1

Matrix theory - Assignment 15

Shreeprasad Bhat AI20MTECH14011

Abstract—This document proves properties on transpose of linear transformation.

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment15/

1 Problem

Let V be a finite-dimensional vector space over the field F. Show that $T \to T^t$ is an isomorphism of L(V, V) onto $L(V^*, V^*)$.

2 Solution

Fig. 0: $\phi: L(V, V) \rightarrow L(V^*, V^*)$

Given	$\phi(T)=T'$ where $\phi:L(V,V)\to L(V^*,V^*)$ $T\in L(V,V)$ and $T'\in L(V^*,V^*)$
To prove	ϕ is an <i>isomorphism</i> of
	$L(V, V)$ onto $L(V^*, V^*)$
	i.e ϕ is one – one
	$\implies \phi$ is invertible
Proof	Consider a transformation $\psi: L(V^*, V^*) \to L((V^*)^*, (V^*)^*)$
	We know, $L((V^*)^*, (V^*)^*) = L(V, V)$
	Hence $\psi: L(V^*, V^*) \to L(V, V)$
	We have $\phi \circ \psi = I$ and $\psi \circ \phi = I$
	$\therefore \phi$ is invertible with ψ its inverse.
	Hence ϕ is <i>isomorphism</i> of $L(V, V)$ onto $L(V^*, V^*)$

3 Example

Consider, $T \in L(\mathbb{R}^3, \mathbb{R}^3)$

$$T = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } (3.0.1)$$

$$T' = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \tag{3.0.2}$$

If $T \in L(\mathbb{R}^3, \mathbb{R}^3)$ we can show that $T' \in L(\mathbb{R}^{3^*}, \mathbb{R}^{3^*})$ Given, $\phi T = T'$ as follows.

Consider linear functional $f: \mathbb{R}^{3^*} \to F$

$$f(x, y, z) = 2x + 3y + 4z (3.0.3)$$

Let $g: \mathbb{R}^3 \to F$. By definition of transpose,

$$g = T'f \tag{3.0.4}$$

$$= \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 6 \end{pmatrix}$$
 (3.0.5)

$$g(x, y, z) = 7x + 5y + 6z (3.0.6)$$

Fig. 0: $T: \mathbb{R}^3 \to \mathbb{R}^3$ and $T': \mathbb{R}^{3^*} \to \mathbb{R}^{3^{**}}$

Consider vector in $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$,

$$Tv = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ 3 \end{pmatrix}$$
 (3.0.7)

$$f(Tv) = f(7,3,3)$$
 (3.0.8)

$$= 2 * 7 + 3 * 3 + 4 * 3 = 35$$
 (3.0.9)

$$g(1,2,3) = 7 * 1 + 5 * 2 + 6 * 3 = 35$$
 (3.0.10)

Hence verified g = T'f, and T' is transpose of T.

$$\phi = T'T^{-1} \tag{3.0.11}$$

$$= \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$
 (3.0.12)

$$= \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 (3.0.13)

$$\phi = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.0.14}$$

$$\phi^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(3.0.15)

Since ϕ^{-1} exists ϕ is isomorphism of L(V, V) onto $L(V^*, V^*)$