

หน้า 1 / 17

รหัสวิชา010113340 ชื่อวิชา Antenna and Microwave Engineering Laborator
ภาคการศึกษาที่2บระจำปีการศึกษา25652565
รหัสนักศึกษา6201011631188 ชื่อ-นามสกุลนายโสภณสุขสมบูรณ์
รหัสนักศึกษา6201011631072ชื่อ-นามสกุลนาย ธนภูมิอังอำนวยศิริ
วันที่ และช่วงเวลาที่ทำการทดลองWed13.00-16.00
อาจารย์ผู้สอนPTD,WWT

<u>วัตถูประสงค์</u>

- 1. เพื่อให้นักศึกษามีความรู้ ความเข้าใจเกี่ยวกับโพลาไรเซชันของสายอากาศ
- 2. เพื่อให้นักศึกษามีทักษะในการวัดโพลาไรเซชันของสายอากาศ
- 3. เพื่อให้นักศึกษามีทักษะในการใช้เครื่อง Spectrum Analyzer และ Signal Generator

<u>ทฤษฎี</u>

โพลาไรเซชัน (Polarization) ของสายอากาศในทิศทางที่กำหนด คือ โพลาไรเซชันของคลื่นที่แผ่กระจาย ออกจากสายอากาศนั้น (เมื่อเป็นสายอากาศส่ง) หรือเป็นโพลาไรเซชันของคลื่นที่ตกกระทบสายอากาศนั้น (เมื่อ เป็นสายอากาศรับ) โดยใช้อธิบายถึงขนาดและทิศทางของเวกเตอร์สนามไฟฟ้าของคลื่นที่เปลี่ยนแปลงตามเวลา ขณะที่แผ่พลังงานออกจากสายอากาศ

โพลาไรเซชันแบ่งออกเป็น 3 รูปแบบ คือ โพลาไรเซชันแบบเส้นตรง (Linear polarization) โพลาไรเซชัน แบบวงกลม (Circular polarization) และโพลาไรเซชันแบบวงรี (Elliptical polarization) โดยโพลาไรเซชันแต่ ละรูปแบบจะขึ้นอยู่กับลักษณะการหมุนของยอดเวกเตอร์ของสนามไฟฟ้า ถ้าเวกเตอร์สนามไฟฟ้าที่เปลี่ยนแปลง ตามเวลาซี้เป็นเส้นตรงเสมอ จะเรียกว่า เป็นโพลาไรเซชันแบบเส้นตรง แต่ถ้าเวกเตอร์สนามไฟฟ้ามีการหมุนเป็น วงกลม จะเรียกว่า เป็นโพลาไรเซชันแบบวงกลม และถ้าเวกเตอร์สนามไฟฟ้ามีการหมุนเป็นรูปวงรี จะเรียกว่า เป็นโพลาไรเซชันแบบวงรี นอกจากนี้กรณีโพลาไรเซชันแบบวงกลมและวงรี หากมองตามหลังสนามไฟฟ้าที่ เดินทางออกไปแล้วสนามไฟฟ้ามีการหมุนในทิศทางตามเข็มนาฬิกา (Clockwise : CW) จะเรียกว่าเป็นโพลาไรเซชันหมุนขวา (Right-hand polarization : RP) แต่หากสนามไฟฟ้าหมุนในทิศทางทาวนเข็มนาฬิกา (Counterclockwise : CCW) จะเรียกว่า เป็นโพลาไรเซชันหมุนซ้าย (Left-hand polarization : LP)

เงื่อนไขโพลาไรเซชันเชิงเส้น (Linear polarization)

- มีสนามไฟฟ้าเพียงองค์ประกอบเดียวหรือ
- ถ้าสนามไฟฟ้ามืองค์ประกอบเชิงเส้นที่ตั้งฉาก จะมีเฟสทางเวลาที่เท่ากันหรือ 180 องศา เฟสตรงข้าม

เงื่อนไขโพลาไรเซชันแบบวงกลม (Circular polarization)

- จะต้องมีสนามที่ตั้งฉากกันสองสนาม
- องค์ประกอบทั้งสองต้องมีขนาดเท่ากัน
- องค์ประกอบทั้งสองต้องมีความแตกต่างทางเฟสเวลาเป็นจำนวนคี่เท่าของ 90 องศา

เงื่อนไขโพลาไรเซชันแบบวงรี (Elliptical polarization)

- จะต้องมีสนามที่ตั้งฉากกันสองสนาม
- องค์ประกอบทั้งสองอาจจะมีขนาดเท่ากันหรือไม่เท่ากันก็ได้ ถ้าขนาดขององค์ประกอบทั้งสองมีขนาดไม่เท่ากัน ผลต่างเฟสของเวลาของสององค์ประกอบต้องมีค่าไม่ เท่ากับ 0 องศา หรือเป็นจำนวนเท่าของ 180 องศา (หากเท่ากับ 0° หรือ 180° จะเป็นแบบเชิงเส้น) ถ้าขนาดขององค์ประกอบทั้งสองมีขนาดเท่ากัน ผลต่างเฟสของเวลาของสององค์ประกอบต้องไม่เป็น จำนวนคี่เท่าของ 90 องศา (หากเท่ากับ 90° จะกลายเป็นแบบวงกลม)

Axial Ratio (AR) คือ อัตราส่วนระหว่าง $E_{\rm max}$ และ $E_{\rm min}$ หรือ อัตราส่วนระหว่างแกนหลัก (Major axis) และ แกนรอง (Minor axis)

Axial Ratio =
$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{\text{Major axis}}{\text{Minor axis}} = \frac{OA}{OB}$$
 (0 £ AR £ \(\frac{1}{2}\))

หน้า 3 / 17

นอกจากนี้ค่า AR ยังสามารถนำมาใช้พิจารณาโพลาไรเซชันแบบเส้นตรง แบบวงกลม และแบบวงรีได้ เช่นกัน นั่นคือ ถ้า AR=1 (0 dB) จะเป็นโพลาไรเซชันแบบวงกลม ในขณะที่ถ้า $AR=\mathbbm{1}$ จะเป็นโพลาไร เซชันแบบเส้นตรง อย่างไรก็ตามในทางปฏิบัติจะไม่สามารถสร้างสายอากาศโพลาไรเซชันแบบวงกลมให้มีค่า AR=0 dBได้ แต่จะยอมรับได้ถ้าค่า $AR\pm3$ dB

ซึ่งสามารถสรุปเงื่อนไขในการพิจารณาโพลาไรเซชันจากค่า AR ได้คือ

Circular Polarization • 0 dB < Axial Ratio < 3 dB

Elliptical Polarization **3** dB < Axial Ratio < 20 dB

Linear Polarization → 20 dB < Axial Ratio < ¥

ระยะที่เหมาะสมในการวัดทดสอบสายอากาศ

รูปที่ 1 ระยะห่างและความสูงระหว่างสายอากาศรับและส่ง

ในการวัดทดสอบแบบรูปการแผ่กระจายพลังงานของสายอากาศในทางปฏิบัติจะวัดในย่านสนาม ระยะไกล (Far-field region) โดยระยะห่างระหว่างสายอากาศส่งและสายอากาศรับที่ต้องการวัดทดสอบแบบ รูปการแผ่กระจายพลังงานสามารถหาได้คือ

$$R^{3} \frac{2D^2}{I} \tag{1}$$

โดยที่ D คือ ความกว้างสูงสุดของสายอากาศ (เมตร)

l คือ ความยาวคลื่นที่ความถี่ที่ต้องการวัดทดสอบ (เมตร)

หน้า 4 / 17

นอกจากนี้ความสูงของสายอากาศทั้งตัวรับและตัวส่ง ต้องมีความสูงไม่น้อยกว่าระยะ $1^{\prime\prime}$ Fresnel zone คือ

Height
3
 $\frac{3' \text{ Distance}}{40f}$ (2)

โดยที่ f คือ ความถี่ที่ต้องการวัดทดสอบ (GHz)

<u>อุปกรณ์การทดลอง</u>

- 1. สายอากาศได้โพลครึ่งความยาวคลื่น (Half-Wave Dipole antenna) 2 ตัว
- 2. สายอากาศไมโครสตริปแพทซ์โพลาไรซ์วงกลม (Circularly polarized microstrip patch antenna) 1 ตัว
 - 3. Signal Generator 1 เครื่อง
 - 4. Spectrum Analyzer 1 เครื่อง
 - 5. สาย Coaxial
 - 6. ขาตั้งสายอากาศ และแกนหมุนสายอากาศ

<u>ขั้นตอนการเตรียมความพร้อมเครื่อง Signal Generator</u>

- 1. เปิดเครื่อง Signal Generator
- 2. ต่อสาย Coaxial เข้ากับ Signal Generator และสายอากาศตัวส่ง โดยที่สายอากาศส่งจะถูกติดตั้งกับ เสาส่งและหันหน้าเข้าหาสายอากาศรับ

- 3. เลือกความถี่ใช้งาน โดยกด Center แล้วตามด้วยความถี่ดำเนินงานของสายอากาศ
- 4. เลือกกำลังงานที่ใช้ส่ง โดยกด Power Level แล้วตามด้วยกำลังงานที่ต้องการส่งให้กับสายอากาศส่ง ซึ่ง ในการทดลองให้ตั้งไว้ที่ 0 dBm (แต่ถ้าไม่สามารถรับ-ส่งกำลังงานกันได้ให้เพิ่ม Power Level)

หน้า 5 / 17

ขั้นตอนการเตรียมความพร้อมเครื่อง Spectrum Analyzer

- 1. เปิดเครื่อง Spectrum Analyzer
- 2. ต่อสาย Coaxial เข้ากับ Spectrum Analyzer และสายอากาศรับที่ต้องการวัดทดสอบแบบรูปการแผ่ กระจายพลังงาน โดยสายอากาศรับจะติดตั้งกับแกนหมุน

- 3. เลือกความถี่ใช้งาน โดยกด Center Frequency แล้วตามด้วยความถี่ดำเนินงานของสายอากาศ ทั้งนี้ ความถี่ของสายอากาศส่งและสายอากาศรับต้องเป็นความถี่เดียวกัน และตั้งค่าการลดทอน (Attenuation) เป็น 0 dB
 - 4. กด Peak Search เพื่อดูระดับกำลังงานที่รับได้โดยสายอากาศรับ

คำสั่ง ให้นักศึกษาวัดลักษณะการกวาดของเวกเตอร์สนามไฟฟ้าของสายอากาศไดโพลครึ่งความยาวคลื่น และ สายอากาศไมโครสตริปแพทซ์โพลาไรซ์วงกลม เพื่อทดสอบหา Axial Ratio

<u>ขั้นตอนการทดลอง</u>

1. ทำการติดตั้งสายอากาศไดโพลครึ่งความยาวคลื่นดังรูปด้านล่าง

- 2. หมุนสายอากาศตัวรับไปครั้งละ 10 องศา โดยเริ่มจาก 0 องศา ไปจนถึง 360 องศา และบันทึกค่า Received Power ที่ได้ในตารางที่ 1 และตารางที่ 2
- 3. นำค่าที่วัดได้จากตารางที่ 1 มาฟล็อตกราฟแบบเชิงขั้ว (Polar plot) โดยมีขั้นตอนดังนี้
 - 3.1) หาค่า Received Power สูงสุดของตาราง 1
- 3.2) ทำการ Normalize ค่ากำลังงานที่วัดได้ โดยนำค่ากำลังที่วัดได้ในองศาต่าง ๆ ลบด้วยค่า Maximum Received Power ซึ่งจะทำให้ค่ากำลังงานสูงสุดมีค่าเท่ากับ 0 dB
 - 3.3) ทำการฟล็อตกราฟค่าที่ได้จากการ Normalize
- 4. นำค่าที่วัดได้จากตารางที่ 2 มาฟล็อตกราฟแบบเชิงขั้ว (Polar plot) โดยมีขั้นตอนดังนี้
 - 4.1) หาค่า Received Power สูงสุดของตาราง 2
- 4.2) ทำการ Normalize ค่ากำลังงานที่วัดได้ โดยนำค่ากำลังที่วัดได้ในองศาต่าง ๆ ลบด้วยค่า Maximum Received Power ซึ่งจะทำให้ค่ากำลังงานสูงสุดมีค่าเท่ากับ 0 dB
 - 4.3) ทำการฟล็อตกราฟค่าที่ได้จากการ Normalize
- 5. ทำการติดตั้งสายอากาศไดโพลครึ่งความยาวคลื่นและสายอากาศไมโครสตริปแพทซ์โพลาไรซ์วงกลมดังรูป ด้านล่าง

- 6. หมุนสายอากาศตัวรับไปครั้งละ 10 องศา โดยเริ่มจาก 0 องศา ไปจนถึง 360 องศา และบันทึกค่า Received Power ที่ได้ในตารางที่ 3 และ 4
- 7. นำค่าที่วัดได้จากตารางที่ 3 มาฟล็อตกราฟแบบเชิงขั้ว (Polar plot) โดยมีขั้นตอนดังนี้
 - 7.1) หาค่า Received Power สูงสุดของตาราง 3
- 7.2) ทำการ Normalize ค่ากำลังงานที่วัดได้ โดยนำค่ากำลังที่วัดได้ในองศาต่าง ๆ ลบด้วยค่า Maximum Received Power ซึ่งจะทำให้ค่ากำลังงานสูงสุดมีค่าเท่ากับ 0 dB
 - 7.3) ทำการฟล็อตกราฟค่าที่ได้จากการ Normalize

- 8. นำค่าที่วัดได้จากตารางที่ 4 มาฟล็อตกราฟแบบเชิงขั้ว (Polar plot) โดยมีขั้นตอนดังนี้
 - 8.1) หาค่า Received Power สูงสุดของตาราง 4
- 8.2) ทำการ Normalize ค่ากำลังงานที่วัดได้ โดยนำค่ากำลังที่วัดได้ในองศาต่าง ๆ ลบด้วยค่า Maximum Received Power ซึ่งจะทำให้ค่ากำลังงานสูงสุดมีค่าเท่ากับ 0 dB
 - 8.3) ทำการฟล็อตกราฟค่าที่ได้จากการ Normalize

บันทึกผลการทดลอง

Signal Generator ที่ใช้ในการทดสอบ	Vector Signal Generator : TRANSCOM G6
Spectrum Analyzer ที่ใช้ในการทดสอบ	SpecMini T8260 Handheld Spectrum
	Analyzer
ย่านความถี่ดำเนินงานของสายอากาศไดโพลตัวที่ 1	1.9 GHz
ย่านความถี่ดำเนินงานของสายอากาศไดโพลตัวที่ 2	1.9 GHz
ย่านความถี่ดำเนินงานของสายอากาศไมโครสตริป	1.9 GHz
แพทซ์โพลาไรซ์วงกลม	
กำลังงานที่ใช้ในการส่ง (Power level)	15 dBm
ความถี่ที่ใช้ในการวัดทดสอบ	1.9 GHz
ระยะห่างระหว่างสายอากาศส่งและสายอากาศรับ	20 cm
ค่าการสูญเสียในสายนำสัญญาณเส้นที่ 1	-5.8 dB
ค่าการสูญเสียในสายนำสัญญาณเส้นที่ 2	-2.63 dB

หน้า 8 / 17

ตารางที่ 1 กำลังงานที่ถูกรับได้โดยสายอากาศรับไดโพลเมื่อสายอากาศส่งไดโพลวางในระนาบแนวนอน (Tx = Half-wave dipole (horizontal) and Rx = Half-wave dipole (rotate))

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-28.41	-2.68	190	-29.53	-3.80
10	-27.69	-1.96	200	-27.39	-1.66
20	-26.01	-0.28	210	-27.12	-1.39
30	-25.73	0.00	220	-26.03	-0.30
40	-26.79	-1.06	230	-28.12	-2.39
50	-28.04	-2.31	240	-26.03	-0.30
60	-29.03	-3.3	250	-28.12	-2.39
70	-31.97	-6.24	260	-29.52	-3.79
80	-36.71	-10.98	270	-30.11	-4.38
90	-41.72	-15.99	280	-34.72	-8.99
100	-37.20	-11.47	290	-36.10	-10.37
110	-32.73	-7.00	300	-40.97	-15.24
120	-34.30	-8.57	310	-40.12	-14.39
130	-32.73	-7.00	320	-34.67	-8.94
140	-34.30	-8.57	330	-31.72	-5.99
150	-28.72	-2.99	340	-30.82	-5.09
160	-28.72	-2.99	350	-31.92	-6.19
170	-27.21	-1.48	360	-29.28	-3.55
180	-21.53	-3.80			

ค่า Maximum Received Power 🛨<mark>-25.73 dB</mark>.....

แบบรูปโพลาไรเซชันของสายอากาศรับไดโพลเมื่อสายอากาศส่งไดโพลวางในระนาบแนวนอน (Tx = Half-wave dipole (horizontal) and Rx = Half-wave dipole (rotate))

Polarization Pattern of Dipole Antenna (Horizontal Rotate Rx)

ตารางที่ 2 กำลังงานที่ถูกรับได้โดยสายอากาศรับไดโพลเมื่อสายอากาศส่งไดโพลวางในระนาบแนวตั้ง (Tx = Half-wave dipole (vertical) and Rx = Half-wave dipole (rotate))

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-53.22	-16.20	190	-49.52	-12.50
10	-52.81	-15.79	200	-47.69	-10.67
20	-50.21	-13.19	210	-44.51	-7.49
30	-45.91	-8.89	220	-42.27	-5.25
40	-44.23	-7.21	230	-39.62	-2.60
50	-42.31	-5.29	240	-38.72	-1.70
60	-42.81	-5.79	250	-37.21	-0.19
70	-41.72	-4.70	260	-37.61	-0.59
80	-41.21	-4.19	270	-37.02	0.00
90	-40.52	-3.50	280	-38.13	-1.11
100	-41.12	-4.10	290	-42.26	-5.24
110	-41.69	-4.67	300	-41.52	-4.50
120	-43.23	-6.21	310	-41.01	-3.99
130	-43.65	-6.63	320	-42.52	-5.50
140	-44.78	-7.76	330	-44.72	-7.70
150	-45.61	-8.59	340	-47.61	-10.59
160	-48.72	-11.70	350	-50.61	-13.59
170	-50.61	-13.59	360	-53.61	-16.59
180	-52.96	-15.94			

ค่า Maximum Received Power 🛨<mark>-37.02 dB</mark>.....

แบบรูปโพลาไรเซชันของสายอากาศรับไดโพลเมื่อสายอากาศส่งไดโพลวางในระนาบแนวตั้ง $(Tx = Half-wave\ dipole\ (vertical)\ and\ Rx = Half-wave\ dipole\ (rotate))$

Polarization Pattern of Dipole Antenna (Vertical Rotate Rx)

หน้า 12 / 17

ตารางที่ 3 กำลังงานที่ถูกรับได้โดยสายอากาศรับไมโครสตริปแพทซ์โพลาไรซ์วงกลมเมื่อสายอากาศส่งไดโพล วางในระนาบแนวนอน

(Tx = Half-wave dipole (horizontal), Rx = Circularly polarized microstrip patch antenna (rotate))

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-52.53	-13.32	190	-60.21	-21.00
10	-59.21	-20.00	200	-51.96	-12.75
20	-55.36	-16.15	210	-47.12	-7.91
30	-50.62	-11.41	220	-44.97	-5.76
40	-45.77	-6.56	230	-43.77	-4.56
50	-43.98	-4.77	240	-42.96	-3.75
60	-41.67	-2.46	250	-41.73	-2.52
70	-40.27	-1.06	260	-40.12	-0.91
80	-39.71	-0.50	270	-39.97	-0.76
90	-39.88	-0.67	280	-39.64	-0.43
100	-39.21	0.00	290	-39.99	-0.78
110	-39.96	-0.75	300	-40.12	-0.91
120	-40.86	-1.65	310	-40.96	-1.75
130	-41.57	-2.36	320	-41.67	-2.46
140	-42.86	-3.65	330	-43.21	-4.00
150	-43.63	-4.42	340	-45.12	-5.91
160	-45.12	-5.91	350	-46.12	-6.91
170	-49.32	-10.11	360	-50.76	-11.55
180	-51.66	-12.45			

ค่า Maximum Received Power 🛨<mark>-39.21 dB</mark>.....

แบบรูปโพลาไรเซชันของสายอากาศรับไมโครสตริปแพทซ์โพลาไรซ์วงกลมเมื่อสายอากาศส่งไดโพลวางใน ระนาบแนวนอน

Tx = Half-wave dipole (horizontal),

Rx = Circularly polarized microstrip patch antenna (rotate)

Circularly polarization Micostrip patch Antenna (Horizontal Tx; Rotate Rx)

หน้า 14 / 17

ตารางที่ 4 กำลังงานที่ถูกรับได้โดยสายอากาศรับไมโครสตริปแพทซ์โพลาไรซ์วงกลมเมื่อสายอากาศส่งไดโพล วางในระนาบแนวตั้ง

(Tx = Half-wave dipole (vertical), Rx = Circularly polarized microstrip patch antenna (rotate))

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-38.87	-1.75	190 -38.76 -1.64	-1.64	
10	-37.61	-0.49	200	-37.12	0.00
20	-38.29	-1.17	210	-38.72	-1.60
30	-39.67	-2.55	220	-39.12	-2.00
40	-40.18	-3.06	230	-40.13	-3.01
50	-41.21	-4.09	240	-41.52	-4.4
60	-42.63	-5.51	250	-42.07	-4.95
70	-44.52	-7.40	260	-43.27	-6.15
80	-45.76	-8.64	270	-44.78	-7.66
90	-47.07	-9.95	280	-46.24	-9.12
100	-46.62	-9.50	290	-47.56	-10.44
110	-45.12	-8.00	300	-46.21	-9.09
120	-43.57	-6.45	310	-44.32	-7.20
130	-42.52	-5.40	320	-42.69	-5.57
140	-40.72	-3.60	330	-41.12	-4.00
150	-39.73	-2.61	340	-40.37	-3.25
160	-38.07	-0.95	350	-40.12	-3.00
170	-38.92	-1.80	360	360 -39.69 -2.	
180	-37.12	0.00			

ค่า Maximum Received Power 🛨<mark>-37.12 dB</mark>.....

หน้า 15 / 17

แบบรูปโพลาไรเซชันของสายอากาศรับไมโครสตริปแพทซ์โพลาไรซ์วงกลมเมื่อสายอากาศส่งไดโพลวางใน ระนาบแนวตั้ง

Tx = Half-wave dipole (vertical),

Rx = Circularly polarized microstrip patch antenna (rotate)

Circularly Polarization Microstrip Patch Antenna (Vertical Tx; Rotate Rx)

หน้า 16 / 17

ตารางที่ 5 ค่า Axial ratio (AR) ที่ได้จากผลการวัดแบบรูปโพลาไรเซชั่น

ข้อมูล	AR (dimensionless)	AR (dB)
แบบรูปโพลาไรเซชั่นในตารางที่ 1	1548.82	31.9
แบบรูปโพลาไรเซชั่นในตารางที่ 2	660.693	28.2
แบบรูปโพลาไรเซชั่นในตารางที่ 3	38018.9	45.8
แบบรูปโพลาไรเซชั่นในตารางที่ 4	229.086	23.6

แบบรูบเพลาเรเซชนเนตารางท 4	229.086		23.6	
จากกราฟที่ได้จากผลการวัดแบบรูปโพล	าไรเซชั่นในตารางที่ 1 :	จะได้ว่า		
สายอากาศ Half-Wave Dipole มีโพล				
Linear Polarization		Horizontal		
Circular Polarization	• Left Hand	Right Hand		
■ Elliptical Polarization →	• Left Hand	Right Hand		
จากกราฟที่ได้จากผลการแบบรูปโพลาไ	รเซชั่นในตารางที่ 2 จะไ	ได้ว่า		
สายอากาศ Half-Wave Dipole มีโพล	าไรเซชั่นแบบ			
Linear Polarization	O Vertical O	Horizontal		
Circular Polarization	O Left Hand O	Right Hand		
☐ Elliptical Polarization →	O Left Hand O	Right Hand		
จากกราฟที่ได้จากผลการวัดแบบรูปโพล	าไรเซชั่นในตารางที่ 3	จะได้ว่า		
สายอากาศ Circularly polarized mid	crostrip patch มีโพลาไ	รเซชั่นแบบ		
Linear Polarization	O Vertical	Horizontal		
Circular Polarization	O Left Hand O	Right Hand		
■ Elliptical Polarization →	• Left Hand	Right Hand		
จากกราฟที่ได้จากผลการวัดแบบรูปโพล	าไรเซชั่นในตารางที่ 4	จะได้ว่า		
สายอากาศ Circularly polarized mid	crostrip patch มีโพลาไ	รเซชั่นแบบ		
Linear Polarization	O Vertical	Horizontal		
Circular Polarization	O Left Hand	Right Hand		
☐ Elliptical Polarization →	O Left Hand O	Right Hand		

หน้า 17 / 17

การทดลองที่ 6 การวัดโพลาไรเซชันของสายอากาศ

<u>สรุปผลการทดลอง</u>

จากการทดลอง สามารถแบ่งการทดลองออกเป็น 4 ส่วน ได้แก่

- กรณีที่ 1 กำหนดให้สายอากาศส่งและสายอากาศรับวางให้แนวนอนทั้งคู่ และสายอากาศรับทำหน้าที่ หมุนเพื่อทำการบันทึกค่า (สายอากาศทั้งสองเป็น Microstrip Patch Antenna)
- กรณีที่ 2 กำหนดให้สายอากาศส่งวางในแนวตั้ง และ สายอากาศรับวางให้แนวนอน โดยสายอากาศรับ ทำหน้าที่หมุนเพื่อทำการบันทึกค่า (สายอากาศทั้งสองเป็น Microstrip Patch Antenna)
- กรณีที่ 3 กำหนดให้สายอากาศส่งวางในแนวนอน และ สายอากาศรับทำหน้าที่หมุนเพื่อบันทึกค่า (สายอากาศส่งเป็น Microstrip Patch Antenna และ สายอากาศรับเป็น Circularly Polarized Microstrip Patch Antenna)
- กรณีที่ 4 กำหนดให้สายอากาศส่งวางในแนวตั้ง และ สายอากาศรับทำหน้าที่หมุนเพื่อบันทึกค่า (สายอากาศส่งเป็น Microstrip Patch Antenna และ สายอากาศรับเป็น Circularly Polarized Microstrip Patch Antenna)

โดยจะทำการอธิบายแต่ละส่วน

- ในกรณีที่ 1 เราพบว่าเมื่อติดตั้งสายอากาศรับและส่งตามการทดลอง สายอากาศจะมีการโพราไรเซชัน แบบเส้นตรงในแนวนอน โดยเราสามารถพิจารณาได้จากทิศทางที่พล็อตลงบน MS Excel จะเห็นว่า ทิศทางของการโพราไรเซชันมีค่าสูงสุดเมื่อวางสายอากาศรับทำมุม 20 และ 220 องศาตามลำดับ ทั้งนี้ หากเป็นไปตามทฤษฎีควรทำมุมที่ 0 และ 180 องศาตามลำดับ แต่เนื่องจากหลาย ๆ ปัจจัยทำให้เกิด ความคลาดเคลื่อนซึ่งอยู่ในช่วงที่สามารถพิจารณาได้
- ในกรณีที่ 2 สายอากาศมีการโพลาไรเซชันแบบเส้นตรงในแนวตั้ง จะสังเกตได้ว่าทิศทางการโพราไรเซชัน มีค่าสูงสุดเมื่อวางสายอากาศรับทำมุม 90 และ 270 องศาตามลำดับ เป็นผลมาจากการที่เราเปลี่ยน สายอากาศส่งจากแนวนอนเป็นแนวตั้งนั่นเอง
- ในกรณีที่ 3 สายอากาศมีการโพราไรเซชันแบบเส้นตรงในแนวตั้ง แม้ว่าเราจะตั้งสายอากาศส่งให้อยู่ใน แนวนอนก็ตาม ทั้งนี้เป็นเพราะสายอากาศรับเป็นสายอากาศชนิด Circularly Polarized Microstrip Patch Antenna ทำให้เมื่อต้องการส่งคลื่นไปยังสายอากาศรับ สายอากาศส่งหรือสายอากาศรับ จำเป็นต้องวางสายอากาศในรูปแบบของ Co-Polarization เพื่อให้สามารถรับคลื่นได้ดีที่สุดในระยะ Far-Field
- ในกรณีที่ 4 เราลองเปลี่ยนให้สายอากาศส่งวางในแนวตั้ง และให้สายอากาศรับหมุน พบว่าเมื่อวางใน ระนาบเดียวกัน (มุม 0 และ 180 องศา) จะทำให้มีการโพราไรเซชันสูงสุด ซึ่งสายอากาศทั้งสองต้องวาง สายอากาศในรูปแบบของ Co-Polarization เพื่อให้สามารถรับคลื่นได้ดีที่สุดในระยะ Far-Field ทั้งนี้เราสามารถสรุปได้ว่า สายอากาศ Microstrip Patch Antenna มีการโพราไรเซชันแบบ Linear Polarization และหากต้องการรับคลื่นให้มีกำลังการสูญเสียต่ำที่สุดควรวางสายอากาศเพื่อให้เกิดการ Polarization แบบ Co-Polarization