CMPS 142 - Homework 5

Aidan Gadberry, Christopher Hsiao, Tom Burch {agadberr, chhsiao, tburch1}@ucsc.edu

June 8, 2017

1 Back Propagation

1.1 Feed Foward

First, we will perform the feed forward process to calculate the output of our neural network: z_5 . Note that we will be using $\sigma(a_j)$ to represent the logistic sigmoid function on the activations of nodes j=1...5.

Input Layer - 1, 2

Given an input of (1, 2), $a_1 = 1$ and $a_2 = 2$, we can calculate the outputs:

$$z_1 = \sigma(a_1) = \sigma(1) \approx 0.73$$
$$z_2 = \sigma(a_2) = \sigma(2) \approx 0.88$$

Hidden Layer - 3, 4

First, we'll calculate the activations a_3 , a_4 for the hidden nodes.

$$a_3 = z_1 \ w_{3,1} + z_2 \ w_{3,2} \approx 0.536$$

 $a_4 = z_1 \ w_{4,1} + z_2 \ w_{4,2} \approx 0.536$

And we can now calculate the outputs of these nodes:

$$z_3 = \sigma(a_3) = \sigma(0.536) \approx 0.631$$

 $z_4 = \sigma(a_4) = \sigma(0.536) \approx 0.631$

Output - 5

And now to calculate the output activation a_5 . Recall that for the output node, $a_5 = z_5$.

$$a_5 = z_3 \ w_{5,3} + z_4 \ w_{5,4} = 0$$

thus, $a_5 = z_5 = 0$

1.2 Backpropagation

Now we'll begin calculating the $\frac{\delta E}{\delta a_j}$ values, which we'll represent as δ_j , starting with δ_5 .

Output Node: δ_5

Since the error function is:

$$E = \frac{1}{2}(a_5 - t)^2$$

then...

$$\delta_5 = \frac{\delta E}{\delta a_5} = (a_5 - t) = (1 - 2) = -1$$

Now, recall that the general equation for other δ_j values is:

$$\frac{\delta E}{\delta a_j} = \delta_j = \left(\sum_{k \in U_i} \delta_k \ w_{k,j}\right) z_j (1 - z_j)$$

Where U_j represented outgoing arcs from node j.

Hidden Layer - 3, 4

Using δ_5 , we'll use the equation above to calculate δ_4 and δ_3 .

$$\delta_4 = (-1 \cdot 1)(0.631)(0.369) \approx -0.233$$

$$\delta_3 = (-1 \cdot -1)(0.631)(0.369) \approx 0.233$$

Input Layer - 1, 2

And now to find δ_1 and δ_2 .

$$\delta_2 = \left[\left(\delta_3 \cdot \frac{1}{3} \right) + \left(\delta_4 \cdot \frac{1}{3} \right) \right] (0.88)(1 - 0.88) = 0$$

$$\delta_1 = \left[\left(\delta_3 \cdot \frac{1}{3} \right) + \left(\delta_4 \cdot \frac{1}{3} \right) \right] (0.73)(1 - 0.73) = 0$$

Updating the Weights - $w_{j,i}$'s

Recall that the full step/update equation in SGD for each weight is:

$$w_{j,i} \coloneqq w_{j,i} - \eta \frac{\delta E}{\delta w_{j,i}}$$

where:
$$\frac{\delta E}{\delta w_{i,i}} = \delta_j z_i$$

Thus, the updates for the weights are as follows:

$$w_{5,3} = -1 - (0.1)(-1)(0.631) = -0.937$$

$$w_{5,4} = 1 - (0.1)(-1)(0.631) = 1.063$$

$$w_{4,1} = \frac{1}{3} - (0.1)(-0.233)(0.73) = 0.35$$

$$w_{4,2} = \frac{1}{3} - (0.1)(-0.233)(0.88) = 0.354$$

$$w_{3,1} = \frac{1}{3} - (0.1)(0.233)(0.73) = 0.316$$

$$w_{3,2} = \frac{1}{3} - (0.1)(0.233)(0.88) = 0.313$$

2 Clustering

Given: 1, 3, 6, 10, 15, 21, 28, 36, K=3, Given mean=1,3,6

Iteration	K1	K1-mean	K2	K2-mean	K3	K3-mean
#1	1	1	3	3	6, 10, 15, 21, 28, 38	19.3
#2	1,3	1.5	6	6	10, 15, 21, 28, 36	22
#3	1,3,6	3.3	10	10	15, 21, 28, 36	25
#4	1,3,6,10	5	15	15	21, 28, 36	28.3
#5	1,3,6,10,15	7	21	21	28, 38	32
#6	1,3,6,10,15,21	9.3	28	28	36	36

Given: 1, 3, 6, 10, 15, 21, 28, 36, K=3, Given mean=21,28,36

Iteration	K1	K1-mean	K2	K2-mean	K3	K3-mean
#1	1,3,6,10,15,21	9.3	28	28	36	36

Yes, we believe starting with the same given set 1, 3, 6, 10, 15, 21, 28, 36, the K-cluster algorithm will output the same clustering when comparing the initial means [1,3,6] and [21,28,36]. Although the final clustering is identical, the difference is the execution of the K-means cluster algorithm, where for the first set of initial means will result in the algorithm processing 6 iterations, while the second set of means will allow the algorithm to complete in one iteration.