Dernière mise à jour		MECA1	Denis DEFAUCHY
	21/03/2023	Statique	Résumé

Mécanique MECA1 - Statique

Résumé

Centres géométriques

Lorsqu'il existe un élément de symétrie sur une géométrie, le centre géométrique appartient forcément à cet élément de symétrie

1D	2D	3D
$\int_{[AB]} \overrightarrow{GP} dl = \overrightarrow{O}$ $\overrightarrow{OG} = X_G \vec{x}$ $X_G = \frac{1}{L} \int_{[AB]} x dx$	$\int_{S} \overrightarrow{GP} dS = \overrightarrow{O}$ $\overrightarrow{OG} = X_G \vec{x} + Y_G \vec{y}$ $\begin{cases} X_G = \frac{1}{S} \int_{S} x dS \\ Y_G = \frac{1}{S} \int_{S} y dS \end{cases}$	$\int_{V} \overrightarrow{GP} dV = \overrightarrow{O}$ $\overrightarrow{OG} = X_G \vec{x} + Y_G \vec{y} + Z_G \vec{z}$ $\begin{cases} X_G = \frac{1}{V} \int_{V} x dV \\ Y_G = \frac{1}{V} \int_{V} y dV \\ Z_G = \frac{1}{V} \int_{V} z dV \end{cases}$
	l	77 1 . (7/ 17/7)

Soient n surfaces S_i coplanaires dans le plan P, de centres $G_i(X_i, Y_i)$ dans un repère $(0, \vec{x}, \vec{y}) \operatorname{de} P$

$$S_t = \sum_{i=1}^n S_i$$

Formule intégrale

$$\begin{cases} X_G = \frac{1}{S_t} \int_{US_i} x \, dS \\ Y_G = \frac{1}{S_t} \int_{US_i} y \, dS \end{cases}$$

Formule des barycentres

$$\begin{cases} X_G = \frac{\sum_{i=1}^{n} S_i X_i}{\sum_{i=1}^{n} S_i} \\ Y_G = \frac{\sum_{i=1}^{n} S_i Y_i}{\sum_{i=1}^{n} S_i} \end{cases}$$

Soient n volumes V_i , de centres $G_i(X_i, Y_i, Z_i)$ dans un repère $(0, \vec{x}, \vec{y}, \vec{z})$

$$V_t = \sum_{i=1}^n V_i$$

$$V_t = \sum_{i=1}^n V_i$$
Formule intégrale
$$\begin{cases} X_G = \frac{1}{V_t} \int\limits_{UV_i} x \ dV \\ Y_G = \frac{1}{V_t} \int\limits_{UV_i} y \ dV \\ Z_G = \frac{1}{V_t} \int\limits_{UV_i} z \ dV \end{cases}$$

Formule des barycentres

Thule des barycent
$$\begin{cases} X_G = \frac{\sum_{i=1}^n V_i X_i}{\sum_{i=1}^n V_i} \\ Y_G = \frac{\sum_{i=1}^n V_i Y_i}{\sum_{i=1}^n V_i} \\ Z_G = \frac{\sum_{i=1}^n V_i Z_i}{\sum_{i=1}^n V_i} \end{cases}$$

Outils mathématiques

Intégrale d'une somme

$$\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} (x + y + z) dxdydz$$

$$= \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} x dxdydz + \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{2}}^{z_{2}} y dxdydz + \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{2}}^{z_{2}} z dxdydz$$

$$= \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} x dxdydz + \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{2}}^{z_{2}} z dxdydz$$

$$= \int_{x_{1}}^{x_{2}} x dx + \int_{y_{1}}^{y_{2}} y dy + \int_{z_{1}}^{z_{2}} z dz$$

Page **2** sur **15**

Intégration

Relire la fiche résumé sur les intégrales de lignes, surfaces et volumes

$$\int_{V} \vec{u}(P) \wedge \vec{a} \, dV = \int_{V} \vec{u}(P) \, dV \wedge \vec{a}$$

$$\int_{S} \vec{u}(P) \wedge \vec{a} \, dS = \int_{S} \vec{u}(P) \, dS \wedge \vec{a}$$

$$\int_{F} \vec{u}(P) \wedge \vec{a} \, dl = \int_{F} \vec{u}(P) \, dl \wedge \vec{a}$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Actions mécaniques

Types

Volumiques à distance
(gravité, forces électromagnétiques)
Surfaciques de contact
(contact réel entre deux solides ou un solide et un fluide)
Linéiques et ponctuelles
(modèle d'un contact réel entre deux solides)

Une action mécanique

1 force & 1 moment en un point

Force

En Newton (N)
Représentée par un vecteur

	representee par an rectear	1
Linéique : $k(P)$ en $N.m^{-1}$	Surfacique : $p(P)$ en $N.m^{-2}$	Volumique : $f(P)$ en $N.m^{-3}$
$d\vec{F} = -k(P)\vec{dl}$ $\vec{dl} = dl\vec{n}(P)$ $\vec{F} = \int_{\Gamma} d\vec{F}$ $= -\int_{\Gamma} k(P)\vec{n}(P)dl$ Si \vec{n} et k constants $\vec{F} = -kL\vec{n}$	p est une pression $d\vec{F} = -p(P)d\vec{S}$ $d\vec{S} = dS\vec{n}(P)$ $\vec{n}(P)$ vecteur normal sortant $\vec{F} = \int\limits_{S} \left(-p(P)d\vec{S}\right)$ $= -\int\limits_{S} p(P)d\vec{S}$ Si \vec{n} et p constants $\vec{F} = -pS\vec{n}$ $1 \ bar = 10^5 \ Pa$	$d\vec{F} = f(P)\vec{u}(P)dV$ $\vec{F} = \int_{V} d\vec{F} = \int_{V} f(P)\vec{u}(P)dV$ Si \vec{u} et f constants $\vec{F} = fV\vec{u}$

Moment

Définition

En Newton mètres (N.m)Représentée par un vecteur $\overrightarrow{M_O}(\overrightarrow{F}) = \overrightarrow{OA} \wedge \overrightarrow{F}$

Propriétés

Varignon / Changement de point $\overrightarrow{M_B}(\vec{R}) = \overrightarrow{M_A}(\vec{R}) + \overrightarrow{BA} \wedge \vec{R} = \overrightarrow{M_A}(\vec{R}) + \vec{R} \wedge \overrightarrow{AB}$ BABAR Equiprojectivité $\overrightarrow{M_A}(\vec{R}).\overrightarrow{AB} = \overrightarrow{M_B}(\vec{R}).\overrightarrow{AB}$ Moment d'une action répartie $\overrightarrow{M_O} = \int\limits_{V/S/\Gamma} \overrightarrow{dM_O}(\overrightarrow{dF}) = \int\limits_{V/S/\Gamma} \overrightarrow{OP} \wedge \overrightarrow{dF}$ Avec P un point décrivant $V/S/\Gamma$ Si \overrightarrow{dF} constant (norme et direction) et G centre géométrique de $V/S/\Gamma$ $\overrightarrow{M_G} = \overrightarrow{0}$

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Torseur d'action mécanique

$$\{T_{j\to i}\} = \{T_{ji}\} = \left\{\overrightarrow{R_{ji}}\right\}_{M} = \left\{\overrightarrow{R_{ji}}\right\}_{M} = \left\{\overrightarrow{R_{ji}}\right\}_{N} = \left\{\overrightarrow{R_{ji}}\right\}_{N} = \left\{\overrightarrow{R_{ji}}\right\}_{N} + \overrightarrow{NM} \wedge \overrightarrow{R_{ji}}\right\}_{N}$$

Ponctuelle en A	Linéique	Surfacique	Volumique
$ec{F}$	$d\vec{F} = -k(P)\vec{n}(P)dl$	$d\vec{F} = -p(P)\vec{n}(P)dS$	$d\vec{F} = f(P)\vec{u}(P)dV$
			\vec{F}

$$\{T_{ji}\} = \left\{\frac{\vec{F}}{\overrightarrow{OA} \wedge \vec{F}}\right\}_{O} \qquad \{T_{ji}\} = \left\{\frac{\vec{F}}{\overrightarrow{M_{O}}(\vec{F})}\right\} = \left\{\int_{V/S/\Gamma} \frac{d\vec{F}}{\overrightarrow{dM_{O}}(\overrightarrow{dF})} = \int_{V/S/\Gamma} \overrightarrow{\overrightarrow{OP}} \wedge d\vec{F}\right\}_{O}$$

Notez bien que $\overrightarrow{M_O}(\overrightarrow{F}) = \int_{V/S/\Gamma} \overrightarrow{dM_O}(\overrightarrow{dF})$. Il faut utiliser \overrightarrow{dF}

Cas d'une action constante - G centre géométrique

Linéique	Surfacique	Volumique
$\{T_{ji}\} = \begin{Bmatrix} -kL\vec{n} \\ \vec{O} \end{Bmatrix}_G$	$\{T_{ji}\} = \begin{Bmatrix} -pS\vec{n} \\ \vec{O} \end{Bmatrix}_G$	$\{T_{ji}\} = \begin{Bmatrix} fV\vec{u} \\ \vec{O} \end{Bmatrix}_G$

Torseurs particuliers

Glisseur	Couple
$\exists M/\{T_{ji}\} = \left\{\overrightarrow{R_{ji}}\right\}_{M}$ Axe central: droite (M, \vec{u}) avec $\vec{u} = \frac{\vec{R}}{\ \vec{R}\ }$ $\left\{T_{ji}\right\} est \ un \ glisseur \iff \forall P, \overrightarrow{R_{ji}} \perp \overrightarrow{M_{M}}(\overrightarrow{R_{ji}})$	$\forall M/\{T_{ji}\} = \left\{\vec{0}\atop \vec{C}\right\}_{M}$ $\forall M', \overrightarrow{M_{M'}}(\vec{R}) = \vec{C}$

Notations conventionnelles

$$\{T_{j\to i}\} = \{T_{ji}\} = \left\{\overrightarrow{R_{ji}}\right\}_{M} = \left\{X_{ji}\overrightarrow{x_0} + Y_{ji}\overrightarrow{y_0} + Z_{ji}\overrightarrow{z_0}\right\}_{M} = \left\{X_{ji} \cdot \overrightarrow{X_{ji}} + X_{ji}\overrightarrow{y_0} + X_{ji}\overrightarrow{z_0}\right\}_{M} = \left\{X_{ji} \cdot A_{ji} \cdot A_{ji}\right\}_{M}$$

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

	Liaisons normalisées en statique						
Liaison	Elem Géom	2D	3D	$\{T_{21}\}$ Forme canonique	Validit é	\mathfrak{B}	I_c
Encastrement <i>E</i>	RAS	2	\vec{z} \vec{v}	$ \begin{cases} X_{21} & \mathbf{L_{21}} \\ Y_{21} & \mathbf{M_{21}} \\ Z_{21} & \mathbf{N_{21}} \end{cases}_{P}^{\mathfrak{B}} $	∀P	\vec{x} $-$	6
Pivot P	$(0, \vec{x})$		T V V V V		(O, \vec{x})	\vec{x} $-$	5
Glissière <i>Gl</i>	\vec{x}		1 0 2 v	$ \begin{cases} 0 & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & N_{21} \end{cases}_{P}^{\mathfrak{B}} $	∀P	\vec{x} $ -$	5
Hélicoïdale <i>He</i>	$(0,\vec{x})$		pas à droite 2 y y	$\begin{cases} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & N_{21} \\ \end{pmatrix}_{p}$ $L_{21} = -\frac{pas}{2\pi} X_{21}$	$(0,\vec{x})$	\vec{x}	\\$
Pivot Glissant PG	$(0, \vec{x})$	1 0	i v v v v v v v v v v v v v v v v v v v		(O, \vec{x})	\vec{x} $ -$	4
Rotule à doigt Sphérique à doigt	O Rainure (O, \vec{x}, \vec{z}) Doigt \vec{z}	1	Ž v v	$egin{pmatrix} X_{21} & L_{21} \ Y_{21} & 0 \ Z_{21} & 0 \end{pmatrix}_{P} \ Ref \ \mathfrak{B}_{1} \ \& \ \mathfrak{B}_{2} \ \end{pmatrix}$	0	\vec{x} \vec{y} \vec{z}	4

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

		Liaisons nor	malisées en statique				
Rotule S Sphérique S	0	2		$ \begin{cases} X_{21} & 0 \\ Y_{21} & 0 \\ Z_{21} & 0 \end{cases}_{P}^{\mathfrak{B}} $	0	1 1 1	3
Appui plan <i>AP</i>	$ec{Z}$	2	2 1 1 1		∀P		3
Linéaire annulaire <i>LA</i> Sphère cylindre <i>SC</i>	(O, \vec{x})		2	$egin{pmatrix} 0 & 0 \ Y_{21} & 0 \ Z_{21} & 0 \end{pmatrix}_{p}^{\mathfrak{B}} \ Ref \mathfrak{B}_{1}$	0	\vec{x} $ -$	2
Linéaire rectiligne <i>LR</i> Cylindre Plan <i>CP</i>	$\{(O,\vec{x}),\vec{z}\}$		Ž O V V V	$ \left\{ \begin{matrix} 0 & 0 \\ 0 & \textbf{\textit{M}}_{\textbf{21}} \\ Z_{21} & 0 \end{matrix} \right\}_{p}^{\mathfrak{B}} $ Ref $\mathfrak{B}_{1} \& \mathfrak{B}_{2}$	(O, \vec{x}, \vec{z})	\vec{x} \vec{y} \vec{z}	2
Ponctuelle Pct Sphère-plan SP	(O, \vec{x})	2	\vec{z}	$ \begin{pmatrix} X_{21} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{P} $ $Ref \ \mathfrak{B}_{1} $	(O, \vec{x})	<i>x</i> – –	1

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Le contact - Définitions

Parfait	Non parfait	
Aucune dissipation	Adhérence Pas de dissipation énergétique par glissement	
énergétique due au contact		Synonyme d'usure et de dissipation énergétique
L'action locale en tout	Clicaconcont	- En translation
point est normale à la	Glissement	- En pivotement (rotation autour de la normale
surface		au contact)

Dans les deux cas, il peut y avoir dissipation énergétique par résistance au roulement Liaison parfaite : Contact parfait + Absence de résistance au roulement

Origines du frottement

Conditions

- Rugosité des surfaces en contact

- Interactions électromagnétiques

ontact Adhérence : $\forall P \in contact, \vec{V}(P, 2/1) = \vec{0}$ iques Glissement : $\exists P \in contact, \vec{V}(P, 2/1) \neq \vec{0}$

Adhérence

On parle d'actions mécaniques **transmissibles** (par adhérence), action maximale avant qu'il y ait glissement (ex : embrayage)

Glissement

On parle d'actions mécaniques transmises (ex : frein)

Le contact - Situation locale

$$\overrightarrow{t_{12}} = -\frac{\overrightarrow{V}(A, 2/1)}{\|\overrightarrow{V}(A, 2/1)\|}$$

$$\overrightarrow{dR_{12}} = \overrightarrow{dN_{12}} + \overrightarrow{dT_{12}} = \|\overrightarrow{dN_{12}}\|\overrightarrow{n_{12}} + \|\overrightarrow{dT_{12}}\|\overrightarrow{t_{12}}$$

$$\theta = \left| (\overrightarrow{dN_{12}}, \overrightarrow{dR_{12}}) \right|$$

L'action tangentielle de 1 sur 2 de frottement s'oppose au mouvement possible de 2 par rapport à 1 si le contact était parfait, que le mouvement ait lieu ou non.

L'action tangentielle de frottement de 1 sur 2 s'oppose à 2 dans le mouvement 2/1 L'action tangentielle de frottement de 2 sur 1 entraîne 1 dans le mouvement 2/1

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Le contact – Lois de Coulomb

ADHERENCE

$$\begin{aligned} \left\| \overrightarrow{dT_{12}} \right\| &= f_g \left\| \overrightarrow{dN_{12}} \right\| \\ f_g &= \tan \varphi_g \\ \theta &= \varphi_g \end{aligned}$$

 f_g coefficient de glissement $arphi_g$ angle de glissement Attention : $dT_{12} = f_a dN_{12}$

 $\overrightarrow{dR_{12}}$ sur le cône de glissement

GLISSEMENT

$$\|\overrightarrow{dT_{12}}\| < f_a \|\overrightarrow{dN_{12}}\|$$

$$f_a = \tan \varphi_a$$

$$\theta \le \varphi_a$$

 f_a coefficient d'adhérence $arphi_a$ angle d'adhérence

Attention : $\overrightarrow{dT_{12}} \leq f_a \overrightarrow{dN_{12}}$

 $\overrightarrow{dR_{12}}$ dans le cône d'adhérence

Le contact - Passage local/global

$$\overrightarrow{dR_{12}} = \|\overrightarrow{dN_{12}}\|\overrightarrow{n_{12}} + \|\overrightarrow{dT_{12}}\|\overrightarrow{t_{12}} = pdS\overrightarrow{n_{12}} + fpdS\overrightarrow{t_{12}}$$

$$\overrightarrow{dM_O^{12}} = \overrightarrow{OP} \wedge \overrightarrow{dR_{12}} \quad ; \quad \forall O, \{T_{12}\} = \begin{cases} \overrightarrow{R_{12}} = \int\limits_S \overrightarrow{dR_{12}} \\ \overrightarrow{M_O^{12}} = \int\limits_S \overrightarrow{dM_O^{12}} \end{cases}$$

$$\overrightarrow{N_{12}} = \int\limits_{S} \overrightarrow{dN_{12}} \quad ; \quad N = \left\|\overrightarrow{N_{12}}\right\| \quad ; \quad \overrightarrow{T_{12}} = \int\limits_{S} \overrightarrow{dT_{12}} \quad ; \quad T = \left\|\overrightarrow{T_{12}}\right\|$$

$$\begin{cases} T = fN \ en \ cas \ de \ glissement \\ T < fN \ en \ cas \ d'adhérence \end{cases}$$

Coefficients d'adhérence et frottement

Valable aussi en cas de contact ponctuel

Matériau 1	Matériau 2	f_g	f_a
Acier	Acier	0,15	0,2
Acier	Garniture de frein	0,25	0,4
Pneu	Route sèche	0,5	0,8
Pneu	Route mouillée	0,35	0,5

Dépend du couple de matériaux et de la nature du contact (sec, humide, lubrifié...) Si rien n'est précisé, on dit généralement : $f=f_g=f_a$; $\varphi=\varphi_g=\varphi_a$

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Résistance au roulement

L'écrasement local crée une répartition de pression non homogène à l'origine d'un moment s'opposant au roulement

A centre de la zone de contact tel que le moment de cette action est nul en l'absence de résistance au roulement.

Soit $\overrightarrow{N_{12}}$ la résultante de l'action de contact dont le moment est nul en un point B, le moment : $C_{r_{1\to 2}}=\pm \mu N_{1\to 2}$

La distance μ en m est appelée coefficient de résistance au roulement

Principe Fondamental de la Statique PFS

Référentiel Galiléen R_g

Soit un solide S soumis à n actions Si S est fixe (ou en mouvement rectiligne uniforme) :

$$\sum_{i=1}^{n} \{T_{i \to S}\} = \{0\}$$

$$\sum_{i=1}^{n} \left\{ \overrightarrow{R_{l \to S}} \right\} = \left\{ \overrightarrow{0} \right\} \Leftrightarrow \begin{cases} \sum_{i=1}^{n} \overrightarrow{R_{l \to S}} = \overrightarrow{0} \quad (TRS) \\ \sum_{i=1}^{n} \overrightarrow{M_{P}} (\overrightarrow{R_{l \to S}}) = \overrightarrow{0} \quad (TMS) \end{cases}$$

Obtention d'un système linéaire (6 équations) d' inconnues les actions de liaisons XYZLMN \Rightarrow Actions de liaisons en fonction des actions extérieures

⇒ Relations entre actions entrée/sortie liées à la mobilité du mécanisme

Théorème de superposition Page 10 sur 15 On peut sommer les solutions à plusieurs sollicitations prises indépendamment

Théorème des actions réciproques $\{T_{ij}\} = -\{T_{ji}\}$

Dernière mise à jour	MECA1	Denis DEFAUCHY	
21/03/2023	Statique	Résumé	

Méthode d'application du PFS

Rappel des notations : $\left\{\mathcal{T}_{j\to i}\right\} = \left\{\begin{matrix} X_{ji} & 0 \\ Y_{ji} & 0 \\ 0 & N_{ji} \end{matrix}\right\}_P^{\mathfrak{B}_j}$

Réaliser le graphe des liaisons.

Avec P pièces (bâti compris), on doit réaliser P-1 PFS pour par des isolements indépendants (généralement, on isole chaque pièce). En 2D, on obtient donc $E_s=3(P-1)$ équations linéaires à résoudre dans lesquelles les inconnues sont les inconnues statiques de liaisons (X_{ii},Y_{ii},N_{ii}) .

Pour chaque solide *i* (sauf 0), écrire le PFS : $\sum_{k} \{ \mathcal{T}_{ext \to i}^{k} \} = \{ 0 \}$

Obtenir les deux équations vectorielles de l'isolement : $\left\{ \begin{matrix} (X_{01}+X_{21})\overrightarrow{x_0}+(Y_{01}+Y_{21})\overrightarrow{y_0} \\ (-L_1\cos\theta_{10}\,Y_{01}+L_1\sin\theta_{10}\,X_{01}+C)\overrightarrow{z_0} \right\}_B = \left\{ \overrightarrow{0} \right\}_B$

Choisir une base de projection pour obtenir les 3 équations scalaires de l'isolement :

$$\begin{cases} X_{01} + \dot{X}_{21} = 0 \\ Y_{01} + Y_{21} = 0 \\ -L_1 \cos \theta_{10} \, Y_{01} + L_1 \sin \theta_{10} \, X_{01} + C = 0 \end{cases}$$

Après avoir obtenu les 9 équations du problème à 8 inconnues statiques (pas F et C), on a :

Si **F** est connu, on résout numériquement ainsi :

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

PFS et chaines ouvertes

Isoler des ensembles de pièces pour trouver immédiatement les actions intermédiaires Exemple : Action motrice sur j ? Isoler $\{j, k\}$

$${T_{i \to j}} + {T_{ij}^m} + {T_{ext \to k}} = {0}$$

Glisseur

Un glisseur est une action mécanique représentée par un torseur glisseur. Un torseur glisseur est un torseur dont le moment s'annule en au moins un point

Glisseurs et exploitation

Solide soumis à 2 glisseurs

Si un solide n'est soumis qu'à deux glisseurs de moments nuls respectivement en A et B, leurs résultantes sont opposées, de même norme et colinéaires portées par (AB)

Stratégies d'isolement classiques

Méthode rapide de détermination d'une relation entre actions mécaniques d'entrée et de sortie

Isoler 2 : Pièce « soumise à deux glisseurs », action suivant BC. On pose $\overrightarrow{R_{12}} = R_{12} \overrightarrow{x_2}$ et $\overrightarrow{R_{32}}=R_{32}\overrightarrow{x_2}$. On a $R_{12}=R_{23}$

Isoler 3 : Le TRS sur $\overrightarrow{y_0}$ donne la relation entre F et R_{23} , soit entre F et R_{12}

Isoler 1 : Le TMS en A sur $\overrightarrow{z_0}$ donne la relation entre C et R_{12} , donc entre C et F

Robot type « Maxpid »

Isoler 1+2: Ensemble de pièces « soumises à deux glisseurs », action suivant AB. On pose $\overrightarrow{R_{23}} = R_{23} \overrightarrow{x_2}$.

Isoler 2 : Le TRS sur $\overrightarrow{x_2}$ permet de dire que F =

Isoler 3 : Le TMS en C sur $\overrightarrow{z_0}$ donne la relation entre P et R_{23} , donc entre P et F

Dernière mise à jour **Denis DEFAUCHY** MECA1 21/03/2023 Résumé Statique

Liaisons équivalentes

Si besoin, décomposer le problème en sous problèmes

Liaisons en série

Liaisons en parallèle

Choisir un point P

(Liaison reconnue? Point commun? Quel déplacement?) Choisir une base &

(Liaison reconnue? Base commune? Vecteur de déplacement?)

$$\text{Poser} \left\{ \mathcal{T}_{n/1} \right\} = \begin{cases} X_{n/1} & L_{n/1} \\ Y_{n/1} & M_{n/1} \\ Z_{n/1} & N_{n/1} \end{cases}_{p} \\ \text{Utiliser} \left\{ \mathcal{T}_{n/1} \right\} = \left\{ \mathcal{T}_{n/n-1} \right\} = \dots = \left\{ \mathcal{T}_{2/1} \right\}$$
 Utiliser $\left\{ \mathcal{T}_{2/1} \right\} = \sum_{i=1}^{n} \left\{ \mathcal{T}_{2/1} \right\}^{i}$

Exprimer les torseurs au même point P et dans la même base ${\mathfrak B}$ Déterminer le torseur équivalent

Etudier si l'ensemble des 6 composantes forme une famille libre ou non Si normalisée, proposer nom et EG de la liaison

Dépendance entre colonnes ? Mauvais choix de point ?

Dépendances similaire entre composantes des deux colonnes ? Mauvais choix de base ?

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Transformation du mouvement

Tout rapport de réduction est donné sous la forme $k=\frac{Mvt_{20}}{Mvt_{10}}$ L'action 1 est $Ext \to 1$ et l'action 2 est $Ext \to 2$ (sinon, les signes changent)

Page **14** sur **15**

Dernière mise à jour	MECA1	Denis DEFAUCHY
21/03/2023	Statique	Résumé

Page **15** sur **15**