

✓ Congratulations! You passed!

TO PASS 80% or higher

GRADE 100%

1 / 1 point

Ontimization Algorithms

LATEST SUBMISSION GRADE 100%			
	hich notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th inibatch?	1 / 1 poir	
	$a^{[3]\{7\}(8)}$		
(a ^[3] {8}(7)		
	$a^{[8]\{3\}(7)}$		
	$a^{[8]\{7\}(3)}$		
	✓ Correct		
2. W	hich of these statements about mini-batch gradient descent do you agree with?	1 / 1 poir	
(One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.		
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.		
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).		
	✓ Correct		
. W	/hy is the best mini-batch size usually not 1 and not m, but instead something in-between?	1 / 1 poi	
~	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.		
	✓ Correct		
~	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.		
	✓ Correct		
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.		
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.		

 ${\it 4.} \quad {\it Suppose your learning algorithm's cost} \ J, {\it plotted as a function of the number of iterations, looks like this:}$

Which of the following do you agree with?

- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

5. Suppose the temperature in Casablanca over the first two days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what bias correction is doing.)

$$\bigcirc$$
 $v_2 = 7.5$, $v_2^{corrected} = 7.5$

$$\bigcirc$$
 $v_2 = 10$, $v_2^{corrected} = 7.5$

$$\bigcirc \ v_2=10$$
 , $v_2^{corrected}=10$

✓ Correct

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\bigcirc$$
 $\alpha = \frac{1}{\sqrt{t}}\alpha_0$

$$\alpha = \frac{1}{1+2*t}\alpha_0$$

Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

- ightharpoonup Increasing eta will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

lacksquare Decreasing eta will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

8. Consider this figure:

1 / 1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- $igodealthick{igo}}}}} })}$
- \bigcirc (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- \bigcirc (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- \bigcirc (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

✓ Correct

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},,W^{[L]},b^{[L]})$. Which of the following techniques could help parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	1/1 point of find
✓ Try mini-batch gradient descent	
✓ Correct	
Try initializing all the weights to zero	
✓ Try using Adam	
✓ Correct	
✓ Try better random initialization for the weights	
✓ Correct	
ightharpoonup Try tuning the learning rate $lpha$	
✓ Correct	
10. Which of the following statements about Adam is False?	1/1 point
Adam combines the advantages of RMSProp and momentum	
\bigcirc The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
\bigcirc We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)
Adam should be used with batch gradient computations, not with mini-batches.	
✓ Correct	