```
In [46]:
```

```
import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [123]:

```
import plotly.express as px
#from plotly.figure_fctory import create_table
import plotly.offline as py
from plotly.offline import iplot
from plotly.graph_objs import Scatter
py.init_notebook_mode(connected=True)
```

In [39]:

```
df = pd.read_csv('data.csv')
```

In [40]:

```
print(df)
```

	Month	Rainfall	Temperature
0	January	1.650	3.0
1	February	1.250	10.0
2	March	1.940	15.0
3	April	2.750	20.0
4	May	3.140	25.0
5	June	3.645	24.0
6	July	5.500	30.0
7	August	1.000	1.0
8	September	1.300	33.0
9	October	NaN	NaN
10	November	0.500	32.0
11	December	2.300	2.3

In [30]:

```
plt.figure(figsize=(50,70))
df.plot(x="Month", y="Temperature")
df.plot(x="Month", y="Rainfall")
plt.show()
```

<Figure size 3600x5040 with 0 Axes>

Here scatter plot between month and temp

In [7]:

```
sns.set(rc={'figure.figsize':(12,6)})
sns.scatterplot(x='Month' , y='Temperature' ,data= df)
plt.show()
```


In [51]:

```
##HUE:produce points with different colors. Can be either categorical or numeric
sns.set(rc={'figure.figsize':(12,6)})
sns.scatterplot(x='Month' , y='Temperature' ,hue='Temperature',data= df)
plt.show()
```


In [60]:

```
dft = df.pivot("Month", "Rainfall", "Temperature")
sns.heatmap(dft, linewidths=2,annot=True,fmt='.1f')
#sns.heatmap(dft)
```

Out[60]:

<matplotlib.axes._subplots.AxesSubplot at 0xce968c8>

In [99]:

```
df1 = df.query('Rainfall > 5 and Temperature >20')
#df1.head()
fig=px.scatter(df1,x='Rainfall',y='Temperature', color='Month')
fig.show()
```

In [111]: dfl=df.pivot("Month","Rainfall","Temperature") #print(df1) sns.heatmap(df1,annot=True) plt.show() April - 30 August December - 25 February January - 20 30 July June - 15 March May - 10 32 November October September 33 0.5 1.0 1.25 1.3 1.65 1.94 2.3 3.14 3.645 Rainfall In []:

In []: