Integral Definida

Irineu Lopes Palhares Junior

IMD/UFRN, irineu.palhares@imd.ufrn.br

Conteúdos

Informações sobre os conteúdos de Integral Indefinida

- Partição de um intervalo
- 2 Soma de Riemann
- Integral de Riemann
- Propriedades da Integral
- 5 1º Teorema Fundamental do Cálculo
- 6 Cálculo de áreas
- Mudança de variável

Integral de Rienmann

Nestes slides introduziremos o conceito de integral de Riemann e estudaremos algumas de suas propriedades. A integral tem muitas aplicações tanto na geometria (cálculo de áreas, comprimento de arco, etc.) como na física (cálculo de trabalho, de massa etc), como veremos.

Partição de um intervalo

Uma partição P de um intervalo [a,b] é um conjunto finito $P=\{x_0,x_1,x_2,\ldots,x_n\}$ em que $a=x_0< x_1< x_2<\ldots< x_n=b$. Uma partição P de [a,b] divide [a,b] em n intervalos $[x_{i-1},x_i]$, $i=1,2,\ldots,n$.

Figura 1: Partição P do intervalo [a, b].

A amplitude do intervalo $[x_{i-1}, x_i]$ será indicada por $\Delta x_i = x_i - x_{i-1}$. Assim:

$$\Delta x_1 = x_1 - x_0, \ \Delta x_2 = x_2 - x_1, \ \text{etc.}$$
 (1)

Os números $\Delta x_1, \Delta x_2, \dots, \Delta x_n$ não são necessariamente iguais; o maior deles denomina-se amplitude da partição P e indica-se por $m \acute{a} x \ \Delta x_i$.

Soma de Riemann

Sejam f uma função definida em [a, b] e $P: a = x_0 < x_1 < x_2 < \ldots < x_n = b$ uma partição de [a, b]. Para cada índice i $(i = 1, 2, 3, \ldots, n)$ seja c_i um número em $[x_{i-1}, x_i]$ escolhido arbitrariamente.

Figura 2: Partição P do intervalo [a, b].

Pois bem, o número

$$\sum_{i=1}^{n} f(c_i) \Delta x_i = f(c_1) \Delta x_1 + f(c_2) \Delta x_2 \dots f(c_n) \Delta x_n$$
 (2)

denomina-se soma de Riemann de f, relativa à partição P e aos números

Interpretação geométrica

Observe que, se $f(c_i) > 0$, $f(c_i)\Delta x_i$ será então a área do retângulo R_i determinado pelas retas $x = x_{i-1}$, $x = x_i$, y = 0 e $y = f(c_i)$; se $f(c_i) < 0$, a área de tal retângulo será $-f(c_i)\Delta x_i$.

Figura 3: Interpretação geométrica da soma de Riemann.

Diferença entre áreas

Geometricamente, podemos então interpretar a soma de Riemann

$$\sum_{i=1}^{n} f(c_i) \Delta x_i \tag{3}$$

como a diferença entre a soma das áreas dos retângulos R_i que estão acima do eixo x e a soma das áreas dos que estão abaixo do eixo x.

Figura 4: Interpretação geométrica da soma de Riemann.

7 / 37

Diferença F(b) - F(a)

Seja F uma função definida em [a, b] e seja

 $P: a = x_0 < x_1 < x_2 ... < x_n = b$ uma partição de [a, b]. O acréscimo F(b) - F(a) que a F sofre quando se passa de x = a para x = b é igual à soma dos acréscimos $F(x_i) - F(x_{i-1})$ para i variando de 1 a 4:

$$F(b) - F(a) = F(x_4) - F(x_0) = [F(x_4) - F(x_3)] + [F(x_3) - F(x_2)] + [F(x_2) - F(x_1)] + [F(x_1) - F(x_0)].$$
(4)

Isto é:

$$F(b) - F(a) = \sum_{i=1}^{n} \left[F(x_i) - F(x_{i-1}) \right]. \tag{5}$$

Example

Sejam F e f definidas em [a,b] e tais que F'=f em [a,b]; assim F é uma primitiva de f em [a,b]. Seja a partição

 $P: a = x_0 < x_1 < x_2 < \ldots < x_n = b$ de [a, b]. Prove que escolhendo convenientemente \bar{c}_i em $[x_{i-1}, x_i]$ tem-se

$$F(b) - F(a) = \sum_{i=1}^{n} f(\bar{c}_i) \Delta x_i.$$
 (6)

Integral definida

Suponhamos, no exemplo anterior, que f seja contínua em [a,b] e que os Δx_i sejam suficientemente pequenos; assim, para qualquer escolha de c_i em $[x_{i-1},x_i]$, $f(c_i)$ deve diferir muito pouco de $f(\bar{c}_i)$. É razoável, então, que nestas condições $\sum_{i=1}^n f(c_i) \Delta x_i$ seja uma boa avaliação para o acréscimo F(b) - F(a), isto é:

$$F(b) - F(a) \approx \sum_{i=1}^{n} f(c_i) \Delta x_i.$$
 (7)

É razoável, ainda, esperar que a aproximação acima será tanto melhor quanto menores forem os Δx_i . Veremos mais adiante que, no caso de f ser contínua em [a,b],

$$F(b) - F(a) = \lim_{m \le x} \sum_{i=1}^{n} f(c_i) \Delta x_i$$
 (8)

em que $m \acute{a} x \Delta x_i$ indica o maior número do conjunto $\{\Delta x_i | i = 1, 2, ..., n\}$.

◆□▶◆□▶◆□▶◆□▶ □ 99(

Interpretação cinemática

Observe que $m\acute{a}x \ \Delta x_i \to 0$ implica que todos os Δx_i tendem também a zero.

Vejamos uma versão cinemática do que dissemos anteriormente. Consideremos uma partícula deslocando-se sobre o eixo 0x com função de posição x=x(t) e com velocidade v=v(t) contínua em [a,b]. Observe que x=x(t) é uma primitiva de v=v(t). Seja $a=t_0 < t_1 < t_2 < \ldots < t_n = b$ uma partição de [a,b] e suponhamos $máx \ \Delta t_i$ suficientemente pequeno (o que implica que todos os Δt_i são suficientemente pequenos). Sendo c_i um instante qualquer entre t_{i-1} e t_i , a velocidade $v(c_i)$ é um valor aproximado para a velocidade média entre os instantes t_{i-1} e t_i :

$$v(c_i) \approx \frac{\Delta x_i}{\Delta t_i} \text{ ou } \Delta x_i \approx v(c_i) \Delta t_i$$
 (9)

Interpretação cinemática

(observe que, pelo TVM, existe um instante \bar{c}_i entre t_{i-1} e t_i) tal que $\Delta x_i = v(\bar{c}_i)\Delta t_i$, onde Δx_i é o deslocamento da partícula entre os instantes t_{i-1} e t_i . Como a soma dos deslocamentos Δx_i , para i variando de 1 a n, é igual ao deslocamento x(b) - x(b), resulta

$$x(b) - x(a) \approx \sum_{i=1}^{n} v(c_i) \Delta t_i.$$
 (10)

É razoável esperar que, à medida que as amplitudes Δt_i tendam a zero, a soma $\sum_{i=1}^n v(c_i) \Delta t_i$ tende a x(b) - x(a):

$$x(b) - x(a) = \lim_{m \neq x} \sum_{\Delta t_i \to 0}^{n} \sum_{i=1}^{n} v(c_i) \Delta t_i.$$
 (11)

Integral de Riemann: definição

Sejam f uma função definida em [a,b] e L um número real. Dizemos que $\sum_{i=1}^n f(c_i) \Delta x_i$ tende a L, quando $m\acute{a}x \ \Delta x_i \to 0$, e escrevemos

$$\lim_{m \neq x} \sum_{\Delta x_i \to 0}^{n} f(c_i) \Delta x_i = L$$
 (12)

se, para todo $\epsilon>0$ dado, existir um $\delta>0$ que só dependa de ϵ mas não da particular escolha dos c_i , tal que

$$|\sum_{i=1}^{n} f(c_i) \Delta x_i - L| < \epsilon$$
 (13)

para toda partição P de [a, b], com $m \acute{a} x \Delta x_i < \delta$.

Integral de Riemann

Tal número L, que quando existe é único, denomina-se integral de Riemann de f em [a,b] e indica-se por $\int_a^b f(x)dx$. Então, por definição,

$$\int_{a}^{b} f(x)dx = \lim_{m \neq x} \sum_{\Delta x_{i} \to 0}^{n} f(c_{i}) \Delta x_{i}.$$
 (14)

Se $\int_a^b f(x)dx$ existe, então diremos que f é integrável (segundo Riemann) em [a,b]. É comum referirmo-nos a $\int_a^b f(x)dx$ como integral definida de f em [a,b].

Propriedades da integral

Theorem

Sejam f,g integráveis em [a,b] e κ uma constante. Então

- a) f + g é integrável em [a, b] e $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$
- b) κf é integrável em [a,b] e $\int_a^b \kappa f(x) dx = \kappa \int_a^b f(x) dx$.
- c) Se $f(x) \ge 0$ em [a, b], então $\int_a^b f(x) dx \ge 0$.
- d) Se $c \in]a, b[$ e f é integrável em [a, c] e em [c, b] então

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$
 (15)

1º Teorema fundamental do cálculo

De acordo com a definição de integral, se f for integrável em [a, b], o valor do limite

$$\lim_{m \neq x} \sum_{\Delta x_i \to 0}^{n} f(c_i) \Delta x_i \tag{16}$$

será sempre o mesmo, independentemente da escolha dos c_i , e igual a $\int_a^b f(x)dx$. Assim, se, para uma particular escolha dos c_i , tivermos

$$\lim_{m \neq x} \sum_{\Delta x_i \to 0}^{n} f(c_i) \Delta x_i = L$$
 (17)

então teremos $L = \int_a^b f(x) dx$.

Teorema Fundamental do Cálculo

Suponhamos, agora, que f seja integrável em [a,b] e que admita uma primitiva F(x) em [a,b], isto é, F'(x)=f(x) em [a,b]. Seja $P:a=x_0< x_1< x_2< \ldots < x_n=b$ uma partição qualquer de [a,b]. Já vimos que

$$F(b) - F(a) = \sum_{i=1}^{n} \left[F(x_i) - F(x_{i-1}) \right]. \tag{18}$$

Segue, então do TVM, que, para uma conveniente escolha de \bar{c}_i em $[x_{i-1}, x_i]$, teremos

$$F(b) - F(a) = \sum_{i=1}^{n} F'(\bar{c}_i) \Delta x_i$$
 (19)

ou

$$F(b) - F(a) = \sum_{i=1}^{n} f(\bar{c}_i) \Delta x_i. \tag{20}$$

1º teorema fundamental do cálculo

Se, para cada partição P de [a,b], os \bar{c}_i forem escolhidos como em (20), teremos

$$\lim_{m \neq x} \sum_{\Delta x_i \to 0}^{n} \int_{i=1}^{n} f(\bar{c}_i) \Delta x_i = F(b) - F(a)$$
 (21)

e, portanto,

$$\int_{a}^{b} f(x)dx = F(b) - F(a). \tag{22}$$

Fica provado assim o

Theorem

 1° teorema fundamental do cálculo Se f for integrável em [a,b] e se F for uma primitiva de f em [a,b], então

$$\int_{a}^{b} f(x)dx = F(b) - F(a). \tag{23}$$

Example

Calcule $\int_1^2 x^2 dx$.

Example

Calcule $\int_{-1}^{3} 4dx$.

Example

Calcule $\int_0^2 (x^3 + 3x - 1) dx$.

Example

Calcule $\int_1^2 \frac{1}{x^2} dx$.

Example

Calcule $\int_1^2 \left(\frac{1}{x} + \frac{1}{x^3}\right) dx$.

Example

Calcule $\int_0^{\frac{\pi}{8}} \sin 2x dx$.

Example

Calcule $\int_0^1 e^{-x} dx$.

Seja f contínua em [a,b], com $f(x) \ge 0$ em [a,b]. Estamos interessados em definir a área do conjunto A do plano limitado pelas retas x=a, x=b, y=0 e pelo gráfico de y=f(x).

Figura 5: Área abaixo do gráfico de y = f(x).

Seja, então, $P: a = x_0 < x_1 < x_2 < \ldots < x_n = b$ uma partição de [a,b] e sejam \bar{c}_i e $\bar{\bar{c}}_i$ em $[x_{i-1},x_i]$ tais que $f(\bar{c}_i)$ é o valor mínimo e $f(\bar{\bar{c}}_i)$ o valor máximo de f em $[x_{i-1},x_i]$. Uma boa definição para área de A deverá implicar que a soma de Riemann $\sum_{i=1}^n f(\bar{c}_i)\Delta x_i$ seja uma aproximação por falta da área de A e que $\sum_{i=1}^n f(\bar{\bar{c}}_i)\Delta x_i$ seja uma aproximação por excesso, isto é,

$$\sum_{i=1}^{n} f(\bar{c}_i) \Delta x_i \le \text{área } A \le \sum_{i=1}^{n} f(\bar{c}_i) \Delta x_i$$
 (24)

Figura 6: Área abaixo do gráfico de y = f(x).

Como as somas de Riemann mencionadas tendem a $\int_a^b f(x)dx$ quando $m\acute{a}x \ \Delta x_i \to 0$, nada mais natural do que definir a área de A por

$$\text{área } A = \int_{a}^{b} f(x) dx \tag{25}$$

Da mesma forma define-se área de A no caso em que f é uma função integrável qualquer, com $f(x) \ge 0$ em [a,b].

Example

Calcule a área do conjunto do plano limitado pelas retas x=0, x=1, y=0 e pelo gráfico de $f(x)=x^2$.

Example

Calcule a área do conjunto $A = \left\{ (x,y) \in \mathbb{R}^2 | 1 \le x \le 2 \text{ e } 0 \le y \le \frac{1}{x^2} \right\}.$

Estenção do conceito de área

As situações que apresentamos a seguir sugerem como estender o conceito de área para uma classe mais ampla de subconjuntos do $\mathbb{R}^{\not\vdash}$.

Figura 7: Cálculo da área para quando $f(x) \le 0$.

Seja A o conjunto hachurado.

$$Area = \int_{a}^{c} f(x) dx - \int_{c}^{d} f(x) dx + \int_{d}^{b} f(x) dx = \int_{a}^{b} |f(x)| dx$$

Observe:

 $\int_{a}^{b} f(x) \ dx = \int_{a}^{c} f(x) \ dx + \int_{c}^{d} f(x) \ dx + \int_{d}^{b} f(x) \ dx = \text{soma das áreas dos conjuntos acima do eixo } 0x \ \textit{menos soma das áreas dos conjuntos abaixo do eixo } 0x.$

Figura 8: Cálculo da área para quando $f(x) \le 0$ e $f(x) \ge 0$.

 $[f(c_i) - g(c_i)] \Delta x_i = \text{área retângulo hachurado.}$

$$\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n \left[f(c_i) - g(c_i) \right] \Delta x_i = \int_a^b \left[f(x) - g(x) \right] dx = \text{área } A$$

em que A é o conjunto limitado pelas retas x = a, x = b e pelos gráficos de y = f(x) e y = g(x), com $f(x) \ge g(x)$ em [a, b].

Figura 9: Cálculo da área entre dois gráficos.

Example

Calcule a área da região limitada pelo gráfico de $f(x) = x^3$, pelo eixo x e pelas retas x = -1 e x = 1.

Example

Calcule $\int_{-1}^{1} x^3 dx$

Example

Calcule a área da região limitada pelas retas x = 0, x = 1, y = 2 e pelo gráfico de $y = x^2$.

Example

Calcule a área do conjunto de todos os pontos (x, y) tais que $x^2 \le y \le \sqrt{x}$.

Example

Calcule a área da região compreendida entre os gráficos de y = x e $y = x^2$, com $0 \le x \le 2$.

Aplicação na cinemática

Consideremos, agora, uma partícula que se desloca sobre o eixo x com equação x=x(t) e com velocidade v=v(t) contínua em [a,b]. A diferença x(b)=x(a) é o deslocamento da partícula entre os instantes a e b. Como x(t) é uma primitiva de v(t), segue do $1.^o$ teorema fundamental do cálculo que

$$x(b) - x(a) = \int_{a}^{b} v(t)dt.$$
 (26)

Aplicação na cinemática

Por outro lado, definimos o espaço percorrido pela partícula entre os instantes a e b por $\int_a^b |v(t)| dt$.

Se $v(t) \ge 0$ em [a,b], o deslocamento entre os instantes a e b será igual ao espaço percorrido entre estes instantes, que, por sua vez, será numericamente igual à área do conjunto A limitado pelas retas t=a, t=b, pelo eixot Ot e pelo gráfico de v=v(t).

Figura 10: Cálculo do deslocamento.

Aplicação na cinemática

Suponhamos, agora, por exemplo, que $v(t) \ge 0$ em [a, c] e $v(t) \le 0$ em [c, b].

Figura 11: Cálculo do deslocamento.

Neste caso, o deslocamento entre os instantes a e b será

$$x(b) - x(a) = \int_a^b v(t)dt = \text{área } A_1 - \text{área } A_2$$
 (27)

enquanto o espaço percorrido entre estes instantes será

$$\int_{a}^{b} |v(t)| dt = \int_{a}^{c} v(t) dt - \int_{c}^{b} v(t) dt = \text{área } A_{1} + \text{área } A_{2}.$$
 (28)

Example

Uma partícula desloca-se sobre o eixto x com velocidade v(t) = 2 - t.

- a) Calcule o deslocamento entre os instantes t=1 e t=3. Discuta o resultado encontrado.
- b) Calcule o espaço percorrido entre os instantes 1 e 3.

Mudança de variável na integral

Theorem

Seja f contínua num intervalo I e sejam a e b dois reais quaisquer em I. Seja $g:[c,d]\to I$, com g' contínua em [c,d], tal que g(c)=a e g(d)=b. Nestas condições

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} f(g(u))g'(u)du.$$
 (29)

Example

Calcule $\int_{0}^{1} (x-1)^{10} dx$

Example

Calcule $\int_{\frac{1}{2}}^{1} \sqrt{2x-1} dx$.

Example

Calcule $\int_0^1 e^{3x} dx$.

Example

Calcule $\int_0^1 \frac{x}{x^2+1} dx$.

Example

Calcule $\int_1^2 x \sqrt{x^2 + 1} dx$.

Example

Seja f uma função ímpar e contínua em [-r,r], r>0. Mostre que

$$\int_{-r}^{r} f(x)dx = 0. \tag{30}$$

Example

Calcule $\int_{-1}^{1} x \sqrt{x^4 + 3} dx$.

Example

Calcule $\int_{-1}^{0} x^2 \sqrt{x+1} dx$.