Session 9

Xuanxi Zhang

1 SVD

We know that every symmetric matrix A can be diagonalized by orthogonal matrix Q:

$$A = Q\Lambda Q^T$$

We will use this property to show that every matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed into $U\Sigma V^T$ where U, V are orthogonal and Σ is diagonal.

1.1

Show that for any matrix $A \in \mathbb{R}^{m \times n}$, $A^T A$ is real symmetric. So we have $A^T A = VDV^T$, where D is diagonal and V is orthogonal.

1.2

Let B = AV. What can you infer about the columns of B?

1.3

Finally conclusion that $A = U\Sigma V^T$ where U, V are orthogonal and Σ is diagonal. **Note:** Based on above analyzing, If we want to obtain the SVD of A, we can first compute the eigenvalue decomposition of $A^T A$ to obtain V then compute U from AV.

2 Low-rank approximation

Low-rank approximation is valuable for three main reasons. First, data compression: it reduces the data size by capturing only essential information, making storage and processing more efficient. Second, noise reduction: it smooths out random variations, leaving the core structure intact. Third, feature extraction: it highlights the most significant patterns in the data, which is particularly useful in machine learning for reducing the number of features. Together, these benefits make low-rank approximation a powerful tool in simplifying and analyzing complex datasets.

We want to solve the problem

$$\min_{B} \qquad ||A - B||_{2}^{2}$$
s.t.
$$rank(B) \le k$$

suppose $A \in \mathbb{R}^{n \times n}$, A has SVD $A = U\Sigma V^T$, $|\sigma_1| > |\sigma_2| > \cdots > |\sigma_n|$ and corresponding singular vectors u_1, u_2, \cdots, u_n and v_1, v_2, \cdots, v_n which are all normalized.

2.1

Show that in the space spanned by v_1, \dots, v_{k+1} , there exists a vector $w = \alpha v_1 + \dots + \alpha_{k+1} v_{k+1}$ such that Bw = 0

2.2

What is the result of Av_i ? what is the result of Aw?

2.3

Suppose w is normalized, $\sum \alpha_i^2 = 1$. Then conduct that for any matrix B with rank less than k, $||A - B||_2^2 \ge \sigma_{k+1}$. Hint: consider the definition of 2-norm.

2.4

Show that if we take $B = \sum_{i=1}^{k} \sigma_i u_i v_i^T$, then the minimum is achieved.

3 Image compression

4 QR

We simplify the demonstration by assuming A is full rank and has eigenvalues $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$.

4.1

For any matrix $A \in \mathbb{R}^{n \times n}$, with A = QR. a_1, a_2, \dots, a_n are columns of A and q_1, q_2, \dots, q_n are columns of Q. Show that for any k, space spann by a_1, \dots, a_k is the same as q_1, \dots, q_k .

4.2

try to undersand the following iteration, Argure that Q_k converges to Q

$$\hat{Q}_0 = I,$$
 $B_1 = A\hat{Q}_0,$
 $\hat{Q}_1\hat{R}_1 = B_1,$
 $B_2 = A\hat{Q}_1,$
 $\hat{Q}_2\hat{R}_2 = B_2,$

$$B_2 = A\hat{Q}_2,$$

. . .

4.3

compare above iteration with QR iteration, Argue that $\hat{Q}_k = Q_k Q_{k-1} \cdots Q_1$

$$A_1 = A,$$

$$A_1 = Q_1 R_1$$

$$A_2 = R_1 Q_1$$

$$A_2 = Q_2 R_2$$

 $A_3 = R_2 Q_2$

٠.