OATE: / /	
1. X1. X2. X3 是来自总体的样本、服从N(0,4), Yi = Xi-2X2	+X3
Y2=Yi+X2+X3. 13=X1-X3, 東PFY2 <37/2+55.5/33	
解. 电子知得. $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \begin{bmatrix} 1 & 21 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 & 6 \end{bmatrix}$	
街人, 加, 加相互独立 > Y, Yz, Xz 相互独立	
1, ~ N(0,24); 1/2~N(0,12), 1/3 ~ N(08)	,
「 Y N (0,24); Y2 N CO, 12), Y3 N N (08) 母: Y2 ~ 12(1), Y2 ~ 72(1), Y3 ~ 72(1)	*,
$\frac{1}{\frac{(\frac{1}{12} + \frac{1}{4})}{(\frac{1}{12} + \frac{1}{4})/2}} \propto f(1, 2)$	
$\frac{1. P_{1}^{2} Y_{1}^{2} < 37Y_{2}^{2} + 55.5Y_{2}^{2}}{\frac{(K^{2} + \frac{13}{9})/2}{\frac{(K^{2} + \frac{13}{9})/2}}$	
= PEF(1,2) < 373 = 0.95	
2. 总角层服从均匀分布 V(0.0)、 A的 类整分布服从于 V(0.1)、 在的只叶新位计。	Êθ
解,由日个VCO.1)。每万(日)=51·6<6<1	
业区~U(0,日). 维. fish. ?古 ××日	
: h(y) x,,, xn) α π/y) f(x,, xn) y) = (\frac{1}{2}\frac{1}{2} = y^{(-n)}) : h(y) x,, xn) α π/y) f(x,, xn) y) = (\frac{1}{2}\frac{1}{2} = y^{(-n)})	fir) (1-9
$\frac{1}{12} \left[\frac{1}{12} \left(\frac{1}{12} \right) \right] = \frac{1-1}{12} $ Outsitty pa	Øer

	DATE: / / /
3. 【~N(0.8°),样本为 X1. X1,, Xn	
11. 求8"极大似然估计。	
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A x 2
解见(δ^2) = ($\frac{1}{2\delta^2}$) = (2九	8°] = 28°
20 79	
d ln L(8) n 270 = 1 Xi2 d 8 = -2 2762 + 264.	
至 d ln L (6) -0 母: 名 - n 至 x2	DIXI= F(X)-[EXI]
V.O	2
6. MSE = E[82-82)2	$MSE(\varphi) = E[\varphi - g(\theta)]^*$
$= D(\hat{S}^2 - \delta^2) + [E(\hat{S}^2 - \delta^2)]^2$	=E[q-Eq+(Eq-910)
$= D(8^2) + [\pm (8^2 - 6^2)]^2$	=D(4)+(E4-310),
$= \left(\frac{n+1}{n}\right)^2 D(S^2) + L \frac{n+1}{n} ES^2 - S^2$	
- IN D(S) (L T) OJ	E(3)=4,
$-\frac{(h-1)^2}{n} + \frac{2\delta^4}{n} + \frac{1}{n^2} \delta^4$	$D(s^2) = \frac{2\sqrt{n}}{n-1}$
$=\frac{2n+1}{h}$ \mathcal{S}^{4}	-
	1.7
4. X. T. X.	.8), 日>0未知, 起:
Θ在署信水平1-以下区均估计。 ①.当把消费看成分差未和,对均值θ进行估	1165 10 82 04
(D.当把消越看成为善未知,对均值 (D进行估由 X~N(0.1) [h	-115 ² 2
10/n ~ N(0, 1)	P ~ (h-1)
· X-0 / IE(Z A)	<u> </u>
ND/n / (n-1)s'/ = Nn (x-0) ~ t(n-1)	Ouality paper
/N p /n-1	J.

6. 换和超影, 在 N, >10. 12/10, Ho:F, M)=F, M, H:F, M) +F_(M)
R. W (Milhithit), Milli(Mithit)) 並在1-X水平的Ho的框卷塔
F = 46
解· 进入~从(niththat) hite(nithat))
$n_{\star}(n_{\star}+n_{\star}+1)$
得: R 2 ~ N(0,1)
Vary (11 112 T)
PS R, - M, (M, the+1) > U& S = d
$\frac{1}{\sqrt{\frac{N_1N_2(N_1+N_2+1)}{12}}} > \sqrt{\frac{\alpha}{2}} - \alpha$
得拒免成为、P, >1/空 n.n.z(n,tn.+1) + n,(n,tn.+1)
h him the til
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{n_1 + n_2 + 1}{2} \right) - \frac{1}{2} \left(\frac{n_1 + n_2 + 1}{2} \right) \right)$
7. Y= XB+E, E~ N(o, S]n) X是-415×7 满铁阵
$H_0: \beta_1 = \beta_2 = \dots = \beta_6 = 0.$
(1) 利用 X 花 Cov (3, Y)
12) 填卷,并对北。作1-以北军的参数超轻
来原 彩如. 自由度 均方凝 广值
现前 55%0 5 11192 10.03.
通内 10040 1 1115.56
惠· 66000 14.
The state of the state of the state of
解, N Cov (序, Y) = (ov (1xx) · x'· Y) Y) = Cov(L'x'Y, Y)
= [x (cov (x, x) = 1-1 x 6. In (#+1=(x, x))]
Quality paper /

②. 填表
因为 X里 15 X] 的炭铁阵则 N=15、k+1=7、⇒n=15、k=6
二·自由度分别为·n-大二9· 从一一=5.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
- 10 1 Pinti 1 Po 16 TEL. t=1,, 15
Y=XPt E (矩阵形式)、其中X为己知的nx(L+y所矩阵
•
8. y=a·e·秋·E, Ine~N·(0.62)、 群東は、バン、…、(Xn, Yn)
然也 a 的最小二美 估け。
h-
解. Iny=-BX +In CX + InE-D.
多 Z=My Bo=ha、H面の式変为: Z=-BX+Bo+lnE.
又三个高的,至二个高的,从一高的一个一个一点的。
1xx== (xi-x)(zi-z)= 1xi-x)(hy;-計畫 hy;)
$\beta_1 = \frac{L_{\infty}}{L_{\infty}}$
B-1n2-豆+包又-豆+碗x
N a=e = esp(z+ + x= -x)
—————————————————————————————————————
音(X) - X) · Duality paper · 」