Statistics 135

Chapter 5
Inference
about
Mean Vector

Chris Drake

Department of Statistics

University of California, Davis

Hypothesis testing

1 Univariate case: H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$ tested using

$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$
 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

2 $(1-\alpha)$ confidence interval given by

$$\bar{x} - t_{n-1,(\alpha/2)} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,(\alpha/2)} \frac{s}{\sqrt{n}}$$

3 Relationship between $(1 - \alpha)$ confidence interval and size α test: if a hypothesized value μ_0 is in the confidence interval, then the p-value corresponding to the hypothesis in (1) will be larger than α . Similarly, if μ_0 is not in the confidence interval $p - value < \alpha$.

Therefore, we can construct a confidence interval as a test of H_0 .

4 Multivariate case: same hypothesis as above, except μ and μ_0 are vectors. Statistic

$$T^{2} = (\mathbf{\bar{X}} - \mu_{\mathbf{0}})' \left(\frac{1}{n}\mathbf{S}\right)^{-1} (\mathbf{\bar{X}} - \mu_{\mathbf{0}}) = (\mathbf{\bar{X}} - \mu_{\mathbf{0}})'\mathbf{S}^{-1} (\mathbf{\bar{X}} - \mu_{\mathbf{0}})$$

note: T^2 is the multivariate analogue of $t^2 = (\frac{\bar{X} - \mu_0}{s/\sqrt{n}})^2$ and T^2 is called $Hotelling's\ T^2$; its distribution is

$$T^2 \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$
 where $p = dimension(\mu)$

and n is the sample size. We can calculate

$$\alpha = P \left[T^2 > \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha) \right]$$

$$= P \left[(\mathbf{\bar{X}} - \mu_0)' \mathbf{S}^{-1} (\mathbf{\bar{X}} - \mu_0) > \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha) \right]$$

- 5 T^2 is invariant under linear transformations, multiplying the data vector \mathbf{X} by a matrix \mathbf{C} and or adding a vector \mathbf{d} to get $\mathbf{Y} = \mathbf{C}\mathbf{X} + \mathbf{d}$; such transformations occur when data are re-scaled or shifted. Therefore $T_{\mathbf{X}}^2 = T_{\mathbf{C}\mathbf{X}+\mathbf{d}}^2 = T_{\mathbf{Y}}^2$ and we do not need to recalculate the statistic.
- 6 To calculate $Hotelling's T^2$ and carry out the test you proceed as follows:
 - a calculate $\bar{\mathbf{X}}$ from the data vector $\mathbf{X}_{n \times p}$
 - b calculate $\mathbf{S} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{X}_{j} \bar{\mathbf{X}}) (\mathbf{X}_{j} \bar{\mathbf{X}})'$
 - c calculate $(\bar{\mathbf{X}} \mu_0)'\mathbf{S}^{-1}(\bar{\mathbf{X}} \mu_0)$ for the hypothesized value
 - obtain the α^{th} percentile $F_{\alpha} = F_{p,n-p}(\alpha)$ from the F distribution with p numerator and n-p denominator degrees of freedom and multiply F_{α} by [(n-1)p/(n-p)]; if T^2 exceeds that value, the null hypothesis is rejected at level α .

Likelihood Ratio Test (LRT)

6 General LRT: Θ parameter space with Θ_0 the subspace in which the parameter vector θ lies if H_0 is true, then the LRT is given by

$$\Lambda = \frac{\max_{\theta \in \mathbf{\Theta}_0} \mathcal{L}(\theta)}{\max_{\theta \in \mathbf{\Theta}} \mathcal{L}(\theta)} < c$$

The test rejects $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta$ if Λ is small. If the numerator is small then the restricted value that maximizes the likelihood is not very plausible. To find a p-value or critical value, we need to know the distribution of Λ . That is often difficult or intractable.

7 Fact: if the sample size n is large and some other conditions hold, then $-2ln(\Lambda) \sim \chi^2_{\nu-\nu_0}$ where $dim(\mathbf{\Theta}) = \nu$ and $dim(\mathbf{\Theta}_0) = \nu_0$

- 8 Fact: $Hotelling's\ T^2$ is the likelihood ratio test statistic for testing $H_0:\ \mu = \mu_0 \text{ vs } H_1:\ \mu \neq \mu_0$
- 9 The MLE's by definition maximize the likelihood. Therefore

$$\max_{\theta \in \mathbf{\Theta}} \mathcal{L}(\theta) = (2\pi)^{(-np/2)} |\hat{\mathbf{\Sigma}}|^{(-n/2)} e^{-np/2}$$

with
$$\hat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{x_j} - \bar{\mathbf{x}}) (\mathbf{x_j} - \bar{\mathbf{x}})'$$
 and $\hat{\mu} = \bar{\mathbf{x}}$.

10 Similarly

$$\max_{\theta \in \mathbf{\Theta}_0} \mathcal{L}(\theta) = (2\pi)^{(-np/2)} |\hat{\mathbf{\Sigma}_0}|^{(-n/2)} e^{-np/2}$$

with
$$\hat{\Sigma}_0 = \frac{1}{n} \sum_{j=1}^n (\mathbf{x_j} - \mu_0) (\mathbf{x_j} - \mu_0)'$$
 and $\hat{\mu} = \bar{\mathbf{x}}$.

11 Combining (9) and (10) yields $\Lambda = \left(\frac{|\hat{\Sigma}|}{|\hat{\Sigma}_0|}\right)^{(n/2)}$ and Wilks' lambda

$$\Lambda^{(2/n)} = \left(1 + \frac{T^2}{n-1}\right)^{(-1)} \implies T^2 = \frac{(n-1)|\hat{\Sigma}_0|}{|\hat{\Sigma}|} - (n-1)$$

Confidence Regions

1 Θ the parameter space or set of all possible values of θ . The confidence region $R(\mathbf{X})$ is a set of points such that

$$P[R(\mathbf{X})$$
 will cover the true $\theta] = 1 - \alpha$

2 A p-dimensional $(1 - \alpha)$ confidence region for the mean vector is given by the set of values such that

$$P\left[n(\bar{\mathbf{X}} - \mu)'\mathbf{S}^{-1}(\bar{\mathbf{X}} - \mu) \le \frac{(n-1)p}{n-p}F_{p,n-p}(\alpha)\right]$$

For this region $\bar{\mathbf{X}}$ will be within $[((n-1)pF_{p,n-p}(\alpha))/(n-p)]^{1/2}$ of the true mean μ for whatever the true values of μ and Σ are. For any sample value $\bar{\mathbf{x}}$ the region $n(\bar{\mathbf{x}}-\mu)'\mathbf{s}^{-1}(\bar{\mathbf{x}}-\mu) \leq \frac{(n-1)p}{n-p}F_{p,n-p}(\alpha)$ defines an ellipsoid centered at μ . This region can also be used to test the null hypothesis $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$

Simultaneous Confidence Statements

The confidence region of the previous page provides a statement about the vector μ , however, interest is often in the individual components. If we calculate individual confidence intervals, all at level $(1-\alpha)$ then the true confidence level for all components of μ simultaneously is typically less than $(1-\alpha)$. If we use the t-distribution for individual confidence intervals to get

$$\bar{x}_i - t_{n-1,(\alpha_i/2)} \sqrt{\frac{\sigma_{ii}}{n}} \le \mu_i \le \bar{x}_i + t_{n-1,(\alpha_i/2)} \sqrt{\frac{\sigma_{ii}}{n}}$$

where by above $P(C_i \text{ contains } \mu_i) = 1 - \alpha_i$, then

$$P(\text{all } C_i \text{ contain } \mu_i) = \prod_{i=1}^p (1 - \alpha_i) = (1 - \alpha)^p < 1 - \alpha$$

if
$$\alpha_i = \alpha$$
 for $i = 1, ..., p$

Bonferroni Method

The Bonferroni method adjusts the confidence level of the individual intervals to make the overall coverage level $1 - \alpha$; this requires that the number of individual confidence intervals to be calculated is determined before analysis.

$$P(\text{all } C_i \text{ contain } \mu_i) = 1 - P(\text{at least one } C_i \text{ does not})$$

$$\geq 1 - \sum_{i=1}^p P(C_i \text{ does not})$$

$$= 1 - \sum_{i=1}^p (1 - P(C_i \text{ contains } \mu_i))$$

$$= 1 - \sum_{i=1}^p \alpha_i$$

thus, we need $\alpha = \sum_{i=1}^{p} \alpha_i$, making the individual intervals wider.

To achieve a simultaneous confidence level for all components the intervals need to be wider. We want a procedure that provides coverage for all intervals simultaneously that results in the narrowest intervals possible and does not require the number of individual intervals to be pre-specified. If \mathbf{X} is p-variate normal with mean normal with mean μ and covariance matrix \mathbf{Sigma} then for any p-vector \mathbf{a} the linear combination $\mathbf{a}'\mathbf{X}$ is univariate normal with mean $\mathbf{a}'\mu$ and variance $\mathbf{a}'\mathbf{\Sigma}\mathbf{a}$. Then a CI for $\mathbf{a}'\mu$ can be based on $\mathbf{a}'\bar{\mathbf{x}}$ for a sample $\mathbf{x}_1, ..., \mathbf{x}_n$. We would like to find linear combination s.t.

$$\max_{\mathbf{a}} t^2 = \max_{\mathbf{a}} \frac{n(\mathbf{a}'(\bar{\mathbf{x}} - \mu))^2}{\mathbf{a}'\mathbf{S}\mathbf{a}}$$

If we find this \mathbf{a}_{max} then any $(1 - \alpha)$ CI for $(\mathbf{a}'\mu)$ will also have confidence coefficient $(1 - \alpha)$ for any other vector \mathbf{a} ; in particular it will hold for $\mathbf{a}' = (0, ..., 1, 0..0)$ with 1 in the i^{th} position, which leads to a CI for μ_i .

Fact

$$\mathbf{a}_{max} \propto S^{-1}(\mathbf{X} - \mu)$$

leading to

$$\max_{\mathbf{a}} t^2 = n(\bar{\mathbf{X}} - \mu)' S^{-1}(\bar{\mathbf{X}} - \mu) = T^2$$

from this we get for any other linear combination $\mathbf{a}'\mu$, the $(1-\alpha)$ CI is

$$\mathbf{a}'\bar{\mathbf{x}} - \sqrt{\frac{p(n-1)}{n(n-p)}}F_{p,n-p,\alpha}\mathbf{a}'S\mathbf{a} \le \mathbf{a}'\mu \le \mathbf{a}'\bar{\mathbf{x}} + \sqrt{\frac{p(n-1)}{n(n-p)}}F_{p,n-p,\alpha}\mathbf{a}'S\mathbf{a}$$