Lecture 13: Introduction to Correlation

• 13. 1 Overview

- Fundamental definitions of covariance, correlation, and regression
- Importance as measures of association
- Mathematical and statistical models
- Algebraic notation
- Questions
 - What is the strength of the relationship between two variables?
 - What is the shape of the relationship?
 - How can one make predictions from one variable to another?

• 13. 2 Correlation -- Introduction

- Until now our independent variables have been discrete (nominal)
 - e.g. Experimental vs. Control
- But the IV can also be continuous (interval or ratio)
 - e.g., *Height* could be related to *weight*, but we don't have "height groups"
- We want to know the degree (direction) and extent (magnitude) of linear relations We use the Pearson product-moment correlation coefficient, denoted by "r"

$$r = \frac{\sum (Z_x)(Z_y)}{n-1}$$

- A correlation coefficient describes the degree of linear relationship between two variables

• 13.3 Correlation -- Illustration

- Some examples of linear relationships (via scatterplot)

13. 4 Correlation -- Interpretation

- A correlation is the degree of linear association between two variables
- A correlation is the degree to which the data points cluster around a regression line, or line of best fit
- A correlation is the regression slope if both x and y are rescaled to have variances equal to 1.0

 $Z_x = \frac{x - \overline{x}}{S_x}$ If we rescale *x* to *z*-scores with:

 $Z_{y} = \frac{y - \overline{y}}{s_{y}}$ and rescale *y* to *z*-scores with:

then regress z_v onto z_x , the slope will be r.

- A correlation is the square root of the proportion of variance in y that is "explained" by x, and vice versa
 - Equivalently, r^2 is the proportion of variance in y explained by x, and vice versa
- A correlation r is the sample estimate of the population correlation, ρ (rho)
- Correlations can be positive or negative
- Correlations range between -1.0 and +1.0, inclusive

r = 0 means x and y are not linearly related

- Correlation does not imply causation (unless x is something we manipulate experimentally)

• 13.5 Covariance

- Covariance an unstandardized measure of the relationship between two variables
- A correlation is a "standardized" covariance the covariance between two variables whose scales have been altered so that their variances are 1.0
- Definitional formula (the average of the cross-products of the data)

$$cov(x,y) = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

- Example

$$\mathbf{A} = \begin{bmatrix} x & y \\ 1 & 2 \\ 2 & 8 \\ 3 & 6 \\ 4 & 4 \\ 5 & 10 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x - \overline{x} & y - \overline{y} \\ -2 & -4 \\ -1 & 2 \\ 0 & 0 \\ 1 & -2 \\ 2 & 4 \end{bmatrix}$$

$$\mathbf{C_x} = \frac{1}{N-1} \mathbf{X'X} = \frac{1}{4} \begin{bmatrix} -2 & -1 & 0 & 1 & 2 \\ -4 & 2 & 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ -1 & 2 \\ 0 & 0 \\ 1 & -2 \\ 2 & 4 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} 10 & 12 \\ 12 & 40 \end{bmatrix} = \begin{bmatrix} 2.5 & 3 \\ 3 & 10 \end{bmatrix} = \begin{bmatrix} s_x^2 & s_{xy} \\ s_{xy} & s_y^2 \end{bmatrix}$$

- No index of strength of association not a descriptive idea of the size of the association
- The covariance depends on the scale of the variables
- The solution is to put both variables in the same metric...standardized scores

• 13. 6 From Covariance to Correlation

- Standardize X and Y first and then get their covariance

$$cov(Z_x, Z_y) = \frac{\sum (Z_x - \overline{Z}_x)(Z_y - \overline{Z}_y)}{n - 1}; \quad r = \frac{\sum (Z_x)(Z_y)}{n - 1}$$

$$Z_x = \frac{\sum (x - \overline{x})}{s_x}; \quad Z_y = \frac{\sum (y - \overline{y})}{s_y};$$

$$r = \frac{C_{xy}}{S_x S_y}$$

r =Pearson product moment correlation coefficient

• 13.7 Example

- What is the relationship between self-esteem and number of friends?

X(SE)	Y (Friends)	Z_x	Z_{y}	$(Z_x)(Z_y)$
1	2	-1.44	-1.16	1.64
3	4	0	-0.39	0
4	6	0.71	0.39	0.27
4	8	0.71	1.16	0.82
$\overline{X} = 3$ $S_x = 2.58$	$\overline{Y} = 5$ $S_v = 1.41$			$\Sigma = 2.73$

$$r = \frac{\sum (Z_x)(Z_y)}{n-1}$$
; $r = \frac{2.73}{3} = .91$

- There is a high association between the two variables (but no directionality)
- Knowing a person's SE tells us a lot about the number of friends they are likely to have
- r^2 = .84; about 84% of the variance in number of friends is explained by SE alone

• 13. 8 From Covariance to Correlation (In Matrix Form)

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_1 & 9 & 9 & 12 \\ x_2 & 9 & 16 & 10 \\ x_3 & 12 & 10 & 25 \end{bmatrix} =$$

$$\begin{bmatrix} \frac{1}{s_{x1}} & 0 & 0 \\ 0 & \frac{1}{s_{x2}} & 0 \\ 0 & 0 & \frac{1}{s_{x3}} \end{bmatrix} \begin{bmatrix} 9 & 9 & 12 \\ 9 & 16 & 10 \\ 12 & 10 & 25 \end{bmatrix} \begin{bmatrix} \frac{1}{s_{x1}} & 0 & 0 \\ 0 & \frac{1}{s_{x2}} & 0 \\ 0 & 0 & \frac{1}{s_{x3}} \end{bmatrix} =$$

$$\begin{bmatrix} \frac{9}{S_{x1}S_{x1}} & \frac{9}{S_{x1}S_{x2}} & \frac{12}{S_{x1}S_{x3}} \\ \frac{9}{S_{x2}S_{x1}} & \frac{16}{S_{x2}S_{x2}} & \frac{10}{S_{x2}S_{x3}} \\ \frac{12}{S_{x3}S_{x1}} & \frac{10}{S_{x3}S_{x2}} & \frac{10}{S_{x3}S_{x3}} \end{bmatrix} = \begin{bmatrix} 1 & sym & sym \\ \frac{9}{12} & 1 & sym \\ \frac{12}{15} & \frac{10}{20} & 1 \end{bmatrix} = \begin{bmatrix} 1 & sym & sym \\ .75 & 1 & sym \\ .80 & .50 & 1 \end{bmatrix}$$

- But maybe there is really no relationship between *X* and *Y* in the population
- In other words, perhaps $\rho = 0$, even though r = .91
- Is r = .91 significantly different from zero?

$$H_0$$
: $\rho = 0$

$$H_1$$
: $\rho \neq 0$

$$df = N - 2$$

- We can use a t test.
 - Testing H_0 : $\rho = 0$ is similar to performing a one-sample *t*-test, where we compare the observed correlation to a fixed value of 0

$$t = \frac{r}{SE_r} \qquad SE_r = \sqrt{\frac{1 - r^2}{N - 2}}$$

$$t = \frac{.91}{\sqrt{\frac{1 - (.91)^2}{4 - 2}}} = \frac{.91}{\sqrt{\frac{.1719}{2}}} = \frac{.91}{\sqrt{.086}} = \frac{.91}{.293} = 3.11$$

$$t_{(.05, 2)} = 4.303$$

observed t < critical t, thus we retain H_0 : $\rho = 0$

- Other tests are also possible

$$H_0$$
: ρ = fixed value

$$H_0$$
: $\rho_1 = \rho_2$

$$H_0$$
: $\rho_1 = \rho_2 = \rho_3 = ... = \rho_k$

$$H_0$$
: $\rho_1 = \rho_2 = \rho_3 = ... = \rho_k$

• 13. 10 Factors Affecting r

- Linear relationships

- Nonlinear relationships

- Third variable (also restriction in range)

- Other Factors

- Outliers
- Heteroskedasticity
- Curvilinearity
- Selection (e.g., restricted range)
- Mismatched distributions
- Group membership

• 4. 11 Correlation and Causality

- If X and Y are correlated, there are several directions of causality, including:

- X could be causing Y	$X \rightarrow Y$
- Y could be causing X	$Y \rightarrow X$
- Some other factor Z could be causing both X and Y	$Z \rightarrow X, Y$
- Both <i>X</i> and <i>Y</i> are causing each other	$X \leftrightarrow Y$

- Ruling out directions of causality
 - Additional knowledge
 - correlation between sleep one night and mood next day cannot be due to mood next day causing better sleep the night before (but we can't say that sleep \rightarrow mood either)
 - Randomization
 - if individuals are randomly assigned to two groups, and a manipulation (sleep deprivation) is performed on one group (experimental) but not to the other (control), any relationship between X and Y (sleep and mood) that is different between groups should be due to the manipulation

• 4. 12 Correlation Coefficient vs. Correlational Methods

- Correlation coefficient (r or ρ) is a statistical procedure
- Correlational method is a type of research design that does not involve true experiments (with randomization)
- Correlational methods do not necessarily use the correlation coefficient as the statistical procedure for analyzing the data

• 4. 13 Restriction in Range

- It is important to examine the correlation between X and Y when considering the entire range of the variables
 - Association between SAT scores and performance in college (or GRE and performance in graduate school)
 - Association between age and memory across the life span