Signaux périodique rappel

Exercice 2

FIGURE 1 – Circuit électrique de l'exercice 2

1.

$$\begin{split} u_C &= -u_L - u_R \\ &= -L\frac{\mathrm{d}i}{\mathrm{d}t} - Ri \\ &= -LC\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} - RC\frac{\mathrm{d}u_C}{\mathrm{d}t} \\ \mathrm{i.e.} \quad \ddot{u}_C + \frac{R}{L}\dot{u}_C + \frac{1}{LC}u_C = 0. \end{split}$$

2. On a

$$\ddot{u}_C + \frac{\omega_0}{Q}\dot{u}_C + \omega_0^2\dot{u}_C = 0$$

d'où

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$

On sait que la solution est de la forme

$$u(t) = e^{rt} \left(A \cos(\Omega t) + B \sin(\Omega t) \right)$$

où
$$r > 0$$
 et $\Omega = \omega_0 \sqrt{1 + \frac{1}{4Q^2}}$.

Exercice 4

On a

$$Z_1 = r + jL\omega$$
 et $Z_2 = \frac{1}{\frac{1}{R} + jC\omega}$.

1. On a

$$\begin{split} &U_{AB} = U_{Z_1} + U_{R_1} \\ &U_{Z_1} = \frac{Z_1}{R_2 + Z_1} e \\ &U_{R_1} = \frac{R_1}{R_1 + Z_2}. \end{split}$$

D'où,

$$\underline{U}_{AB} = \left(\frac{\underline{Z}_1}{R_2 + \underline{Z}_1} - \frac{R_1}{R_1 + \underline{Z}_2}\right)\underline{e}.$$

2. Comme la résistance du voltmètre est infinie,

3. On a, pour 10 périodes, $10T_{\rm p}=300\cdot 10^{-6}$ s. Or, d'après l'approximation des grands facteurs de qualité, on a

$$T_0 \cong T_p = 30 \,\mu s.$$

Comme
$$\omega_0 = \frac{2\pi}{T_0}$$
, on a $\omega = 2.1 \times 10^{-5}$ rad/s.

À l'aide de la méthode de la tangente à l'origine, on obtient $\tau\cong 60~\mu s$ et, avec l'approximation des grands facteurs de qualité, on obtient également $Q\cong 8$.

De ces deux résultats, on en déduit que

$$L = \frac{1}{\omega_0^2 C} \stackrel{\circ}{=} 2.3 \times 10^{-3} \text{ H}$$

et

$$R = \frac{\omega_0 L}{Q} \stackrel{\circ}{=} 60 \ \Omega.$$

on a $U_{AB} = 0$ et donc,

$$\frac{Z_1}{R_2 + Z_1} = \frac{R_1}{R_1 + Z_2} \implies Z_1(1 + Z_2) = R_1(R_2 + Z_1)$$

$$\implies Z_1 Z_2 = R_1 R_2$$

$$\stackrel{\text{Équilibre du Pont de Mesure}}{\implies Z_1 = \frac{R_1 R_2}{Z_2}}.$$

On en déduit que

$$r + jL\omega = \frac{R_1 R_2}{R} (1 + jRC\omega)$$

et donc

$$\begin{cases} r = \frac{R_1 R_2}{R} \\ L = R_1 R_2 C. \end{cases}$$

FIGURE 2 – Circuit électrique de l'exercice 4

Exercice 5

Le circuit étudié est un convertisseur courant- $\ \mbox{car}\ \varepsilon=0$ par hypothèse. tension.

Or,
$$i_-=i_+=0$$
, d'où $i_R=I_p$ d'où

$$v_s = -RI_p$$
.

(LM):
$$v_s + u_R + \varepsilon = 0$$

 $\implies v_s = -u_R = R i_R$

FIGURE 3 – Circuit électrique de l'exercice 5

Exercice 6

- 1. (a) Fausse car problème d'homogénéité : $\left[\frac{\omega}{RC}\right]=\mathbf{T}^{-2}\neq\left[1\right];$
 - (b) OK à priori
 - (c) Fausse car problème d'homogénéité : $[L\omega]=$ " Ω " \neq $[1]^{\,a}$;
 - (d) Fausse car problème d'homogénéité : $[R] = [L\omega] = "\Omega" \neq [LC\omega^2] = [1]$.

a. Ici le " Ω " montre que c'est un résultat s'exprimant en Ω , ce qui est plus simple à écrire que $M \cdot L^2 \cdot T^{-3} \cdot I^{-2}$

2. On a $Z_1 = \frac{1}{jC\omega}$ et $Z_2 = 1/\left(\frac{1}{R} + \frac{1}{jL\omega}\right)$. D'où, d'après le pont diviseur de tension

$$\begin{split} \underline{H} &= \frac{\underline{Z}_2}{Z_1 + Z_2} \\ &= \frac{1}{1 + \frac{\underline{Z}_1}{\underline{Z}_2}} \\ &= \frac{1}{1 + \frac{1}{\mathbf{j}C\omega} \left(\frac{1}{R} + \frac{1}{\mathbf{j}L\omega}\right)} \\ &= \frac{LC\omega^2}{LC\omega^2 - \mathbf{j}\frac{L}{R}\omega - 1} \end{split}$$

Figure 4 – Circuit électrique de l'exercice 6

Exercice 10

- 1. On a $u_6 \rightsquigarrow \hat{v}_e$, $u_3 \rightsquigarrow \hat{v}_c$ (composante continue), $u_2 \rightsquigarrow \hat{v}_d$ (discontinuités), $u_4 \rightsquigarrow \hat{v}_a$ (composante continue), $u_5 \rightsquigarrow \hat{v}_f$ (nombre de fréquences) et $u_1 \rightsquigarrow \hat{v}_b$.
- 2. Le filtre donnant le signal \hat{v}_g est un passe-bandes (les hautes et basses fréquences sont éliminées) et c'est un filtre non linéaire (de nouvelles fréquences apparaissent).

Le filtre donnant le signal \hat{v}_h est un filtre passe-bas.

Le filtre donnant le signal \hat{v}_i est un filtre passe-haut dont sa fréquence de coupure est inférieure à 1 kHz.

Exercice 14

- 1. Grâce aux impédances d'entrée infinies, on a $u_r = ri_D(t)$ et $u_1 = K_{\rm m} r i_D(t) u_D(t)$. C'est un Wattmètre car le produit $i_D(t) \times u_D(t)$ correspond à la puissance reçue par D (car elle est positive). Ce Wattmètre est analogique car $i_D(t)$ et $u_D(t)$ sont des grandeurs qui varient dans un interval continu
- 2. On a $\omega_c = \frac{1}{RC}$ d'où $f_c = \frac{1}{2\pi RC} \stackrel{\circ}{=} \frac{1}{0.6}$ Hz $\stackrel{\circ}{=} 2$ Hz.

La fonction de ce circuit est de calculer la moyenne d'un signal (c'est donc un moyenneur) : il filtre les fréquences supérieures à quelques Hz. On n'obtient donc que la composante continue comme montré sur la figure ci-dessous.

FIGURE 5 – Moyenneur

On ne passe pas par les complexes mais on revient aux définitions réelles d'un signal sinusoïdal :

$$\begin{split} u_1(t) &= K_{\mathrm{m}} r \, i_D(t) \, u_D(t) \\ &= K_{\mathrm{m}} r \, I_D \cos(2\pi f + \varphi_i) \, U_D \cos(2\pi f t + \varphi_u) \\ &= K_{\mathrm{m}} r \, I_D \, U_D \times \frac{1}{2} \Big(\cos(2\pi \times 2f t + \varphi_i + \varphi_u) - \cos(\varphi_u - \varphi_i) \Big). \end{split}$$

On en déduit donc que

$$u_s(t) \sim K_{\rm m} r \underbrace{\frac{1}{2} U_D I_D \cos(\varphi_u - \varphi_i)}_{\langle p(t) \rangle}.$$

3. • Si D = R, on a

$$\langle p(t)\rangle = \frac{1}{2} U_D I_D \cos(\varphi_u - \varphi_i) = \frac{1}{2} R I_D^2 = \frac{U_D^2}{2R}.$$

- Si D = C, on a $\underline{u}_C = \underline{Z}_C \underline{i}_C = \frac{1}{\underline{j}C\omega}\underline{i}_C$. Or, $\operatorname{Arg}(\underline{Z}_C) = \operatorname{Arg}\left(\frac{\underline{u}}{\underline{i}}\right) = \operatorname{Arg}(\underline{u}) \operatorname{Arg}(\underline{i}) = \varphi_u \varphi_i = -\frac{\pi}{2}$. On en conclut donc que $\langle p(t) \rangle = 0$.
- Si D = L, on a $Arg(\underline{Z}_L) = \varphi_u \varphi_i = \frac{\pi}{2}$ et donc $\langle p(t) \rangle = 0$.

Exercice 19

- 1. On a $|\underline{H}| = G = \left|\frac{1-\mathrm{j}RC\omega}{1+\mathrm{j}RC\omega}\right| = 1$, et $\varphi = 2\operatorname{Arg}(1+\mathrm{j}RC\omega) = -2\operatorname{Arctan}(RC\omega)$. Or, on sait que $\varphi\left(\omega = \frac{1}{RC}\right) = -\frac{\pi}{2}$ donc, par lecture graphique, on a $\frac{1}{RC} \stackrel{\circ}{=} 4 \times 10^4 \frac{\mathrm{rad}}{\mathrm{s}}$ d'où $RC \stackrel{\circ}{=} 2,5 \times 10^{-5}$ s.
- 2. Par exemple, en traitement du son, on utilise une ligne de retard pour resynchroniser les signaux. Mais aussi, en tant que détecteur de front ascendant et descendant.
- 3. Si $\omega \ll \frac{1}{RC}$, le signal est inchangé. Si $\omega \gg \frac{1}{RC}$, le signal est en opposition de phases. Si $\omega \cong \frac{1}{RC}$, le signal est non-carré.