

Google

¹Chenyangguang (Cyrus) Zhang* ¹Guanlong Jiao* ²Yan Di* ¹Gu Wang ¹Ziqin Huang ¹Ruida Zhang ³Fabian Manhardt ¹Bowen Fu ^{2,3}Federico Tombari ¹Xiangyang Ji ¹Tsinghua University ²Technical University of Munich ³Google

Task Definition

[Hand-held Object Reconstruction]

 Given a single RGB image, DDF-HO predicts a 3D model for the object grasped by the hand. It is an essential technique with many practical applications, e.g. robotics, augmented and virtual reality, medical imaging.

Motivation

- [Current Setting] Current single-view hand-held object reconstruction methods typically need 3D ground-truth models for supervision, which are hard to collect in real world.
- [Our method] We present MOHO, to exploit Multi-view Occlusion-aware supervision from hand-object videos for Hand-held Object reconstruction from a single image, tackling two predominant challenges in such setting: hand-induced occlusion and object's self-occlusion.

SOMVideo Dataset

SOMVideo is synthesized with 141,550 scenes with the same 2,772 objects as the ObMan dataset. Each corresponding occlusion-free supervising views are captured from 10 view angles.

Method

MOHO Pipeline

Domain-consistent Occlusion-aware Features

Semantic cues by DINO and hand-articulated geometric embeddings: for more stable knowledge transferring in the whole synthetic-to-real pipeline.

Synthetic-to-real Training

$$\mathcal{L} = \mathcal{L}_{color} + \lambda_1 \mathcal{L}_{eik} + \lambda_2 \mathcal{L}_{mask} + \lambda_3 \mathcal{L}_{n_{ori}} + \lambda_4 \mathcal{L}_{n_{smo}}$$

$$\mathcal{L}_{amw} = BCE(\hat{M}_I^{ho} \oplus M_I, \hat{O}_I) \quad \mathcal{L}_{mask} = BCE(M_I^{co}, \hat{O}_I)$$

$$\mathcal{L}_{color} = \frac{1}{m} \sum_i |\hat{c}_i - c_i|$$

$$\mathcal{L}_{eik} = \frac{1}{nm} \sum_{i,j} (||\nabla \psi_S(P_{i,j})||_2 - 1)^2$$

$$\mathcal{L}_{n_{ori}} = \frac{1}{m} \sum_i (min(0, -\hat{n}_i \cdot D_i))^2 \quad \mathcal{L}_{n_{smo}} = \frac{1}{K} \sum_k (\hat{n}_k - \overline{\hat{n}_k})^2$$

Experiments

Main Results

Method	F-5 ↑	F-10 ↑	CD ↓	Method	F-5 ↑	F-10 ↑	CD 、
HO [23]	0.11	0.22	4.19	HO [23]	0.38	0.64	0.42
				GF [28]	0.39	0.66	0.45
GF [28]	0.12	0.24	4.96	AlignSDF [12]	0.41	0.68	0.39
IHOI [63]	0.28	0.50	1.53	gSDF [13]	0.44	0.71	0.34
PixelNeRF [65]	0.17	0.32	6.91	PixelNeRF [65]	0.25	0.46	0.94
SSDNeRF [9]	0.25	0.40	2.60	SSDNeRF [9]	0.27	0.49	0.58
_				Ours w/o SYN	0.52	0.74	0.18
Ours	0.31	0.50	0.91	Ours	0.60	0.81	0.15

Table 1. Geometric results on HO3D [22] compared with 3D supervised methods (top) and 2D supervised methods (bottom).

Table 2. Geometric results on DexYCB [8] compared with 3D supervised methods (top) and 2D supervised methods (bottom).

Code & Data

Paper

Cyrus Webpage

Cyrus WeChat