For a good portion of this homework, when work is not shown, *Mathematica* was utilized. The code for it can be found at the end.

1. Section 1.2 Problem 1

(a)
$$\kappa = 1$$

(b)
$$\kappa = \sqrt{\frac{1}{(1+s^2)^2}}$$

(c)
$$\kappa = \frac{1}{2} \sqrt{\frac{1}{2 - 2s^2}}$$

2. Section 1.2 Problem 3

For this portion, all results will be found in the *Mathematica* code at the end due to the results being too painful to type in LATEX.

3. Section 1.2 Problem 4

We wish to show that $\kappa = \frac{|f''|}{(1+(f')^2)^{3/2}}$ for a plane curve. Begin by noting that $\kappa = \frac{||\alpha' \times \alpha''||}{||\alpha'||^3}$. Also note that since f(x) is a plane curve, $\tau = 0$. Let $\alpha(x) = (x, f(x), 0)$, where the z component is zero because of a lack of torsion. Now, it can easily be shown that $\alpha'(x) = (1, f'(x), 0)$ and $\alpha''(x) = (0, f''(x), 0)$. Since the numerator of $\kappa = ||\alpha' \times \alpha''||$, we can find the cross product of the given function's first and second derivatives to be |f''(x)|. Likewise, it is known that $|\alpha'(x)| = (1 + (f'(x))^2)^{1/2}$. By cubing this, it is seen that $|\alpha'(x)|^3 = (1 + (f(x))^2)^{3/2}$.

$$\therefore \kappa = \frac{||\alpha' \times \alpha''||}{||\alpha'||^3} = \frac{|f''|}{(1 + (f')^2)^{3/2}}$$

4. Section 1.2 Problem 11

We wish to show that

$$\tau(s(t)) = \frac{\alpha' \cdot (\alpha'' \times \alpha''')}{|\alpha' \times \alpha''|^2}$$

To begin, note that the triple product may be rewritten to $\alpha''' \cdot (\alpha' \times \alpha'')$. From class, we know that $(\alpha' \times \alpha'') = \kappa v^3 \mathbf{B}$. Likewise, $\alpha'' = v' \mathbf{T} + \kappa v^2 \mathbf{N}$.

We begin by calculating $\frac{d}{dt}\alpha''(t)$.

$$\alpha''' = v''\mathbf{T} + v'v^{2}\kappa\mathbf{N} + 2vv'\kappa\mathbf{N} + v^{3}\kappa'\mathbf{N} + v^{3}\kappa\mathbf{N}'$$

$$= v''\mathbf{T} + v'v^{2}\kappa\mathbf{N} + 2vv'\kappa\mathbf{N} + v^{3}\kappa'\mathbf{N} + v^{3}\kappa(\tau\mathbf{B} - \kappa\mathbf{T})$$

$$= v''\mathbf{T} + v'v^{2}\kappa\mathbf{N} + 2vv'\kappa\mathbf{N} + v^{3}\kappa'\mathbf{N} + v^{3}\kappa\tau\mathbf{B} - v^{3}\kappa^{2}\mathbf{T}$$

Now, note that $\mathbf{B} \cdot \mathbf{T}, \mathbf{B} \cdot \mathbf{N} = 0$ and $\mathbf{B} \cdot \mathbf{B} = |\mathbf{B}|^2$. So, $\alpha''' \cdot (\alpha' \times \alpha'') = \alpha''' \cdot \kappa v^3 \mathbf{B}$. $\implies \alpha''' \cdot (\alpha' \times \alpha'') = \tau \kappa v^3 \mathbf{B} \cdot v^3 \kappa \mathbf{B} = |\kappa v^3 \mathbf{B}|^2 \tau$ because \mathbf{B} , \mathbf{T} , and \mathbf{N} are orthogonal. By dividing by $|\alpha' \times \alpha''|^2$, this becomes τ !

$$\therefore \frac{\alpha''' \cdot (\alpha' \times \alpha'')}{|\alpha' \times \alpha''|^2} = \tau$$

5. Section 1.2 Problem 15

(a) Begin by assuming that $\beta = \alpha + \lambda \mathbf{T} + \eta \mathbf{N}$, where η is an arbitrary variable. We wish to show that $\eta = \mu$. μ is defined as $|\beta - \alpha|$, as given in the problem. Rearrange the above equation and dot both sides by \mathbf{N} to get

$$(\beta - \alpha) \cdot \mathbf{N} = \lambda \mathbf{T} \mathbf{N} + \eta \mathbf{N} \mathbf{N}.$$

Note that $\mathbf{T} \cdot \mathbf{N} = 0$ and $\mathbf{N} \cdot \mathbf{N} = 1$. Thus, the above can be rewritten to $(\beta - \alpha) \cdot \mathbf{N} = \eta$. By taking the absolute value of tboth sides, we can see that

$$|(\beta - \alpha)||\mathbf{N}| = |\beta - \alpha| = |\eta| = \eta.$$

Thus, $\eta = \mu$, so **N** has the coefficient μ .

Now, we must show that $\lambda = 0$. Because $\alpha(s)$ and $\beta(s)$ are parallel, it is true that $\beta' + \alpha' = 0$. By moving α to the left side and taking the derivative of $\beta = \alpha + \lambda \mathbf{T} + \mu \mathbf{N}$, it can be seen that

$$\beta' - \alpha' = \lambda' \mathbf{T} + \lambda \kappa \mathbf{N} - \mu \kappa \mathbf{T}$$

By noting that $\beta' = T_{\beta}$ and that $\alpha = -\beta$, this can be rewritten to

$$2\mathbf{T}_{\beta} = (\lambda' - \mu\kappa)\mathbf{T}_{\beta} + (\lambda\kappa)\mathbf{N}_{\beta}.$$

As can be seen by this equation, for it to be true, $\lambda = 0$. Therefore, $\beta(s) = \alpha(s) + \mu \mathbf{N}_{\beta}$, and the chord μ is normal to the curve at both points by definition of the vector \mathbf{N} .

(b) From part (a), we know that $\alpha' = -\beta'$. We want to show that $\frac{1}{\kappa_{\alpha}} + \frac{1}{\kappa_{\beta}} = \mu$. As proved above, $\beta = \alpha + \mu \mathbf{N}_{\alpha}$ and $\alpha = \beta + \mu \mathbf{N}_{\beta}$. Differentiating both sides gives:

$$\begin{aligned} \mathbf{T}_{\beta} &= \mathbf{T}_{\alpha} + \mu(-\kappa_{\alpha}\mathbf{T}_{\alpha}) & \mathbf{T}_{\alpha} &= \mathbf{T}_{\beta} + \mu(-\kappa_{\beta}\mathbf{T}_{\beta}) \\ -\mathbf{T}_{\alpha} &= \mathbf{T}_{\alpha} + \mu(-\kappa_{\alpha}\mathbf{T}_{\alpha}) & -\mathbf{T}_{\beta} &= \mathbf{T}_{\beta} + \mu(-\kappa_{\beta}\mathbf{T}_{\beta}) \\ -2\mathbf{T}_{\alpha} &= -\mu\kappa_{\alpha}\mathbf{T}_{\alpha} & -2\mathbf{T}_{\beta} &= -\mu\kappa_{\beta}\mathbf{T}_{\beta} \\ \frac{1}{\kappa_{\alpha}} &= \frac{\mu}{2} & \frac{1}{\kappa_{\beta}} &= \frac{\mu}{2} \end{aligned}$$

Adding these equations gives $\frac{\mu}{2} + \frac{\mu}{2} = \frac{1}{\kappa_{\alpha}} + \frac{1}{\kappa_{\beta}} = \mu$.

6. Section 1.2 Problem 20

(a) Let α and β have the same normal line. At t, $\beta(t)$ is some distance along the normal line from $\alpha(t)$. This gives us that $\beta(s) = \alpha(s) + r(s)\mathbf{N}_{\alpha}$. We wish to show that r(s) is a constant. Begin by differentiating to obtain

$$\mathbf{T}_{\beta} = \mathbf{T}_{\alpha} + r' \mathbf{N}_{\alpha} - r \kappa \mathbf{T}_{\alpha} + r \tau \mathbf{B}_{\alpha}$$
$$= (1 - r \kappa) \mathbf{T}_{\alpha} + r' \mathbf{N}_{\alpha} + r \tau \mathbf{B}_{\alpha}$$

Since N_{α} and N_{β} are on the same line, any vector orthogonal to one must be orthogonal to the other. Thus, we dot the above expression by N_{α} to obtain

$$\mathbf{T}_{\beta} \cdot \mathbf{N}_{\alpha} = (1 - r\kappa)\mathbf{T}_{\alpha} \cdot \mathbf{N}_{\alpha} + r'\mathbf{N}_{\alpha} \cdot \mathbf{N}_{\alpha} + r\tau \mathbf{B}_{\alpha} \cdot \mathbf{N}_{\alpha}.$$

 $\implies 0 = r'$, so thus r(s) is a constant.

(b) We wish to show that the angle between \mathbf{T}_{β} and \mathbf{T}_{α} is constant. To do this, begin with the statement found in (a) to say $\beta = \alpha + r\mathbf{N}$, where β is not necessarily arclength parametrized. By differentiating, we find $\beta' = \mathbf{T}_{\alpha} + r(-\kappa \mathbf{T}_{\alpha} + \tau \mathbf{B}_{\alpha})$ or

$$v_{\beta} \mathbf{T}_{\beta} = (1 - r\kappa_{\alpha}) \mathbf{T}_{\alpha} + (r\tau_{\alpha}) \mathbf{B}_{\alpha},$$

where \mathbf{T}_{β} is the unit tangent for β . By dividing through by v_{β} we obtain

$$\mathbf{T}_{\beta} = \frac{(1 - r\kappa_{\alpha})}{v_{\beta}} \mathbf{T}_{\alpha} + \frac{(r\tau_{\alpha})}{v_{\beta}} \mathbf{B}_{\alpha}.$$

Now, replace the two fractions with f and g, respectively. Then, by differentiation the following is obtained:

$$v_{\beta}\kappa_{\beta}\mathbf{N}_{\beta} = f'\mathbf{T}_{\alpha} + f(\kappa_{\alpha}\mathbf{N}_{\alpha}) + g'\mathbf{B}_{\alpha} + g(-\tau_{\alpha}\mathbf{N}_{\alpha})$$

Notice that the left-hand side has no \mathbf{T}_{α} or \mathbf{B}_{α} terms, so therefore f', g' = 0.

To use this fact, we will now compute $\langle \mathbf{T}_{\beta}, \mathbf{T}_{\alpha} \rangle$. Using the first derivative found above, it is easy to see that

$$\mathbf{T}_{\beta} \cdot \mathbf{T}_{\alpha} = \frac{1 - r\kappa_{\alpha}}{v_{\beta}}.$$

Since the dot product can be defined as $|\mathbf{T}_{\beta}||\mathbf{T}_{\alpha}|\cos\theta$, where $|\mathbf{T}_{\beta}|,|\mathbf{T}_{\alpha}|=1$, this becomes

$$\frac{1 - r\kappa_{\alpha}}{v_{\beta}} = \cos\theta \quad \text{or} \quad \cos^{-1}\left(\frac{1 - r\kappa_{\alpha}}{v_{\beta}}\right) = \theta$$

But since, from above, f' = 0, we can say that θ is a constant.

(c) From (b), we know that

$$1 - r\kappa_{\alpha} = v_{\beta}C_1$$
 and $r\tau_{\alpha} = v_{\beta}C_2$

where C_1, C_2 are constants. By rearranging the second equation, we obtain $-\frac{C_1}{C_2}r\tau_{\alpha} = -v_{\beta}C_1$. When these two equations are added together, it results in

$$1 = r\kappa + c\tau$$

as desired. \Box

(d) Begin with the fact that $1 = r\kappa + c\tau$, which was found in (c). Taking this equation's derivative gives $0 = r\kappa' + c\tau'$, since r,c are constants their derivatives are zero. By dividing by the constant r, this becomes $0 = \kappa' + j\tau'$, where j is the new constant. From this, it is apparent that $\kappa = \tau + m$, where m is an arbitrary constant. Plugging this result back into the original equation gives $1 = r(\tau + m) + c\tau$. Collecting terms, we find that

$$\frac{1-rm}{r+c} = \tau.$$

This proves that τ is a constant.

We will now use this fact to show that infinitely many β result in a circular helix. Let $\beta_i = \alpha + r_i \mathbf{N}_{\alpha}$ and $\beta_j = \alpha + r_j \mathbf{N}_{\alpha}$. These are both Bertrand mates to α . Thus, it is true that $1 = r_i \kappa + c_i \tau$ and $1 = r_j \kappa + c_j \tau$. We can state that these are equivalent and rearrange them to show

$$r_i \kappa + c_i \tau = r_j \kappa + c_j \tau$$

$$(r_i - r_j) \kappa + (c_i - c_j) \tau = 0$$

$$(c_i - c_j) \tau = (r_j - r_i) \kappa$$

$$\implies \frac{\tau}{\kappa} = \frac{r_j - r_i}{c_i - c_j}$$

Therefore, since τ/κ is a constant, α is a generalized helix by Proposition 2.5 of the textbook. But from what was shown above, τ is a constant. Thus, for τ/κ to be constant with τ already constant, κ must also be constant. But a circular helix is defined as having constant τ and κ , so α must be a circular helix.

7. Section 1.2 Problem 22

Since
$$\alpha = c \int_a^t (\mathbf{Y} \times \mathbf{Y}') du$$
, we can say that $\alpha' = c(\mathbf{Y} \times \mathbf{Y}')$. Also $\alpha'' = c[(\mathbf{Y}' \times \mathbf{Y}') \times (\mathbf{Y} \times \mathbf{Y}'')] = c(\mathbf{Y} \times \mathbf{Y}'')$. Finally $\alpha''' = c[(\mathbf{Y}' \times \mathbf{Y}'') \times (\mathbf{Y} \times \mathbf{Y}''')] = c(\mathbf{Y}' \times \mathbf{Y}'')$, since \mathbf{Y} is \mathfrak{C}^2 , $\mathbf{Y}''' = 0$. From Problem 11, we know that
$$\tau(s(t)) = \frac{\alpha' \cdot (\alpha'' \times \alpha''')}{|\alpha' \times \alpha''|^2}.$$

I was unable to complete this problem, but I believe that my setup is correct and will ultimately show that $\tau = \frac{1}{c}$.

Work was collaborated on with Hollis Neel.