Programação Linear - método simplex Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

6 de setembro de 2019

Programação Linear - método simplex

antes

Existe sempre um vértice que é uma solução óptima do problema.^(*)

Guião

- O algoritmo Simplex explora uma sequência de vértices admissíveis.
- Em cada vértice, é necessário avaliar se o vértice actual é o óptimo, e se não for, decidir qual o vértice adjacente seguinte.
- A operação básica do algoritmo é o pivô (a mudança de um vértice para um vértice adjacente).
- A operação algébrica para efectuar o pivô é a eliminação de Gauss.

depois

- Há situações particulares que serão analisadas depois.
- (*) neste conjunto de diapositivos, vamos assumir que existe pelo menos uma solução admissível (i.e., o problema não é impossível)
 - e que a solução óptima não é ilimitada [veremos depois].

Conteúdo

- Algoritmo simplex
- coluna pivô: teste de optimalidade
- linha pivô: vértice admissível adjacente
- Resolução do Exemplo
- Implementação algébrica de um pivô
- Referência à eliminação de Gauss
- Apêndices

Algoritmo simplex

 Como há sempre um vértice admissível que é uma solução óptima, interessa apenas analisar vértices admissíveis:

Algoritmo Simplex (informal)

- seleccionar um vértice admissível inicial
- enquanto (existir um vértice admissível adjacente melhor)
 mudar para vértice admissível adjacente melhor

Operações básicas do algoritmo:

- teste de optimalidade: existe algum vértice admissível adjacente ao vértice actual com melhor valor de função objectivo?
- 2 pivô: mudança de uma base (vértice) para uma base adjacente.

Vértices adjacentes e movimento ao longo de uma aresta

Definição:

Dois vértices são adjacentes, se houver apenas a troca de 2 variáveis:

- uma variável não-básica num vértice é básica no vértice adjacente
- uma variável básica num vértice é não-básica no vértice adjacente
- assumimos que não há degenerescância [veremos depois].

Vértices adjacentes

Quando caminhamos ao longo de uma aresta,

- há uma única variável não-básica que aumenta de valor;
- as restantes variáveis não-básicas permanecem nulas (elas são nulas nos dois vértices nas extremidades da aresta, e em toda a aresta).

Exemplo 3 Dimensões

Lembrete:

- Uma solução básica é a solução que resulta de resolver o sistema de equações em ordem as váriáveis básicas (a base), sendo as variáveis não-básicas iguais a 0.
- Um vértice é admissível se todas as coordenadas forem não-negativas.

Exemplos 1 e 2

Selecção do elemento pivô no método simplex

- Efectuar um pivô traduz-se em resolver o sistema de equações em ordem a um novo conjunto de variáveis básicas, usando eliminação de Gauss.
- Na inversão de matrizes ou na resolução de sistemas de equações, há regras para seleccionar o elemento pivô (cruzamento da coluna pivô com a linha pivô).

No método simplex, a selecção da:

- coluna pivô (variável não-básica que entra na base) visa atingir a solução óptima mais rapidamente;
- *linha pivô* (variável básica que sai da base) assegura que o algoritmo apenas passa por vértices admissíveis.

Coluna pivô: teste de optimalidade do vértice a

Coluna pivô: teste de optimalidade no quadro simplex

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	
$\overline{s_1}$	0	3	2	1	0	0	120
s 2	0	1	2	0	1	0	80
s 3	0	1	2 2 0	0	0	1	30
Z	1	-12	-10	0	0	0	0

• A equação da função objectivo no quadro simplex está expressa em termos das variáveis não-básicas x_1 e x_2 :

$$z - 12x_1 - 10x_2 = 0.$$

- Aresta \overline{ab} : quando x_1 aumenta (mantendo $x_2 = 0$), o valor da função objectivo z aumenta: $\partial z/\partial x_1 = 12$.
- Aresta \overline{ae} : quando x_2 aumenta (mantendo $x_1 = 0$), o valor da função objectivo z aumenta: $\partial z/\partial x_2 = 10$.
- O vértice a não é o vértice óptimo.

Coluna pivô: selecção

 Regra de Dantzig: seleccionar a variável não-básica com maior variação da função objectivo por unidade de incremento da variável não-básica ao longo da aresta, ou seja:

A coluna pivô (variável não-básica a entrar na base) é:

- a coluna com o coeficiente mais negativo da linha da função objectivo, em problemas de maximização.
- a coluna com o coeficiente mais positivo da linha da função objectivo, em problemas de minimização.
- Esta escolha visa atingir a solução óptima mais rapidamente.
- Em caso de empate, a escolha é arbitrária (ou desempata-se seleccionando a aresta que conduz ao vértice adjacente com melhor valor da função objectivo).

⁻ há outras regras como: Devex rule, partial pricing, nested pricing.

Linha pivô: pivô do vértice $a \rightarrow$ vértice b

Linha pivô: variação das variáveis básicas

Quando caminhamos ao longo da aresta,

- a variação do valor de cada variável básica é fornecida pelo elemento da coluna da única variável não-básica que aumenta de valor.
- Exemplo:

	Z	<i>x</i> ₁	<i>x</i> ₂		<i>s</i> ₂	<i>s</i> ₃	
<i>s</i> ₁	0	3	2 2 0	1	0	0	120
s ₂ s ₃	0	1	2	0	1	0	80
<i>s</i> ₃	0				0	1	30
Z	1	-12	-10	0	0	0	0

• Quando x_1 aumenta (e $\mathbf{x_2}$ se mantém = $\mathbf{0}$), o sistema de equações que descreve a variação das variáveis básicas em funções de x_1 é:

$$\begin{cases} s_1 = 120 - 3x_1 \\ s_2 = 80 - 1x_1 \\ s_3 = 30 - 1x_1 \end{cases}$$

Linha pivô: caminhar até ao vértice adjacente admissível

Identificação da variável básica que sai da base:

- É a variável básica que, <u>ao decrescer</u>, atinge primeiro o valor zero quando se caminha ao longo da aresta,
- para assegurar que, no novo vértice, todas as variáveis são não-negativas (no exemplo, x₁,x₂,s₁,s₂,s₃ ≥ 0), i.e., o vértice adjacente é admissível.

			<i>x</i> ₂				
s_1	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
5 3	0	1	2 2 0	0	0	1	30
Z	1	-12	-10	0	0	0	0

O elemento pivô é sempre **positivo**, porque, se o coeficiente for:

- positivo, a variável básica decresce;
- nulo, a variável básica mantém o valor;
- negativo, a variável básica aumenta;

Linha pivô: linha da menor razão positiva

• razão entre o coef. do lado direito e o coef. da coluna pivô

	Z	x_1	<i>x</i> ₂					
<i>s</i> ₁	0	3	2	1	0	0	120	120/3 = 40
<i>s</i> ₂	0	1				0		$ \begin{array}{c} 120/3 = 40 \\ 80/1 = 80 \end{array} $
<i>s</i> ₃	0	1		0	0	1	30	30/1 = 30
Z	1	-12	-10	0	0	0	0	•

Exemplo: a menor razão positiva é 30

- Coluna pivô: coluna de x_1 (entra na base, e atinge o valor 30).
- Linha pivô: linha de s₃ (atinge o valor 0, e torna-se não-básica).

Linha pivô: selecção

Dada uma coluna pivô,

a linha pivô (variável básica que sai da base):

• é a linha com menor razão positiva.

notas:

- **positiva** significa que o coeficiente da coluna pivô deve ser > 0.
- A menor razão pode ser 0, se o lado direito for 0.
- (em caso de empate, há degenerescência) [veremos depois]
- Se não existir um coeficiente da coluna pivô > 0, solução óptima é ilimitada [veremos depois]

Caracterização algébrica da solução óptima

 Solução é óptima se aumentar qualquer variável não-básica (são todas iguais a 0 e apenas podem aumentar) piora a função objectivo, ou seja:

Uma solução é óptima:

- se não existir nenhum coeficiente negativo na linha da função objectivo, em problemas de maximização.
- se não existir nenhum coeficiente positivo na linha da função objectivo, em problemas de minimização.
- Exemplo: $z + 3.5 s_1 + 1.5 s_2 = 540$ (problema de maximização)
- quando s_1 aumenta (mantendo $s_2=0$), a f.o. diminui: $\partial z/\partial s_1=-3.5$
- quando s_2 aumenta (mantendo $s_1=0$), a f.o. diminui: $\partial z/\partial s_2=-1.5$
- (se s_1 e s_2 aumentarem ambas, a f.o. também diminui.)

Algoritmo simplex:

- Selecção de um vértice admissível inicial
 - Se n\u00e3o existir, problema \u00e9 imposs\u00edvel [veremos depois]
- Repetir
 - Selecção da coluna pivô:
 - Coeficiente mais negativo da linha da função objectivo
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da linha pivô:
 - Menor razão (lado direito/coluna pivô) positiva (coef.col.>0)
 - (em caso de empate, há degenerescência) [veremos depois]
 - Se não existir coef.col.>0, solução óptima é ilimitada [veremos depois]
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)

Um dado vértice e n vértices adjacentes formam um simplex. É o poliedro mais simples no espaço a n dimensões.

Resolução do Exemplo

Vértice a

Vértice $a \rightarrow \text{vértice } b$

Vértice b

Vértice $b \rightarrow \text{vértice } c$

Vértice c

53

-1.5

-3

15

20

30

510

Vértice $c \rightarrow \text{vértice } d$

Vértice d : solução óptima

Referência ao método de eliminação de Gauss

Elemento pivô: (cruzamento linha pivô e coluna pivô).

	Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	s 2	s 3	
$\overline{s_1}$	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
s 3	0	3 1 1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- A variável x_1 entra na base e a variável s_3 sai da base:
 - Novas variáveis básicas: s₁, s₂, x₁
 - Novas variáveis não-básicas: x₂,s₃
- Pretende-se que a coluna da variável x_1 , que entra na base, faça parte da matriz identidade:

	Z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>5</i> 3	
<i>s</i> ₁	0	0		1	0		
<i>s</i> ₂	0	0		0	1		
<i>x</i> ₁	0 0 0	1		0	0		
Z	1	0		0	0		

Nota: para uma explicação mais detalhada do Método da Eliminação de Gauss, ver o tutorial,

em particular, a partir da pág.22, onde se apresentam os cálculos necessários a efectuar o pivô realizado nos diapositivos seguintes

É necessário eliminar coeficiente de x_1 da primeira linha

	z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	3 1 1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- Usando a equação da linha pivô: $x_1 + s_3 = 30 \Leftrightarrow x_1 = 30 s_3$, substituindo na primeira linha: $3x_1 + 2x_2 + s_1 = 120 \Leftrightarrow 3(30 s_3) + 2x_2 + s_1 = 120 \Leftrightarrow 2x_2 + s_1 3s_3 = 30$
- É equivalente a somar à 1.ª linha a linha pivô multiplicada por -3:

Linha 1	0	3	2	1	0	0	120
$-3 \times Linha Pivô$	0	-3	0	0	0	-3	-90
Resultado	0	0	2	1	0	-3	30

• Quadro seguinte:

LC.							
	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
<i>s</i> ₁	0	0	2	1	0	-3	30
x_1	0	1	0	0	0	1	30 Ver Mais
						→ □)	

Conclusão

- O resultado que estabelece que existe um vértice que é uma solução óptima do problema permite que o algoritmo simplex restrinja a procura apenas aos vértices admissíveis.
- As decisões (selecção da coluna e da linha pivô) garantem que se muda de um vértice admissível (do problema primal) para outro vértice admissível mais próximo da solução óptima.
- A mudança de base faz-se usando eliminação de Gauss.

Apêndices

Bases (vértices) adjacentes

Definição:

Dois vértices são adjacentes, se houver apenas a troca de 2 variáveis:

- uma variável não-básica num vértice é básica no vértice adjacente
- uma variável básica num vértice é não-básica no vértice adjacente
- As restantes vars não-básicas são nulas nos dois vértices adjacentes e ao longo da aresta que os une.
- A aresta que une os vértices adjacentes x^1 e x^2 é o lugar geométrico dos pontos x :

$$x = \lambda x^1 + (1 - \lambda)x^2, \ 0 \le \lambda \le 1.$$

Exemplo: na aresta \overline{ab} , o valor de $x_2 = 0$:

$$\left(x_1, \textcolor{red}{x_2}, s_1, s_2, s_3\right)^t = \lambda \ \left(0, \textcolor{red}{0}, 120, 80, 30\right)^t + \left(1 - \lambda\right) \ \left(30, \textcolor{red}{0}, 30, 50, 0\right)^t, \ 0 \leq \lambda \leq 1$$

- Quando há degenerescência, duas bases diferentes podem dar a mesma solução básica (o mesmo vértice) [veremos depois].

Exemplo 1: o vértice b é adjacente ao vértice a

Exemplo 2: o vértice e é adjacente ao vértice a

Pivô entre soluções básicas (vértices) adjacentes

Quando caminhamos ao longo de uma aresta no espaço a 3 dimensões,

- há uma única variável não-básica que aumenta de valor;
- as restantes 2 variáveis não-básicas permanecem nulas.

x2

Região admissível é o cubo:

$$x_1$$
 $+s_1$ = 1
 x_2 $+s_2$ = 1
 x_3 $+s_3$ = 1
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

- Quais as variáveis não-básicas no vértice d?
- Qual a variável não-básica que aumenta quando se caminha para h?
- Quais as variáveis não-básicas que se mantêm iguais a 0?

1. Pivô: direcção

O que significa $x_B = B^{-1}b - \theta B^{-1}N_j$?

- A solução básica $B^{-1}b$ é o vértice x_{v_actual} .
- O vector $B^{-1}N_i$ indica uma direcção d.
- O vector θd , $\theta \ge 0$, é um múltiplo escalar do vector d.

ou seja, no pivô

- partindo do vértice x_{v_actual} , ao longo da direcção $d \in IR^n$, percorremos os pontos $x = x_{v_actual} + \theta \ d$, que devem pertencer ao domínio, *i.e.*, $A(x_{v_actual} + \theta d) = b$.
- Como $Ax_{v_actual} = b$, d deve ser uma direcção tal que Ad = 0.
- Quando $\theta = \theta_{max}$, atingimos o vértice adjacente x_{v_adj} :

$$x_{v_adj} = x_{v_actual} + \theta_{max} d$$

ullet Quando só uma variável aumenta, d é a direcção de uma aresta.

1. Pivô: aumento máximo

• Quando $\theta = \theta_{max}$, atingimos o vértice adjacente $x_{v \ adj}$:

$$x_{v_adj} = x_{v_actual} + \theta_{max} d$$

 O aumento máximo é determinado pelo facto de que se deve permanecer na região admissível, ou seja, nenhuma variável pode ter valor negativo.

1. Exemplo: aresta vértice $c \rightarrow d$ (s_3 aumenta)

• quando a variável não-básica s_3 aumenta de θ unidades, a variável básica x_2 aumenta de 1.5θ unidades, s_2 decresce de 2θ unidades, e x_1 decresce de θ unidades.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta \cdot \begin{pmatrix} -1 \\ 1.5 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

- Exercício: verificar que $Ax_{v_actual} = b$ e Ad = 0.
- Quando $\theta = \theta_{max} = 10$, atingimos o vértice adjacente x_{v_adj} :

$$x_{vertice_d} = x_{vertice_c} + \theta_{max} d$$

2. Pivô: como variam as variáveis básicas quando a variável não-básica aumenta θ unidades?

• O sistema de equações das restrições é $Bx_B + Nx_N = b$.

Num pivô, do conjunto de variáveis não-básicas $\mathcal N$,

- uma variável não-básica $x_j, j \in \mathcal{N}$, aumenta θ unidades, $\theta \in IR_+$,
- as restantes variáveis não-básicas $x_i, i \in \mathcal{N} \setminus \{j\}$, mantêm-se nulas.
- Assim, o sistema de equações que descreve as mudanças dos valores das variáveis envolvidas no pivô é $Bx_B + N_j.x_j = b$, ou $Bx_B = b \theta N_j$.
- Pré-multiplicando por B^{-1} :

$$x_B = B^{-1}b - \theta B^{-1}N_j$$

- em que $B^{-1}b$ é a coluna do lado direito do quadro simplex, e $B^{-1}N_j$ é a coluna da variável não-básica que aumenta.
- Os 2 exemplos seguintes mostram as mudanças dos valores das variáveis, quer no quadro simplex inicial, quer no quadro actual.

2. Exemplo: vértice $a \rightarrow$ vértice b (aumenta x_1)

2. Exemplo: vértice $c \rightarrow$ vértice d (aumenta s_3)

2. Pivô: dependência linear

 A coluna N_j da variável não-básica j e as colunas da variáveis básicas são um conjunto de vectores linearmente dependentes:

$$N_j - B \left(B^{-1} N_j \right) = 0$$

- Exemplo: vértice c (base x_2, s_2 e x_1) e var não-básica s_3 aumenta:
- quando a variável não-básica s_3 aumenta de θ unidades, a variável básica x_2 aumenta de 1.5θ unidades, s_2 decresce de 2θ unidades, e x_1 decresce de θ unidades.

$$\theta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 1.5 \theta \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} - 2 \theta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 1 \theta \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

3. Caracterização geométrica da solução óptima

- Solução é óptima se o gradiente da função objectivo estiver contido no cone (combinação não-negativa) gerado pelos vectores simétricos dos gradientes das restrições activas no vértice óptimo.
- O gradiente da restrição $a^i x \le b_i$ (ou seja, $a^i x + s_i = b_i$) é:

$$\partial s_i/\partial x = -a^i$$

Exemplo:

restrição
$$3x_1 + 2x_2 + s_1 = 120$$
 \rightarrow $\partial s_1/\partial x = (-3, -2)^t$.
restrição $1x_1 + 2x_2 + s_2 = 80$ \rightarrow $\partial s_2/\partial x = (-1, -2)^t$.

• Gradiente da função objectivo, \vec{c} , é uma combinação não-negativa dos vectores simétricos dos gradientes das restrições activas ($s_1 = 0$ e $s_2 = 0$)

$$\vec{c} = \begin{pmatrix} 12\\10 \end{pmatrix} = 3.5 \begin{pmatrix} 3\\2 \end{pmatrix} + 1.5 \begin{pmatrix} 1\\2 \end{pmatrix}$$

• os coeficientes 3.5 e 1.5 são os mesmos do quadro simplex.

3. Solução óptima: gradiente \vec{c} está contido no cone

3. Certificado de optimalidade

3. Solução em que o gradiente \vec{c} não está contido no cone

Eliminação de Gauss: cálculo elemento a elemento

- Os cálculos podem ser feitos elemento a elemento, reproduzindo as operações que se efectuam com as linhas.
- Os dois quadros representam dois conjuntos de células, um do quadro actual e outro do quadro seguinte.
- O elemento pivô é o elemento a, e as outras células ocupam uma posição na mesma linha ou na mesma coluna do elemento pivô.

Eliminação de Gauss: exemplo I

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
$\overline{s_1}$	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0
	Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	<i>s</i> ₂	5 3	
s_1	0	0	2	1	0	-3	30
x_1	0	1	0	0	0	1	30

quadro actual

Т	1 -					
	3			120		
		1		30		

quadro seguinte

	•
0	(120.1-30.3)/1
1	30/1

3			120		
	1		0		

Eliminação de Gauss: exemplo II

	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
$\overline{s_1}$	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0
	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>5</i> 3	
s_1	0	0	2	1	0	-3	30
x_1	0	1	0	0	0	1	30
	1	0	-10	0	0	12	360

quadro actual

	1	30
Ì	-12	0

quadro seguinte

1	30/1
0	(0.1-30.(-12))/1

1	30
-12	0

1	30
0	360

Fim