Progress Report: 4/27/2018

Ansys Fluent Simulation Group

•••

Eno Shira
Jachin Philip
Nicholas O'Brien
Bob Newman

Overview

Mixing identical fluids in varying geometries

Pressure variations within flow domains

Discrete particle tracking

Time transient solutions

Geometry Variation of the pipes

- See the effect on mixing of two identical fluids whilst varying inlet angles
- Two inlets and one outlet i.e. a faucet or a shower head and results could be applied for ex. two conjoining flows in a river for mixing of dyes
- 1 cm diameter pipe with outlet pipe 10 cm in length

The different geometries

60 degree angle entry

90 degree angle entry

The different geometries contd.

• 120 degree angle entry

• 180 degree angle entry(T-Pipe)

The different geometries cont. 2

• 240 degree angle entry

• 300 degree angle entry

Data: Level of mixing

					-(0)								
<u>Dimensions</u> Outlet	Tes t#	Inlet 1 velocity	Inlet 2 Velocity	Type of flow	Mass Flow rate for Inlet	Mass Flow rate	Mass Flow rate	Mixing Level 60-degree	Mixing Level 90-	Mixing level 120-	Mixing Level 180- degree	Mixing Level 240-	Mixing Level 300-degree
Length: ~10		(m/s)	(m/s)		1	for Inlet 2	for Outlet	bend	degree	degree	bend	degree	bend
cm					[kg s^-1]	[kg s^-1]	[kg s^-1]	Cold Schoolsen conserve	bend	bend	(T-pipe)	bend	Sold Sold Sold Sold Sold Sold Sold Sold
Pipe Outlet surface area: 1 cm diameter Pipe inlet surface area(s): 1 cm diameter Simulation type: Steady state	1	.005	.005	Laminar	0.00039038 1	0.000390 381	- 0.000780 921	No mixing	No mixing	No mixing	No mixing	No mixing	no mixing
	2	.01	.01	Laminar	0.00078076	0.000780 763	- 0.001561 23	No mixing	No mixing	No mixing	No mixing	No mixing	No mixing
	3	.5	.5	Turbulent	0.0390381	0.03903 81	- 0.077993 6	No mixing	No mixing	No mixing	No mixing	No mixing	No mixing
	4	1	1	Turbulent	0.0779936	0.077993 6	- 0.156308	No mixing	No mixing	No mixing	No mixing	No mixing	No mixing
	5	.001	.003	Laminar	7.80763e- 005	0.000234 229	- 0.000312 303	Very Little mixing	Envelopi ng flow	Little mixing	Little mixing	Little mixing	Little mixing
	6	.005	.1	Laminar	0.00039038 1	0.007807 63	- 0.008204 48	Very Little mixing	Envelopi ng flow	Little mixing	Little mixing	Little mixing	Little mixing
	6	.5	1.5	Turbulent	0.0390381	0.11711 4	- 0.156079	Very Little mixing	Little mixing	Little mixing	Little mixing	Little mixing	Little mixing
	8	.5	5	turbulent	0.0390381	0.390381	0.429524	No mixing	No mixing	No mixing	No mixing	No mixing	No mixing
	9	.5	20	Turbulent	0.0390381	1.56153	1.60008	Envelopin g flow	Envelopi ng flow	Envelopi ng flow	Enveloping flow	Envelopi ng flow	Enveloping flow
	10	.5	.6	Turbulent	0.0391342	0.046961 1	0.086173 2	Little mixing	Little mixing	Little mixing	Better mixing	better mixing	Better mixing

Velocity profiles

Laminar Flow

Turbulent

Mixing levels

No mixing Enveloping flow

1000 Streamlines for each inlet

Mixing levels Cont.

Little mixing Better mixing

Conclusions

- Flow through two inlets of a tighter angle seem to go down their own paths
- As the angle of entry for two inlets gets bigger and bigger, a mixing chamber-esque volume seems to form
- Faucets and shower pipes seem to have two inlets that also go into mixing chamber volume
- Mixing seems to be greater in turbulent flow situations when compared to laminar

Pressure Variation

- Introduce pressure differences throughout pipe to simulate pressurized flow
- 1 inlet, 2 outlets
- 2 kPa gauge pressure at inlet, 500 Pa at outlet 1, atmospheric pressure at outlet 2
- Air cell zone material
- 40 cm long, 3 cm diameter
- Re number ≈ 406

Pressure max: 1,739 Pa

Pressure min: 0 Pa

Velocity Streamline of Pressurized Pipe

Velocity max: 2.759 m/s

Velocity min: 0 m/s

Pressure Variation Using Carbon Dioxide

- Same pipe dimensions as previous case
- Re number \cong 6470

Pressure max: 1,764

Pa

Pressure min: 0 Pa

Velocity Streamlines with Carbon Dioxide Material

Velocity Streamlines with CO₂- Double Pressure

- Test Case 2: double pressures at inlet and outlets
- Re number $\approx 11,300$

Pressure max: 3,413

Pa

Pressure min: 0 Pa

Resultant Velocity Streamlines- Double Pressure CO₂

Inlet View

Velocity max: 3.368 m/s Velocity min: 0 m/s

Outlet View

Deductions

- Changing the working fluid from Air to Carbon Dioxide changed the velocity of the streamlines
- ~24% velocity increase with change from Carbon Dioxide to Air.
 - Increase in molar mass leads to decrease in average velocity w/ pressure constant
- Pressure held constant.
- Interesting relationship
 - Molar mass of air is 29 g/mol, Carbon Dioxide is 44.01 g/mol.
 - \circ $\sqrt{44.01/29} = 1.231$
- An increase in overall pressure (pressure difference) in the pipe increases velocity

Temperature Manipulation

300 K pipe with 500 K hot zone

Particle Injection and Particle Size

- 10 cm pipe, 1 cm diameter
- Airflow at 10 cm/s
- Inject particles at varying sizes
- Particle density 1550 kg/m³

Particle Tracks 10 cm/s

1 µm diameter particle 40% down, 60% right

10 µm diameter particle 44 % down, 56% right

Particle Tracks 10 cm/s

100 µm diameter particle 28% down, 72% right

1 mm diameter particle 100% right

Particle Injection and Particle Size

- 10 cm pipe, 1 cm diameter
- Airflow at 1 cm/s
- Inject particles at varying sizes
- Particle density 1550 kg/m³

Particle Tracks 1 cm/s

1 µm diameter particle 48% down, 52% right

10 µm diameter particle 48% down, 52% right

Particle Tracks 1 cm/s

100 µm diameter particle 48% down, 52% right

1 mm diameter particle 100% right

Transient time solutions

Explore conditions that vary per time step

Use of a discrete phase model

Show vectors/streamlines/particle tracks that evolve over time

Can view still frames per time step and create animations

Constraints of transient time

Serve increase of computation time

Courant number: $C=c*(\Delta t/\Delta x)$

Shows imperative relationship between mesh size and time-step size

Solutions become divergent if C > 250, and program will crash

Implies that useful solutions always require high computation time

Brief synopsis

I-pipe geometry

0.5 m/s per outlet

K-epsilon turbulence model

200 time steps, dt = 0.001s

Mass flow rate vs. time check

Mass flow rate from outlet

Starts at zero, becomes abruptly negative

Step 1 dt = 0.001s

Red: 1.47 m/s

Dark blue: 0 m/s

Step 20

Red: 147 m/s

Dark blue: 0 m/s

Step 100; t = 0.1s

Step 200; t = 0.2s

