Communication/Networking Protocols – Part 2

Instructor: Deepak Gangadharan

IP and TCP

- Supporting IP layer consumes a lot of resources
- There are benefits in using TCP/IP
- Sensor data needs to be ultimately fed to public, private or hybrid cloud for analysis, control or monitoring
- Outside of WPAN, the world is TCP/IP-based
- So, a big role for IP in IoT!!

IP Role in IoT

- **Ubiquity**: IP stacks are provided by nearly every OS and every medium capable of running on various underlying systems
- Longevity: Has stood the test of time
- Standards-based: IETF maintains a set of open standards focused on Internet Protocol.
- Scalability: IPv6 could provide a unique IP address to anything and everything
- Reliability: Is reliable and considers best-effort delivery
- Manageability: Various tools exist to manage IP networks and devices on an IP network

Tranport Layer

- TCP and Universal Datagram Protocol (UDP) are used in Transport Layer
- Responsible for end-to-end communication
- TCP is connection oriented whereas UDP is connection less
- TCP provides reliability using acknowledgement messages and retransmissions of lost messages
- TCP provides flow control using sliding windows and congestion avoidance algorithms
- UDP is much simpler to implement and is not reliable

WPAN with IP – 6LoWPAN

- Bringing IP addressability to smallest and most resource-constrained devices
- 6LoWPAN was formed in 2005
- 6LoWPAN Acronym that stands for IPV6 over low power WPANs

6LoWPAN Topology

- 6LoWPAN networks are mesh networks residing on the periphery of larger networks
- Flexible topologies allowing adhoc and disjointed networks without any binding to internet or other systems
- If connected to backbone, uses edge routers

IEEE 802.11 and WLAN

- 802.11 specifies the Media Access Control (MAC) and physical layer (PHY) of a networking stack
- Wi-Fi is the definition of WLAN based on IEEE 802.11 standards maintained and governed by Wi-Fi alliance
- Success can be attributed to the layered stack approach of OSI model where the MAC and PHY layers can be simply replaced by the IEEE 802.11 layers

IEEE 802.11 suite of protocols

- Original 802.11 goal was to provide a link layer protocol for wireless networking
- Evolved from 802.11 base specification to 802.11ac
- Since then, working group has focused on other areas
 - Low power/low bandwidth IoT interconnect (802.1 Iah)
 - Vehicle-to-Vehicle communication (802.11p)
- New variants designed for different areas of RF spectrum or to reduce latency and improve safety for vehicular emergencies

Various IEEE 802.11 standards

IEEE 802.11 Protocol	Use Case	Release Date	Frequency (GHz)	Bandwidth (MHz)	Streaming Data Rate per Channel min-max (Mbps)	Allowable MIMO Streams	Modulation	Indoor Range (m)	Outdoor Range (m)	Typical Dissipated Power per Chip (mW)
802.11	First 802.11 design	Jun-97	2.4	22	1 to 2	1	DSSS, FHSS	20	20	50
а	Release simulataneously with 802.11b Less prone to interefernce than 802.11b	Sep-99	5 3.7	20	6 to 54	1	OFDM (SISO)	30	120 5000	50
b	Release simulataneously with 802.11a Significant speed increase over 802.11a at improved range	Sep-99	2.4	22	1 to 11	1	DSSS (SISO)	50	150	7 to 50
g	Speed increase over 802.11b	Jun-03	2.4	20	6 to 54	1	OFDM. DSSS (SISO)	38	140	50
n	Multiple antenna technology for improved speed, and range.	Oct-09	2.4/5	20	7.2 to 72.2	- 4	OFDM (MIMO)	70	250	40
				40	15 to 150					
ac	Better performacne and coverage over 802.11n. Wider channel and improved modulation. Allows multiple users using MU- MIMO. Introduced beamforming.	Dec-13	5	20	7.2 to 96.3	8	OFDM (MU_MIMO)	35	35	40
				40	15 to 200					
				80	32.5 to 433.3					
				160	65 to 866.7					
ah	"WiFi HaLow" Designed for IoT and sensor networks. Very low power and wider range.	Dec-16	2.4/5	1 to 16	347	4	OFDM	1000	1000	tbd but goal is low power
р	"Wireless Access in Vehicular Environments" "Intelligent Transport Systems" Dedicated Short Range Communication Trnasport uses cases: toll collection, safety and collision emergencies, vehicular networking.	Jun-09	5.9	10	27	1	OFDM	NA	400 to 1000	40
af	"white WiFi" or "Super WiFi" Deploy unused spectrum in TV bands to provide last mile connectivity in India, Kenya, Singapoere, US and UK	Nov-13	0.470 to 0.710	6 to 8	568	4	OFDM	NA	6000-100,000	tbd
ad	WiGig Alliance 60 GHz Wireless for HD video and projectors Audio and video transport and cable replacement	Dec-12	60	2160	4260	>10	SC, OFDM (MU-MIMO)	10	10	tbd
ax	"High Efficiency Wireless (HEW)" Next gen 802.11 4x increase in capacity over 802.11ac Average increase of 4x speed per user over 802.11ac Backwards compatible to 802.11a/b/g/n/ac Dense deployment scenarios	2019	2.4/5	20	450 to 10000	8	OFDMA (MU-MIMO)	35	35	tbd
				40						
				80						
				160						

Supported Topologies by 802.11

- Infrastructure: A station (STA) refers to an 802. I I endpoint device that communicates with a central access point (AP).
- An AP can be a gateway to other networks (WAN), a router, or a true access point in a larger network
- Also known as Infrastructure Basic Set Service (BSS) – Star topology

Supported Topologies by 802.11

- Ad hoc: 802. I I nodes can form Independent Basic Set Service (IBSS)
- Each station communicates and manages the interface with other stations
- No access point Peer to peer type of topology

Supported Topologies by 802.11

- Distribution system (DS):
 Combines two or more independent
 BSS networks through access point
 interconnects
- In total 802. I I protocol allows for up to 2007 STAs to be associated with a single access point

IEEE 802.11 operation

- STA is a device equipped with wireless network interface controller
- An STA will always be listening for active communication in a specific channel
- First phase to connecting Wi-Fi is the scanning phase. Two types of scan mechanisms
 - O Passive scanning:
 - ✓ After a channel is selected, device performing the scan will receive beacons and probe requests from nearby STAs
 - ✓ An access point may transmit a beacon, and the STA may join if it receives the transmitted beacon
 - O Active scanning:
 - ✓ STA will attempt to locate an access point by instantiating probe requests
 - √ Uses more power but faster for joining
 - ✓ AP responds to probe request with a probe request response

IEEE 802.11 operation

- An AP will typically broadcast a beacon at a fixed time interval called the Target Beacon Transmit Time (TBTT) typically once in every 100 ms
- Beacons are always broadcast at lowest basic rates
- After a beacon is processed, next phase in Wi-Fi connectivity is **synchronization phase** necessary to keep clients attuned to the AP
- Beacon packet contains information needed by the STA:
 - SSID: Service Set ID, I-32 character network name
 - o BSSID: Basic Service Set ID. Formed by combination of 24-bit Organization unique identifier and manufacturer's assigned 24-bit identifier for the radio chipset
 - Channel width: 20 MHz, 40 MHz and so on
 - Country: List of supported channels (country-specific)
 - Beacon interval (TBTT)
 - o TIM/DTIM: Wake-up times and intervals to retrieve broadcast messages (for advanced power management)
 - Security services:WEP,WPA and WPA2 abilities
- If the STA finds an AP or another STA to connect, then it enters an authentication phase
- If authentication succeeds, next phase is **association** → Device sends an association request frame to the AP → AP will reply with an association response frame → If the STA is included in the network, AP will release an association ID to the client and add it to the list of connected clients

Long-Range Communication (WAN)

 Sensors, actuators, cameras, vehicles, smart embedded devices, etc, will be in remotest of places and need to be connected to the internet or other systems → Need for WAN

LoRaWAN Device Classes

Battery Lifetime

Battery powered sensors

- Most energy efficient
- Must be supported by all devices
- Downlink available only after sensor TX

Ba •

Battery powered actuators

- Energy efficient w/ latency controlled downlink
- Slotted communication synchronized with a beacon

Mains powered actuators

- Devices which can afford to listen continuously
- No latency for downlink communication

Downlink Network Communication Latency

LoRaWAN Network Features

Long Range

- □ Greater than cellular
- □ Indoor coverage
- □ Star topology

Max Lifetime

- □ Low power optimized
- □ 5-10yr lifetime
- □ >10x vs cellular M2M

Multi Usage

- □ High capacity
- Multi-tenant
- □ Public network

Low Cost

- Minimal infrastructure
- □ Low cost end-node
- □ Open SW

Network Architecture

LoRaWAN solutions – Parking Occupancy

Asset Management

Comparison of Long Range Communication Protocols

- I. LoRa
- 2. SigFox
- 3. LTE-M

Certification	Coverage	Payload	Data Rate (Max)	Frequency Range	Security	Power Consumption
Yes	15 KM	243 bytes	< 50 Kbps	125 KHz	AES Encryption	20dBm
Yes	13 KM	12 bytes	< 100 bps	868/915 MHz	None	13.5 dBm
Yes	II KM	1000 bytes	< I Mbps	20 MHz	AES Encryption	23 dBm

Thank You