CS/ECE/ISyE 524 — Introduction to Optimization — Spring 2023

Final Course Project: Due 5/5/23

Dynasty Fantasy Football Trade Analyzer

Luke Neuendorf (Ineuendorf@wisc.edu (mailto:Ineuendorf@wisc.edu))

Table of Contents

- 1. Introduction
- 2. Mathematical Model
- 3. Solution
- 4. Results and Discussion
 - A. Optional Subsection
- 5. Conclusion

1. Introduction

In this project, I created an optimization model to calculate the value of the assets in a dynasty fantasy football trade. The goal is to see which side of the trade contains more value, or which side "wins" the trade. I also created a second model to generate a fair trade counteroffer to the user's input offer based on the asset values generated with the first model.

In "regular" fantasy football, a group of 8-12 people draft teams of NFL offensive players. These teams compete in head-to-head matchups for a period of fourteen weeks. After fourteen weeks, the top teams compete in a three-week playoff tournament, where one team is crowned champion. A fantasy football starting lineup varies depending on the format of the league and can consist of 1-2 quarterbacks, 2 running backs, 2-3 wide receivers, 1 tight end, and 1-2 flex spots. A flex spot can hold a running back, wide receiver, or tight end.

Dynasty fantasy football differs from "regular" fantasy football in that dynasty managers keep the same players from year to year. Furthermore, dynasty fantasy football has yearly rookie drafts where each team drafts several of that year's NFL rookie players onto their teams. The order of these drafts is decided based on the previous year's standings. Given that teams are left with the same players year after year, trading is vital. Every league member chooses a different strategy. Some dynasty managers build young rosters looking for longevity, while others look to build older rosters full of household names. The purpose of a trade analyzer is to see which team is "winning" a potential trade or if a trade is even. Analyzing trade value through the unbiased form of a computer-generated model can take away the bias a player may have towards certain types of players. Over time, it can help a manager's team accrue more value by consistently making trades that are even or that they're projected to "win."

The dataset for this project consists of 3,532 trades that happened from April 10 to April 30 in 12-team, two-quarterback dynasty leagues. The dataset was scraped from fantasycalc.com/(https://www.fantasycalc.com/database). The trades consist of two sides, with a maximum of four pieces per side. The pieces consist of NFL offensive players or rookie draft picks.

2. Mathematical models

2.A. Model 1: Quadratic Program (QP)

The first model's objective is to minimize the total squared difference between the value of two sides of a trade. This is done across all 3,532 example trades in the dataset. The two sides of a trade are denoted as side "A" and side "B". The value of one side of a trade is defined as the sum of the values/weights of the assets on that side of the trade. The individual asset values/weights are denoted as w_i . Note that an asset is a player or rookie draft pick. The number of assets on side A of a trade ($n_assets_A_i$) and the number of assets on side B of a trade ($n_assets_B_i$) vary depending on the trade. However, trades in the dataset are constrained to a maximum of four assets per side. The assumption is made that no asset has a value of zero, so the weights have a lower-bound of one in order to prevent the model from bringing asset values to zero.

$$\begin{split} & \underset{u \in \mathbb{R}^n}{\text{minimize}} & & \sum_{i=1}^{n_{\text{tardes}}} \left(\operatorname{diff}_i \right)^2 \\ & \text{subject to:} & & \operatorname{diff}_i = \operatorname{ValueA}_i - \operatorname{ValueB}_i & \forall i \in \{1, 2, \dots, n_{\text{trades}} \} \\ & & \operatorname{ValueA}_i = \sum_{j=1}^{n_{\text{tassets}} A_i} w_j & \forall i \in \{1, 2, \dots, n_{\text{trades}} \} \\ & & \operatorname{ValueB}_i = \sum_{j=1}^{n_{\text{tassets}} B_i} w_j & \forall i \in \{1, 2, \dots, n_{\text{trades}} \} \\ & & w_i \geq 1.0 & \forall i \in \{1, 2, \dots, n_{\text{tassets}} \} \\ & & n_{\text{tassets}} A_i, \ n_{\text{tassets}} B_i \in \{1, 2, 3, 4\} & \forall i \in \{1, 2, \dots, n_{\text{tassets}} \} \\ & & n_{\text{tassets}} = 3,532 \ , \ n_{\text{tassets}} = 209 \end{split}$$

2.B. Model 2: Mixed-Integer Linear Program (MILP)

The second model is using the asset values, or weights, generated from model 1 to output a counter offer closest in total value to a given an input offer. It seeks to minimize the magnitude of the difference in value between the input offer and generated counter offer. The asset weights/values are denoted as w_i . A binary value y_i is used to denote if an asset was included in the input offer, and is a 209 element vector for each possible player and rookie draft pick. The variable y_i is one if that corresponding player/pick is in the input offer, and zero otherwise. The variable x_i is simular to y_i , except it is selected in order to minimize the objective. This 209 element vector, x_i , acts as an indicator variable to denote if an asset should be included in the counter offer. The model is solving for the optimal combination of players not in the input offer closest to the input offer value. The model is constrained to returning a combination of players/picks equal to the number of players/picks decided by the user with the "n_assets_in_counter" variable.

minimize | InputValue - CounterValue |

subject to: InputValue = $\sum_{i=1}^{n=209} w_i y_i$ CounterValue = $\sum_{i=1}^{n=209} w_i x_i$ $\sum_{i=1}^{n=209} x_i = \text{n_assets_in_counter}$ $x, y \in \{0, 1\}$ $\text{n_assets_in_counter} \in \{1, 2, ..., 209\}$

3. Solution

Load the necessary libraries:

```
In [10]: 1 using JuMP, HiGHS, Ipopt # optimization packages
2 using CSV, DataFrames # data reading/handling packages
3 using Printf # printing package
```

There are two datasets, we will load them into this notebook below:

```
In [11]: 1 players_and_picks = CSV.read("players_and_picks.csv", DataFrame)
2 trade_data = CSV.read("trade_data.csv", DataFrame);
```

The "players_and_picks" dataset lists all 209 players/picks and their corresponding index. We will use this index as an id for each player/pick.

In [12]: 1 first(players_and_picks,5)

Out[12]: 5×1 DataFrame

Row Assets

String31

ou...go.

- 1 Patrick Mahomes
- 2 Josh Allen
- 3 Justin Jefferson
- 4 Jalen Hurts
- 5 Ja'Marr Chase

The "trade_data" dataset consists of the 3,532 trades, storing the two sides of the trade: side A and side B. The "Side A Assets" and "Side B Assets" columns list the player id's corresponding with their index in the "players_and_picks" dataset.

In [13]: 1 first(trade_data,5)

Out[13]: 5×5 DataFrame

Row	Date	Side A List	Side B List	Side A Assets	Side B Assets
	String7	String	String	String31	String31
1	27-Apr	['Kyler Murray']	['DK Metcalf']	[35]	[33]
2	25-Apr	['Travis Etienne', '2024 Round 1', 'Gabe Davis']	['Stefon Diggs', "D'Andre Swift", 'Aaron Rodgers']	[23, 107, 204]	[27, 66, 81]
3	24-Apr	['2023 Round 1', 'Davante Adams', 'Jeff Wilson']	['2023 Round 2', 'Christian Watson', 'Brian Robinson']	[37, 179, 200]	[50, 113, 201]
4	16-Apr	['Justin Jefferson']	['2023 Round 1', '2023 Round 2', '2024 Round 1', 'Pat Freiermuth']	[3]	[75, 200, 201, 204]
5	24-Apr	$['2023\ Round\ 3',\ 'Garrett\ Wilson',\ 'DJ\ Moore',\ '2024\ Round\ 3']$	['Justin Jefferson']	[12, 46, 202, 206]	[3]

3.A. Model 1 Implementation

We will use the trades from the "players_and_picks" dataset to generate weight values associated with each player. The code for the model is shown below:

```
In [14]:
          1 n assets = size(players and picks,1) # number of players/picks (209)
           2 n_trades = size(trade_data,1)
                                                    # nubmer of trades (3,532)
          4 m = Model(Ipopt.Optimizer)
          5 @variable(m, asset_weights[1:n_assets]) # weight value of each player/pick (what we are solving for)
          6 @variable(m, difs[1:n_trades]) # variable storing abs value of difference between side_A & side_B of ith trade
          7 @variable(m, side A[1:n trades])
          8 @variable(m, side_B[1:n_trades])
          10 # Assign assets in Side A
          11 for i in 1:n_trades
                 assets = parse.(Int, split(trade_data[i,4][2:end-1], ",")) # parse the string containing the asset ids/indices
         12
         13
                 n_assets_A = length(assets)
                 @constraint(m, side_A[i] == sum(asset_weights[assets[j]] for j=1:n_assets_A)) # side A value in ith trade
         14
          15 end
         17 # Assign assets in Side B
          18 for i in 1:n_trades
                 assets = parse.(Int, split(trade_data[i,5][2:end-1], ",")) # parse the string containing the asset ids/indices
         19
                 n_assets_B = length(assets)
@constraint(m, side_B[i] == sum(asset_weights[assets[j]] for j=1:n_assets_B)) # side B value in ith trade
         20
         21
         22 end
          24 @constraint(m, [i=1:n_assets], asset weights[i] >= 1.0) # set lower bound on asset weights
         25
         26 # Take the difference in value between the two sides of the trade
         27 @constraint(m, [i=1:n_trades], difs[i] == side_A[i] - side_B[i])
          29 # Minimize the sum of the differences squared
         30 @objective(m, Min, sum(difs.^2))
         31 set_silent(m)
         32 optimize!(m)
         33
          34 # Store the generated asset (player/pick) weight values
         35 asset_weights = value.(asset_weights);
```

A preview of the assigned weights generated from this model can be seen with the code snippet below, although I will show all of the assigned values in the results section.

3.B. Model 2 Implementation

The below funciton uses an implementation of model 2 to generate the closest counter trade offer in terms of value to the users input offer by solving a mixed-integer linear program. The input variable "asset_list" is a list of players/picks in the input offer, and the input variable "n_assets_in_counter" is the desired number of assets the counter offer should consist of.

```
function generate counter offer(asset list, n assets in counter)
In [16]:
          1
                # Convert the players_and_picks DataFrame object to a List
                all_asset_list = collect(players_and_picks.Assets)
          3
          4
          5
                # Convert names in input asset list to their corresponding indice ids in the "players_and_picks" dataset
          6
                input indices = Int[]
          7
                n assets = size(players and picks,1)
                for asset in asset list
          8
                    if asset in all_asset_list
                        push!(input_indices, findfirst(x -> x == asset, all_asset_list))
         10
         11
                        @printf("Error: \"%s\" is not in the \"players_and_picks\" dataset.",asset)
         12
         13
                        return
                    end
         14
         15
         16
         17
                18
                n_input = size(input_indices,1) # store the number of assets in input offer
         19
         20
                m = Model(HiGHS.Optimizer)
                @variable(m, x[1:n_assets], Bin) # indicator variable: 1 if asset is in counter-offer, 0 otherwise
         21
         22
                @variable(m, difference)
         23
         24
                @constraint(m, [i=1:n_input], x[input_indices[i]] == 0) # don't allow model to return input assests
         25
                @constraint(m, sum(x) == n_assets_in_counter) # force model to return counter with n_assets_in_counter assets
         26
         27
                # Calculate the total value of the input and counter-offer
         28
                @expression(m, input value, sum((asset weights[input indices[i]]) for i=1:n input))
         29
                @expression(m, output_value, sum(asset_weights[i]*x[i] for i=1:n_assets))
         30
         31
                 # Take the absolute vlaue of input value and counter-offer value
                @constraint(m, difference >= input_value - output_value)
@constraint(m, difference >= output_value - input_value)
         32
         33
         34
                # Minimize the difference between the input value assets and the counter-offer assets value
         35
         36
                @objective(m, Min, difference)
         37
                set_silent(m)
         38
                optimize!(m)
         39
                indicator\_vars = value.(x)
                40
         41
         42
                # Print Input Offer
         43
                input sum = 0
         44
                for (i,val) in enumerate(asset_list)
         45
                    input_sum += asset_weights[input_indices[i]]
         46
                end
                @printf("\033[1mYour Offer Total Value: %.5f\033[0m\n",input_sum)
         47
         48
                for (i,val) in enumerate(asset_list)
         49
                    @printf("\t%s - (%.5f)\n",all asset_list[input indices[i]],asset_weights[input indices[i]])
         50
         51
         52
                # Print Generated Counter Offer
         53
                counter_sum = 0
         54
                for (i,val) in enumerate(indicator_vars)
         55
                    if (0.99 < val) & (val < 1.01)
         56
                        counter_sum += asset_weights[i]
         57
                    end
         58
                end
                @printf("\033[1m\nCounter Offer Total Value: %.5f\033[0m\n",counter_sum)
         59
                for (i,val) in enumerate(indicator_vars)
   if (0.99 < val) & (val < 1.01)</pre>
         60
         61
                        @printf("\t%s - (%.5f)\n",all_asset_list[i],asset_weights[i])
         62
         63
                end
         64
         65 end:
```

4. Results and discussion

4.A. Model 2 Results

A counter offer can be generated by updating the inputs below.

4.B. Model 1 Results

In the tables below are the weight values generated corresponding to each player/pick. One major limitation of this model is that many of the values are equal to 1, the minimum possible value. This is because the model is trying to minimize the difference in the values of each side of a trade, and consequently minimizes the values themselves.

Rank	Player/Pick	Value	Rank	Player/Pick	Value	Rank	Player/Pick	Value	Rank	Player/Pick	Value	Rank	Player/Pick	Value
1	Patrick Mahomes	3.4037	41	Najee Harris	1.1786	81	Amari Cooper	1	121	Antonio Gibson	1	161	Michael Carter	1
2	Josh Allen	3.3137	42	Deebo Samuel	1.1468	82	Christian Kirk	1	122	Khalil Herbert	1	162	Terrace Marshall	1
3	Jalen Hurts	3.0669	43	J.K. Dobbins	1.1459	83	Pat Freiermuth	1	123	Tyler Allgeier	1	163	Zach Wilson	1
4	Joe Burrow	2.9883	44	Austin Ekeler	1.1388	84	DeAndre Hopkins	1	124	Michael Thomas	1	164	Tyler Boyd	1
5	Justin Jefferson	2.9468	45	Daniel Jones	1.1357	85	Dalvin Cook	1	125	Chigoziem Okonkwo	1	165	Clyde Edwards-Helaire	1
6	Ja'Marr Chase	2.6369	46	Aaron Jones	1.1344	86	Kirk Cousins	1	126	Allen Lazard	1	166	Rashid Shaheed	1
7	Trevor Lawrence	2.5023	47	Nick Chubb	1.1338	87	Calvin Ridley	1	127	Wan'Dale Robinson	1	167	Leonard Fournette	1
8	Justin Herbert	2.4237	48	Zay Jones	1.1331	88	Aaron Rodgers	1	128	Jakobi Meyers	1	168	Malik Willis	1
9	Lamar Jackson	2.1467	49	Zach Ertz	1.1089	89	David Montgomery	1	129	Cole Kmet	1	169	Juwan Johnson	1
10	CeeDee Lamb	2.1264	50	Rhamondre Stevenson	1.0883	90	Alvin Kamara	1	130	Trey McBride	1	170	Noah Fant	1
11	Justin Fields	1.9999	51	DJ Moore	1.075	91	Brock Purdy	1	131	Alec Pierce	1	171	Hunter Renfrow	1
12	A.J. Brown	1.993	52	Jordan Love	1.0698	92	Cam Akers	1	132	Jamaal Williams	1	172	Tyler Higbee	1
13	Deshaun Watson	1.9626	53	Michael Gallup	1.068	93	Diontae Johnson	1	133	Rondale Moore	1	173	Cade Otton	1
14	Garrett Wilson	1.8611	54	2023 Round 1	1.0543	94	Rachaad White	1	134	Darnell Mooney	1	174	Jelani Woods	1
15	Jonathan Taylor	1.8464	55	Geno Smith	1.0465	95	Mike Evans	1	135	Skyy Moore	1	175	Allen Robinson	1
16	Dak Prescott	1.7836	56	Kenneth Gainwell	1.0382	96	Joe Mixon	1	136	Ryan Tannehill	1	176	Curtis Samuel	1
17	Amon-Ra St. Brown	1.7798	57	David Njoku	1.0321	97	Darren Waller	1	137	Devin Singletary	1	177	Gerald Everett	1
18	Christian McCaffrey	1.7497	58	Derrick Henry	1.0154	98	Mac Jones	1	138	Rashaad Penny	1	178	Jaylen Warren	1
19	Mark Andrews	1.7255	59	Christian Watson	1.0134	99	Mike Williams	1	139	Elijah Mitchell	1	179	Isaiah Hodgins	1
20	Chris Olave	1.6715	60	Jerry Jeudy	1.001	100	Isiah Pacheco	1	140	Baker Mayfield	1	180	Jeff Wilson	1
21	Jaylen Waddle	1.6492	61	Trey Lance	1.001	101	Matthew Stafford	1	141	Brandin Cooks	1	181	Sam Darnold	1
22	Breece Hall	1.6311	62	Tony Pollard	1	102	Elijah Moore	1	142	Chase Claypool	1	182	Jake Ferguson	1
23	Tyreek Hill	1.6229	63	Michael Pittman	1	103	AJ Dillon	1	143	Odell Beckham	1	183	Hayden Hurst	1
24	Travis Kelce	1.6082	64	Javonte Williams	1	104	Keenan Allen	1	144	Dawson Knox	1	184	Tyquan Thornton	1
25	Kyle Pitts	1.5495	65	Chris Godwin	1	105	Desmond Ridder	1	145	Romeo Doubs	1	185	Raheem Mostert	1
26	Kenneth Walker	1.5431	66	Treylon Burks	1	106	James Cook	1	146	Isaiah Likely	1	186	Zamir White	1
27	Cooper Kupp	1.5129	67	Brandon Aiyuk	1	107	Rashod Bateman	1	147	John Metchie	1	187	Justyn Ross	1
28	Stefon Diggs	1.4906	68	Jameson Williams	1	108	Kadarius Toney	1	148	Damien Harris	1	188	Bailey Zappe	1
29	Josh Jacobs	1.4836	69	Terry McLaurin	1	109	James Conner	1	149	D'Onta Foreman	1	189	Khalil Shakir	1
30	Kyler Murray	1.4543	70	George Pickens	1	110	Jimmy Garoppolo	1	150	Kareem Hunt	1	190	Gardner Minshew	1
31	Tee Higgins	1.4497	71	Kenny Pickett	1	111	Evan Engram	1	151	K.J. Osborn	1	191	Parris Campbell	1
32	Davante Adams	1.4256	72	Dallas Goedert	1	112	Gabe Davis	1	152	Samaje Perine	1	192	Mike White	1
33	DK Metcalf	1.4015	73	Miles Sanders	1	113	JuJu Smith-Schuster	1	153	Donovan Peoples-Jones	1	193	Daniel Bellinger	1
34	Travis Etienne	1.3946	74	Russell Wilson	1	114	Alexander Mattison	1	154	Adam Thielen	1	194	Isaiah Spiller	1
35	T.J. Hockenson	1.375	75	D'Andre Swift	1	115	Courtland Sutton	1	155	DJ Chark	1	195	James Robinson	1
36	Saquon Barkley	1.3434	76	Marquise Brown	1	116	Sam Howell	1	156	Ezekiel Elliott	1	196	Cordarrelle Patterson	1
37	Tua Tagovailoa	1.3429	77	Derek Carr	1	117	Tyler Lockett	1	157	Mike Gesicki	1	197	Mecole Hardman	1
38	Drake London	1.3115	78	Dameon Pierce	1	118	Brian Robinson	1	158	Irv Smith	1	198	Tyler Huntley	1
39	George Kittle	1.2323	79	Jahan Dotson	1	119	Greg Dulcich	1	159	Joshua Palmer	1	199	Chuba Hubbard	1
40	DeVonta Smith	1.2019	80	Jared Goff	1	120	Dalton Schultz	1	160	Nico Collins	1	200	Jerome Ford	1

I also implemented a web app which allows you to select the pieces of a dynasty trade and analyzes the trade.

The app can be found at dynasty-trade-analyzer.com (https://dynasty-trade-analyzer.herokuapp.com/).

Below is a screenshot of the web app.

DYNASTY FANTASY FOOTBALL TRADE ANALYZER

Side A: | X | Justin Jefferson (2.9468) | | X | Josh Allen (3.3137) | | X | Garrett Wilson (1.8611) | | X | Trevor Lawrence (2.5023) | | X | Travis Etienne (1.3946) | | Submit

Side B wins the trade!

Total Value Side A: 6.5374 Total Value Side B: 6.5694

5. Conclusion

In this project, I generated dynasty fantasy football trade values corresponding to 209 different players and rookie draft picks using a quadratic program. Furthermore, I used a mixed-integer linear program to output potential counter offers to a trade input.

One of the limitations of model 1, is that it minimizes the differences between the total value of two sides of a trade. This results in the model making the asset values as small as possible, which led to over half of the values being one. In the future, one could reformulate the problem to generate a unique value/weight for every player/pick. This could be done by adding a constraints where the weight of the i^{th} element must be greater than or equal to the $(i+1)^{th}$ element plus some small number.

 $w_i \ge w_{i+1} + b$ where b is some small value

However, weight value corresponding to an asset would need to be dynamic for this to work.