Versuch V6

C405 Hardwarepraktikum II

Abnahme: 20. Januar 2025 Stand: 21. Januar 2025

 $Tom\ Mohr\\ Martin\ Ohmeyer$

Inhaltsverzeichnis

1	Allg	emeines	1
	1.1	Zähler	1
	1.2	Würfel	1
2	Logi	ikgatter	2
	2.1	Wahrheitswerttabelle	2
	2.2	KV-Diagramme und vereinfachte Formeln	3
	2.3	Aufbau	4
3	Gal		5
	3.1	Zähler	5
		3.1.1 Mealy-Automat	5
		3.1.2 Wahrheitswerttabelle	6
		3.1.3 KV-Diagramme und vereinfachte Formeln	7
	3.2	Mapping Zähler auf Würfel	8
		3.2.1 Wahrheitswerttabelle	8
		3.2.2 KV-Diagramme und vereinfachte Formeln	9
	3.3		10
	3.4		11

1 Allgemeines

1.1 Zähler

Variablen, die zu einem Zähler gehören, tragen die Bezeichnung z_n .

1.2 Würfel

Variablen, die zum Würfel gehören, tragen die Bezeichnung w_n . Sie sind wie in Abbildung 1.2 dargestellt auf die Augen des Würfels verteilt.

 $w_3 \ w_2 \ w_1 \ w_0$

2 Logikgatter

2.1 Wahrheitswerttabelle

Im Nachfolgenden finden Sie die Wahrheitswerttabelle für das Abbilden des Zählers auf die low-active Pins des Würfels.

Zähler	Würfel	z_2	z_1	z_0	w_3	w_2	w_1	w_0
0	1	0	0	0	1	1	1	0
1	2	0	0	1	1	1	0	1
2	3	0	1	0	1	1	0	0
3	4	0	1	1	1	0	0	1
4	5	1	0	0	1	0	0	0
5	6	1	0	1	0	0	0	1

2 Logikgatter

2.2 KV-Diagramme und vereinfachte Formeln

Hier wird die Wahrheitswerttabelle 2.1 in Formeln umgewandelt, welche dabei direkt grafisch vereinfacht werden.

2 Logikgatter

2.3 Aufbau

Die in 2.2 ermittelten Formeln wurden in Gleichungen aus nur NANDs umgewandelt und anschließend aufgebaut.

3 Gal

3.1 Zähler

3.1.1 Mealy-Automat

Als Hilfe zum Aufstellen einer Wahrheitswerttabelle für den internen Zähler, haben wir erst einen Mealy-Automaten entworfen.

3.1.2 Wahrheitswerttabelle

Aus dem Automaten 3.1.1 lässt sich leicht die Wahrheitswerttabelle für den Zähler ablesen. Diese finden Sie im Anschluss.

Dez.	z_2	z_1	z_0	i	z_2^+	z_1^+	z_0^+
0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	0
4	0	1	0	0	0	1	1
5	0	1	0	1	1	1	0
6	0	1	1	0	1	0	0
7	0	1	1	1	1	0	0
8	1	0	0	0	1	0	1
9	1	0	0	1	1	0	1
10	1	0	1	0	0	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	0	1	1
13	1	1	0	1	0	1	1
14	1	1	1	0	X	X	X
15	1	1	1	1	X	X	X

3.1.3 KV-Diagramme und vereinfachte Formeln

Hier entwickeln die vereinfachten Formeln, welche aus der Wahrheitswerttabelle 3.1.2 folgen.

	\overline{i}	i	i	\overline{i}		
\overline{z}_2	0 0	0 1	0 3	0 2	\overline{z}_1	\overline{z}_2
\overline{z}_2	0 4	$1_{_{5}}$	1 7	1 6	z_1	\overline{z}_2
z_2	0_12	0,13	X 15	X 14	z_1	z_2
z_2	1 8	1 9	0,11	0,10	\overline{z}_1	z_2
	\overline{z}_0	\overline{z}_0	z_0	z_0		
z_{2}^{+}	$= \overline{z}_2 z$	₁ <i>i</i> ∨	$z_2\overline{z}_1\overline{z}_0$	$_0 \lor z$	$z_1 z_0$	

	\overline{i}	i	i	\overline{i}	
\overline{z}_2	0 0	0 1	1 3	1 2	\overline{z}_1
\overline{z}_2	1 4	1 5	0 7	0 6	z_1
z_2	1	1	X 15	X 14	z_1
z_2	0 8	0 9	0	0,10	\overline{z}_1
	\overline{z}_0	\overline{z}_0	z_0	z_0	
	$z_1^+ =$	$=z_1\overline{z}_0$	$\vee \ \overline{z}_2$	$\overline{z}_1 z_0$	

	$ar{i}$	i	i	\overline{i}	
\overline{z}_2	1 0	1	0 3	0 2	\overline{z}_1
\overline{z}_2	1 4	0 5	0 7	0 6	z_1
z_2	1	1	X 15	X 14	z_1
z_2	1 8	1 9	0	0,10	\overline{z}_1
	\overline{z}_0	\overline{z}_0	z_0	z_0	
z	$_{0}^{+}=\overline{z}$	$_0\bar{i}$ \vee	$\overline{z}_1\overline{z}_0$	$\forall z_2 z$	1

3.2 Mapping Zähler auf Würfel

3.2.1 Wahrheitswerttabelle

Es sind nun die Zählerzustände 3.1.3 auf die Pins des Würfels zu mappen. Dafür haben wir die folgenden Wahrheitswerttabelle aufgestellt.

Dez.	WZ.	z_2	z_1	z_0	w_3	w_2	w_1	w_0
0	1	0	0	0	1	1	1	0
1	2	0	0	1	1	1	0	1
2	3	0	1	0	1	1	0	0
3	4	0	1	1	1	0	0	1
4	5	1	0	0	1	0	0	0
5	6	1	0	1	0	0	0	1
6	6	1	1	0	0	0	0	1

3.2.2 KV-Diagramme und vereinfachte Formeln

Aus Tabelle 3.2.1 ergeben sich die folgenden Formeln.

\overline{z}_0	z_0	z_0	\overline{z}_0		\overline{z}_0	z_0	z_0	\overline{z}_0	
1 0	1	1 3	1	\overline{z}_2	1 0	1	0 3	1	\overline{z}_2
$1_{_4}$	0 5	X 7	0 6	z_2	0 4	0 5	X 7	0 6	z_2
\overline{z}_1	\overline{z}_1	z_1	z_1		\overline{z}_1	\overline{z}_1	z_1	z_1	
w_3	$= \overline{z}_2$	$\vee \ \overline{z}_1$	\overline{z}_0		w_2 :	$=\overline{z}_{2}\overline{z}_{0}$	$_0 \vee \overline{z}$	$\overline{z}_2\overline{z}_1$	
\overline{z}_0	z_0	z_0	\overline{z}_0		\overline{z}_0	z_0	z_0	\overline{z}_0	
\overline{z}_0	$\begin{bmatrix} z_0 \\ 0 \end{bmatrix}_1$	ſ	\overline{z}_0 0_{2}	\overline{z}_2	\overline{z}_0 0	z_0	z_0 $1_{_3}$	\overline{z}_0 0_{2}	\overline{z}_2
1		z_0 0_{3} x_{7}		\overline{z}_2 z_2	0	1		0	\overline{z}_2 z_2
1 ₀	0 1	0 ₃	0 2		0 0	1 1 5	1 3 X 7	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	

3.3 Code

Die Implementation der Formeln 3.2.2 im GAL können Sie dem folgenden Code-Block entnehmen.

```
PIN 1 = clock;
PIN 2 = i ;
PIN 16 = z0; /* Pin nicht angeschlossen, fuer int. Funktion notwendig */
PIN 17 = z1; /* Pin nicht angeschlossen, fuer int. Funktion notwendig */
PIN 18 = z2; /* Pin nicht angeschlossen, fuer int. Funktion notwendig */
PIN 16 = w0;
PIN 17 = w1 ;
PIN 18 = w2;
PIN 19 = w3;
z2.d = !z2 & z1 & i # z2 & !z1 & !z0 # z1 & z0;
z1.d = z1 & !z0 # !z2 & !z1 & z0;
z0.d = !z0 & !i # !z1 & !z0 # z2 & z1;
w3.d = !z2 # !z1 & !z0;
w2.d = !z2 & !z0 # !z2 & !z1;
w1.d = !z2 & !z1 & !z0;
w0.d = z0 # z2 & z1;
```

3.4 Aufbau

Der Aufgebaue Gal.

