jeudi le 23 novembre 2017; durée: 08h30 à 09h20; aucune documentation permise; 7.5% de note finale

Problème 1 (24 points sur 100)

A. Est-ce que ces systèmes sont linéaires et invariants en temps?

$y(t) = \frac{dx(t)}{dt}$	OUI	NON
$y(t) = \int_{t-5}^{t+5} x(z) dz$	OUI	NON
$y(t) = x(t-1) \cdot x(t+1)$	OUI	NON

B. Indiquez si les réponses sont vraies ou fausses.

$\operatorname{Rect}(t-3) * \operatorname{Rect}(t-6) = \operatorname{Rect}(t) * \operatorname{Rect}(t-9)$	VRAI	FAUX
$f(t) \cdot g(t) \Leftrightarrow \frac{1}{2\pi} F(\omega) * G(\omega)$	VRAI	FAUX
$\sin(t) \bigoplus_{t=0}^{+} \frac{1}{3+j\omega} \qquad y(t) \implies y(t) = \frac{1}{10} \sin\left(t - \tan^{-1}\frac{1}{3}\right)$	VRAI	FAUX

Problème 2 (10 points sur 100)

Trouvez la réponse en fréquence pour le circuit suivant

Problème 3 (16 points sur 100)

Trouvez les spectres (soit un graphique détaillée ou une équation) $Y(\omega)$ et $Z(\omega)$ pour le système suivant quand l'entrée a un spectre de $X(\omega) = \text{Tri}(\omega/100)$ et les réponses des filtres sont comme indiqué.

$$X(\omega) = \operatorname{Tri}\left(\frac{\omega}{100}\right) \qquad \qquad H_1(\omega) = \operatorname{Rect}\left(\frac{\omega}{100}\right) \qquad \qquad H_2(\omega) = \operatorname{Rect}\left(\frac{\omega - 15}{10}\right) + \operatorname{Rect}\left(\frac{\omega + 15}{10}\right)$$

Matricule: Nom:

Problème 3 (50 points sur 100)

Trouvez la convolution de f * g avec la méthodologie indiqué.

$$g(t) = \operatorname{sgn}(t)$$

$$= \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$$

$$f(t) = \begin{cases} t & 0 < t < 1 \\ -t & -1 < t < 0 \end{cases}$$

a. (20 points) Pour <u>chaque région</u> de définition de la convolution donnez une esquisse de f(u) et g(t-u) et l'intervalle de t, i.e. a < t < b

11	1 -		intervalle
Region1	-2 -1 -½.	1 2 u	
<u>«</u>	-1		
2	1 -		intervalle
Region2	-2 -1 -½ -	1 2 u	
<u>~</u>	-1		
3 te)	1 -		intervalle
Region3 (s'il existe)	-2 -1 -½.	1 2 u	
R _i (s'i	-1		
(e)	1 -		intervalle
Region4 (s'il existe)	-2 -1 -½.	1 2 u	
RE (s'il	-1 -		
(a)	1		intervalle
Region5 (s'il existe)	-2 -1 -½ .	1 2 u	
Re (s'il	-1 -		

- b. (16 points) Donnez <u>les intégrales</u> à évaluer pour <u>chaque région</u> de définition de la convolution; spécifiez clairement les <u>bornes d'intégration</u> pour chaque région.
- c. (14 points) Évaluez les intégrales et donnez une équation du produit de convolution.

	intervalle	intégrale à évaluer	évaluation de l'intégrale
Region1			
Region2			
Region3 (s'il existe)			
Region4 (s'il existe)			
Region5 (s'il existe)			

Espace pour calculer les intégrales.

Nom: Matricule: .	
-------------------	--

GEL2001: Analyse des signaux

2017 Mini-test 2

Professeur: Leslie A. Rusch

Produit de convolution (résultat final):	
•	

Espace pour calculer les intégrales.