Práctica 10 - Programación con Restricciones - Jacop

Preparación:

- 1.- Bajarse el archivo 'practica10,zip' y descomprimirlo
- 2.- También bajarse y copiar en c:\hlocal jacop-4.6.jar
- 3.- Desde Eclipse importar la carpeta practica10 como proyecto existente

Enunciado:

Vamos a representar un grafo mediante sus aristas. Cada arista viene representada por el su vértice origen y su vértice fin.

- 1. [0.5] Declarar el almacén (Store) como variable estática.
- 2. [0.5] Declarar dos arrays static de variables enteras Jacop (IntVar) ini y fin, ambos de tamaño numAristas. Contendrán el principio y el fin de cada arista
- 3. Inicializar ambos arrays. Cara variable (IntVar) contendrá un valor entre 1 y numAristas y tendrá como nombre "ini0, ini1," (para el caso de las variables en el array ini) o "fin0, fin1,". La solución será como:

 Ini0=1, ini1=1, ini2=1, ini3=1, ini4=1, fin0=1, fin1=1, fin2=1, fin3=1, fin4=1]
- 4. Ahora añadir restricciones para asegurar que no hay bucles, es decir que para todo i ini[i]!=fin[i]
- 5. Ahora usar alguna constraint global para asegurar que ini contiene valores distintos. Hacer lo mismo con fin. Una posible salida:

```
[ini0=1, ini1=2, ini2=3, ini3=4, ini4=5, fin0=2, fin1=5, fin2=1, fin3=3, fin4=4]
```

6. Añadir restricciones para que en fin los valores queden ordenados de forma decreciente. Una posible salida.

```
[ini0=1, ini1=2, ini2=4, ini3=3, ini4=5, fin0=5, fin1=4, fin2=3, fin3=2, fin4=1]
```

Primitive Constraint	JaCoP specification
X = Const	XeqC(X, Const)
X = Y	XeqY(X, Y)
$X \neq Const$	<pre>XneqC(X, Const)</pre>
$X \neq Y$	XneqY(X, Y)
X > Const	XgtC(X, Const)
X > Y	XgtY(X, Y)
$X \ge Const$	XgteqC(X, Const)
$X \ge Y$	XgteqY(X, Y)
X < Const	XltC(X, Const)
X < Y	XltY(X, Y)
$X \leq Const$	<pre>XlteqC(X, Const)</pre>
$X \leq Y$	XlteqY(X, Y)
$X \cdot Const = Z$	XmulCeqZ(X, Const, Z)
X + Const = Z	XplusCeqZ(X, Const, Z)
X + Y = Z	XplusYeqZ(X, Y, Z)
X + Y + Const = Z	XplusYplusCeqZ(X, Y, Const, Z)
X + Y + Q = Z	XplusYplusQeqZ(X, Y, Q, Z)
$X + Const \leq Z$	XplusClteqZ(X, Const, Z)
$X + Y \le Z$	XplusYlteqZ(X, Y, Z)
X + Y > Const	<pre>XplusYgtC(X, Y, Const)</pre>
X + Y + Q > Const	XplusYplusQgtC(X, Y, Q, Const)
X = Y	AbsXeqY(X, Y)
Non-primitive Constrain	t JaCoP specification
$X \cdot Y = Z$	XmulYeqZ(X, Y, Z)
$X \div Y = Z$	XdivYeqZ(X, Y, Z)
$X \mod Y = Z$	XmodYeqZ(X, Y, Z)
$X^Y = Z$	XexpYeqZ(X, Y, Z)