SWITCHING POWER SUPPLY

Publication number: JP10257759

Publication date: 1998-09-25

Inventor: Applicant: HISAKAWA KOJI SHARP KK

Classification:

- international:

H01L21/822; H01L27/04; H02M3/28; H01L21/70;

H01L27/04; H02M3/24; (IPC1-7): H02M3/28;

H01L21/822; H01L27/04

- European:

Application number: JP19970054409 19970310 Priority number(s): JP19970054409 19970310

Report a data error here

Abstract of JP10257759

PROBLEM TO BE SOLVED: To provide a switching power supply in which power is prevented from being wasted without using any timer and a current is prevented from flowing through a starting resistor after power is turned on. SOLUTION: The switching power supply is provided, on the primary thereof, with a switching control circuit which is connected with a switching element Q1 inserted into one DC line on the primary and with the other DC line on the primary through a starting resistor RD. Power is supplied from the auxiliary winding B1 of a transformer. A soft start capacitor Cs is connected between the control circuit and the starting resistor RD and an interrupting element Tr2 interrupts the starting resistor RD from the DC line by detecting the charging voltage of the capacitor Cs.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-257759

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl. ⁶	識別記号	FΙ		
H 0 2 M	3/28	H02M	3/28	В
H01L 2	7/04	H01L	27/04	D
2	21/822			

審査請求 有 請求項の数3 OL (全 5 頁)

(21)出願番号	特願平9-54409	(71) 出願人 000005049
		シャープ株式会社
(22)出願日	平成9年(1997)3月10日	大阪府大阪市阿倍野区長池町22番22号
		(72)発明者 久川 浩司
		大阪府大阪市阿倍野区長池町22番22号 シ
		ャープ株式会社内
		(74)代理人 弁理士 梅田 勝

(54) 【発明の名称】 スイッチング電源回路

(57)【要約】

【課題】 従来構成のスイッチング電源回路は、タイマを使用することから、電源の大型化、高コストが避けられないという問題を有していた。

【解決手段】 1次側にスイッチング制御用の制御回路 1を備え、制御回路 1は、1次側の直流ラインの一方に 介挿されたスイッチング素子Q 1に接続される一方、1次側の直流ラインの他方に起動抵抗 R_0 を介して接続されるとともに、トランスT 1の補助巻き線B 1より電力供給されてなるスイッチング電源回路において、制御回路 1には、起動抵抗 R_0 との間にソフトスタート用のコンデンサ C_s が設けられ、このコンデンサ C_s の充電電圧を検出して、起動抵抗 R_0 と直流ラインとの間を遮断する遮断素子T r 2を設けてなることを特徴とする。

【特許請求の範囲】

【請求項1】 1次側にスイッチング制御用の制御回路を備え、該制御回路は、1次側の直流ラインの一方に介挿されたスイッチング素子に接続される一方、1次側の直流ラインの他方に起動抵抗を介して接続されるとともに、トランスの補助巻き線より電力供給されてなるスイッチング電源回路において、

前記制御回路には、前記起動抵抗との間にソフトスタート用のコンデンサが設けられ、該ソフトスタート用のコンデンサの充電電圧を検出して、前記起動抵抗と前記直流ラインとの間を遮断する遮断素子を設けてなることを特徴とするスイッチング電源回路。

【請求項2】 前記起動抵抗と前記1次側の直流ラインとの間に遮断用トランジスタが設けられる一方、一端が接地された前記ソフトスタート用のコンデンサの他端及び基準電圧の両方が入力されるコンパレータが設けられ、前記コンパレータの出力によって前記遮断用トランジスタを制御することを特徴とするスイッチング電源回路。

【請求項3】 少なくとも前記コンパレータと前記スイッチング素子とを1デバイス化したことを特徴とする請求項2に記載のスイッチング電源回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はスイッチング電源回路に関し、特に交流入力電圧の入力幅の広いスイッチング電源回路に関する。

[0002]

【従来の技術】従来の一般的なスイッチング電源回路について、図5を参照して説明する。図5に示すように、交流入力 V_0 は入力端子Vinから入力され、整流ダイオードD1、平滑コンデンサC1を経て直流化される。そして、この正極側にはパルストランスT1の1次巻き線n1が接続され、さらにその先にスイッチングMOSFETであるQ1のドレインが接続されている。Q1のソースは整流平滑後の負極側に接続される。また、Q1のゲートには制御回路1が接続されている。そして、この制御回路1への電力供給のために、パルストランスT1の補助巻き線B1と起動抵抗 R_D が接続されている。以上が1次側回路の構成である。

【0003】また、パルストランスT102次巻き線n2は整流ダイオードD2と平滑コンデンサC2とからなる整流回路に接続されて2次側回路を構成している。V ou tは出力端子で、ここで、直流出力 V_1 が得られる。以上が2次側回路の構成である。なお、1次側回路の補助巻き線B1と制御回路1との間にはコンデンサC3とダイオードD3が設けられている。

【0004】次に、上記回路構成のスイッチング電源回路の動作について説明する。上記回路に交流入力 V_0 が印加されると、起動抵抗 R_0 を通して制御回路1に電流

が供給されQ1がONする。すると1次巻き線n1には 入力電圧が、また補助巻き線B1には1次巻き線n1と の巻線比に応じた電圧が印加される。

【0005】ここで、補助巻き線B1の電圧は整流、平滑されるため常に一定の電圧で制御回路1に供給されている。そして、この電圧が制御回路1への電力供給を行うことになる。

【0006】そして、制御回路1による制御に従って、 Q1がOFFすると、2次側のダイオードD2がONし て負荷電流を流す。この電流はある時間経過後にエネル ギーを放出して0になるが、2次巻き線には残留エネル ギーがあり、これが今度はバックスイングして制御回路 の電源がパルストランスT1の補助巻き線B1から供給 されるようになる。

[0007]

【発明が解決しようとする課題】しかしながら、起動抵抗 R_0 には、Q1 のON、OFFにかかわらず電流が流れ続けているため、この抵抗 R_0 において不要な電力消費が生じる。

【0008】この不要な電力消費を低減するための方式として、例えば図6に示すようなタイマ回路を付加したものがある。この回路を要するに、タイマを使用することによって、起動してから有る時間経過以降においては、起動抵抗R_Dに電流が流れないようにしたものである。

【0009】図6に示すように、タイマ2からの信号が NPNトランジスタTr1のベースに入力されるように なっている。トランジスタTr1のエミッタはGND に、コレクタは正負極間に直列接続された抵抗R1とツェナーダイオードZD1の接続点に接続されている。そして、この接続点はさらに、トランジスタTr2のベースに入力されている。トランジスタTr2のエミッタは 起動抵抗R_Dに、またコレクタは正極に接続されている。

【0010】具体的に図6の構成にしたがって説明すると、まず起動後に、ある時間経過するとタイマ回路2より信号が送出されトランジスタTr1がONする。すると、トランジスタTr2のベースがGNDに落ちるためにトランジスタTr2はOFFする。この結果、トランジスタTr2に直列に接続された起動抵抗 R_D には電流が流れなくなるため、電源動作開始後には起動抵抗 R_D における電力損失を軽減できる。

【0011】しかしながら、この回路はタイマを使用することから、電源の大型化、高コストが避けられないという問題を有していた。

【0012】そこで、本発明の目的は、タイマを使用することなく、しかも電源開始後には起動抵抗に電流の流れない不要電力消費の無いスイッチング電源回路を提供することにある。

[0013]

【課題を解決するための手段】上記目的を達成するために本発明は、1次側にスイッチング制御用の制御回路を備え、該制御回路は、1次側の直流ラインの一方に介挿されたスイッチング素子に接続される一方、1次側の直流ラインの他方に起動抵抗を介して接続されるとともに、トランスの補助巻き線より電力供給されてなるスイッチング電源回路において、前記制御回路には、前記起動抵抗との間にソフトスタート用のコンデンサが設けられ、該ソフトスタート用のコンデンサの充電電圧を検出して、前記起動抵抗と前記直流ラインとの間を遮断する遮断素子を設けてなることを特徴とする。

【0014】ここで、前記起動抵抗と前記1次側の直流 ラインとの間に遮断用トランジスタが設けられる一方、一端が接地された前記ソフトスタート用のコンデンサの 他端及び基準電圧の両方が入力されるコンパレータが設けられ、前記コンパレータの出力によって前記遮断用トランジスタを制御することを特徴とする。

【0015】また、少なくとも前記コンパレータと前記 スイッチング素子とを1デバイス化したことを特徴とする。

【0016】上記のように本発明によれば、起動抵抗を有するスイッチング電源回路において、従来例のように高コスト、広面積を要するタイマを使用する構成ではないので、これに比較して低コスト化及び小型化を図れる。勿論、電源開始後には起動抵抗に電流が流れることがなく、不要電力消費を回避できる。

[0017]

【発明の実施の形態】本発明の一実施例について、図1 及び図2を参照して説明する。図1は本実施例によるスイッチング電源回路における制御回路の要部回路図、図2は図1の各部の信号波形を示した図である。

【0018】図5及び図6に示した従来例と異なる点は、主に制御回路の構成であり、その他の点については従来例と同じである。そこで、従来例の構成をもって説明する部分及び従来例と同一機能部分には、同一記号を付している。

【0019】本実施例の制御部は、起動抵抗Rpの一端が補助巻き線B1の正極側に接続されている。そして、この接続点(VCC)が定電流源Ipを介して、パルス幅制御コントロールICであるPWMコンパレータ3の一端子に入力されているとともに、GNDとの間にソフトスタートコンデンサCsを介している。そしてPWMコンパレータ3の他の2つの一端子にはそれぞれ、2次側からのフィードバック電圧FB、DET(低電圧源)4からの電圧が入力されている。また、PWMコンパレータ3の+端子には三角波発振器5からの信号が入力されている。PWMコンパレータの出力はMOSFETであるQ1のゲートに接続されている。

【0020】上記回路構成において、電源が投入されると、起動抵抗R_Dを介してVCC点に電力が供給され、

内部定電流源からコンデンサCsに供給される充電電流 により、コンデンサの電圧が上昇する。

【0021】ここで、PWMコンパレータ3は、なだらかに上昇するコンデンサ C_s の電圧、DET4の電圧、2次側からのフィードバック電圧FBの内で最も低い電圧よりも三角波発振器5の電圧が低いときに出力する。【0022】電源起動時は、コンデンサ C_s の電圧が最も低いため、PWMコンパレータ3の出力はコンデンサ C_s の電圧上昇とともにパルス幅を広げることになる。これによって、Q1のON時間が増加してソフトスタートがかかり、出力が序々に増加していく。このコンデンサ C_s の電圧の上昇をもって電源の起動を確認して、起動抵抗に流れる電流を遮断することにより電力の損失を軽減できる。

【0023】図3は、図1の回路において、起動抵抗を遮断するより具体的な構成を示した回路図である。図1と異なる点についてのみ説明すると、コンデンサ C_0 の GNDの接続されていない他端がコンパレータ C_0 の+端子に接続されている。このコンパレータ C_0 の一端子には基準電圧 V_0 の出力はトランジスタT r 1 のベースに接続されている。トランジスタT r 1 のベースに接続されている。トランジスタT r 1 の工ミッタはGNDに接続され、コレクタは正負極間に直列接続された抵抗 R 1 とツェナーダイオード2 D 1 の接続点に接続されている。

【0024】そして、この接続点はさらにトランジスタ Tr2のベースに入力されている。トランジスタTr2 のエミッタは起動抵抗R_Dに、またコレクタは正極に接 続されている。

【0025】以下、回路動作について説明する。電源動作が開始しておらずコンデンサ C_s が充電されていない時、つまりコンパレータ C_0 の+端子の電圧が一端子の基準電圧よりも低いときはコンパレータ C_0 はOFF状態であり、トランジスタTr1もOFFとなるので抵抗R1を流れる電流がトランジスタTr2のベース電流となり、トランジスタTr2をONさせる。これにより、起動抵抗 R_0 を介して制御回路1に電源が供給されて、電源動作が開始する。

【0026】電源動作開始後、コンパレータ C_0 の+端子の電圧が一端子の基準電圧よりも高くなると、コンパレータ C_0 はON状態となり、トランジスタTr1はONするのでトランジスタTr2のベースはGNDに落ちた状態になり、トランジスタTr2はOFFする。従って、起動抵抗 R_0 への電力供給は遮断される。

【0027】ところで、上記図3の回路の内、コンパレータ部 C_0 、PWMコンパレータ部3、基準電圧の電圧検出部分は十分小さいので、図4のA部に示すように、1 チップ化することができる。但し、コンデンサ C_8 のみは外部に設ける。この1 チップに、さらにMOSFE ToQ1を一体化して、図4のB部に示すように1 デバ

イス化することができる。

【0028】以上のように、本発明による回路構成によれば、図6の従来例のように高コスト、広面積を要するタイマを使用する構成ではないので、これに比較して低コスト化及び小型化を図れる。

[0029]

【発明の効果】以上説明したように本発明によれば、起動抵抗を有するスイッチング電源回路において、従来のようにタイマを使用することなく、しかも電源開始後には起動抵抗に電流の流れない不要電力消費の無いスイッチング電源回路を提供することができる。

【図面の簡単な説明】

【図1】本発明の一実施例によるスイッチング電源回路の要部回路図。

【図2】図1の回路の各部の信号波形を示した図。

【図3】図1の実施例のより具体的な回路図。

【図4】図3の回路図を実施化の説明をする図。

【図5】従来例によるスイッチング電源回路の回路図。

【図6】他の従来例によるスイッチング電源回路の回路図。

【符号の説明】

1 制御回路

C。 ソフトスタートコンデンサ

R_n 起動抵抗

Tr2 遮断素子(トランジスタ)

Q1 スイッチング素子

Co コンパレータ

T1 トランス

B1 補助巻き線

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【手続補正書】

【提出日】平成10年3月12日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項2

【補正方法】変更

【補正内容】

【請求項2】 前記起動抵抗と前記1次側の直流ライン

との間に遮断用トランジスタが設けられる一方、一端が接地された前記ソフトスタート用のコンデンサの他端及び基準電圧の両方が入力されるコンパレータが設けられ、前記コンパレータの出力によって前記遮断用トランジスタを制御することを特徴とする<u>請求項1に記載のスイッチング電源回路</u>。