114-1 Machine Learning Week 2 Assignment

Ming Hsun Wu

September 17, 2025

Problem 1.

Use a neural network to approximate the Runge function

$$f(x) = \frac{1}{1 + 25x^2}, x \in [-1, 1].$$

SOLUTION.

Note of Problem 1.

About my hypothesis

epoch	300
Loss function	mean square error
Trainable params	8,577
Hidden layer and activation function	3 linear layer with tanch
	where $t_i = tanh(x) L_i = W_i x + b_i$
$f_{ heta}: \mathbb{R} o \mathbb{R}$	$f_{\theta} = t_3(L_3(t_2(L_2(t_1(L_1(x))))))$
testing data	500 equally spaced points in the interval $[1, 1]$.
training data	300 equally spaced points in the interval [1, 1].

The programming language I used is Python, and I mainly relied on the PyTorch library to carry out the simulations. Based on the trained model, the mean squared error (MSE) of the prediction results, evaluated on 500 points within the interval[1, 1], is 0.000520.

Figure 1 shows the results of the preliminary test. After tuning more parameters (such as the number of epochs), better results can be obtained, as shown in Figure 2, with the MSE reduced to 0.000014.