Operating System

Nguyen Tri Thanh ntthanh@vnu.edu.vn

Storage Systems

Mass storage device
Disk scheduling algorithms
Reliable storage
Stable storage

Objectives

- Introduce the list of mass storage devices
- Introduce the structure/organization of disks
- Introduce disk scheduling algorithms
- Introduce reliable storages
- Introduce non-violate storages
- Implement disk scheduling algorithms

Reference

Chapter 12 of Operating System Concepts

Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage of modern computers
 - rotate at 60 to 300 rounds per second
 - Transfer rate
 - rate of data flow between drive and computer
 - Positioning time (random-access time)
 - time to move disk arm to desired cylinder (seek time) and
 - time for desired sector to rotate under the disk head (rotational latency)
 - Head crash
 - disk head making contact with the disk surface
 - That's bad

Overview of Mass Storage Structure (cont'd)

Decimal and binary unit prefixes interpretation[106][107]

Capacity advertised by manufacturers ^[g]		Capacity expected by some consumers ^[h]		Reported capacity	
With prefix	Bytes	Bytes	Diff.	Windows ^[h]	macOS ver 10.6+ ^[g]
100 GB	100,000,000,000	107,374,182,400	7.37%	93.1 GB	100 GB
1 TB	1,000,000,000,000	1,099,511,627,776	9.95%	931 GB	1,000 GB, 1,000,000 MB

Improvement of HDD characteristics over time

Rotational speed [rpm]	Average rotational latency [ms]	
15,000	2	
10,000	3	
7,200	4.16	
5,400	5.55	
4,800	6.25	

Parameter	Started with (1957)	Developed to (2019)	Improvement
Capacity (formatted)	3.75 megabytes ^[16]	16 terabytes ^[17]	4-million-to- one ^[18]
Physical volume	68 cubic feet (1.9 m ³) ^{[c][6]}	2.1 cubic inches (34 cm ³) ^{[19][d]}	56,000-to- one ^[20]
Weight	2,000 pounds (910 kg) ^[6]	2.2 ounces (62 g) ^[19]	15,000-to- one ^[21]
Average access time	approx. 600 milliseconds ^[6]	2.5 ms to 10 ms; RW RAM dependent	about 200-to-one ^[22]
Price	US\$9,200 per megabyte (1961) ^[23]	US\$0.032 per gigabyte by 2015 ^[24]	300-million- to-one ^[25]
Data 2,000 bits per square inch ^[26]		1.3 terabits per square inch in 2015 ^[27]	650-million- to-one ^[28]
Average c. 2000 hrs lifespan MTBF ^[citation needed]		c. 2,500,000 hrs (~285 years) MTBF ^[29]	1250-to- one ^[30]

Overview of Mass Storage Structure (cont'd)

- Disks can be removable
- Drive attached to computer via I/O bus
 - EIDE, ATA, SATA, USB, Fiber Channel, SCSI
 - Host controller
 - computer uses bus to talk to
 - Disk controller
 - built into drive or storage array

Disk Structure

- Disk drives are treated as
 - a large 1-dimensional arrays of logical blocks
 - a logical block is the smallest unit of transfer
 - array of logical blocks is mapped into the sectors of the disk sequentially.
 - Sector 0 is the first sector of the first track on the outermost cylinder
 - Mapping proceeds in order through that track
 - then the rest of the tracks in that cylinder,
 - and then through the rest of the cylinders from outermost to innermost.

Question

- Which is the reason why the sector numbers of different cylinders are not the same?
 - A. to increase security
 - B. to increase disk size
 - c. to increase transfer rate
 - to reduce waiting time

A number of sectors in each cylinder is not numbered (unused)

Question

- Which is the reason why a number of sectors in each cylinder is unused?
 - A. to increase security
 - B. to be used to recover bad sectors
 - c. to be used as buffer
 - to be used by operating system for logic formatting

Disk Scheduling

Disk Scheduling

- The operating system is responsible for using hardware efficiently
 - for the disk drives, this means having a fast access time and disk bandwidth
- Access time has two major components
 - Seek time
 - the time for the disk are to move the heads to the cylinder containing the desired sector.
 - Rotational latency
 - the additional time waiting for the disk to rotate the desired sector to the disk head.

Disk Scheduling (Cont.)

- Target
 - Minimize seek time
 - Seek time ≈ seek distance
- Disk bandwidth
 - (total number of bytes transferred) / (total time between the first request for service and the completion of the last transfer)

Disk Scheduling Algorithms

- Several algorithms exist to schedule the servicing of disk I/O requests
- We illustrate them with a request queue (0-199)
 - 98, 183, 37, 122, 14, 124, 65, 67
 - Current head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders.

Shortest Seek Time First (SSTF)

- Selects the request with the minimum seek time from the current head position
- SSTF scheduling is a form of SJF scheduling;
 - may cause starvation of some requests
- Illustration shows total head movement of 236 cylinders.

SSTF (Cont.)

SCAN

- The disk arm starts at one end of the disk, and moves toward the other end,
 - servicing requests until it gets to the other end of the disk,
 - head movement is reversed and servicing continues.
- Sometimes called the elevator algorithm
- Illustration shows total head movement of 236 cylinders

SCAN (Cont.)

C-SCAN

- Provides a more uniform wait time than SCAN
- The head moves from one end of the disk to the other
 - servicing requests as it goes
 - When it reaches the other end, however,
 - it immediately returns to the beginning of the disk,
 - without servicing any requests on the return trip.
- Treats the cylinders as a circular list that wraps around from the last cylinder to the first one

C-SCAN (Cont.)

LOOK

- Version of SCAN
- Arm only goes as far as the last request in each direction,

C-LOOK

- Version of C-SCAN
- Arm only goes as far as the last request in each direction,
 - then reverses direction immediately,
 - without first going all the way to the end of the disk.

C-LOOK (Cont.)

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk.
- Performance depends on the number and types of requests.
- Requests for disk service can be influenced by the fileallocation method.
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary.
- Either SSTF or LOOK is a reasonable choice for the default algorithm.

- Swap-space Virtual memory uses disk space as an extension of main memory.
- Swap-space can be
 - carved out of the normal file system,
 - more commonly, it can be in a separate disk partition.

- Swap-space management
 - 4.3 BSD allocates swap space when process starts; holds text segment (the program) and data segment.
 - Kernel uses swap maps to track swap-space use.
 - Solaris 2 allocates swap space only when a page is forced out of physical memory, not when the virtual memory page is first created.

Data Structures for Swapping on Linux Systems

Reliable storage

(reliable means data is safe even some disks are broken)

RAID Structure

- RAID=Redundant Array of Inexpensive Disks
- RAID multiple disk drives provides reliability via redundancy
- RAID is arranged into 7 different levels
- There are also combinations

- Several improvements in disk-use techniques involve the use of multiple disks working cooperatively
- Disk striping uses a group of disks as one storage unit

RAID (cont'd)

- RAID schemes improve performance and improve the reliability of the storage system by storing redundant data
 - Mirroring or shadowing keeps duplicate of each disk
 - Block interleaved parity uses much less redundancy

RAID Levels

RAID 0 - Stripping

- Given RAID 0 as in previous slide. How is the speed of the system in comparison with a single disk
 - Same as single disk
 - Twice faster
 - Three times faster
 - Slower

- Given RAID 0 as in previous slide. How many disk can be broken without losing the data?
 - None
 - 1

- Given RAID 0 as in previous slide. Suppose each disk is 500GB. Which is the total storage size of the system?
 - 500GB
 - 750GB
 - 1TB
 - 250GB

RAID 1 - Mirroring

- Given RAID 1 as in previous slide. How is the speed of the system in comparison with a single disk
 - Same as a single disk
 - Twice faster
 - Three times faster
 - Slower

- Given RAID 1 as in previous slide. How many disk can be broken without losing the data?
 - None
 - 1

- Given RAID 1 as in previous slide. Suppose each disk is 500GB. Which is the total storage size of the system?
 - 500GB
 - 750GB
 - 1TB
 - 250GB

RAID (0 + 1) and (1 + 0)

RAID 0+1

RAID 01 - Blocks Striped. (and Blocks Mirrored)

RAID 1+0

RAID 1 + 0

RAID 10 - Blocks Mirrored. (and Blocks Striped)

Question

- Which is the main reason of stripping data among multiple disks?
 - A. increase data volume
 - B. increase the total number of files
 - c. increase the file size
 - D. increase the I/O bandwidth

Question

- Which is correct about mirroring data among multiple disks?
 - A. support data recovery
 - B. increase the total number of files
 - c. increase the file size
 - increase the I/O bandwidth

- How many disks can be broken without losing data in the RAID level 1?
 - A. 0
 - B. 2
 - C. 1
 - D. 3

RAID 5

Parity blocks are used instead of mirroring A1 (1110) A2 (0100) A3 (1001) $A_P(0011)$

Question

- Which is the most correct about parity blocks?
 - used to recover data efficiently, similar to mirroring
 - B. used to recover disk
 - c. used to replace stripping
 - used to mark file on disk

RAID 6

RAID 100 RAID 0

https://www.thegeekstuff.com/2009/05/dell-tutorial-create-raid-using-perc-6i-integrated-bios-configuration-utility/

https://www.thegeekstuff.com/2009/05/dell-tutorial-create-raid-using-perc-6i-integrated-bios-configuration-utility/

Stable-Storage

(Stable means the data is safe even the power is suddenly off)

- Write-ahead log scheme requires stable storage
- To implement stable storage
 - Replicate information on more than one nonvolatile storage media with independent failure modes
 - Update information in a controlled manner to ensure that we can recover the stable data after any failure during data transfer or recovery

- Write everything twice to separate disks
 - Be sure 1st write does not invalidate previous 2nd copy
 - Read blocks back to validate; then report completion
- Reading both copies
 - If 1st copy okay, use it i.e., newest value
 - If 2nd copy different or bad, and 1st is ok, update it with 1st copy
 - If 1st copy is bad; update it with 2nd copy i.e., old value

- Crash recovery
 - Scan disks, compare corresponding blocks
 - If one is bad, replace with good one
 - If both good but different, replace 2nd with 1st copy
- Result:
 - If 1st block is good, it contains latest value
 - If not, 2nd block still contains previous value
- An abstraction of an atomic disk write of a single block
 - Uninterruptible by power failure, etc.

Analysis of the influence of crashes on stable writes

- Low cost is the defining characteristic of tertiary storage
- Generally, tertiary storage is built using removable media
 - CD-ROMs; Floppy, Flash (USB), WORM, tapes

Shutdown in Progress

Please wait while the system writes unsaved data to the disk.

Question?