Lifting Bridge Group 1

Hannah Quintos Melissa De Leon Surbhi Singhania Lovepreet Singh Nhi Nguyen Khushiben Patel

Functionality and Dependency

Lifting Bridge will connect to EV3

This system will be dependent on the GPS system

GPS will have access to location of ships and trains

Lifting bridge will have access to the GPS

Lifting bridge will connect to spike hubs (audio, lights, motors, sensors)

Dependency

This system will be dependent GPS system.

3. Settings and Info

Module: GPS

This module can be connected to ship distance.

Module Settings

The bridge can be set to on off.

When ships have a certain distance to cross, the bridge have connected to the port and the bridge will be turned on.

The bridge will turn on sound to notify to cars about lifting up.

Module JSON

Additional information will include lights, motors, audio, and sensors connected to the lifting bridge port.

4. Ports, Motors, and Settings

Sensors and Motors

Audio Port

3x3 Light Matrix

Large Motor

Ultrasonic Sensor

Control Panel

Lights could have different types: Blinking and On/Off

Sound will have an on and off function

Motor for the bridge will be on and off

5. Pseudocode

IOT Loop

Opening time = bridge opening time + red signal time and barricade opening time

if(ship direction is towards bridge){

Calculate time to reach the bridge(reach time)

}

if(opening time + buffer time) == reach time){

Turns the signal yellow -> red; delay;

barricade opens; delay;

Check(if any vehicle on the bridge)

Open bridge

if(ship crosses the bridge){
 delay;
 Close bridge;
 Barricade opens;
 Light turns green;
}