Math 3B: Lecture 1

Noah White

September 23, 2016

Syllabus

Take a copy of the syllabus as you walk in

or

find it online at math.ucla.edu/~noah

Class website

There are a few places where you will find/receive information about Math 3B:

- The class website: www.math.ucla.edu/~noah
- CCLE
- Email
- Piazza

Instructor and TAs

Instructor Noah White

office hours MS 6304, M 3:30pm-5pm, R 9-10:30am

TA

Kyung Ha

office hours MS 6943, W 4-5pm

Robert Houseden MS 3915B, T 3-4pm

Dustan Levenstein MS 3965. R 3-4

Instructor and TAs

Instructor Noah White

office hours $\,$ MS 6304, M 3:30pm-5pm, R 9-10:30am

TA Kyung Ha

office hours MS 6943, W 4-5pm

Robert Houseden MS 3915B, T 3-4pm

Dustan Levenstein MS 3965, R 3-4

Note!

Change of room for Dicussion Section 2D (Thurdsay with Dustan). You are now in Boelter 5419.

Textbook

S. J. Schreiber, Calculus for the Life Sciences, Wiley

Problem sets, homework, and quizzes

Problem sets

Assigned every week. Long list of problems. Not graded, but recommended!

Problem sets, homework, and quizzes

Problem sets

Assigned every week. Long list of problems. Not graded, but recommended!

Homework

Due every second week. A small number of questions drawn from the problem sets. There will be 5.

Problem sets, homework, and quizzes

Problem sets

Assigned every week. Long list of problems. Not graded, but recommended!

Homework

Due every second week. A small number of questions drawn from the problem sets. There will be 5.

Quizzes

Administerd every other week in discussion session. There will be 4.

• Homework will be collected at the start of the lecture on the dues date.

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.
- You may collaborate in small groups if:

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.
- You may collaborate in small groups if:
 - you aknowledge your collaborators,

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.
- You may collaborate in small groups if:
 - ▶ you aknowledge your collaborators,
 - write up your own solutions, in your own words.

There will be two midterms and a final exam

• Midterm 1 2-2:50pm Monday, 17 October, 2016

There will be two midterms and a final exam

- Midterm 1 2-2:50pm Monday, 17 October, 2016
- Midterm 2 2-2:50pm Monday, 21 November, 2016

There will be two midterms and a final exam

- Midterm 1 2-2:50pm Monday, 17 October, 2016
- Midterm 2 2-2:50pm Monday, 21 November, 2016
- Final 3-6pm Monday, 5 December, 2016

There will be two midterms and a final exam

- Midterm 1 2-2:50pm Monday, 17 October, 2016
- Midterm 2 2-2:50pm Monday, 21 November, 2016
- Final 3-6pm Monday, 5 December, 2016

Cheatsheets and calculators

You will be allowed a small cheatsheet in each exam. Must be self-written and one side, half a letter size piece of paper. You are also allowed to use non-programmable, non-graphing calculators.

Grading

Your final grade will be calculated using the maximum of the following two grading schemes.

Schedule

	Dates	Monday	Tuesday	Wednesday	Thursday	Friday
0	9/19-23	No classes				Intro/4.1
1	9/26-30	4.1	Quiz 1	4.2	Quiz 1	4.3-4.4
2	10/3-7	Review		5.1		HW 1 due/5.2
3	10/10-14	5.2 (cont.)	Quiz 2	5.3	Quiz 2	Review
4	10/17-21	Midterm 1		5.4		HW 2 due/5.5
5	10/24-28	5.6	Quiz 3	5.6 (cont.)	Quiz 3	5.8
6	10/31-11/4	Review		6.1		HW 3 due/6.2
7	11/7-11	6.2 (cont.)	Quiz 4	6.3	Quiz 4	Vet's day
8	11/14-18	6.4		6.4-6.5		HW 4 due/6.5
9	11/21-25	Midterm 2		6.6	Thanksgiving	
10	11/28-12/2	HW 5 due		Review		Review

Where to get help

Piazza

Here you can ask questions and answer others' questions. Lets take a look. . .

Where to get help

Piazza

Here you can ask questions and answer others' questions. Lets take a look. . .

Office hours

Use them wisely! Prepare and seek information first. If you learn something, post it to Piazza!

Where to get help

Piazza

Here you can ask questions and answer others' questions. Lets take a look. . .

Office hours

Use them wisely! Prepare and seek information first. If you learn something, post it to Piazza!

Student Math Center (SMC)

Location: MS 3974, times: M-R 9am-3pm.

The SMC offers free, individual and group tutoring for all lower division math courses. This service is available on a walk-in basis; no appointment is necessary. Students may ask any of the TAs in attendance for assistance with math problems.

You should have a good feel for what the derivative means. I.e. derivative at a point = tangent slope. You need to understand differentiation algebraically as well as geometrically.

You should have a good feel for what the derivative means. I.e. derivative at a point = tangent slope. You need to understand differentiation algebraically as well as geometrically.

You should also know the definition of the derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}$$

exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(e^{x}\right)=e^{x}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

• polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}$$

exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{x})=\mathrm{e}^{x}$$

logarithms

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}$$

exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(e^{x}\right)=e^{x}$$

logarithms

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

trig functions

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

Example

Let's differentiate the function $f(x) = e^x \sin x$.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}e^{x}\right)\sin x + e^{x}\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin x\right)$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

Example

Let's differentiate the function $f(x) = e^x \sin x$.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}e^{x}\right)\sin x + e^{x}\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin x\right)$$
$$= e^{x}\sin x + e^{x}\cos x$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

Example

Let's differentiate the function $f(x) = e^x \sin x$.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}e^x\right)\sin x + e^x\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin x\right)$$
$$= e^x\sin x + e^x\cos x$$
$$= e^x(\sin x + \cos x)$$

The chain rule

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=h'(x)g'(h(x))$$

The chain rule

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

The chain rule

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

The chain rule

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

so

$$h'(x) = e^x$$
 and $g'(x) = \cos x$

The chain rule

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

so

$$h'(x) = e^x$$
 and $g'(x) = \cos x$

SO

$$f'(x) = e^x \cos(e^x)$$

The quotient rule is stupid

The quotient rule says

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{g(x)}{h(x)}\right) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$

The quotient rule is stupid

The quotient rule says

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{g(x)}{h(x)}\right) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$

This is annoying to remember (where does that minus sign go again?). Luckily we can notice

$$\frac{g(x)}{h(x)} = g(x)k(x) \quad \text{where} \quad k(x) = (h(x))^{-1}$$

So we can just use the product rule!

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

so

$$h'(x) = -x^{-2}$$
 and $g'(x) = \cos x$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

so

$$h'(x) = -x^{-2}$$
 and $g'(x) = \cos x$

so

$$f'(x) = h'(x)g'(h(x))$$

= $-\frac{1}{x^2}\cos(x^{-1})$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1}$$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

so

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

SO

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$
$$= \frac{1}{x+1} - \frac{x-1}{(x+1)^2} = \frac{2}{(x+1)^2}$$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

so

$$f'(x) = g'(x)f'(g(x))$$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

so

$$f'(x) = g'(x)f'(g(x))$$

= $2x \cos x^2 \frac{2}{(\sin x^2 + 1)^2}$

Question

A bacterial colony is estimated to have a population of ${\cal P}$ thousand individuals, where

$$P(t) = \frac{24t + 10}{t^2 + 1}$$

and t is the number of hours after a toxin is introduced.

Question

A bacterial colony is estimated to have a population of ${\cal P}$ thousand individuals, where

$$P(t) = \frac{24t + 10}{t^2 + 1}$$

and t is the number of hours after a toxin is introduced.

1. At what rate is the population changing when t = 1?

Question

A bacterial colony is estimated to have a population of ${\cal P}$ thousand individuals, where

$$P(t) = \frac{24t + 10}{t^2 + 1}$$

and t is the number of hours after a toxin is introduced.

- 1. At what rate is the population changing when t = 1?
- 2. Is the rate increasing or decreasing at this time?

Question

A bacterial colony is estimated to have a population of ${\cal P}$ thousand individuals, where

$$P(t) = \frac{24t + 10}{t^2 + 1}$$

and t is the number of hours after a toxin is introduced.

- 1. At what rate is the population changing when t = 1?
- 2. Is the rate increasing or decreasing at this time?
- 3. At what time does the population begin to decrease?

1. At what rate is the population changing when t = 1?

$$P(t) = (24t + 10)(t^2 + 1)^{-1}$$

1. At what rate is the population changing when t = 1?

$$P(t) = (24t+10)(t^2+1)^{-1}$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}(t^2+1)^{-1} = -2t(t^2+1)^{-2}$

1. At what rate is the population changing when t = 1?

$$P(t) = (24t+10)(t^2+1)^{-1}$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}(t^2+1)^{-1} = -2t(t^2+1)^{-2}$

$$P'(t) = 24(t^2+1)^{-1} - 2t(24t+10)(t^2+1)^{-2}$$

1. At what rate is the population changing when t = 1?

$$P(t) = (24t+10)(t^2+1)^{-1}$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}(t^2+1)^{-1} = -2t(t^2+1)^{-2}$

$$P'(t) = 24(t^2 + 1)^{-1} - 2t(24t + 10)(t^2 + 1)^{-2}$$
$$= -\frac{4(3t - 2)(2t + 3)}{(t^2 + 1)^2}$$

1. At what rate is the population changing when t = 1?

$$P(t) = (24t+10)(t^2+1)^{-1}$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}(t^2+1)^{-1} = -2t(t^2+1)^{-2}$

$$P'(t) = 24(t^{2} + 1)^{-1} - 2t(24t + 10)(t^{2} + 1)^{-2}$$

$$= -\frac{4(3t - 2)(2t + 3)}{(t^{2} + 1)^{2}}$$

$$P'(1) = -\frac{4 \cdot 1 \cdot 5}{4} = -5$$

1. Is the rate increasing or decreasing at this time?

$$P'(t)=0$$

- 1. Is the rate increasing or decreasing at this time?
- 2. At what time does the population begin to decrease?

$$P'(t)=0$$

- 1. Is the rate increasing or decreasing at this time?
- 2. At what time does the population begin to decrease?

$$P'(t)=0$$

- 1. Is the rate increasing or decreasing at this time?
- 2. At what time does the population begin to decrease?

$$P'(t) = 0$$

$$-\frac{4(3t-2)(2t+3)}{(t^2+1)^2}=0$$

- 1. Is the rate increasing or decreasing at this time?
- 2. At what time does the population begin to decrease?

$$P'(t) = 0$$

$$-\frac{4(3t-2)(2t+3)}{(t^2+1)^2} = 0$$
 $t = \frac{2}{3} \quad \text{or} \quad -\frac{3}{2}$