

Introducción

- ¿Qué es análisis de clusters?
 - Encontrar grupos de objetos tal que los objetos en un grupo sean similares (o relacionados) entre sí y que sean diferentes (o no relacionados) a los objetos en otros grupos

2

Introducción • ¿Qué es análisis de clusters? Distancias intracluster se maximizan Distancias inter-cluster se maximizan

Introducción

- Análisis de clusters es una tarea esencial para muchas aplicaciones. Permite:
 - Encontrar clusters naturales y describir sus propiedades (data understanding)
 - Encontrar agrupamientos útiles (data class identification)
 - Encontrar representantes para grupos homogeneos (data reduction)
 - Encontrar objetos inusuales (outliers detection)
 - Encontrar perturbaciones aleatorios de los datos (noise detection).
 - □ Etc.

4

Introducción

- Tipos de clustering
 - Un clustering es un conjunto de clusters
 - Distinción importante entre conjuntos de clusters jerárquicos y particionales
 - Clustering Particional
 - Divide los datos en subconjuntos sin traslape (clusters), tal que cada dato está en un solo subconjunto
 - Clustering Jerárquico
 - Un conjunto de clusters anidados, organizados como un árbol

Métodos de clustering

- K-means
- Método jerárquico aglomerativo
- DBSCAN

K-means

- Método de clustering particional
 - □ Cada cluster está asociado a un centroide
 - Cada punto se asigna al cluster cuyo centroide sea el más cercano
 - Número de clusters, K, parámetro del método
- Algoritmo

Algorithm 1 Basic K-means Algorithm.

1: Select K points as the initial centroids.

2: repeat

3: Form K clusters by assigning all points to the closest centre

4: Recompute the centroid of each cluster.

5: until The centroids don't change

K-means

- Detalles del algoritmo
 - Centroides iniciales: aleatorios
 - Clusters varían dependiendo de la elección
 - □ Centroide es (típicamente) la media de los puntos en el cluster
 - □ "Cercanía" se mide con alguna distancia
 - K-means converge para distancias "usuales"
 - En general la convergencia sucede con pocas iteraciones ■ Iterar hasta que cambien "pocos" puntos de cluster
 - Complejidad es O(n * K * I * d)
 - n puntos, K centros, I iteraciones, d dimensiones

K-means

Importancia de escoger centros iniciales

K-means

- Evaluando clusters obtenidos con K-means
 - □ Medida más común: Sum of Squared Error (SSE)
 - □ Por cada punto, error es distancia al cluster más cercano

$$\square SSE = \sum_{i=1}^{K} \sum_{n=1}^{K} dist^{2}(m_{i}, x)$$

- \Box x: punto en cluster C_i , m_i : centroide de C_i
- Dados dos clusters, escoger el que tenga menor error
- □ Forma de reducir SSE: aumentar K
 - Buen clustering reduce SSE, incluso para menor K

K-means

K-means

K-means

- Problemas para escoger centros iniciales
 - □ Si hay K clusters "reales", probabilidad de escoger un centroide por cluster es baja

$$P = \frac{\text{\# formas de escoger un centroide de cada cluster}}{\text{\# formas de escoger K centroides}} = \frac{K! n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- □ Ej.: si K = 10, entonces P= 10!/10¹⁰ = 0.00036
- □ Centroides iniciales pueden o no "reajustarse" en la forma correcta (converger a óptimo local)
- □ Ejemplo: cinco pares de clusters (10 en total)

K-means

- Solución al problema de centroides iniciales
 - Ejecutar varias veces K-means
 - Ayuda, pero la probabilidad sigue siendo baja
 - Muestrear y usar clustering jerárquico para determinar centroides iniciales
 - □ Elegir más de K centroides iniciales
 - Luego escoger los K más separados entre sí
 - Post procesamiento
 - □ Bisecting K-means
 - No tan susceptible a problemas de inicialización

K-means

- Manejando clusters vacíos
 - □ Algoritmo K-means puede retornar clusters vacíos
 - Estrategias para encontrar centroide de reemplazo:
 - Escoger el punto más lejano a su centroide (punto que contribuye más al SSE)
 - Escoger punto del cluster con máximo SSE
 - □ Típicamente resulta en dividir dicho cluster
 - Si hay varios clusters vacíos, repetir estas estrategias varias veces

K-means

- Actualizar centros incrementalmente
 - Algoritmo original: centroides se actualizan después de asignar todos los puntos
 - □ Alternativa: actualizar centroides después de cada asignación
 - Cada asignación actualiza cero o dos centroides
 - Más costoso
 - Introduce dependencia en el orden de los puntos
 - Nunca se obtiene un cluster vacío

K-means

- Preprocesamiento
 - Normalizar los datos
 - Eliminar outliers
- Postprocesamiento
 - Eliminar clusters pequeños que puedan representar outliers
 - □ Partir clusters "sueltos" (con alto SSE)
 - □ Mezclar clusters cercanos y con bajo SSE

K-means

- Bisecting K-means
 - □ Variante que puede producir clustering jerárquico o particional

- Algorithm 3 Bisecting K-means Algorithm.

 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
 3: Select a cluster from the list of clusters
 4: for i = 1 to rumber_of_iterations do
 5: Bisect the selected cluster using basic K-means

- and for
 Add the two clusters from the bisection with the lowest SSE to the list of clusters.
 until Until the list of clusters contains K clusters

K-means Ejemplo de Bisecting K-means

K-means

- Limitaciones de K-means
 - Clusters de diferente tamaño
 - □ Clusters de diferentes densidades
 - Clusters con formas no esféricas
- K-means no es robusto a outliers

Clustering Jerárquico Aglomerativo

- Fortalezas
 - No tiene que suponer un número a priori de clusters
 - Se puede obtener cualquier número de clusters deseado "cortando" el dendograma en el nivel apropiado
 - Clusters pueden corresponer a taxonomía
 - Ejemplos en biología

43

Clustering Jerárquico Aglomerativo

- Tipos principales de clustering jerárquico
 - Aglomerativo
 - Empezar con cada punto como cluster individual
 - En cada paso, mezclar el par de clusters más cercano hasta que quede sólo un cluster (o k clusters)
 - Divisivo
 - Empezar con un cluster que contenga todos los puntos
 - En cada paso, dividir un cluster en dos hasta que todo cluster contenga un solo punto (o haya k clusters)
- Requieren calcular matriz de distancias

44

Clustering Jerárquico Aglomerativo

- Algoritmo básico (aglomerativo)
 - 1. Calcular matriz de distancias
 - Sea cada punto un cluster
 - Repetii
 - Mezclar par de clusters más cercano
 - Actualizar matriz de distancias
 - 6. Hasta que quede sólo un cluster
- Operación clave: cálculo de la distancia entre clusters
 - Diferentes formas de hacerlo distinguen a los diferentes algoritmos

45

Clustering Jerárquico Aglomerativo

- Distancia promedio de grupo
 - □ Compromiso entre MIN y MAX
 - Fortalezas
 - Menos suceptible a ruido y outliers
 - Limitaciones
 - Sesgado a clusters esféricos

Clustering Jerárquico Aglomerativo

- Método de Ward
 - Similitud entre clusters se basa en el incremento del SSE cuando se mezclan dos clusters
 - Similar a distancia promedio de grupo si la distancia entre puntos es distancia cuadrada
 - □ Menos suceptible a ruido y outliers
 - Sesgado a clusters esféricos
 - □ Analogo jerárquico de K-means
 - Pueda usarse para inicializar K-means

Clustering Jerárquico Aglomerativo

- Requerimientos de tiempo y espacio
 - □ Espacio: O(N²) para guardar matriz de distancias
 - N: número de puntos
 - □ Tiempo: O(N³) en muchos casos
 - Para N pasos, se debe actualizar matriz de similitud en cada paso
 - Complejidad puede reducirse a O(N² log N) usando listas ordenadas o heaps

68

Clustering Jerárquico Aglomerativo

- Problemas y limitaciones
 - Una vez decidido unir dos clusters, no se puede deshacer
 - No hay una función objetivo que sea directamente minimizada
 - □ Problemas de los diferentes esquemas:
 - Sensibles a ruido y outliers
 - Dificultad para manejar clusters de distinto tamaño
 - Pueden romper clusters grandes

69

DBSCAN

- Algoritmo de clustering basado en densidad
 - Densidad = número de puntos dentro de un radio especificado (Eps)
 - Punto "core": tiene más puntos que un valor especificado de puntos (MinPts) a distancia Eps
 - Éstos son los puntos dentro del cluster
 - Punto "border": tiene menos que MinPts puntos en el radio Eps, pero esta en la vecindad de un punto core
 - Punto "noise": cualquier punto que no sea core ni border

70

DBSCAN

Algoritmo DBSCAN

 $current_cluster_label \leftarrow 1$

- Eliminar puntos de ruido
- □ Realizar clustering en los puntos que queden

for all core points do if the core point has no cluster label then $current_cluster_label \leftarrow current_cluster_label + 1$ Label the current core point with cluster label $current_cluster_label$ end if for all points in the \$E_{P^{s}}\$-neighborhood, except \$i^{th}\$ the point itself do if the point does not have a cluster label then Label the point with cluster label $current_cluster_label$ end if end for

