지능형로봇의이해

X

인공지능 로봇 개요

한양대학교 지능형로봇학과 윤종완

SHared Al-Robotics Education 지 능 형 로 봇 공 유 교 육 사 업 단

Contents

- 로봇 개요
- 협동로봇
- 인공지능 로봇

로봇 개요

로봇이란?

- 로봇이란 용어가 처음 사용된 것은 1920년 체코슬라바키아 극작가 카렐 차페크(Karel Capek)가 물질문명의 폐해를 풍자한 희곡 < R.U.R : Rossum's Universal Robots : 로섬의 인조인간 >
- 인조인간은 인간을 대신하여 힘들고 어려운 일은 대신하는 기계장치를 지칭한 '로보타(robota)'에서 유래되었으며 로보타(robota)는 체코어로 '일한다 또는 강제노동'이라는 뜻
- 세계 최초의 로봇은 1939년 뉴욕 세계박람회에서 미국 웨스팅하우스사가 출품한 전원을 넣으면 앞뒤로 걷고, 녹음된 77개의 단어를 말할 수 있는 '일렉트로(Electro)'

로보틱스 소개

- 로봇은 크게 구동부인 액츄에이터(Actuator), 센서, 제어부, 기계기구부, 등으로 이루어짐
 - 액츄에이터는 에너지를 운동으로 변화시키는 장치
 - 센서는 환경을 감지하는 장치
 - 제어부는 로봇의 행동에 대한 결정과 명령을 하는 장치
 - 기계기구부는 액츄에이터, 센서, 제어부를 보호하거나 동력전달 등을 담당

• 액츄에이터(Actuator)

- 시스템을 움직이는데 사용되는 기계 장치
- 전동식, 공압식, 유압식 등으로 분류
- 각각 전력, 공압, 유압을 동력으로 사용하여 회전운동 또는 직선운동등의 기계적 출력으로 변환

• 액츄에이터의 종류

공압식 액츄에이터

- ◆ 단동 실린더와 복동 실린더로 나눌 수 있음
- ◆ 공압의 힘으로 전기 및 유압에 비하여 경제적임
- ◆ 다른 액츄에이터에 비하여 구조가 간단하여 고장률 이 낮아 유지 관리가 쉬움
- ◆ 탱크 및 고압 펌프와 같은 추가적인 장비가 필요함
- ◆ 액츄에이터 내부의 피스톤을 움직이기 전에 가스가 먼저 압축되어야 하기 때문에 항상 지연 시간이 존 재함

단동실린더

복동실린더

출처: https://www.youtube.com/watch?v=U6pu4gClKJM

• 액츄에이터의 종류

유압식 액츄에이터

- ◆ 고압 유체를 사용하여 피스톤을 앞뒤로 밀어 동력 을 생성함
- ◆ 파스칼의 원리로 작은 힘을 큰 힘으로 전환할 수 있으며, 안정적인 제어가 가능함
- ◆ 누유의 위험이 있으며, 온도변화에 취약함
- ◆ 긴 수명을 가질 수 있지만 충분한 주의와 지속적인 유지보수가 필요함

출처: https://www.firgelliauto.com/ko/pages/actuators#pneumatic https://javalab.org/pascals_principle/ http://www.healtip.co.kr/news/articleView.html?idxno=1426

• 액츄에이터의 종류

전동식 액츄에이터

- ◆ 자석과 전류가 흐르는 코일의 자기력에 의해 움직임
- ◆ 보통 모터라고 불리며 크기와 종류가 매우 다양함
- ◆ 다양한 제어장치의 부착이 가능하고 제어성이 좋아 널리 사용됨
- ◆ 고장이 발생하기 쉽지만 구조가 복잡하여 현장 유지 보수가 어려움

출처: https://robots.ieee.org/robots/universal/, https://www.devicemart.co.kr/goods_process/get_html_to_string?url=/data/category/category_tech/001500010001/001500010001.html

• 센서(Sensor)

- 사람의 오감에 해당
- 로봇에서 작업을 수행하기 위해 로봇에 외부 세계의 정보를 전달하는
 역할을 수행
- 측정 대상으로부터 압력, 온도, 가속도, 생체신호 등 물리적 정보를 감지하여 전기적 신호로 변환시켜주는 장치

시각	청각	촉각	미각	후각	
카메라, 적외선 센서 등	마이크, 음향 센서 등	압력 센서, 온도 센서 등	pH 센서 등	가스센서 등	

• 제어부, 프로세서(Processor)

- 센서로부터 받아온 전기적 신호 데이터를 처리
- 로봇을 제어
- 컴퓨터 또는 라즈베리 파이, 아두이노와 같은 임베디드 보드

- 기계 기구부:로봇 구성요소를 감싸는 케이스와 동력 전달을 위한 기구부로 구성됨
 - _ 링크
 - 기구의 기본 구성 단위로 동력을 운반하는 요소
 - 조인트
 - 링크와 같은 기구학적 요소를 연결시키는 요소
 - 자유로운 운동이 가능하던 물체를 특정 운동만 하도록 제한 시킴
 - 조인트의 종류: Revolute, Prismatic, Helical, Cylindrical, Universal, Spherical

• 조인트의 종류

출처: Modern Robotics by Lynch and Park

• 기타 구성요소 – 엔드 이펙터

- 머니퓰레이터 타입 로봇의 끝에 장착되는 장치로 어떤 엔드 이펙터가 적용되느냐에 따라 다양한 작업 가능
- 자동화 공정에 따라 적합한 엔드 이펙터를 장착하는 것으로 산업용
 로봇은 다양한 작업을 수행할 수 있음

출처: http://mtse.co.kr/, https://onrobot.com/ko, https://www.kuka.com/ko-kr

- 기타 구성요소 엔드 이펙터
 - 엔드 이펙터는 대표적으로 그리퍼와 도구로 나눌 수 있음
 - 이외에도 필요에 따라 다양한 기능을 장착할 수 있음

분야	엔드이펙터 종류							
그리퍼	2핑거 그리퍼	3핑거 그리퍼	진공 그리퍼	소프트 그리퍼		게코 그리퍼	마그네틱 그리퍼	
도구	샌더		스크류 드라이버		용접			

• 기타 구성요소 – 엔드 이펙터

그리퍼

- ◆ 파지하는 손가락의 개수에 따라 대표적으로 2핑거 그리퍼, 3핑거 그리퍼로 구분됨
- ◆ 사람의 손가락처럼 물건을 집어 옮기며, 센서 또는 카메라를 달아 다른 기능을 추가할 수도 있음
- ◆ 압력센서나 촉각센서를 사용해 물건을 집었는지 판별 할 수 있음

출처: https://onrobot.com/ko

• 기타 구성요소 – 엔드 이펙터

진공 그리퍼

- ◆ 주로 평평하여 집기 힘든 물건을 옮길 때 자주 사용함
- ◆ 끝의 팁을 밀착시킨 후 공기를 흡입하여 진공으로 만 든 후 그 힘으로 물건을 들어올림
- ◆ 물체의 옆면을 집을 필요가 없어 접촉면이 적은 장점 이 있음

출처: https://roboticsandautomationnews.com/

• 기타 구성요소 – 엔드 이펙터

소프트 그리퍼

- ◆ 딱딱한 금속의 재질대신 부드러운 재질을 사용해 만든 그리퍼임
- ◆ 부드러운 물체를 으깨지 않고 옮길 수 있음
- ◆ 또한 울퉁불퉁하여 잘 집히지 않는 물체도 유연하게 잡을 수 있음

출처: https://www.justborn.com/

• 기타 구성요소 – 엔드 이펙터

게코 그리퍼

- ◆ 역할은 진공 그리퍼와 거의 같지만 게코 도마뱀의 발 구조를 흉내 내어 파지한 자국이 거의 남지 않는 것이 특징임
- ◆ 먼지에 굉장히 취약해서 반도체나 디스플레이를 제조하는 클린룸에서 주로 사용됨

출처: https://onrobot.com/ko http://www.irobotnews.com/news/quickViewArticleView.html?idxno=5517

• 기타 구성요소 – 엔드 이펙터

- 마그네틱 그리퍼

- ◆ 자력을 이용해서 금속을 집는 그리퍼임
- ◆ 다수의 물체를 옮길 수 있음과 동시에 그 힘도 강력하여 무거운 물체도 옮길 수 있음

출처: http://www.magbot.kr/

• 기타 구성요소 – 엔드 이펙터

샌더

- ◆ 표면을 갈아 매끈하게 만드는 샌딩기가 부착된 엔드이펙터
- ◆ 사람이 가기 힘든 곳도 로봇팔을 이용하면 쉽게 접근 가능하므로 다양하고 넓은 곳을 샌 딩할 수 있음

출처: https://onrobot.com/ko

• 기타 구성요소 – 엔드 이펙터

스크류 드라이버와 용접기

- ◆ 스크류 드라이버를 장착하여 나사를 조이거나 푸는 작업을 할 수 있음
- ◆ 용접기를 장착하여 용접할 수 있음

출처: https://onrobot.com/ko, https://www.aitimes.kr/news/articleView.html?idxno=14894

협동로봇 개요

• 협동로봇의 정의

협동로봇이란?

- 인간과의 직접적인 상호작용을 위해 설계된 로봇입니다.
- 일반 로봇은 다소 자율적으로 움직이도록 만들어졌으나 협동 로봇은 사람이 어떤 작업을 성공적으로 수행할 수 있도록

도와줍니다.

• 협동로봇의 역사

• 기존 산업용로봇과 협동로봇과의 차이점

산업용로봇 vs 협동로봇

산업용로봇

제품의 생산속도(가공 속도)가 빨라 로봇의 자동화도 빨라야 한다면 협동 로봇보다는 안전장치를 추가하더라도 산업용 로봇에 사용이 적합합니다.

협동로봇

생산속도(가공시간)에 여유가 있다면 사람의 진입과 작업 편의성 등을 감안한 협동 로봇을 선택하는 것도 좋은 대안이 될 것이라 생각됩니다

• 협동로봇의 장점

1) 레이아웃

산업용로봇

새로운 인력이나 로봇의 설치를 위해 레이아웃을 검토할 때 시간과 돈이 많이 들어간다. 협동로봇

레이아웃을 검토할 때 협동로봇의 길이를 줄이거나 늘려서 진행하여 재배열할 필요가 없다.

안전장치,팬스를 관리해야하는 인건비를 줄일 수 있다

• 협동로봇의 장점

2) 가벼운 무게

10kg 중량을 동일하게 걸었을 때

협동로봇

33kg 정도의 질량 여러 장비로 이동하며 작업 가능

• 협동로봇의 장점

3) 모든 관절이 360회전가능

- 모든 관절이 플러스,마이너스 360로 회전이 가능
- 따라서 물건을 집어 올리는 핸들링
 과정에서 필요한 공간이 줄어듦

협동로봇의 장점

4) 로봇의 안정성

- 협동로봇은 날카로운 모서리와 핀치 포인트를 제거해 본질적으로 안전함
- 로봇과 로봇이 처리할 수 있는 페이로드의 속도는 일반적으로 약 1m/s 및 3Kg로 제한되어 작업자에게 피해를 주지 않음
- 각 링크에 센서가 달려있어 위험한 상황에는 운전을멈추거나 링크를 돌려 안전사고를 예방 할 수 있음

협동로봇의 단점

1) 비싼가격

동일한 중량을 버틴다는 가정하에 **협동로봇**이 산업용 로봇보다

500~2000만원 정도 더 비쌈

시장의 크기와 수요가 크지 않고, 각종 안전 사양이 포함되었기 때문

협동로봇의 단점

2) 느린 생산속도

- 협동로봇은 항상 **충격량을 계산하고 속도를 제어**하며 움직임
- 로봇을 실시간으로 제어하고 있기 때문에 기존 산업용로봇에 비해 생산속도가 줄어듦

• 협동로봇의 구성

1) 협동로봇 구성

- 머니퓰레이터
- 컨트롤박스(서버렉타입/스탠드타입)
- 케이블(비상 정지 스위치 및 케이블, 48V 스위치 및 케이블, 전원 케이블, 로봇 팔-컨트롤 박스 연결 케이블)
- 태블릿 PC

• 협동로봇의 구성

2) 각 부분의 명칭

- 1. 티칭 버튼: 직접 교시 티칭을 위한 버튼
- 2. **툴 플랜지:** 로봇에 그리퍼 또는 **툴을** 장착하는 부분
- 3. **툴 I/O:** 그리퍼 또는 툴을 제어하기 위한 입출력 포트
- 4. 베이스: 로봇을 고정시키기 위한 부분
- 5. **로봇-제어박스 커넥터:** 로봇 팔과 제어박스 사이의 캐이블 연결 커넥터

• 협동로봇의 구성

3) 로봇의 구동 범위

J(joint): 기계 · 기재 따위의 접합이나 이은 자리 로봇 팔 회전의 중점이 되는 부분

- 1. J1: ± 360°
- 2. $J2:\pm 360^{\circ}$
- 3. J3:±165°
- 4. $J4:\pm 360^{\circ}$
- 5. $J5:\pm 360^{\circ}$
- 6. $J6: \pm 360^{\circ}$

• 협동로봇의 구성

4) 로봇 팔의 작업영역

특이점(Singular point) 영역(직교 좌표계 움직임 시 움직임이 제한되는 영역)

B: 협동로봇이 작동 가능한 작업영역

로봇 팔이 최대로 뻗은 상태에서 회전할 수 있는 반경

• 협동로봇의 적용 분야

1) 픽 앤 플레이스

- 픽 앤 플레이스는 전 산업영역에 걸쳐 가장 일반적인 공정으로, 제품을 집어 특정 위치로 이동시키는 작업
- 관절을 이용하여 다양한 각도와 위치의 제품 이재에 적용이 가능
- 단순반복 작업인 픽 앤 플레이스의 경우, 협동로봇 채용을 통해 생산라인 운영 효율성을 제고할 수 있음

• 협동로봇의 적용 분야

2) 머신 텐딩

- 머신 텐딩은 밀링 머신, 프레스 등의 장비에 가공물을 로딩-언로딩하는 단순 반복적이며 위험한 공정
- 기존 산업용 로봇 활용 시 필수적으로 설치하여야 했던 안전펜스도 필요하지 않음

• 협동로봇의 적용 분야

3) 조립

- 조립은 스크류, 너트, 볼트 체결부터 각 부품간 결합까지 다양한 산업에 적용되는 공정
- 또한 정확한 위치와 균일한 힘을 통해 복잡한 결합작업도 높은 품질 수준으로 수행할 수 있음

• 협동로봇의 적용 분야

4) 팔레트 적재

- 팔레트 적재는 제품을 전용 케이스 위에 정렬하여 쌓는 공정
- 자동차 부품부터 식품, 목재, 금속, 가구까지 다양한 산업의 팔레트 적재 공정에 적용
- 정확한 위치에 안정적으로 적재하여
 생산성을 향상

• 협동로봇의 적용 분야

5) 몰드 취출

- 몰드 취출에서 협동로봇은 사출품의 로딩-언로딩 공정에 적용이 가능
- 작업자가 매번 사출 성형기에 손을 넣어
 부품을 꺼내는 위험한 작업을 대체할 수 있음

• 협동로봇의 적용 분야

6) 디스펜싱

- 디스펜싱 공정은 접착제, 실리콘, 페인트 등 각종 도료를 특정 위치에 분사/주입하는 공정
- 유해물질,위험 물질에 노출된 디스펜싱 공정의 환경에서 작업자를 보호할 수 있음

• 협동로봇의 적용 분야

7) 품질검사

- 품질 검사는 각 공정 사이 및 출고 직전에 제품의 상태를 확인하여 불량품을 선별하는 작업
- 공정에 적용하면 불량 제품의 출고를 차단하여 제품의 품질을 높일 수 있음
- 단순반복 작업을 대체 가능

협동로봇의 현황

• 산업분야 활용사례

식품분야 – 픽 앤 플레이스, 팔레트 적재

협동로봇의 현황

• 산업분야 활용사례

화장품 – 픽 앤 플레이스, 팔레트 적재

인공지능 로봇

인공지능 로봇 개요

• 인공지능과 결합한 로봇

- 인간과 로봇 협업을 통해 스마트공장을 현실화할 수 있는 필수 구성요소
- 제품 생산 외 서비스에도 사용
- 제품과 서비스가 융합되는 제조업 추세에 맞춰질 것

인공지능 로봇의 기대효과

 스마트홈, 의료·재활, 재난·안전, 물류이송, 농업 분야 중점 추진

서비스로봇 개발

♥ 대형병원, 우체국, 발전소 등 주요 수요처와 공동 개발('18~'20)

스마트홈

가사지원, 가정용

교육 로봇 등 2종

의료 · 재활

수술로봇, 근력강화 로봇 등 3종

재난 · 안전

화재현장 진입용 장 갑형 로봇 등 2종

물류이송

대형물류단지 무인 이송 로봇 등 2종

농업

원예작물 수확로봇, 방제로봇 등 2종

주요 수요처 시범 보급 ▼ 주요 수요처 시범도입으로 테스트베드를 제공하고 Track Record 확보를 지원
 ▶ 시범적용 결과를 바탕으로 본격 확산

스마트홈	의료 · 재활	재난 · 안전	물류이송	농업
교육기관,	병원,	소방서,	물류창고,	스마트팜,
전시관, 매장	요양원	대형시설물	병원, 발전시설	원예시설

지능형로봇의 숙제

- 로봇은 인간과 같은가?
 - 영화 'AI'(2001년)에서 사랑, 질투, 슬픔을 가진 로봇 데이비드
 - 영화 '인류멸망보고서'(2011년)에서의 득도를 한 로봇

Q & A