Page No. 05
Date

5) Amplementation of KNN algorithm in Machine Learning.
1 0 1 sustained with oning.
Learning technique: It assumes the remislant I have
learning technique. It assumes the similarity between the new case
or data and available cases and put the new case into the category
that is most similar to the available categories. KNN algorithm
stores all the available data and classifies a new data point haved
on the similarity which means when new data appears, then
it can be easily classified into a well suite category by using KNN
algorithm. It is mostly used for classification problems but can be
used for regression problems too. KNN is a non-tanametric aborithm
used for regression publicus too. KNN is a non-parametric algorithm.
import numpy as no
import fandas as job
import saboun as sus
import matplotlib pyplot as plt
from sklearn prepriocessing import Label Encoder
from Sklearn model - selection import brain-test-split
from skleann preprocessing import the gknows Rowing Standard Scaler
from sklearn neighbors import KNeighbors Classifier
from skleann metrics import accuracy-score, classification-report, confusion-metri
df 2 pd. read_csv (Social_Network_Ads.csv)
ax = plt. subplots (figsize=(4,4))
ax= sns. countplot (x=df['Gender'])
Teacher's Signature:

Avijit

Page No. 06
Date

olt. show() lt. subplots (figsize= (4,4)) encoder · fit trans form Kandom-State=42 KNeighbous Classifier (n-neighbous= fusion (con fusion-matrix (y-test Teacher's Signature :.....

Avijit

KNN Accuracy: 0.925
KNN Confusion Matrix:
[[48 4]
[2 26]]

KNN Classification Report:

	precision	recall	f1-score	support
0 1	0.96	0.92	0.94	52 28
accuracy			0.93	80
macro ang	0.91	0.93	0.92	80
weighted ang	0.93	0.93	0.93	80

The targeted audience is predicted not to purchase the product.

Cross-Validation Results: Individual Accuracies: [0.675 0.8 0.775 0.9 0.8 0.75 0.925 0.85 0.75 0.8]

Page No. 07
Date

print (f'KNN Classification Report: \n { classification_report-str }) the y-axis limit Evaluation Metrics

Avijit[®]

Expt, No.	
	=
	9

Page No.

Date

6

import pandas as pd

import seabour as uns

df=pd. read_csv ('titanic.csv')

print (df. isnull (), sum ())

print (df['Age'].isnull().sum())

survived_df = df [df ['Survived'] ==1]

dead-df = df [df ['Swired'] ==0]

df1=df['Age'].dropna()

df1=df. select = dtypes (include=['int64', 'float64'])

sns. displot (data = df, x='Age', bins=10, kde= True, color='red')

sns. countplot (data = swwived-df, x = swwived-df['Sex'])

sns. count plot (data = swwired-df, x = swwired-df ['Polass'])

Avijit

Teacher's Signature :....