4 курс. 1 лабораторная работа. Задание.

- 1. Выбрать параметры двух из трех распределений генеральной совокупности $X: X \sim U(a,b), X \sim Exp^u$ или $X \sim N(a,\sigma^2)$.
- 2. Выбрать такую точку t_0 , что $0.05 < F_X(t_0) < 0.95$. Вычислить $F_X(t_0)$.
- 3. Смоделировать $m=10^2$ выборок объема $n=10^4$ для каждого из двух выбранных распределений. Для каждой выборки построить $F_n(t_0)$ значение эмпирической функции распределения в точке t_0 -- оценку значения функции распределения в точке t_0 , то есть величины $F_X(t_0)$. Для каждого из распределений получите 100 оценок величины $F_X(t_0)$.
- 4. Значение функции распределения $F_X(t_0) = P(X \in (-\infty, t_0) = \Delta)$ является вероятностью события $A = \{X \in (-\infty, t_0)\}$. Значение эмпирической функции распределения $F_n(t_0)$ —оценка вероятности события $A = \{X \in (-\infty, t_0)\}$, то есть $k(\Delta)/n$ частота попадания значения случайной величины X в интервал Δ . Частота, полученная по серии независимых однотипных испытаний с двумя исходами A и \bar{A} , является состоятельной, несмещенной, асимптотически нормальной оценкой вероятности события. Свойство асимптотической нормальности позволяет строить асимптотический доверительный интервал надежности γ . Фиксировать $\gamma > 0.9$ и построить по 100 асимптотических доверительных интервалов надежности γ для значения γ 0 каждого из выбранных распределений.
- 5. Построить 2 графика по оси x номер выборки, по оси y соответствующие левый и правый концы асимптотических доверительных интервалов и значение $F_X(t_0)$.
- 6. Найти количество δ_n асимптотических доверительных интервалов, в которые значение $F_X(t_0)$ не попало. Сравнить среднее количество δ_n для к =20 серий (mean(δ_n)) с величиной 1- γ (δ_n можно рассматривать как оценку величины 1- γ) для различных $\gamma=0.9,0.91,...,0.99$. Составить таблицу результатов.