RMAD для SGD без момента

Выполнил: Плетнев Никита

Выпишем алгоритм SGD без момента (эквивалентен SGD с моментом, равным 0).

- 1. Вход: начальное значение параметров \mathbf{w}_0 , скорости обучения α (возможно, разные для каждого шага), функция потерь $L(\mathbf{w}, \theta, t)$.
- 2. Инициализировать $\mathbf{v}_1 = 0$;
- 3. На каждом шаге при t = 1..T:
 - (a) Вычислить градиент $g_t \sim \nabla_{\mathbf{w}} L(\mathbf{w}_t, \theta, t)$;
 - (b) Вычислить скорость $\mathbf{v}_t = -g_t$
 - (c) Обновить параметры $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t \mathbf{v}_t$;
- 4. Выход: обученные параметры \mathbf{w}_T .

Перепишем этот алгоритм с применением обратного дифференцирования.

- 1. Вход: начальное значение параметров \mathbf{w}_T , скорости \mathbf{v}_T , скорость обучения α , функции потерь $L(\mathbf{w}, \theta, t)$ и $f(\mathbf{w})$.
- 2. Инициализировать $d\mathbf{v} = 0$, $d\theta = 0$, $d\alpha = 0$;
- 3. Инициализировать $d\mathbf{w} = \nabla_{\mathbf{w}} f(\mathbf{w}_T)$
- 4. На каждом шаге при t = T..1:
 - (a) $d\alpha_t = d\mathbf{w}^T \mathbf{v}_t$;
 - (b) $\mathbf{w}_{t-1} = \mathbf{w}_t \alpha_t \mathbf{v}_t$;
 - (c) $g_{t-1} \sim \nabla_{\mathbf{w}} L(\mathbf{w}_{t-1}, \theta, t-1)$
 - (d) $v_{t-1} = -g_{t-1}$
 - (e) $d\mathbf{v} = \alpha_t d\mathbf{w}$
 - (f) $d\mathbf{w} = d\mathbf{w} d\mathbf{v}\nabla_{\mathbf{w}}\nabla_{\mathbf{w}}L(\mathbf{w}_t, \theta, t)$
 - (g) $d\theta = d\theta d\mathbf{v}\nabla_{\theta}\nabla_{\mathbf{w}}L(\mathbf{w}_t, \theta, t)$
- 5. Выход: градиент $f(\mathbf{w}_t$ по отношению к \mathbf{w}_1 , \mathbf{v}_1 , α и θ .

Использование обратного дифференцирования позволяет производить вычисления со сложностью O(T). Взяв в качестве θ вектор гиперпараметров \mathbf{h} , получаем требуемый алгоритм RMAD.