

IDENTIFICADOR DE ABALOS SISMICOS

Alunos: Paulo Henrique Silva Pires da Costa / Leandro Côrtes Rezende

Curso: Sistemas de informação

- É um instrumento utilizado para detectar e registrar os movimentos do solo, especialmente aqueles causados por terremotos
- Essas imagens foram extraídas do Laboratório de Análise: Nana, Peru NNA_II, Vertical Component.
- Linguagens utilizadas: Python
- Configuração da maquina utilizada para fins do desenvolvimento:
 - o Intel® Core™ i7-12700 de 12ª geração com 12
 Núcleos, 25MB, 20T, até 4.9GHz, 65W),
 - 16 GB DDR5 (1x16GB) 5600MT/s SSD de
 512GB PCIe NVMe M.2 (Classe 25).
- Objetivo do sistema: Analisar as imagens e trazer os resultados: hora, minutos, segundo, intensidade e quantidade de eventos ocorridos.

SISMOGRAFO

PROBLEMAS E SOLUÇÕES

Problemas

- Dead lock no sistema: Principalmente em processar todas imagens de uma vez.
- Sobrescrever arquivos CSV.
- Visualização do resultados: Gerava vários arquivos CSV impossibilitando de visualizar o resultado no total.
- O resultado da intensidade era desproporcional, pois o sistema contabilizava através da quantidade de pixels pretos em linhas.

Soluções

- O processamento dos dados foi divididos em pequenos lotes para na sobrecarregar.
- As copias agora são replicadas com sobrenomes para evitar sobrescrever.
- O resultado agora gera 2 arquivos CSV apenas o resumo da quantidade de eventos, e a outras com os dados das imagens.
- Ajustamos para que o sistema faça o calculo a partir da amplitude, assim conseguimos gerar resultados mais próximos da Escala Richter.

RESULTADOS

N° Processadores	Tempo (s)	Speedup (x)	% Mais Rápido	Eficiência
1	1072	0.927	-7.30%	100%
2	676.08	1.471	+47.10%	73.55%
4	399.44	2.491	+149.10%	62.28%
6	335.27	2.967	+196.70%	49.45%
8	303.76	3.273	+227.30%	40.91%
10	260.78	3.816	+281.60%	38.16%
12	263.73	3.769	+276.90%	31.41%
14	257.48	3.862	+286.20%	27.59%
16	256.28	3.878	+287.80%	24.24%

□ Data Table (1) - Orange										
Info		imagem	hora	minuto	segundo	amplitude	ichter_aproximadi			
1006861 instances (no missing data) 5 features	1	10_copia_00002	0	0	0	33	1.5315			
No target variable.	2	10_copia_00002	3	33	54	31	1.5052			
1 meta attribute	3	10_copia_00002	3	35	34	5	0.7782			
Variables	4	10_copia_00022	0	0	0	33	1.5315			
Show variable labels (if present)	5	10_copia_00022	3	33	54	31	1.5052			
✓ Visualize numeric values	6	10_copia_00022	3	35	34	_ 5	0.7782			
Color by instance classes	7	10_copia_00042	0	0	0	33	1.5315			
Selection	8	10_copia_00042	3	33	54	31	1.5052			
Select full rows	9	10_copia_00042	3	35	34	5	0.7782			

CONCLUSÃO

- Os testes comprovam que o paralelismo é **altamente eficaz** na grande análise de volume de dados;
- O processamento paralelo tornou-se essencial nos cenários atuais especialmente em tarefas que envolvem grandes conjuntos de imagens sismográficas
- A pesquisa reforça a importância da programação paralela como ferramenta-chave para otimizar desempenho e eficiência em sistemas automatizados de análise de dados.