cloudera

Edge2AI

Johannes Muselaers I Sales Engineer <u>jmuselaers@cloudera.com</u> +46725881091

CLOUDERA DATA SCIENCE WORKBENCH

MACHINE LEARNING AT CLOUDERA

Our philosophy

We empower our customers to run their business on data with an open platform:

- Your data
- Open algorithms
- Running anywhere

We accelerate enterprise data science.

What is Cloudera Data Science Workbench (CDSW)

Supports your workloads in an enterprise secure way

Accelerate data science from exploration to production using R, Python, Spark and more

For data scientists

Open data science, your way.

Use R, Python, or Scala with your favorite libraries and frameworks

No need to sample.

Directly access data in secure Hadoop clusters through Apache Spark and Apache Impala

Reproducible, collaborative research.

Share insights with your whole team

For IT professionals

Bring analysis to the data.

Give your data science team the freedom to work how they want, when they want

Secure by default.

Stay compliant with out-of-the-box support for full Hadoop security

Flexible deployment.

Run on-premises or in the cloud

Data Science & Data Scientist

THE CHALLENGE

Balance these needs

DATA SCIENCIST

- Access to granular data
- Flexibility
 - Preferred open source tools
- Elastic provisioning
 - Compute
 - Storage
- Reproducible research
- Path to production

DevOps/IT

- Security
- Governance
- Standards
- Low maintenance
- Low cost
- Self-service access

WS,

THE TYPICAL SOLUTION

"If I can't use my favorite tools, I'll..."

- Copy data to my laptop
- Copy data to a data science appliance
- Copy data to a cloud service

Why this is a problem:

- Complicates security
- Breaks data governance
- Adds latency to process
- Makes collaboration more difficult
- Complicates model management and deployment
- Creates infrastructure silos

CLOUDERA DATA SCIENCE WORKBENCH

Accelerate Machine Learning from Research to Production

For data scientists

- Experiment faster
 Use R, Python, or Scala with
 on-demand compute and
 secure CDH data access
- Work together
 Share reproducible research with your whole team
- Deploy with confidence
 Get to production repeatably
 and without recoding

For IT professionals

- Bring data science to the data
 Give your data science team
 more freedom while reducing
 the risk and cost of silos
- Secure by default
 Leverage common security and governance across workloads
- Run anywhere
 On-premises or in the cloud

A MODERN DATA SCIENCE ARCHITECTURE

Containerized environments with scalable, on-demand compute

- Built with Docker and Kubernetes
 - Isolated, reproducible user environments
- Supports both big and small data
 - Local Python, R, Scala runtimes
 - Schedule & share GPU resources
 - Run Spark, Impala, and other CDH services
- Secure and governed by default
 - Easy, audited access to Kerberized clusters
 - Leverages SDX platform services
- Deployed with Cloudera Manager/Ambari

ACCELERATED DEEP LEARNING WITH GPUS

Multi-tenant GPU support on-premises or cloud

"Our data scientists want GPUs, but we need multi-tenancy. If they go to the cloud on their own, it's expensive and we lose governance."

- Extend CDSW to deep learning
- Schedule & share GPU resources
- Train on GPUs, deploy on CPUs
- Works on-premises or cloud

single-node training

distributed training, scoring

WHAT DATA SCIENCE TEAMS DO

PREPARE DATA

Ingest data at scale.

Store and secure data.

Clean and transform data for analysis.

BUILD MODELS

Explore data and build predictive models, offline.

Evaluate and tune models.

Develop and deliver a modeling pipeline.

DEPLOY MODELS

Test, verify, and approve model for deployment.

Create and maintain batch/ stream pipelines, embedded models, APIs.

Update models in production.

CLOUDERA DATA SCIENCE WORKBENCH

Accelerate and simplify machine learning from research to production

ANALYZE DATA

 Explore data securely and share insights with the team

TRAIN MODELS

Run, track, and compare reproducible experiments

DEPLOY APIs

 Deploy and monitor models as APIs to serve predictions

MANAGE SHARED RESOURCES

• Provide a secure, collaborative, self-service platform for your data science teams

INTRODUCING EXPERIMENTS

Versioned model training runs for evaluation and reproducibility

Data scientists can now...

- Create a snapshot of model code, dependencies, and configuration necessary to train the model
- Build and execute the training run in an isolated container
- Track specified model metrics, performance, and model artifacts
- Inspect, compare, or deploy prior models

INTRODUCING MODELS

Machine learning models as one-click microservices (REST APIs)

- 1. Choose file, e.g. score.py
- 2. Choose function, e.g. forecast

```
f = open('model.pk', 'rb')
model = pickle.load(f)
def forecast(data):
    return model.predict(data)
```

- 3. Choose resources
- 4. Deploy!

Running model containers also have access to CDH for data lookups.

MODEL MANAGEMENT

View, test, monitor, and update models by team or project

1_python.py

2_pyspark.py

3_tensorflow.py

4_sparklyr.R

45.R

▼ deta.

GoogleTrendsData.csv

kmeans_data.txt

MNIST

hello

⊩ R

README.md

⊩ slides

utils.py

```
# Goodle Stock Analytics
   # -----
   # This notebook implements a strategy that uses Google
 5 # trade the Dow Jones Industrial Average.
   import pandas as pd
   import matplotlib.pyplot as olt
   import matplotlib as mpl
10 from pandas_highcharts.display import display_charts
11 import seaborn
12 mpl.rcParams['font.family'] = 'Source Sans Pro'
   mpl.rcParams['axes.labelsize'] = '15'
14
15 # Import Data
16 # ========
17 #
18 # Load data from Google Trends.
19
   data = pd.read_csv('data/GoogleTrendsData.csv', index_
   data.head()
22
   # Show DJIA vs. debt related query volume.
   display_charts(data, chart_type="stock", title="DJIA v
   seaborn.lmplot("debt", "djia", data=data, size=7)
25
27 # Detect if search volume is increasing or decreasing
28 # any given week by forming a moving average and testil
29 # crosses the moving average of the past 3 weeks.
39 #
31 # Let's first compute the moving average.
32
33
   data['debt_mavg'] = data.debt.rolling(window=3, center)
   data.head()
34
35
35 # Since we want to see if the current value is above the
   # *preceeding* weeks, we have to shift the moving aver-
38
39 data['debt_mavq'] = data.debt_mavq.shift(1)
   data.head()
```

Start New Session

Engine Image - Configure

Base Image v1 - docker.repository.cloudera.com/cdsw/engine:1

Select Engine Kernel

- Python 2
- Python 3
- Scala
- R

Select Engine Profile

1 vCPU / 2 GiB Memory

Launch Session

41

1_bython.p... Edit View Navigate Run 2_pyspark.py 1_python.py # Google Stock Analytics My Python Session @ ____ 4_sparklyr.R By Matt Brandwein - Python 2 Session - 1 vCPU / 2 GiB Memory -Running # This notebook implements a strategy that uses Google just now 5 # trade the Dow Jones Industrial Average. Product Overview 2 Cloudera Deta Science Workbench Terminal import pandas as pd ① tty-1gp7dhoexb4sn8fr.cdsw.edh.cloudera.com/cky3o8ggcyi0n49p/ import matplotlib.pyplot as plt GOOGLE Welcome to Cloudera Data Science Workbench 2_pyspark.py import matplotlib as mpl 10 from pandas_highcharts.display import display_charts 3_tensorflow.py This notebook Kernel: python2 import seaborn 4_sparklyr.R 12 mpl.rcParams['font.family'] = 'Source Sans Pro' Industrial Aver mpl.rcParams['axes.labelsize'] = '16' 4a.R Project workspace: /home/cdsw 14 ▼ deta > import par > import mat
Kerberos principal: mbrandwein@CLOUDERA.LOCAL 15 # Import Data GoogleTrendsData.csv 4 ========= 17 > import matRuntimes: kmeans_data.txt # Load data from Google Trends. R: R version 3.3.0 (2016-05-03) — "Supposedly Educational" > from panda 19 ▶ MNIST Python 2: Python 2.7.11 data = pd.read_csv('data/GoogleTrendsData.csv', index_d hello Python 3: Python 3.6.1 > import sea data.head() ⊪ R 22 Java: java version "1.8.0_111" > mpl.rcPana # Show DJIA vs. debt related query volume. README.md > mpl.rcPara Git origin: http://github.mtv.cloudera.com/mbrandwein/cdsw-demo-sh display_charts(data, chart_type="stock", title="DJIA v seaborn.lmplot("debt", "djia", data=data, size=7) ⊪ slides 25 mport Dcdsw@1qp7dhoexb4snBfr:~\$ ls -al # Detect if search volume is increasing or decreasing total 96 # any given week by forming a moving average and testing utils.pyc drwxr-xr-x 14 cdsw cdsw 4096 Jul 14 - 2017 . 29 # crosses the moving average of the past 3 weeks. Load data fro 39 # 31 # Let's first compute the moving average. > data = pd.read_csv('data/GoogleTrendsData.csv', index_col='Date', parse_dates 32 data['debt_mavg'] = data.debt.rolling(window=3, center: > data.head() 34 data.head() djia debt 35 36 # Since we want to see if the current value is above the Date # *preceeding* weeks, we have to shift the moving aver: 38 2004-01-14 | 10485.18 | 0.210000 data['debt_mavg'] = data.debt_mavg.shift(1) data.head() 2004-01-22 | 10528.66 | 0.210000 41 # Generate Orders 43 # -----

CLOUDERA DATA FLOW

MARKET OPPORTUNITIES

IoT

IOT MARKET

24.9B	By 2024 more than 24.9 Billion loT connections will be established
\$70B	An estimated \$70 billion will be spent by global manufacturers on IoT solutions in 2020
646M	An estimated 646 million healthcare devices (excluding fitness trackers and wearable devices) will be connected by 2020
78%	An estimated 78% of cars shipped globally will be built with hardware that connects to the internet by 2020
50%	50% of decision-makers in IT, services, utilities, and manufacturing have either deployed IoT, or will deploy it in the next 12-24 months

PROBLEMS IN THE MARKET – PAIN THE CUSTOMER EXPERIENCES

Data movement

Continuous data ingestion

Streaming ETL

Streaming analytics

COMMON USE CASES

Data Movement

Optimize resource utilization by moving data between data centers or between on-premises infrastructure and cloud infrastructure

Optimize Log Collection & Analysis

Optimize log analytics solutions by using CDF as a single platform to collect and deliver multiple data sources

Gain key insights with Streaming Analytics

Accelerate big data ROI by analyzing streaming data for patterns, comparing with ML models and delivering actionable intelligence

Single view / 360° view of customer

Ingest, transform and combine customer data from multiple sources into a single data view / lake

Stream Processing

Combine multiple streams of data in realtime, enrich the data and route it to different end points based on rules

Capture and Analyze IoT Data

Ingest sensor data from IoT devices and stream it for further processing and comprehensive analysis

COMMON IOT USE CASES BY INDUSTRY

- IoT is a \$1.13T market opportunity in 2021.
- Americas \$329B IoT spending. Manufacturing and Transportation are top industries, accounting for 26% of total spending.
- APAC \$500B IoT spending. Manufacturing, Utilities and Transportation are top industries.
- EMEA \$264B IoT spending. Manufacturing is top industry, powered by Industry 4.0 initiatives.
- Worldwide IoT Analytics and Information Management Market = \$573M

KEY CUSTOMER CHALLENGES

Data Ingestion: High-volume streaming sources, multiple message formats, diverse protocols and multi-vendor devices creates data ingestion challenges

Real-time Insights: Analyzing continuous and rapid inflow (velocity) of streaming data at high volumes creates major challenges for gaining real-time insights

Visibility: Lack visibility of end-to-end streaming data flows, inability to troubleshoot bottlenecks, consumption patterns etc.

CLOUDERA DATAFLOW

Cloudera DataFlow Data-in-Motion Platform

ENTERPRISE SERVICES

Provisioning, Management and Monitoring Unified Security

Edge-to-Enterprise Governance

Single Sign-on

WHAT IS CLOUDERA DATAFLOW (CDF)?

Cloudera DataFlow (CDF) is a scalable, real-time streaming data platform that collects, curates, and analyzes data so customers gain key insights for immediate actionable intelligence.

HISTORY OF CDF

Data-in-Motion:

- Comprehensive real-time streaming data platform
- Manage data-in-motion from edge-toenterprise
- Power IoT-scale streaming architectures

Cloudera DataFlow Data-in-Motion Platform

Unified Security Edge-to-Enterprise Governance Single Sign-on

Bring this to the edge with connected platforms

Enable next generation Modern Data Architecture

Mid-2000's NiFi was developed and used at NSA

2015

Onyara is acquired HDF is born

2018

Strong Streaming Platform

- Support for Kafka 2.0
- SMM is introduced

2019

Cloudera merger Enable Edge Intelligence

Tomorrow: **Edge-to-Al**

PRODUCT OVERVIEW

CLOUDERA DATAFLOW

ENTERPRISE SERVICES

Provisioning, Management and Monitoring Unified Security
Edge-to-Enterprise Governance
Single Sign-on

CLOUDERA DATAFLOW

WHAT IS CLOUDERA EDGE MANAGEMENT (CEM)?

Cloudera Edge Management (CEM) is an edge management solution made up of edge agents and an edge management hub. It manages, controls and monitors edge agents to collect data from edge devices and push intelligence back to the edge. CEM allows you to develop, deploy, run and monitor edge flow apps on thousands of edge devices.

EDGE DATA MANAGEMENT

- Edge data collection powered by Apache MiNiFi
- MiNiFi smaller footprint than NiFi
 - Guaranteed delivery
 - Data buffering
 - Prioritized queuing
 - Flow-specific QoS
 - Data provenance
 - Designed for extension
 - C++ / Java agents
 - TensorFlow support
- Designed for IoT

EDGE FLOW MANAGER

- Edge management hub
- NiFi-like user interface to develop and deploy flow files to the edge
- Update and deploy ML model files to the edge agents
- Monitor thousands of edge agents
- Integration with NiFi Registry

WHAT IS CLOUDERA FLOW MANAGEMENT (CFM)?

Cloudera Flow Management (CFM) is a no-code data ingestion and management solution powered by Apache NiFi. With NiFi's intuitive graphical interface and 300+ processors, CFM delivers highly scalable data movement, transformation and management capabilities to the enterprise. CFM also enables DevOps type development and deployment with its support for NiFi Registry.

FLOW MANAGEMENT

- Web-based user interface
- Highly configurable
- Out-of-the-box data provenance
- Designed for extensibility
- Secure
- NiFi Registry
 - DevOps support
 - FDLC
 - Versioning
 - Deployment

300+ PROCESSORS FOR DEEPER ECOSYSTEM INTEGRATION

Hash	Encrypt	GeoEnrich
Merge	Tail	Scan
Extract	Evaluate	Replace
Duplicate	Execute	Translate
Split	Fetch	Convert

Route Text	Distribute Load
Route Content	Generate Table Fetch
Route Context	Jolt Transform JSON
Control Rate	Prioritized Delivery

All Apache project logos are trademarks of the ASF and the respective projects.

Streaming Analytics Reference Architecture

Kafka is Everywhere. Critical Component of Streaming

Cloudera Streams Messaging Manager (SMM)

What is SMM?

- Kafka Management and Monitoring tool
- Cure the "Kafka Blindness"
- Single Monitoring Dashboard for all your Kafka Clusters across 4 entities
 - Broker
 - Producer
 - Topic
 - Consumer
- REST as a First Class Citizen

STREAMING ANALYTICS

- Pattern matching
- Predictive and Prescriptive Analytics
- Complex Event Processing
- Continuous & Real-time Insights

3 Kafka Analytics Access Patterns

ENTERPRISE SERVICES

Provisioning, Management and Monitoring Unified Security

Edge-to-Enterprise Governance

Single Sign-on

ENTERPRISE SERVICES

- Provisioning
- Management
- Monitoring
- Unified Security
- Single Sign-on
- Audit
- Compliance
- Edge-to-Enterprise Governance

ENTERPRISE SERVICES

Provisioning, Management and Monitoring Unified Security

Edge-to-Enterprise Governance

Single Sign-on

KEY DIFFERENTIATORS

100% open source technology – Only vendor with this strategy; prevents vendor lock-in

300+ pre-built processors – Only product to offer such comprehensive connectivity from edge to enterprise

3 Streaming analytics engines – Only vendor to offer a choice of three streaming analytics engines to customers for all their streaming architecture needs

Built-in data provenance – Only product in the market to offer out-of-the-box data provenance on data-in-motion

Comprehensive streaming platform – Only big data vendor to offer a comprehensive streaming platform from real-time data ingestion, transformation, routing to descriptive, prescriptive and predictive analytics.

THANK YOU

cloudera