1. A sequence $\{b_k\}$ is a *subsequence* of a sequence $\{a_n\}$ if and only if there exists an increasing function $\varphi: \mathbb{N} \to \mathbb{N}$ such that $b_k = a_{\varphi(k)}$ for every $k \in \mathbb{N}$.

A sequence a_n is said to be *monotonically increasing* (respectively, *monotonically decreasing*) if and only if $a_n \le a_{n+1}$ (respectively, $a_{n+1} \le a_n$) for all $n \in \mathbb{N}$. A sequence is said to be monotone if and only if it is either monotonically increasing or monotonically decreasing.

Show that every sequence of real numbers has a monotone subsequence.

Proof. For every $\{x_i\}$ subsequence of \mathbb{R}^n , $\{x_i\}$ either has a largest element or not. That is, there exists some x_j such that $x_j \geq x_i$ for all x_i , or there does not exists such x_j .

Case I: such a x_i does not exist.

Therefore the sequence is unbounded and finding a subsequence is trivial. Simply define

$$\varphi(i) = \begin{cases} x_i & x_i \ge x_j \text{ for all } j \le i \\ x_{i-1} & \text{otherwise} \end{cases}$$

We know this sequence will continue on forever, as $\{x_i\}$ is unbounded above. Thus we can find a monotonically increasing subsequence.

Case II: such a x_i does exist.

Now our argument becomes somewhat recursive. Look at the entire sequence $\{x_i\}$ such that i>j. That is, the entire sequence of $\{x_i\}$ after x_j . Now we can repeat the same logic, either there is a maximum of the new sequence or there is not. If there exists no maximum, then b *Case I* we have a monotonically increasing subsequence. If there is a maximum we continue to repeat. If there is always a maximum, what we get is a sequence of maximums we denote $\{m_1, m_2, ..., m_j\}$. However, we know that each maximum must be less than or equal to the previous by the definition of max. Therefore, this sequence of maximums is monotonically decreasing. Hence, we have found a monotonic subsequence of $\{x_i\}$, showing that a sequence of real numbers $\{x_i\}$ will *always* have a monotone subsequence.

2. The following tree (LaTeX forest!) is constructed inductively using the following rule. Begin with $\frac{1}{1}$ at the first level. Suppose that the m-th level of the tree has been constructed with 2^{m-1} nodes, and each node consists of a fraction of $\frac{i}{j}$. Then each of the 2^{m-1} entries at the m-th level in the tree produces two children, a left child and a right child; the 2^m nodes at the (m+1)-th level consist of these. For $\frac{i}{j}$ at the m-th level of the tree, the left child is $\frac{i}{i+j}$ and the right child is $\frac{i+j}{j}$.

Prove the following statements about the tree.

(a) Every fraction $\frac{m}{n}$ that appears in the three is in lowest terms that is, (m, n) = 1. (Here, (m, n) denotes the *greatest common divisor* of m and n).

Proof. We proceed by induction. First, we note that $\frac{1}{1}$ is in lowest possible terms, as (1,1)=1. Now, we take our induction hypothesis to be that $\frac{i}{j}$ is in lowest possible terms, and attempt to show that both $\frac{i}{i+j}$ and $\frac{i+j}{j}$ are also in lowest possible terms. First, we know that (i,j)=1, this means that given some $x,y\in\mathbb{R}$

$$ix + jy = 1$$

$$ix + jy + (xj - xj) = 1$$

$$ix + xj + jy - xj = 1$$

$$(i + j)x + j(y - x) = 1$$

Therefore i+j and j are coprime, meaning that (i+j,j)=0. Hence, $\frac{i+j}{i}$ is in lowest terms. Additionally we can compute

$$ix + jy = 1$$

 $ix + jy + (yi - yi) = 1$
 $ix - yj + jy + yi = 1$
 $i(x - y) + (i + j) = 1$

Once again, we see similarly that i and i+j are coprime and that (i,i+j)=1. Meaning also that $\frac{i}{i+j}$ is in lowest terms.

By induction we can therefore conclude that every element of the tree will be in lowest terms.

(b) Every positive rational number appears somewhere in the tree.

Proof. Assume that there were such rational numbers that did not appear somewhere in the tree. If this were the case we pick q to be lowest denominator of any rational number that does not exist in the tree. We then pick p to be the small numerator of numbers which do not appear in the tree that have the denominator q. We then have a rational number, $\frac{p}{q}$ which does not exist in the tree. Now, we know that if $\frac{p}{q}$ does not exist in the free, neither can it's parent node, otherwise the parent nodes inclusion in the tree would imply that $\frac{p}{q}$ is in the tree. We then have two cases,

Case I: $\frac{p}{q}$ is a left child. Thus, by definition of the tree

However, this poses a contradiction as $\frac{p}{q-p}$ is then also not in the tree, but q-p < q and we defined q to the lowest denominator of any rational number that did not exist on the tree. Therefore $\frac{p}{q-p}$ must exist on the tree after all, implying that $\frac{p}{q}$ exists in the tree as well.

Case II: $\frac{p}{a}$ is a right child. Then,

Once again, we find a contradiction as $\frac{p-q}{q}$ must not be in the tree, but p-q < p and we defined p to be the lowest numerator of any rational number with denominator q. However, $\frac{p-q}{q}$ also has denominator q and has a smaller numerator, thus $\frac{p-q}{q}$ exists in the tree and so much $\frac{p}{q}$. \square

(c) No rational number appears more than once in the tree.

Proof. We will proceed by induction. First we have our base case that $\frac{1}{1}$ only appears in the tree once. This is because i+j>1 as i,j>1. Now we take our induction hypothesis to be that $\frac{i}{j}$ only appears in the tree once, and we need to show that $\frac{i}{i+j}$ and $\frac{i+j}{j}$ also only exist in the three once. However, assume that $\frac{i}{i+j}$ did appear in the tree more than once.

Case I: $\frac{i+j}{j}$ is a left child.

Then it's parent element, $\frac{i}{j}$ would also appear in the tree more than once, but this violates our induction hypothesis, therefore $\frac{i}{i+j}$ must only appear in the tree once. The same goes for $\frac{i+j}{j}$ Case II: $\frac{i+j}{j}$ is a right child. Then,

However, this is also impossible as we are only dealing with the positive rational numbers, therefore $\frac{i+j}{-i}$ cannot exist on the tree. Hence, $\frac{i+j}{j}$ must only appear on the tree once.

Similarly, with $\frac{i}{i+j}$.

Case I: $\frac{i}{i+j}$ is a left child.

Once again, this is impossible as this tree contains only the positive rational numbers, therefore $\frac{-j}{i+j}$ cannot be a node of the tree.

Case II: $\frac{i}{i+j}$ is a right child.

Then, $\frac{i}{j}$ is the parent node of $\frac{i}{i+j}$. However, if there are multiple occurrences of $\frac{i}{i+j}$, then it follows that there are multiple occurrences of $\frac{i}{j}$, but this violates our induction hypothesis, and is therefore a contradiction. As a result, we know that $\frac{i}{i+j}$ must exist only once in the three.

By this logic we have shown our inductive step that, given $\frac{i}{j}$ appears only once on the tree, it follows that $\frac{i+j}{j}$ and $\frac{i}{i+j}$ also appear only once on the tree. We have thus shown that ever rational number appears only once on the tree.