Lecture 1: Introduction

Why Deep Learning?

- Hard-coded features are time-consuming, brittle, and not scalable practically
 - Developing heuristics are expensive

Why Now?

- 1. Big Data
- Larger datasets, easier to access and store
- 2. Hardware
- GPUs exist, are highly parallizable
- 3. Software
- Improved techniques, new models, better frameworks

The Fundamental Unit of a Neural Network: Perceptron

- Inputs to a perceptron: $x_1 \dots x_n$
- Each input is weighted: $\theta_1 \dots \theta_n$
- θ_0 is a bias unit
- g(x) is a nonlinear function, called an *activation function*
- Formula to calulate output (non-vectorized):

$$\hat{y} = g(heta_0 + \sum_{i=1}^m x_i heta_i)$$

• Vectorized version:

$$\hat{y} = g(heta_0 + X^ op heta)$$

where X is a column vector of inputs and θ is a column vector of weights

• Examples of the nonlinearity g(z) include:

Name	Function	Derivative	TensorFlow Function
Sigmoid	$g(z)=rac{1}{1+\exp{(-z)}}$	g'(z) = g(z)(1-g(z))	tf.nn.sigmoid(z)
Hyperbolic Tangent	$g(z) = rac{\exp{(z)} + \exp{(-z)}}{\exp{(z)} + \exp{(-z)}}$	$g'(z)=1-g(z)^2$	tf.nn.tanh(z)
Rectified Linear Unit (ReLU)	$g(z) = \max{(0,z)}$	$g'(z)=1 ext{ if } x>0 ext{ or } 0$ otherwise	tf.nn.relu(z)

Why Activation Functions?

- Introduces non-linearities into the network
- Otherwise the network can only produce linear decisions (regardless of network size)
- Having non-linearities allows modeling of any complex function

Building Neural Networks Using Perceptrons

Simplified Pereptron

- Remove the bias term, remove weights for simplicity
- $z = \theta_0 + \sum_{j=1}^m x_j \theta_j$
- Output of perceptron: y = g(z)

Multi-Output Perceptron

- Inputs are still $x_1 \dots x_m$, with each input connected to two units, z_1 and z_2 , which produce outputs y_1 and y_2
- ullet Formula for each unit is $z_i = heta_{0,i} + \sum_{j=1}^m x_j heta_{j,i}$

Single-Layer Neural Network

- Not a "deep" NN, it's "shallow"
- Allows for a transformation from input space \rightarrow hidden unit space \rightarrow output space
- Formula for hidden units is:

$$z_1 = \theta_{0,i}^{(1)} + \sum_{j=1}^m x_j \theta_{j,i}^{(1)}$$

• Formula for output units is:

$$\hat{y}_i = heta_{0,i}^{(2)} + \sum_{j=1}^m x_j heta_{j,i}^{(2)}$$

- These layers are *fully connected*, meaning every unit in the previous layer is connected to every unit in the next layer
 - Denoted as ×, as shown below

Deep Neural Network

• Just a stack of layers, same method

Applying Neural Networks

Example: Will I Pass This Class?

- Two features: x_1 (# of lectures attended), x_2 (hours spent on final project)
- We want to know if a new person passed or failed the class
- For a feature vector $x^{(1)} = [4, 5]$, we got a prediction 0.1

Why is this so? This network has never been trained

Quantifying Loss

- We need to find out how "off" we are from the actual
- The *loss* of a network measures the cost incurred from an incorrect prediction
 - o Thought of as a "distance" between actual and predicted output
- Denoted as $\mathcal{L}(f(x^{(i)};\theta),y^{(i)})$
- Low loss = close to actual

Empirical Loss

- Empirical loss measures total loss over entire dataset.
- Also known as objective function/cost function/empirical risk
- Calculated as $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \theta), y^{(i)})$

Softmax Cross-Entropy Loss

- ullet A type of loss function that can be used with models that predict a value in (0,1) (i.e. a probability)
- Calculated as:

$$J(heta) = rac{1}{n} \sum_{i=1}^n y^{(i)} \log \left(f(x^{(i)}; heta)
ight) + (1-y^{(i)}) \log \left(1-f(x^{(i)}; heta)
ight)$$

- $y^{(i)}$ is actual, while $f(x^{(i)};\theta)$ is predicted
- In TensorFlow, the loss is found as [loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))]

Mean Squared Error Loss

- Can be used wih regression models that produce continuous numbers $y \in \mathbb{R}$
- Calculated as:

$$J(heta) = rac{1}{n} \sum_{i=1}^n \left(y^{(i)} - f(x^{(i)}; heta)
ight)^2$$

- In English: average of actual minus predicted squared
- In TensorFlow, MSE loss is found as: loss =
 tf.reduce_mean(tf.square(tf.subtract(model.y, model.pred)))

Training Neural Networks

- We want to find the weights θ that give us the lowest loss
- ullet Our goal: $heta^* = \mathrm{argmin}_{ heta} J(heta)$
- Steps towards gradient descent:
 - \circ Step 1: Randomly initialize θ , usually with distribution $\mathcal{N}(0,1)$
 - \circ Step 2: Compute gradient $rac{\partial J(heta)}{\partial heta}$ (aka abla J(heta))
 - Tells us the direction of highest descent
 - Step 3: Step in opposite of gradient (negate gradient)
 - Step 4: Repeat Steps 1-3 until convergence
- Psuedocode:
- 1. Initialize weights randomly ${\sim}\mathcal{N}(0,\sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient $\frac{\partial J(\theta)}{\partial \theta}$
- 4. Update weights $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 5. Return weights
- TensorFlow pseudocode:

```
weights = tf.random_normal(shape, stddev=sigma)
while not converged:
grads = tf.gradients(ys=loss, xs=weights)
weights_new = weights.assign(weights - lr * grads)
return weights
```

How to Compute Gradients?

• Let's look at a simplified example:

- Let's calculate the gradient of $J(\theta)$ with respect to θ_2
 - $\circ \frac{\partial J(\theta)}{\partial \theta} = \frac{\partial J(\theta)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial \theta_2}$ because of Chain Rule
- Repeat this for every weight in all layers: backprop

Neural Networks in Practice: Optimization

- However, most NN cost functions are actually non-convex, making them susceptible to local minima
- Setting the learning rate η is extremely hard
 - Small learning rates converge slowly and are susceptible to local minima
 - Large learning rates overshoot and may diverge
 - Stable learning rates converge smoothly while avoiding local minima
- Ways to mitigate?
 - Try a bunch of different η , see what works
 - Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

- η is not fixed
- Can be adjusted based on:
 - how large gradient is
 - how fast learning is happening
 - size of weights
 - o and more
- Examples of Adapting LR Algorithms:
 - Momentum (tf.train.MomentumOptimizer)
 - Adagrad (tf.train.AdagradOptimizer)
 - Adadelta (tf.train.AdadeltaOptimizer)
 - Adam (tf.train.AdamOptimizer)
 - RMSProp(tf.train.RMSPropOptimizer)
- TODO: Read <ruder.io/optimizing-gradient-descent>

Neural Networks in Practice: Minibatches

- Computing the gradient is computationally expensive on big datasets
- Stochastic GD:
- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient estimate $\frac{\partial J(\theta)}{\partial \theta}$
- 5. Update weights $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 6. Return weights
- While it's easy to compute, it's very noisy (stochastic)
- Minibatch GD:
- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$

- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient estimate $\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(\theta)}{\partial \theta}$ 5. Update weights $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 6. Return weights
- Minibatches will allow us to:
 - Have an accurate estimation of the gradient with smoother convergence and ability to have higher η
 - Parallelize training to make it faster (especially on GPUs and clusters)

Neural Networks in Practice: Overfitting

- Underfitting = model does not have the capacity to fully learn data
- Ideal fit = model can generalize well on new data
- Overfitting = too complex and does not generalize well
- Regularization = technique that constrains optimization to discourage overly complex models

Regularization Using Dropout

- During training, randomly set some activations to 0
 - Usually "drop" 50% of activations in layer
 - Forces network to not rely on any one node
 - TF code: tf.nn.dropout(hiddenLayer, p=0.5)

Regularization Using Early Stopping

• Stop training before overfitting

Acknowledgements

Diagrams screenshotted from MIT 6.S191 2018 slides