Split-plot Analysis

Diego Della Lunga, Ashmita Upadhyay, Igor Kuivjogi Fernandes, Timothy Goodhart, Amanda Lay

University of Arkansas

5/1/23

Introduction

- ► Split-plot design (RCBD)
- ► EDA
- Linear Mixed Model
- Means Comparison

Factors

Whole-plot: Irrigation (in cm^3 / cm^3)

- 1. moist
- 2. saturated
- 3. flooded

Response is the rice yield in Mg/ha

Sub-plot: Fertilizer

- 1. 0 kg/ha
- 2. 50 kg/ha
- 3. 100 kg/ha
- 4. 150 kg/ha

Creating the design

```
sp <- FielDHub::split_plot(
  wp = 3,  # whole-plot
  sp = 4,  # sub-plot
  reps = 3,  # blocks
  type = 2,  # for RCBD
  seed = 2023
)</pre>
```

Field layout

ROWS

Split Plot Design (RCBD) 12X3

2 3	3 4	1 3
2 4	3 1	1 4
2 2	3 3	1 2
2 1	3 2	1 1
1 3	2 2	3 1
1 2	2 4	3 3
1 4	2 3	3 4
1 1	2 1	3 2
1 2	2 2	3 4
1 3	2 3	3 1
1 4	2 4	3 2
1 1	2 1	3 3

COLUMNS

Simulating effects of treatments

```
# effect of irrigation
split_plot$y_irr <- NA</pre>
split_plot$y_irr[split_plot$irrigation == "flooded"] <- 6</pre>
split_plot$y_irr[split_plot$irrigation == "saturated"] <- 12</pre>
split_plot$y_irr[split_plot$irrigation == "moist"] <- 15</pre>
# effect of fertilizer
split_plot$y_fert <- NA
split plot$y fert[split plot$fertilizer == "0"] <- 5</pre>
split_plot$y_fert[split_plot$fertilizer == "50"] <- 8</pre>
split_plot$y_fert[split_plot$fertilizer == "100"] <- 10</pre>
split_plot$y_fert[split_plot$fertilizer == "150"] <- 12</pre>
# effect of interaction
split_plot$y_inter <- (</pre>
  split_plot$y_irr * split_plot$y_fert
) * 0.01
```

Simulating effects of blocks and error

```
# effect of block
split_plot$y_b <- NA
split_plot$y_b[split_plot$REP == 1] <- -10</pre>
split_plot$y_b[split_plot$REP == 2] <- 5</pre>
split_plot$y_b[split_plot$REP == 3] <- -5</pre>
# effect of error
set.seed(2023)
split_plot$error <- rnorm(36, 0, 2.5)</pre>
# creating response
split_plot$y <- (
  split_plot$y_irr + split_plot$y_fert +
  split_plot$y_inter + split_plot$y_b + split_plot$error
```

9 9

```
with(split_plot, table(block))
block
1 2 3
12 12 12
with(split_plot, table(irrigation))
irrigation
    moist saturated flooded
       12
                 12
                          12
with(split_plot, table(fertilizer))
fertilizer
     50 100 150
```

```
with(split_plot, addmargins(table(irrigation, fertilizer)))
```

fertilizer

irrigation	0	50	100	150	Sum
moist	3	3	3	3	12
saturated	3	3	3	3	12
flooded	3	3	3	3	12
Sum	9	9	9	9	36

```
hist(split_plot$y, main = 'Histogram', xlab = 'yield')
```


boxplot(y ~ irrigation, data = split_plot, ylab = 'yield')

boxplot(y ~ fertilizer, data = split_plot, ylab = 'yield')

Model

$$y_{ijk} = \mu + b_i + \alpha_j + b_i \alpha_j + \beta_k + \alpha_j \beta_k + \varepsilon_{ijk},$$

where y_{ijk} is the response, μ is the grand mean, b_i is the block (random), with i=1,2,3, α_j is the irrigation term, with j=1,2,3, $b_i\alpha_j$ is the interaction between block and irrigation (random), β_k is the fertilizer term, with k=1,2,3,4, $\alpha_j\beta_k$ is the interaction between irrigation and block, and ε_{ijk} is the residual term.

```
mod.lme <- nlme::lme(y \sim irrigation * fertilizer, \\ random = \sim 1 | block/irrigation, \ data = split_plot) \\ anova(mod.lme)
```

```
        numDF
        denDF
        F-value
        p-value

        (Intercept)
        1
        18
        12.624677
        0.0023

        irrigation
        2
        4
        12.401598
        0.0193

        fertilizer
        3
        18
        22.922619
        <.0001</td>

        irrigation:fertilizer
        6
        18
        1.067825
        0.4172
```

Residuals VS Factor levels

Residuals VS Factor levels

Residuals VS Fitted


```
qqnorm(res, main = 'Normal Q-Q')
qqline(res, lty = 2, col = 'grey')
```


Residuals VS Exp. Units

Means comparision

Means comparisions

