Mathematics Foundation of Computer Science Formula Booklet

Students of MLFCS 2021 January 10, 2022

Contents

1	Ring Laws	3
	1.1 Ring Laws	. 3
	1.2 Cancellation Laws	
2	Sets	4
3	Relations	5
	3.1 Relations	. 5
4	Functions	6
	4.1 Function Requirements	. 6
	4.2 Properties	
5	The Inner Product	7
	5.1 Conversions	. 7
	5.2 Inner Product	
	5.3 Geometry	
6	Bases	10
	6.1 Bases	. 10

1 Ring Laws

1.1 Ring Laws

$$a+0=a$$
 $a\times 1=a$ (Neutral elements)
$$a+b=b+a$$
 $a\times b=b\times a$ (Commutativity)
$$a+(b+c)=(a+b)+c$$
 $a\times (b\times c)=(a\times b)\times c$ (Distributivity)
$$a\times 0=0$$
 (Annihilation)

1.2 Cancellation Laws

$$a+c=b+c \implies a=b$$
 $a \times c = b \times c \implies a = b, c \neq 0$

2 Sets

 $[A \backslash B]:$ Set A without elements shared with B

$$A = \{a, b\}, \quad B = \{1, 2\}, \quad A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$

|A|: Cardinality of A

3 Relations

3.1 Relations

Graph: Binary relation $R \subseteq A^2$ on a single set

Vertices: Elements of A

Edges: Elements of R

 $A^2: A \times A$

Reflexivity: $(x, x) \in R$

Irreflexive: $\forall x \in A. (x, x) \notin R$

Reflexive-closure: $R \cup \{(x,y) \in A^2 \mid x=y\} \subseteq A^2$

Symmetry: $\forall (x, y) \in A^2$. $(x, y) \in R \Rightarrow (y, x) \in R$

Anti-symmetry: $\forall x \in A. (x, y) \in R \land (y, x) \in R \Rightarrow x = y$

Symmetric-enclosure: $\{(a,b),(b,a),(a,c),(c,a),...\}$

Transitivity: $\forall x, y, z \in A$. $(x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$

Transitive-closure: $R \cup R$; $R \cup R$; R; $R \cup R$; R; $R \cup R$...

Transitive-closure: "All R Paths"

Order Relation: When $R \subseteq A^2$ is Reflexive, Anti-Symmetric and Transitive

Equivalence Relation: Reflexive, Symmetric, Transitive

Equivalence Class: Set of $\in A$ which are all \in equivalence closure

4 Functions

4.1 Function Requirements

Definedness: $\forall a \in A \ \exists b \in B. \ (a, b) \in R$

Single-valuedness: $\forall a \in A \ \forall b, b' \in B. \ (a, b) \in B \ \land \ (a, b') \in R \Rightarrow b = b'$

4.2 Properties

Range / Image: $\{b \in B \mid \exists a \in A. \ (a,b) \in R\} \subseteq B$

Injectivity: $\forall a, a' \in A. \ a \neq a' \Rightarrow f(a) \neq f(b)$

Surjectivity: $\forall b \in B \ \exists a \in A. \ f(a) = b$

Bijectivity: $|F^{-1}[\{b\}]| = 1$

Bijectivity: Injective And Surjective Simultaneously

Forward Image: $F[X] = \{b \in B \mid \exists a \in X. \ f(a) = b\}$

Backward Image: $F^{-1}[Y] = \{a \in A \mid f(a) \in Y\}$

 $F[\bar{X}]$: Compliment of pre-image

 $F[\overline{X}]$: Compliment of forward-image

Everywhere defined: All of A is the pre-image

5 The Inner Product

5.1 Conversions

Linear Equation To Parametric:

$$x_1 = d + bx_2 + cx_3... \Rightarrow \begin{pmatrix} d \\ 0 \\ 0 \\ ... \\ ... \end{pmatrix} + x_2 \cdot \begin{pmatrix} b \\ 1 \\ 0 \\ ... \\ ... \end{pmatrix} + x_3 \cdot \begin{pmatrix} c \\ 0 \\ 1 \\ ... \\ ... \end{pmatrix} + ... + x_n \cdot \begin{pmatrix} n^{th} \ co - eff \\ ... \\ ... \\ ... \\ 1 \end{pmatrix}$$

Parametric to linear (line):

$$ax_1 + bx_2 = d$$

$$a = -v_2$$

$$b = v_1$$

$$d = -v_2 p_1 + v_1 p_2$$

Parametric to linear (plane):

$$ax_1 + bx_2 + cx_3 = d$$

$$a = v_2 w_3 - v_3 w_2$$

$$b = v_3 w_1 - v_1 w_3$$

$$c = v_1 w_2 - v_2 w_1$$

$$d = ap_1 + bp_2 + cp_3$$

5.2 **Inner Product**

 $\langle \vec{v}, \vec{w} \rangle$: $v_1 \times w_1 + v_2 \times w_2 + \dots + v_n \times w_n$

 $\langle \vec{v} + \vec{w}, \vec{u} \rangle : \langle \vec{v}, \vec{u} \rangle + \langle \vec{w}, \vec{u} \rangle$

 $\langle s \cdot \vec{v}, \vec{w} \rangle : s \cdot \langle \vec{v}, \vec{w} \rangle$

 $\langle \vec{v}, \vec{w} \rangle : |\vec{v}| \times |\vec{w}| \times \cos a$

Orthogonal Test: $\langle \vec{v}, \vec{w} \rangle = 0$

 $\langle \vec{v}, \vec{v} \rangle : |\vec{v}|^2$

 $|\vec{v}|: \sqrt{\langle \vec{v}, \vec{v} \rangle}$

Geometry 5.3

 $\vec{n}: \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

 $\frac{d}{|\vec{n}|}$: Distance from origin

 $\langle \vec{n}, X \rangle = d = \langle \vec{n}, P \rangle$ where X: Arbitrary Point, P: Point on the line

Projection of line \vec{v} on line \vec{n} : $\frac{\langle \vec{n}, \vec{v} \rangle}{\langle \vec{n}, \vec{n} \rangle} \times \vec{n}$

Distance of Point
$$Q$$
 to line P :
$$\frac{\langle P, \vec{n} \rangle - \langle Q, \vec{n} \rangle}{|\vec{n}|} = \frac{d - \langle \vec{n}, Q \rangle}{|\vec{n}|} = \frac{\langle \vec{n}, \vec{QP} \rangle}{|\vec{n}|}$$

Projection of Point Q on a Plane:

 $Q': Q + \frac{d - \langle \vec{n}, Q \rangle}{\langle \vec{n}, \vec{n} \rangle} \cdot \vec{n}$

Reflection of Point Q in a Plane

$$Q'': Q + 2 \times \frac{d - \langle \vec{n}, Q \rangle}{\langle \vec{n}, \vec{n} \rangle} \cdot \vec{n}$$

6 Bases

6.1 Bases

Linear Combinations:

$$(\sum_{i=1}^{n} a_i \cdot \vec{v_i}) + (\sum_{i=1}^{n} b_i \cdot \vec{v_i}) = \sum_{i=1}^{n} (a_i + b_i) \cdot \vec{v_i}$$

$$s \cdot \left(\sum_{i=1}^{n} a_i \cdot \vec{v_i}\right) = \sum_{i=1}^{n} \left(s \times a_i\right) \cdot \vec{v_i}$$

Theorem 8 for linear independence:

$$\sum_{i=1}^{n} a_i \cdot \vec{v_i} = \vec{0} \Rightarrow a_1 = a_2 = a_3 = \dots = 0$$

Value of particular co-efficient (coordinates):

$$a_k = \frac{\langle \vec{v_k}, \vec{v_k} \rangle}{\langle \vec{v_k}, \vec{v_k} \rangle}$$

Orthonormal: $\langle \vec{v}, \vec{v} \rangle = 1$

Positive definite:

$$\langle \vec{v}, \vec{v} \rangle \ge 0$$

$$\langle \vec{v}, \vec{v} \rangle = 0 \Rightarrow \vec{v} = \vec{0}$$

Computing Orthogonal bases from bases:

$$\vec{w_1} = \vec{v_1}$$

$$\vec{w_2} = \vec{v_2} - \frac{\langle \vec{v_2}, \vec{w_1} \rangle}{\langle \vec{w_1}, \vec{w_1} \rangle} \cdot \vec{w_2}$$

$$w_{1} = v_{1}$$

$$\vec{w}_{2} = \vec{v}_{2} - \frac{\langle \vec{v}_{2}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \cdot \vec{w}_{1}$$

$$\vec{w}_{3} = \vec{v}_{3} - \frac{\langle \vec{v}_{3}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \cdot \vec{w}_{1} - \frac{\langle \vec{v}_{3}, \vec{w}_{2} \rangle}{\langle \vec{w}_{2}, \vec{w}_{2} \rangle} \cdot \vec{w}_{2}$$

and so on...