ALGORITHM ANALYSIS ~ 05

CSE/IT 122 ~ Algorithms & Data Structures

REVIEW: SINGLE FOR LOOP

How many steps are required to complete the below code snippet?

```
for i = 3 to n - 1
a = 3 * n + 2 * i - 1
```

REVIEW: SINGLE FOR LOOP

for i = 3 to n - 1

```
a = 3 * n + 2 * i - 1

Answer: for loop fencepost in () and +1 for test:
(n - 1 - 3 + 1) + 1 = n - 2
Inside loop n - 3 times (just the fencepost portion)
So num_steps = c_1(n-2) + c_2(n-3)
```

NESTED LOOPS

- → Analyze from the inside out.
- → Total running time is the *product* of the sizes of all loops

EXAMPLE: TWO FOR LOOPS

	Cost	Number of Times
for(i = 0; i < n; i++)	c_1	n+1
for $(j = 0; j < n; j++)$	c_2	$n(n+1) = n^2 + n$
sum += i;	c_3	n^2

$$T(n) = c_1(n + 1) + c_2(n^2 + n) + c_3n^2$$

TAKE A CLOSER LOOK

```
Do this loop explicitly ... what happens?

count = 0
for i = 1 to 3
    for j = 1 to 3
        print i, j
        count += 1
        print count
```

TAKE A CLOSER LOOK

i = 1	i = 2	i = 3
1, 1	2, 1	3, 1
1	4	7
1, 2	2, 2	3, 2
2	5	8
1, 3	2, 3	3, 3
3	6	9

```
1)
for i := 1 to n
   for j := 1 to 2n
       a := 2*n + i * j
2)
for k := 2 to n
   for j: 1 to 3*n
       x := a[k] - b[j]
3)
for i := 1 to n
   s := 0
    for j := 1 to i
     s:= s + a[j]
   t := t + s^2
```

Code	Cost	# of Times
for i := 1 to n	$c_{_1}$	(n-0-1+1)+1 = n+1
for j := 1 to 2n	C ₂	(n)(2n-0-1+1)+1 = 2n ² + n
a := 2*n + i * j	c ₃	$(n)(2n-0-1+1) = 2n^2$

$$T(n) = c_1(n+1) + c_2(2n^2+n) + c_3(2n^2)$$

Code	Cost	# of Times
for k := 2 to n	c ₁	(n-0-2+1)+1 = n
for j := 1 to 3n	c ₂	$(n-1)(3n-0-1+1)+1 = 3n^2-2n-1$
x := a[k] - b[j]	c ₃	$(n-1)(3n-0-1+1) = 3n^2-3n$

$$T(n) = c_1(n) + c_2(3n^2-2n-1) + c_3(3n^2-3n)$$

Code	Cost	# of Times
for i := 1 to n	c ₁	(n - 0 -1 +1)+1 = n+1
s := 0	c ₂	n-0-1+1 = n
for j := 1 to i	c ₃	1+2++(n+1) = n((n+1)/2)
s := s +a[j]	C ₄	1+2++n = n(((n+1)/2) - 1)
t := t + s ²	c ₅	n-0+1-1 = n

$$T(n) = c_1(n+1) + c_2(n) + c_3((n(n+1)/2) + c_4(n(n+1)/2)-1 + c_5(n)$$

THREE FOUR LOOPS

	Cost	Number of Times
for(i = 0; i < n; i++)	c_1	n+1
for $(j = 0; j < n; j++)$	c_2	$n(n+1) = n^2 + n$
for $(k = 0; k < n; k++)$	c_3	$n \cdot n \cdot (n+1) = n^3 + n^2$
sum += i;	c_4	n^3

$$T(n) = c_1(n+1) + c_2(n^2+n) + c_3(n^3+n^2) + c_4n^3$$

THREE LOOPS THAT DEPEND ON I AND J

```
for i = 1 to n
  for j = 1 to i
    for k = 1 to j
       x = i * j * k
```

How to Solve?

PERMUTATIONS AND COMBINATIONS

- → Definition: a **permutation** of a set of objects is an ordering of the objects in a row.
 - For example: the set of elements a, b, and c have 6 permutations:
 - abc
 - acb
 - cba
 - bac
 - bca
 - cab
 - For example: the set {0,1} has two permutations:
 - 01
 - 10

PERMUTATIONS

- → Theorem: For any integer n >= 1, the number of permutations of a set with n elements is n!
- → Example Six diplomats are to be seated at a circular table. How many ways can you arrange them around a table?

PERMUTATIONS

- → Theorem: For any integer n >= 1, the number of permutations of a set with n elements is n!
- → Example Six diplomats are to be seated at a circular table. How many ways can you arrange them around a table?
 - Solution: Two seatings are the same if they are just a rotation of each other. Call the diplomats A, B, C, D, E, F and fix A at one of the seats. Then you have to arrange B, C, D, E, F or 5! = 120 ways.

PERMUTATIONS

→ Definition: an **r-permutation** of a set of n elements is an ordered selection of r elements taken from the set of n elements. The number of r-permutations of a set of n elements is denoted by P(n,r) and

$$P(n,r) = \frac{n!}{(n-r)!}$$

- → Example: How many different three letter words can you form from the english alphabet without repetition?
 - This includes nonsense words.

- → Example: How many different three letter words can you form from the english alphabet without repetition?
 - This includes nonsense words.
 - Solution:

$$P(26,3) = \frac{26!}{(26-3)!} = \frac{26 \cdot 25 \cdot 24 \cdot 23!}{23!} = 15600$$

- → Example: How many different 3 letter words begin with the letter z, without repetition?
 - Hint: You will have a fixed z

- → Example: How many different 3 letter words begin with the letter z, without repetition?
 - Hint: You will have a fixed z
 - Solution:

$$P(25,2) = \frac{25!}{(25-2)!} = \frac{25 \cdot 24 \cdot 23!}{23!} = 600$$