Complex Analysis

Mark Ibrahim based on Conway 's Functions of One Complex Variable

Contents

1	Com	olex Number System (I.1 - I.4)	1
	1.1	Arithmetic in Complex Plane	1
	1.2	Polar Coordinates	1
	1.3	Nth Roots	2
		c Spaces and Topology in C Review	2 2
1		mplex Number Sys- $ \bar{z} = z $ hecause you're squaring entries to	
		bacquica vau'ra cauaring antriac t	\circ

tem (I.1 - I.4) Bombelli discovered it's useful to consider

negative square roots after studying the equation: $x^3 = 5x + 3$

The set of complex numbers, \mathbb{C} , is sometimes called the Complex Plane. Since any complex number z can be written as x + iy, we can identify any complex number in \mathbb{R}^2 .

Arithmetic Complex 1.1 in Plane

Addition is akin to adding vectors in \mathbb{R}^2 , because we add the real and imaginary parts. Multiplication is as expected; also the associative, commutative, and distributive properties hold. In fact, \mathbb{C} is a field

The modulus of a complex number z = x + iy is the length of the vector:

$$|z| = \sqrt{x^2 + y^2}$$

Modulus Properties

• |zw| = |z| |w|write z as $z = |z|\hat{z}$, where \hat{z} is the unit vector in the direction of zthen you can expand zw to obtain result.

because you're squaring entries to find the length

The **complex conjugate** of z, denoted $ar{z}=x-iy.$ Note $zar{z}=|z|^2.$ Trick: Re $z=rac{z+ar{z}}{2}.$

Trick: Re
$$z = \frac{z+z}{2}$$
.

Note to find the multiplicative inverse of z, it's

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2}$$

(equivalently $\frac{\bar{z}}{|z|^2}$)

The distance between two vectors z, wis |z-w|.

Can show Triangle on modulus holds: $|z + w| \le |z| + |w|$. * can extend to $|z_1 + z_2 + z_3 + \ldots| \le |z_1| + |z_2| + \ldots$ by induction.

Note $|z+w| = |z| + |w| \iff |z\bar{w}| =$

A useful variant of the triangle inequality is

$$||z| - |w|| \le |z - w|$$

Polar Coordinates 1.2

We can express a complex number z as a vector in \mathbb{R}^2 using Polar Coordinates: r =|z| and an angle θ .

note
$$x = |z| \cos(\theta)$$

The **principal argument** of z is θ restricted to values between $-\pi$ and π .

e.g., Arg(1 - i) =
$$\frac{-\pi}{4}$$

Often we write z in terms of \cos and $\sin z = r(\cos(\theta) + i\sin(\theta))$ in exponential notation, $z = re^{i\theta}$ by euler's identity.

e.g.,
$$e^{i\pi}=\cos(\pi)+i\sin(\pi)=-1$$
. * note conway denotes $\cos(\theta)+i\sin(\theta)$ as $cis(\theta)$

nice properties: $arg(\bar{z}) = -arg(z)$ can see this by drawing vector in \mathbb{R}^2 $arg(z_1z_2) = arg(z_1) + arg(z_2)$

Multiplication of z_1z_2 results in: adding angles and multiplying lengths

De Moivre's Formula: $(e^{i\theta})^n=e^{in\theta}$, meaning

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

1.3 Nth Roots

An nth root of w is a number z such that $z^n = w$.

There are n distinct roots for a number $w \neq 0$. For $w = \rho e^{i\phi}$, they are $\sqrt[n]{\rho} e^{i(\frac{\phi}{n} + \frac{2kpi}{n})}$ for $k = 0, 1, \ldots, n-1$.

nth roots of unity are the nth roots of 1.

2 Metric Spaces and Topology in C

2.1 Review

a set (in a metric space) is **compact** if every open cover has a finite subcover.

A metric space is **sequentially compact** if every sequence has a convergent subsequence.

It turns out a metric space is compact ⇔ it's sequentially compact.