# Algoritmi e strutture dati - Primavera 2016

Esercizi di programmazione

# 1. Stable Marriage

### **Input Specification**

You will be given as input two text files men.txt and women.txt.

The first file (**men.txt**) will be of the following structure. The first line will contain the number of men (n) and then followed by a nx(n+1) matrix, each of its row specifying the ID of a man and his list of preferences for women to marry.

The second file (**women.txt**) will be of the following structure. The first line will contain the number of women (n) and then followed by a nx(n+1) matrix, each of its row specifying the ID of a woman and her list of preferences for men to marry.

#### **Output Specification**

The output must contain a list of n couples of form (m,w) representing that man m will marry women w. Store this results in a file named **marriages.txt**.

| Sample Input |   |   |   |           |   |   |   |  |  |
|--------------|---|---|---|-----------|---|---|---|--|--|
| man.txt      |   |   |   | women.txt |   |   |   |  |  |
| 3            |   |   | 3 |           |   |   |   |  |  |
| 1            | 1 | 3 | 2 | 1         | 1 | 2 | 3 |  |  |
| 2            | 2 | 1 | 3 | 2         | 3 | 1 | 2 |  |  |
| 3            | 2 | 3 | 1 | 3         | 1 | 2 | 3 |  |  |

| Sample Output |  |  |  |
|---------------|--|--|--|
| marriages.txt |  |  |  |
| 1 2           |  |  |  |
| 2 3           |  |  |  |

# 2. Strongly Connected Components

### **Input Specification**

You will be given as input a file named **graph.txt**. This file will have in the first line the number of nodes of the directed graph and then followed by the adjacency list specifying the structure of the graph.

# **Output Specification**

The output must contain the number of strongly connected components, followed by the nodes that each of these components contain. Store the output in a file named **scc.txt**.

# **Graph Example:**



| Sample Input |  |
|--------------|--|
| graph.txt    |  |
| 12           |  |
| 12           |  |

| 2 3 4 5 |
|---------|
| 3 6     |
| 4 5 7   |
| 5 2 6 7 |
| 6 3 8   |
| 7 8 10  |
| 8 7     |
| 9 7     |
| 10 9 11 |
| 11 12   |
| 12 10   |

| Output Sample  |  |  |
|----------------|--|--|
| scc.txt        |  |  |
| 4              |  |  |
| 1              |  |  |
| 2 4 5          |  |  |
| 3 6            |  |  |
| 7 8 9 10 11 12 |  |  |

# **Allowed Programming Languages**

You may use any programming language of the following: C, C++, JAVA, Python.

# Submission procedure:

Please follow these instructions carefully:

Create a folder and name it in the following format **yourname\_yoursurname\_matricola** for example **mario\_rossi\_1673378**. Put all the files inside this folder after you have named every problem solution **yourname\_yoursurname\_matricola\_problemnumber**, for example problem one **mario\_rossi\_1673378\_1**.

Then you either submit the zipped version of the folder by emailing it at  $\underline{\text{terolli@di.uniroma1.it}}$  or share it on Google Drive with  $\underline{\text{terolli@di.uniroma1.it}}$ .

# IL COMPITO VA CONSEGNATO ENTRO LA MEZZANOTTE DEL 30 APRILE 2016

GOOD LUCK:)