Rodrigo Fernandes de Mello
Invited Professor at Télécom ParisTech
Associate Professor at Universidade de São Paulo, ICMC, Brazil
http://www.icmc.usp.br/~mello
mello@icmc.usp.br





- They build up trees to organize the attributes as internal nodes and answers as leaves
  - The importance of each attribute is related to its tree height
  - Intended to be used on discrete data
    - If not, one needs to discretize it

- Common applications:
  - Health diagnosis systems
  - Bank credit analysis

- For example, consider the problem of "Play some Sport"
  - Let's classify if a day is good to play



- For example:
  - Having the query instance:

<Outlook=Sunny, Temperature=Hot, Moisture=High>

- Output:
  - No

 After building up the tree, one can organize the rules employed in a next classification stage:



- Most well-known algorithms:
  - ID3 (Quinlan, 1986)
  - C4.5 (Quinlan, 1993)
    - J48
- The ID3 algorithm
  - It builds up a tree based on a top-down approach
    - It attempts to position the most discriminative attribute as close as possible to the tree root
  - Every attribute must be tested in order to define their relevances
    - For each attribute, branches are created according to its possible values

- ID3 employs the Information Gain approach to decide on the most important attributes
  - That depends on the Shannon's Entropy

#### Entropy:

- A Thermodynamic property to determine the amount of useful energy in a given system
- Gibbs stated that the best interpretation for the Entropy in the Statistical Mechanics is as an Uncertainty Measure
- A little about the History:
  - Entropy starts with Lazare Carnot (1803)
  - Rudolf Clausius (1850s-1860s) brings new interpretations in physics
  - Claude Shannon (1948) designs the concept of Entropy in the context of Information Theory

• Let the system start as follows:



And change to:



This is the Equation proposed by Shannon:

$$E = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$$

- It measures the total energy of a system:
  - It considers the system is at a given state i and transitions to j
  - The function log, supports to find the number of bits of Information

#### • Thus:



$$E = -(1\log_2(1) + 1\log_2(1)) = 0$$



After modifying the behavior, the system agregated a greater level of uncertainty or energy (Ex: Win the Lottery)

$$E = -(1\log_2(1) + 0.5\log_2(0.5) + 0.5\log_2(0.5)) = 1$$

- Let a collection of instances S, including positive and negative examples
  - i.e., two distinct and discrete classes/labels
- Let the probability of pertaining to each class of S
  - The Entropy is given by:

$$E(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- For illustration purposes, consider S has 14 examples:
  - 9 positives
  - 5 negatives
- Then, the Entropy of such a set is:

$$E(S) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$$

Observe a binary-class scenario has maximum Entropy equals to 1

- Other scenarios:
  - Having [7+, 7-]

$$E(S) = -\frac{7}{14}\log_2\frac{7}{14} - \frac{7}{14}\log_2\frac{7}{14} = 0.99\dots \approx 1$$

Having [0+, 14-] or [14+, 0-]

$$E(S) = -\frac{14}{14}\log_2\frac{14}{14} = 0$$

 Entropy measures the level of uncertainty about some event/ source

We may generalize Entropy to more classes:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- Several other systems can be studied using Entropy:
  - For instance:
    - Time Series, after some quantization process
- Why the Log function is used?
  - It allows to measure information in bits
  - A great example is about codifying some message
    - Codify: TORONTO

- After defining Entropy, we can define Information Gain
  - It measures how effective an attribute is to classify some dataset
  - A different point of view:
    - It measures the Entropy reduction when partitioning the dataset using a given attribute

$$GI(S, A) = E(S) - \sum_{v \in Valores(A)} \frac{S_v}{S} E(S_v)$$

- The second term measures the Entropy after partitioning the dataset with attribute A
- Therefore:
  - IG measures the Entropy reduction, i.e. the uncertainty decrease, after selecting attribute A to compose the tree

- To illustrate, take S and the attribute Wind (Weak or Strong)
  - S contains 14 instances [9+, 5-]
  - Now consider that:
    - 6 of the positive examples and 2 of the negative ones have Wind=Weak (8 in total)
    - There are 3 instances with Wind=Strong for both the positive and the negative classes (6 in total)
- Then, the Information Gain while selecting the attribute Wind to take the root of our decision tree is given by:

$$S = [9+, 5-]$$

$$S_{\text{weak}} \leftarrow [6+, 2-]$$

$$S_{\text{strong}} \leftarrow [3+, 3-]$$

$$\mathbf{GI}(S, A) = E(S) - \sum_{v \in \mathbf{Valores}(A)} \frac{S_v}{S} E(S_v)$$

So that:

$$S = [9+, 5-]$$

$$S_{\text{weak}} \leftarrow [6+, 2-]$$

$$S_{\text{strong}} \leftarrow [3+, 3-]$$

$$GI(S, A) = E(S) - \sum_{v \in Valores(A)} \frac{S_v}{S} E(S_v)$$

$$GI(S, A) = 0.94 - \frac{8}{14}E(S_{\text{weak}}) - \frac{6}{14}E(S_{\text{strong}})$$

• Therefore:

$$S = [9+, 5-]$$

$$S_{\text{weak}} \leftarrow [6+, 2-]$$

$$S_{\text{strong}} \leftarrow [3+, 3-]$$

$$\begin{split} E(S_{\text{weak}}) &= -\frac{6}{8}\log_2\frac{6}{8} - \frac{2}{8}\log_2\frac{2}{8} = 0.811 \\ E(S_{\text{strong}}) &= -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1.00 \end{split}$$

$$\mathbf{GI}(S, A) = 0.94 - \frac{8}{14}0.811 - \frac{6}{14}1.00 = 0.048$$

- This is the Information Gain measure used by ID3 along the iterations to build up a decision tree
  - Observe this scenario has only reduced the uncertainty a little
  - Thus, is this attribute good enough to take the root? You will see it is not!

Consider the concept of play some sport

| Outlook | <b>Temperature</b> | <b>Moisture</b> | Wind   | Play Tennis |
|---------|--------------------|-----------------|--------|-------------|
| Sunny   | Warm               | High            | Weak   | No          |
| Sunny   | Warm               | High            | Strong | No          |
| Cloudy  | Warm               | High            | Weak   | Yes         |
| Rainy   | Pleasant           | High            | Weak   | Yes         |
| Rainy   | Cold               | Normal          | Weak   | Yes         |
| Rainy   | Cold               | Normal          | Strong | No          |
| Cloudy  | Cold               | Normal          | Strong | Yes         |
| Sunny   | Pleasant           | High            | Weak   | No          |
| Sunny   | Cold               | Normal          | Weak   | Yes         |
| Rainy   | Pleasant           | Normal          | Weak   | Yes         |
| Sunny   | Pleasant           | Normal          | Strong | Yes         |
| Cloudy  | Pleasant           | High            | Strong | Yes         |
| Cloudy  | Warm               | Normal          | Weak   | Yes         |
| Rainy   | Pleasant           | High            | Strong | No          |

- First step:
  - Compute the Information Gain for each of its attributes:

$$egin{aligned} \mathbf{GI}(S, & \text{Outlook} &) = 0.246 \\ \mathbf{GI}(S, & \text{Moisture} &) = 0.151 \\ \mathbf{GI}(S, & \text{Wind} &).048 \\ \mathbf{GI}(S, & \text{Temperature} &) = 0.029 \end{aligned}$$

- The attribute with greater IG is selected to be the tree root
  - This is the one that reduces the most the uncertainty!
  - The children nodes are created according to the possible values for the root attribute

- Having the tree root:
  - We must proceed in the same way to each of its branches
  - We only consider the examples filtered by each branch
    - If there is divergence



 Observe there is no divergence for one of the branches, so its Entropy is zero and a leaf label is defined:



- The attributes already incorporated throughout the path to reach a node are not considered in the Information Gain
  - Observe the Outlook will never be assessed again for both branches



- Computing the Information Gain to the Sunny branch:
  - Entropy is E(S = Sunny)

$$E(S = \text{Sunny}) = -\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5} = 0.97$$

Computing the Information Gain to the Sunny branch:

**GI**(S, Moisture ) = 
$$0.97 - \frac{3}{5}0.0 - \frac{2}{5}0.0 = 0.97$$
  
**GI**(S, Temperature ) =  $0.97 - \frac{2}{5}0.0 - \frac{2}{5}1.0 = 0.57$   
**GI**(S, Wind ) =  $0.97 - \frac{2}{5}1.0 - \frac{3}{5}0.918 = 0.019$ 

Observe the Moisture is the best choice!

Carrying on...



And then...



- ID3 carries on until one of the following conditions is satisfied:
  - (1) Either all attributes were included in the path from the root to the leaves
  - (2) Or the training examples at a given branch have a single class/label
- Observe ID3 starts with a null tree
  - Then it builds the tree up from the scratch
  - And It builds up a single tree

#### **Discussion**

- C4.5 is an extension of ID3
  - It proceeds in the same way but it has a backtracking process afterwards in attempt to reduce the number of tree nodes
  - It is a copyrighted solution
  - J48 is based on the C4.5 documentation and is open
- The Information Gain is a way of reducing the tree height
  - But why?
    - William of Occam, 1320

### Suggestion

- Implement ID3
  - Discrete version
  - Continuous version
- Test it with the UCI datasets
  - http://archive.ics.uci.edu/ml/

### **Complementary references**

- Tom Mitchell, Machine Learning, 1994
- Hudson (2006) Signal Processing Using Mutual Information, IEEE Signal Processing Magazine
- Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont, California, U.S.A., 1984.