

Øving 7

Algoritmer og Datastrukturer

Henrik Halvorsen Kvamme

25. oktober 2023

Innhold

1	Introduksjon	2
2	Teori	2
3	Resultater	2
4	Konklusjon	3

1 Introduksjon

Oppgaven handler om vektede grafer og å implementere Edmonds-Karpalgoritmen for å finne maksimal flyt. I en slik graf er hver kant gitt en viss kapasitet, som er det maksimale antallet enheter som kan "flyte" gjennom den kanten. Målet er å finne den maksimale mengden flyt som kan gå fra en kilde til en sluk i nettverket.

2 Teori

Edmonds-Karp-algoritmen er en spesifikk implementering av Ford-Fulkerson metoden for å beregne maksimal flyt i en flytnettverk. Den bruker BFS (Breadth First Search) for å finne den korteste stien i restnettverket.

Hovedideen bak Edmonds-Karp er:

- 1. Start med null flyt.
- 2. Mens det finnes en sti fra kilden til sluket i restnettverket (bruk BFS for dette):
 - a) **Finn minimum kapasitet** over den stien dette vil være flaskehalsen.
 - b) Send flyt langs denne stien.
 - c) **Oppdater restnettverket** med den nye flyten.
- 3. Når det ikke finnes flere stier i restnettverket, stopp. Den nåværende flyten er maksimal.

3 Resultater

Etter å ha brukt Edmond-Karp for alle grafene fikk jeg resultatet:

	k	\mathbf{s}	maks flyt
flytgraf1	0	7	10
flytgraf2	0	1	27
flytgraf3	0	1	42
flytgraf4	0	7	11
flytgraf5	0	7	90

Tabell 1: Tabell representasjon av resultat fra main.cpp.

4 Konklusjon

Jeg valgte å gjøre som forrige oppgave med å implementere en klasse grafene. Den tar inn filnavn og bruker så fstream for å lese data. Klassen har en metode for å finne maks flyt, som bruker Edmonds-Karp algoritmen.

Kildekoden ligger vedlagt i main.cpp. Main funksjonen kjører flere tester for å vise at den utfører oppgaven.