Лабораторна робота 2

Узагальнені munu (Generic) з підтримкою подій. Колекції

Мета лабораторної роботи — навчитися проектувати та реалізовувати узагальнені типи, а також типи з підтримкою подій.

Завдання

- 1. Розробити клас власної узагальненої колекції, використовуючи стандартні інтерфейси колекцій із бібліотек System.Collections та System.Collections.Generic. Стандартні колекції при розробці власної не застосовувати. Для колекції передбачити методи внесення даних будь-якого типу, видалення, пошуку та ін. (відповідно до типу колекції).
- 2. Додати до класу власної узагальненої колекції підтримку подій та обробку виключних ситуацій.
- 3. Опис класу колекції та всіх необхідних для роботи з колекцією типів зберегти у динамічній бібліотеці.
- 4. Створити консольний додаток, в якому продемонструвати використання розробленої власної колекції, підписку на події колекції.

Приклади виключних ситуацій: вихід за межи диапазону чи неприпустимий аргумент (індекс), відсутнє значення за ключем/індексом, несумісна зі станом об'єкту операція.

Приклади подій: очищення колекції, додавання, видалення елементу, потрапляння в початок\кінець

Варіанти

Номер варіант а	Опис узагальненої колекції	Функціонал	Реалізація
1	Стек	Див. Stack <t></t>	Збереження даних за допомогою динамічно зв'язаного списку
2	Черга	Див. Queue <t></t>	Збереження даних за допомогою динамічно зв'язаного списку
3	Бінарне дерево	Додавання вузлів, обходи дерева, перевірка на наявність, пошук (видалення реалізовувати не обов'язково)	Збереження даних за допомогою динамічно зв'язаних вузлів
4	Дек (черга з двома кінцями)	Див. Queue <t></t>	Збереження даних за допомогою динамічно зв'язаного списку
5	Динамічний масив	Див. List <t></t>	Збереження даних за допомогою динамічно зв'язаного списку

Номер варіант а	Опис узагальненої колекції	Функціонал	Реалізація
6	Словник	Див. Dictionary <tkey, tvalue=""></tkey,>	Збереження даних за допомогою динамічно зв'язаного списку або вектору
7	Відсортований динамічний масив	Див. SortedList <t></t>	Збереження даних за допомогою динамічно зв'язаного списку або вектору
8	Кільцевий список	Див. List <t>, LinkedList<t></t></t>	Збереження даних за допомогою динамічно зв'язаного списку
9	Динамічний масив з довільним діапазоном індексу	Див. List <t></t>	Збереження даних за допомогою вектору
10	Зв'язаний список	Див. LinkedList <t></t>	Збереження даних за допомогою динамічно зв'язаного списку

Контрольні запитання

- 1. Дайте визначення колекції. Наведіть типи колекцій
- 2. Наведіть основні інтерфейси, які успадковуються колекціями, та їх призначення.
- 3. Поясніть призначення паттерну «Ітератор» та його реалізацію в .Net.
- 4. Дані якого формату зберігаються у хеш-таблицях, словниках? Які переваги їх використання?
- 5. Поясніть призначення узагальнених типів. Наведіть приклади.
- 6. Поясніть призначення оператору default.
- 7. Поясніть призначення обмежень where в узагальнених типах. Наведіть приклади.
- 8. Поясніть сутність нумератору колекції.
- 9. Наведіть способи опису нумератору в колекції, приклад створення власного нумератору.
- 10.Роз'ясніть сутність поняття делегата.
- 11. Наведіть приклад опису делегата та виклику методу, використовуючи делегат.
- 12. Наведіть склад класу делегату та поясніть, чим забезпечується контроль типів в делегатах.
- 13. Поясніть сутність поняття анонімного методу.
- 14. Поясніть сутність лямбда-виразу, наведіть приклади лямбда-виразів.
- 15. Наведіть приклад опису події та генерування події.
- 16.Поясніть, яким чином виконується підписання на події та скасування пілписки.

Список літератури

- 1. Шилд Г. С# : учебный курс.- СПв.:Питер;К.: Издательская группа BHV, 2002.-512с.
- 2. Просиз Дж. Программирование для Microsoft .Net/ Пер. с англ.- М.: Издательско-торговый дом «Русская редакция», 2003.-704с.
- 3. https://msdn.microsoft.com/en-us/library/system.collections.generic%28v=vs.110%29.aspx