Ensemble Learning

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"If I do not believe the news in todays paper, I buy 100 copies of the paper.

Then I believe."

-Ludwig Wittgenstein

How can we learn from multiple models together?

*This lesson refers to chapter 9 of the GIDS book

Content of this lesson

- Wisdom of the Crowd
- Bagging & Boosting
- Stacking and Cascade Generalization
- Cascading and Delegating
- Tree Ensembles and Random Forest
- AdaBoost
- Gradient Boosted Trees
- Practical Examples

Datasets

- Datasets used : adult dataset
 - "Random Forest, Gradient Boosted Trees, and Tree Ensemble" https://kni.me/w/Ueq3QR9hty8Osh2E
 - Random forest
 - Gradient boosting
 - Tree ensemble

Ensemble Models

General idea: take advantage of the "wisdom of the crowd"

- Training of many weak classifiers (or regression models)
- Combining them to construct a classifier (regression model) more accurate than any of the individual ones

- Leads to a more accurate and robust model
- Interpretation of an ensemble learning model is difficult
 - Since it consists of many models!

Wisdom of the Crowd

Wisdom of the Crowd

Crowd wiser than any individual

- When?
- For which questions?

- The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual and can be harnessed by voting.
- http://www.csc.kth.se/utbildning/kth/kurser/DD2431/ml11/schedule/07-ensamble.pdf

- Ask each person in the crowd:
- Will Mr. X win the general election in country Y?

- The Crowd's prediction:
- MAJORITY answer.
- This crowd predicts **No**. (Mr. X will not win the election.)

- Has the crowd made a good prediction?
- Composition of crowd:
 - 30% EXPERTS.
 - 70% NON-EXPERTS.
- and their level of expertise:
 - P(correct predict|expert) = p_e
 - P(correct predict|non-expert) = p_{ne}

- Let $p_e = 0.8$ and $p_{ne} = 0.5$

- For a random person from the crowd
- P(correct predict|individual) = $0.3 p_e + 0.7 p_{ne} = 0.59$

- Let $p_e = 0.8$ and $p_{ne} = 0.5$
- For a random person from the crowd
- P(correct predict|individual) = $p_i = 0.59$
- If crowd contains 50 independent people:
- P(correct predict|crowd)

$$= \sum_{k=26}^{50} {50 \choose k} p_i^k \cdot (1 - p_i)^{50 - k} = 0.8745$$

This crowd has made a prediction with probability .875 of being correct which is $> p_i$.

It is wiser than each of the experts!

Wisdom of the Crowd

- Ensemble of predictors often outperform individual predictors
- Consider a majority voting of 5 independent classifiers in a binary classification problem.
- Each predictor, the error probability is 0.3
- Probability of three or more predictors yielding a wrong result (i.e., the majority misclassifies) is very low:

$$\sum_{i=3}^{5} {5 \choose i} 0.3^{i} \cdot 0.7^{5-i} = 0.08748$$

- Substantial reduction in error rate!
- In reality, classifiers are rarely independent of each other

— Why didn't I just asked a bunch of experts??

- Large enough crowd
 - → high probability that a sufficient number of experts will be in crowd (for any question).
- Random selection
 - → don't make a biased choice in experts.
- For some questions it may be hard to identify a diverse set of experts

For a random crowd

 Given a random question expect each person to have a different level of expertise.

- Will it rain tomorrow?
 - redness proportional to expertise

For a random crowd

 Given a random question expect each person to have a different level of expertise.

— Will the world go down in December?

redness proportional to expertise

What makes a crowd wise?

According to *James Surowiecki* there are four elements required to form a wise crowd:

- Diversity of opinion. People in crowd should have a range of experiences, education and opinions. (Encourages independent predictions)
- Independence. Prediction by person in crowd is not influenced by other people in the crowd.
- Decentralization. People have specializations and local knowledge.
- Aggregation. There is a mechanism for aggregating all predictions into one single prediction.

The crowd must be careful

In the analysis of the crowd it is implicitly assumed:

 each person is not concerned with the opinions of others, no-one is copying anyone else in the crowd.

In the analysis of the crowd we implicitly assumed:

 The non-experts will predict a completely random wrong answer these will cancel each other out (to some degree).

However, there may be a systematic and consistent bias in the non-experts' predictions.

... Back to Ensemble Models

Back to Machine Learning

We will exploit **Wisdom of crowd** ideas for specific tasks by:

- combining (classifier) predictions
- aim to combine independent and diverse predictors (classifiers).

We can also use labeled training data

- to identify the expert classifiers in the pool;
- to identify complementary classifiers;
- to indicate how to best combine them.

Why Do Ensemble Methods Work?

Statistical reason:

- Able to average many good models
- Reduces the influence of bad models

Computational reason:

Able to explore the model space efficiently

Representational reason:

Reduce the bias of a learning algorithm by extending its model space

Basic Terms

Remember?

- Bias = model error + algorithmic error
 - Model error: the error we get by selecting a model
 - Algorithmic error: by selecting the algorithm itself and the parameters of the algorithm
- Base-Learning: Fixed Bias / User parameterized
- Meta-Learning: Dynamic bias selection using meta-knowledge
- Meta-Knowledge: Knowledge achieved during the learning process

Ensemble Learning for Algorithm Recommendation

Combining base-learners: Categories

Philosophy	Technique
Bagging, Boosting	Variation in data
Stacking	Variation among learners (multi-expert)
Cascading, Delegating	Variation among learners (multi-stage)
Arbitrating	Variation among learners (refereed)
Meta decision trees	Variation in data and among learners

Bagging and Boosting

Bagging and Boosting

- Best-known techniques
- Based on selection of multiple data sub sets
- Meta model is created by combining the base models

– Advantages:

- Reduces overfitting
- Most effective when the base learner is highly sensitive to data
- Typically increases accuracy

– Disadvantages:

Interpretability of interpretable base learners is lost

Bagging

Bagging:

- Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1, ..., h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all predictions

Boosting

Boosting:

- Tries to learn a weighting for the models
- Later base learners focus more on the examples that previous base learners misclassified
- There is no single "best" boosting method

Boosting

One boosting method after Schapire

Training:

- Create c1: base learner on a sample t1 of the data
- Create t2: sample which is 50% misclassified by c1
- Create c2: base learner on the sample t2
- Create t3: subset of the data where c1 predicts differently than c2
- Create c3: base learner on the sample t3

Classification:

- Classify with c1 and c2
- If unequal, use c3 as final classification

Stacking and Cascade Generalization

Stacking

Stacking

- In Bagging and Boosting: we used always the same base learner
- Stacking exploits differences among base learners
- Two levels of learning
 - 1. Base learners are trained, each on the whole data set
 - 2. Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - 1. Base learner are used on data point
 - 2. Meta learners are applied on base learner predictions

Cascade Generalization

Stacking: Base learners are used in parallel

Cascade Generalization

- Base learners are used in a sequence with "partial" metalearners
- Knowledge from previous classifiers can be used in later ones
- After each base learner has been trained, the data set is adjusted using the new information

For classification:

 Only the last model is used, which incorporates the knowledge from previous models (all base methods are used)

Cascading and Delegating

Cascading and Delegating

Until now: all base classifiers are used for classification.

- Here: Multistage classifiers, not all are required for classification
- Main advantage: faster classification

Cascading

Cascading

- Multilearner version of boosting
- Uses learned confidence of previous models
- Train base learner h_i using knowledge from previous base learner...
- ...on data, which was most probably misclassified by previous learners
- Classification: go through all base models, stop and use as classification if the model has confidence greater than epsilon

Delegating

- Cascading: all instances are used in each step.
- Delegating: only instances below confidence threshold are processed in the next step

– Idea:

- Use everything and test for which data points you are good enough.
- Pass the remaining work to someone else.
- If there is no someone else, ... guess

– Advantages:

- Still understandable (no model combination)
- Improved efficiency, due to the decreasing number of examples.

Tree Ensembles and Random Forest

Bagging - Idea

- Bagging ≡ Bootstrap AGGregatING
- For each tree / model a training set is generated by sampling uniformly with replacement from the standard training set

Example for Bagging

Full training set

RowID	x_1	x_2	y
Row_1	2	6	Class 1
Row_2	4	1	Class 2
Row_3	9	3	Class 2
Row_4	2	7	Class 1
Row_5	8	1	Class 2
Row_6	2	6	Class 1
Row_7	5	2	Class 2

Sampled training set

RowID	x_1	x_2	y
Row_3	9	3	Class 2
Row_6	2	6	Class 1
Row_1	2	6	Class 1
Row_3	9	3	Class 2
Row_5	8	1	Class 2
Row_6	2	6	Class 1
Row_1	2	6	Class 1

Bagging - Idea

Why sampling with replacement?

- → So that a sample approximates the distribution of the population
- Frequent values are represented more
- Less frequent values are represented less

Ultimately leads to the model with smaller variance and smaller bias

An Extra Benefit of Bagging: Out of Bag Estimation

- Able to evaluate the model using the training data
- Apply trees to samples that haven't been used for training

Random Forest

 Bag of decision trees, with an extra element of randomization

- Each node in the decision tree only "sees" a subset of the input features
 - → Random Subspace Selection
- typically \sqrt{n} to pick from
- Random forests tend to be very robust w.r.t. overfitting

- Freund & Schapire (1995)
- AB is a linear classification algorithm
- AB has good generalization properties
 - → (Avoids overfitting as long as the training data is not too noisy)
- AB is a feature selector.

Strong classifier =
$$(\alpha_1 h_1) + (\alpha_t h_t) + ... + (\alpha_T h_T)$$

- AdaBoost classifier: $\sum_{t=1}^{T} (\alpha_t h_t(\mathbf{x}))$
- Where a weak classifier $h_t(x)$ is weighted by α_t for steps up to T
- Misclassified data points are weighted more in subsequent steps
- Classification result: $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$

AdaBoost: Terminology

- Strong Classifier: $\sum_{t=1}^{T} (\alpha_t h_t(x))$
- Where $h_t(x)$ is a base classifier weighted by α_t
- Classification result:

$$H(\mathbf{x}) = sgn\left(\sum_{t=1}^{T} (\alpha_t h_t(\mathbf{x}))\right)$$

- Initially, all data points are given the same weight $w_{i,1} = 1/n$.
- At step t, the classifier weight α_t is calculated as

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - e_t}{1 + e_t} \right)$$

- Where e_t is given by

$$e_{t} = \frac{\sum_{i=1}^{n} w_{i,t} y_{i} h_{t}(\mathbf{x}_{i})}{\sum_{i=1}^{n} w_{i,t}}$$

Weights w's are updated as

$$w_{i,t+1} = \frac{w_{i,t} \exp(-\alpha_t y_i h_t(\boldsymbol{x}_i))}{\sum_{j=1}^n w_{j,t} \exp(-\alpha_t y_j h_t(\boldsymbol{x}_j))}$$

Adaboost pseudo-code Overview

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for
$$t = 1, ..., T$$
: do

1. h_t = "Base-Learner"

Calculate error $\epsilon_t = \sum_{i=1}^m D_t(i) \delta_{(y_i, h_t(x_i))}$

- 3. Calculate weight of learner $\alpha_t = \log \frac{1 \epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

Resulting classificator

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Adaboost pseudo-code Overview

Algorithm Base learner

Train a set H of many many base learners h on the data Return the one h with the lowest weighted classification error $h = \arg\min_{h_j \in H} \epsilon = \arg\min_{h_j \in H} \left(\sum_{i=1}^m D(i)\delta_{(y_i,h_t(x_i))}\right)$

Make sure $\epsilon < 0.5$

Adaboost pseudo-code Overview

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for
$$t = 1, ..., T$$
: do

1. h_t = "Base-Learner"

Calculate error
$$\epsilon_t = \sum_{i=1}^m D_t(i) \delta_{(y_i,h_t(x_i))}$$

- 3. Calculate weight of learner $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

Resulting classificator

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Update of weights of Training Samples

Update weights and normalize them:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

$$Z_t(i) = \sum_{i=0}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

- Weight of correct classified examples is decreased
- Weight of incorrect classified examples is increased

AdaBoost: Why does it work?

- Weighting the base learners "Upper-Bound Theorem"
- Primary goal is to minimize

$$\epsilon_{tr}(H) = \frac{1}{m} |\{i: H(x_i \neq y_i)\}|$$

Global error is bounded by

$$\epsilon_{tr}(H) \leq Z_t$$
 $t = 1, ..., T$

$$Z_t = \sum_{i=0}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

AdaBoost: Why does it work?

Weighting the base learners

- That's why
- Minimizing $Z_t = \sum_{i=0}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$ results in a minimization of the global error

- Upper-Bound can be minimized by ...
 - 1. Choosing the optimal hypothesis h_t ...
 - 2. ... with an optimal weight α_t
- Minimizing Z_t results in $\alpha_t = \log \frac{1 \epsilon_t}{\epsilon_t}$

Advantages

- Very simple to implement
- Feature selection on very large features spaces
- Fairly good generalization

Disadvantages

- Can overfit in presence of noise
- Unclear which weak-learning algorithm fits best for a given problem

Gradient Boosted Trees

Boosting - Idea

- Starts with a single tree built from the data
- Fits a tree to residual errors from the previous model to refine the model sequentially

Gradient Boosted Trees

A shallow tree (depth 4 or less) is built at each step

- To fit residual errors from the previous step.
- Resulting in a tree $h_m(x)$

The resulting tree is added to the latest model to update

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x)$$

- Where $F_{m-1}(x)$ is the model from the previous step
- The weight γ_m is chosen to minimize the loss function
 - Loss function: quantifies the difference between model predictions and data

Gradient Boosted Trees Example – Regression

Gradient Boosted Trees

- Can be used for classification and regression
- Large number of iterations prone to overfitting
 - ~100 iterations are sufficient
- Can introduce randomness in choice of data subsets ("stochastic gradient boosting") and choice of input features

Practical Examples with KNIME Analytics Platform

Tree Ensemble, Random Forest, and Gradient Boosted Tree

 Tree Ensemble, Random Forest, and Gradient Boosted Tree applied to the adult dataset

Thank you

For any questions please contact: education@knime.com