Let X_1, \ldots, X_n be a sample. The sample mean is

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Let X_1, \ldots, X_n be a sample. The sample variance is the quantity

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Let X_1, \ldots, X_n be a sample. The sample standard deviation is the quantity

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

- If X₁,..., X_n is a sample and Y_i = a + bX_i, where a and b are constants, then Ȳ = a + bX̄.
- If X₁,..., X_n is a sample and Y_i = a + bX_i, where a and b are constants, then s_Y² = b²s_X², and s_Y = |b|s_X.

If n numbers are ordered from smallest to largest:

- If n is odd, the sample median is the number in position $\frac{n+1}{2}$.
- If *n* is even, the sample median is the average of the numbers in positions $\frac{n}{2}$ and $\frac{n}{2} + 1$.

(a) A ∪ B, (b) A ∩ B, (c) B ∩ A^c.

- The events A and B are said to be mutually exclusive if they have no outcomes in common.
- More generally, a collection of events A₁, A₂,..., A_n is said to be mutually exclusive if no two of them have any outcomes in common.

The Axioms of Probability

- 1. Let S be a sample space. Then P(S) = 1.
- 2. For any event $A, 0 \le P(A) \le 1$.
- If A and B are mutually exclusive events, then P(A∪B) = P(A) + P(B).
 More generally, if A₁, A₂,... are mutually exclusive events, then P(A₁ ∪ A₂ ∪ ···) = P(A₁) + P(A₂) + ···.

Let A and B be any events. Then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

The number of permutations of n objects is n!.

The number of permutations of k objects chosen from a group of n objects is

$$\frac{n!}{(n-k)!}$$

The number of combinations of k objects chosen from a group of n objec

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The number of ways of dividing a group of n objects into groups of k_1, \ldots, k_r objects, where $k_1 + \cdots + k_r = n$, is

$$\frac{n!}{k_1! \cdots k_r!}$$
(2.13)

Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
(2.14)

Two events A and B are **independent** if the probability of each event remains the same whether or not the other occurs.

In symbols: If $P(A) \neq 0$ and $P(B) \neq 0$, then A and B are independent if

$$P(B|A) = P(B)$$
 or, equivalently, $P(A|B) = P(A)$ (2.15)

If either P(A) = 0 or P(B) = 0, then A and B are independent.

Events A_1, A_2, \ldots, A_n are independent if the probability of each remains the same no matter which of the others occur.

In symbols: Events A_1, A_2, \dots, A_n are independent if for each A_i , and each collection A_{j1}, \dots, A_{jm} of events with $P(A_{j1} \cap \dots \cap A_{jm}) \neq 0$,

$$P(A_i|A_{j1} \cap \cdots \cap A_{jm}) = P(A_i)$$
 (2.16)

If A and B are two events with $P(B) \neq 0$, then

$$P(A \cap B) = P(B)P(A|B) \tag{2.17}$$

If A and B are two events with $P(A) \neq 0$, then

$$P(A \cap B) = P(A)P(B|A) \tag{2.18}$$

If $P(A) \neq 0$ and $P(B) \neq 0$, then Equations (2.17) and (2.18) both hold.

If A and B are independent events, then

$$P(A \cap B) = P(A)P(B) \tag{2.19}$$

This result can be extended to any number of events. If A_1, A_2, \ldots, A_n are independent events, then for each collection A_{j1}, \ldots, A_{jm} of events

$$P(A_{j1} \cap A_{j2} \cap \cdots \cap A_{jm}) = P(A_{j1})P(A_{j2}) \cdots P(A_{jm})$$
 (2.20)

In particular,

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2) \cdots P(A_n) \qquad (2.21)$$

Law of Total Probability

If A_1, \ldots, A_n are mutually exclusive and exhaustive events, and B is any event, then

$$P(B) = P(A_1 \cap B) + \cdots + P(A_n \cap B)$$
 (2.23)

Equivalently, if $P(A_i) \neq 0$ for each A_i ,

$$P(B) = P(B|A_1)P(A_1) + \cdots + P(B|A_n)P(A_n)$$
 (2.24)

Bayes' Rule

Special Case: Let A and B be events with $P(A) \neq 0$, $P(A^c) \neq 0$, and $P(B) \neq 0$. Then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$
(2.27)

General Case: Let A_1, \ldots, A_n be mutually exclusive and exhaustive events with $P(A_i) \neq 0$ for each A_i . Let B be any event with $P(B) \neq 0$. Then

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{B} P(B|A_i)P(A_i)}$$
(2.28)

Let X be a discrete random variable. Then

- The probability mass function of X is the function p(x) = P(X = x).
- The cumulative distribution function of X is the function F(x) = P(X ≤ x).
- $F(x) = \sum_{t \le x} p(t) = \sum_{t \le x} P(X = t).$
- $\sum_{x} p(x) = \sum_{x} P(X = x) = 1, \text{ where the sum is over all the possible values of } X.$

Let X be a discrete random variable with probability mass function p(x) = P(X = x).

The mean of X is given by

$$\mu_X = \sum_x x P(X = x)$$
 (2.29)

where the sum is over all possible values of X.

The mean of X is sometimes called the expectation, or expected value, of Xand may also be denoted by E(X) or by μ .

Let X be a discrete random variable with probability mass function p(x) = P(X = x). Then

The variance of X is given by

$$\sigma_X^2 = \sum_{x} (x - \mu_X)^2 P(X = x)$$
 (2.30)

An alternate formula for the variance is given by

$$\sigma_X^2 = \sum_x x^2 P(X = x) - \mu_X^2 \qquad (2.31)$$

- The variance of X may also be denoted by V(X) or by σ².
- The standard deviation is the square root of the variance: $\sigma_X = \sqrt{\sigma_X^2}$.

Let X be a continuous random variable with probability density function f(x). Let a and b be any two numbers, with a < b. Then

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b) = \int_{a}^{b} f(x) dx$$

In addition,

$$P(X \le b) = P(X < b) = \int_{-\infty}^{b} f(x) dx$$
 (2.32)

$$P(X \ge a) = P(X > a) = \int_{-\infty}^{\infty} f(x) dx \qquad (2.33)$$

Let X be a continuous random variable with probability density function f(x).

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Let X be a continuous random variable with probability density function f(x). The cumulative distribution function of X is the function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$
 (2.34)

Let X be a continuous random variable with probability density function f(x). Then the mean of X is given by

$$\mu_X = \int_{-\infty}^{\infty} x f(x) dx \qquad (2.35)$$

The mean of X is sometimes called the expectation, or expected value, of X and may also be denoted by E(X) or by μ .

Let X be a continuous random variable with probability density function f(x).

The variance of X is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$$
 (2.36)

An alternate formula for the variance is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu_X^2 \qquad (2.37)$$

- The variance of X may also be denoted by V(X) or by σ².
- The standard deviation is the square root of the variance: $\sigma_X = \sqrt{\sigma_X^2}$.

Let X be a continuous random variable with probability density function f(x). Then

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Let X be a continuous random variable with probability density function f(x). The cumulative distribution function of X is the function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$
 (2.34)

Let X be a continuous random variable with probability density function f(x). Then the mean of X is given by

$$\mu_X = \int_{-\infty}^{\infty} x f(x) dx \qquad (2.35)$$

The mean of X is sometimes called the expectation, or expected value, of X and may also be denoted by E(X) or by μ .

Let X be a continuous random variable with probability density function f(x). Then

The variance of X is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$$
 (2.36)

An alternate formula for the variance is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu_X^2$$
(2.37)

- The variance of X may also be denoted by V(X) or by σ².
- The standard deviation is the square root of the variance: $\sigma_X = \sqrt{\sigma_X^2}$.

Let X be a continuous random variable with probability mass function f(x) and cumulative distribution function F(x).

- The median of X is the point x_m that solves the equation $F(x_m) = P(X \le x_m) = \int_{-\infty}^{x_m} f(x) dx = 0.5$.
- If p is any number between 0 and 100, the pth percentile is the point x_p that solves the equation $F(x_p) = P(X \le x_p) = \int_{-\infty}^{x_p} f(x) dx = p/100$.
- The median is the 50th percentile.

Chebyshev's Inequality

Let X be a random variable with mean μ_X and standard deviation σ_X . Then

$$P(|X - \mu_X| \ge k\sigma_X) \le \frac{1}{k^2}$$

If X is a random variable and a is a constant, then

$$\mu_{aX} = a\mu_X$$

If X is a random variable and a is a constant, then

$$\sigma_{aX}^2 = a^2 \sigma_X^2$$

$$\sigma_{aX} = |a|\sigma_X$$

If X is a random variable, and a and b are constants, then

$$\mu_{aX+b} = a\mu_X + b$$

$$\sigma_{aY+b}^2 = a^2 \sigma_Y^2$$

$$\sigma_{aX+b} = |a|\sigma_X$$

If $X_1, X_2, ..., X_n$ are random variables, then the mean of the sum $X_1 + X_2 + ... + X_n$ is given by

$$\mu_{X_1+X_2+\cdots+X_n} = \mu_{X_1} + \mu_{X_2} + \cdots + \mu_{X_n}$$
 (2.47)

If X and Y are random variables, and a and b are constants, then

$$\mu_{aX+bY} = \mu_{aX} + \mu_{bY} = a\mu_X + b\mu_Y$$
 (2.48)

More generally, if X_1, X_2, \ldots, X_n are random variables and c_1, c_2, \ldots, c_n are constants, then the mean of the linear combination $c_1X_1 + c_2X_2 + \cdots + c_nX_n$ is given by

$$\mu_{c_1X_1+c_2X_2+\cdots+c_nX_n} = c_1\mu_{X_1} + c_2\mu_{X_2} + \cdots + c_n\mu_{X_n}$$
 (2.49)

If X and Y are **independent** random variables, and S and T are sets of numbers, then

$$P(X \in S \text{ and } Y \in T) = P(X \in S)P(Y \in T)$$
 (2.50)

More generally, if X_1, \ldots, X_n are independent random variables, and S_1, \ldots, S_n are sets, then

$$P(X_1 \in S_1 \text{ and } X_2 \in S_2 \text{ and } \cdots \text{ and } X_n \in S_n) =$$

 $P(X_1 \in S_1) P(X_2 \in S_2) \cdots P(X_n \in S_n)$ (2.51)

If $X_1, X_2, ..., X_n$ are *independent* random variables and $c_1, c_2, ..., c_n$ are constants, then the variance of the linear combination $c_1X_1 + c_2X_2 + \cdots + c_nX_n$ is given by

$$\sigma_{c_1X_1+c_2X_2+\cdots+c_nX_n}^2 = c_1^2\sigma_{X_1}^2 + c_2^2\sigma_{X_2}^2 + \cdots + c_n^2\sigma_{X_n}^2$$
 (2.53)

If X and Y are independent random variables with variances σ_X^2 and σ_Y^2 , then the variance of the sum X + Y is

$$\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 \qquad (2.54)$$

The variance of the difference X - Y is

$$\sigma_{v-v}^2 = \sigma_v^2 + \sigma_v^2$$
 (2.55)

If X_1, \ldots, X_n is a simple random sample from a population with mean μ and variance σ^2 , then the sample mean \overline{X} is a random variable with

$$\mu_{\overline{X}} = \mu$$
 (2.56)

$$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$$
(2.57)

The standard deviation of \overline{X} is

$$\sigma_{\overline{\chi}} = \frac{\sigma}{\sqrt{n}}$$
(2.58)

If X and Y are jointly discrete random variables:

The joint probability mass function of X and Y is the function

$$p(x, y) = P(X = x \text{ and } Y = y)$$

The marginal probability mass functions of X and of Y can be obtained from the joint probability mass function as follows:

$$p_X(x) = P(X=x) = \sum_y p(x,y) \quad p_Y(y) = P(Y=y) = \sum_x p(x,y)$$

where the sums are taken over all the possible values of Y and of X, respectively.

The joint probability mass function has the property that

$$\sum_{x}\sum_{y}p(x,y)=1$$

where the sum is taken over all the possible values of X and Y.

If X and Y are jointly continuous random variables, with joint probability density function f(x,y), and a < b, c < d, then

$$P(a \le X \le b \text{ and } c \le Y \le d) = \int_a^b \int_c^d f(x, y) \, dy \, dx$$

The joint probability density function has the following properties:

$$f(x, y) \ge 0$$
 for all x and y

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx = 1$$

If X and Y are jointly continuous with joint probability density function f(x,y), then the marginal probability density functions of X and of Y are given, respectively, by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Let X be a random variable, and let h(X) be a function of X. Then

 If X is discrete with probability mass function p(x), the mean of h(X) is given by

$$\mu_{h(X)} = \sum_{x} h(x) p(x)$$
 (2.59)

where the sum is taken over all the possible values of X.

 If X is continuous with probability density function f(x), the mean of h(X) is given by

$$\mu_{h(X)} = \int_{-\infty}^{\infty} h(x) f(x) dx \qquad (2.60)$$

If X is a random variable, and a and b are constants, then

$$\mu_{aX+b} = a\mu_X + b \qquad (2.61)$$

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 \qquad (2.62)$$

$$\sigma_{aX+b} = |a|\sigma_X \qquad (2.63)$$

If X and Y are jointly distributed random variables, and h(X,Y) is a function of X and Y, then

If X and Y are jointly discrete with joint probability mass function p(x,y),

$$\mu_{h(x,y)} = \sum_{x} \sum_{y} h(x,y) p(x,y)$$
 (2.64)

where the sum is taken over all the possible values of X and Y.

 If X and Y are jointly continuous with joint probability density function f(x,y),

$$\mu_{h(x,y)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy$$
 (2.65)

Let X and Y be jointly discrete random variables, with joint probability mass function p(x,y). Let $p_X(x)$ denote the marginal probability mass function of X and let x be any number for which $p_X(x) > 0$.

The conditional probability mass function of Y given X = x is

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$$
 (2.66)

Note that for any particular values of x and y, the value of $p_{Y|X}(y \mid x)$ is just the conditional probability $P(Y = y \mid X = x)$.

The conditional probability density function of Y given X = x is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$
 (2.67)

If X and Y are independent random variables, then

If X and Y are jointly discrete, and x is a value for which $p_X(x) > 0$, then

$$p_{Y|X}(y|x) = p_Y(y)$$

■ If X and Y are jointly continuous, and x is a value for which f_X(x) > 0, then

$$f_{Y|X}(y|x) = f_Y(y)$$

Let X and Y be random variables with means μ_X and μ_Y . The covariance of X and Y is

$$Cov(X,Y) = \mu_{(X-\mu_X)(Y-\mu_Y)}$$
 $Cov(X,Y) = \mu_{XY} - \mu_X \mu_Y$

Let X and Y be jointly distributed random variables with standard deviations σ_X and σ_Y . The correlation between X and Y is denoted $\rho_{X,Y}$ and is given by

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$$
(2.70)

For any two random variables X and Y:

$$-1 \le \rho_{X,Y} \le 1$$

For any random variable X, $Cov(X, X) = \sigma_X^2$ and $\rho_{X,X} = 1$.

If X_1, \ldots, X_n are random variables and c_1, \ldots, c_n are constants, then

$$\mu_{c_1X_1+\cdots+c_nX_n} = c_1\mu_{X_1} + \cdots + c_n\mu_{X_n}$$
 (2.71)

$$\begin{split} \sigma_{c_1X_1+\cdots+c_nX_n}^2 &= c_1^2\sigma_{X_1}^2+\cdots+c_n^2\sigma_{X_n}^2 + 2\sum_{i=1}^{n-1}\sum_{j=i+1}^n c_ic_j \operatorname{Cov}(X_i,X_j) \\ \sigma_{X+Y}^2 &= \sigma_X^2 + \sigma_Y^2 + 2\operatorname{Cov}(X,Y) \end{split} \tag{2.72}$$

$$\sigma_{X=Y}^2 = \sigma_X^2 + \sigma_Y^2 - 2 \operatorname{Cov}(X, Y)$$

If X_1, \ldots, X_n are independent random variables and c_1, \ldots, c_n are constants,

$$\sigma_{c_1X_1+\cdots+c_nX_n}^2 = c_1^2\sigma_{X_1}^2 + \cdots + c_n^2\sigma_{X_n}^2$$
 (2.73)

In particular,

$$\sigma_{X_{+Y}}^2 = \sigma_X^2 + \sigma_Y^2$$
 $\sigma_{X_1 + \dots + X_n}^2 = \sigma_{X_1}^2 + \dots + \sigma_{X_n}^2$
(2.74)

$$\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$$

If X_1, \ldots, X_n is a simple random sample from a population with mean μ and variance σ^2 , then the sample mean \overline{X} is a random variable with

$$\mu_{\bar{X}} = \mu$$
 (2.79)

$$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$$
(2.80)

The standard deviation of \overline{X} is

$$\sigma_{\overline{\chi}} = \frac{\sigma}{\sqrt{n}}$$
(2.81)

If X is a measurement and c is a constant, then

$$\sigma_{cX} = |c|\sigma_X$$
 (3.3)

If X_1, \ldots, X_n are independent measurements and c_1, \ldots, c_n are constants, then

$$\sigma_{c_1X_1+\cdots+c_nX_n} = \sqrt{c_1^2\sigma_{X_1}^2 + \cdots + c_n^2\sigma_{X_n}^2}$$
(3.4)

If X_1,\ldots,X_n are *n* independent measurements, each with mean μ and uncertainty σ , then the sample mean \overline{X} is a measurement with mean

$$\mu_{\overline{x}} = \mu$$
 (3.5)

and with uncertainty

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$
(3.6)

If X is a measurement whose uncertainty σ_X is small, and if U is a function of X, then

$$\sigma_U \approx \left| \frac{dU}{dX} \right| \sigma_X$$
 (3.10)

In practice, we evaluate the derivative dU/dX at the observed measurement X.

If X_1, X_2, \ldots, X_n are independent measurements whose uncertainties $\sigma_{X_1}, \sigma_{X_2}, \ldots, \sigma_{X_n}$ are small, and if $U = U(X_1, X_2, \ldots, X_n)$ is a function of X_1, X_2, \ldots, X_n , then

$$\sigma_U \approx \sqrt{\left(\frac{\partial U}{\partial X_1}\right)^2 \sigma_{X_1}^2 + \left(\frac{\partial U}{\partial X_2}\right)^2 \sigma_{X_2}^2 + \dots + \left(\frac{\partial U}{\partial X_n}\right)^2 \sigma_{X_n}^2}$$
 (3.12)

In practice, we evaluate the partial derivatives at the point (X_1, X_2, \dots, X_n) .

If X_1, X_2, \ldots, X_n are measurements whose uncertainties $\sigma_{X_1}, \sigma_{X_2}, \ldots, \sigma_{X_n}$ are small, and if $U = U(X_1, X_2, \ldots, X_n)$ is a function of (X_1, X_2, \ldots, X_n) , then a conservative estimate of σ_U is given by

$$\sigma_U \le \left| \frac{\partial U}{\partial X_1} \right| \sigma_{X_1} + \left| \frac{\partial U}{\partial X_2} \right| \sigma_{X_2} + \dots + \left| \frac{\partial U}{\partial X_n} \right| \sigma_{X_n}$$
 (3.13)

In practice, we evaluate the partial derivatives at the point $(X_1, X_2, ..., X_n)$. The inequality (3.13) is valid in almost all practical situations; in principle it can fail if some of the second partial derivatives of U are quite large.

If X_1, \ldots, X_n are measurements whose relative uncertainties are $\sigma_{X_1}/X_1, \ldots, \sigma_{X_n}/X_n$, and $U = X_1^{m_1} \cdots X_n^{m_n}$, where m_1, \ldots, m_n are any exponents, then the relative uncertainty in U is

$$\frac{\sigma_U}{U} = \sqrt{\left(m_1 \frac{\sigma_{X_1}}{X_1}\right)^2 + \cdots + \left(m_n \frac{\sigma_{X_n}}{X_n}\right)^2}$$
(3.14)

If $X \sim \text{Bernoulli}(p)$, then If $X \sim \text{Bin}(n, p)$, then

$$\mu_X = p$$

$$\sigma_X^2 = p(1-p)$$

$$\mu_X = np$$

$$\sigma_X^2 = np(1-p)$$

If a total of n Bernoulli trials are conducted, and

- The trials are independent
- Each trial has the same success probability p
- X is the number of successes in the n trials

then X has the binomial distribution with parameters n and p, denotes $X \sim Bin(n, p)$. If $X \sim Bin(n, p)$, the probability mass function of X is

$$p(x) = P(X = x) = \begin{cases} \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} & x = 0, 1, ..., n \\ 0 & \text{otherwise} \end{cases}$$

If $X \sim \text{Bin}(n, p)$, then the sample proportion $\hat{p} = X/n$ is used to estimate success probability p.

- p̂ is unbiased.
- The uncertainty in \(\hat{p} \) is

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$
(4.

In practice, when computing σ_p , we substitute \hat{p} for p, since p is unknown.

If $X \sim \text{Poisson}(\lambda)$, then

- X is a discrete random variable whose possible values are the non-negative integers.
- The parameter λ is a positive constant.
- The probability mass function of X is

$$p(x) = P(X = x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & \text{if } x \text{ is a non-negative integer} \\ 0 & \text{otherwise} \end{cases}$$

The Poisson probability mass function is very close to the binomial probability mass function when n is large, p is small, and λ = np.

If
$$X \sim \text{Poisson}(\lambda)$$
, then
 $\mu_X = \lambda$
 $\sigma_v^2 = \lambda$
we estimate the rate λ with $\hat{\lambda} = \frac{X}{t}$.

The uncertainty in $\hat{\lambda}$ is $\sigma_{\hat{\lambda}} = \sqrt{\frac{\lambda}{t}}$

$$p(x) = \frac{\binom{R}{x} \binom{N-R}{n-x}}{\binom{N}{n}} \qquad \text{If } X \sim H(N, R, n), \text{ then}$$

$$\mu_X = \frac{nR}{N}$$

$$\sigma_X^2 = n \left(\frac{R}{N}\right) \left(1 - \frac{R}{N}\right) \left(\frac{N-n}{N-1}\right)$$

If $X \sim \text{Geom}(p)$, then

$$p(x) = p(1-p)^{x-1}$$
 $x = 1, 2, ...$ $\mu_X = \frac{1}{p}$ $\sigma_X^2 = \frac{1-p}{p^2}$

If
$$X \sim \text{NB}(r, p)$$
, then
$$\mu_X = \frac{r}{p}$$

$$p(x) = \begin{pmatrix} x - 1 \\ r - 1 \end{pmatrix} p^r (1 - p)^{x-r} \qquad x = r, r + 1, \dots$$

$$\sigma_X^2 = \frac{r(1 - p)^{x-r}}{p^2}$$

If $X \sim \text{Exp}(\lambda)$

$$f(x) = \begin{cases} PDF & CDF \\ \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

$$\mu_X = \frac{1}{\lambda} \qquad \sigma_X^2 = \frac{1}{\lambda^2}$$

If $X \sim N(\mu, \sigma^2)$, then

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{(x-\mu)^2/(2\sigma^2)}$$

$$\mu_X = \mu$$

$$\sigma_y^2 = \sigma^2$$

$$z = \frac{x-\mu}{\sigma}$$

Let
$$X \sim N(\mu, \sigma^2)$$
, and let $a \neq 0$ and b be constants. Then
 $aX + b \sim N(a\mu + b, a^2\sigma^2)$. (4.25)

Let X_1,\dots,X_n be independent and normally distributed with mean μ and variance $\sigma^2.$ Then

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 (4.27)

Let X and Y be independent, with $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$. Then

$$X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$
 (4.28)

$$X - Y \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$
 (4.29)

The Central Limit Theorem

Let X_1, \ldots, X_n be a simple random sample from a population with mean μ and variance σ^2 .

Let $\overline{X} = \frac{X_1 + \dots + X_n}{n}$ be the sample mean.

Let $S_n = X_1 + \dots + X_n$ be the sum of the sample observations.

Then if n is sufficiently large,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 approximately (4.55)

and

$$S_n \sim N(n\mu, n\sigma^2)$$
 approximately (4.56)

If $X \sim \text{Bin}(n, p)$, and if np > 10 and n(1 - p) > 10, then

$$X \sim N(np, np(1-p))$$
 approximately

$$\widehat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$
 approximately

If $X \sim \text{Poisson}(\lambda)$, where $\lambda > 10$, then

$$X \sim N(\lambda, \lambda)$$
 approximately

Let X_1, \ldots, X_n be a large (n > 30) random sample from a population with mean μ and standard deviation σ , so that \overline{X} is approximately normal. Then a level $100(1 - \alpha)\%$ confidence interval for μ is

$$\overline{X} \pm z_{\alpha/2}\sigma_{\overline{X}}$$
 (5.1)

where $\sigma_{\overline{X}} = \sigma / \sqrt{n}$. When the value of σ is unknown, it can be replaced with the sample standard deviation s.

Let X_1, \ldots, X_n be a large (n > 30) random sample from a population with mean μ and standard deviation σ , so that \overline{X} is approximately normal. Then level $100(1 - \alpha)\%$ lower confidence bound for μ is

$$\overline{X} = z_{\alpha}\sigma_{\overline{V}}$$
 (5.2)

and level $100(1 - \alpha)\%$ upper confidence bound for μ is

$$\overline{X} + z_{\alpha}\sigma_{\overline{V}}$$
 (5.3)

where $\sigma_{\overline{Y}} = \sigma / \sqrt{n}$. When the value of σ is unknown, it can be replaced with the sample standard deviation s.

Let X be the number of successes in n independent Bernoulli trials with success probability p, so that $X \sim Bin(n, p)$.

Define $\tilde{n} = n + 4$, and $\tilde{p} = \frac{X+2}{\tilde{n}}$. Then a level $100(1-\alpha)\%$ confidence

$$\tilde{p} \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}}$$
(5.5)

If the lower limit is less than 0, replace it with 0. If the upper limit is greater than 1, replace it with 1.

T-dreifingu =
$$\frac{\overline{X} - \mu}{s/\sqrt{n}}$$
 Oryggisbil = $\overline{X} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$

Use z, Not t, If σ Is Known

Let X and Y be independent, with $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$. Then

$$X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$
 (5.14)

Stór úrtak:

$$X - Y \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$
 (5.15)

Öryggisbil:
$$\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$$

a level $100(1-\alpha)\%$ confidence interval for the difference $p_X - p_Y$ is

$$\tilde{p}_{X} - \tilde{p}_{Y} \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}_{X}(1 - \tilde{p}_{X})}{\tilde{n}_{X}} + \frac{\tilde{p}_{Y}(1 - \tilde{p}_{Y})}{\tilde{n}_{Y}}}$$
(5.18)

Lítil úrtak:

Hlutföll:

$$\frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{s_X^2/n_X + s_Y^2/n_Y}} \quad v = \frac{\left(\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}\right)^2}{\frac{(s_X^2/n_X)^2}{n_X - 1} + \frac{(s_Y^2/n_Y)^2}{n_Y - 1}}$$

Let X_1, \ldots, X_{n_X} be a random sample of size n_X from a normal population with mean μ_X , and let Y_1, \dots, Y_{n_Y} be a random sample of size n_Y from a normal population with mean μ_Y . Assume the two samples are independent.

If the populations are known to have nearly the same variance, a level $100(1-\alpha)\%$ confidence interval for $\mu_X - \mu_Y$ is

$$\overline{X} - \overline{Y} \pm t_{n_X + n_Y = 2, \alpha/2} \cdot s_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}$$
 (5.22)

The quantity s_p is the pooled standard deviation, given b

$$s_p = \sqrt{\frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}}$$
 (5.23)

Let D_1, \ldots, D_n be a small random sample $(n \le 30)$ of differences of pairs. If the population of differences is approximately normal, then a level $100(1-\alpha)$ % confidence interval for the mean difference μ_D is given by

$$\overline{D} \pm t_{n=1,\alpha/2} \frac{s_D}{\sqrt{n}}$$
(5.24)

where s_D is the sample standard deviation of D_1, \dots, D_n . Note that this interval is the same as that given by expression (5.9).

If the sample size is large, a level $100(1 - \alpha)\%$ confidence interval for the mean difference μ_D is given by

$$\overline{D} \pm z_{\alpha/2}\sigma_{\overline{D}}$$
 (5.25)

In practice $\sigma_{\overline{D}}$ is approximated with s_D/\sqrt{n} . Note that this interval is the same as that given by expression (5.1).

Let $X_1, ..., X_n$ be a sample from a normal population. Let Y be another item to be sampled from this population, whose value has not been observed. A $100(1-\alpha)$ % prediction interval for Y is

$$\overline{X} \pm t_{n-1,\alpha/2} s \sqrt{1 + \frac{1}{n}}$$
(5.26)

The probability is $1 - \alpha$ that the value of Y will be contained in this interval.

Steps in Performing a Hypothesis Test

- Define H₀ and H₁.
- Assume H₀ to be true.
- Compute a test statistic. A test statistic is a statistic that is used to assess the strength of the evidence against H_0 .
- Compute the P-value of the test statistic. The P-value is the probability, assuming Ho to be true, that the test statistic would have a value whose disagreement with Ho is as great as or greater than that actually observed. The P-value is also called the observed signi cance level.
- State a conclusion about the strength of the evidence against H₀.

Summary

Let X_1, \ldots, X_n be a large (e.g., n > 30) sample from a population with mean μ and standard deviation σ .

To test a null hypothesis of the form $H_0: \mu \le \mu_0, H_0: \mu \ge \mu_0$, or $H_0: \mu = \mu_0$:

- Compute the z-score: $z = \frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}$. If σ is unknown it may be approximated with s.
- Compute the P-value. The P-value is an area under the normal curve, which depends on the alternate hypothesis as follows:

Alternate Hypothesis	P-value
$H_1: \mu > \mu_0$	Area to the right of z
$H_1: \mu < \mu_0$	Area to the left of z
$H_1: \mu \neq \mu_0$	Sum of the areas in the tails cut off by z and $-z$