Übungsblatt 6 Diskrete Strukturen, Prof. Dr. Gerhard Hiß, WS 2019/20

Für Matrikelnummer: 406008

Abgabezeitpunkt: Do 28 Nov 2019 14:00:00 CET Dieses Blatt wurde erstellt: Di 11 Feb 2020 11:23:12 CET

Die	Die Lösungen der ersten drei Aufgaben sind online abzugeben.			
26	Es sei $B := \{0,1\}$. Wir definieren Verknüpfungen $\land, \lor, \Rightarrow, \Leftrightarrow$, xor und nand auf B durch			
	$x \wedge y := \begin{cases} 1, & \text{für } (x,y) = (1,1), \\ 0, & \text{für } (x,y) \in \{(1,0),(0,1),(0,0)\}, \end{cases}$ $x \vee y := \begin{cases} 1, & \text{für } (x,y) \in \{(1,1),(1,0),(0,1)\}, \\ 0, & \text{für } (x,y) \in \{(1,1),(0,1),(0,0)\}, \end{cases}$ $x \Rightarrow y := \begin{cases} 1, & \text{für } (x,y) \in \{(1,1),(0,1),(0,0)\}, \\ 0, & \text{für } (x,y) \in \{(1,1),(0,0)\}, \\ 0, & \text{für } (x,y) \in \{(1,1),(0,0)\}, \end{cases}$ $x \text{ xor } y := \begin{cases} 1, & \text{für } (x,y) \in \{(1,0),(0,1)\}, \\ 0, & \text{für } (x,y) \in \{(1,0),(0,1)\}, \\ 0, & \text{für } (x,y) \in \{(1,1),(0,0)\}, \\ 1, & \text{für } (x,y) \in \{(1,0),(0,1),(0,0)\}, \\ 0, & \text{für } (x,y) \in \{(1,0),(0,1),(0,0)\}, \end{cases}$			
	$x \lor y \qquad := \left\{ \begin{array}{l} 1, & \text{für } (x, y) \in \{(1, 1), (1, 0), (0, 1)\}, \\ 0, & \text{für } (x, y) = (0, 0), \end{array} \right.$			
	$x \Rightarrow y \qquad := \begin{cases} 1, & \text{für } (x, y) \in \{(1, 1), (0, 1), (0, 0)\}, \\ 0, & \text{für } (x, y) = (1, 0), \end{cases}$			
	$x \Leftrightarrow y$:= $ \begin{cases} 1, & \text{für } (x, y) \in \{(1, 1), (0, 0)\}, \\ 0, & \text{für } (x, y) \in \{(1, 0), (0, 1)\}, \end{cases} $			
	$x \operatorname{xor} y := \begin{cases} 1, & \text{für } (x, y) \in \{(1, 0), (0, 1)\}, \\ 0, & \text{für } (x, y) \in \{(1, 1), (0, 0)\}, \end{cases}$			
	$x \text{ nand } y := \begin{cases} 1, & \text{für } (x, y) \in \{(1, 0), (0, 1), (0, 0)\}, \\ 0, & \text{für } (x, y) = (1, 1). \end{cases}$			
	Untersuchen Sie in den folgenden Fällen, ob <i>B</i> zur angegebenen algebraischen Struktur wird. Hinweis. Auch wenn die Elemente von <i>B</i> hier mit 0 und 1 bezeichnet werden, soll dies im Folgden nicht zwingend bedeuten, dass 0 ein Nullelement bzw. 1 ein Einselement ist.			
	abelsches Monoid mit Monoidverknüpfung ⇔	◯ Ja / ◯ Nein		
	kommutativer Ring mit Addition xor und Multiplikation \(\triangle \)	◯ Ja / ◯ Nein		
	abelsches Monoid mit Monoidverknüpfung nand	○ Ja / ○ Nein		
	Ring mit Addition ∨ und Multiplikation ∧	○ Ja / ○ Nein		
	Monoid mit Monoidverknüpfung ∧	○ Ja / ○ Nein		
27	Sind die folgenden Aussagen wahr?			
	Es seien Monoide M_1 und M_2 gegeben. Dann wird $M_1 \times M_2$ zu einem Monoid mit Monoidverknüpfung gegeben durch $(x_1,x_2)(y_1,y_2)=(x_1y_1,x_2y_2)$ für $(x_1,x_2),(y_1,y_2)\in M_1\times M_2$.			
	Für jedes Monoid M und alle $y \in M$ ist $M \to M$, $x \mapsto xy$ eine Bijektion.	○ Ja / ○ Nein		
	Jede Gruppe mit 3 Elementen ist kommutativ.	○ Ja / ○ Nein		
	Es wird $\mathbb{R} \times \mathbb{R}$ zu einem Körper mit Addition gegeben durch $(x_1,x_2)+(y_1,y_2)=(x_1+y_1,x_2+y_2)$ und Multiplikation gegeben durch	◯ Ja / ◯ Nein		
	$(x_1,x_2)(y_1,y_2) = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1)$ für $(x_1,x_2), (y_1,y_2) \in \mathbb{R} \times \mathbb{R}$. Es wird $\mathbb{R} \times \mathbb{R}$ zu einem Körper mit Addition gegeben durch $(x_1,x_2) + (y_1,y_2) = (x_1 + y_1, x_2 + y_2)$ und Multiplikation gegeben durch	◯ Ja / ◯ Nein		
20	$(x_1, x_2)(y_1, y_2) = (x_1y_1, x_2y_2) \text{ für } (x_1, x_2), (y_1, y_2) \in \mathbb{R} \times \mathbb{R}.$	TD[V] D 1		
28	Seien $f = 3X^3 - 15X + 10$, $g = -3X^4 + 2X^3 - 3X^2 + X$ und $h = X^{100} - 1 \in \mathbb{R}[X]$ Polynome.			

Was ist der konstante Koeffizient von $(X+1)h-g^3$?	
Was ist der Grad von fgh?	
Was ist der Leitkoeffizient von gh?	
Was ist der Wert von f an der Stelle 2?	
Was ist die Summe der Koeffizienten von f ?	

Bitte werfen Sie Ihre Lösungen zu den schriftlich zu bearbeitenden Aufgaben in das Ihrer Gruppennummer entsprechende Fach im Abgabekasten des Lehrstuhl D für Mathematik (Flur 2.OG im Hauptgebäude, neben der Mathematischen Bibliothek). Schreiben Sie auf jedes abgegebene Blatt deutlich Ihre Matrikelnummer, Ihren Namen und Ihre **Gruppennummer**. Ihre Gruppennummer finden Sie auf der Webseite unter dem Punkt *Ergebnisse abfragen* heraus.

29 (a) Es seien (G, \bullet) und (G', \circ) zwei Gruppen. Zeigen Sie, dass die Menge $G \times G'$ mit der Verknüpfung

$$(g_1,g_1')\cdot(g_2,g_2'):=(g_1\bullet g_2,g_1'\circ g_2')$$

wieder eine Gruppe ist.

- **(b)** Bestimmen Sie alle Untergruppen von $(\mathbb{Z}, +)$.
- Erinnerung: Für einen kommutativen Ring R und $a, b \in R$ schreiben wir $a \mid b$, wenn a ein Teiler von b ist (das heißt, wenn es ein $x \in R$ gibt mit xa = b).
 - (a) Sei R ein kommutativer Ring, $a,a',b\in R$ und sei b kein Nullteiler. Beweisen Sie die Kürzungsregel

$$a \cdot b = a' \cdot b \Rightarrow a = a'$$
.

- (b) Sei R ein kommutativer Ring, $a, b \in R$ und a kein Nullteiler. Weiter gelte $a \mid b$ und $b \mid a$. Zeigen Sie, dass es eine Einheit $w \in R^{\times}$ gibt mit b = wa.
- (c) Sei R ein kommutativer Ring, R^{\times} seine Einheitengruppe und seien $a,b \in R$. Zeigen Sie, dass genau dann $ab \in R^{\times}$ ist, wenn $a \in R^{\times}$ und $b \in R^{\times}$ ist. (Dies zeigt, dass auch $R \setminus R^{\times}$ abgeschlossen unter der Multiplikation ist.)

Abgabe bis spätestens Donnerstag, dem 28. November 2019, 14 Uhr, sowohl am Abgabekasten als auch online.