Minimum Sum

Given an array of integers, perform some number k of operations. Each operation consists of removing an element from the array, dividing it by 2 and inserting the ceiling of that result back into the array.

Minimize the sum of the elements in the final array.

Example:

nums = [10, 20, 7]

k = 4

Pick Pick/2 Ceiling Result

Initial array [10, 20, 7]

7 3.5 4 [10, 20, 4]

10 5 5 [5, 20, 4]

20 10 10 [5, 10, 4]

10 5 5 [5, 5, 4]

The sum of the final array is 5 + 5 + 4 = 14, and that sum is minimal.

Function Description

Complete the function minSum in the editor below.

minSum has the following parameters:

int nums[n]: an array of integers, indexed 0 to n-1

int k: an integer

Returns

int: the minimum sum of the array after *k* steps

Constraints

 $1 \le n \le 10$

 $1 \le num[i] \le 10$ (where $0 \le i < n$)

 $1 \le k \le 10$

Input Format For Custom Testing

The first line contains an integer, n, denoting the number of

elements in nums.

Each line i of the n subsequent lines (where $0 \le i < n$) contains an

integer describing nums[i].

The last line contains an integer, k, denoting the number of moves.

Sample Case 0

Sample Input For Custom Testing

STDIN Function

 $1 \rightarrow nums[] size n = 1$

 $2 \rightarrow \text{nums} = [2]$

 $1 \rightarrow k = 1$

Sample Output

1

Explanation

In the first operation, the number 2 is reduced to 1.

Sample Case 1

Sample Input For Custom Testing

STDIN Function

 $2 \rightarrow nums[] size n = 2$

 $2 \rightarrow \text{nums} = [2, 3]$

3

 $1 \rightarrow k = 1$

Sample Output

4

Explanation

In the first operation, either of the numbers may be reduced.

If the number 2 gets reduced to 1, the sum of the array is 4.

If the number 3 gets reduced to 2 (3 divided by 2 equals 1.5,

ceil(1.5) = 2), the sum of the array is 4.

The minimum sum of the array after one operation is 4.