

REAL PRODUCTS

Why

We want to multiply real numbers.¹

Definition

The real product of two real numbers R and S is defined

- 1. if R or S is $\{q \in \mathbf{Q} \mid q < 0_{\mathbf{Q}}\}$, then the $\{q \in \mathbf{Q} \mid q < 0_{\mathbf{Q}}\}$
- 2. otherwise,
 - (a) if R or S is $0_{\mathbb{R}}$, then $0_{\mathbb{R}}$.
 - (b) if $R, S \neq 0_{\mathbf{R}}$ and $0_{\mathbf{R}} \in R, S$, let T be

$$\{t \in \mathbf{Q} \mid r \in R, s \in S, r, s \ge 0_{\mathbf{Q}}, t = r \cdot s\}$$

then
$$T \cup \{q \in \mathbf{Q} \mid q \le 0_{\mathbf{Q}}\}^2$$

- (c) If $R, S \neq 0_R$, $0_R \in R$ and $0_R \notin S$, then the additive inverse of the product of -R with S.
- (d) If $R, S \neq 0_{\mathbb{R}}$, $0_{\mathbb{R}} \notin R$ and $0_{\mathbb{R}} \in S$, then the additive inverse of the product of R with -S.
- (e) If $R, S \neq 0_{\mathbf{R}}$, and $0_{\mathbf{R}} \notin R, S$, then the product of -R with -S.

Notation

We denote the product of two real numbers x and y by $x \cdot y$.

Properties

Proposition 1 (Associative). x + (y + z) = (x + y) + z

Proposition 2 (Commutative). x + y = y + x

Proposition 3 (Identity). The set of all rationals less than $1_{\mathbf{Q}}$ is the multiplicative identity.

¹Future editions will expand.

²We use \geq in the usual way, it will be defined earlier in future editions.

We denote the the multiplicative identity by $1_{\sf R}.$ When it is clear from context, we call $1_{\sf R}$ "one".

