Généralités sur les fonctions

2^{nde}

Table des matières

1	Définition et vocabulaire									
	1.1 Définition	2								
	1.2 Vocabulaire : Image, antécédent	3								
2	Représentation graphique 2.1 Représentation graphique d'une fonction	4								
3	Résolution graphique d'équations 3.1 Résoudre graphiquement une équation du type $f(x) = k$									

1 Définition et vocabulaire

1.1 Définition

Soit \mathcal{D}_f une partie de l'ensemble \mathbb{R} .

Une fonction f définie sur \mathcal{D}_f , associe à tout nombre x de \mathcal{D}_f , un unique nombre, noté f(x).

 \mathcal{D}_f est l'ensemble de définition de f.

Notation:

$$f: \mathcal{D}_f \mapsto \mathbb{R}$$
$$x \mapsto f(x)$$

ou

Soit f une fonction définie sur \mathcal{D}_f tel que $f(x) = \dots$

1.1.1 Exemple

$$f: [0;5] \mapsto \mathbb{R}$$
$$x \mapsto x(5-x)$$

ou

Soit f une fonction définie sur [0; 5] tel que f(x) = x(5-x).

1.1.2 Méthode : Établir un tableau de valeurs de f

Soit f une fonction définie sur [0;5] tel que f(x) = x(5-x).

Établir un tableau de valeurs de f, c'est calculer quelques valeurs de f(x) pour des valeurs de $x \in \mathcal{D}_f$.

$$x f(x)$$

$$0 0 \times (5-0) = 0$$

$$1 1 \times (5-1) = 4$$

$$1, 5 1, 5 \times (5-1, 5) = 5, 25$$

$$2 6$$

$$2, 5 6, 25$$

$$3 6$$

$$4 4$$
... ...

1.2 Vocabulaire : Image, antécédent

Pour la fonction f(x) = x(5-x), on a :

$$- f(2,5) = 2,5 \times (5-2,5) = 6,25$$

$$- f(1) = 1 \times (5-1) = 4$$

On dit que:

- L'image de 2,5 par la fonction f est 6,25
- L'image de 1 par la fonction f est 4
- -2,5 est **un** antécédent de 6,25 par la fonction f
- -1 est **un** antécédent de 4 par la fonction f

1.2.1 Remarque

- Un nombre possède une unique image.
- Cependant, un nombre peut posséder plusieurs antécédents.

Dans l'exemple précédent :

- L'image de 1 est 4
- 2 et 3 sont des antécédents de 6

2 Représentation graphique

2.1 Représentation graphique d'une fonction

On peut représenter une fonction f à l'aide du tableau de valeurs. Pour cela, il faut placer dans un repère quelques points de coordonnées (x; f(x))

2.1.1 Exemple

Soit f une fonction définie sur [0; 5] tel que f(x) = x(5-x).

\overline{x}	0	1	1,5	2	2,5	3	4	4, 25	5
$\overline{f(x)}$	0	4	5, 25	6	6, 25	6	4	2,25	0

En plaçant les points dans un repère et en "reliant" ces points, on obtient :

2.1.2 Remarque

L'ensemble des points de coordonnées (x;y) avec y=f(x) définissent la courbe représentative de la fonction f.

On dira que y = f(x) est l'équation de la courbe.

3 Résolution graphique d'équations

3.1 Résoudre graphiquement une équation du type f(x) = k

Pour résoudre une équation du type f(x) = k, il s'agit de trouver le (ou les) antécédent(s) de k par la fonction f.

3.1.1 Exemple

Soit f une fonction définie sur [0; 5] tel que f(x) = x(5-x).

Pour résoudre f(x) = 2, il s'agit de lire graphiquement les antécédents de 2 par la fonction f.

On détermine les abscisses des points d'intersection de la courbe \mathscr{C}_f avec la droite parallèle à l'axe des abscisses passant par le point (0;2).

Deux solutions "approchées" : $x \approx 0, 5$ et $x \approx 4, 5$

3.1.2 Remarques

- Par lecture graphique, les solutions obtenues sont approchées.
- L'équation f(x) = 7 n'a pas de solution car dans ce cas la droite ne coupe pas la courbe.
- Graphiquement, on ne peut pas être certain que les solutions qui apparaissent sont les seules. Il pourrait y en avoir d'autres au-delà des limites de la représentation graphique tracée.

3.2 Résoudre graphiquement une équation du type f(x) = g(x)

Pour déterminer les solutions de l'équation f(x) = g(x), il suffit de lire l'abscisse des points d'intersection des deux courbes \mathscr{C}_f et \mathscr{C}_g .

3.2.1 Exemple

On considère les fonctions f et g définie sur $\mathbb R$ par :

$$- f(x) = x^2 + 2$$

$$- g(x) = -x^2 + 3x + 2$$

Leurs représentations graphiques sont les suivantes :

Les points d'intersections des deux courbes \mathscr{C}_f et \mathscr{C}_g ont pour abscisses 0 et 1, 5.

Graphiquement, on lit que l'équation f(x) = g(x) admet pour solutions : x = 0 et x = 1, 5.

Pour déterminer l'ensemble des solutions de l'inéquation f(x) < g(x), il faut lire l'ensemble des valeurs de x pour lesquelles \mathscr{C}_f est **au-dessous** de \mathscr{C}_g .

6

Graphiquement, $f(x) < g(x) \Leftrightarrow x \in]0; 1.5[$