1.小麦基本苗数 x 及有效穗数 Y (单位: 万)的5组观察数据如下:

基本苗数 x_i	15.0	25.8	30.0	36.6	44.4
有效穗数 y _i	39.4	41.9	41.0	43.1	49.2

试求线性回归方程并用三种方法做显著性检验;若 $x_0=26$,求: Y_0 的 0.95 预测区间.

解:①作散点图(略);

②建模:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).i = 1, \dots, n.$$

③
$$\bar{x} = 30.36$$
, $\bar{y} = 42.92$; $I_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 492.912$,

$$l_{xy} = \sum_{i=1}^{n} y_i x_i - n \overline{xy} = 148.704, \quad l_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = 56.588;$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{l_{xy}}{l_{xx}} = 0.302, \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 33.76.$$

得经验回归方程: $\hat{v} = 33.76 + 0.302x$.

④对 $H_0: \beta_1 = 0 \leftrightarrow H_1: \beta_1 \neq 0$ 的检验, $\alpha = 0.05$.

方 法 1: F 检验法(或方差分析法)

$$SSR = \hat{\beta}_1^2 1_{xx} = 44.956; \quad SSE = 1_{yy} - \hat{\beta}_1^2 1_{xx} = 11.6325; \quad MSE = SSE/(5-2) = 3.87;$$

确定拒绝域: $F_{0.95}$ (5-2)=10.1, W_1 ={ $F > F_{0.95}$ (5-2)=10.1}, 而 F=SSR/MSE=11.6.

从而 W_1 发生,故拒绝 $H_0: \pmb{\beta}_1 = 0$,接受 $H_1: \pmb{\beta}_1 \neq 0$,即认为有线性相关性,或经验回归方程: $\hat{\pmb{y}} = 33.76 + 0.302x$ 合理.

方法 2: 相关系数法
$$|r| = \frac{\sum\limits_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i-\bar{x})^2\sum\limits_{i=1}^{n}(y_i-\bar{y})^2}} = \frac{|l_{xy}|}{\sqrt{l_{xx}l_{yy}}} = 0.8904,$$

确定拒绝域 $W_1 = \{|\mathbf{r}| > \mathbf{r}_{0.95}(5-2) = 0.8783\}$,从而 W_1 发生,故拒绝 $\mathbf{H}_0: \beta_1 = 0$,接受 $\mathbf{H}_1: \beta_1 \neq 0$,即认为有线性相关性,或经验回归方程: $\hat{\mathbf{y}} = 33.76 + 0.302\mathbf{x}$ 合理.

方法3: t检验法.

$$t = \hat{\beta}_1 / \sqrt{MSE/l_{yx}} = 0.303 / \sqrt{3.877 / 492.912} = 3.405$$

确定拒绝域 $W_1 = \{ |t| > t_{0.975} (5-2) = 3.182 \}$,从而 W_1 发生,故拒绝 $H_0: \beta_1 = 0$,

接受 $H_1: \beta_1 \neq 0$,即认为有线性相关性,或经验回归方程: $\hat{y} = 33.76 + 0.302x$ 合理.

⑤(1)当 $x_0 = 26$ 时, Y_0 的点估计为 \hat{y}_0 点估计 $\hat{y}_0 = 33.76 + 0.302 \times 26 = 41.6047$,

$$(2)\Delta = t_{0.975} \sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right] MSE} = 3.182 \sqrt{\left[1 + \frac{1}{5} + \frac{(26 - 30.36)^2}{492.912}\right] \times 3.877} = 6.973,$$

从而预测区间为: (41.6047-6.973, 41.6047+6.973)=(34.63,48.58).

2. 北碚大红番茄果实横径x单位: cm)与果重Y(单位: g)的观察数据如下:

果实横径 x_i	10	9.6	9.2	8.9	8.5	8.0	7.8	7.7	7.4	7.0
果重 Y_i	140	132	130	121	116	108	105	106	95	90

试求线性回归方程并用三种方法做显著性检验.

分析:①作散点图(略);②建模: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).i = 1, \dots, n.$

$$\widehat{\mathbf{x}} = 8.41, \quad \overline{\mathbf{y}} = 114.3 \quad ; \quad 1_{xx} = \sum_{i=1}^{n} x_{i}^{2} - n\overline{\mathbf{x}}^{2} = \sum_{i=1}^{n} (x_{i} - \overline{\mathbf{x}})^{2} = 8.869,$$

$$1_{xy} = \sum_{i=1}^{n} y_{i}x_{i} - n\overline{x}\overline{\mathbf{y}} = 145.67, \quad 1_{yy} = \sum_{i=1}^{n} (y_{i} - \overline{\mathbf{y}})^{2} = 2426.1;$$

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{\mathbf{x}})(y_{i} - \overline{\mathbf{y}})}{\sum_{i=1}^{n} (x_{i} - \overline{\mathbf{x}})^{2}} = \frac{1_{xy}}{1_{xx}} = 16.425, \quad \widehat{\beta}_{0} = \overline{\mathbf{y}} - \widehat{\beta}_{1} \, \overline{\mathbf{x}} = -23.83$$

得经验回归方程: $\hat{y} = -23.83 + 16.425x$

④对 $H_0: \beta_1 = 0 \leftrightarrow H_1: \beta_1 \neq 0$ 的检验, $\alpha = 0.05$.

方法 1: F 检验法(或方差分析法)

$$SSR = \hat{\beta}_1^2 1_{xx} = 2392.575; \quad SSE = 1_{yy} - \hat{\beta}_1^2 1_{xx} = 33.525; \quad MSE = SSE/(10 - 2) = 4.2;$$

确定拒绝域: $F_{0.95}(10-2)=19.4$, $W_1=\{F>F_{0.95}(5-2)=19.4\}$, 而 F=SSR/MSE=569.66, 从 而 W_1 发生,故拒绝 $H_0:\beta_1=0$,接受 $H_1:\beta_1\neq 0$,即认为有线性相关性,或经验回归方程: $\hat{y}=-23.83+16.425x$ 合理.

方法 2: 相关系数检验法

$$|r| = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{|l_{xy}|}{\sqrt{l_{xx}l_{yy}}} = 0.993,$$

确定拒绝域 $W_1 = \{|\mathbf{r}| > \mathbf{r}_{0.95}(10-2) = 0.6319\}$,从而 W_1 发生,故拒绝 $\mathbf{H}_0: \beta_1 = 0$,

接受 $H_1: \beta_1 \neq 0$,即认为有线性相关性,或经验回归方程: $\hat{y} = -23.83 + 16.425x$ 合理.

方法3: t 检验法

$$t = \hat{\beta}_1 / \sqrt{MSE/I_{xx}} = 16.425 / \sqrt{4.2/8.869} = 23.868$$

确定拒绝域 $W_1 = \{|t| > t_{0.975} (10-2) = 2.306\}$,从而 W_1 发生,故拒绝 $H_0: \beta_1 = 0$,

接受 $H_1: \beta_1 \neq 0$ 即认为有线性相关性,或经验回归方程: $\hat{y} = -23.83 + 16.425x$ 合理.

3.害虫的发生与气象条件有一定的关系.某地观测 1964年—1973年7月下旬的温雨系数 x (雨量/温度)和大豆第二代 造桥虫发生量 Y (每百株虫数)的数据如下:

年份	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
x_i	1.58	9.98	9.42	1.25	0.30	2.41	11.01	1.85	6.04	5.92
Y _i	180	28	25	117	165	175	40	160	120	80

试求线性回归方程并用三种方法做显著性检验.

分析:①作散点图(略); ②建模: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).i = 1, \dots, n.$

③
$$\bar{x} = 4.979$$
, $\bar{y} = 109$; $I_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 146.92$,

$$I_{xy} = \sum_{i=1}^{n} y_i x_i - n \overline{xy} = -2073.07, \ I_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = 234538;$$

$$\hat{\boldsymbol{\beta}}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{I_{xy}}{I_{xx}} = -14.11, \quad \hat{\boldsymbol{\beta}}_{0} = \overline{y} - \hat{\boldsymbol{\beta}}_{1} = -179.256,$$

得经验回归方程: $\hat{\mathbf{y}} = 179.256 - 14.11\mathbf{x}$.

④对 $H_0: \beta_1 = 0 \leftrightarrow H_1: \beta_1 \neq 0$ 的检验, $\alpha = 0.05$

方法 1: F 检验法(或方差分析法)

$$SSR = \hat{\beta}_1^2 I_{xx} = 29252.98; SSE = I_{yy} - \hat{\beta}_1^2 I_{xx} = 5285.02;$$

MSE = SSE/(10-2) = 660.6275; 确定拒绝域: $F_{0.95}(10-2) = 19.4$,

 W_1 ={ $F > F_{0.95}$ (5-2)=19.4},而F = SSR/MSE=44.28,从而 W_1 发生,故拒绝

 $H_0: \beta_1 = 0$,接受 $H_1: \beta_1 \neq 0$,即认为有线性相关性,或认为经验回归方程:

 $\hat{v} = 179.256 - 14.11x$ 合理.

方法 2: 相关系数检验法

$$|r| = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{|I_{xy}|}{\sqrt{I_{xx}I_{yy}}} = 0.92,$$

确定拒绝域 $\pmb{W}_1 = \{ \left| \pmb{r} \right| > \pmb{r}_{0.95}(10-2) = 0.6319 \},$ 从而 \pmb{W}_1 发生,故拒绝 $\pmb{H}_0: \pmb{\beta}_1 = 0$,接受

 $H_1: \beta_1 \neq 0$,即认为有线性相关性,或认为经验回归方程: $\hat{y} = 179.256 - 14.11x$ 合理.

方法3: t 检验法

$$t = \frac{\hat{\beta}_1}{\sqrt{MSE/I_{xx}}} = \frac{14.11}{2.12} = 6.656;$$

确定拒绝域 $\pmb{W}_1 = \{ \left| \pmb{t} \right| > \pmb{t}_{0.975} \, (10-2) = 2.306 \},$ 从而 \pmb{W}_1 发生,故拒绝 $\pmb{H}_0 : \pmb{\beta}_1 = 0$,

接受 $H_1: \beta_1 \neq 0$,即认为有线性相关性,或经验回归方程: $\hat{y}=179.256-14.11x$ 合理.

4.某地国民生产总值 Y(单位:亿元)与基本建设投资 x(单位:亿元)的年度统计数字如下:

x_i	191.72	203.66	223.11	242.82	265.45	297.62	322.00	352.41
y _i	15.53	12.92	17.62	14.21	16.90	25.58	28.00	32.47

试求线性回归方程并用三种方法做显著性检验.

解 同上面习题解法完全一样,略.