Organizační úvod

Poznámka (Organizační úvod)

Na zkoušku není nutné mít zápočet. Přednáška má stránku (se slidy, kvízem). Záznamy z loňského roku budou.

1 Úvod

Definice 1.1 (Prostředí)

Prostředí může být s plnou informací nebo s částečnou informací (podle toho, zda agent dostává svými senzory vše, nebo ne), dále může být buď deterministické nebo stochastické (podle toho, zda je plně určené svým stavem a akcí), dále je buď epizodní nebo sekvenční (podle toho, zda se pořád opakuje to samé, např. návštěva u lékaře, nebo zda se neopakuje), dále statické nebo dynamické (podle toho, zda ho ovlivňuji jen já, nebo i něco jiného, semi-dynamické je, když přemýšlení ovlivňuje můj výkon, např. hry s hodinami), dále diskrétní nebo spojité, dále jedno-agentová nebo více-agentové (kompetitivní/kooperativení).

Definice 1.2 (Reflex agent)

Simple RA: Na základě pozorování světa vrátí akci. (V podstatě neprocedurální funkce beroucí svět a vracející akci.)

Model-based RA: Kromě vracení akce i mění svůj stav (pomocí stavového modelu).

Definice 1.3 (Goal-based agent)

Funguje podobně jako Reflexní agent, ale má ještě navíc nějaký cíl (který lze měnit např. příkazem), který ovlivňuje akci.

Definice 1.4 (Stav)

Stav může být reprezentován buď atomicky (nemá žádnou strukturu) nebo Factored? (stav je vektor hodnot) nebo strukturovaně (stav je množina objektů spojených různými relacemi).

Definice 1.5 (Problem solving agent)

PSA je typ goal-based agenta, který používá atomickou reprezentaci stavů, cíl je jedním ze stavů a akce jsou popisy, jak se stavy mění.

Úkolem je najít sekvenci akcí, která dosáhne cílového stavu. Hledá se pomocí nějakého search algoritmu.

Definice 1.6 (Dobře definovaný problém)

Dobře definovaný problém má počáteční stav, přechodový model (který má rozumnou míru abstrakce, např. neovládá každý sval zvlášť), jím implikované stavy a test určující cílové stavy.

Tím je implicitně definovaný search tree. (Na něm je algoritmus tree search, který strom prochází tak, že do "množiny" postupně přidává syny prvků, které v ní už jsou. Často je však problém s opakováním stavů.)

Definice 1.7 (Graph search)

Graph search je skoro totéž jako tree search, jen si u každého stavu pamatuje, zda již byl navštíven, nebo ne.

Search tree tohoto algoritmu má každý stav nanejvýš jednou.

Definice 1.8 (Kompletní algoritmus)

Algoritmus je kompletní, když správně najde řešení respektive dokáže, že neexistuje, pro všechny vstupy.

Poznámka (Neinformované prohledávání (prohledávání obecného stavového prostoru)) Následně se probíral breadth-first search, depth-first search a backtracking (na rozdíl od DFS nenačte hned všechny následníky vrcholu, ale jde jeden po druhém, což nemusí být vždy možné).

Definice 1.9 (Informované (heuristické) algoritmy, best-first search, A*)

Algoritmy, které využívají pro rozhodování používají navíc tzv. heuristiku.

Patří mezi ně např. best-first search, který prohledává stav, kde je nejmenší evaluační funkce f(n), která kromě vzdálenosti od počátku (g(n)) bere v potaz i heuristiku h(n). Ten podle volby f(n) může být např. greedy best-first search: f(n) = h(n), nebo A*: f(n) = g(n) + h(n).

Definice 1.10 (Přípustná a monotónní heuristika)

Přípustná heuristika je taková, která vrací hodnotu mezi nulou a nejlepší cestou.

Monotónní (nebo také konzistentní) heuristika je taková, která splňuje "trojúhelníkovou nerovnost" (tedy rozdíl heuristik nemůže být větší než cesta mezi nimi).

Tvrzení 1.1

Je-li heuristika monotónní (a nezáporná), pak už je přípustná.

$D\mathring{u}kaz$		
	$h(\text{start}) - h(\text{cil}) \le \text{nejkrat} \check{\text{s}} i \text{ cesta} .$	

Tvrzení 1.2

A* v tree-search je optimální (první nalezená cesta je nejkratší).

Důkaz

V otevřených vrcholech je vždy vrchol nejkratší cesty (jelikož počáteční stav je a vždy když vrchol uzavíráme, tak přidáme všechny sousedy).

Cíl musíme najít po nejkratší cestě, protože v cíli je f(n)=g(n) a my jsme ho poprvé potkali při nejmenším f(n).

Tvrzení 1.3

Je-li použitá heuristika monotónní, pak A* v graph-search je optimální.

 $D\mathring{u}kaz$

Jednoduchý, podobně jako u tree-search, navíc se dokazuje jen, že do každého vrcholu přijde po nejkratší cestě. $\hfill\Box$

Definice 1.11 (Dominance)

Heuristika h_1 dominuje heuristice h_2 , když $\forall n: h_1(n) \geq h_2(n)$.