Ch. 4: Consumption, Saving, and Investment

Munechika Katayama

Waseda University

2020 Spring

Chapter Outline

- Consumption and Saving
- Investment
- Goods Market Equilibrium

Consumption and Saving

In a closed economy

$$S^d = Y - C^d - G$$

- Desired consumption (C^d) consumption amount desired by households
- Desired national saving (S^d) the level of national saving when consumption is at its desired level

Individual's Consumption and Saving Decision

- How do changes in
 - current income
 - expected future income
 - wealth
 - real interest rate

affect current consumption and saving decisions?

Individual's Consumption and Saving Decision (Cont'd)

- A person can consume less than current income or more than current income
- Trade-off between current consumption and future consumption
- Real interest rate determines the relative price of current consumption
- Consumption-smoothing motive the desire to have a relatively even pattern of consumption over time

Effect of Changes in Current Income

 Marginal Propensity to Consume (MPC) = fraction of additional income consumed in current period

- When current income (Y) rises, C^d rises, but not by as much as Y
- With higher current income, both C^d and S^d increase

Effect of Changes in Expected Future Income / Wealth

- Higher expected future income leads to more consumption today, so saving falls
- Increase in wealth raises current consumption, so lowers current saving

Consumer Sentiment and Consumption Spending

Figure: Consumer Sentiment and Consumption Spending Growth

Source: FRED database, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/series/UMCSENT, https://fred.stlouisfed.org/series/PCECC96.

Effect of Changes in Real Interest Rate

- Increased real interest rate has two opposing effects
- **Substitution effect:** Positive effect on saving, since rate of return is higher; greater reward for saving elicits more saving
- Income effect:
 - ► For a saver: Negative effect on saving, since it takes less saving to obtain a given amount in the future (target saving)
 - For a borrower: Positive effect on saving, since the higher real interest rate means a loss of wealth
- Net effect?

Effect of Changes in Real Interest Rate (Cont'd)

- Taxes and the real return to saving
- Expected real after-tax interest rate

$$r_{\mathsf{a}-\mathsf{t}} = (1-\mathsf{t})\mathsf{i} - \pi^\mathsf{e}$$

Different Interest Rates

- Different interest rates reflect differences in
 - default risk
 - ▶ term structure (maturity) → yield curve
 - tax status
- Since they often move together, we frequently refer to "the" interest rate
- Yield curve: relationship between life of a bond and the interest rate it pays

Figure: Yield Curve

Figure: Yield Curve

Figure: Yield Curve

Figure: Yield Curve

Effect of Fiscal Policy

- Fiscal policy affects desired consumption through changes in current and expected future income
- Fiscal policy directly affects desired national saving

$$S^d = Y - C^d - G$$

- The effect of government purchases (temporary increase) financed by higher current taxes?
- The effect of government purchases (temporary increase) financed by government borrowing?

Effect of Fiscal Policy (Cont'd)

- The effect of lump-sum tax cut today financed by higher future taxes?
- Ricardian equivalence proposition
 - If future income loss exactly offsets current income gain, no change in consumption
 - ► Tax change affects only the timing of taxes, not their ultimate amount (present value)
- In practice, people may not see that future taxes will rise if taxes are cut today
- Then a tax cut leads to increased desired consumption and reduced desired national saving

How consumers respond to tax rebates

- The government provided tax rebates in recessions of 2001 and 2007–2009, hoping to stimulated the economy
- A research suggests that consumers did not increase spending much in 2001, when the government provided a similar tax rebate
- A new research finds that even though consumers originally saved much of the tax rebate, later they increased spending and increased their credit-card debt
- New evidence on the tax rebates in 2008 and 2009
 - ► Consumers spent 50–90% of the tax rebates
 - Inconsistent with Ricardian equivalence

Importance of Investment

Figure: Growth Rates of Japan's Output, Consumption, and Investment (%)

Importance of Investment (Cont'd)

	GDP Share	Volatility
Private final consumption expenditure	55.4 %	1.5
Government final consumption expenditure	20.1 %	1.3
Gross fixed capital formation	24.5 %	5.4
Exports of goods and services	17.5 %	10.0
(less) Imports of goods and services	17.7 %	6.9
GDP		2.1

Source: Cabinet Office, Economic and Social Research Institute, National Accounts for 2017.

 Volatility is measured as standard deviation of growth rate of each variable from 1995:Q1 to 2018:Q1.

Investment

- The desired capital stock: The amount of capital that allows firms to earn the largest expected profit
- It depends on costs and benefits of additional capital
- The benefit of investment is the future marginal product of capital (MPK^f)

The User Cost of Capital

- Real costs of using a unit of capital for a specified period of time
- Equals to real interest cost + depreciation

$$uc = rp_k + dp_k = (r + d)p_k,$$

where

r = expected real interest rate d = depreciation rate $p_k =$ the real price of capital goods

Determination of the Desired Capital Stock

Expected Future MPK^f User cost, uc(dollars per cubic foot per year)

Figure: The Determination of the Desired Capital Stock

Taxes and the Desired Capital Stock

- With taxes, the return to capital is only $(1-\tau)MPK^f$, where τ is the tax rate on firm revenue
- A firm chooses its desired capital stock so that the return equals the user cost

$$(1-\tau)MPK^f = uc$$

- How does an increase in τ affect the desired capital stock?
- What is the tax-adjusted user cost of capital?

Taxes and the Desired Capital Stock (Cont'd)

- In reality, there are complications to the tax-adjusted user cost
- We assumed that firm revenues were taxed
 - In reality, profits, not revenues are taxed
 - Depreciation allowances reduce the tax paid by firms, because they reduce profits
- Investment tax credits reduce taxes when firms make new investments
- The effective tax rate: Economists summarize the many provisions of the tax code affecting investment by a single measure of the tax burden on capital

Effective Tax Rate on Capital

Figure: Effective Tax Rate and Investment Rate

From the Desired Capital Stock to Investment

Net investment = gross investment (I) minus depreciation

$$\underbrace{K_{t+1} - K_t}_{\text{net investment}} = I_t - dK_t$$

Alternatively

$$I_t = K_{t+1} - K_t + dK_t$$

• If firms can change their capital stocks in one period, then the desired capital stock $K^* = K_{t+1}$

$$I_t = \underbrace{K^* - K_t}_{\substack{ ext{desired net increase in } K}} + \underbrace{dK_t}_{\substack{ ext{replacing depreciated } K}}$$

Lags and investment

Gross and Net Investment

Source: FRED database, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/series/GPDIA, https://fred.stlouisfed.org/series/A557RC1A027NBEA, https://fred.stlouisfed.org/series/GPDA.

Investment and the Stock Market

- Tobin's q theory of investment
- Firms change investment in the same direction as the stock market

$$q=\frac{V}{p_kK},$$

where

q = Tobin's q V = firm's market value $p_k K = \text{firm's replacement cost}$

• If q < 1, don't invest. If q > 1, invest more.

Investment and Tobin's q

Figure 4.6 Investment and Tobin's *q*, 1987Q1 – 2014Q4

Other Types of Investment

- Inventory investment and residential investment
- Marginal product of capital and user cost also apply, as with equipment and structures

Goods Market Equilibrium

•
$$Y = C^d + I^d + G$$

- For simplicity, assume no foreign sector
- The real interest rate adjusts to bring the goods market into equilibrium
- Alternative representation: $S^d = I^d$

Saving-Investment Diagram

Figure: Goods Market Equilibrium

Shifts of the Saving Curve

Factors:

- Current output
- Expected future output
- Wealth
- Government purchases
- Taxes
 (w/o Ricardian Equivalence)

Shifts of the Investment Curve

Factors:

- Effective tax rate
- Expected future marginal productivity of capital

