The Common Electric Power Transmission System Model v0.1.0-alpha

Carleton Coffrin, more authors forthcomming *
October 2019

1 NOTE

This is a work in progress draft!

2 Introduction

As the power systems research community continues to develop new methods for the design and operations of power systems, the data requirements for supporting those innovations are continually evolving. In the context of modeling electric power transmission systems, the broad adoption of the MATPOWER v2 data format [1] has resulted in a de facto standard for encoding these datasets. However, a survey of emerging power system modeling tools such as EGRET [], GRG [], Grid Optimization Competition Challenge 1 ¹, IIDM [], Pandapower [2], PowerModels [3], PowerSystems ², PyPSA ³, GridCal ⁴, PSAT and DOME ⁵ reveals that each tool provides ad hoc extensions to the core MATPOWER data requirements to accommodate their design goals. This trend suggests that there is a need to develop new standards for electric power transmission system models, which can capture more of data requirements of these emerging tools.

To help support standardization across multiple emerging software tools, this document proposes a Common Electric Power Transmission System Model (CTM), which provides specifications of network component models, parameter names, parameter units, and mathematical specifications. The CTM model is not a data format in a strict sense, but rather an abstract specification that provides guidelines for standardization of the core modeling features that span a variety of research-focused software tools. Note that this objective distinguishes CTM from data formats like CIM [], which focuses on a very comprehensive data model for information exchange across enterprise IT systems. The remainder of this document discusses the motivations, objectives, and specification of the CTM model.

Figure idea, Venn diagram showing the data models of different tools. Compare and contrast the MAT-POWER format and CTM.

3 Scope and Objectives

The current version of CTM focuses on single-phase equivalent, quasi-steady state models of electric power transmission networks. This focus reflects the core features of the previously mentioned power system analysis tools []. With this scope in mind, the CTM specification targets the non-linear Alternating Current (AC) versions of following foundational analysis tasks,

• Power Flow (PF)

^{*}Corresponding author cjc@lanl.gov

¹https://gocompetition.energy.gov/

²https://github.com/NREL/PowerSystems.jl

³https://pypsa.org/

⁴https://github.com/SanPen/GridCal

⁵http://faraday1.ucd.ie/software.html

- Optimal Power Flow (OPF)
- Unit Commitment (UC)

It is important to note that a variety of analysis tasks can be defined by combinations or subset of these foundational ones. For example, Production Cost modeling can be conducted with a subset of UC parameters (double check this claim) and UC with network constraints requires the combination of the data for both the UC and OPF tasks. Note on multi-period support?

Objectives The overarching goal of CTM is to provides a common foundation for research on emerging trends in transmission system research. To that end, CTM was designed to meet the following objectives,

- A sufficient level of detail to provide a good approximation of industrial transmission system network models (e.g. PSSE v33)
- Support for both bus-branch and node-breaker network models
- Support for energy storage
- Support HVDC lines
- Define both input parameters and solution value parameters
- Build on the lessons learned from multiple open-source model specifications
- Strive to be cross-compatible with as many programming languages and data formats as possible
- Version control to carefully track enhancements and modifications to the CTM specification

CTM Implementations Software tools that adopt CTM are required to use consistent component specifications, parameter naming, and parameter units. However, support for any particular parameter of CTM is optional and software tools are free to support any subset of the CTM parameters that are suitable to their scope. Furthermore, software tools are free to develop their own data structures and data formats for encoding these parameters, as long as the parameter names and units are consistent. Extensions of the CTM specification on a application-by-application basis are welcomed and expected. Extensions are encouraged to follow the CTM style guidelines, when possible.

4 Conventions

CTM adheres to the following conventions, which also serve as guidelines for future extensions of CTM.

Parameter Naming Python's PEP8 Style Guide is leveraged as a foundational guide for the CTM specification. The most important features to highlight are that: (1) parameter names should be valid python identifiers (i.e. they cannot begin with numbers or special characters); (2) parameter names should be lower-case; (3) words in multi-word names are separated by underscores.

An additional parameter naming convention of CTM is that multi-word names should be ordered from most general to most specific. This provides a natural grouping of related parameters. For example, <code>cost_...</code> would defined a collection of parameters related to costs.

Component Identifiers Simple and unique identifiers are invaluable when processing data or when building multi-step analysis workflows. Integers are particularly well suited for such identifiers because they only require one computing word, leading to compact storage and fast comparisons. Consequently, every component in CTM is given a unique integer identifier, uid. These component index values must be unique within in each component class and they are not necessarily contiguous. The optional name field is also available for a more descriptive and human recognizable name of a component.

Complex Numbers Due to the oscillating nature of AC power systems, complex numbers provide a convenient mathematical tool for modeling these systems. Unfortunately, first-class complex numbers are not widely supported by modern programming languages, which precludes cross-language consistency. Due to this limitation, CTM adopts a real number encoding of complex network parameters. However, this raises the question of if those complex parameters should be encoded in rectangular or polar form. By default CTM adopts rectangular form as the standard for encoding complex numbers. However, there are a few cases where polar form is used (e.g. bus voltages and transformer taps) due to historical precedent and engineering practice.

To help support the encoding of complex numbers the following naming conventions are proposed by CTM specification. Let C be a complex number then the following short hands are used for the rectangular are polar forms of C respectively,

$$\mathtt{C} = \mathtt{cr} + i \mathtt{ci} = \mathtt{cm} \angle \mathtt{ca}$$

The following shorthand is used for the conjugate product of a complex number C,

$$\mathtt{CC}^* = \mathtt{cr}^2 + \mathtt{ci}^2 = \mathtt{ccm}$$

Parameters Types The component parameters described in this model fall into one of three categories,

- Static, these are fixed values that describe the engineered proprieties and limitation of a device that are determined by the design and manufacturing of the component. This is adopted as the default parameter type as the majority of the parameter fall into this category.
- Solution, these are values that describe the state of a component at an instance in time. These values are usually the output of a power system analysis, however they can also be used as inputs in some cases; the most common case is when solving systems of equations, such as Power Flow.
- Temporal Boundary Conditions, temporal problems, such as Unit Commitment, require temporal boundary conditions describing the system's state before the current operating point. The post-fix _prev is used as a standard for specifying such boundary conditions.
- Control System Settings, these are values that describe the configuration of a local controller that companies a component. The post-fix _setpoint is used as a standard for specifying these parameters. A common example is the voltage setpoint of the governor inside of a generator.
- Solution Initial Values, in a variety of power system algorithms providing an initial solution or starting point can greatly increase performance. To that end, the post-fix _start can be added to Solution parameters to specify an initial point for an algorithm. A common example is setting the initial bus voltage profile for a Power Flow computation.

can be categorized into three characterize Some of the quantities in described in this model are indicated as *solution* parameters. These parameters are most often used to describe the output of

Operating Ranges A common feature of power system components are the permitted minimum and maximum values of a given control parameter. CTM adopts the nomenclature of lower bound (1b) and upper bound (ub) to encode these operating ranges. For example a complex number C can be bounded as follows.

$$\begin{split} cm_lb &\leq cm \leq cm_ub \\ ca_lb &\leq ca \leq ca_ub \\ cr_lb &\leq cr \leq cr_ub \\ ci_lb &\leq ci \leq ci_ub \end{split}$$

In all cases lower bounds should always be less than or equal to upper bounds.

Bus Connections and Orientation Power networks are composed of a variety of components, with buses forming the coupling point where different components interact with each other. In the most general case, a network component can connect to an arbitrary number of buses in the network, as is the case with an *n*-winding transformer. However, all of the components considered by CTM connect to just one or two buses. In the case of a single bus connection, the parameter name bus is used to indicate the connecting bus. In the case of a two bus connection, the orientation can be critical (e.g. transformers). The terminology of from-bus (bus_fr) and to-bus (bus_to) is adopted to encode the orientation of two bus connections. In general, the shorthand fr and to are used to refer to quantities on the from and to sides of a component respectively.

Boolean and Enumerated Values Some parameters in power networks have a natural encoding as Boolean or enumerated data types. Notable examples are a component's status value, which indicates if it should be included or omitted in analysis, or the bus_type parameter, which can take one of three values PQ, PV, and Slack. A semantic encoding of these fields would be preferable from a data modeling standpoint. However, encoding all data model parameters as numeric values provides the advantage of a simple and consistent data type across multiple languages. This is particularly apparent when data is provided in a matrix form where all of the values must be numeric, as is the case in the MATPOWER [1] data format.

Convention Exceptions for Power Systems The guidelines above provide a consistent convention for naming new parameters in power network models. However, a strong precedent already exists for some parameter names in power networks. The following list highlights key exceptions to convention in the interest of following long established conventions,

- ullet V complex voltage
- S = p + iq complex power
- Z = r + ix complex impedance
- Y = g + ib complex admittance

Consequently, the rectangular parameter names for complex power S that would be sr/si by the CTM conventions are instead replaced with their established names p/q. Similar replacements hold for impedance (Z) and admittance (Y) parameters.

5 The Common Electric Power Transmission System Model (CTM)

The CTM parameters fall into three categories: (1) global/network-wide parameters, which are consistent across all of the components in the network; (2) component capabilities parameters, which capture the basic operational limitations of a component and are independent of any specific operating point; and (3) solution parameters, which define a specific operating point of a network. Typically a data format will include one instantiation of each of these parameters. However, it is also reasonable that a data format would include multiple versions of the solution parameters to capture a variety of possible operating points.

In the interests of achieving the design goals outlined in this document the CTM format support the following foundational component types, buses, constant power loads, shunts, generators, storage, switches, AC lines, two-winding transformers, and two-terminal HVDC lines. Similar to the component parameters it is suitable for software adopting the CTM standards are welcome to extend the list of supported components to suit its needs.

The remainder of this section presents each of the CTM components and their associated parameters. The parameters of each component characterized by the following fields,

- name The CTM standardized ASCII name for referencing this parameter.
- type The abstract data type of the parameter.
- units The standardized units of parameter.

- required Indicates which target tasks (i.e. PF, OPF, and UC) require this parameter.
- description A textual explanation of the parameter's function.

Additionally each component defines: additional requirements that the data must satisfy (beyond the given data type); mathematical symbols that are derived from the parameters; the canonical constraints that are defined for each component type.

5.1 Global Parameters

Table 1: Network Parameters

name	type	units	required	description
base_mva	Float	MVA	always	scaling factor for per unit computations
time_elapsed	Float	hours	always	the amount of time that has passed since the previous time point for temporal boundary conditions.
bus_ref	Array of Int	none	OPF	a set of buses that set the reference angle (one per connected component)

Symbols

 $\bullet \ \Delta T = {\tt time_elapsed}$

5.2 Universal Component Parameters

Generic features

Table 2: Universal Component Parameters

name	type	units	required	description
uid	Int	none	always	a unique identifier for components
status	Enum $\{0,1\}$	none	always	a $0/1$ value indicating if the component should
				be included be omitted or not $(0 \Rightarrow \text{omitted})$
name	String	none		a flexible name for components, non required
				to be unique
source_uid	unstructured	none		encodes data for tracking the component ids
				from a source file (typically an Array of String)

Universal Symbols

 $\bullet \ i = \mathtt{uid}$

Universal Data Requirements

• Any parameter that represents the magnitude of a complex number (e.g. vm, sm, cm, ...) should be positive.

5.3 Bus (bus)

Symbols

• $V_i = extstyle extst$

Table 3: Bus Parameters

name	type	units	required	description
base_kv	Float	kV	always	base voltage
type	Enum $\{1,2,3\}$	none	PF	bus type for power flow (1=PQ, 2=PV,
				3=Slack)
vm_lb	Float	kV	OPF	a lower limit on voltage magnitude
vm_ub	Float	kV	OPF	an upper limit on voltage magnitude
area	Int	none		assigned control area
zone	Int	none		assigned control zone
	Solution Data			n Data
vm	Float	kV	always	voltage magnitude
va	Float	degrees	always	voltage angle

Constraints

- $\bullet \ \mathtt{vm_lb} \leq |V_i| \leq \mathtt{vm_ub}$
- TODO Power Balance

5.4 Load (load)

Table 4: Load Parameters

name	type	units	required	description
bus	Int	none	always	connecting bus id
pd	Float	MW	always	active power demand
qd	Float	MVar	always	reactive power demand
pd_i	Float	MW	always	constant current active power demand
qd_i	Float	MVar	always	constant current reactive power demand
pd_y	Float	MW	always	constant admittance active power demand
qd_y	Float	MVar	always	constant admittance reactive power demand

Symbols

- ullet b= bus
- $ullet \ S_i^{dp} = {
 m pd} + {m i} {
 m qd}$
- $\bullet \ S_i^{di} = (\mathtt{pd_i} + i\mathtt{qd_i})|V_b|$
- $\bullet \ S_i^{dy} = (\mathtt{pd_y} + i\mathtt{qd_y})^*|V_b|^2$

Constraints

•
$$S_i^d = S_i^{dp} + S_i^{di} |V_b| + (S_i^{dy})^* |V_b|^2$$

5.5 Shunt (shunt)

$$ullet \ Y_i^s = { t gs} + {m i} { t bs}$$

Table 5: Shunt Parameters

name	type	units	required	description
bus	Int	none	always	connecting bus id
gs	Float	MW at 1.0 V p.u. Ohm?	always	active power demand
bs	Float	MVar at 1.0 V p.u. Ohm?	always	reactive power demand

Constraints

• none?

5.6 Generator (gen)

Symbols

 $ullet S_i^g = \operatorname{pg} + i\operatorname{qg}$

Constraints

- $\bullet \ \operatorname{pg_lb} + i\operatorname{qg_lb} \leq S^g \leq \operatorname{pg_ub} + i\operatorname{qg_ub}$
- TODO cost model
- \bullet TODO commitment constraints
- TODO cost_start by time (startup hot (9h), warm (9-16h), cold (16h))

5.7 Storage (storage)

Detailed derivation and motivation for this model can be found in [].

Data Requirements

- charge_efficiency is strictly positive
- discharge_efficiency is strictly positive

- \bullet $b = {\tt bus}$
- ullet $S_i^s = \mathrm{ps} + i \mathrm{qs}$
- $S_i^s = V_b I_i^s$
- $S_i^{ex} = ps_ex + iqs_ex$
- ullet $S_i^e = \mathrm{pe} + i \mathrm{qe}$
- $\eta_i^c = { t charge_efficiency}$
- ullet $\eta_i^d = exttt{discharge_efficiency}$
- pc_i charge value
- \bullet pd_i discharge value

Table	6.	Generator	Parameters

bus Int	name	type	units	required	description
Very Setpoint	bus	Int	none		connecting bus id
pg_lb Float MW OPF, UC minimum active power generation qg_lb Float MW OPF, UC minimum active power generation qg_lb Float MVar OPF, UC maximum active power generation qg_lb Float MVar OPF, UC minimum reactive power generation ocst.pg_model Enum {1,2} none OPF, UC maximum reactive power generation ocst.pg_model Enum {1,2} none OPF, UC maximum reactive power generation ocst.pg_model Enum {1,2} none OPF, UC maximum reactive power generation ocst.pg_parameters	vm_setpoint	Float	kV		
Pg.1b	_				
Pg_ub	pg_lb	Float	MW	OPF, UC	
Gg_lb		Float	MW	OPF, UC	
Gg.ub		Float	MVar		
Cost_pg_model		Float	MVar		
cost_pg_parameters		Enum {1,2}	none		
startup_cost_hot		, ,		,	
startup_cost_hot	cost_pg_parameters	Array of Float	\$/MWh	OPF, UC	either points for a pwl cost (mw,cost)
Startup_cost_Not Float \$ UC cost in \$ of starting a unit			,		or polynomial coefficients (from lowest
Startup_cost_warm Float \$ UC cost in \$ of starting a unit					degree first)
Startup_cost_cold Float \$ UC cost in \$ of starting a unit	startup_cost_hot	Float	\$	UC	cost in \$ of starting a unit
Startup_time_hot Float hours UC threshold of time (est. 9h)	startup_cost_warm	Float	\$	UC	cost in \$ of starting a unit
Startup_time_warm Float hours UC threshold of time (est. 9-16h)	startup_cost_cold	Float	\$	UC	cost in \$ of starting a unit
Startup_time_cold Float hours UC threshold of time (est. 16h+)	startup_time_hot	Float	hours	UC	threshold of time (est. 9h)
in_service_time_ub	startup_time_warm	Float	hours	UC	threshold of time (est. 9-16h)
in_service_time_lb	startup_time_cold	Float	hours	UC	threshold of time (est. 16h+)
in_service_time_lb	in_service_time_ub	Float	hours	UC	the maximum amount of time a unit
be in service					can be in service
down_time_lb	in_service_time_lb	Float	hours	UC	the minimum amount of time a unit can
pg_delta_ub Float MW/h UC maximum active power increase per hour pg_delta_lb Float MW/h UC maximum active power decrease per hour service_required Enum {0,1,2} none UC fixes the service value of the unit (0 = no requirement, 1 = fixed in service, 2 = fixed out of service) Temporal Boundary Data pg_prev float MW UC previous active power output in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output					be in service
pg_delta_ub	down_time_lb	Float	hours	UC	the minimum amount of time a unit
pg_delta_lb Float MW/h UC maximum active power decrease per hour service_required Enum {0,1,2} none UC fixes the service value of the unit (0 = no requirement, 1 = fixed in service, 2 = fixed out of service) Temporal Boundary Data pg_prev float MW UC previous active power output in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output					must be out of service
pg_delta_lb	pg_delta_ub	Float	MW/h	UC	maximum active power increase per
Service_required Enum {0,1,2} none UC fixes the service value of the unit (0 = no requirement, 1 = fixed in service, 2 = fixed out of service) Temporal Boundary Data pg_prev float MW UC previous active power output					
Service_required Enum {0,1,2} none UC fixes the service value of the unit (0 = no requirement, 1 = fixed in service, 2 = fixed out of service) Temporal Boundary Data	pg_delta_lb	Float	MW/h	UC	maximum active power decrease per
no requirement, 1 = fixed in service, 2 = fixed out of service) Temporal Boundary Data					
Temporal Boundary Data pg_prev float MW UC previous active power output in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output	service_required	Enum $\{0,1,2\}$	none	UC	
Temporal Boundary Data pg_prev float MW UC previous active power output in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output					
pg_prev float MW UC previous active power output in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output output					= fixed out of service)
in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output output		Te	emporal Bo	oundary Data	a
in_service_time_prev float hours UC time up previously down_time_prev float hours UC time up previously Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output output	pg_prev	float	MW		previous active power output
Solution Data pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output output		float	hours	UC	time up previously
pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output	down_time_prev	float	hours	UC	time up previously
pg Float MW always active/real power generation output qg Float MVar always reactive/imaginary power generation output			Solutio	n Data	
qg Float MVar always reactive/imaginary power generation output	pg	Float			active/real power generation output
output		Float			
					, , , , , , , , , , , , , , , , , , , ,
	in_service	Bool	none	UC	_

${\bf Constraints}$

- $$\begin{split} \bullet \ S_i^s + S_i^e &= S_i^{ex} \\ \bullet \ \Re(S_i^e) \texttt{energy_prev} &= \Delta T \left(\eta_i^c p c_i \frac{p d_i}{\eta_i^d} \right) \end{split}$$
- $pc_i \cdot pd_i = 0.0$
- $0 \le e_i \le \texttt{energy_ub}$

Table 7: Storage Parameters

name	type	units	required	description
bus	Int	none	always	connecting bus id
charge_efficiency	Float	none	always	captures losses due to charging
				(non-zero)
discharge_efficiency	Float	none	always	captures losses due to discharg-
				ing (non-zero)
ps_ex	Float	MW	always	converter standby active power
				exogenous flow
qs_ex	Float	MVar	always	converter standby reactive power
				exogenous flow
energy_ub	Float	MWh	OPF	maximum state of charge
charge_ub	Float	MW	OPF	maximum charge rating
discharge_ub	Float	MW	OPF	maximum discharge rating
sm_ub	Float	MVA	OPF	converter apparent power rating
cm_ub	Float	MA	OPF	converter current output rating
qs_lb	Float	MVar	OPF	minimum reactive power injec-
				tion
qs_ub	Float	MVar	OPF	maximum reactive power injec-
				tion
ps_delta_ub	Float	MW/h	UC	maximum active power increase
				per hour
ps_delta_lb	Float	MW/h	UC	maximum active power decrease
				per hour
	Te	emporal B	oundary D	ata
energy_prev	Float	MWh	always	initial state of charge
		Soluti	on Data	
ps	Float	MW	always	active/real power storage injec-
				tion
qs	Float	MVar	always	reactive/imaginary power stor-
				age injection
energy	Float	MWh	always	current state of charge
charge	Float	MW		charging
discharge	Float	MW		discharging

- $0 \le pc_i \le \text{charge_ub}$
- $0 \le pd_i \le \mathtt{discharge_ub}$
- $\bullet \ |S_i^s| \leq {\rm sm_ub}$
- $\bullet \ |I_i^s| \leq {\tt cm_ub}$
- $\bullet \ \operatorname{qs_lb} \leq \Im(S_i^s) \leq \operatorname{qs_ub}$

5.8 Switch (switch)

- ullet $f = {\tt bus_fr}$
- $\bullet \ t = {\tt bus_to}$
- $\bullet \ S_i^w = \mathtt{psw} + i \mathtt{qsw}$
- $S_i^w = V_f(I_i^w)^* = V_t(I_i^w)^*$

Table 8: Switch Parameters

name	type	units	required	description
bus_fr	Int	none	always	from-side connecting bus
bus_to	Int	none	always	to-side connecting bus
sm_ub	Float	MVA	OPF	apparent power flow limit
cm_ub	Float	MA	OPF	current flow limit
Solution Data				
psw_fr	Float	MW	always	active/real power flow
qsw_fr	Float	MVar	always	reactive/imaginary power flow
state	Enum $\{0,1\}$	none	always	open/closed state, $0 \Rightarrow \text{open}$, $1 \Rightarrow \text{closed}$

Constraints

- $\bullet \ |S_i^w| \leq {\rm sm_ub}$
- $\bullet \ |I^w_i| \leq {\tt cm_ub}$
- $\bullet \ \mathtt{state} = 0 \Rightarrow |S^w_i| = 0 \wedge |I^w_i| = 0$
- ullet state $=1\Rightarrow V_f=V_t$

5.9 AC Line (ac_line)

Table 9: AC Line Parameters

name	type	units	required	description
bus_fr	Int	none	always	from-side connecting bus
bus_to	Int	none	always	to-side connecting bus
r	Float	Ohm	always	line resistance
х	Float	Ohm	always	line reactance
g_fr	Float	Ohm	always	line charge conductance, from side
b_fr	Float	Ohm	always	line charge susceptance, from side
g_to	Float	Ohm	always	line charge conductance, to side
b_to	Float	Ohm	always	line charge susceptance, to side
sm_ub_a	Float	MVA	OPF	persistent apparent power limit
sm_ub_b	Float	MVA	OPF	4 hour apparent power limit
sm_ub_c	Float	MVA	OPF	15 minute emergency apparent power limit
cm_ub_a	Float	MA	OPF	persistent current limit
cm_ub_b	Float	MA	OPF	4 hour current limit
cm_ub_c	Float	MA	OPF	15 minute emergency current limit
vad_lb	Float	degrees	OPF	voltage angle difference limit
vad_ub	Float	degrees	OPF	voltage angle difference limit
			So	lution Data
pl_fr	Float	MW		active power flow, from side
ql_fr	Float	MVar		reactive power flow, from side
pl_to	Float	MW		active power flow, to side
ql_to	Float	MVar		reactive power flow, to side

Data Requirements

• The base_kv values of bus_fr and bus_to should be the same

Symbols

- $\bullet \ f = {\tt bus_fr}$
- \bullet $t = bus_to$
- $Z_i = \mathbf{r} + \mathbf{i}\mathbf{x}$
- $Y_i = 1/Z_i$
- $ullet \ Y_i^{cf} = exttt{g_fr} + oldsymbol{i} exttt{b_fr}$
- $Y_i^{ct} = g_t + ib_t$
- $ullet \ S_i^{lf} = \mathtt{pl_fr} + i\mathtt{ql_fr}$
- $S_i^{lt} = \mathtt{pl_to} + i\mathtt{ql_to}$

Constraints

- $S_i^{lf} = (Y_i + Y_i^{cf})^* |V_f|^2 Y_i^* V_f V_t^*$
- $S_i^{lt} = (Y_i + Y_i^{ct})^* |V_t|^2 Y_i^* V_t V_f^*$
- $|S_i^{lf}| \leq \text{sm_ub_*}$
- $|S_i^{lt}| \leq \text{sm_ub_*}$
- $|I_i^{lf}| \leq \text{cm_ub_*}$
- $\bullet \ |I_i^{lt}| \leq \mathtt{cm_ub_*}$
- $\operatorname{vad_lb} \le \angle(V_f(V_t)^*) \le \operatorname{vad_ub}$

5.10 Transformer (transformer)

Two-Winding T-Model Transformer. Multiple wingdings can be implemented by adding internal *star* bus. do emergency ratings apply in this case as well? Can vad bounds be justified?

- ullet $f = {\tt bus_fr}$
- ullet $t = {\tt bus_to}$
- $S_i^{tf} = \text{pt_fr} + i \text{qt_fr}$
- $\bullet \ S_i^{tt} = \mathtt{pt_to} + i \mathtt{qt_to}$
- $ullet Z_i = { t r} + {m i} { t x}$
- $Y_i = 1/Z_i$
- ullet $T_i = \operatorname{tm} \angle \operatorname{ta}$
- $Y_i^c = g + ib$
- $tm^s =$
- $ta^s =$

Table 10: Transformer Parameters					
name	type	units	required	description	
bus_fr	Int	none	always	from-side connecting bus	
bus_to	Int	none	always	to-side connecting bus	
r	Float	Ohm	always	line resistance	
х	Float	Ohm	always	line reactance	
g	Float	Ohm	always	internal charge conductance	
b	Float	Ohm	always	internal charge susceptance	
tm_lb	Float	Ohm	OPF	minimum tap ratio value	
tm_ub	Float	Ohm	OPF	maximum tap ratio value	
tm_steps	Int	none	OPF	the number of discrete steps between tm_lb	
				and tm_ub	
ta_lb	Float	Ohm	OPF	minimum phase angle shift value	
ta_ub	Float	Ohm	OPF	maximum phase angle shift value	
ta_steps	Int	none	OPF	the number of discrete steps between talb	
				and ta_ub	
sm_ub_a	Float	MVA	OPF	persistent apparent power limit	
sm_ub_b	Float	MVA	OPF	4 hour apparent power limit	
sm_ub_c	Float	MVA	OPF	15 minute emergency apparent power limit	
cm_ub_a	Float	MA	OPF	persistent current limit	
cm_ub_b	Float	MA	OPF	4 hour current limit	
cm_ub_c	Float	MA	OPF	15 minute emergency current limit	
			So	lution Data	
tm	Float	Ohm	always	tap ratio	
ta	Float	Ohm	always	phase angle shift	
pt_fr	Float	MW		active power flow, from side	
qt_fr	Float	MVar		reactive power flow, from side	
pt_to	Float	MW		active power flow, to side	
qt_to	Float	MVar		reactive power flow, to side	

Constraints

- TODO double check these equations
- $S_i^{tf} = Y_i^{c*} |V_f|^2 + Y_i^* \frac{|V_f|^2}{|T_i|^2} Y_i^* \frac{V_f V_t^*}{T_i}$
- $S_i^{tt} = Y_i^* |V_t|^2 Y_i^* \frac{V_t V_f^*}{T_i^*}$
- $\bullet \ |S_i^{tf}| \leq {\tt sm_ub_*}$
- $\bullet \ |S_i^{tt}| \leq \texttt{sm_ub_*}$
- $\bullet \ |I_i^{tf}| \leq \texttt{cm_ub_*}$
- $\bullet \ |I_i^{tt}| \leq \texttt{cm_ub_*}$
- ullet tm_lb $\leq |T_i| \leq$ tm_ub
- $\bullet \ (|T_i| \cdot {\tt tm_steps})/({\tt tm_ub} {\tt tm_lb}) \in \mathbb{Z}$
- $ta_lb \le \angle(T_i) \le ta_ub$
- $\bullet \ (\angle(T_i) \cdot \mathtt{ta_steps}) / (\mathtt{ta_ub} \mathtt{ta_lb}) \in \mathbb{Z}$
- $\bullet \ \mathtt{vad_lb} \leq \angle(V_f(V_t)^*) \leq \mathtt{vad_ub}$

5.11 Point-to-point HVDC (hvdc_p2p)

This section defines parameters for point-to-point HVDC connections with simplified converter stations. Detailed derivation and motivation for the underlying model can be found in [4]. The main simplifications are:

- converter technology and ratings identical at from and to side
- loss factors are divided by two before assigning to each converter
- the current limit of the dc line is enforced through the current limit of the converters
- no filters or transformers at the converter stations

Further simplifications are possible:

- dropping lossb and lossc
- dropping dc line resistance
- dropping dc-side voltage +bounds

TODO: Check out data model of $[5]^6$ and contact them?

- \bullet $f = bus_fr$
- \bullet $t = bus_to$
- $p_i = p$
- $R_i = r$
- $G_i = 1/R_i$
- ullet $S_i^{df} = P_i^{df} + oldsymbol{i} Q_i^{df} = exttt{pdc_fr} + oldsymbol{i} exttt{qdc_fr}$
- $\bullet \ S_i^{dt} = P_i^{dt} + \boldsymbol{i} Q_i^{dt} = \mathtt{pdc_to} + \boldsymbol{i} \mathtt{qdc_to}$
- $V_i^{dc,f}$ dc voltage at from side converter
- $V_i^{dc,t}$ dc voltage at to side converter
- $a_i = loss_a$
- $b_i = loss_b$
- $c_i = loss_c$
- ϕ_i^f firing angle of the from side LCC converter
- ϕ_i^t firing angle of the to side LCC converter
- $P_i^{dc,f}$ dc-side power
- $Q_i^{dc,f}$ reactive power slack variable in converter

 $^{^{6}} https://hynet.readthedocs.io/en/latest/usage.html\#management-of-grid-databases$

				ine Parameters
name	type	units	required	description
bus_fr	Int	none	always	from-side connecting bus
bus_to	Int	none	always	to-side connecting bus
base_kv_dc	Float	kV	always	base voltage at the dc side
vm_dc_lb	Float	kV	OPF	a lower limit on dc voltage magnitude
vm_dc_ub	Float	kV	OPF	an upper limit on dc voltage magnitude
pdc_fr_lb	Float	MW	OPF	minimum active power flow, from side
qdc_fr_lb	Float	MVar	OPF	minimum reactive power flow, from side
pdc_fr_ub	Float	MW	OPF	maximum active power flow, from side
qdc_fr_ub	Float	MVar	OPF	maximum reactive power flow, from side
pdc_to_lb	Float	MW	OPF	minimum active power flow, to side
qdc_to_lb	Float	MVar	OPF	minimum reactive power flow, to side
pdc_to_ub	Float	MW	OPF	maximum active power flow, to side
qdc_to_ub	Float	MVar	OPF	maximum reactive power flow, to side
r	Float	Ohm	always	dc line resistance
р	Enum {1, 2}	none	always	number of poles (1=monopole, 2=bipole)
technology	Enum {1, 2, 3}	none	always	power conversion technology (1=LCC, 2=VSC, 3=MMC)
loss_a	Float	MVA	always	standby loss
loss_b	Float	kV	always	loss proportional to current magnitude
loss_c	Float	Ohm	always	loss proportional to current magnitude squared
sm_ub	Float	MVA	OPF	apparent power limit
cm_ub	Float	MA	OPF	current limit
phi_lb	Float	degrees	OPF	if LCC: firing angle minimum
phi_ub	Float	degrees	OPF	if LCC: firing angle maximum
	Solution Data			
vm_dc	Float	kV	always	voltage magnitude at the dc side
pdc_fr	Float	MW	-	active power flow, from side
qdc_fr	Float	MVar		reactive power flow, from side
pdc_to	Float	MW		active power flow, to side
qdc_to	Float	MVar		reactive power flow, to side

${\bf Constraints}$

$$\bullet \ P_i^{dc,f} = G_i p_i V_i^{dc,f} (V_i^{dc,f} - V_i^{dc,t})$$

$$\bullet \ P_i^{dc,t} = G_i p_i V_i^{dc,t} (V_i^{dc,t} - V_i^{dc,f})$$

•
$$S_i^{df} - P_i^{dc,f} + iQ_i^{dc,f} = a_i/2 + b_i/2|I_i^{df}| + c_i/2|I_i^{df}|^2$$

•
$$S_i^{dt} - P_i^{dc,t} + iQ_i^{dc,t} = a_i/2 + b_i/2|I_i^{dt}| + c_i/2|I_i^{dt}|^2$$

$$\bullet \ |S_i^{d\!f}| \leq {\tt sm_ub}$$

$$\bullet \ |S_i^{dt}| \leq {\rm sm_ub}$$

$$\bullet \ -\mathtt{sm_ub} \leq Q_i^{dc,f} \leq \mathtt{sm_ub}$$

$$\bullet \ -\mathtt{sm_ub} \leq Q_i^{dc,t} \leq \mathtt{sm_ub}$$

$$\bullet \ \mathsf{pdc_fr_lb} \leq P_i^{\mathit{df}} \leq \mathsf{pdc_fr_ub}$$

- $\bullet \ \mathsf{pdc_to_lb} \leq P_i^{dt} \leq \mathsf{pdc_to_ub}$
- $\bullet \ \operatorname{qdc_fr_lb} \leq Q_i^{d\!f} \leq \operatorname{qdc_fr_ub}$
- $\bullet \ \mathsf{qdc_to_lb} \leq Q_i^{dt} \leq \mathsf{qdc_to_ub}$
- $\bullet \ |I_i^{df}| \leq {\tt cm_ub}$
- $ullet |I_i^{dt}| \leq exttt{cm_ub}$
- ullet vm_dc_lb $\leq V_i^{dc,f} \leq$ vm_dc_ub
- ullet vm_dc_lb $\leq V_i^{dc,t} \leq$ vm_dc_ub

if LCC:

- $Q_i^{df} \geq 0$
- $Q_i^{dt} \geq 0$
- $\bullet \ 0 \leq \mathtt{phi_lb} \leq \phi_i^f \leq \mathtt{phi_ub} \leq \pi$
- $0 \leq \mathtt{phi_lb} \leq \phi_i^t \leq \mathtt{phi_ub} \leq \pi$
- $P_i^{dc,f} = \cos(\phi_i^f)$ sm_ub
- $\bullet \ Q_i^{dc,f} = \sin(\phi_i^f) \text{sm_ub}$
- $P_i^{dc,t} = \cos(\phi_i^t)$ sm_ub
- $Q_i^{dc,t} = \sin(\phi_i^t)$ sm_ub

5.12 Reserve (reserve)

Three pre-defined forms of reserve are allowed,

- \bullet AGC, Covers support from 0 to 10 minutes
- Spin, Covers support from 10 to 20 minutes
- Flex, Covers support over 20 minutes

Tabla	19.	Pogorro	Parameters

name	type	units	required	description
reserve_type	ENUM {1,2,3}	none	always	1=AGC, 2=Spin, 3=Flex
participants	Array of Int	none	UC	A list of generator uids that will re-
				spond to this reserve.
pg_lb	Float	MW	UC	minimum active power required by this
				reserve.
pg_ub	Float	MW	UC	maximum active power required by this
				reserve.

Symbols

• TODO

Constraints

• TODO

6 TODOs

- ZIP loads, should shunt parameters values given as Z or Y? Verify mathmatical model.
- Consensus of terminology of "network element" or "network component"; maybe standardize about element (lead, Zimmerman)
- add remark about avoiding name clashes in the global scope, motivates (pg,qg over p,q)
- Add note data correctness checks that preclude basic mathematical issues (e.g. voltage magnitudes should be positive) (Coffrin, Geth)
- Should generators have an internal voltage source and internal impedance? Seems inconsistent that storage and HVDC has this, but not generators. One suggestion is ignore internal losses in this document version and delay this for a future iteration.
- add fields for ZIP loads
- Zonal Reserves, need to add (lead, Coffrin)
- generic model for reserve products (JP / Ben)
- Add some semantics for bus areas and zones (Coffrin, Geth)
- Add recommended Per-Unit conversion to the document (lead, Geth)
- Add proper unit-commitment data (Coffrin, Ben)?
- min/max may be preferable to lb/ub (Fobes/JP)
- resolve generator type / fuel type data
- Feedback from PandaPower
- Reach out to PyPSA folks (Clayton can help), ANL UC.jl package; HELICS (trevor.hardy@pnnl.gov)
- Reach out to Yung Hong?

6.1 Discussion Points

The following items were raised for discussion and consideration by the broader team.

- should some kine of zones or other collection be used to define base kv values? To reduce the data errors?
- Idealized transformer components vs lossy transformers (Claeys, Geth)
- Would an explicit 3-winding (or n-winding) transformer model provide additional value? (Claeys, Fobes)
- What is the proposed method for zero impedance transformers (and lines?). (Claeys)
- feature prioritization

A Feature Roadmap

A.1 v1.0.0

• Initial release

A.2 v1.1.0

- Add fields for indicating controllable vs fixed components (lead, Coffrin; requested by many folks)
- can we provide standard for multiple time points via change data; support for arbitrary delta (Matpower Change tables; replacement, scaling, additive; individual row, all rows, zone) (lead, Coffrin; requested by many folks)
- increase model fidelity by adding internal voltage source and internal impedance to generators; and similar modeling fidelity to storage and HVDC lines.
- shunt properties, fixed, continuous, discrete, cap banks, ect...
- price responsive demands (lead Zimmerman)
- non-spinning reserves (a 30-minute product), (lead Ben)
- add fule_type and prime_mover feilds to generators, (lead Clayton)
- contingency lists

Discussion Points

• TBD

A.3 v1.2.0

• Should ZIP/exponential load models (Claeys)

Discussion Points

• TBD

A.4 Version TBD

- Add fields for indicating controllable vs fixed components (lead, Zimmerman/Coffrin)
- change storage name from charge/discharge to input/output
- Document that omitted values and Inf / -Inf can be used to define inactive bounds

•

- Explicit model of renewable gens (lead, Ben/JP)
- more detailed shunt models (cap banks, UPFCs, synchronous condensors, SVCs, STATCOMs)
- \bullet controlable loads
- Generator D-Curves
- HVDC Buses
- time dependent line flow limits
- tap dependent transformer parameters
- indication of important / unimportant line flow constraints
- remote monitor points for control systems (Ray)

Discussion Points

• TBD

References

- [1] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, "MATPOWER: steady-state operations, systems research and education," *IEEE Trans. Power Syst.*, vol. 26, no. 1, pp. 12–19, 2011.
- [2] S. Meinecke, M. Braun, F. Meier, A. Scheidler, F. Schafer, J. Dollichon, L. Thurner, and J.-H. Menke, "Pandapower An open-source python tool for convenient modeling, analysis, and optimization of electric power systems," *IEEE Trans. Power Syst.*, vol. 33, no. 6, pp. 6510–6521, 2018.
- [3] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, "PowerModels.jl: an open-source framework for exploring power flow formulations," in *Power Syst. Comp. Conf.*, vol. 20, Dublin, Ireland, 2018, p. 8.
- [4] H. Ergun, J. Dave, D. Van Hertem, and F. Geth, "Optimal power flow for AC/DC Grids: formulation, convex relaxation, linear approximation and implementation," *IEEE Trans. Power Syst.*, vol. 34, no. 4, pp. 2980 2990, 2019.
- [5] M. Hotz and W. Utschick, "hynet: an optimal power flow framework for hybrid AC/DC power systems," *IEEE Trans. Power Syst.*, vol. XX, no. X, pp. 1–12, 2019. [Online]. Available: http://arxiv.org/abs/1811.10496