

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Lógica combinacional Funções e Portas Lógicas

Funções Lógicas

- Um circuito digital emprega um conjunto de funções lógicas, onde função é a relação existente entre a variável independente e a variável dependente (função) assim como aprendemos na matemática. Para cada valor possível da variável independente determina-se o valor da função.
- O conjunto de valores que uma variável pode assumir depende das restrições ou especificações do problema a ser resolvido. Esta variável é, normalmente, conhecida como variável independente.

Características das variáveis lógicas

As variáveis lógicas (dependentes ou independentes) possuem as seguintes características:

- Pode assumir somente um de dois valores possíveis;
- Os seus valores são expressos por afirmações declarativas, ou seja, cada valor está associado a um significado;
- Os dois valores possíveis das variáveis são mutuamente exclusivos.

Uma variável lógica A pode assumir um valor verdadeiro (A=V) ou o valor falso (A=F). Em geral, usa-se uma faixa de tensão em volts compatível com os circuitos digitais utilizados para representar o valor falso ou verdadeiro de uma variável lógica.

- Lógica Positiva: A tensão mais positiva representa o valor V (1) e a mais negativa o valor F(0).
- Lógica Negativa: O valor V é representado pela tensão mais negativa (1) e F pela tensão mais positiva (0).
- Lógica Mista: No mesmo sistema, usam-se as lógicas positiva e negativa.

Representação lógica

Nos circuitos digitais tem-se somente dois níveis de tensão, que apresentam correspondência com os possíveis valores das variáveis lógicas.

Uma lógica bastante utilizada é a TTL ("Transistor Transistor Logic") positiva, onde:

- 0 V representa 0 lógico
- +5 V representa 1 lógico

Funções Lógicas Básicas

- NOT: NÃO / INVERSORA
- AND: E / CONJUNÇÃO
- OR: OU / DISJUNÇÃO
- NAND: NÃO-E
- NOR: NÃO-OU
- XOR: OU EXCLUSIVO / DISJUNÇÃO EXCLUSIVA
- XNOR: COINCIDÊNCIA

Técnica utilizada para descrever o valor de saída para cada possível entrada de um sistema.

Função Lógica NÃO (NOT)

É normalmente denominado de inversor, pois se a entrada tem um valor a saída apresentará o outro valor possível.

Função:
$$Y = f(A) = \overline{A}$$

Tabela da Verdade: É uma tabela que mostra todas as possíveis combinações de entrada e saída de um circuito lógico.

Entrada				·	Saída
	. *	A	Y		
		0	1		
		1	0		

Função Lógica E (AND)

Função:
$$Y = f(A,B) = A.B = B.A$$
 (produto lógico)

Tabela da Verdade:

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Exemplo:

Funções com mais de duas variáveis: lógica AND

<u>A</u>		
В	Υ	Y = A.B.C
<u>C</u>	0	

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
0	1	1	0
1	0	0	0 0 0 0 0 0 0
1	0	1	0
1	1	0	0
1	1	1	1

Se tivermos N entradas teremos:

Função Lógica OU (OR)

Função:
$$Y = f(A,B) = A+B$$
 (soma lógica)

Tabela da Verdade:

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Exemplo:

Funções com mais de duas variáveis: lógica OR

$$\frac{A}{B} \qquad Y = A + B + C$$

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	1
1	0	1 0	1
1 1	1	0	1
1	1	1	1

Se tivermos N entradas, teremos:

$$\begin{array}{c|c}
A \\
B \\
\hline
C \\
\hline
N
\end{array}$$

$$Y = A+B+C+...+N$$

Exercícios

Combine as portas lógicas E e OU com a porta Inversora, como ficam as tabelas-verdade?

Faça você mesmo:

Como fica a tabela-verdade da lógica inversora seguida por outra inversora?

Como fica a tabela-verdade de uma porta com a entrada invertida?

Faça você mesmo:

Função Lógica NÃO E (NAND)

Função:
$$Y = f(A,B) = \overline{A.B}$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Função Lógica NÃO OU (NOR)

Função:
$$Y = f(A,B) = \overline{A+B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Função Lógica OU EXCLUSIVO

Função:
$$S = f(A,B) = A \oplus B = \overline{A.B} + A.\overline{B}$$

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Função Lógica COINCIDÊNCIA

Função: S = f(A,B) = A⊕B

Símbolo: A S

A	В	S
0	0	1
0	1	0
l	0	0
1	1	1

Equivalências entre as formas de expressar um circuito lógico

Obtendo-se Expressões Booleanas a partir de Circuitos Lógicos

Analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza.

Obtendo-se Circuitos Lógicos a partir de Expressões Booleanas

Identificam-se as portas lógicas na expressão para desenhá-las com as respectivas ligações, a partir das variáveis de entrada respeitando a hierarquia das funções da aritmética elementar, ou seja, a solução inicia-se primeiramente pelo conteúdo entre parênteses.

Exemplo: S=(A+B).C.(B+D)

Primeiro Passo	Segundo Passo	Terceiro Passo
$\begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ D \longrightarrow \\ S1 \end{array}$	S1 C S2	A B C D

Obtendo-se Tabelas da Verdade a partir de Expressões Booleanas

Para extrair a tabela da verdade de uma expressão deve-se seguir alguns procedimentos:

- 1) Montar o quadro de possibilidades;
- 2) Montar colunas para os vários membros da equação;
- 3) Preencher estas colunas com os seus resultados;
- 4) Montar uma coluna para o resultado final e
- 5) Preencher esta coluna com os resultados finais.

Exemplo: $S = A.\bar{B}.C + A.\bar{D} + \bar{A}.B.D$

V	ariáveis	de entra	da	1º membro	2º membro	3º membro	Resultado
A	В	С	D	A.B.C	A.D	Ā.B.D	Final
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	1	0	1
1	0	0	1	0	0	0	0
1	0	1	0	1	1	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	1	0	1
1	1	0	1	0	0	0	0
1	1	1	0	0	1	0	1
1	1	1	1	0	0	0	0

Obtendo-se Expressões Booleanas a partir de Tabelas da Verdade

Exemplo:

A	В	C	S	
0	0	0	0	1
0	0	1	0]
0	1	0	0	1
0	1	1	1	(a)
1	0	0	0]
1	0	1	1	(b)
1	1	0	1	(c)
1	1	1	1	(d)

Em (a),
$$S=1$$
 se $S=\overline{A}.B.C$

Em (b), S=1 se
$$S = A \cdot \overline{B} \cdot C$$

Em (c), S=1 se
$$S = A.B.\overline{C}$$

$$Em(c), S=1 se S = A.B.C$$

$$S = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$