Lista nr 1

1. Zadanie 1

1.1. Opis problemu

Pierwszy problem polega na wyznaczeniu w sposób iteracyjny istotnych stałych związanych z arytmetyką zmiennoprzecinkową w różnych precyzjach.

- Epsilon maszynowy : najmniejszy macheps>0 taki że fl(1.0+macheps)>1.0 i fl(1.0+macheps)=1+macheps
- Eta : najmniejsza eta taka że eta > 0.0
- Max : największa liczba możliwa do zapisania w danym systemie

1.2. Opis algorytmu

1.2.1. Epsilon maszynowy

Szukając macheps, sprawdzam kolejne potęgi $\frac{1}{2}$, dopóki nie dojdę do takiej, która w wyniku dodania do 1.0 da 1.0. Według standardu IEEE 754 zaokrąglenia następują do najbliższej parzystej liczbie (czyli kończącej się na bicie 0). Z racji że 1.0 jest zgodnie z tym parzysta, to algorytm zakończy się rzeczywiście przy pierwszej takiej potędze $\frac{1}{2}$, że wynik dodania do 1.0 nie mieści się dokładnie w precyzji. Wtedy poprzednia potęga, to szukany macheps.

```
eps = 1.0
while (1.0 + eps / 2.0) > 1.0
    eps /= 2.0
end
return eps
```

Program 1: Algorytm liczenia macheps

1.2.2. Eta

Na podobnej zasadzie szukam liczby eta. Sprawdzam kolejne potęgi $\frac{1}{2}$ aż któraś nie zmieści się już w precyzji i zaokrągli do 0.0, które jest parzyste. Wtedy poprzednia potęga to eta.

```
eta = 1.0
while (eta / 2.0) > 0.0
    eta /= 2.0
end
return eta
```

Program 2: Algorytm liczenia eta

1.2.3. Max

Tutaj podzieliłem algorytm na dwie części. Najpierw "maksymalizuje cechę", szukając największej potęgi 2 mieszczącej się w precyzji. Następnie "wypełniam mantysę", dodając po kolei coraz mniejsze potęgi 2, aż nie dojdę do liczby, której nie można już zapisać dokładnie w danej precyzji i spowoduje overflow. Wtedy poprzednia liczba to max.

```
max = 1.0
while !isinf(max * 2.0)
    max *= 2.0
end
step = max / 2.0
while !isinf(max + step)
    my_max += step
    step /= 2.0
end
return max
```

Program 3: Algorytm liczenia max

1.3. Wyniki

	Float16	Float32	Float64
macheps	0.000977	$1.1920929 \cdot 10^{-7}$	$2.220446049250313 \cdot 10^{-16}$
eta	$6.0\cdot10^{-8}$	$1.0\cdot10^{-45}$	$5.0 \cdot 10^{-324}$
max	$6.55 \cdot 10^4$	$3.4028235 \cdot 10^{38}$	$1.7976931348623157 \cdot 10^{308}$

Tabela 1: Wyniki otrzymane w przeprowadzonych doświadczeniach

	Float16	Float32	Float64
eps(T)	0.000977	$1.1920929 \cdot 10^{-7}$	$2.220446049250313 \cdot 10^{-16}$
nextfloat(T(0.0))	$6.0\cdot10^{-8}$	$1.0\cdot10^{-45}$	$5.0 \cdot 10^{-324}$
floatmax(T)	$6.55 \cdot 10^4$	$3.4028235 \cdot 10^{38}$	$1.7976931348623157 \cdot 10^{308}$

Tabela 2: Wartości wyliczone przy pomocy biblioteki standardowej

	float	double
EPSILON	$1.1920928955078125 \cdot 10^{-7}$	$2.22044604925031308 \cdot 10^{-16}$
MAX	$3.4028234663852886 \cdot 10^{38}$	$1.79769313486231571 \cdot 10^{308}$

Tabela 3: Wartości znajdujące się w pliku nagłówkowym float.h

1.4. Wnioski i odpowiedzi

• Jaki ma związek macheps z precyzją arytmetyki?

macheps oznacza względną odległość pomiędzy kolejnymi liczbami maszynowymi. Natomiast precyzja arytmetyki oznacza największy względny błąd reprezentacji. Stąd jeżeli mamy do czynienia z zaokrąglaniem to precyzja = $\frac{1}{2}macheps$, a gdy z obcinaniem to precyzja = macheps.

 ${
m MIN_{sub}}$ to najmniejsza liczba większa od zera możliwa do zapisania w danej precyzji. Należy do liczb zdenormalizowanych. Zgodnie z definicją jest równa naszej liczbie eta.

ullet Jaki ma związek liczba eta z liczbą MIN_{sub} ?

• Co zwracają floatmin(T) i jaki jest ich związek z MIN_{nor} ?

floatmin(Float32) i floatmin(Float64) zwracają kolejno liczby $1.1754944 \cdot 10^{-38}$ i $2.2250739 \cdot 10^{-308}$. Zgodnie z dokumentacją są to najmniejsze liczby znormalizowane możliwe do zapisania w danej precyzji. Tym samym są równe MIN $_{\rm nor}$.

2. Zadanie 2

Według Kahana można uzyskać epsilon maszynowy wyliczając wyrażenie 3(4/3-1)-1. Stwierdzenie to zweryfikowałem w wielu precyzjach w języku Julia za pomocą prostych poleceń:

```
Float16(3) * (Float16(4) / Float16(3) - Float16(1)) - Float16(1) == -eps(Float16) \rightarrow true

Float32(3) * (Float32(4) / Float32(3) - Float32(1)) - Float32(1) == eps(Float32) \rightarrow true

Float64(3) * (Float64(4) / Float64(3) - Float64(1)) - Float64(1) == -eps(Float64) \rightarrow true
```

Żeby to zrozumieć wystarczy spojrzeć na kolejne etapy liczenia tego wyrażenia. Dla przykładu użyję arytmetyki Float16.

4/3	$\left(1.0101010101\right)_2\cdot 2^0$
4/3-1	$\big(1.0101010100\big)_2\cdot 2^{-2}$
3(4/3-1)	$\big(1.11111111110\big)_2\cdot 2^{-1}$
3(4/3-1)	$-{(1.00000000000)}_2\cdot 2^{-11}$

Tabela 4: Kolejno wykonywane operacje i ich wyniki w Float16

Wiadomo, że wynikiem 3(4/3-1) powinno być 1.0, a jednak w arytmetyce zmiennoprzecinkowej otrzymałem wynik, który wynosi $1 \pm macheps$. Różnica w znaku jest związana z tym, że okres $\frac{1}{3}$ w rozwinięciu dwójkowym ma długość 2 i zależnie od tego czy precyzja jest parzysta (Float32), czy nieparzysta (Float16, Float64), utniemy dokładny wynik na ostatnim bicie 0 albo na 1.

3. Zadanie 3

Ten problem polega na sprawdzeniu równomiernego rozmieszczenia liczb maszynowych na odcinkach $[1,2], \left[\frac{1}{2},1\right], [2,4]$. Zgodnie z teorią z wykładu wiem, że odległość pomiędzy dwiema sąsiednimi liczbami maszynowymi z cechą c wynosi $2^{c-(t-1)}$. Podstawiając dla naszych odcinków kolejno c=0,-1,1 oraz t-1=52, otrzymałem $2^{-52},2^{-53},2^{-51}$. Z racji, że te odcinki mają w sobie bardzo dużo liczb, nie sprawdzałem każdej z nich, a jedynie wybrałem paru przedstawicieli i sprawdzałem ich reprezentacje bitową. Eksperyment potwierdził teorię.

Liczba	Reprezentacja binarna
1.0	0:0111111111:00000000000000000000000000
$1.0 + 2^{-52}$	0:0111111111:00000000000000000000000000
$1.0 + 2^{-51}$	0:0111111111:00000000000000000000000000
$\frac{4}{3}$	0:0111111111:01010101010101010101010101
$\frac{4}{3} + 2^{-52}$	0:0111111111:01010101010101010101010101
2.0	0:1000000000:00000000000000000000000000
$2.0 - 2^{-52}$	0:0111111111:11111111111111111111111111

Tabela 5: Test dla liczb z odcinka [1, 2]

Liczba	Reprezentacja binarna
2.0	0:1000000000:00000000000000000000000000
$2.0 + 2^{-51}$	0:1000000000:00000000000000000000000000
4.0	0:1000000001:00000000000000000000000000
$4.0 - 2^{-51}$	0:1000000000:11111111111111111111111111

Tabela 6: Test dla liczb z odcinka [2, 4]

Liczba	Reprezentacja binarna
0.5	0:0111111110:00000000000000000000000000
$0.5 + 2^{-53}$	0:01111111110:0000000000000000000000000
1.0	0:0111111111:00000000000000000000000000
$1.0 - 2^{-53}$	0:0111111110:11111111111111111111111111

Tabela 7: Test dla liczb z odcinka $\left[\frac{1}{2},1\right]$

4. Zadanie 4

Celem tego zadania jest wyznaczenie najmniejszej takiej liczby 1 < x < 2, że $fl(x \cdot fl(\frac{1}{x})) \neq 1$. Zgodnie z poprzednim zadaniem wystarczy iteracyjnie przesuwać się od 1 krokami 2^{-52} , żeby nie pominąć żadnej liczby w przedziale [1,2].

```
x = 1.0
while x * (1.0 / x) == 1.0
    x += 2^(-52)
end
return x
```

Wynikiem była liczba 1.000000057228997096814282485865987837314605712890625. Albo inaczej 257736490 liczba z kolei następująca po liczbie 1.

5. Zadanie 5

5.1. Opis problemu

Problem polega na zbadaniu wyliczenia iloczynu skalarnego wektorów x i y poprzez dodawanie w różnych kolejnościach.

```
x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]
```

Te dwa wektory są do siebie prawie prostopadłe, przez co iloczyn skalarny jest bliski zeru. Dokładny wynik powinien wynieść $-1.00657107000000 \cdot 10^{-11}$.

5.2. Opis algorytmu

Zacząłem od wyliczenia wektora składającego się z wymnożonych elementów x i y.

$$\begin{split} m &= [x_1y_1, x_2y_2, x_3y_3, x_4y_4, x_5y_5] \\ m &\approx [4040.046, -2759471.3, -31.64292, 2755462.9, 0.0000557] \end{split}$$

Kolejne metody liczenia iloczynu skalarnego realizuję poprzez sumowanie elementów wektora m w różnych kolejnościach.

5.3. Wyniki

Float64			
Kolejność	Działanie	Wynik	Błąd względny
W przód	$m_1 + m_2 + m_3 + m_4 + m_5$	$1.0251881 \cdot 10^{-10}$	11.185
W tył	$m_5 + m_4 + m_3 + m_2 + m_1$	$-1.5643309 \cdot 10^{-10}$	14.541
Od max do min	$(m_4 + m_1 + m_5) + (m_2 + m_3)$	0.0	1.0
Od min do max	$(m_5 + m_1 + m_4) + (m_3 + m_2)$	0.0	1.0

Tabela 8: Wyniki w precyzji Float64

Float32			
Kolejność	Działanie	Wynik	Błąd względny
W przód	$m_1 + m_2 + m_3 + m_4 + m_5$	-0.4999443	$4.9668 \cdot 10^{10}$
W tył	$m_5 + m_4 + m_3 + m_2 + m_1$	-0.4543457	$4.5138 \cdot 10^{10}$
Od max do min	$(m_4 + m_1 + m_5) + (m_2 + m_3)$	-0.5	$4.9674 \cdot 10^{10}$
Od min do max	$(m_5 + m_1 + m_4) + (m_3 + m_2)$	-0.5	$4.9674 \cdot 10^{10}$

Tabela 9: Wyniki w precyzji Float32

5.4. Wnioski

Najmniejszym błędem zostało obarczone sumowanie od tyłu w precyzji Float64. Natomiast jakakolwiek próba sumowania we Float32 skończyła ogromnym błędem względnym rzędu 10^{10} .

6. Zadanie 6

W tym zadaniu obliczam wartość dwóch różnych wyrażeń f(x) i g(x), które są sobie matematycznie równoważne, dla zmniejszającego się argumentu $x=8^{-1},8^{-2},8^{-3},...$

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

x	f(x)	g(x)
8^{-1}	$7.78221854 \cdot 10^{-03}$	$7.78221854 \cdot 10^{-03}$
8^{-2}	$1.22062863 \cdot 10^{-04}$	$1.22062863 \cdot 10^{-04}$
8-3	$1.90734681 \cdot 10^{-06}$	$1.90734681 \cdot 10^{-06}$
8^{-4}	$2.98023219 \cdot 10^{-08}$	$2.98023219 \cdot 10^{-08}$
8^{-5}	$4.65661287 \cdot 10^{-10}$	$4.65661287 \cdot 10^{-10}$
8^{-6}	$7.27595761 \cdot 10^{-12}$	$7.27595761 \cdot 10^{-12}$
8^{-7}	$1.13686838 \cdot 10^{-13}$	$1.13686838 \cdot 10^{-13}$
8^{-8}	$1.77635684 \cdot 10^{-15}$	$1.77635684 \cdot 10^{-15}$
8-9	0.00000000	$2.77555756 \cdot 10^{-17}$
8^{-10}	0.00000000	$4.33680869 \cdot 10^{-19}$
8^{-11}	0.00000000	$6.77626358 \cdot 10^{-21}$
		•••
8^{-48}	0.00000000	$1.00538234 \cdot 10^{-87}$
8^{-49}	0.00000000	$1.57090991 \cdot 10^{-89}$
8^{-50}	0.00000000	$2.45454673 \cdot 10^{-91}$

Tabela 10: Porównanie wyliczania obu wyrażeń

Choć wyrażenia były równoznaczne, to szybko zaczęły od siebie odbiegać. Problem pojawia się w wyrażeniu x^2+1 i jest powodowany przez dodawanie do 1 liczby względnie bardzo małej. Gdy $x=8^{-9}=2^{-27}$ to $x^2=2^{-54}$, a jako że typ Float64 przeznacza 53 bity na mantysę, to wynik dodawania x^2+1 jest obcinany do wartości 1.0. Wyrażenie g(x) nie jest obarczone tym problemem z powodu posiadania dodatkowo x^2 w liczniku i tym samym daje bliższe prawdzie wyniki.

7. Zadanie 7

7.1. Opis problemu

Do wyliczenia przybliżonej pochodnej funkcji w punkcie można skorzystać z definicji granicznej. Tym samym otrzymuje się taki wzór:

$$f'(x_0)\approx \tilde{f}'(x_0)=\frac{f(x_0+h)-f(x_0)}{h}$$

To zadanie polega na wyliczeniu wartości i błędu pochodnej funkcji $\sin(x) + \cos(3x)$ w punkcie $x_0 = 1$ dla $h = 2, 2^{-1}, 2^{-2}, ..., 2^{-54}$. Pochodną wyliczyłem ręcznie i wyniosła ona $f'(x) = \cos(x) - 3\sin(3x)$, co w punkcie $x_0 = 1$ daje w przybliżeniu wartość 0.1169422817.

7.2. Wyniki

Rysunek 1: Wyliczone przybliżone wartości pochodnej

Rysunek 2: Błąd bezwzgledny przybliżeń (w skali logarytmicznej)

7.3. Wnioski

Z wykresów można odczytać, że od pewnego miejsca błąd zaczyna rosnąć zamiast maleć. Minimalny błąd zostaje osiągnięty dla n=28. Jest to złożenie paru czynników. Pierwszy związany jest z odejmowaniem bliskich siebie liczb w wyrażeniu $f(x_0+h)-f(x_0)$. Zgodnie z wykładem takie odejmowanie x-y wiąże się z dużym mnożnikiem błędu reprezentacji $\frac{|x|+|y|}{|x-y|}$. Następnie to wyrażenie jest dzielone przez przez |h|, i razem z tym błąd dostaje kolejny mnożnik $\frac{1}{|h|}$. Do pewnego momentu algorytm szybciej zbiega niż jest w stanie popsuć to błąd, ale od pewnego momentu zostaje przez niego wyprzedzony. Dodatkowo na samym końcu występuje anomalia, gdy wynik działania 1.0+h nie mieści się już w precyzji i estymowana pochodna przyjmuje wartości 0.0 i -0.5.