Lasso, Ridge, and Elastic Net

David Rosenberg

New York University

February 14, 2017

Linearly Dependent Features

Suppose We Have 2 Equal Features

- Input features: $x_1, x_2 \in \mathbb{R}$.
- Outcome: $y \in \mathbb{R}$.
- Linear prediction functions $f(x) = w_1x_2 + w_2x_2$
- Suppose $x_1 = x_2$.
- Then all functions with $w_1 + w_2 = k$ are the same.
 - give same predictions and have same empirical risk

What function will we select if we do ERM with ℓ_1 or ℓ_2 constraint?

Equal Features, ℓ_2 Constraint

- Suppose the line $w_1 + w_2 = 2\sqrt{2} + 3.5$ corresponds to the empirical risk minimizers.
- Empirical risk increase as we move away from these parameter settings
- Intersection of $w_1 + w_2 = 2\sqrt{2}$ and the norm ball $||w||_2 \le 2$ is ridge solution.
- Note that $w_1 = w_2$ at the solution

Equal Features, ℓ_1 Constraint

- Suppose the line $w_1 + w_2 = 5.5$ corresponds to the empirical risk minimizers.
- Intersection of $w_1 + w_2 = 2$ and the norm ball $||w||_1 \le 2$ is lasso solution.
- Note that the solution set is $\{(w_1, w_2) : w_1 + w_2 = 2, w_1, w_2 \ge 0\}$.

Linearly Related Features

- Same setup, now suppose $x_2 = 2x_1$.
- Then all functions with $w_1 + 2w_2 = k$ are the same.
- give same predictions and have same empirical risk What function will we select if we do ERM with ℓ_1 or ℓ_2 constraint?

Linearly Related Features, ℓ_2 Constraint

- $w_1 + 2w_2 = 10/\sqrt{5} + 7$ corresponds to the empirical risk minimizers.
- Intersection of $w_1 + 2w_2 = 10\sqrt{5}$ and the norm ball $||w||_2 \le 2$ is ridge solution.
- At solution, $w_2 = 2w_1$.

Linearly Related Features, ℓ_1 Constraint

- Intersection of $w_1 + 2w_2 = 4$ and the norm ball $||w||_1 \le 2$ is lasso solution.
- Solution is now a corner of the ℓ_1 ball, corresonding to a sparse solution.

Linearly Dependent Features: Take Away

- For identical features
 - ℓ_1 regularization spreads weight arbitrarily (all weights same sign)
 - ullet ℓ_2 regularization spreads weight evenly
- Linearly related features
 - ullet ℓ_1 regularization chooses variable with larger scale, 0 weight to others
 - \bullet ℓ_2 prefers variables with larger scale spreads weight inversely proportional to scale

Empirical Risk for Square Loss and Linear Predictors

- Recall our discussion of linear predictors $f(x) = w^T x$ and square loss.
- Sets of w giving same empirical risk (i.e. level sets) formed ellipsoids around the ERM.

- With x_1 and x_2 linearly related, we get a degenerate ellipse.
- That's why level sets were lines (actually pairs of lines, one on each side of ERM).

KPM Fig. 13.3

Correlated Features – Same Scale

- Suppose x_1 and x_2 are highly correlated and the same scale.
- This is quite typical in real data, after normalizing data.
- Nothing degenerate here, so level sets are ellipsoids.
- But, the higher the correlation, the closer to degenerate we get.
- That is, ellipsoids keep stretching out, getting closer to two parallel lines.

Correlated Features, ℓ_1 Regularization

- Intersection could be anywhere on the top right edge.
- Minor perturbations (in data) can drastically change intersection point very unstable solution.
- Makes division of weight among highly correlated features (of same scale) seem arbitrary.
 - If $x_1 \approx 2x_2$, ellipse changes orientation and we probably hit a corner.

A Very Simple Model

- Suppose we have one feature $x_1 \in R$.
- Response variable $y \in \mathbf{R}$.
- Got some data and ran least squares linear regression.
- The ERM is

$$\hat{f}(x_1) = 4x_1.$$

- What happens if we get a new feature x_2 ,
 - but we always have $x_2 = x_1$?

Duplicate Features

- New feature x_2 gives no new information.
- ERM is still

$$\hat{f}(x_1,x_2)=4x_1.$$

• Now there are some more ERMs:

$$\hat{f}(x_1, x_2) = 2x_1 + 2x_2$$

 $\hat{f}(x_1, x_2) = x_1 + 3x_2$
 $\hat{f}(x_1, x_2) = 4x_2$

• What if we introduce ℓ_1 or ℓ_2 regularization?

Duplicate Features: ℓ_1 and ℓ_2 norms

- $\hat{f}(x_1, x_2) = w_1x_1 + w_2x_2$ is an ERM iff $w_1 + w_2 = 4$.
- Consider the ℓ_1 and ℓ_2 norms of various solutions:

w_1	<i>w</i> ₂	$ w _1$	$ w _{2}^{2}$
4	0	4	16
2	2	4	8
1	3	4	10
-1	5	6	26

- $||w||_1$ doesn't discriminate, as long as all have same sign
- $||w||_2^2$ minimized when weight is spread equally
- Picture proof: Level sets of loss are lines of the form $w_1 + w_2 = c...$

Correlated Features and the Grouping Issue

Example with highly correlated features

- Model in words:
 - y is a linear combination of z_1 and z_2
 - But we don't observe z_1 and z_2 directly.
 - We get 3 noisy observations of z_1 .
 - We get 3 noisy observations of z_2 .
- We want to predict *y* from our noisy observations.

Example with highly correlated features

• Suppose (x, y) generated as follows:

$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent)
 $\varepsilon_0, \varepsilon_1, \dots, \varepsilon_6 \sim \mathcal{N}(0,1)$ (independent)
 $y = 3z_1 - 1.5z_2 + 2\varepsilon_0$
 $x_j = \begin{cases} z_1 + \varepsilon_j/5 & \text{for } j = 1, 2, 3 \\ z_2 + \varepsilon_j/5 & \text{for } j = 4, 5, 6 \end{cases}$

- Generated a sample of (x, y) pairs of size 100.
- Correlations within the groups of x's were around 0.97.

Example with highly correlated features

Lasso regularization paths:

- Lines with the same color correspond to features with essentially the same information
 - Distribution of weight among them seems almost arbitrary

Hedge Bets When Variables Highly Correlated

- When variables are highly correlated (and same scale, after normalization),
 - we want to give them roughly the same weight.
- Why?
 - Let their error cancel out.
- How can we get the weight spread more evenly?

Elastic Net

• The elastic net combines lasso and ridge penalties:

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda_1 \|w\|_1 + \lambda_2 \|w\|_2^2$$

• We expect correlated random variables to have similar coefficients.

Highly Correlated Features, Elastic Net Constraint

• Elastic net solution is closer to $w_2 = w_1$ line, despite high correlation.

Elastic Net - "Sparse Regions"

- Suppose design matrix X is orthogonal, so $X^TX = I$, and contours are circles (and features uncorrelated)
- Then OLS solution in green or red regions implies elastic-net constrained solution will be at corner

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.9

Elastic Net – A Theorem for Correlated Variables

Theorem

^aLet $\rho_{ij} = \widehat{corr}(x_i, x_j)$. Suppose \hat{w}_i and \hat{w}_j are selected by elastic net, with y centered and predictors x_1, \ldots, x_d standardized. If $\hat{w}_i \hat{w}_i > 0$, then

$$|\hat{w}_i - \hat{w}_j| \leqslant \frac{\|y\|\sqrt{2}}{\lambda_2} \sqrt{1 - \rho_{ij}}.$$

^aTheorem 1 in "Regularization and variable selection via the elastic net": https://web.stanford.edu/ $^\sim$ hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

Elastic Net Results on Model

- Lasso on left; Elastic net on right.
- Ratio of ℓ_2 to ℓ_1 regularization roughly 2:1.

Extra Pictures

Elastic Net vs Lasso Norm Ball

From Figure 4.2 of Hastie et al's Statistical Learning with Sparsity.

The $(\ell_q)^q$ Norm Constraint

- Generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.
- Note: $||w||_q$ is a norm if $q \ge 1$, but not for $q \in (0,1)$
- $\mathcal{F} = \{f(x) = w_1 x_1 + w_2 x_2\}.$
- Contours of $||w||_q^q = |w_1|^q + |w_2|^q$:

$$q=4$$

$$q=2$$

$$q = 0.5$$

$\ell_{1,2}$ vs Elastic Net

FIGURE 3.13. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_{j} (\alpha \beta_{j}^{2} + (1 - \alpha)|\beta_{j}|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

From Hastie et al's Elements of Statistical Learning.