Infinitésimos equivalentes

- Dos sucesiones $\{a_n\}$ y $\{b_n\}$ se denominan equivalentes si $\lim_{x o\infty}rac{a_n}{b_N}=1$, y se escribe como $a_n\sim b_n$
- Una sucesión, $\{a_n\}$, se denomina infinitesimal si $\lim_{x o\infty}a_n=0$
- Dos sucesiones se denominan infinitésimos equivalentes ($a_n \sim b_n$) si $\lim_{x \to \infty} a_n = 0$, $\lim_{x \to \infty} b_n = 0$ y $\lim_{x \to \infty} \frac{a_n}{b_n} = 1$

Sea $\{a_n\}$ una sucesión infinitesimal, entonces:

- 1. sen $a_n \sim a_n$
- 2. $an a_n \sim a_n$
- 3. arcsen $a_n \sim a_n$
- 4. arctan $a_n \sim a_n$
- 5. 1 $\cos a_n \sim \frac{a_{n^2}}{2}$
- 6. $(1+a_n)^{\alpha}-1\sim \alpha\cdot a_n$
- 7. $e^{a_n} 1 \sim a_n$
- 8. $b^{a_n}-1\sim a_n\cdot log(b)$
- 9. $log(1+a_n) \sim a_n$
- Dos funciones $f:A o\mathbb{R}$ y $g:A o\mathbb{R}$ se denominan equivalentes en x = a si $\lim_{x o a}rac{f(x)}{g(x)}=1$ y se escribe $f(x)\sim g(x)\ cuando\ x o a$
- Dos funciones se denominan infinitésimos equivalentes ($f(x)\sim g(x)$) en x = a si $\lim_{x\to a}f(x)=0$, $\lim_{x\to a}g(x)=0$ y $\lim_{x\to a}rac{f(x)}{g(x)}=1$
- Cuando $x \to 0$ tenemos que:
 - 1. sen $x \sim x$
 - 2. $\tan x \sim x$
 - 3. arcsen $x \sim x$
 - 4. $\arctan x \sim x$
 - 5. 1 $\cos x \sim \frac{x^2}{2}$
 - 6. $(1+x)^{\alpha}-1\sim \alpha\cdot x$
 - 7. $e^x 1 \sim x$
 - 8. $b^x 1 \sim x \cdot log(b)$
 - 9. $log(1 + x) \sim x$
- Otras equivalencias:
 - 1. $log(a_n) \sim a_n \Leftrightarrow (a_n \to 1)$
 - 2. $a_n^{\alpha} 1 \sim \alpha \cdot (a_n 1) \Leftrightarrow (a_n \rightarrow 1)$