Algebraic Theory I: Homework II

Thomas Fleming

Sun 26 Sep 2021 22:11

Problem (1). Let G_1 , G_2 be finite groups with $gcd(|G_1|, |G_2|) = 1$. Show that $\operatorname{Aut}(G_1 \times G_2) \simeq \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2).$

Solution. We induce a bijective correspondence. Let $\alpha \in \operatorname{Aut}(G_1 \times G_2)$, $x \in G_1$ and $y \in G_2$. Then, let $\alpha(x,1) = (a,b)$ and $\alpha(1,y) = (c,d)$. We see,

$$\alpha \left((x,1)^{|G_1|} \right) = \alpha \left(x^{|G_1|}, 1 \right)$$
$$\left((a,b)^{|G_1|} \right) = \alpha (1,1)$$
$$\left(a^{|G_1|}, b^{|G_1|} \right) = (1,1)$$
$$= \left(1, b^{|G_1|} \right)$$

Hence, as α is a bijection, we must have $b^{|G_1|} = 1$ and as $|G_1|, |G_2|$ are coprime this implies b = 1. Similarly, we see c = 1. Hence,

$$\alpha((x,1) \cdot (1,y)) = \alpha((x,1)) (\alpha((1,y)))$$
$$\alpha(x,y) = (a,1) \cdot (1,d)$$
$$= (a,d)$$

Then, we note that as $G_1 \simeq G_1 \times \{1\}$ and $G_2 \simeq \{1\} \times G_2$, we have

$$\alpha(x,1) \in \operatorname{Aut}(G_1 \times \{1\}) \simeq \operatorname{Aut}(G_1)$$
 and $\alpha(1,y) \in \operatorname{Aut}(\{1\} \times G_2) \simeq \operatorname{Aut}(G_2)$

Hence, let us define $\alpha_1: G_1 \to G_1$ and $\alpha_2: G_2 \to G_2$ to simply be the projection of α into their respective coordinates. We see by the preceding argument that $\alpha_1 \in \operatorname{Aut}(G_1)$ and $\alpha_2 \in \operatorname{Aut}(G_2)$.

Hence, let Φ : Aut $(G_1 \times G_2) \to \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)$, $\alpha \mapsto (\alpha_1, \alpha_2)$. Let $\alpha, \beta \in \text{Aut}(G_1 \times G_2)$ and suppose $\Phi(\alpha) = \Phi(\beta)$. Then, we have $\Phi(\alpha) = \Phi(\beta)$ $(\alpha_1, \alpha_2) = (\beta_1, \beta_2) = \Phi(\beta)$, hence $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$, so we have

$$\alpha \left({x,y} \right) = \alpha \left({x,1} \right) \cdot \alpha \left({1,y} \right) = \left({\alpha _1 \left(x \right),\alpha _2 \left(y \right)} \right) = \left({\beta _1 \left(x \right),\beta _2 \left(y \right)} \right) = \beta \left({x,1} \right)\beta \left({1,y} \right) = \beta \left({x,y} \right)$$

for all $x \in G_1$, $y \in G_2$, so $\alpha = \beta$ and Φ is an injection. Now, let $(\alpha_1, \alpha_2) \in$ Aut $(G_1) \times$ Aut (G_2) and we define $\alpha : G_1 \times G_2 \to G_1 \times G_2, (x, y) \mapsto (\alpha_1(x), \alpha_2(y)).$ We see α_1, α_2 are bijective, hence α is bijective. Furthermore,

$$\begin{split} \alpha\left(\left(a,b\right)\left(c,d\right)\right) &= \alpha\left(ac,bd\right) \\ &= \left(\alpha_{1}\left(ac\right),\alpha_{2}\left(bd\right)\right) \\ &= \left(\alpha_{1}\left(a\right)\alpha_{1}\left(c\right),\alpha_{2}\left(b\right)\alpha_{2}\left(d\right)\right) \\ &= \left(\alpha_{1}\left(a\right),\alpha_{2}\left(b\right)\right)\left(\alpha_{1}\left(c\right),\alpha_{2}\left(d\right)\right) \\ &= \alpha\left(a,b\right)\alpha\left(c,d\right) \end{split}$$

Hence, α is a homomorphism, so $\alpha \in \operatorname{Aut}(G_1 \times G_2)$. Hence, Φ is a bijection. Lastly, we show Φ is a homomorphism,

$$\begin{split} \Phi\left(\alpha\beta\right) &= \left(\alpha_{1}\beta_{1}, \alpha_{2}\beta_{2}\right) \\ &= \left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right) \\ &= \Phi\left(\alpha\right)\Phi\left(\beta\right). \end{split}$$

So, Φ is an isomorphism, so Aut $(G_1 \times G_2) \simeq \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)$.

Problem (2). Let $n \ge 1$ be an integer. For $x \in \mathbb{Z}$, denote $\overline{x} = x + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$ and let $(\mathbb{Z}/n\mathbb{Z})^{\times} = {\overline{x} : x \in \mathbb{Z}, \gcd(x, n) = 1}$.

- 1. Show that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is an abelian multiplicative group.
- 2. Show that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Solution. 1. First, we show multiplication is well defined. Let $a, b \in \mathbb{Z}$, hence $an, bn \in n\mathbb{Z}$ and we see for $x, y \in \mathbb{Z}$, $x + an \in \overline{x}$ and $y + bn \in \overline{y}$. Then, we have

$$(x+an) \cdot (y+bn) = xy + (ay+bx) n + abn^{2}$$
$$= xy + n (ay+bx+abn)$$
$$\in xy + n\mathbb{Z}$$

And, as x,y are coprime to n, we see $\gcd(xy,n)=1$ hence we have $\overline{xy}\in(\mathbb{Z}/n\mathbb{Z})^{\times}$. Now, note that $\overline{1}=1+n\mathbb{Z}\in(\mathbb{Z}/n\mathbb{Z})^{\times}$ as 1 is coprime to all numbers and $\overline{1x}=\overline{1x}=\overline{x1}=\overline{x1}=\overline{x}$, so $\overline{1}$ is the identity. Now, recall that there is a linear combination $ax+bn=\gcd(x,n)=1$, hence we have that $ax=xa=1-bn\in 1+n\mathbb{Z}=\overline{1}$, hence $\overline{a}=\overline{x}^{-1}$, we note that as $a\mid 1-bn$, we have $\gcd(a,n)=1$, so $\overline{a}\in(\mathbb{Z}/n\mathbb{Z})^{\times}$, hence inverses exist and are well defined. Next, we show associativity.

$$\begin{split} \left(\overline{x}\cdot\overline{y}\right)\overline{z} &= \overline{x}\overline{y}\cdot\overline{z} \\ &= \overline{x}y\overline{z} \\ &= \overline{x}\cdot\overline{y}\overline{z} \\ &= \overline{x}\left(\overline{y}\cdot\overline{z}\right). \end{split}$$

Lastly, let us determine commutativity,

$$\overline{x} \cdot \overline{y} = \overline{xy}$$

$$= xy + n\mathbb{Z}$$

$$= yx + n\mathbb{Z}$$

$$= \overline{yx}$$

$$= \overline{y} \cdot \overline{x}$$

Hence, $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is an abelian group under multiplication.

2. Let $x \in \mathbb{Z}/n\mathbb{Z}$ be a generator and $\varphi \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ be an automorphism. We wish to induce a correspondence between each φ and each $0 \le m < n$ such that $\gcd(m,n)=1$, m being a congruence class in $(\mathbb{Z}/n\mathbb{Z})^{\times}$. First, note that all automorphisms of $\mathbb{Z}/n\mathbb{Z}$ amount to fixing a generator and mapping it to each other generator. Hence a generator $x \mapsto y = x^a$, $y \in \mathbb{Z}/n\mathbb{Z}$ being another generator. We see $\gcd(a,n)=1$, else y would not be a generator, hence we have each φ corresponds to an $a \nmid n$, denote these automorphisms by φ_a , $1 \le a < n$, $\gcd(a,n)=1$. Then, define a bijective correspondance $\kappa : \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$, $\varphi_a \mapsto \overline{a}$. First, we

show this is a homomorphism,

$$\kappa(\varphi_a) \kappa(\varphi_b) = \overline{a} \cdot \overline{b}$$

$$= \overline{ab}$$

$$= \kappa(\varphi_{ab})$$

$$= \kappa(x^{ab})$$

$$= \kappa(x^a x^b)$$

$$= \kappa(\varphi_a \varphi_b)$$

Next, we show bijection. As each gcd (a,n)=1 yields an autmorphism, we see κ is surjective and as each automorphism is completely determined by a, we see a given φ_a corresponds to only one $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ we have κ is injective. Thus, κ is an isomorphism, so we have Aut $(\mathbb{Z}/n\mathbb{Z}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$

Problem (3). Let $H = \langle x \rangle \simeq C_2$ and $N = \langle y \rangle \simeq C_{15}$ be cyclic groups generated by $x \in H$ and $y \in N$ respectively.

- 1. Show that Aut $(C_{15}) \simeq C_2 \times C_4$.
- 2. Let $\alpha: H \to \operatorname{Aut}(N)$ be a homomorphism and let $\alpha(x)(y) = y^r$ with $r \in \{0, 1, \dots, 14\}$. What possible values can r take?
- 3. For each possible value of α from item 2 determine which of the following four groups is isomorphic to $N \rtimes_{\alpha} H$: $C_{30}, D_{15}, C_3 \times D_5, C_5 \times S_3$.

Solution. 1. Note that as $15 = 3 \cdot 5$, we have $C_{15} \simeq C_3 \times C_5$, so by problem 1, Aut $(C_{15}) = \text{Aut}(C_3) \times \text{Aut}(C_5) = C_2 \times C_4$.

- 2. Recall from problem 2 that all automorphisms of a cyclic group $C_n = \mathbb{Z}/n\mathbb{Z}$ amount to mapping generators to generators $y \mapsto z = y^a$, and we see as z is a generator that $a \nmid n$. Hence, the only possible r values are those coprime to 15: $r \in \{1, 2, 4, 7, 8, 11, 13, 14\}$.
- 3. If r=1, we see $\alpha_1(x)=y^1=y$ is simply the identity automorphism, hence $C_2 \rtimes_{\alpha} C_{15} = C_2 \times C_{15} = C_{30}$. If r=14, we see elements of the form (y^a,x) have $(y^a,x)^2=(y^{15a},1)=(1,1)$ and elements of the form $(y^a,1)$ have $(y^a,1)^{15}=(y^{15a},1)=(1,1)$. Lastly, we have

$$(y^{a}, x) (y^{b}, 1) (y^{a}, x)^{-1} = (y^{a}, x) (y^{b}, 1) (y^{a}, x)$$

$$= (y^{a}, x) (y^{b+a}, x)$$

$$= (y^{a+14(b+a)}, 1)$$

$$= (y^{15b}y^{14a}, 1)$$

$$= (y^{14a}, 1)$$

$$= (y^{a}, 1)^{-1}$$

Hence, when r = 14, $N \rtimes_{\alpha} H \simeq D_{15}$

Next, the case r=2. Note that $C_5 \times S_3$ is the only nonabelian group with an element of order 10 out of the possibilities and as ord (y,x)=10 and $(y^2,x)(y^3,1)=(y^8,x)\neq (y^5,x)=(y^3,1), (y^2,x)$ we have r=2 produces a nonabelian group, hence for r=2 we have $N\rtimes_{\alpha}H\simeq C_5\times S_3$.

Similarly, for the case r = 8 we have ord (y, x) = 10 and $(y, x)(y, 1) = (y^9, x) \neq (y^2, x) = (y, 1)(y, x)$ so r = 8 produces a nonabelian group, hence $N \rtimes_{\alpha} H \simeq C_5 \times S_3$.

Again, for the case r=11 we have $\operatorname{ord}(y,x)=10$ and $(y,x)(y,1)=(y^{12,x})\neq (y^2,x)=(y,1)(y,x)$, hence r=11 produces a nonabelian group, so we have $N\rtimes_{\alpha}H=C_5\times S_3$.

Now, for the case r=4 note that $C_3\times D_5$ is the only nonabelian group with an element of order 6 out of the possibilities and as ord (y,x)=6 and $(y^2,x)(y^3,1)=(y^{14},x)\neq (y^5,1)=(y^3,1)(y^2,x)$ we see r=4 produces a nonabelian group, hence for r=4 we have $N\rtimes_{\alpha}H\simeq C_3\times D_5$.

Similarly, we have for r = 7, ord $(y^5, x) = 6$ and $(y, x)(y, 1) = (y^8, x) \neq (y^2, x) = (y, 1)(y, x)$. Hence, for r = 7 $N \rtimes_{\alpha} H \simeq C_3 \times D_5$.

Lastly, note that when r=13, we have ord (y,x)=30 and as C_{30} is the only group under consideration of order 30, we have $N \rtimes_{\alpha} H \simeq C_{30}$.

Problem (4). Show there is no simple group of order 5103.

Solution. Let G be a simple group with $|G| = 5103 = 3^6 \cdot 7$. Then, note the congruence conditions of sylows theorem paired with G being simple implies the number of sylow 3-groups, $n_3 = 7$. Hence, there exists a homomorphism $\alpha: G \to S_7$ with the kernel being a normal subgroup. As G is simple, we know $\ker(\alpha) = \{1\}$. So, we have G being isomorphic to a subgroup of S_k , hence $|G| \mid |S_k|$, implying $5103 \mid 5040 = 7!$. $\mbox{$\frac{1}{2}$}$. Hence, $n_3 = 1$ and we see G is not simple.

Problem (5). Show there is no simple group of order 4851.

Solution. Let G be a simple group of order $4851 = 3^2 \cdot 7^2 \cdot 11$ and let n_3, n_{11} be the number of sylow 3-groups and sylow 11-groups in G respectively. Then, we find by sylows theorem $n_3 = 7$ or 49 and $n_{11} = 3^2 \cdot 7^2 = 441$. Hence, let us first assume $n_3 = 7$ and let Q be a sylow 3-group. We find $|N_G(Q)| = 3^2 \cdot 7 \cdot 11$. Let P be an 11-group of $N_G(Q)$ and m_{11} to be the number of sylow 11-groups in $N_G(Q)$. We see $m_{11} \mid 3^2 \cdot 7$ and $m_{11} \equiv 1 \pmod{11}$, so $m_{11} = 1$. Hence, $P \subseteq N_G(Q)$ and as P is an 11-group of G, we find $\langle N_G(Q), P \rangle \subseteq N_G(P)$. So, $3^2 \cdot 7 \cdot 11 \mid |N_G(P)|$. Similarly, if $n_3 = 49$, let Q be a sylow 3-group of G then we find $|N_G(Q)| = 3^2 \cdot 11$. Let P be a sylow 11-group of $N_G(Q)$, and we see by the congruence conditions that once again, the number of sylow 11-groups in $N_G(P)$, $m_{11} = 1$, hence $P \subseteq N_G(Q)$. And, as P is a sylow 11-group of G, we find $\langle N_G(Q), P \rangle \subseteq N_G(P)$ implies $3^2 \cdot 11 \mid |N_G(P)|$. Then, As $3 \mid |N_G(P)|$ in either case and P is a sylow 11-group in G, with $3^2 \mid |G|$ we find $3^2 \nmid |G| \cdot N_G(P)| = n_{11} \cdot \frac{1}{2}$. Hence, $n_{11} = 1$, so G is simple.