ЛАБОРАТОРНАЯ РАБОТА №7

по учебной дисциплине «Теория информации и кодирования»

Тема: Сравнительный анализ помехоустойчивых кодов.

Время выполнения работы 4 часа.

Цель: Провести сравнительный анализ помехоустойчивых кодов.

1. Создать Similink model простой системы связи в соответствии с вариантом. В Similink model необходимо использовать Display блок для определения Error Rate. The Display block показывает число ошибок, связанных с шумом в канале. Ниже приведен вариант построения системы связи с использованием кодов Хэмминга при передаче информации по двоичному симметричному каналу.

Рисунок 1. Вариант построения системы связи

- 2. Аналогично создать модель системы связи в соответствии с вариантом.
- 3. Провести сравнительный анализ двух систем связи. Провести 9 экспериментов с различными значениями SER для общего количества символов (в соотвествии с вариантом). Подсчитать общее количество ошибок. Оформить полученные данные в виде таблицы (см. Ниже).
- 4. Построить графики зависимости вероятности ошибки в канале и величиной Error rate для двух случаев.

Письменный отчет по лабораторной работе должен содержать:

1. Титульный лист. (Название лабораторной работы. Фамилия, имя, отчество, номер группы исполнителя, дата сдачи.)

2. Описание параметров каждого элемента системы связи в соответствии с вашим вариантом.

Рисунок 2. – Пример описания параметров каждого элемента системы связи

3. Схемы системы связи.

Рисунок 3. – Модель связи, использующая LDPC корректирующие коды

4. Графики зависимостей SER от основных параметров канала связи и источника для двух систем связи

total messages = 32400

total messages = 52400						
Tost No.	LDPC кодирование		Кодирование Хемминга			
Test Nº	SER	Total number of errors	SER	Total number of errors		
1	0.9992		0.6482			
2	0.9781		0.5749			
3	0.9031		0.5043			
4	0.7544		0.4346			
5	0.5852		0.365			
6	0.4394		0.2906			

7	0.3166	0.2212	
8	0.2082	0.1484	
9	0.1037	0.07623	

5. Выводы по лабораторной работе.

Варианты заданий (описание основных элементов схемы)

Вариант	Источник	Канал связи	Коды	Число символов Total messages
1.	Random Integer Generator	AWGN	Линейный, циклический	32000
2	Random Integer Generator	BSC	Хемминг, РС	20000
3	Random Integer Generator	Fading Channel	Линейный, Хэмминг	15000
4	Random Integer Generator	Rician Channel	РС, Хемминг	13000
5	Beronolli Binary Generator	AWGN	РС, линейный	25000
6	Beronolli Binary Generator	BSC	РС, циклический	27000
7	Beronolli Binary Generator	Fading Channel	Линейный, циклический	8000
8	Beronolli Binary Generator	Rician Channel	РС, Хемминг	5000
9	Poisson Integer Generator	AWGN	Хэмминг, линейный	4000
10	Poisson Integer Generator	BSC	РС, Хемминг	30000
11	Poisson Integer Generator	Fading Channel	Хэмминг, циклический	21000
12	Poisson Integer Generator	Rician Channel	РС, циклический	18000
13	Uniform Noise Generator	AWGN	Линейный, циклический	15600
14	Uniform Noise Generator	BSC	РС, Хемминг	13500
15	Uniform Noise Generator	Fading Channel	РС, циклический	25030
16	Uniform Noise Generator	Rician Channel	Хэмминг, линейный	27000
17	Gausian Noise Generator	AWGN	Хэмминг, циклический	14000
18	Gausian Noise Generator	BSC	Линейный, циклический	22222
19	Gausian Noise Generator	Fading Channel	РС, Хемминг	80045

20	Gausian Noise	Rician Channel	Линейный,	12121
	Generator		циклический	