MAT220 manditory 4

Fromsa Hera April 5, 2018

- Show that $I \cap J = \{a | a \in I \land a \in J\}$ is an ideal.
 - Given $n, m \in I \cap J = (n, m \in I \land n, m \in J)$.

 $I \cap J$ is an ideal if;

 $-I \cap J$ is closed under subtraction

Presume $n-m \in I \cap J$, then $n-m \in I \wedge n - m \in J$ which is true by theorem 6.1.

- $\therefore I \cap J$ is closed under subtraction.
- And $I \cap J$ absorbs products. Given $r \in R$, then
 - * $rm \in I \cap J = rm \in I \wedge rm \in J$ which is true by theorem 6.1.
 - $\therefore rm \in I \cap J$
 - * $mr \in I \cap J = mr \in I \wedge mr \in J$ which is true by theorem 6.1.
 - $\therefore mr \in I \cap J$
 - $\therefore I \cap J$ absorbs products.
- $\therefore I \cap J$ is an Ideal, by theorem 6.1
- Show that $I + J = \{i + j | i \in I, j \in J\}$ is an ideal.

Given $n, m \in I + J$, where m = a + b, n = x + y, where $a, x \in I$ and $b, y \in J$ and I, J are Ideals.

Then I + J is an ideal if;

-I+J is closed under subtraction Meaning $n-m \in I+J$.

$$n-n$$

$$= (a+b) - (x+y)$$

$$= a + b - x - y$$

$$= (a-x) + (b-y)$$

By theorem 6.1,
$$(a-x) \in I$$
 and $(b-y) \in J$

$$\therefore n-m \in I+J$$

- And I + J absorbs products. Given $r \in R$, then
 - * rm = r(a+b) = ra + rb

Where $ra \in I$ and $rb \in J$ by theorem 6.1.

$$\therefore ra + rb \in I + J$$
. and

$$* mr = (a+b)r = ar + br$$

Where $ar \in I$ and $br \in J$ by theorem 6.1.

$$\therefore ar + br \in I + J.$$

- $\therefore I + J$ absorbs products.
- $\therefore I + J$ is an Ideal, by theorem 6.1
- 2 Let $P_m = \{p_1, p_2, \dots p_n\}$ such that $m = p_1 \cdot p_2 \cdots p_n$ where $p_i \in \{\text{prime}\}$.
 - Given $S = \{\frac{x}{y} | \text{when } \frac{x}{y} \text{ is reduced } = \frac{a}{b} \implies b = \text{odd} \}$. $b = \text{odd} \iff p_i \neq 2$, in P_b Given $\frac{a}{b}, \frac{c}{d} \in S$. S is a subring of $\mathbb Q$ if;
 - S is closed under subtraction.

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ad - bc}{bd}$$

 $\frac{a}{b} \cdot \frac{c}{d} = \frac{ad - bc}{bd}$ Since $b, d = \text{odd} \implies bd = \text{odd}$ and therefore any subset of P_{bd} is also odd

- \implies when $\frac{ac}{bd}$ is reduced, say $\frac{ad-bc}{bd} = \frac{r}{s}$, then s = odd, because P_s is a subset of P_{bd} .
- $\therefore S$ is closed under subtraction
- S is closed under multiplication. $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

The same argument as for the closure under subtraction applies here.

- $\therefore S$ is closed under multiplication
- $\therefore S$ is a subring of \mathbb{Q}
- Given $I \subset J, I = \{\frac{x}{y} | \text{when } \frac{x}{y} \text{ is reduced } = \frac{a}{b} \implies b = \text{odd} \land a = \text{even} \}.$ $b = \text{odd} \iff p_i \neq 2, \text{ in } P_b$

 $a = \text{even} \iff 2 * q_1 \cdot q_2 \cdots q_k \text{ where } q_i \in \{\text{prime}\}$

Given $\frac{a}{b}$, $\frac{c}{d} \in S$. Then I is an ideal if;

- I is closed under subtraction

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - cb}{bd}$$

Form our earlier argument, bd is odd. and

ad - cd

$$= (2 \cdot q_1 \cdot q_2 \cdots q_k)d - (2 \cdot t_1 \cdot t_2 \cdots t_l)b$$

$$=2((q_1\cdot q_2\cdots q_k)d-(t_1\cdot t_2\cdots t_l)b)$$

 \implies ad-cb is even, also when reduced, because the 2 does not get removed.

 $\therefore \frac{a}{b} - \frac{c}{d} \in I$

- And I absorbs products. Given $\frac{r}{s} \in S$, then

$$* \frac{r}{s} \cdot \frac{a}{b} = \frac{ra}{sd}$$

Form our earlier argument, sb is odd. $ra = r \cdot 2(q_1 \cdot q_2 \cdots q_n)$ is even also when reduced, because the 2 does not get removed.

$$\therefore \frac{r}{s} \cdot \frac{a}{b} = \frac{ra}{sd} \in I$$
. and

$$* \frac{a}{b} \cdot \frac{r}{s} = \frac{ar}{bs}$$

Form our earlier argument, bs is odd. $ar = 2(q_1 \cdot q_2 \cdots q_n) \cdot r$ is even also when reduced, because the 2 does not get removed.

$$\therefore \frac{a}{b} \cdot \frac{r}{s} \in I.$$

 $\therefore I + J$ absorbs products.

 \therefore I is an Ideal, by theorem 6.1. Interesting to note is that I is just a principle Ideal generated by $\frac{2}{1} \in S$

• Show that $S/I \cong \mathbb{Z}_2$

Given any element $\frac{a}{b} \in S$, consider the coset $\frac{a}{b} + I$. Then $\frac{a}{b}$ in reduced form is either a multiple of $\frac{2}{1}$, in which case $\frac{a}{b} \in I$, so that $\frac{a}{b} \equiv 0 \pmod{I}$

or
$$\frac{a}{b} - 1 \in I$$
, because $\frac{a}{b} - \frac{1}{1} = \frac{a+b}{b} \implies a+b$ is even, $\implies \frac{a}{b} \equiv 1 \pmod{I}$

Therefore S/I consists of two disjoint sets, (1+I) and (0+I).

As we can se (1+I) + (1+I) = ((1+1)+I) = 2+I, but $2 \in I \implies 2 \equiv 0 \pmod{I}$

... by choosing [1] = 1 + I and [0] = 0 + I we get that $S/I \cong \mathbb{Z}_2$ Calculated by hand.

- 3 Show that $\mathbb{Z}_6/([3]) \cong \mathbb{Z}_3$ Let $f: \mathbb{Z}_6 \to \mathbb{Z}_3$ and f:=
 - $[3], [0] \rightarrow [0]$
 - $[4], [1] \to [1]$
 - $[5], [2] \rightarrow [2]$
 - ⇒ f is surjectiv homomorphism
 - \implies ([3]) is the kernel of f.

In addition, I am assuming that [0] is implicitly within the kernel.

 $\mathbb{Z}_6/([3]) \cong \mathbb{Z}_3$ by the first isomorphism theorem.

4 TODO

- Show that every ideal of R is principal (even if R is not necessarily a domain)
- List all the prime and maximal ideal of \mathbb{Z}_{12}
- 5 Let(G,*) be a group. Consider the following operation on $G: a \sharp b = b * a$. Given $a,b,c \in (G,*)$ is a group if these axioms are satisfied;
 - Closure under the operation

$$a\sharp b\in G\implies b*a\in G$$
 which is true.

• Associative under the operation

$$(a \sharp b) \sharp c = c * (b * a) = (c * b) * a = a \sharp (b \sharp c)$$

• Has Identity element

Given an identity
$$e \in G$$

$$a \sharp e = e * a = a = a * e = e \sharp a$$

• Has an inverse

Given an inverse of
$$a, d \in G$$

$$a\sharp d = d*a = e = a*d = d\sharp a$$

$$\therefore (G,\sharp)$$
 is a group.

- 6 Both \mathbb{Z}_4 and \mathbb{Z}_2 are groups under addition. Therefore the identity of $\mathbb{Z}_4 \times \mathbb{Z}_2$ is (0,0).
 - (0,0) has order 1
 - (1,0) has order 4
 - (2,0) has order 2
 - (3,0) has order 4
 - (0,1) has order 2
 - (1,1) has order 4
 - (2,1) has order 2
 - (3,1) has order 4
- 7 Important to note that $4 \in [4]$ and that \mathbb{Z}_{15} is a group by addition.

f is group isomorphsim if;

•
$$f(a*b) = f(a)*f(b)$$

Given any $[n], [m] \in \mathbb{Z}_{15}$
 $f([n] \oplus [m]) = f([n+m]) = 4[n+m] = [4][n+m] = [4(n+m)] = [4n+4m] = [4n] + [4m] = [4][n] \oplus [4][m] = f([n]) \oplus f([m])$

 \bullet f injective

Given any
$$[n], [m] \in \mathbb{Z}_{15}$$

 $f([n]) = f([m]) \iff 4[n] = 4[m] \iff [n] = [m]$

• f is surjective

Given any
$$[n] \in \mathbb{Z}_{15}$$
, and the inverse of $[4] = d$ which is $[4]$
There exists $[m] = [n]d$ such that $f([m]) = f(d[n]) = 4d[n] = [n]$

- $\therefore f$ is a group isomorphism.
- 8 Show that if f is a group homomorphism then $f \equiv 0$ TODO
- 9 $(14)(27)(523)(34)(1472) = (1573)(24) \in S_8$

Keep in mind. I am behind in this subject, because I also had mandatory assignments in 3 other subjects, therefore I am behind in my reading for this assignment. This does not mean that I am struggling to understand this subject, I just had limited time to do this properly.