判断无穷级数 $\sum_{n=1}^{\infty} u_n$ 敛散性

方法一:

若 $\lim_{n\to\infty} S_n = S$ 存在, 则无穷级数收敛.

若 $\lim_{n\to\infty} S_n$ 不存在,则无穷级数发散.

方法二:

 $\lim_{n\to\infty} u_n \neq 0$,则无穷级数发散.

第29讲

常数项级数的审敛法

- 一、正项级数及其审敛法 比较审敛法 比值审敛法 根式审敛法
- 二、交错级数及其审敛法
- 三、绝对收敛与条件收敛

一、正项级数及其审敛法

若
$$u_n \ge 0$$
, 则称 $\sum_{n=1}^{\infty} u_n$ 为正项级数.

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$\{S_n\} = \{S_1, S_2, \dots, S_n \dots\}$$
 单调递增,

定理 1. 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛 \Longrightarrow 部分和序列 S_n $(n=1,2,\cdots)$ 有界 .

$$S_n = u_1 + u_2 + u_3 + \cdots + u_n$$

$$\left\{S_n\right\}$$
 单调递增,

若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\lim_{n\to\infty} S_n$ 存在

则 $\{S_n\}$ 有界.

定理 1. 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛 \longrightarrow 部分和序列 S_n $(n=1,2,\cdots)$ 有界 .

 $: u_n \ge 0$, **:** 部分和数列 $\{S_n\}$ 单调递增,

又已知 $\{S_n\}$ 有界,

 $\lim_{n\to\infty} S_n$ 存在

从而 $\sum_{n=1}^{\infty} u_n$ 也收敛.

且存在 $N \in \mathbb{Z}^+$,对一切 n > N,有 $u_n \leq v_n$ (常数 k > 0), 则有

- (1) 若强级数 $\sum_{n=1}^{\infty} v_n$ 收敛,则弱级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;
- (2) 若弱级数 $\sum_{n=1}^{\infty} u_n$ 发散,则强级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$\sigma_n = v_1 + v_2 + v_3 + \dots + v_n$$

$$\therefore S_n \le \sigma_n$$

且存在 $N \in \mathbb{Z}^+$, 对一切 n > N , 有 $u_n \leq v_n$ (常数 k > 0),则有

- (1) 若强级数 $\sum_{n=1}^{\infty} v_n$ 收敛,则弱级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;
- (2) 若弱级数 $\sum_{n=1}^{\infty} u_n$ 发散,则强级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

证(1)
$$S_n \leq \sigma_n$$
,若 $\sum_{n=1}^{\infty} v_n$ 收敛,则有 $\sigma = \lim_{n \to \infty} \sigma_n$ $S_n \leq \sigma$, 又 :: $\{S_n\}$ 单调递增, $\lim_{n \to \infty} S_n$ 存在,从而 $\sum_{n=1}^{\infty} u_n$ 也收敛.

且存在 $N \in \mathbb{Z}^+$, 对一切 n > N, 有 $u_n \leq v_n$ (常数 k > 0), 则有

- (1) 若强级数 $\sum_{n=1}^{\infty} v_n$ 收敛,则弱级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;
- (2) 若弱级数 $\sum_{n=1}^{\infty} u_n$ 发散,则强级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$\sigma_n = v_1 + v_2 + v_3 + \dots + v_n$$

$$\therefore S_n \le \sigma_n$$

且存在 $N \in \mathbb{Z}^+$, 对一切 n > N , 有 $u_n \leq v_n$ (常数 k > 0),则有

- (1) 若强级数 $\sum_{n=1}^{\infty} v_n$ 收敛,则弱级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;
- (2) 若弱级数 $\sum_{n=1}^{\infty} u_n$ 发散,则强级数 $\sum_{n=1}^{\infty} v_n$ 也发散.
- 证 (2) $S_n \leq \sigma_n$, 若 $\sum_{n=1}^{\infty} u_n$ 发散, 则有 $\lim_{n\to\infty} S_n = \infty$,

因此
$$\lim_{n\to\infty} \sigma_n = \infty$$
,所以 $\sum_{n=1}^{\infty} v_n$ 也发散.

例1. 讨论级数 $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$ 的敛散性.

证: 因为

$$0 \le \sin \frac{\pi}{2^n} \le \frac{\pi}{2^n}$$

而级数 $\sum_{n=1}^{\infty} \frac{\pi}{2^n}$ 收敛

根据比较审敛法可知, 所给级数收敛.

例2. 证明级数
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$
 发散.

证:因为

$$\frac{1}{\sqrt{n(n+1)}} \ge \frac{1}{\sqrt{(n+1)^2}} = \frac{1}{n+1} (n=1,2,\cdots)$$

而级数
$$\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{n=2}^{\infty} \frac{1}{n}$$
 发散

根据比较审敛法可知, 所给级数发散.

例3. 讨论 p 级数 $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ (常数 p > 0) 的敛散性.

解: 1) 若 $p \le 1$, 因为对一切 $n \in Z^+$,

$$\frac{1}{n^p} \ge \frac{1}{n}$$

而调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,

由比较审敛法可知p级数 $\sum_{p=1}^{\infty} \frac{1}{n^p}$ 发散.

例3. 讨论 p 级数 $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ (常数 p > 0) 的敛散性.

解: 1) 若
$$p \le 1$$
, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散. $S_n - 1 \le \int_1^n \frac{1}{x^p} dx$
2) 若 $p > 1$, $S_n = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}$
 $x \in [1,2] \Rightarrow \int_1^2 \frac{1}{2^p} dx \le \int_1^2 \frac{1}{x^p} dx \Rightarrow \frac{1}{2^p} \le \int_1^2 \frac{1}{x^p} dx$
 $x \in [2,3] \Rightarrow \int_2^3 \frac{1}{3^p} dx \le \int_2^3 \frac{1}{x^p} dx \Rightarrow \frac{1}{3^p} \le \int_2^3 \frac{1}{x^p} dx$
 $x \in [n-1,n] \Rightarrow \int_{n-1}^n \frac{1}{n^p} dx \le \int_{n-1}^n \frac{1}{x^p} dx \Rightarrow \frac{1}{n^p} \le \int_{n-1}^n \frac{1}{x^p} dx$

例3. 讨论 p 级数 $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ (常数 p > 0) 的敛散性.

解: 1) 若
$$p \le 1$$
, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散. $S_n - 1 \le \int_1^n \frac{1}{x^p} dx$

$$|S_n - 1| \le \int_1^n \frac{1}{x^p} \, dx$$

2) 若 *p* > 1,

$$S_{n} \leq 1 + \int_{1}^{n} x^{-p} dx = 1 + \frac{1}{1 - p} x^{-p+1} \Big|_{1}^{n}$$

$$= 1 + \frac{1}{1 - p} (n^{-p+1} - 1) = 1 + \frac{1}{p - 1} (1 - n^{-p+1})$$

$$\leq 1 + \frac{1}{p - 1} = \frac{p}{p - 1}$$

例3. 讨论 p 级数 $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ (常数 p > 0) 的敛散性.

解: 1) 若 $p \le 1$, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散.

2) 若 *p* > 1,

$$S_n \leq \frac{p}{p-1}$$

 $\lim_{n\to\infty} S_n = S$ 存在,**p** 级数收敛.

调和级数与p级数是两个常用的比较级数.

若存在 $N \in \mathbb{Z}^+$, 对一切 $n \ge N$,

(1)
$$u_n \ge \frac{1}{n}$$
, 则 $\sum_{n=1}^{\infty} u_n$ 发散;

(2)
$$u_n \le \frac{1}{n^p} \ (p > 1), \ \iiint_{n=1}^{\infty} u_n \ \text{with }$$

定理3.(比较审敛法的极限形式) 设两正项级数

当 0 < l <∞ 时,两个级数同时收敛或发散;

证: 据极限定义, 对 $\varepsilon > 0$, 存在 $N \in \mathbb{Z}^+$, 当n > N时,

$$\left| \frac{u_n}{v_n} - l \right| < \varepsilon = \frac{\Delta}{2} \qquad (l \neq \infty)$$

$$-\frac{l}{2} \le \frac{u_n}{v_n} - l \le \frac{l}{2} \implies \frac{l}{2} v_n \le u_n \le \frac{3l}{2} v_n$$

由定理 2 可知 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 同时收敛或同时发散;

例4. 判别级数 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 的敛散性.

解:

$$\sin \frac{1}{n} \sim \frac{1}{n}$$

$$\begin{array}{c}
\sin\frac{1}{n} \\
\frac{n}{n} \\
\frac{1}{n}
\end{array} = 1$$

$$:: \sum_{n=1}^{\infty} \frac{1}{n}$$
 发散.

根据比较审敛法的极限形式知 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 发散.

例5. 判别级数
$$\sum_{n=1}^{\infty} \ln \left[1 + \frac{1}{n^2}\right]$$
 的敛散性.

解:

$$\lim_{n \to \infty} \frac{\ln\left[1 + \frac{1}{n^2}\right]}{\frac{1}{n^2}} = 1$$

$$\ln(1+\frac{1}{n^2}) \sim \frac{1}{n^2}$$

$$:: \sum_{n=1}^{\infty} \frac{1}{n^2} 收敛.$$

根据比较审敛法的极限形式知 $\sum_{n=1}^{\infty} \ln\left[1 + \frac{1}{n^2}\right]$ 收敛.

设
$$\sum u_n$$
 为正项级数, 且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$, 则

- (1) 当 ρ < 1 时, 级数收敛; (3) 当 ρ = 1 时, 不确定. \vee
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时,级数发散.

证: (1) 当
$$\rho$$
 < 1 时,

$$\Re \varepsilon = \frac{1-\rho}{2} > 0, \quad \text{in } \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho$$

知存在
$$N \in \mathbb{Z}^+$$
, 当 $n > N$ 时,
$$\frac{|u_{n+1}|}{|u_n|} - \rho < \varepsilon = \frac{1-\rho}{2}$$
$$\frac{u_{n+1}}{|u_n|} < \rho + \frac{1-\rho}{2}$$
 $\leq r$ < 1 $\Rightarrow u_{n+1} < ru_n$ $(n > N)$

设
$$\sum u_n$$
 为正项级数, 且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$, 则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时,级数发散.
- (3) 当 $\rho = 1$ 时,不确定.
- 证: (1) 当 ρ < 1 时,

$$u_{N+2} < ru_{N+1}$$

$$u_{N+3} < ru_{N+2} < r^{2}u_{N+1}$$

$$u_{N+4} < ru_{N+3} < r^{3}u_{N+1}$$

$$u_{N+2} + u_{N+3} + \dots < ru_{N+1} + r^2 u_{N+1} + \dots$$

设
$$\sum u_n$$
 为正项级数,且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时,级数发散.

(3) 当
$$\rho = 1$$
时,不确定.

证: (1) 当 ρ <1时,

$$u_{N+2} + u_{N+3} + \dots < ru_{N+1} + r^2 u_{N+1} + \dots$$

:: 级数
$$ru_{N+1} + r^2u_{N+1} + ...$$
 收敛, $\therefore u_{N+2} + u_{N+3} + ...$ 收敛

$$\Rightarrow \sum_{n=1}^{\infty} u_n 收敛.$$

设
$$\sum u_n$$
 为正项级数,且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时,级数发散.
- (3) 当 $\rho = 1$ 时,不确定. $\rho 1$

证: (2)
$$\rho > 1$$
 或 $\rho = \infty$ 时, 0

取
$$\varepsilon = \frac{\rho - 1}{2} > 0$$
,由 $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho > 1$
存在 $N \in \mathbb{Z}^+$,当 $n > N$ 时, $\left| \frac{u_{n+1}}{u_n} - \rho \right| < \varepsilon = \frac{\rho - 1}{2}$
 $\frac{u_{n+1}}{u_n} > \rho - \frac{\rho - 1}{2}$ $\triangleq r > 1 \Rightarrow u_{n+1} > ru_n \ (n > N)$

设
$$\sum u_n$$
 为正项级数, 且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$, 则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时,级数发散.
- (3) 当 $\rho = 1$ 时,不确定.

证: (2)
$$\rho > 1$$
 或 $\rho = \infty$ 时,

$$\frac{u_{n+1}}{u_n} > \rho - \frac{\rho - 1}{2} \stackrel{\Delta}{=} r > \mathbf{1} \qquad \Rightarrow u_{n+1} > ru_n \quad (n > N)$$

$$u_{N+2}^{n} > ru_{N+1}$$
 $u_{N+3} > ru_{N+2} > r^{2}u_{N+1}$
 $u_{N+4} > ru_{N+3} > r^{3}u_{N+1}$

$$u_{N+2} + u_{N+3} + \dots > ru_{N+1} + r^2 u_{N+1} + \dots$$

设
$$\sum u_n$$
 为正项级数,且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时,级数发散.
- (3) 当 $\rho = 1$ 时,不确定.

证: (2)
$$\rho > 1$$
 或 $\rho = \infty$ 时, 0

$$u_{N+2} + u_{N+3} + \dots > ru_{N+1} + r^2 u_{N+1} + \dots$$

:: 级数
$$ru_{N+1} + r^2u_{N+1} + ...$$
 发散, $\therefore u_{N+2} + u_{N+3} + ...$ 发散

$$\Rightarrow \sum_{n=1}^{\infty} u_n$$
 发散.

例6. 讨论级数敛散性
$$(1)\sum_{n=1}^{\infty}\frac{2^n\cdot n!}{n^n}$$
. $(2)\sum_{n=1}^{\infty}n\,x^{n-1}\,(x>0)$

解(1):

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\frac{2}{e}<1$$

根据定理4: 原级数收敛.

(2)
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)x^n}{nx^{n-1}} = x$$

当
$$x > 1$$
时,级数发散;

当
$$x = 1$$
时,级数 $\sum_{n=1}^{\infty} n$ 发散.

定理5. 根值审敛法 (Cauchy判别法) 设 $\sum_{n=1}^{\infty} u_n$ 为正项级

数,且
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$$
,则

- (1)当 ρ <1时,级数收敛;
- (2)当 ρ >1时,级数发散.
- (3) 当 $\rho = 1$ 时, 不确定. \checkmark

例7. 判断级数敛散性 $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$

解:
$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \frac{1}{\left(\frac{n+1}{n}\right)^n}$$
$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1$$

由根值判别法可知该级数收敛.

内容小结

对正项级数 $\sum_{n=1}^{\infty} u_n$

