MATH 517 PARTIAL DIFFERENTIAL EQUATIONS HOMEWORK 3

Updated on November 7, 2018 <u>Due date: 17:00 on Tuesday, Nov. 20, 2018.</u> **TeX-typed Homework is accepted only.(No hand-written Homework accepted)**

1. Let Ω be an open and bounded set in \mathbb{R}^2 . Assume that the boundary $\partial\Omega$ of Ω satisfies

$$\partial\Omega = \bigcup_{j=1}^{n} \Gamma_j,$$

where each Γ_j for $j=1,\dots,n$ is a C^1 curve. Also, assume that if $j\neq j'$, then Γ_j and $\Gamma_{j'}$ do not intersect except at their endpoints. Under these assumptions, prove the following statement:

If $u \in W^{k,p}(\Omega)$ for some $k \in \mathbb{N}$ and $1 \leq p < \infty$, then there exists a sequence $\{u^{(m)}\} \subset C^{\infty}(\overline{\Omega})$ so that

$$u^{(m)} \to u \quad in \ W^{k,p}(\Omega) \ as \ m \to \infty.$$

- 2. Let Ω be an open and bounded set in \mathbb{R}^n , and sssume that the boundary $\partial\Omega$ of Ω is C^1 . Is $W_0^{1,p}(\Omega)$ a Banach space?
- 3. Let Ω be an open set in \mathbb{R}^n . (The set Ω is not necessarily bounded.) For $k \in \mathbb{N}$ and $\alpha \in (0,1]$, define a space

$$C^{k,\alpha}(\overline{\Omega}) := \{ u \in C^k(\overline{\Omega}) : ||u||_{C^{k,\alpha}(\overline{\Omega})} < \infty \}.$$

- (a) Prove that $C^{k,\alpha}(\overline{\Omega})$ is a vector space.
- (b) Is $C^{k,\alpha}(\overline{\Omega})$ finite dimensional?
- (c) Prove that $C^{k,\alpha}(\overline{\Omega})$ is a Banach space.
- 4. Let Ω be an open and bounded set in \mathbb{R}^n , and sssume that the boundary $\partial \Omega$ of Ω is C^1 . Assume that $n . Prove that <math>W^{1,p}(\Omega)$ is compactly embedded into $C^{0,\tilde{\alpha}}(\overline{\Omega})$ for any $\tilde{\alpha} \in [0,\alpha)$ for $\alpha = 1 \frac{n}{p}$.
- 5. Suppose that Ω is connected and $u \in W^{1,p}(\Omega)$ satisfies

$$Du = 0$$
 a.e. in Ω .

Prove that u is constant a.e. in Ω

6. Verify that if n > 1, the unbounded function

$$u = \log\log\left(1 + \frac{1}{|x|}\right)$$

belongs to $W^{1,n}(B_1(\mathbf{0}))$.

7. Use the Fourier transform to prove that if $u \in H^s(\mathbb{R}^n)$ for $s > \frac{n}{2}$, then $u \in L^{\infty}(\mathbb{R}^n)$, with the bound

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le C||u||_{H^s(\mathbb{R}^n)}$$

for a constant C > 0 depending only on s and n.