Tema 5.- Análisis discriminante (AD)

Asignatura: ESTADÍSTICA MULTIVARIANTE (Prácticas)

Grados en: Física y Matemáticas; Ingeniería Informática y Matemáticas; Matemáticas

(4º Curso - 1er semestre 2023-2024)

© Prof. Dr. José Luis Romero Béjar

(Este material está protegido por la Licencia Creative Commons CC BY-NC-ND que permite "descargar las obras y compartirlas con otras personas, siempre que se reconozca su autoría, pero no se pueden cambiar de ninguna manera ni se pueden utilizar comercialmente").

Departamento de Estadística e Investigación Operativa Facultad de Ciencias (Despacho 10)

Periodo de docencia: 11/09/2023 a 22/12/2023

- Análisis exploratorio de datos (recordatorio)
- Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- En resumen
- 6 Prácticas con Lenguaje R
- Bibliografía

Análisis exploratorio de datos (recordatorio)

- 1 Análisis exploratorio de datos (recordatorio)
- 2 Aprendizaje supervisado
- 3 Análisis discriminante
- 4 Análisis discriminante en la práctica
- 5 En resumen
- 6 Prácticas con Lenguaje R
- Bibliografía

Análisis exploratorio de datos (recordatorio de temas anteriores)

- Reducción de la dimensión:
 - ACP Análisis de componentes principales (variables observables).
 - AF Análisis factorial (variables latentes).
- Análisis cluster (aprendizaje no supervisado):
 - Busca agrupamientos de forma objetiva.
 - Define variables respuesta para clasificación.
 - Con frecuencia es el **punto de partida para aprendizaje supervisado**.

Aprendizaje supervisado

- Análisis exploratorio de datos (recordatorio)
- Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- 5 En resumen
- Prácticas con Lenguaje R
- Bibliografía

Descripción general del aprendizaje supervisado

 Objetivo: clasificar nuevos registros, según sus características (predictores), en los diferentes niveles de una variable de respuesta cualitativa.

• Elementos:

- Variable respuesta definida en niveles (cualitativa ordinal o nominal).
- Variables explicativas o predictivas (preferiblemente que conformen un vector aleatorio continuo).

Procedimiento:

- Estima la probabilidad de que una observación, dado el valor de los predictores, pertenezca a cada uno de los niveles de la variable respuesta.
- 2. Asigna la observación a la modalidad con la mayor probabilidad.

Modelos y algoritmos:

- Support Vector Machine (SVM).
- Árboles de decisión.
- Regresión logística.
- Análisis discriminante.

Análisis discriminante

- 1 Análisis exploratorio de datos (recordatorio)
- Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- 5 En resumen
- 6 Prácticas con Lenguaje R
- Bibliografía

Notación

- Y es una variable de respuesta categórica con $k \ge 2$ niveles.
- $X=(X_1,\ldots,X_n), n\in\mathbb{N}$ es un **vector aleatorio continuo** de variables explicativas.
- π_k es la **probabilidad a priori**, P(Y = k), de cada nivel de la variable respuesta.
- $f_k(x)$ es la **función de densidad** de probabilidad condicionada, P(X = x | Y = k)

Supuestos

 $X=(X_1,\ldots,X_n),$ $n\in\mathbb{N}$ es un vector aleatorio continuo con distribución multivariante Gaussiana, con

- varianza homogénea -> Análisis Discriminante Lineal (LDA).
- varianza **heterogénea** -> Análisis Discriminante Cuadrático (QDA).

Definición del modelo

Existen diferentes enfoques para la definición del modelo discriminante (Fisher, Bayes, etc.). Para la formulación siguiente, se considera el enfoque de Bayes.

Análisis discriminante

LDA con un único predictor o variable explicativa

Dada Y una variable aleatoria de respuesta categórica con $k \geq 2$ niveles y X una variable aleatoria continua, se pretende clasificar en los diferentes niveles de Y para valores específicos de X.

- Se necesita estimar, $\frac{P(Y=i|X=x)}{P(Y=i|X=x)} = \frac{P(Y=i,X=x)}{P(Y=i|X=x)}$; $i,j \in 1,\ldots,k$.
- De acuerdo con el Teorema de Bayes y la notación anterior (diapositiva 8) se tiene que, $\frac{P(Y=i|X=x)}{P(Y=i|X=x)} = \frac{\pi_i P(X=x|Y=i)}{\pi_i P(X=x|Y=i)} = \frac{\pi_i f_i(x)}{\pi_i f_i(x)}$.
- Regla de decisión: si $\frac{\pi_i f_i(x)}{\pi_i f_i(x)} > 1$, o $\frac{f_i(x)}{f_i(x)} > \frac{\pi_i}{\pi_i}$ entonces, el registro se asigna a la clase o nivel de respuesta i.
- Teniendo en cuenta que $f_k(x)=rac{1}{\sqrt{2\pi\sigma}}{
 m e}^{-rac{(x-\mu_k)^2}{2\sigma^2}}$ es una **densidad Gaussiana** con media μ_k y varianza homogénea, σ^2 , en los k niveles y aplicando logaritmo para linealizar se tiene que, el registro es asignado al nivel i, si y solo si,

$$\log\left(\frac{f_i(x)}{f_i(x)}\right) > \log\left(\frac{\pi_j}{\pi_i}\right) \Leftrightarrow \frac{\mu_i - \mu_j}{\sigma^2} \times -\frac{\mu_i^2 - \mu_j^2}{2\sigma^2} - \log\left(\frac{\pi_j}{\pi_i}\right) > 0 \tag{1}$$

LDA con un único predictor o variable explicativa (comentarios)

- La ecuación (1) se dice que es un clasificador discriminante lineal.
- Regla de decisión como relación de probabilidades. Si la variable respuesta Y tiene
 k = 2 niveles, entonces:
 - Si $\frac{P(Y=1|X=x)}{P(Y=2|X=x)} > 1$, el registro es asignado al primer nivel de Y.
 - Si $\frac{P(Y=1|X=x)}{P(Y=2|X=x)}$ < 1, el registro es asignado al segundo nivel de Y.
- Varianza heterogénea. La ecuación incluirá un término cuadrático derivado de la estructura de covarianza (clasificador discriminante cuadrático).
- Para más de un regresor simplemente se considera la expresión general del teorema de Bayes.

Análisis discriminante en la práctica

- Análisis exploratorio de datos (recordatorio)
- 2 Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- 5 En resumen
- 6 Prácticas con Lenguaje R
- Bibliografía

El procedimiento AD se puede resumir en seis pasos

0. Recomendación previa. Análisis exploratorio gráfico.

- Elegir un conjunto de entrenamiento. Es un conjunto de registros con nivel conocido para la variable de respuesta.
- 2. Estimar las **probabilidades a priori**, π_k , o la proporción esperada de registros para cada nivel de Y.
- 3. Discutir entre varianza homogénea (LDA) o heterogénea (QDA).
- 4. Estimar parámetros.
- Construir el clasificador discriminante.
- Validación cruzada. Elija un conjunto de prueba (test) para estimar la tasa de clasificación correcta.

- Análisis exploratorio de datos (recordatorio)
- 2 Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- **5** En resumen
- Prácticas con Lenguaje R
- Bibliografía

Aspectos tratados

- Aspectos generales relacionados con el Aprendizaje Supervisado.
- Fundamento matemático del Análisis Discriminante Lineal.
- Enfoque metodológico del Análisis Discriminante en la práctica.

Tareas voluntarias

- Deducir la ecuación del clasificador discriminante lineal con n > 1 predictores.
- Deducir la ecuación de un clasificador discriminante si la varianza es heterogénea (clasificador discriminante cuadrático).

Prácticas con Lenguaje R

- Análisis exploratorio de datos (recordatorio)
- 2 Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- 5 En resumen
- 6 Prácticas con Lenguaje R
- Bibliografía

Prácticas con Lenguaje R

Práctica 4 de AD

En esta práctica se ilustra un ejemplo de clasificación con un modelo discriminante lineal y otro ejemplo con un clasificador cuadrático.

Para realizar esta práctica se debe **descargar y ejecutar** el siguiente archivo, AD_4_esp.Rmd disponible en la plataforma PRADO del curso.

Aspectos tratados:

- Paquetes de R necesarios.
- Exploración gráfica de los datos.
- Supuestos: normalidad y homogeneidad de la varianza.
- Funciones discriminante.
- Visualización de las clasificaciones.

Bibliografía

- 1 Análisis exploratorio de datos (recordatorio)
- 2 Aprendizaje supervisado
- Análisis discriminante
- 4 Análisis discriminante en la práctica
- 5 En resumen
- 6 Prácticas con Lenguaje R
- Bibliografía

Bibliografía

- [1] Anderson, T.W. (2003, 3ª ed.). An Introduction to Multivariate Statistical Analysis. John Wiley & Sons.
- [2] Gutiérrez, R. y González, A. (1991). Estadística Multivariable. Introducción al Análisis Multivariante. Servicio de Reprografía de la Facultad de Ciencias. Universidad de Granada.
- [3] Härdle, W.K. y Simar, L. (2015, 4ª ed.). Applied Multivariate Statistical Analysis. Springer.
- [4] Johnson, R.A. y Wichern, D.W. (1988). Applied Multivariate Analysis. Prentice Hall International, Inc.
- [5] Rencher, A.C. y Christensen, W.F. (2012, 3ª ed.). Methods of Multivariate Analysis. John Wiley & Sons.
- [6] Salvador Figueras, M. y Gargallo, P. (2003). Análisis Exploratorio de Datos. Online en http://www.5campus.com/leccion/aed.
- [7] Timm, N.H. (2002). Applied Multivariate Analysis. Springer.
- [8] Vera, J.F. (2004). Análisis Exploratorio de Datos. ISBN: 84-688-8173-2.