RFID Data Cleansing by Bayesian Filtering

Zhitao Gong

November 26, 2016

Outline

Introduction

System

Experiment

Discussion

Motivation

Goal - Cleanse noisy RFID readings for indoor location service.

- People spend lots of time indoor.
- GPS is unavailable.
- RFID receiver is cheaper
- RFID raw readings are noisy, e.g., false negative readings.
- Existing solutions do not fit our problem, e.g., static objects [Bab+14], grid-layout setting [Gen+14], event stream queries [Ré+08; Wel+08], etc.

Spatial Queries

Conventional definition

Range query Decide the objects that lie in a given range.

k-nearest neighbor query Decide the *k* nearest objects w.r.t a given query point.

Probabilistic interpretation

Range query Decide the objects that lie in a given range with probability larger than a threshold.

k-nearest neighbor query Decide the k' nearest objects whose probability sum is no less than k.

Simplification - Walking Graph

- 1. Hallways \rightarrow graph edges.
- 2. Crosses \rightarrow graph nodes.
- 3. Rooms \rightarrow graph nodes.

Rooms differ from crosses: maximum stay duration.

Simplification – Anchor Point

- Objects are rounded to the nearest anchor point.
- ► Anchor points are indexed by R-tree.

Outline

Introduction

System

Experiment

Discussion

Overview

Data Collector generates ground truth data.

Query Optimization filters out non-candidates.

Bayesian Filters cleanse the noisy RFID data.

Query Evaluation answers spatial queries.

Event-Driven Data Collector

The data collected is

$$o_1:(t_1,r_1),(t_2,\mathsf{NIL}),(t_3,r_2),(t_4,\mathsf{NIL}),\ldots$$

Optimization Model

We are pruning *non-candidates* by their uncertainty range.

- denotes the reader range.
- denotes the uncertainty range.

Optimization Model - Range Query

The candidate set is $\{o_1, o_2, o_3\}$

Optimization Model – kNN Query

The candidate set for 2NN query $\{o_1, o_2, o_3\}$.

Bayesian Filtering

We want to track the object.

Generate random guesses, i.e., particles.

Particles that explain the observation well get larger weights.

16 / 38

Resample good particles to keep population size.

In case of a false negative, predict with particles.

Align particles to the nearest anchor point.

We want to track the object.

Each reading is an observation.

We have a new observation and guess from the past.

We combine these two to form an adjusted guess.

In case of a false negative, predict from pass guess.

Assign *normalized* probability to anchors points.

Evaluation Module

Outline

Introduction

System

Experiment

Discussion

Default Values

Parameters	Default Values
Number of particles	64
Query window size	2%
Number of moving objects	200
k	3
Activation range	2 meters

Range Query Window Size

- 1. KL value lower is better.
- 2. Query window size is the ratio of areas between query window and total environment.

k in kNN

- 1. Hit rate higher is better.
- 2. *k* is the number of nearest neighbors.

Number of Particles

- 1. KL value lower is better.
- 2. This parameter only applies to particle filter.

Number of Moving Objects

- 1. KL value lower is better.
- 2. Total number of objects in the environment.

Detection Range

- 1. KL value lower is better.
- 2. The detection range of each reader.

Change of Volume

Suppose t_1 the result set is $\{o_1, o_2, o_3\}$, and t_2 the result changes to $\{o_1, o_2, o_4\}$, then the change volume is 2.

Query Duration

Measure how stable our algorithm is.

Outline

Introduction

System

Experiment

Discussion

Summary

- 1. We designed Bayesian-filter algorithms for RFID data cleansing.
- 2. We propose indoor walking graph model and anchor point model to simplify the filter process.
- 3. We propose two metrics to evaluate continuous queries.
- 4. Extensive experiment demonstrates the effectiveness of our solutions compared with symbolic model.

Future Work

- 1. Test on real-world data.
- 2. Experiment with more diverse environment settings.