

BIOL334 Conservation & Ecological Genetics

PROBLEM SET #4

Problem Set #4

OVERVIEW:

- 1. Effective population size (N_e)
- 2. Demography & N_e
 - Fluctuations in population size
 - Variation in family size
 - Departures of sex ratio

Effective Population Size (N_e)

Recall from Lecture 13:

- N_e expresses N as a function of genetic variation
- Is key to assessing genetic robustness
- Often of interest is: Ne / N

 This is generally ~ 0.1 (or 10 %) in the long term

Theoretical concept of N_e

Idealized population as a "benchmark":

- Constant-size
- Closed population
- Random mating (hermaphrodites)
- Non-overlapping generations
- Negligible selection or mutation

Effective Population Size (N_e)

THE IDEALIZED POPULATION

As N departs from ∞ in the idealized population:

- 1. Loss of V_G due to drift
- Increased chance of inbreeding (F>0)
- 3. $H_{obs} < H_{exp}$ (ie. H-W expected H)

 N_e defined as the size of an idealized population that would lose V_G at the rate observed for the study population

N_e Example:

- For a study population of N = 500
- We measure change in V_G over time and find that V_G is lost at the same rate as an **idealized population** of N = 50
- Then we define $N_e = 50$

Effectively (for purposes of V_G) dealing with N of 50 rather than 500

• Generally, $N_e \sim 11 \%$ (0.11) of N for many large populations

E.g. Spawning run inChinook Salmon:N = 2000 but N_e = 85 (4%)

Effective Population Size (N_e)

Can be estimated by:

- (a) Genetic factors (if/when known)
- (b) Demographic factors:

 N_e reduced by (in order of significance):

- (1) Fluctuations in population size
- (2) Variation in family size
- (3) Variation in sex ratio

Fluctuations in pop size over time

$$N_e = \frac{t}{\sum (\frac{1}{N})}$$

Where:

t = number of censuses (or generations)

N = N at each census

(or ideally, N_e if we knew it)

Fluctuations in population size over time

$$N_e = t / \Sigma (1/N_i)$$

Example:

t = 3 censuses (or generations)

$$N_{(G1)} = 175,000 \ N_{(G2)} = 20 \ N_{(G3)} = 175,000$$

FOR EACH POPULATION BELOW

- (a) Calculate mean N over the 8 gens
- (b) Estimate N_e for each population

Generation	N
G1	220
G2	282
G3	121
G4	84
G5	32
G6	105
G7	170
G8 (Present)	360

$$N_e = t / \Sigma (1/N_i)$$

Generation	N
G1	140
G2	120
G3	121
G4	120
G5	140
G6	120
G7	111
G8 (Present)	130

FOR EACH POPULATION BELOW

- (a) Calculate mean N over the 8 gens
- (b) Estimate N_e for each population

$$N_e = t / \Sigma (1/N_i)$$

Generation	N	1/N	Generation	N	1/N
G1	220	0.005	G1	140	0.007
G2	282	0.004	G2	120	0.008
G3	121	0.008	G3	121	0.008
G4	84	0.012	G4	120	0.008
G5	32	0.031	G5	140	0.007
G6	105	0.010	G6	120	0.008
G7	170	0.006	G7	111	0.009
G8	360	0.003	G8	130	0.008
Sum (Σ):	1374	0.078	Sum (Σ):	1002	0.064

(a) Calculate mean N over the 8 gens:

FOR EACH POPULATION BELOW

- (a) Calculate mean N over the 8 gens
- (b) Estimate N_e for each population

$$N_e = t / \Sigma (1/N_i)$$

Generation	N	1/N	Generation	N	1/N
G1	220	0.005	G1	140	0.007
G2	282	0.004	G2	120	0.008
G3	121	0.008	G3	121	0.008
G4	84	0.012	G4	120	0.008
G5	32	0.031	G5	140	0.007
G6	105	0.010	G6	120	0.008
G7	170	0.006	G7	111	0.009
G 8	360	0.003	G8	130	0.008
Sum (Σ):	1374	0.078	Sum (Σ):	1002	0.064

(b) Estimate N_e for each population

8 / 0.078 = 102.56 8 / 0.064

= 125

FOR EACH POPULATION BELOW

- (a) Calculate mean N over the 8 gens
- (b) Estimate N_e for each population

Generation	N	1/N	Generation	N	1/N
G1	220	0.005	G1	140	0.007
G2	282	0.004	G2	120	0.008
G3	121	0.008	G3	121	0.008
G 4	84	0.012	G4	120	0.008
G5	32	0.031	G5	140	0.007
G6	105	0.010	G6	120	0.008
G7	170	0.006	G7	111	0.009
G8	360	0.003	G8	130	0.008
Sum (Σ):	1374	0.078	Sum (Σ):	1002	0.064
Mean N N _e		171.75 102.56	Mean N N _e		125.25 125

Variation in family size

- N_e reduces with increasing variation in the sizes of contributing families
- Why?

Variation in family size

• N_e reduces with increasing variation in the sizes of contributing families

Low Ne

High Ne

More generally:

$$N_e \sim \frac{4N}{V_k + 2}$$

Where:

N = observed **parental** population size

 V_k = variance in family size (where family size = number of offspring only)

 N_e = Effective population of parental generation

Idealized pop has $V_k = 2$ (1 for each male & 1 for each female)

V_k of 2 is expected under the Poisson probability distribution, which describes random mating in a large population:

Idealized expectation for V_k

= what would happen in the "idealized population":

Predicted by Poisson distribution

 It doesn't mean zero variation!!!

Family size (k)	"Idealized" Probability
0	0.135
1	0.271
2	0.271
3	0.180
4	0.090
5	0.036
> 5	0.017

Idealized expectation for V_k

= what would happen in the "idealized population":

Find N_e for a pop of N = 360 and where:

(a)
$$V_k = 2$$

(b)
$$V_k = 3.41 \square$$

(c) What if all families are equal size?□

 $N_e \sim 4N / (V_k + 2)$

Where:

N = observed population size

 V_k = variance in family size

 $N_e \sim 4N / (V_k + 2)$

Find N_e for a pop of N = 360 and where:

- (a) $V_k = 2$
- (b) $V_k = 3.41$
- (c) What if all families are equal size?

Question 4.2

- (a) When Vk = 2, Ne = 4x360/2+2 = 360 (obviously this is the idealized situation)
- (b) When Vk = 3.41, Ne = 4x360/3.41+2 = 1440/5.41 = 266.17
- (c) When Vk = 0, Ne = 4x360/2 = 720!!

Given the following population, Calculate:

(a)	Total	parental	popu	ulation	size	(N))
-----	-------	----------	------	---------	------	-----	---

- (b) Average family size (offspring ONLY)
- (c) Family size variance (V_k) (Use "Var.s" function in excel)

Family	Offspring
1	4
2	5
3	1
4	2
5	1
6	2
7	1
8	3

Then calculate N_e for this population

Given the following population,

Calculate:

- (a) Total population size (N)
- (b) Average family size
- (c) Family size variance (V_k)

Then calculate N_e

Family	Offspring
1	4
2	5
3	1
4	2
5	1
6	2
7	1
8	3

Question 4.3

Pop size is: 16 (Parental generation)

Average family size is: 2.375

Variance is: 2.2678

$$N_e = (4N) / (V_K + 2)$$

$$= (4 \times 16) / (2.2678 + 2)$$

Sex ratio & N_e

Point estimate:

$$N_e \sim \frac{4N_f \times N_m}{N_f + N_m}$$

Where:

 N_f = number of breeding females

 N_m = number of males

As sex-ratio departs from 1:1 (in either direction), N_e declines from N...

Both genders are conduits for (and can leak) $V_G!!$

As sex-ratio departs from 1:1 (in either direction), N_e declines from N...

Both genders are conduits for (and can leak) $V_G!!$

- Rare males may be able to sustain the numbers in a population for longer than rare females (Due to their higher potential reproductive rate).
- However, the effect on the erosion of genetic variation is equivalent.
 - Therefore, the long-term genetic-consequence is equally as bad.

In elephant-seals, most females breed, but males monopolize 'harems'.

(a) Find N_e for a population of 360 breeders with $N_f = 300 \& N_m = 60$

(b) Then, satisfy yourself that N_e would be higher if the sex-ratio of effective breeders was 50:50...

$$N_e \sim \frac{4N_f \times N_m}{N_f + N_m}$$

A happy harem-master

- (a) Find N_e for a population of 360 breeders with N_f = 300 & N_m = 60
- (b) Then, satisfy yourself that N_e would be higher if the sex-ratio of effective breeders was 50:50...

Question 4.4

The calculations:

(a) Ne =
$$(4x300x60)/360 = 200$$

(b) Ne =
$$(4x180x180)/360 = 360$$

$$N_e \sim \frac{4N_f \times N_m}{N_f + N_m}$$

Discuss: Management implications for small & captive populations

 N_e proportional to loss of heterozygosity – so, aim is to maximise N_e/N . How to best spread the genetic variance across individuals??

- Equalization of family sizes (EFS)... then $N_e \ge N$
- Equalisation of sex-ratios
- Reduction of reproductive skew (often means levelling the playing-field for males in the pop)

Are these measures likely to prove practical?