Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Test 9

Test 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBI	UBIECTUL I (30 de pun		
1.	$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} = 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^9}{1 - \frac{1}{2}} =$	3 p	
	$=2\left(1-\left(\frac{1}{2}\right)^9\right)<2$	2 p	
2.	$f(x) = 0 \Leftrightarrow x^2 + 4x - 5 = 0$	2 p	
	Cum $\Delta > 0$, produsul absciselor punctelor de intersecție a graficului funcției f cu axa Ox este egal cu -5	3 p	
3.	$3^{x-2}(3^2+1+3^4)=91 \Leftrightarrow 3^{x-2}=1$	3p	
	x=2	2p	
4.	$T_{k+1} = C_9^k \left(\sqrt{x}\right)^{9-k} \left(\frac{1}{x}\right)^k = C_9^k x^{\frac{9-k}{2} + \left(-k\right)} = C_9^k x^{\frac{9-3k}{2}}, \text{ unde } k \in \{0, 1, 2, \dots, 9\}$	3 p	
	$\frac{9-3k}{2} = 0 \Leftrightarrow k = 3$, deci $T_4 = C_9^3 = 84$ nu îl conține pe x	2p	
5.	$G\left(\frac{-1+1+3}{3}, \frac{1+3+2}{3}\right)$, deci $G(1,2)$ este centrul de greutate al triunghiului ABC	3 p	
	Ecuația dreptei OG este $y-0=\frac{2-0}{1-0}(x-0)$, deci $y=2x$	2p	
6.	$\cos C = -\frac{\sqrt{2}}{2} \Rightarrow \sin C = \frac{\sqrt{2}}{2}$	3 p	
	$2R = \frac{AB}{\sin C} \Rightarrow 2R = \frac{4}{\sqrt{2}}$, deci raza cercului circumscris triunghiului <i>ABC</i> este $R = \sqrt{2}$	2p	
CITIDI	CIDIFCTIII al II las (20 de nuncto)		

	, - , - , - , - , - , - , - , - , - , -		
SUBIECTUL al II-lea (30 de punct			
1.a)	$A(1) = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 3 & 0 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 3 & 0 & 2 \end{vmatrix} =$	2 p	
	=2+0+6-(-3)-4-0=7	3 p	
b)	$\det(A(a)) = 11 - 4a$, pentru orice număr întreg a	2p	
	Cum $\det(A(a)) = 0 \Leftrightarrow a = \frac{11}{4} \notin \mathbb{Z}$, obținem $\det(A(a)) \neq 0$, pentru orice număr întreg a ,	3р	
	deci rangul matricei $A(a)$ este egal cu 3 , pentru orice număr întreg a	1	
c)	Pentru orice număr întreg m , $A(m)$ este inversabilă și $A^{-1}(m)$ are toate elementele numere	2	
	$\widehat{\text{intregi}} \iff \det(A(m)) = -1 \text{ sau } \det(A(m)) = 1$	3 p	
	Cum m este număr întreg, obținem $m = 3$	2 p	

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

2.a)	$2 \circ 2 = \frac{2 \cdot 2}{2+2} =$	3р	
	$=\frac{4}{4}=1$	2p	
b)	$x \circ y \circ z = \left(\frac{xy}{x+y}\right) \circ z = \frac{\frac{xy}{x+y} \cdot z}{\frac{xy}{x+y} + z} = \frac{xyz}{xy + xz + yz} =$	3 p	
	$= \frac{1}{\frac{xy}{xyz} + \frac{xz}{xyz} + \frac{yz}{xyz}} = \frac{1}{z^{-1} + y^{-1} + z^{-1}} = \left(x^{-1} + y^{-1} + z^{-1}\right)^{-1}, \text{ pentru orice } x, y, z \in M$	2 p	
c)	$\frac{1}{2} \circ \frac{1}{3} \circ \frac{1}{4} \circ \dots \circ \frac{1}{10} = \left(\left(\frac{1}{2} \right)^{-1} + \left(\frac{1}{3} \right)^{-1} + \left(\frac{1}{4} \right)^{-1} + \dots + \left(\frac{1}{10} \right)^{-1} \right)^{-1} = \left(2 + 3 + 4 + \dots + 10 \right)^{-1} = \left(2 + 3 + $	3 p	
	$= \left(\frac{10 \cdot 11}{2} - 1\right)^{-1} = 54^{-1} = \frac{1}{54}$	2 p	
SUBII	SUBIECTUL al III-lea (30 de punct		

SUBII	ECTUL al III-lea (30 de p	uncte)
1.a)	$f'(x) = \frac{1}{x+1} - \frac{1}{x-1} =$	3р
	$= \frac{x-1-(x+1)}{(x-1)(x+1)} = -\frac{2}{x^2-1}, \ x \in (1,+\infty)$	2p
b)	$f'(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict descrescătoare pe $(1, +\infty)$, deci f este	2p
	injectivă	_p
	f este continuă pe $(1,+\infty)$, $\lim_{x\to 1} f(x) = +\infty$ și $\lim_{x\to +\infty} f(x) = 0 \Rightarrow f$ este surjectivă, deci f este bijectivă	3p
c)	$\lim_{x \to +\infty} (x f(x)) = \lim_{x \to +\infty} \left(x \ln \frac{x+1}{x-1} \right) = \lim_{x \to +\infty} \ln \left(\frac{x+1}{x-1} \right)^x =$	3р
	$= \lim_{x \to +\infty} \ln \left(\left(1 + \frac{2}{x - 1} \right)^{\frac{x - 1}{2}} \right)^{\frac{2x}{x - 1}} = \ln e^2 = 2$	2p
2.a)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} \left(x^{2} - 3x + 2\right)dx = \left(\frac{x^{3}}{3} - 3 \cdot \frac{x^{2}}{2} + 2x\right)\Big _{0}^{1} =$	3p
	$= \frac{1}{3} - \frac{3}{2} + 2 = \frac{5}{6}$	2p
b)	$\int_{1}^{e} \frac{f(x)}{x} \ln x dx = \int_{1}^{e} (x-3) \ln x dx + \int_{1}^{e} \frac{2}{x} \ln x dx = \left(\frac{x^{2}}{2} - 3x\right) \ln x \left \frac{e}{1} - \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right) dx + 2 \cdot \frac{1}{2} \cdot \ln^{2} x \left \frac{e}{1} - \frac{e}{1} \right _{1}^{e} = \int_{1}^{e} \left(\frac{x}{2} - 3\right)$	2p
	$\left = \frac{e^2}{2} - 3e - \left(\frac{x^2}{4} - 3x\right) \right _1^e + \ln^2 e - \ln^2 1 = \frac{e^2}{2} - 3e - \left(\frac{e^2}{4} - 3e - \frac{1}{4} + 3\right) + 1 = \frac{e^2 - 7}{4}$	3р
c)	$\int_{1}^{a} f(x)e^{x} dx = \left(x^{2} - 3x + 2\right)e^{x} \begin{vmatrix} a - \int_{1}^{a} (2x - 3)e^{x} dx = \left(x^{2} - 5x + 7\right)e^{x} \end{vmatrix} = \left(a^{2} - 5a + 7\right)e^{a} - 3e$	3р
	$(a^2 - 5a + 7)e^a - 3e = e^a - 3e \Leftrightarrow a^2 - 5a + 6 = 0$, deci $a = 2$ sau $a = 3$, care convin	2p