Control Systems

Chapter 7: Steady-State Errors

Highlights

Response Characteristics and System Configurations

Steady-State Errors

- How to find the steady-state error for a unity feedback system
- How to specify a system's steady-state error performance
- How to find the steady-state error for disturbance inputs
- How to find the steady-state error for non-unity feedback systems
- How to design system parameters to meet steady-state error performance specifications

Steady-State Errors

Steady-state error is the difference between the input and the output for a prescribed test input as $t \rightarrow \infty$

Test waveforms for evaluating steady-state errors of control systems

Waveform	Name	Physical interpretation	Time function	Laplace transform
	Step	Constant position	1	$\frac{1}{s}$
	Ramp	Constant velocity	t	$\frac{1}{s^2}$
r(t)	Parabola	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$

Evaluating Steady-State Errors

Steady-State Error for Unity Feedback Systems

Steady-State Error in Terms of T(s) – closed loop transfer function

$$E(s) = R(s) - C(s)$$

$$E(s) = R(s)[1 - T(s)]$$

$$e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$
 ... final value theorem

$$e(\infty) = \lim_{s \to 0} sR(s)[1 - T(s)]$$

Keep in mind the conditions under which this formula is valid!

Steady-State Error in Terms of G(s) – open loop transfer function

$$E(s) = R(s) - C(s)$$
$$C(s) = E(s)G(s)$$

$$E(s) = \frac{R(s)}{1 + G(s)}$$

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Static Error Constants and System Type

Static Error Constants

position constant, K_p , where

$$K_p = \lim_{s \to 0} G(s)$$

velocity constant, K_{ν} , where

$$K_{v} = \lim_{s \to 0} sG(s)$$

acceleration constant, K_a , where

$$K_a = \lim_{s \to 0} s^2 G(s)$$

$$e_{\text{step}}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)} \qquad e(\infty) = \frac{1}{1 + K_p}$$

$$e(\infty) = \frac{1}{1 + K_p}$$

$$e_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$$

$$e(\infty) = \frac{1}{K_{\nu}}$$

$$e_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$$

$$e(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$$

$$e(\infty) = \frac{1}{K_{\nu}}$$

$$e(\infty) = \frac{1}{K_{a}}$$

$$e(\infty) = \frac{1}{K_{a}}$$

$$e(\infty) \, = \, \frac{1}{K_a}$$

 $n = 0 \dots$ **Type 0** system

 $n = 1 \dots$ **Type 1** system

 $n = 2 \dots$ **Type 2** system

		Type 0		Type 1		Type 2	
Input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_{\nu} =$ Constant	$\frac{1}{K_{v}}$	$K_{v} = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a =$ Constant	$\frac{1}{K_a}$

Example 7.4 For the closed-loop system below, find the static error constants and the expected error for the standard step, ramp, and parabolic inputs.

Solution

$$K_{p} = \lim_{s \to 0} G(s) = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s) = \infty$$

$$K_{u} = \lim_{s \to 0} sG(s) = \infty$$

$$K_{u} = \lim_{s \to 0} s^{2}G(s) = \frac{500 \times 2 \times 4 \times 5 \times 6 \times 7}{8 \times 10 \times 12} = 875$$

$$e_{\text{parabolic}}(\infty) = \frac{1}{K_{v}} = 0$$

$$e_{\text{parabolic}}(\infty) = \frac{1}{K_{u}} = 1.14 \times 10^{-3}$$

Example 7.6 Given the control system, find the value of *K* so that there is 10% error in the steady state.

Solution

$$e(\infty) = \frac{1}{K_{\nu}} = 0.1$$

$$K_{\nu} = 10 = \lim_{s \to 0} sG(s) = \frac{K \times 5}{6 \times 7 \times 8}$$

$$K = 672$$

Applying the Routh-Hurwitz criterion we see that the system is stable at this gain. This is necessary for validity of the calculations above.

Example 7.7 Find the steady-state error component due to a step disturbance for the system below

Solution

$$e_D(\infty) = -\frac{1}{\lim_{s \to 0} \frac{1}{G_2(s)} + \lim_{s \to 0} G_1(s)} = -\frac{1}{0 + 1000} = -\frac{1}{1000}$$

Steady-State Error for Non-unity Feedback Systems

- Control systems often **do not have unity feedback** because of the compensation used to improve performance or because of the physical model for the system.
- When **nonunity feedback** is present, the plant's **actuating signal is not the actual error** or difference between the input and the output.

$$G(s) = G_1(s)G_2(s)$$

$$H(s) = H_1(s)/G_1(s)$$

 $E_a(s)$... actuating signal (not the actual error)