Kapitel 1

Ebene hyperbolische Geometrie

Knörrer: Geometrie Kapitel 3

Ziel. Konstruktion einer *vollständigen* Fläche H mit konstanter Krümmung -1, analog zur Ebene $(K \equiv 0)$ und Sphäre $(K \equiv 1)$.

Vollständig: Jede geodätische Kurve $\gamma:(a,b)\to H$ lässt sich geodätisch auf $\mathbb R$ erweitern.

Motivation. Gauss-Bonnet

$$\int_{\Sigma} K \ dA = 2\pi \chi(\Sigma)$$

wobei Σ eine kompakte, vollständige Fläche. Falls $\chi(\Sigma)<0$ und die Krümmung K konstant ist, dann muss K negativ sein!

Theorem 1 (Klassifikation der Flächen). Sei Σ eine topologische (glatte), kompakte, vollständige, orientierbare, zusammenhängende Fläche. Dann ist Σ zu einer der Flächen Σ_g homöomorph (diffeomorph):

 Σ_q mit g Henkel

Es gilt: $\chi(\Sigma_q) = 2 - 2g < 0$ falls $g \ge 2$.

1.1 Eine Riemannsche Metrik mit K=-1

Naiver Ansatz zur Konstruktion einer Riemannschen Metrik auf \mathbb{R}^2 mit K=-1.

$$\langle \ , \ \rangle_p = h(p)\langle \ , \ \rangle_{\mathbb{R}^2}$$

wobei $h: \mathbb{R}^2 \to \mathbb{R}$ positiv und glatt ist. Für die Koeffizientenfunktionen E, F, G gilt also:

- $E(x,y) = \langle e_1, e_1 \rangle_{(x,y)} = h(x,y)$
- $F(x,y) = \langle e_1, e_2 \rangle_{(x,y)} = 0$
- $G(x,y) = \langle e_2, e_2 \rangle_{(x,y)} = h(x,y)$

Terminologie. Falls E=G und F=0 gilt, dann heissen die Koordinaten konform oder isotherm.

Eine kleine Rechnung zeigt

$$K = -\frac{1}{2h(x,y)}\Delta(\log(h(x,y)))$$

wobei $\Delta f = f_{xx} + f_{yy}$ der Laplaceoperator (siehe Serie 10). Nun führt K = -1 zu einer Differentialgleichung für h:

$$2h(x,y) = \Delta(\log(h(x,y)))$$

Dies ist eine partielle Differentialgleichung, welche schwierig zu lösen ist. Mit dem Lösungsansatz $h(x,y)=y^n$ finden wir eine Lösung $h(x,y)=\frac{1}{y^2}$, welche allerdings nur auf der obenen Halbebene $H=\{z=x+iy\in\mathbb{C}\mid y>0\}$ definiert ist.

Definition. Die hyperbolische Ebene ist die Menge $H=\{z\in\mathbb{C}\mid \operatorname{im}(z)>0\}$ mit der Riemannschen Metrik

$$\langle \; , \; \rangle_{x+iy} = \frac{1}{y^2} \langle \; , \; \rangle_{\mathbb{R}^2}$$

Bemerkungen.

1. Die Translation $z \mapsto z + a$ mit $a \in \mathbb{R}$ ist eine Isometrie von H. Tatsächlich, schreibe

$$T: H \to H$$

 $(x,y) \mapsto (x+a,y)$

Für alle $p \in H$ gilt $(DT)_p = Id_{\mathbb{R}^2}$. Zu prüfen für alle $v, w \in \mathbb{R}^2$:

$$\langle v, w \rangle_p \stackrel{?}{=} \langle (DT)_p(v), (DT)_p(w) \rangle_{T(p)} = \langle v, w \rangle_{T(p)}$$

Stimmt, da y(p) = y(T(p)), und somit $\langle , \rangle_p = \langle , \rangle_{T(p)}$

2. Die Streckung $z\mapsto \lambda z$ mit $\lambda>0$ ist eine Isometrie von H. Schreibe

$$S: H \to H$$

 $(x,y) \mapsto (\lambda x, \lambda y)$

Für alle $p \in H$ gilt $(DS)_p = \lambda Id_{\mathbb{R}^2}$. Zu prüfen für alle $v, w \in \mathbb{R}^2$:

$$\langle v, w \rangle_p \stackrel{?}{=} \langle (DS)_p(v), (DS)_p(w) \rangle_{S(p)} = \lambda^2 \langle v, w \rangle_{S(p)}$$

Stimmt, da $y(S(p)) = \lambda y(p)$, also $\langle , \rangle_{S(p)} = \frac{1}{\lambda^2} \langle , \rangle_p$

3. Die Inversion $z\mapsto -\frac{1}{z}$ ist eine Isometrie von H. Schreibe

$$\varphi(z) = -\frac{1}{z} = -\frac{\bar{z}}{|z|^2} = \frac{-x + iy}{x^2 + y^2} \in H$$

falls $z \in H$ d.h. y > 0. Also $\varphi : H \to H$. Es gilt für alle $z \in H$ und $v \in \mathbb{C} = \mathbb{R}^2$:

$$(D\varphi)_z(v) = \varphi'(z)v = -\frac{1}{z^2}v$$

Zu prüfen:

$$\langle v,w\rangle_z\stackrel{?}{=}\langle -\frac{1}{z^2}v,-\frac{1}{z^2}w\rangle_{-\frac{1}{z}}=\frac{1}{|z|^4}\langle v,w\rangle_{-\frac{1}{z}}$$

. Stimmt, da $y(-\frac{1}{z})=\frac{1}{|z|^2}y(z)\implies \langle\ ,\ \rangle_{-\frac{1}{z}}=|z|^4\langle\ ,\ \rangle_z$

1.2 Möbiustransformationen

Erinnerung (aus der komplexen Analysis). Für $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(\mathbb{C}^2)$, definieren wir die zugehörige *Möbiustransformation* (nicht auf ganz \mathbb{C} definiert).

$$(MT)\Phi:\mathbb{C}\dashrightarrow\mathbb{C}$$

$$z\mapsto \frac{az+b}{cz+d}$$

Beispiele.

1.
$$A = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} b \in \mathbb{C} \implies \Phi_A(z) = z + b$$

2.
$$A = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} a \in \mathbb{C} \setminus \{0\} \implies \Phi_A(z) = a^2 z$$
. Für $a = \sqrt{\lambda} : \lambda z \ (\lambda > 0)$

3.
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \implies \Phi_A(z) = -\frac{1}{z}$$
 Insbesondere, für $a = \sqrt{\lambda}(\lambda > 0) : \lambda z$

Bemerkung. Die obigen Isometrien 1-3 sind vom Typ Φ_A mit $A \in SL(\mathbb{R}^3)$. (Determinante 1)

Projektive Interpretation von Möbiustransformation

Sei $A \in GL(\mathbb{C}^2)$. Dann erhalten wir eine lineare Abbildung $A : \mathbb{C}^2 \to \mathbb{C}^2$. Insbesondere bildet A Geraden durch 0 auf Geraden durch 0 ab (1).

Definition. Die *projektive Gerade* $\mathbb{P}(\mathbb{C}^2) = \mathbb{P}^1\mathbb{C}$ ist die Menge aller komplexen Geraden durch 0 in \mathbb{C}^2 . Konkret: Die Menge der Äquivalenzklassen bezüglich folgender Äquivalenzrelation auf $\mathbb{C}^2 \setminus \{0\}$:

$$v \sim w \iff \exists \lambda \in \mathbb{C}, \lambda \neq 0 \text{ mit } w = \lambda v$$

Dann ist
$$\mathbb{P}(\mathbb{C}^2) := (\mathbb{C}^2 \setminus \{0\}) / \sim$$
. Sei nun $\binom{a}{b} \in \mathbb{C}^2 \setminus \{0\}$

• Falls
$$b \neq 0$$
, dann gilt $v = \begin{pmatrix} a \\ b \end{pmatrix} \sim \begin{pmatrix} \frac{a}{b} \\ 1 \end{pmatrix} = \begin{pmatrix} z \\ 1 \end{pmatrix} z \in \mathbb{C}$.

• Falls
$$b = 0$$
, dann gilt $v = \begin{pmatrix} a \\ b \end{pmatrix} \underset{a \neq 0}{\sim} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \infty$.

Daraus folgern wir, dass $\mathbb{P}(\mathbb{C}^2) = \mathbb{C} \cup \{\infty\}$. Aus (1) folgt: Die Abbildung $A : \mathbb{C}^2 \to \mathbb{C}^2$ induziert eine Abbildung

$$\Phi_A: \mathbb{P}(\mathbb{C}^2) \to \mathbb{P}(\mathbb{C}^2)$$
$$[v] \mapsto [Av]$$

Interpretation via $\mathbb{P}(\mathbb{C}^2) = \mathbb{C} \cup \{\infty\}.$

•
$$v = \begin{pmatrix} z \\ 1 \end{pmatrix} \implies Av = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix} \sim \begin{pmatrix} \frac{az+b}{cz+d} \\ 1 \end{pmatrix}$$
 bzw. $cz+d=0 \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

•
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies Av = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} \sim \begin{cases} \begin{pmatrix} \frac{a}{c} \\ 1 \end{pmatrix} & \text{falls } c \neq 0 \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{falls } c = 0 \end{cases}$$

Notation für $\Phi_A:\Phi_A(z)=\frac{az+b}{cz+d}$ "geeignet interpretiert". Aus dieser Definition folgt auch dass $\Phi_{AB}=\Phi_A\circ\Phi_B$. Diese Tatsache ist mit der anderen Definition mühsam zu beweisen.

Lemma 1. Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(\mathbb{R}^2)$ Dann erhält die Möbiustransformation φ_A die obere Halbebene $H = \{z \in \mathbb{C} \mid \operatorname{im}(z) > 0\}.$

Beweis. Sei $z \in H$, d.h. $\operatorname{im}(z) = \frac{1}{2i}(z - \overline{z}) > 0$. Berechne

$$\operatorname{im}(\varphi_{A}(z)) = \frac{1}{2i} \left(\frac{az+b}{cz+b} - \frac{a\bar{z}+b}{c\bar{z}+d} \right)$$

$$= \frac{1}{2i} \frac{(az+b)(c\bar{z}+d) + (a\bar{z}+b)(cz+d)}{|cz+d|^{2}}$$

$$= \frac{1}{2i} \frac{(ad-bc)(z-\bar{z})}{|cz+d|^{2}}$$

$$\stackrel{det A=1}{=} \frac{\operatorname{im}(z)}{(cz+d)^{2}} > 0$$

Bemerkung. Es gilt sogar $\varphi_A(H) = H$ Tatsächlich gilt

$$\begin{array}{cc} H=\varphi \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (H)=\varphi_{A \circ A^{-1}}(H) \\ & \stackrel{\varphi_{AB}=\varphi_{A} \circ \varphi_{B}}{=} \varphi_{A} \circ \varphi_{A^{-1}}(H)=\varphi_{A}(\varphi_{A^{-1}}(H)) \subset \varphi_{A}(H) \end{array}$$

 $\implies \varphi_A(H) = H$. Daraus folgt, dass Möbiustransformationen eine Gruppe bilden.

Lemma 2. Jede Möbiustransformation $\varphi_A : H \to H$ mit $A \in SL(\mathbb{R}^2)$ ist eine endliche Komposition von Möbiustransformationen der Form

- 1. $z \mapsto z + b$ $(b \in \mathbb{R})$ horizontale Translation
- 2. $z \mapsto \lambda z$ $(\lambda > 0)$ Streckung
- 3. $z \mapsto -\frac{1}{z}$ Inversion

Beweis.

$$\frac{az+b}{cz+d} = \frac{a}{c}\frac{cz+\frac{c}{a}b}{cz+d} = \frac{a}{c}\frac{cz+d+(\frac{c}{a}b-d)}{cz+d} = \alpha + \frac{\beta}{cz+d}$$

für geeignete α und β . Details siehe Serie 11.

Korollar 1. Alle Möbiustransformationen der Form $\varphi_A : H \to H$ mit $A \in SL(\mathbb{R}^2)$ sind Isometrien bezüglich der Riemannschen Metrik $\frac{1}{u^2}\langle \ , \ \rangle_{\mathbb{R}^2}$.

Beweis. Möbiustransformationen des Typs 1-3 sind Isometrien, siehe oben \Box

Lemma 3. Die Kurve $\gamma : \mathbb{R} \to H$ ist geodätisch.

$$t \mapsto ie^t$$

Anmerkung: Baader hat im Rückblick impliziert $\forall p \in H$ gilt K(p) - 1

Beweis. Wir bemerken zuerst, dass

$$||\dot{\gamma}(t)||_{H} = \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{H}}$$

$$y(\gamma(\underline{t})) = e^{t} \sqrt{\frac{1}{(e^{t})^{2}} \underbrace{\langle ie^{t}, ie^{t} \rangle_{\mathbb{R}^{2}}}_{\langle e^{t}, e^{t} \rangle = (e^{t})^{2}}} = 1$$

 $\implies \gamma: \mathbb{R} \to H$ ist nach Bogenlänge parametrisiert (bzgl. hyperbolischer Metrik). Sei nun $\delta: \mathbb{R} \to H$ die eindeutige geodätische Kurve mit $\delta(0) = i$ und $\dot{\delta}(0) = i$. Betrache die folgende Isometrie von H (Spiegelung an $i\mathbb{R}$)

$$\sigma: H \to H$$
$$x + iy \mapsto -x + iy$$

Nun ist $\sigma \circ \delta : \mathbb{R} \to H$ auch geodätisch mit $\sigma \circ \delta(0) = i$ und auch $\frac{d}{dt}(\sigma \circ \delta)(0) = i$. Aus der Eindeutigkeit der Geodäten zu Anfangsbedingungen folgt also $\delta = \sigma \circ \delta$, also $\delta(\mathbb{R}) \subset i\mathbb{R}$. Da γ und δ nach Bogenlänge parametrisiert (δ ist geodätisch mit $||\dot{\delta}(0)||_H = 1!$) sind, folgt $\gamma = \delta$.

Proposition 1. Die Geodäten in H sind genau die Halbgeraden und Halbkreise, welche senkrecht auf " $\mathbb{R} \cup \{\infty\} = \partial H$ ". stehen.

Geodäten in Halbebene H

Beweis. Wir haben schon eine Geodäte gefunden: $i\mathbb{R}_{>0}$, das Bild der Kurve $\gamma(t)=ie^t$. Schreibe $h=\mathrm{Bild}(\gamma)\subset H$. Nun ist für jede Isometrie $\varphi:H\to H, \varphi(H)\subset H$ auch eine Geodäte. Insbesondere können wir auf h iteriert Abbildung der Form

- 1. $z \mapsto z + b$ $b \in \mathbb{R}$
- $2. z \mapsto \lambda z \qquad \lambda > 0$
- 3. $z \mapsto -\frac{1}{z}$

Daraus folgt, dass alle Halbgeraden auf $\mathbb R$ Geodäten sind. Betrachte die spezielle Isometrie $\varphi(z)=-\frac{2}{z+1}$

Behauptung. $\varphi(h)$ ist ein Halbkreis in H mit Zentrum -1 und Radius 1

Beweis. Sei $iy \in h$. Berechne

$$|\varphi(iy)+1| = \left|-\frac{2}{iy+1} + \frac{iy+1}{iy+1}\right| = \left|\frac{iy-1}{iy+1}\right| = 1$$

Unter Anwendung von horizontalen Transformationen und Streckungen erhalten wir aus $\varphi(h)$ alle Halbkreise Senkrecht auf \mathbb{R} .

Halbkreis als Geodäte

Frage. Wieso existieren keine weiteren Geodäten?

Zu jeden $z \in H$ und jedem Einheitsvektor v existiert genau eine geodätische Kurve $\gamma : \mathbb{R} \to H$ mit $\gamma(0) = z$ und $\dot{\gamma}(0) = v$. Das Bild von γ muss also der Halbkreis oder die Halbgerade durch z mit Tangente v sein!

Eindeutigkeit der Geodäte

Bemerkung. Für alle $z, w \neq z \in H$ existiert eine Geodäte g < H mit $z, w \in g$ Hingegen existiert zu $g \subset H$ und $z \notin g$ unendlich viele Geodäten $h \in H$ mit $z \in h$ und $h \cap g = \emptyset$. Wir bemerken, dass das Parallelaxiom in der hyperbolischen Ebene nicht erfüllt ist.

Dies wurde etwa 1840 von Bolyai und Lobachevski bemerkt.

1.3 Die Isometriegruppe von H

Lemma 4. Sei $\varphi: H \to H$ eine orientierungserhaltende Isometrie, d.h. für alle $z \in H$ gilt $\det((D\varphi)_z > 0)$. Dann ist φ durch $\varphi(i) \in H$ und $(D\varphi)_i(i) \in \mathbb{C}$ eindeutig bestimmt.

Beweis. Geometrisch, unter Benutzung der Tatsache, dass Isometrien winkelerhaltend sind. Wir bemerken zuerst, dass $\delta(t) = \varphi(ie^t)$ eine geodätische Kurve mit $\delta(0) = \varphi(i)$ und $\dot{\delta}(0) = (D\varphi)_{ie^0}(i) = (D\varphi)_i(i)$ ist, also durch $\varphi(i) \in H$ und $(D\varphi)_i(i) \in \mathbb{C}$ bestimmt. Insbesondere kennen wir auch $\varphi(2i) \in H$. Sei $z \in H \setminus i\mathbb{R}_{>0}$, $g_i, g_z \subset H$ Geodäten mit $i, z \in g_i$ bzw. $2i, z \in g_z$, wegen $\angle(g_i, h) = \angle(\varphi(g_i), \varphi(h))$ und φ winkelerhaltend. Daraus folgt $\varphi(g_i)$ und $\varphi(g_z) \subset H$ festgelegt. Daraus erhalten wir $\varphi(z) = \varphi(g_i) \cap \varphi(g_z)$. Dies ist ein eindeutiger Schnittpunkt, da es Halbkreise senkrecht auf H sind.

Definition. Iso⁺ $(H) = \{ \varphi : H \to H \mid \varphi \text{ ist eine orientierungserhaltende Isometrie} \}$ Dies ist eine Gruppe unter der üblichen Komposition.

Für alle $A \in SL(\mathbb{R}^2)$ gilt $\varphi_A \in \mathrm{Iso}^+(H)$. Wir erhalten also eine Abbildung

$$\Psi: SL(\mathbb{R}^2) \to \mathrm{Iso}^+(H)$$

$$A \mapsto \varphi_A$$

welche ein Gruppenhomomorphismus ist: $\varphi_{AB} = \varphi_A \circ \varphi_B$

Theorem 2. Ψ ist surjektiv, es gilt $\ker(\Psi) = \left\{ \pm E = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ Insbesondere gilt $\operatorname{Iso}^+(H) \simeq SL(\mathbb{R}^2) / \pm E =: PSL(\mathbb{R}^2)$ Beweis.

1. $\ker(\Psi) = \{\pm E\}$: Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(\mathbb{R}^2)$ mit $\varphi_A = Id_H$, d.h. für alle $z \in H$ $\frac{az+b}{cz+d} = z$ bzw. $cz^2 + (d-a)z - b = 0$. Wir folgern c = 0, d = a, b = 0. Also $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, mit $\det(A) = a^2 = 1 \implies a = \pm 1(A = \pm E)$

2. Ψ ist surjektiv: Sei $\varphi \in \text{Iso}^+(H)$. Betrachte $\varphi(h) = \varphi(i\mathbb{R}_{>0}) \subset H$. Aus obigen Ausführungen wissen wir, dass eine Möbiustransformation φ_A existiert mit $\varphi_A(h) = \varphi(h)$. Daraus folgt $\underbrace{\varphi_{A^{-1}} \circ \varphi(h)}_{\in \text{Iso}^+(H)} = h$. Nach einer Streckung $\varphi_B(z) = \lambda z$

gilt sogar $\varphi_B^{-1} \circ \varphi_{A^{-1}} \circ \varphi(i) = i$. Es kann sein, dass $\varphi_B^{-1} \circ \varphi_{A^{-1}} \circ \varphi$ die Geodäte h um 180° dreht, um den Punkt i. Entweder ist

$$\varphi_B^{-1} \circ \varphi_{A^{-1}} \circ \varphi = \begin{cases} Id_H \implies \varphi = \varphi_A \circ \varphi_B = \varphi_{AB} = \Psi(AB) \\ \varphi_C \implies \varphi = \varphi_A \circ \varphi_B \circ \varphi_C = \varphi_{ABC} = \Psi(ABC) \end{cases}$$

Konsequenz. Isometrien von H, welche die Orientierung erhalten, sind Möbiustransformationen φ_A mit $A \in SL(\mathbb{R}^2)$

1.4 Distanz und Flächeninhalt

Seien $p, q \in H$.

Definition. $d_H(p,q) = \inf\{L(\gamma) \mid \gamma : [a,b] \to H \ C^1 \ \text{mit} \ \gamma(a) = p, \gamma(b) = q\}$ wobei

$$L(\gamma) = \int_a^b ||\dot{\gamma}(t)||_H dt = \int_a^b \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_H} dt$$

Lemma 5. Für alle $T \ge 1$ gilt : $d_H(i, Ti) = \log(T)$.

Beweis. Betrachte zuerst die Kurve

$$\gamma: [0, \log(T)] \to H$$
$$t \mapsto ie^t$$

Es gilt $\gamma(0) = i, \gamma(\log(T)) = Ti$. Berechne

$$L(\gamma) = \int_0^{\log(T)} \sqrt{\frac{1}{(e^t)^2} \langle ie^t, ie^t \rangle} dt$$
$$= \int_0^{\log(T)} 1 dt = \log(T)$$

Hier wird benutzt, dass $\langle \ , \ \rangle_H = \frac{1}{y^2} \langle \ , \ \rangle_{\mathbb{R}^2}$ und $y(\gamma(t)) = e^t.$

Sei nun $\delta:[a,b]\to H$ C^1 mit $\delta(a)=i,\delta(b)=T$ ein beliebiger C^1 -Weg. Schreibe

 $\delta(t) = x(t) + iy(t)$ mit $\dot{\delta}(t) = \dot{x}(t) + i\dot{y}(t)$. Schätze ab:

$$L(\delta) = \int_{a}^{b} \sqrt{\langle \dot{\delta}(t), \dot{\delta}(t) \rangle_{H}} dt$$

$$= \int_{a}^{b} \frac{1}{y(t)} \sqrt{(\dot{x}(t)^{2} + \dot{y}(t)^{2})} dt$$

$$\geq \int_{a}^{b} \sqrt{\frac{\dot{y}(t)^{2}}{y(t)^{2}}} dt$$

$$= \int_{a}^{b} \left| \frac{\dot{y}(t)}{y(t)} \right| dt$$

$$\geq \int_{a}^{b} \frac{\dot{y}(t)}{y(t)} dt = \log(y(b)) - \log(\underline{y(a)}) = \log(T) - 0$$

Proposition 2. Für alle $z, w \in H$ gilt

$$\cosh(d_H(z, w)) = 1 + \frac{|z - w|^2}{2 * \operatorname{im}(z) \operatorname{im}(w)}$$

Zur Erinnerung: $cosh(x) = \frac{1}{2}(e^x + e^{-x})$

Bemerkungen.

- 1. Für z = w gilt $d_H(z, w) = 0$, also $\cosh(d_H(z, w)) = 1$. Deshalb "+1"
- 2. Sei $x \in \partial H = \mathbb{R} \cup \{\infty\}$. Dann gilt für festes $z \in H$:

$$\lim_{w \to x} d_H(z, w) = +\infty$$

da im $(w) \to 0$. "Punkte im Rand ∂H sind une
ndlich weit weg"

Beweis. Seien zunächst $z, w \in i\mathbb{R}_{>0}$: schreibe z = ia und w = ib mit a < b, (sonst benutze $d_H(z, w) = d_H(w, z)$). Für den Weg γ : $[\log(a), \log(b)] \to H$ und $t \mapsto ie^t$, gilt $\gamma(\log(a)) = ia = z, \gamma(\log(b) = ib = w)$, und $L(\gamma) = \log(b) - \log(a)$. Für alle anderen Wege $\delta : [c, d] \to H$ mit $\delta(c) = z$ und $\delta(d) = w$ gilt:

$$L(\delta) = \int_{c}^{d} ||\dot{\delta}(t)||_{H} dt = \int_{c}^{d} \frac{1}{y(t)} \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt$$
$$\geq \int_{c}^{d} \frac{1}{y(t)} \sqrt{(\dot{y}(t)^{2})} dt$$

 \Longrightarrow

$$L(\delta) \ge \int_{c}^{d} \frac{\dot{y}(t)}{y(t)} dt = [\log(y(t))]_{c}^{d} = \log(y(d)) - \log(y(c)) = \log(b) - \log(a) = \log(\frac{b}{a})$$

Wir folgern $d_H(ia,ib) = \log(\frac{b}{a})$. Aus allem folgt dann $\cosh(d_H(ia,ib)) = \frac{1}{2}(\frac{a}{b} + \frac{a}{b}) = \frac{1}{2}\frac{b^2+a^2}{ab} = 1 + \frac{(a-b)^2}{2ab}$ Also folgt die Proposition für $z,w \in i\mathbb{R}_{>0}$. Für den allgemeinen Fall: Seien $z \neq w \in H$ beliebig. Dann existiert eine Isometrie $\varphi: H \to H$ (eine Möbiustransformation $\varphi_A: H \to H$ mit $A \in SL(\mathbb{R}^2)$), welche die Geodäte durch z,w auf die Geodäte $i\mathbb{R}_{>0}$ abbildet (siehe oben).

Insbesondere gilt $\varphi(z) = ia$ und $\varphi(w) = ib$. Wir bemerken, dass

$$d_H(z, w) = d_H(\varphi(z), \varphi(w)) = d_H(ia, ib)$$

gilt (da φ eine Isometrie). Falls wir zeigen können, dass φ auch den Ausdruck

$$1 + \frac{|z - w|^2}{2\operatorname{im}(z)\operatorname{im}(w)}$$

erhält, dann sind wir fertig! Es reicht, dies für Möbiustransformationen des Typs 1 bis 3 zu zeigen.

1. $z \mapsto z + c$ $(c \in \mathbb{R})$ invariant, da Differenz

2.
$$z \mapsto \lambda z$$
 $(\lambda > 0)$ ok, da $|\lambda z - \lambda w|^2 = \lambda^2 |z - w|^2$, im $(\lambda a) = \lambda$ im (a)

3. $z \mapsto -\frac{1}{z}$ Die letzte Transformation ist ok, da

$$1 + \frac{\left| -\frac{1}{z} + \frac{1}{w} \right|^2}{2\operatorname{im}(-\frac{1}{z})\operatorname{im}(-\frac{1}{w})} = 1 + \frac{\frac{|w - z|^2}{|z|^2|w|^2}}{2\frac{\operatorname{im}(z)}{|z|^2}\frac{\operatorname{im}(w)}{|w|^2}} = 1 + \frac{|w - z|^2}{2\operatorname{im}(z)\operatorname{im}(w)}$$

Flächeninhalt

Sei $\Delta \in {\cal H}$ ein geodätisches Dreieck. Nach Gauss-Bonnet (lokal) gilt:

$$\int_{\Delta} K \ dA = \underbrace{\int_{\Delta} (-1) \ dA}_{-area(\Delta)} = \alpha + \beta + \gamma - \pi$$

Also gilt $area(\Delta) = \pi - (\alpha + \beta + \gamma)$

Wir überprüfen dies durch Integration.

Spezialfall. $\alpha = \beta = \gamma = 0$. Das heisst Δ ist ein *ideales Dreieck* mit Eckpunkten in ∂H

Ideales Dreieck mit Winkeln 0

Behauptung. Es existiert eine Isometrie $\varphi: H \to H$, welche die Eckpunkte von Δ auf $-1, +1, \infty$ schickt!

Abbildung 1.1: Beweis der Behauptung

Berechne nun den Flächeninhalt vom letzten Dreieck Δ_0

$$area(\Delta) = \int_{\Delta} dA$$

$$= \int_{\Delta} \sqrt{EG - F^2} \, dx dy = \int_{\Delta_0} \left(\frac{1}{y^2} dy\right) dx$$

$$= \int_{-1}^1 \left(\int_{\sqrt{(1-x^2)}}^{+\infty} \frac{1}{y^2} \, dy\right) dx$$

$$= \int_{-1}^1 \frac{1}{\sqrt{1-x^2}} \, dx$$

$$= \arcsin(1) - \arcsin(-1) = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi$$

Hier wird benutzt $\int \frac{1}{y^2} dy = -\frac{1}{y}$. Ähnlich funktionert dies für ein Dreieck Δ_{α} mit $\alpha > 0$. $\beta = \gamma = 0$.

$$area(\Delta_{\alpha}) = \int_{-1}^{\cos(\alpha)} \left(\int_{\sqrt{-x^2}}^{+\infty} \frac{1}{y^2} dy \right) dx = \dots = \arcsin(\cos(\alpha)) - \arcsin(-1)$$

. Wir nutzen $cos\alpha = sin(\frac{\pi}{2} - \alpha) \implies area(\Delta_{\alpha}) = \pi - \alpha$ Im allgemeinen Fall $\alpha, \beta, \gamma > 0$ berechnen wir $area(\Delta)$ mit folgendem Ergänzungsbild.

Allgemeiner Fall

fehltnochtext

1.5 Ausblick Teichmüllertheorie

(Nicht mehr Prüfungsrelevant)

Erinnerung. Sei Σ_g die Standardfläche vom Geschlecht $g \geq 2$. Dann gilt $\chi(\Sigma_g) = 2 - 2g < 0$.F Falls auf Σ_g eine Metrik mit konstanter Krümmung K existiert, dann muss K negativ sein.

$$\int_{\Sigma_g} K \ dA = 2\pi \chi(\Sigma_g) < 0$$

Konstruktion einer Riemannschen Metrik auf $Sigma_g$ mit K=-1.

Lemma 6. In H existieren rechtwinklige Sechsecke.

Beweis. Starte mit idealem Seckseck: Ziehe Eckpunkte nach oben bis die Eckpunkte rechtwinklig aufeinander sind. Alternativer Beweis via Cayleytransformation. Verklebe zwei solche Secksecke S_1 und S_2 entlang dreier Seiten; erhalte eine Hose. (dies ist ein abstrakter Prozess, nicht in \mathbb{R}^3 !). Dann verklebe Hosen zu geschlossenen Flächen.