MPAM2_EL2, MPAM2 Register (EL2)

The MPAM2 EL2 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL2.

Configuration

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System register MPAM3_EL3[63] when EL3 is implemented.

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System register MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAM2 EL2 are undefined.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAM2 EL2 is a 64-bit register.

Field descriptions

	63	62616059	58	57	56	55	54	535251	50	49	
ľ	MPAMEN	RES0	TIDR	RES0	ALTSP_HF	CALTSP_EL	2ALTSP_FRCI	RES0	EnMPAMSM	TRAPMPAM0EL1	TRA
	PARTID_D										
	31	30292827	26	25	24	23	22	212019	18	17	

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as their default value in the corresponding ID space.

MPAMEN	Meaning
0d0	The default PARTID and default PMG are output in MPAM information from all Exception levels.

0b1	MPAM information is output based on the MPAMn ELx
	register for ELn according
	to the MPAM configuration.

If EL3 is not implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write MPAM3 EL3.MPAMEN bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

- When EL3 is not implemented, access to this field is **RW**.
- Otherwise, access to this field is **RO**.

Bits [62:59]

Reserved, res0.

TIDR, bit [58]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMIDR EL1.HAS TIDR == 1:

TIDR traps accesses to **MPAMIDR EL1** from EL1 to EL2.

TIDR	Meaning
0b0	This control does not cause any
	instructions to be trapped.
0b1	Trap accesses to MPAMIDR_EL1 from EL1 to EL2.

<u>MPAMHCR_EL2</u>.TRAP_MPAMIDR_EL1 == 1 also traps <u>MPAMIDR_EL1</u> accesses from EL1 to EL2. If either TIDR or TRAP MPAMIDR EL1 are 1, accesses are trapped.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [57]

Reserved, res0.

ALTSP_HFC, bit [56] When FEAT RME is implemented and MPAMIDR EL1.HAS ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0, ALTSP controls in MPAM2_EL2 have no effect. When MPAM3_EL3.ALTSP_HEN is 1, this bit selects whether the PARTIDs in MPAM1_EL1 and MPAM0_EL1 are in the primary (0) or alternative (1) PARTID space for the security state.

ALTSP_HFC	Meaning
0b0	When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space of
	MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D, MPAM0_EL
	and MPAMO_EL1.PARTID_D are in the primary PARTID space
	Security state.
0b1	When MPAM3 EL3.ALTSP HEN is 1, the PARTID space of
	MPAM1 EL1.PARTID I, MPAM1 EL1.PARTID D, MPAM0 EL
	and MPAMO EL1.PARTID D are in the alternative PARTID sp
	Security state.

This control has no effect when MPAM3 EL3.ALTSP HEN is 0.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ALTSP_EL2, bit [55] When FEAT RME is implemented and MPAMIDR EL1.HAS ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM2_EL2 when MPAM3_EL3.ALTSP_HEN is 1.

ALTSP_EL2	Meaning
0b0	When
	MPAM3_EL3.ALTSP_HEN is 1,
	selects the primary PARTID
	space for
	MPAM2_EL2.PARTID_I and
	MPAM2_EL2.PARTID_D.

0b1	When
	MPAM3_EL3.ALTSP_HEN is 1,
	selects the alternative PARTID
	space for
	MPAM2 EL2.PARTID I and
	MPAM2_EL2.PARTID_D.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ALTSP_FRCD, bit [54] When FEAT RME is implemented and MPAMIDR EL1.HAS ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

ALTSP_FRCD	Meaning
0b0	The PARTIDs in this
	register are using the
	primary PARTID space.
0b1	The PARTIDs in this
	register are using the
	alternative PARTID
	space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the alternative PARTID space defined for the current Security state. In EL2, it is also 1 when MPAM2_EL2.ALTSP_EL2 is 1.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Access to this field is **RO**.

Otherwise:

Reserved, res0.

Bits [53:51]

Reserved, res0.

EnMPAMSM, bit [50] When FEAT SME is implemented:

Traps execution at EL1 of instructions that directly access the MPAMSM_EL1 register to EL2. The exception is reported using ESR ELx.EC value 0x18.

EnMPAMSM	Meaning
0b0	This control causes
	execution of these
	instructions at EL1 to be
	trapped.
0b1	This control does not
	cause execution of any
	instructions to be
	trapped.

This field has no effect on accesses to <u>MPAMSM_EL1</u> from EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TRAPMPAMOEL1, bit [49]

Trap accesses from EL1 to the MPAMO EL1 register trap to EL2.

TRAPMPAM0EL1	Meaning
0b0	Accesses to
	MPAM0_EL1 from
	EL1 are not
	trapped.

0b1 Accesses to MPAM0 EL1 from	ì
EL1 are trapped t	О
EL2.	

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 1.
 - When EL3 is implemented, this field resets to an architecturally unknown value.

TRAPMPAM1EL1, bit [48]

Trap accesses from EL1 to the MPAM1 EL1 register trap to EL2.

TRAPMPAM1EL1	Meaning
0b0	Accesses to
	MPAM1_EL1 from
	EL1 are not
	trapped.
0b1	Accesses to
	MPAM1 EL1 from
	EL1 are trapped to
	EL2.

The reset behavior of this field is:

- On a Warm reset:
 - When EL3 is not implemented, this field resets to 1.
 - When EL3 is implemented, this field resets to an architecturally unknown value.

PMG D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PMG I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PARTID D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing MPAM2_EL2

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM2_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0101	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.NV == '1' then
        if HaveEL(EL3) && MPAM3 EL3.TRAPLOWER == '1'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
    X[t, 64] = MPAM2_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = MPAM2_EL2;
```

MSR MPAM2_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0101	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        MPAM2\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    MPAM2\_EL2 = X[t, 64];
```

MRS <Xt>, MPAM1_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0101	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

```
else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && MPAM2 EL2.TRAPMPAM1EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x900];
    else
        X[t, 64] = MPAM1\_EL1;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3 EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        X[t, 64] = MPAM2\_EL2;
    else
        X[t, 64] = MPAM1 EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = MPAM1\_EL1;
```

MSR MPAM1_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0101	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x900] = X[t, 64];
    else
        MPAM1\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        MPAM2\_EL2 = X[t, 64];
    else
```

MPAM1_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAM1_EL1 = X[t, 64];

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

 $28/03/2023\ 16:02;\ 72747e43966d6b97dcbd230a1b3f0421d1ea3d94$

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.