

General information

Designation

Swietenia macrophylla (T)

Typical uses

Furniture; cabinetwork; interior trim; pattern making; boat construction; fancy veneers; musical instruments; paneling; turnery; carving.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family	Natural	Natural					
Base material	Wood (tro	Wood (tropical)					
Renewable content	100			%			
Composition detail (polymers and natura	al materials)						
Wood	100			%			
Price							
Price	* 3.04	-	4.88	USD/lb			
Physical properties							
Density	0.0166	-	0.0206	lb/in^3			
Mechanical properties							
Young's modulus	* 0.119	-	0.133	10^6 psi			
Yield strength (elastic limit)	* 0.313	-	0.383	ksi			
Tensile strength	* 0.522	-	0.638	ksi			
Elongation	* 1.29	-	1.58	% strain			
Compressive strength	* 0.554	-	0.677	ksi			
Flexural modulus	0.109	-	0.122	10^6 psi			
Flexural strength (modulus of rupture)	* 0.522	-	0.638	ksi			
Shear modulus	* 0.0123	-	0.017	10^6 psi			
Shear strength	* 3.31	-	4.04	ksi			
Rolling shear strength	* 0.122	-	0.367	ksi			
Bulk modulus	* 0.0609	-	0.0682	10^6 psi			
Poisson's ratio	* 0.02	-	0.04				
Shape factor	5.5						
Hardness - Vickers	3.2	-	3.91	HV			
Hardness - Brinell	* 3.12	-	3.81	ksi			
Hardness - Janka	719	-	879	lbf			

Mahogany (swietenia macrophylla) (t)

BEDOFICK			
Fatigue strength at 10^7 cycles	* 0.157	- 0.191	ksi
Mechanical loss coefficient (tan delta)	* 0.026	- 0.033	
Differential shrinkage (radial)	0.11	- 0.15	%
Differential shrinkage (tangential)	0.17	- 0.22	%
Radial shrinkage (green to oven-dry)	2.7	- 3.3	%
Tangential shrinkage (green to oven-dry)	3.7	- 4.5	%
Volumetric shrinkage (green to oven-dry)	* 11	- 18	%
Work to maximum strength	* 0.0568	- 0.0689	ft.lbf/in^3
Impact & fracture properties			
Fracture toughness	* 0.303	- 0.37	ksi.in^0.5
Thermal properties			
Glass temperature	171	- 216	°F
Maximum service temperature	248	- 284	°F
Minimum service temperature	* -99.4	9.4	°F
Thermal conductivity	0.0722	- 0.0878	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.396	- 0.408	BTU/lb.°F
Thermal expansion coefficient	* 14.7	- 20.3	μstrain/°F
Electrical properties			
Electrical resistivity		- 7e14	µohm.cm
Dielectric constant (relative permittivity)	0.0.	- 3.75	
Dissipation factor (dielectric loss tangent)	* 0.039	- 0.048	
Dielectric strength (dielectric breakdown)	* 25.4	- 50.8	V/mil
Magnetic properties			
Magnetic type	Non-magne	tic	
Optical properties			
Transparency	Opaque		
Restricted substances risk indicators			
RoHS (EU) compliant grades?	✓		
. ,	-		
Durability			
Water (fresh)	Limited use)	
Water (salt)	Limited use)	
Weak acids	Limited use)	
Strong acids	Unacceptat	ole	
Weak alkalis	Acceptable		
Strong alkalis	Unacceptat	ole	

Mahogany (swietenia macrophylla) (t)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 4.99e3	-	5.5e3	BTU/lb
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 238	-	263	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0415	-	0.0459	lb/lb
Fine machining energy (per unit wt removed)	* 541	-	598	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.0944	-	0.104	lb/lb
Grinding energy (per unit wt removed)	* 878	-	970	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.153	-	0.169	lb/lb

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	√
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb
Combustion CO2	* 1.69 - 1.78 lb/lb
Landfill	√
Biodegrade	✓

Eco-indicators for principal component

Eco-indicator 95	 _	_	2.99			millipoints/lb	
EPS value			62.7	-	69.3		

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse		
Reference		

Mahogany (swietenia macrophylla) (t)

Shape

General information

Designation

Acer macrophyllum (T)

Typical uses

Furniture; boxes; pallets; venetian blinds; sash; doors; veneer;

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

-		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.608	- 0.912	USD/lb	
-------	---------	---------	--------	--

Physical properties

Density	0.0173	-	0.0213	lb/in^3
---------	--------	---	--------	---------

Mechanical properties

Mechanical properties				
Young's modulus	* 0.135	-	0.151	10^6 psi
Yield strength (elastic limit)	* 0.296	-	0.357	ksi
Tensile strength	0.493	-	0.595	ksi
Elongation	* 1.08	-	1.32	% strain
Compressive strength	0.674	-	0.825	ksi
Flexural modulus	0.123	-	0.138	10^6 psi
Flexural strength (modulus of rupture)	* 0.493	-	0.609	ksi
Shear modulus	* 0.0139	-	0.0191	10^6 psi
Shear strength	* 4.66	-	5.69	ksi
Rolling shear strength	* 0.173	-	0.518	ksi
Bulk modulus	* 0.0696	-	0.0783	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	3.4	-	4.16	HV
Hardness - Brinell	* 2.76	-	3.35	ksi
Hardness - Janka	764	-	935	lbf
Fatigue strength at 10^7 cycles	* 0.148	-	0.183	ksi

Maple (acer macrophyllum) (t)

Mechanical loss coefficient (tan delta)	k	0.025	-	0.031	
Differential shrinkage (radial)		0.17	-	0.23	%
Differential shrinkage (tangential)		0.25	-	0.32	%
Radial shrinkage (green to oven-dry)		3.3	-	4.1	%
Tangential shrinkage (green to oven-dry)		6.4	-	7.8	%
Volumetric shrinkage (green to oven-dry)		10.4	-	12.8	%
Work to maximum strength	ł	0.058	-	0.0713	ft.lbf/in^3
Impact & fracture properties					
Fracture toughness	k	0.323	-	0.395	ksi.in^0.5
Thermal properties					
Glass temperature		171	-	216	°F
Maximum service temperature		248	-	284	°F
Minimum service temperature	4	-99.4	-	-9.4	°F
Thermal conductivity		0.0867	-	0.104	BTU.ft/hr.ft^2.°F
Specific heat capacity		0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient	ł	15.1	-	20.6	μstrain/°F
Electrical properties					
Electrical resistivity	t,	2.1e14	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	,	3.17	-	3.87	
Dissipation factor (dielectric loss tangent)	,	0.041	-	0.05	
Dielectric strength (dielectric breakdown)	ę.	25.4	-	50.8	V/mil
Magnetic properties					
Magnetic type		Non-mag	netic	;	
Optical properties		0			
Transparency		Opaque			
Bio-data					
Food contact		Yes			
Restricted substances risk indicators					
RoHS (EU) compliant grades?		✓			
Durability					
Water (fresh)		Limited u	ıse		
Water (salt)		Limited u	ıse		
Weak acids		Limited u	ıse		
Strong acids		Unaccep	table		

Maple (acer macrophyllum) (t)

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Sources					

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	269	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	lb/lb
Fine machining energy (per unit wt removed)	* 599	-	662	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.104	-	0.115	lb/lb
Grinding energy (per unit wt removed)	* 994	-	1.1e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.173	-	0.192	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Warning

Maple (acer macrophyllum) (t)

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

_inks	
ProcessUniverse	
Reference	
Shape	

General information

Designation

Khaya spp. (L)

Typical uses

Furniture; cabinetwork; interior finish; boat construction;

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural			
Base material	Wood (tropical)			
Renewable content	100	%		

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 1.47	- 1.6°	1 USD/lb	
-------	--------	--------	----------	--

Physical properties

Density	0.0166 -	0.0206	lb/in^3
---------	----------	--------	---------

Mechanical properties

wechanical properties				
Young's modulus	* 0.119	-	0.133	10^6 psi
Yield strength (elastic limit)	* 0.287	-	0.357	ksi
Tensile strength	* 0.479	-	0.595	ksi
Elongation	* 1.2	-	1.47	% strain
Compressive strength	* 0.554	-	0.677	ksi
Flexural modulus	0.109	-	0.122	10^6 psi
Flexural strength (modulus of rupture)	* 0.479	-	0.595	ksi
Shear modulus	* 0.0123	-	0.017	10^6 psi
Shear strength	* 4.06	-	4.95	ksi
Rolling shear strength	* 0.149	-	0.45	ksi
Bulk modulus	* 0.0609	-	0.0682	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.5			
Hardness - Vickers	3.32	-	4.06	HV
Hardness - Brinell	* 2.97	-	3.63	ksi
Hardness - Janka	746	-	913	lbf
Fatigue strength at 10^7 cycles	* 0.144	-	0.178	ksi

Mechanical loss coefficient (tan delta)	* 0.026	-	0.033	
Differential shrinkage (radial)	0.11	-	0.15	%
Differential shrinkage (tangential)	0.2	-	0.22	%
Radial shrinkage (green to oven-dry)	2.3	-	2.8	%
Tangential shrinkage (green to oven-dry)	4.1	-	5	%
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%
Work to maximum strength	* 0.0616	-	0.0761	ft.lbf/in^3
Impact & fracture properties				
Fracture toughness	* 0.303	-	0.37	ksi.in^0.5
Thermal properties				
Glass temperature	171	-	216	°F
Maximum service temperature	248	-	284	°F
Minimum service temperature	* -99.4	-	-9.4	°F
Thermal conductivity	* 0.0445	-	0.0543	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient	* 14.7	-	20.3	μstrain/°F
Electrical properties				
Electrical resistivity	* 2.1e14	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	* 3.07	-	3.75	
Dissipation factor (dielectric loss tangent)	* 0.039	-	0.048	
Dielectric strength (dielectric breakdown)	* 25.4	-	50.8	V/mil
Magnetic properties				
Magnetic type	Non-mag	netic	;	
Optical properties				
Transparency	Opaque			
	5 3 4 3			
Bio-data Food contact	Vaa			
Pood contact	Yes			
Restricted substances risk indicators				
RoHS (EU) compliant grades?	✓			
Durability				
Durability				
Water (fresh)	Limited u	se		
•	Limited u			
Water (fresh)		se		

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 4.99e3	-	5.5e3	BTU/lb
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 238	-	263	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0415	-	0.0459	lb/lb
Fine machining energy (per unit wt removed)	* 541	-	598	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.0944	-	0.104	lb/lb
Grinding energy (per unit wt removed)	* 878	-	970	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.153	-	0.169	lb/lb

Recycling and end of life

recogning and the or me				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99	millipoints/lb
EPS value	62.7	- 69.3

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse		
Reference		
Shape		