$$u(t = 0) = u_0$$

$$\frac{du(t)}{dt} = f(t, u)$$

$$u(t + \Delta t) = u(t) + \Delta t \frac{du(t)}{dt} + \frac{\Delta t^2}{2} \frac{d^2 u(t)}{dt^2} + \frac{\Delta t^3}{6} \frac{d^3 u(t)}{dt^3} + O(\Delta t^4)$$

$$u(t + \Delta t) = u(t) + f(t, u)\Delta t + O(\Delta t^{2})$$

przepis na pojedynczy krok z u(t) do $u(t+\Delta t)$

można wyliczyć bo znamy *t* i *u(t)*

błąd lokalny jawnego Eulera w kroku $t_{n-1} \rightarrow t_n$ wg tw. Taylora

$$l_n = \frac{\Delta t^2}{2} u''(\xi_n)$$
$$\xi_n \in (t_{n-1}, t_n)$$

błąd lokalny schematu różnicowego definicja:

odchylenie wyniku numerycznego od dokładnego uzyskane w pojedynczym kroku, w którym na starcie wstawiono dokładne rozwiązanie (dokładny warunek początkowy)

$$u(t = 0) = u_0$$

$$\frac{du(t)}{dt} = f(t, u)$$

$$u(t + \Delta t) = u(t) + f(t, u)\Delta t + O(\Delta t^{2})$$

stosowany wielokrotnie:

stosowany wielokrotnie:
$$u_1=u_0+\Delta t f(0,u_0)$$

$$u_2=u_1+\Delta t f(\Delta t,u_1) \qquad t_{n-1}=(n-1)\Delta t$$
 ...
$$u_n=u_{n-1}+\Delta t f(t_{n-1},u_{n-1})$$
 krok wcale nie musi być taki sam dla każdego n ,

krok wcale nie musi być taki sam dla każdego n, ale tak przyjmiemy do analizy

$$u_{1} = u_{0} + \Delta t f(0, u_{0})$$

$$u_{2} = u_{1} + \Delta t f(\Delta t, u_{1})$$

$$u_{n} = u_{n-1} + \Delta t f(t_{n-1}, u_{n-1})$$

każdy krok wykonywany z nachyleniem branym z chwili, w której krok się zaczyna

W każdym kroku wprowadzamy nowy błąd. Błędy się akumulują.

Zmniejszamy krok Δt: Błąd lokalny zmaleje, ale wykonamy więcej kroków.

Czy opłaca się zmniejszać kroki czasowe?

Definicja: Błąd globalny e=rozwiązanie dokładne w chwili t minus rozwiązanie numeryczne w chwili t

"Czy się opłaca" znaczy: Czy błąd globalny maleje gdy Δt maleje?

a jeśli tak - czy maleje do zera? ("czy możliwe jest dokładne rozwiązanie
równania różniczkowego uzyskane jako
granica schematu różnicowego")

Czy błąd całkowity maleje gdy Δt maleje ? Czy maleje do zera?

eksperyment numeryczny

problem początkowy:

$$u' = \lambda u, \ u(0) = 1$$

z rozwiązaniem dokładnym $u(t) = exp(\lambda t)$

Czy błąd globalny maleje gdy Δt maleje ? Czy maleje do zera?

eksperyment numeryczny

problem początkowy:

$$u'=\lambda u$$
, $u(0)=1$

z rozwiązaniem dokładnym $u(t) = exp(\lambda t)$

$$\lambda = -100$$

zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01 ? [1/e=.3678794]

n	Δt	\mathbf{u}_{n}	$\exp(-1)-u_n$
10	10^{-3}	0.34867	1.920×10^{-2}
10^2	10^{-4}	0.36603	1.847×10^{-3}
10^3	10-5	0.36769	1.840×10^{-4}
10^4	10-6	0.36784	1.839×10^{-5}

błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym

$$u(t + \Delta t) = u(t) + f(t, u)\Delta t + O(\Delta t^{2})$$

interpretacja: błąd lokalny rzędu Δt^2 popełniony $n = t/\Delta t$ razy daje błąd globalny rzędu Δt

zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01 ? [1/e=.3678794]

n	Δt	u_n	$\exp(-1)-u_n$
10	10^{-3}	0.34867	1.920×10^{-2}
10^{2}	10^{-4}	0.36603	1.847×10^{-3}
10^{3}	10^{-5}	0.36769	1.840×10^{-4}
10^{4}	10-6	0.36784	1.839×10^{-5}

błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym

Definicja:

Metody różnicowa jest **zbieżna** jeśli błąd globalny

$$\lim_{n \to \infty, \Delta t \to 0, n \Delta t = T} |e_n| = 0$$

znika do zera w chwili T gdy z Δt do 0

Definicja:

Metody różnicowa jest **zbieżna** jeśli błąd globalny

$$\lim_{n \to \infty, \Delta t \to 0, n \Delta t = T} |e_n| = 0$$

znika do zera w chwili T gdy z ∆t do 0

rząd zbieżności metody jest k, jeśli w granicy $\Delta t \rightarrow 0$ błąd globalny znika jak $O(\Delta t^k)$

Zazwyczaj rząd zbieżności metody jest o jeden niższy niż rząd błędu lokalnego (popełnianego w jednym kroku).

Rząd zbieżności metody Eulera – pierwszy.

Metoda Eulera jest metodą pierwszego rzędu.

Nie ma wolniej zbieżnej metody

Arytmetyka zmiennoprzecinkowa: $-1^z \times m \times 2^w$ 32-bitowa pojedyncza precyzja:

rozmiar nazwa

1 bit $\operatorname{znak}(z)$

8 bits wykładnik (w)

23 bits mantysa(m)

mantysa w binarnym zapisie m=10101 ... oznacza m= $1*2^0+0*2^{-1}+1*2^{-2}+0*2^{-3}+1*2^{-4}+...$

Wykładnik: w=2⁸=256 wartości. Kodowane z tzw. Bias -127, tak, że 2^w w zakresie od 2⁻¹²⁷ do 2¹²⁷, w przybliżeniu 10⁻³⁸ do 10³⁸

Liczby zmiennoprzecinkowe są położone dyskretnie na osi x. Liczby rzeczywiste reprezentowane są przez zmiennoprzecinkowe w przybliżeniu, z błędem zaokrągleń.

Arytmetyka zmiennoprzecinkowa:

$$-1^z \times m \times 2^w$$

rozmiar nazwa

1 bit znak (z)

8 bits wykładnik (w)

23 bits mantysa (m)

zbieżność metody różnicowej a błędy zaokrągleń (skończona dokładność arytmetyki zmiennoprzecinkowej)

błędy zaokrągleń a zbieżność

do tej pory zakładaliśmy, że błędy zaokrągleń nie ma (że arytmetyka dokładna) arytmetyka zmiennoprzecinkowa nie jest dokładna.

pojedyncza precyzja: 32 bity

podwójna : 64 bity

Joseph E. Flaherty

Ordinary Differential Equations

	k	$N = 2^k$	h = 1/N	$ ilde{y}_N$	$ ilde{e}_N$
arytmetyka 21 – bitowa 🛛 🝑	0	1	1.00000000	2.00000000	-0.71828181
	1	2	0.50000000	2.25000000	-0.46828184
	2	4	0.25000000	2.44140625	-0.27687559
	3	8	0.12500000	2.56578445	-0.15249738
	4	16	0.06250000	2.63792896	-0.08035287
	5	32	0.03125000	2.67698956	-0.04129227
	6	64	0.01562500	2.69734669	-0.02093514
	7	128	0.00781250	2.70773602	-0.01054581
	8	256	0.00390625	2.71297836	-0.00530347
	9	512	0.00195312	2.71561337	-0.00266846
	10	1024	0.00097656	2.71694279	-0.00133904
	11	2048	0.00048828	2.71764278	-0.00063904
	12	4096	0.00024414	2.71795559	-0.00032624
	13	8192	0.00012207	2.71811104	-0.00017079
błąd minimalny	14	16384	0.00006104	2.71814919	-0.00013264
ાંચુલ મામામાં મામ	15	32768	0.00003052	2.71804428	-0.00023755

zmniejszanie kroku czasowego nie poprawi już wyniku

Table 2.1.4: Solutions of y' = y, y(0) = 1, at t = 1 obtained by Euler's method with 21-bit rounded arithmetic.

65536 0.00001526

2.71732903

-0.00095280

błędy zaokrągleń a metody różnicowe

 $u(t_n)$ rozwiązanie równania różniczkowego w chwili $t_{\scriptscriptstyle n}$

 u_n rozwiązanie równania różnicowego z dokładną arytmetyką

 $ilde{u}_n$ rozwiązanie uzyskane z arytmetyką skończonej dokładności

$$\tilde{e}_n = u(t_n) - \tilde{u}_n$$
 błąd całkowity

$$e_n = u(t_n) - u_n$$
 błąd globalny (jak wcześniej zdefiniowano)

$$r_n = u_n - \tilde{u}_n$$
 błąd zaokrąglenia

$$\tilde{e}_n = u(t_n) - u_n + u_n - \tilde{u}_n$$

$$|\tilde{e}_n| \le |u(t_n) - u_n| + |u_n - \tilde{u}_n| = |e_n| + |r_n|$$

oszacowanie od góry błędu całkowitego

błędy zaokrągleń dają o sobie znać gdy wykonamy zbyt wiele kroków

remedium: używać się schematów o wyższym rzędzie zbieżności niż pierwszy. Poniżej pewnego dt nie warto schodzić – nie tylko ze względu na czas obliczeń, ale i dokładność

błędy zaokragleń a metody różnicowe

$$\tilde{e}_n = u(t_n) - \tilde{u}_n$$
 błąd całkowity

$$e_n = u(t_n) - u_n$$
 błąd globalny

$$r_n = u_n - \tilde{u}_n$$

optymalny krok czasowy

Definicja:

Metody różnicowa jest **zbieżna** jeśli błąd globalny

$$\lim_{n \to \infty, \Delta t \to 0, n\Delta t = T} |e_n| = 0$$

znika do zera w chwili T gdy z Δt do 0

uwaga:

definicja zbieżności dotyczy błędu globalnego a nie całkowitego

stabilność bezwzględną wzoru trapezów

problem modelowy:
$$\frac{du}{dt} = \lambda u \quad \text{WP: } u(t=0)=1.$$
 rozwiązanie $u=exp(\lambda t)$

$$u_{n} = u_{n-1} + \frac{\Delta t}{2} \lambda (u_{n-1} + u_{n})$$

$$u_{n} = \frac{1 + \frac{\Delta t}{2} \lambda}{1 - \frac{\Delta t}{2} \lambda} u_{n-1}$$

$$u_{n} = \left(\frac{1 + \frac{\Delta t}{2} \lambda}{1 - \frac{\Delta t}{2} \lambda}\right)^{n} u_{0} \quad \left|\frac{1 + \lambda \frac{\Delta t}{2}}{1 - \lambda \frac{\Delta t}{2}}\right| \leq 1$$

$$|2 + z| \leq |2 - z|$$

zbiór punktów na p. Gaussa, które są nie dalej od (-2,0) niz od (0,2)

region bzwz. stabilności wzoru trapezów

Wniosek: dla λ <0 wzór trapezów bezwzględnie stabilny dla dowolnego kroku czasowego! A-stabilny

druga bariera Dahlquista: maksymalny rząd dokładności metody A-stabilnej =2 schemat trapezów jest najdokładniejszą metodą A-stabilną spośród liniowych metod wielokrokowych

Implementowana np. w SPICE.

region bzwz. stabilności Eulera:

region bzwz. stabilności wzoru trapezów

 $\Delta t \text{ Im } (\lambda)$ $\Delta t \text{ Re}(\lambda)$

niejawna metoda Eulera: region bezwzględnej stabilności

$$\frac{du}{dt} = f$$

poznane metody:

$$u_{n+1} = u_n + \Delta t f(t_n, u_n) + O(\Delta t^2)$$

$$u_{n+1} = u_n + \Delta t f(t_{n+1}, u_{n+1}) + O(\Delta t^2)$$

3)
$$u_{n+1} = u_n + \frac{\Delta t}{2} \left(f(t_{n+1}, u_{n+1}) + f(t_n, u_n) \right) + O(\Delta t^3)$$

Poznane metody: jednokrokowe (1-3), jawna (1) i niejawne (2-3), pierwszego (1-2) i drugiego (3) rzędu dokładności Metody (2-3) A stabilne, metoda (2) nadstabilna

jawne metody różnicowe wysokiej dokładności ??

jawne metody jednokrokowe wyższego rzędu dokładności niż jawny Euler

$$u' = f(t, u), u(0) = u_0$$

rozwinięcie Taylora ponownie:

$$u(t_n) = u(t_{n-1}) + \Delta t u'(t_{n-1}) + \frac{\Delta t^2}{2} u''(t_{n-1}) + \dots + \frac{\Delta t^k}{k!} u^{(k)}(t_{n-1}) + O(\Delta t^{k+1})$$

liczymy pochodne:

$$u'(t_{n-1}) = f(t_{n-1}, u(t_{n-1}))$$
 z RR.

RR różniczkujemy po czasie

$$u''(t_{n-1}) = [f'_t + f'_u u']_{(t_{n-1}, u_{n-1})}$$
czyli

$$u''(t_{n-1}) = [f'_t + f'_u f]_{(t_{n-1}, u_{n-1})}$$

podobnie

$$u'''(t_{n-1}) = \left[f_{tt}'' + 2f_{tu}''f + f_{uu}''f^2 + (f_u')^2 f + f_u'f_t' + f_{tu}''f \right]_{(t_{n-1}, u_{n-1})}$$

Zależnie od tego gdzie się zatrzymamy uzyskamy błąd lokalny zadanego rzędu

$$u(t_n) = u(t_{n-1}) + \Delta t u'(t_{n-1}) + \frac{\Delta t^2}{2} u''(t_{n-1}) + \dots + \frac{\Delta t^k}{k!} u^{(k)}(t_{n-1}) + O(\Delta t^{k+1})$$

Zależnie od tego gdzie się zatrzymamy uzyskamy błąd lokalny zadanego rzędu np.

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_{n-1}, u_{n-1}) + \frac{\Delta t^2}{2} \left[f'_t + f'_u f \right]_{(t_{n-1}, u_{n-1})} + \frac{\Delta t^3}{6} u'''(\xi_n)$$

pomysł: mało przydatny w praktyce ze względu na konieczność analitycznego wyliczenia pochodnych cząstkowych *f*. Dla metod ogólnych: nie powinniśmy liczyć, że *f* jest dane wzorem

podejście alternatywne: inspirowane całkowaniem

prawa strona = funkcja tylko
$$t$$
 $u'=f(t), u(0)=u_0$ z rozwiązaniem: $u(t)=u_0+\int_0^t f(\tau)d\tau$

jeśli zastąpimy całkę kwadraturą prostokątów z wywołaniem funkcji w lewym końcu przedziału

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_{n-1}) + O(\Delta t^2)$$
 - rozpoznajemy jawny schemat Eulera

kwadratura prostokątów z wywołaniem funkcji w prawym końcu przedziału

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_n) + O(\Delta t^2)$$
 - rozpoznajemy niejawny schemat Eulera

kwadratura trapezów

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_n)/2 + \Delta t f(t_{n-1})/2 + O(\Delta t^3)$$

- rozpoznajemy niejawny schemat trapezów

reguła punktu środkowego

wzór prostokątów z wywołaniem funkcji <u>w środku przedziału</u> (dokładny dla funkcji liniowej, znoszenie błędów)

$$u_n = u_{n-1} + \Delta t f(t_{n-1} + \Delta t/2) + O(\Delta t^3)$$

uogólniony wzór na równanie równania u'=f(t,u)

$$u_n = u_{n-1} + \Delta t f(t_{n-\frac{1}{2}}, u_{n-\frac{1}{2}}) \Big|$$

ale - skąd rozwiązanie w środku przedziału?

np. ze schematu Eulera:

$$u_{n-\frac{1}{2}} = u_{n-1} + \frac{\Delta t}{2} f(t_{n-1}, u_{n-1})$$

błąd lokalny Eulera O(Δt²), czy reguła punktu środkowego zachowa trzeci rząd błędu lokalnego?

sprawdźmy to rozważając bardziej ogólny schemat:

$$u_n = u_{n-1} + \Delta t \left(b_1 k_1 + b_2 k_2\right)$$
 $\begin{vmatrix} k_1 = f(t_{n-1}, u_{n-1}) & \text{obliczone na początku kroku} \\ k_2 = f(t_{n-1} + c\Delta t, u_{n-1} + a\Delta t k_1) & \text{obliczone gdzieś} \\ \text{w środku przedziału} & \text{z odpowiednio oszacowanym} \\ \frac{t_{n-l}, t_n}{t_n} & \text{z odpowiednio oszacowanym} \\ \text{rozwiązaniem u dla tego } t \text{ (wzór typu Eulera)} \end{aligned}$

jest to jawny dwustopniowy schemat **Rungego-Kutty**. potencjalna wyższa dokładność od jawnego Eulera kosztem dwóch wywołań f (podobnie jak we wzorze trapezów, ale RK: jawny)

b1,b2,a,c – parametry metody –jakie muszą być aby RK2 (2 = rząd dokładności)

należy do tej klasy z
$$b_1=0$$
, $b_2=1$, $c=1/2$, $a=1/2$

$$u_n = u_{n-1} + \Delta t f(t_{n-\frac{1}{2}}, u_{n-\frac{1}{2}})$$

$$u_{n-\frac{1}{2}} = u_{n-1} + \frac{\Delta t}{2} f(t_{n-1}, u_{n-1})$$

Jawne metody Rungego-Kutty dwustopniowe: wybór parametrów

jak dobrać b_1,b_2,c,a ? — metodą brutalnej siły - tak aby rozwinięcie Taylora metody zgadzało się z rozwinięciem Taylora dokładnego równania różniczkowego do wyrazów tak wysokiego rzędu jak to tylko możliwe

u'=f(t,u)

przypominamy: rozwinięcie Taylora dla funkcji dwóch zmiennych

$$g(x + \Delta x, y + \Delta y) = g(x, y)$$

$$+ \left(\Delta x \frac{\partial g(x, y)}{\partial x} + \Delta y \frac{\partial g(x, y)}{\partial y} \right)$$

$$+ \frac{1}{2!} \left(\Delta x^2 \frac{\partial^2 g(x, y)}{\partial x^2} + 2\Delta x \Delta y \frac{\partial^2 g(x, y)}{\partial x \partial y} + \Delta y^2 \frac{\partial^2 g(x, y)}{\partial y^2} \right) + \dots$$

wstawiamy rozwiązanie dokładne $u(t_n)$, $u(t_{n-1})$ do (*) i rozwijamy względem t_{n-1} , u_{n-1}

$$\begin{aligned} u(t_n) &= u(t_{n-1}) + \Delta t \left(b_1 k_1 + b_2 k_2\right) \\ k_1 &= f(t_{n-1}, u(t_{n-1})) \\ k_2 &= f(t_{n-1} + c\Delta t, u(t_{n-1}) + a\Delta t k_1) \longleftarrow \text{to trzeba rozwinąć} \end{aligned}$$

$$k_2 = f + c\Delta t f_t' + a\Delta t f f_u' + \frac{1}{2} \left(c^2 \Delta t^2 f_{tt}'' + a^2 \Delta t^2 f^2 f_{uu}'' + 2ac\Delta t^2 f_{tu}'' \right) + O(\Delta t^3)$$
wstawmy k_2 do rozwiniecia. (wszystko liczone

wstawmy k_2 do rozwinięcia.

Zachowajmy człony do Δt^{2} :

 $W t_{n-1}, u_{n-1}$

$$u(t_n) = u(t_{n-1}) + \Delta t \left[b_1 f + b_2 \left(f + c \Delta t f'_t + a \Delta t f f'_u \right) \right] + O(\Delta t^3)$$

rozwiniecie Taylora rozwiązania dokładnego uzyskaliśmy kilka slajdów wcześniej

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_{n-1}, u_{n-1}) + \frac{\Delta t^2}{2} \left[f'_t + f'_u f \right]_{(t_{n-1}, u_{n-1})} + \frac{\Delta t^3}{6} u'''(\xi_n)$$

czyli:

rząd Δt : $b_1 + b_2 = 1$, rząd Δt^2 : $b_2 c = b_2 a = 1/2$

czyli reguła punktu środkowego: $b_1=0$, $b_2=1$, c=1/2, a =1/2 ma błąd lokalny rzędu $O(\Delta t^3)$ mamy metodę równie dokładną co wzór trapezów – ale jawną (co ma swoje zalety i wady)

Wyższy rząd błędu do uzyskania tylko w metodach o większej niż 2 liczbie stopni

cztery parametry i trzy równania b₁+b₂=1

$$b_2c=b_2a=1/2$$

- pozostaje swoboda w wyborze parametrów

reguła punktu środkowego RK2

$$b_1=0$$
, $b_2=1$, $c=1/2$, $a=1/2$

dwa zastosowania jawnego schematu Eulera

$$u_{n-\frac{1}{2}} = u_{n-1} + \frac{\Delta t}{2} f(t_{n-1}, u_{n-1})$$

$$u_n = u_{n-1} + \Delta t f(t_{n-\frac{1}{2}}, u_{n-\frac{1}{2}})$$

oszacowanie wstępne w punkcie pośrednim (błąd lokalny rzędu drugiego) oszacowanie docelowe

(błąd lokalny oszacowania: rzędu trzeciego)

albo (przesunięty indeks)

$$u_{n+1} = u_n + \Delta t f(t_n + \frac{\Delta t}{2}, u_n + \frac{\Delta t}{2} f(t_n, u_n))$$

- 1) Szacujemy metodą Eulera punkt środkowy $[t+\Delta t/2, u(t+\Delta t/2)]$ korzystając z f(t,u) w lewym końcu przedziału
- 2) Wykorzystujemy wartość f w tym punkcie do wyliczenia zmiany y na całym przedziale Δt

RK punktu środkowego:b₁+b₂=1, b₂c=b₂a=1/2

$$u_n = u_{n-1} + \Delta t \left(b_1 k_1 + b_2 k_2 \right)$$

inny wybór:

$$b_1=b_2=1/2$$
, wtedy musi $a=c=1$

$$k_1 = f(t_{n-1}, u_{n-1})$$

$$k_2 = f(t_{n-1} + c\Delta t, u_{n-1} + a\Delta t k_1)$$

metoda podobna do wzoru trapezów (ale jawna)

$$u_{n+1} = u_n + \frac{\Delta t}{2} f(t_n, u_n) + \frac{\Delta t}{2} f(t_n + \Delta t, u_n + \Delta t f(t_n, u_n))$$

- 1) Szacujemy metodą Eulera punkt końcowy $[t+\Delta t, u(t+\Delta t)]$ korzystając z f(t,u) w lewym końcu przedziału
- 2) krok z *t* do *t*+∆*t* wykonujemy biorąc średnią arytmetyczną z *f na początku i końcu*

metoda RK2 trapezów

dla błędu lokalnego $O(\Delta t^3)$ potrzeba aby, rząd Δt : $b_1+b_2=1$, rząd Δt^2 : $b_2c=b_2a=1/2$

punkt środkowy b2=1, b1=0 [b1+b2]=1

czy ma sens b1=1, b2=0 ?

$$u(t_n) = u(t_{n-1}) + \Delta t (b_1 k_1 + b_2 k_2)$$
$$k_1 = f(t_{n-1}, u(t_{n-1}))$$

Metody Rungego-Kutty, forma ogólna

są to metody jednokrokowe, czyli można zapisać:

$$u_n = u_{n-1} + \Delta t \phi(t_{n-1}, u_{n-1}, \Delta t)$$

metoda RK w s-odsłonach (stage) (unikamy słowa "krok")

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^s b_i k_i$$

 \mathbf{Z}

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{n} a_{ij} k_j)$$
suvions w formio tabal Putahara **c** A

b

wzory przedstawiane w formie tabel Butchera

Metody Rungego-Kutty, forma ogólna

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^s b_i k_i$$

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{s} a_{ij} k_j)$$

czasem zapisywane w postaci:

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^{s} b_i f(t_{n-1} + c_i \Delta t, U_i)$$

$$U_{i} = u_{n-1} + \Delta t \sum_{j=1}^{s} a_{ij} f(t_{n-1} + c_{j} \Delta t, U_{j})$$

tutaj U_i – przybliżone rozwiązanie w chwili $t_{n-1}+c_i\Delta t$ zazwyczaj niższej dokładności niż rozwiązanie końcowe

jawne metody Rungego-Kutty

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^{5} b_i k_i$$

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{s} a_{ij} k_j)$$

obciete sumowanie:

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{n} a_{ij} k_j)$$

odsłona i-ta wyliczana na podstawie tylko wcześniejszych odsłon

historycznie wszystkie RK były jawne, uogólnienie okazało się przydatne dla problemów sztywnych

Wyprowadzanie formuł RK (a,b,c)

- 1) Rozwijamy rozwiązanie dokładne w szereg Taylora względem t_{n-1}
- 2) Podstawiamy rozwiązanie dokładne do ogólnej formy RK i rozwijamy względem t_{n-1}
- 3) Wartości parametrów a,b,c uzyskujemy z porównania. zazwyczaj w sposób niejednoznaczny

najbardziej popularne: jawne formuły 4-etapowe RK4:

- o 4-tym stopniu zbieżności (4-tym rzędzie dokładności)
- i 5-tym rzędzie błędu lokalnego

ogólna tabela Butchera: dla jawnych RK4

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^s b_i k_i$$

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{i-1} a_{ij} k_j)$$

$$c_1$$
=0 (dla każdej jawnej RK, zaczynamy – k_1 od wyliczenia prawej strony w kroku początkowym)

klasyczna formuła RK4:

$$u_n = u_{n-1} + \frac{\Delta t}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)$$

$$k_1 = f(t_{n-1}, u_{n-1})$$

$$k_2 = f(t_{n-1} + \frac{\Delta t}{2}, u_{n-1} + \frac{\Delta t k_1}{2})$$

$$k_3 = f(t_{n-1} + \frac{\Delta t}{2}, u_{n-1} + \frac{\Delta t k_2}{2})$$

$$k_4 = f(t_{n-1} + \Delta t, u_{n-1} + \Delta t k_3)$$

4 wywołania f na krok, błąd lokalny $O(\Delta t^5)$

gdy *f* tylko funkcja czasu RK4 redukuje się do formuły Simpsona (dokładnie całkuje wielomiany trzeciego stopnia):

$$u_n = u_{n-1} + \frac{\Delta t}{6} \left(f(t_{n-1}) + 4f(t_{n-1/2}) + f(t_n) \right)$$

Jawne schematy RK dla układu równań różniczkowych

$$\begin{split} \frac{du^1}{dt} &= f^1(t,u^1,u^2)\\ \frac{du^2}{dt} &= f^2(t,u^1,u^2) \end{split} \quad \begin{array}{l} \text{2 zmienne zależne u}^1\text{, u}^2\text{,}\\ \text{2 prawe strony f}^1\text{, f}^2 \end{split}$$

2 równania, s-odsłon

$$U_i^1 = u_{n-1}^1 + \Delta t \sum_{j=1}^{i-1} a_{ij} f^1(t_{n-1} + c_j \Delta t, U_j^1, U_j^2)$$

$$U_i^2 = u_{n-1}^2 + \Delta t \sum_{j=1}^{i-1} a_{ij} f^2(t_{n-1} + c_j \Delta t, U_j^1, U_j^2)$$

$$U_i^2 = u_{n-1}^2 + \Delta t \sum_{i=1}^{n-1} a_{ij} f^2(t_{n-1} + c_j \Delta t, U_j^1, U_j^2)$$

$$\begin{vmatrix} u_n^1 = u_{n-1}^1 + \Delta t \sum_{i=1}^s b_i f^1(t_{n-1} + c_i \Delta t, U_i^1, U_i^2) \\ u_n^2 = u_{n-1}^2 + \Delta t \sum_{i=1}^s b_i f^2(t_{n-1} + c_i \Delta t, U_i^1, U_i^2) \end{vmatrix} \mathbf{u_n} = \mathbf{u}_{n-1} + \Delta t \sum_{i=1}^s b_i \mathbf{f}(t_{n-1} + c_i \Delta t, \mathbf{U}_i)$$

zapis wektorowy

 \mathbf{u}_{n-1} , \mathbf{u}_n , \mathbf{f} , \mathbf{U}_1 , \mathbf{U}_2 , ... \mathbf{U}_N są wektorami o 2 składowych

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u})$$

$$\mathbf{U}_i = \mathbf{u}_{n-1} + \Delta t \sum_{j=1}^{i-1} a_{ij} \mathbf{f}(t_{n-1} + c_j \Delta t, \mathbf{U}_j)$$

$$\mathbf{u_n} = \mathbf{u}_{n-1} + \Delta t \sum_{i=1}^{s} b_i \mathbf{f}(t_{n-1} + c_i \Delta t, \mathbf{U}_i)$$

Tabela Butchera dla klasycznej jawnej RK4

$$u_{n} = u_{n-1} + \frac{\Delta t}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$k_{1} = f(t_{n-1}, u_{n-1})$$

$$k_{2} = f(t_{n-1} + \frac{\Delta t}{2}, u_{n-1} + \frac{\Delta t k_{1}}{2})$$

$$k_{3} = f(t_{n-1} + \frac{\Delta t}{2}, u_{n-1} + \frac{\Delta t k_{2}}{2})$$

$$k_{4} = f(t_{n-1} + \Delta t, u_{n-1} + \Delta t k_{3})$$

$$u_{n} = u_{n-1} + \Delta t \sum_{i=1}^{s} b_{i} k_{i}$$

$$k_{i} = f(t_{n-1} + c_{i} \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{i-1} a_{ij} k_{j})$$

$$\begin{array}{c|ccccc}
0 & 0 & 0 & 0 & 0 \\
c_{2} & a_{21} & 0 & 0 & 0 \\
c_{3} & a_{31} & a_{32} & 0 & 0 \\
c_{4} & a_{41} & a_{42} & a_{43} & 0 \\
\hline
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}$$

0	0	0	0	0
1/2	1/2	0	0	0
1/2	0	1/2	0	0
1	0	0	1	0
	1/6	1/3	1/3	1/6

Dlaczego RK4 najbardziej popularna:

RK4 – wyjątkowo opłacalna

RK1 – metoda RK w jednej odsłonie

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^s b_i k_i$$

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{s} a_{ij} k_j)$$

b1+b2=1, przy b_I =1, b2=0 dostaniemy jawnego Eulera warunek a*b2=c*b2 =1/2 nie będzie spełniony

jawny schemat Eulera to jawna metoda RK1

$$u_n = u_{n-1} + \Delta t \sum_{i=1}^{s} b_i k_i$$

$$k_i = f(t_{n-1} + c_i \Delta t, u_{n-1} + \Delta t \sum_{j=1}^{s} a_{ij} k_j)$$

jawny Euler

RK2 trapezów

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
 & \frac{1}{2} & \frac{1}{2}
\end{array}$$

 $b_1=b_2=1/2$, a=c=1

$$u_n = u_{n-1} + \Delta t (b_1 k_1 + b_2 k_2)$$

$$k_1 = f(t_{n-1}, u_{n-1})$$

$$k_2 = f(t_{n-1} + c\Delta t, u_{n-1} + a\Delta t k_1)$$

RK2 punktu środkowego

$$u_{n+1} = u_n + \Delta t f(t_n + \frac{\Delta t}{2}, u_n + \frac{\Delta t}{2} f(t_n, u_n))$$

0	0	0
1/2	1/2	0
	0	1