

SVM (Support Vector Machines)

In this notebook, we use SVM (Support Vector Machines) to build and train a model using human cell records, and classify cells to whether the samples are benign or malignant.

SVM works by mapping data to a high-dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable. A separator between the categories is found, then the data is transformed in such a way that the separator could be drawn as a hyperplane. Following this, characteristics of new data can be used to predict the group to which a new record should belong.

Table of contents

- 1. Load the Cancer data
- 2. Modeling
- 3. Evaluation
- 4. Practice

```
Collecting scikit-learn==0.23.1
         Downloading scikit learn-0.23.1-cp37-cp37m-manylinux1 x86 64.whl (6.8 MB)
                                            ----- 6.8/6.8 MB 92.8 MB/s eta 0:00:
       00:00:0100:01
      Requirement already satisfied: numpy>=1.13.3 in /home/jupyterlab/conda/envs/
       python/lib/python3.7/site-packages (from scikit-learn==0.23.1) (1.21.6)
       Requirement already satisfied: scipy>=0.19.1 in /home/jupyterlab/conda/envs/
       python/lib/python3.7/site-packages (from scikit-learn==0.23.1) (1.7.3)
       Collecting joblib>=0.11 (from scikit-learn==0.23.1)
         Downloading joblib-1.3.2-py3-none-any.whl (302 kB)
                                               --- 302.2/302.2 kB 40.0 MB/s eta 0:0
       0:00
       Collecting threadpoolctl>=2.0.0 (from scikit-learn==0.23.1)
         Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)
       Installing collected packages: threadpoolctl, joblib, scikit-learn
         Attempting uninstall: scikit-learn
           Found existing installation: scikit-learn 0.20.1
           Uninstalling scikit-learn-0.20.1:
             Successfully uninstalled scikit-learn-0.20.1
       Successfully installed joblib-1.3.2 scikit-learn-0.23.1 threadpoolctl-3.1.0
In [2]: import pandas as pd
        import pylab as pl
        import numpy as np
        import scipy.optimize as opt
        from sklearn import preprocessing
        from sklearn.model_selection import train_test_split
        %matplotlib inline
        import matplotlib.pyplot as plt
```

Load the Cancer data

The example is based on a dataset that is publicly available from the UCI Machine Learning Repository (Asuncion and Newman, 2007)

[http://mlearn.ics.uci.edu/MLRepository.html]. The dataset consists of several hundred human cell sample records, each of which contains the values of a set of cell characteristics. The fields in each record are:

Field name	Description
ID	Clump thickness
Clump	Clump thickness
UnifSize	Uniformity of cell size
UnifShape	Uniformity of cell shape
MargAdh	Marginal adhesion
SingEpiSize	Single epithelial cell size
BareNuc	Bare nuclei
BlandChrom	Bland chromatin

Field name	Description	
NormNucl	Normal nucleoli	
Mit	Mitoses	
Class	Benign or malignant	

```
In [3]: #Click here and press Shift+Enter
!wget -0 cell_samples.csv https://cf-courses-data.s3.us.cloud-object-storage
```

--2024-08-26 19:03:28-- https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell samples.csv

Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)... 169.63.118.104, 16 9.63.118.104

Connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)|169.63.118.104|:44 3... connected.

HTTP request sent, awaiting response... 200 OK

Length: 19975 (20K) [text/csv] Saving to: 'cell_samples.csv'

cell_samples.csv 100%[===========] 19.51K --.-KB/s in 0.001 s

2024-08-26 19:03:28 (34.1 MB/s) - 'cell_samples.csv' saved [19975/19975]

Load Data From CSV File

Out[21]:		ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChror
	0	1000025	5	1	1	1	2	1	
	1	1002945	5	4	4	5	7	10	
	2	1015425	3	1	1	1	2	2	
	3	1016277	6	8	8	1	3	4	
	4	1017023	4	1	1	3	2	1	

The ID field contains the patient identifiers. The characteristics of the cell samples from each patient are contained in fields Clump to Mit. The values are graded from 1 to 10, with 1 being the closest to benign.

The Class field contains the diagnosis, as confirmed by separate medical procedures, as to whether the samples are benign (value = 2) or malignant (value = 4).

Let's look at the distribution of the classes based on Clump thickness and Uniformity of cell size:

In [5]: ax = cell_df[cell_df['Class'] == 4][0:50].plot(kind='scatter', x='Clump', y=
 cell_df[cell_df['Class'] == 2][0:50].plot(kind='scatter', x='Clump', y='Unif
 plt.show()

Data pre-processing and selection

```
In [6]: cell_df.dtypes
        ID
Out[6]:
                         int64
         Clump
                         int64
         UnifSize
                         int64
         UnifShape
                         int64
        MargAdh
                         int64
         SingEpiSize
                         int64
         BareNuc
                        object
         BlandChrom
                         int64
        NormNucl
                         int64
        Mit
                         int64
         Class
                         int64
         dtype: object
```

It looks like the **BareNuc** column includes some values that are not numerical. We can drop those rows:

```
In [7]: cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull
        cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')
        cell_df.dtypes
Out[7]: ID
                       int64
        Clump
                       int64
        UnifSize
                       int64
        UnifShape
                       int64
        MargAdh
                       int64
        SingEpiSize
                      int64
        BareNuc
                      int64
        BlandChrom
                      int64
        NormNucl
                       int64
        Mit
                       int64
        Class
                       int64
        dtype: object
In [8]: feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiS
        X = np.asarray(feature_df)
        X[0:5]
Out[8]: array([[5, 1, 1, 1, 2, 1, 3,
                                            1,
                                                1],
               [5, 4, 4, 5, 7, 10, 3, 2,
               [3, 1, 1, 1, 2, 2, 3, 1,
                                                 1],
               [6, 8, 8,
                             1,
                                3, 4,
                                       3,
                                            7,
                                                1],
                     1,
                         1,
                             3, 2, 1, 3, 1,
                                                1]])
               [ 4.
        We want the model to predict the value of Class (that is, benign (=2) or malignant (=4)).
In [9]: y = np.asarray(cell df['Class'])
       y [0:5]
Out[9]: array([2, 2, 2, 2, 2])
```

Train/Test dataset

We split our dataset into train and test set:

```
In [10]: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, ra
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)

Train set: (546, 9) (546,)
Test set: (137, 9) (137,)
```

Modeling (SVM with Scikit-learn)

```
In [11]: from sklearn import svm
    clf = svm.SVC(kernel='rbf')
    clf.fit(X_train, y_train)

Out[11]: SVC()
    After being fitted, the model can then be used to predict new values:

In [12]: yhat = clf.predict(X_test)
    yhat [0:5]

Out[12]: array([2, 4, 2, 4, 2])
```

Evaluation

```
In [13]: from sklearn.metrics import classification_report, confusion_matrix
import itertools
```

```
In [14]: def plot_confusion_matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                 print("Normalized confusion matrix")
             else:
                 print('Confusion matrix, without normalization')
             print(cm)
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
             plt.tight_layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
```

```
In [15]: # Compute confusion matrix
    cnf_matrix = confusion_matrix(y_test, yhat, labels=[2,4])
    np.set_printoptions(precision=2)

print (classification_report(y_test, yhat))

# Plot non-normalized confusion matrix
    plt.figure()
    plot_confusion_matrix(cnf_matrix, classes=['Benign(2)', 'Malignant(4)'],normatrix
```

	precision recal		f1-score	support
2 4	1.00 0.90	0.94 1.00	0.97 0.95	90 47
accuracy macro avg weighted avg	0.95 0.97	0.97 0.96	0.96 0.96 0.96	137 137 137

Confusion matrix, without normalization [[85 5] [0 47]]

Predicted label

In [16]: from sklearn.metrics import f1_score
f1_score(y_test, yhat, average='weighted')

Out[16]: 0.9639038982104676

Let's try the jaccard index for accuracy:

In [17]: from sklearn.metrics import jaccard_score

jaccard_score(y_test, yhat,pos_label=2)

Out[17]: 0.9444444444444444

Author

Saeed Aghabozorgi

Idara-Abasi Udoh

Other Contributors

Joseph Santarcangelo

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2024-08-26	2.3	Idara-Abasi Udoh	Project completion
2021-01-21	2.2	Lakshmi	Updated sklearn library
2020-11-03	2.1	Lakshmi	Updated URL of csv
2020-08-27	2.0	Lavanya	Moved lab to course repo in GitLab

© IBM Corporation 2020. All rights reserved.

In []: