Министерство науки и высшего образования Российской Федерации Московский физико-технический институт (национальный исследовательский университет) Заочная физико-техническая школа

МАТЕМАТИКА

Графики и множества на плоскости

Задание № 2 для 10-х классов

(2021 – 2022 учебный год)

г. Долгопрудный, 2021

Составитель: Ф.С. Стонякин, кандидат физико-математических наук.

Математика: задание № 2 для 10-х классов (2021 – 2022 учебный год), 2021, 32 с.

Дата отправления заданий по физике и математике – 31 октября 2021 г.

Учащийся должен стараться выполнить все задачи и контрольные вопросы в заданиях. Некоторая часть теоретического материала, а также часть задач и контрольных вопросов, являются сложными и потребуют от учащегося больше усилий при изучении и решении. В целях повышения эффективности работы с материалом они обозначены символом «*» (звёздочка). Мы рекомендуем приступать к этим задачам и контрольным вопросам в последнюю очередь, разобравшись вначале с более простыми.

Составитель:

Стонякин Фёдор Сергеевич

Подписано 30.09.21. Формат 60×90 1/16. Бумага типографская. Печать офсетная. Усл. печ. л. 2,0. Уч.-изд. л. 1,77.

Заочная физико-техническая школа Московского физико-технического института (национального исследовательского университета)

Институтский пер., 9, г. Долгопрудный, Московская обл., 141700. ЗФТШ, тел. (495) 408-51-45 — **заочное отделение**, тел. (498) 744-63-51 — **очно-заочное отделение**, тел. (498) 744-65-83 — **очное отделение**.

e-mail: zftsh@mail.mipt.ru

Haш сайт: https://zftsh.online/

© МФТИ, ЗФТШ, 2021

Все права защищены. Воспроизведение учебно-методических материалов и материалов сайта ЗФТШ в любом виде, полностью или частично, допускается только с письменного разрешения правообладателей.

Во многих задачах бывает необходимо каким-то способом математически описать зависимость одной из изучаемых величин от другой величины. Вы сталкивались с этим на уроках физики, химии и других предметов. Зависимость разных величин друг от друга описывают по-разному. Это можно делать с помощью формул, уравнений, неравенств или систем. Но часто полезно наглядно показать рассматриваемую зависимость так, чтобы были видны её свойства при тех или иных значениях рассматриваемых величин. Тогда и возникает необходимость решать задачи на построение графиков функций и уравнений. Иногда это сделать нетрудно, а иногда возникают тонкости, с которыми связано множество задач повышенной сложности. Некоторые классы таких задач предлагаются на ЕГЭ, математических олимпиадах и вступительных экзаменах в ведущие высшие учебные заведения. Данное задание посвящено этим вопросам. Начнём с некоторого повторения школьного материала.

Графики функций и их построение

Одним из разделов школьной математики является изучение функцио-

нальных зависимостей или функций. Напомним, что функцией математики называют зависимость величины от одной или нескольких других величин. При этом независимые переменные величины принято называть *аргументами*, а зависимые — функциями. При этом важно не забывать, что каждому значению аргумента (или аргументов) ставится в соответствие единственное значение зависимой переменной (функции). Наглядно функции изображают с помощью графика — специального набора точек на плоскости. Пусть имеется функция y = f(x) одной пере-

Рис. 1

менной x. На плоскости введём декартову систему координат xOy и рассмотрим множество точек G с координатами (x, f(x)), где x принадлежит некоторому множеству M, которое называется областью определения функции. А множество G называется графиком функции y = f(x) (рис. 1).

В школьном курсе математики вы изучали такие типы функций:

- 1) Линейные функции f(x) = kx + b.
- 2) Квадратичные функции $f(x) = ax^2 + bx + c, a \neq 0$.
- 3) Степенные функции вида $f(x) = x^n$ при натуральных n.
- 4) Степенные функции вида $f(x) = \sqrt[n]{x}$ при натуральных n.
- 5) Обратная пропорциональность $f(x) = \frac{k}{x}, \ k \neq 0.$

График линейной функции можно построить по двум точкам, поскольку это прямая линия. Однако стоит заметить, что не всякая прямая будет графиком линейной функции. Если взять вертикальную прямую x = a, то такая линия не может быть графиком никакой функции (рис. 2). Действительно, здесь одному значению переменной x ставится в соответствие несколько значений переменной y. Итак, прямая на плоскости xOy – график некоторой линейной функции тогда и только тогда, когда она не вертикальна.

Напомним геометрический смысл коэффициентов k и b в уравнении прямой y = kx + b: $k = \lg \alpha$ — тангенс угла наклона прямой к оси 0x, b — ордината точки пересечения прямой с осью 0y. Поэтому две невертикальные прямые $y = k_1x + b_1$ и $y = k_2x + b_2$:

- параллельны $\Leftrightarrow k_1 = k_2$ и $b_1 \neq b_2$;
- совпадают $\Leftrightarrow k_1 = k_2$ и $b_1 = b_2$;
- перпендикулярны $\iff k_1 \cdot k_2 = -1$.

Условие перпендикулярности прямых несложно пояснить. Рассмотрим пару прямых, параллельных данным и проходящих через начало координат (см. рис. 3). Из перпендикулярности этих прямых следует, что $\alpha=\varphi$. Поэтому если точка $A(a_0;b_0)$ лежит на первой прямой, то точка $B(-b_0;a_0)$ лежит на второй. Ясно, что можно подобрать $a_0\neq 0$ и $b_0\neq 0$, откуда $k_1k_2=\frac{b_0}{a_0}\cdot\frac{a_0}{-b_0}=-1$.

Теперь напомним основные сведения о функциях вида $f(x) = ax^2 + bx + c$. Сразу отметим, что

такая функция квадратична только при $a \neq 0$. В случае же a = 0 эта функция квадратичной уже не будет. Если в задаче возможна такая ситуация, то случай a = 0 обязательно нуждается в отдельном рассмотрении. *Нужно всегда обращать на это внимание!*

Будем считать, что $a \neq 0$. Тогда графиком функции y = f(x) будет парабола. Такие графики принято строить схематично, учитывая следующее:

- знак числа a: при a>0 ветви параболы направлены вверх, при a<0 вниз;
- координаты вершины параболы: $x_0 = -\frac{b}{2a}$, $y_0 = f(x_0)$;
- для нахождения координат точек пересечения графика с осью Ox необходимо решить уравнение f(x) = 0, а с осью Oy найти число f(0).

Теперь поговорим о графиках степенной функции. Легко убедиться, что график функции $f(x)=x^n$ ($n\in\mathbb{N}$) при $x\geq 0$ выглядит так, как показано на рис. 4. Для чётных n, очевидно, верно f(-x)=f(x), а для нечётных n верно f(-x)=-f(x) для всякого x. Поэтому в зависимости от чётности n графики функции $f(x)=x^n$ имеют такой вид (рис. 5 и 6).

Напомним, что функция, область допустимых значений которой симметрична относительно начала координат, называется $\emph{чётной}$, если справедливо равенство f(-x)=f(x) и $\emph{нечётной}$, если f(-x)=-f(x). Например, нетрудно проверить, что функция

$$f(x) = |x - 2| + |x + 2| -$$
чётная,

а функция

$$g(x) = |x - 2| - |x + 2|$$
 – нечётная.

В случае нечётного n график симметричен относительно начала координат. Такие функции называют **нечётными** (рис. 5). Если же n четно, то график симметричен относительно оси ординат. Такие функции называют **чётными** (рис. 6).

Для построения графика $f(x) = \sqrt[n]{x}$ нужно записать уравнение $y = \sqrt[n]{x}$ или $x = y^n$. Это означает, что график имеет вид линии $y = x^n$, но при этом x и y меняются местами. Для чётных n при этом еще нужно учесть ОДЗ $x \ge 0$. Поэтому график функции $f(x) = \sqrt[n]{x}$ имеет следующий вид в зависимости от чётности натурального числа n (рис. 7, 8):

Рассмотрим теперь функции вида $f(x) = \frac{k}{x}$. Поскольку функция f нечётна, то график должен быть симметричным относительно начала координат. Схематический вид графика этой функции показан на рисунке 9.

Если k < 0, то график функции $y = \frac{k}{x}$ имеет примерно такой же вид, и его можно получить симметрией относительно оси Oy из графика функции $y = \frac{|k|}{x}$ (рис. 10).

Покажем, как меняется график функции $f(x) = \frac{k}{x}$ при изменении параметра k. Если $|k_2| > |k_1|$, то линия $f(x) = \frac{k_2}{x}$ более удалена от осей координат, чем $f(x) = \frac{k_1}{x}$. Схематично это изображено на рис. 11, 12.

Построение графиков функций, заданных на промежутках

Во многих случаях характер зависимости одной переменной от другой может существенно меняться в зависимости от области, которой принадлежит значение аргумента. Функции, которые по-разному задаются на различных интервалах числовой прямой, будем называть кусочно-заданными. Рассмотрим примеры, показывающие, как строить графики таких функций.

Пример 1. Построим график
$$y = x + |x|$$
. Ясно, что $x = x + |x| = (2x, при $x > 0$,$

$$y = x + |x| =$$
$$\begin{cases} 2x, & \text{при } x > 0, \\ 0, & \text{при } x \le 0. \end{cases}$$

y = x + |x| = $\begin{cases} 2x, \text{при } x > 0, \\ 0, \text{при } x \leq 0. \end{cases}$ Получаем при x > 0 луч y = 2x, а при $x \leq 0$ луч y = 0 (рис. 13).

Рассмотрим ещё несколько примеров построения графиков кусочнозаданных функций.

Пример 2. Построим график функции y = sgn(x), где

$$\operatorname{sgn}(x) = \begin{cases} 1, \ \operatorname{если} x > 0; \\ 0, \ \operatorname{если} x = 0; \\ -1, \ \operatorname{если} x < 0. \end{cases}$$
 (рис. 14).

Рассмотрим пример графика, содержащего часть гиперболы.

Пример 3. Построим график функции

$$f(x) = \begin{cases} -\frac{2}{x}, & x \le -1, \\ x+3, & x > -1. \end{cases}$$

 $f(x) = \begin{cases} -\frac{2}{x}, & x \le -1, \\ x+3, & x > -1. \end{cases}$ График первой функции – гипербола $y = -\frac{2}{x}$. По условию берём только ту часть гиперболы, где $x \in (-\infty, -1]$. График второй функции – прямая y = x + 3 и мы учитываем только ту её часть, где $x \in (-1, +\infty)$. Получаем искомый график (см. рис. 15).

Построение графиков целой и дробной части числа

Рассмотрим интересный вид кусочно-заданных функций.

Определение. Целой частью [x] числа x называется наибольшее целое число, не превосходящее x.

Например, [1] = 1, [0.7] = 0, a [-0.7] = -1. Функцию f(x) = [x] легко можно задать на промежутках между парами соседних целых чисел:

[x] = n npu $n \le x < n+1$ ∂n фиксированного целого числа п. Поэтому график этой функции имеет следующий вид (рис. 16).

Рис. 16

Рассмотрим более трудный пример.

Пример 4. Построить график функции f(x) = [2x + 3.5].

Ясно, что [2x + 3,5] = [2x + 0,5] + 3. Далее, из определения целой части числа следует такое представление:

$$[2x+3,5]=n+3$$
, если $\frac{n}{2}-\frac{1}{4} \le x < \frac{n}{2}+\frac{1}{4}$ для всякого целого n (рис. 17).

Рассмотрим ещё такой пример.

Пример 5. Изобразим на координатной плоскости xOy множество точек (x, y), для которых [x] = [y].

Ясно, что [x] = [y] означает, что для некоторого целого n верны неравенства $n \le x < n+1$ и $n \le y < n+1$. Набор всех таких точек будет объеди-

Рис. 17

нением квадратиков так, как показано на рисунке. Жирные участки границ входят в график, а пунктирные и выколотые точки – нет (рис. 18).

С целой частью числа тесно связана такая кусочно-линейная функция. **Определение.** Дробной частью $\{x\}$ числа x называется число $\{x\} = x - [x]$. К примеру, $\{1\} = 0$, $\{0.7\} = 0.7$, a $\{-0.7\} = 0.3$.

Пример 6. Построим график функции $f(x) = \{x\}$. Ясно, что f(x) = x - [x] = x - n при $n \le x < n + 1$ (рис. 19).

Преобразования графиков функций и уравнений

Часто возникают задачи, в которых требуется по графику функции y = f(x) построить график некоторой похожей функции. Такого типа задачи называют задачами на преобразование графиков функций. Наиболее известны два типа преобразований графиков — линейные преобразования графиков, а также преобразования графиков, связанные с модулями. Начнём со второго типа преобразований. Будем полагать, что нам задан график функции y = f(x).

 $\Pi P1^{1}$. Как построить график функции y = f(|x|)? По определению модуля:

$$y = f(|x|) = \begin{cases} f(x), & \text{при } x \ge 0 \\ f(-x), & \text{при } x < 0. \end{cases}$$

Поэтому график функции y = f(|x|) состоит из двух частей:

y = f(x) – в правой полуплоскости, y = f(-x) – в левой полуплоскости. Это означает, что можно сформулировать такое правило: для построения графика y = f(|x|) нужно сохранить часть графика y = f(x) при $x \ge 0$ (т. е. на оси ординат и справа от неё), а также симметрично отразить эту часть относительно оси O_{Y} ; часть графика y = f(x)при x < 0 (т. е. слева от оси ординат) при этом нужно стереть.

ПР2. Как построить график функции y = |f(x)|? По определению модуля:

$$y = |f(x)| = \begin{cases} f(x), & \text{при } f(x) \ge 0 \\ -f(x), & \text{при } f(x) < 0. \end{cases}$$

Поэтому можно сформулировать такое правило: для построения графика функции y = |f(x)| нужно сохранить часть графика y = f(x), лежащую выше оси Ох, а часть графика, лежащую ниже оси Ох, симметрично отразить относительно этой оси.

Отметим, что для построения графика функции y = |f(|x|)| нужно последовательно провести преобразования ПР1 и ПР2 (в любом порядке).

Рассмотрим ещё один тип преобразований графиков с модулями.

ПР3. Как построить множество точек (x, y) таких, что |y| = f(x)?

Сразу видно, что на новом графике не должно быть точек, для которых f(x) < 0. Поэтому нужно стереть часть графика функции y = f(x), **лежащую ниже оси абсцисс.** Если же $f(x) \ge 0$, то $y = \pm f(x)$ и на новом графике каждому такому значению х должно соответствовать две точки, симметричные относительно оси Ox (если $f(x) \ge 0$, то точка одна). Это означает, что часть графика функции y = f(x), лежащую выше оси абсцисс, нужно сохранить и симметрично отразить относительно ocu Ox.

Теперь перейдём к описанию так называемых линейных преобразований графиков. Выделяют, как правило, следующие три типа таких преобразований.

ПР4. Переход от графика y = f(x) к графику y = af(x), где $a \ne 1$. Если a – положительное число, то имеем два возможных случая:

¹ ПР – преобразование

а) a > 1. В данном случае рассматриваемый переход является **растия-жением** графика от оси абсцисс в a раз. Покажем на примере линейной функции y = x (рис. 20). Положим a = 2 и получим график функции y = 2x посредством растяжения имеющегося графика в два раза от оси абсцисс (рис. 21).

б) 0 < a < 1. В данном случае рассматриваемый переход является *сжа- тием* графика к оси абсцисс в 1/a раз. Пусть имеется линейная функция y = x. Если a = 0.5, то получим график функции y = 0.5x посредством сжатия имеющегося графика в 1/a = 2 раза к оси абсцисс (рис. 22).

Заметим, что при a < 0 нужно сначала построить график функции y = |a| f(x), а потом симметрично его отобразить относительно оси абсцисс. В частности, при a = -1 исходный график отражается относительно Ox.

<u>ПР5.</u> Переход от графика y = f(x) к графику y = f(x)+b, где $b \neq 0$ – некоторое число. Рассматриваемый переход является *параллельным переносом* графика вдоль оси ординат на b единиц. Направление сдвига определяется знаком b: если b > 0, то график сдвигается вверх, а если b < 0, то вниз.

<u>ПР6</u>. Переход от графика y = f(x) к графику y = f(x+c), где $c \neq 0$ – некоторое число. В этом случае исходный график сдвигается вдоль оси абсцисс на величину |c|. Но направление сдвига противоположно знаку числа c: если c > 0, то график сдвигается влево, а если c < 0, то вправо.

Рассмотрим несколько примеров построения графиков с использованием упомянутого выше набора преобразований.

Пример 7. Построим ещё такой график y = ||x - 1| - 2|.

Для этого нужно выполнить цепочку таких действий (рис 23).

а) Строим график функции y = x - 1.

- b) Выполняем ПР2: часть полученного графика, лежащая над осью Ox, сохраняется; а его часть, лежащая под осью Ox, отображается симметрично относительно оси Ox.
- с) Затем сдвигаем график вдоль оси *Оу* на 2 единицы вниз (ПР5).
- d) Выполняем ПР2 снова: часть полученного в предыдущем пункте графика, лежащая выше оси Ox, сохраняется, а часть этого графика, которая лежит ниже оси Ox, отображается симметрично относительно неё.

Рис. 23

Пример 8. Построим график функции
$$y = \frac{x^2 - 9}{|x| - 3}$$
.
ОДЗ: $|x| - 3 \neq 0$, $|x| \neq 3$, $x \neq 3$, $x \neq -3$.

Воспользуемся известным тождеством $|x|^2 = x^2$. Имеем:

$$y = \frac{x^2 - 9}{|x| - 3} = \frac{|x|^2 - 9}{|x| - 3} = \frac{(|x| - 3)(|x| + 3)}{|x| - 3} = |x| + 3.$$

Выполняем построения (рис. 24):

- а) Строим график функции y = |x|.
- b) График y = |x| сдвигаем вдоль оси Oy на 3 единицы вверх (ПР5).
 - с) Исключаем из графика точки x = 3, x = -3.

Замечание. При решении задачи мы учли ОДЗ функции, исключив некоторые точки из графика.

Рис. 24

Такие точки изображаются, например, в виде выколотых точек (пустых незакрашенных кружков).

Построение графиков дробно-линейных функций

Рассмотрим специальный класс функций, графиками которых будут гиперболы.

Определение. Дробно-линейной называют всякую функцию вида

$$f(x) = \frac{ax + b}{cx + d},$$

где c и d одновременно не равны 0. Поскольку случай c = 0 тривиален, то будем считать $c \neq 0$. Выполним преобразования:

$$f(x) = \frac{a}{c} \cdot \frac{cx + \frac{bc}{a}}{cx + d} = \frac{a}{c} \cdot \frac{cx + d + \frac{bc}{a} - d}{cx + d} = \frac{a}{c} \left(\frac{cx + d}{cx + d} + \frac{1}{a} \cdot \frac{bc - ad}{cx + d} \right) =$$
$$= \frac{a}{c} + \frac{bc - ad}{cx + d},$$

то есть

$$f(x) = \frac{a}{c} + \frac{\frac{bc - ad}{c}}{\frac{c}{cx + d}} = \frac{a}{c} + \frac{\frac{bc - ad}{c^2}}{\frac{c}{x + \frac{d}{c}}}.$$

Будем считать, что $bc-ad \neq 0$ (иначе коэффициенты в числителе и знаменателе пропорциональны, дробь можно сократить и функция есть постоянная величина на области определения). Это означает, что график дробнолинейной функции можно получить из графика функции $f_0(x) = \frac{1}{x}$, выполнив цепочку преобразований:

1.
$$\Pi P6: f_1(x) = \frac{1}{x + \frac{d}{c}};$$
 2. $\Pi P4: f_2(x) = \frac{\frac{bc - ad}{c^2}}{x + \frac{d}{c}};$ 3. $\Pi P5: f_3(x) = \frac{a}{c} + \frac{\frac{bc - ad}{c^2}}{x + \frac{d}{c}}.$

На первом шаге нужно сдвинуть график $y = f_0(x)$ на $-\frac{d}{c}$ вдоль оси Ox, на втором – сжать его или растянуть и, возможно, отразить в зависимости от коэффициента $\frac{bc-ad}{c^2}$, а на третьем – сдвинуть вдоль оси Oy. Покажем на примере, как это нужно делать.

Пример 9. Построим график функции $f(x) = \frac{x}{x+2}$. Приведём данную функцию к такому виду:

$$y = \frac{x+2-2}{x+2} = 1 - \frac{2}{x+2}$$

Построим график функции $y=-\frac{2}{x}$ (ветви гиперболы лежат во 2-ой и 4-ой четвертях) (рис. 25). Далее, необходимо, воспользовавшись преобразованием ПР6, сдвинуть график $y=-\frac{2}{x}$ на две единицы влево вдоль оси абсцисс (рис. 26). Получим график $y=-\frac{2}{x+2}$. Теперь используем преобразование ПР5 и поднимаем график на рис. 26 на единицу вверх. Получим необходимый график функции

$$y = 1 - \frac{2}{x+2}$$
 (рис. 27).

Пример 10. Постройте график функции

$$y = \frac{3x+4}{5x+6}$$
.

Будем выполнять построения в таком порядке:

Преобразуем данную функцию:
$$y = \frac{3x+4}{5x+6} = \frac{3x+4}{5x+6} - \frac{3}{5} + \frac{3}{5} = \frac{3}{5} + \frac{2/25}{x+6/5}.$$

$$y = \frac{1}{x + 6/5}$$
 (ПР6, см. рис. 28).

Далее, построим график $y = \frac{2/25}{x+6/5}$, сжав график относительно оси абсцисс в 2/25 раз (ПР4, см. рис. 29).

Осталось сдвинуть график на 3/5 единиц вверх и получим окончательный график (ПР6, см. рис. 30)

$$y = \frac{3}{5} + \frac{2/25}{x+6/5}$$
.

Пример 11. Построим график функции

$$y = \left| \frac{2}{|x| - 1} \right|.$$

Будем решать данный пример в таком порядке:

- 1. Построим гиперболу $y = \frac{2}{r}$ (рис. 31).
- 2. Воспользовавшись преобразованием ПР6, сдвинем эту гиперболу на единицу вправо (вдоль оси абсцисс) и получим график функции $y = \frac{2}{x-1}$ (рис. 32).
- 3. Теперь воспользуемся преобразованием ПР1 для построенного в п. 2. графика. Получим график функции $y = \frac{2}{|x|-1}$ (рис. 33).

4. Воспользуемся преобразованием ПР2 и получим график искомой функции $y = \left|\frac{2}{|x|-1}\right|$ (рис. 34).

Рис. 34

Построение графиков с модулями методом интервалов

Если нужно построить график функции вида $y = f(|x - a_1|, |x - a_2|, ..., |x - a_n|)$, где $a_1, a_2, ..., a_n$ – некоторые фиксированные числа, то в общем случае нет иного подхода, помимо раскрытия всех модулей. Ясно, что для всякого k = 1, 2, 3, ..., n

$$|x-a_k| = \begin{cases} x-a_k, \text{если } x \geq a_k; \\ a_k-x, \text{если } x < a_k. \end{cases}$$

Однако, например, в случае $a_1 < a_2$ невозможно выполнение одновременно двух условий: $x < a_1$ и $x > a_2$. Поэтому простое раскрытие модулей приведет к лишним действиям. Чтобы этого избежать, применяют так называемый **метод интервалов**. Суть его состоит в следующем. Числа a_1, a_2, \ldots, a_n упорядочивают по неубыванию и наносят на числовую ось (рис. 35). Если для определённости положить $a_1 < a_2 < \cdots < a_n$, то это будет выглядеть так:

Получаем, что числовая ось разбивается на n+1 интервалов. Если x лежит в любом из них, то мы однозначно можем определить знаки всех выражений под модулями и раскрыть модули. В каждом из получившихся интервалов график функции выстраивается отдельно. Граничную точку $(a_1,a_2,...,a_n)$ можно включать в любой из промежутков, концом которого она является. Проиллюстрируем этот алгоритм на примере.

Пример 12 (МГУ, химический факультет, 2000). Графически найдите наименьшее значение функции

$$f(x) = |x - 3| + |x| + |x + 3| + |x + 5| - 12.$$

Как видим, функция зависит от четырёх модулей. Нанесём на числовую ось точки, в которых выражения под модулем обращаются в ноль.

Получено 5 интервалов (рис. 36). Для построения графика достаточно раскрыть модули в каждом из этих интервалов и построить соответствующую линию. В виде таблицы изобразим знаки подмодульных выражений и вид функции f(x) в рассматриваемых интервалах (граничные точки можно включать в любой из промежутков).

	I	II	III	IV	V
	$(-\infty;-5)$	[-5;-3)	[-3;0)	[0;3)	[3;+∞)
x-3	ı	_	_	ı	+
X		_	-	+	+
x +3		_	+	+	+
x +5	-	+	+	+	+
f(x)	3-x-x-x-	-x + 3 - x - x -	-x+3-x+x+	-x+3-x+x+	x-3+x+x+
	-3 - x - 5 -	-3 + x + 5 - 12 =	+3 + x + 5 - 12 =	+3 + x + 5 - 12 =	+3 + x + 5 -
	-12 = -4x - 17	=-2x-7	= -1	=2x-1	-12 = 4x - 7

Имеем:

$$f(x) = \begin{cases} -4x - 17, \text{ если } x < 5; \\ -2x - 7, \text{ если } -5 \le x < -3; \\ -1, \text{ если } -3 \le x < 0; \\ 2x - 1, \text{ если } 0 \le x < 3; \\ 4x - 7, \text{ если } x \ge 3. \end{cases}$$

Итак, график функции f(x) построен (рис. 37). Перед тем как перейти к нахождению наименьшего значения, сделаем небольшое теоретическое отступление.

Рис. 37

С помощью графиков удобно исследовать функции на возрастание и убывание. Функцию y = f(x) называют *строго возрастаношей*, если $f(x_1) < f(x_2)$ при $x_1 < x_2$. *Строго убывающие* функции определяются неравенством $f(x_1) > f(x_2)$ при $x_1 < x_2$. Если при $x_1 < x_2$ верно $f(x_1) \le f(x_2)$, то функцию y = f(x) называют *возрастаношей*, а если $f(x_2) \le f(x_1)$, то — *убывающей*. Для линейных функций признаком возрастания и убывания является знак коэффициента при x. Если этот коэффициент отрицателен, то такая функция строго убывает на данном интервале. В случае положительности коэффициента функция строго возрастает. Таким образом, можно сделать такой вывод.

Характер возрастания (возрастание или убывание) функции вида $f(x) = c_1|x - a_1| + c_2|x - a_2| + ... + c_n|x - a_n|,$

может меняться только в точках $x=a_1,a_2,...,a_n$ (здесь $a_1 \le a_2 \le ... \le a_n$, а $c_1,c_2,...,c_n$ — некоторые числа). Поэтому для нахождения наибольшего или наименьшего значения функции такого вида стоит обратить внимание на то, возрастает или убывает такая функция при $x < a_1$ и $x > a_n$, а также сравнить значения функции f в точках $x=a_1,a_2,...,a_n$.

Возвращаемся к нашей задаче. Как видим, наименьшее значение функции равно -1 и достигается при $x \in [-3; 0]$. Чтобы это понять, нужно об-

ратить внимание на знаки коэффициентов при x в разных интервалах в формуле для f(x). Из выражения для f(x) видно, что эта функция убывает при x < -3 и возрастает при x > 0. А при $x \in [-3; 0]$ как раз и достигается искомый минимум f(x).

Похожую схему рассуждений можно применить и в задачах следующего типа.

Пример 13 (**ЕГЭ**). При каких a неравенство

$$||x - 2a| + 3a| + ||3x + a| - 4a| \le 5x + 24$$

верно при всех $x \in [0; 6]$?

Здесь стоит рассмотреть функцию

$$f(x) = ||x - 2a| + 3a| + ||3x + a| - 4a| - 5x.$$

Это кусочно-линейная функция, так как при раскрытии модуля на каждом из интервалов (их число и расположение зависит от a) получается линейная функция. После раскрытия первого модуля при x будет коэффициент ± 1 , после раскрытия второго $-\pm 3$. Поскольку 1+3<5, то в итоге на каждом интервале знак коэффициента при x будет отрицательным, то есть f(x) строго убывает всюду на числовой прямой. А это означает, что неравенство $f(x) \le 24$ при всех $x \in [0;6]$ равносильно простому условию $f(0) \le 24$, то есть

$$||2a| + 3a| + ||a| - 4a| \le 24.$$

Для решения последнего неравенства относительно a достаточно рассмотреть всего два случая: $a \ge 0$ и a < 0. При $a \ge 0$ имеем: $5a + 3a \le 24$, то есть $a \le 3$. При a < 0 получаем: $-a - 5a \le 24$, то есть $a \ge -4$.

Ответ: $a \in [-4; 3]$.

Метод областей на координатной плоскости

0

Рис. 38

Аналог метода интервалов на числовой прямой естественно применим

и в случае наличия в задаче двух переменных -x и y. Только тогда вместо интервалов на прямой появляются области на координатной плоскости, в которых определены знаки всех подмодульных выражений и можно раскрыть модули.

Пример 14. Изобразим на координатной плоскости xOy множество точек, координаты которых удовлетворяют уравнению: $\frac{|y|}{y} = x|x|$.

Переменных две, поэтому рассматривать нужно четыре области на плоскости xOy, задаваемые системами неравенств:

и неравенств:
1)
$$\begin{cases} x \ge 0, \\ y > 0; \end{cases}$$
 2) $\begin{cases} x < 0, \\ y > 0; \end{cases}$ 3) $\begin{cases} x \ge 0, \\ y < 0; \end{cases}$ 4) $\begin{cases} x < 0, \\ y < 0. \end{cases}$

В первом и четвёртом случае после раскрытия модулей получается $x^2 = 1$, то есть $x = \pm 1$. В то же время во втором и третьем случаях полу-

чаем $x^2 = -1$, что невозможно на действительной плоскости xOy. После учёта условий на х получаем множество точек, изображённое на рис. 38.

Построение множеств точек на плоскости

Пример 15. Построим множество точек (x, y), удовлетворяющих уравнению $x^2 + xy = 0$.

Преобразуем уравнение: x(x + y) = 0. Таким образом, заданное уравнение равносильно совокупности двух уравнений x = 0 или x + y = 0(y = -x). Поэтому искомым множеством точек будет объединение этих двух прямых.

Пример 16. Построим множество точек
$$(x, y)$$
 таких, что $x^2 + 4x + 4 + 4y^2 = 0$.

Преобразуем уравнение с помощью выделения полного квадрата: $(x+2)^2 + 4y^2 = 0$. Поскольку точные квадраты неотрицательны, то такому уравнению может удовлетворять лишь одна точка (-2, 0).

Аналогично рассматривается следующий пример, в котором также существенно выделение полного квадрата.

Пример 17. Построим множество точек (x, y) таких, что $|x-y-1|+x^2+2xy+y^2=0$. Преобразуем уравнение: $|x - y - 1| = -(x + y)^2$. Так как модуль равен неотрицательному числу, то

$$\begin{cases} x - y - 1 = 0, & \{x - y = 1, \\ -(x + y)^2 = 0; & \{x + y = 0, \\ x + y = 0, & \{x + y = 0, \\ x + y = 0, \\ x + y = 0, & \{x + y = 0, \\ x + y = 0, \\ x + y = 0, \\ x + y = 0, & \{x + y = 0, \\ x + y = 0, & \{x + y = 0, \\ x + y = 0, \\$$

т. е. уравнению снова будет удовлетворять единственная точка (0.5; -0.5) (см. рис. 39).

Множеством точек может быть область на плоскости. Рассмотрим пример.

Пример 18. Построим множество точек (x, y) таких, что

$$\sqrt{(x-3)(y+2)} = \sqrt{3-x} \sqrt{-y-2}$$
.

Рис. 40

Рис. 41

Равенство $\sqrt{(x-3)(y+2)} = \sqrt{3-x}\sqrt{-y-2}$ будет верно для всяких x и y, удовлетворяющих ОДЗ. Поэтому искомым множество точек будет ОДЗ, т. е. часть плоскости, ограниченная двумя прямыми y=-2 и x=3 (рис. 40).

Покажем ещё пример построения множеств точек, удовлетворяющим уравнениям с модулями.

Пример 19. Построим множество точек, удовлетворяющих |y| = |x|.

По определению модуля получаем: $y = \pm x$. Поэтому множество точек – объединение двух прямых линий (рис. 41).

Построение окружности

Одним из самых известных уравнений, допускающих красивую геометрическую интерпретацию, является уравнение вида

$$(x-a)^2 + (y-b)^2 = r^2$$
. (OKP)

Если заданы числа a,b и r, то легко понять, что точка с координатами x и y удовлетворяет такому уравнению тогда и только тогда, когда она удалена от точки O(a,b) на расстояние |r|. Поэтому данное уравнение — не что иное, как уравнение окружности с центром в точке O(a,b) и радиусом |r| (при r=0 — точки O(a,b)). К уравнению окружности (ОКР) часто приводятся уравнения, содержащие обе переменные как в первой, так и во второй степени. Например, приведём уравнение $2x^2 + 7x + 2y^2 - 5y = 0$ к виду (ОКР):

$$2x^{2} + 7x + 2y^{2} - 5y = 0$$

$$x^{2} + \frac{7}{2}x + y^{2} - \frac{5}{2}y = 0$$

$$x^{2} + \frac{7}{2}x + \left(\frac{7}{2 \cdot 2}\right)^{2} + y^{2} - \frac{5}{2}y + \left(\frac{5}{2 \cdot 2}\right)^{2} = \left(\frac{7}{2 \cdot 2}\right)^{2} + \left(\frac{5}{2 \cdot 2}\right)^{2}$$

$$\left(x + \frac{7}{4}\right)^{2} + \left(y - \frac{5}{4}\right)^{2} = \frac{74}{16}.$$

Покажем пример построения графика, связанного с уравнением (ОКР).

Пример 20. Построим график функции

$$y = \sqrt{5 + 4x - x^2}.$$

Имеем систему:

$$\begin{cases} y \ge 0, \\ y^2 = 5 + 4x - x^2; \end{cases}$$
 или
$$\begin{cases} y \ge 0, \\ x^2 - 4x + y^2 = 5; \\ y \ge 0, \\ (x - 2)^2 + y^2 = 9. \end{cases}$$

График данной функции – полуокружность с центром в точке O(2,0) и радиусом 3 (рис. 42). От-

Рис. 42

метим, что здесь также существенно преобразование выделения полного квадрата.

Графики в задачах с параметрами

Покажем, как задачи с параметрами можно решать графически.

Пример 21. Найдём количество решений уравнения

$$\sqrt{5+4|x|-x^2}=a$$

в зависимости от a.

Искомое количество решений совпадает с числом точек пересечения графиков функций

$$f_1(x) = \sqrt{5 + 4|x| - x^2}$$
 и $f_2(x) = a$.

График первой функции получается из графика функции, который был построен в предыдущем примере. Для этого нужно воспользоваться преобразованием вида ПР1 то есть график $y = f_1(x)$ имеет такой вид, как показано на рис. 43 $(f(0) = \sqrt{5})$.

Графиком функции y = a будет прямая, параллельная оси Ox (рис. 43). При этом она пересекает ось ординат в точке (0, a). Легко видеть, что при a < 0 и a > 3 прямая y = a не имеет

Рис. 43

пересечений с графиком $y = f_1(x)$, при a = 3 и $a \in [0; \sqrt{5})$ есть две точки пересечения, а при $a \in [\sqrt{5}; 3)$ – четыре общие точки и при $a = \sqrt{5}$ – три общие точки. Остаётся лишь сформулировать ответ.

Ответ: при $a \in (-\infty; 0) \cup (3; +\infty)$ решений нет, при $a \in [0; \sqrt{5}) \cup \{3\}$ – два решения, при $a \in \{\sqrt{5}\}$ – три решения, при $a \in (\sqrt{5}; 3)$ – четыре решения.

Пример 22. Найдём количество решений уравнения в зависимости от *a*:

$$|x + 5| + |x - 3| = a$$
.

Методом интервалов нетрудно построить график функции

$$f(x) = |x + 5| + |x - 3|.$$

Количество решений уравнения совпадает с числом точек пересечения этого графика с прямой f(x) = a (рис. 44). Проанализировав график, несложно выписать ответ.

Ответ: при $a \in (8; +\infty)$ уравнение имеет 2 решения, при a = 8 уравнение имеет бесконечно много решений, при $a \in (-\infty; 8)$ решений нет.

Рис. 44

Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что *графиком уравнения* называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.

Пример 23. Найдём количество решений системы уравнений

$$\begin{cases} |x| + |y| = 4; \\ x^2 + y^2 = a^2 \end{cases}$$

в зависимости от a.

Для решения необходимо построить график уравнения |x| + |y| = 4. Это можно сделать, последовательно выполнив построения таких графиков:

График второго уравнения — окружность с центром в точке O(0;0) и радиусом |a|. Изобразим оба этих графика на координатной плоскости xOy.

Как видим, при $|a| < 2\sqrt{2}$ и |a| > 4 графики не пересекаются. При $|a| = 2\sqrt{2}$ или |a| = 4 есть 4 точки пересечения. При остальных a есть 8 точек пересечения. Таким образом, можно сформулировать ответ.

Ответ: при $a \in (-\infty; -4) \cup (-2\sqrt{2}; 2\sqrt{2}) \cup (4; +\infty)$ система не имеет решений;

при $a \in \{-4; -2\sqrt{2}; 2\sqrt{2}; 4\}$ система имеет 4 решения; при $a \in (-4; -2\sqrt{2}) \cup (2\sqrt{2}; 4)$ система имеет 8 решений.

 $(2\sqrt{2} - \text{расстояние от центра } O(0,0)$ до стороны квадрата).

5) |a| > 4

В следующей задаче нам потребуется понятие локального экстремума функции. Говорят, что функция y=f(x) имеет локальный максимум в точке x_0 , если для некоторого числа $\varepsilon>0$ при $|x-x_0|<\varepsilon$ (т. е. числа x и x_0 достаточно близки) верно неравенство $f(x)\leq f(x_0)$. Если же для некоторого числа $\varepsilon>0$ при $|x-x_0|<\varepsilon$ верно $f(x)\geq f(x_0)$, то говорят, что функция y=f(x) имеет локальный минимум в точке x_0 . Точки локального максимума или минимума называют точками локального экстремума функции. В случае выполнения неравенств $f(x)\leq f(x_0)$ или $f(x)\geq f(x_0)$ для произвольного x точку x_0 называют точкой глобального экстремума функции. Ясно, что всякий глобальный экстремум будет локальным. Примером такой точки для квадратичной функции будет точка, соответствующая вершине параболы.

Пример 24. (ЕГЭ́) При каких a функция $f(x) = x^2 - 3|x - a^2| - 5x$ имеет более двух точек локального экстремума?

имеет более двух точек локального экстремума?
$$|x - a^2| = \begin{cases} x - a^2, & \text{если } x \ge a^2, \\ a^2 - x, & \text{если } x < a^2. \end{cases}$$

$$f(x) = \begin{cases} x^2 - 8x + 3a^2, & \text{если } x < a^2. \end{cases}$$

4) |a| = 4

При $x \ge a^2$ график функции f(x) есть часть параболы $y = x^2 - 8x + +3a^2$, лежащая справа от $x = a^2$, а при $x < a^2$ $f(x) = x^2 - 2x - 3a^2$ и графиком функции будет часть параболы $y = x^2 - 2x - 3a^2$ в полуплоскости слева от прямой $x = a^2$. Наибольшее возможное количество точек экстремума этой функции равно 3 (две вершины парабол и точка их пересечения, см. рис. 45).

Рис. 45

Это возможно при условии $1 < a^2 < 4$, то есть $a \in (-2; -1) \cup (1; 2)$.

Ответ: $a \in (-2, -1) \cup (1, 2)$.

Пример 25 (МФТИ, 2000). Найдём все значения a, при которых уравнение

$$\sqrt{x-9} = ax + 7a - 3$$

имеет единственное решение.

Решение. Полагая x + 7 = t, получим уравнение

$$\sqrt{t-16} = at - 3. \tag{1}$$

Требуется найти все значения a, при которых графики функций $y = \sqrt{t-16}$ и y = at-3 имеют единственную общую точку. Заметим, что все прямые, задаваемые уравнением y = at-3 проходят через (0; -3) (рис. 46).

Ясно, что если $a \le 0$, то прямая y = at - 3 не имеет общих точек с параболой $y = \sqrt{t-16}$. Угловой коэффициент прямой y = at - 3 равен a. Найдём угловые коэффициенты a_1 и a_2 прямых l_1 и l_2 (см. рис. 46) (обе задаются уравнением вида y = at - 3), первая из которых проходит через точку

Рис. 46

(16; 0), а вторая имеет ровно одну общую точку (касается) с линией $y=\sqrt{t-16}$. Подставляя в уравнение значения t=16,y=0, находим $a_1=\frac{3}{16}$. И при $0< a<\frac{3}{16}$ уравнение (1) имеет единственное решение.

Число a_2 является ещё одним значением a, при котором уравнение (1) имеет единственный корень $t_1>16$. Возводя обе части (1) в квадрат, получаем уравнение $a^2t^2-(6a+1)t+25=0$, дискриминант которого $D=(6a+1)^2-(10a)^2$. При D=0 и a>0 график y=at-3 касается линии $y=\sqrt{t-16}$ (см. рис. 46). Уравнение D=0 имеет единственный положительный корень $a=\frac{1}{4}$. Следовательно, $a_2=\frac{1}{4}$. Если $\frac{3}{16}\leq a<\frac{1}{4}$, то прямая y=at-3 и парабола $y=\sqrt{t-16}$ имеют две общих точки, а при $a>\frac{1}{4}$ они не имеют общих точек.

Ответ:
$$0 < a < \frac{3}{16}$$
, $a = \frac{1}{4}$.

В следующем примере нам необходимо будет изобразить точки на координатной плоскости, координаты которых удовлетворяют некоторому неравенству $f(x,y) \le a_0$ для заданной функции двух переменных f и некоторого фиксированного числа a_0 . Для этого нужно сначала выяснить вид множества точек f(x,y) = a при различных значениях a и заштриховать все точки координатной плоскости, принадлежащие линиям f(x,y) = a при $a \le a_0$. Часто это бывает область на плоскости внутри, либо вне некоторой фигуры, которая задаётся равенством f(x,y) = a. Например, неравенство $f(x,y) = (x-1)^2 + (y+1)^2 \le 1$ задаёт круг радиуса 1 с центром в точке A(1,-1).

Рассмотрим пример использования этого правила в задаче.

Пример 26 (МФТИ, 2009). Найдём все значения параметра a, при которых система

$$\{x^2 + y^2 + 31 \le 8(|x| + |y|),\$$
 $x^2 + y^2 - 2y = a^2 - 1$ имеет хотя бы одно решение.

Решение. Неравенство системы после выделения полных квадратов можно записать в виде $x^2-8|x|+16+y^2-8|y|+16\leq 1$ или $(|x|-4)^2+(|y|-4)^2\leq 1$. Множество E решений этого неравенства – объединение кругов K_1,K_2,K_3,K_4 (вместе с их границами) радиуса 1 (см. рис. 47) с центрами $O_1(4;4),O_2(4;-4),O_3(-4;-4),O_4(-4;4)$. Запишем уравнение системы в виде

$$x^2 + (y - 1)^2 = a^2$$
.

Это уравнение задаёт окружность L радиуса |a| с центром в точке M(0;1) или точку (0;1) при a=0. Исходная система имеет хотя бы одно решение при тех значениях a, при которых окружность L имеет общие точки с множеством E. При этом ввиду симметричного расположения соответствующих пар кругов относительно оси ординат достаточно выяснить, при каких значениях a окружность L имеет общие точки с кругами, центрами которых являются точки O_1 и O_2 . Проведём из точки M лучи l_1 и l_2 в направлении точек O_1 и O_2 . Пусть A_1 и B_1 — точки пересечения l_1 и окружности с центром O_2 . Тогда из геометрических соображений имеем:

$$MO_1 = 5$$
, $MO_2 = \sqrt{25 + 16} = \sqrt{41}$, $MA_1 = 4$, $MB_1 = 6$, $MA_2 = \sqrt{41} - 1$, $MB_2 = \sqrt{41} + 1$.

При $4 \le |a| \le 6$ окружность с центром M имеет общие точки с кругом ω_1 , а при $\sqrt{41} - 1 \le |a| \le \sqrt{41} + 1 - c$ кругом ω_2 .

Так как $4 < \sqrt{41} - 1 < 6$, то объединение отрезков [4;6] и $[\sqrt{41} - 1;\sqrt{41} + 1]$ есть отрезок $[4;\sqrt{41} + 1]$, а искомое множество значений a определяется неравенством $4 \le |a| \le \sqrt{41} + 1$.

Рис. 47

Ответ: $4 \le |a| \le \sqrt{41} + 1$.

Пример 27 (МФТИ, 2011). Найдём все значения параметра b, при которых система уравнений $\begin{cases} y = |b - x^2|, \\ y = a(x - b) \end{cases}$ имеет решение при любом значении параметра a.

Решение. Рассмотрим три возможных случая: b < 0, b = 0, а также b > 0.

- а) Если b<0, то запишем систему в виде $\begin{cases} y=x^2+d, \\ y=a(x+d), \end{cases}$ где d=-b>0. Эта система не имеет решений при a=0 и поэтому b<0 не подходит.
- б) Если b=0, то система примет вид $\begin{cases} y=x^2, \\ y=ax. \end{cases}$ Легко видеть, что она имеет решение (0;0) при любом a, т. е. значение b=0 подходит.
- в) Пусть b>0. Теперь мы прибегнем к графическому методу. Рассмотрим два случая: $0 < b \le 1$ и b>1. Если b>1, то $\sqrt{b} < b$. Пусть a=1, тогда система примет вид $\begin{cases} y=|x^2-b|, \\ y=x-b. \end{cases}$

Рис. 48

Рис. 49

Эта система не имеет решений, так как прямая y=x-b не пересекает график функции $y=|x^2-b|$ (см. рис. 48). Если $0 < b \le 1$, то $\sqrt{b} \ge b$. В этом случае прямая y=a(x-b) пересекает график функции $y=|x^2-b|$ при любом a (на рис. 49 представлен случай a>0).

Ответ: $0 \le b \le 1$.

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.

Пример 28 (МФТИ, 2021). На плоскости XOYданы точка A, координаты (x;y) которой удовлетворяют уравнению $26a^2 - 22ax - 20ay + 5x^2 + 8xy + 4y^2 = 0$, и парабола с вершиной в точке B, заданная уравнением $ax^2 + 2a^2x - ay + a^3 + 1 = 0$. Найдите все значения параметра a, при которых точки A и B лежат по разные стороны от прямой 3x - y = 4 (точки A и B не лежат на этой прямой).

Решение. Преобразуем первое уравнение:

$$(4y^{2} + 4(2x - 5a)y) + 5x^{2} - 22ax + 26a^{2} = 0,$$

$$((2y)^{2} + 2 \cdot 2y(2x - 5a) + (2x - 5a)^{2}) - (2x - 5a)^{2} + 5x^{2} - 22ax + 26a^{2} = 0,$$

$$(2y + 2x - 5a)^{2} + x^{2} - 2ax + a^{2} = 0,$$

$$(2y + 2x - 5a)^{2} + (x - a)^{2} = 0.$$

Поскольку сумма квадратов действительных чисел есть 0 в том и только в том случае, когда они оба нули, то координаты точки $A(x_A;y_A)$ удовлетворяют равенствам 2y+2x-5a=0 и x-a=0. Это означает, что $x_A=a,\,y_A=\frac{3a}{2}$. Раз второе уравнение задаёт параболу, то $a\neq 0$. При этом условии второе уравнение можно переписать в виде $y=x^2+2ax+a^2+\frac{1}{a}$. Поэтому координаты точки B следующие: $x_B=-a,\,y_B=\frac{1}{a}$.

Обозначим f(x,y) = 3x - y - 4. Точки A и B лежат по разные стороны от прямой 3x - y - 4 = 0 тогда и только тогда, когда $f(x_A, y_A)$ и $f(x_B, y_B)$ есть числа разных знаков. Это равносильно неравенству

$$f(x_A, y_A) \cdot f(x_B, y_B) < 0.$$

Далее, цепочкой простейших преобразований получаем

$$\left(3a - \frac{3a}{2} - 4\right) \left(-3a - \frac{1}{a} - 4\right) < 0,$$

$$\left(\frac{3a}{2} - (3a - 4)\right) \left(\frac{1}{a} - (-3a - 4)\right) < 0,$$

$$\frac{3}{2} + \frac{3a(3a+4)}{2} - \frac{3a-4}{a} + (3a-4)(-3a-4) < 0,$$

$$\frac{3(3a^2 + 4a + 1)}{2} - \frac{(3a-4)(3a^2 + 4a + 1)}{a} < 0,$$

$$\frac{3a^2 + 4a + 1}{a} \left(\frac{3a}{2} - (3a-4)\right) < 0,$$

$$-\frac{(3a+1)(a+1)}{a} \cdot \frac{3a-8}{2} < 0,$$

$$\frac{(3a+1)(a+1)(3a-8)}{a} > 0.$$

Решая это неравенство методом интервалов, получаем ответ.

Other.
$$(-\infty; -1) \cup \left(-\frac{1}{3}; 0\right) \cup \left(\frac{8}{3}; +\infty\right)$$
.

Пример 29 (МФТИ, 2016). Найдём все значения параметра a, при каждом из которых система уравнений

$$\begin{cases} (|y+9|+|x+2|-2)(x^2+y^2-3)=0,\\ (x+2)^2+(y+4)^2=a \end{cases}$$
 имеет ровно три решения.

Решение. Первое уравнение данной системы равносильно совокупности двух уравнений |y+9|+|x+2|=2 и $x^2+y^2=3$. Первое из них задаёт квадрат G с центром (-2;-9), диагонали которого равны 4 и параллельны осям координат. Второе задаёт окружность S с центром (0;0) радиуса $\sqrt{3}$ (см. рис. 50).

Второе уравнение исходной системы при a>0 задаёт окружность Ω с центром (-2;-4) радиуса $R=\sqrt{a}$.

Отметим, что при a < 0 второе уравнение задаёт пустое множество, при a = 0 одну точку (-2; -4). Поэтому при $a \le 0$ трёх решений быть не может.

Рассмотрев случаи внешнего и внутреннего касания окружностей Ω и S, можно заключить, что они имеют ровно 1 общую точку при $R = \sqrt{20} \pm \sqrt{3}$, ровно 2 общие точки при $R \in \left(\sqrt{20} - \sqrt{3}; \sqrt{20} + \sqrt{3}\right)$ и ни одной общей точки при остальных R. По-

Рис. 50

скольку центры окружности Ω и квадрата G лежат на прямой x=-2, то Ω

и G имеют ровно 1 общую точку при R=3 или R=7, ровно 2 общие точки при $R\in (3;7)$ и ни одной общей точки при остальных значениях R. Для того чтобы у системы было 3 решения, необходимо и достаточно, чтобы окружность Ω имела 2 общие точки с квадратом G и 1 общую точку с окружностью S или наоборот. Рассмотрим значения R, при которых окружность Ω имеет с квадратом G или окружностью S ровно 1 общую точку.

- 1) $R=\sqrt{20}+\sqrt{3}$. Тогда есть ровно 1 общая точка с окружностью S и ровно 2 общие точки с квадратом G (т. к. $3<\sqrt{20}-\sqrt{3}<7$), т. е. у системы 3 решения.
- 2) $R=\sqrt{20}-\sqrt{3}$. Тогда есть ровно 1 общая точка с окружностью S и нет общих точек с квадратом G (т. к. $\sqrt{20}+\sqrt{3}<3$), т. е. у системы 1 решение.
- 3) R=3. Тогда есть ровно 1 общая точка с квадратом G и ровно 2 общие точки с окружностью S (т. к. $\sqrt{20}-\sqrt{3}<3<\sqrt{20}+\sqrt{3}$), т. е. у системы 3 решения.
- 4) R=7. Тогда есть ровно 1 общая точка с квадратом G и нет общих точек с окружностью S (т. к. $7>\sqrt{20}+\sqrt{3}$), т. е. у системы 1 решение.

Итак, подходят R=3 и $R=\sqrt{20}+\sqrt{3}$. Тогда искомые значения параметра $a=3^2=9$ и $a=(\sqrt{20}+\sqrt{3})^2=23+4\sqrt{15}$.

Ответ: a = 9, $a = 23 + 4\sqrt{15}$.

Пример 30. В зависимости от значений параметра a найдём количество решений уравнения

$$a + [x] = \sqrt{2x - x^2}.$$

Решение. Количество решений соответствует количеству общих точек графиков y = a + [x] и $y = \sqrt{2x - x^2}$. (рис. 51).

$$y = \sqrt{2x - x^2} \Leftrightarrow \begin{cases} y \ge 0, \\ (x - 1)^2 + y^2 = 1. \end{cases}$$

График функции y = a + [x] представлен на рисунке ниже (рис. 52).

Рис. 51

Рис. 52

Общие точки возможны лишь при $x \in [0; 2]$. Рассмотрим несколько случаев расположения графиков.

- 1) Если $0 \le x < 1$, то y = a + [x] = a. В этом случае возможна одна общая точка с полуокружностью $y = \sqrt{2x x^2}$ при $0 \le a < 1$.
- 2) Если $1 \le x < 2$, то y = a + [x] = a + 1. Теперь одна общая точка возможна при $0 < a + 1 \le 1$, то есть $-1 < a \le 0$.
- 3) Если x=2, то y=a+[x]=a+2. Точка (2; a+2) лежит на графике $y=\sqrt{2x-x^2} \Leftrightarrow a=-2$.

Ответ: при $a \in (-\infty; -2) \cup (-2; -1] \cup [1; +\infty)$ нет решений, при $a \in \{-2\} \cup (-1; 0) \cup (0; 1)$ одно решение, при a = 0 два решения.

Контрольные вопросы

1(2). Постройте графики следующих функций.

а)(1)
$$y = \frac{x^2 - 1}{x - \frac{1}{x}}$$
. б)(1) $y = \begin{cases} -\frac{1}{1 - x}, 0 \le x \le 2, \\ x - 1, в противном случае. \end{cases}$

2(4). Постройте графики следующих функций.

a)(1)
$$y = |x| - \frac{x}{2}$$
. 6)(1) $y = \frac{x^2}{|x|}$. B)(1) $y = \frac{4-x^2}{|x|-2}$.

$$\Gamma$$
)(1) $y = 2 - \frac{|x-1|}{2}$.

3(10). С помощью преобразований графиков функций постройте графики следующих функций.

a)(2)
$$y = |x^2 - 4|x| + 2|$$
. 6)(2) $y = \left|\frac{x}{|x| - 2x + 2}\right|$.
B)(2) $y = \frac{3-x}{x-2}$. \mathbf{r})(2) $y = -\sqrt{4|x| + 5 - x^2}$.
 \mathbf{p})(2) $y = \frac{|3-|1-x||}{2}$.

4(6). Постройте множества точек, координаты которых удовлетворяют следующим уравнениям.

a)(1)
$$2\frac{x^2}{y} - x^3 = 0$$
. 6)(1) $y = \frac{x^2 + y^2}{4} + x + 1$.
B)(1) $-\frac{|2x + y - 1| + (x + 1)^2}{4y} = x + y + 1$. r)(1) $2|x| + |y| = 4$.
 π)(1) $\left|\frac{y + 1}{2}\right| = 1 - x$. e)(1) $y|x| = \frac{|y|}{y + 2}$.

5(3). Постройте графики следующих уравнений.

a)(1)
$$x^2 - 2|x| + y^2 - 2|y| - 2 = 0$$
.

6)(1)
$$\left| \frac{x}{3} - y \right| = |x + 3y|$$
.

$$\mathbf{B})(1)\sqrt{(x-1)(1-y)} = \sqrt{1-x}\sqrt{y-1}.$$

6 (2). Изобразите на плоскости Оху множество точек.

$$\begin{cases} y \le -x^2 + 2x + 2, \\ (x-1)^2 + (y+2)^2 \le 4. \end{cases}$$

- 7(2) (МГУ, мехмат, 2007). Графики функций $f(x) = 3x^2 5$ и $g(x) = \frac{x^2}{4} x$ пересекаются в двух точках. Найдите коэффициенты a и b в уравнении прямой y = ax + b, походящей через те же точки.
- 8(2). В зависимости от значений параметра a найдите количество решений системы

$$\begin{cases} -|ax| + y = 2, \\ x^2 + y^2 = a^2. \end{cases}$$

9(3) (ЕГЭ). При каких a функция $f(x) = x^2 - 4|x - a^2| - 6x$ имеет хотя бы одну точку максимума?

10(3) (**ЕГЭ**). Производство некоторого товара облагалось налогом в размере t_0 рублей за единицу товара. После того как государство, стремясь увеличить сумму налоговых поступлений, увеличило налог в два раза (до $t_1 = 2t_0$), сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог после этого, чтобы добиться максимальных налоговых сборов, если известно, что при налоге равном t рублей за единицу товара объем производства товара составляет $15\,000-3t$ единиц, если это число положительно?

Задачи

1(3). В зависимости от параметра α найдите количество решений уравнения

$$x^2 - 8|x| = a^2 - 20.$$

2(6). Постройте графики следующих функций.

a) (3)
$$f(x) = [2x - 0.8]$$
. 6) (3) $f(x) = \{2x + 0.4\}$.

3(4) (**ЕГЭ**). Найдите все значения a, при которых уравнение

$$10a + \sqrt{-48 + 14x - x^2} = ax + 1$$

имеет единственный корень.

4(4) (ЕГЭ). Найдите все значения параметра a, при каждом из которых следующая система уравнений имеет единственное решение.

$$\begin{cases} (x - 3a - 2)^2 + (y - a + 1)^2 = 25, \\ (x - 2a - 1)^2 + (y - a + 1)^2 = 81. \end{cases}$$

5(5). Найдите количество решений следующего уравнения в зависимости от значений параметра a (где [x] – целая часть числа x).

$$a + [x] = -\sqrt{9 - x^2}.$$

6(6). Для произвольного значения параметра a укажите количество различных корней уравнения

$$(a^2 - 1)x^{-2} - (a + 1)|x|^{-1} + a = -1.$$

7(6) (ЕГЭ). При каких a уравнение

$$\left| x + \frac{a^2}{x} + 1 \right| + \left| x + \frac{a^2}{x} - 1 \right| = 2$$

имеет хотя бы один корень?

8(6) (**МФТИ, 2021**). Пусть M – фигура на декартовой плоскости, состоящая из всех точек (x; y), таких, что существует пара вещественных чисел a, b, при которых выполняется система неравенств

$$\begin{cases} (x-a)^2 + (y-b)^2 \le 2, \\ a^2 + b^2 \le \min(2a + 2b; 2). \end{cases}$$

Найдите площадь фигуры M.

- **9(6)** (**МФТИ**, **2021**). На плоскости 0xy даны точка A, координаты (x;y) которой удовлетворяют уравнению $5a^2-6ax-2ay+2x^2+2xy+y^2=0$, и окружность с центром в точке B, заданная уравнением $a^2x^2+a^2y^2-8a^2x-2a^3y+12ay+a^4+36=0$. Найдите все значения параметра a, при которых точки A и B лежат по разные стороны от прямой y=1 (точки A и B не лежат на этой прямой).
- **10(6) (МФТИ, 2020).** Найдите все значения параметра a, при каждом из которых система уравнений

$$\begin{cases} |y+6-x|+|y+6+x| = 12, \\ (|x|-8)^2 + (|y|-6)^2 = a \end{cases}$$

имеет ровно два решения.

11(6) (ЕГЭ). Найдите все значения параметра a, при каждом из которых уравнение $f(x) = |a+3|\sqrt[3]{x}$ имеет четыре решения, где f – четная периодическая функция с периодом $T = \frac{16}{3}$, определённая на всей числовой прямой, причём $f(x) = ax^2$, если $0 \le x \le \frac{8}{3}$.