Computazione

• Computazione: un processo che associa un input a un output

Computazione

• Computazione: un processo che associa un input a un output

 Rappresentiamo numeri, testi, immagini, ... usando stringhe di 0 e 1.

Computazione

• Computazione: un processo che associa un input a un output

 Rappresentiamo numeri, testi, immagini, ... usando stringhe di 0 e 1.

Calcolare una funzione F: {0,1}* → {0,1}*.
 Ciò comprende non solo calcoli aritmetici, ma moltissimi altri compiti che sorgono in settori diversi come il calcolo scientifico, l'intelligenza artificiale, l'elaborazione delle immagini, data mining,

 Def. Un insieme è una collezione non ordinata di oggetti o elementi
 Gli elementi di un insieme sono scritti tra parentesi graffe {

Esempio: $\{0, 3, 5, 15\}$

- **Def.** Un insieme è una collezione non ordinata di oggetti o elementi
 - Gli elementi di un insieme sono scritti tra parentesi graffe $\{$ $\}$ Esempio: $\{0,3,5,15\}$
- **Def.** Per ogni insieme $S,\ w \in S$ indica che w è un elemento di S

Nota: Notazione di insiemi per specificare un insieme

$$A = \{x | x \in \mathbb{R}, f(x) = 0\}$$

 $\mathbb R$ è l'insieme dei numeri reali, f è una qualche funzione

• Ordine e ridondanza non contano

```
\{a,b,c\} ha elementi a,b,c.
```

 $\{a,b,c\}$ e $\{b,a,b,c,c\}$ sono lo stesso insieme.

- Ordine e ridondanza non contano
 - $\{a,b,c\}$ ha elementi a,b,c.
 - $\{a,b,c\}$ e $\{b,a,b,c,c\}$ sono lo stesso insieme.
- {a} ed a sono cose diverse
 - $\{a\}$ insieme che contiene solo elemento a.

- Es: L'insieme dei numeri naturali è $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$
- Es: L' insieme dei numeri pari è

$$\{0,2,4,6,8,10,12,\ldots\} = \{2n \mid n=0,1,2,3,\ldots\} = \{2n \mid n \in \mathbb{N}\}$$

L' insieme dei pari positivi è

$$\{2, 4, 6, 8, 10, 12, ...\} = \{2n \mid n = 1, 2, 3, ...\} = \{2n \mid n \in \mathbb{N}^+\}$$

L' insieme dei numeri dispari è

$$\{1,3,5,7,9,11,13,\ldots\} = \{2n+1 \mid n=0,1,2,\ldots\} = \{2n+1 \mid n \in \mathbb{N}\}$$

• Es: Se $A = \{2n \mid n \in \mathbb{N}\}$, allora $4 \in A$, ma $5 \notin A$.

Cardinalità

- **Def.** La cardinalità |S| di S è il numero di elementi in S.
- Es.

Se
$$S=\{ab,bb\}$$
 allora $|S|=2$

Se
$$T = \{2^n \mid n \in \mathbb{N}, n > 1\}$$
, allora $|T| = \infty$

Se
$$T = \emptyset$$
, allora $|T| = 0$

Insiemi Finiti ed Infiniti

- Def. Un insieme S è finito se esiste n ≥ 0 tale che |S| ≤ n,
 Se S non è finito, allora è detto infinito.
- Es.

Se
$$S=\{ab,bb\}$$
 allora $|S|=2$ e S è finito

Se
$$T=\{2^n\mid n\in\mathbb{N},\, n>1\}$$
, allora $|T|=\infty$ e T è infinito

Alfabeto

- Un **alfabeto** è un insieme finito di elementi fondamentali (chiamati lettere o simboli)
- Es: L' alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

• Es: L' alfabeto delle cifre arabe è

$$\Sigma = \{0, 1, \dots, 9\}$$

• Es: L' alfabeto binario è

$$\Sigma = \{0, 1\}$$

Stringhe

- Una stringa su un alfabeto è una sequenza finita di simboli dell' alfabeto.
- **Es:** gatto, cibo, c, babbz sono stringhe sull' alfabeto $A = \{a, b, c, ..., z\}.$
 - 0131 è una stringa sull' alfabeto $B = \{0, 1, 2, ..., 9\}.$
 - 0101 è una stringa sull' alfabeto $B = \{0, 1\}.$

Stringhe

- Data una stringa s, la lunghezza di s è il numero di simboli in s.
- La lunghezza di s è denotata con lunghezza(s) o |s|.
- Es: lunghezza(ciao) = |ciao| = 4.
- La **stringa vuota**, indicata con ϵ , è la stringa contenente nessun simbolo, $|\epsilon|=0$.

Kleene Star

- Def. Dato l'alfabeto Σ,
 la chiusura di Kleene di Σ, indicata con Σ*, è l' insieme di tutte le possibili stringhe su Σ.
- Es: se $\Sigma=\{a,b\}$, allora $\Sigma^*=\{\epsilon,a,b,aa,ab,ba,bb,aaa,aab,aba,abb,...\}$

- **Def.** Date due stringhe **u** e **v**, la concatenazione di **u** e **v** è la stringa **uv**.
- Es: $\mathbf{u} = abb$ e $\mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = abbab$ e $\mathbf{v}\mathbf{u} = ababb$ $\mathbf{u} = \epsilon$ e $\mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = ab$ $\mathbf{u} = bb$ e $\mathbf{v} = \epsilon$, allora $\mathbf{u}\mathbf{v} = bb$ $\mathbf{u} = \epsilon$ e $\mathbf{v} = \epsilon$, allora $\mathbf{u}\mathbf{v} = \epsilon$; cioè $\epsilon \epsilon = \epsilon$

• **Def.** Per una stringa \mathbf{w} , definiamo \mathbf{w}^n per $n \ge 0$ induttivamente:

$$\mathbf{w}^0 = \epsilon$$

 $\mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}$, per ogni $n \ge 1$.

• **Def.** Per una stringa \mathbf{w} , definiamo \mathbf{w}^n per $n \ge 0$ induttivamente:

$$\mathbf{w}^0 = \epsilon$$

 $\mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}$, per ogni $n \ge 1$.

• Es: Se $\mathbf{w} = cat$, allora $\mathbf{w}^0 = \epsilon$, $\mathbf{w}^1 = cat$, $\mathbf{w}^2 = catcat$, $\mathbf{w}^3 = catcatcat$, ...

 Def. Per una stringa w, definiamo wⁿ per n ≥ 0 induttivamente:

$$\mathbf{w}^0 = \epsilon$$

 $\mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}$, per ogni $n \ge 1$.

- Es: Se $\mathbf{w} = cat$, allora $\mathbf{w}^0 = \epsilon$, $\mathbf{w}^1 = cat$, $\mathbf{w}^2 = catcat$, $\mathbf{w}^3 = catcatcat$, ...
- **Es:** Dato simbolo a $a^3 = aaa$ $a^0 = \epsilon$

Sottostringa

Def. Data una stringa s, una sottostringa di s è una qualsiasi parte di simboli consecutivi della stringa s cioè,
w è una sottostringa di s se esistono stringhe x e y (eventualmente vuote) tali che

$$\mathbf{s} = \mathbf{x} \mathbf{w} \mathbf{y}$$

Sottostringa

Def. Data una stringa s, una sottostringa di s è una qualsiasi parte di simboli consecutivi della stringa s cioè,
 w è una sottostringa di s se esistono stringhe x e y (eventualmente vuote) tali che

$$s = xwy$$

• Es:

567 è sottostringa di 56789 567 è sottostringa di 45678 567 è sottostringa di 34567 567 è sottostringa di 567

Sottostringa

Def. Data una stringa s, una sottostringa di s è una qualsiasi parte di simboli consecutivi della stringa s cioè,
 w è una sottostringa di s se esistono stringhe x e y (eventualmente vuote) tali che

$$s = xwy$$

- Es:
 - 567 è sottostringa di 56789 567 è sottostringa di 45678 567 è sottostringa di 34567 567 è sottostringa di 567
- Es: Stringa 472 ha sottostringhe

$$\epsilon$$
, 4, 7, 2, 47, 72, 472

Ma 42 non è sottostringa di 472.

Linguaggi

• **Def.** Un Linguaggio formale (linguaggio) è un insieme di stringhe su un alfabeto.

Linguaggi

- **Def.** Un Linguaggio formale (linguaggio) è un insieme di stringhe su un alfabeto.
- \bullet Es: Linguaggi di programmazione, quali C, C^{++} o Java, sono linguaggi formali con alfabeto

$$\{a, b, ..., z, A, B, ..., Z, 0, 1, 2, ..., 9, >, <, =, +, -, *, /, (,), \cdots \}$$

Le regole della sintassi definiscono le regole del linguaggio. L'insieme di nomi validi di variabili è, esso stesso, un linguaggio formale.

Linguaggi

Nota: non solo insiemi finiti.
 Infatti insiemi finiti non sono di solito linguaggi intereressanti
 Tutti i nostri alfabeti sono finiti,
 ma la maggior parte dei linguaggi che incontreremo sono infiniti.

• Es. Alfabeto $A=\{x\}.$ Linguaggio $L=\{\epsilon,x,xx,xxx,xxxx,...\}=\{x^n|n=0,1,2,3...\}$ Nota: $x^0=\epsilon$, quindi la stringa vuota è in L

• Es. Alfabeto $A=\{x\}$. Linguaggio $L=\{\epsilon,x,xx,xxx,xxxx,...\}=\{x^n|n=0,1,2,3...\}$ Nota: $x^0=\epsilon$, quindi la stringa vuota è in L

• Es. Alfabeto $A=\{x\}.$ Linguaggio $L=\{x,xxx,xxxxx,...\}=\{x^{2n+1}|n=0,1,2,3...\}$

• Es. Alfabeto $A=\{x\}$. Linguaggio $L=\{\epsilon,x,xx,xxx,xxxx,...\}=\{x^n|n=0,1,2,3...\}$ Nota: $x^0=\epsilon$, quindi la stringa vuota è in L

- Es. Alfabeto $A=\{x\}.$ Linguaggio $L=\{x,xxx,xxxxx,...\}=\{x^{2n+1}|n=0,1,2,3...\}$
- Es. Alfabeto $A=\{0,1,2,...,9\}$. Linguaggio $L=\{$ qualsiasi stringa che non inizia con $0\}=\{\epsilon,1,2,3,...,9,10,11,...\}$

• Es. Sia $A=\{a,b\}$, definiamo il linguaggio L formato da tutte le stringhe che iniziano con a e seguono con 0 o più b; Cioè $L=\{a,ab,abb,abbb,...\}=\{ab^n|n\geq 0\}$

- Es. Sia $A=\{a,b\}$, definiamo il linguaggio L formato da tutte le stringhe che iniziano con a e seguono con 0 o più b; Cioè $L=\{a,ab,abb,abbb,...\}=\{ab^n|n\geq 0\}$
- Nota. L'insieme vuoto ∅ è l' insieme che non contiene alcun elemento.
 - $\emptyset \neq \{\epsilon\}$ poichè \emptyset non ha elementi.

In generale

•
$$\epsilon \notin \emptyset$$

Perché i linguaggi?

• Vedremo che Risolvere un problema (con risposta sì/no) \equiv riconoscere un linguaggio.

riconoscere un linguaggio L su un alfabeto Σ significa stabilire per ogni stringa $\mathbf{x} \in \Sigma^*$ se $\mathbf{x} \in L$ oppure $\mathbf{x} \not\in L$.

Perché i linguaggi?

• Vedremo che Risolvere un problema (con risposta sì/no) \equiv riconoscere un linguaggio.

riconoscere un linguaggio L su un alfabeto Σ significa stabilire per ogni stringa $\mathbf{x} \in \Sigma^*$ se $\mathbf{x} \in L$ oppure $\mathbf{x} \not\in L$.

• Es.

Problema: dato un intero x, x è primo? Possiamo anche scriverlo come: data una stringa binaria \mathbf{b} , $\mathbf{b} \in \{\text{stringhe che sono rappresentazioni binarie di un primo}\}$ = $\{1, 10, 11, 101, 111, 1011, \ldots\}$?

Insiemi: Relazioni ed Operazioni

• **Def.** Siano S e T insiemi. Diciamo che $S \subseteq T$ (S sottoinsieme di T) se $w \in S$ implica $w \in T$. Cioè ogni elemento di S è anche un elemento di T.

Insiemi: Relazioni ed Operazioni

• **Def.** Siano S e T insiemi. Diciamo che $S \subseteq T$ (S sottoinsieme di T) se $w \in S$ implica $w \in T$. Cioè ogni elemento di S è anche un elemento di T.

• Es.

$$S=\{ab,ba\} \text{ e } T=\{ab,ba,aaa\} \text{ allora } S\subseteq T \text{ ma } T\not\subseteq S.$$

$$S=\{ba,ab\} \text{ e } T=\{aa,ba\} \text{ allora } S\not\subseteq T \text{ e } T\not\subseteq S.$$

Insiemi uguali

• **Def.** Insiemi S e T sono uguali (S = T) se e solo se

$$S \subseteq T$$
 e $T \subseteq S$.

• Es.

Siano $S=\{ab,ba\}$ e $T=\{ba,ab\}$ allora $S\subseteq T$ e $T\subseteq S$; quindi S=T.

Siano $S=\{ab,ba\}$ e $T=\{ba,ab,aaa\}$, allora $S\subseteq T$ ma $T\not\subseteq S$; quindi $S\neq T$.

Unione

ullet Def. Dati due insiemi S e T, definiamo la loro unione

$$S \cup T = \{ w \mid w \in S \text{ oppure } w \in T \}$$

 $S \cup T$ contiene tutti gli elementi contenuti in S oppure in T (o in entrambi).

- Es.
 - $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cup T = \{ab, bb, aa, a\}$
 - $S = \{a, ba\}$ e $T = \emptyset$, allora $S \cup T = S$.
 - $S = \{a, ba\}$ e $T = \{\epsilon\}$ allora $S \cup T = \{\epsilon, a, ba\}$

Intersezione

 \bullet **Def.** Dati due insiemi S e T, definiamo la loro intersezione

$$S \cap T = \{ w \mid w \in S \in w \in T \}$$

 $S\cap T$ contiene tutti gli elementi comuni ad S e T

Intersezione

ullet Def. Dati due insiemi S e T, definiamo la loro intersezione

$$S \cap T = \{ w \mid w \in S \in w \in T \}$$

 $S \cap T$ contiene tutti gli elementi comuni ad S e T

• **Def.** insiemi S e T si dicono disgiunti se $S \cap T = \emptyset$

Intersezione

ullet Def. Dati due insiemi S e T, definiamo la loro intersezione

$$S \cap T = \{ w \mid w \in S \text{ e } w \in T \}$$

 $S \cap T$ contiene tutti gli elementi comuni ad S e T

- **Def.** insiemi S e T si dicono disgiunti se $S \cap T = \emptyset$
- Es.
 - Sia $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cap T = \{bb\}$

Intersezione

ullet Def. Dati due insiemi S e T, definiamo la loro intersezione

$$S \cap T = \{ w \mid w \in S \in w \in T \}$$

 $S \cap T$ contiene tutti gli elementi comuni ad S e T

- **Def.** insiemi S e T si dicono disgiunti se $S \cap T = \emptyset$
- Es.
 - Sia $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cap T = \{bb\}$
 - Sia $S=\{ab,bb\}$ e $T=\{aa,ba,a\}$ allora $S\cap T=\emptyset$, quindi S e T sono disgiunti

Cardinalità

• Proposizione. Se S e T sono disgiunti (cioè $S \cap T = \emptyset$), allora $|S \cup T| = |S| + |T|$

Sottrazione

• **Def.** Dati due insiemi S e T,

$$S \setminus T = \{ w \mid w \in S \text{ e } w \not\in T \}$$

- Es.
 - • Sia $S = \{a, b, bb, bbb\}$ e $T = \{a, bb, bab\}$ allora $S \setminus T = \{b, bbb\}$
 - Sia $S = \{ab, ba\}$ e $T = \{ab, ba\}$ allora $S \setminus T = \emptyset$

Sottrazione

• **Def.** Dati due insiemi S e T,

$$S \setminus T = \{ w \mid w \in S \in w \not\in T \}$$

- Es.
 - • Sia $S = \{a, b, bb, bbb\}$ e $T = \{a, bb, bab\}$ allora $S \setminus T = \{b, bbb\}$
 - $\bullet \ \mbox{Sia} \ S = \{ab, ba\} \ \mbox{e} \ T = \{ab, ba\} \ \mbox{allora} \ S \setminus T = \emptyset$

• Proposizione. In generale vale:

$$|S \cup T| = |S| + |T| \setminus |S \cap T|$$

Complemento

• **Def.** Dato un universo U (insieme di tutti gli elementi in considerazione), il complemento di un insieme $S\subseteq U$ (rispetto a tale universo U) è

$$\overline{S} = \{ w \mid w \in U, \ w \notin S \}$$

 \overline{S} è l' insieme di tutti quegli elementi in esame (elementi di U) che non sono in S (quindi $\overline{S}=U\setminus S$).

Complemento

• **Def.** Dato un universo U (insieme di tutti gli elementi in considerazione), il complemento di un insieme $S\subseteq U$ (rispetto a tale universo U) è

$$\overline{S} = \{ w \mid w \in U, \ w \not \in S \}$$

 \overline{S} è l' insieme di tutti quegli elementi in esame (elementi di U) che non sono in S (quindi $\overline{S}=U\setminus S$).

Es.

U: insieme delle stringhe su alfabeto $\{a,b\}$

S: insieme delle stringhe su alfabeto $\{a,b\}$ che iniziano con b.

 \overline{S} : insieme delle stringhe su alfabeto $\{a,b\}$ che non iniziano con b,

N.B.: <u>NON</u> insieme stringhe che iniziano con a (\overline{S} contiene anche la stringa vuota ϵ)

Concatenazione

• **Def.** Dati 2 insiemi S e T di stringhe, la concatenazione (o prodotto) di S e T è

$$S \circ T = \{uv \mid u \in S, \ v \in T\}$$

 $S\circ T$ è l' insieme di stringhe che possono essere divise in 2 parti: la prima parte coincide con una stringa in S la seconda parte coincide con una stringa in T.

• Es. Se $S=\{a,aa\}$ e $T=\{\epsilon,a,ba\}$, allora

$$S \circ T = \{a, aa, aba, aaa, aaba\}, \quad T \circ S = \{a, aa, aaa, baa, baaa\}$$

$$aba \in S \circ T$$
, ma $aba \notin T \circ S$. Quindi $S \circ T \neq T \circ S$

Sequenze e tuple

• **Def.** Una sequenza di oggetti è una lista di questi oggetti in qualche ordine.

Ordine e ridondanza sono importanti in una sequenza (non in un insieme).

Sequenze e tuple

- **Def.** Una sequenza di oggetti è una lista di questi oggetti in qualche ordine.
 - Ordine e ridondanza sono importanti in una sequenza (non in un insieme).
- Def. Sequenze finite sono dette tuple. Una k—tupla ha k elementi nella sequenza.

Sequenze e tuple

- **Def.** Una sequenza di oggetti è una lista di questi oggetti in qualche ordine.
 - Ordine e ridondanza sono importanti in una sequenza (non in un insieme).
- Def. Sequenze finite sono dette tuple. Una k—tupla ha k elementi nella sequenza.
- Es.
 - (4, 2, 7) è una 3-tupla o tripla
 - (9, 23) è una 2-tupla o coppia
 - $(9, 23) \neq (23, 9)$ importanza dell'ordine
 - $(2, 2, 3) \neq (2, 3)$ importanza della ridondanza

• **Def.** Dati due insiemi A e B, il prodotto Cartesiano $A \times B$ è l'insieme delle coppie (x,y) dove $x \in A$ e $y \in B$. Cioè

$$A \times B = \{(x, y) \mid x \in A, \ y \in B\}$$

• **Def.** Dati due insiemi A e B, il prodotto Cartesiano $A \times B$ è l'insieme delle coppie (x,y) dove $x \in A$ e $y \in B$. Cioè

$$A \times B = \{(x, y) \mid x \in A, \ y \in B\}$$

Es.

Siano $A=\{a,ba,bb\}$ e $B=\{\epsilon,ba\}$, allora

$$A\times B=\{(a,\epsilon),(a,ba),(ba,\epsilon),(ba,ba),(bb,\epsilon),(bb,ba)\}$$

$$B \times A = \{(\epsilon, a), (\epsilon, ba), (\epsilon, bb), (ba, a), (ba, ba), (ba, bb)\}.$$

• **Def.** Dati due insiemi A e B, il prodotto Cartesiano $A \times B$ è l'insieme delle coppie (x,y) dove $x \in A$ e $y \in B$. Cioè

$$A \times B = \{(x, y) \mid x \in A, \ y \in B\}$$

Es.

Siano $A=\{a,ba,bb\}$ e $B=\{\epsilon,ba\}$, allora

$$A\times B=\{(a,\epsilon),(a,ba),(ba,\epsilon),(ba,ba),(bb,\epsilon),(bb,ba)\}$$

$$B\times A=\{(\epsilon,a),(\epsilon,ba),(\epsilon,bb),(ba,a),(ba,ba),(ba,bb)\}.$$

• Nota $(ba, a) \in B \times A$, ma $(ba, a) \notin A \times B$, Quindi $B \times A \neq A \times B$.

• **Def.** Dati due insiemi A e B, il prodotto Cartesiano $A \times B$ è l'insieme delle coppie (x,y) dove $x \in A$ e $y \in B$. Cioè

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Es.

Siano
$$A=\{a,ba,bb\}$$
 e $B=\{\epsilon,ba\}$, allora

$$A\times B=\{(a,\epsilon),(a,ba),(ba,\epsilon),(ba,ba),(bb,\epsilon),(bb,ba)\}$$

$$B\times A=\{(\epsilon,a),(\epsilon,ba),(\epsilon,bb),(ba,a),(ba,ba),(ba,bb)\}.$$

- Nota $(ba, a) \in B \times A$, ma $(ba, a) \notin A \times B$, Quindi $B \times A \neq A \times B$.
- Nota il prodotto Cartesiano è diverso dalla Concatenazione

$$A \circ B = \{a, aba, ba, baba, bb, bbba\} \neq A \times B$$

• Nota $|A \times B| = |A||B|$

- Nota $|A \times B| = |A||B|$
- Possiamo anche definire prodotto cartesiano di più di 2 insiemi. $A_1 \times \ldots \times A_k$ è l' insieme di k-tuple

$$A_1 \times \ldots \times A_k = \{(x_1, \ldots, x_k) \mid x_i \in A_i, \quad 1 \le i \le k\}$$

```
\begin{aligned} &\textbf{Es. Siano} \\ &A_1 = \{ab, ba, bbb\} \\ &A_2 = \{a, bb\}, \\ &A_3 = \{ab, b\}. \\ &\text{allora} \end{aligned}
```

$$\begin{array}{ll} A1 \times A2 \times A3 = & \{ & (ab,a,ab), (ab,a,b), (ab,bb,ab), (ab,bb,b), \\ & & (ba,a,ab), (ba,a,b), (ba,bb,ab), (ba,bb,b), \\ & & & (bbb,a,ab), (bbb,a,b), (bbb,bb,ab), (bbb,bb,b) \}. \end{array}$$

Insieme potenza

 \bullet Def. Per ogni insieme S, l'insieme potenza $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{ A \mid A \subseteq S \}$$

cioè l' insieme di tutti i possibili sottoinsiemi di S (inclusi \emptyset e S stesso).

Insieme potenza

 \bullet Def. Per ogni insieme S, l'insieme potenza $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{ A \mid A \subseteq S \}$$

cioè l' insieme di tutti i possibili sottoinsiemi di S (inclusi \emptyset e S stesso).

• Es. Se $S = \{a, bb\}$, allora

$$\mathcal{P}(S) = \{\emptyset, \{a\}, \{bb\}, \{a, bb\}\}\$$

Insieme potenza

 \bullet Def. Per ogni insieme S, l'insieme potenza $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{ A \mid A \subseteq S \}$$

cioè l' insieme di tutti i possibili sottoinsiemi di S (inclusi \emptyset e S stesso).

• Es. Se $S = \{a, bb\}$, allora

$$\mathcal{P}(S) = \{\emptyset, \{a\}, \{bb\}, \{a, bb\}\}\$$

• Lemma Se $|S| < \infty$, allora $|\mathcal{P}(S)| = 2^{|S|}$ Cioè, ci sono $2^{|S|}$ differenti sottoinsiemi di S. Perchè?

Chiusura

ullet **Def.** Dato un insieme S di stringhe, sia

```
S^0 = \{\epsilon\},\

S^k = \{w_1w_2...w_k \mid w_i \in S, i = 1, 2, ..., k\} = SS...S, k \ge 1.
```

concatenazione di ${\cal S}$ con se stesso per k volte

Chiusura

ullet **Def.** Dato un insieme S di stringhe, sia

```
S^0 = \{\epsilon\},\

S^k = \{w_1 w_2 \dots w_k \mid w_i \in S, i = 1, 2, \dots, k\} = SS \dots S, k \ge 1.
```

concatenazione di S con se stesso per k volte

• Nota. S^k è l'insieme delle stringhe ottenute concatenando k stringhe di S, con possibili ripetizioni. In particolare, $S^1 = S$.

Chiusura

ullet Def. Dato un insieme S di stringhe, sia

$$S^0 = \{\epsilon\},$$

 $S^k = \{w_1w_2...w_k \mid w_i \in S, i = 1, 2, ..., k\} = SS...S, k \ge 1.$

concatenazione di S con se stesso per k volte

- Nota. S^k è l'insieme delle stringhe ottenute concatenando k stringhe di S, con possibili ripetizioni. In particolare, $S^1=S$.
- Es. Se $S = \{a, bb\}$, allora

$$S^{0} = \{\epsilon\},$$

$$S^{1} = \{a, bb\},$$

$$S^{2} = \{aa, abb, bba, bbb\},$$

$$S^{3} = \{aaa, aabb, abba, abbb, bbaa, bbabb, bbba, bbbbb\}.$$

$$S^* = S^0 \cup S^1 \cup S^2 \cup S^3 \cup \dots$$

ullet Def. la Chiusura (o Kleene star) di un insieme di stringhe S è

$$S^* = S^0 \cup S^1 \cup S^2 \cup S^3 \cup \dots$$

• Nota. S^* è l' insieme di tutte le stringhe ottenute concatenando zero o più stringhe di S, potendo usare la stessa stringa più volte.

$$S^* = \{w_1 w_2 \dots w_k \mid k \ge 0, \quad w_i \in S, \quad i = 1, 2, \dots, k\},$$

dove per k=0, la stringa $w_1w_2\dots w_k=\epsilon$ è la stringa vuota.

• Es. Se $S = \{ba, a\}$, allora

$$S^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, \ldots\}$$

Se $w \in S^*$, può bb essere una sottostringa di w?

• Es. Se $S = \{ba, a\}$, allora

$$S^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, \ldots\}$$

Se $w \in S^*$, può bb essere una sottostringa di w?

• Es. Se $A = \{a, b\}$, allora

$$A^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\},\$$

tutte le possibili stringhe sull' alfabeto A.

• Es. Se $S = \{ba, a\}$, allora

$$S^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, \ldots\}$$

Se $w \in S^*$, può bb essere una sottostringa di w?

• Es. Se $A = \{a, b\}$, allora

$$A^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\},$$

tutte le possibili stringhe sull' alfabeto A.

• Es. Se $S = \emptyset$, allora $S^* = \{\epsilon\}$.

• Es. Se $S = \{ba, a\}$, allora

$$S^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, \ldots\}$$

Se $w \in S^*$, può bb essere una sottostringa di w?

• Es. Se $A = \{a, b\}$, allora

$$A^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\},\$$

tutte le possibili stringhe sull' alfabeto A.

- Es. Se $S = \emptyset$, allora $S^* = \{\epsilon\}$.
- \bullet Es. Se $S=\{\epsilon\}$, allora $S^*=\{\epsilon\}$

 S^{**}

• ${S^*}^* = (S^*)^*$ è l' insieme di stringhe formate concatenando stringhe di S^*

S^{**}

- ${S^*}^* = (S^*)^*$ è l' insieme di stringhe formate concatenando stringhe di S^*
- Nota. $S^{**} = S^*$ per ogni insieme S di stringhe.

 S^+

- S^+ è l' insieme di stringhe formate concatenando una o più stringhe di S
- Es. Se $S = \{x\}$, allora

$$S^+ = \{x, xx, xxx, xxxx, \dots\},\$$

Inverso di stringhe

• Per ogni stringa \mathbf{w} , l'inverso di \mathbf{w} , scritto $reverse(\mathbf{w})$ o \mathbf{w}^R , è la stessa stringa di simboli scritta in ordine inverso . Se $\mathbf{w} = w_1 w_2 \dots w_n$, dove ogni w_i è un simbolo, allora

$$\mathbf{w}^R = w_n w_{n-1} \dots w_1.$$

- Es. $(cat)^R = tac$
- Es. $\epsilon^R = \epsilon$.

Domanda: Se $S^R = \{ \mathbf{w}^R \mid \mathbf{w} \in S \}$ risulta $(S^R)^* = (S^*)^R$?

$$(S^*)^R = (S^R)^*$$
?

Partiamo da un semplice esempio: $S = \{ciccio, bello\}.$

$$S^* = \{\epsilon, \mathsf{ciccio}, \mathsf{bello}, \mathsf{cicciociccio}, \mathsf{cicciobello}, \mathsf{bellobello}, \ldots\}$$

Notiamo che per cicciobello $\in S^*$ vale:

$$(cicciobello)^R = olleboiccic = bello^R ciccio^R$$

$$(S^*)^R = (S^R)^*$$
?

Partiamo da un semplice esempio: $S = \{ciccio, bello\}.$

$$S^* = \{\epsilon, \mathsf{ciccio}, \mathsf{bello}, \mathsf{cicciociccio}, \mathsf{cicciobello}, \mathsf{bellobello}, \ldots\}$$

Notiamo che per cicciobello $\in S^*$ vale:

$$(cicciobello)^R = olleboiccic = bello^R ciccio^R$$

Per dimostrare che $(S^R)^*=(S^*)^R$, possiamo far vedere che dato un qualunque insieme S di stringhe:

- $\bullet (S^*)^R \subseteq (S^R)^*.$
- $\bullet (S^R)^* \subseteq (S^*)^R.$

$$(S^*)^R \subseteq (S^R)^*$$

 $\operatorname{Sia} S$ un qualunque insieme di stringhe.

Prendiamo una stringa $w \in (S^*)^R$. Possiamo scrivere $w = (w_1 w_2 \cdots w_n)^R$, dove ogni $w_i \in S$.

$$(w_1w_2\cdots w_n)^R = w_n^R w_{n-1}^R \cdots w_1^R.$$

Quindi $w \in (S^R)^*$.

$$(S^*)^R \supseteq (S^R)^*$$

 $\operatorname{Sia} S$ un qualunque insieme di stringhe.

Prendiamo ora una stringa $w \in (S^R)^*$.

$$w_1^R w_2^R \cdots w_n^R = (w_n w_{n-1} \cdots w_1)^R.$$

Quindi $w \in (S^*)^R$.