People- or Place-Based Policies to Tackle Disadvantage? Evidence from Matched Family-School-Neighborhood Data

Lucienne N.Y. Disch University of Pennsylvania

August 7, 2024

Introduction

Motivation

- Standardized test scores vary a lot across neighborhoods and schools
 → proxy for human capital, with critical implications for inequality
- Test scores are highly predictive for future (labor market) outcomes
 → especially important for children from disadvantaged families

Motivation

- Standardized test scores vary a lot across neighborhoods and schools
 → proxy for human capital, with critical implications for inequality
- Test scores are highly predictive for future (labor market) outcomes
 → especially important for children from disadvantaged families
- Understanding sources of test scores dispersion is crucial
 → allows for more targeted people- or place-based policies

Motivation

- Standardized test scores vary a lot across neighborhoods and schools
 → proxy for human capital, with critical implications for inequality
- Test scores are highly predictive for future (labor market) outcomes
 → especially important for children from disadvantaged families
- Understanding sources of test scores dispersion is crucial
 → allows for more targeted people- or place-based policies
- But many unknowns with respect to producing human capital
 - Family vs School vs Neighborhood?
 - What are complementary family-school-neighborhood ties?
 - Sorting vs Treatment?

- New strategy to disentangle sorting from treatment under unobserved heterogeneity and three-sided interactions
- Exploit institutional features of Wake County's network structure and spatial data to get child's school and neighborhood identifiers over time

- New strategy to disentangle sorting from treatment under unobserved heterogeneity and three-sided interactions
- Exploit institutional features of Wake County's network structure and spatial data to get child's school and neighborhood identifiers over time
 - School boundaries: assigned base school for every address
 - Neighborhood's base schools changed considerably over time
 - Key source of variation are test scores of children changing schools

- New strategy to disentangle sorting from treatment under unobserved heterogeneity and three-sided interactions
- Exploit institutional features of Wake County's network structure and spatial data to get child's school and neighborhood identifiers over time
 - School boundaries: assigned base school for every address
 - Neighborhood's base schools changed considerably over time
 - Key source of variation are test scores of children changing schools
- Extend Bonhomme-Lamadon-Manresa (2019) allowing for sorting and unrestricted interactions to decompose distribution of test scores into match-specific sources

- New strategy to disentangle sorting from treatment under unobserved heterogeneity and three-sided interactions
- Exploit institutional features of Wake County's network structure and spatial data to get child's school and neighborhood identifiers over time
 - School boundaries: assigned base school for every address
 - Neighborhood's base schools changed considerably over time
 - Key source of variation are test scores of children changing schools
- Extend Bonhomme-Lamadon-Manresa (2019) allowing for sorting and unrestricted interactions to decompose distribution of test scores into match-specific sources
 - Distributions of test scores for different types of families in different types of neighborhoods and schools
 - Composition of family types in different neighborhoods and schools

- New strategy to disentangle sorting from treatment under unobserved heterogeneity and three-sided interactions
- Exploit institutional features of Wake County's network structure and spatial data to get child's school and neighborhood identifiers over time
 - School boundaries: assigned base school for every address
 - Neighborhood's base schools changed considerably over time
 - Key source of variation are test scores of children changing schools
- Extend Bonhomme-Lamadon-Manresa (2019) allowing for sorting and unrestricted interactions to decompose distribution of test scores into match-specific sources
 - Distributions of test scores for different types of families in different types of neighborhoods and schools
 - Composition of family types in different neighborhoods and schools
- Counterfactual analyses: (i) school quality ↑ and (ii) random reallocations

Preview of Findings

- Family is crucial
 - Being in good places is beneficial for own school performance, but cannot fully compensate for family "deficits"
- Families sort
 - Neighborhood sorting more significant (due to their heterogeneity)
- Improving school quality increases test scores especially around median
 - School quality has limited effect if neighborhoods factors ignored

The Model

Environment

- Environment consists of J neighborhoods, C schools, and N families with one child → each set divided into finite groups
- Heterogeneity across families/schools/neighborhoods characterized by their latent type/category/class
 - $\alpha_i \in \{1, \dots, L\}$ is **type of child i**, where L discrete and known
 - sit: category of school cit that child i attends at time t
 - kit: class of neighborhood jit where child i lives at time t
- **Mobility** between states (a neighborhood and/or school at time t and another neighborhood and/or school at t+1) is denoted $ks \to k's'$
- Child i receives test scores Y_{it} at time t

Key Model Assumption and Timing

 Condition underlying the decomposition of test scores distributions into match-specific components:

A1 (conditional independence of test scores given child type).

Given $\alpha_i = I$ (on top of states), the random variables Y_{i1} and Y_{i2} are conditionally independent.

- Timing
 - In period 1:
 - α_i is drawn from a distribution that depends on k and s
 - Y_{i1} is drawn from a distribution that depends on α_i, k, s
 - In period 2:
 - transition probability may depend on α_i, k, s, k', s'
 - ullet type of second state may depend on α_i and first state

Objective

Main purpose is to recover:

1. Distributions of test scores for children of type α in neighborhoods of class k and schools of category s

> complementarities

2. Composition of type- α families in class-k neighborhoods and category-s schools

▷ sorting patterns

Model nests two stratified mixture models

First Stratified Mixture Model aka Empirical Equation I

Bivariate distribution of test scores for movers as mixture problem:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_i = I] \pi_{ks \rightarrow k's'}(\alpha)$$

- $F_{ks\alpha}(Y_1)$: cdf of test scores in period 1, in neighborhood class k and school category s, for child type α
- $F^m_{k's'\alpha}(Y_2)$: cdf of test scores in period 2 for type α -transitioners to k's'
- $\pi_{ks \to k's'}(\alpha)$: probability distribution of α_i for transitioners

First Stratified Mixture Model aka Empirical Equation I

Bivariate distribution of test scores for movers as mixture problem:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_{i} = I] \pi_{ks \rightarrow k's'}(\alpha)$$

$$= \sum_{\alpha=1}^{L} F_{ks\alpha}(Y_{1}) \cdot F_{k's'\alpha}^{m}(Y_{2}) \cdot \pi_{ks \rightarrow k's'}(\alpha) \qquad \text{(Eq. I)}$$

- $F_{ks\alpha}(Y_1)$: cdf of test scores in period 1, in neighborhood class k and school category s, for child type α
- $F_{k's'\alpha}^m(Y_2)$: cdf of test scores in period 2 for type α -transitioners to k's'
- $\pi_{ks \to k's'}(\alpha)$: probability distribution of α_i for transitioners

Second Stratified Mixture Model aka Empirical Equation II

Second key equation considers cross-section in period 1:

$$Pr[Y_{i1} \le y | ks] = \sum_{\alpha=1}^{L} F_{ks\alpha}(Y_1) \cdot q_{ks}(\alpha)$$
 (Eq. II)

- $F_{ks\alpha}(Y_1)$: cdf of test scores in period 1, in k and s, for child type α
- $q_{sk}(\alpha)$: distribution of α_i for children in class k and category s

Second Stratified Mixture Model aka Empirical Equation II

Second key equation considers cross-section in period 1:

$$Pr[Y_{i1} \le y | ks] = \sum_{\alpha=1}^{L} F_{ks\alpha}(Y_1) \cdot q_{ks}(\alpha)$$
 (Eq. II)

- $F_{ks\alpha}(Y_1)$: cdf of test scores in period 1, in k and s, for child type α
- $q_{sk}(\alpha)$: distribution of α_i for children in class k and category s

Next:

- map the model to the data and
- provide conditions under which all parameters appearing in the two stratified mixture models are identified

Mapping the Model to the Data

Data & Institutional Background: NC School System

- Relationship between family-, school-, and neighborhood heterogeneity and test scores is tested with data from North Carolina Education Research Data Center (sample period: 2010–2017; pooled 2 periods)
 - matched with geospatial data from Wake County
 - standardized tests: end-of-grade tests in both mathematics and reading for all children in public schools in grades 3-8
 - very suitable network structure:

Changes in Base Schools for some Neighborhoods

Changes in Base Schools for some Neighborhoods

Figure 1: Changes in school zones altering the network structure

Model Identification

Graph Connectivity

Asymmetry of Transitions between States and Rank Condition

- $\pi_{ks \to k's'}(\alpha)$ from mixture model requires state-dependent transitions
 - ▷ non-random mobility
 - > asymmetry in child type composition of transitioners
- set of distributions must be linearly independent → matrices formed from these distributions have full rank
 - > model parameters (latent types and their distributions) can be uniquely determined from the observed data

Assumptions key for identification of complementarities!

- Estimate latent types of places (dimension reduction into states):
 - 1. Cluster Neighborhoods into Classes with Distributional k-Means
 - ullet take stayers' distributions of test scores across J neighborhoods o partition into K classes
 - $\bullet \ \ \text{impose class assignments on movers} \rightarrow \text{heterogeneity of neighborhoods is at class level}$

- Estimate latent types of places (dimension reduction into states):
 - 1. Cluster Neighborhoods into Classes with Distributional k-Means
 - $\bullet \quad \text{take stayers' distributions of test scores across J neighborhoods} \, \to \, \text{partition into K classes}$
 - ullet impose class assignments on movers o heterogeneity of neighborhoods is at class level
 - 2. Cluster Schools into Categories (in the same vein)

- Estimate latent types of places (dimension reduction into states):
 - 1. Cluster Neighborhoods into Classes with Distributional k-Means
 - $\bullet \quad \text{take stayers' distributions of test scores across J neighborhoods} \, \to \, \text{partition into} \, \, \text{K} \, \, \text{classes}$
 - ullet impose class assignments on movers o heterogeneity of neighborhoods is at class level
 - 2. Cluster Schools into Categories (in the same vein)
 - 3. Aggregate into (neighborhood class, school category)-states $k \in \{A, B, C\}$ and $s \in \{1, 2, 3\}$ generate nine distinct pairs:

$$state_{it}(k,s) = \begin{cases} A1 & \text{if } k_{it} = A \text{ and } s_{it} = 1 \\ A2 & \text{if } k_{it} = A \text{ and } s_{it} = 2 \\ A3 & \text{if } k_{it} = A \text{ and } s_{it} = 3 \\ B1 & \text{if } k_{it} = B \text{ and } s_{it} = 1 \\ B2 & \text{if } k_{it} = B \text{ and } s_{it} = 2 \\ B3 & \text{if } k_{it} = B \text{ and } s_{it} = 3 \\ C1 & \text{if } k_{it} = C \text{ and } s_{it} = 1 \\ C2 & \text{if } k_{it} = C \text{ and } s_{it} = 2 \\ C3 & \text{if } k_{it} = C \text{ and } s_{it} = 3 \end{cases}$$

- Estimate latent types of places (dimension reduction into states):
 - 1. Cluster Neighborhoods into Classes with Distributional k-Means
 - $\bullet \ \ \text{take stayers' distributions of test scores across J neighborhoods} \rightarrow \text{partition into K classes}$
 - ullet impose class assignments on movers o heterogeneity of neighborhoods is at class level
 - 2. Cluster Schools into Categories (in the same vein)
 - 3. Aggregate into (neighborhood class, school category)-states $k \in \{A, B, C\}$ and $s \in \{1, 2, 3\}$ generate nine distinct pairs:

$$state_{it}(k,s) = \begin{cases} A1 & \text{if } k_{it} = A \text{ and } s_{it} = 1 \\ A2 & \text{if } k_{it} = A \text{ and } s_{it} = 2 \\ A3 & \text{if } k_{it} = A \text{ and } s_{it} = 3 \\ B1 & \text{if } k_{it} = B \text{ and } s_{it} = 1 \\ B2 & \text{if } k_{it} = B \text{ and } s_{it} = 2 \\ B3 & \text{if } k_{it} = B \text{ and } s_{it} = 3 \\ C1 & \text{if } k_{it} = C \text{ and } s_{it} = 1 \\ C2 & \text{if } k_{it} = C \text{ and } s_{it} = 2 \\ C3 & \text{if } k_{it} = C \text{ and } s_{it} = 3 \end{cases}$$

- Estimate latent child types:
 - ▷ Estimate the two finite mixture models (separately) with EM algorithm

Results

Clustering Results of the Distributional K-Means

(b) School Categories

Figure 3: Violin Plots of Test Scores by Cluster

Mean and Size of Resulting Cluster-Pairs

Results: Complementarities

Results: Sorting

Counterfactual Analyses

School Quality Improvement

Statistic	$\Delta_{\mathit{cat}1 o \mathit{cat}2}$	$\Delta_{\mathit{cat}1 o \mathit{cat}3}$
Mean	0.8 %	1.3 %
1%-Quantile	0.4 %	0.0 %
5%—Quantile	0.9 %	0.8 %
10%-Quantile	1.2 %	1.3 %
20%-Quantile	1.3 %	1.6 %
30%-Quantile	1.2 %	1.9 %
40%-Quantile	1.0 %	1.8 %
Median	0.9 %	1.7 %
60%-Quantile	0.8 %	1.5 %
70%—Quantile	0.7 %	1.3 %
80%-Quantile	0.4 %	1.0 %
90%—Quantile	0.4 %	1.0 %
95%—Quantile	0.1 %	0.7 %
99%-Quantile	0.4 %	1.0 %
Variance	-0.001	0.000

Random Reallocation Exercises

Conclusion

Conclusion

- Considered all three sources of variation in test scores unified
- Family is key for academic performance
 - Policies that provide support and resources can empower families
- Neighborhoods play a crucial role
 - Positive complementarities for low test score performers when residing in area with high test scores
 - Policies aimed at improving neighborhood environments or housing mobility programs can have significant impact on education

Thank You!

brunnerl@sas.upenn.edu

Appendix

- Families/schools/neighborhoods as determinants for children's outcomes
 Cunha-Heckman (2007, 2008); Chetty-Hendren (2016), Chyn-Katz (2021); Agostinelli et al. (2024)
 - Describition: Quantification in a comprehensive way

- Families/schools/neighborhoods as determinants for children's outcomes
 Cunha-Heckman (2007, 2008); Chetty-Hendren (2016), Chyn-Katz (2021); Agostinelli et al. (2024)
 - ▶ Contribution: Quantification in a comprehensive way
- Identification and estimation of neighborhood effects/school value added with latent heterogeneity
 - typically done with FE-models Chetty-Hendren (2018b); Mansfield (2015)

- Families/schools/neighborhoods as determinants for children's outcomes
 Cunha-Heckman (2007, 2008); Chetty-Hendren (2016), Chyn-Katz (2021); Agostinelli et al. (2024)
 - ▶ Contribution: Quantification in a comprehensive way
- Identification and estimation of neighborhood effects/school value added with latent heterogeneity
 - typically done with FE-models Chetty-Hendren (2018b); Mansfield (2015)
 - issues in education/child development similar to labor literature:
 - suffers from limited mobility bias Andrews et al. (2008); robustness depends on network connectivity Jochmans-Weidner (2019)
 - imposes restrictive forms of complementarity → at odds with sorting models where neighborhoods are background contexts
 Becker, 1974; Durlauf, 2004

- Families/schools/neighborhoods as determinants for children's outcomes
 Cunha-Heckman (2007, 2008); Chetty-Hendren (2016), Chyn-Katz (2021); Agostinelli et al. (2024)
 - ▶ Contribution: Quantification in a comprehensive way
- Identification and estimation of neighborhood effects/school value added with latent heterogeneity
 - typically done with FE-models Chetty-Hendren (2018b); Mansfield (2015)
 - issues in education/child development similar to labor literature:
 - suffers from limited mobility bias Andrews et al. (2008); robustness depends on network connectivity Jochmans-Weidner (2019)
 - imposes restrictive forms of complementarity → at odds with sorting models where neighborhoods are background contexts
 Becker, 1974; Durlauf, 2004
 - Solution: extend Bonhomme-Lamadon-Manresa (2019)
 - ▶ Contribution: Adding a third dimension (such as geography)

Decomposition of joint conditional probability of a transitioning child i:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's']$$

Decomposition of joint conditional probability of a transitioning child i:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_i = 1] \pi_{ks \rightarrow k's'}(\alpha)$$
by the law of total probability

Decomposition of joint conditional probability of a transitioning child i:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_i = 1] \pi_{ks \rightarrow k's'}(\alpha)$$
by the law of total probability

$$= \sum_{\alpha=1}^{L} \Pr[Y_{i1} \leq y | \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \Pr[Y_{i2} \leq y' | Y_{i1} \leq y, \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \pi_{\textit{ks} \rightarrow \textit{k's'}}(\alpha)$$
by the chain rule of probability

Decomposition of joint conditional probability of a transitioning child i:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_i = I] \pi_{ks \rightarrow k's'}(\alpha)$$

$$= \underbrace{\sum_{\alpha=1}^{L} \Pr[Y_{i1} \leq y | \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \Pr[Y_{i2} \leq y' | Y_{i1} \leq y, \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \pi_{\textit{ks} \rightarrow \textit{k's'}}(\alpha)}_{\text{by the chain rule of probability}}$$

$$= \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y | ks, \alpha_i = I] \cdot Pr[Y_{i2} \leq y' | k's', ks \rightarrow k's', \alpha_i = I] \cdot \pi_{ks \rightarrow k's'}(\alpha)$$
by conditional independence of the contour variables V₁ and V₂ given α_i

Decomposition of joint conditional probability of a transitioning child i:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_i = I] \pi_{ks \rightarrow k's'}(\alpha)$$

$$= \underbrace{\sum_{\alpha=1}^{L} \Pr[Y_{i1} \leq y | \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \Pr[Y_{i2} \leq y' | Y_{i1} \leq y, \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \pi_{\textit{ks} \rightarrow \textit{k's'}}(\alpha)}_{\text{by the chain rule of probability}}$$

$$= \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y | ks, \alpha_i = I] \cdot Pr[Y_{i2} \leq y' | k's', ks \rightarrow k's', \alpha_i = I] \cdot \pi_{ks \rightarrow k's'}(\alpha)$$

$$= \sum_{\alpha=1}^{L} F_{ks\alpha}(Y_1) \cdot F_{k's'\alpha}^{m}(Y_2) \cdot \pi_{ks \to k's'}(\alpha)$$
 (First Stratified Mixture Model) by representing the conditional probabilities as CDF's

Decomposition of joint conditional probability of a transitioning child i:

$$Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's'] = \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y, Y_{i2} \leq y' | ks \rightarrow k's', \alpha_i = I] \pi_{ks \rightarrow k's'}(\alpha)$$

$$= \underbrace{\sum_{\alpha=1}^{L} \Pr[Y_{i1} \leq y | \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \Pr[Y_{i2} \leq y' | Y_{i1} \leq y, \textit{ks} \rightarrow \textit{k's'}, \alpha_i = \textit{I}] \cdot \pi_{\textit{ks} \rightarrow \textit{k's'}}(\alpha)}_{\text{by the chain rule of probability}}$$

$$= \sum_{\alpha=1}^{L} Pr[Y_{i1} \leq y | ks, \alpha_i = I] \cdot Pr[Y_{i2} \leq y' | k's', ks \rightarrow k's', \alpha_i = I] \cdot \pi_{ks \rightarrow k's'}(\alpha)$$

$$= \sum_{\alpha=1}^{L} F_{ks\alpha}(Y_1) \cdot F_{k's'\alpha}^{m}(Y_2) \cdot \pi_{ks \to k's'}(\alpha)$$
 (First Stratified Mixture Model) by representing the conditional probabilities as CDF's

Dimension Reduction (Estimate Latent Types of Places)

Clustering Neighborhoods into Classes:

 consider stayers' distributions of test scores across neighborhoods and solve k-means problem to partition the J neighborhoods into K classes:

$$\min_{V,k} \sum_{j=1}^{J} w_{j} \sum_{i=1}^{N} \left\| \hat{F}_{j}(y_{i}) - \frac{\mathbf{v}_{k_{j}}(y_{i})}{\mathbf{v}_{k_{j}}(y_{i})} \right\|^{2},$$

where:

- $\hat{F}_j(y_i)$: value of the y_i -th percentile for the j-th neighborhood
- $v_{k_i}(y_i)$: y_i -th percentile of cluster center of j-th neighborhood
 - $\mathbf{k} = \{k_1, ..., k_J\}$ is the cluster assignment vector
 - $V = \{v_1, ..., v_K\}$ is the set of cluster centers
- w_j : weight for the j-th neighborhood, representing the size
- impose class assignments on movers' neighborhood identifiers

Dimension Reduction (Estimate Latent Types of Places)

Clustering Neighborhoods into Classes:

• consider **stayers**' distributions of test scores across neighborhoods and solve k-means problem to partition the *J* neighborhoods into *K* classes:

$$\min_{V,k} \sum_{j=1}^{J} w_{j} \sum_{i=1}^{N} \left\| \hat{F}_{j}(y_{i}) - \frac{\mathbf{v}_{k_{j}}(y_{i})}{\mathbf{v}_{k_{j}}(y_{i})} \right\|^{2},$$

where:

- $\hat{F}_j(y_i)$: value of the y_i -th percentile for the j-th neighborhood
- $v_{k_j}(y_i)$: y_i -th percentile of cluster center of j-th neighborhood
 - $\mathbf{k} = \{k_1, ..., k_J\}$ is the cluster assignment vector
 - $V = \{v_1, ..., v_K\}$ is the set of cluster centers
- w_j : weight for the j-th neighborhood, representing the size
- impose class assignments on movers' neighborhood identifiers

Clustering Schools into Categories

• in a similar vein

Aggregation: (Neighborhood Class, School Category)-States

- combine neighborhood classes and school categories into pairs to get (neighborhood class, school category)-states
 - e.g., three neighborhood classes, $k \in \{A, B, C\}$, and three school categories, $s \in \{1, 2, 3\}$, generate nine distinct states:

$$state_{it}(k,s) = \begin{cases} A1 & \text{if } k_{it} = A \text{ and } s_{it} = 1\\ A2 & \text{if } k_{it} = A \text{ and } s_{it} = 2\\ A3 & \text{if } k_{it} = A \text{ and } s_{it} = 3\\ B1 & \text{if } k_{it} = B \text{ and } s_{it} = 1\\ B2 & \text{if } k_{it} = B \text{ and } s_{it} = 2\\ B3 & \text{if } k_{it} = B \text{ and } s_{it} = 3\\ C1 & \text{if } k_{it} = C \text{ and } s_{it} = 1\\ C2 & \text{if } k_{it} = C \text{ and } s_{it} = 2\\ C3 & \text{if } k_{it} = C \text{ and } s_{it} = 3 \end{cases}$$

• (latent) heterogeneity of neighborhoods/schools is at class/category level

Estimation of Finite Mixture Models (Latent Child Types)

- Idea: given (neighborhood class, school category)-states ("fixed effects"), recover child types ("random effects") → "correlated random effects"
- Estimate the two finite mixture models (separately) with EM algorithm
- ullet Specified that families belong to L latent types o model is parametric given family, school and neighborhood heterogeneity
- E.g., for Eq. I, where q represents state and α is discrete, let test scores densities be normal with (q,α) -specific means and variances:

$$P(Y_1, Y_2 | \mu_{Y_1}, \mu_{Y_2}, \sigma_{Y_1}^2, \sigma_{Y_2}^2, \pi, q \to q') = \sum_{\alpha=1}^{L} \pi_{\alpha, q \to q'} \mathcal{N}(Y_1 | \mu_{Y_1 \alpha q}, \sigma_{Y_2 \alpha q'}^2) \times \mathcal{N}(Y_2 | \mu_{Y_2 \alpha q'}, \sigma_{Y_2 \alpha q'}^2),$$

• Corresponding log-likelihood function:

$$\sum_{i=1}^{N_q} \sum_{q=1}^{Q} \sum_{q'=1}^{Q} \mathbb{1}\{\hat{q}_{i1} = q\} \mathbb{1}\{\hat{q}_{i2} = q'\} \ln \left(\sum_{\alpha=1}^{L} \pi_{qq'}(\alpha; \theta_p) f_{q\alpha}(Y_{i1}; \theta_f) f_{q'\alpha}^{q}(Y_{i2}; \theta_{fq})\right)$$

 $\bullet \ \ \, \text{Decomposes distribution of test scores into match-specific components} \\ \text{(parameters)} \rightarrow \text{reveals type-specific family-school-neighborhood effects}$

Random Reallocation Exercises

Statistic	Difference (SE)	Diff fix school (SE)	Diff fix hood (SE)
Mean	0.44% (0.0001)	-2.52% (0.0010)	0.42% (0.0018)
1%-Quantile	-2.65% (0.0003)	-2.97% (0.0004)	0.41% (0.0018)
5%-Quantile	-4.08% (0.0003)	-4.94% (0.0007)	$-0.09\% \ (0.0025)$
10%-Quantile	-3.41% (0.0002)	-4.83% (0.0010)	$-0.18\% \ (0.0025)$
20%-Quantile	-1.96% (0.0002)	-4.16%~(0.0011)	$-0.09\% \ (0.0023)$
30%-Quantile	-0.87% (0.0002)	-3.52% (0.0012)	-0.04% (0.0022)
40%-Quantile	0.21% (0.0002)	-2.91% (0.0012)	0.19% (0.0021)
Median	1.03% (0.0002)	-2.37% (0.0012)	0.37% (0.0019)
60%-Quantile	1.74% (0.0002)	-2.00% (0.0011)	0.47% (0.0018)
70%-Quantile	2.36% (0.0002)	$-1.48\% \ (0.0010)$	0.69% (0.0017)
80%-Quantile	2.83% (0.0001)	-1.13%~(0.0010)	0.99% (0.0015)
90%-Quantile	2.92% (0.0002)	-0.72% (0.0008)	1.14% (0.0012)
95%-Quantile	2.93% (0.0002)	-0.42% (0.0007)	1.21% (0.0009)
99%-Quantile	2.36% (0.0003)	-0.07% (0.0006)	1.22% (0.0007)
Variance	0.0068 (0.0000)	0.0041 (0.0000)	0.0014 (0.0001)27