

ANPEQ

Associazione Nazionale Professionale Esperti Qualificati In Radioprotezione

CORSO DI FORMAZIONE PER

TECNICO SICUREZZA LASER (TSL) E

ADDETTO SICUREZZA LASER (ASL)

Relatore: Luisa Biazzi

2023

Parte 7a

luisa.biazzi@unipv.it

Corso di Formazione su

TECNICO SICUREZZA LASER (TSL) E ADDETTO SICUREZZA LASER (ASL)

VALUTAZIONE DEL RISCHIO E MISURE DI PREVENZIONE E PROTEZIONE

CASO STUDIO TIPICO:

VALUTAZIONE RISCHIO LASER

Prima verifica di sicurezza di un apparecchio LASER:

- Classificazione del locale (DNRO, EMP-VLE)
- Verifica dell'idoneità del protettore oculare (D.O. e stabilità)

Luisa Biazzi luisa.biazzi@unipv.it Università degli Studi di Pavia – Fisica medica Consigliere e Past President ANPEQ

CASO STUDIO: VALUTAZIONE RISCHIO LASER PRIMA VERIFICA DI UN APPARECCHIO LASER "continuo-cw"

Luisa Biazzi

1) Apparecchiatura utilizzata:

Matricola	Marca	Modello	Lunghezza d'onda	Classe	Durata impulso	n. occhiali presenti
ZZZZZ	XXXXX	XXX 980	980 nm	4	cw - 3ms- 2,5s	
			635 nm	3R	cw	3

Dalla tabella sopraesposta si rileva che **l'apparecchiatura laser** (che contiene 2 laser: uno di classe 4 e uno di classe 3) **appartiene alla classe 4 ed eroga radiazione invisibile** (più pericolosa della visibile) essa infatti può causare alle persone presenti nella sala lesioni oculari anche per esposizioni alla sola radiazione diffusa, lesioni alla pelle e può essere causa di incendi.

Caratteristiche della sorgente per emissione continua

Tipo	Lunghezza d'onda (nm)	Potenza (W)	Diametro fascio (mm)	Divergenza (mrad)	Durata esposizione (s)
Diode	980	25	6	76	10 ovvero 5

Distanza laser-utilizzatore r = 20 cm

2) Sono presenti n. 3 paia di protezioni oculari (DPI)

In tabella si riportano la marca e la sigla identificativa di ogni paio di occhiali (n.3 diversi occhiali di n.3 ditte diverse; in grassetto quelli adeguati alla lunghezza d'onda del laser di 980 nm e di classe 4 ma con caratteristiche L/LB diverse).

MARCA	N. occhiali	SIGLA DENTIFICATIVA
YYYYY	1	1070-1090 DIR L5 + 840-1090 M L5 // 950-1070 D LB4 + IR L7 NOIR
YYYYY	1	DIR 600-800 L4 // DI 800-1100 LB6 // IR 800-980 L6 // IR >980-1065 L7 // IR>1065-1100 L5 (OD5+)
YYYYY	1	DI 800 L4 + DI905 L5+ DI 980 LB5 + DI1040 L5 + DIR 1064 L5 + DI 1070 L5 + DI 780-1100 L4 + DI 1100 L4

1° PARTE. Determinare VLE e DNRO

- 1-Valore Limite di Esposizione (VLE=EMP) all'occhio per 10 s e 5 s
 - 1a-Esposizione radiante, H (J/m⁻²)
 - 1b-Irradianza/Densità di potenza, E W/m⁻²
- 2-Distanza Nominale di Rischio Oculare (DNRO) e ZLC

2° PARTE: Verificare l'Idoneità del protettore oculare (DPI)

- 3-Densità ottica necessaria a ridurre l'esposizione a valore non superiore al VLE (EMP)
- 4-Stabilità alla radiazione ossia Resistenza al danneggiamento al fascio laser per 5 secondi ovvero 50 impulsi.