Neural Network

- 1. Terminology
- 2. Forward Propagation
- 3. Back Propagation
- 4. AND OR NOR example
- 5. Advantages & Disadvantages
- 6. CNN

Bayesian Analysis

- 1. Classical vs. Bayesian
- 2. Advantages & Disadvantages
- 3. Terminology
- 4. Coin example
- 5. Conjugate Function (Beta)

建议阅读:

CNN → https://zhuanlan.zhihu.com/p/42559190

Back Propagation → https://www.cnblogs.com/charlotte77/p/5629865.html

Bayes 简单理解 → https://www.zhihu.com/question/21134457

Conjugate Prior → https://towardsdatascience.com/conjugate-prior-explained-75957dc80bfb

Forward propagation : Vectorized	I implementa	tion.	
$X = \begin{bmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \\ \chi_6 \end{bmatrix} \qquad g^{(2)} =$			→ a ⁽¹⁾
$z^{(2)} = \theta^{(2)} a^{(2)}$ $a^{(2)} = g(z^{(2)}) \rightarrow 1R^3$			don't need to lerstand the matrix
Add $a_0^{(2)} = 1 \rightarrow a^{(2)}$ $z^{(3)} = \theta^{(2)} a^{(2)}$ $h_0(x) = a^{(3)} = g(z^{(3)})$	€ IR ⁴	mat	h. Just know how intiblize a NN.
And example			
X ₁ , X ₂ ε {0,1}			
$y = \chi_1$ AND χ_2 ias $\leftarrow \oplus$ -30			
$(X) \xrightarrow{+10} () \rightarrow h_{\theta}(X)$			
(A) /+10			
assigning the weights for &	0,0,0	=> [-30,	20,20]
So, $h_{\theta}(x) = g(-30 + 20 x, +$			
2 (0,1)	χ,	X ₂	
Vas 1	0	0	9(-30) ≈0
A	0	1	9 (-(0) ≈0
-4,6 0 4,6 2	1	1	9 (-10) ≈ 0 9(10) ≈ ≈ 1
	************************) ((v) ~ = 1

OR example	××	X2	hθ(x).
A)	0	0	9(-10) = 0
$\bigoplus_{(k)} \frac{10}{10} \longrightarrow 0 \Rightarrow h_0(k)$	1	0	9(10) ≈1
	0	1	9(10) 21
© 10°	2	1	9 (30) 22
$\Theta^{(1)} = [-10, 20, 20]$			
$9(-10 + 20 \times 1 + 20 \times 2) = h\theta(X)$			
NOR example	Χı	X ₂	ho(X)
1) 20	0	0	9(20) ≈ 1
$\otimes \xrightarrow{-s} \bigcirc \rightarrow h_{\theta}(x)$	1		9(-5) 20
	0		9(-5) 20
⊗ - 3	2	1	9(-30) ≈0
$g(\Rightarrow 20-25\times_{1}-25\times_{2})=h_{\theta}(X)$			
再回除一下 forward propagation			
注意nをO The hidden layers no lon	oer use H	le featu	~ (X's)
议主定n 至① The hidden layers no long ② They use linear combination the previous layer.	s of the	Late 1	rodes from
the previous layer.			/
3) The outcome (Y's) are a	function	of the	activations (%)
in the last hidden layer. $\left(\frac{2}{1} = \beta_{10}^{(2)} + \beta_{11}^{(2)} * \alpha_{1}^{(2)} + \cdots \right)$)		
	J		
How to determine the weights:	Back propo	rgation.	
步骤: 1. Set all weights to init	ial value	es that	are random E(0,1)
方限: 1. Set all weights to init 2. Calculate Y for class san 3. Calculate error	nple 2 u	sing for	vard propagation
3. Calculate error			
4. Adjust weights to minimize back ward propagation	the en	or funct	n'on using
S. Repeat	************		***************************************
	************	*************	

```
So, let's talk about cost function ( 不哲)
 logistic: \int_{\overline{B}} \frac{m}{J(\theta)} = -\frac{1}{m} \int_{i=1}^{\infty} \frac{y^{(i)}}{J(\theta)} log(h_{\theta}(x^{(i)})) + (l-y^{(i)}) (log(1-h_{\theta}(x^{(i)}))) + \frac{\lambda}{2m} \int_{i=1}^{\infty} \theta_{i}^{(i)}
      NN -:
J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{k=1}^{K} \frac{\sum_{k=1}^{k} y_{k}^{(i)} \log (h_{\theta}(x^{(i)}))_{k} + (\frac{1}{2} y_{k}^{(i)}) \log (\frac{1}{2} (h_{\theta}(x^{(i)}))_{k}) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{K} \sum_{l=1}^{K} (\theta_{j}^{(l)})^{2}
   Back propagation Algorithm
         min J(0) H is matrix
            20, ( J(B) => ? How to compute?
So, remember what we did in the forward propagation
            q'' = \chi (input layer)
     z^{(2)} = \Theta^{(1)} a^{(1)}
     a^{(2)} = g(z^{(2)}) (add bias unit a_0^{(2)}
z^{(3)} = g^{(2)}a^{(2)}
a^{(3)} = g(z^{(3)}) (add bias unit a_0^{(3)})
   Intuition: 5.(1) = "error" of node j in layer L.
  For each output unit (L=4)
S_{j}^{(4)} = a_{j}^{(4)} - y_{j} = 0 \text{ output layer.}
\Rightarrow (h_{\theta}(x))_{j}^{*}
S_{j}^{(3)} = (\mathfrak{G}^{(3)})^{T} S_{j}^{(4)} \times g'(z^{(3)}) \Rightarrow a_{j}^{(3)} \times (1-a_{j}^{(3)})
        S^{(2)} = (B^{(2)})^T S^{(3)} \times d(2^{(2)})
```



```
Goal is the same: build up J(0), find gradients.
Another Input \Rightarrow Hidden Z = \sigma(w^Tx + b) \sigma \Rightarrow activation function
interpretation
                                                               ( we use sigmoid by default)
of the
backpropagation Hidden > output Y = Softmax(VZ + C) (for multiclassification, we use softmax,)
         Output \rightarrow Coss J = \sum_{n=1}^{\infty} \sum_{k=1}^{K} t_{nk} \log y_{nk} (cross entropy)
      Note; we have many ways to define a loss function.
       So, we use the chain rule:
                   \frac{SJ}{J\beta\omega} = \frac{S_{2}(L)}{S\beta\omega} \frac{S_{3}(L)}{S_{2}(L)} \frac{SJ(\omega)}{Sa^{(L)}}
                                                             error of the output layer
                                                        it depends on which
                                      Derivative of
             connection between the sigmoid.
                                                        loss function we use.
              layers. Each layer
                                                           a -> ho(x) -> 9(2)
             is only dependent on
               the previous layer
 Advantages and lisadvantages
      It: 1) strong information on the entire network
             @ Ability to work with incomplete knowledge
             3 Having stefault tolerance
             (4) Having a distributed memory
             D. Gradual corruption.

(b) parallel processing capability
     The: O Finding the right architecture is hard because it's an art
             1 The final model is a black box that is hard to explain.
             B) It needs lots of (tens of thousands, millions) data
```

CNN (卷积神经网络)
CNN i's popular when solving computer vision problems.
What is convolution in 1-D
$(f^*g)(x) = \int_{-\infty}^{\infty} f(k) g(x-k) dk$
* The convolution is the overlap between f and g
(k.lla 1.1 4/4/
Challenges with NN:
O lots of data O overfitting
(3) A Huga racomment of the si
(4) Requires high poerty many banduara
A Hyperparameter tuning (4) Requires high-performance hardware (5) blackbox (hard to explain)
Why NN popular
(GPU)
availability of Large clasasets
3) Versatile in NLP, Speech identification,
Computer Uslon
NN are run on GPU's and NVIEW is the leading GPU contractor
Tensorflow and Cafe are the box best for NNs

Classical

- · Sample a population n times
- construct a relationship between feature and outcome based on the distribution you discover in your sample.
- Apply this relationship to make predictions or infer things about causality.

Bayesian.

- Pevelop a distribution for your feature based on all knowledge you have at the time — Prior Distribution.
- · sample a feature
- · Use the feature and the prior distribution to create a new distribution that reflects all of your old knowledge plus the new bit of information. Posterior Distribution

1tib: 1 Utilizes prior Knowledge

- @ Best way to model low occurance events
- 3 Good way to model problems that are hard to sample
- 4 Good way to model problems that are dynamic
- 6 Great way to come at a problem from a different direction

 $\beta((\textcircled{D}|D)) = \frac{P(D|\textcircled{D}) * \beta(\textcircled{D})}{\sum_{k=1}^{m} \beta(D|\textcircled{D}_{k}) * \beta(\textcircled{D}_{k})} \rightarrow nomalization factor$

Terminology: $P(\Theta)$ is the prior distribution for Θ (this RY) $P(P|\Theta)$ is the likelihood that you got this observation given that prior knowledge. $P(\Theta|D)$ is your posterior

这里的内容 LOA 那里有更详细的路解

Piscrete priors $P(\theta|p) = \frac{p(p|\theta) * p(\theta)}{\sum_{k=1}^{m} p(p|\theta_k) * p(\theta_k)}$

Continuous priors

 $P(\mathbf{\Theta}|\mathbf{P}) = \frac{P(\mathbf{D}|\mathbf{\Theta}) * P(\mathbf{\Theta})}{\sum P(\mathbf{D}|\mathbf{\Theta}) * P(\mathbf{\Theta}) * d\mathbf{\Theta}}$

Sometimes, it's hard to find the likelihood So, what so should we do to solve for posterior? O. Conjugate function 0 manc 3. BBN. Ex. $f(ip = a coin P(H) = \theta, P(T) = 1 - \theta$ So, the probability of getting a particular sequence of flips $=) \quad P(0) = \theta^{h} (1-\theta)^{t} \quad \Rightarrow P(0|\theta)$ Suppose we don't know if the coin is unbiased. Assume the prior $P(\theta) = 0.25$, 0.5, 0.75. which means fail biased, unbiased, head biased. So, we have the likelihood and prior, we can compute the posterior using them \$ 50, the prior function and likelihood function are conjugate functions if the resulting posterior function is of the same form as the prior. So, back to win problem: We know likelihood is $P(P|\theta) = \theta^h(H\theta)^t$ (No flexibility) But we are free to pick the prior model (P(0)) as long as it represents the belief. Beta function is conjugate with the coin toss likelihood function $P(\theta|a,b) = \underbrace{\theta^{(a-1)}(l-\theta)}^{(b-1)} \underbrace{B(a,b)}_{\text{Normalization factor}}$ B(a,b) - (do p(a-1)(1-0)(b-1) So, beta function depends on a and b, that determine the shape We use the beta distribution as the prior for Bayes co and combine it with the likelihood for the coin problem

```
P(\theta | a,b,N,z) = \frac{\theta^{(a-1+z)}(l-\theta)^{(b-1+N-z)}}{\beta(a+z,b+N-z)}
  where \rho(p|\theta) = \rho^2(1-\theta)^{(N-2)}
  There is no need to solve a complicated Integral for the posterior
  Since the numerator of the posterior is just another beta distribution
        P(\theta|z,N) = P(z,N|\theta) P(\theta)
P(z,N)
                       = Bernoulli * beta (a,b)
                                 Normalization
                         \frac{\theta^{\frac{1}{2}(1-\theta)^{N-2}} * \theta^{(a-1)}(1-\theta)^{(b-1)}}{\beta(a+2,b+N-2) * \rho(2N)}
                           beta (at z, btn-z)
 So, if the prior distribution is a beta (a, b) and the data gives you
Z heads and N tlips, the posterior is beta (Zta, N-Z+b)
Properties of Beta Pistribution
   \bar{\theta} = a/(a+b)
       Oposterior = 2+9+N-2+b
                   = prior average * weight + Data proportion * weight
```