Problem Set 5

Assessed problems (and sub-problems) are marked by the asterisk *. All closed curves are assumed to be positively oriented, unless stated otherwise.

- 1. * Compute the residues of the following functions.
 - (a) $\cot z$ at 0,
 - (b)* $\frac{1}{\cos z+1}$ at π .
- 2. Evaluate along the smooth curve γ given below the contour integral of f(z) for the following functions.

(a)
$$f(z) = \frac{3z+1}{z^2+z-2}$$
, (b) $f(z) = e^{1/z}$, (c) $f(z) = \csc(2\pi z)$.

(b)
$$f(z) = e^{1/z}$$
,

(c)
$$f(z) = \csc(2\pi z)$$
.

3. * Use the method of residues to compute the integral

$$\int_0^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2},$$

where -1 < a < 1.

4. Use the method of residues to compute the following improper integrals.

(a)
$$\int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx$$
, (b)* $\int_{-\infty}^\infty \frac{x \sin x}{(x^2+1)(x^2+4)} dx$.
(c) $\int_{-\infty}^\infty \frac{\sin x}{x-\pi} dx$, (d)* $\int_0^\infty \frac{1}{1+x^4} dx$,
(e) $\int_{-\infty}^\infty \frac{1}{\sqrt{x}(x^2+9)} dx$, (f)* $\int_0^\infty \frac{\sqrt[3]{x}}{(x+1)^3} dx$.

(b)*
$$\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2+1)(x^2+4)} dx$$

(c)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x - \pi} dx,$$

$$(\mathrm{d})^* \int_0^\infty \frac{1}{1+x^4} dx,$$

(e)
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{x(x^2+9)}} dx$$

$$(f)^* \int_0^\infty \frac{\sqrt[3]{x}}{(x+1)^3} dx$$

5. Locate the principal branch cut for $\log(z^2 + 1)$. Use the method of residues to derive the following integration formula.

$$\int_0^\infty \frac{\ln(x^2 + 1)}{x^2 + 1} dx = \pi \ln 2.$$

- 6. * Show that if u is harmonic on a domain $W \subset \mathbb{R}^2$, the complex derivative $\frac{\partial U}{\partial z}$ of the complex function U(x+iy)=u(x,y) on $W\subset \mathbb{C}$ is holomorphic on W.
- 7. * Show that the function

$$u(x,y) = \frac{y}{x^2 + y^2}$$

is harmonic everywhere except at (0,0).

- 8. Prove Liouville's theorem for harmonic functions: every bounded harmonic function on \mathbb{R}^2 is constant.
- 9. * Prove a variant of the coincidence principle for harmonic functions: whenever two harmonic functions u_1 and u_2 on a domain $U \subset \mathbb{R}^2$ satisfy $u_1 \equiv u_2$ on some non-empty open subset $V \subset U$, then $u_1 \equiv u_2$ on U. (Hint: refer to Qn. 6 above and/or Problem set 4 Qn. 2.)
- 10. Let f be a holomorphic function on a domain U and let g be a harmonic function where $g(x,y) = |f(x+iy)|^2$ whenever $x+iy \in U$. Show that f is a constant function.
- 11. Let 0 < r < 1 and $z = e^{i\theta}$ for some $\theta \in \mathbb{R}$.
 - (a) Show that the Laurent series expansion for the function $w\mapsto r/(w-r)$ on the domain $\{|w|>|r|\}$ is $\sum_{n=1}^{\infty}r^nw^{-n}$,
 - (b) By considering the real and imaginary parts of the Laurent expansion above, prove the following identities:

$$\frac{r(\cos\theta - r)}{1 - 2r\cos\theta + r^2} = \sum_{n=1}^{\infty} r^n \cos n\theta, \quad \frac{r\sin\theta}{1 - 2r\cos\theta + r^2} = \sum_{n=1}^{\infty} r^n \sin n\theta.$$

(c) Hence, show that the Poisson kernel has the following cosine series expansion:

$$P(r,\theta) = 1 + 2\sum_{n=1}^{\infty} r^n \cos n\theta.$$

12. Find the unique harmonic function $u(r,\theta)$ on the unit disk satisfying the following boundary conditions¹.

(a)
$$\lim_{r \to 1} u(r, \theta) = \begin{cases} 1, & \text{if } 0 \le \theta < \frac{\pi}{2}, \\ 0, & \text{if otherwise.} \end{cases}$$

(b)
$$\lim_{r \to 1} u(r, \theta) = \cos \theta$$
.

¹Perhaps it may be easier to solve parts (c) and (d) using the cosine series expansion of $P(r,\theta)$ in Exercise 7.