Nom, Prénom :

SIO1

Interrogation 04

12/2021

Exercice 1 - Calculs

On considère les matrices suivantes : $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \\ 4 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix}$.

Donner a_{11} , b_{32} et c_{23} .

Calculer ici A + 2B.

Calculer ici **C** × **A**.

Exercice 2 - Problème

Une usine fabrique 3 types de matériel électronique M_1 , M_2 et M_3 . Chacun d'entre eux comporte 3 types de composants C_1 , C_2 , C_3 selon la répartition suivante :

	M1	M2	M3
Nombre de composants C1	2	1	3
Nombre de composants C2	0	2	1
Nombre de composants C3	1	5	2

Les prix et masses unitaires sont les suivants :

	C1	C2	C 3
Masse (en g)	3	4	1
Prix (en €)	5	15	10

On note
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 1 & 5 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 & 1 \\ 5 & 15 & 10 \end{pmatrix}$.

Calculer $\mathbf{B} \times \mathbf{A}$.

On pose $C = B \times A$. Que représente c_{12} ? Que représente c_{23} ?

Le directeur de l'usine souhaite fabriquer 10 matériels M_1 , 20 M_2 et 30 M_3 . On pose $C = \begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix}$

Quelle opération matricielle permet d'obtenir le nombre de composants de chaque sorte pour réaliser les assemblages? On ne demande pas d'effectuer l'opération.

										(