VNU-HUS MAT3500: Toán rời rạc

Quy nạp và Đệ quy

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Nội dung

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh Một số chứng minh quy nạp sai

Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ quy Tập hợp định nghĩa bằng đệ quy Quy nạp theo cấu trúc

Giải hệ thức truy hồi

Dãy cho bởi hệ thức truy hồi Đoán nghiệm Đa thức đặc trưng

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy nạp sai

Đệ quy

Giới thiêu

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy h

Dây cho bởi hệ thức truy hổi

- Quy nạp toán học (mathematical induction) là một kỹ thuật chứng minh cực kỳ quan trọng
- Quy nạp toán học được sử dụng để chứng minh các kết quả về những đối tương rời rạc khác nhau
- Ta sẽ giới thiệu một số dạng quy nạp toán học
 - Quy nạp toán học yếu (Weak Mathematical Induction), hay còn gọi là Nguyên lý Thứ nhất của Quy nạp toán học (The First Principle of Mathematical Induction)
 - Quy nạp toán học mạnh (Strong Mathematical Induction) hay còn gọi là Nguyên lý Thứ hai của Quy nạp toán học (The Second Principle of Mathematical Induction)
- Tính đúng đắn của phương pháp quy nạp bắt nguồn từ

Tiên đề 1: Tính chất sắp thứ tự tốt

Mọi tập con khác rỗng của tập các số nguyên dương có một phần tử nhỏ nhất

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy nạp sai

Đệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tàp hợp định nghĩa bằng

đệ quy Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Quy nạp yếu

Nguyên lý quy nạp yếu

Để ${\it chứng\ minh}\ \forall n\in \mathbb{Z}^+\ P(n),$ chúng ta thực hiện hai bước

- lacktriangle Bước cơ sở (basis step): Chỉ ra mệnh đề P(1) đúng
- Bước quy nạp (inductive step): Chứng minh mệnh đề $P(k) \rightarrow P(k+1)$ đúng với mọi số nguyên dương k
 - lacksquare Giả thiết P(k) đúng, chứng minh P(k+1) đúng
 - Giả thiết P(k) đúng được gọi là giả thiết quy nạp (inductive hypothesis hoặc induction hypothesis)

Theo ngôn ngữ lôgic,

$$(\underline{P(1)} \land \forall k \in \mathbb{Z}^+ (P(k) \to P(k+1))) \to \forall n \in \mathbb{Z}^+ P(n)$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

Đê quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tào hợp định nghĩa bằng

đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

■ Chứng minh $\forall n \in \mathbb{Z}^+$ P(n) bằng phương pháp quy nạp

(1) Bước cơ sở: Chứng minh P(1) đúng

- (2) Bước quy nạp: Chẳng minh $P(k) \to P(k+1)$ đúng với mọi $k \in \mathbb{Z}^+$. Theo định nghĩa của toán tử lôgic " \to ", ta cần chứng minh rằng P(k+1) không thể sai khi P(k) đúng. Điều này có thể được thực hiện bằng cách *giả thiết là* P(k) đúng và chứng minh rằng với giả thiết đó P(k+1) cũng đúng
 - lacktriangle Chú ý rằng ở đây *ta không giả thiết* P(k) *đúng với mọi* $k \in \mathbb{Z}^+$
- Sau khi hoàn thành bước cơ sở và bước quy nạp:
 - lacktriang Từ bước cơ sở, ta biết rằng P(1) đúng
 - lacksquare Từ bước quy nạp và P(1) đúng, ta biết rằng P(2) đúng
 - Từ bước quy nạp và P(2) đúng, ta biết rằng P(3) đúng
 - . . .
 - \blacksquare Từ bước quy nạp và P(n-1) đúng, ta biết rằng P(n) đúng (với bất kỳ số nguyên dương n)

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

4 Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

Đệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy hồi

Quy nạp toán học Tại sao Quy nạp toán học đúng?

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh

ap sai

Đệ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

hôi Đoán nghiệm Đa thức đặc trưng

Chứng minh (Quy nạp yếu là đúng).

- Giả sử P(1) đúng và với mọi $k \in \mathbb{Z}^+$, $P(k) \to P(k+1)$ đúng. Ta chứng minh $\forall n \in \mathbb{Z}^+$ P(n) bằng phản chứng
- Giả sử tồn tại $n \in \mathbb{Z}^+$ sao cho P(n) sai. Do đó, tập $S = \{n \mid n \in \mathbb{Z}^+ \text{ và } P(n) \text{ sai}\} \subseteq \mathbb{Z}^+$ là tập khác rỗng.
- Theo Tiên đề 1, S có một phần tử nhỏ nhất m. Do P(1) đúng, $m \neq 1$ và do đó m > 1, suy ra $m 1 \in \mathbb{Z}^+$
- Do $m-1 < m, m-1 \notin S$, và do đó P(m-1) đúng
- Do $P(k) \to P(k+1)$ đúng với mọi $k \in \mathbb{Z}^+$, ta có $P(m-1) \to P(m)$ đúng.
- Kết hợp với P(m-1) đúng, ta có P(m) đúng. Điều này mâu thuẫn với định nghĩa của m. Do đó P(n) đúng với mọi số nguyên dương n

Khi sử dụng quy nạp toán học, không nhất thiết cần bắt đầu với P(1) ở bước cơ sở

Nguyên lý quy nạp yếu (tổng quát)

Để chứng minh $\forall n \geq b\, P(n)$ với $n \in \mathbb{Z}$ và b là số nguyên cho trước, chúng ta thực hiện hai bước

- lacksquare Bước cơ sở (basis step): Chỉ ra mệnh đề P(b) đúng
- ${\it Bu\'oc}$ quy nạp (inductive step): Chứng minh mệnh đề $P(k) \to P(k+1)$ đúng với mọi số nguyên $k \ge b$

Theo ngôn ngữ lôgic,

$$(\underline{P(b)} \land \forall k \in \mathbb{Z}^{\geq b} (P(k) \to P(k+1))) \to \forall n \in \mathbb{Z}^{\geq b} P(n),$$

trong đó $\mathbb{Z}^{\geq b}=\{m\mid m\in\mathbb{Z}\ \text{và}\ m\geq b\}$ (chú ý là $\mathbb{Z}^{\geq 1}=\mathbb{Z}^+$)

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nap sai

Dê auv

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tào hợp định nghĩa bằng

đệ quy Quy nap theo cấu trúc

Gay nap meo cau muc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Mẫu trình bày chứng minh quy nap

- "P(n) với mọi số nguyên dương n" \Rightarrow chọn b=1
- "P(n) với mọi số nguyên không âm n" \Rightarrow chọn b=0
- Với một số phát biểu, cần xác định giá trị phù hợp của b bằng cách kiểm tra giá trị chân lý của P(n) với một số giá trị nhỏ của n
- (2) Viết cụm từ "Bước cơ sở." Sau đó chỉ ra P(b) là đúng. Hãy cẩn thân chon đúng giá tri của b
- (3) Viết cụm từ "Bước quy nạp." và phát biểu một cách rõ ràng giả thiết quy nạp dưới dạng "Giả sử rằng P(k) đúng với một số nguyên cố định k>b nào đó"
- (4) Phát biểu điều cần chứng minh với giả thiết P(k) đúng, nghĩa là, phát biểu cụ thể P(k+1)
- (5) Chứng minh P(k+1) đúng sử dụng giả thiết P(k) đúng
- (6) Xác định rõ ràng phần kết của bước quy nạp, ví dụ như bằng cách viết "Bước quy nạp đến đây là hoàn tất."
- (7) Sau khi hoàn thành bước cơ sở và bước quy nạp, phát biểu kết luận "Bằng phương pháp quy nạp, ta đã chứng minh P(n) đúng với mọi số nguyên n thỏa mãn $n \geq b$."

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nap yếu

Quy nạp mạnh Một số chứng minh quy

Dê auv

Định nghĩa và một số khái niệm Hàm định nghĩa bằng để

quy Tập hợp định nghĩa bằng

đệ quy Quy nap theo cấu trúc

Quy nạp theo cầu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy hồi

Đoán nghiệm Đa thức đặc trưng

Quy nạp toán học có thể được sử dụng để chứng minh một giả thuyết khi giả thuyết này đã được thành lập (và đúng). Tuy nhiên, quy nạp toán học không cung cấp ý tưởng giải thích tại sao các đinh lý lại đúng

■ Việc kiểm tra phát biểu cần chứng minh với một số giá trị nhỏ của n trước khi đi vào chứng minh có thể rất hữu ích. Thông thường, các ví dụ nhỏ có thể giúp ta nhận ra các khía cạnh dễ nhầm lẫn của phát biểu hoặc nhận ra tại sao phát biểu lại đúng trong trường hợp tổng quát

- Thông thường, bước chứng minh P(k+1) với giả thiết P(k) là bước khó nhất trong toàn bộ chứng minh quy nạp. Hãy *chắc chắn rằng chứng minh của bạn đúng với mọi* $k \geq b$, nhất là với các giá trị nhỏ của k, thậm chí là cả k = b
- Nếu bạn *không sử dụng giả thiết* P(k) *trong chứng minh* P(k+1), thì có thể có điều gì đó sai, hoặc ít nhất chứng minh của bạn không thực sự là chứng minh quy nạp

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh

Độ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Dây cho bởi hệ thức truy hồi Đoán nghiệm

Quy nap toán hoc Ví du

Ví du 1

Gọi
$$P(n)$$
 là vị từ $\sum_{i=1}^n i=\frac{n(n+1)}{2}.$ Ta chứng minh $P(n)$ đúng với mọi $n\in\mathbb{Z}^+$

- **Bước cơ sở.** P(1) đúng, do vế trái bằng 1 và vế phải bằng 1(1+1)/2=1
- **Bước quy nạp.** Giả sử P(k) đúng với một số nguyên cố định

$$k \geq 1$$
 nào đó, nghĩa là $\sum_{i=1}^k i = k(k+1)/2$. Ta chứng minh

$$P(k+1)$$
 đúng, nghĩa là chứng minh $\sum_{i=1}^{k+1} i = (k+1)(k+2)/2$.

Thật vậy, ta có

$$\sum_{i=1}^{k+1}i=\sum_{i=1}^{k}i+(k+1)$$
 tách tổng
$$=\frac{k(k+1)/2+(k+1)}{=(k+1)(k+2)/2}$$
 giả thiết quy nạp

Do đó, theo nguyên lý quy nap yếu, P(n) đúng với mọi $n \in \mathbb{Z}^+$

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học Giới thiêu

Quy nap yếu Quy nap manh

nap sai

niêm Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng

đề auv Quy nap theo cấu trúc

Dãy cho bởi hệ thức truy

Đa thức đặc trưng

Ví dụ 2

Gọi P(n) là vị từ $\sum_{i=0}^{r} r^i = (r^{n+1}-1)/(r-1)$ với $r \neq 1$ là số thực bất kỳ cho trước. Ta chứng minh P(n) đúng với mọi $n \in \mathbb{N}$

- **Bước cơ sở.** P(0) đúng, do vế trái bằng 1 và vế phải bằng $(r^1-1)/(r-1)=1$
- lacktriangle **Bước quy nạp.** Giả sử P(k) đúng với một số nguyên cố đinh $k \geq 0$ nào đó, nghĩa là $\sum_{\cdot} r^i = (r^{k+1}-1)/(r-1).$ Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $\sum_{i=0} r^i = (r^{k+2}-1)/(r-1).$ Thật vậy, ta có $\sum_{i=0}^{k+1} r^i = \sum_{i=0}^{k} r^i + r^{k+1}$ tách tổng $= (r^{k+1} - 1)/(r - 1) + r^{k+1}$ giả thiết quy nạp $=(r^{k+2}-1)/(r-1)$

Do đó, theo nguyên lý quy nạp yếu, P(n) đúng với mọi $n \in \mathbb{N}$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

10 Quy nạp yếu Quy nạp mạnh

Một số chứng minh nạp sai

Đê auv

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng

đệ quy Quy nap theo cấu trúc

Quy nạp theo cấu trú

Giải hệ thức truy hối Dãy cho bởi hệ thức truy

Ví dụ 3

Gọi P(n) là vị từ

$$\sum_{i=0}^n (-1)^i = \begin{cases} 1 & \text{n\'eu } n \text{ ch\'an} \\ 0 & \text{n\'eu } n \text{ l\'e} \end{cases}$$

Ta chứng minh P(n) đúng với mọi số nguyên $n \ge 0$.

- **Bước cơ sở:** P(0) đúng, do vế trái $\sum_{i=0}^{0} (-1)^i = (-1)^0 = 1$ và vế phải bằng 1 (vì 0 là số chẵn)
- **Bước quy nạp:** Giả sử P(k) đúng với một số nguyên cố định $k \geq 0$ nào đó, nghĩa là

$$\sum_{i=0}^{k} (-1)^i = \begin{cases} 1 & \text{n\'eu } k \text{ ch\'an} \\ 0 & \text{n\'eu } k \text{ l\'e} \end{cases}$$

Ta chứng minh P(k+1) đúng, nghĩa là chứng minh

$$\sum_{i=0}^{k+1} (-1)^i = \begin{cases} 1 & \text{n\'eu } k+1 \text{ ch\'an} \\ 0 & \text{n\'eu } k+1 \text{ l\'e} \end{cases}$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh

Quy nạp mạnh Một số chứng minh quy nạp sai

ê auv

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Thật vậy, ta có

$$\begin{split} \sum_{i=0}^{k+1} (-1)^i &= \sum_{i=0}^k (-1)^i + (-1)^{k+1} & \text{tách tổng} \\ &= \begin{cases} 1 + (-1)^{k+1} & \text{nếu } k \text{ chắn} \\ 0 + (-1)^{k+1} & \text{nếu } k \text{ lể} \end{cases} & \text{giả thiết quy nạp} \\ &= \begin{cases} 1 + (-1)^{k+1} & \text{nếu } k + 1 \text{ lể} \\ 0 + (-1)^{k+1} & \text{nếu } k + 1 \text{ chắn} \end{cases} & k \text{ chắn} \Leftrightarrow k + 1 \text{ lể} \\ &= \begin{cases} 1 + (-1) & \text{nếu } k + 1 \text{ lể} \\ 0 + 1 & \text{nếu } k + 1 \text{ chắn} \end{cases} \\ &= \begin{cases} 0 & \text{nếu } k + 1 \text{ lể} \\ 1 & \text{nếu } k + 1 \text{ chắn} \end{cases} \end{split}$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

2) Quy nạp yếu Quy nạp mạnh

â aunz

Định nghĩa và một số khái niệm Hàm định nghĩa bằng để

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Do đó, theo nguyên lý quy nạp yếu, P(n) đúng với mọi số nguyên $n \geq 0$

Bài tập 1

Cho P(n) là phát biểu $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

- (a) Để chứng minh P(n) đúng với mọi $n \in \mathbb{Z}^+$
 - (1) Ở bước cơ sở, ta cần chứng minh điều gì?
 - (2) Ở bước quy nạp, giả thiết quy nạp là gì? Ta cần chứng minh điều gì?
- (b) Hãy chứng minh P(n) đúng với mọi $n \in \mathbb{Z}^+$ bằng phương pháp quy nạp theo các bước bạn đã trả lời ở phần (a)

Bài tập 2

Chứng minh các mệnh đề sau bằng phương pháp quy nạp yếu

(a)
$$1^3+2^3+\cdots+n^3=\left(\frac{n(n+1)}{2}\right)^2$$
 với mọi $n\in\mathbb{Z}^+$

(b)
$$1^2+3^2+5^2+\cdots+(2n+1)^2=\frac{(n+1)(2n+1)(2n+3)}{3}$$
 với mọi $n\in\mathbb{N}$

(c)
$$3+3\cdot 5+3\cdot 5^2+\cdots+3\cdot 5^n=\frac{3(5^{n+1}-1)}{4}$$
 với mọi $n\in\mathbb{N}$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

Đệ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng

đệ quy Quy nap theo cấu trúc

Quy nạp theo câu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

14 Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nao sai

Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng để

quy Tão hợp định nghĩa bằng

quy

Quy nạp theo cấu trúc

Giải hệ thức truy h

Dây cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

63

Bài tập 3

- (a) Chứng minh $3^n < n!$ với mọi số nguyên n > 6 bằng quy nạp yếu
- (b) Chứng minh rằng tồn tại số nguyên b sao cho $2n+3\leq 2^n$ với mọi $n\geq b$. (Gợi ý: Tìm b và chứng minh $2n+3\leq 2^n$ với mọi $n\geq b$ bằng phương pháp quy nạp yếu)
- (c) Chứng minh rằng n^3+2n chia hết cho 3 với mọi số nguyên dương n bằng phương pháp quy nạp yếu

Hãy sử dụng phương pháp quy nạp yếu để giải các bài tập sau

Bài tập 4

Chứng minh với mọi số nguyên $n \ge 0$,

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Bài tập 5

Chứng minh rằng với mọi số nguyên $n \geq 4$, ta có $2^n \geq n^2$

Bài tập 6

Tìm một số nguyên b thỏa mãn điều kiện với mọi $n \geq b$, $2^n \geq n^3$. Chứng minh rằng số b bạn tìm được thực sự thỏa mãn điều kiên đề ra

Bài tập 7

Chứng minh rằng với mọi số nguyên $n \ge 2$, các tập A_1, A_2, \ldots, A_n thỏa mãn $\overline{A_1 \cap A_2 \cap \cdots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n}$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

Đê quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng

đệ quy Quy nạp theo cấu trúc

Quy nạp meo cau muc

Giải hệ thức truy hôi Dãy cho bởi hệ thức truy hồi

Đoán nghiệm Đa thức đặc trưng

Hãy sử dụng phương pháp quy nạp yếu để giải các bài tập sau

Bài tập 8

Chứng minh rằng với mọi $n \in \mathbb{Z}^+$, ta có thể phủ kín bàn cờ không hoàn chỉnh kích thước $2^n \times 2^n$ với một ô vuông bị loại bỏ bằng các khối hình chữ **L** như trong hình dưới đây sao cho không có hai khối nào chồng lên nhau¹

Hình: Phủ kín các bàn cờ, ví dụ như (b) hoặc (c), bằng các khối hình chữ L như ở (a)

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu 16 Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy

Đệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tào hợp định nghĩa bằng

đệ quy Quy nap theo cấu trúc

Quy nạp theo câu trúc

Dây cho bởi hệ thức truy hồi

Cita E filia 0 (a)

¹Bạn có thể thử phủ kín bàn cờ 8×8 ở https://nstarr.people.amherst.edu/puzzle.html

Hãy sử dụng phương pháp quy nạp yếu để giải các bài tập sau

Bài tập 9

Với các tập hợp A_1,A_2,\dots,A_n và B, hãy chứng minh các phát biểu sau đúng với mọi số nguyên $n\geq 2$

(a)
$$(A_1 \cap A_2 \cap \cdots \cap A_n) \cup B = (A_1 \cup B) \cap (A_2 \cup B) \cap \cdots \cap (A_n \cup B)$$

(b)
$$(A_1 \cup A_2 \cup \cdots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B)$$

(c)
$$(A_1 - B) \cap (A_2 - B) \cap \dots \cap (A_n - B) = (A_1 \cap A_2 \cap \dots \cap A_n) - B$$

(d)
$$(A_1 - B) \cup (A_2 - B) \cup \dots \cup (A_n - B) = (A_1 \cup A_2 \cup \dots \cup A_n) - B$$

Bài tập 10

Chứng minh rằng một tập có n phần tử có n(n-1)/2 tập con chứa chính xác hai phần tử, với mọi số nguyên $n \geq 2$

Bài tập 11

Chứng minh rằng $\neg (p_1 \lor p_2 \lor \dots \lor p_n) \equiv \neg p_1 \land \neg p_2 \land \dots \land \neg p_n$ với mọi $n \geq 2$, trong đó p_1, \dots, p_n là các mệnh đề lôgic

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

Dệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

quy Tão hợp định nghĩa bằng

đệ quy Quy nap theo cấu trúc

Quy nạp theo câu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy hổi

Đa thức đặc trưng

Nguyên lý quy nạp mạnh

Để chứng minh $\forall n \in \mathbb{Z}^+ P(n)$, chúng ta thực hiện hai bước

- lacksquare Bước cơ sở (basis step): Chỉ ra mệnh đề P(1) đúng
- Bước quy nạp (inductive step): Chứng minh mệnh đề $(P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1)$ đúng với mọi số nguyên dương k
 - Giả thiết $P(1) \wedge P(2) \wedge \cdots \wedge P(k)$ đúng, chứng minh P(k+1) đúng
 - Giả thiết $P(1) \wedge P(2) \wedge \cdots \wedge P(k)$ đúng được gọi là *giả* thiết quy nạp

Theo ngôn ngữ lôgic,

$$(\underline{P(1)} \land \forall k \in \mathbb{Z}^+ (\bigwedge_{j=1}^k P(j) \to P(k+1))) \to \forall n \in \mathbb{Z}^+ P(n),$$

trong đó $\bigwedge_{i=1}^{k} P(j) = P(1) \wedge P(2) \wedge \cdots \wedge P(k)$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiêu

Quy nạp yếu

Quy nạp mạnh

Một số chứng minh quy
nap sai

Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Tương tự như với quy nạp yếu, ở bước cơ sở ta không nhất thiết cần bắt đầu từ P(1)

Nguyên lý quy nạp mạnh (tổng quát)

Để chứng minh $\forall n \geq b\, P(n)$ với $n \in \mathbb{Z}$ và b là số nguyên cho trước, chúng ta thực hiện hai bước

- \blacksquare Bước cơ sở (basis step): Chỉ ra mệnh đề P(b) đúng
- Bước quy nạp (inductive step): Chứng minh mệnh đề $(P(b) \wedge P(b+1) \wedge \cdots \wedge P(k)) \rightarrow P(k+1)$ đúng với mọi số nguyên $k \geq b$

Theo ngôn ngữ lôgic,

$$(P(b) \land \forall k \in \mathbb{Z}^{\geq b} (\bigwedge_{j=b}^{k} P(j) \to P(k+1))) \to \forall n \in \mathbb{Z}^{\geq b} P(n)$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiệu

Quy nạp yếu Quy nạp mạnh

Một số chứng minh quy nạp sai

Dê guy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

Thêm vào đó, thay vì chỉ chứng minh P(b) đúng, ta có thể làm nhiều hơn ở bước cơ sở

Nguyên lý quy nạp mạnh (tổng quát)

Để chứng minh $\forall n \geq b\, P(n)$ với $n \in \mathbb{Z}$ và b là số nguyên cho trước, chúng ta thực hiện hai bước

- Bước cơ sở (basis step): Chỉ ra các mệnh đề P(b), $P(b+1), \ldots, P(b+j)$ đúng, với j là một số nguyên dương cố định nào đó
- *Bước quy nạp (inductive step):* Chứng minh mệnh đề $(P(b) \land P(b+1) \land \cdots \land P(k)) \rightarrow P(k+1)$ đúng với mọi số nguyên $k \geq b+j$

Theo ngôn ngữ lôgic,

 $(\bigwedge_{i=0}^{j} P(b+i) \land \forall k \in \mathbb{Z}^{\geq b+j} (\bigwedge_{i=0}^{k} P(i) \to P(k+1))) \to \forall n \in \mathbb{Z}^{\geq b} P(n)$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiệu Quy nạp yếu

Quy nạp mạnh

Một số chứng minh quy nạp sai

)ệ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Quy nap toán hoc

Quy nap và Đê quy Hoàng Anh Đức

Giới thiêu Quy nap yếu

Quy nap manh Một số chứng minh quy nap sai

Đinh nghĩa và một số khái Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng

Quy nap theo cấu trúc

Dãy cho bởi hệ thức truy

Quy nap toán học

Đa thức đặc trưng

■ Về mặt hình thức, quy nạp mạnh và quy nạp yếu khác nhau ở giả thiết quy nạp: ở quy nạp yếu ta chỉ giả thiết P(k) đúng, còn ở quy nạp mạnh ta giả thiết tất cả các mệnh đề $P(1), P(2), \ldots, P(k)$ đều đúng

- Quy nạp mạnh và quy nạp yếu là tương đương về mặt lôgic, nghĩa là, quy nạp yếu đúng khi và chỉ khi quy nạp manh cũng đúng
- Nếu bạn có thể trực tiếp chứng minh P(k+1) với giả thiết P(k) đúng, nên dùng quy nap yếu
- Ngược lại, nếu ban có thể chứng minh P(k+1) từ giả thiết P(i) đúng với mọi i < k, nhưng không rõ làm sao để trực tiếp chứng minh $P(k) \rightarrow P(k+1)$, nên dùng quy nạp manh

Ví dụ 4 Cho vi từ P(n):

n viết được dưới dạng tích của một hoặc nhiều số nguyên tố

Ta chứng minh $\forall n \in \mathbb{Z}^{\geq 2} \, P(n)$ bằng quy nạp mạnh

- **Bước cơ sở.** P(2) đúng, vì 2 có thể được biểu diễn dưới dạng tích của một số nguyên tố—chính nó
- **Bước quy nạp.** Giả sử P(j) đúng với mọi số nguyên j thỏa mãn $2 \le j \le k$, trong đó $k \ge 2$ là số nguyên cố định nào đó. Ta chứng minh P(k+1) đúng. Thật vậy,
 - Nếu k+1 là số nguyên tố, P(k+1) đúng do k+1 có thể được biểu diễn dưới dạng tích của một số nguyên tố—chính nó
 - Nếu k+1 là hợp số, ta có thể biểu diễn k+1=ab với a,b là các số nguyên dương thỏa mãn $2\leq a\leq b< k+1$. Theo giả thiết quy nạp, cả a và b đều có thể được biểu diễn dưới dạng tích của các số nguyên tố, và do đó k+1 cũng thế

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh

Một số chứng minh quy nạp sai

Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy hồi

Đoán nghiệm Đa thức đặc trưng

Ví dụ 5

Cho vị từ P(n):

$$n=4a+5b$$
 với $a,b\in\mathbb{Z}$

Ta chứng minh $\forall n \in \mathbb{Z}^{\geq 12} P(n)$ bằng quy nạp mạnh

- **Bước cơ sở.** Ta chứng minh P(12), P(13), P(14), P(15) đều đúng. Thật vậy, $12 = 4 \cdot 3 + 5 \cdot 0$, $13 = 4 \cdot 2 + 5 \cdot 1$, $14 = 4 \cdot 1 + 5 \cdot 2$, và $15 = 4 \cdot 0 + 5 \cdot 3$
- **Bước quy nạp.** Giả sử với số nguyên cố định $k \geq 15$ bất kỳ, P(m) đúng với mọi số nguyên m thỏa mãn $12 \leq m \leq k$. (Hay $P(12) \wedge \cdots \wedge P(k)$ đúng với số nguyên cố định $k \geq 15$.) Ta chứng minh P(k+1) đúng. Thật vậy, do $k \geq k-3 \geq 12$, theo giả thiết quy nạp, ta có P(k-3) đúng, nghĩa là tồn tại $a,b \in \mathbb{Z}$ sao cho k-3=4a+5b. Suy ra k+1=(k-3)+4=4(a+1)+5b

Bài tập 12

Chứng minh ví dụ trên bằng quy nạp yếu

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu

Quy nạp mạnh

Một số chứng minh quy nạp sai

)ệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

> Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi
Dãy cho bởi hệ thức truy

Đoán nghiệm

Đa thức đặc trưng

Sử dụng phương pháp quy nạp mạnh để giải các bài tập sau Bài tập 13

Cho vị từ P(n)= "tồn tại $a,b\in\mathbb{Z}$ thỏa mãn n=3a+5b". Bài tập này mô tả cách chứng minh P(n) đúng với mọi số nguyên n>8

- (a) Để hoàn thành bước cơ sở, hãy chứng minh rằng các mệnh đề $P(8),\,P(9),\,$ và P(10) là đúng
- (b) Trong bước quy nạp, Giả thiết quy nạp là gì và bạn cần chứng minh điều gì?
- (c) Hãy hoàn thành bước quy nạp cho $n \ge 10$

Bài tập 14

Chứng minh rằng với mọi số nguyên $n \ge 12$, tồn tại các số nguyên không âm a và b sao cho n = 3a + 7b Bài tập 15

Chứng minh rằng mọi số nguyên dương đều có thể được viết dưới dạng $2^b \cdot c$ trong đó b là một số nguyên không âm và c là một số lẻ

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiệu

Quy nạp yếu

Quy nạp mạnh

Một số chứng minh quy
nap sai

Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

quy Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy hổi

Đoàn nghiệm Đa thức đặc trưng

Một số chứng minh quy nạp sai

Ví dụ 6 ([Gunderson and Rosen 2010])

Cho P(n) là $\sum_{i=1}^n i = \frac{(n+\frac{1}{2})^2}{2}.$ Ta chứng minh P(n) đúng với mọi

 $n \in \mathbb{Z}^+$ bằng phương pháp quy nạp yếu

- Bước cơ sở. P(1) đúng do $\frac{(1+\frac{1}{2})^2}{2}=1$
- **Bước quy nạp.** Giả sử P(k) đúng với một số nguyên cố định $k \geq 1$ nào đó. Ta chứng minh P(k+1) đúng. Thật vậy

$$\begin{split} \sum_{i=1}^{k+1} i &= \left(\sum_{i=1}^k i\right) + (k+1) \\ &= \frac{(k+\frac{1}{2})^2}{2} + (k+1) \\ &= \frac{(k+\frac{1}{2})^2 + 2(k+\frac{1}{2}) + 1}{2} \\ &= \frac{(k+1+\frac{1}{2})^2}{2} \end{split}$$
 Câu hỏi Chứng minh này sai ở đâu?

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu
Quy nạp mạnh
Một số chứng minh quy
nap sai

Dê auv

Đệ quy

Giới thiêu

Định nghĩa và một số khá niệm Hàm định nghĩa bằng đê

quy Tàp hợp định nghĩa bằng

đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hôi Dãy cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Do đó, theo nguyên lý quy nap yếu, P(n) đúng với moi $n \in \mathbb{Z}^+$

Một số chứng minh quy nạp sai

Ví dụ 7 ([Gunderson and Rosen 2010]) Cho vi từ P(n)

Nếu
$$n = \max\{a,b\}$$
 với $a,b \in \mathbb{Z}^+$ thì $a=b$

Ta chứng minh P(n) đúng với mọi $n \in \mathbb{Z}^+$ bằng quy nạp yếu

- **B**ước cơ sở. Với n=1, giả sử $1=\max\{a,b\}$ với $a,b\in\mathbb{Z}^+$. Do đó a=b=1. Suy ra P(1) đúng
- **Bước quy nạp.** Giả sử P(k) đúng với một số nguyên cố định $k \geq 1$ nào đó, nghĩa là nếu $k = \max\{a,b\}$ với $a,b \in \mathbb{Z}^+$ thì a = b

Câu hỏi
Chứng minh này sai ở đâu?

Ta chứng minh P(k+1) đúng, nghĩa là chứng minh nếu $k+1=\max\{c,d\}$ với $c,d\in\mathbb{Z}^+$ thì c=d. Thật vậy, giả sử hai số $c,d\in\mathbb{Z}^+$ thỏa mãn $k+1=\max\{c,d\}$. Do đó, $\max\{c-1,d-1\}=k$. Theo giả thiết quy nạp, c-1=d-1, và do đó c=d. Theo nguyên lý quy nạp yếu, P(n) đúng với mọi $n\in\mathbb{Z}^+$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiệu Quy nạp yếu Quy nạp mạnh

Một số chứng minh quy nạp sai

Đệ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy hồi

Đoán nghiệm Đa thức đặc trưng

Một số chứng minh quy nạp sai

Ví dụ 8 (Tất cả ngựa đều cùng màu)

P(n) := "Bất kỳ n con ngựa nào đều có cùng màu sắc"

Thật vậy, ta chứng minh $\forall n \in \mathbb{Z}^+ \, P(n)$ bằng phương pháp quy nạp yếu

- lacksquare Bước cơ sở. P(1) hiển nhiên đúng.
- **Bước quy nạp.** Giả sử P(k) đúng với số nguyên $k \geq 1$ cố định nào đó. Ta chứng minh P(k+1) cũng đúng. Giả sử có k+1 con ngựa $H_1,H_2,\ldots,H_k,H_{k+1}$. Theo giả thiết quy nạp, H_1,H_2,\ldots,H_k đều có cùng màu sắc. Cũng theo giả thiết quy nạp, H_2,\ldots,H_k,H_{k+1} đều có cùng màu sắc. Do đó, $H_1,H_2,\ldots,H_k,H_{k+1}$ đều có cùng màu sắc

Do đó, theo nguyên lý quy nạp yếu, P(n) đúng với mọi $n \in \mathbb{Z}^+$

Câu hỏi
Chứng minh này sai ở đâu?

 H_1 H_2 H_3 H_4

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu
Quy nạp mạnh
Một số chứng minh quy

Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy hổi

Đoán nghiệm Đa thức đặc trưng

Quy nạp toán học Môt số chứng minh quy nạp sai

Ví dụ 9

Câu hỏi

Chứng minh này sai ở đâu?

$$P(n) := "5n = 0"$$

Ta chứng minh $\forall n \in \mathbb{N} P(n)$ bằng quy nạp mạnh

- Bước cơ sở: P(0) đúng, do $5 \cdot 0 = 0$
- **Bước quy nạp:** Giả sử với số nguyên $k \geq 0$ cố định nào đó, 5j = 0 với mọi số nguyên không âm j thỏa mãn $0 \leq j \leq k$. Ta chứng minh 5(k+1) = 0. Thật vậy, ta có thể viết k+1=i+j, với $i,j \in \mathbb{N}$ và i,j nhỏ hơn k+1. Theo giả thiết quy nạp, 5(k+1) = 5(i+j) = 5i+5j = 0+0=0

Do đó, theo nguyên lý quy nạp mạnh, P(n) đúng với mọi $n \in \mathbb{N}$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nap sai

Đệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy Quy nap theo cấu trúc

Quy nạp theo cầu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Quy nạp và Đệ quy Hoàng Anh Đức

- Trong *quy nạp*, ta chứng minh mọi phần tử của một tập vô hạn thỏa mãn vị từ *P* nào đó bằng cách
 - chứng minh tính đúng đắn của P cho các phần tử lớn hơn trong tập hợp dựa vào tính đúng đắn của các phần tử nhỏ hơn
- Trong các định nghĩa đệ quy (recursive definition), tương tự, ta định nghĩa một cấu trúc (hàm, vị từ, tập hợp, hay một cấu trúc nào đó phức tạp hơn) trên một miền vô hạn nào đó (miền xác định) bằng cách
 - định nghĩa cấu trúc của các phần tử lớn hơn dựa vào cấu trúc của các phần tử nhỏ hơn

Quy nạp toán học Giới thiệu

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy nạp sai

Dệ quy

29 Định nghĩa và một số khái niệm

> Hàm định nghĩa bằng đệ quy Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Dây cho bởi hệ thức truy hồi

■ Hàm đinh nghĩa bằng đê quy (recursive function)

 $f: \mathbb{N} \to A$ với tập A bất kỳ

- Bước cơ sở (basis step): Đinh nghĩa một số giá tri ban đầu $f(0), f(1), \ldots, f(b)$ với số nguyên cố định $b \ge 0$ nào đó
- Bước đệ quy (recursive step): Đinh nghĩa một quy luật để tìm giá trị của f(n) từ các giá trị f(n-1), f(n-2), ... f(n-b), f(n-b-1) với mọi n>b
- Các tính chất của hàm định nghĩa bằng đệ quy thường được chứng minh bằng quy nap

Ví du 10

Đinh nghĩa một dãy bằng hệ thức truy hồi

- Dãy Fibonacci $\{f_n\}$
 - Bước cơ sở: $f_0 = 0$, $f_1 = 1$
 - **B**ước để quy: $f_n = f_{n-1} + f_{n-2}$ (n > 2)
- lacksquare Dãy giai thừa $\{g_n\}$
 - Bước cơ sở: $q_0 = 1$
 - Bước để quy: $q_n = nq_{n-1}$ (n > 1)

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học

Giới thiêu Quy nap yếu

Quy nap manh

Đinh nghĩa và một số khái

Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng đề auv

Quy nap theo cấu trúc

Dãy cho bởi hệ thức truy

Đa thức đặc trưng

W HOUSE OF THE PARTY OF THE PAR

Ví dụ 11 (Chứng minh tính chất của hàm sử dụng định nghĩa đệ quy)

Cho dãy Fibonacci $\{f_n\}$. Ta chứng minh $f_n < 2^n$ với mọi $n \in \mathbb{N}$ bằng quy nạp mạnh

- **Bước cơ sở:** $f_0=0<2^0=1$ và $f_1=1<2^1=2$ (sử dụng các định nghĩa ở bước cơ sở của định nghĩa đệ quy)
- **Bước quy nạp:** Giả sử với số nguyên $k \geq 0$ cố định nào đó, $f_i < 2^i$ với mọi i thỏa mãn $1 \leq i \leq k$. Ta chứng minh $f_{k+1} < 2^{k+1}$. Thật vậy,

$$\begin{array}{ll} f_{k+1}=f_k+f_{k-1} & \text{dịnh nghĩa đệ quy của } \{f_n\} \\ &<2^k+2^{k-1} & \text{giả thiết quy nạp} \\ &<2^k+2^k=2^{k+1} \end{array}$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

Dệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Dãy cho bởi hệ thức truy hổi

Đoán nghiệm Đa thức đặc trưng

Do đó, theo nguyên lý quy nạp mạnh, $f_n < 2^n$ với mọi $n \in \mathbb{N}$

Hàm định nghĩa bằng đê quy

Ví dụ 12 (Chứng minh tính chất của hàm sử dụng định nghĩa đệ quy)

Cho dãy Fibonacci $\{f_n\}$. Ta chứng minh $f_n>\alpha^{n-2}$ với mọi số tự nhiên $n\geq 3$ và $\alpha=\frac{1+\sqrt{5}}{2}\approx 1.61803$ bằng quy nạp mạnh

- **Bước cơ sở:** Với n=3, ta có $f_3=2>\alpha^{3-2}=\alpha$. Với n=4, ta có $f_4=3>\alpha^{4-2}=\alpha^2=\left(\frac{1+\sqrt{5}}{2}\right)^2=\frac{3+\sqrt{5}}{2}=\alpha+1\approx 2.61803$
- **Bước quy nạp:** Giả sử với số nguyên $k \geq 3$ cố định nào đó, $3 \leq i \leq k$ với mọi i thỏa mãn $f_i > \alpha^{i-2}$. Ta chứng minh $f_{k+1} > \alpha^{k-1}$. Thật vậy,

$$\begin{array}{ll} f_{k+1} = f_k + f_{k-1} & \text{dịnh nghĩa đệ quy của } \{f_n\} \\ > \alpha^{k-2} + \alpha^{k-3} & \text{giả thiết quy nạp} \\ = \alpha^{k-3}(\alpha+1) & \\ = \alpha^{k-3}\alpha^2 = \alpha^{k-1} & \text{do } \alpha^2 = \alpha+1 \end{array}$$

Do đó, theo nguyên lý quy nạp mạnh, $f_n>\alpha^{n-2}$ với mọi số tự nhiên n>3

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

Dệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ

quy Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giai hệ thức truy hồi Dãy cho bởi hệ thức truy hồi

Bài tập 16

Cho các hàm sau. Hãy xây dựng định nghĩa đệ quy cho mỗi hàm (ghi rõ bước cơ sở và bước đệ quy).

- (a) Hàm F(n) là tổng của n số nguyên dương đầu tiên.
- (b) Hàm $S_m(n)$ là tổng của số nguyên m và số nguyên không âm n.
- (c) Hàm $P_m(n)$ là tích của số nguyên m và số nguyên không âm n.

Bài tập 17

Cho dãy Fibonacci $\{f_n\}$. Chứng minh rằng

- (a) $f_1^2+f_2^2+\cdots+f_n^2=f_nf_{n+1}$ với mọi số nguyên dương n
- (b) $f_1 + f_3 + \cdots + f_{2n-1} = f_{2n}$ với mọi số nguyên dương n

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh

nạp sai Đệ quy

Đệ quy Đinh nghĩa và một số khái

niệm Hàm định nghĩa bằng đệ

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy hổi

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học Giới thiêu

- Quy nap yếu Quy nap manh nap sai

 - Đinh nghĩa và một số khái Hàm định nghĩa bằng đê
 - Tập hợp định nghĩa bằng
 - Quy nap theo cấu trúc

Dãy cho bởi hệ thức truy

Đa thức đặc trưng

- Tâp hợp định nghĩa bằng đệ quy (recursive set)
 - Bước cơ sở (basis step): Đinh nghĩa một tập con các phần tử han đầu
 - Bước đệ quy (recursive step): Đinh nghĩa một quy luật để tìm phần tử mới trong tập từ các phần tử đã biết là thuộc tập đó
- Thông thường, với các tập định nghĩa bằng đê quy. quy tắc ngoại trừ (exclusion rule) sau luôn được áp dụng: tập hợp cần định nghĩa chỉ chứa các phần tử liệt kê ở bước cơ sở và các phần tử thu được bằng cách áp dụng quy tắc ở bước đê quy.

Ví dụ 13

- lacksquare Tập S các số nguyên dương chia hết cho 3
 - $\blacksquare \ \, \mathbf{B} \mathbf{U} \mathbf{\acute{o}} \mathbf{c} \ \mathbf{c} \mathbf{o}' \ \mathbf{s} \mathbf{\acute{o}} \mathbf{:} \ 3 \in S$
 - lacksquare Bước đệ quy: Nếu $x \in S$ và $y \in S$ thì $x + y \in S$
 - \blacksquare Đầu tiên, $3\in S$, sau đó là $3+3=6,\,3+6=9,$ v.v...
- Tập số tự nhiên N
 - \blacksquare Bước cơ sở: $0\in\mathbb{N}$
 - Bước đệ quy: Nếu $n \in \mathbb{N}$ thì $n+1 \in \mathbb{N}$
- \blacksquare Tập các chuỗi ký tự Σ^* sinh bởi bảng chữ cái Σ
 - **Bước cơ sở:** $\lambda \in \Sigma^*$ (λ là chuỗi rỗng không chứa bất kỳ ký tự nào)
 - Bước đệ quy: Nếu $w \in \Sigma^*$ và $x \in \Sigma$ thì $wx \in \Sigma^*$
 - Ví dụ nếu $\Sigma = \{0, 1\}$ thì
 - lacksquare $\lambda \in \Sigma^*$ (bước cơ sở)
 - $\{0,1\} \subseteq \Sigma^*$ (lần đầu áp dụng bước quy nạp) • $\{00,01,10,11\} \subset \Sigma$ (lần thứ hai áp dụng bước quy nạp)
 - V.V...
 - \blacksquare Do đó Σ^* là tập tất cả các chuỗi nhị phân

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

)ệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy hồi

Đa thức đặc trưng

Ví du 14

- Tập các công thức được tạo đúng quy tắc (well-formed formulae) trong lôgic mệnh đề
 - Bước cơ sở: T, F, và mệnh đề nguyên tử s là các công thức được tạo đúng quy tắc
 - **Bước đệ quy:** Nếu A và B là các công thức được tạo đúng quy tắc, thì $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, và $(A \leftrightarrow B)$ cũng thế
 - Ví dụ, với các mệnh đề nguyên tử p,q, $((p \lor q) \to (q \land \mathbf{F}))$ và $(p \land q)$ là các công thức được tạo đúng quy tắc, còn $\land pq$, $pq \land$, và $p \land q$ thì không phải (Tại sao?)

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy nạp sai

)ê auv

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi

Dãy cho bởi hệ thức truy
hồi

Đoán nghiệm

Đa thức đặc trưng

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nap yếu

Quy nạp mạnh Một số chứng minh quy nap sai

)ệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

> hôi Đoán nghiệm

Đoạn nghiệm Đa thức đặc trưng

Bài tập 18

Hãy tìm một định nghĩa đệ quy của

- (a) Dãy $\{a_n\}$ với $a_n = 4n 2$ và n = 1, 2, ...
- (b) Dãy $\{b_n\}$ với $b_n = n(n+1)$ và n = 1, 2, ...
- (c) Tập hợp các số nguyên dương lẻ
- (d) Tập hợp các số nguyên dương là lũy thừa của 3
- (e) Tập hợp các số nguyên dương chia hết cho 5
- (f) Tập hợp các số nguyên dương không chia hết cho $5\,$

Để chứng minh một tính chất P của các phần tử của một tập hợp định nghĩa theo đệ quy, ta sử dụng quy nạp theo cấu trúc (structural induction)

Nguyên lý quy nạp theo cấu trúc

- Bước cơ sở: Chứng minh rằng mọi phần tử định nghĩa trong bước cơ sở của định nghĩa đệ quy đều thỏa mãn P
- Bước quy nạp: Chứng minh rằng nếu các phần tử được sử dụng để xây dựng phần tử mới của tập hợp trong bước đệ quy đều thỏa mãn P, thì phần tử mới cũng thỏa mãn P

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy nạp sai

Đê quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi
Dãy cho bởi hệ thức truy
hồi
Đoán nghiệm
Đa thức đặc trưng

Đệ quy Quy nạp theo cấu trúc

Ví du 15

Cho S là tập định nghĩa theo đệ quy như sau:

- lacksquare Bước cơ sở: $3 \in S$
- \blacksquare Bước đệ quy: Nếu $x \in S$ và $y \in S$ thì $x + y \in S$

Ta chứng minh bằng quy nạp theo cấu trúc rằng mọi phần tử của S đều chia hết cho 3

- Bước cơ sở: 3 chia hết cho 3
- **Bước quy nạp:** Giả sử với $x \in S$ và $y \in S$, cả x và y đều chia hết cho 3. Ta chứng minh n = x + y cũng chia hết cho 3. Thật vậy, do x chia hết cho 3, ta có x = 3k với số nguyên k nào đó. Tương tự, y = 3j với số nguyên j nào đó. Suy ra n = x + y = 3(k + j), và do đó n cũng chia hết cho 3

Do đó, theo nguyên lý quy nạp theo cấu trúc, mọi phần tử của S đều chia hết cho 3

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

)ê auv

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

> quy Tập hợp định nghĩa bằng để quy

đệ quy Quy nap theo cấu trúc

Quy nạp theo cầu tri

Giải hệ thức truy hồi

Dãy cho bởi hệ thức truy
hối

Đoán nghiệm

Đa thức đặc trưng

Ví du 16

Ta chứng minh bằng quy nạp theo cấu trúc rằng mọi công thức được tạo đúng quy tắc trong lôgic mệnh đề có số dấu ngoặc đơn trái "(" bằng số dấu ngoặc đơn phải ")"

- **Bước cơ sở:** Các mệnh đề **T**, **F**, và mọi mệnh đề nguyên tử *s* đều không có các dấu ngoặc đơn trái và phải
- **Bước quy nạp:** Với công thức A, gọi l_A và r_A lần lượt là số ngoặc đơn trái và ngoặc đơn phải của A. Giả sử với các công thức A, B, $l_A = r_A$ và $l_B = r_B$. Ta chứng minh rằng điều này cũng đúng với các công thức $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, và $(A \leftrightarrow B)$. Thật vậy, công thức đầu tiên có $l_A + 1$ ngoặc trái và $r_A + 1$ ngoặc phải, và các công thức sau đó có $l_A + l_B + 1$ ngoặc trái và $r_A + r_B + 1$ ngoặc phải

Do đó, theo nguyên lý quy nạp theo cấu trúc, mọi công thức được tạo đúng quy tắc trong lôgic mệnh đề có số dấu ngoặc đơn trái bằng số dấu ngoặc đơn phải

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

è quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi
Dãy cho bởi hệ thức truy
hồi
Đoán nghiệm
Đa thức đặc trưng

Đệ quy

Quy nạp theo cấu trúc

Bài tập 19

Chứng minh rằng tập S định nghĩa bởi $1 \in S$ và $s+t \in S$ nếu $s \in S$ và $t \in S$ là tập các số nguyên dương \mathbb{Z}^+ . (**Gợi ý:** Chứng minh $S \subseteq \mathbb{Z}^+$ và $\mathbb{Z}^+ \subseteq S$)

Bài tập 20

Cho S là tập các cặp sắp thứ tự các số nguyên được định nghĩa bằng đệ quy như sau

- lacksquare Bước cơ sở: $(0,0)\in S$
- Bước đệ quy: Nếu $(a,b) \in S$, thì $(a+2,b+3) \in S$ và $(a+3,b+2) \in S$
- (a) Sử dụng quy nạp mạnh với số lần áp dụng bước đệ quy trong định nghĩa của S ở trên, hãy chứng minh a+b chia hết cho 5 với mọi $(a,b)\in S$
- (b) Sử dụng quy nạp theo cấu trúc để chứng minh a+b chia hết cho 5 với mọi $(a,b)\in S$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh

nạp sai Đệ quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đệ

quy Tập hợp định nghĩa bằng để quy

1) Quy nạp theo cấu trúc

Giải hệ thức truy hồi
Dãy cho bởi hệ thức truy hồi
Đoán nghiệm
Đa thức đặc trưng

Dãy cho bởi hệ thức truy hồi

■ Với dãy $\{a_n\} = 0, 1, 4, 9, 16 \dots$ $(n \ge 0), a_n = a_{n-1} + 2n - 1$ với $n \ge 1$ là một hệ thức truy hồi cho $\{a_n\}$ (ở đây $n_0 = 1$)

- Để định nghĩa một dãy $\{a_n\}$ thông qua hệ thức truy hồi, ta cần thêm các điều kiện ban đầu (initial conditions) bằng cách định nghĩa các phần tử trước a_{n_0} trong dãy
 - Để định nghĩa $\{a_n\}$ qua hệ thức $a_n = a_{n-1} + 2n 1$ $(n \ge 1)$, ta cần thêm điều kiện ban đầu $a_0 = 0$
- Một dãy được gọi là một nghiệm (solution) của một hệ thức truy hồi nếu các số hạng của dãy thỏa mãn hệ thức đó
- Giải hệ thức truy hồi với các điều kiện ban đầu nghĩa là tìm một công thức tường minh cho các số hạng của dãy
 - Một công thức tường minh cho dãy $\{a_n\}$ định nghĩa bởi $a_n=a_{n-1}+2n-1$ với $n\geq 1$ và điều kiện ban đầu $a_0=0$ là $a_n=n^2$ $(n\geq 0)$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh c nạp sai

ê quy

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

quy Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Dãy cho bởi hệ thức truy hồi

Ví du 17

- Dãy $\{b_n\}$ thỏa mãn hệ thức truy hồi $b_n=-b_{n-1}$ với $n\geq 1$ và điều kiện ban đầu $b_0=1$
- Dãy $\{s_n\}$ thỏa mãn hệ thức truy hồi $s_n=s_{n-1}-s_{n-2}$ với n > 2 và điều kiên ban đầu $s_0=3$ và $s_1=5$
- Dãy Fibonacci (Fibonacci sequence) $\{f_n\}$ $(n \ge 0)$ được định nghĩa bởi điều kiện ban đầu $f_0 = 0, f_1 = 1$ và hệ thức truy hồi $f_n = f_{n-1} + f_{n-2}$ với mọi số nguyên $n \ge 2$
- extstyle extstyle

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

ê auv

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng để

quy Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi
Dây cho bởi hệ thức truy

Đoán nghiệm Đa thức đặc trưng

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy hồi

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nap sai

Đê quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng đề quy

Quy nap theo cấu trúc

Giải hệ thức truy hồi Dāy cho bởi hệ thức truy

Dây cho bởi hệ thức truị hổi

Đoán nghiệm Đa thức đặc trưng

- Một số phương pháp giải hệ thức truy hồi
 - (1) Đoán nghiệm (và chứng minh bằng phương pháp quy nap)
 - (2) Sử dụng đa thức đặc trưng
 - (3) Sử dụng hàm sinh

Giải hệ thức truy hồi Đoán nghiêm

Quy nap và Đê quy Hoàng Anh Đức

Giới thiêu

Quy nap yếu Quy nap manh nap sai

Đinh nghĩa và một số khái

Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng

Quy nap theo cấu trúc

Dāy cho bởi hệ thức truy

Đa thức đặc trưng

Đoán nghiệm

Quy nap toán học

- Đoán nghiệm (Guessing and verifying) là phương pháp giải hệ thức truy hồi bằng cách:
 - (1) Tính một số giá tri đầu tiên của dãy từ hệ thức truy hồi
 - (2) Quan sát các giá tri này để đoán một công thức tường minh
 - (3) Chứng minh công thức đoán được là đúng bằng phương pháp quy nap toán học
- Kỹ thuật đoán nghiệm thường dựa vào:
 - Thay lặp đi lặp lại hệ thức truy hồi cho các số hạng đứng trước
 - Nhân ra quy luật xuất hiện trong quá trình thay thể
 - Tổng quát hóa quy luật này thành một công thức

Ví du 18

Giải hệ thức truy hồi $d_n=d_{n-1}+4$ ($n\geq 1$) với điều kiện ban đầu $d_0=-1$

Hướng suy luận

- (1) Từ hệ thức truy hồi, ta cũng có $d_{n-1} = d_{n-2} + 4$
- (2) Thay (2) vào hệ thức ban đầu $d_n = (d_{n-2} + 4) + 4 = d_{n-2} + 2 \cdot 4$
- (3) Từ hệ thức truy hồi, ta cũng có $d_{n-2} = d_{n-3} + 4$
- (4) Thay (4) vào (3), ta thu được $d_n = d_{n-3} + 3 \cdot 4$
- (5) Lặp lại quá trình trên, ta "đoán" $d_n = d_{n-r} + r \cdot 4$
- (6) Để có một công thức tường minh cho d_n , ta cần n-r=0, tức là r=n. Khi đó d_n được biểu diễn qua d_0 đã cho trước và n=r.
- (7) Tóm lại, ta có $d_n = -1 + 4n$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh

nạp sai

Định nghĩa và một số khái niệm Hàm định nghĩa bằng đê

quy Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi
Dãy cho bởi hệ thức truy

Đoán nghiệm

Đa thức đặc trưng

Ví du 19

Giải hệ thức truy hồi $a_n=a_{n-1}+2n-1$ ($n\geq 1$) với điều kiện ban đầu $a_0=0$

- (1) Từ hệ thức truy hồi, ta có $a_{n-1} = a_{n-2} + 2(n-1) 1$
- (2) Thay vào hệ thức ban đầu,

$$a_n = (a_{n-2} + 2(n-1) - 1) + 2n - 1 = a_{n-2} + 4n - 4$$

- (3) Từ hệ thức truy hồi, ta có $a_{n-2} = a_{n-3} + 2(n-2) 1$
- (4) Thay vào (2),

$$a_n = (a_{n-3} + 2(n-2) - 1) + 4n - 4 = a_{n-3} + 6n - 9$$

- (5) Từ hệ thức truy hồi, ta có $a_{n-3} = a_{n-4} + 2(n-3) 1$
- (6) Thay vào (4),

$$a_n = (a_{n-4} + 2(n-3) - 1) + 6n - 9 = a_{n-4} + 8n - 16$$

- (7) Lặp lại quá trình trên, ta "đoán" $a_n =$
- (8) Để có một công thức tường minh cho a_n , ta cần n-r=0, tức là r=n. Khi đó a_n được biểu diễn qua a_0 đã cho trước và n=r
- (9) Tóm lại $a_n =$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nap toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nap sai

ALIV Ĉ

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Doán nghiệm

Đa thức đặc trưng

Washington of the second of th

Bài tấp 21

Giải các hệ thức truy hồi với điều kiện ban đầu sau bằng phương pháp đoán nghiệm và chứng minh công thức bạn đoán được là đúng bằng quy nạp

(a)
$$a_n = -a_{n-1}, a_0 = 5$$

(e)
$$a_n = 2a_{n-1} - 3$$
, $a_0 = -1$

(b)
$$a_n = a_{n-1} + 3, a_0 = 1$$

(f)
$$a_n = (n+1)a_{n-1}, a_0 = 2$$

(c)
$$a_n = a_{n-1} - n$$
, $a_0 = 4$

(d) $a_n = 5a_{n-1}, a_0 = 1$

(g)
$$a_n = 2na_{n-1}, a_0 = 3$$

(h) $a_n = -a_{n-1} + n - 1, a_0 = 7$

Bài tập 22

Giả thiết dân số thế giới năm 2023 là 8 tỷ người và tăng theo tỷ lệ 0.8%/năm. Với $n\geq 1$,

- (a) Xây dựng hệ thức truy hồi để tính dân số thế giới n năm sau 2023
- (b) Tìm công thức tường minh để tính dân số thế giới n năm sau 2023
- (c) Dân số thế giới năm 2057 sẽ là bao nhiêu?

Quy nạp và Đệ quy Hoàng Anh Đức

Quv nap toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

CITIA

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tập hợp định nghĩa bằng

đệ quy Quy nạp theo cấu trúc

y nạp theo câu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

Đoán nghiệm

Đa thức đặc trưng

63

Hệ thức truy hồi tuyến tính thuần nhất bậc k với hệ số hằng (Linear homogeneous recurrence relation of degree k with constant coefficients) là hệ thức có dạng

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$$

trong đó c_1, c_2, \ldots, c_k là các số thực, $c_k \neq 0$, và $n \geq k$

- Một dãy $\{a_n\}$ $(n \ge 0)$ thỏa mãn hệ thức truy hồi trên được xác định một cách duy nhất bởi hệ thức này và k điều kiện ban đầu $a_0 = C_0, a_1 = C_1, \ldots, a_{k-1} = C_{k-1}$
 - Hệ thức truy hồi $f_n = f_{n-1} + f_{n-2}$ là một hệ thức truy hồi tuyến tính thuần nhất bậc hai với hệ số hằng. Dãy Fibonacci $\{f_n\}$ được xác định bởi hệ thức trên và điều kiện ban đầu $f_0 = 0, f_1 = 1$
 - Các hệ thức $g_n = ng_{n-1}$, $g_n = g_{n-1} + g_{n-2}^2$ không là hệ thức truy hồi tuyến tính thuần nhất với hệ số hằng

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

Dê quy

Giới thiêu

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tặp hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hối Dãy cho bởi hệ thức truy hổi

Đoán nghiệm

Đa thức đặc trưng

Đa thức đặc trưng

■ Hệ thức $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$ $(c_k \neq 0)$ có hai tính chất quan trọng

Nghiệm của hệ thức có dạng $a_n = r^n \ với \ r \neq 0$ là một hằng số nào đó. Từ đó, $r^n = c_1 r^{n-1} + \cdots + c_k r^{n-k}$. Chia hai vế cho r^{n-k} và chuyển vế, ta có

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0.$$

Đa thức cuối cùng gọi là đa thức đặc trưng (characteristic polynomial) của hệ thức, và nghiệm của nó gọi là nghiệm đặc trưng (characteristic root) của hệ thức

■ Nếu s_n và t_n thỏa mãn hệ thức truy hồi, thì $m \circ i$ tổ hợp tuyến tính của s_n và t_n , nghĩa là mọi biểu thức có dạng $b_1 s_n + b_2 t_n$ với b_1, b_2 là các số thực nào đó, cũng thỏa mãn hệ thức truy hồi

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Giới thiệu

Giới thiệu Quy nạp yếu Quy nạp manh

nạp sai

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ

Tập hợp định nghĩa bằng để quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm

Da thức đặc trưng

Định lý 2

Cho các số thực c_1,c_2,\ldots,c_k . Giả sử $r^k-c_1r^{k-1}-\cdots-c_{k-1}r-c_k$ có t nghiệm phân biệt r_1,r_2,\ldots,r_t với các bội tương ứng m_1,m_2,\ldots,m_t thỏa mãn $m_i\geq 1$ với $1\leq i\leq t$ và $m_1+\cdots+m_t=k$ (nghĩa là, có m_i nghiệm có giá trị r_i). Dấy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$ ($n\geq k$) với điều kiện ban đầu $a_0=C_0,a_1=C_1,\ldots,a_{k-1}=C_{k-1}$ khi và chỉ khi

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n$$

$$+ (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n$$

$$+ \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n$$

với $n \geq 0$, trong đó $\alpha_{i,j}$ là các hằng số với $1 \leq i \leq t$ và $0 \leq j \leq m_i - 1$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh Một số chứng minh quy

lê auv

Định nghĩa và một số khái niệm Hàm định nghĩa bằng để

quy Tập hợp định nghĩa bằng

đệ quy Quy nạp theo cấu trúc

Guy nap meo cau nuc

Dây cho bởi hệ thức truy hổi

Đoán nghiệm

Da thức đặc trưng

Các bước giải hệ thức truy hồi tuyến tính thuần nhất bậc k với hê số hằng

- (1) Xác định đa thức đặc trưng: $r^k c_1 r^{k-1} \cdots c_{k-1} r c_k$
- (2) Tìm các nghiệm r_1, r_2, \ldots, r_t của đa thức đặc trưng và bội tương ứng m_1, m_2, \ldots, m_t
- (3) Viết dạng tổng quát của nghiệm:

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n$$

$$+ (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n$$

$$+ \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n$$

- (4) Thay các điều kiện ban đầu $a_0=C_0, a_1=C_1,\ldots,$ $a_{k-1}=C_{k-1}$ vào dạng tổng quát để thiết lập hệ phương trình
- (5) Giải hệ phương trình để xác định các hệ số $\alpha_{i,j}$ với $1 \le i \le t$ và $0 \le j \le m_i 1$
- (6) Thay các hệ số vào biểu thức tổng quát để có nghiệm cuối cùng

Quy nạp và Đệ quy Hoàng Anh Đức

Quv nap toán học

Giới thiệu Quy nạp yếu Quy nạp manh

lệ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Doán nghiêm

Đạ thức đặc trưng

Da thức đặc trưng

63

Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nap manh

Một số chứng minh quy nạp sai

ệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hôi Dãy cho bởi hệ thức truy

Đoán nghiêm

Đa thức đặc trưng

Quy nạp và Đệ quy

Đinh lý 3: (Đinh lý 2 với k=2)

Cho hệ thức truy hồi $a_n=c_1a_{n-1}+c_2a_{n-2}$ ($n\geq 2$) với đa thức đặc trưng $r^2-c_1r-c_2$. Với điều kiện ban đầu $a_0=C_0$, $a_1=C_1$, dãy $\{a_n\}$ là nghiệm của hệ thức khi và chỉ khi:

(1) Khi đa thức đặc trưng có hai nghiệm phân biệt r_1, r_2 : $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

(2) Khi đa thức đặc trưng có một nghiệm bội 2 là r_1 : $a_n = (\alpha_1 + \alpha_2 n)r_1^n$

với α_1, α_2 là các hằng số.

STATE OF TANKER

Ví du 20

Giải hệ thức truy hồi $f_n=f_{n-1}+f_{n-2}$ ($n\geq 2$) với điều kiện ban đầu $f_0=0$ và $f_1=1$

- lacksquare Đa thức đặc trưng của hệ thức truy hồi là r^2-r-1
- \blacksquare Đa thức đặc trưng có hai nghiệm phân biệt $r_1=\frac{1+\sqrt{5}}{2}$ và $r_2=\frac{1-\sqrt{5}}{2}$
- Do đó, nếu dãy $\{f_n\}$ là nghiệm của hệ thức truy hồi thì $f_n=\alpha_1r_1^n+\alpha_2r_2^n$ với các hằng số α_1,α_2 nào đó
- $\{f_n\}$ cần thỏa mãn điều kiện ban đầu $f_0=0$ và $f_1=1$. Thay vào dạng tổng quát của f_n , ta có hệ phương trình

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)$$

Từ đó
$$\alpha_1=1/\sqrt{5}$$
 và $\alpha_2=-1/\sqrt{5}$

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp manh

ıp sai

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tào hợp định nghĩa bằng

đệ quy Quy nạo theo cấu trúc

Giải bộ thức truy b

Dây cho bởi hệ thức truy hồi Đoán nghiệm

Đoán nghiệm

Da thức đặc trưng

Đa thức đặc trưng

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học

Giới thiêu Quy nap yếu

Quy nap manh nap sai

Đinh nghĩa và một số khái Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng

đề auv

Quy nap theo cấu trúc

Dãy cho bởi hệ thức truy

Đa thức đặc trưng

Đoán nghiệm

Ví du 21

Giải hệ thức truy hồi $a_n = 6a_{n-1} - 9a_{n-2}$ với các điều kiện ban đầu $a_0 = 1$ và $a_1 = 6$

- Đa thức đặc trưng của hệ thức truy hồi là $r^2 6r + 9$
- Đa thức đặc trưng có một nghiệm $r_1 = 3$ với bội 2
- Do đó, nếu dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi thì $a_n = \alpha_{1,0}r_1^n + \alpha_{1,1}nr_1^n = \alpha_{1,0}3^n + \alpha_{1,1}n3^n$ với các hằng số $\alpha_{1,0}, \alpha_{1,1}$ nào đó
- Dãy $\{a_n\}$ cũng cần thỏa mãn điều kiện ban đầu $a_0 = 1$ và $a_1 = 6$. Thay vào dạng tổng quát của a_n , ta có hệ phương trình

$$a_0 = \alpha_{1,0} = 1$$

$$a_1 = \alpha_{1,0} \cdot 3 + \alpha_{1,1} \cdot 3 = 6$$

Do đó, ta có $\alpha_{1,0} = 1$ và $\alpha_{1,1} = 1$

Đa thức đặc trưng

Hoàng Anh Đức

Quy nap toán học

Quy nap yếu Quy nap manh

Đinh nghĩa và một số khái

Hàm định nghĩa bằng đê

Tập hợp định nghĩa bằng

Quy nap theo cấu trúc

Dãy cho bởi hệ thức truy

Đa thức đặc trưng

Quy nap và Đê quy

Giới thiêu

Đoán nghiệm

Đinh lý 4: (Đinh lý 2 với k=3)

Cho hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3}$ $(n \ge 3)$ với đa thức đặc trưng $r^3 - c_1 r^2 - c_2 r - c_3$. Với điều kiện ban đầu $a_0 = C_0$, $a_1 = C_1$, $a_2 = C_2$, dãy $\{a_n\}$ là nghiêm của hê thức khi và chỉ khi:

- (1) Khi đa thức đặc trưng có ba nghiệm phân biệt r_1 , r_2 , r_3 : $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \alpha_3 r_3^n$
- (2) Khi đa thức đặc trưng có hai nghiệm phân biệt r_1 (bôi 2) $v a r_2$ (bôi 1): $a_n = (\alpha_1 + \alpha_2 n) r_1^n + \alpha_3 r_2^n$
- (3) Khi đa thức đặc trưng có một nghiệm duy nhất r_1 (bội 3): $a_n = (\alpha_1 + \alpha_2 n + \alpha_3 n^2) r_1^n$

trong đó $\alpha_1, \alpha_2, \alpha_3$ là các hằng số.

The state of the s

Ví du 22

Giải hệ thức truy hồi $a_n=-3a_{n-1}-3a_{n-2}-a_{n-3}$ với các điều kiên ban đầu $a_0=1,\,a_1=-2,\,$ và $a_2=-1$

- lacksquare Đa thức đặc trưng của hệ thức là r^3+3r^2+3r+1
- Đa thức đặc trưng có một nghiệm $r_1 = -1$ với bội 3
- Do đó, nếu $\{a_n\}$ là nghiệm của hệ thức truy hồi thì $a_n=\alpha_{1,0}r_1^n+\alpha_{1,1}nr_1^n+\alpha_{1,2}n^2r^n$
- Dãy $\{a_n\}$ cũng cần thỏa mãn điều kiện ban đầu $a_0=1$, $a_1=-2$, và $a_2=-1$. Thay vào dạng tổng quát của a_n , ta có hệ phương trình

$$a_0 = \alpha_{1,0} = 1$$

$$a_1 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2} = -2$$

$$a_2 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2} = -1$$

Do đó ta có $\alpha_{1,0}=1$, $\alpha_{1,1}=3$, và $\alpha_{1,2}=-2$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp manh

Một số chứng minh qu nạp sai

)ệ quy

Định nghĩa và một số khái niệm Hàm đinh nghĩa bằng đê

quy Tập hợp định nghĩa bằng

αẹ quy Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

Đoán nghiệm

Da thức đặc trưng

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạn sai

Dê quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

Đoán nghiệm

Da thức đặc trưng

Bài tập 23

Giải các hệ thức truy hồi với điều kiện ban đầu sau

(a)
$$a_n = 2a_{n-1}$$
 với $n \ge 1$, $a_0 = 3$

(b)
$$a_n = 5a_{n-1} - 6a_{n-2}$$
 với $n \ge 2$, $a_0 = 1$, $a_1 = 0$

(c)
$$a_n = 4a_{n-1} - 4a_{n-2}$$
 với $n \ge 2$, $a_0 = 6$, $a_1 = 8$

(d)
$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
 với $n \ge 3$, $a_0 = 5$, $a_1 = -9$, $a_2 = 15$

(e)
$$a_n = 6a_{n-1} - 8a_{n-2}$$
 $(n \ge 2), a_0 = 4, a_1 = 10$

(f)
$$a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3}$$
 $(n \ge 3), a_0 = 3, a_1 = 6, a_2 = 0$

(g)
$$(\star)$$
 $\sqrt{a_n} = \sqrt{a_{n-1}} + 2\sqrt{a_{n-2}}$ $(n \ge 2), a_0 = a_1 = 1$

Name of Cook

■ Hệ thức truy hồi tuyến tính không thuần nhất bậc k với hệ số hằng (Linear nonhomogeneous recurrence relation of degree k with constant coefficients) là hê thức có dang

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

trong đó c_1,c_2,\ldots,c_k là các số thực, $c_k\neq 0,\,F(n)$ là một hàm chỉ phụ thuộc vào n và không phải luôn bằng 0, và $n\geq k$

■ Hệ thức $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ được gọi là hệ thức truy hồi thuần nhất tương ứng (associated homogeneous recurrence relation) của hệ thức trên

Định lý 5

Nếu $\{a_n^{(p)}\}$ là một nghiệm riêng nào đó của hệ thức $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+F(n)$ thì mọi nghiệm của hệ thức đó có dạng $\{a_n^{(p)}+a_n^{(h)}\}$, trong đó $a_n^{(h)}$ là nghiệm của hệ thức thuần nhất tương ứng $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh

lê auv

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tập hợp định nghĩa bằng

Quy nạp theo cấu trúc

Giải hệ thức truy hồi Dây cho bởi hệ thức truy

Doán nghiệm

Da thức đặc trưng

63

Với một số dạng F(n), nghiệm riêng có dạng đặc biệt

Định lý 6

Giả sử $\{a_n\}$ thỏa mãn hệ thức

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

trong đó c_1, \ldots, c_k là các số thực, và

$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n,$$

trong đó b_0,\ldots,b_t và s là các số thực. Khi s không phải là nghiệm của đa thức đặc trưng của hệ thức thuần nhất tương ứng, tồn tại một nghiệm riêng có dạng $(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n$. Khi s là một nghiệm với bội m của đa thức đặc trưng của hệ thức thuần nhất tương ứng, tồn tại một nghiệm riêng có dạng $n^m(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n$.

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu

Quy nạp mạnh Một số chứng minh quy nạp sai

lệ quy

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy Tập hợp định nghĩa bằng

đệ quy Quy nạp theo cấu trúc

Quy nạp theo cau truc

Giải hệ thức truy hối Dây cho bởi hệ thức truy hổi

Đoán nghiệm

Da thức đặc trưng

STATE OF THE PARTY OF THE PARTY

Các bước giải hệ thức truy hồi tuyến tính không thuần nhất bậc k với hê số hằng

Cho hệ thức truy hồi: $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+F(n)$ với $F(n)=(b_tn^t+\cdots+b_1n+b_0)s^n$

- (1) Tìm nghiệm thuần nhất $a_n^{(h)}$:
 - **Xác định đa thức đặc trưng:** $r^k c_1 r^{k-1} \cdots c_{k-1} r c_k$
 - Tìm nghiệm và bội tương ứng của đa thức đặc trưng
 - Viết dạng tổng quát của nghiệm thuần nhất theo Định lý 2
- (2) Tìm nghiệm riêng $a_n^{(p)}$:
 - Kiểm tra xem s có phải là nghiệm đặc trưng của hệ thức thuần nhất hay không
 - Nếu s không phải nghiệm đặc trưng: đặt $a_n^{(p)} = (p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n$
 - lacksquare Nếu s là nghiệm đặc trưng với bội m: đặt
 - $a_n^{(p)} = n^m (p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$
 - Thay $a_n^{(p)}$ vào hệ thức ban đầu để thiết lập hệ phương trình tìm p_0, p_1, \dots, p_t
- (3) Tìm nghiệm tổng quát: $a_n = a_n^{(h)} + a_n^{(p)}$
- (4) Áp dụng điều kiện ban đầu để tìm các hằng số trong nghiệm thuần nhất

Quy nạp và Đệ quy Hoàng Anh Đức

. .

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh

Sa -----

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy Quy nap theo cấu trúc

uy nạp theo câu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm

Đa thức đặc trưng

62

Đa thức đặc trưng

** A STATE OF THE STATE OF THE

Ví du 23

Giải hệ thức truy hồi $a_n=a_{n-1}+n\ (n\geq 2)$ với điều kiện ban đầu $a_1=1$

- Hệ thức thuần nhất tương ứng là $a_n=a_{n-1}$ $(n\geq 2)$. Hệ thức này có nghiệm đặc trưng r=1 và dãy $\{a_n^{(h)}\}$ với $a_n^{(h)}=c\cdot (1)^n$ là một dãy thỏa mãn hệ thức, trong đó c là hằng số nào đó
- Ta có $F(n)=n=(1\cdot n+0)\cdot 1^n$. Vì s=1 là nghiệm đặc trưng của hệ thức thuần nhất tương ứng với bội 1, một nghiệm riêng của hệ thức không thuần nhất đã cho có dạng $a_n^{(p)}=n(p_1n+p_0)1^n=p_1n^2+p_0n$
- Thay dạng của nghiệm riêng vào hệ thức đã cho, ta có $n(2p_1-1)+(p_0-p_1)=0$, nghĩa là $2p_1-1=0$ và $p_0-p_1=0$, do đó $p_0=p_1=1/2$
- \blacksquare Cuối cùng, hệ thức ban đầu có nghiệm dạng $a_n=a_n^{(p)}+a_n^{(h)}=n(n+1)/2+c.$ Thay vào điều kiện ban đầu $a_1=1$ ta được c=0

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nạp yếu Quy nạp mạnh

ô aun

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đệ quy Quy nap theo cấu trúc

Quy nạp theo cau trúc

Giải hệ thức truy hối Dây cho bởi hệ thức truy hổi

Đoán nghiệm

Da thức đặc trưng

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Giới thiệu Quy nap yếu

Quy nạp mạnh Một số chứng minh quị nap sai

Dê auv

Định nghĩa và một số khái niệm

Hàm định nghĩa bằng đệ quy

Tập hợp định nghĩa bằng đề quy

Quy nạp theo cầu trúc

Giải hệ thức truy hồi Dãy cho bởi hệ thức truy

Đoán nghiệm

Da thức đặc trưng

Bài tâp 24

Giải các hệ thức truy hồi với điều kiện ban đầu sau

- (1) $a_n = 3a_{n-1} + 2^n \text{ v\'oi } n > 1, a_0 = 1$
- (2) $a_n = 2a_{n-1} + 2n^2 \text{ v\'oi } n \ge 2, a_1 = 5$
- (3) $a_n = -5a_{n-1} 6a_{n-2} + 42 \cdot 4^n \ (n \ge 3), \ a_1 = 56, \ a_2 = 278$
- (4) $a_n = 5a_{n-1} 6a_{n-2} + 2^n + 3n$ (**Gợi ý:** Tìm nghiệm riêng có dạng $qn2^n + p_1n + p_2$, trong đó q, p_1, p_2 là các hằng số)

Part I

Phụ lục

Nôi dung

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy Quy nap manh và quy nap

yếu là tương đương

Hàm sinh

Tài liêu tham khảo

Quy nap toán học Tính đúng đắn của Quy nạp mạnh Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hồi Hàm sinh

Một số lỗi thường gặp

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Tính đúng đắn của Quy

Quy nạp mạnh và quy nạp yếu là tương đương Giải hệ thức truy hồi

Một số lỗi thường gặt

Hàm sinh

wiot so for triuorig gap

Chứng minh (Quy nạp mạnh là đúng).

- Giả sử P(1) đúng và với mọi $k \in \mathbb{Z}^+$, $(P(1) \land P(2) \land \cdots \land P(k)) \rightarrow P(k+1)$ đúng. Ta chứng minh $\forall n \in \mathbb{Z}^+$ P(n) bằng phản chứng
- Giả sử tồn tại $n \in \mathbb{Z}^+$ sao cho P(n) sai. Do đó, tập $S = \{n \mid n \in \mathbb{Z}^+ \text{ và } P(n) \text{ sai}\} \subseteq \mathbb{Z}^+$ là tập khác rỗng.
- Theo Tiên đề 1, S có một phần tử nhỏ nhất m. Do P(1) đúng và $m \in \mathbb{Z}^+$, ta có m > 1, suy ra $m 1 \in \mathbb{Z}^+$
- Theo định nghĩa của m, với mọi số nguyên dương $j \leq m-1$, ta có P(j) đúng (nếu không thì j < m và P(j) sai; điều này mâu thuẫn với định nghĩa của m). Do đó $P(1) \wedge P(2) \wedge \cdots \wedge P(m-1)$ đúng
- Do $(P(1) \land P(2) \land \cdots \land P(k)) \rightarrow P(k+1)$ đúng với mọi $k \in \mathbb{Z}^+$, ta có $(P(1) \land P(2) \land \cdots \land P(m-1)) \rightarrow P(m)$ đúng
- Kết hợp với $P(1) \wedge P(2) \wedge \cdots \wedge P(m-1)$ đúng, ta có P(m) đúng. Điều này mâu thuẫn với định nghĩa của m. Do đó P(n) đúng với mọi số nguyên dương n

23

Quy nạp toán học

Quy nap manh và quy nap yếu là tương đương

Quy nạp yếu \Rightarrow Quy nạp mạnh.

- (1) Giả sử với mọi R(n), ta có $(R(1) \land \forall k \in \mathbb{Z}^+ \ (R(k) \to R(k+1))) \to \forall n \in \mathbb{Z}^+ \ R(n)$ đúng, nghĩa là, quy nạp yếu đúng
- (2) Giả sử với vị từ P(n) ta có $P(1) \wedge \forall k \in \mathbb{Z}^+ \bigwedge_{j=1}^k P(j) \rightarrow P(k+1)$ đúng, nghĩa là, bước cơ sở và bước quy nạp của quy nạp mạnh là đúng. Ta chứng minh $\forall n \in \mathbb{Z}^+ P(n)$ đúng
- (3) Ta định nghĩa $Q(n) = \bigwedge_{i=1}^{n} P(n)$ với mọi $n \in \mathbb{Z}^+$
- (4) Từ (1), ta có $(Q(1) \land \forall k \in \mathbb{Z}^+ (Q(k) \to Q(k+1))) \to \forall n \in \mathbb{Z}^+ Q(n) \text{ dúng}$
- (5) Từ (3), ta có $Q(1) \equiv P(1)$ và $\forall n \in \mathbb{Z}^+ \ Q(n) \equiv \forall n \in \mathbb{Z}^+ \ P(n)$
- (6) Chú ý rằng với các mệnh đề p,q bất kỳ $p \to q \equiv p \to p \land q$ (Tại sao?).
- (7) Do đó $Q(k) \rightarrow Q(k+1) \equiv \bigwedge_{j=1}^k P(k) \rightarrow \bigwedge_{j=1}^{k+1} P(k+1) \equiv \bigwedge_{j=1}^k P(k) \rightarrow \bigwedge_{j=1}^k P(k) \land P(k+1) \equiv \bigwedge_{j=1}^k P(k) \rightarrow P(k+1)$
- (8) Thay (5) và (7) vào (4), ta có điều phải chứng minh

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Tính đúng đắn của Quy nạp mạnh

Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hồi Hàm sinh

Một số lỗi thường gặp

ài liệu tham khảo

Quy nạp toán học

Quy nạp mạnh và quy nạp yếu là tương đương

A POST OF THE POST

Quy nạp mạnh ⇒ Quy nạp yếu.

- (1) Giả sử với mọi R(n) ta có $(R(1) \land \forall k \in \mathbb{Z}^+ (\bigwedge_{j=1}^k R(j) \to R(k+1))) \to \forall n \in \mathbb{Z}^+ R(n)$ đúng, nghĩa là, quy nạp mạnh đúng
- (2) Giả sử với vị từ P(n) ta có $P(1) \wedge \forall k \in \mathbb{Z}^+ \ (P(k) \to P(k+1))$ đúng, nghĩa là, bước cơ sở và bước quy nạp của quy nạp yếu đúng. Ta chứng minh $\forall n \in \mathbb{Z}^+ \ P(n)$ đúng
- (3) Chú ý rằng với các mệnh đề p,q,r bất kỳ, nếu $p \to q$ đúng thì $p \wedge r \to q$ cũng đúng (Tai sao?)
- (4) Áp dụng (1) với P(n), ta có $(P(1) \land \forall k \in \mathbb{Z}^+ \left(\bigwedge_{j=1}^k P(j) \to P(k+1) \right)) \to \forall n \in \mathbb{Z}^+ \, P(n)$ đúng.
- (5) Từ (2), ta có P(1) đúng và $\forall k \in \mathbb{Z}^+ (P(k) \to P(k+1))$ đúng. Kết hợp với (3), ta có $\forall k \in \mathbb{Z}^+ (\bigwedge_{j=1}^k P(j) \to P(k+1))$ đúng
- (6) Từ (4) và (5) ta có điều phải chứng minh

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học
Tính đúng đắn của Quy
nạp mạnh
Quy nạp manh và quy nạp

yếu là tương đương

Hàm sinh

Th: 1:2... 4b === 1.b 2 =

Giải hệ thức truy hồi Hàm sinh

Hàm sinh

Hàm sinh (generating function) $G_a(x)$ của một dãy vô hạn $\{a_n\}$ (n > 0) được định nghĩa như sau

$$G_a(x) := \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots$$

Nói cách khác, a_n là hê số của x^n trong $G_a(x)$

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy Quy nap manh và quy nap

yếu là tương đương

Hàm sinh

Môt số lỗi thường gặp

Công thức tường minh $G_a(x) = h(x)$

Khai triển h(x)

Định lý 7

Cho $f(x)=\sum_{n=0}^{\infty}a_nx^n\,$ và $g(x)=\sum_{n=0}^{\infty}b_nx^n.$ Ta có

$$f(x) + g(x) = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$
$$f(x)g(x) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k b_{n-k}) x^n$$

Chú ý: Định lý trên chỉ đúng cho các chuỗi lũy thừa hội tụ trong một khoảng nào đó, và tất cả các chuỗi chúng ta sẽ xét trong bài giảng này đều thỏa mãn điều kiện đó. Tuy nhiên, ngay cả khi các chuỗi không hội tụ, định lý trên có thể được sử dụng như là đinh nghĩa cho các phép công và nhân các hàm sinh

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đấn của Quy nạp mạnh Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hồi

Một số lỗi thường gặp

23

Hàm sinh

Các bước giải hệ thức truy hồi bằng hàm sinh

- (1) Định nghĩa hàm sinh: $G_a(x) = \sum_{n=0}^{\infty} a_n x^n$
- (2) Xây dựng phương trình cho $G_a(x)$:
 - Sử dụng hệ thức truy hồi, điều kiện ban đầu, và các phép biến đổi đại số để thu được phương trình đại số cho $G_a(x)$
- (3) Giải phương trình để tìm biểu thức tường minh h(x) của $G_a(x)$
- (4) Phân tích h(x):
 - Khai triển h(x) thành chuỗi lũy thừa sử dụng phân tích thành phân số riêng hoặc các công thức chuỗi cơ bản
 - Áp dụng các đẳng thức đã biết để đưa về dạng chuỗi lũy thừa
- (5) **Trích xuất hệ số**: So sánh với định nghĩa ban đầu

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n$$
 để xác định a_n

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy nạp mạnh Quy nap manh và quy nap

yếu là tương đương

Hàm sinh

Một số lỗi thường gặp

Giải hệ thức truy hồi Hàm sinh

Ví du 24

Giải hệ thức truy hồi $a_n=3a_{n-1} \; (n\geq 1)$ với điều kiện ban đầu $a_0=2$

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + \sum_{n=1}^{\infty} (3a_{n-1}) x^n$$

$$= 2 + 3x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} = 2 + 3x \sum_{m=0}^{\infty} a_m x^m$$

$$= 2 + 3x G_a(x)$$

$$G_a(x) = \frac{2}{1 - 3x}$$

Nhắc lại rằng
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 với $-1 < x < 1$. Suy ra

$$\sum_{n=0}^{\infty} c^n x^n = \frac{1}{1-cx}$$
 với $-1 < cx < 1$ trong đó $c \neq 0$ là hằng số nào đó

Sử dung đẳng thức trên, ta có thể viết

$$G_a(x) = \frac{2}{1 - 3x} = 2\sum_{n=0}^{\infty} 3^n x^n = \sum_{n=0}^{\infty} (2 \cdot 3^n) x^n$$

Suv ra $a_n = 2 \cdot 3^n$

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học Tính đúng đấn của Quy

Quy nạp mạnh và quy nạp yếu là tương đương

Hàm sinh

Một số lỗi thường gặp

Hàm sinh

Môt phương pháp khác để tìm công thức tường minh cho $G_a(x)$ trong Ví du 24. Chú ý rằng $a_n = 3a_{n-1}$ (n > 1) và $a_0 = 2$

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$-3xG_a(x) = -\sum_{n=0}^{\infty} [3a_n]x^{n+1}$$

$$G_a(x) - 3xG_a(x) = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} [3a_n] x^{n+1}$$

$$= a_0 x^0 + \sum_{n=1}^{\infty} a_n x^n - \sum_{n=0}^{\infty} [3a_n] x^{n+1}$$

$$= 2 + \sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} [3a_{n-1}]x^n$$

$$= 2 + \sum_{n=1}^{\infty} \left[a_n - 3a_{n-1} \right] x^n$$

$$=2$$

Định nghĩa hàm sinh

Nhân hai vế với -3x

Công hai đẳng thức

Đổi chỉ số

 $a_n = 3a_{n-1}$

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy Quy nap manh và quy nap yếu là tương đương

Hàm sinh

Một số đẳng thức hữu ích

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1-ax} = \sum_{n=0}^{\infty} a^n x^n$$

$$\frac{1}{1-x^k} = \sum_{n=0}^{\infty} x^{kn}$$

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đắn của Quy nạp mạnh Quy nạp mạnh và quy nạp

yếu là tương đương

Giải hệ thức truy hồ

Hàm sinh

Một số lỗi thường gặp Tài liêu tham khảo

 $= x + xG_f(x) + x^2G_f(x)$

 $G_f(x) = \frac{x}{1 - x - x^2}$

Wheel to room to

Ví du 25

Dãy Fibonacci $\{f_n\}$ cho bởi hệ thức $f_n=f_{n-1}+f_{n-2}$ $(n\geq 2)$ và điều kiện ban đầu $f_0=0$ và $f_1=1$

$$\begin{split} G_f(x) &= \sum_{n=0}^\infty f_n x^n = f_0 + f_1 x + \sum_{n=2}^\infty (f_{n-1} + f_{n-2}) x^n \\ &= x + x \sum_{n=2}^\infty f_{n-1} x^{n-1} + x^2 \sum_{n=2}^\infty f_{n-2} x^{n-2} \\ &= x + x \sum_{m=1}^\infty f_m x^m + x^2 \sum_{m=0}^\infty f_m x^m & \text{dổi biến} \\ &= x + x \bigg[\sum_{m=0}^\infty f_m x^m - f_0 x^0 \bigg] + x^2 \sum_{m=0}^\infty f_m x^m & f_0 x^0 = 0 \end{split}$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy nạp mạnh Quy nạp mạnh và quy nạp

yếu là tương đương

Hàm sinh

Một số lỗi thường gặp

Một phương pháp khác để tìm công thức tường minh cho $G_f(x)$ trong ví dụ dãy Fibonacci. Chú ý rằng $f_n=f_{n-1}+f_{n-2}$ $(n\geq 2)$ và $f_0=0,\ f_1=1$

$$G_f(x) = \sum_{n=0}^{\infty} f_n x^n$$

$$-xG_f(x) = -\sum_{n=0}^{\infty} f_n x^{n+1}$$

Nhân với
$$-x$$

$$-x^2G_f(x) = -\sum_{n=0}^{\infty} f_n x^{n+2}$$

Nhân với
$$-x^2$$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đắn của Quy nạp mạnh

Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hồi

Một số lỗi thường gặp

ài liêu tham khảo

Hàm sinh

$$G_f(x) - xG_f(x) - x^2G_f(x)$$

$$= \sum_{n=0}^{\infty} f_n x^n - \sum_{n=0}^{\infty} f_n x^{n+1} - \sum_{n=0}^{\infty} f_n x^{n+2}$$

$$= f_0 + f_1 x + \sum_{n=2}^{\infty} f_n x^n - \sum_{n=1}^{\infty} f_{n-1} x^n - \sum_{n=2}^{\infty} f_{n-2} x^n$$

$$= 0 + x + \sum_{n=0}^{\infty} [f_n - f_{n-1} - f_{n-2}]x^n$$

$$= x + 0$$

$$= x$$

Do đó,
$$G_f(x)(1-x-x^2)=x$$
, và suy ra $G_f(x)=\frac{x}{1-x-x^2}$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đắn của Quy nạp mạnh Quy nạp mạnh và quy nạp

yếu là tương đương Giải hệ thức truy bồ

3 Hàm sinh

Công ba đẳng thức

 $f_n = f_{n-1} + f_{n-2}$

Một số lỗi thường gặp

ai liệu tham khảo

Giải hệ thức truy hồi Hàm sinh

Nhắc lại rằng $\sum^{\infty} c^n x^n = \frac{1}{1-cx}$ với -1 < cx < 1 trong đó $c \neq 0$

Bài tấp 25

là hằng số nào đó

- Viết $G_f(x) = \frac{x}{1-x-x^2} = \frac{a}{1-Ax} + \frac{b}{1-Bx}$ với các hằng $s\hat{o} a, b, A, B$ nào đó
- \blacksquare Áp dụng công thức trên để đưa $G_f(x)$ về dạng

$$a\sum_{n=0}^{\infty}A^nx^n+b\sum_{n=0}^{\infty}B^nx^n \text{ v\'oi } -1 < Ax < 1 \text{ v\`a } -1 < Bx < 1$$
 (\equiv Khai triển $G_f(x)$ thành chuỗi lũy thừa)

■ Từ định nghĩa hàm sinh, suy ra công thức cho dãy $\{f_n\}$

Quy nap và Đê quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy Quy nap manh và quy nap

yếu là tương đương

Hàm sinh

Một số lỗi thường gặp

Hàm sinh

Chú ý rằng từ $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ với -1 < x < 1, bằng cách lấy đạo hàm hai vế và đổi chỉ số lấy tổng, ta có

$$\sum_{n=1}^{\infty} nx^{n-1} = \sum_{m=0}^{\infty} (m+1)x^m = \frac{1}{(1-x)^2}$$

Bài tập 26

Sử dụng hàm sinh để giải các hệ thức truy hồi sau

(a)
$$a_n = 7a_{n-1}$$
 $(n \ge 1), a_0 = 5$

(b)
$$a_n = 2a_{n-1} - a_{n-2}$$
 ($n \ge 2$), $a_0 = 1$, $a_1 = 1$

(c)
$$a_n = 5a_{n-1} - 6a_{n-2}$$
 $(n \ge 2)$, $a_0 = 6$, $a_1 = 30$

(d) (
$$\star$$
) $a_n = 3a_{n-1} + n$ ($n \ge 1$), $a_0 = 1$

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đắn của Quy nạp mạnh Quy nạp mạnh và quy nạp

yếu là tương đương Giải hệ thức truy hồi

Giải hệ thức truy hồi Hàm sinh

Một số lỗi thường gặp

ài liêu tham khảo

Một số lỗi thường gặp

Chú ý

Tham khảo từ tài liệu "Common Mistakes in Discrete Mathematics" (https://highered.mheducation.com/sites/dl/free/125967651x/1106131/Common_Mistakes_in_Discrete_Math.pdf)

- (a) Quên thực hiện bước cơ sở trong chứng minh bằng quy nạp toán học
 - Bước quy nạp có thể thực hiện tốt, ví dụ, khi chúng ta cố gắng chứng minh rằng n=n+1 với mọi số nguyên dương n, nhưng mệnh đề này rõ ràng là không đúng. Vấn đề là ở bước cơ sở (khi n=1) không thỏa mãn, vì $1 \neq 1+1$
- (b) Không thực hiện nhiều hơn một trường hợp trong bước cơ sở của chứng minh bằng quy nạp

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học
Tính đúng đắn của Quy
nạp mạnh
Quy nạp manh và quy nạp

yếu là tương đương Giải hệ thức truy hồi

Hàm sinh

16 Một số lỗi thường gặp

ài liệu tham khảo

- Trong một số tình huống, chẳng hạn như khi bước quy nạp cần hai hoặc nhiều điều kiện trước đó, cần phải kiểm tra nhiều trường hợp cơ sở
- Ví dụ, khi chứng minh các phát biểu về dãy Fibonacci, thường cần phải kiểm tra hai trường hợp cơ sở đầu tiên (giả sử n=1 và n=2), vì bước quy nạp dựa vào phương trình $f_n=f_{n-1}+f_{n-2}$

(c) Nhầm lẫn giữa tổng và vị từ P(n) trong chứng minh quy nạp

■ Ví dụ, khi cố gắng chứng minh $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ bằng quy nạp, P(n) là toàn bộ phương trình này, không phải chỉ là vế trái của nó

(d) Viết P(k+1) không chính xác trong chứng minh bằng quy nạp toán học

■ Khi P(n) đã được xác định đúng, việc viết P(k+1) thường có thể được thực hiện một cách máy móc bằng cách thay k+1 vào n

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Tính đúng đấn của Quy

Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hồ Hàm sinh

17 Một số lỗi thường gặp

Tài liệu tham khảo

- Ví dụ, nếu P(n) là mệnh đề $2+4+6+\cdots+2n=n(n+1)$, thì P(k+1) là $2+4+6+\cdots+2k+2(k+1)=(k+1)(k+2)$
- (e) Rơi vào "bẫy quy nạp (induction trap)" trong chứng minh bằng quy nạp toán học
 - Đây là thuật ngữ được Douglas West (Đại học Illinois) đặt ra để chỉ lỗi khi bắt đầu từ tính đúng đắn của P(k) và chứng minh tính đúng đắn của P(k+1) chỉ trong một số trường hợp đặc biệt, thay vì chứng minh tổng quát
- (f) Mắc lỗi khi thực hiện các biến đổi đại số cơ bản khi chứng minh bằng quy nạp toán học
 - Có thể xảy ra trong khi thực hiện các biến đổi đại số cơ bản, đặc biệt là trong việc đơn giản hóa biểu thức
 - Ví dụ, bạn có thể cần sử dụng đẳng thức $2^n + 2^n = 2^{n+1}$, hoặc cần đơn giản hóa $(n+1)^3 + 5(n+1)^2$, điều này tốt nhất nên được thực hiện bằng cách phân tích thừa số, không phải bằng cách khai triển từng số hạng

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đắn của Quy nạp mạnh Quy nap manh và quy nap

yếu là tương đương

Giải hệ thức truy hồ

Hàm sinh

18 Một số lỗi thường gặp

ài liệu tham khảo

Kiểm tra kỹ các thao tác biến đổi đại số của bạn khi bạn gặp khó khăn với bước quy nạp của một chứng minh như vậy

(g) Thiếu tổ chức khi viết định nghĩa đệ quy

- Một lời khuyên là nên suy nghĩ về cách xây dựng từng bước một các đối tượng đang xét
- Các quy tắc ở bước đệ quy của định nghĩa cần được xây dựng để cho phép từng bước như vậy, và các trường hợp cơ sở là cần thiết để bắt đầu quá trình xây dựng đối tượng
- Những lỗi phổ biến bao gồm:
 - Không đưa đủ các trường hợp cơ sở (ví dụ, định nghĩa đệ quy của dãy Fibonacci yêu cầu hai trường hợp cơ sở)
 - Có các trường hợp xung đột (ví dụ, có một trường hợp cho n chia hết cho 2 và một trường hợp khác cho n chia hết cho 3, dẫn đến không có định nghĩa duy nhất cho các trường hợp n chia hết cho 6)
 - Có giá trị hàm tại n phụ thuộc vào giá trị hàm tại đầu vào lớn hơn n (ví dụ, f(n) = f(3n+1) 2)

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Tính đúng đấn của Quy

nạp mạnh Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hồi Hàm sinh

(19) Một số lỗi thường gặp

iai liệu tham khảo

(h) Dễ dàng từ bỏ khi cố gắng viết một quan hệ truy hồi để mô hình hóa một bài toán

- Hãy tự hỏi bản thân làm thế nào để có thể nhận được một trường hợp của bài toán kích thước n từ các trường hợp kích thước n-1 (hoặc đôi khi là các trường hợp nhỏ hơn)
- Đảm bảo xem xét tất cả các khả năng, và nhớ bao gồm đủ các điều kiên ban đầu
- Ví dụ, nếu a_n là số cách để leo n bậc thang nếu chúng ta được phép leo mỗi lần một bậc hoặc ba bậc, thì rõ ràng $a_1=1,\,a_2=1,\,$ và $a_3=2,\,$ và sau đó $a_n=a_{n-1}+a_{n-3}\,$ với $n\geq 4,\,$ vì bước đầu tiên có thể là một bước đơn hoặc ba bước
- Áp dụng sai thuật toán giải quan hệ truy hồi tuyến tính thuần nhất với hệ số hằng khi phương trình đặc trưng có nghiệm lặp
 - lacktriangle Trong trường hợp này, cần phải nhân với lũy thừa của n

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học Tính đúng đấn của Quy

Quy nạp mạnh và quy nạp yếu là tương đương

Giải hệ thức truy hô Hàm sinh

20 Một số lỗi thường gặp

ài liệu tham khảo

■ Ví dụ, nếu phương trình đặc trưng là $r^2 - 6r + 9 = (r - 3)^2 = 0$, thì nghiệm tổng quát là $a_n = c_1 \cdot 3^n + c_2 \cdot n \cdot 3^n$

Tìm nghiệm riêng không chính xác của quan hệ truy hồi tuyến tính không thuần nhất với hệ số hằng

Luôn nên kiểm tra lại các nghiệm bạn tìm được. Ví dụ, nếu bạn tính được rằng $a_n=2^n$ là nghiệm riêng của $a_n=2a_{n-1}+2^n$, thì khi thế vào, bạn sẽ thấy mình đã mắc lỗi, vì không đúng rằng $2^n=2\cdot 2^{n-1}+2^n$

(k) Quên quan tâm đến vài số hạng đầu tiên của chuỗi lũy thừa

- Khi giải quan hệ truy hồi bằng cách sử dụng hàm sinh, quan hệ truy hồi thường chỉ áp dụng được cho $k \geq 1$ hoặc $k \geq 2$; do đó một hoặc hai số hạng đầu tiên phải được xử lý riêng biệt
- (I) Quên đổi biến trong chuỗi lũy thừa khi cần thiết

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đấn của Quy nạp mạnh Quy nạp manh và quy nạp

yếu là tương đương Giải hệ thức truy hồ

21 Một số lỗi thường gặp

Tài liệu tham khảo

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nạp toán học

Tính đúng đấn của Quy nạp mạnh Quy nạp manh và quy nạp

yếu là tương đương Giải hệ thức truy hồ

Hàm sinh

2 Một số lỗi thường gặp

wick so for tridoring gap

ai ileu tham khao

■ Ví dụ, nếu chuỗi lũy thừa có x^{k-1} và bạn cần chuyển nó thành x^k , bạn có thể thay k bằng k+1 trong toàn bộ tổng (bao gồm cả các giới hạn) và đơn giản hóa về mặt đại số:

$$\sum_{k=1}^{\infty} kx^{k-1} = \sum_{k+1=1}^{\infty} (k+1)x^{(k+1)-1} = \sum_{k=0}^{\infty} (k+1)x^k$$

Tài liệu tham khảo

Quy nạp và Đệ quy Hoàng Anh Đức

Quy nap toán học

Tính đúng đấn của Quy nap manh Quy nap manh và quy nap

yếu là tương đương

Môt số lỗi thường gặp

Hàm sinh

23 Tài liêu tham khảo

Gunderson, David S. and Kenneth H. Rosen (2010). Handbook of Mathematical Induction: Theory and Applications. Chapman and Hall/CRC. DOI: 10.1201/b16005.