Poisson Image Editing

Priyatham

Roshan

Saicharan

Poisson Equation

- Poisson equation natural in many CV applications
- Psychology: Human eyes perceive strongly only the second order changes in intensity
- Useful in image editing

The Idea: Guided Interpolation

- Let S(x,y) be the domain of the image, Ω be a subset of the domain on which we want to edit the image.
- There is a known image f^* on S/Ω . We need to find the image f on Ω such that f resembles some known g.

The Idea: Guided Interpolation

• Let $\mathbf{v} = \operatorname{grad}(g)$

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega},$$

which is equivalent to:

$$\Delta f = \operatorname{div} \mathbf{v} \text{ over } \Omega, \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega},$$

Seamless Cloning

 This method can be used to seamless merge one image into another at a specific region.

sources/destinations

cloning

seamless cloning

Other applications

- Different choices of v(guidance field), gives different image editing applications.
- v=grad(g) results in seamless cloning
- Seamless cloning washes out texture details of source image. This is undesirable sometimes

Towards Mixed Cloning

Source Image: Cloning Seamless (Note the texture)

Mixed Cloning

• $\mathbf{v} = \max(\operatorname{grad}(g), \operatorname{grad}(f^*))$

Texture Flattening

- v(x,y) = grad(g) if there is an edge at x,y
- $\mathbf{v}(\mathbf{x},\mathbf{y}) = 0$ otherwise

Conclusion

- There are many other applications that can be derived from this general tool of Poisson Image Editing.
- Local illumination changes to suppress specular reflections, underexposure etc
- Local Colour changes
- Seamless Tiling