Wiederholung

• A Menge, |A| = n, $k \in \mathbb{N}$

- k-Pernulationen von A: {(a11··· 1 ak) ∈ Ak | ai + aj für i + j'} (k∈n)

 $|\{k-\text{Perneutationer von }A\}| = \frac{n!}{(n-k)!}$ - $k + \text{Kombinationer}: k-elementige Teilmenger von }A \ (k \in n)$ / [k-Kombinationer von A] = k!(n-k)!

- h-Tupel /{k-Tupel iber A}/

- Multimerger: Mengen und Wiederholunger H h- Multimenge über A = lan..., an} lx = (l,,...,ln) \(No", li := Vielfachheit von a; in X $|2k-Multimengen über <math>A^2|=\frac{(n+k-1)!}{k!(n-1)!}$

$$n_{1}k \in \mathbb{N}_{0} \qquad \binom{n}{k} := \frac{n!}{k!(n-k)!} \qquad \text{"n when } k$$

$$n_{1}k \in \mathbb{N}_{0} := \left| \frac{1}{2}k - \text{elem. Teilmengen von } n_{2} \right|$$

$$= \left| \binom{n}{k} \right| = 0 \qquad \text{hur } k > n.$$

$$\binom{n}{0} = 1, \quad \binom{n}{n} = 1, \quad \binom{n}{1} = n, \quad \binom{n}{2} = \frac{1}{2}n(n-1)$$

Parcal'scher Dreisch N =

nein

mit Wdh.

 $m_1! \cdot m_2! \cdot ... \cdot m_n!$

ohne Wdh.

n!

nein

mit Wdh.

 n^k

ohne Wdh.

n!

(n-k)!

14:14 Gerhard Hiss

Zusammenfassung

Anzahl der Möglichkeiten, k Elemente aus einer n-elementigen Menge zu ziehen:

	geordnet	ungeordnet
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$

Mehr Informationen:

www.studyhelp.de/online-lernen/mathe/kombinatorik/

Der binomische Lehrsatz

Es sei R ein kommutativer Ring.

Schreibweise

Für $a \in R$ und $z \in \mathbb{Z}$ schreiben wir

Meist lassen wir den Punkt weg, d.h. wir schreiben za statt z.a.

Bemerkung

Ist z = xy für $x, y \in \mathbb{Z}$, dann gilt z.a = x.(y.a) für alle $a \in R$.

Der binomische Lehrsatz (Forts.)

Binomischer Lehrsatz

Es sei R ein kommutativer Ring, $a, b \in R$ und $n \in \mathbb{N}$. Dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Korollar

Für $n \in \mathbb{N}$ gilt

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Sperialfalle:
$$N = 1$$
: L.S. $\alpha + b$
 $RS: \begin{pmatrix} 1 \\ 0 \end{pmatrix} b + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \alpha = b + a = a + b$

$$N = 2: L.S. (a+b)^2$$

$$RS. \left(\frac{2}{0}\right)b^{2} + \left(\frac{2}{1}\right)ab + \left(\frac{2}{2}\right)a^{2} = b^{2} + 2ab + a^{2}$$

$$n=3: (a+b)^3 = a^3 + 3ab^2 + 3a^2b + b^3$$
.

Beweis des binomischer Lelisation Induktion übe n: n=1: Siehe vorhergeh. Folië Indulations about: Was n-1 mm (n=1) $(a+b)^n = (a+b)^{n-1}(a+b)$ $= \left(\frac{n-1}{\sum_{k=0}^{n-1} \binom{n-1}{k} a^k b^{n-1-k}}\right) (\alpha+b)$ $= \frac{\sum_{k=0}^{n-1} \binom{n-1}{k} a^{k+1} b^{n-1-k}}{k} + \frac{\sum_{k=0}^{n-1} \binom{n-1}{k} a^{k} b^{n-k}}$

 $= a^{n-2} + \sum_{k=0}^{(n-1)} a^{k+1} b^{n-(k+1)} + \sum_{k=1}^{n-1} {n-1 \choose k} a^{k} b^{n-k} + b^{n}$

$$= a^{n} + \sum_{k'=1}^{n-1} {n-1 \choose k'-1} a^{k'} b^{n-k'} + \sum_{k=1}^{n-1} {n-1 \choose k} a^{k} b^{n-k} + b^{n}$$

$$= a^{n} + \sum_{k=1}^{n-1} \left[\binom{n-1}{k-1} + \binom{n-1}{k} \right] a^{k} b^{n-k} + b^{n}$$

$$= \alpha^{n} + \sum_{k=1}^{n-1} {n \choose k} a^{k} \cdot b^{n-k} + b^{n} =$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}.$$

Der binomische Lehrsatz (Forts.)

Schülers Traum

Es sei R ein Ring und p eine Primzahl mit p.a = 0 für alle $a \in R$ (z.B. $R = \mathbb{F}_p$ der Körper mit p Elementen). Dann ist

$$(a+b)^p = a^p + b^p$$

für alle $a, b \in R$.

Beweis

Für 0 < k < p ist

$$\binom{P}{k} = \frac{P(P-1)\cdots (P-k+1)(P-k)!}{k! (P-k)!}$$

$$\binom{p}{k} = \frac{p \cdot (p-1) \cdots (p-k+1)}{k!}$$

von der Form xp für ein $x \in \mathbb{N}$, also $\binom{p}{k}.a^kb^{p-k} = 0$.

$$(a+b)^{p} = a^{p} + \sum_{k=1}^{p-1} {p \choose k} a^{k} b^{p-k} + b^{p}$$

$$= 0$$

$$\begin{pmatrix} P \\ k \end{pmatrix} = \frac{p(p-1) \cdots (p-k+1)}{k!}$$

$$\Rightarrow p \mid {p \choose k} \cdot k!$$

$$\Rightarrow p \mid {q \choose k} \cdot k!$$

$$\Rightarrow$$

Kombinatorische Beweisprinzipien

Summenregel

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r paarweise disjunkte endliche Mengen. Dann ist

$$|\bigcup_{i=1}^{r} A_i| = \sum_{i=1}^{r} |A_i|.$$

$$M = A U B$$
 $A \cap B = \emptyset$

$$=) |M| = |A| + |B|$$

$$=) |M| - |A| = |B|$$

Differenzregel

Es sei M endliche Menge, $A \subseteq M$. Dann ist

$$|M \setminus A| = |M| - |A|.$$

Beispiele
$$|\{0 - |\{n \in 10 \mid n \in \mathbb{R}\}\}| =$$

 $|\{n \in 10 \mid n \notin \mathbb{R}\}| = |\{10 - |\{2,3,5,7\}\}| = 10 - 4 = 6.$

- ► Anzahl der Lottoziehungen, bei denen 49 gezogen wird
- ► Anzahl der 3-Kombinationen aus 8, in denen 1 vorkommt

$$\binom{8}{3} - \binom{7}{3} = 56 - 35 = 21;$$
 $\frac{21}{56} = \frac{3}{8}.$

$$\binom{49}{6} - \binom{48}{6} = \cdots - 1712304$$

.

-

Produktregel

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r endliche Mengen. Dann ist

$$| \underset{i=1}{\overset{r}{\times}} A_i| = \prod_{i=1}^r |A_i|.$$

Satz

 \mathcal{A} eine Multimenge mit r verschiedenen Elementen a_1, \ldots, a_r .

Es sei
$$\ell_{\mathcal{A}} = (k_1, \ldots, k_r)$$
 und $k = k_1 + \cdots + k_r$.

Die Anzahl der Anordnungen von ${\mathcal A}$ ist

$$\frac{k!}{k_1!\cdots k_r!}$$
.

Beispiel

Wieviele verschiedene Wörter kann man durch Anordnung der

Buchstaben P, I, Z, Z, A gewinnen?
$$k = 5$$
, $k_1 = k_2 = k_4 = 1$, $k_3 = 2$

$$\frac{5!}{2!} = \frac{120}{2} = 60$$

Deweir des Satres $A := \{ (a_{11}), (a_{12}), \dots, (a_{1k_1}), (a_{21}), \dots, (a_{2l}k_2), \dots, (a_{rlk_r}) \}$ |A| = k, Avrahl der Anordnungen (= Permutatione) van A: k! Sai i fert, 14 i er. Evrethe in jeder Permutation van A (aij) durch ai 15j\(\xi\). =) genau ki! Permutationer va A werder gleid Fulur dien Enstrung for jeder i durch: | Beruntatione von A) = k1! k2! ... kr! (1 Anordnunge von A)

Prinzip

Für zwei beliebige endliche Mengen A und B gilt stets

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

AUBUC = 1A1+1B1+1C1 - /AnB/-(Anc/-/Bnc/+/AnBnc/. In (A/+/B/+(C/je 2 - mal gerählt, In 1A1+1B1+1C1 3- mal gerald, in - ((A 1B | + | A 1 C (+ | B 1 C |) 3 - mal algerage.

Inklusions-Exklusionsprinzip

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r endliche Mengen. Dann gilt

$$|\bigcup_{k=1}^{r} A_k| = \sum_{k=1}^{r} (-1)^{k-1} \sum_{\substack{I \subseteq \underline{r} \\ |I| = k}} |\bigcap_{i \in I} A_i|.$$

Beispiel

 $|\{n \in \underline{100} \mid 2 \text{ teilt } n \text{ oder 3 teilt } n \text{ oder 5 teilt } n\}| =$

$$A = 100, \quad A_{k} := \{ i \in 100 \mid k \mid i \}, \quad |A_{k}| = \left\lfloor \frac{100}{k} \right\rfloor$$

$$|A_{2} \neq \cup A_{3} \cup A_{5}| = |A_{2}| + |A_{3}| + |A_{5}| - \left(|A_{3} \cap A_{5}| + |A_{2} \cap A_{5}| + |A_{$$

$$= |A_2| + |A_3| + |A_5| - |A_{15}| - |A_{10}| - |A_6| + |A_{30}| =$$

$$= 50 + 33 + 20 - 6 - 10 - 16 + 3 = 74.$$

Schubfachprinzip (informell)

Verteilt man n Elemente auf m Schubladen und ist n > m, so enthält eine Schublade mindestens zwei Elemente.

Schubfachprinzip (mathematisch)

Es seien A, B endliche Mengen mit |A| = n und |B| = m. Weiter sei $f: A \rightarrow B$ Abbildung.

Ist n > m, dann ist f nicht injektiv.

Beispiel

In jeder Menge von 13 Personen gibt es zwei, die im gleichen Monat Geburtstag haben.

Partitionen

Es sei A eine Menge und $k \in \mathbb{N}_0$.

Erinnerung

Eine Partition von A ist eine Teilmenge $\mathcal{P} \subseteq \operatorname{Pot}(A)$ mit

- ▶ $P \neq \emptyset$ für alle $P \in \mathcal{P}$;
- ▶ $P \cap P' = \emptyset$ für alle $P, P' \in \mathcal{P}$ mit $P \neq P'$;
- $ightharpoonup A = \bigcup_{P \in \mathcal{P}} P.$

Definition

Eine k-Partition von A ist eine Partition \mathcal{P} von A mit $|\mathcal{P}| = k$.

Beispiele

- \blacktriangleright {{1,3,5,8}, {2,7}, {4,9}, {6}} ist eine 4-Partition von $\underline{9}$.
- ▶ Eine 0-Partition von A existiert nur für $A = \emptyset$.

Stirlingzahlen

Es seien $n, k \in \mathbb{N}_0$.

Definition

$$S_{n,k} := Anzahl der k-Partitionen von $\underline{n}$$$

heißt Stirling-Zahl zweiter Art.

Beispiel

Die Anzahl der Möglichkeiten, n Studierende auf k nicht-leere Tutoriengruppen aufzuteilen, ist $S_{n,k}$.

Bemerkung

- $ightharpoonup S_{n,n}=1$, and fin n=0
- $S_{n,0} = 0$ falls n > 0,
- ► $S_{n,k} = 0$ falls k > n.

Satz

Für alle $n, k \in \mathbb{N}$ gilt

$$S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}.$$

Benveis des Satres: Klar für n=1 nach Bonnerhung (selbet) Sei also n > 1. \$X = { h - Partitioner von n } Y = { P & X | Ins & P}, Z = X - Y |X| = |Y| + |2||Y = { (k-1) - Part. vor n-1} | Lane In weg. 12 (= 1/2 k-Part. von n-13 | . k $\{P_1, \dots, P_k\}$ $\{P_1 \cup Inf_1, P_2, \dots, P_k\}$ $\{P_1, P_2 \cup Inf_1, \dots, P_k\}$ {P1, P2, ..., Pk-1, Pk using

Bemerkung

Die Zahlen $S_{n,k}$ lassen sich im sog. Stirling-Dreieck zweiter Art anordnen:

Es seien $n, k \in \mathbb{N}_0$.

Definition

 $s_{n,k} := \text{Anzahl der Permutationen von } \underline{n} \text{ mit } \underline{k}\text{-Zykeln}$ heißt $Stirling\text{-}Zahl \ erster \ Art.$

Bemerkung

- ► $s_{n,n} = 1$,
- $s_{n,0} = 0$ falls n > 0,
- $ightharpoonup s_{n,k} = 0$ falls k > n.

Satz

Für alle $n, k \in \mathbb{N}$ gilt

$$s_{n,k} = s_{n-1,k-1} + (n-1)s_{n-1,k}.$$

Bemerkung

Die Zahlen $s_{n,k}$ lassen sich im sog. Stirling-Dreieck erster Art anordnen:

n = 0:							1						
n=1:						0		1					
n = 2:					0		1		1				
n = 3:				0		2		3		1			
n=4:			0		6		11		6		1		
<i>n</i> = 5:		0		24		50		35		10		1	
n = 6:	0		120		274		225		85		15		1