Diagramas de Decisão Binários (DDBs)

Luiz Carlos Vieira

24 de Setembro de 2015

Instituto de Matemática e Estatística da Universidade de São Paulo

conteúdo

- Representação de Funções Booleanas
 - fórmulas proposicionais e tabelas-verdade
 - diagramas de decisão binários (DDBs)
 - diagramas de decisão binários ordenados (DDBOs)
- Algoritmos para DDBOs Reduzidos
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

Representação de Funções Booleanas

funções booleanas

- Parte do formalismo descritivo de sistemas de hardware e software
- Que precisa ser representado computacionalmente de forma eficiente

definição: variáveis booleanas

Definição 6.1(a)

Uma variável booleana x é uma variável que só pode assumir os valores 0 e 1. Denotamos variáveis booleanas por x_1, x_2, \cdots , e x, y e z, \cdots

definição: funções booleanas

Definição 6.1(b)

As seguintes funções são definidas no conjunto $\{0,1\}$:

- $\overline{0}\stackrel{\text{\tiny def}}{=} 1$ e $\overline{1}\stackrel{\text{\tiny def}}{=} 0$;
- $ullet x \cdot y \stackrel{ ext{\tiny def}}{=} 1$ se x e y têm valor 1; caso contrário, $x \cdot y \stackrel{ ext{\tiny def}}{=} 0$;
- $ullet x+y\stackrel{ ext{ iny def}}{=} 0$ se x e y têm valor 0; caso contrário, $x+y\stackrel{ ext{ iny def}}{=} 1$;
- $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 1$ se exatamente um entre x e y é igual a 1; caso contrário, $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 0$.

funções e variáveis booleanas

- Uma função booleana f com n variáveis é uma função de $\{0,1\}^n$ para $\{0,1\}$.
- Escreve-se $f(x_1, x_2, \ldots, x_n)$ ou $f(\mathcal{V})$ para indicar que uma representação sintática de f só depende das variáveis booleanas em \mathcal{V} .

alguns exemplos de funções booleanas

1.
$$f(x,y) \stackrel{\text{\tiny def}}{=} x \cdot (y + \overline{x})$$

2.
$$g(x,y) \stackrel{\text{\tiny def}}{=} x \cdot y + (1 \oplus \overline{x})$$

3.
$$h(x,y,z) \stackrel{\text{\tiny def}}{=} x + y \cdot (x \oplus \overline{y})$$

4.
$$k() \stackrel{\text{\tiny def}}{=} 1 \oplus (0 \cdot \overline{1})$$

wffs e tabelas-verdade

As fórmulas proposicionais bem-formadas (wffs) e as tabelas-verdade são duas formas de se representar funções booleanas

- fórmulas proposicionais:
 - ∧ denota •
 - ∨ denota +
 - ¬ denota ⁻
 - e \top e \bot denotam, respectivamente, 1 e 0
- tabelas-verdade: representam funções booleanas de maneira óbvia

tabelas-verdade de funções booleanas

Tabela-verdade da função booleana $f(x,y) \stackrel{ ext{def}}{=} \overline{x+y}$

Tabela-verdade da fórmula
proposicional $\phi \equiv \neg (p \lor q)$

\boldsymbol{x}	\boldsymbol{y}	f(x,y)
1	1	0
0	1	0
1	0	0
0	0	1

\boldsymbol{p}	$oldsymbol{q}$	ϕ
$oldsymbol{V}$	$oldsymbol{V}$	\boldsymbol{F}
${m F}$	V	$oldsymbol{F}$
V	${m F}$	$oldsymbol{F}$
$oldsymbol{F}$	$oldsymbol{F}$	$oldsymbol{V}$

vantagens e desvantagens

Há vantagens e desvantagens no uso de tabelas-verdade e fórmulas proposicionais para representar funções booleanas

	Tabelas-Verdade	Fórmulas Proposicionais
Vantagens	 operações¹ simples 	• representação compacta
Desvantagens	ineficientes em espaçocomputacionalmente intratável	 operações¹ difíceis computacionalmente intratável

¹verificação de satisfação e validade, e comparação de duas funções booleanas

operações sobre funções booleanas

As operações \cdot , +, \oplus e $\bar{}$ sobre duas funções f e g são realizadas de forma simples:

- Com tabelas-verdade
 - operação diretamente aplicada a cada linha, adicionando variáveis se necessário
 - mas computacionalmente intratável (2^n linhas)
- Com fórmulas proposicionais
 - manipulação sintática da Lógica Proposicional
 - por exemplo: $f\cdot g$ e $f\oplus g$ são respectivamente $\phi\wedge\psi$ e $(\phi\wedge\neg\psi)\vee(\neg\phi\wedge\psi)$

utilizando formas normais

- As formas normais facilitam em alguns aspectos
 - e dificultam em outros
- Podem ser mais longas do que as fórmulas originais equivalentes não-normalizadas

forma normal conjuntiva (CNF)

- Facilita o teste de validade
 - busca de cláusula disjuntiva sem preposições complementares
 - teste de satisfação não é igualmente fácil
- Facilita a operação de conjunção (·)
 - se f e g são CNFs, o resultado de $f \cdot g$ é CNF
- Dificulta as demais operações (+, ⊕ e ⁻)
 - distributividade recursiva para manter CNF

A forma normal disjuntiva (DNF) – disjunção de conjunções – é dual com a CNF em relação a essas propriedades

resumo da eficiência das representações

		teste	e de	opera	ções boole	anas
Representação de funções booleanas	compacta?	satisfação	validade	•	+	_
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas CNF	algumas vezes	difícil	fácil	fácil	difícil	difícil
fórmulas NDF	algumas vezes	fácil	difícil	difícil	fácil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil
DDBOs reduzidos ²	muitas vezes	fácil	fácil	mais ou menos	mais ou menos	fácil

²que ainda serão explorados nessa aula

definição: árvore de decisão binária finita

Definição 6.3

Seja T uma árvore de decisão binária finita. Então T determina uma única função booleana das variáveis nos nós não-terminais da seguinte maneira:

Dada uma atribuição de 0's e 1's às variáveis booleanas que ocorrem em T, começamos pela raiz de T e pegamos a linha tracejada sempre que o valor da variável no nó atual é 0; caso contrário, percorremos a linha sólida. O valor da função é o valor do nó terminal atingido.

ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$

- ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):

- ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz

- Árvore da função: $f(x,y) \stackrel{\text{\tiny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in 0$, segue-se pela linha pontilhada

- Árvore da função: $f(x,y) \stackrel{\text{\tiny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in 0$, segue-se pela linha pontilhada
 - 3. como y é 1, segue-se pela linha sólida

• Árvore da função: $f(x,y) \stackrel{\scriptscriptstyle ext{def}}{=} \overline{x+y}$

- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in 0$, segue-se pela linha pontilhada
 - 3. como y é 1, segue-se pela linha sólida
 - 4. chega-se à folha 0; logo f(0,1)=0

junto com a tabela-verdade

Para a função booleana $f(x,y)\stackrel{\scriptscriptstyle\mathsf{def}}{=} \overline{x+y}$:

\boldsymbol{x}	\boldsymbol{y}	f(x,y)
1	1	0
0	1	0
1	0	0
0	0	1

outro exemplo

Para a função booleana $f(p,q,r) \stackrel{ ext{ iny def}}{=} \overline{p} + (q \cdot r)$:

equivalente à fórmula proposicional $\phi \equiv p
ightarrow (q \wedge r)$

\boldsymbol{p}	$oldsymbol{q}$	r	$\int f(p,q,r)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

semelhanças com tabelas-verdade

- Árvores de Decisão Binárias são semelhantes às tabelas-verdade em relação ao tamanho
 - se f depender de n variáveis booleanas, a árvore correspondente terá pelo menos $2^{n+1}-1$ nós (contra as 2^n linhas da tabela verdade)
- Mas muitas vezes elas contêm redundâncias que podem ser exploradas

A exploração de redundâncias em Árvores de Decisão Binárias faz com que deixem de ser árvores e se tornem grafos. Assim, passam a ser chamados de Diagramas de Decisão Binários (BDDs).

remoção de nós terminais duplicados

Se um DDB contém mais de um nó terminal $\mathbf{0}$, redirecionamse todas as arestas que apontam para tais nós para apenas um deles. Repete-se o mesmo processo para os nós terminais com $\mathbf{1}$

remoção de nós terminais duplicados

Se um DDB contém mais de um nó terminal $\mathbf{0}$, redirecionamse todas as arestas que apontam para tais nós para apenas um deles. Repete-se o mesmo processo para os nós terminais com $\mathbf{1}$

remoção de nós terminais duplicados

Se um DDB contém mais de um nó terminal $\mathbf{0}$, redirecionamse todas as arestas que apontam para tais nós para apenas um deles. Repete-se o mesmo processo para os nós terminais com $\mathbf{1}$

remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, elimina-se o nó n, enviando todas as arestas que nele chegavam para m.

remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, elimina-se o nó n, enviando todas as arestas que nele chegavam para m.

remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, elimina-se o nó n, enviando todas as arestas que nele chegavam para m.

remoção de nós não-terminais duplicados

Se dois nós distintos $n \ e \ m$ são raizes de sub-DDBs idênticos, pode-se eliminar um deles redirecionando todas as arestas que chegam nele para o outro

remoção de nós não-terminais duplicados

Se dois nós distintos $n \ e \ m$ são raizes de sub-DDBs idênticos, pode-se eliminar um deles redirecionando todas as arestas que chegam nele para o outro

remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raizes de sub-DDBs idênticos, pode-se eliminar um deles redirecionando todas as arestas que chegam nele para o outro

exercício 1

Reduza a árvore de decisão binária da função

$$f(p,q,r) \stackrel{ ext{ iny def}}{=} \overline{p} + (q \cdot r)$$
 apresentada anteriormente:

Simplificações:

- C1. Remoção de nós terminais duplicados
- C2. Remoção de testes redundantes
- C3. Remoção de nós não-terminais duplicados

solução – 1º passo

solução – 2º passo

solução – 3º passo

DDB reduzido × tabela-verdade

Função booleana: $f(p,q,r) \stackrel{ ext{ iny def}}{=} \overline{p} + (q \cdot r)$:

$oldsymbol{p}$	\boldsymbol{q}	r	$\int f(p,q,r)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1