CLAIMS

1	1. (currently amended) A digital filter, comprising:
2	at least two multiple stage shift registers;
1 2 3	a plurality of multipliers corresponding in number to the total number of stages in the at least two
4	multiple stage shift registers, each multiplier receiving as a first input an output from a stage of the at
5	least two multiple stage shift registers[[:]];
6	a tap weight shifter coupled to a tap weight source to receive tap weights, the tap weight shifter
7	coupled to provide a second input to each multiplier, the tap weight shifter capable of shifting tap
	weights, each multiplier producing an output corresponding to a product of the first and second inputs;
8 9	and
0	an adder for summing the multiplier outputs to provide a sum output, wherein:
	two or more sum outputs are generated by the adder between consecutive shiftings of
1 2 3 4 5	new data into the at least two multiple stage shift registers; and
ک ع	no new data is shifted into any of the at least two multiple stage shift registers between
J .	generation of a first of the two or more sum outputs by the adder and a last of the two or more sum
4	
5	outputs by the adder.
	O C. C. C. D. A. 15 to 1 City, and the date of the date of the communications.
1	2. (original) A digital filter as recited in claim 1, further comprising:
2 3	a multiplier stage buffer for receiving and storing digital samples, outputs from the multiple stage
3	buffer being coupled to provide inputs to the at least two multiple stage shift registers.
_	
1	3. (original) A digital filter as recited in claim 2, wherein the multiple stage buffer is a
2	serial-input, parallel-output buffer.
1	4. (previously presented) A digital filter as recited in claim 1, wherein the tap weights
2	received by the tap weight shifter are one bit wide.
1	5. (previously presented) A digital filter as recited in claim 1, wherein the tap weights
2	received by the tap weight shifter are more than one bit wide and the tap weights have a bit width that is
3	no greater than a bit width of stages of the shift registers.
1	6. (original) A digital filter as recited in claim 1, wherein the digital filter is implemented
2	in software.
1	7. (original) A digital filter as recited in claim 1, wherein the digital filter is implemented
2	in an integrated circuit.
1	8. (original) A digital filter as recited in claim 7, wherein the digital filter is implemented
2	in an application specific integrated circuit.
1	9. (original) A digital filter as recited in claim 7, wherein the digital filter is implemented
2	in a digital signal processor.
1	10. (original) A digital filter as recited in claim 7, wherein the digital filter is implemented
2	in a microcontroller.
1	11. (previously presented) A digital filter as recited in claim 7, wherein the digital filter is
2	implemented in a microprocessor.

2

(previously presented) A digital filter as recited in claim 1, further comprising the tap 1 12. 2 weight source from which to receive the tap weights. 1 13. (original) A digital filter as recited in claim 12, wherein the tap weight source is random 2 access memory. (original) A digital filter as recited in claim 12, wherein the tap weight source is 1 14. 2 read-only memory. (original) A digital filter as recited in claim 12, wherein the tap weight source is a 1 15. 2 processor. (currently amended) A receiver including a digital filter comprising: 1 16. at least two multiple stage shift registers; 2 3 a plurality of multipliers corresponding in number to the total number of stages in the at least two multiple stage shift registers, each multiplier receiving as a first input an output from a stage of the at 4 least two multiple stage shift registers: 5 a tap weight shifter coupled to a tap weight source to receive tap weights, the tap weight shifter 6 7 coupled to provide a second input to each multiplier, the tap weight shifter capable of shifting tap 8 weights, each multiplier producing an output corresponding to a product of the first and second inputs; 9 and an adder for summing the multiplier outputs to provide a sum output, wherein: 10 two or more sum outputs are generated by the adder between consecutive shiftings of 11 new data into the at least two multiple stage shift registers; and 12 no new data is shifted into any of the at least two multiple stage shift registers between 13 14 generation of a first of the two or more sum outputs by the adder and a last of the two or more sum 15 outputs by the adder. (original) A receiver as recited in claim 16, further comprising: 1 a multiplier stage buffer for receiving and storing digital samples, outputs from the multiple stage 2 buffer being coupled to provide inputs to the at least two multiple stage shift registers. 3 (original) A receiver as recited in claim 17, wherein the multiple stage buffer is a 1 18. 2 serial-input, parallel-output buffer. (previously presented) A receiver as recited in claim 16, wherein the tap weights 1 19. 2 received by the tap weight shifter are one bit wide. (previously presented) A receiver as recited in claim 16, wherein the tap weights 1 received by the tap weight shifter are more than one bit wide and the tap weights have a bit width that is 2 no greater than a bit width of stages of the shift registers. 3 1 21-26. (canceled) (previously presented) A receiver as recited in claim 16, further comprising the tap 1 weight source from which to receive the tap weights. 2 1 28-30. (canceled)

1

31.

(original) A receiver as recited in claim 16, wherein the receiver is a handset.

1	32. (original) A receiver as recited in claim 16, wherein the receiver is a base station.
1	33. (previously presented) A method of filtering digital data, comprising the steps of:
2	a. shifting digital data into first and second multiple stage shift registers;
3	b. multiplying an output from each stage of the first and second multiple stage shift
4	registers by an associated, respective tap weight to produce a plurality of products;
5	c. combining the plurality of products to form a single sum;
6	d. circularly shifting the tap weights; and
7	e. repeating steps b and c at least once before step a is repeated.
1	34. (previously presented) A method of filtering digital data as recited in claim 33, further
2	comprising the step of shifting digital data into registers of a buffer prior to shifting the digital data into
3	first and second multiple stage shift registers.
1	35. (previously presented) A method of filtering data, comprising the steps of:
2	a. shifting data into N multiple stage shift registers, each of the N multiple stage shift
3	registers having at least L stages, N and L being integers, N being at least 2;
4	b. multiplying an output from each of the at least L stages of the N multiple stage shift
5	registers by a corresponding tap weight to produce a plurality of products;
6	c. combining the plurality of products to form a single sum;
7	d. circularly shifting the tap weights;
8	 e. repeating steps b, c, and d N-2 times before step a is repeated; f. repeating steps b and c again before step a is repeated.
9	
1	36. (previously presented) A method of filtering data as recited in claim 35, further
2	comprising the steps of
3	following step f, repeating steps a through f.
1	37. (original) A method of filtering data as recited in claim 35, further comprising the step
2	of shifting N pieces of data into registers of a buffer for temporary storage prior to shifting the N pieces
3	of data into respective ones of the N multiple stage shift registers.
1	38. (currently amended) A digital filter comprising:
2	N multiple-stage shift registers, N>1;
3	a tap changer adapted to store a configuration of tap weights;
4	a plurality of multiplying elements, each multiplying element adapted to (a) receive (i) a datum
5	from a corresponding stage of a corresponding shift register and (ii) a corresponding tap weight from the tap changer and (b) generate an output corresponding to a product of the datum and the corresponding tap
6 7	weight; and
8	an adder adapted to receive the output from each multiplying element and generate a sum
9	corresponding to the sum of the products of all of the data in the N multiple-stage shift registers and the
10	corresponding tap weights in the tap changer, wherein:
11	the digital filter adder is adapted to generate two or more different sums for each set of
12	data stored in the N multiple-stage shift registers;
13	no new data is shifted into any of the N multiple-stage shift registers between generation
14	of a first of the two or more different sums by the adder and a last of the two or more different sums by
15	the adder; and
16	each different sum is based on a different configuration of tap weights in the tap changer.

1 2	39. (previously presented) The digital filter of claim 38, wherein: the tap changer is a circular buffer; and
3	each different configuration of the tap weights is generated by circularly shifting the tap weights within the tap changer.
1 2	40. (previously presented) The digital filter of claim 39, further comprising a tap weight source adapted to reload an initial configuration of tap weights into the tap changer.
1 2 3	41. (previously presented) The digital filter of claim 40, wherein the tap weight source is adapted to reload the initial configuration of tap weights after N sums have been generated based on N different configurations of the tap weights.
1 2 3 4	42. (previously presented) The digital filter of claim 38, further comprising an input buffer adapted to parallelize an incoming serial data stream for input into the N multiple-stage shift registers, wherein each shift register is adapted to receive a corresponding portion of the incoming serial data stream.
1 2 3	43. (previously presented) The digital filter of claim 42, wherein the digital filter is adapted to generate N different sums based on N different configurations of the tap weights for each shift of parallelized data into the N multiple-stage shift registers.
1 2	44. (previously presented) The digital filter of claim 38, wherein the N multiple-stage shift registers do not all have the same number of stages.
1 2	45. (previously presented) The digital filter of claim 38, wherein the bit-width of each tap weight is smaller than the bit-width of each datum in the N multiple-stage shift registers.
1 2	46. (currently amended) A receiver including a digital filter, the digital filter comprising: N multiple-stage shift registers, N>1;
3	a tap changer adapted to store a configuration of tap weights;
4	a plurality of multiplying elements, each multiplying element adapted to (a) receive (i) a datum
5	from a corresponding stage of a corresponding shift register and (ii) a corresponding tap weight from the
6	tap changer and (b) generate an output corresponding to a product of the datum and the corresponding tap
7	weight; and
8	an adder adapted to receive an output from each multiplying element and generate a sum corresponding to the sum of the products of all of the data in the N multiple-stage shift registers and the
9	corresponding to the sum of the products of an of the data in the 14 multiple-stage sint registers and the
10 11	the digital filter adder is adapted to generate two or more different sums for each set of
12	data stored in the N multiple-stage shift registers;
13	no new data is shifted into any of the N multiple-stage shift registers between generation
14	of a first of the two or more different sums by the adder and a last of the two or more different sums by
15	the adder; and
16	each different sum is based on a different configuration of tap weights in the tap changer.