ISyE 6739 Homework 2

Patrick Gardocki

2023-05-23

3-109

X = number of passengers that do not show up

X follows a binomial distribution

a)

$$P(X \ge 5) = 1 - P(X \le 4) = 1 - \sum_{x=0}^{4} {125 \choose x} (0.1)^x (0.9)^{125-x} = 0.9961$$

1 - pbinom(4,125,0.1)

[1] 0.9961414

b)

$$P(X > 5) = 1 - P(X \le 5) = 1 - \sum_{x=0}^{5} {125 \choose x} (0.1)^x (0.9)^{125-x} = 0.9885$$

1 - pbinom(5, 125, 0.1)

[1] 0.9885678

3-173

a)

ED = number of emergency department visits per day $\lambda T = 1.8 \ P(ED > 5) = 1 - \sum_{x=0}^{5} \frac{e^{-1.8}(1.8)^{x}}{x!} = 0.0103$

1 - ppois(5, 1.8)

[1] 0.01037804

b)

EW = number of emergency department visits per week $\lambda T = 1.8 \times 7 = 12.6 \ P(ED < 5) = \sum_{x=0}^{4} \frac{e^{-12.6}(12.6)^x}{x!} = 0.00497$

ppois(4,12.6)

[1] 0.004979028

c)

ET = number of visits in T days $\lambda T = 1.8T$ $P(ET \ge 1) = 1 - P(ET = 0) = 1 - \frac{e^{-1.8T}(1.8T)^0}{0!}$ $e^{-1.8T} = 0.01 = \ln(e^{-1.8T}) = \ln(0.01) \rightarrow T = 2.558$ days

log(0.01)/-1.8

[1] 2.558428

d)

Solve for λ . $P(ED > 5) = 0.1 = 1 - \sum_{x=0}^{5} \frac{e^{-\lambda}(\lambda)^x}{x!}$

4-4

$$f(x) = \frac{2}{x^3} \text{ for } x > 1$$

a)

$$P(X < 2) = \int_{1}^{2} \frac{2}{x^3} dx = \left(\frac{-1}{x^2}\right)|_{1}^{2} = 0.75$$

integrand <- function(x) {2/x^3}
integrate(integrand,1,2)</pre>

0.75 with absolute error < 8.3e-15

b)

$$P(X > 5) = \int_{5}^{\infty} \frac{2}{x^3} dx = \left(\frac{-1}{x^2}\right) |_{5}^{\infty} = 0.04$$

integrand <- function(x) {2/x^3}
integrate(integrand,5,Inf)</pre>

0.04 with absolute error < 5.8e-07

c)

$$P(4 < X < 8) = \int_{4}^{8} \frac{2}{x^3} dx = \left(\frac{-1}{x^2}\right) |_{4}^{8} = 0.0469$$

```
integrand <- function(x) {2/x^3}
integrate(integrand,4,8)</pre>
```

0.046875 with absolute error < 5.2e-16

d)

$$P(X < 4 \text{ or } X > 8) = \int_{1}^{4} \frac{2}{x^3} dx + \int_{8}^{\infty} \frac{2}{x^3} dx = 0.9531$$

```
integrand <- function(x) {2/x^3}
a <- integrate(integrand,1,4)
b <- integrate(integrand,8,Inf)
a[[1]] + b[[1]]</pre>
```

[1] 0.953125

e)

Find x, where P(X < x) = 0.95. $P(X < x) = \int_{1}^{x} \frac{2}{x^3} dx = \left(\frac{-1}{x^2}\right) |_{1}^{x} = \left(\frac{-1}{x^2}\right) - (-1) = 0.95$ $\therefore x = 4.4721$

4-82

Let W be required water in million gallons. Let S be storage capacity of 350 million gallons. $\mu = 310 \ million; \ \sigma = 45 \ million$

$$X \sim N(310, 45^2)$$
 ## a) $P(W > S) = 1 - P(X \le S) = 1 - \Phi(\frac{350 - 310}{45}) = 0.1870$

pnorm(310,350,45)

[1] 0.1870314

b) ?????????????

$$P(W>w) = P(Z>\frac{w-310}{45}) = 1 - \Phi(\frac{w}{45}) = 0.01$$
 $\Phi(\frac{w-310}{45}) = 0.99 \to \frac{w-310}{45} = 2.33 (\text{From Cumulative Standard Normal Table})$ $x = 414.85 \ million \ gallons$

c) ?????????????

$$P(W < w) = P(Z < \frac{w - 310}{45}) = \Phi(\frac{w - 310}{45}) = 0.05$$
 $\Phi(\frac{w - 310}{45}) = 0.05 \rightarrow \frac{w - 310}{45} = -1.64$ (From Cumulative Standard Normal Table) $x = 236.2 \ million \ gallons$

d)

Find
$$\mu$$
, $X \sim N(\mu, 45^2)$ $P(W > S) = 1 - P(X \le S) = 1 - \Phi(\frac{350 - \mu}{45}) = 0.01$ $\Phi(\frac{350 - \mu}{45}) = 0.99 \rightarrow \mu = 350 - 2.33 \times 45 = 245.15$ Given 1.4 million people, mean daily demand per person = 175.107 gallons

4-117

$$\lambda = \frac{1}{E(X)} = \frac{1}{15} \text{ X} = \text{time until first call } \#\# \text{ a) } P(X > 30) = \int_{30}^{\infty} \frac{1}{15} e^{\frac{-x}{15}} dx = e^{-2} = 0.1353$$

```
integrand <- function(x) {(1/15)*exp(-x/15)}
integrate(integrand,30,Inf)</pre>
```

0.1353353 with absolute error < 3.6e-05

b)

$$P(X \le 10) = P(X > 10)$$
 Since expect 0 calls in first 10 minutes $P(X > 10) = \int_{10}^{\infty} \frac{1}{15} e^{\frac{-x}{15}} dx = e^{-2/3} = 0.5134$

```
integrand <- function(x) {(1/15)*exp(-x/15)}
integrate(integrand,10,Inf)</pre>
```

0.5134171 with absolute error < 8e-07

c)

$$P(5 < X < 10) = \int_{5}^{10} \frac{1}{15} e^{\frac{-x}{15}} dx = e^{-1/3} - e^{-2/3} = 0.2031$$

```
integrand <- function(x) {(1/15)*exp(-x/15)}
integrate(integrand,5,10)</pre>
```

0.2031142 with absolute error < 2.3e-15

 \mathbf{d}

$$P(X < x) = 0.90 \rightarrow P(X < x) = \int_{0}^{x} \frac{1}{15} e^{\frac{-x}{15}} dx = 1 - e^{-x/15} = 0.90 \rightarrow ln(0.10) \times -15$$

 $\therefore x = 34.5387 \ minutes$

```
log(0.1)*-15
```

[1] 34.53878

5-6

a)

The table below shows the PMF table for $x, y \in \{0, 1, 2, 3, 4\}$

Table 1: PMF

	x=0	x=1	x=2	x=3	x=4
y=0	0.1243578	0.2618059	0.1963545	0.0621234	0.0069889
y=1	0.0872686	0.1354169	0.0665608	0.0103539	0.0000000
y=2	0.0203125	0.0206568	0.0049921	0.0000000	0.0000000
y=3	0.0018362	0.0009181	0.0000000	0.0000000	0.0000000
y=4	0.0000536	0.0000000	0.0000000	0.0000000	0.0000000

b)

```
\begin{array}{l} f_x(x) \text{ is the sum of the columns in the PMF table.} \\ f_x(0)=0.2338\,;\, f_x(1)=0.4187\,;\, f_x()=0.2679\,;\, f_x(3)=0.0724\,;\, f_x(4)=0.0069 \\ \\ \text{colSums(df[], na.rm=TRUE)} \end{array}
```

```
## x=0 x=1 x=2 x=3 x=4
## 0.233828714 0.418797697 0.267907350 0.072477351 0.006988887
```

c)

$$E(X) = \sum_{i=0}^{4} x_i * f(x_i) = 1.2001$$

0*0.2338 + 1*0.4188 + 2*0.2679 + 3*0.0725 + 4*0.0070

[1] 1.2001

d)

$$f_{Y|3}(y)=\frac{f_{xy}(3,y)}{f_x(3)}$$
 From 5-6 part b, using when x=3, and $f_x(3)=0.0724,$ the PMF

```
df1 = data.frame(y=c("0","1","2","3","4"),f=c(0.857,0.143,0,0,0))
names(df1) <- c("y","$f_{Y|3}(y)$")

kable(df1,"latex",align="c", caption="PMF",label="5-6a",escape = FALSE)%>%
    kable_styling(latex_options = "hold_position")
```

Table 2: PMF

У	$f_{Y 3}(y)$	
0	0.857	
1	0.143	
2	0.000	
3	0.000	
4	0.000	

e)

$$E(Y|X=3) = \sum_{i=0}^{4} y_i * f_{Y|3}(y)_i = 0 * 0.857 + 1 * 0.143 = 0.143$$

f)

$$V(Y|X=3) = \sum_{i=0}^{4} (y_i^2 * f_{Y|3}(y)_i) - E(Y|X=3)^2 = 0^2 * 0.857 + 1^2 * 0.143 - 0.143^2 = 0.123$$

 \mathbf{g}

X and Y are not independent.

 $f_{xy}(x,y) \neq f_x(x) \times f_y(y)$ for all x and yFor example, $f_{xy}(1,1) = 0.1354$; $f_x(1) = 0.4187$; $f_y(1) = 0.2994$ $0.1354 \neq 0.4187 \times 0.2994$

$\mathbf{Q2}$

a)

```
P(X) = \binom{3}{x} \times 0.98^{x} \times 0.02^{3-x}
\text{df = data.frame()}
\text{library(kableExtra)}
\text{library(knitr)}
\text{c0 = dbinom(0:3,3,0.98)}
\text{for (x in 1:4)} \{
\text{out = c(c0[x])}
\text{df = rbind(df,out)}
\}
\text{names(df) <- c("P(x)")}
\text{row.names(df) <- c("$f(0)$$","$f(1)$$","$f(2)$$","$f(3)$")}

kable(df,"latex",align="c", caption="PMF",label="Q2",escape = FALSE)%>% kable_styling(latex_options = "hold_position")}
```

Table 3: PMF

	P(x)
f(0)	0.000008
f(1)	0.001176
f(2)	0.057624
$\overline{f(3)}$	0.941192

b)

```
c0 = pbinom(0:3,3,.98)
df = data.frame()
library(kableExtra)
library(knitr)

for (x in 1:4){
    out = c(c0[x])
    df = rbind(df,out)
}

names(df) <- c("P(x)")
row.names(df) <- c("$F(0)$","$F(1)$","$F(2)$","$F(3)$")

kable(df,"latex",align="c", caption="CDF",label="Q2",escape = FALSE)%>%
    kable_styling(latex_options = "hold_position")
```

$$F(x) = 0 \text{ for } x \le 0$$

$$F(x) = 1 \text{ for } x \ge 3$$

Table 4: CDF

	P(x)
F(0)	0.000008
$\overline{F(1)}$	0.001184
F(2)	0.058808
F(3)	1.000000

c)

$$E(X) = \sum_{x=0}^{3} x * f(x) = 2.94$$

$$V(X) = \sum_{x=0}^{3} x^2 * f(x) - E(X)^2 = 0.0588$$

0*.000008 + 1*0.001176 + 2*0.057624 + 3*.941192

[1] 2.94

 $0^2*.000008 + 1^2*0.001176 + 2^2*0.057624 + 3^2*.941192 - 2.94^2$

[1] 0.0588