考研高数习题集

枫聆

2021年9月15日

目录

1	行列式	1
	1.1 定义	
	1.2 化行阶梯形	
	1.3 按一行展开	
	1.4 按多行展开	
	1.5 特殊矩阵	
	1.6 数学归纳法	2
2	矩阵相似	3
	2.1 相似判定	3
	2.2 对角化判定	3
3	二次型	3
	3.1 正定性的判定	3

行列式

定义

Annotation 1.1. 这类题主要是给定某个具体的行列式值的基础上,通过行列式的性质来计算行列式.

化行阶梯形

Annotation 1.2. 不是特殊矩阵的第一选择.

按一行展开

Annotation 1.3. 若是可以将某一行或者某一列消去,只留下一个非零元素,按行和按列展开是不错的选择.

Example 1.4. 计算

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 & 1-n \end{vmatrix}$$

hints可以考虑把所有列都加到第一列,再按第一列展开

$$|\mathbf{A}| = \begin{vmatrix} \frac{(1+n)n}{2} & 2 & 3 & \cdots & n-1 & n \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 & n-1 \end{vmatrix} = \frac{(1+n)n}{2} \begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & n-1 & n-1 \end{vmatrix}$$

同样上述矩阵也是所有列加到第一列,最终有 $|A| = (-1)^{n-1} \frac{(n+1)!}{2}$

按多行展开

Annotation 1.5. 好像没有直接使用拉普拉斯定理的习惯,比较特殊的分块矩阵可以考虑.

特殊矩阵

Annotation 1.6. 常见的特殊矩阵https://www.bilibili.com/read/cv266516

- 1. 范德蒙德行列式
- 2. 爪型行列式

数学归纳法

矩阵相似

相似判定

Proposition 2.1. 常用判定矩阵相似的方法,遇题依次向下使用下述方法.

- 1. 必要条件: 相似必行列值相等;
- 2. 必要条件: 特征值相等;
- 3. 充分条件: 对于都可对角化的矩阵, 判定其特征值是否相同;
- 4. 否命题的充分条件: 一个可对角化, 一个不可对角化, 则它们不相似;
- 5. 对于都不可对角的矩阵,同一个特征值的特征子空间的维数相同;
- 6. 对于都不可对角的矩阵,则对应的特征向量满足: 若 B 对应 λ 的特征向量 λ ,则 A 对应 λ 的特征向量为 $P\alpha$. 这里需要求出可逆矩阵 P

对角化判定

Proposition 2.2. 常用判定对角化的方法, 遇题依次向下使用下述方法

- 1. 实对称矩阵一定相似于对角矩阵;
- 2. 有 n 个不同的特征值,那么一定相似于对角矩阵;
- 3. n 重特征值对应特征子空间是否为 n 维;

二次型

正定性的判定