# STATS 2107 Statistical Modelling and Inference II Lecture notes Chapter 5: Likelihood theory

Jono Tuke

School of Mathematical Sciences, University of Adelaide

Semester 2 2017

Maximum likelihood estimation

# Joint probability distributions

Consider independent random variables  $Y_1, Y_2, \ldots, Y_n$  and let

$$f_i(y_i;\theta)$$

denote the probability density function if  $Y_i$  is continuous and the probability mass function if  $Y_i$  is discrete. The joint probability density function or probability mass function is then given by

$$f(\mathbf{y};\theta) = \prod_{i=1}^n f_i(y_i;\theta).$$

#### **Definitions**

▶ The function

$$L(\theta; \mathbf{y}) = f(\mathbf{y}; \theta)$$

is called the likelihood function.

▶ The function

$$\ell(\theta; \mathbf{y}) = \log L(\theta; \mathbf{y})$$

is called the log-likelihood.

# **Examples**

- ▶ Suppose  $y_1, y_2, ..., y_n$  are *i.i.d.*  $Po(\lambda)$  observations.
- Suppose  $y_1, y_2, \ldots, y_n$  are *i.i.d.*  $N(\mu, \sigma^2)$  observations with  $\sigma^2$  known.

#### Definition

If  $y_1, y_2, \ldots, y_n$  are independent observations with log-likelihood  $\ell(\theta; \mathbf{y})$ , then the function

$$S(\theta; \mathbf{y}) = \frac{\partial \ell}{\partial \theta}$$

is called the score function.

# **Examples**

- ▶ Suppose  $y_1, y_2, ..., y_n$  are *i.i.d.*  $Po(\lambda)$
- Suppose  $y_1, y_2, \ldots, y_n$  are *i.i.d.*  $N(\mu, \sigma^2)$  observations with  $\sigma^2$  known.

#### Definition

If  $y_1, y_2, \ldots, y_n$  are independent observations with log-likelihood  $\ell(\theta; \mathbf{y})$ , then the maximum likelihood estimate (MLE)  $\hat{\theta}$  is the value of  $\theta$  that maximizes  $\ell(\theta; \mathbf{y})$ .

#### Remarks

In practice,  $\hat{\theta}$  is usually derived by solving the  ${\bf score}$   ${\bf equation}$ 

$$S(\theta; \mathbf{y}) = 0.$$

We assume  $\hat{\theta}$  exists and is unique.

# **Examples**

- ▶ Suppose  $y_1, y_2, ..., y_n$  are *i.i.d.*  $Po(\lambda)$  observations.
- Suppose  $y_1, y_2, \ldots, y_n$  are *i.i.d.*  $N(\mu, \sigma^2)$  observations with  $\sigma^2$  known.



# Cramér-Rao inequality

Suppose that  $Y_1, Y_2, \ldots, Y_n$  are i.i.d. with pdf  $f(y; \theta)$ . Subject to regularity conditions on  $f(y; \theta)$ , we have that for any **unbiased** estimator  $\tilde{\theta}$  for  $\theta$ ,

$$Var( ilde{ heta}) \geq I_{ heta}^{-1}$$

where

$$I_{\theta} = E\left[\left(\frac{\partial \ell}{\partial \theta}\right)^2\right].$$

### Fisher information

 $\emph{I}_{\theta}$  is known as the Fisher information about  $\theta$  in the observations.

#### Alternative form

Under the same regularity conditions as for the Cramér-Rao inequality:

$$I_{\theta} = -E \left[ rac{\partial^2 \ell}{\partial \theta^2} 
ight].$$

**Proof** 

# **Examples**

- ▶ Suppose  $y_1, y_2, ..., y_n$  are *i.i.d.*  $Po(\lambda)$  observations.
- ▶ If  $y_1, y_2, ..., y_n$  are *i.i.d.*  $N(\mu, \sigma^2)$  observations with  $\sigma^2$  known.

#### Theorem

Suppose  $y_1, y_2, \ldots, y_n$  are independent observations with log-likelihood  $\ell(\theta^*; \mathbf{y})$ , where  $\theta^*$  denotes the true value of the parameter. Under certain regularity conditions on  $f(\mathbf{y}; \theta)$ ,

- ►  $E(S(\theta^*; Y)) = 0.$
- $\triangleright$   $var(S(\theta^*; \mathbf{Y})) = I_{\theta^*}.$
- ► The distribution of

$$\frac{S(\theta^*; \mathbf{Y})}{\sqrt{I_{\theta^*}}}$$

converges to N(0,1) as  $n \to \infty$ .

#### Theorem

Suppose  $y_1, y_2, \ldots, y_n$  are independent observations with log-likelihood  $\ell(\theta^*; \mathbf{y})$ , where  $\theta^*$  denotes the true value of the parameter. Under certain regularity conditions on  $f(\mathbf{y}; \theta)$ , then asymptotically

$$\hat{\theta} \sim N(\theta^*, I_{\theta^*}^{-1}),$$

where  $\hat{\theta}$  is the MLE for  $\theta$ .

# **Examples**

▶ Suppose  $y_1, y_2, ..., y_n$  are *i.i.d.*  $Po(\lambda)$  and recall

$$\hat{\lambda} = \bar{y}$$
 and  $I_{\lambda} = \frac{n}{\lambda}$ .

The preceding theory states that

- $ightharpoonup \hat{\lambda}$  is "asymptotically unbiased".
- ▶ The large-sample standard error is  $\sqrt{\lambda/n}$ .
- ▶ The distribution of

$$\frac{\hat{\lambda} - \lambda}{\sqrt{\lambda/n}}$$

converges to N(0,1) as  $n \to \infty$ .

#### Check directly



# Approximate confidence intervals

Suppose  $y_1, y_2, \dots, y_n$  are independent observations with log-likelihood  $\ell(\theta; \mathbf{y})$ .

An approximate  $100(1-\alpha)\%$  confidence interval for  $\theta$  is given by

$$\left(\hat{\theta}-z_{\alpha/2}\sqrt{I_{\hat{\theta}}^{-1}},\ \hat{\theta}+z_{\alpha/2}\sqrt{I_{\hat{\theta}}^{-1}}\right).$$

#### Wald test statistic

Suppose  $Y_1, \ldots, Y_n$  are i.i.d. observations with log-likelihood  $\ell(\theta; \mathbf{Y})$ .

The Wald test statistic for

$$H_0: \theta = \theta_0$$

is given by

$$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{I_{\hat{\theta}}^{-1}}}.$$

If  $H_0: \theta = \theta_0$  is true then, the distribution of Z converges to N(0,1) as  $n \to \infty$ .

A test with significance level approximately  $\alpha$  is given by the rule:

Reject 
$$H_0$$
 if  $|Z| \ge z_{\alpha/2}$ .

#### Score test statistic

Suppose  $Y_1, \ldots, Y_n$  are i.i.d. observations with log-likelihood  $\ell(\theta; \mathbf{Y})$ .

The score test statistic for

$$H_0: \theta = \theta_0$$

is given by

$$U=rac{S( heta_0; \mathbf{Y})}{\sqrt{I_{ heta_0}}}.$$

If  $H_0: \theta = \theta_0$  is true then, the distribution of U converges to N(0,1) as  $n \to \infty$ .

A test with significance level approximately  $\alpha$  is given by the rule:

Reject 
$$H_0$$
 if  $|U| \ge z_{\alpha/2}$ .

# Log-likelihood ratio test statistic

Suppose  $Y_1, \ldots, Y_n$  are i.i.d. observations with log-likelihood  $\ell(\theta; \mathbf{Y})$ .

The log likelihood-ratio test statistic is given by

$$G^2 = -2(\ell(\theta_0; \mathbf{Y}) - \ell(\hat{\theta}; \mathbf{Y})).$$

If  $H_0: \theta = \theta_0$  is true then, under suitable regularity conditions, the distribution of  $G^2$  converges to  $\chi_1^2$  as  $n \to \infty$ .

A test with significance level approximately  $\alpha$  is given by the rule:

Reject 
$$H_0$$
 if  $g^2 \ge \chi^2_{1,\alpha}$ .

# Example

Suppose  $y_1, y_2, \dots, y_n$  are independent  $Po(\lambda)$  observations.

Suppose we wish to test  $H_0$ :  $\lambda = \lambda_0$ .

Calculate the Wald test statistic, the Score test statistic, and the log-likelihood ratio test statistic.



# Setup

Suppose  $y_1, y_2, \ldots, y_n$  are independent observations with log-likelihood  $\ell(\theta; \mathbf{y})$  for a scalar parameter  $\theta$  and consider an invertible, twice differentiable function,  $\Phi$ . Taking  $\phi = \Phi(\theta)$  we can take  $\phi$  as the parameter of interest rather than  $\theta$ .

# Example Bernoulli

Suppose  $y_1, y_2, \dots, y_n$  are i.i.d. Bernoulli observations with success probability  $\theta$ .

Consider the log-odds,

$$\Phi(\theta) = \log\left(\frac{\theta}{1-\theta}\right).$$

# Relationship between likelihoods

Let the log-likelihoods with respect to  $\theta$  and  $\phi$  be given respectively by

$$\ell_{\theta}(\theta; \mathbf{y})$$
 and  $\ell_{\phi}(\phi; \mathbf{y})$ .

It can be checked that the two likelihoods are related by

$$\ell_{\phi}(\phi; \mathbf{y}) = \ell_{\theta}(\Phi^{-1}(\phi); \mathbf{y})$$

and

$$\ell_{\theta}(\theta; \mathbf{y}) = \ell_{\phi}(\Phi(\theta); \mathbf{y}).$$

# Example

Calculate the log-likelihoods for both parameterizations of the Bernoulli.

#### Theorem

Suppose  $\ell_{\theta}(\theta; \mathbf{y})$  and  $\ell_{\phi}(\phi; \mathbf{y})$  are equivalent parametrizations of the same problem. Then  $\hat{\phi} = \Phi(\hat{\theta})$ .

**Proof** 

#### Invariance of HT

For independent Bernoulli observations  $y_1, y_2, \dots, y_n$  the hypothesis  $H_0: \theta = 0.5$  can be expressed equivalently as  $H_0: \phi = 0$  if

$$\phi = \log\left(\frac{\theta}{1-\theta}\right).$$

However, it can be checked that the Wald test statistics corresponding to the two equivalent formulations of the problem are not equal.

#### **Theorem**

Suppose  $y_1, y_2, \dots, y_n$  are independent observations with log-likelihood function

$$\ell_{\theta}(\theta; \mathbf{y}) = \ell_{\phi}(\phi; \mathbf{y})$$

where  $\phi = \Phi(\theta)$ . Consider the hypothesis

$$H_0: \theta = \theta_0 \quad \Leftrightarrow \quad H_0: \phi = \phi_0$$

and let  $u_{\theta}$  and  $u_{\phi}$  be the score statistics defined from the two log-likelihood functions.

If  $\Phi$  is 1-1 and onto and twice continuously differentiable with  $\Phi'(\theta) \neq 0$  then

$$|u_{\phi}|=|u_{\theta}|.$$

"Goodness of fit"

#### Multinomial distribution

The integer-valued random variables,  $Y_1, Y_2, ..., Y_k$  are said to follow the multinomial distribution if their joint probability function is given by

$$p(y_1, y_2, \dots, y_k) = \binom{n}{y_1, y_2, \dots y_k} \pi_1^{y_1} \pi_2^{y_2} \cdots \pi_k^{y_k}$$

for

$$y_1, \ldots, y_k \geq 0; \quad y_1 + y_2 + \ldots + y_k = n,$$

where

$$\pi_1, \pi_2, \ldots, \pi_k \geq 0$$

with

$$\pi_1 + \pi_2 + \cdots + \pi_k = 1$$

### Mean and variance of multinomial

It can be shown for the multinomial- $(n, \pi)$  distribution that

$$E(Y_i) = n\pi_i$$
  
 $var(Y_i) = n\pi_i(1 - \pi_i)$   
 $cov(Y_i, Y_j) = -n\pi_i\pi_j$  if  $i \neq j$ .

# Setup

Suppose now that we observe multinomial data  $Y_1, Y_2, \ldots, Y_k$  and wish to test the hypothesis

$$H_0: \pi = \pi_0$$

for some specific set of probabilities  $\pi_0$ .

### Definition

The "goodness of fit" test statistic is given by

$$X^{2} = \sum_{i=1}^{k} \frac{(Y_{i} - n\pi_{0i})^{2}}{n\pi_{0i}}.$$

#### **Theorem**

If  $H_0$ :  $\pi=\pi_0$  is true, then for large n the distribution of  $X^2$  is approximately  $\chi^2_{k-1}$ .

Reject if  $x^2 \ge \chi^2_{k-1,\alpha}$ .

# Example

A die was rolled 48 times and the following data recorded.

| Value     | 1 | 2  | 3 | 4 | 5 | 6 | total |
|-----------|---|----|---|---|---|---|-------|
| Frequency | 8 | 10 | 9 | 7 | 7 | 7 | 48    |

Test the hypothesis that the die is fair.

# Example

In an occupational health and safety study, 414 machinists at a particular factory were recorded over 3 months and the number of accidents were recorded.

| Accidents | 0   | 1  | 2  | 3 | 4 | 5 | 6 | 7 | 8 | total |
|-----------|-----|----|----|---|---|---|---|---|---|-------|
| Frequency | 296 | 74 | 26 | 8 | 4 | 3 | 2 | 0 | 1 | 414   |

Can these observations be modelled by i.i.d. Poisson observations?

#### Theorem

If  $H_0$  is true, then for large n, the distribution of  $X^2$  is approximately  $\chi^2_{k-q-1}$  where q is the number of parameters that have to be estimated to compute  $\pi$ .