PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-158972

(43) Date of publication of application: 31.05.2002

(51)Int.Cl.

HO4N 5/92 HO4N 5/85 HO4N 5/91 HO4N 5/93

(21)Application number: 2001-091830

(71)Applicant: SONY CORP

(22)Date of filing:

28.03.2001

(72)Inventor: KATO MOTOKI

HAMADA TOSHIYA

(30)Priority

Priority number: 2000183771

Priority date: 21.04.2000

Priority country: JP

2000271552

07.09.2000

JP

(54) INFORMATION PROCESSOR AND PROCESSING METHOD, AND RECORDING MEDIUM THEREFOR, AND PROGRAM AND ITS RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To enable to manage commonly AV stream data recorded by analyzing the position of an I picture and AV stream data recorded without analyzing the position of the I picture. SOLUTION: CPI-type is described in PlayList(). The CPI type includes EP map type and TU map type. The EP map is used when the position of an I picture can be analyzed, and the TU map is used when the position of the I picture cannot be analyzed.

CPI_type	Meaning.	
·O:	EP_map type	
t.	TU mep type	

CPI_type の意味

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-158972 (P2002-158972A)

(43)公開日 平成14年5月31日(2002.5.31)

(51) Int.Cl.7		識別記号	FΙ		テーマコード(参考)
H04N	5/92		H04N	5/85	A 5C052
	5/85			5/92	H 5C053
	5/91			5/91	N
	5/93			5/93	Z

審査請求 未請求 請求項の数27 OL (全 67 頁)

(21)出願番号	特顧2001-91830(P2001-91830)	(71)出顧人	000002185
			ソニー株式会社
(22)出顧日	平成13年3月28日(2001.3.28)		東京都品川区北品川6丁目7番35号
(/	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	加藤 元樹
		(16)元明1	加度ノウ
(31)優先権主張番号	特願2000-183771 (P2000-183771)		東京都品川区北品川6丁目7番35号 ソニ
(32)優先日	平成12年4月21日(2000.4.21)		一株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	浜田 俊也
(31)優先権主張番号	特願2000-271552(P2000-271552)		東京都品川区北品川6丁目7番35号 ソニ
(32)優先日	平成12年9月7日(2000.9.7)		一株式会社内
(33)優先権主張国	日本(JP)	(74)代理人	100082131
			弁理士 稲本 義雄

最終頁に続く

(54) 【発明の名称】 情報処理装置および方法、記録媒体、プログラム、並びに記録媒体

(57)【要約】

【課題】 【ピクチャの位置を分析して記録するAVストリームデータと、分析しないで記録するAVストリームデータとを、共通に管理できるようにする。

【解決手段】 PlayList()には、CPI_typeが記述される。CPI_typeには、EP_maptypeと、TU_map typeがある。 I ピクチャの位置が分析できる場合、EP_mapが用いられ、 I ピクチャの位置が分析できない場合、TU_mapが用いられる。

CPI_type	Meaning		
0	EP_map type		
1	TU_map type		

CPI_type の意味

【特許請求の範囲】

【請求項1】 AVストリームデータを記録媒体に記録する情報処理装置において、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルを生成する第1の生成手段 10 と、

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択手段と、

前記選択されたテーブルを前記AVストリームデータとともに前記記録媒体に記録する第1の記録手段とを有する ととを特徴とする情報処理装置。

【請求項2】 前記第1のテーブルは、EP_mapであり、 前記第2のテーブルは、TU_mapであることを特徴とする 請求項1に記載の情報処理装置。

【請求項3】 前記選択手段は、ノンコグニザント記録 20 の際には、前記第2のテーブルを選択することを特徴とする請求項1に記載の情報処理装置。

【請求項4】 前記選択手段は、セルフエンコード記録の際には、前記第1のテーブルを選択することを特徴とする請求項1に記載に記載の情報処理装置。

【請求項5】 前記選択手段は、コグニザント記録の際には、前記第1のテーブルを選択することを特徴とする請求項1に記載に記載の情報処理装置。

【請求項6】 前記AVストリームデータの再生を指定する再生指定情報を生成する第2の生成手段と、

前記第2の生成手段により生成された前記再生指定情報 を前記記録媒体に記録する第2の記録手段をさらに有

前記再生指定情報は、前記AVストリームデータの再生区間の時間情報を、プレゼンテーションタイムベースで表現するか、またはアライバルタイムベースで表現するかを示す種別情報を含むことを特徴とする請求項1に記載に記載の情報処理装置。

【請求項7】 前記AVストリームデータとともに前記第 1のテーブルが記録されている場合、前記再生指定情報 40 は、前記AVストリームデータの再生区間の時間情報を、 プレゼンテーションタイムベースで表現し、

前記AVストリームデータとともに前記第2のテーブルが 記録されている場合、前記再生指定情報は、前記AVスト リームデータの再生区間の時間情報を、アライバルタイ ムベースで表現することを特徴とする請求項6に記載に 記載の情報処理装置。

【請求項8】 AVストリームデータを記録媒体に記録する情報処理装置の情報処理方法において、

プレゼンテーションタイムスタンプと、それに対応する「50」タイムスタンプと、それに対応するトランスポートパケ

アクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択ステップと、

係を記述する第2のテーブルを生成する生成ステップ

前記選択されたテーブルを前記AVストリームデータとともに前記記録媒体に記録する記録ステップとを含むことを特徴とする情報処理方法。

【請求項9】 AVストリームデータを記録媒体に記録する情報処理装置のプログラムにおいて、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルを生成する生成ステップと、

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択ステップと、

前記選択されたテーブルを前記AVストリームデータとと もに前記記録媒体に記録する記録ステップとを含むこと を特徴とするコンピュータが読み取り可能なプログラム が記録されている記録媒体。

【請求項10】 AVストリームデータを記録媒体に記録 30 する情報処理装置を制御するコンピュータに、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルを生成する生成ステップと、

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択ステップと、

前記選択されたテーブルを前記AVストリームデータとと もに前記記録媒体に記録する記録ステップとを実行させ るプログラム。

【請求項11】 記録媒体からAVストリームデータを再生する情報処理装置において.

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケ

2

ò

ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルの一方が、記録方法に応じ て記録されている前記記録媒体から、前記第1のテーブ ルまたは前記第2のテーブルの一方を再生する再生手段 ٤.

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御手段とを有することを特徴 とする情報処理装置。

【請求項12】 記録媒体からAVストリームデータを再 生する情報処理装置の情報処理方法において、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルの一方が、記録方法に応じ て記録されている前記記録媒体から、前記第1のテーブ ルまたは前記第2のテーブルの一方を再生する再生ステ ップと、

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御ステップとを含むことを特 徴とする情報処理方法。

【請求項13】 記録媒体からAVストリームデータを再 生する情報処理装置のプログラムにおいて、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ 30 ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルの一方が、記録方法に応じ て記録されている前記記録媒体から、前記第1のテーブ ルまたは前記第2のテーブルの一方を再生する再生ステ ップと、

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御ステップとを含むことを特 徴とするコンピュータが読み取り可能なプログラムが記 録されている記録媒体。

【請求項14】 記録媒体からAVストリームデータを再 40 する情報処理装置の情報処理方法において、 生する情報処理装置を制御するコンピュータに、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルの一方が、記録方法に応じ て記録されている前記記録媒体から、前記第1のテーブ ルまたは前記第2のテーブルの一方を再生する再生ステ 50 同期して再生される副の再生パスを示す第2の情報によ

ップと、

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御ステップとを実行させるブ ログラム。

【請求項15】 AVストリームデータが記録されている 記録媒体において、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト 10 ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルの一方が、記録方法に応じ て記録されていることを特徴とする記録媒体。

【請求項16】 AVストリームデータを記録媒体に記録 する情報処理装置において、

主の再生バスを示す第1の情報と、前記主の再生バスと 同期して再生される副の再生パスを示す第2の情報によ り構成される再生指定情報を生成する生成手段と、

20 前記AVストリームデータと前記再生指定情報を前記記録 媒体に記録する記録手段とを備えることを特徴とする情 報処理装置。

【請求項17】 前記副の再生パスは、オーディオデー タのアフターレコーディング用のパスであることを特徴 とする請求項16に記載の情報処理装置。

【請求項18】 前記第1の情報は、Main_pathであ

前記第2の情報は、Sub_pathであることを特徴とする請 求項16に記載の情報処理装置。

【請求項19】 前記第2の情報は、

前記副の再生パスのタイプを表すタイプ情報、

前記副の再生パスが参照する前記AVストリームのファイ

前記副の再生バスの前記AVストリームのイン点とアウト 点、および前記再生パスのイン点が、前記主のパスの時 間軸上で同期してスタートする前記主のバス上の時刻を 含むことを特徴とする請求項16に記載の情報処理装 置。

【請求項20】 AVストリームデータを記録媒体に記録

主の再生パスを示す第1の情報と、前記主の再生パスと 同期して再生される副の再生パスを示す第2の情報によ り構成される再生指定情報を生成する生成ステップと、 前記AVストリームデータと前記再生指定情報を前記記録 媒体に記録する記録ステップとを含むことを特徴とする 情報処理方法。

【請求項21】 AVストリームデータを記録媒体に記録 する情報処理装置のプログラムにおいて、

主の再生パスを示す第1の情報と、前記主の再生パスと

り構成される再生指定情報を生成する生成ステップと、 前記AVストリームデータと前記再生指定情報を前記記録 媒体に記録する記録ステップと

を含むことを特徴とするコンピュータが読み取り可能な プログラムが記録されている記録媒体。

【請求項22】 AVストリームデータを記録媒体に記録する情報処理装置を制御するコンピュータに、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、前記AVストリームデータと前記再生指定情報を前記記録媒体に記録する記録ステップとを実行させるプログラム

【請求項23】 記録媒体からAVストリームデータを再生する情報処理装置において、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生手段と、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御手段とを備えることを特徴とする情報処理装置。

【請求項24】 記録媒体からAVストリームデータを再生する情報処理装置の情報処理方法において、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生ステップと、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御ステップとを含むこと 30 を特徴とする情報処理方法。

【請求項25】 記録媒体からAVストリームデータを再生する情報処理装置のプログラムにおいて、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生ステップと、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御ステップとを含むことを特徴とするコンピュータが読み取り可能なプログラム 40 が記録されている記録媒体。

【請求項26】 記録媒体からAVストリームデータを再生する情報処理装置を制御するコンピュータに、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生ステップと、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御ステップとを実行させるプログラム。

【請求項27】 AVストリームデータが記録されている 記録媒体において、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報が記録されていることを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は情報処理装置、再生 10 方法、記録媒体、プログラム、並びに記録媒体に関し、 特に、GUIなどに説明表示する情報、主の再生経路の情 報、副の再生経路の情報、主の再生経路を構成する個々 の再生区間の間の接続情報、ユーザが所望したシーンに セットするブックマークやリジューム点の情報などの情 報を含むファイルを記録する情報処理装置、再生方法、 記録媒体、プログラム、並びに記録媒体に関する。

[0002]

【従来の技術】近年、記録再生装置から取り外し可能なディスク型の記録媒体として、各種の光ディスクが提案 されつつある。このような記録可能な光ディスクは、数ギガバイトの大容量メディアとして提案されており、ビデオ信号等のAV(Audio Visual)信号を記録するメディアとしての期待が高い。この記録可能な光デイスクに記録するデジタルのAV信号のソース(供給源)としては、CSデジタル衛星放送やBSデジタル放送があり、また、将来はデジタル方式の地上波テレビジョン放送等も提案されている。

【0003】ととで、これらのソースから供給されるデジタルビデオ信号は、通常MPEG(Moving Picture Experts Group)2方式で画像圧縮されているのが一般的である。また、記録装置には、その装置固有の記録レートが定められている。従来の民生用映像蓄積メディアで、デジタル放送由来のデジタルビデオ信号を記録する場合、アナログ記録方式であれば、デジタルビデオ信号をデコード後、帯域制限をして記録する。あるいは、MPEG1 Video、MPEG2 Video、DV方式をはじめとするデジタル記録方式であれば、1度デコードされた後に、その装置固有の記録レート・符号化方式で再エンコードされて記録される。

40 【0004】しかしながら、とのような記録方法は、供給されたビットストリームを1度デコードし、その後で帯域制限や再エンコードを行って記録するため、画質の劣化を伴う。画像圧縮されたデジタル信号の記録をする場合、入力されたデジタル信号の伝送レートが記録再生装置の記録レートを超えない場合には、供給されたビットストリームをデコードや再エンコードすることなく、そのまま記録する方法が最も画質の劣化が少ない。ただし、画像圧縮されたデジタル信号の伝送レートが記録媒体としてのディスクの記録レートを超える場合には、記50録再生装置でデコード後、伝送レートがディスクの記録

レートの上限以下になるように、再エンコードをして記 録する必要はある。

【0005】また、入力デジタル信号のビットレートが 時間により増減する可変レート方式によって伝送されて いる場合には、回転ヘッドが固定回転数であるために記 録レートが固定レートになるテープ記録方式に比べ、1 度バッファにデータを蓄積し、バースト的に記録ができ るディスク記録装置が記録媒体の容量をより無駄なく利 用できる。

【0006】以上のように、デジタル放送が主流となる 10 将来においては、データストリーマのように放送信号を デジタル信号のまま、デコードや再エンコードすること なく記録し、記録媒体としてディスクを使用した記録再 生装置が求められると予測される。

[0007]

【発明が解決しようとする課題】ところで、上述したよ うな記録装置により記録媒体にAVストリームデータを記 録する場合、例えば、高速再生ができるようにするため に、Aストリームデータを分析し、Iピクチャの位置を 検出して、「ピクチャにアクセスできるようにして記録 20 する場合と、Aストリームデータを分析せず、そのまま 記録する場合とがある。

【0008】とのような場合、従来、それぞれ専用のア プリケーションプログラムを用意し、それぞれにより、 AVストリームを、異なるフォーマットのAVストリーム (高速再生が可能なAVストリーム、または不可能なAVス トリーム)として記録媒体に記録するようにしていた。 その結果、アプリケーションプログラムの開発に、費用 と時間がかかる課題があった。また、それぞれのアプリ ケーションプログラムにより記録されたAVストリーム は、異なるフォーマットのものとなので、相互の互換性 がなくなり、共通の装置で再生することができなくなる 課題があった。

【0009】さらに、従来の記録装置では、例えば、オ ーディオデータを、所謂アフターレコーディングすると とが困難である課題があった。

【0010】本発明はこのような状況に鑑みてなされた ものであり、その第1の目的は、髙速再生が可能なAVス トリームと不可能なAVストリームを、共通に管理すると とができるようにすることにある。

【0011】さらに、第2の目的は、アフターレコーデ ィングを可能にすることにある。

[0012]

【課題を解決するための手段】本発明の第1の情報処理 装置は、プレゼンテーションタイムスタンプと、それに 対応するアクセスユニットのAVストリームデータ中のア ドレスとの対応関係を記述する第1のテーブル、また は、トランスポートパケットの到着時刻に基づいたアラ イバルタイムスタンプと、それに対応するトランスポー

関係を記述する第2のテーブルを生成する第1の生成手 段と、記録方法に応じて第1のテーブルまたは第2のテ ーブルの一方を選択する選択手段と、選択されたテーブ ルをAVストリームデータとともに記録媒体に記録する第 1の記録手段とを有することを特徴とする。

【0013】前記第1のテーブルは、EP_mapであり、第 2のテーブルは、TU_mapとすることができる。

【0014】前記選択手段は、ノンコグニザント記録の 際には、第2のテーブルを選択することができる。

【0015】前記選択手段は、セルフエンコード記録の 際には、第1のテーブルを選択することができる。

【0016】前記選択手段は、コグニザント記録の際に は、第1のテーブルを選択することができる。

【0017】前記AVストリームデータの再生を指定する 再生指定情報を生成する第2の生成手段と、第2の生成 手段により生成された再生指定情報を記録媒体に記録す る第2の記録手段をさらに有し、再生指定情報は、AVス トリームデータの再生区間の時間情報を、プレゼンテー ションタイムベースで表現するか、またはアライバルタ イムベースで表現するかを示す種別情報を含むようにす ることができる。

【0018】前記AVストリームデータとともに第1のテ ーブルが記録されている場合、再生指定情報は、AVスト リームデータの再生区間の時間情報を、プレゼンテーシ ョンタイムベースで表現し、AVストリームデータととも に第2のテーブルが記録されている場合、再生指定情報 は、AVストリームデータの再生区間の時間情報を、アラ イバルタイムベースで表現することができる。

【0019】本発明の第1の情報処理方法は、プレゼン 30 テーションタイムスタンプと、それに対応するアクセス ユニットのAVストリームデータ中のアドレスとの対応関 係を記述する第1のテーブル、または、トランスポート パケットの到着時刻に基づいたアライバルタイムスタン プと、それに対応するトランスポートパケットのAVスト リームデータ中のアドレスとの対応関係を記述する第2 のテーブルを生成する生成ステップと、記録方法に応じ て第1のテーブルまたは第2のテーブルの一方を選択す る選択ステップと、選択されたテーブルをAVストリーム データとともに記録媒体に記録する記録ステップとを含 40 むことを特徴とする。

【0020】本発明の第1の記録媒体のプログラムは、 プレゼンテーションタイムスタンプと、それに対応する アクセスユニットのAVストリームデータ中のアドレスと の対応関係を記述する第1のテーブル、または、トラン スポートパケットの到着時刻に基づいたアライバルタイ ムスタンプと、それに対応するトランスポートパケット のAVストリームデータ中のアドレスとの対応関係を記述 する第2のテーブルを生成する生成ステップと、記録方 法に応じて第1のテーブルまたは第2のテーブルの―方 トパケットのAVストリームデータ中のアドレスとの対応 50 を選択する選択ステップと、選択されたテーブルをAVス

トリームデータとともに記録媒体に記録する記録ステッ プとを含むことを特徴とする。

【0021】本発明の第1のプログラムは、プレゼンテ ーションタイムスタンプと、それに対応するアクセスユ ニットのAVストリームデータ中のアドレスとの対応関係 を記述する第1のテーブル、または、トランスポートパ ケットの到着時刻に基づいたアライバルタイムスタンプ と、それに対応するトランスポートパケットのAVストリ ームデータ中のアドレスとの対応関係を記述する第2の テーブルを生成する生成ステップと、記録方法に応じて 10 第1のテーブルまたは第2のテーブルの一方を選択する 選択ステップと、選択されたテーブルをAVストリームデ ータとともに記録媒体に記録する記録ステップとを実行 させる。

【0022】本発明の第2の情報処理装置は、プレゼン テーションタイムスタンプと、それに対応するアクセス ユニットのAVストリームデータ中のアドレスとの対応関 係を記述する第1のテーブル、または、トランスポート パケットの到着時刻に基づいたアライバルタイムスタン プと、それに対応するトランスポートパケットのAVスト 20 テーブルの一方が、記録方法に応じて記録されているこ リームデータ中のアドレスとの対応関係を記述する第2 のテーブルの一方が、記録方法に応じて記録されている 記録媒体から、第1のテーブルまたは第2のテーブルの 一方を再生する再生手段と、再生されたテーブルに基づ いて、AVストリームデータの出力を制御する制御手段と を有することを特徴とする。

【0023】本発明の第2の情報処理方法は、プレゼン テーションタイムスタンプと、それに対応するアクセス ユニットのAVストリームデータ中のアドレスとの対応関 係を記述する第1のテーブル、または、トランスポート 30 パケットの到着時刻に基づいたアライバルタイムスタン プと、それに対応するトランスポートパケットのAVスト リームデータ中のアドレスとの対応関係を記述する第2 のテーブルの一方が、記録方法に応じて記録されている 記録媒体から、第1のテーブルまたは第2のテーブルの 一方を再生する再生ステップと、再生されたテーブルに 基づいて、AVストリームデータの出力を制御する制御ス テップとを含むことを特徴とする。

【0024】本発明の第2の記録媒体のプログラムは、 プレゼンテーションタイムスタンプと、それに対応する アクセスユニットのAVストリームデータ中のアドレスと の対応関係を記述する第1のテーブル、または、トラン スポートパケットの到着時刻に基づいたアライバルタイ ムスタンプと、それに対応するトランスポートパケット のAVストリームデータ中のアドレスとの対応関係を記述 する第2のテーブルの一方が、記録方法に応じて記録さ れている記録媒体から、第1のテーブルまたは第2のテ ーブルの一方を再生する再生ステップと、再生されたテ ーブルに基づいて、AVストリームデータの出力を制御す る制御ステップとを含むことを特徴とする。

【0025】本発明の第2のプログラムは、プレゼンテ ーションタイムスタンプと、それに対応するアクセスユ ニットのAVストリームデータ中のアドレスとの対応関係 を記述する第1のテーブル、または、トランスポートバ ケットの到着時刻に基づいたアライバルタイムスタンプ と、それに対応するトランスポートパケットのAVストリ ームデータ中のアドレスとの対応関係を記述する第2の テーブルの一方が、記録方法に応じて記録されている記 録媒体から、第1のテーブルまたは第2のテーブルの一 方を再生する再生ステップと、再生されたテーブルに基 づいて、AVストリームデータの出力を制御する制御ステ ップとを実行させるプログラム。

【0026】本発明の第1の記録媒体は、プレゼンテー ションタイムスタンプと、それに対応するアクセスユニ ットのAVストリームデータ中のアドレスとの対応関係を 記述する第1のテーブル、または、トランスポートパケ ットの到着時刻に基づいたアライバルタイムスタンプ と、それに対応するトランスポートパケットのAVストリ ームデータ中のアドレスとの対応関係を記述する第2の とを特徴とする。

【0027】本発明の第3の情報処理装置は、主の再生 バスを示す第1の情報と、主の再生バスと同期して再生 される副の再生パスを示す第2の情報により構成される 再生指定情報を生成する生成手段と、AVストリームデー タと再生指定情報を記録媒体に記録する記録手段とを備 えることを特徴とする。

【0028】前記副の再生パスは、オーディオデータの アフターレコーディング用のパスとすることができる。 【0029】前記第1の情報は、Main_pathであり、第 2の情報は、Sub_pathとすることができる。

【0030】前記第2の情報は、副の再生バスのタイプ を表すタイプ情報、副の再生バスが参照するAVストリー ムのファイル名、副の再生パスのAVストリームのイン点 とアウト点、および再生パスのイン点が、主のパスの時 間軸上で同期してスタートする主のバス上の時刻を含む ようにすることができる。

【0031】本発明の第3の情報処理方法は、主の再生 パスを示す第1の情報と、主の再生パスと同期して再生 40 される副の再生パスを示す第2の情報により構成される 再生指定情報を生成する生成ステップと、AVストリーム データと再生指定情報を記録媒体に記録する記録ステッ プとを含むことを特徴とする。

【0032】本発明の第3の記録媒体のプログラムは、 主の再生パスを示す第1の情報と、主の再生パスと同期 して再生される副の再生バスを示す第2の情報により構 成される再生指定情報を生成する生成ステップと、AVス トリームデータと再生指定情報を記録媒体に記録する記 録ステップとを含むことを特徴とする。

50 【0033】本発明の第3のプログラムは、主の再生バ

(7)

11

スを示す第1の情報と、主の再生バスと同期して再生される副の再生バスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、AVストリームデータと再生指定情報を記録媒体に記録する記録ステップとを実行させる。

【0034】前記第4の情報処理装置は、主の再生バスを示す第1の情報と、前記主の再生バスと同期して再生される副の再生バスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生手段と、再生された前記再生指定情報に基づいて、前記AVス 10トリームデータの出力を制御する制御手段とを備えることを特徴とする。

【0035】本発明の第4の情報処理方法は、主の再生バスを示す第1の情報と、主の再生バスと同期して再生される副の再生バスを示す第2の情報により構成される再生指定情報を、記録媒体から再生する再生ステップと、再生された再生指定情報に基づいて、AVストリームデータの出力を制御する制御ステップとを含むことを特徴とする。

【0036】本発明の第4の記録媒体のプログラムは、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、記録媒体から再生する再生ステップと、再生された再生指定情報に基づいて、AVストリームデータの出力を制御する制御ステップとを含むことを特徴とする。

【0037】本発明の第4のプログラムは、主の再生バスを示す第1の情報と、主の再生バスと同期して再生される副の再生バスを示す第2の情報により構成される再生指定情報を、記録媒体から再生する再生ステップと、再生された再生指定情報に基づいて、AVストリームデータの出力を制御する制御ステップとを実行させる。

【0038】本発明の第2の記録媒体は、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報が記録されていることを特徴とする。

【0039】本発明の第1の情報処理装置および方法、記録媒体のプログラム、プログラム、並びに記録媒体においては、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ 40中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録される。

【0040】本発明の第2の情報処理装置および方法、 記録媒体のプログラム、並びにプログラムにおいては、 プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ 50

スとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体から、そのテーブルが再生され、それに基づいて、出力が制御される。

【0041】本発明の第3の情報処理装置および方法、 記録媒体のプログラム、プログラム、並びに第2の記録 媒体においては、主の再生バスを示す第1の情報と、前 記主の再生バスと同期して再生される副の再生バスを示 す第2の情報により構成される再生指定情報が記録され ス

【0042】本発明の第4の情報処理装置および方法、記録媒体のプログラム、並びにプログラムにおいては、主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報が記録媒体から再生され、それに基づいて、出力が制御される。

20 [0043]

【発明の実施の形態】以下に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明を適用した記録再生装置1の内部構成例を示す図である。まず、外部から入力された信号を記録媒体に記録する動作を行う部分の構成について説明する。記録再生装置1は、アナログデータ、または、デジタルデータを入力し、記録することができる構成とされている。

【0044】端子11には、アナログのビデオ信号が、端子12には、アナログのオーディオ信号が、それぞれ30 入力される。端子11に入力されたビデオ信号は、解析部14とAVエンコーダ15に、それぞれ出力される。端子12に入力されたオーディオ信号は、AVエンコーダ15に出力される。解析部14は、入力されたビデオ信号からシーンチェンジなどの特徴点を抽出する。

【0045】AVエンコーダ15は、入力されたビデオ信号とオーディオ信号を、それぞれ符号化し、符号化ビデオストリーム(V)、符号化オーディオストリーム(A)、およびAV同期等のシステム情報(S)をマルチプレクサ16に出力する。

【0046】符号化ビデオストリームは、例えば、MPEG (Moving Picture Expert Group) 2方式により符号化されたビデオストリームであり、符号化オーディオストリームは、例えば、MPEG1方式により符号化されたオーディオストリームや、ドルビーAC3方式により符号化されたオーディオストリーム等である。マルチプレクサ16は、入力されたビデオおよびオーディオのストリームを、入力システム情報に基づいて多重化して、スイッチ17を介して多重化ストリーム解析部18とソースパケッタイザ19に出力する。

【0047】多重化ストリームは、例えば、MPEC2トラ

ンスポートストリームやMPECZプログラムストリームで ある。ソースパケッタイザ19は、入力された多重化ス トリームを、そのストリームを記録させる記録媒体10 0のアプリケーションフォーマットに従って、ソースパ ケットから構成されるAVストリームを符号化する。AVス トリームは、ECC (誤り訂正)符号化部20、変調部2 1で所定の処理が施され、書き込み部22に出力され る。・書き込み部22は、制御部23から出力される制御 信号に基づいて、記録媒体100にAVストリームファイ ルを書き込む(記録する)。

【0048】 デジタルインタフェースまたはデジタルテ レビジョンチューナから入力されるデジタルテレビジョ ン放送等のトランスポートストリームは、端子13に入 力される。端子13に入力されたトランスポートストリ ームの記録方式には、2通りあり、それらは、トランス ペアレントに記録する方式と、記録ピットレートを下げ るなどの目的のために再エンコードをした後に記録する 方式である。記録方式の指示情報は、ユーザインターフ ェースとしての端子24から制御部23へ入力される。 ペアレントに記録する場合、端子13に入力されたトラ ンスポートストリームは、多重化ストリーム解析部18 と、ソースパケッタイザ19に出力される。これ以降の 記録媒体100へAVストリームが記録されるまでの処理 は、上述の入力オーディオ浸透とビデオ信号を符号化し て記録する場合と同一の処理なので、その説明は省略す

【0050】入力トランスポートストリームを再エンコ ードした後に記録する場合、端子13に入力されたトラ ンスポートストリームは、デマルチプレクサ26に入力 30 される。デマルチプレクサ26は、入力されたトランス ポートストリームに対してデマルチプレクス処理を施 し、ビデオストリーム(V)、オーディオストリーム(A)、 およびシステム情報(S)を抽出する。

【0051】デマルチプレクサ26により抽出されたス トリーム (情報) のうち、ビデオストリームはAVデコー ダ27に、オーディオストリームとシステム情報はマル チプレクサ16に、それぞれ出力される。AVデコーダ2 7は、入力されたビデオストリームを復号し、その再生 ビデオ信号をAVエンコーダ15に出力する。AVエンコー 40 ダ15は、入力ビデオ信号を符号化し、符号化ビデオス トリーム(V)をマルチプレクサ16に出力する。

【0052】一方、デマルチプレクサ26から出力さ れ、マルチプレクサ16に入力されたオーディオストリ ームとシステム情報、および、AVエンコーダ15から出 力されたビデオストリームは、入力システム情報に基づ いて、多重化されて、多重化ストリームとして多重化ス トリーム解析部18とソースパケットタイザ19にスイ ッチ17を介して出力される。これ以後の記録媒体10

カオーディオ信号とビデオ信号を符号化して記録する場 合と同一の処理なので、その説明は省略する。

【0053】本実施の形態の記録再生装置1は、AVスト リームのファイルを記録媒体100に記録すると共に、 そのファイルを説明するアプリケーションデータベース 情報も記録する。アプリケーションデータベース情報 は、制御部23により作成される。制御部23への入力 情報は、解析部14からの動画像の特徴情報、多重化ス トリーム解析部18からのAVストリームの特徴情報、お よび端子24から入力されるユーザからの指示情報であ る。

【0054】解析部14から供給される動画像の特徴情 報は、入力動画像信号の中の特徴的な画像に関係する情 報であり、例えば、プログラムの開始点、シーンチェン ジ点、コマーシャル(CM)の開始・終了点などの指定 情報(マーク)であり、また、その指定場所の画像のサ ムネイル画像の情報も含まれる。

【0055】多重化ストリーム解析部18からのAVスト リームの特徴情報は、記録されるAVストリームの符号化 【0049】入力トランスポートストリームをトランス 20 情報に関係する情報であり、例えば、AVストリーム内の Iピクチャのアドレス情報、AVストリームの符号化パラ メータ、AVストリームの中の符号化パラメータの変化点 情報、ビデオストリームの中の特徴的な画像に関係する 情報(マーク)などである。

> 【0056】端子24からのユーザの指示情報は、AVス トリームの中の、ユーザが指定した再生区間の指定情 報、その再生区間の内容を説明するキャラクター文字、 ユーザが好みのシーンにセットするブックマークやリジ ューム点の情報などである。

【0057】制御部23は、上記の入力情報に基づい て、AVストリームのデータベース(Clip)、 AVストリー ムの再生区間(PlayItem)をグループ化したもの(PlayLi st) のデータベース、記録媒体100の記録内容の管理 情報(info.dvr)、およびサムネイル画像の情報を作成す る。これらの情報から構成されるアプリケーションデー タベース情報は、AVストリームと同様にして、ECC符号 化部20、変調部21で処理されて、書き込み部22へ 入力される。書き込み部22は、制御部23から出力さ れる制御信号に基づいて、記録媒体100ヘデータベー スファイルを記録する。

【0058】上述したアプリケーションデータベース情 報についての詳細は後述する。

【0059】とのようにして記録媒体100に記録され たAVストリームファイル(画像データと音声データのフ ァイル)と、アプリケーションデータベース情報が再生 される場合、まず、制御部23は、読み出し部28に対 して、記録媒体100からアプリケーションデータベー ス情報を読み出すように指示する。そして、読み出し部 28は、記録媒体100からアプリケーションデータベ OへAVストリームが記録されるまでの処理は、上述の入 50 ース情報を読み出し、そのアプリケーションデータベー

ス情報は、復調部29、ECC復号部30の処理を経て、 制御部23へ入力される。

15

【0060】制御部23は、アブリケーションデータベース情報に基づいて、記録媒体100に記録されているPlayListの一覧を端子24のユーザインターフェースへ出力する。ユーザは、PlayListの一覧から再生したいPlayListを選択し、再生を指定されたPlayListに関する情報が制御部23へ入力される。制御部23は、そのPlayListの再生に必要なAVストリームファイルの読み出しを、読み出し部28に指示する。読み出し部28は、その指示に従い、記録媒体100から対応するAVストリームを読み出し復調部29に出力する。復調部29に入力されたAVストリームは、所定の処理が施されることにより復調され、さらにECC復号部30の処理を経て、ソースデバケッタイザ31出力される。

【0061】ソースデバケッタイザ31は、記録媒体100から読み出され、所定の処理が施されたアプリケーションフォーマットのAVストリームを、デマルチプレクサ26に出力できるストリームに変換する。デマルチプレクサ26は、制御部23により指定されたAVストリー20ムの再生区間(PlayItem)を構成するビデオストリーム(V)、オーディオストリーム(A)、およびAV同期等のシステム情報(S)を、AVデコーダ27に出力する。AVデコーダ27は、ビデオストリームとオーディオストリームを復号し、再生ビデオ信号と再生オーディオ信号を、それぞれ対応する端子32と端子33から出力する。

【0062】また、ユーザインタフェースとしての端子24から、ランダムアクセス再生や特殊再生を指示する情報が入力された場合、制御部23は、AVストリームのデータベース(Clip)の内容に基づいて、記憶媒体100からのAVストリームの読み出し位置を決定し、そのAVストリームの読み出しを、読み出し部28に指示する。例えば、ユーザにより選択されたPlayListを、所定の時刻から再生する場合、制御部23は、指定された時刻に最も近いタイムスタンプを持つIピクチャからのデータを読み出すように読み出し部28に指示する。

【0063】また、ユーザによって高速再生(Fast-forw ard playback)が指示された場合、制御部23は、AVストリームのデータベース(Clip)に基づいて、AVストリームの中のI-ピクチャデータを順次連続して読み出すように読み出し部28に指示する。

【0064】読み出し部28は、指定されたランダムアクセスポイントからAVストリームのデータを読み出し、読み出されたデータは、後段の各部の処理を経て再生される。

【0065】次に、ユーザが、記録媒体100に記録さ ビクチャはAVエンコーダ15で再エンコードされて、ヒれているAVストリームの編集をする場合を説明する。ユーザが、記録媒体100に記録されているAVストリーム ドをしないで、オリジナルのストリームからコピーされの再生区間を指定して新しい再生経路を作成したい場 るデータである。オーディオストリーム、システム情報合、例えば、番組Aという歌番組から歌手Aの部分を再 50 については、直接、マルチプレクサ16に入力される。

生し、その後続けて、番組Bという歌番組の歌手Aの部分を再生したいといった再生経路を作成したい場合、ユーザインタフェースとしての端子24から再生区間の開始点(イン点)と終了点(アウト点)の情報が制御部23に入力される。制御部23は、AVストリームの再生区間(PlayItem)をグループ化したもの(PlayList)のデータベースを作成する。

【0066】ユーザが、記録媒体100に記録されているAVストリームの一部を消去したい場合、ユーザインタフェースとしての端子24から消去区間のイン点とアウト点の情報が制御部23に入力される。制御部23は、必要なAVストリーム部分だけを参照するようにPlayListのデータベースを変更する。また、AVストリームの不必要なストリーム部分を消去するように、書き込み部22に指示する。

【0067】ユーザが、記録媒体100に記録されているAVストリームの再生区間を指定して新しい再生経路を作成したい場合であり、かつ、それぞれの再生区間をシームレスに接続したい場合について説明する。このような場合、制御部23は、AVストリームの再生区間(PlayItem)をグループ化したもの(PlayList)のデータベースを作成し、さらに、再生区間の接続点付近のビデオストリームの部分的な再エンコードと再多重化を行う。

【0068】まず、端子24から再生区間のイン点のピクチャの情報と、アウト点のピクチャの情報が制御部23へ入力される。制御部23は、読み出し部28にイン点側ピクチャとアウト点側のピクチャを再生するために必要なデータの読み出しを指示する。そして、読み出し部28は、記録媒体100からデータを読み出し、そのデータは、復調部29、ECC復号部30、ソースデバケッタイザ31を経て、デマルチプレクサ26に出力される。

【0069】制御部23は、デマルチプレクサ26に入力されたデータを解析して、ビデオストリームの再エンコード方法(picture_coding_typeの変更、再エンコードする符号化ビット量の割り当て)と、再多重化方式を決定し、その方式をAVエンコーダ15とマルチプレクサ16に供給する。

【0070】次に、デマルチプレクサ26は、入力されたストリームをビデオストリーム(V)、オーディオストリーム(A)、およびシステム情報(S)に分離する。ビデオストリームは、「AVデコーダ27に入力されるデータ」と「マルチプレクサ16に入力されるデータ」がある。前者のデータは、再エンコードするために必要なデータであり、これはAVデコーダ27で復号され、復号されたビクチャはAVエンコーダ15で再エンコードされて、ビデオストリームにされる。後者のデータは、再エンコードをしないで、オリジナルのストリームからコピーされるデータである。オーディオストリーム、システム情報については、直接・マルチプレクサ16に入力される。

17

【0071】マルチプレクサ16は、制御部23から入 力された情報に基づいて、入力ストリームを多重化し、 多重化ストリームを出力する。多重化ストリームは、EC C符号化部20、変調部21で処理されて、書き込み部 22に入力される。書き込み部22は、制御部23から 供給される制御信号に基づいて、記録媒体100にAVス トリームを記録する。

【0072】以下に、アプリケーションデータベース情 報や、その情報に基づく再生、編集といった操作に関す る説明をする。図2は、アプリケーションフォーマット の構造を説明する図である。アプリケーションフォーマ ットは、AVストリームの管理のためにPlayListとClipの 2つのレイヤをもつ。Volume Informationは、ディスク 内のすべてのClipとPlayListの管理をする。ここでは、 1つのAVストリームとその付属情報のペアを1つのオブ ジェクトと考え、それをClipと称する。AVストリームフ ァイルはClip AV stream fileと称し、その付属情報 は、Clip Information fileと称する。

【0073】1つのClip AV stream fileは、MPEG2トラ ンスポートストリームをアプリケーションフォーマット 20 る(Clip自体が1つにされる) ことはない。 によって規定される構造に配置したデータをストアす る。一般的に、ファイルは、バイト列として扱われる が、Clip AV stream fileのコンテンツは、時間軸上に 展開され、Clipの中のエントリーポイントは、主に時間 ベースで指定される。所定のClipへのアクセスポイント のタイムスタンプが与えられた時、Clip Information f ileは、Clip AV stream fileの中でデータの読み出しを 開始すべきアドレス情報を見つけるために役立つ。

【0074】PlayListについて、図3を参照して説明す る。PlayListは、Clipの中からユーザが見たい再生区間 を選択し、それを簡単に編集することができるようにす るために設けられている。1つのPlayListは、Clipの中 の再生区間の集まりである。所定のClipの中の1つの再 生区間は、PlayItemと呼ばれ、それは、時間軸上のイン 点(IN)とアウト点(OUT)の対で表される。従って、P layListは、複数のPlayItemが集まることにより構成さ れる。

【0075】PlayListには、2つのタイプがある。1つ は、Real PlayListであり、もう1つは、Virtual PlayL istである。Real PlayListは、それが参照しているClip のストリーム部分を共有している。すなわち、Real Pla yListは、それの参照しているClipのストリーム部分に 相当するデータ容量をディスクの中で占め、Real PlayL istが消去された場合、それが参照しているClipのスト リーム部分もまたデータが消去される。

【0076】Virtual PlayListは、Clipのデータを共有 していない。従って、Virtual PlayListが変更または消 去されたとしても、Clipの内容には何も変化が生じな 610

【0077】次に、Real PlayListの編集について説明

する。図4(A)は、Real PlayListのクリエイト(crea te: 作成)に関する図であり、AVストリームが新しいCli pとして記録される場合、そのClip全体を参照するReal PlayListが新たに作成される操作である。

【0078】図4(B)は、Real PlayListのディバイ ド(divide:分割)に関する図であり、Real PlayListが 所望な点で分けられて、2つのReal PlayListに分割さ れる操作である。この分割という操作は、例えば、1つ のPlayListにより管理される1つのクリップ内に、2つ の番組が管理されているような場合に、ユーザが1つ1 つの番組として登録(記録)し直したいといったような ときに行われる。この操作により、Clipの内容が変更さ れる(Clip自体が分割される)ことはない。

【0079】図4(C)は、Real PlayListのコンバイ ン(combine: 結合)に関する図であり、2つのReal Play Listを結合して、1つの新しいReal PlayListにする操 作である。この結合という操作は、例えば、ユーザが2 つの番組を1つの番組として登録し直したいといったよ うなときに行われる。この操作により、Clipが変更され

【0080】図5(A)は、Real PlayList全体のデリ ート(delete: 削除)に関する図であり、所定のReal Pla VList全体を消去する操作がされた場合、削除されたRea 1 PlayListが参照するClipの、対応するストリーム部分 も削除される。

【0081】図5(B)は、Real PlayListの部分的な 削除に関する図であり、Real PlayListの所望な部分が 削除された場合、対応するPlayItemが、必要なClipのス トリーム部分だけを参照するように変更される。そし て、Clipの対応するストリーム部分は削除される。

【0082】図5 (C) は、Real PlayListのミニマイ ズ(Minimize: 最小化)に関する図であり、Real PlayLis tに対応するPlayItemを、Virtual PlayListに必要なCli pのストリーム部分だけを参照するようにする操作であ る。Virtual PlayList にとって不必要なClipの、対応 するストリーム部分は削除される。

【0083】上述したような操作により、Real PlayLis tが変更されて、そのReal PlayListが参照するClipのス トリーム部分が削除された場合、その削除されたClipを 使用しているVirtual PlayListが存在し、そのVirtual PlayListにおいて、削除されたClipにより問題が生じる 可能性がある。

【0084】そのようなことが生じないように、ユーザ に、削除という操作に対して、「そのReal PlayListが 参照しているClipのストリーム部分を参照しているVirt ual PlayListが存在し、もし、そのReal PlayListが消 去されると、そのVirtual PlayListもまた消去されると とになるが、それでも良いか?」といったメッセージな どを表示させることにより、確認(警告)を促した後 50 に、ユーザの指示により削除の処理を実行、または、キ

ャンセルする。または、Virtual PlayListを削除する代わりに、Real PlayListに対してミニマイズの操作が行われるようにする。

【0085】次にVirtual PlayListに対する操作につい て説明する。Virtual PlayListに対して操作が行われた としても、Clipの内容が変更されることはない。図6 は、アセンブル(Assemble) 編集 (IN-OUT 編集)に関す る図であり、ユーザが見たいと所望した再生区間のPlay Itemを作り、Virtual PlayListを作成するといった操作 である。PlayItem間のシームレス接続が、アプリケーシ 10 ョンフォーマットによりサポートされている(後述)。 【0086】図6(A)に示したように、2つのReal P layList 1, 2と、それぞれのRealPlayListに対応するC lip1, 2が存在している場合に、ユーザがReal PlayLi stl内の所定の区間(Inl乃至Outlまでの区間: PlayI tem 1) を再生区間として指示し、続けて再生する区間 として、Real PlayList2内の所定の区間(In2乃至Out 2までの区間: PlayItem2)を再生区間として指示した とき、図6(B)に示すように、PlayItem1とPlayItem 2から構成される1つのVirtual PlayListが作成され

【0087】次に、Virtual PlayList の再編集(Re-editing)について説明する。再編集には、Virtual PlayListの中のイン点やアウト点の変更、Virtual PlayListへの新しいPlayItemの挿入(insert)や追加(append)、Virtual PlayListの中のPlayItemの削除などがある。また、Virtual PlayListそのものを削除することもできる。

【0088】図7は、Virtual PlayListへのオーディオのアフレコ(Audio dubbing (post recording))に関する図であり、Virtual PlayListへのオーディオのアフレコ 30をサブバスとして登録する操作のことである。このオーディオのアフレコは、アプリケーションフォーマットによりサポートされている。Virtual PlayListのメインパスのAVストリームに、付加的なオーディオストリームが、サブバスとして付加される。

【0089】Real PlayListとVirtual PlayListで共通の操作として、図8に示すようなPlayListの再生順序の変更(Moving)がある。この操作は、ディスク(ボリューム)の中でのPlayListの再生順序の変更であり、アプリケーションフォーマットにおいて定義されるTable Of P 40 layList (図20などを参照して後述する)によってサポートされる。この操作により、Clipの内容が変更されるようなことはない。

【0090】次に、マーク(Mark)について説明する。マークは、ClipおよびPlayListの中のハイライトや特徴的な時間を指定するために設けられている。Clipに付加されるマークは、AVストリームの内容に起因する特徴的なシーンを指定する、例えば、シーンチェンジ点などである。PlayListを再生する時、そのPlayListが参照するClipのマークを参照して、使用する事ができる。

【0091】PlayListに付加されるマークは、主にユーザによってセットされる、例えば、ブックマークやリジューム点などである。ClipまたはPlayListにマークをセットすることは、マークの時刻を示すタイムスタンプをマークリストに追加することにより行われる。また、マークを削除することは、マークリストの中から、そのマークのタイムスタンプを除去する事である。従って、マークの設定や削除により、AVストリームは何の変更もされない。

【0092】次にサムネイルについて説明する。サムネイルは、Volume、PlayList、およびClipに付加される静止画である。サムネイルには、2つの種類があり、1つは、内容を表す代表画としてのサムネイルである。これは主としてユーザがカーソル(不図示)などを操作して見たいものを選択するためのメニュー画面で使われるものである。もう1つは、マークが指しているシーンを表す画像である。

【0093】Volumeと各Playlistは代表画を持つことができるようにする必要がある。Volumeの代表画は、ディスク(記録媒体100、以下、記録媒体100はディスク状のものであるとし、適宜、ディスクと記述する)を記録再生装置1の所定の場所にセットした時に、そのディスクの内容を表す静止画を最初に表示する場合などに用いられることを想定している。Playlistを選択するメニュー画面において、Playlistの内容を表すための静止画として用いられることを想定している。

【0094】Playlistの代表画として、Playlistの最初の画像をサムネイル(代表画)にすることが考えられるが、必ずしも再生時刻0の先頭の画像が内容を表す上で最適な画像とは限らない。そこで、Playlistのサムネイルとして、任意の画像をユーザが設定できるようにする。以上2種類のサムネイルをメニューサムネイルと称する。メニューサムネイルは頻繁に表示されるため、ディスクから高速に読み出される必要がある。このため、すべてのメニューサムネイルを1つのファイルに格納することが効率的である。メニューサムネイルは、必ずしもボリューム内の動画から抜き出したピクチャである必要はなく、図10に示すように、パーソナルコンピュータやデジタルスチルカメラから取り込こまれた画像でもよい。

【0095】一方、ClipとPlaylistには、複数個のマークを打てる必要があり、マーク位置の内容を知るためにマーク点の画像を容易に見ることが出来るようにする必要がある。このようなマーク点を表すピクチャをマークサムネイル(Mark Thumbnails)と称する。従って、サムネイルの元となる画像は、外部から取り込んだ画像よりも、マーク点の画像を抜き出したものが主となる。【0096】図11は、PlayListに付けられるマーク

50 と、そのマークサムネイルの関係について示す図であ

り、図12は、Clipに付けられるマークと、そのマークサムネイルの関係について示す図である。マークサムネイルは、メニューサムネイルと異なり、Playlistの詳細を表す時に、サブメニュー等で使われるため、短いアクセス時間で読み出されるようなことは要求されない。そのため、サムネイルが必要になる度に、記録再生装置1がファイルを開き、そのファイルの一部を読み出すことで多少時間がかかっても、問題にはならない。

【0097】また、ボリューム内に存在するファイル数を減らすために、すべてのマークサムネイルは1つのフ 10ァイルに格納するのがよい。Playlistはメニューサムネイル1つと複数のマークサムネイルを有することができるが、Clipは直接ユーザが選択する必要性がない(通常、Playlist経由で指定する)ため、メニューサムネイルを設ける必要はない。

【0098】図13は、上述したことを考慮した場合のメニューサムネイル、マークサムネイル、PlayList、およびClipの関係について示した図である。メニューサムネイルファイルには、PlayList毎に設けられたメニューサムネイルがファイルされている。メニューサムネイル 20ファイルには、ディスクに記録されているデータの内容を代表するボリュームサムネイルが含まれている。マークサムネイルファイルは、各PlayList毎と各Clip毎に作成されたサムネイルがファイルされている。

【0099】次に、CPI(Characteristic Point Inform ation)について説明する。CPIは、Clipインフォメーションファイルに含まれるデータであり、主に、それはClipへのアクセスポイントのタイムスタンプが与えられた時、Clip AV stream fileの中でデータの読み出しを開始すべきデータアドレスを見つけるために用いられる。本実施の形態では、2種類のCPIを用いる。1つは、EPmapであり、もう1つは、TU_mapである。

【0100】EP_mapは、エントリーポイント(EP)データのリストであり、それはエレメンタリーストリームおよびトランスポートストリームから抽出されたものである。これは、AVストリームの中でデコードを開始すべきエントリーポイントの場所を見つけるためのアドレス情報を持つ。1つのEPデータは、プレゼンテーションタイムスタンプ(PTS)と、そのPTSに対応するアクセスユニットのAVストリームの中のデータアドレスの対で構成さ40れる。

【0101】EP_mapは、主に2つの目的のために使用される。第1に、PlayListの中でプレゼンテーションタイムスタンプによって参照されるアクセスユニットのAVストリームの中のデータアドレスを見つけるために使用される。第2に、ファーストフォワード再生やファーストリバース再生のために使用される。記録再生装置1が、入力AVストリームを記録する場合、そのストリームのシンタクスを解析することができるとき、EP_mapが作成され、ディスクに記録される。

【0102】TU_mapは、デジタルインタフェースを通して入力されるトランスポートパケットの到着時刻に基づいたタイムユニット(TU)データのリストを持つ。これは、到着時刻ベースの時間とAVストリームの中のデータアドレスとの関係を与える。記録再生装置1が、入力AVストリームを記録する場合、そのストリームのシンタクスを解析することができないとき、TU_mapが作成され、ディスクに記録される。

【0103】STCInfoは、MPEG2トランスポートストリームをストアしているAVストリームファイルの中にあるSTCの不連続点情報をストアする。AVストリームがSTCの不連続点を持つ場合、そのAVストリームファイルの中で同じ値のPTSが現れるかもしれない。そのため、AVストリーム上のある時刻をPTSベースで指す場合、アクセスポイントのPTSだけではそのポイントを特定するためには不十分である。更に、そのPTSを含むところの連続なSTC区間のインデックスが必要である。連続なSTC区間を、このフォーマットでは STC-sequenceと呼び、そのインデックスをSTC-sequence-idと呼ぶ。STC-sequenceの情報は、Clip Information fileのSTCInfoで定義される。STC-sequence-idは、EP_mapを持つAVストリームファイルで使用するものであり、TU_mapを持つAVストリームファイルで使用するものであり、TU_mapを持つAVストリームファイルではオプションである。

【0104】プログラムは、エレメンタリストリームの 集まりであり、これらのストリームの同期再生のため に、ただ1つのシステムタイムベースを共有するもので ある。再生装置(図1の記録再生装置1)にとって、AV ストリームのデコードに先だち、そのAVストリームの内 容がわかることは有用である。例えば、ビデオやオーデ ィオのエレメンタリーストリームを伝送するトランスポ ートバケットのPIDの値や、ビデオやオーディオのコン ポーネント種類 (例えば、HDTVのビデオとMPEG_2AACの オーディオストリームなど)などの情報である。この情 報はAVストリームを参照するところのPlayListの内容を ユーザに説明するところのメニュー画面を作成するのに 有用であるし、また、AVストリームのデコードに先だっ て、再生装置のAVデコーダおよびデマルチプレクサの初 期状態をセットするために役立つ。この理由のために、 Clip Information fileは、プログラムの内容を説明す るためのProgramInfoを持つ。

【0105】MPEQとランスポートストリームをストアしているAVストリームファイルは、ファイルの中でプログラム内容が変化するかもしれない。例えば、ビデオエレメンタリーストリームを伝送するところのトランスポートバケットのPIDが変化したり、ビデオストリームのコンポーネント種類がSDTVからHDTVに変化するなどである。

【0106】ProgramInfoは、AVストリームファイルの 中でのプログラム内容の変化点の情報をストアする。AV 50 ストリームファイルの中で、とのフォーマットで定める

24

ところのプログラム内容が一定である区間をProgram-se quenceと呼ぶ。Program-sequenceは、EP_mapを持つAVストリームファイルで使用するものであり、TU_mapを持つAVストリームファイルではオプションである。

【0107】本実施の形態では、セルフエンコードのストリームフォーマット(SESF)を定義する。SESFは、アナログ入力信号を符号化する目的、およびデジタル入力・信号(例えばDV)をデコードしてからMPEG2トランスポートストリームに符号化する場合に用いられる。

【0108】SESFは、MPEG-2トランスポートストリーム 10 およびAVストリームについてのエレメンタリーストリームの符号化制限を定義する。記録再生装置1が、SESFストリームをエンコードし、記録する場合、EP_mapが作成され、ディスクに記録される。

【0109】デジタル放送のストリームは、次に示す方式のうちのいずれかが用いられて記録媒体100に記録される。まず、デジタル放送のストリームをSESFストリームにトランスコーディングする。この場合、記録されたストリームは、SESFに準拠しなければならない。この場合、EP_mapが作成されて、ディスクに記録されなけれ 20 ばならない。

【0110】あるいは、デジタル放送ストリームを構成するエレメンタリーストリームを新しいエレメンタリストリームにトランスコーディングし、そのデジタル放送ストリームの規格化組織が定めるストリームフォーマットに準拠した新しいトランスポートストリームに再多重化する。この場合、EP_mapが作成されて、ディスクに記録されなければならない。

【0111】例えば、入力ストリームがISDB(日本のデジタルBS放送の規格名称)準拠のMPEG-2トランスポートストリームであり、それがHOTVビデオストリームとMPEG AACオーディオストリームを含むとする。HOTVビデオストリームをSOTVビデオストリームにトランスコーディングし、そのSOTVビデオストリームとオリジナルのAACオーディオストリームをTSに再多重化する。SOTVストリームと記録されるトランスポートストリームは、共にISDBフォーマットに準拠しなければならない。

【0112】デジタル放送のストリームが、記録媒体100に記録される際の他の方式として、入力トランスポートストリームをトランスペアレントに記録する(入力 40トランスポートストリームを何も変更しないで記録する)場合であり、その時にEP_mapが作成されてディスクに記録される。

【0113】または、入力トランスポートストリームをトランスペアレントに記録する(入力トランスポートストリームを何も変更しないで記録する)場合であり、その時にTU_mapが作成されてディスクに記録される。

【0114】次にディレクトリとファイルについて説明 する。以下、記録再生装置1をDVR (Digital Video Rec ording) と適宜記述する。図14はディスク上のディレ 50

クトリ構造の一例を示す図である。DVRのディスク上に必要なディレクトリは、図14に示したように、"DVR"ディレクトリを含むrootディレクトリ、"PLAYLIST"ディレクトリ、"CLIPINF"ディレクトリ、"M2TS"ディレクトリ、および"DATA"ディレクトリを含む"DVR"ディレクトリである。rootディレクトリの下に、これら以外のディレクトリを作成されるようにしても良いが、それらは、本実施の形態のアプリケーションフォーマットでは、無視されるとする。

【0115】"DVR"ディレクトリの下には、 DMアプリケーションフォーマットによって規定される全てのファイルとディレクトリがストアされる。"DVR"ディレクトリは、4個のディレクトリを含む。"PLAYLIST"ディレクトリの下には、Real PlayListとVirtual PlayListのデータベースファイルが置かれる。このディレクトリは、PlayListが1つもなくても存在する。

【0116】"CLIPINF"ディレクトリの下には、Clipのデータベースが置かれる。このディレクトリも、Clipが1つもなくても存在する。"MZTS"ディレクトリの下には、AVストリームファイルが置かれる。このディレクトリは、AVストリームファイルが1つもなくても存在する。"DATA"ディレクトリは、デジタルTV放送などのデータ放送のファイルがストアされる。

【0117】"DVR"ディレクトリは、次に示すファイルをストアする。"info.dvr"ファイルは、 DVRディレクトリの下に作られ、アプリケーションレイヤの全体的な情報をストアする。DVRディレクトリの下には、ただ1つのinfo.dvrがなければならない。ファイル名は、info.dvrに固定されるとする。"menu.thmb"ファイルは、メニューサムネイル画像に関連する情報をストアする。DVRディレクトリの下には、ゼロまたは1つのメニューサムネイルがなければならない。ファイル名は、memu.thmbに固定されるとする。メニューサムネイル画像が1つもない場合、このファイルは、存在しなくても良い。

【0118】"mark.thmb"ファイルは、マークサムネイル画像に関連する情報をストアする。DMRディレクトリの下には、ゼロまたは1つのマークサムネイルがなければならない。ファイル名は、mark.thmbに固定されるとする。メニューサムネイル画像が1つもない場合、このファイルは、存在しなくても良い。

【0119】"PLAYLIST"ディレクトリは、2種類のPlay Listファイルをストアするものであり、それらは、Real PlayListとVirtual PlayListである。"xxxxx.rpls" ファイルは、1つのReal PlayListに関連する情報をストアする。それぞれのReal PlayList毎に、1つのファイルが作られる。ファイル名は、"xxxxx.rpls"である。ここで、"xxxxx"は、5個の0乃至9まで数字である。ファイル拡張子は、"rpls"でなければならないとする。

【0120】"yyyyy.vpls"ファイルは、1つのVirtual PlayListに関連する情報をストアする。それぞれのVirt

ual PlayList毎に、1つのファイルが作られる。ファイ ル名は、"yyyyy.vpls"である。ここで、"yyyyy"は、5 個の0乃至9まで数字である。ファイル拡張子は、"vp1 s"でなければならないとする。

【0121】"CLIPINF"ディレクトリは、それぞれのAV ストリームファイルに対応して、1つのファイルをスト アする。"zzzzz.clpi" ファイルは、1つのAVストリー ムファイル(Clip AV stream file または Bridge-Clip AV stream file) に対応するClip Information fileであ る。ファイル名は、"zzzzz.clpi"であり、"zzzzz"は、 5個の0乃至9までの数字である。ファイル拡張子 は、"clpi"でなければならないとする。

【0122】"M2TS"ディレクトリは、AVストリームのフ ァイルをストアする。"zzzzz.m2ts"ファイルは、DWRシ ステムにより扱われるAVストリームファイルである。こ れは、Clip AV stream fileまたはBridge-Clip AV stre amである。ファイル名は、"zzzzz.m2ts"であり、"zzzz z"は、5個の0乃至9までの数字である。ファイル拡張 子は、"m2ts"でなければならないとする。

送されるデータをストアするものであり、データとは、 例えば、XML fileやMHECファイルなどである。

【0124】次に、各ディレクトリ(ファイル)のシン タクスとセマンティクスを説明する。まず、"info.dvr" ファイルについて説明する。図15は、"info.dvr"ファ イルのシンタクスを示す図である。"info.dvr"ファイル は、3個のオブジェクトから構成され、それらは、DVRV olume()、TableOfPlayLists()、およびMakerPrivateDat a()である。

【0125】図15に示したinfo.dvrのシンタクスにつ いて説明するに、TableOfPlayLists_Start_addressは、 info.dvrファイルの先頭のバイトからの相対バイト数を 単位として、TableOfPlayList()の先頭アドレスを示 す。相対バイト数はゼロからカウントされる。

[0126] MakerPrivateData_Start_addresslt, inf o.dvrファイルの先頭のバイトからの相対バイト数を単 位として、MakerPrivateData()の先頭アドレスを示す。 相対バイト数はゼロからカウントされる。padding_word (パディングワード) は、info.dvrのシンタクスに従っ て挿入される。N1とN2は、ゼロまたは任意の正の整 数である。それぞれのパディングワードは、任意の値を 取るようにしても良い。

[0127] DVRVolume()は、ボリューム(ディスク) の内容を記述する情報をストアする。図16は、DVRVol ume()のシンタクスを示す図である。図16に示したDVR Volume()のシンタクスを説明するに、version_number は、このDVRVolume()のバージョンナンバを示す4個の キャラクター文字を示す。version_numberは、ISO 646 に従って、"0045"と符号化される。

【0128】1engthは、この1engthフィールドの直後か

らDVRVolume()の最後までのDVRVolume()のバイト数を示 す32ビットの符号なし整数で表される。

【0129】ResumeVolume()は、ボリュームの中で最後 に再生したReal PlayListまたはVirtual PlayListのフ ァイル名を記憶している。ただし、Real PlayListまた はVirtual PlayListの再生をユーザが中断した時の再生 位置は、PlayListMark()において定義される resume-mar kにストアされる。

【0130】図17は、ResumeVolume()のシンタクスを 10 示す図である。図17に示したResumeVolume()のシンタ クスを説明するに、valid_flagは、この1ビットのフラ グが1にセットされている場合、resume_PlayList_name フィールドが有効であることを示し、このフラグが0に セットされている場合、resume_PlayList_nameフィール ドが無効であることを示す。

【0131】resume_PlayList_nameの10バイトのフィ ールドは、リジュームされるべきReal PlayListまたはV irtual PlayListのファイル名を示す。

【0132】図16に示したDVRVolume()のシンタクス 【0123】"DATA"ディレクトリは、データ放送から伝 20 のなかの、UIAppInfoVolume は、ボリュームについての ユーザインターフェースアプリケーションのパラメータ をストアする。図18は、UIAppInfoVolumeのシンタク スを示す図であり、そのセマンティクスを説明するに、 character_setの8ビットのフィールドは、Volume_name フィールドに符号化されているキャラクター文字の符号 化方法を示す。その符号化方法は、図19に示される値 に対応する。

> 【0133】name_lengthの8ビットフィールドは、Volu me_nameフィールドの中に示されるボリューム名のバイ ト長を示す。Volume_nameのフィールドは、ボリューム の名称を示す。このフィールドの中の左からname_lengt h数のバイト数が、有効なキャラクター文字であり、そ れはボリュームの名称を示す。Volume_nameフィールド の中で、それら有効なキャラクター文字の後の値は、ど んな値が入っていても良い。

【0134】Volume_protect_flagは、ボリュームの中 のコンテンツを、ユーザに制限することなしに見せてよ いかどうかを示すフラグである。このフラグが1にセッ トされている場合、ユーザが正しくPIN番号(パスワー ド)を入力できたときだけ、そのボリュームのコンテン ツを、ユーザに見せる事(再生される事)が許可され る。このフラグが0にセットされている場合、ユーザが PIN番号を入力しなくても、そのボリュームのコンテン ツを、ユーザに見せる事が許可される。

【0135】最初に、ユーザが、ディスクをプレーヤへ 挿入した時点において、もしこのフラグが0にセットさ れているか、または、このフラグが1にセットされてい てもユーザがPIN番号を正しく入力できたならば、記録 再生装置1は、そのディスクの中のPlayListの一覧を表 50 示させる。それぞれのPlayListの再生制限は、volume_p

rotect_flagとは無関係であり、それはUIAppInfoPlayList()の中に定義されるplayback_control_flagによって示される。

【0136】PINは、4個の0乃至9までの数字で構成され、それぞれの数字は、ISO/IEC 646に従って符号化される。ref_thumbnail_indexのフィールドは、ボリュームに付加されるサムネイル画像の情報を示す。ref_thumbnail_indexフィールドが、0xFFFFでない値の場合、そのボリュームにはサムネイル画像が付加されており、そのサムネイル画像は、menu.thumファイルの中にストアされている。その画像は、menu.thumファイルの中でref_thumbnail_indexの値を用いて参照される。ref_thumbnail_indexフィールドが、0xFFFFである場合、そのボリュームにはサムネイル画像が付加されていないことを示す。

【0137】次に図15に示したinfo.dvrのシンタクス内のTableOfPlayLists()について説明する。TableOfPlayLists()は、PlayList(Real PlayListとVirtual PlayList)のファイル名をストアする。ボリュームに記録されているすべてのPlayListファイルは、TableOfPlayList()の中に含まれる。TableOfPlayLists()は、ボリュームの中のPlayListのデフォルトの再生順序を示す。

【0138】図20は、TableOfPlayLists()のシンタクスを示す図であり、そのシンタクスについて説明するに、TableOfPlayListsのversion_numberは、このTableOfPlayListsのバージョンナンバーを示す4個のキャラクター文字を示す。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0139】lengthは、このlengthフィールドの直後からTableOfPlayLists()の最後までのTableOfPlayLists() 30のパイト数を示す32ビットの符号なしの整数である。number_of_PlayListsの16ビットのフィールドは、PlayList_file_nameを含むfor_loopのループ回数を示す。この数字は、ボリュームに記録されているPlayListの数に等しくなければならない。PlayList_file_nameの10パイトの数字は、PlayListのファイル名を示す。

【0140】図21は、TableOfPlayLists()のシンタクスを別実施の構成を示す図である。図21に示したシンタクスは、図20に示したシンタクスに、UIAppinfoPlayList(後述)を含ませた構成とされている。このように、UIAppinfoPlayListを含ませた構成とすることで、TableOfPlayListsを読み出すだけで、メニュー画面を作成することが可能となる。ここでは、図20に示したシンタクスを用いるとして以下の説明をする。

【0141】図15に示したinfo.dvrのシンタクス内の MakersPrivateDataについて説明する。MakersPrivateDa taは、記録再生装置1のメーカが、各社の特別なアブリケーションのために、MakersPrivateData()の中にメーカのプライベートデータを挿入できるように設けられている。各メーカのプライベートデータは、それを定義し

たメーカを識別するために標準化されたmaker_IDを持つ。MakersPrivateData()は、1つ以上のmaker_IDを含んでも良い。

【0142】所定のメーカが、プライベートデータを挿入したい時に、すでに他のメーカのプライベートデータがMakersPrivateData()に含まれていた場合、他のメーカは、既にある古いプライベートデータを消去するのではなく、新しいプライベートデータをMakersPrivateData()の中に追加するようにする。このように、本実施の10 形態においては、複数のメーカのプライベートデータが、1つのMakersPrivateData()に含まれることが可能であるようにする。

【0143】図22は、MakersPrivateDataのシンタクスを示す図である。図22に示したMakersPrivateDataのシンタクスについて説明するに、version_numberは、このMakersPrivateData()のバージョンナンバを示す4個のキャラクター文字を示す。version_numberは、ISO646に従って、"0045"と符号化されなければならない。1engthは、このlengthフィールドの直後からMakersPrivateData()の最後までのMakersPrivateData()のバイト数を示す32ビットの符号なし整数を示す。

【0144】mpd_blocks_start_addressは、MakersPrivateData()の先頭のバイトからの相対バイト数を単位として、最初のmpd_block()の先頭バイトアドレスを示す。相対バイト数はゼロからカウントされる。number_of_maker_entriesは、MakersPrivateData()の中に含まれているメーカプライベートデータのエントリー数を与える16ビットの符号なし整数である。MakersPrivateData()の中に、同じmaker_IDの値を持つメーカプライベートデータが2個以上存在してはならない。

【0145】mpd_block_sizeは、1024バイトを単位として、1つのmpd_blockの大きさを与える16ビットの符号なし整数である。例えば、mpd_block_size=1ならば、それは1つのmpd_blockの大きさが1024バイトであることを示す。number_of_mpd_blocksは、Makers PrivateData()の中に含まれるmpd_blockの数を与える16ビットの符号なし整数である。maker_IDは、そのメーカプライベートデータを作成したDMRシステムの製造メーカを示す16ビットの符号なし整数である。maker_IDに40符号化される値は、このDMRフォーマットのライセンサによって指定される。

【0146】maker_model_codeは、そのメーカプライベートデータを作成したDVRシステムのモデルナンバーコードを示す16ビットの符号なし整数である。maker_model_codeに符号化される値は、このフォーマットのライセンスを受けた製造メーカによって設定される。start_mpd_block_numberは、そのメーカプライベートデータが開始されるmpd_blockの番号を示す16ビットの符号なし整数である。メーカプライベートデータの先頭データは、mpd_blockの先頭にアラインされなければならな

い。start_mpd_block_numberは、mpd_blockのfor-loop の中の変数iに対応する。

【0147】mpd_lengthは、バイト単位でメーカプライ ベートデータの大きさを示す32ビットの符号なし整数 である。mpd_blockは、メーカプライベートデータがス トアされる領域である。MakersPrivateData()の中のす べてのmpd_blockは、同じサイズでなければならない。 【0148】次に、Real PlayList fileとVirtual Play List fileについて、換言すれば、xxxxx.rplsとyyyyy.v plsについて説明する。図23は、xxxxx.rpls (Real Pl 10 ayList)、または、yyyyy.vpls (Virtual PlayList) の シンタクスを示す図である。xxxxx.rplsとyyyyy.vpls は、同一のシンタクス構成をもつ。xxxxx.rplsとyyyyy. vplsは、それぞれ、3個のオブジェクトから構成され、 それらは、PlayList()、PlayListMark()、およびMakerP rivateData()である。

[0149] PlayListMark_Start_addressは、PlayList ファイルの先頭のバイトからの相対バイト数を単位とし て、PlayListMark()の先頭アドレスを示す。相対バイト 数はゼロからカウントされる。

[0150] MakerPrivateData_Start_addressは、Play Listファイルの先頭のバイトからの相対バイト数を単位 として、MakerPrivateData()の先頭アドレスを示す。相 対バイト数はゼロからカウントされる。

【0151】padding_word (パディングワード) は、PI ayListファイルのシンタクスにしたがって挿入され、N 1とN2は、ゼロまたは任意の正の整数である。それぞ れのパディングワードは、任意の値を取るようにしても 良い。

【0152】ととで、既に、簡便に説明したが、PlayLi stについてさらに説明する。ディスク内にあるすべての Real PlayListによって、Bridge-Clip (後述)を除くす べてのClipの中の再生区間が参照されていなければなら ない。かつ、2つ以上のRealPlayListが、それらのPlay Itemで示される再生区間を同一のClipの中でオーバーラ ップさせてはならない。

【0153】図24を参照してさらに説明するに、図2 4 (A) に示したように、全てのClipは、対応するReal PlayListが存在する。との規則は、図24(B)に示 したように、編集作業が行われた後においても守られ る。従って、全てのClipは、どれかしらのReal PlayLis tを参照することにより、必ず視聴することが可能であ

【0154】図24 (C) に示したように、Virtual Pl ayListの再生区間は、Real PlayListの再生区間またはB ridge-Clipの再生区間の中に含まれていなければならな い。どのVirtual PlayListにも参照されないBridge-Cli pがディスクの中に存在してはならない。

【0155】RealPlayListは、PlayItemのリストを含む

tは、PlayItemのリストを含み、PlayList()の中に示さ れるCPI_typeがEP_map typeであり、かつPlayList_type が0 (ビデオとオーディオを含むPlayList) である場 合、Virtual PlayListは、ひとつのSubPlayItemを含む 事ができる。本実施の形態におけるPlayList()では、Su bPlayIteはオーディオのアフレコの目的にだけに使用さ れる、そして、1つのVirtual PlayListが持つSubPlayI temの数は、0または1でなければならない。

【0156】次に、PlayListについて説明する。図25 は、PlayListのシンタクスを示す図である。図25に示 したPlayListのシンタクスを説明するに、version_numb erは、このPlayList()のバージョンナンバーを示す4個 のキャラクター文字である。version_numberは、ISO 64 6に従って、"0045"と符号化されなければならない。1en gthは、この1engthフィールドの直後からPlayList()の 最後までのPlayList()のバイト数を示す32ビットの符 号なし整数である。PlayList_typeは、このPlayListの タイプを示す8ビットのフィールドであり、その一例を 図26に示す。

20 【0157】CPI_typeは、1ビットのフラグであり、PI ayItem()およびSubPlayItem()によって参照されるClip のCPI_typeの値を示す。 1 つのPlayListによって参照さ れる全てのClipは、それらのCPI()の中に定義されるCPI _typeの値が同じでなければならない。number_of_PlayI temsは、PlayListの中にあるPlayItemの数を示す16ビ ットのフィールドである。

【0158】所定のPlayItem()に対応するPlayItem_id は、PlayItem()を含むfor-loopの中で、そのPlayItem() の現れる順番により定義される。PlayItem_idは、0か ら開始される。number_of_SubPlayItemsは、PlayListの 中にあるSubPlayItemの数を示す16ビットのフィール ドである。この値は、0または1である。付加的なオー ディオストリームのパス(オーディオストリームパス) は、サブパスの一種である。

【0159】次に、図25に示したPlayListのシンタク スのUIAppInfoPlayListについて説明する。UIAppInfoPl ayListは、PlayListについてのユーザインターフェース アプリケーションのパラメータをストアする。図27 は、UIAppInfoPlayListのシンタクスを示す図である。 40 図27に示したUIAppInfoPlayListのシンタクスを説明 するに、character_setは、8ビットのフィールドであ り、PlayList_nameフィールドに符号化されているキャ ラクター文字の符号化方法を示す。その符号化方法は、 図19に示したテーブルに準拠する値に対応する。

[0160] name_lengthは、8 ビットフィールドであ り、PlayList_nameフィールドの中に示されるPlayList 名のバイト長を示す。PlayList_nameのフィールドは、P 1ayListの名称を示す。このフィールドの中の左からnam e_length数のバイト数が、有効なキャラクター文字であ が、SubPlayItemを含んではならない。Virtual PlayLis 50 り、それはPlayListの名称を示す。PlayList_nameフィ

ールドの中で、それら有効なキャラクター文字の後の値 は、どんな値が入っていても良い。

【 0 1 6 1 】 record_time_and_dateは、PlayListが記録された時の日時をストアする5 6 ピットのフィールドである。このフィールドは、年/月/日/時/分/秒について、1 4 個の数字を 4 ピットのBinary Coded Decimal (BCD)で符号化したものである。例えば、2001/12/23:01:02:03 は、"0x20011223010203"と符号化される。

【 0 1 6 2 】 durationは、PlayListの総再生時間を時間 /分/秒の単位で示した2 4 ビットのフィールドであ る。このフィールドは、6 個の数字を4 ビットのBinary CodedDecimal(BCD)で符号化したものである。例えば、 01:45:30は、"0x014530"と符号化される。

【 0 1 6 3 】 valid_periodは、PlayListが有効である期間を示す3 2 ビットのフィールドである。このフィールドは、8 個の数字を4 ビットのBinary Coded Decimal(BCD)で符号化したものである。例えば、記録再生装置1は、この有効期間の過ぎたPlayListを自動消去する、といったように用いられる。例えば、2001/05/07 は、"0x 20010507"と符号化される。

【0164】maker_idは、そのPlayListを最後に更新したDVRプレーヤ(記録再生装置1)の製造者を示す16ビットの符号なし整数である。maker_idに符号化される値は、DVRフォーマットのライセンサによって割り当てられる。maker_codeは、そのPlayListを最後に更新したDVRプレーヤのモデル番号を示す16ビットの符号なし整数である。maker_codeに符号化される値は、DVRフォーマットのライセンスを受けた製造者によって決められる。

【0165】playback_control_flagのフラグが1にセットされている場合、ユーザが正しくPIN番号を入力できた場合にだけ、そのPlayListは再生される。このフラグが0にセットされている場合、ユーザがPIN番号を入力しなくても、ユーザは、そのPlayListを視聴することができる。

【0166】write_protect_flagは、図28(A)にテーブルを示すように、1にセットされている場合、write_protect_flagを除いて、そのPlayListの内容は、消去および変更されない。とのフラグが0にセットされている場合、ユーザは、そのPlayListを自由に消去および変40更できる。とのフラグが1にセットされている場合、ユーザが、そのPlayListを消去、編集、または上書きする前に、記録再生装置1はユーザに再確認するようなメッセージを表示させる。

【0167】write_protect_flagが0にセットされているReal PlayListが存在し、かつ、そのReal PlayListのClipを参照するVirtual PlayListが存在し、そのVirtual PlayListのwrite_protect_flagが1にセットされていても良い。ユーザが、RealPlayListを消去しようとする場合、記録再生装置1は、そのReal PlayListを消去す

る前に、上記Virtual PlayListの存在をユーザに警告するか、または、そのReal PlayListを"Minimize"する。

32

【0168】is_played_flagは、図28(B)に示すように、フラグが1にセットされている場合、そのPlayListは、記録されてから一度は再生されたことを示し、0にセットされている場合、そのPlayListは、記録されてから一度も再生されたことがないことを示す。

【0169】archiveは、図28(C)に示すように、そのPlayListがオリジナルであるか、コピーされたものであるかを示す2ピットのフィールドである。ref_thum bnail_index のフィールドは、PlayListを代表するサムネイル画像の情報を示す。ref_thumbnail_indexフィールドが、0xFFFFでない値の場合、そのPlayListには、PlayListを代表するサムネイル画像が付加されており、そのサムネイル画像は、menu.thumファイルの中にストアされている。その画像は、menu.thumファイルの中でref_thumbnail_indexの値を用いて参照される。ref_thumbnail_indexの値を用いて参照される。そのPlayListには、PlayListを代表するサムネイル画像が付加されていない。

【0170】次にPlayItemについて説明する。1つのPlayItem()は、基本的に次のデータを含む。Clipのファイル名を指定するためのClip_information_file_name、Clipの再生区間を特定するためのIN_timeとOUT_timeのペア、PlayList()において定義されるCPI_typeがEP_map typeである場合、IN_timeとOUT_timeが参照するところのSTC_sequence_id、および、先行するPlayItemと現在のPlayItemとの接続の状態を示すところのconnection_conditionである。

(0171) PlayListが2つ以上のPlayItemから構成される時、それらのPlayItemはPlayListのグローバル時間軸上に、時間のギャップまたはオーバーラップなしに一列に並べられる。PlayList()において定義されるCPI_tvpeがEP_map typeであり、かつ現在のPlayItemがBridgeSequence()を持たない時、そのPlayItemにおいて定義されるIN_timeとOUT_timeのペアは、STC_sequence_idによって指定される同じSTC連続区間上の時間を指していなければならない。そのような例を図29に示す。

【0172】図30は、PlayList()において定義される 40 CPI_typeがEP_map typeであり、かつ現在のPlayItemがB ridgeSequence()を持つ時、次に説明する規則が適用される場合を示している。現在のPlayItemに先行するPlay ItemのIN_time (図の中でIN_time1と示されているもの)は、先行するPlayItemのSTC_sequence_idによって指定されるSTC連続区間上の時間を指している。先行するPlayItemのOUT_time(図の中でOUT_time1と示されているもの)は、現在のPlayItemのBridgeSequenceInfo()の中で指定されるBridge-Clipの中の時間を指している。この0 UT_timeは、後述する符号化制限に従っていなければな 50 らない。

30

【0173】現在のPlayItemのIN_time(図の中でIN_time2と示されているもの)は、現在のPlayItemのBridgeSequenceInfo()の中で指定されるBridge-Clipの中の時間を指している。とのIN_timeも、後述する符号化制限に従っていなければならない。現在のPlayItemのPlayItemのOUT_time(図の中でOUT_time2と示されているもの)は、現在のPlayItemのSTC_sequence_idによって指定されるSTC連続区間上の時間を指している。

33

【0174】図31に示すように、PlayList()のCPI_ty peがTU_map typeである場合、PlayItemのIN_timeとOUT_ 10 timeのペアは、同じClip AVストリーム上の時間を指している。

【0175】PlayItemのシンタクスは、図32に示すようになる。図32に示したPlayItemのシンタクスを説明するに、Clip_Information_file_nameのフィールドは、ClipInformation fileのファイル名を示す。このClip Information fileのClipInfo()において定義されるClip_stream_typeは、Clip AV streamを示していなければならない。

【0176】STC_sequence_idは、8ビットのフィールドであり、PlayItemが参照するSTC連続区間のSTC_sequence_idを示す。PlayList()の中で指定されるCPI_typeがTU_map typeである場合、この8ビットフィールドは何も意味を持たず、0にセットされる。IN_timeは、32ビットフィールドであり、PlayItemの再生開始時刻をストアする。IN_timeのセマンティクスは、図33に示すように、PlayList()において定義されるCPI_typeによって異なる。

【0177】OUT_timeは、32ビットフィールドであり、PlayItemの再生終了時刻をストアする。OUT_timeのセマンティクスは、図34に示すように、PlayList()において定義されるCPI_typeによって異なる。

【0178】Connection_Conditionは、図35に示したような先行するPlayItemと、現在のPlayItemとの間の接続状態を示す2ビットのフィールドである。図36は、図35に示したConnection_Conditionの各状態について説明する図である。

【0179】次に、BridgeSequenceInfoについて、図37を参照して説明する。BridgeSequenceInfo()は、現在のPlayItemの付属情報であり、次に示す情報を持つ。Bridge-Clip AV streamファイルとそれに対応するClip Information fileを指定するBridge_Clip_Information_file nameを含む。

【0180】また、先行するPlayItemが参照するClip A V stream上のソースパケットのアドレスであり、このソースパケットに続いてBridge-Clip AV streamファイルの最初のソースパケットが接続される。このアドレスは、RSPN_exit_from_previous_Clipと称される。さらに現在のPlayItemが参照するClip AV stream上のソースパケットのアドレスであり、このソースパケットの前にBr 50

idge_Clip AV streamファイルの最後のソースパケットが接続される。とのアドレスは、RSPN_enter_to_current_Clipと称される。

【0181】図37において、RSPN_arrival_time_disc ontinuityは、the Bridge_Clip AVstreamファイルの中でアライバルタイムベースの不連続点があるところのソースパケットのアドレスを示す。このアドレスは、Clip Info()の中において定義される。

【0182】図38は、BridgeSequenceinfoのシンタクスを示す図である。図38に示したBridgeSequenceinfoのシンタクスを説明するに、Bridge_Clip_Information_file_nameのフィールドは、Bridge_Clip AV streamファイルに対応するClip Information fileのファイル名を示す。このClip Information fileのClipInfo()において定義されるClip_stream_typeは、'Bridge_Clip AV stream'を示していなければならない。

【0183】RSPN_exit_from_previous_Clipの32ビットフィールドは、先行するPlayItemが参照するClip AV stream上のソースパケットの相対アドレスであり、このソースパケットに続いてBridge—Clip AV streamファイルの最初のソースパケットが接続される。RSPN_exit_from_previous_Clipは、ソースパケット番号を単位とする大きさであり、先行するPlayItemが参照するClip AV streamファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。

【0184】RSPN_enter_to_current_Clipの32ビットフィールドは、現在のPlayItemが参照するClip AV stream上のソースパケットの相対アドレスであり、このソースパケットの前にBridge_Clip AV streamファイルの最後のソースパケットが接続される。RSPN_exit_from_previous_Clipは、ソースパケット番号を単位とする大きさであり、現在のPlayItemが参照するClip AV streamファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。

【0185】次に、SubPlayItemについて、図39を参照して説明する。SubPlayItem()の使用は、PlayList()のCPI_typeがEP_map typeである場合だけに許される。本実施の形態においては、SubPlayItemはオーディオのアフレコの目的のためだけに使用されるとする。SubPlayItem()は、次に示すデータを含む。まず、PlayListの中のsub pathが参照するClipを指定するためのClip_information_file_nameを含む。

【0186】また、Clipの中のsub pathの再生区間を指定するためのSubPath_IN_time と SubPath_OUI_timeを含む。さらに、main pathの時間軸上でsub pathが再生開始する時刻を指定するためのsync_PlayItem_id と sync_start_PTS_of_PlayItemを含む。sub pathに参照されるオーディオのClip AV streamは、STC不連続点(シス

テムタイムベースの不連続点)を含んではならない。subpathに使われるClipのオーディオサンブルのクロックは、mainpathのオーディオサンブルのクロックにロックされている。

【0187】図40は、SubPlayItemのシンタクスを示す図である。図40に示したSubPlayItemのシンタクスを説明するに、Clip_Information_file_nameのフィールドは、Clip Information fileのファイル名を示し、それはPlayListの中でsub pathによって使用される。このClip Information fileのClipInfo()において定義されるClip_stream_typeは、Clip AV streamを示していなければならない。

【0188】SubPath_typeの8ビットのフィールドは、sub pathのタイプを示す。ここでは、図41に示すように、'0x00'しか設定されておらず、他の値は、将来のために確保されている。

【0189】sync_PlayItem_idの8ビットのフィールドは、main pathの時間軸上でsub pathが再生開始する時刻が含まれるPlayItemのPlayItem_idを示す。所定のPlayItemに対応するPlayItem_idの値は、PlayList()におい 20て定義される(図25参照)。

【0190】sync_start_PTS_of_PlayItemの32ビットのフィールドは、main pathの時間軸上でsub pathが再生開始する時刻を示し、sync_PlayItem_idで参照されるPlayItem上のPTS(Presentation Time Stamp)の上位32ビットを示す。SubPath_IN_timeの32ビットフィールドは、Sub pathの再生開始時刻をストアする。SubPath_IN_timeは、Sub Pathの中で最初のプレゼンテーションユニットに対応する33ビット長のPTSの上位32ビットを示す。

【0191】SubPath_OUT_timeの32ビットフィールドは、Sub pathの再生終了時刻をストアする。SubPath_OUT_timeは、次式によって算出されるPresenation_end_TSの値の上位32ビットを示す。Presentation_end_TS = PTS_out + AU_durationとこで、PTS_outは、SubPathの最後のプレゼンテーションユニットに対応する33ビット長のPTSである。AU_durationは、SubPathの最後のプレゼンテーションユニットの90kHz単位の表示期間である。

【0192】次に、図23に示したxxxxx.rplsとyyyy.vplsのシンタクス内のPlayListMark()について説明する。PlayListKついてのマーク情報は、このPlayListMarkのシンタクスを示す図である。図42は、PlayListMarkのシンタクスを示す図である。図42に示したPlayListMarkのシンタクスについて説明するに、version_numberは、このPlayListMark()のバージョンナンバを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0193】 1engthは、この1engthフィールドの直後からPlayListMark()の最後までのPlayListMark()のバイト

50

数を示す32ビットの符号なし整数である。number_of_PlayList_marksは、PlayListMarkの中にストアされているマークの個数を示す16ビットの符号なし整数である。number_of_PlayList_marks は、0であってもよい。mark_typeは、マークのタイプを示す8ビットのフィールドであり、図43に示すテーブルに従って符号化される。

【0·194】mark_time_stampの32ビットフィールド は、マークが指定されたポイントを示すタイムスタンプ をストアする。mark_time_stampのセマンティクスは、 図44に示すように、PlayList()において定義されるCP I_typeによって異なる。PlayItem_idは、マークが置か れているところのPlayItemを指定する8ビットのフィー ルドである。所定のPlayItemに対応するPlayItem_idの 値は、PlayList()において定義される(図25参照)。 【0195】character_setの8ビットのフィールド は、mark_nameフィールドに符号化されているキャラク ター文字の符号化方法を示す。その符号化方法は、図 1 9に示した値に対応する。name_lengthの8ビットフィ ールドは、Mark_nameフィールドの中に示されるマーク 名のバイト長を示す。mark_nameのフィールドは、マー クの名称を示す。とのフィールドの中の左からname_len qth数のバイト数が、有効なキャラクター文字であり、 それはマークの名称を示す。Mark_nameフィールドの中 で、それら有効なキャラクター文字の後の値は、どのよ うな値が設定されても良い。

【0196】ref_thumbnail_indexのフィールドは、マークに付加されるサムネイル画像の情報を示す。ref_th umbnail_indexフィールドが、0xFFFFでない値の場合、30 そのマークにはサムネイル画像が付加されており、そのサムネイル画像は、mark.thmbファイルの中にストアされている。その画像は、mark.thmbファイルの中でref_t humbnail_indexの値を用いて参照される(後述)。ref_thumbnail_indexフィールドが、0xFFFFである場合、そのマークにはサムネイル画像が付加されていない事を示す。

【0197】次に、Clip information fileについて説明する。zzzzz.clpi (Clip information fileファイル)は、図45に示すように6個のオブジェクトから構成される。それらは、ClipInfo()、STC_Info()、ProgramInfo()、CPI()、ClipMark()、およびMakerPrivateData()である。AVストリーム(Clip AVストリームまたはBridge-Clip AV stream)とそれに対応するClip Informationファイルは、同じ数字列の"zzzzzz"が使用される。

【0198】図45に示したzzzzz.clpi(Clip informa tion fileファイル)のシンタクスについて説明するに、ClipInfo_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、ClipIn fo()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0199】STC_Info_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、STC_Info()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。ProgramInfo_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、ProgramInfo()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。CPI_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、CPI()の先頭アドレスを示す。相対バイト数を単位として、CPI()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0200】ClipMark_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、ClipMark()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。MakerPrivateData_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、MakerPrivateData ()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。padding_word (パディングワード) は、zzzzz.clpiファイルのシンタクスにしたがって挿入される。N1,N2,N3,N4、およびN5は、ゼロまたは任意の正 20の整数でなければならない。それぞれのパディングワードは、任意の値がとられるようにしても良い。

【0201】次に、ClipInfoについて説明する。図46は、ClipInfoのシンタクスを示す図である。ClipInfo()は、それに対応するAVストリームファイル(Clip AVストリームまたはBridge—Clip AVストリームファイル)の属性情報をストアする。

【0202】図46に示したClipInfoのシンタクスについて説明するに、version_numberは、とのClipInfo()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。lengthは、とのlengthフィールドの直後からClipInfo()の最後までのClipInfo()のバイト数を示す32ビットの符号なし整数である。Clip_stream_typeの8ビットのフィールドは、図47に示すように、Clip Informationファイルに対応するAVストリームのタイプを示す。それぞれのタイプのAVストリームのストリームタイプについては後述する。

【0203】offset_SPNの32ビットのフィールドは、AVストリーム(Clip AVストリームまたはBridge_Clip A 40 Vストリーム)ファイルの最初のソースパケットについてのソースパケット番号のオフセット値を与える。AVストリームファイルが最初にディスクに記録される時、このoffset_SPNは0でなければならない。

【0204】図48に示すように、AVストリームファイルのはじめの部分が編集によって消去された時、offset SPNは、ゼロ以外の値をとっても良い。本実施の形態では、offset SPNを参照する相対ソースパケット番号(相対アドレス)が、しばしば、RSPN_xxx(xxxは変形する。例、RSPN_EP_start)の形式でシンタクスの中に記

述されている。相対ソースパケット番号は、ソースパケット番号を単位とする大きさであり、AVストリームファイルの最初のソースパケットからoffset_SPNの値を初期値としてカウントされる。

【0205】AVストリームファイルの最初のソースパケットから相対ソースパケット番号で参照されるソースパケットまでのソースパケットの数(SPN_xxx)は、次式で算出される。

 $SPN_xxx = RSPN_xxx - offset_SPN$

10 図48に、offset_SPNが4である場合の例を示す。

【0206】TS_recording_rateは、24ビットの符号なし整数であり、この値は、DVRドライブ(書き込み部22)へまたはDVRドライブ(読み出し部28)からのAVストリームの必要な入出力のビットレートを与える。record_time_and_dateは、Clipに対応するAVストリームが記録された時の日時をストアする56ビットのフィールドであり、年/月/日/時/分/秒について、14個の数字を4ビットのBinary Coded Decimal(BCD)で符号化したものである。例えば、2001/12/23:01:02:03は、"0x20011223010203"と符号化される。

【0207】durationは、Clipの総再生時間をアライバルタイムクロックに基づいた時間/分/秒の単位で示した24ビットのフィールドである。このフィールドは、6個の数字を4ビットのBinary Coded Decimal(BCD)で符号化したものである。例えば、01:45:30は、"0x014530"と符号化される。

【0208】time_controlled_flag:のフラグは、AVストリームファイルの記録モードを示す。このtime_controlled_flagが1である場合、記録モードは、記録してからの時間経過に対してファイルサイズが比例するようにして記録されるモードであることを示し、次式に示す条件を満たさなければならない。

TS_average_rate 192/188 (t - start_time) - $\alpha \ll \sin \alpha$ ze_clip(t)

<= TS_average_rate*192/188*(t - start_time) + α</p>
ここで、TS_average_rateは、AVストリームファイルの
トランスポートストリームの平均ピットレートをbytes/second の単位で表したものである。

【0209】また、上式において、tは、秒単位で表される時間を示し、start_timeは、AVストリームファイルの最初のソースパケットが記録された時の時刻であり、秒単位で表される。size_clip(t)は、 時刻 t におけるA Vストリームファイルのサイズをバイト単位で表したものであり、例えば、start_timeから時刻tまでに 10個のソースパケットが記録された場合、size_clip(t)は10~192パイトである。αは、TS_average_rateに依存する定数である。

【0210】time_controlled_flagがOにセットされている場合、記録モードは、記録の時間経過とAVストリー 50 ムのファイルサイズが比例するように制御していないこ

40

とを示す。例えば、これは入力トランスポートストリームをトランスペアレント記録する場合である。

【0211】TS_average_rateは、time_controlled_fla gが1にセットされている場合、との24ビットのフィールドは、上式で用いているTS_average_rateの値を示す。time_controlled_flagが0にセットされている場合、とのフィールドは、何も意味を持たず、0にセットされなければならない。例えば、可変ビットレートのトランスポートストリームは、次に示す手順により符号化される。まずトランスポートレートをTS_recording_rat 10eの値にセットする。次に、ビデオストリームを可変ビットレートで符号化する。そして、ヌルパケットを使用しない事によって、間欠的にトランスポートパケットを符号化する。

【0212】RSPN_arrival_time_discontinuityの32 オストリピットフィールドは、Bridge-Clip AV streamファイル上でアライバルタイムベースの不連続が発生する場所の相対アドレスである。RSPN_arrival_time_discontinuit が、そしては、ソースパケット番号を単位とする大きさであり、Bridge-Clip AV streamファイルの最初のソースパケット20である。からClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。そのBridge-Clip AV streamファイルの中での絶対アドレスは、上述した 続点(ミ

SPN_xxx = RSPN_xxx - offset_SPN に基づいて算出される。

【0213】reserved_for_system_useの144ビットのフィールドは、システム用にリザーブされている。is_for mat_identifier_validのフラグが1である時、format_i dentifierのフィールドが有効であることを示す。is_or iginal_network_ID_validのフラグが1である場合、ori ginal_network_IDのフィールドが有効であることを示す。is_transport_stream_ID_validのフラグが1である場合、transport_stream_IDのフィールドが有効であることを示す。is_servece_ID_validのフラグが1である場合、servece_IDのフィールドが有効であることを示す。

【0214】is_country_code_validのフラグが1である時、country_codeのフィールドが有効であることを示す。format_identifierの32ビットフィールドは、トランスポートストリームの中でregistration deascriotor(ISO/IEC13818-1で定義されている)が持つformat_identifierの値を示す。original_network_IDの16ビットフィールドは、トランスポートストリームの中で定義されているoriginal_network_IDの値を示す。transport_stream_IDの16ビットフィールドは、トランスポートストリームの中で定義されているtransport_stream_IDの値を示す。

【0215】servece_IDの16ビットフィールドは、トランスポートストリームの中で定義されているservece_IDの値を示す。country_codeの24ビットのフィールド 50

は、ISO3166によって定義されるカントリーコードを示す。それぞれのキャラクター文字は、ISO8859-1で符号化される。例えば、日本は"JPN"と表され、"0x4A 0x500 x4E"と符号化される。stream_format_nameは、トランスポートストリームのストリーム定義をしているフォーマット機関の名称を示すISO-646の16個のキャラクターコードである。このフィールドの中の無効なバイトは、値'0xFF'がセットされる。

【0216】format_identifier、original_network_ID、transport_stream_ID、servece_ID,country_code、およびstream_format_nameは、トランスボートストリームのサービスプロバイダを示すものであり、これにより、オーディオやビデオストリームの符号化制限、SI(サービスインフォメーション)の規格やオーディオビデオストリーム以外のプライベートデータストリームのストリーム定義を認識することができる。これらの情報は、デコーダが、そのストリームをデコードできるか否か、そしてデコードできる場合にデコード開始前にデコーダシステムの初期設定を行うために用いることが可能である。

【0217】次に、STC_Infoとついて説明する。ここでは、MPEG-2トランスポートストリームの中でSTCの不連続点(システムタイムベースの不連続点)を含まない時間区間をSTC_sequenceと称し、Clipの中で、STC_sequenceは、STC_sequence_idの値によって特定される。図50は、連続なSTC区間について説明する図である。同じSTC_sequenceの中で同じSTCの値は、決して現れない(ただし、後述するように、Clipの最大時間長は制限されている)。従って、同じSTC_sequenceの中で同じPTSの値もまた、決して現れない。AVストリームが、N(N>0)個のSTC不連続点を含む場合、Clipのシステムタイムベースは、(N+1)個のSTC_sequenceに分割される。

【0218】STC_Infoは、STCの不連続(システムタイムベースの不連続)が発生する場所のアドレスをストアする。図51を参照して説明するように、RSPN_STC_startが、そのアドレスを示し、最後のSTC_sequenceを除くは番目(k>=0)のSTC_sequenceは、k番目のRSPN_STC_startで参照されるソースパケットが到着した時刻から始まり、(k+1)番目のRSPN_STC_startで参照されるソースパケットが到着した時刻で終わる。最後のSTC_sequenceは、最後のRSPN_STC_startで参照されるソースパケットが到着した時刻から始まり、最後のソースパケットが到着した時刻から始まり、最後のソースパケットが到着した時刻で終了する。

【0219】図52は、STC_Infoのシンタクスを示す図である。図52に示したSTC_Infoのシンタクスについて説明するに、version_numberは、このSTC_Info()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0220】lengthは、このlengthフィールドの直後か

号化されなければならない。

らSTC_Info()の最後までのSTC_Info()のバイト数を示す 32ビットの符号なし整数である。CPI()のCPI_typeがT U_map typeを示す場合、このlengthフィールドはゼロをセットしても良い。CPI()のCPI_typeがEP_map typeを示す場合、num_of_STC_sequencesは1以上の値でなければならない。

【0221】num_of_STC_sequencesの8ビットの符号なし整数は、Clipの中でのSTC_sequenceの数を示す。この値は、このフィールドに続くfor_loopのルーブ回数を示す。所定のSTC_sequenceと対応するSTC_sequence_idは、RSPN_STC_startを含むfor_loopの中で、そのSTC_sequenceと対応するRSPN_STC_startの現れる順番により定義されるものである。STC_sequence_idは、0から開始される。

【0222】RSPN_STC_startの32ビットフィールドは、AVストリームファイル上でSTC_sequenceが開始するアドレスを示す。RSPN_STC_startは、AVストリームファイルの中でシステムタイムベースの不連続点が発生するアドレスを示す。RSPN_STC_startは、AVストリームの中で新しいシステムタイムベースの最初のPCRを持つソースパケットの相対アドレスとしても良い。RSPN_STC_startは、ソースパケット番号を単位とする大きさであり、AVストリームファイルの最初のソースパケットからClip Info()において定義されるoffset_SPNの値を初期値としてカウントされる。そのAV streamファイルの中での絶対アドレスは、既に上述したSPN_xxx = RSPN_xxx - off set_SPNにより算出される。

【02.23】次に、図45に示したzzzzz.clipのシンタクス内のProgramInfoについて説明する。図53を参照しながら説明するに、とこでは、Clipの中で次の特徴を30もつ時間区間をprogram_sequenceと呼ぶ。まず、PCR_PI Dの値が変わらない。次に、ビデオエレメンタリーストリームの数が変化しない。また、それぞれのビデオストリームについてのPIDの値とそのVideoCodingInfoによって定義される符号化情報が変化しない。さらに、オーディオエレメンタリーストリームの数が変化しない。また、それぞれのオーディオストリームについてのPIDの値とそのAudioCodingInfoによって定義される符号化情報が変化しない。

【0224】program_sequenceは、同一の時刻において、ただ1つのシステムタイムベースを持つ。program_sequenceは、同一の時刻において、ただ1つのPMTを持つ。ProgramInfo()は、program_sequenceが開始する場所のアドレスをストアする。RSPN_program_sequence_startが、そのアドレスを示す。

【0225】図54は、ProgramInfoのシンタクスを示す図である。図54に示したProgramInfoのシンタクを説明するに、version_numberは、このProgramInfo()のパージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符

【0226】lengthは、このlengthフィールドの直後からProgramInfo()の最後までのProgramInfo()のバイト数を示す32ビットの符号なし整数である。CPI()のCPI_t ypeがTU_map typeを示す場合、このlengthフィールドはゼロにセットされても良い。CPI()のCPI_typeがEP_map typeを示す場合、number_of_programsは1以上の値でなければならない。

42

【0227】number_of_program_sequencesの8ビット の符号なし整数は、Clipの中でのprogram_sequenceの数を示す。この値は、このフィールドに続くfor-loopのループ回数を示す。Clipの中でprogram_sequenceが変化しない場合、number_of_program_sequencesは1をセットされなければならない。RSPN_program_sequence_startの32ビットフィールドは、AVストリームファイル上でプログラムシーケンスが開始する場所の相対アドレスである。

【0228】RSPN_program_sequence_startは、ソース パケット番号を単位とする大きさであり、AVストリーム ファイルの最初のソースパケットからClipInfo()におい て定義されるoffset_SPNの値を初期値としてカウントさ れる。そのAVストリームファイルの中での絶対アドレス は、

SPN_xxx = RSPN_xxx - offset_SPN により算出される。シンタクスのfor-loopの中でRSPN_p rogram_sequence_start値は、昇順に現れなければならない。

【0229】PCR_PIDの16ビットフィールドは、そのp rogram_sequenceに有効なPCRフィールドを含むトランスポートパケットのPIDを示す。number_of_videosの8ビットフィールドは、video_stream_PIDとVideoCodingInfo()を含むfor_loopのループ回数を示す。number_of_audiosの8ビットフィールドは、audio_stream_PIDとAudio CodingInfo()を含むfor_loopのループ回数を示す。video_stream_PIDの16ビットフィールドは、そのprogram_sequenceに有効なビデオストリームを含むトランスポートパケットのPIDを示す。このフィールドに続くVideoCodingInfo()は、そのvideo_stream_PIDで参照されるビデオストリームの内容を説明しなければならない。

1 【0230】audio_stream_PIDの16ビットフィールドは、そのprogram_sequenceに有効なオーディオストリームを含むトランスポートバケットのPIDを示す。とのフィールドに続くAudioCodingInfo()は、そのaudio_stream_PIDで参照されるビデオストリームの内容を説明しなければならない。

【0231】なお、シンタクスのfor-loopの中でvideo_ stream_PIDの値の現れる順番は、そのprogram_sequence に有効なPMTの中でビデオストリームのPIDが符号化され ている順番に等しくなければならない。また、シンタク 50 スのfor-loopの中でaudio_stream_PIDの値の現れる順番

は、そのprogram_sequenceに有効なPMTの中でオーディ オストリームのPIDが符号化されている順番に等しくな ければならない。

【0232】図55は、図54に示したPrograminfoのシンタクス内のVideoCodingInfoのシンタクスを示す図である。図55に示したVideoCodingInfoのシンタクスを説明するに、video_formatの8ビットフィールドは、図56に示すように、ProgramInfo()の中のVideo_stream PIDに対応するビデオフォーマットを示す。

【0233】frame_rateの8ビットフィールドは、図5 107に示すように、ProgramInfo()の中のvideo_stream_PIDに対応するビデオのフレームレートを示す。display_aspect_ratioの8ビットフィールドは、図58に示すように、ProgramInfo()の中のvideo_stream_PIDに対応するビデオの表示アスペクト比を示す。

【0234】図59は、図54に示したPrograminfoのシンタクス内のAudioCodingInfoのシンタクスを示す図である。図59に示したAudioCodingInfoのシンタクスを説明するに、audio_codingの8ビットフィールドは、図60に示すように、ProgramInfo()の中のaudio_strea 20m_PIDに対応するオーディオの符号化方法を示す。

【0235】audio_component_typeの8ビットフィールドは、図61に示すように、ProgramInfo()の中のaudio_stream_PIDに対応するオーディオのコンポーネントタイプを示す。sampling_frequencyの8ビットフィールドは、図62に示すように、ProgramInfo()の中のaudio_stream_PIDに対応するオーディオのサンプリング周波数を示す。

【0236】次に、図45に示したzzzzz.clipのシンタクス内のCPI (Characteristic Point Information)について説明する。CPIは、AVストリームの中の時間情報とそのファイルの中のアドレスとを関連づけるためにある。CPIには2つのタイプがあり、それらはEP_mapとTU_mapである。図63に示すように、CPI()の中のCPI_typeがEP_map typeの場合、そのCPI()はEP_mapを含む。図64に示すように、CPI()の中のCPI_typeがTU_map typeの場合、そのCPI()はTU_mapを含む。1つのAVストリームは、1つのEP_mapまたは1つのTU_mapを持つ。AVストリームがSESFトランスポートストリームの場合、それに対応するClipはEP_mapを持たなければならない。

【0237】図65は、CPIのシンタクスを示す図である。図65に示したCPIのシンタクスを説明するに、version_numberは、このCPI()のバージョンナンバを示す4個のキャラクター文字である。version_numberは、ISO646に従って、"0045"と符号化されなければならない。1engthは、このlengthフィールドの直後からCPI()の最後までのCPI()のパイト数を示す32ビットの符号なし整数である。CPI_typeは、図66に示すように、1ビットのフラグであり、ClipのCPIのタイプを表す。

【0238】次に、図65に示したCPIのシンタクス内

のEP_mapについて説明する。EP_mapには、2つのタイプがあり、それはビデオストリーム用のEP_mapとオーディオストリーム用のEP_mapの中のEP_map」t ypeが、EP_mapのタイプを区別する。CTipが1つ以上のビデオストリームを含む場合、ビデオストリーム用のEP_mapが使用されなければならない。CTipがビデオストリームを含む場合、オーディオストリーム用のEP_mapが使用されなければならない。

【0239】ビデオストリーム用のEP_mapについて図67を参照して説明する。ビデオストリーム用のEP_mapは、stream_PID、PTS_EP_start、および、RSPN_EP_startというデータを持つ。stream_PIDは、ビデオストリームを伝送するトランスポートパケットのPIDを示す。PTS_EP_startは、ビデオストリームのシーケンスヘッダから始めるアクセスユニットのPTSを示す。RSPN_EP_startは、AVストリームの中でPTS_EP_startにより参照されるアクセスユニットの第1バイト目を含むソースポケットのアドレスを示す。

【0240】EP_map_for_one_stream_PID()と呼ばれる サブテーブルは、同じPIDを持つトランスポートパケットによって伝送されるビデオストリーム毎に作られる。 Clipの中に複数のビデオストリームが存在する場合、EP - _mapは複数のEP_map_for_one_stream_PID()を含んでも 良い。

【0241】オーディオストリーム用のEP_mapは、stre am_PID、PTS_EP_start、およびRSPN_EP_startというデータを持つ。stream_PIDは、オーディオストリームを伝送するトランスポートパケットのPIDを示す。PTS_EP_startは、オーディオストリームのアクセスユニットのPTSを示す。RSPN_EP_startは、AVストリームの中でPTS_EP_startで参照されるアクセスユニットの第1バイト目を含むソースポケットのアドレスを示す。

【0242】EP_map_for_one_stream_PID()と呼ばれるサブテーブルは、同じPIDを持つトランスポートバケットによって伝送されるオーディオストリーム毎に作られる。Clipの中に複数のオーディオストリームが存在する場合、EP_mapは複数のEP_map_for_one_stream_PID()を含んでも良い。

40 【0243】EP_mapとSTC_Infoの関係を説明するに、1つのEP_map_for_one_stream_PID()は、STCの不連続点に関係なく1つのテーブルに作られる。RSPN_EP_startの値とSTC_Info()において定義されるRSPN_STC_startの値を比較する事により、それぞれのSTC_sequenceに属するEP_mapのデータの境界が分かる(図68を参照)。EP_mapは、同じPIDで伝送される連続したストリームの範囲に対して、1つのEP_map_for_one_stream_PIDを持たねばならない。図69に示したような場合、program#1とprogram#3は、同じビデオPIDを持つが、データ範囲が連
50 続していないので、それぞれのプログラム毎にEP_map_f

or_one_stream_PIDを持たねばならない。

【0244】図70は、EP_mapのシンタクスを示す図である。図70に示したEP_mapのシンタクスを説明するに、EP_typeは、4ビットのフィールドであり、図71に示すように、EP_mapのエントリーポイントタイプを示す。EP_typeは、このフィールドに続くデータフィールドのセマンティクスを示す。Clipが1つ以上のビデオストリームを含む場合、EP_typeは0('video')にセットされなければならない。または、Clipがビデオストリームを含まず、1つ以上のオーディオストリームを含む場合、EP_typeは1('audio')にセットされなければならない。

【0245】number_of_stream_PIDsの16ビットのフィールドは、EP_map()の中のnumber_of_stream_PIDsを変数にもつfor-loopのループ回数を示す。stream_PID (k)の16ビットのフィールドは、EP_map_for_one_stream_PID(num_EP_entries(k))によって参照されるk番目のエレメンタリーストリーム(ビデオまたはオーディオストリーム)を伝送するトランスポートバケットのPIDを示す。EP_typeが0('video')に等しい場合、そのエレメンタリストリームはビデオストリームでなけれならない。また、EP_typeが1('audio')に等しい場合、そのエレメンタリストリームはオーディオストリームでなければちない。

【0246】num_EP_entries(k)の16ビットのフィールドは、EP_map_for_one_stream_PID(num_EP_entries(k))によって参照されるnum_EP_entries(k)を示す。EP_map_for_one_stream_PID_Start_address(k): この32ビットのフィールドは、EP_map()の中でEP_map_for_one_stream_PID(num_EP_entries(k))が始まる相対バイト位置を示す。この値は、EP_map()の第1バイト目からの大きさで示される。

【0247】padding_wordは、EP_map()のシンタクスにしたがって挿入されなければならない。XとYは、ゼロまたは任意の正の整数でなければならない。それぞれのバディングワードは、任意の値を取っても良い。

【0248】図72は、EP_map_for_one_stream_PIDのシンタクスを示す図である。図72に示したEP_map_for _one_stream_PIDのシンタクスを説明するに、PTS_EP_st artの32ビットのフィールドのセマンティクスは、EP_ 40 map()において定義されるEP_typeにより異なる。EP_typeが0('video')に等しい場合、このフィールドは、ビデオストリームのシーケンスへッダで始まるアクセスユニットの33ビット精度のPTSの上位32ビットを持つ。EP_typeが1('audio')に等しい場合、このフィールドは、オーディオストリームのアクセスユニットの33ビット精度のPTSの上位32ビットを持つ。

【0249】RSPN_EP_startの32ビットのフィールドのセマンティクスは、EP_map()において定義されるEP_t ypeにより異なる。EP_typeが0('video')に等しい場

合、とのフィールドは、AVストリームの中でPTS_EP_startにより参照されるアクセスユニットのシーケンスヘッダの第1バイト目を含むソースポケットの相対アドレスを示す。または、EP_typeが1 ('audio')に等しい場合、このフィールドは、AVストリームの中でPTS_EP_startにより参照されるアクセスユニットのオーディオフレームの第一バイト目を含むソースポケットの相対アドレスを示す。

【0250】RSPN_EP_startは、ソースパケット番号を 10 単位とする大きさであり、AVストリームファイルの最初 のソースパケットからClipInfo()において定義されるof fset_SPNの値を初期値としてカウントされる。そのAVス トリームファイルの中での絶対アドレスは、

SPN_xxx = RSPN_xxx - offset_SPN により算出される。シンタクスのfor-loopの中でRSPN_E P_startの値は、昇順に現れなければならない。

【0251】次に、TU_mapについて、図73を参照して説明する。TU_mapは、ソースパケットのアライバルタイムクロック(到着時刻ベースの時計)に基づいて、1つの時間軸を作る。その時間軸は、TU_map_time_axisと呼ばれる。TU_map_time_axisの原点は、TU_map(の中のoffset_timeによって示される。TU_map_time_axisは、offset_timeから一定の単位に分割される。その単位を、time_unitと称する。

【0252】AVストリームの中の各々のtime_unitの中で、最初の完全な形のソースパケットのAVストリームファイル上のアドレスが、TU_mapにストアされる。これらのアドレスを、RSPN_time_unit_startと称する。TU_map_time_axis上において、k(k>=0)番目のtime_unitが始まる時刻は、TU_start_time(k)と呼ばれる。この値は次式に基づいて算出される。

TU_start_time(k) = offset_time + k*time_unit_size
TU_start_time(k)は、45kHzの精度を持つ。

【0253】図75は、TU_mapのシンタクスを示す図である。図75に示したTU_mapのシンタクスを説明するに、offset_timeの32bit長のフィールドは、TU_map_time_axisに対するオフセットタイムを与える。この値は、Clipの中の最初のtime_unitに対するオフセット時刻を示す。offset_timeは、27Mtz精度のアライバルタイムクロックから導き出される45kHzクロックを単位とする大きさである。AVストリームが新しいClipとして記録される場合、offset_timeはゼロにセットされなければならない。

【0254】time_unit_sizeの32ビットフィールドは、time_unitの大きさを与えるものであり、それは27MHz精度のアライバルタイムクロックから導き出される45kHzクロックを単位とする大きさである。time_unit_sizeは、1秒以下(time_unit_size<=45000)にすることが良い。number_of_time_unit_entriesの32ビットフィールドは、TU_map()の中にストアされているtime_u

nitのエントリー数を示す。

【0255】RSPN_time_unit_startの32ビットフィー ルドは、AVストリームの中でそれぞれのtime_unitが開 始する場所の相対アドレスを示す。RSPN_time_unit_sta rtは、ソースパケット番号を単位とする大きさであり、 AV streamファイルの最初のソースパケットからClipInf o()において定義されるoffset_SPMの値を初期値として カウントされる。そのAV streamファイルの中での絶対 アドレスは、

 $SPN_xxx = RSPN_xxx - offset_SPN$

により算出される。シンタクスのfor-loopの中でRSPN_t ime_unit_startの値は、昇順に現れなければならない。 (k+1)番目のtime_unitの中にソースパケットが何もない 場合、(k+1)番目のRSPN_time_unit_startは、k番目のRS PN_time_unit_startと等しくなければならない。

【0256】図45に示したzzzzz.clipのシンタクス内 のClipMarkについて説明する。ClipMarkは、クリップに ついてのマーク情報であり、ClipMarkの中にストアされ る。このマークは、記録器(記録再生装置1)によって セットされるものであり、ユーザによってセットされる 20 umbnail Information) について説明する。サムネイル ものではない。

【0257】図75は、ClipMarkのシンタクスを示す図 である。図75に示したClipMarkのシンタクスを説明す るに、version_numberは、このClipMark()のバージョン ナンバーを示す4個のキャラクター文字である。versio n_numberは、ISO 646に従って、"0045"と符号化されな ければならない。

【0258】lengthは、このlengthフィールドの直後か らClipMark()の最後までのClipMark()のバイト数を示す 32ビットの符号なし整数である。number_of_Clip_mar 30 ksは、 ClipMarkの中にストアされているマークの個数 を示す16ビットの符号なし整数。number_of_Clip_mar ks は、0であってもよい。mark_typeは、マークのタイ プを示す8ビットのフィールドであり、図76に示すテ ーブルに従って符号化される。

【0259】mark_time_stampは、32ビットフィール ドであり、マークが指定されたポイントを示すタイムス タンプをストアする。mark_time_stampのセマンティク スは、図77に示すように、PlayList()の中のCPI_type により異なる。

【0260】STC_sequence_idは、CPI()の中のCPI_type がEP_map typeを示す場合、この8ビットのフィールド は、マークが置かれているところのSTC連続区間のSTC_s equence_idを示す。CPI()の中のCPI_typeがTU_map type を示す場合、この8ビットのフィールドは何も意味を持 たず、ゼロにセットされる。character_setの8ビット のフィールドは、mark_nameフィールドに符号化されて いるキャラクター文字の符号化方法を示す。その符号化 方法は、図19に示される値に対応する。

k_nameフィールドの中に示されるマーク名のバイト長を 示す。mark_nameのフィールドは、マークの名称を示 す。このフィールドの中の左からname_length数のバイ ト数が、有効なキャラクター文字であり、それはマーク の名称を示す。mark_nameフィールドの中で、それら有 効なキャラクター文字の後の値は、どんな値が入ってい ても良い。

【0262】ref_thumbnail_indexのフィールドは、マ・ ークに付加されるサムネイル画像の情報を示す。ref_th umbnail_indexフィールドが、OxFFFFでない値の場合、 そのマークにはサムネイル画像が付加されており、その サムネイル画像は、mark.thmbファイルの中にストアさ れている。その画像は、mark.thmbファイルの中でref_t humbnail_indexの値を用いて参照される。ref_thumbnai 1_indexフィールドが、0xFFFF である場合、そのマーク にはサムネイル画像が付加されていない。

【0263】MakersPrivateDataについては、図22を 参照して既に説明したので、その説明は省略する。

【0264】次に、サムネイルインフォメーション(Th 画像は、menu.thmbファイルまたはmark.thmbファイルに ストアされる。これらのファイルは同じシンタクス構造 であり、ただ1つのThumbnail()を持つ。menu.thmbファ イルは、メニューサムネイル画像, すなわちVolumeを代 表する画像、および、それぞれのPlayListを代表する画 像をストアする。すべてのメニューサムネイルは、ただ 1つのmenu.thmbファイルにストアされる。

【0265】mark.thmbファイルは、マークサムネイル 画像、すなわちマーク点を表すピクチャをストアする。 すべてのPlayListおよびClipに対するすべてのマークサ ムネイルは、ただ1つのmark、thmbファイルにストアさ れる。サムネイルは頻繁に追加、削除されるので、追加 操作と部分削除の操作は容易に高速に実行できなければ ならない。この理由のため、Thumbnail()はブロック構 造を有する。画像のデータはいくつかの部分に分割さ れ、各部分は1つのtn_blockに格納される。1つの画像 データはは連続したtn_blockに格納される。tn_blockの 列には、使用されていないtn_blockが存在してもよい。 1つのサムネイル画像のバイト長は可変である。

40 【0266】図78は、menu.thmbとmark.thmbのシンタ クスを示す図であり、図79は、図78に示したmenu.t hmbとmark.thmbのシンタクス内のThumbnailのシンタク スを示す図である。図79に示したThumbnailのシンタ クスについて説明するに、version_numberは、このThum bnail()のバージョンナンバーを示す4個のキャラクタ 一文字である。version_numberは、ISO 646に従って、" 0045"と符号化されなければならない。

【0267】1engthは、この1engthフィールドの直後か らThumbnail()の最後までのMakersPrivateData()のパイ 【0261】name_lengthの8ビットフィールドは、Mar 50 ト数を示す32ビットの符号なし整数である。tn_block

s_start_addressは、Thumbnail()の先頭のバイトからの相対バイト数を単位として、最初のtn_blockの先頭バイトアドレスを示す32ビットの符号なし整数である。相対バイト数はゼロからカウントされる。number_of_thumbnailsは、Thumbnail()の中に含まれているサムネイル画像のエントリー数を与える16ビットの符号なし整数である。

【0268】tn_block_sizeは、1024バイトを単位として、1つのtn_blockの大きさを与える16ビットの符号なし整数である。例えば、tn_block_size=1ならば、そ 10れは1つのtn_blockの大きさが1024バイトであることを示す。number_of_tn_blocksは、このThumbnail()中のtn_blockのエントリ数を表す116ビットの符号なし整数である。thumbnail_indexは、このthumbnail_indexフィールドから始まるforループ一回分のサムネイル情報で表されるサムネイル画像のインデクス番号を表す16ビットの符号なし整数である。thumbnail_index として、0xFFFFという値を使用してはならない。thumbnail_index はUIAppInfoVolume()、UIAppInfoPlayList()、PlayListMark()、およびClipMark()の中のref_thumbnail_ind 20exによって参照される。

【0269】thumbnail_picture_formatは、サムネイル画像のピクチャフォーマットを表す8ビットの符号なし整数で、図80に示すような値をとる。表中のDCFとPNCは"menu.thmb"内でのみ許される。マークサムネイルは、値"0x00" (MPEG-2 Video I-picture)をとらなければならない。

【0270】picture_data_sizeは、サムネイル画像のバイト長をバイト単位で示す32ビットの符号なし整数である。start_tn_block_numberは、サムネイル画像のデータが始まるtn_blockのtn_block番号を表す16ビットの符号なし整数である。サムネイル画像データの先頭は、tb_blockの先頭と一致していなければならない。tn_block番号は、0から始まり、tn_blockのfor-ループ中の変数kの値に関係する。

【0271】x_picture_lengthは、サムネイル画像のフレーム画枠の水平方向のピクセル数を表す16ビットの符号なし整数である。y_picture_lengthは、サムネイル画像のフレーム画枠の垂直方向のピクセル数を表す16ビットの符号なし整数である。tn_blockは、 サムネイル画像がストアされる領域である。Thumbnail()の中のすべてのtn_blockは、同じサイズ(固定長)であり、その大きさはtn_block_sizeによって定義される。

【0272】図81は、サムネイル画像データがどのように tn_blockに格納されるかを模式的に表した図である。図81のように、各サムネイル画像データはtn_blockの先頭から始まり、1 tn_blockを超える大きさの場合は、連続する次のtn_blockを使用してストアされる。このようにすることにより、可変長であるピクチャデータが、固定長のデータとして管理することが可能となり、

削除といった編集に対して簡便な処理により対応する事ができるようになる。

【0273】次に、AVストリームファイルについて説明する。AVストリームファイルは、"M2TS"ディレクトリ (図14)にストアされる。AVストリームファイルには、2つのタイプがあり、それらは、Clip AVストリームとBridge-Clip AVストリームファイルである。両方のAVストリーム共に、これ以降で定義されるDVR MPEG-2トランスポートストリームファイルの構造でなければならない。

【0274】まず、DVR MPEG-2トランスポートストリームについて説明する。DVR MPEG-2トランスポートストリームの構造は、図82に示すようになっている。AVストリームファイルは、DVR MPEG2トランスポートストリームの構造を持つ。DVR MPEG2トランスポートストリームは、整数個のAligned unitから構成される。Alignedunitの大きさは、6144 バイト(2048*3 バイト)である。Aligned unitは、ソースパケットの第1バイト目から始まる。ソースパケットは、192バイト長である。1つのソースパケットは、TP_extra_headerとトランスポートパケットから成る。TP_extra_headerは、4バイト長であり、またトランスポートバケットは、188バイト長である。

【0275】1つのAligned unitは、32個のソースパケットから成る。DVR MPEG2トランスポートストリームの中の最後のAligned unitも、また32個のソースパケットから成る。よって、DVR MPEG2トランスポートストリームは、Aligned unitの境界で終端する。ディスクに記録される入力トランスポートストリームのトランスポートパケットの数が32の倍数でない時、ヌルパケット(PID=Ox1FFFのトランスポートパケット)を持ったソースパケットを最後のAligned unitに使用しなければならない。ファイルシステムは、DVR MPEG2トランスポートストリームに余分な情報を付加してはならない。

【0276】図83に、DVR MPEG-2トランスポートストリームのレコーダモデルを示す。図83に示したレコーダは、レコーディングプロセスを規定するための概念上のモデルである。DVR MPEG-2トランスポートストリームは、このモデルに従う。

40 【0277】MPEG-2トランスポートストリームの入力タイミングについて説明する。入力MPEG2トランスポートストリームは、フルトランスポートストリームまたはパーシャルトランスポートストリームである。入力されるMPEG2トランスポートストリームは、ISO/IEC13818-1またはISO/IEC13818-9に従っていなければならない。MPEG2トランスポートストリームのi番目のバイトは、T-STD(ISO/IEC 13818-1で規定されるTransport stream system target decoder)とソースパケッタイザーへ、時刻t(i)に同時に入力される。Rpkは、トランスポートパケットの入力レートの瞬時的な最大値である。

【0278】27MHz PLL52は、27MHzクロックの周 波数を発生する。27MHzクロックの周波数は、MPEG-2 トランスポートストリームのPCR (Program Clock Refer ence)の値にロックされる。arrival time clock counte r5 3 は、2 7 MHzの周波数のパルスをカウントするバイ ナリーカウンターである。Arrival_time_clock(i)は、 時刻t(i)におけるArrival time clock counterのカウン ト値である。

【0279】source packetizer54は、すべてのトラ ンスポートパケットにTP_extra_headerを付加し、ソー スパケットを作る。Arrival_time_stampは、トランスポ ートパケットの第1パイト目がT_STDとソースパケッタ イザーの両方へ到着する時刻を表す。Arrival_time_sta mp(k)は、次式で示されるようにArrival_time_clock(k) のサンプル値であり、ここで、kはトランスポートパケ ットの第1バイト目を示す。

arrival_time_stamp(k) = arrival_time_clock(k)% 2

【0280】2つの連続して入力されるトランスポート パケットの時間間隔が、23°/2700000秒(約40秒)以 20 上になる場合、その2つのトランスポートパケットのar rival_time_stampの差分は、23º/2 7 000000秒になるよ うにセットされるべきである。レコーダは、そのように なる場合に備えてある。

【0281】smoothing buffer55は、入力トランスポ ートストリームのビットレートをスムージングする。ス ムージングバッファは、オーバーフロウしてはならな い。Rmaxは、スムージングバッファが空でない時のスム ージングバッファからのソースパケットの出力ビットレ ートである。スムージングバッファが空である時、スム 30 ッファへの入力ビットレートはゼロである。 ージングバッファからの出力ビットレートはゼロであ る。

【0282】次に、DVR MPEG-2トランスポートストリー ムのレコーダモデルのパラメータについて説明する。Rm axという値は、AVストリームファイルに対応するClipIn fo()において定義されるTS_recording_rateによって与 えられる。この値は、次式により算出される。

Rmax = TS_recording_rate * 192/188 TS_recording_rateの値は、bytes/secondを単位とする 大きさである。

【0283】入力トランスポートストリームがSESFトラ ンスポートストリームの場合、Rpkは、AVストリームフ ァイルに対応するClipInfo()において定義されるTS_rec ording_rateに等しくなければならない。入力トランス ポートストリームがSESFトランスポートストリームでな い場合、この値はMPEG-2 transport streamのデスクリ プター,例えばmaximum_bitrate_descriptorやpartial_ transport_stream_descriptorなど、において定義され る値を参照しても良い。

【0284】smoothing buffer sizeは、入力トランス

ポートストリームがSESFトランスポートストリームの場 合、スムージングバッファの大きさはゼロである。入力 トランスポートストリームがSESFトランスポートストリ ームでない場合、スムージングバッファの大きさはMPEG -2 transport streamのデスクリプター、例えばsmoothi ng_buffer_descriptor、short_smoothing_buffer_descr iptor、partial_transport_stream_descriptorなどにお いて定義される値を参照しても良い。

【0285】記録機(レコーダ)および再生機(ブレー 10 ヤ)は、十分なサイズのバッファを用意しなければなら ない。デフォールトのバッファサイズは、1536 bytes である。

【0286】次に、DVR MPEG-2トランスポートストリー ムのプレーヤモデルについて説明する。図84は、DVR MPEG-2トランスポートストリームのプレーヤモデルを示 す図である。これは、再生プロセスを規定するための概 念上のモデルである。DVR MPEG-2トランスポートストリ ームは、このモデルに従う。

【0287】27MHz X-ta161は、27Mhzの周波数を 発生する。27MHz周波数の誤差範囲は、+/-30 ppm (2 7000000 +/- 810 Hz)でなければならない。arrival ti meclock counter62は、27MHzの周波数のパルスをカ ウントするバイナリーカウンターである。Arrival time _clock(i)は、時刻t(i)におけるArrival time clock co unterのカウント値である。

【0288】smoothing buffer64において、Rmaxは、 スムージングバッファがフルでない時のスムージングバ ッファへのソースパケットの入力ビットレートである。 スムージングバッファがフルである時、スムージングバ

【0289】MPEG-2トランスポートストリームの出力タ イミングを説明するに、現在のソースパケットのarriva l_time_stampがarrival_time_clock(i)のLSB 30ビッ トの値と等しい時、そのソースパケットのトランスポー トパケットは、スムージングバッファから引き抜かれ る。Rpkは、トランスポートパケットレートの瞬時的な 最大値である。スムージングバッファは、アンダーフロ ウしてはならない。

【0290】DVR MPEG-2トランスポートストリームのブ 40 レーヤモデルのパラメータについては、上述したDMR MP EG-2トランスポートストリームのレコーダモデルのパラ メータと同一である。

【0291】図85は、Source packetのシンタクスを 示す図である。transport_packet()は、ISO/IEC 13818-1で規定されるMPEG-2トランスポートパケットである。 図85に示したSource packetのシンタクス内のTP_Extr a_headerのシンタクスを図86に示す。図86に示した TP_Extra_headerのシンタクスについて説明するに、cop y_permission_indicatorは、トランスポートパケットの 50 ペイロードのコピー制限を表す整数である。コピー制限

は、copy free、no more copy、copy once、またはcopy prohibitedとすることができる。図87は、copy_perm ission_indicatorの値と、それらによって指定されるモ ードの関係を示す。

【0292】copy_permission_indicatorは、すべての トランスポートパケットに付加される。IEEE1394デジタ ルインターフェースを使用して入力トランスポートスト リームを記録する場合、copy_permission_indicatorの 値は、IEEE1394 isochronouspacket headerの中のEMI (Encryption Mode Indicator)の値に関連付けても良 い。IEEE1394デジタルインターフェースを使用しないで 入力トランスポートストリームを記録する場合、copy_p ermission_indicatorの値は、トランスポートパケット の中に埋め込まれたCCIの値に関連付けても良い。アナ ログ信号入力をセルフエンコードする場合、copy_permi ssion_indicatorの値は、アナログ信号のCOMS_Aの値に 関連付けても良い。

【0293】arrival_time_stampは、次式 arrival_time_stamp(k) = arrival_time_clock(k)% 2

において、arrival_time_stampによって指定される値を 持つ整数値である。

【0294】Clip AVストリームの定義をするに、Clip AVストリームは、上述したような定義がされるDVR MPEG -2トランスポートストリームの構造を持たねばならな い。arrival_time_clock(i)は、Clip AVストリームの中 で連続して増加しなければならない。Clip AVストリー ムの中にシステムタイムベース(STCベース)の不連続 点が存在したとしても、そのClip AVストリームのarriv al_time_clock(i)は、連続して増加しなければならな

【0295】Clip AVストリームの中の開始と終了の間 のarrival_time_clock(i)の差分の最大値は、26時間 でなければならない。この制限は、MPECZトランスポー トストリームの中にシステムタイムベース(STCベー ス) の不連続点が存在しない場合に、Clip AVストリー ムの中で同じ値のPTS(Presentation Time Stamp)が決し て現れないことを保証する。MPEC2システムズ規格は、P TSのラップアラウンド周期を233/90000秒(約26.5時間). と規定している。

【0296】Bridge-Clip AVストリームの定義をする に、Bridge-Clip AVストリームは、上述したような定義 がされるDVR MPEG-2トランスポートストリームの構造を 持たねばならない。Bridge-Clip AVストリームは、1つ のアライバルタイムベースの不連続点を含まなければな らない。アライバルタイムベースの不連続点の前後のト ランスポートストリームは、後述する符号化の制限に従 わなければならず、かつ後述するDVR-STDに従わなけれ ばならない。

ayItem間のビデオとオーディオのシームレス接続をサポ ートする。PlayIten間をシームレス接続にすることは、 プレーヤ/レコーダに"データの連続供給"と"シームレ スな復号処理"を保証する。"データの連続供給"とは、 ファイルシステムが、デコーダにバッファのアンダーフ ロウを起こさせる事のないように必要なビットレートで データを供給する事を保証できることである。データの リアルタイム性を保証して、データをディスクから読み 出すことができるように、データが十分な大きさの連続 10 したブロック単位でストアされるようにする。

【0298】"シームレスな復号処理"とは、プレーヤ が、デコーダの再生出力にポーズやギャップを起こさせ る事なく、ディスクに記録されたオーディオビデオデー タを表示できることである。

【0299】シームレス接続されているPlayItemが参照 するAVストリームについて説明する。先行するPlayItem と現在のPlayItemの接続が、シームレス表示できるよう に保証されているかどうかは、現在のPlayItemにおいて 定義されているconnection_conditionフィールドから判 20 断することができる。PlayItem間のシームレス接続は、 Bridge-Clipを使用する方法と使用しない方法がある。 【0300】図88は、Bridge-Clipを使用する場合の 先行するPlayItemと現在のPlayItemの関係を示してい る。図88においては、プレーヤが読み出すストリーム データが、影をつけて示されている。図88に示したTS 1は、Clip1 (Clip AVストリーム) の影を付けられたス トリームデータとBridge_ClipのRSPN arrival time dis continuityより前の影を付けられたストリームデータか ら成る。

【0301】TS1のClip1の影を付けられたストリームデ 30 ータは、先行するPlayItemのIN_time(図88においてI N_time1で図示されている) に対応するプレゼンテーシ ョンユニットを復号する為に必要なストリームのアドレ スから、RSPN_exit_from_previous_Clipで参照されるソ ースパケットまでのストリームデータである。TS1に含 まれるBridge-ClipのRSPN_arrival_time_discontinuity より前の影を付けられたストリームデータは、Bridge-C lipの最初のソースパケットから、RSPN_arrival_time_d iscontinuityで参照されるソースパケットの直前のソー スパケットまでのストリームデータである。

【0302】また、図88におけるTS2は、Clip2 (Clip AVストリーム) の影を付けられたストリームデータとB ridge-ClipのRSPN_arrival_time_discontinuity以後の 影を付けられたストリームデータから成る。TS2に含ま れるBridge-ClipのRSPN_arrival_time_discontinuity以 後の影を付けられたストリームデータは、RSPN_arrival _time_discontinuityで参照されるソースパケットか ら、Bridge-Clipの最後のソースパケットまでのストリ ームデータである。TS2のClip2の影を付けられたストリ 【0297】本実施の形態においては、編集におけるP1 50 ームデータは、RSPN_enter_to_current_Clipで参照され

50

56

るソースパケットから、現在のPlayItemのOUT_time(図88においてOUT_time2で図示されている)に対応するプレゼンテーションユニットを復号する為に必要なストリームのアドレスまでのストリームデータである。

【0303】図89は、Bridge-Clipを使用しない場合の先行するPlayItemと現在のPlayItemの関係を示している。この場合、ブレーヤが読み出すストリームデータは、影をつけて示されている。図89におけるTS1は、Clip1 (Clip AVストリーム)の影を付けられたストリームデータから成る。TS1のClip1の影を付けられたストリー 10ムデータは、先行するPlayItemのIN_time(図89においてIN_time1で図示されている)に対応するプレゼンテーションユニットを復号する為に必要なストリームのアドレスから始まり、Clip1の最後のソースパケットまでのデータである。また、図89におけるTS2は、Clip2 (Clip AVストリーム)の影を付けられたストリームデータから成る。

【0304】TS2のClip2の影を付けられたストリームデータは、Clip2の最初のソースパケットから始まり、現在のPlayItemのOUT_time(図89においてOUT_time2で図示されている)に対応するプレゼンテーションユニットを復号する為に必要なストリームのアドレスまでのストリームデータである。

【0305】図88と図89において、TS1とT2は、ソースパケットの連続したストリームである。次に、TS1とTS2のストリーム規定と、それらの間の接続条件について考える。まず、シームレス接続のための符号化制限について考える。トランスポートストリームの符号化構造の制限として、まず、TS1とTS2の中に含まれるプログラムの数は、1でなければならない。TS1とTS2の中に含まれるビデオストリームの数は、1でなければならない。TS1とTS2の中に含まれるオーディオストリームの数は、2以下でなければならない。TS1とTS2の中に含まれるオーディオストリームの数は、等しくなければならない。TS1および/またはTS2の中に、上記以外のエレメンタリーストリームまたはプライベートストリームが含まれていても良い。

【0306】ビデオビットストリームの制限について説明する。図90は、ピクチャの表示順序で示すシームレス接続の例を示す図である。接続点においてビデオストリームをシームレスに表示できるためには、OUT_time1 (Clip1のOUT_time) の後とIN_time2 (Clip2のIN_time) の前に表示される不必要なピクチャは、接続点付近のClipの部分的なストリームを再エンコードするプロセスにより、除去されなければならない。

【0307】図90に示したような場合において、Brid geSequenceを使用してシームレス接続を実現する例を、図91に示す。RSPN_arrival_time_discontinuityより前のBridge-Clipのビデオストリームは、図90のClip1のOUT_time1に対応するピクチャまでの符号化ビデオス

トリームから成る。そして、そのビデオストリームは先行するClip1のビデオストリームに接続され、1つの連続でMPEG2 規格に従ったエレメンタリーストリームとなるように再エンコードされている。

【0308】同様にして、RSPN_arrival_time_discontinuity以後のBridge_Clipのビデオストリームは、図90のClip2のIN_time2に対応するピクチャ以後の符号化ビデオストリームから成る。そして、そのビデオストリームは、正しくデコード開始する事ができて、これに続くClip2のビデオストリームに接続され、1つの連続でMPE Q規格に従ったエレメンタリーストリームとなるように再エンコードされている。Bridge_Clipを作るためには、一般に、数枚のピクチャは再エンコードしなければならず、それ以外のピクチャはオリジナルのClipからコピーすることができる。

【0309】図90に示した例の場合にBridgeSequence を使用しないでシームレス接続を実現する例を図92に示す。Clip1のビデオストリームは、図90のOUT_time1に対応するピクチャまでの符号化ビデオストリームから 成り、それは、1つの連続でMPEG2規格に従ったエレメンタリーストリームとなるように再エンコードされている。同様にして、Clip2のビデオストリームは、図90のClip2のIN_time2に対応するピクチャ以後の符号化ビデオストリームから成り、それは、1つの連続でMPEG2規格に従ったエレメンタリーストリームとなるように再エンコードされている。

【0310】ビデオストリームの符号化制限について説明するに、まず、TS1とTS2のビデオストリームのフレームレートは、等しくなければならない。TS1のビデオストリームは、sequence_end_codeで終端しなければならない。TS2のビデオストリームは、Sequence Header、COP Header、そしてI-ピクチャで開始しなければならない。TS2のビデオストリームは、クローズドCOPで開始しなければならない。

【0311】ビットストリームの中で定義されるビデオプレゼンテーションユニット(フレームまたはフィールド)は、接続点を挟んで連続でなければならない。接続点において、フレームまたはフィールドのギャップがあってはならない。接続点において、トップ?ボトムのフィールドシーケンスは連続でなければならない。3-2プルダウンを使用するエンコードの場合は、"top_field_first" および "repeat_first_field"フラグを書き換える必要があるかもしれない、またはフィールドギャップの発生を防ぐために局所的に再エンコードするようにしても良い。

【0312】オーディオビットストリームの符号化制限 について説明するに、TS1とTS2のオーディオのサンプリ ング周波数は、同じでなければならない。TS1とTS2のオ ーディオの符号化方法(例、MPEG1レイヤ2, AC-3, SESF LPCM, AAC) は、同じでなければならない。

【0313】次に、MPEG-2トランスポートストリームの 符号化制限について説明するに、TS1のオーディオスト リームの最後のオーディオフレームは、TS1の最後の表 示ピクチャの表示終了時に等しい表示時刻を持つオーデ ィオサンプルを含んでいなければならない。TS2のオー ディオストリームの最初のオーディオフレームは、TS2 の最初の表示ピクチャの表示開始時に等しい表示時刻を 持つオーディオサンプルを含んでいなければならない。 【0314】接続点において、オーディオプレゼンテー ションユニットのシーケンスにギャップがあってはなら 10 ない。図93に示すように、2オーディオフレーム区間 未満のオーディオプレゼンテーションユニットの長さで 定義されるオーバーラップがあっても良い。TS2のエレ メンタリーストリームを伝送する最初のパケットは、ビ デオパケットでなければならない。接続点におけるトラ ンスポートストリームは、後述するDVR-STDに従わなく てはならない。

【0315】ClipもよびBridge-Clipの制限について説 明するに、TS1とTS2は、それぞれの中にアライバルタイ ムベースの不連続点を含んではならない。

【0316】以下の制限は、Bridge-Clipを使用する場 合にのみ適用される。TS1の最後のソースパケットとTS2 の最初のソースパケットの接続点においてのみ、Bridge -ClipAVストリームは、ただ1つのアライバルタイムベ ースの不連続点を持つ。ClipInfo()において定義される RSPN_arrival_time_discontinuityが、その不連続点の アドレスを示し、それはTS2の最初のソースパケットを 参照するアドレスを示さなければならない。

【0317】BridgeSequenceInfo()において定義される RSPN_exit_from_previous_Clipによって参照されるソー 30 スパケットは、Clip1の中のどのソースパケットでも良 い。それは、Aligned unitの境界である必要はない。Br idgeSequenceInfo()において定義されるRSPN_enter_to_ current_Clipによって参照されるソースパケットは、Cl ip2の中のどのソースパケットでも良い。それは、Align ed unitの境界である必要はない。

【0318】PlayItemの制限について説明するに、先行 するPlayItemのOUT_time (図88、図89において示さ れるOUT_time1) は、TS1の最後のビデオプレゼンテーシ ョンユニットの表示終了時刻を示さなければならない。 現在のPlayItemのIN_time (F図88、図89において示 されるIN_time2) は、TS2の最初のビデオプレゼンテー ションユニットの表示開始時刻を示さなければならな 44

【0319】Bridge_Clipを使用する場合のデータアロ ケーションの制限について、図94を参照して説明する に、シームレス接続は、ファイルシステムによってデー タの連続供給が保証されるように作られなければならな い。これは、Clip1(Clip AVストリームファイル)とCl ip2 (Clip AVストリームファイル) に接続されるBridge 50 てのみ存在する。TBsysは、復号中のプログラムのシス

-Clip AVストリームを、データアロケーション規定を満 たすように配置することによって行われなければならな Ç4.

【0320】RSPN_exit_from_previous_Clip以前のClip 1 (Clip AVストリームファイル) のストリーム部分が、 ハーフフラグメント以上の連続領域に配置されているよ うに、RSPN_exit_from_previous_Clipが選択されなけれ ばならない。Bridge-Clip AVストリームのデータ長は、 ハーフフラグメント以上の連続領域に配置されるよう に、選択されなければならない。RSPN_enter_to_curren t_Clip以後のClip2 (Clip AVストリームファイル)のス トリーム部分が、ハーフフラグメント以上の連続領域に 配置されているように、RSPN_enter_to_current_Clipが 選択されなければならない。

【0321】Bridge-Clipを使用しないでシームレス接 続する場合のデータアロケーションの制限について、図 95を参照して説明するに、シームレス接続は、ファイ ルシステムによってデータの連続供給が保証されるよう に作られなければならない。これは、Clip1 (Clip AVス 20 トリームファイル)の最後の部分とClip2 (Clip AVスト リームファイル)の最初の部分を、データアロケーショ ン規定を満たすように配置することによって行われなけ ればならない。

【0322】Clip1 (Clip AVストリームファイル) の最 後のストリーム部分が、ハーフフラグメント以上の連続 領域に配置されていなければならない。Clip2 (Clip AV ストリームファイル)の最初のストリーム部分が、ハー フフラグメント以上の連続領域に配置されていなければ ならない。

【0323】次に、DVR-STDについて説明する。DVR-STD は、DVR MPEG2トランスポートストリームの生成および 検証の際におけるデコード処理をモデル化するための概 念モデルである。また、DVR-STDは、上述したシームレ ス接続された2つのPlayItemによって参照されるAVスト リームの生成および検証の際におけるデコード処理をモ デル化するための概念モデルでもある。

【0324】DMR-STDモデルを図96に示す。図96に 示したモデルには、DVR MPEG-2トランスポートストリー ムプレーヤモデルが構成要素として含まれている。n、T Bn, MBn, EBn, TBsys, Bsys, Rxn, Rbxn, Rxsys, Dn, Ds ys、OnおよびPn(k)の表記方法は、ISO/IEC13818-1のT-S TDに定義されているものと同じである。すなわち、次の 通りである。nは、エレメンタリーストリームのインデ クス番号である。TBnは、エレメンタリーストリームnの トランスポートバッファでる。

【0325】MBnは、エレメンタリーストリームnの多重 バッファである。ピデオストリームについてのみ存在す る。EBnは、エレメンタリーストリームnのエレメンタリ ーストリームバッファである。ビデオストリームについ

テム情報のための入力バッファである。Bsysは、復号中 のプログラムのシステム情報のためのシステムターゲッ トデコーダ内のメインバッファである。Rxnは、データ がTBnから取り除かれる伝送レートである。Rbxnは、PES パケットペイロードがMBnから取り除かれる伝送レート である。ビデオストリームについてのみ存在する。

【0326】Rxsysは、データがTBsysから取り除かれる 伝送レートである。Dnは、エレメンタリーストリームn のデコーダである。Dsysは、復号中のプログラムのシス ームnのre-ordering bufferである。Pn(k)は、エレメン タリーストリームnのk番目のプレゼンテーションユニッ トである。

【0327】DVR-STDのデコーディングプロセスについ て説明する。単一のDVR MPEG-2トランスポートストリー ムを再生している間は、トランスポートパケットをTB1、 TBnまたはTBsysのバッファへ入力するタイミングは、 ソースパケットのarrival_time_stampにより決定され る。TB1, MB1, EB1, TBn, Bn, TBsysおよびBsysのバッ ファリング動作の規定は、ISO/IEC 13818-1に規定され ているT-STDと同じである。復号動作と表示動作の規定 もまた、ISO/IEC 13818-1に規定されているT-STDと同じ である。

【0328】シームレス接続されたPlayItemを再生して いる間のデコーディングプロセスについて説明する。と こでは、シームレス接続されたPlayItemによって参照さ れる2つのAVストリームの再生について説明をすること にし、以後の説明では、上述した(例えば、図88に示 した)TS1とTS2の再生について説明する。TS1は、先行 するストリームであり、TS2は、現在のストリームであ

【0329】図97は、あるAVストリーム(TS1)から それにシームレスに接続された次のAVストリーム(TS 2) へと移る時のトランスポートパケットの入力,復 号、表示のタイミングチャートを示す。所定のAVストリ ーム (TS1) からそれにシームレスに接続された次のAV ストリーム (TS2) へと移る間には、TS2のアライバルタ イムベースの時間軸(図97においてATC2で示される) は、TS1のアライバルタイムベースの時間軸(図97に おいてATC1で示される)と同じでない。

【0330】また、TS2のシステムタイムベースの時間 軸(図97においてSTC2で示される)は、TS1のシステ ムタイムベースの時間軸(図97においてSTCIで示され る)と同じでない。ビデオの表示は、シームレスに連続 していることが要求される。オーディオのプレゼンテー ションユニットの表示時間にはオーバーラップがあって も良い。

【0331】DVR-STD への入力タイミングについて説明 する。時刻T1までの時間、すなわち、TS1の最後のビデ オパケットがDVR-STDのTB1に入力終了するまでは、DVR- 50 deltaは、次式により算出される。

STDのTB1、TBn またはTBsysのパッファへの入力タイミ ングは、TS1のソースパケットのarrival_time_stampに よって決定される。

【0332】TS1の残りのパケットは、TS_recording_ra te(TS1)のビットレートでDVR-STDのTBnまたはTBsysのバ ッファへ入力されなければならない。ここで、TS_recor ding_rate(TS1)は、Clip1に対応するClipInfo()におい て定義されるTS_recording_rateの値である。TS1の最後 のバイトがバッファへ入力する時刻は、時刻T2であ テム情報に関するデコーダである。Onは、ビデオストリ 10 る。従って、時刻T¸からT¸までの区間では、ソースパ ケットのarrival_time_stampは無視される。

> 【0333】MiをTS1の最後のビデオパケットに続くTS1 のトランスポートパケットのバイト数とすると、時刻T 」乃至T、までの時間DT1は、NLバイトがTS_recording_ra te(TS1)のビットレートで入力終了するために必要な時 間であり、次式により算出される。

DT1= $T_1 - T_1 = NL / TS_recording_rate$ (TS1)時刻T1乃至T2までの間は、RXnとRXsysの値は共 に、TS_recording_rate(TS1)の値に変化する。このルー 20 ル以外のバッファリング動作は、T-STDと同じである。

【0334】T,の時刻において、arrival time clock counterは、TS2の最初のソースパケットのarrival_time _stampの値にリセットされる。DVR-STDのTB1, TBn また はTBsysのバッファへの入力タイミングは、TS2のソース パケットのarrival_time_stampによって決定される。RX nとRXsysは共に、T-STDにおいて定義されている値に変 化する。

【0335】付加的なオーディオバッファリングおよび システムデータバッファリングについて説明するに、オ 30 ーディオデコーダとシステムデコーダは、時刻T1から TDまでの区間の入力データを処理することができるよう に、T-STDで定義されるバッファ量に加えて付加的なバ ッファ量(約1秒分のデータ量)が必要である。

【0336】ビデオのプレゼンテーションタイミングに ついて説明するに、ビデオプレゼンテーションユニット の表示は、接続点を通して、ギャップなしに連続でなけ ればならない。ここで、STC1は、TS1のシステムタイム ベースの時間軸(図97ではSTC1と図示されている)と し、STC2は、TS2のシステムタイムベースの時間軸(図 40 97ではSTC2と図示されている。正確には、STC2は、TS 2の最初のPCRがT-STDに入力した時刻から開始する。)

【0337】STC1とSTQの間のオフセットは、次のよう に決定される。PTS1。。。は、TS1の最後のビデオプレゼン テーションユニットに対応するSTC1上のPTSであり、PTS ²startは、TS2の最初のビデオプレゼンテーションユニ ットに対応するSTC2上のPTSであり、T。。は、TS1の最後 のビデオプレゼンテーションユニットの表示期間とする と、2つのシステムタイムベースの間のオフセットSTC。

STC_delta = PTS1 and + Tpp - PTS1 start

【0338】オーディオのプレゼンテーションのタイミ ングについて説明するに、接続点において、オーディオ プレゼンテーションユニットの表示タイミングのオーバ ーラップがあっても良く、それは0乃至2オーディオフ レーム未満である(図97に図示されている"audio ove rlap"を参照)。どちらのオーディオサンプルを選択す るかということと、オーディオプレゼンテーションユニ ットの表示を接続点の後の補正されたタイムベースに再 同期することは、プレーヤ側により設定されることであ 10 る。

【0339】DVR-STDのシステムタイムクロックについ て説明するに、時刻T5において、TS1の最後のオーディ オプレゼンテーションユニットが表示される。システム タイムクロックは、時刻TzからTsの間にオーバーラッ プしていても良い。この区間では、DVR-STDは、システ ムタイムクロックを古いタイムベースの値(STC1)と新 しいタイムベースの値(STC2)の間で切り替える。STC2 の値は、次式により算出される。

STC2 = STC1 - STC_delta

【0340】バッファリングの連続性について説明す る。STC11video_endは、TS1の最後のビデオパケットの 最後のバイトがDVR-STDのTB1へ到着する時のシステムタ イムベースSTC1上のSTCの値である。STC22video_start は、TS2の最初のビデオパケットの最初のバイトがDMR-S TDのTB1へ到着する時のシステムタイムベースSTC2上のS TCの値である。STC21video_endは、STC11video_end の 値をシステムタイムベースSTC2上の値に換算した値であ る。STC21video_endは、次式により算出される。

STC2¹ video_end = STC1¹ video_end - STC_delta 【0341】DVR-STDに従うために、次の2つの条件を 満たす事が要求される。まず、TS2の最初のビデオバケ ットのTB1への到着タイミングは、次に示す不等式を満 たさなければならない。そして、次に示す不等式を満た さなければならない。

 $STC2^{2}_{video_start} > STC2^{3}_{video_end} + \Delta T1$ この不等式が満たされるように、Clip1および、また は、Clip2の部分的なストリームを再エンコードおよ び、または、再多重化する必要がある場合は、その必要 に応じて行われる。

【0342】次に、STC1とSTC2を同じ時間軸上に換算し たシステムタイムベースの時間軸上において、TS1から のビデオパケットの入力とそれに続くTS2からのビデオ パケットの入力は、ビデオバッファをオーバーフロウお よびアンダーフローさせてはならない。

【0343】このようなシンタクス、データ構造、規則 に基づく事により、記録媒体に記録されているデータの 内容、再生情報などを適切に管理することができ、もっ て、ユーザが再生時に適切に記録媒体に記録されている できるようにすることができる。

【0344】なお、本実施の形態は、多重化ストリーム としてMPEG2トランスポートストリームを例にして説明 しているが、これに限らず、MPEG2プログラムストリー ムや米国のDirecTVサービス(商標)で使用されているD SSトランスポートストリームについても適用することが 可能である。

62

【0345】次に、図98は、PlayListファイルの別の 例を示す。図98と図23のシンタクスの大きな違い は、UIAppInfoPlavList()をストアしている場所であ る。図98の例では、UIAppInfoPlayList()がPlayLis t()の中から外に出されているので、UIAppInfoPlayList ()の将来の情報拡張が比較的容易に行えるようになる。 【0346】version_numberは、このサムネールヘッダ 情報ファイルのバージョンナンバーを示す4個の数字で

【0347】PlayList_start_addressは、PlayListファ イルの先頭のバイトからの相対バイト数を単位として、 PlavList()の先頭アドレスを示す。相対バイト数はゼロ 20 からカウントされる。

【0348】PlayListMark_start_addressは、PlayList ファイルの先頭のバイトからの相対バイト数を単位とし て、PlayListMark()の先頭アドレスを示す。相対バイト 数はゼロからカウントされる。

【0349】MakersPrivateData_start_addressは、Pla vListファイルの先頭のバイトからの相対バイト数を単 位として、MakersPrivateData()の先頭アドレスを示 す。相対バイト数はゼロからカウントされる。

【0350】図99は、図98のPlayListファイルの中 30 のUIAppInfoPlayListのシンタクスを示す。PlayList_se rvice_typeは、PlayListファイルのタイプを示す。その 一例は、図26に示されている。また、PlayList_servi ce_typeは、ディジタルTV放送のプログラムが示すサ ービスタイプと同じ意味を持たせても良い。例えば、日 本のディジタルBS放送の場合、サービスタイプは、テレ ビサービス、音声サービス、およびデータ放送サービス の3種類を持つ。PlayListが使用するClip AVストリー ムが含むプログラムのサービスタイプを代表する値をPI ayList_service_typeにセットする。

40 【0351】PlayList_character_setは、channel_nam e, PlayList_nameおよびPlayList_detailフィールドに 符号化されているキャラクター文字の符号化方法を示 す。また、これはPlayListMarkの中のmark_nameフィー ルドに符号化されているキャラクター文字の符号化方法 を示す。

【0352】channel_numberは、そのPlayListが記録さ れる時、ユーザによって選択された放送チャンネル番号 またはサービス番号を示す。複数のPlayListが1つのPl ayListにコンバインされた場合は、このフィールドはそ データの内容を確認したり、所望のデータを簡便に再生 50 のPlayListの代表値を示す。このフィールドがOxFFFFに

セットされている場合、とのフィールドは何も意味を持 たない。

【0353】channel_name_lengthは、channel_nameフィールドの中に示されるチャンネル名のバイト長を示す。このフィールドは、20以下の値である。

【0354】channel_nameは、そのPlayListが記録される時、ユーザによって選択された放送チャンネルまたはサービスの名前を示す。このフィールドの中の左からchannel_name_lengthによって示される数のバイト数が有効なキャラクター文字であり、前記名前を示す。このフェールドの中で、それら有効なキャラクター文字に続く残りのバイトは、どんな値がセットされていても良い。複数のPlayListが1つのPlayListにコンバインされた場合は、このフィールドはそのPlayListを代表する名前を示す。

【0355】PlayList_name_lengthは、PlayList_name フィールドの中に示されるPlayList名のバイト長を示 す。

【0356】PlayList_nameは、PlayListの名前を示す。このフィールドの中の左からPlayList_name_length 20 によって示される数のバイト数が有効なキャラクター文字であり、前記名前を示す。このフィールドの中で、それら有効なキャラクター文字に続く残りのバイトは、どんな値がセットされていても良い。

【0357】PlayList_detail_lengthは、PlayList_dat ailフィールドの中に示されるPlayListの詳細情報のバイト長を示す。このフィールドは、1200以下の値である。

【0358】PlayList_detailは、PlayListの詳細情報を説明するテキストを示す。このフィールドの中の左か 30 らPlayList_detail_lengthによって示される数のバイト数が有効なキャラクター文字であり、前記テキストを示す。このフィールドの中で、それら有効なキャラクター文字に続く残りのバイトは、どんな値がセットされていても良い。

【0359】これ以外のシンタクスフィールドの意味は、図27に示す同名のフィールドと同じである。

【0360】図100は、図98のPlayListファイルの中のPlayList()のシンタクスを示す。図25の例と比べると、UIAppInfoPlayList()がなくなった点が違うだけで、これ以外は基本的に同じである。

【0361】図101は、SubPlayItemのシンタクスの 別例を示す。図40の例と比べると、STC_sequence_id が追加された点が大きな違いである。

【 0 3 6 2 】 STC_sequence_idは、Clip_Information_file_nameに対応するAVストリームファイル上の再生区間を特定するためのSubPath_IN_timeと SubPath_OUT_time が参照するところのSTCのSTC_sequence_idを示す。SubPath_IN_timeと SubPath_OUT_timeは、STC_sequence_idによって指定される同じSTC連続区間上の時間を示す。

【0363】SubPlayItemがSTC_sequence_idを追加する ことにより、SubPlayItemが参照するAVストリームファ イルがSTC不連続点を持つことが許されるようになる。 【0364】これ以外のシンタクスフィールドの意味 は、図40に示す同名のフィールドと同じである。

【0365】図102は、Real PlayListの作成方法を 説明するフローチャートを示す。図1の記録再生装置の ブロック図を参照しながら説明する。

【0366】ステップS11で、制御部23はClip AV ストリームを記録する。

【0367】ステップS12で、制御部23はClip AVストリームのEP_mapを作成可能かどうかを調べる。ステップS12で、Yesの場合はステップS13へ進み、EP_mapを作成する。ステップS12で、Noの場合はステップS14へ進み、TU_mapを作成する。

【0368】その後、ステップS15で、制御部23は PlayListのCPI_typeをセットする。

【0369】ステップS16で、制御部23は上記Clipの全ての再生可能範囲をカバーするPlayItemからなるPlayList()を作成する。CPI_typeがEP_mapタイプの場合は、時間情報をPTSベースでセットする、この時、Clipの中にSTC不連続点があり、PlayList()が2つ以上のPlayItemからなる場合は、PlayItem間のconnection_conditionもまた決定する。CPI_typeがTU_mapタイプの場合は、時間情報をアライバルタイムベースでセットする。【0370】ステップS17で、制御部23はUIAppInfoPlayList()を作成する。

【0371】ステップS18で、制御部23はPlayList Markを作成する。

0 【0372】ステップS19で、制御部23はMakersPrivateDataを作成する。

【0373】ステップS20で、制御部23はReal Pla yListファイルを記録する。

【0374】とのようにして、新規にClip AVストリームを記録する毎に、1つのReal PlayListファイルが作られる。

【0375】図103は、Virtual PlayListの作成方法を説明するフローチャートである。

【0376】ステップS31で、ユーザインターフェースを通して、ディスクに記録されている1つのReal Pla vListが指定される。そして、そのReal PlayListの再生範囲の中から、ユーザインターフェースを通して、IN点とOUT点で示される再生区間が指定される。CPI_typeがEP_mapタイプの場合は、再生区間をPTSベースでセットし、CPI_typeがTU_mapタイプの場合は、再生区間をアライバルタイムベースでセットする。

ザによる再生範囲の指定操作がすべて終了した場合は、 ステップS33へ進む。

【0378】ステップS33で、連続して再生される2つの再生区間の間の接続状態(connection_condition)を、ユーザがユーザインタフェースを通して決定するか、または制御部23が決定する。

【0379】ステップS34で、CPI_typeがEP_mapタイ - プの場合、ユーザインタフェースを通して、ユーザがサ ブバス(アフレコ用オーディオ)情報を指定する。ユーザ がサブバスを作成しない場合はこのステップはない。

【0380】ステップS35で、制御部23はユーザが 指定した再生範囲情報、およびconnection_conditionに 基づいて、PlayList()を作成する。

【0381】ステップS36で、制御部23はUIAppInfoPlayList()を作成する。

【 0 3 8 2 】ステップ S 3 7 で、制御部 2 3 は PlayList Markを作成する。

【0383】ステップS38で、制御部23はMakersPrivateDataを作成する。

【0384】ステップS39で、制御部23はVirtual PlayListファイルを記録する。

【0385】とのようにして、ディスクに記録されているReal PlayListの再生範囲の中から、ユーザが見たい再生区間を選択してその再生区間をグループ化したもの毎に、1つのVirtual PlayListファイルが作られる。

【 0 3 8 6 】 図 1 0 4 は PlayListの 再生方法を説明する フローチャートである。

【0387】ステップS51で、制御部23はInfo.dv r, Clip Information file, PlayList fileおよびサムネールファイルの情報を取得し、ディスクに記録されて 30いるPlayListの一覧を示すGUI画面を作成し、ユーザインタフェースを通して、GUIに表示する。

【0388】ステップS52で、制御部23はそれぞれのPlayListのUIAppInfoPlayList()に基づいて、PlayListを説明する情報をQUI画面に提示する。

【0389】ステップS53で、ユーザインタフェース を通して、QUI画面上からユーザが1つのPlayListの再 生を指示する。

【0390】ステップS54で、制御部23は、CPI_ty peがEP_mapタイプの場合、現在のPlayItemのSTC-sequen 40 c-idとIN_timeのPTSから、IN_timeより時間的に前で最も近いエントリーポイントのあるソースパケット番号を取得する。または制御部23は、CPI_typeがTU_mapタイプの場合、現在のPlayItemのIN_timeから、IN_timeより時間的に前で最も近いタイムユニットの開始するソースパケット番号を取得する。

【0391】ステップS55で、制御部23は上記ステップで得られたソースバケット番号からAVストリームのデータを読み出し、AVデコーダ27へ供給する。

【0392】ステップS56で、現在のPlayItemの時間 50

66

的に前のPlayItemがあった場合は、制御部23は、前のPlayItemと現在のPlayItemとの表示の接続処理をconnection conditionに従って行う。

【0393】ステップS57で、制御部23は、CPI_ty peがEP_mapタイプの場合、AVデコーダ27は、IN_time のPTSのピクチャから表示を開始するように指示する。または、制御部23は、CPI_typeがEP_mapタイプの場合、AVデコーダ27は、IN_time以後のストリームのピクチャから表示を開始するように指示する。

10 【0394】ステップS58で、制御部23は、AVデコーダ27にAVストリームのデコードを続けるように指示する。

【0395】ステップS59で、制御部23は、CPI_ty peがEP_mapタイプの場合、現在表示の画像が、OUT_time のPTSの画像かを調べる。または、制御部23は、CPI_t ypeがTU_mapタイプの場合、現在デコードしているストリームがOUT_timeを過ぎたかを調べる。

【0396】ステップS59で、Noの場合は、ステップ S60へ進む。ステップS60で現在の画像を表示し 20 て、ステップS58へ戻る。Yesの場合は、ステップS 61へ進む。

【0397】ステップS61で、制御部23は、現在のPlayItemがPlayListの中で最後のPlayItemかを調べる。Noの場合はステップS54へ戻る。Yesの場合は、PlayListの再生を終了する。

【0398】図105は、PlayListのSubバスの再生方法を説明するフローチャートである。図105のPlayListのサブバスの再生方法は、PlayListのCPI_typeがEP_m apの場合のみに用いられる。とのフローチャートの処理は、図104のPlayListの再生におけるステップS54以後の処理と共に、同時に行われる。また、AVデコーダ27は同時に2本のオーディオストリームのデコードが可能であることを前提とする。

【0399】ステップS71で、制御部23は、SubPla yItemの情報を取得する。

【0400】ステップS72で、制御部23は、SubPat h_IN_timeよりも時間的に前で最も近いエントリーポイントのあるソースパケット番号を取得する。

【0401】ステップS73で、制御部23は、上記エントリーポイントのあるソースパケット番号からサブパスのAVストリームのデータを読み出し、AVデコーダ27へ供給する。

【0402】ステップS74で、制御部23は、Mainバスの再生が、sync_PlayItem_idとsync_start_PTS_of_PlayItemで示されるピクチャになったら、サブバスのオーディオを表示を開始するようにAVデコーダ27に指示する

【0403】ステップS75でAVデコーダ27は、サブ パスのAVストリームのデコードを続ける。

【0404】ステップS76で制御部23は、現在表示

するサブパスのPTSが、SubPath_OUT_timeかを調べる。Noの場合は、ステップS77へ進む。ステップS77でサブパスの表示を続けて、ステップS75へ戻る。

【0405】ステップS76で現在表示するサブバスの PTSが、SubPath_OUT_timeの場合はサブバスの表示を終 了する。

【0406】図104および図105のようにして、ユーザにより再生指示された1つのPlayListファイルのメインパスおよびサブパスの再生が行なわれる。

【0407】図106は、PlayListMarkの作成方法を説 10 明するフローチャートを示す。図1の記録再生装置のブロック図を参照しながら説明する。

【0408】ステップS91で、制御部23はInfo.dvr, Clip Information file, PlayList fileなよびThumb nail fileの情報を取得し、ディスクに記録されているPlayListの一覧を示すGUI画面を作成し、ユーザインタフェースを通して、GUIに表示する。

【0409】ステップS92で、ユーザインタフェース を通して、ユーザが1つのPlayListの再生を制御部23 に指示する。

【0410】ステップS93で、制御部23は、上記指示されたPlayListの再生を開始させる(図104参照)。

【0411】ステップS94で、ユーザインタフェースを通して、ユーザがお気に入りのシーンのところにマークのセットを制御部23に指示する。

【0413】ステップS96で、制御部23はマークの情報をPlayListMark()にストアする。

【 0 4 1 4 】 ステップ S 9 7 で、制御部 2 3 は、PlayListファイルを記録媒体 1 0 0 に記録する。

【0415】図107は、PlayListMarkを使用した頭出 し再生方法を説明するフローチャートである。図1の記 録再生装置のブロック図を参照しながら説明する。

【0416】ステップS111で、制御部23はInfo.d vr, Clip Information file, PlayList fileおよびThum 40 bnail fileの情報を取得し、ディスク(記録媒体100)に記録されているPlayListの一覧を示すQUI画面を作成し、ユーザインタフェースを通して、QUIに表示する。

【0417】ステップS112で、制御部23は、ユーザインタフェースを通して、ユーザが1つのPlayListの再生を指示する。

【0418】ステップS113で、制御部23はPlayListMarkで参照されるピクチャから生成したサムネールのリストを、ユーザインタフェースを通して、QJIに表示

する。

【0419】ステップS114で、ユーザインタフェースを通して、制御部23にユーザが再生開始点のマーク点を指定する。

68

【0420】ステップS115で、制御部23は、CPI_typeはEP_mapタイプの場合は、マークのPTSとそれが属するPlayItem_idを取得する。または制御部23は、CPI_typeはTU_mapタイプの場合は、マークのATS(Arrival Time Stamp)を取得する。

【0421】ステップS116で、制御部23は、CPI_ typeはEP_mapタイプの場合、PlayItem_idが指すPlayIte mが参照するAVストリームのSTC-sequence_idを取得する。

【0422】ステップS117で、制御部23は、CPI_typeはEP_mapタイプの場合は、上記STC-sequence-idとマークのPTSに基づいて、AVストリームをデコーダへ入力する。具体的には、このSTC-sequence-idとマーク点のPTSを用いて、図104のステップS54、ステップS55と同様の処理を行う。または制御部23は、CPI_typeはTU_mapタイプの場合は、マークのATSに基づいて、AVストリームをデコーダへ入力する。具体的には、このATSを用いて図104のステップS55と同様の処理を行う。

【0423】ステップS118で、制御部23は、CPI_typeがEP_mapタイプの場合は、マーク点のPTSのピクチャから表示を開始させる。または制御部23は、CPI_typeがTU_mapタイプの場合は、マーク点のATS以後のピクチャから表示を開始させる。

【0424】とのように、図106のようにして、ユーザがPlayListからお気に入りのシーンの開始点等を選び、それをレコーダ(記録再生装置1の制御部23)はPlayListMarkに管理する。また図107のようにして、ユーザがPlayListMarkにストアされているマーク点のリストから再生開始点を選択して、ブレーヤはその開始点から再生を開始する。

【0425】このようなシンタクス、データ構造、規則に基づく事により、記録媒体に記録されているデータの内容、再生情報などを適切に管理することができ、もって、ユーザが再生時に適切に記録媒体に記録されているデータの内容を確認したり、所望のデータを簡便に再生できるようにすることができる。

【0426】 I ピクチャの位置を分析できる場合、EP_m apを用い、 I ピクチャの位置を分析できない場合、TU_m apを用いるようにすることで、共通のアブリケーションプログラム(ソフトウエア)で、異なるフォーマットのAVストリームを、同一の記録媒体に対して記録し、再生し、管理することが可能となる。

【0427】AVストリームを、その中身(Iビクチャの 位置)を分析して記録媒体に記録する場合(コグニザン 50 ト記録する場合)、TU mapを使用し、、その中身(Iビ

70

クチャの位置)を分析せずに、そのまま記録媒体に記録する場合(ノンコグニザント記録する場合)、EP_mapを使用するなどして、共通のアプリケーションプログラムで、AVデータを、同一の記録媒体に記録し、再生し、管理することができる。

【0428】従って、例えば、スクランブルされたAVデータを、デスクランブルして(分析して)記録媒体に記録する場合、TU_mapを使用し、デスクランブルせずに

(分析せずに)、そのまま記録媒体に記録する場合、EP mapを使用するなどして、共通のアプリケーションプロ 10 グラムで、AVデータを、同一の記録媒体に記録し、再生 し、管理するととができる。

【0429】さらに、EP_map typeとTU_map typeを、CP Ltypeとして、PlayLyst()中に、記述できるようにしたので、「ピクチャの位置が分析できる場合、EP_mapを用い、「ピクチャの位置が分析できない場合、TU_mapを用いるようにすることができる。これにより、「ピクチャの位置を分析して記録するAVストリームデータと、分析しないで記録するAVストリームデータを、フラグを設定するだけで、共通のプログラムにより、統一して管理す 20 る。ることが可能となる。

【0430】また、PlayListファイルやClip Informati onファイルを別々に分離して記録するので、編集などによって、あるPlayListやClipの内容を変更したとき、そのファイルに関係のない他のファイルを変更する必要がない。したがって、ファイルの内容の変更が容易に行え、またその変更および記録にかかる時間を小さくできる

【0431】さらに、最初にInfo.dvrだけを読み出して、ディスクの記録内容をユーザインタフェースへ提示し、ユーザが再生指示したPlayListファイルとそれに関連するClip Informationファイルだけをディスクから読み出すようにすれば、ユーザの待ち時間を小さくすることができる。

【0432】もし、すべてのPlayListファイルやClip I nformationファイルを1つのファイルにまとめて記録すると、そのファイルサイズは非常に大きくなる。そのために、そのファイルの内容を変更して、それを記録するためにかかる時間は、個々のファイルを別々に分離して記録する場合に比べて、非常に大きくなる。本発明は、この問題を解決する。

【0433】上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。

【0434】との記録媒体は、図108に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク221(フロッピディスクを含む)、光ディスク222(CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk)を含む)、光磁気ディスク223(MD(Mini-Disk)を含む)、光磁気ディスク223(MD(Mini-Disk)を含む)、若しくは半導体メモリ224などよりなるパッケージメディアにより構成されるだけでなく、コンピュータに予め組み込まれた状態でユーザに提供される、プログラムが記憶されているROM202や記憶部208が含まれるハードディスクなどで構成される。

【0435】なお、本明細書において、媒体により提供されるプログラムを記述するステップは、記載された順序に従って、時系列的に行われる処理は勿論、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。

【0436】また、本明細書において、システムとは、 複数の装置により構成される装置全体を表すものであ る

[0437]

【発明の効果】以上の如く、本発明の第1の情報処理装置および方法、記録媒体のプログラム、プログラム、並びに記録媒体によれば、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートバケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートバケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方を、記録方法に応じて記録するようにした。

【0438】本発明の第2の情報処理装置および方法、記録媒体のプログラム、並びにプログラムによれば、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体からそれを再生し、出力を制御するようにした。

【0439】また、本発明の第3の情報処理装置および方法、記録媒体のプログラム、プログラム、並びに第2の記録媒体によれば、主の再生バスを示す第1の情報と、前記主の再生バスと同期して再生される副の再生バスを示す第2の情報により構成される再生指定情報を記録するようにした。

【0440】本発明の第4の情報処理装置および方法、 50 記録媒体のプログラム、並びにプログラムによれば、主 の再生バスを示す第1の情報と、前記主の再生バスと同期して再生される副の再生バスを示す第2の情報により 構成される再生指定情報を記録媒体から再生し、それに 基づいて出力を制御するようにした。

【0441】従って、いずれの場合においても、高速再生が可能なAVストリームと不可能なAVストリームを、共通に管理することができる。また、アフターレコーディングが可能になる。

【図面の簡単な説明】

【図1】本発明を適用した記録再生装置の一実施の形態 10 の構成を示す図である。

【図2】記録再生装置1により記録媒体に記録されるデータのフォーマットについて説明する図である。

【図3】Real PlayListとVirtual PlayListについて説明する図である。

【図4】Real PlayListの作成について説明する図である。

【図5】Real PlayListの削除について説明する図である。

【図6】アセンブル編集について説明する図である。

【図7】Virtual PlayListにサブバスを設ける場合について説明する図である。

【図8】PlayListの再生順序の変更について説明する図である。

【図9】PlayList上のマークとClip上のマークについて 説明する図である。

【図10】メニューサムネイルについて説明する図であ ス

【図11】PlayListに付加されるマークについて説明する図である。

【図12】クリップに付加されるマークについて説明する図である。

【図13】PlayList、Clip、サムネイルファイルの関係 について説明する図である。

【図14】ディレクトリ構造について説明する図である。

【図15】info.dvrのシンタクスを示す図である。

【図16】DVR volumeのシンタクスを示す図である。

【図17】Resumevolumeのシンタクスを示す図である。

【図18】UIAppInfovolumeのシンタクスを示す図である。

【図19】Character set valueのテーブルを示す図である。

【図20】TableOfPlayListのシンタクスを示す図である

【図21】TableOfPlayListの他のシンタクスを示す図である。

【図22】MakersPrivateDataのシンタクスを示す図である。

【図23】xxxxx.rplsとyyyyy.vplsのシンタクスを示す 50

図である。

【図24】PlayListについて説明する図である。

【図25】PlayListのシンタクスを示す図である。

【図26】PlayList_typeのテーブルを示す図である。

72

【図27】UIAppinfoPlayListのシンタクスを示す図である。

【図28】図27に示したUIAppinfoPlayListのシンタクス内のフラグについて説明する図である。

【図29】PlayItemについて説明する図である。

【図30】PlayItemについて説明する図である。

【図31】PlayItemについて説明する図である。

【図32】PlayItemのシンタクスを示す図である。

【図33】IN_timeについて説明する図である。

【図34】CUT_timeについて説明する図である。

【図35】Connection_Conditionのテーブルを示す図で ある。

【図36】Connection_Conditionについて説明する図である。

【図37】BridgeSequenceInfoを説明する図である。

20 【図38】BridgeSequenceInfoのシンタクスを示す図である。

【図39】SubPlayItemについて説明する図である。

【図40】SubPlayItemのシンタクスを示す図である。

【図41】SubPath_typeのテーブルを示す図である。

【図42】PlayListMarkのシンタクスを示す図である。

【図43】Mark_typeのテーブルを示す図である。

【図44】Mark time stampを説明する図である。

【図45】zzzzz.clipのシンタクスを示す図である。

【図46】ClipInfoのシンタクスを示す図である。

30 【図47】Clip_stream_typeのテーブルを示す図である。

【図48】offset_SPNについて説明する図である。

【図49】offset_SPNについて説明する図である。

【図50】STC区間について説明する図である。

【図51】STC_Infoについて説明する図である。

【図52】STC_Infoのシンタクスを示す図である。

【図53】ProgramInfoを説明する図である。

【図54】ProgramInfoのシンタクスを示す図である。

【図55】VideoCondingInfoのシンタクスを示す図であ 40 る。

【図56】Video_formatのテーブルを示す図である。

【図57】frame_rateのテーブルを示す図である。

【図58】 display_aspect_ratioのテーブルを示す図である。

【図59】AudioCondingInfoのシンタクスを示す図である。

【図60】audio_codingのテーブルを示す図である。

【図61】audio_component_typeのテーブルを示す図である。

【図62】sampling_frequencyのテーブルを示す図であ

,

(38)

る。

- 【図63】CPIについて説明する図である。
- 【図64】CPIについて説明する図である。
- 【図65】CPIのシンタクスを示す図である。
- 【図66】CPI_typeのテーブルを示す図である。
- 【図67】ビデオEP_mapについて説明する図である。

73

- 【図68】EP_mapについて説明する図である。
- 【図69】EP_mapについて説明する図である。
- 【図70】EP_mapのシンタクスを示す図である。
- 【図71】EP_type valuesのテーブルを示す図である。
- 【図72】EP_map_for_one_stream_PIDのシンタクスを示す図である。
- 【図73】TU_mapについて説明する図である。
- 【図74】TU_mapのシンタクスを示す図である。
- 【図75】ClipMarkのシンタクスを示す図である。
- 【図76】mark_typeのテーブルを示す図である。
- 【図77】mark_type_stampのテーブルを示す図であ ス
- 【図78】menu.thmbとmark.thmbのシンタクスを示す図 である。
- 【図79】Thumbnailのシンタクスを示す図である。
- 【図80】thumbnail_picture_formatのテーブルを示す 図である。
- 【図81】tn_blockについて説明する図である。
- 【図82】DVR MPEG2のトランスポートストリームの構造について説明する図である。
- 【図83】DVR MPEG2のトランスポートストリームのレコーダモデルを示す図である。
- 【図84】DVR MPEG2のトランスポートストリームのプレーヤモデルを示す図である。
- 【図85】source packetのシンタクスを示す図である。
- 【図86】TP_extra_headerのシンタクスを示す図である
- 【図87】copy permission indicatorのテーブルを示す図である。
- 【図88】シームレス接続について説明する図である。
- 【図89】シームレス接続について説明する図である。
- 【図90】シームレス接続について説明する図である
- 【図91】シームレス接続について説明する図である。*40 ケッタイザ、

*【図92】シームレス接続について説明する図である

【図93】オーディオのオーバーラップについて説明する図である。

- 【図94】BridgeSequenceを用いたシームレス接続について説明する図である。
- 【図95】BridgeSequenceを用いないシームレス接続について説明する図である。
- 【図96】DMR STDモデルを示す図である。
 - 【図97】復号、表示のタイミングチャートである。
- 10 【図 9 8 】 PlayListファイルのシンタクスを示す図である。
 - 【図99】図98のPlayListファイル中のUIAppInfoPla yListのシンタクスを示す図である。
 - 【図100】図98のPlayListファイル中のPlayList()のシンタクスを示す図である。
 - 【図101】SubPlayItemのシンタクスを示す図である。
 - 【図102】Real PlayListの作成方法を説明するフローチャートである。
- 20 【図103】Virtual PlayListの作成方法を説明するフローチャートである。
 - 【図 1 0 4 】 PlayListの再生方法を説明するフローチャートである。
 - 【図105】PlayListのSubバスの再生方法を説明するフローチャートである。
 - 【図106】PlayListMarkの作成方法を説明するフローチャートである。
 - 【図107】PlayListMarkを使用した頭出し再生方法を 説明するフローチャートである。
- 30 【図108】媒体を説明する図である。

【符号の説明】

- 1 記録再生装置、 11乃至13 端子、 14 解析部、 15 AVエンコーダ、 16 マルチプレクサ、 17 スイッチ、 18 多重化ストリーム解析部、 19 ソースパケッタイザ、 20 ECC符号化部、 21 変調部、 22 書き込み部、 23 制御部、 24 ユーザインタフェース、26 デマルチプレクサ、 27 AVデコーダ、 28 読み出し部、
- 29復調部, 30 ECC復号部, 31 ソースパ

ケッタイザ、 32,33 端子

【図17】

Syntax	No. of bits	Mnemonics
ResumeVolume() {		Γ
reserved	15	bslbf
valid flag	1	bslbf
resume PlayList_name	8*10	bslbf
0		

【図19】

Value	Character coding
0x00	Reserved
0x01	ISO/IEC 646 (ASCII)
0x02	ISO/IEC 10646-1 (Unloade)
Ox03-Oxff	Reserved

【図1】

[図3]

[図6]

【図7】

Virtual PlayList へのオーディオのアフレコの例

アセンブル毎集の例

(A)

Real PlayList のクリエイトの例

Real PlayList のディバイドの例

Real PlayList のコンパインの例

【図5】

(A)

(B)

Real PlayList 全体のデリートの例

Real PlayList の部分的なデリートの例

(C)

Real PlayList のミニマイズの例

[図8]

PlayList の再生順序の変更の例

【図10】

【図11】

【図9】

Playlist 上のマークと Clip 上のマーク

【図12】

【図14】

【図13】

【図15】

Syntax	No. o	Mnemonic
info.dvr {		
TableOfPlayLists_Start_address	32	uimsbf
MakerPrivateData_Start_eddress	32	uimsbf
reserved	192	bslbf
DVRVolume()		ļ.
tor (i=0; i <n1; l++)="" td="" {<=""><td></td><td></td></n1;>		
padding_word	16	bslbf
}		
TableOfPlayLists()		
tor (i=0; i <n2; i++)="" td="" {<=""><td></td><td></td></n2;>		
pedding_word	16	bstbf
}		
MakerPrivateData()		
}		

Info.dvr のシンタクス

【図16】

(A)

(B)

(C)

Syntax	No. of bits	Mnemonics
DVRVolume() {		· · · · · · · · · · · · · · · · · · ·
version_number	8*4	bslbf
length	322	uimebf
ResumsVolums()		
UIAppinfoVolume()		

DVR Volume のシンタクス

初めて AV ストリームが Clip として記録された時の Real PlayList の例

【図24】

【図18】

Syntax	No. of bits	Mnemonics
UIAppInfoVolume () {		
character set	8	bslbf
name length	8	ulmsbf
Volume name	8*256	bsibf
reserved	15	belbf
Volume protect flag	1	bslbf
PIN	8*4	bstbf
ref thumbnail index	16	uimsbf
reserved for future_use	256	bslbf
1		

Reed PlayList Real PlayUst

編集後の Real PlayList の例

UlAppinfoVolume のシンタクス

【図20】

Real PlayList Real PlayList
- / / /
Cup Cip

Virtual PlayList の例

Syntax	No. of bits	Mnemonics
TableOfPtayLists() {		
version number	8*4	bslbf
length	32	uimsbf
number of PlayLists	16	uimsbf
for (I=0; Icnumber of PlayLists; i++) {		
PlayList_file_name .	8*10	balbf
}		
}		

【図26】

PlayList_type	Meaning
0	AV 記録のための PlayList
	この PłayList に参照されるすべての Clip は、一つ以
	上のビデオストリームを含まなければならない。
1	オーディオ記録のための PlayList
	この PlayList に参照されるすべての Clip は、一つ以
	上のオーディオストリームを含まなければならない。
	そしてビデオストリームを含んではならない。
2 - 255	reserved

TableOfPlayLists のシンタクス

【図21】

PlayList_type

Syntax	No. of bits	Mnemonlos
TableOfPtayLists() (
version_number	8*4	balbf
iength	32	uimsbf
number of PlayLists	16	uimabi
for (i=0; I <number_of_playlists; i++)="" td="" {<=""><td></td><td></td></number_of_playlists;>		
PlayList_file_name	8710	bslbf
UlAppintoPlayList()		
}		

[図41]

SubPath_type	Meaning
0x00	Auditary audio stream path
0x01 - 0xff	reserved

TableOfPlayLists の別シンタクス

SubPath_type

【図22】

No. of bits	Mnemonics
8*4	balbf
32	uimsbf
32	ulmsbf
16	uimsbf
16	uimsbf
16	ulmsbf
16	bslbf
1.	
16	uimsbf
16	vimsbf
16	wimstrf
16	bsibf
32	ulmsbf
T	
8*2*L1	bsibf
mpd_block_ size*1024*6	
1	
	5*4 32 32 32 16 16 16 16 16 16 16 18 18 18 18 18 19 18 19 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18

MakersPrivateData のシンタクス

[図39]

[図23]

Syntax	No. of bits	Motemonica
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		
PlayListMark Start_address	32	uimsb/
MakerPrivateData Start_address	32	uimabf
reserved	192	bslbf
PlayList()		
for(i=0; I <n1; i++){<="" td=""><td></td><td></td></n1;>		
pedding word	16	bslbf
}		
PlayListMark()		
for(i=0; i <n2; i++){<="" td=""><td></td><td></td></n2;>		
pedding word	16	bslbf
}		
MakerPrivateData()		
}		

xxxxxxrpls と yyyyy.vpls のシンタクス

【図32】

Syntax	No. of bits	Mnemonics
Play(tem() (
Clip Information file name	8-10	bslbf
reserved	24	bsibf
STC sequence Id	8	uimsbf
IN_time	32	uimstif
OUT_time	32	uimsbf
reserved	14	bslbf
connection_condition	2	bsibi
if (<virtual playlist="">) {</virtual>		
if (connection_candition==10') {		·
BridgeSequenceInfo()		· ·
		i
)	_ i	i —
		i — —

PlayItem のシンタクス

【図25】

Syntax		No.	of	Mnemonics
PlayList() {				
version number		8*4		bsibf
length		32		uinstr
PlayList_type		8		uirnsbf
CPI type		1		bsibf
reserved		7		belibf
UIAppInfoPlayList()				
number of PlayItems	// main path	16		uimsbf
if (<virtual playlist="">) {</virtual>				
number of SubPlayItems	// sub path	16		uimsbf
)else{				
reserved		16		belibf
}				
for (Playttem_ld=0;				
Playttem_id <number_of_playt< td=""><td>terns;</td><td></td><td></td><td></td></number_of_playt<>	terns;			
Playttem (d++) {				
Playftem()	// main path	<u> </u>		
·		1		
ff (<virtual playlist="">) (</virtual>		1		
if (CPI_type==0 && PlayList_ty				<u></u>
for (i = 0; i < number of S	ubPlayltems; i++)	1		
SubPlayitem()	// sub path			
}				L
}				
1				

. PlayList のシンタクス

【図27】

Syntax	No, of bits	Minemonics
UIAppInfoPtayList:2() {		ĺ
character_set	. 8	bslbf
name_length	8	uimsbf
PlayList name	8*256	bslbf
bevisser	В	belbf
record_time_and_date	4*14	bslbf
reserved	В	bsibf
duration	4*8	bslbf
valid_period	4*8	bslbf
maker_id	16	uimsbf
maker_code	16	ulmsbf
reserved	11	bslbf
playback_control_flag	1	bstof
write_protect_flag	1	bsibf
ts_played_flag	1	bs.bf
archive	2	bsibf
ref_thumbnall_index	16	uimsbf
reserved for future use	256	bstbf

UlAppInfoPlayList のシンタクス

【図33】

CPI_type In the PlayList()	Semantics of IN_time
EP_map typs	IN_time は、PlayItem の中で最初のプレゼンテーションユニットに対応する33 ピット長のPTS の上位32 ピットを示さなければならない。
TU_map type	IN_time は、TU_map_time_axis 上の時刻でなければならない。かつ、IN_time は、time_unit の特度に丸めて表さればならない。IN_time は、次に示すま式により計算される。 IN_time = TU_etan_time % 2 ²²

[図47]

Clip_stream_type	meaning
0	Clip AV ストリーム
1	Bridge-Clip AV ストリーム
2 - 255	Reserved

Clip_stream_type

IN_time

[図28]

【図37】

(A)

write protect flag	Meaning
Ob	その PlayList を自由に稍去しても良い。
1b	write_protect_flag を除いてその PlayList の内
l .	容は、消去および変更されるべきではない。

write_protect_flag

(B)

is played flag	Meaning
Ob	その PlayList は、記録されてから一度も再生さ
	れたことがない。
1b	PlayListは、記録されてから一度は再生された。

is_played_flag

(C)

archive	Meaning
00b	何も情報が定義されていない。
01b	オリジナル
10b	コピー
11b	reserved

archive

【図31】

PlayList が TU_map type である時の例

•

【図34】

CPI_type in the PlayList()	Semantics of OUT_time
EP_map type	OUT_time は、次に示す等式によって計算される Presentation_end_TSの値の上位32ピットを示さなければならない。 Presentation_end_TS = PTS_out + AU_duration ここで、
	PTS_cut は、PlayItem の中で最後のプレゼンテーションユニットに対応する 33 ビット長の PTS である。 AU_chration は、歴後のプレゼンテーションユニットの 90kHz 単位の表示期間である。
TU_map type	OUT_time は、TU_map_time_axds 上の時刻でなければならない。かっ、OUT_time は、time_unit の特度に丸めて表さねばならない。 OUT_time は、次に示す等式により計算される。
	OUT_time = TU_stad_time % 2 ⁵²

OUT_time

【図35】

connection _condition	meaning
00	・ 先行する PlayItem と現在の PlayItem の接続は、シームレス再生の保証がなされていない。
	• PlayList の CPL type が TU_map type である場合、connection_condition は、この値をセットされねばならない。
01	 この状態は、PlayList の CPI_type が EP_map type である場合に だけ許される。
	・
10	 この状態は、PlayList の CPI_type が EP_map type である場合に だけ許される。
	• この状態は、Virtual PlayList に対してだけ許される。
	 先行する Playitem と現在の Playitem との接続は、シームレス再 生の保証がなされている。
	・ 先行する PlayItem と現在の PlayItem は、BridgeSequence を使 用して接続されており、DVR MPEG-2 トランスポートストリー ムは、後述する DVR-STD に従っていなければならない。
11	 この状態は、PlayList の CPI_type が EP_map type である場合に だけ許される。
	 先行する Play/tem と現在の Play/tem は、シームレス再生の保証がなされている。
	・ 先行する Playtiem と現在の Playtiem は、BridgeSequence を使用しないで投続されており、DVR MPEG-2 トランスポートストリームは、後述する DVR-STD に従っていなければならない。

connection_condition

[図36]

connection_condition の説明

【図38】

Syntax	No. o	Mnemonics
BridgeSequenceInfo() {		
Bridge Clip Information file name	8*10	bsibi
RSPN_extil_from_previous_Clip	32	uimsbf
RSPN enter to current Clip	32	uimebi
)		

BridgeSequenceInfoのシンタクス

【図40】

Syntax	No. of bits	Mnemonics
SubPlavitem() {		
Clip information file name	8*10	bslbf
SubPath type	8	bslbf
sync_Playitem_ld	8	uimsbf
sync_start_PTS_of_Playttern	32	uimsbf
SubPath IN time	32	uimsbl
SubPath OUT time	32	ulmsbl
1		

【図56】

video_format	Meaning
0	4801
1	5761
2	480p (including 640wi80p formed)
3	1080i
4	720p
5	1080p
6 - 254	reserved
255	No information

vidoe_format

SubPlayItem のシンタクス

【図42】

No. of bits	Minemonics
8*4	bsibf
32	uimsbf
16	uimsbf
8	belbf
В	bslbf
32	uimstrf
8	ulmsbf
24	uimstrf
8	balbf
8	uimsbf
8*256	bsibf
16	uimshf
	8 8 8 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

PlayListMark のシンタクス

【図43】

Mark_type	Meening	Comments
0x00	resume-mark	再生リジュームポイント、PtetyListMerk()において 定義される再生リジュームポイントの数は、0また は1でなければならない。
0x01	book-mark	PlayList の再生エントリーボイント。このマークは、 ユーザがセットすることができ、例えば、お気に入 りのシーンの開始点を指定するマークに使う。
0x02	skip-mark	スキップマークポイント。このポイントからプログ ラムの最後まで、プレーヤはプログラムをスキップ する。 PlayListMark() において定義されるスキップ マークポイントの数は、0または1でなければなら ない。
0x03 - 0x8F	reserved	
0x90 - 0xFF	reserved	Reserved for ClinMark()

mark_type

【図44】

CPI_type in the PlayList()	Semantics of mark_time_stamp
EP_map type	mark_time_stamp は、マークで参照されるプレゼンテーションユニットに対応する 33 ピット長の PTS の上位 32 ピットを示さなければならない。
TU_map type	mark_time_stamp は、T <i>U_map_time_axi</i> s 上の時刻でなければならない。かつ、mark_time_stamp は、time_unit の精度に丸めて表さねばならない。mark_time_stamp は、次に示す等式により計算される。
	mark_time_stamp = T <i>U_start_time</i> % 2 ^{se}

mark_time_stamp

【図62】

sampling frequency	Meaning
0	48 kHz
1	44.1 kHz
2	32 kHz
3-254	reserved
255	No Information

sampling_frequency

【図66】

CPI_type	Meaning
0	EP map type
1	TU map type

· CPI_type の意味

【図46】

Syntax	No. of bits	Mnemonica
Ctiptnfo() {		
version_number	8*4	belbf
length	32	ulmstri
Clip_stream_type	8	bsibf
offset_SPN	32	uimsbi
TS_recording_rate	24	uimsbi
reserved	8	bedof
record_time_and_date	4*14	belof
[BERTVIRG]	8	belof
duration	4*6	ballof
reserved	7	belof
time controlled flag	1	belbf
TS_average_rate	24	ulmsbi
il (Clip stream type==1) // Bridge-Clip AV stream		
RSPN_arrival_time_discontinuity	32	uknebi
alse		
reserved	322	bedbf
reserved for system use	144	belbf
recerved	11	belbf
is format Identifier_valid	1	balbf
la_originisi_network_ID_valid *	1	belbf
la transport stream ID valid	1	basibf
ls_servece_ID_velid	1	beibf
is country code valid	1	bslbf
format_identifier	32	beibf
original network ID	16	uimetri
transport stream ID	16	ulmsbl
servece_(D	18	uimsbi
country_cods	24	belbf
stream formet neme	15*8	bsfbf
reserved for future use	256	belbf
1	T	1

ClipInfo のシンタクス

[図48]

【図57】

frame_rate	Meaning	
0	forbidden	
1	24 000/1001 (23.976)	
2	24	
а	25	
4	30 000/1001 (29.97)	
5	30	
6	50	
7	60 000/1001 (59.94)	
8	60	
9 - 254	reserved	
255	No Information	

frame_rate

【図45】

Syntax	No. of bits	Mnemonic
zzzzz,dpi {		
STC_Info_Start_address	32	uimsbf
ProgramInfo_Start_address	32	ulmsbf
CPI_Start_address	32	uimsbf
ClipMark_Start_address	32	ulmsbf
MakerPrivateDate_Start_address	32	uimsbf
reserved	96	papt
ClipInfo()		
for (I=0; I <n1; i↔)="" td="" {<=""><td></td><td></td></n1;>		
padding_word	16	bsibf
)		
STC_Info()		
for (i=0; i <n2; i++)="" td="" {<=""><td></td><td></td></n2;>		
padding_word	16	bsibf
)		
Program[nfo()	ľ	
for (i=0; i <n3; i++)="" td="" {<=""><td></td><td></td></n3;>		
padding_word	16	bslbf
)		
CPI()		
for (i=0; i <n4; i++)="" td="" {<=""><td></td><td></td></n4;>		
padding_word	16	bslbf
)		· ·
ClipMark()		
for (i=0; I <n5; i++)="" td="" {<=""><td></td><td></td></n5;>		
padding_word	16	bslbf
)		
MakerPrivateDate()		
}		

zzzzz.clpi のシンタクス

【図49】

AVストリームでの offset_SPN と相対ソースパケット番号(FRSPN_xxxx)の側の 関係

【図61】

audio_component_type	Meaning	
0	single mono channal	
1	dual mono channel	
2	stereo (2-channel)	
3	multi-lingual, multi-channel	
4	surround sound	
5	audio description for the visually impaired	
6	audio for the hard of hearing	
7-254	reserved	
255	No information	

audio_component_type

[図50]

STC

(A)

【図52】

STC_info のシンタクス

[図51]

1.

-STC_Info

【図55】

Syntax	No. of bits	Mnemonics
VideoCodingtnfo() {		
video_format	8	uimstf
freme_rate	8	uimsbf
display_aspect_ratio	8	uimsbf
reserved	8	belbf
}		

VideoCodingInfoのシンタクス

【図54】

No. of bits	Mnemonics
	_
8°4	bslbf
32	uimsbf
8	bslbf
8	uimstof
32	uimsbf
48	bs2bf
16	bslbf
8	uimsbf
8	uimsbf
16	bsibf
	l
	L
	·
16	fdlad
	L
	L
	6*4 32 8 8 32 48 16 8 5

ProgramInfo のシンタクス

【図59】

Syntax	No. of	Mnemonics
AudioCodingInfo() (1
audio_coding	8	uimsbf
audio_component_type	18	uimsbf
sampling frequency	8	uimsbf
reserved	6	bsbf
}		

AudioCodingInfo のシンタクス

【図65】

Syntax	No. of bita	Mnemonics
CPI0 {		
version_number	8*4	bslbl
length	32	uimstri
reserved	15	bsib4
CPI_type	1	bslbf
if (CPI type == 0)		
EP_map()		
else		
TU_map()		
)		

CPI のシンタクス

【図80】

Thumbnatt_picture_tormat	Moentog
0x00	MPEG-2 Video I-picture
0x01	DCF (restricted JPEG)
0x02	PNG
OxO3-Oxff	reserved

thumbnail_picture_format

【図58】

display_espect_retio	Meening	
0	forbiden	
1	reserved	
2	4:3 display aspect ratio	
3	16:9 display aspect ratio	
4-254 255	reserved	
255	No information	

display_aspect_ratio

【図60】

audio_coding	Meaning	
0	MPEG-1 audio layer i or II	
1	Dolby AC-3 audio	
2	MPEG-2 AAC	
3	MPEG-2 multi-channel audio, backward compatible to MPEG-1	
4	SESF LPCM audio	
5-254	reserved	
255	No information	

audio_coding

【図64】

- : source packate that includes the first byte of the sequence header
- Source packets that includes the first byte of the sequence header.
- : actions packets that includes the first byte of the sequence bearier

【図69】

EP_map
humber_of_stream_Pittle=3

EP_map_for_
one_stream_Pittle=3

EP_map_for_
one_stream_Pittle=3

EP_map_for_
one_stream_Pittle=3

on

ビデオの EP_map の例

bps(mut)

[図76]

Mark_type	Meening	Comments
0x00 - 0x8F	reserved	Reserved for PlayListMark()
0x90	Event-start mark	番組の開始ポイントを示すマーク点。
0x91	Local event-start mark	番組の中の局所的な場面を示すマーク点。
0x92	Scene-start mark	シーンチェンジポイントを示すマーク。
0x93 - 0xFF	reserved	<u> </u>

mark_type

【図70】

【図71】

Syntax	No. of bits	Mnemonica
EP_map(X)		
reserved	12	bsbf
EP_type	4	uimsbf
number_of_stream_PIDs	16	ulmsbf
for (k=0;k <number_of_stream_pids;k++)(< td=""><td>i "</td><td></td></number_of_stream_pids;k++)(<>	i "	
stream_PID (k)	16	bsbf
rium_EP_entries (k)	32	uimsof
EP_map_for_one_stream_PID_Start_address (k)	32	ulmsbf
)		-
for(i=0;i <x;i++)(< td=""><td></td><td></td></x;i++)(<>		
padding word	16	bsbf
)		
for (k=0;k <number_of_stream_pids;k++){< td=""><td></td><td></td></number_of_stream_pids;k++){<>		
EP_map_for_one_stream_PID(num_EP_entries(ki))		
for(1=0;1 <y;1++)[< td=""><td></td><td></td></y;1++)[<>		
padding_word	16	bsbf
}		_
)		
}		

EP_type	Meaning
0	video
1	enqe
2 - 15	reserved

EP_type Values

[図82]

DVR MPEG-2 トランスポートストリームの構造

[図72]

【図81】

EP_map_for_one_stream_PID のシンタクス

【図73】

[図87]

【図74】

Syntax	No. bits	of	Mnemonics
TU_map(){			
offset_time	32		bslbf
time unit size	32		ulmabf
number_of_time_unit_entries	32		ulmsbf
for (k=0; k <number_of k++)<="" td="" time_unit_entries;=""><td></td><td></td><td></td></number_of>			
RSPN_time_unit_start	32		ulmsbf
}	_		

copy_permission meaning indicator

00 copy free

01 no more copy

10 copy once

11 copy prahibited

· copy permission indicator table

TU_map のシンタクス

【図77】

【図84】

CPI_type in the CPI0	Semantics of mark_time_stamp
EP_map type	mark_time_stamp は、マークで参照されるプレゼンテーションユニットに対応する 33 ピット長の PTS の上位 32 ピットを示さなければならない。
TU_map type	mark_time_stamp は、 <i>TV_map_time_exis</i> 上の時刻でなければならない。かつ、mark_time_stamp は、time_unit の特徴に丸めて表さわばならない。mark_time_stamp は、次に示す等式により計算される。
	mark_time_stamp = TU_start_time % 2 ⁵²

DVR MPEG-2 トランスポートストリームのプレーヤモデル

mark_type_stamp

【図75】

Syntax	No. of bits	Mnemonics
ClipMark() (
version_number	8*4	bsibf
length	32	uimsbf
number of Clip marks	16	uimsbf
for(l=0; l < number_of_Ctip_marks; i++) {		
reserved	8	bslbf
mark_type	8	beibf
mark_time_stamp	32	uimsbif
STC sequence Id	8	uimsbf
reserved	24	bslbf
character set	8	fdlad
name_length	8	uimsbf
mark name	8*256	bsibf
ref_thumbnail_index	16	uimstif
}		
}		

ClipMark のシンタクス

[図78]

Syntack		Mnemonios
	bits	
menu.thmb / mark.thmb (
reserved	256	bsibf
Thumbnail()		
for(I=0; i <n1; i++)<="" td=""><td></td><td></td></n1;>		
paddirig_word	18	bsibf
}		

menu.thmb と mark.thmb のシンタクス

【図79】

yntax	Bits	Minemonics
humbneli() {	1	
version_number	B*4	char
length	32	ulmsbf
if (length l= 0) (
tn blocks start address	32	beibf
number of thumbnails	16	uimsbf
tn block size	16	uimsbf
number_of_tn_blocks	16	uimsbf
reserved	16	bslbf
for(i = 0; i < number of thumbnalls; i++) {		
thumbnail_index	16	uimsbf
thumbnall_picture_format	8	bslbf
reserved	8	bslbf
ptcture_data_size	32	uimsbf
start to block number	18	ulmsbf
x_picture_length	16	ulmsbf
y picture length	16	uimsbf
reserved	15	uimsbf
}		
stuffing bytes	8*2*L1	bstbl
for(k = 0; k < number of th_blocks; k++) {	L	l
tn_block	tn_block_etze* 1224*8	
)		
	1]

Thumbnail のシンタクス

【図83】

DVR MPEG-2 トランスポートストリームのレコーダモデル

【図85】

Syntax	No. of bits	Mnemonics
source packet () {		
TP_extra_header()		
transport_packet()		
)		

source packet

[図86]

Syntax	No. of bits	Mnemonice
TP_extra_header() {		
copy_permission_indicator	2	uimsbf
arrival_time_stamp	30	uimsbf
1)		

TP_extra_header

【図94】

BridgeSequence を使用してシームレス接続をする場合の、データアロケーションの例

【図103】

Virtual PlayList の作成方法を説明するフローチャート

[図88]

【図93】

【図90】

【図91】

BridgeSequence を使用してシームレス接続を実現する例 1

【図95】

BridgeSequence を使用しないでシームレス接続をする場合の、データアロケーションの例

[図92]

BridgeSequence を使用しないでシームレス接続を実現する例 2

【図96】

【図100】

Syntax	No. of bits	Mnemonic
PlayList() {		
iength	32	uimsbf
reserved_for_word_align	15	bslbf
CPI_type	1	bslbf
number_of_PlayItems	16	uimsbf
if (<virtual-playlist> && CPI_type==0) (</virtual-playlist>		
number_of_SubPlayItems	16	uimsbf
) else {		
reserved_for_word_align	16	bsibf
}		
for (PlayItem_id=0; PlayItem_id <number_of_playitems; PlayItem_id++) {</number_of_playitems; 		
PlayItem()		
}		
if (<virtual-playlist> && CPI_type==0) {</virtual-playlist>		
for (i=0; i <number_of_subplayitems; i++)="" td="" {<=""><td></td><td></td></number_of_subplayitems;>		
SubPlayItem()		
}		
}		
}		

図98の PlayList ファイルの中の PlayList() のシンタクス

【図97】

ある AV ストリーム(TS1)からそれにシームレスに接続された次の AV ストリーム(TS2) へと移る時のトランスポートパケットの入力、復号、表示のタイミングチャート

【図98】

No. bits	of Mnemonic
8*4	bslbf
32	uimsbf
32	ulmsbf
32	uimsbf
160	bslbf
16	bslbf
16	bslbf
16	bslbf
16	bslbf
	8*4 32 32 32 160 16

PlayList ファイルのシンタクスの別例

【図99】

Syntax	No. of bits	Mnemonic
UIAppInfoPlayList() {		
length	32	uimsbf
PlayList_service_type		
PlayList_character_set	8	uimsbf
reserved_for_word_align	3	bslbf
playback_control_flag	1	uimsbf
write_protect_flag	1	ulmsbf
is_played_flag	1	uimsbf
archive	2	uimsbf
record_time_and_date	4*14	bsibf
duration	4*6	bslbf
maker ID	16	uimsbf
maker model_code	16	uimsbf
ref_thumbnail_index	16	ulmsbf
reserved	7	bslbf
rp_info_valid_flag	1	ulmsbf
rp_ref_to_PlayItem_id	16	uimsbf
rp_time_stamp	32	uimsbf
channel_number	16	uimsbf
reserved_for_word_align	8	bslbf
channel_name_length	8	uimsbf
channel_name	8*20	bslbf
PlayList_name_length	8	uimsbf
PlayList_name	8*255	bsibf
PlayList_detail_length	16	uimsbf
PlayList_detail	8*1200	bslbf
}		

図98の PlayList ファイルの中の UIAppInfoPlayList の シンタクス

【図102】

【図101】

સું .

Symax	No. of bits	Mnemonic
SubPlayItem() (i	
length	16	uimsbf
Clip_Information_file_name	8*10	bsibi
SubPath_type	8	bsibi
STC_sequence_id	8	uimsbf
SubPath_IN_time	32	uimsbf
SubPath_OUT_time	32	uimsbf
sync_PlayItem_id	16	uimebf
sync_start_PTS_of_PlayItem	32	uimsbf
}		

SubPlayItem のシンタクスの別例

【図105】

PlayList の Sub バスの再生方法を説明するフローチャート

【図104】

PlayList の再生方法を説明するフローチャート

\$"

PlayListMark の作成方法を説明するフローチャート

【図107】

PlayListMark を使用した頭出しの再生方法を説明するフローチャート

[図108]

フロントページの続き

Fターム(参考) 5C052 AA02 AC05 AC08 DD04 5C053 FA14 FA20 FA23 FA29 GA11 GB05 GB06 GB09 GB38 HA24 HA29 JA24 KA08 KA24 KA26