Final Project

Ian Baker, Loughlin Claus, Zack Schieberl 12/7/2019

Pledge

I pledge my honor that I have abided by the Stevens Honor System - Ian Baker, Loughlin Claus, Zack Schieberl

11.53

```
cheese <- as.matrix(read.csv2("cheese.csv", header = TRUE, sep = ","))</pre>
cheeseCols <- colnames(cheese)</pre>
for (col in cheeseCols) {
 cur <- as.numeric(cheese[, col])</pre>
  # mean, median, sd, iqr
 out <- c(paste("Type:", col), paste("Mean:", round(mean(cur), 2)),</pre>
           paste("Median:", round(median(cur), 2)), paste("SD:", round(sd(cur), 2)),
           paste("IQR:", round(IQR(cur), 2)))
 print(format(out, justify = "left", trim = TRUE))
  # stemplot
  stem(cur)
  # normal quantile plot
  qqnorm(cur, main = col)
  qqline(cur)
## [1] "Type: taste
                     " "Mean: 24.53 " "Median: 20.95" "SD: 16.26
## [5] "IQR: 23.15
##
##
     The decimal point is 1 digit(s) to the right of the |
##
##
     0 | 11666
##
     1 | 223456788
##
     2 | 112667
##
     3 | 25799
##
     4 | 18
     5 | 577
  [1] "Type: acetic" "Mean: 5.5 " "Median: 5.42" "SD: 0.57
                                                                  " "IQR: 0.65
##
##
##
     The decimal point is 1 digit(s) to the left of the |
##
##
     44 | 846
     46 | 69
##
##
     48 | 0
##
     50 | 6
##
     52 | 4450377
     54 | 146
##
##
     56 | 046
     58 | 069
##
     60 | 4858
##
     62 | 7
##
##
     64 | 56
```

```
## [1] "Type: h2s " "Mean: 5.94 " "Median: 5.33" "SD: 2.13 " "IQR: 3.6
##
##
     The decimal point is at the |
##
      2 |
##
      3 | 01278999
##
##
      4 | 27899
##
      5 | 024
      6 | 1278
##
      7 | 0569
##
      8 | 07
##
      9 | 126
##
     10 | 2
##
## [1] "Type: lactic" "Mean: 1.44 " "Median: 1.45" "SD: 0.3 " "IQR: 0.42 " \,
##
##
     The decimal point is 1 digit(s) to the left of the |
##
      8 | 69
##
     10 | 68956
##
##
     12 | 5599013
     14 | 4692378
##
     16 | 38248
##
     18 | 109
##
     20 | 1
##
```


While H2S and Taste have some right skew, and Acetic has two peaks, the data all appears to be relatively normal. There are no outliers in the data.

11.54

Correlation between taste and acetic is: 0.5495393 with a p-value of 0.001658192
Correlation between taste and h2s is: 0.7557523 with a p-value of 1.373783e-06
Correlation between taste and lactic is: 0.7042362 with a p-value of 1.405117e-05
Correlation between acetic and h2s is: 0.6179559 with a p-value of 0.0002739173
Correlation between acetic and lactic is: 0.6037826 with a p-value of 0.0004113657
Correlation between h2s and lactic is: 0.6448123 with a p-value of 0.0001198401

11.55

```
tasteCol <- as.numeric(cheese[, "taste"])
aceticCol <- as.numeric(cheese[, "acetic"])
tasteVsAcetic <- lm(tasteCol ~ aceticCol, data.frame(cheese))
plot(aceticCol, tasteCol, xlab = "Acetic", ylab = "Taste")
abline(tasteVsAcetic)</pre>
```



```
tVsAResiduals <- residuals(tasteVsAcetic)
plot(cheese[, "h2s"], tVsAResiduals, xlab = "H2S", ylab = "TvA Residuals")
plot(cheese[, "lactic"], tVsAResiduals, xlab = "Lactic", ylab = "TvA Residuals")</pre>
```


The residuals both have a normal distribution and seem to be positively associated with Lactic and H2S.