.0702038	0.1687975	-0.0263888	0.3286540	-0.0209217	0.4726774	
natureNR	0.0008122	0.9866387	-0.0146142	0.3331114	0.0058967	0.9432660	0.0030556	0.9444979	-0.0217275	0.6462854	
natureSS	0.0141564	0.4904257	-0.0033299	0.6021721	-0.0013517	0.9692484	0.0126339	0.4964264	-0.0238538	0.2339965	
natureTS	0.0118370	0.4785102	-0.0059979	0.2486925	-0.0154533	0.5880814	-0.0231521	0.1258337	-0.0174987	0.2832214	

Fitted results of beta models for only the year variable

Predictions of Damage and Deaths

Basic plot of Damage and Deaths

Predictions of Damage and Deaths

Basic plot of Damage and Deaths

Coefficient Table

[1]	" id	1	intercept	beta1	beta2	beta3	beta4 "
[2]	" :	1	:	:	:	:	: "
[3]	" agnes.1972	1	3.950974	0.9224097	0.0059532	-0.3103372	0.5453543 "
[4]	" alex.2010	1	3.798737	0.9370333	0.0698849	-0.3937358	0.5400187 "
[5]	" alicia.1983	I	3.897408	0.9036878	-0.0748341	-0.3994486	0.5477718 "
[6]	" allen.1980	I	3.687070	0.9655304	0.1306393	-0.5460144	0.5466129 "
[7]	" andrew.1992	I	3.676279	0.9375384	-0.2843257	-0.5782973	0.5370158 "
[8]	" betsy.1965	I	3.808396	0.9513766	-0.4500720	-0.3890718	0.4244575 "
[9]	" bob.1991	1	3.629466	0.9232143	0.0279527	-0.5751636	0.4382048 "
[10]	" camille.1969	1	3.994355	0.9355674	0.0729188	-0.5734830	0.6703910 "

Fitted results of beta models

Predict Damage

*	term ‡	estimate [‡]	std.error ‡	statistic [‡]	p.value [‡]
1	(Intercept)	-2.179428e+02	63.786161983	-3.416772	6.336828e-04
2	intercept	5.044916e+00	0.872632934	5.781258	7.414400e-09
3	beta1	6.283543e+01	14.027126920	4.479565	7.479523e-06
4	beta2	-1.095810e+00	0.424325439	-2.582476	9.809426e-03
5	beta3	3.378223e+00	0.816050104	4.139725	3.477231e-05
6	nobs	4.921117e-02	0.008036275	6.123630	9.146733e-10
7	Season	7.497698e-02	0.012627373	5.937655	2.891284e-09
8	MonthJune	-3.416174e+00	0.762110791	-4.482516	7.376795e-06
9	MonthNovember	-1.902107e+00	0.789148853	-2.410327	1.593822e-02
10	MonthOctober	-1.290673e+00	0.298201079	-4.328198	1.503344e-05
11	MonthSeptember	-1.764116e+00	0.243173467	-7.254558	4.029764e-13
12	NatureNR	-4.317468e+00	1.126675716	-3.832042	1.270843e-04
13	NatureTS	-2.038481e+00	0.452900892	-4.500942	6.765302e-06
14	Maxspeed	5.044572e-02	0.006764325	7.457613	8.810369e-14
15	Meanspeed	-6.565465e-02	0.015403789	-4.262240	2.023877e-05
16	Percent.Poor	-3.819578e-02	0.005858677	-6.519522	7.053169e-11
17	Percent.USA	-4.630755e-03	0.002315352	-2.000023	4.549783e-02

Coefficients of damage prediction model

Predict Deaths

^	term [‡]	estimate [‡]	std.error ‡	statistic [‡]	p.value [‡]
1	(Intercept)	1.164978e+02	1.257956e+01	9.260883	2.027487e-20
2	intercept	1.167475e+01	2.564192e-01	45.529931	0.000000e+00
3	beta1	1.141195e+02	2.200144e+00	51.869091	0.000000e+00
4	beta2	5.528798e+00	1.226329e-01	45.084128	0.000000e+00
5	beta3	8.561691e+00	2.853214e-01	30.007184	7.908823e-198
6	beta4	-1.049211e+01	3.058279e-01	-34.307225	6.123346e-258
7	nobs	3.430943e-03	1.116605e-03	3.072657	2.121619e-03
8	Season	6.102077e-03	2.093747e-03	2.914429	3.563401e-03
9	MonthJuly	-1.183782e+00	1.448847e-01	-8.170505	3.071002e-16
10	MonthJune	-1.291597e+00	8.968191e-02	-14.401980	5.028215e-47
11	MonthNovember	-2.533192e+00	1.551869e-01	-16.323490	6.718278e-60
12	MonthOctober	-1.546676e+00	6.466487e-02	-23.918335	1.974205e-126
13	MonthSeptember	-2.751167e-01	4.588850e-02	-5.995331	2.030720e-09
14	NatureNR	2.348783e+00	1.290216e-01	18.204563	4.748263e-74
15	NatureTS	3.563406e+00	1.209962e-01	29.450564	1.238185e-190
16	Meanspeed	-3.676417e-02	3.143216e-03	-11.696356	1.330451e-31
17	Maxpressure	-2.686076e-01	9.670821e-03	-27.775052	8.684053e-170
18	Meanpressure	5.377225e-03	2.009523e-04	26.758717	9.775966e-158
19	Total.Pop	9.410461e-07	2.587520e-08	36.368659	1.332659e-289
20	Percent.Poor	3.599824e-02	8.024514e-04	44.860342	0.000000e+00
21	Percent.USA	-7.214139e-03	5.570867e-04	-12.949761	2.356879e-38

Coefficients of deaths prediction model