Fullness Notes

James Harbour

March 26, 2025

Lemma 0.0.1. Let N be a tracial von Neumann algebra. Suppose that $P \subseteq p(M \otimes N)p$ is a von Neumann subalgebra such that

- P is strongly nonamenable relative to $1 \otimes N$,
- $P_0 := P' \cap p(M \otimes N)p \prec_{M \otimes N} A \otimes N$.

Assume there is some $s \in (0,1)$ and $\delta > 0$ such that

$$\tau(b^*(\alpha_t \otimes id)(b)) \geq \delta$$
 for all $b \in U(P_0)$.

Let $Q_0 = q \mathcal{N}_{p(M \otimes N)p}(P)''$. Then one of the following holds

- 1. $P_0 \prec 1 \otimes N$,
- 2. $Q_0 \prec A \otimes N$,
- 3. there is a partial isometry $v \in p(M \otimes N)p$ such that $vv^* \in Z(P_0)$ and

$$v^*P_0v \subseteq \{u_\sigma : \sigma \in [\mathcal{G}]\}'' \otimes N.$$

Theorem 0.0.1. Let N be a tracial von Neumann algebra. Suppose that $P \subseteq p(M \otimes N)p$ is a von Neumann subalgebra such that

- P is strongly nonamenable relative to $1 \otimes N$,
- $P_0 := P' \cap p(M \otimes N)p \prec_{M \otimes N} A \otimes N$.

Then actually $P_0 \prec_{M \otimes N} 1 \otimes N$.

Proof. We have

$$_{M\otimes N}L^2(\widetilde{M}\otimes N)\ominus L^2(M\otimes N)_{M\otimes N}\prec _{M\otimes N}L^2(M\otimes N)\otimes _{1\otimes N}L^2(M\otimes N)_{M\otimes N}$$

$$\forall z \in Z(P_0), \quad {}_{M \otimes N} L^2(M \otimes N)_{Pz} \not\prec {}_{M \otimes N} L^2(\widetilde{M} \otimes N) \ominus L^2(M \otimes N)_{M \otimes N}$$

Fix $\varepsilon > 0$. Then there is $F \subseteq U(P)$ finite and $\delta > 0$ such that, for $x \in (p(\widetilde{M} \otimes N)p)_1$,

$$\max_{u \in F} \|[u, x]\|_2 \le \delta \implies \|x - \mathbb{E}_{M \otimes N}(x)\|_2 \le \varepsilon.$$

Choose $s = 2^{-k}$ such that $\max_{u \in F} \|\alpha_s(u) - u\|_2 \le \delta/2$. Then for $x \in P_0$, we have that $\|[\alpha_s(x), u]\|_2 \le \delta$. Hence, for $x \in (P_0)_1$,

$$\|\alpha_{2s}(x) - x\|_2 \le 2\|\alpha_s(x) - \mathbb{E}_{M \otimes N}(\alpha_s(x))\|_2 \le 2\varepsilon. \tag{1}$$

Consequently,

$$\lim_{t \to 0} \sup_{x \in (P_0)_1} \|\alpha_t(x) - x\|_2 = 0,$$

so P_0 is $(\alpha_t \otimes id)$ -rigid.

Choose $\delta_0 \in (0,1)$ and t such that $\sup_{x \in (P_0)_1} \|(\alpha_t \otimes id)(x) - x\|_2 < \sqrt{2(1-\delta_0)}$. Then we have that $|\tau(b^*(\alpha_t \otimes id)(b))| > \delta$ for $b \in U(P_0)$.

Suppose, for the sake of contradiction, that $P_0 \not\prec 1 \otimes N$. Then either part (2) or part (3) of the above lemma hold.

(Case 1): Suppose $Q_0 \prec A \otimes N$. Then as $P \vee P_0 \subseteq Q_0$, we have that $P, P_0 \prec A \otimes N$.

By IPV section 2.4, as $A \otimes N$ is amenable relative to $1 \otimes N$, there exists a non-zero projection $f \in P' \cap p(M \otimes N)p$ such that Pf is amenable relative to $1 \otimes N$. This contradicts the assumption that P is strongly nonamenable relative to $1 \otimes N$.

(Case 2): There is a partial isometry $v \in p(M \otimes N)p$ such that $vv^* \in Z(P_0)$ and

$$v^*P_0v \subseteq \{u_\sigma : \sigma \in [\mathcal{G}]\}'' \otimes N.$$

NOTE: Maybe I can get this to be a unitary.

Let $S := \{u_{\sigma} : \sigma \in [\mathcal{G}]\}$ ". We need to build a contradiction from

- $P_0 \prec A \otimes N$,
- $v^*P_0v \subseteq S \otimes N$.

We have assumed that $P_0 \not\prec 1 \otimes N$, so there is some sequence $(u_n)_n$ in $U(P_0)$ such that

$$\|\mathbb{E}_{1\otimes N}(xu_ny)\|_2 \to 0 \text{ for } x,y \in M \otimes N.$$

Then the intertwining into $A \otimes N$ implies that there is some $\varepsilon > 0$ and $N \in \mathbb{N}$ such that

$$\|\mathbb{E}_{A\otimes N}(u_n)\|_2 > \varepsilon$$
 for $n \ge N$.

1 Weak Containment

1.1 Definitions

Definition 1.1.1. We say that π is weakly contained in ρ , denoted $\pi \prec \rho$, if for any $\epsilon > 0$, $\xi \in S(X * \mathcal{H})$, and $E \subset \mathcal{G}$ with $\mu_{\mathcal{G}}(E) < \infty$, there exists $\{\eta^1, \ldots, \eta^m\} \subset S(X * \mathcal{K})$ with

$$\mu_{\mathcal{G}}\left(\left\{g \in E : |\langle \pi(g)\xi_{d(g)}, \xi_{r(g)}\rangle - \sum_{i=1}^{m} \langle \rho(g)\eta_{d(g)}^{i}, \eta_{r(g)}^{i}\rangle| \ge \epsilon\right\}\right) < \epsilon.$$

Definition 1.1.2. Given two M-N bimodules \mathcal{H} and \mathcal{K} , we say that \mathcal{H} is weakly contained in \mathcal{K} (denoted by $\mathcal{H} \prec \mathcal{K}$) if for every $\varepsilon > 0$ and finite subsets $E \subseteq M$, $F \subseteq N$, $\{\xi_1, \ldots, \xi_n\} \subseteq \mathcal{H}$, there exists $\{\eta_1, \ldots, \eta_n\} \subseteq \mathcal{K}$ such that

$$|\langle x\xi_i y, \xi_j \rangle - \langle x\eta_i y, \eta_j \rangle| < \varepsilon$$
 for all $x \in E$, $y \in F$, and $1 \le i, j \le n$.

Note that any M-N bimodule \mathcal{H} gives rise to a *-homomorphism $\pi_{\mathcal{H}}: M \otimes N^{\mathrm{op}} \to B(\mathcal{H})$ given by $\pi_{\mathcal{H}}(x \otimes y)\xi = x\xi y$. In this language, we have that $\mathcal{H} \prec \mathcal{K}$ if and only if $\|\pi_{\mathcal{H}}(T)\| \leq \|\pi_{\mathcal{K}}(T)\|$ for all $T \in M \otimes N^{\mathrm{op}}$.

Definition 1.1.3. Let π_1, π_2 be nondegenerate *-representations of a C^* -algebra A. We say that π_1 is weakly contained in π_2 and write $\pi_1 \prec \pi_2$ if $||\pi_1(a)|| \leq ||\pi_2(a)||$ for all $a \in A$.

Hence, ${}_{M}\mathcal{H}_{N} \prec {}_{M}\mathcal{K}_{N}$ if and only if $\pi_{\mathcal{H}} \prec \pi_{\mathcal{K}}$.

1.2 Ben Stuff, i.e. preliminary lemmas

For $\pi: A \to B(\mathcal{H})$ a *-representation of a C^* -algebra A and $\xi \in \mathcal{H}$, define $\omega_{\xi} \in A^*$ by $\omega_{\xi}(a) = \langle \pi(a)\xi, \xi \rangle$.

Theorem 1.2.1. Let $\pi_j : A \to B(\mathcal{H}_j)$, j = 1, 2 be nondegenerate *-representations of a C*-algebra A. Then the following are equivalent:

- 1. $\pi_1 \prec \pi_2$,
- 2. $\ker(\pi_2) \subseteq \ker(\pi_1)$,
- 3. For all $\xi \in \mathcal{H}_1$ with $\|\xi\| = 1$, we have

$$\omega_{\xi} \in \overline{co}^{wk^*} \{ \omega_{\eta} : \eta \in \mathcal{H}_2, \|\eta\| = 1 \},$$

4. For all $\xi \in \mathcal{H}_1$,

$$\omega_{\xi} \in \overline{\operatorname{Span}}^{wk^*} \{ \omega_{\eta} : \eta \in \mathcal{H}_2 \}.$$

hello there

1.3 Main Argument

Proposition 1.3.1. Consider two representations π, ρ of \mathcal{G} on bundles $\mathcal{H} = \{\mathcal{H}_x\}_{x \in X}$ and $\mathcal{K} = \{\mathcal{K}_x\}_{x \in X}$ respectively. Then $\pi \prec \rho$ implies that $B(\pi) \prec B(\rho)$.

Fix $\varepsilon > 0$, $a \in A$, $\sigma \in [\mathcal{G}]$, $m \in (M)_1$, $\xi \in S_b(X * \mathcal{H})$, and $\varphi, \psi \in M$.

$$\langle au_{\sigma} \cdot (\xi \otimes \widehat{\psi}) \cdot m, \xi \otimes \widehat{\psi} \rangle = \langle \widetilde{\pi}(\sigma) \xi \otimes au_{\sigma} \widehat{\psi} m, \xi \otimes \widehat{\psi} \rangle$$

$$= \langle \widetilde{\pi}(\sigma) \xi, \xi \cdot {}_{A} \langle au_{\sigma} \widehat{\psi} m, \widehat{\psi} \rangle \rangle$$

$$= \langle \widetilde{\pi}(\sigma) \xi, \xi \cdot \mathbb{E}_{A} (au_{\sigma} \psi m \psi^{*}) \rangle$$

$$= \int_{X} \mathbb{E}_{A} (au_{\sigma} \psi m \psi^{*}) \cdot \langle (\widetilde{\pi}(\sigma) \xi)_{x}, \xi_{x} \rangle d\mu(x)$$

We have $\overline{\mu}(\sigma) = 1 < +\infty$, so by assumption there exists $\{\eta^i\}_{i=1}^s \subseteq S_b(X * \mathcal{K})$ such that the set

$$A_{\varepsilon}^{\sigma} := \{ g \in \sigma \subseteq \mathcal{G} : |\langle \pi(g)\xi_{d(g)}, \xi_{r(g)} \rangle - \sum_{i} \langle \rho(g)\eta_{d(g)}^{i}, \eta_{r(g)}^{i} \rangle| \ge \varepsilon \}.$$

has measure $\overline{\mu}(A_{\varepsilon}^{\sigma}) < \varepsilon$. Taking the range of this set in the unit space X, we see

$$r(A_{\varepsilon}^{\sigma}) = \{r(g) \in X : g \in A_{\varepsilon}^{\sigma} \subseteq \sigma\} = \{x \in X : x\sigma \in A_{\varepsilon}^{\sigma}\}$$
$$= \{x \in X : \left| \langle \pi(x\sigma)\xi_{d(x\sigma)}, \xi_x \rangle - \sum_i \langle \rho(x\sigma)\eta_{d(x\sigma)}^i, \eta_x^i \rangle \right| \ge \varepsilon\}$$

and compute that

$$\begin{split} \overline{\mu}(A_{\varepsilon}^{\sigma}) &= \int_{X} \#\{g \in A_{\varepsilon}^{\sigma} : d(g) = x\} \, d\mu(x) \\ &= \int_{X} 1_{d(A_{\varepsilon}^{\sigma})}(x) \, d\mu(x) = \mu(d(A_{\varepsilon}^{\sigma})) = \mu(r(A_{\varepsilon}^{\sigma})). \end{split}$$

For brevity, write $f := \mathbb{E}_A(au_\sigma \psi m \psi^*)$. Observe that

$$\begin{aligned} & |\langle au_{\sigma}(\xi \otimes \widehat{\psi})m, \xi \otimes \widehat{\psi} \rangle - \sum_{i} \langle au_{\sigma}(\eta^{i} \otimes \widehat{\psi})m, \eta^{i} \otimes \widehat{\psi} \rangle | \\ & = \left| \int_{X} \mathbb{E}_{A}(au_{\sigma}\psi m\psi^{*}) \cdot \langle (\widetilde{\pi}(\sigma)\xi)_{x}, \xi_{x} \rangle \, d\mu(x) - \sum_{i=1}^{s} \int_{X} \mathbb{E}_{A}(au_{\sigma}\psi m\psi^{*}) \cdot \langle (\widetilde{\rho}(\sigma)\eta^{i})_{x}, \eta_{x}^{i} \rangle \, d\mu(x) \right| \\ & \leq \int_{X} |f(x)| \cdot \left| \langle \pi(x\sigma)\xi_{d(x\sigma)}, \xi_{x} \rangle - \sum_{i} \langle \rho(x\sigma)\eta_{d(x\sigma)}^{i}, \eta_{x}^{i} \rangle \, d\mu(x) \end{aligned}$$

Let C > 0 such that

$$\|\xi_x\|, \|\eta_x^i\| \le C$$
 for all $x \in X$ and $1 \le i \le s$.

By Cauchy-Schwartz,

$$\int_{r(A_{\varepsilon}^{\sigma})} |f(x)| \cdot \left| \langle \pi(x\sigma) \xi_{d(x\sigma)}, \, \xi_{x} \rangle - \sum_{i=1}^{m} \langle \rho(x\sigma) \eta_{d(x\sigma)}^{i}, \, \eta_{x}^{i} \rangle \right| d\mu(x)$$

$$\leq \|f\|_{\infty} \left[\int_{r(A_{\varepsilon}^{\sigma})} \left| \langle \pi(x\sigma) \xi_{d(x\sigma)}, \, \xi_{x} \rangle \right| + \sum_{i=1}^{m} \int_{r(A_{\varepsilon}^{\sigma})} \left| \langle \rho(x\sigma) \eta_{d(x\sigma)}^{i}, \, \eta_{x}^{i} \rangle \right| d\mu(x) \right]$$

$$\leq C^{2} \varepsilon (s+1) \|f\|_{\infty}$$

Substituting this bound back into BLANK, we compute

$$\int_{X} |\varphi(x)| \cdot \left| \left\langle \pi(x\sigma) \xi_{d(x\sigma)}, \, \xi_{x} \right\rangle - \sum_{i} \left\langle \rho(x\sigma) \eta_{d(x\sigma)}^{i}, \, \eta_{x}^{i} \right\rangle \right| d\mu(x)$$

$$< C^{2} \varepsilon(s+1) \|f\|_{\infty} + \int_{X \setminus r(A_{\varepsilon}^{\sigma})} |f(x)| \cdot \left| \left\langle \pi(x\sigma) \xi_{d(x\sigma)}, \, \xi_{x} \right\rangle - \sum_{i} \left\langle \rho(x\sigma) \eta_{d(x\sigma)}^{i}, \, \eta_{x}^{i} \right\rangle \right| d\mu(x)$$

$$< C^{2} \varepsilon(s+1) \|f\|_{\infty} + \|f\|_{\infty} \int_{X \setminus r(A_{\varepsilon}^{\sigma})} \varepsilon \, d\mu(x) \le \varepsilon \cdot (C^{2}(s+1) \|f\|_{\infty} + 1)$$

2 Mixing Proof

Definition 2.0.1. A representation π on $X * \mathcal{H}$ is called *mixing* or c_0 if for every $\epsilon, \delta > 0$ and every pair of normalized sections $\xi, \eta \in S(X * \mathcal{H})$, there is $E \subset X$ with $\mu(X \setminus E) < \delta$ such that

$$\left|\left\{g\in(\mathcal{G}|_E)_x:\left|\langle\pi(g)\xi_x,\eta_{r(g)}\rangle\right|>\epsilon\right\}\right|<\infty\quad\text{for μ-a.e. }x\in E.$$

Definition 2.0.2. An M-M bimodule ${}_{M}\mathcal{H}_{M}$ is mixing relative to $A \subseteq M$ if any net $(u_{i})_{i \in I}$ in $(M)_{1}$ which satisfies $\|\mathbb{E}_{A}(xu_{n}y)\|_{2} \to 0$ for all $x, y \in M$, satisfies

$$\lim_{i} \sup_{y \in (M)_{1}} |\langle u_{n} \xi y, \eta \rangle| = \lim_{i} \sup_{y \in (M)_{1}} |\langle y \xi u_{n}, \eta \rangle| = 0 \quad \text{for all } \xi, \eta \in \mathcal{H}$$

Proposition 2.0.1. If π is mixing then ${}_{M}\mathcal{B}(\pi)_{M}$ is mixing relative to A.

Proof. Fix $\xi \in S_1(X * \mathcal{H})$ and $\varepsilon > 0$. The map $\varphi : \mathcal{G} \to \mathbb{C}$ given by $\varphi(g) = \langle \pi(g) \xi_{d(g)}, \xi_{r(g)} \rangle$ is then a unital positive definite function on \mathcal{G} (see KIDA, CLAIRE, JOLISSAINT etc). By LUPINI, CLAIRE, there is a unique unital, completely positive, \mathbb{E}_A -preserving, A-A bimodular map $\Phi : M \to M$ such that

$$\Phi(u_{\sigma}) = \varphi(\cdot \sigma)u_{\sigma} \quad \text{for all } \sigma \in [\mathcal{G}].$$

Such a map extends to a unique contraction $\widehat{\Phi}: L^2(M) \to L^2(M)$; moreover, the expectation-preservation and A-A-bimodularity imply that $\widehat{\Phi} \in \langle M, A \rangle \cap A'$.

Appealing to the mixingness of π , for each $k \in \mathbb{N}$ there is some measureable $E_k \subseteq X$ with $\mu(X \setminus E_k) < 2^{-k}$ such that

$$\mu_{\mathcal{G}}(\{g \in \mathcal{G}|_{E_k} : |\varphi(g)| > \varepsilon\}) < +\infty.$$

Let $F_1 = E_1$ and $F_{k+1} = E_{k+1} \setminus \bigsqcup_{i=1}^k F_k$, so $1 = \mu \left(\bigcup_{k=1}^\infty E_k \right) = \mu \left(\bigsqcup_{k=1}^\infty F_k \right)$. Consider the projections $p_i = 1_{F_i}$, $q_i = 1_{E_i}$ in A. These satisfy the following:

- $\bullet \ q_k = \sum_{i=1}^k p_i,$
- $\tau(1-q_k) \xrightarrow{k\to\infty} 0$,
- $\tau(p_k) < 2^{-k}$

Consider the map $\Phi_k: q_k M q_k \to q_k M q_k$ given by $\Phi_k(\cdot) = \Phi(q_k \cdot q_k)$. By CLAIRE, we have that $\widehat{\Phi}_k \in \mathcal{K}(\langle q_k M q_k, q_k A q_k \rangle)$.

Suppose that $(u_n)_{n=1}^{\infty}$ is a sequence in $(M)_1$ such that $\|\mathbb{E}_A(m_1u_nm_2)\|_2 \to 0$ for all $m_1, m_2 \in M$. Fix $k \in \mathbb{N}$ such that $\|1 - q_k\|_2 < \varepsilon/6$. Then, for all $n \in \mathbb{N}$, we have

$$||u_n||_2 = ||(1 - q_k)u_n(1 - q_k)||_2 + ||(1 - q_k)u_nq_k||_2 + ||q_ku_n(1 - q_k)||_2 + ||q_ku_nq_k||_2$$

$$\leq 3||1 - q_k||_2 + ||q_ku_nq_k||_2 < \frac{\varepsilon}{2} + ||q_ku_nq_k||_2.$$

Note that this choice of k is independent of $n \in \mathbb{N}$, so the above is essentially a uniform integrability estimate. As the sequence $(q_k u_n q_k)_{n=1}^{\infty}$ in $(q_k M q_k)_1$ satisfies the hypotheses of POPA 1.3.3.5, the compactness of $\widehat{\Phi}_k$ gives that

$$\|\Phi_k(q_k u_n q_k)\|_2 \xrightarrow{n \to \infty} 0.$$

Choose $N \in \mathbb{N}$ such that $\|\Phi_k(q_k u_n q_k)\|_2 < \varepsilon/2$ for all $n \geq N$. Then we have

$$\|\Phi(u_n)\|_2 \le \frac{\varepsilon}{2} + \|\Phi_k(q_k u_n q_k)\|_2 < \varepsilon$$

for all $n \geq N$, so $\|\Phi(u_n)\|_2 \to 0$.

Now fix a countable subset $\Gamma \subseteq [\mathcal{G}]$ which generates \mathcal{G} and write $u_n = \sum_{\sigma \in \Gamma} a_{\sigma}^n u_{\sigma}$. For any $m, y \in (M)_1$, observe that

$$\langle u_n \cdot (\xi \otimes \widehat{m}) \cdot y, \xi \otimes \widehat{m} \rangle = \sum_{\sigma \in \Gamma} \langle a_{\sigma}^n(\xi \otimes \widehat{m}) \cdot y, \xi \otimes \widehat{m} \rangle$$

$$= \sum_{\sigma \in \Gamma} \int_X \mathbb{E}_A(a_{\sigma}^n u_{\sigma} m y m^*) \langle \pi(x\sigma) \xi_{d(x\sigma)}, \xi_x \rangle d\mu(x)$$

$$= \int_X \mathbb{E}_A\left(\sum_{\sigma \in \Gamma} \langle \pi(x\sigma) \xi_{d(x\sigma)}, \xi_x \rangle a_{\sigma}^n u_{\sigma} m y m^* \right) d\mu(x)$$

$$= \int_X \mathbb{E}_A(\Phi(u_n) m y m^*) d\mu(x) = \langle \Phi(u_n), m y^* m^* \rangle$$

whence

$$\sup_{y \in (M)_1} |\langle u_n \cdot (\xi \otimes \widehat{m}) \cdot y, \xi \otimes \widehat{y} \rangle| \le ||\Phi(u_n)||_2 \xrightarrow{n \to \infty} 0.$$

We may then upgrade this result to any vectors $v, w \in \mathcal{B}(\pi)$ by applying the technique in TBOOK applied to the set

$$V = \{v \in \mathcal{B}(\pi) : \lim_{n \to \infty} \sup_{y \in (M)_1} |\langle u_n v y, v \rangle| = 0 \text{ for any } (u_n)_{n=1}^{\infty} \text{ with } ||\mathbb{E}_A(m_1 u_n m_2)||_2 \to 0 \text{ for all } m_1, m_2 \in M\}.$$

One shows that this set is closed under scalar multiplication, the action of $M \odot M^{\text{op}}$, addition, and is norm closed, whence it follows that $V = \mathcal{B}(\pi)$. Lastly, one uses polarization to upgrade to pairs of vectors.

3 Weak Containment: Ben Fix

Proposition 3.0.1. Suppose π , ρ on $\{\mathcal{H}_x\}_{x\in X}$, $\{\mathcal{K}_x\}_{x\in X}$ respectively. Set $D=\operatorname{Span}\{au_{\sigma}: a\in A, \sigma\in [\mathcal{G}]\}$. Suppose that, for any $\xi\in\int_X^{\oplus}\mathcal{H}_x\,d\mu(x)$ and $\psi\in M$, we have

there exists $C_{\xi} > 0$ such that for all $\delta > 0$, $F \subseteq D$, and $E \subseteq M$ finite subsets, there are $\eta_1, \ldots, \eta_l \in \int_X^{\oplus} \mathcal{K}_x d\mu(x)$ such that $\sum_{i=1}^l \langle \eta_i, \eta_i \rangle \leq C_{\xi}$ and

$$\left|\omega_{\xi\otimes\widehat{\psi}}(x'\otimes y) - \sum_{i=1}^{l} \omega_{\eta_i\otimes\widehat{\psi}}(x'\otimes y)\right| < \delta \quad \text{for all } x'\in F, \ y\in E.$$

Then, when considered as an element of $(M \otimes_{max} M^{op})^*$, we have that

$$\omega_{\xi \otimes \widehat{\psi}} \in \overline{co}^{wk^*} \left\{ \omega_{\eta \otimes \widehat{\psi}} : \eta \in \int_X^{\oplus} \mathcal{K}_x \, d\mu(x) \,, \, \|\eta\|_2 \leq C_{\xi} \right\}.$$