ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

ЖУРНАЛ ПРАКТИКИ

Студента 2 курса	Гординского Дмитрия Михайловича
Институт №8 <u>«Информационные</u>	гехнологии и прикладная математика»
Кафедра №804 <u>«Теория вероятно</u>	стей и компьютерное моделирование»
Учебная группа М8О-204Б-20	
Направление 01.03.04	Прикладная математика
Вид практики Учебная (вычислите	ельная) в Московском Авиационном Институте(НИУ)
Руководитель практики от МАИ <u>3</u>	айцева О.Б.
Гординский Д.М /	/ 11 июля 2022 г.

1. Место и сроки проведения практики

Дата начала практики	29 <u>июня</u> 2022 г.	
Дата окончания практики	11 <u>июня</u> 2022 г.	
Наименование предприятия \underline{N}	ИОСКОВСКИЙ АВИАЦИОННЫ	ІЙ ИНСТИТУТ(НИУ)
Название структурного подра	аздления <u>Кафедра 804</u>	
2. Инструктаж по технике б	езопасности	
	/ 29 <u>июня</u> 2022 г.	
3. Индивидуальное задание	студенту	
1. Разобраться с теорией.		
2. Привести пример решения за	адачи.	
3. Написать отчет.		
4. План выполнения индиви	идуального задания	
1. Изучить теорию по Моделям	выживаемости.	
2. Ознакомиться с необходимых ским представлением.	ми библиотеками для работы с	с данными и их графиче
3. Решить задачу по анализу да	анных с применением методов	анализа выживаемости
Руководитель практики от М	'АИ:/	
	/ 29 <u>июня</u> 2022 г.	
5. Отзыв руководителя праг Задание на практику выполне чете студента, полностью соог оценку отлично.	ено в полном объеме. Матери	
Руководитель	/	/ 11 <u>июля</u> 2022 г.

Отчет студента

Содержание

1	Что	такое "Анализ выживаемости"?	3
	1.1	Основные понятия	3
		1.1.1 Функция выживания (Survival function)	3
		1.1.2 Функция риска (Hazard function)	3
		1.1.3 Цензурирование (censoring)	4
		1.1.4 Медиана ожидаемого времени жизни (median number of survival days)	4
		1.1.5 Доверительный интервал (confidence interval)	4
		1.1.6 Усечение (truncation)	4
	1.2	Непараметрические методы оценивания распределения длительностей	4
		1.2.1 Оценка Каплана — Мейера	5
		1.2.2 Оценка Нельсона — Аалена	5
		1.2.3 Модель пропорциональных рисков (регрессионный анализ пропорцио-	
		нальных рисков Кокса)	6
2	При	имер решения задачи	7
	2.1	Проанализируем данные пола:	7
	2.2	Применяем Оценку Каплана — Мейера	8
		2.2.1 Сделаем таблицу событий	8
		2.2.2 Найдем вероятность выживания для каждого момента времени и веро-	
		ятность с доверительным интервалом	9
		2.2.3 Найдем медиану времени выживания	10
		2.2.4 Найдем вероятность смерти для $\forall t$	11
	2.3	Применяем Оценку Нельсона — Аалена	12
		2.3.1 Найдем риск для каждого момента времени и риск с доверительным	
		интервалом	12
		2.3.2 Сравним кумулятивную функцию риска и кумулятивную плотность (ве-	
		роятность смерти):	13
	2.4	Анализ выживания для групп	13
		2.4.1 Найдем вероятность выживания среди мужчин и женщин	14
		2.4.2 Сравним кумулятивную плотность выживания с кумулятивной функ-	
		· · · · · · · · · · · · · · · · · · ·	16
		2.4.3 Найдем зависимость вероятности выживания от возрастной группы .	17
3	Итс	nr	20

1 Что такое "Анализ выживаемости"?

Анализ выживаемости — набор статистических моделей, благодаря которым можно оценить вероятность наступления того или иного события. Анализ занимается моделированием процессов наступления интересующих нас (критических) событий для элементов той или иной совокупности (изначально — «смерти» для элементов совокупности живых существ).

Интересным событием может быть что угодно. Это может быть фактическая смерть, рождение, выход на пенсию и т. д.

Hазвание "survival analysis" взято из медицины, т.к. цель анализа заключается в изучении продолжительности жизни пациента после приема препарата или других факторов влияния на здоровье.

1.1 Основные понятия

1.1.1 Функция выживания (Survival function)

Пусть T — неотрицательная случайная величина, представляющая собой время ожидания до наступления некоторого события. Для простоты будем использовать терминологию анализа выживаемости, называя исследуемое событие «смертью», а время ожидания – временем «выживания»

 Φ ункция выживания сопоставляет некоторому числу t вероятность того, что случайная величина T примет значение, не меньшее t. Иначе говоря, это вероятность того, что некоторое состояние «проживет» как минимум t единиц времени:

$$S(t) = \mathbb{P}\{T > t\} = 1 - \mathbb{P}\{T \le t\}$$

Например, если мы хотим знать, какова вероятность того, что безработный индивид не сможет найти работу в течение полугода после начала поиска, то достаточно рассмотреть функцию выживания для t=6 месяцев.

1.1.2 Функция риска (Hazard function)

 Φ ункцию риска можно охарактеризовать как вероятность того, что событие произойдет за бесконечно малый интервал времени при условии, что оно не произошло к моменту времени t.

$$h(t) = \lim_{dt \to 0} \frac{\mathbb{P}(t \le T < t + dt | T \ge t)}{dt}$$

Числитель этого выражения — условная вероятность того, что событие произойдет в интервале (t,t+dt), если оно не произошло ранее, а знаменатель — ширина интервала. Разделив одно на другое, получаем интенсивность осуществления события в единицу времени. Устремляя ширину интервала к нулю и переходя к пределу, получаем мгновенную интенсивность осуществления события.

Т. к. вышесвязанные функции связаны друг с другом, можно показать, что:

$$S(t) = \exp{(-\int_0^t h(x) dx)}$$

Интеграл в фигурных скобках в этом уравнении называют *кумулятивным риском* и обозначают как:

$$H(t) = \int_0^t h(x)dx$$

Можно рассматривать H(t) как сумму всех рисков при переходе от момента времени 0 к t.

1.1.3 Цензурирование (censoring)

Цензурирование — вид неполноты информации, при котором наблюдения не содержат точной длительности изучаемого состояния. Различают цензурирование справа, слева и интервальное:

- 1. Цензурировано справа о наблюдаемом состоянии известно лишь, что оно продлилось не менее определенного времени.
- 2. Цензурировано слева о состоянии известно лишь, что оно продлилось не более определенного времени.
- 3. На интервале известны только границы длительности.

1.1.4 Медиана ожидаемого времени жизни (median number of survival days)

Это точка на временной оси, в которой кумулятивная функция выживания равна 0,5. Другими словами, медиана — время, выраженное в месяцах или годах, когда ожидается, что половина пациентов будет жива. Это означает, что шанс выжить после этого времени составляет 50 процентов.

1.1.5 Доверительный интервал (confidence interval)

Доверительный интервал — интервал, который покрывает неизвестный параметр с заданной надёжностью. Вероятность, с которой в условиях данного эксперимента полученные экспериментальные данные можно считать надежными (достоверными), называют доверительной вероятностью или надежностью. Величина доверительной вероятности определяется характером производимых измерений. Мы будем считать доверительную вероятность равной 95 %.

1.1.6 Усечение (truncation)

Усечением, или урезанием, называется вид неполноты информации, при котором какая-то область возможных значений длительности оказывается недостаточно представленной в выборке: состояния, длительность которых слишком велика или, наоборот, слишком мала, просто не включаются в анализируемые данные. В нашей задаче мы будем называть их (removed) — пациенты, которые больше не являются частью нашего эксперимента. Если человек умирает или подвергается цензуре, то он попадает в эту категорию.

1.2 Непараметрические методы оценивания распределения длительностей

При отсутствии цензурирования и усечения для оценивания закона распределения вероятностей может использоваться эмпирическая функция распределения, из которой легко получить оценки для других характеристик случайной величины: survival function etc. Но в нашем случае это невозможно, т. к. мы имеем дело с неполнотой данных. Эту проблему решают непараметрические методы оценки.

1.2.1 Оценка Каплана — Мейера

Оценка Каплана-Мейера — это непараметрическая статистика, используемая для оценки функции выживания на основе данных о жизни. В медицинских исследованиях он часто используется для измерения доли пациентов, живущих в течение определенного времени после лечения или постановки диагноза. Например: подсчет количества времени, которое прожил конкретный пациент после того, как у него был диагностирован рак или началось его лечение.

$$\hat{S}(t) = \prod_{t_j \le t} \frac{n_j - d_j}{n_j}$$

 $\hat{S}(t)=$ Вероятность того, что испытуемый жив в момент времени t

 $n_i =$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_j=$ Количество событий в момент времени t_j Можем переписать формулу выше так:

$$S(t_j) = S(t_{j-1})(1-\frac{d_j}{n_j})$$

 $\dot{S}(t_j)=$ Вероятность того, что испытуемый жив в момент времени t_j $n_j=$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_j = ext{Количество}$ событий в момент времени t_j

 $t_0 = 0$

1.2.2 Оценка Нельсона — Аалена

Мы можем визуализировать совокупную информацию о выживании, используя функцию риска $Hельсона-Aaлeнa\ h(t)$. Функция риска h(t) дает нам вероятность того, что субъект, находящийся под наблюдением в момент времени t, имеет интересующее событие (смерть) в это время. Чтобы получить информацию о функции риска, мы не можем преобразовать оценку Каплана-Мейера. Для этого существует соответствующая непараметрическая оценка кумулятивной функции риска:

$$\hat{H}(t) = \sum_{t_j \leq t} \frac{d_j}{n_j}$$

 $H(t)={
m Kymyn}$ ятивная вероятность риска

 $n_j =$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_{j}=\ddot{\text{Количество}}$ событий в момент времени t_{j}

1.2.3 Модель пропорциональных рисков (регрессионный анализ пропорциональных рисков Кокса)

Модели пропорциональных рисков соотносят время, которое проходит до возникновения какого-либо события, с одним или несколькими ковариатами, которые могут быть связаны с этим количеством времени. Например, прием лекарственного средства может вдвое снизить частоту возникновения опасности.

В качестве решения для этого мы используем регрессионный анализ пропоршиональных рисков Кокса, который работает как для количественных предикторов некатегориальных переменных, так и для категориальных переменных.

Регрессионная модель Кокса (Cox regression) — в анализе выживаемости математическая модель зависимости функции риска от независимых переменных-факторов. В анализе выживаемости решается задача оценки функции выживания или функций, производных от нее.

В нашей задаче мы попытаемся рассмотреть зависимость вероятности выживания от возрастной группы.

Целью метода пропорциональной риска Кокса является определение того, как различные факторы в нашем наборе данных влияют на интересующее нас событие.

$$h(t) = h_0(t) * \exp(b_1 x_1 + b_2 x_2 + \dots + b_n x_n)$$

где

t = время выживания

h(t) = функция риска

 $x_1, x_2, ..., x_n =$ ковариации $b_1, b_2, ..., b_n =$ влияния параметров ковариций

 $\exp{(b_i)} = \kappa$ оэффициент риска (Hazard Ratio [HR]), если:

 $b_i=1\Rightarrow \exp{(b_i)}=0\Rightarrow$ ковариат не оказывает влияния на риск.

 $b_i^{'} < 1 \Rightarrow \exp(b_i) = 0 \Rightarrow$ ковариат оказывает отрицательное влияние на риск \Rightarrow положительно на время выживания.

 $b_i > 1 \Rightarrow \exp(\tilde{b}_i) = 0 \Rightarrow$ ковариат оказывает положительно влияние на риск \Rightarrow отрицательно на время выживания.

2 Пример решения задачи

В качестве примера для анализа выживаемости возьмем заболевание *Chronic Granulomatous Disease*

Хроническая гранулематозная болезнь(ХГБ)[СGD] — это наследственное заболевание, которое возникает, когда тип лейкоцитов (фагоцитов), которые обычно помогают организму бороться с инфекциями, не работает должным образом. В результате фагоциты не могут защитить организм от бактериальных и грибковых инфекций. У людей с хронической гранулематозной болезнью могут развиться инфекции в легких, коже, лимфатических узлах, печени, желудке и кишечнике или других областях. У них также могут образовываться скопления лейкоцитов в зараженных областях. У большинства людей ХГБ диагностируется в детстве, но у некоторых людей диагноз может не ставиться до зрелого возраста.

В датасете нас интересует:

- ullet время от начала наблюдения за пациентом до события (смерти) (tstop-tstart)
- пол пациента (*sex*)
- $status = \{status == 0 = alive, status == 1 = dead\}$

В дальнейшем может пригодиться возраст (age) для анализа выживаемости по группам.

2.1 Проанализируем данные пола:

для начала подключим необходимые библиотеки...

lifelines — содержит необходимые нам методы для исследования вероятностей и времени жизни.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from lifelines import KaplanMeierFitter
from lifelines import NelsonAalenFitter
# СЧИТЫВАЕМ ДАННЫЕ
data = pd.read_csv("cgd.csv")
head = data.head()
```

```
Unnamed: 0 id
                                           treat sex age ... steroids propylac hos.cat tstart enum tstop status
                        center
                                   random
                                          rIFN-g 2
         1 Scripps Institute 1989-06-07
                                                      12 ...
                                                                                US:other
                                                                                              0
                                                                                                   1 219
           1 Scripps Institute 1989-06-07
                                           rIFN-g
                                                      12 ...
                                                                     0
                                                                              0
                                                                                US:other
                                                                                            219
                                                                                                   2
                                                                                                       373
                                                                                                                1
                                          rIFN-g
          1 Scripps Institute 1989-06-07
                                                      12 ...
                                                                              0
                                                                                US:other
                                                                                            373
                                                                                                   3
                                                                                                       414
                                                                                                                0
           2 Scripps Institute 1989-06-07 placebo
                                                   1
                                                      15 ...
                                                                              1 US:other
                                                                                             0
                                                                                                   1
                                                                                                                1
           2 Scripps Institute 1989-06-07 placebo
```

```
data.loc[data.sex == "male", "sex"] = 1
data.loc[data.sex == "female", "sex"] = 2
plt.hist(data["sex"]) #гистограмма полов
plt.show()
```


2.2 Применяем Оценку Каплана — Мейера

```
kmf = KaplanMeierFitter()
# B Hawem cлyчae "status" === "dead"
data.loc[:, "time"] = data.loc[:, "tstop"] - data.loc[:, "tstart"] # time=tstop-tstart
kmf.fit(durations = data["time"], event_observed = data["status"])
```

<lifelines.KaplanMeierFitter: "KM_estimate", fitted with 203 total observations, 127 rightcensored observations>

2.2.1 Сделаем таблицу событий

Нам это нужно, чтобы отделить цензурированные данные, получить необходимые временные данные для применения методов оценки.

print(kmf.ev	ent_table)				
##	removed	observed	censored	entrance	at risk	
## event_at	1 CIIIO V Cu	observed	censorea	circiance	at_113K	
## 0.0	Θ	Θ	Θ	203	203	
## 2.0	1	1	Θ	Θ	203	
## 4.0	3	2	1	Θ	202	
## 5.0	1	1	0	0	199	
## 6.0	1	1	Θ	Θ	198	

```
## ...
             1
## 371.0
                    0
                                             7
                             1
                                    0
             2
                     1
                             1
                                     0
                                             6
## 373.0
## 376.0
             1
                     0
                             1
                                     0
                                             4
                                             3
## 382.0
              1
                     0
                             1
                                     0
## 388.0
              2
                              2
##
## [154 rows x 5 columns]
```

где

- event_at хранит значение временной шкалы для нашего набора данных. т. е. когда пациент наблюдался в нашем эксперименте или когда был проведен эксперимент, хранит значение дней выживания для субъектов.
- at risk хранит количество текущих пациентов, находящихся под наблюдением.

```
at \ risk = current patients at \ risk + entrance - removed
```

- *entrance* хранит значение новопришедших пациентов. Т. е. во время проведения эксперимента появлялись новые больные.
- *censored* если человек все еще жив по окончании эксперимента, то мы добавляем его в эту категорию.
- observed содержит количество умерших пациентов во время эксперимента.
- removed содержит количество пациентов, которые "выпадают" из эксперимента removed = observed + censored

2.2.2 Найдем вероятность выживания для каждого момента времени и вероятность с доверительным интервалом

```
Для начала найдем вероятность выживания за время t (см. раздел 1.2.1) 
Не ограничивая общности, \forall t: Пусть t=6 \Rightarrow
```

```
# Вероятность выживания после 6 дней
e0 = kmf.event_table.iloc[0, :]
e2 = kmf.event_table.iloc[1, :]
e4 = kmf.event_table.iloc[2, :]
e6 = kmf.event_table.iloc[3, :]
s0 = (e0.at_risk - e0.observed)/e0.at_risk
s2 = (e2.at_risk - e2.observed)/e2.at_risk
s4 = (e4.at_risk - e4.observed)/e4.at_risk
s6 = (e6.at_risk - e6.observed)/e6.at_risk
s6 = s0 * s2 * s4 * s6
print(s6)
```

0.9802708121890239

Найдем вероятность выживания $\forall t$:

```
kmf.survival_function_
plt.title("Оценка Каплана-Мейера")
plt.ylabel("Вероятность выживания")
kmf.plot()
csf = kmf.confidence_interval_survival_function_
plt.plot(csf["KM_estimate_lower_0.95"], label="lower")
plt.plot(csf["KM_estimate_upper_0.95"], label="upper")
plt.show()
```


По графику видно, что с течением времени вероятность выживания уменьшается.

2.2.3 Найдем медиану времени выживания

```
print("Медиана времени выживания", kmf.median_survival_time_)
```

Медиана времени выживания 334.0

2.2.4 Найдем вероятность смерти для $\forall t$

Сделаем график кумулятивной функции плотности и кумулятивной плотности с доверительным критерием

```
kmf.plot_cumulative_density()
ccf = kmf.confidence_interval_cumulative_density_
plt.plot(ccf["KM_estimate_lower_0.95"], label="lower")
plt.plot(ccf["KM_estimate_upper_0.95"], label="upper")
plt.title("Кумулятивная плотность (с довер. критерием)")
plt.xlabel("Кол-во дней")
plt.ylabel("Вероятность смерти")
plt.show()
```


Видим полностью обратный график к вероятности выживания, что неудивительно, ведь кумул. ф-я плотности:

$$F(t) = 1 - S(t)$$

2.3 Применяем Оценку Нельсона — Аалена

```
naf = NelsonAalenFitter()
naf.fit(durations = data["time"], event_observed = data["status"])
```

<lifelines.NelsonAalenFitter:"NA_estimate", fitted with 203 total observations, 127 rightcensored observations>

2.3.1 Найдем риск для каждого момента времени и риск с доверительным интервалом

По нашей таблице событий *(см. раздел 2.2.1)* мы считаем функцию риска *(см. раздел 1.2.2)*

Также можем предсказать значение функции риска для $\forall t$

```
print("300 дней: ", naf.predict(300))

## 300 дней: 0.5927191310947535

naf.plot_cumulative_hazard()
ci = naf.confidence_interval_
plt.plot(ci["NA_estimate_lower_0.95"], label="lower")
plt.plot(ci["NA_estimate_upper_0.95"], label="upper")
plt.xlabel("Кол-во дней")
plt.ylabel("Кумулятивная функция смерти")
plt.legend()
```


Другими словами, функция риска измеряет *общую сумму риска*, накопленного к моменту времени t

2.3.2 Сравним кумулятивную функцию риска и кумулятивную плотность (вероятность смерти):

```
kmf.plot_cumulative_density(label="Кумулятивная плотность")
naf.plot_cumulative_hazard(label="Кумулятивная функция риска")
plt.xlabel("Кол-во дней")
plt.show()
```


2.4 Анализ выживания для групп

Сначала сравним выживаемость мужчин и женщин:

```
kmfm = KaplanMeierFitter() # мужчины
kmff = KaplanMeierFitter() # женщины

data.loc[data.sex == "male", "sex"] = 1
data.loc[data.sex == "female", "sex"] = 2

male = data.query("sex == 1")
female = data.query("sex == 2")
```

```
kmfm.fit(durations=male["time"], event_observed=male["status"], label="male")
kmff.fit(durations=female["time"], event_observed=female["status"], label="female")

# сделаем таблицы событий отдельно для м. и ж.
kmfm.event_table
kmff.event_table
print(kmfm.event_table.head())
print(kmff.event_table.head())
```

2.4.1 Найдем вероятность выживания среди мужчин и женщин

```
kmfm.survival_function_
kmff.survival_function_
kmfm.plot()
kmff.plot()
plt.xlabel("Кол-во дней")
plt.ylabel("Вероятность выживания")
plt.show()
```


Несложно заметить, что вероятность выживания женщин выше, чем у мужчин. Однако такие выводы не совсем точны, т.к. мужчин много больше, чем женщин. Но до дня \sim 250 все равно вероятность у женщин выше.

Получается, что кумулятивная плотность будет ниже у женщин

```
kmfm.plot_cumulative_density()
kmff.plot_cumulative_density()
plt.title("Кумулятивная плотность")
plt.xlabel("Кол-во дней")
plt.ylabel("Вероятность")
plt.show()
```


2.4.2 Сравним кумулятивную плотность выживания с кумулятивной функцией риска

мужчины:

```
nafm = NelsonAalenFitter()
nafm.fit(durations = data["time"], event_observed = data["status"])
kmfm.plot_cumulative_density(label="Плотность (мужчины)")
nafm.plot_cumulative_hazard(label="Риск (мужчины)")
plt.xlabel("Кол-во дней")
plt.show()
```


женщины:

```
naff = NelsonAalenFitter()
naff.fit(durations = data["time"], event_observed = data["status"])
kmff.plot_cumulative_density(label="Плотность (женщины)")
naff.plot_cumulative_hazard(label="Риск (женщины)")
plt.xlabel("Кол-во дней")
plt.show()
```


⇒ с течением времени риск увеличивается.

2.4.3 Найдем зависимость вероятности выживания от возрастной группы

```
from lifelines import CoxPHFitter
data = pd.read_csv("cgd.csv")
data = pd.read_csv("cgd.csv")
data = data.drop("center", axis=1)
data = data.drop("id", axis=1)
data = data.drop("random", axis=1)
data = data.drop("steroids", axis=1)
data = data.drop("inherit", axis=1)
data = data.drop("hos.cat", axis=1)
data = data.drop("propylac", axis=1)
data = data.drop("enum", axis=1)
```

Удалим из наших данных строки с нулевыми значениями

```
data = data.dropna(subset=['sex', 'age', 'treat', 'height', 'weight', 'tstart', 'tstop', 'statu # возьмем объект из (раздела 2.2)
data.loc[:, "time"] = data.loc[:, "tstop"] - data.loc[:, "tstart"] # time=tstop-tstart
data.loc[data.sex == "male", "sex"] = 1
data.loc[data.sex == "female", "sex"] = 2
data.loc[data.treat == "placebo", "treat"] = 1
```

```
data.loc[data.treat == "rIFN-g", "treat"] = 2
kmf.fit(durations = data["time"], event_observed = data["status"])
kmf.event_table
data = data[['time', 'treat', 'age', 'height', 'weight', 'sex', 'status']]
```

```
cph = CoxPHFitter()
cph.fit(data, "time", event_col="status")
```

```
duration col = 'time'
             event col = 'status'
    baseline estimation = breslow
  number of observations = 203
number of events observed = 76
  partial log-likelihood = -358.88
       time fit was run = 2022-07-10 16:08:44 UTC
         coef exp(coef) se(coef) coef lower 95% coef upper 95% exp(coef) lower 95% exp(coef) upper 95%
covariate
         -0.07
                  0.94
                            0.03
                                         -0.13
                                                       -0.01
                                                                          0.88
age
        -0.00
                                         -0.02
                                                                                           1.01
height
                  1.00
                           0.01
                                                        0.01
                                                                          0.98
        0.02
                  1.02
                           0.01
                                         -0.01
                                                        0.05
                                                                          0.99
                                                                                           1.05
weight
         -0.04
                  0.96
                           0.33
                                         -0.70
                                                        0.61
                                                                          0.50
                                                                                           1.84
sex
         cmp to z p -log2(p)
covariate
           0.00 -2.15 0.03
age
height
           0.00 -0.39 0.69
                             0.53
           0.00 1.59 0.11
weight
                             3.18
           0.00 -0.13 0.90
Concordance = 0.59
Partial AIC = 725.77
log-likelihood ratio test = 7.73 on 4 df
-log2(p) of ll-ratio test = 3.29
```

Мы знаем, что значение <0.05 считается статистически значимым. Здесь мы видим, что age имеет менее 0,05, treat — <0.005. Поэтому рассмотрим группировку по возрасту и по "лекарству".

Заметим, что значение HR = exp(b) для age равно 0.92, \Rightarrow слабая зависимость риска смерти от пола пациента, т.к если остальные ковариаты = const, \Rightarrow если вы женщина, то имеете на 8% меньше риск смерти, чем мужчины. Для treat ситуация такая, т.к HR равна 0.32, \Rightarrow сильная зависимость риска смерти от вида лечения: пациенты, принимающие rIFN-q, имеют на 68% меньше риск смерти, нежели те, кому давали placebo.

```
cph.plot()
```



```
print(data.iloc[10:15, :])
                                  weight sex
##
       time treat
                    age
                         height
                                               status
## 10
                          159.0
                                    47.5
         89
                 1
                     15
                                            1
                                                    0
## 11
        382
                 2
                     19
                           171.0
                                    72.7
                                            1
                                                    0
## 12
                 2
                     12
                           142.0
                                    34.0
        388
                                            1
                                                    0
## 13
        246
                 1
                     17
                           162.5
                                    52.7
                                            1
                                                    1
## 14
          7
                 1
                     17
                           162.5
                                    52.7
                                            1
                                                    1
ddata = data.iloc[10:15, :]
cph.predict_survival_function(ddata).plot()
plt.show()
```


3 Итог

Проанализровав выживаемость после заболевания CGD, можно сказать, что примерно за 1 год выроятность выживания становится равной $0. \Rightarrow$ чем больше времени проходит, тем больше смертельный риск.

Анализ показал, что на нашей выборке у женщин немного больше шансов на выживание, нежели у мужчин. Анализировать действие лечебных препаратов, которые давали пациентам, не стал, т.к. это исключительно профилактическое-консервативное лечение, на пациентов с данным диагнозом практически не влияет.