Berekenbaarheidstheorie Samenvatting

Daan Schipper

16 april 2014

Beslisbare talen

- $A_{DFA} = \{\langle B, w \rangle \mid B \text{ is een DFA die } w \text{ accepteert} \}$ A_{DFA} is beslisbaar door de volgende TM M: $M = \text{``Op invoer } \langle B, w \rangle$, waar B een DFA is en w een woord:
 - 1. Simuleer w op B
 - 2. Als B accepteert, accepteer; als B verwerpt, verwerp"
- $A_{NFA} = \{\langle B, w \rangle \mid B \text{ is een NFA die } w \text{ accepteert}\}$ A_{NFA} is beslisbaar door de volgende TM N:

N = "Op invoer $\langle B, w \rangle$, waar B een NFA is en w een woord:

- 1. Converteer NFA B naar een equivalente DFA C met de procedure voor deze conversie beschreven in Theorem 1.39 in Sipser.
- 2. Voer TM M uit op de input $\langle C, w \rangle$.
- 3. Als M accepteert, accepteer; anders verwerp."
- $A_{REX} = \{\langle R, w \rangle \mid R \text{ is een reguliere expressie dat woord } w \text{ genereert} \}$ A_{REX} is beslisbaar door de volgende TM P: $P = \text{"Op invoer } \langle R, w \rangle$, waar R een reguliere expressie is en w een woord:
 - 1. Converteer de reguliere expressie R naar een equivalente NFA A met de procedure voor deze conversie beschreven in Theorem 1.54 in Sipser.
 - 2. Voer TM N uit op invoer $\langle A, w \rangle$.
 - 3. Als N accepteert, accepteer; als N verwerpt, verwerp."
- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is een DFA en } L(A) = \emptyset \}$ E_{DFA} is beslisbaar door de volgende TM T: $T = \text{"Op invoer } \langle A \rangle$, waar A een DFA is:
 - 1. Markeer de start configuratie van A.
 - 2. Herhaal totdat er geen nieuwe configuratie worden gemarkeerd:

- 3. Markeer elke configuratie die een transitie naar zich heeft van een configuratie die al gemarkeerd is
- 4. Als geen accepterende configuratie is gemarkeerd, accepteer; anders, verwerp"
- $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ en } B \text{ zijn DFAs en } L(A) = L(B)\}$ EQ_{DFA} is beslisbaar door de volgende Turinmachine F: $F = \text{``Op invoer } \langle A, B \rangle$, waar A en B DFAs zijn:
 - 1. Construeer DFA ${\cal C}$ met behulp van het symmetrisch verschil.
 - 2. Voer TM T uit op input $\langle C \rangle$.
 - 3. Als T accepteert, accepteer. Als T verwerpt, verwerp."
- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is een CFG dat woord } w \text{ genereert} \}$ A_{CFG} is beslisbaar door de volgende TM S:
 - S = "Op invoer $\langle G, w \rangle$, waar G een CFG is en w een string:
 - 1. Converteer G naar een equivalente grammatica in Chomsky normaal vorm.
 - 2. Noteer alle afleidingen met 2n-1 stappen, waar n de lengte is van w; behalve als n=0, noteer dan alle afleidingen met één stap.
 - 3. Als een van deze afleidingen w genereert, accepteer; zo niet, verwerp."
- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is een CFG en } L(G) = \emptyset \}$ E_{CFG} is beslisbaar door de volgende TM R: $R = \text{"Op invoer } \langle G \rangle$, waar G een DFG is:
 - 1. Markeer al eindige symbolen in G
 - 2. Herhaal totdat geen nieuwe variabelen worden gemarkeerd:
 - 3. Markeer elke variabele A waar G een regel $A \to U_1U_2...U_k$ en ieder symbool $U_1,...,U_k$ is al gemarkeerd.
 - 4. Als de start variabele niet gemarkeerd is, accepteer; anders, verwerp."
- Ieder contextvrije taal is beslisbaar
- $A_{LBA} = \{\langle M, w \rangle \mid M \text{ is een LBA dat woord } w \text{ accepteert} \}$ A_{LBA} is beslibaar door de volgende TM L: $L = \text{"Op invoer } \langle M, w \rangle, \text{ waar } M \text{ een LBA is en } w \text{ een woord:}$
 - 1. Simuleer M op w voor qng^n stappen of tot dat het stopt.
 - 2. Als M is gestopt, accepteer als het heeft geaccepteerd en verwerp als het heeft verworpen. Als het niet gestopt is, verwerp."

Onbeslisbare Talen

• $A_{TM} = \{\langle M, w \rangle \mid M \text{ is een TM en } M \text{ accepteert } w\}$ Bewijs uit het ongerijmde. Neem aan dat H een beslisser is voor A_{TM} . Dus H is een TM, waar

$$H\left(\langle M,w\rangle\right) = \begin{cases} accepteer & \text{als } w \text{ wordt geaccepteert door } M\\ verwerp & \text{als } w \text{ niet wordt geaccepteerd door } M \end{cases}$$

Vervolgens construeren we D, die het tegengestelde doet van H. D= "Op invoer $\langle M \rangle$, waar M een Turinmachine is:

- 1. Voer H uit op invoer $\langle M, \langle M \rangle \rangle$.
- 2. Output het tegenovergestelde van wat H output. Dus als H accepteert, verwerp; en als H verwerpt, accepteer

Samengevat:

$$D\left(\langle M\rangle\right) = \begin{cases} accepteer & \text{als } \langle M\rangle \text{ niet wordt geaccepteert door } M\\ verwerp & \text{als } \langle M\rangle \text{ wordt geaccepteerd door } M \end{cases}$$

Als $\langle D \rangle$ wordt gesimuleerd op D krijgen we

$$D\left(\langle D\rangle\right) = \begin{cases} accepteer & \text{als } \langle D\rangle \text{ niet wordt geaccepteert door } D\\ verwerp & \text{als } \langle DM\rangle \text{ wordt geaccepteerd door } D \end{cases}$$

Ongeacht wat D doet, het wordt gedwongen om het tegenovergestelde te doen, wat duidelijk een contradictie is. Dus noch TM D noch TM H kunnen bestaan.

- $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is een TM en } M \text{ stopt op invoer } w\}$ Bewijs met directe reductie naar A_{TM} uit het ongerijmde. Neem aan dat TM R $HALT_{TM}$ beslist. Construeer TM S om A_{TM} te beslissen, als volet:
 - S = "Op invoer $\langle M, w \rangle$, een codering van een TM M en een woord w:
 - 1. Voer TM R uit op invoer $\langle M, w \rangle$.
 - 2. Als R verwerpt, verwerp.
 - 3. Als R accepteert, simuleer M op w totdat het stopt.
 - 4. Als M heeft geaccepteerd, accepteer; als M heeft verworpen, verwerp."

Het is duidelijk dat R $HALT_{TM}$ beslist als S A_{TM} beslist. Omdat A_{TM} onbeslisbaar is, moet $HALT_{TM}$ ook onbeslisbaar zijn.

- E_{TM} = {⟨M⟩ | M is een Tm en L(M) = ∅}
 Bewijs met directe reductie naar A_{TM} uit het ongerijmde. Definieer M₁ als volgt: M₁ = "Op invoer x:
 - 1. Als $x \neq w$, verwerp
 - 2. Als x = w, voer M uit op invoer w en accepteer als M accepteert."

Neem aan dat TM RE_{TM} beslist en definieer TM S die A_{TM} beslist als volgt:

- S = "Op invoer $\langle M, w \rangle$, een codering van en TM M en een woord w:
 - 1. Gebruik de beschrijving van M en w om de TM M_1 te construeren.
 - 2. Voer R uit op invoer $\langle M_1 \rangle$.
 - 3. Als R accepteert, verwerp; als R verwerpt, accepteer."

Als R een beslisser zou zijn voor E_{TM} , dan zou S een beslisser zijn voor A_{TM} . Aangezien een beslisser voor A_{TM} niet kan bestaan, is E_{TM} niet beslisbaar.

- $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is een TM en } L(M) \text{ is een reguliere taal} \}$ Bewijs met directe reductie naar A_{TM} uit het ongerijmde. Laat R een TM zijn die $REGULAR_{TM}$ beslist en construeer TM S die A_{TM} beslist als volgt:
 - S = "Op invoer $\langle M, w \rangle$, waar M een TM is en w een woord:
 - 1. Construeer de volgende TM M_2 .
 - $M_2 =$ "Op invoer x:
 - 1. Als x van de vorm $0^n 1^n$ is, accepteer.
 - 2. Als x niet deze vorm heeft, voer M uit op invoer w en accepteer als w wordt geaccepteerd door M.
 - 2. Voer R uit op invoer $\langle M_2 \rangle$.
 - 3. Als R accepteert, accepteer; als R verwerpt, verwerp."

Als M w accepteert, accepteert M_2 elk woord $\Rightarrow L(M_2)$ is regulier. Als M niet w accepteert, accepteert M_2 alleen woorden van de vorm $0^n1^n \Rightarrow L(M_2)$ is niet regulier. Dus M_2 kunnen we 'voeren' aan R.

Als R een beslisser zou zijn voor $REGULAR_{TM}$, dan zou S een beslisser zijn voor A_{TM} . Aangezien een beslisser voor A_{TM} niet kan bestaan, is $REGULAR_{TM}$ niet beslisbaar.

• $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ en } M_2 \text{ zijn TMs en } L(M_1) = L(M_2)\}$ Bewijs met directe reductie naar E_{TM} uit het ongerijmde. Laat R een TM zijn die EQ_{TM} beslist en construeer TM S die E_{TM} beslist als volgt: S = "Op invoer $\langle M \rangle$, waar M een TM is:

- 1. Voer R uit op invoer $\langle M, M_1 \rangle$, waar M_1 een TM is die alle invoeren verwerpt.
- 2. Als R accepteert, accepteer; als R verwerpt, verwerp."

Als R een beslisser zou zijn voor EQ_{TM} , dan zou S een beslisser zijn voor E_{TM} . Aangezien een beslisser voor E_{TM} niet kan bestaan, is EQ_{TM} niet beslisbaar.

• $E_{LBA} = \{ \langle M \rangle \mid M \text{ is een LBA waar } L(M) = \emptyset \}$

Bewijs met directe reductie naar A_{TM} uit het ongerijmde. Laat R een TM zijn die E_{LBA} beslist en construeer TM S die A_{TM} beslist als volgt:

S = "Op invoer $\langle M, w \rangle$, waar M een TM is en w een woord:

- 1. Construeer LBA B van M en w. LBA B werkt als volgt. Wanneer het een invoer x ontvangt, accepteert B als x een accepterende berekeningsgeschiedenis is van M op w.
- 2. Voer R uit op invoer $\langle B \rangle$.
- 3. Als R verwerpt, accepteer; als R accepteert, verwerp."

Als $\langle B \rangle$ wordt geaccepteerd door R, dan geldt $L(B) = \emptyset$. Dus, M heeft geen accepterende berekeningsgeschiedenis van w en accepteert Mw niet. Derhalve, S verwerpt $\langle M, w \rangle$. Evenzo, als $\langle B \rangle$ wordt verworpen door R, dan is de taal van B niet leeg. Het enige woord dat B kan accepteren is een accepterende berekeningsgeschiedenis voor M op w. Derhalve, M moet w accepteren. Derhalve, S accepteert $\langle M, w \rangle$.

Als R een beslisser zou zijn voor E_{LBA} , dan zou S een beslisser zijn voor A_{TM} . Aangezien een beslisser voor A_{TM} niet kan bestaan, is E_{LBA} niet beslisbaar.

- $ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is een CFG en } L(G) = \Sigma^* \}$ Bewijst met directe reductie naar A_{TM} uit het ongerijmde.
- EQ_{CFG} Bewijs met directe reductie naar ALL_{CFG} uit het ongerijmde. Laat R een TM zijn die EQ_{CFG} beslist en construeer TM S die ALL_{CFG} beslist als volgt: S = "Op invoer $\langle G \rangle$, waar G een CFG is:
 - 1. Voer R uit op invoer $\langle G, G_1 \rangle$ waar G_1 een CFG is die Σ^* genereert.
 - 2. Als R accepteert, accepteer; als R verwerpt, verwerp."

Als R een beslisser zou zijn voor EQ_{CFG} , dan zou S een beslisser zijn voor ALL_{CFG} . Aangezien een beslisser voor ALL_{CFG} niet kan bestaan, is EQ_{TM} niet beslisbaar.

Definities

Alfabet

Een **alfabet** is een eindige verzameling Σ van symbolen ofwel karakters.

Woord/String

Een woord of string over Σ is een eindige reeks symbolen uit Σ . De lengte van een woord x, notatie |x|, is gedefinieerd als het aantal symbolen in x.

Lege Woord

Het **lege woord** ϵ is gedefinieerd als het woord met lengte 0.

Taal

Een taal L over een alfabet Σ is een deelverzameling van Σ^* , ofwel $L \subseteq \Sigma^*$.

Turingmachine

Een **Turingmachine** is een 7-tupel $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, waar Q, Σ, Γ eindige verzamelingen zijn en:

- Q is de verzameling **toestanden**
- $-\Sigma$ het invoeralfabet dat niet het lege symbool \sqcup bevat.
- $-\Gamma$ is het **tape-alfabet**, waar $\sqcup \in \Gamma$ en $\Sigma \subseteq \Gamma$.
- $-\ \delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L,R\}$ is de **transitie functie**.
- $-q_0, q_{accept}, q_{reject} \in Q$ zijn respectievelijk de **begintoestand**, de **accepterende** en de textbfverwerpende toestand met $q_{accept} \neq q_{reject}$.

de Taal van M

De **taal van M** is de verzameling woorden die M accepteert, notatie L(M).

Turing-herkenbaar

Een taal L is **Turingherkenbaar** als er een TM M bestaat zodanig dat L(M) = L. Zo'n TM M wordt een **herkenner** van L genoemd.

Turing-beslisbaar

Een taal L is **Turing-beslisbaar** als er een TM M bestaat zodanig dat L(M) = L en M voor iedere invoer in een stopconfiguratie terecht komt. Zo'n TM M wordt een **beslisser** van L genoemd.

Multitape Turingmachine

Een TM kan meerdere tapes hebben. Een k-tape TM kan worden gesimuleerd door een standaard één-tape TM.

Opsommer

Een TM M is een **opsommer** van taal L als deze, gegeven het lege woord op de invoertape, alle woorden van L print, gescheiden door spaties en in een door de machine bepaalde volgorde.

Symmetrisch Verschil van L(A) en L(B)

De verzameling van de elementen die tot een van de twee verzamelingen behoren, maar niet allebei.

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Injectief (one-to-one)

Een functie f is injectief als het nooit twee verschillende elementen projecteert op dezelfde positie - als $a \neq b$, dan $f(a) \neq f(b)$.

Surjectief (onto)

Een functie f is surjectief als het ieder element van B projecteert - er bestaat voor iedere $b \in B$ een $a \in A$ met f(b) = a.

Bijectief (correspondence)

Een functie f is bijectief als het zowel injectief als surjectief is.

Oneindig Aftelbaar

Een verzameling A is one indig aftelbaar als er een bijectie tussen A en $\mathbb N$ bestaat.

Aftelbaar

Een verzameling A is aftelbaar als het of eindig is of als het oneindig aftelbaar is.

Overaftelbaar

Een verzameling A is overaftelbaar als het niet aftelbaar is

Diagonalisatie Methode

Standaard opstelling van een diagonalisatie methode: Stel V is aftelbaar. Dan bestaat er een aftelling f_0, f_1, \ldots, f_n van V. Definieer g(x), de diagonaal, zo dat geldt:

- 1. $g \in V$
- 2. $g \notin V$

Dit is een tegenspraak, dus V is niet aftelbaar.

co-Turingherkenbaar

Een taal is co-Turingherkenbaar als het het complement is van een Turingherkenbare taal

Accepterende Berekeningsgeschiedenis

Een accepterende berekeningsgeschiedenis van M op w is een reeks configuraties C_0, C_1, \ldots, C_n zodanig dat:

- i. C_0 is de start configuratie van M m.b.t. w;
- ii. C_i levert C_{i+1} op voor $0 \le i < n$; en
- iii. C_n is een accepterende configuratie van M.

Verwerpende Berekeningsgeschiedenis

Een verwerpende berekeningsgeschiedenis is hetzelfde gedefinieerd als een accepterende berekeningsgeschiedenis, behalve dat C_n een verwerpende configuratie is.

Lineair Begrensde Automaat (LBA)

Een LBA is een TM waarbij de lees/schrijfkop niet het deel van de tape mag/kan verlaten waarop de invoer staat/stond.

Zij M een LBA met q toestanden en g symbolen in het tape-alfabet. Dan zijn er precies qng^n verschillende configuraties van M voor een tape van lengte n.

Berekenbare Functie

Een functie $f: \Sigma^* \to \Sigma^*$ is een berekenbare functie als een TM M, op elke invoer w, stop met alleen f(w) op de tape.

Mapping Reducibility

Een taal A is mapping reducible naar taal B, genoteerd als $A \leq_m B$, als er een berekenbare functie $f: \Sigma^* \to \Sigma^*$ bestaat, waar voor elke w.

$$w \in A \longleftrightarrow f(w) \in B$$

- Als $A \leq_m B$ en B is beslisbaar, dan is A beslisbaar.
- Als $A \leq_m B$ en B is onbeslisbaar, dan is A onbeslisbaar.
- Als $A \leq_m B$ en B is herkenbaar, dan is A herkenbaar.
- Als $A \leq_m B$ en B is niet herkenbaar, dan is A herkenbaar.

Standaard opstelling van een mapping reductie:

Bewijs dat L onbeslisbaar is, waar

$$L = \{ \langle M \rangle \mid M \text{ is een TM en er geldt eigenschap P} \}$$

We voeren de mapping reductie $HALT_{TM} \leq_m L$ uit. Definieer de volgende TM N voor een gegeven Turingmachine M met invoer w: N = "Op invoer x:

- 1. Simuleer M op w.
- 2. Magie waardoor M de eigenschap P heeft.

Het bewijs dat f voldoet aan de eisen van mapping reductie. We moeten voldoen aan twee eisen:

- -f is een berekenbare functie. De volgende Turingmachine F berekent f:
 - $F = \text{``Op invoer } \langle M, w \rangle$:
 - 1. Construeer N m.b.v. M en w.
 - 2. Print $\langle N, w \rangle$ en stop."
- f is een mapping reductie voor $HALT_{TM} \leq_m$, immers:
 - * Als $\langle M, w \rangle \in HALT_{TM}$, dan zal M op invoer w stoppen. Dit betekent dat N aan stap 2 toekomt. Verdere redenatie waaruit volgt dat $f(\langle M, w \rangle) = \langle N, w \rangle \in L$
 - * Als $\langle M, w \rangle \notin HALT_{TM}$, dan zal M niet op invoer w stoppen. Dit betekent dat N nooit aan stap 2 toekomt. Verdere redenatie waaruit volgt dat $f(\langle M, w \rangle) = \langle N, w \rangle \notin L$

Hieruit volgt dat L onbeslisbaar is.

Stellingen

- Church-Turingthese: iets is berekenbaar als er een TM voor gevonden kan worden
- Voor iedere niet-deterministische TM bestaat een equivalente deterministische TM.
- Een taal is beslisbaar dan en slechts dan als het Turingherkenbaar is en co-Turingherkenbaar
- ullet Stelling van Rice: laat L een taal zijn van de vorm

$$L = \{\langle M \rangle \mid M$$
heeft de eigenschap $P\},$ waar

- 1. P is niet trivaal; er bestaat tenminste een TM M zodat $\langle M \rangle \in L$, en tenminste een TM N zodat $\langle N \rangle \notin L$.
- 2. P is inderdaad een eigenschap van de talen van TMs; wanneer L(M)=L(N), geldt $\langle M \rangle \in M$ dan en slecht dan als $\langle N \rangle \in L$.

Dan is L onbeslisbaar.

Handige dingetjes

• Een voorbeeld van een functie $f : \mathbb{N} \to \mathbb{N}$ die niet injectief maar wel surjectief is: $f(n) = \lfloor \frac{n}{2} \rfloor$ (hier geldt f(4) = f(5) = 2).