

Taller subnetting método VLSM (Mundialito)

Redes de comunicaciones II

Juan Felipe Rodríguez Galindo 20181020158

Facultad de ingeniería

Definición Tarea

Dividir el segmento de red 10.17.0.0/15 en 14 subredes con las siguientes especificaciones.

Modelado de la red

Imagen 1, tablero, topología de la red a realizar en packet tarcer.

Comprobación subred válida.

Se toma la mascara indicada por el ejercicio en este caso /15 o en formato binario 1111111.11111111.100000000.00000000, se calcula el número de saltos de la mascara indicada.

La mascara nos da 2¹=2, por lo que los saltos serán de 2 en 2 por lo cual variamos dentro del segundo octeto, se puede observar que la mascara más cercana es 10.16.0.0, que es por la cual se debe empezar dentro de la tabla que se construya.

Listado de redes y Hosts.

Hacemos directamente también el paso número 1 el cual es organizar las redes de mayor a menor.

Número y nombre de subred	Cantidad de Hosts		
S0: LAN 1	18500		
S1: LAN 2	12532		
S2: LAN 3	10200		
S3: LAN 4	7250		
S4: LAN 5	2500		
S5: LAN 6	2030		
S6: LAN 7	852		
S7: LAN 8	505		
S8: LAN 9	220		
S9: LAN 10	150		
S10: LAN 11	105		
S11: LAN 12	90		
S12: LAN 13	50		
S13: LAN 14	31		
S14: WAN 1	2		
S15: WAN 2	2		

S16: WAN 3	2
S17: WAN 4	2
S18: WAN 5	2
S19: WAN 6	2
S20: WAN 7	2
S21: WAN 8	2
S22: WAN 9	2
S23: WAN 10	2
S24: WAN 11	2
S25: WAN 12	2
S26: WAN 13	2
S27: WAN 14	2
S28: WAN 15	2
S29: WAN 16	2
S30: WAN 17	2

Tabla 1, tabla de requerimientos de la red

Paso 2:

Utilizando la fórmula para el cálculo del número de HOSTS se obtiene el número de bits para HOSTS que se deben utilizar en la máscara de *Subnetting* o Nueva Máscara para la Subred SO (18500 Hosts), así:

 $2^{n} - 2 = N$ úmero máximo de Hosts por cada subred donde n es el número de bits utilizados para Hosts

Se modela la inecuación para la red:

2^(7) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 128 en 128 direcciones.

Realizamos el mismo proceso para las demás direcciones.

S1 : Alemania $\stackrel{\blacksquare}{=}$ $2^n \ge 12532 + 2 Host$

 $2^{n} \ge 12534 \, Host$ $2^{14} \ge 12534 \, Host$

n= 14 bits de hosts

/18 = 11111111.11111111.11000000.00000000

2^(6) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 64 en 64 direcciones.

S2: España 🔀

 $2^{n} \ge 10200 + 2 \text{ Host}$ $2^{n} \ge 10202 \text{ Host}$ $2^{14} \ge 10202 \text{ Host}$ n = 14 bits de hosts

/18 = 11111111.11111111.11000000.000000000

2^(6) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 64 en 64 direcciones.

S3: Francia 🚺

 $2^{n} \ge 7200 + 2 \text{ Host}$ $2^{n} \ge 7202 \text{ Host}$ $2^{13} \ge 7202 \text{ Host}$ n=13 bits de hosts

/19 = 11111111.11111111.11100000.00000000

2^(5) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 32 en 32 direcciones.

S4: Japón 💽

 $2^{n} \ge 2500 + 2 \text{ Host}$ $2^{n} \ge 2502 \text{ Host}$ $2^{12} \ge 2502 \text{ Host}$ 12 bits de hosts

/20 = 11111111.11111111.11110000.000000000

2^(4) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 16 en 16 direcciones.

S5 : Argentina 🔤

 $2^{n} \ge 2030 + 2 \text{ Host}$ $2^{n} \ge 2032 \text{ Host}$ $2^{11} \ge 2032 \text{ Host}$ n=11 bits de hosts

/21 = 11111111.11111111.11111000.00000000

2^(3) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 8 en 8 direcciones.

S6: Portugal 💆

 $2^{n} \ge 852 + 2 \text{ Host}$ $2^{n} \ge 854 \text{ Host}$ $2^{10} \ge 854 \text{ Host}$ 10 = 10 bits de hosts

/22 = 11111111.11111111.11111100.00000000

2^(2) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 4 en 4 direcciones.

S7: Qatar 🔳

 $2^{n} \ge 505 + 2 Host$ $2^{n} \ge 505 Host$ $2^{9} \ge 505 Host$ n= 9 bits de hosts

/23 = 11111111.11111111.11111110.00000000

2^(1) en el tercer octeto, lo que nos indica que en ese tendremos saltos de 2 en 2 direcciones.

S8: Canadá 🛂

 $2^{n} \ge 220 + 2 \text{ Host}$ $2^{n} \ge 222 \text{ Host}$ $2^{8} \ge 222 \text{ Host}$ 1 = 8 bits de hosts

/24 = 11111111.11111111.11111111.000000000

2^(8) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 256 en 256 direcciones.

S9: Senegal 🗾

 $2^{n} \ge 150 + 2 \text{ Host}$ $2^{n} \ge 152 \text{ Host}$ $2^{8} \ge 152 \text{ Host}$ $10^{8} \ge 152 \text{ Host}$

/24 = 11111111.11111111.11111111.00000000

2^(8) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 256 en 256 direcciones.

\$10 : Costa rica 🔀

 $2^{n} \ge 105 + 2 \text{ Host}$ $2^{n} \ge 107 \text{ Host}$ $2^{7} \ge 107 \text{ Host}$ 100 + 100 Host

/25 = 11111111.11111111.11111111.10000000

2^(7) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 128 en 128 direcciones.

\$11: Uruguay 🐸

 $2^n \ge 90 + 2 Host$

 $2^{n} > 92 Host$

 $2^7 > 92 Host$

n= 7 bits de hosts

/25 = 11111111.11111111.11111111.10000000

2^(7) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 128 en 128 direcciones.

\$12: Ecuador 🝑

 $2^n \ge 50 + 2 Host$

 $2^n \ge 52 Host$

 $2^6 \geq 52 \, Host$

n= 6 bits de hosts

/26 = 11111111.11111111.11111111.11000000

2^(6) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 64 en 64 direcciones.

\$13 : Iran 💳

 $2^n \ge 31 + 2 Host$

 $2^n \ge 33 \, Host$

 $2^6 \ge 33 \, Host$

n= 6 bits de hosts

/26 = 11111111.11111111.11111111.11000000

2^(6) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 64 en 64 direcciones.

\$14 : WAN 1 - \$15 : WAN 2 - \$16 : WAN 3 - \$17 : WAN 4 - \$18 : WAN 5 - \$19 : WAN 6 - \$20 : WAN 7 - \$21 : WAN 8 - \$22 : WAN 9 - \$23 : WAN 10 - \$24 : WAN 11 - \$25 : WAN 12 - \$26 : WAN 13 - \$27 : WAN 14 - \$28 : WAN 15 - \$29 : WAN 16 - \$30 : WAN 17

 $2^{n} \ge 2 + 2 \text{ Host}$ $2^{n} \ge 4 \text{ Host}$ $2^{2} \ge 4 \text{ Host}$ $2^{2} \ge 4 \text{ Host}$

/30 = 11111111.11111111.11111111.11111100

2^(2) en el cuarto octeto, lo que nos indica que en ese tendremos saltos de 4 en 4 direcciones.

Construcción de tabla de subredes

# de subred	Dir. subred	Dir. primer <i>Host</i>	Dir. último Host	Dir. <i>Broadcast</i>
S0: LAN 1	10.16.0.0/17	10.16.0.1	10.16.127.254	10.16.127.255
S1: LAN 2	10.16.128.0/18	10.16.128.1	10.16.191.254	10.16.191.255
S2: LAN 3	10.16.192.0/18	10.16.192.1	10.16.255.254	10.16.255.255
S3: LAN 4	10.17.0.0/19	10.17.0.1	10.17.31.254	10.17.31.255
S4: LAN 5	10.17.32.0/20	10.17.32.1	10.17.47.254	10.17.47.255
S5: LAN 6	10.17.48.0/21	10.17.48.1	10.17.55.254	10.17.55.255
S6: LAN 7	10.17.56.0/22	10.17.56.1	10.17.59.254	10.17.59.255
S7: LAN 8	10.17.60.0/23	10.17.60.1	10.17.61.254	10.17.61.255
S8: LAN 9	10.17.62.0/24	10.17.62.1	10.17.62.254	10.17.62.255
S9: LAN 10	10.17.63.0/24	10.17.63.1	10.17.63.254	10.17.63.255
S10: LAN 11	10.17.64.0/25	10.17.64.1	10.17.64.126	10.17.64.127
S11: LAN 12	10.17.64.128/25	10.17.64.129	10.17.64.254	10.17.64.255
S12: LAN 13	10.17.65.0/26	10.17.65.1	10.17.65.62	10.17.65.63
S13: LAN 14	10.17.65.64/26	10.17.65.65	10.17.65.126	10.17.65.127
S14: WAN 1	10.17.65.128/30	10.17.65.129	10.17.65.130	10.17.65.131
S15: WAN 2	10.17.65.132/30	10.17.65.133	10.17.65.134	10.17.65.135
S16: WAN 3	10.17.65.136/30	10.17.65.137	10.17.65.138	10.17.65.139
S17: WAN 4	10.17.65.140/30	10.17.65.141	10.17.65.142	10.17.65.143
S18: WAN 5	10.17.65.144/30	10.17.65.145	10.17.65.146	10.17.65.147

# de subred	Dir. subred	Dir. primer <i>Host</i>	Dir. último Host	Dir. Broadcast
S19: WAN 6	10.17.65.148/30	10.17.65.149	10.17.65.150	10.17.65.151
S20: WAN 7	10.17.65.152/30	10.17.65.153	10.17.65.154	10.17.65.155
S21: WAN 8	10.17.65.156/30	10.17.65.157	10.17.65.158	10.17.65.159
S22: WAN 9	10.17.65.160/30	10.17.65.161	10.17.65.162	10.17.65.163
S23: WAN 10	10.17.65.164/30	10.17.65.165	10.17.65.166	10.17.65.167
S24: WAN 11	10.17.65.168/30	10.17.65.169	10.17.65.170	10.17.65.171
S25: WAN 12	10.17.65.172/30	10.17.65.173	10.17.65.174	10.17.65.175
S26: WAN 13	10.17.65.176/30	10.17.65.177	10.17.65.178	10.17.65.179
S27: WAN 14	10.17.65.180/30	10.17.65.181	10.17.65.182	10.17.65.183
S28: WAN 15	10.17.65.184/30	10.17.65.185	10.17.65.186	10.17.65.187
S29: WAN 16	10.17.65.188/30	10.17.65.189	10.17.65.190	10.17.65.191
S30: WAN 17	10.17.65.192/30	10.17.65.193	10.17.65.194	10.17.65.195

Tabla 1, tabla de subredes construidas.