A critique of irrigation efficiency modeling $$\rm R\ code$$

Arnald Puy

Contents

1 Read in data			
2	The	e model	7
	2.1	Function to create sample matrix	7
	2.2	Define distributions	8
	2.3	Uncertainty in the proportion of large-scale irrigated areas	10
	2.4	Function to create sample matrix and transfrom to appropriate distributions	10
	2.5	Run the model	11
	2.6	Define settings	11
	2.7	Run model	12
	2.8	Extract model output	12
3	Uno	certainty analysis	18
4	Sen	sitivity analysis	23

```
# Function to read in all required packages in one go:
loadPackages <- function(x) {</pre>
  for(i in x) {
    if(!require(i, character.only = TRUE)) {
      install.packages(i, dependencies = TRUE)
      library(i, character.only = TRUE)
  }
}
# Load the packages
loadPackages(c("data.table", "tidyverse", "sensobol", "wesanderson",
               "cowplot", "parallel", "foreach", "doParallel",
               "countrycode", "ggridges", "scales", "overlapping"))
# Create custom theme
theme_AP <- function() {</pre>
  theme_bw() +
    theme(panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.background = element_rect(fill = "transparent",
                                            color = NA),
          legend.key = element_rect(fill = "transparent",
                                     color = NA),
          legend.position = "top",
          strip.background = element_rect(fill = "white"),
          plot.margin = margin(t = 0, r = 0.3, b = 0, l = 0.3, unit ="cm"))
}
# Set checkpoint
dir.create(".checkpoint")
library("checkpoint")
checkpoint("2021-08-02",
           R.version ="4.0.3",
           checkpointLocation = getwd())
```

1 Read in data

```
# READ IN DATA -----
# Rohwer data
rohwer <- fread("rohwer_data_all.csv")</pre>
rohwer[rohwer == ""] <- NA</pre>
rohwer <- rohwer[, Large_fraction:= Large_fraction / 100]</pre>
# Bos data
bos <- fread("bos data.csv")</pre>
bos <- bos[, Scale := ifelse(Irrigated area < 10000, "<10.000 ha", ">10.000 ha")]
# Solley data (USA)
usa.dt <- fread("usa_efficiency.csv")</pre>
usa.dt <- usa.dt[, Efficiency:= consumptive.use / total.withdrawal]
# FAO 1997 data (Irrigation potential in Africa)
fao_dt <- fread("fao_1997.csv")</pre>
fao_dt <- fao_dt[, Efficiency:= Efficiency / 100]</pre>
# Create data set with E_a values as defined by Rohwer
bos.rohwer.ea <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                             "Value" = c(0.6, 0.7),
                             "variable" = "E_a")
# Create data set with E_c values as defined by Rohwer
bos.rohwer.ec <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                             "Value" = c(0.8, 0.95),
                             "variable" = "E_c")
bos.rohwer.all <- rbind(bos.rohwer.ec, bos.rohwer.ea)</pre>
# As a function of scale
bos.rohwer.mf.ec <- data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                "Value" = c(0.85, 0.59),
                                "variable" = "E c")
bos.rohwer.mf.ed \leftarrow data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                "Value" = c(0.81, 0.72),
                                "variable" = "E_d")
bos.rohwer.mf.all <- rbind(bos.rohwer.mf.ec, bos.rohwer.mf.ed)</pre>
# Field and conveyance efficiency -----
```

```
efficiencies_labeller <- c("E_c" = "$E_c$",
                           "E a" = "$E a$")
a <- bos %>%
 melt(., measure.vars = c("E a", "E c")) %>%
  ggplot(., aes(value, fill = Irrigation, color = Irrigation)) +
 geom_histogram(position = "identity", alpha = 0.4, bins = 15) +
 facet_wrap(~variable, labeller = as_labeller(efficiencies_labeller)) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
 geom_vline(data = bos.rohwer.all, aes(xintercept = Value,
                                       color = Irrigation,
                                        group = variable),
            lty = 2,
            size = 1) +
 labs(x = "", y = "Counts") +
 theme AP()
# As a function of scale -----
efficiencies_labeller <- c("E_c" = "$E_c$",
                           "E a" = "$E a$",
                           "E_d" = "$E_d$")
b <- melt(bos, measure.vars = c("E_c", "E_a", "E_d")) %>%
 na.omit() %>%
 ggplot(., aes(value, fill = Scale, color = Scale)) +
 geom_histogram(bins = 15, position = "identity", alpha = 0.6) +
 labs(x = "Irrigation efficiency", y = "Counts") +
 facet_wrap(~ variable, labeller = as_labeller(efficiencies_labeller)) +
  geom_vline(data = bos.rohwer.mf.all, aes(xintercept = Value,
                                          color = Scale,
                                          group = variable),
            lty = 2,
             size = 1) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  scale_color_manual(values = wes_palette(2, name = "Chevalier1"),
                   name = "Scale",
                   labels = c("$<10.000$ ha", "$>10.000$ ha")) +
  scale_fill_manual(values = wes_palette(2, name = "Chevalier1"),
                   name = "Scale",
                   labels = c("$<10.000$ ha", "$>10.000$ ha")) +
 theme_AP()
bottom <- plot_grid(a, b, ncol = 1, labels = c("c", "d"))
```

Warning: Removed 74 rows containing non-finite values (stat_bin).

2 The model

2.1 Function to create sample matrix

```
sample_matrix_fun <- function(IFT) {
  params <- params_fun(IFT = IFT)
  mat <- sensobol::sobol_matrices(N = N, params = params)
  out <- list(params, mat)
  names(out) <- c("parameters", "matrix")
  return(out)
}</pre>
```

2.2 Define distributions

```
# DEFINE TRUNCATED DISTRIBUTIONS -----
# EA SURFACE -----
Ea.surface <- bos[Irrigation == "Surface"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape <- 3.502469
scale <- 0.5444373
minimum <- Ea.surface$min
maximum <- Ea.surface$max
weibull_dist <- sapply(c(minimum, maximum), function(x)</pre>
  pweibull(x, shape = shape, scale = scale))
# EC SURFACE -----
Ec.surface <- bos[Irrigation == "Surface"][, .(min = min(E_c, na.rm = TRUE),</pre>
                                                 max = max(E_c, na.rm = TRUE))]
shape1 <- 5.759496
shape2 <- 1.403552
minimum.beta <- Ec.surface$min
maximum.beta <- Ec.surface$max</pre>
beta_dist <- sapply(c(minimum.beta, maximum.beta), function(x)</pre>
  pbeta(x, shape1 = shape1, shape2 = shape2))
# EA SPRINKLER -----
Ea.sprinkler <- bos[Irrigation == "Sprinkler"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape.spr <- 6.9913711
scale.spr <- 0.7451178
minimum.spr <- Ea.sprinkler$min
maximum.spr <- Ea.sprinkler$max</pre>
weibull_dist_spr <- sapply(c(minimum.spr, maximum.spr), function(x)</pre>
  pweibull(x, shape = shape.spr, scale = scale.spr))
# MANAGEMENT FACTOR (m) -----
```

```
shape1.m < -5.759496
shape2.m < -1.403552
minimum.m <- 0.65
maximum.m <- 1</pre>
beta_dist.m <- sapply(c(minimum.m, maximum.m), function(x)</pre>
 pbeta(x, shape1 = shape1.m, shape2 = shape2.m))
# FUNCTION TO TRANSFORM TO APPROPRIATE DISTRIBUTIONS -----
distributions_fun <- list(</pre>
  # SURFACE IRRIGATION
  "Ea_surf" = function(x) {
   out <- qunif(x, weibull_dist[[1]], weibull_dist[[2]])</pre>
   out <- qweibull(out, shape, scale)</pre>
  },
  "Ec_surf" = function(x) {
   out <- qunif(x, beta_dist[[1]], beta_dist[[2]])</pre>
    out <- qbeta(out, shape1, shape2)</pre>
 },
  # SPRINKLER IRRIGATION
  "Ea_sprinkler" = function(x) {
   out <- qunif(x, weibull_dist_spr[[1]], weibull_dist_spr[[2]])</pre>
   out <- qweibull(out, shape.spr, scale.spr)</pre>
  },
  "Ec_sprinkler" = function(x) qunif(x, 0.64, 0.96),
  # MICRO (DRIP) IRRIGATION
  # -----
  "Ea_micro" = function(x) out \leftarrow qunif(x, 0.75, 0.95),
  "Ec_micro" = function(x) out \leftarrow qunif(x, 0.9, 0.95),
  # PROPORTION LARGE
  # -----
  "Proportion_large" = function(x) x,
```

2.3 Uncertainty in the proportion of large-scale irrigated areas

```
# DEFINE THE UNCERTAINTY IN THE LARGE FRACTION AT THE COUNTRY LEVEL -----
rohwer.frac <- rohwer[, .(Country, Large_fraction)]
rohwer.frac[, `:=` (min = Large_fraction, max = Large_fraction + 0.1)]
countries.list <- split(rohwer.frac, seq(nrow(rohwer.frac)))
names(countries.list) <- rohwer$Country</pre>
```

2.4 Function to create sample matrix and transfrom to appropriate distributions

2.5 Run the model

```
# FUI.I. MODEI. ----
full_model <- function(IFT, Country, sample.size, R) {</pre>
  tmp <- full_sample_matrix(IFT = IFT, Country = Country)</pre>
  mat <- tmp$matrix</pre>
  if(IFT == "Surface") {
    Mf <- mat[, "m"] - mat[, "r_L"] * mat[, "Proportion_large"]</pre>
    y <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf</pre>
  } else if(IFT == "Sprinkler") {
    Mf <- mat[, "m"]</pre>
    y <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf
  } else if(IFT == "Mixed") {
    Mf.surf <- mat[, "m"] - mat[, "r_L"] * mat[, "Proportion_large"]</pre>
    y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
    Mf.sprink <- mat[, "m"]</pre>
    y.sprink <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.sprink</pre>
    y \leftarrow 0.5 * y.surf + 0.5 * y.sprink
  } else {
    Mf <- mat[, "m"]</pre>
    y <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf</pre>
  }
  ind <- sobol_indices(N = sample.size, Y = y, params = tmp$parameters,
                         boot = TRUE, R = R)
  out <- list(y, ind)</pre>
  names(out) <- c("output", "indices")</pre>
  return(out)
}
```

2.6 Define settings

```
# DEFINE SETTINGS -----

N <- 2^13
R <- 10^2
```

2.7 Run model

2.8 Extract model output

```
# EXTRACT MODEL OUTPUT -----
output <- lapply(y, function(x) x[["output"]][1:(2 * N)])</pre>
names(output) <- rohwer$Country</pre>
tmp <- lapply(output, data.table) %>%
 rbindlist(., idcol = "Country") %>%
 merge(., rohwer[, .(Country, IFT)], all.x = TRUE)
tmp <- tmp[, Continent:= countrycode(tmp[, Country], origin = "country.name",</pre>
                                    destination = "continent")] %>%
 .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
# COMPUTE RANGES ------
calc <- tmp[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
  .[, .(range = max - min), .(Continent, Country)] %>%
  .[order(range)]
print(calc, n = Inf)
##
        Continent
                                  Country
                                              range
##
     1:
            Asia
                                    Cyprus 0.4427170
     2:
                                    Israel 0.4427170
##
            Asia
                                    Jordan 0.4427170
##
     3:
            Asia
##
     4:
                                     Oman 0.4427170
            Asia
     5:
                      United Arab Emirates 0.4427170
##
            Asia
##
     6:
            Asia
                                     Iraq 0.5449874
     7:
          Europe
                                     Italy 0.5449874
##
                              Netherlands 0.5449874
##
     8:
          Europe
##
     9:
           Europe
                                  Albania 0.5476661
                                  Algeria 0.5476661
## 10:
           Africa
## 11: Americas
                                   Brazil 0.5476661
## 12: Americas
                                   Canada 0.5476661
                                     Cuba 0.5476661
   13: Americas
##
```

##	14:	Europe	France	0.5476661
##	15:	Asia	Kazakhstan	
##	16:	Africa	Mozambique	0.5476661
##	17:	Asia	Saudi Arabia	
##	18:	Asia	Sri Lanka	0.5476661
##	19:	Americas	United States	0.5476661
##	20:	Africa	Benin	0.5598705
##	21:	Africa	Botswana	0.5598705
##	22:	Asia	Brunei	0.5598705
##	23:	Africa	Burkina Faso	0.5598705
##	24:	Africa	Ivory Coast	0.5598705
##	25:	Asia	-	0.5598705
##	26:	Asia	Lebanon	0.5598705
##	27:	Africa	Libya	0.5598705
##	28:	Africa	Namibia	0.5598705
##	29:	Asia	Qatar	0.5598705
##	30:	Europe	Slovenia	0.5598705
##	31:	Africa	South Africa	0.5598705
##	32:	Europe	Spain	0.5598705
##	33:	Africa	Swaziland	0.5598705
##	34:	Africa	Tanzania	0.5598705
##	35:	Africa	Tunisia	0.5598705
##	36:	Africa	Zambia	0.5598705
##	37:	Africa	Zimbabwe	0.5598705
##	38:	Europe	Austria	0.5928658
##	39:	Europe	Belgium	0.5928658
##	40:	<na></na>	Byelarus	0.5928658
##	41:	Europe	Croatia	0.5928658
##	42:	Europe	Czech Republic	0.5928658
##	43:	Europe	Denmark	0.5928658
##	44:	Europe	Finland	0.5928658
##	45:	Europe	Germany	0.5928658
##	46:	Europe	Greece	0.5928658
##	47:	Europe	_ ,	0.5928658
##	48:	Europe	Latvia	0.5928658
##	49:	Europe		0.5928658
##	50:	Europe	Luxembourg	
##	51:	Europe		0.5928658
##	52:	Africa		0.5928658
##	53:	Europe		0.5928658
##	54:	Europe		0.5928658
##	55:	Europe		0.5928658
##	56:	Europe		0.5928658
##	57:	Europe	Switzerland	
##	58:	Europe		0.5928658
##	59:	Europe	United Kingdom	
##	60:	Asia	Afghanistan	
##	61:	Americas	Argentina	0.7235126

##	62:	Oceania	Australia	0.7235126
##	63:	Asia	Bangladesh	
##	64:	Europe	•	0.7235126
##	65:	Asia	_	0.7235126
##	66:	Americas		0.7235126
##	67:	Americas		0.7235126
##	68:	Africa		0.7235126
##	69:	Africa		0.7235126
##	70:	Asia	-	0.7235126
##	71:	Asia		0.7235126
##	72:	Asia	Indonesia	0.7235126
##	73:	Asia	Iran	0.7235126
##	74:	Asia	Japan	0.7235126
##	75:	Asia	Kyrgyzstan	0.7235126
##	76:	Europe	Moldova	0.7235126
##	77:	Asia	Nepal	0.7235126
##	78:	Africa	Nigeria	0.7235126
##	79:	Asia	North Korea	0.7235126
##	80:	Asia	Philippines	0.7235126
##	81:	Europe	Portugal	0.7235126
##	82:	Asia	Turkey	0.7235126
##	83:	Asia	Turkmenistan	0.7235126
##	84:	Asia	Azerbaijan	0.7255942
##	85:	Americas	Chile	0.7255942
##	86:	Americas	Mexico	0.7255942
##	87:	Asia	Pakistan	0.7255942
##	88:	Africa	Sudan	0.7255942
##	89:	Asia		0.7255942
##	90:	Asia	Tajikistan	
##	91:	Asia		0.7255942
##	92:	Asia	Uzbekistan	
##	93:	Americas		0.7255942
##	94:	Asia		0.7255942
##	95:	Africa		0.7529434
##	96:	Asia		0.7529434
	97:	Americas		0.7529434
	98:	Asia		0.7529434
	99:	Americas		0.7529434
	100:	Europe	Bosnia and Herzegovina	
	101:	Asia		0.7529434
	102:	Africa		0.7529434
	103:	Asia		0.7529434
	104:	Africa		0.7529434
	105:		Central African Republic	
##	106:	Africa		0.7529434
	107:	Africa	_	0.7529434
	108:	Americas	Costa Rica	
##	109:	Africa	Djibouti	0.7529434

##	110:	Americas	Dominican Republic	0.7529434
##	111:	Americas	El Salvador	
##	112:	Africa	Equatorial Guinea	0.7529434
##	113:	Africa		0.7529434
##	114:	Americas	French Guiana	0.7529434
##	115:	Africa	Gabon	0.7529434
##	116:	Africa	Gambia	0.7529434
##	117:	Africa	Ghana	0.7529434
##	118:	Americas	Guatemala	0.7529434
##	119:	Africa	Guinea	0.7529434
##	120:	Africa	Guinea-Bissau	0.7529434
##	121:	Americas	Guyana	0.7529434
##	122:	Americas	Haiti	0.7529434
##	123:	Americas	Honduras	0.7529434
##	124:	Americas	Jamaica	0.7529434
##	125:	Africa	•	0.7529434
##	126:	Asia	Laos	0.7529434
##	127:	Africa	Lesotho	0.7529434
##	128:	Africa		0.7529434
##	129:	Africa	Madagascar	
##	130:	Asia	-	0.7529434
##	131:	Africa		0.7529434
##	132:	Africa	Mauritania	
##	133:	Asia		0.7529434
##	134:	Africa		0.7529434
##	135:	Oceania	New Zealand	
##	136:	Americas	Nicaragua	
##	137:	Africa	_	0.7529434
##	138:	Europe	•	0.7529434
##	139:	Americas		0.7529434
	140:	Oceania	Papua New Guinea	
##	141:	Americas		0.7529434
	142:	Americas		0.7529434
	143:	Europe		0.7529434
	144:	Americas	Puerto Rico	
	145:	Africa Africa		0.7529434
	146: 147:			0.7529434 0.7529434
	147:	Europe Africa	Sierra Leone	
	149:			0.7529434
	149: 150:	Africa Asia	South Korea	
		Asia		
	151: 152:	Americas Africa		0.7529434
		Airica		0.7529434 0.7529434
##	153:	Americas Africa		
	154: 155:	Airica	_	0.7529434
	155: 156:	Africa	Western Sahara	0.7529434
	157:	Arrica		0.7529434
##	101:	ASIA	remen	0.1029434

```
## 158:
           Africa
                                      Zaire 0.7529434
##
        Continent
                                    Country
                                                 range
rang <- calc[, .(total = .N), range] %>%
  .[, N.countries:= 154] %>%
  .[, fraction:= total / N.countries]
print(rang)
##
          range total N.countries
                                     fraction
## 1: 0.4427170
                    5
                               154 0.03246753
## 2: 0.5449874
                    3
                               154 0.01948052
## 3: 0.5476661
                    11
                               154 0.07142857
## 4: 0.5598705
                    18
                               154 0.11688312
## 5: 0.5928658
                    22
                               154 0.14285714
## 6: 0.7235126
                               154 0.15584416
                   24
## 7: 0.7255942
                    11
                               154 0.07142857
## 8: 0.7529434
                    64
                               154 0.41558442
ggplot(rang, aes(range, fraction)) +
  geom_bar(stat = "identity") +
  labs(x = "Range", y = "Fraction of countries") +
  theme_AP()
```


CHECK OVERLAP -----

```
dd <- tmp[!Continent == "Oceania"] %>%
    split(., .$Continent, drop = TRUE)

overlap.dt <- lapply(dd, function(x) split(x, x$IFT, drop = TRUE)) %>%
    lapply(., function(x) lapply(x, function(y) y[, V1])) %>%
    lapply(., function(x) overlap(x)$OV)

overlap.dt
```

```
## $Africa
## Surface-Sprinkler
                         Surface-Mixed
                                          Sprinkler-Mixed
##
           0.3330217
                             0.5110232
                                                0.5258691
##
## $Americas
## Surface-Mixed
       0.4969798
##
##
## $Asia
## Surface-Micro Surface-Mixed
                                 Micro-Mixed
##
      0.05681312
                    0.44763132
                                  0.07845940
##
## $Europe
## Surface-Sprinkler
                                          Sprinkler-Mixed
                         Surface-Mixed
##
           0.3195390
                             0.5337083
                                                0.4725657
```

3 Uncertainty analysis

```
# PLOT UNCERTAINTY -----
list_continents <- list(c("Africa", "Europe"), c("Americas", "Asia"))</pre>
gg <- list()
for (i in 1:length(list_continents)) {
  gg[[i]] <- ggplot(tmp[Continent %in% list_continents[[i]]],</pre>
               aes(x = V1, y = fct_reorder(Country, V1), fill = IFT), alpha = 0.5) +
    geom_density_ridges(scale = 2) +
    labs(x = "Irrigation efficiency", y = "") +
    facet_wrap(~Continent, scales = "free") +
    scale_x_continuous(breaks = pretty_breaks(n = 3),
                       limits = c(0, 1)) +
    theme_AP() +
    theme(legend.position = "top")
  if(i == 1) {
    gg[[i]] <- gg[[i]] + scale_fill_manual(labels = c("Surface", "Sprinkler", "Mixed", "Micro",
                                 values = c("#D8B70A", "#02401B", "#81A88D", "#A2A475"),
                                 name = "Irrigation")
 } else if(i == 2) {
    gg[[i]] <- gg[[i]] + scale_fill_manual(labels = c("Surface", "Micro", "Mixed"),
                                 values = c("#D8B70A", "#A2A475", "#81A88D"),
                                 name = "Irrigation")
 }
gg
## [[1]]
## Picking joint bandwidth of 0.0141
## Picking joint bandwidth of 0.0129
```


[[2]]

Picking joint bandwidth of 0.0147

Picking joint bandwidth of 0.0137

limits = c(0, 1)) +

facet_wrap(~Continent, scales = "free") +

```
scale_color_discrete(name = "Irrigation") +
   theme_AP()
}
dd
```

Irrigation • Mixed • Sprinkler • Surface

[[1]]

Warning: Removed 1 rows containing missing values (geom_point).

[[2]]

CALCULATE THE UNCERTAINTY IN THE RANGES
selection_continents <- c("Africa", "Asia", "Americas", "Europe")

factor_unc <- tmp[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
 .[Continent %in% selection_continents] %>%
 .[, factor:= max / min]

ggplot(factor_unc, aes(factor)) +
 geom_histogram() +
 facet_wrap(~Continent, ncol = 4) +
 labs(x = "Factor", y = "N. of countries") +
 theme_AP()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Number of countries whose irrigation water withdrawals fluctuate a factor of x
# due to uncertainty in irrigation efficiency
factor_unc %>%
    .[, factor:= floor(max / min)] %>%
    .[, .(number.countries = .N), factor] %>%
    .[order(factor)] %>%
    print()
```

```
##
      factor number.countries
## 1:
            1
                                5
            3
## 2:
                               21
## 3:
            4
                               32
## 4:
           18
                               85
## 5:
           21
                               11
```

4 Sensitivity analysis

```
# SAMPLE MATRIX DISTRIBUTIONS
# Define labels
label_facets <- c("Ea_surf" = "$E_{a_{su}})",
                  "Ec_surf" = "E_{c_{su}}",
                   "Ea_sprinkler" = "$E_{a_{sp}}$",
                   "Ec_sprinkler" = "E_{c_{sp}}",
                  "Ea_micro" = "$E_{a_{mi}}$",
                   "Ec_micro" = "$E_{c_{mi}}$",
                  "Proportion large" = "$f L$",
                   "m" = "$m$",
                   "r L" = "$r L$")
mat <- data.table(full_sample_matrix(IFT = "Mixed", Country = "Spain")$matrix)</pre>
mat <- mat[, Proportion_large:= NULL]</pre>
melt(mat, measure.vars = colnames(mat)) %>%
  ggplot(., aes(value)) +
  geom_histogram() +
  labs(x = "Value", y = "Counts") +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  facet_wrap(~variable) +
```

```
theme_AP()
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
tmp.ift <- split(rohwer, rohwer$IFT)

out <- list()
for(i in names(tmp.ift)) {
  out[[i]] <- ind[Country %in% tmp.ift[[i]][, Country]]
}</pre>
```

```
ifelse(parameters == "Ec_spring)
                                                                             ifelse(parameters == "
                                                                                     ifelse(paramete:
rbind(tmp[IFT == "Mixed"], tmp2) %>%
  ggplot(., aes(parameters, mean, fill = sensitivity), color = black) +
  geom_bar(stat = "identity", position = position_dodge(0.6), color = "black") +
  geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), position = position_dodge(0.6)) +
  scale_x_discrete(labels = label_facets) +
  scale_fill_discrete(name = "Sensitivity", labels = c("$S_i$", "$T_i$")) +
  labs(x = "", y = "Sobol' indices") +
  facet_grid(~IFT, space = "free_x", scale = "free_x") +
  theme_AP()
                           Sensitivity
                                       S_i
           Surface
                                                         Mixed
                          Sprinkler
                                       Micro
Sopol, indices 0.6 0.2 0.0 0.0
```

 $E_{a_{sp}}E_{a_{su}}E_{c_{sp}}E_{c_{su}}$ m f_L r_L

 E_a E_c m

 E_a E_c m

 \dot{E}_c \dot{m} f_L r_L