A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 3EC

Bookmark

Show all steps: (

ON

Problem

In $\mathbb{Z}_{10}[x]$, $(2x+2)(2x+2) = (2x+2)(5x^3+2x+2)$, yet (2x+2) cannot be canceled in this equation. Explain why this is possible in 10[x], but not in $\mathbb{Z}_5[x]$.

Step-by-step solution

Step 1 of 2

Consider an equation

$$(2x+2)(2x+2) = (2x+2)(5x^3+2x+2)$$
(1)

Now prove (2x+2) cannot be cancelled in this equation when ring in $\mathbb{Z}_{10}[x]$.

Suppose (2x+2) can be cancelled in this equation in the ring $\mathbb{Z}_{10}[x]$.

Then,

$$(2x+2)=(5x^3+2x+2)$$

Bring (2x+2) in to R.H.S

Then,

$$5x^3 + 2x + 2 - 2x - 2 = 0$$

 $5x^3 = 0$ (2)

Which implies $5x^3$ is a zero polynomial.

But $5x^3$ is third degree polynomial in $\mathbb{Z}_{10}[x]$ and it cannot be a zero polynomial.

That contradicts the assumption (2x+2) can be cancelled in this equation in the ring $\mathbb{Z}_{10}[x]$.

That implies (2x+2) cannot be cancelled in $(2x+2)(2x+2)=(2x+2)(5x^3+2x+2)$ equation when ring in $\mathbb{Z}_{10}[x]$.

Comment

Step 2 of 2

Now consider the ring $\mathbb{Z}_{5}[x]$ and the equation.

$$(2x+2)(2x+2) = (2x+2)(5x^3+2x+2)$$

Theorem 1: If A is an integral domain then A[x] is also an integral domain.

Theorem 2: If p is a prime number the ring \mathbb{Z}_p is an integral domain.

Theorem 3: Let a,b and c belong to an integral domain. If $a \neq 0$ and ab = ac, then b = c.

Here, 5 is a prime number then by applying "Theorem 2" \mathbb{Z}_5 is an integral domain.

Then by applying "Theorem 1" $\mathbb{Z}_{5}[x]$ is an integral domain.

By using "Theorem 3", (2x+2) can be cancelled in the equation.

Comment