METODY NUMERYCZNE - LABORATORIUM

Zadanie 4 Implementacja metod całkowania numerycznego

Opis rozwiązania

Celem tego zadania było zaimplementowanie metody złożonej kwadratury Newtona-Cotesa opartej na trzech węzłach (wzór Simpsona) oraz kwadratury Gaussa-Hermite'a na przedziale $(-\infty, +\infty)$ w celu obliczenia przybliżonej wartości całki oznaczonej.

Przybliżoną wartość całki obliczamy przy pomocy wzoru Simpsona:

$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2)$$

Kwadratura Gaussa-Hermite'a stosowana jest do obliczania całek na przedziale $(-\infty, +\infty)$. Kwadratura ta ma postać:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{i=0}^{2} H_i f(x_i)$$

Wyniki

1. Wyniki dla metody Newtona-Cotesa.

X3+3x2+2x+1			
Krok	Krok Dokładność Wynik		
0.1	0.1	0.177478	
0.1	0.01	4.235402	
0.1	0.001	4.401853	

cos(2x)			
Krok	Dokładność Wynik		
0.1	0.1	0.176011	
0.1	0.1 0.01 0.846734		
0.1	0.001	0.653776	

2sin(x)		
Krok	ok Dokładność Wynik	
0.1	0.1	-0.001468
0.1	0.01	-0.001468
0.1	0.001	-0.000414

x			
Krok	Dokładność	Wynik	
0.1	0.1	0.008845	
0.1	0.01	0.008845	
0.1	0.001	0.973685	

4x2+3x+2			
Krok	rok Dokładność Wynik		
0.1	0.1	5.432126	
0.1	0.01	6.826449	
0.1	0.001	7.052562	

2. Wyniki dla metody Gaussa-Hermite'a.

	liczba węzłów			
wzory	2	3	4	5
x^3+3x^2+2x+1	4.431137	4.431157	4.431139	4.431127
cos(2x)	0.276402	0.726758	0.641432	0.653224
2sin(x)	0.0	0.0	0.0	0.0
x	1.253315	0.723604	1.113037	0.835242
4x ² +3x+2	7.089818	7.089846	7.089821	7.089805

Wnioski

Kwadratury Newtona-Cotesa (metoda Simpsona) oparte są na przybliżeniu funkcji podcałkowej wielomianami stopnia drugiego. Obie metody w zależności od rodzaju funkcji z inną skutecznością całkują daną funkcję. W zależności od przybliżenia w metodzie Newtona-Cotesa otrzymywaliśmy wyniki mniej lub bardziej odbiegające od spodziewanego wyniku.