2- channels
$$9/7/2012$$

1- $x(t) = 10 + \sin(2\pi 25t)$
 $y(t) : y_k = \int_{-2}^{-2} \sqrt{1/4} x = 0$
 $y(t) : y_k = \int_{-2/4}^{-2} \sqrt{1/4} x = 0$
 $y(t) : y_k = \int_{-2/4}^{-2} \sqrt{1/4} x = 0$
 $y(t) : y_k = \int_{-2/4}^{-2} \sqrt{1/4} x = 0$
 $y(t) = 10 + \cos(2\pi 25t - 1/2)$
 $y(t) = 10 + \cos(2\pi 25t - 1/2)$
 $y(t) = 0.5 = 0.5$
 $y(t) = -2 + 2 =$

e)
$$h(t) = 3a(t-0.05)-1$$
 $-J\frac{2\pi}{0.2}k0.05$
 $B_0 = 6-1=5$ $B_K = 3A_Ke^{-J\frac{2\pi}{0.2}k0.05}$

$$(2e)$$
 $B_0 = 3A_0 - 1$ $B_k = 3A_k e^{-\frac{1}{2} \frac{\pi}{2} K 0.05}$
= $3A_k e^{-\frac{1}{2} \frac{\pi}{2} K 0.05}$

$$B_0 = 3 - 1 = 2$$
 $B_1 = 6 e$

$$B_{0} = 3 - 1 = 2$$

$$B_{1} = \frac{6}{\pi}e$$

$$B_{2} = 0, B_{3} = -\frac{6}{3\pi}e$$

$$B_{4} = 0, B_{5} = \frac{6}{5\pi}e$$

$$A_{5}(1+1)$$

$$B_{4}=0$$
, $B_{5}=\frac{6}{5\pi}$ e $\frac{-3\pi s}{2}$

