

Figure 2: Sensitivity of a  $\mu \to e$  conversion in  $^{27}$ Al experiment that can probe a normalized capture rate of  $10^{-16}$  and  $10^{-18}$ , and of a  $\mu \to e\gamma$  search that is sensitive to a branching ratio of  $10^{-13}$  and  $10^{-14}$ , to the new physics scale  $\Lambda$  as a function of  $\kappa$ , as defined in Eq. (2). Also depicted is the currently excluded region of this parameter space.

A model independent comparison between the reach of  $\mu \to eee$  and  $\mu \to e$  conversion in nuclei is a lot less straight forward. If the new physics is such that the dipole-type operator is dominant ( $\kappa \ll 1$  in Figures 2 and 3), it is easy to see that near-future prospects for  $\mu \to e$  conversion searches are comparable to those for  $\mu \to eee$ , assuming both can reach the  $10^{-16}$  level.  $\mu \to e$  conversion searches will ultimately dominate, assuming these can reach beyond  $10^{-17}$ , and assuming  $\mu \to eee$  searches "saturate" at the  $10^{-16}$  level. Under all other theoretical circumstances, keeping in mind that  $\kappa$  and  $\Lambda$  in Eqs. (2,3) are *not* the same, it is impossible to unambiguously compare the two CLFV probes.

The discussions above also serve to illustrate another "feature" of searches for CLFV violation. In the case of a positive signal, the amount of information regarding the new physics is limited. For example, a positive signal in a  $\mu \to e$  conversion experiment does not allow one to measure either  $\Lambda$  or  $\kappa$  but only a function of the two. In order to learn more about the new physics, one needs to combine information involving the rate of a particular CLFV process with other observables. These include other CLFV observables (e.g., a positive signal in  $\mu \to e\gamma$  and  $\mu \to eee$  would allow one to measure both