무선 충전기 시스템 최종 프로젝트 제안서

13조

20150519 박우현 20151356 황성수 20150339 김진민 20150944 이정건

목차

Chapter 0. 무선 충전기의 원리

Chapter 1. 무선 충전기 시스템 분석

Chapter 2. 실험값

Chapter 3. 결론 및 고찰

Chapter

무선충전기의 원리

introduction

자기유도방식

자료: 무선전력전송, 무선충전 기술 및 표준화 동향(KERI), 무선전력전송 기술개발 동향(ETRI)

☞ 무선전력전송 기술 중 현재 가장 많이 쓰이고 있는 방실

introduction

perceive

reverse

future

자기유도방식의 장단점

introduction

perceive

reverse

future

전자기 유도 현상

introduction

perceive

reverse

future

전자기 유도 현상

Chapter

무선 충전기 시스템 분석

introduction

perceive

reverse

future

시스템 분석

☞ 전기 → 자기 → 전기의 변환을 거치면서 대략 <u>60%~70%</u> 효율

introductior

perceive

reverse

future

블록선도

introduction

perceive

reverse

future

회로 구성 및 전달함수

$$Mv = \frac{jknQ\omega_n}{\omega_n^2 Q^2 n^2 k^2 - \omega_n^2 Q^2 \left(1 - \frac{1}{\omega_n^2}\right) \left(n^2 - \frac{\alpha}{\omega_n^2}\right) + j\omega_n Q \left(1 - \frac{1}{\omega_n^2}\right)}$$

$$k = \frac{M}{\sqrt{L_p L_S}} \qquad Q = \frac{\omega_0 L_p}{R}$$

$$\omega_n = \frac{\omega}{\omega_0} \qquad \omega_0 = \frac{1}{\sqrt{L_p C_p}}$$

$$n = \sqrt{\frac{L_p}{L_S}} \qquad \alpha = \frac{C_p}{C_S}$$

introduction

perceive

reverse

future

무선 충전기 실험 방향

$$Q = \frac{\omega_0 L_p}{R}$$
 $k = \frac{M}{\sqrt{L_p L_s}}$ 그래프 모양에 영향

 $% C_P, C_S$ 값은 상수 취급

introduction

perceive

reverse

future

품질계수(Q)에 따른 Mv 그래프 (이론값)

introduction

perceive

reverse

future

결합계수(k)에 따른 Mv 그래프 (이론값)

Chapter

2

실험값

introduction

perceive

reverse

future

MATLAB을 이용한 전달함수 분석

```
Lp=linspace(0, 1, 1001);
Ls=linspace(0, 3, 1001);
Cp=linspace(0, 3, 1001);
Cs=linspace(0, 3, 1001);
 M=0.25;
 wn=linspace(0, 2, 1001);
 n=(Lp./Ls).^1/2;
 0 = 5
 k=M*ones(1,1001)./((Lp.*Ls).^1/2);
 a=Cp./Cs;
Mv = (j*ones(1,1001).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*k.*n.*a)./((wn.*Q.*(n.^2).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-ones(1,1001)).*a.*((k.^2)-o
 +(ones(1,1001)./wn.^2))+j*ones(1,1001).*((wn.^2).*(n.^2).*(k.^2-ones(1,1001).*)
 ,1001)+ones(1,1001)./wn.^2)+a.*(ones(1,1001)-ones(1,1001)./wn.^2)));
 z=(real(Mv).^2+imag(Mv).^2).^1/2;
 plot(wn,z)
 xlabel('wn')
ylabel('Mv')
 grid on
 hold on
```

실험값

introduction

perceive

reverse

future

실험값

introduction

perceive

reverse

future

Chapter

3

결론 및 고찰

결론 및 고찰

introduction

perceive

reverse

future

결과 정리

결론 및 고찰

introduction

perceive

reverse

future

결과 정리

$$Q = \frac{\omega_0 L_p}{R} \qquad k = \frac{M}{\sqrt{L_p L_g}}$$

그래프 모양에 영향

 $% C_P, C_S$ 값은 상수 취급

결론 및 고찰

introduction

perceive

reverse

future

고찰

매트랩 프로그램을 이용하여 수많은 시행착오 를 통하여 원하는 전달함수 그래프를 도출하는데 성공

Lp, Cp, Ls, Cs 등 알아내기 힘든 값을 상수로 가 정하고 전달함수를 계산했으므로 실제 전달함 수값과는 다른 값이 도출됨.