Machine Learning Spring 2014 Study Guide

Paul Landes

Saturday, February 22nd, 2014

List of Equations

Mean

1	Mean	ı
	Variance and Standard Deviation	
3	Likelihood Per Book)
4	Likelihood Function	2
5	Maximum Likelihood Estimation (MLE)	2
6	Maximum a Posteriori Estimate (MAP)	2
6	Likelihood and MLE Example	3
7	Bernoulli/Binomial Distribution	3
8	Binomial Coefficient	ļ
9	Multinomial/Multinouli Distribution	ļ
9	Poisson/Empirical Distribution	ļ
10	Gaussian (Normal) Distribution	ļ
11	Beta Distribution	5
12	Product Rule	5
13	Bayes Rule	5
		-

$$\mu \triangleq \sum x P(x) = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

Khan's Academy

Variance and Standard Deviation

Khan's Academy

$$\operatorname{Var}(X) = E[(X - \mu)^{2}] \triangleq \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

$$\operatorname{Var}(X) = \sigma^{2} \iff \sigma = \sqrt{\operatorname{Var}(X)}$$

$$\iff \int (x - \mu)^{2} f(x) dx = \int x^{2} f(x) dx - \mu^{2}$$
(2)

Likelihood Per Book

Page 67

$$P(\mathcal{D} \mid h) = \left\lceil \frac{1}{|h|} \right\rceil^{N} \tag{3}$$

Size principle/Occam's razor: model favors simplest hypothesis consistent with data.

Likelihood Function

Page Slides PS 2 19

$$P(\mathcal{D} \mid \theta) \tag{4}$$

Probability of data given this model hypothesis.

Maximum Likelihood Estimation (MLE)

Slides PS 2 22

$$\hat{\theta}_{\mathsf{MLE}} = \operatorname*{argmax}_{\theta} P(\mathcal{D} \mid \theta) \tag{5}$$

Choose parameters that make the data most probable.

Maximum a Posteriori Estimate (MAP)

Slides PS 2 37

$$\hat{\theta}_{\mathsf{map}} = \operatorname*{argmax}_{\theta} P(\mathcal{D} \mid \theta) P(\theta) \tag{6}$$

Somewhat Bayesian ("point + prior").

- Choose a likelihood function $P(\mathcal{D} \mid \theta)$
- Choose a prior parameter dist $P(\theta)$
- · Use MAP.
- Make predictions using MAP: $P(\mathcal{D}' \mid \hat{\theta}_{man})$

Likelihood and MLE Example

Office Hours

$$P(\theta) = \begin{cases} \frac{1}{3} & \theta = \theta_1 \\ \frac{1}{3} & \theta = \theta_2 \\ \frac{1}{3} & \theta = \theta_3 \end{cases}$$

 $\mathcal{D} = \{H, H\}$ (two heads)

$$\theta_1 = .5$$

$$\theta_2 = .3$$

$$\theta_3 = .8$$

$$\theta_3 = .8$$
 $\mathcal{L}_1 = .5 \cdot .5 = .25$

Probability of two heads (H H) using likelihood and MAP estimates:

N	\mathcal{L}_N	$P(\mathcal{D} \mid \theta)P(\theta)$ (MAP)
1	$.5 \cdot .5 = .25$	$0.25 \cdot \frac{1}{3} = .083$
2	$.3 \cdot .3 = .09$	$09 \cdot \frac{1}{3} = .03$
3	$8 \cdot .8 = .64$	$1.64 \cdot \frac{9}{3} = .213$

Parameter θ_3 wins with an MLE $\hat{\theta}_{\text{MLE}} = .64$.

Parameter θ_3 wins with an MAP $\hat{\theta}_{map} = .213$.

Bayes:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{\sum_{\theta'} P(\mathcal{D} \mid \theta')P(\theta')} =$$

$$P(H \mid \mathcal{D}) = \sum_{\theta' \in \{\theta_1\theta_2,\theta_3\}} P(\theta' \mid \mathcal{D})P(H \mid \mathcal{D}) =$$

$$\frac{.083 \cdot .5 + .03 \cdot .3 + .213 \cdot .8}{.083 + .03 + .213} = .67$$

Bernoulli/Binomial Distribution

Page 34

$$Bin(k \mid n, \theta) \triangleq \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$
 (7)

Models outcomes of coin tosses. Coin toss n times with $X \in \{0, \dots, n\}$. Probability θ is the parameter of, for example, fairness of the coin.

- Expected number of "heads" outcomes in 10 flips.
- Given 10 flips what is the probability of at least 8 being "heads"?
- Given 3 heads, 2 tails, what is the estimate of θ ?
- How far will this estimate be from true θ^* ?

Bernoulli is the case where n=1 (that is, one coin toss).

Binomial Coefficient

Page 34

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{8}$$

Binomial coefficients are a family of positive integers that occur as coefficients in the binomial theorem.

Multinomial/Multinouli Distribution

Page 35

$$\operatorname{Mu}(\mathbf{x} \mid n, \theta) \triangleq \binom{n}{x_1 \dots x_K} \prod_{j=1}^K \theta_j^{x_j}$$

$$\theta_j \text{ is the probability that side } j \text{ shows up, and}$$

$$\binom{n}{x_1 \dots x_K} \triangleq \frac{n!}{x_1! x_2! \dots x_K!}$$
(9)

Models the outcomes of tossing a K-sided die. Let $\mathbf{x} = (x_1 \dots x_K)$ be a randome vector, where x_j is the number of times side j of the die occurs.

Poisson/Empirical Distribution

Page 37

Gaussian (Normal) Distribution

Page 38

$$P(x) \triangleq N(x \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$
 (10)

Beta Distribution Page 42

$$Beta(x \mid a, b) = \frac{1}{B(a, b)^{x^{a-1}(1-x)^{b-1}}}$$

$$B \triangleq \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
(11)

Where Γ is the conjugate prior.

Product Rule ES Class

$$P(a \wedge b) = P(a \mid b)P(b) \Leftrightarrow$$

$$P(X = x, Y = y) = P(X = x \mid Y = y) \cdot P(Y = y)$$
(12)

Bayes Rule Page 29

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y \mid X = x)}{\sum_{x'} P(X = x')P(Y = y \mid X = x')}$$
(13)