Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1 Теория вероятности			3
	1.1	Основные понятия. Испытание (опыт, эксперимент), событие	3
1.2 Вероятность		Вероятность	4
		1.2.1 Классическая формула вычисления вероятности	4
		1.2.2 Статистическое определение вероятности	4
		1.2.3 Геометрическое определение вероятности	4
	1.3	Операции над событиями	4
	1.4	Основные теоремы теории вероятностей	5
		1.4.1 Независимость событий	5
	1.5	Основные формулы комбинаторики	5
		1.5.1 Перестановки	5
		1.5.2 Правила комбинаторики	6
	1.6	Выборки	6

(Екатерина Викторовна, 234 или 236 аудитория) E-mail: ekaterina.shevkoplyas@gmail.com ДОСРОКА НЕ БУДЕТ.

1 Теория вероятности

1.1 Основные понятия. Испытание (опыт, эксперимент), событие

Определение 1.1. Теория вероятности — наука, изучающая закономерности случайных явлений.

Определение 1.2. Опыт, испытание, эксперимент — некоторая воспроизводиная совокупность условий, в рамках которых может произойти то или иное явление, тот или иной факт.

Пример 1.1.

- 1) Подбрасывание одной монеты;
- 2) Двух;
- 3) Выстрел по мишени;
- 4) Подбрасывание игрального кубика-кости (да, берцовой);
- 5) Рождение ребенка и тому подобное.

Определение 1.3. Событие — любой факт, который может произойти либо не произойти в результате испытания. Обычно обозначаются заглавными латинскими буквами: A, B.

Пример 1.2.

- 1) Событие A выпадение герба. $\Omega = \{\Gamma, P\}$;
- 2) Выпали все решки;
- 3) Попали по мишени;
- 4.1) Выпало шесть точек;
- 4.2) Выпало четное число точек;
- 5) Родился мальчик.

Событие 4.2 является составным.

Определение 1.4. Элементарное событие (или исход) — событие, которое не может являться объединением более мелких событий. Неопределяемое понятие.

 $\it 3aмечание 1.1.\ \omega_i$ — обозначение элементарного исхода.

 $\Omega = \{\omega_i\}$ — пространство элементарных исходов.

Определение 1.5. Случайное событие $A\subseteq\Omega$. Лежит между \varnothing и Ω .

Определение 1.6. Событие, которое обязательно произойдет, называется достоверным. Так как оно состоит из всех элементов пространства элементарных исходов, оно обозначается Ω .

Определение 1.7. Событие, которое никогда не произойдет в результате испытаний, называется невозможным. Оно обозначается \varnothing .

Определение 1.8. Вероятность события A — число, характеризующее степень возможности этого события. Обозначается p(A). Данное определение не является классическим.

Вероятность невозможного события $p(\emptyset) = 0$

Вероятность достоверного события $p(\Omega) = 1$.

Таким образом, $0 \le p(A) \le 1$.

1.2 Вероятность

1.2.1 Классическая формула вычисления вероятности

Пусть относительно Ω выполнены условия:

- $1) |\Omega| = n.$
- 2) «Равные шансы»: все элементарные исходы равновозможны. Тогда

 $p(A) = \frac{|A|}{|\Omega|}$

где |A| — мощность множества элементарных исходов, составляющих множество благоприятных исходов.

1.2.2 Статистическое определение вероятности

Если не выполнено второе условие, то формула приобретает вид:

$$p(A) = \frac{m_A}{n}$$

где m_A — число появлений события A, а n — число экспериментов.

1.2.3 Геометрическое определение вероятности

Выполнено второе условие, но не выполнено первое (конечность множества). В этом случае формула приобретет вид:

$$p(A) = \frac{l}{L}$$

где l — площадь (n-мерная) области, удовлетворяющей условию, L — площадь всей области.

1.3 Операции над событиями

Теория множеств	Теория вероятности
Ω — универсальное множество	пространство элем. исходов
$A \subset \Omega$	случайное событие
Ø — пустое множество	невозможное событие
$\overline{A} = \Omega \backslash A$ — дополнение	противоположное событие
$A \cap B$	$A \cdot B$ произведение событий
$A \cup B$	A+B сумма событий

Определение 1.9. Суммой событий A+B называется событие D, которое состоит в выполнении хотя бы одного события A и B.

Определение 1.10. $\{A_1,...,A_n\}$ — полная группа событий, если $A_i \cap A_j = \emptyset \ \forall i \neq j$ и $\sum_{i=1}^n A_i = \Omega$.

Определение 1.11. События A и B называются несовместными, если появление одного из них исключает появление другого. Не путать с независимостью!

Замечание 1.2. $A \subset B$ — появление события A влечет появление события B.

1.4 Основные теоремы теории вероятностей

Теорема 1.1. Пусть A, B — несовместные события, то есть $(A \cdot B = \varnothing)$. Тогда p(A + B) = p(A) + p(B).

Вывод 1.1. $p(\overline{A}) = 1 - p(A)$.

Теорема 1.2. (о сложении)

$$p(A+B) = p(A) + p(B) - p(A \cdot B).$$

Определение 1.12. $p(A/B) = p_B(A)$ (читается «пэ от A при условии В») вводится как

$$\frac{p(A \cdot B)}{p(B)}$$

- условная вероятность события A при условии, что событие B произошло.

Теорема 1.3. (умножения)

Вероятность того, что произошло событие A и событие B равна $p(A \cdot B) = p(A) \cdot p(B) = p(B) \cdot p(A/B)$.

Вывод 1.2. $p(A \cdot B \cdot C) = p(A) \cdot p(B/A) \cdot p(C/A \cdot B)$ и аналогично для большего числа событий.

1.4.1 Независимость событий

Определение 1.13. *A* и *B* независимы, если $p(A \cdot B) = p(A) \cdot p(B)$.

Определение 1.14. $A_1,...,A_n$ независимы в совокупности, если $\forall A_{i_1},...,A_{i_k}$ выполнено $p(A_{i_1},...,A_{i_k}) = \prod_{l=1}^k p(A_{i_l})$

Определение 1.15. $A_1, ..., A_n$ попарно независимы, если $\forall A_i, A_j$ верно $p(A_i \cdot A_j) = p(A_i) \cdot p(A_j) \ \forall i \neq j$. Очевидно, что из независимости в совокупности следует попарная независимость.

Пример 1.3. (Контрпример. Пирамида Бернштейна)

Кидаем тетраэдр, грани которого раскрашены в красный, зеленый и синий цвета, а основание — во все три. Мы ее бросаем и смотрим, какой цвет выпал. Пусть A — выпадение красного, B — синего и C — зеленого цвета. Тогда $p(A \cdot B) = \frac{1}{4} = p(A) \cdot p(B) = \frac{2}{4} \cdot \frac{2}{4}$. Аналогично для других цветов. То есть эти события попарно независимы. Но $p(A \cdot B \cdot C) = \frac{1}{4} = p(A)p(B)p(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \Rightarrow$ нет независимости в совокупности.

1.5 Основные формулы комбинаторики

1.5.1 Перестановки

Определение 1.16. Перестановки — комбинации из n элементов, отличающихся порядком их расположения.

Множество всех перестановок множества из n элементов равно n!. $P_n = n!$.

Определение 1.17. Размещения — комбинации из n элементов по m элементов, отличающихся либо порядком, либо составом элементов.

Число всевозможных размещений $A_n^m = n \cdot (n-1) \cdot ... \cdot (n-m+1).$

Определение 1.18. Сочетания — комбинации из n элементов по m элементов, отличающихся только составом элементов.

Число всевозможных сочетаний $C_n^m = \frac{n!}{m!(n-m)!}$

Запомним: $C_n^{n-m} = C_n^m$, $C_n^0 = 1$.

1.5.2 Правила комбинаторики

Определение 1.19. Правило произведения: $(a_1, ..., a_n)$ и $(b_1, ..., b_m)$. Тогда выбрать пару (a_i, b_i) можно $n \cdot m$ способами.

Определение 1.20. Правило суммы: $(a_1,...,a_n)$ и $(b_1,...,b_m)$. Тогда выбрать либо a_i , либо b_j можно m+n способами.

1.6 Выборки

Определение 1.21. $(a_1,...,a_n)$ — некоторая генеральная совокупность однородных объектов. Вынем из них $\langle a_{i_1},...,a_{i_m}\rangle$ — выборка объема m. Выборка может быть с возвращением и без возвращения элементов в генеральную совокупность, а так же упорядоченная или неупорядоченная.