Current work

The Problem we are trying to solve

Solve for \tilde{x} :

$$A(x)\tilde{x} = b(x) \tag{7}$$

with
$$A(x) = (B^{-1} + (HM)^T R^{-1}(HM))$$

- Learn a low-rank approximation using DNN (to use as preconditioner):
 - $\cdot \ x \mapsto (U(x), S(x)) \in \mathbb{R}^{n \times r} \times \mathbb{R}^r \text{ where } A(x) \approx U(x) \operatorname{diag}(S(x)) U(x)^T$
 - Approximate the norm using random vectors
 - · Look for an approximation in the dual space instead?
- · Better architecture for neural network (CNN, UNet, attention layers?), instead of MLP
- (Technical stuff): DVC and MLflow for reproductibility, data versioning and workflow management

1

Variational DA and ML

Using ML-based preconditioners in VarDA problems

Victor Trappler April 3, 2023

Table of contents

- 1. Introduction
- 2. Variational Data Assimilation
- 3. Data-driven preconditioning
- 4. Neural Network architecture
- 5. Example on Lorenz96 (40D)

Introduction

Notation and setting

 $x \in \mathbb{R}^n$ state vector: Variables that describe a physical system $(n = \mathcal{O}(10^{6-9}))$

Different sources of information on a state vector x:

- A priori information p(x)
 - Historical data
 - Balance equations
- · Observations y, obtained more or less indirectly
- · Numerical model which maps the state to the observations $\mathcal{G} = \mathcal{H} \circ \mathcal{M}$

How to combine them? Bayes theorem

Data Assimilation and Bayesian Inference

Bayes' theorem : update information on x using y

$$p(x \mid y) = p(x) \frac{\overbrace{p(y \mid x)}}{\underbrace{p(y)}}$$
evidence
(2)

Data Assimilation and Bayesian Inference

Bayes' theorem sequentially: update information on x_t using y_t

$$p(x_t \mid y_t) = \underbrace{p(x_t \mid x_{t-1})}_{prior/forecast} \underbrace{\frac{p(y_t \mid x_t)}{p(y_t)}}_{evidence}$$
(2)

Variational Data Assimilation

Point estimates

We are interested in a point estimate of the posterior distribution: Maximum A Posteriori

$$\min_{x} \{-\log p(x \mid y)\} = \min_{x} \{-\underbrace{\log p(y \mid x)}_{\text{log-lik=misfit}} - \underbrace{\log p(x)}_{\text{regularization}}\}$$
 (3)

- Y | x encodes the relation between the forward model and the observations
- X encodes the knowledge we gathered so far on x

Gaussian Assumptions

- $y = \mathcal{G}(x) + \varepsilon$, then $Y \mid x \sim \mathcal{N}(\mathcal{G}(x), R)$
- $x \sim \mathcal{N}(x^b, B)$

Standard formulation of the objective function

Using the Gaussian assumptions, we have $p(x \mid y) \propto e^{-J(x)}$ with

$$J(x) = \frac{1}{2} \|\mathcal{G}(x) - y\|_{R^{-1}}^2 + \frac{1}{2} \|x - x^b\|_{B^{-1}}^2$$
(4)

Which can be simplified to

$$J(x) = \frac{1}{2} \|\mathcal{G}(x) - y\|^2 \tag{5}$$

Analysis

The analysis is the MAP (point estimate)

$$x^{a} = \min_{x} J(x) = \min_{x} \frac{1}{2} \|\mathcal{G}(x) - y\|^{2}$$
 (6)

which is a non-linear least square problem

 $ightarrow \mathcal{G}$ is a numerical model, expensive to evaluate. How to minimize J?

Optimization in practice

Incremental formulation

$$J_{\text{inc}}(\delta x; x) = \underbrace{J(x) + \nabla J^{\mathsf{T}} \delta x + \frac{1}{2} (\delta x)^{\mathsf{T}} H(\delta x)}_{\text{quadratic wrt } \delta x} \approx J(x + \delta x) \tag{7}$$

with

$$G = \nabla \mathcal{G} = \text{Tangent Linear of } \mathcal{G} \text{ at } x \tag{8}$$

$$\nabla J(x) = G^{\mathsf{T}}(\mathcal{G}(x) - y) = G^{\mathsf{T}}d\tag{9}$$

$$H(x) = G^{\mathsf{T}}G + \underbrace{Q(x)}_{\frac{\partial^2}{\partial x^2}} \approx G^{\mathsf{T}}G = H_{\mathsf{GN}}$$
 (10)

To minimize the quadratic approx., the increment δx is the solution to the linear system

$$H_{\mathsf{GN}}\delta x = -\nabla J \iff (\mathsf{G}^{\mathsf{T}}\mathsf{G})\delta x = -\mathsf{G}^{\mathsf{T}}\mathsf{d}$$
 (11)

Set k=0

Repeat until convergence/computational budget spent

- Evaluate
 - Forward $G(x^{(k)})$
 - · Tangent Linear G
 - Objective $J(x^{(k)})$
 - Gradient $G^T d = G^T (\mathcal{G}(x^{(k)}) y)$
- Inner Loop
 - Solve $(G^TG)\delta x^{(k)} = -G^Td$
- $\cdot x^{(k+1)} = x^{(k)} + \delta x^{(k)}$

Set k=0

Repeat until convergence/computational budget spent

- Evaluate
 - Forward $G(x^{(k)})$
 - · Tangent Linear G
 - Objective $J(x^{(k)})$
 - Gradient $G^T d = G^T (\mathcal{G}(x^{(k)}) y)$
- Inner Loop
 - Solve $(G^TG)\delta x^{(k)} = -G^Td$
- $\cdot x^{(k+1)} = x^{(k)} + \delta x^{(k)}$

Set k=0

Repeat until convergence/computational budget spent

- Evaluate
 - Forward $\mathcal{G}(x^{(k)})$
 - · Tangent Linear G
 - Objective $J(x^{(k)})$
 - Gradient $G^T d = G^T (\mathcal{G}(x^{(k)}) y)$
- Inner Loop
 - Solve $(G^TG)\delta x^{(k)} = -G^Td$
- $\cdot x^{(k+1)} = x^{(k)} + \delta x^{(k)}$

Set k=0

Repeat until convergence/computational budget spent

- Evaluate
 - Forward $G(x^{(k)})$
 - · Tangent Linear G
 - Objective $J(x^{(k)})$
 - Gradient $G^T d = G^T (\mathcal{G}(x^{(k)}) y)$
- Inner Loop
 - Solve $(G^TG)\delta x^{(k)} = -G^Td$
- $\cdot x^{(k+1)} = x^{(k)} + \delta x^{(k)}$

ML philosophy

- Trying to learn the forward operator $\mathcal{G}=\mathcal{H}\circ\mathcal{M}$ is not worth the effort
 - · Very costly, complex, high-dimensional
 - $\cdot d = \mathcal{G}(x) y$ is central to compute the gradient (ie the direction of descent)
- Use ML to speed up inner loop?
 - Need to solve $(G^TG)\delta x = -G^Td$
 - · How to speed-up iterative methods?
 - · Reduce the number of iterations to convergence
 - · Reduce error for constant number of iterations
- Dimension reduction
 - Find a lower dimensional representation of the state space $x \in \mathcal{X}$
 - · Lower-dimensional Manifold on which the optimization can take place
 - Non-linear dimension reduction with diffeomorphism

Data-driven preconditioning

Solving linear systems

The increment δx verifies

$$\underbrace{(G^{\mathsf{T}}G)}_{A}\delta X = \underbrace{-G^{\mathsf{T}}d}_{b} \tag{12}$$

and using Conjugate Gradient, the error at the kth iteration is bounded according to

$$\|e_k\| \le 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^k \|e_0\| \tag{13}$$

where
$$\kappa(A) = |\frac{\text{largest eigenvalue}}{\text{smallest eigenvalue}}| \ge \kappa(I_n) = 1$$

 \Rightarrow Smaller κ = better rate of convergence

(More generally, depends on the whole distribution of the eigenvalues)

[Haben et al., 2011, Gürol et al., 2014, Tabeart et al., 2021, Robert et al., 2006]

Desired properties of preconditioners

Let δx be a solution of

$$A\delta x = b \tag{14}$$

Left Preconditioner

Let H^{-1} be an invertible matrix

 δx is also a solution of

$$(H^{-1}A)\delta x = H^{-1}b \tag{15}$$

and we hope that the new linear system is easier to solve

Desired properties:

- \cdot H^{-1} symmetric and invertible
- $H^{-1}A$ should be close to I_n
- $\kappa(H^{-1}A) < \kappa(A)$

State dependent preconditioner

One-size-fits-all preconditioners do not exist (or are very simplistic).

Recalling that $A = G^TG = G(x)^TG(x)$ is state-dependent (G TL of the forward model)

State-dependent preconditioner

$$x \longmapsto \operatorname{prec}(x) = H^{-1}(x)$$
 (16)

which exploits the fact that $G(x)^TG(x)$ is not arbitrary

- · Defined according to a numerical model
- Positive-definite matrix and symmetric

Training philosophy

We want $H^{-1}A$ close to I_n

What loss to choose?

- $||H^{-1} A^{-1}||$ $\rightarrow A^{-1}$ is what we are trying to avoid computing...
- $||I_n H^{-1}A||$ \rightarrow quite "unstable" objective in practice, especially for badly conditioned system (local minimum is $H^{-1} = 0$)
- ||H A|| \rightarrow but we need to train using H, and use H^{-1} as a preconditioner

Neural Network architecture

Low-rank updates

Let $S = (s_1, ..., s_r)$ be r vectors of \mathbb{R}^n , $r \ll n$

$$H_{LR}(S) = I_n + SS^T \tag{17}$$

$$H_{LR}^{-1}(S) = I_n - S \underbrace{(I_r - S^T S)^{-1}}_{\text{invect dim } r} S^T$$
(18)

Figure 1: Flowchart for prec. training using low rank matrices

→ Did not give results (for a lack of structure ?)

Deflation-like preconditioner

$$S = (s_1, \dots, s_r)$$
 has r orthonormal columns $(S^TS = I_r)$, and $(\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r$, $\lambda_i > 0$

$$H_{\text{defl}}(S,\lambda) = I_n + \sum_{i=1}^r (\lambda_i - 1) s_i s_i^T$$
(19)

$$H_{\text{defl}}^{-1}(S,\lambda) = I_n + \sum_{i=1}^r \left(\frac{1}{\lambda_i} - 1\right) s_i s_i^T$$
(20)

Figure 2: Flowchart for prec. training using deflation

(21)

Limited Memory Preconditioners [Tshimanga, 2007, Gratton et al., 2011]

Let $S = (s_1, ..., s_r)$ be r vectors of \mathbb{R}^n , $r \ll n$

$$H_{LMP}^{-1}(S, AS) = \left(I_n - S \sum AS' \right) \left(I_n - AS \sum S' \right) + \mu S \sum S'$$

$$H_{LMP}(S, AS) = \left(I_n + AS \sum AS' - \frac{1}{\mu} S \right) \left(S' \right)$$
(22)

Given $S \in \mathbb{R}^{n \times r}$ and $AS \in \mathbb{R}^{n \times r}$, we can construct H_{LMP} and H_{LMP}^{-1} directly, with nice properties (even though Σ and Γ require the inversion of a $r \times r$ matrix)

Flexible preconditioners:

- (s_1, \ldots, s_r) eigenvalues of $A \to Spectral Preconditioner$
- (s_1, \ldots, s_r) CG descent vectors \rightarrow QN preconditioner

LMP construction using leap-forward NN

Figure 3: Neural Network architecture for LMP

But: No particular structure imposed for $S' \Rightarrow (H_{LMP}(S,S'))^{-1} \neq H_{LMP}^{-1}(S,S')$

However: Good results were still obtained, even though the exact inverse is not used

LMP: self adjoint variation

Force the self-adjointness of the operator $S \mapsto S'$ (which should be = AS) by constructing at the same time a low-rank approximation of A

Figure 4: Neural Network architecture for symmetric LMP

with $L(x) \in \mathbb{R}^{n \times n'}$

Training setting: Dataset

For an input x, we assume to have access to $G(x)^TG(x)$,

$$ightarrow$$
 Training dataset: $\mathcal{D} = \{(\underbrace{x_i}_{\in \mathbb{R}^n}, \underbrace{G(x_i)^T G(x_i))}_{\in \mathbb{R}^{n \times n}}\}$

- · Very large in memory when dimension increases
- We access G only as an operator: $\mathrm{TL}(x,z) = G(x) \cdot z$
- Same for adjoint: $Adj(x, y) = G(x)^T \cdot y$
- Constructing G(x) would require n call to the TL

Less storage intensive solution: Iterable Datasets

Estimate the L_2 norm using random Gaussian vectors:

Matrix norm estimation

For a matrix M, and $z \sim \mathcal{N}(0, I)$

$$\mathbb{E}_{Z}\left[\|MZ\|_{2}^{2}\right] = \|M\|_{F}^{2} \tag{24}$$

$$ightarrow$$
 Iterable Dataset: $\mathcal{D} = \{(\underbrace{x_i}_{\in \mathbb{R}^n}, \underbrace{Z_i}_{\in \mathbb{R}^{n \times n_Z}}, \underbrace{G(x_i)^T G(x_i) Z_i}_{\in \mathbb{R}^{n \times n_Z}})_i\}$ where Z_i has n_Z columns iid $\mathcal{N}(0, I)$

The loss for a data point becomes then

$$\mathcal{L}_{\theta}(x_i) = \sum_{j=1}^{n_Z} \|H_{\theta}(x_i) z_i^j - G^T(x_i) G(x_i) z_i^j\|_2^2$$
 (25)

and we can generate the dataset "on the fly", and train the network in an online manner

Regularization

A-conjugacy

Let $S = (s_1|s_2|...|s_r)$. The column vectors of S are A-conjugate when S^TAS is diagonal Since S' is supposed to be AS

$$K = S^T S'$$
 has general term $K_{i,j} = \langle s_i, s_j' \rangle = s_i^T s_j' \approx s_i^T A s_j$ (26)

$$R_{\text{conjugacy}}(S) \propto \| \mathbf{K} \|$$
 (27)

But we may also add regularization on symmetry of the LMP, orthonormalization of the outputs etc...

Example on Lorenz96 (40D)

Statistics

Figure 5: Statistics on inference model

Inner loop CV: leap forward LMP (r = 20)

Comparison:

- Baseline: no preconditioner
- · Spectral LMP: computation of eigenvectors for every inner loop
- ML-LMP: preconditioned inner loop using "leap forward" LMP

Inner loop CV: leap forward LMP (r = 16)

Comparison:

- Baseline: no preconditioner
- · Spectral LMP: computation of eigenvectors for every inner loop
- · ML-LMP: preconditioned inner loop using "leap forward" LMP

Inner loop CV: self adjoint LMP (r = 20)

Comparison:

- Baseline: no preconditioner
- · Spectral LMP: computation of eigenvectors for every inner loop
- ML-LMP: preconditioned inner loop using self adjoint LMP

Work in progress / Open questions

- Apply this preconditioner in 4D-Var ✓
- Output both S_{θ} and AS_{θ} \checkmark
- How to train without explicit access to A 📽
 - · Online training?
 - Use information of $G^{T}(x)G(x)Z$ (Link to REVD [Daužickaitė et al., 2021])
- How to get more consistent results in 4D-Var ? 🕰
- · Which regularization to use 📽
- Apply to system with worse conditioning (QG) and/or higher dimension (QG / KS)
- Exploit conditioning using the prior $("(B + G^TG) \rightarrow (I + \tilde{G}^T\tilde{G})")$?
- Extension to weak 4DVar ??
- Adapt to time-varying observation operators ②

References i

- Daužickaitė, I., Lawless, A. S., Scott, J. A., and van Leeuwen, P. J. (2021).

 Randomised preconditioning for the forcing formulation of weak constraint 4D-Var.

 Quarterly Journal of the Royal Meteorological Society, 147(740):3719–3734.
- Gratton, S., Laloyaux, P., Sartenaer, A., and Tshimanga, J. (2011).

 A reduced and limited-memory preconditioned approach for the 4D-Var data-assimilation problem: Reduced 4D-Var using the LMP Preconditioner.

 Quarterly Journal of the Royal Meteorological Society, 137(655):452–466.
- Gürol, S., Weaver, A. T., Moore, A. M., Piacentini, A., Arango, H. G., and Gratton, S. (2014). B -preconditioned minimization algorithms for variational data assimilation with the dual formulation: B -preconditioned minimization algorithms.

 *Quarterly Journal of the Royal Meteorological Society, 140(679):539–556.

References ii

- Haben, S., Lawless, A., and Nichols, N. (2011).

 Conditioning and preconditioning of the variational data assimilation problem.

 Computers & Fluids, 46(1):252–256.
- Robert, C., Blayo, E., and Verron, J. (2006).

 Reduced-order 4D-Var: A preconditioner for the Incremental 4D-Var data assimilation method: A PRECONDITIONER FOR THE 4D-VAR METHOD.

 Geophysical Research Letters, 33(18):n/a-n/a.
- Tabeart, J. M., Dance, S. L., Lawless, A. S., Nichols, N. K., and Waller, J. A. (2021). New bounds on the condition number of the Hessian of the preconditioned variational data assimilation problem.

References iii

Tshimanga, J. (2007).

On a class of limited memory preconditioners for large-scale nonlinear least-squares problems (with application to variational ocean data assimilation).