Data Visualization

Graphing our Data: Choosing the Right Visualization

Ciara Zogheib

We're going to...

- Explore Chapter 3 (On Rational, Scientific, Objective Viewpoints from Mythical, Imaginary, Impossible Standpoints) of D'Ignazio and Klein (2020). Data Feminism. MIT Press.
- Discuss how ideas of neutrality and objectivity apply to data visualization
- Understand how different elements and types of data visualization are generally perceived, and use this understanding to decide what kind of visualization we should use for a particular situation

- So far, we have learned how to make and modify many different types of data visualizations using R
- How do we decide which of these types of data visualization to use, and when?
- If we are accurately and honestly displaying our data, does the type of visualization even matter?

Activity: Searching for objectivity in data visualization

Activity

- We will explore two data visualizations, each showing similar datasets with different techniques
- For each visualization, discuss the following questions:
 - What information can we learn from this visualization?
 - Is this an example of objective, neutral data visualization? Why or why not?

Visualization #1: US Gun Killings in 2018

(Click image to visit interactive webpage)

Visualization #2: Washington Post Active Shooters graphic

The era of "active shooters"

WAPO.ST/WONKBLOG Source: FBI

Visualization #1: US Gun Killings in 2018

- Periscopic's animated visualization shows the expected years of life lost to gun violence in the United States in 2018
- It emphasizes an emotion: a sense of loss
- This visualization has been criticized as <u>"actively [shaping] data to support a cause"</u> (in this case, highlighting a lack of gun control in the United States)

Visualization #2: Washington Post Active Shooters graphic

- The next visualization shows a related dataset (about gun violence in the United States)
- Viewers will likely reach a similar conclusion as in Visualization #1, but this plot is intended to present <u>"a deliberately neutral</u> <u>emotional field, a blank page in effect, upon which viewers are</u> <u>more free to choose their own response to the information"</u>

What qualities or visual elements of Visualization #2 help

to make it a "blank page"?

A blank page

- Some of the same design elements from our 'blank page' Visualization #2 can be seen in this New York Times visualization of the September 2012 Jobs Report
- The clean, 2D layout is designed to avoid conveying an emotional narrative to the audience

The rate was above 8 percent for 43 months.

A blank page... right?

The Jobs Report graphic was published alongside another image:

The rate was above 8 percent for 43 months.

The rate has fallen more than 2 points since its recent peak.

A blank page

- Images A and B were designed to show the exact same data from the perspectives of Republicans and Democrats, respectively
- Image A emphasizes the unemployment rate staying above 8%, while Image B emphasizes the rate's decline
- Neither is technically dishonest!

The rate was above 8 percent for 43 months.

The rate has fallen more than 2 points since its recent peak.

Supporting a cause

- Periscopic's Gun Killings
 visualization won several year end information visualization
 awards
- This visualization is not neutral, and conveys an emotional narrative to the audience...
- ...But this visualization is not dishonest either!

So where does this leave us in our search for neutral, objective data visualization?

Can data visualization be neutral?

Short answer: **NO!**

"The constraints of truth leave a very wide space for interpretation..."

(Stray, 2016)

Data visualizations as rhetorical objects

- Rhetoric is the act of communicating effectively and persuasively
- From D'Ignazio and Klein (2020),
 - "Any communicating object that reflects choices about the selection and representation of reality is a rhetorical object. Whether or not it is rhetorical (it always is) has nothing to do with whether or not it is true (it may or may not be)."
- That is, we make choices about how to visualize our data, so these visualizations are not neutral...
- ...BUT data visualizations can be factual without being neutral

rhetorical act is not necessarily a bad thing, but one that we should be aware of.

Data visualization as an interpretative,

Recall

- Three important qualities of data visualization:
 - \circ Is the visualization pleasing to look at? \rightarrow Aesthetic
 - Does the visualization accurately and honestly present data? → Substantive
 - Can we understand what message the maker of the visualization is attempting to convey? → Perceptual

• Two data visualizations can share the same substantive qualities while, intentionally or not, being perceived completely differently

 When we are aware of the choices we make while creating data visualizations, we can design data visualizations that are suited to the situation at hand (perceptual qualities) without sacrificing honesty and accuracy (substantive qualities)

What do we want our data visualization to do?

Intended purpose

Exploring

Intended audience

Intended medium

Different purpose, different results

The era of "active shooters"

WAPO ST/WONKBLOG Source: FBI

How is our data visualization perceived?

Taking advantage of cognitive psychology

- In general, data visualization takes advantage of human cognition to help us understand data more intuitively than we can if it is presented to us as a list or a table (Li, 2020)
- By learning about how humans tend to process visual information,
 we can communicate more effectively with our graphs. For example...
- Gestalt principles (Gestalt is German for shape) are a set of cognitive theories for how people tend to organize visual information; and are commonly used in UX design and data visualization (Wong, 2010)

Gestalt principles

Proximity

Objects that are close together are perceived as belonging to a group

Similarity

Similar objects are grouped, regardless of proximity

Gestalt principles

Continuity

Aligned objects or objects that appear to continue are perceived as a group

Closure

Open structures are perceived as closed/complete (our brains fill in the gaps)

Gestalt principles

Enclosure

Objects with a boundary around them are perceived as a group

Connection

Connected objects are perceived as related/as a group

Cognitive load

- It can also be helpful to consider cognitive load, or the amount of work required to take in new information
- Cognitive load can be divided into:
 - Intrinsic (the intrinsic complexity of the new information)
 - Germane (the audience's familiarity with the information)
 - Extraneous (complexity from how the information is presented)
- In a data visualization context, extraneous cognitive load is most within our control

Cognitive load

- Elements of a visualization that can affect cognitive load include:
 - \circ Familiar vs. Rare chart types \rightarrow rare types increase cognitive load
 - Accurate vs. Approximate interpretation → relational values or areas (approximate) increase cognitive load compared to absolute values or position (accurate)
 - Concise vs. Detailed composition → more visual elements increases cognitive load
 - Explanatory vs. Exploratory composition → a chart that the audience navigates alone increases cognitive load compared to a chart that they are guided through step-by-step

Perceived factual basis

- Sociologists Kennedy et al. (2016) find that adherence to four conventions of data visualization reinforces the perceived objectivity and factual basis of a visualization:
 - 1. Two-dimensional image
 - 2. Clean layouts
 - 3. Geometric shapes and lines
 - 4. Inclusion of data sources at the bottom of the image

Provenance rhetoric

- Citing the source(s) of our data is not only best practice (reproducibility!), but also helps people to trust our data visualizations more
- Provenance rhetoric is the idea that the inclusion of a data source with our graphic signals "transparency and trustworthiness" to the audience
- This increases the persuasiveness of the visualization, since viewers are more likely to believe what they see

Resources for choosing data visualization types

Decision making tools

 There are resources available online that incorporate visualization purpose and cognitive principles into reference guides to help us decide the most suitable data visualization in a given situation

The Data Visualization Catalogue

The Data Visualisation Catalogue

About • Blog • Shop • Resources

What do you want to show?

Here you can find a list of charts categorised by their data visualization functions or by what you want a chart to communicate to an audience. While the allocation of each chart into specific functions isn't a perfect system, it still works as a useful guide for selecting chart based on your analysis or communication needs.

Financial Times Visual Vocabulary

- The Financial Times Visual Vocabulary help sheet is available in both <u>interactive</u> (online PowerBI dashboard) and <u>PDF</u> versions
- In both forms, the Visual Vocabulary offers a list of potential functions of visualizations, and several corresponding chart types and examples for each

Financial Times Visual Vocabulary

Visual Vocabulary

There are so many ways to visualise data - how do we know which one to pick? Click on a category below to decide which data relationship is most important in your story, then look at the different types of charts within the category to form some initial ideas about what might work best. This list is not meant to be exhaustive, nor a wizard, but is a useful starting point for making informative and meaningful data visualisations.

Click any section below to view the charts

Deviation

Emphasise variations (+/-) from a fixed reference point. Typically the reference point is zero but it can also be a target or a long-term average. Can also be used to show sentiment (positive/neutral/negative).

Correlation

Show the relationship between two or more variables. Be mindful that, unless you tell them otherwise, many readers will assume the relationships you show them to be causal (i.e., one causes the other).

Ranking

Use where an item's position in an ordered list is more important than its absolute or relative value. Don't be afraid to highlight the points of interest.

Distribution

Show values in a dataset and how often they occur. The shape (or 'skew') of a distribution can be a memorable way of highlighting the lack of uniformity or equality in the data.

Change over Time

Give emphasis to changing trends. These can be short (intra-day) movements or extended series traversing decades or centuries: Choosing the correct time period is important to provide suitable context for the reader.

Part-to-Whole

Show how a single entity can be broken down into its component elements. If the reader's interest is solely in the size of the components, consider a magnitude-type chart instead.

Magnitude

Show size comparisons. These can be relative (just being able to see larger/bigger) or absolute (need to see fine differences). Usually these show a 'counted' number (for example, barrels, dollars or people) rather than a calculated rate or per cent.

Spatial

Used only when precise locations or geographical patterns in data are more important to the reader than anything else.

Flow

Show the reader volumes or intensity of movement between two or more states or conditions. These might be logical sequences or geographical locations.

CREATED BY

Jason Thomas | @SolJason | blog

INSPIRED BY

Andy Kriebel | <u>(BV)(XV)(zB)</u> (including the design / theme template from <u>blog</u>)
FT Graphics: Alan Smith: Chris Campbell; Ian Bott; Liz Faunce: Graham Parrish; Billy Ehrenberg; Paul McCallum; Martin

Visual Vocabulary Poster: ft.com/vocabulary

CREDITS

Power BI Community & Tableau Community - for sharing their dataviz techniques and learnings

AND IN PARTICULAR

Konstantinos loannou | <u>@loannouKonstan</u> - for opening up my mind regarding the potential of R/Python visuals David Bidersveld | <u>@distaveld</u> - for being my sounding board

Nujcharee | <u>@Nujcharee</u> - for creating Violin Plots in R and kickstarting my R visuals journey Pragmatic Works | <u>blog</u> - for blogging about all those custom visuals in Power BI

CUSTOM VISUALS:

COSTOTII VISONESI			
МарВох	Charticulator	Scatter Chart by Akvelon	Dot Plot by MAQ
Python	Infographic Designer	Box & Whisker by MAQ	Dumbbell Chart by MAQ
Candlestick by OKViz	Synoptic Panel by OKViz	Mekko Chart	Sunburst
Venn Diagram by MAQ	Waffle Chart	Chiclet Slicer	Radar Chart

Next...

- How do we graph tables, add labels, and make notes about our ggplots?
- Exploring boxplots, Cleveland dotplots, and plotting text as labels and arbitrarily