Criptografia Simétrica

Prof. Dr. Volnys Borges Bernal² Prof. Dr. Adilson Eduardo Guelfi¹

(1) Faculdade de Informática de PP UNOESTE

© Volnys Bernal; Adilson E. Guelfi 1999-2019

Agenda

- □ Modelo de Criptografia Simétrica
- □ Principais Algoritmos de Criptografia Simétrica
- □ Criptografia Simétrica DES
- □ Criptografia Simétrica 3DES
- □ Criptografia Simétrica AES
- □ Exercícios
- □ Referências Bibliográficas

3

Modelo de Criptografia Simétrica

© Volnys Bernal; Adilson E. Guelfi 1999-2019

1

Modelo de Criptografia Simétrica

- □ Um esquema de criptografia simétrica possui 5 elementos:
 - Texto Legível: mensagem ou dados originais, inteligíveis e adotados como entrada no processo de cifração
 - Algoritmo de Cifração (Criptografia)
 - Chave Secreta: valor independente, aleatório, adotado como entrada no processo de cifração e participa das substituições e transformações realizadas pelo algoritmo
 - Texto Cifrado: mensagem embaralhada, ininteligível e produzido como saída do processo de cifração
 - Algoritmo de Decifração: toma como entradas a chave e o texto cifrado e produz como saída o texto legível original

5

Modelo de Criptografia Simétrica

- □ Modelo Completo de Criptografia Simétrica Notação
 - ❖ Texto legível ou Mensagem = M
 - Chave Criptográfica = K
 - Texto cifrado ou Criptograma = C

© Volnys Bernal; Adilson E. Guelfi 1999-2019

6

Modelo de Criptografia Simétrica

- □ Requisitos para uso seguro da criptografia simétrica
 - Algoritmo de criptografia forte
 - Quem conhece o algoritmo deve ser incapaz de decifrar o texto cifrado ou descobrir a chave secreta
 - Resistência a ataques (criptoanálise, por mensagens escolhidas, força bruta etc.)
 - Emissor e receptor compartilham chave secreta de forma segura e precisam manter a chave protegida
 - Deve ser impraticável decifrar uma mensagem com base no texto cifrado mais o conhecimento do algoritmo
 - Apenas a chave deve ser secreta (independentemente do algoritmo)
 - Principal problema de segurança = manter o sigilo da chave

Modelo de Criptografia Simétrica

- □ Criptografia ou cifração C = E (K, M)
 - ❖ Texto cifrado C é produzido pelo algoritmo de cifração E como função da chave K e do texto legível M
- □ Decifração M = D (K, C)
 - Texto legível M é produzido pelo algoritmo decifração
 D como função da chave K e do texto cifrado C.

© Volnys Bernal; Adilson E. Guelfi 1999-2019

Q

Modelo de Criptografia Simétrica

□ Exemplo

 Criptografia simétrica com a função XOR desempenhando o papel de algoritmo de criptografia

-

Modelo de Criptografia Simétrica

□ Principal problema da criptografia simétrica:

 Distribuição da chave: chave secreta K deve ser passada por um canal seguro até o parceiro

© Volnys Bernal; Adilson E. Guelfi 1999-2019

10

Modelo de Criptografia Simétrica

□ Utilização da criptografia simétrica

- Confidencialidade
 - Esquema apropriado quando o algoritmo, tamanho da chave criptográfica e sua distribuição são considerados seguros
- Autenticação
 - Esquema não muito apropriado pois a chave criptográfica simétrica (segredo) é compartilhada
- ❖ Integridade não aplicável
- Irretratabilidade idem item autenticação.

11

Principais Algoritmos de Criptografia Simétrica

© Volnys Bernal; Adilson E. Guelfi 1999-2019

12

Principais Algoritmos

Nome	Tipo	Tam. chave	Tam. bloco
DES	bloco	56	64
Triple DES (2 ch.)	bloco	112	64
Triple DES (3 ch.)	bloco	168	64
IDEA	bloco	128	64
BLOWFISH	bloco	32 a 448	64
RC5	bloco	0 a 2040	32,64,128
CAST-128	bloco	40 a 128	64
RC2	bloco	0 a 1024	64
RC4	stream	0 a 256	
Rijndael (AES)	bloco	128,192,256	128, 192, 256
Twofish	bloco	128,192,256	128

13

Criptografia Simétrica - DES

© Volnys Bernal; Adilson E. Guelfi 1999-2019

14

DES

- □ DES "Data Encryption Standard"
- □ Padrão de criptografia adotado em 1977 pelo NIST
 - Primeiro padrão de criptografia para entidades do governo federal dos EUA
 - ❖ Documentos FIPS
 - FIPS PUB 46-3 DES
 - FIPS 74 Guia de implementação e uso do DES
 - FIPS 81 DES modes of operation
 - FIPS (Federal Information Processing Standard)
- □ Para o DES, dados são codificados em blocos de 64 bits usando uma chave de 56 bits

17

DES

□ Problemas

 Atualmente o DES é considerado um algoritmo extremamente inseguro, principalmente para transações financeiras

© Volnys Bernal; Adilson E. Guelfi 1999-2019

18

Criptografia Simétrica – 3DES

19

Triple DES

- □ Caso particular de criptografia múltipla com 3 estágios DES utilizando chaves diferentes
- □ Duas configurações diferentes para o Triple DES
 - Chave de 168 bits (3 chaves DES de 56 bits)
 - Chave de 112 bits (2 chaves DES de 56 bits)

AES

□ AES - Advanced Encrypton Standard

- Cifra em bloco simétrica
- Novo (segundo) padrão de criptografia para entidades do governo federal dos EUA
- Publicado pelo NIST (FIPS EUA) em 2001
- ❖ Documento FIPS PUB 197
- Marca um esforço de 4 anos de cooperação entre governo dos EUA, empresas e pesquisadores de diversos países

© Volnys Bernal; Adilson E. Guelfi 1999-2019

24

AES

□ Breve Histórico

- 1997 NIST requisita propostas de algoritmos com grau de segurança igual ou superior ao 3DES e uma eficiência bem melhorada
- ❖ Round 1: 15 algoritmos propostos
- ❖ NIST selecionou o RIJNDAEL como AES proposto
- 2001 Anúncio do padrão oficial FIPS PUB 197

AES

☐ Critérios NIST para avaliar e escolher o AES

- Segurança
 - Segurança Real (resistência à ataques conhecidos de criptoanálise diferencial e linear), Aleatoriedade, Solidez (da base matemática para a segurança) e Outros Fatores de Segurança
- Custo
 - Condições de Licenciamento (sem royalties) Alta Eficiência Computacional, Requisitos de Memória
- Algoritmo e Características de Implementação
 - Flexibilidade (tamanhos adicionais de chave e bloco, uso em diversas plataformas etc), Adequação de Hardware e Software, Simplicidade (do projeto)

© Volnys Bernal; Adilson E. Guelfi 1999-2019

26

AES

□ Funcionamento do algoritmo

- AES pode ser operado de forma que o tamanho do bloco e o tamanho da chave podem ser especificados independentemente com valores de 128, 192 ou 256 bits
- A especificação do AES limitou o tamanho de bloco em 128 bits mas preservou o tamanho de chave nas três alternativas possíveis, ou seja, 128, 192 ou 256 bits

29

Exercícios

© Volnys Bernal; Adilson E. Guelfi 1999-2019

30

Exercício

(1) OpenSSL é uma biblioteca criptográfica aberta e extremamente versátil. É utilizada atualmente em diversos sistemas comerciais. Além do conjunto de funções, a biblioteca também disponibiliza alguns utilitários.

Utilize o utilitário openssI para cifrar um arquivo utilizando o algoritmo DES no modo ECB. Para isto, abra uma janela de comandos e execute o seguinte comando:

openssl enc -des-ecb -in <arq> -out <criptograma>

31

Exercício

- (2) Utilize o utilitário openssI para decifrar o criptograma gerado no exercício anterior.
- (3) Com o utilitário openssl, repita os exercícios (1) e (2) de cifrar e decifrar escolhendo outros algoritmos de criptografia simétrica como o 3DES, AES, RC4 etc.

© Volnys Bernal; Adilson E. Guelfi 1999-2019

32

Referências Bibliográficas

33

Referências Bibliográficas

- □ Criptografia e Segurança de Redes Princípios e Práticas (4a. Edição)
 - Willian Stallings, Pearson. 2008
- □ APPLIED CRYPTOGRAPHY PROTOCOLS, ALGORITHMS, AND SOURCE CODE IN C
 - SCHNEIER, BRUCE, Editora: JOHN WILEY CONSUMER, Edição: 2ª, 1996

© Volnys Bernal; Adilson E. Guelfi 1999-2019

34

Referências Bibliográficas

- □ Sites Recomendados Procurar por:
 - Crypto Corner
 - Computer Security Resource Center (NIST procurar pelos FIPS Special Publications)
 - ❖ SANS Institute
 - ❖ The AES Lounge
 - Vídeos YouTube AES, DES e Enigma Machine