CS1231S Chapter 5

Sets

5.1 Basics

Definition 5.1.1. (1) A set is an unordered collection of objects.

- (2) These objects are called the *members* or *elements* of the set.
- $(3) \mbox{ Write } x \in A \mbox{ for } x \mbox{ is an element of } A; \\ x \not\in A \mbox{ for } x \mbox{ is not an element of } A; \\ x,y \in A \mbox{ for } x,y \mbox{ are elements of } A; \\ x,y \not\in A \mbox{ for } x,y \mbox{ are not elements of } A; \\ \mbox{ etc.}$

Symbol	Meaning	Examples	Non-examples				
\mathbb{N}	the set of all natural numbers	$0,1,2,3,31\in\mathbb{N}$	$-1, \frac{1}{2} \notin \mathbb{N}$				
\mathbb{Z}	the set of all integers	$0,1,-1,2,-10\in\mathbb{Z}$	$\frac{1}{2},\sqrt{2} \not\in \mathbb{Z}$				
\mathbb{Q}	the set of all rational numbers	$-1, 10, \frac{1}{2}, -\frac{7}{5} \in \mathbb{Q}$	$\sqrt{2},\pi,\sqrt{-1}\not\in\mathbb{Q}$				
\mathbb{R}	the set of all real numbers	$-1, 10, -\frac{3}{2}, \sqrt{2}, \pi \in \mathbb{R}$	$\sqrt{-1}, \sqrt{-10} \not\in \mathbb{R}$				
\mathbb{C}	the set of all complex numbers	$-1, 10, -\frac{3}{2}, \sqrt{2}, \pi, \sqrt{-1}$	$,\sqrt{-10}\in\mathbb{C}$				
$\overline{\mathbb{Z}^+}$	the set of all positive integers	$1, 2, 3, 31 \in \mathbb{Z}^+$	$0, -1, -12 \not\in \mathbb{Z}^+$				
\mathbb{Z}^-	the set of all negative integers	$-1, -2, -3, -31 \in \mathbb{Z}^-$	$0,1,12\not\in\mathbb{Z}^-$				
$\mathbb{Z}_{\geqslant 0}$	the set of all non-negative integers	$0,1,2,3,31\in\mathbb{Z}_{\geqslant 0}$	$-1, -12 \not\in \mathbb{Z}_{\geqslant 0}$				
$\mathbb{Q}^+, \mathbb{Q}^-, \mathbb{Q}_{\geqslant m}, \mathbb{R}^+, \mathbb{R}^-, \mathbb{R}_{\geqslant m}$, etc. are defined similarly.							

Table 5.1: Common sets

Note 5.1.2. Some define $0 \notin \mathbb{N}$.

Definition 5.1.3 (roster notation). (1) The set whose only elements are x_1, x_2, \ldots, x_n is denoted $\{x_1, x_2, \ldots, x_n\}$.

(2) The set whose only elements are x_1, x_2, x_3, \ldots is denoted $\{x_1, x_2, x_3, \ldots\}$.

Example 5.1.4. (1) The only elements of $A = \{1, 5, 6, 3, 3, 3\}$ are 1, 5, 6 and 3. So $6 \in A$ but $7 \notin A$.

(2) The only elements of $B = \{0, 2, 4, 6, 8, ...\}$ are the non-negative even integers. So $4 \in B$ but $5 \notin B$.

To check whether an object z is an element of a set $S = \{x_1, x_2, \dots, x_n\}$. If z is in the list x_1, x_2, \dots, x_n , then $z \in S$, else $z \notin S$.

Definition 5.1.5 (set-builder notation). Let U be a set and P(x) is a predicate over U. Then the set of all elements $x \in U$ such that P(x) is true is denoted

$$\{x \in U : P(x)\}.$$

This is read as "the set of all x in U such that P(x)".

Note 5.1.6. Some write $\{... | ... \}$ for $\{... : ... \}$.

Example 5.1.7. (1) The elements of $C = \{x \in \mathbb{Z}_{\geq 0} : x \text{ is even}\}$ are precisely the elements of $\mathbb{Z}_{\geq 0}$ that are even, i.e., the non-negative even integers. So $6 \in C$ but $7 \notin C$.

(2) The elements of $D = \{x \in \mathbb{Z} : x \text{ is a prime number}\}$ are precisely the elements of \mathbb{Z} that are prime numbers, i.e., the prime integers. So $7 \in D$ but $9 \notin D$.

To check whether an object z is an element of $S = \{x \in U : P(x)\}$. If $z \in U$ and P(z)is true, then $z \in S$, else $z \notin S$. Hence $z \notin U$ implies $z \notin S$, and P(z) is false implies $z \notin S$.

Remark 5.1.8. Sometimes people write $\{y^2 : y \text{ is an odd integer}\}$, for example, to mean "the set of all objects of the form y^2 such that y is an odd integer". More generally, if $t(y_1, y_2, \dots, y_n)$ is an expression involving y_1, y_2, \dots, y_n , and $P(y_1, y_2, \dots, y_n)$ is a predicate in y_1, y_2, \ldots, y_n , then one may use

$$\{t(y_1, y_2, \dots, y_n) : P(y_1, y_2, \dots, y_n)\}$$

to denote

$$\{x: \exists y_1, y_2, \dots, y_n \ (P(y_1, y_2, \dots, y_n) \land x = t(y_1, y_2, \dots, y_n))\}.$$

Definition 5.1.9. Two sets are equal if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$$

Example 5.1.10. $\{1, 5, 6, 3, 3, 3\} = \{1, 5, 6, 3\} = \{1, 3, 5, 6\}.$

Slogan 5.1.11. Order and repetition do not matter.

Example 5.1.12. If E denotes the set considered in the first sentence of Remark 5.1.8, then

$$E = \{y^2 : y \text{ is an odd integer}\}$$
$$= \{x \in \mathbb{Z} : x = y^2 \text{ for some odd integer } y\}$$
$$= \{1^2, 3^2, 5^2, \dots\}.$$

Example 5.1.13. $\{x \in \mathbb{Z} : x^2 = 1\} = \{1, -1\}.$

Proof. $1. (\Rightarrow)$

- 1.1. Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.
- 1.2. Then $z \in \mathbb{Z}$ and $z^2 = 1$.

1.3. So
$$z^{2} - 1 = (z - 1)(z + 1) = 0$$

1.4. \therefore
$$z - 1 = 0 \text{ or } z + 1 = 0$$

1.4. :
$$z-1=0$$
 or $z+1=0$

- z = 1 or z = -1. 1.5. :
- 1.6. This means $z \in \{1, -1\}$.
- $2. (\Leftarrow)$
 - 2.1. Take any $z \in \{1, -1\}$.
 - 2.2. Then z = 1 or z = -1.
 - 2.3. In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$.

2.4. So
$$z \in \{x \in \mathbb{Z} : x^2 = 1\}$$
.

Theorem 5.1.14. There exists a unique set with no element, i.e.,

• there is a set with no element; and

(existence part)

• for all sets A, B, if both A and B have no element, then A = B. (uniqueness part)

Proof. 1. (existence part) The set {} has no element.

- 2. (uniqueness part)
 - 2.1. Let A, B be sets with no element.
 - 2.2. Then trivially,

$$\forall z \ (z \in A \Rightarrow z \in B) \text{ and } \forall z \ (z \in B \Rightarrow z \in A)$$

because the antecedents are never true.

2.3. So
$$A = B$$
.

Definition 5.1.15. The set with no element is called the *empty set*. It is denoted by \varnothing .

Definition 5.1.16. Let A, B be sets. Call A a *subset* of B, and write $A \subseteq B$, if

$$\forall z \ (z \in A \Rightarrow z \in B).$$

Alternatively, we may say that B includes A, and write $B \supseteq A$ in this case.

Example 5.1.17. (1) $\{1,5,2\} \subseteq \{5,2,1,4\}$ but $\{1,5,2\} \not\subseteq \{2,1,4\}$.

(2)
$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$
.

Remark 5.1.18. Let A, B be sets.

(1)
$$A \not\subseteq B \Leftrightarrow \exists z \ (z \in A \text{ and } z \not\in B);$$

(2)
$$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A;$$

(3)
$$\varnothing \subseteq A \text{ and } A \subseteq A.$$

Definition 5.1.19. Let A, B be sets. Call A a proper subset of B, and write $A \subseteq B$, if $A \subseteq B$ and $A \neq B$. In this case, we may say that the inclusion of A in B is proper or strict.

Example 5.1.20. All the inclusions in Example 5.1.17 are strict.

Note 5.1.21. Sets can be elements of sets.

Example 5.1.22. (1) The set $A = \{\emptyset\}$ has exactly 1 element, namely the empty set. So A is not empty.

(2) The set $B = \{\{1\}, \{2\}, \{3\}\}$ has exactly 3 elements, namely $\{1\}, \{2\},$ and $\{3\}.$ So $\{3\} \in B$, but $3 \notin B$.

Note 5.1.23. Membership and inclusion can be different.

Question 5.1.24. Let $C = \{\{1\}, 2, \{3\}, 3, \{\{4\}\}\}\}$. Which of the following are true?

∅ 5a

•
$$\{1\} \in C$$
.

•
$$\{1\} \subseteq C$$
.

$$\bullet \ \{2\} \in C.$$

•
$$\{2\} \subseteq C$$
.

•
$$\{3\} \in C$$
.

•
$$\{3\} \subseteq C$$
.

•
$$\{4\} \in C$$
.

•
$$\{4\} \subseteq C$$
.

5.2 Powers and products

Definition 5.2.1. Let A be a set. The set of all subsets of A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example 5.2.2. (1) $\mathcal{P}(\emptyset) = {\emptyset}$.

- (2) $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$
- (3) $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

Definition 5.2.3. (1) A set is *finite* if it has finitely many (distinct) elements. It is *infinite* if it is not finite.

- (2) Let A be a finite set. The *cardinality* of A, or the *size* of A, is the number of (distinct) elements in A. It is denoted by |A|.
- (3) Sets of size 1 are called *singletons*.

Theorem 5.2.4. Let A be a finite set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

Example 5.2.5. (1) $|\emptyset| = 0$ and $|\mathcal{P}(\emptyset)| = 1 = 2^0$.

- (2) $|\{1\}| = 1$ and $|\mathcal{P}(\{1\})| = 2 = 2^1$.
- (3) $|\{1,2\}| = 2$ and $|\mathcal{P}(\{1,2\})| = 4 = 2^2$.

Definition 5.2.6. An *ordered pair* is an expression of the form

Let (x, y) and (x', y') be ordered pairs. Then

$$(x,y) = (x',y')$$
 \Leftrightarrow $x = x'$ and $y = y'$.

Example 5.2.7. (1) $(1,2) \neq (2,1)$, although $\{1,2\} = \{2,1\}$.

(2)
$$(3,0.5) = (\sqrt{9}, \frac{1}{2}).$$

Definition 5.2.8. Let A, B be sets. The Cartesian product of A and B, denoted $A \times B$, is defined to be

$$\{(x,y): x \in A \text{ and } y \in B\}.$$

Read $A \times B$ as "A cross B".

Example 5.2.9. $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$

Note 5.2.10.
$$|\{a,b\} \times \{1,2,3\}| = 6 = 2 \times 3 = |\{a,b\}| \times |\{1,2,3\}|$$
.

Definition 5.2.11. Let $n \in \{x \in \mathbb{Z} : x \geqslant 2\}$. An *ordered n-tuple* is an expression of the form

$$(x_1,x_2,\ldots,x_n).$$

Let (x_1, x_2, \ldots, x_n) and $(x'_1, x'_2, \ldots, x'_n)$ be ordered *n*-tuples. Then

$$(x_1, x_2, \dots, x_n) = (x'_1, x'_2, \dots, x'_n) \Leftrightarrow x_1 = x'_1 \text{ and } x_2 = x'_2 \text{ and } \dots \text{ and } x_n = x'_n.$$

Example 5.2.12. (1) $(1,2,5) \neq (2,1,5)$, although $\{1,2,5\} = \{2,1,5\}$.

(2)
$$(3, (-2)^2, 0.5, 0) = (\sqrt{9}, 4, \frac{1}{2}, 0)$$

Definition 5.2.13. Let $n \in \{x \in \mathbb{Z} : x \ge 2\}$ and A_1, A_2, \ldots, A_n be sets. The *Cartesian product* of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \cdots \times A_n$, is defined to be

$$\{(x_1, x_2, \dots, x_n) : x_1 \in A_1 \text{ and } x_2 \in A_2 \text{ and } \dots \text{ and } x_n \in A_n\}.$$

If A is a set, then $A^n = \underbrace{A \times A \times \cdots \times A}_{n\text{-many }A\text{'s}}$.

Example 5.2.14.
$$\{0,1\} \times \{0,1\} \times \{x,y\} = \{(0,0,x), (0,0,y), (0,1,x), (0,1,y), (1,0,x), (1,0,y), (1,1,x), (1,1,y)\}.$$

5.3 Boolean operations

Definition 5.3.1. Let A, B be sets.

(1) The union of A and B, denoted $A \cup B$, is defined by

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

Read $A \cup B$ as "A union B".

(2) The intersection of A and B, denoted $A \cap B$, is defined by

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

Read $A \cap B$ as "A intersect B".

(3) The *complement* of B in A, denoted A - B or $A \setminus B$, is defined by

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

Read $A \setminus B$ as "A minus B".

Figure 5.2: Boolean operations on sets

Convention and terminology 5.3.2. When working in a particular context, one usually works within a set that contains all the objects one may talk about. Such a set is called a *universal set*.

Definition 5.3.3. Let B be a set. In a context where U is the universal set (so that implicitly $U \supseteq B$), the *complement* of B, denoted \overline{B} or B^c , is defined by

$$\overline{B} = U \setminus B$$
.

Example 5.3.4. Let $A = \{x \in \mathbb{Z} : x \leq 10\}$ and $B = \{x \in \mathbb{Z} : 5 \leq x \leq 15\}$. Then

$$A \cup B = \{x \in \mathbb{Z} : (x \leqslant 10) \lor (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : x \leqslant 15\};$$

$$A \cap B = \{x \in \mathbb{Z} : (x \leqslant 10) \land (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : 5 \leqslant x \leqslant 10\};$$

$$A - B = \{x \in \mathbb{Z} : (x \leqslant 10) \land \sim (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : x < 5\};$$

$$\overline{B} = \{x \in \mathbb{Z} : \sim (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : (x < 5) \lor (x > 15)\},$$

in a context where $\mathbb Z$ is the universal set. To show the first equation, one shows

$$\forall x \in \mathbb{Z} \ \big((x \leqslant 10) \lor (5 \leqslant x \leqslant 15) \Leftrightarrow (x \leqslant 15) \big),$$
 etc.

Theorem 5.3.5 (Set Identities). For all set A, B, C in a context where U is the universal set, the following hold.

One of De Morgan's Laws. Work in the universal set U. For all sets A, B,

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Venn Diagrams. In the left diagram below, hatch the regions representing A and B with \square and \square respectively. In the right diagram below, hatch the regions representing \overline{A} and \overline{B} with \square and \square respectively.

Then the \square region represents $\overline{A \cup B}$ in the left diagram, and the \square region represents $\overline{A} \cap \overline{B}$ in the right diagram. Since these regions occupy the same region in the respective diagrams, we infer that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Note 5.3.6. This argument depends on the fact that each possibility for membership in A and B is represented by a region in the diagram.

Proof using a truth table. The rows in the following table list all the possibilities for an element $x \in U$:

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in \overline{A \cup B}$	$x \in \overline{A}$	$x \in \overline{B}$	$x \in \overline{A} \cap \overline{B}$
Т	${ m T}$	Т	\mathbf{F}	F	F	\mathbf{F}
${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	F	${ m T}$	\mathbf{F}
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	${ m T}$	Т	${ m T}$	${ m T}$

Since the columns under " $x \in \overline{A \cup B}$ " and " $x \in \overline{A} \cap \overline{B}$ " are the same, for any $x \in U$,

$$x \in \overline{A \cup B} \quad \Leftrightarrow \quad x \in \overline{A} \cap \overline{B}$$

no matter in which case we are. So $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Direct proof. 1. Let $z \in U$.

2. 2.1. Then
$$z \in \overline{A \cup B}$$

2.2. \Leftrightarrow $z \notin A \cup B$ by the definition of $\overline{\cdot}$;
2.3. \Leftrightarrow $\sim ((z \in A) \lor (z \in B))$ by the definition of \cup ;
2.4. \Leftrightarrow $(z \notin A) \land (z \notin B)$ by De Morgan's Laws for propositions;
2.5. \Leftrightarrow $(z \in \overline{A}) \land (z \in \overline{B})$ by the definition of $\overline{\cdot}$;
2.6. \Leftrightarrow $z \in \overline{A} \cap \overline{B}$ by the definition of \cap .

Example 5.3.7. Fix a universal set U. Show that $(A \cap B) \cup (A \setminus B) = A$ for all sets A, B.

Proof. 1.
$$(A \cap B) \cup (A \setminus B) = (A \cap B) \cup (A \cap \overline{B})$$
 by the Set Difference Law;
2. $= A \cap (B \cup \overline{B})$ by the Distributive Law;
3. $= A \cap U$ by the Complement Law;
4. $= A$ by the Identity Law.

Question 5.3.8. Is the following true?

∅ 5b

no element

$$(A \setminus B) \cup (B \setminus C) = A \setminus C$$
 for all sets A, B, C .

Definition 5.3.9. (1) Two sets A, B are disjoint if $A \cap B = \emptyset$.

(2) Sets A_1, A_2, \ldots, A_n are pairwise disjoint or mutually disjoint if $A_i \cap A_j = \emptyset$ for all distinct $i, j \in \{1, 2, \ldots, n\}$.

Figure 5.3: (Pairwise) disjoint sets

Example 5.3.10. The sets $A = \{1, 3, 5\}$ and $B = \{2, 4\}$ are (pairwise) disjoint. Note

$$|A \cup B| = |\{1, 2, 3, 4, 5\}| = 5 = 3 + 2 = |A| + |B|.$$

Theorem 5.3.11. (1) Let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$.

(2) Let A_1, A_2, \ldots, A_n be pairwise disjoint finite sets. Then

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|.$$

Proof. Count the elements set by set. Every element in the union is counted exactly once because the sets are (pairwise) disjoint.

Theorem 5.3.12 (Inclusion–Exclusion Principle). For all finite sets A, B,

$$|A \cup B| = |A| + |B| - |A \cap B|.$$