

Adjoint and Inverse of Matrix Ex 7.1 Q2(i)

Here
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$C_{11} = -3$$
 $C_{21} = +2$ $C_{31} = 2$ $C_{12} = +2$ $C_{22} = -3$ $C_{32} = 2$ $C_{13} = 2$ $C_{23} = 2$ $C_{33} = -3$

$$\text{adj } A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$$

$$= \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix}^T$$

Therefore,

$$adj A = \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix}$$

Now,

$$\text{(adj } A \text{)}.A = \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A. (adj A) = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\therefore \qquad (adj A).A = |A|.I = A. (adj A)$$

Adjoint and Inverse of Matrix Ex 7.1 Q2(ii)

Here,
$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$C_{11} = 2$$
 $C_{21} = 3$ $C_{31} = -13$
 $C_{12} = -3$ $C_{22} = 6$ $C_{32} = 9$
 $C_{13} = 5$ $C_{23} = -3$ $C_{33} = -1$

$$\text{adj } A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$$

$$= \begin{bmatrix} 2 & -3 & 5 \\ 3 & 6 & -3 \\ -13 & 9 & -1 \end{bmatrix}^T$$

Therefore,

$$adj A = \begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix}$$

Now,

(adj A)
$$A = \begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

= $\begin{bmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{bmatrix}$

$$|A|.I = \begin{vmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{vmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{bmatrix}$$

$$A \left(\operatorname{adj} A \right) = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix} = \begin{bmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{bmatrix}$$

$$\therefore \qquad (adjA).A = |A|.I = A.(adjA)$$

Adjoint and Inverse of Matrix Ex 7.1 Q2(iii)

Here,
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix}$$

$$C_{11} = -22$$
 $C_{21} = 11$ $C_{31} = -11$
 $C_{12} = 4$ $C_{22} = -2$ $C_{32} = 2$
 $C_{13} = 16$ $C_{23} = -8$ $C_{33} = 8$

$$\text{adj} A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -22 & 4 & 16 \\ 11 & -2 & -8 \\ -11 & 2 & 8 \end{bmatrix}^{T}$$

Therefore,

$$adjA = \begin{bmatrix} -22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8 \end{bmatrix}$$

Now,

$$(adjA) .A = \begin{bmatrix} -22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$|A|.I = \begin{vmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{vmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= (44 - 4 + 48) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0$$

$$A(adjA) = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix} \begin{bmatrix} -22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\therefore \qquad (adjA).A = |A|I = A (adjA)$$

Adjoint and Inverse of Matrix Ex 7.1 Q2(iv)

Here,
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$$

$$C_{11} = 3$$
 $C_{21} = -1$ $C_{31} = 1$ $C_{12} = -15$ $C_{22} = 7$ $C_{32} = -5$ $C_{13} = 4$ $C_{23} = -2$ $C_{33} = 2$

$$\text{adj} A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$$

$$= \begin{bmatrix} 3 & -15 & 4 \\ -1 & 7 & -2 \\ 1 & -5 & 2 \end{bmatrix}^T$$

Therefore,

$$adjA = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{bmatrix}$$

Now,

$$(adj A) A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$|A| \cdot I = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{vmatrix} I_3$$
$$= (6 - 4) I_3 = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A.(adj A) = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\therefore \qquad (adj A) A = |A| . I = A. (adj A)$$

Here,
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$

$$C_{11} = 15$$
 $C_{21} = 6$ $C_{31} = -15$ $C_{12} = 0$ $C_{22} = -3$ $C_{32} = 0$ $C_{13} = -10$ $C_{23} = 0$ $C_{33} = 5$

$$adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$
$$= \begin{bmatrix} 15 & 0 & -10 \\ 6 & -3 & 0 \\ -15 & 0 & 5 \end{bmatrix}^{T}$$

Therefore,

$$adjA = \begin{bmatrix} 15 & 6 & -15 \\ 0 & -3 & 0 \\ -10 & 0 & 5 \end{bmatrix}$$

Now,

$$\left(\operatorname{adj} A \right) A = \begin{bmatrix} 15 & 6 & -15 \\ 0 & -3 & 0 \\ -10 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix} = \begin{bmatrix} -15 & 0 & 0 \\ 0 & -15 & 0 \\ 0 & 0 & -15 \end{bmatrix}$$

$$|A| \cdot I = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{vmatrix} I_3$$

$$= \begin{pmatrix} -15 \end{pmatrix} I_3 = \begin{bmatrix} -15 & 0 & 0 \\ 0 & -15 & 0 \\ 0 & 0 & -15 \end{bmatrix}$$

$$A. (adj A) = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix} \begin{bmatrix} 15 & 6 & -15 \\ 0 & -3 & 0 \\ -10 & 0 & 5 \end{bmatrix} = \begin{bmatrix} -15 & 0 & 0 \\ 0 & -15 & 0 \\ 0 & 0 & -15 \end{bmatrix}$$

$$\therefore \qquad (adj A) A = |A| I = A (adj A)$$

********** FND ********