线性代数 中国科学技术大学 2023 春 线性空间

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

n 维数组空间, 线性相关性

空间
$$\xrightarrow{\text{ $\frac{4\pi\$}{1:1}$}} \mathbb{R}^3 \xrightarrow{\text{ $\frac{4\pi\$}{1:1}$}} \mathbb{F}^n = \mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F}.$$

定义

设 \mathbb{F} 为数域. 带线性运算的n维数组向量全体

$$\{(a_1,a_2,\cdots,a_n)\mid a_i\in\mathbb{F}\}$$

称为n维数组空间. 记为 \mathbb{F}^n .

线性组合(组合系数,线性表示)

定义(线性相关,线性无关)

一组向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 称为线性相关, 若存在一组不全为零的实数 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0.$$

反之,则称向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的线性无关.

子空间

给定空间中的m个向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$. 考虑这m个向量的全体线性组合

 $V := \langle \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m \rangle := \{ \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m \mid \lambda_1, \cdots, \lambda_m \in \mathbb{F} \}$

这是 № 的一个非空子集满足

- **①** 任取 $\vec{b}_1, \vec{b}_2 \in V$, 都有 $\vec{b}_1 + \vec{b}_2 \in V$;
- ② 任取 $\vec{b} \in V$ 以及 $\lambda \in \mathbb{F}$, 都有 $\lambda \vec{b} \in V$.

上面两条也等价于

⑤ 任取 $\vec{b}_1, \dots, \vec{b}_\ell \in V$ 以及 μ_1, \dots, μ_ℓ , 都有 $\mu_1 \vec{b}_1 + \dots + \mu_\ell \vec{b}_\ell \in V$.

定义

设 V 为 \mathbb{F}^n 的一个非空子集. 若 V 满足上述前两条或第三条, 则称 V 为 \mathbb{F}^n 的子空间.

子空间可看成是三维空间中过原点的线和平面在高维时的推广.

子空间的例子

例 (平凡子空间)

 $V = \{0\} \notin V = \mathbb{F}^n$.

例(生成子空间)

 $\langle \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m \rangle$ 由 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 生成的子空间.

特别地,给定一个阶矩阵 $A \in \mathbb{F}^{m \times n}$,则其所有列向量可生成 \mathbb{F}^m 的一个子空间,其所有行向量可生成 \mathbb{F}^n 的一个子空间。

例 (用子空间的观点来理解线性方程组)

设 $A = (\vec{a}_1, \cdots, \vec{a}_m)$. 则 $Ax = \vec{b}$ 有解当且仅当 $\vec{b} \in \langle \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m \rangle$.

例 (齐次线性方程组的解空间)

n个变元的齐次线性方程组的解空间为 \mathbb{P}^n 的一个子空间.

与线性映射相关的子空间

例 (线性映射的像 (image))

设 $A: \mathbb{F}^n \to \mathbb{F}^m$ 为一个线性映射. 则

$$\operatorname{im}(\mathcal{A}) := \{ \mathcal{A}(\vec{x}) \mid \vec{x} \in \mathbb{F}^n \} \subseteq \mathbb{F}^m$$

为 \mathbb{F}^m 的一个子空间。称为线性映射 A 的像.

例 (线性映射的核 (kernel))

设 $A: \mathbb{F}^n \to \mathbb{F}^m$ 为一个线性映射 则

$$\ker(\mathcal{A}) := \{ \vec{x} \in \mathbb{F}^n \mid \mathcal{A}(\vec{x}) = 0 \} \subseteq \mathbb{F}^n$$

为 \mathbb{P}^n 的一个子空间。称为线性映射 A 的核.

线性相关等价刻画

给定一组 (列) 向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$. 则以下几条相互等价:

- ① $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 线性相关;
- ② 存在 $i \in \{1, \dots, m\}$ 以及 $\lambda_1 \dots \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_m \in \mathbb{F}$ 使得

$$\vec{a}_i = \lambda_1 \vec{a}_1 + \dots + \lambda_{i-1} \vec{a}_{i-1} + \lambda_{i+1} \vec{a}_{i+1} + \dots + \lambda_m \vec{a}_m;$$

③ 存在 $i \in \{1, \dots, m\}$ 使得

$$\vec{a}_i \in \langle \vec{a}_1, \cdots, \vec{a}_{i-1}, \vec{a}_{i+1}, \cdots, \vec{a}_m \rangle;$$

④ 存在 $i \in \{1, \dots, m\}$ 使得

$$\langle \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m \rangle = \langle \vec{a}_1, \cdots, \vec{a}_{i-1}, \vec{a}_{i+1}, \cdots, \vec{a}_m \rangle;$$

- **⑤** 线性方程组 AX = 0 有非零解, 其中 $A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m)$;
- ② $\det(A) = 0$ (当 m = n 时).

线性无关等价刻画

给定一组 (列) 向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$. 则以下几条相互等价:

- ① $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性无关:
- ② 任取 $i \in \{1, \dots, m\}$ 以及 $\lambda_1 \dots \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_m \in \mathbb{F}$,

$$\vec{a}_i \neq \lambda_1 \vec{a}_1 + \dots + \lambda_{i-1} \vec{a}_{i-1} + \lambda_{i+1} \vec{a}_{i+1} + \dots + \lambda_m \vec{a}_m;$$

③ 任意 $i \in \{1, \dots, m\}$,

$$\vec{a}_i \notin \langle \vec{a}_1, \cdots, \vec{a}_{i-1}, \vec{a}_{i+1}, \cdots, \vec{a}_m \rangle;$$

④ 任意 $i \in \{1, \dots, m\}$,

$$\langle \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m \rangle \neq \langle \vec{a}_1, \cdots, \vec{a}_{i-1}, \vec{a}_{i+1}, \cdots, \vec{a}_m \rangle;$$

- **⑤** 线性方程组 AX = 0 无非平凡解, 其中 $A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m)$;
- \bigcirc det(A) \neq 0 (当 m=n 时).

例子

例

包含零向量的任意向量组线性相关.

例

设 S_1, S 为 \mathbb{F}^n 为两个有限子集满足 $S_1 \subset S$. 则

- **①** S_1 线性相关 ⇒ S 线性相关;
- ② S 线性无关 \Rightarrow S_1 线性无关;

例 (判定下列向量组的线性相关性)

- ① $\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_n$ 单位坐标向量.
- $\vec{a}_1 = (1,0,0,\cdots,0)^T, \vec{a}_2 = (1,1,0,\cdots,0)^T,\cdots,$ $\vec{a}_n = (1, 1, 1, \cdots, 1)^T$.
- **3** $\vec{a}_1 + \vec{a}_2, \vec{a}_2 + \vec{a}_3, \vec{a}_3 + \vec{a}_1, \text{ 其中 } \vec{a}_1, \vec{a}_2, \vec{a}_3 \text{ 线性无关.}$
- $\vec{a}_1 = (3, 4, -2, 5)^T, \vec{a}_2 = (2, -5, 0, -3)^T, \vec{a}_3 = (5, 0, -1, 2)^T,$ $\vec{a}_4 = (3, 3, -3, 5)^T$.

线性映射与线性相关性

性质

任意给定一个线性映射 $\mathcal{A}\colon \mathbb{F}^n \to \mathbb{F}^m$. 设 $\vec{b}_1, \vec{b}_2 \cdots, \vec{b}_m \in \mathbb{F}^n$, 并记 $\vec{a}_i = \mathcal{A}(\vec{b}_i)$. 则

- $\mathbf{0}$ $\vec{a}_1, \vec{a}_2 \cdots, \vec{a}_m$ 线性无关 $\Rightarrow \vec{b}_1, \vec{b}_2 \cdots, \vec{b}_m$ 线性无关;
- ② $\vec{b}_1, \vec{b}_2 \cdots, \vec{b}_m$ 线性相关 $\Rightarrow \vec{a}_1, \vec{a}_2 \cdots, \vec{a}_m$ 线性相关;

例 (投影)

给定 $m \wedge r$ 维数组向量 $\vec{a}_i = (a_{i1}, \cdots, a_{ir}) \in \mathbb{F}^r$ $(i = 1, \cdots, m)$. 将 每个向量都扩充为一个 n 维向量

- $\vec{b}_i=(a_{i1},\cdots,a_{ir},a_{ir+1},\cdots,a_{in})\in\mathbb{F}^n$. 则
 - $\bullet \vec{a}_1, \vec{a}_2 \cdots, \vec{a}_m \ \text{\texttt{\texttt{\S}}} \ \text{\texttt{\texttt{L}}} \ \text{\texttt{\texttt{L}}} \ \text{\texttt{\texttt{L}}} \ \text{\texttt{\texttt{L}}} \ \vec{b}_1, \vec{b}_2 \cdots, \vec{b}_m \ \text{\texttt{\texttt{L}}} \ \text{\texttt{\texttt{L}}} \ \text{\texttt{\texttt{L}}};$
 - ② $\vec{b}_1, \vec{b}_2 \cdots, \vec{b}_m$ 线性相关 $\Rightarrow \vec{a}_1, \vec{a}_2 \cdots, \vec{a}_m$ 线性相关;

极大无关组

定义(极大无关组)

设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 为一组向量. 若子向量组 $\vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_r}$ 线性无关,且任加另一个向量 $\vec{a}_{i_{r+1}}$ 后,向量组 $\vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_{r+1}}$ 线性相关,则称 $\vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_r}$ 为 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的极大无关组.

性质 (通过生成子空间来判定极大无关组)

给定向量组 \vec{a}_1 , \vec{a}_2 , \cdots , \vec{a}_m 的一个子向量组 \vec{a}_{i_1} , \vec{a}_{i_2} , \cdots , \vec{a}_{i_r} . 则 \vec{a}_{i_1} , \vec{a}_{i_2} , \cdots , \vec{a}_i , 为 \vec{a}_1 , \vec{a}_2 , \cdots , \vec{a}_m 的极大无关组当且仅当

- $\vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_r}$ 线性无关, 且
- $\bullet \ \langle \vec{a}_{i_1}, \vec{a}_{i_2}, \cdots, \vec{a}_{i_r} \rangle = \langle \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m \rangle.$