

하이패스필터를 적용한 ResNet 기반의 새소리 탐지

서강대학교 | 컴퓨터공학과 | Bigdata Processing & DB LAB 이강우, 권태현, 가상민, 김윤영, 정성원

- 2022. 8.26. -

목 차

❖ 서 론

- 개 요
- 관련연구

❖ 본 론

- 데이터 전처리 과정
 - Data Selection
 - Min-Frequency 추출과 하이패스필터 적용
 - 데이터 증강과 Hand Classification
- 분류모델
- 실험결과

❖ 결 론

● 결론 및 향후 연구

서 론

▶ 새소리: 생태계 환경 지표

효율적인 새소리 식별 기법 개발 (by Kaggle)

SOGANG UNIVERSITY 1 - 10

서 론

☑ 개 요

● 데이터 셋의 문제점

1. Weakly-Labeled

'파일단위'로 어떤 새가 울었는 지에 대한 정보가 주어져, 정확히 어느 구간에서 울었는지 알 수 없음

→ 파일 내 'Call', 'Nocall' 분류 필요

2. 도메인 불일치

녹음환경(기기, 잡음 등)의 차이로, validation 및 test set에서의 성능저하

→ 새의 고유 주파수 추출 필요

3. 데이터 분포의 불균형

녹음이 힘든 환경에 서식하거나, 새가 희귀종인 경우 등 새 종별 제공된 데이터 양에 차이가 있음

- → 데이터 증강기법 활용 필요
- ☞ 오디오를 분석하기 위해 이미지로의 변환 필요
- ☞ 이미지 학습 및 분류를 위해 CNN 모델 필요

SOGANG UNIVERSITY 2 - 10

서 론

● 2021년도 동일 Task 상위팀 분석

(공통) Pre-trained CNN 사용하여 새 소리 분류

순위	아이디어	효과
1위[1]	Nocall Detector	Weakly-Labeled 보완
10위[2]	데이터 증강	데이터 분포의 불균형 보완
12위[3]	훈련 데이터에 잡음을 섞음	도메인 불일치 보완

- ⇒ 새 울음 소리가 "음성"이라는 점을 간과
- ⇒ 단순 이미지 변환 후 모델 학습

- [1] Naoki Murakami, Hajime Tanaka and Masataka Nishimori, "Birdcall Identification Using CNN and Gradient Boosting Decision Trees with Weak and Noisy Supervision", in: CLEF Working Notes 2021
- [2] M. V. Conde, N. D. Movva, P. Agnihotri, S. Bessenyei, K. Shubham, "Weakly-Supervised Classification and Detection of Bird Sounds in the Wild. A BirdCLEF 2021 Solution", in: CLEF Working Notes 2021
- [3] Jan Schlüter, "Learning to Monitor Birdcalls From Weakly-Labeled Focused Recordings", in: CLEF Working Notes 2021

SOGANG UNIVERSITY 3 - 10

^{*} Reference

✓ 모델 Block Diagram

SOGANG UNIVERSITY 4 - 10

▼ 데이터 전처리 과정

Data Selection

- 새의 고유 주파수 특성을 확인하기 위한 'Rating' 필터링
- 'Rating 3.5' 미만인 데이터는 오디오 끊김 현상 및 기계음 다수 포함
- 'Rating 3.5' 이상인 데이터는 새의 고유 주파수 특성 확인 가능

SOGANG UNIVERSITY 5 - 10

☑ 데이터 전처리 과정

● Min-Frequency 추출과 하이패스필터 적용

- Mel-Spectrogram을 직접 분석하여 새 종별 Min-Frequency 추출
- Min-Frequency를 통해 하이패스필터를 적용 새 종별 고유 주파수 확인 및 '도메인 불일치' 해결

하이패스필터 적용

새 종별 Min-Frequency 추출 결과

새 종	Min-Freq	새 종	Min-Freq	새 종	Min-Freq
Akiapo	1,300	Hawama	1,950	Jabwar	980
Aniani	2,100	Hawcre	1,550	Maupar	1,500
Apapan	1,700	Hawgoo	350	Omao	940
Barpet	0	Hawhaw	1,100	Puaioh	1,800
Crehon	0	Hawpet1	2,100	Skylar	1,600
Elepai	1,500	Houfin	1,950	Warwhel	2,240
Ercfra	400	liwi	1,800	Yefcan	1,750

SOGANG UNIVERSITY 6 - 10

☑ 데이터 전처리 과정

● 데이터 증강과 Hand Classification

- Kaggle 테스트 데이터와 동일하게 5초 단위로 분할
- 데이터 증강을 위해 1초 단위의 Stride 적용
- 기존 1,265개 → 36,294개(약 28배 증가)로 데이터 증강
- 증강된 데이터를 통해 1,197개의 'Nocall' 분류로 'Weakly Labeled' 해결 및 '데이터 분포의 불균형' 일부 해결

데이터 증강 결과 예시

새 종	기 존	증강 후
Apapan	47	1,722
Hawcre	20	1,036
Houfin	322	2,776
liwi	37	1,550
Jabwar	78	3,331
Warwhel	71	2,030

총 계 : 기존 1,265개

증강 후 36,294개(약 28배 증가)

SOGANG UNIVERSITY 7 - 10

ResNet-34^[4]

- Mel-Spectrogram 분류는 적절한 파라미터와 Layer의 개수로도 충분한 성능 확인
- 입력데이터(224*224) → Convolution Layer(7*7 Kernal) → Hidden Layer(32개) → Fully-Connected Layer(21종 분류)

ResNet-34 Diagram F(x) F(x)

* Reference [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. "Deep Residual Learning for Image Recognition", Proc. CVPR 2016

SOGANG UNIVERSITY 8 - 10

☑ 실험 결과

- (A) + (B) + (C) 0 Best F1-Score
- (B) 및 (C)의 F1-Score가 낮은 이유는 새소리 이외의 부분이 과적합된 것으로 분석
 - ⇒ **하이패스필터**가 가장 **유의미한 성능향상** 결과를 보여줌

전처리 방식에 따른 F1-Score 결과

Index	Case	F1-Score
1	하이패스필터 (A)	0.95
2	데이터 증강 (B)	0.61
3	Nocall Hand Classification (C)	0.59
4	(A) + (B)	0.96
5	(A) + (C)	0.96
6	(B) + (C)	0.64
7	(A) + (B) + (C)	0.97
8	전처리 미적용	0.73

SOGANG UNIVERSITY 9 - 10

결 론

▼ 결론 및 향후 연구

- 이미지 모델(ResNet-34)을 통한 음성분류에 대한 전처리 기법 제안
 - Min-Frequency 추출 및 하이패스필터 적용
 - Hand Classification
 - 데이터 증강
 - ⇒ 하이패스필터가 가장 유의미한 성능향상 결과를 보여줌
- 다른 이미지 분류모델에서 위의 제안된 전처리 기법이 동일한 성능향상을 나타내는지 추가연구 필요

SOGANG UNIVERSITY 10 - 10

