Clocked Sequential System Design

Example 1 – Multipliers (Gradeschool, Modified Gradeschool)

Multiply Example

10111001 x 11010111

000000000000000 <- Start with zero

10111001 x 11010111

10111001 <- 1st Partial 0000000000000000 Product (PP)

10111001 x 11010111 ------10111001 0000000010111001 <- sum of Prod, PP

10111001 x 11010111 ------10111001 <- second PP 0000000010111001 10111001 x 11010111 -----10111001 0000001000101011 <- running sum

10111001 x 11010111 ------10111001 <- third PP 0000001000101011 10111001 x 11010111 ------10111001 0000001100001111 <- running sum

10111001 x 11010111 -----00000000 <- fourth PP 0000001100001111 10111001 x 11010111 -----00000000 0000001100001111 <- running sum

10111001 x 11010111 ------10111001 0000111010011111 <- running sum

10111001 x 11010111 ------00000000 <- sixth PP 0000111010011111 10111001 x 11010111 -----00000000 0000111010011111 <- running sum

10111001 x 11010111 ------10111001 <- seventh PP 0000111010011111 10111001 x 11010111 ------10111001 0011110011011111 <- running sum

10111001 x 11010111 ------10111001 <- final PP 0011110011011111

Register: asynchronous and synchronous behavior

Multiplication – Simple Gradeschool Algorithm for 16 Bits (32 Bit Result)

```
Step 1:
Clear Product Register
Clear Counter
Load Multiplicand
Load Multiplier
Step 2: (repeat 16 times)
Increment Counter
Load Product Register
Shift Multiplier
Step 3:
Done
```



```
Biggest Unsigned Binary Multiply - 16 Bits × 16 Bits
                            11111111111111111
                            11111111111111111
                            11111111111111111
                           11111111111111111
                         11111111111111111
                        11111111111111111
                       11111111111111111
                      11111111111111111
                     11111111111111111
                    11111111111111111
                   11111111111111111
                  11111111111111111
                 1111111111111111
                11111111111111111
               11111111111111111
              11111111111111111
             11111111111111111
            11111111111111111
           1111111111111110000000000000000001
```

```
Biggest Unsigned Binary Multiply - 16 Bits × 16 Bits
                         111111111111111111
                         11111111111111111
          00000000000000001111111111111111
          0000000000000011111111111111111
          00000000000011111111111111111000
          00000000000111111111111111110000
          0000000000111111111111111111100000\\
          000000000111111111111111111000000
          000000001111111111111111110000000
          000000011111111111111111100000000
          0000000111111111111111111000000000
          00000011111111111111111110000000000\\
          00000111111111111111111100000000000\\
          000011111111111111111000000000000
          001111111111111111000000000000000
          011111111111111110000000000000000
          1111111111111110000000000000000001
```


Multiplication – Modified Gradeschool Algorithm for 16 Bits (32 Bit Result)

Step 1:

Clear Product Register Load Multiplicand Load Multiplier

Step 2:

If MIER = 0 OR MCAND = 0, done

Step 3:

Load Product Register Shift Multiplier and Multiplicand

Step 4:

If MIER = 0, then Done else Go to Step 3

Newer Multiply Techniques

Use More Gates!

Very Simple Example

```
10111001

x 11010111
-----

10111001->•

10111001----

00000000---->•

10111001----->•

10111001----->•

10111001----->•

10111001------>•
```


Row Reduction: any combination of $2^{N}-1$ rows \rightarrow N rows

2^N-1 N

 $3 \longrightarrow 2$

15 ----- 4

31 ---- 5

Row Reduction System – 24 Bits

Division – (Gradeschool)

Division Process

A is integer (32 bits) B is integer (32 bits)

Form A/B to give

MQ – the quotient

ACC – the remainder

Explicatory Example: 4 bits

A is integer (4 bits) B is integer (4 bits)

Form A/B to give

MQ – the quotient (4 bits)

ACC – the remainder (4 bits)

A / B : let A = 0111 let B = 0101

Answer should be: 0001 with a remainder: 0010

Grade School Approach

Grade School Approach

More General Approach

0101 0000 1110

First bit of answer: zero, since 0101 is bigger than 0000, so remember that and then left shift ACC-MQ

More General Approach

0101 0001 110x 0

Second bit of answer: zero, since 0101 is bigger than 0001, so remember that and then left shift ACC-MQ

More General Approach

0101 0011 10xx 00

Third bit of answer: zero, since 0101 is bigger than 0011, so remember that and then left shift ACC-MQ

More General Approach

0101 0111 0xxx 000

Fourth bit of answer: one, since 0101 is smaller than 0111, so replace ACC with 0111 - 0101 = 0010, and shift only MQ with the '1' bit

More General Approach

0101 0010 xxxx 0001

Final result: 0001 with remainder 0010

More General Approach (2)

1011 0000 0010

Initial conditions: set up registers as shown here, then left-shift the ACC-MQ pair (Problem here is 2 / 11)

More General Approach (2)

1011 0000 0100

First bit of answer: zero, since 1011 is bigger than 0000, so remember that and then left shift ACC-MQ

More General Approach (2)

1011 0000 100x 0

Second bit of answer: zero, since 1011 is bigger than 0000, so remember that and then left shift ACC-MQ

More General Approach (2)

1011 0001 00xx 00

Third bit of answer: zero, since 1011 is bigger than 0001, so remember that and then left shift ACC-MQ

More General Approach (2)

1011 0010 0xxx 000

Fourth bit of answer: zero, since 1011 is bigger than 0010, so remember that, and since last step of algorithm, leave ACC as is and shift only MQ

More General Approach (2)

1011 0010 xxxx 0000

Final result: 0000 with remainder 0010

More General Approach (3)

0010 0000 1101

Initial conditions: set up registers as shown here, then left-shift the ACC-MQ pair (Problem here is 13 / 2)

More General Approach (3)

0010 0001 1010

First bit of answer: zero, since 0010 is bigger than 0001, so remember that and then left shift ACC-MQ

More General Approach (3)

0010 0011 010x 0

Second bit of answer: one, since 0010 is less than 0011, so replace ACC with 0011 - 0010 = 0001, then remember the '1' and left shift ACC-MQ

More General Approach (3)

0010 0010 10xx 01

Third bit of answer: one, since 0010 is same as 0010, so replace ACC with 0010 - 0010 = 0000, remember the '1' and then left shift ACC-MQ

More General Approach (3)

0010 0001 0xxx 011

Fourth bit of answer: zero, since 0010 is bigger than 0001, so remember that, and since last step of algorithm, leave ACC as is and shift only MQ

More General Approach (3)

0010 0001 xxxx 0110

Final result: 0110 with remainder 0001

Division Algorithm

Initialization:

Divisor (D_S) <= input value Dividend (MQ) <= input value Remainder (ACC) <= zero Count <= zero

Note: this algorithm takes advantage of the fact that the MQ register starts with Dividend and ends with Quotient

Division Algorithm

```
Step 3: if ACC >= D_S then ACC <= ACC - D_S; FF <= '1'; else FF <= '0'; end if;
```

Count <= Count + 1;

Step 2: Left shift ACC-MQ pair

Division Algorithm

```
Step 4: if Last Iteration then
left shift MQ-FF;
else
left shift ACC-MQ-FF;
end if;

Step 5: if Count < Termination then
return to Step 3;
else
Done;
end if;
```

High Speed Division

- Use High Speed Multiplier
- Follows Newton-Raphson iteration method
- Can find correct answer after few iterations

High Speed Divide

 $\frac{A}{B}$

High Speed Divide

$$\frac{A \times f_0}{B \times f_0}$$

High Speed Divide

$$\frac{\mathbf{A} \times \mathbf{f}_0}{\mathbf{B} \times \mathbf{f}_0}$$
let B = 1 - x, then
$$x = 1 - B, \text{ and let}$$

$$f_0 = 1 + x = 2 - B$$

High Speed Divide

$$\frac{A \times f_0}{B \times f_0}$$

$$= 1 - B, \text{ and let}$$

$$f_0 = 1 + x = 2 - B$$

$$AND:$$

$$B \times f_0 = (1 - x) \times (1 + x)$$

$$= 1 - x^2$$

High Speed Divide

$$\frac{A \times f_0 \times f_1 \times f_2 \times f_3 \times f_4}{B \times f_0 \times f_1 \times f_2 \times f_3 \times f_4}$$

Floating Point Arithmetic

1634.75 = 11001100010.1100 $= 1.10011000101100 \times 2^{10}$

IEEE: $10 + 127 = 137_{10} = 10001001_2$ so, 0.10001001 = 10011000101100000000000

Addition of Floating Point Numbers

1634.75 = 11001100010.1100 $= 1.10011000101100 \times 2^{10}$

IEEE: $10 + 127 = 137_{10} = 10001001_2$ so, $0.10001001 \cdot 10011000101100000000000$

498.0625 = 111110010.0001 $= 1.111100100001 \times 2^{8}$

IEEE: $8 + 127 = 135_{10} = 10000111_2$ so, 0.10000111 111110010000100000000000

Step 1: Determine larger of two numbers by comparing the exponents

Number A: 10001001Number B: 10000111A - B = 00000010

Number A is bigger than Number B by a factor of about 4 (2²)

Addition of Floating Point Numbers

Step 2: Represent numbers in same format of user's choosing. Choice here is two words (64 bits) with p=56.

Note: keep track of fact that this is x 210

Step 3: do the addition:

 $0000\ 0001.\ 1001\ 1000\ 1011\ 0000\ 0000\ 0000\ 0000\ 0000$ $0000\ 0000\ 0111\ 1100\ 1000\ 0100\ 0000\ 0000\ 0000$

0000 0010 0001 0101 0011 0100 0000 0000 0000 0000

Addition of Floating Point Numbers

Step 4: Post normalize: (restore normalized condition) and adjust exponent 0000 0001 0000 1010 1001 1010 0000 0000 0000 0000 x 21

So, final IEEE representation: 0 10001010 00001010100110100000000

1634.75 = 11001100010.1100 $= 1.10011000101100 \times 2^{10}$

IEEE: $10 + 127 = 137_{10} = 10001001_2$ so, 0.10001001 = 10011000101100000000000

-1555.55 = 11000010011.1000110011001100= 1.100001001110001100110011001100 x 2¹⁰

IEEE: $10 + 127 = 137_{10} = 10001001_2$ so, $1 \cdot 10001001 \cdot 10000100111000110011$

Addition of Floating Point Numbers

Step 1: Determine larger of two numbers by comparing the exponents

Number A: 10001001Number B: 10001001A - B = 00000000

Number A is same order of magnitude as Number B; no alignment necessary

Step 2: Represent numbers in same format of user's choosing. Choice here is two words (64 bits) with p=56.

Note: keep track of fact that this is x 210

Addition of Floating Point Numbers

Step 3: do the addition (in this case, subtraction):

0000 0000 0001 0011 1100 1100 1100 1100 1101 0000

So, final IEEE representation: 0 10000101 0011110011001100110