

지능화 캡스톤 프로젝트

프로젝트 #1: 논문구현

김영진
you359@cbnu.ac.kr
충북대학교 산업인공지능연구센터

CONTENTS

Github 를 활용한 프로젝트 관리 방법

Git/Github 개요, Github 사용방법 (CLI, GUI)

프로젝트 #1 구현 (팀별 면담)

프로젝트 #1 구현과 관련된 팀별 에로사항 논의

차후 수업에 관하여…

프로젝트 #1 발표 평가 안내

■ Git 이란?

➤ Git은 **분산 버전 관리 시스템(DVCS, Distributed Version Control System)**으로, 코드 변경 사항을 추적하고 여러 개발자가 협업할 수 있도록 돕는 도구입니다.

■ Github 란?

➤ GitHub은 Git 저장소를 원격(remote)으로 호스팅하고 관리할 수 있는 웹 서비스

비교 항목	Git	GitHub
개념	분산 버전 관리 시스템	Git 저장소를 온라인에서 관리하는 플랫폼
저장 위치	로컬(개인 컴퓨터)	클라우드(온라인)
사용 목적	코드의 버전 관리	협업 및 원격 저장소 관리
인터넷 필요 여부	필요 없음	필요함

■ Github Dashboard 화면

■ Github Profile 화면

■ Git 설치

https://git-scm.com/downloads

■ Github Desktop 설치

https://desktop.github.com/download/

GitHub Desktop

Download

Release Notes

Help

Download GitHub Desktop

Focus on what matters instead of fighting with Git. Whether you're new to Git or a seasoned user, GitHub Desktop simplifies your development workflow

Download for Windows (64bit)

Try beta features and help improve future releases

Experience the latest features and bug fixes before they're released.

Check out Beta

Prefer the MSI?

Need to package to install across your organization?

Download for Windows (MSI)

Mac?

Need to download for macOS?

Download for macOS

■ Git/Github 사용법

■ Git 사용법

■ Github 사용법

```
👉 GitHub와 연결 및 원격 저장소 사용
                                                                  □ 복사 炒 편집
 bash
 # 원격 저장소 추가
 git remote add origin https://github.com/사용자명/저장소명.git
 # 원격 저장소로 코드 업로드 (push)
 git push -u origin main
 # 원격 저장소에서 코드 가져오기 (pull)
 git pull origin main
 # 원격 저장소 복제 (clone)
 git clone https://github.com/사용자명/저장소명.git
```


■ Github 원격 저장소 생성

■ Github Desktop 원격 저장소 연결 (Clone)

■ Github Desktop 원격 저장소 연결 (Clone)

- PyCharm 연동 (원격 저장소 Clone)
 - ➤ [File]-[Project from Version Control...]

■ PyCharm 연동 (파일 추가 및 수정)

NATIONAL UNIVERSITY

■ PyCharm 연동 (Add)

▶ 파일 우클릭 → [Git] → [Add]

■ PyCharm 연동 (Commit & Push)

▶ 파일 우클릭 → [Git] → [Commit File...]

Commit

AI-Ex 포트폴리오 관리

AI-Ex (AI-Experiment) 포트폴리오 제도

(정량적 관리) 학위과정 중 지능화 기술적용 프로젝트(프로그램 코드 또는 시스템 설계) 결과물 20개를 구현

- 현장에서 손쉽게 재사용할 수 있도록 프로젝트 결과물을 GitHub에 등록·관리

(정성적 관리) 매년 AI-Ex 포트폴리오 경진대회를 개최하여 포트폴리오 평가 및 우수사례 시상

문제 발굴

- 산업현장의 문제 및 애로사항
- 수요조사 등

지능화 교과목 수강

- AI 기술의 개념 이해
- 실습을 통한 실무능력 배양
- 현장문제 해결 능력 강화

포트폴리오 구성

- 지능화 기술 적용 프로젝 트 수행
- 프로그램 코딩 또는 시스 템 설계

GitHub 등록

- GitHub 등록 및 관리
- 코드 재사용
- 가디언의 정기점검을 통한 진행상황 점검

경진대회 및 졸업요건

- 평가 및 시상(1회/년)을 통해 품질 제고
- 필수 20개 졸업요건화로 정량적 목표 관리

AI-Ex 포트폴리오 우수사례

- 21년 포트폴리오 경진대회 수상
 https://github.com/dmlim-cbu
- 22년 포트폴리오 경진대회 수상 https://github.com/woosangjin

프로젝트 #1 구현 (팀별 면담)

■ 각 팀별 구현 및 애로사항 논의 (소회의실)

- ▶ 각 팀별 구현 및 애로사항을 아래의 Zoom 소회의실에서 논의
- ▶ 각 팀별 10분 간 교수 참여하여 면담 진행

#	팀 주제 (선정 논문)	팀장/팀원
1	포토메트릭스 촬영과 딥러닝을 활용한 이차전지 벤트부 기스 검출 모델 개발	배인호/공민표,정수연
2	스마트 공장 내 실시간 넘어짐 감지 모니터링 시스템	신희권/박금나,김다현
3	스마트 모니터링 주차관리 모델	박수연/권준호,정현일
4	CNN을 기반으로 이미지의 다른 시점을 예측하여 Multi-View 이미지 생성 연구	강필도/이후경
5	SMT 공정의 주요 불량 검출을 위한 딥러닝 방법 연구	김연지/장욱진
6	딥러닝 모델에서 포트홀 데이터셋의 성능 향상을 위한 전처리 방법 제안과 YOLO 모델을 통한 검증	전창수/강태현,이경재
7	악천후 환경(야간, 눈, 비, 안개, 황사 등)에서 도로 객체 식별을 위한 딥러닝 모델을 활용한 Object Detection 연구	김진하/유진호,이기명
8	식품 공장 위생복/위생모 규정 위반 Daily 분석 보고서 모델	박길순/정용석
9	AI 기반의 객체인식을 통한 정압설비 AR 시스템	신진영/문정민/한재철

차후 수업에 관하여...

프로젝트 #1: 최신 논문 리뷰 및 구현

프로젝트 #1에서는 팀에서 선정한 **주제와 관련된 최신의 SOTA(state of the art) 논문을 조사, 리뷰, 개발, 시연**하는 것을 목표로 함

- 프로젝트 #1-1. 주제발표회: 주제와 관련된 논문을 읽고, 해당 논문 발표하기
- 프로젝트 #1-2. 발표평가: 주제와 관련된 논문을 구현하고, 향후 진행 방안 소개하기

■개요

- 프로그램명: 지능화캡스톤프로젝트 #1 발표평가
- 일시: 2025.04.22 (화) 19:00 ~ 22:00
- 장소: **오프라인** (충북대학교 오창캠퍼스)
- 대상: 25년 1학기 지능화캡스톤프로젝트 수강생

■ 기타사항

- 팀별 PPT 발표자료 업로드 (To. 4.21(월) 23:59) 개인별 각자 제출
- 개인 별 GitHub 프로젝트 업로드 및 관리 (To. 4.21(월) 23:59)

차후 수업에 관하여...

프로젝트 #1:최신 논문 리뷰 및 구현

■ 일정

#	시간		내용	비고
	19:00~19:05	5m	주제발표회 안내	김영진 교수
1	19:05~19:20	15m	포토메트릭스 촬영과 딥러닝을 활용한 이차전지 벤트부 기스 검출 모델 개발	배인호/공민표,정수연
2	19:20~19:35	15m	스마트 공장 내 실시간 넘어짐 감지 모니터링 시스템	신희권/박금나,김다현
3	19:35~19:50	15m	스마트 모니터링 주차관리 모델	박수연/권준호,정현일
	19:50~20:00	10m	Break Time	
4	20:00~20:15	15m	CNN을 기반으로 이미지의 다른 시점을 예측하여 Multi-View 이미지 생성 연구	강필도/이후경
5	20:15~20:30	15m	SMT 공정의 주요 불량 검출을 위한 딥러닝 방법 연구	김연지/장욱진
6	20:30~20:45	15m	딥러닝 모델에서 포트홀 데이터셋의 성능 향상을 위한 전처리 방법 제안과 YOLO 모델을 통한 검증	전창수/강태현,이경재
	20:45~20:55	10m	Break Time	
7	20:55~21:10	15m	악천후 환경(야간, 눈, 비, 안개, 황사 등)에서 도로 객체 식별 을 위한 딥러닝 모델을 활용한 Object Detection 연구	김진하/유진호,이기명
8	21:10~21:25	15m	식품 공장 위생복/위생모 규정 위반 Daily 분석 보고서 모델	박길순/정용석
9	21:25~21:40	15m	AI 기반의 객체인식을 통한 정압설비 AR 시스템	신진영/문정민/한재철
	21:40~21:50	10m	차후 수업 안내	김영진 교수

차후 수업에 관하여...

■ 차후 수업 진행 안내

주차	수업내용	수업방식
1	오리엔테이션 / 조 편성 / 기본 환경 구축 실습	대면수업
2	생성형 AI를 활용한 실전 AI 프로그래밍	비대면수업
3	OpenCV 기반 영상 처리 및 실습	비대면수업
4	CNN(Convolutional Neural Network) 기반 영상 분류 기초 및 실습	비대면수업
5	프로젝트 #1: CNN 기반 영상 분류 주제 선정 (최신 논문 리뷰)	비대면수업
6	프로젝트 #1: CNN 기반 영상 분류 주제 발표	비대면수업
7	프로젝트 #1: CNN 기반 영상 분류 논문 구현	비대면수업
8	프로젝트 #1: CNN 기반 영상 분류 발표 평가	대면수업
9	딥러닝 기반 영상 인식 개요 및 딥러닝 개발 환경 구축	대면수업
10	딥러닝 기반 영상 인식 심화 및 실습 (1) - 객체 탐지 (Object Detection)	비대면수업
11	딥러닝 기반 영상 인식 심화 및 실습 (2) - 영상 분할 (Image Segmentation)	비대면수업
12	프로젝트 #2: 딥러닝 기반 영상 인식 주제 선정 (자유 주제)	비대면수업
13	프로젝트 #2: 딥러닝 기반 영상 인식 주제 발표	비대면수업
14	프로젝트 #2: 딥러닝 기반 영상 인식 주제 구현	비대면수업
15	프로젝트 #2: 딥러닝 기반 영상 인식 발표 평가	대면수업

감사합니다 Q&A

