電子電工學 Lecture 3

Recap: circuit diagram

Interconnection of components

Table 3.1 Summary of the relations describing DC circuits

• Equivalent circuits – same electrical characteristic

Figure 3.21 Derivation of the equivalent conductance of two resistors connected in parallel

Find 1, V.

$$k(L O X) \qquad (N ward +)$$

$$(-I) + (-2) = 0$$

$$I = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$k V L \qquad (n ward +)$$

$$V = -2 A$$

$$V = -2$$

Figure 3.22 The circuit analysed in Example 3.1

Example 3.2

Find V.

$$KCL \otimes X$$
 (Inward)
 $5 + (-I) + (-3) = 0$
 $\Rightarrow I = 2 A$
 $Ohm's law$
 $V = -2x2 = -4V$

Figure 3.23 Pertinent to Example 3.2

Example 3.3

Find
$$V_A$$
. [Voltage Divider]

Equiv. Ckt

$$I = \frac{V}{R_1 + R_2}$$

$$Ohm's Law$$

$$V_A = I \cdot R_2$$

$$= V \frac{R_2}{R_1 + R_2}$$

Figure 3.24 Pertinent to Example 3.3

Example 3.4

Find
$$I_1$$
 and I_2

Equiv. Clat.

 $R = 65211312$
 $= \frac{1}{6} + \frac{1}{3} = 252$
 $= \frac{1}{$

Figure 3.25 Pertinent to Example 3.4

Example

What is the voltage across R_3 ?

Remove
$$R_3$$

$$V = V_s \cdot \frac{R_2}{R_1 + R_2}$$

$$= 15 \times \frac{470}{330 + 470} \sim 8.8$$

$$V_{s} = \begin{array}{c|c} V_{s} = & C_{o} \text{ nnect } R_{3} \\ \hline & 330 \Omega \end{array}$$

$$V = V_{s} \times \begin{array}{c|c} V_{s} \times V$$

DC Circuit Analysis CHAPTER 4

Figure 4.1 The circuit to be analysed

Ohm's law

$$V_{1} = I_{1} \times I \times \Omega$$

$$V_{2} = I_{2} \times 2 \times \Omega$$

$$V_{3} = I_{3} \times 3 \times \Omega$$

$$V_{4} = I_{4} \times 4 \times \Omega$$

$$V_{5} = V_{5} \times 6 \times \Omega$$

Figure 4.1 The circuit to be analysed

KCL (Inward currents as positive)

1

Figure 4.1 The circuit to be analysed

KVL

Loop 1 D
$$\rightarrow$$
 A \rightarrow B \rightarrow D
 $+ V_1 \bigcirc V_2 - V_3 = 0$
Loop 2. D \rightarrow B \rightarrow C \rightarrow D
 $+ V_3 - V_4 - V_5 = 0$

Figure 4.1 The circuit to be analysed

System of equations

Figure 4.1 The circuit to be analysed

Figure 4.1 The circuit to be analysed

Figure 4.1 The circuit to be analysed

Circuit simulation

- http://lushprojects.com/circuitjs/circuitjs.html
- http://www.falstad.com/circuit/circuitjs.html

Matrix computation

https://octave-online.net/

Circuit analysis System of egns Ohm's →5cgn's KCL → 3 egn's KVL → 2 egn's Simplify LOOP ANALYSIS 2 mA $2 k\Omega$ $4 \text{ k}\Omega$ $1 \text{ k}\Omega$ $3 \text{ k}\Omega$ $5 \text{ k}\Omega$ 3 mA 1 mA

Figure 4.1 The circuit to be analysed

Figure 4.1 The circuit to be analysed

Figure 4.2 The identification of circuit nodes for the circuit of Figure 4.1

Loop D
$$\rightarrow$$
 A \rightarrow B \rightarrow D

 $(KVL : V_{AD} + V_{BA} + V_{DB})$
 $= V_{A} - V_{D} + V_{B} - V_{A} + V_{D} - V_{B}$
 $= O$

voltmeter

 $V_{BD} = V_{B} - V_{D}$

Figure 4.3 The measurement of a voltage

Figure 4.4 The selection of a voltage reference point and the identification of other nodal voltages

Step 3
$$\begin{array}{c} \text{KCL} \Rightarrow \text{egn's} \\ \text{@A}: \quad |_{\text{mA}} + \frac{\text{O} - \text{VA}}{1 \text{K}} + \frac{\text{VB} - \text{VA}}{2 \text{K}} + \frac{\text{O} - \text{VA}}{2 \text{K}} + \frac{\text{O} - \text{VB}}{4 \text{K}} + \frac{\text{O} - \text{VB}}{4 \text{K}} + \frac{\text{O} - \text{VB}}{4 \text{K}} + \frac{\text{O} - \text{VC}}{4 \text{K}} + \frac{\text{O} - \text{VC$$

Figure 4.4 The selection of a voltage reference point and the identification of other nodal voltages

Step 4

Solve
$$egh' \Rightarrow V_A \quad V_B \quad V_C$$

$$-\frac{3}{2} \quad V_A + \frac{1}{2} \quad V_B + 0 \quad V_C = -3 \quad 0$$

$$\frac{1}{2} \quad V_A - \frac{13}{12} \quad V_B + \frac{1}{4} \quad V_C = 2 \quad 2$$

$$0 \quad V_A + \frac{1}{4} \quad V_B - \frac{9}{20} \quad V_C = -3 \quad 3$$

Figure 4.4 The selection of a voltage reference point and the identification of other nodal voltages

Nodal analysis 2 mA 2 kΩ 4 kΩ $1 \text{ k}\Omega$ $3 \text{ k}\Omega$ 3 mA

Figure 4.4 The selection of a voltage reference point and the identification of other nodal voltages

Step 1. Find all nodes.

Step 2. Assign Ground.

Step 3. KCL > Node's equis.

Step 4. Solve > Nodes' voltages.

Figure 4.4 The selection of a voltage reference point and the identification of other nodal voltages

Ohm's law KCL KVL

Figure 4.1 The circuit to be analysed

Quiz: find the current I_L through R_L (from A to B) and the voltage V_{AB} by using Nodal Analysis.

Quiz review

Step 1. Nodes A, B, X, Y

Step 2. Ground Y
$$\Rightarrow$$
 $V_Y=0$

Step 3. KCL QA

$$\frac{5-V_A}{R_1} + \frac{V_B-V_A}{R_2} + \frac{0-V_A}{R_3} = 0$$

$$\frac{5-V_B}{R_2} + \frac{V_A-V_B}{R_4} + \frac{0-V_B}{R_4} = 0$$

$$\frac{5-V_B}{R_2} + \frac{V_A-V_B}{R_4} + \frac{0-V_B}{R_4} = 0$$

$$\frac{5-V_B}{R_4} + \frac{V_A-V_B}{R_4} + \frac{0-V_B}{R_4} = 0$$

Quiz review

Step 4.

$$\begin{bmatrix} 19/2 & 1/3 \\ 1/3 & -7/6 \end{bmatrix} \begin{bmatrix} V_A \\ V_B \end{bmatrix} = \begin{bmatrix} -5 \\ -5/2 \end{bmatrix}$$

$$\begin{bmatrix} V_S \\ -5/2 \end{bmatrix}$$

Solve:
$$\begin{bmatrix} V_A \\ V_B \end{bmatrix} = \begin{bmatrix} 3.84 \\ 3.24 \end{bmatrix}$$

$$V_{AB} = 3.84 - 3.24 = 0.6V$$

$$I_L = \frac{V_{AB}}{R_L} = \frac{0.6}{3k} = 0.2 \text{ mA}$$

Nodal analysis with voltage sources (1)

Step 1. Nodes A, B, C, X&Y

Figure 4.5 A circuit containing a voltage source

Nodal analysis with voltage sources (2)

Step 2. Ground
$$X A Y$$

$$V_X = V_Y = 0$$

$$\Rightarrow V_0 \text{ ltage Src}$$

$$V_c = -15V$$

Figure 4.6 The circuit of Figure 4.5 redrawn to emphasize the circuit nodes

Nodal analysis with voltage sources (3)

Step 3. KCL

$$@A : \frac{-15-V_A}{5} + 2 + \frac{V_B-V_A}{4} = 0$$

Figure 4.7 A voltage reference node has been chosen and other circuit nodes labelled

Nodal analysis with voltage sources (4)

$$(CLQA I_1 + I_2 + I_3 = 0)$$

=) $\frac{-15 - V_A}{5} + 2 + \frac{V_B - V_A}{4} = 0 - 0$

Figure 4.8 Illustration of the application of KCL at node A of the circuit of Figure 4.7

Nodal analysis with voltage sources (5)

$$\frac{V_{A}-V_{B}}{4}+\frac{0-V_{B}}{12}+\left(-4\right)=0$$

Figure 4.7 A voltage reference node has been chosen and other circuit nodes labelled

Nodal analysis with voltage sources (6)

Figure 4.7 A voltage reference node has been chosen and other circuit nodes labelled

Nodal analysis Summary

- 1. Labeling Nodes
- 2. Identifying Ground (earth)
- 3. Applying KCL
- 4. Solving system of equations

Figure 4.4 The selection of a voltage reference point and the identification of other nodal voltages