

The Clustering Problem

Outlook	Temp (°F)	Humidity (%)	Windy?	$\Big]$ $_F$
sunny	75	70	true	I.
sunny	80	90	true	
sunny	85	85	false	
sunny	72	95	false	
sunny	69	70	false	
overcast	72	90	true	
overcast	73	88	true	
overcast	64	65	true	
overcast	81	75	false	
rain	71	80	true	
rain	65	70	true	
rain	75	80	false	
rain	68	80	false	1
rain	70	96	false	1

Find groups of similar records.

Need a function to compute similarity, given 2 input records

⇒ Unsupervised learning

2

Applications

- Targetting similar people or objects
 - Student tutorial groups
 - Hobby groups
 - Health support groups
 - Customer groups for marketing
 - Organizing e-mail
- Spatial clustering
 - Exam centres
 - Locations for a business chain
 - Planning a political strategy

3

Measurement of similarity

Nominal (categorical) variables

d(x,y) = 1 - m/n

m = no of matches among n attributes, or

m = sum of weights of matching attributes, and n is the sum of weights of all attributes

- Numeric variables
 - Euclidean, manhattan, minkowski,...
 - Ordinal
 - z = (rank-1)/(M-1) where M is maximum rank
- Above are examples
 - Similarity is ultimately application dependent
 - Requires various kinds of preprocessing
 - Scaling: Convert all attributes to have same range
 - z-score: z = (value-mean)/m where m is the mean absolute deviation

4

- Iterate as long as clusters change:Put each record X in
 - mean it is closest

 Recompute means
 as the average of all
 points in each cluster

the cluster to whose

5

Evaluating Clustering Quality

- Minimize squared error
 Here m_i is the mean (or other centre) of cluster i
- Can also use absolute error
- Can be used to find best initial random means in kmeans.

$$E = \sum_{i=1}^{N} \sum_{x \in C_i} d(x, m_i)^2$$

6

Hierarchical Methods

Agglomerative (e.g. AGNES):

- Start: Each point in separate cluster
- Merge 2 closest clusters
- Repeat until all records are in 1 cluster.

Divisive (e.g. DIANA)

- Start: All points in 1 cluster
- Find most extreme points in each cluster.
- Regroup points based on closest extreme point
- Repeat until each record is in its own cluster

Measuring Cluster Distances

- Single link: Minimum distance
- Complete link: Maximum distance
- Average link: Average distance

8

Single Link Algorithm

Density-based Methods: e.g. DBSCAN

- Neighbourhood: Records within distance of ε from given record.
- Core point: Record whose neighbourhood contains at least μ records.
- Find all core points and create a cluster for each of them.
- If core point Y is in the neighbourhood of core point X, then merge the clusters of X and Y.
- Repeat above step for all core points until clusters do not change.

10

Mining Outliers using Clustering

- Outliers are data points that deviate significantly from the norm.
- Useful in fraud detection, error detection (in data cleaning), etc.
- Technique:
 - Apply any clustering algorithm
 - Treat clusters of very small size as containing only outliers