Notes on Physics 415: Statistical and Thermal Physics

Harry Luo

C	ontents	
1	Basic Statistical Methods	2
	1.1 Random walk: Binomial distribution and the Emergence of Gaussian	2
	1.2 Probability Distribution with Multivariables	3
	1.3 Continuous probability distribution	3
2	Stat. Mech setup	3
3	Density of states	4
4	Interaction between Macro bodies	4
5	Quasistatic process	5
6	Thermal int. btwn sys: Entropy	5
7	The 2nd law	6
8	Reversible and Irreversible process	6
9	Fundamental relation	6
10	Laws of Thermodynamics	7
11	Response function	7
12	Ideal Gas	7
13	Summary of Thermal laws	8
14	Response function	8
15	Thermodynamic Potentials	9
16	Maxwell Relations	9
17	Entropy and Internal Energy : Take (T, V) as indp. var	9
18	Free Expansion: Start from T_1, V_1 and $V_1 \rightarrow V_2$:	
		10
19	Joule-Thomson Process: start $p_1, T_1; p_1 \rightarrow p_2$ and so $T_1 = T_2 \dots$	10
	Heat Engines and Refrigerators	
	20.1 Heat engine	11
	20.2 fridge	11
21	Cononical Ensemble: fix T, N, V.	
	21.1 Ex: spin in H-field	11
	21.2 Properties of Z , and thermo potential	12
22	Fundamental Relation:	
23	Grand Canonical Ensemble	12
24	Classical Ideal gas	12
25	Thermal Classical Limit	12
26	Equipartition theroem	13
	Solid Lattice	
28	Paramagnetism	13
29	Kinetic Theory	14
	29.1 Examples:	14

1 Basic Statistical Methods

1.1 Random walk: Binomial distribution and the Emergence of Gaussian

• Example: We introduce important ideas from Probability via an example of 1D random walk:

Consider a drunkard walking along a straight line, starting from Origin x=0, and taking randoms steps of length l at regular intervals. Each step is independent of the last. He takes a probability p of steping to the left, and 1-p to step to the right. After taking N steps, what is the probability that the walker is at position x=ml?

Let $P_N(m)$ be the position x=ml of the drunkard after N steps; denote $n_1=$ number of steps to the left, $n_2=N-n_1$ number of steps to the right. Notice that $-N\leq m\leq N, N=n_1+n_2, m=n_1-n_2$.

Then the number of walking combinations, indexed with either direction left (n_1) or right (n_2) , is given by the binomial coefficient:

$$\binom{N}{n_1} = \frac{N!}{n_1!(N-n_1)!} = \frac{N!}{n_1!\,n_2!} = \binom{N}{n_2}. \tag{1}$$

Then the probability of the walker taking n_1 steps to the left and n_2 steps to the right is given by the **binomial distribution:**

$$P_N(n_1) = \frac{N!}{n_1! n_2!} \, p^{n_1} q^{n_2}. \tag{2}$$

Noticing $n_1=\left(\frac{N+m}{2}\right)$ and $n_2=\left(\frac{N-m}{2}\right)$:

$$P_{N}(m) = \frac{N!}{\left[\frac{N+m}{2}\right]! \left[\frac{N-m}{2}\right]!} p^{\frac{N+m}{2}} (1-p)^{\frac{N-m}{2}}. \tag{3}$$

1.1.1 General Notions from probability:

Let X be a random variable, taking N possible values $x_1,x_2,...,x_N$ with associated probabilities $P(x_1),P(x_2),...,P(x_N)$. Note that $0\leq P(x_i)\leq 1,\sum_{i=1}^N P(x_i)=1$

• Mean:
$$\overline{x} \coloneqq \sum_{i=1}^N P(x_i) x_i$$

$$\operatorname{Var: var}(x) \coloneqq \overline{(x-\overline{x}^2)} = \sum_{i=1}^N P(x_i) \left(x_i - \overline{x}\right)^2 = \overline{x^2} - \overline{x}^2$$

• RMS: $\Delta x_{\rm rms} = \sqrt{\overline{x^2} - \overline{x}^2}$

• For Binobial Distribution: $\overline{x}=Np$, Dispersion: $\mathrm{var}(x)=Npq$, $\Delta x_{\mathrm{rms}}=\sqrt{Npq}$ Relative Width: $\frac{\Delta n_{1,\mathrm{rms}}}{\overline{n_1}}=\frac{q}{p}\,\frac{1}{\sqrt{N}}\to 0 \quad (n\gg 1)$

1.1.2 Central Limit Theorem: Appox. of Binom.

Recall Equation 2, taking logrithm on both sides:

$$\ln(P_N(m)) = \ln(N!) - \ln(n!) - \ln(N-n)! + n\ln(p) + (N-n)\ln(q). \tag{4}$$

For $N \gg 1$, we can approximate using Stirling's formula:

$$N! \approx \sqrt{2\pi N} N^N e^{-N},\tag{5}$$

and further algebra gives

$$P_N(m) \approx \sqrt{\frac{N}{2\pi n(N-n)}} \exp\left[-N f\left(\frac{n}{N}\right)\right], \qquad (N \gg 1)$$
 (6)

where

$$f(x) = [x \ln x + (1-x)\ln(1-x)] - [x \ln p + (1-x)\ln q]. \tag{7}$$

For N large, P_N peakes sharply near max $\tilde{n}=Np$, which is found by maximizing f(x). Expanding f(x) about \tilde{n} , and taking $n\approx \tilde{n}$ in P_N we have :

$$P_N(m) \approx \frac{1}{\sqrt{2\pi Npq}} \exp\left[-\frac{(n-Np)^2}{2Npq}\right], \tag{8}$$

which is a Gaussian distribution with mean $\mu = \overline{x} = Np$, $\sigma^2 = Npq$, $\Delta x_{\rm rms} = \sqrt{Npq}$.

1.2 Probability Distribution with Multivariables

Consider two r.v. u, v, which can assume possible values u_i, v_i for i = 1, 2, ..., M; j = 1, 2, ..., N.

• Normalization conditoin

$$\sum_{i=1}^{M} \sum_{j=1}^{N} P(u_i, v_j) = 1.$$
(9)

• Unconditioned prob. distribution:

$$P(u_i) = \sum_{j=1}^N P\big(u_i, v_j\big), \quad P\big(v_j\big) = \sum_{i=1}^M P\big(u_i, v_j\big). \tag{10} \label{eq:10}$$

• Statistical independence:

$$P(u_i, v_j) = P(u_i)P(v_j), \tag{11}$$

in which case the mean of the product is the product of the means:

$$\overline{uv} = \overline{u}\,\overline{v}.\tag{12}$$

1.3 Continuous probability distribution

For continuous r.v. $x \in (a_1, a_2)$, assign value of r.v. to f(x).

The probability density function p(x) is normalized:

$$\int_{a_1}^{a_2} p(x) \, \mathrm{d}x = 1. \tag{13}$$

The mean and variance are defined as:

$$\overline{x} = \int_{a_1}^{a_2} f(x)p(x) \, \mathrm{d}x, \quad \text{var}(x) = \int_{a_1}^{a_2} (x - \overline{x})^2 p(x) \, \mathrm{d}x. \tag{14}$$

• Especially, p(x) dx represents prob. to find x in [x, x + dx].

2 Stat. Mech setup

- $\Omega(E,V)$: # of accessible states in range $(E,E+\mathrm{d}E)$
 - More genrally: number of all possible states.

3/14

•

• Fundamental Postulate: All accessible states are equally likely.

$$p(\mu_i) = \frac{1}{\Omega(E, V)}$$
, if $\mu_i = \text{acc.}$ (15)

- Probability and average of states: prob of system havin gsome value of macro. param. $y=y_k$ is given by

$$p(y_k) = \frac{\Omega(E; y_k)}{\Omega(E)} \tag{16}$$

• Average value of the parameter *y*:

$$\overline{y} = \sum_{k} p(y_k) y_k = \sum_{k} \frac{\Omega(E; y_k)}{\Omega(E)} y_k \tag{17}$$

Example: 1D harmonic Oscillator. $H(q,p)=\frac{p^2}{2m}+\frac{1}{2}kq^2, H=E_n=\left(n+\frac{1}{2}\right)\hbar\omega$ const. $n=0,1,2,...;\omega=\sqrt{k/m}$ Defines an ellipse in phase space. Consider energy variation δE , phase space cell resides on a ring.

$$\Omega(E) = \frac{\text{area of ring}}{\text{area of phase space cell}}$$
(18)

Example: 1D particle in a box :

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}, n = 1, 2, 3, \dots$$
 (19)

Example: Three spin -1/2 particles in equil, in ext. H field. The energy of each spin is $-\mu H (\text{if} m = \frac{1}{2})$; $+\mu H (\text{if} m = -\frac{1}{2})$ There are $2^3 = 8$ possible combinations of states. Microstate is specified by m_1, m_2, m_3 . Suppose the total energy is known to be $-\mu H$, then the accessible states are

$$\left\{+\frac{1}{2},+\frac{1}{2},-\frac{1}{2}\right\},\left\{+\frac{1}{2},-\frac{1}{2},+\frac{1}{2}\right\},\left\{-\frac{1}{2},+\frac{1}{2},+\frac{1}{2}\right\} \tag{20}$$

The prob. that first spin has $m_1 = +\frac{1}{2}$ is given by

$$\Omega\left(E; m_1 = +\frac{1}{2}\right) = 2; \Omega(E) = 3$$

$$\Rightarrow p\left(m_1 = +\frac{1}{2}\right) = \frac{2}{3}.$$
(21)

3 Density of states

Define $\omega(E)$ to be density of states, s.t. $\Omega(E) = \omega(E) dE$

• TO find relation Ω with (E,N) s.t. $\Omega=\Omega(N,E)$, consider Classical Monatomic ideal gas, enclosed in vol. V:

 $H = \sum_{i=1}^{N} \frac{\vec{p_i}^2}{2m}$, energy range $(E, E + \delta E)$.

$$\Omega(E) \propto V^N \int_E^{E+\delta E} \prod_i d^3 \vec{p_i}$$

$$\propto V^N E^{3N/2} \delta E$$

$$\omega(E) \propto V^N E^{3N/2}$$
(22)

4 Interaction between Macro bodies

• Thermal Interaction: External param. fixed.

- $Q \equiv \overline{\Delta E}$. heat absorbed (+) or released (-) by system.
- Mech. Interaction: External param. can change.
 - $W \equiv -\overline{\Delta_x E}$. macro work done by system with variation in ext. param. x
- General int.: $Q\equiv \Delta\overline{E}-\Delta_x\overline{E}=\Delta\overline{E}+W$, ttl change in energy in exclusion of that due to mech. interaction (change in ext. param. x).

From genreal interaction we arrive at the first law:

$$\delta Q \equiv d\overline{E} + \delta W \tag{23}$$

5 Quasistatic process

- Slow int. s.t. system remains in equil. at all times, so that intensive params. are uniform throughout the system.
- Generalzed force: consider sys. with ext. param x and H(q, p; x):

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} \Rightarrow \quad \mathrm{d}E = \frac{\partial H}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} \,\mathrm{d}t. \tag{24}$$

Quasistatic so we can avg this over equil. ensemble with value of x at time t. Noticing $\mathrm{d}E=-\delta W$:

$$\delta W = -\frac{\partial \overline{H}}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} \, \mathrm{d}t \equiv X \, \mathrm{d}x, \tag{25}$$

where X $\equiv -\frac{\partial \overline{H}}{\partial x}$: generalized force

Example: Piston (ext. param. x = V)

$$\delta W = \overline{p} \, \mathrm{d}V. \tag{26}$$

For vol. change $V_i \rightarrow V_f$:

$$W = \int_{V_i}^{V_f} \delta W = \int_{V_i}^{V_f} \overline{p}(V) \, \mathrm{d}V. \tag{27}$$

6 Thermal int. btwn sys: Entropy

- Consider adiabatic system with two partitions, $\{E_1,\Omega_1(E_1)\},\{E_2,\Omega(E_2)\}$. $E_1+E_2=E$ const.
 - + $\Omega(E) = \sum_{E_1} \Omega_1(E_1) \Omega_2(E-E_1)$, and prob. of sys 1 has energy = E_1 is

$$P_1(E_1) = \frac{\Omega_1(E_1) \times \Omega_2(E - E_1)}{\Omega(E)}, \tag{28}$$

 $\begin{array}{l} \text{with } \Omega(E) \approx E^{aN} \ . \\ \bullet \ \ \text{Finding } \widetilde{E}_1 \ \text{s.t.} \ P_1(E_1) = \max : \frac{\partial P_1(E_1)}{\partial E_1} = 0 \end{array}$

$$\Rightarrow \frac{\partial \ln \Omega_1}{\partial E_1} \bigg|_{E_1 = \widetilde{E}_1} = \frac{\partial \ln \Omega_2}{\partial E_2} \bigg|_{E_2 = E - \widetilde{E}_1} \tag{29}$$

• We are motivated to define entropy:

$$S(E, x) \equiv \ln \Omega(E, x) \tag{30}$$

so that P_1 peaks when

$$\frac{\partial S_1}{\partial E_1} = \frac{\partial S_2}{\partial E_2} \iff S = S_1 + S_2 = \max$$
 (31)

• Further define temperature:

$$\frac{1}{T} \equiv \frac{\partial S}{\partial E} \tag{32}$$

So that P_1 peaks when $T_1 = T_2$

- Sharpness of $P_1(E_1)$:
 - Rel. width = $\frac{\Delta^* E}{\widetilde{E}_1} \approx \frac{1}{\sqrt{N}}$ $\frac{\partial T}{\partial E} \ge 0$

7 The 2nd law

For two systesm in themal contact

$$\frac{\mathrm{d}S(E)}{\mathrm{d}t} = \frac{\mathrm{d}S_1}{\mathrm{d}t} + \frac{\mathrm{d}S_2}{\mathrm{d}t} = \left[\left(\frac{\partial S_1}{\partial E_1} - \frac{\partial S_2}{\partial E_2} \right) \frac{\mathrm{d}E_1}{\mathrm{d}t} \right]
= \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \frac{\mathrm{d}E_1}{\mathrm{d}t} \ge 0$$
(33)

8 Reversible and Irreversible process

- Reversible: ttl entropy of isolated sys. constant $\frac{\mathrm{d}S}{\mathrm{d}t}=0$ Irreversible: ttl entropy of isolated sys increases $\frac{\mathrm{d}S}{\mathrm{d}t}>0$

9 Fundamental relation

• For general interaction btwn macro bodies, equilibrium relation:

$$\begin{cases} T_1 = T_2 \\ \left(\frac{\partial S_1}{\partial V_1}\right)_{E_1} = \left(\frac{\partial S_2}{\partial V_2}\right)_{E_2} \end{cases}$$
 (34)

where

$$\left(\frac{\partial S}{\partial V}\right)_{E_1} = \frac{p}{T} \tag{35}$$

Applied to the total differential of entropy, we have

$$dE = T dS - p dV.$$
(36)

• Further, for quasistatic process, we have $dE = \delta Q - p \, dV$. Conparing terms gives

$$dS = \frac{\delta Q}{T} \tag{37}$$

- Particulary, for adiabatic process, $\delta Q=0$ so $\mathrm{d}S=0$, so adiabatic \Rightarrow reversible.
- Revisiting equil. condition:

$$\left(\frac{\partial S_1}{\partial V_1}\right)_{E_1} = \left(\frac{\partial S_2}{\partial V_2}\right)_{E_2} \Rightarrow p_1 = p_2 \tag{38}$$

10 Laws of Thermodynamics

- 0th law: thermal transitivity. If A, C in equil; B,C in equil; then A,B in equil.
- 1st Law:

$$dE = \delta Q - \delta W \tag{39}$$

• 2nd Law:

$$dS \ge \frac{\delta Q}{T} \tag{40}$$

• 3rd Law:

$$\lim_{T \to 0} S = 0 \tag{41}$$

11 Response function

- Heat Capacities: $\delta Q|_x = C_x \, \mathrm{d}T$
 - for $\delta Q|_V = (\mathrm{d}E + \delta W)|_V \Rightarrow C_V = \left(\frac{\partial E}{\partial T}\right)_V$.
 - for $\delta Q|_p = (\mathrm{d}E + \delta W)|_p \Rightarrow C_p = \left(\frac{\partial E}{\partial T}\right)_p^V + p\left(\frac{\partial V}{\partial T}\right)_p$.

Useful so that combined with $\mathrm{d}S = \frac{\delta Q}{T} = \frac{C_V}{T}\,\mathrm{d}T$:

$$S(x, T_2) = S(x, T_1) + \int_{T_1}^{T_2} \frac{C_x}{T} dT$$
 (42)

Compressibility

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \tag{43}$$

• Expansivity:

$$\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_n \tag{44}$$

12 Ideal Gas

- For ideal Monatomic gas, recall $\Omega(E) = BV^N E^{3N/2}$

$$S = \ln \Omega = N \ln V + \frac{3N}{2} \ln E + C. \tag{45}$$

Combined with $p=T\big(\frac{\partial S}{\partial V}\big)_E, \frac{1}{T}=\big(\frac{\partial S}{\partial E}\big)_V$ we have

$$pV = NT; \quad E = \frac{3}{2}NT = \frac{3}{2}\nu RT$$
 (46)

• Ideal Gas Law Writing $N = \nu N_A$, we have

$$pV = \nu RT, \quad R \equiv N_A k_B \tag{47}$$

- It is proved that E = E(T), independent of V.
- Spcific Heat:
- Define $c_x \equiv \frac{C_x}{\nu}$, "heat capacity per mole".
- Const. V: $\delta Q\mid_V = C_V\,\mathrm{d}T = \nu c_v\,\mathrm{d}T.$ A general relation is

$$c_v = \frac{1}{\nu} \left(\frac{\partial E}{\partial T} \right)_V > 0. \tag{48}$$

for ideal gas: $\mathrm{d}E = \nu c_v \, \mathrm{d}T$

 - Similarly, Const. p: $\delta Q\mid_p = C_p\,\mathrm{d}T = \nu c_p\,\mathrm{d}T.$ A general relation is

$$c_p = c_v + R \tag{49}$$

- adiabatic Index

Using $E=\frac{3}{2}\nu RT; c_v=\frac{1}{\nu}\big(\frac{\partial E}{\partial T}\big)_V$, we have

$$c_v = \frac{3}{2}R; c_p = c_v + R = \frac{5}{2}R. \tag{50}$$

So that adiabatic index $\gamma \equiv c_p/c_v = 5/3$

Ideal Gas in Various Process

- Isothermal: cons. T. $\Rightarrow pV = C$.
- Adiabatic: no heat transfer.

By first law:

$$\delta Q = dE + \delta W = 0 \Longrightarrow 0 = \nu c_v \, dT + p \, dV. \tag{51}$$

using eqn of state : $pV = \nu RT$:

$$\gamma \frac{\mathrm{d}V}{V} + \frac{\mathrm{d}p}{p} = 0 \tag{52}$$

Since $c_v = \frac{3}{2}$ is constant, integrate the above gives

$$\gamma \ln V + \ln p = C \Rightarrow pV^{\gamma} = C. \tag{53}$$

13 Summary of Thermal laws

- Fundamental Relation $\mathrm{d}E = T\,\mathrm{d}S p\,\mathrm{d}V$.
- First Law: $dE = \delta Q \delta W$.
- Second Law: $\delta Q = T \delta S$ for quasistatic.
- Ideal Gas Law Writing $N = \nu N_A$, we have

$$pV = \nu RT, \quad R \equiv N_A k_B$$
 (54)

14 Response function

- Heat Capacities: $\delta Q|_x = C_x \, \mathrm{d} T$
 - $\quad \text{for } \delta Q|_V = (\mathrm{d} E + \delta W)|_V \Rightarrow C_V = \left(\tfrac{\partial E}{\partial T}\right)_V.$
 - for $\delta Q|_p = (\mathrm{d}E + \delta W)|_p \Rightarrow C_p = \left(\frac{\partial E}{\partial T}\right)_p + p\left(\frac{\partial V}{\partial T}\right)_p$.

Useful so that combined with $\mathrm{d}S = \frac{\delta Q}{T} = \frac{C_V}{T}\,\mathrm{d}T$:

$$S(x, T_2) = S(x, T_1) + \int_{T_1}^{T_2} \frac{C_x}{T} dT$$
 (55)

Compressibility

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \tag{56}$$

• Expansivity:

$$\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \tag{57}$$

15 Thermodynamic Potentials

energy E, E(S,V), $\mathrm{d}E=T\,\mathrm{d}S-p\,\mathrm{d}V$ enthalpy H=E+pV, H(S,p), $\mathrm{d}H=T\,\mathrm{d}S+V\,\mathrm{d}P$ Helmholtz F=E-TS, F(T,V), $\mathrm{d}F=-S\,\mathrm{d}T-p\,\mathrm{d}V$ Gibbs G=E-TS+pV, G(T,p), $\mathrm{d}G=-S\,\mathrm{d}T+V\,\mathrm{d}p$

16 Maxwell Relations

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V}, \quad \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{S}
\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}, \quad \left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p} \tag{58}$$

Used to obtain general relation between Spcific heat: let

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{(\partial T)_P} \right); \quad \kappa \equiv -\frac{1}{V} \left(\frac{\partial V}{(\partial P)_T} \right).$$
 (59)

Recall

$$\delta Q|_x = C_x \, dT, \quad C_x = T \left(\frac{\partial S}{\partial T}\right)_x$$
 (60)

and thus $C_p-C_V=VT\alpha^2/\kappa$

- 3rd law : $S \to 0$ as $T \to 0$. Implies

$$C_v \to 0; \quad C_p \to 0; \quad \alpha \to 0; \quad \frac{C_p - C_V}{C_V} \to 0$$
 (61)

17 Entropy and Internal Energy: Take (T, V) as indp. var.

• Seek S(T, V), E(T, V).

$$dS = \frac{C_v}{T} dT + \left(\frac{\partial p}{\partial T}\right)_V dV, \tag{62}$$

where

$$\left(\frac{\partial C_v}{\partial V}\right)_T = T \left(\frac{\partial^2 p}{\partial T^2}\right)_V \tag{63}$$

then

$$C_V(T,V) = C_V(T,V_0) + \int_{V_0}^{V} T\left(\frac{\partial^2 p(T,V')}{\partial T^2}\right)_V dV'. \tag{64}$$

So

$$\begin{split} S(T,V) - S(T_0,V_0) \\ = \int_{T_0}^T \frac{C_v(T',V)}{T'} \, \mathrm{d}T' + \int_{V_0}^V \left(\frac{\partial p(T_0,V')}{\partial T}\right)_V \mathrm{d}V' \end{split} \tag{65}$$

Similarly, for energy:

$$\mathrm{d}E = C_v \,\mathrm{d}T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \,\mathrm{d}V \tag{66}$$

and so

$$\frac{\partial E}{(\partial T)_V} = C_v, \quad \left(\frac{\partial E}{\partial V}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_V - p \tag{67}$$

then, by integration,

$$\begin{split} E(T,V) - E(T_0,V_0) \\ = \int_{T_0}^T C_v(T',V) \,\mathrm{d}T' + \int_{V_0}^V \left[T_0 \left(\frac{\partial p(T_0,V')}{\partial T} \right)_V - p(T_0,V') \right] \,\mathrm{d}V' \end{split} \tag{68}$$

18 Free Expansion: Start from T_1, V_1 **and** $V_1 \rightarrow V_2$: $\Delta E = Q - W = 0$; for ideal gas: $E(T_1) = E(T_2) \Rightarrow T_1 = T_2$.

In general, temp change:

$$\begin{split} & \left(\frac{\partial T}{\partial V}\right)_E = \frac{1}{C_V} \left(p - \frac{T\alpha}{\kappa}\right) \\ & T_2 = T_1 + \int_{V_*}^{V_2} \mathrm{d}V \left(\frac{\partial T}{\partial V}\right)_E \end{split} \tag{69}$$

Entropy change:

$$\left(\frac{\partial S}{\partial V}\right)_{E} = \frac{p}{T} > 0.$$

$$S_{2} = S_{1} + \int_{V_{1}}^{V_{2}} dV \left(\frac{\partial S}{\partial V}\right)_{E}$$
(70)

- for ideal gas: $\Delta S = N \ln \left(\frac{V_2}{V_1} \right)$
- for van der Waals with Eqn of State $(p+a/v^2)(v-b)=RT$, where $v=V/\nu$ molar vol:

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{R}{v - b}; \left(\frac{\partial T}{\partial V}\right)_{F} = -\frac{a\nu^{2}}{C_{V}V^{2}} \tag{71}$$

and it can be shown:

$$\Delta T = \frac{a\nu^2}{C_V} \left(\frac{1}{V_2} - \frac{1}{V_1} \right) \tag{72}$$

19 Joule-Thomson Process: start p_1, T_1 ; $p_1 \rightarrow p_2$ and so $T_1 = T_2$

$$\Delta E = -W = p_1 V_1 - p_2 V_2 \Rightarrow H_1 = H_2 \tag{73}$$

· ideal gas:

$$H = E + pV = E(T) + \nu RT \Longrightarrow H(T_1) = H(T_2) \Longrightarrow T_1 = T_2$$

• In general:

$$\mu \equiv \left(\frac{\partial T}{\partial p}\right)_{H} = \frac{V}{C_{p}}(T\alpha - 1). \tag{74}$$

and also

$$dH = T dS + V dp = 0$$

$$\Rightarrow \left(\frac{\partial S}{\partial p}\right)_{H} = -\frac{V}{T}$$

$$\Rightarrow \Delta S = \left(\frac{\partial S}{\partial p}\right)_{H} \Delta p = -\frac{V}{T} \Delta p$$
(75)

20 Heat Engines and Refrigerators

• heat absorbed by bath: $Q = T\Delta S$.

20.1 Heat engine

• Perfect heat engine: convert all heat to work:

$$\Delta S_{\rm ttl} = -q/T = -w/T < 0.$$

- Real heat Engine: absorb q_1 ,
emits q_2 , produce work $w=q_1-q_2$: $\Delta S=-q_1/T_1+q_2/T_2\geq 0$
- efficiency $\eta \equiv w/q_1 \leq (1-T_2/T_1)$.
- Carnot Engine: $\Delta S = 0 \Rightarrow \eta_{\rm max} = (T_1 T_2)/T_1$

20.2 fridge

- Perfect fridge: Does no work in refrigiration $\Delta S = q/_1 q/T_2$
- real fridge: absorbs q_2 from cold bath, emits q_1 to hot bath, with work $w = q_1 q_2$.
- coefficient of performance $\eta = q_2/w \le T_2/(T_1 T_2)$

21 Cononical Ensemble: fix T, N, V.

$$P_r = \frac{\exp\left(-\frac{E_r}{T}\right)}{Z}; \quad Z \equiv \sum_r \exp\left(-\frac{E_r}{T}\right) \tag{76}$$

Observables: $\overline{O} = \sum_r \frac{\exp\{-\beta E_r\}}{Z} O_r$

In classical case: $P(E) = \frac{\Omega(E) \exp(-\beta E)}{Z}$

• Maxwell velocity distribution: Consider a classical monatomic gas. Take A = single gas particle and A' remaining molecules, acting as heat resorvoir. at temp. T. Distribution of velocity:

$$f(\vec{v}) = \left(\frac{m}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{m\vec{v}^2}{2T}\right) \tag{77}$$

• Free energy : $F = -T \ln Z$

21.1 Ex: spin in H-field

$$E_r = E_+ = \mp \mu H$$

$$P_r = \frac{\exp[\pm \beta \mu H]}{\exp[\beta \mu H] + \exp[-\beta \mu H]} = \frac{\exp[\pm \beta \mu H]}{2 \cosh(\beta \mu H)}$$
(78)

avg momentun: $\overline{\mu} = \sum_{r=\pm} P_r \mu_r = \mu \tanh(\beta \mu H)$

 $\overline{M} = n\overline{\mu} = n\mu \tanh(\mu H/T.)$ when $\mu H \ll T, \overline{M} \approx (n\mu^2 H)/T \equiv \chi H$

21.2 Properties of Z, and thermo potential

- avg energy $\overline{E} = -\partial_{\beta} \ln Z = -T^2 \partial_T (F/T);$
- avg momuntum for spin 1/2: $\overline{\mu} = +T\partial_H \ln Z$
- energy dispersion: $\overline{\Delta E^2} = T^2 \partial_T \overline{E} = T^2 C_v$
- $S \equiv -\sum_{r} P_r \ln P_r = -\partial_T (T \ln Z) = -\partial_T F;$
- $F = E TS = -T \ln Z = -T \ln \left(\sum_r \exp[-E_r/T] \right)$

22 Fundamental Relation:

 $\mathrm{d}F = -S\,\mathrm{d}T - p\,\mathrm{d}V.$

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V}; \quad p = -\left(\frac{\partial F}{\partial V}\right)_{T} \tag{79}$$

- Second law for CE: $F = \min$ in equil.
- first law in CE: quasistatic change gives $d\overline{E} = \sum_r E_r dP_r + \sum_r P_r dE_r$
- $$\begin{split} \bullet & \ \delta Q \equiv \textstyle \sum_r E_r \, \mathrm{d}P_r = T \, \mathrm{d}S. \\ \bullet & \ \delta W \equiv \textstyle \sum_r P_r \, \mathrm{d}E_r \end{split}$$

23 Grand Canonical Ensemble

- Chemical potential $\mu \equiv -T\big(\frac{\partial S}{\partial N}\big)_E = \big(\frac{\partial E}{\partial N}\big)_{S|V}$.
- equilibrium condition: μ/T = const.
- distribution:

$$\begin{split} P_r &= \frac{\exp[-(E_r - \mu N_r)/T]}{\mathcal{Z}} \\ \mathcal{Z} &= \sum_r \exp[-(E_r - \mu N_r)/T] \\ &= \sum_n \exp(\mu N/T) Z(T,N) \end{split} \tag{80}$$

• particle fluctuation:

$$\overline{E} = \sum_{r} \frac{\exp[-(E_r - \mu N_r)/T]}{\mathcal{Z}} N_r = -\left(\frac{\partial \Phi}{\partial \mu}\right)_{T, V}, \tag{81}$$

where $\Phi = -T \ln Z$, Grand Potential.

24 Classical Ideal gas

$$Z' = \zeta^N; \quad \zeta = V \left(\frac{mT}{2\pi\hbar^2}\right)^{3/2} \tag{82}$$

Correction:

$$Z = Z'/N!$$

$$\Rightarrow F = -NT \ln \left[\frac{eV}{N} \left(\frac{mt}{2\pi\hbar^2} \right)^{3/2} \right]$$
(83)

25 Thermal Classical Limit

$$\lambda = \sqrt{(2\pi\hbar^2)/(mT)}$$
 and then

$$\zeta = \frac{V}{\lambda^3} \Longrightarrow Z = \frac{1}{N!} \zeta \int \prod_{i=1}^{N} \frac{\exp[-\beta U(q)]}{V} d^3 \vec{q}$$
 (84)

26 Equipartition theroem

Each Quadratic term in Energy $(q \lor p)$ contributes $\frac{1}{2}T$ to the avg energy, and $\frac{1}{2}$ to heat capacity.

• Ex: harmonic Oscillator: $E=p^2/2m+\frac{1}{2}kq^2$. Two quad term gives $\overline{E}=2*\frac{1}{2}T=T$, where kenitic: $\overline{K}=\frac{p^2}{2}m=\frac{\overline{E}}{2}$; potential energy: $\overline{U}=\frac{1}{2}kq^2=\frac{\overline{E}}{2}$.

Further, partition function yields:

$$Z = \sum_{n} e^{-\beta E_n} = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}$$
(85)

$$\overline{E} = -\partial_{\beta} \ln(Z) = \hbar \omega \left(\frac{1}{2} + \frac{1}{e^{-\beta \hbar \omega} - 1} \right)$$
 (86)

$$C = \frac{\partial \overline{E}}{\partial T} = \left(\frac{\hbar\omega}{T}\right)^2 \frac{\exp[\hbar\omega/T]}{\exp[\hbar\omega/T] - 1}^2 \tag{87}$$

► Thermal limits:

$$T \gg \hbar\omega : \overline{E} \to T; C \to 1.$$
 (88)

 $T \ll \hbar\omega : \overline{E} \to \hbar\omega/2; C \to \left(\frac{\hbar\omega}{T}\right)^2 \exp[-\hbar\omega/T]$ (89)

27 Solid Lattice

$$\overline{E} = \sum_{i=1}^{3N} \left(\frac{p_i^2}{2m} + \frac{1}{2} m \omega_i^2 q_i^2 \right) = 3NT = 3\nu RT.$$

$$C_v = \left(\frac{\partial \overline{E}}{(\partial T)_V} \right) = 3\nu R.$$
(90)

at low temp, assume $\omega_i = \omega = \text{const.}$ Let $\theta_E \equiv \hbar \omega$.

$$\overline{E} = 3N\theta_E \left(\frac{1}{2} + \frac{1}{\exp[\beta \theta_E] - 1} \right)$$

$$C_V = \left(\frac{\partial \overline{E}}{(\partial T)_V} \right) = 3N \left(\frac{\theta_E}{T} \right)^2 \frac{\exp[\beta \theta_E]}{(\exp[\beta \theta_E] - 1)^2}$$
(91)

Thermal limits:

• $T \gg \theta_E : C_V = 3R$.

• $T \ll \theta_E : C_V = 3R(\theta_E/T)^2 \exp[-\theta_E/T]$

28 Paramagnetism

 $\bullet \ \vec{\mu} = g\mu_B \vec{v}; \quad \mathcal{E} = -\vec{\mu} \cdot \vec{H} \Longrightarrow \mathcal{E}_m = -g\mu_B H_m$

$$Z = \sum_{m=-J}^{+J} \exp[-\beta g \mathcal{E}_m] = \frac{\sinh\left[\left(J + \frac{1}{2}\right)\eta\right]}{\sinh\left(\frac{\eta}{2}\right)},$$

$$\eta \equiv \frac{g\mu_B H}{T}.$$
(92)

• avg. momentum:

$$\overline{\mu_z} = \frac{1}{\beta} \frac{\partial \ln Z}{\partial H} = g\mu_\beta J B_J(\eta), \tag{93}$$

where $J B_J(\eta) \equiv \left(J + \frac{1}{2}\right) \coth\left[\left(J + \frac{1}{2}\right)\eta\right] - \frac{1}{2} \coth(\eta/2)$.

- Magnetization: $\overline{M_z} = n \overline{\mu_z} = n g \mu_B J \; B_J(\eta)$.
 - Thermal limits:

$$\eta \ll 1: \quad \overline{M_z} = \frac{n(g\mu_B)^2 J(J+1)}{3T} H \equiv \chi H.$$

$$\eta \gg 1: \overline{M_z} = ng\mu_B J. \tag{94}$$

29 Kinetic Theory

maxwell velocity distribution:

$$f(\vec{v}) = \left(\frac{m}{2\pi T}\right)^{3/2} \exp[-(m\vec{v}^2)/(2T)] \tag{95}$$

• distribution for speed $v = |\vec{v}|$:

$$F(v) dv = 4\pi \left(\frac{m}{2\pi T}\right)^{3/2} v^2 \exp\left[-(mv^2)/(2T)\right] dv$$
 (96)

- mean speed: $\overline{v} = \sqrt{8/\pi} \sqrt{T/m}$
- RMS speed: $v_{\rm RMS} = \sqrt{3} \sqrt{T/m}$
- most probable speed: $\tilde{v} = \sqrt{2}\sqrt{T/m}$

29.1 Examples:

- Number of particle striking a surface= $n(v_z dt dA)$, n = N/V
- total particle flux:

$$\Phi_0 = \int d^3 \vec{v} \Phi(\vec{v}) = \frac{1}{4} n \overline{v} \tag{97}$$

write $\overline{v}=\sqrt{8T/\pi m}\Rightarrow \Phi_0=\frac{1}{4}n\sqrt{8T/\pi m}$. With $p=nT:\Phi_0=p/\sqrt{2\pi mT}$ for ideal gas.

- effusion: $I = \Phi_0 * A = pA/\sqrt{2\pi mT}$
- Elastic collision force: $F = mn\overline{v_z^2}\,\mathrm{d}A$.

 - $\overline{p}=\frac{F}{\mathrm{d}A}=mn\overline{v_z^2}$ for ideal gas: $\overline{v_z^2}=T/m\Longrightarrow \overline{p}=nT\Rightarrow pV=NT$