

Enhancing Speaker Anonymization Using Disentanglement Learning

Nikita Kuzmin

Phd Student NTU/A*STAR year 3

Supervisors:

Prof. Chng Eng Siong

Dr. Sailor Hardik Bhupendra

Jan. 2025

About me

- Name: Nikita Kuzmin
- 2. Status:
 - a. Matriculated on 08-Aug-2022
 - b. 1, 2, 3 TAC appraisal passed
 - c. All school requirement fulfilled for QE (GAP hours, TA courses)
- 3. CGPA: 4.67

Publications:

- a. N. Kuzmin, Luong, H.-T., Yao, J., Xie, L., Lee, K.A., Chng, E.-S. (2024) NTU-NPU System for Voice Privacy 2024 Challenge. Proc. 4th Symposium on Security and Privacy in Speech Communication, 72-79, doi: 10.21437/SPSC.2024-13
- b. N. Kuzmin*, A. Sholokhov*, K. A. Lee and E. S. Chng, "Probabilistic Back-ends for Online Speaker Recognition and Clustering," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10097032.

Outline

1. Introduction

Literature Review

- a. Speaker Anonymization
- b. Disentanglement Learning

3. Disentanglement-based Approaches for Anonymization

- a. Problem 1: Anonymization models do not preserve emotions well
 - i. Contribution 1.1: NS3 FACodec
 - ii. Contribution 1.2: Emotion embeddings
- b. Problem 2: Identity Leakage in B5
 - i. Contribution 2: Mean-reversion + Noise

4. Conclusions and Future Work

Ziegeldorf, Jan Henrik, et al. "Privacy in the Internet of Things: Threats and Challenges." Security and Communication Networks, vol. 7, no. 12, 10 June 2013, pp.

Speaker Verification

Emotion Recognition

Speech Recognition

. . .

Voice Conversion

1.3. Voice Conversion

1.3. Voice Conversion vs Speaker Anonymization

What are the similarities between VC and Speaker Anonymization?

1.3. Speaker Anonymization Pipeline

S. Meyer, P. Tilli, F. Lux, P. Denisov, J. Koch, and N. T. Vu, "Cascade of phonetic speech recognition, speaker embeddings gan and multispeaker speech synthesis for the 16 VoicePrivacy 2022 Challenge," in Proc. 2nd Symposium on Security and Privacy in Speech Communication, 2022.

Connection between Disentanglement and Anonymization

Feature Separation:

Isolates linguistic content from speaker-specific (sensitive) attributes.

Targeted Privacy:

Enables removal of identity information while retaining speech quality. We can choose which components we want to conceal.

Outline

1. Introduction

2. Literature Review

- a. Speaker Anonymization
- b. Disentanglement Learning

3. Disentanglement-based Approaches for Anonymization

- a. Problem 1: Anonymization models do not preserve emotions
 - i. Contribution 1.1: NS3 FACodec
 - ii. Contribution 1.2: Emotion embeddings
- b. Problem 2: Identity Leakage in B5
 - i. Contribution 2: Mean-reversion + Noise

4. Conclusions and Future Work

Speaker Anonymization: Privacy protection

Speaker Anonymization: Privacy protection

Best defence: transform each utterance to noise?

Speaker Anonymization: Privacy vs Utility

Privacy vs Utility tradeoff: Qualitative Examples

Literature Review. Types of Attacker models

Literature Review. Types of Attacker models

Literature Review. Voice Privacy Challenge

Why was the VoicePrivacy Initiative started?

- Existing privacy methods were incomparable, and there was no standard way to evaluate anonymization solutions.
- Started the Voice Privacy Challenge (VPC) series to provide researchers the platform to compete in building the best anonymization system.

N. Tomashenko et al., "The voiceprivacy 2020 challenge evaluation plan,"

N. Tomashenko et al., The voiceprivacy 2022 challenge evaluation plan, 2022.

N. Tomashenko et al., "The VoicePrivacy 2024 challenge evaluation plan," 2024.

VPC evolution: Participants

VPC evolution: Summary

VPC evolution: Anonymization Levels

- new elements
- removed elements
- unchanged elements

VPC evolution: Baseline Systems

C.C.P. Action of the model of t B. Otewerp i Br. L'Andri Korthin III. Speris by Eta Till àting da Till à

VPC evolution: Attacker Types

VPC evolution: Datasets

Datasets:	Provided common datasets: VCTK, LibriSpeech, LibriTTS, VoxCeleb	Same datasets as in VPC2020	Extended datasets and pretrained models	
	VPC2020	VPC2022	VPC2024	
Privacy:	train: LibriSpeech train-clean 360 eval: LibriSpeech test-clean, VCTK test		train: *check the table on the next slide eval: LibriSpeech dev, test-clean	
Utility:	train: LibriSpeech train-clean 360 eval: LibriSpeech test-clean, VCTK test		train: *check the table on the next slide eval: LibriSpeech dev, test-clean; IEMOCAP	

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An asr corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

J. Yamagishi, C. Veaux, and K. MacDonald, "Cstr vctk corpus: English multispeaker corpus for cstr voice cloning toolkit (version 0.92)," 2019

C. Busso et al., "lemocap: Interactive emotional dyadic motion capture database," Language Resources and Evaluation, 2008

N. Tomashenko et al., "The VoicePrivacy 2024 challenge evaluation plan," 2024.

VPC evolution: Main Train Datasets

Dataset	Main Purpose	Domain	Size/Hours	Description
LibriSpeech (train) [44]	ASR	Audiobooks	960 hours	Large-scale corpus of read English speech from over 2,300 speakers, used for ASR model training and anonymization evaluation.
Libri-light [73]	ASR	Audiobooks	60000 hours	A large-scale subset of LibriSpeech with unlabeled data, often used for unsupervised ASR.
CMU-MOSEI [74]	ASR	Multi-domain	23,500 videos	Multimodal dataset for emotion recognition.
VoxCeleb1 & 2 [33]	ASV	Online videos	1.2 mil utts	Speech extracted from video content, representing diverse accents and demographics for training speaker recognition.
RAVDESS [75]	SER	Emotions	24 speakers	Emotional speech and song database with calm, happy, sad, angry, fearful, surprise, and disgust expressions. Available in audio, video, and audiovisual formats.
MSP-Podcast [76]	SER	Podcasts	237 hours	A collection of podcast speech clips covering a range of emotions and natural conversational styles, used primarily for emotion recognition tasks.
VGAF [77]	SER	Emotions	120 hours	Video Gesture Analysis Framework dataset with vocal emotions
ESD [78]	SER	Emotions	175 hours	Emotional Speech Database with 350 utterances from 20 speakers in 5 emotions, enabling voice conversion research.
CREMA-D [79]	SER	Emotions	7442 utts	91 actors, 6 emotions, crowd-rated for emotion and intensity.
SAVEE [80]	SER	Emotions	480 utts	4 native English speakers with 7 emotion categories.
EMO-DB [81]	SER	Emotions	535 utts	German emotional database with 7 emotions, 10 speakers.
LibriTTS [82]	TTS	Audiobooks	585 hours	A dataset of English speech designed for text-to-speech synthesis tasks.
LJSpeech [83]	TTS	Audiobooks	24 hours	High-quality single-speaker dataset for TTS development, useful for voice conversion tasks.
VCTK [84]	VC	Read Speech	44 hours	Corpus of English speech from multiple accents, commonly used for ASR, TTS and VC.
MUSAN [85]	AUG	Misc	109 hours	Collection of music, speech, and noise samples for data augmentation.
RIR [86]	AUG	Room Impulse	900 RIRs	Room impulse response dataset for simulating reverberation.

VPC evolution: Main Eval Datasets

Automatic Speech Recognition (ASR) and Privacy Evaluation (ASV):

Subset			Female	Male	Total	#Utterances
Dovelopment	LibriSpeech	Enrollment	15	14	29	343
Development	dev-clean	Trial	20	20	40	1,978
Evaluation	LibriSpeech	Enrollment	16	13	29	438
Evaluation	test-clean	Trial	20	20	40	1,496

Speech Emotion Recognition (SER):

IEMOCAP	Session 1	Session 2	Session 3	Session 4	Session 5
Female	528	481	522	528	590
Male	557	542	629	503	651

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An asr corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

J. Yamagishi, C. Veaux, and K. MacDonald, "Cstr vctk corpus: English multispeaker corpus for cstr voice cloning toolkit (version 0.92)," 2019

C. Busso et al., "lemocap: Interactive emotional dyadic motion capture database," Language Resources and Evaluation, 2008

N. Tomashenko et al., "The VoicePrivacy 2024 challenge evaluation plan," 2024.

VPC evolution: Evaluation Metrics

Metrics: EER and WER, subjective metrics

New metrics: GVD and pitch correlation New eval: EER₄, EER₂, EER₃, EER₄

New utility metric: UAR for SER

Metrics: EER and WER, subjective metrics

GVD, pitch correlation and subjective metrics

VPC2022

$$EER = P_{fa}(\theta_{EER}) = P_{miss}(\theta_{EER})$$

$$G_{\text{VD}} = 10 \log_{10} \frac{D_{\text{diag}}(S_{\text{anon}})}{D_{\text{diag}}(S_{\text{orig}})}$$

$$WER = \frac{N_{\text{sub}} + N_{\text{del}} + N_{\text{ins}}}{N_{\text{ref}}},$$

$$\rho_{F_0} = \frac{\sum_{t=1}^{T} (P_t - \bar{P})(Q_t - \bar{Q})}{\sqrt{\sum_{i=t}^{T} (P_t - \bar{P})^2} \sqrt{\sum_{t=1}^{T} (Q_t - \bar{Q})^2}},$$

$$UAR = \frac{1}{C} \sum_{i=1}^{C} \frac{TP_i}{TP_i + FN_i}$$

VPC evolution: Different Privacy Requirements

VPC evolution: Different Privacy Requirements

Outline

1. Introduction

Literature Review

- a. Speaker Anonymization
- b. Disentanglement Learning

3. Disentanglement-based Approaches for Anonymization

- a. Problem 1: Anonymization models do not preserve emotions
 - i. Contribution 1.1: NS3 FACodec
 - ii. Contribution 1.2: Emotion embeddings
- **b. Problem 2:** Identity Leakage in B5
 - i. Contribution 2: Mean-reversion + Noise

4. Conclusions and Future Work

Motivation

What is the motivation?

- **Problem1:** Current models do not preserve emotions
- Problem2: Identity Leakage in B5 system.
- Cover all Privacy conditions in VPC

How do we tackle these problems?

- Enhance multiple approaches:
 - NaturalSpeech3 FACodec for Speaker Anonymization with emotion preservation
 - Emotion Embedding to preserve emotions
 - MeanReversion + AWGN for F0 to enhance prosody protection

Problem 1: Anonymization models do not preserve emotions

Problem 1: Anonymization models do not preserve emotions

Problem 1: Qualitative Examples

Contribution 1.1: Modified NaturalSpeech3 FACodec

Contribution 1.1: Modified NS3 FACodec (1a)

Z. Ju et al., "Naturalspeech 3: Zero-shot speech synthesis with factorized codec and diffusion models", in ICML 2024

Contribution 1.1: Modified NS3 FACodec (1a)

Contribution 1.1: Modified NS3 FACodec (1a)

#	Module	Description	Output fea-	Data
			tures	
(1)	Encoder	4 Downsampling Convolution-based Layers	Output	Librilight
	[124]	with Snake activation function	vector ²⁵⁶	train [125]
		Input: speech waveform		
2	Speaker	Several Conformer blocks	Speaker	Librilight
	embedding		embedding ²⁵⁶	train
	extractor			
(3)	Content	Factorized Vector Quantization with 2 quan-	Content	Librilight
	extractor	tizers, codebook size: 1024	vector ²⁵⁶	train
(4)	Prosody	Factorized Vector Quantization with 1 quan-	Prosody	Librilight
	extractor	tizer, codebook size: 1024	vector ²⁵⁶	train
(5)	Acoustic	Factorized Vector Quantization with 3 quan-	Acoustic	Librilight
	extractor	tizer, codebook size: 1024	$vector^{256}$	train
6	Speaker	Averaged 100 embeddings randomly selected	Anonymized	LibriTTS:
	anonymiza-	from a pool of 200 farthest embeddings from	speaker	train-
	tion mod-	source by cosine scoring	embedding ²⁵⁶	clean-100
	ule	AWGN with scale= 0.075		
		Cross-gender		
(7)	Decoder	Upsampling Convolution-based Layers	speech	Librilight
	[124]	with Snake activation function	waveform	train

Experiments. NS3 + AWGN to Speaker Embedding + Cross Gender

Speaker AWGN		Cross	EER		UAR		WER	
Anon		Gender	dev	test	dev	test	dev	test
_	_	<u></u>	7.40		63.36			
+	_	_	9.29	8.78	51.64	52.89	2.97	2.77
+	+	-	12.25	9.14	48.00	48.09	4.66	4.63
+	+	+	12.09	10.46	49.20	49.12	4.97	4.60

Contribution 1.1: Modified NS3 FACodec (1a). SER Results.

Contribution 1.2: Emotion embeddings for B3

Contribution 1.2: Emotion embeddings for B3 (Sys 1b, 2a)

50

Contribution 1.2: Emotion embeddings for B3 (Sys 1b, 2a)

Modified B3

Experiments. B3 + Emotion embedding

_	Speaker	Speaker	Prosody	Emotion	E	ER	U.	AR	W	ER
В3	+	GST	+	_	25.76	28.42	37.97	37.39	4.33	4.33
Proposed	+	GST	+	+	22.59	24.09	42.52	41.74	4.39	4.40

Experiments. B3 + Prosody Modification

Multiplier	EER		U.	AR	WER		
Range	dev	test	dev	test	dev	test	
[0.6, 1.4]	25.76	28.42	37.97	37.39	4.33	4.33	
[0.7, 1.3]	23.93	25.62	37.49	37.59	4.07	4.05	
[0.8, 1.2]	22.70	25.92	38.01	37.96	3.89	3.91	
[0.9, 1.1]	19.88	22.62	39.03	37.17	3.80	3.77	
	19.47	21.82	38.91	38.11	3.70	3.75	

Contribution 1.2: SER performance (Sys 1b, 2a)

Contribution 1.2: ASR performance (Sys 1b, 2a)

Contribution: Examples

Problem2: Identity Leakage in B5 system

Problem2: Identity Leakage in B5 system

Contribution 2: Mean-reversion + Noise

Contribution 2: Details about Modified B5

#	Module	Description	Output features	Data
1	F0 extractor	F0 extracted with s pytorch implementation of YAAPT 3 Using Mean Reversion F0 ($\alpha = 0.75$) in inference 4 Using Mean Reversion F0 ($\alpha = 0.75$) and 10-db AWGN	F0	N/A
2	ASR AM with VQ	Acoustic Model trained to identify left bi-phones and a VQ bottleneck layer	Linguistic representation	VoxPopuli Librispeech: train-clean-100
(5)	Speaker embedding	One-hot vector represented speaker in training set	Speaker embedding	LibriTTS: train-clean-100
6	Speech Synthesis	HiFi-GAN vocoder Input: F0 + lingusitic representation + speaker embedding	Speech waveform	LibriTTS: train-clean-100

Contribution 2: Mean Reversion + AWGN

(b) Mean Reversion F0 with a 10-dB white gaussian noise

Figure 2: Examples of Mean Reversion F0 with and without addictive noise

Contribution 2: SER performance (Sys 3, 4)

Contribution 2: ASR performance (Sys 3, 4)

Key Takeaways

- We achieved 3rd place (out of 36 submitted systems) in Privacy Protection performance on VPC2024
- NaturalSpeech3 FACodec:
 - Promising results for ER and ASR
 - But there may be leakage of speaker identity in other branches (content/acoustic)
- 3. Emotion Embeddings:
 - Helps to improve ER performance
 - But leads to speaker identity leakage
- 4. Mean-reversion of F₀ and AWGN:
 - Improves privacy protection while keeping ASR and ER

5. Conclusion & Future work

1. Introduction

2. Literature Review

- a. Speaker Anonymization
- b. Disentanglement Learning

3. Disentanglement-based Approaches for Anonymization

- a. Problem1: Anonymization models do not preserve emotions
 - i. Contribution1: NS3 FACodec, Emotion embeddings
- b. Problem2: Prosody Leakage
 - i. Contribution2: Mean-reversion + Noise

4. Future Work

a. Future Directions

5.1. ID leakage in Emotion Embedding

5.1. ID leakage in Emotion Embedding

N. Kuzmin, Luong, H.-T., Yao, J., Xie, L., Lee, K.A., Chng, E.-S., NTU-NPU System for Voice Privacy 2024 Challenge. Proc. 4th Symposium on Security and Privacy in Speech Communication. 2024

5.2. Codec models + Diffusion models

5.3. HouseHold Speaker Anonymization

Pruning and Knowledge Distillation

Streaming (online) speaker anonymization

Streaming inference.

Thank you for your attention! Feel free to ask questions.

About me

- Name: Nikita Kuzmin
- 2. Status:
 - a. Matriculated on 08-Aug-2022
 - b. 1, 2, 3 TAC appraisal passed
 - c. All school requirement fulfilled for QE (GAP hours, TA courses)
- 3. CGPA: 4.67

Publications:

- a. N. Kuzmin, Luong, H.-T., Yao, J., Xie, L., Lee, K.A., Chng, E.-S. (2024) NTU-NPU System for Voice Privacy 2024 Challenge. Proc. 4th Symposium on Security and Privacy in Speech Communication, 72-79, doi: 10.21437/SPSC.2024-13
- b. N. Kuzmin*, A. Sholokhov*, K. A. Lee and E. S. Chng, "Probabilistic Back-ends for Online Speaker Recognition and Clustering," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10097032.
- C. Yao, J., **Kuzmin, N.**, Wang, Q., Guo, P., Ning, Z., Guo, D., Lee, K.A., Chng, E.-S., Xie, L. (2024) NPU-NTU System for Voice Privacy 2024 Challenge. Proc. 4th Symposium on Security and Privacy in Speech Communication, 67-71,74 doi: 10.21437/SPSC.2024-12