cloudera®

安装 Cloudera Enterprise 5.x

概述

Cloudera 企业级数据中心的安装主要分为 4 个步骤:

- 1. 集群服务器配置,包括安装操作系统、关闭防火墙、同步服务器时钟等;
- 2. 外部数据库安装
- 3. 安装 Cloudera 管理器:
- 4. 安装 CDH 集群;
- 5. 集群完整性检查,包括 HDFS 文件系统、MapReduce、Hive 等是否可以正常运行。

这篇文档将着重介绍 Cloudera 管理器与 CDH 的安装,并基于以下假设:

- 1. 操作系统版本: CentOS 6/RHEL 6 或者 SUSE 11 SP2
- 2. CM 版本: CM 5.x
- 3. CDH 版本: CDH 5.x
- 4. 采用 root 对集群进行部署
- 5. 您已经下载 CDH 和 CM 的安装包
- 6. 集群中不存在任何其他版本的 Hadoop 残留

服务器配置

- 1. 安装操作系统,建议对操作系统盘做 RAID1
- 2. 如果不能连接互联网,先创建 OS 的 repository,以便 yum 或 zypper 可以直接访问 OS 镜像以进行系统级别的软件包安装
- 3. 为了使集群中各个节点之间能互相通信,需要静态或动态配置节点的 IP 地址。如果使用动态配置,请安装 DHCP 和 DNS 服务器,具体请参见对应软件的安装文档,此不赘述;如果使用静态 IP 地址,请正确配置各节点的 IP 以及节点 hostname 信息,并在/etc/hosts 配置所有节点的静态 DNS 解析。

以 cm 节点为例:

/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

ONBOOT=yes
BOOTPROTO=static

IPADDR=172.31.46.113

NICTMACK SEE SEE SAG

NETMASK=255.255.240.0

/etc/hosts 样例

172.31.46.113 < CM_HOST> 172.31.46.110 < NODE1> 172.31.46.111 < NODE2>

若需要启用集群的 Kerberos 认证功能,则一定要配置集群的 DNS 域名,这可以是一个假域名。以 RHEL 为例:

/etc/sysconfig/network

NETWORKING=yes

HOSTNAME=sb-node1.example.com

/etc/hosts

192.168.0.21 sb-node1.example.com sb-node1 192.168.0.22 sb-node2.example.com sb-node2

- 4. 如果机器配置有双网卡,可以做双网卡绑定;
- 5. 关闭并禁用 iptables

CentOS/RHEL

\$>serviceiptables stop \$>chkconfigiptables off

SUSE 11 SP2

\$>sh /sbin/rcSuSEfirewall2 stop \$>chkconfig SuSEfirewall2_setup off

6. 关闭 SELinux

CentOS/RHEL

\$>echo "SELINUX=disabled" > /etc/sysconfig/selinux ;

SUSE 11 SP2

\$>serviceboot.apparmor stop \$>chkconfigboot.apparmor off

7. 重启网络服务,并初始化网络

\$> /etc/init.d/network restart

8. 启用 nscd

\$>yum install -y nscd \$>servicenscd start \$>chkconfignscd on

9. 修改 transparent_hugepage 参数,这一参数默认值可能会导致 CDH 性能下降 RHEL/CentOS

#在/etc/rc.local 中增加一行:

\$>echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag

SUSE 11 SP2

#在/etc/init.d/after.local 中增加一行:
if test -f /sys/kernel/mm/transparent_hugepage/enabled; then
echo never > /sys/kernel/mm/transparent_hugepage/enabled
fi

10. 禁止交换(可选),内存页面交换在某些情况下会导致 CDH 性能下降,建议在 kernel 在 2.6.32-303 之前的版本中将其关闭。

\$>vim/etc/sysctl.conf

增加一行: vm.swappiness=0 \$>sudosysctlvm.swappiness=0

11. (可选) 修改/etc/security/limits.conf 或者在/etc/security/limits.d 下增加相应的配置文件,可以设置一些硬限制和软限制; Cloudera Manager 节点会为所有节点自动做这些修改。通过:

\$> cat /proc/<pid>/limits #确认一些参数限制

12. 在需要作为 Repo 库的节点上安装必要的软件,包含 HTTP 服务和 Repo 创建工具 **CentOS**

\$>yum install createrepo

\$>yum install httpd

\$>servicehttpd start

\$>chkconfighttpd on

SUSE 11 SP2

please find the yum-metadata-parser and createrepo package in os repo directory, usually you can find the them in x86_64 or noarch folder.

\$>rpm-ivh yum-metadata-parser-xxx.rpm

\$>rpm-ivhcreaterepo-xxx.rpm \$>rpm-ivh yast2-http-server-2.17.15-0.5.2.noarch.rpm

磁盘划分

会影响磁盘存储的主要包含以下一些服务

角色节点	RAID 推荐	磁盘要求
所有节点	RAID1	/var/log 空间不小于 50GB
所有节点	JBOD/RAID1	/opt/cloudera 空间不小于 20GB
mysql	RAID1	数据目录不小于 50GB
Host Monitor (A standalone	RAID1	/var/lib/cloudera-host-monitor 不小于 15GB
service for Cloudera Manager)		(目录可调整,大小不可调整); 可以单独部
		署
Service Monitor(A standalone	RAID1	/var/lib/cloudera-service-monitor 不小于 15GB
service for Cloudera Manager)		(目录可调整,大小不可调整); 可以单独部
		署
Event Server(A standalone	RAID1	/var/lib/cloudera-scm-eventserver,可以通过调
service for Cloudera Manager)		整存储的最大事件数来控制存储空间占用
Reports Manager (A standalone	RAID1	/var/lib/cloudera-scm-headlamp,目录空间不确
service for Cloudera Manager)		定,取决于 fsimage 的大小和 HDFS 中文件或
		者目录的路径深度
Navigator Audit Server(A	RAID1	/var/lib 不小于 10GB,可以通过调整保存的审
standalone service for Cloudera		计日志天数来调整存储
Manager)		
Navigator Metadata Server(A	RAID1	/var/lib 不小于 10GB
standalone service for Cloudera		
Manager)		
NameNode (Active/Standby)	JBOD	例如: /hadoop/dfs/nn 不小于 128GB
JournalNode	JBOD	例如: /hadoop/dfs/jn 不小于 64GB
Zookeeper	JBOD/RIAD1	例如:/var/lib/zookeeper 不小于 10GB
DataNode	JBOD	增加 noatime 的挂载选项

角色划分(样例)

节点	接入层	角色
Node 1	接入层 1	CM (and related), QJM
Node 2		DN, NM, RS, HS2, HMS, MySQL
Node 3		DN, NM, RS, HM, ZK
Node 4 – 10		DN, NM, RS
Node 11		NN, RM, QJM
Node 12		DN, NM, RS, HS2, HMS,
Node 13		DN, NM, RS, HM, ZK
Node 14 – 40		DN, NM, RS
Node 41	接入层 2	NN, RM, QJM
Node 42		DN, NM, RS, HS2, HMS, MySQL
Node 43		DN, NM, RS, HM, ZK
Node 44 – 60		DN, NM, RS
Node 61		DN, RS, ZK, HM
Node 62		DN, RS, HM
Node 63 – 70		DN, RS
Node 71		DN, RS, ZK, HM
Node 72 – 80		DN, RS

外部软件安装

- 1. 使用已有的 NTP 服务或者配置新的 NTP 服务
- 2. 外部数据库安装, Cloudera 5 推荐安装 MySQL 5.5 的版本,安装前必须清除旧版本。
- a) 清除旧版本

rpm --e --nodepsmysgl-libs

b) 选择一个节点安装 MySQL 数据库

MySQL Server Bundle:

http://cdn.mysql.com/archives/mysql-5.5/MySQL-5.5.41-1.el6.x86_64.rpm-bundle.tar MySQL Connector Java:

http://cdn.mysql.com/Downloads/Connector-J/mysql-connector-java-3.1.14.tar.gz

\$>rpm -ivh mysql-server-5.5.41-1.sles11.x86_64.rpm mysql-client-5.5.41-1.sles11.x86_64.rpm \$>chkconfigmysql on

\$>servicemysql start

c) 运行 mysql_secure_installation,配置 root 用户访问数据库的密码,禁止远程机器以 root 用户登录,禁止匿名登录

#创建 root 访问数据库的密码

#禁止远程机器以 root 用户登录

#禁止以匿名方式登录数据库

/usr/bin/mysql secure installation

\$ sudo /usr/bin/mysql secure installation

[...]

Enter current password for root (enter for none):

OK, successfully used password, moving on...

[...]

Set root password? [Y/n] y

New password: 123456

Re-enter new password:

Remove anonymous users? [Y/n] Y

[...]

Disallow root login remotely? [Y/n] N

[...]

Remove test database and access to it [Y/n] Y

[....

Reload privilege tables now? [Y/n] Y

All done!

d) 创建 metastore 数据库

mysql -u root --password=<PWD for root> -e 'create database metastore default character set utf8;'

e) 创建 Cloudera Enterprise Hive 访问 MySQLmetastore 库的用户名和密码

mysql -u root --password=<PWD for root> -e "CREATE USER 'hive'@'%' IDENTIFIED BY '123456'; GRANT ALL PRIVILEGES ON metastore. * TO 'hive'@'%'; FLUSH PRIVILEGES;"

f) 类似地,创建其它组件用的数据库,包括: Cloudera Manager server,ActivityMonitor,Reports Manager,Sentry Server, Cloudera Navigator Audit Server, Cloudera Navigator Metadata Server

```
# 若是安装了 yarn 就不需要安全 activity monitor 组件了
mysql -u root --password='123456' -e "create user 'amon'@'%' identified by '123456'"
mysql -u root --password='123456' -e 'create database amon default character set utf8'
mysql -u root --password='123456' -e "grant all privileges on amon.* to 'amon'@'%'"
mysql -u root --password='123456' -e "create user 'rman'@'%' identified by '123456'"
mysql -u root --password='123456' -e 'create database rman default character set utf8'
mysql -u root --password='123456' -e "grant all privileges on rman.* to 'rman'@'%'"
mysql -u root --password='123456' -e "create user 'sentry'@'%' identified by '123456'"
mysql -u root --password='123456' -e 'create database sentry default character set utf8'
mysql -u root --password='123456' -e "grant all privileges on sentry.* to 'sentry'@'%'"
mysql -u root --password='123456' -e "create user 'nav'@'%' identified by '123456'"
mysql -u root --password='123456' -e 'create database nav default character set utf8'
mysgl -u root --password='123456' -e "grant all privileges on nav.* to 'nav'@'%'"
mysgl -u root --password='123456' -e "create user 'navms'@'%' identified by '123456'"
mysql -u root --password='123456' -e 'create database navms default character set utf8'
mysql -u root --password='123456' -e "grant all privileges on navms.* to 'navms'@'%'"
mysql -u root --password='123456' -e "create user 'cm'@'%' identified by '123456'"
mysql -u root --password='123456' -e 'create database cm default character set utf8'
mysql -u root --password='123456' -e "grant all privileges on cm.* to 'cm'@'%'"
```

CDH 软件下载与配置(Cloudera 管理器节点)

1. 下载 Cloudera 管理器需要的 rpm 包

RHEL/CentOS

wget -c -r -nd -np -k -L -A rpm

http://archive-primary.cloudera.com/cm5/redhat/6/x86 64/cm/5/RPMS/x86 64/

SUSE 11 SP2

```
wget -c -r -nd -np -k -L -A rpmhttp://archive-primary.cloudera.com/cm5/sles/11/x86_64/cm/5/RPMS/x86_64/
```

2. 下载 Parcel 包(包含了 CDH 中的 Hadoop 组件)

```
从以下地址选择合适版本的 parcel 包:
```

http://archive-primary.cloudera.com/cdh5/parcels/latest

下载 manifest.json 文件:

http://archive-primary.cloudera.com/cdh5/parcels/latest/manifest.json

3. 下载后将下载的软件放置为如下结构(该步骤不是必须的,只是为了后续说明的方便)

```
[root@ip-172-31-46-113 CDH]# ls
CDH-5.2.0-1.cdh5.2.0.p0.36-el6.parcel cm manifest.json
[root@ip-172-31-46-113 CDH]# ls cm
cloudera-manager-agent-5.2.0-1.cm520.p0.60.el6.x86_64.rpm
cloudera-manager-daemons-5.2.0-1.cm520.p0.60.el6.x86_64.rpm
cloudera-manager-server-5.2.0-1.cm520.p0.60.el6.x86_64.rpm
cloudera-manager-server-db-2-5.2.0-1.cm520.p0.60.el6.x86_64.rpm
enterprise-debuginfo-5.2.0-1.cm520.p0.60.el6.x86_64.rpm
jdk-6u31-linux-amd64.rpm
oracle-j2sdk1.7-1.7.0+update67-1.x86_64.rpm
```

4. 创建 repo 文件以支持本地 yum 的操作

\$> cd cm

\$>createrepo.

Spawning worker 0 with 7 pkgs

Workers Finished

Gathering worker results

Saving Primary metadata

Saving file lists metadata

Saving other metadata

Generating sqlite DBs

Sqlite DBs complete

\$>Is

cloudera-manager-agent-5.2.0-1.cm520.p0.60.el6.x86_64.rpm cloudera-manager-daemons-5.2.0-1.cm520.p0.60.el6.x86_64.rpm cloudera-manager-server-5.2.0-1.cm520.p0.60.el6.x86_64.rpm cloudera-manager-server-db-2-5.2.0-1.cm520.p0.60.el6.x86_64.rpm enterprise-debuginfo-5.2.0-1.cm520.p0.60.el6.x86_64.rpm

jdk-6u31-linux-amd64.rpm

oracle-j2sdk1.7-1.7.0+update67-1.x86_64.rpm

repodata

执行完后,在 cm 目录下生成目录 repodata

5. 将文件移动到特定的目录,确保可以通过 HTTP 协议进行访问

\$>ls

CDH-5.2.0-1.cdh5.2.0.p0.36-el6.parcel cmmanifest.json

\$>mkdir -p /var/www/html/cdh5/parcels/5.2.0/

\$>mv CDH-5.2.0-1.cdh5.2.0.p0.36-el6.parcel /var/www/html/cdh5/parcels/5.2.0/

\$>mvmanifest.json /var/www/html/cdh5/parcels/5.2.0/

\$>mv cm /var/www/html/

\$>chmod -R ugo+rX /var/www/html

现在,你应该可以使用浏览器对相关目录进行访问:

← → C ㎡ 🗋 172.31.46.113/cdh5/parcels/5.2.0/

Index of /cdh5/parcels/5.2.0

Parent Directory CDH-5.2.0-1.cdh5.2.0.p0.36-el6.parcel 12-Oct-2014 18:40 1.4G manifest.json 12-Oct-2014 18:42 42K Apache/2.2.15 (CentOS) Server at 54.69.224.63 Port 80		<u>Name</u>	Last modified	Size Description
manifest.json 12-Oct-2014 18:42 42K	Parent I	Directory		-
	CDH-5	2.0-1.cdh5.2.0.p0.36-el6.p	parcel 12-Oct-2014 18:40) 1.4 G
Apache/2.2.15 (CentOS) Server at 54.69.224.63 Port 80	manifes	t.json	12-Oct-2014 18:42	2 42K
				2 42 K

Index of /cm

<u>Name</u>	Last modified	Size Description
Parent Directory		
cloudera-manager-agent-5.2.0-1.cm520.p0.60.el6.x86 64.rpm	13-Oct-2014 15:37	3.8M
cloudera-manager-daemons-5.2.0-1.cm520.p0.60.el6.x86 64.rpm	13-Oct-2014 15:37	413M
cloudera-manager-server-5.2.0-1.cm520.p0.60.el6.x86 64.rpm	13-Oct-2014 15:37	7.6K
cloudera-manager-server-db-2-5.2.0-1.cm520.p0.60.el6.x86 64.rpm	13-Oct-2014 15:37	9.6K
enterprise-debuginfo-5.2.0-1.cm520.p0.60.el6.x86 64.rpm	13-Oct-2014 15:37	672K
jdk-6u31-linux-amd64.rpm	13-Oct-2014 15:37	68M
oracle-j2sdk1.7-1.7.0+update67-1.x86 64.rpm	13-Oct-2014 15:37	135M
repodata/	15-Oct-2014 09:52	-

Apache/2.2.15 (CentOS) Server at 54.69.224.63 Port 80

6. 新建文件/etc/yum.repos.d/myrepo.repo

[myrepo]

name=repo
baseurl=http://172.31.46.113/cm/
enabled=true
gpgcheck=false

安装 Cloudera 管理器

1. 安装 JDK

RHEL/CentOS

yum install oracle-j2sdk1.7

SUSE 11 SP2

zypper install oracle-j2sdk1.7

2. 安装 Cloudera 管理器服务器

RHEL/CentOS

yum install cloudera-manager-daemons cloudera-manager-server

SUSE 11 SP2

: zypper install cloudera-manager-daemons cloudera-manager-server

3. 在需要访问 MySQL 的节点上安装 mysql-connector-java

cp mysql-connector-java-5.1.34.jar /usr/share/java/ ln_s mysql-connector-java-5.1.34.jar mysql-connector-java.jar

4. 为 Cloudera 管理器配置外部数据库

/usr/share/cmf/schema/scm_prepare_database.sh

<MYSQL_HOST><DB_TYPE><DATABASE><USERNAME><PASSWORD>

-h <MYSQL_HOST>可以不指定,默认是 localhost

DB_TYPE 可以是 mysql, oracle

DATABASE 即为之前为 Cloudera Manager 配置的数据库

USERNAME/PASSWORD 即为可以访问这个数据库的用户

5. 启动 Cloudera 管理器服务器

servicecloudera-scm-server start

启动后就可以访问 Cloudera 管理器页面了

Cloudera 管理器的监听端口为 7180

安装 CDH 集群

1. 输入账户密码 admin/admin,点击"登录"

2. 选择要安装的集群版本(在这里我们选择试用版),点击"继续"

3. 了解 CDH 支持的 Hadoop 组件信息,点击"继续"

4. 查找并选择需要安装 CDH 的机器,点击"继续"

5. 点击"使用 Parcels (建议)"右侧的"更多选项"按钮,在弹出框中设置 CDH Parcel 包的 URL,点击"确定"

6. 选择 CDH-5.2.0-1.cdh5.2.0.p0.36, 在"自定义存储库"填写依赖包的 URL, 点击"继续"

7. 选择需要的 JDK, 点击"继续"

8. 输入集群机器的登录密码,点击"继续"

9. 集群依赖包安装,安装完后点击"继续"

10. Parcel 包安装,安装完后点击"继续"

11. 检查主机正确性,如果检查出现任何潜在问题,你可以到集群中进行修复,修复后点击"重新运行"重新检查。解决所有问题后,点击"完成"

12. 选择要安装的服务套装,点击"继续"

13. 选择具体的角色分配,我们建议你直接使用 Cloudera 设置的默认值,点击"继续"

14. 设置数据库,设置完毕后点击"测试连接",测试全部通过后点击"继续"

15. 配置集群组件的相关参数,点击"继续"

16. 启动集群,完成后点击"继续"

17. 点击"完成"

18. 访问集群

恭喜你!现在你已经拥有自己的 CDH 5.x 集群啦。Happy CDH!

集群基本参数调整

Cloudera Management Service 相关服务的资源配置:

服务	属性	建议配置值(实际情况视集
		群大小而定)
Service Monitor	Java 堆栈	1GB 或 2GB
	非 Java 堆栈	2GB 或 4GB
Host Monitor	Java 堆栈	1GB 或 2GB
	非 Java 堆栈	2GB 或 4GB
Event Server	Java 堆栈	1GB
Report Manager	Java 堆栈	1GB
Alert Publisher	Java 堆栈	1GB

Zookeeper 服务的相关建议配置:

服务	属性	建议配置
Zookeeper	maxClientCnxns	1024
	最大客户端连接数	
	Java 堆栈	小集群 2GB
		大集群 4GB 以上
	maxSessionTimeout	180000 ms
	最大会话超时	

HDFS 服务的相关建议配置:

服务	属性	建议配置
NameNode	Java 堆栈	48GB 或更高(64GB)
	dfs.namenode.handler.count	100
	dfs.namenode.service.handler.count	100
DataNode	Java 堆栈	4GB
	dfs.datanode.handler.count	60
	dfs.datanode.max.xcievers	4096
JournalNode	Java 堆栈	1GB

YARN 服务的相关建议配置:

服务	属性	建议配置
Resource Manager	Java 堆栈	4GB
	最小容器内存	1GB
	容器增量内存	512MB
	最大容器内存	NodeManager 的容器内存
		大小
	最小容器虚拟内核	1
	容器虚拟内核增量	1
	最大容器虚拟内核	NodeManager 的容器虚拟
		内核数量
NodeManager	Java 堆栈	4GB
	容器内存	与节点 vcore 数量相当的
		内存数量(32GB 或者
		40GB),或者两倍于 vcore
		数量相当的内存(64GB
		或者 80GB); 具体配置视
		实际的物理机配置状况
	容器虚拟内核数量	节点的实际 vcore 数量
		(32 或者 40)
Gateway	yarn.app.mapreduce.am.resource.mb	4GB
此部分的参数,客户端都可	Application Master 容器内存	
以动态改变		
	yarn.app.mapreduce.am.resource.cpu-	1

vcores	
Application Master 虚拟 CPU 数量	
Application Master Java 堆栈	0.8 倍于容器内存(3.2
	GB)
Map/Reduce 容器内存	1GB,具体配置应由客户
	端的任务性质决定;
Map/Reduce 任务虚拟内核数	1
Map/Reduce Java 堆栈	0.8 倍于 Map/Reduce 容器
	内存
客户端 Java 堆栈	1GB

Impala 服务的相关配置建议:

服务	属性	建议配置
Impala Daemon	mem_limit	128GB 或者更高
	Impala Daemon 内存限制	

HBase 服务的相关配置建议:

服务	属性	建议配置
HBase Master	Master Java 堆栈	4GB
	hbase.master.handler.count	60
HBaseRegionServer	RegionServer Java 堆栈	32GB 或者更高
	hbase.regionserver.handler.count	100
	hbase.regionserver.meta.handler.count	60
	zookeeper.session.timeout	120000 ms
	hfile.block.cache.size	0.2

Hive 服务的相关配置建议:

服务	属性	建议配置
HiveServer2	Java 堆栈	4GB 或者更高
Hive MetaStore	Java 堆栈	4GB
Hive Gateway	Java 堆栈	4GB

集群基准测试

运行 MapReduce 测试

如果以非 root 方式提交任务,则需要在每台节点上添加相应的用户,同时需要修改 YARN min.user.id (默认值是 1000)。

附录 A: 磁盘格式化与挂载

```
$>cat formatdisk.sh
#!/bin/sh
DEVICE_LIST="/dev/sdb /dev/sdc"
for DEVICE in $DEVICE_LIST
 echo "*** create partition for $DEVICE ***"
 parted -s $DEVICE mklabelgptmkpart gpt2t ext2 0% 100%
 PARTITION="$DEVICE""1"
 echo "*** formatting $PARTITION ***"
mkfs.ext4 -T largefile $PARTITION
done
$>sh formatdisk.sh
$>catmountdisk.sh
#!/bin/sh
#backup /etc/fstab
cp /etc/fstab /etc/fstab.bak
PARTITION_LIST="sdb1 sdc1"
for PARTITION in $PARTITION_LIST
do
 UUID=`blkid "/dev/""$PARTITION" | awk '{print $2}' | sed 's/\"//gi`
 echo "*** UUID $UUID ***"
 echo "*** add $PARTITION to /etc/fstab ***"
 MOUNTDIR="/mnt/""$PARTITION"
 echo "mkdir -p $MOUNTDIR"
 mkdir -p $MOUNTDIR
 echo "*** appending \"$UUID $MOUNTDIR ext4 defaults 0 0\" to /etc/fstab *** "
 echo "$UUID $MOUNTDIR ext4 defaults 0 0" >> /etc/fstab
 echo ""
done
#mount all partitions
mount -a
#show mounted partitions
df-h
$>shmountdisk.sh
```


附录 B: ntpd 时间同步

在集群中选择一台机器作为 ntp 服务器,剩余的作为 ntp 客户端。所有客户端时间与 ntp 服务器保持同步。假设选择机器 172.31.46.113 作为 ntp 服务器。

ntp 服务器配置文件修改/etc/ntp.conf,确保集群中其他机器可以访问该 ntp 服务:

Permit all access over the loopback interface. This could

be tightened as well, but to do so would effect some of

the administrative functions.

restrict 127.0.0.1

restrict -6 ::1

restrict 172.31.46.0 mask 255.255.255.0 nomodify

重新启动 ntp 服务:

\$>servicentpd restart

启动后, ntp 服务占用端口号 123。

ntp 客户端配置文件修改/etc/ntp.conf, 指定要同步的 ntp 服务器:

Use public servers from the pool.ntp.org project.

Please consider joining the pool (http://www.pool.ntp.org/join.html).

#server0.centos.pool.ntp.orgiburst

#server1.centos.pool.ntp.orgiburst

#server2.centos.pool.ntp.orgiburst

#server3.centos.pool.ntp.orgiburst

server 172.31.46.113

重新启动 ntp 服务:

\$>servicentpd restart

修改后,在 ntp 客户端机器上运行命令 ntpstat 查看时间同步状态:

\$>ntpstat

synchronised to NTP server (172.31.46.113) at stratum 3

time correct to within 379 ms

polling server every 64 s

附录 C: 快速服务组件验证

1. MapReduce 验证

```
#增加用户组
[root]$ groupaddcloudera-dev
#增加用户
[root]$ useradd -g cloudera-devcloudera-dev
# 查看用户组cloudera-dev中的所有用户
[root]$ lid -g cloudera-dev
#查看用户cloudera-dev所属的所有组
[root]$ lid cloudera-dev
# Hadoop创建相应的用户
[root]$ sudo -u hdfshadoopfs -mkdir /user/cloudera-dev
[root]$ sudo -u hdfshadoopfs -chowncloudera-dev:cloudera-dev /user/cloudera-dev
#运行Hadoopwordcount示例程序
[root]$ sudosucloudera-dev
[cloudera-dev]$ echo "Hello World Bye World" > file0
[cloudera-dev]$ echo "Hello Hadoop Goodbye Hadoop" > file1
[cloudera-dev]$ hadoopfs -mkdir -p /user/cloudera-dev/wordcount/input
[cloudera-dev]$ hadoop fs -put file* /user/cloudera-dev/wordcount/input
[cloudera-dev]$ hadoop jar /opt/cloudera/parcels/CDH/jars/hadoop-examples.jar
wordcount/wordcount/input wordcount/output
[cloudera-dev]$ hadoopfs -getmergewordcount/output output.txt
[cloudera-dev]$ cat output.txt
Bye
Hadoop 2
Hello 2
Goodbye
World 2
```

2. Hive 验证 (可选)

```
[root]$ sudosucloudera-dev
[cloudera-dev]$ echo "Alex,Cloudera" > file2
[cloudera-dev]$ hadoopfs -mkdir -p hive/input
[cloudera-dev]$ hadoopfs -put file2 hive/input
[cloudera-dev]$ cat test.hql
create external table test (
name string,
company string
)
row format delimited
fields terminated by ','
location '/user/cloudera-dev/hive/input'
[cloudera-dev]$ hive -f test.hql
```



```
[cloudera-dev]$ hive -e "select * from test" 2> /dev/null
Alex Cloudera
[cloudera-dev]$ hive -e "select count(*) from test" 2> /dev/null
1
[cloudera-dev]$ hive -e "drop table test"
[cloudera-dev]$ exit
```

3. HBase 验证 (可选)

```
[cloudera-dev]$ cat test.hbase
create 'record', {NAME => 'user'}
put 'record', 'Alex', 'user:company', 'Cloudera'
get 'record', 'Alex'
exit
[cloudera-dev]$ hbase shell test.hbase
             CELL
COLUMN
user:company
                 timestamp=1421390917686, value=Cloudera
1 row(s) in 0.0190 seconds
[cloudera-dev]$ hbase shell
hbase(main):001:0> disable 'record'
0 row(s) in 2.7850 seconds
hbase(main):002:0> drop 'record'
0 row(s) in 0.1880 seconds
#运行Hive Over HBase测试 (Read & Write)
[cloudera-dev]$ cat test.hbase
create 'record', {NAME => 'user'}
put 'record', 'Alex', 'user:company', 'Cloudera'
get 'record', 'Alex'
exit
[cloudera-dev]$ hbase shell test.hbase
COLUMN
              CELL
user:company timestamp=1421390917686, value=Cloudera
[cloudera-dev]$ cat readHiveOverHbase.hql
create external table test (name string, company string)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
withserdeproperties ("hbase.columns.mapping" = ":key,user:company")
tblproperties ("hbase.table.name" = "record");
[cloudera-dev]$ hive -f readHiveOverHbase.hgl
[cloudera-dev]$ hive -e "select * from test" 2> /dev/null
Alex Cloudera
[cloudera-dev]$ hive -e "select count(*) from test" 2> /dev/null
[cloudera-dev]$ cat writeHiveOverHbase.hgl
create table test1 (name string, firm string)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
withserdeproperties ("hbase.columns.mapping" = ":key,user:firm")
tblproperties ("hbase.table.name" = "record1");
[cloudera-dev]$ hive -f writeHiveOverHbase.hql
[cloudera-dev]$ hive -e "insert overwrite table test1 select name, company from test"
[cloudera-dev]$ hbase shell
```


hbase(main):001:0> list

TABLE record record1

2 row(s) in 1.5890 seconds

=> ["record", "record1"]

hbase(main):002:0> scan 'record1' ROW COLUMN+CELL

Alex column=user:firm, timestamp=1421392168104, value=Cloudera

1 row(s) in 0.1090 seconds

