## Dérivation et Intégration A1 Semestre 2

JAD DABAGHI

Enseignant-Chercheur en Mathématiques DVRC jad.dabaghi@devinci.fr



22 Janvier 2024

## Table des matières

Analyse réelle

Relations de comparaison

# Objectifs

- 1 Comprendre les comportements locaux et asymptotiques des fonctions
- Savoir manipuler les développements limités
- 3 Savoir calculer plusieurs familles d'intégrales
- 4 Savoir résoudre les équations différentielles linéaires du 1er et 2nd ordre.

### Contenu du module

- 1 Chapitre 1 : Analyse réelle (CMO 1)
  - Un peu de topologie, continuité d'une fonction en un point.
- Chapitre 2 : Relations de comparaison (CMO 1)
  - Fonctions dominées, fonctions négligeables, fonctions équivalentes.
- Chapitre 3 : Développements limités (CMO 2)
  - Formules de Taylor, opérations sur les développements limités, applications.
  - Contrôle continu 45 minutes 11 Mars 2023
- 4 Chapitre 4 : Calcul d'intégrales (CMO 3)
- 5 Chapitre 5 : Équations différentielles (CMO 4)

# Analyse réelle

5/29

# Analyse réelle

#### **Definition** (distance)

Soit *E* un ensemble non vide. Une **distance** sur *E* est une application  $d: E \times E \to \mathbb{R}^+$  qui vérifie  $\forall (x, y, z) \in E \times E \times E$ 

$$d(x,y)=0 \iff x=y$$
 (homogénéité)  
 $d(x,y)=d(y,x)$  (symétrie)  
 $d(x,z)\leq d(x,y)+d(y,z)$  (inégalité triangulaire).

Le couple (E, d) est appelé **espace métrique**.



#### **Exemple:**

- Sur  $\mathbb{R}$ , la métrique usuelle est d(x,y) = |x-y|
- Sur  $\mathbb{C}$ , la métrique usuelle est  $d(z_1, z_2) = |z_2 z_1|$

22 lanvier 2024

#### **Definition (Ouvert)**

Soit (E, d) un espace métrique. On dit que  $A \in \mathcal{P}(E)$  est un ouvert de E si A contient une boule ouverte. Autrement dit, si

$$\forall x \in \mathcal{A}, \ \exists r > 0 \ \text{tel que } B(x,r) \subset \mathcal{A}$$

$$B(x,r) = \{ y \in E \mid d(x,y) < r \}$$



#### **Exemples ouverts:**

- ullet
- R2
- ]*a*, *b*[
- B(x,r)

## Definition (Voisinage)

• (E, d) espace métrique et  $a \in E$ .

On dit que  $\mathcal{V} \subset E$  est un voisinage de a si, et seulement si, il existe un ouvert  $O \subset \mathcal{V}$  contenant a. Autrement dit s'il existe  $B(a,r) \subset \mathcal{V}$ .

### Remarque:

• En dimension 1.

$$\mathcal{V}_a = ]a - \eta, a + \eta[$$

• En dimension 2,

$$\mathcal{V}_a = B(a, \eta)$$

Analyse réelle Relations de comparaison

### Continuité

## Definition (Caractérisation de Weierstrass)

Une fonction f est dite continue en  $a \in I$  si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, |x - a| \le \eta \Rightarrow |f(x) - f(a)| \le \varepsilon \quad (\lim_{x \to a} f(x) = f(a)).$$





| AD DABAGH| Dérivation et Intégration 22 lanvier 2024 9/29

## Fonctions dominées

#### Definition

Soit  $f:I\to\mathbb{R}$  et  $\varphi:I\to\mathbb{R}$  et  $a\in I$ . Alors f est **dominée** par  $\varphi$  au voisinage de a, s'il existe une fonction  $u:I\to\mathbb{R}$  bornée au voisinage de a et telle que  $f=\varphi u$  au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

## Fonctions dominées

#### Definition

Soit  $f:I\to\mathbb{R}$  et  $\varphi:I\to\mathbb{R}$  et  $a\in I$ . Alors f est **dominée** par  $\varphi$  au voisinage de a, s'il existe une fonction  $u:I\to\mathbb{R}$  bornée au voisinage de a et telle que  $f=\varphi u$  au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

**Exemple**:  $f(x) = x^2 \sin\left(\frac{1}{x}\right) \text{ sur } \mathbb{R} \text{ et } \varphi(x) = x^2. \text{ Alors}$ 

$$f(x) = \varphi(x) \frac{u}{u}(x)$$
 avec  $\frac{u}{u}(x) = \sin\left(\frac{1}{x}\right)$ .

Or u est bornée donc  $f = \mathcal{O}(\varphi)$ .

# Fonctions négligeables

#### Definition

on dit que f est **négligeable** devant  $\varphi$  au voisinage de a, s'il existe une fonction  $\varepsilon$  définie sur I tel que  $f = \varphi \varepsilon$  au voisinage de a et  $\lim_{\alpha} \varepsilon = 0$ . On note  $f = o(\varphi)$ .

11/29

# Fonctions négligeables

#### Definition

on dit que f est **négligeable** devant  $\varphi$  au voisinage de a, s'il existe une fonction  $\varepsilon$  définie sur f tel que  $f = \varphi \varepsilon$  au voisinage de a et  $\lim_a \varepsilon = 0$ . On note  $f = o(\varphi)$ .

**Exemple :**  $x^3 = o(x^2)$  au voisinage de 0 car  $x^3 = x \times x^2$  avec  $\varepsilon(x) = x$  et  $\lim_{x \to 0} \varepsilon(x) = 0$ .





# Quelques résultats

## Propriété

*Soit*  $f: I \to \mathbb{R}$  *une fonction et*  $a \in I$ .

- **1** La fonction f est bornée au voisinage de a si, et seulement si  $f = \mathcal{O}(1)$ .
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

# Quelques résultats

## Propriété

*Soit*  $f: I \to \mathbb{R}$  *une fonction et*  $a \in I$ .

- **1** La fonction f est bornée au voisinage de a si, et seulement si  $f = \mathcal{O}(1)$ .
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

#### **Démonstration:**

① ( $\Rightarrow$ ) On suppose f bornée au voisinage de a.  $\forall x \in \mathcal{V}_a$ ,  $|f(x)| = f(x) \times \underbrace{1}_{\text{bornée}}$ . Donc

$$f = \mathcal{O}(1)$$
.

## Quelques résultats

## Propriété

*Soit*  $f: I \to \mathbb{R}$  *une fonction et*  $a \in I$ .

- **1** La fonction f est bornée au voisinage de a si, et seulement si  $f = \mathcal{O}(1)$ .
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

#### **Démonstration:**

① ( $\Rightarrow$ ) On suppose f bornée au voisinage de a.  $\forall x \in \mathcal{V}_a$ ,  $|f(x)| = f(x) \times \underbrace{1}_{\mathsf{bornée}}$ . Donc

$$f = O(1)$$
.

 $(\Leftarrow) f = \mathcal{O}(1)$ . Alors  $\exists \varphi$  bornée sur  $\mathcal{V}_a$  tel que  $f = \varphi \times 1$  sur  $\mathcal{V}_a$ . Donc f bornée sur  $\mathcal{V}_a$ .

 $(\Rightarrow)$  f tend vers 0 en a:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in ]a - \eta_1, a + \eta_1[, |f(x)| \le \varepsilon.$$

On pose

$$\varphi : \mathcal{D}_f \to \mathbb{R}$$
 $x \mapsto f(x) \qquad \lim_{x \to a} \varphi(x) = 0$ 

Alors f = o(1).

 $(\Rightarrow)$  f tend vers 0 en a:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in ]a - \eta_1, a + \eta_1[, |f(x)| \le \varepsilon.$$

On pose

$$\varphi: \mathcal{D}_f \to \mathbb{R}$$
 $X \mapsto f(X)$ 
 $\lim_{x \to a} \varphi(x) = 0$ 

Alors f = o(1).

 $(\Leftarrow) f = o(1)$  au voisinage de a. Alors  $\exists \varphi$  définie au voisinage de a tel que  $f = \varphi 1$  au voisinage de a avec  $\lim_a \varphi = 0$ . Or  $\lim_a \varphi \in \mathcal{V}_a$  donc  $\lim_a f = \lim_a \varphi = 0$ .

40 > 40 > 45 > 45 > 5 990

13/29

# Quelques remarques

1 Lorsque f = o(g) au voisinage de  $a \in I$ ,  $f = g \times \varepsilon$  au voisinage de a et  $\lim_a \varepsilon = 0$ . Mais,  $\lim_a \varepsilon \not\to 0$  sur I tout entier.

#### **Contre exemple:**

$$f: x \mapsto x^3$$
 et  $g: x \mapsto x^2$  sur  $\mathbb{R}$ .

On a f = o(g) au voisinage de 0 ( $\varepsilon(x) = x$ ) mais  $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$ .

# Quelques remarques

1 Lorsque f = o(g) au voisinage de  $a \in I$ ,  $f = g \times \varepsilon$  au voisinage de a et  $\lim_a \varepsilon = 0$ . Mais,  $\lim_a \varepsilon \not\to 0$  sur I tout entier.

#### **Contre exemple:**

$$f: x \mapsto x^3$$
 et  $g: x \mapsto x^2$  sur  $\mathbb{R}$ .

On a f = o(g) au voisinage de 0 ( $\varepsilon(x) = x$ ) mais  $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$ .

2 Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

#### **Contre exemple:**

$$f: x \mapsto x^3$$
  $g: x \mapsto x^4$   $h: x \mapsto x^2$ .

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais  $f \neq g$ .

# Quelques remarques

① Lorsque f = o(g) au voisinage de  $g \in I$ ,  $f = g \times \varepsilon$  au voisinage de g et  $\lim_{g \in G} e = 0$ . Mais,  $\lim_{\alpha} \varepsilon \not\to 0$  sur *I* tout entier.

#### **Contre exemple:**

$$f: x \mapsto x^3$$
 et  $g: x \mapsto x^2$  sur  $\mathbb{R}$ .

On a f = o(g) au voisinage de 0 ( $\varepsilon(x) = x$ ) mais  $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$ .

2 Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

#### Contre exemple :

$$f: x \mapsto x^3$$
  $g: x \mapsto x^4$   $h: x \mapsto x^2$ .

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais  $f \neq g$ .

Le même phénomène s'observe pour la notation  $\mathcal{O}$ .

Relations de comparaison

15/29

# Règles de calcul

#### Propriété

- **1**  $f = o(\varphi) \Rightarrow f = \mathcal{O}(\varphi)$  (négligeable  $\Rightarrow$  bornée)
- 2  $f_1 = \mathcal{O}(\varphi)$  et  $f_2 = \mathcal{O}(\varphi) \Rightarrow f_1 + f_2 = \mathcal{O}(\varphi)$  (somme de fonctions bornée est bornée)
- 3  $f_1 = \mathcal{O}(\varphi_1)$  et  $f_2 = \mathcal{O}(\varphi_2) \Rightarrow f_1 f_2 = \mathcal{O}(\varphi_1 \varphi_2)$
- $ext{ 4) } f_1 = ext{o}(arphi) ext{ et } f_2 = ext{o}(arphi) \Rightarrow f_1 + f_2 = ext{o}(arphi) \quad ext{ (somme de termes négligeable est négligeable)}$
- **6**  $f = \mathcal{O}(\varphi_1)$  et  $\varphi_1 = \mathcal{O}(\varphi_2) \Rightarrow f = \mathcal{O}(\varphi_2)$  (transitivité de la domination)
- $f = o(\varphi_1)$  et  $\varphi_1 = o(\varphi_2) \Rightarrow f = o(\varphi_2)$  (transitivité de la négligence)

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in ]\alpha - \eta, \alpha + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors  $f = \mathcal{O}(\varphi)$ .

**1**  $f = o(\varphi)$  au voisinage d'un point  $a \Rightarrow f = g\varphi$  au voisinage de a et  $\lim_a g = 0$ .

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in ]\alpha - \eta, \alpha + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors  $f=\mathcal{O}(\varphi)$ .

2  $f_1 = \mathcal{O}(\varphi)$  alors  $f_1 = \varphi u$  au voisinage de a où u est bornée au voisinage de a.

$$\exists \eta_1 > 0 \ \forall x \in ]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

**1**  $f = o(\varphi)$  au voisinage d'un point  $a \Rightarrow f = g\varphi$  au voisinage de a et  $\lim_a g = 0$ .

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in ]a - \eta, a + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors  $f = \mathcal{O}(\varphi)$ .

 $\bigcirc$   $f_1 = \mathcal{O}(\varphi)$  alors  $f_1 = \varphi u$  au voisinage de a où u est bornée au voisinage de a.

$$\exists \eta_1 > 0 \ \forall x \in ]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

 $f_2 = \mathcal{O}(\varphi)$  donc  $f_2 = \varphi v$  au voisinage de  $\alpha$ .

$$\exists \eta_2 > 0 \ \forall x \in ]a - \eta_2, a + \eta_2[, f_2(x) = \varphi(x)v(x).$$

**1**  $f = o(\varphi)$  au voisinage d'un point  $a \Rightarrow f = g\varphi$  au voisinage de a et  $\lim_a g = 0$ .

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in ]a - \eta, a + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors  $f = \mathcal{O}(\varphi)$ .

2  $f_1 = \mathcal{O}(\varphi)$  alors  $f_1 = \varphi u$  au voisinage de a où u est bornée au voisinage de a.

$$\exists \eta_1 > 0 \ \forall x \in ]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

 $f_2 = \mathcal{O}(\varphi)$  donc  $f_2 = \varphi v$  au voisinage de  $\alpha$ .

$$\exists \eta_2 > 0 \ \forall x \in ]a - \eta_2, a + \eta_2[, f_2(x) = \varphi(x)v(x).$$

Pour  $\eta = \min(\eta_1, \eta_2)$  on a  $\forall x \in ]a - \eta, a + \eta[(f_1 + f_2)(x) = \varphi(x)(u + v)(x)]$ . Comme u + v bornée au voisinage de a on a  $f_1 + f_2 = \mathcal{O}(\varphi)$ .



•  $f_1 = o(\varphi)$  au voisinage de a alors il existe une fonction  $\varepsilon_1$  définie au voisinage de a tel que

$$\lim_{x\to a}\varepsilon_1(x)=0$$

et vérifiant  $f_1 = \varepsilon_1 \varphi$  au voisinage de a

•  $f_2 = o(\varphi)$  au voisinage de  $\alpha$  alors il existe une fonction  $\varepsilon_2$  définie au voisinage de  $\alpha$  tel que

$$\lim_{x\to a}\varepsilon_2(x)=0$$

vérifiant  $f_2 = \varepsilon_2 \varphi$  au voisinage de a.

Ainsi, la fonction  $\varepsilon = \varepsilon_1 + \varepsilon_2$  est bien définie au voisinage de a et  $\lim_{x\to a} \varepsilon(x) = 0$ . Alors,  $f_1 + f_2 = o(\varphi)$ .

# Règle pratique

## Propriété

Soit I un intervalle de  $\mathbb R$  et  $a\in I$ . Supposons que  $\varphi$  ne s'annule pas sur I $\setminus$ a. Alors au voisinage de a

- **1** f est dominée par  $\varphi$  si, et seulement si,  $\frac{f}{\varphi}$  est bornée au voisinage de a.
- 2 f est négligeable devant  $\varphi$  si, et seulement si,  $\lim_{x\to a} \frac{f(x)}{\varphi(x)} = 0$ .

#### Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f=gh au voisinage de a et  $\lim_{x\to a}h(x)=1$ . On note  $f\sim g$ .

#### Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et  $\lim_{x\to a}h(x)=1$ . On note  $f\underset{a}{\sim}g$ .

**Exercice :** Soient f et g deux fonctions définies sur  $\mathbb{R}$  par  $f(x) = \sin(x)$  et g(x) = x. Montrer que f et g sont équivalentes en 0.

#### Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et  $\lim_{x\to a}h(x)=1$ . On note  $f\underset{a}{\sim}g$ .

**Exercice**: Soient f et g deux fonctions définies sur  $\mathbb{R}$  par  $f(x) = \sin(x)$  et g(x) = x.

Montrer que f et g sont équivalentes en 0.

**Correction :** On a  $f \sim g$ . En effet

$$\forall x \in \mathbb{R}^*$$
  $f(x) = h(x) \times g(x)$  avec  $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$ .

#### Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et  $\lim_{x\to a}h(x)=1$ . On note  $f\underset{a}{\sim}g$ .

**Exercice**: Soient f et g deux fonctions définies sur  $\mathbb{R}$  par  $f(x) = \sin(x)$  et g(x) = x.

Montrer que f et g sont équivalentes en 0.

**Correction :** On a  $f \sim g$ . En effet

$$\forall x \in \mathbb{R}^*$$
  $f(x) = h(x) \times g(x)$  avec  $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$ .

**Remarque :**  $x \mapsto x$  est un DL à l'ordre 1 de la fonction  $x \mapsto \sin(x)$  au voisinage de 0.

# Équivalent pour les polynômes

$$f(x) = \sum_{k=p}^{n} a_k x^k$$
 avec  $a_p \neq 0$  et  $a_n \neq 0$ .

**1 Étude en** 0 : Pour  $x \in \mathbb{R}$ , on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\Rightarrow 1}$$

Donc  $f(x) \sim a_p x^p$ .

20/29

# Équivalent pour les polynômes

$$f(x) = \sum_{k=p}^{n} a_k x^k$$
 avec  $a_p \neq 0$  et  $a_n \neq 0$ .

**1 Étude en** 0 : Pour  $x \in \mathbb{R}$ , on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\to 1}$$

Donc  $f(x) \sim a_p x^p$ .

**2 Étude en**  $+\infty$  : Pour  $x \in \mathbb{R}$  on a

$$f(x) = a_n x^n \underbrace{\left(1 + \frac{a_{n-1}}{a_n} x^{-1} + \frac{a_{n-2}}{a_n} x^{-2} + \dots + \frac{a_p}{a_n} x^{p-n}\right)}_{n}$$

Donc  $f(x) \sim a_n x^n$ .

nalyse réelle Relations de comparaison

# Cas pratique

# Comment montrer que deux fonctions sont équivalentes au voisinage d'un point?

## Propriété

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

## Résultats fondamentaux

## Propriété

Soient f et g deux fonctions équivalentes en  $a \in I$ .

- 1 Si g a une limite finie ou infinie en a alors  $\lim_a f = \lim_a g$ .
- 2 Si g est positive sur I alors f est positive au voisinage de a.
- 3 Si g ne s'annule pas sur l alors f ne s'annule pas au voisinage de a.

**Obtention d'équivalents :** Si f est dérivable en  $a \in I$  et si  $f'(a) \neq 0$ , alors au voisinage de a :

$$f(x) - f(a) \sim f'(a)(x - a)$$

#### Exercices

- **1** Montrer que  $e^x 1 \sim x$  au voisinage de 0
- 2 Montrer que  $ln(1+x) \sim x$  au voisinage de 0
- **Solution Solution Solution**

#### **Corrigé:**

**1** Comme  $x \mapsto e^x$  est dérivable en 0 et que  $e^0 = 1$  on a

$$e^{x} - e^{0} \underset{0}{\sim} e'(0)(x - 0) \Rightarrow e^{x} - 1 \underset{0}{\sim} x.$$

 $\bigcap x \mapsto \sin(x)$  est dérivable en 0 et et possède une dérivée non nulle

$$\sin(x) - \sin(0) \sim \sin'(0)(x-0) \Rightarrow \sin(x) \sim x.$$

 $2 \times \operatorname{In}(1+x)$  est dérivable en 0 et possède une dérivée non nulle

$$\ln(1+x) - \ln(1+0) \sim \frac{1}{1+0}(x-0) \Rightarrow \ln(1+x) \sim x.$$

#### Propriété

Soient f et g définies sur I et équivalentes en a. Si  $u: \Delta \to I$  et telle que  $\lim_{t \to \alpha} u(t) = a$ , alors f(u(t)) et g(u(t)) sont équivalentes en  $\alpha$ .

### Propriété

Soient f et g définies sur I et équivalentes en a. Si  $u: \Delta \to I$  et telle que  $\lim_{t \to \alpha} u(t) = a$ , alors f(u(t)) et g(u(t)) sont équivalentes en  $\alpha$ .

**Application :** Déterminer les équivalents des fonctions suivantes en 0 :

#### Propriété

Soient f et g définies sur l et équivalentes en a. Si  $u: \Delta \to l$  et telle que  $\lim_{t\to \infty} u(t) = a$ , alors f(u(t)) et g(u(t)) sont équivalentes en  $\alpha$ .

**Application :** Déterminer les équivalents des fonctions suivantes en 0 :



 $e^{\sin t} - 1$ 

#### Propriété

Soient f et g définies sur I et équivalentes en a. Si  $u : \Delta \to I$  et telle que  $\lim_{t \to \alpha} u(t) = a$ , alors f(u(t)) et g(u(t)) sont équivalentes en  $\alpha$ .

**Application :** Déterminer les équivalents des fonctions suivantes en 0 :

1  $e^{\sin t} - 1$ 

**Correction :**  $u(t) = \sin t$ ,  $f(x) = e^x - 1$  et g(x) = x. On a  $f \underset{t \to 0}{\sim} g$  et  $\lim_{t \to 0} u(t) = 0$  donc  $f(u(t)) \underset{0}{\sim} g(u(t))$ . Finalement,  $e^{\sin t} - 1 \underset{0}{\sim} \sin t$ .

 $\bigcirc$  In(cos(t))

#### Propriété

Soient f et g définies sur I et équivalentes en a. Si  $u: \Delta \to I$  et telle que  $\lim_{t \to \alpha} u(t) = a$ , alors f(u(t)) et g(u(t)) sont équivalentes en  $\alpha$ .

#### Application : Déterminer les équivalents des fonctions suivantes en 0 :

1  $e^{\sin t} - 1$ 

**Correction :** 
$$u(t) = \sin t$$
,  $f(x) = e^x - 1$  et  $g(x) = x$ . On a  $f \underset{t \to 0}{\sim} g$  et  $\lim_{t \to 0} u(t) = 0$  donc  $f(u(t)) \underset{0}{\sim} g(u(t))$ . Finalement,  $e^{\sin t} - 1 \underset{0}{\sim} \sin t$ .

 $\bigcirc$  In(cos(t))

**Correction :** On a  $\ln(\cos(t)) = \ln(1 + \cos(t) - 1)$ . Posons  $u(t) = \cos(t) - 1$ . Alors,  $\lim_{t\to 0} u(t) = 0$ . De plus,  $\ln(1+y) \underset{0}{\sim} y$ . Donc,  $\ln(1+u(t)) \underset{0}{\sim} u(t)$ . Ainsi,

$$\ln(\cos(t)) \sim \cos(t) - 1.$$

## Opération sur les fonctions équivalentes

#### Propriété

Si au voisinage de a on a

- **1**  $f_1 \sim g_1$  et  $g_1 \sim g_2$  alors  $f_1 \sim g_2$  en a (transitivité).
- 2 Si  $f_1 \sim g_1$  et  $f_2 \sim g_2$  alors  $f_1 f_2 \sim g_1 g_2$  en a (produit).
- 3 Si  $f_1 \sim g_1$  et  $f_2 \sim g_2$  et si aucune de ces fonctions ne s'annule sur  $I \setminus a$  alors  $\frac{f_1}{f_2} \sim \frac{g_1}{g_2}$ .

#### Propriété

- 1 Si g = o(f) au voisinage d'un point  $a \in I$ , alors  $f + g \sim_a f$ .
- 2 Soient f et g deux fonctions définies sur un intervalle I et  $a \in I$ . Si  $f \underset{a}{\sim} g$  alors  $f = \mathcal{O}(g)$  au voisinage de a.

Déterminer un équivalent de f au voisinage de  $+\infty$  définie sur  $\mathbb{R}_+^*$  par

$$f(x) = e^{\frac{1}{x^2}} - e^{\frac{1}{(x+1)^2}}.$$

Déterminer un équivalent de f au voisinage de  $+\infty$  définie sur  $\mathbb{R}_+^*$  par

$$f(x) = e^{\frac{1}{X^2}} - e^{\frac{1}{(X+1)^2}}$$

Correction: On a

$$\forall x \in \mathbb{R}_+^*, f(x) = e^{\frac{1}{X^2}} \left( 1 - e^{\frac{1}{(x+1)^2}} - \frac{1}{x^2} \right) = e^{\frac{1}{X^2}} \left( 1 - e^{\frac{-2x-1}{X^2(x+1)^2}} \right).$$

Or 
$$1 - e^y \sim y$$
 et  $\lim_{x \to +\infty} \frac{-2x - 1}{x^2(x+1)^2} = 0$ . Donc,  $1 - e^{\frac{-2x - 1}{x^2(x+1)^2}} \sim \frac{-2x - 1}{x^2(x+1)^2} \sim \frac{-2}{x^3}$ . De

plus, 
$$e^{\frac{1}{x^2}} \sim_{+\infty} 1$$
. Ainsi,  $f(x) \sim_{+\infty} -\frac{2}{x^3}$ .

Déterminer un équivalent en 0 de ln(sin(x))

#### **Correction:**

Déterminer un équivalent en 0 de In(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

28/29

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Ainsi

$$ln(\sin(x)) \sim \ln(x).$$

28/29

## Remarques importantes

**1** Composition d'équivalents : Si  $f \sim g$  on ne peut rien dire à priori de  $u \circ f$  et  $u \circ g$ . **Exemple :** Soient  $f : \mathbb{R} \to \mathbb{R}$  et  $g : \mathbb{R} \to \mathbb{R}$  définies par

$$f(x) = x$$
 et  $g(x) = x + \sqrt{x} \Rightarrow f(x) \underset{+ \infty}{\sim} g(x)$  mais  $e^{f(x)} = o(e^{g(x)})$ 

29/29

## Remarques importantes

**1) Composition d'équivalents :** Si  $f \sim g$  on ne peut rien dire à priori de  $u \circ f$  et  $u \circ g$ . **Exemple :** Soient  $f : \mathbb{R} \to \mathbb{R}$  et  $g : \mathbb{R} \to \mathbb{R}$  définies par

$$f(x) = x$$
 et  $g(x) = x + \sqrt{x} \Rightarrow f(x) \sim g(x)$  mais  $e^{f(x)} = o(e^{g(x)})$ 

2 Somme d'équivalents : Si  $u_1 \sim u_2$  et  $v_1 \sim v_2$  alors  $u_1 + v_2 \not\sim u_2 + v_2$ . Exemple :

$$u(x) = \sin(2x) + \cos(x) - 1.$$

On a

$$\sin(y) \sim y$$
 et  $\lim_{x \to 0} 2x = 0 \Rightarrow \sin(2x) \sim 2x$   $\cos(x) - 1 = -2\sin^2(\frac{x}{2}) \sim -\frac{x^2}{2}$ 

Or

$$\lim_{x\to 0}\frac{u(x)}{2x}=\left(\frac{\sin(2x)}{2x}+\frac{\cos(x)-1}{2x}\right)=1\ \Rightarrow u(x)\underset{0}{\sim}\ 2x$$