Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №2 за темою: "Методи розв'язання ЗЛП" з дисципліни "Методи оптимізації та прийняття рішень"

Виконав Перевірила

студент 4 курсу кафедри ІПІ ФІОТ групи ІП-91 Кочев Г.Г. Ромашкевич Я.О.

1 ЗАВДАННЯ

Вирішити ЗЛП наведену в математичній постановці завдання трьома способами.

- Спосіб 1. Засобами Excel (надбудова «Пошук розв'язку», метод розв'язання симплекс-метод).
- Спосіб 2. Графічний метод розв'язання ЗЛП.
- Спосіб 3. Симплекс-метод.

2 МАТЕМАТИЧНА ПОСТАНОВКА ЗАДАЧІ ЗГІДНО НОМЕРУ ВАРІАНТА

Варіант 12.

$$Z = 4x_1 + 4x_2 \rightarrow max$$

$$-6x_1 + 6x_2 \le 18$$

$$4x_1 + 1x_2 \le 29$$

$$x_2 \le 7$$

$$x_1 \le 7$$

$$x_1, x_2 \ge 0$$

3 СПОСІБ 1. ЗАСОБАМИ ЕХСЕL

Рисунок 1 – Аркуш Excel із відображенням вхідних значень

Рисунок 2 – Аркуш Excel із відображенням формул

Рисунок 3 – Скріншот вікна пошуку із встановленими параметрами пошуку

Рисунок 4 – Аркуш звіту, сформованого Excel «Звіт про результати»

4. (ГРАФІЧНИЙ МЕТОД) ГРАФІЧНЕ РОЗВ'ЯЗАННЯ ЗЛП ІЗ ПОЗНАЧЕННЯМИ

Рисунок 5 – Графічне розв'язання ЗЛП. Номера обмежень підписані числами в дужках біля прямих, півплощини, задані цим обмеженням визначені штриховкою. Заштрихована червоним ділянка є областю допустимих розв'язків.

Областю допустимих розв'язків є шестикутник ABCDEF, заштрихований червоним. Рухаючи пряму, що описує цільову функцію в напрямку вектора градієнта було знайдено оптимальний розв'язок, який знаходиться в точці D, що має координати (5.5,7).

В цій точці цільова функція має значення 4*5.5+4*7=50, що співпадає з рішенням за допомогою Excel.

5. (СИМПЛЕКС-МЕТОД)

ЗЛП в канонічній формі:

$$Z = 4x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4 \rightarrow \max$$
$$-6x_1 + 6x_2 + s_1 = 18 \quad (1)$$

$$4x_1 + 1x_2 + s_2 = 29 \qquad (2)$$

$$x_2 + s_3 = 7$$
 (3)

$$x_1 + s_4 = 7$$
 (4)

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Для знаходження початкового ДБР візьмемо змінні s_1 , s_2 , s_3 , s_4 як базисні, x_1 , x_2 як небазисні, на основі цього ДБР створюємо початкову симплекс-таблицю.

Початкова симплекс-таблиця:

	x1	x2	s1	s2	s3	s4	P
Z	-4	-4	0	0	0	0	0
s1	-6	6	1	0	0	0	18
s2	4	1	0	1	0	0	29
s3	0	1	0	0	1	0	7
s4	1	0	0	0	0	1	7

Оскільки дві компоненти вектора відносних оцінок від'ємні (-4, -4), то поточний розв'язок неоптимальний.

Поточний розв'язок відповідає вершині А ОДР задачі, зображеній на рисунку 5.

В змінних x1 та x2 однакові відносні оцінки, тому для введення в базис виберемо довільну вершину, наприклад x2.

Для визначення того, яка змінна буде виведена з базису, поділимо всі значення в стовпчику Р на відповідні додатні ненульові значення в стовпчику змінної, яку ми вводимо в базис, і вибрати змінну, для якої значення в рядку буде найменшим:

$$s1 \rightarrow \frac{18}{6} = 3,$$

 $s2 \rightarrow \frac{29}{1} = 29,$
 $s3 \rightarrow \frac{7}{1} = 7$

Найменше значення має s1, отже виводимо її з базису.

Ітерація 1

Побудуємо симплекс-таблицю для наступної ітерації, колонки базисних змінних виділені зеленим, позиція провідного елементу з попередньої ітерації (який був використаний для перерахунку симплекс таблиці методом квадрату) відмічена червоним:

	x 1	x2	s1	s2	s3	s4	P
Z	-8	0	2/3	0	0	0	12
x2	-1	1	1/6	0	0	0	3
s2	5	0	-1/6	1	0	0	26

s3	1	0	-1/6	0	1	0	4
s4	1	0	0	0	0	1	7

Оскільки одна з компонент вектора відносних оцінок від'ємна x1 = -8, то поточний розв'язок неоптимальний.

Поточний розв'язок відповідає вершині F ОДР задачі, зображеній на рисунку 6, шлях показано чорною стрілкою.

Рисунок 6 – Шлях від вершини A, що відповідає ДБР1, до вершини F, що відповідає ДБР2, зображений чорною стрілкою

Є лише одна змінна, х1 з від'ємною відносною оцінкою, тому вводимо її в базис.

Для визначення того, яка змінна буде виведена з базису, поділимо всі значення в стовпчику Р на відповідні додатні ненульові значення в стовпчику змінної, яку ми вводимо в базис, і вибрати змінну, для якої значення в рядку буде найменшим:

$$s2 -> \frac{26}{5} = 5.2,$$

$$s3 -> \frac{4}{1} = 4$$
,

$$s4 -> \frac{7}{1} = 7$$

Найменше значення має s3, отже виводимо її з базису.

Ітерація 2

Побудуємо симплекс-таблицю для наступної ітерації, колонки базисних змінних виділені зеленим, позиція провідного елементу з попередньої

ітерації (який був використаний для перерахунку симплекс таблиці методом квадрату) відмічена червоним:

	x1	x2	s1	s2	s3	s4	P
Z	0	0	-2/3	0	8	0	44
x2	0	1	0	0	1	0	7
s2	0	0	2/3	1	-5	0	6
x1	1	0	-1/6	0	1	0	4
s4	0	0	1/6	0	-1	1	3

Оскільки одна з компонент вектора відносних оцінок від'ємна s1 = -2/3, то поточний розв'язок неоптимальний.

Поточний розв'язок відповідає вершині Е ОДР задачі, зображеній на рисунку 7, шлях показано чорною стрілкою.

Рисунок 7 – Шлях від вершини F, що відповідає ДБР2, до вершини E, що відповідає ДБР3, зображений чорною стрілкою

 ϵ лише одна змінна, s1 з від'ємною відносною оцінкою, тому вводимо її в базис.

Для визначення того, яка змінна буде виведена з базису, поділимо всі значення в стовпчику Р на відповідні додатні ненульові значення в стовпчику змінної, яку ми вводимо в базис, і вибрати змінну, для якої значення в рядку буде найменшим:

$$s2 - > \frac{6}{2/3} = 9$$
,

$$s4 -> \frac{3}{1/6} = 18$$

Найменше значення має s2, отже виводимо її з базису.

Ітерація 3

Побудуємо симплекс-таблицю для наступної ітерації, колонки базисних змінних виділені зеленим, позиція провідного елементу з попередньої ітерації (який був використаний для перерахунку симплекс таблиці методом квадрату) відмічена червоним:

	x1	x2	s1	s2	s3	s4	P
Z	0	0	0	1	3	0	50
x2	0	1	0	0	1	0	7
s1	0	0	1	3/2	-15/2	0	9
x1	1	0	0	1/4	-1/4	0	11/2
s4	0	0	0	-1/4	1/4	1	3/2

Всі компоненти вектора відносних оцінок додатні, отже поточний розв'язок оптимальний.

Поточний розв'язок відповідає вершині D ОДР задачі, зображеній на рисунку 8, шлях від початкової вершини A (ДБР1) до оптимальної вершини D(ДБР4) показано чорними стрілками.

Рисунок 8 – Шлях від вершини A, що відповідає ДБР1, до вершини F, що відповідає ДБР2, від вершини F до вершини E, що відповідає ДБР3, та від вершини E до вершини D(ДБР4), що є оптимальною точкою, зображений чорною стрілкою

Оптимальним розв'язком ϵ ДБР4 = (5.5, 7, 9, 0, 0, 1.5), x1=5.5, x2=7, s1=9, s4=1.5, s2=s3=0.

Оптимальним значенням цільової функції відповідно ε Z=50, при x1=5.5, x2=7, що підтверджується отриманими за допомогою двох попередніх методів результатами.