Page 2
Serial Number: 09/844,947
Dkt: SP01-095

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (currently amended) A method for producing a fused silica glass containing titania, comprising:

synthesizing particles of silica and titania by delivering a mixture of a silica precursor and a titania precursor to a burner;

growing a <u>column of solid</u> porous preform by successively depositing the particles on a deposition surface at a temperature below a minimum temperature at which the particles can consolidate either partially or fully into dense glass while rotating and <u>successively</u> translating the deposition surface <u>relative to away from</u> the burner; and

subsequently consolidating the porous preform into dense glass.

2. (previously presented) The method of claim 1, wherein a translation speed of the deposition surface is adjusted to maintain a substantially constant distance between an end portion of the porous preform remote from the deposition surface and the burner during deposition.

3. (canceled)

- 4. **(previously presented)** The method of claim 1, wherein consolidating the porous preform into dense glass comprises heating the porous preform to a temperature in a range from 1200 to 1900°C.
- 5. (original) The method of claim 1, further comprising dehydrating the porous preform by exposing the porous preform to a heated, halide-containing atmosphere prior to consolidation.

Page 3
Serial Number: 09/844,947
Dkt: SP01-095

6. (original) The method of claim 5, wherein the heated, halide-containing atmosphere comprises chlorine.

- 7. (**original**) The method of claim 5, wherein the heated, halide-containing atmosphere comprises fluorine.
- 8. (original) The method of claim 5, wherein the temperature of the heated, halide-containing atmosphere is in a range from 900 to 1100°C.
- 9. (original) The method of claim 1, wherein the glass contains 2 to 12% by weight titania.

10-12. (canceled)

13. (previously presented) The method of claim 5, wherein a translation speed of the deposition surface is adjusted to maintain a substantially constant distance between an end portion of the porous preform remote from the deposition surface and the burner during deposition.

14. (canceled)

15. (previously presented) The method of claim 5, wherein consolidating the porous preform into dense glass comprises heating the porous preform to a temperature in a range from 1200 to 1900°C.

16-19. (canceled)

20. (original) The method of claim 1, wherein the minimum temperature is approximately 1200°C.

 Page 4

 Serial Number: 09/844,947
 Dkt: SP01-095

21. (original) The method of claim 20, wherein the temperature at which the particles are deposited is approximately 200 to 500°C less than the minimum temperature.

22. (canceled)

- 23. (original) The method of claim 1, wherein a variation in coefficient of thermal expansion of the dense glass is in a range from -5 ppb/°C to +5 ppb/°C.
- 24. (new) The method of claim 1, further comprising rotating the deposition surface relative to the burner while successively depositing the particles on the deposition surface.