$11a_{363} (K11a_{363})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^5 + 4u^3 + 3u - 1 \rangle$$

$$I_2^u = \langle u^{12} - u^{11} + 8u^{10} - 7u^9 + 22u^8 - 15u^7 + 23u^6 - 9u^5 + 6u^4 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 17 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^5 + 4u^3 + 3u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} + u^{2} - u + 1 \\ 2u^{3} - u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u^{2} + 2u \\ -u^{3} - u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{3} - 2u^{2} - u \\ u^{4} + u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{3} + 2u^{2} - u + 1 \\ -u^{4} + u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{3} + 2u^{2} - u + 1 \\ -u^{4} + u^{3} - u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 4u^3 16u^2 12u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$u^5 + 4u^3 + 3u + 1$
<i>c</i> ₉	$u^5 + 5u^4 + 14u^3 + 19u^2 + 16u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$y^5 + 8y^4 + 22y^3 + 24y^2 + 9y - 1$
c_9	$y^5 + 3y^4 + 38y^3 + 47y^2 + 104y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.226624 + 1.023230I	6.17001 + 3.58174I	-1.25591 - 4.89768I
u = -0.226624 - 1.023230I	6.17001 - 3.58174I	-1.25591 + 4.89768I
u = 0.297463	-0.520906	-19.1220
u = 0.07789 + 1.74776I	-13.3118 - 6.2970I	-0.18315 + 2.53911I
u = 0.07789 - 1.74776I	-13.3118 + 6.2970I	-0.18315 - 2.53911I

II.
$$I_2^u = \langle u^{12} - u^{11} + 8u^{10} - 7u^9 + 22u^8 - 15u^7 + 23u^6 - 9u^5 + 6u^4 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{8} - 5u^{6} - 7u^{4} - 2u^{2} + 1 \\ -u^{10} - 6u^{8} - 11u^{6} - 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} + 2u \\ -u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{11} + u^{10} - 8u^{9} + 7u^{8} - 22u^{7} + 14u^{6} - 23u^{5} + 6u^{4} - 6u^{3} + 1 \\ -u^{10} - 7u^{8} - 14u^{6} - u^{5} - 6u^{4} - 3u^{3} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - u^{10} + 7u^{9} - 7u^{8} + 16u^{7} - 15u^{6} + 12u^{5} - 10u^{4} - 3u^{2} - u - 1 \\ -u^{11} - 6u^{9} - 10u^{7} - u^{6} - 3u^{5} - 3u^{4} - u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - u^{10} + 7u^{9} - 7u^{8} + 16u^{7} - 15u^{6} + 12u^{5} - 10u^{4} - 3u^{2} - u - 1 \\ -u^{11} - 6u^{9} - 10u^{7} - u^{6} - 3u^{5} - 3u^{4} - u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^6 4u^5 + 16u^4 12u^3 + 12u^2 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$u^{12} + u^{11} + 8u^{10} + 7u^9 + 22u^8 + 15u^7 + 23u^6 + 9u^5 + 6u^4 + 1$
c_9	$ (u^6 - 2u^5 + 5u^4 - 4u^3 + 8u^2 - 4u + 3)^2 $

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$y^{12} + 15y^{11} + \dots + 12y^2 + 1$
c_9	$(y^6 + 6y^5 + 25y^4 + 54y^3 + 62y^2 + 32y + 9)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.105048 + 0.895324I	2.14658 - 1.36304I	-5.98906 + 5.15276I
u = 0.105048 - 0.895324I	2.14658 + 1.36304I	-5.98906 - 5.15276I
u = 0.300612 + 1.096290I	15.9921 - 4.7113I	-0.92821 + 3.58608I
u = 0.300612 - 1.096290I	15.9921 + 4.7113I	-0.92821 - 3.58608I
u = 0.552709 + 0.348214I	11.47010 - 1.80634I	-5.08274 + 3.33972I
u = 0.552709 - 0.348214I	11.47010 + 1.80634I	-5.08274 - 3.33972I
u = -0.423428 + 0.279325I	2.14658 + 1.36304I	-5.98906 - 5.15276I
u = -0.423428 - 0.279325I	2.14658 - 1.36304I	-5.98906 + 5.15276I
u = 0.02018 + 1.70425I	11.47010 - 1.80634I	-5.08274 + 3.33972I
u = 0.02018 - 1.70425I	11.47010 + 1.80634I	-5.08274 - 3.33972I
u = -0.05512 + 1.72697I	15.9921 + 4.7113I	-0.92821 - 3.58608I
u = -0.05512 - 1.72697I	15.9921 - 4.7113I	-0.92821 + 3.58608I

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$(u^5 + 4u^3 + 3u + 1)$ $\cdot (u^{12} + u^{11} + 8u^{10} + 7u^9 + 22u^8 + 15u^7 + 23u^6 + 9u^5 + 6u^4 + 1)$
c_9	$(u^5 + 5u^4 + 14u^3 + 19u^2 + 16u + 4)$ $\cdot (u^6 - 2u^5 + 5u^4 - 4u^3 + 8u^2 - 4u + 3)^2$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$(y^5 + 8y^4 + 22y^3 + 24y^2 + 9y - 1)(y^{12} + 15y^{11} + \dots + 12y^2 + 1)$
c_9	$(y^5 + 3y^4 + 38y^3 + 47y^2 + 104y - 16)$ $\cdot (y^6 + 6y^5 + 25y^4 + 54y^3 + 62y^2 + 32y + 9)^2$