السلسلة رقم 01 – الاحتمالات

◄ التمرين 10:

صندوق به 9 بطاقات متماثلة لا نفرق بينها عند اللمس، مكتوب على كل منها سؤال واحد:

- ثلاثة أسئلة في الاحتمالات مرقمة ب: 1 ، 2 و 3.
- أربعة أسئلة في الاشتقاقية مرقمة ب: 1 ، 2 ، 3 و 4.
 - وسؤالين في الدوال مرقمين ب: 1 و 2.

نسحب عشوائيا بطاقة واحدة من الصندوق ونعتبر الحوادث التالية:

- A: " سحب سؤال في الاحتمالات "
 - B: " سحب سؤال في الدوال "
- C: " سحب سؤال في الاشتقاقية يحمل رقما زوجيا "
- احسب P(A) و P(B) و P(C) احتمال P(C) على الترتيب. P(A)
 - 2) أحسب احتمال سحب سؤال رقمه مختلف عن الـ 1.
- 3) نعتبر المتغير العشوائي X يرفق بكل بطاقة مسحوبة رقم السؤال المسجل عليها.
 - أ- برر أن مجموعة قيم X هي $\{4; 2; 3; 1\}$.
- ب- عين قانون الاحتمال للمتغير العشوائي X ثم احسب E(X) أمله الرياضياتي.
 - ت- استنتج قيمة (E(2023+2024X).

◄ التمرين 20:

كيس به 7 كريات متماثلة لا نفرق بينها باللمس. منها 3 بيضاء و 4 خضراء. نسحب عشوائيا وفي آن واحد كريتين من الكيس.

I.

- 1) أحسب احتمال الحادثة A: " سحب كريتين مختلفين في اللون".
 - 2) أحسب احتمال الحادثة B: " سحب كريتين من نفس اللون".
- II. نقترح اللعبة التالية: للمشاركة يدفع اللاعب α (α (DA)) α عدد طبيعي معطى و DA تعني دينار جزائري) فإذا سحب كريتين بيضاوين يتحصل على 100DA و اذا سحب كريتين مختلفين في اللون يتحصل على 50DA ، واذا سحب كريتين خضراوين يخسر ما دفعه، وليكن α المتغير العشوائي الذي يمثل الربح أو خسارة اللاعب بدلالة α .
 - - $\mathbf{E}(\mathbf{X}) = -lpha + rac{300}{7}$. $\mathbf{E}(\mathbf{X}) = -lpha + rac{300}{7}$ هو lpha هو (2
 - lphaب- جد أكبر قيمة ممكنة لـ lpha حتى تكون اللعبة في صالح اللاعب.

< التمرين 03:

كيس به 12 كرية متماثلة لا نفرق بينها باللمس. كل من الكريات الاثني عشر تحمل رقما من بين الأعداد التالية: 1 ، 2 ، $p_1 = \frac{1}{6}$ ، $p_2 = \frac{1}{6}$ ، $p_1 = \frac{1}{6}$ ، $p_2 = \frac{1}{6}$ ، $p_3 = \frac{1}{6}$ ، $p_4 = \frac{1}{6}$ ، $p_5 = \frac{1}{6}$ ، $p_6 =$

 $p_4 = \frac{1}{4} \cdot p_3 = \frac{1}{4}$

- 1) وزُع الكريات الاثني عشر حسب الأرقام 1 ، 2 ، 3 ، 4 .
 - 2) أحسب احتمال كل من الحوادث B ، A و C حيث:
 - A: " سحب كرية تحمل رقما فرديا "
 - B: " سحب كرية تحمل رقما أوليا "
 - $\mathbf{x}^2 = 2^{\mathbf{x}}$ سحب کریة رقمها حل للمعادلة " \mathbf{C}
- 3) نعتبر X المتغير العشوائي يرفق بكل سحب لكرية الرقم الذي تحمله
- عين مجموعة قيم المتغير العشوائي \mathbf{X} ، ثم أحسب $\mathbf{E}(\mathbf{X})$ أمله الرياضياتي.

﴿ التمرين 04:

- 1) كيس به 7 كريات متماثلة منها ثلاثة سوداء تحمل الأرقام: 0 ، 3 و 5 و ثلاثة حمراء تحمل الأرقام 1 ، 3 و 5 و كرية خضراء تحمل الرقم 3 ، نسحب عشوانيا على التوالى و بدون ارجاع كريتان من الكيس .
 - أ- عين بواسطة مخطط عدد عناصر مجموعة الإمكانيات Q.

ب- أحسب احتمال الحوادث التالية:

- الحادثة A: " سحب كريتان مختلفان في اللون " .
- الحادثة B: " سحب كريتان تحملان نفس الرقم " .
 - الحادثة C: " سحب كرية حمراء على الأكثر ".
 - الحادثة D: " سحب كرية سوداء على الأقل " .
- الحادثة E : " سحب كريتان مجموع رقميهما مضاعف لـ 3".
 - الحادثة F: " سحب كريتان لهما نفس اللون " .
- 2) ليكن X المتغير العشوائي الذي يرفق بكل سحب " عدد الكريات السوداء المسحوبة " .
 - أ- عين مجموعة قيم المتغير العشوائي X ، ثم عرف قانون احتماله.
 - ب- أحسب الأمل الرياضياتي، التباين و الانحراف للمتغير العشوائي X.
- 3) ليكن Y المتغير العشوائي الذي يرفق بكل سحب " القيمة المطلقة للفرق بين رقمي الكريتان المسحوبتان " .
 - أ- عين مجموعة قيم المتغير العشوائي \mathbf{Y} ، ثم عرف قانون احتماله .
 - ب- أحسب الأمل الرياضياتي، التباين و الانحراف للمتغير العشوائي Y .

< التمرين 05:

نرمي زهر نرد غير مزيف ذو خمس أوجه مرقم من 1 إلى 5، المرة الأولى نسجل الرقم α ثم نرميه مرة ثانية و نسجل الرقم β .

- 1) أحسب احتمال الحدثين التاليين:
- $oldsymbol{\cdot}$. " $oldsymbol{\beta} = oldsymbol{\beta} oldsymbol{\alpha}$ الرقمان $oldsymbol{\alpha}$ و $oldsymbol{\beta}$ يحققان المساواة $oldsymbol{\cdot}$
- $\| \mathbf{B} \mathbf{\alpha} \| \le 1$ الرقمان \mathbf{a} و \mathbf{a} يحققان المتباينة $\mathbf{B} = \mathbf{a}$ الرقمان \mathbf{a}
- . $|\hat{\beta} \alpha|$ هو المتغير العشوائي الذي يرفق بكل رميتين بالعدد \mathbf{X} (2
 - عين القيم الممكنة لـ X ، ثم أكتب قانون احتماله.
- نكتب الآن بالرقمين α و β المعادلة: α الذي يرفق بكل (E): α و نعتبر المتغير العشوائي α الذي يرفق بكل رميتين عدد حلول المعادلة (E).
 - عين القيم الممكنة لـ Y ، ثم أكتب قانون احتماله.

◄ التمرين 06: (شجرة الاحتمالات)

- I- اقترح أستاذ على تلاميذ استجواب متكون من سؤالين، واحتمال أن يجيب التلميذ إجابة صحيحة هو $\frac{1}{2}$ و احتمال أن تكون الإجابة خاطئة يساوي احتمال عدم الإجابة عن السؤال.
 - 1) مثل هذه التجربة على شجرة الاحتمالات.
 - 2) احسب احتمال الحوادث التالية:
 - A: " أن يجيب التلميذ على السؤالين".
 - B: " ألا يجيب التلميذ على السؤال الثاني فقط ".
 - C: " يجيب التلميذ إجابة واحدة صحيحة على الأكثر".
- II- يتحصل التلميذ على (2+) لكل إجابة صحيحة و على (1-) لكل إجابة خاطئة، وفي حالة عدم الإجابة يتحصل على (0).
- نيكن X المتغير العشوائي الذي يرفق لكل مخرج مجموع النقاط المتحصل عليها. وإذا كان X < 0 يحصل التلميذ على X < 0 ما هي القيم الممكنة للمتغير العشوائي X.
 - 1) عرف قانون الاحتمال X.
 - 3) أحسب الأمل الرياضياتي E(X) ،ماذا تسنتج؟

اللاعب يدفع
$$a(DA)$$
 ثم يسحب كريتين: إذا سحب كريتين بيضاوين يربح $X = 100DA$ ومنه: $X = 100 - \alpha$

اذا سحب كريتين مختلفتين في اللون يربح 50DA

$$X = 50 - \alpha$$
 منه:

واذا سحب سحب كريتين خضراوين يخسر ما دفعه

$$X = -\alpha$$
 | each :

 $\{100-lpha;50-lpha;-lpha\}:$ وعليه قيم المتغير العشوائي هي

تعریف قانون احتمال X:

x_i	$100 - \alpha$	$50 - \alpha$	$-\alpha$
$P(X=x_i)$	$\frac{1}{7}$	$\frac{4}{7}$	$\frac{2}{7}$
	/	/	200

 $E(X) = -\alpha + \frac{300}{7}$ تبيين أُنِّ

$$E(X) = (100 - \alpha)\frac{1}{7} + (50 - \alpha)\frac{4}{7} + (-\alpha)\frac{2}{7}$$
$$= \frac{100 - \alpha + 200 - 4\alpha - 2\alpha}{7}$$
$$= \frac{300 - 7\alpha}{7} = \boxed{-\alpha + \frac{300}{7}}$$

إيجادأكبر قيمة ممكنة لـ α:

$$E(X)>0$$
 :للاعب لما: $a+\frac{300}{7}>0$ أي : $a+\frac{300}{7}>0$

$$\alpha < 42.85$$
 ومنه:

$$\alpha = 42DA$$
 وعليه:

التمرين 03:

1 توزيع الكريات الاثني عشر حسب الأرقام 1، 2، 3 ، 4:

1 معناه: يوجد 4 كرات تحمل الرقم
$$p_1 = \frac{1}{3} = \frac{4}{12}$$

2 معناه: يوجد 2 كرات تحمل الرقم
$$p_2 = \frac{1}{6} = \frac{2}{12}$$

3 معناه: يوجد 3 كرات تحمل الرقم
$$p_3 = \frac{1}{4} = \frac{3}{12}$$

4 معناه: يوجد 3 كرات تحمل الرقم
$$p_4 = \frac{1}{4} = \frac{3}{12}$$

2 حساب احتمال كل من الحوادث A، B و 2 :

•
$$p(A) = \boxed{\frac{7}{12}}$$

•
$$p(B) = \frac{2}{12} + \frac{3}{12} = \boxed{\frac{5}{12}}$$

•
$$p(C) = \boxed{\frac{2}{12}}$$

3 تعيين مجموعة قيم المتغير العشوائي X:

				1
x_i	1	2	3	4
D(V - u)	4	2	3	3
$P(X=x_i)$	12	12	12	12

﴿الاحتمالات﴾

📚 المستوئ ثانية شعبة علوم 🗈

🔳 التمرين 01:

p(C) و p(B) و p(A) عساب $\mathbf{0}$

•
$$p(A) = \frac{3}{9} = \boxed{\frac{1}{3}}$$
 • $p(B) = \boxed{\frac{2}{9}}$ • $p(C) = \boxed{\frac{2}{9}}$

2 حساب احتمال سحب سؤال رقمه مختلف عن الد 1:

$$p(D) = \frac{6}{9} = \boxed{\frac{2}{3}}$$

(1; 2; 3; 4) التبرير أن مجموعة قيم X هي (1; 2; 3; 4):

لدينا أسئلة الاحتمالات مرقمة من 1 إلى 3 وأسئلة الاشتقاقية مرقمة من 1 إلى 4 وأسئلة الدوال مرقمة من 1 إلى 2 إذن مجموعة قيم X هي: {1;2;3;4}

أ- تعيين قانون الاحتمال للمتغير العشوائي X:

x_i	1	2	3	4
$P(X=x_i)$	3	3	2	1
	9	9	9	9

: E(X) حساب

$$E(X) = 1\frac{3}{9} + 2\frac{3}{9} + 3\frac{2}{9} + 4\frac{1}{9} = \boxed{\frac{19}{9}} \approx 2.1$$

E(2024X + 1445) ج-استنتاج قيمة

$$E(2023 + 2024X) = 2024E(X) + 2023$$
$$= 2024\frac{19}{9} + 2023 = \frac{56663}{9}$$

🗖 التمرين 02:

B و A حساب احتمال الحدث

	В	В	В	V	V	V	V
В		BB	BB	VB	VB	VB	VB
В			BB	VB	VB	VB	VB
В				VB	VB	VB	VB
V					VV	VV	VV
V						VV	VV
V							VV
V							

•
$$P(A) = \frac{12}{21} = \boxed{\frac{4}{7}}$$

•
$$p(B) = 1 - p(A) = 1 - \frac{4}{7} = \boxed{\frac{3}{7}}$$

 $\{100-lpha;50-lpha;-lpha\}$ أ- تبرير أن قيم المتغير العشوائي هي

$$\begin{split} \mathbf{D} \ V(X) &= \sum_{i=1}^{3} (x_i)^2 p_i - \left(E(X) \right)^2 \\ &= \left[(0)^2 \left(\frac{2}{7} \right) + (1)^2 \left(\frac{4}{7} \right) + (2)^2 \left(\frac{1}{7} \right) \right] - \left(\frac{6}{7} \right)^2 \\ &= \boxed{2} \\ \mathbf{D} \ \sigma(X) &= \sqrt{V(X)} = \boxed{\sqrt{2}} \end{split}$$

أ- تعيين مجموعة قيم المتغير العشوائي Y:

 $Y(\Omega) = \{0; 1; 2; 3; 4; 5; 6; 7\}$

قانون احتمال Y:

	<i>B</i> 0	В3	<i>B</i> 5	<i>R</i> 1	R3	<i>R</i> 7	<i>G</i> 3
<i>B</i> 0		3	5	1	3	7	3
В3	3		2	2	0	4	0
<i>B</i> 5	5	2		4	2	2	2
<i>R</i> 1	1	2	4		2	6	2
R3	3	0	2	2		4	0
R7	7	4	2	6	4		4
<i>G</i> 3	3	0	2	2	0	4	

ومنه:

Y	0	1	2	3	4	5	6	7
$P(Y = y_i)$	6	2	14	6	8	2	2	2
$I(I-y_i)$	42	42	42	42	42	42	42	42

$$\mathbf{D}E(Y) = \sum_{i=1}^{8} y_i p_i = \frac{(0)1}{7} + \frac{(1)1}{21} + \dots + \frac{(6)1}{21} + \frac{(7)1}{21}$$
$$= \frac{58}{21}$$

$$V(Y) = \sum_{i=1}^{8} (y_i)^2 p_i - (E(Y))^2$$

$$= \left[(0)^2 \left(\frac{1}{7} \right) + (1)^2 \left(\frac{1}{21} \right) + \dots + (7)^2 \left(\frac{1}{21} \right) \right] - \left(\frac{58}{21} \right)^2$$

$$= \frac{1466}{121}$$

 $\sigma(Y) = \sqrt{V(Y)} = \sqrt{3.32} \approx \boxed{1.82}$

التمرين 05:

α β	1	2	3	4	5
1	(1;1)	(2;1)	(3;1)	(4; 1)	(5; 1)
2	(1;2)	(2;2)	(3; 2)	(4; 2)	(5; 2)
3	(1;3)	(2;3)	(3;3)	(4;3)	(5; 3)
4	(1;4)	(2;4)	(3;4)	(4;4)	(5; 4)
5	(1;5)	(2;5)	(3;5)	(4;5)	(5;5)

مجموع الإمكانيات هو 25

4 حساب احتمال الحدثين التاليين:

 $\alpha - \beta = \beta$ الرقمان α و β يحققان المساواة: α

$$lpha=2eta$$
 معناه $lpha-eta=eta$

$$(4;2)$$
 ، $(2;1)$ هي $\alpha = 2\beta$ ، " $\alpha = 2\beta$ " الإمكانيات التي تحقق المساواة " $\alpha = 2\beta$ " ، هي $E(X) = \sum_{i=1}^{n} x_i p_i = (0)\left(\frac{2}{7}\right) + (1)\left(\frac{4}{7}\right) + (2)\left(\frac{1}{7}\right)$

$$E(X) = \sum_{i=1}^{4} x_i p_i = 1 \frac{4}{12} + 2 \frac{2}{12} + 3 \frac{3}{12} + 4 \frac{3}{12}$$
$$= \frac{4 + 4 + 9 + 12}{12} = \boxed{\frac{29}{12}}$$

	B_0	B_3	B_5	R_1	R_3	R_7	G_3
B_0		B_3B_0	B_5B_0	R_1B_0	R_3B_0	R_7B_0	G_3B_0
B_3	B_0B_3		B_5B_3	R_1B_3	R_3B_3	R_7B_3	G_3B_3
B_5	B_0B_5	B_3B_5		R_1B_5	R_3B_5	R_7B_5	G_3B_5
R_1	B_0R_1	B_3R_1	B_5R_1		R_3R_1	R_7R_1	G_3R_1
R_3	B_0R_3	B_3R_3	B_5R_3	R_1R_3		R_7R_3	G_3R_3
R_7	B_0R_7	B_3R_7	B_5R_7	R_1R_7	R_3R_7		G_3R_7
G_3	B_0G_3	B_3G_3	B_5G_3	R_1G_3	R_3G_3	R_7G_3	

ومنه: عدد امكانيات هاته التجربة هو 42

تعيين مجموعة قيم المتغير العشوائي X:

 $X(\Omega) = \{0; 1; 2\}$ حيث:

	B_0	B_3	B_5	R_1	R_3	R_7	G_3
B_0	/	B_3B_0	B_5B_0	R_1B_0	R_3B_0	R_7B_0	G_3B_0
B_3	B_0B_3	/	B_5B_3	R_1B_3	R_3B_3	R_7B_3	G_3B_3
B_5	B_0B_5	B_3B_5	/	R_1B_5	R_3B_5	R_7B_5	G_3B_5
R_1	B_0R_1	B_3R_1	B_5R_1	/	R_3R_1	R_7R_1	G_3R_1
R_3	B_0R_3	B_3R_3	B_5R_3	R_1R_3	/	R_7R_3	G_3R_3
R_7	B_0R_7	B_3R_7	B_5R_7	R_1R_7	R_3R_7	/	G_3R_7
G_3	B_0G_3	B_3G_3	B_5G_3	R_1G_3	R_3G_3	R_7G_3	/

X	0		1		2	
D(V	2	12	4	24	1	6
$P(X=x_i)$	7	$=\frac{1}{42}$	7 =	$=\frac{1}{42}$	7 =	$=\frac{1}{42}$

$$\mathbf{E}(X) = \sum_{i=1}^{3} x_i p_i = (0) \left(\frac{2}{7}\right) + (1) \left(\frac{4}{7}\right) + (2) \left(\frac{1}{7}\right)$$

$$\approx \boxed{0.85}$$

🗨 حساب احتمال الحواث التالية:

•
$$P(A) = P(T \cap T) = \frac{1}{2} = \boxed{\frac{1}{4}}$$

•
$$P(B) = P(T \cap N) + P(F \cap N) + P(N \cap N)$$

= $\frac{1}{2} \frac{1}{4} + \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} = \boxed{\frac{1}{4}}$

•
$$P(C) = P(T \cap T) + P(T \cap F) + P(T \cap N) + P(F \cap T) + P(N \cap T)$$

$$= \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{4} + \frac{1}{4} \frac{1}{2} + \frac{1}{4} \frac{1}{2} = \boxed{\frac{3}{4}}$$

القيم المكنة للمتغير العشوائي X:

$$X(\Omega) = \{0; 1; 2; 4\}$$

2 تعريف قانون الاحتمال X:

x_i	0	1	2	4
D(V-v)	1	1	1	1
$P(X=x_i)$	$\frac{-}{4}$	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$	4

3 حساب الأمل الرياضياتي E(X):

$$E(X) = 0\frac{1}{4} + 1\frac{1}{4} + 2\frac{1}{4} + 4\frac{1}{4} = \boxed{\frac{7}{4}}$$

لدينا $E(\overline{X})>0$ ومنه: نستنتج أنّ احتمال تحصل التلميذ على نقاط $E(\overline{X})$

جيدة كبير

تككر تلميكر العزيز أن: جكور التعليم مريرة ... لكر ثمارها حلولق بالتوفيق جميعا

$$p(A) = \boxed{\frac{2}{25}}$$

$|\alpha - \beta| \le 1$ و $|\alpha - \beta| \le 1$ و المتباينة $|\alpha - \beta| \le 1$. $|\alpha - \beta|$

 $|\alpha-\beta|\leq 1$ غلا الجدول بـ $|\alpha-\beta|$ ثم نلاحظ القيم التي تحقق

Ba	1	2	3	4	5
1	0	1	2	3	4
2	1	0	1	2	3
3	2	1	0	1	2
4	3	2	1	0	1
5	4	3	2	1	0

$$p(B) = \boxed{\frac{13}{25}}$$

5 تعيين القيم الممكنة لـ X، ثم كتابة قانون احتماله:

 $X(\Omega) = \{0; 1; 2; 3; 4\}$ قيم المتغير العشوائي X هي:

x_i	0	1	2	3	4
(V)	5	8	6	4	2
$p(X=x_i)$	25	25	25	25	25

6 تعيين القيم الممكنة لـ Y، ثم كتابة قانون احتماله:

$$\Delta = \alpha^2 - 4\beta$$
 لدينا:

لما:
$$0 < \Delta$$
 للمعادلة حلين،

$$\Delta = 0$$
 للمعادلة حل وحيد،

$$\Delta < 0$$
 المعادلة لا تقبل حلولا

$$lpha^2 - 4eta$$
 نملا الجدول السابق بقيم

β α	1	2	3	4	5
1	-3	0	5	12	21
2	-7	-4	1	8	17
3	-11	-3	-3	4	13
4	-15	-12	-7	0	9
5	-19	-16	-11	-4	5

ومنه

x_i	0	1	2
(W)	13	2	10
$p(Y=x_i)$	25	25	25

🗖 التمرين 06:

(1

🚺 تمثيل هذه التجربة على شجرة الاحتمالات:

نحسب أولا احتمال الإجابة الخاطئة:

نضع x احتمال الإجابة الخاطئة أو عدم الإجابة على السؤال

$$\sum p_i = 1$$
 لدينا:

$$\frac{1}{2} + x + x = 1 \quad :$$

$$x = \frac{1}{4} : a$$

نضع: T: إجابة صحيحة، F: إجابة خاطئة، N: عدم الاجابة