INTEREST POINTS AND CORNERS

Interest Points/Features are characteristics which can be used to uniquely identify an image/part of an image.

Outline

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Feature matches between images

DIFFERENT METHODS OF FEATURE MATCHING

- Laplacian, DoG
- Harris-/Hessian-Laplace
- Harris-/Hessian-Affine
- SURF
- SIFT
- FAST
- HoG
- Haar
- MSER.....and so on

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge":
no change along
the edge
direction

"corner":
significant
change in all
directions

Source: A. Efros

Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$
Window function Shifted intensity Intensity

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order *Taylor expansion*:

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$\begin{split} E(u,v) &\approx E(0,0) + [u \ v] \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} [u \ v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ E_u(u,v) &= \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_x(x+u,y+v) \\ E_{uu}(u,v) &= \sum_{x,y} 2w(x,y) I_x(x+u,y+v) I_x(x+u,y+v) \\ &+ \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{xx}(x+u,y+v) \\ E_{uv}(u,v) &= \sum_{x,y} 2w(x,y) I_y(x+u,y+v) I_x(x+u,y+v) \\ &+ \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{xy}(x+u,y+v) \end{split}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$\begin{split} E(u,v) &\approx E(0,0) + [u \ v] \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} [u \ v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ E(0,0) &= 0 \\ E_u(0,0) &= 0 \\ E_v(0,0) &= 0 \\ E_{vu}(0,0) &= \sum_{x,y} 2w(x,y)I_x(x,y)I_x(x,y) \\ E_{vv}(0,0) &= \sum_{x,y} 2w(x,y)I_y(x,y)I_y(x,y) \\ E_{vv}(0,0) &= \sum_{x,y} 2w(x,y)I_y(x,y)I_y(x,y) \end{split}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2(x,y) & \sum_{x,y} w(x,y) I_x(x,y) I_y(x,y) \\ \sum_{x,y} w(x,y) I_x(x,y) I_y(x,y) & \sum_{x,y} w(x,y) I_y^2(x,y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(0,0) = 0$$

$$E_u(0,0) = 0$$

$$E_v(0,0) = 0$$

$$E_{uu}(0,0) = \sum_{x,y} 2w(x,y) I_x(x,y) I_x(x,y)$$

$$E_{vv}(0,0) = \sum_{x,y} 2w(x,y) I_y(x,y) I_y(x,y)$$

$$E_{uv}(0,0) = \sum_{x,y} 2w(x,y) I_x(x,y) I_y(x,y)$$

The quadratic approximation simplifies to

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x} I_x & \sum_{I_x I_y} I_x I_y \\ \sum_{I_x I_y} I_y & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_x I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum_{I_x I_y} \nabla I(\nabla I)^T$$

Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$

$$I_{y} \Leftrightarrow \frac{\partial I}{\partial y}$$

$$I_{x}I_{y} \Leftrightarrow \frac{\partial I}{\partial x}\frac{\partial I}{\partial y}$$

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = cons^{n}$

This is the equation of an ellipse.

Diagonalization of M: $M = R^{-1}$

$$M = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

Harris Detector [Harris88]

Second moment matrix

$$u(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) \\ I_x I_y(\sigma_D) \end{bmatrix}$$

$$\begin{bmatrix} I_x I_y(\sigma_D) \\ I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives (optionally, blur first

2. Square of derivatives

3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Compute corner response R

Find points with large corner response: R>threshold

Harris Detector: Steps
Take only the points of local maxima of R

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

$$I \rightarrow a I + b$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!