§ 46. Эллипсоиды, гиперболоиды, параболоиды

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Эллипсоид (1)

В этой лекции рассматриваются еще пять квадрик в пространстве: эллипсоид, однополостный и двуполостный гиперболоиды и эллиптический и гиперболический параболоиды.

Определение

Эллипсоидом называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

где a,b,c>0. Это уравнение называется *каноническим уравнением* эллипсоида.

Отметим, что при a=b=c приведенное только что уравнение равносильно уравнению $x^2+y^2+z^2=a^2$, которое, как известно из школьного курса, задает сферу радиуса a с центром в начале координат. Таким образом,

 сфера является частным случаем эллипсоида (подобно тому, как окружность есть частный случай эллипса).

Метод сечений

Исследуем форму эллипсоида, применив так называемый *метод сечений*. Суть этого метода состоит в следующем.

Метод сечений

Рассмотрим сечения поверхности плоскостями, параллельными координатным плоскостям (эти плоскости имеют уравнения вида x=h, y=h и z=h, где h— некоторая константа). В сечениях получаются кривые, вид которых мы распознаем. Проведя достаточно много таких сечений, мы в итоге получим представление о форме поверхности.

Прежде чем начинать исследование формы эллипсоида методом сечений, договоримся о следующем. На протяжении всего этого параграфа мы будем рассматривать кривые, получающиеся в сечении той или иной поверхности плоскостями с уравнениями вида w=h, где w- одна из букв x, y и z. Для экономии места мы вместо записи общего уравнения полученнной кривой вида

$$\begin{cases} F(u,v) = 0, \\ w = h, \end{cases}$$

где u и v — буквы такие, что $\{u,v,w\}=\{x,y,z\}$, будем писать только уравнение F(u,v)=0 и называть его уравнением полученной кривой внутри плоскости w=h (или просто «плоскостным» уравнением этой кривой).

Эллипсоид (2)

Рассмотрим сечение эллипсоида плоскостями вида z=h. Получим кривую, которая внутри этой плоскости задается уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}.$$

При |h|>c эта кривая является пустым множеством, при |h|=c — точкой, а при |h|< c — эллипсом с «плоскостным» уравнением

$$\frac{x^2}{a^2(1-\frac{h^2}{c^2})} + \frac{y^2}{b^2(1-\frac{h^2}{c^2})} = 1.$$

При h=0 полуоси этого эллипса имеют наибольшие значения (равные a и b), с ростом |h| они уменьшаются и стремятся к 0 при $|h| \to c$. Абсолютно аналогично устроены сечения эллипсоида плоскостями вида x=h и y=h (надо только соответствующим образом заменить неизвестные и параметры a,b,c в уравнении получающегося эллипса). Окончательно представление о форме эллипсоида дает рис. 1 на следующем слайде.

Таким образом, можно сказать, что эллипсоид — это «вытянутая» (или, наоборот, «сплющенная» — смотря вдоль какой оси смотреть) сфера. Говоря нематическим языком, можно сказать, что эллипсоид имеет форму яйца.

Эллипсоид (рисунок)

Рис. 1. Эллипсоид

Однополостный гиперболоид (1)

Определение

Однополостным гиперболоидом называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$

где a,b,c>0. Это уравнение называется *каноническим уравнением* однополостного гиперболоида.

Изучим форму этой поверхности методом сечений. В сечении плоскостью z=h получается эллипс с полуосями $a\sqrt{1+rac{h^2}{c^2}}$ и $b\sqrt{1+rac{h^2}{c^2}}$. Значения полуосей минимальны при h=0 и возрастают с ростом |h|.

Однополостный гиперболоид (2)

В сечении плоскостью x=h получается:

ullet при |h| < a — гипербола, задаваемая внутри этой плоскости уравнением

$$\frac{y^2}{b^2(1-\frac{h^2}{a^2})} - \frac{z^2}{c^2(1-\frac{h^2}{a^2})} = 1;$$

действительной и мнимой осями гиперболы являются проекции осей Oy и Oz соответственно на плоскость x=h, полуоси гиперболы максимальны при h=0 и убывают с ростом h;

- при $h=\pm a$ пара пересекающихся прямых, задаваемых внутри плоскости x=h уравнениями $y=\frac{b}{c}\cdot z$ и $y=-\frac{b}{c}\cdot z$;
- ullet при |h|>a гипербола, задаваемая «плоскостным» уравнением

$$\frac{z^2}{c^2(\frac{h^2}{a^2}-1)} - \frac{y^2}{b^2(\frac{h^2}{a^2}-1)} = 1;$$

действительной и мнимой осями гиперболы являются проекции осей Oz и Oy соответственно на плоскость x=h; полуоси гиперболы возрастают с ростом h.

Наконец, сечения плоскостями вида y=h устроены аналогично сечениям плоскостями вида x=h. В целом однополостный гиперболоид выглядит так, как показано на рис. 2 на следующем слайде.

Однополостный гиперболоид (рисунок)

Рис. 2. Однополостный гиперболоид

Двуполостный гиперболоид (1)

Определение

Двуполостным гиперболоидом называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1,$$

где a,b,c>0. Это уравнение называется *каноническим уравнением* двуполостного гиперболоида.

Как и предыдущих случаях, изучим форму этой поверхности методом сечений. В сечении плоскостью z=h получается кривая, которая внутри этой плоскости задается уравнением $\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1+\frac{h^2}{c^2}$. Если |h|< c, то эта кривая представляет собой пустое множество; если |h|=c, то наша кривая является точкой; если же |h|>c, то эта кривая является эллипсом с «плоскостным» уравнением

$$\frac{x^2}{a^2(-1+\frac{h^2}{c^2})} + \frac{y^2}{b^2(-1+\frac{h^2}{c^2})} = 1,$$

полуоси которого растут с ростом |h|.

Двуполостный гиперболоид (2)

В сечении плоскостями x = h и y = h получаются гиперболы с «плоскостными» уравнениями

$$\frac{z^2}{c^2(1+\frac{h^2}{a^2})} - \frac{y^2}{b^2(1+\frac{h^2}{a^2})} = 1$$

И

$$\frac{z^2}{c^2\left(1+\frac{h^2}{b^2}\right)} - \frac{x^2}{a^2\left(1+\frac{h^2}{b^2}\right)} = 1$$

соответственно, полуоси которых минимальны при h=0 (т. е. при сечении координатными плоскостями x=0 и y=0) и растут с ростом h.

В результате получается поверхность, изображенная на рис. 3 на следующем слайде. Отметим, что эта поверхность состоит из двух частей, что и объясняет слово «двуполостный» в ее названии (аналогичное происхождение имеет слово «однополостный» в названии предыдущей поверхности).

Двуполостный гиперболоид (рисунок)

Рис. 3. Двуполостный гиперболоид

Эллиптический параболоид (1)

Определение

Эллиптическим параболоидом называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z,$$

где a,b>0 и $a\geqslant b.$ Это уравнение называется *каноническим уравнением* эллиптического параболоида.

В сечении этой поверхности плоскостью z=h получается:

- при h < 0 пустое множество;
- при h = 0 точка (начало координат);
- ullet при h>0 эллипс с «плоскостным» уравнением

$$\frac{x^2}{2ha^2} + \frac{y^2}{2hb^2} = 1,$$

полуоси которого растут с ростом h.

Эллиптический параболоид (2)

В сечении плоскостью y=h получается кривая с «плоскостным» уравнением

$$x^2 = 2a^2 \left(z - \frac{h^2}{2b^2} \right)$$

Это парабола с параметром a^2 , ветви которой направлены вверх, т. е. в положительном направлении оси Oz. При h=0 ее вершина совпадает с началом координат, с увеличением |h| она поднимается вдоль оси Oz.

Аналогичным образом устроено сечение плоскостью x=h: это парабола с «плоскостным» уравнением

$$y^2 = 2b^2 \left(z - \frac{h^2}{2a^2}\right),$$

параметр которой равен b^2 , а вершина совпадает с началом координат при h=0 и поднимается вдоль оси Oz с ростом |h|.

Получающаяся поверхность изображена на рис. 4 на следующем слайде.

Эллиптический параболоид (рисунок)

Рис. 4. Эллиптический параболоид

Оптическое свойство эллиптического параболоида

В § 43 мы упоминали об оптическом свойстве параболы. Аналогичное свойство имеет и эллиптический параболоид.

Оптическое свойство эллиптического параболоида

Как мы уже говорили, сечения эллиптического параболоида плоскостями x=h и y=h являются параболами. Пучок лучей, параллельных оси любой из этих парабол, отражаясь от параболоида, собирается в фокусе этой параболы; и наоборот, свет от источника, находящегося в фокусе одной из парабол, отражается параболоидом в пучок лучей, параллельных оси этой параболы.

Это свойство лежит в основе действия параболических антенн, телескопов-рефлекторов, прожекторов, автомобильных фар и т. д.

• На том же свойстве основано и действие прибора, описанного в романе А.Н.Толстого «Гиперболоид инженера Гарина». Так что на самом деле этот роман должен был бы называться «Параболоид инженера Гарина».

Гиперболический параболоид (1)

Определение

Гиперболическим параболоидом называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z,$$

где a,b>0. Это уравнение называется *каноническим уравнением* гиперболического параболоида.

Рассмотрим сечение этой поверхности плоскостью z=h. Получим кривую, которая внутри этой плоскости имеет уравнение $\frac{x^2}{a^2}-\frac{y^2}{b^2}=2h$. При h=0 в сечении получается пара пересекающихся прямых, которые в плоскости $O\!xy$ задаются уравнениями $\frac{x}{a}+\frac{y}{b}=0$ и $\frac{x}{a}-\frac{y}{b}=0$. При h>0 наше сечение является гиперболой с «плоскостным» уравнением

$$\frac{x^2}{2a^2h} - \frac{y^2}{2b^2h} = 1,$$

у которой ортогональные проекции осей Ox и Oy на плоскость z=h являются действительной и мнимой осью соответственно, а полуоси гиперболы растут с ростом h.

Гиперболический параболоид (2)

При h<0 также получается гипербола, только здесь полуоси гиперболы «меняются ролями» (по сравнению со случаем h>0), а ее полуоси растут с убыванием h.

Рассмотрим теперь сечение гиперболического параболоида плоскостью y=h. Получим кривую, задаваемую внутри плоскости уравнением

$$x^2 = 2a^2\left(z + \frac{h^2}{2b^2}\right).$$

Это парабола с параметром a^2 , ветви которой направлены вверх, т. е. в положительном направлении оси Oz. При h=0 ее вершина совпадает с началом координат, с увеличением |h| она поднимается вдоль оси Oz.

Аналогичная картина получается при сечении плоскостью x=h: вновь возникает парабола, которая теперь имеет «плоскостное» уравнение

$$y^2 = -2b^2\Big(z - \frac{h^2}{2a^2}\Big).$$

Ее параметр равен b^2 , ветви параболы направлены вниз (в отрицательном направлении оси Oz). При h=0 вершина параболы совпадает с началом координат, а с увеличением |h| она опускается вдоль оси Oz.

В результате получается поверхность, изображенная на рис. 5 на следующем слайде. Используя нематематическую терминологию, можно сказать, что она имеет форму седла.

Гиперболический параболоид (рисунок)

Рис. 5. Гиперболический параболоид