FUNDAMENTALS OF LINEAR ALGEBRA

- Approximate solutions: least-squares
- Revision: eigenvalues and eigenvectors
- Diagonalisation and orthogonal diagonalisation of matrices
- Spectral decomposition
- Quadratic forms
- Singular value decomposition

QR factorisation of matrices

Theorem: *QR* factorisation

An $m \times n$ matrix ${\bf A}$ with linearly independent columns can be factorised as ${\bf A} = {\bf Q}{\bf R}$, where ${\bf Q}$ is an $m \times n$ matrix with columns forming an orthonormal basis for ${\rm Col}\,{\bf A}$, and ${\bf R}$ is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Note: Since \mathbf{Q} is an orthonormal matrix, $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$.

Thus
$$\mathbf{Q}^{\top}\mathbf{A} = \mathbf{Q}^{\top}\big(\mathbf{Q}\mathbf{R}\big) = \big(\mathbf{Q}^{\top}\mathbf{Q}\big)\mathbf{R} = \mathbf{I}\mathbf{R} = \mathbf{R}$$
, so $\mathbf{R} = \mathbf{Q}^{\top}\mathbf{A}$.

Proof: by construction; see the previous lecture

QR factorisation of matrices

Example:

Find a QR decomposition of:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Solution: Earlier we have found an orthogonal basis for $\operatorname{Col} \mathbf{A}$ as

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0\\-2\\1\\1 \end{bmatrix}.$$

Upon normalisation we obtain

$$\mathbf{Q} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}.$$

QR factorisation of matrices

$$\mathbf{R} = \mathbf{Q}^{\top} \mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}^{\top} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -3/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} \\ 0 & -2/\sqrt{12} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}.$$

So the QR decomposition is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$

Definition: For an $m \times n$ matrix \mathbf{A} and given $\mathbf{b} \in \mathbb{R}^m$, a least-squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| \le \|\mathbf{b} - \mathbf{A}\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{R}^n$.

Take $\hat{\mathbf{b}} = \mathrm{proj}_{(\mathrm{Col}\,\mathbf{A})}\,\mathbf{b}$, then $\hat{\mathbf{b}} \in \mathrm{Col}\,\mathbf{A}$ and $\exists\,\hat{\mathbf{x}}:\,\mathbf{A}\hat{\mathbf{x}} = \hat{\mathbf{b}}$. In $\mathrm{Col}\,\mathbf{A}$, $\hat{\mathbf{b}}$ is the closest to \mathbf{b} , so $\hat{\mathbf{x}}$ is a least-square solution. Via orthogonal decomposition, $\mathbf{b} - \hat{\mathbf{b}}$ is orthogonal to $\mathrm{Col}\,\mathbf{A}$, so

$$\mathbf{A}^{ op}(\mathbf{b} - \hat{\mathbf{b}}) = \mathbf{0}$$
 $\mathbf{A}^{ op}(\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = \mathbf{0}$ $\mathbf{A}^{ op}\mathbf{b} - \mathbf{A}^{ op}\mathbf{A}\hat{\mathbf{x}} = \mathbf{0}$ $\mathbf{A}^{ op}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{ op}\mathbf{b}$

System $\mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{\top}\mathbf{b}$ is the *normal system* for $\mathbf{A}\mathbf{x} = \mathbf{b}$. Its non-empty solution (set) is the least-squares solution (set).

Example: Find a least-squares solution of the inconsistent system

$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

Solution:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$$

 $\mathbf{A}^{\top}\mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$

Then
$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 19 \\ 11 \end{bmatrix} \qquad \Rightarrow \quad \hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Having found $\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as the best approximation, we can also calculate the least-squares error:

$$\mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$$
$$\mathbf{b} - \mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ 8 \end{bmatrix}$$
so $\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| = \sqrt{84}$.

Sometimes, $\mathbf{A}^{\top}\mathbf{A}$ may be sensitive to round-off errors. There is an alternative way to obtain least-squares solutions.

Theorem: If **A** is an $m \times n$ matrix with linearly independent columns, $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique least-squares solution $\forall \mathbf{b} \in \mathbb{R}^m$:

$$\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$$

where $\mathbf{A} = \mathbf{Q}\mathbf{R}$ is a QR-factorisation of \mathbf{A} .

In practice, $\hat{\mathbf{x}}$ is obtained by solving

$$\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}^{\mathsf{T}}\mathbf{b}$$

which is straightforward since ${f R}$ is upper-triangular.

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 3/2 & 1\\ 0 & 3/\sqrt{12} & 2/\sqrt{12}\\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$
We know
$$\mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}$$

$$\mathbf{Q}^{\top}\mathbf{b} = \begin{bmatrix} 1\\ 2/\sqrt{12} \\ 2/\sqrt{6} \end{bmatrix} \quad \text{so} \quad \begin{bmatrix} 1 & 3/2 & 1\\ 0 & 3/\sqrt{12} & 2/\sqrt{12}\\ 0 & 0 & 2/\sqrt{6} \end{bmatrix} & 2/\sqrt{12}\\ 0 & 0 & 2/\sqrt{6} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 \end{bmatrix}$$

thus
$$\hat{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 and, given that $\mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, the error is $\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| = \sqrt{2}$.

Revision: eigenvectors and eigenvalues

Definition: An eigenvector of a square matrix \mathbf{A} is a nonzero vector \mathbf{x} such that $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ for some scalar λ . A scalar λ is called an eigenvalue of \mathbf{A} if there is a nontrivial solution \mathbf{x} of $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. Such an \mathbf{x} is an eigenvector corresponding to λ .

 λ is an eigenvalue for ${f A}$ if and only there is a nontrivial solution to

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

 λ can be found by solving a *characteristic equation*:

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = 0$$

 $Nul(\mathbf{A} - \lambda \mathbf{I})$ is called the *eigenspace* of \mathbf{A} corresponding to λ .

Revision: eigenvectors and eigenvalues

 The eigenvalues of a triangular matrix are the entries on its main diagonal:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \qquad \Rightarrow \qquad \begin{cases} \lambda_1 = a_{11} \\ \lambda_2 = a_{22} \\ \lambda_3 = a_{33} \end{cases}$$

- ullet 0 is an eigenvalue of ${f A}$ if and only if ${f A}$ is singular.
- If $\mathbf{v}_1, \dots \mathbf{v}_p$ are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \dots \lambda_p$, then the set $\{\mathbf{v}_1, \dots \mathbf{v}_p\}$ is linearly independent.

Revision: eigenvectors and eigenvalues

Example: for
$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 find bases for its eigenspaces.

Solution: $\det (\mathbf{A} - \lambda \mathbf{I}) = \cdots = (9 - \lambda)(2 - \lambda)(2 - \lambda) = 0$ so $\lambda_1 = 9$ and $\lambda_2 = 2$; then we solve $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$

$$\mathbf{A} - 9\mathbf{I} = \begin{bmatrix} -5 & -1 & 6 \\ 2 & -8 & 6 \\ 2 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x} = x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \to \begin{bmatrix} 1 & -\frac{1}{2} & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x} = x_2 \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

So the bases are:

$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \quad \text{for } \lambda_1 \qquad \text{and} \qquad \left\{ \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix}, \ \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\} \quad \text{for } \lambda_2$$

Matrix diagonalisation

- A square matrix A is diagonalisable if $A = PDP^{-1}$ where D is a diagonal matrix.
- An $n \times n$ matrix ${\bf A}$ is diagonalisable if and only if ${\bf A}$ has n linearly independent eigenvectors.

The columns of ${\bf P}$ are then the eigenvectors of ${\bf A}$.

The diagonal entries of \mathbf{D} are the eigenvalues of \mathbf{A} that correspond to the eigenvectors in \mathbf{P} .

- A is diagonalisable if and only if its eigenvectors form a basis of \mathbb{R}^n , which is called the *eigenvector basis*.
- ullet An n imes n matrix with n distinct eigenvalues is diagonalisable.

Note: this is a sufficient, but not a necessary condition.

Matrix diagonalisation

Example: for
$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
, we have found the eigenvalues

 $\lambda_1=9$ and $\lambda_2=2$, and three linearly independent eigenvectors

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad (\text{for } \lambda_1) \qquad \text{and} \qquad \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \quad (\text{for } \lambda_2)$$

Then $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ where

$$\mathbf{P} = \begin{bmatrix} 1 & 1/2 & -3 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{P}^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 & 6 \\ -2 & 8 & -6 \\ -2 & 1 & 1 \end{bmatrix}$$

Recall: a matrix \mathbf{A} is symmetric if $\mathbf{A}^{\top} = \mathbf{A}$.

Theorem: If **A** is symmetric, then any two eigenvectors from different eigenspaces (corresponding to distinct eigenvalues) are orthogonal.

Proof: Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that correspond to distinct eigenvalues $\lambda_1 \neq \lambda_2$. We must show that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^\top \mathbf{v}_2 = (\mathbf{A} \mathbf{v}_1)^\top \mathbf{v}_2 = (\mathbf{v}_1^\top \mathbf{A}^\top) \mathbf{v}_2$$
$$= (\mathbf{v}_1^\top \mathbf{A}) \mathbf{v}_2 = \mathbf{v}_1^\top (\mathbf{A} \mathbf{v}_2) = \mathbf{v}_1^\top (\lambda_2 \mathbf{v}_2)$$
$$= \lambda_2 \mathbf{v}_1^\top \mathbf{v}_2 = \lambda_2 \mathbf{v}_1 \cdot \mathbf{v}_2.$$

Therefore $(\lambda_1 - \lambda_2) \mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

But $\lambda_1 - \lambda_2 \neq 0$ hence $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

Definition: A matrix $\bf A$ is *orthogonally diagonalisable* if there are an orthogonal matrix $\bf P$ ($\bf P^{-1}=\bf P^{T}$) and a diagonal matrix $\bf D$ such that

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{\top} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$$

Note: If **A** is orthogonally diagonalisable then

$$\mathbf{A}^{\top} = \left(\mathbf{P}\mathbf{D}\mathbf{P}^{\top}\right)^{\top} = \left(\mathbf{P}^{\top}\right)^{\top}\mathbf{D}^{\top}\mathbf{P}^{\top} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top} = \mathbf{A}$$

and therefore ${\bf A}$ is symmetric. In fact:

Theorem: An $n \times n$ matrix **A** is orthogonally diagonalisable if and only if **A** is a symmetric matrix.

Example: orthogonally diagonalise
$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

Solution: The characteristic equation for this matrix is

$$0 = -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda - 7)^2(\lambda + 2).$$

Eigenvalues are $\lambda_{1,2} = 7$ (with multiplicity 2), and $\lambda_3 = -2$.

$$\mathbf{A} - 7\mathbf{I} = \begin{bmatrix} -4 & -2 & 4 \\ -2 & -1 & 2 \\ 4 & 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1/2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \left\{ \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$\mathbf{A} + 2\mathbf{I} = \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \left\{ \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix} \right\}$$

The eigenvectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}$ are linearly

independent but not orthogonal. Use the Gram-Schmidt process:

$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix} - \frac{-1/2}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/4 \\ 1 \\ 1/4 \end{bmatrix}$$

and then normalise the vectors for an orthonormal set:

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \quad \mathbf{u}_2 = \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} = \begin{bmatrix} -1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}$$

The third eigenvector (for λ_3) is already orthogonal to this pair and we only need to normalise it:

$$\mathbf{v}_3 = \begin{bmatrix} -1\\ -1/2\\ 1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{u}_3 = \frac{2\mathbf{v}_3}{\|2\mathbf{v}_3\|} = \begin{bmatrix} -2/3\\ -1/3\\ 2/3 \end{bmatrix}$$

So the orthonormal set of eigenvectors is

$$\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}$$

In this way, we have obtained ${f P}$ and ${f D}$:

$$\mathbf{P} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{18} & -2/3 \\ 0 & 4/\sqrt{18} & -1/3 \\ 1/\sqrt{2} & 1/\sqrt{18} & 2/3 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

and $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$.

Spectral theorem

The set of eigenvalues of a matrix ${f A}$ is called the *spectrum* of ${f A}$.

Theorem:

An $n \times n$ symmetric matrix ${\bf A}$ has the following properties:

- (a) A has n real eigenvalues counting multiplicities;
- (b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation;
- (c) The eigenspaces are mutually orthogonal (the eigenvectors corresponding to different eigenvalues are orthogonal);
- (d) A is orthogonally diagonalisable: $A = PDP^{-1} = PDP^{\top}$.

Spectral decomposition

For an orthogonally diagonalisable matrix:

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\top} \\ \vdots \\ \mathbf{u}_n^{\top} \end{bmatrix}$$
$$= \lambda_1 \mathbf{u}_1 \mathbf{u}_1^{\top} + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^{\top} + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^{\top}.$$

This is called a *spectral decomposition* of A.

- ullet Each decomposition term is an $n \times n$ matrix with rank 1.
- Each matrix $\mathbf{u}_j \mathbf{u}_j^{\top}$ is a projection matrix: for $\mathbf{x} \in \mathbb{R}^n$, vector $\mathbf{u}_j \mathbf{u}_j^{\top} \mathbf{x}$ is the orthogonal projection of \mathbf{x} onto the subspace spanned by \mathbf{u}_j .

Spectral decomposition

Example: Spectral decomposition of matrix $\mathbf{A} = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$:

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Here, $\mathbf{P} = \begin{bmatrix} \mathbf{u}_1, \ \mathbf{u}_2 \end{bmatrix}$, then $\mathbf{A} = 8\mathbf{u}_1\mathbf{u}_1^\top + 3\mathbf{u}_2\mathbf{u}_2^\top$.

Verifying this decomposition:

$$\mathbf{u}_{1}\mathbf{u}_{1}^{\mathsf{T}} = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 4/5 & 2/5 \\ 2/5 & 1/5 \end{bmatrix}$$
$$\mathbf{u}_{2}\mathbf{u}_{2}^{\mathsf{T}} = \begin{bmatrix} \frac{-1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} 1/5 & -2/5 \\ -2/5 & 4/5 \end{bmatrix}$$

$$8\mathbf{u}_1\mathbf{u}_1^{\top} + 3\mathbf{u}_2\mathbf{u}_2^{\top} = \begin{bmatrix} 32/5 & 16/5 \\ 16/5 & 8/5 \end{bmatrix} + \begin{bmatrix} 3/5 & -6/5 \\ -6/5 & 12/5 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$$

Definition: A quadratic form on \mathbb{R}^n is a function Q defined as

$$Q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$
 : $\mathbf{x} \in \mathbb{R}^n$ $\mathbf{A} = \mathbf{A}^{\top}$

where the $n \times n$ symmetric ${\bf A}$ is the matrix of the quadratic form.

Examples: (1) The simplest QF is: $\mathbf{x}^{\mathsf{T}}\mathbf{I}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{x} = \|\mathbf{x}\|^2$.

(2) Let
$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix} = 4x_1^2 + 3x_2^2$
 $\mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3x_1 - 2x_2 \\ -2x_1 + 7x_2 \end{bmatrix}$
 $= x_1(3x_1 - 2x_2) + x_2(-2x_1 + 7x_2) = 3x_1^2 - 4x_1x_2 + 7x_2^2$

Example:
$$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$
 $\mathbf{x} \in \mathbb{R}^3$

Let us write this quadratic form as $\mathbf{x}^T A \mathbf{x}$:

The coefficients of x_1^2 , x_2^2 , x_3^2 provide the diagonal of ${\bf A}$.

Then, to make **A** symmetric we split the coefficients of $x_i x_j$ between the i, j and j, i matrix elements:

$$Q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} \begin{bmatrix} 5 & -1/2 & 0 \\ -1/2 & 3 & 4 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Theorem (the principal axes theorem):

For a given quadratic form $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ there is a change of basis (change of variable) $\mathbf{x} = \mathbf{P} \mathbf{y}$ that transforms it into a quadratic form $\mathbf{y}^{\top} \mathbf{D} \mathbf{y}$ with a diagonal matrix \mathbf{D} (no cross-product terms).

Proof:

Since $\mathbf{A} = \mathbf{A}^{\top}$, it can be orthogonally diagonalised, $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$. Introduce a change of basis $\mathbf{x} = \mathbf{P}\mathbf{y}$, so then $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x}$. Then

$$\mathbf{x}^{\!\top}\mathbf{A}\mathbf{x} = (\mathbf{P}\mathbf{y})^{\!\top}\mathbf{A}(\mathbf{P}\mathbf{y}) = \mathbf{y}^{\!\top}\mathbf{P}^{\!\top}(\mathbf{P}\mathbf{D}\mathbf{P}^{\!\top})\mathbf{P}\mathbf{y} = \mathbf{y}^{\!\top}\mathbf{D}\mathbf{y}$$

and so the matrix in the quadratic form for ${\bf y}$ is diagonal.

Notes:

The columns of P are called the *principal axes* of the QF $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$.

Vector \mathbf{y} gives coordinates of \mathbf{x} relative to the principal axes, which form an orthonormal basis for \mathbb{R}^n .

Example:
$$Q(\mathbf{x}) = x_1^2 - 8x_1x_2 - 5x_2^2 \Leftrightarrow \mathbf{A} = \begin{bmatrix} 1 & -4 \\ -4 & -5 \end{bmatrix}$$
.

Let us find the principal axes and eliminate the cross terms.

The eigenvalues are $\lambda_1=3$, $\lambda_2=-7$, and the unit eigenvectors

$$\mathbf{v}_1 = \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$

are orthogonal because ${f A}$ is symmetric and $\lambda_1
eq \lambda_2$.

These vectors \mathbf{v}_1 and \mathbf{v}_2 are the principle axes of $Q(\mathbf{x})$.

$$\mathbf{P} = \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix}.$$

The change of variable is $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x} = \mathbf{P}^{\top}\mathbf{x}$, and $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$. So

$$x_1^2 - 8x_1x_2 - 5x_2^2 = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = 3y_1^2 - 7y_2^2$$

Example: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = c$ for $\mathbf{x} \in \mathbb{R}^2$ and $c \in \mathbb{R}$ describes an ellipse, hyperbola, parabola, two intersecting lines, a single point, or no point at all.

If \mathbf{A} is diagonal then the graph is in the standard position.

$$\mathbf{A}_{(\mathsf{a})} = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

$$\mathbf{A}_{(b)} = \begin{bmatrix} 5 & -4 \\ -4 & -5 \end{bmatrix}$$

A few examples of $z = Q(\mathbf{x})$ for some typical cases $(\mathbf{x} \in \mathbb{R}^2)$:

Definition: A quadratic form Q is

- (a) positive definite, if $Q(\mathbf{x}) > 0 \ \forall \mathbf{x} \neq 0$
- all $\lambda > 0$

- (b) positive semidefinite, if $Q(\mathbf{x}) \geqslant 0 \ \forall \mathbf{x}$
- (d) indefinite, if $Q(\mathbf{x})$ takes positive and negative values
- (c) negative definite, if $Q(\mathbf{x}) < 0 \ \forall \, \mathbf{x} \neq 0$ all $\lambda < 0$
- (e) negative semidefinite, if $Q(\mathbf{x}) \leq 0 \ \forall \mathbf{x}$

- Orthogonal diagonalisation is a very useful tool however only symmetric matrices can be decomposed as $A = PDP^{-1}$.
- However, a more general decomposition: $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{P}^{-1}$ (with \mathbf{D} diagonal) is possible for any $m \times n$ matrix \mathbf{A} .
- If ${\bf A}$ is an $m \times n$ matrix, then ${\bf A}^{\!\top} {\bf A}$ is symmetric and can be orthogonally diagonalised.
- Let $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ be the unit eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$, and $\lambda_1, \dots \lambda_n$ be the corresponding eigenvalues. Then

$$\|\mathbf{A}\mathbf{v}_i\|^2 = (\mathbf{A}\mathbf{v}_i)^{\top}\mathbf{A}\mathbf{v}_i = \mathbf{v}_i^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{v}_i = \mathbf{v}_i^{\top}(\lambda_i\mathbf{v}_i) = \lambda_i,$$

therefore all the eigenvalues of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ are non-negative.

• We can always rearrange them in descending order so that

$$\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n \geqslant 0.$$

Definition: The *singular values* of A are the square roots of the eigenvalues $\lambda_1, \ldots \lambda_n$ of $A^{\top}A$, arranged in the descending order:

$$\sigma_i = \sqrt{\lambda_i} \qquad \sigma_i \geqslant \sigma_{i+1}$$

Note: The singular values of A are the lengths of $Av_1, \dots Av_n$.

Theorem: Let **A** be an $m \times n$ matrix with rank r. Then:

- there is an $m \times n$ matrix Σ with the first r diagonal entries being the singular values of $\mathbf{A} \colon \sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$,
- ullet there is an m imes m orthogonal matrix ${f W}$,
- ullet there is an n imes n orthogonal matrix ${f U}$,

such that
$$\mathbf{A} = \mathbf{W} \Sigma \mathbf{U}^{\mathsf{T}}$$
.

This decomposition is called a *singular value decomposition* of A.

Notes:

• The decomposition of ${\bf A}$ involves an $m\times n$ "quasi-diagonal" matrix $\Sigma=\begin{bmatrix}{\bf D}&{\bf 0}\\{\bf 0}&{\bf 0}\end{bmatrix},$ where ${\bf D}$ is an $r\times r$ diagonal matrix $(r\leqslant m\ \&\ r\leqslant n).$

The second line in Σ contains m-r rows.

The second column in Σ contains n-r columns.

- The matrices \mathbf{U} and \mathbf{W} in $\mathbf{A} = \mathbf{W} \Sigma \mathbf{U}^{\mathsf{T}}$ are not uniquely defined by \mathbf{A} but the diagonal entries in Σ are uniquely determined (by the singular values of \mathbf{A}).
- ullet The columns of ${f W}$ are called *left singular vectors* of ${f A}$ and the columns of ${f U}$ are called the *right singular vectors* of ${f A}$.

Example: Construct a singular value decomposition of

$$\mathbf{A} = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

Note: The transformation $\mathbf{x} \to \mathbf{A}\mathbf{x}$ maps a unit sphere $\{\mathbf{x}: \|\mathbf{x}\| = 1\}$ in \mathbb{R}^3 onto an ellipse in \mathbb{R}^2 .

Example: Construct a singular value decomposition of

$$\mathbf{A} = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

Step 1: Construct an orthogonal diagonalisation of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$.

$$\mathbf{A}^{\top}\mathbf{A} = \begin{bmatrix} 4 & 8 \\ 11 & 7 \\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}$$

The eigenvalues of this matrix are $\lambda_1=360$, $\lambda_2=90$, $\lambda_3=0$. The corresponding unit eigenvectors are:

$$\mathbf{u}_1 = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}.$$

Then
$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}.$$

Step 2: Construct Σ using the singular values of \mathbf{A} .

Given the found eigenvalues of ${\bf A}$, $\lambda_1=360$, $\lambda_2=90$, $\lambda_3=0$, the singular values of ${\bf A}$ are:

$$\sigma_1 = \sqrt{360} = 6\sqrt{10}, \quad \sigma_2 = \sqrt{90} = 3\sqrt{10}, \quad \sigma_3 = 0$$

The non-zero σ_i are the diagonal values of ${\bf D}$:

$$\mathbf{D} = \begin{bmatrix} 6\sqrt{10} & 0\\ 0 & 3\sqrt{10} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \mathbf{D} \mathbf{0} \end{bmatrix} = \begin{bmatrix} 6\sqrt{10} & 0 & 0\\ 0 & 3\sqrt{10} & 0 \end{bmatrix}$$

Step 3: Construct W. When A has rank r the first r columns of W are normalised vectors obtained from $Av_1, \dots Av_r$. A has two non-zero singular values so $\operatorname{rank} A = 2$ and

$$\|\mathbf{A}\mathbf{u}_1\| = \sigma_1, \quad \|\mathbf{A}\mathbf{u}_2\| = \sigma_2.$$

Thus the columns of \mathbf{W} are

$$\mathbf{w}_1 = \frac{1}{\sigma_1} \mathbf{A} \mathbf{u}_1 = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18\\6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10}\\1/\sqrt{10} \end{bmatrix}$$
$$\mathbf{w}_2 = \frac{1}{\sigma_2} \mathbf{A} \mathbf{u}_2 = \frac{1}{3\sqrt{10}} \begin{bmatrix} 3\\-9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10}\\-3/\sqrt{10} \end{bmatrix}.$$

The set $\{\mathbf w_1, \mathbf w_2\}$ is already a basis for $\mathbb R^2$, and so

$$\mathbf{W} = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix}$$

.

Thus the singular value decomposition is

$$\mathbf{A} = \mathbf{W} \Sigma \mathbf{U}^{\mathsf{T}}$$

$$= \begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-2}{3} & \frac{-1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$

The first singular value of ${\bf A}$ is the maximum of $\|{\bf A}{\bf x}\|$ for all ${\bf x}$ with $\|{\bf x}\|=1$; this is attained when ${\bf x}={\bf u}_1$:

$$\mathbf{A}\mathbf{u}_1 = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 18 \\ 6 \end{bmatrix}.$$

This is an ellipse point furthest from $\mathbf{0}$; the distance is $\sigma_1 = 6\sqrt{10}$:

The second singular value of ${\bf A}$ is the maximum of $\|{\bf A}{\bf x}\|$ over all unit vectors orthogonal to ${\bf u}_1$ and this is attained at ${\bf x}={\bf u}_2$:

$$\mathbf{A}\mathbf{u}_2 = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 3 \\ -9 \end{bmatrix}.$$

This is an ellipse point on the minor axis (distance $\sigma_1 = 3\sqrt{10}$):

 $\mathbf{A} = \mathbf{W} \Sigma \mathbf{U}^{\mathsf{T}}$ can be rewritten as

$$\mathbf{A} = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 & 0 \\ & \ddots & & 0 & \\ 0 & & \sigma_r & 0 & \cdots \\ 0 & 0 & 0 & 0 & \\ & & \vdots & & \ddots \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_n^\top \end{bmatrix}$$
$$= \sigma_1 \mathbf{w}_1 \mathbf{u}_1^\top + \sigma_2 \mathbf{w}_2 \mathbf{u}_2^\top + \cdots + \sigma_r \mathbf{w}_r \mathbf{u}_r^\top.$$

Original matrix ${\bf A}$ involves $m \times n$ values to be stored, whereas this expansion requires $(m \times r + n \times r + r) = r(m+n+1)$.

Usually some of the singular values are very small so

$$\mathbf{A} \approx \mathbf{A}_k = \sigma_1 \mathbf{w}_1 \mathbf{u}_1^{\mathsf{T}} + \sigma_2 \mathbf{w}_2 \mathbf{u}_2^{\mathsf{T}} + \ldots + \sigma_k \mathbf{w}_k \mathbf{u}_k^{\mathsf{T}},$$

where k < r is the rank of approximation; quite often $k \ll r$.

In that case, the storage size is reduced to $k(m+n+1) \ll m \cdot n$.

Then SVD-based image compression / dimension reduction works.

Next lecture

See you next Wednesday for the final lecture

5 June 2019

Assignment 8 is due this week (on 29–31 May)

Assignment 9 will be an in-class pre-exam test (during the tutorial sessions next week)