

1

SEQUENCE LISTING

<110> BAUMANN, PETER
CECH, THOMAS R.<120> PROTECTION-OF-TELOMERE-1 (POT-1) PROTEIN AND ENCODING
POLYNUCLEOTIDES

<130> 089491/0201

<140> 09/816,248

<141> 2001-03-26

<160> 45

<170> PatentIn Ver. 2.1

<210> 1

<211> 118

<212> PRT

<213> Euplotes crassus

<400> 1
Gln Lys Ala Ala Lys Lys Asp His Tyr Gln Tyr Ser Asp Leu Ser Ser
1 5 10 15
Ile Lys Lys Glu Gly Glu Glu Asp Gln Tyr His Phe Tyr Gly Val Val
20 25 30
Ile Asp Ala Ser Phe Pro Tyr Lys Gly Glu Lys Arg Tyr Val Val Thr
35 40 45
Cys Lys Val Ala Asp Pro Ser Ser Val Ala Lys Gly Gly Lys Leu Asn
50 55 60
Thr Val Asn Val Val Phe Phe Ser Gln Asn Phe Glu Asp Leu Pro Ile
65 70 75 80
Ile Gln Arg Val Gly Asp Ile Val Arg Val His Arg Ala Arg Leu Gln
85 90 95
His Tyr Asn Asp Ala Lys Gln Leu Asn Val Asn Met Tyr Tyr Arg Ser
100 105 110
Ser Trp Cys Leu Phe Ile
115

<210> 2

<211> 123

<212> PRT

<213> Stylonychia mytilis

<400> 2
Lys Lys Arg Glu Gln Ser Thr Arg Tyr Lys Tyr Val Glu Leu Asn Lys
1 5 10 15

Ala Ser Leu Thr Ser Ala Glu Ala Gln His Phe Tyr Gly Val Val Ile
 20 25 30

 Asp Ala Thr Phe Pro Tyr Lys Thr Asn Gln Glu Arg Tyr Ile Cys Ser
 35 40 45

 Leu Lys Val Val Asp Pro Ser Leu Tyr Leu Lys Ser Gln Lys Gly Thr
 50 55 60

 Gly Asp Ala Ser Asp Tyr Ala Thr Leu Val Leu Tyr Ala Lys Arg Phe
 65 70 75 80

 Glu Asp Leu Pro Ile Ile His Arg Ile Gly Asp Ile Ile Arg Val His
 85 90 95

 Arg Ala Thr Leu Arg Leu Tyr Asn Gly Gln Arg Gln Phe Asn Ala Asn
 100 105 110

 Val Phe Tyr Asn Ser Ser Trp Ala Leu Phe Ser
 115 120

<210> 3
 <211> 123
 <212> PRT
 <213> Oxytricha trifallax

<400> 3
 Lys Lys Ala Glu Lys Gly Ser Lys Tyr Glu Tyr Val Glu Leu Thr Lys
 1 5 10 15

 Ala Gln Leu Thr Ser Val Thr Ala Gln His Phe Tyr Ala Val Val Ile
 20 25 30

 Asp Ala Thr Phe Pro Tyr Lys Thr Asn Gln Glu Arg Tyr Ile Cys Ser
 35 40 45

 Leu Lys Ile Val Asp Pro Ser Leu Tyr Leu Lys Lys Glu Lys Gly Thr
 50 55 60

 Gly Asp Asn Ser Asp Tyr Ala Thr Leu Val Leu Tyr Ala Lys Arg Phe
 65 70 75 80

 Glu Asp Leu Pro Ile Ile His Arg Leu Gly Asp Ile Ile Arg Ile His
 85 90 95

 Arg Ala Thr Ile Arg Leu Tyr Asn Gly Gln Arg Gln Phe Asn Ala Asn
 100 105 110

 Ile Phe Tyr Ser Ser Trp Ala Leu Phe Ser
 115 120

<210> 4
 <211> 123
 <212> PRT
 <213> Oxytricha nova

<400> 4

Lys	Lys	Ser	Asp	Lys	Gly	His	Lys	Tyr	Glu	Tyr	Val	Glu	Leu	Ala	Lys
1				5					10					15	

Ala	Ser	Leu	Thr	Ser	Ala	Gln	Pro	Gln	His	Phe	Tyr	Ala	Val	Val	Ile
								25					30		

Asp	Ala	Thr	Phe	Pro	Tyr	Lys	Thr	Asn	Gln	Glu	Arg	Tyr	Ile	Cys	Ser
						35		40				45			

Leu	Lys	Ile	Val	Asp	Pro	Thr	Leu	Tyr	Leu	Lys	Gln	Gln	Lys	Gly	Ala
							50		55			60			

Gly	Asp	Ala	Ser	Asp	Tyr	Ala	Thr	Leu	Val	Leu	Tyr	Ala	Lys	Arg	Phe
					65		70			75			80		

Glu	Asp	Leu	Pro	Ile	Ile	His	Arg	Ala	Gly	Asp	Ile	Ile	Arg	Val	His
					85				90			95			

Arg	Ala	Thr	Leu	Arg	Leu	Tyr	Asn	Gly	Gln	Arg	Gln	Phe	Asn	Ala	Asn
					100				105			110			

Val	Phe	Tyr	Ser	Ser	Ser	Trp	Ala	Leu	Phe	Ser					
							115		120						

<210> 5

<211> 109

<212> PRT

<213> Homo sapiens

<400> 5

Met	Ser	Leu	Val	Pro	Ala	Thr	Asn	Tyr	Ile	Tyr	Thr	Pro	Leu	Asn	Gln
1							5			10			15		

Leu	Lys	Gly	Gly	Thr	Ile	Val	Asn	Val	Tyr	Gly	Val	Val	Lys	Phe	Phe
					20				25			30			

Lys	Pro	Pro	Tyr	Leu	Ser	Lys	Gly	Thr	Asp	Tyr	Cys	Ser	Val	Val	Thr
					35			40			45				

Ile	Val	Asp	Gln	Thr	Asn	Val	Lys	Leu	Thr	Cys	Leu	Leu	Phe	Ser	Gly
					50			55			60				

Asn	Tyr	Glu	Ala	Leu	Pro	Ile	Ile	Tyr	Lys	Asn	Gly	Asp	Ile	Val	Arg
						65		70		75			80		

Phe	His	Arg	Leu	Lys	Ile	Gln	Val	Tyr	Lys	Lys	Glu	Thr	Gln	Gly	Ile
									85			90		95	

Thr	Ser	Ser	Gly	Phe	Ala	Ser	Leu	Thr	Phe	Glu	Gly	Thr			
							100		105						

<210> 6

<211> 116

<212> PRT

<213> Schizosaccharomyces pombe

<400> 6
Lys Ile Gly Glu Leu Thr Phe Gln Ser Ile Arg Ser Ser Gln Glu Leu
1 5 10 15

Gln Lys Lys Asn Thr Ile Val Asn Leu Phe Gly Ile Val Lys Asp Phe
20 25 30

Thr Pro Ser Arg Gln Ser Leu His Gly Thr Lys Asp Trp Val Thr Thr
35 40 45

Val Tyr Leu Trp Asp Pro Thr Cys Asp Thr Ser Ser Ile Gly Leu Gln
 50 55 60

Ile	His	Leu	Phe	Ser	Lys	Gln	Gly	Asn	Asp	Leu	Pro	Val	Ile	Lys	Gln
65				70						75					80

Val Gly Gln Pro Leu Leu Leu His Gln Ile Thr Leu Arg Ser Tyr Arg
85 90 95

Asp Arg Thr Gln Gly Leu Ser Lys Asp Gln Phe Arg Tyr Ala Leu Trp
100 105 110

Pro Asp Phe Ser
115

<210> 7
<211> 3980
<212> DNA
<213> Schi

<400> 7
tatgagtgaa gttccatcca tgatgaaaa agccatgctg tcaacctaa aaagtatatc 60
ggccattccc gatgatgtac cccctctta ttctgagtt gctgatgata cgacagcgca 120
agctggttct agaaaaagag atagcgctat atctgaagat cccgatcatc aaaaaagtgt 180
ttggtgttct tttagatggc aatctcggtc ttgtggctg gaaaaatcta ctgctcttc 240
tcctgaagaa accagagcaa tacaggagca gcacaaagaca ctgaaaaagg caggaatgga 300
ctttatgcta ttctctttct ggtagctgc cctacttttgc ctgagttatct ttgtcttcg 360
aagctatgct caaatgatcg gggatattt atatcgctgc ataattggca tttaggtttg 420
acgaacaacc atgcattttt tttctttct tttagtttta ttctttttg tagattatga 480
gcaaactact gtcaaaaactt aggtattatg acaatgaaat cgtatatatt atattcgatt 540
ggatcaattt ttattatata taaaaatgat tgcttatttt gtaagttaaa cttacatggg 600
tttaaacgca tagagcaggt tggcgctttt aaaaccaaaaa tagatcggtt caggtttgct 660
gttctggatc gtgaatgcaa taccttagga aagtcttta ataagctatc gcttttgca 720
ttgcattctt ttctaaactt gaacgtaga tttagctaaag taagcgctt gagttttcga 780
gatgaaccgc atacattaaa atttttaagt accaattggc atgaaccggc atgcgatctg 840
cttattataa tactagtaaa tcttgataact cggcaaaactc ttcaataat agcctagcag 900
aaactggat atgtctaaag ttttacaact gcgctcagct taaggacttt acggcgatcc 960
attnaatagc tagccatgaa cactcataac ctcaagattt aggagtgggt cattcttttgc 1020
cttgataaaag aaacaaattt attattggta aaataaaaact gaataaccct tagttcatcc 1080
taggaatttga aagaagggga atgatcaagc ttgaacaagt aactctcagc cagttctattt 1140
aataatctga aggttcatca ctttcaaggg gttgtcttgg tttaaaaagg ttttaccaat 1200
tccatttagg ttctgagaa aggctaaaac tcatttggtgc ttctttaagg atatttggat 1260
cattcggttga tcaaggatgg gagaggacgt tattgacagt cttagttga atgagttattt 1320
aatgtggaa gaatataaga ttggagttagt atatcaatgg atttataattt gttttgctaa 1380
caatggaaaaa ggaacttaca tttcgttcca tttagagctc tcaagaatta caaaagaaga 1440
atactattgtt caatttggttt ggaatagtaa aagattttac ccctagtcgc caaagtctac 1500

atggaactaa ggttatgctt gcttacatg gtggaaacta tacttttat tttccagtc 1560
 aagagctaat aatcatgttt ttagattggg taaccaccgt atatttggtt gatccaacat 1620
 gtgatacatc aagcatcgga ctacagatac acttgcgtca gaaacaggga aatgatttgc 1680
 ctgtaatcaa gcaggtgggg caaccgcgtt tgcttcatca aatcacatta agaagttata 1740
 gagacagac tcaagggtttg tctaaggatc aatttcgata tgcactttgg ccagacttt 1800
 cttctaattc caaagatact ctctgtcctc aaccaatgccc tcgtttaatg aaaacgggg 1860
 acaaggaaga gcaattcgcc ttgttggtaa ataaaatttg ggttagagcaa actaataaaac 1920
 ataaaaatgg cgaatttattt agtaccttctt ctgctcgta aaatcaaact ggattgagtt 1980
 acccttctgt ctcttttctt ctgctatcac aataactcc acatcaacgt ttagctttt 2040
 acgctcaaggta aataaaactt tggtacagtg ataaaaactt tactctttt gtcactgatt 2100
 atacggaaaa tgagctttt tttccaatgt ctccgtatac tagctcctcg agatggaggg 2160
 gccccttgg tcggtttctt ataaggtgca ttttatggga tgagcacgac ttttactgcc 2220
 gcaactacat taaagaaggt gactatgtgg ttatgaaaaa tgcgaacc aaaattgatc 2280
 accttggta tcttggatgt atacttcatg gggattcagc aaaacgttat aatatgagta 2340
 tagaaaaagt cgattcgaa gaacccgaac taaacgaaat taagtacgt aaaaggctt 2400
 atgttcagaa ttgccaat ggtatagaag cagtaatcga gaaactcagt caaagccaa 2460
 aatcgaaaaa tccttttatac gcccataat taaagcaac ttctgttaat gaaattacgg 2520
 cccatgtcat aaatgaaccc tctgtttaa aatttactac tatttctacc atacttcatg 2580
 cacctttgca gaatcttctc aaaccgagga aacataggct acgcgttcag gtggtagatt 2640
 tttggccaaa gagtttgcg cagtttgcgt tgcatactca accaccatct tcgtatgtt 2700
 ggatgttgc cttgtcgta agggatgtat cgaatgtgac tttaccggc atattttttt 2760
 attctgacgc tgcggactt attaacagct caaaaatccaa accttgcata ttagctgatc 2820
 accccagat gactcttcag cttaaagaaa gattatttctt gattttgggg aacttggaaag 2880
 aacgcattca gcatcacata tcgaagggtg aatcgccaa tctggctgct gaagatgtt 2940
 aaacaccatg gtttgcata tatgtcaag aatacattcc tgcataattggg aacaccaaaag 3000
 accatcaatc tttgactttt cttcagaagc gctggcgagg atttggcacg aaaattgttt 3060
 gactattgtg atacaataaaact tacaataatg aaatgcattc ggaaaagaaaa cataagaaaa 3120
 acaatattta aattttaagga aagctctata ttgggagaat tttataaagc gaggcaattt 3180
 gtactaagga aaaacacaga gggaaacgt gaaatatcta attgcttgcgata ctttatataa 3240
 catcaacttc gaaataatct tagaaattaa ttacaaaaat aataaggatt ggtttgatgt 3300
 atgggtggta catctaagca ggcttttgcg ttaggttgc aagtgttgc gcatcatcat 3360
 cactttcatc gtcaacagcg aatagagctt gatgctcatc ggcactgcca tgaataat 3420
 gagggttggc tggagatgtt ggacgctcat gatgcagatg caaactatca tttgagagag 3480
 aggaagtcat ctcaaaactca tctacatctt gagcaacttg ctcactcatt gcgaaacgac 3540
 ggttatttctc ggttaggacgc cacaagtaca aaatggtaag catcaagatc aaaacaagaa 3600
 tattcgttgc tccgtatattt aggaacccaa gaagtttcca gtattttaaat taaatgttca 3660
 tttgaccgtt gataccatc aaaatggcat tggctgcac aatcgaaagca taagcgacaa 3720
 tgccaaaaca tataacaatc caaagacgag tatacatctg agccttaaca gtttgcttac 3780
 gaatacggag atcacgaatt gtattttta aagccaatac aatccaaagg aacatagcga 3840
 agagggttgcg taaaaagaca ggacggcaaa acaaataatgac caaagactct ttatttagatg 3900
 ggctaatgaa caaagatgac aagaaaaaagc atgaagaaac gaaactgcataa ccagcaagaa 3960
 tttgacactt acgaagaaga 3980

<210> 8

<211> 2087

<212> DNA

<213> Schizosaccharomyces pombe

<400> 8

gattgaggag tgggtcattt ttttgcgttga taaagaaaaca aattcattat tggtaaaata 60
 aaactgaata acccttagtt catccttagga atttgaagaa gggaaatgtat caagcttgc 120
 caagtaactc tcacgcagtc tattgaataa tctgaagggtt catcacttcc aagggttgtt 180
 cttggtttaa aaagcttttca ccaattccat ttaggtttctt gagaaggctt aaaactcatt 240
 tgggttctt aaaggatatt tggatcattc gttgtatcaag catggagag gacgttattt 300
 acagtctca gtgtatgcg ttattaaatg ctggagaata taagatttgcgaa gaaacttacat 360
 ttcagtcattt tagaagctctt caagaattac aaaagaagaa tactattgtc aatttgcgtt 420
 gaatagtaaa agattttacc cctagtcgccc aaagtctaca tggaactaag gattgggtaa 480

ccaccgtata	tttgtggat	ccaacatgtg	atacatcaag	catcgacta	cagatacact	540
tgttcagcaa	acagggaaat	gattgcctg	taatcaagca	ggtggggcaa	ccgctttgc	600
ttcatcaaat	cacattaaga	agttatagag	acaggactca	aggttgtct	aaggatcaat	660
ttcgatatgc	actttggcca	gactttctt	ctaattccaa	agataactctc	tgtcctcaac	720
caatgcctcg	ttaatgaaa	acgggagaca	aggaagagca	attgccttg	ttgttaaata	780
aaatttggga	ttagcaaact	aataaacata	aaaatggcga	attattgagt	acctcttctg	840
ctcgtaaaaa	tcaaactgga	ttgagttacc	cttctgtctc	ttttctctg	ctatcacaaa	900
taactccaca	tcaacgttg	agctttacg	ctcaggtat	aaaacttgg	tacagtgata	960
aaaacttac	tcttatgtc	actgattata	cggaaaatga	gcttttttt	ccaatgtctc	1020
cgtatactag	ctccctcgaga	tggaggggcc	ottttggctg	gttttctata	aggtgcattt	1080
tatggatga	gcacgacttt	tactgcccga	actacattaa	agaagggtac	tatgtggtta	1140
tgaaaaatgt	gccaacccaa	attgatcacc	ttggttatct	ggaatgtata	cttcatgggg	1200
attcagcaaa	agtttataat	atgagtata	aaaaagtcta	ttcggaaagaa	cccgaaactaa	1260
acgaaattaa	gtcacgtaaa	aggctttatg	ttcagaattt	ccaaaatggt	atagaagcag	1320
taatcgagaa	actcagtcaa	agccaaacaat	cgaaaaatcc	ttttatcgcc	catgaattaa	1380
agcaaacttc	tgtaatgaa	attacggccc	atgtcataaa	tgaacctgt	agtttaaat	1440
tgactactat	ttctaccata	cttcatgcac	ctttgcagaa	tcttctcaaa	ccgagggaaac	1500
ataggctacg	cgttcaggtg	gtagattttt	ggccaaagag	tttgacgcag	tttgctgtc	1560
tatctcaacc	accatctcg	tatgtttgga	tggttgcctt	gctcgtaagg	gatgtatcga	1620
atgtgacttt	accggtcata	tttttgatt	ctgacgctgc	ggaacttatt	aacagctcaa	1680
aaatccaaacc	ttgcaattt	gctgatcacc	cgcagatgac	tcttcagctt	aaagaaagat	1740
tatttctgtat	ttgggggaaac	ttggaagaac	gcattcagca	tcacatatcg	aagggtgaat	1800
cggcaactct	ggctgctgaa	gatgttgaaa	caccatggtt	tgatatatat	gtcaaagaat	1860
acattcctgt	aattgggaac	accaaagacc	atcaatctt	gactttctt	cagaagcgct	1920
ggcgaggatt	tggcacgaaa	attgtttgac	tattgtgata	caaaaacttac	aataatgaaa	1980
tgcttacgga	aaagaaaacat	aagaaaaaca	atatttaat	ttaaggaaag	ctctatattg	2040
ggagaatttt	ataaagcgag	cgaatttgta	ctaaggaaaa	acacaga		2087

<210> 9
<211> 555
<212> PRT
<213> Sch

<400> 9
Met Gly Glu Asp Val Ile Asp Ser Leu Gln Leu Asn Glu Leu Leu Asn
1 5 10 15

Ala Gly Glu Tyr Lys Ile Gly Glu Leu Thr Phe Gln Ser Ile Arg Ser
 20 25 30

Ser Gln Glu Leu Gln Lys Lys Asn Thr Ile Val Asn Leu Phe Gly Ile
35 40 45

Val Lys Asp Phe Thr Pro Ser Arg Gln Ser Leu His Gly Thr Lys Asp
50 55 60

Trp Val Thr Thr Val Tyr Leu Trp Asp Pro Thr Cys Asp Thr Ser Ser
65 70 75 80

Ile Gly Leu Gln Ile His Leu Phe Ser Lys Gln Gly Asn Asp Leu Pro
85 90 95

Val Ile Lys Gln Val Gly Gln Pro Leu Leu Leu His Gln Ile Thr Leu
100 105 110

Arg Ser Tyr Arg Asp Arg Thr Gln Gly Leu Ser Lys Asp Gln Phe Arg
115 120 125

Tyr Ala Leu Trp Pro Asp Phe Ser Ser Asn Ser Lys Asp Thr Leu Cys
 130 135 140
 Pro Gln Pro Met Pro Arg Leu Met Lys Thr Gly Asp Lys Glu Glu Gln
 145 150 155 160
 Phe Ala Leu Leu Leu Asn Lys Ile Trp Asp Glu Gln Thr Asn Lys His
 165 170 175
 Lys Asn Gly Glu Leu Leu Ser Thr Ser Ser Ala Arg Gln Asn Gln Thr
 180 185 190
 Gly Leu Ser Tyr Pro Ser Val Ser Phe Ser Leu Leu Ser Gln Ile Thr
 195 200 205
 Pro His Gln Arg Cys Ser Phe Tyr Ala Gln Val Ile Lys Thr Trp Tyr
 210 215 220
 Ser Asp Lys Asn Phe Thr Leu Tyr Val Thr Asp Tyr Thr Glu Asn Glu
 225 230 235 240
 Leu Phe Phe Pro Met Ser Pro Tyr Thr Ser Ser Ser Arg Trp Arg Gly
 245 250 255
 Pro Phe Gly Arg Phe Ser Ile Arg Cys Ile Leu Trp Asp Glu His Asp
 260 265 270
 Phe Tyr Cys Arg Asn Tyr Ile Lys Glu Gly Asp Tyr Val Val Met Lys
 275 280 285
 Asn Val Arg Thr Lys Ile Asp His Leu Gly Tyr Leu Glu Cys Ile Leu
 290 295 300
 His Gly Asp Ser Ala Lys Arg Tyr Asn Met Ser Ile Glu Lys Val Asp
 305 310 315 320
 Ser Glu Glu Pro Glu Leu Asn Glu Ile Lys Ser Arg Lys Arg Leu Tyr
 325 330 335
 Val Gln Asn Cys Gln Asn Gly Ile Glu Ala Val Ile Glu Lys Leu Ser
 340 345 350
 Gln Ser Gln Gln Ser Glu Asn Pro Phe Ile Ala His Glu Leu Lys Gln
 355 360 365
 Thr Ser Val Asn Glu Ile Thr Ala His Val Ile Asn Glu Pro Ala Ser
 370 375 380
 Leu Lys Leu Thr Thr Ile Ser Thr Ile Leu His Ala Pro Leu Gln Asn
 385 390 395 400
 Leu Leu Lys Pro Arg Lys His Arg Leu Arg Val Gln Val Val Asp Phe
 405 410 415
 Trp Pro Lys Ser Leu Thr Gln Phe Ala Val Leu Ser Gln Pro Pro Ser
 420 425 430

Ser Tyr Val Trp Met Phe Ala Leu Leu Val Arg Asp Val Ser Asn Val
 435 440 445

Thr Leu Pro Val Ile Phe Phe Asp Ser Asp Ala Ala Glu Leu Ile Asn
 450 455 460

Ser Ser Lys Ile Gln Pro Cys Asn Leu Ala Asp His Pro Gln Met Thr
 465 470 475 480

Leu Gln Leu Lys Glu Arg Leu Phe Leu Ile Trp Gly Asn Leu Glu Glu
 485 490 495

Arg Ile Gln His His Ile Ser Lys Gly Glu Ser Pro Thr Leu Ala Ala
 500 505 510

Glu Asp Val Glu Thr Pro Trp Phe Asp Ile Tyr Val Lys Glu Tyr Ile
 515 520 525

Pro Val Ile Gly Asn Thr Lys Asp His Gln Ser Leu Thr Phe Leu Gln
 530 535 540

Lys Arg Trp Arg Gly Phe Gly Thr Lys Ile Val
 545 550 555

<210> 10

<211> 1740

<212> DNA

<213> Schizosaccharomyces pombe

<400> 10

atgggagagg acgttattga cagtcttcag ttgaatgagt tattaaatgc tggagaatat 60
 aagattggag aacttacatt tcagtccatt agaagctctc aagaattaca aaagaagaat 120
 actattgtca atttgtttgg aatagtaaaa gatTTTACCC ctatcgcca aagtctacat 180
 ggaactaagg gtatgcttgc ttatcatggt ggaaactata ctttttattt ttccagtcaa 240
 gagctaataa tcatgtttt agattggta accaccgtat atttgggta tccaacatgt 300
 gatacatcaa gcatacgact acagatacac ttgttcagca aacagggaaa tgatttgct 360
 gtaatcaagc aggtggggca accgcttttgc cttcatcaaa tcacattaag aagttataga 420
 gacaggactc aaggTTTGTc taaggatcaa ttTCGATATG cactttggcc agactttct 480
 tctaattcca aagataactct ctgtcctcaa ccaatgcctc gtttaatgaa aacgggagac 540
 aaggaagagc aattcgcctt gttgttaat aaaatttggg atgagcaaac taataaacat 600
 aaaaatggcg aattatttgag tacctcttct gctcgtcaaa atcaaaactgg attgagttac 660
 ccttctgtct ctTTTCTCT gctatcacaataaactccac atcaacgttg tagctttac 720
 gctcaggtaa ttAAAACTTG gtacagtgtat AAAAACCTTA ctctttatgt cactgattat 780
 acggaaaatg agttttttt tccaatgtct ccgtataacta gtcctcgag atggaggggc 840
 cctttggtc ggtttctat aagggtgcatt ttatggatg agcacgactt ttactgccgc 900
 aactacatta aagaaggtga ctatgtggtt atgaaaaatg tgcgaaccaa aattgatcac 960
 ctggTTTATC tggaatgtat acttcatggg gattcagcaa aacgttataa tatgagtata 1020
 gaaaaagtgcg attcggaga acccgaacta aacgaaattt agtcacgtaa aaggctttat 1080
 gttcagaatt gccaaaatgg tatagaagca gtaatcgaga aactcagtca aagccaacaa 1140
 tcggaaaatc ctTTTATCGC ccatgaattt aagcaaactt ctgttaatga aattacgccc 1200
 catgtcataa atgaacctgc tagttaaaa ttgactacta tttctaccat acttcatgca 1260
 cctttgcaga atcttctcaa accgaggaaa cataggctac gcgttcaggt ggttagattt 1320
 tggccaaaga gtttgcgcgca gtttgcgttg ctatctcaac caccatcttgc tstatgttgg 1380
 atgtttgcct tgctcgtaag ggatgtatcg aatgtgactt taccggcat attttttgc 1440
 tctgacgctg cggaaacttat taacagctca aaaatccaaac cttgcaattt agctgatcac 1500
 ccgcagatga ctcttcagct taaagaaaaga ttatTTCTGA tttgggggaa cttggaagaa 1560
 cgcattcagc atcacatatac gaagggtgaa tcgccaactc tggctgctga agatgttggaa 1620

acaccatgg t tgatataata tgtcaaaagaa tacattccctg taattgggaa caccaaagac 1680
catcaatctt t gactttct tcagaagcgc tggcgaggat ttggcacgaa aattgtttga 1740

<210> 11
<211> 579
<212> PRT
<213> *Schizosaccharomyces pombe*

<400> 11
Met Gly Glu Asp Val Ile Asp Ser Leu Gln Leu Asn Glu Leu Leu Asn
1 5 10 15

Ala Gly Glu Tyr Lys Ile Gly Glu Leu Thr Phe Gln Ser Ile Arg Ser
 20 25 30

Ser Gln Glu Leu Gln Lys Lys Asn Thr Ile Val Asn Leu Phe Gly Ile
35 40 45

Val Lys Asp Phe Thr Pro Ser Arg Gln Ser Leu His Gly Thr Lys Gly
50 55 60

Met Leu Ala Tyr His Gly Gly Asn Tyr Thr Phe Tyr Phe Ser Ser Gln
65 70 75 80

Glu Leu Ile Ile Met Phe Leu Asp Trp Val Thr Thr Val Tyr Leu Trp
85 90 95

Asp	Pro	Thr	Cys	Asp	Thr	Ser	Ser	Ile	Gly	Leu	Gln	Ile	His	Leu	Phe
				100				105				110			

Ser Lys Gln Gly Asn Asp Leu Pro Val Ile Lys Gln Val Gly Gln Pro
115 120 125

Leu Leu Leu His Gln Ile Thr Leu Arg Ser Tyr Arg Asp Arg Thr Glu
130 135 140

Gly Leu Ser Lys Asp Gln Phe Arg Tyr Ala Leu Trp Pro Asp Phe Ser
 145 150 155 160

Ser Asn Ser Lys Asp Thr Leu Cys Pro Gln Pro Met Pro Arg Leu Met
165 170 175

Lys Thr Gly Asp Lys Glu Glu Gln Phe Ala Leu Leu Leu Asn Lys Ile
 180 185 190

Trp Asp Glu Gln Thr Asn Lys His Lys Asn Gly Glu Leu Leu Ser Thr
195 200 205

Ser Ser Ala Arg Gln Asn Gln Thr Gly Leu Ser Tyr Pro Ser Val Ser
 210 215 220

Phe	Ser	Leu	Leu	Ser	Gln	Ile	Thr	Pro	His	Gln	Arg	Cys	Ser	Phe	Tyr
225					230					235					240

Ala Gln Val Ile Lys Thr Trp Tyr Ser Asp Lys Asn Phe Thr Leu Tyr
245 250 255

Val Thr Asp Tyr Thr Glu Asn Glu Leu Phe Phe Pro Met Ser Pro Tyr
 260 265 270

 Thr Ser Ser Ser Arg Trp Arg Gly Pro Phe Gly Arg Phe Ser Ile Arg
 275 280 285

 Cys Ile Leu Trp Asp Glu His Asp Phe Tyr Cys Arg Asn Tyr Ile Lys
 290 295 300

 Glu Gly Asp Tyr Val Val Met Lys Asn Val Arg Thr Lys Ile Asp His
 305 310 315 320

 Leu Gly Tyr Leu Glu Cys Ile Leu His Gly Asp Ser Ala Lys Arg Tyr
 325 330 335

 Asn Met Ser Ile Glu Lys Val Asp Ser Glu Glu Pro Glu Leu Asn Glu
 340 345 350

 Ile Lys Ser Arg Lys Arg Leu Tyr Val Gln Asn Cys Gln Asn Gly Ile
 355 360 365

 Glu Ala Val Ile Glu Lys Leu Ser Gln Ser Gln Ser Glu Asn Pro
 370 375 380

 Phe Ile Ala His Glu Leu Lys Gln Thr Ser Val Asn Glu Ile Thr Ala
 385 390 395 400

 His Val Ile Asn Glu Pro Ala Ser Leu Lys Leu Thr Thr Ile Ser Thr
 405 410 415

 Ile Leu His Ala Pro Leu Gln Asn Leu Leu Lys Pro Arg Lys His Arg
 420 425 430

 Leu Arg Val Gln Val Val Asp Phe Trp Pro Lys Ser Leu Thr Gln Phe
 435 440 445

 Ala Val Leu Ser Gln Pro Pro Ser Ser Tyr Val Trp Met Phe Ala Leu
 450 455 460

 Leu Val Arg Asp Val Ser Asn Val Thr Leu Pro Val Ile Phe Phe Asp
 465 470 475 480

 Ser Asp Ala Ala Glu Leu Ile Asn Ser Ser Lys Ile Gln Pro Cys Asn
 485 490 495

 Leu Ala Asp His Pro Gln Met Thr Leu Gln Leu Lys Glu Arg Leu Phe
 500 505 510

 Leu Ile Trp Gly Asn Leu Glu Glu Arg Ile Gln His His Ile Ser Lys
 515 520 525

 Gly Glu Ser Pro Thr Leu Ala Ala Glu Asp Val Glu Thr Pro Trp Phe
 530 535 540

 Asp Ile Tyr Val Lys Glu Tyr Ile Pro Val Ile Gly Asn Thr Lys Asp
 545 550 555 560

His Gln Ser Leu Thr Phe Leu Gln Lys Arg Trp Arg Gly Phe Gly Thr
 565 570 575

Lys Ile Val

```
<210> 12  
<211> 1905  
<212> DNA  
<213> Homo sapiens
```

<400> 12
atgtctttgg ttccagcaac aaatttatata tatacacccc tgaatcaact taagggttgt 60
acaattgtca atgtctatgg tgttgtgaag ttctttaagc ccccatatct aagcaaagga 120
actgattatt gtcagttgt aactattgtg gaccagacaa atgtaaaact aacttgctcg 180
ctcttagtg gaaactatga agcccttcca ataatttata aaaatggaga tattgttcgc 240
ttcacaggc tgaagattca agtatataaa aaggagactc agggtatcac cagctctggc 300
tttgcacattt tgacgttga gggactttg ggagcccccta tcataacctcg cacttcaagc 360
aagtattta acttcactac tgaggaccac aaaatggtag aagccttacg tgtttggca 420
tctactcata tgtcaccgtc ttggacattt ctaaaattgt gtgatgttca gccaatgcag 480
tattttgacc tgacttgtca gctctggc aaagcagaag tggacggagc atcatttctt 540
ctaaaggat gggatggcac caggacacca ttccatctt ggagagtctt aatacaagac 600
cttgcatttg aaggtgattt aagtacatc catggctac aaaatctgac aatagacatt 660
tttagtctacg ataaccatgt tcatgtggca agatctctga aggttggaaat ctttctttaga 720
atctatagcc ttcataccaa acttcaatca atgaattcag agaatcagac aatgttaagt 780
tttaggtttc atcttcattgg aggtaccagt tacggtcggg gaatcagggt ctgccagaa 840
agtaactctg atgtggatca actgaaaaag gatttagaat ctgcaaattt gacagccaaat 900
cagcattcag atgttatctg tcaatcagaa cctgacgaca gcttccaag ctctggatca 960
gtatcattat acgaggtaga aagatgtcaa cagctatctg ctacaatact tacagatcat 1020
cagtatttgg agaggacacc actatgtgcc attttgaaac aaaaagctcc tcaacaatac 1080
cgccatccgag caaaatttgg gtcataataag cccagaagac tatttcagtc tgttaaactt 1140
cattgcctt aatgtcattt gtcgaagaa gttccacatg agggcgattt ggatataatt 1200
tttcaggatg gtgcaactaa aaccccgattt gtcaagttac aaaatatactt attatatgtat 1260
tcaaaaatct ggaccactaa aaatcaaaaaa ggacggaaaag tagcagttca ttttgtgaaa 1320
aataatggta ttctcccgct ttcaaatgaa tgtctacttt tgatagaagg aggtacactc 1380
agtgaattt gcaaactctc gaacaagttt aatagtgtaa ttctgttgag atctggccac 1440
gaagacctgg aacttttggc ctttcagca ccatttctta tacaaggaac aatacatcac 1500
tatggatgt aacagtgttc tagtttgaga tccataacaaa atctaaattt cctggttgat 1560
aaaacatctg ggattccttc ttctgtggca gaagcactgg gtattgtacc cctccaaat 1620
gtgtttgtta tgacctttac acttggatgtt ggaacaggag tactagaagc cstatctcatg 1680
gattctgaca aattcttcca gattccagca tcagaagttc tgatggatga tgaccttcag 1740
aaaagtgtgg atatgatcat ggatatgttt tgcctccag gaataaaaaat tgatgcataat 1800
ccgtgggtgg aatgcttcat caagtcatac aatgtcacaat atggAACAGA taatcaaatt 1860
tgctatcaga tttttgacac cacagttgca gaagatgtaa tctaa 1905

<210> 13
<211> 634
<212> PRT
<213> *Homo sapiens*

<400> 13
Met Ser Leu Val Pro Ala Thr Asn Tyr Ile Tyr Thr Pro Leu Asn Gln
1 5 10 15

Leu Lys Gly Gly Thr Ile Val Asn Val Tyr Gly Val Val Lys Phe Phe
20 25 30

Lys Pro Pro Tyr Leu Ser Lys Gly Thr Asp Tyr Cys Ser Val Val Thr
 35 40 45

Ile Val Asp Gln Thr Asn Val Lys Leu Thr Cys Leu Leu Phe Ser Gly
 50 55 60

Asn Tyr Glu Ala Leu Pro Ile Ile Tyr Lys Asn Gly Asp Ile Val Arg
 65 70 75 80

Phe His Arg Leu Lys Ile Gln Val Tyr Lys Lys Glu Thr Gln Gly Ile
 85 90 95

Thr Ser Ser Gly Phe Ala Ser Leu Thr Phe Glu Gly Thr Leu Gly Ala
 100 105 110

Pro Ile Ile Pro Arg Thr Ser Ser Lys Tyr Phe Asn Phe Thr Thr Glu
 115 120 125

Asp His Lys Met Val Glu Ala Leu Arg Val Trp Ala Ser Thr His Met
 130 135 140

Ser Pro Ser Trp Thr Leu Leu Lys Leu Cys Asp Val Gln Pro Met Gln
 145 150 155 160

Tyr Phe Asp Leu Thr Cys Gln Leu Leu Gly Lys Ala Glu Val Asp Gly
 165 170 175

Ala Ser Phe Leu Leu Lys Val Trp Asp Gly Thr Arg Thr Pro Phe Pro
 180 185 190

Ser Trp Arg Val Leu Ile Gln Asp Leu Val Leu Glu Gly Asp Leu Ser
 195 200 205

His Ile His Arg Leu Gln Asn Leu Thr Ile Asp Ile Leu Val Tyr Asp
 210 215 220

Asn His Val His Val Ala Arg Ser Leu Lys Val Gly Ser Phe Leu Arg
 225 230 235 240

Ile Tyr Ser Leu His Thr Lys Leu Gln Ser Met Asn Ser Glu Asn Gln
 245 250 255

Thr Met Leu Ser Leu Glu Phe His Leu His Gly Gly Thr Ser Tyr Gly
 260 265 270

Arg Gly Ile Arg Val Leu Pro Glu Ser Asn Ser Asp Val Asp Gln Leu
 275 280 285

Lys Lys Asp Leu Glu Ser Ala Asn Leu Thr Ala Asn Gln His Ser Asp
 290 295 300

Val Ile Cys Gln Ser Glu Pro Asp Asp Ser Phe Pro Ser Ser Gly Ser
 305 310 315 320

Val Ser Leu Tyr Glu Val Glu Arg Cys Gln Gln Leu Ser Ala Thr Ile
 325 330 335

Leu Thr Asp His Gln Tyr Leu Glu Arg Thr Pro Leu Cys Ala Ile Leu
 340 345 350

Lys Gln Lys Ala Pro Gln Gln Tyr Arg Ile Arg Ala Lys Leu Arg Ser
 355 360 365

Tyr Lys Pro Arg Arg Leu Phe Gln Ser Val Lys Leu His Cys Pro Lys
 370 375 380

Cys His Leu Leu Gln Glu Val Pro His Glu Gly Asp Leu Asp Ile Ile
 385 390 395 400

Phe Gln Asp Gly Ala Thr Lys Thr Pro Val Val Lys Leu Gln Asn Thr
 405 410 415

Ser Leu Tyr Asp Ser Lys Ile Trp Thr Thr Lys Asn Gln Lys Gly Arg
 420 425 430

Lys Val Ala Val His Phe Val Lys Asn Asn Gly Ile Leu Pro Leu Ser
 435 440 445

Asn Glu Cys Leu Leu Ile Glu Gly Gly Thr Leu Ser Glu Ile Cys
 450 455 460

Lys Leu Ser Asn Lys Phe Asn Ser Val Ile Pro Val Arg Ser Gly His
 465 470 475 480

Glu Asp Leu Glu Leu Asp Leu Ser Ala Pro Phe Leu Ile Gln Gly
 485 490 495

Thr Ile His His Tyr Gly Cys Lys Gln Cys Ser Ser Leu Arg Ser Ile
 500 505 510

Gln Asn Leu Asn Ser Leu Val Asp Lys Thr Ser Trp Ile Pro Ser Ser
 515 520 525

Val Ala Glu Ala Leu Gly Ile Val Pro Leu Gln Tyr Val Phe Val Met
 530 535 540

Thr Phe Thr Leu Asp Asp Gly Thr Gly Val Leu Glu Ala Tyr Leu Met
 545 550 555 560

Asp Ser Asp Lys Phe Phe Gln Ile Pro Ala Ser Glu Val Leu Met Asp
 565 570 575

Asp Asp Leu Gln Lys Ser Val Asp Met Ile Met Asp Met Phe Cys Pro
 580 585 590

Pro Gly Ile Lys Ile Asp Ala Tyr Pro Trp Leu Glu Cys Phe Ile Lys
 595 600 605

Ser Tyr Asn Val Thr Asn Gly Thr Asp Asn Gln Ile Cys Tyr Gln Ile
 610 615 620

Phe Asp Thr Thr Val Ala Glu Asp Val Ile
 625 630

<210> 14
<211> 1298
<212> DNA
<213> Homo sapiens

<400> 14
atgtcttgg ttccagcaac aaattatata tatacaccccc tgaatcaact taagggtgg 60
acaattgtca atgtctatgg tggtgtgaag ttcttaagc ccccatatct aagcaaagga 120
actgattatt gctcagttgt aactatgtg gaccagacaa atgtaaaact aacttgcctg 180
ctcttagtg gaaactatga agcccttcca ataatttata aaaatggaga tattgttcgc 240
tttcacaggc tgaagattca agtatataaa aaggagactc agggtatcac cagctctggc 300
tttgcacatctt tgacgttga gggacttgg ggagccctta tcatacctcg cacttcaagc 360
aagtattta acttcactac tgaggaccac aaaatggtag aagcccttacg tgtttggca 420
tctactcata tgcacccgtc ttggacatta ctaaaattgt gtgatgttca gccaatgcag 480
tattttgacc tgacttgtca gctcttggc aaagcagaag tggacggagc atcatttctt 540
ctaaaggat gggatggcac caggacacca tttccatctt ggagagtctt aatacaagac 600
cttggcttg aaggtgattt aagtcacatc catcggtctac aaaatctgac aatagacatt 660
ttagtctacg ataaccatgt tcatgtggca agatctctga aggttggaaag ctttctttaga 720
atctatagcc ttcataccaa acttcaatca atgaattcag agaattcag aatgttaagt 780
ttagagttc atcttcatgg aggtaccagt tacggtcggg gaatcagggt ctggccagaa 840
agtaactctg atgtggatca actgaaaaag gatttagaat ctgcaaattt gacagccat 900
cagcattcag atgttatctg tcaatcagaa cctgacgaca gctttccaaa tggagtctcg 960
cttcgtcctc caggtggag ttcagtgca cgtctcgcc tcattgcagc ctccacctcc 1020
tgagttcaag cttctcctgc ctcagctcc caagtagctg ggattacagg ctctggatca 1080
gtatcattat acgaggtaga aagatgtcaa cagctatctg ctacaatact tacagatcat 1140
cagtattttg agaggacacc actatgtgcc attttgaaac aaaaagctcc tcaacaatac 1200
cgcattccgag caaaattttag gtcataataag cccagaagac tatttcagtc tgttaaactt 1260
cattgcccta aatgtcattt gtcgaagaa gtcccaca 1298

<210> 15
<211> 340
<212> PRT
<213> Homo sapiens

<400> 15
Met Ser Leu Val Pro Ala Thr Asn Tyr Ile Tyr Thr Pro Leu Asn Gln
1 5 10 15
Leu Lys Gly Gly Thr Ile Val Asn Val Tyr Gly Val Val Lys Phe Phe
20 25 30
Lys Pro Pro Tyr Leu Ser Lys Gly Thr Asp Tyr Cys Ser Val Val Thr
35 40 45
Ile Val Asp Gln Thr Asn Val Lys Leu Thr Cys Leu Leu Phe Ser Gly
50 55 60
Asn Tyr Glu Ala Leu Pro Ile Ile Tyr Lys Asn Gly Asp Ile Val Arg
65 70 75 80
Phe His Arg Leu Lys Ile Gln Val Tyr Lys Lys Glu Thr Gln Gly Ile
85 90 95
Thr Ser Ser Gly Phe Ala Ser Leu Thr Phe Glu Gly Thr Leu Gly Ala
100 105 110

Pro Ile Ile Pro Arg Thr Ser Ser Lys Tyr Phe Asn Phe Thr Thr Glu
 115 120 125
 Asp His Lys Met Val Glu Ala Leu Arg Val Trp Ala Ser Thr His Met
 130 135 140
 Ser Pro Ser Trp Thr Leu Leu Lys Leu Cys Asp Val Gln Pro Met Gln
 145 150 155 160
 Tyr Phe Asp Leu Thr Cys Gln Leu Leu Gly Lys Ala Glu Val Asp Gly
 165 170 175
 Ala Ser Phe Leu Leu Lys Val Trp Asp Gly Thr Arg Thr Pro Phe Pro
 180 185 190
 Ser Trp Arg Val Leu Ile Gln Asp Leu Val Leu Glu Gly Asp Leu Ser
 195 200 205
 His Ile His Arg Leu Gln Asn Leu Thr Ile Asp Ile Leu Val Tyr Asp
 210 215 220
 Asn His Val His Val Ala Arg Ser Leu Lys Val Gly Ser Phe Leu Arg
 225 230 235 240
 Ile Tyr Ser Leu His Thr Lys Leu Gln Ser Met Asn Ser Glu Asn Gln
 245 250 255
 Thr Met Leu Ser Leu Glu Phe His Leu His Gly Gly Thr Ser Tyr Gly
 260 265 270
 Arg Gly Ile Arg Val Leu Pro Glu Ser Asn Ser Asp Val Asp Gln Leu
 275 280 285
 Lys Lys Asp Leu Glu Ser Ala Asn Leu Thr Ala Asn Gln His Ser Asp
 290 295 300
 Val Ile Cys Gln Ser Glu Pro Asp Asp Ser Phe Pro Asn Gly Val Ser
 305 310 315 320
 Leu Arg Pro Pro Gly Trp Ser Ser Val Ala Arg Ser Arg Leu Ile Ala
 325 330 335
 Ala Ser Thr Ser
 340

<210> 16
 <211> 1816
 <212> DNA
 <213> Homo sapiens

<400> 16
 atgtctttgg ttccagcaac aaatttatata tatacacccc tgaatcaact taagggtgg 60
 acaattgtca atgtctatgg tgggttgaag ttcttttaagc ccccatatct aagcaaagga 120
 actgattatt gtcagttgt aactattgtg gaccagacaa atgtaaaact aacttgcccg 180
 ctcttttagtgc gaaactatgc agcccttcca ataatttata aaaatggaga tattgttcgc 240
 tttcacagggc tgaagattca agtataaaa aaggagactc agggtatcac cagctctggc 300
 tttgcatttt tgacgtttga gggacttttgc ggagcccccta tcatacctcg cacttcaagc 360

aagtatttta acttcactac tgaggaccac aaaatggtag aagccttacg tgtttggca 420
 tctactcata tgtcacgcgc ttggacatta ctaaaattgt gtgatgttca gccaatgcag 480
 tattttgacc tgacttgtca gctctggc aaagcagaag tggacggagc atcatttctt 540
 ctaaaggat gggatggcac caggacacca tttccatctt ggagagtctt aatacaagac 600
 cttgttctt aagtgattt aagtcacatc catcggtacaaaatctgac aatagacatt 660
 ttagtctacg ataaccatgt tcatgtggca agatctctga aggttggaaag ctttctttaga 720
 atctatagcc ttcataccaa acttcaatca atgaattcag agaattcagac aatgttaagt 780
 ttagagttc atcttcatgg aggtaccagt tacggtcggg gaatcagggt cttgccagaa 840
 agtaactctg atgtggatca actgaaaaag gatttagaat ctgcaaattt gacagccat 900
 cagcattcag atgttatctg tcaatcagaa cctgacgaca gctttcaag ctctggatca 960
 gtatcattt acgaggtaga aagatgtcaa cagctatctg ctacaatact tacagatcat 1020
 cagtatttgg agaggacacc actatgtgcc attttgaaac aaaaagctcc tcaacaatac 1080
 cgcatccgag caaaattttag gtcataataag cccagaagac tatttcagtc tgttaaactt 1140
 cattgcccata aatgtcattt gctgcaagaa gttccacatg agggcgattt ggatataatt 1200
 tttcaggatg gtgcaactaa aaccccgat gtcagactacaaaatcatc attatatgt 1260
 tcaaaaatct ggaccactaa aaatcaaaaa ggacgaaaag tagcagttca ttttgtgaaa 1320
 aataatgtta ttctccccctt ttc当地tggaa tgc当地tacttt tgatagaagg aggtacactc 1380
 agtggaaattt gcaactctc gaacaagttt aatagtgtaa ttccctgtgag atctggccac 1440
 gaagacctgg aacttttggaa cctttagca ccatttctta tacaaggaac aatacatcac 1500
 tatggactg ggtattgtac cccttccataa tgc当地tggatgatgaa 1560
 tggaaacagga gtactagaag cctatctcat ggttctgac aaattcttcc agattccagc 1620
 atcagaagtt ctgatggatg atgaccttca gaaaagtgtg gatatgatca tggatatgtt 1680
 ttgtcctcca ggaataaaaaa ttgatgcata tccgtggttt gaatgcttca tcaagtcttca 1740
 caatgtcaca aatggaaacag ataatcaaatttgc当地tactcag attttgaca ccacagttgc 1800
 agaagatgtta atctaa 1816

<210> 17

<211> 518

<212> PRT

<213> Homo sapiens

<400> 17

Met	Ser	Leu	Val	Pro	Ala	Thr	Asn	Tyr	Ile	Tyr	Thr	Pro	Leu	Asn	Gln
1									10						15

Leu	Lys	Gly	Gly	Thr	Ile	Val	Asn	Val	Tyr	Gly	Val	Val	Lys	Phe	Phe
								20					30		

Lys	Pro	Pro	Tyr	Leu	Ser	Lys	Gly	Thr	Asp	Tyr	Cys	Ser	Val	Val	Thr
								35				40		45	

Ile	Val	Asp	Gln	Thr	Asn	Val	Lys	Leu	Thr	Cys	Leu	Leu	Phe	Ser	Gly
								50			55		60		

Asn	Tyr	Glu	Ala	Leu	Pro	Ile	Ile	Tyr	Lys	Asn	Gly	Asp	Ile	Val	Arg
								65			75		80		

Phe	His	Arg	Leu	Lys	Ile	Gln	Val	Tyr	Lys	Lys	Glu	Thr	Gln	Gly	Ile
								85			90		95		

Thr	Ser	Ser	Gly	Phe	Ala	Ser	Leu	Thr	Phe	Glu	Gly	Thr	Leu	Gly	Ala
								100			105		110		

Pro	Ile	Ile	Pro	Arg	Thr	Ser	Ser	Lys	Tyr	Phe	Asn	Phe	Thr	Thr	Glu
								115			120		125		

Asp His Lys Met Val Glu Ala Leu Arg Val Trp Ala Ser Thr His Met
 130 135 140

Ser Pro Ser Trp Thr Leu Leu Lys Leu Cys Asp Val Gln Pro Met Gln
 145 150 155 160

Tyr Phe Asp Leu Thr Cys Gln Leu Leu Gly Lys Ala Glu Val Asp Gly
 165 170 175

Ala Ser Phe Leu Leu Lys Val Trp Asp Gly Thr Arg Thr Pro Phe Pro
 180 185 190

Ser Trp Arg Val Leu Ile Gln Asp Leu Val Leu Glu Gly Asp Leu Ser
 195 200 205

His Ile His Arg Leu Gln Asn Leu Thr Ile Asp Ile Leu Val Tyr Asp
 210 215 220

Asn His Val His Val Ala Arg Ser Leu Lys Val Gly Ser Phe Leu Arg
 225 230 235 240

Ile Tyr Ser Leu His Thr Lys Leu Gln Ser Met Asn Ser Glu Asn Gln
 245 250 255

Thr Met Leu Ser Leu Glu Phe His Leu His Gly Gly Thr Ser Tyr Gly
 260 265 270

Arg Gly Ile Arg Val Leu Pro Glu Ser Asn Ser Asp Val Asp Gln Leu
 275 280 285

Lys Lys Asp Leu Glu Ser Ala Asn Leu Thr Ala Asn Gln His Ser Asp
 290 295 300

Val Ile Cys Gln Ser Glu Pro Asp Asp Ser Phe Pro Ser Ser Gly Ser
 305 310 315 320

Val Ser Leu Tyr Glu Val Glu Arg Cys Gln Gln Leu Ser Ala Thr Ile
 325 330 335

Leu Thr Asp His Gln Tyr Leu Glu Arg Thr Pro Leu Cys Ala Ile Leu
 340 345 350

Lys Gln Lys Ala Pro Gln Gln Tyr Arg Ile Arg Ala Lys Leu Arg Ser
 355 360 365

Tyr Lys Pro Arg Arg Leu Phe Gln Ser Val Lys Leu His Cys Pro Lys
 370 375 380

Cys His Leu Leu Gln Glu Val Pro His Glu Gly Asp Leu Asp Ile Ile
 385 390 395 400

Phe Gln Asp Gly Ala Thr Lys Thr Pro Asp Val Lys Leu Gln Asn Thr
 405 410 415

Ser Leu Tyr Asp Ser Lys Ile Trp Thr Thr Lys Asn Gln Lys Gly Arg
 420 425 430

Lys Val Ala Val His Phe Val Lys Asn Asn Gly Ile Leu Pro Leu Ser
 435 440 445

Asn Glu Cys Leu Leu Leu Ile Glu Gly Gly Thr Leu Ser Glu Ile Cys
 450 455 460

Lys Leu Ser Asn Lys Phe Asn Ser Val Ile Pro Val Arg Ser Gly His
 465 470 475 480

Glu Asp Leu Glu Leu Leu Asp Leu Ser Ala Pro Phe Leu Ile Gln Gly
 485 490 495

Thr Ile His His Tyr Gly Thr Gly Tyr Cys Thr Pro Pro Ile Cys Val
 500 505 510

Cys Tyr Asp Leu Tyr Thr
 515

<210> 18

<211> 27377

<212> DNA

<213> Homo sapiens

<400> 18

gatcttttt tctgggctaa ttcatatgac tcaaattcat tatagttgca taataataat 60
 gttatgcctt tttcattttt catttaataag atgttgagat cgttaccagt tttttgcct 120
 tacaataat actttaataa acatccctga atatatgtac ttccatgttt ttacttcctcc 180
 acaataaact aaaagtggagg tcgatgtatc taaggttag cacattttt aatagatgct 240
 gccagattat ttaccaaagg tcatagaaat ttatatccaa atagcagtgt aggagaat 300
 actttactca caccctcaca gtattggaag ttaacactat atgtaatttt tgacagttaa 360
 gcaggtgaaa ggtgtttct tacttaattt tcctggctac ttggaaactt gaaaatctt 420
 ctatataattt acaaacgttt ttaattccct cttcctcaga tttctgctc ttactcttt 480
 tctgattttc tggtaatta tattttgtc agtttgtgg caaccatgtt tggtttcac 540
 attttcttat ttgactactt ttatgtttc tgccattatt tccatctcat gttgtatgg 600
 ccaatattaa ttactaaattt agatttattt aaattataacc atgcagctt gagatgtcca 660
 ttcaagtcct cttgacttgg attttatac cacttattag caatatttgg gatatgttg 720
 tgtatgtgc tttataaaat aaattataaa aacataatgt actgttatgt ataatagaat 780
 gtaagctaaa gtgattacaa aatacacatt ttaaagttt taagttctc ttttttagaa 840
 gcattttgtt accttagtgc tatgactact acttttgtt tcttggtaga gtaaaatctt 900
 attttgatg ttcattttgtt cattcttta aatttcataa gtttactatt ttatccatct 960
 ccgcttttat ttccctctaca ctgtatttt tcaacatgtt aaaaacttcc atacatggta 1020
 gaattaaaaac agttgtacaa tgaataactca aataactacc agctagactc tccaataact 1080
 attttacttt gtgtgctctg tcacgtgtat ttatctctac atatctctt tttttttttt 1140
 ttttctttt agatggagtc tgccttcgtc ctccaggctg gagttcagtgc gcacggctc 1200
 ggctcattgc agcctccacc tcctgagttc aagttctcc tgcctcagcc tcccaagtag 1260
 ctgggattac aggtgccccc caccacgccc agctaatttt tggatttttt gtagagacac 1320
 agtttccacca tggatggccag gctggctcg aactcctgac cttagataat ctgcccgcct 1380
 cggcctccta aagtgtggg attacaggtt caagccaccc tgcctggcct atgtgcctct 1440
 tcattcatta atttatattt ttatataattt tcaaaatgtt ttgcagacat aagtacattt 1500
 tctaaacact gtggatgaa cataatttgc tagatgttag tagttttttt gagttttttt 1560
 tttttgaggt aaaatttgc gtaaatggg caactttcca ttttatgttac cactccatgt 1620
 gttttgacta atacataaaac gtgtaaatccca aatccctcta gatttgcgtt tctagaactt 1680
 taaaaaaattt gaatcatatgt tactctttt gtatataacta tatgtttttt agatgttac 1740
 acattgttgc atatataattt agttgtttc ttttttatgt ccttagtcaca tgatatgcgg 1800
 tagacatttt ttcttttagat aggaattttt agttgttagt acatcatttgc ttccctttt 1860
 cctatttagat ggcttcaatgt tctttgtcaa aaatcaagcg agtataaaatg tgggctttagt 1920
 tctaggcttc ccattcaatgtt cttacttagt tagtgtgaag tatgcattttt cctcacacta 1980

aattttcagt tattgcagca ccatttgcac ttccttgca ttgcggct gcttttagaa 2040
aaaatcaaaaa tacaatgtaa atgtgggtt attccaggc tcttatata atttaattca 2100
gttgcattat tttcaatcc tgatgccagt accgtgttg cttaaattac tgtaagttt 2160
tagtaagtct tgaagtcatg tacatggttc tccaaactttt ttatTTTTTaaatgttatt 2220
taatattcta gatttctgc acttcacat aagtgatagc atctgcTTTGcaatctcac 2280
aataaagcct ctgctattt tttgttgg tttgtttga ggcagagttt cattctgttg 2340
cccaggctgg agtgcattgg cacaatctca gctcaactgca gcctccaccc cttgggttca 2400
agtgcatttc atgcctcagc ctgctgatg gctgggatata caggcatctg caccacactt 2460
ggctaatttt tgatTTTgtatgatgatgg gttttcacca ttttggccag gctggctct 2520
aactcctgat ctcaagtgtatgatgatgg cttccaccc tggcacttccg aagtgttggg attataggcg 2580
tgagccactg tgcccacccc agcctgtt attttcgaag gattatgtctg aatttacaga 2640
ttaatttggg gagaatttgat atcttaacaa tatttgagctt tctaaatcat gaatgtggca 2700
tatctcacca ttatTTTtata ttttcttcag tttctctcag caacgcctca ttgttttcag 2760
ttctacaatg aagttgtatgatgatgg gacttaattt ttttgcctt ttccttttta taggctctgg 2820
atcagtatca ttatacggag tagaaagatg tcaacagctt tctgttacaa gtaagactat 2880
gtatcatttt tgagatggg acagtaatgatgatgatgg gctgcctctt acacttacca 2940
gctaattccat ttctttctaa tagtagaaca catatcctt aaagctaaa tatgtccata 3000
ttaactttt ttcttcatacc gtttgcctt ggcataaaaat ggaaccata aagataacgt 3060
gtcttacat tgcatattttt aagtcatctt tctcttacac agttaatgtt taaaacagat 3120
atgtttttaaat cattaaataatc atgatgttatt tgaagtcatgatgatgtt agagtttacat 3180
gacttaaaaat gtgcattgtatgatgatgg aagacacata tctttaaactt attacatgaa gagttatcct 3240
gtcacatgtatgatgatgg gtttgcctt aaggagctcc ttgcataatgtt cctcttctg cttccaaattt 3300
ttaattttat gttagtataatgatgatgg atagtgtgtc tatcaagtatc ctacatcagc 3360
taagatTTTTaaat cagaaaaataatc tttttaacca caaatTTTTaaatgtt aatgtgtca 3420
ttgttaaaaat ttaattttctt caaatgggatg aaggaagata acaaattgtgaa atggaagaag 3480
gattgtgaa atcttttaat gtttgcctt aatttgggatg accattatgtt actcatgttt 3540
tcttaggtaaa tacagaagtc gatgtatgtc ttttgcctt ttttgcctt atattcacac 3600
gtgtacacat ttgtttatata ttttgcctt ttttgcctt ttttgcctt agtatacgat 3660
tgtgttcata ttttgcctt ttttgcctt ttttgcctt ttttgcctt cagcactcca 3720
gttgcctaaat gtttgcctt ttttgcctt ttttgcctt ttttgcctt ctctctaaag 3780
gaatcagagc tccttggatgaa aacagcagat ttcttgcctt ttttgcctt attacaagat 3840
tagtatggag taaccttgcata cttagaaatgatgatgg ttttgcctt ttttgcctt ttttgcctt tgaaactcgt 3900
caaattgcctt agatagaacatgatgtt acatttgcctt ttttgcctt ttttgcctt ataataactaa 3960
tttagttaaaat caggaatgtatgatgatgg ttttgcctt ttttgcctt ttttgcctt ataaatata 4020
tgggggttaag tggaaatatc ttttgcctt ttttgcctt ttttgcctt ggataatgaa 4080
attagaaaaaa aaaaagctac ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttagttgtga 4140
atctgtggat ttttgcctt ttttgcctt ttttgcctt ttttgcctt cattttctct 4200
agtatattttt ttttgcctt ttttgcctt ttttgcctt ttttgcctt agtgatttgg 4260
cactaccctt accagctgaa taaatgtttag ttttgcctt ttttgcctt ttttgcctt tcactttgtat 4320
tgcccccttgcata ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttccctgcca 4380
aaatgcataatgatgatgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttgggttta 4440
ttctacagaa taaatggctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ataaagaaaa 4500
gccgaggact ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt atgtgataca 4560
tggtccagaa ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt acatttttgag 4620
gacaattgtatgatgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ataaatcagt 4680
taaatgttctt aatgttggatg ttttgcctt ttttgcctt ttttgcctt ttttgcctt tcttttgaaa 4740
tacataactgg aggattttaga ttttgcctt ttttgcctt ttttgcctt ttttgcctt ctcaaatgat 4800
tcaataatat ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt tgataaatgt 4860
gcaaaaaatgtatgatgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 4920
ttttgcattt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt acttttaggtt 4980
aaaatatgtatgatgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt taaatttgatc 5040
aggctgccttgcata ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5100
ccaggctggatg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5160
gccattctcc ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5220
gctaaattttt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5280
ctctcttgcata ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5340
agccaccggcg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5400
cacggcccttgcata ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 5460

ttccctctgaa acatttgtt ttgtttccaa ttgaattgaa tccaatttgt atggaaactct 12480
 aatgtcactg aatcatttta tcataatatt tattattaat acctataatt tactgaatag 12540
 actatgtgtc aggcaactgta ctagtttagt attttatctt taactctcat aacagtctt 12600
 ctgtaaagctg gatatatccc ctttgtaaac agaagaggaa actgagacca agagaaaatg 12660
 gtgaagtact caaggtaaaa gacttaataa atgtcagaaa aaaattcaaa cttaggccct 12720
 tctgtctcca tagtccatgt taaatatttc tactgattgc aaataaatttgc ctctcagtt 12780
 ggatgtctcc agatacaaacc cttgagaat gtatgtatgca catatataca tgtaaatgtc 12840
 tttctttgtt ctttattcatt tgtttagcac atgtttatttgc aatgcctact atgtgccaga 12900
 cactgatttta ggcatttagtgc gcaatgttagc aaacacaaca aagtttcttcc tttcatggac 12960
 tttacattaa gaggaaatca ctaaaatattt gatagtaata gtcactcatg gctctaagt 13020
 ctttacaaat attaactcat ttaatcttta taatgtatctt acagagtaac attattctca 13080
 gttttgcaaa tggggaaact gttataccag agtttaagtgta acttgaccaa ggttgcctcag 13140
 cttatgtgtcc agagccaaac tcgtgtact gcccagtgtg aatgactaga ttagctctca 13200
 ccagattctt tgaatagtg ttttgggaa ggaactcata gagaaaaagag ttagtgaatg 13260
 gtcacccattt gcagtttga acagtaggca ggagtctt cagcagggtc aggtatcagt 13320
 ctccaaaga tagactaact tttggctgt gaaactttta agtagcatgc ttagggaaata 13380
 ttgttttgag ttttaagca tgcataatga gagtttctat ctagctgca tatgatata 13440
 cagaactctg gctccagta acaaagagct tggggaaagg aggatgggaa cagggcaagt 13500
 taaaatgcca cagagctcac cgttctgtcc aaaattcagc ccttttctg gagcaaacac 13560
 tccttggatt gttgaaggcc tctggtaatt tccagaatttcaaaaaaggat ttacagtt 13620
 ttgccaatatttactgtct gttatagtca agtgtgtctt tggatgtctt cactctgcta 13680
 taccagaagt gcttcctt tataattgaa ttttgacatt acaaattctt cccaaatttt 13740
 agggaaataca cagaggtatt ttttaatcc ttttcatttt gcctggagag aggaagcatt 13800
 attagctaag taaaaggac actgccttct aataatggat gccatggac aataacttctc 13860
 agccagcctg gtcatttgaa tgcttactct gtcataagaat taactgtgat aattttccca 13920
 ggaaaaatga acaaatttta tatgtgaattt catattacat gaactactca tatctatatt 13980
 taaaatgaaat attgacctga aaattgagat ttaaactctt aatttgcctt gatattaatt 14040
 agtatatacg aaatttagtga gaatctgatc ataacttagt ttttaatttta tattccctct 14100
 tttggttatt tgaaccaaag tttatattt accaaagtctt cagcattttt gtgcattgt 14220
 ttggtaaaa tttcacaagc ttttttaatc aatgtatagg attgtacatt tacaattaa ttttttttac atacattcat 14280
 tgtcttttc tgtcaatttcc tttagtctt tattatacct cacacgttat ttaataggac 14340
 tgtacttgct tacattttat ttgcactact tgaaggattt atttattctc ttaacaggag 14400
 gtacactcag tgaatattgc aaactctcgaa acaagtttta tagtgaattt cctgtgagat 14460
 ctggccacga agacctggaa cttttggacc tttcagcacc atttcttata caaggaacaa 14520
 tacatcaacta tgggtatttt gttttgtttt gttttgtttt gttttgtttt ttatactttt 14580
 aagttctggg gtcatgtgctt gaacatggag gtttggtagt taggtatata cgtgttattt 14640
 tggtttgctg caccatcaa cccgtcacctt gacattaggca tttctcttta tgctgtccctt 14700
 cccctagctt cccacccctt gacaggccctt ggtgtgtgat gttcccttcc ctgtctccat 14760
 gtgttctcat tgtcaactc ccacttatga gtgagaacat gcagtgtttt gttttctgtt 14820
 ctgggttttag tttgtgaga atgatggttt ccggctttat ccatatgcctt ggcaaggaca 14880
 tgaactcatc ctttttttgg ctgcataatgtt ttccatgggtt cgtatgtgcc acattttttt 14940
 aatccagctt atcaactgtt gacattttgtt atagttccag gtctttgttca ttgtgaatag 15000
 tgctgcaata aacgtacatg tgcatgtgtc ttatagcag aatgattttt aatcctttgg 15060
 gtatatacccc agtaatgggaa ttgctggatc aaatggtatt tctagttctt gatccttgag 15120
 gagttgcacat accgtgttcc acaaagatttgc aactaatttca cactccacc aacagtgtaa 15180
 aagcattccctt gtttctccat attgtcttca gcatctgtt tttcctgact tttaatgtat 15240
 cggccattcttta agtggcggtt gatggatctt cattgtgggtt ttgatttgc ttctcttaat 15300
 gatcgtgttccatttcttcatatgtt tttgttgggtt gttttttttt gttttttttt 15360
 gaactgtgttccat ttcacccactt tttgtatgggg tttttttttt gttttttttt 15420
 taagttctttt gtagagcttca gatattagcc ctttgcgtt gttttttttt gttttttttt 15480
 ccattctgtt ggttgcctgtt tttactctgtt gatagtttctt tttgcgttgc agaagctt 15540
 tagtttaattt aggtcccattt tttttttttt ggtttttttt gttttttttt gttttttttt 15600
 agacatgttca gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 15660
 gatttttatgtt gtttttaggtt tttttttttt gttttttttt gttttttttt gttttttttt 15720
 ataagggttca aggggatcca gtttcgtttt tttttttttt gttttttttt gttttttttt 15780
 tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 15840
 atgggttgcag atgtgtgggtt gttttttttt gttttttttt gttttttttt gttttttttt 15900

gaagagtaat ttttattagt ttatccatt ggtaactata tgttcagcat gaacttacag 15960
 tgtatcaact tatatgtact aggttttct ggcataatc tgtttttg ataagcatat 16020
 atagtgagag tacacgcaat gtgtgaggca taaggctgct gtctttgat tcctcagcca 16080
 gaggctgta ctcacttgg ttctttaaca gtgaggattt agattccagt tacagagaaa 16140
 aattcagagc tgcaaaccct gtaaaaatta agtgattcaa tttcagaatt tctgagccac 16200
 taaattacaa atttgctgcc actgaaaattt ggaatataaa agaattcatt aggagctata 16260
 aacagattt tacattnaga aggagggggt aggataaaa tctccctcac tgcttcatgta 16320
 aacaatcacc ctggacacat tctgattga gaaaccttgg attataacat atgttttac 16380
 atccttattcc tcttcttcc cgacttctac atttgtagca atttagtagc attgtcataa 16440
 tgtgttaatc ctgattgaaa aattatatac tggttggaaa atattatacg gtaagcatga 16500
 tacctcccta atttggtggt aaagtcaactg ttaggcattt ccctctgtcc ttccaacata 16560
 tcataaaattt ttagccataa agcgaagtg tatgccactg acttaaatct ctgtgttata 16620
 gctgtttta ctgatatact cagtgctaa ttctccctc cattagactc atgatctgag 16680
 agtccatctt tttgaaaat aaaatgattt ttaattaagc caattaatta aaaaattaaa 16740
 actcataaaa ttcaagttttt ctgtataat aagtcaactga gctttctt tttgcatgct 16800
 catcctcgct cacttgcctt tgttcttcc ccttctctc tattttgcct tgccagttact 16860
 gggcaccgtg acgcgtctaa accagggaaag gaaatattca tattcatttt aactctgaa 16920
 atactactac ttctttact agaagtcctca aaaaaattac cttaggacc ccattttttt 16980
 tttttttt gagatgaagt ctgtcttat tgcccagata ggagtgcagt ggcatgatct 17040
 cagctcaactg caacctctgc ctccccgggtt caagcgattt tcctgtctca accccccccgc 17100
 cgagtagctg ggactacagg catgcaccac taacacccgg ctgattgtt cgtattgtta 17160
 ttagaaacga ggttccacca tggtggccag gctgggtttt acctctgac cttaggtgat 17220
 ctgcccaccc cggccctccca aagtgcgtgg attacaggtt tgagccactg tgcccaacca 17280
 aggctgttga cttttactg gttgcttcaa aactaaggca aatgtgttca acactccaga 17340
 ttttaagaca ttttacatt ttttattact tgagtttcat catcaaaagc cagtagtatct 17400
 ttttaattgtat tcttctttt atttttgggt tatgaaataa ttttaactta tagaaaaatt 17460
 aaaaaagtaa catcacaaca attacgtatc caccattna attaacaaa tcgtaacgtt 17520
 ttgacattat ttcagacttt tttttttt tttttttt gagacagtgtt cattctgata 17580
 cccaggctga agtggcatga tttcagctca ttgttagcctt gacatcctgg gctcaagccaa 17640
 tcctactatc tcagcctccc aactagctgg gactacaggt gcacaccacc acacccggct 17700
 aattttgtt gggatgggtt tttgccatgt tgcccaggctt gttcttgaac tctggagttc 17760
 aagcaatctg cctaccttgg cctccaaact tttttttt tttttttt ttattttaa 17820
 gaaattaaat gttacagaga agtagtataa tgccatatac atcccttctc taactctttt 17880
 ttctcagagg tagctacttt tccaaactt gattaaatcc ttctcatcaa tgttttatg 17940
 ccttcattat atgtgtgaac tcttaagcag tatggcatat ttttcatttt taaaatttt 18000
 ataaaactgtt tcgtactatg ccaaggctt tgcagcttgc ttttttttgc ttataaaat 18060
 tttcaagattt taccactatt gacgcattt gatttagattt atttacatc ttggagttat 18120
 gttatgaaat atcagaattt attagcctat tttccttattt atggatatgtt gttatttttt 18180
 gtttcattta cagaccataa tgaagtcacg ttatgtttt tcttgcattt ttcccttgcc 18240
 ataaaatgag ttcaagttggg cataaaacagt ttttttttattatgtt gtgggtgttag 18300
 taaaaaatgg aatgagggg aatggataat agagaacattt ttacacagttt agggcagtg 18360
 ttgtttccat aactttcatt tcaattttt gtttatgtt gtattactaa gatatgatat 18420
 taaatgaattt tcttactgtt agtccttaac aaaaatgtttt gaaagttactt cctaagggtgt 18480
 ttacctgaaa tttagattt tggatttataa ggtgtatata agttttgcctt tatggaaaga 18540
 aataccaaat tggccatccat atggttttttaa caatatatgg tcccatcattt aatgtataaa 18600
 attttagttt ctaccaagttt cactccaaaca cttggattttt gtttatttctt gtctgataact 18660
 tggcattat tttgttattt tgcaggccat gcgagcatca gatggatccataatgtttt 18720
 tattttgtatt tcctagatgtt ctatgttgc ttatgttgc ttttttttgc cagctacata 18780
 ggtttccat tctatgttattt ccatgttccat atcttttgc ttgttttctt tggtttact 18840
 gatttttttgc ttgtttcatg tgcaggccat gcatatgtt attgattgtt aggttttttgc 18900
 ccgtgttgc gataactatc tttgttgcattt tcatccatc ttcttagtgc ttccatgcct 18960
 ttttaactttt atggtttttgc ttgttttataa ggttttttgc aaattttttgtt ttgttgcattt 19020
 cttttaggt tactctcatc cctttgcattt caagtttgc ttgttgcattt ttgttatgtca 19080
 ctcataaaataa aaagctttagt gctaaattttt agttttatataa gtggagttt aatatgttct 19140
 taagttattt atatatttttgc ttatgttgc ttatgttgc ttgtttccctt ttcaactgtt 19200
 tggaaatgttgc tagttctgtt ttttttttgc acttaatatc cttatgttgc aatttttataa 19260
 ctaactttaa taatgtctaa tgctatcaa tttatgttgc ttgtttttttgc gcaataatata 19320
 tcttttgcattt aatttgcattt ttttttttgc aatggaaacac cttatgttgc aataaaataga 19380

atgtatgtg gttaccctct tggccatcataaaata actgtactac acaatgcaca acttttagtgt
attgtgttgtt ctttagatttatacattttc aaaagttaac tatggaatta ggcatacataa 19680
actacaaacc tcctggatatgt tgcttactaa aaatattaat tatctagaat ctgcatacg 19740
gtgactgttt agtaattttt ctctattggc catatttatt aacacttgc atttattaag 19800
atattactta cagaggccag gtatggggc tcacacctgt aatcccagta ctttgggagg 19860
ccaaggcagg cagatggctt gagctcagga gttgagacca gcctgggcat tggcaaga 19920
ccctgtctct ataaaattac aaaatcacc caggcatggt ggtgtcaac tgggttcta 19980
gctacttgg a gggctgaggt gggaggctca cttgagccca ggaggcagag gtgacagtgc 20040
ctgggtgaca gaggtaggacc ttgtttaaaa aaatataat atatagatat agatata 20100
atagatata tagatataat cagagaattc tttagagatga tcattttctt caactttca 20160
ttttaacaaa taaggaaatt gagagcaaaa ttaattaatg atttggacctt ggaaccgagc 20220
accctgttctt caatttagag ttgttattt tgaatcttat actgtctttt ttattgccct 20280
tatgtataataa gcttactctt tcataatttc ttgtgaaac aaacaaggcac attacaat 20340
aggggatgca gtatttctt gtttaataat ttatattttt aaactacaca tggatata 20400
gtaaaaaggtaataacaaaca agcttaattt ttttaaataa ttatgttca 20460
aaatttcaga tgtaaacagt ttcttagttt gagatccata caaaatctaa attccctgg 20520
tgataaaaaca tcgtggattt cttcttctgt ggcagaaggt tagtaaattt tccatgccct 20580
gcaattttaa ctgtttgtt acaaggttat ttccatctact tttttcttca 20640
agtataacctg ttccattttt gtataactt tcccttctt gtaagataaa cagacttgc 20700
aaatttaaag atatctgcca agccttcctt tagtctgtt ttcttca 20760
acatacttccctatgtt tactatttt tttttcttcc tcagtaagca ttccacttta 20820
ccagtgtttt ttcagaattt tggcattcag agctggacat tggctgcag atgtgtttt 20880
gccaattcag aatagagtga aatttattt tacctgaaac tggacactca gcttctacta 20940
gcctgaaatg tcaattgtata gctattttt ttttgc 21000
tgatacagcc atctcatgtt ttattgtgg tccagtggaa tccatgggtc ctgtcacatg 21060
aacttcttga acttggtctt ctcattctat tcttaatgtt atttttttt ctgtcacatg 21120
aacttcttga acttggtctt ttcttgcattt tcttaatgtt atatctttgtt ttttatgtt 21180
cctggagta ggtgctaagt tcatttttctt tagtttagt tcacagttt aacatttga 21240
gacctttga agcctaaaat tcagttcccc ttttgc 21300
atgtctgtat gtccttaattt attcttactt tccctgttta ttagttatac tggtaataa 21360
tgggttccac agataaaagc taataaaaca ttcttataat tgtagtatctt ccatttccaa 21420
acaagaagat atttatcttta acctgtgaat tttcatttttta cccagttatgtt ctaatttctt 21480
atttcttcctt tatcttacca aatttattaa tctcagattt tgacatttctt gtcattcaa 21540
ccagatgata tccctttttt cttttttaa gttataaattt attcccttagt ttttgc 21600
aaaggagaga ggcatgctaa aacggttttt aactgcatttgc ttttttttagt aatattctgt 21660
attttatattt tatcttcatt aaaaactaaca tgcaatgagt tacatttcatt gaatcactt 21720
ttgtgttttca tttttttttt atttattttt atttattttt atttattttt atttattttt 21780
agacagagcc ttactctgtc gcccaggctg gttttttttt atttattttt atttattttt atttattttt 21840
aacctctgccc tcccaggctt aagcaatttctt catgcctc 21900
acaggtgtat gttaccaaagc ctatgttattt tttttttttt atttattttt atttattttt 21960
catcatgttg gcccaggctgg tcttgcatttctt ctcaagatcc gcccagggtga tctgcccacc 22020
tcagccccc aaagtgttga gaatacaggat gttttttttt atttattttt atttattttt atttattttt 22080
aatatttaat caaaatggattt aaatttgcattt tttttttttt atttattttt atttattttt 22140
tggaaatattt caaaatgttattt ctgttgcattt ctataagata ttctccctat tttttttttt atttattttt 22200
ttaaaaacac aaactgttcc ctgttgcattt accacagcaat tcaagcgcaga agacttatgt 22260
gaccatgtc ataggggttt tcaccacac accaaggcagg caatccctca gcaagacgcca 22320
gctgggtgtc ctccaggatttca attctgacac tatcttgcattt gagataatgc caagtttttca 22380
tttgcattttt gttttttttt atttattttt atttattttt atttattttt atttattttt 22440
tttaacttta ctttgcattt aaggaaatgc agactcatat gttttttttt atttattttt atttattttt 22500
caactgttgc gggattttttt ctgttgcattt atgtgtttttt tatgacctttt acacttgcattt 22560
atggaaacagg agtacttagaa gcctatctca tggattttttt aagtatcaga ggtataaaag 22620
atatttttaa tttttttttt atttattttt atttattttt atttattttt atttattttt 22680
ttcctaaaag gacttaaggc acctttttttt tttttttttt atttattttt atttattttt 22740
aatcatctgt gtatgtatctt ctttttttt atttattttt atttattttt atttattttt 22800
aaaaattaag gaacaggat tttttttttt atttattttt atttattttt atttattttt 22860

tacggccaca ctatggaagc attatttgt a gtcacacattt t atcgta ctt ttg ttt gttt 22920
 gttt gttt gt tttt gttt tt tgagatgg agtcttgctc tg ttt gcccag gctggagtgc 22980
 agtggcacga tctcagctca ctgcaaccc tc cgcctcccg gttcaagcag ttctctgcct 23040
 cagcctccca agtagctggg attgcaggta tgcaccacca cgccca gcta atttt gttat 23100
 tttt gtagag acagggttt accatcttgg ccaggctgg ttt gacttcc tgacctcatg 23160
 atccaccac ccttggcctc ccaaagtgc gagattacag gcgtgagcca ccgtgcccag 23220
 cctt gatcat actttt aaaa cctccacatt tcatattaga ggaatgaagt tactttaaca 23280
 gggaa gatag atattattgt ataaagttt gaggcagtct acaaaacctt cctcatttct 23340
 gacactaatt gcaattggaa gtcctcaagg ccactcttag atttgataat tcacaagact 23400
 cctagaactc actgaaaact gttatactga cagttacaga ttattacage taaaggatgt 23460
 acattaaaat cagataatga aagagatgt a taggacagag tccaggaaag ttccagacat 23520
 ggaacttata gttgtccctc ccccatagag ttgtggactg ttacttccc tgcaacagtg 23580
 tgttagcaga tacataat attgccagat agggaa gctc tgctaaaaga ttttagtggg 23640
 actctatcac gtaggtatgg ttgactgccc atatggctga tcatagtctt cagccccctc 23700
 tgagatcaag ctgataccac atgctccaaa ctttccaccc tacatcatat t gttaaacta 23760
 ttcatatgt a cccagggctt ccaggaaaa atacttctat caagtgtgac atagaaagg 23820
 ctttagagatt acgttccaca agctaaggc aaagcccaga cctctttag ggtt aagttt 23880
 aaatgtttac tacatggatt gggaaaagatc tgagttatag ttgagaggag aattttctc 23940
 ccacctacac aattcattt acctttcatt aaatatttta tgagcacctg ctatgtacta 24000
 ggtactatcc tatgtgatgg agacacagcg gtgaacaaag taaacaaaat tccttcctc 24060
 ttgaaactta taacatagta gggaa gaga a aattt aata actatataat acatataactg 24120
 tatgttat at tcat ttaa agc ttagcacaag attttttt ctatgcacaa agagaatagt 24180
 cagcctcatt gtttt aat cattt acc tttt cattt a tcatcatat ttaa atcaga gcaatttact 24240
 tgattacgtg tatctcaaag ctat ttaa agt aaataa agt aaataa agt ttggagttga 24300
 gaccagcatt ctat tttt at aat tcaaa tctt gataga gggaa actgt ctat tttt 24360
 tttt aat tgg aca aat tttt ga aat atgtgtt aataa taaa aaaa agga ttaat tttt 24420
 ttccctttt tttctctcat gaaacat tttt taaggacaaa ttcttccaga ttccagcatc 24480
 agaagttctg atggatgatg accttcagaa aagtgtggat atgatcatgg atatgtttt 24540
 tcctccagga ataaaattt gtaggcaaga atat ttaa ac aatcccacac ttcttttact 24600
 tgagatagca ctaacatata t gta ctctgt ggactttt tag aag tctgaaa gctttgcttc 24660
 caaatgatt actaagttagt gaggattac tctatgatca acctttagt aagagatgg 24720
 cagggataaa atagttatga atcataattt ctgcagtc a aagat tttt aat aat tttt 24780
 aaatata gga aaggagata gttt gatca caagcacatt tgacattgtc atgctacaag 24840
 cattttagt gaaatttagac caaaagtgtt gaaatttggg cagtaa acat tttctgttaac 24900
 aaactccaa tattccaaattt aattcatgg ttaattttt tatttattgt taacttagtt 24960
 cagat tttt ac aagttt gttt accaattt tttt gtagc tttt gttt ttttgcataa acat 25020
 ttgattaata aaccagatct tcctcatttca aattt gtaact gtttataacct gctgccactg 25080
 aattttctt ctgtgactat attt gtaactt atg tttt gaaac ttgcagatct aagtcatatt 25140
 aagacaattt tgat ttttct aacaattttt tattcgttaga aatttacca gctgcagatt 25200
 tagcagctgg tttat tttt atatactatt ttaatcagg ct tttactctc cctggtcaat 25260
 ctttgcattt tataatagtt acataatgat aggaattt gttt gatctct aaccat gttt 25320
 aacttgaata ctttattt gttt gatctttt taattt gttt ttaactt gttt gattttt 25380
 gatagatttca tagaagtaag tctt tattatc caaaagcatg ggccttggtag acccattt gta 25440
 accactattt tagat ttttta aat aatatac caaccattt gaaacccaaag atgtactcac 25500
 ttttgcattt gttt gatctttt aat tttt gttt aat tttt gttt tttt gttt gttt 25560
 aatcttagt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 25620
 tttcaagcca aat aat aatgt tatttttctt agctcagttt gttt gatctttt gatctttt 25680
 agagttattt attt gttt aat gttt aat tttt gttt tttt gttt gttt gttt gttt 25740
 catatccgtt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 25800
 aat tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 25860
 caat tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 25920
 ctgat tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 25980
 ttacctt aaaa tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt 26040
 ttgctt tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 26100
 tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 26160
 tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 26220
 cttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 26280
 cagat tttt gttt gatctttt gatctttt gatctttt gatctttt gatctttt gatctttt 26340

ccgctattac aacttacaac taattgaatg agatgttaac ttagtaaaat agtttgattt 26400
 ttacctgaca gtgttgtca aatttaaaat catgaatatt caatttata caaacattt 26460
 tatatatata tatagattt gtttatgtt ttgccaaaga cagatataaa ttacctgggt 26520
 taatattagt gaagaataaa taagtgcaca catttcaact gtttcattt ttgcctcaa 26580
 gttgagctga aaaatgat gaggcaaga atcgaaatag gtgtggcaat gcagcagatg 26640
 ttttagggctg tctacatccc aggtactgtg ctaagcacta aacatgtatt tgatcctcac 26700
 agcaacctat tttccgata agaaatctga ggcttgattt ataagctgac ttgactaagt 26760
 tcacacagtt tgtaaaagct agagtctgtg ccttaattca cataatctt attcagagcc 26820
 tttactgtt accactcaag gattctggaa cagaagctaa cagtttctg caacgagtt 26880
 ttgacttaaa catctgaaaat aacattggaa atagattata agaggagtca gtgtgttttt 26940
 ctatagttc aaaatacttt taacatctt ttgtcaaaaaa gattggataa ctgactttct 27000
 ttgctcataa taactctaaa ttctagttcc tgagtacatt aacacatctt ctttacctaa 27060
 ctaccaatgt cccccatcat cgacttatca gcttgggttga gacaatgaga aagactgatt 27120
 ttatTTCAA gaatatacgac tcttgggtca aaacattttc aggaaaaata tttaaaaacc 27180
 ctacagtgtga acaggtgtgt ttccgtgtt atgatgtgct caggatacaa aggtgaaata 27240
 aacatTTTT ctgccttcag gaagccctca atctagaaga gtagaggtcc aaaggtgc 27300
 tatgttccaca ctgtgagcct gcaagatctc cacgttaaca aaggaaaact cttcctatga 27360
 atcttcatga tgatagg 27377

<210> 19
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 19
 ccctaaccctt aacccttaacc ctaaccctaa

30

<210> 20
 <211> 30
 <212> DNA
 <213> Homo sapiens

<400> 20
 ttagggtag ggttagggtt agggtaggg

30

<210> 21
 <211> 60
 <212> DNA
 <213> Homo sapiens

<400> 21
 ccctaaccctt aacccttaacc ctaaccctaa ttagggtag ggttagggtt agggtaggg 60

<210> 22
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Telomeric
 primer PBoli82

<400> 22
 tgtgggtgtgt ggggtgtgc

18

<210> 23		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:		
SpPot1p-binding oligonucleotide		
<400> 23		20
ggttacggtt acagggttaca		
<210> 24		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:		
SpPot1p-binding oligonucleotide		
<400> 24		19
cggttacacg gttacaggtt		
<210> 25		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:		
SpPot1p-binding oligonucleotide		
<400> 25		20
gttacaggtt acgggttacgg		
<210> 26		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:		
SpPot1p-binding oligonucleotide		
<400> 26		22
tgttgtgtgt gggtgtgcgg tt		
<210> 27		
<211> 30		
<212> DNA		
<213> Artificial Sequence		

```

<220>
<223> Description of Artificial Sequence:
      SpPot1p-binding oligonucleotide

<400> 27
ggttacacgg ttacaggtta caggttacag                                30

<210> 28
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      SpPot1p-binding oligonucleotide

<400> 28
ggttacacgg ttacaggtta caggttacag ggttacgggtt acg                                43

<210> 29
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      SpPot1p-binding oligonucleotide

<400> 29
ctgtaagcat atcatcattc gaggttac                                28

<210> 30
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      SpPot1p-binding oligonucleotide

<400> 30
ggttacgcat atcatcattc gaatctcg                                28

<210> 31
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      SpPot1p-binding oligonucleotide

```

<400> 31
ctgtaagcat atcatcggtt acggttac 28

<210> 32
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
SpPot1p-binding oligonucleotide

<400> 32
ggttacgggtt accatcattc gaatctcg 28

<210> 33
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
SpPot1p-binding oligonucleotide

<400> 33
ctgtaagcat atggttactc gaatctcg 28

<210> 34
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
SpPot1p-binding oligonucleotide

<400> 34
ctgtaagcgg ttacggttac gaatctcg 28

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
SpPot1p-binding oligonucleotide

<400> 35
ggttacaggt tacaggttac 20

<210> 36
<211> 20

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: hPot1p-binding
 oligonucleotide

<400> 36
 ttagggtag ggttagggtt 20

<210> 37
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: hPot1p-binding
 oligonucleotide

<400> 37
 ggtagggtt agggtaggg 20

<210> 38
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: hPot1p-binding
 oligonucleotide

<400> 38
 ttagggtag ggttagggtt agggtaggg 30

<210> 39
 <211> 45
 <212> PRT
 <213> Schizosaccharomyces pombe

<400> 39
 Met Gly Glu Asp Val Ile Asp Ser Leu Gln Leu Asn Glu Leu Leu Asn
 1 5 10 15

Ala Gly Glu Tyr Lys Ile Gly Val Arg Tyr Gln Trp Ile Tyr Ile Cys
 20 25 30

Phe Ala Asn Asn Glu Lys Gly Thr Tyr Ile Ser Val His
 35 40 45

<210> 40
 <211> 43
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: C-strand
binding specificity of SpPot1p

<400> 40
cgtaaccgta accctgtAAC ctgtAACCTG taACCgtgtA acc 43

<210> 41
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PBoli109
oligonucleotide

<400> 41
ccgtaAGCAT ttcattATTG gaattcGAGC tcgtttcga 40

<210> 42
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PBoli164T
oligonucleotide

<400> 42
ttcagatgtt atctgtcaat cagaacctg 29

<210> 43
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PBoli194B
oligonucleotide

<400> 43
gaacactgtt tacatccata gtgatgtatt gttcc 35

<210> 44
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 44
tgaaggTCGG agtcaACGGA tttgggt 26

<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 45
catgtgggcc atgaggtcca ccac