Univariate Regression: Hypothesis Tests and Confidence Intervals (SW Ch. 5) Part 2

Dragos Ailoae

dailoae@gradcenter.cuny.edu

Advanced Economics and Business Statistics ECON-4400w - Fall 2022

> Brooklyn College Oct 26, 2022

Outline

- 1. The standard error of $\hat{\beta}_1$
- 2. Hypothesis tests concerning β_1
- 3. Confidence intervals for β_1
- 4. Regression when X is binary
- 5. Heteroskedasticity and homoskedasticity
- 6. Efficiency of OLS and the Student t distribution

Experimental data (RCTs)

Randomized Control Trials:

- All participants are randomly assigned into **two** groups.
- The control group receives no treatment (or placebo)
- The experimental group receives the treatment.
- After a follow-up period, compare the two groups

Regression when X is Binary (Section 5.3)

Sometimes a regressor is binary:

- X = 1 if treated (experimental drug), = 0 if not
- X = 1 if small class size, = 0 if not
- X = 1 if female, = 0 if male

Binary regressors are sometimes called "dummy" variables.

Oxford dictionary
 dummy /'dəmē/ - something designed to resemble and serve as
 a substitute for the real or usual thing

Interpreting regressions with a binary regressor $Y_i = \beta_0 + \beta_1 X_i + u_i$, where X is binary ($X_i = 0$ or 1):

So far, β_1 has been called a "slope," but that doesn't make sense if X is binary.

How do we interpret regression with a binary regressor?

When
$$X_i = 0$$
, $Y_i = \beta_0 + u_i$

- the mean of Y_i is β_0
- that is, $E(Y_i|X_i=0) = \beta_0$

When
$$X_i = 1$$
, $Y_i = \beta_0 + \beta_1 + u_i$

- the mean of Y_i is $\beta_0 + \beta_1$
- that is, $E(Y_i|X_i=1) = \beta_0 + \beta_1$

so:
$$\beta_1 = E(Y_i|X_i=1) - E(Y_i|X_i=0)$$

= population difference in group means

Excel live session

Interpreting regressions with a binary regressor $Y_i = \beta_0 + \beta_1 X_i + u_i$, where X is binary $(X_i = 0 \text{ or } 1)$:

Example: Let
$$D_i = \begin{cases} 1 \text{ if } STR_i < 20 \\ 0 \text{ if } STR_i \geq 20 \end{cases}$$

OLS regression: $\widehat{TestScore} = 650.0 + 7.4 \times D$
(1.3) (1.8)

Tabulation of group means:

Class Size	Average score (\bar{Y})	Std. dev. (s_Y)	N
Small (<i>STR</i> < 20)	657.4	19.4	238
Large ($STR \ge 20$)	650.0	17.9	182

Difference in means:
$$\bar{Y}_{\text{small}} - \bar{Y}_{\text{large}} = 657.4 - 650.0 = 7.4$$

Standard error
$$SE = \sqrt{\frac{S_s^2}{n_s} + \frac{S_l^2}{n_1}} = \sqrt{\frac{19.4^2}{238} + \frac{17.9^2}{182}} = 1.8$$

Summary: regression when X_i is binary

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- β_0 = mean of *Y* when X = 0
- $\beta_0 + \beta_1 = \text{mean of } Y \text{ when } X = 1$
- β_1 = difference in group means, X = 1 minus X = 0
- $SE(\hat{\beta}_1)$ has the usual interpretation
- t-statistics, confidence intervals constructed as usual
- This is another way (an easy way) to do difference-in-means analysis
- The regression formulation is especially useful when we have additional regressors (coming soon)