Leçon 191. Exemples d'utilisation des techniques d'algèbre en géométrie.

1. La géométrie affine

1.1. Les espaces affines

- 1. DÉFINITION. Un espace affine sur un corps K est la donné d'un K-espace vectoriel E, d'un ensemble $\mathscr E$ et d'une action simplement transitive du groupe additif E sur l'ensemble $\mathscr E$. L'espace E est la direction de l'espace affine $\mathscr E$.
- 2. EXEMPLE. L'espace vectoriel \mathbb{R}^n agit par translation sur lui-même ce qui est fait un espace affine sur le corps \mathbb{R} .
- 3. NOTATION. Cette action sera notée sous la forme $A+u=u\cdot A$ pour $u\in E$ et $A\in\mathscr{E}$. Les éléments de l'ensemble \mathscr{E} sont les *points* et ceux de l'espace E les *vecteurs*. Pour deux points $A,B\in\mathscr{E}$, la simple transitivité de l'action assure l'existence d'un unique vecteur $\overrightarrow{AB}\in E$ tel que $B=A+\overrightarrow{AB}$.
- 4. Proposition (relation de Chasles). Pour tous points $A, B, C \in \mathcal{E}$, on a
 - $-\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$;
 - $-\overrightarrow{AA}=0$;
 - $-\overrightarrow{BA} = -\overrightarrow{AB}$
- 5. Proposition. Soit $O \in \mathcal{E}$ un point fixé. Alors l'application

$$\Theta_O: \left| \begin{array}{c} \mathscr{E} \longrightarrow E, \\ M \longmapsto \overrightarrow{OM} \end{array} \right|$$

est une bijection. En particulier, ceci permet de munir l'ensemble $\mathscr E$ d'une structure d'espace vectoriel $\mathscr E_O$, appelé le *vectorialisé* de l'espace affine $\mathscr E$ au point O. Dans ce dernier, on peut écrire

$$\overrightarrow{OM} + \overrightarrow{ON} = \overrightarrow{O(M+N)}, \qquad M, N \in \mathscr{E}_O.$$

6. DÉFINITION. Un sous-espace affine de l'espace affine $\mathscr E$ est une partie $\mathscr F\subset \mathscr E$ s'il existe un point $A\in \mathscr F$ tel que l'ensemble $\Theta_A(\mathscr F)$ soit un sous-espace vectoriel de E. 7. PROPOSITION. Soit $\mathscr F\subset \mathscr E$ un sous-espace affine. Alors il existe un sous-espace vectoriel $F\subset E$ tel que

$$\forall B \in \mathscr{F}, \qquad \Theta_B(\mathscr{F}) = F.$$

8. EXEMPLE. Les sous-espaces affines d'un espace vectoriel E sont le sous-espace vectoriel de la forme $F + u_0$ pour un sous-espace vectoriel $F \subset E$ et un vecteur $u_0 \in E$.

1.2. Applications et isométries d'un espace affine

9. DÉFINITION. Une application $\varphi\colon\mathscr{E}\longrightarrow\mathscr{F}$ entre deux espaces affines \mathscr{E} et \mathscr{F} de directions respectives E et F est affine s'il existe un point $O\in\mathscr{E}$ et une application linéaire $f\colon E\longrightarrow F$ vérifiant

$$\forall M \in \mathscr{E}, \qquad f(\overrightarrow{OM}) = \overrightarrow{\varphi(O)\varphi(M)}.$$

Dans ce cas, une telle application f est unique : on l'appelle le lin'earis'e de l'application affine φ et on la note sous la forme $\vec{\varphi}$.

10. EXEMPLE. Les applications affines entre deux espaces vectoriels E et F sont les applications de la forme $u \longmapsto f(u) + v_0$ avec $f \in \mathcal{L}(E, F)$ et $v_0 \in F$. Son linéarisé

- est l'application linéaire f. En particulier, lorsque $\mathscr{E} = \mathscr{F} = \mathbf{R}$, les applications affines sont celles de la forme $x \longmapsto ax + b$ avec $a, b \in \mathbf{R}$.
- 11. DÉFINITION. Une translation de l'espace $\mathscr E$ est une application affine $\varphi \colon \mathscr E \longrightarrow \mathscr E$ vérifiant $\vec \varphi = \mathrm{Id}_E$.
- 12. Proposition. L'image ou la pré-image d'un sous-espace affine par une application affine est un sous-espace affine.
- 13. Proposition. L'ensemble $GA(\mathscr{E})$ des applications affines d'un espace affine \mathscr{E} dans lui-même est un groupe et l'application

$$\begin{vmatrix}
GA(\mathscr{E}) & \longrightarrow GL(E), \\
\varphi & \longmapsto \vec{\varphi}
\end{vmatrix}$$

est un morphisme surjectif dont le noyau est le groupe des translations.

14. DÉFINITION. Soit $\mathscr E$ un espace affine euclidien, c'est-à-dire tel que sa direction E soit un espace euclidien. Alors l'expression

$$AB := d(A, B) = \|\overrightarrow{AB}\|, \qquad A, B \in \mathscr{E}$$

définit une distance sur l'ensemble \mathscr{E} . Une isométrie entre deux espaces affines euclidiens \mathscr{E} et \mathscr{F} est une application $\varphi \colon \mathscr{E} \longrightarrow \mathscr{F}$ vérifiant

$$d(\varphi(A), \varphi(B)) = d(A, B), \quad A, B \in \mathscr{E}.$$

15. PROPOSITION. L'ensemble $\text{Isom}(\mathscr{E})$ des isométries d'un espace affine euclidien \mathscr{E} dans lui-même est un groupe. De plus, il est généré par les *réflexions*, c'est-à-dire les symétries orthogonales par rapport à des hyperplans.

1.3. Autour des barycentres et enveloppes convexes

- 16. PROPOSITION. Soient $(A_i)_{i \in I}$ une famille de points de \mathscr{E} et $(\alpha_i)_{i \in I}$ une famille réelle. Pour un point M, on considère le vecteur $v_M := \sum_{i \in I} \alpha_i \overline{MA_i} \in E$. Alors
 - si $\sum_{i \in I} \lambda_i = 0$, alors les vecteurs v_M avec $M \in \mathscr{E}$ sont égaux.
 - sinon il existe un unique point $G \in \mathscr{E}$ tel que $v_G = 0$. Le point G est le barycentre du système pondéré $(A_i, \alpha_i)_{i \in I}$. On le note bar $\{A_i, \alpha_i\}_{i \in I}$. Les réels α_i sont les coefficients du barycentre.
- 17. Proposition. Avec les mêmes notations et dans le second cas, tout point $O \in \mathscr{E}$ vérifie l'égalité

$$\left(\sum_{i\in I}\alpha_i\right)\overrightarrow{OG} = \sum_{i\in I}\alpha_i\overrightarrow{OA_i}.$$

- 18. DÉFINITION. Lorsque les réels α_i sont tous égaux, on parle d'isobarycentre.
- 19. EXEMPLE. L'isobarycentre de deux points A et B est le milieu du segment [AB]. 20. PROPOSITION (homogénéité et associativité). Le barycentre vérifie les deux
- 20. Proposition (homogénéité et associativité). Le barycentre vérifie les deux propriétés suivantes.
 - Soient $A_1, \ldots, A_k \in \mathscr{E}$ des points et $\alpha_1, \ldots, \alpha_k \in \mathbf{R}$ des réels de somme non nulle. Soit $\lambda \in \mathbf{R}^*$ un réel non nul.

$$\operatorname{bar}\{(A_1, \lambda \alpha_1), \dots, (A_k, \lambda \alpha_k)\} = \operatorname{bar}\{(A_1, \alpha_1), \dots, (A_k, \alpha_k)\}.$$

$$B_i := \text{bar}\{(A_{i,1}, \alpha_{i,1}), \dots, (A_{i,k_i}, \alpha_{i,k_i})\}.$$

Alors

$$\operatorname{bar}\{(B_i, \sum_{i=1}^{k_i} \alpha_{i,j})\}_{i \in [1,r]} = \operatorname{bar}\{(A_{i,j}, \alpha_{i,j})\}_{i \in [1,r], j \in [1,k_r]}.$$

21. PROPOSITION. Soit $(P^k)_{k \in \mathbb{N}}$ une suite de \mathbb{C}^n qu'en notant $P^k = (z_1^k, \dots, z_n^k)$ pour tout entier $k \in \mathbb{N}$, elle satisfasse la relation

$$P^{k+1} = \left(\frac{z_1^k + z_2^k}{2}, \frac{z_2^k + z_3^k}{2}, \dots, \frac{z_n^k + z_1^k}{2}\right), \qquad k \in \mathbf{N}.$$

Alors la suite $(P^k)_{k \in \mathbb{N}}$ converge vers l'isobarycentre des points z_i^0 .

- 22. THÉORÈME. Soit $\varphi \colon \mathscr{E} \longrightarrow \mathscr{F}$ une application.
 - On suppose qu'elle est affine. Pour tout système pondéré $\{(A_1, \alpha_1), \dots, (A_k, \alpha_k)\}$ de $\mathscr E$ avec $\alpha_1 + \dots + \alpha_k \neq 0$, on a

$$\varphi(\operatorname{bar}\{(A_1,\alpha_1),\ldots,(A_k,\alpha_k)\}) = \operatorname{bar}\{(\varphi(A_1),\alpha_1),\ldots,(\varphi(A_k),\alpha_k)\}.$$

– On suppose que, pour tous points $A, B \in \mathcal{E}$ et tout réel $\alpha \in \mathbf{R}$, on a

$$\varphi(\operatorname{bar}\{(A,\alpha),(B,1-\alpha)\}) = \operatorname{bar}\{(\varphi(A),\alpha),(\varphi(B),1-\alpha)\}.$$

Alors l'application φ est affine.

- 23. COROLLAIRE. Une application affine envoie un segment sur un segment. Une application affine préservant les points d'un système pondéré préserve aussi son barycentre.
- 24. DÉFINITION. On considère un espace affine euclidien $\mathscr E$. L'enveloppe convexe d'une partie $S \subset \mathscr E$ est l'intersection de tous les convexes la contenant, notée Conv $S \subset \mathscr E$. Un point extrémal d'une partie convexe $C \subset \mathscr E$ est un point $M \in S$ tel que, pour tous points $A, B \in C$ et tout réel $t \in [0,1]$, on ait

$$M = tA + (1 - t)B \implies t \in \{0, 1\}.$$

On note $\operatorname{Ext} C$ l'ensemble des points extrémaux de la partie C.

- 25. Théorème. L'enveloppe convexe d'une partie $S \subset \mathscr{E}$ est l'ensemble des barycentres à coefficients positifs ou nuls de points de S.
- 26. PROPOSITION. Soit $S \subset \mathbf{R}^n$ une partie avec $S = \text{Conv}(\text{Ext}\,S)$. Alors le groupe des isométries stabilisant Conv S stabilise aussi S et, en particulier, l'isobarycentre de la partie S.
- 27. Proposition. Les groupes des isométries positives et des isométries de l'espace stabilisant le cube unité $C\subset {\bf R}^3$ sont

$$\operatorname{Isom}^+(C) \simeq \mathfrak{S}_4$$
 et $\operatorname{Isom}(C) \simeq \mathfrak{S}_4 \times \mathbf{Z}/2\mathbf{Z}$.

2. Les coniques euclidiennes et affines

2.1. Les coniques définies par des formes quadratiques

28. DÉFINITION. Soit $\mathscr E$ un plan affine de direction E. Un polynôme de degré deux est une application $f \colon \mathscr E \longrightarrow \mathbf R$ telle qu'il existe un point $O \in \mathscr E$, une forme quadratique

non nulle q sur E, une forme linéaire $\ell_O \in E'$ et une constante $c \in \mathbf{R}$ tels que

$$\forall M \in \mathscr{E}, \qquad f(M) = q(\overrightarrow{OM}) + \ell_O(\overrightarrow{OM}) + c.$$

29. REMARQUE. Cette définition ne dépend pas du point O choisi. Intuitivement, les polynômes de degrés deux définissant des équations de la forme

$$ax^{2} + bxy + cx^{2} + dx + ey + f = 0$$
 avec $(a, b, c) \neq (0, 0, 0)$.

30. DÉFINITION. Une conique est la donnée d'un polynôme de degré deux modulo une constante non nulle. Plus précisément, il s'agit d'une classe d'équivalence pour la relation \sim définie par

$$f \sim g \iff \exists \lambda \in \mathbf{R}^*, \ f = \lambda g.$$

- 31. EXEMPLE. Les équations xy = 0 et 2xy = 0 définissent donc la même conique. La conique d'équation $x^2 + y^2 1 = 0$ est un cercle.
- 32. DÉFINITION. Une conique f est à centre si on peut trouver un point $\Omega \in \mathscr{E}$ tel que $\ell_{\Omega} = 0$. Une conique f définie par le polynôme

$$f(M) = q(\overrightarrow{OM}) + \ell_O(\overrightarrow{OM}) + c$$

est propre si la forme quadratique

$$Q \colon \begin{vmatrix} E \times \mathbf{R} \longrightarrow \mathbf{R}, \\ (u, z) \longmapsto q(u) + L(u)z + cz^2 \end{vmatrix}$$

n'est pas dégénérée. Cette forme Q est l'homogénéisée de la conique f.

- 33. EXEMPLE. Les coniques d'équations xy = 0 et $x^2 = 0$ ne sont pas propres. Le cercle d'équation $x^2 + y^2 1 = 0$ est propre puisque sa forme quadratique homogénéisée $x^2 + y^2 z^2$ n'est pas dégénérée. Ces exemples ont pour centre l'origine.
- 34. Proposition. Une conique est à centre si et seulement si l'une des formes quadratiques la définissant n'est pas dégénérée.

2.2. Classifications des coniques

- 35. THÉORÈME (orthogonalisation simultanée). Soit (E,q) un espace quadratique réel de dimension $n \ge 1$. Soit q' une autre forme quadratique sur E. Alors il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(q) = I_n$ et la matrice $\operatorname{Mat}_{\mathcal{B}}(q')$ soit diagonale.
- 36. Théorème (classification euclidienne). Soit & un espace affine euclidien. Alors toute conique propre à centre et d'image non vide est, dans un repère orthonormée dont le centre est l'origine, est d'équation
- (i) ou bien de la forme $x^2/a^2 + y^2/b^2 = 1$ (il s'agit d'une *ellipse*);
- (ii) ou bien de la forme $x^2/a^2 y^2/b^2 = 1$ (il s'agit d'une hyperbole)

pour deux réels $a,b \geqslant 0$ (avec $0 < b \leqslant a$ dans le premier cas).

- 37. Remarque. Une conique non propre à centre et d'image non vide est ou bien un point ou bien deux droites sécantes.
- 38. Remarque. Dans le cas où la conique est à centre, elle est d'équation
- (iii) de la forme $ay^2 + c = 0$ avec $a, c \in \mathbf{R}$ (il s'agit de deux droites parallèles, d'une droite et de l'ensemble vide);
- 39. Proposition. Soit & un espace affine euclidien. Alors toute conique non propre d'image non vide qui n'a pas de centre de symétrie est d'équation
- (iv) de la forme $y^2 = 2px$ avec p > 0 (il s'agit d'une parabole).

- 40. DÉFINITION. Dans les cas (i) et (ii), les nombres a et b sont uniques et appelés respectivement le demi-grand axe et le demi-petit axe de l'ellipse. Dans le cas (iv), le nombre p est unique et appelé le paramètre de la parabole.
- 41. COROLLAIRE (classification affine). Soit & un plan affine. Alors toute conique propre d'image non vide est, dans un repère bien choisi, est d'équation
- (i) ou bien de la forme $x^2 + y^2 = 1$ (ellipse);
- (ii) ou bien de la forme $x^2 y^2 = 1$ (hyperbole);
- (iii) ou bien de la forme $y^2 = x$ (parabole).

2.3. Leurs interprétations et définitions géométriques

42. PROPOSITION. Soit $\mathscr E$ un plan euclidien et f une conique d'image non vide qui n'est pas un cercle. Alors il existe un point $F\in D$ (appelé le foyer), un droite $D\subset \mathscr E$ ne contenant pas le point F (appelée directrice) et un réel $e\geqslant 0$ (appelé l'excentricité) tels que

$$\{M \in \mathcal{E} \mid f(M) = 0\} = \{M \in \mathcal{E} \mid FM = ed(M, D)\}.$$

Inversement, un tel ensemble est une conique et

- si e < 1, c'est une ellipse;
- si e = 1, c'est une parabole;
- si e > 1, c'est une hyperbole.
- 43. Remarque. Une conique admet donc un axe de symétrie.
- 44. Proposition. Soient $\mathscr E$ un plan euclidien et f une conique. Alors
- la conique f est une ellipse si et seulement s'il existe deux points $F, F' \in \mathcal{E}$ et un réel $a > \frac{1}{2}FF'$ tels que

$$\{M \in \mathcal{E} \mid f(M) = 0\} = \{M \in \mathcal{E} \mid MF + MF' = 2a\};$$

– la conique f est une hyperbole si et seulement s'il existe deux points $F,F'\in\mathscr{E}$ et un réel $a<\frac{1}{2}FF'$ tels que

$$\{M \in \mathcal{E} \mid f(M) = 0\} = \{M \in \mathcal{E} \mid |MF - MF'| = 2a\}.$$

45. REMARQUE. Cela permet de donner un moyen de construire géométriquement une ellipse sur une feuille.

3. Construction à la règle et au compas

3.1. Les nombres constructibles

- 46. DÉFINITION. Soit $E \subset \mathbf{R}^2$ un ensemble des points de l'espace affine euclidien \mathbf{R}^2 . On considère l'ensemble Fig(E) des objets géométriques suivants :
 - les droites (AB) avec $A, B \in E$ avec $A \neq B$;
 - les cercles de centre O de rayon AB avec $A, B, O \in E$ avec $A \neq B$.

Un point $M \in \mathbf{R}^2$ est constructible à partir de l'ensemble E s'il est l'intersection entre deux objets distincts de l'ensemble $\mathrm{Fig}(E)$. Il est constructible s'il existe des parties $E_0, \ldots, E_n \subset \mathbf{R}^2$ et des points $M_1, \ldots, M_n \in \mathbf{R}^2$ tels que

- $A_0 = \{(0,0), (1,0)\};$
- $-M \in A_n$;
- $-A_i = A_{i-1} \cup \{M_i\} \text{ pour } i > 0;$
- pour i > 0, le point M_i est constructible à partir de l'ensemble A_{i-1} .

- 47. EXEMPLE. Pour deux points $A, B \in \mathbf{R}^2$, le milieu du segment [AB] est constructible à partir des points A et B. Les points de la forme (0, n) ou (n, 0) avec $n \in \mathbf{N}$ sont constructibles.
- 48. DÉFINITION. Un nombre réel $x \in \mathbf{R}$ est constructible s'il existe deux points constructibles $M, N \in \mathbf{R}^2$ vérifiant |x| = MN.

3.2. Des outils de la théorie des corps

- 49. Théorème. L'ensemble K des nombres réels constructibles est corps. De plus, pour tout nombre réel constructible $a \in K$, le nombre $\sqrt{|a|}$ est aussi constructible.
- 50. REMARQUE. Pour la stabilité par multiplication et quotient, on utilise le théorème de Thalès. Pour la stabilité par racine carré, c'est le théorème de Pythagore qui intervient.
- 51. THÉORÈME. Soit $a \in \mathbf{R}$ un nombre réel. Alors il est constructible si et seulement s'il existe des réels $a_1, \ldots, a_n \in \mathbf{R}$ tels qu'en notant $K_1 = \mathbf{Q}(a_1)$ et $K_{i+1} = K_i(a_i)$, les degrés $[K_{i+1} : K_i]$ sont égaux à 2 et on ait $a \in K_n$.
- 52. COROLLAIRE (Wantzel). Pour tout nombre constructible $x \in K$, il est algébrique sur le corps \mathbf{Q} et le degré $[\mathbf{Q}(x):\mathbf{Q}]$ est une puissance de deux.
- 53. EXEMPLE. Le nombre $\sqrt[3]{2}$ n'est pas constructible puisque $[\mathbf{Q}(\sqrt[3]{2}):\mathbf{Q}]=3$, son polynôme minimal étant le polynôme X^3-2 .

Michèle Audin. Géométrie. EDP Sciences, 2006.

Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2017.

^[3] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.

^[4] Patrice Tauvel. Cours de géométrie. Dunod, 2000.