Pattern Recognition and Machine Learning Mid-Term Exam 2022. Time - 40 Minutes Total Marks = 40.

March 30, 2022

- (i) Try to explain your answers as much as possible for obtaining full marks.
- (ii) Marks shall be also granted for right steps of solution process.
- 1. Let us consider a Training set $T = \{(x_i, y_i), i = 1, 2, ...l\}$, where l is a very large number and f_0 is the optimal function estimated using the T. Further, let us define a ranodm vraibale $X_i = y_i f_0(x_i)$ then consider the following statements.
 - (a) $X \hookrightarrow \mathcal{N}(0, 1)$
 - (b) $E(X_i) = 0$.
 - (c) $Var(X_i) = 1$.
 - (d) $X \hookrightarrow \mathcal{N}(\mu, \sigma)$, where μ and σ are finite numbers.
 - (d) None of above can be said about the distribution of X_i .

Write the correct statment/statements and breifly describe the reasons behind your answer. 5~Marks.

2. Consider the following dataset.

x_1	x_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: Dataset

For the given dataset, one has estimated the Least Square linear regression model $f(\mathbf{x}) = w_1x_1 + w_2x_2 + b$ and obtained $w_1 = w_2 = 0$ and b = 0.5. The training RMSE is 0.5. The obtained training error, in this case, is due to

- (a) high variance.
- (b) high bais.
- (c) data are identically and independently distirbuted.
- (d) the irreducible error is too much.
- (d) None of above are true.

Write the correct statment/statements and breifly describe the reasons behind your answer.

5 Marks.

- 3. Consider the basis function $\{2^{||x_i-\mu_1||^2}, 2^{||x_i-\mu_2||^2}\}$, For $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\mu_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, Let us say that Least Square estimate (without considering the regularization) for the dataset in the Table -1 is given by $f(x) = 2^{||x_i-\mu_1||^2}w_1 + 2^{||x_i-\mu_1||^2}w_2$. Then obtain the values of w_1 and w_2 .

 5 Marks
- 4. Let us consider the training set $T = \{(x_i, y_i), i = 1, 2, ...l\}$, briefly describe the steps involved in estimating the function $f(x) = w^T x + b, w \in \mathbf{R}^n, b \in \mathbf{R}$, using regulrized L_1 -norm regression model by computing the gradient.

 5 Marks.
- 5. Let us consider a function $f: \mathbf{R}^n \to \mathbf{R}$. Argue why the negative of the gradient direction is the direction of steepest descent. $5 \ Marks$.
- 6. How does the bias-variance decomposition of a Regularized Least Square (RLS) estimator compare with that of ordinary least squares regression estimation?
 - (a) RLS estimator has larger bias but, larger variance
 - (b) RLS estimator has smaller bias but, larger variance.
 - (c) RLS estimator larger bias but, smaller variance.
 - (d) RLS estimator has smaller bias but, smaller variance.
 - (d) None of above are true.

Justify your answer with reasons.

5 Marks.

- 7. Consider the dataset at Table 2. Find the direction along which the variance of the data is maximum.
 - (a) (0.5,0.5)

x_1	x_2
1	0
0	1
1	0
1	1

Table 2: Dataset

- (b) (0.12,0)
- (c) (0,0.4635)
- (d) (0.25, 0.14)
- (d) None of above.

Justify your answer.

5 Marks.

- 8. As we, increase the number of training points, which of them are true about our learnt model.
 - (a) the bais of model decreases.
 - (b) the variance of model increases.
 - the variance of model decreases.
 - (d) bais of the model increases.
 - (e) Nothing can be said.

Justify your answers with proper reasoning.

5 Marks.