Chapter 5 Statistical Models in Simulation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- The world the model-builder sees is probabilistic rather than deterministic.
 - Some statistical model might well describe the variations.
- An appropriate model can be developed by sampling the phenomenon of interest:
 - □ Select a known distribution through educated guesses
 - Make estimate of the parameter(s)
 - □ Test for goodness of fit
- In this chapter:
 - □ Review several important probability distributions
 - □ Present some typical application of these models

Review of Terminology and Concepts

- In this section, we will review the following concepts:
 - □ Discrete random variables
 - □ Continuous random variables
 - □ Cumulative distribution function
 - □ Expectation

- Example: Consider jobs arriving at a job shop.
 - Let X be the number of jobs arriving each week at a job shop.
 - R_x = possible values of X (range space of X) = {0,1,2,...}
 - $p(x_i)$ = probability the random variable is $x_i = P(X = x_i)$
 - $p(x_i)$, $i = 1,2, \dots$ must satisfy:
 - 1. $p(x_i) \ge 0$, for all i
 - 2. $\sum_{i=1}^{\infty} p(x_i) = 1$
 - The collection of pairs $[x_i, p(x_i)]$, i = 1,2,..., is called the probability distribution of X, and $p(x_i)$ is called the probability mass function (pmf) of X.

Discrete Random Variables

[Probability Review]

Example: Assume the die is loaded so that the probability that a given face lands up is proportional to the number of spots showing.

X _i	1	2	3	4	5	6
P(x _i)	1/21	2/21	3/21	4/21	5/21	6/21

- \square $p(x_i)$, $i = 1,2, \dots$ must satisfy:
 - 1. $p(x_i) \ge 0$, for all i
 - 2. $\sum_{i=1}^{\infty} p(x_i) = 1$

Continuous Random Variables

[Probability Review]

- X is a continuous random variable if its range space R_x is an interval or a collection of intervals.
- The probability that *X* lies in the interval [a,b] is given by:

$$P(a \le X \le b) = \int_a^b f(x) dx$$

- f(x), denoted as the pdf of X, satisfies:
 - 1. $f(x) \ge 0$, for all x in R_X

$$2. \int_{R_x} f(x) dx = 1$$

3. f(x) = 0, if x is not in R_X

- Properties
 - 1. $P(X = x_0) = 0$, because $\int_{x_0}^{x_0} f(x) dx = 0$
 - 2. $P(a \le X \le b) = P(a \prec X \le b) = P(a \le X \prec b) = P(a \prec X \prec b)$

Continuous Random Variables

[Probability Review]

Х	(-∞,1)	[1,2)	[2,3)	[3,4)	[4,5)	[5,6)	[6,∞)
F(x)	0	1/21	3/21	6/21	10/21	15/21	21/21

$$f(x) = \begin{cases} \frac{1}{2}e^{-x/2}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

- □ X has an exponential distribution with mean 2 years
- □ Probability that the device's life is between 2 and 3 years is:

$$P(2 \le x \le 3) = \frac{1}{2} \int_{2}^{3} e^{-x/2} dx = 0.14$$

Continuous Distributions [Probability Review]

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

The CDF is given by

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

■ The PDF and CDF when a=1 and b=6:

Exponential Distribution [Probability Review]

A random variable X is said to be exponentially distributed with parameter $\lambda > 0$ if its PDF is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Gamma Distribution [Probability Review]

$$\Gamma(\beta) = \int_{0}^{\infty} x^{\beta - 1} e^{-x} dx$$

• A random variable X is gamma distributed with parameters β and θ if its PDF is given by

$$f(x) = \begin{cases} \frac{\beta \theta}{\Gamma(\beta)} (\beta \theta x)^{\beta - 1} e^{-\beta \theta x}, & x > 0 \end{cases}$$

$$0, & \text{otherwise}$$

$$0.5 - \frac{1}{0.4}$$

$$0.3 - \frac{1}{0.4}$$

[Probability Review]

• A random variable X with mean $-\infty < x < \infty$ and variance $\sigma^2 > 0$ has a normal distribution it it has the PDF

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right], -\infty < x < \infty$$

[Probability Review]

■ Example: Suppose that $X \sim N$ (50, 9).

F(56) =
$$\Phi(\frac{56-50}{3}) = \Phi(2) = 0.9772$$

[Probability Review]

Example: The time in hours required to load a ship, X, is distributed as N(12, 4). The probability that 12 or more hours will be required to load the ship is:

$$P(X > 12) = 1 - F(12) = 1 - 0.50 = 0.50$$

(The shaded portions in both figures)

[Probability Review]

■ Example (cont.):

The probability that between 10 and 12 hours will be required to load a ship is given by

$$P(10 \le X \le 12) = F(12) - F(10) = 0.5000 - 0.1587 = 0.3413$$

The area is shown in shaded portions of the figure

[Probability Review]

$$P(14 \le X \le 17) = F(17) - F(14) =$$

$$\Phi(\frac{17-15}{3}) \sim \Phi(\frac{14-15}{3}) = \Phi(0.667) \sim \Phi(\sim 0.333) = 0.7476 \sim 0.3696 = 0.3780$$

[Probability Review]

Example: Lead-time demand, X, for an item is N(25, 9).

Compute the value for lead-time that will be exceeded only 5% of time.

$$P(X > x_0) = P(Z > \frac{x_0 - 25}{3}) = 1 - \Phi(\frac{x_0 - 25}{3}) = 0.05$$

$$\frac{x_0 - 25}{3} = 1.645$$

$$x_0 = 29.935$$

Triangular Distribution

[Probability Review]

 A random variable X has a triangular distribution if its PDF is given by

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)}, & a \le x \le b \\ \frac{2(c-x)}{(c-b)(c-a)}, & b < x \le c \\ 0, & elsewhere \end{cases}$$

where $a \le b \le c$.

Lognormal Distribution

[Probability Review]

 A random variable X has a lognormal distribution if its PDF is given by

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma x}} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], & x > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\sigma^2 > 0$.

Beta Distribution

[Probability Review]

■ A random variable X is beta-distributed with parameters $\beta_1 > 0$ and $\beta_2 > 0$ if its PDF is given by

$$f(x) = \begin{cases} \frac{x^{\beta_1 - 1} (1 - x)^{\beta_2 - 1}}{B(\beta_1, \beta_2)}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

where

$$B(\beta_1, \beta_2) = \frac{\Gamma(\beta_1)\Gamma(\beta_2)}{\Gamma(\beta_1 + \beta_2)}$$

Poisson Process

[Probability Review]

- Consider the time at which arrivals occur.
- Let the first arrival occur at time A_1 , the second occur at time A_1+A_2 , and so on.

The probability that the first arrival will occur in [0, t] is given by

$$P(A_1 \le t) = 1 - e^{-\lambda t}$$

Empirical Distributions

[Probability Review]

- Example:
- Customers arrive at lunchtime in groups of from one to eight persons.
- The number of persons per party in the last 300 groups has been observed.
- The results are summarized in a table.
- The histogram of the data is also included.

Empirical Distributions (cont.)

[Probability Review]

	Arrivals er Party	Frequenc y	Relative Frequenc y	Cumulati ve Relative Frequenc y
1		30	0.10	0.10
2		110	0.37	0.47
3		45	0.15	0.62
4		71	0.24	0.86
5		12	0.04	0.90
6		13	0.04	0.94
7		7	0.02	0.96
8		12	0.04	1.00

Empirical Distributions (cont.)

[Probability Review]

The CDF in the figure is called the empirical distribution of the given data.

Empirical Distributions

[Probability Review]

- Example:
- He time required to repair a system that has suffered a failure has been collected for the last 100 instances.
- The empirical CDF is shown in the figure

Empirical Distributions (cont.) [Probability Review]

Intervals (Hours)	Frequency	Relative Frequency	Cumulativ e
			Frequency
0 <x<0.5< td=""><td>21</td><td>0.21</td><td>0.21</td></x<0.5<>	21	0.21	0.21
0.5 <x<1.0< td=""><td>12</td><td>0.12</td><td>0.33</td></x<1.0<>	12	0.12	0.33
1.0 <x<1.5< td=""><td>29</td><td>0.29</td><td>0.62</td></x<1.5<>	29	0.29	0.62
1.5 <x<2.0< td=""><td>19</td><td>0.19</td><td>0.81</td></x<2.0<>	19	0.19	0.81
2.0 <x<2.5< td=""><td>8</td><td>80.0</td><td>0.89</td></x<2.5<>	8	80.0	0.89
2.5 <x<3.0< td=""><td>11</td><td>0.11</td><td>1.00</td></x<3.0<>	11	0.11	1.00

Cumulative Distribution Function

[Probability Review]

$$\Box$$
 If X is discrete, then

$$F(x) = \sum_{\substack{\text{all} \\ x_i \le x}} p(x_i)$$

$$\Box$$
 If X is continuous, then

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Properties

1. F is nondecreasing function. If $a \prec b$, then $F(a) \leq F(b)$

2.
$$\lim_{x\to\infty} F(x) = 1$$

3.
$$\lim_{x\to -\infty} F(x) = 0$$

All probability question about X can be answered in terms of the cdf, e.g.:

$$P(a \prec X \leq b) = F(b) - F(a)$$
, for all $a \prec b$

Cumulative Distribution Function

[Probability Review]

Example: An inspection device has cdf:

$$F(x) = \frac{1}{2} \int_{0}^{x} e^{-t/2} dt = 1 - e^{-x/2}$$

☐ The probability that the device lasts for less than 2 years:

$$P(0 \le X \le 2) = F(2) - F(0) = F(2) = 1 - e^{-1} = 0.632$$

☐ The probability that it lasts between 2 and 3 years:

$$P(2 \le X \le 3) = F(3) - F(2) = (1 - e^{-(3/2)}) - (1 - e^{-1}) = 0.145$$

- The expected value of X is denoted by E(X)
 - □ If X is discrete

$$E(x) = \sum_{\text{all } i} x_i p(x_i)$$

☐ If *X* is continuous

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

- \square a.k.a the mean, m, or the 1st moment of X
- □ A measure of the central tendency
- The variance of X is denoted by V(X) or var(X) or σ^2
 - Definition:

$$V(X) = E[(X - E[X]^2]$$

□ Also,

$$V(X) = E(X^2) - [E(x)]^2$$

- A measure of the spread or variation of the possible values of X around the mean
- The standard deviation of X is denoted by σ
 - □ Definitic B10 square root of V(X)
 - □ Expressed in the same units as the mean

B10 after :, two spaces, then next word starts with a capital letter $\frac{1}{7}$

Expectations

[Probability Review]

$$E(X) = \frac{1}{2} \int_0^\infty x e^{-x/2} dx = -x e^{-x/2} \Big|_0^\infty + \int_0^\infty e^{-x/2} dx = 2$$

■ To compute variance of X, we first compute $E(X^2)$:

$$E(X^{2}) = \frac{1}{2} \int_{0}^{\infty} x^{2} e^{-x/2} dx = -x^{2} e^{-x/2} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-x/2} dx = 8$$

Hence, the variance and standard deviation of the device's life are:

$$V(X) = 8 - 2^2 = 4$$

$$\sigma = \sqrt{V(X)} = 2$$

Useful Statistical Models

- In this section, statistical models appropriate to some application areas are presented. The areas include:
 - Queueing systems
 - □ Inventory and supply-chain systems
 - □ Reliability and maintainability
 - □ Limited data

Queueing Systems

[Useful Models]

- In a queueing system, interarrival and service-time patterns can be probablistic (for more queueing examples, see Chapter 2).
- Sample statistical models for interarrival or service time distribution:
 - Exponential distribution: if service times are completely random
 - Normal distribution: fairly constant but with some random variability (either positive or negative)
 - □ Truncated normal distribution: similar to normal distribution but with restricted value.
 - ☐ Gamma and Weibull distribution: more general than exponential (involving location of the modes of pdf's and the shapes of tails.)

Inventory and supply chain

[Useful Models]

- In realistic inventory and supply-chain systems, there are at least three random variables:
 - □ The number of units demanded per order or per time period
 - □ The time between demands
 - □ The lead time
 - Sample statistical models for lead time distribution:
 - □ Gamma
 - Sample statistical models for demand distribution:
 - □ Poisson: simple and extensively tabulated.
 - Negative binomial distribution: longer tail than Poisson (more large demands).
 - Geometric: special case of negative binomial given at least one demand has occurred.

Reliability and maintainability [Useful Models]

- M
 - Time to failure (TTF)
 - □ Exponential: failures are random
 - Gamma: for standby redundancy where each component has an exponential TTF
 - □ Weibull: failure is due to the most serious of a large number of defects in a system of components
 - □ Normal: failures are due to wear

Other areas

[Useful Models]

- For cases with limited data, some useful distributions are:
 - □ Uniform, triangular and beta
- Other distribution: Bernoulli, binomial and hyperexponential.

Discrete Distributions

- Discrete random variables are used to describe random phenomena in which only integer values can occur.
- In this section, we will learn about:
 - □ Bernoulli trials and Bernoulli distribution
 - Binomial distribution
 - □ Geometric and negative binomial distribution
 - □ Poisson distribution

Bernoulli Trials and Bernoulli Distribution

[Discrete Dist'n]

- Bernoulli Trials:
 - Consider an experiment consisting of n trials, each can be a success or a failure.
 - Let $X_i = 1$ if the jth experiment is a success
 - and $X_i = 0$ if the jth experiment is a failure
 - ☐ The Bernoulli distribution (one trial):

$$p_{j}(x_{j}) = p(x_{j}) = \begin{cases} p, & x_{j} = 1, j = 1, 2, ..., n \\ 1 - p = q, & x_{j} = 0, j = 1, 2, ..., n \\ 0, & \text{otherwise} \end{cases}$$

- \square where $E(X_i) = p$ and $V(X_i) = p(1-p) = pq$
- Bernoulli process:
 - ☐ The *n* Bernoulli trials where trails are independent:

$$p(x_1, x_2, ..., x_n) = p_1(x_1)p_2(x_2) ... p_n(x_n)$$

Binomial Distribution

[Discrete Dist'n]

The number of successes in n Bernoulli trials, X, has a binomial distribution.

$$p(x) = \begin{cases} \binom{n}{x} p^x q^{n-x}, & x = 0,1,2,...,n \\ 0, & \text{otherwise} \end{cases}$$

The number of outcomes having the required number of successes and failures

Probability that there are x successes and (n-x) failures

- □ The mean, E(x) = p + p + ... + p = n*p
- \square The variance, V(X) = pq + pq + ... + pq = n*pq

Geometric & Negative Binomial Distribution

[Discrete Dist'n]

- Geometric distribution

 Geometric distribution
 - \square The number of Bernoulli trials, X, to achieve the 1st success:

$$p(x) = \begin{cases} q^{x-1}p, & x = 0,1,2,...,n \\ 0, & \text{otherwise} \end{cases}$$

- □ E(x) = 1/p, and $V(X) = q/p^2$
- Negative binomial distribution
 - ☐ The number of Bernoulli trials, X, until the kth success
 - ☐ If Y is a negative binomial distribution with parameters p and k, then:

$$p(x) = \begin{cases} \begin{pmatrix} y-1 \\ k-1 \end{pmatrix} q^{y-k} p^k, & y = k, k+1, k+2, \dots \\ 0, & \text{otherwise} \end{cases}$$

 \Box E(Y) = k/p, and $V(X) = kq/p^2$

Poisson Distribution

[Discrete Dist'n]

 \square where $\alpha > 0$, pdf and cdf are:

$$p(x) = \begin{cases} \frac{e^{-\alpha} \alpha^x}{x!}, & x = 0, 1, \dots \\ 0, & \text{otherwise} \end{cases}$$

$$F(x) = \sum_{i=0}^{x} \frac{e^{-\alpha} \alpha^{i}}{i!}$$

$$\Box$$
 $E(X) = \alpha = V(X)$

Poisson Distribution

[Discrete Dist'n]

- Example: A computer repair person is "beeped" each time there is a call for service. The number of beeps per hour ~ Poisson(α = 2 per hour).
 - ☐ The probability of three beeps in the next hour:

$$p(3) = e^{-2}2^{3}/3! = 0.18$$
 also,
$$p(3) = F(3) - F(2) = 0.857 - 0.677 = 0.18$$

☐ The probability of two or more beeps in a 1-hour period:

$$p(2 \text{ or more}) = 1 - p(0) - p(1)$$

= 1 - F(1)
= 0.594

Continuous Distributions

- Continuous random variables can be used to describe random phenomena in which the variable can take on any value in some interval.
- In this section, the distributions studied are:
 - □ Uniform
 - Exponential
 - □ Normal
 - □ Weibull
 - Lognormal

Uniform Distribution

[Continuous Dist'n]

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

Properties

 \Box $P(x_1 < X < x_2)$ is proportional to the length of the interval $[F(x_2) F(x_1) = (x_2 - x_1)/(b-a)$

$$\Box$$
 $E(X) = (a+b)/2$ $V(X) = (b-a)^2/12$

■ U(0,1) provides the means to generate random numbers, from which random variates can be generated.

Exponential Distribution

[Continuous Dist'n]

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{elsewhere} \end{cases}$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{elsewhere} \end{cases}$$

$$F(x) = \begin{cases} 0, & x < 0 \\ \int_{0}^{x} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

$$\Box E(X) = 1/\lambda \qquad V(X) = 1/\lambda^2$$

$$V(X) = 1/\lambda^2$$

- □ Used to model interarrival times when arrivals are completely random, and to model service times that are highly variable
- □ For several different exponential pdf's (see figure), the value of intercept on the vertical axis is λ , and all pdf's eventually intersect.

- Memoryless property
 - □ For all s and t greater or equal to 0:

$$P(X > s+t \mid X > s) = P(X > t)$$

- \square Example: A lamp ~ exp(λ = 1/3 per hour), hence, on average, 1 failure per 3 hours.
 - The probability that the lamp lasts longer than its mean life is: $P(X > 3) = 1 - (1 - e^{-3/3}) = e^{-1} = 0.368$
 - The probability that the lamp lasts between 2 to 3 hours is:

$$P(2 \le X \le 3) = F(3) - F(2) = 0.145$$

The probability that it lasts for another hour given it is operating for 2.5 hours:

$$P(X > 3.5 \mid X > 2.5) = P(X > 1) = e^{-1/3} = 0.717$$

Normal Distribution

[Continuous Dist'n]

A random variable X is normally distributed has the pdf:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right], -\infty < x < \infty$$

- □ Mean: $-\infty < \mu < \infty$
- □ Variance: $\sigma^2 > 0$
- □ Denoted as $X \sim N(\mu, \sigma^2)$

Special properties:

- $\lim_{x\to-\infty} f(x) = 0$, and $\lim_{x\to\infty} f(x) = 0$
- \Box $f(\mu-x)=f(\mu+x)$; the pdf is symmetric about μ .
- □ The maximum value of the pdf occurs at $x = \mu$; the mean and mode are equal.

Normal Distribution

[Continuous Dist'n]

Evaluating the distribution:

- □ Use numerical methods (no closed form)
- \square Independent of μ and σ , using the standard normal distribution:

$$Z \sim N(0,1)$$

 \square Transformation of variables: let $Z = (X - \mu) / \sigma$,

$$F(x) = P(X \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$$

$$= \int_{-\infty}^{(x - \mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

$$= \int_{-\infty}^{(x - \mu)/\sigma} \phi(z) dz = \Phi(\frac{x - \mu}{\sigma}) \quad \text{, where } \Phi(z) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

Normal Distribution

[Continuous Dist'n]

- Example: The time required to load an oceangoing vessel, X, is distributed as N(12,4)
 - The probability that the vessel is loaded in less than 10 hours:

$$F(10) = \Phi\left(\frac{10-12}{2}\right) = \Phi(-1) = 0.1587$$

• Using the symmetry property, $\Phi(1)$ is the complement of $\Phi(-1)$

Weibull Distribution

[Continuous Dist'n]

A random variable X has a Weibull distribution if its pdf has the form:

$$f(x) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha} \right)^{\beta - 1} \exp \left[-\left(\frac{x - \nu}{\alpha} \right)^{\beta} \right], & x \ge \nu \\ 0, & \text{otherwise} \end{cases}$$

- 3 parameters:
 - □ Location parameter: v, $(-\infty < v < \infty)$
 - □ Scale parameter: β , $(\beta > 0)$
 - □ Shape parameter. α , (>0)
- **Example**: v = 0 and $\alpha = 1$:

When $\beta = 1$, $X \sim \exp(\lambda = 1/\alpha)$

Lognormal Distribution

[Continuous Dist'n]

A random variable X has a lognormal distribution if its pdf has the form:
1.5 -IA

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma x}} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], & x > 0\\ 0, & \text{otherwise} \end{cases}$$

- □ Mean E(X) = $e^{\mu + \sigma^2/2}$
- □ Variance $V(X) = e^{2\mu + \sigma^2/2} (e^{\sigma^2} 1)$

- Relationship with normal distribution
 - □ When $Y \sim N(\mu, \sigma^2)$, then $X = e^Y \sim \text{lognormal}(\mu, \sigma^2)$
 - $\hfill\Box$ Parameters μ and σ^2 are not the mean and variance of the lognormal

Poisson Distribution

- A counting process $\{N(t), t>=0\}$ is a Poisson process with mean rate λ if:
 - Arrivals occur one at a time
 - \square {*N(t), t>=0*} has stationary increments
 - \square {*N(t)*, *t*>=0} has independent increments
- Properties

$$P[N(t) = n] = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, \quad \text{for } t \ge 0 \text{ and } n = 0,1,2,...$$

- □ Equal mean and variance: $E[N(t)] = V[N(t)] = \lambda t$
- □ Stationary increment: The number of arrivals in time s to t is also Poisson-distributed with mean $\lambda(t-s)$

Interarrival Times

[Poisson Dist'n]

Consider the interarrival times of a Possion process $(A_1, A_2, ...)$, where A_i is the elapsed time between arrival i and arrival i+1

□ The 1st arrival occurs after time t iff there are no arrivals in the interval [0,t], hence:

$$P\{A_1 > t\} = P\{N(t) = 0\} = e^{-\lambda t}$$

 $P\{A_1 <= t\} = 1 - e^{-\lambda t}$ [cdf of exp(\lambda)]

□ Interarrival times, A_1 , A_2 , ..., are exponentially distributed and independent with mean $1/\lambda$

Slide 52

Poi is not an abbreviation of Poisson that I have ever seen $_{\mbox{\footnotesize Brian, }1/7/2005}$ **B42**

Splitting and Pooling

[Poisson Dist'n]

Splitting:

- □ Suppose each event of a Poisson process can be classified as Type I, with probability *p* and Type II, with probability *1-p*.
- □ N(t) = N1(t) + N2(t), where N1(t) and N2(t) are both Poisson processes with rates λp and $\lambda (1-p)$

Pooling:

- □ Suppose two Poisson processes are pooled together
- \square N1(t) + N2(t) = N(t), where N(t) is a Poisson processes with rates

Nonstationary Poisson Process (NSPP)

[Poisson Dist'n]

- Poisson Process without the stationary increments, characterized by $\lambda(t)$, the arrival rate at time t.
- The expected number of arrivals by time t, $\Lambda(t)$:

$$\Lambda(t) = \int \lambda(s) ds$$

- Relating stationary Poisson process n(t) with rate $\lambda=1$ and NSPP N(t) with rate $\lambda(t)$:
 - □ Let arrival times of a stationary process with rate $\lambda = 1$ be $t_1, t_2, ...,$ and arrival times of a NSPP with rate $\lambda(t)$ be $T_1, T_2, ...,$ we know:

$$t_i = \Lambda(T_i)$$
$$T_i = \Lambda^{-1}(t_i)$$

Nonstationary Poisson

- Process (NSPP) [Poisson Dist'n]

 Example: Suppose arrivals to a Post Office have rates 2 per minute from 8 am until 12 pm, and then 0.5 per minute until 4 pm.
 - Let t = 0 correspond to 8 am, NSPP N(t) has rate function:

$$\lambda(t) = \begin{cases} 2, & 0 \le t < 4 \\ 0.5, & 4 \le t < 8 \end{cases}$$

Expected number of arrivals by time t:

$$\Lambda(t) = \begin{cases} 2t, & 0 \le t < 4 \\ \int_{0}^{4} 2ds + \int_{1}^{4} 0.5ds = \frac{t}{2} + 6, & 4 \le t < 8 \end{cases}$$

Hence, the probability distribution of the number of arrivals between 11 am and 2 pm.

$$P[N(6) - N(3) = k] = P[N(\Lambda(6)) - N(\Lambda(3)) = k]$$

$$= P[N(9) - N(6) = k]$$

$$= e^{(9-6)}(9-6)^k/k! = e^3(3)^k/k!$$

Empirical Distributions

[Poisson Dist'n]

- A distribution whose parameters are the observed values in a sample of data.
 - May be used when it is impossible or unnecessary to establish that a random variable has any particular parametric distribution.
 - Advantage: no assumption beyond the observed values in the sample.
 - Disadvantage: sample might not cover the entire range of possible values.

Summary

- The world that the simulation analyst sees is probabilistic, not deterministic.
- In this chapter:
 - Reviewed several important probability distributions.
 - Showed applications of the probability distributions in a simulation context.
- Important task in simulation modeling is the collection and analysis of input data, e.g., hypothesize a distributional form for the input data. Reader should know:
 - Difference between discrete, continuous, and empirical distributions.
 - Poisson process and its properties.