

Melody Starter

Can Çağıncan

AI Music Generation some applications:

- Composition of music
- Music <u>mastering</u>
- Music recomendation
- Hit song prediction and acquisition for record companies
- Making of <u>new sounds</u>
- Smart instruments

the Project

Music generation.
Trained with
classical piano
pieces

the Aim

Compose melody from given notes, 1st stage: only sequence of notes!

the Method

CNN with WaveNet architecture

Generating music some challenges for AI:

Creative and musical challenges:

creativity, musical context, understanding musical structure and style, incorporating improvisation.

Technical challenges:

Data availability, Computational and model complexity, Interpretability.

Generating music WaveNet:

based on **Dilated** 1D **Causal** Convolution layers

It is a timeseries problem! Causal Convolution:

Generating music WaveNet:

Handicap: narrow receptive field

1D Causal Convolution

Dilated 1D Causal Convolution

Code

Extract Musics

From MIDI files by
Music21 and Mido
packages
as sequence of notes

Pata Preparation

Cut song in **pieces** and combine all songs

Train model

Train model in **wavenet** architecture

Start a melody

Give a **melody** to generate melody

Data Preparation

1.Extract: into sequence of notes

2.Cut in pieces: in a way to predict subsequent note from previous notes.

Prediction Processing

given melody or song

Results

Model 1

Music21

Model 2

Mido

in progress ...

Next steps:

- > Finish the second model
- Add note duration, delay and amplitude
- Train with more data
- > Try another models

Thanks!

Do you have any questions?

can.cagincan@fu-berlin.de

Model

Layer (type)	Output Shape	Param #
convld (ConvlD)	(None, 16, 64)	256
dropout (Dropout)	(None, 16, 64)	0
<pre>max_pooling1d (MaxPooling1D)</pre>	(None, 16, 64)	0
dense (Dense)	(None, 16, 256)	16640
conv1d_1 (Conv1D)	(None, 16, 64)	49216
dropout_1 (Dropout)	(None, 16, 64)	0
<pre>max_pooling1d_1 (MaxPooling 1D)</pre>	(None, 8, 64)	0
conv1d_2 (Conv1D)	(None, 4, 256)	82176
global_max_pooling1d (GlobalMaxPooling1D)	(None, 256)	0
dense_1 (Dense)	(None, 256)	65792
dense_2 (Dense)	(None, 108)	27756

Total params: 241,836 Trainable params: 241,836 Non-trainable params: 0