Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3

по «Вычислительная Математика»

Выполнил:

Студент группы Р3207 Разинкин А.В.

Преподаватели:

Рыбаков С.Д.

Оглавление

Цель лабораторной работы	3
Порядок выполнения работы	3
Рабочие формулы	4
Вычислительная реализация задачи	5
Ссылка на исходный код программы (GitHub)	8
Пример работы программы	8
Вывод	10

Цель лабораторной работы

Изучить численные методы решения нахождения определенных интегралов функций.

Порядок выполнения работы

Обязательное задание (до 80 баллов)

- Вычислительная реализация задачи
 - 1. Вычислить приведенный интеграл точно.
 - 2. Вычислить приведенный интеграл по формуле Ньютона-Котеса при n=6.
 - 3. Вычислить приведенный интеграл по формулам средних прямоугольников, трапеций и Симпсона при *n* = 10.
 - 4. Сравнить результаты с точным значением приведенного интеграла
 - 5. Определить относительную погрешность вычислений для каждого метода
- Программная реализация задачи

Рабочие формулы

Формула Ньютона-Лейбница:

$$\int_a^b f(x) = F(b) - F(a),$$
 где $F(x)$ – первообразная $f(x)$

Формула Ньютона-Котеса при n = 6:

$$\int_{a}^{b} f(x) \approx c_{6}^{0} f(x_{0}) + c_{6}^{1} f(x_{1}) + c_{6}^{2} f(x_{2}) + c_{6}^{3} f(x_{3}) + c_{6}^{4} f(x_{4}) + c_{6}^{5} f(x_{5}) + c_{6}^{6} f(x_{6}),$$

где c_n^i — коэффициент Котеса

Формула длины интервала:

$$h_i = x_i - x_{i-1}$$
, $i = 1, 2, ... n$

Формула метода левых прямоугольников:

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} h_{i} y_{i-1}$$

Формула метода левых прямоугольников:

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} h_{i} y_{i}$$

Формула метода средних прямоугольников:

$$\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} h_{i} f(x_{i-1/2})$$

$$x_{i-1/2} = \frac{x_{i-1} + x_{i}}{2} = x_{i-1} + \frac{h_{i}}{2}, i = 1, 2, \dots n$$

Формула метода трапеций:

$$\int_{a}^{b} f(x) \approx \frac{1}{2} \sum_{i=1}^{n} h_{i} (y_{i-1} + y_{i})$$

Формула метода Симпсона:

$$\int_{a}^{b} f(x) = \frac{h}{3} (y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n)$$

Вычислительная реализация задачи

Приведенный интеграл: $\int_2^4 (x^3 - 3x^2 + 7x - 10) dx$ Прямое решение:

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10)dx = \left(\frac{1}{4}x^{4} - x^{3} + \frac{7}{2}x^{2} - 10x\right)\Big|_{2}^{4} = 26$$

Решение методом Ньютона-Котеса при n = 6:

$$h = \frac{b-a}{n} = \frac{4-2}{6} = \frac{1}{3}$$

i	x_i	$f(x_i)$	c_6^i
0	2	0	$\frac{41}{420}$
1	$\frac{7}{3}$	$\frac{77}{27}$	$\frac{18}{35}$
2	8 - 3	$\frac{170}{27}$	$\frac{9}{140}$
3	3	11	$\frac{68}{105}$
4	$\frac{10}{3}$	$\frac{460}{27}$	$\frac{9}{140}$
5	$\frac{11}{3}$	$\frac{665}{27}$	$\frac{18}{35}$
6	4	34	$\frac{41}{420}$

$$\int_{2}^{4} f(x)dx \approx c_{6}^{0}(x_{0}) + c_{6}^{1}(x_{1}) + c_{6}^{2}(x_{2}) + c_{6}^{3}(x_{3}) + c_{6}^{4}(x_{4}) + c_{6}^{5}(x_{5}) + c_{6}^{6}(x_{6}) =$$

$$= \frac{2543}{105} \approx 24{,}219$$

<u>Решение методами прямоугольников при n = 10</u>:

$$h = \frac{b-a}{n} = \frac{4-2}{10} = 0.5$$

i	x_i	$f(x_i)$
0	2	0
1	2,2	1,528
2	2,4	3,344
3	2,6	5,496
4	2,8	8,032
5	3	11
6	3,2	14,448
7	3,4	18,424
8	3,6	22,976
9	3,8	28,152
10	4	34

Метод левых прямоугольников: $\int_2^4 f(x) \approx 0.2 \sum_{i=1}^{10} y_{i-1} = \frac{567}{25} = 22,68$ Метод правых прямоугольников: $\int_2^4 f(x) \approx 0.2 \sum_{i=1}^{10} y_i = \frac{737}{25} = 29,48$ Метод средних прямоугольников:

i	$x_{i-1/2}$	$f(x_{i-1/2})$
1	2,1	0,731
2	2,3	2,397
3	2,5	4,375
4	2,7	6,713
5	2,9	9,459
6	3,1	12,661
7	3,3	16,367
8	3,5	20,625
9	3,7	25,483
10	3,9	30,989

$$\int_{2}^{4} f(x) \approx 0.2 \sum_{i=1}^{10} f(x_{i-1/2}) = \frac{649}{25} = 25,96$$

Решение методом трапеций:

$$\int_{2}^{4} f(x) \approx \frac{1}{2} \cdot 0.1 \cdot \sum_{i=1}^{10} (y_{i-1} + y_{i}) = \frac{652}{25} = 26.08$$

Решение методом Симпсона:

$$\int_{2}^{4} f(x) = \frac{0.2}{3} (y_0 + 4(y_1 + y_3 + y_5 + y_7 + y_9) + 2(y_2 + y_4 + y_6 + y_8) + y_{10}) = 26$$

Сравнение результатов:

Точное значение: 26

Метод	Результат	Δ	δ, %
Ньютона-Котеса	24,219	-1,781	6,85
Левых пр.	22,68	-3,32	12,769
Правых пр.	29,48	3,48	13,385
Средних пр.	25,96	0,04	0,154
Трапеций	26,08	0,08	0,308
Симпсона	26	0	0

Ссылка на исходный код программы (GitHub)

https://github.com/DecafMangoITMO/ITMO/tree/main/ComputationalMathematics/lab 3

Пример работы программы

Программа по вычислению определенных интегралов.

Для выхода из программы напишите exit.

Список доступных функций:

$$--> y = x^3 - 3x^2 + 7x - 10$$

$$--> y = \sin(x)$$

$$--> x / sqrt(1 + x^2)$$

$$--> y = 1 / x$$

$$--> y = 1 / sqrt(x)$$

$$--> y = \cos(x) + \sin(x)$$

Введите номер функции: 1

Введите левую границу интервала: 2 Введите правую границу интервала: 4

Введите точность: 0.001

Учтите, что при большой точности и длинном интервале интегрирования подсчет может выполняться достаточно долго.

Вы хотите оставить текущее значение точности?

Введите да/нет: да

Функция: $y = x^3 - 3x^2 + 7x - 10$

Интервал: [2.0; 4.0] Точность: 0.001000

	Метод		Результат	<u> </u>	Кол-во ра	збиений	
	Метод левых прямоуго	ОЛЬНИКОЕ	3	25.999	1	65536	
 	Метод правых прямоу	гольнико	ов	26.001	I	65536	

Метод центральных прямоугольников 		25.999	I	64	
Метод трапеций	l	26.000		128	
Метод Симпсона	l	25.989	-	2048	

Вывод

В ходе выполнения данной лабораторной работы я ознакомился с основными численными методами решения определенных интегралов.