14 Varietats amb vora. Integració de formes.

Exercici 142: Sigui $f: \mathbb{R}^n \to \mathbb{R}$ una funció diferenciable tal que $df \neq 0$ sobre $f^{-1}(0)$. Demostreu que $M = \{x \in \mathbb{R}^n \mid f(x) \leq 0\}$ és una n-subvarietat amb vora de \mathbb{R}^n . (Com és ∂M ?)

Feu un dibuix de la regió de \mathbb{R}^2 donada pels punts (x,y) tals que $x^3-y^3-3\,x\,y\leq 0$ per tal de comprovar que la condició sobre df és necessària.

Exercici 143: Siguin f i g funcions de \mathbb{R}^n amb valors reals i diferenciables. Quines condicions s'haurien d'imposar per tal de poder assegurar que el conjunt

$$N = \{ p \in \mathbb{R}^n; f(p) = 0 \text{ i } g(p) \le 0 \}$$

és una varietat amb vora (de dimensió n-1, és clar)?

Doneu un mètode equivalent a l'anterior per tal d'obtenir varietats amb vora de dimensió arbitrària. (Quines condicions s'han d'imposar a f, g per tal de poder dir que els punts p que compleixen f(p) = 0 i $g(p) \le 0$ donen una varietat amb vora de dimensió k).

Exercici 144: Sigui γ la corba de \mathbb{R}^3 parametritzada per $\gamma(s)=(s,s^2,s^3)$ amb $s\in[0,1]$. Calculeu

$$\int_{\gamma} (dx + dz)$$

Exercici 145: Considereu $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y - z = 2, 0 < x < 1, 0 < y < 1\}.$ Determineu

$$\int_{S} dx \wedge dz$$

si l'orientació en S és la que correspon al vector normal (-1, -3, 1). (Noteu que si s'escriu $dx \wedge dz$ s'està pensant que s'integra una forma de \mathbb{R}^3 sobre la subvarietat S).

Exercici 146: Sigui \mathbb{S}^2 l'esfera unitària de \mathbb{R}^3 (on es pren l'orientació determinada pel normal exterior).

Quin valor té la integral $\int_{\mathbb{S}^2} dx \wedge dy$?

Es pot relacionar aquest càlcul amb el T. de Stokes?