Intro_logistic

Anyu Zhu

3/24/2022

Introduction

Objective

The goal of the project is to build a predictive model based on logistic regression to facilitate cancer diagnosis. We first build a logistic model to classify the images, then developed a Newton-Raphson algorithm to estimate the parameters of the logistic model. Then, we built a logistic-LASSO model to select features. Finally, we applied 5-fold cross-validation to select the best λ for the logistic-LASSO model.

Dataset

The dataset 'breast-cancer'we used contains 569 rows and 32 columns. The variable diagnosis identifies if the image is coming from cancer tissue or benign. We labeled malignant as 1 and benign as 0. In total there are 212 malignant cases and 357 benign cases. There are 30 variables corresponding to mean, standard deviation and the largest values (points on the tails) of the distributions of 10 features: radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension.

The distribution of mean value of the 10 features among malignant cases and benign cases is shown in the plot below (Figure 1).

Figure 2 displays the correlation between variables. We can see there exists multicollinearity in the dataset. (?? Put this into discussion ??)

Figure 2: Correlation Plot radius_mean texture_mean perimeter mean 0.8 area_mean smoothness_mean compactness_mean 0.6 concavity_mean concave.points mean symmetry_mean 0.4 fractal_dimension_mean radius_se texture_se 0.2 perimeter se area_se smoothness_se 0 compactness_se concavity se concave.points se -0.2 symmetry_se fractal_dimension_se radius_worst -0.4 texture worst perimeter worst area_worst -0.6 smoothness_worst compactness_worst concavity_worst -0.8 concave.points worst symmetry_worst fractal_dimension_worst

Method

Logistic Model

Take Y_i as the response of i_{th} observation and follows binary distribution $Bin(\pi_i)$. π_i is the probability of i_{th} observation being malignant. By applying the logit link:

$$g(\mu) = \text{logit}(\mu) = \log \frac{\mu}{1 - \mu}$$

we have the logistic regression model:

$$\log \frac{\pi_i}{1 - \pi_i} = X_i \beta$$

Thus we have the likelihood function of logistic regression

$$L(\pi) = \prod_{i=1}^{n} f(y_i) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$L(\beta; X, y) = \prod_{i=1}^{n} \left\{ \left(\frac{\exp\left(X_{i}\beta\right)}{1 + \exp\left(X_{i}\beta\right)} \right)^{y_{i}} \left(\frac{1}{1 + \exp\left(X_{i}\beta\right)} \right)^{1 - y_{i}} \right\}$$

Then maximize the log likelihood:

$$l(\beta) = \sum_{i=1}^{n} \{ y_i (X_i \beta) - \log (1 + \exp (X_i \beta)) \}$$

By taking derivative with respect to β , the gradient is:

$$\nabla l(\beta) = \sum_{i=1}^{n} (y_i - \pi_i) \boldsymbol{x}_i = X^T (Y - \boldsymbol{\pi})$$

where $\pi_i = \frac{e^{\beta_i}}{1 + e^{\beta_i}}$

By taking the second derivative, the Hessian matrix can be represented by:

$$\nabla^2 l(\beta) = -X^T \operatorname{diag} (\pi_i (1 - \pi_i)) X$$

 $i = 1, \dots$ n. Hessian matrix is negative definite.