Project 1 — Distributed Training on NYC Taxi (MPI)

Course: DSS5208 – Scalable Distributed Computing for Data Science

Goal: Train a 1-hidden-layer neural network on NYC taxi data using MPI (mpi4py).

We run a $\sigma \times M$ sweep (activations \times batch sizes), log training histories, report RMSE on train/test, and measure strong scaling (P = 1, 2, 4, 8).

Data are stored **nearly evenly** across processes via memory-mapped shards.

1) Data & Preprocessing

- Raw: nytaxi2022.csv (not tracked in Git).
- **Cleaned:** nytaxi2022_cleaned.npz created once with data_prep.py.
- Even storage (memmap): prep memmap from npz.py exports:

```
memmap_data/
  X_train.npy, y_train.npy, X_test.npy, y_test.npy, meta.json
```

Each MPI rank mmaps only its slice of [X_train, y_train] and [X_test, y_test].

Test RMSE is computed in parallel by slicing test shards per rank and reducing.

2) Model & Training

- Network: 1 hidden layer, linear output
 [\hat{y} = w_2^\top,\sigma(W_1 x + b_1) + b_2]
- Loss proxy logged each eval every: $R(\theta | k)$ = sampled MAE (fast to compute).
- **Optimizer:** plain SGD (mini-batches). Gradients averaged with MPI.Allreduce.
- Key speed/robustness choices
- memmap shards (even storage & load)
- --eval_sample for quick R(θk) and --eval_block for chunked RMSE (≈100k)
- float32 no-copy casts on load
- BLAS threads pinned: OPENBLAS/MKL/NUMEXPR/OMP NUM THREADS=1 per MPI rank

3) Experiment Grid ($\sigma \times M$)

We swept **3 activations** \times **5 batch sizes** at **P=4**. Hidden units **n** chosen per activation/M:

Activation	M=32	64	128	256	512
ReLU	128	128	128	256	256
Tanh	64	64	128	128	128
Sigmoid	64	64	64	128	128

Common settings: lr=1e-3, epochs=1, seed=123, eval_every=1000, eval_sample=2e6, eval_block=100000.

4) Results (Sweep @ P=4)

Top-5 overall (from results/top5_overall.csv):

```
activation,batch,hidden,lr,procs,train_time,rmse_train,rmse_test relu,512,256,0.001,4,177.863,85.8184,119.6571 relu,64,128,0.001,4,49.746,85.8283,119.6631 tanh,32,64,0.001,4,67.749,85.8356,119.6677 relu,256,256,0.001,4,60.513,85.8439,119.6749 relu,256,256,0.001,4,62.335,85.8439,119.6749
```

Observations

- RMSE is **stable** across σ and M (\approx 85.8 / 119.6).
- The **balanced** config relu, M=256, n=256 gives competitive RMSE at good speed.
- Very large batch (M=512) is **slower** in wall-clock for 1 epoch on this CPU: larger matmuls per step + communication/compute balance.

Figures (produced by summarize_results.py):

RMSE vs batch size

Training time vs batch size

• Sample training histories (P=4)

5) Strong Scaling (Fixed Config)

Config: relu, M=256, n=256, lr=1e-3 (balanced). Results from results/scaling_table.csv:

```
activation,batch,hidden,lr,procs,train_time,rmse_train,rmse_test,speedup,efficiency
relu,256,256,0.001,1,157.908,85.8087,119.6477,1.0,1.0
relu,256,256,0.001,2,130.635,85.8176,119.6562,1.2088,0.6044
relu,256,256,0.001,4,65.836,85.8439,119.6749,2.3985,0.5996
relu,256,256,0.001,8,104.511,85.8499,119.6802,1.5109,0.1889
```

Interpretation

- Good scaling up to **P=4** on this machine (≈2.4×).
- At **P=8**, time increases—typical on a single node: communications, memory bandwidth, and thread oversubscription costs start to dominate.

Figures (from scaling_summary.py):

• Training time vs processes (lower is better)

Speedup

• Parallel efficiency

6) Deliverables

Parameters Chosen

Activations (σ): ReLU, Tanh, Sigmoid
 Batch sizes (M): 32, 64, 128, 256, 512

• Hidden units (n) by (σ, M):

Activation	M=32	64	128	256	512
ReLU	128	128	128	256	256
Tanh	64	64	128	128	128
Sigmoid	64	64	64	128	128

• Common settings: lr=1e-3, epochs=1, seed=123, eval_every=1000, eval_sample=2e6, eval_block=100000

• Processes: sweep at P=4; strong-scaling at P=1,2,4,8

Training History ($R(\theta_k)$ vs k)

Representative examples (full set in /plots):

R(theta) vs iter — tanh_bs128_n128_P4

RMSE (Train/Test) and Time (Sweep at P=4)

Top-5 overall (lowest test RMSE first; see results/top5_overall.csv):

activation	batch	hidden	lr	procs	train_time (s)	rmse_train	rmse_test
relu	512	256	0.001	4	177.863	85.8184	119.6571
relu	64	128	0.001	4	49.746	85.8283	119.6631
tanh	32	64	0.001	4	67.749	85.8356	119.6677
relu	256	256	0.001	4	60.513	85.8439	119.6749
relu	256	256	0.001	4	62.335	85.8439	119.6749

Summary plots:

Final Outcome (Optimized Results)

Optimization target: minimize test RMSE.

Best overall (across all recorded runs):

Activation: ReLUBatch size (M): 256

• Hidden units (n): 256

• Processes (P): 1

• **Training time:** 157.908 s

• RMSE (train/test): 85.8087 / 119.6477

Best within the P=4 sweep ($\sigma \times M$ at P=4):

• Activation: ReLU

• **Batch size (M):** 512

• Hidden units (n): 256

• Processes (P): 4

• **Training time:** 177.863 s

• RMSE (train/test): 85.8184 / 119.6571

Near-equivalent, much faster (P=4):

• ReLU, M=64, n=128, P=4 → RMSE (train/test): 85.8283 / 119.6631, time: 49.746 s

Notes:

- Test RMSE varies slightly with P due to stochasticity and single-epoch training, but differences are small (±0.02).
- The strong-scaling runs for **ReLU**, **M=256**, **n=256** showed time improvements up to P=4 (65.836 s) with diminishing returns at P=8 (104.511 s), while test RMSE remained in the ~119.65–119.68 range. p

Training Times for Different Numbers of Processes (Strong Scaling)

Config shown: **ReLU, M=256, n=256,** $P \in \{1,2,4,8\}$. See results/scaling_table.csv.

	procs	train_time (s)	speedup	efficiency	
	1	157.908	1.000	1.000	
	2	130.635	1.209	0.604	
•	4	65.836	2.399	0.600	
	8	104.511	1.511	0.189	

Scaling figures:

Efforts to Improve Results & Performance

- **Even-storage (memmap) dataset layout:** split into P subarrays on disk and memory-map per rank → faster startup and lower RAM, consistent with project's "stored nearly evenly" requirement.
- **Chunked RMSE computation:** evaluate in blocks (--eval_block 100000) to avoid large intermediate allocations and OOM on Windows.
- Evaluation subsampling: --eval_sample 2e6 to keep eval stable while reducing wall time.
- **BLAS thread pinning:** OPENBLAS_NUM_THREADS=1, MKL_NUM_THREADS=1, etc., to avoid oversubscription across MPI ranks.
- **Deterministic seeds:** --seed 123 for reproducibility across runs.
- Parameter selection heuristic: increased hidden units for larger batches/ReLU; smaller for sigmoid/tanh to balance capacity and runtime.
- Windows-friendly scripts: PowerShell sweep/scaling scripts with safeguards (cleanup, plotting, summary rebuilds).

7) Limitations & Future Work

- Single node: performance degrades past P=4 due to comms/memory contention; would revisit for multi-node (different MPI fabric).
- Optimizer: plain SGD; Adam/SGD+momentum might improve convergence per epoch (at extra cost).
- Learning-rate schedule: a cosine/step schedule could reduce final RMSE in the same number of epochs.
- Mixed precision: bfloat16/FP16 with loss-scaling could further reduce memory and increase throughput.

Conclusion: With memmap shards and chunked evaluation, we meet the "stored nearly evenly" requirement, obtain stable RMSE, and demonstrate strong scaling up to 4 processes on the test machine. The pipeline is reproducible end-to-end via the provided scripts.