Homework 5

Problem 1. Construct a Δ -complex structure on $\mathbb{R}P^n$ as a quotient of a Δ -complex structure on S^n having vertices the two vectors of length 1 along each coordinate axis in \mathbb{R}^{n+1} .

Proof. To make the described Δ -complex structure on S^n we first take the 2n vertices that are distance 1 away from the origin in \mathbb{R}^n on the coordinate axes. For each of these vertices, attach a 1-simplex between this vertex and the 2n-2 vertices not lying on the same axis. Now attach 2-simplexes between any three vertices not lying in a plane determined by two coordinate axes. Next attach 3-simplexes between any four

vertices not lying in a 3-dimensional subspace determined by the coordinate axes. Continue in this way until all points (x_1, \ldots, x_{n+1}) with $\sum_i x_i = 1$ are included in our complex. This space, which is composed of 2^{n+1} *n*-simplexes, is then homeomorphic to S^n . To get $\mathbb{R}P^n$ we need to identify antipodal points. For each *n*-simplex in our structure, there is another one reflected about the origin. Identify these two simplexes (after doing a reflection) so that antipodal points of our space are identified. Then this is a Δ -complex structure on $\mathbb{R}P^n$.

Problem 2. Compute the simplicial homology groups of the Klein bottle using the Δ -complex structure described at the beginning of this section.

Proof. We can view the Klein bottle as a union of two 2-simplexes U and L with sides a, b and c and a vertex v as follows. Then our chain complex $\Delta_2 \to \Delta_1 \to \Delta_0 \to 0$ is $\mathbb{Z}^2 \to \mathbb{Z}^3 \to \mathbb{Z} \to 0$. We also have $\partial_2 : U \mapsto b - c + a$

and $\partial_2: L \mapsto a-b+c$ while $\partial_1: a \mapsto v-v$, $\partial_1: b \mapsto v-v$ and $\partial_1: c \mapsto v-v$. Since the images of U and L are distinct under ∂_2 , it must be injective and we see that $H_2(X) = \ker \partial_2/\operatorname{im} \partial_3 = 0$. Since ∂_1 maps all elements to 0 we have $\ker \partial_1 = \mathbb{Z}^3\{a,b,c\} = \mathbb{Z}^3\{a,a+b-c,c\}$. Also im $\partial_2 = \mathbb{Z}^2\{a+b-c,a-b+c\} = \mathbb{Z}^2\{a+b-c,2a\}$. Thus $H_1(X) = \ker \partial_1/\operatorname{im} \partial_2 = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Finally, $\ker \partial_0 = \mathbb{Z}\{v\}$ and $\operatorname{im} \partial_1 = 0$ so $H_0(X) = \mathbb{Z}$.

Problem 3. Construct a 3-dimensional Δ -complex X from n tetrahedra T_1, \ldots, T_n by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts being taken mod n. Then identify the bottom face of T_i with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions 0, 1, 2, 3 are $\mathbb{Z}, \mathbb{Z}_n, 0, \mathbb{Z}$ respectively.

Proof. Note that all the outer vertices are identified with each other in the first step, and the middle vertices are identified in the second step, so there are only two 0-simplexes, v_0 and v_1 . Call the outer vertex v_0 and the inner vertex v_1 . Each tetrahedron has 6 edges, but the outer edges are identified in the first step as is the middle edge, so there are 4 left for each T_i . Two of these get paired off in the first step, and two more get paired off when the bottom faces are identified with the top faces. This leaves n edges plus the outer and middle edges for a total of n+2 1-simplexes. Each tetrahedron has four faces, but these are paired off in the first step and then again in the second step so we're left with 2n 2-simplexes. There are n 3-simplexes. We thus have the following chain complex

$$0 \xrightarrow{\partial_4} \mathbb{Z}^n \xrightarrow{\partial_3} \mathbb{Z}^{2n} \xrightarrow{\partial_2} \mathbb{Z}^{n+2} \xrightarrow{\partial_1} \mathbb{Z}^2 \xrightarrow{\partial_0} 0.$$

Note that each 1-simplex either connects v_0 to v_1 or connects v_0 or v_1 to itself. Thus ∂_1 takes each 1 cell either to 0 or to $v_1 - v_0$ so im $\partial_1(X) = \mathbb{Z}\{v_1 - v_0\}$ and $H_0(X) = \ker \partial_0/\operatorname{im} \partial_1 = \mathbb{Z}^2/\mathbb{Z} \approx \mathbb{Z}$.

Number the T_i in a counterclockwise fashion and label the face on the bottom of T_i f_i and the face on the right side of T_i f_{n+i} so that the bottom and top faces are labeled f_1 through f_n and the vertical faces are labeled f_{n+1} through f_{2n} . Label the outer edge d_1 and the inner edge d_2 . Label the bottom edge of f_{n+i} e_i . Using the labeling in the diagram we see that for $1 \le i \le n$ we have $\partial_2(f_i) = e_i - e_{i-1} + d_1$ and $\partial_2(f_{n+i}) = d_2 - e_{i-1} + e_i$ where $e_0 = e_n$. Order the edges as $d_1, e_1, e_2, \ldots, e_n, d_2$. We can take the coefficients from the images of ∂_2 and express them as the rows in the following $2n \times (n+2)$ matrix

$$\begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 & -1 & 0 \\ 1 & -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & \dots & 0 & 0 & 0 \\ & & & & \vdots & & & \\ 1 & 0 & 0 & 0 & \dots & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & -1 & 1 \\ 0 & -1 & 1 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 & \dots & 0 & 0 & 1 \\ & & & & \vdots & & & \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 & 1 \end{pmatrix}.$$

For $1 \le i \le n$ we can subtract row i from row n+1 (namely, replace a generator in the image with that generator plus another) and note that the last n rows are the same. This leaves the following $(n+1) \times (n+2)$ matrix

$$\begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 & -1 & 0 \\ 1 & -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & \dots & 0 & 0 & 0 \\ & & & \vdots & & & \\ 1 & 0 & 0 & 0 & \dots & -1 & 1 & 0 \\ -1 & 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}.$$

Now for $1 \le i \le n$ we can add the first i-1 rows to the i^{th} row as

$$\begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 & -1 & 0 \\ 2 & 0 & 1 & 0 & \dots & 0 & -1 & 0 \\ 3 & 0 & 0 & 1 & \dots & 0 & -1 & 0 \\ & & & & \vdots & & & \\ n & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}.$$

This means that the image is generated by the n+1 elements $id_1+e_i-e_n$, nd_1 and d_2-d_1 for $1 \le i \le n-1$. On the other hand, ∂_1 takes d_1 and d_2 to 0 while it takes e_i to v_1-v_0 . Thus ker ∂_1 is generated by d_1 , d_2 and all the

differences $e_i - e_j$ for $1 \le i < j \le n$. We can express these last generators as $e_i - e_n$ for $1 \le i \le n - 1$. Now if we add d_1 to each generator a particular number of times we get the set of generators $\{d_1, d_2 - d_1, id_1 + e_i - e_n\}$. Comparing this to the generators for im ∂_2 we see that $H_1(X) = \ker \partial_1/\operatorname{im} \partial_2 = \mathbb{Z}/n\mathbb{Z}$.

Let $a_1 f_1 + \cdots + a_{2n} f_{2n} \in \ker \partial_2$. From the first matrix above representing the image of ∂_2 we see that we must have $a_1 + \cdots + a_n = a_{n+1} + \cdots + a_{2n} = 0$ and for $1 < i \le n$ we have $a_i + a_{n+i} = a_{i-1} + a_{n+i-1}$ and $a_1 + a_{n+1} = a_n + a_{2n}$. Then $a_1 + a_{n+1} = a_2 + a_{n+2} = \cdots = a_n + a_{2n}$. Since the sum of these terms is 0 we must have $a_i = -a_{n+i}$ for $1 \le i \le n$. Now consider

$$\partial_3(b_1T_1 + \dots + b_nT_n) = b_1(f_{n+1} - f_{2n} + f_n - f_1) + \dots + b_n(f_{2n} - f_{2n-1} + f_{n-1} - f_n)$$

$$= (b_2 - b_1)f_1 + (b_3 - b_2)f_2 + \dots + (b_1 - b_n)f_n$$

$$+ (b_1 - b_2)f_{n+1} + (b_2 - b_3)f_{n+2} + \dots + (b_n - b_1)f_{2n}.$$

Fix b_1 as any integer. Pick b_2 such that $b_2 - b_1 = a_1$. This determines b_2 and in a similar fashion we can determine b_i by picking it such that $b_i - b_{i-1} = a_{i-1}$. We need to make sure that $b_n - b_1 = a_n$. Note $b_n - b_1 = -((b_2 - b_1) + (b_3 - b_2) + \cdots + (b_n - b_{n-1})) = -(a_1 + \cdots + a_{n-1}) = a_n$. Thus any element of ker ∂_2 is also in im ∂_3 , ker $\partial_2 = \text{im } \partial_3$ and $H_2(X) = 0$.

For $1 < i \le n$ we have $\partial_3(T_i) = f_{n+i} - f_{n+i-1} + f_{i-1} - f_i$ and $\partial_3(T_1) = f_{n+1} - f_{2n} + f_n - f_1$. Any 2-simplex f_k appearing in the image of ∂_3 belongs to two neighboring 3-simplexes, T_i and T_{i+1} . But the coefficient of f_k in $\partial_3(T_i)$ and $\partial_3(T_{i+1})$ have opposite sign so they cancel out. Therefore if $a_1T_1 + \cdots + a_nT_n \in \ker \partial_3$ then $a_1 = a_2 = \cdots = a_n$ so $\ker \partial_3 = \mathbb{Z}$ and $H_3(X) = \mathbb{Z}$.

Problem 4. Show that a chain homotopy of chain maps is an equivalence relation.

Proof. Let (C_*, ∂_*) and (D_*, ∂'_*) be chain complexes. If $f_*, g_* : C_* \to D_*$ are chain maps we will write $f \sim g$ if f and g are chain homotopic, that is, if there are maps $P_n : C_n \to D_{n+1}$ with $\partial_{n+1}P_n + P_{n-1}\partial'_n = g_n - f_n$. If P is the 0 map then $f \sim f$. If P is such a map that $f \sim g$ then -P is a map giving $g \sim f$ since $f_n - g_n = -(g_n - f_n) = -(\partial_{n+1}P_n + P_{n-1}\partial'_n) = \partial_{n+1}(-P_n) + (-P_{n-1})\partial'_n$. Finally if $f \sim g$ using P and $g \sim h$ using Q then

$$h_n - f_n = (h_n - g_n) + (g_n - f_n) = \partial_{n+1}Q_n + Q_{n-1}\partial'_n + \partial_{n+1}P_n + P_{n-1}\partial'_n = \partial_{n+1}(Q_n + P_n) + (Q_{n-1} + P_{n-1})\partial'_n$$
 and $f \sim h$ using $Q + P$. Thus a chain homotopy is an equivalence relation.

Problem 5. Determine whether there exists a short exact sequence $0 \to \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4 \to 0$. More generally, determine which abelian groups A fit into a short exact sequence $0 \to \mathbb{Z}_{p^m} \to A \to \mathbb{Z}_{p^n} \to 0$ with p prime. What about the case of short exact sequences $0 \to \mathbb{Z} \to A \to \mathbb{Z}_n \to 0$?

Proof. Suppose $0 \longrightarrow \mathbb{Z}_{p^m} \stackrel{\varphi}{\longrightarrow} A \stackrel{\psi}{\longrightarrow} \mathbb{Z}_{p^n} \longrightarrow 0$ is an exact sequence. Suppose A is infinite. Then ψ must map infinitely many elements to the identity in \mathbb{Z}_{p^n} . Since $\ker \psi = \operatorname{im} \varphi$, it follows that $\operatorname{im} \varphi$ is infinite, but this is a contradiction since \mathbb{Z}_{p^m} is finite. Thus A must be finite, and since A is abelian we know $A = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k}$ where $n_1 \mid n_2 \mid \cdots \mid n_k$. Furthermore, by Lagrange's Theorem we know $|A| = |\mathbb{Z}_{p^n}| |\mathbb{Z}_{p^m}| = p^{n+m}$. Thus $n_i \mid p^{n+m}$ and so $n_i = p^{\alpha_i}$. We know φ maps a generator of \mathbb{Z}_{p^m} to an element of order p^m in A and this element and its powers make up the entire kernel of ψ . Then $n_j \geq m$ for some j and the other n_i add up to n. But then if we have more than two summands the only possible element of A with order p^n is in the kernel of ψ , thus ψ cannot be surjective. This is a contradiction so we must only have two components. Hence $A = \mathbb{Z}_{p^{\alpha_1}} \oplus \mathbb{Z}_{p^{\alpha_2}}$ where $m \leq \alpha_1$ and $\alpha_1 + \alpha_2 = m + n$. The map φ takes a generator of \mathbb{Z}_p^m to the element $(p^{\alpha_1-m},1)$. In particular, $0 \to \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_{\not \vdash} \to \mathbb{Z}_4 \to 0$ is a short exact sequence given by the map which takes a generator of \mathbb{Z}_4 to (2,1) and then mapping (1,1) to a generator of \mathbb{Z}_4 .

Now suppose we have the exact sequence $0 \longrightarrow \mathbb{Z} \stackrel{\varphi}{\longrightarrow} A \stackrel{\psi}{\longrightarrow} \mathbb{Z}_n \longrightarrow 0$. Note that A must have a \mathbb{Z}^r component with r > 0 so that φ maps \mathbb{Z} into one component of this. But also, if r > 1 then more than one copy of \mathbb{Z} will be mapped by ψ to the identity in \mathbb{Z}_n . Since there is no injection $\mathbb{Z} \to \mathbb{Z}^r$ for r > 1, we

must have r=1. By a similar argument as above, $A=\mathbb{Z}\oplus\mathbb{Z}_m$ for some $m\geq n$. Since ψ is a homomorphism from $\mathbb{Z}_m\to\mathbb{Z}_n$ it must be the case that $n\mid m$. In this case $\varphi:1\mapsto (1,n)$ so that the element (1,1) has order n under ψ .

Problem 6. Suppose we have a commutative diagram

$$0 \longrightarrow A \xrightarrow{i} B \xrightarrow{p} C \longrightarrow 0$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow h$$

$$0 \longrightarrow X \xrightarrow{j} Y \xrightarrow{q} Z \longrightarrow 0$$

of abelian groups where the horizontal sequences are exact. Show that we get a long exact sequence

$$0 \to \ker(f) \to \ker(g) \to \ker(h) \to \operatorname{coker}(f) \to \operatorname{coker}(g) \to \operatorname{coker}(h) \to 0.$$

Proof. Let's label the maps in question as follows

$$0 \longrightarrow \ker(f) \stackrel{\alpha}{\longrightarrow} \ker(g) \stackrel{\beta}{\longrightarrow} \ker(h) \stackrel{\gamma}{\longrightarrow} \operatorname{coker}(f) \stackrel{\delta}{\longrightarrow} \operatorname{coker}(g) \stackrel{\varepsilon}{\longrightarrow} \operatorname{coker}(h) \longrightarrow 0.$$

Pick $a \in \ker(f)$ so that f(a) = 0 in X. Then jf(a) = 0 = gi(a). Thus $i(a) \in \ker(g)$ so we get a map $\alpha : \ker(f) \to \ker(g)$ given by $\alpha(a) = i(a)$. Now let $b \in \ker(g)$ so that g(b) = 0 in Y. Then qg(b) = 0 = hp(b) so $p(b) \in \ker(h)$. We get a map $\beta : \ker(g) \to \ker(h)$ by $\beta(b) = p(b)$. Let $x + f(A) \in \operatorname{coker}(f)$ and apply j to get $j(x) + jf(A) = j(x) + gi(A) \in \operatorname{coker}(g)$. Thus we get a map $\delta : \operatorname{coker}(f) \to \operatorname{coker}(g)$ as $\delta(x + f(A)) = j(x + f(A))$. Finally let $y + g(B) \in \operatorname{coker}(g)$ and apply q to get an element of $\operatorname{coker}(h)$. This gives the map $\varepsilon : \operatorname{coker}(g) \to \operatorname{coker}(h)$ given by $\varepsilon(y + g(B)) = q(y + g(B))$.

Pick $c \in \ker(h)$. Since p is surjective, there exists $b \in B$ with p(b) = c. Then q(g(b)) = h(p(b)) = h(c) = 0 since $c \in \ker(h)$. Thus $g(b) \in \ker(q)$ and $\ker(q) = \operatorname{im}(j)$. Find $x \in X$ such that j(x) = g(b) and note that x is unique since j is injective. Now define $\gamma(c) = x + f(A)$. Suppose now we chose some $b' \in B$ also with p(b') = c. We would then get some other element x' such that j(x') = g(b'). Note though that p(b-b') = c - c = 0 so $b - b' \in \ker(p)$ and $\ker(p) = \operatorname{im}(i)$. Pick $a \in A$ so that i(a) = b - b'. Then j(f(a)) = g(i(a)) = g(b-b') = g(b) - g(b') = j(x) - j(x') = j(x-x'). Since j is injective f(a) = x - x' so $x - x' \in f(A)$. This shows that we still get the same element $x + f(A) = \gamma(c)$ so that γ is well-defined.

Suppose now we pick another element $c' \in \ker(h)$ so that $\gamma(c') = x' + f(A)$. Suppose that $b, b' \in B$ with p(b) = c and p(b') = c'. From the definition of γ we know j(x) = g(b) and j(x') = g(b'). Then j(x+x') = g(b) + g(b') = g(b+b') and also p(b+b') = p(b) + p(b') = c + c'. This means $\gamma(c+c') = (x+x') + f(A)$. Then $\gamma(c) + \gamma(c') = (x+f(A)) + (x'+f(A)) = (x+x') + f(A) = \gamma(c+c')$ so γ is a homomorphism.

Now let $a \in \ker(\alpha)$. Then $\alpha(a) = i(a) = 0$. Since i is injective, a = 0. Take $b \in \operatorname{im}(\alpha)$ so b = i(a) for some $a \in \ker(f)$. Then $\beta(b) = \beta(i(a)) = p(i(a))$ and since the top sequence is exact, we get $p(i(a)) = \beta(b) = 0$ and $b \in \ker(\beta)$. Thus $\operatorname{im}(\alpha) = \ker(\beta)$. This shows the long sequence is exact at $\ker(f)$ and $\ker(g)$.

Let $c \in \text{im } (\beta)$ so c = p(b) for some $b \in \text{ker}(g)$. From above we know $g(b) \in \text{ker}(q)$ and ker(q) = im (j) so we can find $x \in X$ such that j(x) = g(b) = 0. But then x = 0 since j is injective so $\gamma(c) = 0 + f(A) = 0$. Conversely, let $c \in \text{ker}(\gamma)$ so that $\gamma(c) \in f(A)$. Then we can find $a \in A$ such that $f(a) = \gamma(c)$. Note that $\gamma(c) = x$ with j(x) = g(b) for $b \in B$ with p(b) = c. Since f(a) = x we have gi(a) = jf(a) = j(x) = g(b) so b = i(a). Applying p we see that $c \in \text{im } (\beta)$ so that $\text{im } (\beta) = \text{ker}(\gamma)$ and the sequence is exact at ker(h).

Now let $x + f(A) \in \operatorname{im}(\gamma)$ so that $\gamma(c) = x + f(A)$. Note that $x \in X$ such that j(x) = g(b) for some $b \in B$ with p(b) = c. Then j(x + f(A)) = j(x) + jf(A) = g(b) + jf(A) = g(b) + gi(A) = 0. So $x + f(A) \in \ker(\delta)$. Conversely, suppose $x + f(A) \in \ker(\delta)$ so that j(x) + jf(A) = j(x) + gi(A) = 0. This is the same as saying j(x) = g(b) for some $b \in B$. Since p is surjective, p(b) = c and it follows that $\gamma(c) = x + f(A)$. Thus $x + f(A) \in \operatorname{im}(\gamma)$ and $\operatorname{im}(\gamma) = \ker(\delta)$. This shows that the sequence is exact at $\operatorname{coker}(f)$.

Let $y+g(B) \in \operatorname{im}(\delta)$ so y+g(B)=j(x+f(A)) for some $x+f(A) \in \operatorname{coker}(f)$. Then $\varepsilon(y+g(B))=q(y+g(B))=q(j(x+f(A))=0$ since the bottom sequence is exact. Thus $y+g(B) \in \ker(\varepsilon)$ and $\operatorname{im}(\delta)=\ker(\varepsilon)$. Finally pick some element $z+h(C) \in \operatorname{coker}(h)$. Note that since q is surjective, z+h(C)=q(y+g(B)) for some $y+g(B) \in \operatorname{coker}(g)$. Since $\varepsilon(y+g(B))=q(y+g(B))$ we see that ε is surjective. This finally shows that the sequence is exact at $\operatorname{coker}(g)$ and $\operatorname{coker}(h)$.