Homework 1

 $21\mbox{-}236$ Mathematical Studies Analysis II

Name: Shashank Singh Email: sss1@andrew.cmu.edu Due: Monday, January 30, 2012

Problem 1

(a) Let $U \subseteq \mathbb{R}^N$ be open and convex, and let $f: U \to \mathbb{R}$ be differentiable in U. Suppose f is Lipschitz continuous in U, with Lipschitz constant $L \ge 0$. Let $x \in U$, and let

$$i = \arg\max_{k=1,\dots,n} \left(\frac{\partial f}{\partial e_i}\right)$$

(so that $\frac{\partial f}{\partial e_i}(\mathbf{x})$ is the partial derivative of f at \mathbf{x} of greatest magnitude). Then,

$$||\nabla f(\mathbf{x})|| = \sqrt{\sum_{k=1}^{n} \left(\frac{\partial f}{\partial e_k}(\mathbf{x})\right)^2}$$

$$\leq \sqrt{\sum_{k=1}^{n} \left(\frac{\partial f}{\partial e_i}(\mathbf{x})\right)^2}$$

$$= \sqrt{N\left(\frac{\partial f}{\partial e_i}(\mathbf{x})\right)^2}$$

Letting $\mathbf{y} = \mathbf{x} - t\mathbf{e}_i$, since f is Lipschitz continuous with Lipschitz constant L,

$$L \ge \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{||\mathbf{x} - \mathbf{y}||} = \frac{|f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x})|}{||t\mathbf{e}_i||},$$

so that

$$L \ge \lim_{t \to 0} \frac{|f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x})|}{||t\mathbf{e}_i||} = \frac{\partial f}{\partial e_i}(\mathbf{x}).$$

Therefore, for

$$M = \sqrt{NL^2} = L\sqrt{N} > 0,$$

we have $||\nabla f(\mathbf{x})|| \leq M$.

Suppose, on the other hand, that, for some M > 0, $\forall x \in U$, $\nabla f(\mathbf{x}) \leq M$. Since f is differentiable in U, by the Cauchy-Schwarz inequality, $\forall \mathbf{x} \in U$,

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v} \le ||\nabla f(\mathbf{x})|| \cdot ||\mathbf{v}|| = ||\nabla f(\mathbf{x})|| \le M.$$

Let $\mathbf{x}, \mathbf{y} \in U$. Let $\mathbf{v} = \frac{\mathbf{y} - \mathbf{x}}{||\mathbf{y} - \mathbf{x}||}$. Since f is differentiable on U, by the Mean Value Theorem, for some $\Theta \in (0, 1)$ (noting that, since U is convex, so that $(\Theta \mathbf{x} + (1 - \Theta)\mathbf{y}) \in U$),

$$\frac{|f(\mathbf{x}) - f(\mathbf{y})|}{||\mathbf{x} - \mathbf{y}||} = \frac{\partial f}{\partial \mathbf{v}}(\Theta \mathbf{x} + (1 - \Theta)\mathbf{y}) \le M.$$

Thus, f is Lipschitz continuous on U.

(b) f has continuous partial derivatives on U and is thus differentiable on U. The partial derivatives of f are bounded above and below by 2 and -2, respectively. Thus, for $M = 2\sqrt{2}$, $||\nabla f(x,y)|| \le M$, $\forall (x,y) \in U$. For x = 1, for y > 0, f(x,y) > 1, whereas, for y < 0, f(x,y) < -1, so that, $\forall L > 0$, $\exists (x_1, y_1), (x_2, y_2) \in U$ such that

$$|f(x_1, y_1) - f(x_2, y_2)| > L||f(x_1, y_1) - f(x_2, y_2)||$$

Therefore, f is not Lipschitz continuous on U.

Problem 2

Let $f: B(\mathbf{x}_0, r) \to \mathbb{R}$ be Lipschitz continuous, with Lipschitz constant L.

- (a) This follows immediately from part (b).
- (b) Since $\partial B(\mathbf{0}$ is a closed and bounded set in \mathbb{R}^N , E is compact in \mathbb{R}^N . Thus, since $\forall k \in \mathbb{N}$, $C := \{B(\mathbf{v}, \frac{1}{2k}) | \mathbf{v} \in E\}$ is an open cover of E, there exists a finite open subcover $S \subseteq C$ of E. Since E is dense, $\forall B \in S$, $\exists \mathbf{v} \in E \cap B$. Thus, $\forall \mathbf{x} \in B(\mathbf{x}_0, r)$, for some $\mathbf{v} \in E$,

$$\frac{f(\mathbf{x} - \mathbf{x}_0 - \nabla f(\mathbf{x})(\mathbf{x} - \mathbf{x}_0)}{||\mathbf{x} - \mathbf{x}_0||} = \frac{f(\mathbf{x} - \mathbf{x}_0 - \frac{\partial f}{\partial \mathbf{v}}(mathbfx - \mathbf{x}_0)}{||\mathbf{x} - \mathbf{x}_0||} \to 0$$

as $\mathbf{x} \to \mathbf{x}_0$. Thus, since \mathbf{x}_0 is an interior point of $B(\mathbf{x}_0, r)$, f is differentiable at \mathbf{x}_0 .

Problem 3

Let $f: \mathbb{R}^2 \setminus \{(x,y)\mathbb{R}^2 | xy = 0, x^2 + y^2 \neq 0\} \to \mathbb{R}$ such that, $\forall (x,y) \in \mathbb{R}$,

$$f(x,y) = \frac{|xy|}{xy}(x^2 + y^2).$$

Then,

$$\lim_{(x,y)\to \mathbf{0}} \frac{f(x,y)-f(\mathbf{0})-0}{||(x,y)-\mathbf{0}||} = \lim_{(x,y)\to \mathbf{0}} \frac{|xy|(x^2+y^2)}{xy\sqrt{x^2+y^2}} = 0,$$

since $\frac{|xy|}{xy}$ is bounded and $\sqrt{x^2 + y^2} \to 0$ as $(x, y) \to \mathbf{0}$, so that f is differentiable and thus continuous at $\mathbf{0}$. However, since f is undefined on the x- and y-axes (except at $\mathbf{0}$), f has no partial derivatives at $\mathbf{0}$.

Problem 4

- (a) f has continuous partial derivatives and is thus differentiable and continuous everywhere except **0**. At **0**, f is continuous if and only if $m + n \ge 2$, and differentiable if and only if $m + n \ge 3$.
- (b) f has continuous partial derivatives and is thus differentiable and continuous everywhere except **0**. At **0**, f is continuous if and only if $m \ge 2$, $n \ge 4$, or m = 1 and n = 3, and f is differentiable if and only if $m \ge 3$, $n \ge 5$, m = 1 and n = 4, or m = n = 2.
- (c) f has continuous partial derivatives and is thus differentiable and continuous wherever $x^2 \neq y^2$. f is discontinuous and thus not differentiable wherever $x^2 = y^2$. Wherever $x^2 = y^2$, the directional derivatives of f exist only in those directions pointing towards and away from the origin.
- (d) Let $g, h : \mathbb{R}^2 \to \mathbb{R}$ such that, $\forall (x, y) \in \mathbb{R}^2$, $g(x, y) = x^2 \sin\left(\frac{1}{x}\right)$ and $h(x, y) = y^2 \sin\left(\frac{1}{y}\right)$. Then, g and h are everywhere differentiable, so that, since f = g + h, f is everywhere differentiable. Therefore, f is everywhere continuous, and all directional derivatives of f exist at all points.