

School of Electrical Engineering & **Telecommunications**

ELEC1111 Tutorial

Topic 10: Digital Logic Circuits

- 1. Convert the following unsigned binary numbers to decimal:
 - 1. 101
 - 2. 10111
 - 3. 1101

Solution:

- 1. $(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 1 = 5$
- 2. $(10111)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 4 + 2 + 1 = 23$ 3. $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 1 = 13$
- 2. Convert the following decimal numbers to binary:
 - 1. 9
 - 2. 45
 - 3. 255

Solution:

- 1. $9 = (1001)_2$
- $2. \ 45 = (101101)_2$
- 3. $255 = (111111111)_2$

3. How many binary digits are required to allow a variable to range between 0 and 1000?

Solution: $2^{10} = 1024$ so we need 10 binary digits to represent numbers from 0 to 1023 ie 1024 different numbers (counting 0). 29 only allows us to represent half as many so the answer is 10 binary digits.

4. Write a Boolean expression for the following statement: "Z is TRUE if either A or Bis FALSE, otherwise Z is FALSE". Write a truth table for this expression.

Solution:

Converting the logic statement to an equation we get:

$$Z = \bar{A} + \bar{B}$$

The truth table for the above expression will be:

A	B	Z
0	0	1
0	1	1
1	0	1
1	1	0

5. Consider the functions X(A, B, C) and Y(A, B, C) specified in the truth table

A	В	C	X(A, B, C)	Y(A, B, C)
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

- 1. Write a logic expression corresponding to the functions X(A, B, C) and Y(A, B, C).
- 2. Implement X(A, B, C) using logic gates.
- 3. Implement Y(A, B, C) using logic gates.
- 4. Using DeMorgan's Theorem, implement X(A, B, C) using only two-input NAND gates.

Solution:

1. The logic expressions for X(A, B, C) and Y(A, B, C) are:

$$X = \bar{A} \cdot \bar{B} \cdot \bar{C} + A \cdot \bar{B} \cdot \bar{C} + A \cdot \bar{B} \cdot C + A \cdot B \cdot C$$

$$X = \bar{B} \cdot \bar{C} + A \cdot C$$

For Y(A, B, C), we have:

$$Y = \bar{A} \cdot B \cdot C + A \cdot \bar{B} \cdot C + A \cdot B \cdot \bar{C} + A \cdot B \cdot C$$

Simplifying the first and the last terms, we get: $Y = B \subset (\overline{A} + A) + ABC + ABC$

$$Y = A \cdot \bar{B} \cdot C + A \cdot B \cdot \bar{C} + B \cdot C$$

2. From the simplified version of X(A,B,C) we can draw the following logic circuit

3. From the simplified version of Y(A,B,C) we can draw the following logic circuit

Note: You can also use three-input AND and OR sates to make the logic wrenit simpler

4. From the simplified version of the expression for X:

- 6. Complete the truth tables of the following logic equations:
 - 1. Output = $A \cdot \bar{B}$
 - 2. Output = $A \cdot \bar{B} \cdot C$
 - 3. Output = $\bar{A} + B$
 - 4. Output = $A \cdot \bar{B} + C$

Solution:

1. Output = $A \cdot \bar{B}$

A	B	$A \cdot \bar{B}$
0	0	0
0	1	0
1	0	1
1	1	0

2. Output = $A \cdot \bar{B} \cdot C$

A	В	С	$A \cdot \bar{B} \cdot C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

3. Output = $\bar{A} + B$

A	В	$A + \bar{B}$
0	0	1
0	1	1
1	0	0
1	1	1

4. Output = $A \cdot \bar{B} + C$

A	В	С	$A \cdot \bar{B} + C$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- 7. Draw the logic diagrams which represent the function of these logic equations using NAND Gates only:
 - AND Gates only:

 1. Output = $A \cdot \bar{B} = \overline{A \cdot \bar{B}} = \overline{$

 - 2. Output = $\overline{A} \cdot \overline{B} \cdot C = \overline{A} \cdot \overline{B} = \overline{A} \cdot \overline{B}$

Solution:

1. Output = $A \cdot \bar{B}$

2. Output = $A \cdot \bar{B} \cdot C$

8. Draw the logic diagram which represent the function of this logic equation $X=A\cdot \bar B\cdot C+A\cdot B\cdot \bar C$

