$$f_n(x) = e^{-16 (x-0.5)^2}$$

Funkcja $f_n(x)$ jest okresowa. Jej okres wynosi X = 1.

 $a_0 = 0.882081$

 $a_1 = -0.482003$

 $a_2 = 0.0722642$

 $a_3 = -0.00547583$

 $a_4 = -0.0013639$

 $a_5 = -0.000998823$

 $a_6 = -0.000732571$

 $a_7 = -0.000555976$

 $a_8 = -0.000434587$

 $a_9 = -0.00034823$

 $a_{10} = -0.000284885$

$$b_k = 0$$

$$c_k = \sqrt{a_k^2 + b_k^2}$$

$$tan(\varphi_k) = \frac{b_k}{a_k}$$

w naszym przypadku wychodzi, że:

$$c_k = a_k$$

$$tan(\varphi_k) = 0 \rightarrow \varphi = 0$$

Poniżej przedstawiamy wykresy narysowane w mathematice. Na czarno został narysowany wykres funkcji $f_n(x)$ a na czerwono zostały narysowane punkty wyliczone na podstawie 10 pierwszych wyrazów rozkładu w szereg Fouriera.

Rysunek 1: $f_n(x) = e^{-16 (x-0.5)^2}$

Jak widać powyżej, dopasowanie jest bardzo dobre.