CO-HW-1

Orchiella

October 7,2024

1.

(1)(i) When $y - x = 1, inf(T^*(C))$ is 2.

It exists because the distance of the round trip $\pi(1, 2, ..., n)$ is 2.

Now prove the optimality.

Let $\{city_i | i \ge x\}$ be denoted as \boldsymbol{A} and $\{city_i | i < x\}$ be denoted as \boldsymbol{B} .

According to definition of matrix C, we know the distance between two cities is 1 if and only if one belongs to A while the other belongs to B; in all other cases, the distance is 0.

If the starting city of round trip belongs to A, the salesman must enter a city in B at least once and leave for a city in A at least once for the return. The distance for both processes mentioned above is 1 and the same goes for starting from a city in B.

Thus, the total distance is at least 2

(ii) When $y - x = 2, inf(T^*(C))$ is 1.

It also exists because the distance of the round trip π is 1 in this case Now prove the optimality.

Denote $\{city_i|i \geq x\}$ as \boldsymbol{P} and $\{city_i|i \leq y\}$ as \boldsymbol{Q} .

According to definition of matrix C,we know the distance between two cities is 1 if and only if one belongs to P while the other belongs to Q;in all other cases, the distance is 0.

If the starting city of round trip belongs to P, the salesman must either enter a city in Q from P, or transfer from $city_{x+1}$ to a city in Q and then return to P from Q, The distance for both cases mentioned above is 1, so the total distance is at least 1. The same goes for starting from Q

If the starting city is $city_{x+1}$, the salesman must trip between P and Q before returning.

Therefore, the total distance is at least 1, too.

(2)(i)The matrix is

$$\mathbf{\Phi}_n = \begin{bmatrix} 0 & 1 & 1 & \ddots & 0 & 0 & 0 \\ 1 & 0 & 0 & \ddots & 1 & 0 & 0 \\ 1 & 0 & 0 & \ddots & 0 & 1 & 0 \\ 0 & 1 & 0 & \ddots & 0 & 0 & 1 \\ 0 & 0 & 1 & \ddots & 0 & 0 & 1 \\ 0 & 0 & 0 & \ddots & 1 & 1 & 0 \end{bmatrix}$$

(ii) Just verify if the distance of π is the upper bound of $T^*(C)$.

When y-x=1, the only two non-zero distances are $c_{x,y-1}=1$ and $c_{x+1,y}=1$ 1, meaning the total distance is 2.

When y - x = 2, the only non-zero distance is $c_{x,y} = 1$, meaning the total distance is 1.

Hence the optimality.

(3) To prove π is the optimal solution, it suffices to show that the total distance of any permutation of π is greater.

Consider swapping only $city_i$ and $city_{i+1}$ in π , which results in a permutation denoted as π_1 .

According to the property of symmetric Monge matrix, we have

$$\begin{split} l_{\pi} &= c_{\pi(1),\pi(2)} + \ldots + \left(c_{\pi(i-1),\pi(i)} + c_{\pi(i+1),\pi(i+2)} \right) + \ldots + c_{\pi(n-1),\pi(n)} \\ &\leq l_{\pi_1} = c_{\pi(1),\pi(2)} + \ldots + \left(c_{\pi(i-1),\pi(i+1)} + c_{\pi(i),\pi(i+2)} \right) + \ldots + c_{\pi(n-1),\pi(n)} \end{split}$$

Repeat the city swapping process to generate all possible permutations...

(well...I don't know how to proceed anymore....)

(1) If we exchange $c_{l+r}(>0, r>0)$ coins with a face value of (l+r). Consider the case that $p_1=p_2=\ldots=p_k=l$, which satisfies $\sum_{j=1}^k=kl\leq N=l$

In this case, all coins exchanged must be spent.

i.e. $\sum_{j=1}^{k} p_{ij} = c_i$ However, $p_{l+r,j}$ must be 0.(If this is not the case,then the inequality $\sum_{i=1}^{N} i p_{ij} \ge (l+r) p_{l+r,j} \ge l+r \ne l$ holds). So $c_{l+r} = \sum_{j=1}^{k} p_{l+r,j} = \sum_{j=1}^{k} 0 = 0$, which contradicts with $c_{l+r} > 0$.

(2)If not, $\exists i_0$ s.t. $T_{i_0} < ki_0$. Consider the case that $p_1 = p_2 = \dots = p_k = i_0$, which satisfies $\sum_{j=1}^k = ki_0 \le N = kl$.

In this case, all the bills are supposed to be paid with coins with a face value not exceeding i_0 . Obviously, these coins totaling T_{i_0} are not enough to pay those bills totaling ki_0 .

(3)Building on the result from (2),we concludes that $T_i \geq ki$.

Let = holds for any i to save coins as much as possible. We have $\sum_{j=1}^{i} jc_j = ki$. Take i=1,we get $c_1=k$. Take i=2 and $c_1=k$,we get $c_2=\frac{k}{2}$.

We have
$$\sum_{j=1}^{i} jc_j = ki$$
.

Take
$$i = 1$$
, we get $c_1 = k$.

Take
$$i=2$$
 and $c_1=k$, we get $c_2=\frac{k}{2}$.

Similarly, we get
$$c_i = \frac{k}{i}$$

$$\sum_{i=1}^{l} c_i = \sum_{i=1}^{l} \frac{k}{i} = k \sum_{i=1}^{l} \frac{1}{i} = kH_l.$$

(4)Similar to (3),

$$c_i = \begin{cases} \left[\frac{k}{i}\right] + 1, & \text{if } \left[\frac{k}{i}\right] \notin Z, \\ \frac{k}{i} & \text{if } \left[\frac{k}{i}\right] \in Z \end{cases}$$