

Figure 1: V_{in} Measurement for 3.5V Reference

Figure 2: V_{out} Measurement for 3.5V Reference

Figure 3: τ Measurement for 3.5V Reference

Figure 4: V_{in} Measurement for 4V Reference

Figure 5: V_{out} Measurement for 4V Reference

Figure 6: τ Measurement for 4V Reference

Figure 7: V_{in} Measurement for 4.5V Reference

Figure 8: V_{out} Measurement for 4.5V Reference

Figure 9: τ Measurement for 4.5V Reference

 C_1 is determined by applying equation (??).

$$C_1 = \frac{V_{out,ss}}{V_{in}} \tag{1}$$

 C_2 is determined by observing when the output attains $(1-e^{-1})\approx 0.63$ of the steady state value, $V_{out,ss}$.

Table 1: C_1 and C_2 Results

Reference Voltage [V]	C1 [V]	C2 [ms]
3.5	12.784	520
4.0	15.125	550
4.5	15.062	470