活用二级结论

结论一 奇函数的最值性质

已知函数 f(x) 是定义在区间 D上的奇函数,则对任意的 $x \in D$,都有 f(x)+f(-x)=0.特别地,若奇函数 f(x) 在 D上有最值,则 $f(x)_{max}+f(x)_{min}=0$,且若 $0 \in D$,则 f(0)=0.

例 1 已知函数 f(x) 和 g(x) 均为奇函数, h(x) = af(x) + bg(x) + 2 在区间 $(0, +\infty)$ 上有最大值 5,那么 h(x) 在 $(-\infty, 0)$ 上的最小值为

A. -5 B. -3 C. -1 D. 5

【答案】C

【解析】令 F(x) = h(x) - 2 = af(x) + bg(x),因为 F(x) 为奇函数, $x \in (0, +\infty)$ 时, $h(x) \le 5$, $F(x) = h(x) - 2 \le 3$, 又 $x \in (-\infty, 0)$ 时 , $-x \in (0, +\infty)$, $F(-x) \le 3 \Rightarrow F(x) \ge -3$, $x \in (0, +\infty)$,

【变式训练】

1. 已知函数
$$f\left(x+\frac{1}{2}\right) = \frac{x^2 + \sin x + 2017}{x^2 + 2017}$$
,则 $\sum_{i=0}^{2017} f\left(\frac{i}{2017}\right) = \underline{\qquad}$

2. 已知函数 $f(x) = \frac{x^2 + cosx - sinx + 1}{x^2 + cosx + 1} (x \in \mathbf{R})$ 的最大值为M,最小值为m,则M+m=______.

结论二 函数周期性问题

已知定义在 R 上的函数 f(x), 若对任意 $x \in R$, 总存在非零常数 T, 使得 f(x+T)=f(x), 则称 f(x) 是周期函数, T 为其一个周期. 除周期函数的定义外, 还有一些常见的与周期函数有关的结论如下: 学*-++-科网

- (1) 如果 f(x+a) = -f(x) ($a \neq 0$),那么 f(x) 是周期函数,其中的一个周期 T=2a.
- (2) 如果 $f(x+a) = \overline{f(x)}$ ($a \neq 0$), 那么 f(x) 是周期函数, 其中的一个周期 T=2a.
- (3) 如果 f(x+a)+f(x)=c ($a\neq 0$), 那么 f(x) 是周期函数, 其中的一个周期 T=2a.
- (4) 如果 f(x)=f(x+a)+f(x-a) (a≠0), 那么 f(x) 是周期函数, 其中的一个周期 T=6a.

例 2【山东省德州市 2019 届高三期末联考】已知定义在R的奇函数f(x)满足f(x+2) = -f(x),当 $0 \le x \le 1$ 时, $f(x) = x^2, \text{ 则} f(2019) = ($

A. 2019^2 B. 1 C. 0 D. -1

【答案】D

【解析】

根据题意,函数 f(x) 满足 f(x+2) = -f(x),则有 f(x+4) = -f(x+2) = f(x),即函数是周期为 4的周期函数,

则 f(2019) = f(-1+2020) = f(-1),

又由函数为奇函数,则 $f(-1) = -f(1) = -(1)^2 = -1$;

则 f(2019) = -1;

故选: D. 学@科网

【变式训练】

1. 【 2018 山西太原第五中学模拟】已知定义域为 R 的奇函数 f(x) 满足 f(3-x)+f(x)=0, 且当

$$x \in \left(-\frac{3}{2}, 0\right)$$
 时, $f(x) = \log_2(2x+7)$, 则 $f(2017) =$

- A. $-\log_2 5$ B. 2 C. -2 D. $\log_2 5$
- 2. 已知函数f(x) 是周期为 2 的奇函数,且 $x \in [-1, 0]$ 时,f(x) = x,则 $f(\frac{21}{2}) = _____$

结论三 函数的对称性

已知函数 f(x)是定义在 R上的函数.

- (1) 若 f(a+x)=f(b-x) 恒成立, 则 y=f(x) 的图象关于直线 $x=\frac{a+b}{2}$ 对称, 特别地, 若 f(a+x)=f(a-x) 恒成立, 则 y=f(x) 的图象关于直线 x=a 对称;
- (2) 若 f(a+x)+f(b-x)=c, 则 y=f(x) 的图象关于点 $\left(\frac{a+b}{2},\frac{c}{2}\right)$ 对称. 特别地, 若 f(a+x)+f(a-x)=2b 恒成立,则 y=f(x) 的图象关于点 (a,b) 对称.

例 3【2018 四川省广元市统考】已知定义在 R上的函数 f(x)满足 f(1+x)+f(1-x)=2,

$$g(x) = (x-1)^3 + 1$$
,若函数 $f(x)$ 图象与函数 $g(x)$ 图象的交点为 $(x_1, y_1), (x_2, y_2), \cdots, (x_{2018}, y_{2018})$,则

$$\sum_{i=1}^{2018} (x_i + y_i) = ()$$

A. 8072 B. 6054 C. 4036 D. 2018

【答案】B

【解析】由题意知,函数 $g(x) = (x-1)^3 + 1$ 的图象也关于点(1,1)对称.

by
$$\sum_{i=1}^{2018} x_i = (x_1 + x_{2018}) + (x_2 + x_{2017}) + \dots + (x_{1009} + x_{1010}) = 1009 \times 2 = 2018$$
,

$$\sum_{i=1}^{2018} y_i = (y_1 + y_{2018}) + (y_2 + y_{2017}) + \dots + (y_{1009} + y_{1010}) = 1009 \times 2 = 2018$$

所以
$$\sum_{i=1}^{2018} (x_i + y_i) = \sum_{i=1}^{2018} x_i + \sum_{i=1}^{2018} y_i = 2 \times 2018 = 4036$$
. 选 C.

【变式训练】

1. 【2018 安徽省六安市第一中学模拟】设函数 f(x) 是定义在 R 上的偶函数,且 f(x+2)=f(2-x),

当
$$x \in [-2,0]$$
时, $f(x) = \left(\frac{\sqrt{2}}{2}\right)^x - 1$,若在区间 $(-2,6)$ 内关于 x 的方程

 $f(x) - \log_a(x+2) = 0$ $(a > 0, a \ne 1)$ 有且只有 4 个不同的根,则实数 a 的取值范围是 ()

A.
$$\left(-\frac{1}{4},1\right)$$
 B. $\left(1,4\right)$ C. $\left(1,8\right)$ D. $\left(8,+\infty\right)$

2. 【2019 年安徽省宿州市十三所重点中学】定义在R上的偶函数y = f(x),其图像关于点 $\left(\frac{1}{2},0\right)$ 对称,且当

$$x \in [0,1]$$
 by, $f(x) = -x + \frac{1}{2}$, $\text{find}(\pi) = ($)

A. $\frac{9}{2} - \pi$ B. $\frac{7}{2} - \pi$ C. $\pi - \frac{3}{2}$ D. $\pi - \frac{7}{2}$

结论四 反函数的图象与性质

若函数 y=f(x) 是定义在非空数集 D 上的单调函数,则存在反函数 $y=f^{-1}(x)$.特别地, $y=a^x$ 与 $y=\log_a x$ (a>0 且 $a\neq 1$) 互为反函数,两函数图象在同一直角坐标系内关于直线 y=x 对称,即(x_0 , $f(x_0)$)与($f(x_0)$, x_0)分别在函数 y=f(x)与反函数 $y=f^{-1}(x)$ 的图象上.

例 4【2019 年上海市浦东新区】已知函数 $f(x) = a^x + b$ 的图像经过点(1,7),反函数 $f^{-1}(x)$ 的图像经过点(4,0).

- (2) 求证: F(x) = f(x) f(-x) 是增函数.

【答案】 (1) $f(x) = 4^x + 3$ (2) 见证明

【解析】

(1) 由题意可得: $\begin{cases} a+b=7 \\ a^0+b=4 \end{cases}$ $: \begin{cases} a=4 \\ b=3 \end{cases}$

$$f(x) = 4^x + 3$$

(2)
$$F(x) = f(x) - f(-x) = 4^x - 4^{-x}$$
,

任取 $x_1, x_2 \in R_{\square} x_1 < x_2$

$$F(x_1) - F(x_2) = (4^{x_1} - 4^{-x_1}) - (4^{x_2} - 4^{-x_2})$$

$$\left(4^{x_1} - 4^{x_2}\right) \cdot \left(1 + \frac{1}{4^{x_1 + x_2}}\right)$$

$$x_1 < x_2$$

$$4^{x_1} - 4^{x_2} < 0$$

$$1 + \frac{1}{4^{x_1 + x_2}} > 0$$

$$\left(4^{x_1} - 4^{x_2}\right) \cdot \left(1 + \frac{1}{4^{x_1 + x_2}}\right) < 0$$

$$F(x_1) < F(x_2)$$

∴F(x)是增函数. 学科@网

【变式训练】【2018 四川省成都市 9 校联考】已知函数 $f(x) = x^2 - ax$ ($\frac{1}{e} \le x \le e$, e 为自然对数的底数)

与 $g(x) = e^x$ 的图象上存在关于直线 y = x 对称的点,则实数 a 取值范围是

A.
$$\left[1, e + \frac{1}{e}\right]$$

B.
$$\left[1, e - \frac{1}{e}\right]$$

A.
$$\left[1, e + \frac{1}{e}\right]$$
 B. $\left[1, e - \frac{1}{e}\right]$ C. $\left[e - \frac{1}{e}, e + \frac{1}{e}\right]$ D. $\left[e - \frac{1}{e}, e\right]$

D.
$$\left[e-\frac{1}{e},e\right]$$

结论五 两个经典不等式

(1) 对数形式: $\overline{x+1} \le \ln(x+1) \le x(x \ge 1)$, 当且仅当 x=0 时, 等号成立.

(2)指数形式: e^x≥x+1 (x∈R), 当且仅当 x=0 时, 等号成立.

例 5 设函数 $f(x)=1-e^{-x}$. 证明: 当 x>-1 时, $f(x) \ge x+1$.

当 x>-1 时, $e^x \ge x+1$ 恒成立, 所以当 x>-1 时, $f(x) \ge \frac{x}{x+1}$.

【变式训练】1. 已知函数 $f(x) = \frac{1}{\ln(x+1) - x}$, 则 y=f(x) 的图象大致为()

2. 已知函数 $f(x)=e^x$, $x \in \mathbb{R}$. 证明:曲线 y=f(x) 与曲线 $y=\frac{1}{2}x^2+x+1$ 有唯一公共点.

结论六 三点共线的充要条件

设平面上三点 0, A, B 不共线, 则平面上任意一点 P 与 A, B 共线的充要条件是存在实数 λ 与 μ , 使得 $\vec{OP}=\lambda$ $\vec{OA}+\mu$ \vec{OB} , 且 $\lambda+\mu=1$. 特别地, 当 P 为线段 AB 的中点时, $\vec{OP}=2$ +2 .

例 6【福建省厦门市 2019 届高三上期末】在平面四边形 ABCD 中, $^{\Delta ACD}$ 面积是 $^{\Delta ABC}$ 面积的 2 倍,数列 $^{\{a_n\}}$ 满

足
$$a_1 = 3$$
, 且 $\vec{CA} = (a_{n+1} - 3)\vec{CB} + (a_n - 2)\vec{CD}$, 则 $a_5 = ($

A. 31 B. 33 C. 63 D. 65

【答案】B

【解析】

设AC和BD交于点E, AACD和AABC的高分别为h,,h2,

 $∴ \triangle ACD$ 的面积是 $\triangle ABC$ 面积的 2 倍, $∴ h_1 = 2h_2 \Rightarrow |DE| = 2|EB|$,

$$\overrightarrow{DE} = 2\overrightarrow{EB}, \ \overrightarrow{\square CE} - \overrightarrow{CD} = 2(\overrightarrow{CB} - \overrightarrow{CE}),$$

$$\overrightarrow{..CE} = \frac{2}{3}\overrightarrow{CB} + \frac{1}{3}\overrightarrow{CD},$$

$$\nabla \overrightarrow{CA} = (a_{n+1} - 3)\overrightarrow{CB} + (a_n - 2)\overrightarrow{CD},$$

由A, C, E三点共线,设 $\overrightarrow{CA} = \lambda \overrightarrow{CE} = \frac{2}{2}\lambda \overrightarrow{CB} + \frac{1}{2}\lambda \overrightarrow{CD}$,

由平面向量基本定理得 $\begin{cases} a_{n+1} - 3 = \frac{2}{3}\lambda \\ a_n - 2 = \frac{1}{3}\lambda \end{cases}$

$$a_{n+1} - 3 = 2(a_n - 2)$$
, $a_{n+1} - 1 = 2(a_n - 1)$

:.数列 $\{a_n-1\}$ 是以 $a_1-1=2$ 为首项,以 2 为公比的等比数列,学科*网

$$a_n - 1 = 2 \cdot 2^{n-1} = 2^n$$
, $a_n = 2^n + 1$,

所以 $a_5 = 32 + 1 = 33$

【变式训练】

1.【2018 河南省郑州市质量检测】如图,在 $\triangle ABC$ 中, N 为线段 AC 上靠近 A 的三等分点,点 P 在 BN 上且 $\overline{AP} = \left(m + \frac{2}{11}\right)\overline{AB} + \frac{2}{11}\overline{BC}$,则实数 m 的值为(

- A. 1 B. $\frac{1}{2}$ C. $\frac{9}{11}$ D. $\frac{5}{11}$
- 2.【河北省唐山一中 2019 届高三上期中】如图,在 \triangle ABC 中, $\vec{CM} = 2\vec{MB}$,过点 M 的直线分别交射线 AB、AC 于不同的两点 P、Q,若 $\vec{AP} = m\vec{AB}$, $\vec{AQ} = n\vec{AC}$,则mn + m的最小值为()

A. 2 B. $2\sqrt{3}$ C. 6 D. $6\sqrt{3}$

结论七 三角形"四心"向量形式的充要条件

设 0 为 \triangle ABC 所在平面上一点, 内角 A, B, C 所对的边分别为 a, b, c, 则

(1) 0 为△ABC 的外心⇔
$$|\vec{OA}| = |\vec{OB}| = |\vec{OC}| = 2\sin A$$
.

- (2)0 为 \triangle ABC 的重心 $\Leftrightarrow \vec{OA} + \vec{OB} + \vec{OC} = 0$.
- (3)0 为△ABC 的垂心⇔ *OA OB=OB OC=OC OA*.
- (4)0 为△ABC 的内心⇔a \vec{OA} +b \vec{OB} +c \vec{OC} =0.
- 例 7【2019年吉林省辽源市田家炳高级中学】在 $\triangle ABC$ 中,点 M是 BC的中点,AM=1,点 P在 AM上,且满

足 AP=2PM,则 $\vec{PA}\cdot(\vec{PB}+\vec{PC})$ 等于()

A.
$$-\frac{4}{3}$$
 B. $-\frac{4}{9}$ C. $\frac{4}{3}$ D. $\frac{4}{9}$

【答案】B

【解析】

∵M 是 BC 的中点,知 AM 是 BC 边上的中线,

又由点 P 在 AM 上且满足 AP = 2PM

∴P 是三角形 ABC 的重心

$$\overrightarrow{PA} \cdot (\overrightarrow{PB} + \overrightarrow{PC}) = \overrightarrow{PA} \cdot \overrightarrow{AP} = -|\overrightarrow{PA}|^2$$

又: AM=1

$$|\overrightarrow{PA}| = \frac{2}{3}$$

$$\overrightarrow{PA} \cdot (\overrightarrow{PB} + \overrightarrow{PC}) = -|\overrightarrow{PA}|^2 = -\frac{4}{9}$$
.

【变式训练】

1. 【吉林省长春市实验中学 2019 届高三上学期期中】点 M 为 $^\Delta ABC$ 的重心, $^AB=2$, $^BC=1$, $^\Delta ABC=60$ °,则 $^A\bar{M}\cdot A\bar{C}=($)

A. 1 B.
$$\frac{2}{3}\sqrt{3}$$
 C. 2 D. 3

2. 0 是平面上一定点, A、B、C 是平面上不共线的三个点, 动点 P 满足 $\vec{OP} = \frac{\vec{OB} + \vec{OC}}{2} + \lambda \vec{AP}$, $\lambda \in [0, +\infty)$, 则 P 的轨迹一定通过 \triangle ABC 的()

A. 外心 B. 内心 C. 重心 D. 垂心

3.0 是平面上一定点, A, B, C 是平面上不共线的三个点, 动点 P 满足 $\vec{OP} = \vec{OA} + \lambda \left(\frac{\vec{AB}}{|\vec{AB}|} + \frac{\vec{AC}}{|\vec{AC}|} \right)$, $\lambda \in [0, +\infty)$, 则 P 的轨迹一定通过 \triangle ABC 的()

A. 外心 B. 内心 C. 重心 D. 垂心

4. 【吉林省长春市实验中学 2019 届高三期末】A、B、C是平面上不共线的三点,O为 ΔABC 所在平面内一点, $\vec{OP} = \frac{1}{3}[(2-2\lambda)\vec{OD} + (1+2\lambda)\vec{OC}](\lambda \in R)$,则点P的轨迹一定过 ΔABC ____心(内心、外心、垂心或重心).学科&网

结论八 等差数列

设 S_n为等差数列 {a_n} 的前 n 项和.

- $(1) a_n = a_1 + (n-1) d = a_m + (n-m) d, p+q=m+n \Rightarrow a_n + a_n = a_m + a_n (m, n, p, q \in \mathbb{N}^*).$
- (2) $a_p = q$, $a_q = p (p \neq q) \Rightarrow a_{p+q} = 0$.
- $(3) S_k, S_{2k} S_k, S_{3k} S_{2k}, \cdots$ 构成的数列是等差数列.

$$(4)\frac{S_n}{n} = \frac{d}{2} n + \left(a_1 - \frac{d}{2}\right)$$
 是关于 n 的一次函数或常函数, 数列 $\left\{\frac{S_n}{n}\right\}$ 也是等差数列.

(5)
$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots$$

- (6) 若等差数列 $\{a_n\}$ 的项数为偶数 2m, 公差为 d, 所有奇数项之和为 $S_{\mathfrak{g}}$, 所有偶数项之和为 $S_{\mathfrak{g}}$, 则所有项之和 $S_{2m}=m$ (a_m+a_{m+1}) , $S_{\mathfrak{g}}=S_{\mathfrak{g}}=md$, $\frac{S_{\mathfrak{g}}}{S_{\mathfrak{g}}}=\frac{a_{m+1}}{a_m}$.
- (7) 若等差数列 $\{a_n\}$ 的项数为奇数 2m-1,所有奇数项之和为 S_{α} ,所有偶数项之和为 S_{α} ,则所有项之和 $S_{2m-1}=(2m-1)a_m$, $S_{\alpha}=ma_m$, $S_{\alpha}=(m-1)a_m$, $S_{\alpha}-S_{\alpha}=a_m$, $\frac{S_{\hat{\alpha}}}{S_{(\mathbf{A})}}=\frac{m}{m-1}$.
 - (8) 若 $S_m = n$, $S_n = m (m \neq n)$, 则 $S_{m+n} = -(m+n)$.
 - (9) $S_{m+n} = S_m + S_n + mnd$.

例 8【广东省揭阳市 2019 届高三学业水平考试】已知数列 $\{a_n\}$ 满足 $a_1 = -\frac{1}{9}$, $a_{n+1} = \frac{a_n}{8a_n+1}$ $(n \in N^*)$,则数 列 $\{a_n\}$ 中最大项的值为_____.

【答案】7

【解析】

$$a_{n+1} = \frac{a_n}{8a_n + 1} \frac{1}{a_{n+1}} = \frac{8a_n + 1}{a_n} = \frac{1}{a_n} + 8 \Rightarrow \frac{1}{a_{n+1}} - \frac{1}{a_n} = 8$$

$$\{\frac{1}{a_n}\}$$
 即数列 $\frac{1}{a_n}$ 是公差为 8 的等差数列,故 $\frac{1}{a_n} = \frac{1}{a_1} + (n-1) \times 8 = 8n-17$,所以 $a_n = \frac{1}{8n-17}$

【变式训练】

- 1. 等差数列 $\{a_n\}$ 共有3m项,若前2m项的和为200,前3m项的和为225,则中间m项的和为。()
- A. 50 B. 75 C. 100 D. 125
- 2. 【2018 宁夏育才中学模拟】已知无穷等差数列 $\{a_n\}$ 的公差d>0, $\{a_n\}$ 的前n项和为 S_n ,若 $a_5<0$,则下列结论中正确。的是(
- A. $\left\{S_{n}\right\}$ 是递增数列 B. $\left\{S_{n}\right\}$ 是递减数列
- C. S_{2n} 有最小值 D. S_{2n} 有最大值

结论九 等比数列

已知等比数列 $\{a_n\}$,公比为g,前n项和为 S_n .

- $(1) a_n = a_m \cdot q^{n-m}, a_{n+m} = a_n q^m = a_m q^n (m, n \in N^*).$
- (2) 若 m+n=p+q, 则 a_m a_n=a_p a_q (m, n, p, q∈N*);反之, 不一定成立.
- $(3) a_1 a_2 a_3 \cdots a_m, a_{m+1} a_{m+2} \cdots a_{2m}, a_{2m+1} a_{2m+2} \cdots a_{3m}, \cdots$ 成等比数列 $(m \in N^*)$.
- (4) 公比 $q \neq -1$ 时, S_n , $S_{2n} S_n$, $S_{3n} S_{2n}$, …成等比数列 $(n \in N^*)$.
- (5) 若等比数列的项数为 $2n(n \in N^*)$, 公比为 q, 奇数项之和为 S_{a} , 偶数项之和为 S_{g} , 则 $\frac{S_{g}}{S_{a}} = q$.
- (6) $\{a_n\}$, $\{b_n\}$ 是等比数列,则 $\{\lambda a_n\}$, $\{\frac{1}{a_n}\}$, $\{a_nb_n\}$, $\{\frac{a_n}{b_n}\}$ 也是等比数列 $(\lambda \neq 0, n \in N^*)$. xk-*/w
- (7) 通项公式 $a_n = a_1 q^{n-1} = \frac{a_1}{q} \cdot q^n$. 从函数的角度来看,它可以看作是一个常数与一个关于 n 的指数函数的积, 其图象是指数函数图象上一群孤立的点. 学科#网
- (8)与等差中项不同,只有同号的两个数才能有等比中项;两个同号的数的等比中项有两个,它们互为相反数.
 - (9) 三个数成等比数列, 通常设为 $\frac{x}{q}$, x, xq; 四个数成等比数列, 通常设为 $\frac{x}{q^3}$, $\frac{x}{q}$, xq, xq 3 .
 - 例 9【吉林省高中 2019 届高三上期末】在递增的等比数列 $\{a_n\}$ 中, $a_2=6$,且 $\{a_3-a_2\}=a_4-6$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = a_n + 2n 1$, 求数列 $\{b_n\}$ 的前n项和 S_n .

【答案】(1)
$$a_n = 2 \times 3^{n-1}$$
 (2) $S_n = 3^n - 1 + n^2$

【解析】

(1) 设公比为
$$q$$
, 由 $4(a_3-a_2)=a_4-6$, 得 $4(6q-6)=6q^2-6$,

化简得
$$q^2 - 4q + 3 = 0$$
,解得 $q = 3$ 或 $q = 1$,

因为等比数列 $\{a_n\}$ 是递增的,所以q=3, $a_1=2$,

所以 $a_n = 2 \times 3^{n-1}$.

. (2) 由 (1) 得
$$b_n = 2 \times 3^{n-1} + 2n - 1$$
,

所以
$$S_n = (2+6+18+\dots+2\times3^{n-1}) + (1+3+5+\dots+2n-1),$$

$$S_n = \frac{2 \times (1 - 3^n)}{1 - 3} + \frac{n(1 + 2n - 1)}{2},$$

所以
$$S_n = 3^n - 1 + n^2$$
.

【变式训练】

- 1. 【2018 西藏拉萨一模】已知等比数列 $\{a_n\}$ 的前 n 项积为 T_n ,若 $a_1=-24$, $a_4=-\frac{8}{9}$,则当 T_n 取得最大值时, n 的值为(
- A. 2 B. 3 C. 4 D. 6
- 2. 【广东省惠州市 2019 届高三第三次调研】 已知公差为正数的等差数列 $\{a_n\}$ 的前n项和为 S_n ,且 $a_2 \cdot a_3 = 40$, $S_4 = 26 \text{ 数列}\{b_n\}_{\text{的前}n$ 项和 $T_n = 2^{n+1} 2(n \in N^*)$
- (1) 求数列 $\{a_n\}$ 与 $\{b_n\}$ 的通项公式;
- (2) 求数列 $\{a_n \cdot b_n\}$ 的前n项和 M_n .

结论十 多面体的外接球和内切球

- 1. 长方体的体对角线长 d 与共顶点的三条棱的长 a, b, c 之间的关系为 $d^2=a^2+b^2+c^2$;若长方体外接球的半径为 R, 则有 $(2R)^2=a^2+b^2+c^2$.
 - 2. 棱长为 a 的正四面体内切球半径 $r=\frac{\sqrt{6}}{12}a$, 外接球半径 $R=\frac{\sqrt{6}}{4}a$.

例 10【四川省泸州市 2019 届高三第一次诊断】已知三棱锥S-ABC的所有顶点都在同一球面上,底面ABC是正三角形且和球心O在同一平面内,若此三棱锥的最大体积为 $16\sqrt{3}$,则球O的表面积等于

【答案】64π

【解析】

设球半径为R,

则 ΔABC 的边长 $a = \sqrt{3}R$,

$$S_{\Delta ABC} = \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4} \times (\sqrt{3}R)^2 = \frac{3\sqrt{3}}{4}R^2$$

当S到AABC所在面的距离为球的半径R时,

S-ABC体积最大,

$$V_{S-ABC} = \frac{1}{3} S_{\Delta ABC} \times R = \frac{1}{3} \times \frac{3}{4} \sqrt{3} R^2 \times R = 16\sqrt{3},$$

 $R^3 = 64, R = 4$

球表面积为 $4\pi R^2 = 4\pi \times 16 = 64\pi$, 故答案为 64π .

【变式训练】

1. 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥 P-ABC 为鳖臑, PA 上平 面 ABC, PA = 3, AB = 4, AC = 5,三棱锥 P-ABC 的四个项点都在球O的球面上,则球O的表面积为()

A. 17π B. 25π C. 34π D. 50π

2. 球 0 的球心为点 0,球 0 内切于底面半径为 $\sqrt{3}$ 、高为 3 的圆锥,三棱锥 V - ABC 内接于球 0,已知 0A \perp 0B,AC \perp BC,则三棱锥 V - ABC 的体积的最大值为_____.

结论十一 焦点三角形的面积公式

- (1) 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b>0) 中, F_1 , F_2 分别为左、右焦点,P 为椭圆上一点,则 $\triangle PF_1F_2$ 的面积 $S_{\triangle PF_1F_2} = b^2 \cdot \tan\frac{\theta}{2}$, 其中 $\theta = \angle F_1PF_2$.
 - (2) 在双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0, b>0) 中, F_1 , F_2 分别为左、右焦点, P 为双曲线上一点,则 $\triangle PF_1F_2$ 的面积 b^2

$$S_{\triangle PF_1F_2} = \frac{b^2}{\tan \frac{\theta}{2}}, \text{ if } \theta = \angle F_1PF_2.$$

例 11 已知椭圆的中心在原点,对称轴为坐标轴, F_1 、 F_2 为焦点,点 P 在椭圆上,直线 PF_1 与 PF_2 倾斜 角的差为 90° , $\triangle F_1 PF_2$ 的面积是 20,离心率为 $\frac{\sqrt{5}}{3}$,求椭圆的标准方程.

【解析】设 $\angle F_1 P F_2 = \theta$,则 $\theta = 90^\circ$. $\therefore S_{\Delta F_1 P F_2} = b^2 \tan \frac{\theta}{2} = b^2 \tan 45^\circ = b^2 = 20$,

$$\mathbf{X} :: e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \frac{\sqrt{5}}{3},$$

$$\therefore 1 - \frac{b^2}{a^2} = \frac{5}{9}$$
, $\mathbb{R} 1 - \frac{20}{a^2} = \frac{5}{9}$.

解得: $a^2 = 45$.

:. 所求椭圆的标准方程为
$$\frac{x^2}{45} + \frac{y^2}{20} = 1$$
或 $\frac{y^2}{45} + \frac{x^2}{20} = 1$.

【变式训练】

1. 已知 P 是椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 上的点, F_1 、 F_2 分别是椭圆的左、右焦点,若 $\frac{\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}}{|\overrightarrow{PF_1}| \cdot |\overrightarrow{PF_2}|} = \frac{1}{2}$,则

 $\triangle F_1 PF_2$ 的面积为 ()

A.
$$3\sqrt{3}$$
 B. $2\sqrt{3}$

B.
$$2\sqrt{3}$$

C.
$$\sqrt{3}$$

D.
$$\frac{\sqrt{3}}{3}$$

2. 双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 两焦点为 F_1 , F_2 , 点 P.在双曲线上, 直线 PF_1 , PF_2 倾斜角之差为 $\frac{\pi}{3}$, 则

 $\triangle F_1PF_2$ 面积为()

A.
$$16\sqrt{3}$$
 B. $32\sqrt{3}$

B.
$$32\sqrt{3}$$

结论十二 圆锥曲线的切线问题

1. 过圆 $C: (x-a)^2 + (y-b)^2 = R^2$ 上一点 $P(x_0, y_0)$ 的切线方程为 $(x_0-a)(x-a) + (y_0-b)(y-b) = R^2$.

$$\frac{x^2}{a^2} \frac{y^2}{h^2}$$

- 3. 已知点 $M(x_0, y_0)$, 抛物线 $C: y^2 = 2px(p \neq 0)$ 和直线 $1: y_0 y = p(x + x_0)$.
- (1) 当点 M 在抛物线 C 上时, 直线 1 与抛物线 C 相切, 其中 M 为切点, 1 为切线.

- (2) 当点 M 在抛物线 C 外时, 直线 1 与抛物线 C 相交, 其中两交点与点 M 的连线分别是抛物线的切线, 即直线 1 为切点弦所在的直线.
 - (3) 当点 M 在抛物线 C 内时, 直线 1 与抛物线 C 相离.

例 12 已知抛物线 $C: x^2=4y$, 直线 1: x-y-2=0, 设 P 为直线 1 上的点, 过点 P 作抛物线 C 的两条切线 PA, PB, 其中 A, B 为切点, 当点 $P(x_0, y_0)$ 为直线 1 上的定点时, 求直线 AB 的方程.

 $\begin{cases} x^2 = 4y, \\ x - y - 2 = 0, \end{cases}$

消去 y, 整理得 x²-4x+8=0,

△=(-4)²-4×8=-16<0, 故直线 1 与抛物线 C 相离.

由结论知,P 在抛物线外,故切点弦 AB 所在的直线方程为 xox=2(y+yo),即 y=2xox-yo.

【变式训练】

- 1. 过点(3,1)作圆 $(x-1)^2+y^2=1$ 的两条切线,切点分别为 A, B,则直线 AB的方程为()
- A. 2x+y-3=0 B. 2x-y-3=0
- C. 4x-y-3=0 D. 4x+y-3=0
- 2. 设椭圆 $C: \frac{x^2}{4} \cdot \frac{y^2}{3} = 1$, 点 $P(1, \frac{3}{2})$, 则椭圆 C 在点 P 处的切线方程为_____.

结论十三 圆锥曲线的中点弦问题

- 1. 在椭圆 $E: \frac{x^2 y^2}{a^2 b^2} = 1$ (a>b>0) 中:
- (1) 如图①所示, 若直线 y=kx ($k\neq 0$) 与椭圆 E 交于 A, B 两点, 过 A, B 两点作椭圆的切线 1, 1', 有 1//1', 设其斜率为 k_0 , 则 k_0 $k=-\frac{b^2}{a^2}$.
- (2) 如图②所示, 若直线 y=kx 与椭圆 E 交于 A, B 两点, P 为椭圆上异于 A, B 的点, 若直线 PA, PB 的斜率存在, 且分别为 k_1 , k_2 , 则 $k_1 \cdot k_2 = \frac{b^2}{a^2}$.
- (3) 如图③所示, 若直线 y=kx+m(k≠0 且 m≠0) 与椭圆 E 交于 A, B 两点, P 为弦 AB 的中点, 设直线 PO 的斜率为 k_0 , 则 $k_0 \cdot k = \frac{b^2}{a^2}$.

2. 在双曲线 $E: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0, b>0) 中, 类比上述结论有:

(1)
$$k_0 \cdot k = \frac{b^2}{a^2}$$
.

(2)
$$k_1 \cdot k_2 = \frac{b^2}{a^2}$$
.

$$(3) k_0 \cdot k = \frac{b^2}{a^2}.$$

点坐标为(1,-1),则椭圆 E 的方程为(

A.
$$\frac{x^2}{45} + \frac{y^2}{36} = 1$$
 B. $\frac{x^2}{36} + \frac{y^2}{27} = 1$

C.
$$\frac{x^2}{27} + \frac{y^2}{18} = 1$$
 D. $\frac{x^2}{18} + \frac{y^2}{9} = 1$

如图所示,设 P(1,-1),则有 kas·kes=- b² a².

則
$$-\frac{b^2}{a^2} = k_{pp} \cdot k_{0p} = \frac{0 - (-1)}{3 - 1} \times \frac{-1}{1} = -\frac{1}{2}$$
,則 $a^2 = 2b^2$,故选 D.

$$x^2 y^2$$

 $\frac{x^2}{2} \frac{y^2}{y^2}$ 【变式训练】1. 椭圆 C: $\frac{4}{4} + \frac{3}{3} = 1$ 的左、右顶点分别为 A_1 , A_2 , 点 P 在椭圆 C 上且直线 PA_2 的斜率的取值范围是 [-2,-1], 那么直线 PA, 的斜率的取值范围是

$$\frac{x^2}{y^2}$$

 $\frac{x^2}{4} \frac{y^2}{2}$ 2. 如图所示, 在平面直角坐标系 x0y 中, 过坐标原点的直线交椭圆 $\frac{x^2}{4} + \frac{y^2}{2}$ =1 于 P, A 两点, 其中 P 在第一象限, 过 P作x轴的垂线, 垂足为C, 连接AC, 并延长交椭圆于点B, 设直线PA的斜率为k. 对任意k>0, 求证: PA L PB.

结论十四 圆锥曲线中的一类定值问题

在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点 P(非顶点)与曲线上的两动点 A, B 满足直线 PA与 PB的斜率互为相反数(倾斜角互补),则直线 AB的斜率为定值.

图示	条件	结论
		直线 AB 的斜率 k_{AB} 为定值 $\frac{b^2x_0}{a^2y_0}$
O A B	$\frac{x^2}{a^2} \frac{y^2}{b^2}$ 已知双曲线 $\frac{y^2}{a^2-b^2}$ =1 (a, b>0),定点 P(x ₀ , y ₀) (x ₀ y ₀ \neq 0) 在 双曲线上,设 A, B 是双曲线上的两个动点,直线 PA, PB 的斜率分别为 k _{PA} , k _{PB} , 且满足 k _{PA} +k _{PB} =0.	直线 AB 的斜率 k_{AB} 为定值 $\frac{b^2x_0}{a^2y_0}$.
O A x	已知抛物线 y^2 =2px (p>0), 定点 $P(x_0, y_0)$ ($x_0y_0 \neq 0$) 在抛物线上, 设 A, B 是抛物线上的两个动点, 直线 PA, PB 的斜率分别为 k_{PA} , k_{PB} , 且满足 k_{PA} + k_{PB} =0.	<u>p</u> 直线 AB 的斜率 k _{AB} 为定值— ^y 0.

例 14 已知抛物线 $C: y^2=2x$, 定点 P(8,4) 在抛物线上, 设 A, B 是抛物线上的两个动点, 直线 PA, PB 的斜率 分别为 k_{PA} , k_{PB} , 且满足 $k_{PA}+k_{PB}=0$. 证明: 直线 AB 的斜率 k_{AB} 为定值, 并求出该定值.

解析 设 A(x₁, y₁), B(x₂, y₂), k_{PA}=k,

则 k_{PB} =- $k(k \neq 0)$,又 P(8,4),

所以直线 PA 的方程为 y-4=k(x-8),

即 y=kx+4-8k, 联立方程得 $\begin{cases} y = kx + 4-8k, \\ y^2 = 2x, \end{cases}$ 消去 y 得 k²x²+(8k-16k²-2)x+(4-8k)²=0,8x₁= $\frac{(4-8k)^2}{k^2}$,得

$$x_1 = \frac{(4-8k)^2}{8k^2}$$

同理可得
$$x_2 = \frac{(4+8k)^2}{8k^2}$$
, $x_2 = x_1 = \frac{(4+8k)^2}{8k^2} = \frac{(4-8k)^2}{8k^2} = \frac{128k}{8k^2} = \frac{16}{8k}$, $x_1 + x_2 = \frac{16+64k^2}{8k^2} \times 2 = \frac{4+16k^2}{k^2}$, 因为

 $y_1=kx_1+4-8k$, $y_2=-kx_2+4+8k$,

故
$$y_2-y_1=-k(x_1+x_2)+16k=-k imes rac{4+16k^2}{k^2}+16k=rac{-4}{k}$$
,故 $k_{k0}=rac{y_2-y_1}{x_2-x_1}=rac{-4}{k}=-rac{1}{4}$,所以直线 AB 的斜率 k_{k0} 为定值,且为 $-rac{1}{4}$

 $\frac{x^2}{2} \frac{y^2}{y^2}$ 【变式训练】已知椭圆 C: $\frac{x^2}{4} + \frac{y^2}{3} = 1$, A 为椭圆上的定点, 若其坐标为 A $(1, \frac{3}{2})$, E, F 是椭圆 C 上的两个动点, 如果 直线 AE 的斜率与 AF 的斜率互为相反数, 证明: 直线 EF 的斜率为定值, 并求出这个定值,

结论十五 圆锥曲线中的一类定点问题

若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.

$$\frac{x^2}{y^2}$$

(1) 对于椭圆 $a^2+b^2=1$ (a>b>0) 上异于右顶点的两动点 A, B, 以 AB 为直径的圆经过右顶点 (a, 0), 则直线 $1_{\tiny \rm LB}$

过定点
$$\left(\frac{(a^2-b^2)a}{a^2+b^2},0\right)$$
. 同理, 当以 AB 为直径的圆过左顶点 $\left(-a,0\right)$ 时, 直线 1_{AB} 过定点 $\left(-\frac{(a^2-b^2)a}{a^2+b^2},0\right)$.

$$x^2 y^2$$

 $\frac{x^2}{(2)}$ $\frac{y^2}{}$ (2) 对于双曲线 $\frac{x^2}{a^2}$ $\frac{y^2}{b^2}$ =1 (a>0, b>0) 上异于右顶点的两动点 A, B, 以 AB 为直径的圆经过右顶点 (a, 0),则直

线
$$1_{\text{BR}}$$
过定点 $\left(\frac{(a^2+b^2)a}{a^2-b^2},0\right)$. 同理,对于左顶点 $(-a,0)$,则定点为 $\left(-\frac{(a^2+b^2)a}{a^2-b^2},0\right)$.

(3) 对于抛物线 $v^2=2px(p>0)$ 上异于顶点的两动点 A, B, 若 $\vec{OA} \cdot \vec{OB}=0$, 则弦 AB 所在直线过点 (2p,0). 同理, 拋物线 $x^2=2pv(p>0)$ 上异于顶点的两动点 A, B, 若 $\vec{OA} \perp \vec{OB}$, 则直线 AB 过定点 (0,2p).

例 15 已知抛物线 $y^2=2px(p>0)$ 上异于顶点的两动点 A, B 满足以 AB 为直径的圆过顶点.

求证: AB 所在的直线过定点, 并求出该定点的坐标.

入化简得 m(m-2p)=0, 得 m=0 或 m=2p.

由题意知 1_{AB} 的斜率不为 0 (否则只有一个交点), 故可设 1_{AB} : x=ty+m, $A(x_1,y_1)$, $B(x_2,y_2)$, 由 $\begin{cases} y^2 = 2px, \\ x = ty + m$ 消去 x 得 $y^2 - 2pty - 2pm = 0$, 从而 $\Delta = (-2pt)^2 - 4(-2pm) = 4p^2t^2 + 8pm > 0$, 即 $pt^2 + 2m > 0$, $y_1 y_2 = -2pm$. ① 因为以 AB 直径的圆过顶点 0(0,0), 所以 $\vec{OA} \cdot \vec{OB} = 0$, 即 $x_1x_2 + y_1y_2 = 0$, 也 即 $(ty_1 + m)(ty_2 + m) + y_1y_2 = 0$, 把式①代

- (1) 当 m=0 时, x=ty, 1 n 过顶点 0(0,0), 与题意不符, 故舍去:
- (2) 当 m=2p 时, x=ty+2p, 令 y=0, 得 x=2p, 所以 1_{ss}过定点(2p, 0), 此时 m=2p 满足 pt²+2m>0.

综上, 1_{AB}过定点(2p, 0).

$$x^2 y^2$$

【变式训练】 已知椭圆 $^{4+3}=1$,直线1:y=kx+m与椭圆交于A,B两点(A,B不是左、右顶点),且以AB为直径的圆过椭圆的右顶点.求证:直线1过定点,并求该定点的坐标.

结论十六 抛物线中的三类直线与圆相切问题

AB 是过抛物线 $y^2=2px$ (p>0) 焦点 F 的弦 (焦点弦), 过 A, B 分别作准线 $1: x=-\frac{1}{2}$ 的垂线, 垂足分别为 A_1, B_1, E 为 A_1B_1 的中点.

- (1) 如图①所示, 以 AB 为直径的圆与准线 1 相切于点 E.
- (2) 如图②所示, 以 A,B, 为直径的圆与弦 AB 相切于点 F, 且 EF²=A,A BB,.
- (3)如图③所示,以AF为直径的圆与y轴相切.

例 16 过抛物线 $y^2=2px(p>0)$ 的对称轴上一点 A(a,0) (a>0) 的直线与抛物线相交于 M,N 两点,自 M,N 向直线 1:x=-a 作垂线,垂足分别为 M_1,N_1 . 当 a=2时,求证: $AM_1 \perp AN_1$.

证明 证法一:如图所示,当 a=2时,点 A $(\frac{p}{2},0)$ 为抛物线的焦点,1 为其准线 x=-2,由抛物线定义得 $|MA|=|MM_1|,|NA|=|NN_1|,所以<math>\angle MAM_1=\angle MM_1A$, $\angle NAN_1=\angle NN_1A$.

因 为 MM_1/NN_1 ,故 $\angle M_1MA+\angle N_1NA=180^\circ$,所 以 $\angle MM_1A+\angle MAM_1+\angle NN_1A+\angle NAN_1=180^\circ$,所 以 $\angle MAM_1+\angle NAN_1=90^\circ$,即 $\angle M_1AN_1=90^\circ$,故 $AM_1\perp AN_1$.

证法二:依题意,可设直线 MN 的方程为 $x=my+a, M(x_1, y_1), N(x_2, y_2), 则有 M(-a, y_1), N_1(-a, y_2).$ 由 $\begin{cases} x = my+a, \\ y^2 = 2px \end{cases}$ 消去 x, 可得 $y^2-2mpy-2ap=0$,

于是 x₁+x₂=m (y₁+y₂)+2a=2m²p+2a, ③

$$\mathbf{x}_1 \cdot \mathbf{x}_2 = \frac{y_1^2}{2p} \cdot \frac{y_2^2}{2p} = \frac{y_1^2 \cdot y_2^2}{4p^2} = \mathbf{a}^2$$
. (4)

当 $a=\frac{p}{2}$ 时,点 $A\left(\frac{p}{2},0\right)$ 为抛物线的焦点,1 为其准线 $x=-\frac{p}{2}$,此时 $M_1\left(-\frac{p}{2},y_1\right)$, $N_1\left(-\frac{p}{2},y_2\right)$,

由②可得 y₁ • y₂=-p².

因为
$$\vec{A}\vec{M}_{1=(-p, y_1)}, \vec{A}\vec{N}_{1=(-p, y_2)},$$

故 $\vec{A}\vec{M}_1 \cdot \vec{A}\vec{N}_{1=0}$, 即 $AM_1 \perp AN_1$.

证法三:同证法二得 $y_1 \cdot y_2 = -p^2$.

因为
$$k_{AM_1=-}\frac{y_1}{p}$$
, $k_{AN_1=-}\frac{y_2}{p}$, 故 $k_{AM_1} \cdot k_{AN_1=-1}$, 即 $AM_1 \perp AN_1$.

【变式训练】

- 1. 设抛物线 C: $y^2 = 4x$ 的焦点为 F ,直线 l: $x = -\frac{3}{2}$,若过焦点 F 的直线与抛物线 C 相交于 A, B 两点,则以线段 AB 为直径的圆与直线 l 的位置关系为(
- A. 相交 B. 相切 C. 相离 D. 以上三个答案均有可能

【变式训练】【答案】

结论一 奇函数的最值性质

【变式训练】

1. 【答案】2018

【解析】
$$f\left(x+\frac{1}{2}\right) = \frac{x^2 + \sin x + 2017}{x^2 + 2017} = 1 + \frac{\sin x}{x^2 + 2017}, \ f\left(x+\frac{1}{2}\right) - 1 = \frac{\sin x}{x^2 + 2017}$$
,设

$$g(x) = f\left(x + \frac{1}{2}\right) - 1 = \frac{\sin x}{x^2 + 2017}$$
 , $g(x)$ 为奇函数 , $g(-x) + g(x) = 0$, 则

$$f\left(-x+\frac{1}{2}\right)-1+f\left(x+\frac{1}{2}\right)-1=0$$
, $f\left(-x+\frac{1}{2}\right)+f\left(x+\frac{1}{2}\right)=2$, $\Rightarrow -x+\frac{1}{2}=t$,

$$x = \frac{1}{2} - t, x + \frac{1}{2} = 1 - t \quad , \quad f(t) + f(1 - t) = 2 \quad , \quad f(0) + f(1) = 2, f\left(\frac{1}{2017}\right) + f\left(\frac{2016}{2017}\right) = 2, \dots \quad , \quad \mathbb{N}$$

$$\sum_{i=0}^{2017} f\left(\frac{i}{2017}\right) = 2 \times \frac{2018}{2} = 2018.$$

2. 【答案】2

【解析】
$$f(x) = 1 - \frac{\sin x}{x^2 + \cos x + 1}$$
,又 $y = -\frac{\sin x}{x^2 + \cos x + 1}$ 为奇函数

- : f(x)的图象关于点(0,1)对称,学/*科网
- ∴最大值对应的点与最小值对应的点也关于点(0,1)对称

$$\frac{M+m}{2}=1, \ \mathbb{P}M+m=2$$

故答案为: 2

结论二 函数周期性问题

【变式训练】

1.

【答案】A

【解析】 依题意 f(3-x)=-f(x)=f(-x), 故函数 f(x) 为周期为3的周期函数,

$$f(2017) = f(3 \times 672 + 1) = f(1) = -f(-1) = -\log_2(-2 + 7) = -\log_25$$
, 故选 A.

2. 【答案】 2

【解析】

根据题意,函数 $f^{(x)}$ 是周期为 2 的函数,则 $f^{(\frac{21}{2})}=f^{(\frac{1}{2}+10)}=f^{(\frac{1}{2})}$,又由 $f^{(x)}$ 为奇函数,则 $f^{(\frac{1}{2})}=-f^{(\frac{1}{2})}=-f^{(\frac{1}{2})}=\frac{1}{2}$.

$$f(\frac{21}{2}) = \frac{1}{2};$$

结论三 函数的对称性

【变式训练】

1. 【答案】D

【解析】: f(2+x)=f(2-x),

∴函数 f(x) 图象的对称轴为 x=2,即 f(-x)=f(x+4),

又函数f(x)为偶函数,即f(-x)=f(x),

$$\therefore f(x+4) = f(x),$$

∵函数 f(x) 为周期函数,且 T = 4 是一个周期.

结合函数 f(x) 为偶函数,且当 $x \in [-2,0]$ 时, $f(x) = \left(\frac{\sqrt{2}}{2}\right)^x - 1$,画出函数 f(x) 在区间 (-2,6) 上的图

象 (如图所示), 并且 f(-2) = f(2) = f(6) = 1.

:在区间(-2,6)内方程 $f(x)-\log_a(x+2)=0$ (a>0, $a\ne 1$)有且只有4个不同的根,

∴函数 y = f(x)和 $y = \log_a(x+2)$ 的图象在区间(-2.6)内仅有 4 个不同的公共点.

结合图象可得只需满足 $\begin{cases} a > 1 \\ \log_a 8 < 1 \end{cases}$,解得 a > 8 .

∴实数a的取值范围是 $(8,+\infty)$.

2. 【答案】D

【解析】

因为y = f(x) 图像关于点 $\frac{1}{2}$ 0 对称,所以 $f(\frac{1}{2} + x) + f(\frac{1}{2} - x) = 0$,所以f(1 + x) + f(-x) = 0,又y = f(x)为 偶函数,所以f(-x) = -f(x),所以f(x + 2) = -f(1 + x) = f(x),所以函数f(x)最小正周期为 2,所以 $f(\pi) = f(\pi - 4) = f(4 - \pi) = \pi - 4 + \frac{1}{2} = \pi - \frac{7}{2}$

结论四 反函数的图象与性质

【变式训练】

【答案】A

【解析】因为函数 $f(x)=x^2-ax$ 与 $g(x)=e^x$ (e 为自然对数的底数)的图象上存在关于直线 y=x对称的点,所以函数 $f(x)=x^2-ax$ 与 $h(x)=\ln x$ 的图象有公共点,则 $x^2-ax=\ln x$ 有解,即 $a=x-\frac{\ln x}{x}$ 有解, 令 $F(x)=x-\frac{\ln x}{x}$,则 $F'(x)=\frac{x^2+\ln x-1}{x^2}<0$ 在 $\left[\frac{1}{e},1\right]$ 成立, $F'(x)=\frac{x^2+\ln x-1}{x^2}>0$ 在 $\left(1,e\right]$ 上成立,即 $F(x)=x-\frac{\ln x}{x}$ 在 $\left[\frac{1}{e},1\right]$ 单调递减,在 $\left(1,e\right]$ 上单调递增,且 $F(e)=e-\frac{1}{e}$,F(1)=1 ,所以 $1\leq a\leq e+\frac{1}{e}$, 故选 A.

结论五 两个经典不等式

【变式训练】

1.

【答案】B

【解析】因为 f(x)的定义域为 $\begin{cases} x+1>0, \\ \ln(x+1)-x\neq 0, \end{cases}$ 即 $\{x \mid x>-1$ 且 $x\neq 0\}$,所以排除选项 D.

令 $g(x)=\ln(x+1)x$, 则由经典不等式 $\ln(x+1) \le x$ 知, $g(x) \le 0$ 恒成立, 故 $f(x)=\frac{1}{g(x)} < 0$ 恒成立, 所以排除 A, C, 故选 B.

由经典不等式 e^{*}≥x+1 恒成立可知, g^{*}(x)≥0 恒成立, 所以 g(x) 在 R 上为单调递增函数, 且 g(0)=0, 所以函数 g(x)有唯一零点,即两曲线有唯一公共点.

结论六 三点共线的充要条件

【变式训练】

1. 【答案】D

【解析】设
$$\overrightarrow{BP} = \lambda \overrightarrow{BN} = \lambda \left(\overrightarrow{AN} - \overrightarrow{AB} \right) = \lambda \left(\frac{1}{3} \overrightarrow{AC} - \overrightarrow{AB} \right) = -\lambda \overrightarrow{AB} + \frac{\lambda}{3} \overrightarrow{AC} \left(0 \le \lambda \le 1 \right)$$
,

$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP} = (1 - \lambda)\overrightarrow{AB} + \frac{\lambda}{3}\overrightarrow{AC}.$$

$$\frac{\lambda}{3} = \frac{2}{11}, \quad \text{解得} \begin{cases} \lambda = \frac{6}{11} \\ m = 1 - \lambda \end{cases} \qquad m = \frac{5}{11}$$

$$\therefore m = \frac{5}{11}$$
. 选D.

2. 【答案】A

【解析】

因为 P,M,Q 三点共线,所以
$$\frac{2}{3m} + \frac{1}{3n_{=1}}$$
,

$$\frac{2n+m}{3} + m = \frac{2n}{3} + \frac{4m}{3} = (\frac{2n}{3} + \frac{4m}{3}) + \frac{2}{3m} + \frac{1}{3n}$$

$$\frac{10}{9} + \frac{4n}{9m} + \frac{4m}{9n} \ge \frac{10}{9} + 2\sqrt{\frac{4n}{9m} \times \frac{4m}{9n}}$$

=2.

故选: A.

结论七 三角形 "四心"向量形式的充要条件

【变式训练】

1. 【答案】C

【解析】

$$\therefore \triangle ABC$$
 $\stackrel{1}{\mapsto}$, $\supseteq \Xi AB = 2$, $BC = 1$, $\angle ABC = 60$ °,

$$AC^2 = 1 + 4 - 2 \times 1 \times 2 \times \frac{1}{2} = 3$$
, $AC = \sqrt{3}$,由余弦定理可得

所以
$$BC^2 + AC^2 = AB^2 \Rightarrow AC \perp BC$$
,

设BC的中点为D,

因为点M为 ΔABC 的重心,

所以
$$\vec{A}\vec{M} = \frac{2}{3}\vec{A}\vec{D} = \frac{2}{3}(\vec{A}\vec{C} + \vec{C}\vec{D})$$
,
可得 $\vec{A}\vec{M} \cdot \vec{A}\vec{C} = \frac{2}{3}(\vec{A}\vec{C} + \vec{C}\vec{D}) \cdot \vec{A}\vec{C} = \frac{2}{3}\vec{A}\vec{C}^2 + \frac{2}{3}\vec{C}\vec{D} \cdot \vec{A}\vec{C}$ $= \frac{2}{3}\vec{A}\vec{C}^2 = \frac{2}{3} \times 3 = 2$, 故选 C .

2. 【答案】C

【解析】设 BC 的中点为 M, 则 $\frac{\vec{OB} + \vec{OC}}{2} = \vec{OM}$, 则有 $\vec{OP} = \vec{OM} + \lambda \vec{AP}$, 即 $\vec{MP} = \lambda \vec{AP}$, ∴ P 的轨迹所在直线一定通过 \triangle ABC 的重心.

3. 【答案】B

【解析】解法一: $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$ 为 \overrightarrow{AB} 上的单位向量, $\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$ 为 \overrightarrow{AC} 上的单位向量,则 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$ 的方向为 \angle BAC 的平分线 \overrightarrow{AD} 的方向。又 $\lambda \in [0, +\infty)$, $\therefore \lambda \left(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}\right)$ 的方向与 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$ 的方向相同。 $\overrightarrow{OP} = \overrightarrow{OA} + \lambda \left(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}\right)$, \therefore 点 P 在 \overrightarrow{AD} 上移动. \therefore P 的轨迹一定要通过 \triangle ABC 的内心。 故选 B.

解法二:由于 P 点轨迹通过 \triangle ABC 内一定点且该定点与 O 点位置和 \triangle ABC 的形状无关,故取 O 点与 A 点重合,由平行四边形法则很容易看出 P 点在 \triangle BAC 的平分线上,故选 B.

4. 【答案】重心

【解析】

$$\vec{OP} = \frac{1}{3} \begin{bmatrix} \vec{OP} = \frac{1}{3} \\ \vec{OD} = \frac{1}{3} \end{bmatrix}$$

$$\therefore$$
 动点 \vec{P} 满足 $\vec{OD} = \frac{1}{3} \begin{bmatrix} \vec{OD} + \vec{OC} \end{bmatrix}$ $\vec{OC} = \frac{1}{3} \begin{bmatrix} \vec{OC} \\ \vec{OC} \end{bmatrix}$ $\vec{OC} =$

∴ P、C、D三点共线,

又 D是 AB的中点,

- :CD 为中线,
- ∴点 P的轨迹一定过 $\triangle ABC$ 的重心.

故答案为重心.

结论八 等差数列

【变式训练】

1. 【答案】B

【解析】设等差数列前 m 项的和为 x,由等差数列的性质可得,中间的 m 项的和可设为 x+d,后 m 项的和设为 x+2d,

由题意得 2x+d=200, 3x+3d=225,

解得 x=125, d=-50,

故中间的 m 项的和为 75,

故选 B. 学科#网

2. 【答案】C

【解析】::d>0, $a_5<0$

则 $\{a_n\}$ 是递增数列,

但 $\{S_n\}$ 应是先减后增数列,

故A,B错误,

$$S_{2n} = 2na_1 + \frac{2n(2n-1)}{2}d$$
 应有最小值,故 C 正确

故选C

3. 【答案】¹/₂

【解析】

方程 $(x^2 - 2x + m)$ $(x^2 - 2x + n) = 0$ 可化为

$$x^2 - 2x + m = 0$$
(1), $\overrightarrow{y}_{x^2} - 2x + n = 0$ (2),

 $\frac{1}{2}$ 设 4 是方程①的根,

 $\frac{1}{\text{则将}^4$ 代入方程①,可解得 $\pi} = \frac{7}{16}$

∴方程①的另一个根为⁴.

设方程②的另一个根为 s, t, $(s \le t)$

则由根与系数的关系知,s+t=2,st=n,

又方程①的两根之和也是 2,

$$\vdots_{S^+t} = \frac{1}{4} + \frac{7}{4}$$

由等差数列中的项的性质可知,

此等差数列为
$$\frac{1}{4}$$
, s , t , $\frac{7}{4}$,

$$\therefore_{n=st} = \frac{15}{16}$$

结论九 等比数列

【变式训练】

1. 【答案】C

【解析】设等比数列 $\{a_n\}$ 的公比为q,则 $a_4 = -24q^3 = -\frac{8}{9}, q^3 = \frac{1}{27}, q = \frac{1}{3}$,此等比数列各项均为负数,

当n为奇数时, T_n 为负数,当n为偶数时, T_n 为正数,所以 T_n 取得最大值时,n为偶数,排除B,而

$$T_2 = (-24)^2 \times \left(\frac{1}{3}\right) = 24 \times 8 = 192$$
, $T_4 = (-24)^4 \left(\frac{1}{3}\right)^6 = 8^4 \times \frac{1}{9} = \frac{8^4}{9} > 192$,

$$T_6 = (-24)^6 \left(\frac{1}{3}\right)^{15} = 8^6 \times \left(\frac{1}{3}\right)^9 = \frac{8^6}{3^9} = \frac{1}{9} \times \frac{8^6}{3^7} < \frac{8^4}{9}$$
 , T_4 最大,选择 C.

2. 【答案】(1)
$$a_n = 3n - 1$$
, $b_n = 2^n$ $(n \in N^*)$. (2) $M_n = (3n - 4) \cdot 2^{n+1} + 8$

【解析】

$$a_2 \cdot a_3 = 40, \ S_4 = \frac{4(a_1 + a_4)}{2} = 26,$$

$$a_2 \cdot a_3 = 40, \ a_2 + a_3 = 13,$$

又公差为正数,故 $a_2 = 5$, $a_3 = 8$,公差d = 3,

$$a_n = 3n - 1,$$

$$_{\square}T_n = 2^{n+1} - 2 \ (n \in N^*)$$
 得

$$n = 1, b_1 = T_1 = 2$$

$$n \ge 2, n \in N^*$$
, $b_n = T_n - T_{n-1} = 2^{n+1} - 2 - (2^n - 2) = 2^n$

综上得 $b_n = 2^n \ (n \in N^*)$

(2)
$$\pm$$
 (1) $\pm a_n \cdot b_n = (3n-1) \cdot 2^n$

$$M_n = 2 \cdot 2 + 5 \cdot 2^2 + \dots + (3n - 1) \cdot 2^n$$

〖解法1〗(错位相减法)

$$2M_n = 2 \cdot 2^2 + 5 \cdot 2^3 + \dots + (3n-1) \cdot 2^{n+1}$$

(1)
$$-$$
 (2) $\not\in M_n = (3n-1) \cdot 2^{n+1} - 4 - 3(2^2 + 2^3 + \dots + 2^n)$

$$=(3n-4)\cdot 2^{n+1}+8$$

〖解法2〗(待定系数法)

$$M_n = (An + B) \cdot 2^n - B$$

$$_{\coprod}M_{1}=4, M_{2}=24$$
, $\{(A+B)\cdot 2-B=4\}$ (2A+B) $\cdot 2^{2}-B=24$ 解得 $A=6, B=-8$

$$M_n = (6n - 8) \cdot 2^n + 8$$

〖解法3〗(分合法)

$$M_n = 2 \cdot 2 + 5 \cdot 2^2 + \dots + (3n - 1) \cdot 2^n$$

$$= 4 + 2[5 \cdot 2^{1} + 8 \cdot 2^{2} \dots + (3n - 1) \cdot 2^{n - 1}]$$

$$= 4 + 2 \left[(3+2) \cdot 2^1 + (3+5) \cdot 2^2 \dots + (3+3n-4) \cdot 2^{n-1} \right]$$

$$= 4 + 2[2 \cdot 2^{1} + 5 \cdot 2^{2} \dots + (3n - 4) \cdot 2^{n - 1}] + 6[2^{1} + 2^{2} \dots + 2^{n - 1}]$$

$$M_n = 4 + 2[M_n - (3n - 1) \cdot 2^n] + 6\frac{2(1 - 2^{n-1})}{1 - 2}$$

化简得
$$M_n = (3n-4) \cdot 2^{n+1} + 8$$

结论十 多面体的外接球和内切球

【变式训练】

1.【答案】C

【解析】由题意,PA上面 ABC,则 $\triangle PAC$, $\triangle PAB$ 为直角三角形,PA=3, AB=4,所以 PB=5,又 $\triangle ABC$ 是直角三角形,所以 $\triangle ABC$ =90°, AB=4,AC=5 所以 BC=3, 因为 $\triangle PBC$ 为直角三角形,经分析只能 $\triangle PBC$ = 90°,故 $PC = \sqrt{PB^2 + BC^2} = \sqrt{25 + 9} = \sqrt{34}$,三棱锥 P - ABC 的外接球的圆心为 PC 的中点,所以 $2R = \sqrt{34}$ 则球 O 的表面积为 $4\pi R^2 = 34\pi$.

故选 C.

2. 【答案】
$$\frac{2+\sqrt{2}}{12}$$

【解析】圆锥的母线长为 $\sqrt{3+9}=2\sqrt{3}$, 设球 0 的半径为 r, 则 $\frac{r}{\sqrt{3}}=\frac{3-r}{2\sqrt{3}}$,

解得 r=1.

 \therefore OA \perp OB, OA=OB=1, \therefore AB= $\sqrt{2}$,

∵AC⊥BC, ∴C在以AB为直径的圆上,

∴平面 OAB⊥平面 ABC,

 \therefore 0 到平面 ABC 的距离为 $\frac{\sqrt{2}}{2}$,

故 V 到平面 ABC 的最大距离为 $\frac{\sqrt{2}}{2}$ +1.

又 C 到 AB 的最大距离为 $\frac{\sqrt{2}}{2}$,

∴三棱锥 V - ABC 的体积的最大值为
$$\frac{1}{3} \times \frac{1}{2} \times \sqrt{2} \times \left(\frac{\sqrt{2}}{2} + 1\right) = \frac{2 + \sqrt{2}}{12}$$
.

故答案为: $\frac{2+\sqrt{2}}{12}$.

结论十一 焦点三角形的面积公式

【变式训练】

1. 【答案】A

【解析】设
$$\angle F_1 P F_2 = \theta$$
,则 $\cos \theta = \frac{\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}}{|\overrightarrow{PF_1}| \cdot |\overrightarrow{PF_2}|} = \frac{1}{2}$, $\therefore \theta = 60^\circ$.

$$\therefore S_{\Delta F_1 P F_2} = b^2 \tan \frac{\theta}{2} = 9 \tan 30^\circ = 3\sqrt{3}.$$
 故选答案 A.

2. 【答案】A

【解析】: 设
$$\angle F_1 P F_2 = \theta$$
,则 $\theta = \frac{\pi}{3}$. $\therefore S_{\Delta F_1 P F_2} = b^2 \cot \frac{\theta}{2} = 16 \cot \frac{\pi}{6} = 16\sqrt{3}$.

故答案选 A.

结论十二 圆锥曲线的切线问题

【变式训练】

1. 【答案】A

【解析】如图, 圆心坐标为 C(1,0), 易知 A(1,1).

 $\nabla k_{ab} \cdot k_{ac} = 1, \quad k_{ac} = \frac{1-0}{3-1} = \frac{1}{2}, \quad k_{ac} = 2.$

故直线 AB 的方程为 y-1=-2(x-1),即 2x+y-3=0,故选 A.

2. 【答案】 x+2y-4=0

【解析】由于点 $P(1, \frac{3}{2})$ 在椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 上,故切线方程为 $\frac{x}{4} + \frac{\frac{3}{2}y}{3} = 1$,即 x+2y-4=0.

结论十三 圆锥曲线的中点弦问题

【变式训练】【答案】
$$\left[\frac{3}{8}, \frac{3}{4}\right]$$

【解析】 设
$$PA_2$$
 的斜率为 k_2 , PA_1 的斜率为 k_1 , 则 $k_1 \cdot k_2 = \frac{b^2}{a^2} = \frac{3}{4}$, 又 $k_2 \in [-2, -1]$, 所以 $k_1 \in \left[\frac{3}{8}, \frac{3}{4}\right]$.

2.

证明 设
$$P(x_0, y_0)$$
, 则 $A(-x_0, -y_0)$, $C(x_0, 0)$, $k_{AC} = \frac{0 + y_0}{x_0 - (-x_0)} = \frac{y_0}{2x_0}$, 又 $k_{PA} = \frac{y_0}{x_0} = k$, 所以 $k_{AC} = \frac{k}{2}$, 由 $k_{BA} \cdot k_{PB} = -\frac{b^2}{a^2}$ 知, $k_{PB} \cdot k_{BA} = k_{PB} \cdot k_{AC} = \frac{k}{2}$, 所以 $k_{AC} = \frac{k}{2}$, 所以 $k_{PB} \cdot k_{PB} = \frac{2}{4}$, $k_$

结论十四 圆锥曲线中的一类定值问题

【变式训练】【解析】设直线 AE 的方程为
$$y=k(x-1)+\frac{3}{2}$$
, 联立方程得
$$\begin{cases} y=k(x-1)+\frac{3}{2}, \\ \frac{x^2}{4}+\frac{y^2}{3}=1, \end{cases}$$

消去 y, 整理得
$$(4k^2+3) x^2+(12k-8k^2) x+4\left(\frac{3}{2}-k\right)^2-12=0$$
, 则 $x_E=\frac{4\left(\frac{3}{2}-k\right)^2-12}{(4k^2+3)x_A}=\frac{(3-2k)^2-12}{4k^2+3}$. ①

同理, 设直线 AF 的方程为 y=-k(x-1)+2, 学*/科+-/网

$$\underbrace{\frac{(3+2k)^2 - 12}{4k^2 + 3}}_{X_F} = \underbrace{\frac{(3+2k)^2 - 12}{4k^2 + 3}}_{.2} . 2$$

所以
$$k_{EF} = \frac{y_F - y_E}{x_F - x_E}$$

$$= \frac{-k(x_F - 1) + \frac{3}{2} - \left[k(x_E - 1) + \frac{3}{2}\right]}{x_F - x_E}$$

$$= \frac{-k(x_F + x_E) + 2k}{x_F - x_E},$$
 , 将①②代入上式, 化简得 $k_{FF} = 2$.

结论十五 圆锥曲线中的一类定点问题

【变式训练】 【解析】设 $A(x_1, y_1)$, $B(x_2, y_2)$, 联立方程得 $\begin{cases} \frac{x^2}{4} + \frac{y^2}{3} = 1, \\ y = kx + m, \end{cases}$ (4 $k^2 + 3$) $x^2 + 8kmx + 4m^2 - 12 = 0$,

则有
$$\triangle$$
=(8km)²-4(4k²+3)(4m²-12)>0。則 m²<4k²+3。
$$\begin{cases} x_1 + x_2 = \frac{-9km}{4k²+3}, \\ x_1 x_2 = \frac{4m²-12}{4k²+3}. \end{cases}$$

因为以 AB 为直径的圆过椭圆的右顶点(2,0),所以(x_1-2,y_1)·(x_2-2,y_2)=0,即 $x_1x_2-2(x_1+x_2)+4+y_1y_2=0$,

即 $x_1x_2-2(x_1+x_2)+4+(kx_1+m)(kx_2+m)=0$. 把式①代入化简得 $7m^2+16km+4k^2=0$, 得 m=-2k 或 $m=-\frac{2k}{7}$.

(1)当 m=-2k 时,直线 1:y=kx-2k 过右顶点(2,0),与题意不符,故舍去;

(2)当 $m=-\frac{2k}{7}$ 时,直线 $1:y=kx-\frac{2k}{7}$ 过定点 $\left(\frac{2}{7},0\right)$,且满足 $m^2<4k^2+3$,符合题意.所以 1:y=kx+m 过定点 $\left(\frac{2}{7},0\right)$.

结论十六 抛物线中的三类直线与圆相切问题

【变式训练】

1. 【答案】C

【解析】根据结论知道一 AB 为直径的圆和准线相切,该抛物线的准线为 x = -1 ,故这个圆和直线 $x = -\frac{3}{2}$

是相离的关系。学科%网

故答案为: C。

2. 【答案】2

【解析】如图所示,因为 $\vec{MA} \cdot \vec{MB}$ =0,所以 $MA \perp MB$,故点M在以AB为直径的圆上,又准线为x=-2,直线AB经过

焦点 F(2,0),所以有 $MF \perp AB$,又 $k_{MF} = -2 - 2 = -2$,所以 $k_{AB} = 2$.

