$$Y = X\beta + E \qquad E \sim N(0.61)$$

We have
 $EY = X\beta$

$$EY = x\beta$$

 $Var Y = 6^2I$

(025)
$$\hat{\beta} = \underset{\beta}{\text{aigmax}} ||Y - x\beta||_{2}^{2}$$

(MLE)
$$\hat{\beta} = \underset{\beta}{\operatorname{argmax}} L(\beta) = \underset{\beta}{\operatorname{argmax}} \log(p(Y|X))$$

From both:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Then

$$E(\hat{\beta}) = (X^{T}X)^{-1}X^{T}X\beta = \beta$$

$$Var(\hat{\beta}) = (X^{T}X)^{-1}X^{T} \cdot x(X^{T}X)^{-1} Var(Y) = \delta^{2}(X^{T}X)^{-1}$$

Difference: prediction of a future value 1.5. predict of the mean response

Given value of new data Xnew

Predict new response:

Ynew =
$$X \text{ new } \beta$$
 + \mathcal{E} $\sim N(X \text{ new } \beta, \mathcal{E})$
Ynew = $X \text{ new } \hat{\beta}$ $\sim N(X \text{ new } \beta, \mathcal{E})$ $\sim X^T \text{ New } (X^T X)^{-1} X \text{ new })$

mean square crior to estimate 6

Then

$$5^{2}$$
 f pred $1 \stackrel{\triangle}{=} MSE (1 + X_{new}^{T}(X^{T}X)^{-1}X_{new})$

$$\frac{Y_{new} - \hat{Y}_{new}}{S^{2}$$
 $\sim t(n-p)$

> 11- a) percent prediction interval of Ynew = Xnew \beta + E Ynew I to 1-10/21:n-pls i predt

In confidence interval for mean of y, not [1+] term

(Diagnostics)

(Optional) Inference:

$$\begin{cases} e_i = Y_i - \hat{Y}_i \sim \mathcal{N}(0, (1-h_{ii})6^2) \\ h_{ij} = \hat{h} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{SSxx} \\ e_i = approximately independent \end{cases}$$

studentized:

Semi:

(Remedical)

Non-linear: transform of log

Box.cox

e: x Linear