This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

		THE FATERI COOPERATION TREATT (PCT)
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/04149
C12N 15/12, C07K 14/47, C12Q 1/68, A61K 39/395, G01N 33/68, 33/574, C07K 16/30, C12N 15/62, 5/02 // A61P 35/00	A2	(43) International Publication Date: 27 January 2000 (27.01.00)
(21) International Application Number: PCT/USS (22) International Filing Date: 14 July 1999 (1		Columbia, 701 Fifth Avenue, Seattle, WA 98104-7092
(30) Priority Data: 09/115,453 09/116,134 14 July 1998 (14.07.98) 09/159,822 23 September 1998 (23.09.98) 09/232,880 15 January 1999 (15.01.99) 09/232,149 15 January 1999 (15.01.99) 09/288,946 9 April 1999 (09.04.99) (71) Appllcant: CORIXA CORPORATION [US/US]; State Columbia Street, Seattle, WA 98104 (US). (72) Inventors: DILLON, Davin, Clifford; 21607 N.E. 24t Redmond, WA 98053 (US). HARLOCKER, Susan, 6203 20th Avenue N.W., Seattle, WA 98107 (US). Jiang; 5001 South 232nd Street, Kent, WA 98032 (U Jiangchun; 15805 S.E. 43rd Place, Bellevue, WA (US). MITCHAM, Jennifer, Lynn; 16677 Northe Street, Redmond, WA 98052 (US).	th Stree, Louise YUQII VA 9800	SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF PROSTATE CANCER

(57) Abstract

Compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer, are disclosed. Compositions may comprise one or more prostate tumor proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a prostate tumor protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as prostate cancer. Diagnostic methods based on detecting a prostate tumor protein, or mRNA encoding such a protein, in a sample are also provided.

36

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	IIU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Iteland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iccland	MW	Malawi	us	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	LW	Lillordwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czecli Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF PROSTATE CANCER

TECHNICAL FIELD

The present invention relates generally to therapy and diagnosis of cancer, such as prostate cancer. The invention is more specifically related to polypeptides comprising at least a portion of a prostate tumor protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for prevention and treatment of prostate cancer, and for the diagnosis and monitoring of such cancers.

BACKGROUND OF THE INVENTION

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into therapies for the disease, prostate cancer remains difficult to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) - have limited therapeutic and diagnostic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

In spite of considerable research into therapies for these and other cancers, prostate cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer, such as prostate cancer. In one aspect, the present invention provides polypeptides comprising at least a portion of a prostate tumor protein, or a variant thereof. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises at least an immunogenic portion of a prostate tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472; (b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and (c) complements of any of the sequence of (a) or (b). In certain specific embodiments, such a polypeptide comprises at least a portion, or variant thereof, of a tumor protein that includes an amino acid sequence selected from the group consisting of sequences recited in any one of SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380 and 383.

The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a prostate tumor protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, vaccines are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and a non-specific immune response enhancer.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a prostate tumor protein; and (b) a physiologically acceptable carrier.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a non-specific immune response enhancer.

The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.

Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.

Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a non-specific immune response enhancer.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate tumor protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a prostate tumor protein, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polypucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a prostate tumor protein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody. The cancer may be prostate cancer.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as diagnostic

kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1 illustrates the ability of T cells to kill fibroblasts expressing the representative prostate tumor polypeptide P502S, as compared to control fibroblasts. The percentage lysis is shown as a series of effector:target ratios, as indicated.

Figures 2A and 2B illustrate the ability of T cells to recognize cells expressing the representative prostate tumor polypeptide P502S. In each case, the number of γ-interferon spots is shown for different numbers of responders. In Figure 2A, data is presented for fibroblasts pulsed with the P2S-12 peptide, as compared to fibroblasts pulsed with a control E75 peptide. In Figure 2B, data is presented for fibroblasts expressing P502S, as compared to fibroblasts expressing HER-2/neu.

Figure 3 represents a peptide competition binding assay showing that the P1S#10 peptide, derived from P501S, binds HLA-A2. Peptide P1S#10 inhibits HLA-A2 restricted presentation of fluM58 peptide to CTL clone D150M58 in TNF release bioassay. D150M58 CTL is specific for the HLA-A2 binding influenza matrix peptide fluM58.

Figure 4 illustrates the ability of T cell lines generated from P1S#10 immunized mice to specifically lyse P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat A2Kb targets, as compared to EGFP-transduced Jurkat A2Kb. The percent lysis is shown as a series of effector to target ratios, as indicated.

Figure 5 illustrates the ability of a T cell clone to recognize and specifically lysc Jurkat A2Kb cells expressing the representative prostate tumor polypeptide P501S, thereby demonstrating that the P1S#10 peptide may be a naturally processed epitope of the P501S polypeptide.

Figures 6A and 6B are graphs illustrating the specificity of a CD8⁺ cell line (3A-1) for a representative prostate tumor antigen (P501S). Figure 6A shows the results of a ⁵¹Cr release assay. The percent specific lysis is shown as a series of effector:target ratios, as indicated. Figure 6B shows the production of interferon-gamma by 3A-1 cells stimulated with autologous B-LCL transduced with P501S, at varying effector:target rations as indicated.

SEQ ID NO: 1 is the determined cDNA sequence for F1-13 SEQ ID NO: 2 is the determined 3' cDNA sequence for F1-12

SEQ ID NO: 3 is the determined 5' cDNA sequence for F1-12 SEQ ID NO: 4 is the determined 3' cDNA sequence for F1-16 SEQ ID NO: 5 is the determined 3' cDNA sequence for H1-1 SEQ ID NO: 6 is the determined 3' cDNA sequence for H1-9 SEQ ID NO: 7 is the determined 3' eDNA sequence for H1-4 SEQ ID NO: 8 is the determined 3' cDNA sequence for J1-17 SEQ ID NO: 9 is the determined 5' cDNA sequence for J1-17 SEQ ID NO: 10 is the determined 3' cDNA sequence for L1-12 SEQ ID NO: 11 is the determined 5' cDNA sequence for L1-12 SEQ ID NO: 12 is the determined 3' cDNA sequence for N1-1862 SEQ ID NO: 13 is the determined 5' cDNA sequence for N1-1862 SEQ 1D NO: 14 is the determined 3' cDNA sequence for J1-13 SEQ ID NO: 15 is the determined 5' cDNA sequence for J1-13 SEQ 1D NO: 16 is the determined 3' cDNA sequence for J1-19 SEQ ID NO: 17 is the determined 5' cDNA sequence for J1-19 SEQ ID NO: 18 is the determined 3' eDNA sequence for J1-25 SEQ 1D NO: 19 is the determined 5' cDNA sequence for J1-25 SEQ ID NO: 20 is the determined 5' eDNA sequence for J1-24 SEQ 1D NO: 21 is the determined 3' eDNA sequence for J1-24 SEQ ID NO: 22 is the determined 5' cDNA sequence for K1-58 SEQ ID NO: 23 is the determined 3' cDNA sequence for K1-58 SEQ ID NO: 24 is the determined 5' cDNA sequence for K1-63 SEQ ID NO: 25 is the determined 3' cDNA sequence for K1-63 SEQ ID NO: 26 is the determined 5' cDNA sequence for L1-4 SEQ ID NO: 27 is the determined 3' cDNA sequence for L1-4 SEQ 1D NO: 28 is the determined 5' eDNA sequence for L1-14 SEQ 1D NO: 29 is the determined 3' eDNA sequence for L1-14 SEQ ID NO: 30 is the determined 3' cDNA sequence for J1-12 SEQ ID NO: 31 is the determined 3' cDNA sequence for J1-16 SEQ ID NO: 32 is the determined 3' cDNA sequence for J1-21 SEQ ID NO: 33 is the determined 3' cDNA sequence for K1-48 SEQ ID NO: 34 is the determined 3' cDNA sequence for K1-55 SEQ ID NO: 35 is the determined 3' cDNA sequence for L1-2 SEQ ID NO: 36 is the determined 3' cDNA sequence for L1-6 SEQ ID NO: 37 is the determined 3' eDNA sequence for N1-1858 SEQ ID NO: 38 is the determined 3' cDNA sequence for N1-1860 SEQ ID NO: 39 is the determined 3' cDNA sequence for N1-1861

SEQ ID NO: 40 is the determined 3' cDNA sequence for N1-1864 SEQ ID NO: 41 is the determined cDNA sequence for P5 SEQ ID NO: 42 is the determined cDNA sequence for P8 SEQ ID NO: 43 is the determined cDNA sequence for P9 SEQ ID NO: 44 is the determined cDNA sequence for P18 SEQ ID NO: 45 is the determined cDNA sequence for P20 SEQ ID NO: 46 is the determined cDNA sequence for P29 SEQ ID NO: 47 is the determined cDNA sequence for P30 SEQ ID NO: 48 is the determined cDNA sequence for P34 SEQ ID NO: 49 is the determined cDNA sequence for P36 SEQ ID NO: 50 is the determined cDNA sequence for P38 SEQ ID NO: 51 is the determined cDNA sequence for P39 SEQ ID NO: 52 is the determined cDNA sequence for P42 SEQ ID NO: 53 is the determined cDNA sequence for P47 SEQ ID NO: 54 is the determined cDNA sequence for P49 SEQ ID NO: 55 is the determined cDNA sequence for P50 SEQ ID NO: 56 is the determined cDNA sequence for P53 SEQ ID NO: 57 is the determined cDNA sequence for P55 SEQ ID NO: 58 is the determined cDNA sequence for P60 SEQ ID NO: 59 is the determined cDNA sequence for P64 SEQ ID NO: 60 is the determined cDNA sequence for P65 SEQ ID NO: 61 is the determined cDNA sequence for P73 SEQ ID NO: 62 is the determined cDNA sequence for P75 SEQ ID NO: 63 is the determined cDNA sequence for P76 SEQ ID NO: 64 is the determined cDNA sequence for P79 SEQ ID NO: 65 is the determined cDNA sequence for P84 SEQ ID NO: 66 is the determined cDNA sequence for P68 SEQ ID NO: 67 is the determined cDNA sequence for P80 SEQ ID NO: 68 is the determined cDNA sequence for P82 SEQ ID NO: 69 is the determined cDNA sequence for U1-3064 SEQ ID NO: 70 is the determined cDNA sequence for UI-3065 SEQ ID NO: 71 is the determined cDNA sequence for V1-3692 SEQ ID NO: 72 is the determined cDNA sequence for 1A-3905 SEQ ID NO: 73 is the determined cDNA sequence for VI-3686 SEQ ID NO: 74 is the determined cDNA sequence for RI-2330 SEQ ID NO: 75 is the determined cDNA sequence for 1B-3976 SEQ ID NO: 76 is the determined cDNA sequence for V1-3679

SEQ 1D NO: 77 is the determined cDNA sequence for 1G-4736 SEQ ID NO: 78 is the determined cDNA sequence for 1G-4738 SEQ ID NO: 79 is the determined cDNA sequence for 1G-4741 SEQ ID NO: 80 is the determined cDNA sequence for 1G-4744 SEQ ID NO: 81 is the determined cDNA sequence for 1G-4734 SEQ ID NO: 82 is the determined cDNA sequence for 1H-4774 SEQ 1D NO: 83 is the determined cDNA sequence for 1H-4781 SEQ 1D NO: 84 is the determined cDNA sequence for 1H-4785 SEQ ID NO: 85 is the determined cDNA sequence for 1H-4787 SEQ ID NO: 86 is the determined cDNA sequence for IH-4796 SEQ1D NO: 87 is the determined cDNA sequence for 1I-4807 SEQ 1D NO: 88 is the determined cDNA sequence for 11-4810 SEQ 1D NO: 89 is the determined cDNA sequence for 1I-4811 SEQ1D NO: 90 is the determined cDNA sequence for 1J-4876 SEQ 1D NO: 91 is the determined cDNA sequence for 1K-4884 SEQ 1D NO: 92 is the determined cDNA sequence for 1K-4896 SEQ 1D NO: 93 is the determined cDNA sequence for 1G-4761 SEQ ID NO: 94 is the determined cDNA sequence for 1G-4762 SEQ ID NO: 95 is the determined cDNA sequence for 1H-4766 SEQ 1D NO: 96 is the determined cDNA sequence for 1H-4770 SEQ 1D NO: 97 is the determined cDNA sequence for 1H-4771 SEQ 1D NO: 98 is the determined cDNA sequence for 1H-4772 SEQ 1D NO: 99 is the determined cDNA sequence for 1D-4297 SEQ ID NO: 100 is the determined cDNA sequence for 1D-4309 SEQ ID NO: 101 is the determined cDNA sequence for 1D.1-4278 SEQ ID NO: 102 is the determined cDNA sequence for 1D-4288 SEQ ID NO: 103 is the determined cDNA sequence for 1D-4283 SEQ ID NO: 104 is the determined cDNA sequence for 1D-4304 SEQ ID NO: 105 is the determined cDNA sequence for 1D-4296 SEQ ID NO: 106 is the determined cDNA sequence for 1D-4280 SEQ ID NO: 107 is the determined full length cDNA sequence for F1-12 (also referred to as P504S) SEQ ID NO: 108 is the predicted amino acid sequence for FI-12 SEQ ID NO: 109 is the determined full length cDNA sequence for J1-17 SEQ ID NO: 110 is the determined full length cDNA sequence for L1-12 SEQ ID NO: 111 is the determined full length cDNA sequence for N1-1862 SEQ ID NO: 112 is the predicted amino acid sequence for J1-17

SEQ ID NO: 113 is the predicted amino acid sequence for L1-12 SEQ ID NO: 114 is the predicted amino acid sequence for NI-1862 SEQ ID NO: 115 is the determined cDNA sequence for P89 SEQ ID NO: 116 is the determined cDNA sequence for P90 SEQ ID NO: 117 is the determined cDNA sequence for P92 SEQ ID NO: II8 is the determined cDNA sequence for P95 SEQ ID NO: I19 is the determined cDNA sequence for P98 SEQ ID NO: 120 is the determined cDNA sequence for PI02 SEQ 1D NO: 121 is the determined cDNA sequence for PI10 SEQ ID NO: 122 is the determined cDNA sequence for PIII SEQ ID NO: 123 is the determined cDNA sequence for P1I4 SEQ ID NO: 124 is the determined cDNA sequence for PI15 SEQ ID NO: 125 is the determined cDNA sequence for P116 SEQ ID NO: 126 is the determined cDNA sequence for P124 SEQ ID NO: 127 is the determined cDNA sequence for PI26 SEQ ID NO: 128 is the determined cDNA sequence for PI30 SEQ ID NO: 129 is the determined cDNA sequence for P133 SEQ ID NO: I30 is the determined cDNA sequence for PI38 SEQ ID NO: I31 is the determined cDNA sequence for P143 SEQ ID NO: I32 is the determined cDNA sequence for P151 SEQ ID NO: 133 is the determined cDNA sequence for P156 SEQ ID NO: 134 is the determined cDNA sequence for P157 SEQ ID NO: 135 is the determined cDNA sequence for PI66 SEQ ID NO: 136 is the determined cDNA sequence for P176 SEQ ID NO: 137 is the determined cDNA sequence for P178 SEQ ID NO: 138 is the determined cDNA sequence for P179 SEQ ID NO: 139 is the determined cDNA sequence for P185 SEQ ID NO: 140 is the determined cDNA sequence for P192 SEQ ID NO: 14I is the determined cDNA sequence for P201 SEQ ID NO: 142 is the determined cDNA sequence for P204 SEQ ID NO: 143 is the determined cDNA sequence for P208 SEQ ID NO: 144 is the determined cDNA sequence for P211 SEQ ID NO: 145 is the determined cDNA sequence for P2I3 SEQ ID NO: 146 is the determined cDNA sequence for P219 SEQ ID NO: 147 is the determined cDNA sequence for P237 SEQ ID NO: 148 is the determined cDNA sequence for P239 SEQ ID NO: 149 is the determined cDNA sequence for P248

SEQ ID NO: 150 is the determined cDNA sequence for P251
SEQ ID NO: 151 is the determined cDNA sequence for P255
SEQ ID NO: 152 is the determined cDNA sequence for P256
SEQ ID NO: 153 is the determined cDNA sequence for P259
SEQ ID NO: 154 is the determined cDNA sequence for P260
SEQ ID NO: 155 is the determined cDNA sequence for P263
SEQ ID NO: 156 is the determined cDNA sequence for P264
SEQ ID NO: 157 is the determined cDNA sequence for P266
SEQ ID NO: 158 is the determined cDNA sequence for P270
SEQ ID NO: 159 is the determined cDNA sequence for P272
SEQ ID NO: 160 is the determined cDNA sequence for P278
SEQ ID NO: 161 is the determined cDNA sequence for P105
SEQ ID NO: 162 is the determined cDNA sequence for P107
SEQ ID NO: 163 is the determined cDNA sequence for P137
SEQ ID NO: 164 is the determined cDNA sequence for P194
SEQ ID NO: 165 is the determined cDNA sequence for P195
SEQ ID NO: 166 is the determined cDNA sequence for P196
SEQ ID NO: 167 is the determined cDNA sequence for P220
SEQ ID NO: 168 is the determined cDNA sequence for P234
SEQ ID NO: 169 is the determined cDNA sequence for P235
SEQ ID NO: 170 is the determined cDNA sequence for P243
SEQ ID NO: 171 is the determined cDNA sequence for P703P-DE1
SEQ ID NO: 172 is the predicted amino acid sequence for P703P-DE1
SEQ ID NO: 173 is the determined cDNA sequence for P703P-DE2
SEQ ID NO: 174 is the determined cDNA sequence for P703P-DE6
SEQ ID NO: 175 is the determined cDNA sequence for P703P-DE13
SEQ ID NO: 176 is the predicted amino acid sequence for P703P-DE13
SEQ ID NO: 177 is the determined cDNA sequence for P703P-DE14
SEQ ID NO: 178 is the predicted amino acid sequence for P703P-DE14
SEQ ID NO: 179 is the determined extended cDNA sequence for 1G-4736
SEQ ID NO: 180 is the determined extended cDNA sequence for 1G-4738
SEQ ID NO: 181 is the determined extended cDNA sequence for 1G-4741
SEQ ID NO: 182 is the determined extended cDNA sequence for 1G-4744
SEQ ID NO: 183 is the determined extended cDNA sequence for 1H-4774
SEQ ID NO: 184 is the determined extended cDNA sequence for 1H-4781
SEQ ID NO: 185 is the determined extended cDNA sequence for 1H-4785
SEQ ID NO: 186 is the determined extended cDNA sequence for 1H-4787

SEQ ID NO: 187 is the determined extended cDNA sequence for 1H-4796 SEQ ID NO: 188 is the determined extended cDNA sequence for 1I-4807 SEQ 1D NO: 189 is the determined 3' cDNA sequence for 1I-4810 SEQ ID NO: 190 is the determined 3' cDNA sequence for 11-4811 SEQ 1D NO: 191 is the determined extended cDNA sequence for 1J-4876 SEQ 1D NO: 192 is the determined extended cDNA sequence for 1K-4884 SEQ 1D NO: 193 is the determined extended cDNA sequence for 1K-4896 SEQ 1D NO: 194 is the determined extended cDNA sequence for 1G-4761 SEQ ID NO: 195 is the determined extended cDNA sequence for 1G-4762 SEQ ID NO: 196 is the determined extended cDNA sequence for 1H-4766 SEQ ID NO: 197 is the determined 3' cDNA sequence for 1H-4770 SEQ ID NO: 198 is the determined 3' cDNA sequence for 1H-4771 SEQ 1D NO: 199 is the determined extended cDNA sequence for 1H-4772 SEQ ID NO: 200 is the determined extended cDNA sequence for 1D-4309 SEQ 1D NO: 201 is the determined extended cDNA sequence for 1D.1-4278 SEQ 1D NO: 202 is the determined extended cDNA sequence for 1D-4288 SEQ ID NO: 203 is the determined extended cDNA sequence for 1D-4283 SEQ ID NO: 204 is the determined extended cDNA sequence for 1D-4304 SEQ ID NO: 205 is the determined extended cDNA sequence for 1D-4296 SEQ ID NO: 206 is the determined extended cDNA sequence for 1D-4280 SEQ ID NO: 207 is the determined cDNA sequence for 10-d8fwd SEQ ID NO: 208 is the determined cDNA sequence for 10-H10con SEQ ID NO: 209 is the determined cDNA sequence for 11-C8rev SEQ ID NO: 210 is the determined cDNA sequence for 7.g6fwd SEQ 1D NO: 211 is the determined cDNA sequence for 7.g6rev SEQ ID NO: 212 is the determined cDNA sequence for 8-b5fwd SEQ ID NO: 213 is the determined cDNA sequence for 8-b5rev SEQ ID NO: 214 is the determined cDNA sequence for 8-b6fwd SEQ ID NO: 215 is the determined cDNA sequence for 8-b6 rev SEQ 1D NO: 216 is the determined cDNA sequence for 8-d4fwd SEQ ID NO: 217 is the determined cDNA sequence for 8-d9rev SEQ ID NO: 218 is the determined cDNA sequence for 8-g3fwd SEQ 1D NO: 219 is the determined cDNA sequence for 8-g3rev SEQ ID NO: 220 is the determined cDNA sequence for 8-h11rev SEQ 1D NO: 221 is the determined cDNA sequence for g-f12fwd SEQ 1D NO: 222 is the determined cDNA sequence for g-f3rev SEQ 1D NO: 223 is the determined cDNA sequence for P509S

SEQ ID NO: 224 is the determined cDNA sequence for P510S SEQ ID NO: 225 is the determined cDNA sequence for P703DE5 SEQ ID NO: 226 is the determined cDNA sequence for 9-A11 SEQ ID NO: 227 is the determined cDNA sequence for 8-C6 SEQ ID NO: 228 is the determined cDNA sequence for 8-H7 SEQ ID NO: 229 is the determined cDNA sequence for JPTPN13 SEQ ID NO: 230 is the determined cDNA sequence for JPTPN14 SEQ ID NO: 231 is the determined cDNA sequence for JPTPN23 SEQ ID NO: 232 is the determined cDNA sequence for JPTPN24 SEQ ID NO: 233 is the determined cDNA sequence for JPTPN25 SEQ ID NO: 234 is the determined cDNA sequence for JPTPN30 SEQ ID NO: 235 is the determined cDNA sequence for JPTPN34 SEQ ID NO: 236 is the determined cDNA sequence for PTPN35 SEQ ID NO: 237 is the determined cDNA sequence for JPTPN36 SEQ ID NO: 238 is the determined cDNA sequence for JPTPN38 SEQ ID NO: 239 is the determined cDNA sequence for JPTPN39 SEQ ID NO: 240 is the determined cDNA sequence for JPTPN40 SEQ ID NO: 241 is the determined cDNA sequence for JPTPN41 SEQ ID NO: 242 is the determined cDNA sequence for JPTPN42 SEQ ID NO: 243 is the determined cDNA sequence for JPTPN45 SEQ ID NO: 244 is the determined cDNA sequence for JPTPN46 SEQID NO: 245 is the determined cDNA sequence for JPTPN51 SEQ ID NO: 246 is the determined cDNA sequence for JPTPN56 SEQ ID NO: 247 is the determined cDNA sequence for PTPN64 SEQ ID NO: 248 is the determined cDNA sequence for JPTPN65 SEQ ID NO: 249 is the determined cDNA sequence for JPTPN67 SEQ ID NO: 250 is the determined cDNA sequence for JPTPN76 SEQ ID NO: 251 is the determined cDNA sequence for JPTPN84 SEQ ID NO: 252 is the determined cDNA sequence for JPTPN85 SEQ ID NO: 253 is the determined cDNA sequence for JPTPN86 SEQ ID NO: 254 is the determined cDNA sequence for JPTPN87 SEQ ID NO: 255 is the determined cDNA sequence for JPTPN88 SEQ ID NO: 256 is the determined cDNA sequence for JP1F1 SEQ ID NO: 257 is the determined cDNA sequence for JP1F2 SEQ ID NO: 258 is the determined cDNA sequence for JP1C2 SEQ ID NO: 259 is the determined cDNA sequence for JP1B1 SEQ ID NO: 260 is the determined cDNA sequence for JP1B2

SEQ ID NO: 261 is the determined cDNA sequence for JP1D3 SEQ ID NO: 262 is the determined cDNA sequence for JP1A4 SEQ ID NO: 263 is the determined cDNA sequence for JP1F5 SEQ ID NO: 264 is the determined cDNA sequence for JP1E6 SEQ ID NO: 265 is the determined cDNA sequence for JP1D6 SEQ ID NO: 266 is the determined cDNA sequence for JP1B5 SEQ ID NO: 267 is the determined cDNA sequence for JP1 A6 SEQ ID NO: 268 is the determined cDNA sequence for JP1E8 SEQ ID NO: 269 is the determined cDNA sequence for JP1D7 SEQ ID NO: 270 is the determined cDNA sequence for JP1D9 SEQ ID NO: 271 is the determined cDNA sequence for JP1C10 SEQ 1D NO: 272 is the determined cDNA sequence for JP1A9 SEQ 1D NO: 273 is the determined cDNA sequence for JP1F12 SEQ ID NO: 274 is the determined cDNA sequence for JP1E12 SEQ 1D NO: 275 is the determined cDNA sequence for JP1D11 SEQ ID NO: 276 is the dctermined cDNA sequence for JP1CI1 SEQ ID NO: 277 is the determined cDNA sequence for JPICI2 SEQ ID NO: 278 is the determined cDNA sequence for JP1B12 SEQ ID NO: 279 is the determined cDNA sequence for JP1A12 SEQ ID NO: 280 is the determined cDNA sequence for JP8G2 SEQ ID NO: 281 is the determined cDNA sequence for JP8H1 SEQ ID NO: 282 is the determined cDNA sequence for JP8H2 SEQ ID NO: 283 is the determined cDNA sequence for JP8A3 SEQ ID NO: 284 is the determined cDNA sequence for JP8A4 SEQ ID NO: 285 is the determined cDNA sequence for JP8C3 SEQ ID NO: 286 is the determined cDNA sequence for JP8G4 SEQ ID NO: 287 is the determined cDNA sequence for JP8B6 SEQ ID NO: 288 is the determined cDNA sequence for JP8D6 SEQ ID NO: 289 is the determined cDNA sequence for JP8F5 SEQ ID NO: 290 is the determined cDNA sequence for JP8A8 SEQ ID NO: 291 is the determined cDNA sequence for JP8C7 SEQ ID NO: 292 is the determined cDNA sequence for JP8D7 SEQ ID NO: 293 is the determined cDNA sequence for P8D8 SEQ ID NO: 294 is the determined cDNA sequence for JP8E7 SEQ 1D NO: 295 is the determined cDNA sequence for JP8F8 SEQ ID NO: 296 is the determined cDNA sequence for JP8G8 SEQ 1D NO: 297 is the determined cDNA sequence for JP8B10

SEQ ID NO: 298 is the determined cDNA sequence for JP8C10 SEQ ID NO: 299 is the determined cDNA sequence for JP8E9 SEQ ID NO: 300 is the determined cDNA sequence for JP8E10 SEQ ID NO: 301 is the determined cDNA sequence for JP8F9 SEQ ID NO: 302 is the determined cDNA sequence for JP8H9 SEQ ID NO: 303 is the determined cDNA sequence for JP8C12 SEQ ID NO: 304 is the determined cDNA sequence for JP8EI1 SEQ ID NO: 305 is the determined cDNA sequence for JP8E12 SEQ ID NO: 306 is the amino acid sequence for the peptide PS2#12 SEQ ID NO: 307 is the determined cDNA sequence for P711P SEQ ID NO: 308 is the determined cDNA sequence for P712P SEQ ID NO: 309 is the determined cDNA sequence for CLONE23 SEQ ID NO: 310 is the determined cDNA sequence for P774P SEQ ID NO: 311 is the determined cDNA sequence for P775P SEQ ID NO: 312 is the determined cDNA sequence for P715P SEQ ID NO: 313 is the determined cDNA sequence for P710P SEQ ID NO: 314 is the determined cDNA sequence for P767P SEQ ID NO: 315 is the determined cDNA sequence for P768P SEQ ID NO: 316-325 are the determined cDNA sequences of previously isolated genes SEQ ID NO: 326 is the determined cDNA sequence for P703PDE5 SEQ ID NO: 327 is the predicted amino acid sequence for P703PDE5 SEQ ID NO: 328 is the determined cDNA sequence for P703P6.26 SEQ ID NO: 329 is the predicted amino acid sequence for P703P6.26 SEQ ID NO: 330 is the determined cDNA sequence for P703PX-23 SEQ ID NO: 331 is the predicted amino acid sequence for P703PX-23 SEQ ID NO: 332 is the determined full length cDNA sequence for P509S SEQ ID NO: 333 is the determined extended cDNA sequence for P707P (also referred to as 11-C9) SEQ ID NO: 334 is the determined cDNA sequence for P714P SEQ ID NO: 335 is the determined cDNA sequence for P705P (also referred to as 9-F3) SEQ ID NO: 336 is the predicted amino acid sequence for P705P SEQ ID NO: 337 is the amino acid sequence of the peptide P1S#10 SEQ ID NO: 338 is the amino acid sequence of the peptide p5 SEQ ID NO: 339 is the predicted amino acid sequence of P509S SEQ ID NO: 340 is the determined cDNA sequence for P778P SEQ ID NO: 341 is the determined cDNA sequence for P786P

SEQ ID NO: 342 is the determined cDNA sequence for P789P

SEQ ID NO: 343 is the determined cDNA sequence for a clone showing homology to Homo sapiens MM46 mRNA

SEQ ID NO: 344 is the determined cDNA sequence for a clone showing homology to Homo sapiens TNF-alpha stimulated ABC protein (ABC50) mRNA

SEQ ID NO: 345 is the determined cDNA sequence for a clone showing homology to Homo sapiens mRNA for E-cadherin

SEQ ID NO: 346 is the determined cDNA sequence for a clone showing homology to Human nuclear-encoded mitochondrial serine hydroxymethyltransferase (SHMT)

SEQ ID NO: 347 is the determined cDNA sequence for a clonc showing homology to Homo sapiens natural resistance-associated macrophage protein2 (NRAMP2)

SEQ ID NO: 348 is the determined cDNA sequence for a clone showing homology to Homo sapiens phosphoglucomutase-related protein (PGMRP)

SEQ ID NO: 349 is the determined cDNA sequence for a clone showing homology to Human mRNA for proteosome subunit p40

SEQ ID NO: 350 is the determined cDNA sequence for P777P

SEQ ID NO: 351 is the determined cDNA sequence for P779P

SEQ ID NO: 352 is the determined cDNA sequence for P790P

SEQ ID NO: 353 is the determined cDNA sequence for P784P

SEQ ID NO: 354 is the determined cDNA sequence for P776P

SEQ ID NO: 355 is the determined cDNA sequence for P780P

SEQ ID NO: 356 is the determined cDNA sequence for P544S

SEQ ID NO: 357 is the determined cDNA sequence for P745S

SEQ ID NO: 358 is the determined cDNA sequence for P782P

SEQ ID NO: 359 is the determined cDNA sequence for P783P

SEQ ID NO: 360 is the determined cDNA sequence for unknown 17984

SEQ ID NO: 361 is the determined cDNA sequence for P787P

SEQ ID NO: 362 is the determined cDNA sequence for P788P

SEQ ID NO: 363 is the determined cDNA sequence for unknown 17994

SEQ ID NO: 364 is the determined cDNA sequence for P781P

SEQ ID NO: 365 is the determined cDNA sequence for P785P

SEQ ID NO: 366-375 are the determined cDNA sequences for splice variants of B305D.

SEQ ID NO: 376 is the predicted amino acid sequence encoded by the sequence of SEQ ID

NO: 366.

SEQ ID NO: 377 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 372.

SEQ ID NO: 378 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 373.

SEQ ID NO: 379 is the predicted amino acid sequence encoded by the sequence of SEQ ID

NO: 374.

SEQ ID NO: 380 is the predicted amino acid sequence encoded by the sequence of SEQ 1D

NO: 375.

SEQ ID NO: 381 is the determined cDNA sequence for B716P.

SEQ ID NO: 382 is the determined full-length cDNA sequence for P711P.

SEQ ID NO: 383 is the predicted amino acid sequence for P711P.

SEQ ID NO: 384 is the cDNA sequence for P1000C.

SEQ ID NO: 385 is the cDNA sequence for CG1-82.

SEQ 1D NO:386 is the cDNA sequence for 23320.

SEQ ID NO:387 is the cDNA sequence for CGI-69.

SEQ 1D NO:388 is the cDNA sequence for L-iditol-2-dehydrogenase.

SEQ ID NO:389 is the cDNA sequence for 23379.

SEQ ID NO:390 is the cDNA sequence for 23381.

SEQ ID NO:391 is the cDNA sequence for KIAA0122.

SEQ ID NO:392 is the cDNA sequence for 23399.

SEQ ID NO:393 is the cDNA sequence for a previously identified gene.

SEQ ID NO:394 is the cDNA sequence for HCLBP.

SEQ ID NO:395 is the cDNA sequence for transglutaminase.

SEQ ID NO:396 is the cDNA sequence for a previously identified gene.

SEQ ID NO:397 is the cDNA sequence for PAP.

SEQ ID NO:398 is the cDNA sequence for Ets transcription factor PDEF.

SEQ ID NO:399 is the cDNA sequence for hTGR.

SEQ ID NO:400 is the cDNA sequence for KIAA0295.

SEQ ID NO:401 is the cDNA sequence for 22545.

SEQ ID NO:402 is the cDNA sequence for 22547.

SEQ 1D NO:403 is the cDNA sequence for 22548.

SEQ 1D NO:404 is the cDNA sequence for 22550.

SEQ ID NO:405 is the cDNA sequence for 22551.

SEQ ID NO:406 is the cDNA sequence for 22552.

SEQ ID NO:407 is the cDNA sequence for 22553.

SEQ ID NO:408 is the cDNA sequence for 22558.

SEQ ID NO:409 is the cDNA sequence for 22562.

SEQ 1D NO:410 is the cDNA sequence for 22565.

SEQ 1D NO:411 is the cDNA sequence for 22567.

SEQ ID NO:412 is the cDNA sequence for 22568.

SEQ 1D NO:413 is the cDNA sequence for 22570.

SEQ ID NO:414 is the cDNA sequence for 22571. SEQ ID NO:415 is the cDNA sequence for 22572. SEQ ID NO:416 is the cDNA sequence for 22573. SEQ ID NO:417 is the cDNA sequence for 22573. SEQ ID NO:418 is the cDNA sequence for 22575. SEQ 1D NO:419 is the cDNA sequence for 22580. SEQ ID NO:420 is the cDNA sequence for 22581. SEQ ID NO:421 is the cDNA sequence for 22582. SEQ ID NO:422 is the cDNA sequence for 22583. SEQ ID NO:423 is the cDNA sequence for 22584. SEQ 1D NO:424 is the cDNA sequence for 22585. SEQ ID NO:425 is the cDNA sequence for 22586. SEQ ID NO:426 is the cDNA sequence for 22587. SEQ ID NO:427 is the cDNA sequence for 22588. SEQ 1D NO:428 is the cDNA sequence for 22589. SEQ ID NO:429 is the cDNA sequence for 22590. SEQ ID NO:430 is the cDNA sequence for 22591. SEQ ID NO:431 is the cDNA sequence for 22592. SEQ ID NO:432 is the cDNA sequence for 22593. SEQ 1D NO:433 is the cDNA sequence for 22594. SEQ ID NO:434 is the cDNA sequence for 22595. SEQ ID NO:435 is the cDNA sequence for 22596. SEQ ID NO:436 is the cDNA sequence for 22847. SEQ ID NO:437 is the cDNA sequence for 22848. SEQ ID NO:438 is the cDNA sequence for 22849. SEQ ID NO:439 is the cDNA sequence for 22851. SEQ ID NO:440 is the cDNA sequence for 22852. SEQ ID NO:441 is the cDNA sequence for 22853. SEQ ID NO:442 is the cDNA sequence for 22854. SEQ ID NO:443 is the cDNA sequence for 22855. SEQ ID NO:444 is the cDNA sequence for 22856. SEQ ID NO:445 is the cDNA sequence for 22857. SEQ ID NO:446 is the cDNA sequence for 23601. SEQ ID NO:447 is the cDNA sequence for 23602. SEQ ID NO:448 is the cDNA sequence for 23605. SEQ 1D NO:449 is the cDNA sequence for 23606. SEQ ID NO:450 is the cDNA sequence for 23612.

SEQ ID NO:451 is the cDNA sequence for 23614.

SEQ ID NO:452 is the cDNA sequence for 23618.

SEQ ID NO:453 is the cDNA sequence for 23622.

SEQ ID NO:454 is the cDNA sequence for folate hydrolase.

SEQ ID NO:455 is the cDNA sequence for LIM protein.

SEQ ID NO:456 is the cDNA sequence for a known gene.

SEQ ID NO:457 is the cDNA sequence for a known gene.

SEQ ID NO:458 is the cDNA sequence for a previously identified gene.

SEQ ID NO:459 is the cDNA sequence for 23045.

SEQ ID NO:460 is the cDNA sequence for 23032.

SEQ ID NO:461 is the cDNA sequence for 23054.

SEQ ID NOs:462-467 are cDNA sequences for known genes.

SEQ ID NOs:468-471 are cDNA sequences for P710P.

SEQ ID NO:472 is a cDNA sequence for P1001C.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer. compositions described herein may include prostate tumor polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells). Polypeptides of the present invention generally comprise at least a portion (such as an immunogenic portion) of a prostate tumor protein or a variant thereof. A "prostate tumor protein" is-a protein that is expressed in prostate tumor cells at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in a normal tissue, as determined using a representative assay provided herein. Certain prostate tumor proteins are tumor proteins that react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera of a patient afflicted with prostate cancer. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of such a polypeptide, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or antigen-binding fragments thereof, that are capable of binding to a polypeptide as described above. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B-cells that express a polypeptide as described above. T cells that may be employed within such compositions are generally T cells that are specific for a polypeptide as described above.

The present invention is based on the discovery of human prostate tumor proteins. Sequences of polynucleotides encoding certain tumor proteins, or portions thereof, are provided in SEQ ID NOs:1-II1, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472. Sequences of polypeptides comprising at least a portion of a tumor protein are provided in SEQ ID NOs:112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380 and 383.

PROSTATE TUMOR PROTEIN POLYNUCLEOTIDES

Any polynucleotide that encodes a prostate tumor protein or a portion or other variant thereof as described herein is encompassed by the present invention. Preferred polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides and more preferably at least 45 consecutive nucleotides, that encode a portion of a prostate tumor protein. More preferably, a polynucleotide encodes an immunogenic portion of a prostate tumor protein. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native scquence (i.e., an endogenous sequence that encodes a prostate tumor protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native tumor protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native prostate tumor protein or a portion thereof.

Two polynucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50,

in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native prostate tumor protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to

the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Polynucleotides may be prepared using any of a variety of techniques. For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (i.e., expression that is at least five fold greater in a prostate tumor than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as prostate tumor cells. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a prostate tumor cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ³²P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using

standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR (Parker et al., Nucl. Acids. Res. 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.

Certain nucleic acid sequences of cDNA molecules encoding at least a portion of a prostate tumor protein are provided in SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472. Isolation of these

polynucleotides is described below. Each of these prostate tumor proteins was overexpressed in prostate tumor tissue.

Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., DNA 2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding a prostate tumor protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated in vivo (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a prostate tumor polypeptide, and administering the transfected cells to the patient).

A portion of a sequence complementary to a coding sequence (i.e., an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a tumor protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., In Huber and Carr, Molecular and Immunologic Approaches, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.

A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.

Any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such

as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.

Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a genc for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle *in vitro* and *in vivo* is a liposome (*i.e.*, an artificial membrane vesicle). The preparation and use of such systems is well known in the art.

PROSTATE TUMOR POLYPEPTIDES

Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of a prostate tumor protein or a variant thereof, as described herein. As noted above, a "prostate tumor protein" is a protein that is expressed by prostate tumor cells. Proteins that are prostate tumor proteins also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with prostate cancer. Polypeptides as described herein may be of any length. Additional sequences derived from

the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.

An "immunogenic portion," as used herein is a portion of a protein that is recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a prostate tumor protein or a variant thereof. Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (i.e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native prostate tumor protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antihodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, 125I-labeled Protein A.

As noted above, a composition may comprise a variant of a native prostate tumor protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native prostate tumor protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein.

Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described above) to the identified polypeptides.

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are

E. coli, yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known tumor protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.

Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into

the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).

Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as

amidase LYTA (encoded by the LytA gene; Gene 43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of E. coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see Biotechnology 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

BINDING AGENTS

The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a prostate tumor protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a prostate tumor protein if it reacts at a detectable level (within, for example, an ELISA) with a prostate tumor protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known in the art.

Binding agents may be further capable of differentiating between patients with and without a cancer, such as prostate cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a prostate tumor protein will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, urine and/or tumor biopsies) from

patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be clicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient

time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.

Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹³⁶Re, ¹³⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and

thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

T CELLS

Immunotherapeutic compositions may also, or alternatively, comprise T cells specific for a prostate tumor protein. Such cells may generally be prepared in vitro or ex vivo, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the CEPRATETM system, available from CellPro Inc., Bothell WA (see also U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

T cells may be stimulated with a prostate tumor polypeptide, polynucleotide encoding a prostate tumor polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide. Preferably, a prostate tumor polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

T cells are considered to be specific for a prostate tumor polypeptide if the T cells kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Res. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a prostate tumor polypeptide (100 ng/ml - 100 μ g/ml, preferably 200 ng/ml - 25 μ g/ml) for 3 - 7 days should result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine rclease (e.g., TNF or IFN-γ) is indicative of T cell activation (see Coligan et al., Current Protocols in Immunology, vol. 1, Wiley Interscience

(Greene 1998)). T cells that have been activated in response to a prostate tumor polypeptide, polynucleotide or polypeptide-expressing APC may be CD4⁻ and/or CD8⁺. Prostate tumor protein-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from either a patient or a related, or unrelated, donor and are administered to the patient following stimulation and expansion.

For therapeutic purposes, CD4⁺ or CD8⁺ T cells that proliferate in response to a prostate tumor polypeptide, polynucleotide or APC can be expanded in number either in vitro or in vivo. Proliferation of such T cells in vitro may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a prostate tumor polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a prostate tumor polypeptide. Alternatively, one or more T cells that proliferate in the presence of a prostate tumor protein can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

PHARMACEUTICAL COMPOSITIONS AND VACCINES

Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (i.e., vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and a non-specific immune response enhancer. A non-specific immune response enhancer may be any substance that enhances an immune response to an exogenous antigen. Examples of non-specific immune response enhancers include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; see e.g., Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998,

and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., Proc. Natl. Acad. Sci. USA 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., Proc. Natl. Acad. Sci. USA 91:215-219, 1994; Kass-Eisler et al., Proc. Natl. Acad. Sci. USA 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and/or

preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycohacterium tuberculosis derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Mcrck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-γ, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6, IL-10 and TNF-β) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, MT; see US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is

quenched with cholcstcrol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.

The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule or sponge that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, Nature 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, Ann. Rev. Med. 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro) and based on the lack of differentiation markers of B cells (CD19 and CD20), T cells (CD3), monocytes (CD14) and natural killer cells (CD56), as determined using standard assays. Dendritic cells may, of course, be engineered to express specific cell-

surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called cxosomes) may be used within a vaccine (see Zitvogel et al., Nature Med. 4:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcy receptor, mannose receptor and DEC-205 marker. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80 and CD86).

APCs may generally be transfected with a polynucleotide encoding a prostate tumor protein (or portion or other variant thereof) such that the prostate tumor polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ex vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., Immunology and cell Biology 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the prostate tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that

provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

CANCER THERAPY

In further aspects of the present invention, the compositions described herein may be used for immunotherapy of cancer, such as prostate cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. A cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.

Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).

Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8* cytotoxic T lymphocytes and CD4* T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth *in vitro*, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. Such *in vitro* culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein

may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigen-presenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term *in vivo*. Studies have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., Immunological Reviews 157:177, 1997).

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated ex vivo for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.

Routes and frequency of administration of the therapeutic compositions disclosed herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to nonvaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 100 µg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such

a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a prostate tumor protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

METHODS FOR DETECTING CANCER

In general, a cancer may be detected in a patient based on the presence of one or more prostate tumor proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as prostate cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer. In general, a prostate tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lanc, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding

agent. Suitable polypeptides for use within such assays include full length prostate tumor proteins and portions thereof to which the binding agent binds, as described above.

The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of a cancer, such as prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred

embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use prostate tumor polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such prostate tumor protein specific antibodies may correlate with the presence of a cancer.

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a prostate tumor protein in a biological sample. Within certain methods, a biological sample comprising CD4⁺ and/or CD8⁺ T cells isolated from a patient is incubated with a prostate tumor polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37°C with prostate tumor polypeptide (e.g., 5 - 25 µg/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of prostate tumor polypeptide to serve as a control. For CD4⁺ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8* T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a prostate tumor protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a prostate tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the prostate tumor protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a prostate tumor protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a prostate tumor protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers

comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375 and 381. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

In another embodiment, the disclosed compositions may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

Ccrtain in vivo diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

As noted above, to improve sensitivity, multiple prostate tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

DIAGNOSTIC KITS

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a prostate tumor protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a prostate tumor protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a prostate tumor protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a prostate tumor protein.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES

This Example describes the isolation of certain prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A' RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A' RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the Notl/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with Notl. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA), the cDNA was ligated into the EcoRI/Notl site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor library contained 1.64 x 10⁷ independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3 x 10⁶ independent colonies, with 69% of clones having inserts and the average insert size being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara et al. (Blood, 84:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 µg) was digested with EcoRI, Notl, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 µl of

 H_2O , heat-denatured and mixed with 100 μ l (100 μ g) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 μ l) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μ l H_2O to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHl and Xhol, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μl H₂O. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μl H₂O, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/Xhol site of chloramphenicol resistant pBCSK* (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library (referred to as "prostate subtraction 1").

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID NO: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human

autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1-12. This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108.

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II. Specifically, 1 µg each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and L1-14 are provided in SEQ ID NOS: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID NOS: 30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID NOS: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID NO:33) was determined to have some homology to R. norvegicus mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA library with spike, four (JI-16, K1-55, L1-6 and N1-1864; SEQ ID NOS:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID NOS: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID NOS: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID NOS: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted

amino acid sequences are provided in SEQ ID NOS: 112-114. L1-12 is also referred to as P501S.

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (referred to as "prostate subtraction 2"). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (referred to as "prostate subtraction spike 2") was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190, respectively.

Additional studies with prostate subtraction spike 2 resulted in the isolation of three more clones. Their sequences were determined as described above and compared to the most recent GenBank. All three clones were found to have homology to known genes, which are Cysteine-rich protein, KIAA0242, and KIAA0280 (SEQ ID NO: 317, 319, and 320, respectively). Further analysis of these clones by Synteni microarray (Synteni, Palo Alto, CA) demonstrated that all three clones were over-expressed in most prostate tumors and

prostate BPH, as well as in the majority of normal prostate tissues tested, but low expression in all other normal tissues.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (referred to as "prostate subtraction 3"). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the genc bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ 1D NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4283, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.

cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two clones (referred to as P509S and P510S) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEQ ID NO: 223 and 224, respectively. Comparison of these scquences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

Additional, studies led to the isolation of the full-length cDNA sequence for P509S. This sequence is provided in SEQ ID NO: 332, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 339.

EXAMPLE 2 DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE TUMOR POLYPEPTIDES

Using gene specific primers, mRNA expression levels for the representative prostate tumor polypeptides F1-16, H1-1, J1-17 (also referred to as P502S), L1-12 (also referred to as P501S), F1-12 (also referred to as P504S) and N1-1862 (also referred to as P503S) were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 μ g of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 °C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, β -actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β -actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β -actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 (P502S) and L1-12 (P501S) appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues examined. N1-1862 (P503S) was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that

F1-16, H1-1, J1-17 (P502S), N1-1862 (P503S) and L1-12 (P501S) are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 (P504S) is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 (P501S) is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 (P502S) was detected in two prostate tumors and not in the other tissues tested. N1-1862 (P503S) was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 (P504S) was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The microarray technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 (P501S) was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 (P504S) were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 (P503S) was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal spinal cord, and to be undetectable in all other tissues tested.

Further microarray analysis to specifically address the extent to which P501S (SEQ ID NO: 110) was expressed in breast tumor revealed moderate over-expression not only in breast tumor, but also in metastatic breast tumor (2/31), with negligible to low expression

in normal tissues. This data suggests that P501S may be over-expressed in various breast tumors as well as in prostate tumors.

The expression levels of 32 ESTs (expressed sequence tags) described by Vasmatzis et al. (Proc. Natl. Acad. Sci. USA 95:300-304, 1998) in a variety of tumor and normal tissues were examined by microarray technology as described above. Two of these clones (referred to as P1000C and P1001C) were found to be over-expressed in prostate tumor and normal prostate, and expressed at low to undetectable levels in all other tissues tested (normal aorta, thymus, resting and activated PBMC, epithelial cells, spinal cord, adrenal gland, fetal tissues, skin, salivary gland, large intestine, bone marrow, liver, lung, dendritic cells, stomach, lymph nodes, brain, heart, small intestine, skeletal muscle, colon and kidney. The determined cDNA sequences for P1000C and P1001C are provided in SEQ ID NO: 384 and 472, respectively. The sequence of P1001C was found to show some homology to the previously isolated Human mRNA for JM27 protein. No significant homologies were found to the sequence of P1000C.

The expression of the polypeptide encoded by the full length cDNA sequence for F1-12 (also referred to as P504S; SEQ ID NO: 108) was investigated by immunohistochemical analysis. Rabbit-anti-P504S polyclonal antibodies were generated against the full length P504S protein by standard techniques. Subsequent isolation and characterization of the polyclonal antibodies were also performed by techniques well known in the art. Immunohistochemical analysis showed that the P504S polypeptide was expressed in 100% of prostate carcinoma samples tested (n=5).

The rabbit-anti-P504S polyclonal antibody did not appear to label benign prostate cells with the same cytoplasmic granular staining, but rather with light nuclear staining. Analysis of normal-tissues revealed that the encoded polypeptide was found to be expressed in some, but not all normal human tissues. Positive cytoplasmic staining with rabbit-anti-P504S polyclonal antibody was found in normal human kidney, liver, brain, colon and lung-associated macrophages, whereas heart and bone marrow were negative.

This data indicates that the P504S polypeptide is present in prostate cancer tissues, and that there are qualitative and quantitative differences in the staining between benign prostatic hyperplasia tissues and prostate cancer tissues, suggesting that this polypeptide may be detected selectively in prostate tumors and therefore be useful in the diagnosis of prostate cancer.

EXAMPLE 3

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES
BY PCR-BASED SUBTRACTION

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' E. coli (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79 and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO: 41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO: 46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. Larger cDNA clones containing the P20 sequence represent splice variants of a gene referred to as P703P. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The determined cDNA sequence for an extended spliced form of P703 is provided in SEQ ID NO: 225. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated

and non-activated PBMC was determined by RT-PCR as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20, a portion of the P703P gene, was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to the majority of normal tissues. substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

Further studies resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, 9-f12 and 9-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, 9-f12 and 9-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequence of 9-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and 9-f12 were found to show some homology to previously identified genes. Further characterization of 7-G6 and 8-G3 showed identity to the known genes PAP and PSA, respectively.

mRNA expression levels for these clones were determined using the micro-array technology described above. The clones 7-G6, 8-G3, 8-B5, 8-B6, 8-D4, 8-D9, 9-F3, 9-F12, 9-H3, 10-A2, 10-A4, 11-C9 and 11-F2 were found to be over-expressed in prostate tumor and normal prostate, with expression in other tissues tested being low or undetectable.

Increased expression of 8-F11 was seen in prostate tumor and normal prostate, bladder, skeletal muscle and colon. Increased expression of 10-H10 was seen in prostate tumor and normal prostate, bladder, lung, colon, brain and large intestine. Increased expression of 9-B1 was seen in prostate tumor, breast tumor, and normal prostate, salivary gland, large intestine and skin, with increased expression of 11-C8 being seen in prostate tumor, and normal prostate and large intestine.

An additional cDNA fragment derived from the PCR-based normal prostate subtraction, described above, was found to be prostate specific by both micro-array technology and RT-PCR. The determined cDNA sequence of this clone (referred to as 9-A11) is provided in SEQ ID NO: 226. Comparison of this sequence with those in the public databases revealed 99% identity to the known gene HOXB13.

Further studies led to the isolation of the clones 8-C6 and 8-H7. The determined cDNA sequences for these clones are provided in SEQ ID NO: 227 and 228, respectively. These sequences were found to show some homology to previously isolated ESTs.

PCR and hybridization-based methodologies were employed to obtain longer cDNA sequences for clone P20 (also referred to as P703P), yielding three additional cDNA fragments that progressively extend the 5' end of the gene. These fragments, referred to as P703PDE5, P703P6.26, and P703PX-23 (SEQ ID NO: 326, 328 and 330, with the predicted corresponding amino acid sequences being provided in SEQ ID NO: 327, 329 and 331, respectively) contain additional 5' sequence. P703PDE5 was recovered by screening of a cDNA library (#141-26) with a portion of P703P as a probe. P703P6.26 was recovered from a mixture of three prostate tumor cDNAs and P703PX 23 was recovered from cDNA library (#438-48). Together, the additional sequences include all of the putative mature serine protease along with part of the putative signal sequence. Further studies using a PCR-based subtraction library of a prostate tumor pool subtracted against a pool of normal tissues (referred to as JP: PCR subtraction) resulted in the isolation of thirteen additional clones, seven of which did not share any significant homology to known GenBank sequences. The determined cDNA sequences for these seven clones (P711P, P712P, novel 23, P774P, P775P, P710P and P768P) are provided in SEQ ID NO: 307-311, 313 and 315, respectively. The remaining six clones (SEQ ID NO: 316 and 321-325) were shown to share some homology to known genes. By microarray analysis, all thirteen clones showed three or more fold overexpression in prostate tissues, including prostate tumors, BPH and normal prostate as compared to normal non-prostate tissues. Clones P711P, P712P, novel 23 and P768P showed over-expression in most prostate tumors and BPH tissues tested (n=29), and in the majority of normal prostate tissues (n=4), but background to low expression levels in all normal tissues.

Clones P774P, P775P and P710P showed comparatively lower expression and expression in fewer prostate tumors and BPH samples, with negative to low expression in normal prostate.

The full-length cDNA for P711P was obtained by employing the partial sequence of SEQ ID NO: 307 to screen a prostate cDNA library. Specifically, a directionally cloned prostate cDNA library was prepared using standard techniques. One million colonies of this library were plated onto LB/Amp plates. Nylon membrane filters were used to lift these colonies, and the cDNAs which were picked up by these filters were denatured and cross-linked to the filters by UV light. The P711P cDNA fragment of SEQ ID NO: 307 was radio-labeled and used to hybridize with these filters. Positive clones were selected, and cDNAs were prepared and sequenced using an automatic Perkin Elmer/Applied Biosystems sequencer. The determined full-length sequence of P711P is provided in SEQ ID NO: 382, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 383.

Using PCR and hybridization-based methodologies, additional cDNA sequence information was derived for two clones described above, 11-C9 and 9-F3, herein after referred to as P707P and P714P, respectively (SEQ ID NO: 333 and 334). After comparison with the most recent GenBank, P707P was found to be a splice variant of the known gene HoxB13. In contrast, no significant homologies to P714P were found.

Clones 8-B3, P89, P98, P130 and P201 (as disclosed in U.S. Patent Application No. 09/020,956, filed February 9, 1998) were found to be contained within one contiguous sequence, referred to as P705P (SEQ ID NO: 335, with the predicted amino acid sequence provided in SEQ ID NO: 336), which was determined to be a splice variant of the known gene NKX 3.1.

EXAMPLE 4 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following

lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

EXAMPLE 5

FURTHER ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION

A cDNA library generated from prostate primary tumor mRNA as described above was subtracted with cDNA from normal prostate. The subtraction was performed using a PCR-based protocol (Clontech), which was modified to generate larger fragments. Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that recognize six-nucleotide restriction sites (MluI, MscI, PvuII, SalI and StuI). This digestion resulted in an average cDNA size of 600 bp, rather than the average size of 300 bp that results from digestion with RsaI according to the Clontech protocol. This modification did not affect the subtraction efficiency. Two tester populations were then created with different adapters, and the driver library remained without adapters.

The tester and driver libraries were then hybridized using excess driver cDNA. In the first hybridization step, driver was separately hybridized with each of the two tester cDNA populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in which tester cDNA with one adapter hybridized to tester cDNA with the second adapter. Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with adaptor-specific primers.

The ends were then filled in, and PCR amplification was performed using adaptor-specific primers. Only population (e), which contained tester cDNA that did not hybridize to driver cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich differentially expressed sequences.

This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are overexpressed in prostate tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.

In addition to genes known to be overexpressed in prostate tumor, seventy-seven further clones were identified. Sequences of these partial cDNAs are provided in SEQ ID NO: 29 to 305. Most of these clones had no significant homology to database sequences. Exceptions were JPTPN23 (SEQ ID NO: 231; similarity to pig valosin-containing protein), JPTPN30 (SEQ ID NO: 234; similarity to rat mRNA for proteasome subunit), JPTPN45 (SEQ ID NO: 243; similarity to rat norvegicus cytosolic NADP-dependent isocitrate dehydrogenase), JPTPN46 (SEQ ID NO: 244; similarity to human subclone H8 4 d4 DNA sequence), JP1D6 (SEQ ID NO: 265; similarity to G. gallus dynein light chain-A), JP8D6 (SEQ ID NO: 288; similarity to human BAC clone RG016J04), JP8F5 (SEQ ID NO: 289; similarity to human subclone H8 3 b5 DNA sequence), and JP8E9 (SEQ ID NO: 299; similarity to human Alu sequence).

Additional studies using the PCR-based subtraction library consisting of a prostate tumor pool subtracted against a normal prostate pool (referred to as PT-PN PCR subtraction) yielded three additional clones. Comparison of the cDNA sequences of these clones with the most recent release of GenBank revealed no significant homologies to the two clones referred to as P715P and P767P (SEQ ID NO: 312 and 314). The remaining clone was found to show some homology to the known gene KIAA0056 (SEQ ID NO: 318). Using microarray analysis to measure mRNA expression levels in various tissues, all three clones were found to be over-expressed in prostate tumors and BPH tissues. Specifically, clone P715P was over-expressed in most prostate tumors and BPH tissues by a factor of three or greater, with elevated expression seen in the majority of normal prostate samples and in fetal tissue, but negative to low expression in all other normal tissues. Clone P767P was over-expressed in several prostate tumors and BPH tissues, with moderate expression levels in half of the normal prostate samples, and background to low expression in all other normal tissues tested.

Further analysis, by microarray as described above, of the PT-PN PCR subtraction library and of a DNA subtraction library containing cDNA from prostate tumor subtracted with a pool of normal tissue cDNAs, led to the isolation of 27 additional clones (SEQ ID NO: 340-365 and 381) which were determined to be over-expressed in prostate tumor. The clones of SEQ ID NO: 341, 342, 345, 347, 348, 349, 351, 355-359, 361, 362 and 364 were also found to be expressed in normal prostate. Expression of all 26 clones in a variety of normal tissues was found to be low or undetectable, with the exception of P544S (SEQ ID NO: 356) which was found to be expressed in small intestine. Of the 26 clones, 10 (SEQ ID NO: 340-349) were found to show some homology to previously identified sequences. No significant homologies were found to the clones of SEQ ID NO: 350-365.

EXAMPLE 6 PEPTIDE PRIMING OF MICE AND PROPAGATION OF CTL LINES

6.1. This Example illustrates the preparation of a CTL cell line specific for cells expressing the P502S gene.

Mice expressing the transgenc for human HLA A2.1 (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with P2S#12 peptide (VLGWVAEL; SEQ ID NO: 306), which is derived from the P502S gene (also referred to herein as J1-17, SEQ ID NO: 8), as described by Theobald et al., Proc. Natl. Acad. Sci. USA 92:11993-11997, 1995 with the following modifications. Mice were immunized with 100µg of P2S#12 and 120µg of an I-Ab binding peptide derived from hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and using a nylon mesh single cell suspensions prepared. Cells were then resuspended at 6 x 106 cells/ml in complete media (RPMI-1640; Gibco BRL, Gaithersburg, MD) containing 10% FCS, 2mM Glutamine (Gibco BRL), sodium pyruvate (Gibco BRL), non-essential amino acids (Gibco BRL), 2 x 10.5 M 2-mercaptoethanol, 50U/ml penicillin and streptomycin, and cultured in the presence of irradiated (3000 rads) P2S#12-pulsed (5mg/ml P2S#12 and 10mg/ml β2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of $7\mu g/ml$ dextran sulfate and $25\mu g/ml$ LPS for 3 days). Six days later, cells (5 x 105/ml) were restimulated with 2.5 x 106/ml peptide pulsed irradiated (20,000 rads) EL4A2Kb cells (Sherman et al, Science 258:815-818, 1992) and 3 x 106/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20U/ml IL-2. Cells continued to be restimulated on a weekly basis as described, in preparation for cloning the line.

P2S#12 line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10^4 cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10^5 cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were

restimulated as before. On day 21, clones that were growing were isolated and maintained in culture. Several of these clones demonstrated significantly higher reactivity (lysis) against human fibroblasts (HLA A2.1 expressing) transduced with P502S than against control fibroblasts. An example is presented in Figure 1.

This data indicates that P2S #12 represents a naturally processed epitope of the P502S protein that is expressed in the context of the human HLA A2.1 molecule.

6.2. This Example illustrates the preparation of murine CTL lines and CTL clones specific for cells expressing the P501S gene.

This series of experiments were performed similarly to that described above. Mice were immunized with the P1S#10 peptide (SEQ ID NO: 337), which is derived from the P501S gene (also referred to herein as L1-12, SEQ 1D NO: 110). The P1S#10 peptide was derived by analysis of the predicted polypeptide sequence for P501S for potential HLA-A2 binding sequences as defined by published HLA-A2 binding motifs (Parker, KC, et al, J. Immunol., 152:163, 1994). P1S#10 peptide was synthesized as described in Example 4, and empirically tested for HLA-A2 binding using a T cell based competition assay. Predicted A2 binding peptides were tested for their ability to compete HLA-A2 specific peptide presentation to an HLA-A2 restricted CTL clone (D150M58), which is specific for the HLA-A2 binding influenza matrix peptide fluM58. D150M58 CTL secretes TNF in response to self-presentation of peptide fluM58. In the competition assay, test peptides at 100-200 $\mu g/ml$ were added to cultures of D150M58 CTL in order to bind HLA-A2 on the CTL. After thirty minutes, CTL cultured with test peptides, or control peptides, were tested for their antigen dose response to the fluM58 peptide in a standard TNF bioassay. As shown in Figure 3, peptide P1S#10 competes HLA-A2 restricted presentation of fluM58, demonstrating that peptide P1S#10 binds HLA-A2.

Mice expressing the transgene for human HLA A2.1 were immunized as described by Theobald et al. (*Proc. Natl. Acad. Sci. USA 92*:11993-11997, 1995) with the following modifications. Mice were immunized with 62.5μg of P1S #10 and 120μg of an I-A^b binding peptide derived from Hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and single cell suspensions prepared using a nylon mesh. Cells were then resuspended at 6 x 10⁶ cells/ml in complete media (as described above) and cultured in the presence of irradiated (3000 rads) P1S#10-pulsed (2μ g/ml P1S#10 and 10mg/ml β2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7μg/ml dextran sulfate and 25μg/ml LPS for 3 days). Six days later cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide-pulsed irradiated (20,000 rads) EL4A2Kb cells, as described above, and 3 x 10⁶/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20 U/ml IL-2. Cells were restimulated on a weekly

basis in preparation for cloning. After three rounds of *in vitro* stimulations, one line was generated that recognized P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat targets as shown in Figure 4.

A P1S#10-specific CTL line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10⁴ cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10⁵ cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, viable clones were isolated and maintained in culture. As shown in Figure 5, five of these clones demonstrated specific cytolytic reactivity against P501S-transduced Jurkat A2Kb targets. This data indicates that P1S#10 represents a naturally processed epitope of the P501S protein that is expressed in the context of the human HLA-A2.1 molecule.

EXAMPLE 7 ABILITY OF HUMAN T CELLS TO RECOGNIZE PROSTATE TUMOR POLYPEPTIDES

This Example illustrates the ability of T cells specific for a prostate tumor polypeptide to recognize human tumor.

Human CD8⁺ T cells were primed in vitro to the P2S-12 peptide (SEQ ID NO: 306) derived from P502S (also referred to as J1-17) using dendritic cells according to the protocol of Van Tsai et al. (Critical Reviews in Immunology 18:65-75, 1998). The resulting CD8+ T cell microcultures were tested for their ability to recognize the P2S-12 peptide presented by autologous fibroblasts or fibroblasts which were transduced to express the P502S gene in a y-interferon ELISPOT assay (see Lalvani et al., J. Exp. Med. 186:859-865, 1997). Briefly, titrating numbers of T cells were assayed in duplicate on 104 fibroblasts in the presence of 3 μ g/ml human β_2 -microglobulin and 1 μ g/ml P2S-12 peptide or control E75 peptide. In addition, T cells were simultaneously assayed on autologous fibroblasts transduced with the P502S gene or as a control, fibroblasts transduced with HER-2/neu. Prior to the assay, the fibroblasts were treated with 10 ng/ml y-interferon for 48 hours to upregulate class 1 MHC expression. One of the microcultures (#5) demonstrated strong recognition of both peptide pulsed fibroblasts as well as transduced fibroblasts in a y-interferon ELISPOT assay. Figure 2A demonstrates that there was a strong increase in the number of γ -interferon spots with increasing numbers of T cells on fibroblasts pulsed with the P2S-12 peptide (solid bars) but not with the control E75 peptide (open bars). This shows the ability of these T cells to specifically recognize the P2S-12 peptide. As shown in Figure 2B, this microculture also demonstrated an increase in the number of y-interferon spots with increasing numbers of T

cells on fibroblasts transduced to express the P502S gene but not the HER-2/neu gene. These results provide additional confirmatory evidence that the P2S-I2 peptide is a naturally processed epitope of the P502S protein. Furthermore, this also demonstrates that there exists in the human T cell repertoire, high affinity T cells which are capable of recognizing this epitope. These T cells should also be capable of recognizing human tumors which express the P502S gene.

EXAMPLE 8 PRIMING OF CTL IN VIVO USING NAKED DNA IMMUNIZATION WITH A PROSTATE ANTIGEN

The prostate tumor antigen L1-12, as described above, is also referred to as P501S. HLA A2Kb Tg mice (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with 100 µg VR10132-P501S either intramuscularly or intradermally. The mice were immunized three times, with a two week interval between immunizations. Two weeks after the last immunization, immune spleen cells were cultured with Jurkat A2Kb-P501S transduced stimulator cells. CTL lines were stimulated weekly. After two weeks of *in vitro* stimulation, CTL activity was assessed against P501S transduced targets. Two out of 8 mice developed strong anti-P501S CTL responses. These results demonstrate that P501S contains at least one naturally processed A2-restricted CTL epitope.

EXAMPLE 9

GENERATION OF HUMAN CTL *IN VITRO* USING WHOLE GENE PRIMING AND STIMULATION TECHNIQUES WITH PROSTATE TUMOR ANTIGEN

Using *in vitro* whole-gene priming with P501S-retrovirally transduced autologous fibroblasts (see, for example, Yee et al, *The Journal of Immunology*, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with P501S (also known as L1-12), as determined by interferon-γ ELISPOT analysis as described above. Using a panel of HLA-mismatched fibroblast lines transduced with P501S, these CTL lines were shown to be restricted HLA-A2 class I allele. Specifically, dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by growing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, DC were infected overnight with recombinant P501S vaccinia virus at a multiplicity of infection (M.O.I) of five, and matured overnight by the addition of 3 μg/ml CD40 ligand. Virus was inactivated by UV irradiation. CD8+ T cells were isolated using a magnetic bead system, and

priming cultures were initiated using standard culture techniques. Cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with P501S. Following four stimulation cycles, CD8+ T cell lines were identified that specifically produced interferon- γ when stimulated with P501S-transduced autologous fibroblasts. The P501S-specific activity could be sustained by the continued stimulation of the cultures with P501S-transduced fibroblasts in the presence of IL-15. A panel of HLA-mismatched fibroblast lines transduced with P501S were generated to define the restriction allele of the response. By measuring interferon- γ in an ELISPOT assay, the P501S specific response was shown to be restricted by HLA-A2. These results demonstrate that a CD8+ CTL response to P501S can be elicited.

EXAMPLE 10 IDENTIFICATION OF A NATURALLY PROCESSED CTL EPITOPE CONTAINED WITHIN A PROSTATE TUMOR ANTIGEN

The 9-mer peptide p5 (SEQ ID NO: 338) was derived from the P703P antigen (also referred to as P20). The p5 peptide is immunogenic in human HLA-A2 donors and is a naturally processed epitope. Antigen specific CD8+ T cells can be primed following repeated *in vitro* stimulations with monocytes pulsed with p5 peptide. These CTL specifically recognize p5-pulsed target cells in both ELISPOT (as described above) and chromium release assays. Additionally, immunization of HLA-A2 transgenic mice with p5 leads to the generation of CTL lines which recognize a variety of P703P transduced target cells expressing either HLA-A2Kb or HLA-A2. Specifically, HLA-A2 transgenic mice were immunized subcutaneously in the footpad with 100 µg of p5 peptide together with 140 µg of hepatitis B virus core peptide (a Th peptide) in Freund's incomplete adjuvant. Three weeks post immunization, spleen cells from immunized mice were stimulated *in vitro* with peptide-pulsed LPS blasts. CTL activity was assessed by chromium release assay five days after primary *in vitro* stimulation. Retrovirally transduced cells expressing the control antigen P703P and HLA-A2Kb were used as targets. CTL lines that specifically recognized both p5-pulsed targets as well as P703P-expressing targets were identified.

Human in vitro priming experiments demonstrated that the p5 peptide is immunogenic in humans. Dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by culturing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, the DC were pulsed with p5 peptide and cultured with GM-CSF and IL-4 together with CD8+ T cell enriched PBMC. CTL lines were restimulated on a weekly basis

with p5-pulsed monocytes. Five to six weeks after initiation of the CTL cultures, CTL recognition of p5-pulsed target cells was demonstrated.

EXAMPLE 11 EXPRESSION OF A BREAST TUMOR-DERIVED ANTIGEN IN PROSTATE

Isolation of the antigen B305D from breast tumor by differential display is described in US Patent Application No. 08/700,014, filed August 20, 1996. Several different splice forms of this antigen were isolated. The determined cDNA sequences for these splice forms are provided in SEQ ID NO: 366-375, with the predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292, 298 and 301-303 being provided in SEQ ID NO: 299-306, respectively.

The expression levels of B305D in a variety of tumor and normal tissues were examined by real time PCR and by Northern analysis. The results indicated that B305D is highly expressed in breast tumor, prostate tumor, normal prostate tumor and normal testes, with expression being low or undetectable in all other tissues examined (colon tumor, lung tumor, ovary tumor, and normal bone marrow, colon, kidney, liver, lung, ovary, skin, small intestine, stomach).

EXAMPLE 12 ELICITATION OF PROSTATE TUMOR ANTIGEN-SPECIFIC CTL RESPONSES IN HUMAN BLOOD

This Example illustrates the ability of a prostate tumor antigen to elicit a CTL response in blood of normal humans.

Autologous dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal donors by growth for five days in RPMI medium containing 10% human serum, 50 ng/ml GMCSF and 30 ng/ml IL-4. Following culture, DC were infected overnight with recombinant P501S-expressing vaccinia virus at an M.O.I. of 5 and matured for 8 hours by the addition of 2 micrograms/ml CD40 ligand. Virus was inactivated by UV irradiation, CD8⁺ cells were isolated by positive selection using magnetic beads, and priming cultures were initiated in 24-well plates. Following five stimulation cycles, CD8+ lines were identified that specifically produced interferon-gamma when stimulated with autologous P501S-transduced fibroblasts. The P501S-specific activity of cell line 3A-1 could be maintained following additional stimulation cycles on autologous B-LCL transduced with P501S. Line 3A-1 was shown to specifically recognize autologous B-LCL transduced to

express P501S, but not EGFP-transduced autologous B-LCL, as measured by cytotoxity assays (⁵¹Cr release) and interferon-gamma production (Interferon-gamma Elispot; see above and Lalvani et al., J. Exp. Med. 186:859-865, 1997). The results of these assays are presented in Figures 6A and 6B.

EXAMPLE 13 IDENTIFICATION OF PROSTATE TUMOR ANTIGENS BY MICROARRAY ANALYSIS

This Example describes the isolation of certain prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 372 clones were identified, and 319 were successfully sequenced. Table I presents a summary of these clones, which are shown in SEQ ID NOs:385-400. Of these sequences SEQ ID NOs:386, 389, 390 and 392 correspond to novel genes, and SEQ ID NOs: 393 and 396 correspond to previously identified sequences. The others (SEQ ID NOs:385, 387, 388, 391, 394, 395 and 397-400) correspond to known sequences, as shown in Table I.

69
Table I
Summary of Prostate Tumor Antigens

Known Genes	Previously identified Genes	
		Genes
T-cell gamma chain	P504S	23379 (SEQ
		ID NO:389)
Kallikrein	P1000C	23399 (SEQ
		ID NO:392)
Vector	P501S	22220 (8550
	. 50.10	23320 (SEQ ID NO:386)
		1D NO.386)
CGI-82 protein mRNA (23319; SEQ ID	P503S	23381 (SEQ
NO:385)		ID NO:390)
PSA	P510S	
Ald. 6 Dehyd.	P784P	
L-iditol-2 dehydrogenase (23376; SEQ ID NO:388)	P502S	
Ets transcription factor PDEF (22672; SEQ ID NO:398)	P706P	
hTGR (22678; SEQ ID NO:399)	19142.2, bangur.seq (22621; SEQ ID NO:396)	
KIAA0295(22685; SEQ ID NO:400)	5566.1 Wang(23404; SEQ ID NO:393)	
Prostatic Acid Phosphatase(22655; SEQ ID NO:397)	P712P	

transglutaminase (22611; SEQ ID NO:395)	P778P	
HDLBP (23508; SEQ ID NO:394)		
CG1-69 Protein(23367; SEQ ID NO:387)		
KIAA0122(23383; SEQ ID NO:391)		
TEEG		

CGI-82 showed 4.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 43% of prostate tumors, 25% normal prostate, not detected in other normal tissues tested. L-iditol-2 dehydrogenase showed 4.94 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 90% of prostate tumors, 100% of normal prostate, and not detected in other normal tissues tested. Ets transcription factor PDEF showed 5.55 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% prostate tumors, 25% normal prostate and not detected in other normal tissues tested. hTGR1 showed 9.11 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 63% of prostate tumors and is not detected in normal tissues tested including normal prostate. KIAA0295 showed 5.59 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% of prostate tumors, low to undetectable in normal tissues tested including normal prostate tissues. Prostatic acid phosphatase showed 9.14 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 67% of prostate tumors, 50% of normal prostate, and not detected in other normal tissues tested. Transglutaminase showed 14.84 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 30% of prostate tumors, 50% of normal prostate, and is not detected in other normal tissues tested. High density lipoprotein binding protein (HDLBP) showed 28.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% of normal prostate, and is undetectable in all other normal tissues tested. CGI-69 showed 3.56 fold over-expression in prostate tissues as compared to other normal tissues tested. It is a low abundant gene, detected in more than 90% of prostate tumors, and in 75% normal prostate tissues. The expression of this gene in normal tissues was very low. KIAA0122 showed 4.24 fold over-expression in prostate

tissues as compared to other normal tissues tested. It was over-expressed in 57% of prostate tumors, it was undetectable in all normal tissues tested including normal prostate tissues. 19142.2 bangur showed 23.25 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors and 100% of normal prostate. It was undetectable in other normal tissues tested. 5566.1 Wang showed 3.31 fold over-expression in prostate tissues as compared to other normal tissues tested. It was overexpressed in 97% of prostate tumors, 75% normal prostate and was also over-expressed in normal bone marrow, pancreas, and activated PBMC. Novel clone 23379 showed 4.86 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in 97% of prostate tumors and 75% normal prostate and is undetectable in all other normal tissues tested. Novel clone 23399 showed 4.09 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 27% of prostate tumors and was undetectable in all normal tissues tested including normal prostate tissues. Novel clone 23320 showed 3.15 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in all prostate tumors and 50% of normal prostate tissues. It was also expressed in normal colon and trachea. Other normal tissues do not express this gene at high level.

EXAMPLE 14 IDENTIFICATION OF PROSTATE TUMOR ANTIGENS BY ELECTRONIC SUBTRACTION

This Example describes the use of an electronic subtraction technique to identify prostate tumor antigens.

Potential prostate-specific genes present in the GenBank human EST database were identified by electronic subtraction (similar to that described by Vasmatizis et al., *Proc. Natl. Acad. Sci. USA 95*:300-304, 1998). The sequences of EST clones (43,482) derived from various prostate libraries were obtained from the GenBank public human EST database. Each prostate EST sequence was used as a query sequence in a BLASTN (National Center for Biotechnology Information) search against the human EST database. All matches considered identical (length of matching sequence >100 base pairs, density of identical matches over this region > 70%) were grouped (aligned) together in a cluster. Clusters containing more than 200 ESTs were discarded since they probably represented repetitive elements or highly expressed genes such as those for ribosomal proteins. If two or more clusters shared common ESTs, those clusters were grouped together into a "supercluster," resulting in 4,345 prostate superclusters.

Records for the 479 human cDNA libraries represented in the GenBank release were downloaded to create a database of these cDNA library records. These 479 cDNA libraries were grouped into three groups, Plus (normal prostate and prostate tumor libraries, and breast cell lines, in which expression was desired), Minus (libraries from other normal adult tissues, in which expression was not desirable), and Other (fetal tissue, infant tissue, tissues found only in women, non-prostate tumors and cell lines other than prostate cell lines, in which expression was considered to be irrelevant). A summary of these library groups is presented in Table II.

<u>Table II</u>

<u>Prostate cDNA Libraries and ESTs</u>

Library	# of Libraries	# of ESTs
Plus	25	43,482
Normal	11	18,875
Tumor	11	21,769
Cell lines	3	2,838
Minus	166	
Other	287	

Each supercluster was analyzed in terms of the ESTs within the supercluster. The tissue source of each EST clone was noted and used to classify the superclusters into four groups: Type 1- EST clones found in the Plus group libraries only; no expression detected in Minus or Other group libraries; Type 2- EST clones found in the Plus and Other group libraries only; no expression detected in the Minus group; Type 3- EST clones found in the Plus, Minus and Other group libraries, but the expression in the Plus group is higher than in either the Minus or Other groups; and Type 4- EST clones found in Plus, Minus and Other group libraries, but the expression in the Plus group is higher than the expression in the Minus group. This analysis identified 4,345 breast clusters (see Table III). From these clusters, 3,172 EST clones were ordered from Research Genetics, Inc., and were received as frozen glycerol stocks in 96-well plates.

<u>Table III</u>

<u>Prostate Cluster Summary</u>

	# of	# of ESTs
Туре	Superclusters	Ordered
1	688	677
2	2899	2484
3	. 85	11
4	673	0
Total	4345	3172

The inserts were PCR-amplified using amino-linked PCR primers for Synteni microarray analysis. When more than one PCR product was obtained for a particular clone, that PCR product was not used for expression analysis. In total, 2,528 clones from the electronic subtraction method were analyzed by microarray analysis to identify electronic subtraction breast clones that had high tumor vs. normal tissue mRNA. Such screens were performed using a Synteni (Palo Alto, CA) microarray, according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Within these analyses, the clones were arrayed on the chip, which was then probed with fluorescent probes generated from normal and tumor prostate cDNA, as well as various other normal tissues. The slides were scanned and the fluorescence intensity was measured.

Clones with an expression ratio greater than 3 (i.e., the level in prostate tumor cDNA was at least three times the level in normal prostate cDNA) were identified as prostate tumor-specific sequences (Table IV). The sequences of these clones are provided in SEQ ID NOs:401-453, with certain novel sequences shown in SEQ ID NOs:407, 413, 416-419, 422, 426, 427 and 450.

<u>Table IV</u>
<u>Prostate-tumor Specific Clones</u>

SEQ ID NO.	Sequence	Comments
	Designation	
401	22545	previously identified P1000C
402	22547	previously identified P704P

WO 00/04149 PCT/US99/15838

402	20510		
403	22548	known	
404	22550	known	
405	22551	PSA	
406	22552	prostate secretory protein 94	
407	22553	novel	
408	22558	previously identified P509S	
409	22562	glandular kallikrein	
410	22565	previously identified P1000C	
411	22567	PAP	
412	22568	B1006C (breast tumor antigen)	
413	22570	novel	
414	22571	PSA	
415	22572	previously identified P706P	
416	22573	novel	
417	22574	novel	
418	22575	novel	
419	22580	novel	
420	22581	PAP	
421	22582	prostatic secretory protein 94	
422	22583	novel	
423	22584	prostatic secretory protein 94	
424	22585	prostatic secretory protein 94	
425	22586	known	
426	22587	novel	
427	22588	novel	
428	22589	PAP	
429	22590	known	
430	22591	PSA	
431	22592	known	
432	22593	Previously identified P777P	
433	22594	T cell receptor gamma chain	
434	22595	Previously identified P705P	
435	22596	Previously identified P707P	
436	22847	PAP	
437	22848	known	
438	22849	prostatic secretory protein 57	

439	22851	PAP	
440	22852	PAP	
441	22853	PAP	
442	22854	previously identified P509S	
443	22855	previously identified P705P	
444	22856	previously identified P774P	
445	22857	PSA	
446	23601	previously identified P777P	
447	23602	PSA	
448	23605	PSA	
449	23606	PSA	
450	23612	novel	
451	23614	PSA	
452	23618	previously identified P1000C	
453	23622	previously identified P705P	

EXAMPLE 15 FURTHER IDENTIFICATION OF PROSTATE TUMOR ANTIGENS BY MICROARRAY ANALYSIS

This Example describes the isolation of additional prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 142 clones were identified and sequenced. Certain of these clones are shown in SEQ ID NOs:454-467. Of these sequences SEQ ID NOs:459-461 correspond to novel genes. The others (SEQ ID NOs:454-458 and 461-467) correspond to known sequences.

EXAMPLE 16 FURTHER CHARACTERIZATION OF PROSTATE TUMOR ANTIGEN P710P

This Example describes the full length cloning of P710P.

WO 00/04149 PCT/US99/15838

76

The prostate cDNA library described above was screened with the P710P fragment described above. One million colonies were plated on LB/Ampicillin plates. Nylon membrane filters were used to lift these colonies, and the cDNAs picked up by these filters were then denatured and cross-linked to the filters by UV light. The P710P fragment was radiolabeled and used to hybridize with the filters. Positive cDNA clones were selected and their cDNAs recovered and sequenced by an automatic ABI Sequencer. Four sequences were obtained, and are presented in SEQ ID NOs:468-471.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the present invention is not limited except as by the appended claims.

CLAIMS

- 1. An isolated polypeptide comprising at least an immunogenic portion of a prostate tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
- (a) sequences recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472;
- (b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and
 - (c) complements of any of the sequence of (a) or (b).
- 2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing polynucleotide sequences.
- 3. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NO: 108, 112, 113, 114, 172, 176, 178, 327, 329, 331, 339 and 383.
- 4. An isolated polynucleotide encoding at least 15 amino acid residues of a prostate tumor protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigenspecific antisera is not substantially diminished, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434,

435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing sequences.

- 5. An isolated polynucleotide encoding a prostate tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing sequences.
- 6. An isolated polynucleotide comprising a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472.
- 7. An isolated polynucleotide comprising a sequence that hybridizes, under moderately stringent conditions, to a sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472.
- 8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.
- 9. An expression vector comprising a polynucleotide according to any one of claims 4-7.
- 10. A host cell transformed or transfected with an expression vector according to claim 9.
 - 11. An expression vector comprising a polynucleotide according claim 8.

WO 00/04149 PCT/US99/15838

- 12. A host cell transformed or transfected with an expression vector according to claim 11.
- 13. A pharmaceutical composition comprising a polypeptide according to claim 1, in combination with a physiologically acceptable carrier.
- 14. A vaccine comprising a polypeptide according to claim 1, in combination with a non-specific immune response enhancer.
- 15. A vaccine according to claim 14, wherein the non-specific immune response enhancer is an adjuvant.
- 16. A vaccine according to claim 14, wherein the non-specific immune response enhancer induces a predominantly Type I response.
- 17. A pharmaceutical composition comprising a polynucleotide according to claim 4, in combination with a physiologically acceptable carrier.
- 18. A vaccine comprising a polynucleotide according to claim 4, in combination with a non-specific immune response enhancer.
- 19. A vaccine according to claim 18, wherein the non-specific immune response enhancer is an adjuvant.
- 20. A vaccine according to claim 18, wherein the non-specific immune response enhancer induces a predominantly Type I response.
- 21. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a prostate tumor protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472 or a complement of any of the foregoing polynucleotide sequences.

- 22. A pharmaceutical composition comprising an antibody or fragment thereof according to claim 18, in combination with a physiologically acceptable carrier.
- 23. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a pharmaceutically acceptable carrier or excipient.
- 24. A pharmaceutical composition according to claim 23, wherein the antigen presenting cell is a dendritic cell or a macrophage.
- 25. A vaccine comprising an antigen-presenting cell that expresses a polypoptide according to claim 1, in combination with a non-specific immune response enhancer.
- 26. A vaccine according to claim 25, wherein the non-specific immune response enhancer is an adjuvant.
- 27. A vaccine according to claim 25, wherein the non-specific immune response enhancer induces a predominantly Type I response.
- 28. A vaccine according to claim 25, wherein the antigen-presenting cell is a dendritic cell.
- 29. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a polypeptide according to claim 1, and thereby inhibiting the development of a cancer in the patient.
- 30. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a polynucleotide according to claim 4, and thereby inhibiting the development of a cancer in the patient.
- 31. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antibody or antigen-binding fragment thereof according to claim 21, and thereby inhibiting the development of a cancer in the patient.

- 32. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide according to claim 1, and thereby inhibiting the development of a cancer in the patient.
- 33. A method according to claim 32, wherein the antigen-presenting cell is a dendritic cell.
- 34. A method according to any one of claims 29-32, wherein the cancer is prostate cancer.
- 35. A fusion protein comprising at least one polypeptide according to claim 1.
- 36. A fusion protein according to claim 35, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.
- 37. A fusion protein according to claim 35, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.
- 38. A fusion protein according to claim 35, wherein the fusion protein comprises an affinity tag.
- 39. An isolated polynucleotide encoding a fusion protein according to claim 35.
- 40. A pharmaceutical composition comprising a fusion protein according to claim 32, in combination with a physiologically acceptable carrier.
- 41. A vaccine comprising a fusion protein according to claim 35, in combination with a non-specific immune response enhancer.
- 42. A vaccine according to claim 41, wherein the non-specific immune response enhancer is an adjuvant.

- 43. A vaccine according to claim 41, wherein the non-specific immune response enhancer induces a predominantly Type I response.
- 44. A pharmaceutical composition comprising a polynucleotide according to claim 40, in combination with a physiologically acceptable carrier.
- 45. A vaccine comprising a polynucleotide according to claim 40, in combination with a non-specific immune response enhancer.
- 46. A vaccine according to claim 45, wherein the non-specific immune response enhancer is an adjuvant.
- 47. A vaccine according to claim 45, wherein the non-specific immune response enhancer induces a predominantly Type I response.
- 48. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 40 or claim 44.
- 49. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine according to claim 41 or claim 45.
- 50. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
- (i) polynucleotides recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472; and
 - (ii) complements of the foregoing polynucleotides;

wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the prostate tumor protein from the sample.

51. A method according to claim 50, wherein the biological sample is blood or a fraction thereof.

- 52. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 50.
- 53. A method for stimulating and/or expanding T cells specific for a prostate tumor protein, comprising contacting T cells with one or more of:
 - (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence provided in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); and/or
- (iv) an antigen presenting cell that expresses a polypeptide of (i) or (ii); under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.
- 54. An isolated T cell population, comprising T cells prepared according to the method of claim 53.
- 55. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 54.
- 56. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
- (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); or
- (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);

such that T cells proliferate; and

(b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.

- 57. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
- (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
- (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); or
- (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);

such that T cells proliferate;

- (b) cloning at least one proliferated cell; and
- (c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.
- 58. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient with a binding agent that binds to a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
- (i) polynucleotides recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472; and
 - (ii) complements of the foregoing polynucleotides;
- (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and
- (c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
- 59. A method according to claim 58, wherein the binding agent is an antibody.
- 60. A method according to claim 59, wherein the antibody is a monoclonal antibody.

- 61. A method according to claim 58, wherein the cancer is prostate cancer.
- 62. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472, or a complement of any of the foregoing polynucleotides;
- (b) detecting in the sample an amount of polypeptide that binds to the binding agent;
- (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and
- (d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
- 63. A method according to claim 62, wherein the binding agent is an antibody.
- 64. A method according to claim 63, wherein the antibody is a monoclonal antibody.
- 65. A method according to claim 62, wherein the cancer is a prostate cancer.
- 66. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472, or a complement of any of the foregoing polynucleotides;
- (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and

- (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
- 67. A method according to claim 66, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
- 68. A method according to claim 66, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
- 69. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 or 384-472, or a complement of any of the foregoing polynucleotides;
- (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;
- (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and
- (d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
- 70. A method according to claim 69, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
- 71. A method according to claim 69, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
 - 72. A diagnostic kit, comprising:
 - (a) one or more antibodies according to claim 21; and
 - (b) a detection reagent comprising a reporter group.

- 73. A kit according to claim 72, wherein the antibodies are immobilized on a solid support.
- 74. A kit according to claim 73, wherein the solid support comprises nitroccllulose, latex or a plastic material.
- 75. A kit according to claim 72, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.
- 76. A kit according to claim 72, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.
- 77. An oligonucleotide comprising 10 to 40 nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes a prostate tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472, or a complement of any of the foregoing polynucleotides.
- 78. A oligonucleotide according to claim 77, wherein the oligonucleotide comprises 10-40 nucleotides recited in any one of SEQ ID NOs:2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471 or 472.
 - 79. A diagnostic kit, comprising:
 - (a) an oligonucleotide according to claim 77; and
- (b) a diagnostic reagent for use in a polymerase chain reaction or hybridization assay.

Effector: Target Ratio

Fig. 1

Fig. 2A

Fig. 2B

SUBSTITUTE SHEET (RULE 26)

Fig. 4

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

```
<110> Corixa Corporation
      <120> COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS
        OF PROSTATE CANCER AND METHODS FOR THEIR USE
      <130> 210121.42701PC
      <140> PCT
      <141> 1999-07-08
      <160> 472
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 814
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(814)
      \langle 223 \rangle n = A,T,C or G
      <400> 1
tttttttttt tttttcacag tataacagct ctttatttct gtgagttcta ctaggaaatc
                                                                         60
atcaaatctg agggttgtct ggaggacttc aatacacctc cccccatagt gaatcagctt
                                                                        120
ccagggggtc cagtccctct ccttacttca tccccatccc atgccaaagg aagaccctcc
                                                                        180
ctccttggct cacagccttc tctaggcttc ccagtgcctc caggacagag tgggttatgt
                                                                        240
tttcagctcc atccttgctg tgagtgtctg gtgcgttgtg cctccagctt ctgctcaqtq
                                                                        300
cttcatggac agtgtccagc acatgtcact ctccactctc tcagtgtgga tccactagtt
                                                                        360
ctagagcggc cgccaccgcg gtggagctcc agcttttgtt ccctttagtg agggttaatt
                                                                        420
gcgcgcttgg cgtaatcatg gtcataactg tttcctgtgt gaaattgtta tccgctcaca
                                                                        480
attccacaca acatacgage eggaageata aagtgtaaag eetggggtge etaatgagtg
                                                                       540
anctaactca cattaattgc gttgcgctca ctgnccgctt tccagtcngg aaaactgtcg
                                                                       600
tgccagctgc attaatgaat cggccaacgc ncggggaaaa gcggtttgcg ttttgggggc
                                                                       660
tetteegett etegeteact nanteetgeg eteggtentt eggetgeggg gaacggtate
                                                                       720
actcctcaaa ggnggtatta cggttatccn naaatcnggg gatacccngg aaaaaanttt
                                                                       780
aacaaaaggg cancaaaggg cngaaacgta aaaa
                                                                       814
      <210> 2
      <211> 816
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(816)
      \langle 223 \rangle n = A,T,C or G
      <400> 2
acagaaatgt tggatggtgg agcacctttc tatacgactt acaggacagc agatggggaa
                                                                        60
ttcatggctg ttggagcaat agaaccccag ttctacgagc tgctgatcaa aggact+gga
                                                                       120
```

```
ctaaagtctg atgaacttcc caatcagatg agcatggatg attggccaga aatgaagaag
                                                                       180
aagtttgcag atgtatttgc aaagaagacg aaggcagagt ggtgtcaaat ctttqacqqc
                                                                       240
acagatgcct gtgtgactcc ggttctgact tttgaggagg ttgttcatca tqatcacaac
                                                                       300
aaggaacggg gctcgtttat caccagtgag gagcaggacg tgagcccccg ccctgcacct
                                                                       360
ctgctgttaa acaccccagc catcccttct ttcaaaaggg atccactagt tctagaagcg
                                                                       420
gccgccaccg cggtggagct ccagcttttg ttccctttag tgagggttaa ttgcgcgctt
                                                                       480
ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccccc
                                                                       540
aacatacgag ccggaacata aagtgttaag cctggggtgc ctaatgantg agctaactcn
                                                                       600
cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaaactgtcg tgccactgcn
                                                                       660
ttantgaatc ngccacccc cgggaaaagg cggttgcntt ttgggcctct tccgctttcc
                                                                       720
tegeteattg atcetngene eeggtetteg getgeggnga aeggtteact ceteaaagge
                                                                       780
ggtntnccgg ttatccccaa acnggggata cccnga
                                                                       816
      <210> 3
      <211> 773
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (773)
      <223> n = A,T,C or G
      <400> 3
cttttgaaag aagggatggc tggggtgttt aacagcagag gtgcagggcg ggggctcacg
                                                                        60
tcctgctcct cactggtgat aaacgagccc cgttccttgt tgtgatcatg atgaacaacc
                                                                       120
tecteaaaag teagaacegg agteacaeag geatetgtge egteaaagat ttqacaeeae
                                                                       180
tetgeetteg tettettige aaatacatet geaaacttet tetteattie tggeeaatea
                                                                       240
tccatgctca tctgattggg aagttcatca gactttagtc canntccttt gatcagcagc
                                                                       300
tcgtagaact ggggttctat tgctccaaca gccatgaatt ccccatctgc tgtcctgtaa
                                                                       360
gtcgtataga aaggtgctcc accatccaac atgttctgtc ctcgaggggg ggcccggtac
                                                                       420
ccaattegee ctatantgag tegtattaeg egegeteact ggeegtegtt ttacaaegte
                                                                       480
gtgactggga aaaccctggg cgttaccaac ttaatcgcct tgcagcacat ccccctttcg
                                                                       540
ccagctgggc gtaatancga aaaggcccgc accqatcgcc cttccaacaq ttqcqcacct
                                                                       600
gaatgggnaa atgggacccc cctgttaccg cgcattnaac ccccgcnggg tttngttgtt
                                                                       660
acceccaent nnacegetta caettigeca gegeettane geeegeteee titeneetti
                                                                      720
cttcccttcc tttcncnccn ctttcccccg gggtttcccc cntcaaaccc cna
                                                                      773
     <210> 4
     <211> 828
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(828)
     <223> n = A, T, C or G
     <400> 4
cctcctgagt cctactgacc tgtgctttct ggtgtggagt ccagggctgc taggaaaagg
                                                                       60
aatgggcaga cacaggtgta tgccaatgtt tctgaaatgg gtataatttc gtcctctct
                                                                      120
teggaacaet ggetgtetet gaagaettet egeteagttt cagtgaggae acacacaaaq
                                                                      180
acgtgggtga ccatgttgtt tgtggggtgc agagatggga ggggtggggc ccaccctgga
                                                                      240
agagtggaca gtgacacaag gtggacactc tctacagatc actgaggata agctggagcc
                                                                      300
acaatgcatg aggcacacac acagcaagga tgacnctgta aacatagccc acqctqtcct
                                                                      360
```

```
gngggcactg ggaagcctan atnaggccgt gagcanaaag aaggggagga tccactagtt
                                                                       420
ctanagegge egecacegeg gtgganetee anettttgtt ecetttagtg agggttaatt
                                                                       480
gcgcgcttgg cntaatcatg gtcatanctn tttcctgtgt gaaattgtta tccgctcaca
                                                                       540
attccacaca acatacganc cggaaacata aantgtaaac ctggggtgcc taatgantga
                                                                       600
ctaactcaca ttaattgcgt tgcgctcact gcccgctttc caatcnggaa acctgtcttg
                                                                       660
concitgoat inatgaaton gocaaccooc ggggaaaago gittgogtit tgggogotot
                                                                       720
tecgetteet eneteantta ntecetnene teggteatte eggetgenge aaaceggtte
                                                                       780
accrecteca aagggggtat teeggtttee cenaateegg ggananee
                                                                       828
      <210> 5
      <211> 834
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(834)
      <223> n = A,T,C or G
      <400> 5
tttttttttt tttttactga tagatggaat ttattaagct tttcacatgt gatagcacat
                                                                        60
agttttaatt gcatccaaag tactaacaaa aactctagca atcaagaatg gcagcatgtt
                                                                       120
attttataac aatcaacacc tgtggctttt aaaatttggt tttcataaga taatttatac
                                                                       180
tgaagtaaat ctagccatgc ttttaaaaaa tgctttaggt cactccaagc ttggcagtta
                                                                       240
acatttggca taaacaataa taaaacaatc acaatttaat aaataacaaa tacaacattg
                                                                       300
taggccataa tcatatacag tataaggaaa aggtggtagt gttgagtaag cagttattag
                                                                       360
aatagaatac cttggcctct atgcaaatat gtctagacac tttgattcac tcagccctga
                                                                       420
cattcagttt tcaaagtagg agacaggttc tacagtatca ttttacagtt tccaacacat
                                                                       480
tgaaaacaag tagaaaatga tgagttgatt tttattaatg cattacatcc tcaagagtta
                                                                       540
tcaccaaccc ctcagttata aaaaattttc aagttatatt agtcatataa cttggtgtgc
                                                                       600
ttattttaaa ttagtgctaa atggattaag tgaagacaac aatggtcccc taatgtgatt
                                                                       660
gatattggtc attittacca gcttctaaat ctnaactttc aggcttttga actggaacat
                                                                       720
tgnatnacag tgttccanag ttncaaccta ctggaacatt acagtgtgct tgattcaaaa
                                                                       780
tgttattttg ttaaaaatta aattttaacc tggtggaaaa ataatttgaa atna
                                                                       834
      <210> 6
      <211> 818
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(818)
      <223> n = A,T,C or G
      <400> 6
ttttttttt tttttttt aagaccctca tcaatagatg gagacataca gaaatagtca
                                                                       60
aaccacatct acaaaatgcc agtatcaggc ggcggcttcg aagccaaagt gatgtttgga
                                                                      120
tgtaaagtga aatattagtt ggcggatgaa gcagatagtg aggaaagttg agccaataat
                                                                      180
gacgtgaagt ccgtggaagc ctgtggctac aaaaaatgtt gagccgtaga tgccgtcgga
                                                                      240
aatggtgaag ggagactcga agtactctga ggcttgtagg agggtaaaat agagacccag
                                                                      300
taaaattgta ataagcagtg cttgaattat ttggtttcgg ttgttttcta ttagactatg
                                                                      360
gtgagctcag gtgattgata ctcctgatgc gagtaatacg gatgtgttta ggagtgggac
                                                                      420
ttctagggga tttagcgggg tgatgcctgt tgggggccag tgccctccta gttggggggt
                                                                      480
aggggctagg ctggagtggt aaaaggctca gaaaaatcct gcgaagaaaa aaacttctga
                                                                      540
```

```
ggtaataaat aggattatcc cgtatcgaag gcctttttgg acaggtggtg tgtggtggcc
                                                                       600
ttggtatgtg ctttctcgtg ttacatcgcg ccatcattgg tatatggtta gtgtgttggg
                                                                       660
ttantanggc ctantatgaa gaacttttgg antggaatta aatcaatngc ttggccggaa
                                                                       720
gtcattanga nggctnaaaa ggccctgtta ngggtctggg ctnggtttta cccnacccat
                                                                       780
ggaatnence ecceggaena ntgnatecet attettaa
                                                                       818
      <210> 7
      <211> 817
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(817)
      <223> n = A,T,C or G
      <400> 7
ttttttttt tttttttt tggctctaga gggggtagag ggggtgctat agggtaaata
                                                                       60
cgggccctat ttcaaagatt tttaggggaa ttaattctag gacgatgggt atgaaactgt
                                                                       120
ggtttgctcc acagatttca gagcattgac cgtagtatac ccccggtcgt gtagcggtga
                                                                       180
aagtggtttg gtttagacgt ccgggaattg catctgtttt taagcctaat gtggggacag
                                                                      240
ctcatgagtg caagacgtct tgtgatgtaa ttattatacn aatgggggct tcaatcggga
                                                                      300
gtactactcg attgtcaacg tcaaggagtc gcaggtcgcc tggttctagg aataatqqgq
                                                                      360
gaagtatgta ggaattgaag attaatccgc cgtagtcggt gttctcctag gttcaatacc
                                                                      420
attggtggcc aattgatttg atggtaaggg gagggatcgt tgaactcgtc tgttatgtaa
                                                                       480
aggatncctt ngggatggga aggcnatnaa ggactangga tnaatggcgg gcangatatt
                                                                      540
tcaaacngtc tctanttcct gaaacgtctg aaatgttaat aanaattaan tttngttatt
                                                                      600
gaatnttnng gaaaagggct tacaggacta gaaaccaaat angaaaanta atnntaangg
                                                                      660
cnttatcntn aaaggtnata accnctccta tnatcccacc caatnqnatt ccccacncnn
                                                                      720
acnattggat necessantte canaaangge enceeeegg tgnanneene ettttgttee
                                                                      780
cttnantgan ggttattene ceetngentt atcance
                                                                      817
      <210> B
      <211> 799
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(799)
      <223> n = A, T, C or G
      <400> 8
catttccggg tttactttct aaggaaagcc gagcggaagc tgctaacgtg ggaatcggtg
                                                                       60
cataaggaga actitcigct ggcacgcgct agggacaagc gggagagcga ciccqaqcqt
                                                                      120
ctgaagcgca cgtcccagaa ggtggacttg gcactgaaac agctgggaca catccgcgag
                                                                      180
tacgaacagc gcctgaaagt gctggagcgg gaggtccagc agtgtagccg cgtcctgggg
                                                                      240
tgggtggccg angectgane egetetgeet tgetgeeece angtgggeeg ecaceceetg
                                                                      300
acctgcctgg gtccaaacac tgagccctgc tggcggactt caagganaac ccccacangg
                                                                      360
ggattttgct cctanantaa ggctcatctg ggcctcggcc cccccacctg gttggccttg
                                                                      420
tetttgangt gageeceatg teeatetggg ecaetgteng gaceacettt ngggagtgtt
                                                                      480
ctccttacaa ccacannatg cccggctcct cccggaaacc antcccancc tgngaaggat
                                                                      540
caagneetgn atceactnnt netanaaceg geeneeneeg engtggaace encettntgt
                                                                      600
tecttttent tnagggttaa tnnegeettg geettneean ngteetnene ntttteennt
                                                                      660
gttnaaattg ttangeneec neennteeen ennennenan eeegaeeenn annttnnann
                                                                      720
```

```
ncctgggggt nccnncngat tgacconncc nccctntant tgcnttnggg nncnntgccc
                                                                        780
ctttccctct nggganncg
                                                                        799
       <210> 9
       <211> 801
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(801)
       <223> n = A,T,C or G
      <400> 9
acgccttgat cctcccaggc tgggactggt tctgggagga gccgggcatg ctgtggtttg
                                                                        60
taangatgac actcccaaag gtggtcctga cagtggccca gatggacatg gggctcacct
                                                                        120
caaggacaag gccaccaggt gcgggggccg aagcccacat gatccttact ctatgagcaa
                                                                        180
aatcccctgt gggggcttct ccttgaagtc cgccancagg gctcagtctt tggacccang
                                                                        240
caggicatgg ggitgingnc caactggggg concaacgca aaanggonca gggcotongn
                                                                        300
cacccatece angaegegge tacactnetg gaceteeene tecaccaett teatgegetg
                                                                       360
ttentaceeg egnatnigte ecanetgitt engigeenae tecanettet nggaegigeg
                                                                       420
ctacatacge eeggantene netecegett tgteectate caegtneean caacaaatt
                                                                       480
encentantg cacenattee caenttenne agntteene nnegngette ettntaaaag
                                                                       540
ggttganccc cggaaaatnc cccaaagggg gggggccngg tacccaactn ccccctnata
                                                                       600
gctgaantcc ccatnaccnn gnctcnatgg ancentcent tttaannacn ttctnaactt
                                                                       660
gggaanance etegneenth ecceenttaa teceneettg enanghment ecceenntee
                                                                       720
necennning genthinann chaaaaagge cennnaneaa teteethnen ceteaniteg
                                                                       780
ccancecteg aaateggeen e
                                                                       801
      <210> 10
      <211> 789
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(789)
      <223> n = A, T, C \text{ or } G
      <400> 10
cagtctatnt ggccagtgtg gcagctttcc ctgtggctgc cggtgccaca tgcctgtccc
                                                                        60
acagtgtggc cgtggtgaca gcttcagccg ccctcaccgg gttcaccttc tcagcctgc
                                                                       120
agatectgee ctacacactg geetecetet accaceggga gaageaggtg tteetgeeca
                                                                       180
aataccgagg ggacactgga ggtgctagca gtgaggacag cctgatgacc agcttcctgc
                                                                       240
caggeeetaa geetggaget eeetteeeta atggacaegt gggtgetgga ggeagtggee
                                                                       300
tgctcccacc tccacccgcg ctctgcgggg cctctgcctg tgatgtctcc gtacgtgtgg
                                                                       360
tggtgggtga gcccaccgan gccagggtgg ttccgggccg gggcatctgc ctggacctcg
                                                                       420
ccatcctgga tagtgcttcc tgctgtccca ngtggcccca tccctgttta tgggctccat
                                                                       480
tgrccagete agecagtetg teactgeeta tatggtgtet geegeaggee tgggtetggt
                                                                       540
cccatttact ttgctacaca ggtantattt gacaagaacg anttggccaa atactcagcg
                                                                       600
ttaaaaaaatt ccagcaacat tgggggtgga aggcctgcct cactgggtcc aactccccgc
                                                                       660
tectgttaac eccatgggge tgeeggettg geegeeaatt tetgttgetg ecaaantnat
                                                                       720
gtggctctct gctgccacct gttgctggct gaagtgcnta cngcncanct nggggggtng
                                                                       780
ggngttccc
                                                                       789
```

<213> Homo sapien

```
<210> 11
      <211> 772
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(772)
      <223> n = A, T, C or G
      <400> 11
cccaccetac ccaaatatta gacaccaaca cagaaaaget agcaatggat teeettetac
                                                                        60
tttgttaaat aaataagtta aatatttaaa tgcctgtgtc tctgtgatgg caacagaagg
                                                                       120
accaacaggc cacatcctga taaaaggtaa gaggggggtg gatcagcaaa aagacagtgc
                                                                       180
tgtgggctga ggggacctgg ttcttgtgtg ttgcccctca ggactcttcc cctacaaata
                                                                       240
actiticatat giticaaatoo catggaggag tgiticatoo tagaaactoo catgcaaqaq
                                                                       300
ctacattaaa cgaagctgca ggttaagggg cttanagatg ggaaaccagg tgactgagtt
                                                                       360
tattcagctc ccaaaaaccc ttctctaggt gtgtctcaac taggaggcta gctgttaacc
                                                                       420
ctgagcctgg gtaatccacc tgcagagtcc ccgcattcca gtgcatggaa cccttctggc
                                                                       480
ctccctgtat aagtccagac tgaaaccccc ttggaaggnc tccagtcagg cagccctana
                                                                       540
aactggggaa aaaagaaaag gacgcccan ccccagctg tgcanctacg cacctcaaca
                                                                       600
gcacagggtg gcagcaaaaa aaccacttta ctttggcaca aacaaaaact nggggggga
                                                                       660
accccggcac cccnangggg gttaacagga ancngggnaa cntggaaccc aattnaggca
                                                                       720
ggcccnccac cccnaatntt gctgggaaat ttttcctccc ctaaattntt tc
                                                                       772
      <210> 12
      <211> 751
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(751)
      <223> n = A,T,C or G
      <400> 12
gccccaattc cagctgccac accacccacg gtgactgcat tagttcggat gtcatacaaa
                                                                       60
agctgatiga agcaaccctc tactttttgg tcgtgagcct tttgcttggt gcaggtttca
                                                                       120
ttggctgtgt tggtgacgtt gtcattgcaa cagaatgggg gaaaggcact gttctctttg
                                                                       180
aagtanggtg agtcctcaaa atccgtatag ttggtgaagc cacagcactt gagccctttc
                                                                       240
atggtggtgt tccacacttg agtgaagtct tcctgggaac cataatcttt cttgatggca
                                                                       300
ggcactacca gcaacgtcag ggaagtgctc agccattgtg gtgtacacca aggcgaccac
                                                                       360
agcagctgcn acctcagcaa tgaagatgan gaggangatg aagaagaacg tcncgagggc
                                                                       420
acacttgctc tcagtcttan caccatanca gcccntgaaa accaananca aagaccacna
                                                                      480
cnccggctgc gatgaagaaa tnaccccncg ttgacaaact tgcatggcac tggganccac
                                                                      540
agtggcccna aaaatcttca aaaaggatgc cccatcnatt gaccccccaa atgcccactg
                                                                       600
ccaacagggg ctgccccacn cncnnaacga tganccnatt gnacaagatc tncntggtct
                                                                      660
tnatnaacnt gaaccetgen tngtggetee tgtteaggne ennggeetga ettetnaann
                                                                      720
aangaacton gaagnoocca enggananne g
                                                                      751
      <210> 13
      <211> 729
      <212> DNA
```

```
<220>
      <221> misc feature
      <222> (1) ... (729)
      \langle 223 \rangle n = A,T,C or G
      <400> 13
gagccaggcg tecetetgee tgeccaetea gtggcaacae cegggagetg ttttgteett
                                                                         60
tgtggancct cagcagtncc ctctttcaga actcantgcc aaganccctg aacaggagcc
                                                                        120
accatgcagt getteagest cattaagace atgatgatee tetteaattt geteatettt
                                                                        180
ctgtgtggtg cagccctgtt ggcagtgggc atctgggtgt caatcgatgg ggcatccttt
                                                                        240
ctgaagatct tcgggccact gtcgtccagt gccatgcagt ttgtcaacgt gggctacttc
                                                                        300
ctcatcgcag ccggcgttgt ggtcttagct ctaggtttcc tgggctgcta tggtgctaaq
                                                                        360
actgagagca agtgtgccct cgtgacgttc ttcttcatcc tcctcctcat cttcattqct
                                                                        420
gaggttgcaa tgctgtggtc gccttggtgt acaccacaat ggctgagcac ttcctgacgt
                                                                        480
tgctggtaat gcctgccatc aanaaaagat tatgggttcc caggaanact tcactcaagt
                                                                        540
gttggaacac caccatgaaa gggctcaagt gctgtggctt cnnccaacta tacggatttt
                                                                        600
gaagantcac ctacttcaaa gaaaanagtg cctttccccc atttctgttg caattgacaa
                                                                        660
acgtccccaa cacagccaat tgaaaacctg cacccaaccc aaangggtcc ccaaccanaa
                                                                        720
attnaaggg
                                                                        729
      <210> 14
      <211> 816
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(816)
      <223> n = A, T, C or G
      <400> 14
tgctcttcct caaagttgtt cttgttgcca taacaaccac cataggtaaa gcgggcgcag
                                                                        60
tgttcgctga aggggttgta gtaccagcgc gggatgctct ccttgcagag tcctgtgtct
                                                                       120
ggcaggtcca cgcagtgccc tttgtcactg gggaaatgga tgcgctggag ctcgtcaaag
                                                                       180
ccactcgtgt atttttcaca ggcagcctcg tccgacgcgt cggggcagtt gggggtgtct
                                                                       240
tcacactcca ggaaactgtc natgcagcag ccattgctgc agcggaactg ggtgggctga
                                                                       300
cangigecag ageacacigg atggegeett tecatgnnan gggeeetgng ggaaagteee
                                                                       360
tganceccan anetgeetet caaangeece acettgeaca eecegacagg etagaatgga
                                                                       420
atcttcttcc cgaaaggtag tinticitgt tgcccaance ancecentaa acaaactett
                                                                       480
gcanatctgc tccgnggggg tcntantacc ancgtgggaa aagaacccca ggcngcgaac
                                                                       540
caancttgtt tggatncgaa gcnataatct nctnttctgc ttggtggaca gcaccantna
                                                                       600
ctgtnnanct tragncentg gteetentgg gttgnnettg aacetaaten cennteaact
                                                                       660
gggacaaggt aantngccnt cctttnaatt cccnancntn ccccctggtt tggggttttn
                                                                       720
enenetecta ecceagaaan neegtgttee ecceeaacta ggggeenaaa cenntintie
                                                                       780
cacaaccctn ccccacccac gggttcnqnt qqttnq
                                                                       816
     <210> 15
     <211> 783
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(783)
     <223> n = A, T, C or G
```

```
<400> 15
ccaaggcctg ggcaggcata nacttgaagg tacaacccca ggaacccctg gtgctgaagg
                                                                        60
atgtggaaaa cacagattgg cgcctactgc ggggtgacac ggatgtcagg gtagagagga
                                                                        120
aagacccaaa ccaggtggaa ctgtggggac tcaaggaang cacctacctg ttccaqctqa
                                                                       180
cagtgactag ctcagaccac ccagaggaca cggccaacgt cacagtcact gtgctqtcca
                                                                        240
ccaagcagac agaagactac tgcctcgcat ccaacaangt gggtcgctgc cggggctctt
                                                                       300
tcccacgctg gtactatgac cccacggagc agatctgcaa gagtttcgtt tatggaggct
                                                                       360
gcttgggcaa caagaacaac taccttcggg aagaagagtg cattctancc tgtcngggtg
                                                                       420
tgcaaggtgg gcctttgana ngcanctctg gggctcangc gactttcccc cagggcccct
                                                                       480
ccatggaaag gcgccatcca ntgttctctg gcacctgtca gcccacccag ttccgctqca
                                                                       540
ncaatggctg ctgcatcnac antttcctng aattgtgaca acacccccca ntgcccccaa
                                                                       600
ccctcccaac aaagcttccc tgttnaaaaa tacnccantt ggcttttnac aaacncccqq
                                                                       660
enecteentt tteecennin aacaaagge neingentit gaactgeeen aaccenggaa
                                                                       720
tetneenngg aaaaantnee eeceetggtt eetnnaanee eeteenenaa anetneeeee
                                                                       780
CCC
                                                                       783
      <210> 16
      <211> 801
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(801)
      <223> n = A,T,C or G
      <400> 16
gccccaattc cagctgccac accacccacg gtgactgcat tagttcggat gtcatacaaa
                                                                        60
agctgattga agcaaccctc tactttttgg tcgtgagcct tttgcttggt gcaggtttca
                                                                       120
ttggctgtgt tggtgacgtt gtcattgcaa cagaatgggg gaaaggcact gttctctttg
                                                                       180
aagragggtg agtcctcaaa atccgtatag rtggrgaagc cacagcactt gagccctttc
                                                                       240
atggtggtgt tccacacttg agtgaagtct tcctgggaac cataatcttt cttgatggca
                                                                       300
ggcactacca gcaacgtcag gaagtgctca gccattgtgg tgtacaccaa ggcgaccaca
                                                                       360
gcagctgcaa cctcagcaat gaagatgagg aggaggatga agaagaacgt cncgagggca
                                                                       420
cacttgctct ccgtcttagc accatagcag cccangaaac caagagcaaa gaccacaacg
                                                                       480
ccngctgcga atgaaagaaa ntacccacgt tgacaaactg catggccact ggacgacagt
                                                                       540
tggcccgaan atcttcagaa aagggatgcc ccatcgattg aacacccana tgcccactgc
                                                                       600
cnacaggget geneenenen gaaagaatga gecattgaag aaggatente ntggtettaa
                                                                       660
tgaactgaaa ccntgcatgg tggcccctgt tcagggctct tggcagtgaa ttctganaaa
                                                                       720
aaggaacnge ntnageeece eeaaangana aaacaceee gggtgttgee etgaattgge
                                                                       780
ggccaaggan ccctgccccn g
                                                                       801
      <210> 17
      <211> 740
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(740)
      \langle 223 \rangle n = A,T,C or G
      <400> 17
gtgagagcca ggcgtccctc tgcctgccca ctcagtggca acacccggga gctgttttgt
                                                                       60
```

```
cctttgtgga gcctcagcag ttccctcttt cagaactcac tgccaagagc cctgaacagg
 agccaccatg cagtgetica getteattaa gaccatgatg atcetettea attigeteat
                                                                        180
 ctttctgtgt ggtgcagccc tgttggcagt gggcatctgg gtgtcaatcg atggggcatc
                                                                        240
 ctttctgaag atcttcgggc cactgtcgtc cagtgccatg cagtttgtca acgtgggcta
                                                                        300
cttcctcatc gcagccggcg ttgtggtctt tgctcttggt ttcctgggct gctatggtgc
                                                                        360
taagacggag agcaagtgtg ccctcgtgac gttcttcttc atcctcctcc tcatcttcat
                                                                        420
tgctgaagtt gcagctgctg tggtcgcctt ggtgtacacc acaatggctg aaccattcct
                                                                        480
gacgttgctg gtantgcctg ccatcaanaa agattatggg ttcccaggaa aaattcactc
                                                                        540
aantntggaa caccnccatg aaaagggctc caatttctgn tggcttcccc aactataccg
                                                                        600
gaattttgaa aganteneee taetteeaaa aaaaaanant tgeetttnee ecenttetgt
                                                                        660
tgcaatgaaa acntcccaan acngccaatn aaaacctgcc cnnncaaaaa ggntcncaaa
                                                                        720
caaaaaaant nnaagggttn
                                                                        740
       <210> 18
       <211> 802
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(802)
      <223> n = A,T,C or G
      <400> 18
ccgctggttg cgctggtcca gngnagccac gaagcacgtc agcatacaca gcctcaatca
                                                                        60
caaggtcttc cagctgccgc acattacgca gggcaagagc ctccagcaac actgcatatg
                                                                       120
ggatacactt tactttagca gccagggtga caactgagag gtgtcgaagc ttattcttct
                                                                       180
gagcctctgt tagtggagga agattccggg cttcagctaa gtagtcagcg tatgtcccat
                                                                       240
aagcaaacac tgtgagcagc cggaaggtag aggcaaagtc actctcagcc agctctctaa
                                                                       300
cattgggcat gtccagcagt tctccaaaca cgtagacacc agnggcctcc agcacctgat
                                                                       360
ggatgagtgt ggccagcgct gcccccttgg ccgacttggc taggagcaga aattgctcct
                                                                       420
ggttctgccc tgtcaccttc acttccgcac tcatcactgc actgagtgtg ggggacttgg
                                                                       480
gctcaggatg tccagagacg tggttccgcc ccctcnctta atgacaccgn ccanncaacc
                                                                       540
gtcggctccc gccgantgng ttcgtcgtnc ctgggtcagg gtctgctggc cnctacttgc
                                                                       600
aancttegte nggeecatgg aatteacene aceggaaetn gtangateea etnnttetat
                                                                       660
aaccggncgc caccgcnnnt ggaactccac tettnttncc tttacttgag ggttaaggte
                                                                       720
accettnneg ttacettggt ccaaacentn centgtgteg anatngtnaa tenggneena
                                                                       780
tnccancene atangaagee ng
                                                                       802
      <210> 19
      <211> 731
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(731)
      <223> n = A,T,C or G
      <400> 19
cnaagcttcc aggtnacggg ccgcnaancc tgacccnagg tancanaang cagnongcgg
                                                                       60
gagcccaccg tcacgnggng gngtctttat nggagggggc ggagccacat cnctggacnt
                                                                      120
cntgacccca actccccncc ncncantgca gtgatgagtg cagaactgaa ggtnacgtgg
                                                                      180
caggaaccaa gancaaanne tgctccnntc caagtcggcn nagggggcgg ggctggccac
                                                                      240
geneateent enagtgetgn aaageeeenn eetgtetaet tgtttggaga aengennnga
                                                                      300
```

```
catgcccagn gttanataac nggcngagag tnantttgcc tctcccttcc ggctgcgcan
                                                                       360
cgngtntgct tagnggacat aacctgacta cttaactgaa cccnngaatc tnccncccct
                                                                       420
ccactaagct cagaacaaaa aacttcgaca ccactcantt gtcacctgnc tgctcaagta
                                                                       480
aagtgtaccc catneccaat gtntgctnga ngetetgnee tgenttangt teggteetgg
                                                                       540
gaagacctat caattnaagc tatgtttctg actgcctctt gctccctgna acaancnacc
                                                                       600
cnncnntcca aggggggnc ggccccaat cccccaacc ntnaattnan tttancccn
                                                                       660
cceccnggcc cggcctttta cnancntenn nnacngggna aaacennnge tttncccaac
                                                                       720
nnaatccncc t
                                                                       731
      <210> 20
      <211> 754
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(754)
      <223> n = A, T, C or G
      <400> 20
ttttttttt tttttttt taaaaacccc ctccattnaa tgnaaacttc cgaaattgtc
                                                                        60
caacccctc ntccaaatnn conttteegg gngggggtte caaacccaan ttanntttgg
                                                                       120
annttaaatt aaatnttnnt tggnggnnna anccnaatgt nangaaagtt naacccanta
                                                                       180
tnancttnaa tncctggaaa congtngntt ccaaaaatnt ttaaccctta antccctccg
                                                                       240
aaatngttna nggaaaaccc aanttctcnt aaggttgttt gaaggntnaa tnaaaanccc
                                                                       300
nnecaattgt ttttngecac geetgaatta attggnttee gntgttttee nttaaaanaa
                                                                       360
ggnnancccc ggttantnaa tccccccnnc cccaattata ccgantttt ttngaattgg
                                                                       420
ganccenegg gaattaaegg ggnnnnteee tnttgggggg enggnneeee eeeenteggg
                                                                       480
ggttngggnc aggncnnaat tgtttaaggg tccgaaaaat ccctccnaga aaaaaanctc
                                                                       540
ccaggntgag nntngggttt necececee canggeeet etegnanagt tggggtttgg
                                                                       600
ggggcctggg attituttic ccctntincc tcccccccc ccnggganag aggtingngt
                                                                       660
tttgntenne ggeceeneen aaganetttn eeganttnan ttaaateent geetnggega
                                                                      720
agtccnttgn agggntaaan ggccccctnn cggg
                                                                      754
      <210> 21
      <211> 755
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(755)
      <223> n = A, T, C or G
      <400> 21
atcancecat gacceenaac nngggacene teanceggne nnnenacene eggeenatea
                                                                       60
nngtnagnne actnennttn nateaeneec encenactae geeenenane enacgeneta
                                                                      120
nncanatnce actganngeg egangtngan ngagaaanct nataccanag ncaccanacn
                                                                      180
ccagctgtcc nanaangcct nnnatacngg nnnatccaat ntgnancctc cnaagtattn
                                                                      240
nncnncanat gattttcctn anccgattac contnecece tancecetec cecccaacna
                                                                      300
egaaggenet ggneenaagg nngegnenee eegetagnte eeenneaagt eneneneeta
                                                                      360
aactcancen nattacnege ttentgagta teactceecg aateteacce tactcaacte
                                                                      420
aaaaanatcn gatacaaaat aatncaagcc tgnttatnac actntgactg ggtctctatt
                                                                      480
ttagnggtcc ntnaanchtc ctaatacttc cagtctncct tcnccaattt ccnaanggct
                                                                      540
ctttengaca geatnttttg gttecenntt gggttettan ngaattgeee ttentngaae
                                                                      600
```

```
gggetentet titeettegg tiancetggn tienneegge eagitatiat tiecentiti
                                                                        660
aaattenine entitantit iggentiena aaceeeegge etigaaaaeg geeeeetggt
                                                                        720
aaaaggttgt tttganaaaa tttttgtttt gttcc
                                                                        755
      <210> 22
      <211> 849
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(849)
      <223> n = A,T,C or G
      <400> 22
ttttttttt tttttangtg tngtcgtgca ggtagaggct tactacaant gtgaanacgt
                                                                         60
acgcinggan taangcgacc cgantictag gannencect aaaatcanac igigaagain
                                                                       120
atcetgnnna eggaanggte aceggnngat nntgetaggg tgneenetee cannnenttn
                                                                       180
cataactong nggccctgcc caccacettc ggcggcccng ngnccgggcc cgggtcattn
                                                                       240
gnnttaacen caetnngena neggttteen neecenneng accenggega teeggggtne
                                                                       300
tetgtettee cetgnagnen anaaantggg ceneggneee etttaceeet nnacaageea
                                                                       360
engeenteta neenengeee eccetecant nngggggaet geenannget eegttnetng
                                                                       420
nnacecennn gggtneeteg gttgtegant enacegnang ceanggatte enaaggaagg
                                                                       480
tgegtinttg gedectacce ttegetnegg nncaccette eegacnanga neegeteeeg
                                                                       540
enennegning cetenceteg caacaceege netentengt neggninece ecceaceege
                                                                       600
necetenene ngnegnanen etecneenee gteteannea ceaceeegee eegeeaggee
                                                                       660
nteanceach ggnngaenng nagenennte geneegegen gegneneest egeenengaa
                                                                       720
ctnentengg ceantinege teaancenna enaaacgeeg etgegeggee egnagegnee
                                                                       780
necteenega gteeteeegn etteenaeee angnntteen egaggaeaen nnaeeeegee
                                                                       840
nncangcgg
                                                                       849
      <210> 23
      <211> 872
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(872)
      \langle 223 \rangle n = A,T,C or G
      <400> 23
gegeaaacta tacttegete gnactegtge geetegetne tetttteete egeaaceatg
                                                                        60
tetgaenane eegattngge ngatatenan aagntegane agtecaaaet gantaacaca
                                                                       120
cacachchan aganaaatco notgoottoo anagtanach attgaachng agaaccango
                                                                       180
nggcgaatcg taatnaggcg tgcgccgcca atntgtcncc gtttattntn ccagcntcnc
                                                                       240
ethechaece tachtetten nagetgtenn acecetngth eghaeceece naggteggga
                                                                       300
tegggtttnn nntgacegng ennecette cecentecat nacganeene eegeaceace
                                                                       360
nanngenege neceegnnet ettegeenee etgteetnin eeeetginge etggenengn
                                                                       420
accgcattga ccctcgccnn ctncnngaaa ncgnanacgt ccgggttgnn annancgctg
                                                                       480
tgggnnngcg tetgeneege gtteetteen nennetteea ceatettent taengggtet
                                                                       540
ecnegeente tennneaene cetgggaege intecintge eccectinae tecceccett
                                                                       600
egnegtgnee egneeceaec nteattinea nacgniette acaannneet ggninnetee
                                                                       660
chancingnen gleaneenag ggaagggngg ggnneennig nitgaegitg nggngangte
                                                                       720
egaanantee teneentean enetaceeet egggegnnet etengttnee aaettaneaa
                                                                       780
```

```
ntetececeg ngngemente teagestene conceenet etetgeantg thetetgete
                                                                        840
tnaccnntac gantnttcgn cnccctcttt cc
                                                                        872
      <210> 24
      <211> 815
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (815)
      \langle 223 \rangle n = A,T,C or G
      <400> 24
gcatgcaage ttgagtatte tatagngtea cetaaatane ttggentaat catggtenta
                                                                         60
nctgncttcc tgtgtcaaat gtatacnaan tanatatgaa tctnatntga caaganngta
                                                                        120
tentneatta gtaacaantg tnntgteeat eetgtengan canatteeca tnnattnegn
                                                                        180
cgcattenen geneantatn taatngggaa ntennntnnn neacenneat etatentnee
                                                                        240
genecetgae tggnagagat ggatnantte tnntntgace nacatgttea tettggattn
                                                                        300
aananceece egengneeae eggtingnng enageennie ecaagaeete eigiggaggi
                                                                        360
aacctgcgtc aganncatca aacntgggaa acccgcnncc angtnnaagt ngnnncanan
                                                                        420
gateeegtee aggnttnace atecettene agegeeect tingtgeett anagngnage
                                                                        480
gtgtccnanc cnctcaacat ganacgcgcc agnccanccg caattnggca caatgtcgnc
                                                                        540
gaacccccta gggggantna tncaaanccc caggattgtc cncncangaa atcccncanc
                                                                        600
cccnccctac connetttgg gacngtgacc aantecegga gtnccagtee ggcengnete
                                                                        660
ccccaccggt nnccntgggg gggtgaanct cngnntcanc cngncgaggn ntcgnaagga
                                                                        720
accggneeth ggnegaanng anenntenga agngeenent egtataacce eccetencea
                                                                        780
nccnacngnt agntcccccc engggtnegg aangg
                                                                        815
      <210> 25
      <211> 775
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(775)
      \langle 223 \rangle n = A,T,C or G
ccgagatgtc tcgctccgtg gccttagctg tgctcgcgct actctcttt tctggcctgg
                                                                        60
aggetateca gegtaeteca aagatteagg tttaeteaeg teatecagea gagaatggaa
                                                                       120
agtcaaattt cctgaattgc tatgtgtctg ggtttcatcc atccgacatt gaanttgact
                                                                       180
tactgaagaa tgganagaga attgaaaaag tggagcattc agacttgtct ttcagcaagg
                                                                       240
actggtcttt ctatctcntg tactacactg aattcacccc cactgaaaaa gatgagtatg
                                                                       300
cctgccgtgt gaaccatgtg actttgtcac agcccaagat agttaagtgg gatcgagaca
                                                                       360
tgtaagcagn cnncatggaa gtttgaagat gccgcatttg gattggatga attccaaatt
                                                                       420
ctgcttgctt gcnttttaat antgatatgc ntatacaccc taccctttat gnccccaaat
                                                                       480
tgtaggggtt acatnantgt tcncntngga catgatcttc ctttataant concenttcg
                                                                       540
aattgcccgt cncccngttn ngaatgtttc cnnaaccacg gttggctccc ccaggtcncc
                                                                       600
tcttacggaa gggcctgggc cnctttncaa ggttggggga accnaaaatt tcncttntgc
                                                                       660
conceencea ennicitigng nneneantit ggaaccette enatteecet tggeetenna
                                                                       720
nectinneta anaaaactin aaaneginge naaanniith acticcccc trace
                                                                       775
```

<212> DNA

```
<211> 820
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(820)
       <223> n = A, T, C or G
       <400> 26
 anattantac agtgtaatct tttcccagag gtgtgtanag ggaacggggc ctagaggcat
                                                                         60
 cccanagata nettatanea acagtgettt gaccaagage tgetgggeae attteetgea
                                                                        120
 gaaaaggtgg cggtccccat cactcctcct ctcccatagc catcccagag gggtgagtag
                                                                        180
 ccatcangcc ttcggtggga gggagtcang gaaacaacan accacagagc anacagacca
                                                                        240
 ntgatgacca tgggcgggag cgagcctctt ccctgnaccg gggtggcana nganagccta
                                                                        300
 nctgaggggt cacactataa acgttaacga ccnagatnan cacctgcttc aagtgcaccc
                                                                        360
 ttectacetg aenaccagng acennnaact gengeetggg gacagenetg ggancageta
                                                                        420
 acnnagcact cacctgcccc cccatggccg tncgcntccc tggtcctgnc aagggaagct
                                                                        480
 ccctgttgga attncgggga naccaaggga nccccctcct ccanctgtga aggaaaaann
                                                                        540
gatggaattt thecetteeg geennteece tetteettta caegeeecet nhtactente
                                                                        600
 tecetetnit nicetgnene actitinace commattic ectinatiga teggannein
                                                                        660
 ganattecae thnegeethe entenating naanachaaa nacthtetha eeenggggat
                                                                        720
gggnncctcg ntcatcctct cttttcnct accnccnntt ctttgcctct ccttngatca
780tccaaccntc gntggccntn cccccccnnn tectttnccc
820
       <210> 27
       <211> 818
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc_feature
      <222> (1)...(818)
      <223> n = A, T, C or G
      <400> 27
tetgggtgat ggestettee testeaggga cetetgactg etetgggcca aagaatetet
                                                                        60
tgtttettet eegageeeca ggeageggtg atteageeet geeeaacetg attetgatga
                                                                       120
ctgcggatgc tgtgacggac ccaaggggca aatagggtcc cagggtccag ggaggggcgc
                                                                       180
ctgctgagca cttccgcccc tcaccctgcc cagcccctgc catgagctct gggctgggtc
                                                                       240
teegeeteea gggttetget etteeangea ngeeancaag tggegetggg eeacaetgge
                                                                       300
ttetteetge ceenteeetg getetgante tetgtettee tgteetgtge angeneettg
                                                                       360
gateteagtt teeetenete anngaaetet gtttetgann tetteantta aetnigantt
                                                                       420
tatnacenan tggnetgtne tgtennactt taatgggeen gaeeggetaa teeeteeete
                                                                       480
notocottoc anttennnna acongettne ententetec contancecg congggaane
                                                                       540
etcetttgee etnaceangg geennnaceg ecentnnetn ggggggenng gtnnetnene
                                                                       600
etgntnnece enetenennt incetegies ennennegen nngeannits nengiesenn
                                                                       660
tnnetetten ngtntegnaa ngntenentn tnnnnngnen ngntnntnen tecetetene
                                                                       720
conntgnang toottonnone nengonecee nonnennon nggonotonn tetnenenge
                                                                       780
cccnnccccc ngnattaagg cctccnntct ccggccnc
                                                                       818
      <210> 28
      <211> 731
```

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(731)
      <223> n = A.T.C or G
      <400> 28
aggaagggcg gagggatatt gtangggatt gagggatagg agnataangg gggaggtqtq
                                                                         60
teceaacatg anggtgnngt tetettttga angagggttg ngtttttann cenggtgggt
                                                                        120
gattnaaccc cattgtatgg agnnaaaggn tttnagggat ttttcggctc ttatcagtat
                                                                       180
ntanatteet gtnaategga aaatnatntt tennenggaa aatnttgete eeateegnaa
                                                                       240
attnetceeg ggtagtgeat nttngggggn engecangtt teccaggetg etanaategt
                                                                       300
actaaagntt naagtgggan tncaaatgaa aacctnncac agagnatccn tacccgactg
                                                                       360
tnnnttncct tegecetntg actetgenng ageceaatae eenngngnat gtenecengn
                                                                       420
nnngcgncnc tgaaannnnc tcgnggctnn gancatcang gggtttcgca tcaaaagcnn
                                                                       480
egitteneat naaggeaett ingeeteate caaceneing ecetenneea titingeegie
                                                                       540
nggttenect aegetining encetninth ganattithe eegeeinggg naanceteet
                                                                       600
gnaatgggta gggnctintc tittnaccnn gnggtntact aatcnncinc acgcnincit
                                                                       660
tetenacece ecceetttt caateeeane ggenaatggg gteteecenn eganggggg
                                                                       720
nnncccannc c
                                                                       731
      <210> 29
      <211> 822
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(822)
      \langle 223 \rangle n = A,T,C or G
      <400> 29
actagtccag tgtggtggaa ttccattgtg ttggggncnc ttctatgant antnttagat
                                                                        60
egeteanace teacaneete cenaenange etataangaa nannaataga netginenni
                                                                       120
athintache teatanneet ennnaceeae teeetettaa eeentaetgi geetaingen
                                                                       180
tnnctantct ntgccgcctn cnanccaccn gtgggccnac cncnngnatt ctcnatctcc
                                                                       240
tenecatnin gectananta ngineatace etatacetae necaatgeta nnnetaanen
                                                                       300
tocatnantt annntaacta coactgacht ngactttene athaneteet aatttgaate
                                                                       360
tactetgact cocaengeet annnattage anentecece nachathtet caaccaaate
                                                                       420
ntcaacaacc tatctanctg ttcnccaacc nttncctccg atccccnnac aaccccctc
                                                                       480
ccaaataccc nccacctgac ncctaacccn caccatcccg gcaagccnan ggncatttan
                                                                       540
ccactggaat cacnatngga naaaaaaaac ccnaactctc tancncnnat ctccctaana
                                                                       600
aatnotootn naatttactn noantnocat caanoocacn tgaaacnnaa cocctgtttt
                                                                       660
tanatecett etttegaaaa eenaeeettt annneeeaae etttngggee eeceenetne
                                                                       720
ccnaatgaag gncncccaat cnangaaacg nccntgaaaa ancnaggcna anannntccg
                                                                       780
canatoctat coottantin ggggnccctt ncccngggcc cc
                                                                       822
      <210> 30
      <211> 787
      <212> DNA
      <213> Hcmo sapien
      <220>
     <221> misc_feature
```

```
<222> (1)...(787)
      \langle 223 \rangle n = A,T,C or G
      <400> 30
eggeegeetg etetggeaca tgeeteetga atggeateaa aagtgatgga etgeecattg
                                                                         60
ctagagaaga ccttctctcc tactgtcatt atggagccct gcagactgag ggctcccctt
                                                                        120
gtctgcagga tttgatgtct gaagtcgtgg agtgtggctt ggagctcctc atctacatna
                                                                        180
getggaagee etggaggee tetetegeea geeteeeet teteteeaeg etetecangg
                                                                        240
acaccagggg ctccaggcag cccattattc ccagnangac atggtgtttc tccacgcgga
                                                                        300
cccatggggc ctgnaaggcc agggtctcct ttgacaccat ctctcccgtc ctgcctqqca
                                                                        360
ggccgtggga tccactantt ctanaacggn cgccaccncg gtgggagctc cagctttgt
                                                                        420
tecenttaat gaaggttaat tgenegertg gegtaateat nggteanaac tnttteetgt
                                                                        480
gtgaaattgt ttntcccctc ncnattccnc ncnacatacn aacccggaan cataaagtgt
                                                                        540
taaagcctgg gggtngcctn nngaatnaac tnaactcaat taattgcgtt ggctcatggc
                                                                        600
ccgctttccn ttcnggaaaa ctgtcntccc ctgcnttnnt gaatcggcca ccccccnggg
                                                                        660
aaaageggtt tgenttttng ggggnteett cenetteece cetenetaan eeetnegeet
                                                                        720
cggtcgttnc nggtngcggg gaangggnat nnnctcccnc naagggggng agnnngntat
                                                                        780
ccccaaa
                                                                        787
      <210> 31
      <211> 799
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (799)
      \langle 223 \rangle n = A.T.C or G
      <400> 31
ttttttttt ttttttggc gatgctactg tttaattgca ggaggtgggg gtgtgtgtac
                                                                        60
catgtaccag ggctattaga agcaagaagg aaggagggag ggcagagcgc cctgctgagc
                                                                        120
aacaaaggac teetgeagee ttetetgtet gtetettgge geaggeacat ggggaggeet
                                                                        180
cccgcagggt gggggccacc agtccagggg tgggagcact acanggggtg ggagtgggtg
                                                                        240
gtggctggtn cnaatggcct gncacanatc cctacgattc ttgacacctg gatttcacca
                                                                        300
ggggaccttc tgttctccca nggnaacttc ntnnatctcn aaagaacaca actgtttctt
                                                                        360
cngcanttct ggctgttcat ggaaagcaca ggtgtccnat ttnggctggg acttggtaca
                                                                        420
tatggttccg gcccacctct cccntcnaan aagtaattca ccccccccn ccntctnttq
                                                                       480
cctgggccct taantaccca caccggaact canttantta ttcatcttng gntgggcttg
                                                                       540
ntnatchech cetgaangeg ceaagttgaa aggecaegee gthecenete eecatagnan
                                                                       600
nttttnncnt canctaatgc ccccccnggc aacnatccaa tcccccccn tgggggcccc
                                                                       660
ageccangge eccegneteg ggnnneengn enegnantee ecaggntete ceantengne
                                                                       720
connigence ecegeacgea gaacanaagg ntngageene egeanninnin nggtinenae
                                                                       780
ctcgccccc ccnncgnng
                                                                       799
      <210> 32
      <211> 789
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(789)
```

<223> n = A,T,C or G

```
<400> 32
60
ttttnccnag ggcaggttta ttgacaacct cncgggacac aancaggctg gggacaggac
                                                                     120
ggcaacaggc teeggeggeg geggeggegg ceetacetge ggtaccaaat ntgcageete
                                                                     180
cgctcccgct tgatnttcct ctgcagctgc aggatgccnt aaaacagggc ctcggccntn
                                                                     240
ggtgggcacc ctgggatttn aatttccacg ggcacaatgc ggtcgcancc cctcaccacc
                                                                     300
nattaggaat agtggtntta cccnccnccg ttggcncact ccccntggaa accacttntc
                                                                     360
geggeteegg catetggtet taaacettge aaacnetggg geeetetttt tggttantnt
                                                                     420
ncengecaca ateatnacte agactggene gggetggece caaaaaanen eeccaaaace
                                                                     480
ggnccatgtc ttnncggggt tgctgcnatn tncatcacct cccgggcnca ncaggncaac
                                                                     540
ccaaaagttc ttgnggcccn caaaaaanct ccggggggnc ccagtttcaa caaagtcatc
                                                                     600
ccccttggcc cccaaatcct cccccgntt nctgggtttg ggaacccacg cctctnnctt
                                                                     660
tggnnggcaa gntggntccc ccttcgggcc cccggtgggc ccnnctctaa ngaaaacncc
                                                                     720
ntcctnnnca ccatecece nngnnacgne tancaangna teeettttt tanaaacggg
                                                                     780
cccccncg
                                                                     789
      <210> 33
      <211> 793
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(793)
      <223> n = A,T,C or G
      <400> 33
gacagaacat gttggatggt ggagcacctt tctatacgac ttacaggaca gcagatgggg
                                                                      60
aattcatggc tgttggagca atanaacccc agttctacga gctgctgatc aaaggacttg
                                                                   . 120
gactaaagtc tgatgaactt cccaatcaga tgagcatgga tgattggcca gaaatgaana
                                                                     180
agaagtttgc agatgtattt gcaaagaaga cgaaggcaga gtggtgtcaa atctttgacg
                                                                     240
gcacagatgc ctgtgtgact ccggttctga cttttgagga ggttgttcat catgatcaca
                                                                    300
aceangaacg gggctcgttt atcaccantg aggagcagga cgtgagcccc cgccctgcac
                                                                    360
ctctgctgtt aaacacccca gccatccctt ctttcaaaag ggatccacta cttctagagc
                                                                    420
ggncgccacc gcggtggagc tccagctttt gttcccttta gtgagggtta attgcgcgct
                                                                    480
tggcgtaatc atggtcatan ctgtttcctg tgtgaaattg ttatccgctc acaattccac
                                                                    540
acaacatacg anccggaagc atnaaatttt aaagcctggn ggtngcctaa tgantgaact
                                                                    600
nactcacatt aattggcttt gcgctcactg cccgctttcc agtccggaaa acctgtcctt
                                                                    660
gccagctgcc ntraatgaat enggccaccc eceggggaaa aggengtttg ertnttgggg
                                                                    720
egenetteec getttetege tteetgaant eetteecee ggtetttegg ettgeggena
                                                                    780
acggtatcna cct
                                                                    793
     <210> 34
     <211> 756
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(756)
     <223> n = A,T,C or G
     <400> 34
geegegaeeg geatgtaega geaacteaag ggegagtgga acegtaaaag ceseaatett
                                                                     60
ancaagigeg gggaanaget gggiegaete aagetagite tietggaget caactietig
                                                                    120
```

```
ccaaccacag ggaccaagct gaccaaacag cagctaattc tggcccgtga catactggag
atoggggcc aatggagcat cotacgcaan gacatcccct cottogagcg ctacatggcc
                                                                       240
cagcicaaat gctactacti tgattacaan gagcagctcc ccgagtcagc ctatatgcac
                                                                       300
cagcicitigg gccicaacci ccicticcig cigicccaga accgggiggc iganinccac
                                                                       360
acqqanttgg ancggctgcc tgcccaanga catacanacc aatgtctaca tcnaccacca
                                                                       420
gtgtcctgga gcaatactga tgganggcag ctaccncaaa gtnttcctgg ccnagggtaa
                                                                       480
catcccccgc cgagagetac accttettea ttgacatect getegacact atcagggatg
                                                                       540
aaaatcgcng ggttgctcca gaaaggctnc aanaanatcc ttttcnctga aggcccccgg
                                                                       600
athonotagt notagaatog goodgocato goggtggano otocaacott togtthooot
                                                                       660
ttactgaggg ttnattgccg cccttggcgt tatcatggtc acnccngttn cctgtgttga
                                                                       720
aattnttaac ccccacaat tccacgccna cattng
                                                                       756
      <210> 35
      <211> 834
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(834)
      <223> n = A, T, C or G
      <400> 35
ggggatetet anatenacet gnatgeatgg ttgteggtgt ggtegetgte gatgaanatg
                                                                        60
aacaggatet tgecettgaa getetegget getgtnitta agtigeteag tetgeegtea
                                                                       120
tagtcagaca cnctcttggg caaaaaacan caggatntga gtcttgattt cacctccaat
                                                                       180
aatcttcngg gctgtctgct cggtgaactc gatgacnang ggcagctggt tgtgtntgat
                                                                       240
aaantccanc angttotoot tggtgacctc cccttcaaag ttgttccggc cttcatcaaa
                                                                       300
cttctnnaan angannancc canctttgtc gagctggnat ttgganaaca cgtcactgtt
                                                                      360
ggaaactgat cccaaatggt atgtcatcca tegeetetge tgeetgeaaa aaacttgett
                                                                      420
ggcncaaatc cgactcccn tccttgaaag aagcCnatca caccccctc cctggactcc
                                                                      480
nncaangact ctnccgctnc cccntccnng cagggttggt ggcannccgg gcccntgcgc
                                                                      540
ttetteagee agtteaenat ntteateage ecetetgeea getgttntat teettggggg
                                                                      600
ggaancegte tetecettee tgaannaact ttgacegtng gaatageege genteneent
                                                                      660
acninctggg ccgggttcaa anteceteen tignennien cetegggeca tietggatti
                                                                      720
nccnaactit ttccttcccc cnccccncgg ngtttggntt tttcatnggg ccccaactct
                                                                      780
gethttggcc anteceetgg gggenthtan enceeetht ggteentng ggee
                                                                      834
      <210> 36
      <211> 814
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(814)
      <223> n = A,T,C or G
      <400> 36
eggnegettt cengeegege ecegttteea tgacnaagge teeetteang ttaaataenn
                                                                       60
cctagnaaac attaatgggt tgctctacta atacatcata cnaaccaqta agcctqccca
                                                                      120
naacgccaac tcaggccatt cctaccaaag gaaqaaaggc tqqtctctcc acccctqta
                                                                      180
ggaaaggeet geettgtaag acaccacaat neggetgaat etnaagtett gtgttttaet
                                                                      240
aatggaaaaa aaaaataaac aanaggtttt gttctcatgg ctqcccaccg caqcctqqca
                                                                      300
ctaaaacanc ccagcgctca cttctgcttg ganaaatatt ctttgctctt ttggacatca
                                                                      360
```

```
ggcttgatgg tatcactgcc acntttccac ccagctgggc necettcccc catntttqtc
                                                                       420
antganctgg aaggcetgaa nettagtete caaaagtete ngeecacaag aceggecace
                                                                       480
aggggangtc ntttncagtg gatctgccaa anantacccn tatcatcnnt gaataaaaag
                                                                       540
geceetgaac ganatgette cancancett taagaceeat aateetngaa ceatggtgee
                                                                       600
cttccggtct gatccnaaag gaatgttcct gggtcccant ccctcctttg ttncttacgt
                                                                       660
tgtnttggac contgctngn atnacccaan tganatecec ngaagcacce tncccetgge
                                                                       720
atttganttt entaaattet etgeeetaen netgaaagea enatteeetn ggeneenaan
                                                                       780
ggngaactca agaaggtctn ngaaaaacca cncn
                                                                       814
      <210> 37
      <211> 760
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(760)
      <223> n = A,T,C or G
      <400> 37
gcatgctgct cttcctcaaa gttgttcttg ttgccataac aaccaccata ggtaaagcgg
                                                                        60
gcgcagtgtt cgctgaaggg gttgtagtac cagcgcggga tgctctcctt gcagagtcct
                                                                       120
grgtcrggca ggtccacgca argcccttrg tcactgggga aarggatgcg crggagcrcg
                                                                       180
tenaanceae tegtgtattt treacangea geeteeteeg aagenteegg geagttgggg
                                                                       240
gtgtcgtcac actccactaa actgtcgatn cancagccca ttgctgcagc ggaactgggt
                                                                       300
gggctgacag gtgccagaac acactggatn ggcctttcca tggaagggcc tgggggaaat
                                                                       360
cncctnance caaactgcct ctcaaaggcc accttgcaca ccccgacagg ctagaaatgc
                                                                       420
actittitti ccaaaggtag tigticitgi tgcccaagca ncctccanca aaccaaaanc
                                                                       480
ttgcaaaatc tgctccgtgg gggtcatnnn taccanggtt ggggaaanaa acccqqcnqn
                                                                       540
gancencett gtttgaatge naaggnaata atecteetgt ettgettggg tggaanagea
                                                                       600
caattgaact gttaacnttg ggccgngttc cnctngggtg gtctgaaact aatcaccgtc
                                                                       660
actggaaaaa ggtangtgcc ttccttgaat tcccaaantt cccctngntt tgggtnnttt
                                                                       720
ctcctctncc ctaaaaatcg tnttcccccc ccntanggcg
                                                                       760
      <210> 38
      <211> 724
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(724)
      <223> n = A,T,C or G
      <400> 38
ttttttttt ttttttttt ttttttttt tttttaaaaa ccccctccat tgaatgaaaa
                                                                       60
cttccnaaat tgtccaaccc cctcnnccaa atnnccattt ccgggggggg gttccaaacc
                                                                       120
caaattaatt ttgganttta aattaaatnt tnattngggg aanaanccaa atgtnaagaa
                                                                       180
aatttaaccc attatnaact taaatnootn gaaaccontg gnttocaaaa atttttaacc
                                                                       240
cttaaatccc tccgaaattg ntaanggaaa accaaattcn cctaaggctn tttgaaggtt
                                                                      300
ngatttaaac ccccttnant thttttnacc cnngnctnaa ntatttngnt tccggtgttt
                                                                      360
tectnttaan entnggtaac teeegntaat gaannneet aanceaatta aacegaattt
                                                                      420
tttttgaatt ggaaattcon ngggaattna ccggggtttt tcccntttgg gggccatncc
                                                                      480
cccnctttcg gggtttgggn ntaggttgaa tttttnnang ncccaaaaaa ncccccaana
                                                                      540
aaaaaactcc caagnnttaa tingaatnic ccccttccca ggccttttgg gaaaggnggg
                                                                      600
```

```
tttntggggg congggantt cnttcccccn ttnccncccc cccccnggt aaanggttat
                                                                       660
ngnntttggt ttttgggccc cttnanggac cttccggatn gaaattaaat ccccgggncg
                                                                       720
gccg
                                                                       724
      <210> 39
      <211> 751
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(751)
      <223> n = A,T,C or G
      <400> 39
tttttttttt tttttctttg ctcacattta atttttattt tgattttttt taatgctgca
                                                                        60
caacacaata tttatttcat ttgtttcttt tatttcattt tatttgtttg ctgctgt
                                                                       120
tttatttatt tttactgaaa gtgagaggga acttttgtgg ccttttttcc tttttctgta
                                                                       180
ggccgcctta agctttctaa atttggaaca tctaagcaag ctgaanggaa aagggggttt
                                                                       240
cgcaaaatca ctcgggggaa nggaaaggtt gctttgttaa tcatgcccta tggtgggtga
                                                                       300
ttaactgctt gtacaattac ntttcacttt taattaattg tgctnaangc tttaattana
                                                                       360
cttgggggtt ccctcccan accaacccn ctgacaaaaa gtgccngccc tcaaatnatg
                                                                       420
teceggennt entigaaaca caengengaa ngtteteatt nteceenene cagginaaaa
                                                                       480
tgaagggtta ccatntttaa cnccacctcc acntggcnnn gcctgaatcc tcnaaaancn
                                                                       540
ccctcaanch aattnotning ccccggtonc gentingtor encccggget ccgggaantn
                                                                       600
caccccnga annountnnc naacnaaatt ccgaaaatat tcccnntcnc tcaattcccc
                                                                       660
ennagaetht cetennenan encaatttte ttttnntcae gaacnegnne ennaaaatgn
                                                                       720
nnnnencete enetngteen naateneean e
                                                                       751
      <210> 40
      <211> 753
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(753)
      <223> n = A,T,C or G
      <400> 40
grggtatttt ctgtaagatc aggtgttcct ccctcgtagg tttagaggaa acaccctcat
                                                                       60
agatgaaaac ccccccgaga cagcagcact gcaactgcca agcagccggg gtaggagggg
                                                                       120
egecetatge acagetggge cettgagaca geagggette gatgteagge tegatgteaa
                                                                      180
tggtctggaa gcggcggctg tacctgcgta ggggcacacc gtcagggccc accaggaact
                                                                      240
tctcaaagtt ccaggcaacn tcgttgcgac acaccggaga ccaggtgatn agcttggggt
                                                                      300
cggtcataan cgcggtggcg tcgtcgctgg gagctggcag ggcctcccgc aggaaggcna
                                                                      360
ataaaaggtg cgccccgca ccgttcanct cgcacttctc naanaccatg angttgggct
                                                                      420
cnaacccacc accannecgg actteettga nggaatteec aaatetette gntettggge
                                                                      480
ttctnctgat gccctanctg gttgcccngn atgccaanca nccccaance ccggggtcct
                                                                      540
aaancaccon cotcotentt toatotgggt tnttntcccc ggacontggt toototcaag
                                                                      600
ggancccata tetenacean tacteacent necececent gnnacecane ettetanngn
                                                                      660
ttcccncccg ncctctggcc cntcaaanan gcttncacna cctgggtctg ccttccccc
                                                                      720
thecetatet gnacecenen titigtetean int
                                                                      753
```

```
<211> 341
       <212> DNA
       <213> Homo sapien
       <400> 41
actatateca teacaacaga catgetteat eccatagaet tettgacata getteaaatg
                                                                         60
agtgaaccca tccttgattt atatacatat atgttctcag tattttggga gcctttccac
                                                                        120
ttctttaaac cttgttcatt atgaacactg aaaataggaa tttgtgaaga gttaaaaagt
                                                                        180
tatagcttgt ttacgtagta agtttttgaa gtctacattc aatccagaca cttagttgag
                                                                        240
tgttaaactg tgatttttaa aaaatatcat ttgagaatat tctttcagag gtatttcat
                                                                        300
ttttactttt tgattaattg tgttttatat attagggtag t
                                                                        341
       <210> 42
       <211> 101
       <212> DNA
       <213> Homo sapien
       <400> 42
acttactgaa tttagttctg tgctcttcct tatttagtgt tgtatcataa atactttgat
                                                                         60
gtttcaaaca ttctaaataa ataattttca gtggcttcat a
                                                                        101
      <210> 43
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 43
acatetttgt tacagretaa gatgtgttet taaateacea tteetteetg gteeteacee
                                                                         60
tccagggtgg tctcacactg taattagagc tattgaggag tctttacagc aaattaagat
                                                                        120
tragatgeet tgetaagtet agagttetag agttatgttt cagaaagtet aagaaaceea
                                                                        180
cctcttgaga ggtcagtaaa gaggacttaa tatttcatat ctacaaaatg accacaggat
                                                                        240
tggatacaga acgagagtta teetggataa eteagagetg agtacetgee egggggeege
                                                                        300
tcqaa
                                                                        305
      <210> 44
      <211> 852
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(852)
      \langle 223 \rangle n = A,T,C or G
      <400> 44
acataaatat cagagaaaag tagtctttga aatatttacg tccaggagtt ctttgtttct
                                                                        60
gattatttgg tgtgtgtttt ggtttgtgtc caaagtattg gcagcttcag ttttcatttt
                                                                       120
ctctccatcc tcgggcattc ttcccaaatt tatataccag tcttcgtcca tccacacgct
                                                                       180
ccagaatttc tcttttgtag taatatctca tagctcggct gagcttttca taggtcatgc
                                                                       240
tgctgttgtt cttcttttta ccccatagct gagccactgc ctctgatttc aagaacctga
                                                                       300
agacgccctc agatcggtct tcccatttta ttaatcctgg gttcttgtct gggttcaaga
                                                                       360
ggatgtcgcg gatgaattcc cataagtgag tccctctcgg gttgtgcttt ttggtgtggc
                                                                       420
acttggcagg ggggtcttgc tcctttttca tatcaggtga ctctgcaaca ggaaggtgac
                                                                       480
tggtggttgt catggagatc tgagcccggc agaaagtttt gctgtccaac aaatctactg
                                                                       540
tgctaccata griggigica talaaatagi icingictii ccaggigiic argaiggaag
                                                                       600
```

```
geteagtttg tteagtettg acaatgacat tgtgtgtgga etggaacagg teactactge
                                                                        660
 actggccgtt ccacttcaga tgctgcaagt tgctgtagag gagntgcccc gccgtccctg
                                                                        720
 ccgcccgggt gaactcctgc aaactcatgc tgcaaaggtg ctcgccgttg atgtcgaact
                                                                        780
 cntggaaagg gatacaattg gcatccagct ggttggtgtc caggaggtga tggagccact
                                                                        840
cccacacctg gt
                                                                        852
       <210> 45
       <211> 234
       <212> DNA
       <213> Homo sapien
       <400> 45
acaacagacc cttgctcgct aacgacctca tgctcatcaa gttggacgaa tccgtgtccg
                                                                         60
agtotgacac catcoggage atcagoattg ottogoagtg cootacogog gggaactott
                                                                        120
gestegitte tggctggggt etgetggega aeggeagaat gestacegig etgeagigeg
                                                                        180
tgaacgtgtc ggtggtgtct gaggaggtct gcagtaagct ctatgacccg ctgt
                                                                        234
      <210> 46
      <211> 590
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(590)
      <223> n = A, T, C or G
      <400> 46
actititatt taaatgitta taaggcagat ctatgagaat gatagaaaac atggtgtgta
                                                                        60
atttgatagc aatattttgg agattacaga gttttagtaa ttaccaatta cacagttaaa
                                                                       120
aagaagataa tatattccaa gcanatacaa aatatctaat gaaagatcaa ggcaygaaaa
                                                                       180
tgantataac taattgacaa tggaaaatca attttaatgt gaattgcaca ttatccttta
                                                                       240
aaagetttea aaanaaanaa ttattgeagt etanttaatt caaacagtgt taaatggtat
                                                                       300
caggataaan aactgaaggg canaaagaat taattttcac ttcatgtaac ncacccanat
                                                                       360
ttacaatggc ttaaatgcan ggaaaaagca gtggaagtag ggaagtantc aaggtctttc
                                                                       420
tggtctctaa tctgccttac tctttgggtg tggctttgat cctctggaga cagctgccag
                                                                       480
ggctcctgtt atatccacaa tcccagcagc aagatgaagg gatgaaaaag gacacatgct
                                                                       540
gccttccttt gaggagactt catctcactg gccaacactc agtcacatgt
                                                                       590
      <210> 47
      <211> 774
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(774)
      <223> n = A,T,C or G
      <400> 47
acaagggggc ataatgaagg agtggggana gattttaaag aaggaaaaaa aacgaggccc
                                                                       60
tgaacagaat tttcctgnac aacggggctt caaaataatt ttcttgggga ggttcaagac
                                                                      120
gcttcactgc ttgaaactta aatggatgtg ggacanaatt ttctgtaatg accctgaggg
                                                                      180
cattacagac gggactctgg gaggaaggat aaacagaaag gggacaaagg ctaatcccaa
                                                                      240
aacatcaaag aaaggaaggt ggcgtcatac ctcccagcct acacagttct ccagggctct
                                                                      300
```

```
ceteatecet ggaggacgae agtggaggaa caactgacca tgtccccagg etcctgtgtg
                                                                       360
ctggctcctg gtcttcagcc cccagctctg gaagcccacc ctctgctgat cctgcgtggc
                                                                       420
ccacactcct tgaacacaca tccccaggtt atattcctgg acatggctga acctcctatt
                                                                       480
cctacttccg agatgccttg ctccctgcag cctgtcaaaaa tcccactcac cctccaaacc
                                                                       540
acggcatggg aagcctttct gacttgcctg attactccag catcttggaa caatccctga
                                                                       600
ttccccactc cttagaggca agatagggtg gttaagagta gggctggacc acttggagcc
                                                                       660
aggstgstgg cttcaaattn tggstcattt acgagstatg ggacsttggg caagtnatst
                                                                       720
tcacttctat gggcntcatt ttgttctacc tgcaaaatgg gggataataa tagt
                                                                       774
      <210> 48
      <211> 124
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(124)
      <223> n = A,T,C or G
      <400> 48
canaaattga aattttataa aaaggcattt ttctcttata tccataaaat gatataattt
                                                                        60
tigcaantat anaaatgigi cataaattat aatgiiccii aattacagci caacgcaaci
                                                                       120
tggt
                                                                       124
      <210> 49
      <211> 147
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(147)
      <223> n = A,T,C cr G
      <400> 49
gccgatgcta ctattttatt gcaggaggtg ggggtgtttt tattattctc tcaacagctt
                                                                       60
tgtggctaca ggtggtgtct gactgcatna aaaanttttt tacgggtgat tgcaaaaatt
                                                                      120
ttagggcacc catatcccaa gcantgt
                                                                      147
      <210> 50
      <211> 107
      <212> DNA
      <213> Homo sapien
      <400> 50
acattaaatt aataaaagga ctgttggggt tctgctaaaa cacatggctt gatatattgc
                                                                       60
atggtttgag gttaggagga gttaggcata tgttttggga gaggggt
                                                                      107
      <210 > 51
      <211> 204
      <212> DNA
      <213> Homo sapien
      <400> 51
gtcctaggaa gtctagggga cacacgactc tggggtcacg gggccgacac acttgcacgg
                                                                       60
```

```
cgggaaggaa aggcagagaa gtgacaccgt cagggggaaa tgacagaaag gaaaatcaag
                                                                        120
gccttgcaag gtcagaaagg ggactcaggg cttccaccac agccctgccc cacttggcca
                                                                        180
cctccctttt gggaccagca atqt
                                                                        204
       <210> 52
       <211> 491
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(491)
      <223> n = A, T, C or G
      <400> 52
acaaagataa catttatctt ataacaaaaa tttgatagtt ttaaaggtta gtattgtgta
                                                                         60
gggtattttc caaaagacta aagagataac tcaggtaaaa agttagaaat gtataaaaca
                                                                        120
ccatcagaca ggtttttaaa aaacaacata ttacaaaatt agacaatcat ccttaaaaaa
                                                                        180
aaaacttctt gtatcaattt cttttgttca aaatgactga cttaantatt tttaaatatt
                                                                        240
tcanaaacac ttcctcaaaa attttcaana tggtagcttt canatgtncc ctcagtccca
                                                                        300
atgttgctca gataaataaa tctcgtgaga acttaccacc caccacaagc tttctggggc
                                                                        360
atgcaacagt gtottttctt tnotttttct tttttttttt ttacaggcac agaaactcat
                                                                        420
caattttatt tggataacaa agggtctcca aattatattg aaaaataaat ccaagttaat
                                                                        480
atcactcttg t
                                                                        491
      <210> 53
      <211> 484
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(484)
      <223> n = A,T,C or G
      <400> 53
acataattta gcagggctaa ttaccataag atgctattta ttaanaggtn tatgatctga
                                                                        6.0
grattaacag ttgctgaagt ttggtatttt tatgcagcat tttctttttg ctttgataac
                                                                       120
actacagaac ccttaaggac actgaaaatt agtaagtaaa gttcagaaac attagctgct
                                                                       180
caatcaaatc tctacataac actatagtaa ttaaaacgtt aaaaaaaagt gttgaaatct
                                                                       240
gcactagtat anaccgctcc tgtcaggata anactgcttt ggaacagaaa gggaaaaanc
                                                                       300
agetttgant ttetttgtge tgatangagg aaaggetgaa ttacettgtt geeteteeet
                                                                       360
aatgattggc aggtcnggta aatnccaaaa catattccaa ctcaacactt cttttccncg
                                                                       420
tancttgant ctgtgtattc caggancagg cggatggaat gggccagccc ncggatgttc
                                                                       480
cant
                                                                       484
      <210> 54
      <211> 151
      <212> DNA
      <213> Homo sapien
      <400> 54
actaaacctc gtgcttgtga actccataca gaaaacggtg ccatccctga acacggctgg
                                                                        60
ccactgggta tactgctgac aaccgcaaca acaaaaacac aaatccttgg cactggctag
                                                                       120
tctatgtcct ctcaagtgcc tttttgtttg t
                                                                       151
```

<210> 55	
<211> 91	
<212> DNA	
<213> Homo sapien	
<400> 55	
acctggcttg tctccgggtg gttcccggcg cccccacgg tccccagaac ggacactttc	60
gccctccagt ggatactcga gccaaagtgg t	91
<210> 56	
<211> 133	
<212> DNA	
<213> Homo sapien	
<400> 56	
ggcggatgtg cgttggttat atacaaatat gtcattttat gtaagggact tgagtatact	60
tggatttttg gtatctgtgg gttgggggga cggtccagga accaataccc catggatacc	120
aagggacaac tgt	133
<210> 57	
<211> 147	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(147)	
<223> n = A,T,C or G	
<400> 57	
actotggaga acctgageog otgotoogoo totgggatga ggtgatgcan gongtggego	60
gactgggagc tgagcccttc cctttgcgcc tgcctcagag gattgttgcc gacntgcana	120
tctcantggg Ctggatncat gcagggt	147
<210> 58	
(211) 190	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(198)	
$\langle 223 \rangle$ n = A,T,C or G	
<400> 58	
acagggatat aggtitnaag tratiginat igtaaaatac atigaattit cigiatacic	60
tgattacata catttatcct ttaaaaaaaga tgtaaatctt aatttttatg ccatctatta	120
atttaccaat gagttacctt gtaaatgaga agtcatgata gcactgaatt ttaactagtt	180
ttgacttcta agtttggt	198
<210> 59	
<211> 330	
<212> DNA	
<213> Homo sapien	

<400> 59	
acaacaaatg ggttgtgagg aagtcttatc agcaaaactg gtgatggcta ctgaaaagat ccattgaaaa ttatcattaa tgatttaaa tgacaagtta tcaaaaactc actcaatttt cacctgtgct agcttgctaa aatgggagtt aactctagag caaatatagt atcttctgaa tacagtcaat aaatgacaaa gccagggcct acaggtggtt tccagacttt ccagacccag cagaaggaat ctatttatc acatggatct ccgtctgtgc tcaaaatacc taatgatatt tttcgtcttt attggacttc tttgaagagt	60 120 180 240 300 330
<210> 60 <211> 175 <212> DNA <213> Homo sapien	
<pre><400> 60 accgtgggtg ccttctacat tcctgacggc tccttcacca acatctggtt ctacttcggc gtcgtgggct ccttcctctt catcctcatc cagctggtgc tgctcatcga ctttgcgcac tcctggaacc agcggtggct gggcaaggcc gaggagtgcg attcccgtgc ctggt <210> 61 <211> 154</pre>	60 120 175
<212> DNA <213> Homo sapien <400> 61	
accecaettt teeteetgtg ageagtetgg actteteaet getacatgat gagggtgagt ggttgttget etteaaeagt ateeteeest tteeggatet getgageegg acageagtge tggaetgeae ageeeegggg etceaeattg etgt	60 120 154
<210> 62 <211> 30 <212> DNA <213> Homo sapien	
<400> 62 cgctcgagcc ctatagtgag tcgtattaga	30
<210> 63 <211> 89 <212> DNA <213> Homo sapien	30
<400> 63 acaagtcatt teageaceet ttgetettea aaaetgacea tettttatat ttaatgette etgtatgaat aaaaatggtt atgteaagt	60 89
<210> 64 <211> 97 <212> DNA <213> Homo sapien	
<400> 64	
accggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa ggttctgcag aatcagtgca tccaggattg gtccttggat ctggggt	60 97

```
<210> 65
       <211> 377
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (377)
       <223> n = A,T,C or G
       <400> 65
acaacaanaa nteeettett taggeeactg atggaaacet ggaaceeet tttgatggea
                                                                         60
gcatggcgtc ctaggccttg acacagcggc tggggtttgg gctntcccaa accgcacacc
                                                                        120
ccaaccetgg tetacecaca nttetggeta tgggetgtet etgccaetga acateagggt
                                                                        180
tcggtcataa natgaaatcc caanggggac agaggtcagt agaggaagct caatgagaaa
                                                                        240
ggtgctgttt gctcagccag aaaacagctg cctggcattc gccgctgaac tatgaacccg
                                                                        300
tgggggtgaa ctacccccan gaggaatcat gcctgggcga tgcaanggtg ccaacaggag
                                                                        360
gggcgggagg agcatgt
                                                                       377
      <210> 66
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 66
acgcctttcc ctcagaattc agggaagaga ctgtcgcctg ccttcctccg ttgttgcgtg
                                                                        60
agaacccgtg tgccccttcc caccatatcc accctcgctc catctttgaa ctcaaacacg
                                                                       120
aggaactaac tgcaccctgg tecteteece agtececagt teacceteca teceteacet
                                                                       180
tectecacte taagggatat caacactgee cageacaggg geeetgaatt tatgeggttt
                                                                       240
ttatatattt tttaataaga tgcactttat gtcatttttt aataaagtct gaagaattac
                                                                       300
tgttt
                                                                       305
      <210> 67
      <211> 385
      <212> DNA
      <213> Homo sapien
      <400> 67
actacacaca ctccacttgc ccttgtgaga cactttgtcc cagcacttta ggaatgctga
                                                                        60
ggtcggacca gccacatctc atgtgcaaga ttgcccagca gacatcaggt ctgagagttc
                                                                       120
cccttttaaa aaaggggact tgcttaaaaa agaagtctag ccacgattgt gtagagcagc
                                                                       180
tgtgctgtgc tggagattca cttttgagag agttctcctc tgagacctga tctttagagg
                                                                       240
ctgggcagtc ttgcacatga gatggggctg gtctgatctc agcactcctt agtctgcttg
                                                                       300
ceteteccag ggececagee tggecacace tgettacagg geacteteag atgeceatae
                                                                       360
catagittci gigciagigg accgi
                                                                       385
      <210> 68
      <211> 73
      <212> DNA
      <213> Homo sapien
      <400> 68
acttaaccag atatatttt accccagatg gggatattct ttgtaaaaaa tgaaaataaa
                                                                       60
gtttttttaa tgg
                                                                       73
```

```
<210> 69
      <211> 536
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(536)
      <223> n = A,T,C or G
      <400> 69
actagrccag tgrggtggaa trccarrgrg trgggggcrc tcacccrccr crccrgcagc
                                                                        60
tccagctttg tgctctgcct ctgaggagac catggcccag catctgagta ccctgctgct
                                                                       120
cctgctggcc accctagctg tggccctggc ctggagcccc aaggaggagg ataggataat
                                                                       180
cccgggtggc atctataacg cagacctcaa tgatgagtgg gtacagcgtg cccttcactt
                                                                       240
cgccatcage gagtataaca aggccaccaa agatgactae tacagaegte egetgegggt
                                                                       300
actaagagcc aggcaacaga ccgttggggg ggtgaattac ttcttcgacg tagaggtggg
                                                                       360
ccgaaccata tgtaccaagt cccagcccaa cttggacacc tgtgccttcc atgaacagcc
                                                                       420
agaactgcag aagaaacagt tgtgctcttt cgagatctac gaagttccct ggggagaaca
                                                                       480
gaangteeet gggtgaaate caggtgteaa gaaateetan ggatetgttg ceagge
                                                                       536
      <210> 70
      <211> 477
      <212> DNA
      <213> Homo sapien
     <400> 70
atgaccccta acaggggccc tctcagccct cctaatgacc tccggcctag ccatgtgatt
                                                                        60 .
teacttecae tecataaege teeteataet aggeetaeta accaacaea taaccatata
                                                                       120
ccaatgatgg cgcgatgtaa cacgagaaag cacataccaa ggccaccaca caccacctgt
                                                                       180
ccaaaaaaggc cttcgatacg ggataatcct atttattacc tcagaagttt ttttcttcgc
                                                                       240
agggattttt ctgagccttt taccactcca gcctagcccc taccccccaa ctaggagggc
                                                                       300
actggccccc aacaggcatc accccgctaa atcccctaga agtcccactc ctaaacacat
                                                                       360
ccgtattact cgcatcagga gtatcaatca cctgagctca ccatagtcta atagaaaaca
                                                                       420
accgaaacca aattattcaa agcactgett attacaattt tactgggtet ctatttt
                                                                       477
      <210> 71
      <211> 533
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(533)
      \langle 223 \rangle n = A,T,C or G
      <400> 71
agagctatag gtacagtgtg atctcagctt tgcaaacaca ttttctacat agatagtact
                                                                        60
aggtattaat agatatgtaa agaaagaaat cacaccatta ataatggtaa gattggttta
                                                                       120
tgtgatttta gtggtatttt tggcaccctt atatatgttt tccaaacttt cagcagtgat
                                                                       180
attatttcca taacttaaaa agtgagtttg aaaaagaaaa tctccagcaa gcatctcatt
                                                                       240
taaataaagg tttgtcatct ttaaaaaatac agcaatatgt gactttttaa aaaagctgtc
                                                                       300
aaataggtgt gaccctacta ataattatta gaaatacatt taaaaaacatc gagtacctca
                                                                       360
agtcagtttg ccttgaaaaa tatcaaatat aactcttaga gaaatgtaca taaaagaatg
                                                                       420
cttcgtaatt ttggagtang aggttccctc ctcaattttg tatttttaaa aagtacatgg
                                                                       480
taaaaaaaaa aattcacaac agtatataag gctgtaaaat gaagaattct gcc
                                                                       533
```

```
<210> 72
      <211> 511
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(511)
      <223> n = A,T,C or G
      <400> 72
tattacggaa aaacacacca cataattcaa ctancaaaga anactgcttc agggcgtgta
                                                                      60
aaatgaaagg cttccaggca gttatctgat taaagaacac taaaagaggg acaaggctaa
                                                                     120
aagccgcagg atgtctacac tatancaggc gctatttggg ttggctggag gagctgtgga
                                                                     180
aaacatggan agattggtgc tgganatcgc cgtggctatt cctcattgtt attacanagt
                                                                     240
gaggttctst gtgtgcccac tggtttgaaa accgttctnc aataatgata gaatagtaca
                                                                     300
cacatgagaa ctgaaatggc ccaaacccag aaagaaagcc caactagatc ctcagaanac
                                                                     360
gettetaggg acaataaccg atgaagaaaa gatggcetee ttgtgccccc gtctgttatg
                                                                     420
atttctctcc attgcagcna naaacccgtt cttctaagca aacncaggtg atgatggcna
                                                                     480
aaatacaccc cctcttgaag naccnggagg a
                                                                     511
      <210> 73
      <211> 499
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(499)
      <223> n = A,T,C or G
      <400> 73
cagtgccage actggtgcca gtaccagtac caataacagt gccagtgcca gtgccagcac
                                                                     60
caginging ticaging gigcoagoot gaconocact cicacatity gooteticge
                                                                    120
tggccttggt ggagctggtg ccagcaccag tggcagctct ggtgcctgtg gtttctccta
                                                                    180
caagtgagat tttagatatt gttaatcctg ccagtctttc tcttcaagcc agggtgcatc
                                                                    240
ctcagaaacc tactcaacac agcactctag gcagccacta tcaatcaatt gaagttgaca
                                                                    300
360
antetagagg geoegittaa accegetgat cageetegae tgtgeettet antigeoage
                                                                    420
catcigitgi tigococico coognigoci toctigadoo iggaaagigo cacicocaci
                                                                    480
gtcctttcct aantaaaat
                                                                    499
      <210> 74
      <211> 537
      <212> DNA
     <213> Homo sapien
      <220>
     <221> misc_feature
     <222> (1)...(537)
     <223> n = A, T, C or G
      <400> 74
tttcatagga gaacacactg aggagatact tgaagaattt ggattcagcc gcgaagagat
                                                                     60
```

```
ttatcagctt aactcagata aaatcattga aagtaataag gtaaaagcta gtctctaact
tccaggccca cggctcaagt gaatttgaat actgcattta cagtgtagag taacacataa
                                                                        180
cattgtatgc atggaaacat ggaggaacag tattacagtg tcctaccact ctaatcaaga
                                                                        240
aaagaattac agactctgat tctacagtga tgattgaatt ctaaaaaatgg taatcattag
                                                                        300
ggcttttgat ttataanact ttgggtactt atactaaatt atggtagtta tactgccttc
                                                                        360
cagtttgctt gatatatttg ttgatattaa gattcttgac ttatattttg aatgggttct
                                                                        420
actgaaaaan gaatgatata ttcttgaaga catcgatata catttattta cactcttgat
                                                                        480
tctacaatgt agaaaatgaa ggaaatgccc caaattgtat ggtgataaaa gtcccgt
                                                                        537
       <210> 75
      <211> 467
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(467)
      <223> n = A, T, C or G
      <400> 75
caaanacaat tgttcaaaag atgcaaatga tacactactg ctgcagctca caaacacctc
                                                                        60
tgcatattac acgtacctcc tcctgctcct caagtagtgt ggtctatttt gccatcatca
                                                                       120
cctgctgtct gcttagaaga acggctttct gctgcaangg agagaaatca taacagacgg
                                                                       180
tggcacaagg aggccatctt ttcctcatcg gttattgtcc ctagaagcgt cttctgagga
                                                                       240
tetagtiggg cittetitet gggittiggge cattleanti eteatgtigtig tactatteta
                                                                       300
tcattattgt ataacggttt tcaaaccngt gggcacncag agaacctcac tctgtaataa
                                                                       360
caatgaggaa tagccacggt gatctccagc accaaatctc tccatgttnt tccagagctc
                                                                       420
ctccagccaa cccaaatagc cgctgctatn gtgtagaaca tccctgn
                                                                       467
      <210> 76
      <211> 400
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(400)
      <223> n = A,T,C or G
      <400> 76
aagctgacag cattcgggcc gagatgtctc gctccgtggc cttagctgtg ctcgcgctac
                                                                        60
tototottto tggcctggag gctatccagc gtactccaaa gattcaggtt tactcacgtc
                                                                       120
atccagcaga gaatggaaag tcaaatttcc tgaattgcta tgtgtctggg tttcatccat
                                                                       180
ccgacattga agttgactta ctgaagaatg gagagagaat tgaaaaagtg gagcattcag
                                                                       240
actigiciti cagcaaggac iggicitici atcicitgia ciacacigaa iicaccccca
                                                                       300
ctgaaaaaga tgagtatgcc tgccgtgtga accatgtgac tttgtcacag cccaagatng
                                                                       360
ttnagtggga tcganacatg taagcagcan catgggaggt
                                                                       400
      <210> 77
      <211> 248
      <212> DNA
      <213> Homo sapien
      <400> 77
ctggagtgcc ttggtgtttc.aagcccctgc aggaagcaga atgcaccttc tgaggcacct
                                                                        60
```

```
ccagctgccc cggcggggga tgcgaggctc ggagcaccct tgcccggctg tgattgctgc
                                                                        120
caggiactist teateteage tittetistee ettiseteee giscaageget tetisetgaaa
                                                                        180
gttcatatct ggagcctgat gtcttaacga ataaaggtcc catgctccac ccgaaaaaaa
                                                                        240
aaaaaaaa
                                                                        248
      <210> 78
      <211> 201
      <212> DNA
      <213> Homo sapien
      <400> 78
actagtccag tgtggtggaa ttccattgtg ttgggcccaa cacaatggct acctttaaca
                                                                         60
tcacccagac cccgccctgc ccgtgcccca cgctgctgct aacgacagta tgatgcttac
                                                                        120
totgotacto ggaaactatt titatgtaat taatgtatgo titottgttt ataaatgoot
                                                                        180
gatttaaaaa aaaaaaaaa a
                                                                        201
      <210> 79
      <211> 552
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(552)
      \langle 223 \rangle n = A,T,C or G
      <400> 79
teettttgtt aggtttttga gacaaceeta gacetaaaet gtgtcacaga ettetgaatg
                                                                         60
tttaggcagt gctagtaatt tcctcgtaat gattctgtta ttactttcct attctttatt
                                                                        120
cctctttctt ctgaagatta atgaagttga aaattgaggt ggataaatac aaaaaggtag
                                                                        180
tgtgatagta taagtatcta agtgcagatg aaagtgtgtt atatatatcc attcaaaatt
                                                                        240
atgcaagtta gtaattactc agggttaact aaattacttt aatatgctgt tgaacctact
                                                                        300
ctgttccttg gctagaaaaa attataaaca ggactttgtt agtttgggaa gccaaattga
                                                                        360
taatattota tgttotaaaa gttgggotat acataaanta tnaagaaata tggaatttta
                                                                        420
ttcccaggaa tatggggttc atttatgaat antacccggg anagaagttt tgantnaaac
                                                                        480
cngttttggt taatacgtta atatgtcctn aatnaacaag gcntgactta tttccaaaaa
                                                                        540
aaaaaaaaa aa
                                                                       552
      <210> 80
      <211> 476
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(476)
      <223> n = A.T.C or G
      <400> 80
acagggattt gagatgctaa ggccccagag atcgtttgat ccaaccctct tattttcaga
                                                                        60
ggggaaaatg gggcctagaa gttacagagc atctagctgg tgcgctggca cccctggcct
                                                                       120
cacacagact coogagtage tgggactaca ggcacacagt cactgaagca ggccctgttt
                                                                       180
gcaattcacg ttgccacctc caacttaaac attcttcata tgtgatgtcc ttagtcacta
                                                                       240
aggitaaaci ttcccaccca gaaaaggcaa citagataaa atcitagagi acittcatac
                                                                       300
tettetaagt cetettecag ceteactitg agteeteett gggggttgat aggaantnic
                                                                       360
```

```
tottggcttt ctcaataaaa tototatooa totoatgttt aatttggtac gontaaaaat
                                                                         420
 gctgaaaaaa ttaaaatgtt ctggtttcnc tttaaaaaaa aaaaaaaaa aaaaaa
                                                                         476
       <210> 81
       <211> 232
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (232)
      \langle 223 \rangle n = A,T,C or G
       <400> 81
tttttttttg tatgccntcn ctgtggngtt attgttgctg ccaccctgga ggagcccagt
                                                                          60
trottetgta tetttettt etgggggate treetggete tgeceetcea treecageet
                                                                         120
ctcatcucca tottgcactt ttgctagggt tggaggcgct ttcctggtag cccctcagag
                                                                         180
actcagtcag cgggaataag tcctaggggt ggggggtgtg gcaagccggc ct
                                                                         232
      <210> 82
      <211> 383
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (383)
      <223> n = A,T,C or G
      <400> 82
aggcgggagc agaagctaaa gccaaagccc aagaagagtg gcagtgccag cactggtgcc
                                                                         60
agtaccagta ccaataacat gccagtgcca gtgccagcac cagtggtggc ttcagtgctg
                                                                        120
gtgccagcct gaccgccact ctcacatttg ggctcttcgc tggccttggt ggagctggtg
                                                                        180
ccagcaccag tggcagctct ggtgcctgtg gtttctccta caagtgagat tttagatatt
                                                                        240
gttaatcetg ccagtettte tetteaagee agggtgeate etcagaaace tacteaacae
                                                                        300
agcactcing gcagccacta tcaatcaatt gaagttgaca cictgcatta aatctatitg
                                                                        360
CCatttcaaa aaaaaaaaaa aaa
                                                                        383
      <210> 83
      <211> 494
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(494)
      \langle 223 \rangle n = A,T,C or G
      <400> 83
accgaattgg gaccgctggc ttataagcga tcatgtcctc cagtattacc tcaacgagca
                                                                         60
gggagatcga gtctatacgc tgaagaaatt tgacccgatg ggacaacaga cctgctcagc
                                                                        120
ccatcctgct cggttctccc cagatgacaa atactctcga caccgaatca ccatcaagaa
                                                                        180
acgetteaag gtgeteatga eccageaace gegeeetgte etetgagggt eettaaactg
                                                                        240
atgletttle tgecacctgt taccectegg agacteegta accaaactet teggactgtg
                                                                        300
agecetgatg cettititgee agecatacie titiggeniee agietetegi ggegatigat
                                                                        360
```

```
tatgettgtg tgaggcaatc atggtggcat cacccatnaa gggaacacat ttgantttt
                                                                        420
tttcncatat tttaaattac naccagaata nttcagaata aatgaattga aaaactctta
                                                                        480
aaaaaaaaa aaaa
                                                                        494
      <210> 84
      <211> 380
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (380)
      <223> n = A,T,C or G
      <400> 84
getggtagee tatggegtgg ceaeggangg geteetgagg caegggaeag tgaetteeea
                                                                        60
agtatectge geogegicit ctacegicee tacetgeaga tettegggea gatteeceag
                                                                        120
gaggacatgg acgtggccct catggagcac agcaactgct cgtcggagcc cggcttctgg
                                                                        180
gcacaccete etggggecca ggegggeace tgegtetece agtatgecaa etggetggtg
                                                                        240
gtgctgctcc tcgtcatctt cctgctcgtg gccaacatcc tgctggtcac ttgctcattg
                                                                        300
ccatgttcag ttacacattc ggcaaagtac agggcaacag cnatctctac tgggaaggcc
                                                                        360
agcgttnccg cctcatccgg
                                                                        380
      <210> 85°
      <211> 481
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (481)
      <223> n = A, T, C or G
      <400> 85
gagttagete etecacaace ttgatgaggt egtetgeagt ggeetetege tteatacege
                                                                        60
tnccatcgtc atactgtagg tttgccacca cctcctgcat cttggggcgg ctaatatcca
                                                                       120
ggaaactctc aatcaagtca ccgtcnatna aacctgtggc tggttctgtc ttccgctcgg
                                                                       180
tgtgaaagga tctccagaag gagtgctcga tcttccccac acttttgatg actttattga
                                                                       240
gtcgattctg catgtccagc aggaggttgt accagctctc tgacagtgag gtcaccagcc
                                                                       300
ctatcatgcc nttgaacgtg ccgaagaaca ccgagccttg tgtggggggt gnagtctcac
                                                                       360
ccagattctg cattaccaga nagccgtggc aaaaganatt gacaactcgc ccaggnngaa
                                                                       420
aaagaacacc teetggaagt getngeeget eetegteent tggtggnnge gentneettt
                                                                       480
                                                                       481
      <210> 86
      <211> 472
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1) ... (472)
     <223> n = A, T, C or G
     <400> 86
```

```
aacatcttcc tgtataatgc tgtgtaatat cgatccgatn ttgtctgctg agaattcatt
                                                                         60
acttggaaaa gcaacttnaa gcctggacac tggtattaaa attcacaata tgcaacactt
                                                                        120
taaacagtgt gtcaatctgc tcccttactt tgtcatcacc agtctgggaa taagggtatg
                                                                       180
ccctattcac acctgttaaa agggcgctaa gcatttttga ttcaacatct ttttttttga
                                                                       240
cacaagtccg aaaaaagcaa aagtaaacag ttnttaattt gttagccaat tcactttctt
                                                                       300
catgggacag agccatttga tttaaaaaagc aaattgcata atattgagct ttgggagctg
                                                                       360
atatntgage ggaagantag cetttetact teaceagaca caacteettt catattggga
                                                                       420
tgttnacnaa agttatgtct cttacagatg ggatgctttt gtggcaattc tg
                                                                       472
      <210> 87
      <211> 413
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(413)
      <223> n = A,T,C or G
      <400> 87
agaaaccagt atctctnaaa acaacctctc ataccttgtg gacctaattt tgtgtgcgtg
                                                                        60
tgtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg
                                                                       120
cctctttggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct
                                                                       180
ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt
                                                                       240
tttattcgac atgaaggaaa tttccagatn acaacactna caaactctcc cttgactagg
                                                                       300
ggggacaaag aaaagcanaa ctgaacatna gaaacaattn cctggtgaga aattncataa
                                                                       360
acagaaattg ggtngtatat tgaaananng catcattnaa acgttttttt ttt
                                                                       413
      <210> 88
      <211> 448
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(448)
      <223> n = A,T,C or G
      <400> 88
cgcagcgggt cotototato tagotocago ototogootg coccactoco cgcgtoccgc
                                                                        60
gtcctagccn accatggccg ggcccctgcg cgccccgctg ctcctgctgg ccatcctggc
                                                                       120
cgtggccctg gccgtgagcc ccgcggccgg ctccagtccc ggcaagccgc cgcgcctggt
                                                                       180
gggaggccca tggaccccgc gtggaagaag aaggtgtgcg gcgtgcactg gactttgccg
                                                                       240
teggenanta caacaaacce geaacnactt ttacenagen egegetgeag gttgtgeege
                                                                       300
cccaancaaa ttgttactng gggtaantaa ttcttggaag ttgaacctgg gccaaacnng
                                                                       360
tttaccagaa ccnagccaat tngaacaatt ncccctccat aacagcccct tttaaaaaagg
                                                                       420
gaancantcc tgntcttttc caaatttt
                                                                       448
      <210> 89
      <211> 463
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
```

```
<222> (1)...(463)
      <223> n = A,T,C or G
      <400> 89
gaattttgtg cactggccac tgtgatggaa ccattgggcc aggatgcttt gagtttatca
                                                                        60
gtagtgattc tgccaaagtt ggtgttgtaa catgagtatg taaaatgtca aaaaattagc
                                                                       120
agaggtctag gtctgcatat cagcagacag tttgtccgtg tattttgtag ccttgaaqtt
                                                                       180
ctcagtgaca agttnnttct gatgcgaagt tctnattcca gtgttttagt cctttgcatc
                                                                       240
tttnatgttn agacttgcct ctntnaaatt gcttttgtnt tctgcaggta ctatctgtgg
                                                                       300
tttaacaaaa tagaannact tctctgcttn gaanatttga atatcttaca tctnaaaatn
                                                                       360
aattetetee ccatannaaa acceangeee ttggganaat ttgaaaaang gnteettenn
                                                                       420
aattonnana anttoagntn toatacaaca naacnggano coc
                                                                       463
      <210> 90
      <211> 400
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(400)
      <223> n = A,T,C or G
      <400> 90
agggattgaa ggtctnttnt actgtcggac tgttcancca ccaactctac aagttgctgt
                                                                        60
cttccactca ctgtctgtaa gcntnttaac ccagactgta tcttcataaa tagaacaaat
                                                                       120
terteaceag teacatette taggacettt ttggatteag ttagtataag etetteeact
                                                                       180
tcctttgtta agacttcatc tggtaaagtc ttaagttttg tagaaaggaa tttaattgct
                                                                       240
cgttctctaa caatgtcctc tccttgaagt atttggctga acaacccacc tnaagtccct
                                                                       300
ttgtgcatcc attttaaata tacttaatag ggcattggtn cactaggtta aattctgcaa
                                                                       360
gagtcatctg tctgcaaaag ttgcgttagt atatctgcca
                                                                       400
      <210> 91
      <211> 480
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(480)
      <223> n = A.T.C or G
      <400> 91
gagctcggat ccaataatct ttgtctgagg gcagcacaca tatncagtgc catggnaact
                                                                       60
ggtctacccc acatgggagc agcatgccgt agntatataa ggtcattccc tgagtcagac
                                                                       120
atgeetettt gaetaeegtg tgeeagtget ggtgattete acaeacetee nneegetett
                                                                       180
tgtggaaaaa ctggcacttg nctggaacta gcaagacatc acttacaaat tcacccacga
                                                                       240
gacacttgaa aggtgtaaca aagcgactct tgcattgctt tttgtccctc cggcaccagt
                                                                       300
tgtcaatact aacccgctgg tttgcctcca tcacatttgt gatctgtagc tctggataca
                                                                       360
tctcctgaca gtactgaaga acttcttctt ttgtttcaaa agcaactctt ggtgcctgtt
                                                                       420
ngatcaggtt cccatttccc agtccgaatg ttcacatggc atainttact tcccacaaaa
                                                                       480
      <210> 92
      <211> 477
```

<212> DNA

```
<213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(477)
       <223> n = A, T, C or G
       <400> 92
atacagecea nateceacea egaagatgeg ettgttgaet gagaacetga tgeggteact
                                                                        60
ggtcccgctg tagccccagc gactctccac ctgctggaag cggttgatgc tgcactcctt
                                                                        120
eccaegeagg cageageggg geeggteaat gaacteeact egtggettgg ggttgaeggt
                                                                        180
taantgcagg aagaggetga ceacetegeg gteeaceagg atgeeegact gtgegggace
                                                                        240
tgcagcgaaa ctcctcgatg gtcatgagcg ggaagcgaat gangcccagg gccttgccca
                                                                        300
gaacetteeg cetgttetet ggegteacet geagetgetg cegetnacae teggeetegg
                                                                        360
accageggae aaacggegtt gaacageege aceteaegga tgeecantgt gtegegetee
                                                                        420
aggaacggcn ccagcgtgtc caggtcaatg tcggtgaanc ctccgcgggt aatggcg
                                                                        477
      <210> 93
      <211> 377
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (377)
      <223> n = A,T,C or G
      <400> 93
gaacggctgg accitgcctc gcattgtgct gctggcagga ataccitggc aagcagctcc
                                                                        60
agteegagea geeccagace getgeegeee gaagetaage etgeetetgg cetteecete
                                                                      120
egecteaatg cagaaccant agtgggagea etgtgtttag agttaagagt gaacactgtn
                                                                       180
tgattttact tgggaatttc ctctgttata tagcttttcc caatgctaat ttccaaacaa
                                                                       240
caacaacaaa ataacatgtt tgcctgttna gttgtataaa agtangtgat tctgtatnta
                                                                       300
aagaaaatat tactgttaca tatactgctt gcaanttctg tatttattgg tnctctggaa
                                                                      360
ataaatatat tattaaa
                                                                       377
      <210> 94
      <211> 495
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(495)
      <223> n = A, T, C or G
      <400> 94
ccctttgagg ggttagggtc cagttcccag tggaagaaac aggccaggag aantgcgtgc
                                                                        60
cgagctgang cagatttccc acagtgaccc cagagccctg ggctatagtc tctgacccct
                                                                       120
ccaaggaaag accaccttct ggggacatgg gctggagggc aggacctaga ggcaccaagg
                                                                       180
gaaggcccca ttccggggct gttccccgag gaggaaggga aggggctctg tgtgccccc
                                                                       240
acgaggaana ggccctgant cctgggatca nacacccctt cacgtgtatc cccacacaaa
                                                                       300
tgcaagetea ccaaggteee eteteagtee ettecetaea eeetgaaegg neaetggeee
                                                                      360
acacceaece agancaneea ecegecatgg ggaatgtnet caaggaateg engggeaacg
                                                                      420
tggactctng tcccnnaagg gggcagaatc tccaatagan gganngaacc cttgctnana
                                                                      480
```

```
aaaaaaana aaaaa
                                                                        495
       <210> 95
       <211> 472
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(472)
       <223> n = A,T,C or G
       <400> 95
ggttacttgg tttcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc
                                                                         60
cctctggaag ccttgcgcag agcggacttt gtaattgttg gagaataact gctgaatttt
                                                                        120
tagetgtttt gagttgatte geaceactge accaeaacte aatatgaaaa etatttnact
                                                                        180
tatttattat cttgtgaaaa gtatacaatg aaaattttgt tcatactgta tttatcaagt
                                                                        240
atgatgaaaa gcaatagata tatattotti tattatgiin aattatgati gccattatta
                                                                        300
atcggcaaaa tgtggagtgt atgttctttt cacagtaata tatgcctttt gtaacttcac
                                                                        360
ttggttattt tattgtaaat gaattacaaa attcttaatt taagaaaatg gtangttata
                                                                        420
tttanttcan taatttcttt ccttgtttac gttaattttg aaaagaatgc at
                                                                        472
      <210> 96
      <211> 476
      <212> DNA
      <213> Home sapien
      <220>
      <221> misc_feature
      <222> (1) ... (476)
      <223> n = A,T,C or G
      <400> 96
ctgaagcatt tcttcaaact tntctacttt tgtcattgat acctgtagta agttgacaat
                                                                        60
gtggtgaaat ttcaaaatta tatgtaactt ctactagttt tactttctcc cccaagtctt
                                                                       120
ttttaactca tgatttttac acacacaatc cagaacttat tatatagcct ctaagtcttt
                                                                       180
attetteaca gtagatgatg aaagagteet eeagtgtett gngcanaatg ttetagntat
                                                                       240
agctggatac atacngtggg agttctataa actcatacct cagtgggact naaccaaaat
                                                                       300
tgtgttagtc tcaattccta ccacactgag ggagcctccc aaatcactat attcttatct
                                                                       360
gcaggtactc ctccagaaaa acngacaggg caggcttgca tgaaaaagtn acatctgcgt
                                                                       420
tacaaagtot atottootoa nangtotgtn aaggaacaat ttaatottot agottt
                                                                       476
      <210> 97
      <211> 479
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(479)
      <223> n = A, T, C \text{ or } G
      <400> 97
actetteeta atgetgatat gatettgagt ataagaatge atatgteact agaatggata
                                                                        60
aaataatget geaaaettaa tgttettatg caaaatggaa egetaatgaa acacagetta
                                                                       120
```

```
caatcgcaaa tcaaaactca caagtgctca tctgttgtag atttagtgta ataagactta
                                                                       180
gattgtgctc cttcggatat gattgtttct canatcttgg gcaatnttcc ttagtcaaat
                                                                       240
caggetacta gaattetgtt attggatatn tgagageatg aaatttttaa naatacaett
                                                                       300
gtgattatna aattaatcac aaatttcact tatacctgct atcagcagct agaaaaacat
                                                                       360
ntnnttttta natcaaagta ttttgtgttt ggaantgtnn aaatgaaatc tgaatgtggg
                                                                       420
ttcnatctta ttttttcccn gacnactant tnctttttta gggnctattc tganccatc
                                                                       479
      <210> 98
      <211> 461
      <212> DNA
      <213> Homo sapien
      <400> 98
agtgacttgt cctccaacaa aaccccttga tcaagtttgt ggcactgaca atcagaccta
                                                                        60
tgctagttcc tgtcatctat tcgctactaa atgcagactg gaggggacca aaaaggggca
                                                                       120
tcaactccag ctggattatt ttggagcctg caaatctatt cctacttgta cggactttga
                                                                       180
agtgattcag tttcctctac ggatgagaga ctggctcaag aatatcctca tgcagcttta
                                                                       240
tgaagccast ctgaacasgs tggttatsta gatgagaaca gagaaataaa gtsagaaaat
                                                                       300
ttacctggag aaaagaggct ttggctgggg accatcccat tgaaccttct cttaaggact
                                                                       360
ttaagaaaaa ctaccacatg ttgtgtatcc tggtgccggc cgtttatgaa ctgaccaccc
                                                                       420
tttggaataa tcttgacgct cctgaacttg ctcctctgcg a
                                                                       461
      <210> 99
      <211> 171
      <212> DNA
      <213> Homo sapien
      <400> 99
gtggccgcgc gcaggtgttt cctcgtaccg cagggccccc tcccttcccc aggcgtccct
                                                                        60
cggcgcctct gcgggcccga ggaggagcgg ctggcgggtg gggggagtgt gacccaccct
                                                                       120
cggtgagaaa agccttctct agcgatctga gaggcgtgcc ttgggggtac c
                                                                       171
      <210> 100
      <211> 269
      <212> DNA
      <213> Homo sapien
      <400> 100
cggccgcaag tgcaactcca gctggggccg tgcggacgaa gattctgcca gcagttggtc
                                                                       60
cgactgcgac gacggcggcg gcgacagtcg caggtgcagc gcgggcgcct ggggtcttgc
                                                                       120
aaggctgagc tgacgccgca gaggtcgtgt cacgtcccac gaccttgacg ccgtcgggga
                                                                      180
cagccggaac agagcccggt gaagcgggag gcctcgggga gcccctcggg aagggcggcc
                                                                      240
cgagagatac gcaggtgcag gtggccgcc
                                                                      269
      <210> 101
      <211> 405
      <212> DNA
      <213> Homo sapien
      <400> 101
ttttttttt ttttggaatc tactgcgagc acagcaggtc agcaacaagt ttattttgca
                                                                       60
gctagcaagg taacagggta gggcatggtt acatgttcag gtcaacttcc tttgtcgtgg
                                                                      120
trgattggtt tgtcttrarg ggggcggggt ggggtagggg aaacgaagca aaraacatgg
                                                                      180
agtgggtgca ccctccctgt agaacctggt tacaaagctt ggggcagttc acctggtctg
                                                                      240
tgaccgtcat tttcttgaca tcaatgttat tagaagtcag gatatctttt agagagtcca
                                                                      300
```

ctgttctgga ggg gatgatcagt acg					gaaaaagttg	360 405
	_					103
<210> 10						
<211> 47	-					
<212> DN						
<213> Ho	mo sapie	en				
<400> 10	2					
ttttttttt ttt		tttttttt	tttttttt	tttttttt	rrrrr++++	60
ggcacttaat cca						120
tcaaaatcta aat	tattcaa	attagccaaa	tccttaccaa	ataataccca	aaaatcaaaa	180
atatacttct ttc	agcaaac	ttgttacata	aattaaaaaa	atatatacgg	ctggtgtttt	240
caaagtacaa tta	tcttaac	actgcaaaca	ttttaaggaa	ctaaaataaa	aaaaaacact	300
ccgcaaaggt taa						360
aaatcttagg gga	atatata	cttcacacgg	gatcttaact	tttactcact	ttgtttattt	420
ttttaaacca ttg	tttgggc	ccaacacaat	ggaatccccc	ctggactagt		470
<210> 10	2					
<210> 10	_					
<211> 38 <212> DN						
<213> Ho	_	n				
<400> 10	_					
tettettet tet	tttttga	cccccctctt	ataaaaaaca	agttaccatt	ttattttact	60
tacacatatt tat	tttataa	ttggtattag	atattcaaaa	ggcagctttt	aaaatcaaac	120
taaatggaaa ctg	ccttaga	tacataattc	ttaggaatta	gcttaaaatc	tgcctaaagt	180
gaaaatcttc tct	agctctt	ttgactgtaa	atttttgact	cttgtaaaac	atccaaattc	240
atttttcttg tct	ttaaaat	tatctaatct	ttccattttt	tccctattcc	aagtcaattt	300
gcttctctag cct	catttcc	tagctcttat	ctactattag	taagtggctt	ttttcctaaa	360
agggaaaaca ggaa	agagaaa	tggcacacaa	aacaaacatt	ttatattcat	atttctacct	420
acgttaataa aata	agcattt	tgtgaagcca	gctcaaaaga	aggcttagat	ccttttatgt	480
ccattttagt cact	aaacga (tatcaaagtg	ccagaatgca	aaaggtttgt	gaacatttat	540
tcaaaagcta atat	Laagata	tttcacatac	tcatctttct	g		581
<210> 104	1					
<211> 578	3			-		
<212> DN	A					
<213> Hor	no sapier	n				
.400						
<400> 104						
ttttttttt tttt	rogeato s	22222224	atotttaaa	gaaatgagga	tcgagttttt	60
cactctctag atag	catatt t	taaattaaa	attituded	ctttaaaata	acaatcaaat	120
aggaaatctg ttca	ettette t	cattcatat	acttatates	actogettat	cttctcctga	180
gaggttttc ttct	ctattt a	cacccacac	tteesteres	agtactacct	tgcatattga	240
ttcatgcaaa ctag	maaata a	atatatatat	tacataaga	accigiacca	aacctttatt	300
caaaactgct caaa	trattt c	attaagttat	ccattatas	aayayaacaa taattaaca	cacagcatta	360
aaatcacatt tacg	acages s	ataataaaa	traartarr	cagulygeag	gagetaatae	420
aaaggaacat tttt	agecta c	drataarta	octaattcac	yrtadalatC tttacaaca	caaadtaatt	480
tgaattcaca tgtt	attatt o	ctageceaa	Cacaatoo	cccacaagca	cccaccagaa	540 570
J=======			cacaacyy			578
<210> 105	;					
<211> 538	;					

<212> DNA

<213> Homo sapien

<400> 105 tttttttttt tttttcagta ataatcagaa caatatttat ttttatattt aaaattcata 60 gaaaagtgcc ttacatttaa taaaagtttg tttctcaaag tgatcagagg aattagatat 120 gtcttgaaca ccaatattaa tttgaggaaa atacaccaaa atacattaag taaattatt 180 aagatcatag agcttgtaag tgaaaagata aaatttgacc tcagaaactc tgagcattaa 240 aaatccacta ttagcaaata aattactatg gacttcttgc tttaattttg tgatgaatat 300 ggggtgtcac tggtaaacca acacattctg aaggatacat tacttagtga tagattctta 360 tgtactttgc taatacgtgg atatgagttg acaagtttct ctttcttcaa tcttttaagg 420 ggcgagaaat gaggaagaaa agaaaaggat tacgcatact gttctttcta tggaaggatt 480 agatatgttt cctttgccaa tattaaaaaaa ataataatgt ttactactag tgaaaccc 538 <210> 106 <211> 473 <212> DNA <213> Homo sapien <400> 106 ttttttttt ttttttagtc aagtttctat ttttattata attaaagtct tggtcatttc 60 atttattage tetgeaactt acatatttaa attaaagaaa egttttagae aactgtacaa 120 tttataaatg taaggtgcca ttattgagta atatattcct ccaagagtgg atgtgtccct 180 teteceacca actaatgaac agcaacatta gtttaatttt attagtagat atacactget 240 gcaaacgcta attotottot coatcoccat gtgatattgt gtatatgtgt gagttggtag 300 aatqcatcac aatctacaat caacagcaag atgaagctag gctgggcttt cggtgaaaat 360 agactiftgtc tgtctgaatc aaatgatctg acctatcctc ggtggcaaga actcttcgaa 420 cogetteete aaaggegetg ceacatttgt ggetetttge acttgtttea aaa 473 <210> 107 <211> 1621 <212> DNA <213> Homo sapien <400> 107 egecatggea etgeagggea teteggteat ggagetgtee ggeetggeec egggeeegtt 60 ctgtgctatg gtcctggctg acttcggggc gcgtgtggta cgcgtggacc ggcccggctc 120 ccgctacgac gtgagccgct tgggccgggg caagcgctcg ctagtgctgg acctgaagca 180 gccgcgggga gccgccgtgc tgcggcgtct gtgcaagcgg tcggatgtgc tgctggagcc 240 cttccgccgc ggtgtcatgg agaaactcca gctgggccca gagattctgc agcgggaaaa 300 tccaaggctt atttatgcca ggctgagtgg atttggccag tcaggaagct tctgccggtt 360 agetggeeae gatateaaet atttggettt gteaggtgtt eteteaaaaa ttggeagaag 420 tggtgagaat ccgtatgccc cgctgaatct cctggctgac tttgctggtg gtggccttat 480 gtgtgcactg ggcattataa tggctctttt tgaccgcaca cgcactgaca agggtcaggt 540 cattgatgca aatatggtgg aaggaacagc atatttaagt tcttttctgt ggaaaactca 600 gaaatcgagt ctgtgggaag cacctcgagg acagaacatg ttggatggtg gagcaccttt 660 ctatacgact tacaggacag cagatgggga attcatggct gttggagcaa tagaacccca 720 gttctacgag ctgctgatca aaggacttgg actaaagtct gatgaacttc ccaatcagat 780 gagcatggat gattggccag aaatgaagaa gaagtttgca gatgtatttg caaagaagac 840 gaaggcagag tggtgtcaaa tctttgacgg cacagatgcc tgtgtgactc cggttctgac 900 ttttgaggag gttgttcatc atgatcacaa caaggaacgg ggctcgttta tcaccagtga 960 ggagcaggac gtgagccccc gccctgcacc tctgctgtta aacaccccag ccatcccttc 1020 tttcaaaagg gatcctttca taggagaaca cactgaggag atacttgaag aatttggatt 1080 cagccgcgaa gagatttatc agcttaactc agataaaatc attgaaagta ataaggtaaa 1140 agctagtete taacttecag geceaegget caagtgaatt tgaatactge atttacagtg 1200 tagagtaaca cataacattg tatgcatgga aacatggagg aacagtatta cagtgtccta 1260

ccactctaat caagaaaaga attacagact ctgattctac agtgatgatt gaattctaaa aatggttatc attagggctt ttgatttata aaactttggg tacttatact aaattatggt agttattctg ccttccagtt tgcttgatat atttgttgat attaagattc ttgacttata ttttgaatgg gttctagtga aaaaggaatg atatattctt gaagacatcg atatacattt atttacactc ttgattctac aatgtagaaa atgaggaaat gccacaaatt gtatggtgat aaaagtcacg tgaaacaaaa aaaaaaaaaa															
	~	400>	108												
1	Ala	Leu	Gln	5					10			•		15	
Gly	Pro	Phe	Cys 20	Ala	Met	Val	Leu	Ala 25	Asp	Phe	Gly	Ala	Arg 30	Val	Val
		35	Arg				40					45		_	_
	50		Ser			55					60				
65			Arg		70					75					80
			Val	85					90					95	
			Pro 100					105					110	_	
		115	Phe				120					125			
	130		Val			135					140				-
145			Asn		150					155					160
			Ile	165					170					175	_
			Ile 180					185					190	Leu	
		195	Trp				200					205			_
Gly	Gln 210	Asn	Met	Leu	Asp	Gly 215	Gly	Ala	Pro	Phe	Tyr 220		Thr	Tyr	Arg

215 220 Thr Ala Asp Gly Glu Phe Met Ala Val Gly Ala Ile Glu Pro Gln Phe 225 230 235 Tyr Glu Leu Leu Ile Lys Gly Leu Gly Leu Lys Ser Asp Glu Leu Pro 245 250 Asn Gln Met Ser Met Asp Asp Trp Pro Glu Met Lys Lys Lys Phe Ala 260 265 Asp Val Phe Ala Lys Lys Thr Lys Ala Glu Trp Cys Gln Ile Phe Asp 280 Gly Thr Asp Ala Cys Val Thr Pro Val Leu Thr Phe Glu Glu Val Val 295 300 His His Asp His Asn Lys Glu Arg Gly Ser Phe Ile Thr Ser Glu Glu 305 310 315 320 Gln Asp Val Ser Pro Arg Pro Ala Pro Leu Leu Leu Asn Thr Pro Ala

```
325
                                     330
Ile Pro Ser Phe Lys Arg Asp Pro Phe Ile Gly Glu His Thr Glu Glu
                                345
Ile Leu Glu Glu Phe Gly Phe Ser Arg Glu Glu Ile Tyr Gln Leu Asn
                             360
Ser Asp Lys Ile Ile Glu Ser Asn Lys Val Lys Ala Ser Leu
    370
                    375
      <210> 109
      <211> 1524
      <212> DNA
      <213> Homo sapien
     <400> 109
ggcacgaggc tgcgccaggg cctgagcgga ggcgggggca gcctcgccag cgggggcccc
                                                                        60
gggcctggcc atgcctcact gagccagcgc ctgcgcctct acctcgccga cagctggaac
                                                                       120
cagigogace tagiggeter caccigetic electigggeg tgggetgeeg getgaceeeg
                                                                       180
ggtttgtacc acctgggccg cactgtcctc tgcatcgact tcatggtttt cacggtgcgg
                                                                       240
ctgcttcaca tcttcacggt caacaaacag ctggggccca agatcgtcat cgtgagcaag
                                                                       300
atgatgaagg acgtgttctt cttcctcttc ttcctcggcg tgtggctggt agcctatggc
                                                                       360
gtggccacgg aggggctcct gaggccacgg gacagtgact tcccaagtat cctgcgccgc
                                                                       420
gtettetace gteectacet geagatette gggeagatte cecaggagga catggaegtg
                                                                       480
geoeteatgg ageacageaa etgetegteg gagecegget tetgggeaca eeeteetggg
                                                                       540
gcccaggcgg gcacctgcgt ctcccagtat gccaactggc tggtggtgct gctcctcgtc
                                                                       600
atottoctgo togtggccaa catootgotg gtoaacttgo toattgccat gttoagttac
                                                                       660
acatteggea aagtacaggg caacagegat etetactgga aggegeageg ttacegeete
                                                                       720
atccgggaat tccactctcg gcccgcgctg gccccgccct ttatcgtcat ctcccacttg
                                                                       780
egecteetge teaggeaatt gtgeaggega eeeeggagee eeeageegte eteeeeggee
                                                                       840
ctcgagcatt tccgggttta cctttctaag gaagccgagc ggaagctgct aacgtgggaa
                                                                       900
tcggtgcata aggagaactt tctgctggca cgcgctaggg acaagcggga gagcgactcc
                                                                       960
gagegtetga agegeaegte ceagaaggtg gaettggeae tgaaacaget gggacacate
                                                                      1020
cgcgagtacg aacagcgcct gaaagtgctg gagcgggagg tccagcagtg tagccgcgtc
                                                                      1080
ctggggtggg tggccgaggc cctgagccgc tctgccttgc tgcccccagg tgggccgcca
                                                                      1140
ccccctgacc tgcctgggtc caaagactga gccctgctgg cggacttcaa ggagaagccc
                                                                      1200
ccacagggga tittgctcct agagtaaggc tcatctgggc ctcggccccc gcacctggtg
                                                                      1260
geettgteet tgaggtgage eccatgteea tetgggeeae tgteaggaee acetttggga
                                                                      1320
gtgtcatcct tacaaaccac agcatgcccg gctcctccca gaaccagtcc cagcctggga
                                                                     1380
ggatcaaggc ctggatcccg ggccgttatc catctggagg ctgcagggtc cttggggtaa
                                                                     1440
cagggaccac agacccctca ccactcacag attcctcaca ctggggaaat aaagccattt
                                                                     1500
cagaggaaaa aaaaaaaaaa aaaa
                                                                     1524
      <210> 110
      <211> 3410
      <212> DNA
      <213> Homo sapien
      <400> 110
gggaaccagc ctgcacgcgc tggctccggg tgacagccgc gcgcctcggc caggatctga
                                                                       60
gtgatgagac gtgtccccac tgaggtgccc cacagcagca ggtgttgagc atgggctgag
                                                                      120
aagctggacc ggcaccaaag ggctggcaga aatgggcgcc tggctgattc ctaggcagtt
                                                                      180
ggcggcagca aggaggagag gccgcagctt ctggagcaga gccgagacga agcagttctg
                                                                      240
gagtgcctga acggccccct gagccctacc cgcctggccc actatggtcc agaggctgtg
                                                                      300
ggtgagccgc ctgctgcggc accggaaagc ccagctcttg ctggtcaacc tgctaacctt
                                                                      360
tggcctggag gtgtgtttgg ccgcaggcat cacctatgtg ccgcctctgc tgctggaagt
                                                                      420
gggggtagag gagaagttca tgaccatggt gctgggcatt ggtccagtgc tgggcctggt
                                                                      480
```

cigtgtcccg ctcctaggct cagccagtga ccactggcgt ggacgctatg gccgccgcg 540 gcccttcatc tgggcactgt ccttgggcat cctgctgagc ctctttctca tcccaagggc 600 cggctggcta gcagggctgc tgtgcccgga tcccaggccc ctggagctgg cactgctcat 660 cctgggcgtg gggctgctgg acttctgtgg ccaggtgtgc ttcactccac tggaggccct 720 gctctctgac ctcttccggg acccggacca ctgtcgccag gcctactctg tctatgcctt 780 catgatcagt cttgggggct gcctgggcta cctcctgcct gccattgact gggacaccag 840 tgccctggcc ccctacctgg gcacccagga ggagtgcctc tttggcctgc tcaccctcat 900 cttcctcacc tgcgtagcag ccacactgct ggtggctgag gaggcagcgc tgggcccac 960 cgagccagca gaagggctgt cggccccctc cttgtcgccc cactgctgtc catgccgggc 1020 cegettgget tteeggaace tgggegeeet getteeeegg etgeaceage tgtgetgeeg 1030 catgeceege accetgegee ggetettegt ggetgagetg tgeagetgga tggcacteat 1140 gacetteacg ctgttttaca eggatttegt gggegagggg etgtaceagg gegtgeecag 1200 agetgageeg ggeacegagg eeeggagaea etatgatgaa ggegttegga tgggeageet 1260 ggggctgttc ctgcagtgcg ccatctccct ggtcttctct ctggtcatgg accggctggt 1320 gcagcgattc ggcactcgag cagtctattt ggccagtgtg gcagctttcc ctgtggctgc 1380 cggtgccaca tgcctgtccc acagtgtggc cgtggtgaca gcttcagccg ccctcaccgg 1440 gttcaccttc tcagccctgc agatcctgcc ctacacactg gcctccctct accaccggga 1500 gaagcaggtg ttcctgccca aataccgagg ggacactgga ggtgctagca gtgaggacag 1560 cetgatgace agetteetge caggeeetaa geetggaget eeetteeeta atggacaegt 1620 gggtgctgga ggcagtggcc tgctcccacc tccacccgcg ctctgcgggg cctctgcctg 1680 tgatgtctcc gtacgtgtgg tggtgggtga gcccaccgag gccagggtgg ttccgggccg 1740 gggcatctgc ctggacctcg ccatcctgga tagtgccttc ctgctgtccc aggtggcccc 1800 atccctgttt atgggctcca ttgtccagct cagccagtct gtcactgcct atatggtgtc 1860 tgccgcaggc ctgggtctgg tcgccattta ctttgctaca caggtagtat ttgacaagag 1920 cgacttggcc aaatactcag cgtagaaaac ttccagcaca ttggggtgga gggcctgcct 1980 cactgggtcc cagniceccg ctectgttag ceccatgggg ctgcegggct ggcegecagt 2040. ttetgttget gecaaagtaa tgtggetete tgetgecade etgtgetget gaggtgegta 2100 getgeacage tgggggetgg ggegteeete teetetetee ceagteteta gggetgeeeg 2160 actggaggcc ttccaagggg gtttcagtct ggacttatac agggaggcca gaagggctcc 2220 atgcactgga atgcggggac tctgcaggtg gattacccag gctcagggtt aacagctagc 2280 ctcctagttg agacacacct agagaagggt ttttgggagc tgaataaact cagtcacctg 2340 gtttcccatc tctaagcccc ttaacctgca gcttcgttta atgtagctct tgcatgggag 2400 tttctaggat gaaacactcc tccatgggat ttgaacatat gacttatttg taggggaaga 2460 gtcctgaggg gcaacacaca agaaccaggt cccctcagcc cacagcactg tctttttgct 2520 gatecacece cetettacet titateagga tgtggeetgt tggteettet gttgeeatea 2580 cagagacaca ggcatttaaa tatttaactt atttatttaa caaagtagaa gggaatccat 2640 tgctagcttt tctgtgttgg tgtctaatat ttgggtaggg tggggggatcc ccaacaatca 2700 ggtcccctga gatagctggt cattgggctg atcattgcca gaatcttctt ctcctggggt 2760 ctggcccccc aaaatgccta acccaggacc ttggaaattc tactcatccc aaatgataat 2820 tccaaatgct gttacccaag gttagggtgt tgaaggaagg tagagggtgg ggcttcaggt 2880 ctcaacggct tecctaacca ecectettet ettggeecag eetggtteee eceactteea 2940 ctcccctcta ctctctctag gactgggctg atgaaggcac tgcccaaaat ttcccctacc 3000 cccaactttc ccctaccccc aactttcccc accagctcca caaccctgtt tggagctact 3060 gcaggaccag aagcacaaag tgcggtttcc caagcctttg tccatctcag cccccagagt 3120 atatctgtgc ttggggaatc tcacacagaa actcaggagc accccctgcc tgagctaagg 3180 gaggtettat eteteagggg gggtttaagt geegtttgea ataatgtegt ettatttatt 3240 tagcggggtg aatattttat actgtaagtg agcaatcaga gtataatgtt tatggtgaca 3300 3360 3410

<210> 111

<211> 1289

<212> DNA

<213> Homo sapien

<400> 111 agccaggcgt ccctctgcct gcccactcag tggcaacacc cgggagctgt tttgtccttt 60 gtggagcctc agcagttccc tctttcagaa ctcactgcca agagccctga acaggagcca 120 ccatgcagtg cttcagcttc attaagacca tgatgatcct cttcaatttg ctcatctttc 180 tgtgtggtgc agccctgttg gcagtgggca tctgggtgtc aatcgatggg gcatcctttc 240 tgaagatett egggeeactg tegteeagtg ceatgeagtt tgteaacgtg ggetaettee 300 teategeage eggegttgtg gretttgete trggttteet gggetgetat ggrgetaaga 360 ctgagagcaa gtgtgccctc gtgacgttct tcttcatcct cctcctcatc ttcattgctg 420 aggttgcagc tgctgtggtc gccttggtgt acaccacaat ggctgagcac ttcctgacgt 480 tgctggtagt gcctgccatc aagaaagatt atggttccca ggaagacttc actcaagtgt 540 ggaacaccac catgaaaggg ctcaagtgct gtggcttcac caactatacg gattttgagg 600 acteacceta etteaaagag aacagtgeet tteececcatt etgttgeaat gacaacgtea 660 ccaacacage caatgaaace tgcaccaage aaaaggetea egaccaaaaa gtagagggtt 720 getteaatea gettttgtat gacateegaa etaatgeagt eacegtgggt ggtgtggeag 780 ctggaattgg gggcctcgag ctggctgcca tgattgtgtc catgtatctg tactgcaatc 840 tacaataagt ccacttetge etetgeeact actgetgeea catgggaact gtgaagagge 900 accetggeaa geageagtga ttgggggagg ggaeaggate taacaatgte acttgggeea 960 gaatggacct gccctttctg ctccagactt ggggctagat agggaccact ccttttagcg 1020 atgcctgact ttccttccat tggtgggtgg atgggtgggg ggcattccag agcctctaag .1080 gragecagtt ctgttgccca ttcccccagt ctattaaacc cttgatatgc cccctaggcc 1140 tagtggtgat cccagtgctc tactggggga tgagagaaag gcattttata gcctgggcat 1200 aagtgaaatc agcagagcct ctgggtggat gtgtagaagg cacttcaaaa tgcataaacc 1260 tgttacaatg ttaaaaaaaa aaaaaaaaa 1289

<210> 112

<211> 315

<212> PRT

<213> Homo sapien

<400> 112

Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln 10 Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe 20 25 Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala -40 45 Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu 55 Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro 70 75 Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser 85 90 Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys 105 Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Leu Val Ile Phe 120 125 Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe 130 140 Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys 150 155 Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu 165 170 Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln 180 185 Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu

195 200 His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr 215 220 Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp 230 235 Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val 245 250 Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg 260 265 Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly 280 Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly 295 Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp 310

<210> 113 <211> 553 <212> PRT <213> Homo sapien

<400> 113

Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala 10 Gln Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Leu Glu Val Gly Val 40 Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly 55 Leu Val Cys Val Pro Leu Cly Ser Ala Ser Asp His Trp Arg Gly 70 75 Arg Tyr Gly Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile 90 Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu 105 Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly 120 Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu 135 140 Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala 150 155 Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr 170 Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu 185 Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu 200 Thr Cys Val Ala Ala Thr Leu Leu Val Ala Glu Glu Ala Ala Leu Gly 215 220 Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His 230 235 Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu 250 Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg

260 265 Arg Leu Phe Val Ala Glu Leu Cys Ser Trp Met Ala Leu Met Thr Phe 280 Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu Gly Leu Tyr Gln Gly Val 295 Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly 310 315 Val Arg Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu 330 Val Phe Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg 345 Ala Val Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala 360 · Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu 375 380 Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala 390 395 Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly 410 Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu 425 Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala 440 Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser 455 460 Ala Cys Asp Val Ser Val Arg Val Val Gly Glu Pro Thr Glu Ala 470 175 Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp 490 Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser 505 Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala 520 525 Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp 535 Lys Ser Asp Leu Ala Lys Tyr Ser Ala 545

<210> 114

<211> 241

<212> PRT

<213> Homo sapien

<400> 114

 Met
 Gln
 Cys
 Phe
 Ser
 Phe
 Ile
 Lys
 Thr
 Met
 Met
 Ile
 Leu
 Phe
 Asn
 Leu

 Leu
 Ile
 Phe
 Leu
 Cys
 Gly
 Ala
 Ala
 Leu
 Leu
 Ala
 Val
 Gly
 Ile
 Trp
 Val

 Ser
 Ile
 Asp
 Gly
 Ala
 Ser
 Phe
 Leu
 Lys
 Ile
 Phe
 Gly
 Pro
 Leu
 Ser
 Ser

 Ser
 Ala
 Met
 Gly
 Ala
 Ser
 Phe
 Leu
 Lys
 Ile
 Phe
 Gly
 Phe
 Leu
 Rys
 Ser
 Ser

85 90 Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr 100 105 Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys 120 Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met 135 140 Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp 150 155 Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn 165 170 175 Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala 185 190 His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile 200 205 Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly 215 220 Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu 225 230 235 Gln <210> 115 <211> 366 <212> DNA <213> Homo sapien <400> 115 gctctttctc tcccctcctc tgaatttaat tctttcaact tgcaatttgc aaggattaca 60 catttcactg tgatgtatat tgtgttgcaa aaaaaaaaa gtgtctttgt ttaaaattac 120 ttggtttgtg aatccatctt gctttttccc cattggaact agtcattaac ccatctctga 180 actggtagaa aaacatctga agagctagtc tatcagcatc tgacaggtga attggatggt 240 tctcagaacc atttcaccca gacagcctgt ttctatcctg tttaataaat tagtttgggt 300 tctctacatg cataacaaac cctgctccaa tctgtcacat aaaagtctgt gacttgaagt 360 ttagtc 366 <210> 116 <211> 282 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (1)...(282) <223> n = A,T,C or G<400> 116 acaaagatga accatttoot atattatago aaaattaaaa totacoogta ttotaatatt 60 gagaaatgag atnaaacaca atnttataaa gtctacttag agaagatcaa gtgacctcaa 120 agactttact attttcatat tttaagacac atgatttatc ctattttagt aacctggttc 180 atacgttaaa caaaggataa tgtgaacagc agagaggatt tgttggcaga aaatctatgt 240 tcaatcinga actaictana tcacagacat tictaticci ti 282

<210> 117 <211> 305

```
<212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(305)
       \langle 223 \rangle n = A,T,C or G
       <400> 117
acacatgtcg cttcactgcc ttcttagatg cttctggtca acatanagga acagggacca
                                                                           60
tatttatcct ccctcctgaa acaattgcaa aataanacaa aatatatgaa acaattgcaa
                                                                          120
aataaggcaa aatatatgaa acaacaggtc tcgagatatt ggaaatcagt caatgaagga
                                                                          180
tactgatece tgateactgt cetaatgeag gatgtgggaa acagatgagg teacetetgt
                                                                          240
gactgcccca gcttactgcc tgtagagagt ttctangctg cagttcagac agggagaaat
                                                                          300
tgggt
                                                                          305
      <210> 118
      <211> 71
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (71)
      <223> n = A, T, C \text{ or } G
      <400> 118
accaaggtgt ntgaatctct gacgtgggga tctctgattc ccgcacaatc tgagtggaaa
                                                                          60
aantcctggg t
                                                                          71
      <210> 119
      <211> 212
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (212)
      <223> n = A, T, C or G
      <400> 119
actccggttg gtgtcagcag cacgtggcat tgaacatngc aatgtggagc ccaaaccaca
                                                                          60
gaaaatgggg tgaaattggc caactttcta tnaacttatg ttggcaantt tgccaccaac
                                                                         120
agtaagctgg cccttctaat aaaagaaaat tgaaaggttt ctcactaanc ggaattaant
                                                                         180
aatggantca aganactccc aggcctcagc gt
                                                                         212
      <210> 120
      <211> 90
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(90)
      <223> n = A,T,C or G
```

<400> 120 actogttgca natcaggggc coccoagagt caccgttgca ggagtcottc tggtottgcc ctccgccggc gcagaacatg ctggggtggt	60 90
<210> 121 <211> 218 <212> DNA <213> Homo sapien	
(213) Homo Sapten	
<220> <221> misc_feature <222> (1)(218) <223> n = A,T,C or G	
1.7.7,0 02 0	
<400> 121	
tgtancgtga anacgacaga nagggttgtc aaaaatggag aanccttgaa gtcattttga	60
gaataagatt tgctaaaaga tttggggcta aaacatggtt attgggagac atttctgaag atatncangt aaattangga atgaattcat ggttcttttg ggaattcctt tacgatngcc	120
agcatanact tcatgtgggg atancagcta cccttgta	180 218
<210> 122	
<211> 171 <212> DNA	
<213> Homo sapien	
·	
<400> 122	
taggggtgta tgcaactgta aggacaaaaa ttgagactca actggcttaa ccaataaagg	60
cattigting cicatggaac aggaagtcgg atggtggggc atcttcagtg ctgcatgagt	120
caccaccccg gcggggtcat ctgtgccaca ggtccctgtt gacagtgcgg t	171
<210> 123	
<211> 76	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) (76)	
<223> n = A,T,C or G	
.400. 122	
<400> 123	
tgtagcgtga agacnacaga atggtgtgtg ctgtgctatc caggaacaca tttattatca ttatcaanta ttgtgt	60 76
	/6
<210> 124	
<211> 131	
<212> DNA	
<213> Homo sapien	
<400> 124	
acctttcccc aaggccaatg tcctgtgtgc taactggccg gctgcaggac agctgcaatt	60
caatgtgctg ggtcatatgg aggggaggag actctaaaat agccaatttt attctcttgg	120
ttaagatttg t	131

```
<210> 125
      <211> 432
      <212> DNA
      <213> Homo sapien
      <400> 125
actttatcta ctggctatga aatagatggt ggaaaattgc gttaccaact ataccactgg
                                                                        60
cttgaaaaag aggtgatagc tcttcagagg acttgtgact tttgctcaga tgctgaagaa
                                                                       120
ctacagtctg catttggcag aaatgaagat gaatttggat taaatgagga tgctgaagat
                                                                       180
ttgcctcacc aaacaaaagt gaaacaactg agagaaaatt ttcaggaaaa aagacagtgg
                                                                       240
ctcttgaagt atcagtcact tttgagaatg tttcttagtt actgcatact tcatggatcc
                                                                       300
catggtgggg gtcttgcatc tgtaagaatg gaattgattt tgcttttgca agaatctcag
                                                                       360
caggaaacat cagaaccact attttctagc cctctgtcag agcaaacctc agtgcctctc
                                                                       420
ctctttgctt gt
                                                                       432
      <210> 126
      <211> 112
      <212> DNA
      <213> Homo sapien
      <400> 126
acacaactig aatagtaaaa tagaaactga gcigaaatti ctaaticact tictaaccat
                                                                        6.0
agtaagaatg atatttcccc ccagggatca ccaaatattt ataaaaattt gt
                                                                       112
      <210> 127
      <211> 54
      <212> DNA
      <213> Homo sapien
      <400> 127
accacgaaac cacaaacaag atggaagcat caatccactt gccaagcaca gcag
                                                                        54
      <210> 128
      <211> 323
      <212> DNA
      <213> Homo sapien
      <400> 128
acctcattag taattgtttt gttgtttcat ttttttctaa tgtctcccct ctaccagctc
                                                                        60
acctgagata acagaatgaa aatggaagga cagccagatt teteetttge tetetgetea
                                                                       120
trotototga agtotaggtt accoattitg gggaccoatt ataggcaata aacacagtto
                                                                       180
ccaaagcatt tggacagttt cttgttgtgt tttagaatgg ttttcctttt tcttagcctt
                                                                       240
ttcctgcaaa aggctcactc agtcccttgc ttgctcagtg gactgggctc cccagggcct
                                                                      300
aggotgoott ottttocatg too
                                                                       323
      <210> 129
      <211> 192
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(192)
      <223> n = A,T,C or G
```

```
<400> 129
 acatacatgt gtgtatattt ttaaatatca cttttgtatc actctgactt tttagcatac
                                                                          60
tgaaaacaca ctaacataat ttntgtgaac catgatcaga tacaacccaa atcattcatc
                                                                         120
 tagcacattc atctgtgata naaagatagg tgagtttcat ttccttcacg ttggccaatg
                                                                         180
 gataaacaaa qt
                                                                         192
       <210> 130
       <211> 362
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (362)
      <223> n = A, T, C or G
      <400> 130
ccctttttta tggaatgagt agactgtatg tttgaanatt tanccacaac ctctttgaca
                                                                         60
tataatgacg caacaaaaag gtgctgttta gtcctatggt tcagtttatg cccctgacaa
                                                                         120
gtttccattg tgttttgccg atcttctggc taatcgtggt atcctccatg trattagtaa
                                                                         180
ttctgtattc cattttgtta acgcctggta gatgtaacct gctangaggc taactttata
                                                                         240
cttatttaaa agctcttatt ttgtggtcat taaaatggca atttatgtgc agcactttat
                                                                         300
tgcagcagga agcacgtgtg ggttggttgt aaagctcttt gctaatctta aaaagtaatg
                                                                        360
99
                                                                         362
      <210> 131
      <211> 332
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (332)
      <223> n = A, T, C \text{ or } G
      <400> 131
ctttttgada gatcgtgtcc actcctgtgg acatcttgtt ttaatggagt ttcccatgca
                                                                         60
gtangactgg tatggttgca gctgtccaga taaaaacatt tgaagagctc caaaatgaga
                                                                        120
gttctcccag gttcgccctg ctgctccaag tctcagcagc agcctctttt aggaggcatc
                                                                        180
tictgaacta gattaaggca gettgtaaat etgatgtgat ttggtttatt atecaactaa
                                                                        240
cttccatctg ttatcactgg agaaagccca gactccccan gacnggtacg gattgtgggc
                                                                        300
atanaaggat tgggtgaagc tggcgttgtg qt
                                                                        332
      <210> 132
      <211> 322
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (322)
      \langle 223 \rangle n = A,T,C or G
      <400> 132
actititgcca tititgtatat ataaacaatc tigggacatt ciccigaaaa ctaggigtcc
                                                                         60
```

```
agtggctaag agaactcgat ttcaagcaat tctgaaagga aaaccagcat gacacagaat
                                                                         120
ctcaaattcc caaacagggg ctctgtggga aaaatgaggg aggacctttg tatctcgggt
                                                                         180
tttagcaagt taaaatgaan atgacaggaa aggcttattt atcaacaaag agaagagttg
                                                                         240
ggatgcttct aaaaaaaact ttggtagaga aaataggaat gctnaatcct agggaagcct
                                                                         300
gtaacaatct acaattggtc ca
                                                                         322
       <210> 133
       <211> 278
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
      <222> (1)...(278)
      \langle 223 \rangle n = A,T,C or G
       <400> 133
acaagccttc acaagtttaa ctaaattggg attaatcttt ctgtanttat ctgcataatt
                                                                         60
cttgtttttc tttccatctg gctcctgggt tgacaatttg tggaaacaac tctattgcta
                                                                        120
ctatttaaaa aaaatcacaa atctttccct ttaagctatg ttnaattcaa actattcctg
                                                                        180
ctattcctgt tttgtcaaag aaattatatt tttcaaaata tgtntatttg tttgatgggt
                                                                        240
cccacgaaac actaataaaa accacagaga ccagcctg
                                                                        278
      <210> 134
      <211> 121
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(121)
      <223> n = A, T, C or G
      <400> 134
gtttanaaaa cttgtttagc tccatagagg aaagaatgtt aaactttgta ttttaaaaca
                                                                         60
tgattctctg aggttaaact tggttttcaa atgttattt tacttgtatt ttgcttttgg
                                                                        120
t
                                                                        121
      <210> 135
      <211> 350
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(350)
      <223> n = A, T, C or G
      <400> 135
acttanaacc atgectagea cateagaate eeteaagaa cateagtata ateetatace
                                                                        60
atancaagtg gtgactggtt aagcgtgcga caaaggtcag ctggcacatt acttgtgtgc
                                                                       120
aaacttgata cttttgttct aagtaggaac tagtatacag tncctaggan tggtactcca
                                                                       180
gggtgccccc caactcctgc agccgctcct ctgtgccagn ccctgnaagg aactttcgct
                                                                       240
ccacctcaat caagccctgg gccatgctac ctgcaattgg ctgaacaaac gtttgctgag
                                                                       300
ttcccaagga tgcaaagcct ggtgctcaac tcctggggcg tcaactcagt
                                                                       350
```

```
<210> 136
      <211> 399
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(399)
      <223> n = A.T.C or G
      <400> 136
tgtaccgtga agacgacaga agttgcatgg cagggacagg gcagggccga ggccagggtt
                                                                        60
gctgtgattg tatccgaata ntcctcgtga gaaaagataa tgagatgacg tgagcagcct
                                                                       120
gcagacttgt gtctgccttc aanaagccag acaggaaggc cctgcctgcc ttggctctga
                                                                       180
cctggcggcc agccagccag ccacaggtgg gcttcttcct tttgtggtga caacnccaag
                                                                       240
aaaactgcag aggcccaggg tcaggtgtna gtgggtangt gaccataaaa caccaggtgc
                                                                       300
teccaggaac cegggeaaag gecatececa ectacageca geatgeecae tggegtgatg
                                                                       360
ggtgcagang gatgaagcag ccagntgttc tgctgtggt
                                                                       399
      <210> 137
      <211> 165
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(165)
      <223> n = A,T,C or G
      <400> 137
actggtgtgg tngggggtga tgctggtggt anaagttgan gtgacttcan gatggtgtgt
                                                                        60
ggaggaagtg tgtgaacgta gggatgtaga ngttttggcc gtgctaaatg agcttcggga
                                                                       120
ttggctggtc ccactggtgg tcactgtcat tggtggggtt cctgt
                                                                       165
      <210> 138
      <211> 338
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(338)
      <223> n = A, T, C or G
      <400> 138
actcactgga atgccacatt cacaacagaa tcagaggtct gtgaaaacat taatggctcc
                                                                       60
ttaacttctc cagtaagaat cagggacttg aaatggaaac gttaacagcc acatgcccaa
                                                                      120
tgctgggcag tctcccatgc cttccacagt gaaagggctt gagaaaaatc acatccaatg
                                                                      180
tcatgtgttt ccagccacac caaaaggtgc ttggggtgga gggctggggg catananggt
                                                                      240
cangeeteag gaageeteaa gtteeattea getttgeeae tgtacattee ceatntttaa
                                                                      300
aaaaactgat gccttttttt tttttttttg taaaattc
                                                                      338
      <210> 139
```

<210> 139 <211> 382

```
<212> DNA
      <213> Homo sapien
      <400> 139
gggaatcttg gtttttggca tctggtttgc ctatagccga ggccactttg acagaacaaa
                                                                         60
gaaagggact tcgagtaaga aggtgattta cagccagcct agtgcccgaa gtgaaggaga
                                                                        120
attcaaacag acctegteat teetggtgtg ageetggteg geteaecgee tatcatetge
                                                                        180
atttgcctta ctcaggtgct accggactct ggcccctgat gtctgtagtt tcacaggatg
                                                                        240
ccttatttgt cttctacacc ccacagggcc ccctacttct tcggatgtgt ttttaataat
                                                                        300
gtcagctatg tgccccatcc tccttcatgc cctccctccc tttcctacca ctgctgagtg
                                                                        360
gcctggaact tgtttaaagt gt
                                                                        382
      <210> 140
      <211> 200
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (200)
      <223> n = A,T,C or G
      <400> 140
accaaanctt ctttctgttg tgttngattt tactataggg gtttngcttn ttctaaanat
                                                                        60
actiticati taacanciii tgitaagigi caggotgoac titigotocat anaattatig
                                                                        120
ttttcacatt tcaacttgta tgtgtttgtc tcttanagca ttggtgaaat cacatatttt
                                                                        180
atattcagca taaaggagaa
                                                                        200
      <210> 141
      <211> 335
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(335)
      \langle 223 \rangle n = A,T,C or G
      <400> 141
actttatttt caaaacactc atatgttgca aaaaacacat agaaaaataa agtttggtgg
                                                                        60
gggtgctgac taaacttcaa gtcacagact tttatgtgac agattggagc agggtttgtt
                                                                       120
atqcatgtag agaacccaaa ctaatttatt aaacaggata gaaacaggct gtctgggtga
                                                                       180
aatggttctg agaaccatcc aattcacctg tcagatgctg atanactagc tcttcagatg
                                                                       240
tttttctacc agttcagaga tnggttaatg actanttcca atggggaaaa agcaagatgg
                                                                       300
attcacaaac caagtaattt taaacaaaga cactt
                                                                       335
     <210> 142
     <211> 459
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(459)
     <223> n = A,T,C or G
```

```
<400> 142
accaggttaa tattgccaca tatatccttt ccaattgcgg gctaaacaga cgtgtattta
                                                                         60
gggttgttta aagacaaccc agcttaatat caagagaaat tgtgaccttt catggagtat
                                                                        120
ctgatggaga aaacastgag ttttgacaaa tcttatttta ttcagatagc agtctgatca
                                                                        180
cacatggtcc aacaacactc aaataataaa tcaaatatna tcagatgtta aagattggtc
                                                                        240
ttcaaacatc atagccaatg atgccccgct tgcctataat ctctccgaca taaaaccaca
                                                                        300
tcaacacctc agtggccacc aaaccattca gcacagcttc cttaactgtg agctgtttga
                                                                        360
agctaccagt ctgagcacta ttgactatnt ttttcangct ctgaatagct ctagggatct
                                                                        420
cagcangggt gggaggaacc agctcaacct tggcgtant
                                                                        459
      <210> 143
      <211> 140
      <212> DNA
      <213> Homo sapien
      <400> 143
acattteett ecaceaagte aggaeteetg gettetgtgg gagttettat eacetgaggg
                                                                        60
aaatccaaac agtctctcct agaaaggaat agtgtcacca accccaccca tctccctgag
                                                                        120
accatccgac ttccctgtgt
                                                                        140
      <210> 144
      <211> 164
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(164)
      <223> n = A, T, C or G
      <400> 144
acticagiaa caacatacaa taacaacati aagigtatat igccaictii gicattiici
                                                                        60
atctatacca ctctcccttc tgaaaacaan aatcactanc caatcactta tacaaatttg
                                                                       120
aggcaattaa tccatatttg ttttcaataa ggaaaaaaag atgt
                                                                       164
      <210> 145
      <211> 303
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(303)
      <223> n = A, T, C or G
      <400> 145
acgtagacca tccaactttg tatttgtaat ggcaaacatc cagnagcaat tcctaaacaa
                                                                        60
actggagggt atttataccc aattatccca ttcattaaca tgccctcctc ctcaggctat
                                                                       120
gcaggacage tatcataagt cggcccagge atccagatac taccatttgt ataaacttca
                                                                       180
gtaggggagt ccatccaagt gacaggtcta atcaaaggag gaaatggaac ataagcccag
                                                                       240
tagtaaaatn ttgcttagct gaaacagcca caaaagactt accgccgtgg tgattaccat
                                                                       300
                                                                       303
```

<210> 146

```
<211> 327
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(327)
      <223> n = A,T,C or G
      <400> 146
actgcagete aattagaagt ggtetetgae ttteateane tteteeetgg getecatgae
                                                                         60
actggcctgg agtgactcat tgctctggtt ggttgagaga gctcctttgc caacaggcct
                                                                        120
ccaagtcagg gctgggattt gtttcctttc cacattctag caacaatatg ctggccactt
                                                                        180
cctgaacagg gagggtggga ggagccagca tggaacaagc tgccactttc taaagtagcc
                                                                        240
agacttgece etgggeetgt cacacetact gatgacette tgtgeetgea ggatggaatg
                                                                        300
taggggtgag ctgtgtgact ctatggt
                                                                        327
      <210> 147
      <211> 173
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(173)
      \langle 223 \rangle n = A,T,C or G
      <400> 147
acattgtttt tttgagataa agcattgana gagctctcct taacgtgaca caatggaagg
                                                                        60
actggaacac atacccacat ctttgttctg agggataatt ttctgataaa gtcttgctgt
                                                                       120
atattcaagc acatatgtta tatattattc agttccatgt ttatagccta gtt
                                                                       173
      <210> 148
      <211> 477
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(477)
      <223> n = A, T, C or G
      <400> 148
acaaccactt tatctcatcg aatttttaac ccaaactcac tcactgtgcc tttctatcct
                                                                        60
atgggatata ttatttgatg ctccatttca tcacacatat atgaataata cactcatact
                                                                       120
geoctactae etgetgeaat aateacatte eetteetgte etgaceetga agecattggg
                                                                       180
gtggtcctag tggccatcag tccangcctg caccttgagc ccttgagctc cattgctcac
                                                                       240
necaneceae eteacegace ecateetett acacagetae eteettgete tetaacecea
                                                                       300
tagattatnt ccaaattcag tcaattaagt tactattaac actctacccg acatgtccag
                                                                       360
caccactggt aagcettete cagecaacae acacacae acacneacae acacacatat
                                                                       420
ccaggcacag gctacctcat cttcacaatc acccctttaa ttaccatgct atggtgg
                                                                       477
      <210> 149
      <211> 207
      <212> DNA
```

<213> Homo sapien <400> 149 acagitgiat tataatatca agaaataaac tigcaatgag agcatttaag agggaagaac 60 taacgtattt tagagagcca aggaaggttt ctgtggggag tgggatgtaa ggtggggcct 120 gatgataaat aagagtcagc caggtaagtg ggtggtgtgg tatgggcaca gtgaagaaca 180 tttcaggcag agggaacagc agtgaaa 207 <210> 150 <211> 111 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (1) ...(111) <223> n = A, T, C or G<400> 150 accttgattt cattgctgct ctgatggaaa cccaactatc taatttagct aaaacatggg 60 cacttaaatg tggtcagtgt ttggacttgt taactantgg catctttggg t 111 <210> 151 <211> 196 <212> DNA <213> Homo sapien <400> 151 agegeggeag gteatattga acatteeaga tacetateat tactegatge tgttgataae 60 agcaagatgg ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat 120 ggataccaac cggaaaaccc ctatcccgca cagcccactg tggtccccac tgtctacgag 180 gtgcatccgg ctcagt 196 <210> 152 <211> 132 <212> DNA <213> Homo sapien <400> 152 acagcacttt cacatgtaag aagggagaaa ttcctaaatg taggagaaag ataacagaac 60 cttccccttt tcatctagtg gtggaaacct gatgctttat gttgacagga atagaaccag 120 gagggagttt gt 132 <210> 153 <211> 285 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (1) ... (285) $\langle 223 \rangle$ n = A,T,C or G <400> 153 acaanaccca nganaggcca ctggccgtgg tgtcatggcc tccaaacatg aaagtgtcag 60

```
cttctgctct tatgtcctca tctgacaact ctttaccatt tttatcctcg ctcagcagga
                                                                       120
gcacatcaat aaagtccaaa gtcttggact tggccttggc ttggaggaag tcatcaacac
                                                                       180
cctggctagt gagggtgcgg cgccgctcct ggatgacggc atctgtgaag tcgtgcacca
                                                                       240
gtctgcaggc cctgtggaag cgccgtccac acggagtnag gaatt
                                                                       285
      <210> 154
      <211> 333
      <212> DNA
      <213> Homo sapien
      <400> 154
accacagtcc tgttgggcca gggcttcatg accctttctg tgaaaagcca tattatcacc
                                                                        60
accccaaatt tttccttaaa tatctttaac tgaaggggtc agcctcttga ctgcaaagac
                                                                       120
cctaagccgg ttacacagct aactcccact ggccctgatt tgtgaaattg ctgctgcctg
                                                                       180
attggcacag gagtcgaagg tgttcagctc ccctcctccg tggaacgaga ctctgatttg
                                                                       240
agtttcacaa attctcgggc cacctcgtca ttgctcctct gaaataaaat ccggagaatg
                                                                       300
gtcaggcctg tctcatccat atggatcttc cgg
                                                                       333
      <210> 155
      <211> 308
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(308)
      <223> n = A, T, C or G
      <400> 155
actggaaata ataaaaccca catcacagtg ttgtgtcaaa gatcatcagg gcatggatgg
                                                                        60
gaaagtgctt tgggaactgt aaagtgccta acacatgatc gatgattttt gttataatat
                                                                       120
ttgaatcacg gtgcatacaa actotootgo otgotootoo tgggcoccag coccagooo
                                                                       180
atcacagete actgetetgt teatecagge ecageatgta gtggetgatt ettettgget
                                                                       240
gcttttagcc tccanaagtt tctctgaagc caaccaaacc tctangtgta aggcatgctg
                                                                       300
gccctggt
                                                                       308
      <210> 156
      <211> 295
      <212> DNA
      <213> Homo sapien
      <400> 156
accttgctcg gtgcttggaa catattagga actcaaaata tgagatgata acagtgccta
                                                                       60
ttattgatta ctgagagaac tgttagacat ttagttgaag attttctaca caggaactga
                                                                      120
gaataggaga ttatgtttgg ccctcatatt ctctcctatc ctccttgcct cattctatgt
                                                                      180
ctaatatatt ctcaatcaaa taaggttagc ataatcagga aatcgaccaa ataccaatat
                                                                      240
aaaaccagat gtctatcctt aagattttca aatagaaaac aaattaacag actat
                                                                      295
      <210> 157
      <211> 126
      <212> DNA
      <213> Homo sapien
      <400> 157
acaagtttaa atagtgctgt cactgtgcat gtgctgaaat gtgaaatcca ccacatttct
```

```
gaagagcaaa acaaattotg toatgtaato totatottgg gtcgtgggta tatotgtoco
cttagt
                                                                        126
      <210> 158
      <211> 442
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(442)
      <223> n = A, T, C or G
      <400> 158
acceactggt cttggaaaca cecateetta atacgatgat ttttetgteg tgtgaaaatg
                                                                        60
aanccagcag gctgccccta gtcagtcctt ccttccagag aaaaagagat ttgagaaagt
                                                                       120
gcctgggtaa ttcaccatta atttcctccc ccaaactctc tgagtcttcc cttaatattt
                                                                       180
ctggtggttc tgaccaaagc aggtcatggt ttgttgagca tttggggatcc cagtgaagta
                                                                       240
natgtttgta gccttgcata cttagccctt cccacgcaca aacggagtgg cagagtggtg
                                                                       300
ccaaccetgt tttcccagte caegtagaca gattcacagt geggaattet ggaagetgga
                                                                       360
nacagacggg ctctttgcag agccgggact ctgagangga catgagggcc tctgcctctg
                                                                       420
tgttcattct ctgatgtcct gt
                                                                       442
      <210> 159
      <211> 498
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(498)
      <223> n = A, T, C or G
      <400> 159
acttccaggt aacgttgttg tttccgttga gcctgaactg atgggtgacg ttgtaggttc
                                                                        60
tecaacaaga actgaggttg cagagegggt agggaagagt getgttecag ttgcacetgg
                                                                       120
gctgctgtgg actgttgttg attcctcact acggcccaag gttgtggaac tggcanaaag
                                                                       180
gtgtgttgtt gganttgage tegggegget gtggtaggtt gtgggetett caacagggge
                                                                       240
tgctgtggtg ccgggangtg aangtgttgt gtcacttgag cttggccagc tctggaaagt
                                                                       300
antanattct tcctgaaggc cagcgcttgt ggagctggca ngggtcantg ttgtgtgtaa
                                                                       360
cgaaccagtg ctgctgtggg tgggtgtana tcctccacaa agcctgaagt tatggtgtcn
                                                                       420
tcaggtaana atgtggtttc agtgtccctg ggcngctgtg gaaggttgta nattgtcacc
                                                                       480
aagggaataa gctgtggt
                                                                       498
      <210> 160
      <211> 380
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(380)
      <223> n = A, T, C or G
      <400> 160
```

agcttcagga ggagcatggc cactagacat ccacccttac	tacttccagg atagaggaag ctcatcagcc ctccatctca gcagtttgac	agacagagco ctganaaatg acttgtgtga cacacttgag cgaacctgtt	: accagcagca tggggtctga agagatgccc ctttccactc	aaacaaatat ggaagccatt catgacccca tgtataattc	acagggaaac tcccatgcct tgagtctggc gatgcctctc taacatcctg tctaacgaaa	60 120 180 240 300 360 380
<210 > <211 > <212 > <213 >	114	en				
<400>	161					
actccacatc	ccctctgagc	aggcggttgt	cgttcaaggt	gtatttggcc	ttgcctgtca	60
cactgtccac	tggcccctta	tccacttggt	gcttaatccc	tcgaaagagc	atgt	114
<210 > <211 > <212 > <213 >	177	en				
<400>	162					
		tgatacttag	tgtagtttta	atatecteat	atatatcasa	60
gttttactac	tctgataatt	ttgtaaacca	ggtaaccaga	acatccagtc	atacagettt	120
tggtgatata	taacttggca	ataacccagt	ctggtgatac	ataaaactac	tcactgt	177
<210><211><211><212><213>	137 DNA Homo sapie	en				
	misc_featu	ire				
	(1)(137					
	n = A, T, C			-		
<400>						
catttataca (canagaaggc (catcagcggc (agctacggct	aagacattca actcctacat	cgacaaaaac cctggcgtgg	gcgaaattct gtggccttcg	atcccgtgac cctgcacctt	60 120 137
<210> <211> <212> <213>	469	en			,	
<222>	misc_featu (1)(469 n = A,T,C)				
<400>	164					
cttatcacaa 1 Igcaatgcat (tgaatgttct catgctattt	cctgggcagc catacctaat	gttgtgatct gagggagttc	ttgccacctt caggagattc	Cgtgacttta aaccaggaaa	60 120

```
tgcatggatc tcaaaggaaa caaacaccca ataaactcgg agtggcagac tgacaactgt
                                                                        180
gagacatgca cttgctacga aacagaaatt tcatgttgca cccttgttc tacacctgtg
                                                                        240
ggttatgaca aagacaactg ccaaagaatc ttcaagaagg aggactgcaa gtatatcgtg
                                                                        300
gtggagaaga aggacccaaa aaagacctgt tctgtcagtg aatggataat ctaatgtgct
                                                                        360
totagtaggo acagggoted caggodaggo otdattotod totggootet aatagtdaat
                                                                        420
gattgtgtag ccatgcctat cagtaaaaag atntttgagc aaacacttt
                                                                        469
       <210> 165
      <211> 195
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(195)
      <223> n = A,T,C or G
      <400> 165
acagtttttt atanatatcg acattgccgg cacttgtgtt cagtttcata aagctggtgg
                                                                         60
atccgctgtc atccactatt ccttggctag agtaaaaatt attcttatag cccatgtccc
                                                                        120
tgcaggccgc ccgcccgtag ttctcgttcc agtcgtcttg gcacacaggg tgccaggact
                                                                        180
tcctctgaga tgagt
                                                                        195
      <210> 166
      <211> 383
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(383)
      <223> n = A, T, C or G
      <400> 166
acatettagt agtgtggcae atcagggge cateagggte acagteacte atageetege
                                                                        60
cgaggtcgga gtccacacca ccggtgtagg tgtgctcaat cttgggcttg gcgcccacct
                                                                       120
ttggagaagg gatatgctgc acacacatgt ccacaaagcc tgtgaactcg ccaaagaatt
                                                                       180
tttgcagacc agcctgagca aggggcggat gttcagcttc agctcctcct tcgtcaggtg
                                                                       240
gatgccaacc tcgtctangg tccgtgggaa gctggtgtcc acntcaccta caacctgggc
                                                                       300
gangatetta taaagagget eenagataaa etecaegaaa ettetetggg agetgetagt
                                                                       360
nggggccttt ttggtgaact ttc
                                                                       383
      <210> 167
      <211> 247
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(247)
      \langle 223 \rangle n = A,T,C or G
      <400> 167
acagagecag acettggeca taaatgaane agagattaag actaaacece aagteganat
                                                                        60
tggagcagaa actggagcaa gaagtgggcc tggggctgaa gtagagacca aggccactgc
```

```
tatanccata cacagageca acteteagge caaggenatg gttggggeag anceagagae
                                                                        180
tcaatctgan tccaaagtgg tggctggaac actggtcatg acanaggcag tgactctgac
                                                                        240
tgangtc
                                                                        247
       <210> 168
       <211> 273
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(273)
      <223> n = A, T, C or G
      <400> 168
acttctaagt tttctagaag tggaaggatt gtantcatcc tgaaaatggg tttacttcaa
                                                                        60
aatccctcan ccttgttctt cacnactgtc tatactgana gtgtcatgtt tccacaaagg
                                                                       120
gctgacacct gagcctgnat tttcactcat ccctgagaag ccctttccag tagggtgggc
                                                                       180
aattcccaac ttccttgcca caagcttccc aggctttctc ccctggaaaa ctccagcttg
                                                                       240
agtoccagat acactoatgg gotgccotgg goa
                                                                       273
      <210> 169
      <211> 431
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(431)
      <223> n = A,T,C or G
      <400> 169
acageettgg ettecceaaa etecaeagte teagtgeaga aagateatet teeageagte
                                                                        60
agctcagacc agggtcaaag gatgtgacat caacagtttc tggtttcaga acaggttcta
                                                                       120
ctactgtcaa atgacccccc atacttcctc aaaggctgtg gtaagttttg cacaggtgag
                                                                       180
ggcagcagaa agggggtant tactgatgga caccatcttc tctgtatact ccacactgac
                                                                       240
cttgccatgg gcaaaggccc ctaccacaaa aacaatagga tcactgctgg gcaccagctc
                                                                       300
acgcacatca ctgacaaccg ggatggaaaa agaantgcca actttcatac atccaactgg
                                                                       360
aaagtgatct gatactggat tcttaattac cttcaaaagc ttctgggggc catcagctgc
                                                                       420
tcgaacactg a
                                                                       431
      <210> 170
      <211> 266
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(266)
      <223> n = A,T,C or G
      <400> 170
acctgtgggc tgggctgtta tgcctgtgcc ggctgctgaa agggagttca gaggtggagc
                                                                        60
tcaaggaget etgeaggeat tttgecaane etetecanag canagggage aacetacaet
                                                                       120
ccccgctaga aagacaccag attggagtcc tgggaggggg agttggggtg ggcatttgat
                                                                       180
```

```
gtatacttgt cacctgaatg aangagccag agaggaanga gacgaanatg anattggcct
                                                                        240
 tcaaagctag gggtctggca ggtgga
                                                                        266
       <210> 171
       <211> 1248
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc_feature
      <222> (1) ... (1248)
      \langle 223 \rangle n = A,T,C or G
      <400> 171
ggcagccaaa tcataaacgg cgaggactgc agcccgcact cgcagccctg gcaggcggca
                                                                        60
ctggtcatgg aaaacgaatt gttctgctcg ggcgtcctgg tgcatccgca gtgggtgctg
                                                                        120
tragergear actifities gaagtgagtg ragagetert acarrategg getgggeetg
                                                                       180
cacagtettg aggeegaeca agageeaggg ageeagatgg tggaggeeag eeteteegta
                                                                       240
cggcacccag agtacaacag accettgete getaacgace teatgeteat caagttggae
                                                                       300
gaateegigt eegagietga caecateegg ageateagea tigetiegea gigeeetaee
                                                                       360
gcggggaact cttgcctcgt ttctggctgg ggtctgctgg cgaacggcag aatgcctacc
                                                                       420
gtgctgcagt gcgtgaacgt gtcggtggtg tctgaggagg tctgcagtaa gctctatgac
                                                                       480
ccgctgtacc accccagcat gttctgcgcc ggcggagggc aagaccagaa ggactcctgc
                                                                       540
aacggtgact ctggggggcc cctgatctgc aacgggtact tgcagggcct tgtgtctttc
                                                                       6.00
ggaaaagccc cgtgtggcca agttggcgtg ccaggtgtct acaccaacct ctgcaaattc
                                                                       660
actgagtgga tagagaaaac cgtccaggcc agttaactct ggggactggg aacccatgaa
                                                                       720
attgaccccc aaatacatcc tgcggaagga attcaggaat atctgttccc agcccctcct
                                                                       780
ccctcaggcc caggagtcca ggcccccagc ccctcctccc tcaaaccaag ggtacagatc
                                                                       840
cccagcccct cctccctcag acccaggagt ccagaccccc cagcccctcc tccctcagac
                                                                       900
ccaggagtcc agcccctcct ccctcagacc caggagtcca gaccccccag cccctcctcc
                                                                       960
ctcagaccca ggggtccagg cccccaaccc ctcctccctc agactcagag gtccaagcc
                                                                      1020
ccaaccente attecceaga cccagaggte caggteccag eccetentee etcagaceca
                                                                      1080
geggtecaat gecacetaga etntecetgt acaeagtgee eeettgtgge aegttgacee
                                                                      1140
aaccttacca gttggttttt catttttngt ccctttcccc tagatccaga aataaagttt
                                                                      1200 🧻
aagagaagng caaaaaaaaa aaaaaaaaaa aaaaaaaaa
                                                                      1248
      <210> 172
      <211> 159
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1) ... (159)
      <223> Xaa = Any Amino Acid
      <400> 172
Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro
 1
                                    10
Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser
                                25
Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr
                            40
Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly
                                            60
```

60

120

180

240

300

360

420

480

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1265

```
Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu
                    70
                                         75
Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe
                85
                                    90
Cys Ala Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser
            100
                                105
Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe
                            120
Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn
                        135
                                            140
Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
145
                    150
                                        155
      <210> 173
      <211> 1265
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(1265)
      <223> n = A, T, C or G
      <400> 173
ggcagcccgc actcgcagcc ctggcaggcg gcactggtca tggaaaacga attgttctgc
tcgggcgtcc tggtgcatcc gcagtgggtg ctgtcagccg cacactgttt ccagaactcc
tacaccateg ggetgggeet geacagtett gaggeegace aagageeagg gageeagatg
grggaggcca gcctcrccgr acggcaccca gagracaaca gacccrtgcr cgctaacgac
ctcatgctca tcaagttgga cgaatccgtg tccgagtctg acaccatccg gagcatcagc
attgcttcgc agtgccctac cgcggggaac tcttgcctcg tttctggctg gggtctgctg
gegaaeggtg ageteaeggg tgtgtgtetg ecetetteaa ggaggteete tgeeeagteg
cgggggctga cccagagctc tgcgtcccag gcagaatgcc taccgtgctg cagtgcgtga
acgtgtcggt ggtgtctgag gaggtctgca gtaagctcta tgacccgctg taccacccca
gcatgttctg_cgccggcgga gggcaagacc agaaggactc ctgcaacggt gactctgggg
ggcccctgat ctgcaacggg tacttgcagg gccttgtgtc tttcggaaaa gccccgtgtg
gccaagttgg cgtgccaggt gtctacacca acctctgcaa attcactgag tggatagaga
aaaccgtcca ggccagttaa ctctggggac tgggaaccca tgaaattgac ccccaaatac
atcctgcgga aggaattcag gaatatctgt tcccagcccc tcctccctca ggcccaggag
tocaggocco cagococtco tocotcaaac caagggtaca gatococago coctoctcoc
tcagacccag gagtccagac cccccagccc ctcctccctc agacccagga gtccagcccc
```

tecteentea gacceaggag tecagacee ceageceete eteceteaga eccaggggtt

gaggececca acceetecte etteagagte agaggtecaa gececeaace eetegtteee

cagacccaga ggtnnaggtc ccagcccctc ttccntcaga cccagnggtc caatgccacc

tagattttcc ctgnacacag tgcccccttg tggnangttg acccaacctt accagttggt

ttttcatttt tngtcccttt cccctagatc cagaaataaa gtttaagaga ngngcaaaaa

<210> 174

aaaaa

<211> 1459

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(1459)

<223> n = A,T,C or G

<400> 174

ggtcagccgc acactgtttc cagaagtgag tgcagagctc ctacaccatc gggctgggcc 60 tgcacagtet tgaggcegae caagagecag ggagecagat ggtggaggee ageeteteeg 120 tacggcaccc agagtacaac agacccttgc tcgctaacga cctcatgctc atcaagttgg 180 acgaatccgt gtccgagtct gacaccatcc ggagcatcag cattgcttcg cagtgcccta 240 ccgcggggaa ctcttgcctc gtttctggct ggggtctgct ggcgaacggt gagctcacgg 300 gtgtgtgtct gccctcttca aggaggtcct ctgcccagtc gcgggggctg acccagagct 360 ctgcgtccca ggcagaatgc ctaccgtgct gcagtgcgtg aacgtgtcgg tggtgtctga 420 ngaggtctgc antaagctct atgacccgct gtaccacccc ancatgttct gcgccggcgg 480 agggcaagac cagaaggact cctgcaacgt gagagaggg aaaggggagg gcaggcgact 540 cagggaaggg tggagaaggg ggagacagag acacacaggg ccgcatggcg agatgcagag 600 atggagagac acacagggag acagtgacaa ctagagagag aaactgagag aaacagagaa 660 ataaacacag gaataaagag aagcaaagga agagagaaac agaaacagac atggggaggc 720 agaaacacac acacatagaa atgcagttga cettecaaca gcatggggcc tgagggeggt 780 gacctccacc caatagaaaa tcctcttata acttttgact ccccaaaaac ctgactagaa 840 atagcctact gttgacgggg agccttacca ataacataaa tagtcgattt atgcatacgt 900 tttatgcatt catgatatac ctttgttgga attttttgat atttctaagc tacacagttc 960 gtctgtgaat ttttttaaat tgttgcaact ctcctaaaat ttttctgatg tgtttattga 1020 aaaaatccaa gtataagtgg acttgtgcat tcaaaccagg gttgttcaag ggtcaactgt 1080 gtacccagag ggaaacagtg acacagattc atagaggtga aacacgaaga gaaacaggaa 1140 aaatcaagac tctacaaaga ggctgggcag ggtggctcat gcctgtaatc ccagcacttt 1200 gggaggcgag gcaggcagat cacttgaggt aaggagttca agaccagcct ggccaaaatg 1260 gtgaaateet gtetgtaeta aaaatacaaa agttagetgg atatggtgge aggegeetgt 1320 aatcccagct acttgggagg ctgaggcagg agaattgctt gaatatggga ggcagaggtt 1380 gaagtgagtt gagatcacac cactatactc cagctggggc aacagagtaa gactctgtct 1440 caaaaaaaa aaaaaaaaa 1459

<210> 175

<211> 1167

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (1167)

<223> n = A,T,C or G

<400> 175

gcgcagccct ggcaggcggc actggtcatg gaaaacgaat tgttctgctc gggcgtcctg 60 gtgcatccgc agtgggtgct gtcagccgca cactgtttcc agaactccta caccatcggg 120 ctgggcctgc acagtcttga ggccgaccaa gagccaggga gccagatggt ggaggccagc 180 ctctccgtac ggcacccaga gtacaacaga ctcttgctcg ctaacgacct catgctcatc 240 aagttggacg aatccgtgtc cgagtctgac accatccgga gcatcagcat tgcttcgcag 300 tgccctaccg cggggaactc ttgcctcgtn tctggctggg gtctgctggc gaacggcaga 360 atgcctaccg tgctgcactg cgtgaacgtg tcggtggtgt ctgaggangt ctgcagtaag 420 ctctatgacc cgctgtacca ccccagcatg ttctgcgccg gcggagggca agaccagaag 480 gactectgea aeggtgacte tggggggeee etgatetgea aegggtaett geagggeett 540 gigiciticg gaaaagcccc gigiggccaa ciiggcgigc caggigicia caccaaccic 600 tgcaaattca ctgagtggat agagaaaacc gtccagncca gttaactctg gggactggga 660 acccatgaaa ttgaccccca aatacatcct gcggaangaa ttcaggaata tctgttccca 720 gececteste ceteaggece aggagtecag geceeeagee ectectecet caaacsaagg 780 gtacagatcc ccageccctc ctccctcaga cccaggagtc cagacccccc agcccctcnt 840 centeagace caggagteca gececteete enteagacge aggagtecag acceccage 900

```
cententeeg teagacecag gggtgeagge ecceaacece tenteentea gagteagagg
                                                                      960
tecaageece caaceeteg trecceagae ceagaggine aggreecage cecteeteec
                                                                      1020
tragacroag regetreaatg cracetagan thtreetgta raragtgree cettgtggra
                                                                     1080
ngttgaccca accttaccag ttggtttttc attttttgtc cctttcccct agatccagaa
                                                                      1140
ataaagtnta agagaagcgc aaaaaaa
                                                                      1167
      <210> 176
      <211> 205
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(205)
      <223> Xaa = Any Amino Acid
      <400> 176
Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp
                                    10
Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
                                25
Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val
                            40
Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Leu Leu
Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
                    70
Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
                                    90
Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met
                                105
Pro Thr Val Leu His Cys Val Asn Val Ser Val Val Ser Glu Xaa Val
        115
                            120
                                                125
Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala
                       135
Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly
145
                    150
                                       155
Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys
                                    170
                                                        175
Ala Pro Cys Gly Gln Leu Gly Val Pro Gly Val Tyr Thr Asn Leu Cys
                                185
Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Xaa Ser
        195
                            200
      <210> 177
      <211> 1119
      <212> DNA
      <213> Homo sapien
      <400> 177
gcgcactcgc agccctggca ggcggcactg gtcatggaaa acgaattgtt ctgctcggqc
                                                                       60
gtcctggtgc atccgcagtg ggtgctgtca gccgcacact gtttccagaa ctcctacacc
                                                                      120
atcgggctgg gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatggtggag
                                                                      180
gccagcctct ccgtacggca cccagagtac aacagaccct tgctcgctaa cgacctcatg
                                                                      240
ctcatcaagt tggacgaatc cgtgtccgag tctgacacca tccggagcat cagcattgct
```

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1119

```
tegeagtgee ctacegeggg gaactettge etegtttetg getggggtet getggegaac
gatgstgtga ttgccatcca gtcccagact gtgggaggct gggagtgtga gaagctttcc
caaccctggc agggttgtac catttcggca acttccagtg caaggacgtc ctgctgcatc
ctcactgggt gctcactact gctcactgca tcacccggaa cactgtgatc aactagccag
caccatagtt ctccgaagtc agactatcat gattactgtg ttgactgtgc tgtctattgt
actaaccatg ccgatgitta ggtgaaatta gcgtcacttg gcctcaacca tcttggtatc
cagttatect cactgaattg agattteetg etteagtgte agceatteee acataattte
tgacctacag aggtgaggga tcatatagct cttcaaggat gctggtactc ccctcacaaa
ttcatttctc ctgttgtagt gaaaggtgcg ccctctggag cctcccaggg tgggtgtgca
ggtcacaatg atgaatgtat gatcgtgttc ccattaccca aagcctttaa atccctcatg
ctcagtacac cagggcaggt ctagcatttc ttcatttagt gtatgctgtc cattcatgca
accacctcag gactcctgga ttctctgcct agttgagctc ctgcatgctg cctccttggg
gaggtgaggg agagggccca tggttcaatg ggatctgtgc agttgtaaca cattaggtgc
ttaataaaca gaagctgtga tgttaaaaaa aaaaaaaaa
      <210> 178
      <211> 164
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(164)
      <223> Xaa = Any Amino Acid
      <400> 178
Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp
                                    10
Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val
                            4.0
                                                45
Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu
                        55
                                            60
Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
                   70
                                        75
Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
               85
                                   90
Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val
           100
                                105
                                                    110
Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu
                            120
```

Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg

Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser

135

150

<210> 179

Pro Gly Thr Leu

<211> 250

<212> DNA

<213> Homo sapien

<400> 179

<pre><210> 180</pre>	ctggagtgcc ttggtgttc aagccctgc aggaagcaga atgcaccttc tgaggcacct ccagctgccc ccggccgggg gatgcgaggc tcggagcacc cttgcccggc tgtgattgct gccaggcact gttcatctca gcttttctgt ccctttgctc ccggcaagcg cttctgctga aagttcatat ctggagcctg atgtcttaac gaataaaggt cccatgctcc acccgaaaaa aaaaaaaaaa	60 120 180 240 250	
actagtocag tgtggtggaa ttccattgtg ttgggccaa cacaatggct acctttaaca for tcacccagac cccgccctg cccgtgccc acgctgtgc taacgacagt atgatgctta 120 ctctgctact cggaaactat ttttatgtaa ttaatgtatg ctttcttgtt tataaatgcc 180 tgatttaaaa aaaaaaaaa aa	<211> 202 <212> DNA		
tcaccagac cccgccctg cccgtgccca acgctgctgc taacgacagt atgatgctta ccctgctact cggaaacata ttttatgtaa ttaatgtatg ctttcttgtt tataaatgcc tgatttaaaa aaaaaaaaaa aa <pre></pre>	<400> 180		
<pre><211> 558</pre>	tracccagar cregererty receptyrer argetyrtyr taargaragt atgatyrtta ctrigetart regaaartat tittatytaa tiaatytaty rittettytt tataaatyre	120 180	
<pre><212> DNA <213> Homo sapien <220> <221 misc_feature <222> (1) (558) <223> n = A,T,C or G <400> 182 aaattatgca agtatatat tactcattcc agactatatat acttatata accas act accas a</pre>	<210> 181		
<pre><213> Homo sapien <220></pre>	<211> 558		
<pre><220></pre>			
<pre><221> misc_feature</pre>	<213> Homo sapien		
<pre><221> misc_feature</pre>	<220>		
<pre><222> (1)(558)</pre>			
<pre><223> n = A,T,C or G <400> 181 tccytttykt nagytttkkg agacamccck agacctwaan ctgtgtcaca gacttcyngg 60 aatgttagg cagtgctagt aattcyteg taatgattet gttattactt tcctnattet 120 ttattectet ttettetgaa gattaatgaa gttgaaaatt gaggtggata aatacaaaaa 180 ggtaggtgg tagtaatagt atctaagtg agatgaaagt gtgttatata tatccattca 240 aaattatgca agttagtaat tactcagggt taactaaatt acttaatat gctgttgaac 300 ctactctgtt cettggctag aaaaaattat aaacaaggact ttgggaagccaa 360 attgataata ttctatgtte taaaagttgg gctatacata aattataag aaatatggaw 420 ttttattccc aggaatatgg kgttcatttt atgaatatta cscrggatag awgtwtgagt 480 aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgettt gacttattet 540 caaaaaaaaaa aaaaaaaa</pre>			
tccytttgkt naggtttkkg agacamccck agacctwaan ctgtgtcaca gacttcyngg 60 aatgtttagg cagtgctagt aattcytcg taatgattct ggtgaaaatt ggtgatattattectet ttcttctgaa gattaatgaa ggtgatggata aatcaaaaaa agatgaaagt tagtataagt atcataagtg caattatgca agttagtaat taccaggg taattatatatcattca ggtgatatatatatatgca agttagtaat taccaggg taattatagaa gtgttatata tatccattca 240 aaattatatgaa agttagtaat taccaggg taacaaatta actttaatat ggtgtgaac 300 ctcactctgtt ccttggctag aaaaaaattat aaacaggact ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gactattc agaaaaaaaa aaaaaaaa aaaaaaaa caaaaaaaa			
tccytttgkt naggtttkkg agacamccck agacctwaan ctgtgtcaca gacttcyngg 60 aatgtttagg cagtgctagt aattcytcg taatgattct ggtgaaaatt ggtgatattattectet ttcttctgaa gattaatgaa ggtgatggata aatcaaaaaa agatgaaagt tagtataagt atcataagtg caattatgca agttagtaat taccaggg taattatatatcattca ggtgatatatatatatgca agttagtaat taccaggg taattatagaa gtgttatata tatccattca 240 aaattatatgaa agttagtaat taccaggg taacaaatta actttaatat ggtgtgaac 300 ctcactctgtt ccttggctag aaaaaaattat aaacaggact ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gactattc agaaaaaaaa aaaaaaaa aaaaaaaa caaaaaaaa			
ttattcctct ttcttctgaa gattaatgaa tctaatgat gutgaaaatt gagtgggata aatacaaaaaa 180 ggtagtgtga tagtaataga tactaagtga gattaatgaa tactaagtga gagtggataat taccaataa aggtgggata aatacaaaaaa 180 ggtagtgtga aattaatgaa tactaagtga taactaaaat acttaagtga gtgttaataa taccaataa 240 aaatatatgaa agttagtaat tactcagggt taactaaaat actttaatat gctgttgaac 300 ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt gggaagccaa 360 aattgataata ttctatgtc taaaagttgg gctatacata actttaataa gaggaaccaa 360 aattgataata ttctatgtc taaaagttgg gctatacata actggaagaaaaaaaaaa			
ggtagtgga tagtataagt atctaagtgg agatgaaaatt ggagtggata aatacaaaaa 180 ggtagtgga tagtataagta tactaagtgg agatgaaagt gtgttatata tatccattca 240 aaattatgca agttagtaat tactcaagtgg taacaaattat acttaattat gctgttgaac 300 ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt gggaagccaa 360 attgataata ttctatgttc taaaagttgg gctatacata aattataag aaatatggaw 420 ttttattccc aggaatatgg kgttcatttt atgaatatta cscrggatag awgtwtgagt 480 aaaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttattc 540 caaaaaaaaaa aaaaaaaa	adatatttaga sagtastaga aatatatta aasaasaa aatattaga aasaasaa aatattaga sagtastaga aatattaga aasaasaa aatattaga aatattaga aasaasaa aatattaga a	60	
ggtagtgtga tagtataagt atctaagtg agatgaaagt gtgttatata tatccattca 240 aaattatgca agttagtaat tactcagggt taactaaatt actttaatat gctgttgaac 300 Ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagtt gggaagccaa 360 attgataata ttctatgttc taaaagttgg gctatacata aattataag aaatatggaw 420 ttttattcc aggaatatgg kgttcatttt atgaatatta cscrggatag awgtwtgagt 480 aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttatttc 540 caaaaaaaaa 2210 182 <210 182 <211 479 <212 DNA <213 Homo sapien <220	traitcotot trottotoaa garraatoaa ottoaaaan garraatot gitattacti tootnattot	_	
aaattatgca agttagtaat tactcagggt taactaaatt actttaatat gctgttgaac 300 ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt gggaagccaa 360 attgataata ttctatgttc taaaagttgg gctatacata aattattaag aaatatggaw 420 ttttattccc aggaatatgg kgttcatttt atgaatatta cscrggatag awgtwtgagt 480 aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttatttc 540 caaaaaaaaa aaaaaaaa 558 <210 > 182 <211 > 479 <212 > DNA <213 > Homo sapien <220 > <221 > misc_feature <222 > (1) (479) <223 > n = A,T,C or G <400 > 182 acagggwttk grggatgcta agscccrga rwtygtttga tccaaccctg gcttwtttc 60 agaggggaaa atggggcaa astcccgagt agctggact acaggcaca agtcactgaa gcaggccctg 120 cstaacacag astcccgagt agctggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac cccaacata accttctc atatgtgatg tccttagtca 240	ggtagtgtga tagtataagt atctaagtgg agatgaaagt gaggtggata aatacaaaaa		
ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt gggaagccaa 360 attgataata ttctatgttc taaaagttgg gctatacata aattattaag aaatatggaw 420 ttttattccc aggaatatgg kgttcatttt atgatatta cscrggatag awgtwtgagt 480 aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttattcccaaaaaaaaaa 558 <210 > 182 <211 > 479 <212 > DNA <213 > Homo sapien <220 > <221 > misc_feature <222 > (1) (479) <223 > n = A,T,C or G <400 > 182 acagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwtttc 60 agaggggaaa atggggcta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac ctccaactta accttctc atatgtgatg tccttagtca 240 ctaaggttag actttccaa cccaactaa accttctc atatgtgatg tccttagtca	adattatgca agttagtaat tacrcagggt taacraaatt acttraatat ggtgttaca	=	
attgataata ttctatgttc taaaagttgg gctatacata aattattaag aaatatggaw 420 ttttattcc aggaatatgg kgttcattt atgaatatta cscrggatag awgtwtgagt 480 aaaaycagtt ttggtwaata ygtwaatatg tcmtaaaataa acaakgcttt gacttatttc 540 caaaaaaaaaa aaaaaaaa 558 <210 > 182 <211 > 479 <212 > DNA <213 > Homo sapien <220 > <221 > misc_feature <222 > (1) (479) <223 > n = A,T,C or G <400 > 182 acagggwttk grggatgcta agscccrga rwtygtttga tccaaccctg gcttwtttc 60 agaggggaaa atggggcta gaagttacag mscatytagy tggtgcgmtg gcacccetgg 120 cstcacacag astcccgat agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgcac ctccaactta accattctc atatgtgatg tccttagtca 240 ctaaggttaa actttccasc ccaacacta accattctcc atatgtgatg tccttagtca 240	ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt gggaggaga		
asaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttatttc 540 caaaaaaaaaa aaaaaaaa 558 caaaaaaaaa aaaaaaaa 558 caaaaaaaaa aaaaaaaa 558 caaaaaaaaa aaaaaaaa 558 caaaaaaaaa 658 caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	attgataata ttctatgttc taaaagttgg gctatacata aattattaag aaatatggaw		
caaaaaaaaa aaaaaaaa	ttttattccc aggaatatgg kgttcatttt atgaatatta cscrogatag awgrwtgagt	_	
caaaaaaaaa aaaaaaaaa 558 <210> 182 <211> 479 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (1)(479) <223> n = A,T,C or G <400> 182 acaagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwtttc 60 agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctggact acaggcaca agtcactgaa gcaggcctg 180 ttwgcaattc acgttgccac ctccaactta aacatttcct taattgtgatg tccttagtca 240 Ctaaggttaa actttcccac cccaactta acacttcct taattgtgatg tccttagtca 240	aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttatttc		
<pre><211> 479 <212> DNA <213> Homo sapien <220></pre>	Caaaaaaaaa aaaaaaaa		
<pre><211> 479 <212> DNA <213> Homo sapien <220></pre>	2310x 102		
<pre><212> DNA</pre>			
<pre><213> Homo sapien <220></pre>	•		
<pre><220></pre>			
<pre><221> misc_feature <222> (1) (479) <223> n = A,T,C or G <400> 182 acagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwtttc 60 agaggggaaa atggggcta gaagttacag mscatytagy tggtgcgmtg gcaccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggcctg 180 ttwgcaattc acgttgccac ctccaactta aacattctc atatgtgatg tccttagtca 240</pre>	•		
<pre><222> (1)(479)</pre>			
<pre><223> n = A,T,C or G <400> 182 acagggwttk grggatgcta agscccrga rwtygtttga tccaaccctg gcttwttttc 60 agaggggaaa atggggcta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac ctccaactta aacattctc atatgtgatg tccttagtca 240 ctaaggttaa actttgcgag gcaggagag gaagttagg acceptagag gcaggttaga actttgcgag gcaggagag gaagttagag acceptagag gcaggagagagagagagagagagagagagagagag</pre>			
<pre><400> 182 acagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwttttc 60 agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac ctccaactta aacattcttc atatggatg tccttagtca 240</pre>			
acagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwttttc 60 agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac ctccaactta aacattcttc atatgtgatg tccttagtca 240 ctaaggttaa actttcccaa gcagaaagg gaagttaga gcaggttaga 240	12237 II = M,1,C UI G		
agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac ctccaactta aacattcttc atatgtgatg tccttagtca 240 ctaaggttaa actttcccac ccagaaaagg gaagttagg acattctc			
agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg 120 cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg 180 ttwgcaattc acgttgccac ctccaactta aacattcttc atatgtgatg tccttagtca 240 ctaaggttaa actttcccac ccagaaaagg gaagttagg acattctc	acagggwttk grggatgcta agsccccrga rwtygtttga tccaaccctg qcttwttttc	60	
cstcacacag astcccgagt agctgggact acaggcacac agtcactgaa gcaggccctg ttwgcaattc acgttgccac ctccaactta aacattcttc atatgtgatg tccttagtca 240	agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcaccctgg		
tiwgcaattc acgitgccac ciccaacita aacattciic ataigtgaig iccitagica 240	Cstcacacag asteeegagt agetgggact acaggcacae agteactgaa geaggceetg	_	
ctadygitaa actitcccac ccagaaaagg caacttagat aaaatcttag agtactitca 300	timegraatic acetieccac ciccaacita aacatictic ataigteate tectiagica		
	cladygitad actiticicae ccagaaaagg caacttagat aaaatettag agtactitica	300	

<211> 577

tactmttcta agtcetette cageeteact kkgagteetm cytgggggtt gataggaant ntetettgge ttteteaata aartetetat yeateteatg tttaatttgg taegeatara awtgstgara aaattaaaat gttetggtty maetttaaaa araaaaaaaa aaaaaaaaa	360 420 479
<210> 183 <211> 384 <212> DNA <213> Homo sapien	
<400> 183	
aggcgggagc agaagctaaa gccaaagccc aagaagagtg gcagtgccag cactggtgcc	60
agtaccagta ccaataacag tgccagtgcc agtgccagca ccagtggtgg cttcagtggt	120
ggtgccagcc tgaccgccac tctcacattt gggctcttcg ctggccttgg tggagctggt	180
gccagcacca gtggcagctc tggtgcctgt ggtttctcct acaagtgaga ttttagatat	240
tgttaatcct gccagtcttt ctcttcaagc cagggtgcat cctcagaaac ctactcaaca cagcactcta ggcagccact atcaatcaat tgaagttgac actctgcatt aratctattt	300
gccatttcaa aaaaaaaaa aaaa	360 384
<210> 184	
<211> 496	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(496)	
$\langle 223 \rangle$ n = A,T,C or G	
<400> 184	
200000000000000000000000000000000000000	
accgaattgg gaccgctggc ttataagcga tcatgtyynt ccrgtatkac ctcaacgagc	60
agggagateg agtetataeg etgaagaaat ttgaeeegat gggacaaeag acetgeteag	60 120
agggagateg agtetataeg etgaagaaat ttgaeeegat gggaeaaeag acetgeteag eecateetge teggttetee eeagatgaea aataetetsg acacegaate accateaga	120 180
agggagateg agtetataeg etgaagaaat ttgaeeegat gggaeaaeag acetgeteag eccateetge teggttetee eeagatgaea aataetetsg acacegaate aceateaaga aaegetteaa ggtgeteatg acecageaae egegeeetgt eetetgaggg teeettaaae	120 180 240
agggagateg agtetataeg etgaagaaat ttgaecegat gggacaacag acetgeteag eccateetge teggttetee eeagatgaca aataetetsg acacegaate aceateaga aaegetteaa ggtgeteatg acecageaae egegeeetgt eetetgaggg teeettaaae tgatgtett tetgecaeet gttaeceete ggagaeteeg taaecaaaet etreggaerg	120 180 240 300
agggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag eccateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaga aacgetteaa ggtgeteatg acecageaac egegeeetgt ectetgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggaetg tgageeetga tgeettettg eeageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge atcacecata aagggaacac attrgacttr	120 180 240 300 360
agggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag eccateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaga aacgetteaa ggtgeteatg acecageaac egegeeetgt ectetgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggaetg tgageeetga tgeettettg eeageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge atcacecata aagggaacac attrgacttr	120 180 240 300 360 420
aggagateg agtetataeg etgaagaaat ttgaceegat gggacaacag acetgeteag eccateetge teggttetee ecagatgaca aataetetsg acacegaate aceateaaga aaegetteaa ggtgeteatg acecageaac egegeeetgt cetetgaggg tecettaaac tgatgtettt tetgecacet gttaceeete ggagaeteeg taaceaaact etteggaetg tgageeetga tgeetttttg eeageeatae tetttggeat eeagtetete gtggegattg	120 180 240 300 360
aggagateg agtetataeg etgaagaaat ttgaceegat gggacaacag acetgeteag eccateetge teggttetee ecagatgaca aataetetsg acacegaate aceateaaga aaegetteaa ggtgeteatg acecageaae eggeeetgt ectetgaggg teeettaaae tgatgtett tetgecacet gttaceeete ggagaeteeg taaceaaaet etteggaetg tgageeetga tgeettttig eeageeatae tetttggeat ecagtetete gtggegattg attatgett tgtgaggeaa teatggtgge ateaeeeata aagggaacae atttgaettt tettteeteat attttaaatt actaemagaw tattwmagaw waaatgawtt gaaaaaetst	120 180 240 300 360 420 480
aggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaaga aaegetteaa ggtgeteatg acecageaac egegeeetgt eetetgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggaetg tgageeetga tgeettettg ecageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge atcaceeata aagggaacac atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaaa aaaaaa	120 180 240 300 360 420 480
aggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaaga aaegetteaa ggtgeteatg acecageaac egggeeetgt eetettgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggaetg tgageeetga tgeetttttg ecageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge ateaceeata aagggaacae atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaaa aaaaaa	120 180 240 300 360 420 480
aggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaaga aaegetteaa ggtgeteatg acecageaac egegeeetgt eetetgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggaetg tgageeetga tgeettettg ecageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge ateaceeata aagggaacae atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaaa aaaaaa	120 180 240 300 360 420 480
agggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee eeagatgaca aatactetsg acacegaate aceateaga aacgeteaa ggtgeteatg acecageaac egggeeetgt eetettaaac tgatgtettt tetgecacet gttaceete ggagacteeg taaceaaact etteeggactg tgageeetga tgeettettg eeageeatac tetttggeat eeagtetete gtggegattg attatgettg tgtgaggcaa teatggtgge atcaceeata aagggaacac atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaa aaaaaaa <210> 185 <211> 384 <212> DNA <213> Homo sapien <400> 185	120 180 240 300 360 420 480
aggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaga aacgetteaa ggtgeteatg acecageaac egggeeetgt eetettaaac tgatgtettt tetgecacet gttaceete ggagacteeg taaceaaact etteggactg tgaggeeetga tgeettttg ecageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge ateaceeata aagggaacac atttgaettt tetteeta attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaa aaaaaa	120 180 240 300 360 420 480
agggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaga aacgetteaa ggtgeteatg acecageaac egegeeetgt eetetgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggactg tgageeetga tgeettettg ecageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge atcaceeata aagggaacac atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaa aaaaaa	120 180 240 300 360 420 460 496
aggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag cecateetge teggttetee ecagatgaca aatactetsg acacegaate aceateaga aacgetteaa ggtgeteatg acecageaac egegeeetgt eetettgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggactg tgageeetga tgeettttg eeageeatac tetttggeat ecagtetete gtggegattg attatgettg tgtgaggeaa teatggtgge atcaceeata aagggaacac atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaa aaaaaa	120 180 240 300 360 420 480 496
agggagateg agtetatacg etgaagaaat ttgaceegat gggacaacag acetgeteag eccatectge teggttetee ecagatgaca aatactetsg acacegaate acetacaaga aacgetteaa ggtgeteatg acecageaac egegeeetgt eccetgaggg teeettaaac tgatgtettt tetgecacet gttaceeete ggagacteeg taaceaaact etteggactg tgageeetga tgeettttg ecageeatac tetttggeat ecagtetete gtggaggattg attatgettg tgtgaggeaa teatggtgge ateaceeata aagggaacac atttgacttt tetteecat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaaactst taaaaaaaaaa aaaaaa	120 180 240 300 360 420 480 496
agggagateg agtetatacg etgaagaaat ttgaccegat gggacaacag acctgetcag cccatectge teggttetee ecagatgaca aatactetsg acacegaate accateaaga aacgetteaa ggtgeteatg acccageaac eggegeetgt ecettaaac tegatgtettt tetgecacet gttaccecte ggagacteeg taaccaaact etteggactg tgageetga tgeetttttg ecageeatac tetttggeat ecagtetete gtgagegattg attatgettg tgtgaggeaa teatggtgge atcaceeata aagggaacac atttgaettt tetteeat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaactst taaaaaaaaaa aaaaaaa	120 180 240 300 360 420 480 496
agggagateg agtetatacg etgaagaaat ttgaccegat gggacaacag acctgetcag cccatectge teggttetee ecagatgaca aatactetsg acacegaate accateaaga aacgetteaa ggtgeteatg acccageaac eggegeetgt ecettaaac tegtgageetga teetttttg ecagecatac tetttggeat ecagtetete gtgageetga teatggega atcacecata aagggaacac etgtgetett tetteetga teatggtgge atcacecata aagggaacac atttgaettt tetteetat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaactst taaaaaaaaaa aaaaaaa	120 180 240 300 360 420 480 496
agggagateg agtetatacg etgaagaaat ttgaccegat gggacaacag acctgetcag cccatectge teggttetee ecagatgaca aatactetsg acacegaate accateaaga aacgetteaa ggtgeteatg acccageaac eggegeetgt ecettaaac tegatgtettt tetgecacet gttaccecte ggagacteeg taaccaaact etteggactg tgageetga tgeetttttg ecageeatac tetttggeat ecagtetete gtgagegattg attatgettg tgtgaggeaa teatggtgge atcaceeata aagggaacac atttgaettt tetteeat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaactst taaaaaaaaaa aaaaaaa	120 180 240 300 360 420 480 496

```
<212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (577)
       <223> n = A,T,C \text{ or } G
       <400> 186
gagttagete etecacaace ttgatgaggt egtetgeagt ggeetetege tteatacege
                                                                         60
 tnccatcgtc atactgtagg tttgccacca cytcctggca tcttggggcg gcntaatatt
                                                                        120
 ccaggaaact ctcaatcaag tcaccgtcga tgaaacctgt gggctggttc tgtcttccgc
                                                                        180
teggtgtgaa aggateteee agaaggagtg etegatette eccaeaettt tgatgaettt
                                                                        240
attgagtcga ttctgcatgt ccagcaggag gttgtaccag ctctctgaca gtgaggtcac
                                                                        300
cagecetate atgeegttga megtgeegaa gareacegag eettgtgtgg gggkkgaagt
                                                                        360
ctcacccaga ttctgcatta ccagagagcc gtggcaaaag acattgacaa actcgcccag
                                                                       420
gtggaaaaag amcameteet ggargtgetn geegeteete gtemgttggt ggeagegetw
                                                                        480
teettttgac acacaaacaa gttaaaggca ttttcagccc ccagaaantt gtcatcatcc
                                                                       540
aagatntcgc acagcactna tccagttggg attaaat
                                                                       577
      <210> 187
       <211> 534
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(534)
      <223> n = A, T, C or G
      <400> 187
aacatettee tgtataatge tgtgtaatat egateegatn ttgtetgstg agaatyeatw
                                                                        60
actkggaaaa gmaacattaa agcctggaca ctggtattaa aattcacaat atgcaacact
                                                                       120
ttaaacagtg tgtcaatctg ctcccyynac tttgtcatca ccagtctggg aakaagggta
                                                                       180
tgccctattc acacctgtta aaagggcgct aagcattttt gattcaacat ctttttttt
                                                                       240
gacacaagtc cgaaaaaagc aaaagtaaac agttatyaat ttgttagcca attcactttc
                                                                       300
ttcatgggac agagccatyt gatttaaaaa gcaaattgca taatattgag cttygggagc
                                                                       360
tgatatttga gcggaagagt agcctttcta cttcaccaga cacaactccc tttcatattg
                                                                       420
ggatgttnac naaagtwatg tctctwacag atgggatgct tttgtggcaa ttctgttctg
                                                                       480
aggateteec agtitatita ceaetigeae aagaaggegt titetteete agge
                                                                       534
      <210> 188
      <211> 761
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(761)
      <223> n = A,T,C or G
      <400> 188
agaaaccagt atctctnaaa acaacctctc ataccttgtg gacctaattt tgtgtgcgtg
                                                                       60
tgtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg
                                                                      120
cctctttggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct
                                                                      180
```

```
ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt
                                                                       240
tttattcgac atgaaggaaa tttccagatn acaacactna caaactctcc ctkgackarg
                                                                       300
ggggacaaag aaaagcaaaa ctgamcataa raaacaatwa cctggtgaga arttgcataa
                                                                       360
acagaaatwr ggtagtatat tgaarnacag catcattaaa rmgttwtktt wttctccctt
                                                                       420
gcaaaaaaca tgtacngact tcccgttgag taatgccaag ttgtttttt tatnataaaa
                                                                       480
cttgcccttc attacatgtt tnaaagtggt gtggtgggcc aaaatattga aatgatggaa
                                                                       540
ctgactgata aagctgtaca aataagcagt gtgcctaaca agcaacacag taatgttgac
                                                                       600
atgettaatt cacaaatget aattteatta taaatgtttg etaaaataca etttgaacta
                                                                       660
tttttctgtn ttcccagagc tgagatntta gattttatgt agtatnaagt gaaaaantac
                                                                       720
gaaaataata acattgaaga aaaananaaa aaanaaaaaa a
                                                                       761
      <210> 189
      <211> 482
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(482)
      <223> n = A,T,C or G
      <400> 189
ttttttttt tttgccgatn ctactatttt attgcaggan gtgggggtgt atgcaccgca
                                                                        60
caccggggct atnagaagca agaaggaagg agggagggca cagccccttg ctgagcaaca
                                                                       120
aageegeetg etgeettete tgtetgtete etggtgeagg cacatgggga gacetteece
                                                                       180
aaggcagggg ccaccagtcc aggggtggga atacaggggg tgggangtgt gcataagaag
                                                                       240
tgataggcac aggccacccg gtacagaccc ctcggctcct gacaggtnga tttcgaccag
                                                                       300
gtcattgtgc cctgcccagg cacagcgtan atctggaaaa gacagaatgc tttcctttc
                                                                       360
aaatttggct ngtcatngaa ngggcanttt tccaanttng gctnggtctt ggtacncttg
                                                                       420
gtteggeeca geteenegte caaaaantat teaecennet eenaattget tgenggneec
                                                                       480
CC
                                                                       482
      <210> 190
      <211> 471
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(471)
      <223> n = A.T.C or G
      <400> 190
ttttttttt ttttaaaaca gtttttcaca acaaaattta ttagaagaat agtggttttg
                                                                       60
aaaactctcg catccagtga gaactaccat acaccacatt acagctngga atgtnctcca
                                                                       120
aatgtctggt caaatgatac aatggaacca ttcaatctta cacatgcacg aaagaacaag
                                                                       180
cgcttttgac atacaatgca caaaaaaaaa agggggggg gaccacatgg attaaaattt
                                                                       240
taagtactca tcacatacat taagacacag ttctagtcca gtcnaaaatc agaactgcnt
                                                                       300
tgaaaaattt catgtatgca atccaaccaa agaacttnat tggtgatcat gantnctcta
                                                                       360
ctacatcnac cttgatcatt gccaggaacn aaaagttnaa ancacncngt acaaaaanaa
                                                                       420
totgtaattn anttoaacct cogtaongaa aaatnttnnt tatacactco c
                                                                      471
      <210> 191
      <211> 402
      <212> DNA
```

١

```
<213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(402)
       <223> n = A, T, C or G
       <400> 191
 gagggattga aggtctgttc tastgtcggm ctgttcagcc accaactcta acaagttgct
                                                                         60
 gtcttccact cactgtctgt aagcttttta acccagacwg tatcttcata aatagaacaa
                                                                        120
 attetteace agteacatet tetaggacet teteggatte agttagtata agetetteca
                                                                        180
 cttcctttgt taagacttca tctggtaaag tcttaagttt tgtagaaagg aattyaattg
                                                                        240
ctcgttctct aacaatgtcc tctccttgaa gtatttggct gaacaaccca cctaaagtcc
                                                                        300
 ctrtgtgcat ccattttaaa tatacttaat agggcartgk tncactaggt taaattctgc
                                                                        360
 aagagtcatc tgtctgcaaa agttgcgtta gtatatctgc ca
                                                                        402
       <210> 192
       <211> 601
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc_feature
      <222> (1)...(601)
      <223> n = A,T,C or G
      <400> 192
gageteggat ecaataatet ttgtetgagg geageacaea tatneagtge catggnaact
                                                                         60
ggtctacccc acatgggagc agcatgccgt agntatataa ggtcattccc tgagtcagac
                                                                        120
atgcytyttt gaytaccgtg tgccaagtgc tggtgattct yaacacacyt ccatcccgyt
                                                                        180
cttttgtgga aaaactggca cttktctgga actagcarga catcacttac aaattcaccc
                                                                        240
acgagacact tgaaaggtgt aacaaagcga ytcttgcatt gctttttgtc cctccggcac
                                                                        300
cagttgtcaa tactaacccg ctggtttgcc tccatcacat ttgtgatctg tagctctgga
                                                                        360
tacatetect gacagtactg aagaacttet tettttgttt caaaageare tettggtgee
                                                                        420
tgttggatca ggttcccatt tcccagtcyg aatgttcaca tggcatattt wacttcccac
                                                                        480
aaaacattgc gatttgaggc tcagcaacag caaatcctgt tccggcattg gctgcaagag
                                                                        540
cetegatgta geeggeeage geeaaggeag gegeegtgag eeceaceage ageagaagea
                                                                        600
g
                                                                        601
      <210> 193
      <211> 608
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(608)
      \langle 223 \rangle n = A,T,C or G
      <400> 193
atacageeca nateecacea egaagatgeg ettgttgaet gagaacetga tgeggteaet
                                                                        60
ggtcccgctg tagccccagc gactctccac ctgctggaag cggttgatgc tgcactcytt
                                                                       120
cccaacgcag gcagmagcgg gsccggtcaa tgaactccay tcgtggcttg gggtkgacgg
                                                                       180
tkaagtgcag gaagaggctg accacctcgc ggtccaccag gatgcccgac tgtgcgggac
                                                                       240
ctgcagcgaa actcctcgat ggtcatgagc gggaagcgaa tgaggcccag ggccttgccc
                                                                       300
```

```
agaaccttcc gcctgttctc tggcgtcacc tgcagctgct gccgctgaca ctcggcctcg
                                                                        360
gascagegga caaacggert tgaacageeg caceteaegg atgeecagtg tgtegegete
                                                                        420
caggammgsc accagegtgt ccaggtcaat gteggtgaag cccteegegg gtratggegt
                                                                        480
ctgcagtgtt tttgtcgatg ttctccaggc acaggctggc cagctgcggt tcatcgaaga
                                                                       540
gtcgcgcctg cgtgagcagc atgaaggcgt tgtcggctcg cagttcttct tcaggaactc
                                                                       600
cacqcaat
                                                                       608
      <210> 194
      <211> 392
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(392)
      <223> n = A,T,C or G
      <400> 194
gaacggctgg accttgcctc gcattgtgct tgctggcagg gaataccttg gcaagcagyt
                                                                        60
ccagtccgag cageeccaga cegetgeege cegaagetaa geetgeetet ggeetteeee
                                                                       120
tccgcctcaa tgcagaacca gtagtgggag cactgtgttt agagttaaga gtgaacactg
                                                                       180
tttgatttta cttgggaatt tcctctgtta tatagctttt cccaatgcta atttccaaac
                                                                       240
aacaacaaca aaataacatg tttgcctgtt aagttgtata aaagtaggtg attctgtatt
                                                                       300
taaagaaaat attactgtta catatactgc ttgcaatttc tgtatttatt gktnctstgg
                                                                       360
aaataaatat agttattaaa ggttgtcant cc
                                                                       392
      <210> 195
      <211> 502
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(502)
      <223> n = A, T, C or G
      <400> 195
ccsttkgagg ggtkaggkyc cagttyccga gtggaagaaa caggccagga gaagtgcgtg
                                                                       60
ccgagctgag gcagatgttc ccacagtgac ccccagagcc stgggstata gtytctgacc
                                                                       120
cctcncaagg aaagaccacs ttctggggac atgggctgga gggcaggacc tagaggcacc
                                                                       180
aagggaaggc cccattccgg ggstgttccc cgaggaggaa gggaaggggc tctgtgtgcc
                                                                       240
ccccasgagg aagaggccct gagtcctggg atcagacacc ccttcacgtg tatccccaca
                                                                       300
caaatgcaag ctcaccaagg tccccttca gtccccttcc stacaccctg amcggccact
                                                                       360
gscscacacc cacccagage acgccacccg ccatggggar tgtgctcaag gartcgcngg
                                                                       420
gcarcgtgga catcingtcc cagaagggg cagaatctcc aatagangga cigarcmstt
                                                                       480
gctnanaaaa aaaaanaaaa aa
                                                                      502
      <210> 196
      <211> 665
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(665)
```

<223> n = A,T,C or G

```
<400> 196
ggrtacttgg titcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc
                                                                        60
cctctggaag ccttgcgcag agcggacttt gtaattgttg gagaataact gctgaatttt
                                                                        120
wagctgtttk gagttgatts gcaccactgc acccacaact tcaatatgaa aacyawttga
                                                                       180
actwatttat tatcttgtga aaagtataac aatgaaaatt ttgttcatac tgtattkatc
                                                                       240
aagtatgatg aaaagcaawa gatatatatt cttttattat gttaaattat gattgccatt
                                                                       300
attaatcggc aaaatgtgga gtgtatgttc ttttcacagt aatatatgcc ttttgtaact
                                                                       360
tcacttggtt attttattgt aaatgartta caaaattctt aatttaagar aatggtatgt
                                                                       420
watatttatt tcattaattt ctttcctkgt ttacgtwaat tttgaaaaga wtgcatgatt
                                                                       480
tettgacaga aategatett gatgetgtgg aagtagtttg acceacatee etatgagttt
                                                                       540
ttcttagaat gtataaaggt tgtagcccat cnaacttcaa agaaaaaaat gaccacatac
                                                                       600
tttgcaatca ggctgaaatg tggcatgctn ttctaattcc aactttataa actagcaaan
                                                                       660
aagtg
                                                                       665
      <210> 197
      <211> 492
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(492)
      <223> n = A, T, C \text{ or } G
      <400> 197
ttttnttttt tttttttgc aggaaggatt ccatttattg tggatgcatt ttcacaatat
                                                                        60
atgritatig gagogatoca tratcagiga aaagtatoaa gigittataa nattittagg
                                                                       120
aaggcagatt cacagaacat gctngtcngc ttgcagtttt acctcgtana gatnacagag
                                                                       180
aattatagtc naaccagtaa acnaggaatt tacttttcaa aagattaaat ccaaactgaa
                                                                       240
caaaattcta ccctgaaact tactccatcc aaatattgga ataanagtca gcagtgatac
                                                                       300
attotottot gaactttaga ttttotagaa aaatatgtaa tagtgatcag gaagagotot
                                                                       360
tgttcaaaag tacaacnaag caatgttccc ttaccatagg ccttaattca aactttgatc
                                                                       420
catttcactc ccatcacggg agtcaatgct acctgggaca cttgtatttt gttcatnctg
                                                                       480
anchtggctt aa
                                                                       492
      <210> 198
      <211> 478
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(478)
      <223> n = A, T, C or G
      <400> 198
tttnttttgn atttcantct gtannaanta ttttcattat gtttattana aaaatatnaa
                                                                       60
tgtntccacn acaaatcatn ttacntnagt aagaggccan ctacattgta caacatacac
                                                                       120
tgagtatatt ttgaaaagga caagtttaaa gtanacncat attgccganc atancacatt
                                                                      180
tatacatggc ttgattgata tttagcacag canaaactga gtgagttacc agaaanaaat
                                                                      240
natatatgtc aatcngattt aagatacaaa acagatccta tggtacatan catcntgtag
                                                                      300
gagttgtggc tttatgttta ctgaaagtca atgcagttcc tgtacaaaga gatggccgta
                                                                      360
agcattctag tacctctact ccatggttaa gaatcgtaca cttatgttta catatgtnca
                                                                      420
```

```
gggtaagaat tgtgttaagt naanttatgg agaggtccan gagaaaaatt tgatncaa
                                                                        478
       <210> 199
       <211> 482
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(482)
      <223> n = A,T,C or G
      <400> 199
agtgacttgt cctccaacaa aaccccttga tcaagtttgt ggcactgaca atcagaccta
                                                                         60
tgctagttcc tgtcatctat tcgctactaa atgcagactg gaggggacca aaaaggggca
                                                                        120
tcaactccag ctggattatt ttggagcctg caaatctatt cctacttgta cggactttga
                                                                        180
agigaticag titocictac ggaigagaga ciggoicaag aataiccica igcagoitta
                                                                        240
tgaagccnac tctgaacacg ctggttatct nagatgagaa ncagagaaat aaagtcnaga
                                                                        300
aaatttacct ggangaaaag aggettingg etggggacca teecattgaa eettetetta
                                                                        360
anggacttta agaanaaact accacatgtn tgtngtatcc tggtgccngg ccgtttantg
                                                                        420
aachtngach neaccettht ggaatanant ettgachgen teetgaactt geteetetge
                                                                        480
ga
                                                                        482
      <210> 200
      <211> 270
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(270)
      <223> n = A, T, C or G
      <400> 200
eggeegeaag tgeaacteea getggggeeg tgeggaegaa gattetgeea geagttggte
                                                                        60
cgactgcgac gacggcggcg gcgacagtcg caggtgcagc gcgggcgcct ggggtcttgc
                                                                        120
aaggetgage tgaegeegea gaggtegtgt caegteecae gaeettgaeg eegtegggga
                                                                        180
cagccggaac agagcccggt gaangcggga ggcctcgggg agcccctcgg gaagggcggc
                                                                        240
ccgagagata cgcaggtgca ggtggccgcc
                                                                        270
      <210> 201
      <211> 419
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(419)
      \langle 223 \rangle n = A,T,C or G
      <400> 201
tittititt tittggaatc tactgcgagc acagcaggtc agcaacaagt ttatttgca
                                                                        60
gctagcaagg taacagggta gggcatggtt acatgttcag gtcaacttcc tttgtcgtgg
                                                                       120
ttgattggtt tgtctttatg ggggcggggt ggggtagggg aaancgaagc anaantaaca
                                                                       180
tggagtgggt gcaccctccc tgtagaacct ggttacnaaa gcttggggca gttcacctgg
                                                                       240
```

```
totgtgaccg toattttott gacatoaatg ttattagaag toaggatato ttttagagag
                                                                       300
tccactgtnt ctggagggag attagggttt cttgccaana tccaancaaa atccacntga
                                                                       360
aaaagttgga tgatncangt acngaatacc ganggcatan ttctcatant cggtggcca
                                                                       419
      <210> 202
      <211> 509
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(509)
      <223> n = A,T,C or G
      <400> 202
trentetet tetetetet tetetete tetetetet tetetetet tetetetet
                                                                        60
tggcacttaa tccattttta tttcaaaatg tctacaaant ttnaatnonc cattatacng
                                                                       120
gtnattttnc aaaatctaaa nnttattcaa atntnagcca aantccttac ncaaatnnaa
                                                                       180
tacncncaaa aatcaaaaat atacntntct ttcagcaaac ttngttacat aaattaaaaa
                                                                       240
aatatatacg gctggtgttt tcaaagtaca attatcttaa cactgcaaac atntttnnaa
                                                                       300
ggaactaaaa taaaaaaaaa cactnccgca aaggttaaag ggaacaacaa attcntttta
                                                                       360
caacancnnc nattataaaa atcatatctc aaatcttagg ggaatatata cttcacacng
                                                                       420
ggatcttaac ttttactnca ctttgtttat ttttttanaa ccattgtntt gggcccaaca
                                                                       480
caatggnaat nccnccncnc tggactagt
                                                                       509
      <210> 203
      <211> 583
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(583)
      <223> n = A, T, C or G
      <400> 203
ttttttttt tttttttga cccccctctt ataaaaaaca agttaccatt ttattttact
                                                                       60
tacacatatt tattttataa ttggtattag atattcaaaa ggcagctttt aaaatcaaac
                                                                      120
taaatggaaa ctgccttaga tacataattc ttaggaatta gcttaaaatc tgcctaaagt
                                                                      180
gaaaatcttc tctagctctt ttgactgtaa atttttgact cttgtaaaac atccaaattc
                                                                      240
atttttcttg tctttaaaat tatctaatct ttccatttt tccctattcc aagtcaattt
                                                                      300
gcttctctag cctcatttcc tagctcttat ctactattag taagtggctt ttttcctaaa
                                                                      360
agggaaaaca ggaagagana atggcacaca aaacaaacat tttatattca tatttctacc
                                                                      420
tacgttaata aaatagcatt ttgtgaagcc agctcaaaag aaggcttaga tccttttatg
                                                                      480
tocattttag toactaaacg atatonaaag tgocagaatg caaaaggttt gtgaacattt
                                                                      540
attcaaaagc taatataaga tatttcacat actcatcttt ctg
                                                                      583
      <210> 204
      <211> 589
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1) . . . (589)
```

<223> n = A,T,C or G

<400> 204
tttnt ttttttttt tttt

tttttttttt tttttttt ttttttnctc ttctttttt ttganaatga ggatcgagtt 60 tttcactctc tagatagggc atgaagaaaa ctcatctttc cagctttaaa ataacaatca 120 aatotottat gotatatoat attttaagtt aaactaatga gtoactggot tatottotoo 180 tgaaggaaat ctgttcattc ttctcattca tatagttata tcaagtacta ccttgcatat 240 tgagaggttt ttcttctcta tttacacata tatttccatg tgaatttgta tcaaaccttt 300 attttcatgc aaactagaaa ataatgtntt cttttgcata agagaagaga acaatatnag 360 cattacaaaa ctgctcaaat tgtttgttaa gnttatccat tataattagt tnggcaggag 420 ctaatacaaa tcacatttac ngacnagcaa taataaaact gaagtaccag ttaaatatcc 480 aaaataatta aaggaacatt tttagcctgg gtataattag ctaattcact ttacaagcat 540 ttattnagaa tgaattcaca tgttattatt ccntagccca acacaatgg 589

<210> 205

<211> 545

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(545)

 $\langle 223 \rangle$ n = A,T,C or G

<400> 205 -

tttttntttt ttttttcagt aataatcaga acaatattta tttttatatt taaaattcat 60 agaaaagtgc cttacattta ataaaagttt gtttctcaaa gtgatcagag gaattagata 120 tngtcttgaa caccaatatt aatttgagga aaatacacca aaatacatta agtaaattat 180 ttaagatcat agagcttyta agtgaaaaga taaaatttya cctcagaaac tctgagcatt 240 aaaaatccac tattagcaaa taaattacta tggacttctt gctttaattt tgtgatgaat 300 atggggtgtc actggtaaac caacacattc tgaaggatac attacttagt gatagattct 360 tatgtacttt gctanatnac gtggatatga gttgacaagt ttctctttct tcaatctttt 420 aaggggcnga ngaaatgagg aagaaaagaa aaggattacg catactgttc tttctatngg 480 aaggattaga tatgtttoot ttgocaatat taaaaaaata ataatgttta otactagtga 540 aaccc 545

<210> 206

<211> 487

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (487)

<223> n = A,T,C or G

<400> 206

ttttttttt ttttttagtc aagtttctna tttttattat aattaaagtc ttggtcattt 60 catttattag ctctgcaact tacatattta aattaaagaa acgttnttag acaactgtna 120 caatttataa atgtaaggtg ccattattga gtanatatat tcctccaaga gtggatgtgt 180 cccttctccc accaactaat gaancagcaa cattagttta attttattag tagatnatac 240 actgctgcaa acgctaattc tettetecat ecceatging atattgtgta tatgtgtgag 300 ttggtnagaa tgcatcanca atctnacaat caacagcaag atgaagctag gcntgggctt 360 teggtgaaaa tagaetgtgt etgtetgaat caaatgatet gaeetateet eggtggeaag 420 aactettega acegetteet caaaggenge tgecaeattt gtggentetn ttgeacttgt 480

```
ttcaaaa
                                                                        487
      <210> 207
      <211> 332
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (332)
      <223> n = A,T,C or G
      <400> 207
tgaattggct aaaagactgc atttttanaa ctagcaactc ttatttcttt cctttaaaaa
                                                                        60
tacatagcat taaatcccaa atcctattta aagacctgac agcttgagaa ggtcactact
                                                                       120
gcatttatag gaccttctgg tggttctgct gttacntttg aantctgaca atccttgana
                                                                       180
atctttgcat gcagaggagg taaaaggtat tggattttca cagaggaana acacagcgca
                                                                       240
gaaatgaagg ggccaggctt actgagcttg tccactggag ggctcatggg tgggacatgg
                                                                       300
aaaagaaggc agcctaggcc ctggggagcc ca
                                                                       332
      <210> 208
      <211> 524
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(524)
      <223> n = A, T, C or G
      <400> 208
agggcgtggt gcggagggcg ttactgtttt gtctcagtaa caataaatac aaaaagactg
                                                                        60
gttgtgttcc ggccccatcc aaccacgaag ttgatttctc ttgtgtgcag agtgactgat
                                                                       120
tttaaaggac atggagcttg tcacaatgtc acaatgtcac agtgtgaagg gcacactcac
                                                                       180
tecegegtga ticacattta geaaceaaca atageteatg agtecatact tgtaaatact
                                                                       240
tttggcagaa tacttnttga aacttgcaga tgataactaa gatccaagat atttcccaaa
                                                                       300
graaatagaa grgggrcata arattaarta ccrgrrcaca rcagcrrcca rracaagto
                                                                       360
atgageceag acaetgaeat caaactaage ceaettagae teeteaceae cagtetgtee
                                                                       420
tgtcatcaga caggaggctg tcaccttgac caaattctca ccagtcaatc atctatccaa
                                                                       480
aaaccattac ctgatccact tccggtaatg caccaccttg gtga
                                                                       524
      <210> 209
      <211> 159
      <212> DNA
      <213> Homo sapien
      <400> 209
gggtgaggaa atccagagtt gccatggaga aaattccagt gtcagcattc ttgctccttg
                                                                       60
tggccctctc ctacactctg gccagagata ccacagtcaa acctggagcc aaaaaggaca
                                                                      120
caaaggactc tcgacccaaa ctgccccaga ccctctcca
                                                                      159
      <210> 210
      <211> 256
      <212> DNA
      <213> Homo sapien
```

```
<220>
      <221> misc_feature
      <222> (1)...(256)
      <223> n = A,T,C or G
      <400> 210
actccctggc agacaaaggc agaggagaga gctctgttag ttctgtgttg ttgaactgcc
                                                                         60
actgaatttc tttccacttg gactattaca tgccanttga gggactaatg gaaaaacgta
                                                                        120
tggggagatt ttanccaatt tangtntgta aatggggaga ctggggcagg cgggagagat
                                                                        180
ttgcagggtg naaatgggan ggctggtttg ttanatgaac agggacatag gaggtaggca
                                                                        240
ccaggatgct aaatca
                                                                        256
      <210> 211
      <211> 264
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(264)
      <223> n = A, T, C or G
      <400> 211
acattgtttt tttgagataa agcattgaga gagctctcct taacgtgaca caatggaagg
                                                                         60
actggaacac atacccacat ctttgttctg agggataatt ttctgataaa gtcttgctgt
                                                                        120
atattcaagc acatatgtta tatattattc agttccatgt ttatagccta gttaaggaga
                                                                       180
ggggagatac attcngaaag aggactgaaa gaaatactca agtnggaaaa cagaaaaaga
                                                                       240
aaaaaaggag caaatgagaa gcct
                                                                       264
      <210> 212
      <211> 328
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(328)
      \langle 223 \rangle n = A,T,C or G
      <400> 212
acccaaaaat ccaatgctga atatttggct tcattattcc canattcttt gattgtcaaa
                                                                        60
ggatttaatg ttgtctcagc ttgggcactt cagttaggac ctaaggatgc cagccggcag
                                                                       120
gtttatatat gcagcaacaa tattcaagcg cgacaacagg ttattgaact tgcccgccag
                                                                       180
tinaattica ticccattga citgggatcc tiatcatcag ccagagagat igaaaattta
                                                                       240
cccctacnac tetttactet etgganaggg ccagtggtgg tagetataag ettggecaca
                                                                       300
ttttttttc ctttattcct ttgtcaga
                                                                       328
      <210> 213
      <211> 250
      <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
```

```
<222> (1)...(250)
       \langle 223 \rangle n = A,T,C or G
       <400> 213
acttatgage agagegacat atcenagtgt agactgaata aaactgaatt etetecagtt
                                                                          60
 taaagcattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct
                                                                         120
cattatgcca aagganatat acatttcaat tctccaaact tcttcctcat tccaagagtt
                                                                         180
 ttcaatattt gcatgaacct gctgataanc catgttaana aacaaatatc tctctnacct
                                                                         240
 tctcatcggt
                                                                         250
       <210> 214
       <211> 444
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(444)
      \langle 223 \rangle n = A,T,C or G
acccagaatc caatgctgaa tatttggctt cattattccc agattctttg attgtcaaag
                                                                         60
gatttaatgt tgtctcagct tgggcacttc agttaggacc taaggatgcc agccggcagg
                                                                         120
tttatatatg cagcaacaat attcaagcgc gacaacaggt tattgaactt gcccgccagt
                                                                         180
tgaatttcat tcccattgac ttgggatcct tatcatcagc canagagatt gaaaatttac
                                                                        240
ccctacgact ctttactctc tggagagggc cagtggtggt agctataagc ttggccacat
                                                                        300
ttttttttcc tttattcctt tgtcagagat gcgattcatc catatgctan aaaccaacag
                                                                        360
agigactiti acaaaaticc tataganati gigaataaaa ccitacciai agiigccati
                                                                        420
actttgctct ccctaatata cctc
                                                                        444
      <210> 215
      <211> 366
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(366)
      <223> n = A,T,C or G
      <400> 215
acttatgage agagegacat atccaagtgt anactgaata aaactgaatt ctctccagtt
                                                                         60
taaagcattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct
                                                                        120
cattatgcca aagganatat acatttcaat tetecaaaet tetteeteat tecaagagtt
                                                                        180
ttcaatattt gcatgaacct gctgataagc catgttgaga aacaaatatc tctctgacct
                                                                        240
tctcatcggt aagcagaggc tgtaggcaac atggaccata gcgaanaaaa aacttagtaa
                                                                        300
tccaagctgt tttctacact gtaaccaggt ttccaaccaa ggtggaaatc tcctatactt
                                                                        360
ggtgcc
                                                                        366
      <210> 216
      <211> 260
      <212> DNA
      <213> Homo sapien
```

<220>

```
<221> misc_feature
       <222> (1)...(260)
       <223> n = A, T, C or G
       <400> 216
ctgtataaac agaactccac tgcangaggg agggccgggc caggagaatc tccgcttgtc
                                                                         60
caagacaggg gcctaaggag ggtctccaca ctgctnntaa gggctnttnc attttttat
                                                                        120
taataaaaag tnnaaaaggc ctcttctcaa ctttttccc ttnggctgga aaatttaaaa
                                                                        180
atcaaaaatt tootnaagtt ntoaagotat catatatact ntatootgaa aaagoaacat
                                                                        240
aattcttcct tccctccttt
                                                                        260
      <210> 217
       <211> 262
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(262)
      <223> n = A, T, C or G
      <400> 217
acctacgtgg gtaagtttan aaatgttata atttcaggaa naggaacgca tataattgta
                                                                        60
tettgeetat aattitetat titaataagg aaatageaaa tiggggtggg gggaatgtag
                                                                        120
ggcattctac agtttgagca aaatgcaatt aaatgtggaa ggacagcact gaaaaatttt
                                                                       180
atgaataatc tgtatgatta tatgtctcta gagtagattt ataattagcc acttacccta
                                                                       240
atatccttca tgcttgtaaa gt
                                                                       262
      <210> 218
      <211> 205
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(205)
      <223> n = A,T,C \text{ or } G
      <400> 218
accaaggtgg tgcattaccg gaantggatc aangacacca tcgtggccaa cccctgagca
                                                                        60
cccctatcaa ctcccttttg tagtaaactt ggaaccttgg aaatgaccag gccaagactc
                                                                       120
aggeeteece agttetactg acctttgtee ttangtntna ngteeagggt tgetaggaaa
                                                                       180
anaaatcagc agacacaggt gtaaa
                                                                       205
      <210> 219
      <211> 114
      <212> DNA
      <213> Homo sapien
      <400> 219
tactgttttg tctcagtaac aataaataca aaaagactgg ttgtgttccg gccccatcca
                                                                       60
accacgaagt tgatttctct tgtgtgcaga gtgactgatt ttaaaggaca tgga
                                                                       114
      <210> 220
      <211> 93
```

```
<212> DNA
       <213> Homo sapien
       <400> 220
actagecage acaaaaggea gggtageetg aattgettte tgetetttae atttetttta
                                                                        60
aaataagcat ttagtgctca gtccctactq agt
                                                                        93
      <210> 221
      <211> 167
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(167)
      <223> n = A,T,C or G
      <400> 221
actangtgca ggtgcgcaca aatatttgtc gatattccct tcatcttgga ttccatgagg
                                                                        60
tettttgece ageetgtgge tetactgtag taagtttetg etgatgagga geeagnatge
                                                                       120
cccccactac cttccctgac gctccccana aatcacccaa cctctgt
                                                                       167
      <210> 222
      <211> 351
      <212> DNA
      <213> Homo sapien
      <400> 222
agggcgtggt gcggagggcg gtactgacct cattagtagg aggatgcatt ctggcacccc
                                                                        60
gttcttcacc tgtcccccaa tccttaaaag gccatactgc ataaagtcaa caacagataa
                                                                       120
atgtttgctg aattaaagga tggatgaaaa aaattaataa tgaatttttg cataatccaa
                                                                       180
ttttctcttt tatatttcta gaagaagttt ctttgagcct attagatccc gggaatcttt
                                                                       240
taggtgagca tgattagaga gettgtaggt tgettttaca tatatetgge atatttgagt
                                                                       300
ctcgtatcaa aacaatagat tggtaaaggt ggtattattg tattgataag t
                                                                       351
      <210> 223
      <211> 383
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(383)
      <223> n = A,T,C or G
      <400> 223
aaaacaaaca aacaaaaaaa acaattette atteagaaaa attatettag ggaetgatat
                                                                       60
tggtaattat ggtcaattta atwrtrttkt ggggcatttc cttacattgt cttgacaaga
                                                                       120
traaaargtc tgtgccaaaa ttttgtattt tatttggaga cttcttatca aaagtaatgc
                                                                       180
tgccaaagga agtctaagga attagtagtg ttcccmtcac ttgtttggag tgtgctattc
                                                                      240
taaaagattt tgatttootg gaatgacaat tatattttaa otttggtggg ggaaanagtt
                                                                      300
ataggaccac agtetteact tetgataett gtaaattaat ettttattge aettgttttg
                                                                      360
accattaagc tatatgttta aaa
                                                                      383
```

```
<211> 320
       <212> DNA
       <213> Homo sapien
       <400> 224
 cccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga
                                                                      60
 aaaagttigt gacattgtag tagggagtgt gtacccctta ctccccatca aaaaaaaaat
                                                                     120
 ggatacatgg ttaaagggata raagggcaat attttatcat atgttctaaa agagaaggaa
                                                                     180
gagaaaatac tactttctcr aaatggaagc ccttaaaggt gctttgatac tgaaggacac
                                                                     240
 aaatgtggcc gtccatcctc ctttaragtt gcatgacttg gacacggtaa ctgttgcagt
                                                                     300
 tttaractcm gcattgtgac
                                                                     320
      <210> 225
      <211> 1214
      <212> DNA
      <213> Homo sapien
      <400> 225
gaggactgca gcccgcactc gcagccctgg caggcggcac tggtcatgga aaacgaattg
                                                                     60
ttctgctcgg gcgtcctggt gcatccgcag tgggtgctgt cagccgcaca ctgtttccag
                                                                     120
aactectaca ccateggget gggeetgeac agtettgagg eegaccaaga gecagggage
                                                                     180
cagatggtgg aggccagcct ctccgtacgg cacccagagt acaacagacc cttgctcgct
                                                                     240
aacgacctca tgctcatcaa gttggacgaa tccgtgtccg agtctgacac catccggagc
                                                                    300
atcagcattg cttcgcagtg ccctaccgcg gggaactctt gcctcgtttc tggctggggt
                                                                    360
ctgctggcga acggcagaat gcctaccgtg ctgcagtgcg tgaacgtgtc ggtggtgtct
                                                                    420
gaggaggtet geagtaaget etatgaceeg etgtaceace eeageatgtt etgegeegge
                                                                    480
ggagggcaag accagaagga ctcctgcaac ggtgactctg gggggcccct gatctgcaac
                                                                    540
gggtacttgc agggccttgt gtctttcgga aaagccccgt gtggccaagt tggcgtgcca
                                                                    600
ggtgtctaca ccaacctctg caaattcact gagtggatag agaaaaccgt ccaggccagt
                                                                    660
taactctggg gactgggaac ccatgaaatt gacccccaaa tacatcctgc ggaaggaatt
                                                                    720
caggaatate tgtteccage eceteetece teaggereag gagtecagge ececageree
                                                                    780
tectecetea aaccaagggt acagateece ageceeteet eecteagace caggagteea
                                                                    840
gaccccccag cccctcctcc ctcagaccca ggagtccagc ccctcctccc tcagacccag
                                                                    900
gagtecagae eccecagece etectecete agacecaggg gtecaggece ceaacecete
                                                                    960
ctccctcaga ctcagaggtc caagccccca acccctcctt ccccagaccc agaggtccag
                                                                   1020
gtoccagece etectecete agacecageg gtocaatgee acetagaete tecetgtaca
                                                                   1080
cagtgccccc ttgtggcacg ttgacccaac cttaccagtt ggtttttcat tttttgtccc
                                                                   1140
1200
aaaaaaaaa aaaa
                                                                   1214
      <210> 226
      <211> 119
      <212> DNA
      <213> Homo sapien
      <400> 226
acccagtatg tgcagggaga cggaacccca tgtgacagcc cactccacca gggttcccaa
                                                                     60
agaacctggc ccagtcataa tcattcatcc tgacagtggc aataatcacg ataaccagt
                                                                    119
     <210> 227
     <211> 818
     <212> DNA
     <213> Homo sapien
     <400> 227
```

```
acaattcata gggacgacca atgaggacag ggaatgaacc cggctctccc ccagccctqa
                                                                         60
 tttttgctac atatggggtc cctfttcatt ctttgcaaaa acactgggtt ttctgagaac
                                                                        120
 acggacggtt cttagcacaa tttgtgaaat ctgtgtaraa ccgggctttg caggggagat
                                                                        180
aattttcctc ctctggagga aaggtggtga ttgacaggca gggagacagt gacaaggcta
                                                                        240
gagaaagcca cgctcggcct tctctgaacc aggatggaac ggcagacccc tgaaaacgaa
                                                                        300
gcttgtcccc ttccaatcag ccacttctga gaacccccat ctaacttcct actggaaaag
                                                                        360
agggcctcct caggagcagt ccaagagttt tcaaagataa cgtgacaact accatctaga
                                                                        420
ggaaagggtg cacceteage agagaageeg agagettaae tetggtegtt teeagagaea
                                                                        480
acctgctggc tgtcttggga tgcgcccagc ctttgagagg ccactacccc atgaacttct
                                                                        540
gccatccact ggacatgaag ctgaggacac tgggcttcaa cactgagttg tcatgagagg
                                                                       600
gacaggetet geceteaage eggetgaggg cageaaceae teteeteece ttteteacge
                                                                       660
aaagccattc ccacaaatcc agaccatacc atgaagcaac gagacccaaa cagtttggct
                                                                       720
caagaggata tgaggactgt ctcagcctgg ctttgggctg acaccatgca cacacacaag
                                                                       780
gtccacttct aggttttcag cctagatggg agtcgtgt
                                                                       818
      <210> 228
      <211> 744
      <212> DNA
      <213> Homo sapien
      <400> 228
actggagaca ctgttgaact tgatcaagac ccagaccacc ccaggtctcc ttcgtgggat
                                                                        60
gtcatgacgt ttgacatacc tttggaacga gcctcctcct tggaagatgg aagaccgtgt
                                                                       120
tcgtggccga cctggcctct cctggcctgt ttcttaagat gcggagtcac atttcaatgg
                                                                       180
taggaaaagt ggcttcgtaa aatagaagag cagtcactgt ggaactacca aatggcgaga
                                                                       240
tgctcggtgc acattggggt gctttgggat aaaagattta tgagccaact attctctggc
                                                                       300
accagattct aggccagttt gttccactga agcttttccc acagcagtcc acctctgcag
                                                                       360
gctggcagct gaatggcttg ccggtggctc tgtggcaaga tcacactgag atcgatgggt
                                                                       420
gagaaggcta ggatgcttgt ctagtgttct tagctgtcac gttggctcct tccaggttgg
                                                                       480
ccagacggtg ttggccactc ccttctaaaa cacaggcgcc ctcctggtga cagtgacccg
                                                                       540
ccgtggtatg ccttggccca ttccagcagt cccagttatg catttcaagt ttggggtttg
                                                                       600
ttcttttcgt taatgttcct ctgtgttgtc agctgtcttc atttcctggg ctaagcagca
                                                                       660
ttgggagatg tggaccagag atccactcct taagaaccag tggcgaaaga cactttcttt
                                                                       720
cttcactctg aagtagctgg tggt
                                                                       744
      <210> 229
      <211> 300
      <212> DNA
      <213> Homo sapien
      <400> 229
cgagtctggg ttttgtctat aaagtttgat ccctcctttt ctcatccaaa tcatgtgaac
                                                                        60
cattacacat cgaaataaaa gaaaggtggc agacttgccc aacgccaggc tgacatgtgc
                                                                       120
tgcagggttg ttgtttttta attattattg ttagaaacgt cacccacagt ccctgttaat
                                                                       180
ttgtatgtga cagccaactc tgagaaggtc ctatttttcc acctgcagag gatccagtct
                                                                       240
cactaggete etecttgeee teacactgga gteteegeea gtgtgggtge ceactgaeat
                                                                       300
      <210> 230
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 230
cagcagaaca aatacaaata tgaagagtgc aaagatctca taaaatctat gctgaggaat
                                                                       60
gagcgacagt tcaaggagga gaagcttgca gagcagctca agcaagctga ggagctcagg
                                                                      120
```

cgggaaggga gagatgcctc cctctcattg aatgagcatc tccaggccct cctcactccg gatgaaccgg acaagtccca ggggcaggac ctccaagaaa cagacctcgg ccgcgaccac	180 240 300 301
<210> 231 <211> 301 <212> DNA <213> Homo sapien	
<400> 231	
gcaagcacgc tggcaaatct ctgtcaggtc agctccagag aagccattag tcattttagc caggaactcc aagtccacat ccttggcaac tggggacttg cgcaggttag ccttgaggat	60 120
ggcaacacgg gacttctcat caggaagtgg gatgtagatg agctgatcaa gacggccagg	081
bbbbbbbbb about an arthur and a second and a	240 300
	301
<210> 232	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 232	
agtaggtatt tcgtgagaag ttcaacacca aaactggaac atagttctcc ttcaagtgtt	60
	.20 .80
cgtgctgtac caagtgctgg tgccagcctg ttacctgttc tcactgaaaa tctggctaat 2	40
A	00
3	01
<210> 233	
<211> 301 <212> DNA	
<213> Homo sapien	
<400> 233	
at contract the contract of th	60
atgctaaggc cccagagatc gtttgatcca accctcttat tttcagaggg gaaaatgggg 1	20
	80
tagaaattaa gatgaaatga gaagaaatt kalkaaa	40 00
	01
<210> 234	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 234	
aggtcctaca catcgagact catccatgat tgatatgaat ttaaaaaatta caagcaaaga	60
Paratters and an area to a second	20
egecteatga cageaagtte aatgtttttg ceaectgaet qaaccaette caggagtgee 24	80 40
thankanaan aakkonkaak	00

t .	301
<210> 235 <211> 283	
<212> DNA <213> Homo sapien	
<400> 235	
tggggctgtg catcaggcgg gtttgagaaa tattcaattc tcagcagaag ccagaatttg	60
aattccctca tcttttaggg aatcatttac caggtttgga gaggattcag acagctcagg tgctttcact aatgtctctg aacttctgtc cctctttgtt catggatagt ccaataaata	120
atgttatctt tgaactgatg ctcataggag agaatataag aactctgagt gatatcaaca	180 240
ttagggattc aaagaaatat tagatttaag ctcacactgg tca	283
<210> 236 <211> 301	
<211> 301 <212> DNA	
<213> Homo sapien	
<400> 236	
aggicotoca coaactgoot gaagcacggi taaaattggg aagaagtata gigcagcata	60
addactitta aatcgatcag atttccctaa cccacatgca atcttcttca ccagaagagg	120
toggagoago atcattaata coaagoagaa tgogtaatag ataaatacaa tggtatatag	180
tgggtagacg gcttcatgag tacagtgtac tgtggtatcg taatctggac ttgggttgta aagcatcgtg taccagtcag aaagcatcaa tactcgacat gaacgaatat aaagaacacc	240
a	300 301
<210> 237	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 237	
caginging getgging gingging toginging the caginging conditions and an arrangement of the conditions and the capital conditions are capital and the capital conditions and the capital	60
acticaatitt tgttcgctcc tttttggcct tttccaatit gtccatctca attttctggg	120
ccttggctaa tgcctcatag taggagtcct cagaccagcc atggggatca aacatatcct	_180
ttgggtagtt ggtgccaagc tcgtcaatgg cacagaatgg atcagcttct cgtaaatcta gggttccgaa attettett cetttggata atgtagttca tatccattce etcetttate	240
t	300 301
<210> 238	301
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 238	
gggcaggttt ttttttttt ttttttgatg gtgcagaccc ttgctttatt tgtctgactt	60
gttcacagtt cagccccctg ctcagaaaac caacgggcca gctaaqqaqa qqagqaggca	120
ectigagact teeggagieg aggeteteea gggtteeeea geceateaat cattiteige	180
accectiged tigggaageag etecetiggig ggtgggaatig ggtgactaga agggattica	240
gtgtgggacc cagggtctgt tettcacagt aggaggtgga agggatgact aatttettta	300
	301
<210> 239	
<211> 239	

```
<212> DNA
         <213> Homo sapien
        <400> 239
  ataagcagct agggaattct ttatttagta atgtcctaac ataaaagttc acataactgc
  ttctgtcaaa ccatgatact gagctrtgtg acaacccaga aataactaag agaaggcaaa
                                                                          60
  cataatacct tagagatcaa gaaacattta cacagttcaa ctgtttaaaa atagctcaac
                                                                         120
  attcagccag tgagtagagt gtgaatgcca gcatacacag tatacaggtc cttcaggga
                                                                         180
                                                                         239
        <210> 240
        <211> 300
        <212> DNA
        <213> Homo sapien
        <400> 240
  ggtcctaatg aagcagcagc ttccacattt taacgcaggt ttacggtgat actgtccttt
  gggatctgcc ctccagtgga accttttaag gaagaagtgg gcccaagcta agttccacat
                                                                         60
  gctgggtgag ccagatgact tctgttccct ggtcactttc ttcaatgggg cgaatggggg
                                                                        120
 ctgccaggtt tttaaaatca tgcttcatct tgaagcacac ggtcacttca ccctcctcac
                                                                        180
 gctgtgggtg tactttgatg aaaataccca ctttgttggc ctttctgaag ctataatgtc
                                                                        240
                                                                        300
       <210> 241
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 241
 gaggtctggt gctgaggtct ctgggctagg aagaggagtt ctgtggagct ggaagccaga
 cctctttgga ggaaactcca gcagctatgt tggtgtctct gagggaatgc aacaaggctg
                                                                         60
 ctcctccatg tattggaaaa ctgcaaactg gactcaactg gaaggaagtg ctgctgccag
                                                                        120
 tgtgaagaac cagcctgagg tgacagaaac ggaagcaaac aggaacagcc agtctttct
                                                                        180
 tectectect greataeggt eteteteaag cateetrigt tgreagggge etaaaaggga
                                                                       240
                                                                       300
                                                                       301
       <210> 242
       <211> 301
       <212> DNA
       <213> Homo sapien
      <400> 242
ccgaggtcct gggatgcaac caatcactct gtttcacgtg acttttatca ccatacaatt
tgtggcattt cctcattttc tacattgtag aatcaagagt gtaaataaat gtatatcgat
                                                                       60
gtcttcaaga atatatcatt cctttttcac tagaacccat tcaaaatata agtcaagaat
                                                                       120
cttaatatca acaaatatat caagcaaact ggaaggcaga ataactacca taatttagta
                                                                      180
taagtaccca aagttttata aatcaaaagc cctaatgata accattttta gaattcaatc
                                                                       240
                                                                      300
                                                                      301
      <210> 243
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 243
aggtaagtcc cagttigaag ctcaaaagat ctggtatgag cataggctca tcgacgacat
ggrggcccaa gcrargaaar cagagggagg ctrcatcrgg gcctgtaaaa acrargargg
                                                                       60
                                                                      120
```

tgacgtgcag teggactetg tggeecaagg gtatggetet eteggeatga tgaceagegt getggtttgt eeagatggea agacagtaga ageagagget geecaeggga etgtaaceeg teactacege atgttecaga aaggacagga gaegteeace aateceattg ettecatttt t	180 240 300 301
<210> 244 <211> 300 <212> DNA <213> Homo sapien	
<400> 244	
gctggtttgc aagaatgaaa tgaatgattc tacagctagg acttaacctt gaaatggaaa	60
gleatgeast cocattiges ggatetgict gigeacatge cictoragag aggaggatte	120
ccagggacct tggaaacagt tgacactgta aggtgcttgc tccccaagac acatcctaaa	180
aggigitgia aiggigaaaa cgicticcii cittatigco cciictiati taigigaaca acigittigio tittigigiai cittittaaa cigiaaagii caatigigaa aatgaatato	240
5 5 5 5 5 5 5 5 -	300
<210> 245	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 245	
gtctgagtat ttaaaatgtt attgaaatta tccccaacca atgttagaaa agaaagaggt	60
tatatattia gataaaaaat gaggtgaatt actatccatt gaaatcargg torragaare	60 120
adyyccayya gatattytta ttaatytara cttcaqqaca ctaqaqtata graqqqtat	180
gitticaday agcagagatg caattaaata tigittagca tcaaaaaaggc cactcaatac	240
agctaataaa atgaaagacc taatttctaa agcaattctt tataatttac aaagttttaa	300
	301
<210> 246	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 246	
ggtctgtcct acaatgcctg cttcttgaaa gaagtcggca ctttctagaa tagctaaata	60
deceggett attitudage actatitgia gotcagattq qttttcctat gottagaara	120
agreement graduate aataaaacag ttaattcaaa gccttgarar argttaccac	180
taataattat actaaatata titigaagta caaaqtiiga catgotoraa agrgacaagg	240
caaatgtgtc ttacaaaaca cgttcctaac aaggtatgct ttacactacc aatgcagaaa	300
	301
<210> 247	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 247	
aggtcctttg gcagggctca tggatcagag ctcaaactgg agggaaaggc atttcgggta gcctaagagg gcgactggcg gcagcacaac caaggaaggc aaggttgttt cccccacgct	60
granted treaggrand acadacate eteatogoaa caggateace categoarea	120
correction cangging gottaagtgg attaagggag gcaagttorg ggrtggttag	180
occurrentation controlled the controlled controlled the controlled	240 300
a	301

<211> 301

```
<210> 248
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 248
aggteettgg agatgeeatt teageegaag gaetettetw tteggaagta caeceteaet
                                                                        60
attaggaaga ttcttagggg taatttttct gaggaaggag aactagccaa cttaagaatt
                                                                       120
acaggaagaa agtggtttgg aagacagcca aagaaataaa agcagattaa attgtatcag
                                                                       180
gtacattcca gcctgttggc aactccataa aaacatttca gattttaatc ccgaatttag
                                                                       240
ctaatgagac tggatttttg ttttttatgt tgtgtgtcgc agagctaaaa actcagttcc
                                                                       300
                                                                       301
      <210> 249
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 249
gtccagagga agcacctggt gctgaactag gcttgccctg ctgtgaactt gcacttggag
                                                                        60
ccctgacget getgttetee ecgaaaaace egacegaeet eegegatete egteeegeee
                                                                       120
ccagggagac acagcagtga ctcagagctg gtcgcacact gtgcctccct cctcaccgcc
                                                                       180
catcgtaatg aattatittg aaaattaatt ccaccatcct ticagatict ggatggaaag
                                                                       240
actgaatett tgactcagaa tigtttgetg aaaagaatga tgtgacttte ttagtcattt
                                                                       300
                                                                       301
      <210> 250
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 250
ggtctgtgac aaggacttgc aggctgtggg aggcaagtga cccttaacac tacacttctc
                                                                        60
cttatcttta ttggcttgat aaacataatt atttctaaca ctagcttatt tccagttgcc
                                                                       120
cataagcaca tcagtacttt tctctggctg gaatagtaaa ctaaagtatg gtacatctac
                                                                       180
ctaaaaagact actatgtgga ataatacata ctaatgaagt attacatgat ttaaagacta
                                                                       240
caataaaacc aaacatgctt ataacattaa gaaaaacaat aaagatacat gattgaaacc
                                                                       300
                                                                       301
      <210> 251
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 251
gccgaggtcc tacatttggc ccagtttccc cctgcatcct ctccagggcc cctgcctcat
                                                                       60
agacaacctc atagagcata ggagaactgg ttgccctggg ggcaggggga ctgtctggat
                                                                      120
ggcaggggtc ctcaaaaatg ccactgtcac tgccaggaaa tgcttctgag cagtacacct
                                                                      180
cattgggatc aatgaaaagc ttcaagaaat cttcaggctc actctcttga aggcccggaa
                                                                      240
cctctggagg ggggcagtgg aatcccagct ccaggacgga tcctgtcgaa aagatatcct
                                                                      300
С
                                                                      301
      <210> 252
```

```
<212> DNA
       <213> Homo sapien
       <400> 252
 gcaaccaatc actctgtttc acgtgacttt tatcaccata caatttgtgg catttcctca
                                                                         60
 ttttctacat tgtagaatca agagtgtaaa taaatgtata tcgatgtctt caagaatata
                                                                        120
 tcattccttt ttcactagga acccattcaa aatataagtc aagaatctta atatcaacaa
                                                                        180
 atatatcaag caaactggaa ggcagaataa ctaccataat ttagtataag tacccaaagt
                                                                        240
 tttataaatc aaaagcccta atgataacca tttttagaat tcaatcatca ctgtagaatc
                                                                        300
                                                                        301
       <210> 253
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 253
 tteeetaaga agatgttatt ttgttgggtt ttgtteeeee teeatetega ttetegtace
                                                                        60
 caactaaaaa aaaaaataa agaaaaaatg tgctgcgttc tgaaaaataa ctccttagct
 tggtctgatt gttttcagac cttaaaatat aaacttgttt cacaagcttt aatccatgtg
                                                                       120
gattttttt cttagagaac cacaaaacat aaaaggagca agtcggactg aatacctgtt
                                                                       180
                                                                       240
tecatagtge ceacagggta tteetcacat tttetecata ggaaaatget tttteecaag
                                                                       300
                                                                       301
      <210> 254
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 254
cgctgcgcct ttcccttggg ggaggggcaa ggccagaggg ggtccaagtg cagcacgagg
                                                                        60
aacttgacca attcccttga agcgggtggg ttaaaccctg taaatgggaa caaaatcccc
                                                                       120
ccaaatctct tcatcttacc ctggtggact cctgactgta gaattttttg gttgaaacaa
                                                                       180
gaaaaaaata aagetttgga ettttcaagg ttgettaaca ggtaetgaaa gaetggeete
                                                                       240
acttaaactg agccaggaaa agctgcagat ttattaatgg gtgtgttagt gtgcagtgcc
                                                                       300
t
                                                                       301
      <210> 255
      <211> 302
      <212> DNA
      <213> Homo sapien
      <400> 255
agettttttt ttttttttt tttttttt ttcattaaaa aatagtgete tttattataa
                                                                       60
attactgaaa tgtttctttt ctgaatataa atataaatat gtgcaaagtt tgacttggat
                                                                      120
tgggattttg ttgagttctt caagcatctc ctaataccct caagggcctg agtaggggg
                                                                      180
aggaaaaagg actggaggtg gaatctttat aaaaaacaag agtgattgag gcagattgta
                                                                      240
aacattatta aaaaacaaga aacaaacaaa aaaatagaga aaaaaaccac cccaacacac
                                                                      300
aa
                                                                      302
     <210> 256
     <211> 301
     <212> DNA
     <213> Homo sapien
```

```
<220>
       <221> misc_feature
       <222> (1)...(301)
       \langle 223 \rangle n = A,T,C or G
       <400> 256
gttccagaaa acattgaagg tggcttccca aagtctaact agggataccc cctctagcct
                                                                          60
aggacentee tecceacace teaatecace aaaceateca taatgeacee agataggeee
                                                                         120
acceccaaaa geetggacae ettgageaca eagttatgae eaggacagae teatetetat
                                                                         180
aggcaaatag ctgctggcaa actggcatta cctggtttgt ggggatgggg gggcaagtgt
                                                                         240
gtggcctctc ggcctggtta gcaagaacat tcagggtagg cctaagttan tcgtgttagt
                                                                         300
                                                                         301
      <210> 257
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 257
gttgtggagg aactctggct tgctcattaa gtcctactga ttttcactat cccctgaatt
                                                                          60
tececaetta tttttgtett teaetatege aggeettaga agaggtetae etgeeteeag
                                                                         120
tettacetag tecagtetae eccetggagt tagaatggee atectgaagt gaaaagtaat
                                                                         180
gtcacattac tcccttcagt gatttcttgt agaagtgcca atccctgaat gccaccaaga
                                                                         240
tottaatott cacatottta atottatoto titgactoot otttacacog gagaaggoto
                                                                         300
                                                                         301
      <210> 258
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      \langle 223 \rangle n = A,T,C or G
      <400> 258
cagcagtagt agatgccgta tgccagcacg cccagcactc ccaggatcag caccagcacc
                                                                          60
aggggcccag ccaccaggcg cagaagcaag ataaacagta ggctcaagac cagagccacc
                                                                         120
cccagggcaa caagaatcca ataccaggac tgggcaaaat cttcaaagat cttaacactg
                                                                        180
atgtctcggg cattgaggct gtcaataana cgctgatccc ctgctgtatg gtggtgtcat
                                                                        240
tggtgatccc tgggagcgcc ggtggagtaa cgttggtcca tggaaagcag cgcccacaac
                                                                        300
                                                                        301
      <210> 259
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A,T,C or G
      <400> 259
```

```
tcatatatgc aaacaaatgc agactangcc tcaggcagag actaaaggac atctcttggg
                                                                         60
 gtgtcctgaa gtgatttgga cccctgaggg cagacaccta agtaggaatc ccagtgggaa
 gcaaagccat aaggaagccc aggattcctt gtgatcagga agtgggccag gaaggtctgt
                                                                         120
                                                                         180
 tecageteae ateteatety catgeageae ggaceggaty egeceaetgg gtettggett
                                                                        240
 ccctcccatc ttctcaagca gtgtccttgt tgagccattt gcatccttgg ctccaggtgg
                                                                        300
                                                                        301
       <210> 260
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 260
 tttttttttt Ccctaaggaa aaagaaggaa caagtctcat aaaaccaaat aagcaatggt
                                                                         60
 aaggtgtctt aacttgaaaa agattaggag tcactggttt acaagttata attgaatgaa
 agaactgtaa Cagccacagt tggccatttc atgccaatgg cagcaaacaa caggattaac
                                                                        120
                                                                        180
 tagggcaaaa taaataagtg tgtggaagcc ctgataagtg cttaataaac agactgatte
                                                                        240
actgagacat cagtacctgc ccgggcggcc gctcgagccg aattctgcag atatccatca
                                                                        300
 c
                                                                        301
       <210> 261
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 261
aaatattcga gcaaatcctg taactaatgt gtctccataa aaggctttga actcagtgaa
                                                                        60
tetgetteca tecaegatte tageaatgae eteteggaea teaaagetee tettaaggtt
                                                                       120
agcaccaact attccataca attcatcagc aggaaataaa ggctcttcag aaggttcaat
                                                                       180
ggtgacatcc aattrottot gataatttag attoctcaca accttoctag ttaagtgaag
                                                                       240
ggcatgatga tcatccaaag cccagtggtc acttactcca gactttctgc aatgaagatc
                                                                       300
а
                                                                       301
      <210> 262
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 262
gaggagagcc tgttacagca tttgtaagca cagaatactc caggagtatt tgtaattgtc
                                                                        60
tgtgagette ttgccgcaag tetetcagaa atttaaaaag atgcaaatee etgagteace
                                                                       120
cctagacttc ctaaaccaga tcctctgggg ctggaacctg gcactctgca tttgtaatga
                                                                       180
gggctttctg gtgcacacct aattttgtgc atctttgccc taaatcctgg attagtgccc
                                                                       240
catcattacc cccacattat aatgggatag attcagagca gatactctcc agcaaagaat
                                                                       300
                                                                       301
      <210> 263
      <211> 301
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(301)
     <223> n = A, T, C or G
```

<400> 263 tttagcttgt ggtaaatgac tcacaaaact gattttaaaa tcaagttaat gtgaattttg aaaattacta cttaatccta attcacaata acaatggcat taaggtttga cttgagttgg ttcttagtat tatttatggt aaataggctc ttaccacttg caaataactg gccacatcat taatgactga cttcccagta aggctctcta aggggtaagt angaggatcc acaggatttg agatgctaag gccccagaga tcgtttgatc caaccctctt attttcagag gggaaaatgg g	60 120 180 240 300 301
<210> 264 <211> 301 <212> DNA <213> Homo sapien	
<400> 264 aaagacgtta aaccactcta ctaccacttg tggaactctc aaagggtaaa tgacaaascc aatgaatgac tctaaaaaca atatttacat ttaatggttt gtagacaata aaaaaacaag gtggatagat ctagaattgt aacattttaa gaaaaccata scatttgaca gatgagaaag ctcaattata gatgcaaagt tataactaaa ctactatagt agtaaagaaa tacatttcac acccttcata taaattcact atcttggctt gaggcactcc ataaaatgta tcacgtgcat a	60 120 180 240 300 301
<210> 265 <211> 301 <212> DNA <213> Homo sapien	
<400> 265 tgcccaagtt atgtgtaagt gtatccgcac ccagaggtaa aactacactg tcatctttgt cttcttgtga cgcagtattt cttctctggg gagaagccgg gaagtcttct cctggctcta catattcttg gaagtctcta atcaactttt gttccatttg tttcatttct tcaggaggga ttttcagttt gtcaacatgt tctctaacaa cacttgccca tttctgtaaa gaatccaaag cagtccaagg ctttgacatg tcaacaacca gcataactag agtatccttc agagatacgg c	60 120 180 240 300 301
<210> 266 <211> 301 <212> DNA <213> Homo sapien	
<400> 266 taccgtctgc cettectecc atccaggeca tetgegaate tacatgggtc etcetatteg acaccagate actettect etacccacag gettgetatg ageaagagae acaacetect etettetgt teccagett etttectgtt etteccacee ettaagttet attectggg atagagaeae caatacceat aacetetete etaageetee ttataacea gggtgeacag cacagaetee tgacaactgg taaggecaat gaactgggag etcacagetg getgtgeetg a	60 120 180 240 300 301
<210> 267 <211> 301 <212> DNA <213> Homo sapien	
<400> 267 aaagagcaca ggccagctca gcctgccctg gccatctaga ctcagcctgg ctccatgggg	€0

```
gttctcagtg ctgagtccat ccaggaaaag ctcacctaga ccttctgagg ctgaatcttc
                                                                        120
atcctcacag gcagcttctg agagcctgat attcctagcc ttgatggtct ggagtaaagc
                                                                        180
ctcattctga ttcctctct tcttttcttt caagttggct ttcctcacat ccctctgttc
                                                                        240
aattcgcttc agcttgtctg ctttagccct catttccaga agcttcttct ctttggcatc
                                                                        300
                                                                        301
       <210> 268
       <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 268
aatgteteac teaactaett eccageetae egtggeetaa ttetgggagt tttettetta
                                                                        60
gatettggga gagetggtte ttetaaggag aaggaggaag gacagatgta actttggate
                                                                        120
tcgaagagga agtctaatgg aagtaattag tcaacggtcc ttgtttagac tcttggaata
                                                                        180
tgctgggtgg ctcagtgagc ccttttggag aaagcaagta ttattcttaa ggagtaacca
                                                                       240
cttcccattg ttctactttc taccatcatc aaitgtatat tatgtattct ttggagaact
                                                                       300
                                                                       301
      <210> 269
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 269
taacaatata cactagetat etttttaact gteeateatt ageaccaatg aagatteaat
                                                                        60
aaaattacct ttattcacac atctcaaaac aattctgcaa attcttagtg aagtttaact
                                                                       120
atagicacag accitaaata ticacatigi titctaigic tacigaaaat aagiicacta
                                                                       180
cttttctgga tattctttac aaaatcttat taaaattcct ggtattatca cccccaatta
                                                                       240
tacagtagca caaccacctt atgtagtttt tacatgatag ctctgtagaa gtttcacatc
                                                                       300
                                                                       301
      <210> 270
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 270
cattgaagag cttttgcgaa acatcagaac acaagtgctt ataaaattaa ttaagcctta
                                                                        60
cacaagaata catatteett ttatttetaa ggagttaaac atagatgtag etgatgtgga
                                                                       120
gagettgetg gtgeagtgea tattggataa caetatteat ggeegaattg atcaagteaa
                                                                       180
ccaactcctt gaactggatc atcagaagaa gggtggtgca cgatatactg cactagataa
                                                                       240
tggaccaacc aactaaattc tctcaccagg ctgtatcagt aaactggctt aacagaaaac
                                                                       300
                                                                       301
     <210> 271
      <211> 301
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1) ... (301)
     <223> n = A,T,C or G
```

```
<400> 271
  aaaaggttct cataagatta acaatttaaa taaatatttg atagaacatt ctttctcatt
  tttatagctc atctttaggg ttgatattca gttcatgctt cccttgctgt tcttgatcca
                                                                          60
  gaattgcaat cacttcatca gootgtatto gotccaatto totataaagt gggtccaagg
                                                                         120
                                                                         180
  tgaaccacag agccacagca cacctctttc ccttggtgac tgccttcacc ccatganggt
  torotected agatganaac tgatcatgcg cocacatttt gggttttata gaagcagtca
                                                                         240
                                                                         300
                                                                         301
        <210> 272
        <211> 301
        <212> DNA
       <213> Homo sapien
       <400> 272
 taaattgcta agccacagat aacaccaatc aaatggaaca aatcactgtc ttcaaatgtc
 tratcagaaa accaaatgag cctggaatct tcataatacc taaacatgcc gtatttagga
                                                                         60
 tccaataatt ccctcatgat gagcaagaaa aattctttgc gcacccctcc tgcatccaca
                                                                        120
                                                                        180
 gcatcttctc caacaaatat aaccttgagt ggcttcttgt aatctatgtt ctttgttttc
 ctaaggactt ccattgcatc tcctacaata ttttctctac gcaccactag aattaagcag
                                                                        240
                                                                        300
                                                                        301
       <210> 273
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 273
acatgtgtgt atgtgtatct ttgggaaaan aanaagacat cttgtttayt attttttgg
                                                                        60
agagangctg ggacatggat aatcacwtaa tttgctayta tyactttaat ctgactygaa
                                                                        120
gaaccgtcta aaaataaaat ttaccatgtc dtatattcct tatagtatgc ttatttcacc
                                                                       180
ttyttictgt ccagagagag tatcagtgac ananatttma gggtgaamac atgmattggt
                                                                       240
gggacttnty tttacngagm accetgeeg sgegeeeteg makengantt eegesanane
                                                                       300
                                                                       301
      <210> 274
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (301)
      <223> n = A, T, C or G
      <400> 274
cttatatact ctttctcaga ggcaaaagag gagatgggta atgtagacaa ttctttgagg
                                                                        60
aacagtaaat gattattaga gagaangaat ggaccaagga gacagaaatt aacttgtaaa
                                                                       120
tgattctctt tggaatctga atgagatcaa gaggccagct ttagcttgtg gaaaagtcca
                                                                       180
totaggtatg gttgcattot ogtottottt totgcagtag ataatgaggt aaccgaaggo
                                                                       240
aattgtgctt cttttgataa gaagctttct tggtcatatc aggaaattcc aganaaagtc
                                                                       300
```

```
С
                                                                        301
       <210> 275
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 275
tcggtgtcag cagcacgtgg cattgaacat tgcaatgtgg agcccaaacc acagaaaatg
                                                                         60
gggtgaaatt ggccaacttt ctattaactt atgttggcaa ttttgccacc aacagtaagc
                                                                        120
tggcccttct aataaaagaa aattgaaagg tttctcacta aacggaatta agtagtggag
                                                                        180
tcaagagact cccaggcctc agcgtacctg cccgggcggc cgctcgaagc cgaattetgc
                                                                        240
agatatccat cacactggcg gncgctcgan catgcatcta gaaggnccaa ttcgccctat
                                                                        300
а
                                                                        301
       <210> 276
       <211> 301
       <212> DNA
      <213> Homo sapien
      <400> 276
tgtacacata ctcaataaat aaatgactgc attgtggtat tattactata ctgattatat
                                                                        60
ttatcatgtg acttctaatt agaaaatgta tccaaaagca aaacagcaga tatacaaaat
                                                                       120
taaagagaca gaagatagac attaacagat aaggcaactt atacattgag aatccaaatc
                                                                       180
caatacattt aaacatttgg gaaatgaggg ggacaaatgg aagccagatc aaatttgtgt
                                                                       240
aaaactattc agtatgtttc ccttgcttca tgtctgagaa ggctctcctt caatggggat
                                                                       300
                                                                       301
      <210> 277
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 277
trigitigatg tragtatitt attactigcg tratgagige tracciggga aatteraaag
                                                                        60
atacagagga cttggaggaa gcagagcaac tgaatttaat ttaaaagaag gaaaacattg
                                                                       120
gaatcatggc actcctgata ctttcccaaa tcaacactct caatgcccca ccctcgtcct
                                                                       180
caccatagtg gggagactaa agtggccacg gatttgcctt angtgtgcag tgcgttctga
                                                                       240
gttenetgte gattacatet gaccagtete ettttteega agteenteeg tteaatettg
                                                                       300
                                                                       301
      <210> 278
     <211> 301
      <212> DNA
     <213> Homc sapien
```

```
<220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 278
 taccactaca ctccagcctg ggcaacagag caagacctgt ctcaaagcat aaaatggaat
                                                                         60
 aacatatcaa atgaaacagg gaaaatgaag ctgacaattt atggaagcca gggcttgtca
                                                                        120
 cagtototac tgttattatg cattacotgg gaatttatat aagcoottaa taataatgoo
                                                                        180
 aatgaacatc tcatgtgtgc tcacaatgtt ctggcactat tataagtgct tcacaggttt
                                                                        240
 tatgtgttct tcgtaacttt atggantagg tactcggccg cgaacacgct aagccgaatt
                                                                        300
                                                                        301
       <210> 279
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ...(301)
      <223> n = A,T,C or G
      <400> 279
aaagcaggaa tgacaaagct tgcttttctg gtatgttcta ggtgtattgt gacttttact
                                                                         60
gttatattaa ttgccaatat aagtaaatat agattatata tgtatagtgt ttcacaaagc
                                                                        120
ttagaccttt accttccagc caccccacag tgcttgatat ttcagagtca gtcattggtt
                                                                        180
atacatgtgt agttccaaag cacataagct agaanaanaa atatttctag ggagcactac
                                                                        240
catctgtttt cacatgaaat gccacacaca tagaactcca acatcaattt cattgcacag
                                                                       300
                                                                       301
      <210> 280
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 280
ggtactggag ttttcctccc ctgtgaaaac gtaactactg ttgggagtga attgaggatg
                                                                        60
tagaaaggtg gtggaaccaa attgtggtca atggaaatag gagaatatgg ttctcactct
                                                                       120
tgagaaaaaa acctaagatt agcccaggta gttgcctgta acttcagttt ttctgcctgg
                                                                       180
gtttgatata gtttagggtt ggggttagat taagatctaa attacatcag gacaaagaga
                                                                       240
cagactatta actccacagt taattaagga ggtatgttcc atgtttattt gttaaagcag
                                                                       300
t
                                                                       301
      <210> 281
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 281
aggtacaaga aggggaatgg gaaagagctg ctgctgtggc attgttcaac ttggatattc
                                                                        60
gccgagcaat ccaaatcctg aatgaagggg catcttctga aaaaggagat ctgaatctca
                                                                       120
atgtggtagc aatggcttta tcgggttata cggatgagaa gaactccctt tggagagaaa
                                                                       180
tgtgtagcac actgcgatta cagctaaata acccgtattt gtgtgtcatg tttgcatttc
                                                                       240
```

tgacaagtga aacaggatct tacgatggag ttttgtatga aaacaaagtt gcagtacctc	300
g	301
	502
<210> 282	
<211> 301	
<212> DNA	
<213> Homo sapien	
100 000	
<400> 282	
caggitactac agaattaaaa tactgacaag caagtagtit citiggcgigc acgaattgca	60
tccagaaccc aaaaattaag aaattcaaaa agacattttg tgggcacctg ctagcacaga	120
agegeagaag caaageeeag geagaaceat getaacetta cageteagee tgeacagaag	180
cgcagaagca aagcccaggc agaaccatgc taaccttaca gctcagcctg cacagaagcg	240
cagaagcaaa gcccaggcag aacatgctaa ccttacagct cagcctgcac agaagcacag	300
	301
<210> 283	
<211> 301	
<212> DNA	
<213> Homo sapien .	
<400> 283	
atctgtatac ggcagacaaa ctttatarag tgtagagagg tgagcgaaag gatgcaaaag	60
cactitgagg getttataat aatatgetge ttgaaaaaaa aaatgtgtag ttgatactea	120
gigcalcicc agacalagia aggggilgci cigaccaalc aggigalcal tilliclaic	180
acticccagg tittatgcaa aaattitgit aaattitata atggigatat gcatciitta	240
ggaaacatat acatttttaa aaatctattt tatgtaagaa ctgacagacg aatttgcttt	300
g	301
<210> 284	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 284	
caggtacaaa acgctattaa gtggcttaga atttgaacat ttgtggtctt tatttacttt	60
gcttcgtgtg tgggcaaagc aacatcttcc ctaaatatat attaccaaga aaagcaagaa	120
gcagattagg tttttgacaa aacaaacagg ccaaaagggg gctgacctgg agcagagcat	180
ggtgagaggc aaggcatgag agggcaagtt tgttgtggac agatctgtgc ctactttatt	240
actggagtaa aagaaaacaa agttcattga tgtcgaagga tatatacagt gttagaaatt	300
a	301
<210> 285	
<211> 301	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)(301)	
$\langle 223 \rangle$ n = A,T,C or G	
W - MAYO OL U	
<400> 285	
acatcaccat gatcggatcc cccacccatt atacgttgta tgtttacata aatactcttc	
aatgatcatt agtgttttaa aaaaaatact gaaaactcct tctgcatccc aatctctaac	60
3 targeacter dateterate	120

caggaaagca aatgctattt acagacctgc aagccctccc tcaaacnaaa ctatttctgg attaaatatg tctgacttct tttgaggtca cacgactagg caaatgctat ttacgatctg caaaagctgt ttgaagagtc aaagccccca tgtgaacacg atttctggac cctgtaacag t	180 240 300 301
<210> 286 <211> 301 <212> DNA <213> Homo sapien	
<400> 286	
taccactgca ttccagcctg ggtgacagag tgagactccg tctccaaaaa aaactttgct	60
tgtatattat ttttgcctta cagtggatca ttctagtagg aaaggacagt aagattttt	120
atcaaaatgt gtcatgccag taagagatgt tatattcttt tctcatttct tccccaccca aaaataagct accatatagc ttataagtct caaatttttg ccttttacta aaatgtgatt	180
gtttctgttc attgtgtatg cttcatcacc tatattaggc aaattccatt ttttcccttg	240 300
t	301
<210> 287	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 287	
tacagatetg ggaactaaat attaaaaatg agtgtggetg gatatatgga gaatgttggg	60
cccagaagga acgtagagat cagatattac aacagctttg ttttgagggt tagaaatatg	120
aaatgatttg gttatgaacg cacagtttag gcagcagggc cagaatcctg accctctgcc ccgtggttat ctcctcccca gcttggctgc ctcatgttat cacagtattc cattttgttt	180 240
gttgcatgtc ttgtgaagcc atcaagattt tctcgtctgt tttcctctca ttggtaatgc	30 0
t	301
<210> 288	
<211> 301	
<212> DNA	
<213> Homo sapien	
<400> 288	
gtacacctaa ctgcaaggac agctgaggaa tgtaatgggc agccgctttt aaagaagtag	60
agtcaatagg aagacaaatt ccagttccag ctcagtctgg gtatctgcaa agctgcaaaa gatctttaaa gacaatttca agagaatatt tccttaaagt tggcaatttg gagatcatac	120
aaaagcatct gcttttgtga tttaatttag ctcatctggc cactggaaga atccaaacag	180 240
totgoottaa tittggatga atgoatgatg gaaattoaat aatttagaaa gitaaaaaaaa	300
a	301
<210> 289	
<211> 301	
<212> DNA	
<213> Homo sapien -	
<220>	
<221> misc_feature	
<222> (1)(301) <223> n = A,T,C or G	
, ., c oz g	
<400> 289	

```
ggtacactgt ttccatgtta tgtttctaca cattgctacc tcagtgctcc tggaaactta
                                                                         60
 gettttgatg tetecaagta gtecacette atttaactet ttgaaactgt atcatetttg
                                                                        120
 ccaagtaaga gtggtggcct atttcagctg ctttgacaaa atgactggct cctgacttaa
                                                                        180
 cgttctataa atgaatgtgc tgaagcaaag tgcccatggt ggcggcgaan aagagaaaga
                                                                        240
 tgtgttttgt tttggactct ctgtggtccc ttccaatgct gtgggtttcc aaccagngga
                                                                        300
 a
                                                                        301
       <210> 290
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 290
acactgaget ettettgata aatatacaga atgettggea tatacaagat tetatactae
                                                                         60
tgactgatct gttcatttct ctcacagctc ttacccccaa aagcttttcc accctaagtg
                                                                        120
ttctgacctc cttttctaat cacagtaggg atagaggcag anccacctac aatgaacatg
                                                                        180
gagttctatc aagaggcaga aacagcacag aatcccagtt ttaccattcg ctagcagtgc
                                                                        240
tgccttgaac aaaaacattt ctccatgtct cattttcttc atgcctcaag taacagtgag
                                                                        300
                                                                        301
      <210> 291
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 291
caggtaccaa tttcttctat cctagaaaca tttcatttta tgttgttgaa acataacaac
                                                                        60
tatatcaget agattttttt tetatgettt acctgetatg gaaaatttga cacattetge
                                                                       120
tttactottt tgtttatagg tgaatcacaa aatgtatttt tatgtattot gtagttcaat
                                                                       180
agccatggct gtttacttca tttaatttat ttagcataaa gacattatga aaaggcctaa
                                                                       240
acatgagett caetteecca etaactaatt ageatetgtt atttettaac egtaatgeet
                                                                       300
                                                                       301
      <210> 292
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A,T,C or G
      <400> 292
accttttagt agtaatgtct aataataaat aagaaatcaa ttttataagg tccatatagc
                                                                        60
tgtattaaat aatttttaag tttaaaagat aaaataccat cattttaaat gttggtattc
                                                                       120
aaaaccaaag natataaccg aaaggaaaaa cagatgagac ataaaatgat ttgcnagatg
                                                                      180
ggaaatatag tasttyatga atgttnatta aattocagtt ataatagtgg ctacacacto
                                                                      240
tractaraca caragarere acagtertat atgeraraaa racatttera taarttgaaa
                                                                      300
                                                                      301
```

```
<210> 293
        <211> 301
        <212> DNA
        <213> Homo sapien
        <400> 293
 ggtaccaagt gctggtgcca gcctgttacc tgttctcact gaaaagtctg gctaatgctc
                                                                          60
 ttgtgtagtc acttctgatt ctgacaatca atcaatcaat ggcctagagc actgactgtt
                                                                         120
 aacacaaacg tcactagcaa agtagcaaca gctttaagtc taaatacaaa gctgttctgt
                                                                         180
 gtgagaattt tttaaaaggc tacttgtata ataacccttg tcatttttaa tgtacctcgg
                                                                         240
 cegegaceae getaageega attetgeaga tatecateae aetggeggee getegageat
                                                                        300
                                                                        301
       <210> 294
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 294
 tgacccataa caatatacac tagctatctt tttaactgtc catcattagc accaatgaag
                                                                         60
 attoaataaa attacettta ttcacacate tcaaaacaat tetgeaaatt ettagtgaag
                                                                        120
 trtaactata greacagane traaatatte acartgette etargretae tgaaaataag
                                                                        180
ttcactactt ttctgggata ttctttacaa aatcttatta aaattcctgg tattatcacc
                                                                        240
cccaattata cagtagcaca accaccttat gtagttttta catgatagct ctgtagaggt
                                                                        300
t
                                                                        301
      <210> 295
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 295
gtactctttc teteccetee tetgaattta attettteaa ettgeaattt geaaggatta
cacatttcac tgtgatgtat attgtgttgc aaaaaaaaa gtgtctttgt ttaaaattac
                                                                        60
ttggtttgtg aatceatett gettttteee cattggaact agteattaae ceatetetga
                                                                       120
                                                                       180
actggtagaa aaacrtctga agagctagtc tatcagcatc tgacaggtga attggatggt
                                                                       240
totcagaaco atttoaccoa gacagootgt ttotatootg tttaataaat tagtttgggt
                                                                       300
tctct
                                                                       305
      <210> 296
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 296
aggtactatg ggaagctgct aaaataatat ttgatagtaa aagtatgtaa tgtgctatct
                                                                        60
cacctagtag taaactaaaa ataaactgaa actttatgga atctgaagtt attttccttg
attaaataga attaataaac caatatgagg aaacatgaaa ccatgcaatc tactatcaac
                                                                       120
tttgaaaaag tgattgaacg aaccacttag ctttcagatg atgaacactg ataagtcatt
                                                                      180
                                                                      240
```

```
tgtcattact ataaatttta aaatctgtta ataagatggc ctatagggag gaaaaagggg
                                                                         300
                                                                         301
       <210> 297
       <211> 300
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(300)
       \langle 223 \rangle n = A,T,C or G
       <400> 297
 actgagttit aactggacgc caagcaggca aggctggaag gttttgctct ctttgtgcta
                                                                          60
 aaggttttga aaaccttgaa ggagaatcat tttgacaaga agtacttaag agtctagaga
                                                                         120
 acaaagangt gaaccagctg aaagctctcg ggggaanctt acatgtgttg ttaggcctgt
                                                                         180
 tecateatty ggagtgeact ggecatecet caaaatttgt etgggetgge etgagtggte
                                                                         240
 accgcacctc ggccgcgacc acgctaagcc gaattetgca gatatccatc acactggcgg
                                                                        300
       <210> 298
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A, T, C or G
       <400> 298
tatggggttt gtcacccaaa agctgatgct gagaaaggcc tccctggggc ccctcccgcg
                                                                         60
ggcatcigag agacciggtg ticcagtgtt torggaaatg ggtcccagtg ccgccggctg
                                                                        120
tgaagetete agateaatea egggaaggge etggeggtgg tggeeacetg gaaceacest
                                                                        180
greetgreig treacarric actayeaggr tricinggg carrachart tgricecta
                                                                        240
caacagtgac ctgtgcattc tgctgtggcc tgctgtgtct gcaggtggct ctcagcgagg
                                                                        300
                                                                        301
      <210> 299
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 299
gttrrgagac ggagtttcac tcrrgrtgcc cagactggac tgcaatggca gggtctctgc
                                                                        60
teactgeace etetgeetee caggitegag caatteteet geeteageet eeeaggtage
                                                                       120
tgggattgca ggctcacgcc accataccca gctaattttt ttgtattttt agtagagacg
                                                                       180
gagtttcgcc atgttggcca gctggtctca aactcctgac ctcaagcgac ctgcctgcct
                                                                       240
cggcctccca aagtgctgga attataggca tgagtcaaca cgcccagcct aaagatattt
                                                                       300
t
                                                                       301
      <210> 300
      <211> 301
      <212> DNA
     <213> Homo sapien
```

```
<400> 300
 attcagtttt atttgctgcc ccagtatctg taaccaggag tgccacaaaa tcttgccaga
                                                                         60
 tatgtcccac acccactggg aaaggctccc acctggctac ttcctctatc agctgggtca
                                                                        120
 getgeattee acaaggttet cageetaatg agttteacta cetgecagte teaaaactta
                                                                        180
 gtaaagcaag accatgacat teeeccaegg aaatcagagt ttgeeccaee gtettgttae
                                                                        240
 tataaageet geetetaaca gteettgett etteacacea atecegageg catececcat
                                                                        300
                                                                        301
       <210> 301
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 301
 ttaaattttt gagaggataa aaaggacaaa taatctagaa atgtgtcttc ttcagtctgc
                                                                         60
 agaggacccc aggtctccaa gcaaccacat ggtcaagggc atgaataatt aaaagttggt
                                                                        120
 gggaactcac aaagaccctc agagctgaga cacccacaac agtgggagct cacaaagacc
                                                                        180
ctcagagetg agacacecae aacagtggga geteacaaag acceteagag etgagacace
                                                                       240
cacaacagca cctcgttcag ctgccacatg tgtgaataag gatgcaatgt ccagaagtgt
                                                                       300
                                                                       301
       <210> 302
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 302
aggtacacat tragerrate graaatgact cacaaaactg attttaaaat caagttaatg
                                                                        60
tgaattttga aaattactac ttaatcctaa ttcacaataa caatggcatt aaggtttgac
                                                                       120
ttgagttggt tcttagtatt atttatggta aataggctct taccacttgc aaataactgg
                                                                       180
ccacatcatt aatgactgac ttcccagtaa ggctctctaa ggggtaagta ggaggatcca
                                                                       240
caggattiga gatgctaagg ccccagagat cgtttgatcc aaccctctta ttttcagagg
                                                                       300
g
                                                                       301
      <210> 303
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 303
aggtaccaac tgtggaaata ggtagaggat cattttttct ttccatatca actaagttgt
                                                                       60
atattgtttt ttgacagttt aacacatctt cttctgtcag agattctttc acaatagcac
                                                                       120
tggctaatgg aactaccgct tgcatgttaa aaatggtggt ttgtgaaatg atcataggcc
                                                                       180
agtaacgggt atgttttct aactgatctt ttgctcgttc caaagggacc tcaagacttc
                                                                       240
catcgatttt atatctgggg tctagaaaag gagttaatct gttttccctc ataaattcac
                                                                      300
                                                                      301
      <210> 304
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 304
acatggatgt tattttgcag actgtcaacc tgaatttgta tttgcttgac attgcctaat
                                                                       60
```

```
tattagtttc agtttcagct tacccacttt ttgtctgcaa catgcaraas agacagtgcc
                                                                         120
 ctttttagtg tatcatatca ggaatcatct cacattggtt tgtgccatta ctggtgcagt
                                                                         180
 gactttcagc cacttgggta aggtggagtt ggccatatgt ctccactgca aaattactga
                                                                         240
 ttttcctttt graattaata agtgrgtgtg tgaagattct ttgagatgag gtatatatet
                                                                        300
                                                                        301
       <210> 305
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 305
 gangtacagc gtggtcaagg taacaagaag aaaaaaatgt gagtggcatc ctgggatgag
 caggggaca gacctggaca gacacgttgt catttgctgc tgtgggtagg aaaatgggcg
                                                                         60
                                                                        120
 taaaggagga gaaacagata caaaatctcc aactcagtat taaggtattc tcatgcctag
                                                                        180
 aatattggta gaaacaagaa tacattcata tggcaaataa ctaaccatgg tggaacaaaa
                                                                        240
 ttctgggatt taagttggat accaangaaa ttgtattaaa agagctgttc atggaataag
                                                                        300
                                                                        301
       <210> 306
       <211> 8
       <212> PRT
       <213> Homo sapien
       <400> 306
Val Leu Gly Trp Val Ala Glu Leu
                 5
      <210> 307
      <211> 637
      <212> DNA
      <213> Homo sapien
      <400> 307
acagggratg aagggaaagg gagaggatga ggaagccccc ctggggattt ggtttggtcc
                                                                        60
ttgtgatcag gtggtctatg gggcttatcc ctacaaagaa gaatccagaa ataggggcac
                                                                       120
attgaggaat gatacttgag cccaaagagc attcaatcat tgttttattt gccttmttt.
                                                                       180
cacaccattg gtgagggagg gattaccacc ctggggttat gaagatggtt gaacacccca
                                                                       240
cacatagcac cggagatatg agatcaacag tttcttagcc atagagattc acagcccaga
                                                                       300
gcaggaggac gcttgcacac catgcaggat gacatggggg atgcgctcgg gattggtgtg
                                                                       360
aagaagcaag gactgttaga ggcaggcttt atagtaacaa gacggtgggg caaactctga
                                                                       420
tttccgtggg ggaatgtcat ggtcttgctt tactaagttt tgagactggc aggtagtgaa
                                                                       480
actcattagg ctgagaacct tgtggaatgc acttgaccca sctgatagag gaagtagcca
                                                                       540
ggtgggagèc tttcccagtg ggtgtgggac atatctggca agattttgtg gcactcctgg
                                                                      600
ttacagatac tggggcagca aataaaactg aatcttg
                                                                      637
      <210> 308
      <211> 647
      <212> DNA
      <213> Homo sapien
```

<213> Homo sapien

```
<220>
       <221> misc_feature
       <222> (1)...(647)
       <223> n = A,T,C or G
       <400> 308
 acgatittca ttatcatgta aatcgggtca ctcaaggggc caaccacagc tgggagccac
                                                                         60
 tgctcagggg aaggttcata tgggactttc tactgcccaa ggttctatac aggatataaa
                                                                        120
 ggngcctcac agtatagatc tggtagcaaa gaagaagaaa caaacactga tctctttctg
                                                                        180
 ccaccetet gaccetttgg aacteetetg accetttaga acaageetae etaatatetg
                                                                        240
 ctagagaaaa gaccaacaac ggcctcaaag gatctcttac catgaaggtc tcagctaatt
                                                                        300
 cttggctaag atgtgggttc cacattaggt tctgaatatg gggggaaggg tcaatttgct
                                                                        360
 cattttgtgt gtggataaag tcaggatgcc caggggccag agcagggggc tgcttgcttt
                                                                        420
 gggaacaatg gctgagcata taaccatagg ttatggggaa caaaacaaca tcaaagtcac
                                                                        480
 tgtatcaatt gccatgaaga cttgagggac ctgaatctac cgattcatct taaggcagca
                                                                        540
 ggaccagttt gagtggcaac aatgcagcag cagaatcaat ggaaacaaca gaatgattgc
                                                                        600
 aatgiccttt tttttctcct gcttctgact tgataaaagg ggaccgt
                                                                        647
       <210> 309
       <211> 460
       <212> DNA
       <213> Homo sapien
       <400> 309
actitatagt ttaggctgga cattggaaaa aaaaaaaagc cagaacaaca tgtgatagat
                                                                        60
aatatgattg gctgcacact tccagactga tgaatgatga acgtgatgga ctattgtatg
                                                                       120
gagcacatet teagcaagag ggggaaatae teateatett tggccagcag ttgtttgate
                                                                       180
accaaacatc atgccagaat actcagcaaa ccttcttagc tcttgagaag tcaaagtccg
                                                                       240
ggggaattta ttcctggcaa ttttaattgg actccttatg tgagagcagc ggctacccag
                                                                       300
ctggggtggt ggagcgaacc cgtcactagt ggacatgcag tggcagagct cctggtaacc
                                                                       360
acctagagga atacacaggc acatgtgtga tgccaagcgt gacacctgta gcactcaaat
                                                                       420
tigicitgit titgicitic ggigigiaag aticitaagi
                                                                       460
      <210> 310
      <211> 539
      <212> DNA
      <213> Homo sapien
      <400> 310
acgggactta tcaaataaag ataggaaaag aagaaaactc aaatattata ggcagaaatg
                                                                        60
ctaaaggttt taaaatatgt caggattgga agaaggcatg gataaagaac aaagttcagt
                                                                       120
taggaaagag aaacacagaa ggaagagaca caataaaagt cattatgtat tctgtgagaa
                                                                       180
gtcagacagt aagatttgtg ggaaatgggt tggtttgttg tatggtatgt attttagcaa
                                                                       240
taatctttat ggcagagaaa gctaaaatcc tttagcttgc gtgaatgatc acttgctgaa
                                                                       300
ttcctcaagg taggcatgat gaaggagggt ttagaggaga cacagacaca atgaactgac
                                                                       360
ctagatagaa agccttagta tactcagcta ggaatagtga ttctgagggc acactgtgac
                                                                       420
atgattatgt cattacatgt atggtagtga tggggatgat aggaaggaag aacttatggc
                                                                       480
atattttcac ccccacaaaa gtcagttaaa tattgggaca ctaaccatcc aggtcaaga
                                                                      539
      <210> 311
      <211> 526
      <212> DNA
```

```
<220>
        <221> misc_feature
        <222> (1) ... (526)
        \langle 223 \rangle n = A,T,C or G
        <400> 311
 caaatttgag ccaatgacat agaattttac aaatcaagaa gcttattctg gggccatttc
                                                                           60
 ttttgacgtt ttctctaaac tactaaagag gcattaatga tccataaatt atattatcta
                                                                          120
 catttacage atttaaaatg tgttcageat gaaatattag etacagggga agetaaataa
                                                                          180
 attaaacatg gaataaagat ttgtccttaa atataatcta caagaagact ttgatatttg
                                                                          240
 tttttcacaa gtgaagcatt cttataaagt gtcataacct ttttggggaa actatgggaa
                                                                          300
 aaaatgggga aactetgaag ggttttaagt atettaeetg aagetacaga etecataace
                                                                          360
 tetetttaca gggageteet geageeeeta cagaaatgag tggetgagat tettgattge
                                                                         420
 acagcaagag cttctcatct aaaccctttc cctttttagt atctgtgtat caagtataaa
                                                                         480
 agttctataa actgtagtnt acttatttta atccccaaag cacagt
                                                                         526
       <210> 312
       <211> 500
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(500)
       <223> n = A, T, C or G
       <400> 312
 cototototo occacoccot gactotagag aactgggttt totoccagta otocagcaat
                                                                          60
tcatttctga aagcagttga gccactttat tccaaagtac actgcagatg ttcaaactct
ccatttctct ttcccttcca cctgccagtt ttgctgactc tcaacttgtc atgagtgtaa
                                                                         120
                                                                        180
gcattaagga cattatgctt cttcgattct gaagacagge cctgctcatg gatgactctg
gettettagg aaaatatttt tetteeaaaa teagtaggaa atetaaaett ateeeetett
                                                                        240
                                                                        300
tgcagatgtc tagcagcttc agacatttgg ttaagaaccc atgggaaaaa aaaaaatcct
                                                                        360
tgctaatgtg gtttcctttg taaaccanga ttcttatttg nctggtatag aatatcaget
ctgaacgtgt ggtaaagatt tttgtgtttg aatataggag aaatcagttt gctgaaaagt
                                                                        420
                                                                        480
tagtottaat tatotattgg
                                                                        500
      <210> 313
      <211> 718
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(718)
      <223> n = A, T, C \text{ or } G
      <400> 313
ggagatttgt gtggtttgca gccgagggag accaggaaga tctgcatggt gggaaggacc
                                                                        60
tgatgataca gaggtgagaa ataagaaagg ctgctgactt taccatctga ggccacacat
                                                                        120
ctgctgaaat ggagataatt aacatcacta gaaacagcaa gatgacaata taatgtctaa
                                                                        180
gtagtgacat gtttttgcac atttccagcc cttttaaata tccacacaca caggaagcac
aaaaggaagc acagagatcc ctgggagaaa tgcccggccg ccatcttggg tcatcgatga
                                                                       240
geetegeeet gtgeetgnte eegettgtga gggaaggaea ttagaaaatg aattgatgtg
                                                                        300
tteettaaag gatggeagga aaacagatee tgttgtggat atttatttga aegggattae
                                                                       360
                                                                       420
```

agatttgaaa tgaagtcaca aagtgagcat taccaatgag aggaaaacag acgagaaaat cttgatggtt cacaagacat gcaacaaaca aaatggaata ctgtgatgac acgagcagcc aactggggag gagataccac ggggcagagg tcaggattct ggccctgctg cctaactgtg cgttatacca atcatttcta tttctaccct caaacaagct gtngaatatc tgacttacgg ttcttntggc ccacattttc atnatccacc ccntcntttt aannttantc caaantgt	480 540 600 660 718
<210> 314 <211> 358 <212> DNA <213> Homo sapien	
<400> 314	
gtttatttac attacagaaa aaacatcaag acaatgtata ctatttcaaa tatatccata	CO
catalitada tatagetgia glacatgiii icaliqqiat agarraccac agargasana	60 120
cadedigige againing intracting tractation to the consequence	180
getetegget geteagetat tgegadatat getetetta garraacete granne	240
ttgttgtatt gctgaactgt agtgccctgt attttgcttc tgtctgtgaa ttctgttgct	300
totggggcat troottgrga tgcagaggac caccacacag atgacagcaa totgaatt	358
<210> 315	
<211> 341	
<212> DNA	
<213> Homo sapien	
<400> 315	
taccacetee eegetggeac tgatgageeg cateaceatg gteaceagea ceatgaagge	
acagging acgaggacat ggaatgggcc cccaaggatg gtctgtccaa agaagggar	60
Jacobson Cigadyalyi Ciggadccic taccagcagg atgatgatag coccaetgas	120 180
ageodetage receigated geographic glocitageg gloatglagg crecetaaag	240
tageteege tytaagaggg tgttgtcccg qqqqctcqtq cqqttartqq tcctqqqqt	300
gaggggggg tagatgcagc acatggtgaa gcagatgatg t	341
<210> 316	
<211> 151	
<212> DNA	
<213> Homo sapien	-
400 204	
<400> 316	
agactgggca agactettac gececacact geaatttggt ettgttgeeg tatecattta	60
tgtgggcctt tctcgagttt ctgattataa acaccactgg agcgatgtgt tgactggact cattcaggga gctctggttg caatattagt t	120
ord 5ggg cancaccage (151
<210> 317	
<211> 151	
<212> DNA	
<213> Homo sapien	
<400> 317	
agaactagtg gatcctaatg aaatacctga aacatatatt ggcatttatg aacatata	
acceptable acceptage traaccetg ctectgagge tgeggerage agateggage	60
ccagggctot gttcttgcca cacotgcttg a	120 151
-0.10	1 7 1
<210> 318 <211> 151	
<211> 151 <212> DNA	

<213> Homo sapien <400> 318 actggtggga ggcgctgttt agttggctgt tttcagaggg gtctttcgga gggacctcct getgeagget ggagtgtett tatteetgge gggagacege acatteeact getgaggetg 60 120 tgggggggt ttatcaggca gtgataaaca t 151 <210> 319 <211> 151 <212> DNA <213> Homo sapien <400> 319 aactagtgga tccagagcta taggtacagt gtgatctcag ctttgcaaac acattttcta catagatagt actaggtatt aatagatatg taaagaaaga aatcacacca ttaataatgg 60 120 taagattggg tttatgtgat tttagtgggt a 151 <210> 320 <211> 150 <212> DNA <213> Homo sapien <400> 320 aactagtgga tecactagte cagtgtggtg gaattecatt gtgttggggt tetagatege gageggetge cettetett tettettetg ggggggaatt tettetet aatagetate 60 120 gagtgttcta cagcttacag taaataccat 150 <210> 321 <211> 151 <212> DNA <213> Homc sapien <400> 321 agcaactitg titticated aggitatitt aggittagga tittectetea cactgoagti tagggtggca ttgtaaccag ctatggcata ggtgttaacc aaaggctgag taaacatggg 60 120 tgcctctgag aaatcaaagt cttcatacac t 151 <210> 322 <211> 151 <212 > DNA <213> Homo sapien <220> <221> misc_feature <222> (1) ... (151) <223> n = A,T,C or G<400> 322 atccagcate tectectift tettgeette ettetette teettasatt etgettgagg tttgggcttg gtcagtttgc cacagggctt ggagatggtg acagtcttct ggcattcggc 60 120 attgtgcagg gctcgcttca nacttccagt t 151 <210> 323 <211> 151 <212> DNA

```
<213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(151)
        <223> n = A, T, C or G
        <400> 323
 tgaggactig tkttcttttt ctttattttt aatcctctta ckttgtaaat atattgccta
                                                                          60
 nagastcant tactacccag tttgtggttt twtgggagaa atgtaactgg acagttagct
                                                                         120
 gttcaatyaa aaagacactt ancccatgtg g
                                                                         151
        <210> 324
        <211> 461
        <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(461)
       \langle 223 \rangle n = A,T,C or G
       <400> 324
 acctgtgtgg aatttcagct ttcctcatgc aaaaggattt tgtatccccg gcctacttga
                                                                          60
 agaagtggtc agctaaagga atccaggttg ttggttggac tgttaatacc tttgatgaaa
                                                                         120
 agagitacta cgaatcocat citggiteca getatateae tgacageatg gragaagaet
                                                                         180
 gcgaacctca cttctagact ttcacggtgg gacgaaacgg gttcagaaac tgccagggc
                                                                        240
ctcatacagg gatatcaaaa taccctttgt gctacccagg ccctggggaa tcaggtgact
                                                                        300
cacacaaatg caatagttgg tcactgcatt tttacctgaa ccaaagctaa acccggtgtt
                                                                        360
gccaccatgc accatggcat gccagagttc aacactgttg ctcttgaaaa ttgggtctga
                                                                        420
 aaaaacgcac aagagcccct gccctgccct agctgangca c
                                                                        461
       <210> 325
       <211> 400
       <212> DNA
       <213> Homo sapien
       <400> 325
acactgtite catgitatgt tictacacat tgctacetea gtgctcctgg aaacttaget
                                                                         60
tttgatgtct ccaagtagtc caccttcatt taactctttg aaactgtatc atctttgcca
                                                                        120
agtaagagtg gtggcctatt tcagctgctt tgacaaaatg actggctcct gacttaacgt
                                                                        180
tctataaatg aatgtgctga agcaaagtgc ccatggtggc ggcgaagaag agaaagatgt
                                                                        240
gttttgtttt ggactctctg tggtcccttc caatgctgtg ggtttccaac caggggaagg
                                                                        300
gtcccttttg cattgccaag tgccataacc atgagcacta cgctaccatg gttctgcctc
                                                                        360
ctggccaagc aggctggttt gcaagaatga aatgaatgat
                                                                        400
      <210> 326
      <211> 1215
      <212> DNA
      <213> Homo sapien
      <400> 326
ggaggactgc agcccgcact cgcagccctg gcaggcggca ctggtcatgg aaaacgaatt
                                                                        60
gttetgeteg ggegteetgg tgeateegea gtgggtgetg teageegeac actgttteea
                                                                       120
gaactectac accateggge tgggeetgea cagtettgag geegaecaag ageeagggag
                                                                       180
```

```
ccagatggtg gaggccagcc tctccgtacg gcacccagag tacaacagac ccttgctcgc
                                                                   240
taacgacete atgeteatea agttggacga atcegtgtee gagtetgaca ceateeggag
                                                                   300
catcagcatt gcttcgcagt gccctaccgc ggggaactct tgcctcgttt ctggctgggg
                                                                   360
totgotggcg aacggcagaa tgcctaccgt gctgcagtgc gtgaacgtgt cggtggtgtc
                                                                   420
tgaggaggtc tgcagtaagc tctatgaccc gctgtaccac cccagcatgt tctgcgccgg
                                                                   480
cggagggcaa gaccagaagg actcctgcaa cggtgactct ggggggcccc tgatctgcaa
                                                                   540
cgggtacttg cagggccttg tgtctttcgg aaaagccccg tgtggccaag ttggcgtgcc
                                                                   600
aggtgtctac accaacctct gcaaattcac tgagtggata gagaaaaccg tccaggccag
                                                                   660
ttaactctgg ggactgggaa cccatgaaat tgacccccaa atacatcctg cggaaggaat
                                                                   720
tcaggaatat ctgttcccag cccctcctcc ctcaggccca ggagtccagg cccccagccc
                                                                   780
ctcctcctc adaccaaggg tacagatece cageceetee teeeteagae ecaggagtee
                                                                   840
agacccccca gcccctcctc cctcagaccc aggagtccag cccctcctcc ctcagaccca
                                                                   900
ggagtccaga cccccagcc cctcctccct cagacccagg ggtccaggcc cccaacccct
                                                                   960
ceteceteag acteagaggt ceaageeece aaceeeteet teeceagace cagaggteea
ggtcccagec cetectecet cagacccage ggtccaatge cacetagact etecetgtae
                                                                  1020
acagtgcccc cttgtggcac gttgacccaa ccttaccagt tggtttttca ttttttgtcc
                                                                  1080
1140
                                                                 1200
aaaaaaaa aaaaa
                                                                 1215
```

<210> 327

<211> 220

<212> PRT

<213> Homo sapien

<400> 327

Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met 1 5 10 Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val 25 Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly 40 Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu 55 Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala 75 Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp 90 Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn 100 105 Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro 120 125 Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys 135 140 Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly 155 Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro 165 170 Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala 185 Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys 200 Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser 210 215 220

```
<211> 234
       <212> DNA
       <213> Homo sapien
       <400> 328
 cgctcgtctc tggtagctgc agccaaatca taaacggcga ggactgcagc ccgcactcgc
                                                                         60
 agccctggca ggcggcactg gtcatggaaa acgaattgtt ctgctcgggc gtcctggtgc
                                                                        120
 atccgcagtg ggtgctgtca gccacacat gtttccagaa ctcctacacc atcgggctgg
                                                                        180
 gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatggtggag gcca
                                                                        234
       <210> 329
       <211> 77
       <212> PRT
       <213> Homo sapien
       <400> 329
 Leu Val Ser Gly Ser Cys Ser Gln Ile Ile Asn Gly Glu Asp Cys Ser
                 5
                                     10
 Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu
                                 25
 Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Thr
                             40
His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu
                         55
                                             60
Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala
                     70
      <210> 330
      <211> 70
      <212> DNA
      <213> Homo sapien
      <400> 330
cccaacacaa tggcccgatc ccatccctga ctccgccctc aggatcgctc gtctctggta
                                                                        60
gctgcagcca
                                                                        70
      <210> 331
      <211> 22
      <212> PRT
      <213> Homo sapien
      <400> 331
Gln His Asn Gly Pro Ile Pro Ser Leu Thr Pro Pro Ser Gly Ser Leu
                 5
                                    10
                                                        15
Val Ser Gly Ser Cys Ser
            20
      <210> 332
      <211> 2507
      <212> DNA
      <213> Homo sapien
      <400> 332
tggtgccgct gcagccggca gagatggttg agctcatgtt cccgctgttg ctcctccttc
                                                                       60
tgcccttcct tctgtatatg gctgcgcccc aaatcaggaa aatgctgtcc agtggggtgt
                                                                      120
```

gtacatcaac tgttcagctt cctgggaaag tagttgtggt cacaggagct aatacaggta	180
	240
33343334 udayyyyda ttggtggcca aagagatcca gaccacgaca gggaagaaa	300
"33'3''''' 3''''''' 3''''''''''''''''''	360
gettettage tydygadady cacciccacd litigatcaa caatgcaga gtgataata	420
sees additional additional additional additional continues	480
additional descenting digitagada aactaaagga atcageees teaagga	540
	600
The state of the s	660
boundary agreement the contract of the contrac	720
Jerus de decegade de leggede Calcelecat dagat desta tectoriale	780
totectittt catcaagact cotcagcagg gagcocagac cagcotgcac tgtgcottaa	840
cagaaggtot tgagattota agrgggaato atttoagtga otgtoatgtg goatgggtot	900
ctgcccaage tegtaatgag actatagcaa ggcggctgtg ggacgtcagt tgtgacctgc	960
tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga ctgcagcaga	1020
ctacacagta cttcttgtca aaatgattct ccttcaaggt tttcaaaacc tttagcacaa agagaqcaaa accttccagc cttgcctgct tggctcaaa	1080
agagagcaaa accttccagc cttgcctgct tggtgtccag ttaaaactca gtgtactgcc	1140
agattegtet aaatgtetgt catgteeaga tttaetttge ttetgttaet gecagagtta	1200
ctagagatat cataatagga taagaagace etcatatgae etgeacaget cattiteett etgaaagaaa etactaceta ggagaateta agetatagea gggatgatit atgeaaatti	1260
gaactagett ettigiteae aatteagtte eteccaacea accagtette acticaagag	1320
ggccacactg caacctcagc ttaacatgaa taacaaagac tggctcagga gcagggcttg	1380
cccaggcatg gtggatcacc ggaggtcagt agttcaagac cagcctggcc aacatggtga	1440
aaccccacct ctactaaaaa ttgtgtatat ctttgtgtgt cttcctgttt atgtgtgcca	1500
agggagtatt ttcacaaagt tcaaaacagc cacaataatc agagatggag caaaccagtg	1560
The state of the s	1620
datatata taayagtata taggtagtag qqaaqaaqta aaaaaaqqaa aggagaaa	1680
-334-3444 tytataaat yaagqqatta qttaaqqatt aactaqccct t-334-54	1740
and the standard addayatt adatatoria aratagriat garages	1800 1860
-333000300 cccuggactg atgaggtett aacaaaaacc agrarages 33300	1920
and add add accord add acad acad acad acad acad to the attendance	1980
areas agactydiae tygtdditai ddicaatta araararrt gaggaara.	2040
Transper congacadya tiadaatgto tgtgccaaaa tffrgfarte fartegaa-	2100
	2160
togethere garage transfer to the second contract the second contra	2220
The same of the sa	2280
detective accepting acceptange tatatetita gaaateerea trreacees	2340
	2400
The survey of th	2460
Sacasand radialist day the sacasasasas	2507
<210> 333	
<211> 3030	
<212> DNA	
<213> Homo sapien	
Sapleir	
<400> 333	
gcaggcgact tgcgagctgg gagcgattta aaacgctttg gattcccccg gcctgggtgg	
ggagagegag etgggtgeec ectagattee eegeeceege aceteatgag eegaeceteg	60
3 T T T T T T T T T T T T T T T T T T T	120
TERRES ASSESSED ASSES	180
TO TO THE TOTAL OF THE TOTAL PROPERTY OF THE	240
TSTOCKER ACACCACCON LOCCCERTANT FACCACCACAC	300
Treatgate Cologgagge gggtactact cotaccaagt atcocagage tagatass	360
	420
U D	48C

```
agtaccccag ycgccccact gagtttgcct tctatccggg atatccggga acctaccage
  ctatggccag ttacctggac gtgtctgtgg tgcagactct gggtgctcct ggagaaccgc
                                                                         540
  gacatgactc cctgttgcct gtggacagtt accagtcttg ggctctcgct ggtggctgga
                                                                         600
  acagccagat gtgttgccag ggagaacaga acccaccagg tcccttttgg aaggcagcat
                                                                         660
  tigcagacte cagegggeag caccetectg acgeetgege etttegtege ggeegeaaga
                                                                         720
                                                                         780
  aacgcattcc gtacagcaag gggcagttgc gggagctgga gcgggagtat gcggctaaca
  agttcatcac caaggacaag aggcgcaaga teteggeage caceageete teggagegee
                                                                         840
  agattaccat ctggtttcag aaccgccggg tcaaagagaa gaaggttctc gccaaggtga
                                                                         900
  agaacagcgc taccccttaa gagatctcct tgcctgggtg ggaggagcga aagtgggggt
                                                                        960
  gtcctgggga gaccaggaac ctgccaagcc caggctgggg ccaaggactc tgctgagagg
                                                                       1020
  cccctagaga caacaccctt cccaggccac tggctgctgg actgttcctc aggagcggcc
                                                                       1080
  tgggtaccca gtatgtgcag ggagacggaa ccccatgtga cagcccactc caccagggtt
                                                                       1140
  cccaaagaac ctggcccagt cataatcatt catcctgaca gtggcaataa tcacgataac
                                                                       1200
  cagtactage tgccatgate gttageetea tattttetat etagagetet gtagageaet
                                                                       1260
  ttagaaaccg ctttcatgaa ttgagctaat tatgaataaa tttggaaggc gatccctttg
                                                                       1320
 cagggaagct ttctctcaga cccccttcca ttacacctct caccctggta acagcaggaa
                                                                       1380
 gactgaggag aggggaacgg gcagattcgt tgtgtggctg tgatgtccgt ttagcatttt
                                                                       1440
 tercagetga cagergggta ggrggacaar tgtagagger greterreer ecercettgr
                                                                       1500
 ccaccccata gggtgtaccc actggtcttg gaagcaccca tccttaatac gatgatttt
                                                                       1560
 ctgtcgtgtg aaaatgaagc cagcaggctg cccctagtca gtccttcctt ccagagaaaa
                                                                       1620
 agagatttga gaaagtgcct gggtaattca ccattaattt cctcccccaa actctctgag
                                                                       1680
 tetteeetta atatttetgg tggttetgae caaageaggt catggtttgt tgageatttg
                                                                       1740
 ggatcccagt gaagtagatg tttgtagcct tgcatactta gcccttccca ggcacaaacg
                                                                       1800
 gagtggcaga gtggtgccaa ccctgttttc ccagtccacg tagacagatt cacagtgcgg
                                                                       1850
 aattetggaa getggagaca gaegggetet ttgeagagee gggaetetga gagggaeatg
                                                                       1920
 agggeetetg cetetgtgtt cattetetga tgteetgtae etgggeteag tgeeeggtgg
                                                                       1980
 gactcatctc ctggccgcgc agcaaagcca gcgggttcgt gctggtcctt cctgcacctt
                                                                      2040
 aggctggggg tggggggcct gccggcgcat tctccacgat tgagcgcaca ggcctgaagt
                                                                      2100
 ctggacaacc cgcagaaccg aagctccgag cagcgggtcg gtggcgagta gtggggtcgg
                                                                      2160
 tggcgagcag ttggtggtgg gccgcggccg ccactacctc gaggacattt ccctcccgga
                                                                      2220
 gccagctctc ctagaaaccc cgcggcggcc gccgcagcca agtgtttatg gcccgcggtc
                                                                      2280
gggtgggatc ctagccctgt ctcctctct gggaaggagt gagggtggga cgtgacttag
                                                                      2340
acacctacaa atctatttac caaagaggag cccgggactg agggaaaagg ccaaagagtg
                                                                      2400
tgagtgcatg cggactgggg gttcagggga agaggacgag gaggaggaag atgaggtcga
                                                                      2460
tttcctgatt taaaaaatcg tccaagcccc gtggtccagc ttaaggtcct cggttacatg
                                                                      2520
cgccgctcag agcaggtcac tttctgcctt ccacgtcctc cttcaaggaa gccccatgtg
                                                                      2580
ggtagettte aatategeag gttettaete etetgeetet ataageteaa acceaceaae
                                                                      2640
gatcgggcaa gtaaaccccc tccctcgccg acttcggaac tggcgagagt tcagcgcaga
                                                                      2700
tgggcctgtg gggaggggc aagatagatg agggggagcg gcatggtgcg gggtgacccc
                                                                      2760
ttggagagag gaaaaaggcc acaagagggg ctgccaccgc cactaacgga gatggccctg
                                                                      2820
gtagagacct ttgggggtct ggaacctctg gactccccat gctctaactc ccacactctg
                                                                      2880
ctatcagaaa cttaaacttg aggattttct ctgtttttca ctcgcaataa aytcagagca
                                                                      2940
                                                                      3000
aacaaaaaa aaaaaaaa aaaactcgag
                                                                      3030
      <210> 334
      <211> 2417
      <212> DNA
      <213> Homo sapien
      <400> 334
ggcggccgct ctagagctag tgggatcccc cgggctgcac gaattcggca cgagtgagtt
ggagttttac ctgtattgtt ttaatttcaa caagcctgag gactagccac aaatgtaccc
                                                                       60
agtitacaaa tgaggaaaca ggtgcaaaaa ggttgttacc tgtcaaaggt cgtatgtggc
                                                                      120
agagecaaga titgagecea gitatgietg atgaacttag cetatgetet tiaaactiet
                                                                      180
gaatgctgac cattgaggat atctaaactt agatcaattg cattttccct ccaagactat
                                                                      240
                                                                      300
```

·	
ttacttatca atacaataat accaccttta ccaatctatt gttttgatac gagactcaaa	360
targetagat acatgladad gedaeetaga agetetetaa teatgeteae etanonana	420
decomposite duraggerea dagadactic ticragaaat ataaaagaga anne	480
argument contracted tittitical coatcofffa affragrada carrentar	540
tradical cargedylar ggcclittaa ggattagaga acagatgaag aagagaaa	
cagaciged coccaca algaggicad tacacattic cattitaaaa tacacaa	600
assessing designation designated feagesting asoutcason carractes	660
servedgeee dggageeed gaccageetd agcaacatag aaagaceeca tototopas-	720
addition typicit tigadadiaa aactictitaa gaaaggiffa atgggggggg	780
tataget catgettata atacageact ttaggaagact gaggaagag gatcacttte	840
accompany conductar congressor andigacaco teatercast tetterases	900
The same of the sa	960
addition typection dylatitity ticasocran atattorgan tonger-	1020
stategogga tatagodtat tiddqtttag gaaarfgagr agaaagffga fgtagaa.	1080
and a second and a second and a second as	1140
tagacggaac ctgactctgg tctattaagc gacaactttc cctctgttgt atttttcttt	1200
The same of the sa	1260
aaaccatgac caactaatta tggggaatca taaaaatatga ctgtatgaga tcttgatggt	1320
ttacaaagtg tacccactgt taatcacttt aaacattaat gaacttaaaa atgaatttac	1380
ggagattgga atgtttcttt cctgttgtat tagttggctc aggctgccat aacaaaatac	1440
taddadadagadat teattetea cagtetaga gactagana	1500
trada garacagaa aggraddell calletaaga cocchetett gastan ann	1560
references securifying guidadatiqa cottottata chochagaa gaggaranaa	1620
ssaccadada addagadad yagagggaac tctctqqtqt ctcctcttr aaggagggaac	1680
	1.740
regeredagat dadgedaedg addddigtee aaagetgtee agcaaagaca aggaacaa	1800
cassing createsting typing castinger accetugage cases	1860
	1920
tottategat teggegatge teggatattge gatqaatqqt aatqtqqatq aqaatatqat	1980
saccedag addaygagae ceaguigete aggiggeter agaircatrae aggettante	2040
craaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	2100 2160
and a second control of the second control o	2220
areassere cessasers cereggaag ceageeetag agraaging creenar	2280
ggracigaga cadialigic ataaattcaa tgcgcccttg tatcccttt tcttttta.	2340
ctgtctacat ctataatcac tatgcatact agtctttgtt agtgtttcta ttcmacttaa	2400
tagagatatg ttatact	2417
	241/
<210> 335	
<211> 2984	
<212> DNA	
<213> Homo sapien	
<400> 335	
accetests aggagagest controls aggastigg gictiatetg tiggacietg	60
addition aggreeoff coadgette eccaaacee taageagee eaganness	120
decade of the control actions and actions and actions accompanies and actions	180
agadetiste ggeecetgaa egggeecace togecaagaa cercaagete acggaga	240
auguguagat atggiteeag aacagaeget ataaqaetaa gegaaageag etetestaga	300
agergagaga creggagaag cacteetet tgeeggeert gaaagagagagagagagagagagagagagagagagaga	360
aggettett ggteteegtg tataacaget atcettacta cecataceta tactacata	420
geogetygag cetagetitt tggtaatqcc aqctcaggtg acaaccatta tgatgaaaa	480
tradective cagggreet Ctatgaaaag cacaaggggg caaggreagg gagges	540
agree adagetating dagatitique togasarere asartettes attentes	600
addition cayagacage gadageteta atacctaage carecocca cegonesia	660
taggtcattt tttttgcttc tggctacctg tttgaagggg agagagggaa aatcaagtgg	720
	. 2 0

```
tattttccag cactttgtat gattttggat gagctgtaca cccaaggatt ctgttctgca
                                                                      780
actccatcct cctgtgtcac tgaatatcaa ctctgaaaga gcaaacctaa caggagaaag
                                                                      840
gacaaccagg atgaggatgt caccaactga attaaactta agtccagaag cctcctgttg
                                                                      900
gccttggaat atggccaagg ctctctctgt ccctgtaaaa gagaggggca aatagagagt
                                                                      960
ctccaagaga acgccctcat gctcagcaca tatttgcatg ggagggggag atgggtggga
                                                                     1020
ggagatgaaa atatcagctt ttcttattcc tttttattcc ttttaaaaatg gtatgccaac
                                                                     1080
ttaagtattt acagggtggc ccaaatagaa caagatgcac tcgctgtgat tttaagacaa
                                                                     1140
gctgtataaa cagaactcca ctgcaagagg gggggccggg ccaggagaat ctccqcttgt
                                                                     1200
ccaagacagg ggcctaagga gggtctccac actgctgcta ggggctgttg catttttta
                                                                     1260
ttagragaaa gtggaaaggc ctcttctcaa ctttttccc ttgggctgga gaatttagaa
                                                                     1320
tcagaagttt cctggagttt tcaggctatc atatatactg tatcctgaaa ggcaacataa
                                                                    1380
ttcttccttc cctcctttta aaattttgtg ttcctttttg cagcaattac tcactaaagg
                                                                    1440
gcttcatttt agtccagatt tttagtctgg ctgcacctaa cttatgcctc gcttatttag
                                                                    1500
cocgagatot ggtottttt ttttttttt tttttccgtc tccccaaagc tttatctgtc
                                                                    1560
ttgacttttt aaaaaagttt gggggcagat tctgaattgg ctaaaagaca tgcatttta
                                                                    1620
aaactagcaa CtCttatttC tttCCtttaa aaatacatag CattaaatCC CaaatCCtat
                                                                    1680
ttaaagacct gacagcttga gaaggtcact actgcattta taggaccttc tggtggttct
                                                                    1740
gctgttacgt ttgaagtctg acaatccttg agaatctttg catgcagagg aggtaagagg
                                                                    1800
tattggattt tcacagagga agaacacagc gcagaatgaa gggccaggct tactgagctg
                                                                    1860
tccagtggag ggctcatggg tgggacatgg aaaagaaggc agcctaggcc ctggggagcc
                                                                    1920
cagtccactg agcaagcaag ggactgagtg agccttttgc aggaaaaggc taagaaaaag
                                                                    1980
gaaaaccatt ctaaaacaca acaagaaact gtccaaatgc tttgggaact gtgtttattg
                                                                    2040
cctataatgg gtccccaaaa tgggtaacct agacttcaga gagaatgagc agagagcaaa
                                                                    2100
ggagaaatct ggctgtcctt ccattttcat tctgttatct caggtgagct ggtagaggg
                                                                    2160
agacattaga aaaaaatgaa acaacaaaac aattactaat gaggtacgot gaggcotggg
                                                                    2220
agtotottga otocactact taattoogto tagtgagaaa cotttoaatt ttottttatt
                                                                    2280
agaagggcca gcttactgtt ggtggcaaaa ttgccaacat aagttaatag aaagttggcc
                                                                    2340
aatttcaccc cattttctgt ggtttgggct ccacattgca atgttcaatg ccacgtgctg
                                                                    2400
ctgacaccga ccggagtact agccagcaca aaaggcaggg tagcctgaat tgctttctgc
                                                                    2460
totttacatt tottttaaaa taagoattta gtgotcagto ootactgagt actotttoto
                                                                    2520
teceetecte tgaatttaat tettteaact tgeaatttge aaggattaca cattteactg
                                                                    2580
tgatgtatat tgtgttgcaa aaaaaaaaaa aagtgtcttt gtttaaaatt acttggtttg
                                                                    2640
tgaatccatc ttgctttttc cccattggaa ctagtcatta acccatctct gaactggtag
                                                                    2700
aaaaacatct gaagagctag tctatcagca tctgacaggt gaattggatg gttctcagaa
                                                                    2760
ccatttcacc cagacageet gtttetatee tgtttaataa attagtttgg gttetetaca
                                                                    282C
tgcataacaa accetgetee aatetgteae ataaaagtet gtgaettgaa gtttagteag
                                                                    2880
cacccccacc aaactttatt tttctatgtg ttttttgcaa catatgagtg ttttgaaaat
                                                                    2940
2984
```

<210> 336

<211> 147

<212> PRT

<213> Homo sapien

<400> 336

 Pro
 Ser
 Phe
 Pro
 Thr
 Leu
 Leu
 Ser
 Arg
 Arg
 His
 Leu
 Gly
 Ser
 Tyr
 Leu

 1
 5
 10
 15
 15

 Leu
 Asp
 Ser
 Glu
 Asn
 Thr
 Ser
 Gly
 Ala
 Leu
 Pro
 Arg
 Leu
 Pro
 Arg
 Leu
 Pro
 Arg
 Leu
 Pro
 Arg
 Arg

```
Val Lys Ile Trp Phe Gln Asn Arg Arg Tyr Lys Thr Lys Arg Lys Gln
                85
                                  90
 Leu Ser Ser Glu Leu Gly Asp Leu Glu Lys His Ser Ser Leu Pro Ala
            100
                    105
 Leu Lys Glu Glu Ala Phe Ser Arg Ala Ser Leu Val Ser Val Tyr Asn
       115 120
 Ser Tyr Pro Tyr Tyr Pro Tyr Leu Tyr Cys Val Gly Ser Trp Ser Pro
   130
                      135
 Ala Phe Trp
 145
      <210> 337
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 337
Ala Leu Thr Gly Phe Thr Phe Ser Ala
               5
      <210> 338
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 338
Leu Leu Ala Asn Asp Leu Met Leu Ile
               5
     <210> 339
     <211> 318
     <212> PRT
     <213> Homo sapien
     <400> 339
Met Val Glu Leu Met Phe Pro Leu Leu Leu Leu Leu Pro Phe Leu
               5
                                 10
Leu Tyr Met Ala Ala Pro Gln Ile Arg Lys Met Leu Ser Ser Gly Val
                              25
Cys Thr Ser Thr Val Gln Leu Pro Gly Lys Val Val Val Thr Gly
                          40
Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Lys Glu Leu Ala Gln Arg
                       55
Gly Ala Arg Val Tyr Leu Ala Cys Arg Asp Val Glu Lys Gly Glu Leu
                  70
                                     75
Val Ala Lys Glu Ile Gln Thr Thr Gly Asn Gln Gln Val Leu Val
              8.5
                              90
Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Lys
                              105
```

Gly Phe Leu Ala Glu Glu Lys His Leu His Val Leu Ile Asn Asn Ala 120 Gly Val Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Met

His Ile Gly Val Asn His Leu Gly His Phe Leu Leu Thr His Leu Leu

140

2.45																
145		•	•	_	150					155					160	
				165					170					175	Ser	
Ser	Leu	Ala	His 180	His	Leu	Gly	Arg	Ile 185	His	Phe	His	Asn	Leu 190	Gln	Gly	
Glu	Lys	Phe 195	Tyr	Asn	Ala	Gly	Leu 200	Ala	Tyr	Cys	His		Lys	Leu	Ala	
Asn	Ile 210		Phe	Thr	Gln	Glu			Arg	Arg		205 Lys	Gly	Ser	Gly	
Val		Thr	Tyr	Ser	Val	215 His	Pro	Glv	Thr	Val	220 Gln	Sar	C1.,	T		
225					230					235					240	
				Phe 245					250					255	Phe	
Ile	Lys	Thr	Pro 260	Gln	Gln	Gly	Ala	Gln 265	Thr	Ser	Leu	His		Ala	Leu	
Thr	Glu	Gly 275	Leu	Glu	Ile	Leu	Ser 280	Gly	Asn	His	Phe		270 Asp	Cys	His	
Val	Ala		Val	Ser	Ala	Gln		Arg	Asn	Glu	Thr	285 Ile	Ala	Arg	Arg	
	290					295					300				-	
Leu 305	115	nsp	vai	361	310	ASP	rea	rea	GIY	Leu 315	Pro	Ile	Asp			
ctcct ggttg ccttc gctcc tgctc	<22 <4 aggttgggggaaattgaaatgaatgggggggggggggg	00> of g gg t gg a gg t t t t t t t t t t t t t t t t t t	DNA Homo 340 cett ggga gget eggt etet gacat gcat eccas	ggcg ggag ttate ttgge tcace	c gg c tg t gt c age c tga t ga t taa	tttag cttta gcag acgad tgctd	gttg attc tgat egga ettc	gct ctg aaa gtc tcg	gttt geggg cata egtgg ggggt	gag daga daga daga daga daga daga daga	gagg accg tgtc tccc tgat aagad	ggtc caca attt gatg ggcc cacc	tt to tt co tc to ta ac tg co	cgga cact tgac tgac ttga ttgg	ctgcc gggac gctga cccgg cccct ccacg acgtt gatgc	60 120 180 240 300 360 420 480 483
ctgct		0> 3 a gt		gatt	. tca	ttat	aaa	tago	ctcc	ct a	arra	2225	3 60	at		-
cattt	LLac	c aa	ccat	tcta	ttt	ttat	aga	aata	acta	ac a	artt	ctaa	a cc	2201	atat	60 120
getge	Ctta	c aa	gtat	taaa	tat	ttta	ctt	Cttt	ccat	aa a	gact	aget	c aa	aata	taca	180
allaa	ccca	a ta	attt	ctga	tga	tggt	ttt	atct	qcaq	ta a	tato	tata	t ca	tota	t t a ~	240
aattt	actt	a at	gaaa	aact	gaa	gaga	aca	aaat	ttqt	aa c	cact	agca	c tt	aagt	actc	300
ctgat		u ac	actg	LCEE	Laa	cgac	cac	aaga	caac	ca a	cag					344
	<21	0 > 3	42													

<211> 592

<212> DNA

<213> Homo sapien

```
<400> 342
 acagcaaaaa agaaactgag aagcccaaty tgctttcttg ttaacatcca cttatccaac
                                                                         60
 caatgtggaa acttcttata cttggttcca ttatgaagtt ggacaattgc tgctatcaca
                                                                        120
 cctggcaggt aaaccaatgc caagagagtg atggaaacca ttggcaagac tttgttgatg
                                                                        180
 accaggattg gaattttata aaaatattgt tgatgggaag ttgctaaagg gtgaattact
                                                                        240
 tccctcagaa gagtgtaaag aaaagtcaga gatgctataa tagcagctat tttaattggc
                                                                        300
 aagtgccact gtggaaagag ttcctgtgtg tgctgaagtt ctgaagggca gtcaaattca
                                                                        360
 tcagcatggg ctgtttggtg caaatgcaaa agcacaggtc tttttagcat gctggtctct
                                                                        420
 cccgtgtcct tatgcaaata atcgtcttct tctaaatttc tcctaggctt cattttccaa
                                                                        480
 agttettett ggtttgtgat gtetttetg ettteeatta attetataaa atagtatgge
                                                                        540
 ttcagccacc cactettege ettagettga cegtgagtet eggetgeege tg
                                                                        592
       <210> 343
       <211> 382
       <212> DNA
       <213> Homo sapien
       <400> 343
ttottgacet cetesteett caageteaaa caccacetee ettatteagg aceggeaett
                                                                        60
cttaatgttt gtggctttct ctccagcctc tcttaggagg ggtaatggtg gagttggcat
                                                                       120
cttgtaactc teetitetee titetteece titetetgee egeetiteee atcetgetgt
                                                                       180
agacttettg attgtcagte tytgtcacat ccagtgattg ttttggttte tgttccettt
                                                                       240
ctgactgccc aaggggctca gaaccccagc aatcccttcc titcactacc ttctttttg
                                                                       300
ggggtagttg gaagggactg aaattgtggg gggaaggtag gaggcacatc aataaagagg
                                                                       360
aaaccaccaa gctgaaaaaa aa
                                                                       382
      <210> 344
      <211> 536
      <212> DNA
      <213> Homo sapien
      <400> 344
ctgggcctga agctgtaggg taaatcagag gcaggcttct gagtgatgag agtcctgaga
                                                                        60
caataggcca cataaacttg gctggatgga acctcacaat aaggtggtca cctcttgttt
                                                                       120
gtttaggggg atgccaagga taaggccagc tcagttatat gaagagaagc agaacaaaca
                                                                       180
agtettteag agaaatggat geaateagag tgggateeeg gteacateaa ggteacacte
                                                                       240
caccttcatg tgcctgaatg gttgccaggt cagaaaaatc cacccttac gagtgcggct
                                                                       300
togaccotat atcoccogco ogogtocott totocataaa attottotta gtagotatta
                                                                       360
cottettatt atttgateta gaaattgeee teettttaee eetaceatga geeetacaaa
                                                                       420
caactaacct gccactaata gttatgtcat ccctcttatt aatcatcatc ctagccctaa
                                                                       480
gtctggccta tgagtgacta caaaaaggat tagactgagc cgaataacaa aaaaaa
                                                                      536
      <210> 345
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 345
accttttgag gtctctctca ccacctccac agccaccgtc accgtgggat gtgctggatg
                                                                       60
tgaatgaagc ccccatcttt gtgcctcctg aaaagagagt ggaagtgtcc gaggactttg
                                                                      120
gcgtgggcca ggaaatcaca tcctacactg cccaggagcc agacacattt atggaacaga
                                                                      180
aaataacata tcggatttgg agagacactg ccaactggct ggagattaat ccggacactg
                                                                      240
gtgccatttc c
                                                                      251
```

```
<210> 346
        <211> 282
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(282)
        <223> n = A,T,C or G
  <400> 346
 cgcgtctctg acactgtgat catgacaggg gttcaaacag aaagtgcctg ggccctcctt
 ctaagtettg ttaccaaaaa aaggaaaaag aaaagatett eteagttaca aattetggga
                                                                         60
                                                                        120
 agggagacta tacctggctc ttgccctaag tgagaggtct tccctcccgc accaaaaaat
 agaaaggctt tctatttcac tggcccaggt agggggaagg agagtaactt tgagtctgtg
                                                                        180
                                                                        240
 ggtctcattt cccaaggtgc cttcaatgct catnaaaacc aa
                                                                        282
       <210> 347
       <211> 201
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(201)
       <223> n = A, T, C cr G
       <400> 347
 acacacataa tattataaaa tgccatctaa ttggaaggag ctttctatca ttgcaagtca
 taaatataac ttttaaaana ntactancag cttttaccta ngctcctaaa tgcttgtaaa
                                                                        60
 totgagactg actggaccca cccagaccca gggcaaagat acatgttacc atatcatctt
                                                                        120
                                                                        180
 tataaagaat tttttttgt c
                                                                        201
       <210> 348
       <211> 251
       <212> DNA
       <213> Homo sapien
       <400> 348
ctgttaatca caacatttgt gcatcacttg tgccaagtga gaaaatgttc taaaatcaca
agagagaaca gtgccagaat gaaactgacc ctaagtccca ggtgcccctg ggcaggcaga
                                                                        60
aggagacact cccagcatgg aggagggttt atctttcat cctaggtcag gtctacaatg
                                                                       120
ggggaaggtt ttattataga actcccaaca gcccacctca ctcctgccac ccacccgatg
                                                                       180
                                                                       240 .
gccctgcctc c
                                                                       251
      <210> 349
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 349
taaaaatcaa gccatttaat tgtatctttg aaggtaaaca atatatggga gctggatcac
aacccctgag gatgccagag ctatgggtcc agaacatggt gtggtattat caacagagtt
                                                                       60
cagaagggtc tgaactctac gtgttaccag agaacataat gcaattcatg cattccactt
                                                                      120
agcaattttg taaaatacca gaaacagacc ccaagagtct ttcaagatga ggaaaattca
                                                                      180
                                                                      240
```

```
actcctggtt t
                                                                         251
        <210> 350
        <211> 908
        <212> DNA
        <213> Homo sapien
        <400> 350
  ctggacactt tgcgagggct tttgctggct gctgctgctg cccgtcatgc tactcatcgt
  agccegcceg gtgaageteg etgettteee taceteetta agtgaetgee aaacgcecae
                                                                          60
  cggctggaat tgctctggtt atgatgacag agaaaatgat ctcttcctct gtgacaccaa
                                                                         120
  caccigiaaa tiigatgggg aaigiitaag aattggagac acigigacii gcgicigica
                                                                         180
  gttcaagtgc aacaatgact atgtgcctgt gtgtggctcc aatggggaga gctaccagaa
                                                                         240
  tgagtgttac ctgcgacagg ctgcatgcaa acagcagagt gagatacttg tggtgtcaga
                                                                         300
 aggatcatgt gccacagtcc atgaaggctc tggagaaact agtcaaaagg agacatccac
                                                                         360
 ctgtgatatt tgccagtttg gtgcagaatg tgacgaagat gccgaggatg tctggtgtgt
                                                                         420
 gtgtaatatt gactgttctc aaaccaactt caatcccctc tgcgcttctg atgggaaatc
                                                                         480
 ttatgataat gcatgccaaa tcaaagaagc atcgtgtcag aaacaggaga aaattgaagt
                                                                        540
 catgiciting ggicgatgic aagataacac aactacaact actaagicing aagatgggca
                                                                        600
 ttatgcaaga acagattatg cagagaatgc taacaaatta gaagaaagtg ccagagaaca
                                                                        660
 ccacatacct tgtccggaac attacaatgg cttctgcatg catgggaagt gtgagcattc
                                                                        720
 tatcaatatg caggagccat cttgcaggtg tgatgctggt tatactggac aacactgtga
                                                                        780
 aaaaaaggac tacagtgttc tatacgttgt tcccggtcct gtacgatttc agtatgtctt
                                                                        840
                                                                        900
 aatcgcag
                                                                        908
       <210> 351
       <211> 472
       <212> DNA
       <213> Homo sapien
       <400> 351
 ccagttattt gcaagtggta agagcctatt taccataaat aatactaaga accaactcaa
 gtcaaacctt aatgccattg ttattgtgaa ttaggattaa gtagtaattt tcaaaattca
                                                                        60
cattaactig attitaaaat cagwiitgyg agtcatttac cacaagctaa atgigtacac
                                                                        120
tatgataaaa acaaccattg tattcctgtt tttctaaaca gtcctaattt ctaacactgt
                                                                        180
atatateett egacateaat gaaetttgtt ttettttaet eeagtaataa agtaggeaca
                                                                       240
gatetgteca caacaaactt geetteteat geettgeete teaceatget etgetecagg
                                                                       300
teagecect titggeetgt tigttitgte aaaaacetaa tetgettett gettitetig
                                                                       360
gtaatatata titagggaag atgitgcttt geceacacae gaageaaagt aa
                                                                       420
                                                                       472
      <210> 352
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 352
ctcaaagcta atctctcggg aatcaaacca gaaaagggca aggatcttag gcatggtgga
tgtggataag gccaggtcaa tggctgcaag catgcagaga aagaggtaca tcggagcgtg
                                                                        60
caggorgogt teogreetta egatgaagac cacgatgeag titecaaaca ttgccactae
                                                                       120
atacatggaa aggagggga agccaaccca gaaatgggct ttctctaatc ctgggatacc
                                                                      180
                                                                      240
aataagcaca a
                                                                      251
      <210> 353
      <211> 436
      <212> DNA
```

<213> Homo sapien

<400> 353	
tittttttt tittttttt tittttacaa caatgcagtc atttatttat tgagtatgtg	60
	60 120
Jenes Journal additional additional access to the contract of	180
TO THE TOUCHULE GALLECAA ATCCAATACA FFFAALLE	
	240 300
Couldaidd ddidacaaa chccaaabaa	
same total cattiggatty qqqqtaaaga agaaattatt thatata	360
gggctcctaa tgtagt	420
	436
<210> 354	
<211> 854	
<212> DNA	
<213> Homo sapien	
.400 254	
<400> 354	
ccttttctag ttcaccagtt ttctgcaagg atgctggtta gggagtgtct gcaggaggag	60
T TOTAL MODELLING MANAGEMENT AND MAN	120
JJJ: " TJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	180
	240
The second design of the second secon	300
	360
	420
	490
	540
	600
	550
and some some continuous tallararas asas conserva-	720
The standard addition the contract and the standard additional tractions and tractions are standard additional tractions and tractional tractions are standard and tractional tractions are standard and tractional tractions and tractional tractions and tractional tractions and tractional tractions are standard and tractional tractional tractional tractions and tractional tractiona	780
Sent a delice coadaatgly ageggegge crockacter asserter	840
acacgggatg toag	854
<210> 355	
<211> 676	
<212> DNA	
<213> Homo sapien	
Suprem	
<400> 355	
gaaattaagt atgagetaaa tteeetgtta aaacetetag gggtgacaga tetetteaac	60
Caggicaaag cigatcitic iggaatgica ccaaccaagg gcctatatit atcaaaagcc	120
	180
gacagcatcg ctgtaaaaag cctaccaatg agagctcagt tcaaggcgaa ccacccttc	240
The standard control and and an expense and an expe	300
ccctaatcag atggggttga gtaaggctca gagttgcag tgaggtgcag agacaatcct gtgactttcc cacggccaaa aagctgtrga gagatgcag tgaggtgcag agacaatcct	360
gtgactttcc cacggccaaa aagctgttca cacetcacgc acctctgtgc ctcagtttgc	420
	480
J	540
	600
attagatttt cttgacttgt atgtatctgt gagatcttga ataagtgacc tgacatctct gcttaaagaa aaccag	660
	676
<210> 356	

<211> 574

```
<212> DNA
<213> Homo sapien
<400> 356
Etttt tttttcagga ac
```

ttttttttt tttttcagga aaacattctc ttactttatt tgcatctcag caaaggttct 60 catgtggcac ctgactggca tcaaaccaaa gttcgtaggc caacaaagat gggccactca caagetteee attigtagat eteagigeet aigagiatet gacacetgit eetetetea 120 gtetettagg gaggettaaa tetgteteag gtgtgetaag agtgeeagee caaggkggte 180 aaaagtccac aaaactgcag tctttgctgg gatagtaagc caagcagtgc ctggacagca 240 gagttetttt ettgggcaac agataaccag acaggactet aategtgete ttattcaaca 300 ttettetgte tetgeetaga etggaataaa aageeaatet etetegtgge acagggaagg 360 420 gatagacggc acagggagct cttaggtcag cgctgctggt tggaggacat tcctgagtcc 480 540 agctttgcag cctttgtgca acagtacttt ccca 574

<210> 357

<211> 393

<212> DNA

<213> Homo sapien

<400> 357

ttttttttt tttttttt tttttttt tacagaatat aratgettta teaetgkaet 60
taatatggkg kettgiteae tataettaaa aatgeaeeae teataaatat tiaatteage 120
aageeacaae caaraettga tittateaae aaaaeeeet aaatataaae ggsaaaaaag 180
atagatataa tiatteeagt tittitaaaa ettaaaarat atteeattge egaattaara 240
araarataag tgitatatgg aaagaaggge atteaageae aetaaaraaa eetgaggkaa 300
geataatetg tacaaaatta aaetgieett tittiggeatti taaeaaatti geaaegktet 360
tittittett tittittitt tae 393

<210> 358

<211> 630

<212> DNA

<213> Homo sapien

<400> 358

acagggtaaa caggaggatc cttgctctca cggagcttac attctagcag gaggacaata ttaatgttta taggaaaatg atgagtttat gacaaaggaa gtagatagtg ttttacaaga 60 gcatagagta gggaagctaa tccagcacag ggaggtcaca gagacatccc taaggaagtg 120 gagtttaaac tgagagaagc aagtgcttaa actgaaggat gtgttgaaga agaagggaga 180 gtagaacaat ttgggcagag ggaaccttat agaccctaag gtgggaaggt tcaaagaact 240 gaaagagagc tagaacagct ggagccgttc tccggtgtaa agaggagtca aagagataag 300 360 attaaagatg tgaagattaa gatcttggtg gcattcaggg attggcactt ctacaagaaa 420 tcactgaagg gagtaatgtg acattacttt tcacttcagg atggccattc taactccagg 480 gggtagactg gactaggtaa gactggaggc aggtagacct cttctaaggc ctgcgatagt 540 gaaagacaaa aataagtggg gaaattcagg ggatagtgaa aatcagtagg acttaatgag 600 caagccagag gttcctccac aacaaccagt 630

<210> 359

<211> 620

<212> DNA

<213> Homo sapien

<400> 359

acagcattcc aaaatataca tctagagact aarrgtaaat gctctatagt gaagaagtaa 60 taattaaaaa atgctactaa tatagaaaat ttataatcag aaaaataaat attcagggag 120

ctcaccagaa gaataaagtg ctctgccagt tattaaagga ttactgctgg tgaattaaat	180
	240
"Jan - The general garden cayatatada acricacoac acaacaacaa	300
The same of the sa	360
	420
	480
and a decease an	540
aacaaaaagc tcacaccaaa caaaaccatc aacttatttt gtattctata acatacgaga ctgtaaagat gtgacagtgt	600
55	620
<210> 360	
<211> 431	
<212> DNA	
<213> Homo sapien	
<400> 360	
aaaaaaaaa agccagaaca acatgtgata gataatatga ttggctgcac acttccagac	60
-5555555555555-	120
arcataccae caguidition attaccae attaccae and an arcataccae	180
	240
-33-33-33-33-33-33-33-33-33-33-33-33-33	300
- 3-33-3-5 cugeggedga geteettagta accaertagta coaatagaaa an	360
tgatgccaag cgtgacacct gtagcactca aatttgtctt gtttttgtct ttcggtgtgt	420
	431
<210> 361	
<211> 351	
<212> DNA	
<213> Homo sapien	
400 26	
<400> 361	
acactgattt ccgatcaaaa gaatcatcat ctttaccttg acttttcagg gaattactga	60
dayaayacay qqcacaqcca ttgccffqqc cfcacheann	120
DDD DDD-CCCCCC CCGCCCCCC CAGCCACCCCC ACCCCCCC	180
- January Consumer Contract Co	240
caatcotgga ttcaatgtot gaaacotcgo tototgcotg otggaottot gaggoogtoa otggoodtot gtootooago totgaoagot cotoatotgt ggtootgttg t	300
s seedad telegacaget celeatelet ggteetgttg t	351
<210> 362	
<211> 463	
<212> DNA	
<213> Homo sapien	
400 040	
<400> 362	
actication godataatgg gigootooog tgagaatooa agoacottig gactgogoga	60
a property of the property of	120
	180
STATES TO COORDINATE OF THE TENTE OF THE THE TENTE OF THE	240
	300
verroused fragrending rathers as as	360
cacacttgca cacattetee etgataagea egatggtgtg gacaggaagg aaggatttea ttgagestge ttatggaaac tggtattgtt agettaaata gae	420
	463
<210> 363	
<211> 653	

```
<212> DNA
        <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(653)
       <223> n = A,T,C or G
       <400> 363
 accecegagt neetgnetgg catactgnga acgaecaacg acacacecaa geteggeete
                                                                         60
 ctcttggnga ttctgggtga catcttcatg aatggcaacc gtgccagwga ggctgtcctc
                                                                        120
 tgggaggcac tacgcaagat gggactgcgt cctggggtga gacatcctct ccttggagat
                                                                        180
 ctaacgaaac ttctcaccta tgagttgtaa agcagaaata cctgnactac agacgagtgc
                                                                        240
 ccaacagcaa ccccccggaa gtatgagttc ctctrgggcc tccgttccta ccatgagasc
                                                                        300
 tagcaagatg naagtgttga gantcattgc agaggttcag aaaagagacc cntcgtgact
                                                                        360
 ggtctgcaca gttcatggag gctgcagatg aggccttgga tgctctggat gctgctgcag
                                                                        420
 ctgaggccga agcccgggct gaagcaagaa cccgcatggg aattggagat gaggctgtgt
                                                                        480
 ntgggccctg gagctgggat gacattgagt ttgagctgct gacctgggat gaggaaggag
                                                                        540
 attrtggaga tccntggtcc agaattccat ttaccttctg ggccagatac caccagaatg
                                                                        600
 cccgctccag attccctcag acctttgccg gtcccattat tggtcstggt ggt
                                                                        653
       <210> 364
       <211> 401
       <212> DNA
       <213> Homo sapien
       <400> 364
actagaggaa agacgttaaa ccactctact accacttgtg gaactctcaa agggtaaatg
                                                                        60
acaaagccaa tgaatgactc taaaaacaat atttacattt aatggtttgt agacaataaa
                                                                       120
aaaacaaggt ggatagatct agaattgtaa cattttaaga aaaccatagc atttgacaga
                                                                       180
tgagaaagct caattataga tgcaaagtta taactaaact actatagtag taaagaaata
                                                                       240
catttcacac cottcatata aattcactat ottggottga ggcactccat aaaatgtato
                                                                       300
acgtgcatag taaatcttta tatttgctat ggcgttgcac tagaggactt ggactgcaac
                                                                       360
aagtggatgc gcggaaaatg aaatcttctt caatagccca g
                                                                       401
      <210> 365
      <211> 356
      <212> DNA
      <213> Homo sapien
      <400> 365
ccagtgtcat atttgggctt aaaatttcaa gaagggcact tcaaatggct ttgcatttgc
                                                                        60
atgittcagt gctagagcgt aggaatagac cctggcgtcc actgtgagat gttcttcagc
                                                                       120
taccagagca tcaagtctct gcagcaggtc attcttgggt aaagaaatga cttccacaaa
                                                                       180
ctctccatcc cctggctttg gcttcggcct tgcgttttcg gcatcatctc cgttaatggt
                                                                       240
gactgtcacg atgtgtatag tacagtttga caagcctggg tccatacaga ccgctggaga
                                                                       300
acatteggea atgreecett tgtagecagt trettetteg agetecegga gageag
                                                                       356
      <210> 366
      <211> 1851
      <212> DNA
      <213> Hcmo sapien
      <400> 366
tcatcaccat tgccagcagc ggcaccgtta gtcaggtttt ctgggaatcc cacatgagta
                                                                       60
```

```
cttccgtgtt cttcattctt cttcaatagc cataaatctt ctagctctgg ctggctgttt
  tcacttcctt taageetttg tgactettee tetgatgtea getttaagte ttgttetgga
  ttgctgtttt cagaagagat ttttaacatc tgtttttctt tgtagtcaga aagtaactgg
                                                                        180
  caaattacat gatgatgact agaaacagca tactctctgg ccgtctttcc agatcttgag
                                                                        240
  aagatacatc aacattttgc tcaagtagag ggctgactat acttgctgat ccacaacata
                                                                        300
 cagcaagtat gagagcagtt cttccatatc tatccagcgc atttaaattc gctttttct
                                                                        360
 tgattaaaaa tttcaccact tgctgttttt gctcatgtat accaagtagc agtggtgtga
                                                                        420
 ggccatgctt gtttttgat tcgatatcag caccgtataa gagcagtgct ttggccatta
                                                                        480
 attratette attgtagaca geatagtgta gagtggtatt tecatactea tetggaatat
                                                                        540
 ttggatcagt gccatgttcc agcaacatta acgcacattc atcttcctgg cattgtacgg
                                                                        600
 cettigicag agetgicete tittigitgi caaggacatt aagitgacat egictgicea
                                                                        660
 gcacgagttt tactacttct gaattcccat tggcagaggc cagatgtaga gcagtcctct
                                                                        720
 tttgcttgtc cctcttgttc acatccgtgt ccctgagcat gacgatgaga tcctttctgg
                                                                        780
 ggactttacc ccaccaggca gctctgtgga gcttgtccag atcttctcca tggacgtggt
                                                                        840
 acctgggate catgaaggeg etgteategt agtetececa agegaceaeg ttgetettge
                                                                        900
 cgctcccctg cagcagggga agcagtggca gcaccacttg cacctcttgc tcccaagcgt
                                                                        960
 cttcacagag gagtcgttgt ggtctccaga agtgcccacg ttgctcttgc cgctcccct
                                                                       1020
 gtccatccag ggaggaagaa atgcaggaaa tgaaagatgc atgcacgatg gtatactcct
                                                                       1080
 cagccatcaa acticiggac agcaggicac ticcagcaag giggagaaag cigiccaccc
                                                                       1140
 acagaggatg agatccagaa accacaatat ccattcacaa acaaacactt ttcagccaga
                                                                       1200
 cacaggtact gaaatcatgt catctgcggc aacatggtgg aacctaccca atcacacatc
                                                                       1260
 aagagatgaa gacactgcag tatatctgca caacgtaata ctcttcatcc ataacaaaat
                                                                      1320
 aatataattt teetetggag eeatatggat gaactatgaa ggaagaacte eecgaagaag
                                                                      1380
 ccagtcgcag agaagccaca ctgaagctct gtcctcagcc atcagcgcca cggacaggar
                                                                      1440
 tgtgtttctt ccccagtgat gcagcctcaa gttatcccga agctgccgca gcacacggtg
                                                                      1500
geteetgaga aacaececag etetteeggt etaacaeagg caagteaata aatgtgataa
                                                                      1560
tcacataaac agaattaaaa gcaaagtcac ataagcatct caacagacac agaaaaggca
                                                                      1620
tttgacaaaa tccagcatcc ttgtatttat tgttgcagtt ctcagaggaa atgcttctaa
                                                                      1680
                                                                      1740
cttttcccca tttagtatta tgttggctgt gggcttgtca taggtggttt ttattacttt
aaggtatgtc ccttctatgc ctgttttgct gagggtttta attctcgtgc c
                                                                      1800
                                                                      1851
      <210> 367
      <211> 668
      <212> DNA
      <213> Homo sapien
      <400> 367
cttgagcttc caaataygga agactggccc ttacacasgt caatgttaaa atgaatgcat
ttcagtattt tgaagataaa attrgtagat ctataccttg ttttttgatt cgatatcagc
                                                                       60
accrtataag agcagtgett tggecattaa tttatettte attrtagaca gertagtgya
                                                                      120
gagtggtatt tccatactca tctggaatat ttggatcagt gccatgttcc agcaacatta
                                                                      180
acgcacattc atcttcctgg cattgtacgg cctgtcagta ttagacccaa aaacaaatta
                                                                      240
catatettag gaatteaaaa taacatteea cagettteae caactagtta tatttaaagg
                                                                      300
agaaaactca tttttatgcc atgtattgaa atcaaaccca cctcatgctg atatagttgg
                                                                      360
ctactgcata cctttatcag agctgtcctc tttttgttgt caaggacatt aagttgacat
                                                                      420
cgtctgtcca gcaggagttt tactacttct gaattcccat tggcagaggc cagatgtaga
                                                                      480
gcagtcctat gagagtgaga agactttta ggaaattgta gtgcactagc tacagccata
                                                                      540
gcaatgattc atgtaactgc aaacactgaa tagcctgcta ttactctgcc ttcaaaaaaa
                                                                      500
                                                                      660
aaaaaaa
                                                                      668
      <210> 368
```

<211> 1512

<212> DNA

<213> Homo sapien

<400> 368 tgggctgggc trgaatcccc tgctggggtt ggcaggtttt ggctgggatt gacttttytc 60 ttcaaacaga ttggaaaccc ggagttacct gctagttggt gaaactggtt ggtagacgcg 120 atctgttggc tactactggc ttctcctggc tgttaaaagc agatggtggt tgaggttgat 180 tccatgccgg ctgcttcttc tgtgaagaag ccatttggtc tcaggagcaa gatgggcaag 240 tggtgctgcc gttgcttccc ctgctgcagg gagagcggca agagcaacgt gggcacttct 300 ggagaccacg acgactctgc tatgaagaca ctcaggagca agatgggcaa gtggtgccgc 360 cactgcttcc cctgctgcag ggggagtggc aagagcaacg tgggcgcttc tggagaccac 420 480 gacgaytctg ctatgaagac actcaggaac aagatgggca agtggtgctg ccactgcttc 540 ccctgctgca gggggagcrg caagagcaag gtgggcgctt ggggagacta cgatgacagt gccttcatgg agcccaggta ccacgtccgt ggagaagatc tggacaagct ccacagagct 600 gcctggtggg gtaaagtccc cagaaaggat ctcatcgtca tgctcaggga cactgacgtg 660 aacaagaagg acaagcaaaa gaggactgct ctacatctgg cctctgccaa tgggaattca 720 gaagtagtaa aactcstgct ggacagacga tgtcaactta atgtccttga caacaaaaag 780 aggacagete tgayaaagge egtacaatge caggaagatg aatgtgegtt aatgttgetg 840 gaacatggca ctgatccaaa tattccagat gagtatggaa ataccactct rcactaygct 900 rtctayaatg aagataaatt aatggccaaa gcactgctct tatayggtgc tgatatcgaa 960 tcaaaaaaca aggtatagat ctactaattt tatcttcaaa atactgaaat gcattcattt 1020 taacattgac gtgtgtaagg gccagtcttc cgtatttgga agctcaagca taacttgaat 1080 gaaaatattt tgaaatgacc taattatctm agactttatt ttaaatattg ttatttcaa 1140 agaagcatta gagggtacag ttttttttt ttaaatgcac ttctggtaaa tacttttgtt 1200 gaaaacactg aatttgtaaa aggtaatact tactattttt caatttttcc ctcctaggat 1260 tttttttcccc taatgaatgt aagatggcaa aatttgccct gaaataggtt ttacatgaaa 1320 1380 acticcaagaa aagttaaaca tgtttcagtg aatagagate etgeteetti ggcaagttee 1440 taaaaaacag taatagatac gaggtgatgc gcctgtcagt ggcaaggttt aagatatttc 1500 tgatctcgtg cc 1512 <210> 369 <211> 1853 <212> DNA <213> Homo sapien <400> 369 tgggctgggc trgaatcccc tgctggggtt ggcaggtttt ggctgggatt gacttttytc 60 ttcaaacaga ttggaaaccc ggagttacct gctagttggt gaaactggtt ggtagacgcg 120 atotgttggc tactactggc ttctcctggc tgttaaaagc agatggtggt tgaggttgat 180 240 tccatgccgg ctgcttcttc tgtgaagaag ccatttggtc tcaggagcaa gatgggcaag 300 tggtgctgcc gttgcttccc ctgctgcagg gagagcggca agagcaacgt gggcacttct 360 ggagaccacg acgactctgc tatgaagaca ctcaggagca agatgggcaa gtggtgccgc 420 cactgcttcc cctgctgcag ggggagtggc aagagcaacg tgggcgcttc tggagaccac gacgaytctg ctatgaagac actcaggaac aagatgggca agtggtgctg ccactgcttc 480 540 ccctgctgca gggggagcrg caagagcaag gtgggcgctt ggggagacta cgatgacagy gccttcatgg akcccaggta ccacgtccrt ggagaagatc tggacaagct ccacagagct 600 gcctggtggg gtaaagtccc cagaaaggat ctcatcgtca tgctcaggga cackgaygtg 660 720 aacaagargg acaagcaaaa gaggactgct ctacatctgg cctctgccaa tgggaattca gaagtagtaa aactcstgct ggacagacga tgtcaactta atgtccttga caacaaaaag 780 aggacagete tgayaaagge egtacaatge caggaagatg aatgtgegtt aatgttgetg 840 900 gaacatggca ctgatccaaa tattccagat gagtatggaa ataccactct rcactaygct rtctayaatg aagataaatt aatggccaaa gcactgctct tatayggtgc tgatatcgaa 960 tcaaaaaaca agcatggcct cacaccactg ytacttggtr tacatgagca aaaacagcaa 1020 gtsgtgaaat ttttaatyaa gaaaaaagcg aatttaaaat gcrctggata gatatggaag 1080 ractgetere atacttgetg targttgtgg atcageaagt atagteagee ytetaettga 1140 gcaaaatrtt gatgtatctt ctcaagatct ggaaagacgg ccagagagta tgctgtttct 1200

agtcatcatc atgtaatttg ccagttactt tctgactaca aagaaaaaca gatgttaaaa	1320
deceree addacayeda tecaqaacaa qaettaaage tgacatcaga gaaaga	1380
cadaggerra daggaagrya daacagccag ccagaggcat ggaaactiti aaatti	1440
and the distriction of the contract of the con	1500
details again to again the grant and attended to the second and the second attended to the	1560
goggegett degettglad EECCadcacc EEgagagach gaggeggga gara	1620
todayangate yayactatet tggctaacac ggtgaaaccc catereract aaaaanaan	1680
dadectaget gagegegegegegegegegegegegegegegegegegeg	1740
and addition and accorded dagging agg tigological contactions to the contaction of t	1800
ccagcctggg tgacagagca agactctgtc tcaaaaaaaaa aaaaaaaaa aaa	1853
<210> 370	
<211> 2184	
<212> DNA	
<213> Homo sapien	
romo saptett	
<400> 370	
ggcacgagaa ttaaaaccct Cagcaaaaca ggcatagaag ggacatacct taaagtaata	
addatedece atgacaagee cacageeaac ataatactaa atgaggaaaa attagagaa	60
tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgccttttc	120
tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat	180
ceatigatet geetgigtta gaceggaaga getggggtgt tteteaggag ceaeggtgt	240
ctgcggcage ttcggggtaa cttgaggetg catcactagg gaagaaacac aveggtas	300
avascaceae eggergagga cagagettea gtgtggette tetgegaetg gertertagg	360
sadatecte concarage calcoatate delecadade aaaattatat tattitata.	420
	480
bragge condition to the same of the same o	540 600
dadgegeerg retigiogacy galactiging tilicinggate teatecters toggt galac	600 660
gotteetea terigetyya agigacetye igiccaqaag titgatgger gaggagtata	720
detergegea typeacetter detercetgea tetettecte cetagataga caagagaaaa	780
agendades acquigaged tectiggagac cacaacqact cotototoaa gasgottogg	840
ageadgage gradityty Cigcoactge ticcoctact acadagagage ageagagag	900
acadaged craggagad tacgargaca dedecticat deatecrand taccacetee	960
arsadada terggataay elecatagag elgeetigiti qoqtaaagte eccamaaag	1020
areceasege cargercage gacaceggate teaacaagag egacaagcaa aagaggacta	1080
cooladatt ggcctctgcc aatgggaatt Cagaagtagt aaaactcgtg ctggagaaga	1140
gargerade caargecert gacaacaaaa agaggacage tetgacaaag geograpae	1200
secondary character contraster as a section of the second sections as a section of the second section of the section of the second section of the section of th	1260
argustates dedicact clacactate cletchacaa teaagataaa teaagataaa	1320
adjedenger ettalaeggi gelgatateg aateaaaaaa caageatgge etcasassa	1380
tyctacting tailaidigay caadaacago aagtqqtqaa atttttaaro aagaaaaa	1440
eguaticada tycyclygat agatatggaa gaactgctct caracteggs grandla	1500
gardaycadg tatagtdagd cottotacttg agdaaaatgr tgargrator torgangers	1560
regardadate goodgagagt atgotgttto tagtoatoat catgraatry goodgetact	1620
troughted adagadade agaigttada datetettet gaaaacagea arcoggage	1680
agacttadag ctgatattag aggaagagtt acaaaggctt acaaggaagtg accaaagg	1740
georgaggea tyggaadett taaatttaaa etttogett aatgetette ettettoor	1800
taleact againgtice adatgadatw acctargaga craggertta againteanna	1860
garteriet tradydatet titggeragg ageggigter caeggergra armonaga	1920
tradagage tgaggtgggt agattatgag attaggagat cgagaccata characta	1980
oggedude cedeteelde taddaataca aaaacrtage taggratage generales	2040
	2100
sergedged geographic geoactacac tecageetaa ataacaaac aagaatarar	2160
ctcaaaaaaa aaaaaaaaa aaaa	2184
	-107

```
<210> 371
       <211> 1855
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(1855)
       \langle 223 \rangle n = A,T,C or G
       <400> 371
 tgcacgcatc ggccagtgtc tgtgccacgt acactgacgc cccctgagat gtgcacgccg
                                                                       60
 cacgegeacg ttgcacgege ggcagegget tggctggett gtaacggett gcacgegeac
                                                                      120
 gccgcccccg cataaccgtc agactggcct gtaacggctt gcaggcgcac gccgcacgcg
                                                                      180
 cgtaacggct tggctgccct gtaacggctt gcacgtgcat gctgcacgcg cgttaacggc
                                                                      240
 ttggctggca tgtagccgct tggcttggct ttgcattytt tgctkggctk ggcgttgkty
                                                                      300
 tettggattg acgetteete ettggatkga egttteetee ttggatkgae gttteytyty
                                                                      360
tegegtteet ttgetggact tgacetttty tetgetgggt ttggeattee tttggggtgg
                                                                      420
 gctgggtgtt ttctccgggg gggktkgccc ttcctggggt gggcgtgggk cgccccagg
                                                                      480
540
atccccctgc tggggttggc agggattgac ttttttcttc aaacagattg gaaacccgga
                                                                      600
gtaacntgct agttggtgaa actggttggt agacgcgatc tgctggtact actgtttctc
                                                                      660
ctggctgtta aaagcagatg gtggctgagg ttgattcaat gccggctgct tcttctgtga
                                                                      720
agaagccatt tggtctcagg agcaagatgg gcaagtggtg cgccactgct tcccctgctg
                                                                      780
cagggggagc ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa
                                                                      840
gacgettggg ageaagaggt geaagtggtg etgeecactg etteecetge tgeaggggag
                                                                      900
cggcaagagc aacgtggkcg cttggggaga ctacgatgac agcgccttca tggakcccag
                                                                      960
gtaccacgic criggagaag atciggacaa gciccacaga gcigcciggi ggggtaaagi
                                                                     1020
ccccagaaag gatctcatcg tcatgctcag ggacactgay gtgaacaaga rggacaagca
                                                                     1080
aaagaggact gctctacatc tggcctctgc caatgggaat tcagaagtag taaaactcgt
                                                                     1140
gctggacaga cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa
                                                                     1200
ggccgtacaa tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc
                                                                     1260
aaatattcca gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa
                                                                     1320
attaatggcc aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaaggtata
                                                                     1380
gatctactaa ttttatcttc aaaatactga aatgcattca ttttaacatt gacgtgtgta
                                                                    1440
agggccagtc ttccgtattt ggaagctcaa gcataacttg aatgaaaata ttttgaaatg
                                                                    1500
acctaattat ctaagacttt attttaaata ttgttatttt caaagaagca ttagagggta
                                                                    1560
cagttttttt tttttaaatg cacttctggt aaatactttt gttgaaaaca ctgaatttgt
                                                                    1620
aaaaggtaat acttactatt tttcaatttt tccctcctag gatttttttc ccctaatgaa
                                                                    1680
tgtaagatgg caaaatttgc cctgaaatag gttttacatg aaaactccaa gaaaagttaa
                                                                    1740
acatgtttca gtgaatagag atcctgctcc tttggcaagt tcctaaaaaa cagtaataga
                                                                    1800
tacgaggtga tgcgcctgtc agtggcaagg tttaagatat ttctgatctc gtgcc
                                                                    1855
      <210> 372
      <211> 1059
      <212> DNA
      <213> Homo sapien
      <400> 372
gcaacgtggg cacttctgga gaccacaacg actcctctgt gaagacgctt gggagcaaga
                                                                      60
ggtgcaagtg gtgctgccca ctgcttcccc tgctgcaggg gagcggcaag agcaacgtgg
                                                                     120
gcgcttgrgg agactmcgat gacagygcct tcatggagcc caggtaccac gtccgtggag
                                                                     180
aagatetgga caageteeac agagetgeee tggtggggta aagteeeeag aaaggatete
                                                                     240
atcgtcatgc tcagggacac tgaygtgaac aagarggaca agcaaaagag gactgctcta
                                                                     300
catctggcct ctgccaatgg gaattcagaa gtagtaaaac tcstgctgga cagacgatgt
                                                                     360
```

```
caacttaatg teettgacaa caaaaagagg acagetetga yaaaggeegt acaatgeeag
                                                                         420
  gaagatgaat gtgcgttaat gttgctggaa catggcactg atccaaatat tccagatgag
                                                                         480
  tatggaaata ccactctrca ctaygctrtc tayaatgaag ataaattaat ggccaaagca
                                                                         540
 ctgctcttat ayggtgctga tatcgaatca aaaaacaagg tatagatcta ctaattttat
                                                                         600
 cttcaaaata ctgaaatgca ttcattttaa cattgacgtg tgtaagggcc agtcttccgt
                                                                         660
 atttggaagc tcaagcataa cttgaatgaa aatattttga aatgacctaa ttatctaaga
                                                                         720
 ctttattta aatattgtta ttttcaaaga agcattagag ggtacagttt tttttttta
                                                                        780
 aatgcacttc tggtaaatac ttttgttgaa aacactgaat ttgtaaaagg taatacttac
                                                                        840
 tatttttcaa tttttccctc ctaggatttt tttcccctaa tgaatgtaag atggcaaaat
                                                                        900
 ttgccctgaa ataggtttta catgaaaact ccaagaaaag ttaaacatgt ttcagtgaat
                                                                        960
 agagateetg eteettigge aagtteetaa aaaacagtaa tagataegag gigaigegee
                                                                       1020
 tgtcagtggc aaggtttaag atatttctga tctcgtgcc
                                                                       1059
       <210> 373
       <211> 1155
       <212> DNA
       <213> Homo sapien
       <400> 373
 atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc
                                                                         60
 aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
                                                                        120
 agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag
                                                                        180
 atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg
                                                                        240
 ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag
                                                                        300
 tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
                                                                        360
 ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
                                                                        420
 gacaagetes acagagetge etggtggggt aaagteecea gaaaggatet categteatg
                                                                        480
 ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc
                                                                        54C
 tctgccaatg ggaattcaga agtagtaaaa ctcctgctgg acagacgatg tcaacttaat
                                                                        600
 gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa
                                                                        660
tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat
                                                                       720
accactetge actaegetat etataatgaa gataaattaa tggccaaage actgetetta
                                                                       780
tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta
                                                                       840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                       900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                       960
gtcagccttc tacttgagca aaatattgat gtatcttctc aagatctatc tggacagacg
                                                                      1020
gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac
                                                                      1080
aaagaaaaac agatgctaaa aatctcttct gaaaacagca atccagaaaa tgtctcaaga
                                                                      1140
accagaaata aataa
                                                                      1155
      <210> 374
      <211> 2000
      <212> DNA
      <213> Homo sapien
      <400> 374
atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc
                                                                        60
aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
                                                                       120
agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag
atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg
                                                                       180
                                                                       240
ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag
                                                                       300
tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
                                                                       360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
gacaagetee acagagetge etggtggggt aaagteecea gaaaggatet categteatg
                                                                      420
ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgetet acatetggee
                                                                      480
                                                                      540
```

tctgccaatg	ggaattcaga	agtagtaaaa	ctcctgctgg	acagacgatg	tcaacttaat	600
gtccttgaca	acaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtgcgttaa	tgttgctgga	acatggcact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgctat	ctataatgaa	gataaattaa	tggccaaagc	actgctctta	780
tatggtgctg	atatcgaatc	aaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgctgtat	gttgtggatc	agcaagtata	960
gtcagccttc	tacttgagca	aaatattgat	gtatcttctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgtttc	tagtcatcat	catgtaattt	gccagttact	ttctgactac	1080
aaagaaaaac	agatgctaaa	aatctcttct	gaaaacagca	atccagaaca	agacttaaag	1140
ctgacatcag	aggaagagtc	acaaaggttc	aaaggcagtg	aaaatagcca	gccagagaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaag	1260
aagcatgaaa	gtaataatgt	gggattacta	gaaaacctga	ctaatggtgt	cactactage	1320
aatggtgata	atggattaat	tcctcaaagg	aagagcagaa	cacctgaaaa	tcagcaattt	1380
cctgacaacg	aaagtgaaga	gtatcacaga	atttgcgaat	tagtttctga	ctacaaagaa	1440
aaacagatgc	caaaatactc	ttctgaaaac	agcaacccag	aacaagactt	aaagctgaca	1500
tcagaggaag	agtcacaaag	gcttgagggc	agtgaaaatg	gccagccaga	gctagaaaat	1560
tttatggcta	tcgaagaaat	gaagaagcac	ggaagtactc	atgtcggatt	cccagaaaac	1620
ctgactaatg	gtgccactgc	tggcaatggt	gatgatggat	taattcctcc	aaqqaaqaqc	1680
agaacacctg	aaagccagca	atttcctgac	actgagaatg	aagagtatca	cagtgacgaa	1740
caaaatgata	ctcagaagca	attttgtgaa	gaacagaaca	ctggaatatt	acacgatgag	1800
attctgattc	atgaagaaaa	gcagatagaa	gtggttgaaa	aaatgaattc	tgagctttct	1860
cttagttgta	agaaagaaaa	agacatcttg	catgaaaata	gtacgttgcg	ggaagaaatt	1920
gccatgctaa	gactggagct	agacacaatg	aaacatcaga	gccagctaaa	aaaaaaaa	1980
aaaaaaaaa	aaaaaaaaa					2000

<210 > 375

<211> 2040

<212> DNA

<213> Homo sapien

<400> 375

atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc 60 aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag 120 agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag 180 atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg 240 ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag 300 tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg 360 ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg 420 gacaagetee acagagetge etggtggggt aaagteeeca gaaaggatet categteatg 480 ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc 540 tctgccaatg ggaattcaga agtagtaaaa ctcctgctgg acagacgatg tcaacttaat 600 gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa 660 tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat 720 accactetge actaegetat etataatgaa gataaattaa tggccaaage actgetetta 780 tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta 840 catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca 900 ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata 960 gtcagccttc tacttgagca aaatattgat gtatcttctc aagatctatc tggacagacg 1020 gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac 1080 aaagaaaaac agatgctaaa aatctcttct gaaaacagca atccagaaca agacttaaag 1140 ctgacatcag aggaagagtc acaaaggttc aaaggcagtg aaaatagcca gccagagaaa 1200 atgtctcaag aaccagaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag 1260 aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatggtgt cactgctggc 1320 aatggtgata atggattaat tootcaaagg aagagcagaa cacctgaaaa toagcaattt 1380

```
cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagtttctga ctacaaagaa
aaacagatgo caaaatacto ttotgaaaao agcaaccoag aacaagactt aaagotgaca
tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gaaaagatct
                                                               1560
caagaaccag aaataaataa ggatggtgat agagagctag aaaattttat ggctatcgaa
                                                               1620
gaaatgaaga agcacggaag tactcatgtc ggattcccag aaaacctgac taatggtgcc
                                                               1680
actgctggca atggtgatga tggattaatt cctccaagga agagcagaac acctgaaagc
                                                               1740
cagcaatttc ctgacactga gaatgaagag tatcacagtg acgaacaaaa tgatactcag
                                                               1800
aagcaatttt gtgaagaaca gaacactgga atattacacg atgagattct gattcatgaa
                                                               1860
gaaaagcaga tagaagtggt tgaaaaaatg aattctgagc tttctcttag ttgtaagaaa
                                                               1920
gaaaaagaca tettgeatga aaatagtacg ttgegggaag aaattgeeat getaagaetg
                                                               1980
2040
```

<210> 376

<211> 329

<212> PRT

<213> Homo sapien

<400> 376

Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe 10 Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu 25 Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser 40 Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg 55 60 Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val 70 75 Val Leu Pro Leu Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val 85 90 Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr 105 110 His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp 120 125 Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp 135 140 Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser 150 155 Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys 165 170 Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala 180 185 190 Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly 200 Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr 215 220 Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Tyr 230 235 Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu 245 250 Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys 260 265 270 Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu 280 Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu

```
290
                      295
                                        300
Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu
      310 315
 Ser Met Leu Phe Leu Val Ile Ile Met
       325
      <210> 377
      <211> 148
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(148)
      <223> Xaa = Any Amino Acid
      <400> 377
Met Thr Xaa Pro Ser Trp Ser Pro Gly Thr Thr Ser Val Glu Lys Ile
               5
Trp Thr Ser Ser Thr Glu Leu Pro Trp Trp Gly Lys Val Pro Arg Lys
    20
                             25
Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Xaa Asp Lys
                         40
Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu
                     55
Val Val Lys Leu Xaa Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp
                  70
                                    75
Asn Lys Lys Arg Thr Ala Leu Xaa Lys Ala Val Gln Cys Gln Glu Asp
              85
                                90
Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro
          100
                            105
Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Xaa Tyr Asn Glu Asp
      115 120 . 125
Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser
  130
                    135
Lys Asn Lys Val
145
     <210> 378
     <211> 1719
     <212> PRT
     <213> Homo sapien
    <400> 378
Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
                             25
Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
                         40
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
                     55
Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
```

Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn

				85					90					95	
Lys	Met	Gly	Lys 100		Cys	Cys	His	Cys 105	Phe	Pro	Суз	: Cys	Arg	Gly	/ Ser
		115					120					125	5		Phe
Met	Glu 130	Pro	Arg	Tyr	His	Val 135		Gly	Glu	Asp	Leu 140		Lys	Leu	His
145					150					155					Met 160
				165					170					175	
			180					185					190		Leu
		195					200					205			
	210					215					220		Ala		
225					230					235					Asn 240
				245					250				Met Lys	255	
			260					265					270		-
		275					280					285	Gln		
	290					295					300		Asp	_	_
305					310					315			Ala Gln		320
				325					330				His	335	
			340					345					350 Leu		
		355					360					365	Arg	-	
	370				~	375					380		Arg		_
385					390					395			Lys		400
				405					410					415	_
			420					425					Asn 430		_
		435					440					445	Arg		
	450					455					460		Gly		
465					470					475			Ala		480
				485					490				Phe	495	
			500					505					Asp 510		
ASP	ser	515	rne	met	GIU	Pro	Arg 520	Tyr	His	Val	Arg	Gly 525	Glu	Asp	Leu

Asp	Lys 530		His	Arg	, Ala	Ala 535		Trp	Gly	/ Lys	Val		Arc	Lys	Asp
Leu 545		Val	Met	Leu	Arg 550		Thr	Asp	Val	. Asn 5 55	Lys		asp	Lys	Gln 560
Lys	Arg	Thr	Ala	Leu 565		Leu	Ala	Ser	Ala 570	Asn	Gly	Asr	Ser	Glu 575	Val
Val	Lys	Leu	Leu 580		Asp	Arg	Arg	Cys 585		Leu	Asn	Val	. Leu 590	Asp	
		595					600			Gln		605		_	
	610					615				Asp	620				_
625					630					11e 635					640
				645					650					655	_
			660					665		Gly			670		_
		675					680			Lys		685			
	690					695				Leu	700				_
705					710					Gln 715					720
				725					730					735	
His	His	His	Val 740	Ile	Cys	Gln	Leu	Leu 745	Ser	Asp	Тух	Lys	Glu 750	Lys	Gln
		755					760			Pro		765			_
	770					775				Lys	780				
785					790					Ile 795					800
				805					810	Glu				815	_
			820					825		Ala			830		
		835					840			Pro		845			
	850					855				Ile	860				
865					870					Ser 875					880
				885					890	Glu				895	
			900					905		Glu			910		
		915					920			Val		925			
	930					935				Asp	940				
945					950					Gln 955					960
Asn	Glu	Glu	Tyr	His	Ser	Asp	Glu	Gln	Asn	Asp	Thr	Gln	Lys	Gln	Phe

				965					970					975	
			980					985					990		His
Glu	Glu	Lys 995	Gln	Ile	Glu	Val	Val 100		Lys	Met	Asn	Ser		Leu	Ser
Leu	Ser 101		Lys	Lys	Glu	Lys 101		Ile	Leu	His	Glu 102	Asn		Thr	Leu
Arg		Glu	Ile	Ala	Met 103	Leu		Leu	Glu	Leu 103	Asp		Met	Lys	His 104
Gln	Ser	Gln	Leu	Pro 104	Arg		His	Met	Val	Val		Val	Asp	Ser	Met
Pro	Ala	Ala	Ser	Ser		Lys	Lys	Pro	Phe	Gly	Leu	Arg	Ser	Lys	
Gly	Lys	Trp		Cys	Arg	Cys	Phe	Pro	_	Cys	Arg	Glu 108	Ser		Lys
Ser	Asn 1090		Gly	Thr	Ser	Gly 1099	Asp		Asp	Asp	Ser	Ala		Lys	Thr
Leu 110		Ser	Lys	Met	Gly 111	Lys		Cys	Arg	His 1119	Cys		Pro	Cys	Cys 112
Arg	Gly	Ser	Gly	Lys 1129	Ser 5	Asn	Val	Gly	Ala 113	Ser		Asp	His	Asp 113	Asp
Ser	Ala	Met	Lys 114		Leu	Arg	Asn	Lys 114	Met	Gly	Lys	Trp	Cys 115	Cys	
Cys	Phe	Pro 1155		Cys	Arg	Gly	Ser 1160		Lys	Ser	Lys	Val 1165		Ala	Trp
Gly	Asp 1170		Asp	Asp	Ser	Ala 1175		Met	Glu	Pro	Arg 1180	Tyr		Val	Arg
Gly 1185		Asp	Leu	Asp	Lys 119		His	Arg	Ala	Ala 1195		Trp	Gly	Lys	Val 120
Pro	Arg	Lys	Asp	Leu 1205		Val	Met	Leu	Arg 121	Asp 0	Thr	Asp	Val	Asn 1215	Lys
			1220)				1225	5	Leu			1230)	_
Asn	Ser	Glu 1235		Val	Lys	Leu	Leu 1240		Asp	Arg	Arg	Cys 1245		Leu	Asn
Val	Leu 1250	Asp	Asn	Lys	Lys	Arg 1255		Ala	Leu	Ile	Lys 1260		Val	Gln	Cys
Gln 1265		Asp	Glu	Cys	Ala 1270		Met	Leu	Leu	Glu 1275		Gly	Thr	Asp	Pro 128
Asn	Ile	Pro	Asp	Glu 1285		Gly	Asn	Thr	Thr 1290	Leu)	His	Tyr	Ala	Ile 1295	Tyr
Asn	Glu	Asp	Lys 1300		Met	Ala	Lys	Ala 1305		Leu	Leu	Tyr	Gly 1310	Ala	Asp
Ile	Glu	Ser 1315	Lys	Asn	Lys		Gly 1320		Thr	Pro	Leu	Leu 1325		Gly	Val
His	Glu 1330	Gln	Lys	Gln	Gln	Val 1335	Val	Lys	Phe	Leu	Ile 1340		Lys	Lys	Ala
Asn 1345		Asn	Ala	Leu	Asp 1350		Tyr	Gly	Arg	Thr 1355	Ala	Leu	Ile	Leu	Ala 136
Val	Cys	Cys	Gly	Ser 1365	Ala		Ile	Val	Ser 1370	Leu		Leu	Glu	Gln 1375	Asn
Ile	Asp		Ser 1380	Ser		Asp		Ser 1385	Gly	Gln	Thr		Arg 1390	Glu	
Ala			Ser		His			Ile		Gln			Ser		Tyr

Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu 1415 Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly 1430 1435 Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn 1445 1450 Lys Asp Gly Asp Arg Glu Val Glu Glu Met Lys Lys His Glu Ser 1460 1465 Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly 1480 1485 Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu 1490 1495 1500 Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys 1510 1515 Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser 1525 1530 Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu 1540 1545 Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Lys Arg Ser 1560 1565 Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Leu Glu Asn Phe 1575 1580 Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe 1590 1595 Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly 1605 1610 1615 Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro 1620 1625 1630 Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln 1635 1640 1645 Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile 1650 1655 1660 Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser 1665 1670 1675 Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn 1685 1690 Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr 1700 1705 Met Lys His Gln Ser Gln Leu 1715 <210> 379 <211> 656 <212> PRT <213> Homo sapien <400> 379 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 5 1 10 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 20 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp

Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu

500 505 Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys 520 Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly 535 Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser 550 555 Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr 570 His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln 585 Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln 600 Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys 615 Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile 630 635 Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu 650

<210> 380

<211> 671

<212> PRT

<213> Homo sapien

<400> 380

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 10 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 75 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 85 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 105 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 120 125 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 135 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 150 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 185 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 200 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 215 220 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn

225					230					235					240
				245					250)				255	Lys
			260					265	;				270)	Gly
		275					280)				285	5		Val
	290					295					300)		_	Tyr
305					310					315	;				1le 320
				325					330)				335	Leu
			340		Arg			345					350		
		355			Ser		360					365		-	
	370				Asn	375					380				
385					Phe 390					395					400
				405	Glu				410					415	
			420		His			425					430		
		435			Thr		440			•		445			
	450				Thr	455					460		_		
465					Arg 470					475					480
				485	Tyr				490					495	_
			500		Glu			505					510		
		515			Lys		520					525		-	
	530				Glu	535					540				•
545					Val 550					555					560
				565	Asp				570					575	_
			580		Gln			585					590		
		595			Asp		600					605			
	610					615					620				
625					Met 630					635					640
				645	His				650					655	Ala
Met	Leu	Arg	Leu 660	Glu	Leu .	Asp	Thr	Met 665	Lys	His	Gln	Ser	Gln 670	Leu	

```
<210> 381
        <211> 251
        <212> DNA
        <213> Homo sapien
       <400> 381
 ggagaagcgt ctgctggggc aggaaggggt ttccctgccc tctcacctgt ccctcaccaa
 ggtaacatgc ttcccctaag ggtatcccaa cccaggggcc tcaccatgac ctctgagggg
                                                                        120
 ccaatatccc aggagaagca ttggggagtt gggggcaggt gaaggaccca ggactcacac
                                                                        180
 atcctgggcc tccaaggcag aggagaggt cctcaagaag gtcaggagga aaatccgtaa
                                                                        240
 caagcagtca g
                                                                        251
<210> 382
<211> 3279
<212> DNA
<213> Homo sapiens
<400> 382
cttcctgcag cccccatgct ggtgaggggc acgggcagga acagtggacc caacatggaa 60
atgctggagg gtgtcaggaa gtgatcgggc tctggggcag ggaggagggg tggggagtgt 120
cactgggagg ggacatcctg cagaaggtag gagtgagcaa acacccgctg caggggaggg 180
gagageeetg eggeaeetgg gggageagag ggageageae etgeeeagge etgggaggag 240
gggcctggag ggcgtgagga ggagcgaggg ggctgcatgg ctggagtgag ggatcagggg 300
cagggcgcga gatggcctca cacagggaag agagggcccc teetgcaggg cetcacetgg 360
gccacaggag gacactgctt ttcctctgag gagtcaggag ctgtggatgg tgctggacag 420
aagaaggaca gggcctggct caggtgtcca gaggctgtcg ctggcttccc tttgggatca 480
gactgcaggg agggagggcg gcagggttgt ggggggagtg acgatgagga tgacctgggg 540
gtggctccag gccttgcccc tgcctgggcc ctcacccagc ctccctcaca gtctcctggc 600
cctcagtctc tcccctccac tccatcctcc atctggcctc agtgggtcat tctgatcact 660
gaactgacca tacccagcc tgcccacggc cctccatggc tccccaatgc cctggagagg 720
ggacatctag tcagagagta gtcctgaaga ggtggcctct gcgatgtgcc tgtgggggca 780
gcatcetgca gatggteecg geceteatee tgetgaeetg tetgeaggga etgteeteet 840
ggaccttgcc ccttgtgcag gagctggacc ctgaagtccc ctccccatag gccaagactg 900
gageettgtt ceetetgttg gaeteeetge ceatattett gtgggagtgg gttetggaga 960
cattletgic tgttcctgag agetgggaat tgctctcagt catctgcctg cgcggttctg 1020
agagatggag ttgcctaggc agttattggg gccaatcttt ctcactgtgt ctctcctcct 1080
ttacccttag ggtgattctg ggggtccact tgtctgtaat ggtgtgcttc aaggtatcac 1140
atcatggggc cctgagccat gtgccctgcc tgaaaagcct gctgtgtaca ccaaggtggt 1200
gcattaccgg aagtggatca aggacaccat cgcagccaac ccctgagtgc ccctgtccca 1260
eccetacete tagtaaattt aagteeacet eaegttetgg cateaettgg cetttetgga 1320
tgctggacac ctgaagcttg gaactcacct ggccgaagct cgagcctcct gagtcctact 1380
gacctgtgct ttctggtgtg gagtccaggg ctgctaggaa aaggaatggg cagacacagg 1440
tgtatgccaa tgtttctgaa atgggtataa tttcgtcctc tccttcggaa cactggctgt 1500
ctctgaagac ttctcgctca gtttcagtga ggacacacac aaagacgtgg gtgaccatgt 1560
tgtttgtggg gtgcagagat gggaggggtg gggcccaccc tggaagagtg gacagtgaca 1620
caaggtggac actetetaca gateactgag gataagetgg agecacaatg catgaggeac 1680
acacacagca aggttgacgc tgtaaacata gcccacgctg tcctgggggc actgggaagc 1740
ctagataagg ccgtgagcag aaagaagggg aggatcctcc tatgttgttg aaggagggac 1800
tagggggaga aactgaaagc tgattaatta caggaggttt gttcaggtcc cccaaaccac 1860
cgtcagattt gatgatttcc tagcaggact tacagaaata aagagctatc atgctgtggt 1920
ttattatggt ttgttacatt gataggatac atactgaaat cagcaaacaa aacagatgta 1980
tagattagag tgtggagaaa acagaggaaa acttgcagtt acgaagactg gcaacttggc 2040
tttactaagt tttcagactg gcaggaagtc aaacctatta ggctgaggac cttgtggagt 2100
gtagctgatc cagctgatag aggaactagc caggtggggg cctttccctt tggatggggg 2160
```

```
gcatatccga cagttattct ctccaagtgg agacttacgg acagcatata attctccctg 2220
caaggatgta tgataatatg tacaaagtaa ttccaactga ggaagctcac ctgatcctta 2280
gtgtccaggg tttttactgg gggtctgtag gacgagtatg gagtacttga ataattgacc 2340
tgaagtcctc agacctgagg ttccctagag ttcaaacaga tacagcatgg tccagagtcc 2400
cagatgtaca aaaacaggga ttcatcacaa atcccatctt tagcatgaag ggtctggcat 2460
ggcccaaggc cccaagtata tcaaggcact tgggcagaac atgccaagga atcaaatgtc 2520
atctcccagg agttattcaa gggtgagccc tttacttggg atgtacaggc tttgagcagt 2580
gcagggctgc tgagtcaacc ttttattgta caggggatga gggaaaggga gaggatgagg 2640
aagccccct ggggatttgg tttggtcttg tgatcaggtg gtctatgggg ctatccctac 2700
aaagaagaat ccagaaatag gggcacattg aggaatgata ctgagcccaa agagcattca 2760
atcattgttt tatttgcctt cttttcacac cattggtgag ggagggatta ccaccctggg 2820
gttatgaaga tggttgaaca ccccacacat agcaccggag atatgagatc aacagtttct 2880
tagccataga gattcacagc ccagagcagg aggacgctgc acaccatgca ggatgacatg 2940
ggggatgcgc tcgggattgg tgtgaagaag caaggactgt tagaggcagg ctttatagta 3000
acaagacggt ggggcaaact ctgatttccg tggggggaatg tcatggtctt gctttactaa 3060
gttttgagac tggcaggtag tgaaactcat taggctgaga accttgtgga atgcagctga 3120
cccagctgat agaggaagta gccaggtggg agcctttccc agtgggtgtg ggacatatct 3180
ggcaagattt tgtggcactc ctggttacag atactggggc agcaaataaa actgaatctt 3240
gttttcagac cttaaaaaaa aaaaaaaaa aaaagtttt
<210> 383
<211> 155
<212> PRT
<213> Homo sapiens
<400> 383
Met Ala Gly Val Arg Asp Gln Gly Gln Gly Ala Arg Trp Pro His Thr
Gly Lys Arg Gly Pro Leu Leu Gln Gly Leu Thr Trp Ala Thr Gly Gly
His Cys Phe Ser Ser Glu Glu Ser Gly Ala Val Asp Gly Ala Gly Gln
Lys Lys Asp Arg Ala Trp Leu Arg Cys Pro Glu Ala Val Ala Gly Phe
                        55
Pro Leu Gly Ser Asp Cys Arg Glu Gly Gly Arg Gln Gly Cys Gly Gly
Ser Asp Asp Glu Asp Asp Leu Gly Val Ala Pro Gly Leu Ala Pro Ala
Trp Ala Leu Thr Gln Pro Pro Ser Gln Ser Pro Gly Pro Gln Ser Leu
Pro Ser Thr Pro Ser Ser Ile Trp Pro Gln Trp Val Ile Leu Ile Thr
                            120
                                                125
Glu Leu Thr Ile Pro Ser Pro Ala His Gly Pro Pro Trp Leu Pro Asn
                        135
Ala Leu Glu Arg Gly His Leu Val Arg Glu
```

```
<210> 384
 <211> 557
 <212> DNA
<213> Homo sapiens
<400> 384
ggatcctcta gagcggccgc ctactactac taaattcgcg gccgcgtcga cgaagaagag 60
aaagatgtgt titgttttgg actototgtg gtocottoca atgotgtggg tttocaacca 120
ggggaagggt cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggt 180
tetgeeteet ggeeaageag getggtttge aagaatgaaa tgaatgatte tacagetagg 240
acttaacctt gaaatggaaa gtcttgcaat cccatttgca ggatccgtct gtgcacatgc 300
ctctgtagag agcagcattc ccagggacct tggaaacagt tggcactgta aggtgcttgc 360
tececaagae acateetaaa aggtgttgta atggtgaaaa egtetteett etttattgee 420
ccttcttatt tatgtgaaca actgtttgtc tttttttgta tcttttttaa actgtaaagt 480
tcaattgtga aaatgaatat catgcaaata aattatgcga ttttttttt aaagtaaaaa 540
aaaaaaaaa aaaaaaa
<210> 385
<211> 337
<212> DNA
<213> Homo sapiens
<400> 385
ttcccaggtg atgtgcgagg gaagacacat ttactatect tgatgggget gatreettra 60
gtttctctag cagcagatgg gttaggagga agtgacccaa gtggttgact cctatgtgca 120
teteaaagee atetgetgte ttegagtacg gacacateat cacteetgea ttgttgatea 180
aaacgtggag gtgcttttcc tcagctaaga agcccttagc aaaagctcga atagacttag 240
tatcagacag gtccagtttc cgcaccaaca cctgctggtt ccctgtcgtg gtctggatct 300
ctttggccac caattccccc ttttccacat cccggca
                                                                   337
<210> 386
<211> 300
<212> DNA
<213> Homo sapiens
<400> 386
gggcccgcta ccggcccagg ccccgcctcg cgagtcctcc tccccgggtg cctgcccgca 60
gcccgctcgg cccagagggt gggcgcgggg ctgcctctac cggctggcgg ctgtaactca 120
gcgaccttgg cccgaagget ctagcaagga cccaccgacc ccagccgcgg cggcggcggc 180
gcggactttg cccggtgtgt ggggcggagc ggactgcgtg tccgcggacg ggcagcgaag 240
atgttageet tegetgeeag gacegtggae egateeeagg getgtggtgt aaceteagee 300
<210> 387
<211> 537
<212> DNA
<213> Homo sapiens
<400> 387
gggccgagtc gggcaccaag ggactctttg caggcttcct tcctcggatc atcaaggctg 60
ccccctcctg tgccatcatg atcagcacct atgagttcgg caaaagcttc ttccagaggc 120
tgaaccagga ccggcttctg ggcggctgaa agggcaagg aggcaaggac cccgtctctc 180
ccacggatgg ggagaggca ggaggagacc cagccaagtg ccttttcctc agcactgagg 240
gagggggctt gtttcccttc cctcccggcg acaagctcca gggcagggct gtccctctgg 300
```

```
geggeecage aetteeteag acaeaaette tteetgetge teeagtegtg gggateatea 360
cttacccacc ccccaagttc aagaccaaat cttccagctg cccccttcgt gtttccctgt 420
gtttgctgta gctgggcatg tctccaggaa ccaagaagcc ctcagcctgg tgtagtctcc 480
ctgacccttg ttaattcctt aagtctaaag atgatgaact tcaaaaaaaa aaaaaaa
<210> 388
<211> 520
<212> DNA
<213> Homo sapiens
<400> 388
aggataattt ttaaaccaat caaatgaaaa aaacaaacaa acaaaaaagg aaatgtcatg 60
tgaggttaaa ccagtttgca ttcccctaat gtggaaaaag taagaggact actcagcact 120
gtttgaagat tgcctcttct acagcttctg agaattgtgt tatttcactt gccaagtgaa 180
ggaccccctc cccaacatgc cccagcccac ccctaagcat ggtcccttgt caccaggcaa 240
ccaggaaact gctacttgtg gacctcacca gagaccagga gggtttggtt agctcacagg 300
acttccccca ccccagaaga ttagcatccc atactagact catactcaac tcaactaggc 360
tcatactcaa ttgatggtta ttagacaatt ccatttcttt ctggttatta taaacagaaa 420
atctttcctc ttctcattac cagtaaaggc tcttggtatc tttctgttgg aatgatttct 480
atgaacttgt cttattttaa tggtgggttt tttttctggt
<210> 389
<211> 365
<212> DNA
<213> Homo sapiens
<400> 389
cgttgcccca gtttgacaga aggaaaggcg gagcttattc aaagtctaga gggagtggag 60
gagttaaggc tggatttcag atctgcctgg ttccagccgc agtgtgccct ctgctccccc 120
aacgactttc caaataatct caccagegee ttecagetea ggegteetag aagegtettg 180
aagestatgg ccagetgtet ttgtgtteee teteaceege etgteeteac agetgagaet 240
cccaggaaac cttcagacta ccttcctctg ccttcagcaa ggggcgttgc ccacattctc 300
tgagggtcag tggaagaacc tagactccca ttgctagagg tagaaagggg aagggtgctg 360
gggag
<210> 390
<211> 221
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(221)
<223> n = A, T, C or G
<400> 390
tgcctctcca tcctggcccc gacttctctg tcaggaaagt ggggatggac cccatctgca 60
tacacggntt ctcatgggtg tggaacatct ctgcttgcgg tttcaggaag gcctctggct 120
gctctangag tctgancnga ntcgttgccc cantntgaca naaggaaagg cggagcttat 180
tcaaagtcta gagggagtgg aggagttaag gctggatttc a
                                                                   221
<210> 391
<211> 325
<212> DNA
<213> Homo sapiens
```

```
<220>
 <221> misc feature
 <222> (1) ... (325)
 <223> n = A,T,C or G
<400> 391
tggagcaggt cccgaggcct ccctagagcc tggggccgac tctgtgncga tgcangcttt 60
ctctcgcgcc cagcctggag ctgctcctgg catctaccaa caatcagncg aggcgagcag 120
tagccagggc actgctgcca acagccagtc cnnataccat catgtnaccc ggtgngctct 180
naantingat niccanagee clacecaten tagitetget eleccacegg niaccageee 240
cactgcccag gaatcctaca gccagtaccc tgtcccgacg tctctaccta ccagtacgat 300
gagacctccg gctactacta tgacc
                                                                    325
<210> 392
<211> 277
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(277)
<223> n = A, T, C \text{ or } G
<400> 392
atattgttta actecttect ttatatettt taacatttte atggngaaag gtteacatet 60
agteteactt nggenagngn etectaettg agtetettee eeggeetgnn ceagtngnaa 120
antaccanga accgncatgn cttaanaacn neetggttin tgggtinnic aatgactgea 180
tgcagtgcac caccetgtee actaegtgat getgtaggat taaagtetea cagtgggegg 240
ctgaggatac agcgccgcgt cctgtgttgc tggggaa
<210> 393
<211> 566
<212> DNA
<213> Homo sapiens
<400> 393
actagtccag tgtggtggaa ttcgcggccg cgtcgacgga caggtcagct gtctggctca 60
gtgatctaca ttctgaagtt gtctgaaaat gtcttcatga ttaaattcag cctaaacgtt 120
ttgccgggaa cactgcagag acaatgctgt gagtttccaa ccttagccca tctgcgggca 180
gagaaggtct agtttgtcca tcagcattat catgatatca ggactggtta cttggttaag 240
gaggggtcta ggagatctgt cccttttaga gacaccttac ttataatgaa gtatttggga 300
gggtggtttt caaaagtaga aatgtcctgt attccgatga tcatcctgta aacattttat 360
catttattaa tcatccctgc ctgtgtctat tattatattc atatctctac gctggaaact 420
ttctgcctca atgtttactg tgcctttgtt tttgctagtt tgtgttgttg aaaaaaaaa 480
cattetetge etgagtttta atttttgtee aaagttattt taatetatae aattaaaage 540
ttttgcctat caaaaaaaa aaaaaa
<210> 394
<211> 384
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
```

```
<222> (1)...(384)
 <223> n = A, T, C or G
<400> 394
gaacatacat gtcccggcac ctgagctgca gtctgacatc atcgccatca cgggcctcgc 60
tgcaaattng gaccgggcca aggctggact gctggagcgt gtgaaggagc tacaggccna 120
gcaggaggac cgggctttaa ggagttttaa gctgagtgtc actgtagacc ccaaatacca 180
teccaagatt ategggagaa agggggeagt aattacecaa ateeggttgg ageatgaegt 240
gaacatccag tttcctgata aggacgatgg gaaccagccc caggaccaaa ttaccatcac 300
agggtacgaa aagaacacag aagctgccag ggatgctata ctgagaattg tgggtgaact 360
tgagcagatg gtttctgagg acgt
<210> 395
<211> 399
<212> DNA
<213> Homo sapiens
<400> 395
ggcaaaactg tgtgacctca ataagacctc gcagatccaa ggtcaagtat cagaagtgac 60
totgacottg gactocaaga cotacatcaa cagootggot atattagatg atgagocagt 120
tatcagaggt ttcatcattg cggaaattgt ggagtctaag gaaatcatgg cctctgaagt 180
atteacgtet ttecagtace etgagttete tatagagttg cetaacacag geagaattgg 240
ccagetactt gtetgeaatt gtatetteaa gaataceetg geeateeett tgaetgaegt 300
caagttetet ttggaaagee tgggeatete eteactacag acetetgace atgggacggt 360
gcagcctggt gagaccatcc aatcccaaat aaaatgcac
<210> 396
<211> 403
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(403)
\langle 223 \rangle n = A,T,C or G
<400> 396
tggagttntc agtgcaaaca agccataaag cttcagtagc aaattactgt ctcacagaaa 60
gacattttca acttctgctc cagctgctga taaaacaaat catgtgttta gcttgactcc 120
agacaaggac aacctgttcc ttcataactc tctagagaaa aaaaggagtt gttagtagat 180
actaaaaaaa gtggatgaat aatctggata tttttcctaa aaagattcct tgaaacacat 240
taggaaaatg gagggcctta tgatcagaat gctagaatta gtccattgtg ctgaagcagg 300
gtttagggga gggagtgagg gataaaagaa ggaaaaaaag aagagtgaga aaacctattt 360
atcaaagcag gtgctatcac tcaatgttag gccctgctct ttt
                                                                   403
<210> 397
<211> 100
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(100)
<223> n = A,T,C or G
```

```
<400> 397
 actagincag igiggiggaa ticgeggeeg egiegaeeta naaneeatet etatageaaa 60
 tccatccccg ctcctggttg gtnacagaat gactgacaaa
 <210> 398
 <211> 278
 <212> DNA
 <213> Homo sapiens
 <220>
<221> misc feature
<222> (1)...(278)
<223> n = A,T,C or G
<400> 398
gcggccgcgt cgacagcagt tccgccagcg ctcgcccctg ggtggggatg tgctgcacgc 60
ccacctggac atctggaagt cagcggcctg gatgaaagag cggacttcac ctggggcgat 120
teactactgt geetegacea gtgaggagag etggacegae agegaggtgg acteateatg 180
ctccgggcag cccatccacc tgtggcagtt cctcaaggag ttgctactca agccccacag 240
ctatggccgc ttcattangt ggctcaacaa ggagaagg
<210> 399
<211> 298
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(298)
<223> n = A,T,C or G
<400> 399
acggaggtgg aggaagcgnc cctgggatcg anaggatggg tcctgncatt gaccnccten 60
ggggtgccng catggagcgc atgggcgcgg gcctgggcca cggcatggat cgcgtgggct 120
ccgagatcga gcgcatgggc ctggtcatgg accgcatggg ctccgtggag cgcatgggct 180
ccggcattga gcgcatgggc ccgctgggcc tcgaccacat ggcctccanc attgancgca 240
tgggccagac catggagcgc attggctctg gcgtggagcn catgggtgcc ggcatggg
<210> 400
<211> 548
<212> DNA
<213> Homo sapiens
<400> 400
acatcaacta cttcctcatt ttaaggtatg gcagttccct tcatcccctt ttcctgcctt 60
gtacatgtac atgtatgaaa tttccttctc ttaccgaact ctctccacac atcacaaggt 120
tgagtctctt ttttccacgt ttaaggggcc atggcaggac ttagagttgc gagttaagac 240
tgcagagggc tagagaatta tttcatacag gctttgaggc cacccatgtc acttatcccg 300
tataccetet caccatecce tigictacte tgatgecece aagatgeaac tgggeageta 360
gttggcccca taattctggg cctttgttgt ttgttttaat tacttgggca tcccaggaag 420
ctttccagtg atctcctacc atgggccccc ctcctgggat caagcccctc ccaggccctg 480
tecceageee etectgeeee ageceaeeeg ettgeettgg tgeteageee teccattggg 540
agcaggtt
                                                                548
```

```
<210> 401
<211> 355
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(355)
\langle 223 \rangle n = A,T,C or G
<400> 401
actgtttcca tgttatgttt ctacacattg ctacctcagt gctcctggaa acttagcttt 60
tgatgtctcc aagtagtcca ccttcattta actctttgaa actgtatcat ctttgccaag 120
taagagtggt ggcctatttc agctgctttg acaaaatgac tggctcctga cttaacgttc 180
tataaatgaa tgtgctgaag caaagtgccc atggtggcgg cgaagaagan aaagatgtgt 240
tttgttttgg actctctgtg gtcccttcca atgctgnggg tttccaacca ggggaagggt 300
cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggn tctgc
<210> 402
<211> 407
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(407)
<223> n = A,T,C or G
<400> 402
atggggcaag ctggataaag aaccaagacc cactggagta tgctgtcttc aagaaaccca 60
tctcacatgc ggtggcatac ataggctcaa aataaaggaa tggagaaaaa tatttcaagc 120
aaatggaaaa cagaaaaaag caggtgttgc actcctactt tctgacaaaa cagactatgc 180
gaataaagat aaaaaagaga aggacattac aaaggtggtc ctgacctttg ataaatctca 240
ttgcttgata ccaacctggg ctgttttaat tgcccaaacc aaaaggataa tttgctgagg 300
ttgtggagct tctcccctgc agagagtccc tgatctccca aaatttggtt gagatgtaag 360
gntgattttg ctgacaactc cttttctgaa gttttactca tttccaa
<210> 403
<211> 303
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(303)
<223> n = A,T,C \text{ or } G
<400> 403
cagtatttat agccnaactg aaaagctagt agcaggcaag tctcaaatcc aggcaccaaa 60
tcctaagcaa gagccatggc atggtgaaaa tgcaaaagga gagtctggcc aatctacaaa 120
tagagaacaa gacctactca gtcatgaaca aaaaggcaga caccaacatg gatctcatgg 180
gggattggat attgtaatta tagagcagga agatgacagt gatcgtcatt tggcacaaca 240
tottaacaac gaccgaaacc cattatttac ataaacctcc attcggtaac catgttgaaa 300
gga
                                                                   303
```

```
<210> 404
 <211> 225
<212> DNA
<213> Homo sapiens
<400> 404
aagtgtaact tttaaaaaatt tagtggattt tgaaaattct tagaggaaag taaaggaaaa 60
attgttaatg cactcattta cetttacatg gtgaaagtte tetettgate etacaaacag 120
acattiticca cicgigittic catagitight aagigtatica gatgigitigg gcatgigaat 180
ctccaagtgc ctgtgtaata aataaagtat ctttatttca ttcat
<210> 405
<211> 334
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ...(334)
<223> n = A,T,C or G
<400> 405
gagetgttat actgtgagtt etactaggaa atcateaaat etgagggttg tetggaggae 60
ttcaatacac ctcccccat agtgaatcag cttccagggg gtccagtccc tctccttact 120
tcatccccat cccatgccaa aggaagaccc tccctccttg gctcacagcc ttctctaggc 180
ttcccagtgc ctccaggaca gagtgggtta tgttttcagc tccatccttg ctgtgagtgt 240
ctggtgcggt tgtgcctcca gcttctgctc agtgcttcat ggacagtgtc cagcccatgt 300
cactetecae teteteanng tggateceae eeet
<210> 406
<211> 216
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(216)
<223> n = A, T, C or G
<400> 406
tttcatacct aatgagggag ttganatnac atnnaaccag gaaatgcatg gatctcaang 60
gaaacaaaca cccaataaac tcggagtggc agactgacaa ctgtgagaca tgcacttgct 120
acnaaacaca aatttnatgt tgcacccttg tttctacacc tgtgggttat gacaaagaca 180
actgccaaag aatnttcaag aaggaggact gccant
<210> 407
<211> 413
<212> DNA
<213> Homo sapiens
<400> 407
gctgacttgc tagtatcatc tgcattcatt gaagcacaag aacttcatgc cttgactcat 60
gtaaatgcaa taggattaaa aaataaattt gatatcacat ggaaacagac aaaaaatatt 120
gtacaacatt gcacccagtg tcagattcta cacctggcca ctcaggaagc aagagttaat 180
cccagaggtc tatgtcctaa tgtgttatgg caaatggatg tcatgcacgt accttcattt 240
```

```
ggaaaattgt catttgtcca tgtgacagtt gatacttatt cacatttcat atgggcaacc 300
 tgccagacag gagaaagtct tcccatgtta aaagacattt attatcttgt tttcctgtca 360
 tgggagttcc agaaaaagtt aaaacagaca atgggccagg ttctgtagta aag
<210> 405
<211> 183
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ...(183)
<223> n = A,T,C or G
<400> 408
ggagetngcc ctcaattcct ccatntctat gttancatat ttaatgtctt ttgnnattaa 60
tncttaacta gttaatcctt aaagggctan ntaatcctta actagtccct ccattgtgag 120
cattateett ecagtatten cettetnttt tatttaetee tteetggeta eccatgtaet 180
ntt
<210> 409
<211> 250
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(250)
<223> n = A, T, C or G
<400> 409
cccacgcatg ataagctctt tatttctgta agtcctgcta ggaaatcatc aaatctgacg 60
gtggtttggg ggacctgaac aaacctcctg taattaatca gctttcagtt tctccccta 120
gteceteett caacaacata ggaggateet eccettettt etgeteaegg eettatetag 180
gcttcccagt gcccccagga cagcgtgggc tatgtttaca gcgcntcctt gctggggggg 240
ggccntatgc
                                                                   250
<210> 410
<211> 306
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(306)
<223> n = A,T,C or G
<400> 410
ggctggtttg caagaatgaa atgaatgatt ctacagctag gacttaacct tgaaatggaa 60
agtettgeaa teecatttge aggateegte tgtgeacatg cetetgtaga gageageatt 120
cccagggacc ttggaaacag ttggcactgt aaggtgcttg ctccccaaga cacatcctaa 180
aaggtgttgt aatggtgaaa accgcttcct tctttattgc cccttcttat ttatgtgaac 240
nactggttgg ctttttttgn atcttttta aactggaaag ttcaattgng aaaatgaata 300
tcntgc
                                                                   306
```

```
<210> 411
 <211> 261
 <212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(261)
<223> n = A,T,C or G
<400> 411
agagatatin citagginaa agitcataga gitcccatga actatatgac iggccacaca 60
ggatetttig tatttaagga tietgagatt tigettgage aggattagat aaggetgite 120
tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttacccat cagttccagc 240
cttctctcaa ggngaggcaa a
<210> 412
<211> 241
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(241)
<223> n = A, T, C or G
<400> 412
gttcaatgtt acctgacatt tctacaacac cccactcacc gatgtattcg ttgcccagtg 60
ggaacatacc agcctgaatt tggaaaaaat aattgtgttt cttgcccagg aaatactacg 120
actgactttg atggctccac aaacataacc cagtgtaaaa acagaagatg tggagggag 180
ctgggagatt tcactgggta cattgaattc ccaaactacc cangcaatta cccagccaac 240
                                                                   241
<210> 413
<211> 231
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(231)
<223> n = A,T,C or G
<400> 413
aactettaca atecaagtga eteatetgtg tgettgaate etttecaetg teteatetee 60
ctcatccaag tttctagtac cttctctttg ttgtgaagga taatcaaact gaacaacaaa 120
aagtttactc teeteatttg gaacetaaaa aetetettet teetgggtet gagggeteea 180
agaatccttg aatcanttct cagatcattg gggacaccan atcaggaacc t
<210> 414
<211> 234
<212> DNA
<213> Homo sapiens
```

```
<400> 414
actgtccatg aagcactgag cagaagctgg aggcacaacg caccagacac tcacagcaag 60
gatggagctg aaaacataac ccactctgtc ctggaggcac tgggaagcct agagaaggct 120
gtgagccaag gagggagggt cttcctttgg catgggatgg ggatgaagta aggagaggga 180
ctggaccccc tggaagctga ttcactatgg ggggaggtgt attgaagtcc tcca
<210> 415
<211> 217
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ...(217)
<223> n = A.T.C or G
<400> 415
gcataggatt aagactgagt atcttttcta cattcttta actttctaag gggcacttct 60
caaaacacag accaggtagc aaatctccac tgctctaagg ntctcaccac cactttctca 120
cacctagcaa tagtagaatt cagtcctact tctgaggcca gaagaatggt tcagaaaaat 180
antggattat aaaaaataac aattaagaaa aataatc
<210> 416
<211> 213
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(213)
<223> n = A,T,C or G
<400> 416
atgcatatnt aaagganact gcctcgcttt tagaagacat ctggnctgct ctctgcatga 60
ggcacagcag taaagctctt tgattcccag aatcaagaac tctccccttc agactattac 120
cgaatgcaag gtggttaatt gaaggccact aattgatgct caaatagaag gatattgact 180
atattggaac agatggagtc tctactacaa aag
<210> 417
<211> 303
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(303)
\langle 223 \rangle n = A,T,C or G
<400> 417
nagtottcag goccatcagg gaagttcaca ctggagagaa gtcatacata tgtactgtat 60
gtgggaaagg ctttactctg agttcaaatc ttcaagccca tcagagagtc cacactggag 120
agaagccata caaatgcaat gagtgtggga agagcttcag gagggattcc cattatcaag 180
ttcatctagt ggtccacaca ggagagaaac cctataaatg tgagatatgt gggaagggct 240
tcantcaaag ttcgtatctt caaatccatc ngaaggncca cagtatanan aaacctttta 300
agt
                                                                   303
```

```
<210> 418
<211> 328
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (328)
<223> n = A,T,C or G
<400> 418
tttttggcgg tggtggggca gggacgggac angagtctca ctctgttgcc caggctggag 60
tgcacaggca tgatctcggc tcactacaac ccctgcctcc catgtccaag cgattcttgt 120
gcctcagcct tccctgtagc tagaattaca ggcacatgcc accacaccca gctagttttt 180
gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa actcctnacc 240
tcagnggtca ggctggtctc aaactcctga cctcaagtga tctgcccacc tcagcctccc 300
aaagtgctan gattacaggc cgtgagcc
<210> 419
<211> 389
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (389)
<223> n = A, T, C or G
<400> 419
cctcctcaag acggcctgtg gtccgcctcc cggcaaccaa gaagcctgca gtgccatatg 60
acceptgage catggactgg ageotgaaag geagegtaea eeetgeteet gatettgetg 120
cttgtttcct ctctgtggct ccattcatag cacagttgtt gcactgaggc ttgtgcaggc 180
cgagcaaggc caagctggct caaagagcaa ccagtcaact ctgccacggt gtgccaggca 240
ccggttctcc agccaccaac ctcactcgct cccgcaaatg gcacatcagt tcttctaccc 300
taaaggtagg accaaagggc atctgctttt ctgaagtcct ctgctctatc agccatcacg 360
tggcagccac tcnggctgtg tcgacgcgg
                                                                   389
<210> 420
<211> 408
<212> DNA
<213> Homo sapiens
<400> 420
gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
tggccagggc agcaagcctt agccttggct tcttgtttct gcttttttc tggctagacc 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attettgaat gagteetata aacatgaaca ggtttatatt cgaagcacag 360
acgttgaccg gactttgatg aagtgctatg acaaacctgg caagcccg
                                                                   408
<210> 421
<211> 352
<212> DNA
```

```
<213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(352)
 <223> n = A,T,C or G
 <400> 421
gctcaaaaat ctttttactg atnggcatgg ctacacaatc attgactatt acggaggcca 60
gaggagaatg aggcctggcc tgggagccct gtgcctacta naagcacatt agattatcca 120
ttcactgaca gaacaggtct tttttgggtc cttcttctcc accacnatat acttgcagtc 180
ctccttcttg aagattcttt ggcagttgtc tttgtcataa cccacaggtg tagaaacaag 240
ggtgcaacat gaaatttctg tttcgtagca agtgcatgtc tcacaagttg gcangtctgc 300
cacteegagt trattgggtg trigities trigagateea tgeattteet gg
<210> 422
<211> 337
<212> DNA
<213> Homo sapiens
<400> 422
atgccaccat gctggcaatg cagcgggcgg tcgaaggcct gcatatccag cccaagctgg 60
cgatgatcga cggcaaccgt tgcccgaagt tgccgatgcc agccgaagcg gtggtcaagg 120
gcgatagcaa ggtgccggcg atcgcggcgg cgtcaatcct ggccaaggtc agccgtgatc 180
gtgaaatggc agctgtcgaa ttgatctacc cgggttatgg catcggcggg cataagggct 240
atccgacacc ggtgcacctg gaagccttgc agcggctggg gccgacgccg attcaccgac 300
gcttcttccg ccggtacggc tggcctatga aaattat
                                                                   337
<210> 423
<211> 310
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(310)
<223> n = A, T, C or G
gctcaaaaat ctttttactg atatggcatg gctacacaat cattgactat tagaggccag 60
aggagaatga ggcctggcct gggagccctg tgcctactan aagcncatta gattatccat 120
tcactgacag aacaggtett ttttgggtee ttetteteea ccacgatata ettgeagtee 180
teettettga agattetttg geagttgtet ttgteataac ceacaggtgt anaaacaagg 240
gtgcaacatg aaatttctgt ttcgtagcaa gtgcatgtct cacagttgtc aagtctgccc 300
tccgagttta
                                                                   310
<210> 424
<211> 370
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(370)
<223> n = A,T,C or G
```

```
<400> 424
 gctcaaaaat ctttttactg ataggcatgg ctacacaatc attgactatt agaggccaga 60
 ggagaatgag gcctggcctg ggagccctgt gcctactaga agcacattag attatccatt 120
 cactgacaga acaggictti titgggicci tettetecae cacgatatae tigcagicci 180
 cettettgaa gattetttgg cagttgtett tgtcataacc cacaggtgta gaaacateet 240
ggttgaatct cctggaactc cctcattagg tatgaaatag catgatgcat tgcataaagt 300
cacgaaggtg gcaaagatca caacgctgcc cagganaaca ttcattgtga taagcaggac 360
tccgtcgacg
                                                                   370
<210> 425
<211> 216
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(216)
<223> n = A,T,C or G
<400> 425
aattgctatn ntttattttg ccactcaaaa taattaccaa aaaaaaaaa tnttaaatga 60
taacaachca acatcaaggn aaananaaca ggaatggntg acintgcata aatnggccga 120
anattateca ttatnttaag ggttgaette aggntacage acacagacaa acatgeecag 180
gaggntntca ggaccgctcg atgtnttntg aggagg
<210> 426
<211> 596
<212> DNA
<213> Homo sapiens
<400> 426
cttccagtga ggataaccct gttgccccgg gccgaggttc tccattaggc tctgattgat 60
tggcagtcag tgatggaagg gtgttctgat cattccgact gccccaaggg tcgctggcca 120
gctctctgtt ttgctgagtt ggcagtagga cctaatttgt taattaagag tagatggtga 180
gctgtccttg tattttgatt aacctaatgg ccttcccagc acgactcgga ttcagctgga 240
gacatcacgg caacttttaa tgaaatgatt tgaagggcca ttaagaggca cttcccgtta 300
ttaggcagtt catctgcact gataacttct tggcagctga gctggtcgga gctgtggccc 360
aaacgcacac ttggcttttg gttttgagat acaactctta atcttttagt catgcttgag 420
ggtggatggc cttttcagct ttaacccaat ttgcactgcc ttggaagtgt agccaggaga 480
atacactcat atactcgtgg gcttagaggc cacagcagat gtcattggtc tactgcctga 540
gtcccgctgg tcccatccca ggaccttcca tcggcgagta cctgggagcc cgtgct
<210> 427
<211> 107
<212> DNA
<213> Hcmo sapiens
<220>
<221> misc_feature
<222> (1)...(107)
<223> n = A,T,C or G
<400> 427
gaagaattca agttaggttt attcaaaggg cttacngaga atcctanacc caggncccag 60
```

```
cccgggagca gccttanaga gctcctgttt gactgcccgg ctcagng
                                                                     107
 <210> 428
 <211> 38
 <212> DNA
 <213> Homo sapiens
 <220>
<221> misc_feature
<222> (1)...(38)
\langle 223 \rangle n = A,T,C or G
<400> 428
gaactteena anaangaett tatteactat tttacatt
                                                                     38
<210> 429
<211> 544
<212> DNA
<213> Homo sapiens
<400> 429
ctttgctgga cggaataaaa gtggacgcaa gcatgacctc ctgatgaggg cgctgcattt 60
attgaagagc ggctgcagcc ctgcggttca gattaaaatc cgagaattgt atagacgccg 120
atatccacga actcttgaag gactttctga tttatccaca atcaaatcat cggttttcag 180
tttggatggt ggctcatcac ctgtagaacc tgacttggcc gtggctggaa tccactcgtt 240
gccttccact tcagttacac ctcactcacc atcctctcct gttggttctg tgctgcttca 300
agatactaag cccacatttg agatgcagca gccatctccc ccaattcctc ctgtccatcc 360
tgatgtgcag ttaaaaaatc tgccctttta tgatgtcctt gatgttctca tcaagcccac 420
gagtttagtt caaagcagta ttcagcgatt tcaagagaag ttttttattt ttgctttgac 480
acctcaacaa gttagagaga tatgcatatc cagggatttt ttgccaggtg gtaggagaga 540
ttat
<210> 430
<211> 507
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(507)
\langle 223 \rangle n = A,T,C or G
<400> 430
cttatchcaa tggggctccc aaacttggct gtgcagtgga aactccgggg gaattttgaa 60
gaacactgac acccatcttc caccccgaca ctctgattta attgggctgc agtgagaaca 120
gagcatcaat ttaaaaagct gcccagaatg ttntcctggg cagcgttgtg atctttgccn 180
ccttcgtgac tttatgcaat gcatcatgct atttcatacc taatgaggga gttccaggag 240
attcaaccag gatgtttcta cncctgtggg ttatgacaaa gacaactgcc aaagaatntt 300
caagaaggag gactgcaagt atatcgtggt ggagaagaag gacccaaaaa agacctgttc 360
tgtcagtgaa tggataatct aatgtgcttc tagtaggcac agggctccca ggccaggcct 420
catteteete tggeetetaa tagteaatga ttgtgtagee atgeetatea gtaaaaagat 480
ttttgagcaa aaaaaaaaa aaaaaaa
                                                                    507
<210> 431
<211> 392
```

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(392)
 <223> n = A, T, C or G
<400> 431
gaaaattcag aatggataaa aacaaatgaa gtacaaaata tttcagattt acatagcgat 60
aaacaagaaa gcacttatca ggaggactta caaatggaag tacactctan aaccatcatc 120
tatcatggct aaatgtgaga ttagcacagc tgtattattt gtacattgca aacacctaga 180
aagagatggg aaacaaaatc ccaggagttt tgtgtgtgga gtcctgggtt ttccaacaga 240
catcattcca gcattctgag attagggnga ttggggatca ttctggagtt ggaatgttca 300
acaaaagtga tgttgttagg taaaatgtac aacttctgga tctatgcaga cattgaaggt 360
gcaatgagtc tggcttttac tctgctqttt ct
                                                                    392
<210> 432
<211> 387
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (387)
<223> n = A, T, C \text{ or } G
<400> 432
ggtatccnta cataatcaaa tatagctgta gtacatgttt tcattggngt agattaccac 60
aaatgcaagg caacatgtgt agatctcttg tcttattctt ttgtctataa tactgtattg 120
ngtagtccaa gctctcggna gtccagccac tgngaaacat gctcccttta gattaacctc 180
gtggacnctn ttgttgnatt gtctgaactg tagngccctg tattttgctt ctgtctgnga 240
attctgttgc ttctggggca tttccttgng atgcagagga ccaccacaca gatgacagca 300
atctgaattg ntccaatcac agctgcgatt aagacatact gaaatcgtac aggaccggga 360
acaacgtata gaacactgga qtccttt
<210> 433
<211> 281
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(281)
<223> n = A,T,C or G
<400> 433
ttcaactage anagaanact getteagggn gtgtaaaatg aaaggettee aegeagttat 60
ctgattaaag aacactaaga gagggacaag gctagaagcc gcaggatgtc tacactatag 120
caggenetat ttgggttgge tggaggget gtggaaaaca tggagagatt ggegetggag 180
atcgccgtgg ctattcctcn ttgntattac accagngagg ntctctgtnt gcccactggt 240
tnnaaaaccg ntatacaata atgatagaat aggacacaca t
                                                                   281
<210> 434
<211> 484
```

PCT/US99/15838 WO 00/04149 156

```
<212> DNA
<213> Homo sapiens
<400> 434
tittaaaata agcatttagt getcagteee tactgagtac tetteetet eccteetetg 60
aatttaattc tttcaacttg caatttgcaa ggattacaca tttcactgtg atgtatattg 120
tgttgcaaaa aaaaaaaagt gtctttgttt aaaattactt ggtttgtgaa tccatcttgc 180
tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa acatctgaag 240
agetagteta teageatetg acaggtgaat tggatggtte teagaaceat tteacecaqa 300
cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca taacaaaccc 360
tgctccaatc tgtcacataa aagtctgtga cttgaagttt agtcagcacc cccaccaaac 420
tttattttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataaag tacccatgtc 480
ttta
<210> 435
<211> 424
<212> DNA
<213> Homo sapiens
<400> 435
gegeegetea gageaggtea etttetgeet tecaegteet eetteaagga ageeceatgt 60
gggtagcttt Caatategea ggttettaet cetetgeete tataagetea aacceaceaa 120
cgatcgggca agtaaacccc ctccctcgcc gacttcggaa ctggcgagag ttcagcgcag 180
atgggcctgt ggggaggggg caagatagat gagggggagc ggcatggtgc ggggtgaccc 240
cttggagaga ggaaaaaggc cacaagaggg gctgccaccg ccactaacgg agatggccct 300
ggtagagacc tttgggggtc tggaacctct ggactcccca tgctctaact cccacactct 360
gctatcagaa acttaaactt gaggattttc tctgtttttc actcgcaata aattcagagc 420
aaac
<210> 436
<211> 667
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1) ... (667)
<223> n = A,T,C or G
<400> 436
accttgggaa nactctcaca atataaaggg tcgtagactt tactccaaat tccaaaaagg 60
tectggeeat gtaateetga aagtttteee aaggtageta taaaateett ataagggtge 120
agcetettet ggaatteete tgattteaaa gteteaetet caagttettg aaaacgaggg 180
cagtteetga aaggeaggta tageaactga tetteagaaa gaggaactgt gtgeaceggg 240
atgggctgcc agagtaggat aggattccag atgctgacac cttctggggg aaacagggct 300
gccaggtttg tcatagcact catcaaagtc cggtcaacgt ctgtgcttcg aatataaacc 360
tgttcatgtt tataggactc attcaagaat tttctatatc tctttcttat atactctcca 420
agttcataat gctgctccat gcccagctgg gtgagttggc caaatccttg tggccatgag 480
gattccttta tggggtcagt gggaaaggtg tcaatgggac ttcggtctcc atgccgaaac 540
accaaagtca caaacttcaa ctccttggct agtacacttc ggtctagcca gaaaaaaagc 600
agaaacaaga agccaaggct aaggcttgct gccctgccag gaggaggggt gcagctctca 660
tgttgag
                                                                  667
<210> 437
<211> 693
```

```
<212> DNA
<213> Homo sapiens
<400> 437
ctacgtctca acceteattt ttaggtaagg aatettaagt ecaaagatat taagtgacte 60
acacagccag gtaaggaaag ctggattggc acactaggac tctaccatac cgggttttgt 120
taaagctcag gttaggaggc tgataagctt ggaaggaact tcagacagct ttttcagatc 180
aggtactcct ctattttcac ccctcttgct tctactctct ggcagtcaga cctgtgggag 300
gccatgggag aaagcagctc tctggatgtt tgtacagatc atggactatt ctctgtggac 360
catttctcca ggttacccta ggtgtcacta ttggggggac agccagcatc tttagctttc 420
atttgagttt ctgtctgtct tcagtagagg aaacttttgc tcttcacact tcacatctga 480
acacctaact gctgttgctc ctgaggtggt gaaagacaga tatagagctt acagtattta 540
tcctatttct aggcactgag ggctgtgggg taccttgtgg tgccaaaaca gatcctgttt 600
taaggacatg ttgcttcaga gatgtctgta actatctggg ggctctgttg gctctttacc 660
ctgcatcatg tgctctcttg gctgaaaatg acc
                                                                 693
<210> 438
<211> 360
<212> DNA
<213> Homo sapiens
<400> 438
ctgcttatca caatgaatgt tctcctgggc agcgttgtga tctttgccac cttcgtgact 60
ttatgcaatg catcatgcta tttcatacct aatgagggag ttccaggaga ttcaaccagg 120
atgtttctac acctgtgggt tatgacaaag acaactgcca aagaatcttc aagaaggagg 180
actgcaagta tatctggtgg agaagaagga cccaaaaaaag acctgttctg tcagtgaatg 240
gataatctaa tgtgcttcta gtaggcacag ggctcccagg ccaggcctca ttctcctctg 300
gcctctaata gtcaataatt gtgtagccat gcctatcagt aaaaagattt ttgagcaaac 360
<210> 439
<211> 431
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (431)
<223> n = A, T, C or G
<400> 439
gttcctnnta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
tggccaggge agcaagcett agcettgget tettgtttet getttttte tggctagace 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attettgaat gagteetata aacatgaaca ggtttatatt egaageacag 360
acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcggccgcg 420
aatttagtag t
<210> 440
<211> 523
<212> DNA
<213> Homo sapiens
```

```
<400> 440
agagataaag cttaggtcaa agttcataga gttcccatga actatatgac tggccacaca 60
ggatcttttg tatttaagga ttctgagatt ttgcttgagc aggattagat aaggctgttc 120
tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttacccat cagttccagc 240
cttctctcaa ggagaggcaa agaaaggaga tacagtggag acatctggaa agttttctcc 300
actggaaaac tgctactatc tgtttttata tttctgttaa aatatatgag gctacagaac 360
taaaaattaa aacctctttg tgtcccttgg tcctggaaca tttatgttcc ttttaaagaa 420
acaaaaatca aactttacag aaagatttga tgtatgtaat acatatagca gctcttgaag 480
tatatatatc atagcaaata agtcatctga tgagaacaag cta
                                                                   523
<210> 441
<211> 430
<212> DNA
<213> Homo sapiens
<400> 441
gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60
tggccagggc agcaagcctt agccttggct tcttgtttct gctttttttc tggctagacc 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attcttgaat gagtcctata aacatgaaca ggtttatatt cgaagcacag 360
acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcggccgcg 420
aatttagtag
<210> 442
<211> 362
<212> DNA
<213> Homo sapiens
<400> 442
ctaaggaatt agtagtgttc ccatcacttg tttggagtgt gctattctaa aagattttga 60
tttcctggaa tgacaattat attttaactt tggtggggga aagagttata ggaccacagt 120
cttcacttct gatacttgta aattaatctt ttattgcact tgttttgacc attaagctat 180
atgtttagaa atggtcattt tacggaaaaa ttagaaaaat tctgataata gtgcagaata 240
aatgaattaa tgttttactt aatttatatt gaactgtcaa tgacaaataa aaattctttt 300
tgattatttt ttgttttcat ttaccagaat aaaaactaag aattaaaagt ttgattacag 360
tc
<210> 443
<211> 624
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A, T, C or G
<400> 443
tttttttttt gcaacacaat atacatcaca gtgaaatgtg taatccttgc aaattgcaag 60
ttgaaagaat taaattcaga ggaggggaga gaaagagtac tcagtaggga ctgagcacta 120
aatgcttatt ttaaaagaaa tgtaaagagc agaaagcaat tcaggctacc ctgccttttg 180
tgctggctag tactccggtc ggtgtcagca gcacgtggca ttgaacattg caatgtggag 240
```

```
cccaaaccac agaaaatggg gtgaaattgg ccaactttct attaacttgg cttcctgttt 300
tataaaatat tgtgaataat atcacctact tcaaagggca gttatgaggc ttaaatgaac 360
taacgcctac aaaacactta aacatagata acataggtgc aagtactatg tatctggtac 420
atggtaaaca toottattat taaagtoaac gotaaaatga atgtgtgtgc atatgctaat 480
agtacagaga gagggcactt aaaccaacta agggcctgga gggaaggttt cctggaaaga 540
ngatgcttgt gctgggtcca aatcttggtc tactatgacc ttggccaaat tatttaaact 600
ttgtccctat ctgctaaaca gatc
<210> 444
<211> 425
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (425)
<223> n = A, T, C or G
<400> 444
gcacatcatt nntcttgcat tctttgagaa taagaagatc agtaaatagt tcagaagtgg 60
gaagetttgt ccaggeetgt gtgtgaacee aatgttttge ttagaaatag aacaagtaag 120
ttcattgcta tagcataaca caaaatttgc ataagtggtg gtcagcaaat ccttgaatgc 180
tgcttaatgt gagaggttgg taaaatcett tgtgcaacac tctaacteec tgaatgtttt 240
gctgtgctgg gacctgtgca tgccagacaa ggccaagctg gctgaaagag caaccagcca 300
cetetgeaat etgecaecte etgetggeag gatttgtttt tgeateetgt gaagageeaa 360
ggaggcacca gggcataagt gagtagactt atggtcgacg cggccgcgaa tttagtagta 420
gtaga
<210> 445
<211> 414
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(414)
<223> n = A, T, C or G
<400> 445
catgittatg nittiggatt actitgggca cctagigtti ctaaatcgic tatcaticti 60
ttctgttttt caaaagcaga gatggccaga gtctcaacaa actgtatctt caagtctttg 120
tgaaattctt tgcatgtggc agattattgg atgtagtttc ctttaactag catataaatc 180
tggtgtgttt cagataaatg aacagcaaaa tgtggtggaa ttaccatttg gaacattgtg 240
aatgaaaaat tgtgtctcta gattatgtaa caaataacta tttcctaacc attgatcttt 300
ggatttttat aatcctactc acaaatgact aggcttctcc tcttgtattt tgaagcagtg 360
tgggtgctgg attgataaaa aaaaaaaaag tcgacgcggc cgcgaattta gtag
<210> 446
<211> 631
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(631)
```

```
<223> n = A,T,C cr G
 <400> 446
acaaattaga anaaagtgcc agagaacacc acataccttg tccggaacat tacaatggct 60
tctgcatgca tgggaagtgt gagcattcta tcaatatgca ggagccatct tgcaggtgtg 120
atgctggtta tactggacaa cactgtgaaa aaaaggacta cagtgttcta tacgttgttc 180
ccggtcctgt acgattcag tatgtcttaa tcgcagctgt gattggaaca attcagattg 240
ctgtcatctg tgtggtggtc ctctgcatca caagggccaa actttaggta atagcattgg 300
actgagattt gtaaactttc caaccttcca ggaaatgccc cagaagcaac agaattcaca 360
gacagaagca aaatacaggg cactacagtt cagacaatac aacaagagcg tccacgaggt 420
taatctaaag ggagcatgtt tcacagtggc tggactaccg agagcttgga ctacacaata 480
cagtattata gacaaaagaa taagacaaga gatctacaca tgttgccttg catttgtggt 540
aatctacacc aatgaaaaca tgtactacag ctatatttga ttatgtatgg atatatttga 600
aatagtatac attgtcttga tgttttttct g
<210> 447
<211> 585
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(585)
<223> n = A,T,C or G
<400> 447
ccttgggaaa antntcacaa tataaagggt cgtagacttt actccaaatt ccaaaaaggt 60
cotggccatg taatcotgaa agttttccca aggtagctat aaaatcotta taagggtgca 120
gcctcttctg gaattcctct gatttcaaag tctcactctc aagttcttga aaacgagggc 180
agttcctgaa aggcaggtat agcaactgat cttcagaaag aggaactgtg tgcaccggga 240
tgggctgcca gagtaggata ggattccaga tgctgacacc ttctggggga aacagggctg 300
ccaggtttgt catagcactc atcaaagtcc ggtcaacgtc tgtgcttcga atataaacct 360
gttcatgttt ataggactca ttcaagaatt ttctatatct ctttcttata tactctccaa 420
gttcataatg ctgctccatg cccagctggg tgagttggcc aaatccttgt ggccatgagg 480
attectttat ggggteagtg ggaaaggtgt caatgggact teggteteea tgeegaaaca 540
ccaaagtcac aaacttcaac tccttggcta gtacacttcg gtcta
<210> 448
<211> 93
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(93)
<223> n = A, T, C or G
<400> 448
tgctcgtggg tcattctgan nnccgaactg accntgccag ccctgccgan gggccnccat 60
ggctccctag tgccctggag agganggggc tag
<210> 449
<211> 706
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc feature
<222> (1)...(706)
<223> n = A, T, C or G
<400> 449
ccaagttcat gctntgtgct ggacgctgga cagggggcaa aagcnnttgc tcgtqqgtca 60
ttctgancac cgaactgacc atgccagccc tgccgatggt cctccatggc tccctagtgc 120
cctggagagg aggtgtctag tcagagagta gtcctggaag gtggcctctg ngaggagcca 180
cggggacagc atcctgcaga tggtcgggcg cgtcccattc gccattcagg ctgcqcaact 240
gttgggaagg gcgatcggtg cgggcctctt cgctattacg ccagctggcg aaagggggat 300
gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcncga cgttgtaaaa 360
cgacggccag tgaattgaat ttaggtgacn ctatagaaga gctatgacgt cqcatqcacq 420
cgtacgtaag cttggatcct ctagagcggc cgcctactac tactaaattc gcggccgcgt 480
cgacgtggga tccncactga gagagtggag agtgacatgt gctggacnct gtccatgaag 540
cactgagcag aagctggagg cacaacgcnc cagacactca cagctactca ggaggctgag 600
aacaggttga acctgggagg tggaggttgc aatgagctga gatcaggccn ctgcncccca 660
706
<210> 450
<211> 493
<212> DNA
<213> Homo sapiens
<400> 450
gagacggagt gtcactctgt tgcccaggct ggagtgcagc aagacactgt ctaagaaaaa 60
acagttttaa aaggtaaaac aacataaaaa gaaatatcct atagtggaaa taagagagtc 120
aaatgagget gagaacttta caaagggate ttacagacat gtegecaata teactgeatg 180
agcctaagta taagaacaac ctttggggag aaaccatcat ttgacagtga ggtacaattc 240
caagtcaggt agtgaaatgg gtggaattaa actcaaatta atcctgccag ctgaaacgca 300
agagacactg tcagagagtt aaaaagtgag ttctatccat gaggtgattc cacagtcttc 360
tcaagtcaac acatctgtga actcacagac caagttctta aaccactgtt caaactctgc 420
tacacatcag aatcacctgg agagetttac aaacteecat tgeegagggt egaegeggee 480
gcgaatttag tag
                                                                 493
<210> 451
<211> 501
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(501)
<223> n = A,T,C or G
<400> 451
gggcgcgtcc cattcgccat tcaggctgcg caactgttgg gaagggcgat cggtgcgggc 60
ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct gcaaggcgat taagttgggt 120
aacgccaggg ttttccccagt cncgacgttg taaaacgacg gccagtgaat tgaatttagg 180
tgacnctata gaagagctat gacgtcgcat gcacgcgtac gtaagcttgg atcctctaga 240
gcggccgcct actactacta aattcgcggc cgcgtcgacg tgggatccnc actgagagag 300
tggagagtga catgtgctgg acnctgtcca tgaagcactg agcagaagct ggaggcacaa 360
cgcnccagac actcacagct actcaggagg ctgagaacag gttgaacctg ggaggtggag 420
gttgcaatga gctgagatca ggccnctgcn ccccagcatg gatgacagag tgaaactcca 480
```

```
tcttaaaaaa aaaaaaaaa a
                                                                    501
<210> 452
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(51)
<223> n = A,T,C or G
<400> 452
agacggtttc accnttacaa cnccttttag gatgggnntt ggggagcaag c
                                                                    51
<210> 453
<211> 317
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(317)
\langle 223 \rangle n = A,T,C or G
<400> 453
tacatettge tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa 60
acatctgaag agctagtcta tcagcatctg gcaagtgaat tggatggttc tcagaaccat 120
ttcacccana cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca 180
taacaaaccc tgctccaatc tgtcacataa aagtctgtga cttgaagttt antcagcacc 240
cccaccaaac tttattttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataagg 300
tacccatgtc tttatta
<210> 454
<211> 231
<212> DNA
<213> Homo sapiens
<400> 454
ttcgaggtac aatcaactct cagagtgtag tttccttcta tagatgagtc agcattaata 60
taagccacgc cacgctcttg aaggagtctt gaattctcct ctgctcactc agtagaacca 120
agaagaccaa attettetge atcecagett geaaacaaaa ttgttettet aggteteeae 180
ccttcctttt tcagtgttcc aaagctcctc acaatttcat gaacaacagc t
<210> 455
<211> 231
<212> DNA
<213> Homo sapiens
<400> 455
taccaaagag ggcataataa tcagtctcac agtagggttc accatcctcc aagtgaaaaa 60
cattgttccg aatgggcttt ccacaggcta cacacacaaa acaggaaaca tgccaagttt 120
gtttcaacgc attgatgact tctccaagga tcttcctttg gcatcgacca cattcagggg 180
caaagaattt ctcatagcac agctcacaat acagggctcc tttctcctct a
```

```
<210> 456
 <211> 231
<212> DNA
<213> Homo sapiens
<400> 456
ttggcaggta cccttacaaa gaagacacca taccttatgc gttattaggt ggaataatca 60
trecatteag tattategtt attattettg gagaaaceet gtetgtttae tgtaacettt 120
tgcactcaaa ttcctttatc aggaataact acatagccac tatttacaaa gccattggaa 180
cctttttatt tggtgcagct gctagtcagt ccctgactga cattgccaag t
<210> 457
<211> 231
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(231)
<223> n = A,T,C or G
<400> 457
cgaggtaccc aggggtctga aaatctctnn tttantagtc gatagcaaaa ttgttcatca 60
gcattcctta atatgatctt gctataatta gatttttctc cattagagtt catacagttt 120
tatttgattt tattagcaat ctctttcaga agacccttga gatcattaag ctttgtatcc 180
agttgtctaa atcgatgcct catttcctct gaggtgtcgc tggcttttgt g
<210> 458
<211> 231
<212> DNA
<213> Homo sapiens
<400> 458
aggiciggit cocccacti ccactcocct ctactctctc taggaciggg ctgggccaag 60
agaagagggg tggttaggga agccgttgag acctgaagcc ccaccctcta ccttccttca 120
acaccctaac cttgggtaac agcatttgga attatcattt gggatgagta gaatttccaa 180
ggtcctgggt taggcatttt ggggggccag accccaggag aagaagattc t
                                                                   231
<210> 459
<211> 231
<212> DNA
<213> Homo sapiens
<400> 459
ggtaccgagg ctcgctgaca cagagaaacc ccaacgcgag gaaaggaatg gccagccaca 60
ccttcgcgaa acctgtggtg gcccaccagt cctaacggga caggacagag agacagagca 120
gccctgcact gttttccctc caccacagcc atcctgtccc tcattggctc tgtgctttcc 180
actatacaca gtcaccgtcc caatgagaaa caagaaggag caccctccac a
<210> 460
<211> 231
<212> DNA
<213> Homo sapiens
<400> 450
```

```
gcaggtataa catgctgcaa caacagatgt gactaggaac ggccggtgac atggggaggg 60
 cctatcaccc tattcttggg ggctgcttct tcacagtgat catgaagcct agcagcaaat 120
 cccacctccc cacacgcaca cggccagcct ggagcccaca gaagggtcct cctgcagcca 180
 gtggagcttg gtccagcctc cagtccaccc ctaccaggct taaggataga a
 <210> 461
 <211> 231
 <212> DNA
<213> Homo sapiens
<400> 461
cgaggtttga gaagststaa tgtgsagggg agssgagaag saggsggsst agggagggts 60
gcgtgtgctc cagaagagtg tgtgcatgcc agaggggaaa caggcgcctg tgtgtcctgg 120
gtggggttca gtgaggagtg ggaaattggt tcagcagaac caagccgttg ggtgaataag 180
agggggattc catggcactg atagagccct atagtttcag agctgggaat t
<210> 462
<211 > 231
<212> DNA
<213> Homo sapiens
<400> 462
aggtaccete attgtageea tgggaaaatt gatgtteagt ggggateagt gaattaaatg 60
gggtcatgca agtataaaaa ttaaaaaaaa aagacttcat gcccaatctc atatgatgtg 120
gaagaactgt tagagagacc aacagggtag tgggttagag atttccagag tcttacattt 180
tctagaggag gtatttaatt tcttctcact catccagtgt tgtatttagg a
<210> 463
<211> 231
<212> DNA
<213> Homo sapiens
<400> 463
actgagtaga caggtgtcct cttggcatgg taagtcttaa gtcccctccc agatctgtga 120
catttgacag gtgtcttttc ctctggacct cggtgtcccc atctgagtga gaaaaggcag 180
tggggaggtg gatcttccag tcgaagcggt atagaagccc gtgtgaaaag c
                                                                231
<210> 464
<211> 231
<212> DNA
<213> Homo sapiens
<400> 464
gtactctaag attttatcta agttgccttt tctgggtggg aaagtttaac cttagtgact 60
aaggacatca catatgaaga atgtttaagt tggaggtggc aacgtgaatt gcaaacaggg 120
cctgcttcag tgactgtgtg cctgtagtcc cagctactcg ggagtctgtg tgaggccagg 180
ggtgccagcg caccagctag atgctctgta acttctaggc cccattttcc c
                                                                231
<210> 465
<211> 231
<212> DNA
<213> Homo sapiens
<400> 465
```

```
catgitgitg tagcigggt aatgctggct gcatcicaga cagggitaac ticagcicci 60
gtggcaaatt agcaacaaat totgacatca tatttatggt ttotgtatot ttgttgatga 120
aggatggcac aatttttgct tgtgttcata atatactcag attagttcag ctccatcaga 180
taaactggag acatgcagga cattagggta gtgttgtagc tctggtaatg a
<210> 466
<211> 231
<212> DNA
<213> Homo sapiens
<400> 466
caggtacete tttecattgg atactgtget ageaageatg eteteegggg tttttttaat 60
ggccttcgaa cagaacttgc cacataccca ggtataatag tttctaacat ttgcccagga 120
cctgtgcaat caaatattgt ggagaattcc ctagctggag aagtcacaaa gactataggc 180
aataatggag accagtccca caagatgaca accagtcgtt gtgtgcggct g
<210> 467
<211> 311
<212> DNA
<213> Homo sapiens
<400> 467
gtacaccctg gcacagtcca atctgaactg gttcggcact catctttcat gagatggatg 60
tggtggcttt teteettttt cateaagaet eeteageagg gageecagae cageetgeae 120
tgtgccttaa cagaaggtct tgagattcta agtgggaatc atttcagtga ctgtcatgtg 180
gcatgggtct ctgcccaagc tcgtaatgag actatagcaa ggcggctgtg ggacgtcagt 240
tgtgacctgc tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga 300
ctgcagcaga c
<210> 468
<211> 3112
<212> DNA
<213> Homo sapiens
<400> 468
cattgtgttg ggagaaaaac agaggggaga tttgtgtggc tgcagccgag ggagaccagg 60
aagatetgea tggtgggaag gaeetgatga tacagagttt gataggagae aattaaagge 120
tggaaggcac tggatgcctg atgatgaagt ggactttcaa actggggcac tactgaaacg 180
atgggatggc cagagacaca ggagatgagt tggagcaagc tcaataacaa agtggttcaa 240
cgaggacttg gaattgcatg gagctggagc tgaagtttag cccaattgtt tactagttga 300
gtgaatgtgg atgattggat gatcatttct catctctgag cctcaggttc cccatccata 360
aaatgggata cacagtatga totataaagt gggatatagt atgatotact toactgggtt 420
atttgaagga tgaattgaga taatttattt caggtgccta gaacaatgcc cagattagta 480
catttggtgg aactgagaaa tggcataaca ccaaatttaa tatatgtcag atgttactat 540
gattatcatt caatctcata gttttgtcat ggcccaattt atcctcactt gtgcctcaac 600
aaattgaact gttaacaaag gaatctctgg tcctgggtaa tggctgagca ccactgagca 660
tttccattcc agttggcttc ttgggtttgc tagctgcatc actagtcatc ttaaataaat 720
gattaaataa agaacttgag aagaacaggt ttcattaaac ataaaatcaa tgtagacgca 840
aattttctgg atgggcaata cttatgttca caggaaatgc tttaaaatat gcagaagata 900
attaaatggc aatggacaaa gtgaaaaact tagacttttt ttttttttt ggaagtatct 960
ggatgttcct tagtcactta aaggagaact gaaaaatagc agtgagttcc acataatcca 1020
acctgtgaga ttaaggctct ttgtggggaa ggacaaagat ctgtaaattt acagtttcct 1080
tccaaagcca acgtcgaatt ttgaaacata tcaaagctct tcttcaagac aaataatcta 1140
tagtacatet ttettatggg atgeaettat gaaaaatggt ggetgteaac atetagteae 1200
```

```
tttagctctc aaaatggttc attttaagag aaagttttag aatctcatat ttattcctgt 1260
ggaaggacag cattgtggct tggactttat aaggtcttta ttcaactaaa taggtgagaa 1320
ataagaaagg ctgctgactt taccatctga ggccacacat ctgctgaaat ggagataatt 1380
aacatcasta gaaacagcaa gatgacaata taatgtstaa gtagtgacat gtttttgcas 1440
atttccagcc cctttaaata tccacacaca caggaagcac aaaaggaagc acagagatcc 1500
ctgggagaaa tgcccggccg ccatcttggg tcatcgatga gcctcgccct gtgcctggtc 1560
ccgcttgtga gggaaggaca ttagaaaatg aattgatgtg ttccttaaag gatgggcagg 1620
aaaacagatc ctgttgtgga tatttatttg aacgggatta cagatttgaa atgaagtcac 1680
aaagtgagca ttaccaatga gaggaaaaca gacgagaaaa tcttgatggc ttcacaagac 1740
atgcaacaaa caaaatggaa tactgtgatg acatgaggca gccaagctgg ggaggagata 1800
accacggggc agagggtcag gattctggcc ctgctgccta aactgtgcgt tcataaccaa 1860
atcatttcat atttctaacc ctcaaaacaa agctgttgta atatctgatc tctacggttc 1920
cttctgggcc caacattctc catatatcca gccacactca tttttaatat ttagttccca 1980
gatetgtact gtgacettte tacactgtag aataacatta eteattttgt teaaagacee 2040
ttcgtgttgc tgcctaatat gtagctgact gtttttccta aggagtgttc tggcccaggg 2100
gatctgtgaa caggctggga agcatctcaa gatctttcca gggttatact tactagcaca 2160
cagcatgate attacggagt gaattateta atcaacatea teeteagtgt etttgeecat 2220
actgaaattc atttcccact tttgtgccca ttctcaagac ctcaaaatgt cattccatta 2280
atatcacagg attaactttt ttttttaacc tggaagaatt caatgttaca tgcagctatg 2340
ggaatttaat tacatatttt gttttccagt gcaaagatga ctaagtcctt tatccctccc 2400
ctttgtttga tttttttcc agtataaagt taaaatgctt agccttgtac tgaggctgta 2460
tacagecaca geeteteece ateceteeag cettatetgt cateaceate aaceceteec 2520
atgcacctaa acaaaatcta acttgtaatt ccttgaacat gtcaggcata cattattcct 2580
tergeergag aagetettee trgreterta aaretagaar gargraaagt trrgaaraag 2640
ttgactatct tacttcatgc aaagaaggga cacatatgag attcatcatc acatgagaca 2700
gcaaatacta aaagtgtaat tigattataa gagtttagat aaatatatga aatgcaagag 2760
ccacagaggg aatgtttatg gggcacgttt gtaagcctgg gatgtgaagc aaaggcaggg 2820
aacctcatag tatcttatat aatatacttc atttctctat ctctatcaca atatccaaca 2880
agetttteae agaatteatg eagtgeaaat eeceaaaggt aacetttate eattteatgg 2940
tgagtgcgct ttagaatttt ggcaaatcat actggtcact tatctcaact ttgagatgtg 3000
tttgtccttg tagttaattg aaagaaatag ggcactcttg tgagccactt tagggttcac 3060
<210> 469
<211> 2229
<212> DNA
<213> Homo sapiens
<400> 469
agetetttgt aaattettta ttgccaggag tgaaccetaa agtggeteae aagagtgeee 60
tattictitc aattaactac aaggacaaac acatcicaaa giigagataa gigaccagta 120
tgatttgcca aaattctaaa gcgcactcac catgaaatgg ataaaggtta cctttgggga 180
tttgcactgc atgaattctg tgaaaagctt gttggatatt gtgatagaga tagagaaatg 240
aagtatatta tataagatac tatgaggttc cctgcctttg cttcacatcc caggcttaca 300
aacgtgcccc ataaacattc cctctgtggc tcttgcattt catatattta tctaaactct 360
tataatcaaa tacactttta gtatttgctg tctcatgtga tgatgaatct catatgtgtc 420
cottettitge atgaagtaag atagteaact tatteaaaac titacateat tetagatita 480
agagacaagg aagagettet caggeagaag gaataatgta tgeetgacat gtteaaggaa 540
ttacaagtta gattttgttt aggtgcatgg gaggggttga tggtgatgac agataaggct 600
ggagggatgg ggagaggctg tggctgtata cagcctcagt acaaggctaa gcattttaac 660
tttatactgg aaaaaaaatc aaacaaaggg gagggataaa ggacttagtc atctttgcac 720
tggaaaacaa aatatgtaat taaattccca tagctgcatg taacattgaa ttcttccagg 780
ttaaaaaaaa agttaatcct gtgatattaa tggaatgaca ttttgaggtc ttgagaatgg 840
gcacaaaagt gggaaatgaa tttcagtatg ggcaaagaca ctgaggatga tgttgattag 900
ataattcact ccgtaatgat catgctgtgt gctagtaagt ataaccctgg aaagatcttg 960
```

```
agatgettee cageetgtte acagateeee tgggecagaa caeteettag gaaaaacagt 1020
 cagctacata ttaggcagca acacgaaggg tctttgaaca aaatgagtaa tgttattcta 1080
 cagtgtagaa aggtcacagt acagatctgg gaactaaata ttaaaaatga gtgtggctgg 1140
 atatatggag aatgttgggc ccagaaggaa ccgtagagat cagatattac aacagctttg 1200
 ttttgagggt tagaaatatg aaatgatttg gttatgaacg cacagtttag gcagcagggc 1260
cagaatcctg accetetgee eegtggttat etecteecea gettggetge eteatgteat 1320
cacagtattc cattttgttt gttgcatgtc ttgtgaagcc atcaagattt tctcgtctgt 1380
tttcctctca ttggtaatgc tcactttgtg acttcatttc aaatctgtaa tcccgttcaa 1440
ataaatatcc acaacaggat ctgttttcct gcccatcctt taaggaacac atcaattcat 1500
tttctaatgt ccttccctca caagcgggac caggcacagg gcgaggctca tcgatgaccc 1560
aagatggcgg ccgggcattt ctcccaggga tctctgtgct tccttttgtg cttcctgtgt 1620
gtgtggatat ttaaaggggc tggaaatgtg caaaaacatg tcactactta gacattatat 1680
tgtcatcttg ctgtttctag tgatgttaat tatctccatt tcagcagatg tgtggcctca 1740
gatggtaaag tcagcagcct ttcttatttc tcacctggaa atacatacga ccatttgagg 1800
agacaaatgg caaggtgtca gcataccctg aacttgagtt gagagctaca cacaatatta 1860
ttggtttccg agcatcacaa acaccctctc tgtttcttca ctgggcacag aattttaata 1920
cttatttcag tgggctgttg gcaggaacaa atgaagcaat ctacataaag tcactagtgc 1980
agtgeetgae acacaccatt etettgaggt eccetetaga gateccaeag gteatatgae 2040
ttcttgggga gcagtggctc acacctgtaa tcccagcact ttgggaggct gaggcaggtg 2100
ggtcacctga ggtcaggagt tcaagaccag cctggccaat atggtgaaac cccatctcta 2160
ctaaaaatac aaaaattage tgggegtget ggtgcatgee tgtaateeca geeccaacae 2220
aatggaatt
<210> 470
<211> 2426
<212> DNA
<213> Homo sapiens
<400> 470
gtaaattett tattgecagg agtgaaceet aaagtggete acaagagtge eetatteett 60
tcaattaact acaaggacaa acacatctca aagttgagat aagtgaccag tatgatttgc 120
caaaattcta aagegeacte accatgaaat ggataaaggt tacctttggg gatttgcact 180
gcatgaattc tgtgaaaagc ttgttggata ttgtgataga gatagagaaa tgaagtatat 240
tatataagat actatgaggt teeetgeett tgetteacat eecaggetta caaacgtgee 300
ccataaacat tecetetgtg getettgeat tteatatatt tatetaaact ettataatea 360
aattacactt ttagtatttg ctgtctcatg tgatgatgaa tctcatatgt gtcccttctt 420
tgcatgaagt aagatagtca acttattcaa aactttacat cattctagat ttaagagaca 480
aggaagagct teteaggeag aaggaataat gtatgeetga catgtteaag gaattacaag 540
tragatittg titaggigca tgggaggggt tgatggtgat gacagataag gciggaggga 600
tggggagagg ctgtggctgt atacagcctc agtacaaggc taagcatttt aactttatac 660
tggaaaaaa atcaaacaaa ggggagggat aaaggactta gtcatctttg cactggaaaa 720
caaaatatgt aattaaattc ccatagctgc atgtaacatt gaattcttcc aggttaaaaa 780
aaaaagttaa teetgtgata ttaatggaat gacattttga ggtettgaga atgggeacaa 840
aagtgggaaa tgaatttcag tatgggcaaa gacactgagg atgatgttga ttagataatt 900
cactccgtaa tgatcatgct gtgtgctagt aagtataacc ctggaaagat cttgagatgc 960
ttcccagect gttcacagat cccctgggcc agaacactcc ttaggaaaaa cagtcagcta 1020
catattaggc agcaacacga agggtctttg aacaaaatga gtaatgttat tctacagtgt 1080
agaaaggtca cagtacagat ctgggaacta aatattaaaa atgagtgtgg ctggatatat 1140
ggagaatgtt gggcccagaa ggaaccgtag agatcagata ttacaacagc tttgttttga 1200
gggttagaaa tatgaaatga tttggttatg aacgcacagt ttaggcagca gggccagaat 1260
ectgaceete tgeecegtgg ttateteete eccagettgg etgeeteatg teateacagt 1320
attecattit gittgitgea tgieligiga agecateaag attitelegi eigittieet 1380
ctcattggta atgctcactt tgtgacttca tttcaaatct gtaatcccgt tcaaataaat 1440
atccacaaca ggatctgttt tcctgcccat cctttaagga acacatcaat tcattttcta 1500
atgteettee etcacaageg ggaccaggea cagggegagg etcategatg acceaagatg 1560
```

```
gcggccgggc atttctccca gggatctctg tgcttccttt tgtgcttcct gtgtgtgtgg 1620
 atatttaaag gggctggaaa tgtgcaaaaa catgtcacta cttagacatt atattgtcat 1680
 cttgctgttt ctagtgatgt taattatctc catttcagca gatgtgtggc ctcagatggt 1740
 aaagtcagca gcctttctta tttctcacct ggaaatacat acgaccattt gaggagacaa 1800
 atggcaaggt gtcagcatac cctgaacttg agttgagagc tacacacaat attattggtt 1860
 tccgagcatc acaaacaccc tctctgtttc ttcactgggc acagaatttt aatacttatt 1920
 tcagtgggct gttggcagga acaaatgaag caatctacat aaagtcacta gtgcagtgcc 1980
 tgacacacac cattetettg aggteeette tagagateee acaggteata tgacttettg 2040
 gggagcagtg gctcacacct gtaatcccag cactttggga ggctgaggca ggtgggtcac 2100
 ctgaggtcag gagttcaaga ccagcctggc caatatggtg aaaccccatc tctactaaaa 2160
atacaaaaat tagctgggcg tgctggtgca tgcctgtaat cccagctací tgggaggctg 2220
 aggcaggaga attgctggaa catgggaggc ggaggttgca gtgagctgta attgtgccat 2280
tgcactcgaa cctgggcgac agagtggaac tctgtttcca aaaaaacaaac aaacaaaaaa 2340
 ggcatagtca gatacaacgt gggtgggatg tgtaaataga agcaggatat aaagggcatg 2400
gggtgacggt tttgcccaac acaatg
<210> 471
<211> 812
<212> DNA
<213> Homo sapiens
<400> 471
gaacaaaatg agtaatgtta ttctacagtg tagaaaggtc acagtacaga tctgggaact 60
aaatattaaa aatgagtgtg gctggatata tggagaatgt tgggcccaga aggaaccgta 120
gagatcagat attacaacag ctttgttttg agggttagaa atatgaaatg atttggttat 180
gaacgcacag tttaggcagc agggccagaa tcctgaccct ctgccccgtg gttatctcct 240
ecceagetig geigecteat gleateaeag tattecatti igitigitge algeetigig 300
aagccatcaa gattttctcg tctgttttcc tctcattggt aatgctcact ttgtgacttc 360
atttcaaatc tgtaatcccg ttcaaataaa tatccacaac aggatctgtt ttcctgccca 420
teetttaagg aacacateaa tteatttet aatgteette eetcacaage gggaceagge 480
acagggcgag gctcatcgat gacccaagat ggcggccggg catttctccc agggatctct 540
gtgcttcctt ttgtgcttcc tgtgtgtgtg gatatttaaa ggggctggaa atgtgcaaaa 600
acatgtcact acttagacat tatattgtca tcttgctgtt tctagtgatg ttaattatct 660
ccatttcagc agatgtgtgg cctcagatgg taaagtcagc agcctttctt atttctcacc 720
totgtatoat caggicotto coaccatgoa gatottoctg gitococtog gitgoagoca 780
cacaaatete ceetetgttt ttetgatgee ag
<210> 472
<211> 515
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(515)
<223> n = A,T,C or G
<400> 472
acggagactt attttctgat attgtctgca tatgtatgtt tttaagagtc tggaaatagt 60
cttatgactt tcctatcatg cttattaata aataatacag cccagagaag atgaaaatgg 120
gttccagaat tattggtcct tgcagcccgg tgaatctcag caagaggaac caccaactga 180
caatcaggat attgaacctg gacaagaga agaaggaaca cctccgatcg aagaacgtaa 240
agtagaaggt gattgccagg aaatggatct ggaaaagact cggagtgagc gtggagatgg 300
ctctgatgta aaagagaaga ctccacctaa tcctaagcat gctaagacta aagaagcagg 360
agatgggcag Ccataagtta aaaagaagac aagctgaagc tacacacatg gctgatgtca 420
```

cattgaaaat gtgactgaaa atttgaaaat tctctcaata aagtttgagt tttctctgaa 480 gaaaaaaaaa naaaaaaaa aaanaaaaan aaaaa 515