Carrying capacity results

mauricio 2/27/2021

1. Scenarios

In this section, we test how grouping stocks by their carrying capacity affect the profits, biomass and effort allocation. We are considering 3 species/fish have a medium carrying capacity (K = 100), and 2 species/fish with higher carrying capacity (K = 300) at time zero.

We considered 3 arrangement for the quota baskets:

- Species with similar K: we have a QB of normal K and a group of high K.
- The normal K species predominates in a basket: we have a QB were the "normal K" species predominates (2 normal K and 1 high K), and the other basket has the remaining species (1 normal K and 1 high K).
- The high K species predominates in a basket:we have a QB were the "high K" species predominates (1 normal K and 2 high K), and the other basket has the remaining species (2 normal K).

We are going to compare these arrangements in terms of biomass, efforts, ant total profits.

1.1 Parameters

_								
S	Species		r	K	Starting stock (X)			price
		1	0.2	100			50	20
		2	0.2	100			50	20
		3	0.2	100			50	20
		4	0.2	300			50	20
		5	0.2	300			50	20
	Tech		q1	q2	q3	q4	q5	cost
	1	0	.04	0.01	0.01	0.01	0.01	1
	2	0	.01	0.04	0.01	0.01	0.01	1
	3 0.0		.01	0.01	0.04	0.01	0.01	1
	4	0	.01	0.01	0.01	0.04	0.01	1
_	5	0	.01	0.01	0.01	0.01	0.04	1

2. Biomass

2.1 Biomass per species

- Holding the rest of the variables constants, grouping only species with low K lead to its stock reduction.
- In all the scenarios, high K species increase over time. A basket of only high K species, provide the best results. Baskets where high k species are not dominant, provide the worst results but their stocks still increase.
- The results for the low k stocks improve if they are combined with high k stocks in the same basket.

2.2 Total biomass in the ocean

30

35 |

10

Years

20

- Combined baskets provide better total stocks in the short term, but baskets with dominant high k species provide better long term results.

3. Effort

- In Scenario 1 and Scenario 3, the efforts per technology are uniform.
- When low K stocks dominate a basket, the effort that favor their catchability descends. In contrast, the efforts that favor the catch of high K species increases along with its stocks.

4. Profit

4.1 Profit per technology

- The profits from tecnologies good at catching low K species increases in baskets with only low K species.
- The profits from tecnologies good at catching high K species improve in all scenarios, but present better results if they do not dominate any basket.

4.2 Total profit per scenario

- Scenario 1 has the best results in total profits for all the period of analysis.

5. Summary

Stocks

- Holding the rest of the variables constants, grouping only species with low K lead to its stock reduction.
- In all the scenarios, high K species increase over time. A basket of only high K species, provide the best results. Baskets where high k species are not dominant, provide the worst results but their stocks still increase.
- The results for the low k stocks improve if they are combined with high k stocks in the same basket.
- Combined baskets provide better total stocks in the short term, but baskets with dominant high k species provide better long term results.

Effort

- In Scenario 1 and Scenario 3, the efforts per technology are uniform.
- When low K stocks dominate a basket, the effort that favor their catchability descends. In contrast, the efforts that favor the catch of high K species increases along with its stocks.

Profit

- The profits from tecnologies good at catching low K species increases in baskets with only low K species.
- The profits from tecnologies good at catching high K species improve in all scenarios, but present better results if they do not dominate any basket.
- Scenario 1 has the best results in total profits for all the period of analysis.