Page: 1 of 1

University of Texas at Austin HW Assignment 1

Prerequisite material.

Please, provide your complete solutions to the following problems. Final answers only, even if correct will earn zero points for those problems.

Problem 1.1. (5 points) Provide the definition of the bias of an estimator. What does it mean for the estimator to be *unbiased*? What about *biased*?

Problem 1.2. (5 points) Provide the definition of the mean squared error (MSE) of an estimator.

Problem 1.3. (10 points) Show that, for a point estimator $\hat{\theta}$,

$$MSE[\hat{\theta}] = Var_{\theta}[\hat{\theta}] + (bias(\hat{\theta}))^{2}.$$

Problem 1.4. (10 points) The Pareto distribution with parameters α and θ has the distribution function

$$F(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}.$$

For integer k, its k^{th} moment is

$$\mathbb{E}[X^k] = \frac{\theta^k k!}{(\alpha - 1) \dots (\alpha - k)}$$

A random variable X has a two-parameter Pareto distribution with parameters $\alpha = 4$ and θ (unknown, and to be estimated). Let $\hat{\theta} = 3X$ be our proposed estimator for the θ parameter, based on a random sample consisting of a single measurement. Find the mean squared error of this estimator.

Problem 1.5. (10 points) The gamma distribution with parameters α and β has mean $\alpha\beta$ and variance $\alpha\beta^2$.

Let the random variable X have the Gamma distribution with parameters $\alpha = 3$ and θ unknown (and to be estimated). A proposed estimator for the parameter θ based on a single observation X_1 of the above distribution is $\hat{\theta} = \frac{1}{3}X_1$. What is the **mean-squared error** of this estimator?

Problem 1.6. (10 points) Let Y_1, Y_2 be a random sample from the exponential distribution with the unknown parameter θ . The estimator $\hat{\theta}_2 = cY_{(1)}$ for θ is proposed. Find the constant c such that $\hat{\theta}_2$ is an unbiased estimator of θ .

Instructor: Milica Čudina