Алгоритм Δ -раскраски графа

Иван Подлужный

4 октября 2016 г.

Введение

- Здесь будет представлен алгорим Δ -списочной раскраски графа G, где Δ максимальная степень вершины данного графа G.
- ullet Граф G предполагается без петель и кратных рёбер.

Основные понятия

Определение

Пусть $v \in V(G)$. Списком цветов v назовём множество $\mathscr{P}_v = \{a_1, a_2, \dots a_n\} \subset \mathbb{N}$.

Определение

Правильной вершинной списочной раскраской G назовём $f:V(G)\to \mathbb{N}$ такое что

- $\forall v \in V(G)$ $f(v) \in \mathscr{P}_v$
- $\forall v, \omega \in V(G)$ $v\omega \in E(G) \Rightarrow f(v) \neq f(\omega)$

Пусть $g: V(G) \to \mathbb{N}$ и пусть $\#\mathscr{P}_v = g(v) \ \forall v \in V(G)$. Тогда G g-списочно раскрашиваем, если существует его правильная раскраска.

Основные понятия

Определение

Будем называть граф G $\theta(a,b,c)$ -графом, если он состоит из 3-х непересекающихся простых путей P_{a+1},P_{b+1},P_{c+1} , соединяющих 2 некоторые вершины v и $\omega \in V(G)$.

Основные понятия

Определение

Будем называть граф G зонтиком, если он состоит из цикла $C = \{v_1, \dots v_k\}$, некоторой вершины $\omega \in V(G)$, $\omega \in V(C)$ и рёбер $\omega v_i \in E(G)$, где i пробегает строго больше одного значения. Если i пробегает все значения, то G будем называть колесом.

Две предварительные леммы

Лемма

Пусть G θ -граф. Тогда H < G, где H или чётный цикл, или $\theta(1,b,c)$ -граф.

Лемма

Пусть G зонтик. Тогда $\exists H\ H < G$, где H или чётный цикл, или heta(1,b,c)-граф.

Определения

Определение

Пусть G – граф, тогда G – граф Брукса, если $G \neq K_n$, $G \neq C_{2k+1}, \ \forall n,k \in \mathbb{N}$.

Определение

Назовём G двусвязным, если $\forall v, \omega \in V(G) \exists P_1, P_2$ – простые 1) конечные и начальные вершины P_1 и P_2 совпадают 2) $V(P_1) \cap V(P_2) = \{v, \omega\}$

Теорема

Пусть G двусвязный граф Брукса. Тогда $\exists H\ H < G$, где H или чётный цикл, или $\theta(1,b,c)$ -граф.

Дерево блоков и точек сочленения

Определение

- Пусть G граф, тогда $\omega \in V(G)$ есть точка сочленения, если $G \omega$ не связен.
- Блок максимальный подграф G, не содержащий точек сочленения.
- Пусть $B_G = \{B_1, \dots B_n\}$ множество блоков G, а $C_G = \{c_1, \dots, c_n\}$ множество точек сочленения графа. Тогда граф BC(G) определённый как $V(BC(G)) = B_G \cup C_G$, $E(BC(G)) = \{(B_i, c_i) | c_i \in B_i\}$

Дерево блоков и точек сочленения

Лемма

BC(G) — дерево и каждый его лист отвечает некоторому $B_i \in B_G$

Определение

Блок B_i , отвечающий листу в BC(G) назовём крайним.

Блоки и графы Брукса

Определение

Максимальную степень вершины в графе будем обозночать $\Delta(G) = \max_{v \in (G)} d_G(v)$, минимальную $\delta(G) = \min_{v \in (G)} d_G(v)$.

Определение

Граф G регулярен, если $\delta(G) = \Delta(G)$

Теорема

Пусть G регулярный граф Брукса. Тогда $\exists B_i < G \colon B_i$ блок и B_i граф Брукса.

Свойства списочной раскрашиваемости

Теорема

Пусть связный граф G содержит связный I < G d_I -списочно раскашиваемый граф. Тогда G d_G -списочно раскрашиваем.

Три замечания

Замечание

Пусть C_{2k} цикл чётной длинны. Тогда он d_G -раскрашиваем.

Замечание

 $\theta(a,b,c)$ -граф d_G -раскрашиваем.

Замечание

Пусть W зонтик. Тогда он d_G -раскрашиваем.

Раскраска нерегуляргных графов

Лемма

Пусть G нерегулярный граф и $d_G(v_0) \neq \Delta(G)$ $v \in V(G)$. Определим:

$$d'(v) = egin{cases} d(v) & orall v \in \mathsf{V}(\mathit{G})\,v
eq v_0 \ d(v) + 1 & v = v_0 \end{cases}.$$
 Тогда G $d'(\mathit{G})$ -раскрашиваемый.

Основная теорема

Теорема

Пусть G граф Брукса. Тогда он $\Delta(G)$ -списочно раскрашиваем.

План доказательства

- ullet Выделить в G компоненты связности.
- ullet Проверить G на регулярность.
- ullet Найти в G крайний блок H.
- ullet Найти в H чётный цикл или heta-граф U.
- ullet Покрасить $G \cdot U$, а затем совместить раскраску с U.

Реализация

- Проверку на сязность осуществляется обходом в глубину с последующим отсечением компонент связности использует не более O(v+e) операций.
- Проверка связной компоненты на регулярность использует $O(v^2)$ операций.
- Поиск крайнего блока в G реализуется с помощью поиска в глубину и использует не более O(v+e) операций.
- Нахождение в G цикла также осуществляется за поиском в глубину и также использует не более O(v+e) операций.
- Покрасить $G \cdot U$ поиском в глубину, а затем покрасить U занимает O(v+e) по числу операций.

Реализация случая нечётного цикла

- Алгоритм поиска максимальной клики, содержащей данный треугольник реализуется посредством очереди и рекурсии и занимает не более O(v+e) операций.
- Алгорим поиска кратчайшего пути, огибающего заданное множество использует поиск в ширину и работает за O(v+e).

Использованная литература

- S. Skulrattanakulchai Δ-*List vertex coloring in linear time.*, Information Processing Letters. 2006. Vol. 98, Iss. 3. Pg. 101–106
- H.N. Gabow, S. Skulrattanakulchai *Coloring algorithms on subcubic graphs,*, Internat. J. Found. Comput. Sci. 15 (1) (2004) 21–40.