CHAPTER 2:

SUPERVISED LEARNING

Learning a Class from Examples

- Class C of a "family car"
 - Prediction: Is car *x* a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:
 - Positive (+) "yes, it's a family car" and negative (-) "no, it's not a family car" examples
- Input representation: information we have about each car
 - x_1 : price, x_2 : engine power

Training set X

$$X = \{x^t, r^t\}_{t=1}^N$$

each car is represented as:

$$\{\mathbf{x}^t, \mathbf{r}^t\}$$

where:

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$$

r is the example's "class" also called "label", "desired class" or "actual class"

$$r = \begin{cases} 1, & \text{if } \mathbf{x} \text{ is a positive example} \\ 0, & \text{if } \mathbf{x} \text{ is a negative example} \end{cases}$$

Class C:

Hypothesis class space H

S, G, and the Version Space

Margin

Choose h with largest margin

Why the largest margin?

because we want to minimize the generalization error.

What's "generalization"?

Generalization: How well a model (i.e., hypothesis) performs on new data

Vapnik-Chernonenkis (VC) Dimension

- □ N points can be labeled in 2^N ways as +/—
- H shatters N if and only if:
 - there is a set of N points in 2D such that for each of the 2^N possible ways of labelling these N points, there exists h ∈ H that is consistent with this labelling (i.e., h correctly separates the + from the – points)
- VC(H) = maximum N that can be shattered byH measures the "capacity" of H

see example on the next slide

VC Dimension: Example

- Let H be the set of 2D axis-aligned rectangles
- □ VC(H) = ? (value)
- Remember:
 - □ VC(H) = maximum N that can be shattered byH
 - H shatters N if and only if:
 - there is a set of N points in 2D such that for each of the 2^N possible ways of labelling these N points, there exists $h \in H$ that is consistent with this labelling (i.e., correctly separates the + from the points)

(cont.)

VC Dimension: Example (cont.)

- Let H be the set of 2D axis-aligned rectangles
- \square VC(H) = 4

The family of axis-aligned rectangles shatters 4 points only!

Probably Approximately Correct (PAC) Learning

- If we are to use the tightest rectangle h as our chosen hypothesis, how many training examples do we need so that we can guarantee that our hypothesis is approximately correct? In other words:
- Given δ (1-δ is the desired minimum confidence) and ε (desired maximum error): How many training examples, N, should we have such that with probability at least 1–δ, h has error at most ε?

that is, $Pr(E(h|X) \le \varepsilon) \ge 1 - \delta$

(Blumer et al., 1989)

- E(h|X) would come from a positive example falling
 in the area between C and h
- We need the probability of a positive example falling in this area to be at most ε
- Assume that data instances are uniformly distributed in space and are independent from each other

Probably Approximately Correct (PAC) Learning (cont.)

- Given δ (1-δ is the desired minimum confidence) and ε (desired maximum error): How many training examples, N, should we have such that with probability at least 1-δ, the tightest rectangle h has error at most ε? Pr(E(h|X) ≤ ε) ≥ 1 δ
- □ E(h|X) would come from a positive example falling in the area between C and h
- We need the Probab. of a positive example falling in this area to be at most ε
- Pr of an instance falling in a strip should at most ε/4
- Pr that the data instance misses a strip is 1– ε/4
- Pr that N instances miss a strip $(1 \varepsilon/4)^N$
- Pr that N instances miss 4 strips $4(1 \varepsilon/4)^N$
- □ Hence we need: $4(1 ε/4)^N \le δ$ (cont.)

Probably Approximately Correct (PAC) Learning (cont.)

- □ Given δ (1-δ is the desired minimum confidence) and ε (desired maximum error): How many training examples, N, should we have such that with probability at least $1-\delta$, the tightest rectangle h has error at most ε? $Pr(E(h|X) \le ε) \ge 1 δ$
- □ we need: $4(1 \varepsilon/4)^N \le \delta$

Note that $b = e^{\ln(b)} = \exp(\ln(b))$ and that $(1 - x) \le e^{-x^2} \uparrow \text{Take } b = (1 - \varepsilon/4)^N$

- $4(1 \varepsilon/4)^{N} \le \delta$ $4 \exp(\ln[(1 \varepsilon/4)^{N}]) \le \delta$
- □ $4 \exp(N \ln(1 \varepsilon/4)) \le \delta$, now using $(1 x) \le \exp(-x)$:
- $4 \exp(N \ln(1 \varepsilon/4)) \le 4 \exp(N \ln(\exp(-\varepsilon/4)))$
- □ Let's make $4 \exp(N \ln(\exp(-\epsilon/4))) = 4 \exp(N (-\epsilon/4)) \le \delta$
- □ 4/ δ ≤ exp($\epsilon N/4$)
- □ $ln(4/\delta) \le ln(exp(εN/4)) = εN/4$
- □ and so $N \ge (4/ε) \ln(4/δ)$

Probably Approximately Correct (PAC) Learning (cont.)

- □ Given δ (1-δ is the desired minimum confidence) and ε (desired maximum error): How many training examples N should we have, such that with probability at least $1-\delta$, the tightest rectangle h has error at most ε? $Pr(E(h|X) \le ε) \ge 1 δ$
- □ Answer: $N \ge (4/\epsilon) \ln(4/\delta)$
- □ Example: How many training examples, N, do we need so that $Pr(E(h|X) \le 0.1) \ge 95\%$?
 - Here ε = 0.1 and 1 δ = 0.95 and so δ = 0.05

 - $N \ge 40 \ln(80) = 175.28$
 - Hence our training set X should contain at least
 N = 176 data instances.

Noise and Model Complexity

Noise:

Unwanted anomaly in the data

Potential Sources of Noise

- Imprecision in recording input attributes
- Errors in labeling the data points ("teacher noise")
- "Hidden" or "latent" attributes that affect the labels of the instances, but which are not considered in the data

Noise and Model Complexity (cont.)

Use simplest model because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

Multiple Classes, C_i i=1,...,K

Price

view a K-class classification problem as K two-class classification problems

Regression

linear, second-order, and sixth-order polynomials

 $g(x) = W_2 x^2 + W_1 x + W_0$

 $g(x) = W_1 x + W_0$

$$X = \{x^{t}, r^{t}\}_{t=1}^{N}$$

$$r^{t} \in \Re$$

$$r^{t} = f(x^{t}) + \varepsilon$$

f: underlying function that g we want to learn from data

$$E(g \mid X) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g(x^{t}) \right]^{2}$$

Error of g in linear regression:
$$E(w_1, w_0 \mid X) = \frac{1}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)]^2$$

Occam's razor also applies in regression

x: milage

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about H

(e.g., our inductive bias in these slides' classification examples was to select rectangles as hypotheses - they could have been circles, squares or something else)

- Generalization: How well a model performs on new data
- Overfitting: H more complex than C or f
 (e.g., fitting a 6th-order polynomial to noisy data sampled from a 2nd order polynomial)
- Underfitting: H less complex than C or f
 (e.g., fitting a 2nd-order polynomial to noisy data sampled from a 6th order polynomial)

Triple Trade-Off

- Hareidsartradsomfbbatwaemrthreadadors (Diletteriah,2000β):
 - 1. Complexity of \mathcal{H} , ϵ (\mathcal{H}),
 - 2. Trainings setisize, N,
 - 3. Generalization earspre, En one voewed at a
- As M ↑,Æ ↓
- \blacksquare As $c(\mathcal{H}) \uparrow f$, it fists $EE \downarrow a$ and then $E \uparrow \uparrow$

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - □ Training set (e.g., 50%)

 data instances used to construct the model
 - Validation set (e.g., 25%)

 data instances used to test preliminary versions of the model and/or to refine the model
 - Test (publication) set (e.g., 25%)

 data instances used to test the final model after it has been fully constructed
- Resampling when there is few data

Dimensions of a Supervised Learner

1. Model: $g(\mathbf{x} | \theta)$

Loss function:
$$E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$$

to compute the difference between the actual and predicted values

Optimization procedure:
$$\theta^* = \arg\min_{\theta} E(\theta \mid X)$$