6.2.2 Parameters Estimation

In this subsection, we present efficient methods to estimate the parameters Q_i and λ_i for $i=1,2,\ldots,k$. To estimate Q_i , one may regard Q_i as the *i*-step transition matrix of the categorical data sequence $\{X^{(n)}\}$. Given the categorical data sequence $\{X^{(n)}\}$, one can count the transition frequency $f_{jl}^{(i)}$ in the sequence from State l to State j in the i-step. Hence one can construct the i-step transition matrix for the sequence $\{X^{(n)}\}$ as follows:

$$F^{(i)} = \begin{pmatrix} f_{11}^{(i)} & \cdots & f_{m1}^{(i)} \\ f_{12}^{(i)} & \cdots & f_{m2}^{(i)} \\ \vdots & \vdots & \vdots & \vdots \\ f_{1m}^{(i)} & \cdots & f_{mm}^{(i)} \end{pmatrix} . \tag{6.9}$$

From $F^{(i)}$, we get the estimates for $Q_i = [q_{li}^{(i)}]$ as follows:

$$\hat{Q}_{i} = \begin{pmatrix} \hat{q}_{11}^{(i)} & \cdots & \hat{q}_{m1}^{(i)} \\ \hat{q}_{12}^{(i)} & \cdots & \hat{q}_{m2}^{(i)} \\ \vdots & \vdots & \vdots \\ \hat{q}_{1m}^{(i)} & \cdots & \hat{q}_{mm}^{(i)} \end{pmatrix}$$

$$(6.10)$$

where

$$\hat{q}_{lj}^{(i)} = \begin{cases} \frac{f_{lj}^{(i)}}{m} & \text{if } \sum_{l=1}^{m} f_{lj}^{(i)} \neq 0\\ \sum_{l=1}^{m} f_{lj}^{(i)} & \text{otherwise.} \end{cases}$$

$$(6.11)$$

We note that the computational complexity of the construction of $F^{(i)}$ is of $O(L^2)$ operations, where L is the length of the given data sequence. Hence the total computational complexity of the construction of $\{F^{(i)}\}_{i=1}^k$ is of $O(kL^2)$ operations. Here k is the number of lags.

The following proposition shows that these estimators are unbiased.

Proposition 6.2. The estimators in (6.11) satisfies

$$E(f_{lj}^{(i)}) = q_{lj}^{(i)} E\left(\sum_{j=1}^{m} f_{lj}^{(i)}\right).$$

Proof. Let T be the length of the sequence, $[q_{lj}^{(i)}]$ be the *i*-step transition probability matrix and \bar{X}_l be the steady state probability that the process is in state l. Then we have

$$E(f_{lj}^{(i)}) = T \cdot \bar{X}_l \cdot q_{lj}^{(i)}$$

and

$$E(\sum_{j=1}^{m} f_{lj}^{(i)}) = T \cdot \bar{X}_{l} \cdot (\sum_{j=1}^{m} q_{lj}^{(i)}) = T \cdot \bar{X}_{l}.$$

Therefore we have

$$E(f_{lj}^{(i)}) = q_{lj}^{(i)} \cdot E(\sum_{i=1}^{m} f_{lj}^{(i)}).$$

In some situations, if the sequence is too short then \hat{Q}_i (especially \hat{Q}_k) contains a lot of zeros (therefore \hat{Q}_n may not be irreducible). However, this did not occur in the tested examples. Here we propose the second method for the parameter estimation. Let $\mathbf{W}^{(i)}$ be the probability distribution of the i-step transition sequence, then another possible estimation for Q_i can be $\mathbf{W}^{(i)}\mathbf{1}^t$. We note that if $\mathbf{W}^{(i)}$ is a positive vector, then $\mathbf{W}^{(i)}\mathbf{1}^t$ will be a positive matrix and hence an irreducible matrix.

Proposition 6.1 gives a sufficient condition for the sequence $\mathbf{X}^{(n)}$ to converge to a stationary distribution \mathbf{X} . Suppose $\mathbf{X}^{(n)} \to \bar{\mathbf{X}}$ as n goes to infinity then $\bar{\mathbf{X}}$ can be estimated from the sequence $\{X^{(n)}\}$ by computing the proportion of the occurrence of each state in the sequence and let us denote it by $\hat{\mathbf{X}}$. From (6.8) one would expect that

$$\sum_{i=1}^{k} \lambda_i \hat{Q}_i \hat{\mathbf{X}} \approx \hat{\mathbf{X}}. \tag{6.12}$$

This suggests one possible way to estimate the parameters

$$\lambda = (\lambda_1, \dots, \lambda_k)$$

as follows. One may consider the following minimization problem:

$$\min_{\lambda} || \sum_{i=1}^{k} \lambda_i \hat{Q}_i \hat{\mathbf{X}} - \hat{\mathbf{X}} ||$$

subject to

$$\sum_{i=1}^{k} \lambda_i = 1, \quad \text{and} \quad \lambda_i \ge 0, \quad \forall i.$$

Here ||.|| is certain vector norm. In particular, if $||.||_{\infty}$ is chosen, we have the following minimization problem:

$$\min_{\lambda} \max_{l} \left| \left[\sum_{i=1}^{k} \lambda_{i} \hat{Q}_{i} \hat{\mathbf{X}} - \hat{\mathbf{X}} \right]_{l} \right|$$

subject to

$$\sum_{i=1}^{k} \lambda_i = 1, \quad \text{and} \quad \lambda_i \ge 0, \quad \forall i.$$

Here $[\cdot]_l$ denotes the lth entry of the vector. The constraints in the optimization problem guarantee the existence of the stationary distribution \mathbf{X} . Next we see that the above minimization problem can be formulated as a linear programming problem:

$$\min_{\lambda} w$$

subject to

$$\begin{pmatrix} w \\ w \\ \vdots \\ w \end{pmatrix} \ge \hat{\mathbf{X}} - \left[\hat{Q}_1 \hat{\mathbf{X}} \mid \hat{Q}_2 \hat{\mathbf{X}} \mid \cdots \mid \hat{Q}_n \hat{\mathbf{X}} \right] \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix},$$

$$\begin{pmatrix} w \\ w \\ \vdots \\ w \end{pmatrix} \ge -\hat{\mathbf{X}} + \left[\hat{Q}_1 \hat{\mathbf{X}} \mid \hat{Q}_2 \hat{\mathbf{X}} \mid \cdots \mid \hat{Q}_n \hat{\mathbf{X}} \right] \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix},$$

$$w \ge 0, \quad \sum_{i=1}^k \lambda_i = 1, \quad \text{and} \quad \lambda_i \ge 0, \quad \forall i.$$

We can solve the above linear programming problem efficiently and obtain the parameters λ_i . In next subsection, we will demonstrate the estimation method by a simple example.

Instead of solving an min-max problem, one can also choose the $||.||_1$ and formulate the following minimization problem:

$$\min_{\lambda} \sum_{l=1}^{m} \left| \left[\sum_{i=1}^{k} \lambda_{i} \hat{Q}_{i} \hat{\mathbf{X}} - \hat{\mathbf{X}} \right]_{l} \right|$$

subject to

$$\sum_{i=1}^{k} \lambda_i = 1, \quad \text{and} \quad \lambda_i \ge 0, \quad \forall i.$$

The corresponding linear programming problem is given as follows:

$$\min_{\lambda} \sum_{l=1}^{m} w_l$$

subject to

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{pmatrix} \ge \hat{\mathbf{X}} - \left[\hat{Q}_1 \hat{\mathbf{X}} \mid \hat{Q}_2 \hat{\mathbf{X}} \mid \dots \mid \hat{Q}_k \hat{\mathbf{X}} \right] \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{pmatrix},$$

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{pmatrix} \ge -\hat{\mathbf{X}} + \left[\hat{Q}_1 \hat{\mathbf{X}} \mid \hat{Q}_2 \hat{\mathbf{X}} \mid \dots \mid \hat{Q}_k \hat{\mathbf{X}} \right] \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{pmatrix},$$

$$w_i \ge 0$$
, $\forall i$, $\sum_{i=1}^k \lambda_i = 1$, and $\lambda_i \ge 0$, $\forall i$.

In the above linear programming formulation, the number of variables is equal to k and the number of constraints is equal to (2m+1). The complexity of solving a linear programming problem is $O(k^3L)$ where n is the number of variables and L is the number of binary bits needed to store all the data (the constraints and the objective function) of the problem [91].

We remark that other norms such as $||.||_2$ can also be considered. In this case, it will result in a quadratic programming problem. It is known that in approximating data by a linear function [79, p. 220], $||.||_1$ gives the most robust answer, $||.||_{\infty}$ avoids gross discrepancies with the data as much as possible and if the errors are known to be normally distributed then $||.||_2$ is the best choice. In the tested examples, we only consider the norms leading to solving linear programming problems.

6.2.3 An Example

We consider a sequence $\{X^{(n)}\}\$ of three states (m=3) given by

$$\{1, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2\}.$$
 (6.13)

The sequence $\{X^{(n)}\}$ can be written in vector form

$$X^{(1)} = (1,0,0)^T, \ X^{(2)} = (1,0,0)^T, \ X^{(3)} = (0,1,0)^T, \ \dots, \ X^{(20)} = (0,1,0)^T.$$

We consider k = 2, then from (6.13) we have the transition frequency matrices

$$F^{(1)} = \begin{pmatrix} 1 & 3 & 3 \\ 6 & 1 & 1 \\ 1 & 3 & 0 \end{pmatrix} \quad \text{and} \quad F^{(2)} = \begin{pmatrix} 1 & 4 & 1 \\ 3 & 2 & 3 \\ 3 & 1 & 0 \end{pmatrix}. \tag{6.14}$$

Therefore from (6.14) we have the *i*-step transition probability matrices (i = 1, 2) as follows:

$$\hat{Q}_1 = \begin{pmatrix} 1/8 & 3/7 & 3/4 \\ 3/4 & 1/7 & 1/4 \\ 1/8 & 3/7 & 0 \end{pmatrix} \quad \text{and} \quad \hat{Q}_2 = \begin{pmatrix} 1/7 & 4/7 & 1/4 \\ 3/7 & 2/7 & 3/4 \\ 3/7 & 1/7 & 0 \end{pmatrix}$$
(6.15)

and

$$\hat{\mathbf{X}} = (\frac{2}{5}, \frac{2}{5}, \frac{1}{5})^T.$$

Hence we have

$$\hat{Q}_1 \hat{\mathbf{X}} = (\frac{13}{35}, \frac{57}{140}, \frac{31}{140})^T,$$

and

$$\hat{Q}_2 \hat{\mathbf{X}} = (\frac{47}{140}, \frac{61}{140}, \frac{8}{35})^T.$$

To estimate λ_i one can consider the optimization problem:

$$\min_{\lambda_1,\lambda_2} u$$

subject to

$$\begin{cases} w \ge \frac{2}{5} - \frac{13}{35}\lambda_1 - \frac{47}{140}\lambda_2 \\ w \ge -\frac{2}{5} + \frac{13}{35}\lambda_1 + \frac{47}{140}\lambda_2 \\ w \ge \frac{2}{5} - \frac{57}{140}\lambda_1 - \frac{61}{140}\lambda_2 \\ w \ge -\frac{2}{5} + \frac{57}{140}\lambda_1 + \frac{61}{140}\lambda_2 \\ w \ge \frac{1}{5} - \frac{31}{140}\lambda_1 - \frac{8}{35}\lambda_2 \\ w \ge -\frac{1}{5} + \frac{31}{140}\lambda_1 + \frac{8}{35}\lambda_2 \\ w \ge 0, \quad \lambda_1 + \lambda_2 = 1, \quad \lambda_1, \lambda_2 \ge 0. \end{cases}$$

The optimal solution is

$$(\lambda_1^*, \lambda_2^*, w^*) = (1, 0, 0.0286),$$

and we have the model

$$\mathbf{X}^{(n+1)} = \hat{Q}_1 \mathbf{X}^{(n)}. \tag{6.16}$$

We remark that if we do not specify the non-negativity of λ_1 and λ_2 , the optimal solution becomes

$$(\lambda_1^{**}, \lambda_2^{**}, w^{**}) = (1.80, -0.80, 0.0157),$$

the corresponding model is

$$\mathbf{X}^{(n+1)} = 1.80\hat{Q}_1 \mathbf{X}^{(n)} - 0.80\hat{Q}_2 \mathbf{X}^{(n-1)}.$$
 (6.17)

Although w^{**} is less than w^{*} , the model (6.17) is not suitable. It is easy to check that

$$1.80\hat{Q}_1\begin{pmatrix}1\\0\\0\end{pmatrix}-0.80\hat{Q}_2\begin{pmatrix}0\\1\\0\end{pmatrix}=\begin{pmatrix}-0.2321\\1.1214\\0.1107\end{pmatrix},$$

therefore λ_1^{**} and λ_2^{**} are not valid parameters.

We note that if we consider the minimization problem:

$$\min_{\lambda_1, \lambda_2} w_1 + w_2 + w_3$$

subject to

$$\begin{cases} w_1 \geq \frac{2}{5} - \frac{13}{35}\lambda_1 - \frac{47}{140}\lambda_2 \\ w_1 \geq -\frac{2}{5} + \frac{13}{35}\lambda_1 + \frac{47}{140}\lambda_2 \\ w_2 \geq \frac{2}{5} - \frac{57}{140}\lambda_1 - \frac{61}{140}\lambda_2 \\ w_2 \geq -\frac{2}{5} + \frac{57}{140}\lambda_1 + \frac{61}{140}\lambda_2 \\ w_3 \geq \frac{1}{5} - \frac{31}{140}\lambda_1 - \frac{9}{35}\lambda_2 \\ w_3 \geq -\frac{1}{5} + \frac{31}{140}\lambda_1 + \frac{9}{35}\lambda_2 \\ w_1, w_2, w_3 \geq 0, \quad \lambda_1 + \lambda_2 = 1, \quad \lambda_1, \lambda_2 \geq 0. \end{cases}$$

The optimal solution is the same as the previous min-max formulation and is equal to

$$(\lambda_1^*,\lambda_2^*,w_1^*,w_2^*,w_3^*) = (1,0,0.0286,0.0071,0.0214).$$

6.3 Some Applications

In this section we apply our model to some data sequences. The data sequences are the DNA sequence and the sales demand data sequence. Given the state vectors $\mathbf{X}^{(i)}$, $i = n - k, n - k + 1, \dots, k - 1$, the state probability distribution at time n can be estimated as follows:

$$\hat{\mathbf{X}}^{(n)} = \sum_{i=1}^{k} \lambda_i \hat{Q}_i \mathbf{X}^{(n-i)}.$$

In many applications, one would like to make use of the higher-order Markov chain models for the purpose of prediction. According to this state probability

distribution, the prediction of the next state $\hat{X}^{(n)}$ at time n can be taken as the state with the maximum probability, i.e.,

$$\hat{X}^{(n)} = j, \quad \text{if } [\hat{\mathbf{X}}^{(n)}]_i \leq [\hat{\mathbf{X}}^{(n)}]_j, \quad \forall 1 \leq i \leq m.$$

To evaluate the performance and effectiveness of the higher-order Markov chain model, a prediction accuracy r is defined as

$$r = \frac{1}{T} \sum_{t=k+1}^{T} \delta_t,$$

where T is the length of the data sequence and

$$\delta_t = \begin{cases} 1, & \text{if } \hat{X}^{(t)} = X^{(t)} \\ 0, & \text{otherwise.} \end{cases}$$

Using the example in the previous section, two possible prediction rules can be drawn as follows:

$$\begin{cases} \hat{X}^{(n+1)} = 2, & \text{if } X^{(n)} = 1, \\ \hat{X}^{(n+1)} = 1, & \text{if } X^{(n)} = 2, \\ \hat{X}^{(n+1)} = 1, & \text{if } X^{(n)} = 3 \end{cases}$$

or

$$\begin{cases} \hat{X}^{(n+1)} = 2, & \text{if } X^{(n)} = 1, \\ \hat{X}^{(n+1)} = 3, & \text{if } X^{(n)} = 2, \\ \hat{X}^{(n+1)} = 1, & \text{if } X^{(n)} = 3. \end{cases}$$

The prediction accuracy r for the sequence in (6.13) is equal to 12/19 for both prediction rules. While the prediction accuracies of other rules for the sequence in (6.13) are less than the value 12/19.

Next we present other numerical results on different data sequences are discussed. In the following tests, we solve min-max optimization problems to determine the parameters λ_i of higher-order Markov chain models. However, we remark that the results of using the $||.||_1$ optimization problem as discussed in the previous section are about the same as that of using the min-max formulation.

6.3.1 The DNA Sequence

In order to determine whether certain short DNA sequence (a categorical data sequence of four possible categories: A,C,G and T) occurred more often than would be expected by chance, Avery [8] examined the Markovian structure of introns from several other genes in mice. Here we apply our model to the introns from the mouse α A-crystallin gene see for instance [175]. We compare our second-order model with the Raftery's second-order model. The model

	2-state model	3-state model	4-state model
New Model	0.57	0.49	0.33
Raftery's Model	0.57	0.47	0.31
Random Chosen	0.50	0.33	0.25

Table 6.1. Prediction accuracy in the DNA sequence.

parameters of the Raftery's model are given in [175]. The results are reported in Table 6.1.

The comparison is made with different grouping of states as suggested in [175]. In grouping states 1 and 3, and states 2 and 4 we have a 2-state model. Our model gives

$$\hat{Q}_1 = \begin{pmatrix} 0.5568 & 0.4182 \\ 0.4432 & 0.5818 \end{pmatrix},$$

$$\hat{Q}_2 = \begin{pmatrix} 0.4550 \ 0.5149 \\ 0.5450 \ 0.4851 \end{pmatrix}$$

$$\hat{\mathbf{X}} = (0.4858, 0.5142)^T$$
, $\lambda_1 = 0.7529$ and $\lambda_2 = 0.2471$.

In grouping states 1 and 3 we have a 3-state model. Our model gives

$$\hat{Q}_1 = \begin{pmatrix} 0.5568 & 0.3573 & 0.4949 \\ 0.2571 & 0.3440 & 0.2795 \\ 0.1861 & 0.2987 & 0.2256 \end{pmatrix},$$

$$\hat{Q}_2 = \begin{pmatrix} 0.4550 & 0.5467 & 0.4747 \\ 0.3286 & 0.2293 & 0.2727 \\ 0.2164 & 0.2240 & 0.2525 \end{pmatrix}$$

$$\hat{\mathbf{X}} = (0.4858, 0.2869, 0.2272)^T, \quad \lambda_1 = 1.0 \text{ and } \lambda_2 = 0.0$$

If there is no grouping, we have a 4-state model. Our model gives

$$\hat{Q}_1 = \begin{pmatrix} 0.2268 & 0.2987 & 0.2274 & 0.1919 \\ 0.2492 & 0.3440 & 0.2648 & 0.2795 \\ 0.3450 & 0.0587 & 0.3146 & 0.3030 \\ 0.1789 & 0.2987 & 0.1931 & 0.2256 \end{pmatrix},$$

$$\hat{Q}_2 = \begin{pmatrix} 0.1891 & 0.2907 & 0.2368 & 0.2323 \\ 0.3814 & 0.2293 & 0.2773 & 0.2727 \\ 0.2532 & 0.2560 & 0.2305 & 0.2424 \\ 0.1763 & 0.2240 & 0.2555 & 0.2525 \end{pmatrix}$$