HEMOCATHARSIS APPARATUS

Patent number:

JP2002165876

Publication date:

2002-06-11

Inventor:

SANO YOSHIHIKO; KOBAYASHI SUSUMU

Applicant:

NIPRO CORP

Classification:

- international:

A61M1/14; A61M1/18; B01D61/28; B01D61/32; B01D63/02; A61M1/14; A61M1/16; B01D61/24; B01D63/02; (IPC1-7): A61M1/14; A61M1/18;

B01D61/28; B01D61/32; B01D63/02

- european:

Application number: JP20000366988 20001201 Priority number(s): JP20000366988 20001201

Report a data error here

Abstract of JP2002165876

PROBLEM TO BE SOLVED: To provide a hemocatharsis apparatus which is capable of automatically performing hemocatharsis and automatically ending the hemocatharsis while maintaining an adequate blood volume. SOLUTION: This hemocatharsis apparatus 1 has a hemocatharsis section 2, a blood parameter measuring means 6, and a control section 7 which converts the blood parameter to a hematocrit value and controls the hemocatharsis section is accordance with the hematocrit value. At the point of the time the hematocrit value in the blood attains a prescribed value as the hemocatharsis is carried out, the control section 7 instructs the hemocatharsis section 2 to change hemocatharsis conditions, for example, a water removal rate, internal circulating blood flow rate, fluid replacement rate, dialyzate concentration, dialyzate temperature, aqueous sodium chloride solution injection rate, etc., in such a manner that the hematocrit value is decreased. The control section 7 instructs the hemocatharsis section 2 to end the hemocatharsis at the point of the time the decrease rate of the hematocrit value per unit time attains the prescribed value when the hematocrit value decreases by repeating, plural times, the changing of the hemocatharsis conditions.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-165876 (P2002-165876A)

(43)公開日 平成14年6月11日(2002.6.11)

(51) Int.Cl.7		識別記号		FΙ			5	マコード(参考)
A 6 1 M	1/14	5 3 7		A 6	1 M 1/14		5 3 7	4 C 0 7 7
		5 1 3					5 1 3	4 D 0 0 6
		5 3 5					5 3 5	
		5 5 1					5 5 1	
		5 5 3					5 5 3	
			審査請求	未請求	請求項の数5	OL	(全 6 頁)	最終頁に続く

(21)出願番号 特願2000-366988(P2000-366988)

(22) 出顧日 平成12年12月1日(2000.12.1)

(71)出願人 000135036

ニプロ株式会社

大阪府大阪市北区本庄西3丁目9番3号

(72)発明者 佐野 嘉彦

大阪市北区豊崎3丁目3番13号 株式会社

ニプロ内

(72)発明者 小林 進

大阪市北区本庄西3丁目9番3号 株式会

社ニッショー内

最終頁に続く

(54) 【発明の名称】 血液浄化装置

(57) 【要約】

【課題】 適正な血液量を維持しながら自動的に血液浄化ができ、さらに血液浄化を自動的に終了可能な血液浄化装置を提供する。

【解決手段】 血液浄化部2と、血液パラメータ計測手段6と、血液パラメータをヘマトクリット値に換算し、該ヘマトクリット値に基づいて前配血液浄化部を制御する制御部7とを備えてなる血液浄化装置1において、血液浄化を行うにつれて増加傾向にある血液中のヘマトクリット値が所定値に達した時点で、該ヘマトクリット値を減少させるように制御部7が血液浄化条件、例えば除水速度、体内循環血流速度、補液速度、透析液濃度、透析液温度、塩化ナトリウム水溶液注入速度などの変更を血液浄化部2に指示し、前配血液浄化条件の変更を複数回繰り返して、該ヘマトクリット値減少時の単位時間あたりの該ヘマトクリット値の減少率が所定値に達した時点で、制御部7が血液浄化終了を血液浄化部2に指示することを特徴とする血液浄化装置1である。

【特許請求の範囲】

ı. e

【請求項1】 血液浄化部と、血液パラメータ計測手段と、血液パラメータをヘマトクリット値に換算し、該ヘマトクリット値に基づいて血液浄化部を制御する制御部とを備えてなる血液浄化装置において、血液浄化を行うにつれて増加傾向にある血液中のヘマトクリット値が所定値に達した時点で、該ヘマトクリット値を減少させるように、前記制御部が血液浄化条件の変更を複数回繰り返して、該ヘマトクリット値減少時の単位時間あたりの該ヘマトクリット値の減少率が所定値に達した時点で、前記制御部が血液浄化終了を血液浄化部に指示する機能を有することを特徴とする血液浄化装置。

【請求項2】 前記血液浄化部は、血液を浄化するための中空糸膜型血液浄化器と、該血液浄化器の中空糸膜内側に連通接続され、かつ血液ポンプが設けられた血液回路と、該血液浄化器の中空糸膜外側に連通接続され、かつ除水ポンプが設けられた回路とを備えてなり、かつ、前記計測手段は、血液回路上に設けられてなる、請求項1に記載の血液浄化装置。

【請求項3】 前記血液浄化部は、さらに補液部、透析液温度制御部および注液部のいずれか一つまたは二つ以上を有してなる、請求項1または2のいずれかに記載の血液浄化装置。

【請求項4】 前記血液パラメータは、血液の光透過度、血液浸透圧、電解質量および電気抵抗率のいずれかである、請求項1~3記載の血液浄化装置。

【請求項5】 前記血液浄化条件は、除水速度、体内循環血流速度、補液速度、透析液濃度、透析液温度および塩化ナトリウム水溶液注入速度からなる群から選ばれた一種または二種以上の条件である、請求項1~4記載の血液浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、血液浄化装置に関し、より詳細には、自動的に各患者に適応した血液浄化を行い、かつ自動的に血液浄化を終了することができる血液浄化装置に関する。

[0002]

【従来の技術】従来、腎機能が損なわれた患者、例えば 腎不全などにより血液中の老廃物除去機能が損なわれた 患者の治療のために、血液透析や血液濾過、血液透析滤 過などの血液浄化による治療が行われている。この血液 浄化治療においては、プライミングや補液、残留血液の 回収など、医療従事者による種々の作業工程を必要とす る。そのため、一度に多人数の血液浄化を行う場合は作 業効率が悪く、迅速な血液浄化治療を目的として、作業 工程の自動化が進められている。

【0003】血液浄化治療において、血液中の過剰水分を除去する際の除水速度は、各患者固有の適正な体内循

環血液量(以下、単に血液量と呼ぶ)を維持しながら行わなければならない。血液浄化中、除水により患者の体液は細胞内、細胞間スペース、血管内、透析液中へと移動する。ここで、一般に細胞間スペースから血管内への体液の移動を除水と呼ぶが、急激あるいは過度の除水に似り、除水速度がリフィリング速度を超えると血液量が減少し、これによって血圧低下またはショックなどを引き起こすおそれがある。また、逆に除水が緩慢だと血液分化に長時間を要し、充分に除水ができない場合は、高血圧や心不全等を引き起こす恐れがある。したがって、血液浄化装置における除水の自動化は、上記問題点を考慮して進められなければならない。

【0004】除水が自動化された血液浄化装置として は、患者の血液状態を監視しながら除水を行う血液浄化 装置が提案されている(特公平4-22586号公報、 特公平4-22587号公報、特公平6-83723号 公報)。これらの血液浄化装置は、血液の電気抵抗率な どから血液中のヘマトクリット値を求め、該ヘマトクリ ット値が設定値より大きくなると除水速度を減少させ、 ヘマトクリット値が設定値より小さくなると再度除水速 度を増加させて、適正に血液量を制御しながら血液浄化 治療を行うものである。また、ヘマトクリット値または 血液量を複数の領域に分けて領域ごとに血液浄化条件を 設定し、ヘマトクリット値または血液量が異なる領域に 移行した場合に、設定された血液浄化条件に変更して血 液浄化を行う血液処理装置も公知である(特開平11-221275号公報)。この装置によれば、より精密に 循環血液量を制御することが可能である。しかし、上記 した血液浄化装置によれば、適正な血液量を維持する血 液浄化は自動化されるが、自動的に該血液浄化を終了す ることまでは考慮されていない。

[0005]

【発明が解決しようとする課題】上記事情に鑑み、本発明は適正な血液量を維持しながら、自動的に血液浄化ができ、さらに自動的に血液浄化を終了することが可能な血液浄化装置を提供することにある。

[0006]

【課題を解決するための手段】本発明者らは、上記課題を解決するために種々鋭意検討した結果、血液浄化を行うにつれて増加傾向にある血液中のヘマトクリット値が所定値に達した時点で、該ヘマトクリット値を減少させ、この操作を複数回繰り返して、該ヘマトクリット値
減少時の単位時間あたりのヘマトクリット値の減少率が所定値に達した時点で、血液浄化を終了する制御機能を取り入れたことにより、血液浄化および血液浄化の終了の両方の作業工程を自動化できることを見出し、本発明に到達した。

【0007】すなわち、本発明は血液浄化部と、血液パラメータ計測手段と、血液パラメータをヘマトクリット

値に換算し、該へマトクリット値に基づいて血液浄化部を制御する制御部とを備えてなる血液浄化装置において、血液浄化を行うにつれて増加傾向にある血液中のヘマトクリット値が所定値に達した時点で、該ヘマトクリット値を減少させるように前記制御部が血液浄化条件の変更を前記血液浄化部に指示し、前記血液浄化条件の変更を複数回繰り返して、該ヘマトクリット値減少時の単位時間あたりの該ヘマトクリット値の減少率が所定値に達した時点で、前記制御部が血液浄化終了を血液浄化部に指示する機能を有することを特徴とする血液浄化装置である。

[0008]

【作用】本発明によれば、血液浄化を行うにつれて増加傾向にある血液中のヘマトクリット値が所定値に達した時点で、該ヘマトクリット値を減少させ、この操作を複数回繰り返して、該ヘマトクリット値減少時の単位時間あたりの該ヘマトクリット値の減少率が所定値に達した時点で、血液浄化を終了する制御機能を取り入れたことにより、適正な血液量を維持しながら自動的に血液浄化を行うことができ、かつ、自動的に血液浄化を終了することができる。

[0009]

【発明の実施の形態】以下に、本発明の血液浄化装置の好ましい実施の形態を図面を用いて説明する。図1は本発明の血液浄化装置において、血液浄化器が血液透析器または血液透析濾過器である場合の一実施例を示すブロック図であり、図2は本発明の血液浄化装置において、血液浄化器が血液濾過器である場合の一実施例を示すブロック図である。また、図3は本発明の血液浄化装置の動作の経時的変化を示す概念図である。図1または図2に示すように、本発明の血液浄化装置1は、血液浄化部2、計測手段6および制御部7を備えてなる。

【0010】本発明の血液浄化部2は、血液を浄化する ための血液浄化器3および該血液浄化器3に連通接続さ れた血液回路4を備えてなるものである。前記血液浄化 器3とは、中空糸膜型のもの、具体的には中空糸膜型血 液濾過器、中空糸膜型血液透析器、中空糸膜型血液透析 濾過器などを指す。血液濾過器は、中空糸膜内側に血液 を流通せしめ、該中空糸膜を介して血液中の不要物質、 例えば尿素やクレアチニンなど、および水分を中空糸膜 外側に濾過により移動させる(血液濾過)ものである。 また、血液透析器および血液透析濾過器は、中空糸膜内 側に血液を、中空糸膜外側に透析液を、それぞれ対向す るように流通せしめ、該中空糸膜を介して血液中の不要 物質を透析液中に拡散により移動させたり(血液透 析)、前記血液透析と血液濾過を同時に行う(血液透析 濾過) ものである。前記中空糸膜材料としては、ポリメ チルメタクリレート、ポリビニルアルコール、ポリアク リロニトリル、エチレンービニルアルコール共重合体、 セルロースアセテート、ポリプロピレン、ポリエチレ

ン、ポリスルホン、ポリアミド等の合成樹脂が用いられ ている。

【0011】上記血液浄化器3には、中空糸膜内側と連 通する血液入口31および血液出口32が設けられてい る。前記血液入口31には、採血口44より流入した患 者の血液を血液浄化器3に導入するための動脈側ライン 41が接続されており、前記血液出口32には、血液浄 化器3内に導入され浄化された血液を返血口45より患 者の体内に戻すための静脈側ライン42が接続されてい る。本発明における血液回路4とは、前記血液浄化器3 の中空糸膜内側、動脈側ライン41、静脈側ライン42 および必要によりドリップチャンバー(図示せず)な ど、該ライン41および42上に設けられた部品を含 む、血液浄化時に血液等が通る経路を指すものである。 前記血液回路4上には、補液部46や血液抗凝固剤注入 部などが設けられていてもよい。前記動脈側ライン41 および静脈側ライン42としては、合成樹脂製のチュー ブ等が用いられる。具体的には、ポリ塩化ビニル製チュ ープやシリコーンゴム製チューブ等である。また、前記 血液回路4上には該回路4内の血液、透析液または空気 等を流通させるための血液ポンプ43が設けられてい る。前記血液ポンプ43は、前記血液回路4中であれ ば、どの部分に設けられていても良いが、好ましくは前 記動脈側ライン41中である。前記血液ポンプ43とし ては、ローラー型や拍動型、遠心ポンプ等が用いられ

【0012】血液浄化器3が血液透析器または血液透析 濾過器の場合は、図1に示すように、上記血液浄化器3 の中空糸膜外側には、除水ポンプ51、透析液供給ライ ン52および透析液排出ライン53を含む透析液回路5 を接続して使用される。一方、血液浄化器3が血液濾過 器の場合、図2に示すように前記透析液入口33および 透析液出口34の一方を封鎖し、他方に除水ポンプ51 を備えた排液ライン54を接続して使用される。図1に おいて該透析液回路5とは、除水ポンプ51、前記透析 液供給ライン52および透析液排出ライン53の他に、 必要により該ライン52および53上に設けられた部 品、例えば、透析液中に含まれるパイロジェン物質等の 有害物質の除去手段(中空糸膜などによる濾過方式や吸 着剤による吸着方式等)、透析液調製装置55、透析液 温度制御部などを含むものである。また、該ライン53 上には、透析液の濃度を変更するために、塩化ナトリウ ム水溶液などを注入する注入部56が設けられていても よい。前記透析液供給ライン52および透析液排出ライ ン53は、上記動脈側ライン41および静脈側ライン4 2と同じく、ポリ塩化ビニル製チューブやシリコーンゴ ム製チューブ等の他、ポリプロピレン製チューブやポリ エチレン製チュープなどの硬質チューブが用いられる。 【0013】本発明の血液回路4上には、血液パラメー タを計測する計測手段6が設けられている。該計測手段 6は、血液パラメータを計測し、その計測により体内循環血液状態を把握できるものであれば特に限定されないが、具体的には、血液の光透過度や血液浸透圧、電解質量、電気抵抗率などの血液パラメータを連続的に測定する装置である。

【0014】前記計測手段6により計測された血液パラメータは、制御部7に送られる。該制御部7は、所定の条件で血液浄化部2が血液浄化を行うように指示および制御する部位であり、具体的には、(1)既知のヘマトクリット値に基づいて様々な血液浄化の条件や処理、操作など(以下、血液浄化条件という)を設定し、(2)上記計測手段6において測定された血液パラメータをヘマトクリット値に換算して、該ヘマトクリット値に基づいて、前記血液浄化条件を選択し、(3)その選択された血液浄化条件を血液浄化部2に指令し制御する、という3つの機能を備えている。

【0015】上記制御部7の機能(1)における、血液 浄化の条件や処理、操作などの血液浄化条件とは、血液 浄化を行う際の操作の条件のことであり、例えば既知の ヘマトクリット値に基づいて予め設定される除水速度、 体内循環血流速度、補液速度、透析液濃度、透析液温 度、塩化ナトリウム水溶液注入速度などを指す。したが って予め前記制御部7に記録された患者の過去の透析記 録などによる既知のヘマトクリット値に基づいて、各患 者ごとに複数の所定のヘマトクリット値を決定し、その 所定のヘマトクリット値によって血液浄化条件を選択で きるように、除水速度の他、任意に体内循環血流速度、 補液速度、透析液濃度、透析液温度などの各血液浄化条 件を設定しておく。前記除水速度以外の任意に設定され る血液浄化条件は、各条件が一つだけ選択されてもよい し、複数の条件が選択されるように設定されていてもよ い。

【0016】上記制御部7の機能(2)において、上記計測手段6により連続的に測定された血液パラメータは、各血液パラメータに適した換算式(特公平4-22586号公報、特開平4-22587号公報、特開平11-226119号公報等に記載される)によりヘマトクリット値に換算される。得られたヘマトクリット値により、上記したように予め設定された血液浄化条件が選択される。すなわち、血液浄化を行うにつれて増加傾向にある血液中のヘマトクリット値を減少させるような条件である。

【0017】上記制御部7の機能(3)において、血液 浄化部2への指令および制御は、前記制御部7において 選択された血液浄化条件を血液浄化部2へ伝達すること により行われる。前記血液浄化条件は、例えば血液浄化 部2の血液ポンプ43に伝達されることで体内循環血流 速度が制御され、または除水ポンプ51に伝達されることで除水速度が制御され、または注入部56に伝達されることで透析液濃度が制御され、さらに補液部46に伝 達されることで補液速度が制御される。

定されたヘマトクリット値に基づき、除水ポンプを制御して除水速度を変更する場合について説明する。図3(a)の曲線は、血液浄化中、除水ポンプ51の駆動・停止により変化する患者のヘマトクリット値の推移を示したものであり、縦軸はヘマトクリット値を、横軸はヘマトクリット値を、横軸はヘマトクリット値を、横軸はヘーである除水速度に影響を与える除水ポンプ51の駆動・停止を示す。図3(b)に示す除水ポンプ51の駆動・停止を示す。図3(b)に示す除水ポンプ51の駆動・停止を示す。図3(b)に示す除水ポンプ51の駆動・停止を派す。図3においてはONで表示)は、常に一定値である必要はなく、ヘマトクリット値の推移と共に変化させてもよい。また、除水ポンプ51の停止(図3においてもるよい。また、除水ポンプ51の停止(図3においてものではなく、駆動時よりも低い流量で駆動させていてもい。また、前記除水ポンプの駆動・停止以外に、血流速度、補液速度、透析液濃度、透析液温度、注液速度など

の血液条件のうち、いずれか一つの条件が変更されても

よいし、2つ以上の条件が変更されてもよい。

【0018】次に、本発明の血液浄化装置を用いて、測

【0019】血液浄化を開始すると、計測手段6により 血液回路4内を流れる血液中の血液パラメータが計測さ れ、該血液パラメータは制御部7に送られて該制御部7 にてヘマトクリット値に換算される。図3(a)のAに 示すように、患者のヘマトクリット値は血液浄化を行う につれて増加傾向にある。この時、図3(b)に示すよ うに、除水ポンプ51は駆動している。ここで、増加傾 向とは、患者の体質により、一定速度で血液浄化を行っ てもヘマトクリット値が部分的に減少するような場合を も含むものである。すなわち、血液浄化を開始すると、 血液ポンプ43により採血口44から血液回路4内に流 入した血液は、血液浄化器3において除水ポンプ51の 駆動により除水された後、返血口45から体内に戻され る。体内に戻された血液はリフィリングにより再び水分 が補充されるため、血液浄化初期の血液量は大きく変化 せず、図3(a)のAに示すように、ヘマトクリット値 も変化が少ない。時間の経過と共にリフィリング速度は 低下するため、徐々に血液量が減少して、血液中のヘマ トクリット値は増加してくる。

【0020】前記増加傾向にあるヘマトクリット値が、 予め設定されている所定値、すなわち図3(a)の①に 達すると、制御部7は血液浄化部2に血液浄化条件の変 更、つまり除水ポンプ51の停止、または速度低下を指 示する。これにより除水速度は低下し、リフィリングに より血液量が増加するため、ヘマトクリット値は減少す る。該ヘマトクリット値が次の所定値、すなわち図3

(a) の②に達すると、制御部7は血液浄化部2に再び 血液浄化条件の変更、つまり除水ポンプ51の駆動を指 示し、ヘマトクリット値は増加する。次いで、ヘマトク リット値が図3(a)の③に達すると除水ポンプ51を 停止し、④に達すると除水ポンプ51を駆動し、⑤に達 すると除水ポンプ51を停止し、⑥に達すると除水ポンプ51を駆動するというように、除水ポンプ51の駆動および停止の操作を複数回繰り返しながら血液浄化を行う。ヘマトクリット値を増加させるように血液浄化条件を変更する時期、すなわち図3(a)のC、EまたはGへの転換時期は、上記したように所定のヘマトクリット値で制御するかわりに、B、DまたはFの所要時間により制御してもよい。上記説明では、ヘマトクリット値に基づいて除水ポンプ51を制御して除水速度を変更するが、除水ポンプ51の制御以外に血液ポンプ43や補液部46の補液ポンプ、あるいは注液部56の注液ポンプを制御して除水速度を変更してもよい。例えば図3

(a) のA、C、EおよびGの時期には、補液部46の 補液ポンプおよび注液部56の注液ポンプを停止し、 B、DおよびFの時期には前記両方のポンプを駆動する といった制御を行うことができる。

【0021】図3のC、EおよびGで示すようなヘマト クリット値増加期には、制御部7において、B、Dおよ びFで示すヘマトクリット値減少期における単位時間あ たりの該へマトクリット値の減少率が計算される。該減 少率は、ヘマトクリット値の推移を表す図3 (a) の曲 線において、例えばヘマトクリット値の極大値と極小値 との差(図中、△Ht)を、ヘマトクリット値が極大値 から極小値へと推移するのに要した時間(図中、△t) で割って求められる。該減少率は、図3(a)のX軸、 Y軸および曲線で囲まれた面積を元にして求められたも のであってもよい。血液浄化が進むにつれて、細胞内の 水分は減少してリフィリング速度も減少するため、ヘマ トクリット値の減少率の絶対値は徐々に小さくなる。前 記へマトクリット値の減少率が所定値に達するまで、上 記したヘマトクリット値の増加と減少を繰り返す血液浄 化が行われ、該減少率が所定値に達した時点で制御部7 は血液浄化部2に血液浄化の終了を指示し、血液ポンプ

や除水ポンプなど、駆動している装置を停止する。

[0022]

【発明の効果】本発明の血液浄化装置を使用することにより、適正な体内循環血液量を維持しながら、自動的に血液浄化を行うことができ、かつ、自動的に血液浄化を終了することが可能であるため、医療従事者の負担が軽減されると共に、各患者に適応した迅速な血液浄化治療を行うことができる。また、各患者に適応した血液浄化条件を設定でき、あらゆるタイプの患者への血液浄化治療を行うことができるため、血液浄化に伴う費用も低減することができる。

【図面の簡単な説明】

【図1】 本発明の血液浄化装置において、血液浄化器 が血液透析器または血液透析濾過器である場合の一実施 例を示すブロック図である。

【図2】 本発明の血液浄化装置において、血液浄化器 が血液濾過器である場合の一実施例を示すブロック図で ある。

【図3】 本発明の血液浄化装置の動作の経時的変化を示す概念図である。

【符号の説明】

- 1 血液浄化装置
- 2 血液浄化部
- 3 血液浄化器
- 4 血液回路
- 43 血液ポンプ
- 4.6 補液部
- 5 透析液回路
- 51 除水ポンプ
- 5 6 注入部
- 6 計測手段
- 7 制御部

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 7		識別記号	FΙ			テーマコード(参考)
A 6 1 M	1/14	5 5 5	A 6 1 M	1/14	5 5 5	
		5 5 7			557	
	1/18	5 2 3		1/18	5 2 3	
B 0 1 D	61/28		B 0 1 D	61/28		
	61/32			61/32		
	63/02			63/02		

F 夕一 ム(参考) 4C077 AA05 BB01 EE01 EE03 HH02 HH03 HH05 HH14 HH15 HH20 HH21 JJ02 JJ03 JJ04 JJ12 JJ15 JJ16 JJ24 KK11 KK25 LL05 4D006 GA07 GA13 HA02 HA18 JA02A JA05C JA06C JA53A JA55A JA70A KA61 KA81 KE01Q KE11Q KE11Q KE16Q KE19P KE30P MA01 MC18 MC22 MC23 MC33 MC37 MC39 MC54 MC62 PA01 PA02 PB09 PC41 PC47