Variables aléatoires discrètes infinies

Exercice 1. (*) Dans une verrerie, on fabrique des objets en verre qui admettent en moyenne 3 défauts. La probabilité du nombre de défauts par objet est déterminée par une loi de Poisson. Calculer la probabilité pour qu'un objet :

- a) ne contienne aucun défaut ;
- b) contienne 2 défauts au plus.

Corrigé:

D'après l'énoncé, X suit la loi de Poisson et a pour moyenne 3. Comme, pour la loi de Poisson, la moyenne est égale au paramètre, X suit la loi $\mathcal{P}(3)$.

a)
$$\mathbb{P}(X=0) = e^{-3} \approx 0.05$$
.

b)
$$\mathbb{P}(X \le 2) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \mathbb{P}(X = 2)$$
, soit
$$\mathbb{P}(X \le 2) = e^{-3} \left(1 + 3 + \frac{9}{2} \right) = \frac{17}{2} e^{-3} \approx 0,42.$$

Exercice 2. (*) Sachant que le nombre moyen de communications téléphoniques reçues par un standard entre 10h et 11h est de 1,8 par minute, et que le nombre X d'appels reçus par minute est une variable aléatoire qui suit une loi de Poisson, calculer la probabilité pour qu'entre 10h53 et 10h54 il y ait aucun appel; 1 appel; 2 appels; au moins 2 appels; plus de 2 appels; 2, 3 ou 4 appels.

Corrigé:

X suit la loi $\mathcal{P}(1,8)$. $\mathbb{P}(X=0)=e^{-1,8}\approx 0,165,\, \mathbb{P}(X=1)=1,8e^{-1,8}\approx 0,298,\, \mathbb{P}(X=2)=1,165,\, \mathbb{P}(X=1)=1,165,\, \mathbb{P}(X=1)=1,$ $\frac{1.8^2}{2}e^{-1.8}\approx 0.268.$

$$\begin{split} \mathbb{P}(X \geqslant 2) &= 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1) \approx 0,537. \\ \mathbb{P}(X > 2) &= \mathbb{P}(X \geqslant 2) - \mathbb{P}(X = 2) \approx 0,269 \\ \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) &= \mathbb{P}(X = 2) \left(1 + \frac{1,8}{3} + \frac{1,8^2}{12}\right) \approx 0,501. \end{split}$$

Exercice 3. (*) Le nombre de paquets d'une marque de biscuits vendus quotidiennement dans un magasin est une variable aléatoire X définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ modélisant la production et qui suit une loi de Poisson de paramètre $\lambda > 0$. De plus, on a $\mathbb{P}(X = 5) = \mathbb{P}(X = 6)$.

- a) Déterminer λ .
- b) Le prix d'un paquet est deux euros. Soit Y la variable retournant le nombre d'euros que rapporte la vente journalière des paquets de biscuits. Exprimer Y en fonction de X et calculer $\mathbb{E}(Y)$ et Var(Y).

a) On a donc
$$\frac{\lambda^5}{5!} = \frac{\lambda^6}{6!} = \frac{\lambda}{6} \frac{\lambda^5}{5!}$$
 (les $e^{-\lambda}$ se simplifient). Donc, $\lambda = 6$

b) On a donc Y=2X, ce qui fait que $\mathbb{E}(Y)=2\mathbb{E}(X)=2\lambda$, donc $\mathbb{E}(Y)=12$ et $\mathrm{Var}(Y)=12$ $2^2 \operatorname{Var}(X)$, soit $\overline{\operatorname{Var}(Y) = 24}$

Exercice 4. (*) On considère une variable aléatoire entière Y dont la loi de probabilités est définie, pour tout $m \in \mathbb{N}$, par $P(Y = m) = \frac{2}{3^{m+1}}$. Déterminer l'espérance et la variance de Y.

Corrigé : On a donc $Y(\Omega) = \mathbb{N}$ et, pour $m \in \mathbb{N}$, $\mathbb{P}(Y = m) = \frac{2}{3} \times \left(\frac{1}{3}\right)^m$. On reconnaît ainsi la loi géométrique sur \mathbb{N} , et Y suit la loi $\mathcal{G}_0\left(\frac{2}{3}\right)$.

D'après le résultat vu en cours, $\mathbb{E}(Y) = \frac{1}{2}$ et $\mathrm{Var}(Y) = \frac{3}{4}$ car, pour une loi $\mathcal{G}_0(p)$, l'espérance vaut $\frac{q}{p}$ et la variance $\frac{q}{p^2}$, avec q = 1 - p.

Exercice 5. (**) Soit X une variable aléatoire à valeurs dans \mathbb{N}^* , telle que, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X = n) = \lambda 3^{-n}$.

- a) Déterminer λ .
- b) X a-t-elle plus de chances d'être paire ou d'être impaire ?

Corrigé:

a) La famille $(\{X=n\})_{n\in \mathbb{N}}$ est un système complet d'événements car $X(\Omega)\subset \mathbb{N}^*$, donc

$$1 = \sum_{n=1}^{+\infty} \mathbb{P}(X = n) = \lambda \sum_{n=1}^{+\infty} 3^{-n} = \frac{\lambda}{3(1 - \frac{1}{3})} = \frac{\lambda}{2},\tag{1}$$

ce qui fait que $\lambda = 2$.

b) On a $\{X \in 2\mathbb{N}\} = \bigcup_{n=0}^{+\infty} \{X = 2n\}$, les évènements de la réunion étant incompatibles deux à deux. Dès lors

$$\mathbb{P}(X \in 2\mathbb{N}) = \sum_{n=0}^{+\infty} \mathbb{P}(X = 2n) = 2\sum_{n=0}^{+\infty} 3^{-2n} = \frac{2}{9}\sum_{n=1}^{+\infty} \left(\frac{1}{9}\right)^n$$
$$= \frac{2}{9}\frac{1}{1 - \frac{1}{9}} = \frac{2}{9} \times \frac{9}{8} = \frac{1}{4}.$$

Donc, la probabilité que X soit impaire est $1-\frac{1}{4}=\frac{3}{4}$ et X a plus de chance d'être impaire.

Exercice 6. (**) Soit $\lambda > 0$ et X une variable aléatoire suivant la loi de Poisson de pmètre λ . Montrer que X a plus de chances de retourner une valeur paire plutôt qu'une valeur impaire.

Corrigé:

On a $\{X \in 2\mathbb{N}\} = \bigcup_{n=0}^{+\infty} \{X = 2n\}$, les évènements de la réunion étant incompatibles deux à deux, donc

$$\mathbb{P}(X \in 2\mathbb{N}) = \sum_{n=0}^{+\infty} \mathbb{P}(X = 2n) = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{2n}}{(2n)!} = e^{-\lambda} \mathrm{ch} \lambda.$$

De même, la probabilité que X prenne une valeur impaire est $e^{-\lambda}\sum_{n=0}^{+\infty}\frac{\lambda^{2n+1}}{(2n+1)!}=e^{-\lambda}{\rm sh}\lambda$. Or, $e^{-\lambda}{\rm ch}\lambda-e^{-\lambda}{\rm sh}\lambda=e^{-2\lambda}>0$, d'où le résultat.

Exercice 7. (**) Une pièce équilibrée est lancée jusqu'à ce que Pile apparaisse. Quelle est la probabilité pour que le nombre de lancers nécessaires soit pair ?

Corrigé:

Soit A_i l'événement : "on obtient Face au i-ème lancer". Soit B_n l'évènement : "les lancers s'arrêtent au n-ième, où on a obtenu Pile". On a $B_1 = \overline{A_1}$ et $B_n = \bigcap_{i=1}^{n-1} A_i \bigcap \overline{A_n}$. L'indépendance des lancers et leur équiprobabilité font que $\mathbb{P}(B_n) = (1 - \mathbb{P}(A_n) \prod_{i=1}^{n-1} \mathbb{P}(A_i) = \left(\frac{1}{2}\right)^n$ (y compris si n=1). Si C est l'événement : "il faut un nombre pair de lancers", on a $C = \bigcup_{n=1}^{+\infty} B_{2n}$, les événements étant incompatibles deux à deux, donc

$$\mathbb{P}(C) = \sum_{n=1}^{+\infty} \mathbb{P}(B_{2n}) = \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{2n} = \frac{1}{4} \frac{1}{1 - 1/4} = \frac{1}{3}.$$

On notera que la probabilité que les lancers ne s'arrêtent pas est $1 - \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 0$, donc la probabilité pour que le nombre de lancers nécessaires soit impair est $\frac{2}{3}$.

On peut aussi dire que (au vu de l'indépendance) le nombre X de lancers nécessaires pour obtenir Pile suit une loi géométrique de paramètre 1/2, c'est-à-dire que l'on a $\mathbb{P}(X=n)=\frac{1}{2}\left(\frac{1}{2}\right)^{n-1}=\left(\frac{1}{2}\right)^n$. L'évènement cherché est $\bigcup_{n=1}^{+\infty}\{X=2n\}$.

Donc, avec les incompatibilités deux à deux, la probabilité cherchée est

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{2n} = \frac{1}{4} \frac{1}{1 - 1/4} = \frac{1}{3}.$$

Exercice 8. (**) Trouver la loi de X quand $X(\Omega) = \mathbb{N}$ et $\mathbb{P}(X = n) = \frac{4}{n}\mathbb{P}(X = n - 1)$ pour tout $n \in \mathbb{N}^*$.

Corrigé:

On pose $p_n = \mathbb{P}(X = n)$ pour tout $n \in X(\Omega)$.

Par télescopage multiplicatif, on a $p_n = \frac{4^n}{n!}p_0$.

De plus,
$$\sum_{n=0}^{+\infty} p_n = 1 = p_0 e^4$$
, donc $p_0 = e^{-4}$ et $X \hookrightarrow \mathcal{P}(4)$.

Exercice 9. (***) Trouver la loi de X dans les cas suivants.

- a) $X(\Omega)=\mathbb{N}^*$ et il existe $p\in]0,1[$ tel que $\mathbb{P}(X=n)=p\mathbb{P}(X\geqslant n)$ pour tout $n\geqslant 1$.
- b) $X(\Omega) = \mathbb{N}$ et $4\mathbb{P}(X = n + 2) = 5\mathbb{P}(X = n + 1) \mathbb{P}(X = n)$ pour tout $n \in \mathbb{N}$.

Corrigé:

On pose $p_n = \mathbb{P}(X = n)$ pour tout $n \in X(\Omega)$.

a) On a $\{X \ge n\} = \{X = n\} \cup \{X \ge n+1\}$ pour tout $n \in \mathbb{N}$, les deux évènements de la réunion étant incompatibles.

Donc,
$$\mathbb{P}(X \geqslant n) = p_n + \mathbb{P}(X \geqslant n+1)$$
, soit, en multipliant par p ,

$$p_n = pp_n + p_{n+1}.$$

Il s'ensuit que $p_{n+1} = (1-p)p_n$ pour tout $n \in \mathbb{N}^*$. La suite $(p_n)_{n\geqslant 1}$ est donc géométrique de raison 1-p, soit

$$p_n = (1 - p)^{n - 1} p_1.$$

On a
$$\mathbb{P}(X \geqslant 1) = 1$$
 car $X(\Omega) = \mathbb{N}^*$, donc $p_1 = p$ et $X \hookrightarrow \mathcal{G}(p)$

b) On a une suite récurrente linéaire d'ordre 2 dont l'équation caractéristique est $4r^2-5r+1=0=(4r-1)(r-1)$. Il en résulte qu'il existe $(\alpha,\beta)\in\mathbb{R}^2$ avec $p_n=\alpha+\beta\left(\frac{1}{4}\right)^n$ pour tout $n\in\mathbb{N}$. $p_n\to\alpha$ et la série $(\sum p_n)$ converge, donc $\alpha=0$. Plus précisément, $\sum_{n=0}^{+\infty}p_n=1=\frac{\beta}{1-1/4}=\frac{\beta}{3}$, donc $\beta=\frac{3}{4}$. On a donc $(X+1)(\Omega)=\mathbb{N}^*$ avec $\mathbb{P}(X+1=n)=\mathbb{P}(X=n-1)=\frac{3}{4}\left(1-\frac{3}{4}\right)^{n-1}$ pour tout $n\in\mathbb{N}^*$. Finalement, $X+1\hookrightarrow\mathcal{G}(1/4)$.

Exercice 10. (**) Soit X une variable aléatoire de loi géométrique de paramètre p et soit $M \in \mathbb{N}^*$. Déterminer les lois de $Z = \min(X, M)$ et de $Y = \max(X, M)$.

Corrigé:

$$Z(\Omega)=\{1,\cdots,M\}$$
 avec, pour $k\leqslant M-1, \mathbb{P}(Z=k)=\mathbb{P}(X=k)=pq^{k-1}$ et

$$\mathbb{P}(Z=M) = \mathbb{P}(X \geqslant M) = \sum_{k=M}^{+\infty} \mathbb{P}(X=k) = \sum_{k=M}^{+\infty} pq^{k-1} = p\frac{q^{M-1}}{1-q} = q^{M-1}.$$
 (2)

$$Y(\Omega)=\{M,M+1,\cdots\}$$
 avec, pour $k>M$, $\mathbb{P}(Y=k)=\mathbb{P}(X=k)=pq^{k-1}$ et

$$\mathbb{P}(Y=M) = \mathbb{P}(X \leqslant M) = \sum_{k=1}^{M} \mathbb{P}(X=k) = p \sum_{k=1}^{M} q^{k-1} = p \frac{1-q^{M}}{1-q} = 1 - q^{M}.$$
 (3)

Exercice 11. (*) Soit X une variable aléatoire qui suit la loi de Poisson $\mathcal{P}(\lambda)$. Calculer $\mathbb{E}((-1)^X)$ et $\mathbb{E}\left(\frac{1}{1+X}\right)$.

Corrigé:

On a donc $X(\omega) = \mathbb{N}$ avec $\mathbb{P}(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}$ pour tout $n \in \mathbb{N}$.

• $Y=(-1)^X$ est une variable aléatoire (fonction de X) telle que $Y(\Omega)=\{-1,1\}$. Par le théorème de transfert, Y admet une espérance car la série de terme général $(-1)^n\mathbb{P}(X=n)$ converge absolument puisque $\sum_{n=0}^{+\infty}\mathbb{P}(X=n)=1$. On a ainsi

$$\mathbb{E}(Y) = e^{-\lambda} \sum_{n=0}^{+\infty} (-1)^n \frac{\lambda^n}{n!} = e^{-\lambda} \times e^{-\lambda} = e^{-2\lambda}$$
 (4)

• $Z=\frac{1}{1+X}$ est une variable aléatoire avec $Z(\Omega)=\{1/(n+1), n\in \mathbb{N}\}$. Comme $\frac{1}{1+n}\mathbb{P}(X=n)=o(\mathbb{P}(X=n))$ quand $n\to +\infty$, la série de terme général $\frac{1}{1+n}\mathbb{P}(X=n)$ converge abolument, donc Z admet une espérance finie. On a alors

$$\mathbb{E}(Z) = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^n}{(n+1)!} = \frac{e^{-\lambda}}{\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{n+1}}{(n+1)!} = \frac{e^{-\lambda}}{\lambda} \left(e^{\lambda} - 1 \right) = \frac{1 - e^{-\lambda}}{\lambda}.$$

Exercice 12. (**) Un programme d'échecs joue autant de parties que nécessaire jusqu'à sa première défaite, avec une modélisation $(\Omega, \mathcal{A}, \mathbb{P})$ telle que, pour tout $n \in \mathbb{N}^*$, la probabilité qu'il gagne la n-ième partie sachant qu'il a gagné la (n-1)-ième est 1/n (si $n \ge 2$ - il gagne donc toujours la première partie). Soit X la variable aléatoire retournant le nombre de parties gagnées avant la première partie perdue. On a donc $X(\Omega) = \mathbb{N}^*$.

a) Pour $k \in \mathbb{N}^*$, soit A_k l'évènement : "le programme gagne la k-ième partie". Pour tout $n \in \mathbb{N}^*$, exprimer $\{X = n\}$ en fonction d'évènements A_k ; en déduire que $\mathbb{P}(X = n) = \frac{n}{(n+1)!}$. Vérifier que

$$\sum_{n=1}^{+\infty} \mathbb{P}(X=n) = 1.$$

- b) Calculer $\mathbb{E}(X+1)$; en déduire $\mathbb{E}(X)$.
- c) Calculer $\mathbb{E}((X+1)(X-1))$; en déduire Var(X).

Corrigé:

a)
$$\{X=n\} = \left(\bigcap_{k=1}^{n} A_k\right) \bigcap \overline{A_{n+1}}.$$

Donc, avec la formule des probabilités composées,

$$\mathbb{P}(X=n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\cdots\mathbb{P}(A_n|\bigcap_{k=1}^{n-1}A_k)\mathbb{P}(\overline{A_{n+1}}|\bigcap_{k=1}^nA_k).$$

Or,
$$\mathbb{P}(A_i | \bigcap_{k=1}^{i-1} A_k) = \frac{1}{i}$$
, donc

$$\mathbb{P}(X=n) = \prod_{i=1}^{n} \frac{1}{i} \times \left(1 - \frac{1}{n+1}\right) = \frac{1}{n!} \frac{n}{n+1} = \frac{n}{(n+1)!}.$$

On a, en écrivant n = (n+1) - 1,

$$\sum_{n=1}^{+\infty} \mathbb{P}(X=n) = \sum_{n=1}^{+\infty} \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right) = 1 - \lim_{N \to +\infty} \frac{1}{N!} = 1.$$

Ceci légitime le choix de $X(\Omega) = \mathbb{N}^*$ car la probabilité de ne jamais perdre est alors nulle.

a) On applique le théorème de transfert avec $f: t \mapsto t+1$.

La série $\sum_{n\geqslant 1} f(n+1)\mathbb{P}(X=n)$ converge absolument (les termes sont positifs) car son terme général est $\frac{n}{n!} = \frac{1}{(n-1)!}$ avec $\sum_{n=1}^{+\infty} \frac{1}{(n-1)!} = e$.

Par conséquent, X+1 admet une espérance finie et c'est e. Sachant que X=(X+1)-1, alors X admet une espérance finie avec $\mathbb{E}(X)=e-1$.

c) On a cette fois

$$(n+1)(n-1)\frac{n}{(n+1)!} = (n-1)\frac{n}{n!} = \frac{1}{(n-2)!}$$

si $n \ge 2$, ce terme étant nu pour n = 1.

Donc, (X+1)(X-1) admet une espérance finie qui est e.

Puis $X^2 = (X+1)(X-1)+1$ admet une espérance finie,. Par conséquent X admet une variance avec

$$Var(X) = \mathbb{E}((X+1)(X-1)) + 1 - \mathbb{E}(X)^2 = e + 1 - (e-1)^2 = e(3-e).$$

Exercice 13. (**) Soit $\lambda \in]0, +\infty[$. Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans \mathbb{N}^* . On suppose que, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X = n) = \frac{\lambda}{n(n+1)(n+2)}$.

- a) Soit $R(x)=\frac{1}{x(x+1)(x+2)}$. Trouver a,b,c tels que $R(x)=\frac{a}{x}+\frac{b}{x+1}+\frac{c}{x+2}$. b) Calculer λ .
- c) Prouver que X admet une espérance, puis la calculer.
- d) X admet-elle une variance?

Corrigé:

a) On a

$$\frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2} = \frac{a(x+1)(x+2) + bx(x+2) + cx(x+1)}{x(x+1)x+2}$$
$$= \frac{(a+b+c)x^2 + (3a+2b+c)x + 2a}{x(x+1)(x+2)},$$

donc on prend a=1/2, puis 2b+c=-3/2 et b+c=-1/2, ce qui donne b=-1 et c=1/2. Finalement, $R(x)=\frac{1}{2x}-\frac{1}{x+1}+\frac{1}{2(x+2)}$.

b) On a $\sum_{n=1}^{+\infty} \mathbb{P}(X=n)=1$ car les $\{X=n\}$ (pour $n\in\mathbb{N}^*$) forment un système complet d'événements. Soit $N \in \mathbb{N}^*$. De a), il résulte que

$$\sum_{n=1}^{N} \mathbb{P}(X=n) = \lambda \sum_{n=1}^{N} \left(\frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)} \right)$$
$$= \frac{\lambda}{2} \left(\sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) - \sum_{n=1}^{N} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right),$$

donc, par télescopage additif,

$$\sum_{n=1}^{N} \mathbb{P}(X=n) = \frac{\lambda}{2} \left(1 - \frac{1}{N+1} - \frac{1}{2} + \frac{1}{N+2} \right) = \lambda \left(\frac{1}{4} - \frac{1}{2(N+1)} + \frac{1}{2(N+2)} \right).$$

 $N \to +\infty$ donne finalement $\lambda = 4$.

c) La série $\sum_{n\geqslant 1} n\mathbb{P}(X=n) = \sum_{n\geqslant 1} \frac{4}{(n+1)(n+2)}$ converge car, en $+\infty$, $\frac{4}{(n+1)(n+2)} \sim \frac{4}{n^2}$. Donc, X admet une espérance.

De plus, pour tout $n \in \mathbb{N}^*$, on a, par télescopage additif,

$$S_n = \sum_{k=1}^n k \mathbb{P}(X=k) = \sum_{k=1}^n \frac{4}{(k+1)(k+2)}$$
$$= 4 \sum_{k=1}^n \left(\frac{1}{k+1} - \frac{1}{k+2}\right) = 4 \left(\sum_{k=1}^n \frac{1}{k+1} - \sum_{k=2}^{n+1} \frac{1}{k+1}\right) = 2 - \frac{4}{n+2}.$$

Donc, $\lim_{n\to +\infty}\sum_{k=1}^n k\mathbb{P}(X=k)=2$. On arrive finalement à $\mathbb{E}(X)=2$.

d) X admet une variance si et seulement si X^2 admet une espérance (on a déjà l'existence de $\mathbb{E}(X)$). Or,

$$n^2 \mathbb{P}(X=n) = \frac{4n}{(n+1)(n+2)} \sim \frac{4}{n},$$

donc $\sum\limits_{n\geqslant 1}\frac{1}{n}$ diverge (série harmonique). Donc, $\sum\limits_{n\geqslant 1}n^2\mathbb{P}(X=n)$ diverge et, comme elle est à termes positifs, le théorème de transfert fait que X n'admet pas de variance.

Exercice 14. (**) Soit X une variable aléatoire à valeurs dans \mathbb{N} et telle que

$$\mathbb{P}(X = k) = e^{-2}(1 + \alpha k) \frac{2^k}{4(k!)}$$

pour tout $k \in \mathbb{N}$. Déterminer α .

Corrigé:

La famille $(\{X=k\})_{k\in\mathbb{N}}$ est un système complet d'événements car $X(\Omega)\subset\mathbb{N}$. Donc

$$1 = \sum_{k=0}^{+\infty} \mathbb{P}(X = k) = \frac{e^{-2}}{4} \left[\sum_{k=0}^{+\infty} \frac{2^k}{k!} + \alpha \sum_{k=1}^{+\infty} \frac{2^k}{(k-1)!} \right]$$
$$= \frac{e^{-2}}{4} \left[e^2 + \alpha \times 2e^2 \right] = \frac{1+2\alpha}{4}.$$

Il en résulte que $1+2\alpha=4$, donc que $\boxed{\alpha=\frac{3}{2}}$

Exercice 15. (**) Une urne contient des boules blanches, rouges et vertes, en proportions respectives b, r et v (on a donc b, r, $v \in]0,1[$ et b+r+v=1). On y effectue des tirages successifs avec remise (donc indépendants), et on s'arrête au premier changement de couleur. On note X la variable aléatoire retournant le nombre de tirages effectués. Déterminer la loi de X et montrer que

$$\mathbb{E}(X) = \frac{1}{1-b} + \frac{1}{1-r} + \frac{1}{1-v} - 2.$$

Corrigé:

Pour qu'il y ait changement de couleur, il faut qu'il y ait au moins deux tirages, donc $X(\Omega) = (\mathbb{N} \setminus \{0,1\}) \cup \{+\infty\}$.

On a en fait X = k si les k - 1 premières boules tirées sont de la même couleur et la k-ième d'une des 2 autres couleurs.

On décompose suivant la couleur de la première boule tirée. Ainsi, si B_i (resp. R_i et V_i) désigne l'événement "la i-ième boule tirée est blanche" (resp. rouge) (resp. verte), on a alors

$$\{X = k\} = (B_1 \cap \cdots \cap B_{k-1} \cap \overline{B_k}) \cup (R_1 \cap \cdots \cap R_{k-1} \cap \overline{R_k})$$
$$\cup (V_1 \cap \cdots \cap V_{k-1} \cap \overline{V_k}),$$

réunion disjointe de trois événements composés eux-mêmes de k événements mutuellement indépendants. Compte-tenu que $\mathbb{P}(B_i) = b$, $\mathbb{P}(R_i) = r$ et $\mathbb{P}(V_i) = v$, on a donc, pour $k \in \mathbb{N} \setminus \{0, 1\}$,

$$\mathbb{P}(X=k) = (1-b)b^{k-1} + (1-r)r^{k-1} + (1-v)v^{k-1}.$$

On a $\{X = +\infty\} = \bigcup_{k=0}^{+\infty} \{X = k\}$, les éléments de la réunion étant incompatibles deux à deux, donc

$$1 - \mathbb{P}(X = +\infty) = \sum_{k=2}^{+\infty} \mathbb{P}(X = k)$$

$$= (1 - b) \sum_{k=2}^{+\infty} b^{k-1} + (1 - r) \sum_{k=2}^{+\infty} r^{k-1} + (1 - v) \sum_{k=2}^{+\infty} v^{k-1}$$

$$= (1 - b) \frac{b}{1 - b} + (1 - r) \frac{r}{1 - r} + (1 - v) \frac{v}{1 - v},$$

c'est-à-dire $\mathbb{P}(X = +\infty) = 1 - (r+b+v) = 0$.

 $\mathbb{E}(X) = \sum_{k=2}^{+\infty} k \mathbb{P}(X=k). \text{ On connait l'espérance d'une loi géométrique } \mathcal{G}(p), \text{ c'est } \sum_{k=1}^{+\infty} k p (1-p)^{k-1} = \frac{1}{p}.$

On a donc, avec p = 1 - b, $\sum_{k=2}^{+\infty} k(1-b)b^{k-1} = \frac{1}{1-b} - (1-b)$ (la somme part de k = 2 donc il faut enlever le terme correspondant à k = 1). On a alors

$$\mathbb{E}(X) = \sum_{k=2}^{+\infty} k \left[(1-b)b^{k-1} + (1-r)r^{k-1} + (1-v)v^{k-1} \right]$$

$$= \frac{1}{1-b} - (1-b) + \frac{1}{1-r} - (1-r) + \frac{1}{1-v} - (1-v)$$

$$= \frac{1}{1-b} + \frac{1}{1-r} + \frac{1}{1-v} - 3 + (b+r+v)$$

donc
$$\mathbb{E}(X) = \frac{1}{1-b} + \frac{1}{1-r} + \frac{1}{1-v} - 2$$

Exercice 16. (*) Pour envoyer des colis, une entreprise fait appel à deux sociétés de transport A et B. La probabilité de retard de livraison est de 0,1 pour la société A et de 0,2 pour la société B. On note X_A (resp. X_B) le nombre de livraisons sans retard de la société A (resp. de la société B) avant son premier retard. On note $Z = \max(X_A, X_B)$.

- a) Déterminer la loi de X_A . Montrer que $\mathbb{P}(X_A < k) = 1 (0,9)^k$ pour tout $k \in \mathbb{N}$. Que valent $\mathbb{P}(X_A < k)$ et $\mathbb{P}(X_A \leqslant k)$?
 - b) Vérifier que l'évènement $\{Z = k\}$ peut se décomposer de la manière suivante :

$${Z = k} = ({X_A < k} \cap {X_B = k}) \cup ({X_A = k} \cap {X_B \le k})$$

c) En utilisant l'indépendance de X_A et X_B , en déduire que

$$\mathbb{P}(Z=k) = 0, 2(0,8)^k + 0, 1(0,9)^k - 0, 28(0,72)^k.$$

d) Calculer $\mathbb{E}(Z)$.

Corrigé:

a) $X_A(\Omega) = \mathbb{N}$ avec, si A_i est l'évènement : "la i-ième livraison de A est à l'heure", $\{X_A = k\} = A_1 \cap \cdots \cap A_{k-1} \cap \overline{A_k}$. Les livraisons étant indépendantes avec $\mathbb{P}(A_i) = 0, 9$, on a $\mathbb{P}(X_A = k) = 0, 1(0, 9)^k$.

Pour $k \in \mathbb{N}^*$,

$$\mathbb{P}(X_A < k) = \sum_{i=0}^{k-1} \mathbb{P}(X_A = i) = 0, 1 \times \sum_{i=0}^{k-1} (0, 9)^i$$
$$= 0, 1 \frac{1 - (0, 9)^k}{1 - 0, 9} = 1 - (0, 9)^k.$$

La formule est encore valable pour k=0 puisque $\mathbb{P}(X_A<0)=0$ et $0,9^0=1$. On a donc $\mathbb{P}(X_A< k)=1-(0,9)^k$ et $\boxed{\mathbb{P}(X_A\leqslant k)=\mathbb{P}(X_A< k+1)=1-(0,9)^{k+1}}$.

b)
$$\{Z = k\} = (\{Z = k\} \cap \{X_A < X_B\}) \cup (\{Z = k\} \cap \{X_A \geqslant X_B\}) \text{ avec}$$

$$\{Z = k\} \cap \{X_A < X_B\} = \{\max(X_A, X_B) = k\} \cap \{X_A < X_B\}$$

$$= \{X_A < k\} \cap \{X_B = k\}$$

et

$${Z = k} \cap {X_A \geqslant X_B} = {\max(X_A, X_B) = k} \cap {X_A \geqslant X_B}$$

= ${X_A = k} \cap {X_B \leqslant k}.$

On a bien la décomposition

$${Z = k} = ({X_A < k} \cap {X_B = k}) \cup ({X_A = k} \cap {X_B \le k})$$

c) On a alors, en utilisant d'abord l'incompatibilité de $\{X_A < k\} \cap \{X_B = k\}$ et de $\{X_A = k\} \cap \{X_B \leqslant k\}$, puis l'indépendance de X_A et X_B ,

$$\mathbb{P}(Z=k) = \mathbb{P}(X_A < k)\mathbb{P}(X_B = k) + \mathbb{P}(X_A = k)\mathbb{P}(X_B \leqslant k)
= 0, 2(0,8)^k (1 - (0,9)^k) + 0, 1(0,9)^k (1 - (0,8)^{k+1})
= 0, 2(0,8)^k - 0, 2(0,72)^k + 0, 1(0,9)^k - 0, 08(0,72)^k$$

ce qui donne bien

$$\mathbb{P}(Z=k) = 0, 2(0,8)^k + 0, 1(0,9)^k - 0, 28(0,72)^k$$

d) Ici, la convergence absolue de $\sum k \mathbb{P}(Z=k)$ équivaut à la convergence, puisque les termes de la série sont positifs.

On a, pour |x| < 1, $\sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$ et on peut dériver terme à l'intérieur du domaine de convergence, donc $\sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}$.

Donc

$$\sum_{k=1}^{+\infty} kx^k = \sum_{k=0}^{+\infty} kx^k = \frac{x}{(1-x)^2}.$$

En appliquant ce résultat à x = 0, 8, puis à x = 0, 9 et à x = 0, 72 tous trois dans]0, 1[.

On a alors
$$\mathbb{E}(Z) = \frac{0.8}{0.2} + \frac{0.9}{0.1} - \frac{0.72}{0.28}$$
, soit $\mathbb{E}(Z) \approx 10, 4$

Exercice 17. (**) On admet que, pour tout $q \in \mathbb{N}^*$, la série $\sum_{k \geqslant q} {k \choose q} x^{k-q}$ converge avec, pour tout $x \in]-1,1[$,

$$\sum_{k=q}^{+\infty} {k \choose q} x^{k-q} = \frac{1}{(1-x)^{q+1}}.$$

Soit $p \in]0,1[$ et $r \in \mathbb{N}^*$. On dépose une bactérie dans une enceinte fermée à l'instant t=0 (le temps est exprimé en secondes). On envoie un rayon laser par seconde dans cette enceinte, les tirs de laser étant indépendants. La bactérie a la probabilité p d'être touchée par le rayon laser.

Le premier rayon laser est envoyé à l'instant t=1. La bactérie ne meurt que lorsqu'elle a été touchée r fois par le rayon laser.

Soit X la variable aléatoire égale à la durée de vie de la bactérie.

- a) Déterminer la loi de X.
- b) Prouver que X admet une espérance et la calculer.

Corrigé:

a) On a $X(\Omega) = [r, +\infty]$.

Soit $n \in [r, +\infty[$. X = n signifie que n tirs de laser ont été nécessaires pour tuer la bactérie, c'est-à-dire que, sur les n-1 premiers tirs de laser, la bactérie est touchée (r-1) fois et non touchée ((n-1)-(r-1)) fois, et enfin, qu'elle est touchée au n-ième tir.

Si on note $A_{r-1,n-1}$ cet évènement, il est la conséquence de la réalisation de n-1 expériences indépendantes de type succès-échec devant déboucher sur r-1 succès. Dès lors, $\mathbb{P}(A_{r-1,n-1})=\binom{n-1}{r-1}p^{r-1}(1-p)^{(n-1)-(r-1)}$ par la loi binomiale.

Puis, si B_n est l'évènement : "la bactérie est touchée au n-ième tir", $\mathbb{P}(B_n) = p$ et $\{X = n\} = A_{r-1,n-1} \cap B_n$, donc, par indépendance, $\mathbb{P}(X = n) = \binom{n-1}{r-1} p^{r-1} (1-p)^{(n-1)-(r-1)} \times p$, c'est-à-dire, pour tout $n \in [r, +\infty[$,

$$\mathbb{P}(X = n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}.$$

b) Soit $n \in [r, +\infty]$. On a

$$n\mathbb{P}(X=n) = n\binom{n-1}{r-1}p^r(1-p)^{n-r} = n\frac{(n-1)!}{(n-r)!(r-1)!}p^r(1-p)^{n-r}$$
$$= r\frac{n!}{(n-r)!r!}p^r(1-p)^{n-r} = r\binom{n}{r}p^r(1-p)^{n-r}$$

avec $p \in]0,1[$, donc $(1-p) \in]0,1[$. On en déduit, d'après le résultat admis, que la série $\sum_{n\geqslant r} n\mathbb{P}(X=n)$ converge, donc que $\mathbb{E}(X)$ existe avec

$$\mathbb{E}(X) = \sum_{n=r}^{+\infty} n \mathbb{P}(X = n) = rp^r \sum_{n=r}^{+\infty} \binom{n}{r} (1-p)^{n-r} = r \frac{p^r}{(1-(1-p))^{r+1}},$$

c'est-à-dire $E(X) = \frac{r}{p}$ (que l'on a directement d'après le cours si on reconnaît la loi de Pascal.)

Exercice 18. (***) Une entreprise stocke en début d'année n unités d'un produit donné. La vente d'un exemplaire rapporte b euros alors qu'un produit non vendu dans l'année coûte a euros. On suppose avoir modélisé les demandes d'achat et disposer d'une variable aléatoire X, définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et retournant le nombre de produits demandés, avec $X(\Omega) \subset \mathbb{N}$.

- a) Exprimer la variable R_n retournant le revenu annuel en fonction de X et de n; en déduire l'expression du revenu moyen R_n en fonction de $\sum_{k=0}^{n-1} (k-n) \mathbb{P}(X=k)$.
 - b) Montrer que $\mathbb{E}(R_{n+1}) \mathbb{E}(R_n) = b (a+b)\mathbb{P}(X \leq n)$.
- c) On prend b=2a et on suppose que X suit la loi géométrique de paramètre p=1/10. Déterminer la valeur optimale n^* du stock qui permet d'optimiser $\mathbb{E}(R_n)$.

Corrigé:

a) Si X < n, on a $R_n = bX - a(n-X)$ et, si $X \ge n$, on a $R_n = nb$. Dès lors, avec le théorème de transfert, il vient

$$\mathbb{E}(R_n) = \sum_{k=0}^{n-1} (bk - a(n-k)) \mathbb{P}(X=k) + \sum_{k=n}^{+\infty} nb \mathbb{P}(X=k),$$

la série étant bien absolument convergente avec $\sum\limits_{k=0}^{+\infty}\mathbb{P}(X=k)=1$ qui donne $\sum\limits_{k=-\infty}^{+\infty}\mathbb{P}(X=k)=1$

$$1 - \sum_{k=0}^{n-1} \mathbb{P}(X = k).$$

Cette dernière égalité donne

$$\mathbb{E}(R_n) = (a+b) \sum_{k=0}^{n-1} k \mathbb{P}(X=k) - n(a+b) \sum_{k=0}^{n-1} \mathbb{P}(X=k) + nb$$
$$= nb + (a+b) \sum_{k=0}^{n-1} (k-n) \mathbb{P}(X=k).$$

b) On a alors, comme k - (n + 1) = k - n - 1,

$$\mathbb{E}(R_{n+1}) - \mathbb{E}(R_n) = b - (a+b) \sum_{k=0}^{n} \mathbb{P}(X=k) = b - (a+b) \mathbb{P}(X \le n),$$

car $\{X \le n\} = \bigcup_{k=0}^{n} \{X = k\}$, les évènements de la réunion étant incompatibles deux à deux.

c) On a donc $X(\Omega) = \mathbb{N}^*$ avec $\mathbb{P}(X = k) = p(1-p)^{k-1}$ pour tout $k \in \mathbb{N}^*$. Donc,

$$\mathbb{P}(X \leqslant n) = \sum_{k=0}^{n} \mathbb{P}(X = k) = p \frac{1 - (1 - p)^{n+1}}{1 - (1 - p)} = 1 - (1 - p)^{n+1}.$$

Il en résulte que

$$\mathbb{E}(R_{n+1}) - \mathbb{E}(R_n) = a(2 - 3(1 - (0, 9)^{n+1})) = 3a((0, 9)^{n+1} - 1/3).$$

La fonction $\mathbb{R}_+ \to \mathbb{R}, x \mapsto (0,9)^{x+1} - 1/3$ a pour dérivée $\ln(0,9)(0,9)^{x+1} < 0$, donc elle décroît.

Par ailleurs, $(0,9)^{x+1} = \frac{1}{3}$ équivaut à $x = -1 - \frac{\ln 3}{\ln(0,9)} \# 9, 4$. Si $n \leqslant x$, $\mathbb{E}(R_{n+1}) \geqslant \mathbb{E}(R_n)$ tandis que, si $n \geqslant x$, $\mathbb{E}(R_{n+1}) \leqslant \mathbb{E}(R_n)$.

On a donc $\mathbb{E}(R_1) \leqslant \cdots \leqslant \mathbb{E}(R_9)$ et $E(\mathbb{R}_{10}) \geqslant \mathbb{E}(R_{11}) \geqslant \cdots$.

De plus, $\mathbb{E}(R_{10}) - \mathbb{E}(R_9) \# 0,015a > 0$, donc $n^* = 10$

Exercice 19. (**) Soit X une variable aléatoire qui suit la loi de Poisson de paramètre $\lambda > 0$. On définit une autre variable aléatoire Y par la règle suivante :

- si X prend une valeur impaire alors Y prend la valeur 0,
- ullet si X prend une valeur paire alors Y prend la valeur X/2. Déterminer la loi de Y et son espérance.

Corrigé : La variable Y prend les mêmes valeurs que X, c'est-à-dire que $Y(\Omega) = \mathbb{N}$. On a

$$\mathbb{P}(Y=0) = \mathbb{P}(X=0) + \sum_{n=0}^{+\infty} \mathbb{P}(X=2n+1) = e^{-\lambda} \left(1 + \sum_{n=0}^{+\infty} \frac{\lambda^{2n+1}}{(2n+1)!} \right)$$
$$= e^{-\lambda} (1 + sh(\lambda)).$$

et pour tout $k \geqslant 1$, $\mathbb{P}(Y = k) = \mathbb{P}(X = 2k) = e^{-\lambda} \frac{\lambda^{2k}}{(2k)!}$.

On a alors

$$\mathbb{E}[Y] = \sum_{k=1}^{+\infty} k \mathbb{P}(Y=k) = \sum_{k=1}^{+\infty} k e^{-\lambda} \frac{\lambda^{2k}}{(2k)!} = \frac{1}{2} e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{2k}}{(2k-1)!}$$
$$= \frac{\lambda}{2} e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{2k-1}}{(2k-1)!} = \frac{\lambda}{2} e^{-\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^{2k+1}}{(2k+1)!} = \frac{\lambda}{2} e^{-\lambda} \frac{e^{\lambda} - e^{-\lambda}}{2}$$

$$\operatorname{Donc}\left[\mathbb{E}(Y) = \frac{\lambda}{4} \left(1 - e^{-2\lambda}\right)\right].$$

Exercice 20. (***) Soit X une variable aléatoire à valeurs dans \mathbb{N} . On définit la variable aléatoire Y par : $Y = \frac{X}{2}$, si X est pair ; $Y = \frac{1-X}{2}$, si X est impair. Déterminer la loi de Y est son espérance dans chacun des cas suivants :

- a) X suit la loi géométrique de paramètre p;
- b) X suit la loi binomiale négative de paramètre p;
- c) X suit la loi de Poisson de paramètre λ .

Corrigé:

Pour les trois cas, $X(\Omega) \subset \mathbb{N}$. La loi de Y est définie de la manière suivante : Si X=2k, alors Y=k ; si X=2k+1, alors Y=-k. Ainsi $Y=\mathbb{Z}$ et $[Y=0]=[X=0]\cup [X=1]$,

• si
$$k > 0$$
, $[Y = k] = [X = 2k]$,

• si
$$k < 0$$
, $[Y = k] = [X = 1 - 2k]$.

a) On a, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X = n) = p(1 - p)^{n-1}$, d'où

$$\begin{split} \mathbb{P}(Y=0) &= \mathbb{P}(X=1) = p, \\ \mathbb{P}(Y=k) &= p(1-p)^{2k-1}, \text{ si } k > 0, \\ \mathbb{P}(Y=k) &= p(1-p)^{-2k}, \text{ si } k < 0. \\ \mathbb{E}[Y] &= \sum_{k=1}^{+\infty} kp(1-p)^{2k-1} + \sum_{k=-1}^{-\infty} kp(1-p)^{-2k} \\ &= p(1-p) \sum_{k=1}^{+\infty} k((1-p)^2)^{k-1} - p(1-p)^2 \sum_{k=1}^{+\infty} k((1-p)^2)^{k-1} \\ &= p^2(1-p) \sum_{k=1}^{+\infty} k((1-p)^2)^{k-1} = \frac{p^2(1-p)}{(1-(1-p)^2)^2}. \end{split}$$

b) La variable aléatoire X suit une loi binomiale négative de paramètre p (c'est-à-dire que r=1). On a, pour tout $n \in \mathbb{N}$, $\mathbb{P}(X=n)=p(1-p)^n$, d'où

$$\mathbb{P}(Y=0) = \mathbb{P}(X=0) + \mathbb{P}(X=1) = p + p(1-p),$$

$$\mathbb{P}(Y=k) = p(1-p)^{2k}, \text{ si } k > 0,$$

$$\mathbb{P}(Y=k) = p(1-p)^{1-2k}, \text{ si } k < 0$$

$$\mathbb{E}[Y] = \sum_{k=1}^{+\infty} kp(1-p)^{2k} + \sum_{k=-1}^{-\infty} kp(1-p)^{1-2k}$$

$$= p(1-p)^2 \sum_{k=1}^{+\infty} k((1-p)^2)^{k-1} - p(1-p)^3 \sum_{k=1}^{+\infty} k((1-p)^2)^{k-1}$$

$$= p^2(1-p)^2 \sum_{k=1}^{+\infty} k((1-p)^2)^{k-1} = \frac{p^2(1-p)^2}{(1-(1-p)^2)^2}.$$

c) On a, pour tout $n\in\mathbb{N},$ $\mathbb{P}(X=n)=e^{-\lambda}\frac{\lambda^n}{n!},$ d'où

$$\begin{split} \mathbb{P}(Y=0) &= \mathbb{P}(X=0) + \mathbb{P}(X=1) = e^{-\lambda}(1+\lambda), \\ \mathbb{P}(Y=k) &= e^{-\lambda}\frac{\lambda^{2k}}{(2k)!}, \text{ si } k > 0, \\ \mathbb{P}(Y=k) &= e^{-\lambda}\frac{\lambda^{1-2k}}{(1-2k)!}, \text{ si } k < 0. \\ \mathbb{E}[Y] &= \sum_{k=1}^{+\infty} k e^{-\lambda}\frac{\lambda^{2k}}{(2k)!} - \sum_{k=1}^{+\infty} k e^{-\lambda}\frac{\lambda^{2k+1}}{(2k+1)!} \\ &= \lambda \frac{e^{-\lambda}}{2} \sum_{k=1}^{+\infty} \frac{\lambda^{2k-1}}{(2k-1)!} - \lambda \frac{e^{-\lambda}}{2} \sum_{k=1}^{+\infty} \frac{\lambda^{2k}}{(2k)!} + \frac{e^{-\lambda}}{2} \sum_{k=1}^{+\infty} \frac{\lambda^{2k+1}}{(2k+1)!}. \end{split}$$

On a maintenant:

$$\sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{(2k)!} = \frac{e^{\lambda} + e^{-\lambda}}{2} = ch(\lambda)$$

et

$$\sum_{k=0}^{+\infty} \frac{\lambda^{2k+1}}{(2k+1)!} = \frac{e^{\lambda} - e^{-\lambda}}{2} = sh(\lambda).$$

Après quelques calculs, on obtient finalement : $\mathbb{E}[Y] = \frac{1}{4} - \frac{1}{2}e^{-2\lambda}\left(\lambda + \frac{1}{2}\right)$.

Utilisation de la fonction génératrice

Exercice 21. (*) Soit α et p des éléments respectifs de \mathbb{N}^* et de]0,1[. On pose q=1-p. Déterminer la fonction génératrice d'une v.a.r. X dont la loi est définie par :

$$P(X = n) = pq^n \text{ si } n \in \{0, 1, ..., \alpha - 1\} \text{ et } P(X = \alpha) = q^{\alpha}.$$

Corrigé:

Puisque $X(\Omega)$ est un ensemble fini, la fonction génératrice de X est définie sur \mathbb{R} . Pour $t \in \mathbb{R}$,

$$G_X(t) = \mathbb{E}\left[t^X\right] = \sum_{n=0}^{\alpha} t^n \mathbb{P}(X=n) = \sum_{n=0}^{\alpha-1} t^n p q^n + t^{\alpha} q^{\alpha}$$
$$= p \sum_{n=0}^{\alpha-1} (tq)^n + (tq)^{\alpha} = p \frac{1 - (tq)^{\alpha}}{1 - tq} + (tq)^{\alpha}.$$

Exercice 22. (***) Un sauteur en hauteur tente de franchir les hauteurs successives $x_1 < x_2 < \cdots < x_n < \cdots$ Il n'essaie de franchir la hauteur x_n que s'il a réussi à passer les hauteurs précédentes. Si le sauteur a déjà franchi les n-1 premières hauteurs $(n \ge 1)$, on suppose que la probabilité de succès à la hauteur x_n est $\frac{1}{n}$. Le sauteur est éliminé à son premier échec. On note X la variable aléatoire "numéro du dernier saut réussi". Si le sauteur ne franchit pas x_1 , on notera X = 0.

- a) Trouver la loi de X et vérifier que $\sum_{n=0}^{+\infty} P(X=n) = 1$.
- b) Calculer $\mathbb{E}[X]$ et Var(X).

Corrigé:

a) L'ensemble des valeurs possibles pour X est : $X(\Omega) = \mathbb{N}$.

On note A_n : "le sauteur a franchi la hauteur n". Ainsi, par hypothèse, pour $n \ge 1$,

$$\mathbb{P}(A_n|A_1 \cap A_2 \cap \ldots \cap A_{n-1}) = \frac{1}{n}.$$

Pour $n \in \mathbb{N}$, l'événement [X = n] signifie que le sauteur a passé les hauteurs $1, 2, \dots, n$ et qu'il a échoué à la hauteur n + 1. Ainsi

$$[X = 0] = \overline{A}_1$$

$$[X = 1] = A_1 \cap \overline{A}_2$$

$$[X = 2] = A_1 \cap A_2 \cap \overline{A}_3$$

$$\vdots$$

$$[X = n] = A_1 \cap \dots A_n \cap \overline{A}_{n+1}$$

On a d'abord, $\mathbb{P}(X=0)=1-1=0$ et d'après la formule des probabilités totales, on a ensuite

$$\mathbb{P}(X = n) = \mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n \cap \overline{A}_{n+1})$$

$$= \mathbb{P}(A_1)\mathbb{P}(A_2|A_1) \dots \mathbb{P}(A_n|A_1 \cap \dots \cap A_{n-1})\mathbb{P}(\overline{A}_{n+1}|A_1 \cap \dots \cap A_n)$$

$$= \frac{1}{1} \times \frac{1}{2} \cdots \frac{1}{n} \left(1 - \frac{1}{n+1}\right) = \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) = \frac{1}{n!} - \frac{1}{(n+1)!} = \frac{n}{(n+1)!}.$$

On a
$$G_X(t) = \mathbb{E}[t^X] = \sum_{n=1}^{+\infty} t^n \mathbb{P}(X = n) = \sum_{n=1}^{+\infty} t^n \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right)$$
, soit $G_X(t) = \sum_{n=1}^{+\infty} \frac{t^n}{n!} - \frac{1}{(n+1)!}$

$$\sum_{n=1}^{+\infty} \frac{t^n}{(n+1)!}. \text{ Or } \sum_{n=1}^{+\infty} \frac{t^n}{n!} = \sum_{n=0}^{+\infty} \frac{t^n}{n!} - 1 = e^t - 1 \text{ (s\'erie exponentielle) et}$$

$$\sum_{n=1}^{+\infty} \frac{t^n}{(n+1)!} = \frac{1}{t} \sum_{n=1}^{+\infty} \frac{t^{n+1}}{(n+1)!} = \frac{1}{t} \sum_{n=2}^{+\infty} \frac{t^n}{n!} = \frac{1}{t} \left(e^t - 1 - t \right).$$

Donc,
$$G_X(t) = e^t - 1 - \frac{1}{t} \left(e^t - 1 - t \right) = e^t \left(1 - \frac{1}{t} \right) + \frac{1}{t}$$
.

On a alors
$$G_X(1) = e(1-1) + \frac{1}{1}$$
, soit $G_X(1) = 1$, c'est-à-dire $\sum_{n=1}^{+\infty} \mathbb{P}(X = n) = 1$.

b)
$$G_X(t) = e^t \left(1 - \frac{1}{t}\right) + \frac{1}{t} \operatorname{donc} G_X'(t) = e^t \left(1 - \frac{1}{t} + \frac{1}{t^2}\right) - \frac{1}{t^2} \operatorname{et} G_X''(t) = e^t \left(1 - \frac{1}{t} + \frac{1}{t^2} + \frac{1}{t^2} - \frac{2}{t^3}\right) + \frac{2}{t^3}.$$

On a alors, avec
$$t = 1$$
, $G_X'(1) = e^1 \left(1 - \frac{1}{1} + \frac{1}{1}\right) - \frac{1}{1} = e - 1$, donc $\mathbb{E}[X] = e - 1$ et

$$G_X''(1) = e^1 \left(1 - \frac{1}{1} + \frac{1}{1^2} + \frac{1}{1^2} - \frac{2}{1^3} \right) + \frac{2}{1^3} = 2.$$

On en déduit
$$Var(X) = 2 + (e - 1) - (e - 1)^2 = 1 + e - e^2 + 2e - 1$$
, soit $Var(X) = e(3 - e)$.

Exercice 23. (*) Soit $p \in]0,1[,q=1-p \text{ et, pour } |s| \leqslant 1, \varphi(s) = \frac{p}{1-as}.$

Vérifier que, si $a_n = (n+1)p^2q^n$, la famille $(a_n)_{n \in \mathbb{N}}$ définit la loi de probabilité d'une variable aléatoire et exprimer sa fonction génératrice à l'aide de φ .

On rappelle que, pour
$$x \in]-1,1[,\sum_{n=0}^{+\infty}(n+1)x^n=\frac{1}{(1-x)^2}.$$

Corrigé:

On a en utilisant le rappel : $\sum_{n=0}^{+\infty} a_n = p^2 \sum_{n=0}^{+\infty} (n+1) q^n = \frac{p^2}{(1-q)^2} = \frac{p^2}{p^2} = 1$. La famille $(a_n)_{n \in \mathbb{N}}$ définit ainsi la loi de probabilité d'une variable aléatoire X telle que $X(\Omega) = \mathbb{N}$ et

 $\forall n \in \mathbb{N}, \mathbb{P}(X=n) = a_n = (n+1)p^2q^n$. Soit $s \in]-1,1[$. Alors

$$G_X(s) = \mathbb{E}\left[s^X\right] = \sum_{n=0}^{+\infty} s^n \mathbb{P}(X=n) = \sum_{n=0}^{+\infty} s^n (n+1) p^2 q^n$$
$$= p^2 \sum_{n=0}^{+\infty} (n+1) (sq)^n = \frac{p^2}{(1-sq)^2} = (\varphi(s))^2$$

en utilisant à nouveau le rappel.

Exercice 24. (**) Soit $a \in \mathbb{R}$ et soit X une variable aléatoire à valeurs dans \mathbb{N} .

a) Trouver a pour qu'il existe une probabilité \mathbb{P} telle que la loi de X soit définie par

$$\mathbb{P}(X=n) = \frac{1}{4} \left(\frac{1+a^n}{n!} \right) \quad n \in \mathbb{N}, \forall$$

b) Calculer alors la fonction génératrice $G_X(t)$ de X. En déduire l'espérance de X.

Corrigé:

a) Si $p_n = \frac{1}{4} \left(\frac{1+a^n}{n!} \right)$, on a $\sum_{n=0}^{+\infty} p_n = \frac{1}{4} \left(\sum_{n=0}^{+\infty} \frac{1}{n!} + \sum_{n=0}^{+\infty} \frac{a^n}{n!} \right) = \frac{1}{4} \left(e + e^a \right)$, la série étant au passage convergente.

La somme de cette série vaut 1 si et seulement si $e+e^a=4$, ce qui équivaut à $a=\ln(4-e)$ car on a bien 4-e>0. On a en fait e<3, donc 4-e>1 et ainsi a>0, ce qui donne $p_n\geqslant 0$.

Donc, il existe bien une probabilité \mathbb{P} sur (Ω, \mathcal{A}) telle que $\mathbb{P}(X = n) = p_n$ pour tout $n \in \mathbb{N}$.

b) On a alors

$$G_X(t) = \sum_{n=0}^{+\infty} p_n t^n = \frac{1}{4} \left(\sum_{n=0}^{+\infty} \frac{t^n}{n!} + \sum_{n=0}^{+\infty} \frac{(at)^n}{n!} \right) = \frac{1}{4} \left(e^t + e^{at} \right).$$

 G_X est dérivable sur \mathbb{R} avec $G_X'(t) = \frac{1}{4} \left(e^t + a e^{at} \right)$, donc X admet une espérance finie qui est

$$\mathbb{E}(X) = G_X'(1) = \frac{1}{4} (e + ae^a) = \frac{1}{4} (e + (4 - e) \ln(4 - e)).$$

Exercice 25. (**) Soit $p \in]0,1[$ et q=1-p. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* .

a) Montrer qu'il existe une probabilité \mathbb{P} telle que la loi de X soit définie par $\mathbb{P}(X=n)=-\frac{q^n}{n\ln p}$ pour tout $n\in\mathbb{N}^*$.

b) Calculer alors la somme $G_X(t)$ de la série génératrice de X; en déduire l'espérance et la variance de X.

Corrigé:

a) Posons $p_n=-rac{q^n}{n\ln p}$ pour tout $n\in\mathbb{N}^*$. p_n est bien défini avec $p_n>0$ car $p,q\in]0,1[$. On a

$$\sum_{n=1}^{+\infty} p_n = -\frac{1}{\ln p} \sum_{n=1}^{+\infty} \frac{q^n}{n} = \frac{\ln(1-q)}{\ln p} = 1, \text{ car } 1 - q = p.$$

Donc, il existe bien une probabilité \mathbb{P} sur (Ω, \mathcal{A}) telle que $\mathbb{P}(X = n) = p_n$ pour tout $n \in \mathbb{N}^*$.

b) On a (au moins pour $t \in [-1, 1]$), $G_X(t) = -\sum_{n=1}^{+\infty} \frac{(qt)^n}{n \ln p} = \frac{\ln(1 - qt)}{\ln p}$.

On a, si |t|<1/q, $G_X'(t)=-rac{q}{\ln p(1-qt)}$, donc $\boxed{\mathbb{E}(X)=-rac{q}{p\ln p}}$, tandis que $G_X''(t)=-rac{q^2}{\ln p(1-qt)^2}$, donc

$$\operatorname{Var}(X) = -\frac{q^2}{p^2 \ln p} - \frac{q}{p \ln p} + \frac{q^2}{p^2 (\ln p)^2} = \frac{-q^2 \ln p - q p^2 \ln p - q^2}{p^2 (\ln p)^2} = -\frac{q(q + \ln p)}{p^2 (\ln p)^2}.$$