Notes from reading "Introduction to Toric Varieties" by Fulton

TiGR participants

March 23, 2020

Chapter 1

Definitions and examples

1.1 Motivating Example

Let $X \subseteq \mathbb{A}^3_{\mathbb{C}}$ be given by $y^3 - xz = 0$. Denote its coordinate ring by $\mathbb{C}[X] = \mathbb{C}[x,y,z]/(y^3 - xz)$ and consider the action of $(\mathbb{C}^*)^2$ on X given by:

$$(t_1, t_2) \cdot (x, y, z) = (t_1^{-2} t_2^{-3} x, t_1^{-1} t_2^{-1} y, t_1^{-1} z).$$

We have an induced action of $(\mathbb{C}^*)^2$ on the coordinate ring $\mathbb{C}[X]$ given by

$$(t \cdot f)(p) = f(t^{-1} \cdot p).$$

Let $M=\{\chi\colon (\mathbb{C}^*)^2\to\mathbb{C}^*\}$ be the lattice of characters of $(\mathbb{C}^*)^2$. Recall that this group is isomorphic with \mathbb{Z}^2 , $u\in\mathbb{Z}^2$ corresponding to $\chi^u\colon t\mapsto t^u$. Given $\chi^u\in M$, define $\mathbb{C}[X]_u=\{f\in\mathbb{C}[X]|t\cdot f=\chi^u(t)\cdot f\}$. The class in $\mathbb{C}[X]$ of every monomial in $\mathbb{C}[x,y,z]$ can be written uniquely in the form $x^ay^bz^c$ with $b\in\{0,1,2\}$. We have $t_1^mt_2^n\cdot x^ay^bz^c=t_1^{m(2a+b+c)}t_2^{n(3a+b)}x^ay^bz^c$. Therefore, $x^ay^bz^c\in\mathbb{C}[X]_u$ if and only if u=(2a+b+c,3a+b). Let u=(i,j). We search for a solution of the following system:

$$\begin{cases} 2a+b+c=i\\ 3a+b=j\\ b\in\{0,1,2\}\\ a\geq0\\ c\geq0 \end{cases}$$

For every (i,j) there is at most one solution, so $\mathbb{C}[X] = \bigoplus_{u \in \mathbb{Z}^2} \mathbb{C}[X]_u$ decomposes $\mathbb{C}[X]$ into one or zero dimensional subrepresentations of $(\mathbb{C}^*)^2$. We will find those u=(i,j) for which $\mathbb{C}[X]_u$ is non-zero. We need to have $j \geq 0$ and then a,b are uniquely determined. Therefore, if $j \geq 0$ then a solution exists if and only if $i-2a-b \geq 0$. This is equivalent to $3i-6a-3b \geq 0$. We can rewrite this as $3i \geq 2j+b$ which is equivalent to $3i \geq 2j$ since 2j+b=6a+3b is divisible by 3 and $b \in \{0,1,2\}$.

Therefore, for every $u \in \mathbb{Z}^2$ we have $\dim_{\mathbb{C}} \mathbb{C}[X]_u \in \{0,1\}$ and those u for which $\dim_{\mathbb{C}} \mathbb{C}[X]_u = 1$ are the lattice points of the cone below (cones will be formally defined in the Section 1.2).

Denote this cone by σ^\vee and define the corresponding semigroup algebra $\mathbb{C}[\sigma^\vee\cap M]=\bigoplus_{u\in\sigma^\vee\cap M}\mathbb{C}\cdot\chi^u$ with multiplication induced by $\chi^u\cdot\chi^v=\chi^{u+v}$. Since $\sigma^\vee\cap M$ is generated as a semigroup by $(1,0),(1,1),(2,3),\,\mathbb{C}[\sigma^\vee\cap M]$ is generated as a \mathbb{C} -algebra by $\chi^{(1,0)},\,\chi^{(1,1)}$ and $\chi^{(2,3)}$. Moreover, the generators of the semigroup $\sigma^\vee\cap M$ satisfy a relation $3\cdot(1,1)=(1,0)+(2,3),$ therefore we have an isomorphism $\mathbb{C}[\sigma^\vee\cap M]\to\mathbb{C}[X]$ given by $\chi^{(1,0)}\mapsto x,\,\chi^{(1,1)}\mapsto y$ and $\chi^{(2,3)}\mapsto z$.

1.2 Convex polyhedral cones

Let N, M be dual lattices and let $V = N_{\mathbb{R}}$ and $V^* = M_{\mathbb{R}}$ be the corresponding dual vector spaces. A convex polyhedral cone is a set

$$\sigma = \{r_1 v_1 + \dots + r_s v_s \in V : r_i \ge 0\}$$

generated by any finite set of vectors $v_1, ..., v_s \in V$. Such vectors, or sometimes the corresponding rays consisting of positive multiples of some v_i are called generators for the cone σ .

The dimension $\dim(\sigma)$ of σ is the dimension of the linear space $\mathbb{R} \cdot \sigma = \sigma + (-\sigma)$ spanned by σ . The dual σ^{\vee} of any set σ is the set of equations of supporting hyperplanes, i.e.,

$$\sigma^{\vee} = \{ u \in V^* : \langle u, v \rangle \ge 0 \text{ for all } v \in \sigma \}.$$

Everything is based on the following fundamental fact from the theory of convex sets.

(*) If σ is a convex polyhedral cone and $v_0 \notin \sigma$, then there is some $u_0 \in \sigma^{\vee}$ with $\langle u_0, v_0 \rangle < 0$.

We list some consequences of (*). Since the proofs given in Fulton's text are easy to follow we do not replicate them here. A direct translation of (*) is the duality theorem:

(1)
$$(\sigma^{\vee})^{\vee} = \sigma$$
.

A face τ , of σ is the intersection of σ with any supporting hyperplane: $\tau = \sigma \cap u^{\perp} = \{v \in \sigma : \langle u, v \rangle = 0\}$ for some u in σ^{\vee} . A cone is regarded as a face of itself, while others are called *proper* faces. Note that any linear subspace of a cone is contained in every face of the cone,

- (2) Any face is also a convex polyhedral cone.
- (3) Any intersection of faces is also a face.
- (4) Any face of a face is a face.

A facet is a face of codimension one.

- (5) Any proper face is contained in some facet.
- (6) Any proper face is the intersection of all facets containing it.
- (7) The topological boundary of a cone that spans V is the union of its proper faces (or facets).

When σ spans V and τ is a facet of σ , there is a $u \in \sigma^{\vee}$, unique up to multiplication by a positive scalar, with $\tau = \sigma \cap u^{\perp}$. Such a vector, which we denote by u_{τ} is an equation for the hyperplane spanned by τ .

(8) If σ spans V and $\sigma \neq V$, then σ is the intersection of the half-spaces $H_{\tau} = \{v \in V : \langle u_{\tau}, v \rangle \geq 0\}$, as τ ranges over the facets of σ .

From (8) we deduce the fact known as Farkas' Theorem:

(9) The dual of a convex polyhedral cone is a convex polyhedral cone.

This shows that polyhedral cones can also be given a dual definition as the intersection of half-spaces: for generators $u_1, ..., u_t$ of σ^{\vee} ,

$$\sigma = \{v \in V : \langle u_1, v \rangle > 0, ..., \langle u_t, v \rangle > 0\}.$$

If we now suppose σ is *rational*, meaning that its generators can be taken from N, then σ^{\vee} is also rational.

Proposition 1 (Gordan's Lemma). If σ is a rational convex polyhedral cone, then $S_{\sigma} = \sigma^{\vee} \cap M$ is a finitely generated semigroup.

It is often necessary to find a point in the relative interior of a cone σ , i.e., in the topological interior of σ in the space $\mathbb{R} \cdot \sigma$ spanned by σ . This is achieved by taking any positive combination of $\dim(\sigma)$ linearly independent vectors among the generators of σ . In particular, if σ is rational, we can find such points in the lattice.

(10) If τ is a face of σ , then $\sigma^{\vee} \cap \tau^{\perp}$ is a face of σ^{\vee} , with $\dim(\tau) + \dim(\sigma^{\vee} \cap \tau^{\perp}) = n = \dim(V)$. This sets up a one-to-one order-reversing correspondence between the faces of σ and the faces of σ^{\vee} . The smallest face of σ is $\sigma \cap (-\sigma)$.

(11) If
$$u \in \sigma^{\vee}$$
, and $\tau = \sigma \cap \tau^{\perp}$, then $\tau^{\vee} = \sigma^{\vee} + \mathbb{R}_{>0} \cdot (-u)$.

Proposition 2. Let σ be a rational convex polyhedral cone, and let u be in $S_{\sigma} = \sigma^{\vee} \cap M$. Then $\tau = \sigma \cap u^{\perp}$ is a rational convex polyhedral cone. All faces of σ have this form, and

$$S_{\tau} = S_{\sigma} + \mathbb{Z}_{\geq 0} \cdot (-u).$$

Finally, we need the following strengthening of (*), known as a *Separation Lemma*, that separates convex sets by a hyperplane:

(12) If σ and σ' are convex polyhedral cones whose intersection τ is a face of each, then there is a u in $\sigma^{\vee} \cap (-\sigma')^{\vee}$ with

$$\tau = \sigma \cap u^{\perp} = \sigma' \cap u^{\perp}.$$

Proposition 3. If σ and σ' are rational convex polyhedral cones whose intersection τ is a face of each, then

$$S_{\tau} = S_{\sigma} + S_{\sigma'}$$
.

- (13) For a convex polyhedral cone σ , the following conditions are equivalent:
 - (i) $\sigma \cap (-\sigma) = \{0\};$
- (ii) σ contains no nonzero linear subspace;
- (iii) there is a u in σ^{\vee} with $\sigma \cap u^{\perp} = \{0\}$;
- (iv) σ^{\vee} spans V^* .

A cone is called *strongly convex* if it satisfies the conditions of (13). Any cone is generated by some minimal set of generators. If the cone is strongly convex, then the rays generated by a minimal set of generators are exactly the one-dimensional faces of σ (as seen by applying (*) to any generator that is not in the cone generated by the others); in particular, these minimal generators are unique up to multiplication by positive scalars.

Since we are mainly concerned with these cones, we will often say " σ is a cone in N" to mean that σ is a strongly convex rational polyhedral cone in $N_{\mathbb{R}}$. We will sometimes write " $\tau \prec \sigma$ " or " $\sigma \succ \tau$ " to mean that τ is a face of σ . A cone is called *simplicial*, or a *simplex*, if it is generated by linearly independent generators.

1.3 Affine toric varieties

Let R be a ring. We work in the category of R-schemes so affine space, multiplicative group, products, etc. are all over R. When σ is a strongly convex rational polyhedral cone, we have seen that $S_{\sigma} = \sigma^{\vee} \cap M$ is a finitely generated semigroup. Any additive semigroup S determines a "group ring" R[S], which is a commutative R-algebra. As an R-module it has a basis χ^u , as u varies over S, with multiplication determined by the addition in S:

$$\chi^u \cdot \chi^{u'} = \chi^{u+u'}.$$

The unit 1 is χ^0 . Generators $\{u_i\}$ for the semigroup S determine generators $\{\chi^{u_i}\}$ for the R-algebra R[S].

Any finitely generated commutative R-algebra A determines an affine scheme of finite type over R, which we denote by $\operatorname{Spec}(A)$. We review this construction and its related notation. If generators of A are chosen, this presents A as $R[X_1,...,X_m]/I$, where I is an ideal; then $\operatorname{Spec} A$ can be identified with the subscheme V(I) of affine space \mathbb{A}^m . In our applications, A will be a domain, so $\operatorname{Spec}(A)$ will be an integral scheme. Although $\operatorname{Spec}(A)$ officially includes all prime ideals of A, when we speak of a point of $\operatorname{Spec}(A)$ we will mean an R-point, i.e. a homomorphism of R-schemes $\operatorname{Spec}(R) \to \operatorname{Spec}(A)$, unless we specify otherwise. Any homomorphism $A \to B$ of R-algebras determines a morphism $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ of R-schemes. In particular, R-points correspond to R-algebra homomorphisms from A to R. If $X = \operatorname{Spec}(A)$, for each nonzero element $f \in A$ the principal open subset

$$X_f = \operatorname{Spec}(A_f) \subset X = \operatorname{Spec}(A)$$

corresponds to the localization homomorphism $A \to A_f$.

For A = R[S] constructed from a semigroup, the points are easy to describe: they correspond to homomorphisms of semigroups from S to R, where R is regarded as an abelian semigroup via multiplication:

$$(\operatorname{Spec}(R[S]))(R) = \operatorname{Hom}_{sq}(S, R).$$

Indeed, this follows from the adjunction $R[-] \dashv G$ where G is the forgetful functor from the category of R-algebras to the category of monoids mapping an R-algebra to the underlying multiplicative monoid.

When S_{σ} arises from a strongly convex rational polyhedral cone, we set $A_{\sigma} = R[S_{\sigma}]$, and $U_{\sigma} = \operatorname{Spec}(R[S_{\sigma}]) = \operatorname{Spec}(A_{\sigma})$, the corresponding affine toric scheme. All of these semigroups will be sub-semigroups of the group $M = S_{\{0\}}$. If $e_1, ..., e_n$ is a basis for N, and $e_1^*, ..., e_n^*$ is the dual basis of M, write

$$X_i = \chi^{e_i^*} \in R[M].$$

As a semigroup, M has generators $\pm e_1^*, ..., \pm e_n^*$, so

$$R[M] = R[X_1, X_1^{-1}, X_2, X_2^{-1}, ..., X_n, X_n^{-1}] = R[X_1, ..., X_n]_{X_1 \cdot ... \cdot X_n},$$

which is the ring of Laurent polynomials in n variables. So

$$U_{\{0\}} = \operatorname{Spec}(R[M]) \cong \mathbb{G}_m^n$$

is an affine algebraic torus. All of our semigroups S will be sub-semigroups of a lattice M, so R[S] will be a subalgebra of R[M]; in particular, R[S] will be a domain if R is an integral domain. When a basis for M is chosen as above, we usually write elements of R[S] as Laurent polynomials in the corresponding variables X_i . Note that all of these algebras are generated by monomials in the variables X_i .

The torus $T = T_N$ corresponding to M or N can be written intrinsically:

$$T_N(R) = (\operatorname{Spec}(R[M]))(R) = \operatorname{Hom}_{group}(M, R^*) = N \otimes_{\mathbb{Z}} R^*.$$

The above uses the adjunction $R[-] \dashv [-]^*$ where $[-]^*$ is the functor from the category of R-algebras to the category of groups mapping underlying ring to its group of invertible elements.

For a basic example, let σ be the cone with generators $e_1, ..., e_k$ for some k, $1 \le k \le n$. Then

$$S_{\sigma} = \mathbb{Z}_{\geq 0} \cdot e_1^* + \mathbb{Z}_{\geq 0} \cdot e_2^* + \dots + \mathbb{Z}_{\geq 0} \cdot e_k^* + \mathbb{Z} \cdot e_{k+1}^* + \dots + \mathbb{Z} \cdot e_n^*.$$

Hence $A_{\sigma} = R[X_1, X_2, ..., X_k, X_{k+1}, X_{k+1}^{-1}, ..., X_n, X_n^{-1}],$ and

$$U_{\sigma} = \mathbb{A}^k \times \mathbb{G}_m^{n-k}$$
.

It follows from this example that if σ is generated by k elements that can be completed to a basis for N, then U_{σ} is a product of affine k-space and an algebraic torus of rank (n-k). In particular, such affine toric schemes are smooth over R.

Next we look at a singular example. Let N be a lattice of rank 3, and let σ be the cone generated by four vectors v_1, v_2, v_3 , and v_4 that generate N and satisfy $v_1 + v_3 = v_2 + v_4$. The scheme U_{σ} is a "cone over a quadric surface", a scheme met frequently when singularities are studied. If we take $N = \mathbb{Z}^3$ and $v_i = e_i$ for i = 1, 2, 3, so $v_4 = e_1 + e_3 - e_2$, then S_{σ} is generated by $e_1^*, e_3^*, e_1^* + e_2^*$, and $e_2^* + e_3^*$, so

$$A_{\sigma} = R[X_1, X_3, X_1X_2, X_2X_3] = R[W, X, Y, Z]/(WZ - XY).$$

A homomorphism of semigroups $S \to S'$ determines a homomorphism $R[S] \to R[S']$ of algebras, hence a morphism $\operatorname{Spec}(R[S']) \to \operatorname{Spec}(R[S])$ of affine R-schemes. In particular, if τ is contained in σ , then S_{σ} is a sub-semigroup of S_{τ} , corresponding to a morphism $U_{\tau} \to U_{\sigma}$. For example, the torus $T_N = U_{\{0\}}$ maps to all of the affine toric schemes U_{σ} that come from cones σ in N.

Lemma 4. If τ is a face of σ , then the map $U_{\tau} \to U_{\sigma}$ embeds U_{τ} as a principal open subset of U_{σ} .

Proof. By Proposition 2 in §1.2, there is a $u \in S_{\sigma}$ with $\tau = \sigma \cap u^{\perp}$ and

$$S_{\tau} = S_{\sigma} + \mathbb{Z}_{>0} \cdot (-u).$$

This implies immediately that each basis element for $R[S_{\tau}]$ can be written in the form $\chi^{w-pu} = \chi^w/(\chi^u)^p$ for $w \in S_{\sigma}$. Hence

$$A_{\tau} = (A_{\sigma})_{\chi^u},$$

which is the algebraic version of the required assertion.

More generally, if $\varphi \colon N' \to N$ is a homomorphism of lattices such that $\varphi_{\mathbb{R}}$ maps a (rational strongly convex polyhedral) cone σ' in N' into a cone σ in N, then the dual $\varphi^{\vee} \colon M \to M'$ maps S_{σ} to $S_{\sigma'}$, determining a homomorphism $A_{\sigma} \to A_{\sigma'}$, and hence a morphism $U_{\sigma'} \to U_{\sigma}$.

The semigroups S_{σ} arising from cones are special in several respects. First, it follows from the definition that S_{σ} is *saturated*, i.e., if $p \cdot u$ is in S_{σ} for some positive integer p, then u is in S_{σ} . In addition, the fact that σ is strongly convex implies that σ^{\vee} spans $M_{\mathbb{R}}$, so S_{σ} generates M as a group, i.e.,

$$M = S_{\sigma} + (-S_{\sigma}).$$

If σ is a cone in N, the torus T_N acts on U_{σ} ,

$$T_N \times U_{\sigma} \to U_{\sigma}$$

as follows. A point $t \in T_N(R)$ can be identified with a map $M \to R^*$ of groups, and a point $x \in U_{\sigma}(R)$ with a map $S_{\sigma} \to R$ of semigroups; the product $t \cdot x$ is the map of semigroups $S_{\sigma} \to R$ given by

$$u \mapsto t(u)x(u)$$
.

The dual map on algebras, $R[S_{\sigma}] \to R[S_{\sigma}] \otimes R[M]$, is given by mapping χ^u to $\chi^u \otimes \chi^u$ for $u \in S_{\sigma}$. When $\sigma = \{0\}$, this is the usual product in the algebraic group T_N . These maps are compatible with inclusions of open subsets corresponding to faces of σ . In particular, they extend the action of T_N on itself.

To say it differently, the multiplication in \mathbb{G}_m^n is known to correspond to the homomorphism $m^\#\colon R[M]\to R[M]\otimes R[M]$ given by $\chi^u\mapsto \chi^u\otimes \chi^u$. Therefore, if we define $\mu^\#\colon R[S_\sigma]\to R[M]\otimes R[S_\sigma]$ by $\chi^u\mapsto \chi^u\otimes \chi^u$ the following diagram is commutative:

$$R[S_{\sigma}] \xrightarrow{\mu^{\#}} R[M] \otimes R[S_{\sigma}]$$

$$\downarrow \qquad \qquad \downarrow$$

$$R[M] \xrightarrow{m^{\#}} R[M] \otimes R[M].$$

so that $\mu: T_N \times U_{\sigma} \to U_{\sigma}$ extends $m: T_N \times T_N \to T_N$. In order to check that this is an action we should check that the following diagrams are commutative:

This can be verified directly on algebras using the fact that $e: \operatorname{Spec} R \to T_N$ corresponds to $R[M] \to R$ given by $\chi^u \mapsto 1$ for all $u \in M$ and the isomorphism in the right diagram corresponds to the standard isomorphism $R[S_\sigma] \to R \otimes_R R[S_\sigma]$.

Chapter 2

Singularities and compactness

2.1 Local properties of toric varieties

For any cone σ in a lattice N, the corresponding affine scheme U_{σ} has a distinguished point, which we denote by x_{σ} . This point in U_{σ} is given by a map of semigroups

$$S_{\sigma} = \sigma^{\vee} \cap M \to R,$$

defined by the rule

$$u \mapsto \begin{cases} 1 & \text{if } u \in \sigma^{\perp} \\ 0 & \text{otherwise.} \end{cases}$$

Note that this is well defined since σ^{\perp} is a face of σ^{\vee} , which implies that the sum of two elements in σ^{\vee} cannot be in σ^{\perp} unless both are in σ^{\perp} .

Proposition 5. An affine toric scheme U_{σ} is smooth over $\operatorname{Spec}(R)$ if and only if σ is generated by part of a basis for the lattice N, in which case

$$U_{\sigma} \cong \mathbb{A}^k \times \mathbb{G}_m^{n-k}, \ k = \dim(\sigma).$$

Proof. It is enough to show that if U_{σ} is smooth over $\operatorname{Spec}(R)$ then σ is generated by part of a basis for the lattice N. Suppose to start that σ spans $N_{\mathbb{R}}$, so $\sigma^{\perp} = \{0\}$. Assume that U_{σ} is smooth over R and let \mathfrak{n} be a maximal ideal of R with $K = R/\mathfrak{n}$. Take the base change:

$$U_{\sigma} \times_{R} K \longrightarrow U_{\sigma}$$

$$\downarrow^{\pi'} \qquad \qquad \downarrow^{\pi}$$

$$\operatorname{Spec} K \longrightarrow \operatorname{Spec} R.$$

Note that $U_{\sigma} \times_R K$ is the affine toric variety associated with the cone σ if we work in the category of K-schemes. Moreover, since π is smooth, so is π' by [1, Prop. 6.15]. Therefore, we may assume from the start that U_{σ} is a variety over a field K, that is we suppose that R = K is a field. Then π being smooth implies that U_{σ} is a regular scheme by [1, Lem. 6.26]. Consider the maximal ideal $\mathfrak{m} = (\chi^u : u \in S_{\sigma} \setminus \{0\})$ of $A_{\sigma} = K[\sigma^{\vee} \cap M]$. The square \mathfrak{m}^2 is generated by all χ^u for those u that are sums of two elements of $S_{\sigma} \setminus \{0\}$. The cotangent space $\mathfrak{m}/\mathfrak{m}^2$ therefore has a basis of images of elements χ^u for those u in $S_{\sigma} \setminus \{0\}$

that are not the sums of two such vectors. For example, the first elements in M lying along the edges of σ^{\vee} are vectors of this kind. Since U_{σ} is regular, the cotangent space $\mathfrak{m}/\mathfrak{m}^2$ is n-dimensional, since $\dim(U_{\sigma}) = \dim(T_N) = n$. This implies in particular that σ^{\vee} cannot have more than n edges, and that the minimal generators along these edges must generate S_{σ} . Since S_{σ} generates M as a group, the minimal generators for S_{σ} must be a basis for M. The dual σ must therefore be generated by a basis for N. Hence U_{σ} is isomorphic to affine space \mathbb{A}^n_K .

Consider now a general case when σ has smaller dimension k. Let

$$N_{\sigma} = \sigma \cap N + (-\sigma \cap N)$$

be the sublattice of N generated (as a subgroup) by $\sigma \cap N$. Since σ is saturated, N_{σ} is also saturated, so the quotient group $N(\sigma) = N/N_{\sigma}$ is also a lattice. We may choose a splitting and write

$$N = N_{\sigma} \oplus N'', \ \sigma = \sigma' \oplus \{0\},\$$

where σ' is a cone in N_{σ} . Decomposing $M = M' \oplus M''$ dually, we have $S_{\sigma} = ((\sigma')^{\vee} \cap M') \oplus M''$, so

$$U_{\sigma} \cong U_{\sigma'} \times T_{N''} \cong U_{\sigma'} \times \mathbb{G}_m^{n-k}$$
.

As before, by taking a base change, we may assume that we work over a field K. Since U_{σ} is smooth over K and $U_{\sigma'}, T_{N''}$ are affine schemes of finite type over K, they must be both smooth. Indeed, $\dim U_{\sigma} = \dim U_{\sigma'} + \dim T_{N''}$ by [1, Prop. 5.37]. We may choose a presentation of $U_{\sigma'}$, $T_{N''}$ as subschemes of affine spaces and then the Jacobian corresponding to U_{σ} is a block matrix with blocks corresponsing to Jacobians of $U_{\sigma'}$ and $T_{N''}$. Therefore, the preceding discussion applies: σ' must be generated by a basis for N_{σ} .

We therefore call a cone *nonsingular* if it is generated by part of a basis for the lattice, and we call a fan *nonsingular* (fan is defined in §1.4) if all of its cones are nonsingular, i.e., if the corresponding toric scheme is smooth. Although a toric scheme may be singular, every toric scheme is normal if the base ring is an integrally closed domain:

Proposition 6. If the base ring R is integrally closed, then each ring A_{σ} is integrally closed.

Proof. If σ is generated by $v_1, ..., v_r$, then $\sigma^{\vee} = \cap \tau_i^{\vee}$, where τ_i is the ray generated by $v_i \in \sigma$, so $A_{\sigma} = \cap A_{\tau_i}$. We have seen that each A_{τ_i} is isomorphic to $R[X_1, X_2, X_2^{-1}, ..., X_n, X_n^{-1}]$, which is integrally closed (polynomial ring over a normal domain is a normal domain and localization of a normal domain is a normal domain), and the proposition follows from the fact that the intersection of integrally closed domains with common field of fractions is integrally closed. \square

Bibliography

[1] U. Görtz and T. Wedhorn. Algebraic Geometry: Part I: Schemes. With Examples and Exercises. Advanced Lectures in Mathematics. Vieweg+Teubner Verlag, 2010.