

Programmazone di rete: introduzione

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

A.A. 2023-2024

Comunicazione

- Dal latino : cum-munis
 - Cum = insieme
 - Munis = compito, dovere
- Significato prevalente oggi
 - Condivisione e scambio di informazione
- Cosa serve per comunicare?

Codificatore/ Trasmettitore

Trasporto

Ricevitore/ decodificatore

Esempi

Limiti?

- Le comunicazioni umane naturali richiedono prossimità e immediatezza
- Come estendere la comunicazione
 - Tempo
 - · Registrare l'informazione per un uso successivo
 - Trasmissione orale
 - Scrittura, pittura, fotografia
 - Memorizzazione elettronica
 - Spazio
 - Portare Iontano dalla sorgente l'informazione

Telecomunicazione?

- Tele (Τελε)
 - Greco antico : tele = lontano
- Telecomunicazione = comunicare lontano
- Il problema tecnico
 - Trasportare l'informazione nello spazio
 - · Quantità
 - · Qualità

Le torri di guardia genovesi in Corsica

- Tante torri in posizioni strategiche sulle coste
 - Ogni torre deve avere in vista le due adiacenti

Fantasia: Il signore degli anelli

- Con il fuoco di Amon Din il regno di Gondor chiede aiuto al regno Rohans
 - Stima della velocità di propagazione del messaggio in base alla descrizione del libro: 50 km/h
 - http://scienceblogs.com/dotphysics/2010/07/30/how-fast-isthe-beacon-of-gond/

1792 Telegrafo Claude Chappe

Speed: 500 km/h

http://www.ieee.org/organizations/history_center/cht_papers/dilhac.pdf

1795 Telegrafo Shutter

15 min to transmit from Plymouth to London

From Tricker R.L., "Optoelectronic Line Transmission", Heinemann Newnes, 1989

Un piccolo esempio

- Nel 1850 la Regina Vittoria vuole comunicare con Franklin Pierce presidente degli USA
 - Liverpool New York in circa 10 giorni
 - Round Trip Time circa 1 mese

Un significativo esempio

- Battaglia di New Orleans
 - Dal 8/1/1815 al 18/1/1815
 - Inghilterra contro USA
 - 2500 morti circa

- Ma ... c'era già la pace
 - Trattato di Ghent firmato il 24/12/1814
 - Reso noto alle truppe inglesi il 18/1/1815
 - Ratificato dal governo americano in Febbraio

Ancora un piccolo esempio

- Nel 1865 la Regina Vittoria vuole comunicare con Johnson, Andrew presidente degli USA
 - Invia un telegramma sul cavo transatlantico
 - Round Trip Time poche ore

ALMA MATER STUDIORUM

Il canale e la rete

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

Canale

- Le telecomunicazioni utilizzano canali di comunicazione
- Canale = entità logica o fisica che permette il trasporto dei singoli flussi informativi fra punti (nodi) remoti nello spazio
 - Monodirezionale
 - · L'informazione può essere trasferita in una sola direzione
 - Bidirezionale
 - · L'informazione può essere trasferita in entrambe le direzioni
 - Punto-punto
 - Un nodo è collegato con un singolo nodo
 - Punto-multipunto
 - · Un nodo può comunicare con tanti altri
 - Broadcast: un nodo trasmette allo stesso tempo a tutti i nodi della rete
 - Multicast: un nodo trasmette allo stesso tempo ad un sottoinsieme dei nodi

Perché la rete

- Due o più utenti utilizzano un mezzo fisico per realizzare un canale per comunicare
 - Configurazione statica e prefissata
 - · Il telefono delle giovani marmotte
- Una grande popolazione di utenti vuole condividere un insieme di canali per comunicare a richiesta
 - È necessario un sistema complesso che permetta il "riuso" dei canali: la rete di telecomunicazioni

Componenti della rete

Terminali

- Fungono da interfaccia con l' utente finale
- Codificano l' informazione in modo consono ad essere trasferita in rete

Collegamenti

 Permettono il trasferimento di uno o più flussi di informazione fra punti remoti nello spazio

Nodi di commutazione

 Utilizzano i mezzi trasmissivi al fine di creare canali di comunicazione sulla base degli richieste degli utenti

Topologie di rete

- Descrizione geometrica di una rete
- Rami (archi)
 - Linee di collegamento fra due nodi della rete
- Nodi
 - Punti che si trovano agli estremi dei collegamenti
- La rete è descrivibile tramite un *grafo*

Maglia completa e stella

- Un collegamento per ogni coppia di nodi
- N nodi implicano N(N-1)/2 collegamenti
 - Grande resistenza ai guasti
 - Complessità e costo

- N collegamenti
- Centro stella (attivo o passivo) deve smistare le informazioni
 - Minor costo
 - Minore resistenza ai guasti

Anello e bus

- Anello
 - Anelli monodirezionali
 - Se un collegamento si interrompe la rete si guasta
 - Anelli bidirezionali
 - Maggiore complessità per maggiore resistenza ai guasti

- Bus Attivo o passivo
 - Tipicamente semplice ed economico
 - Poco resistente ai guasti

Bus bidirezionale

- Il mezzo di trasmissione è condiviso
 - È necessario definire un opportuno protocollo di accesso (MAC)

Mezzi trasmissivi e collegamenti

- I collegamenti sono realizzati con opportuni mezzi trasmissivi
 - Spazio libero (vuoto e aria)
 - Cavi realizzati con materiali conduttori, principalmente rame
 - Fibre ottiche in vetro e plastiche

Collegamenti e canali

- Dato il mezzo trasmissivo e la topologia un collegamento viene ad avere delle caratteristiche che determinano
 - Quantità di informazione trasportabile
 - Qualità del trasporto
- Tipicamente un collegamento può essere usato per implementare più canali

Rete gerarchica

- Organizzata su più livelli
 - Terminali connessi ai nodi periferici
 - Nodi periferici connessi tramite nodi intermedi
 - Interconnessione a lunga distanza con nodi di transito tipicamente interconnessi a maglia completa

Rete di accesso e Rete di transito

Informazione, segnali, digitalizzazione

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

Ascoltiamo un pò di musica

- Questa figura mostra un grafico corrispondente all'ampiezza del segnale elettrico che pilota gli altoparlanti durante la riproduzione di un brano musicale
 - Il grafico mostra la variazione nel tempo
 - Le variazioni rappresentano l'informazione che corrisponde al brano musicale e permette di riprodurlo
 - È quello che normalmente viene chiamato un segnale analogico

Un segnale molto semplice: la sinusoide

Time

Descrivere il segnale

- La singola sinosoide ha un andamento temporale noto
- Le tre grandezze fondamentali sono sufficienti per caratterizzarla

Un caso più complesso

$$1.2\sin(2\pi 3t) + 0.7\sin(2\pi 4t + 1.4)$$

L'andamento di questo segnale nel

tempo è piuttosto difficile da descrivere

Ma

• Se ci focalizziamo su ampiezza, fase e frequenza descrivere il segnale è molto più semplice

Voice and sounds

- L'apparato vocale umano può generare suoni con frequenze approssimativamente fra 100 e 11000 Hz
 - Maschio 100-900 Hz
 - Femmina 250-11000 Hz
- L'orecchio umano può percepire suoni approssimativamente a frequenze fra 20 e 20000 Hz
- Alcuni strumenti musicali(Hz)

- Pianoforte : 27,50 - 4186

- Contrabbasso : 41,20 – 246,94

- Violino : 196 - 3136

- Flauto: 261,63 - 3349

- Chitarra: 82,41 - 880

Larghezza di banda

- Noto lo spettro sono note anche la frequena minima f_m e la frequenza massima f_M del segnale
- La larghezza di banda o banda del segnale è

$$B = f_M - f_m$$

Trasmissione dei segnali

 Scelto un certo mezzo trasmissivo ed una certa tecnologia per utilizzarlo otteniamo la banda passante del canale

Telefono

- Nella telefonia analogica tradizionale il segnale sonoro prodotto dall'utente viene filtrato e limitato nella «banda fonica» che va da 300 a 3400 Hz
- Una parte delle frequenze della voce umana è fuori dalla banda fonica
- Le frequenze fondamentali per rendere il parlato comprensibile (nelle lingue occidentali almeno) è concentrata intorno ai 2 KHz
- Il canale ha
 - banda passante inferiore a quella del segnale
 - ma sufficiente a permetterne l'utilizzo

La transizione al digitale

- Conversione Analogico/Digitale (ADC)
 - Il segnale analogico viene rappresentato in forma binaria, utilizzando le cifre 0,1 dette **bit**
- Conversione Digitale/Analogico (DAC)
 - Una sequenza di bit viene riconvertita in una segnale analogico funzione del tempo

La conversione analogico/digitale

• È caratterizzata da due fasi distinte

- Campionamento

- Il segnale analogico viene misurato in predeterminati istanti di tempo
- Viene prodotta una serie temporali di numeri corrispondenti alle misure effettuate

- Quantizzazione

• I numerici risultanti dal campionamento sono rappresentati in forma binaria utilizzando un numero di cifre predeterminato

Campionamento

T_s intervallo di campionamento

Viene creata la sequenza numerica corrispondente al segnale analogico S1, S2, ..., Sn

Intervallo di campionamento?

$$S_1 = 1$$
, $S_2 = 1$, $S_3 = 1$

Quindi segnale costante?

Sotto-campionamento (Sub-sampling)

- T_s grande
- Come mostra l'esempio si possono perdere facilmente importanti caratteristiche del segnale analogico

Intervallo di campionamento

Sovra campionamento (Over-sampling)

- T_s piccolo
- La serie numerica include tantissimi valori, che posso risultare sovrabbondanti per rappresentare il segnale

Domanda

- Qual è il miglior compromesso fra
 - Capacità di risoluzione al fine di registrare tutte le caratteristiche del segnale originale
 - Quantità di dati prodotti dalla misurazione
- È possibile determinare il valore ottimo di T_s che realizza questo compromesso in modo teorico

Il teorema di Shannon-Nyquist

- Fornisce un criterio per determinare il giusto intervallo di campionamento
- In particolare permette di determinare il minimo intervallo di campionamento che permette di ricostruire il segnale analogico in modo integrale

$$f_s \geq 2f_M$$

$$T_s = \frac{1}{f_s} < \frac{1}{2f_M}$$

Esempio per il telefono

 La banda fonica approssimativamente è caratterizzata da

$$-f_{m} = 0 \text{ Hz}$$

$$-f_{M} = 4000 \text{ Hz}$$

- Quindi B = 4 KHz
- In base al teorema di Shannon-Nyquist deve quindi essere

$$T_s < \frac{1}{2f_M} = \frac{1}{8000} = 125\mu s$$

 Quindi il campionamento di un segnale telefonico genera una sequenza di 8000 campioni al secondo

Quantizzazione

• I campioni sono rappresentati in forma binaria

Sequenza numerica

Precisione della quantizzazione Con due 2 bit

Un maggior numero di bit permette una maggior precisione nella rappresentazione dei campioni

4 numeri

00

01

10

11

110 111

Segnale-banda-bit per secondo

Bit al secondo

Numero di bit Per campione

Numero di campioni al secondo

Opportunità del digitale

Integrazione

 Formato dell'informazione unificato -> una sola tecnologia di telecomunicazione

Computazione

- I segnali diventano bit che possono essere elaborati dai calcolatori elettronici
 - · Modifica: aggiungi, estrai, combina
 - Compressione
 - Ridotto numero di bit a parità di qualità percepita
 - Cifratura
 - Riservatezza, autenticazione

Reti e servizi

Franco CALLEGATI

Servizio?

- L' offerta dei servizi di telecomunicazione è molto aumentata nell' ultimo decennio
- Una vasta popolazione di utenti "umani" fa uso "intensivo" di servizi di telecomunicazione
- Esistono caratteristiche comuni e differenze
 - Tipologia di interazione nella comunicazione
 - Modalità con cui fluiscono le informazioni
 - Tipologia di informazioni
- Vediamo alcuni esempi tra i più diffusi e quindi familiari agli utenti

ITU: tassonomia dei servizi

- Servizi interattivi: esiste interazione fra sorgente e destinazione
 - Conversazione
 - · Scambio informativo in tempo reale: telefonia, condivisione di file system
 - Messaggistica
 - Scambio informativo in tempo differito con memorizzazione: posta elettronica, SMS
 - Consultazione
 - · Scambio informativo con flusso controllato dall' utente: WWW, teledidattica
- Servizi distributivi: la sorgente diffonde informazioni in modo indipendente ad un numero imprecisato di destinazioni
 - Senza controllo di presentazione
 - L'utente di destinazione non controlla l'ordine con cui ricevere le informazione: radio/tele-diffusione
 - Con controllo di presentazione
 - L'utente di destinazione può controllare l'ordine con cui ricevere le informazione: televideo

Flusso informativo

Punto-punto

- Traferimento informativo uno a uno
 - Telefono, file transfer, posta elettronica

Punto multipulto (multicast)

- Traferimento informativo da uno a tanti
 - Mailing list, SMS a gruppi

Diffusivo (broadcast)

- Traferimento informativo da uno a tutti
 - Radio-tele diffusione

Monodirezionale

- Traferimento informativo in una sola direzione
 - Radio/tele-diffusione
 - Streaming

Bidirezionale simmetrico

- Uguale capacità per ogni direzione
 - Telefonia

Bidirezionale asimmetrico

- Diversa capacità per ogni direzione
 - ADSL

Servizi multimediali

Servizio monomediale

- Trasporta informazioni di un solo tipo
- Trasferisce più tipologie di informazione sotto forma di un solo segnale
 - Televisione: immagine e suoni in un unico segnale analogico opportunamente costruito

Servizio multimediale

- Trasporta informazioni di almeno due tipologie diverse
- Le diverse tipologie di informazioni sono trasportate dalla medesima rete ma con modalità distinte
 - Diversi protocolli
 - Differenti qualità di servizio (conformi alla tipologia di informazione)
 - Videoconferenza: voce e video bidirezionale

La qualità di servizio

- Problema di trasparenza
 - La rete può modificare l'informazione pertinente ad un dialogo
- Quality of service o QoS = qualità della comunicazione percepita dall' utente del servizio
 - È funzione delle caratteristiche di trasparenza della rete

• Trasparenza semantica

- riguarda l'integrità delle informazioni trasportate
- richiede di attuare procedure di recupero da situazioni di errore che possono insorgere nella rete

Trasparenza temporale

- riguarda la variabilità dei ritardi di transito
 - Un minimo ritardo di transito è sempre presente a causa del ritardo di propagazione

Trasparenza semantica e temporale

Indicatori di QoS

- Forniscono una misura "sintetica" della QoS
 - Probabilità di errore o perdita delle informazioni
 - Ritardo nella consegna delle informazioni
 - Variazioni del ritardo nella consegna delle informazioni (jitter)
 - Uniformità delle prestazioni (fairness)
- Applicazioni non real-time
 - Trasparenza semantica → bassa probabilità di errore
- Applicazioni real-time
 - Trasparenza temporale → basso ritardo e jitter
 - I servizi che richiedono la trasparenza temporale per la corretta interpretazione dell' informazione sono detti isocroni
 - Tipicamente quelli che si ottengono per conversione A/D, ad esempio il servizio telefonico
 - Per certi servizi è anche importante il valore di picco del ritardo di transito
 - Tale valore deve essere tanto più basso quanto maggiori sono le esigenze di interattività della comunicazione

Requisiti di QoS per diversi servizi

Application	Reliability	Delay	Jitter	Bandwidth
E-mail	High	Low	Low	Low
File transfer	High	Low	Low	Medium
Web access	High	Medium	Low	Medium
Remote login	High	Medium	Medium	Low
Audio on demand	Low	Low	High	Medium
Video on demand	Low	Low	High	High
Telephony	Low	High	High	Low
Videoconferencing	Low	High	High	High

Da A.S. Tanenbaum, "Computer Networks"

ALMA MATER STUDIORUM

Compensazione al terminale

- Un terminale per la trasmissione di un segnale audio digitale genera dati ottenuti da una conversione A/D (campioni)
- Al ricevitore i dati devono essere consegnati con la tempistica appropriata per una corretta conversione D/A
- Al ricevitore si memorizzano i campioni in una memoria tampone (playback buffer) in modo da garantire la conversione con la corretta tempistica
 - ad ogni campione viene aggiunto un ritardo di playback variabile per compensare il ritardo (aleatorio) introdotto dalla rete

Servizio e canale

- Non esiste diretta corrispondenza fra tipologia di canale e tipologia di servizio
- Ad esempio lo stesso servizio multicast può essere implementato con
 - Canali broadcast
 - Canali punto-punto
 - Architettura mista

Es: Si vuole inviare informazione ai terminali di colore verde

Passato, presente, futuro

- Le reti si sono evolute in base al servizio
 - Ogni servizio aveva la propria rete dedicata e separata dalle altre
- Dai primi anni '80 viene introdotta la digitalizzazione:
 - Le tecnologie di rete cambiano ma inizialmente i servizi rimangono inalterati
- Il XXI secolo apre alla possibilità di integrazione
 - Servizi diversi sulla stessa rete oppure stesso servizio su diverse reti
- All'incirca dal 2010 lo smartphone diviene hub delle comunicazioni personali
 - Integrazione dei servizi nel terminale

Effetti sulla rete

- Servizi diversi = requisiti diversi
- Una rete totalmente integrata nei servizi dovrebbe essere estremamente flessibile
 - Allocazione
 - Distribuzione delle risorse in conformità alle necessità del servizio
 - Gestione
 - Le richieste dei vari servizi non devono interferire (o devono farlo il meno possibile)
- Entrambi questi problemi sono ancora parzialmente irrisolti

Multiplazione, codifica e QoS

Franco CALLEGATI

Mezzi trasmissivi e canali: multiplazione

- Più canali sono trasportati dallo stesso mezzo di trasmissione (collegamento)
- Si può realizzare utilizzando
 - Tempo
 - Frequenza
 - Codice
 - Spazio
- Dal punto di vista teorico ed in condizioni ideali queste modalità sono equivalenti
 - Differiscono per modalità di implementazione
 - La tecnologia di implementazione rende più o meno conveniente una soluzione rispetto alle altre

Alternative

FDM Frequency Division Multiplexing Flusso di informazioni Flusso di informazioni Flusso di informazioni Flusso di informazioni • CDM Divisione di codice C

• TDM

• Divisione di spazio

La multiplazione a divisione di tempo

- Nelle reti numeriche viene principalmente utilizzata la multiplazione a divisione di tempo
 - Time division Multiplexing o TDM

multiplazione a divisione di tempo					
	unslotted				
framed		unframed			
assegnazione statica della banda	asseg dinamica				

TDM slotted/unslotted

TDM slotted

- l'asse dei tempi è suddiviso in intervalli di durata prefissata (slot)
- le unità informative hanno tutte la stessa lunghezza commisurata al singolo slot

TDM unslotted

- l'asse dei tempi non è suddiviso a priori
- si possono adottare unità informative di lunghezza variabile
- è necessario un sistema esplicito di delimitazione delle unità informative

TDM slotted: framed/unframed

- TDM slotted framed
 - gli slot vengono strutturati in trame (frame)
 - Si sinconizza la trama
 - non è necessaria la sincronizzazione a livello del singolo slot)

- In uno schema di multiplazione TDM slotted unframed
 - gli slot si susseguono senza una struttura predefinita
 - occorre un sistema di sincronizzazione di slot

Assegnazione della banda

- Assegnazione <u>statica</u>
 - Flusso informativo = banda dedicata (bit/sec)
 - La banda non può cambiare a comunicazione in corso
 - La richiesta complessiva di banda è ben controllabile se si controlla il numero di flussi attivi

- Assegnazione dinamica
 - Molti flussi informativi condividono liberamente la banda in base alle necessità
 - La banda può cambiare a comunicazione in corso
 - La richiesta complessiva di banda può diventare intollerabile (congestione)

S-TDM

- Esempio:
 - 4 chiamate per frame, allocazione single-slot, 8 bit per slot
 - durata slot = $25 \mu s$

durata frame = $5 \times 25 = 125 \mu s$

- banda canale = 320 kbps

banda sottocanale = 64 kbps

- Le unità informative vengono trasferite periodicamente con ritardo costante
 - ogni periodo è uguale alla durata del frame
- Come conseguenza di questa periodicità si parla di S-TDM = Synchronous Time Division Multiplexing

Sistema TDM/PCM plesiocrono

- Pulse Code Modulation (PCM) è utilizzato nella rete telefonica
- Singolo canale telefonico
 - Banda 300 Hz 4 KHz
 - Campionamento

ALMA MATER STUDIORUM e la sincronizzazione

- · Ogni 125 us (8000 campioni/sec)
- · Quantizzazione a 8 bit
 - Risultano 8*8000 = 64000 bit/s
- Multiplazione S-TDM secondo una gerarchia pedeterminata
- Framing ITU-T di primo livello (E1)
 - multipla 30 canali tributari + 2 di sincronizzazione e segnalazione
 - $64 \text{ kbps} \times 32 = 2.048 \text{ Mbps}$

Assegnazione dinamica della banda

- L'assegnazione dinamica della banda può essere effettuata sia nel caso slotted che unslotted
 - non c'è un' allocazione fissa di sottocanali alle chiamate
 - la capacità del canale può essere vista come una risorsa condivisa a cui si accede mediante una procedura di controllo
 - possono insorgere situazioni di contesa per l'utilizzo del canale
 - la presenza di unità informative di una stessa chiamata sul canale non è più necessariamente periodica
- A-TDM = Asynchronous Time Division Multiplexing
- In questo caso occorre definire:
 - le modalità di assegnazione della banda
 - le modalità di gestione delle situazioni di contesa

La rete: funzioni di rete e commutazione

Franco CALLEGATI

La rete

- In generale qual è l'obiettivo della rete?
 - Consentire una comunicazione
 - Tra una combinazione qualunque di elementi terminali
 - · Con un livello accettabile di qualità di servizio
- Combinazione qualunque di terminali
 - Riconfigurazione dinamica dell'infrastruttura
- QoS accettabile
 - Assegnazione delle risorse
 - Controllo del canale di comunicazione

L'ipercubo della rete

- Le comunicazioni fra utenti costituiscono solamente una parte delle informazioni che viaggiano in rete
 - Si deve garantire il corretto comportamento della rete
 - Si devono gestire riconfigurazioni e malfunzionamenti
 - Si devono gestire gli aspetti economici legati alla rete (tariffazione ecc.)

Funzioni di rete

Trasmissione

- Trasferimento fisico del segnale da punto a punto o da un punto a molti punti

Commutazione

- Instradamento delle informazioni all' interno della rete (nodi e collegamenti) al fine di permettere la comunicazioni fra punti terminali per soddisfare le richieste degli utenti.

Segnalazione

- Scambio delle informazioni necessarie per la gestione della comunicazione e della rete stessa
 - · Segnalazione utente e rete
 - · Segnalazione interna alla rete

Gestione

- Tutto ciò che concerne il mantenimento delle funzioni della rete; riconfigurazione di fronte ai guasti o cambiamenti strutturali, allacciamento di nuovi utenti ecc.

Tecniche di commutazione

- Esistono numerose tecniche per realizzare la funzione di commutazione
- Le due tecniche tradizionalmente utilizzate e tuttora più diffuse sono
 - Commutazione di circuito (rete telefonica)
 - · Informazione analogica o digitale
 - Commutazione di messaggio (rete telegrafica) o di pacchetto (reti di calcolatori)
 - Informazione digitale

Commutazione di circuito

- La rete crea un canale di comunicazione dedicato fra due terminali che vogliono colloquiare
 - Circuito di comunicazione
- Il circuito è riservato ad uso esclusivo dei terminali chiamante e chiamato
- Esiste quindi un *ritardo iniziale* dovuto al tempo necessario per *instaurare il circuito (call set-up time)*
 - dopo di ciò la rete è trasparente (è garantita la trasparenza temporale) per l'utente ed equivale ad un collegamento fisico diretto

Fasi della comunicazione

- Instaurazione del circuito
 - Prima che i segnali di utente possano essere trasmessi la rete deve instaurare un circuito fra terminale chiamante e terminale chiamato (circuito end-to-end).
 - Richiede un' opportuna segnalazione.

Dialogo

- I due terminali si scambiano informazioni utilizzando il circuito dedicato.
- Disconnessione del circuito
 - Al termine del dialogo il circuito deve essere rilasciato, al fine di poter essere utilizzato per altre chiamate.

Pro e contro

• Pro

- il circuito è dedicato e garantisce sicurezza ed affidabilità
- è garantita la trasparenza temporale
- le procedure di controllo sono limitate ad inizio e fine chiamata

Contro

- se le sorgenti hanno un basso tasso di attività il circuito è sottoutilizzato,
- la capacità del canale è fissata dalla capacità del circuito e non si può variare.

Commutazione di messaggio o pacchetto

- Trasporta informazioni in forma numerica
- Le informazioni di utente sono strutturate in messaggi unitamente ad opportune informazioni di segnalazione
 - indirizzamento, verifica della correttezza delle informazioni, ecc.
- Commutazione di Pacchetto:
 - i messaggi vengono suddivisi in sotto-blocchi di lunghezza massima prefissata detti pacchetti, per motivi
 - · Di linea: evitare frammenti troppo lunghi in relazione al rumore
 - · Di rete: limitare i tempi medi di attesa nei nodi
- I messaggi o i pacchetti vengono trasmessi da un nodo di commutazione all'altro utilizzando in tempi diversi risorse comuni

Tecniche di commutazione di pacchetto

- Circuito virtuale (connection oriented)
 - scambio delle informazioni preceduto da una procedura di segnalazione (apertura) durante la quale viene stabilito il percorso dei pacchetti da origine a destinazione
 - a tale percorso viene associato un numero di circuito virtuale
 - tutti i pacchetti di dati seguono lo stesso percorso,
 - contengono solamente il numero di circuito virtuale.
- Datagramma (connectionless)
 - ogni pacchetto viene gestito e instradato in modo indipendente, senza relazione con pacchetti precedenti o successivi, anche appartenenti alla stessa connessione
 - ogni pacchetto porta tutte le informazioni di indirizzamento necessarie per raggiungere la destinazione finale
 - pacchetti diversi di una stessa connessione possono seguire percorsi diversi e quindi avere tempi di percorrenza diversi

Pro e contro

• Pro

- L'efficienza nell'utilizzazione dei collegamenti è maggiore, poiché la stessa linea è condivisa in modo dinamico da più chiamate
- La rete può supportare diverse velocità ed effettuare anche conversioni tramite memorizzazione.
- È facile implementare meccanismi per il controlo dell' errore (trasparenza semantica)

Contro

 È difficile garantire un predeterminato tempo di transito, quindi è poco adatta per servizi di tipo real time

