Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo

INTEGRALES DE LINEA (SEMANA 6)

1. Considere γ como el cuadrado de vertices en 1, i, -1 y -i. Calcular la integral

$$\int_{\gamma} \frac{1}{z} dz.$$

2. En la circunferencia $\mathbb{S}^1:|z|=1$, calcular

$$\int_{\mathbb{S}^1} \frac{\operatorname{sen}(z)}{z^2 - 4} dz.$$

3. Considere σ y γ los dos poligonos 1 [1,i] y [1,1+i,i]. Calcular

$$\int_{\sigma} |z|^2 dz \quad y \quad \int_{\gamma} |z|^2 dz.$$

Analizar la existencia de una primitiva para $f(z) = |z|^2$ a la luz del ejercicio 14b.

4. En $\gamma: z(t) = e^{it}, 0 \le t \le 2\pi$; calcular

$$\int_{\gamma} z^n dz,$$

para cada entero $n \in \mathbb{Z}$.

- 5. Sea $I(r) = \int_{\gamma_-} \frac{e^{iz}}{z} dz$, donde $\gamma_r : z(t) = re^{it}$, $0 \le t \le \pi$. Mostrar que $\lim_{r \to \infty} I(r) = 0$.

$$\int_{\gamma} \frac{1}{\sqrt{z}} dz$$

en los siguientes casos: (a) γ : la semicircunferencia unitaria superior de 1 a -1. (b) γ la semicircunferencia unitaria inferior de 1 a -1.

7. Calcular

$$\int_{\gamma} x dz,$$

donde γ es el segmento orientado de 0 a 1+i.

8. Encontrar

$$\int_{|z|=r} x dz,$$

para la circunferencia en el sentido positivo, de dos maneras: primero, utilice el parametro y segundo use que $x = \frac{1}{2} (z + \overline{z}) = \frac{1}{2} (z + \frac{r^r}{z})$ en la circunferencia.

9. Calcular

$$\int_{\gamma} \frac{1}{z^2 - 1} dz$$

en dos caso complementarios. (a) $\gamma: z(t) = 1 + e^{it}, 0 \le t \le 2\pi$ (b) γ es la circunferencia |z|=2, en el sentido positivo.

10. Calcular

$$\int_{|z|=1} |z - 1| \, |dz|.$$

 $[\]overline{[z_0, z_1, \dots, z_n]}$ es el poligono dado por $\bigcup_{i=1}^n [z_{i-1}, z_i]$ de segmentos $[z_{i-1}, z_i] = \{(1-t)z_{i-1} + tz_i : 0 \le t \le 1\}$.

11. Una función $g:[a,b]\to\mathbb{R}$ es de variación acotada si por cada partición $P:\{a=t_0<$ $t_1 < \cdots < t_n = b$ de [a, b] el siguiente supremo

$$V_g[a,b] = \sup \left\{ \sum_{k=1}^n |g(t_k) - g(t_{k-1})| \colon P \text{ partición de } [a.b] \right\} < \infty.$$

- a) Sea $f:[a,b]\to\mathbb{R}$ es monótona creciente. Mostrar que f es de variacion acotada y $V_f[a,b] = f(b) - f(a).$
- b) $g:[a,b]\to\mathbb{R}$ es de variación acotada si y solo si existe $\varphi:[a,b]\to\mathbb{R}$, monótona creciente tal que $x < y \Rightarrow g(y) - g(x) \le \varphi(y) - \varphi(x)$.
- c) Definir f(0) = 0 y $f(x) = x \sin(1/x), 0 < x \le 1$. Probar que f es continua, limitada pero $V_f[0,1] = +\infty$. Sin embargo, g(x) = xf(x) es de variación acotada en [0,1].
- d) Considere $f:[a,b]\to\mathbb{R}$ de variación acotada. Probar que f es continua en $x\in[a,b]$ si y solo si x es un punto de continuidad de $x \mapsto V_f[a,x]$.
- 12. El camino suave por partes $\gamma: z=z(t)\in U\subset \mathbb{C}$ se dice rectificable si la parte real $\operatorname{Re}(z(t))$ y la parte imaginaria $\operatorname{Im}(z(t))$ son de variación acotada. Mostrar que si la función $f:U\to\mathbb{C}$ es continua

$$\int_{\gamma} f(z)dz = \int_{\sigma} f(z)dz,$$

para cualquier σ equivalente a γ . Es decir, $\sigma: z = z(\varphi(s))$ con φ monotona creciente y suave entre intervalos compactos. (Los caminos rectificables equivalentes definen las curvas rectificables como clases de equivalencia, asi las integrales $\int_{\gamma} f$ sobre la curvas no dependen del camino que representa la clase).

- 13. Sea γ una curva rectificable, con imagen $\gamma^* \subset U \subset \mathbb{C}$ y f una función continua en U. Probar.
 - a) $\int_{\gamma} f = -\int_{-\gamma} f$
 - b) $\left| \int_{\gamma} f \right| \leq \int_{\gamma} |f(z)| |dz| \leq \sup_{P} \left\{ \sum_{P} |z_{k} z_{k-1}| : P(z_{0}, z_{1}, \dots, z_{n}) \right\} \sup_{z \in \gamma^{*}} |f(z)|, donder$ $P(z_0, z_1, \dots, z_n)$ denota una partición de γ^* .
 - c) Si $c \in \mathbb{C}$, entonces $\int_{\gamma} f(z)dz = \int_{c+\gamma} f(z-c)dz$
- 14. Considere una curva rectificable $\gamma: z = z(t) \in U, a \leq t \leq b$ y $f: U \subset \mathbb{C} \to \mathbb{C}$ una función continua. Probar
 - a) Para cada $\epsilon > 0$, existe una curva poligonal $\Gamma : z = z(t) \in U, a \leq t \leq b$ tal que $\gamma(a) = \Gamma(a), \ \gamma(b) = \Gamma(b) \ \text{y} \ \left| \int_{\gamma} f - \int_{\Gamma} f \right| < \epsilon.$ b) Si $F: U \to \mathbb{C}$ es una primitiva de f (es decir F' = f), entonces

$$\int_{\gamma} f = F(\gamma(b)) - F(\gamma(a)).$$

(Cuando la curva es cerrada: $\gamma(a) = \gamma(b)$, en el item anterior se obtiene $\int_{\gamma} f = 0$)

- 15. Sea $f:U\to\mathbb{C}$ una función analítica definida en un abierto conexo $U\subset\mathbb{C}$. Probar que si f'=0, entonces f es constante.
- 16. Considere que la función f(z) es analítica en la curva cerrada γ . Analizar si

$$\int_{\gamma} \overline{f(z)} f'(z) dz$$

es imaginario puro (asumir la continuidad de f'(z)).

17. Considere una sucesión f_n que converge uniformemente a f en el abierto conexo $U \subset \mathbb{C}$. Probar

$$\lim_{n} \int_{\gamma} f_n(z) dz = \int_{\gamma} f(z) dz.$$

San Miguel, 2020.