Information Security CS3002

Lecture 12 5th October 2023

Dr. Rana Asif Rehman

Email: r.asif@lhr.nu.edu.pk

MALWARE

What is a malware?

- "A program that is inserted into a system, usually covertly, with the intent of compromising the confidentiality, integrity, or availability of the victim's data, applications, or operating system (OS) or of otherwise annoying or disrupting the victim." (NIST – 2005)
- Also called digital pests

What can it do?

- Damages (Sabotage)
- Disables (Sabotage)
- Takes Control of Flow of Execution or Programs (Hijack)
- Takes Full Control of Computing or Network Device (Hijack)
- Steals Information (Espionage)
- Changes the Information (Attacking Integrity)

Exploits

Exploit Code

- An exploit is a piece of code or a program that takes advantage of a weakness in an application or system
- Exploitation Techniques
- Payloads of the Malware to be delivered
- Zero-Day Exploits: Unknown Exploits
- CVE: Common Vulnerabilities and Exposures
- Can be in any programming language; commonly in C++ and Assembly

Malware Attack Vector

Attack Vector

Means and Methods through which malware is injected in the computer or network.

Common Attack Vectors

- Email Attachments
- Pop-up Windows
- Web Links
- Fraud
- Chat rooms
- Anti-Viruses
- Advertisements
- Instant messages

Types of Malware

Common Malwares

- Viruses
- Worms
- Trojans
- Adware
- Backdoors
- Ransomware
- Spyware
- Rootkits
- Bootkits
- Keyloggers
- Exploit Kits
- Logic bomb
- Zombie
- Scareware

Types of malware

These are the main types of malware that can be found across the web.

Types of Malware

- Virus: attaches itself to a program
- Worm: propagates copies of itself to other computers
- Logic bomb: "explodes" when a condition occurs
- Trojan horse: fakes/contains additional functionality
- Backdoor (trapdoor): allows unauthorized access to functionality
- Spyware: used to spy on victim's activities on a system and also for stealing sensitive information of the client.
- Ransom-ware: steals some functionality and returns after a ransom is paid
- Scare-ware: users are tricked by scaring and motivated to perform some action. E.g. buying a software license
- Key-loggers: capture keystrokes
- Browser hijacker: modifies a web browser's settings without a user's permission, to inject unwanted advertising into the user's browser
- Zombie: software on infected computers that launch attack on others

What is a Virus?

- A program that can infect other programs by modifying them to include a, possibly evolved, version of itself (Fred Cohen 1983)
 - It executes secretly when host program is run
- Inserts copies of itself into host programs/data files
- Requires user interaction
- Often specific to operating system and hardware
 - taking advantage of their details and weaknesses

Virus

Virus

Information Security (CS3002)

Virus

Famous viruses

- Brain Virus 1986
- Michelangelo Virus 1991
- Melissa Virus 1999
- Love Bug Virus 2000
- Palm Virus 2000
- Anna Kournikova Virus 2001

Brain-Virus

BRAIN -The first computer Virus was created by two brothers from Lahore in 1986.

https://www.youtube.com/watch?v=lnedOWfPKT0&ab channel=F-Secure

Classification of Virus

- Classification of viruses can be done as follows:
 - Memory Based
 - How they live (stay) in memory
 - Target Based
 - How they spread to others
 - Obfuscation Technique Based
 - What they do to hide
 - Payload Based
 - What they do after infection

Virus classification (detail self-study)

WORM

WORM

- Self-replicating computer programs
 - **Spreads** fast from one computer to another computer through the **network**.
 - Spreads though exploiting vulnerabilities in software without user intervention.
 - Does not need host file to attach to.
 - Mostly Consumes computer memory, processor and network bandwidth.
 - Usually non-destructive,
 - Does not infect other files
 - Most worms deliver backdoors to allow remote attacker control target machine (bot)

WORM

Famous worms

- Morris Worm 1988
- Code Red Worm
 – 2001
- SQL Slammer Worm 2003
- Blaster Worm 2003
- Conficker Worm 2008
- Stuxnet Worm 2005 2010

TROJAN HORSE

Trojan Horse

Names after **Wooden Horse** used in **Trojan Wars** between **Greeks** and **Persians**.

- Disguised as innocent / useful program
- Non-Self-Replicating
- Opens a backdoor for external attacker to infiltrate the host computer & network.
- Monitors the victim activity, steals and transfers information to the attacker.
- Delivers malicious program to the host computer.
- Need user action to activate.

Trojan Horse

- Famous Trojan Horses
 - Netbus 1998
 - Sub7 1999
 - Back Orifice 1998
 - Y3K Remote Admin Tool 2000
 - Beast 2002
 - Bifrost Trojan 2004
 - DarkComet 2008-2012
 - Blackhole exploit kit 2012
 - Gh0st RAT 2009
 - MegaPanzer BundesTrojaner 2009

ADWARE

Adware

- Malicious software that presents unwanted advertisement as pop-up windows.
 - Mostly irritating and in some cases a threat.
 - Pop-up window sometimes un-closeable.
 - Hide as cookies or temporary internet files.
 - Also prevalent in Android systems

Adware

Adware

SPYWARE

Designed to collect user data without the user's knowledge or approval.

- Installed automatically or manually through virus, worm or Trojan horse
- Gathers information about you, your browsing and Internet usage habits, as well as other sensitive data.
- Runs quietly in the background for other malicious activities

Spyware's malicious activities:

- Capturing keystrokes
- Screen shots
- Authentication credentials
- Personal email addresses
- Web form data
- Internet usage information
- Credit card numbers

Types of Spywares:

- Password Stealers
- Banking Trojans
- Infostealers
- Keyloggers

BACKDOOR

Backdoor

 Enables an attacker to bypass normal authentication to gain access to compromised system.

Backdoor

Means to access a computer system or encrypted data that bypasses the system's customary security mechanisms.

- Sometimes used for remote troubleshooting
- Used for spamming and spying
- Example: Backdoors in free software (file converter), Remote Access Trojan (RAT)

RANSOMWARE

Ransomeware

Ransom malware

- Prevents users from accessing their system or personal files and demands ransom payment in order to regain access.
- Threatens to publish the victim's data or perpetually block access to it unless a ransom is paid

Ransomeware

ROOTKITS

Rootkits

Malware that provides privileged (root-level) access to the computer.

- Can subvert anti-virus protections or other security mechanisms.
- Hides its existence deep within OS.
- Masquerades as some legitimate application
- Hides presence of other malware like virus, worm, trojan
- Avoid detection for long period of time.

Bootkits

Rootkit variants

- Designed to modify the boot loader (the low-level software that runs before the OS loads)
- Attacks specific location of Hard Drive known as Boot Sector.
- Commonly used to attack computers protected by Full Disk Encryption.
- Loads into memory after getting access to Boot Sector of bootable Hard Disk.
- Corrupts Master Boot Record (MBR) or File Allocation Table (FAT)

Malware Properties

Malware	Host Required	Replication Mechanism
Virus	Yes	Self
Worm	No	Self
Logic Bomb	No	Manual
Backdoor	No	Manual
Trojan	Yes	Manual
Spyware	No	Manual
Rootkit	No	Manual
Bots	No	Manual

• Host required: malware needs user interaction

What they Infect?

- Executable
- Interpreted file
- Kernel
- Service
- MBR (Master Boot Record)
- Hypervisor

Overwriting Malware

 After infection, it will effectively destroy the original program code by overwriting data in the system's memory.

Pre-pending Malware

Appending Malware

Cavity Malware

- Some malwares can infect files without increasing their sizes or damaging the files by overwriting unused areas of executable files. These are called cavity viruses.
- For example, the CIH virus, or Chernobyl Virus which infects Portable Executable files.

Multi-Cavity Malware

Malware Analysis

- Malware analysis is the study or process of determining the functionality, origin and potential impact of a given malware. (wikipedia)
- Three typical use cases
 - Computer Security incident management
 - Malware research
 - Indictor of compromise extraction
- Types
 - Static
 - Dynamic

Why analyze Malware?

- To assess damage
- To discover indicators of compromise
- To determine sophistication level of an intruder
- To identify a vulnerability
- To catch the "bad guy"
- To answer business related questions
 - How long has it been here, spreads on its own? Etc.
- To answer technical questions
 - Date of installation, compilation, persistence mechanism, network or host based indicators

1. Static Analysis

- Analysis in which code is not executed
- "Dead" code is read and understood
- Also referred to as: code analysis
- Requires peeking into the code using a hex editor, unpacking and performing string searches.
- Disassembling the malware. Disassemblers take machine code to higher-level code
 - IDA Pro
- Static analysis is safer
- Malware files are fingerprinted before analysis. Just in case malware analysis is being expected by the (malware) developer.
- Virus scan
 - PEiD, Caprica6 tool can tell you about "packed" code

2. Dynamic Analysis

- Conducted by observing and manipulating malware as it runs
- Needs a safe environment to analyze (run) the code
 - Sandboxed environment.
- Requires monitoring the system
 - Registry files activity
 - File and process/system level activity
 - Network level activity
- Some tools
 - Wireshark
 - SysInternals process monitor
 - Netstat or ResMon in Windows can be used
- Requires analysis while the code is being run using tools like WinDbg

Static vs Dynamic Analysis

- Static: Dissecting code via different resources without executing
- Dynamic: Behavioral analysis is performed by executing the malware.
- Static is much slower (and exhaustive at times) as compared to dynamic.
- Static is far safer than dynamic.
- Static doesn't (necessarily) need a sandboxed environment while dynamic does.

Malware defenses (1)

- Detection: once the infection has occurred, determine that it has occurred and locate the malware
- Identification: once detection has been achieved, identify the specific malware that has infected a program
- Removal: once the specific malware has been identified, remove the malware from the infected program and restore it to its original state

Malware defenses (2)

- The first generation scanner
 - –Malware signature (bit pattern)
 - Maintains a record of the length of programs
- The second generation scanner
 - Looks for fragments of code (neglect unnecessary code)
 - Checksum of files (integrity checking)
- The third generation scanner
 - -Identify a malware by its actions
- The fourth generation scanner
 - Include a variety of anti-malware techniques

Malware defenses (3)

- Malware-specific detection algorithm
 - Deciphering
 - Filtering
- Collection method
 - Using honeypots
- Analyze program behavior
 - Network access
 - File open
 - Attempt to delete file
 - Attempt to modify the boot sector

How to prevent them?

- Simple! Learn about security (Not so simple)
- Use a secure Operating systems
- Use secure browsers and plugins/extensions
- And update/patch regularly
- Install anti-virus (maybe?)
- Avoid torrents
- Surf secure websites
- Don't download what you don't understand/need
- Use Instant Messaging apps carefully
- Keep backups

How to prevent them?

- Don't install software that you don't need or remove after one time use(worms!).
- Install software carefully. Unnecessary bundles gets installed
- Open email attachments with caution
- Monitor the performance of your pc regularly
- Keep frequent restore points and restore your pc if you think you executed a virus/worm/trojan
- Avoid unlicensed software installation
- Layers of authorization for installation of new tools/software

How to prevent them?

Two layers:

- Personal vigilance (First layer)
 - Knowing what to do and what to install
 - Understanding of the system and security
 - Strong passwords (password checkers)
- Protective tools (Second layer)
 - Effective and enough prevention tools
 - They are never enough