Biological Vision and Applications Module 06-02: Neural Network based attention models

Hiranmay Ghosh

Classification-localization-segmentation

Role of attention

Progressive development of CNN based image processing

Attention and object recognition goes hand-in-hand

- The objects determine focus of attention
- Object recognition / segmentation takes place where there is attention

Basic Architecture

Network learns the saliency map

Does it implement bottom-up attention or top-down attention?

Attention and object detection

- Use CNN pre-trained for object detection
 - Not enough training data for saliency
 - Objects lead to saliency
- In neural network based architectures
 - Attention and object detection complement each other
 - Find salient locations (where objects are likely to be there)
 - Detect objects at those locations

Soft attention vs. hard attention

- Soft attention
 - Graded saliency values
 - Fixation traverses from location with highest saliency to lowest
- Hard attention
 - Binary saliency values
 - Fixation at the region with saliency = 1
 - One or very few "salient" objects in a scene
- NN based attention models generally use hard attention

How to train?

Objects and saliency

Saliency-cut algorithm

- Saliency of the nearby pixels should be similar
- The image can be divided into 'superpixels'
 - Areas of near uniform color/texture
- Adjust saliency values to encourage locations in nearby superpixels to have homogeneous saliency
 - Minimize:

$$O(S) = \sum_{i} (s_i^{new} - s_i)^2 + \sum_{i,j} w_{ij} (s_i^{new} - s_j^{new})^2$$

- ightharpoonup Weights w_{ij} decreases with physical distance
- Optimal weights are learned

Graph-cut algorithm (slide deck)

Multi-scale analysis

SALICON: Saliency in Context

- Coarse level captures context; fine level captures local contrasts
 - ▶ Usually 2 or 3 levels of resolution is found to be sufficient

Recurrent Attention Models

Saliency is dynamically constructed

- We look at a small part of a scene at a time
- Where we look at next depends on what we see
 - Macular/peripheral vision guides the direction of eye movement
 - ... plus, the task at hand
- Saliency map of a scene is not computed in one go
 - Constructed dynamically over time
 - As and when needed ... Just in time
 - Saliency map for the whole image is never built

Attention-based RNN Architecture AB-RNN

• RNN and the "Attention" module are trained together

Implementation example

Attention-based object recognition

- Encoding
 - Glimpse: Encoded representation of visual field
 - Glimpse Network:
 - ► Image data + Location (x_t, I_{t-1})
 - Encoded to some internal representation with an NN
- Where do you look at the first glimpse? $l_0 = ?$

Mnih, et al. Recurrent models of visual attention

Decoder

- Each of Action and Location Networks is an NN
- "Action" can be different in different contexts:
 - Predicting the object
 - Locating a target
 - Navigating (car, pedestrian, drone, ...)

Training

Reinforcement Learning

- Model for "hard attention"
- Training for optimal saccades
 - ► Training based on back-propagation does not work
 - Reinforcement learning used
 - Reward after each time-step
- In the case of object recognition
 - Reward $r_t = 1$ if the object is classified correctly at time step t
 - $r_t = 0$ otherwise
- Positive reward is sparse
- System tries to maximize $\sum_t r_t$ over time

Reinforcement learning (tutorial slides)

Discussions

- Attention and object recognition goes hand-in-hand
 - Example of task-based attention
 - Example of "life-long learning"
- Network trained on a few patterns performs well for other patterns with little training
 - Example of transfer learning
- Robust against distractors (noisy patches on the image)

Recurrent Attention for Video

Why processing video frame by frame does not work?

- Motion information is lost
- Saliency map for each frame depends on the earlier frames
- Too much data to be processed
 - ► There are lots of redundancies in video data (over successive frames)

Recurrent Attention Model for Video

Recurrent Mixture Density Network

- Soft attention model is used
- Prediction in the form of a GMM over space
 - There can be multiple salient objects

Bazzani & Larochelle. Recurrent mixture density network ... (2017)

https://www.youtube.com/watch?v=aXOwc17nx_s

Discussions

- Wasteful processing
 - Same frame processed multiple times
 - Alternate approach uses two layers of LSTM
 - Lower layer: short-term temporal variations (motion features)
 - Upper layer: long-term history learns to predict saliency
- Camera motion vs. object motion
 - Object motion matters
 - FG–BG separation
 - Assign weights to FG

Quiz 06-02

End of Module 06-02