TABLE OF CONTENTS

Project Description	2
Approach	2
Data Cleaning	2
Counting percentage of blank cells in each column using below formulas:	2
Treating of missing values:	3
Checking Data Imbalance	8
Creating Loan Credit Amount Group	12
Creating Income Group	12
Creating Age Groups	14
Univariate Analysis	14
Count of defaulters (Target = 1) & non-defaulters (Target = 0)	14
Segmented Univariate Analysis	16
Bivariate analysis	17
Correlation	17
Continuous Variables	18
Categorical Variables	19
Analysis of defaulters using two segemented variables:	24

Project Description

This case study aims to give you an idea of applying EDA in a real business scenario. In this case study, apart from applying the techniques that you have learnt in the EDA module, you will also develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimize the risk of losing money while lending to customers.

Approach

I first analysed the data and cleaned it by deleting irrelevant columns, empty cells, and outliers. I then ran different analyses, including univariate and bivariate analysis, on the dataset.

Data Cleaning

First cleaning the data

At first, I deleted some irrelevant columns which in my opinion are not relevant for our analysis.

Columns I deleted:

['DAYS_REGISTRATION','FLAG_MOBIL','FLAG_EMP_PHONE','FLAG_WORK_PHON E','FLAG_CONT_MOBILE','FLAG_PHONE','FLAG_EMAIL','WEEKDAY_APPR_PROC ESS_START','HOUR_APPR_PROCESS_START','LIVE_REGION_NOT_WORK_REGIO N',

'REG_CITY_NOT_LIVE_CITY','REG_CITY_NOT_WORK_CITY','LIVE_CITY_NOT_WORK_CITY','DAYS_LAST_PHONE_CHANGE',

'OBS_30_CNT_SOCIAL_CIRCLE','DEF_30_CNT_SOCIAL_CIRCLE','OBS_60_CNT_SOCIAL_CIRCLE','DEF_60_CNT_SOCIAL_CIRCLE', 'NAME_TYPE_SUITE']

Counting percentage of blank cells in each column using below formulas: For column having only numbers:

For column having only text:

This will give us the percentage of blank cells for each column & after sorting in descending order we can see the column which has highest percentage of blank cells.

	Α	В	C	D	Е	F	G	Н	1	J
1		COMMON	COMMON	COMMON	NONLIVIN	NONLIVIN	NONLIVIN	FONDKAP	LIVINGAP	LIVINGAP
307509		0.0022	0.0022	0.0022	0	0	0	reg oper a	0.0202	0.022
307510		0.0123	0.0124	0.0124	0	0	0	reg oper a	0.0841	0.0918
307511										
307512		0.0176	0.0178	0.0177						
	Percentage of									
	empty cells									
307513	in column	231.9204	231.9204	231.9204	227.1498	227.1498	227.1498	216.315	216.0052	216.0052
	1									

Now I deleted the columns which have more than 30% of blank cells in them which are:

'APARTMENTS_AVG', 'BASEMENTAREA_AVG',
'YEARS_BEGINEXPLUATATION_AVG', 'YEARS_BUILD_AVG',
'COMMONAREA_AVG', 'ELEVATORS_AVG', 'ENTRANCES_AVG',
'FLOORSMAX_AVG', 'FLOORSMIN_AVG', 'LANDAREA_AVG',
'LIVINGAPARTMENTS_AVG', 'LIVINGAREA_AVG',
'NONLIVINGAPARTMENTS_AVG', 'NONLIVINGAREA_AVG',
'APARTMENTS_MODE', 'BASEMENTAREA_MODE',
'YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE',
'COMMONAREA_MODE', 'ELEVATORS_MODE', 'ENTRANCES_MODE',
'FLOORSMAX_MODE', 'FLOORSMIN_MODE', 'LANDAREA_MODE',
'LIVINGAPARTMENTS_MODE', 'LIVINGAREA_MODE',
'NONLIVINGAPARTMENTS_MODE', 'NONLIVINGAREA_MODE',
'APARTMENTS_MEDI', 'BASEMENTAREA_MEDI',

'YEARS_BEGINEXPLUATATION_MEDI', 'YEARS_BUILD_MEDI',

['OWN_CAR_AGE', 'OCCUPATION_TYPE', 'EXT_SOURCE_1',

'COMMONAREA_MEDI', 'ELEVATORS_MEDI', 'ENTRANCES_MEDI',

'FLOORSMAX_MEDI', 'FLOORSMIN_MEDI', 'LANDAREA_MEDI',

'LIVINGAPARTMENTS_MEDI', 'LIVINGAREA_MEDI',

'NONLIVINGAPARTMENTS_MEDI', 'NONLIVINGAREA_MEDI',

'FONDKAPREMONT_MODE', 'HOUSETYPE_MODE', 'TOTALAREA_MODE',

'WALLSMATERIAL_MODE', 'EMERGENCYSTATE_MODE']

Treating of missing values:

As all the values in both columns are non-zero, I started by counting the rows for which EXT SOURCE 2 and EXT SOURCE 3 are both empty. To do this, I added the values in these two columns and counted any cells where the sum was zero.

AA	AB	AC
EXT_SOURCE_2	EXT_SOURCE_3	AB+AC
0.616890562		0.616891
0.200589492	0.176652579	0.377242
nt		0
0.357648626		0.357649
0.743712069	0.6041126	1.347825
N 3129N1N5R	N 832785N25	1 145686

Now, using below formula, I found the rows where these two columns are empty by counting the zeros in the sum column:

Thus, there are 230 such cells with empty rows in both columns.

After determining the means for these columns, I discovered that there wasn't any much difference in the means for these columns.

Z	AA	AB
ORGANIZA	EXT_SOURCE_2	EXT_SOURCE_3
Business E	0.51416282	0.661023539
Business E	0.708568896	0.113922396
0	0.215088105	24.72763703
Mean	0.514392674	0.510852906

Therefore, we can use mean to replace the empty cells in these columns.

There are no vacant cells in these columns after replacing with mean values.

A	R	AA	AR
	SK_ID_CU	EXT_SOURCE_2	EXT_SOURCE_3
	100002	0.262948593	0.13937578
	100003	0.622245775	0.510852906
	100004	0.555912083	0.729566691
	100006	0.65044169	0.510852906
	456254	0.51416282	0.661023539
	456255	0.708568896	0.113922396
Percentage of empty cells			
in column	0	0	0

For AMT_GOODS_PRICE column, we can see there are many outliers in below plot:

Therefore, we are unable to substitute the mean value for the empty cells in this column. I consequently deleted the empty cells from this column. Additionally, the database won't be significantly impacted because only 0.09% of the cells are empty.

We are now left with 6 columns of information about credit bureaus for different time periods, including hour, day, week, month, quarter, and year. But I just consider the quarter-specific information because the rest is irrelevant. I thus eliminated other columns.

There is only one outlier for this column, and by filtering, we can see all of its values:

Since they are all integer values and the mean is 0.265525, the blanks cannot be filled in with the mean value. So I identified the column's mode, which is zero (the value that occurs the most often), and I changed the blanks to that value.

In our database, there are no longer any empty cells. The total number of rows was 307512 at the start, and it is now 307222. Only 0.09% of the database is lost after cleaning.

The age of the applicants was then calculated by dividing the "DAYS BIRTH" column by 365 using the absolute function, and the old column was eliminated. The "YEARS EMPLOYED" column will be constructed similarly to the "DAYS EMPLOYED" column.

p ^a	f_x =RO	UND(ABS	(R2/365),0)
	R	S	Т
L	DAYS_BIRTH	AGE	DAYS_EM D
8	-9461	26	-637
4	-16765	46	-1188
3	-19046	52	-225
2	-19005	52	-3039
5	-19932	55	-3038
۵	-160/11	46	_1500

We lost about 18% of the data after manually deleting the outliers from the "AMT INCOME TOTAL," "AMT CREDIT," "AMT ANNUITY," "AMT GOODS PRICE," and "AGE" columns, but the data is now free of outliers.

100*(307222	-251788)/3	07222	=	18.044

Checking Data Imbalance

After that, I created pivot tables and plotted their graph as shown below to examine the data imbalance:

These graphs allow me to deduce the following:

- 1. Target There are minimal data for those who experienced payment difficulties (defaulters).
- 2. NAME_CONTRACT_TYPE Cash loans are more prevalent than revolving loans in terms of quantity.
- 3. CODE_GENDER Female applicants default less frequently than male applications.
- 4. FLAG_OWN_CAR The majority of applicants don't own a vehicle.
- 5. FLAG_OWN_REALTY The majority of candidates own a home or apartment.
- 6. NAME_INCOME_TYPE The majority of candidates are employed professionals (9 to 5 job).

- 7. NAME_EDUCATION_TYPE The majority of candidates have completed secondary or secondary special education.
- 8. NAME_FAMILY_STATUS The majority of applicants are married families.
- 9. NAME_HOUSING_TYPE The majority of candidates own their home or apartment.

Following this, I created graphs in several "FLAG_DOCUMENT" columns to determine whether or not each one was pertinent.

The majority of these graphs, with the exception of FLAG_DOCUMENT_3, have a minimal number of 1s, as can be seen. I therefore eliminated all columns aside from this one.

Creating Loan Credit Amount Group

Now for "AMT_CREDIT" column, I created a "LOAN_LEVEL" column as low, medium and high categorization of loan.

	Н	1	J	K	L
	AMT_INCOM	AMT_CRE	DIT	AMT_ANN	AMT_GOO
)	103500	481495.5		36130.5	454500
)	90000	165024		8154	108000
	Median	521280	MEDIAN(I	2:1251788)	
	3rd Quartile	829224	QUARTILE.EXC(12:125		1788,3)

I found the median and 3^{rd} quartile of the AMT_CREDIT column to get an idea about the level.

Using this formula, levels are created as shown below.

J
LOAN_LEVEL
Low
Medium
Medium
Medium
High
Low
High
High
Low
Low

Creating Income Group

The same I done with "AMT_INCOME_TOTAL" column and created a column "INCOME_GROUP".

Н	I
AMT_INCOME_TOTAL	INCOME_GROUP
112500	Medium
180000	Medium
166500	Medium
90000	Low
216000	Medium
292500	High
360000	High
540000	High
112500	Medium
224000	Modium

Now for better analysis, I created a new column "AVG_EXT_SOURCE" as average score of "EXT_SOURCE_2" & "EXT_SOURCE_3" and deleted these columns.

	AC	AD	AE	AF
1	EXT_SOURCE_2	EXT_SOURCE_3	AVG_EXT_SOURCE	FLAG_DOCA
Э	0.247163892	0.050631513	=ROUND(AVERAGE(AC2,AD2),2)
Ε	0.487305014	0.321735282	0.4	1
C	0.524157672	0.262248971	0.39	1
C	0.46067787	0.743559314	0.6	1

And categorized this column in three levels: low, medium and high.

AC	AD	AE	AF	AG
AVG_EXT_SOURCE	EXT_SOURCE_CATE	FLAG_DOC	AMT_REQ	_CREDIT_
0.15	=IF(AC2>0.6,"High",I	F(AC2>0.4,	"Medium",	'Low"))
0.4	Low	1	1	
0.39	Low	1	0	
0.6	Medium	1	0	
0.64	High	1	0	
0.59	Medium	1	0	
0.57	Modium	1	0	

Creating Age Groups

After that, I used VLOOKUP on a range of ages in the age column to generate the age group.

Univariate Analysis

Count of defaulters (Target = 1) & non-defaulters (Target = 0)

1. On the basis of gender

39 Mid Age45 Mid Age31 Mid Age

44 Mid Age36 Mid Age26 Young31 Mid Age32 Mid Age27 Young

63 Old

From these graphs, we can see Females are in higher number than males for both defaulter and non-defaulter.

2. On the basis of Loan type

From these graphs, we can see Cash loans are in higher number than revolving loans for both defaulter and non-defaulter.

3. On the basis of income type

From these graphs, we can see working professionals are in higher number than other professions for both defaulter and non-defaulter.

4. On the basis of education type

From these graphs, we can see people with secondary/ secondary special education are in higher number than other education background for both defaulter and non-defaulter.

5. On the basis of Family status

From these graphs, we can see married people are in higher number than others for both defaulter and non-defaulter.

Segmented Univariate Analysis

1. According to Age Group

Now I calculated the percentage of each age group for defaulters and non-defaulters.

From these graphs, we can see that young people are more likely to default than other age groups. But in case of non – defaulters there is not much significant difference among all the age groups.

2. According to Loan Level

Now I calculated the count of people for each loan amount level for default and non-default.

From these graphs, we can see that most defaulters are from low and medium loan credit group. And low amount loan credit groups are more in non-defaulters.

3. According to Income Group

Now I calculated the count of defaulters and non-defaulters for each income group.

From these graphs, we can see that most defaulters are from medium income group. And same in non-defaulters, there are high number of medium income group than others.

4. According to External Source Category

Now I calculated the count of defaulters and non-defaulters for each external source category.

From these graphs, we can see that most defaulters are from low and medium external source category. And in non-defaulters, there are high number of medium external source category than others.

Bivariate analysis

Correlation

Correlation of numerical data for following columns for both defaulters and non-defaulters: ['AMT_INCOME_TOTAL','AMT_CREDIT','AMT_ANNUITY','AMT_GOODS_PRICE','A GE','EXT_SOURCE_SCORE','REGION_RATING_CLIENT']

> Correlation of defaulters:

	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	AGE	REGION_RATING_CLIENT	AVG_EXT_SOURCE
AMT_INCOME_TOTAL	1						
AMT_CREDIT	0.362210842	1					
AMT_ANNUITY	0.433585961	0.76203507	1				
AMT_GOODS_PRICE	0.369828962	0.986352451	0.766359904	1			
AGE	0.056057041	0.157835287	0.092754031	0.152990103	1		
REGION_RATING_CLIENT	-0.207858142	-0.105133839	-0.129051223	-0.107231888	-0.042166115	1	
AVG_EXT_SOURCE	0.079255319	0.133883493	0.11685045	0.141866396	0.207387088	-0.214776389	1

Highly correlated columns for defaulters:

- 1. 0.76 AMT_ANNUITY & AMT_CREDIT
- 2. 0.99 AMT_GOODS_PRICE & AMT_CREDIT

3. 0.77 – AMT_GOODS_PRICE & AMT_ANNUITY

> Correlation of non - defaulters:

	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	AGE	REGION_RATING_CLIENT	AVG_EXT_SOURCE
AMT_INCOME_TOTAL	1						
AMT_CREDIT	0.362244196	1					
AMT_ANNUITY	0.433627822	0.762049893	1				
AMT_GOODS_PRICE	0.369863652	0.98635344	0.766377555	1			
AGE	0.056077489	0.157860166	0.092769348	0.153017639	1		
REGION_RATING_CLIENT	-0.207855689	-0.105141048	-0.12904239	-0.107236929	-0.042180576	1	
AVG_EXT_SOURCE	0.079273122	0.13391621	0.116879593	0.141895288	0.207391986	-0.214774547	1

Highly correlated columns for non - defaulters:

- 1. 0.76 AMT_ANNUITY & AMT_CREDIT
- 2. 0.99 AMT_GOODS_PRICE & AMT_CREDIT
- 3. 0.77 AMT_GOODS_PRICE & AMT_ANNUITY

So, there is correlation between same pairs in both defaulter and non – defaulters.

Continuous Variables

Bivariate analysis of credit amount of loan & total income based on gender for both defaulters and non-defaulters:

We can observe that the majority of the data points are clustered on the lower income and lower loan amount side of the scatter plot between Income & Loan Amount for Defaulters. Additionally, the loan amount is rising for both men and women as income rises.

Non-Defaulters

We can observe that the majority of the data points are centred on the side of lower income and lower loan amount from this scatter plot between Income & Loan Amount for Non-Defaulters. Additionally, the loan amount is rising for both men and women as income rises.

Categorical Variables

Bivariate analysis of credit amount of loan with categorical variables for both defaulters and non – defaulters:

Categorical variables that I took for this analysis are:

['NAME_CONTRACT_TYPE','CODE_GENDER','FLAG_OWN_CAR','FLAG_OWN_REALTY','NAME_INCOME_TYPE','NAME_EDUCATION_TYPE',

'NAME_FAMILY_STATUS','NAME_HOUSING_TYPE','AGE_GROUP','INCOME_GROUP','EXT_SOURCE_CATEGORY']

1. Defaulters

These box plots for defaulters led me to draw the following conclusions:

- 1. Revolving loans have lower credit limits than cash loans.
- 2. Income from maternity leave received more credit than income from other sources.
- 3. Credit amounts were larger for people with high EXT_SOURCE_CATEGORY.
- 4. Compared to other age groups, young people received fewer loans.
- 5. Those with academic degrees received loans in higher amounts.
- 6. The credit amounts for the categories of car and real estate owners are not significantly different.
- 7. People with greater incomes received loans with higher credit limits.
- 8. Compared to other groups, single people received less loan credit.

2. Non_Defaulters

These box plots for non-defaulters led me to the following conclusions:

- 1. Revolving loans have lower credit limits than cash loans.
- 2. Businessmen received better credit than other types of income.
- 3. Credit amounts were larger for people with high EXT_SOURCE_CATEGORY.
- 4. Compared to other age groups, young people received fewer loans.
- 5. Those with academic degrees received loans in higher amounts.
- 6. The credit amounts for the categories of car and real estate owners are not significantly different.
- 7. People with greater incomes received loans with higher credit limits.
- 8. Renters and dependent people received less loan credit than other groups of people.

Analysis of defaulters using two segemented variables:

1. Income Group and gender

Females are more defaulted than males across low and medium income groups.

> Mid age applicants are more defaulted across all levels of loan credit amount.

3. Income Group and Loan level

> Medium income groups are more defaulted across all loan levels.

> Mid age people are more defaulted across all family statuses and old people are less.

5. Income Type and Gender

> Females are more defaulted than males across all income types.

Across all family statuses, mostly females are more defaulted than males.

7. Education Type and Gender

> Same for this, females are more defaulted across all education levels.