Total No. of Questions: 8]	SEAT No.:
P2610	[Total No. of Pages : 2

M.E. (E & TC) (VLSI and Embedded Systems) ANALOG CMOS DESIGN (2013 pattern) (Semester-II) (504207)

Time: 3 Hours [Max. Marks: 50

Instructions	to the	candidates.
Instructions	to the	canataates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume Suitable data if necessary.
- Q1) a) With the help of suitable schematic and necessary expressions, explore MOSFET as switch, diode and active resistor.[5]
 - b) Draw typical circuit diagram for band gap reference and derive the expression for output voltage. [5]
- Q2) a) Draw current sink/source. How to improve output resistance? Derive the expression.[5]
 - b) Design cascode current mirror for i_{OUT} of 10 μA . Assume suitable data. [5]
- **Q3)** a) For active load inverter, derive the expressions for $V_{\rm OUT\;max}$ $V_{\rm OUT\;min}$ $A_{\rm v}$ and $r_{\rm OUT}$.
 - b) Carry out large signal analysis of CMOS differential amplifier and find out V_{OUTmax} V_{OUTmin} and ICMR. [4]
 - c) What are limitations/constraints due to output offset voltage of CMOS Opamp? [2]
- **Q4)** a) Compare active load, current source and push pull inverters w.r.t. V_{OUT} , A_{v} , r_{OUT} and bandwidth. [4]
 - b) Carry out small signal analysis of CMOS differential amplifier and derive A_v , r_{OUT} , CMRR and bandwidth. [4]
 - c) Which are dominant noise in CMOS Opamp? List the techniques to reduce these noise. [2]

P.T.O.

Q5)	a)	Design multistage amplifier for $A_v = 40 \text{ dB}$ and bandwidth = 100 MHz. Comment on r_{OUT} . Assume suitable data. [4]
	b)	Explore open circuit time constant method analytically in detail. [4]
	c)	List assumptions and limitations of short circuit time constant method. [2]
Q6)	a)	How to use zeros as bandwidth enhancer? Explain shunt peaking in amplifier. Give the expression for extended bandwidth. [4]
	b)	What are the constraints on input admittance of tuned amplifier? Explore unilateralization and neutralization in short. [4]
	c)	What are techniques to improve bandwidth? [2]
Q7)	a)	What is power constrained noise optimization? Explore with necessary expressions. [4]
	b)	Draw schematic for any one type of CMOS mixer and explain with analysis. [4]
	c)	What are spurs in mixer? [2]
Q8)	a)	Draw single ended LNA. Mention the drawbacks and show how these are overcome in differential LNA? [4]
	b)	Brief advanced trends in RF chip design. [4]
	c)	Define conversion gain and noise figure w.r.t. mixer. [2]

••••