Inhaltsverzeichnis

1	Intr	roduction	1
2	Det	erminant	1
	2.1	Definition and conclusions	1
	2.2	Calculations	2
		2.2.1 Explicit formulas	2
		2.2.2 Blockmatrix	2
		2.2.3 Triangular matrix	2
		2.2.4 Laplace expansion	3
3	Eige	envalue problem	3
	3.1	Introduction	3
	3.2	Characteristical polynom	3
	3.3	Eigenvalues	4
	3.4	Eigenvectors	4
	3.5	Example	4

1 Introduction

This document is intended as an extension to the exercise generator: https://github.com/TimJ2718/python-exercise-generator and as an introduction to linear algebra.

2 Determinant

2.1 Definition and conclusions

The determinant function $\det(A)$ for a square matrix: $A \in K^{n \times n}$ is defined as the function which maps $K^{n \times n} \to K$ and satisfies the following properties: We write $A = (v_1, ... v_n)$, where $v \in K^{1 \times n}$.

- $\det(v_1, ...\lambda \cdot v_i, ...v_n) = \lambda \det(v_1, ...v_i, ...v_n)$
- $\det(v_1,...v_i+w,...v_n) = \det(v_1,...v_i,...v_n) + \det(v_1,...w,...v_n)$
- $v_i = v_j \Rightarrow \det(v_1, ..., v_i, ..., v_j, ..., v_n) = 0$
- det(1) = 1 (Here 1 is the unity matrix)

Important conclusions are:

- $\det(A) = 0 <=>$ A does not have a full rank <=> The columns/rows are linear dependent
- $\det(A) = \det(A^T)$
- $\det(A \cdot B) = \det(A) \cdot \det(B)$
- $\det(v_1, ..., v_i, ..., v_j, ...v_n) = \det(v_1, ..., v_i + v_j, ...v_n)$

2.2 Calculations

2.2.1 Explicit formulas

$$\det \begin{bmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \end{bmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\det \begin{bmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \end{bmatrix}$$

 $=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{31}a_{22}a_{13}-a_{32}a_{23}a_{11}-a_{33}a_{21}a_{12}$

Examples

$$\det\begin{bmatrix} 2 & -3 \\ 5 & 6 \end{bmatrix} = 2 \cdot 6 - (5 \cdot (-3)) = 12 + 15 = 27$$

$$\det\begin{bmatrix} 9 & 3 & 1 \\ 2 & 6 & 3 \\ 6 & -1 & -1 \end{bmatrix} = 9 \cdot 6 \cdot (-1) + 3 \cdot 3 \cdot 6 + 1 \cdot 2 \cdot (-1) - 6 \cdot 6 \cdot 1 - (-1) \cdot 3 \cdot 9 - (-1) \cdot 2 \cdot 3 = -54 + 54 - 2 - 36 + 27 + 6 = -5$$

2.2.2 Blockmatrix

Let be $M \in K^{n \times n}$ and 0 the 0 matrix.

If A and C are quadratic matrices (C does not need to be quadratic) then the determinant of M is given by: $M = \det \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \det [A] \cdot \det [C]$

$$M = \det \begin{bmatrix} \begin{pmatrix} A & 0 \\ C & C \end{pmatrix} \end{bmatrix} = \det [A] \cdot \det [C]$$

Example

$$\det\begin{bmatrix} 2 & 3 & 4 & 8 & 2 \\ 6 & 2 & 3 & 9 & 4 \\ 0 & 0 & 9 & 3 & 1 \\ 0 & 0 & 2 & 6 & 3 \\ 0 & 0 & 6 & -1 & -1 \end{bmatrix} = \det \begin{bmatrix} 2 & 3 \\ 6 & 2 \end{bmatrix} \cdot \det \begin{bmatrix} 9 & 3 & 1 \\ 2 & 6 & 3 \\ 6 & -1 & -1 \end{bmatrix} = -14.$$

2.2.3 Triangular matrix

$$A = \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{array}\right)$$

There are two kinds of triangular matrices:

A is an upper triangular matrix if all elements under the diagonal are zero: $a_{ij} = 0$ for i > j.

A is a lower trinangular matrix if all elements over the diagonal are zeros: $a_{ij} = 0$ for i < j.

The determinant of a triangular matrix is given by the product of the diagonal elements: $det(A) = \prod_{i=1}^{n} a_{ii}$

Example

$$\det \begin{bmatrix} \begin{pmatrix} 2 & 5 & 4 \\ 0 & 3 & 8 \\ 0 & 0 & 4 \end{pmatrix} \end{bmatrix} = 2 \cdot 3 \cdot 4 = 24; \ \det \begin{bmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 8 & 3 & 0 \\ 5 & 4 & 4 \end{pmatrix} \end{bmatrix} = 2 \cdot 3 \cdot 4 = 24$$

2.2.4 Laplace expansion

$$A = \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{array}\right)$$

Define: A_{ij} as the matrix where row i and the column j is removed:

$$\tilde{A}_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}$$

The determinat of A is given by:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \tilde{A}_{ij}$$
$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \cdot \tilde{A}_{ij}$$
Examples

$$\det \begin{bmatrix} 2 & 0 & 2 \\ 8 & 3 & 1 \\ 5 & 4 & 4 \end{bmatrix} = (-1)^{1+1} \cdot 2 \cdot \det \begin{bmatrix} 3 & 1 \\ 4 & 4 \end{bmatrix} + (-1)^{1+2} \cdot 0 \cdot \det \begin{bmatrix} 8 & 1 \\ 5 & 4 \end{bmatrix} + (-1)^{1+3} \cdot 2 \cdot \det \begin{bmatrix} 8 & 3 \\ 5 & 4 \end{bmatrix}$$

$$\det \begin{bmatrix} \begin{pmatrix} 2 & 0 & 2 \\ 8 & 3 & 1 \\ 5 & 4 & 4 \end{pmatrix} \end{bmatrix} = (-1)^{1+2} \cdot 0 \cdot \det \begin{bmatrix} \begin{pmatrix} 8 & 1 \\ 5 & 4 \end{pmatrix} \end{bmatrix} + (-1)^{2+2} \cdot 3 \cdot \det \begin{bmatrix} \begin{pmatrix} 2 & 2 \\ 5 & 4 \end{pmatrix} \end{bmatrix} + (-1)^{3+2} \cdot 4 \cdot \det \begin{bmatrix} \begin{pmatrix} 2 & 2 \\ 8 & 1 \end{pmatrix} \end{bmatrix}$$

$\mathbf{3}$ Eigenvalue problem

Introduction

A vector v is called eigenvector of the linear map φ if $\varphi(v) = \lambda \cdot v$. Here the scalar λ is called eigenvalue.

For obvious reasons φ must be an endomorphism us and can be expressed as a quadratic matrix.

3.2 Characteristical polynom

Let be: $A \in K^{n \times n}$ and $v \in K^{1 \times n}$ and $\lambda \in K$. $A \cdot V = \lambda V \rightarrow (\lambda \cdot \mathbb{1} - A)v = 0$ (Here 1 is again the unity matrix.) This can only be true if $(\lambda \cdot \mathbb{1} - A)$ has no full rank $<=> \det(\lambda \cdot \mathbb{1} - A) = 0$ We define $\chi(\lambda) = \det(\lambda \cdot \mathbb{1} - A)$ as the characteristical polynom.

3.3 **Eigenvalues**

The eigenvalues are given by the roots of the characteristical polynom. The multiplicity of the root is called algebraic multiplicity.

Eigenvectors 3.4

The eigenvectors to the eigenvalue λ can be found by solving the following equation:

 $(\lambda_i \cdot \mathbb{1} - A)v = 0$ Every eigenvalue has at least one eigenvector but at most as many as the algebraic multiplicity. The number of linear independent eigenvalues of a eigenvalue is called geometric multiplicity.

3.5 Example

Determine the characteristical polynom, the eigenvalues and the eigenvectors:

$$\begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}$$

Chracteristical polynom:
$$\chi(\lambda) = \det \begin{pmatrix} \lambda - 1 & -3 \\ 0 & \lambda - 4 \end{pmatrix} = (\lambda - 1) \cdot (\lambda - 4) - 0 \cdot (-3) = \lambda^2 - 5\lambda + 4$$

Eigenvalues:

 $\chi(\lambda) = 0 \iff (\lambda - 1) \cdot (\lambda - 4) = 0$

 $=>\lambda_1=1$: Algebraic multiplicity: 1

 $=>\lambda_2=4$: Algebraic multiplicity: 1

Hint: You can check your result with the following relationship:

The sum of the eigenvalues is equal to the trace of the matrix.

$$1+4\stackrel{!}{=}\lambda_1+\lambda_2$$

(Eigenvalues that occur more than once are added multiple times according to their occurance)

(The trace of a matrix is given by the sum of the diagonal elements)

Eigenvectors:

$$\lambda_{1} = 1:$$

$$\begin{pmatrix} 0 & -3 \\ 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow v_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\lambda_{2} = 4:$$

$$\begin{pmatrix} 3 & -3 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \rightarrow v_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
Where W

Hint: You can plug in v and λ in the definition $Av = \lambda v$ and check if your calculation is right.

3.6 Diagonalizability