

Лекция 4

Линейные подпространства

Содержание лекции:

В настоящей лекции мы поговорим о подструктурах линейного пространства - линейных подпрострастранствах. Чаще всего приходится иметь дело именно с ними. Подпространства и линейные многообразия играют важную роль в геометрических приложениях линейной алгебры, а также, как будет указано, в теории систем линейных алгебраических уравнений.

Ключевые слова:

Линейное подпространство, линейная оболочка, линейное многообразие, размерность линейного многообразия.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

4.1 Подпространства

Подмножество $L \subset X$ линейного пространства $X(\mathbb{k})$ называется линейным подпространством пространства $X(\mathbb{k})$, если оно само является линейным простанством над полем \mathbb{k} относительно операций, определенных в $X(\mathbb{k})$.

Теорема 4.1. (Критерий линейного подпространства) Для того, чтобы непустое подмножество L линейного пространства $X(\mathbb{k})$ являлось подпространством, необходимо и достаточно выполнение следующих условий:

- 1. $\forall x_1, x_2 \in L(\mathbb{k}) \quad x_1 + x_2 \in L(\mathbb{k});$
- 2. $\forall \alpha \in \mathbb{k}, \quad \forall x \in L(\mathbb{k}) \quad \alpha x \in L(\mathbb{k}).$

_

- \Rightarrow Пусть $L(\mathbb{k})$ подпространство линейного пространства $X(\mathbb{k})$, тогда условия (1) и (2) содержатся в его определении.
- \Leftarrow Пусть выполняются условия (1) и (2), тогда прямой проверкой аксиом, убеждаемся, что $L(\Bbbk)$ подпространство линейного пространства $X(\Bbbk)$.

◀

Nota bene Обычно пишут $L(\mathbb{k}) \leqslant X(\mathbb{k})$.

Пример 4.1. Примеры подпространств:

- 1. Само $X(\mathbb{k})$ и $\{0\}$ примеры несобственного и тривиального подпространств;
- 2. Множество симметричных 2×2 матриц подпространство $\mathrm{Mat}_{\mathbb{C}}(2)$;
- 3. Множество четных полиномов подпространство $\mathbb{R}[x]_n$;

Лемма 4.1. Пусть $L(\mathbb{k}) \leqslant X(\mathbb{k})$, тогда

$$\dim_{\mathbb{k}} L \leq \dim_{\mathbb{k}} X.$$

▶

Так как $L(\mathbb{k})$ является подмножеством $X(\mathbb{k})$, то любой набор элементов $L(\mathbb{k})$ также содержится и в $X(\mathbb{k})$. Лемму доказывает выбор базиса $L(\mathbb{k})$ в качестве такого набора.

4

Лемма 4.2. Имеет место:

$$L(\mathbb{k}) = X(\mathbb{k}) \quad \Leftrightarrow \quad \dim_{\mathbb{k}} L = \dim_{\mathbb{k}} X.$$

⇒ Утверждение очевидно.

 \Leftarrow Наряду с тем, что $L \subseteq X$, имеет место критерий:

$$\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} L \quad \Leftrightarrow \quad X(\mathbb{k}) \simeq L(\mathbb{k}),$$

Лемма 4.3. Любой базис подпространства $L(\mathbb{k})$ может быть дополнен до базиса всего пространства $X(\mathbb{k})$.

Пусть $\{f_i\}_{i=1}^m$ базис $L(\mathbb{k})$. Применим процедуру замещения к системе

$$\{e_1, e_2, \dots, e_n\} \quad \Rightarrow \quad \{\dots; f_1, f_2, \dots, f_m\}$$

где $\{e_j\}_{j=1}^n$ - базис $X(\Bbbk)$. \blacktriangleleft

Лемма 4.4. Из произвольного базиса пространства $X(\mathbb{k})$, вообще говоря, нельзя выбрать базис его подпространства $L(\mathbb{k})$.

Лемму доказывает контрпример:

$$X(\mathbb{k}) = \mathcal{L}\left\{e_1, e_2\right\} \quad L(\mathbb{k}) = \mathcal{L}\left\{e_1 + e_2\right\}.$$

4.2 Линейная оболочка

Линейной оболочкой системы векторов x_1, x_2, \ldots, x_k называется множество $\mathcal{L}\{x_1, x_2, \ldots, x_k\}$ всех линейных комбинаций этих векторов:

$$\mathcal{L}\{x_1, x_2, \dots, x_k\} = \left\{ x \in X : \quad x = \sum_{i=1}^k \alpha^i x_i \right\}.$$

Лемма 4.5. Линейная оболочка векторов $\{x_1, x_2, \dots, x_k\}$ - подпространство $X(\mathbb{k})$:

$$\forall y, y_1, y_2 \in \mathcal{L}, \quad \forall \lambda \in \mathbb{k} \quad \Rightarrow \quad y_1 + y_2 \in \mathcal{L}, \quad \lambda y \in \mathcal{L}.$$

Так как $y, y_1, y_2 \in \mathcal{L}(\mathbb{k})$, то

$$y = \sum_{i=1}^{k} x_i \alpha^i, \quad y_1 = \sum_{i=1}^{k} x_i \alpha_1^i, \quad y_2 = \sum_{i=1}^{k} x_i \alpha_2^i,$$

и осталось только проверить существование соответствующих линейных комбинаций:

$$y_1 + y_2 = \sum_{i=1}^k x_i \alpha_1^i + \sum_{i=1}^k x_i \alpha_2^i = \sum_{i=1}^k x_i \left(\alpha_1^i + \alpha_2^i\right) \in \mathcal{L},$$
$$y\lambda = \sum_{i=1}^k x_i \alpha^i \cdot \lambda = \sum_{i=1}^k x_i \alpha^i \lambda \in \mathcal{L}.$$

Лемма 4.6. (минимальность) Линейная оболочка векторов $\mathcal{L}\{x_1, x_2, \dots, x_k\}$ является наименьшим подпространством в $X(\mathbb{k})$, содержащим эти векторы.

Всякое линейное пространство, содержащее векторы $\{x_1, x_2, \dots, x_k\}$ также должно содержать и все их линейные комбинации, а значит - линейная оболочка $\{x_1, x_2, \dots, x_k\}$ - наименьшее из таких подпространств.

Линейная оболочка векторов $\mathcal{L}\{x_1, x_2, \dots, x_k\}$ называется подпространством, натянутым на данные векторы.

4.3 Линейное многообразие

Линейным многообразием M, параллельным подпространству $L(\mathbb{k})$ линейного пространства $X(\mathbb{k})$ называется множество

$$M_{x_0} = \{ y \in X(\mathbb{k}) : y = x_0 + x, x_0 \in X(\mathbb{k}), x \in L(\mathbb{k}) \}.$$

Nota bene Линейное подпространство $L(\mathbb{k})$ называется также несущим подпространством для многообразия M.

Теорема 4.2. Следующие утверждения эквивалентны:

(1)
$$x_0 + L = y_0 + L \iff (2) \quad y_0 \in x_0 + L \iff (3) \quad y_0 - x_0 \in L.$$

На протяжении всего доказательства положим $z, z' \in L$. Импликация $(1) \Rightarrow (2)$:

$$x_0 + L = y_0 + L \implies x_0 + z = y_0 + z' \implies y_0 = x_0 + (z - z') \in x_0 + L.$$

Импликация $(2) \Rightarrow (3)$:

$$y_0 \in x_0 + L \quad \Rightarrow \quad y_0 = x_0 + z \quad \Rightarrow \quad y_0 - x_0 = z \in L.$$

Импликация $(3) \Rightarrow (1)$:

$$y_0 - x_0 \in L \quad \Rightarrow \quad y_0 = x_0 + z.$$

Пусть $x \in x_0 + L$, тогда $x = x_0 + z'$, $z' \in L$ и

$$x = x_0 + z' = y_0 + (z' - z)$$
 \Rightarrow $x_0 + L \subseteq y_0 + L$.

аналогично для $y \in y_0 + L$.

4

 $Nota\ bene$ Многообразие M_{x_0} порождается любым своим представителем.

Nota bene Для того, чтобы линейное многообразие M_{x_0} было подпространством необходимо и достаточно, чтобы $x_0 \in L(\mathbb{k})$, то есть, чтобы $M_{x_0} \equiv L(\mathbb{k})$.

Лемма 4.7. Несущее подпространство линейного многообразия определяется единственным образом.

▶

Пусть $x_0, y_0 \in X$ и $L(\mathbb{k}), L'(\mathbb{k}) \leqslant X(\mathbb{k})$, тогда

$$x_0 + L = y_0 + L' \quad \Rightarrow \quad L = L'$$

Из предыдущей теоремы следует:

$$x_0 + L = y_0 + L' \implies x_0 + L = x_0 + L' \implies$$

$$\forall x \in L \quad \exists y \in L' : \quad x_0 + x = x_0 + y \implies x = y \implies L \subseteq L',$$

$$\forall y \in L' \quad \exists x \in L : \quad x_0 + x = x_0 + y \implies y = x \implies L' \subseteq L.$$

4

Определяют размерность многобразия M, параллельного подпространству L

$$\dim_{\mathbb{K}} M_{x_0} = \dim_{\mathbb{K}} L.$$

Многообразие M, параллельное L называется:

- прямой, если $\dim_{\mathbb{k}} L = 1$;
- плоскостью, если $\dim_{\mathbb{k}} L = 2$;
- k-мерной плоскостью, если $\dim_{\mathbb{k}} L = k$;
- гиперплоскостью $\dim_{\mathbb{k}} L = \dim_{\mathbb{k}} X 1$.