EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Numbers 6289 and PSD-TX-76M7

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Source	Air Contaminant	Emission I	Rates *
Name (2)	Name (3)	lb/hr (4)	TPY
SO ₂ Storage Tank	SO ₂	0.09	0.38
Barge Dock Scrubber	VOC	1.03	0.71
Cooling Tower	NH₃ VOC	0.64	2.82 1.63
	VOC	0.37	1.03
Acrylonitrile Fugitives	NH_3	0.96	4.22
	CO	0.01	0.04
	VOC	1.43	5.98
CB and I Ammonia Flare	NH_3	2.42	0.13
	CO	0.37	1.28
	NO_x	0.93	0.27
	SO ₂	0.05	0.20
CB and I Propylene Flare	СО	0.29	1.26
	NO_x	0.06	0.25
	SO_2	0.01	0.06
Barge Dock Ammonia Flare	NH_3	0.10	<0.01
	CO	0.09	0.27
			0.06
	SO_2	0.05	0.20
Barge Dock Propylene Flare	СО	2.04	0.49
	NO_x	0.40	0.10
	SO_2	0.05	0.20
	VOC	2.77	0.31
Process Flare	СО	6.53	15.24
	NO_x	2.58	3.10
	SO_2	0.14	0.61
	VOC	10.50	3.97
	SO ₂ Storage Tank Barge Dock Scrubber Cooling Tower Acrylonitrile Fugitives CB and I Ammonia Flare CB and I Propylene Flare Barge Dock Ammonia Flare Barge Dock Propylene Flare	Name (2) SO ₂ Storage Tank SO ₂ Barge Dock Scrubber VOC Cooling Tower NH ₃ VOC Acrylonitrile Fugitives NH ₃ CO VOC CB and I Ammonia Flare NH ₃ CO NO _x SO ₂ CB and I Propylene Flare CO NO _x SO ₂ Barge Dock Ammonia Flare NH ₃ CO NO _x SO ₂ Barge Dock Propylene Flare CO NO _x SO ₂ CO NO _x	Name (2) Name (3)

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AIR CONTAMINANTS DATA

Emission Point No. (1)	Source	Air Contaminant Name (3)	Emission I	
POINT NO. (1)	Name (2)	Name (5)	10/111 (4)	TPY
FL-G4A	Ammonia Flare	$\begin{array}{c} NH_3 \\ CO \\ NO_x \\ SO_2 \end{array}$	0.92 0.54 1.32 0.01	0.13 1.32 0.34 0.06
FL-G5	Hydrogen Cyanide (HCN) Flare	CO NO _x SO ₂ VOC	0.35 0.96 0.19 0.67	4.19 1.52 0.84 2.92
G-2	Quench Water Clarifier Scrubber	VOC	1.05	0.07
H-3	HCN Incinerator	CO NO _x SO ₂ VOC	120.00 173.00 4.50 6.00	525.60 757.70 19.70 26.30
H-4A and B	AOGIB No. 1 and No. 2 (5) Absorber Off-Gas Incinerator/Boiler No. 1 and No. Combined Annual Limits	NH ₃ CO 2 NO _x PM ₁₀ SO ₂ VOC	 	17.80 131.00 630.80 18.60 7.60 43.40
H-4A and B	AOGIB No. 1 and No. 2 Absorber Off-Gas Incinerator/Boiler No. 1 and No. Maximum hourly rate EACH	NH ₃ CO 2 NO _x PM ₁₀ SO ₂ VOC	2.03 105.00 150.00 2.10 0.90 9.46	
H-4C	AOGIB No. 3 Absorber Off-Gas Incinerator/Boiler No. 3	$\begin{array}{c} NH_3\\CO\\NO_x\\PM_{10}\\SO_2\\VOC \end{array}$	1.10 63.00 90.00 1.30 0.40 2.49	4.70 9.70 119.60 5.58 1.90 4.78
RRS-6	Railcar Vent Scrubber	VOC	0.37	0.07

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Ra	tes *
Point No. (1)	Name (2)	Name (3)	lb/hr (4)	TPY
S-11B and C	AN Rundown Tanks (6) (two Tanks)	VOC	0.39	1.05
S-12A, B, C, and D	AN Product Tanks (6) (four Tanks)	VOC	0.53	3.24
S-21	Catalyst Trap	PM_{10}	0.06	0.26
S-22	Bag Filter	PM ₁₀	0.01	0.02
S-9A and B	Crude/Off Spec AN Tanks (6) (two Tanks)	VOC	0.61	1.91
WW-1	Wastewater Treatment	VOC		0.50

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources use area name or fugitive source name.
- (3) PM_{10} particulate matter (PM) equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - CO carbon monoxide
 - NH₃ ammonia
- (4) Hourly emissions are based on clock hour averages
- (5) Annual emissions for AOGIBs No. 1 and No. 2 are combined because of the waste streams used for fuel and allow for the possibility that more of the waste streams may be fired in one boiler than the other.
- (6) The hourly rate is maximum for each tank and an annual rate is the combined total for all similar tanks
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

c	.760	Hrs/	1001
	,700	1113/	y c ai