Let \mathbb{H} be the parity-check matrix of an (n, k) linear code C that has both odd-and even-weight codewords. Construct a new linear code C_1 with the following parity-check matrix:

$$\mathbb{H}_{1} = \begin{bmatrix} 0 & & & \\ 0 & & & \\ \vdots & & \mathbb{H} & \\ -\frac{0}{1} & -\frac{1}{1} & 1 & \cdots & 1 \end{bmatrix}.$$

(Note that the last row of \mathbb{H}_1 consists of all 1's.)

- a. Show that C_1 is an (n+1, k) linear code. C_1 is called an extension of C.
- b. Show that every codeword of C_1 has even weight.
- c. Show that C_1 can be obtained from C by adding an extra parity-check digit, denoted by v_{∞} , to the left of each codeword \mathbf{v} as follows: (1) if \mathbf{v} has odd weight, then $v_{\infty} = 1$, and (2) if \mathbf{v} has even weight, then $v_{\infty} = 0$. The parity-check digit v_{∞} is called an *overall parity-check* digit.
- 2- Let C be a linear code with both even- and odd-weight codewords. Show that the number of even-weight codewords is equal to the number of odd-weight codewords.
- 3- Consider an (n, k) linear code C whose generator matrix \mathbb{G} contains no zero column. Arrange all the codewords of C as rows of a 2^k -by-n array.
 - a. Show that no column of the array contains only zeros.
 - **b.** Show that each column of the array consists of 2^{k-1} zeros and 2^{k-1} ones.
 - \mathbf{c} . Show that the set of all codewords with zeros in a particular component position forms a subspace of C. What is the dimension of this subspace?
- Prove that a linear code is capable of correcting λ or fewer errors and simultaneously detecting $l(l > \lambda)$ or fewer errors if its minimum distance $d_{\min} \ge \lambda + l + 1$.

5- Let C_1 be an (n_1, k) linear systematic code with minimum distance d_1 and generator matrix $\mathbb{G}_1 = [\mathbb{P}_1 \mathbb{I}_k]$. Let C_2 be an (n_2, k) linear systematic code with minimum distance d_2 and generator matrix $\mathbb{G}_2 = [\mathbb{P}_2 \mathbb{I}_k]$. Consider an $(n_1 + n_2, k)$ linear code with the following parity-check matrix:

$$\mathbf{H} = \left[\begin{array}{c} \mathbf{I}_{n_1+n_2-k} & \mathbf{I}_k \\ \mathbf{I}_{n_2-k} & \mathbf{I}_k \end{array} \right].$$

Show that this code has a minimum distance of at least $d_1 + d_2$.

For any binary (n, k) linear code with minimum distance (or minimum weight) 2t+1 or greater, show that the number of parity-check digits satisfies the following inequality:

$$n-k \ge \log_2\left[1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{t}\right].$$

The preceding inequality gives an upper bound on the random-error-correcting capability t of an (n, k) linear code. This bound is known as the *Hamming*

bound [14]. (Hint: For an (n, k) linear code with minimum distance 2t + 1 or greater, all the *n*-tuples of weight t or less can be used as coset leaders in a standard array.)