

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A .

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ME FILE CUPY

HEADQUARTERS
OGDEN AIR LOGISTICS CENTER
UNITED STATES AIR FORCE
HILL AIR FORCE BASE, UTAH 84056

PROPELLANT
SURVEILLANCE REPORT
ANB-3066 PROPELLANT

PROPELLANT ANALYSIS LABORATORY

MANPA REPORT NR 473(82)

AUGUST 1982

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

32 10 13 293

PROPELLANT SURVEILLANCE REPORT

ANB-3066 PROPELLANT

Author

ELIZABETH M. DALABA, Chemist Component & Combustion Test Unit

Engineering & Statistical Review By

GLENN S. PORTER, Project Engineer Engineering & Reliability Branch

DAN L. PETERSEN, Mathematician Data Analysis Unit

Recommended Approval By

LEONIDAS A. BROWN, Chief Component & Combustion Test Unit

Approved By

Dan L. Petersen for a.J. Inverso

ANTHONY J. INVERSO, Chief Propellant Analysis Laboratory

August 1982

Directorate of Maintenance Ogden Air Logistics Center United States Air Force Hill Air Force Base, Utah 84056

ABSTRACT

This report contains test results from LGM-30 F and G, Stage II and Stage III propellant. Data are shown in regression plots, special types of plots such as those of gradient stress relaxation and constant load testing. Occasionally, data are presented in tabular form.

The differences between polymers used in the propellant are given in the analysis of covariance tables. Graphically, the differences are most evident in gradient stress relaxation modulus.

TABLE OF CONTENTS

Section		Page
	Abstract	ii
	List of Tables	iv
	List of Charts	v
	List of Figures	vi
	References	xiii
	Glossary of Terms and Abbreviations	xv
I	Introduction	1-1
II	Test Program	2-1
III	Statistical Analysis	3-1
IV	Very Low Rate/Low Rate Tensile	4-1
V	High Rate Tensile	5-1
VI	Stress Relaxation and Strain Dilatation	6-1
VII	Thermal Coefficient of Linear Expansion	7-1
VIII	Case Liner Bonds	8-1
IX	Hardness	9-1
	Distribution List	10-1
	DD 1473	10-2

LIST OF TABLES

Table Nr		Page
4-1	Very Low Rate Tensile, Significance of Regression Slopes	4-2
4-2	Low Rate Tensile, Significance of Regression Slopes	4-2
4-3	Very Low Rate Tensile, Analysis of Covariance Comparison of Regressions	4-3
4-4	Low Rate Tensile, Analysis of Covariance Comparison of Regressions	4-25
5~1	High Rate Triaxial, Significance of Regression Slopes	5-2
5-2	High Rate Hydrostatic, Significance of Regression Slopes	5-2
5-3	High Rate Triaxial, Analysis of Covariance Comparison of Regressions	5-3
5-4	High Rate Hydrostatic, Analysis of Covariance Comparison of Regressions	5-19
6-1	Stress Relaxation, Significance of Regression Slopes	6-3
6-2	Strain Dilatation, Significance of Regression Slopes	6-3
6-3	Stress Relaxation, Analysis of Covariance Comparison of Regressions	6-4
6-4	Strain Dilatation, Analysis of Covariance Comparison of Regressions	6-36
7-1	TCLE, Significance of Regression Slopes	7-2
7-2	TCLE, Analysis of Covariance Comparison of Regressions	7-3
8-1	Stage II Constant Load Shear Regression Data, G Polymer	8-2
8-2	Stage II Constant Load Shear Regression Data, P Polymer	8-3
8-3	Stage II Constant Load Tensile Regression Data, G Polymer	8-5
8-4	Stage II Constant Load Tensile Regression Data, P Polymer	8-6
8-5	Stage III Constant Load Shear Regression Data, P Polymer	8-8
8-6	Stage III Constant Load Tensile Regression Data, P Polymer	8-11
8-7	Constant Load Shear and Tensile Multiple Regression Data	8-22
8-8	Additional Stage II Liner Bond Test Data	8-29
8-9	Additional Stage III Liner Bond Test Data	8-30

LIST OF TABLES (cont)

Table Nr		Page
8-10	Regression Analysis for Other Parameters	8-31
8-11	Analysis of Covariance Results	8-32
9-1	Hardness, Significance of Regression Slopes	9-2
9-2	Hardness, Analysis of Covariance Comparison of Regressions	9-3

LIST OF CHARTS

Chart Nr		Page
1	5% Casebond Failure During Transportation and Handling	8-23
2	5% Casebond Failure During Booster Flight	8-24
3	5% Casebond Failure During Storage	8-25
4	50% Casebond Failure During Transportation and Handling	8-26
5	50% Casebond Failure During Booster Flight	8-27
6	50% Casebond Failure During Storage	8-28

٧

LIST OF FIGURES

Figure Nr	•		Page
	Data Plots,	Very Low Rate Tensile	
4-1	ANB 'G'	Maximum Stress, Unlined Cartons	4-4
4-2	ANB 'G'	Strain at Rupture, Unlined Cartons	4-5
4-3	ANB 'G'	Modulus, Unlined Cartons	4-6
4-4	ANB 'P'	Maximum Stress, Unlined Cartons	4-7
4-5	ANB 'P'	Strain at Rupture, Unlined Cartons	4-8
4-6	ANB 'P'	Modulus, Unlined Cartons	4-9
4-7	ANT 'P'	Maximum Stress, Unlined Cartons	4-10
4-8	ANT 'P'	Strain at Rupture, Unlined Cartons	4-11
4-9	ANT 'P'	Modulus, Unlined Cartons	4-12
4-10	ANB 'G'	Maximum Stress, Lined Cartons	4-13
4-11	ANB 'G'	Strain at Rupture, Lined Cartons	4-14
4-12	ANB 'G'	Modulus, Lined Cartons	4-15
4-13	ANB 'P'	Maximum Stress, Lined Cartons	4-16
4-14	ANB 'P'	Strain at Rupture, Lined Cartons	4-17
4-15	ANB 'P'	Modulus, Lined Cartons	4-18
4-16	ANT 'P'	Maximum Stress, Lined Cartons	4-19
4-17	ANT 'P'	Strain at Rupture, Lined Cartons	4-20
4-18	ANT 'P'	Modulus, Lined Cartons	4-21
4-19	ANB 'G'	& 'P' Maximum Stress, Lined Cartons	4-22
4-20	ANB 'G'	& 'P' Strain at Rupture, Lined Cartons	4-23
4-21	ANB 'G'	& 'P' Modulus, Lined Cartons	4-24
	Data Plots,	Low Rate Tensile	
4-22	ANB 'G'	Maximum Stress, Unlined Cartons	4-26
4-23	ANB 'G'	Strain at Rupture, Unlined Cartons	4-27
4-24	ANB 'G'	Modulus, Unlined Cartons	4-28

Figure Nr		Page
4-25	ANB 'P' Maximum Stress, Unlined Cartons	4-29
4-26	ANB 'P' Strain at Rupture, Unlined Cartons	4-30
4-27	ANB 'P' Modulus, Unlined Cartons	4-31
4-28	ANT 'P' Maximum Stress, Unlined Cartons	4-32
4-29	ANT 'P' Strain at Rupture, Unlined Cartons	4-33
4-30	ANT 'P' Modulus, Unlined Cartons	4-34
4-31	ANB 'G' Maximum Stress, Lined Cartons	4-35
4-32	ANB 'G" Strain at Rupture, Lined Cartons	4-36
4-33	ANB 'G' Modulus, Lined Cartons	4-37
4-34	ANB 'P' Maximum Stress, Lined Cartons	4-38
4-35	ANB 'P' Strain at Rupture, Lined Cartons	4-39
4-36	ANB 'P' Modulus, Lined Cartons	4-40
4-37	ANT 'P' Maximum Stress, Lined Cartons	4-41
4-38	ANT 'P' Strain at Rupture, Lined Cartons	4-42
4-39	ANT 'P' Modulus, Lined Cartons	4-43
	Data Plots, High Rate Triaxial Tensile	
5-1	ANB 'G' Maximum Stress, Unlined Cartons	5-4
5-2	ANB 'G; Strain at Rupture, Unlined Cartons	5-5
5-3	ANB 'G' Modulud, Unlined Cartons	5-6
5-4	ANB 'P' Maximum Stress, Unlined Cartons	5-7
5-5	ANB 'P' Strain at Rupture, Unlined Cartons	5-8
5-6	ANB 'P' Modulus, Unlined Cartons	5-9
5-7	ANT Maximum Stress, Unlined Cartons	5-10
5-8	ANT Strain at Rupture, Unlined Cartons	5-11
5-9	ANT Modulus, Unlined Cartons	5-12
5-10	ANB 'G' Maximum Stress, Lined Cartons	5-13

Figure Nr		Page
5-11	ANB 'G' Strain at Rupture, Lined Cartons	5-14
5-12	ANB 'G' Modulus, Lined Cartons	5-15
5-13	ANT 'P' Maximum Stress, Lined Cartons	5-16
5-14	ANT 'P' Strain at Rupture, Lined Cartons	5-17
5-15	ANT 'P' Modulus, Lined Cartons	5-18
	ata Plots, High Rate Hydrostatic Tensile, 600 psi	
5-16	ANB 'G' Maximum Stress, Unlined Cartons	5-20
5-17	ANB 'G' Strain at Rupture, Unlined Cartons	5-21
5-18	ANB 'G' Modulus, Unlined Cartons	5-22
5-19	ANB 'P' Maximum Stress, Unlined Cartons	5-23
5-20	ANB 'P' Strain at Rupture, Unlined Cartons	5-24
5-21	ANB 'P' Modulus, Unlined Cartons	5-25
5-22	ANT Maximum Stress, Unlined Cartons	5-26
5-23	ANT Strain at Rupture, Unlined Cartons	5-27
5-24	ANT Modulus, Lined Cartons	5 - 28
5-25	ANB 'G' Maximum Stress, Lined Cartons	5-29
5–26	ANB 'G' Strain at Rupture, Lined Cartons	5-30
5-27	ANB 'G' Modulus, Lined Cartons	5-31
5-28	ANB 'P' Maximum Stress, Lined Cartons	5-32
5-29	ANT 'P' Strain at Rupture, Lined Cartons	5~33
5-30	ANB 'P' Modulus, Lined Cartons	5-34
5-31	ANT 'P' Maximum Stress, Lined Cartons	5-35
5-32	ANT 'P' Strain at Rupture, Lined Cartons	5-36
5-33	ANT 'P' Modulus, Lined Cartons	5-37
5-34	ANB 'G' & 'P' Strain at Rupture, Lined Cartons	5-38

Figure 1	<u>Nr</u>	Page
5-35	ANB 'P' & ANT 'P' Strain at Rupture, Lined Cartons	5-39
5-36	ANB 'G' & ANT 'P' Strain at Rupture, Lined Cartons	5-40
	Data Plots, Stress Relaxation Modulus (Polymer)	
6-1	ANB 'G' Unlined Cartons, 10 sec, 1% Strain	6 - 5
6-2	ANB 'G' Unlined Cartons, 1000 sec, 1% Strain	6-6
6-3	ANB 'P' Unlined Cartons, 10 sec, 1% Strain	6-7
6-4	ANB 'P' Unlined Cartons, 1000 sec, 1% Strain	6-8
6-5	ANT 'P' Unlined Cartons, 10 sec, 1% Strain	6-9
6-6	ANT 'P' Unlined Cartons, 1000 sec, 1% Strain	6-10
6-7	ANB 'G' Lined Cartons, 10 sec, 1% Strain	6-11
6-8	ANB 'G' Lined Cartons, 1000 sec, 1% Strain	6-12
6-9	ANB 'P' Lined Cartons, 10 sec, 1% Strain	6-13
6-10	ANB 'P' Lined Cartons, 1000 sec, 1% Strain	6-14
6-11	ANT 'P' Lined Cartons, 10 sec, 1% Strain	6-15
6-12	ANT 'P' Lined Cartons, 1000 sec, 1% Strain	6-16
6-13	ANB 'G' Unlined Cartons, 10 sec, 3% Strain	6-17
6-14	ANB 'G' Unlined Cartons, 1000 sec, 3% Strain	6-18
6-15	ANB 'P' Unlined Cartons, 10 sec, 3% Strain	6-19
6-16	ANB 'P' Unlined Cartons, 1000 sec, 3% Strain	6-20
6-17	ANT 'P' Unlined Cartons, 10 sec, 3% Strain	6-21
6-18	ANT 'P' Unlined Cartons, 1000 sec, 3% Strain	6-22
6-19	ANB 'G' Unlined Cartons, 10 sec, 3% Strain	6-23
6-20	ANB 'G' Unlined Cartons, 1000 sec, 3% Strain	6-24
6-21	ANB 'P' Lined Cartons, 10 sec, 3% Strain	6-25
6-22	ANB 'P' Lined Cartons, 1000 sec, 3% Strain	6-26
6-23	ANT 'P' Lined Cartons, 10 sec, 3% Strain	6-27

Figure Nr		Page
6-24	ANT 'P' Lined Cartons, 1000 sec, 3% Strain	6-28
6-25	ANB 'G' & ANT 'P' Unlined Cartons, 1000 sec, 1% Strain	6-29
6-26	ANB 'P' & ANB 'G' Gradient Stress Relaxation, 3% Strain, 6 sec	6-30
6-27	ANB 'P'& ANB 'G' Gradient Stress Relaxation, 3% Strain, 60 sec	6-31
6-28	ANB 'P' & ANB 'G' Gradient Stress Relaxation, 3% Strain, 100 sec	6-32
6–29	ANB 'I' & ANT 'P' Gradient Stress Relaxation, 3% Strain, 6 sec	6 33
6-30	ANB 'P' & ANT 'P' Gradient Stress Relaxation 3% Strain, 60 sec	;
6-31	ANB 'P' & ANT 'P' Gradient Stress Relaxation 3% Strain, 100 sec	
Da	ata Plots, Strain Dilatation, Poisson's Ratio	
6-32	ANB 'G' Unlined Cartons, 15% Strain	6-37
6-33	ANB 'P' Unlined Cartons, 15% Strain	6-38
6-34	ANT Unlined Cartons, 15% Strain	6-39
6-35	ANB 'G' Lined Cartons, 15% Strain	6-40
6-36	ANB 'P' Lined Cartons, 15% Strain	6-41
6-37	ANT Lined Cartons, 15% Strain -	6-42
6-38	ANB 'G' Unlined Cartons, Maximum Strain	6-43
6-39	ANB 'P' Unlined Cartons, Maximum Strain	6-44
6-40	ANT Unlined Cartons, Maximum Strain	6-45
6-41	ANB 'G' Lined Cartons, Maximum Strain	6-46
6-42	ANB 'P' Lined Cartons, Maximum Strain	6-47
6-43	ANT Lined Cartons, Maximum Strain	6-48
6-44	AND 'G' Unlined Cartons, Maximum Strain	6-49
6-45	ANB 'G' Unlined Cartons, Maximum Strain	6-50

Figure Nr		Page
6-46	ANT Unlined Cartons, Maximum Strain	6-51
6-47	ANB 'G' Unlined Cartons, Maximum Strain	6-52
6-48	ANB 'P' Lined Cartons, Maximum Strain	6-53
6-49	ANT Lined Cartons, Maximum Strain	6-54
	Data Plots, Thermal Coefficient of Linear Expansion (TCLE)	
7~1	ANB 'G' Glass Point, Unlined Cartons	7-4
7-2	ANB 'P' Glass Point, Unlined Cartons	7-5
7-3	ANT 'P' Glass Point, Unlined Cartons	7-6
7-4	ANB 'G' Glass Point, Lined Cartons	7-7
7-5	ANB 'P' Glass Point, Unlined Cartons	7-8
7-6	ANT 'P' Glass Point, Lined Cartons	7-9
7-7	ANB 'G' TCLE Below Tg, Unlined Cartons	7-10
7-8	ANB 'P' TCLE Below Tg, Unlined Cartons	7-11
7-9	ANT 'P' TCLE Below Tg Unlined Cartons	7-12
7-10	ANB 'G' TCLE Below Tg, Lined Cartons	7-13
7-11	ANB 'P' TCLE Below Tg, Lined Cartons	7-14
7-12	ANT 'P' TCLE Below Tg, Lined Cartons	7-15
7-13	ANB 'G' TCLE Above Tg, Unlined Cartons	7-16
7-14	ANB 'P' TCLE Above Tg, Unlined Cartons	7-17
7-15	ANT 'P' TCLE Above Tg, Unlined Cartons	7-18
7-16	ANB 'G' TCLE Above Tg, Lined Cartons	7-19
7-17	ANB 'P' TCLE Above Tg, Lined Cartons	7-20
7-18	ANT 'P' TCLE Above Tg, Lined Cartons	7-21
	Data Plots, Constant Load Shear	
8-1	Stage II at One Minute	8-14
8-2	Stage II at 100 Minutes	0 15

Figure N	<u>r</u>	Page
8-3	Stage III at One Minute	8-16
8-4	Stage III at 100 Minutes	8-17
	Data Plots Constant Load Tensile	
8-5	Stage II at One Minute	8-18
8-6	Stage II at 100 Minutes	8-19
8-7	Stage III at One Minute	8-20
8-8	Stage III at 100 Minutes	8-21
	Data Plots, 'P' Polymer	
8-9	Stage II Swell Ratio	8-33
8-10	Stage II Gel Filler	8-34
8-11	Stage II Mini DPT, Maximum Stress	8-35
8-12	Stage II Mini DPT, Time to Maximum Stress	8-36
8-13	Stage II Liner Bond Insulation Moisture	8-37
8-14	Stage III Swell Ratio	8-38
8-15	Stage III Gel Filler	8-39
8-16	Stage III Maximum Stress	8-40
	Data Plots, Hardness, Shore A, 10 sec	
9-1	ANB 'G' Unlined Cartons	9-4
9-2	ANB 'P' Unlined Cartons	9-5
9-3	ANT 'P' Unlined Cartons	9-6
9-4	ANB 'G' Lined Cartons	9-7
9-5	ANB 'P' Lined Cartons	9-8
9-6	ANT 'P' Lined Cartons	9-9

REFERENCES

Report Nr	<u>Title</u>	Date
MAGCP 75 (67)	Zero Time Test Results LGM-30 Second Stage Wing VI Propellant	13 Jan 67
MAGCP 111 (67)	ATP Test Results LGM-30 Stage II Propellant Wing VI, Phase I	1 Dec 67
MAGCP 142 (68)	ATP Test Results LGM-30, Stage II Propellant, Wing VI, Phase I Series II	Nov 68
MAGCP 188 (70)	ATP Test Results LGM-30, Stage II Propellant, Wing VI, Phase I Series II	Jul 70
MAGCP 212 (71)	Propellant Surveillance Report LGM-30 Stage II (Wing 6 ANB-3066)	Jun 71
MAGCP 240 (72)	Propellant Surveillance Report LGM-30F Stage II ANB-3066	May 72
MAGCP 256 (72)	Propellant Surveillance Report Minuteman III, Stage III	Oct 72
MANCP 331 (75)	Propellant Surveillance Report Minuteman III, Stage III	0et 75
Aerojet 0162-AS-6-1A	Ten Year Aging Program for Wing VI Minuteman Second Stage Motors and Components	Sep 67
Aerojet 0162-06-SAAS-7		Oct 71
0162-06-SAAS-8		Apr 71
0162-06-SAAS-9	Ten Year Aging and Storage Program	Oct 71
0162-06-SAAS-10	Wing VI Minuteman Second Stage Motors and Components	Apr 72
0162-06-SAAS-11	Program Progress	Oct 72
0162-06-SAAS-12		Apr 73
0162-06-SAAS-13		Oct 74
0162-06-SAAS-14		Jul 75
0162-06-SAAS-15		Dec 75
0162-06-SAAS-16		Jul 76
0162-06-SAAS-17		Mar 77

REFERENCES (cont)

Report Nr	<u>Title</u>		Dat	<u>:е</u>
Aerojet 0162-06-AS-F Appendix E	Final Report, Wing VI Minuteman Second Stage Motor Propellant Aging		Jan	74
MVS-1	Manufacturing Variables, Study of The Minuteman Stage II Motor	11	Jun	76
0162-06-SAAS-18	Ten Year Aging and Storage Program Wing VI Minuteman Second Stage	18	Aug	77
0162-06-SAAS-19	Motors and Components Program Progress	19	Feb	78
0162-06-SAAS-20	1108.00 11081633	20	May	78
0162-06-SAAS-22	Appendix A included		May	79
0162-06-SAAS-24	Appendix A		Apr May	
0162-06-SAAS-25			Nov	80
0162-06-SAAS-26			May	81
0162-06-SAAS-27			Nov	81

GLOSSARY OF ABBREVIATIONS AND TERMS

Aging Trend A change in properties of performance resulting

from aging of material or component

ANA Aerojet Propellant, Stage III (ANB 3066 Formulation)

ANT Thiokol Propellant, Stage III (ANB 3066 Formulation)

ANB Aerojet Propellant, Stage II (ANB 3066 Formulation)

ASPC Aerojet Strategic Propulsion Co.

CSA Cross Sectional Area

DB Dogbone

Degradation Gradual deterioration of properties or performance

E Modulus (psi), defined as the slope of the line drawn

tangent to the initial linear portion of the curve

EB End Bonded

EGL Effective Gage Length

e_m Strain at Maximum Stress (in/in)

e_r Strain at Rupture (in/in)

"F" ratio The ratio of the variance accounted for by the regression

function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting significant changes in random variation between succeeding

time points.

JANNAF Joint Army, Navy, NASA, Air Force Committee

MANPA Propellant Laboratory at OOALC

OOALC Ogden Air Logistics Center

Post Curing Period up to 12 - 16 months after manufacture

GLOSSARY OF ABBREVIATIONS AND TERMS (CONT.)

Regression The general form of the regression equation is

Y = a + bx

Regression Line Line representing mean test values with respect

to time

Standard error of estimate of the regression

coefficient

 S_e or $S_{Y,X}$ Standard deviation of the data about the regression

line

S____ Maximum Stress (psi)

S Stress at Rupture (psi)

Standard Square root of variance

Deviation (S,)

Strain Rate Crosshead speed divided by the EGL

Thiokol Thiokol/Wasatch Division

"t" Test A statistical test used to detect significant

differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95%

confidence level)

Variance The sum of squares of deviations of the test

results from the mean of the series after division by one less than the total number of

test results

3 Sigma Band The area between the upper and lower 3 sigma

limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the population

is normally distributed.

90-90 Band It can be stated with 90% confidence that 90% of

the inventory represented by the test samples would fall within this range assuming that the

population is normally distributed.

SECTION I

INTRODUCTION

A. PURPOSE:

The purpose of testing ANB-3066 propellant, used in Minuteman II Stage II and Minuteman III Stage II and Stage III, is to monitor and evaluate aging effects on this propellant which will contribute to the operational motor serviceability prediction. Testing was performed according to General Test Directive GTD-2C, Amendment 1, and MMWRBA Project M14058C.

B. BACKGROUND:

Service life testing of ANB-3066 carton propellant from Aerojet production began at Ogden ALC in 1966. When production for Minuteman III Stage III was transferred to Thiokol, the propellant samples from both Aerojet and Thiokol were tested. As lined cartons were produced, these were tested adding propellant liner bond specimens to the program. This report contains data from all these sources for propellant aged 13 to 178 months.

Significance tables for aging trend lines are given in the respective sections of this report.

Statistical techniques used are described in Section III.

Very low rate tensile, high rate tensile and stress relaxation tests are those most nearly related to conditions existing in the motor under storage, transportation and handling and booster flight.

Low rate uniaxial tensile tests and hardness are routine tests for all propellant. This report includes these data. Strain dilatation and cohesive tear energy tests have been applied to only a portion of the cartons. Strain dilatation data are included in this report; cohesive tear energy will be included in the next report.

C. SUMMARY:

- 1. Unlined cartons show a significant increase in strain capability at very low rate. Although there is a significant decrease for lined cartons the alert limit will not be reached for approximately 10 years at the present rate of decrease.
- 2. ANT-P lined cartons show a statistically decreased strain capability when tested under high pressure and high strain. Alert limit may be reached in 10 years.
- 3. Constant load shears at 100 minutes have already fallen below the 15.4 psi alert limit for storage. Individual cartons have already failed the 23.1 psi alert limit for storage for constant load tensile.

SECTION II

TEST PROGRAM

Cartons representing raw material combinations were subjected to a random selection process designed to test all material lots within a two year-four test periods interval. When propellant cartons have been aged one year, they are added to the test program. Latest acquisition of Stage II was manufactured Dec 17, 1978, and Stage III manufactured April 4, 1977.

Propellant cartons are identified by source of manufacture. Stage II and III propellant manufactured by Aerojet Strategic Propulsion Company is identified as ANB and ANA respectively. Thiokol Company Stage III propellant is identified as ANT. All regressions use this nomenclature as well as additional information as to the type of carton, lined or unlined. Symbols are used on multiple regressions to separate types. There were two suppliers for polymers for Stage II propellant, "G" polymer manufactured by General Tire and Rubber and "P" polymer for Phillips. In this report the two polymer types have been treated statistically.

Lined and unlined cartons of ANB and ANT have been combined in regression analysis for comparison purposes and cover the time span from 13 through 178 mo.

The physical-mechanical tests which relate directly to stress analysis are limited. Very low rate tensile test data is related to storage conditions, and high rate rails tested under pressure relate to ignition. Stress relaxation modulus also relates to storage conditions. The thermal coefficient of linear expansion reflects some of the thermal stress to which the motor is exposed.

SECTION III STATISTICAL ANALYSIS

Test data from physical and chemical tests of ANB-3066 propellant and from casebond test specimens have been analyzed statistically to determine whether aging trends exist. ANB-3066 propellant was categorized according to the manufacturer and the polymer type used in manufacture of the propellant. Two polymers were used. They are G-polymer produced by General Tire and Rubber and P-polymer produced by Phillips. For convenience in data analysis, the following code designations were used:

Manufacture	er and System Applicatio	ANB-3066 n Code	Polymer Code
_	MINUTEMAN III Stage 2	ANB	G and P
Thiokol:	MINUTEMAN III Stage 3	ANT	P

Test specimens were machined from two types of cartons, lined and unlined.

The lined cartons have simulated case liner along one surface. The cartons are also subdivided according to lot.

Casebond test specimens are taken from lined cartons. For casebond shear or casebond tensile testing, a sampling of approximately 11 shear or tensile specimens can be taken from a carton. For each carton sampling, different weights are attached to the individual specimens with the intent to cause failure over a range of one to 100 minutes. The specimen data in each carton sampling is subjected to regression analysis with the times to failure regressed against stress. From these carton regressions were calculated one minute and 100 minute stress values, see Tables 8-1 to 8-6. From each carton regression, with the exception of those having low correlation coefficients, derived one minute and 100 minute stress values were used to form a set of aging regressions, see Figures 8-1 to 8-8. Outlier

data were also excluded from these regressions. The final analysis was to form multiple regression analyses from original specimen data, see Table 8-7. From these multiple regression analyses were formed Charts 1 to 6 from which times to failure at specific alert limits can be matched with carton age where 5% or 50% failure limits are given. These determinations should parallel the progress of casebond failure in field motors.

Additional liner bond test data are contained in Tables 8-8 and 8-9 and a summary of regression parameters pertaining to these data are in Table 8-10.

Linear regression analysis, of the form Y = a + bX, was usually used in evaluating data trends for most kinds of propellant tests. Where plots are presented, the variance about the least squares trend line is used to compute a tolerance interval such that at the 90% confidence level 90% of the sample distribution falls within this interval. This tolerance interval is extrapolated 24 months past the age point corresponding to the oldest specimen tested. Outer dashed lines marking a three standard deviation limit from regression are also given. The statistical significance of the slope of the trend line is evaluated for each regression plot. If significant, it is an indication that change over time is occurring.

Statistical data from regression analyses of similar test parameters were subjected to analysis of covariance to determine whether test data differences existed due to propellant manufacturer, polymer type, or kind of carton, lined or unlined. For each series of propellant tests such as tensile at 0.0002 inches per minute or stress relaxation, there is a corresponding analysis of covariance comparison of regressions. These tables are included in their respective sections. These analyses of covariance compare variances, slopes, and elevations of regression data. If no statistical difference is found between two sets of regression data, then the

two data sets can be combined into one regression analysis which has been done in a few cases. Where such has been done, the plotted regression data are differentiated through the use of different symbols.

SYMBOLS USED ON MULTI-SYMBOL REGRESSION PLOTS

000	ANA G Unlined	
001	ANB G Unlined	٥
002	ANB G Lined	Δ
003	ANT P Unlined	+
004	ANB P Lined	×
005	ANT P Lined	\$

SECTION IV

VERY LOW RATE TENSILE

LOW RATE TENSILE

A. Very Low Rate Tensile:

This test uses a 1/2 inch thick (1.27 cm) JANNAF dogbone. The specimens are tested at a crosshead speed of 2 x 10^{-4} in/min (8.5 x 10^{-6} cm/sec), $77^{\circ}F$ (25°C) and ambient RH. Very low rate tensile testing is related to strain capability for storage at $60^{\circ}F$.

Lined cartons show a statistically significant decrease in strain at rupture (Table 4-1). Maximum stress is generally statistically increased (exception ANT "P:). Modulus is also significantly increased.

Unlined cartons show a statistical increase in strain at rupture. Modulus shows a significant decrease (ANT "P" being the exception).

Lined cartons show lower standard deviations than unlined cartons.

B. Low Rate Tensile:

This test utilizes the same type specimen as very low rate. Crosshead speed of 2 in/min (8.5 \times 10⁻² cm/sec), 77°F (25°C), and ambient RH are the test conditions.

TABLE 4-1
VERY LOW RATE TENSILE

Significance of Regression Slopes

System	Sm	Fig	er	Fig	E	Fig
ANB G Unlined	NS	4-1	Sig inc	4-2	Sig dec	4-3
ANB P Unlined	NS	4-4	Sig inc	4-5	Sig dec	4-6
ANT P Unlined	Sig inc	4-7	Sig inc	4-8	Sig inc	4-9
ANB G Lined	Sig inc	4-10	Sig dec	4-11	Sig inc	4-12
ANB P Lined	Sig inc	4-13	Sig dec	4-14	Sig inc	4-15
ANT P Lined	NS	4-16	Sig dec	4-17	Sig inc	4-18
ANB G & P Lined	Sig inc	4-19	Sig dec	4-20	Sig inc	4-21

TABLE 4-2
LOW RATE TENSILE

Significance of Regression Slopes

Fig Sm Fig Fig System er ANB G Unlined Sig dec 4-23 Sig dec 4-24 4-22 Sig inc 4-26 4-25 NS 4-27 ANB P Unlined NS Sig inc Sig dec 4-30 Sig inc 4-28 4-29 Sig inc ANT P Unlined 4-32 4-33 ANB G Lined NS 4-31 NS NS Sig inc Sig dec 4-35 Sig inc 4-36 ANB P Lined 4-34 ANT P Lined 4-37 Sig dec 4-38 Sig inc 4-39 Sig inc

TABLE 4-3

ANALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS VERY LOW RATE TENSILE (0.0002 in/min)

Lined Vs Unlined		<u>Sm</u>	Er	E
AMB P-polymer	Residual Variance	S	s	S
	Slope	S	s	S
	Elevation	S	s	S
ANB G-polymer	Residual Variance	s	NS	S
	Slope	s	S	S
	Elevation	s	S	S
ANT P-polymer	Residual Variance	s	S	S
	Slope	s	S	NS
	Elevation	s	S	S
ANB P Unlined Vs ANT P Lined	Residual Variance	ИS	S	S
	Slope	ИS	S	S
	Elevation	S	S	S
G-polymer Vs P-polymer				
ANB Lined	Residual Variance	NS	ns	ИS
	Slope	NS	ns	ИS
	Elevation	NS	ns	ИS
ANB Unlined	Residual Variance Slope Elevation	S NS S	NS NS	s ns s
ANB G Unlined Vs ANT P Unlined	Residual Variance	8	S	\$
	Slope	8	NS	\$
	Elevation	8	S	\$
ANB G Lined Vs ANT P Lined	Residual Variance Slope Elevation	S NS	NS NS S	ns 8
ANB P-polymer Vs ANT P-polymer				
Lined	Residual Variance	s	s	NS
	Slope	s	s	NS
	Elevation	s	s	8
Unlined	Residual Variance Slope Elevation	S S S	S NS S	S . NS

NOTE: Sm = Maximum Stress, Er = Strain at Rupture, and E = Modulus. S means a significant difference and NS means not significant.

TABLE 4-4

AMALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS
LOW RATE UNIAXIAL TENSILE (2 in/min)

Lined Vs Unlined		Sm	Er	<u>E</u>
ANB P-polymer	Residual Variance	S	S	s
	Slope	S	S	NS
	Elevation	S	S	S
ANB G-polymer	Residual Variance Slope Elevation	2 2 2 3	S NS S	S NS S
ANT P-polymer	Residual Variance	S	S	S
	Slope	S	S	S
	Elevation	S	S	S
AMB P Unlined Vs AMT P Lined	Residual Variance Slope Elevation	s s s	s NS	S S S
G-polymer Vs P-polymer				
ANB Lined	Residual Variance	S	s	S
	Slope	NS	ns	NS
	Elevation	S	s	S
ANB Unlined	Residual Variance Slope Elevation	S NS S	S S S	S S
ANB G Unlined Vs ANT P Unlined	Residual Variance	s	s	S
	Slope	s	s	S
	Elevation	s	s	S
ANB G Lined Vs ANT P Lined	Residual Variance	NS	И2	ns
	Slope	S	2	s
	Elevation	S	2	s
ANB P-polymer Vs ANT P-polymer				
Lined	Residual Variance	s	S	S
	Slope	s	S	S
	Elevation	s	S	S
Unlined	Residual Variance	s	S	S
	Slope	s	S	S
	Elevation	s	NS	S

1

SECTION V

HIGH RATE TENSILE

A. High Rate Triaxial:

This test utilizes a specimen 3/4 inch (1.9 cm) GL rail by 5 inches (12.7 cm) long. The specimens are tested on the MTS at a crosshead speed of 1750 in/min (74.08 cm/sec) with 600 psi (42.18 kg/sq cm). Strain rate is 1000 in/in/min. These conditions simulate that of the motor at ignition. Only ANT P lined cartons show significant trends in all parameters (Figures 5-13 to 5-15). Less than one-half of all parameters are statistically significant. No regressions can be combined.

B. High Rate Dogbones:

This test is performed under the same conditions as the rail specimens. The specimens are shortened dogbones with a nominal gage length of 0.75".

All systems show a significant increase in maximum stress. Modulus shows a significant increase except for ANB P lined cartons. Only ANB G lined cartons do not show a significant decrease in strain at rupture (1,5,61e 5-2).

Composite regressions have been made for strain at rupture. Only these conditions do not show statistically significant variance.

TABLE 5-1
HIGH RATE TRIAXIAL

Significance of Regression Slopes

System	Sm	Fig	er	Fig	E	Fig
ANB G Unlined	NS	5-1	Sig inc	5-2	Sig dec	5-3
ANB P Unlined	NS	5-4	NS	5-5	Sig dec	5-6
ANT P Unlined	Sig inc	5-7	NS	5-8	NS	5-9
ANB G Lined	NS	5-10	Sig inc	5-11	NS	5-12
ANB P Lined	NS		NS		NS	
ANT P Lined	Sig inc	5-13	Sig dec	5~14	Sig inc	5-15

TABLE 5-2
HIGH RATE HYDROSTATIC

Significance of Regression Slopes

System	Sm	Fig	er	Fig	E	Fig
ANB G Unlined	Sig inc	5-16	Sig dec	5-17	Sig inc	5-18
ANB P Unlined	Sig inc	5-19	Sig dec	5-20	Sig inc	5-21
ANT P Unlined	Sig inc	5-22	Sig dec	5-23	Sig inc	5-24
ANB G Lined	Sig inc	5-25	NS	5-26	Sig inc	5-27
ANB P Lined	Sig inc	5-28	Sig dec	5-29	NS	5-30
ANT P Lined	Sig inc	5-31	Sig dec	5-32	Sig inc	5-33
ANB G vs P Lined			Sig dec	5-34		
ANB vs ANT P Lined		·	Sig dec	5-35		1
ANB G vs ANT P Lined			Sig dec	5-36		

TABLE 5-3

ANALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS
HIGH RATE TRIAXIAL TENSILE (1750 in/min, 600 psi)

Lined Vs Unlined		Sm	Er	<u>E</u>
ANB P-polymer	Residual Variance	ns	S	S
	Slope	ns	NS	S
	Elevation	s	S	S
ANB G-polymer	Residual Variance	s	S	s
	Slope	NS	NS	%s
	Elevation	NS	S	s
ANT P-polymer	Residual Variance	NS	s	s
	Slope	NS	s	s
	Elevation	S	s	%s
ANB P Unlined Vs ANT P Lined	Residual Variance	s	S	s
	Slope	s	S	s
	Elevation	ns	S	s
G-polymer Vs P-polymer				
ANB Lined	Residual Variance	s	%2	NS
	Slope	NS	2	S
	Elevation	NS	2	NS
ANB Unlined	Residual Variance	ns	NS	NS
	Slope	ns	S	NS
	Elevation	s	S	S
ANB G Unlined Vs ANT P Unlined	Residual Variance	s	ns	s
	Slope	s	s	s
	Elevation	s	s	s
ANB G Lined Vs ANT P Lined	Residual Variance	NS	NS	ร
	Slope	S	S	ร
	Elevation	S	S	ร
ANB P-polymer Vs ANT P-polymer				
Lined	Residual Variance	S	NS	NS
	Slope	S	S	S
	Elevation	S	S	S
Unlined	Residual Variance	s	NS	S
	Slope	NS	NS	S
	Elevation	S	S	S

TABLE 5-4

ANALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS
HIGH RATE HYDROSTATIC TENSILE (1750 in/min, 600 psi)

Lined Vs Unlined		Sm	Er	E
AMB P-polymer	Residual Variance	ns	,12	\$
	Slope	ns	,12	\$
	Elevation	s	,2	\$
ANB G-polymer	Residual Variance	S	ns	S
	Slope	S	ns	S
	Elevation	S	s	S
ANT P-polymer	Residual Variance	NS	S	NS
	Slope	NS	S	NS
	Elevation	S	NS	S
ANB P Unlined Vs ANT P Lined	Residual Variance	NS	s	S
	Slope	S	ns	NS
	Elevation	S	ns	S
G-polymer Vs P-polymer				
ANB Lined	Residual Variance Slope Elevation	NS S S	ns ns	S S S
ANB Unlined	Residual Variance Slope Elevation	S NS S	S S S	s s
ANB G Unlined Vs ANT P Unlined	Residual Variance	S	S	NS
	Slope	S	NS	S
	Elevation	S	S	S
ANB G Lined Vs ANT P Lined	Residual Variance	ns	ns	S
	Slope	s	ns	NS
	Elevation	s	ns	S
AND P-polymer Vs ANT P-polymer				
Lined	Residual Variance Slope Elevation	s s ns	ns ns	S S %S
Unlined	Residual Variance	s	ns	s
	Slope	s	s	%s
	Elevation	s	ns	s

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

SECTION VI

STRESS RELAXATION AND STRAIN DILATATION

A. Stress Relaxation:

An end bonded 1/2" x 1/2" x 4" specimen (1.27 x 1.27 x 10.16 cm) is tested on the stress relaxometer. Load is applied at 2 in/min (0.085 cm/sec). Timing begins when the load is applied. Specimens have been strained at both 1% and 3%.

The use of 1% strain over the range of temperatures was not introduced into the program until Phase 3 of Minuteman III testing. Phase B Series 2 for Minuteman II. In this report, data for both 1% 3% at 77°F are show for a comparison between applied strains. (T. has shown that strains introduced into the propellant during machining remain in the samples and a higher strain is required to give reproducible and accurate relaxation moduli.) The 1% strain is considered to be very marginal insofar as reproducible data is concerned.

Table 6-1 gives the significance of 't' for both 1% and 3% strains.

The number of specimens represented in each regression is shown so that

the preponderance of test data at 3% strain is obvious.

Unlined cartons of ANB G show a significant decrease for 1% strain at 1000 sec. Lined cartons show a significant increase at 3%.

Unlined cartons of ANB P show a significant increase at 1% and 3% at 10 sec, but the 1000 second modulus at 3% shows a significant increase.

Unlined cartons of ANT P do not show a significant decrease at 1%, but the decrease is significant at 3%. Lined cartons continue to show a significant increase.

Gradient stress relaxation shows that the minima occurs at approximately 1.8 inches from the liner. At 1000 seconds and 2.5 inches ANB G

shows a marked increase in modulus whereas ANB P shows a decrease.

B. Strain Dilatation:

The same type of specimen is used for this test as for stress relaxation. Testing is done utilizing a gas dilatometer at $77^{\circ}F$ ($25^{\circ}C$) without pressure.

Poisson's ratio at 15% strain consistently shows a significant decrease (Table 6-2) except for ANB G unlined cartons. At maximum strain, Poisson's ratio is significantly decreasing for unlined cartons for P-polymer

TABLE 6-1

STRESS RELAXATION

Significance of Regression Slopes

	_ 10	_ 10 sec <u>10 sec</u>			1000 sec		
System	N	1%	N	3%	1%	3%	
ANB G Unlined	192	NS	448	NS	Sig dec	NS	
ANB P Unlined	171	Sig inc	358	Sig inc	Sig inc	NS	
ANT P Unlined	168	NS	216	Sig dec	NS	Sig dec	
ANB G Lined	51	NS	51	Sig inc	NS	Sig inc	
ANB P Lined	99	NS	96	Sig inc	NS	Sig inc	
ANT P Lined	162	Sig inc	183	Sig inc	Sig inc	Sig inc	
ANG & ANT P Unlined					Sig dec		

TABLE 6-2

STRAIN DILATATION

Significance of Regression Slopes

System	Poisson's Ratio at 15% Strain	Poisson's Ratio at Max Strain	Dilatation at Max Strain
ANB G Unlined	Sig inc	NS	Sig inc
ANB P Unlined	Sig dec	Sig dec	NS
ANT P Unlined	Sig dec	Sig dec	NS
ANB G Lined	Sig dec	NS	NS
ANB P Lined	Sig dec	NS	NS
ANT P Lined	Sig dec	NS	Sig dec

TABLE 6-3

ANALYSIS OF COVARIANCE (MPARISON OF REGRESSIONS FOR STRESS RELAXATION MODULUS

		Seconds at % Strains			
			train		rain
Lined Vs Unlined		<u>10</u>	<u>1000</u>	<u>10</u>	1000
ANB P-polymer	Residual Variance	s	S	S	S
A.Vii i -polymei	Slope	S	NS	มร	NS
	Elevation	S	S	S	S
		_	_	_	_
ANB G-polymer	Residual Variance	S	S	S	S
	Slope	NS	S	NS	S
	Elevation	S	S	NS.	NS
Alter To a fine a	m 11 11 11 11		•	~	
ANT P-polymer	Residual Variance	S	S S	S	S
	Slope	S	_	S	S S
	Elevation	NS	NS	S	5
ANB P Unind Vs ANT P Lined	Residual Variance	S	S	s	s
	Slope	NS	ЯS	NS.	S
	Elevation	มร	NS	:15	NS
		•			
G-polymer Vs P-polymer					
ANB Lined	Residual Variance	NS	NS	S	S
	Slope	NS	NS	หร	NS
	Elevation	S	NS	:IS	NS
ANB Unlined	Residual Variance	S	S	S	S
	Slope	S	S	S	S
	Elevation	S	S	S	S
ANB G Unlnd Vs ANT P Unlnd	Residual Variance	พร	NS	S	S
AND G UNTILL VS ANT I UNTILL	Slope	NS.	NS	S	S
	Elevation	S	NS	S	S
	BICVECION	U		3	J
ANB G Lined Vs ANT P Lined	Residual Variance	S	S	S	S
	Slope	พร	S	พร	NS
	Elevation	S	S	S	S
AND P-polymer Vs ANT P-polymer					
Ath 1-polymer vs Avi 1-polymer					
Lined	Residual Variance	NS	NS	318	NS
	Slope	S	S	NS	NS
	Elevation	S	S	S	S
Unlined	Residual Variance	S	S	S	S
	Slope Slope	S	S	S	S
	Elevation	NS	S	S	S

6 - 31

TABLE 6-4

ANALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS FOR STRAIN DILATATION TESTING

Lined Vs Unlined	Di	latation at Max Strain		s Ratio at 15% Strain
ANB P-polymer	Residual Variance Slope	S NS	s ns	S NS
	Elevation	S	NS	S
ANB G-polymer	Residual Variance Slope	s s	s Ns	S S
	Elevation	S	NS	S
ANT P-polymer	Residual Variance	S	S	S
	Slope Elevation	S S	S NS	NS SK
ANB P Unlnd Vs ANT P Lined	Residual Variance	S	S	S
	Slope Elevation	NS S	s Ns	S NS
G-polymer Vs P-polymer				
ANB Lined	Residual Variance Slope	s NS	s NS	NS S
	Elevation	NS	NS	NS
ANB Unlined	Residual Variance Slope	s NS	S NS	NS S
	Elevation	S	S	S
ANB G Unind Vs ANT P Unind	Residual Variance Slope	s NS	s s	S S
	Elevation	S	S	S
ANB G Lined Vs ANT P Lined	Residual Variance Slope	s NS	s Ns	:\\S S
	Elevation	พร	S	มร
ANB P-polymer Vs ANT P-polymer				
Lined	Residual Variance Slope	NS S	s NS	S NS
	Elevation	NS	S	S
Unlined	Residual Variance Slope	ns ns	ns s	S S
	Elevation	.NS	S	หร

6 - 45

6 - 46

POISSON'S RFIID AT MAX STRAIN, ANB-3066 LANB P-POLYMER UNLINED)

SECTION VII

THERMAL COEFFICIENT OF LINEAR EXPANSION

Thermal coefficient of linear expansion (TCLE) is run on the DuPont 990 Thermal Analyzer using the thermomechanical analyzer with expansion probe. The specimen used is a wafer approximately 0.200" (0.508 cm) thick by 0.33" (0.84 cm) diameter. The specimen is cooled to -120° C (-184° F) then heated at 5° C/min (9° F/min) to 40° C (104° F). The glass point (Tg), TCLE below Tg and TCLE above Tg are determined.

According to ASPC, which uses a volume coefficient of expansion, the glass point for propellant stored at $80^{\circ}F$ ranges from $-91^{\circ}C$ (-132°F) to $-79.5^{\circ}C$ (-111°F). All systems show a significant lowering of the glass point.

Expansion below the glass point is not considered to be a significant factor in analysis. This region is linear. Lined cartons of ANB G and P do not show a trend. Others show a significant increase.

TCLE above Tg is not significant for ANB G lined cartons. ANB G and P unlined cartons do not show a significant increase. ANB P lined and ANT P unlined and lined cartons show a significant decrease in this parameter.

TABLE 7-1

TCLE

Significance of Regression Slopes

System	Tg	Fig	Below Tg	Fig	Above Tg	Fig
ANB G Unlined	Sig dec	7-1	Sig inc	7-7	NS	7-13
ANB P Unlined	Sig dec	7-2	Sig inc	7-8	NS	7-14
ANT P Unlined	Sig dec	7-3	Sig inc	7-9	Sig dec	7-15
ANB G Lined	Sig dec	7-4	NS	7-10	NS	7-16
ANB P Lined	NS	7-5	Sig inc	7-11	Sig dec	7-17
ANT P Lined	Sig dec	7-6	Sig inc	7-12_	Sig dec	7-18

TABLE 7-2

ANALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS
THERMAL COEFFICIENT OF LINEAR EXPANSION (TCLE)

Lined Vs Unlined		Glass Point	TCLE Below GP	TCLE Above GP
ANB P-polymer	Residual Variance	s	ns	s
	Slope	s	ns	s
	Elevation	s	s	s
ANB G-polymer	Residual Variance	S	s	S
	Slope	NS	s	NS
	Elevation	S	ns	S
ANT P-polyrer	Residual Variance	S	S	S
	Slope	S	S	S
	Elevation	S	NS	NS
ANB P Unlnd Vs ANT P Lined	Residual Variance	s	S	S
	Slope	NS	NS	S
	Elevation	S	S	NS
G-polymer Vs P-polymer				
ANB Lined	Residual Variance	ร	:112	S
	Slope	หร	:2	NS
	Elevation	ร	:112	S
ANB Unlined	Residual Variance	s	ns	NS
	Slope	Ns	Ns	NS
	Elevation	Ns	Ns	S
ANB G Unlnd Vs ANT P Unlnd	Residual Variance	s	s	,12
	Slope	s	s	2
	Elevation	s	s	3
ANB G Lined Vs ANT P Lined	Residual Variance	s	S	S
	Slope	NS	NS	NS
	Elevation	S	S	S
ANB P-polymer Vs ANT P-polymer				
Lined	Residual Variance	NS	s	S
	Slope	S	NS	S
	Elevation	S	S	S
Unlined	Residual Variance	พร	S	8
	Slope	ร	S	8
	Elevation	ร	S	8

Figure 7-3

SECTION VIII

CASE LINER BONDS

Cartons of propellant were lined with SD-851-2 liner/V45 rubber simulating motor conditions. In the preparation of the cartons, liner sometimes penetrated the propellant to a depth of 0.5 inch. Irregularities are most apparent on outer surfaces. Corners may be particularly affected by curvature of the insulation.

Liner color varies from a pale buff to deep buff or a deep pink which apparently develops from moisture plus anti-oxidant. In general, the pink liner tends to be sticky and strings out in tensile testing. Shear strength may be negligible.

00-ALC has made an extensive statistical study of the constant load tensile and shear tests. Regressions for these data as well as other parameters are included in this report. Limited swell ratio and gel filler data on liner as well as insulation moisture were compared (Tables 8-8 to 8-10). A more detailed correlation is planned for the next report.

TABLE 8-1
STAGE 2 CONSTANT LOAD SHEAR REGRESSION DATA, G-POLYMER

The regression model used is of the form $\log Y = a + b(\log X)$ where X = shear stress and Y = time to failure.

	TEST PHASE B								
1ge							l min	100 min	
(mo)	Lot	Motor	Intercept	Slope	<u>n</u>	<u>r</u>	Stress	Stress	
22	60	AA21311	13.0701	-7.9684	12	973	43.676	24.505	
25	59	AA21283	12.1143	-7.3717	12	951	43.989	23.553	
29	58	AA21209	13.8537	-8.3308	11	977	46.022	26.478	
32	49	AA21018	14.1541	-8.6622	6	954	43.053	25.300	
35	53	AA21063	12.4473	-7.4627	12	915	46.552	25.115	
37	35	AA21106	13.9609	-8.5201	12	982	43.510	25.343	
38	52	AA21021	10.4349	-6.3359	12	817	44.355	21.443	
TEST PHASE C									
			11 2125	-7.2152	12	976	35.800	18.910	
60	60	AA21294	11.2125	-6.9292	12	966	41.216	21.205	
43	59	AA21282	11.1911		12	994	39.447	25.044	
46	58	AA21234	16.1773	-10.136	12	975	48.545	28.181	
52	53	AA21071	14.2785	-3.4631	12	975 975	41.504	21.764	
56	55	AA21117	11.5434	-7.1340	12	9/5	41.504	21.704	
			TI	EST PHASE	D				
68 72	60 59	AA21321 AA21260	5.02779 33.7135	-3.2491 -2.8076	11 11	585 896	35.274 15.878	17.365 3.0792	
82	58	AA21179	15.6875	-9.4493	11	996	45.726	28.087	
		AA21034	11.1826	-6.9763	11	964	40.081	20.713	
83	52	AA21034 AA21125	11.1020	-7.1665	11	982	43.251	27.933	
83	55	AAZIIZS	11.3030	-/.T003			~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,	

TABLE 8-2
STAGE 2 CONSTANT LOAD SHEAR REGRESSION DATA, P-POLYMER

The regression model used is of the form $\log Y = a + b(\log X)$ where X = shear stress and Y = time to failure.

			TE	ST PHASE	3			
Age							l min	100 min
(mo)	Lot	Motor	Intercept	Slope	n	r	Stress	Stress
<u> </u>		 _						
2	64	AA21417	13.2989	-7.9395	12	960	47.319	26.493
5	65	AA21383	13.9333	-8.7228	10	971	39.568	23.338
16	63	AA21367	8.69632	-5.3406	12	950	42.505	17.945
21	61	AA21322	13.2364	-8.5704	12	947	35.029	20.468
22	62	AA21329	14.7193	-3.7807	12	950	47.460	23.091
28	57	AA21223	17.4790	-10.932	8	924	39.054	25.677
37	51	AA21105	14.8923	-9.0240	12	972	44.699	26.832
37	54	AA21137	13.6749	-8.3396	12	921	42.656	24.637
38	56	AA21189	14.8535	-3.9330	12	982	46.001	27.471
			ጥ	ST PHASE (·			
13	67	AA21465	19.9178	-11.331	12	958	57.253	38.132
14	66	AA21462	11.8533	-6.9955	12	871	49.561	25,659
15	71	AA21573	11.5156	-6.6743	11	925	53.133	26,651
17	69	AA21522	18.7595	-11.196	11	979	47.375	31.399
19	70	AA21559	12.0937	-6.8629	11	929	57.835	29.564
23	68	AA21493	16.7533	-9.6245	11	995	55.197	34.151
40	64	AA21436	11.1034	-6.5490	11	934	49.595	24.550
41	61	AA21306	12.2860	-7.5280	12	955	42.860	23.248
45	63	AA21360	10.1430	-6.6027	11	955	34.430	17.141
45	65	AA21389	11.2362	-6.4823	11	921	54.120	26.597
46	62	AA21343	12.5891	-7.8257	11	966	40.615	22.548
48	57	AA21211	11.5756	-7.3380	12	977	37.800	20.181
60	51	AA21101	13.7674	-8.6801	12	980	38.555	29.572
61	54	AA21140	13.3955	-8.2475	11	984	42.067	24.068
65	56	AA21173	10.8979	-6.1682	11	923	58.451	27.704
			-		_			
			TH	ST PHASE I)			
20	72	AA21588	16.1153	-9.6000	11	970	47.723	29.539
22	71	AA21573	10.7962	-6.5785	11	939	43.764	21.732
38	69	AA21547	13.1198	-8.1812	11	995	40.147	22.866
40	70	AA21557	14.7159	-9.1255	11	989	40.985	24.743
42	66	AA21460	14.9358	-8.9486	11	965	46.672	27.897
42	67	AA21466	14.1850	-8.2125	11	993	53.364	30.459
46	68	AA21499	12.3799	~7.7255	11	991	40.038	22.059
67	61	AA21328	9.40889	-6.3683	11	993	30.023	14.568
67	64	AA21420	12.2083	-7.7312	11	985	37.940	20.912
69	63	AA21363	11.7702	-7.2822	11	992	41.332	21.961

TABLE 8-2 (cont)

STAGE 2 CONSTANT LOAD SHEAR REGRESSION DATA, P-POLYMER

Age (mo)	Lot	Motor	Intercept	Slope	<u>n</u>	<u>r</u>	1 min Stress	100 min Stress
70	62	AA21345	11.2601	-7.1446	11	967	37.673	19.774
70	65	AA21388	10.2403	-6.6128	11	944	35.364	17.625
76	57	AA21201	12.8670	-7.9301	11	981	41.933	23.461
81	53	AA21070	12.3556	-7.6964	11	977	40.306	22.157
37	51	AA21086	11.1299	-6.9617	11	981	39.695	20.486
90	56	AA21181	12.3432	-7.3275	11	979	48.364	25.797
91	54	AA21083	12.5761	-7.7672	11	989	41.604	22.995

TABLE 8-3

STAGE 2 CONSTANT LOAD TENSILE REGRESSION DATA, G-POLYMER

The regression model used is of the form $\log Y = a + b(\log X)$ where X = stress at rupture and Y = time to failure.

			TE	ST PHASE	В			
Age							1 min	100 min
	Lot	Motor	Intercept	Slope	n	<u>r</u>	Stress	Stress
26	60	ΛΛ21288	13.7487	-6.8986	12	871	98.391	50.471
27	59	AA21256	17.9335	-9.6728	11	936	71.450	44.335
28	58	ΔΛ21249	18.8035	-10.238	12	922	68.644	43.778
36	55	AA21133	22.3898	-12.392	12	953	64.093	44.199
			TE	ST PHASE	С			
41	60	ла21317	22.0597	-13.145	12	982	47.668	33.580
45	58	AA21248	12.9768	-6.9177	12	737	75.143	38.617
45	59	AA21256	14.7715	-8.0956	12	815	66.776	37.807
53	53	AA21062	19.3288	-11.090	12	980	55.316	36.519
55	52	AA21036	14.3414	-8.7223	8	836	44.078	25.997
55	55	AA21128	20.7283	-11.669	12	949	59.751	40.267
56	52	AA21024	19.0582	-11.354	12	963	47.699	31.795
			TE	ST PHASE	D			
70	60	AA21295	20.2605	-11.836	11	987	51.499	34.899
71	59	AA21283	22.8699	-13.552	11	991	48.703	34.672
80	58	AA21210	19.0608	~10.831	11	956	57.525	37.601
82	52	AA21048	16.4537	-9.8669	11	994	46.511	29.165
83	55	AA21121	17.2319	~10.533	11	963	43.251	27.933

TABLE 8-4

STAGE 2 CONSTANT LOAD TENSILE REGRESSION DATA, P-POLYMER

The regression model used is of the form log Y = a + b(log X) where X = stress at rupture and Y = time to failure.

	TEST PHASE B									
Age							1 min	100 min		
(no)	Lot	Motor	Intercept	Slope	n	<u>r</u>	Stress	Stress		
14	56	AA21166	22.2074	-12.675	10	833	56.509	39.294		
14	64	AA21420	10.7429	-5.4052	12	802	97.171	41.449		
17	65	AA21393	13.5944	-10.801	12	927	52.661	34.382		
20	63	AA21360	18.4521	-10.654	12	944	53.947	35.014		
22	62	AA21337	19.8863	-11.258	12	953	58.398	38.792		
24	61	AA21305	16.3522	-9.1211	12	821	62.058	37.457		
35	54	AA21156	27.0012	-15.383	12	955	56.925	42.197		
39	51	AA21094	23.0185	-12.893	12	852	61.006	42.682		
TEST PHASE C										
14	69	۸۸21547	16.6397	-8.9140	11	734	73.569	43.886		
16	67	AA21448	18.0061	-10.066	12	979	61.499	38.920		
16	71	AA21581	12.6581	-6.1827	11	869	111.51	52.947		
17	66	AA21441	18.6003	-10.044	12	931	71.100	44.952		
23	70	AA21531	12.7410	-6.1702	10	601	116.13	55.055		
30	63	AA21459	14.6537	-8.5349	11	957	52.108	30.379		
40	61	AA21326	25.1976	-14.309	12	928	57.679	41.806		
42	64	AA21417	22.9380	-12.465	11	962	69.216	47.836		
44	65	AA21404	17.0212	-9.8910	10	929	54.335	33.012		
47	62	AA21329	18.3478	-9.5702	11	954	82.637	51.073		
50	57	AA21194	24.6502	-13.894	12	925	59.456	42.682		
60	51	AA21084	23.0903	-13.139	12	939	57.191	40.283		
61	54	۸۸21148	24.3077	-14.062	11	957	53.533	38.583		
64	56	AA21184	15.9249	-8.6167	11	893	70.492	41.308		
					_					
			TE	ST PHASE	D					
38	67	AA21487	14.6186	-7.3336	11	875	98.481	52.558		
41	69	AA21525	20.4166	-11.322	11	911	68.237	45.119		
43	65	AA21568	19.5928	-10.586	11	945	70.923	45.905		
43	68	AA21516	12.4913	-6.1117	11	-,947	110.62	52.072		
46	66	AA21442	19.2808	-10.440	11	912	70.288	45.217		
64	63	AA21379	13.0038	-6.8487	11	771	79.201	40.430		
66	64	AA21433	17.4392	-9.2558	11	897	76.583	46.564		
69	61	ΛΛ21310	17.0889	-10.125	11	932	43.732	30.923		
69	65	AA21401	14.2516	-8.2269	11	913	53.989	30.846		
71	62	AA21333	12.5348	-7.5255	11	938	46.306	25.112 30.939		
76	57 53	AA21215	20.2346	-12.234 -9.8964	11 11	942 962	45.080 49.148	30.939		
82	53	AA21057	16.7398	-7.0704	11	-,704	47,140	30.001		

TABLE 8-4 (cont)

STAGE 2 CONSTANT LOAD TENSILE REGRESSION DATA, P-POLYMER

Age (mo)	Lot	Motor	Intercept	Slope	<u>n</u>	<u>r</u>		100 min Stress
85	51	AA21098	13.2229	-7.9487	11	910	46.083	25.818
89	54	AA21109	13.0395	-7.8006	11	950	46.945	26.014
92	56	AA21166	12.1908	-6.9698	11	973	56.118	28.983

TABLE 8-5

STAGE 3 CONSTANT LOAD SHEAR REGRESSION DATA, P-POLYMER

The regression model used is of the form $\log Y = a + b(\log X)$ where X = shear stress and Y = time to failure.

			TE	ST PIIASE	3			
Age		M -6	T	61	_	_	1 min	100 min
(mo)	<u>Lot</u>	Motor	Intercept	Slope	<u>n</u>	<u>r</u>	Stress	Stress
19	321	8210041	13.1099	-7.6326	7	970	52.194	28.549
23	320	8200023	14.6180	-8.5983	8	985	50.130	29.342
26	819	8190028	13.5860	-8.0018	8	994	49.872	28.049
31	713	7130034	14.3034	-8.3827	8	987	50.852	29.357
38	711	7110051	8.41972	-5.2072	8	- .577	41.394	17.094
			TE	ST PHASE	4			
13	823	8230017	16.4565	-9.6976	12	989	49.771	30.955
13	822	8220007	13.4967	-8.0035	9	987	48.568	27.319
42	724	7240948	10.2445	-6.4912	8	982	37.863	18.626
			TE	ST PHASE	5			
36	713	7130044	15.5476	-9.1274	10	967	50.513	30.498
40	712	7120045	9.62801	-6.0349	12	995	39.390	18.364
44	711	7110035	12.2809	-7.2918	12	981	48.328	25.699
			TE	ST PHASE	6			
14	824	8240032	17.7952	-10.553	12	901	48.555	31.385
19	823	8230028	21.1021	-12.296	12	959	52.025	35.773
29	821	8210034	13.4603	-7.9625	12	987	49.029	27.497
33	820	8200030	12.8859	-7.7398	12	972	46.226	29.497
37	319	8190016	8.96705	-5.3234	12	767	48.359	20.360
			TE	ST PHASE	7			
17	825	8250011	13.0841	-7.5484	12	965	54.121	29.404
44	819	8190011	15.5395	-9.3563	12	977	45.798	27.996
43	713	7130002	13.1199	-8.0411	12	984	42.815	24.148
55	711	7110013	11.0243	~6.5053	12	975	49.515	24.395
56	712	7120003	15.5304	-9.3667	12	973	45.503	27.830
57	724	7240054	11.8401	-7.3638	12	993	40.539	21.691
83 91	712 724	7120013	16.4070	-9.8625	11 11	987	46.086	28.892
71	124	7240054	8.37928	-7.0650	TT	966	29.108	11.343

TABLE 8-5 (cont)

STAGE 3 CONSTANT LOAD SHEAR REGRESSION DATA, P-POLYMER

	TEST PHASE S							
Age (mo)	Lot	Motor	Intercept	Slope	<u>n</u>	r	l min Stress	100 min Stress
20	826	8260007	21.6037	-12.380	11	897	47.565	33.266
31	324	8240028	16.8152	-10.020	11	978	47.666	30.103
37	823	8230008	20.5001	-12.112	11	972	49.265	33.683
42	822	8220014	9.91603	-6.3139	11 11	626 992	37.198 45.803	17.937 28.374
51	820	8200010	15.9720	-9.6165	11	992	43.003	20.3/4
			Ţ	EST PHASE	9			
	007	0070011	10 /102	11 000		001	/7 107	21 000
17	827	8270011	18.4103	-11.003	11	981	47.127	31.009
27	825	8250044	17.1948	-10.095	11	975 980	50.511 48.912	32.008 28.513
51 60	821 819	8210025 3190006	14.4212 12.6020	-8.5362 -7.5430	11 11	990 994	46.846	25.441
64	713	7130002	13.5782	-7.3430 -8.3439	7	988	42.394	24.413
70	712	7120013	11.5089	-7.3055	11	978	37.616	20.026
71	711	7110009	11.8551	-7.4025	11	995	39.948	21.445
, _	,	, 110 ///	11.0331	714023		.,,,	3,1,1	
			т	EST PHASE	A			٠
31	326	8260015	16.8348	-9.7178	11	~.987	53.997	33.617
44	324	8240015	15.4307	-3.9740	11	985	52.413	31.377
53	322	8220027	12.0410	-7.2048	11	988	46.907	24.754
63	320	8200002	11.9315	-6.9638	11	989	51.539	26.616
78	724	7240048	11147	~.26039	11	011	.37317	+.8E-9
			Φ.	EST PHASE	ъ			
			1	ESI FIMSE	ь			
30	327	8270015	15.8682	~9.5560	11	910	45.767	28.265
44	325	8250022	20.1053	-12.027	10	951	46.961	32.021
56	823	8230008	18.5872	~11.022	11	977	48.575	31.985
64	821	8210034	12.8413	-7.7737	11	999	44.864	24.809
71	319	8190038	11.9626	-7.1999	11	996	45.868	24.195
82	711	7110051	12.0442	-7.3969	11	977	42.490	22.798
			Т	EST PILASE	С			
45	826	8260007	16.4749	-9.8431	11	974	47.179	29.550
52	825	8250013	19.5806	-11.705	11	972	47.085	31.770
65	822	8220036	13.8631	-8.2141	11	997	48.722	27.813
75	820	8200023	13.4959	-8.1893	11	990	44.462	25.338

TABLE 8-5 (cont)

STAGE 3 CONSTANT LOAD SHEAR REGRESSION DATA, P-POLYMER

Age (mo)	Lot	Motor	Intercept	Slope	<u>n</u> _	<u>r</u> _	l min Stress	100 min Stress
63 67 77 84 39 96	324 823 821 819 713 711	8240023 8230028 8210019 8190038 7130005 7110040	13.2894 15.2913 10.9339 11.4046 9.98445 10.4116	-7.6100 -8.8622 -6.4095 -6.7231 -5.9224 -6.3070	11 10 11 11 11	969 987 992 988 967 997	55.760 53.142 50.803 49.696 48.515 44.752	30.444 31.605 24.766 25.052 22.293 21.563

TABLE 8-6
STAGE 3 CONSTANT LOAD TENSILE REGRESSION DATA, P-POLYMER

The regression model used is of the form $\log Y = a + b(\log X)$ where X = stress at rupture and Y = time to failure.

			TE	ST PHASE	3			
Age	7.44	Wat an	Tatamana	C1	_	_	1 min	100 min
(mo)	Lot	Motor	Intercept	Slope	n	r	Stress	Stress
21	821	8210003	13.1818	-6.2723	8	422	126.36	60.637
26	320	8200002	38.2547	-20.942	8	885	67.092	53.848
29	819	8190001	15.8395	-7.9918	8	843	95.937	53.917
32	713	7130005	20.2442	-10.700	8	991	77.965	50.693
37	712	7120008	19.6676	-10.424	8	968	77.038	49.523
38	711	7110035	16.8353	-8.4005	8	718	100.95	58.345
			TE	ST PHASE	4			
15	823	8230002	26.1409	-13,928	9	976	75.309	54.107
18	822	8220022	19.5167	-10.212	10	- .950	81.488	51.910
44	724	7250038	19.9856	-11.558	12	 985	53.595	35.982
			TT.	ST PHASE	5			
					_			
38	713	7130005	20.8163	-11.297	12	941	69.594	46.296
41	712	7120016	12.7292	-6.9208	12	333	69.066	35.504
45	711	7110009	17.1434	-9.5384	12	892	62.705	38.692
			TE	ST PHASE	6			
18	824	8240007	18.1508	-9.3510	12	940	87.310	53.356
21	823	8230021	22.1575	-11.484	12	948	84.987	56.912
31	821	8210015	31.6598	-16.991	12	950	72.994	50.665
35	820	8200014	19.1153	-10.265	1.	854	72.820	46.495
40	319	8190001	23.8491	-12.517	12	957	80.428	55.669
			TE	ST PHASE	7			
16	825	8250022	16.7463	-8.6629	11	822	85.725	50.378
43	819	8190038	18,1624	~9.9765	12	966	66.147	41.691
48	713	7130018	19.8043	-10.159	12	822	88.999	56.562
50	712	7120036	15.0582	-7.9836	12	951	76.936	43.213
55	711	7110048	15.7529	-8.4999	12	807	71.333	41.495
57	724	7240019	16.9016	~10.005	12	974	48.895	30.358

өтіс

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

TABLE 8-6 (cont)

STAGE 3 CONSTANT LOAD TENSILE REGRESSION DATA, P-POLYMER

			TE	ST PHASE	3			
Age			2				1 min	100 min
	Lot	Motor	Intercept	Slope	n		Stress	Stress
16	826	8260032	17.1240	-8.8007	11	902	88.257	52.299
29	824	8240042	13.6789	-6.3911	11	837	96.610	49.521
35	823	8230031	18.0888	~9.5898	11	942	76.959	47.611
41	822	8220030	17,9088	~9.4096	11	864	80.029	49.056
49	320	8200037	16.9593	-8.6612	11	969	90.811	53.361
			ΨE	ST PILASE	9			
			11.	of Libror	,			
17	327	8270017	15.3113	~7.7680	11	843	93.555	51.713
33	825	8250013	12.3859	-6.5158	11	782	94.980	46.948
53	821	8210009	17.9556	-9.4548	11	934	79.269	48.705
60	319	3190021	22.4346	-12.313	11	937	66.368	45.660
66	712	7120045	16.9328	-9.9502	11	985	50.321	31.678 49.249
71	711	7110040	26.3446	-14.385	11	961	67.382	49.249
			TI	ST PHASE	A			
26	006	0260061	16.8034	-8.7733	11	746	82.278	48.677
26 45	826 824	8260041 8240023	15.7004	-7.9573	11	670	93.990	52.692
43 51	822	8220045	20.7236	-11.146	11	916	72.318	47.843
63	820	8200021	16.2570	-7.9983	11	798	107.79	60.606
82	724	7240019	10.6739	-6.5243	11	871	43.254	21.354
			TI	EST PHASE	В			
30	827	8270013	28.2432	-15.092	11	953	74.363	54.807
42	825	8250037	21.7257	-11.168	11	978	88.159	58.370
56	823	8230017	24.1691	-12.654	11	925	81.273	56.481
65	821	8210015	25.6292	-13.542	11	984	78.097	55.583
74	819	8190016	22.7572	-12.400	11	937	68.432	47.203
84	711	7110013	21.8461	-12.110	11	992	63.681	43.536
			Tì	EST PHASE	С			
							00 10-	61 000
40	826	8260036	22.7023	-11.555	11	952	92.191	61.888 50.166
50	825	8250025	21.3375	-11.372	11	961	75.210	50.166
67	822	8220022	16.7785	-3.6984	11	871	84.903 66.209	44.530
76	820	8200014	21.1417	-11.610	11	932 947	66.284	41.267
36	712	7120029	17.7009	-9.7182	11	947 965	42.021	25.874
92	724	7240043	15.4176	-9.4967	11	703	42.021	47.074

TABLE 8-6 (cont)

STAGE 3 CONSTANT LOAD TENSILE REGRESSION DATA, P-POLYMER

Age (mo)	Lot	Motor	Intercept	Slope	<u>n</u>	<u>r</u>	1 min Stress	100 min Stress
60	824	8240042	27.2071	-14.777	11	969	69.375	50.799
69	323	8230002	26.6223	-14.521	11	984	68.135	49.618
79	321	8210003	18.6244	-9.7026	11	964	83.084	51.688
86	819	8190006	22.2807	-12.643	11	983	57.849	40.189
38	713	7130036	20.2615	-11.584	11	974	56.123	37.712
96	711	7110013	17.9228	-9.9707	11	974	62.737	40.272

Figure 8-8

TABLE 8-7

!TULTIPLE REGRESSION DATA FOR CONSTANT LOAD SHEAR AND CONSTANT LOAD TENSILE TESTS

The regression model used is of the form log Y = a + b_1 log X_1 + b_2X_2 where Y = failure time in minutes, X_1 = stress in psi, and X_2 = age in months.

	Multiple Regression Data							
	Stage 2		Stage 3					
	Shear	Tensile	Shear	Tensile				
a	11.598	17.857	14.267	18.967				
b 1	-6.7647	-9.5112	-8.1641	-9.5285				
b ₂	-0.0098532	-0.018132	-0.010473	-0.021174				
N	562	585	519	519				
$\sum (x_2)^2$	1584026	1632940	1632850	1652971				
∑ x ₂	26630	28004	26928	26999				
Se	0.73635	0.83416	0.71579	0.95210				
r ²	0.68456	0.69560	0.75344	0.61229				
К	1.712	1.711	1.715	1.715				

CHART 1. Five Percent Casebond Failure During Transportation and Handling. Carton testing indicates a five percent probability of failure if the indicated psi alert limits are sustained for the time corresponding to a selected age.

CHART 2. Five Percent Casebond Failure During Booster Flight. Carton testing indicates a five percent probability of failure if the indicated psi alert load limits are sustained for the time corresponding to a selected age.

CHART 3. Five Percent Casebond Failure During Storage. Carton testing indicates a five percent probability of failure if the indicated psi alert load limits are sustained for the time corresponding to a selected age.

CHART 4. Fifty Percent Casebond Failure During Transportation and Handling. Carton testing indicates a fifty percent probability of failure if the indicated psi alert limits are sustained for the time corresponding to a selected age.

CHART 5. Fifty Percent Casebond Failure During Booster Flight. Carton testing indicates a fifty percent probability of failure if the indicated psi alert load limits are sustained for the time corresponding to a selected age.

CHART 6. Fifty Percent Casebond Failure During Storage. Carton testing indicates a fifty percent probability of failure if the indicated psi alert load limits are sustained for the time corresponding to a selected age.

TABLE 8-8

ADDITIONAL STAGE II LINER BOND TEST DATA

					*Mini-DPT		Percent
Motor		Age			Max	Time	Insulation
Number	Lot	(mo)	Swell Ratio	Gel Filler	Stress	to Max	Moisture
AA21034	052G	82	2.019 2.034	.588	² 51.91	2.268	1.102
AA21048	052G	81	1.899 1.872	.500	53.62	.232	1.094
AA21057	053P	80	1.935 1.978	.515	$^{3}53.16$	³ .409	1.057
AA21070	053P	80	1.720 1.700	.624	$^{2}67.38$	$^{2}.172$.985
AA21442	066 P	45	1.621 1.739	.615	63.83	.047	1.059
AA21460	066P	42	1.726 1.696	.679	³ 95.64	3.087	.379
AA21466	067P	41	1.792 1.806	.6 89	97.20	.118	1.030
AA21487	067P	37	1.617 1.699	.677	86.23	.065	1.145
AA21573	071P	21	1.616 1.581	.663	³ 83.02	3.095	.974
AA21535	071P	19	1.756 1.701	.706	³ 85.48	³ .087	.894
AA21538	072P	19	1.723 1.698	.714	86.47	.128	.832
AA21590	072P	17	1.699 1.681	.696	80.49	.126	1.035
AA21036	051P	86	1.979 1.906	.612	60.39	.264	
AA21098	051P	84	1.710 1.647	.515	47.45	.351	
AA21121	055G	82	1.833 2.000	.553	42.74	.180	
AA21125	055G	82	1.920 1.855	.552	41.25	.209	
AA21201	057P	75	2.039 2.000	.573	49.60	.149	
AA21215	057P	74	1.386 1.835	.621	48.94	.199	
AA21260	059G	71	2.200 2.410	.408	20.97	.67 0	
AA21283	059G	70	1.747 1.671	.570	53.50	.490	
AA21295	060G	69	1.890 1.978	.549	47.59	.109	
AA21321	060G	67	2.120 2.320	.456	28.14	.064	
AA21310	061P	68	1.798 1.848	.564	45.68	.222	
AA21328	061P	66	1.942 2.000	.504	41.30	.366	
AA21083	054P	90	1.798 1.848	.622 .618	62.40	.188	1.504
AA21109	054P	88	1.942 2.000	.603 .624	46.31	.256	1.417
AA21179	058G	81	1.718 1.757	.589 .646	70.36	.096	1.165
AA21210	058G	79	1.820 1.832	.658 .633	56.42	.172	1.143
AA21333	062P	70	1.934 1.895	.647 .651	47.95	.397	1.343
AA21345	062P	69	1.905 1.743	.597 .678	52.68	.187	1.102
AA21363	063P	68	1.783 1.827	.562 .573	56.41	.239	1.097
AA21379	063P	62	1.875 1.901	.685 .686	57.33	. 295	1.085
AA21499	068P	45	1.765 2.085	.670 .696	66.69	.337	. 994
AA21516	068P	42	1.800 1.838	.692 .694	77.46	.122	1.129
AA21525	069P	40	1.770 1.778	.624 .636	57.29	.069	1.053
AA21547	069P	37	1.829 1.833	.606 .689	73.36	.074	1.053

^{*} The mini-DPT data entries are means of four except as indicated by superscript.

TABLE 8-9
ADDITIONAL STAGE III LINER BOND TEST DATA

			*Mini-DPT			
Motor	Age			Max	Time	% Insulation
Number	(mo)	Swell Ratio	Gel Filler	Stress	To Max	Moisture
7110013	82	1.813 1.828	.603 .620	67.90	.222	1.166
7110051	80	1.942 1.805	.641 .755	69.51	.069	.889
8190016	70	1.888 1.928	.625 .607	71.63	.075	.983
8190038	69	1.910 1.840	.618 .581	65.58	.157	.995
8210015	63	1.610 1.778	.627 .619	84.76	.065	1.031
8210034	62	1.900 1.878	.637 .591	77.70	.052	.952
8230008	54	1.782 1.714	.598 .657	94.75	.069	1.011
8230017	54	1.717 1.762	.649 .645	75.38	.054	.899
8250022	42	1.696 1.762	.635 .614	78.98	.062	.991
8250037	40	1.634 1.810	.643 .659	84.45	.067	.976
8270013	28	1.792 1.811	.661 .644	77.95	.054	1.138
8270015	28	1.792 1.832	.628 .603	63.84	.084	.857
7240043	90	1.830 1.821	.545 .565	32.09	.222	.907 .927
7240054	90	2.413 2.014	.510 .647	40.04	.265	.849 .305
7120013	86	1.683 1.699	.682 .694	85.19	.107	1.208 1.108
,				30.00		
7120029	84	1.961 1.677	.623 .633	77.56	.222	.696 .698
8200014	74	1.757 1.844	.666 .686	76.24	.234	.994 1.069
8200023	73	1.845 1.743	.656 .636	78.99	.194	.948 .940
8220022	65	1.730 1.810	.723 .711	74.51	.162	1.078 .922
8220036	63	1.631 1.644	.619 .607	77.52	.174	.927 .955
8250013	50	1.527 1.722	.686 .689	83.09	.117	.964 .910
8250025	48	1.718 1.764	.663 .681	68.29	.184	1.102 1.028
8260007	44	1.717 1.674	.632 .674	75.60	.157	.915 .930
8260036	40	1.820 1.706	.674 .685	93.39	.102	.995 .997
7110013	95	1.739 1.736	.629 .613	71.92	.221	1.032
7110040	94	1.830 1.920	.574 .583	65.91	.165	.941
7130005	88	1.820 1.742	.681 .733	63.73	.138	1.050
7130003	86	1.870 2.010	.588 .559	60.73	.256	.823
8190006	85	1.857 1.913	.632 .606	61.10	.224	.950
8190038	83	1.733 1.745	.625 .618	67.22	.154	.980
0130030	0.0	1./33 1./43	.025 .018	67.22	.134	. 900
8210003	77	1.615 1.606	.649 .687	81.94	.060	
8210019	76	1.768 1.800	.650 .644	75.26	.162	1.160
8230002	68	1.785 1.776	.642 .634	74.32	.068	
8230028	66	1.788 1.760	.655 .644	88.88	.064	
8240023	62	1.918 1.927	.606 .534	87.12	.049	.990
8240042	59	1.766 1.835	.679 .656	72.55	.074	1.811

^{*} The mini-DPT data entries are composed of means of four.

TABLE 8-10

REGRESSION ANALYSIS PARAMETERS FOR DATA OTHER THAN CONSTANT LOAD SHEAR OR CONSTANT LOAD TENSILE

Stage II	Intercept	Slope	_t	N	Sig.
		210606	1 02	20	VC.
Swell Ratio, G-polymer	2.909395	012626	1.82	20	'nS
Swell Ratio, P-polymer	1.651032	.002877	4.61	52	S
Gel Filler, G-polymer	.032976	.006824	2.01	12	NS
Gel Filler, P-polymer	.725352	001583	4.58	36	S
Mini-DPT, Sm, G-polymer	40.322525	1.138383	1.64	10	ХS
Mini-DPT, Sm, P-polymer	95.446258	540248	5.71	26	S
Mini-DPT, Time to Max, G	.790703	007090	0.68	10	ЖS
Mini-DPT, Time to Max, P	.026747	.002972	3.97	26	S
% Insulation Moisture, G	2.111999	012211	0.72	4	NS
% Insulation Moisture, P	.854690	.004330	3.78	20	S
Stage III					
Swell Ratio	1.665063	.001927	2.56	72	S
Gel Filler	.672911	000534	1.91	72	NS
Mini-DPT, Max Stress (Sm)	95.839019	330680	3.29	36	S
Mini-DPT, Time to Max	012176	.002168	4.15	36	S
% Insulation Moisture	1.066858	001165	0.88	45	NS

Note: S is significant and NS is not significant.

TABLE 8-11

TABLE 10. ANALYSIS OF COVARIANCE RESULTS

	Comparisons Between		
	Residual Variances	Trend Line Slopes	Trend Line Elevations
Stage 2 P-polymer vs Stage 3			
Swell Ratio	NS	NS	S
Gel Filler	HS	S	NS
Mini-DPT Maximum Stress	NS	NS	S
Mini-DPT Time to Max Stress	S	NS	S
% Insulation Moisture	NS	S	S
Stage 2 G-polymer vs P-polymer			
Swell Ratio	S	S	S
Gel Filler	NS	S	S
Mini-DPT Maximum Stress	NS	S	NS
Mini-DPT Time to Max Stress	S	NS	ИS
% Insulation Moisture	NS	NS	NS

Note: S means significantly different and NS means not significantly different.

Figure 8-14

Reproduced from best available copy.

SECTION IX

HARDNESS

Shore A durometer readings are taken on dogbone ends prior to tensile testing. The 10 second readings are considered to be more accurate.

There is a significant increase in hardness for all three types of lined cartons (Figures 9-4 to 9-6) and for ANB P unlined cartons (figure 9-2).

TABLE 9-1

HARDNESS

Significance of Regression Slopes

	Shore A	
System	<u> 10 sec</u>	Figure
ANB G Unlined	Sig dec	9-1
ANB P Unlined	Sig inc	9-2
ANT P Unlined	Sig dec	9-3
ANB G Lined	Sig inc	9-4
ANB P Lined	Sig inc	9-5
ANT P Lined	Sig inc	9-6

TABLE 9-2

ANALYSIS OF COVARIANCE COMPARISON OF REGRESSIONS SHORE A 10 SECOND HARDNESS

Lined Vs Unlined		Sig
ANB P-polymer	Residual Variance Slope Elevation	s s s
ANB G-polymer	Residual Variance Slope Elevation	s s s
ANT P-polymer	Residual Variance Slope Elevation	s NS
AVB P Unlined Vs Ant P Lined	Residual Variance Slope Elevation	s s
G-polymer Vs P-polymer		
ATB Lined	Residual Variance Slope Elevation	ns s s
ANB Unlined	Residual Variance Slope Elevation	5 5 5
ANB G Unlined Vs ANT P Unlined	Residual Variance Slope Elevation	ns Ns S
ANB G Lined Vs ANT P Lined	Residual Variance Slope Elevation	ns s s
ANB P-polymer Vs ANT P-polymer		
Lined	Residual Variance Slope Elevation	s NS S
Unlined	Residual Variance Slope Elevation	s s s

NOTE: S means a significant difference and NS means not significant.

Figure 9-2

T

+3.0831738E+00 +6.5335458E-03 +2.8665904E+00

× ۲۵ گو گوئائی

(+5.3362069E-02) SIGNIFICANT SIGNIFICANT SIGNIFICANT = 418

SIGNIFICANCE OF F = SIGNIFICANCE OF F = SIGNIFICANCE OF R = SIGNIFICANCE OF L = SIGNIFICANCE OF L = SIGNIFICANCE OF FREEDOM = S = AMB TEMP/AH

TEMP/RH

AMB

Į,

CONDITIONS

TEST

STORAGE CONDITIONS

00.08

+6.6706391E+01 +3.7097474E-01 +8.1673980E+00 420

L C - Z

١

16.00

9 - 8

SHOBE

A

MEASURE 00.5

1 70 00.09

PARAMETER

OD ONIT

10 SECOND

•

DISTRIBUTION

	NR COPIES
OOALC	
MMWRBA MMWRAM	1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
SAMSO, Norton AFB, CA 92409 Attn: Mr Sanford Collins, Bldg 562, Room 613	1
AFPRO, Aerojet, Sacramento, CA 95813	1
Aerojet Strategic Propulsion Company - P.O. Box 15699C, Sacramento, CA 95813 Attn: Mr. R. Kiefner for Mr. Stan Lake	1
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGBM) Offutt AFB, NB 68113	1
U. S. Naval Ordnance Station, Indian Head, MD 20460 M. E. Loman, Code 3012A4 Air Launched Weapons Branch Weapons Quality Engineering Center	1
CPIA, Johns Hopkins University Applied Physics Lab John Hopkins Road, Laurel, MD 20810 Attn: Mr. Ronald D. Brown	1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
	3. RECIPIENT'S CATALOG NUMBER			
MANPA Report Nr 473(82) AD-A170429				
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
Propellant Surveillance Report	Test Results - Semi-Annual			
ANB-3066 Propellant	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)	B. CONTRACT OR GRANT NUMBER(s)			
ELIZABETH M. DALABA				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Propellant Analysis Laboratory	AND THOM SHIP HOMBERS			
Directorate of Maintenance				
00-ALC Hill AFB, UT 84056	12. REPORT DATE			
11. CONTROLLING OFFICE NAME AND ADDRESS Airmunitions Management Division	August 1982			
Directorate of Materiel Management OO-ALC Hill AFB, UT 84056	13. NUMBER OF PAGE			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)			
	Unclassified			
	154. DECLASSIFICATION DOWNGRADING			
16. DISTRIBUTION STATEMENT (of this Report)	 			
Approved for public release, distribution unlimited				
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
Solid Propellant Minuteman				
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)				
This report contains test results from LGM-30 F and G, Stage II and Stage III propellant. Data are shown in regression plots, special types of plots such as those of gradient stress relaxation and constant loas testing. Occasionally, data are presented in Tabular form.				

gradient stress relaxation modulus.

The differences between polymers used in the propellant are given in the analysis of covariance tables. Graphically, the differences are most evident in