Source:

1 | Preliminary Research

1.1 | Sources

https://www.frontiersin.org/articles/10.3389/fchem.2019.00540/full

1.2 | **Notes**

1.2.1 | Target Processes

Enzyme catalysis
catalyzing reactions with actions

2. Protein-ligand binding

neurotransmitters (dopamine), protien is dopamine receptor how does the ligand bind the proper site to open the channel?

- · ligand: how to pronounce?
- 3. signal transduction

bind to other protein to trigger chain of actions

- · release calcium from intercellular stores
- 4. allosteric regulation
 - · a reason why knowing the structure and pockets is important
 - · predict allosteric cites
 - similar to non-competative inhibiton?
 - · but for dna binding protiens, like the dna transcription inhibitor
 - · ligand binds allosteric site and activates the protien

1.2.2 | Folding Simulation Methods

- 1. all-atom molecular dynamics (MD)
 - · Obtains all desired information regarding the kinetics and thermodynamics
 - (a) Time scale bottleneck
 - very slow (supercomputers -> microseconds of simulation)
 - · require microsecond to milisecond time scales
 - i. optimizations
 - A. conformational sampling?
 - · retains atomistic representation of the system
 - B. overcome kinetic trapping and thourough sampling of conformational space techniques
 - · umbrella sampling
 - · multicanonical algorithms
 - · simulated tempering

Exr0n · 2020-2021 Page 1

- · transition path sampling
- · targeted molecular dynamics
- replica exchange method molecular dynamics (REMD)
- · accelerated molecular dynamics (AMD)
 - · see below
- 2. Accelerated molecular dynamics (AMD)

•

1.3 | Meetings

1.3.1 | **12 oct 2020**

- · computational prediction modeling
 - · trying to predict the crystal structure
 - · why?
 - to analyze would this fit?
 - · does it work with this target
- · solving the structure
 - xray cristolography
 - · gold standard
 - · now got the structure
 - · what does that mean?
 - · can we simulate how it interacts?
 - · can you then do modeling on that to see if drug molecules work? are useful
- look at some concrete examples?
- · tell a biological story alongside with computational relevance piece
- 1. protien synthase

not as much simulation stuff

2. neurotransmitters

dopamine sodium rushes in, electrochemical and concentration gradient recharge gradient by releasing potassium

- (a) nerst equation electrochemical gradient as battery
- (b) goldman-katz equation
 - · applied to neuro
 - · ions?
- Case study
 - · why do we care? why is this useful
 - · knowing the structure can lead to some useful information
 - how did it lead to some sort of accelerated understanding?

4. prions

Exr0n · 2020-2021 Page 2

- · how to pronounce?
- (a) CJD
 - is it inheritable?
 - · one case per million population
 - i. Casues
 - the gene that causes CJD in 5-10% of cases is PRNP
 - 87% of cases are sporatic
- (b) isoform
 - · a different set of intons and exons
 - · splicosome takes pre-RNA and cuts out intons
 - even if the pre-RNA had 10 exons, the splicosome might take a subset of those exons and remove the others
 - An isoform is a variant of that subset, an abnormal isoform is one that is "bad" and causes problems

Exr0n · 2020-2021 Page 3