Groups and Rings - SF2729

Homework 2 (Rings)

Jim Holmström - 890503-7571

April 15, 2012

Exercise 1. Let $\sigma_m : \mathbb{Z} \to \mathbb{Z}_m$ be the natural homomorphism given by $\sigma_m(a) = a \pmod{m}$.

a. Show that $\overline{\sigma_m}: \mathbb{Z}[x] \to \mathbb{Z}_m[x]$ given by

$$\overline{\sigma_m}(a_0 + a_1x + \dots + a_nx^n) = \sigma_m(a_0) + \sigma_m(a_1)x + \dots + \sigma_m(a_n)x^n \tag{1}$$

is an homomorphism of $\mathbb{Z}[x]$ onto $\mathbb{Z}_m[x]$.

- b. Show that $degree(f(x) \in \mathbb{Z}[x]) = degree(\overline{\sigma_m}(f(x))) = n \wedge \overline{\sigma_m(f(x))}$ has no nontrivial factors in $\mathbb{Z}_m[x] \Rightarrow f(x)$ is irreducible in $\mathbb{Q}[x]$.
- c. Show that $x^3 + 17x + 36$ is irreducible in $\mathbb{Q}[x]$

Solution.

Exercise 2. Let $f(X) = X^4 - X^2 + 1$. Prove that f(X) is irreducible in $\mathbb{Z}[X]$ and show that f(X) is reducible in $\mathbb{Z}_m[X]$ for $m = \{2, 3, 5\}$ by determining the factorization into a product of irreducible polynomials.

Solution.