Politechnika Wrocławska Wydział Matematyki

Skład grupy: Agata Sobczak 268873

Jakub Franczak 262271 Katarzyna Kudełko 268762

Prowadząca laboratorium: dr inż. Aleksandra Grzesiek Prowadząca wykładu: dr hab. Alicja Jokiel-Rokita

Analiza Danych Ankietowych

Raport 2.

Lista 2.

Spis treści

1	Zad	anie 1.	3
	1.1	Cel zadania	
	1.2	Fisher.test i prop.test	3
	1.3	Wnioski	3
2	Zad	anie 2.	4
	2.1	Cel zadania	4
	2.2	(a) Czy skuteczność leczenia jest niezależna od wielkości dawki?	4
	2.3	(b) Czy skuteczność leczenia jest niezależna od rodzaju leku?	4
	2.4	(c) Czy skuteczność leczenia jest niezależna od miejsca leczenia?	
3	Zad	anie 3.	5
	3.1	Cel zadania	5
	3.2	chisq.test	6
	3.3	Wnioski	7
4	Zad	anie 4.	7
_	4.1	Cel zadania	7
	4.2	Wnioski	
5	Zad	anie 5.	8
J	5.1	Cel zadania	_
	5.2	Reakcja a Dawka	
	5.3	Reakcja a Miejsce	
_			
6		anie 6.	9
	6.1	Cel zadania	
	6.2	Współzmienność	
	6.3	Analiza korespondencji	
		6.3.1 Kod	
	C 1	6.3.2 Wyniki	
	6.4	Wnioski	15
7		anie 7.	15
	7.1	Cel zadania	
	7.2	Wyniki	
	7.3	Wnioski	-18

1 Zadanie 1.

1.1 Cel zadania

Celem zadania jest zweryfikowanie czy na poziomie istotności 0.05 są podstawy do odrzucenia hipotezy o niezależności temperatury i wystąpienia uszkodzeń w promach kosmicznych.

Hipoteza zerowa- prawdopodobieństwo wystąpienia uszkodzenia promu kosmicznego jest takie same dla temperatury otoczenia dla co najwyżej $65^{\circ}F$ i powyżej $65^{\circ}F$.

Hipoteza alternatywna- zależność wystąpienia uszkodzenia promu kosmicznego dla temperatury otoczenia dla co najwyżej $65^{\circ}F$ i powyżej $65^{\circ}F$.

	Brak uszkodzeń	Obecność uszkodzeń
Do 65 stopni F	0	4
Powyżej 65 stopni F	17	3

Tabela 1: Tabela dwudzielcza dla zmiennych temperatura i obecność uszkodzeń

1.2 Fisher.test i prop.test

	fisher.test	prop.test
p- wartość	0.003294	0.004927

Tabela 2: p- wartość testów fisher.test i prop.test

1.3 Wnioski

Tabela 2 pokazuje, że oba testy mają podobną p- wartość, która na poziomie istotności $\alpha=0.05$ daje podstawy do odrzucenia hipotezy o niezależności temperatury otoczenia i wystąpienia uszkodzeń pierścieni na promie kosmicznym.

2 Zadanie 2.

2.1 Cel zadania

Celem zadania jest analiza danych zawartych w pliku Reakcja.csv, które obejmują informacje o 200 reakcjach na lek.

Informacje obejmują:

- Reakcja (0 nie nastąpiła poprawa, 1 nastąpiła poprawa),
- Dawka (w skali logarytmicznej),
- Rodzaj (0 pierwsza firma farmaceutyczna, 1- druga firma farmaceutyczna)
- Miejsce (0 dom, 1- szpital)

```
# Wczytywanie danych
dane <- read.csv("Reakcja.csv",sep = ";")
dane</pre>
```

2.2 (a) Czy skuteczność leczenia jest niezależna od wielkości dawki?

Reakcja		Dawka						
	-2	-2.301	-2.602	-2.903	-3.204			
0	21	25	32	32	37	147		
1	19	15	8	8	3	53		
SUMA	40	40	40	40	40	200		

Tabela 3: Tabela wielodzielcza dla Reakcja i Dawka

p- wartość wynosi 0.0002993, co na poziomie istotności $\alpha=0.05$ daje podstawy do odrzucenia hipotezy o niezależności skuteczności leczenia od wielkości dawki.

2.3 (b) Czy skuteczność leczenia jest niezależna od rodzaju leku?

Reakcja	Roo	lzaj	SUMA
	0	1	
0	76	71	147
1	24	29	53
SUMA	100	100	200

Tabela 4: Tabela wielodzielcza dla Reakcja i Rodzaj

p-wartość wynosi 0.5218, co na poziomie istotności $\alpha=0.05$ nie daje podstawy do odrzucenia hipotezy o niezależności skuteczności leczenia od rodzaju.

2.4 (c) Czy skuteczność leczenia jest niezależna od miejsca leczenia?

Skuteczność	Miejsce		SUMA
	0	1	
0	86	61	147
1	14	39	53
SUMA	100	100	200

Tabela 5: Tabela wielodzielcza dla Reakcja i Miejsce

p- wartość wynosi 9.773e-05,co na poziomie istotności $\alpha=0.05$ daje podstawy do odrzucenia hipotezy o niezależności skuteczności leczenia od miejsca.

3 Zadanie 3.

3.1 Cel zadania

Celem zadania jest zweryfikowanie hipotezy o niezależności stopnia zadowolenia z pracy i wynagrodzenia, korzystając z funkcji *chisq.test* na podstawie podanych danych.

Tablica 1: Dane do zadania 3.i 6.					
	Stopień zadow	olenia z pracy			
Wynagrodzenie	b. niezadow.	niezadow.	zadow.	b. zadow.	Suma
poniżej 6000	32	44	60	70	206
6000-15000	22	38	104	125	289
15000-25000	13	48	61	113	235
powyżej 25000	3	18	54	96	171
Suma	62	108	319	412	901

Rysunek 1: Tablica zawierająca dane o stopniu zadowolenia z pracy i wynagrodzenia

$3.2 \quad chisq.test$

Ilość powtórzeń w teście Monte Carlo	1000	3000	5000	10000		
p- wartość	0.000999	0.0003332	2e-04	9.999e-05	p-wartość dokładna	4.868e-08

Tabela 6: Tabela dla p-wartości w zależności od ilości powtórzeń Monte Carlo

Rysunek 2: Wykres asocjacji wskazujący odchylenia od określonego modelu niezależności

3.3 Wnioski

Dokładna p-wartość wynosi 4.8678e-08 co na poziomie istotności $\alpha=0.05$ daje podstawy do odrzucenia hipotezy zerowej o niezależności zadowolenia w pracy i wynagrodzenia. Tabela 6 pokazuje, że w zależności od ilości powtórzeń w teście Monte Carlo p- wartość zbliża się do wartości dokładnej.

4 Zadanie 4.

4.1 Cel zadania

Celem zadania jest obliczenie wartości poziomu krytycznego (p-value) w teście niezależności opartym na ilorazie wiarogodności dla danych z tablicy 1 na liście zadań (tabela została już zaprezentowana przy okazji zadania 3)

```
# Definicja danych
ponizej_6000 <- c(32, 44, 60, 70)
miedzy_6000_i_15000 <- c(22, 38, 104, 125)
miedzy_15000_i_25000 \leftarrow c(13, 48, 61, 113)
powyzej_25000 <- c(3, 18, 54, 96)
# Tworzenie macierzy wynagrodzeń
macierz_wynagrodzen <- matrix(
  c(ponizej_6000,
    miedzy_6000_i_15000,
    miedzy_15000_i_25000,
    powyzej_25000),
  nrow = 4,
  byrow = TRUE
row.names(macierz_wynagrodzen) <- c("<6000", "[6000,15000]", "[15000,25000]", ">25000")
colnames(macierz_wynagrodzen) <- c("b. niezadow.", "niezadow.", "zadow.", "b. zadow.")
# Dodanie sum wierszy i kolumn
macierz_wynagrodzen <- cbind(macierz_wynagrodzen, rowSums(macierz_wynagrodzen))
macierz_wynagrodzen <- rbind(macierz_wynagrodzen, colSums(macierz_wynagrodzen))</pre>
# Funkcja obliczająca p-value
count_p_value <- function(data) {
  if (!is.matrix(data)) {
    stop("Podana dane nie są dwuwymiarową tablicą.")
  results <- 1
  for (a in 1:4) {
    for (b in 1:4) {
     results <- results * (
        macierz_wynagrodzen[a, 5] * macierz_wynagrodzen[5, b]
          (macierz_wynagrodzen[5, 5] * macierz_wynagrodzen[a, b])
       ^ macierz_wynagrodzen[a, b]
  g2 <- -2 * log(results)
  return(1 - pchisq(g2, df = 16))
# Wywołanie funkcji
wynik <- count_p_value(macierz_wynagrodzen)</pre>
# Wyświetlenie wyniku
print(wynik)
print(macierz_wynagrodzen)
```

Rysunek 3: Kod do wykonania obliczeń

4.2 Wnioski

Wyliczona wartość poziomu krytycznego wynosi 9.403163e-06, więc jest to mniej niż 0.05, co skłania nas do odrzcenia hipotezy zerowej.

5 Zadanie 5.

5.1 Cel zadania

Celem zadania jest obliczenie miar współzmienności pomiędzy zmiennymi Reakcja (skuteczność leczenia) i Dawka (wielkość dawki), a także między zmiennymi Reakcja a Miejsce (miejsce leczenia) na podstawie danych zawartych w pliku Reakcja.csv. Następnie należy zinterpretować uzyskane wartości tych miar współzmienności.

5.2 Reakcja a Dawka

Jak wiadomo z punktu (2.2), p - wartość wynosi 0.0002993, co na poziomie istotności $\alpha=0.05$ daje podstawy do odrzucenia hipotezy o niezależności skuteczności leczenia od wielkości dawki. Ponieważ nie są badane dwie zmienne porządkowe, użytą miarą współzmienności jest τ . Współczynnik ten został wyliczony za pomocą funkcji GoodmanKruskalTau z biblioteki DescTools.

```
tau_Reakcja_Dawka_C <- GoodmanKruskalTau(skutecznosc_dawka, direction="column")
print(paste("Współzmienność między Reakcją a Dawką (kolumna):", tau_Reakcja_Dawka_C))
tau_Reakcja_Dawka_R <- GoodmanKruskalTau(skutecznosc_dawka, direction="row")
print(paste("Współzmienność między Reakcją a Dawką (wiersz):", tau_Reakcja_Dawka_R))
```

Rysunek 4: Kod wykonujący obliczenia współczynnika współzmienności

```
[1] "Współzmienność między Reakcją a Dawką (kolumna): 0.0258631754588627"
[1] "Współzmienność między Reakcją a Dawką (wiersz): 0.103452701835451"
> |
```

Rysunek 5: Uzyskane wyniki

Ponieważ współczynnik τ jest niesymetryczny, (przyjmuje różne wartości w zależności od przyjętej zmiennej zależnej), policzono średnią arytmetyczną obu wyników.

$ au_C$	$ au_R$	$ au_{sr}$
0.0258631754588627	0.103452701835451	0.0646579386425

Powyższy wynik jest dosyć mały, sugeruje to słabą zależność zmiennych.

5.3 Reakcja a Miejsce

Ponownie wracając do wcześniejszych punktów (2.4) p-wartość wynosi 9.773e-05, co na poziomie istotności $\alpha=0.05$ daje podstawy do odrzucenia hipotezy o niezależności skuteczności leczenia od miejsca. Ponieważ badane są dwie zmienne nominalne, użytą miarą współzmienności ponownie jest τ . Kod jest analogiczny do przypadku (4.2).

Tabela 7: Otrzymany współczynnik

```
[1] "Współzmienność między Reakcją a Miejscem (kolumna): 0.0802207675523039"
[1] "Współzmienność między Reakcją a Miejscem (wiersz): 0.0802207675523039"
```

Rysunek 6: Uzyskane wyniki

Miara współzmienności jest symetryczna oraz równa 0.0802207675523039. Taki wynik oznacza niewielką współzmienność zmiennych Reakcji i Miejsca. Można przyjąć, że reakcja na leczenie jest słabo zależna od miejsca leczenia.

6 Zadanie 6.

6.1 Cel zadania

Cel zadania to analiza współzmienności pomiędzy zmiennymi "Wynagrodzenie" i "Stopień zadowolenia z pracy"na podstawie danych zawartych w tablicy 1 (Rysunek 1). Następnie należy przeprowadzić analizę korespondencji, która obejmuje obliczenie wartości odpowiednich macierzy oraz współrzędnych punktów umożliwiających wizualizację danych na wykresach.

6.2 Współzmienność

W tabeli umieszczone są zmienne porządkowe, zatem jako miarę współ
zmienności obliczono współczynnik γ . Został on wyliczony za pomocą funkcji Goodman
Kruskal Gamma z biblioteki DescTools. Skorzystano z tabeli wynagrodzenie zadowolenie z punktu (3.2).

```
gamma_wynagrodzenie_zadowolenie_C <- GoodmanKruskalGamma(wynagrodzenie_zadowolenie, direction="column")
print(paste("Współzmienność między Wynagrodzeniem a Zadowoleniem (kolumna):", gamma_wynagrodzenie_zadowolenie_C))
gamma_wynagrodzenie_zadowolenie_R <- GoodmanKruskalGamma(wynagrodzenie_zadowolenie, direction="row")
print(paste("Współzmienność między Wynagrodzeniem a Zadowoleniem (wiersz):", gamma_wynagrodzenie_zadowolenie_R))
```

Rysunek 7: Kod potrzebny do wyliczenia współczynnika

```
    [1] "Współzmienność między Wynagrodzeniem a Zadowoleniem (kolumna): 0.218101953188693"
    [1] "Współzmienność między Wynagrodzeniem a Zadowoleniem (wiersz): 0.218101953188693"
    |
```

Rysunek 8: Uzyskane wyniki

Współzmienność sprawdzono zarówno dla kolumn, jak i wierszów. Wyniki są symetryczne, $\gamma = 0.218101953188693$. Oczywiście $\gamma \in [-1,1]$ oraz w tym przypadku jest to miara zależności dodatniej. Zmienne wykazują niewielką zależność.

6.3 Analiza korespondencji

Skorzystano z podejścia zaproponowanego przez Greenacre'a, polegającego na dekompozycji według wartości osobliwych macierzy.

$$A = D_r^{-1/2} (P - rc^T) D_c^{-1/2},$$

gdzie:

- A macierz rezyduów standaryzowanych,
- $\bullet \ P$ macierz korespondencji,
- $\bullet \ a_{ij} = \frac{p_{ij} r_i c_j}{\sqrt{r_i c_j}},$
- $r_i = n_{i+}/n$ jest i-tą współrzędną wektora r,
- $c_j = n_{+j}/n$ jest j-tą współrzędną wektora c.

Poniżej przedstawiono P - macierz korespondencji:

	b.niezadow.	niezadow.	zadow.	b. zadow.	r
poniżej 6000	0.03552	0.04883	0.06659	0.07769	0.22863
6000-15000	0.02442	0.04218	0.11543	0.13873	0.32076
15000-25000	0.01443	0.05327	0.06770	0.12542	0.26082
powyżej 25000	0.00333	0.01998	0.05993	0.10655	0.18979
c	0.07770	0.16426	0.30965	0.44839	1

Tabela 8: Tabela częstotliwości wraz z rozkładami brzegowymi

gdzie:

kolumna r - wektor przeciętnego profilu wierszowego, a wiersz c - wektor przeciętnego profilu kolumnowego.

Następnie obliczono macierze będące współrzędnymi kategorii cech, odpowiednio dla wierszy oraz kolumn:

$$F = D_r^{-1/2}U\Gamma$$
, $G = D_c^{-1/2}V\Gamma$

•

[[1]][,2] [,1][1,] 0.133203867 0.05819913 -0.015805310 -0.07753757 [2,] -0.003183739 -0.04579816 0.051097476 -0.01341809 [3,] -0.040991673 0.05039544 -0.045963056 0.02475694 [4,] -0.094008538 -0.06341766 0.004801831 0.07352502 [[2]] [1,] -0.35660100 -0.003711145 0.06630346 1.547229e-09 [2,] 0.03666254 -0.206508071 -0.08067414 1.832609e-09 [3,] 0.04611606 0.247727011 -0.05895610 1.652551e-09 [4,] 0.28967393 -0.017870033 0.10121872 1.409675e-09 [[3]] [,1][,2] [,3] [1,] -0.35768330 -0.07965395 0.08081084 -9.019241e-10 [3,] 0.03160571 -0.21050349 -0.08017514 -1.800624e-09 [4,] 0.23117646 0.07549559 0.07813112 -2.166764e-09

Rysunek 9: Macierze kolejno: A, F, G

Wyliczono także inercję całkowitą i porównano ją z wbudowaną funkcją.

6.3.1 Kod

Rysunek 10: Inicjacja macierzy

```
analiza_korespondencji <- function(dane, rysuj = TRUE){</pre>
  P <- dane / sum(dane)
  suma_r <- rowSums(P)</pre>
  suma_k <- colSums(P)
  D_r <- diag(suma_r)
  D_k <- diag(suma_k)</pre>
  A \leftarrow solve(sqrt(D_r)) \%\% (P - suma_r \%\% t(suma_k)) \%\% solve(sqrt(D_k))
  U \leftarrow svd(A)u
  V \leftarrow svd(A) v
  F <- U %*% diag(sqrt(svd(A)$d))
  G <- V %*% diag(sqrt(svd(A)$d))
  if (rysuj){
    x_F <- F[, 1]
y_F <- F[, 2]
     x_G <- G[, 1]
     y_G <- G[, 2]
     plot(x_F, y_F,
           col = "blue",
           xlab = "Dimension 1", ylab = "Dimension 2",
main = "Analiza Korespondencji metoda wlasna")
    points(x_G, y_G, col = "red", pch = 17)
abline(v = 0, h = 0, col = c("black", "black"))
text(F[, 1], F[, 2], labels = rownames(dane))
text(G[, 1], G[, 2], labels = colnames(dane))
  return(list(F, G))
analiza_korespondencji(dane, rysuj = TRUE)
```

Rysunek 11: Funkcja wykonująca algorytm analizy korespondencji

Rysunek 12: Kod realizujący pozostałe obliczenia

6.3.2 Wyniki

Analiza Korespondencji metoda wlasna

Rysunek 13: Wykres analizy korespondencji z użyciem metody własnej

Analiza Korespondencji metoda wbudowana

Rysunek 14: Wykres analizy korespondencji z użyciem metody wbudowanej

Inercja z funkcji własnej:	0.05752481
Inercja z funkcji wbudowanej:	0.05752481

Tabela 9: Porównanie wyników

6.4 Wnioski

Otrzymany wykres za pomocą własnej funkcji jest zbliżony do tego stworzonego przy użyciu funkcji wbudowanej, co potwierdza poprawność jej działania oraz zgodność otrzymanych wcześniej wyników z wynikami otrzymanymi poprzez wbudowane funkcje z bibliotek do analizy korespondencji. Można również zauwazyć konkretne zależności:

- Osoby zarabiające powyżej 25000 są w znacznej większości zadowolone z zarobków,
- rozkład zadowolenia wśród osób poniżej 6000 jest stosunkowo równomierny wyłączając opcję b.zadowolony,
- osoby w przedziale 6000 15000 są w zdecydowanej większości zadowolone i b.zadowolone

Inercja całkowita wynosi 0.05752481, co oznacza małe rozproszenie profili. Można potwierdzić to patrząc na rysunek wykresu analizy korespondencji, gdzie większość punktów jest skupiona niemalże koliście wokół punktu (0,0).

7 Zadanie 7.

7.1 Cel zadania

Celem zadania jest obliczenie odpowiednich miar współzmienności oraz przeprowadzenie analizy korespondencji, tzn. obliczenie wartości odpowiednich macierzy, współrzędnych punktów oraz utworzenie odpowiednich wykresów

W zadaniu skorzystano z analogicznego kodu jak w zadaniu 6 (sekcja 6), a miara współzmienności została wyliczona za pomocą funkcji GoodmanKruskalTau z pakietu DescTools.

7.2 Wyniki

Inercja z funkcji własnej:	0.5748397
Inercja z funkcji wbudowanej:	0.574839
Miara współzmienności:	0.3477173

Analiza Korespondencji metoda wbudowana

Analiza Korespondencji metoda wlasna

7.3 Wnioski

W przypadku wartości miary współzmienności = 0.3477173 można stwierdzić, że istnieje pewna zależność między badanymi zmiennymi, ale nie jest to związek bardzo silny.

Jeśli natomiast chodzi o wartość inercji wynoszącej w przybliżeniu 0.57, to jest ona stosunkowo wysoka. Można to interpretować jako to, że istnieje pewna zmienność w danych, co może sugerować istnienie pewnych zależności między analizowanymi zmiennymi w tablicy korespondencji.

Z wykresów analizy korespondecji można wyciągnąć takie wnioski:

- Ibuprom jest najczęściej wybierany przez osoby poniżej 35 roku życia,
- Apap jest stosunkowo równomiernie wybierany we wszystkich grupach wiekowych
- Paracetamol jest częściej wybierany przez osoby w wieku powyżej 55 lat,
- Ibuprofen jest preferowany głównie przez osoby między 36 a 55 rokiem życia,
- Panadol jest stosunkowo równo rozłożony w różnych grupach wiekowych.