Algorithmization and Programming of Solutions

Part I

TOPIC #2

REPRESENTATION OF ALGORITHMS

RTU LECTURER OLGA YAKOVLEVA, MG.SC.ING

Table of contents

- 1. Representation of algorithms
 - methods of representing algorithms
 - graphical elements of a flowchart
 - structural parts of a flowchart
 - an example of an algorithm represented using a flowchart
- 2. Practical work #1: Reading and creating of algorithm flowcharts

1. Representation of algorithms

METHODS OF REPRESENTING ALGORITHMS, GRAPHICAL ELEMENTS OF A FLOWCHART, STRUCTURAL PARTS OF A FLOWCHART, AN EXAMPLE OF AN ALGORITHM REPRESENTED USING A FLOWCHART

Methods for representing algorithms

Algorithms are designed for those, who will execute them, i.e., for humans or computers

Consequently, it is necessary to represent an algorithm in a form that is understandable for a performer

Methods for representing algorithms are the following:

- the verbal method an algorithm is written in a natural language, e.g., guidelines, user manual
- **the graphical method** an algorithm is represented using graphical elements, e.g., a flowchart, UML (unified modelling language) diagrams
- the formal method an algorithm is written in a formal language, i.e., a pseudocode or a source code

Examples of an algorithm representation in different forms (1/3)

The task: compute an average grade for a test in a group of students

An algorithm represented using the verbal method:

- 1. Input a grade.
- 2. Add this grade to a sum of grades.
- 3. Repeat the 1st and the 2nd step until all grades are inputted.
- 4. Divide the sum of grades by the number of students.
- 5. Output the result.

Examples of an algorithm representation in different forms (2/3)

The graphical method (a flowchart)

Examples of an algorithm representation in different forms (3/3)

An algorithm represented using the formal method (a pseudocode):

```
v = 0, n = 0
do {
    input a
    v = v + a, n = n + 1
} while (wish to continue)
v = v / n
print v
```

A flowchart

A flowchart is a diagram that depicts a process or computer algorithm

A flowchart consists of **graphical elements** that represent actions and conditions, and **arrows** with or without labels that show a sequence of execution of these actions

Usually, actions are split into to categories:

- input/output actions
- other actions (e.g., assignment, arithmetical operations, function calls)

Graphical elements of a flowchart

Symbol	Description	Example
	An oval is used at the beginning or at the end of a flowchart	Begin
	A rectangle denotes a process or an action	a = a + 1;
	A parallelogram denotes input or output operation	print a
	A diamond denotes branching or decision making	a < 5

Sequence of actions of a flowchart

Structural parts of a flowchart

Linear actions – actions are performed sequentially

Branching – an action has to be chosen depending on a condition

Cyclic actions – actions are repeated several times, the number of iterations (i.e., repetitions) depends on a condition of a loop

Linear actions

Branching

Cyclic actions (1/2)

Cyclic actions (2/2)

FOR loop

A task and a solution

A task: compute a sum of digits in a number inputted by a user, e.g., a user inputs the number 15893, so the sum of digits in this number equals to 1+5+8+9+3=26

An algorithm:

- 1. declare variables: A − an inputted number, B − a remainder of division (modulus), C − a sum of digits (initial value − 0)
- 2. divide **A** by 10: add the remainder **B** to the sum of digits **C** and save the integer part of division in the variable **A**
- 3. repeat the 2nd step till **A** becomes 0

Flowchart of the algorithm

2. Practical work #1

READING AND CREATING OF ALGORITHM FLOWCHARTS

Reading and creating of algorithm flowcharts

The practical work consists of two parts:

- 1. reading of algorithm flowcharts (5 tasks, 2-3 questions in each task)
- 2. creating of algorithm flowcharts (2 tasks)