| Name:           |     |                 |
|-----------------|-----|-----------------|
|                 |     |                 |
| Recitation time | Dag | in advanced and |

## MATH 221 - Midterm 1 January 31, 2023

- This exam contains 7 pages (including this cover page) and 7 questions.
- Answer the questions in the spaces provided in this booklet.
- No books, calculators, or notes are allowed. You must show all your work to get credit for your answers.
- You have 1 hour and 15 minutes to complete the exam.

| Question: | 1  | 2  | 3  | 4  | 5  | 6 | 7  | Total |
|-----------|----|----|----|----|----|---|----|-------|
| Points:   | 18 | 18 | 18 | 18 | 10 | 8 | 10 | 100   |
| Score:    |    |    |    |    |    |   |    |       |

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C, \quad \int \frac{dx}{a^2 + x^2} = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C, \quad \int \frac{1}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \tan x \, dx = \ln|\sec x| + C \qquad \int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \sin^n(x) \, dx = -\frac{\sin^{n-1}(x)\cos(x)}{n} + \frac{n-1}{n} \int \sin^{n-2}(x) \, dx$$

$$\int \cos^n(x) \, dx = \frac{\cos^{n-1}(x)\sin(x)}{n} + \frac{n-1}{n} \int \cos^{n-2}(x) \, dx$$

$$\int \tan^n(x) \, dx = \frac{\tan^{n-1}(x)}{n-1} - \int \tan^{n-2}(x) \, dx$$

$$\int \sec^n(x) \, dx = \frac{\sec^{n-2}(x)\tan(x)}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2}(x) \, dx$$

$$\sin^2(x) = \frac{1-\cos(2x)}{2} \qquad \cos^2(x) = \frac{1+\cos(2x)}{2}$$

$$\sin(ax)\sin(bx) = \frac{1}{2}\cos((a-b)x) - \frac{1}{2}\cos((a+b)x)$$

$$\cos(ax)\cos(bx) = \frac{1}{2}\sin((a-b)x) + \frac{1}{2}\sin((a+b)x)$$

$$\sin(ax)\cos(bx) = \frac{1}{2}\sin((a-b)x) + \frac{1}{2}\sin((a+b)x)$$

1. Evaluate the following integrals

(a) (9 points) 
$$\int \frac{1}{x(\ln x)^2} dx$$

(b) (9 points) 
$$\int x^2 \sqrt{x^3 + 5} \, dx$$

2. Evaluate the following integrals.

(a) (9 points) 
$$\int x^5 \ln x \, dx$$

(b) (9 points)  $\int \sin^{-1}(x) dx$ , where  $\sin^{-1}(x) = \arcsin(x)$ .

3. Evaluate the following integrals.

(a) (9 points) 
$$\int \sec^4(x) \tan^4(x) dx$$

(b) (9 points) 
$$\int \tan^4(x) dx$$

4. Evaluate the following integrals.

(a) (11 points) 
$$\int \frac{1}{\sqrt{x^2 - 9}} dx$$

(b) (7 points) 
$$\int \frac{5}{16+x^2} dx$$

5. (10 points) Evaluate the following integral

$$\int_0^{\pi/2} \sin^3(x) \cos^2(x) \, dx$$

6. (8 points) Find a function f(t) such that

$$f'(t) = \sin(t)\sin(3t)$$

7. (10 points) Find the area of the region bounded by the curves y=0, x=1 and  $y=xe^{-x}$ .