Analysis of Algorithms

(5CS4-05/5IT4-05) Unit 4

Flow Network Problems

Ramakant Soni

Assistant Professor, Computer Science Department,
B K Birla Institute of Engineering & Technology, Pilani,
Rajasthan

Contents

- Randomized Algorithms
- Maximum Flow using Ford Fulkerson Algorithm
- Multi Commodity Flow Problem
- Flow Shop Scheduling

Randomized algorithms: - Algorithms that make use of san	domnas in
their computation.	T
There algorithms use uniformly random bits as an	auxiliary
input to guide its behavior, in the clope of achieving good	postormance
input to quide its behavior, in the clope of achieving good in the average case ones are possible choices of gandom bi	ts.
Type of gandomized algorithms:-	
3. 0	
1. Las Vegas algorithms	
1. Las Vegas algorithms 2- Monte Carlo algorithms	

Las vegas	Algorithms: - The solution will always be connect and the time
U	is not bounded. When run for specific time
	may not give solution.
	4 0
Monte Car	le Algorithme: - These are protabilistic algorithm. The rumtime
	es such algorithm is bounded. How a slight producing an incorrect susult on may also fail to give any result.
	producing an incorrect securit
	on may also fail to give only execut.
	J. J. Casacci.

Randomized Algorithm for Min-Cut Problem. Emp
Min cut: - Given a graph G (V, E), min cut partitions the vertices icto two set L and R, with the minimum number of edges between
Laud R.
R= V-L
Here, we use Karger's algorithm
for i= 1 to m
depeat until 2 nodes remaining
Take a random edge (4t) = F and form a contraction u'
form a contraction u'
output the minimum out
end,

Maximum Flow in Network

In graph theory, a **flow network** is defined as a <u>directed graph</u> involving a <u>source</u> (S) and a sink (T) and several other nodes connected with edges.

Each edge has an individual capacity which is the maximum limit of flow that edge could allow.

Maximum Flow in Network

Flow in the network should follow the following conditions:

- For any non-source and non-sink node, the input flow is equal to output flow.
- For any edge (E_i) in the network,
 0 ≤ flow (E_i) ≤ Capacity (E_i).
- Total flow out of the source node is equal to total flow in to the sink node.
- Net flow in the edges follows skew symmetry i.e. F(u,v) = -F(v,u) where F(u,v) is flow from node u to node v. This leads to a conclusion where you have to sum up all the flows between two nodes (either directions) to find net flow between the nodes initially.

$$f/C$$

$$S \xrightarrow{f=5} A$$

$$f(ow(S,A) = 5$$

$$f(ow(A,S) = -5$$

Maximum Flow in Network

Maximum Flow:

It is defined as the maximum amount of flow that the network would allow to flow from source to sink.

Multiple algorithms exist in solving the maximum flow problem.

Two major algorithms to solve these kind of problems are :

- Ford-Fulkerson Algorithm
- Dinic's Algorithm.

Ford-Fulkerson Algorithm: Maximum Flow

It was developed by L. R. Ford Jr. and D. R. Fulkerson in 1956.

A pseudocode for the algorithm is given below, Inputs required are network graph G, source node S and sink node T.

Augmenting Path

An augmenting path is a simple path from source to sink which do not include any cycles and that pass only through positive weighted edges.

A residual network graph indicates how much more flow is allowed in each edge in the network graph.

If there are no augmenting paths possible from S to T, then the flow is maximum. \checkmark

The result i.e. the maximum flow will be the total flow out of source node (S) which is also equal to total flow in to the sink node (T).

Te sidual n/w graph / gresidual capacity graph.

$$|S| = |S| = |S|$$

Exercise: Computing Maximum Flow

Path 4: $S-A-C-D-T \longrightarrow Flow = Flow + 2$

No More Paths Left
Max Flow = 15

Implementation

- •An augmenting path in residual graph can be found using DFS or BFS.
- Updating residual graph includes following steps:
 - For every edge in the augmenting path, a value of minimum capacity in the path is subtracted from all the edges of that path.
 - An edge of equal amount is added to edges in reverse direction for every successive nodes in the augmenting path.

The complexity of Ford-Fulkerson algorithm cannot be accurately computed as it all depends on the path from source to sink. For example, considering the network shown below, if each time, the path chosen are **S-A-B-T** and **S-B-A-T** alternatively, then it can take a very long time. Instead, if path chosen are only **S-A-T** and **S-B-T**, would also generate the maximum flow.

Exercise: Find Maximum Flow in given Network

The multi-commodity flow problem is a network flow problem with multiple commodition (flow domands) between different source and sink nodes.
Given a flow network $G(V,E)$, where edge $(u,v) \in E$ has capacity $C(u,v)$. There are K commodities $K_1, K_2, \dots K_K$ defined by $K_i = (s_i, t_i, d_i)$ where s_i is source, t_i is sink of commodity i and demand di , Variable $f_i(u,v)$ defines the fraction of flow i along edge (u,v) , where $f_i(u,v) \in [0,1]$.
In this problem, we have to find an assignment of all flow variables volvieres
 Link Capacity: The sum of all flows routed over a link does not exceed its capacity
$\forall (u,v) \in E: \sum_{i=1}^{K} f_i(u,v) \cdot d_i \leq C(u,v)$

```
Optimization Problem: - Maximum multi-commodity flow problem

The demand of each commodity is not fixed and the total throughput is maximized by maximizing the sum of all demands & \sum of all demands \sum of all demands \sum of all \
```


			Jo65_					
	Procession	ng time	J,	J2	J3	丁4	J5	
9	Mr	Pi	9	3	5	8	10	
haeline	Ma	P2:	6	8	9	8	7	

whall enable an appropriate sequencing for each job and for processing
II I I I I I I I I I I I I I I I I I I
whall enable an appropriate sequencing for each job and for processing on a set of machines to minimize the completion time (makespan).
Computation of Minimum Makerpan using Johnson's algorithm
Johnson's Algorithm
step 1:- Form two groups of jobs 5, and So such that
5, si set of job Ji Pic & Pai, means processing time
of Jobi on machine M, is less than as equal to on M2, and
So is sed of job J; Pip > Pij means processing time of jobi on Machine M, is greater than on My.

Ramakant Soni, Assistant Professor, BKBIET Pilani

occusion	y time],	J2_	J3	J4	J ₅
Mr	Pi	9	3	5	8	10
Ma	Pai	6	8	9	8	7

Makupan >		Mi	M2	
and the second of	J2	3	3+8=11	Committee the steel of the Committee of
this could be to be a second	J3	3+5=8	1149=20	=> Makespan = 41
The same of the same of the same	J4 :	8+8=16	20+8=28	1 1-
and the second second	J5-	16+10=26	28+7=35	
• 4	J ₁	26+9=35	35+6-41	- This value indicates the minimum
				makespan