Jesenski ispitni rok iz Matematičke analize 2 27.08.2020.

1. (7 bodova)

(a) (3b) Odredite prirodnu domenu, sliku i nivo-plohe funkcije

$$f(x, y, z) = 5 - \sqrt{x^2 + 4y^2 + 9z^2}.$$

(b) (4b) Skicirajte i imenujte nivo-plohu koja prolazi točkom $T(\sqrt{3}, 1, 1)$, te odredite tangencijalnu ravninu na tu plohu u zadanoj točki T.

2. (7 bodova)

- (a) (2b) Neka je f realna funkcija dvije varijable $f: \mathcal{D}_f \to \mathbb{R}, \mathcal{D}_f \subseteq \mathbb{R}^2$. Definirajte limes $L \in \mathbb{R}$ funkcije f u točki $\vec{x} = \vec{a}, \vec{a} \in \mathcal{D}_f$.
- (b) (2b) Iskazana je sljedeća tvrdnja:

T: Funkcija f(x,y) ima limes u ishodištu ako vrijedi:

$$\lim_{x \to 0} \left[\lim_{y = x^2} f(x, y) \right] = \lim_{y \to 0} \left[\lim_{x = y^2} f(x, y) \right] = L.$$

Da li je iskazana tvrdnja točna ili netočna? Obrazložite svoj odgovor!

(c) (3b) Ispitajte neprekinutost funkcije u ishodištu:

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{\sqrt{x^4 + y^4}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

3. (8 bodova)

- (a) (2b) Navedite primjer funkcije dvije varijable s lokalnim maksimumom u T(0,0) te primjer funkcije dvije varijable s lokalnim minimumom u T(1,1).
- (b) (6b) Odredite lokalne ekstreme funkcije:

$$f(x,y) = \frac{1}{2}\ln(x^2y^2) - x^2 - y^2 + xy.$$

4. (8 bodova)

- (a) (2b) Izvedite Jakobijan transformacije iz pravokutnih u sferne koordinate.
- (b) **(6b)** Izračunajte

$$\iiint_V \sqrt{x^2 + y^2 + z^2} \, dV$$

gdje je Vtijelo određeno nejednadžbama $x^2+y^2+z^2 \leq 4$ i $z \geq 1.$

5. (8 bodova)

(a) (4b) Za navedene tvrdnje napišite jesu li istinite ili lažne. Istinite tvrdnje dokažite, a lažne opovrgnite protuprimjerom.

T1: Ako je $\lim_{n\to\infty} a_n \neq 0$, tada red $\sum_{n=1}^{\infty} a_n$ divergira.

T2: Ako je $\lim_{n\to\infty} a_n = 0$, tada red $\sum_{n=1}^{\infty} a_n$ konvergira.

T3: Ako red $\sum_{n} a_n$ konvergira, tada je $\lim_{n \to \infty} a_n = 0$.

- (b) **(4b)** Ispitajte konvergenciju redova: (i) $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ (ii) $\sum_{n=1}^{\infty} \left(\frac{2n}{2n+1}\right)^n$
- 6. (5 bodova) Riješite Cauchyjev problem:

$$\begin{cases} x^2y' = 2xy - y^2 \\ y(2) = 1. \end{cases}$$

7. (6 bodova) Odredite parametar $\alpha \in \mathbb{R}$ takav da jednadžba

$$\left(\frac{\sin^2 x}{y^2}\right)dx + \left(\frac{\alpha \cdot (x - \sin x \cos x)}{y^3} + \cos y\right)dy = 0$$

bude egzaktna te za dobiveni α odredite opće rješenje zadane jednadžbe.

- 8. **(11 bodova)**
 - (a) (5b) Neka su funkcije

$$y_1(x) = e^x + x + 1$$
 i $y_2(x) = e^{-x} + x - 2$

dva linearno nezavisna rješenja homogene linearne diferencijabilne jednadžbe 2. reda. Pokažite njihovu linearnu nezavisnost i nađite ono rješenje te jednadžbe čiji graf sječe os ordinata u točki T(0,1) pod kutem od $\frac{\pi}{6}$.

(b) (6b) Nađite opće rješenje diferencijabilne jednadžbe

$$y'' + 9y = \frac{3}{\cos(3x)}.$$