Exercise 1 (Exercise 1). Prove that the tensor product of two Hadamard matrices is a Hadamard matrix.

Answer

Suppose H, K are two Hadamard matrices. We have $HH^{\mathsf{T}} = mI$ and $KK^{\mathsf{T}} = nI$ and we must show that $(H \otimes K)(H \otimes K)^{\mathsf{T}} = mnI$ where the last identity matrix has size $(mn) \times (mn)$.

The product enjoys two properties which are essential for our purpose:

- \diamond Transposition distributes over the product: $(A \otimes B)^{\mathsf{T}} = A^{\mathsf{T}} \otimes B^{\mathsf{T}}$.
- \diamond The *mixed-product property*: If A, B, C, D are matrices, then

$$(A \otimes B)(C \otimes D) = AC \otimes BD.$$

With this in hand we see that

$$(H \otimes K)(H \otimes K)^{\mathsf{T}} = HH^{\mathsf{T}} \otimes KK^{\mathsf{T}} = mnI_m \otimes I_n = mnI_{mn}$$

and thus $H \otimes K$ is Hadamard as desired.

Exercise 2 (Exercise 4). The **complementary design** to a design $\mathcal{D} = (X, \mathcal{B})$ is the pair $\mathcal{D}^c = (X, \mathcal{B}^c)$ where $\mathcal{B}^c = \{X \setminus B : B \in B\}$. Show that if \mathcal{D} is a $1 - (v, k, \lambda)$ design then \mathcal{D}^c is a $1 - (v, v - k, v\lambda/k - \lambda)$ design.

Answer

We know that in \mathcal{D}^c we have v vertices. Any block is of the form $X \setminus B$ with B having size k, so all the blocks in \mathcal{D}^c have size v - k as desired.

It remains to show that every point is in exactly $\frac{v\lambda}{k} - \lambda$ blocks. Now, let us manipulate this quantity:

Recall r is the number of blocks containing a point, in this case as we have a 1-design, we have that $r = \lambda$, so

$$\frac{v\lambda}{k} = \frac{vr}{k} = \frac{bk}{k} = b$$
, the number of blocks.

So we must show that every point is in $b - \lambda$ blocks.

Exercise 3 (Exercise 6). Prove that the edge-complement of a strongly regular graph is strongly regular, and find the new parameters in terms of the previous.

Answer

Suppose G is strongly regular with parameters