Chap 6. Graphs

Graph

- 망(network) 구조의 데이터를 표현하기 위한 자료 구조
 - Set of nodes
 - Set of edges
- Terminologies
 - Node, vertex
 - Edge, arc: a pair of nodes
 - Undirected graph
 - Directed graph
 - Complete graph
 - Subgraph
 - Path
 - Cycle, acyclic graph
 - (Connected) component
 - Strongly connected component
 - Degree of a node
 - In-degree
 - Out-degree
 - Adjacency
 - Weighted graph

Representations of a graph

- Adjacency matrix
- Adjacency list

Representations of a weighted graph

- Adjacency matrix
- Adjacency list

	S	L	R	M
	0	10	15	0
L	10	0	20	30
R	15 0	20	0	0
М	L 0	30	0	0 _

Traversal of a graph

- Depth first search
- Breadth first search
 - Use a queue
- Example
 - dfs(S): S, L, M, R
 - bfs(S): S, L, R, M

Spanning tree

- Spanning tree of graph G
 - Acyclic subgraph of G including all the nodes of G

Minimum cost spanning tree

- Weighted undirected graph
- Cost = sum of the weights
- Minimum cost spanning tree
 - The spanning tree whose cost is minimum
- Greedy methods
 - Kruskal's algorithm
 - Prim's algorithm
 - Sollin's algorithm

Kruskal's algorithm

- Start with all the nodes w/o an edge
- Add min cost edge unless it creates a cycle

M

Repeat until a tree is obtained

10

Prim's algorithm

- Strat with any node x, & initializae NodeSet = { x }
- Add min cost edge (a,b) s.t. a ∈ NodeSet & b ∉ NodeSet
- Update NodeSet by adding b
- Repeat until a tree is obtained

30

M

Sollin's algorithm

- Start with a forest of trees, each of which consists of a single node
- For each tree T, add min cost edge (a,b) s.t. a is in T & b is not in T
- Remove duplicate edges
- Repeat until a tree is obtained

Shortest paths

- Weighted directed graph
- Path length = sum of weights in the path
- Example
 - Source = S, destination = M
 - Paths(length): SLM(27), SRM(19), SLRM(16), SRLM(60)
 - Shortest path: SLRM
- Dijkstra's algorithm
- Single source to all destinations
- Example: src = S
 - S (0)
 - $S \rightarrow L(2)$
 - $S \rightarrow L \rightarrow R (12)$
 - $S \rightarrow L \rightarrow R \rightarrow M$ (16)

Shortest paths(2)

- Observations
 - Principle of optimality
- Shortest paths are obtained one by one in increasing order of lengths
 - The path from src to src (length 0)
 - •
 - The shortest path from src to the "farthest" destination
- Arrays used
 - found[i]: True if shortest path from src to destination node i has been found
 - distance[i]: recording shortest distance from src to destination node i
 - predecessor[i]: recording the predecessor node of node i

Shortest paths(3)

- Example: src = S
 - 1. S (0)
 - 2. $S \to L(2)$
 - 3. $S \rightarrow L \rightarrow R (12)$
 - 4. $S \rightarrow L \rightarrow R \rightarrow M$ (16)

	S	L	R	М
found[]	TRUE	FALSE	FALSE	FALSE
dist[]	0	2	15	00
pred[]	undefined	S	S	undefined
	S	L	R	M
found[]	TRUE	TRUE	FALSE	FALSE
dist[]	0	2	12	27
pred[]	undefined	S	L	L
	S	Г	R	M
found[]	TRUE	TRUE	TRUE	FALSE
dist[]	0	2	12	16
pred[]	undefined	S	L	R