Physics 926: Homework #9

Due on March 31, 2020 at 5pm $\,$

 $Professor\ Ken\ Bloom$

Robert Tabb

Show that in $\pi \rightarrow \mu \nu$ decay, $|\vec{p}_{\mu}| = |\vec{p}_{\nu}| = (m_{\pi}^2 - m_{\mu}^2)/2m_{\pi}$

Solution

Start by defining the momentum four-vectors for each particle in the center of momentum frame. Note that σ is the index while μ , ν , and π are the names of the particles.

$$P_{\pi}^{\sigma} = (m_{\pi}, \vec{0})$$

$$P_{\mu}^{\sigma} = (E_{\mu}, \vec{p})$$

$$P_{\nu}^{\sigma} = (E_{\nu}, -\vec{p})$$

Due to conservation of four-momentum, we can write:

$$\begin{split} P_{\pi}^{\sigma} &= P_{\mu}^{\sigma} + P_{\nu}^{\sigma} \\ P_{\pi}^{\sigma} &- P_{\nu}^{\sigma} &= P_{\mu}^{\sigma} \end{split}$$

Now we contract each side with itself which we can do since this operation is Lorentz invariant:

$$(P_{\pi} - P_{\nu})^{\sigma} (P_{\pi} - P_{\nu})_{\sigma} = P_{\mu}^{\sigma} P_{\mu,\sigma}$$
$$P_{\pi}^{2} + P_{\nu}^{2} - 2P_{\nu}^{\sigma} P_{\pi,\sigma} = m_{\mu}^{2}$$

Since we are assuming the the neutrino is massless, $P_{\nu}^2 = 0$ and $E_{\nu} = |\vec{p}|$

$$\begin{split} m_{\pi}^2 - 2|\vec{p}|m_{\pi} &= m_{\mu}^2 \\ - 2|\vec{p}|m_{\pi} &= m_{\mu}^2 - m_{\pi}^2 \\ |\vec{p}| &= \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}} \end{split}$$

(H&M exercise 12.13) Predict the ratio of the K⁻ \rightarrow e⁻ $\bar{\nu}_e$ and K⁻ \rightarrow $\mu^ \bar{\nu}_\mu$ decay rates. Given that the lifetime of the K is $\tau=1.2\times10^{-8}s$ and the K \rightarrow $\mu\nu$ branching ratio is 64%, estimate the decay constant f_K. Comment on your assumptions and your result.

Solution

Starting with $K^- \to e^- \bar{\nu}_e$, and following the procedure outlined in H&M for π^- decay (p.265):

$$\mathcal{M} = \frac{G}{\sqrt{2}} q^{\sigma} f_k \bar{u}(p_3) \gamma_{\sigma} (1 - \gamma^5) v(p_4)$$
$$q = p_3 + p_4$$
$$\Rightarrow \mathcal{M} = \frac{G f_k}{\sqrt{2}} (p_3^{\sigma} + p_4^{\sigma}) \bar{u}(p_3) \gamma_{\sigma} (1 - \gamma^5) v(p_4)$$

Solution

Solution

Solution

Part a

Part b Solution