Лабораторная работа 3.1.3

Герасименко Д.В.

2 курс ФРКТ, группа Б01-104

Аннотация

Тема:

Измерение магнитного поля Земли

Цель работы:

Определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измерить горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

Оборудование:

12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0, 5-0, 6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25 \times 30 \times 60 \text{ мм}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики $(\sim 20 \text{ шт.})$ набор гирь и разновесов.

Теория

І.Точечный магнитный диполь

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент $\vec{P_m}$ тонкого витка площадью S с током I равен:

$$\vec{P_m} = \frac{I}{c}\vec{S} = \frac{I}{c}S\vec{n} \tag{1}$$

где c — скорость света в вакууме, $\vec{S} = S\vec{n}$ — вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} — единичный вектор нормали к площадке S (это же направление \vec{P}_m принимается за направление $S \to N$ от южного (S) к северному (N) полюсу). Если размеры контура с током или магнитной стрелки малы по сравнению расстоянием до диполя, то соответствующий магнитный диполь \vec{P}_m называют элементарным или точечным.

Поле точечного диполя определяется по следующей формуле:

$$\vec{B} = \frac{3(\vec{P_m}, \vec{r})\vec{r}}{r^5} - \frac{\vec{P_m}}{r^3}$$
 (2)

В магнитном поле с индукцией \vec{B} на точечный магнитный диполь \vec{P}_m действует механический момент сил:

$$\vec{M} = \left[\vec{P_m}, \vec{B} \right] \tag{3}$$

Под действием вращающего момента \vec{M} виток с током или постоянный магнит поворачивается так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это — положение устойчивого

равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия. В положении, когда $\vec{P_m}$ и \vec{B} параллельны, но направлены противоположно друг другу, также имеет место равновесие (M=0), но такое равновесие неустойчиво: малейшее отклонение от этого положения приведёт к появлению момента сил, стремящихся отклонить диполь ещё дальше от начального положения.

Магнитный диполь в магнитном поле обладает энергией:

$$W = -\left(\vec{P_m}, \vec{B}\right) \tag{4}$$

ІІ.Неодимовые магниты

В настоящей работе используются неодимовые магниты шарообразной формы. Для нас важно то, что:

- 1. шары намагничены однородно;
- 2. вещество, из которого изготовлены магниты, является магнитожёстким материалом.

Внутри такого шара магнитное поле равно

$$B_0 = \frac{2P_m}{R^3} \tag{5}$$

Полный магнитный момент $\vec{P_m}$ постоянного магнита определяется намагниченностью $\vec{p_m}$ вещества, из которого он изготовлен. По определению, намагниченность — это магнитный момент единицы объёма. Для однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p_m} = \frac{\vec{P_m}}{V} \tag{6}$$

Намагниченность — важная характеристика вещества постоянных магнитов, определяющая, в частности, величину остаточной магнитной индукции $B_r = 4\pi p_m$ (остаточная индукция B_r — одна из величин, которая, как правило, указывается в справочниках по магнитожёстким материалам).

$$\vec{B_P} = \frac{8\pi}{3} \vec{p_m} = \frac{2}{3} \vec{B_r} \tag{7}$$

III.Экспериментальное определение величины магнитного момента магнитных шариков

 P_m можно определить из параметров шарика и из расстояния r_{max} , на котором они удерживаются в поле тяжести.

$$P_m = \sqrt{\frac{mgr_{max}^4}{6}} \tag{8}$$

$$\vec{B_p} = \frac{2\vec{P_m}}{R^3} \tag{9}$$

IV.Определение величины магнитного момента по силе сцепления магнитных шариков

Если сила сцепления двух одинаковых шаров равна

$$F_0 = \frac{6P_m^2}{d^4} \Rightarrow P_m = \sqrt{\frac{F_0 d^4}{6}} \tag{10}$$

то минимальный вес цепочки, при которой она оторвется от верхнего шарика равен:

$$F \approx 1,08F_0 \tag{11}$$

V.Измерение горизонтальной составляющей индукции магнитного поля Земли

Рис.1. Критильный маятник

При отклонении "стрелки"на угол θ от равновесного положения в горизонтальной плоскости возникают крутильные колебания вокруг вертикальной оси, проходящей через середину стрелки. Если пренебречь упругостью нити, то уравнение крутильных колебаний такого маятника определяется возвращающим моментом сил $M=-P_0B_h\sin\theta$, действующим на "стрелку"со стороны магнитного поля Земли, и моментом инерции I_n "стрелки"относительно оси вращения.

При малых амплитудах:

$$T = 2\pi \sqrt{\frac{I_n}{nP_mB_h}}$$

Пусть

$$T(n) = kn \Rightarrow$$

$$k = \pi \sqrt{\frac{md^2}{3P_m B_h}} \Rightarrow B_h = \frac{\pi^2 m d^2}{3k^2 P_m} \tag{12}$$

VI.Измерение вертикальной составляющей индукции магнитного поля Земли.

С помощью небольшого дополнительного грузика "стрелку"можно "выровнять расположив её горизонтально: в этом случае момент силы тяжести груза относительно точки подвеса будет равен моменту сил, действующих на "стрелку"со стороны магнитного поля Земли. Если масса уравновешивающего груза равна m, плечо силы тяжести r, а полный магнитный момент "стрелки" $P_0 = nP_m$, то в равновесии:

$$mgr = P_0B_v = nP_mB_v$$

$$B_v = \frac{M(n)}{P_m} \tag{13}$$

<u>Выполнение</u>

І.Определение магнитного момента, намагниченности и остаточной магнитной индукции шариков

Метод А.

Определим все данные наших шариков и запишем их в таблицу.

Параметр	Значение	σ
m, г		
d, mm		

Таблица 1. Параметры шариков.

Определим r_{max} . Затем по формуле (8) определим P_m , по формуле (6) определим p_m , по формуле (9) определим B_p и по формуле (7) определим B_r . Все полученные данные занесем в таблицу 2.

Величина	Значение	σ
r_{max} , cm		
P_m , $\Gamma c \cdot c m^3$		
p_m , Γc		
B_p , к Γ с		
B_r , к Γ с		

Таблица 2. Величины, определяемые в методе A.

МАГНИТОМЕТР

Меряем B_p с помощью магнитометра и получаем $B_p = (340 \pm 1)$ мТл.

Метод В

Составим цепочку и определим F - вес грузиков, которые надо подвесить к этой цепочке, чтобы грузики оторвались.

По формуле (7) определим силу сцепления двух шаров. По формуле (6) найдем P_m и запишем все данные в таблицу.

Величина	Значение	σ
M, г		
F, кдин		
F_0 , кдин		
$P_m, \Gamma c \cdot c m^3$		

Таблица 3. Величины, определяемые в методе В.

В итоге получаем, что $P_m = \Gamma c \cdot cm^3$. $B_p = mT\pi$, а $B_r = mT\pi$, что очень близко к табличным значениям $(1,03-1,13\ T\pi)$, но довольно далеко от измеренного нами поля магнитометром.

II.Определение горизонтальной составляющей магнитного поля Земли

Для определения горизонтальной составляющей магнитного поля Земли нам нужно собрать установку для возбуждения крутильных колебаний и исследовать зависимость количество шариков от периода.

Перед этим удостоверимся, что при расчете периода упругость нити можно не учитывать, свернув стрелку в кольцо и измерив период крутильных колебаний (очевидно, что магнитный момент такой стрелки равен 0).

ИЗМЕРИТЬ ПЕРИОД КРУГОВОЙ ЦЕПОЧКИ

Получаем T = c. Это означает, что мы можем пренебречь упругостью нитей.

n	t, c	N	T, c
12			
11			
10			
9			
8			
7			
6			
5			
4			

Таблица 4. Зависимость крутильных колебаний от количества шариков T(n)

Построим график зависимости T(n) и по формуле (12) найдем B_h .

По значению углового коэффициента k рассчитаем величину горизонтальной составляющей магнитного поля Земли по формуле (8).

$$B_h = (\pm) \Gamma c$$

III. Определение вертикальной составляю-щей магнитного поля Земли

Определяем механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную "стрелку". Для этого, с помощью одного или нескольких кусочков проволоки, уравновесьте "стрелку"в горизонтальном положении. Сделаем измерения для разных количеств шариков и занесем все в таблицу.

n	m , Γ	r, cm	M , дин \cdot см
12			
10			
8			
6			
4			

Таблица 5. Зависимость момента сил от n.

По формуле (13) определяем $B_v = (\pm)$ Гс.

В итоге получаем, что $B=(\pm)$ Гс и $\beta=^\circ$, что очень близко к современным данным в нашем регионе.