Date:

Aim of the Experiment:

Identification and verification of different basic electronic components and implementation of an efficient electronic circuit in which an external LED with buzzer sends the SOS signal in Morse code using Raspberry Pi Pico and a transistor.

Objective:

- 1) Understanding basics of electronics and its components/items such as Breadboard, Resistors, Capacitors, Potentiometer, Battery, Diodes, Transistors, Switches etc.
- 2) Understanding and analysis of Resistance Measurement technique using Resistance Colour Code and the concept of tolerance limit.
- 3) Identification and verification of Diodes and Transistors.
- 4) Implementation of an electronic circuit in which an external LED flashes the SOS signal in Morse code (three dots, followed by three dashes, followed by three dots) continuously using Raspberry Pi Pico. A dot is represented with the LED being ON for 0.25 seconds (Dot time) and a dash is represented with the LED being ON for 1 second (Dash time). The delay between the dots and dashes is set to 0.5 second (GAP time). This process is repeated continuously after 2 seconds of delay.
- 5) Implementation of a more efficient electronic circuit in which an external LED with buzzer sends the SOS signal in Morse code using Raspberry Pi Pico and a transistor.

Components/Equipment/items Required:

Sl	Name of the	Specification	Quantity
No.	Component/Equipment		
1	Raspberry Pi Pico	RP2040 microcontroller	1
		chip, 125MHz	
2	Raspberry Pi Pico cable	USB Type A to Micro-B	1
3	Resistors (carbon type)	$\frac{1}{4}$ watt (220 Ω , 330 Ω , 470	1 each
		Ω , 1k, 2.2k, 4.7k, 10k)	
4	LED	3mm, Red, Blue, Green	1 each
5	Diode (Si diode)	1N4148	1
6	Transistor	2N2222, BC 108, BC 548	1 each
7	Buzzer	Active	1
8	Breadboard	840 Tie points	1
9	Digital Multimeter		1
10	Jumper Wire		As per requirement

Circuit/Schematic Diagram:

Objective 4

(Figure 1 : Circuit diagram for an external LED flashes the SOS signal in Morse code)

Objective 5

(Figure 2: Circuit diagram to blink an external LED with buzzer sends the SOS signal in Morse code using Raspberry Pi Pico and a transistor.)

Observation:

Objective 2

Table 1: (Resistance Measurement)

Sl No.	Colour code of resistors	Theoretical/colour code value, T	Measured Value (DMM), M	% of error $= \frac{M-T}{T} \times 100$	Remark
1	Red, Black,				
	Orange, Gold				
2					
3					
4					
5					

Objective 3

Table 2: (Diode Verification)

SI No.	Type of Diode	Forward Bias Voltage	Reverse Bias Voltage	Remark
1	1N4148 (Silicon Diode)			
2	Red LED			
3	Blue LED			
4	Green LED			

Table 3: (Transistor Verification)

Unknown Transistors	Biasing	Voltage between Terminal 1 & 2 (V ₁)	Voltage between Terminal 2 & 3 (V ₂)	Type of Transistor (NPN or PNP)	$V_1 > V_2$	$V_2 > V_1$	Remark
Unknown	Forward Bias				1: 2: 3:	1: 2: 3:	
Transistor 1	Reverse Bias						
Unknown	Forward Bias				1: 2: 3:	1: 2: 3:	
Transistor 2	Reverse Bias						

Objective 4

Figure 3: (Simulation based electronic circuit in which an external LED flashes the SOS signal in Morse code.)

Figure 4: (Breadboard Schematic representation of an electronic circuit in which an external LED flashes the SOS signal in Morse code.)

Figure 5: (Hardware implementation based electronic circuit in which an external LED flashes the SOS signal in Morse code.)

Objective 5

Figure 5: (Hardware Implementation based more efficient electronic circuit in which an external LED with buzzer sends the SOS signal in Morse code using Raspberry Pi Pico and a transistor)

Codes:

print("Hello, Pi Pico!")

print("This is Experiment - 2 and Objective - 4")

Objective 4

print("Objective : 4 Implementation of an electronic circuit in which an
external LED flashes the SOS signal in Morse code (three dots, followed by three

```
dashes, followed by three dots) continuously using Raspberry Pi Pico. A dot is
represented with the LED being ON for 0.25 seconds (Dot time) and a dash is
represented with the LED being ON for 1 second (Dash time). The delay between
the dots and dashes is set to 0.5 second (GAP time). This process is repeated
continuously after 2 seconds of delay.")
from machine import Pin
from utime import sleep
dot = 0.25
dash = 1
gap = 0.5
ON = 1
OFF = 0
led = Pin(0,Pin.OUT)
while True:
 for i in range(0,3):
    led.value(ON)
    sleep(dot)
    led.value(OFF)
    sleep(dot)
  sleep(gap)
  for i in range(0,3):
    led.value(ON)
    sleep(dash)
    led.value(OFF)
    sleep(dash)
  sleep(gap)
  for i in range(0,3):
    led.value(ON)
    sleep(dot)
    led.value(OFF)
    sleep(dot)
  sleep(gap)
```

Objective 5

```
print("Hello, Pi Pico!")
print("This is Experiment - 2 and Objective - 5")
print("Objective : 5 Implementation of a more efficient electronic circuit in
which an external LED with buzzer sends the SOS signal in Morse code using
Raspberry Pi Pico and a transistor.")
from machine import Pin
from utime import sleep
dot = 0.25
dash = 1
gap = 0.5
ON = 1
OFF = 0
led = Pin(0,Pin.OUT)
while True:
  for i in range(0,3):
    led.value(ON)
    sleep(dot)
    led.value(OFF)
    sleep(dot)
  sleep(gap)
  for i in range(0,3):
    led.value(ON)
    sleep(dash)
    led.value(OFF)
    sleep(dash)
  sleep(gap)
  for i in range(0,3):
    led.value(ON)
    sleep(dot)
    led.value(OFF)
    sleep(dot)
  sleep(gap)
```

	Experiment -2	
Conclusion:		

Precautions:

Post Experiment Questionnaire:

- 1) What is the value of the electrical resistance of the resistor with colour rings as follows?
 - a. Yellow, violet, red, and gold
 - **b**. orange, white, brown, and gold
 - c. green, blue, yellow, and silver
 - **d.** brown, black, green, and colourless
 - e. red, red, red, and gold
 - f. Brown, Black, Black, Yellow, Brown
 - g. Red, Red, Red, Red
 - h. Yellow, Violet, Red, Black, Brown
 - i. Blue, Grey, White, Orange, Silver
 - j. Black, Blue, Orange, Brown, Gold
- 2) What colour rings on the body of the resistor, the value of resistance mentioned below (ignoring the value of tolerance)?
 - a. 33 Ω :
- **b**. 200 k Ω ;
- c. 750 Ω ;
- **d.** 43 k Ω ;
- e. $1.2 \text{ M}\Omega$

- 3) Decode the following letter coded resistor.
 - **a**. R47; **b**. 1R0; **c**. 4R7; **d**. 47R; **e**. 0K47; **f**. 1K0; **g**. 4K7; **h**. 0M47; **i**. 1M0
- 4) Decode the following letter coded ceramic capacitor
 - **a.** 10; **b.** 474K; **c.** 1n0; **d.** 6n8; **e.** p68; **f.** n15 **g.** 5p0; **h.** 100; **i.** 3R9
- 5) If the length of the terminals of these devices are same, then how can you identify the polarity for LED and Electrolytic capacitors?
 - (i) with Digital multimeter
 - (ii) without Digital Multimeter

6)	True/	Fal	lse

			Name of the Registration	
a) 1		b) 2	c) 3	d) 4
vi) A tra	nsistor has	PN ju	nctions?	
a) Se	eries	b) Parallel	c) Series or parallel	d) None of the above
to measu	re			
v) An an	nmeter is con	nected in	with the circuit elem	nent whose current we wish
a) Pa	rallel	b) Series	c) Series or parallel	d) None of the above
potential	difference is	s to be measured		
iv) A vol	tmeter is cor	nnected in a	with the circuit com	ponent across which
a) Ω		b) Amperes	c) $k\Omega/V$	d) none of the above
iii) The s	ensitivity of	a multimeter is gi	iven in	
a) Lo	W	b) Infinite	c) Zero	d) High
ii) The re	esistance of a	n ideal voltmeter	is	
a) Lov	W	b) Infinite	c) Zero	d) High
		has res		N 77' 1
,	•		rom the following given c	hoices.
,	vert 2-volt V			
Í		-	and peak to peak voltage.	
	Peak to peak	_		
,	True RMS vo	<u> </u>		
example	of one devic	e which is used to	measure:	
7) a) Wh	at is the diffe	erence between Ti	rue RMS reading and peak	to peak reading and give
ope	erate.			
iv) The	ere is no requ	irement of curren	t for operation of diode. D	Diode only needs voltage to
iii) No	damage or in	njury can occur w	hen misusing a multimete	r.
ii) Con	tinuity testin	g is similar to resi	istance testing.	
connection	on?			
i) Whil	e testing vol	tage, the mulitmet	ter is connected to the test	ed component in a parallel

INTERNET OF THINGS (IOT) PROJECT USING PYTHON (CSE 4110)

Semester

Branch, Section