Covariance Properties and Graph Selection for High-Dimensional Compositional Data

Camden Lopez

June 6, 2017

Outline

- Compositional microbiome data
- Graphical model and graphical lasso
- Centered log-ratio transformation and SPIEC-EASI
- Covariance properties and alternative covariances
- Graph selection performance

Compositional microbiome data

16S amplicon sequencing:

- 1. Sample from environment
- 2. Extract DNA
- 3. Isolate and amplify 16S genes
- 4. Classify 16S genes by operational taxonomic unit (OTU)

Compositional microbiome data

Sample	OTU 1	OTU 2		OTU p
1	<i>y</i> 11	<i>y</i> 12		<i>У</i> 1 <i>p</i>
2	<i>y</i> 21	<i>y</i> 22		У2р
:	:	:	٠	:
n	y _{n1}	y_{n2}		y_{np}

- ▶ $y_{ii} = \#$ sequences mapped to OTU j in sample i
- ▶ Only relative proportions/ratios informative

Graphical model

Graphical model representation of $V = (V_1, \dots, V_p)$

► Nodes = variables, edges = conditional dependence

Graphical model

Graphical model representation of $V = (V_1, \dots, V_p)$

- ▶ Nodes = variables, edges = conditional dependence
- Assuming $V \sim N(\mu, \Sigma)$, V_i and V_j conditionally dependent if and only if $(\Sigma^{-1})_{ij} \neq 0$

Goal of inference

Notation:

$$W = (W_1, \dots, W_p) = ext{absolute}$$
 abundances of OTUs $\Omega = ext{cov}(\log W)$

Goal of inference

Notation:

$$W = (W_1, \dots, W_p)$$
 = absolute abundances of OTUs $\Omega = \text{cov}(\log W)$

Goal:

- ▶ Infer conditional dependence relationships among $\log W_1, \ldots, \log W_p$
- ▶ Assuming log $W \sim N(\cdot, \Omega)$, infer non-zero entries of Ω^{-1}

Centered log-ratio transformation

Centered log-ratio (clr) transformation:

▶ Given sample $x = (x_1, ..., x_p)$ with geometric mean $g(x) = (\prod_{i=1}^p x_i)^{\frac{1}{p}}$,

Centered log-ratio transformation

Centered log-ratio (clr) transformation:

▶ Given sample $x = (x_1, ..., x_p)$ with geometric mean $g(x) = (\prod_{i=1}^p x_i)^{\frac{1}{p}}$,

$$z = \operatorname{clr}(x) = \left(\log \frac{x_1}{g(x)}, \dots, \log \frac{x_p}{g(x)}\right)$$
$$= \left(\log x_1 - \frac{1}{\rho} \sum_{i=1}^{\rho} \log x_i, \dots, \log x_p - \frac{1}{\rho} \sum_{i=1}^{\rho} \log x_i\right)$$

Centered log-ratio transformation

Centered log-ratio (clr) transformation:

▶ Given sample $x = (x_1, ..., x_p)$ with geometric mean $g(x) = (\prod_{i=1}^p x_i)^{\frac{1}{p}}$,

$$z = \operatorname{clr}(x) = \left(\log \frac{x_1}{g(x)}, \dots, \log \frac{x_p}{g(x)}\right)$$
$$= \left(\log x_1 - \frac{1}{p} \sum_{i=1}^p \log x_i, \dots, \log x_p - \frac{1}{p} \sum_{i=1}^p \log x_i\right)$$

Notation:

 $\Gamma = \text{cov}(\text{clr } W)$

SPIEC-EASI

SParse Invers**E** Covariance estimation for **E**cological **AS**sociation Inference (SPIEC-EASI)

- Estimate $\Gamma = \text{cov}(\text{clr } W)$ from compositional data
- ▶ Infer non-zero entries of Ω^{-1} using $\hat{\Gamma}$, assuming $\Gamma \approx \Omega$

SPIEC-EASI

SParse Invers**E** Covariance estimation for **E**cological **AS**sociation Inference (SPIEC-EASI)

- Estimate $\Gamma = \text{cov}(\text{clr } W)$ from compositional data
- ▶ Infer non-zero entries of Ω^{-1} using $\hat{\Gamma}$, assuming $\Gamma \approx \Omega$

Graphical lasso estimate:

$$\begin{split} \widehat{\Omega^{-1}}_{glasso} &= \operatorname*{arg\,max}_{\Omega^{-1}} \left[\log \det(\Omega^{-1}) - \operatorname{tr}(\Omega^{-1}\widehat{\Omega}) - \lambda \|\Omega^{-1}\|_1 \right] \\ \widehat{\Omega^{-1}}_{SE} &= \operatorname*{arg\,max}_{\Omega^{-1}} \left[\log \det(\Omega^{-1}) - \operatorname{tr}(\Omega^{-1}\widehat{\Gamma}) - \lambda \|\Omega^{-1}\|_1 \right] \end{split}$$

Matrix form:

$$\operatorname{clr}(W) = \operatorname{G} \log(W)$$

$$\operatorname{G} = \begin{pmatrix} 1 - \frac{1}{p} & \dots & -\frac{1}{p} \\ \vdots & \ddots & \vdots \\ -\frac{1}{p} & \dots & 1 - \frac{1}{p} \end{pmatrix}$$

$$\Rightarrow \Gamma = \operatorname{G}\Omega\operatorname{G}$$

Matrix form:

$$\operatorname{clr}(W) = \operatorname{G} \log(W)$$

$$\operatorname{G} = \begin{pmatrix} 1 - \frac{1}{p} & \dots & -\frac{1}{p} \\ \vdots & \ddots & \vdots \\ -\frac{1}{p} & \dots & 1 - \frac{1}{p} \end{pmatrix}$$

$$\Rightarrow \Gamma = \operatorname{G}\Omega\operatorname{G}$$

Entry form:

$$\gamma_{ij} = \omega_{ij} - \overline{\omega}_{i.} - \overline{\omega}_{j.} + \overline{\omega}_{..}$$

Rows (and columns) of Γ sum to zero

$$\Gamma pprox \Omega$$
 when $-\overline{\omega}_{i\cdot} - \overline{\omega}_{j\cdot} + \overline{\omega}_{\cdot\cdot} pprox 0$

- $ightharpoonup \Omega$ row averages all small ("sparse" covariances)
- Larger p helps if Ω row sums increase slower than p
- Small "compositional effect"

$$\Gamma pprox \Omega$$
 when $-\overline{\omega}_{i\cdot} - \overline{\omega}_{j\cdot} + \overline{\omega}_{\cdot\cdot} pprox 0$

- $ightharpoonup \Omega$ row averages all small ("sparse" covariances)
- Larger p helps if Ω row sums increase slower than p
- Small "compositional effect"

Γ≉Ω

- ▶ Some or all Ω row averages large
- Many positive correlations, or some extremely large variances
- Large "compositional effect"

Alternative covariances

Given Γ , what could Ω be?

- ► Γ has p fewer free parameters than Ω: $\frac{1}{2}p(p-1)$ vs. $\frac{1}{2}p(p+1)$
- **Each** Γ associated with a *p* dimensional space of possible Ωs

Alternative covariances

Given Γ , what could Ω be?

- ▶ Γ has p fewer free parameters than Ω: $\frac{1}{2}p(p-1)$ vs. $\frac{1}{2}p(p+1)$
- **Each** Γ associated with a p dimensional space of possible Ω s

Solving for Ω , given Γ and choosing $\omega_{11}, \ldots, \omega_{pp}$:

$$\omega_{ij} = \gamma_{ij} + \frac{1}{2}(\omega_{ii} - \gamma_{ii} + \omega_{jj} - \gamma_{jj})$$

Alternative covariances

Given Γ , what could Ω be?

- ► Γ has p fewer free parameters than Ω: $\frac{1}{2}p(p-1)$ vs. $\frac{1}{2}p(p+1)$
- **Each** Γ associated with a *p* dimensional space of possible Ωs

Solving for Ω , given Γ and choosing $\omega_{11}, \ldots, \omega_{pp}$:

$$\omega_{ij} = \gamma_{ij} + \frac{1}{2}(\omega_{ii} - \gamma_{ii} + \omega_{jj} - \gamma_{jj})$$

▶ Check that Ω is **positive definite** (valid covariance)

Alternative covariances: p = 2

Can analyze and visualize p = 2 case:

- Ω positive definite iff $det(\Omega) > 0$
- ▶ Can find where $\omega_{12} < 0$, $\omega_{12} = 0$, or $\omega_{12} > 0$

Alternative covariances: p = 2

Can analyze and visualize p = 2 case:

- Ω positive definite iff $det(\Omega) > 0$
- ▶ Can find where $\omega_{12} < 0$, $\omega_{12} = 0$, or $\omega_{12} > 0$

Alternative covariances: p = 2

Example:

- ▶ (a) clr abundances
- (b) log abundances with $\omega_{11} = 0.7$, $\omega_{22} = 4.3$, $\omega_{12} = 1.7$
- ightharpoonup (c) log abundances with $\omega_{11}=0.7,~\omega_{22}=0.3,~\omega_{12}=-0.3$

More complicated to analyze...

Investigated several examples by trial-and-error

More complicated to analyze...

Investigated several examples by trial-and-error

Example: Γ corresponding to Ω used in p=64 simulations

▶ Similar **limits on potential variances** $\omega_{11}, \ldots, \omega_{pp}$

• Unconditional relationships (Ω entries) and conditional relationships (Ω^{-1}) can **vary widely**

Partial correlations

- ▶ Indicate signs and strengths of conditional relationships
- ▶ Blue = positive, red = negative partial correlation

Partial correlations

- Indicate signs and strengths of conditional relationships
- ▶ Blue = positive, red = negative partial correlation
- (a) $\omega_{ii} = \gamma_{ii} + 10^{-4}$ for all i
- (b) $\omega_{ii} = \gamma_{ii} + 10^{-3}$ for all i
- ightharpoonup (c) $\omega_{ii} = \gamma_{ii} + 10^{-2}$ for all i
- (d) Small ω_{ii} in first cluster, others equal to values in initial Ω
- (e) All ω_{ii} equal to values in initial Ω
- ▶ (d) Large ω_{ii} in first cluster, others equal to values in initial Ω

Performance: simulation setup

How well does it work in ideal settings?

- ▶ Three sparse graph structures (p-1 edges in each)
- Graph $ightarrow \Omega^{-1}$ (p. cor. $\pm 0.25)
 ightarrow \Omega$
- log W ~ N(0, Ω)

Performance: simulation setup

Performance metric:

- Area under precision-recall curve (AUPR)
- ▶ Points on curve \leftrightarrow graphical lasso solutions for $\lambda_{min} < \cdots < \lambda_{max}$
- Using both log and clr data for comparison

$$\begin{aligned} \text{Recall} &= \frac{\# \text{ correctly selected edges}}{\# \text{ edges in true graph}} \\ \text{Precision} &= \frac{\# \text{ correctly selected edges}}{\# \text{ edges selected}} \end{aligned}$$

Performance: simulation setup

Precision-recall curves (example):

Performance: p = 64

Performance: p = 256

Performance: large compositional effect

What if there's a large compositional effect?

- ▶ Same setting as p = 64 simulations, but ω_{11} 400 times larger
- (—) = clr, (- -) = log

Performance: large compositional effect

Spurious edges due to compositional effect:

► Truth (left) vs. log data (center) vs. clr data (right)

Conclusion

Graph selection:

- Performs well when there isn't a large compositional effect
- Otherwise can select spurious edges

Limitation of compositional data:

- Covariances of clr data could correspond to a variety of log abundance covariances
- Variety of possible conditional and unconditional relationships

References

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall, London, UK.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. *Biostatistics* 9, 432–441.

Kurtz., Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. *PLoS Computational Biology* 11, e1004226.