Exploring data with R

IMT 573A - Data Science 1 - Theoretical Foundations

6-Oct-2020 (Week 2, Day 3)

Our Zoom class sessions will be recorded.

Today's topic

- Review checklist of exploratory data analysis
- Markdown and Rmarkdown
- Data visualization for exploring data
- ggplot basics
- Lab2

DUE

- Lab2: upload by tomorrow (Oct 9) 9am PT
- PS1: deadline next Tuesday (Oct 13) 9am PT

Exploring Data: A checklist

- 1. Interpret your data
- 2. Formulate your question
- 3. Read in your data
- 4. Examine your data, look at the top and bottom of your data, look at structure
- 5. Tidy data (Data cleaning)
- 6. Try the easy solution first
- 7. Challenge your solution, validate with external data
- 8. Follow up with new interesting questions/directions

Think about your data! Think about your question!

RMarkdown

Writing in Markdwon

Markdown is a lightweight markup language that is used to format and structure text. It is a kind of "code" that you write in order to annotate plain text

This is a paragraph in which we'll add **bold text**, _italicized text_, and `code` into the middle of a sentence

This is a paragraph in which we'll add **bold text**, italicized text, and code into the middle of a sentence

Syntax	Formatting
text	italicized using underscores (_)
text	bolded using two asterisks (*)
`text`	inline code with backticks () text ~~strike-through~~ using tildes (~`)

Markdown

Writing in Markdown

Text Blocks

```
# Top Level header
## Second Level Header
Here is a normal paragraph
- List item 1
- List item 2
- List item 3
block of code
across multiple lines
> Here is a block quote
```

Top Level header

Second Level Header

Here is a normal paragraph

- List item 1
- List item 2
- List item 3

block of code across multiple lines

Here is a block quote

```
# Header (use ## for 2nd-level, ### for 3rd, etc.)

Code section (3 back ticks) that encapsulate the code

Bulleted/unordered lists (hyphens)

Block quote
```

```
```{r import titanic data}
Let's write some R code here
```
```

Markdown can even make tables, create hyperlinks, and include images!

Rmarkdown (review)

. Rmd Content

Header information

```
title: "Example"
author: "YOUR NAME HERE"
date: "1/30/2017"
output: html_document
---
```

RStudio knitting

RStudio's Knit button

R code chunks

```
```{r}
Execute R code in here
x <- 201
```</pre>
```

Markdown lists

```
```{r echo=FALSE}
markdown.list <- "
- Lions
- Tigers
- Bears
"
```
```</pre>
```

Would output a list that looks like:

- Lions
- Tigers
- Bears

### Rendering Tables

```
Including Tables
   ```{r echo=FALSE}
library(knitr) # make sure you load this library (once per doc)

# make a data frame
letters <- c("a", "b", "c")
numbers <- 1:3
df <- data.frame(letters = letters, numbers = numbers)

# render the table
kable(df)
   ```</pre>
```

#### https://rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf

#### R Markdown Cheat Sheet

learn more at rmarkdown.rstudio.com

Save

html\_document:

toc: TRUE

```{r setup, include=FALSE}

16 Markdown is a simple formatting

17 syntax for authoring HTML, PDF,

24 For more details on using R Markde

25 see http://rmarkdown.rstudio.com.

render("report.Rmd", output_file = "report.html")

18 and MS Word documents.

/Desktop/R-Markdown-Cheatsheet/

10 knitr::opts_chunk\$set(echo = TRUE)

15 This is an R Markdown document. Options

Spell

Check

Open a new .Rmd file at File ➤ New File ➤ R Markdown.

Use the wizard that opens to pre-populate the file with a

Open in

window

title:

author:

13 - ## R Markdown

20 - ```{r cars}

21 summary(cars)

Console R Markdown

· library(rmarkdown)

4 output:

template

.Rmd structure

YAML Header

Optional section of

options written as

At start of file

render (e.g. pandoc)

key:value pairs (YAML)

Between lines of ---

Text

Narration formatted with

markdown, mixed with:

Code chunks

Chunks of embedded

Begins with ```{r}

R Markdown will run the

It will use the location of

Important chunk options

(default = FALSE)

cache - cache results for future knits

results in (default = "cache/")

cache.path - directory to save cached

child - file(s) to knit and then include

code and append the

code. Each chunk:

ends with ```

results to the doc.

the .Rmd file as the

working directory

Workflow

2 Write document

by editing template

Publish

Go to

code

chunk

Run all

previous

chunks

Run

Run

code

chunk(s)

current

chunk

Find and

Insert

code

chunk

Modify

chunk

location

.Rmd files

An R Markdown (.Rmd) file is a record of your research. It contains the code that a scientist needs to reproduce your work along with the narration that a reader needs to understand your work.

Knit document to create report

~/Desktop/R-Markdown-Cheatsneet/report.html

This is an R Markdown document. Markdown is a simple

formatting syntax for authoring HTML, PDF, and MS Word

Mean

1st Qu.: 26.00

Median : 36.00

3rd Qu.: 56.00

Max. :120.9

: 42.98

Use knit button or render() to knit

report.html | 2 Open in Browser

R Markdown

RStudio

documents.

summary(cars)

R Markdown

R Markdown

:15.4

For more details on using R Markdown see

3rd Qu.:19.0

Max. :25.0

New Folder Delete

report.Rmd

http://rmarkdown.rstudio.com

Preview Output

Publish •

in IDE window

Reproducible Research

At the click of a button, or the type of a command, you can rerun the code in an R Markdown file to reproduce your work and export the results as a finished report.

Publish (optional)

Synch publish button

to web or server

to accounts at

· rpubs.com.

shinyapps.io

Reload document

Find in document

output document

Examine build log

in R Markdown console

Use output file that is

saved alongside .Rmd

render()

Use rmarkdown::render()

to render/knit at cmd line.

Important args:

output_format

output_file

output_dir

input - file to render

output_options - List of

envir - environment to

encoding - of input file

Global options

Set with knitr::opts_chunk\$set(), e.g.

knitr::opts_chunk\$set(echo = TRUE)

message - display code messages in

render options (as in YAML)

params - list of params to use

evaluate code chunks in

File path to

RStudio Connect

Dynamic Documents

You can choose to export the finished report as a html, pdf, MS Word, ODT, RTF, or markdown document; or as a html or pdf based slide show.

Interactive Documents

Turn your report into an interactive Shiny document in 4 steps

- Add runtime: shiny to the YAML header.
- Call Shiny input functions to embed input objects.
- Call Shiny render functions to embed reactive output.
- Render with rmarkdown::run or click Run Document in RStudio IDE

Embed a complete app into your document with shiny::shinyAppDir()

 Your report will rendered as a Shiny app, which means you must choose an html output format, like html_document, and serve it with an active R Session.

Parameters

Parameterize your documents to reuse with

different inputs (e.g., data sets, values, etc.)

params:

n: 100

d: !r Sys.Date()

Embed code with knitr syntax

581.3 KB

Feb 26, 2016, 3:36 PM

Feb 26, 2016, 3:36 PM

Inline code Insert with `r <code>`. Results appear as text without code. Built with

Built with 3.2.3 `r getRversion()

One or more lines surrounded with ```{r} and ```. Place chunk options within curly braces, after r. Insert with

dependson - chunk dependencies for

echo - Display code in output document

engine - code language used in chunk

caching (default = NULL)

(default = TRUE)

Code chunks ``{r echo=TRUE} getRversion() getRversion() ## [1] '3.2.3'

fig.align - 'left', 'right', or 'center' (default = 'default')

fig.cap - figure caption as character string (default = NULL)

fig. height, fig.width - Dimensions of

'hide' - do not display results

`{r include=FALSE}

results (default = 'markup') 'asis' - passthrough results

document (default = TRUE)

Call parameters

narams\$<name>

Add parameters

parameters in the

header as sub-values

Create and set

of **params**

Today's date Call parameter is `r params\$d` values in code as

Indent 2

Pandoc's Markdown

Write with syntax on the left to create effect on right (after render)

Plain text End a line with two spaces to start a new paragraph. *italics* and **bold** `verbatim code` sub/superscript^2^~2~ ~~strikethrough~~ escaped: * _ \\ endash: --, emdash: --equation: $A = \pi^{2}$ equation block:

\$\$E = mc^{2}\$\$

> block quote # Header1 {#anchor}

Header 2 {#css_id}

Header 3 {.css_class} #### Header 4

Header 5

Header 6

<!--Text comment-->

\textbf{Tex ignored in HTML} HTML ignored in pdfs

<http://www.rstudio.com> [link](www.rstudio.com) Jump to [Header 1] (#anchor)

![Caption](smallorb.png)

* unordered list

+ sub-item 1 + sub-item 2

* item 2

Continued (indent 4 spaces)

- sub-sub-item 1

ordered list

2. item 2

i) sub-item 1 A. sub-sub-item 1

(@) A list whose numbering continues after

(@) an interruption Term 1

> Right | Left | Default | Center -----:|:-----: 12 | 12 123 123 123

Definition 1

 slide bullet 1 - slide bullet 2

(>- to have bullets appear on click) horizontal rule/slide break:

A footnote [^1]

[^1]: Here is the footnote.

When you render. runs the R code then converts th End a line with two spaces to start a new paragraph.

output v

html_docum

pdf_docume

word_docum

odt_docume

rtf_documen

md_docume

github_docu

ioslides_pres

slidy_present

beamer_pres

Customize or

with sub-opt

(listed at righ

Use .tabset c:

to place sub-

Tabset {.t

End tabs

Crea

Create

inst/rr

In the

sk

ar

Install

Access

templa

into tabs

Tab 1

text 1

text 2

Tab 2

html tabs

Set a docu default out in the YAMI

block quote

Header1

Plain text

italics and bold

verbatim code

sub/superscript²2

endash: -, emdash: -

equation: $A = \pi * r^2$

strikethrough

escaped: * _ \

equation block:

Header 2

Header 3 Header 4

Header 5

Header 6 HTML ignored in pdfs

http://www.rstudio.com link

Jump to Header 1 image:

Caption

 unordered list sub-item 1 sub-item 2

sub-sub-item 1

 item 2 Continued (indent 4 spaces)

 ordered list item 2

> sub-item 1 A. sub-sub-item

1. A list whose numbering

continues after 2. an interruption

Definition 1

12 12 123 123 123 1 | 1 | 1 | 1 |

123

slide bullet 1

slide bullet 2

(>- to have bullets appear on click)

Here is the footnote.

horizontal rule/slide break:

A footnote

name: My Temp

template.yaml

wizard New Fi R Mark

Data visualization basics (needed for exploring data)

Human brain is exceptionally good at visual pattern

Map dimensions of data to visual characteristics

- Location
- Size/Length
- Color
- Shape

Univariate - single variable, 1D data

Visualization — Histograms/KDE

Density plot (KDE)

A smoothed, continuous version of a histogram estimated from data.

KDE - most common form of estimation a continuous curve (the kernel) is drawn at individual data point and all of these curves are then added together to make a single smooth density estimation.

Histograms & KDE

When histograms fail — Histograms are great for exploring single variable from one category, but not great for a single variable across multiple categories.

Side-by-Side Histogram with Multiple Airlines

Density plot

A smoothed, continuous version of a histogram estimated from the data.

Bivariate - 2 variables.

Scatterplot - Qualitative (continuous) x Quant (continuous), correlation

Bivariate - 2 variables.

Scatterplot - Qualitative (continuous) x Quant (continuous), correlation

Bivariate - 2 variables.

Boxplot - Continuous x Categorical

Grade Distribution by Course

Bivariate - 2 variables.

Boxplot - Continuous x Categorical

Distribution of Cholesterol by Death Cause and Gender

Bivariate - 2 variables.

bar chart - Continuous x Categorical

Bivariate - 2 variables.

bar chart - Continuous x Categorical

Stacked Barchart - Happiness index across cities

Data visualization basics (needed for exploring data)

Human brain is exceptionally good at visual pattern

- Time-series: A single variable is captured over a period of time
 line chart
- Ranking: Categorical subdivisions are ranked in ascending or descending order - bar chart
- Part-to-whole: Categorical subdivisions are measured as a ratio to the whole (i.e., a percentage out of 100%) - pie chart
- Deviation: Categorical subdivisions are compared again a reference - bar chart

- Frequency distribution: Shows the number of observations of a particular variable for given interval - histogram
- Correlation: Comparison between observations represented by two variables (X,Y) to determine if they tend to move in the same or opposite directions - scatter plot
- Nominal comparison: Comparing categorical subdivisions in no particular order - bar chart
- Geographic or geospatial: Comparison of a variable across a map - cartogram

Code to visual - ggplot

Basic plotting

ggplot basics

ggplot2 is now over 10 years old and is used by hundreds of thousands of people to make millions of plots!

It is a system for creating graphics, based on The Grammar of Graphics.

Installation

```
# The easiest way to get ggplot2 is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just ggplot2:
install.packages("ggplot2")
```

http://r-statistics.co/ggplot2-Tutorial-With-R.html#1.%20The%20Setup

Basic plotting

ggplot basics

ggplot2 is now over 10 years old and is used by hundreds of thousands of people to make millions of plots!

Setup: First tell ggplot what data to use.

Installation

```
# The easiest way to get ggplot2 is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just ggplot2:
install.packages("ggplot2")
```

http://r-statistics.co/ggplot2-Tutorial-With-R.html#1.%20The%20Setup

Basic plotting ggplot basics

Setup:

- First tell ggplot what data to use.
- Add whatever aesthetics you want to apply to your ggplot (inside **aes()** argument) such as X and Y axis by specifying the respective variables from the dataset.

- The variable based on which the color, size, shape and stroke should change can also be

specified

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
```

displ: displacement — represents engine size

hwy: highway miles per gallon — represents Fuel efficiency

What does the plot tell you?
Can you figure out how X and Y are related?


```
ggplot(data = <DATA>) +

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

A **geom** is the geometrical object that a plot uses to represent data. Here we are using **point** geom. (bar charts use **bar** geoms, line charts use **line** geoms, **boxplots** use boxplot geoms)

Each geom function takes a **mapping** argument. This defines how variables in your dataset are mapped to visual properties.

The **mapping** argument is always paired with aes(), and the x and y arguments of aes() specify which variables to map to the x and y axes.

```
ggplot(data = <DATA>) +
     <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
```



```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))
```



```
ggplot(data = <DATA>) +
     <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

Aesthetic mappings

A visual property of the objects in your plot. Aesthetics include:

- size,
- shape, or
- color of your points.

Display a point in different ways by changing the values of its aesthetic properties.

Mapping a variable to the color aesthetic

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))
```



```
ggplot(data = <DATA>) +

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

Aesthetic mappings

A visual property of the objects in your plot. Aesthetics include:

- size,
- shape, or
- color of your points.

Display a point in different ways by changing the values of its aesthetic properties.

Mapping a variable to the size aesthetic

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, size = class))
#> Warning: Using size for a discrete variable is not advised.
```



```
ggplot(data = <DATA>) +
     <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

Aesthetic mappings

All three give the same result:

```
ggplot(mpg) +
geom_point(aes(x=displ,y=hwy))
```

```
ggplot(mpg, aes(x=displ,y=hwy)) +
geom_point()
```

Mapping a variable to the size aesthetic

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, size = class))
#> Warning: Using size for a discrete variable is not advised.
```



```
ggplot(data = <DATA>) +

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

Aesthetic mappings

A visual property of the objects in your plot. Aesthetics include:

- size,
- shape, or
- color of your points.

Display a point in different ways by changing the values of its aesthetic properties.

Mapping a variable to the alpha aesthetic

Controls the transparency of the points

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, alpha = class))
```



```
ggplot(data = <DATA>) +

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Understanding the <MAPPINGS> component.

Aesthetic mappings

A visual property of the objects in your plot. Aesthetics include:

- size,
- shape, or
- color of your points.

Display a point in different ways by changing the values of its aesthetic properties.

Mapping a variable to the **shape** aesthetic

Controls the transparency of the points

```
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hw, shape = class))

class

class

2seater

compact

midsize

minivan

pickup

subcompact

suv
```

Setting aesthetic manually

To set an aesthetic manually, set the aesthetic by name as an argument of your geom function; i.e. it goes *outside* of aes().

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), color = "blue")
```


Here color doesn't convey information about a variable, but only changes the appearance of the plot.

Setting aesthetic manually

To set an aesthetic manually, set the aesthetic by name as an argument of your geom function; i.e. it goes *outside* of aes().

for that aesthetic:

You'll need to pick a level that makes sense

- The name of a color as a character string.
- The size of a point in mm.
- The shape of a point as a number, as shown

R has 25 built in shapes that are identified by numbers.

Changing the geom in your plot (statistical transformations of the data)

Change the geom function

```
ggplot(data = diamonds) +
  geom_bar(mapping = aes(x = cut))
```


Statistical transformations

1. **geom_bar()** begins with the **diamonds** data set

2. **geom_bar()** transforms the data with the "count" stat, which returns a data set of cut values and counts.

3. **geom_bar()** uses the transformed data to build the plot. cut is mapped to the x axis, count is mapped to the y axis.

geom_bar

You can color a bar chart using either the **color** aesthetic, or, more usefully, **fill**:

```
ggplot(data = diamonds) +
  geom_bar(mapping = aes(x = cut, fill = cut))
```


geom_boxplot

```
ggplot(data = diamonds) +
  geom_boxplot(aes(x=cut, y=price))
```


geom_histogram

ggplot(diamonds, aes(x=price)) + geom_histogram()

visualization of the density of the distribution of price.

geom_histogram

visualization of the density of the distribution of price.

Changing width of each bin to make them wider or thinner

```
ggplot(diamonds, aes(x=price)) +
geom_histogram(binwidth=2000)
```



```
ggplot(diamonds, aes(x=price)) +
geom_histogram(binwidth=200)
```


To facet your plot by a single variable, use facet_wrap(). The first argument of facet_wrap() should be a formula, which you create with \sim followed by a variable name

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(\sim class, nrow = 2)
                                                      2seater
                                                                                   midsize
                                                                                                 minivan
                                                                    compact
                                               40 -
                                               30 -
                                               20 -
                                              hwy
                                                      pickup
                                                                   subcompact
                                                                                    suv
                                               40 -
                                               30 -
```

To facet your plot on a combination of 2 variables, use facet_grid(). The first argument of facet_wrap() is also a formula, which should be 2 variable names separated with \sim

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ cyl)
                                40 -
                                40 -
                                30 -
                                20 -
```

If you prefer to not facet in the rows or columns dimension, use a instead of a variable name, e.g. + facet_grid($\cdot \sim cyl$).

```
ggplot(data = mpg) +
 geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(. ~ cyl)
```

Another example

```
ggplot(diamonds, aes(x=price)) +
geom_histogram(binwidth=200) +
facet_wrap(~ clarity)
```


Common Problems

As you start to run R code, you're likely to run into problems. Don't worry — it happens to everyone.

- Start by carefully comparing the code that you're running to the code in the book.
- R is extremely picky, and a misplaced character can make all the difference.
- Make sure that every (is matched with a) and every "is paired with another".
- Sometimes you'll run the code and nothing happens. Check the left-hand of your console: if it's a +, it means that R doesn't think you've typed a complete expression and it's waiting for you to finish it. In this case, it's usually easy to start from scratch again by pressing ESCAPE to abort processing the current command.
- One common problem when creating ggplot2 graphics is to put the + in the wrong place: it has to come at the end of the line, not the start. In other words, make sure you haven't accidentally written code like this:

```
ggplot(data = mpg)
+ geom_point(mapping = aes(x = displ, y = hwy))
```

LAB: Exploring the titanic data

LAB: Exploring the titanic data

Sample solution: https://bio304-class.github.io/bio304-fall2017/data-story-titanic.html

Other useful references to learn plotting:

Data Visualization with ggplot2

Lesson 2: Visualizing Data Using ggplot2

https://bookdown.org/mikemahoney218/IDEAR/visualizing-your-data.html

https://r4ds.had.co.nz/data-visualisation.html

Next class

dplyr

TUE, OCT 13

Data Manipulation

DUE: Problem Set 1 - Exploring Data

Required Reading:

★ Wickham and Grolemund (2017). R for Data Science. Chapters 9-14. OReilly Media, Inc.

Lab: Working with Data Part I

DUE

- Lab2: upload by tomorrow (Oct 9) 9am PT
- PS1: deadline next Tuesday (Oct 13) 9am PT