PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

10.3" 8K Product Specification Rev. P0

Customer Name :

Product Name : TOP103MON08K01A

Model Name : TOP103MONO8K01A

Description : 10.3" HD (7680×4320) 8K

Proposed by		Customer's Approval	
Designed	Checked	Approved	

ZHEN HUAI ZHI TECHNOLOGY CO.,LTD

SPEC. NUMBER	SPEC. TITLE	PAGE
	TOP103MONO8K01A Product Specification	1/ 22

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

Revision History

Rev.	ECN No.	Description of Change	Date	Prepared
P0	-	Initial issue	2021.11.30	Huangxiaoqin
P1		update timing	2021.12.31	Huangxiaoqin

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

Content

No.	ltems	Page
1	General Description	4
2	Mechanical Specification	6
3	Absolute Maximum Ratings	6
4	Electrical Characteristics	6
5	Electro-optical Characteristics	7
6	FPC Pin Assignment	8
7	AC Characteristics	10
8	Recommended Operating Sequence	16
9	Outline Information	18
10	Reliability	19
11	Handling Precautions	20
12	Packing Specification	22

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

1. General Description

1-1. Introduction

WISECOCO 10.3" 8K is a black-and-white active matrix TFT LCD module using Low Tem perature Poly-silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 10.3 inch diagonally measured active area with 8K resolutions (4320 horizontal by 7680 vertical pixel array)...

Figure 1

PAGE 4/ 22

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

1-2. Driver IC Block Diagram

Figure 2

1-3. Features

1) Display Format: 10.3" 8K: 7680*4320

2) Interface: MIPI-DSI 8 lanes

3) Driver IC :4) Polarizer : POL

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

2. Mechanical Specification

Table 1

Item	Specifications	Unit	Remark
Panel outline	232.096(W) × 138.402(H)×1.24(T)	mm	
Number of dots	7680*4320	Dots	8K
Active area	228.096(W) × 128.304(H)	mm	
Diagonal Inch	10.3	inch	
Pixel pitch	29.7(W) × 29.7(H)	um	
Pixel Arrangement	MONO		

3. Absolute Maximum Ratings

Table 2

Item	Symbol	Min.	Max.	Unit	Note
I/O Voltage	VDDIO	1.65	1.95	V	
EL Driving Voltage	ELVDD	4.50	6.30	V	
	ELVSS	-4.5	-6.3	V	
Operating temperature	Topr	-20	70	$^{\circ}$	
Storage temperature	Tstg	-40	80	$^{\circ}$	

4. Electrical Characteristics

Test Condition: Temp=25±2°C

Table 3

Item	l	Sy	rmbol	Condition	Min.	Тур.	Max.	Unit	Remark	
ELVD	D	EL	VDD	-	4.5	5.5	6.30	V		
ELVS	.0		VSS		-4.5	-5.5	-6.30	\	Controlled	
ELVS				-	-4.5	-5.5	-0.30	V	by DDIC	
VDDI	0	VI	ODIO	-	1.62	1.80	1.98	V		
			VCI		-	-	-	mΑ		
		IC Display	VDDIO			-	-	-	mA	Full White
Current	Display		AVDD		-	1	1	mA		
Consumption (Display)	on mode		ELVDD	White pattern	-	-	-	mA		
(1 3)		Panel	ELVSS		-	-	-	mA	Full White	
Frame Fre	quency		F _{rm}	-	_	30	-	Hz		

Notes:

- 1. The value is just the reference value. The customer may optimize the setting value.
- 2. The current of Vin is just the reference value, because it depends on the efficiency of Power IC.
- 3. IC Power Consumption $P_{IC}=V_{VDDIO}*I_{VDDIO}+V_{VCI}*I_{VCI}+V_{AVDD}*I_{AVDD}$

EL Power Consumption Pel=Velvdd*Ielvdd+Velvss*Ielvss

Total Power Consumption Ptotal=PEL+ PIC

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 6/ 22
--------------	---	---------------

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

5. Electro-optical Characteristics

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of Luminance meter. We refer to θ , $\emptyset=0^{\circ}$ (= θ_3) as the 3 o'clock direction (the "right"), θ , $\emptyset=90^{\circ}$ (= θ_{12}) as the 12 o'clock direction ("upward"), θ , $\emptyset=180^{\circ}$ (= θ_9) as the 9 o'clock direction ("left") and θ , $\emptyset=270^{\circ}$ (= θ_6) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay.

Table 4

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	e Contrast atio	CR	θ=0°	300:1		1	-	405nm 光 源, 60℃Note2
\/i=vvin a			CR > 10	70	80	1		
Viewing				70	80	1	Deg	Note1
Angle				70	80	0.71		Note i
range				70	80	0.35		
	transmittance		⊙ = 0°	-	4	1	%	不带 APF&Haze @405nm
	Cross talk		-	-	-	1.5	%	
	Gamma		-	2.0	2.2	2.4	-	

Notes:1

1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the panel surface (see Figure 3).

Figure 3

2. Contrast measurements shall be made at viewing angle of θ = 0° and at the center of the panel surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (see Figure 3) Luminance Contrast Ratio (CR) is defined mathematically.

 $CR = \frac{Luminance when displaying a white raster}{Luminance when displaying a black raster}$

- 3. The color chromaticity coordinates specified in Table 4 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 4. Crosstalk measurement shall be done at the center of the different pattern and the result shall be calculated as follow formula.

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 7/ 22
--------------	--	---------------

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

- a. measure luminance at the center.
- b. calculate cross talk as below equation:

$$\mathsf{Crosstalk}(\mathsf{V}) = \mathsf{max}\left(\left|\frac{L_{V1} - L_{V2}}{L_{V2}}\right| \times 100, \left|\frac{L_{V3} - L_{V4}}{L_{V4}}\right| \times 100\right)$$

$$\mathsf{Crosstalk}(\mathsf{H}) \texttt{=} \max \left(\left| \frac{L_{H1} - L_{H2}}{L_{H2}} \right| \times 100, \left| \frac{L_{H3} - L_{H4}}{L_{H4}} \right| \times 100 \right)$$

Figure 5. Vertical crosstalk measuring pattern

Figure 6. Horizontal crosstalk measuring pattern

6. FPC Pin Assignment

Main FPC assignment- Input/output Signal Interface.

Recommended connector: XF2M-5015-1A.

Table 5

No.	Name	Remark		
1	GND	Ground		
2	NC	No connection		
3	NC	No connection		
4	NC	No connection		
5	NC	No connection		
6	VSP	Positive input analog power(+5.5V)		
7	NC	No connection		
8	VSN	Negative input analog power(-5.5V)		
9	NC	No connection		
10	GND	Ground		
11	GND	Ground		
12	IOVCC	IO Power supply(1v8)		
13	GND	Ground		

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 8/ 22
--------------	---	---------------

	TROBOOT GROOT		IXL V.	1000L DATA			
		- PRODUCT	P1	2020.12.31			
14	NC	No conne	No connection				
15	GND	Grour	nd				
16	NC	No conne	ection				
17	RESET	Reset signal input	Reset signal input terminal(1v8)				
18	TE	Tearing effect signal to fr	ame memo	ry writing			
19	GND	Grour	nd				
20	GND	Ground	d				
21	DOP_M	MASTER MIPI data Lane 0	positive	-end input			
22	DON_M	MASTER MIPI data Lane 0	negative	-end input			
23	GND	Ground	d				
24	D1P_M	MASTER MIPI data Lane 1	positive	-end input			
25	D1N_M	MASTER MIPI data Lane 1	negative	-end input			
26	GND	Ground	d				
27	CLKP_M	MASTER MIPI Clock Lane posi	tive-end i	nput/output			
28	CLKN_M	MASTER MIPI Clock Lane nega	MASTER MIPI Clock Lane negative-end input/output				
29	GND	Ground	Ground				
30	D2P_M	MASTER MIPI data Lane 2	positive	-end input			
31	D2N_M	MASTER MIPI data Lane 2	negative	-end input			
32	GND	Grour	nd				
33	D3P_M	MASTER MIPI data Lane	e 3 positive-	end input			
34	D3N_M	MASTER MIPI data Lane 3	negative	-end input			
35	GND	Ground	d				
36	DOP_S	Slave MIPI data Lane O	positive-	end input			
37	DON_S	Slave MIPI data Lane 0	negative-	end input			
38	GND	Grour	nd				
39	D1P_S	Slave MIPI data Lane 2	1 positive-ei	nd input			
40	D1N_S	Slave MIPI data Lane 1	negative-e	nd input			
41	GND	Grour	nd				
42	CLKP_S	Slave MIPI Clock Lane po	sitive-end ir	nput/output			
43	CLKN_S	Slave MIPI Clock Lane neg	gative-end i	nput/output			
44	GND	Grour	nd				
45	D2P_S	Slave MIPI data Lane 2	2 positive-e	nd input			
46	D2N_S	Slave MIPI data Lane 2	negative-e	nd input			
47	GND	Grour	nd				
48	D3P_S	Slave MIPI data Lane 3	3 positive-e	nd input			
49	D3N_S	Slave MIPI data Lane 3 negative-end input					
50	GND	Grour	nd				

PRODUCT GROUP

SPEC.	NUMBER
-------	--------

REV.

ISSUE DATA

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

<Pin layout of FPC contact pads>

Front Back

Figure 7

7. AC Characteristics (For reference only))

7-1. MIPI DSI Characteristics

7-1-1. DC Characteristics for MIPI DSI

PRODUCT GROUP	REV.	ISSUE DATA	
8K - PRODUCT	P1	2020.12.31	

Figure 8 MIPI DSI Signaling Levels

Table 6

Signal	Symbol	Parameter	Min.	Тур.	Max.	Unit
	V_{IDTH}	Differential input high threshold	•	•	70	
	V_{IDTL}	Differential input low threshold	-70	•	1	
	V _{IHHS}	Single-ended input high voltage	•	•	460	
	V_{ILHS}	Single-ended input low voltage	-40	ı	1	mV
HS_RX	V _{TERM-EN}	Single-ended threshold for HS termination enable	1	1	450	IIIV
	V _{CMRX(DC)}	Common-mode voltage HS receive mode	70	•	330	
	Z _{ID}	Differential input impedance	-	100	-	Ω
	V _{IL}	Logic0 voltage not in ULP State	-	-	550	
LP_RX	V _{IH}	Logic1 input voltage	880	-	-	mV
	V_{LEAK}	I/O leakage current	-10	-	10	uA
	V_{OL}	The venin output low level	-50	-	50	mV
LP TX	V_{OH}	The venin output high level	1.1	1.2	1.3	V
LP_IA	Z _{OLP}	Output impedance of LP transmitter	110	•	-	Ω

7-1-2. MIPI DSI High-Speed RX Clock and Data-Clock Timing

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 11/ 22
--------------	---	----------------

Figure 9 MIPI Data to Clock Timing Definitions

Table 7-1(Actual Value)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{DSICLK}	DISCLK Frequency		T.B.D.		750	MHz
T _{CLKP}	DSICLK Cycle time		1		4	Ns
T _{DSIR}	DSI Data Transfer Rate		T.B.D.		1100	Mbps
T _{SKEW[TX]}	Data to Clock Skew	VDDI=1.6	-0.15		0.15	UI _{INST}
т	Data to Clock Setup time	5~1.95V	0.15	-	-	UI _{INST}
T _{SETUP}			0.15	-	1	ns
Т	Data to Clock Hold time		0.15	-	•	UI _{INST}
T _{HOLD}			0.15	-	-	ns
UI _{INST}	UI instantaneous		1		12.5	ns

Table 7-2(Design Value)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{DSICLK}	DISCLK Frequency	time er Rate Skew UDDI=1.6 5~3.3V	T.B.D.		750	MHz
T _{CLKP}	DSICLK Cycle time		1		4	Ns
T _{DSIR}	DSI Data Transfer Rate		T.B.D.		1000	Mbps
T _{SKEW[TX]}	Data to Clock Skew		-0.15		0.15	UI _{INST}
т	Data to Clock Setup time		0.15	-	-	UI _{INST}
T _{SETUP}			0.15	-	-	ns
T	Data to Clock Hold time		0.15	-	-	UI _{INST}
T _{HOLD}			0.15	-	-	ns
UI _{INST}	UI instantaneous		1		12.5	ns

7-1-3. Global Operation Timings

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 12/ 22
--------------	---	----------------

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

Figure 10 MIPI HS Data Transmission in Bursts

Figure 11 MIPI switching the Clock Lane between Clock Transmission and LP mode

Table 8

Parameter	Description	Spec.			
Parameter	Description	Min.	Тур.	Max.	
_	Timeout for receiver to detect absence of Clock			60	20
T _{CLK-MISS}	transitions and disable the Clock Lane HS-RX.			00	ns
	Time that the transmitter continues to send HS				
	clock after the last associated Data Lane has	60 ns +52*UI			
T _{CLK-POST}	transitioned to LP Mode.		-	-	ns
	Interval is defined as the period from the end of				
	T _{HS-TRAIL} to beginning of T _{CLK-TRAIL}				
	Time that the HS clock shall be driver by the				
T _{CLK-PRE}	transmitter prior to any associated Data Lane	8	-	-	UI
	beginning the transition from LP to HS mode.				

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 13/ 22
--------------	---	----------------

		PRODUCT GROU	P		P1 2020		
		8K - PRODUCT					20.12.
T _{CLK-PREPARE}		ime that the transmitter drives the Clock Lane P-00 Line state immediately before the HS-00 ine state starting the HS transmission.	38	-	(95	ns
T _{CLK-SETTLE}	ig	ime interval during which the HS receiver shall nore any clock Lane HS transitions, starting om the beginning of T _{CLK-PREPARE} .	95	-	3	00	ns
T _{CLK-TERM-EN}	Н	ime for the Clock Lane receiver to enable the S line termination, starting from the time point then Dn crosses V _{ILMAX} .	Time for Dn to reach VTERM-EN	-	;	38	ns
T _{CLK-TRAL}	a	ime that the transmitter drives the HS-00 state fter the last payload clock bit of a HS HS ansmission burst.	60	-		-	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}		CLK-PREPARE + Time to that the transmitter drives ne HS-00 state prior to starting the clock.	300	-		-	ns
T _{D-TERM-EN}	Н	ime for the Data Lane receiver to enable the S line termination, starting from the time point then Dn crosses V _{ILMAX} .	Time for Dn to reach VTERM-EN	-	35ns	:+4*UI	-
T _{EOT}	Т	ransmitted time interval from the start of _{HS-TRAIL} or T _{CLK-TRAL} , to the start of the LP-11 tate following a HS burst.	-	-		105 ns +n*12*UI - 85ns+6*UI	
T _{HS-EXIT}		ime that the transmitter drives LP-11 following S burst.	100	-			
T _{HS-PREPARE}	L	ime that the transmitter drives the Data Lane P-00 Line state immediately before the HS-00 ine state starting the HS transmission.	40ns+4*Ul	-	85ns		
T _{HS-PREPARE} + T _{HS-ZERO}	Н	HS-PREPARE + Time that the transmitter drives the S-0 state prior to transmitting the Sync equence.	145 ns + 10*Ul	-		-	ns
T _{HS-SETTLE}	ig	ime interval during which the HS receiver shall nore any Data Lane HS transitions , starting om the beginning of T _{HSPREPARE}	85 ns + 6*Ul	-		5 ns 0*Ul	ns
Тнѕ-ѕкір	ig fo in	ime interval during which the HS-RX should prore any transitions on the Data Lane, bllowing a HS burst. The end point of the sterval is defined as the beginning of the LP-11 tate following the HS burst.	40	-	55 ns	55 ns + 4*Ul	
T _{HS-TRAIL}	d	ime that the transmitter drives the flipped ifferential state after last payload data bit of a S transmission burst	Max(n*8*UI, 60ns +n 4* UI)	-		-	ns
T _{INIT}	-		-	-		-	-
T_{LPX}		ransmitted length of any Low-Power state eriod	-	56.6	;	-	ns
Ratio T _{LPX}		atio of T _{LPX(MARSTER} /T _{LPS(SLAVE)} between Master and Slave side	2/3	-	3	3/2	

SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 14/ 22
The formation of the first of t	17/22

SPEC. NUMBER

		PRODUCT GROUP			REV. ISS		ISSUE DATA	
		8K - PRODUCT			P1	2020.12.3		i
	T _{TA-GET}	te that the new transmitter drives the bridge to (LP-00) after accepting control during a 5*T _{LPX} to Turnaround.					ns	
	T _{TA-GO}	Fime that the new transmitter drives the bridge state (LP-00) before releasing control during a Link Turnaround.	4*T	- LPX			ns	
	T _{TA-SURE}	Fime that the new transmitter waits after the LP-10 state before transmitting the Bridge state LP-00) during a Link turnaround.	T _{LPX}	-	2*T	- LPX	ns	
	TWAKEUP	Fime that a transmitter drivers a Mark-1 state prior to a Stop state in order to initiate an exit rom ULPS.	1				ms	

7-1-4. AC Characteristics of MIPI DSI Characteristics

Table 9

Symbol	Parameter		Тур.	Max.	Unit
Thost-enable	Host output enable time	0	-	24*t-bit	
Thost-disable	Host output disable time, entire length of the Turnaround 1 field	0	-	24*t-bit	
Tclient-enable	Client output enable time, entire length of the Turnaround 1 field	0	-	24*t-bit	ns
Tclient-disable	Client output disable time, measured from the end of the last bit of the Turnaround 2 field.	0	-	24*t-bit	

Figure 12

SPEC. NUMBER	SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 15/ 22
SPEC. NUMBER		_

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

8. Recommended Operating Sequence

8-1. Display Power on/off Sequence

Figure 15 Power On/Off Sequence

Item	Symbol	Unit	Test Condition	Minimum	Maximum
VSP-VSN delay time (10% to 10%)	tPON1	μs	Power on	0	=
VSP-VSN delay time (50% to 50%)	tPON2	μs	Power on	0	-
System power on to VSP ON time	tsVSP	ms	Power on	1	-
VSN-VSP delay time (10% to 10%)	tPOFF1	μs	Power off	0	-
VSN-VSP delay time (50% to 50%)	tPOFF2	μs	Power off	0	-
VSP OFF to system power OFF time	thVSP	μs	Power off	0	-

Figure 15

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

8-1. Initial Code

Version: Rev0. Diagonal Inch: 10.3

Table MIPI Setting

LABEL	SETTING	VALUE
(number)	Lane	8
1	x-size	2560
2	y-size	4320
3	НВР	44
4	HFP	56
5	HSW	3
6	VBP	6
7	VFP	25
8	VSW	3
9	PCLK	347.84MHZ
10	Frmae Rate	30HZ
11	GHS_Mbps	1050

Table Power Setting

Item	Voltage	Setting
	VDDI	1.8
input	ELVDD	5.5
	ELVSS	-5.5

SPEC. TITLE TOP103MONO8K01A Product Specification
101 Tooly of to 17 1 Toddot opcomodion

9 **Outline Information**

PRODUCT GROUP **8K-PRODUCT**

REV.

ISSUE DATA 2020.12.31

<u>7</u>

9-1. Total Outline

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

10. Reliability

10-1. Environmental test

Table 16

No.	Item	Condition	Qnty	Result	Judgment Criterion
1	HTS	80°C,120hr,storage	5 ea	OK	1. No clearly visible defects or remarkable deterioration of display quality. However,
2	LTS	-40°C,120hr,storage	5 ea	OK	any polarizer's deteriorations by the high temperature/ High humidity Storage test and the High temperature/ High humidity
3	LTO	-20°C,24hr,operation	5 ea	ОК	Operation test are permitted; 2. No function-related abnormalities; 3. Optical criteria:
4	THO	60°C/90%RH , 72hr,operation	10 ea	OK	Color shift30°White △u'v' ≤4.8JNCD ; NTSC typ100% ; contrast ratio 100000:1
5	TST	-40°C∼85°C, 1h/cycle , 100cycle	10 ea	OK	Response time <3ms ; LT95 300h Uniformity min80% ; Brightness typ350nit ;

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

11. Handling Precautions

11-1. Mounting Method

- Excessive stress or pressure on the glass of the LCD should be avoided. Care must be taken to insure that no torsional or compressive forces are applied to the LCD unit when it is mounted.
- If the customer's set presses on main parts of the LCD, the LCD may show the abnormal display. But this phenomenon does not mean the malfunction of the LCD and it should be pressed by the way of mutual agreement.
- To determine the optimum mounting angle, refer to the viewing angle range in the specification for each model.
- To mount LCD modules with the specified mounting method.

11-2. Handling & Cleaning Precautions

- Since the LCD is made of glass, DO NOT apply strong mechanical impact or static load onto it. Handling with care since shock, vibration, and careless handling may seriously affect the product. If it falls from a high place or receives a strong shock, the glass may be broken.
- The polarizers on the surface of panel are made from organic substances. Be very careful for any chemicals touch to the polarizers or it will lead the polarizers to be deteriorated.
- If the use of a chemical is unavoidable, use soft cloth with solvent (recommended below) to clean the LCD 's surface with wipe lightly.
 - -IPA(iso-Propyl Alcohol), Ethyl Alcohol, Trichlorotrifluoroethane.
- Do not wipe the LCD 's surface with dry or hard materials that will damage the polarizers and others. Do not use the following solvent.
 - -Water, Ketone, Aromatics
- It is recommended that the LCD be handled with soft gloves during assembly, etc. The polarizers on the LCD 's surface are vulnerable to scratch and thus to be damaged by sharp particles.
- Do not drop water or any chemicals onto the LCD 's surface.
- A protective film is supplied on the LCD and should be left in place until the LCD is required for operation.
- The ITO pad area needs special careful caution because it could be easily corroded.
- Do not contact the ITO pad area with HCFC, Soldering flux, Chlorine, Sulfur, saliva or fingerprint. To prevent the ITO corrosion, customers are recommended that the ITO area would be covered by UV or silicon. LCD should be stored in static-protective & vacuum polythene bag, please assembly it within 3 days after exposed to the air to avoid ITO corrosion.
- Do not clean the LCD with ultrasonic to avoid line open.
- Temperature of clean and bake should NOT be over 80℃.

11-3. Caution against Static Charge

• The LCD modules use C-MOS LSI drivers, so customers are recommended that any unused input

SPEC. NUMBER SPEC. TITLE TOP103MONO8K01A Product Specification	PAGE 20/ 22
---	----------------

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground body, work/assembly area, assembly equipments to protect against static electricity.

- Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertical from panel surface, if possible, under ESD control device like ion blower, and the humidity of working room should be kept over 45%RH to reduce the risk of static charge.
- Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- In handling the LCD, wear non-charged material gloves. And the conducting wrist to the earth and the conducting shoes to the earth are necessary.

11-4. Caution for Operation

SPEC. NUMBER

- It is indispensable to drive the LCD within the specified voltage limit since the higher voltage than the limit will shorten LCD 's lifetime. An electro-chemical reaction due to DC causes undesirable deterioration of the LCD so that the use of DC drive should avoid.
- Do not connect or disconnect the LCD to or from the system when power is on.
- Never use the LCD under abnormal conditions of high temperature and high humidity.
- When exposed to drastic fluctuation of temperature(hot to cold or cold to hot), the LCD may be affected. Specifically, drastic temperature fluctuation from cold to hot, produces dew on the LCD 's surface which may affect the operation of the polarizer and the LCD.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD may turn black at temperature above its operational range. However those phenomena do not mean malfunction or out of order with the LCD.
- Do not display the fixed pattern for a long time because it may develop image sticking due to the LCD structure. If the screen is displayed with fixed pattern, use a screen saver.
- Static electricity (ESD) will damage the panel, Please make sure that operators wear static-protective
 glove effectively and working tables &device are effectively grounded during operation and other ESD
 protective method.
- LCD should be stored in required humidity due to the risk of static under low humidity, while corrode the ITO circuit under high humidity.
- If WISECOCO has to change the conditions specified in the specification, previously the negotiation shall be held and decided.

PRODUCT GROUP	REV.	ISSUE DATA
8K - PRODUCT	P1	2020.12.31

12. Packing Specification

12-1. Box Pack

TBD