- Sentence sequence of words begins with capitalized word, end with punctuation.
- Token Token can be words, punctuation, sub-unit of words
- Characters letters, punctuations, whitespace
- Vocabulary the set of "all" words
- Corpus A large collection of writings of a specific kind or on a specific subject.
- N-Gram refers to N consecutive items(eg -words, subwords, characters)
 - O Data -> 1-Gram
 - Great Day -> 2-Gram
 - I am fine -> 3-Gram
 - Nice to meet you -> 4-Gram
- · Bag of Words
 - o Count Vectorizer is a bag of words approach.
 - determine the size of vocabulary (unique tokens in training corpus) Size V
 - Each document will be converted into a vector of size V
 - V (vocabulary size) = 6

- CountVectorizer in sklearn doesn't have normalization, but tf-idf has.
- Level of Tokenization:
 - o word based tokenization
 - o character based tokenization
 - o subword-based tokenization

Subword-Based Tokenization

- What if we didn't split "walking" into "walk" + "ing"?
- Each vector component (count) is separate, so "walk" is no closer to "walking" than it is to "tree"
- We can only hope our model learns the similarity through the data
- Do we want our model to learn "walk", "walks", "walking", "walked", etc. independently? Or should we connect them via a shared representation?
- I make a strong case for subword tokenization, but we won't see it again until we study Transformers / deep learning
- Tokenization
 - o Punctuations
 - Case
 - accent
 - sklearn countvectorizer, make CountVectorizer(strip_accents=True)

- · Removing stopwords
 - o High dimensionality is bad, so better to not include stopwords
 - o use:
 - CountVectorizer(stop words="english")
 - CountVectorizer(stop_words=list_of_user_defined_terms) #helpful when you are working in a niche industry and english stopwords don't have them
 - Or use, stopwords from nltk
 - □ nltk.downloads('stopwords')
 - ☐ from nltk.corpus import stopwords
 - □ stopwords.words('german')

Stemming and Lemmatization:

Stemming vs. Lemmatization

- Stemming is very crude it just chops off the end of the word
- The result is not necessarily a real word
- · Lemmatization is more sophisticated, uses actual rules of language
- The true root word will be returned

Lemmatization

- Think of it as a lookup table / table of rules
- Stemming: "Better" → "Better"
- Lemmatization: "Better" → "Good"
 - Note: "Was" is the past-tense of "Is", both are derivatives of "Be"
 - Stemming: "Was" → "Wa"
 - Lemmatization: "Was" / "Is" → "Be"
 - Stemming: "Mice" → "Mice"
 - Lemmatization: "Mice" → "Mouse"
- Lemmatization using nltk:
 - Appears in NLTK, spaCy, and others

```
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
nltk.download("wordnet") # only need to do once

lemmatizer = WordNetLemmatizer()
lemmatizer.lemmatize("mice") # returns 'mouse'

lemmatizer.lemmatize("going") # returns 'qoing'
lemmatizer.lemmatize("going") pos=wordnet.VERB) # returns 'go'
```

• Use pos(part of speech tagging) with lemmatizer - as default is always noun.

- Vector Similarity:
 - o Euclidean distance
 - o Cosine distance
 - o When we have to deal with vector of different sizes, cosine distance may be of more use than euclidean distance.

Which one should we use?

Cosine Similarity does not take into account the magnitude of the vectors. Row-normalised have a magnitude of 1 and so the Linear Kernel is sufficient to calculate the similarity values.

From https://stackoverflow.com/questions/12118720/python-tf-idf-cosine-to-find-document-similarity

• So , tf-idf can be used to find document similarity as well.

TF-IDF from scratch:

- Neural Word Embedding:
 - o Word2vec
 - glove

- Text Summarization types:
 - Extractive
 - easy to generate
 - Abstractive
 - complex

• Text Summariaztion Using tfidf:

Text Summarization with TF-IDF

- · High-level outline
- Split the document into sentences
- Score each sentence
- Rank each sentence by those scores
- Summary = top scoring sentences

More Details - Scoring Each Sentence

- Score = Average(non-zero TF-IDF values)
- E.g. if row = [0, 1, 0, 0, 0, 2, 3, 0, 0, 0, ...] then score = avg(1,2,3) = 2
- · Why does it work?
- Each TF-IDF component tells us how often a word appears (TF)
- But if a word appears across many sentences, it will shrink (IDF)
- Important words will have a larger score
- · Why mean and not sum?
- The sum would be biased toward longer sentences
- Why only the non-zero values?
- TF-IDF matrix is sparse (don't want to choose based on variety of words)

More Details - What To Do With The Scores

- Idea: sort the scores, pick the sentences with the highest scores
- How? There are multiple options: you choose what works best
- Simple: top N sentences (e.g. top 5, top 10)
- Also simple: top N words, top N characters (e.g. if limited by space)
- Top X% of sentences, top X% of words / characters
- Sentences with score > threshold (e.g. threshold = average score)
- Or threshold = average score * factor

Text Summarization Exercise Prompt

- Dataset: use any article you like (we'll be using BBC News again)
- Try it on multiple articles
- Split the article into sentences (nltk.sent tokenize)
- Compute TF-IDF matrix from list of sentences
- Score each sentence by taking the average of non-zero TF-IDF values
- Sort each sentence by score
- · Print the top scoring sentences as the summary

More Details - What To Do With The

- for word similarity using libraries, some points:
 - o NLTK:
 - we can train using our own text corpora, then find similar word using context based similarity
 nltk.text.similar
 - Or,

we can use `from nltk.corpus import wordnet` and use pre-existing synsets to get similar words

- Spacy:
 - You can use pretrained word2vec model
- gensim:
 - you can use both pretrained or you can train on your data too
- Glove

training our own Word2Vec model using gensim Word2Vec

- * use sentence tokenizer to tokenize document into sentence
- * tokenize each sentence into word
- * preprocess and remove stopwords, punctuation
- * so something like this we would have : document -> tokenized into sentence -> each sentence tokenized into words
- * now use gensim.models Word2Vec to create model