CATALOGED BY ASTIA AS AD BE 401905

THE UNIVERSITY OF WISCONSIN madison, wisconsin

UNITED STATES ARMY

MATHEMATICS RESEARCH CENTER

401 905

MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY THE UNIVERSITY OF WISCONSIN

Contract No.: DA-11-022-ORD-2059

DIVISION IN ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

Walter Rudin

MRC Technical Summary Report #273 November 1961

DIVISION IN ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS Walter Rudin

I. Introduction

1.1 If M_0 , M_1 , M_2 ,... are positive numbers, we denote by $C\{M_n\}$ the class of all complex functions f on the real line for which there exist constants $\beta = \beta_f \text{ and } B = B_f \text{ such that }$

(1)
$$\|D^n f\| \le \beta B^n M_n$$
 $(n = 0, 1, 2, ...)$,

where D=d/dx and $\| \ \|$ is the supremum norm: $\| f \| = \sup |f(x)|, -\infty < x < \infty$. The class of all members of $C\{M_n\}$ which are periodic, with period 2π , will be denoted by $C_n\{M_n\}$.

The sequence $\{M_n\}$ is said to be <u>logarithmically convex</u> if $\{\log M_n\}$ is convex, i.e., if $M_n^2 \leq M_{n-1}M_{n+1}$ for $n=1,2,3,\ldots$. If $\{\overline{M}_n\}$ is the largest logarithmically convex minorant of $\{M_n\}$, then $C\{M_n\} = C\{\overline{M}_n\}$ and $C_p\{M_n\} = C_p\{\overline{M}_n\}$. This follows from the inequalities

which are due to Kolmogoroff [6; pp. 211, 216].

Hence we may assume, without loss of generality, that $\{M_n^{}\}$ is logarithmically convex; unless the contrary is stated, this assumption will be made from now on.

Since $C\{M_n\} = C\{\lambda M_n\}$, for every positive constant λ , we may also assume

Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin under Contract No.: DA-11-022-ORD-2059.

that $M_0 = 1$. It will be convenient to define $A_0 = 1$ and

(3)
$$A_{n} = \left(\frac{M_{n}}{n!}\right)^{1/n} \qquad (n = 1, 2, 3, ...) .$$

1.2. Leibnitz' formula

(4)
$$D^{n}(f \cdot g) = \sum_{j=0}^{n} {n \choose j} D^{j} f \cdot D^{n-j} g$$

shows that each $C\{M_n\}$ is an algebra, under pointwise addition and multiplication: the above assumptions on $\{M_n\}$ show that $M_jM_{n-j}\leq M_n$ if $0\leq j\leq n$, and therefore the inequalities $\|D^nf\|\leq \beta_1\,B_1^nM_n$ and $\|D^ng\|\leq \beta_2\,B_2^nM_n$ imply

$$\|D^{n}(f \cdot g)\| \leq \sum_{j=0}^{n} {n \choose j} \beta_{1}B_{1}^{j}M_{j}\beta_{2}B_{2}^{n-j}M_{n-j}$$

$$\leq \beta_{1}\beta_{2}M_{n}\sum_{j=0}^{n} {n \choose j}B_{1}^{j}B_{2}^{n-j} = \beta_{1}\beta_{2}(B_{1} + B_{2})^{n}M_{n}.$$
(5)

1.3. The algebra $C\{M_n\}$ is called <u>quasianalytic</u> if the zero-function is the only member of $C\{M_n\}$ such that $D^nf(x_0)=0$ for $n=0,1,2,\ldots$, at some point x_0 . Otherwise, $C\{M_n\}$ is <u>non-quasianalytic</u>. The theorem of Denjoy and Carleman ([1], [6]) states that $C\{M_n\}$ is quasianalytic if and only if

$$\sum_{n=0}^{\infty} \frac{M_n}{M_{n+1}} = \infty .$$

Since $\{\log M_n\}$ is convex and $M_0=1$, we see that $(M_n/M_{n+1})^n \leq M_n^{-1}$, so that the condition (6) implies

$$\sum_{1}^{\infty} M_{n}^{-1/n} = \infty .$$

that $M_0 = 1$. It will be convenient to define $A_0 = 1$ and

(3)
$$A_{n} = \left(\frac{M_{n}}{n!}\right)^{1/n} \qquad (n = 1, 2, 3, ...) .$$

1.2. Leibnitz' formula

(4)
$$D^{n}(f \cdot g) = \sum_{j=0}^{n} {n \choose j} D^{j} f \cdot D^{n-j} g$$

shows that each $C\{M_n\}$ is an algebra, under pointwise addition and multiplication: the above assumptions on $\{M_n\}$ show that $M_jM_{n-j}\leq M_n$ if $0\leq j\leq n$, and therefore the inequalities $\|D^nf\|\leq \beta_1\,B_1^nM_n$ and $\|D^ng\|\leq \beta_2\,B_2^nM_n$ imply

$$\| D^{n}(f \cdot g) \| \leq \sum_{j=0}^{n} {n \choose j} \beta_{1} B_{1}^{j} M_{j} \beta_{2} B_{2}^{n-j} M_{n-j}$$

$$\leq \beta_{1} \beta_{2} M_{n} \sum_{j=0}^{n} {n \choose j} B_{1}^{j} B_{2}^{n-j} = \beta_{1} \beta_{2} (B_{1} + B_{2})^{n} M_{n}.$$
(5)

1.3. The algebra $C\{M_n\}$ is called <u>quasianalytic</u> if the zero-function is the only member of $C\{M_n\}$ such that $D^nf(x_0)=0$ for $n=0,1,2,\ldots$, at some point x_0 . Otherwise, $C\{M_n\}$ is <u>non-quasianalytic</u>. The theorem of Denjoy and Carleman ([1],[6]) states that $C\{M_n\}$ is quasianalytic if and only if

$$\sum_{0}^{\infty} \frac{M_{n}}{M_{n+1}} = \infty .$$

Since $\{\log M_n\}$ is convex and M_0 = 1, we see that $(M_n/M_{n+1})^n \le M_n^{-1}$, so that the condition (6) implies

$$\sum_{1}^{\infty} M_{n}^{-1/n} = \infty .$$

To prove the converse we appeal to the inequality [7]

$$\sum (a_1 a_2 \dots a_n)^{1/n} \leq e \sum a_n,$$

valid for $a_i > 0$, and take $a_i = M_{i-1}/M_i$.

Thus (7) is also a necessary and sufficient condition for quasianalyticity.

1.4. If $1/f \in C\{M_n\}$ whenever $f \in C\{M_n\}$ and $\inf_x |f(x)| > 0$, we call $C\{M_n\}$ inverse-closed; a similar definition applies to $C_p\{M_n\}$.

The problem with which we are concerned, and which is solved in the present paper, is the description of all inverse-closed non-quasianalytic algebras $C\{M_n\}$. It turns out that they are precisely those for which there is a constant K such that the inequalities

$$A_{s} \leq KA_{n}$$

hold whenever $s \le n$; here $\{A_n\}$ is defined by (3).

The condition (8) is satisfied with K=1 precisely when $\{A_n\}$ is an increasing sequence. Accordingly, we shall call $\{A_n\}$ almost increasing if (8) is satisfied for some $K<\infty$.

1.5. Actually, a more striking dichotomy exist than was indicated in the preceding paragraph. Our main results may be summarized as follows:

THEOREM A. Suppose $\{A_n\}$ is almost increasing. Then $C\{M_n\}$ is inverse-closed. Furthermore, if $f \in C\{M_n\}$ and if ϕ is an analytic function in an open set which contains the closure of the range of f, then $\phi \circ f \in C\{M_n\}$.

-4- . #273

THEOREM B. Suppose $C\{M_n\}$ is non-quasianalytic and $\{A_n\}$ is not almost increasing. Then there exists an $f \in C_p\{M_n\}$ and an entire function ϕ such that

- (i) if λ is any complex number, then $(\lambda f)^{-1}$ is not in $C\{M_n\}$;
- (ii) $\phi \bullet f \underline{\text{is not in}} C\{M_n\}.$

The symbol $\phi \bullet f$ indicates the function defined by: $(\phi \bullet f)(x) = \phi(f(x))$.

Since f is bounded, (i) shows that $C\{M_n\}$ is not inverse-closed, by taking $|\lambda| > \|f\|$. Actually, (i) shows more: for some $f \in C_p\{M_n\}$ the spectrum of f (relative to the algebra $C_p\{M_n\}$) consists of the whole plane, although the range of f is compact. We state the result for $C_p\{M_n\}$ rather than for $C\{M_n\}$ to emphasize that the phenomenon (i) is not caused by the behavior of f near infinity, but that it is present in non-quasianalytic algebras on the circle.

It would be interesting to extend Theorem B to quasianalytic classes.
1.6. The problem treated here has the following background. Let A be the class of all functions on the circle which are sums of absolutely convergent trigonometric series. Katznelson ([4],[2]) proved that if ϕ is defined on the real line and if ϕ of ϕ A for all real ϕ A, then ϕ must be analytic on the line. Malliavin [5] has proved that corresponding to every inverse-closed non-quasianalytic class $C\{M_n\}$ there is a real ϕ A such that ϕ of ϕ A only if ϕ C(ϕ A). It is known that the intersection of all non-quasianalytic classes is precisely the class $C\{n!\}$, which consists of analytic functions (a proof is included in Part IV).
If it were true that the intersection of all inverse-closed non-quasianalytic classes is also $C\{n!\}$, then Malliavin's result would imply Katznelson's. But it is not so:

THEOREM C. The intersection of all inverse-closed non-quasianalytic classes is precisely the class C{(n log n)ⁿ}.

Since $C\{M_n\}$ is a subclass of $C\{M_n^*\}$ if and only if $\{(M_n/M_n^*)^{1/n}\}$ is bounded above [1;p.19] and since Stirling's formula implies that

we see that $C\{n!\}$ is a proper subclass of $C\{(n \log n)^n\}$.

In particular, it follows that there exist non-quasianalytic algebras which are not inverse-closed, a fact which seems to have escaped previous notice.

II. PROOF OF THEOREM A.

2.1. THEOREM. Suppose $A_s \le KA_n$ whenever $s \le n$, for some fixed K. If σ , β , B are positive constants, if

(1)
$$\|D^n f\| \le \beta B^n M_n$$
 $(n = 0, 1, 2, ...)$

and if $|f(x)| \ge \sigma$ ($-\infty < x < \infty$), then

(2)
$$\|D^{n}(1/f)\| \leq \beta_{1}B_{1}^{n}M_{n}$$
 $(n = 0, 1, 2,...)$,

where $\beta_1 = 2/\sigma$, $B_1 = BK(1 + 2\beta/\sigma)$.

This is due to Malliavin [5]. We include the proof since the quantitative version stated here is needed for Theorem 2.3.

<u>Proof.</u> Choose ϵ so that $2\beta \epsilon = (1 - \epsilon)\sigma$, then choose $\{r_n\}$ so that $BKA_n r_n = \epsilon$ (n = 0, 1, 2, ...). Fix n, fix x_0 , and define

$$Q(z) = f(x_0) + Df(x_0)z + ... + \frac{D^n f(x_0)}{n!} z^n$$

For $1 \le s \le n$ we have

$$|D^{s}f(x_{0})|/s! \leq \beta B^{s}A_{s}^{s} \leq \beta (BKA_{n})^{s}$$

and hence $|z| \le r_n$ implies

$$|Q(z)| \ge \sigma - \beta \sum_{s=1}^{n} (BKA_{n} r_{n})^{s} > \sigma - \beta \sum_{l=1}^{\infty} \epsilon^{s}$$

$$= \sigma - \frac{\beta \epsilon}{1 - \epsilon} = \frac{\sigma}{2} .$$

The first n derivatives of Q at z=0 are equal to the first n derivatives of f at $x=x_0$. Hence $D^n(1/f)(x_0)=D^n(1/Q)(0)$, and Cauchy's formula gives

(4)
$$D^{n}(1/f)(x_{0}) = \frac{n!}{2\pi i} \int_{|z|=r_{n}} \frac{dz}{z^{n+1}Q(z)}.$$

We conclude from (3) and (4) that

$$|D^{n}(1/f)(x_{0})| \leq \frac{2}{\sigma} \cdot \frac{n!}{r_{n}^{n}} = \frac{2}{\sigma} \left(\frac{BK}{\epsilon}\right)^{n} M_{n},$$

which completes the proof.

2.2. LEMMA. Suppose {fp} is a sequence of functions on the real line which converges pointwise to a function f, and which satisfies the inequalities

(5)
$$\|D^n f_p\| \le R_n < \infty \quad (n = 0, 1, 2, ...; p = 1, 2, 3, ...)$$

Then we also have $\|D^n f\| \le R_n$ for all $n \ge 0$.

<u>Proof.</u> Suppose that $D^j f$ exists and that $D^j f_p \to D^j f$ pointwise (for j = 0, this is part of the hypothesis). Fix x and $\epsilon > 0$, restrict y so that $0 < |y - x| < \epsilon/R_{j+2}$.

Then
$$\frac{D^{j}f_{p}(y) - D^{j}f_{p}(x)}{y - x} - D^{j+1}f_{p}(x) = \frac{y - x}{2}D^{j+2}f_{p}(\xi)$$

for some ξ between x and y. Write (6) once more, with q in place of p, and subtract the two equations. The right side is less than ϵ ; letting $p, q \to \infty$, the quotients on the left converge to the same limit, namely $\{D^j f(y) - D^j f(x)\}/(y-x)$. Hence $\{D^{j+1} f_p(x)\}$ is a Cauchy sequence. Let L be its limit. Then (6) gives

(7)
$$\left| \frac{D^{j}f(y) - D^{j}f(x)}{y - x} - L \right| \leq \epsilon$$

as soon as $0 < |y-x| < \epsilon/R_{j+2}$. Thus $D^{j+1}f$ exists and $D^{j+1}f_p + D^{j+1}f$ pointwise.

The proof is completed by induction.

2.3. THEOREM. Suppose $f \in C\{M_n\}$, $\{A_n\}$ is almost increasing, and ϕ is analytic in an open set which contains the closure of the range of f. Then $\phi \circ f \in C\{M_n\}$.

<u>Proof.</u> There exists Γ , a union of finitely many rectifiable curves in the domain of ϕ , and there exists $\sigma > 0$, such that

(8)
$$|z - f(x)| \ge \sigma$$

for all $z \in \Gamma$ and all real x, and such that

(9)
$$\phi(f(x)) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\phi(z)}{z - f(x)} dz \quad (-\infty < x < \infty) .$$

There is a sequence of partitions of Γ , by points $z_0^{(p)}, z_1^{(p)}, \dots, z_{N_p}^{(p)}$, such that the functions g defined by

that the functions
$$g_p$$
 defined by
$$g_p(x) = \frac{1}{2\pi i} \sum_{j=1}^{N} \frac{\phi(z_j)}{z_j - f(x)} (z_j^{(p)} - z_{j-1}^{(p)})$$

converge to $\phi(f(x))$, as $p \rightarrow \infty$.

Choosing β and B so that $\|D^n f\| \le \beta B^n M_n$ and $\|f - z\| \le \beta$ for all $z \in \Gamma$, Theorem 2.1 shows that

(11)
$$\|D^{n}(\frac{1}{z_{j}-f})\| \leq \beta_{1}B_{1}^{n}M_{n} \quad (n \geq 0)$$
.

Since ϕ is bounded on Γ and since $\sum |\mathbf{z}_{j}^{(p)} - \mathbf{z}_{j-1}^{(p)}|$ does not exceed the length of Γ , we see from (10) and (11) that

(12)
$$\|D^{n}g_{p}\| \leq \beta_{2}B_{1}^{n}M_{n} \quad (n \geq 0).$$

Lemma 2.2 now implies that

(13)
$$\|D^{n}(\phi \cdot f)\| \leq \beta_{2}B_{1}^{n}M_{n} \quad (n \geq 0)$$
,

and this completes the proof.

III. PROOF OF THEOREM B.

3.1. LEMMA. Suppose $\{a(n)\}$ is a sequence of positive numbers such that $\{na(n)\}$ is increasing but $\{a(n)\}$ is not almost increasing. Then there exist sequences of integers, $\{s_i\}$ and $\{m_i\}$, both tending to ∞ , such that

(1)
$$\frac{a(s_i)}{a(m_i s_i)} \to \infty \qquad (i \to \infty) .$$

Proof. Put

(2)
$$\gamma(s) = \sup \left\{ \frac{\alpha(s)}{\alpha(s+1)}, \frac{\alpha(s)}{\alpha(s+2)}, \frac{\alpha(s)}{\alpha(s+3)}, \dots \right\} .$$

Since $\{a(n)\}\$ is not almost increasing, we have $\sup_{S} \gamma(s) = \infty$.

Since $\{a(n)\}$ increases, we have

$$\frac{a(s)}{a(ms)} \leq m \qquad (m \geq 1) .$$

Also, if $s \le n$, then n = ms + t with $0 \le t < s$, and so $a(ms) \le na(n)/ms \le 2a(n)$. Thus $a(s)/a(ms) \ge a(s)/2a(n)$, which gives

(4)
$$\sup_{m>1} \frac{\alpha(s)}{\alpha(ms)} \geq \frac{1}{2} \gamma(s) .$$

Since sup $\gamma(s) = \infty$, (4) shows that (1) holds for some sequences $\{s_i\}$, $\{m_i\}$; by (3) this is only possible if $m_i \rightarrow \infty$.

If $\gamma(s) = \infty$, for all s, we can take for $\{s_i\}$ any sequence tending to ∞ , and then find $\{m_i\}$ so that (1) holds. If $\gamma(s_0) < \infty$ for some s_0 , then inf $\alpha(n) > 0$, and (1) implies that $\alpha(s_i) \to \infty$, i.e., that $s_i \to \infty$.

3.2 LEMMA. Suppose $C\{M_n\}$ is non-quasianalytic and I is a closed interval in the interior of a closed interval J on the real line. Then there exists a constant β and a function h such that $\gamma(s) = 1$ on I, $\gamma(s) = 0$ off J, $\gamma(s) < 1$, and

(5)
$$\|D^n h\| \leq \beta M_n$$
 $(n = 0, 1, 2, ...)$.

<u>Proof.</u> Put $a_n = M_{n-1}/M_n$. Then $\{a_n\}$ decreases monotonically, and $\sum a_n < \infty.$ There exists a monotonically decreasing sequence $\{b_n\}$ such that $a_n/b_n \to 0 \text{ and } \sum b_n < \infty.$ Put $M_n^* = (b_1b_2...b_n)^{-1}$. Then $\sum M_{n-1}^*/M_n^* = \sum b_n < \infty \text{ and } \{M_n^*\} \text{ is logarithmically convex. Hence } C\{M_n^*\}$ is non-quasianalytic. Also,

(6)
$$\left\{\frac{M_n^*}{M_n}\right\}^{1/n} = \left\{\frac{a_1 \cdots a_n}{b_1 \cdots b_n}\right\}^{1/n} \rightarrow 0 \quad (n \rightarrow \infty) .$$

Since $C\{M_n\}$ is non-quasianalytic, there is a function $g \in C\{M_n^*\}$ such

that g(x) = 0 if $x \le 0$, g(x) = 1 if $x \ge x_0$ for some $x_0 > 0$. Bang [1; p.55] (see also Mandelbrojt [6; p.103]) has indicated a very simple construction which achieves this. Affine changes of variables (which do not affect the class $C\{M_n^*\}$) then give functions h_1 , $h_2 \in C\{M_n^*\}$ such that $h_1 = 0$ to the left of J, $h_1 = 1$ on J and to the right of J, $h_2 = 0$ to the right of J, $h_2 = 1$ on J and to the left of J. Put J and J and J are the required properties, except that (5) is replaced by

(7)
$$\|D^n h\| \le B^n M_n^*$$
 $(n = 0, 1, 2, ...)$,

for some constant B. Setting $\beta = \max_{n} B^{n} M_{n}^{*} / M_{n}$, (6) shows that $\beta < \infty$, and (7) shows that (5) holds.

3.3. We now turn to the proof of Theorem B. Put

(8)
$$\mu_n = M_n/M_{n+1}$$
 $(n = 0, 1, 2, ...)$.

By the Denjoy-Carleman Theorem, $\sum \mu_n < \infty$. Replacing M_n by $k^n M_n$, if necessary, we may assume, without loss of generality, that

$$(9) \qquad \qquad \sum_{0}^{\infty} \mu_{n} < \frac{1}{2} .$$

We define

(10)
$$f_s(x) = \mu_s^s M_s \exp\{ix/\mu_s\}$$
 (s = 0,1,2,...)

and note that

(11)
$$D^{n}(f_{s}^{m}) = (im/\mu_{s})^{n}f_{s}^{m} \quad (s, n \ge 0, m \ge 1) .$$

The convexity of $\{\log M_n\}$ shows that $M_s^{s+l-n} \leq M_n M_{s+l}^{s-n}$ if $0 \leq n \leq s$; if $s+l \leq n$, we have similarly $M_{s+l}^{n-s} \leq M_s^{n-s-l} M_n$. Thus the inequality

#273 -11-

$$M_s^{s+l-n} \leq M_n M_{s+l}^{s-n}$$

holds in all cases.

Applying (12) to (11), with m = 1, we see that

(13)
$$\|D^n f_s\| = \mu_s^{s-n} M_s \le M_n$$
 (s, $n \ge 0$).

In particular, taking n = 0,

(14)
$$\|f_s^m\| = \|f_s\| \le M_0 = 1$$
 $(s \ge 0, m \ge 1)$.

By (9), we can place disjoint closed intervals J_k in $(0,2\pi)$ which contain intervals I_k in their interiors, with $m(I_k) = 2\pi \mu_k$, and Lemma 3.2 shows that there are functions h_k and constants $\beta_k > k$ such that $h_k = 1$ on I_k , $h_k = 0$ off J_k , and

(15)
$$\|D^n h_k\| \le \beta_k M_n$$
 (u, $k \ge 0$).

Put
$$a(0) = 1$$
 and define $a(n)$ by
$$1/n$$
 (16)
$$n a(n) = M_n \qquad (n \ge 1) .$$

By hypothesis, $\{A_n\}$ is not almost increasing. By Stirling's formula, $\{\alpha(n)/A_n\}$ is bounded above and below by positive numbers. Hence $\{\alpha(n)\}$ is not almost increasing. Our standing assumptions on $\{M_n\}$ (logarithmic convexity, and $M_0=1$) imply that $\{n\ \alpha(n)\}$ increases. Thus Lemma 3.1 applies, and there are sequences $\{s_k\}$, $\{m_k\}$, tending to ∞ , such that $s_k > k$, $2^{s_k} > \beta_k$, and $\frac{\alpha(s_k)}{\alpha(m_k s_k)} \to \infty$ $(k \to \infty)$.

We extend the functions $\ h_k \cdot f_{s_k}$, defined in (0, 2\pi), to be periodic, with period 2\pi, and define

(18)
$$f(x) = \sum_{k=0}^{\infty} \frac{1}{\beta_k} h_k(x) f_{s_k}(x) .$$

By (13), (15), and Leibnitz' formula, we have $\|D^n(h_k f_{s_k})\| \le 2^n M_n$. The functions h_k have disjoint supports. Hence if g is any partial sum of the series (18), we have $\|D^n g\| \le 2^n M_n$, and we conclude from Lemma 2.2 that $\|D^n f\| \le 2^n M_n$. Thus $f \in C_p\{M_n\}$.

Since 0 is in the range of f, it is clear that f^{-1} is not in $C\{M_n\}$. Fix $\lambda \neq 0$, put $F = (1 - f/\lambda)^{-1}$, and assume (this will lead to a contradiction) that $F \in C\{M_n\}$. For some $B < \infty$ we then have

(19)
$$\|D^n F\| \le B^n M_n$$
 $(n \ge 1)$.

For large enough k, $|\lambda|\beta_k>1$. Since $h_k=1$ on I_k and $h_j=0$ on I_k if $j\neq k$, we have

(20)
$$F(x) = \sum_{m=0}^{\infty} (\lambda \beta_k)^{-m} f_{s_k}^m(x) \qquad (x \in I_k, k \ge k_0).$$

By (11) and (14), the series (20) may be differentiated term by term any number of times, since the resulting series converge uniformly on I_k . Since $s_k > k$, we have $\mu_{s_k} \le \mu_k$, so that there is a point $x_k \in I_k$ at which $\exp\{ix/\mu_{s_k}\} > 0$.

Differentiating (20) n times at x_k therefore gives

(21)
$$D^{n}F(x_{k}) = i^{n} \sum_{m=0}^{\infty} (m/\mu_{s_{k}})^{n} |f_{s_{k}}(x_{k})/\lambda \beta_{k}|^{m},$$

by (11). By (19), no term in the series (21) exceeds $B^n M_n$. Taking $m = m_k$ and $n = m_k s_k$, (10) shows therefore that

(22)
$$\left| \frac{\sum_{k=0}^{\infty} M_{k}^{k}}{\lambda \beta_{k}} \right|^{m_{k}} \leq B^{m_{k} s_{k}} M_{m_{k} s_{k}} \qquad (k \geq k_{0}).$$

Taking nth roots in (22) and using (16), we obtain

(23)
$$\frac{\alpha(s_k)}{\alpha(m_k s_k)} \leq B |\lambda \beta_k|^{1/s_k} \leq 2B |\lambda|^{1/s_k}.$$

The last term in (23) is bounded, as $k \rightarrow \infty$, and this contradicts (17).

Thus $(l-f/\lambda)^{-1}$ is not in $C\{M_n\}$, and part (i) of Theorem B is proved. Part (ii) is proved quite similarly. Suppose

(24)
$$\phi(z) = \sum_{n=0}^{\infty} c_{n} z^{n}, \quad 0 < c_{n} < 1, \quad c_{m}^{1/m} \to 0$$

and put $g(x) = \phi(f(x))$. On I_k we have, in place of (20),

(20')
$$g(x) = \sum_{m=0}^{\infty} \frac{c_m}{\beta_k^m} f_k^m(x)$$
,

and we can choose $x_k \in I_k$ so that $f_k(x_k) > 0$. In place of (23) we obtain

(23')
$$c_{m_k}^{1/m_k s_k} \cdot \frac{\alpha(s_k)}{\alpha(m_k s_k)} \leq 2B.$$

Since $c_m^{1/m} \le c_m^{1/ms}$, this gives

(25)
$$c_{m_k}^{1/m_k} \leq 2B \cdot \frac{\alpha(m_k s_k)}{\alpha(s_k)} .$$

But $\{c_m^{1/m}\}$ can tend to 0 without satisfying (25), since the right side of (25) tends to 0 as $k \to \infty$, by (16).

This completes the proof.

IV. PROOF OF THEOREM C.

4.1. Let us now assume that $C\{M_n\}$ is non-quasianalytic and inverse-closed. By Theorem B, $\{A_n\}$ is then almost increasing, and so is $\{a_n\}$, if $a_n = M_n^{1/n}/n$. Choose K so that $a_s \leq Ka_n$ if $s \leq n$. Since $\sum M_n^{-1/n} < \infty$ (see § 1.3), $\sum (na_n)^{-1} < \infty$. But

$$\sum_{\substack{n^{1/2} < s < n}} \frac{1}{s\alpha_s} \ge \frac{1}{K\alpha_n} \cdot \sum_{s} \frac{1}{s} \sim \frac{1}{K\alpha_n} \cdot \frac{1}{2} \log n .$$

The sum on the left tends to 0 as $n \to \infty$, hence $a_n / \log n \to \infty$, and this means that $C\{M_n\}$ contains $C\{(n \log n)^n\}$ and therefore proves one half of Theorem C.

4.2. To prove the other half, we consider a function $f \not\in C\{n \log n\}^n\}$, and we shall construct a non-quasianalytic class $C\{M_n\}$, with $\{a_n\}$ increasing, such that $f \not\in C\{M_n\}$.

Since $f \notin C\{(n \log n)^n\}$, either some derivative of f fails to be bounded, in which case f belongs to no $C\{M_n\}$, or there is a sequence $\{n_i\}$ such that

(1)
$$\|D^{n_i}f\| > (i^3n_i \log n_i)^{n_i};$$

we can make $\{n_{\underline{i}}\}$ increase so rapidly that

(2)
$$n_{i+1} > n_i \log (i^2 \log n_i)$$
.

Define

(3)
$$\phi(n_i) = n_i \log (i^2 n_i \log n_i)$$

and

(4)
$$\phi(n) = a_i + b_i n + n \log n$$
 $(n_i \le n \le n_{i+1})$,

where a_i and b_i are so chosen that the definitions of $\phi(n)$ agree when

 $n = n_i$, $n = n_{i+1}$. Thus

(5)
$$a_{i} + b_{i}n_{i} = n_{i} \log (i^{2} \log n_{i})$$

$$a_{i} + b_{i}n_{i+1} = n_{i+1} \log ((i+1)^{2} \log n_{i+1}).$$

From this we deduce that $a_i < 0$, and, via (2), that

(6)
$$b_i > \log(i^2 \log n_{i+1}) - 1$$
.

Now put $M_n = \exp \{\phi(n)\}$. If $n_i \le n \le n_{i+1}$, then

(7)
$$\exp\{-b_i\} < e/i^2 \log n_{i+1}$$
,

and hence, by (6),

$$\frac{M}{M_{n+1}} = \exp \{\phi(n) - \phi(n+1)\} = \exp \{-b_i\} \cdot \frac{n}{(n+1)^{n+1}}$$

$$< \frac{e}{i^2 \log n_{i+1}} \cdot (1 + \frac{1}{n})^{-n-1} \cdot \frac{1}{n} < \frac{1}{n i^2 \log n_{i+1}} .$$

It follows that

(9)
$$\sum_{\substack{n_{i}+1 \\ n_{i}+1}}^{n_{i+1}} \frac{M_{n-1}}{M_{n}} < \frac{1}{i^{2} \log n_{i+1}} \sum_{\substack{n_{i} \\ n_{i}}}^{n_{i+1}} \frac{1}{n} < \frac{1}{i^{2}} ,$$

so that $C\{M_n\}$ is non-quasianalytic.

Next,

(10)
$$a_n = \frac{\phi(n)}{n} - \log n = b_i + \frac{a_i}{n} \qquad (n_i \le n \le n_{i+1}),$$

and since $a_i < 0$, $\{a_n\}$ increases. We can also arrange our construction so that $b_{i+1} > b_i$, and then ϕ will be convex. (This is not really necessary, since

the convergence of $\sum M_n/M_{n+1}$ assures the non-quasianalyticity of $C\{M_n\}$ even without logarithmic convexity of $\{M_n\}$.)

By (1) and (3), $f \notin C\{M_n\}$, and the proof of Theorem C is thus complete. 4.3. THEOREM. The intersection of all non-quasianalytic classes $C\{M_n\}$ is the class $C\{n!\}$. (Our reason for including a proof of this result is stated in § 1.6.)

<u>Proof.</u> If $A_{n_i} < A$ for some sequence $\{n_i\}$ tending to ∞ and some constant A, if $f \in C\{M_n\}$, and if $D^n f(0) = 0$ for $n = 0, 1, 2, \ldots$, then for each $x \neq 0$ there exists $\xi = \xi(x, n_i)$ such that

$$|f(x)| = |D^{i}f(\xi)x^{i}/n_{i}!| \le |\beta B^{i}M_{n_{i}}x^{n_{i}}/n_{i}!|$$

= $|\beta| \cdot |BA_{n_{i}}x|^{n_{i}} \le |\beta| \cdot |BAx|^{n_{i}}$,

where $\beta,$ B depend on f. If |BAx|<1, it follows that f(x)=0. Hence $C\{M_n\}$ is quasianalytic.

Thus $C\{n!\}$ is contained in every non-quasianalytic $C\{M_n\}$.

To prove the converse, suppose $f \notin C\{n!\}$. Then there is a sequence $\{n_i\}$ such that

$$\|D^{n_{i}}f\| > (i^{3}n_{i})^{n_{i}}$$

and

$$\begin{array}{c} n_{i+1} > n_i \, \log \, (i^2 n_i^{}) \;\; . \\ \\ \text{Put} \quad \phi(n_i^{}) = n_i \, \log \, (i^2 n_i^{}), \quad \phi(n) = a_i^{} + b_i^{} n \;\; \text{for} \;\; n_i^{} \leq n \leq n_{i+1}^{}, \quad \text{where} \\ \\ a_i^{} + b_i^{} n_i^{} = n_i^{} \, \log \, (i^2 n_i^{}) \\ \\ a_i^{} + b_i^{} \; n_{i+1}^{} = n_{i+1}^{} \, \log \, ((i+1)^2 n_{i+1}^{}) \;\; , \end{array}$$

#273 -17-

and define $M_n = \exp \{\phi(n)\}$. As in § 4.2, we now have $b_i > \log (i^2 n_{i+1}) - 1$, hence

$$\frac{M_n}{M_{n+1}} = e^{-b_i} < \frac{e}{i^2 n_{i+1}} \qquad (n_i \le n \le n_{i+1}),$$

and

$$\sum_{n_{i}+1}^{n_{i}+1} M_{n-1}/M_{n} < i^{-2}.$$

Thus $C\{M_n\}$ is non-quasianalytic, and since our definition of ϕ shows that $f \notin C\{M_n\}$, the proof is complete.

V. MISCELLANEOUS RESULTS

5.1. THEOREM. Every non-quasianalytic algebra $C\{M_n\}$ is contained in an inverse-closed algebra $C\{M_n^*\}$ which is minimal in the following sense: if $C\{M_n^i\}$ contains $C\{M_n^i\}$ and if $C\{M_n^i\}$ is inverse-closed, then $C\{M_n^i\}$ contains $C\{M_n^*\}$.

<u>Proof.</u> Put $A_n^* = \max_{s \le n} A_s$ and $M_n^* = n! A_n^*$. Since $M_n \le M_n^*$ we have $C\{M_n^*\} \subset C\{M_n^*\}$. Since $\{A_n^*\}$ increases, $C\{M_n^*\}$ is inverse-closed. (Note that the proof of Theorem A made no use of logarithmic convexity.)

Now suppose $C\{M_n\}\subset C\{M_n'\}$ and $C\{M_n'\}$ is inverse-closed. Since $C\{M_n'\}$ is non-quasianalytic, Theorem B shows that $\{A_n'\}$ is almost increasing, where $A_n' = \{M_n'/n!\}^{1/n}$. Hence there are constants λ , K, such that $M_n \leq \lambda^n M_n'$ and $A_s' \leq KA_n'$ if $s \leq n$. This implies $A_s \leq \lambda KA_n'$, hence $A_n^* \leq \lambda KA_n'$, hence $A_n^* \leq \lambda KA_n'$, hence $A_n^* \leq \lambda KA_n'$, hence $A_n' \leq \lambda KA_n'$,

-18- #273

5.2. THEOREM. There exist non-quasianalytic algebras $C\{M_n\}$ which contain no inverse-closed non-quasianalytic $C\{M_n'\}$.

<u>Proof.</u> Theorem 4.3 shows that there is a non-quasianalytic $C\{M_n\}$ such that

$$\left\{\frac{M_{n_{i}}}{n_{i} \log n_{i}}\right\}^{1/n_{i}} \rightarrow 0$$

for some sequence $\{n_i\}$. If $C\{M_n'\} \subset C\{M_n\}$, it follows that $C\{M_n'\}$ does not contain $C\{(n \log n)^n\}$, and hence Theorem C shows that $C\{M_n'\}$ cannot be both inverse-closed and non-quasianalytic.

5.3. COMPLEX HOMOMORPHISMS OF $C_{p}\{M_{n}\}$.

Since we are investigating certain function algebras, it is appropriate to study their maximal ideals and the complex homomorphisms which exist on them. We restrict ourselves to the algebras $C_p\{M_n\}$, for simplicity, for then we are dealing with functions on the circle T, i.e., on a compact space.

If $C_p\{M_n\}$ is inverse-closed, there are no problems. For each $x \in T$, let I_x be the set of all $f \in C_p\{M_n\}$ which vanish at x. Then I_x is clearly a maximal ideal in $C_p\{M_n\}$. Conversely, assume I is a maximal ideal different from every I_x . For each x, there is a function $f_x \in I$ such that $f_x(x) \neq 0$, and the compactness of T shows that there are points x_1, \dots, x_n such that $g = \sum_{l=1}^n f_x = \sum_{l=1}^n f_x = \sum_{l=1}^n f_x = \sum_{l=1}^n f_{l} =$

If $C_p\{M_n\}$ is inverse-closed, then every maximal ideal I in $C_p\{M_n\}$ is of the form $I = I_x$, and every complex homomorphism ψ of $C_p\{M_n\}$ is of the form $\psi(f) = f(x)$, for some $x \in T$.

#273 -19-

(By a complex homomorphism of $C_p\{M_n\}$ we mean a multiplicative linear functional which maps $C_p\{M_n\}$ onto the complex field. We make no continuity assumptions. Indeed, we have not introduced a topology in $C_p\{M_n\}$.)

If $C_p\{M_n\}$ is not inverse-closed, then, on the other hand, there <u>do</u> also exist other maximal ideals. For if $f \in C_p\{M_n\}$, if f has no zero on T, and if $1/f \not\in C_p\{M_n\}$, then f generates a proper ideal in $C_p\{M_n\}$ which, by Zorn's lemma, is contained in a maximal ideal I; since $f \in I$, I is different from I_x for all $x \in T$.

It is nevertheless conceivable that all complex homomorphisms are of the form $\psi(f)=f(x)$ for some $x\in T$, so that the quotient algebras $C_p\{M_n\}/I$ are different from the complex field, whenever I is not one of the ideals I.

We shall now prove that this conjecture is true, under the additional assumption that $C_p\{M_n\}$ is non-quasianalytic and that $\log M_n = 0 (n^2)$. We divide the proof into several steps. Our growth condition will only be used at the end.

We consider a fixed $C_p\{M_n\}$, and a fixed complex homomorphism ψ of $C_n\{M_n\}$.

(i) There is a point $x_0 \in T$ such that $\psi(f) = 0$ for all $f \in C_p\{M_n\}$ which vanish near x_0 , (i.e., in a neighborhood of x_0).

For if there is no such point, the compactness of T shows that there are segments V_1, \ldots, V_m and functions f_1, \ldots, f_m such that $f_i = 0$ on V_i but $\psi(f_i) = 1$. Putting $f = f_1 \ldots f_m$, we have f = 0, $\psi(f) = \psi(f_1) \ldots \psi(f_m) = 1$, and hence $\psi(0) = 1$, a contradiction.

For simplicity, we assume from now on that $x_0 = 0$.

(ii) Suppose $f \in C_p\{M_n\}$ and f(x) = x near 0. Then $\psi(f) = 0$.

Proof. Put $\psi(f) = a$. If $a \neq 0$, then there exists $g \in C_p\{M_n\}$ such that $g(x) = (x - a)^{-1}$ near 0; this is so since $(x - a)^{-1}$ is analytic near 0, and we can multiply by one of functions h constructed in Lemma 3.2.

Then $(f-a)\cdot g=1$ near 0, and (i) shows that $\psi(f-a)\psi(g)=1$. But $\psi(f-a)=\psi(f)-a=0$, a contradiction.

(iii) If $f \in C\{M_n\}$, f(0) = 0, and g(x) = f(x)/x, then $g \in C\{M_{n+1}\}$.

Proof. Repeated differentiation of the equation f(x) = xg(x) yields

$$D^{n+1}f(x) = xD^{n+1}g(x) + (n+1)D^{n}g(x)$$
 (n > 0).

As $|\mathbf{x}| \to \infty$, $D^n g(\mathbf{x}) \to 0$, and $D^{n+1} g(\mathbf{x}) = 0$ at every local maximum of $|D^n g|$. Hence $||D^n g|| \le ||D^{n+1} f||$.

(iv) If $f \in C_p\{M_n\}$ and f(0) = 0, then $\psi(f) = 0$.

<u>Proof.</u> There are functions g, $h \in C_p\{M_n\}$ such that $g \equiv 1$ near 0, the support of g lies in $[-\pi + \delta, \pi - \delta]$ for some $\delta > 0$, and h(x) = x on the support of g.

Put F = fg/h. Since h = x where $fg \neq 0$, F = fg/x. Since $fg \in C_p\{M_n\}$, (iii) shows that $F \in C_p\{M_{n+1}\}$. But if $\log M_n = 0(n^2)$, then $C\{M_{n+1}\} = C\{M_n\}$ [1; p.22]. Thus $F \in C_p\{M_n\}$.

By (i), $\psi(g) = 1$; by (ii), $\psi(h) = 0$. Hence $\psi(f) = \psi(f)\psi(g) = \psi(fg) = \psi(Fh)$ = $\psi(F)\psi(h) = 0$.

We now summarize the result:

THEOREM. If $C_p\{M_n\}$ is non-quasianalytic, if $\log M_n = 0 (n^2)$, and if ψ is

a complex homomorphism of $C_p\{M_n\}$, then $\psi(f) = f(x)$ for some $x \in T$.

We conclude with the remark that there exist non-quasianalytic algebras $C\{M_n\}$ which are not inverse-closed and which fail to satisfy the condition $\log M_n = 0 (n^2)$. (In fact, if $\omega_n \to \infty$ and if $\lambda_n/n! \to \infty$, the technique used in the proof of Theorem 4.3 allows us to construct non-quasianalytic $C\{M_n\}$ such that $M_n > \omega_n$ for infinitely many n, and also $M_n < \lambda_n$ for infinitely many n.) For these algebras we do not yet know all complex homomorphisms.

REFERENCES

- T. Bang, Om Quasi-Analytiske Funktioner, Nyt Nordisk Forlag,
 Copenhagen, 1946.
- 2. H. Helson, J. P. Kahane, Y. Katznelson, and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), pp. 135-157.
- 3. A. Gorny, Contribution à l'étude des fonctions derivables d'une variable réelle. Acta Math. 71 (1939), pp. 317-358.
- 4. Y. Katznelson, Sur le calcul symbolique dans quelques algèbres de Banach,
 Ann. Sci. Ecole Norm. Sup. 76 (1959), pp. 83-124.
- 5. P. Malliavin, Calcul symbolique et sous-algèbres de L¹(G), Bull. Soc. Math. France 87 (1959), pp. 181-190.
- S. Mandelbrojt, Séries adhérentes, régularisation des suites applications.
 Gauthier-Villars, Paris, 1952.
- 7. G. Polya, Proof of an inequality, Proc. London Math. Soc. 24 (1926), p. lvii.