The Construction of the Unique Ordered Field

Math 295 - Honors Mathematics I Professor Sarah Koch University of Michigan

Jinyan Miµ Fall 2020

The Construction of the Unique Ordered Field

Axiom 1 (Peano Axioms)

There exists a triple $(\mathbb{N}', \sigma, 1_{\mathbb{N}})$ such that the followings hold:

- 1. \mathbb{N}' is a set, and the element $1_{\mathbb{N}}$ belongs to \mathbb{N}'
- 2. $\sigma: \mathbb{N}' \to \mathbb{N}'$ is an injective function, and $\forall n \in \mathbb{N}', \ \sigma(n) \neq 1_{\mathbb{N}}$
- 3. For $S \subset \mathbb{N}'$, if $1_{\mathbb{N}} \in S$ and $m \in S$, then $\sigma(m) \in S$, and hence $S = \mathbb{N}'$

Theorem 1.1 (Principle of Recursive Definition)

Let X be a set, let $\varphi: X \to X$ be a function, let $a \in X$, then there exists a unique function $f: \mathbb{N}' \to X$ such that $f(1_{\mathbb{N}}) = a$, and $\forall n \in \mathbb{N}'$, we have $f(\sigma(n)) = \varphi(f(n))$

Definition 1.1.0.0.1

Let $m \in \mathbb{N}'$, let $a = \sigma(m)$. By the Principle of Recursive Definition, for the function σ given in the Peano axiom, we can define a unique new function $f_m : \mathbb{N}' \to \mathbb{N}'$ such that $f_m(1_{\mathbb{N}}) = \sigma(m) = a$, and $\forall n \in \mathbb{N}'$, we have $f_m(\sigma(n)) = \sigma(f_m(n))$.

Definition 1.1.0.0.2

Let $m, n \in \mathbb{N}'$, $m +_{\mathbb{N}} n := f_m(n)$

Definition 1.1.0.0.3

Let $m \in \mathbb{N}'$. By the Principle of Recursive Definition, for the function $f_m : \mathbb{N}' \to \mathbb{N}'$, we can define a unique new function $\mu_m : \mathbb{N}' \to \mathbb{N}'$ s.t. $\mu_m(1_{\mathbb{N}}) = m$, and $\forall n \in \mathbb{N}'$, we have $\mu_m(\sigma(n)) = f_m(\mu_m(n))$

Definition 1.1.0.0.4

Let $m, n \in \mathbb{N}'$, $m \cdot_{\mathbb{N}} n := \mu_m(n)$. For notation, we write $m *_{\mathbb{N}} n = m \cdot_{\mathbb{N}} n$

Lemma 1.1.1

Let $m, n, q \in \mathbb{N}'$, we have $f_1(n) = \sigma(n)$, $\mu_1(n) = n$, and $(m = n) \iff (m +_{\mathbb{N}} q = n +_{\mathbb{N}} q)$

Lemma 1.1.2

For $m, n \in \mathbb{N}'$ with $m \neq n$, exactly one of the followings holds:

- 1. If $\exists ! \ r \in \mathbb{N}' \ s.t. \ m = n +_{\mathbb{N}} r$, then we write $m >_{\mathbb{N}} n$
- 2. If $\exists ! \ r \in \mathbb{N}' \ s.t. \ n = m +_{\mathbb{N}} r$, then we write $n >_{\mathbb{N}} m$

Corollary 1.1.2.1

For $m, n \in \mathbb{N}'$, we have Trichotomy holds:

$$1 \quad m=n$$

2.
$$m >_{\mathbb{N}} n$$

$$3. n >_{\mathbb{N}} m$$

Definition 1.1.2.1.1

Let S be a set, a Relation on S is a subset of $S \times S$. Let R be a relation on S, and let $x, y \in S$, we write xRy whenever $(x, y) \in \mathbb{R}$.

Definition 1.1.2.1.2

Let S be a set, let R be a relation on S, R is called an Equivalence Relation on S provided that the followings hold:

- 1. R is reflexive, that is, $\forall s \in S$, we have sRs
- 2. R is symmetric, that is, $\forall s, t \in S$, if sRt, then tRs
- 3. R is transitive, that is, $\forall s, t, u \in S$, if sRt and tRu, then sRu

If R is an equivalence relation on S, then for $s, t \in S$, we write $s \sim t$ whenever $(s, t) \in \mathbb{R}$

Definition 1.1.2.1.3

Let S be a set, let \sim be an equivalence relation on S, let $x \in X$, $C(x) := \{y \in S \mid y \sim x\}$ is called the Class of x, or the Equivalence Class of x. For notation, we write C(x) = [x]

Definition 1.1.2.1.4

Let S be a set, and let \sim be an equivalence relation on S, $S/\sim := \{C(x) \mid x \in X\}$ is called the Quotient of X by \sim , or the Factor Set of X by \sim .

Definition 1.1.2.1.5

Let $m, n, l, q \in \mathbb{N}'$, let $\sim_{\mathbb{Z}}$ be a relation on $(\mathbb{N}' \times \mathbb{N}')$ with $(n, m) \sim_{\mathbb{Z}} (l, q) \iff n +_{\mathbb{N}} q = l +_{\mathbb{N}} m$. $\mathbb{Z}' := (\mathbb{N}' \times \mathbb{N}') /_{\sim_{\mathbb{Z}}}$

Lemma 1.1.3

The relation $\sim_{\mathbb{Z}}$ is an equivalence relation on the set $\mathbb{N}' \times \mathbb{N}'$

Definition 1.1.3.0.1

 $0_{\mathbb{Z}} \coloneqq [(1_{\mathbb{N}}, 1_{\mathbb{N}})].$

Definition 1.1.3.0.2

 $1_{\mathbb{Z}} := [(1_{\mathbb{N}} +_{\mathbb{N}} 1_{\mathbb{N}}, 1_{\mathbb{N}})].$

Definition 1.1.3.0.3

Let $[(a,b)] \in \mathbb{Z}', -[(a,b)] := [(b,a)].$

Definition 1.1.3.0.4

Let $[(n,m)], [(l,k)] \in \mathbb{Z}', [(n,m)] +_{\mathbb{Z}} [(l,k)] := [(n +_{\mathbb{N}} l, m +_{\mathbb{N}} k)].$

Definition 1.1.3.0.5

Let $[(n,m)], [(l,k)] \in \mathbb{Z}', [(n,m)] -_{\mathbb{Z}} [(l,k)] := [(n,m)] +_{\mathbb{Z}} -[(l,k)].$

Definition 1.1.3.0.6

 $Let \ [(n,m)], [(l,k)] \in \mathbb{Z}', \ [(n,m)] *_{\mathbb{Z}} [(l,k)] \coloneqq [(n *_{\mathbb{N}} l +_{\mathbb{N}} m *_{\mathbb{N}} k, m *_{\mathbb{N}} l +_{\mathbb{N}} n *_{\mathbb{N}} k)].$

Lemma 1.1.4

Let $[(m,n)], [(p,q)] \in \mathbb{Z}'$, exactly one of the followings hold:

- 1. $m +_{\mathbb{N}} q >_{\mathbb{N}} p +_{\mathbb{N}} n$, then we write $[(m,n)] >_{\mathbb{Z}} [(p,q)]$
- 2. $m +_{\mathbb{N}} q <_{\mathbb{N}} p +_{\mathbb{N}} n$, then we write $[(m,n)] <_{\mathbb{Z}} [(p,q)]$
- 3. [(m,n)] = [(p,q)]

Theorem 1.2

Let $i_{\mathbb{N}}: \mathbb{N}' \to \mathbb{Z}'$ $n \mapsto [(n+1_{\mathbb{N}}, 1_{\mathbb{N}})]$ be a function, then $i_{\mathbb{N}}(\mathbb{N}') \subseteq \mathbb{Z}'$, with the followings hold:

- 1. $i_{\mathbb{N}}$ is an injection, and $i_{\mathbb{N}}(1_{\mathbb{N}}) = 1_{\mathbb{Z}}$
- 2. For $m, n \in \mathbb{N}'$, $i_{\mathbb{N}}(n +_{\mathbb{N}} m) = i_{\mathbb{N}}(n) +_{\mathbb{Z}} i_{\mathbb{N}}(m)$
- 3. For $m, n \in \mathbb{N}'$, $i_{\mathbb{N}}(n *_{\mathbb{N}} m) = i_{\mathbb{N}}(n) *_{\mathbb{Z}} i_{\mathbb{N}}(m)$
- 4. For $m, n \in \mathbb{N}'$, $(n >_{\mathbb{N}} m) \iff (i_{\mathbb{N}}(n) >_{\mathbb{Z}} i_{\mathbb{N}}(m))$
- 5. For $m, n \in \mathbb{N}'$, $(n <_{\mathbb{N}} m) \iff (i_{\mathbb{N}}(n) <_{\mathbb{Z}} i_{\mathbb{N}}(m))$

Definition 1.2.0.0.1

Let $a,b,c,d \in \mathbb{Z}'$, let $\sim_{\mathbb{Q}}$ be a relation on $(\mathbb{Z}' \times (\mathbb{Z}' \setminus \{0_{\mathbb{Z}}\}))$ with $(a,b) \sim_{\mathbb{Q}} (c,d) \iff a *_{\mathbb{Z}} d = b *_{\mathbb{Z}} c$. $\mathbb{Q}' \coloneqq (\mathbb{Z}' \times (\mathbb{Z}' \setminus \{0_{\mathbb{Z}}\}))/\sim_{\mathbb{Q}}$

Lemma 1.2.1

The relation $\sim_{\mathbb{Q}}$ is an equivalence relation on the set $\mathbb{Z}' \times (\mathbb{Z}' \setminus \{0_{\mathbb{Z}}\})$

Definition 1.2.1.0.1

 $0_{\mathbb{Q}} \coloneqq [(0_{\mathbb{Z}}, 1_{\mathbb{Z}})].$

Definition 1.2.1.0.2

 $1_{\mathbb{Q}} := [(1_{\mathbb{Z}}, 1_{\mathbb{Z}})].$

Definition 1.2.1.0.3

Let $[(a,b)] \in \mathbb{Q}', -[(a,b)] := [(-a,b)].$

Definition 1.2.1.0.4

Let $[(a,b)] \in \mathbb{Q}'$ with $a \neq 0_{\mathbb{Z}}$, $[(a,b)]^{-1} := [(b,a)]$.

Definition 1.2.1.0.5

 $Let \ [(a,b)], [(c,d)] \in \mathbb{Q}', \ [(a,b)] +_{\mathbb{Q}} [(c,d)] \coloneqq [(a *_{\mathbb{Z}} d +_{\mathbb{Z}} b *_{\mathbb{Z}} c, b *_{\mathbb{Z}} d)].$

Definition 1.2.1.0.6

Let $[(a,b)], [(c,d)] \in \mathbb{Q}', [(a,b)] -_{\mathbb{Q}} [(c,d)] := [(a,b)] +_{\mathbb{Q}} -[(c,d)].$

Definition 1.2.1.0.7

 $Let \; [(a,b)], [(c,d)] \in \mathbb{Q}', \; [(a,b)] *_{\mathbb{Q}} [(c,d)] \coloneqq [(a *_{\mathbb{Z}} c, b *_{\mathbb{Z}} d)].$

Definition 1.2.1.0.8

Let $[(a,b)], [(c,d)] \in \mathbb{Q}'$ with $c \neq 0_{\mathbb{Z}}, \frac{[(a,b)]}{[(c,d)]} := [(a,b)] *_{\mathbb{Q}} [(c,d)]^{-1}$.

Lemma 1.2.2

Let $[(a,b)], [(c,d)] \in \mathbb{Q}'$, exactly one of the followings hold:

- 1. $a *_{\mathbb{Z}} d >_{\mathbb{Z}} b *_{\mathbb{Z}} c$, and $b *_{\mathbb{Z}} d >_{\mathbb{Z}} 0_{\mathbb{Z}}$, then we write $[(a,b)] >_{\mathbb{Q}} [(c,d)]$
- 2. $a *_{\mathbb{Z}} d <_{\mathbb{Z}} b *_{\mathbb{Z}} c$, and $b *_{\mathbb{Z}} d <_{\mathbb{Z}} 0_{\mathbb{Z}}$, then we write $[(a,b)] >_{\mathbb{Q}} [(c,d)]$
- 3. $a *_{\mathbb{Z}} d <_{\mathbb{Z}} b *_{\mathbb{Z}} c$, and $b *_{\mathbb{Z}} d >_{\mathbb{Z}} 0_{\mathbb{Z}}$, then we write $[(a,b)] <_{\mathbb{Q}} [(c,d)]$
- 4. $a *_{\mathbb{Z}} d >_{\mathbb{Z}} b *_{\mathbb{Z}} c$, and $b *_{\mathbb{Z}} d <_{\mathbb{Z}} 0_{\mathbb{Z}}$, then we write $[(a,b)] <_{\mathbb{Q}} [(c,d)]$
- 5. [(a,b)] = [(c,d)]

Definition 1.2.2.0.1

The function $|\cdot|_{\mathbb{Q}}: \mathbb{Q}' \to \mathbb{Q}'$ $x \mapsto \begin{cases} x & x >_{\mathbb{Q}} 0_{\mathbb{Q}} \\ -x & x <_{\mathbb{Q}} 0_{\mathbb{Q}} \end{cases}$ is called the Absolute Value function on \mathbb{Q}' $0_{\mathbb{Q}}$ $x = 0_{\mathbb{Q}}$

Theorem 1.3

Let $i_{\mathbb{Z}}: \mathbb{Z}' \to \mathbb{Q}'$ $n \mapsto [(n, 1_{\mathbb{Z}})]$ be a function, then we have $i_{\mathbb{Z}}(\mathbb{Z}') \subseteq \mathbb{Q}'$, with the followings hold:

- 1. $i_{\mathbb{Z}}$ is an injection, with $i_{\mathbb{Z}}(1_{\mathbb{Z}}) = 1_{\mathbb{Q}}$ and $i_{\mathbb{Z}}(0_{\mathbb{Z}}) = 0_{\mathbb{Q}}$
- 2. For $m, n \in \mathbb{Z}'$, $i_{\mathbb{Z}}(n +_{\mathbb{Z}} m) = i_{\mathbb{Z}}(n) +_{\mathbb{Q}} i_{\mathbb{Z}}(m)$
- 3. For $m, n \in \mathbb{Z}'$, $i_{\mathbb{Z}}(n *_{\mathbb{Z}} m) = i_{\mathbb{Z}}(n) *_{\mathbb{Q}} i_{\mathbb{Z}}(m)$
- 4. For $m, n \in \mathbb{Z}'$, $(n >_{\mathbb{Z}} m) \iff (i_{\mathbb{Z}}(n) >_{\mathbb{O}} i_{\mathbb{Z}}(m))$
- 5. For $m, n \in \mathbb{Z}'$, $(n <_{\mathbb{Z}} m) \iff (i_{\mathbb{Z}}(n) <_{\mathbb{Q}} i_{\mathbb{Z}}(m))$

Definition 1.3.0.0.1

Any function of the form $seq : \mathbb{N}' \to \mathbb{Q}'$ $n \mapsto q_n$ is called a Sequence in \mathbb{Q}' , the function seq is denoted as (q_n) or $n \mapsto q_n$

Definition 1.3.0.0.2

Let (q_n) be a sequence in \mathbb{Q}' , (q_n) is said to be Cauchy provided that for all $L \in \mathbb{N}'$, $\exists N \in \mathbb{N}'$ s.t. $\forall n, m \in \mathbb{N}'$ with $m >_{\mathbb{N}} N$ and $n >_{\mathbb{N}} N$, we have $|q_n - \mathbb{Q}| q_m|_{\mathbb{Q}} <_{\mathbb{Q}} \frac{1\mathbb{Q}}{i_{\mathbb{Z}}(i_N(L))}$

Definition 1.3.0.0.3

Let $(a_n), (b_n)$ be Cauchy sequences in \mathbb{Q}' , we write $\lim_{n\to\infty} (a_n - \mathbb{Q} b_n) = 0_{\mathbb{Q}}$ provided that for all $L \in \mathbb{N}', \ \exists \ N \in \mathbb{N}' \ s.t. \ \forall n \in \mathbb{N}' \ with \ n \geq N, \ we \ have \ |a_n -_{\mathbb{Q}} b_n|_{\mathbb{Q}} <_{\mathbb{Q}} \frac{1_{\mathbb{Q}}}{i_{\mathbb{Z}}(i_{\mathbb{N}}(L))}$

Definition 1.3.0.0.4

 $\mathscr{C}_{\mathbb{Q}} \coloneqq \{(q_n) \mid (q_n) \text{ is a Cauchy sequence in } \mathbb{Q}' \}$

Definition 1.3.0.0.5

Let $\sim_{\mathbb{R}}$ be a relation on $\mathscr{C}_{\mathbb{Q}}$ with $(a_n) \sim_{\mathbb{R}} (b_n) \iff \lim_{n \to \infty} (a_n - \mathbb{Q}) b_n = 0$

Lemma 1.3.1

The relation $\sim_{\mathbb{R}}$ is an equivalence relation on the set $\mathscr{C}_{\mathbb{Q}}$

Definition 1.3.1.0.1

 $\mathbb{R} \coloneqq \mathscr{C}_{\mathbb{Q}}/\sim_{\mathbb{R}}$ is called the set of real numbers

Definition 1.3.1.0.2

Let $(\frac{1}{n})$ denote the sequence $seq: \mathbb{N}' \to \mathbb{Q}'$ $n \mapsto \frac{1_{\mathbb{Q}}}{i_{\mathbb{Z}}(i_{\mathbb{N}}(n))}, \ 0_{\mathbb{R}} \coloneqq [(\frac{1}{n})]$

Definition 1.3.1.0.3

Let $(\frac{1+n}{n})$ denote the sequence $seq: \mathbb{N}' \to \mathbb{Q}'$ $n \mapsto \frac{1_{\mathbb{Q}} + i_{\mathbb{Z}}(i_{\mathbb{N}}(n))}{i_{\mathbb{Z}}(i_{\mathbb{N}}(n))}, 1_{\mathbb{R}} \coloneqq [(\frac{n+1}{n})]$

Definition 1.3.1.0.4

Let $[(a_n)] \in \mathbb{R}, -[(a_n)] := [(-a_n)]$

Definition 1.3.1.0.5

Let $[(a_n)], [(b_n)] \in \mathbb{R}, [(a_n)] +_{\mathbb{R}} [(b_n)] := [(a_n +_{\mathbb{Q}} b_n)]$

Definition 1.3.1.0.6

Let $[(a_n)], [(b_n)] \in \mathbb{R}, [(a_n)] -_{\mathbb{R}} [(b_n)] := [(a_n)] +_{\mathbb{R}} -[(b_n)]$

Definition 1.3.1.0.7

Let $[(a_n)], [(b_n)] \in \mathbb{R}, [(a_n)] *_{\mathbb{R}} [(b_n)] := [(a_n *_{\mathbb{Q}} b_n)]$

Lemma 1.3.2

Let $[(a_n)] \in \mathbb{R}$ with $[(a_n)] \neq 0_{\mathbb{R}}$, then $\exists N \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$, we have $a_n \neq 0_{\mathbb{Q}}$. Let (b_k) be a subsequence of (a_n) with $b_k = 1_{\mathbb{Q}}$ for $1 \leq k \leq N$, and $b_k = \frac{1_{\mathbb{Q}}}{a_k}$ for k > N, then (b_k) belongs to $\mathscr{C}_{\mathbb{Q}}$ and we have $[(a_n)] *_{\mathbb{R}} [(b_n)] = 1_{\mathbb{R}}$, we write $[(a_n)]^{-1} := [(b_n)]$.

Definition 1.3.2.0.1

Let $[(a_n)], [(b_n)] \in \mathbb{R}$ with $[(b_n)] \neq 0_{\mathbb{R}}, \frac{[(a_n)]}{[(b_n)]} := [(a_n)] *_{\mathbb{R}} [(b_n)]^{-1}$

Lemma 1.3.3

Let $[(a_n)], [(b_n)] \in \mathbb{R}$, exactly one of the followings hold:

- 1. If $\exists N \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N} \text{ with } n >_{\mathbb{N}} N, \text{ we have } (a_n -_{\mathbb{Q}} b_n) >_{\mathbb{Q}} 0_{\mathbb{Q}}, \text{ then we write } [(a_n)] >_{\mathbb{R}} [(b_n)]$
- 2. If $\exists N \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N} \text{ with } n >_{\mathbb{N}} N, \text{ we have } (b_n -_{\mathbb{Q}} a_n) >_{\mathbb{Q}} 0_{\mathbb{Q}}, \text{ then we write } [(a_n)] <_{\mathbb{R}} [(b_n)]$
- 3. $[(a_n)] = [(b_n)]$

Definition 1.3.3.0.1

The function $|\cdot|: \mathbb{R} \to \mathbb{R}$ $x \mapsto \begin{cases} x & x >_{\mathbb{R}} 0_{\mathbb{R}} \\ -x & x <_{\mathbb{R}} 0_{\mathbb{R}} \end{cases}$ is called the Absolute Value function on \mathbb{R} $0_{\mathbb{R}}$ $x = 0_{\mathbb{R}}$

Theorem 1.4

Let $i_{\mathbb{O}}: \mathbb{Q}' \to \mathbb{R}$ $n \mapsto [(n, n, \dots, n, \dots)]$ be a function, then $i_{\mathbb{O}}(\mathbb{Q}') \subseteq \mathbb{R}$, with the followings hold:

- 1. $i_{\mathbb{Q}}$ is an injection, with $i_{\mathbb{Q}}(1_{\mathbb{Q}}) = 1_{\mathbb{R}}$ and $i_{\mathbb{Q}}(0_{\mathbb{Q}}) = 0_{\mathbb{R}}$
- 2. For $m, n \in \mathbb{Q}'$, $i_{\mathbb{Q}}(n +_{\mathbb{Q}} m) = i_{\mathbb{Q}}(n) +_{\mathbb{R}} i_{\mathbb{Q}}(m)$
- 3. For $m, n \in \mathbb{Q}'$, $i_{\mathbb{Q}}(n *_{\mathbb{Q}} m) = i_{\mathbb{Q}}(n) *_{\mathbb{R}} i_{\mathbb{Q}}(m)$
- 4. For $m, n \in \mathbb{Q}'$, $(n >_{\mathbb{Q}} m) \iff (i_{\mathbb{Q}}(n) >_{\mathbb{R}} i_{\mathbb{Q}}(m))$
- 5. For $m, n \in \mathbb{Q}'$, $(n <_{\mathbb{Q}} m) \iff (i_{\mathbb{Q}}(n) <_{\mathbb{R}} i_{\mathbb{Q}}(m))$

Definition 1.4.0.0.1

The set $\mathbb{N} := i_{\mathbb{Q}}(i_{\mathbb{Z}}(i_{\mathbb{N}}(N')))$ is called the set of Natural Numbers

The set $\mathbb{Z} := i_{\mathbb{Q}}(i_{\mathbb{Z}}(Z'))$ is called the set of Integers

The set $\mathbb{Q} := i_{\mathbb{Q}}(Q')$ is called the set of Rational Numbers

Definition 1.4.0.0.2

 $0 := 0_{\mathbb{R}}$

 $1 := 1_{\mathbb{R}}$

 $2 \coloneqq 1 + 1$

Definition 1.4.0.0.3

Let $m, n \in \mathbb{R}$

 $m+n\coloneqq m+_{\mathbb{R}}n$

 $m*n \coloneqq m*_{\mathbb{R}} n$

 $m-n \coloneqq m -_{\mathbb{R}} n$

 $(m < n) \iff (m <_{\mathbb{R}} n)$

 $(m > n) \iff (m >_{\mathbb{R}} n)$

Definition 1.4.0.0.4

Any function of the form $seq : \mathbb{N} \to \mathbb{R}$ $n \mapsto r_n$ is called a Sequence in of Real Numbers, the function seq is denoted as r_n or $n \mapsto r_n$

Definition 1.4.0.0.5

Let (r_n) be a sequence of real numbers, (r_n) is said to be Cauchy provided that for all $\epsilon \in \mathbb{R}$ with $\epsilon > 0, \; \exists \; N \in \mathbb{N} \; s.t. \; \forall n, m \in \mathbb{N} \; with \; m > N \; and \; n > N, \; we \; have \; |r_n - r_m| < \epsilon$

Definition 1.4.0.0.6

Let (r_n) be a sequence of real numbers, (r_n) converges to some $l \in \mathbb{R}$ provided that for all $\epsilon \in \mathbb{R}$ with $\epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$ with n > N, we have $|r_n - l| < \epsilon$. If (r_n) converges, then we say (r_n) is a Convergent Sequence of real numbers in the Euclidean topology. If (r_n) converges to some $l \in \mathbb{R}$, then $\lim_{n \to \infty} r_n := l$ is called the limit of (r_n)

Theorem 1.5

Let $r \in \mathbb{R}$, for $w \in \mathbb{Q}$ with w > 0, $\exists q \in \mathbb{Q}$ s.t. |r - q| < w

Lemma 1.5.1

Q is Archimedean, that is, the followings hold:

- 1. For $q \in \mathbb{Q}$, $\exists N \in \mathbb{N} \ s.t. \ N > q$
- 2. For $q \in \mathbb{Q}$ with q > 0, $\exists N \in \mathbb{N}$ s.t. $\frac{1}{N} < q$

Lemma 1.5.2

Let (x_n) be a Cauchy sequence of real numbers, then (x_n) converges to some $l \in \mathbb{R}$

Lemma 1.5.3

Let (x_n) be a sequence of real numbers. If (x_n) is monotonic and bounded, then (x_n) is Cauchy.

Corollary 1.5.3.1

All bounded monotonic sequences of real numbers converge

Theorem 1.6

The ordered field $(\mathbb{R}, +, *, 1, 0, <)$ has the least upper bound property

Definition 1.6.0.0.1

Let $(F_1, +_1, *_1, 0_1, 1_1)$ and $(F_2, +_2, *_2, 0_2, 1_2)$ be fields, the field $(F_1, +_1, *_1, 0_1, 1_1)$ is isomorphic to the field $(F_2, +_2, *_2, 0_2, 1_2)$ provided that there exists a bijection $\varphi : F_1 \to F_2$ such that $\forall x, y \in F_1$, we have the followings hold:

- 1. $\varphi(x+y) = \varphi(x) + \varphi(y)$
- 2. $\varphi(x *_1 y) = \varphi(x) *_2 \varphi(y)$
- 3. $\varphi(1_1) = 1_2$

Definition 1.6.0.0.2

Let $(F_1, +_1, *_1, 0_1, 1_1, <_1)$ and $(F_2, +_2, *_2, 0_2, 1_2, <_2)$ be ordered fields, we say $(F_1, +_1, *_1, 0_1, 1_1, <_1)$ is isomorphic to $(F_2, +_2, *_2, 0_2, 1_2, <_2)$ provided that there exists a bijection $\varphi : F_1 \to F_2$ such that $\forall x, y \in F_1$, we have the followings hold:

- 1. $\varphi(x+y) = \varphi(x) + 2 \varphi(y)$
- 2. $\varphi(x *_1 y) = \varphi(x) *_2 \varphi(y)$
- 3. $\varphi(1_1) = 1_2$
- 4. If $x <_1 y$, then $\varphi(x) <_2 \varphi(y)$

Theorem 1.7

Let $(F_1, +_F, *_F, 0_F, 1_F, <_F)$ be an ordered field. If $(F_1, +_F, *_F, 0_F, 1_F, <_F)$ is a complete ordered field, then $(F_1, +_F, *_F, 0_F, 1_F, <_F)$ is isomorphic to $(\mathbb{R}, +, *, 1, 0, <)$

Definition 1.7.0.0.1

The ordered field $(\mathbb{R}, +, *, 1, 0, <)$ is called the Unique Complete Ordered field