ESc201: Introduction to Electronics

Sequential Circuit Design -2

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

Sequential Circuits

The binary information stored in the storage elements at any given time defines the **state** of the sequential circuit at that time

Output is a function of input as well as the present state of the storage elements.

Synchronous Sequential Circuits

Employs signals that affect the storage elements only at discrete instants of time.

Synchronization is achieved via the *clock pulses*.

Synchronous Clocked Sequential Circuits

Analysis

Analysis

Output z depends on the input x and on the state of the memory (A,B)

The memory has 2 FFs and each FF can be in state 0 or 1. Thus there are four possible states: AB: 00,01,10,11.

To describe the behavior of a sequential circuit, we need to show

- 1. How the system goes from one memory state to the next as the input changes
- 2. How the output responds to input in each state

Analysis of Sequential Circuits

$$D_A = A.x + B.x$$
; $D_B = \overline{A}.x$; $z = (A + B).\overline{x}$

State Transition Table

A	A(t+1) = A(t).x + B(t).x
E	$B(t+1) = \overline{A(t)}.x$
Z	$(t) = (A(t) + B(t)).\overline{x}$

Presen	t State	Input	Next	State	Output
Α	В	Х	Α	В	Z
0	0	0 1	0	0 1	0
0 0	1 1	0 1	0 1	0 1	1 0
1	0 0	0	0	0	0
1 1	1 1	0 1	0 1	0 0	1

	State	Transit	ion Tab	le	
Preser	nt State	Input	Next	State	Output
Α	В	Х	Α	В	z
0	0	0 1	00	0 1	00
0 0	1	0 1	0	0 1	1 0
1 1	0	0 1	0	0	1 0
1 1	1 1	0 1	0 1	0	1 0

00 Memory state in which FF A& B have output values 00

If x = 0 then z = 0, When the clock edge comes the system would stay in 00 state.

If x = 1 then z = 0. When the clock edge comes the system would go to 01 state.

Analysis of Sequential Circuits

Preser	nt State	Input	Next	t State	Output
Α	В	Х	Α	В	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State Transition Table

Conversion of State transition graph to a circuit

Example-1

3 blocks need to be designed

- 1. How many FFs do we need?
- N FFS can represent 2^N states so Minimum is 1
- 2. Which FF do we choose?
- Say D FF
- 3. How are the states encoded?
- Say FF output Q=0 represents S₀ and Q=1 represents S₁ state

State Transition Table					
Present State	Input	Next State	D	Output	
Q(t)	X	Q(t+1)		Z	
0 0	0 1	0 1		0 0	
1 1	0	1 0		0 1	

Excitation Table

What inputs are required to effect a particular state change

		Inputs
Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Table

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

		Inputs
Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

		Inputs
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

State Transition Table					
Present State	Input	Next State	D	Output	
Q(t)	Х	Q(t+1)		Z	
0	0	0	0	0	
0	1	1	1	0	
1	0	1	1	0	
1	1	0	0	1	

$$D = \overline{Q}.x + Q.\overline{x} \quad ; \quad z = Q.x$$

Example-2

- 1. How many FFs do we need?
- 2. Which FF do we choose? Say JK FF
- 3. How are the states encoded? Say FF output Q=0 represents S_0 and Q=1 represents S_1 state

State Transition Table

Present State	Input	Next State	J K	Output
Q(t)	X	Q(t+1)		z
0	0 1	0 1	0 X 1 X	0
1	0	1 0	X 0 X 1	0 1

$$J = x ; K = x; z = Q.x$$

1		
Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

Example-3

	FF O/P		
State	Α	В	
S ₀	0	0	
S ₁	0	1	
S ₂	1	0	
S ₃	1	1	

For 4 states a minimum of two FFs will be required. Let us choose 2 D FFs A &B

Preser	nt State	Input	Next State			
Α	В	Х	Α	В	D_A	D_B
0 0	0 0	0 1	0 0	1 0	0	1 0
0 0	1	0 1	1 1	1 0	1	1 0
1 1	0	0 1	1 1	1 0	1	1 0
1 1	1	0	0 1	0 1	0	0

Presen	t State	Input	Next	State		
Α	В	Х	Α	В	D_A	D_B
0 0	0 0	0 1	0 0	1 0	0	1 0
0	1	0 1	1 1	1 0	1	1 0
1 1	0	0 1	1 1	1 0	1	1 0
1	1	0	0 1	0	0	0

$$D_A = \overline{A}B + xB + A\overline{B}$$
$$= A \oplus B + x.B$$

$$D_{B} = \overline{x}.\overline{A} + \overline{x}.\overline{B} + x.A.B$$

$$= \overline{x}.(\overline{A} + \overline{B}) + x.A.B$$

$$= \overline{x}.\overline{AB} + x.AB = \overline{x} \oplus \overline{AB}$$

$$D_A = A \oplus B + x.B$$

$$D_B = \overline{x \oplus AB}$$

Counters

In state S₀, the output ABC is 000, in S₁ 001 and so on

There are 8 states so 3 FFs are at least required. Let us choose T FF.

<u> </u>		
PS	NS	
АВС	АВС	$T_A \; T_B \; T_C$
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Binary UP counter

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

- -D toggles every clock cycle
- -C toggles only when D is 1
- -B toggles only when both C and D are 1
- -A toggles only when B C D are 1

1 10

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0

0 0 0 0

T FF toggles when T=1

4-bit Down Counter

ABCD

- -D toggles every clock cycle
- -C toggles only when D is 0
- -B toggles only when both C and D are 0
- -A toggles only when D C B are 0

Counters

Binary down counter

Decade counter

Modulo-10 Counter

Modulo-5 Counter

BCD Counter

Binary Coded Decimal (BCD): each decimal digit is coded as a 4-bit binary number

BCD counter from 0 to 99

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	J_B K_B	J _C K _C
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

There are two unused states 011 and 111.

one approach to handle this situation is that, while evaluating expressions for J K, we use don't care conditions corresponding to these unused states

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	$J_B K_B$	J_{c} K_{c}
0 0 0	0 0 1	(0\ X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X/ 1	X 1	0 X

$$J_A = B$$

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	$J_B K_B$	J _C K _C
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$
 $J_C = \overline{B}$ $K_C = 1$

After synthesizing the circuit, one needs to check that if by chance the counter goes into one of the unused states, after one or more clock cycles, it enters a used state and then remains among the used states

We can see that if by chance the counter goes into unused states 111 or 011, then after a clock cycle it enters one of the used states.

31

Counter as frequency divider АВС 0 0 0 0 0 1 Α 0 1 0 0 1 1 В clk 1 0 0 1 0 1 C 1 1 0 1 1 1 Clock f/2 C f/4 В

Α

Example From a frequency of 10KHz, generate the following signal of frequency 1KHz

This will have a frequency of 1KHz but it will not have the same waveform

Design a divide by 10 counter with the following states

Example From a frequency of 10KHz, generate the following signal of frequency 2KHz

A divide by 5 counter is required that has 5 states.

A will give the required waveform.

Ring Counter

Ripple Counter

T FF toggles when T = 1; otherwise Hold state

F/F is negative edge Triggered

Ripple Counter

- 0 1 2 3 4 515
- 0 1 0 1 0 1 -----1 0

0 0 1 1 0 0 -----1 C

0 0 0 0 1 1 -----1 0

$$A_3A_2A_1A_0$$

Ripple Down Counter

BCD Ripple Counter

BCD Ripple Counter

Cascading of BCD counters

Register

R R I_2 0 Clk

A register is a group of flip flop, each one of which is capable of storing one bit information.

4-bit Register with parallel load

Load = 0

Equivalent Circuit

Load = 1

Equivalent Circuit

4-bit Shift Register

4-bit universal Register

_		n	\sim	hı.		n
	u		U	П	u	ш

S ₁	S_0	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel Load

S ₁	S_0	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel Load

The register maintains its state

$S_1 S_0 = 01$: Shift right

$S_1 S_0 = 10$: Shift left

$S_1 S_0 = 11$: Parallel Load

Counter with Enable

Counter is in Hold state.

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

When Enable = 1, the counter begins the count.

Counter with Asynchronous Reset

When Reset = 1, the counter begins the count.

Logic 1

BCD Ripple Counter[®]