

Objectives of This Unit

- Describe the function of the physical layer
- Define what is a medium
- Differentiate different types of medium: twisted pair, coaxial, fiber optic cables, wireless

Context

Application Application

<u>Tell</u> Transport

Network Network

Data Link

Physical

We are here (Layer 1)

Please

<u>D</u>o

Context

- What is involved in getting information from A to B?
 - Media what are different common transmission media?
 - Signals what is a signal?
 - Bunch of other stuff (standards, protocols, etc.)

Signal

Special Feature of the Physical Layer

Physical layer interacts with nature

Converts data to signals for transmission on the physical media

The physical medium is the link along which a signal propagates

Physical Medium

Medium

- Can be guided or unguided
 - Guided: copper wire, optic fiber (glass), coax cable
 - Unguided: air medium (radio, microwave, satellite)
- Signals generated by physical layer comply with properties of the medium
 - Examples: voltages in copper, light in fiber, electromagnetic radiation (radio frequency [RF] signals) in wireless

Impact of Physical Medium on Signals

Attenuation

- Function of distance and signal frequency
- Representations in dB
- Susceptibility to noise
 - which affects the capacity/maximumdata rate
- Generation of electromagnetic emissions (interference)

Copper Wire as Physical Medium

- Copper is a good conductor of electricity and is relatively abundantly available
- Unshielded twisted-pair (UTP)
 - 8 individual strands of copper wire are organized as four pairs
- Each pair of wires is twisted around each other
 - Twisting reduces interference, reduces noise
 - Tighter twisting improves data rates

Categories of UTP cables

- Categories range from Cat-1 to Cat-6
 - The higher the category,
 the higher the data rate
 - Generally more twists-perinch

Cable type	Max data rate
Cat 3	10 Mbps
Cat 5e	1,000 Mbps = 1Gbps
Cat 6	10 Gbps

Cable Connectors

- Cat5e cables end in RJ 45 connectors for Ethernet
- Not all pairs are used in all cases
 - For 100Mbps Ethernet, 2 pairs are used
 - 1Gbps Ethernet all 4 pairs are used

Conductor identification	Color code	Use (for 100Mbps)
Pair 1	White-Blue/ Blue	-
Pair 2	White-Orange/ Orange	Transmit /receive data
Pair 3	White-Green/ Green	Receive /receive data
Pair 4	White-Brown/ Brown	-

In I Gbps Ethernet all pairs are used for transmit/receive

Shielded Twisted Pair (STP)

- Description
 - Twisted pair
 - Outer metallic "shield" included
 - More expensive than UTP
- Characteristics
 - Lower noise susceptibility than UTP
 - Lower electromagnetic emissions than UTP

Shielded Twisted Pair

UTP and **STP** Again

Coaxial Cable

Used in TV cable

Coaxial cable

- Applications
 - Ethernet (until around 1987)
 - Cable TV
- Single copper core, plus outer insulation, shielding, and inner insulation
- Characteristics
 - Less prone to interference compared to UTP
 - More expensive than TP

BNC connector

Copper is Used Almost Everywhere

- Example: USB SuperSpeed
 - Wire for power
 - Many wires are squeezed in the cable
 - 5 Gbps
- Short length!

Characteristics of Copper Cables

- Great for short distances
 - Local networking, few hundreds of meters
 - Attenuation and loss (to be visited)
- Data rates are limited
 - Can reach 10 Gbps
- Weight and cost of installation

Optical Fibers

 Optical fiber overcomes these problems

 Typically used for longdistance communications

Source: © Hugh Threlfall/Alamy

Optical Fiber as Physical Medium

Backbone, high-speed Internet access

LANs -Local networks are also using optical fiber

- FiOS (Fiber optic service) = Fiber To The Home(FTTH) or Fiber to the Premises (FTTP)
 - Optical Fiber is now in the access network

Optical Fiber as Medium

- Optical fiber is thin strand of glass that guides light
 - Glass is a good conductor of light, not heavy
 - Can carry large volumes of data over long distances
- Data transmitted using light from lasers or light emitting diodes (LEDs)

- Extremely fast data rates
 - Hundreds of terabytes per sec possible (tera = 10^{12})

Aggregating network traffic from copper to fiber

Typical setting: Optical fiber bring connectivity to a central location in buildings, then network connectivity is distributed to desktops over copper.

Few hundred pounds of optical fiber can carry data equivalent to hundreds of copper wires

Submarine Optical Fiber Installation

Optical Fiber as Physical Medium

 Works on the principle of total Internal Reflection

Due to little energy
 loss, fiber can transmit
 signals over huge
 distances without
 repeaters

Water refractive index = 1.33 Air ref index = 1.000

Principle of Operation of Optical Fibers

Angle of incidence greater than a critical angle

https://www.youtube.com/watch?v=0MwMkBET_5I

Construction of Optical Fiber

Characteristics of Optical Fibers

Two types: multimode and single mode

Multimode Optical Fibers

- Thicker fibers (50-100 micron core)
- Can use cheaper transmitters (LED's)
- Many optical paths (modes) in fiber
 - Significant signal dispersion over distances which leads to inter-symbol interference (different symbols of same message interfere)

Dispersion:

The symbol will be spread out in time - Intersymbol Interference

Single Mode Optical Fibers

- Thin fibers (~5 micron core)
- Single optical path

- Requires the use of more costly laser transmitters
- Good for longer distances

tophat

Q_Capacity and noise susceptibility

Cables

Cable type	Cost	Ease of use	Capacity	Noise Susceptibility	EM radiation
Twisted pair	Low	High	Low	High	High
Coax	Medium	Medium	Good	Lower	Lower
Multimode Fiber	Medium	Medium	High	Very low	Almost zero
Single mode fiber	Highest	Lowest	Highest	Very low	Almost zero

Comparison of Cable Types

Wireless

- Wireless communication system
 - Any communication system that uses a naturally occurring communication medium, such as air, water.
 - Advantages: Convenience, mobility
- Examples:
 - Simplex: Radio, TV
 - Duplex: Cell phones, satellite, WiFi, Bluetooth
- Fundamentally different from wired networks

Air as a Transmission Medium

Hard to slice wireless transmissions in "space"

 New technologies like MIMO (multiple input multiple output antennas) try to do some of this

Wireless Communications

 The common way of slicing is to "allocate" different frequency bands to different applications

Power, frequency bands, receiver capability, all impact wireless

Electromagnetic Spectrum

© 2013 Encyclopædia Britannica, Inc.

VLF: Very low frequency

LF: low frequency

MF: Medium frequency

HF: High frequency

VHF: Very high frequency
UHF: Ultra high frequency

SHF: super high frequency

EHF: Extremely high frequency

Spectrum allocation

- The Federal Communications Commission (FCC) regulates spectrum in the US
 - Licensed Vs Unlicensed
 - Unlicensed: The industrial, scientific and medical (ISM) bands, e.g. in US, 900MHz, 2.4 GHz, 5.8 GHz
 - Now used by WiFi, Bluetooth, cordless phones, and others

Wireless also Needs Antennas

 A transducer for converting guided signals into electromagnetic radiation in an unbounded medium or vice versa

Wired Vs. Wireless

 Wireless more flexible, at the expense of higher attenuation, noise susceptibility and interference.

Capacity?

Transmission Media

Cable type	Cost	Ease of use	Capacity	Noise Susceptibility	EM radiation (interference)
Twisted pair (UTP)	Low	High	Low	High	High
Coax	Medium	Medium	Good	Lower	Lower
Multimode Fiber	Medium	Medium	High	Very low	Almost zero
Single mode fiber	Highest	Lowest	Highest	Very low	Almost zero
Wireless	Variable	Variable	Low	High	High

Note that the **capacity** (i.e. rate) increases as the **noise** susceptibility improves

Key takeaways

Physical layer interacts with links

Perparation of signal depends on the characteristics of the links

 Table in previous slide highlights some characteristics