US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Bate of Patent

August 12, 2025

Inventor(s)

Nyikos; Thomas et al.

Bearingless implantable blood pump

Abstract

Implantable blood pumps and related methods employ a compact rotary motor. The compact rotary motor includes a stator and a rotor. The stator is disposed within a housing circumferentially about a dividing wall such that a blood flow conduit extends through the stator. The stator is disposed circumferentially around at least a portion of the rotor.

Inventors: Nyikos; Thomas (Zurich, CH), Warberger; Bernhard (Zurich, CH)

Applicant: TC1 LLC (St. Paul, MN)

Family ID: 64755722

Assignee: TC1 LLC (St. Paul, MN)

Appl. No.: 17/205336

Filed: March 18, 2021

Prior Publication Data

Document IdentifierUS 20210205600 A1

Publication Date
Jul. 08, 2021

Related U.S. Application Data

continuation parent-doc US 16204015 20181129 US 10973967 child-doc US 17205336 us-provisional-application US 62615708 20180110

Publication Classification

Int. Cl.: A61M60/422 (20210101); A61M60/148 (20210101); A61M60/178 (20210101); A61M60/216 (20210101); A61M60/538 (20210101); A61M60/81 (20210101);

A61M60/857 (20210101)

U.S. Cl.:

CPC **A61M60/422** (20210101); **A61M60/148** (20210101); **A61M60/178** (20210101); **A61M60/216** (20210101); **A61M60/538** (20210101); **A61M60/81** (20210101);

A01N100/210 (20210101); A01N100/556 (20210101); A01N100/61 (2

A61M60/857 (20210101);

Field of Classification Search

CPC: A61M (60/422); A61M (60/81); A61M (60/538); A61M (60/148); A61M (60/178); A61M

(60/857); A61M (60/216)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
845816	12/1906	Prindle	0.3. CI. N/A	N/A
888654	12/1907	Prindle	N/A	N/A
1026101	12/1907	Marsh	N/A	N/A
2128988	12/1911	Russell	N/A N/A	N/A
2747512	12/1955	Paul	N/A N/A	N/A
2864552	12/1955 12/1957	Norman	N/A N/A	N/A
3005117	12/1960	Buchhold	N/A N/A	N/A
3066849	12/1961	Beams	N/A N/A	N/A
3122101	12/1963	Baker et al.	N/A N/A	N/A
3225608	12/1963 12/1964	Ivan	N/A N/A	N/A
3401640	12/1967	John et al.	N/A N/A	N/A
3499274	12/1969		N/A N/A	N/A
3575536	12/1969	Fergason Jacobs et al.	N/A N/A	N/A N/A
3597022	12/1970	Waldron	N/A N/A	N/A
3608088	12/1970	Dorman et al.	N/A	N/A
3611815	12/1970	Fischell	N/A	N/A
3647324	12/1971	Rafferty et al.	N/A	N/A
3650581	12/1971	Boden et al.	N/A	N/A
3938913	12/1975	Isenberg et al.	N/A	N/A
3957389	12/1975	Rafferty et al.	N/A	N/A
4082376	12/1977	Wehde et al.	N/A	N/A
4135253	12/1978	Reich et al.	N/A	N/A
4213207	12/1979	Wilson	N/A	N/A
4340260	12/1981	Forster et al.	N/A	N/A
4382199	12/1982	Isaacson	N/A	N/A
4398773	12/1982	Boden et al.	N/A	N/A
4405286	12/1982	Studer	N/A	N/A
4408966	12/1982	Maruyama	N/A	N/A
4475866	12/1983	Kambe et al.	N/A	N/A
4507048	12/1984	Belenger et al.	N/A	N/A
4589822	12/1985	Clausen et al.	N/A	N/A
4642036	12/1986	Young	N/A	N/A
4688998	12/1986	Olsen et al.	N/A	N/A
4704121	12/1986	Moise	N/A	N/A

4779614 12/1987 Moise N/A N/A 4844707 12/1988 Kletschka N/A N/A 4876492 12/1988 Lester et al. N/A N/A 4878831 12/1988 Ewing N/A N/A 4929158 12/1989 Girault N/A N/A 4947478 12/1989 Ghadack N/A N/A 4957504 12/1989 Chardack N/A N/A 5044897 12/1990 Dorman 417/365 A61M 50755005 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Bramm et al. N/A N/A 5098256 12/1991 Smith N/A N/A 5112200 12/1991 Lemarquand et al. N/A N/A 5112201 12/1991 Girault N/A N/A 5127792 12/1991 Girault N/A N/A 517387 12/1991 Katsuta et al. N/A	4763032	12/1987	Bramm et al.	N/A	N/A
4844707 12/1988 Kletschka N/A N/A 4876492 12/1988 Lester et al. N/A N/A 4878831 12/1989 Ewing N/A N/A 4929158 12/1989 Girault N/A N/A 494748 12/1989 Bramm et al. N/A N/A 5044897 12/1989 Chardack N/A N/A 5078741 12/1990 Kletschka N/A N/A 5078741 12/1991 Bramm et al. N/A N/A 5078741 12/1991 Dorman N/A N/A 5078741 12/1991 Dorman N/A N/A 5078741 12/1991 Dorman N/A N/A 5106273 12/1991 Smith N/A N/A 5112200 12/1991 Oshima et al. N/A N/A 5122021 12/1991 Girault N/A N/A 5127792 12/1991 Girault N/A N/A<					
4876492 12/1988 Lester et al. N/A N/A 4878831 12/1988 Ewing N/A N/A 4929158 12/1989 Girault N/A N/A 4944748 12/1989 Chardack N/A N/A 507504 12/1990 Chardack N/A N/A 504897 12/1990 Kletschka N/A N/A 5078741 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Dorman N/A N/A 5106273 12/1991 Smith N/A N/A 5112200 12/1991 Jsacson et al. N/A N/A 5112201 12/1991 Girault N/A N/A 5127792 12/1991 Girault N/A N/A 5127792 12/1991 Girault N/A N/A 5173387 12/1991 Girault N/A N/A 5195877 12/1991 Girault N/A N/A					
4878831 12/1988 Ewing N/A N/A 4929158 12/1989 Girault N/A N/A 494748 12/1989 Bramm et al. N/A N/A 4957504 12/1989 Chardack N/A N/A 5044897 12/1990 Dorman 417/365 60/824 5055005 12/1990 Kletschka N/A N/A 5078741 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Dorman N/A N/A 5098256 12/1991 Smith N/A N/A 5106273 12/1991 Isaacson et al. N/A N/A 5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Girault N/A N/A 51227792 12/1991 Girault N/A N/A 51277387 12/1991 Chatsute et al. N/A N/A 51277387 12/1992 Kletschka N/					
4929158 12/1989 Girault N/A N/A 4944748 12/1989 Bramm et al. N/A N/A 4957504 12/1989 Chardack N/A N/A 5044897 12/1990 Dorman 417/365 60/824 5055005 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Dorman N/A N/A 5098256 12/1991 Smith N/A N/A 5116273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Ghima et al. N/A N/A 5112202 12/1991 Ghima et al. N/A N/A 5127792 12/1991 Ghima et al. N/A N/A 5127792 12/1991 Ghima et al. N/A N/A 5177387 12/1991 Chu et al. N/A N/A 5195877 12/1992 Mcmichael et al. N/A N/A 5220232 12/1992 Rigney, II et					
4944748 12/1989 Bramm et al. N/A N/A 4957504 12/1989 Chardack N/A N/A 5044897 12/1990 Dorman 417/365 60/824 5055005 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Bramm et al. N/A N/A 5098256 12/1991 Smith N/A N/A 5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Girault N/A N/A 5112202 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 517387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 534059 12/1994 <td< td=""><td></td><td></td><td>9</td><td></td><td></td></td<>			9		
4957504 12/1989 Chardack N/A N/A 5044897 12/1990 Dorman 417/365 60/824 5055005 12/1990 Kletschka N/A N/A 5078741 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Dorman N/A N/A 5098256 12/1991 Smith N/A N/A 5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Jaacson et al. N/A N/A 5112201 12/1991 Oshima et al. N/A N/A 5126612 12/1991 Girault N/A N/A 5127792 12/1991 Chu et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama e					
504489/ 12/1990 Dorman 417/365 60/824 5055005 12/1990 Kletschka N/A N/A 5078741 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Dorman N/A N/A 5106273 12/1991 Smith N/A N/A 5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Oshima et al. N/A N/A 5112202 12/1991 Girault N/A N/A 512202 12/1991 Katsuta et al. N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Pukuyama et al. N/A N/A 5385581 12/1993	4957504	12/1989	Chardack	N/A	N/A
5078741 12/1991 Bramm et al. N/A N/A 5079467 12/1991 Dorman N/A N/A 5098256 12/1991 Smith N/A N/A 5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Oshima et al. N/A N/A 5126612 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5177387 12/1991 Chu et al. N/A N/A 5195877 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Glausen et al. N/A N/A 5470208 12/1994	5044897	12/1990	Dorman	417/365	
5079467 12/1991 Dorman N/A N/A 5098256 12/1991 Smith N/A N/A 5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Oshima et al. N/A N/A 5126612 12/1991 Girault N/A N/A 5127792 12/1991 Chu et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5341059 12/1993 Clausen et al. N/A N/A 5470208 12/1994 Bramm et al. N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5798454 12/1997	5055005	12/1990	Kletschka	N/A	N/A
5098256 12/1991 Smith N/A N/A 5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Oshima et al. N/A N/A 512612 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Kletschka N/A N/A 520232 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1994 Kletschka N/A N/A 5708346 12/1997 <td< td=""><td>5078741</td><td>12/1991</td><td>Bramm et al.</td><td>N/A</td><td>N/A</td></td<>	5078741	12/1991	Bramm et al.	N/A	N/A
5106273 12/1991 Lemarquand et al. N/A N/A 5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Oshima et al. N/A N/A 5126612 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 5220232 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5341059 12/1993 Clausen et al. N/A N/A 5380317 12/1993 Clausen et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1994 Kletschka N/A N/A 5798454 12/19	5079467	12/1991	Dorman	N/A	N/A
5112200 12/1991 Isaacson et al. N/A N/A 5112202 12/1991 Oshima et al. N/A N/A 5126612 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Kletschka N/A N/A 520232 12/1992 Rigney, II et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5470208 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5708346 12/1996 Bozeman, Jr. et al. N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 </td <td>5098256</td> <td>12/1991</td> <td>Smith</td> <td>N/A</td> <td>N/A</td>	5098256	12/1991	Smith	N/A	N/A
5112202 12/1991 Oshima et al. N/A N/A 5126612 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Rigney, II et al. N/A N/A 520232 12/1993 Fukuyama et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1993 Bramm et al. N/A N/A 5470208 12/1994 Bramm et al. N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5987729 12/1998 </td <td>5106273</td> <td>12/1991</td> <td>Lemarquand et al.</td> <td>N/A</td> <td>N/A</td>	5106273	12/1991	Lemarquand et al.	N/A	N/A
5126612 12/1991 Girault N/A N/A 5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Kletschka N/A N/A 520232 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5678306 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5917297 12/1998 Antaki et al. N/A N/A 5928131 12/1998	5112200	12/1991	Isaacson et al.	N/A	N/A
5127792 12/1991 Katsuta et al. N/A N/A 5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Kletschka N/A N/A 520232 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5928131 12/1998 Gerster et al. N/A N/A 592709 12/1998	5112202	12/1991	Oshima et al.	N/A	N/A
5159219 12/1991 Chu et al. N/A N/A 5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Kletschka N/A N/A 520032 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Glausen et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Pr	5126612	12/1991	Girault	N/A	N/A
5177387 12/1992 Mcmichael et al. N/A N/A 5195877 12/1992 Kletschka N/A N/A 5220232 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1994 Bramm et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5917297 12/1998 Antaki et al. N/A N/A 5928131 12/1998 Prem N/A N/A 6053705 12/1998 Nojiri et	5127792	12/1991	Katsuta et al.	N/A	N/A
5195877 12/1992 Kletschka N/A N/A 5220232 12/1992 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 588242 12/1997 Schob N/A N/A 5917297 12/1998 Antaki et al. N/A N/A 5947703 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6071093 12/1999 Schob et al	5159219	12/1991	Chu et al.	N/A	N/A
5220232 12/1993 Rigney, II et al. N/A N/A 5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5917297 12/1998 Antaki et al. N/A N/A 5947703 12/1998 Gerster et al. N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6071093 12/1999 Schob et al. N/A N/A 610618 12/1999 <t< td=""><td>5177387</td><td>12/1992</td><td>Mcmichael et al.</td><td>N/A</td><td>N/A</td></t<>	5177387	12/1992	Mcmichael et al.	N/A	N/A
5341059 12/1993 Fukuyama et al. N/A N/A 5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5917297 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5947703 12/1998 Prem N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6116862 12/1999 Schoeb et al. N/A N/A 6146325 12/1999 Lewis et a	5195877	12/1992	Kletschka	N/A	N/A
5360317 12/1993 Clausen et al. N/A N/A 5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Schob N/A N/A 5808437 12/1997 Schob N/A N/A 5888242 12/1998 Antaki et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Prem N/A N/A 6053705 12/1999 Schob et al. N/A N/A 610618 12/1999 Schoeb et al. N/A N/A 6130494 12/1999 Schob N/A	5220232	12/1992	Rigney, II et al.	N/A	N/A
5385581 12/1994 Bramm et al. N/A N/A 5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Schob N/A N/A 5808437 12/1997 Schob N/A N/A 5917297 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 610618 12/1999 Schoeb et al. N/A N/A 6130494 12/1999 Schob <td< td=""><td>5341059</td><td>12/1993</td><td>Fukuyama et al.</td><td>N/A</td><td>N/A</td></td<>	5341059	12/1993	Fukuyama et al.	N/A	N/A
5470208 12/1994 Kletschka N/A N/A 5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5817297 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6146325 12/1999 Lewis et al.<	5360317	12/1993	Clausen et al.	N/A	N/A
5678306 12/1996 Bozeman, Jr. et al. N/A N/A 5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Schob N/A N/A 5808437 12/1997 Schob N/A N/A 588242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Lewis et al. N/A N/A 618665 12/2000 Maher et al.	5385581	12/1994	Bramm et al.	N/A	N/A
5695471 12/1996 Wampler N/A N/A 5708346 12/1997 Schob N/A N/A 5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 588242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6130494 12/1999 Schob N/A N/A 6146325 12/1999 Lewis et al. N/A N/A 6186665 12/2000 Maher et al. N	5470208	12/1994	Kletschka	N/A	N/A
5708346 12/1997 Schob N/A N/A 5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5888242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 6186655 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Wampler et al. <td>5678306</td> <td>12/1996</td> <td>Bozeman, Jr. et al.</td> <td>N/A</td> <td>N/A</td>	5678306	12/1996	Bozeman, Jr. et al.	N/A	N/A
5725357 12/1997 Nakazeki et al. N/A N/A 5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5888242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6106618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6146325 12/1999 Schob N/A N/A 6186665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Watterson et al. <td>5695471</td> <td>12/1996</td> <td>Wampler</td> <td>N/A</td> <td>N/A</td>	5695471	12/1996	Wampler	N/A	N/A
5798454 12/1997 Nakazeki et al. N/A N/A 5808437 12/1997 Schob N/A N/A 5888242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6106618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 6186665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Watterson et al. N/A N/A 6249067 12/2000 Schob et al.	5708346	12/1997	Schob	N/A	N/A
5808437 12/1997 Schob N/A N/A 5888242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 618665 12/2000 Maher et al. N/A N/A 618665 12/2000 Schoeb et al. N/A N/A 6227797 12/2000 Watterson et al. N/A N/A 6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al.	5725357	12/1997	Nakazeki et al.	N/A	N/A
5888242 12/1998 Antaki et al. N/A N/A 5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 618665 12/1999 Lewis et al. N/A N/A 618665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. <td>5798454</td> <td>12/1997</td> <td>Nakazeki et al.</td> <td>N/A</td> <td>N/A</td>	5798454	12/1997	Nakazeki et al.	N/A	N/A
5917297 12/1998 Gerster et al. N/A N/A 5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 6146325 12/1999 Lewis et al. N/A N/A 618665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Watterson et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	5808437	12/1997	Schob	N/A	N/A
5928131 12/1998 Prem N/A N/A 5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 6146325 12/1999 Lewis et al. N/A N/A 618665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	5888242	12/1998	Antaki et al.	N/A	N/A
5947703 12/1998 Nojiri et al. N/A N/A 6053705 12/1999 Schob et al. N/A N/A 6071093 12/1999 Hart N/A N/A 6100618 12/1999 Schoeb et al. N/A N/A 6116862 12/1999 Rau et al. N/A N/A 6130494 12/1999 Schob N/A N/A 6146325 12/1999 Lewis et al. N/A N/A 618665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6234772 12/2000 Watterson et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	5917297	12/1998	Gerster et al.	N/A	N/A
605370512/1999Schob et al.N/AN/A607109312/1999HartN/AN/A610061812/1999Schoeb et al.N/AN/A611686212/1999Rau et al.N/AN/A613049412/1999SchobN/AN/A614632512/1999Lewis et al.N/AN/A618666512/2000Maher et al.N/AN/A622229012/2000Schoeb et al.N/AN/A622779712/2000Watterson et al.N/AN/A623477212/2000Wampler et al.N/AN/A624906712/2000Schob et al.N/AN/A626463512/2000Wampler et al.N/AN/A	5928131	12/1998		N/A	N/A
607109312/1999HartN/AN/A610061812/1999Schoeb et al.N/AN/A611686212/1999Rau et al.N/AN/A613049412/1999SchobN/AN/A614632512/1999Lewis et al.N/AN/A618666512/2000Maher et al.N/AN/A622229012/2000Schoeb et al.N/AN/A622779712/2000Watterson et al.N/AN/A623477212/2000Wampler et al.N/AN/A624906712/2000Schob et al.N/AN/A626463512/2000Wampler et al.N/AN/A		12/1998	_		N/A
610061812/1999Schoeb et al.N/AN/A611686212/1999Rau et al.N/AN/A613049412/1999SchobN/AN/A614632512/1999Lewis et al.N/AN/A618666512/2000Maher et al.N/AN/A622229012/2000Schoeb et al.N/AN/A622779712/2000Watterson et al.N/AN/A623477212/2000Wampler et al.N/AN/A624906712/2000Schob et al.N/AN/A626463512/2000Wampler et al.N/AN/A	6053705	12/1999	Schob et al.	N/A	N/A
611686212/1999Rau et al.N/AN/A613049412/1999SchobN/AN/A614632512/1999Lewis et al.N/AN/A618666512/2000Maher et al.N/AN/A622229012/2000Schoeb et al.N/AN/A622779712/2000Watterson et al.N/AN/A623477212/2000Wampler et al.N/AN/A624906712/2000Schob et al.N/AN/A626463512/2000Wampler et al.N/AN/A		12/1999			
613049412/1999SchobN/AN/A614632512/1999Lewis et al.N/AN/A618666512/2000Maher et al.N/AN/A622229012/2000Schoeb et al.N/AN/A622779712/2000Watterson et al.N/AN/A623477212/2000Wampler et al.N/AN/A624906712/2000Schob et al.N/AN/A626463512/2000Wampler et al.N/AN/A	6100618	12/1999	Schoeb et al.	N/A	N/A
614632512/1999Lewis et al.N/AN/A618666512/2000Maher et al.N/AN/A622229012/2000Schoeb et al.N/AN/A622779712/2000Watterson et al.N/AN/A623477212/2000Wampler et al.N/AN/A624906712/2000Schob et al.N/AN/A626463512/2000Wampler et al.N/AN/A	6116862	12/1999	Rau et al.	N/A	N/A
6186665 12/2000 Maher et al. N/A N/A 6222290 12/2000 Schoeb et al. N/A N/A 6227797 12/2000 Watterson et al. N/A N/A 6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	6130494	12/1999	Schob	N/A	N/A
6222290 12/2000 Schoeb et al. N/A N/A 6227797 12/2000 Watterson et al. N/A N/A 6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	6146325	12/1999	Lewis et al.	N/A	N/A
6227797 12/2000 Watterson et al. N/A N/A 6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	6186665	12/2000	Maher et al.	N/A	N/A
6234772 12/2000 Wampler et al. N/A N/A 6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	6222290	12/2000	Schoeb et al.	N/A	N/A
6249067 12/2000 Schob et al. N/A N/A 6264635 12/2000 Wampler et al. N/A N/A	6227797			N/A	N/A
6264635 12/2000 Wampler et al. N/A N/A	6234772	12/2000	<u>-</u>	N/A	N/A
1					
6278251 12/2000 Schob N/A N/A	6264635	12/2000	-	N/A	N/A
	6278251	12/2000	Schob	N/A	N/A

6293901	12/2000	Prem	N/A	N/A
6302661	12/2000	Khanwilkar et al.	N/A	N/A
6351048	12/2001	Schob et al.	N/A	N/A
6355998	12/2001	Schoeb et al.	N/A	N/A
6394769	12/2001	Beamson et al.	N/A	N/A
6447266	12/2001	Antaki et al.	N/A	N/A
6468041	12/2001	Ozaki	N/A	N/A
6547530	12/2002	Ozaki et al.	N/A	N/A
6559567	12/2002	Schoeb	N/A	N/A
6575717	12/2002	Ozaki et al.	N/A	N/A
6589030	12/2002	Ozaki	N/A	N/A
6605032	12/2002	Benkowski et al.	N/A	N/A
6623475	12/2002	Siess	N/A	N/A
6626644	12/2002	Ozaki	N/A	N/A
6634224	12/2002	Schob et al.	N/A	N/A
6640617	12/2002	Schob et al.	N/A	N/A
6641378	12/2002	Davis et al.	N/A	N/A
6688861	12/2003	Wampler	N/A	N/A
6707200	12/2003	Carroll et al.	N/A	N/A
6711943	12/2003	Schob	N/A	N/A
6817836	12/2003	Nose et al.	N/A	N/A
6949066	12/2004	Beamson et al.	N/A	N/A
6991595	12/2005	Burke et al.	N/A	N/A
7070398	12/2005	Olsen et al.	N/A	N/A
7112903	12/2005	Schob	N/A	N/A
7138776	12/2005	Gauthier et al.	N/A	N/A
7150711	12/2005	Nusser et al.	N/A	N/A
D534548	12/2006	Urano et al.	N/A	N/A
7160242	12/2006	Yanai	N/A	N/A
7229258	12/2006	Wood et al.	N/A	N/A
7229474	12/2006	Hoffmann et al.	N/A	N/A
7239098	12/2006	Masino	N/A	N/A
7284956	12/2006	Nose et al.	N/A	N/A
7338521	12/2007	Antaki et al.	N/A	N/A
7462019	12/2007	Allarie et al.	N/A	N/A
7497116	12/2008	Miyakoshi et al.	N/A	N/A
7511443	12/2008	Townsend et al.	N/A	N/A
7578782	12/2008	Miles et al.	N/A	N/A
7591777	12/2008	LaRose	N/A	N/A
7645225	12/2009	Medvedev et al.	N/A	N/A
7699586	12/2009	LaRose et al.	N/A	N/A
7699588	12/2009	Mendler	N/A	N/A
7854631	12/2009	Townsendl et al.	N/A	N/A
7861582	12/2010	Miyakoshi et al.	N/A	N/A
7887479	12/2010	LaRose et al.	N/A	N/A
7893644	12/2010	Townsend et al.	N/A	N/A
7951062	12/2010	Morello	N/A	N/A
7976271	12/2010	LaRose et al.	N/A	N/A
7997854	12/2010	LaRose et al.	N/A	N/A
8007254	12/2010	LaRose et al.	N/A	N/A

8152493	12/2011	LaRose et al.	N/A	N/A
8157720	12/2011	Marseille et al.	N/A	N/A
8303482	12/2011	Schima et al.	N/A	N/A
8323174	12/2011	Jeevanandam et al.	N/A	N/A
8382830	12/2012	Maher et al.	N/A	N/A
8419609	12/2012	Laorse et al.	N/A	N/A
8449444	12/2012	Poirier	N/A	N/A
8506470	12/2012	LaRose et al.	N/A	N/A
8506471	12/2012	Bourque	N/A	N/A
8517699	12/2012	Horvath	N/A	N/A
8556795	12/2012	Bolyard et al.	N/A	N/A
8562508	12/2012	Dague et al.	N/A	N/A
8581462	12/2012	Nussbaumer	N/A	N/A
8597350	12/2012	Rudser et al.	N/A	N/A
8652024	12/2013	Yanai et al.	N/A	N/A
8657733	12/2013	Ayre et al.	N/A	N/A
8668473	12/2013	LaRose et al.	N/A	N/A
8764621	12/2013	Badstibner et al.	N/A	N/A
8852072	12/2013	White et al.	N/A	N/A
8864643	12/2013	Reichenbach et al.	N/A	N/A
8870739	12/2013	LaRose et al.	N/A	N/A
8882477	12/2013	Fritz, IV et al.	N/A	N/A
8882744	12/2013	Dormanen et al.	N/A	N/A
8956275	12/2014	Bolyard et al.	N/A	N/A
9068572	12/2014	Ozaki et al.	N/A	N/A
9079043	12/2014	Stark et al.	N/A	N/A
9091271	12/2014	Bourque	N/A	N/A
9091272	12/2014	Kim et al.	N/A	N/A
9265870	12/2015	Reichenbach et al.	N/A	N/A
9382908	12/2015	Ozaki et al.	N/A	N/A
9427510	12/2015	Siebenhaar	N/A	A61M
342/310	12/2013	Siebeilidai	1 N / <i>F</i> 1	60/178
9492599	12/2015	Schimpf	N/A	H05K 3/303
9675741	12/2016	Bourque	N/A	N/A
10973967	12/2020	Nyikos	N/A	A61M 60/81
2002/0105241	12/2001	Carroll et al.	N/A	N/A
2003/0021683	12/2002	Capone et al.	N/A	N/A
2004/0236420	12/2003	Yamane et al.	N/A	N/A
2005/0004421	12/2004	Pacella et al.	N/A	N/A
2005/0025630	12/2004	Ayre et al.	N/A	N/A
2005/0071001	12/2004	Jarvik	N/A	N/A
2005/0135948	12/2004	Olsen et al.	N/A	N/A
2005/0147512	12/2004	Chen et al.	N/A	N/A
2006/0122456	12/2005	LaRose	600/16	A61M 60/237
2007/0100196	12/2006	LaRose	600/16	A61M 60/81
2009/0064755	12/2008	Fleischli et al.	N/A	N/A
2009/0234447	12/2008	Larose et al.	N/A	N/A
2010/0130809	12/2009	Morello	N/A	N/A
2010/0150749	12/2009	Horvath	N/A	N/A

2010/0152526	12/2009	Pacella et al.	N/A	N/A
2010/0241223	12/2009	Lee et al.	N/A	N/A
2010/0327687	12/2009	Iannello et al.	N/A	N/A
2011/0002794	12/2010	Haefliger et al.	N/A	N/A
2011/0031836	12/2010	Nussbaumer	N/A	N/A
2011/0054239	12/2010	Sutton et al.	N/A	N/A
2011/0071337	12/2010	Thompson et al.	N/A	N/A
2011/0144413	12/2010	Fostor	600/16	A61M
2011/0144415	12/2010	Foster	000/10	60/226
2011/0187217	12/2010	Nussbaumer	N/A	N/A
2011/0237863	12/2010	Ricci et al.	N/A	N/A
2011/0245582	12/2010	Zafirelis et al.	N/A	N/A
2011/0313237	12/2010	Miyakoshi et al.	N/A	N/A
2012/0035411	12/2011	LaRose et al.	N/A	N/A
2012/0046514	12/2011	Bourque	600/16	A61M
2012/0059212	12/2011	LaRose et al.	N/A	60/515 N/A
2012/0039212	12/2011	Wu	N/A N/A	N/A
2012/0134632	12/2011	Smith et al.	N/A N/A	N/A
2012/0226097	12/2011	Masuzawa et al.	N/A N/A	N/A
2012/0245681	12/2011	Casas et al.	N/A N/A	N/A
2012/0243001	12/2011	Robert	N/A N/A	N/A
2012/0233103	12/2011	Peters et al.	N/A	N/A
2013/0164161	12/2011	Schob	417/420	H02K 1/06
2013/0314047	12/2012	Eagle et al.	N/A	N/A
2013/0331934	12/2012	Kabir et al.	N/A	N/A
2013/0345492	12/2012	Pfeffer et al.	N/A	N/A
2014/0030122	12/2013	Ozaki et al.	N/A	N/A
				A61M
2014/0062239	12/2013	Schoeb	310/90.5	60/538
2014/0100413	12/2013	Casas et al.	N/A	N/A
2014/0194985	12/2013	Vadala, Jr.	N/A	N/A
2014/0275723	12/2013	Fritz, IV et al.	N/A	N/A
2014/0303426	12/2013	Kerkhoffs et al.	N/A	N/A
2014/0357937	12/2013	Reyes et al.	N/A	N/A
2014/0364768	12/2013	Hastie et al.	N/A	N/A
2015/0051438	12/2014	Taskin	N/A	N/A
2015/0151031	12/2014	Yaghdjian	N/A	N/A
2015/0211542	12/2014	Scheckel	N/A	N/A
2015/0273125	12/2014	Bourque	N/A	N/A
2015/0294550	12/2014	Kimball	340/636.1	A61M 60/538
2016/0331881	12/2015	Siebenhaar et al.	N/A	N/A
2017/0119946	12/2016	Mcchrystal et al.	N/A	N/A
2017/0246365	12/2016	Bourque	N/A	N/A
2017/0302145	12/2016	Holenstein et al.	N/A	N/A
FOREIGN PAT	ENT DOCUMENTS			
Patent No.	Application Date	Country	CPC	
300837668	12/2007	CN	N/A	

150320	12/1989	EP	N/A
60569	12/1989	EP	N/A
378251	12/1993	EP	N/A
2357374	12/2010	EP	N/A
1491710	12/1976	GB	N/A
01257792	12/1988	JP	N/A
02016390	12/1989	JP	N/A
03088996	12/1990	JP	N/A
04148095	12/1991	JP	N/A
2000510929	12/1999	JP	N/A
2002512333	12/2001	JP	N/A
2003093500	12/2002	JP	N/A
2011530315	12/2010	JP	N/A
9953974	12/1998	WO	N/A
2004098677	12/2003	WO	N/A
2005032620	12/2004	WO	N/A
2006137496	12/2005	WO	N/A
2010015836	12/2009	WO	N/A
2010023815	12/2009	WO	N/A
2010036815	12/2009	WO	N/A
2012028181	12/2011	WO	N/A

OTHER PUBLICATIONS

Antaki et al., "PediaFlowTM Maglev Ventricular Assist Device: A Prescriptive Design Approach", Cardiovascular Engineering and Technology, vol. 1, No. 1, Mar. 2010, pp. 104-121. cited by applicant

Barletta et al., "Design of a Bearing Less Blood Pump", Proc. Third International Symposium on Magnetic Suspension Technology, Jul. 1, 1996, pp. 265-274. cited by applicant

Izraelev et al., "A Passively-Suspended Tesla Pump Left Ventricular Assist Device", NIH Public Access, vol. 55, No. 6, 2009, pp. 556-561. cited by applicant

Steinert et al., "Concept of a 150 krpm Bearingless Slotless Disc Drive with Combined Windings", Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC 2013), 2013, pp. 311-318. cited by applicant

Steinert et al., "Slotless Bearingless Disk Drive for High-Speed and High-Purity Applications", IEEE Transactions on Industrial Electronics, vol. 61, No. 11, Nov. 2014, pp. 975-981. cited by applicant

Steinert et al., "Topology Evaluation of Slotless Bearingless Motorswith Toroidal Windings", The 2014 International Power Electronics Conference, 2014, pp. 974-981. cited by applicant

Primary Examiner: Lau; Michael J

Attorney, Agent or Firm: Kilpatrick Townsend & Stockton LLP

Background/Summary

CROSS REFERENCE TO RELATED APPLICATIONS (1) The present application is a Continuation of U.S. patent application Ser. No. 16/204,015, now U.S. Pat. No. 10,973,967, filed Nov. 29, 2018 (Allowed); which claims the benefit of U.S. application No. 62/615,708 filed Jan.

10, 2018, the full disclosures which are incorporated herein by reference in their entirety for all purposes.

BACKGROUND

- (1) Ventricular assist devices, known as VADs, often include an implantable blood pump and are used for both short-term (i.e., days, months) and long-term applications (i.e., years or a lifetime) where a patient's heart is incapable of providing adequate circulation, commonly referred to as heart failure or congestive heart failure. According to the American Heart Association, more than five million Americans are living with heart failure, with about 670,000 new cases diagnosed every year. People with heart failure often have shortness of breath and fatigue. Years of living with blocked arteries and/or high blood pressure can leave a heart too weak to pump enough blood to the body. As symptoms worsen, advanced heart failure develops.
- (2) A patient suffering from heart failure may use a VAD while awaiting a heart transplant or as a long term destination therapy. A patient may also use a VAD while recovering from heart surgery. Thus, a VAD can supplement a weak heart (i.e., partial support) or can effectively replace the natural heart's function.

BRIEF SUMMARY

- (3) The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented later.
- (4) In many embodiments, an implantable blood pump includes a rotary motor that includes a compact stator assembly. The compact size of the stator assembly is enabled by the stator assembly including a compact stator core, which includes a toroidal portion, and stator coils. Each of the stator coils extend around a respective separated segment of the toroidal portion. In many embodiments, the stator does not extend beyond a disk-shaped volume having a compact thickness (e.g., less than 1.0 inches) in a direction parallel to the axis of rotation of the rotary motor), thereby enabling the stator assembly to have a corresponding compact thickness parallel to the axis of rotation of the rotary motor. In some embodiments, the stator core includes separated stator teeth that extend inwardly from the toroidal portion between adjacent pairs of the stator coils. In some embodiments, the rotary motor includes rotor position sensors (e.g., hall effect sensors). Each of the rotor position sensors can be disposed in or adjacent to a respective gap between adjacent pairs of the stator coils. The compact size of the stator assembly parallel to the axis of rotation of the rotary motor, thereby requiring less space within the thoracic cavity.
- (5) Thus, in one aspect, a first implantable blood pump includes a housing and a rotary motor. The housing defines an inlet opening, an outlet opening, and a dividing wall within the housing defining a blood flow conduit. The blood flow conduit extends between the inlet opening and the outlet opening. The rotary motor includes a stator and a rotor. The stator includes a stator core and stator coils. The stator core includes a toroidal portion and stator teeth. Each of the stator teeth extend toward the rotor from the toroidal portion. Each of the stator teeth is separated from each of an adjacent two of the stator teeth by a respective adjacent intervening segment of the toroidal portion. Each of the stator coils extends around one of the intervening segments of the toroidal portion. The stator is disposed within the housing circumferentially about the dividing wall such that the blood flow conduit extends through the stator core. The stator core is disposed circumferentially around at least a portion of the rotor. The rotor has a rotor axis of rotation and includes a rotor magnet for driving the rotor. The stator teeth axially overlap the rotor magnet with respect to the rotor axis of rotation. In many embodiments, the stator does not extend beyond a disk-shaped volume having a compact thickness (e.g., less than 1.0 inches) in a direction parallel to the rotor axis of rotation.

- (6) In many embodiments, the first implantable blood pump is configured to pump blood from a heart ventricle to the aorta. In some embodiments, the outlet opening is oriented at an angle relative to the input opening. The inlet opening can be oriented to receive blood directly from a heart ventricle and the output opening oriented to output blood in a direction transverse to the orientation of the inlet opening so as to reduce the length of a blood flow cannula used to transfer the blood flow from the output opening to the aorta. The rotor can include centrifugal pump impeller blades.
- (7) In many embodiments of the first implantable blood pump, the rotor defines a rotor blood flow conduit that extends through the stator. For example, in many embodiments, the rotor defines a rotor blood flow conduit that extends through the rotor, thereby extending through the stator.
- (8) The rotor can have any suitable number of magnetic moments. In some embodiments, the rotor has only one magnetic moment.
- (9) In some embodiments, the first implantable blood pump includes one or more rotor position sensors that generate output indicative of the orientation of the rotor for use in electronic commutation of the rotary motor. In some embodiments, the output of the one or more rotor position sensors is indicative of the position of the rotor within the blood flow conduit transverse to the rotor axis of rotation (e.g., in two different directions transverse to the rotor axis of rotation). In some embodiments, the position of the rotor within the blood flow conduit transverse to the rotor axis of rotation is used to control operation of the stator to control magnetic levitation of the rotor within the blood flow conduit. In some embodiments, the one or more rotor position sensors includes hall effect sensors. In some embodiments, each of the hall effect sensors is disposed in or adjacent to a respective gap between an adjacent pair of the stator coils. In some embodiments, each of the hall effect sensors is disposed aligned with and above or below a respective gap between an adjacent pair of the stator coils.
- (10) In some embodiments, the first implantable blood pump includes control electronics disposed within the housing. In such embodiments, the control electronics can be configured to control current passing through each of the stator coils to radially levitate the rotor and rotate the rotor within the blood flow conduit.
- (11) In many embodiments of the first implantable blood pump, an axial position of the rotor along the blood flow conduit is restrained via passive magnetic interaction between the rotor and the stator such that the stator functions as a passive magnetic bearing that controls the axial position of the rotor parallel to the rotor axis of rotation. In such embodiments, the first implantable blood pump can be configured without dedicated magnetic axial bearings that restrain the axial position of the rotor along the blood flow conduit.
- (12) In many embodiments of the first implantable blood pump, the rotor is separated from the dividing wall so as to accommodate flow of blood around the rotor. For example, in some embodiments of the first implantable blood pump, a gap between the rotor and the dividing wall is between about 0.2 mm to about 2 mm with the rotor centered relative to the stator core. A gap between the rotor and at least one of the stator teeth can be between about 0.3 mm to about 2.4 mm with the rotor centered relative to the stator core.
- (13) In another aspect, a second implantable blood pump includes a housing and a rotary motor. The housing defines an inlet opening, an outlet opening, and a dividing wall defining a blood flow conduit extending from the inlet opening to the outlet opening. The rotary motor includes a stator, hall effect sensors, and a rotor. The stator includes a stator core and stator coils. The stator core includes a toroidal portion. Each of the stator coils extends around one of separated segments of the toroidal portion. The stator is disposed within the housing circumferentially about the dividing wall such that the blood flow conduit extends through the stator core. The stator core is disposed circumferentially around at least a portion of the rotor. Each of the hall effect sensors is disposed in a respective gap between an adjacent pair of the stator coils. The rotor has a rotor axis of rotation and includes a rotor magnet for driving the rotor. The stator core axially overlaps with the rotor magnet with respect to the rotor axis of rotation. In many embodiments, the stator does not extend

beyond a disk-shaped volume having a compact thickness (e.g., less than 1.0 inches) in a direction parallel to the rotor axis of rotation.

- (14) In many embodiments, the second implantable blood pump is configured to pump blood from a heart ventricle to the aorta. In some embodiments, the outlet opening is oriented at an angle relative to the input opening. The inlet opening can be oriented to receive blood directly from a heart ventricle and the output opening oriented to output blood in a direction transverse to the orientation of the inlet opening so as to reduce the length of a blood flow cannula used to transfer the blood flow from the output opening to the aorta. The rotor can include centrifugal pump impeller blades.
- (15) In many embodiments of the second implantable blood pump, the rotor defines a rotor blood flow conduit that extends through the stator. For example, in many embodiments, the rotor defines a rotor blood flow conduit that extends through the rotor, thereby extending through the stator. (16) The rotor can have any suitable number of magnetic moments. In some embodiments, the rotor has only one magnetic moment.
- (17) In some embodiments, the second implantable blood pump includes control electronics disposed within the housing. In such embodiments, the control electronics can be configured to control current passing through each of the stator coils to radially levitate the rotor and rotate the rotor within the blood flow conduit.
- (18) In many embodiments of the second implantable blood pump, an axial position of the rotor along the blood flow conduit is restrained via passive magnetic interaction between the rotor and the stator. In such embodiments, the second implantable blood pump can be configured without dedicated magnetic axial bearings that restrain the axial position of the rotor along the blood flow conduit.
- (19) In many embodiments of the second implantable blood pump, the rotor is separated from the dividing wall so as to accommodate flow of blood around the rotor. For example, in some embodiments of the second implantable blood pump, a gap between the rotor and the dividing wall is between about 0.2 mm to about 2 mm with the rotor centered relative to the stator core. A gap between the rotor and at least one of the stator coils can be between about 0.3 mm to about 2.4 mm with the rotor centered relative to the stator core.
- (20) In another aspect, a method of assisting blood circulation in a patient is provided. The method includes drawing a flow of blood from a patient's heart into a blood flow channel formed by a housing via rotation of a rotor comprising impeller blades. The flow of blood is passed through a toroidal portion of a motor stator core. Delivery of current to each of a plurality of stator coils is controlled to control a radial position of the rotor within the blood flow channel and to control rotation of the rotor within the blood flow channel. The rotor is rotated around a rotor axis of rotation. Each of the stator coils extends around one of separated segments of the toroidal portion. The rotor has permanent magnetic poles for magnetic levitation and rotation of the rotor. The flow of blood is output from the blood flow channel to the patient.
- (21) In many embodiments, the method further includes processing output from a plurality of hall sensors to determine an orientation of the rotor. Each of the hall effect sensors can be disposed in a respective gap between an adjacent pair of the stator coils.
- (22) In many embodiments, the method further includes supporting control electronics within the housing and between the stator core and the patient's heart. The control electronics can control the delivery of current to each of the stator coils.
- (23) In many embodiments, the method further includes flowing blood through and around the rotor. For example, the method can include (a) passing a first portion of the flow of blood through a central aperture formed through the rotor and (b) passing a second portion of the flow of blood through a gap formed between the rotor and the housing.
- (24) In many embodiments, the method further includes magnetically levitating the rotor within the blood flow channel. For example, the rotor can be levitated within the blood flow channel such that

the rotor is separated from the housing by a gap between about 0.2 mm to about 2 mm. The rotor can be levitated within the blood flow channel such that the rotor is separated from at least one of the stator coils by a gap between about 0.3 mm to about 2.4 mm.

(25) For a fuller understanding of the nature and advantages of the present invention, reference should be made to the ensuing detailed description and accompanying drawings.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** is an illustration of a mechanical circulatory support system implanted in a patient's body, in accordance with many embodiments.
- (2) FIG. **2** is a cross-sectional view illustration of an implantable blood pump that includes a compact rotary motor that includes a toroidal stator core with teeth, in accordance with some embodiments.
- (3) FIG. **3** is an isometric view illustration of the stator core and a rotor component of the compact rotary motor of FIG. **2**.
- (4) FIG. **4** is an axial view illustration of the stator core and a rotor component of the compact rotary motor of FIG. **2**.
- (5) FIG. **5** is a cross-sectional view illustration of the stator core, the rotor component, and rotor position sensors of the compact rotary motor of FIG. **2**.
- (6) FIG. **6** is a cross-sectional view illustration of an implantable blood pump that includes a compact rotary motor that includes a toroidal stator core without teeth, in accordance with some embodiments.
- (7) FIG. **7** is an axial view illustration of the stator core and a rotor component of the compact rotary motor of FIG. **6**.
- (8) FIG. **8** is an isometric view illustration of the stator core, the rotor component, and hall effect sensors of the compact rotary motor of FIG. **6**.
- (9) FIG. **9** is a cross-sectional view illustration of the stator core, the rotor component, and hall effect sensors of the compact rotary motor of FIG. **6**.
- (10) FIG. **10** is a simplified schematic diagram illustration of a method of assisting blood circulation in a patient, in accordance with many embodiments.
- (11) FIG. **11** is a simplified schematic diagram illustration of additional acts that can be accomplished in the method of FIG. **10**.

DETAILED DESCRIPTION

- (12) In the following description, various embodiments of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.
- (13) Referring now to the drawings, in which like reference numerals represent like parts throughout the several views, FIG. **1** shows a mechanical circulatory support system **10** implanted in a patient's body **12**. The mechanical circulatory support system **10** includes an implantable blood pump assembly **14**, a ventricular cuff **16**, an outflow cannula **18**, an external system controller **20**, and power sources **22**. The implantable blood pump assembly **14** can include a VAD that is attached to an apex of the left ventricle, as illustrated, or the right ventricle. A respective VAD can be attached to each of the ventricles of the heart **24**. The VAD can include a centrifugal pump (as shown) that is capable of pumping the entire output delivered to the left ventricle from the pulmonary circulation (i.e., up to 10 liters per minute). Related blood pumps applicable to the

present invention are described in greater detail below and in U.S. Pat. Nos. 5,695,471, 6,071,093, 6,116,862, 6,186,665, 6,234,772, 6,264,635, 6,688,861, 7,699,586, 7,976,271, 7,976,271, 7,997,854, 8,007,254, 8,152,493, 8,419,609, 8,852,072, 8,652,024, 8,668,473, 8,864,643, 8,882,744, 9,068,572, 9,091,271, 9,265,870, and 9,382,908, all of which are incorporated herein by reference for all purposes in their entirety. The blood pump assembly **14** can be attached to the heart **24** via the ventricular cuff **16**, which can be sewn to the heart **24** and coupled to the blood pump **14**. The other end of the blood pump **14** connects to the ascending aorta (or the pulmonary artery when the VAD is coupled with the right ventricle of the heart) via the outflow cannula **18** so that the VAD effectively diverts blood from the weakened ventricle and propels it for circulation through the patient's vascular system.

- (14) FIG. 1 illustrates the mechanical circulatory support system 10 during battery 22 powered operation. A driveline 26 that exits through the patient's abdomen 28 connects the implanted blood pump assembly 14 to the external system controller 20, which monitors system 10 operation. Related controller systems applicable to the present invention are described in greater detail below and in U.S. Pat. Nos. 5,888,242, 6,991,595, 8,323,174, 8,449,444, 8,506,471, 8,597,350, and 8,657,733, EP 1812094, and U.S. Patent Publication Nos. 2005/0071001 and 2013/0314047, all of which are incorporated herein by reference for all purposes in their entirety. The system 10 can be powered by either one, two, or more batteries 22. It will be appreciated that although the system controller 20 and power source 22 are illustrated outside/external to the patient body, the driveline 26, the system controller 20 and/or the power source 22 can be partially or fully implantable within the patient, as separate components or integrated with the blood pump assembly 14. Examples of such modifications are further described in U.S. Pat. Nos. 8,562,508 and 9,079,043, all of which are incorporated herein by reference for all purposes in their entirety.
- (15) FIG. 2 is a cross-sectional view illustration of an implantable blood pump assembly 30, in accordance with some embodiments. The blood pump assembly **30** can be used in place of the blood pump assembly **14** in the mechanical circulatory support system **10**. The blood pump assembly **30** includes a housing **32** and a compact rotary motor **34**. The compact rotary motor **34** includes a stator **36** and a rotor assembly **38**. The housing **32** defines an inlet opening **40**, an outlet opening 42, and a blood flow conduit 44 in fluid communication with the inlet opening 40 and the outlet opening **42**. The housing **32** includes a dividing wall **46** that defines the blood flow conduit **44**. The dividing wall **46** also partially defines a compartment in which the stator **36** is disposed and isolates the stator from blood flowing through the blood flow conduit **44**. The rotor assembly **38** includes a rotor magnetic assembly **48** and an impeller blade assembly **50** attached to the rotor magnetic assembly **48**. The rotor magnetic assembly **48** can include any suitable number of permanent magnets (e.g., 1 or more). In operation, the stator 36 generates magnetic fields that interact with the rotor magnetic assembly **48** to levitate the rotor magnetic assembly **48** radially within the blood flow conduit **44**, rotate the rotor magnetic assembly **48** within the blood flow conduit **44** around a rotor axis of rotation **52**, and react axial thrust applied to the rotor assembly **38** parallel to the rotor axis of rotation 52 during pumping of blood through the blood flow conduit 44 via rotation of the rotor assembly **38**.
- (16) The housing 32 has a circular shape and is implanted in a patient's body with a first face 54 of the housing 32 facing the patient's heart 24 and a second face 56 of the housing 32 facing away from the heart 24. The housing 32 includes an inlet cannula 58 that couples with the ventricular cuff 16 and extends into a ventricle of the heart 24. The second face 56 of the housing 32 has a chamfered edge 60 to avoid irritating other tissue that may come into contact with the blood pump assembly 30, such as the patient's diaphragm. To construct the illustrated shape of the puck-shaped housing 32 in a compact form, the stator 36 and electronics 62 of the pump assembly 30 are positioned on the inflow side of the housing 32 toward first face 54, and the rotor assembly 38 is positioned along the second face 56. This positioning of the stator 36, electronics 62, and the rotor assembly 38 permits the edge 60 to be chamfered along the contour of the impeller blade assembly

- (17) The blood flow conduit **44** extends from the inlet opening **40** of the inlet cannula **58** through the stator **36** to the outlet opening **42**. The rotor assembly **38** is positioned within the blood flow conduit **44**. The stator **36** is disposed circumferentially around the rotor magnetic assembly **48**. The stator **36** is also positioned relative to the rotor assembly **38** such that, in use, blood flows within the blood flow conduit **44** through the stator **36** and the rotor magnetic assembly **48** before reaching the impeller blade assembly **50**. In some embodiments, the rotor magnetic assembly **48** has a permanent magnetic north pole (N) and a permanent magnetic south pole (S) for combined active and passive magnetic levitation of the rotor magnetic assembly **48** and for rotation of the rotor assembly **38**. In some embodiments, the rotor magnetic assembly **48** has more than one pair of magnetic poles (e.g., 2, 3, 4, 5, or more). The impeller blade assembly **50** includes impeller blades **64** are located within a volute **66** of the blood flow conduit **44** such that the impeller blades **64** are located proximate to the second face **56** of the housing **32**.
- (18) The puck-shaped housing **32** further includes a peripheral wall **68** that extends between the first face **54** and a removable cap **70**. As illustrated, the peripheral wall **68** is formed as a hollow circular cylinder having a width (W) between opposing portions of the peripheral wall **68**. The housing **32** also has a thickness (T) between the first face **54** and the second face **56** that is less than the width (W). The thickness (T) is from about 0.5 inches to about 1.5 inches, and the width (W) is from about 1 inch to about 4 inches. For example, the width (W) can be approximately 2 inches, and the thickness (T) can be approximately 1 inch.
- (19) The peripheral wall **68** encloses an internal compartment **72** that surrounds the dividing wall **46** and the blood flow conduit **44**, with the stator **36** and the electronics **62** disposed in the internal compartment **72** about the dividing wall **46**. The removable cap **70** includes the second face **56**, the chamfered edge **60**, and defines the outlet opening **42**. The cap **70** has an inner surface that defines the volute **66** that is in fluid communication with the outlet opening **42**.
- (20) Within the internal compartment 72, the electronics 62 are positioned adjacent to the first face **54** and the stator **36** is positioned adjacent to the electronics **62** on an opposite side of the electronics **62** from the first face **54**. The electronics **62** can include one or more circuit boards and various components carried on the circuit boards to control the operation of the blood pump assembly 30 (e.g., magnetic levitation and/or drive of the rotor assembly 38) by controlling currents applied to the stator **36**. The housing **32** is configured to receive the electronics **62** within the internal compartment 72 generally parallel to the first face 54 for efficient use of the space within the internal compartment **72**. The electronics **62** also extend radially-inward towards the dividing wall **46** and radially-outward towards the peripheral wall **68**. For example, the internal compartment **72** is generally sized no larger than necessary to accommodate the stator **36** and the electronics **62**, and space for heat dissipation, material expansion, potting materials, and/or other elements used in installing the stator **36** and the electronics **62**. Thus, the external shape of the housing **32** proximate the first face **54** generally fits the shape of the electronics **62** closely to provide external dimensions that are not much greater than the dimensions of the electronics **62**. In the illustrated embodiment, the electronics **62** include Hall effect sensors **74** that generate output indicative of the angular orientation of the rotor magnetic assembly **48** and the transverse position of the rotor magnetic assembly **48** transverse to the rotor axis of rotation **52** in two directions. The output from the Hall effect sensors **74** is used by the electronics **62** to control operation of the stator **36** to levitate and rotate the rotor assembly **38**.
- (21) The rotor assembly **38** is arranged within the housing **32** such that the rotor magnetic assembly **48** is located upstream of the impeller blade assembly **50**. The rotor magnetic assembly **48** is disposed within the blood flow conduit **44** proximate the stator **36**. The rotor magnetic assembly **48** and the dividing wall **44** form a gap **76** between the rotor magnetic assembly **48** and the dividing wall **44** when the rotor magnetic assembly **48** is centered within the blood flow conduit **44**. In many embodiments, the gap **76** is from about 0.2 millimeters to about 2 millimeters. In some

embodiments, the gap **76** is approximately 1 millimeter. The north permanent magnetic pole N and the south permanent magnetic pole S of the rotor magnetic assembly **48** provide a permanent magnetic attractive force between the rotor magnetic assembly **48** and the stator **36** that acts as a passive axial force that tends to maintain the rotor magnetic assembly **48** generally axially aligned with the stator **36** relative to the rotor axis of rotation **52** thereby resisting movement of the rotor magnetic assembly **48** towards the first face **54** or towards the second face **56**.

- (22) As blood flows through the blood flow conduit **44**, blood flows through a central aperture **78** formed through the rotor magnetic assembly **48**. Blood also flows through the gap **76** between the rotor magnetic assembly **48** and the dividing wall **46** and through a gap **80** between the impeller blade assembly **50** and the inner surface of the cap **70**. The gaps **76** and **80** are large enough to allow adequate blood flow to limit clot formation that may occur if the blood is allowed to become stagnant. The gaps **76** and **80** are also large enough to limit shear forces on the blood cells such that the blood is not damaged when flowing through the blood pump assembly **30**. As a result of the size of the gaps **76** and **80** limiting shear forces on the blood cells, the gaps **76** and **80** are too large to provide a meaningful hydrodynamic suspension effect. That is to say, the blood does not act as a bearing within the gaps **76** and **80**, and the rotor magnetic assembly **48** is only magnetically-levitated.
- (23) Because the rotor assembly **38** is radially suspended by active control of the stator **36**, and because the rotor assembly **38** is axially suspended by passive interaction between the stator **36** and the rotor magnetic assembly **48**, no rotor levitation components other than the stator **36** and related components used to control operation of the stator **36** are needed (e.g., proximate the second face **56**) to levitate the rotor assembly **38** transverse to the rotor axis of rotation **52** and to control the position of the rotor assembly **38** parallel to the rotor axis of rotation **52**. By levitating the rotor assembly **38** via the stator **36**, the cap **70** can be contoured to the shape of the impeller blade assembly **50** and the volute **66**. Additionally, levitating the rotor assembly **38** via the stator **36** eliminates the need for electrical connectors extending from the compartment **72** to the cap **70**, which allows the cap **70** to be easily installed and/or removed and eliminates potential sources of pump failure.
- (24) FIG. 3 and FIG. 4 show the stator 36 and the rotor magnetic assembly 48. The stator 36 includes an integral stator core 82 and stator coils 84. The integral stator core 82 includes a toroidal portion 86 and stator teeth 88. Each of the stator teeth 88 extends toward the rotor magnetic assembly 48 from the toroidal portion 86. Each of the stator teeth 88 is separated from each of an adjacent two of the stator teeth 88 by a respective adjacent intervening segment of the toroidal portion 86. Each of the stator coils 84 extends around one of the intervening segments of the toroidal portion 86. The stator 36 is disposed within the housing 32 circumferentially around the dividing wall 46 such that the blood flow conduit 44 extends through the stator core 82. The stator core 82 is disposed circumferentially around the rotor magnetic assembly 48. In many embodiments, the stator 36 does not extend beyond a disk-shaped volume having a compact thickness (e.g., (H) shown in FIG. 2 less than 1.0 inches) in a direction parallel to the rotor axis of rotation 52.
- (25) FIG. **5** is a cross-sectional view illustration of the stator **36**, the rotor magnetic assembly **48**, and the electronics **62**. In the illustrated embodiment, the electronics **62** include Hall-effect sensors **74**, each of which is disposed adjacent to a respective one of the stator teeth **88**. By positioning the Hall-effect sensors **74** aligned with the stator teeth **88**, the signals generated by the Hall-effect sensors **74** can be processed to track the orientation of the rotor magnetic assembly **48** relative to the stator teeth **88** without adjusting for an orientation difference between the Hall-effect sensors **74** and the stator teeth **88**.
- (26) FIG. **6** is a cross-sectional view illustration of an implantable blood pump assembly **130**, in accordance with some embodiments. The blood pump assembly **130** can be used in place of the blood pump assembly **14** in the mechanical circulatory support system **10**. The blood pump

assembly **130** is configured similar to the blood pump assembly **30** except for differences with respect to the stator core **82** and the location of the Hall-effect sensors **74** as described herein. Accordingly, components of the blood pump assembly **130** that are the same or similar to the components of the blood pump assembly **30** are identified using the same or similar reference identifiers in the drawing figures. As illustrated in FIG. **6** and FIG. **7**, the stator core **82** of the blood pump assembly **130** includes the toroidal portion **86** and does not include the stator teeth **88** of the stator core **82** of the blood pump assembly **30**. As illustrated in FIG. **6**, FIG. **8**, and FIG. **9**, each of the Hall-effect sensors **74** in the blood pump assembly **130** is located in a respective gap between adjacent stator coils **86** that corresponds to a space that is occupied by a respective stator tooth **88** in the blood pump assembly **30**.

- (27) FIG. **10** is a simplified schematic diagram illustration of a method **200** of assisting blood circulation in a patient, in accordance with many embodiments. Any suitable blood pump assembly, such as the blood pump assemblies **14**, **30**, **130** described herein, can be used to practice the method **200**.
- (28) The method **200** includes drawing a flow of blood from a patient's heart into a blood flow channel formed by a housing via rotation of a rotor comprising impeller blades (act **202**). For example, with reference to FIG. **2**, the rotor assembly **38** can be levitated and rotated via application of drive currents to the stator **36**, thereby drawing blood from the patient's ventricle into the inlet cannula **58** and pumping the blood through the blood flow conduit **44**.
- (29) The method **200** includes passing the flow of blood through a toroidal portion of a motor stator core (act **204**). For example, with reference to FIG. **2** and FIG. **4**, the flow of blood passes through the toroidal portion **86** of the motor stator core **82** as the blood flows through the blood flow conduit **44**.
- (30) The method **200** includes controlling delivery of current to each of a plurality of stator coils to control a radial position of the rotor within the blood flow channel and to control rotation of the rotor within the blood flow channel, the rotor being rotated around a rotor axis of rotation, each of the stator coils extending around one of separated segments of the toroidal portion, the rotor having permanent magnetic poles for magnetic levitation and rotation of the rotor (act **206**). For example, with reference to FIG. 2 through FIG. 4, delivery of current to each of the stator coils 84 is controlled (e.g., via the electronics **62**) to control a radial position of the rotor magnetic assembly 48 within the blood flow conduit 44 (i.e., transverse to the rotor axis of rotation 52) and to control rotation of the rotor magnetic assembly **48** within the blood flow conduit **44**. The rotor magnetic assembly **48** is rotated around the rotor axis of rotation **52**. Each of the stator coils **84** extends around one of separated segments of the toroidal portion **86**. The rotor magnetic assembly **48** has permanent magnetic poles for magnetic levitation and rotation of the rotor magnetic assembly **48**. (31) The method **200** includes outputting the flow of blood from the blood flow channel to the patient (act 208). For example, referring to FIG. 2, the blood flowing through the blood flow conduit **44** is output via the outlet opening **42** and to the ascending aorta via the outflow cannula **18**.
- (32) FIG. **11** is a simplified schematic diagram illustration of additional acts that can be accomplished in the method **200**. For example, the method **200** can further include processing output from a plurality of Hall-effect sensors to determine the angular orientation of the rotor and the position of the rotor transverse to the rotor axis of rotation in two directions (act **210**). Each of the Hall-effect sensors can be aligned with a respective gap between an adjacent pair of the stator coils (e.g., above the respective gap, below the respective gap, in the respective gap). For example, referring to FIG. **6**, FIG. **8**, and FIG. **9**, output from the Hall-effect sensors **74** is processed (e.g., via the electronics **62**) to determine the orientation of the rotor magnetic assembly **48** for use in controlling supply of current to each of the stator coils **84** to control levitation and rotation of the rotor magnetic assembly **48**. In the blood pump assembly **130**, each of the Hall-effect sensors **74** is disposed in a respective gap between an adjacent pair of the stator coils **84**.

- (33) Method **200** can further include supporting control electronics within the housing and between the stator core and the patient's heart, the control electronics controlling the delivery of current to each of the stator coils (act **212**). For example, referring to FIG. **2**, the electronics **62** are supported within the housing **32** and control delivery of current to each of the stator coils **84**.
- (34) Method **200** can further include passing a first portion of the flow of blood through a central aperture formed through the rotor and passing a second portion of the flow of blood through a gap formed between the rotor and the housing (act **214**). For example, referring to FIG. **2**, a first portion of the blood flowing through the blood flow conduit **44** passes through a central aperture formed through the rotor magnetic assembly **48** and a second portion of the blood flowing through the blood flow conduit **44** recirculates back upstream through the gaps **76**, **80** formed between the rotor assembly **38** and the housing **32**.
- (35) Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims. (36) The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as openended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. The term "connected" is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
- (37) Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
- (38) All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

Claims

1. An implantable blood pump comprising: a housing defining an inlet opening, an outlet opening, and a dividing wall within the housing defining a blood flow passage that extends between the inlet

opening and the outlet opening; a rotary motor including a stator and a rotor; wherein the stator comprises a stator core and stator coils, wherein the stator core has a toroidally-shaped external surface that extends circumferentially and continuously around an axis of rotation of the rotor, wherein each of the stator coils is wound around and encloses a respective circumferentially extending segment of the toroidally-shaped external surface, wherein each of the stator coils is separated from each of two adjacent instances of the stator coils by an intervening gap that corresponds to a respective exposed circumferentially extending segment of the toroidally-shaped external surface, wherein the stator is disposed within the housing circumferentially about the dividing wall such that the blood flow passage extends through the stator core, wherein the stator core is disposed circumferentially around at least a portion of the rotor, wherein the rotor includes a rotor magnet for driving the rotor, and wherein the stator core overlaps the rotor magnet with respect to the axis of rotation of the rotor; and control electronics disposed within the housing and configured to control current passing through each of the stator coils to radially levitate the rotor and rotate the rotor within the blood flow passage.

- 2. The implantable blood pump of claim 1, wherein the outlet opening is oriented at an angle relative to the inlet opening.
- 3. The implantable blood pump of claim 1, wherein the rotor comprises centrifugal pump impeller blades.
- 4. The implantable blood pump of claim 3, wherein the rotor defines a rotor blood flow passage extending through the rotor.
- 5. The implantable blood pump of claim 1, wherein the rotor defines a rotor blood flow passage extending through the rotor.
- 6. The implantable blood pump of claim 1, wherein the rotor has only one magnetic moment.
- 7. The implantable blood pump of claim 1, wherein an axial position of the rotor along the blood flow passage is restrained via passive magnetic interaction between the rotor and the stator.
- 8. The implantable blood pump of claim 1, wherein the rotor and the dividing wall are separated by a distance in a range from 0.2 mm to 2 mm with the rotor centered relative to the stator core.
- 9. The implantable blood pump of claim 1, wherein the rotor and at least one of the stator coils are separated by a distance in a range from 0.3 mm to 2.4 mm with the rotor centered relative to the stator core.
- 10. The implantable blood pump of claim 1, further comprising hall effect sensors for monitoring an orientation and one or more positions of the rotor relative to the stator.
- 11. A ventricular assist device comprising: a housing defining an inlet opening, an outlet opening, and a dividing wall within the housing defining a blood flow passage that extends between the inlet opening and the outlet opening; a rotary motor including a stator and a rotor; wherein the stator is operable to rotate the rotor around a rotor around a rotor axis of rotation, wherein the stator comprises a stator core and stator coils, wherein the stator core has a toroidally-shaped external surface that extends circumferentially and continuously around the rotor axis of rotation, wherein each of the stator coils is wound around and encloses a respective circumferentially extending segment of the toroidally-shaped external surface, wherein each of the stator coils is separated from each of two adjacent instances of the stator coils by an intervening gap that corresponds to a respective exposed circumferentially extending segment of the toroidally-shaped external surface, wherein the stator does not extend beyond a disk-shaped volume having a thickness in a direction parallel to the rotor axis of rotation of less than 1.0 inches, wherein the stator is disposed within the housing circumferentially about the dividing wall such that the blood flow passage extends through the stator core, wherein the stator core is disposed circumferentially around at least a portion of the rotor, wherein the rotor includes a rotor magnet for driving the rotor, and wherein the stator core axially overlaps the rotor magnet with respect to the rotor axis of rotation; and control electronics disposed within the housing and configured to control current supplied to the stator to radially levitate the rotor and rotate the rotor within the blood flow passage.

- 12. The ventricular assist device of claim 11, wherein: a housing comprising an inlet cannula and a first side face from which the inlet cannula extends; the inlet cannula is configured to couple with a ventricular cuff attached to a heart and extend into a ventricle of the heart; and the housing extends by a maximum distance of 1.5 inches from the first side face in a direction away from the inlet cannula.
- 13. The ventricular assist device of claim 11, wherein the outlet opening is oriented at an angle relative to the inlet opening.
- 14. The ventricular assist device of claim 11, wherein the rotor comprises centrifugal pump impeller blades.
- 15. The ventricular assist device of claim 14, wherein the rotor defines a rotor blood flow passage extending through the rotor.
- 16. The ventricular assist device of claim 11, wherein the rotor defines a rotor blood flow passage extending through the rotor.
- 17. The ventricular assist device of claim 11, wherein the rotor has only one magnetic moment.
- 18. The ventricular assist device of claim 11, wherein an axial position of the rotor along the blood flow passage is restrained via passive magnetic interaction between the rotor and the stator.
- 19. The ventricular assist device of claim 11, wherein the rotor and the dividing wall are separated by a distance in a range from 0.2 mm to 2 mm with the rotor centered relative to the stator core.
- 20. The ventricular assist device of claim 11, wherein the rotor and the stator are separated by a distance in a range from 0.3 mm to 2.4 mm with the rotor centered relative to the stator core.
- 21. The ventricular assist device of claim 11, further comprising hall effect sensors for monitoring an orientation and one or more positions of the rotor relative to the stator.