Memory

General notes and VHDL implementation

RAM Configuration

- An n x m RAM has n locations each of size m
 - Example 4K x 128 :
 - 4096 locations (1K = 1024)
 - The data in each location is 128 bits long
 - m is the size of the d_in bus and the d_out bus
 - n and m have no relationship
 - The size of the address bus is log₂n allowing each location to have a unique address

Simple RAM Configuration

VHDL for simple RAM

```
entity raminfer is
   generic (addr width : integer := 6;
            data width : integer := 8);
  port (
        clk : in std logic;
         we : in std logic;
         addr : in std logic vector((addr width - 1) downto 0);
         d in : in std logic vector(data width - 1 downto 0);
         d out : out std logic vector(data width - 1 downto 0));
end raminfer:
architecture rtl of raminfer is
type ram type is array ((2**addr width - 1) downto 0) of std logic vector (data width - 1 downto 0);
signal RAM : ram type;
begin
process(clk)
  begin
  if (clk'event and clk = '1') then
      if (we = '1') then
        RAM(to integer(unsigned(addr))) <= d in;</pre>
      d out <= RAM(to integer(unsigned(addr)));</pre>
   end if;
 end process;
end rtl;
```

Question: what is on d_out during a write cycle?

You must know this!

- Consider a 64K x 32 RAM
 - How many locations does it have?
 - How wide is the address input?
 - How wide are the data inputs and outputs?
- How many locations can be addressed with address(10 downto 0)?