Package 'Rbonaut2'

November 9, 2016

Type Package

Version 0.7 **Date** 2016-11-07

Title CLIP2's Rbonaut

Author Cavorit				
Maintainer Harald Fiedler < harald.fiedler@cavorit.de>				
Depends data.table, RPostgreSQL, sfsmisc				
Description The CLIP2-Version of CLIP1's Rbonaut-Package				
License This package is private and internal of Cavorit Consulting GmbH				
LazyData TRUE				
RoxygenNote 5.0.1				
R topics documented:				
Rbonaut2-package				
adaptiv.BL16.fullRandom.modelPredict				
adaptiv.BL16.fullRandom.modelRequire				
adaptiv.BL16.fullRandom.modelTransform				
askDB				
augmentRAW				
calcFiedler2016a				
detectItemID				
detectItemIDLive				
detectItemResponse				
erstelleRaschMatrixSkeleton				
fillRaschMatrixSkeleton				
getAdrWAlsListe				

 getFirstAdrW
 11

 getHW
 12

 getNachname
 12

 getSessionTimeStamp
 13

 getVorname
 14

 gibZahlFuehrendeNullen
 14

 implodeRaschMatrix4Quality
 15

 isMultiTarget
 16

	istFormatNachnameKommaVorname	6
	itemID2Params	17
	NormTree	8
	playedAngle	8
	plotFBN	9
	plotSeaShell	9
	readAUGMENTED	20
	readItemBank	20
	readRAW	21
	writeAUGMENTED	22
	writeRAW	22
Index	2	23
-		—

Description

CLIP2-Paket

Rbonaut2-package

Author(s)

Harald Fiedler (c) Cavorit

 $adaptiv. BL16. full Random. model Predict \\ adaptiv. BL16. full Random. model Predict$

Rbonaut2

Description

modelPredict() fuer yhat-Modell eines voll randomisierten Samplers des BL32-Testraums mit Stop nach 16 Bällen

Usage

adaptiv.BL16.fullRandom.modelPredict(AnfrageDF)

Arguments

DF

data.frame mit den Spalten:

- TestID: den Namen des Testformats. Beispielsweise: 'BL32'
- idS: die aktuelle Session-ID, beispielsweise: '002b6573-cf12-436d-bccd-0856b0bb0a25'
- idP: die Player-ID des jeweiligen Probanden, beispielsweise: 'fe553db4-bbde-43dd-a6a0-804b9e46c57'
- NamePlayer: Klarname des Spielers, beispielsweise: 'Mustermann, Tim'
- Birthday: Geburtsdatum des Spielers, beispielsweise: '2002-07-17'
- Team: Bezeichnung des Teams, z.B. "U17"

- SessionStart: der Zeitstempel für den Sessionsstart als String im Format "JJJJ-MM-TT HH:MM:SS", beispielsweise: '2014-03-22 13:42:03'
- adrB: eine Liste mit den Adressen der Ballkanonen, in der Reihenfolge ihrer Aktivierung, beispielsweise: [10, 45, 28] oder bei Sessionstart eine leere Liste '[]'.
- adrW: eine Liste von Listen mit den aufleuchtenden Zielfeldern. Beispielsweise: '[[4, 6], [21, 22], [50, 18]]' oder bei Sessionstart '[[]]'
- adrCol: eine Liste von Listen mit der Farbe der Zielfelder aus [[adrW]]. Die Farben werden alphabetisch in Großbuchstaben durchnummeriert. Beispielsweise: "[['A', 'B'], ['A', 'B'], ['B', 'A']]" oder bei Sessionstart '[[]]'
- adrOut: eine Liste mit den Adressen, wo der Ball tatsächlich raus ist. Beispielsweise: '[4, 23, 40]' oder bei Sessionstart '[]'
- FBt: eine Liste mit den Angaben über die Zeitdauer zwischen Ballkanoneneinwurf und Lichtschrankensignal beim Rausschießen des Balls (in Millisekunden), beispielsweise: '[2140, 2600, 8600]' oder bei Sessionstart '[]'

Details

Es handelt sich hier um die modelPredict-Funktion für yhat-Architektur. Bei dem Dienst handelt es sich um einen reinen Item-Sampler. Solange die Session-History weniger als 16 Bälle aufweist, wird aus dem Item-Raum der BL32 ein Item gewählt.

Value

Ein JSON-gültiger String mit den folgenden Informationen:

- TicketID ein stochastischer Identifikator für die REST-Request, z.B. "JTMfOgfTEiq6ZMxb"
- GameOver ein boolescher Wert der angibt, ob das Abbruchkriterium für die Testung erreicht wurde
- NextB Eine liste mit Informationen über den nächsten Ball
- Testergebnis Das Testergebnis, dass der Spieler auf der latenten Kompetenzdimension erhält. (Noch nicht implementiert, daher vorläufig NA)

Author(s)

Harald Fiedler

 $adaptiv. BL16. full Random. model Require \\ adaptiv. BL16. full Random. model Require$

Description

das yhat-modelRequire() fuer einen randomisierten BL32-Test

Usage

adaptiv.BL16.fullRandom.modelRequire()

Details

Es handelt sich hier um einen reinen Item-Sampler über den BL32-Item-Raum, der nach 16 Bällen abbricht.

Value

Kein expliziter Return-value

Author(s)

Harald Fiedler

 $adaptiv. BL16. full Random. model Transform \\ adaptiv. BL16. full Random. model Transform$

Description

modelTransform() fuer yhat-Modell eines voll randomisierten Samplers des BL32-Testraums mit Stop nach 16 Bällen

Usage

adaptiv.BL16.fullRandom.modelTransform(AnfrageJSON)

Arguments

AnfrageJSON

String, der in R zu einer Liste umgewandelt werden kann mit folgenden Ele-

- TestID: den Namen des Testformats. Beispielsweise: 'BL32'
- idS: die aktuelle Session-ID, beispielsweise: '002b6573-cf12-436d-bccd-0856b0bb0a25'
- idP: die Player-ID des jeweiligen Probanden, beispielsweise: 'fe553db4-bbde-43dd-a6a0-804b9e46c57'
- NamePlayer: Klarname des Spielers, beispielsweise: 'Mustermann, Tim'
- Birthday: Geburtsdatum des Spielers, beispielsweise: '2002-07-21'
- Team: Bezeichnung des Teams, z.B. "U17"
- SessionStart: der Zeitstempel für den Sessionsstart als String im Format "JJJJ-MM-TT HH:MM:SS", beispielsweise: '2014-03-22 13:42:03'
- adrB: eine Liste mit den Adressen der Ballkanonen, in der Reihenfolge ihrer Aktivierung, beispielsweise: [10, 45, 28] oder bei Sessionstart eine leere Liste '[]'.
- adrW: eine Liste von Listen mit den aufleuchtenden Zielfeldern. Beispielsweise: '[[4, 6], [21, 22], [50, 18]]' oder bei Sessionstart '[[]]'
- adrCol: eine Liste von Listen mit der Farbe der Zielfelder aus [[adrW]]. Die Farben werden alphabetisch in Großbuchstaben durchnummeriert. Beispielsweise: "[['A', 'B'], ['A', 'B'], ['B', 'A']]" oder bei Sessionstart '[[]]'
- adrOut: eine Liste mit den Adressen, wo der Ball tatsächlich raus ist. Beispielsweise: '[4, 23, 40]' oder bei Sessionstart '[]'

askDB 5

• FBt: eine Liste mit den Angaben über die Zeitdauer zwischen Ballkanoneneinwurf und Lichtschrankensignal beim Rausschießen des Balls (in Millisekunden), beispielsweise: '[2140, 2600, 8600]' oder bei Sessionstart '[]'

Hier ein Beispiel für eine gültige Anfrage:

```
testJSONrequest <- '{
"TestID": "BL32",
"idS": "002b6573-cf12-436d-bccd-0856b0bb0a25",
"idP": "fe553db4-bbde-43dd-a6a0-804b9e46c57",
"NamePlayer": "Mustermann, Tim",
"Birthday": "2002-07-21",
"Team": "U14",
"SessionStart": "2014-03-22 13:42:03",
"adrB": [10, 45, 28],
"adrW": [[4, 6], [21, 22], [50, 18]],
"adrCol": [["A", "B"], ["A", "B"], ["B", "A"]],
"adrOut": [4, 23, 40],
"FBt": [2140, 2600, 8600]
}'
```

Details

Es handelt sich hier um die modelTransform-Funktion für yhat-Architektur. Bei dem Dienst handelt es sich um einen reinen Item-Sampler. Solange die Session-History weniger als 16 Bälle aufweist, wird aus dem Item-Raum der BL32 ein Item gewählt.

Value

data.frame mit den oben beschriebenen Spalten.

Author(s)

Harald Fiedler

askDB

askDB

Description

Fragt die DB ab

Usage

```
askDB(Anfangsdatum, Enddatum)
```

Arguments

Anfangsdatum character der Länge 1 im Format "JJJJ-MM-DD", welches dann zu einem Da-

tumsobjekt umgewandelt wird. Achtung: Zeitzone könnte ein paar Probleme

aufwerfen.

Enddatum character der Länge 1 im Format "JJJJ-MM-DD"

6 augmentRAW

Details

Diese Funktion fragt auf localhost einen DB-dump der fbn-Datenbank ab und ersetzt das Copy&Paste-Verfahren der shinyApp

Value

data.frame das dann von augmentRAW() weiterverarbeitet werden kann.

Author(s)

Harald Fiedler

augmentRAW

augmentRAW

Description

data.frame SQL wird angereichert

Usage

augmentRAW(SQL)

Arguments

SQL

data.frame, dass per askDB() oder readRAW() eingelesen wurde

Details

Es werden Derivate gebildet und Punktzahlen eingebunden. Problemhafte Sessions werden eliminiert. Dazu zählen zwei Sessions aus dem November 2014 ohne adrW.

Value

data.frame

Author(s)

Harald Fiedler

calcFiedler2016a 7

calcFiedler2016a

calcFiedler2016a

Description

Berechnet für eine einzelne Session (DF) theta-Hat nach jedem Ball

Usage

```
calcFiedler2016a(SessionDF, ItemBank = readItemBank())
```

Arguments

SessionDF data.frame mit einer Session

ItemBank die ItemBank, wird per default mittels readItemBank() eingelesen.

Details

DF darf nur eine Session beinhalten. Dann berechnet die Funktion thetaHat nach jedem Ball und stellt dies am Ende in der Spalte Fiedler2016a zur Verfügung.

Value

data.frame mit der Spalte für die IRT-Points

Author(s)

Harald Fiedler

detectItemID

detectItemID

Description

Liefert die ItemID eines Balls/Stimulus zurück

Usage

detectItemID(Stimulus)

Arguments

Stimulus ein data.frame mit den Spalten isMulitTarg, MultiTargs, RW, AW, HW, vA, sL

und sR und einer Zeile. Es handelt sich also um eine Zeile aus DF, die einen

Ball darstellt

Details

Liefert die ItemID eines Balls/Stimulus zurück, z.B. "BL03". Die Funktion ist nicht vektorwertig implementiert, sondern kann immer nur eine Abfrage auf einmal durchführen

8 detectItemResponse

Value

```
charactger der Länge 1, z.B. c("BL03")
```

Author(s)

Harald Fiedler

 ${\tt detectItemIDLive}$

detectItemIDLive

Description

Liefert live die ItemID eines Balls

Usage

```
detectItemIDLive(adrB, adrW)
```

Arguments

adrB numeric adrW numeric

Details

Liefert die ItemID eines Balls/Stimulus zurück für eine REST-Anfrage des simFBN

Value

```
charactger der Länge 1, z.B. c("BL03")
```

Author(s)

Harald Fiedler

 ${\tt detectItemResponse}$

detectItemResponse

Description

Liefert das Ergebnis eines Balls/Stimulus zurück, z.B. 0 oder 1

Usage

```
detectItemResponse(Stimulus)
```

Arguments

Stimulus

ein data.frame mit den Spalten isMulitTarg, MultiTargs, RW, AW, HW, vA, sL und sR und einer Zeile. Es handelt sich also um eine Zeile aus DF, die einen Ball darstellt

erstelleRaschMatrixSkeleton

Details

Liefert das Ergebnis eines Balls/Stimulus zurück, z.B. 0 oder 1. Aus dem data.frame ist nicht ersichtlich, welches für welches Modell die ItemResponse erhoben wird. Im dichotomen Rasch Modell wird das Ergebnis auf 0-1 codiert, während es für andere Modelle andere Erfassungen geben mag. Hier muss extern geklärt werden, welche ItemID welchem Modell zugeordnet ist.

Value

data frame mit der zusätzlichen Spate ItemResponse

Author(s)

Harald Fiedler

erstelleRaschMatrixSkeleton

erstelleRaschMatrixSkeleton

Description

erstellte eine NA-Matrix mit den Sessions als Zeilenindex und den Item-Namen als Spaltenindex

Usage

```
erstelleRaschMatrixSkeleton(DF, ItemIDNamen)
```

Arguments

DF data.frame auf Ballebene. Eine Spalte muss "idS".

ItemIDNamen character array mit den Itembezeichnungen, für die eine Rasch-Matrix erstellt

werden soll.

Details

Achtung: eine Spalte des data.frame muss den Spaltennamen "idS" haben.

Value

Eine Matrix voller NA, mit colnames=Itembezeichnungen und rownames=unique(idS)

Author(s)

Harald Fiedler

```
rm(list=ls())
DF <- data.frame(c("SessionA", "SessionB"), c(22, 90), c(23, 18), c(10,12))
colnames(DF) <- c("idS", "It1", "It2", "It_von_wo_ganz_anders")
ItemIDNamen <- c("Item1", "Item2", "Item3")
print(DF)
erstelleRaschMatrixSkeleton(DF=DF, ItemIDNamen=ItemIDNamen)</pre>
```

10 getAdrWAlsListe

fillRaschMatrixSkeleton

fillRaschMatrixSkeleton

Description

Füllt die NA-Matrix mit 0 und 1, wo es zutreffend ist.

Usage

fillRaschMatrixSkeleton(DF, RaschMatrixSkeleton)

Arguments

DF data.frame auf Ballebene, etwa per SQL2DF erworben

RaschMatrixSkeleton

matrix, belabeled mit SessionIDs und ItemIDs, wird etwa aus erstelleRaschMatrixSkeleton() erworben.

Value

Eine RaschMatrix mit vielen NA, und wenigen 0 und einigen 1en.

Author(s)

Harald Fiedler

getAdrWAlsListe

getAdrWAlsListe

Description

Hilfsfunktion von SQL2DF()

Usage

getAdrWAlsListe(adrW)

Arguments

adrW

character

Details

In den DB-Abfragen von CGoal findet sich die Variable adrW für die Zielfelder. Beim Umstellen von Single-Target auf Multi-Target wurde aus einer Zahl nun einen String, der einen JSON-Vektor darstellt. Wenn also Früher nur das Zielfeld 7 angegeben war, kann bei Multitarget nun der Ausdruck "7,2,21" angegeben sein. Die hier volriegende Funktion arbeitet Vektorwertig und macht beispielsweise aus den Tabelleneinträgen c("1,2,3,4", "11,12,13,14") eine List der Form list(c(1,2,3,4), c(11,12,13,14))

getFirstAdrW 11

Value

list mit numerischen Elementen

Author(s)

Harald Fiedler

Examples

```
adrW <- c("{1, 2, 3, 4}", "{11, 12, 13, 14}")
getAdrWAlsListe(adrW = adrW)
```

getFirstAdrW

getFirstArdW

Description

Hilfsfunktion von SQL2DF(): Gibt erstes Ziel in adrW im numerischen Format

Usage

```
getFirstAdrW(adrW)
```

Arguments

adrW

character Vektor, etwa c("2, 4, 5", "12,19", "4")

Details

Bei der Umstellung von Single-Target auf Multi-Target wurden die Einträge in der FBN-Datenbank stark abgeändert. Wo früher beispielsweise eine Zahl 7 für das Zielfeld mit der Adresse 7 stand, ist nun "3, 5, 15" ein String, der die unterschiedlichen Zielfelder darstellt. Unabhängig davon, ob in adrW ein multiTarget oder singleTarget-Design hinterlegt wird, liefert diese Funktion nur das erste Ziel zurück, und zwar als Zahl.

Value

numeric

Author(s)

Harald Fiedler

```
getFirstAdrW(adrW=c("{2, 4, 5}", "{12, 19}", "{4}"))
```

12 getNachname

getHW getHW

Description

Hilfsfunktion von augmentRAW zur Ermittlung von Höhenwinkel FF-FH-HF-HH

Usage

getHW(SQL)

Arguments

SQL

data.frame welches durch read.csv() einer SQL-Query entnommen wurde

Details

Je nachdem ob eine obere Ballkanonen oder eine untere Ballkanone zum Zuge kommt, oder ein unteres Zeil respektive oberes Ziel, kommt ein anderer Höhenwinkle zu stande.

Value

character mit Einträgen aus c("FF", "FH", "HF", "HH"), wobei FF=Flach Flach bedeutet und HH=Hoch Hoch.

Author(s)

Harald Fiedler

getNachname

getNachname

Description

Hilfsfunktion von augmentRWA(): Gibt aus einem Spielername den Vornamen

Usage

getNachname(Spielername)

Arguments

Spielername

character Vektor von beliebiger Länge

Details

Spielernamen können in SQL-Abfragen des FBN beispielsweise "Dogan, Isa" sein. Es wird "Isa" zurückgegeben.

getSessionTimeStamp 13

Value

character Vektor der gleichen Länge wie der an die Funktion übergebene Vektor

Author(s)

Harald Fiedler

Examples

```
Spielername <- c("Fiedler, Harald", "Mayer, Jan", "A-Team")
getNachname(Spielername = Spielername)</pre>
```

getSessionTimeStamp

getSessionTimeStamp

Description

Hilfsfunktion von SQL2DF(): ermittelt Sessionstart

Usage

getSessionTimeStamp(DatumString)

Arguments

DatumString String, etwa "2015-08-27 18:59:25.328383+02"

Details

Macht aus 2015-08-27 18:59:25.328383+02 den String 18:59:25

Value

Ein String, etwas "18:59:25"

Author(s)

Harald Fiedler

Examples

DatumString <- c("2015-08-27 18:59:25.328383+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.328384+02", "2015-08-27 18:59:25.32884+02", "2015-08-27 18:59:25.28884+02", "2015-08-27 18:59:25.28884+02", "2015-08-27 18:59:25.28884+02", "2015-08-27 18:59:25.28884+02", "2015-0

getVorname

getVorname

Description

Hilfsfunktion von augmentDF(): Gibt aus einem Spielername den Vornamen

Usage

```
getVorname(Spielername)
```

Arguments

Spielername

character Vektor von beliebiger Länge

Details

Spielernamen können in SQL-Abfragen des FBN beispielsweise "Dogan, Isa" sein. Es wird "Isa" zurückgegeben.

Value

character Vektor der gleichen Länge wie der an die Funktion übergebene Vektor

Author(s)

Harald Fiedler

Examples

```
Spielername <- c("Fiedler, Harald", "Mayer, Jan", "A-Team")
getVorname(Spielername = Spielername)</pre>
```

```
gibZahlFuehrendeNullen
```

gib Zahl Fuehrende Nullen

Description

```
Hilfsfunktion von SQL2DF: aus c(3) mach c("003")
```

Usage

```
gibZahlFuehrendeNullen(k, digits = 3)
```

Arguments

k numeric (besser wäre integer, sonst wird das Ergebnis korrumpiert)

digits numeric der Länge 1, das die Wortlänge bezeichnet. "0004" erhält man beispiel-

sweise mit digits=4

Details

Wenn man idX <- 1:31 nutzt, um einen Index idB zu erstellen, erhält man einen eindeutigen Schlüßel. Allerdings verhält sich die lexikografische Sortierung nicht, wie man es vielleicht möchte. So würde auf die idB=1 nicht etwa idB=2 folgen, sondern idB=11. Daher macht es Sinn, bei der Konvertiertung einer Ziffer oder Zahl in ein Character eine gewisse Anzahl an Nullen voranzustellen. So wird etwa aus der Zahl 2 das Wort "002" gemacht, wodurch die lexikografische Sortierung wieder so funktioniert, wie man es gerne hätte.

Value

Ein Vektor mit der gleichen Länge wie k, dessen Elemente Worte sind. Sie example.

Author(s)

Harald Fiedler

Examples

```
k = c(2, 7, 17, 299)
gibZahlFuehrendeNullen(k=k, digits=9)
```

implodeRaschMatrix4Quality

implodeFilledRaschMatrixSkeleton4Quality

Description

Lässt alle Probanden/Sessions weg, die zu viele NA haben, um eine sinnvolle ItemAnylse durchzuführen.

Usage

```
implodeRaschMatrix4Quality(RaschMatrixSkeletonFilled, MissingToleranz = 0.1)
```

Arguments

RaschMatrixSkeletonFilled

matrix bestehend aus vielen NA und einigen 0 und 1en, wie man sie aus fill-RaschMatrixSkeleton() erwirbt

MissingToleranz

numeric der Länge 1. Wie viel Prozent fehlende Bälle werden höchstens erlaubt. Default ist 10 Prozent

Value

matrix bestehend aus 0en und 1en und ganz ganz wenigen NA. Die Spalten tragen Item-Namen, und die Zeilen die Probandennamen, hier: idS

Author(s)

Harald Fiedler

isMultiTarget

is Multi Target

Description

Hilfsfunktion von augmentRAW(): ist adrW multitargetting?

Usage

```
isMultiTarget(adrW)
```

Arguments

adrW

character Array, etwa c("22, 33, 44, 55", "11, 22222, 11111", "99")

Details

Sagt, ob 11, 21, 16 oder 23 unter adrW abgespeichert wurde

Value

boolescher Vektor

Author(s)

Harald Fiedler

 $\verb|istFormatNachnameKommaVorname| \\$

istFormatNachnameKommaVorname

Description

Hilfsfunktion von augmentRAW()

Usage

istFormatNachnameKommaVorname(Spielername)

Arguments

Spielername String

Details

In den SQL-Auszügen des FBN finden sich Spielername vom Format "Fiedler, Harald", aber auch "A_TEST_Forschung". Die Funktion testet komponentenweise, ob zwei Strings kommagetrennt gepastet sind.

itemID2Params 17

Value

Boolescher Wert, der angibt, ob das Format Name, Vorname (mutmaßlich) vorliegt

Author(s)

Harald Fiedler

Examples

```
Spielername <- c("Fiedler, Harald", "Mayer, Jan", "A-Team")
istFormatNachnameKommaVorname(Spielername = Spielername)</pre>
```

itemID2Params

itemID2Params

Description

Gibt Informationen an simFBN() zurück, wie der nächste Ball gespielt werden soll

Usage

```
itemID2Params(ItemID)
```

Arguments

ItemID

charakter der Länge 1, welches den Namen des Items angibt. Implementiert sind BL01:BL32

Details

Für eine genauere Beschreibung verweise ich auf das Markdown-Manual für BL32MultiTargetSimTest.md. Diese Funktion erstellt den Knoten "nextB"

Value

list

Author(s)

Harald Fiedler

```
itemID2Params("BL03")
```

18 playedAngle

NormTree

NormTree ist eine verschachtelte Liste

Description

```
NormTree \ | \_\_ Altersgruppen/Mannschaften \ | \_\_ RAW : data.frame \ mit \ SessionID, \ Fiedler 2016a, FBt, FBq \ | \_\_ HIST : list of counts and breaks \ | \_\_ Kernel \ | \_\_ FBq \ | \_\_ FBt \ | \_\_ Level \ | \_\_ FBqFBt
```

Usage

data(NormTree)

Format

A nested list about 1194 players

playedAngle

playedAngle

Description

Winkel zwischen zwei Adressen.

Usage

```
playedAngle(adrA, adrB)
```

Arguments

adrA numeric Adressen der Ausgangsfelder adrB numeric Adressen der Zielfelder

Details

Gibt den Winkel zwischen zwei FBN-Adressen

Value

numeric mit Winkel aus -170:180 wobei der Winkel positiv im Uhrzeigersinn gemessen wird

Author(s)

Harald Fiedler

```
adrA=10
adrB=18
plotFBN()
playedAngle(adrA=adrA, adrB=adrB)
```

plotFBN 19

plotFBN plotFBN

Usage

```
plotFBN(Adresses = TRUE)
```

Arguments

Adresses

boolescher Wert der angibt, ob die Fensteradressen mit eingegeben werden sollen.

Details

Zeichnet schematisch den Footbonaut

Author(s)

Harald Fiedler

Examples

```
plotFBN(Adresses=FALSE)
```

plotSeaShell

plotSeaShell

Description

Plottet die SeaShellGrafik

erlaubt.

Usage

```
plotSeaShell(x, A, B, TitelA, TitelB, developperMode = FALSE)
```

Arguments

X	numeric Der Item-Response-Wert des Probanden
A	numeric Die Item-Response-Werte von Gruppe A
В	numeric die Item-Response-Werte von Gruppe B
TitelA	character mit der Headline für Gruppe A
TitelB	character mit der Headline für Gruppe B
developperMode	boolescher Wert, der eine Augenscheinkontrolle des Kernels und der Histogramms

Details

Es handelt sich um die extra für die Normgruppenvergleiche von Hoffenheim entwickelte Grafik

20 readItemBank

Value

Die Funktion hat keinen Ausgabe-wert

Author(s)

Harald Fiedler

readAUGMENTED

readAUGMENTED

Description

Liest die per writeAUGMENTED() gespeicherten Dateien ein

Usage

```
readAUGMENTED(Dateiname,
   Pfad = "~/Dropbox (Cavorit)/Cavorit/Forschungsprojekte/Hoffenheim/RAW/")
```

Arguments

Dateiname ch

character der Länge 1 mit Dateiname (ohne Endung). Der Pfad wird automatisch auf die Dropbox gesetzt, genauer in den Ordner RAW vom Ordner Hoffenheim

Pfad

CharacterString mit Pfadangabe zur Dropbox

Author(s)

Harald Fiedler

Examples

```
#Dateiname = "RAW-2015-04"
#head(readAUGMENTED(Dateiname = Dateiname))
```

readItemBank

readItemBank

Description

Liest die ItemBank ein

Usage

```
readItemBank(file = NA)
```

Arguments

file

Pfad character der Länge 1, der den Pfadname zu einer .csv-Datei darstellt. Die Datei muss eine gültige ItemBank im Sinne des 4-PL-Modells sein. Als Default-Wert für den Pfad fungiert ein Pfad zu einer Pakte-Datei, die in der Lib installiert wurde (was der eigentliche Clou dieser Funktion ist).

readRAW 21

Details

Es wird die ItemBank im 1:4PL-Modell eingelesen.

Value

data.frame für das 4PL-Modell

Author(s)

Harald Fiedler

Examples

```
ItemBank <- readItemBank()
head(ItemBank)</pre>
```

readRAW

readRAW

Description

Liest die per writeRAW() gespeicherten Dateien ein

Usage

```
readRAW(Dateiname,
   Pfad = "~/Dropbox (Cavorit)/Cavorit/Forschungsprojekte/Hoffenheim/RAW/")
```

Arguments

Dateiname character der Länge 1 mit Dateiname (ohne Endung). Der Pfad wird automatisch

auf die Dropbox gesetzt, genauer in den Ordner RAW vom Ordner Hoffenheim

Pfad CharacterString mit Pfadangabe zur Dropbox

Author(s)

Harald Fiedler

```
Dateiname = "RAW-2015-04"
#head(readRAW(Dateiname = Dateiname))
```

22 writeRAW

writeAUGMENTED

writeAUGMENTED

Description

Der per augmentRAW() erzeugte Datensatz (ein data.frame) wird als R-Objekt in der Dropbox abgespeichert.

Usage

```
writeAUGMENTED(DF, Dateiname)
```

Arguments

DF data.frame der per augmentRAW() erzeugte Datensatz

Dateiname character der Länge 1, gibt den Dateinamen ohne Endung an. Der Pfad ist hard

coded zur Dropbox

Author(s)

Harald Fiedler

writeRAW

writeRAW

Description

Der per askDB() erzeugte Datensatz (ein data.frame) wird als R-Objekt in der Dropbox abgespeichert.

Usage

```
writeRAW(SQL, Dateiname)
```

Arguments

 ${\tt SQL} \qquad \qquad {\tt data.frame\ der\ per\ askDB()\ erzeugte\ Datensatz}$

Dateiname character der Länge 1, gibt den Dateinamen ohne Endung an. Der Pfad ist hard

coded zur Dropbox

Author(s)

Harald Fiedler

Index

Rbonaut2-package, 2

```
*Topic datasets
                                                 readAUGMENTED, 20
    NormTree, 18
                                                 readItemBank, 20
*Topic package
                                                 readRAW, 21
    Rbonaut2-package, 2
                                                 writeAUGMENTED, 22
adaptiv.BL16.fullRandom.modelPredict,
                                                writeRAW, 22
adaptiv.BL16.fullRandom.modelRequire,
adaptiv.BL16.fullRandom.modelTransform,
askDB, 5
augmentRAW, 6
calcFiedler2016a, 7
detectItemID, 7
detectItemIDLive, 8
{\tt detectItemResponse}, 8
erstelleRaschMatrixSkeleton, 9
fillRaschMatrixSkeleton, 10
getAdrWAlsListe, 10
getFirstAdrW, 11
getHW, 12
getNachname, 12
{\tt getSessionTimeStamp},\, 13
getVorname, 14
gibZahlFuehrendeNullen, 14
implodeRaschMatrix4Quality, 15
isMultiTarget, 16
istFormatNachnameKommaVorname, 16
itemID2Params, 17
NormTree, 18
playedAngle, 18
plotFBN, 19
plotSeaShell, 19
Rbonaut2 (Rbonaut2-package), 2
```