斗鱼直播实时风控引擎快速对抗探索实践

演讲人-李瑞-斗鱼直播-风控负责人

目录 CONTENT

01 直播行业的黑产问题

03 文本识别对抗实践

02 全栈式风控引擎的建设

04 思考与展望

01 直播行业的黑产问题

直播行业常见的黑灰产问题

日榜 問榜

♦ 看直播▶

距离前一名还差5贡献值

业务安全的痛点

木桶效应

如果不掌握所有的用户行为入口和数据,总会出现防范的短板,无法识别出黑产账号,也无法有效支撑业务安全。

性能要求高

- 对接业务众多, 吞吐量巨大, RT不能影响业务
- 实时计算时效性要求高

用户体验差

- 用户被风控后缺少反馈途径的引导。
- 投诉反馈排查效率低、耗费风控人员精力

防御时效性差

- 风险感知能力不全面,风控迭代慢
- 实时性策略较少,依赖离线挖掘周期长。

业务对接成本高

不同类型的业务需要独立的风控名单/接口服务,相应的风控策略也不同,每个业务的策略服务如果单独开发效率低,并且配置凌乱难以管理。

02

全栈式风控引擎的建设

全栈式风控引擎架构

全栈式风控引擎降低对接成本

业务收拢

强运营强宣发,推动业务对接,解决木桶效应。

业务方注册

低成本一站式接入

业务注册调用后,就可以获得全面的风险管控、监控告警、反馈排查等配套服务支持。

监控、调优

全栈式风控引擎降低对接成本

智能风控:风控引擎与机器学习平台打通

智能风控: 提升对抗效率

・提升效率: 减少了 监控>排查>策略上线 人力与时间

・减少监控噪音,提升监控准确性

高吞吐设计-行为指标实时计算

Hyperloglog

: user.level<10 && user最近n分钟观看房间数==0 && user近m小时订单金额≥1000的扫码ip去重数≥3

任意维度count distinct

Yes

不可控

Yes

Yes

高吞吐设计-行为指标实时计算

多流滑动窗口

select concat(hop_start, 订单.uid) as key, count(distinct 扫码.ip)
from 订单 join 扫码 on 订单.orderId=扫码.orderId AND 订单.dateline between 扫码.dateline - 60秒 AND 扫码.dateline
where 订单.金额 >= 1000 group by HOP(订单.dateline, INTERVAL 1 MINUTE, INTERVAL N MINUTE)

高吞吐设计-规则引擎选型

引擎选型预研

执行策略	groovy	groovy (@CompileStatic)	aviator	Drools7	java
dubbo (10000次)	12519	/	12638	13214	11670
dubbo (100000次)	111390	/	113666	114066	105755
dubbo (1000000次)	1086102	/	1101762	1188882	1052743
逻辑运算 (1000000次)	739	345	2895	2270	321
逻辑运算 (10000000次)	6771	3238	23377	22695	2469
递归(O(2^n))(n=40)	18718	7061	/	7298	6626

- 源代码性能最好
- 规则检错机制友好
- 迁移成本低

高吞吐设计-预装载缓存优化

请求量: 日均2.5E

平均耗时: 5ms ->1.5ms

缓存命中率: 32%->87%

高吞吐设计-风险标签存储优化

古早时期,每种异常行为一个set, 也有使用Hbase、Mysql等DB, 空间 浪费、管理混乱、慢查询较多 统一使用Redis管理,每种异常标签 一个bitmap,缩短查询耗时、减少 存储空间,但读取多种标签,就会产 生多次IO

- 一个用户开辟一个bitmap, 一把读出所有风险标签
- 所有用户存放在多段bitmap中,分桶存储,进一步节省key开销

一个用户占位256bit

平均耗时: 20ms ->6ms

内存使用: 250G->30G

提升用户体验

策略优化闭环

持续优化风控策略模型, 推导策 略实际准确率,分析命中规则误 杀情况

客诉量监控

实时监控客诉量,将客诉量 维持在较低的水平

系统自动解决客诉

0

根据命中策略风险程度、团伙规 模等自动判定是否解除限制

友好的风控引导提示

- 明确用户行为受限原因
- 提示违规行为的影响
- 提供申诉入口

用户自助申诉

• 用户自主申诉替代人工客 服,节约人力提升效率

03 文本识别对抗实践

文本识别挑战

1. 广告变体

- 谐音变体、象形变体、拆字变体
- 联系方式字母数字变体字符
- 联系方式符号间隔
- 拼音混合
- 表情符号代替文字

2. 低俗辱骂变体

- 谐音变体、象形变体、拆字变体
- 拼音缩写
- 拼音同与同音词混合
- 表情符号代指

主播簧薇 ET28六八

加 薇 信 ②⑥〇②⑨〇⑦③〇7

本人私房【大chi 度】激晴自拍视频!

想看加**徽 (言** baby 1+3+7+8+7+0+2+0+1+8+0

点我头像 让你爽

p研

拉链夹到疍

zao屎zao, 超生

一拳大事你♥

司马

没母

你顶的我好爽

文本识别服务架构

服务层 事前拦截 事中/事后人审 错检/漏检监控 误杀降级兜底 内容回溯平台 规则识别 敏感词匹配 预处理 ML/DL模型 字母数字 标点符号 表情符号 正则匹配 硬词匹配 char2vec+textcnn 谐音匹配 占比 word2vec+textcnn 算法策略 Wide&Deep 特殊符号 自动提炼 异形字 文本 拼音特征 模糊匹配 Bayes 关键词 映射 占比 相似度 模型管理 语料标注 模型自动训练 准召率评估 样本管理 模型版本管理 数据层 弹幕 昵称 帖子 频道聊天 私信 标题 签名

自研敏感词匹配算法

挑战

- 敏感词通配符?*通配逻辑实现
- · 通配长度↑误杀率↑风险↓,通配长度↓误杀率↓<mark>风险↑</mark>,最大通配长度需在各个场景、时期、用户上分别配置
- 数十万敏感词,调用量大,直接影响C端用户体验,耗时敏感

技术选型

算法 维度	字符串Contains	普通正则引擎	Hyperscan多模正则	AC算法
时间复杂度	O(m×n)	O(m×n)	O(m+n)	O(n)
空间复杂度	O(m)	O(m)	O(m)	O(m)
初始化耗时	低	高	高	低
增量添加删除	\checkmark	×	×	\checkmark
通配支持	×	\checkmark	\checkmark	×

自研敏感词算法

基于NFA的通配敏感词匹配算法

敏感词自动发现

变体字符字典(约3k)

a2 j, 都俛的

a2 j, 都俛的

后缀树输入["abc" , "abd"] 得到公共子串: a、b、ab

异形字公共子串

联系方式公共子串

[a2jcc都俛的, a2jcc] [2jcc都俛的, jcc都俛的, cc都俛的] [6210382, 210382]

a2jcc jcc都俛的 6210382

长度大于5、重复3次及以上

04 思考与展望

思考与展望

1. 自动分析目前还处于半自动挖掘

虽然自动化分析可以给出初步的风险策略建议,但还不够成熟,存在特征重复、阈值 不合理、召回率较低等问题,需要持续迭代优化

2. 拥抱向量检索

- 文本相似检索
- 违规行为匹配

3. 大模型应用

- 大模型识别文本变体的能力显著
- 当前特征标签本身还是人工维护创建的,受限于人员的思路宽度,存在无法召回的情况,是否可以借用大模型自动化构建特征标签和策略?

