Divisibilidade e Aritmética Modular Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

12 de março de 2014

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

Introdução

- A divisão de inteiros produz um resultado e um resto.
- A aritmética modular permite trabalharmos com restos de divisão.
- Aplicações incluem a geração de números pseudo-aleatórios, alocação de memória para arquivos, e criptografia.

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

Definição

Se a e b são inteiros, com a \neq 0, dizemos que a divide b se existe um inteiro c tal que b = ac ou, equivalentemente, se $\frac{b}{a}$ é um inteiro.

Definição

Se a e b são inteiros, com a \neq 0, dizemos que a divide b se existe um inteiro c tal que b = ac ou, equivalentemente, se $\frac{b}{a}$ é um inteiro.

Definição

Quando a divide b, dizemos que a é um fator ou divisor de b e que b é um múltiplo de a. A notação a|b denota que a divide b. Escrevemos a∤ b para sinalizar que a não divide b.

PERGUNTA:

Sejam n e d números inteiros, $n \neq 0$. Quantos inteiros positivos que não excedem n são divisíveis por d?

PERGUNTA:

Sejam n e d números inteiros, $n \neq 0$. Quantos inteiros positivos que não excedem n são divisíveis por d?

O número de inteiros positivos que não execedem n é a quantidade de inteiros k tal que $0 < dk \le n$.

PERGUNTA:

Sejam n e d números inteiros, $n \neq 0$. Quantos inteiros positivos que não excedem n são divisíveis por d?

O número de inteiros positivos que não execedem n é a quantidade de inteiros k tal que $0 < dk \le n$. Podemos dividir a desigualdade por d e obter $0 < k \le n/d$.

PERGUNTA:

Sejam n e d números inteiros, $n \neq 0$. Quantos inteiros positivos que não excedem n são divisíveis por d?

O número de inteiros positivos que não execedem n é a quantidade de inteiros k tal que $0 < dk \le n$. Podemos dividir a desigualdade por d e obter $0 < k \le n/d$. Portanto, temos $\lfloor n/d \rfloor$ inteiros positivos divisíveis por d e que não excedem n.

Teorema

Sejam a, b e c inteiros, onde a \neq 0. Então:

- (i) Se a|b e a|c, então a|(b+c);
- (ii) Se a|b, então a|bc para todo inteiro c;
- (iii) Se a|b e b|c, então a|c.

Teorema

Sejam a, b e c inteiros, onde a \neq 0. Então:

- (i) Se a|b e a|c, então a|(b+c);
- (ii) Se a|b, então a|bc para todo inteiro c;
- (iii) Se a|b e b|c, então a|c.

Prova

Daremos uma prova direta de (i). Suponha que a|b e a|c. Então existem inteiros s e t tais que b = as e c = at. Portanto, b+c=as+at=a(s+t). Como s+t é um inteiro, a divide b+c.

Teorema

Sejam a, b e c inteiros, onde a \neq 0. Então:

- (i) Se a|b e a|c, então a|(b+c);
- (ii) Se a|b, então a|bc para todo inteiro c;
- (iii) Se a|b e b|c, então a|c.

Prova

Daremos uma prova direta de (i). Suponha que a|b e a|c. Então existem inteiros s e t tais que b = as e c = at. Portanto, b+c=as+at=a(s+t). Como s+t é um inteiro, a divide b+c.

Exercício:

Demonstre os items (ii) e (iii) do teorema.

Corolário

Se a,b e c são inteiros, onde $a \neq 0$ e tais que a|b e a|c, então a|mb+nc para quaisquer m,n inteiros.

Corolário

Se a, b e c são inteiros, onde $a \neq 0$ e tais que a|b e a|c, então a|mb+nc para quaisquer m, n inteiros.

Prova

Pela parte (ii) do teorema anterior, vemos que a|mb e que a|nc. Pela parte (i), concluímos que a|mb + nc.

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

Quando um inteiro é divido por outro inteiro, há um quociente e um resto.

Teorema

Seja a um inteiro qualquer e d um inteiro positivo, então existem inteiros únicos q e r, com $0 \le r \le d$, e tais que a = dq + r.

Definição

Em uma igualdade a = dq + r como no algoritmo de divisão,

- d é chamado divisor;
- a é chamado dividendo;
- q é chamado quociente;
- r é chamado resto.

Definição

Em uma igualdade a = dq + r como no algoritmo de divisão,

- d é chamado divisor;
- a é chamado dividendo;
- q é chamado quociente;
- r é chamado resto.

Usamos a seguinte notação pra expressar o quociente e o resto: $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$.

Definição

Em uma igualdade a = dq + r como no algoritmo de divisão,

- d é chamado divisor:
- a é chamado dividendo;
- q é chamado quociente;
- r é chamado resto.

Usamos a seguinte notação pra expressar o quociente e o resto: $q = a \, div \, d$, $r = a \, mod \, d$.

Constatação:

Para um d qualquer fixo, a **div** d e a **mod** d são funções no conjunto dos inteiros.

PERGUNTA:

Qual o quociente e resto da divisão de 101 por 11?

PERGUNTA:

Qual o quociente e resto da divisão de 101 por 11?

Temos que 101 = 11.9 + 2. Portanto...

- o quociente da divisão de 101 por 11 é 9 = 101 **div** 11;
- e o resto da divisão é 2 = 101 mod 11.

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

- Considere a representação de inteiros não negativos em 8 bits.
- Podemos representar inteiros 0 a 255, ou seja, 256 números.

- Considere a representação de inteiros não negativos em 8 bits.
- Podemos representar inteiros 0 a 255, ou seja, 256 números.
- Se somarmos 240 + 130, o que teremos?

- Considere a representação de inteiros não negativos em 8 bits.
- Podemos representar inteiros 0 a 255, ou seja, 256 números.
- Se somarmos 240 + 130, o que teremos?
- O resultado é 370, o que passa de 256 por 114.

- Considere a representação de inteiros não negativos em 8 bits.
- Podemos representar inteiros 0 a 255, ou seja, 256 números.
- Se somarmos 240 + 130, o que teremos?
- O resultado é 370, o que passa de 256 por 114.
- Logo, a representação de 370 é a mesma de 114.

Concentra-se nos restos de divisões inteiras.

Definição

Se j e k são inteiros e m é um inteiro positivo, então j é congruente a k no módulo m se m divide j - k.

Concentra-se nos restos de divisões inteiras.

Definição

Se j e k são inteiros e m é um inteiro positivo, então j é congruente a k no módulo m se m divide j - k.

Definição

Usamos a notação $j \equiv k \pmod{m}$ para indicar que j é congruente a k no módulo m.

Concentra-se nos restos de divisões inteiras.

Definição

Se j e k são inteiros e m é um inteiro positivo, então j é congruente a k no módulo m se m divide j - k.

Definição

Usamos a notação $j \equiv k \pmod{m}$ para indicar que j é congruente a k no módulo m. Dizemos que $j \equiv k \pmod{m}$ é uma congruência e que m é o seu módulo.

Concentra-se nos restos de divisões inteiras.

Definição

Se j e k são inteiros e m é um inteiro positivo, então j é congruente a k no módulo m se m divide j - k.

Definição

Usamos a notação $j \equiv k \pmod{m}$ para indicar que j é congruente a k no módulo m. Dizemos que $j \equiv k \pmod{m}$ é uma congruência e que m é o seu módulo. Se j e k não são congruentes pelo módulo m, escrevemos $j \not\equiv k \pmod{m}$.

Concentra-se nos restos de divisões inteiras.

Definição

Se j e k são inteiros e m é um inteiro positivo, então j é congruente a k no módulo m se m divide j - k.

Definição

Usamos a notação $j \equiv k \pmod{m}$ para indicar que j é congruente a k no módulo m. Dizemos que $j \equiv k \pmod{m}$ é uma congruência e que m é o seu módulo. Se j e k não são congruentes pelo módulo m, escrevemos $j \not\equiv k \pmod{m}$.

IMPORTANTE!!!

Embora $j \equiv k \pmod{m}$ e $j \pmod{m} = k$ sejam escritos com "mod", os dois representam conceitos diferentes!

Exemplo

Determine se 17 é congruente a 5 no módulo 6.

• Porque 6 divide 17-5, observamos que $17 \equiv 5 \pmod{6}$.

Exemplo

Determine se 17 é congruente a 5 no módulo 6.

• Porque 6 divide 17-5, observamos que $17 \equiv 5 \pmod{6}$.

Exemplo

Determine se 24 é congruente a 14 no módulo 6.

Uma vez que 6 divide 24-14, temos que 24 ≠ 14 (mod 6).

Teorema

Sejam a e b inteiros e seja m um inteiro positivo, então $a \equiv b \pmod{m}$ se e somente se a **mod** $m = b \pmod{m}$.

Prova

Deixada como exercício.

Teorema

Seja m um inteiro positivo. Os inteiros a e b são congruentes no módulo m se e somente se existe um inteiro k tal que a = b + km.

Prova

Deixada como exercício.

O seguinte teorema sugere que adição e multiplicação preservam as congruências.

Teorema

Seja m inteiro positivo, se $a \equiv b \pmod{m}$ e $c \equiv d \pmod{m}$, então

$$a + c \equiv b + d \pmod{m}$$
 e $ac \equiv bd \pmod{m}$.

Prova

Deixada como exercício.

O seguinte teorema sugere que adição e multiplicação preservam as congruências.

Corolário

Seja m um inteiro positivo e a, b inteiros, então

$$(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$$

O seguinte teorema sugere que adição e multiplicação preservam as congruências.

Corolário

Seja m um inteiro positivo e a, b inteiros, então

$$(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$

 $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m.$

Prova

Deixada como exercício.

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

Envolve definirmos operações aritméticas no conjunto \mathbb{Z}_m , o conjunto dos inteiros não negativos menores que m, ou seja,

$$\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}.$$

Envolve definirmos operações aritméticas no conjunto \mathbb{Z}_m , o conjunto dos inteiros não negativos menores que m, ou seja,

$$\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}.$$

Definição

Denotamos a soma no módulo m por $+_m$. Definimos essa operação como a $+_m$ b = (a+b) mod m.

Envolve definirmos operações aritméticas no conjunto \mathbb{Z}_m , o conjunto dos inteiros não negativos menores que m, ou seja,

$$\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}.$$

Definição

Denotamos a soma no módulo m por $+_m$. Definimos essa operação como $a +_m b = (a + b)$ mod m.

Exemplo

$$7 +_{11} 9 = (7 + 9) \text{ mod } 11 = 16 \text{ mod } 11 = 5.$$

Envolve definirmos operações aritméticas no conjunto \mathbb{Z}_m , o conjunto dos inteiros não negativos menores que m, ou seja,

$$\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}.$$

Definição

Denotamos a multiplicação no módulo m por \cdot_m . Definimos essa operação como a \cdot_m $b=(a\cdot b)$ **mod** m.

Envolve definirmos operações aritméticas no conjunto \mathbb{Z}_m , o conjunto dos inteiros não negativos menores que m, ou seja,

$$\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}.$$

Definição

Denotamos a multiplicação no módulo m por \cdot_m . Definimos essa operação como a \cdot_m $b=(a\cdot b)$ **mod** m.

Exemplo

$$7 \cdot_{11} 9 = (7 \cdot 9) \text{ mod } 11 = 63 \text{ mod } 11 = 8.$$

Propriedades das Operações no Módulo $\overset{\scriptscriptstyle{\mathsf{Anny}}}{m}$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

• **Fechamento**: se a e b pertencem a \mathbb{Z}_m , então $a +_m b$ e $a \cdot_m b$ pertencem a \mathbb{Z}_m ;

Propriedades das Operações no Módulo $\overset{\scriptscriptstyle{\mathsf{Anny}}}{m}$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

• **Fechamento**: se a e b pertencem a \mathbb{Z}_m , então

$$a +_m b$$
 e $a \cdot_m b$ pertencem a \mathbb{Z}_m ;

• **Associatividade**: se a, b, c pertencem a \mathbb{Z}_m , então

$$(a+_{m}b)+_{m}c=a+_{m}(b+_{m}c)$$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

• **Fechamento**: se a e b pertencem a \mathbb{Z}_m , então

$$a +_m b$$
 e $a \cdot_m b$ pertencem a \mathbb{Z}_m ;

• **Associatividade**: se a, b, c pertencem a \mathbb{Z}_m , então

$$(a +_m b) +_m c = a +_m (b +_m c) e$$

 $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c);$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

• **Fechamento**: se a e b pertencem a \mathbb{Z}_m , então

$$a +_m b$$
 e $a \cdot_m b$ pertencem a \mathbb{Z}_m ;

• **Associatividade**: se a, b, c pertencem a \mathbb{Z}_m , então

$$(a +_m b) +_m c = a +_m (b +_m c) e$$

 $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c);$

• Comutatividade: se a, b pertencem a \mathbb{Z}_m , então

$$a+_m b=b+_m a$$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

• **Fechamento**: se a e b pertencem a \mathbb{Z}_m , então

$$a +_m b$$
 e $a \cdot_m b$ pertencem a \mathbb{Z}_m ;

• **Associatividade**: se a, b, c pertencem a \mathbb{Z}_m , então

$$(a +_m b) +_m c = a +_m (b +_m c) e$$

 $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c);$

• Comutatividade: se a, b pertencem a \mathbb{Z}_m , então

$$a+_m b = b+_m a$$
 e $a \cdot_m b = b \cdot_m a$;

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

 Identidade: 0 e 1 são elementos de identidade da soma e multiplicação, respectivamente. Isto é, se a pertence a Zm,

$$a+_m 0=a$$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

 Identidade: 0 e 1 são elementos de identidade da soma e multiplicação, respectivamente. Isto é, se a pertence a Zm,

$$a +_m 0 = a e$$

 $a \cdot_m 1 = a;$

Propriedades das Operações no Módulo $\overset{\scriptscriptstyle{\mathsf{Annya}}}{m}$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

 Identidade: 0 e 1 são elementos de identidade da soma e multiplicação, respectivamente. Isto é, se a pertence a Z_m,

$$a +_m 0 = a e$$

 $a \cdot_m 1 = a;$

Inverso Aditivo: se a ≠ 0 pertence a Z_m, então m − a é o aditivo inverso de a no módulo m. O 0 é o aditivo inverso de si mesmo. Isso significa que

$$a+_{m}(m-a)=0$$

Propriedades das Operações no Módulo $\overset{\scriptscriptstyle{\mathsf{Annya}}}{m}$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

 Identidade: 0 e 1 são elementos de identidade da soma e multiplicação, respectivamente. Isto é, se a pertence a Z_m,

$$a +_m 0 = a e$$

 $a \cdot_m 1 = a;$

Inverso Aditivo: se a ≠ 0 pertence a Z_m, então m − a é o aditivo inverso de a no módulo m. O 0 é o aditivo inverso de si mesmo. Isso significa que

$$a +_m (m - a) = 0$$
 e
 $0 +_m 0 = 0$;

Propriedades das Operações no Módulo $\overset{\scriptscriptstyle{\mathsf{Annya}}}{m}$

As operações $+_m$ e \cdot_m satisfazem muitas propriedades comuns à adição e multiplicação comum de inteiros.

 Identidade: 0 e 1 são elementos de identidade da soma e multiplicação, respectivamente. Isto é, se a pertence a Z_m,

$$a +_m 0 = a e$$

 $a \cdot_m 1 = a;$

Inverso Aditivo: se a ≠ 0 pertence a Z_m, então m − a é o aditivo inverso de a no módulo m. O 0 é o aditivo inverso de si mesmo. Isso significa que

$$a +_m (m - a) = 0$$
 e
 $0 +_m 0 = 0$;

Distributividade: se a, b, c pertencem a Z_m, então

$$a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c);$$

Outline

Introdução

Divisão

O Algoritmo de Divisão

Aritmética Modular

Aritmética de Módulo m

Avisos

Avisos

- Leitura Complementar + Exercícios na quinta.
- Lembre: Teste 03 no dia 17/03.