

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

FEBRUARY/MARCH/FEBRUARIE/MAART 2015

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 24 pages. *Hierdie memorandum bestaan uit 24 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEEKEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n poging om die vraag te beantwoord, doodgetrek het en nie dit oorgedoen het nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienmemorandum toegepas.
- Aanvaarding van antwoorde/waardes om 'n probleem op te los, is ONaanvaarbaar.

1.1	$\overline{x} = \frac{3310}{21}$ = 157,62 Answer only: Full marks slegs antw: volpunte (131; 142,5; 151; 173; 189)	$ \sqrt{\frac{3310}{21}} $ √157,62 (2) √131 and/ en 189 √142,5 √173 √151
1.3	131 142,5 151 173 189 120 130 140 150 160 170 180 190 200	(4) ✓ box/mond ✓ whiskers/ snor (2)
1.4	positively skewed/positief skeef OR/OF skewed to the right/skeef na regs	✓ answer/ antwoord (1)
1.5	$\sigma = 17,27$	√√answer/ antwoord (2)
1.6.1	$\overline{x} = 157,62 + p$	✓ answer (1)
1.6.2	$\sigma = 17,27$	✓ answer/ antwoord (1) [13]

2.1	As the temperature increases, the sales of ice-creams increase/Soos die temperatuur styg, neem die verkope toe.	✓ reason/rede (1)
	OR/OF	
	As the temperature decreases, the sales of ice-creams decrease/Soos	✓ reason/rede
	die temperatuur daal, neem die verkope af.	(1)
2.2	The liveable temperature cannot keep on increasing/Die leefbare	✓ reason/rede
	temperatuur kan nie aanhou styg nie.	(1)
2.3	a = -460,35	√√ -460,35
	b = 30,09	✓ 30,09
	$\hat{y} = 30,09x - 460,35$ OR/OF $\hat{y} = -460,35 + 30,09x$	✓ equation/vgl
	Answer only: Full marks	(4)
	slegs antw: volpunte	
	siegs unit. Volpunie	
2.4	r = 0.96	√ 0,96
		(1)
2.5	There is a <u>very strong</u> positive relationship (correlation)/Daar is 'n	✓ very strong/baie
	<u>baie sterk</u> positiewe verband (korrelasie).	sterk
		(1)
		[8]

3.1	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(5+1)^2 + (13-5)^2}$ $= 10$	✓ use of distance formula/gebruik afstandformule ✓ correct subst into form/korrekte subst in formule ✓ 10 (3)
3.2	$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{13 - 5}{5 - (-1)}$ $= \frac{8}{6} = \frac{4}{3}$ Answer only: Full marks slegs antw: volpunte	✓ correct subst into gradient formula/ korrekte subst in gradiëntformule ✓ gradient/gradiënt (2)

3.3	Equation of line RS/Vgl van lyn RS:	
	$m_{RS} = m_{PQ} = \frac{4}{3}$ (= gradients, lines/= gradiënte, lyne)	$\checkmark m_{RS} = \frac{4}{3}$
	$y = mx + c y - y_1 = m(x - x_1)$ $8 = \frac{4}{3} \left(\frac{15}{2}\right) + c y - 8 = \frac{4}{3} \left(x - \frac{15}{2}\right)$ $c = -2 y = \frac{4}{3}x - 2$ $\therefore 4x - 3y - 6 = 0$ $OR/OF y = \frac{4}{3}x - 2$ $\therefore 4x - 3y - 6 = 0$	 ✓ subst of S(7,5; 8) and m into eq /subst van S(7,5; 8) en m in vgl ✓ value of c /waarde van c or/of st form/st vorm ✓ equation/vgl (4)
3.4	B is the x-intercept of/is die x-afsnit van $y = \frac{4}{3}x - 2$	
	$0 = \frac{4}{3}x - 2$ $4x - 3(0) - 6 = 0$ $4x - 6 = 0$ OR/OF	$\checkmark y = 0$
	$x = \frac{3}{2}$ $x = \frac{3}{2}$	$\checkmark x = \frac{3}{2} \tag{2}$
3.5	$\tan \alpha = \frac{4}{3}$	$\checkmark \tan \alpha = \frac{4}{3}$
	3 $\alpha = 53,13^{\circ} = \hat{OBR}$ (vert opp $\angle s/regoorst \angle e$)	3 ✓ 53,13°
	ORB = $180^{\circ} - (90^{\circ} + 53,13^{\circ})$ ($\angle s \text{ of } \Delta / \angle e \text{ van } \Delta$) = $36,87^{\circ}$	✓ 36,87°
3.6	BS = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$= \sqrt{\left(\frac{15}{2} - \frac{3}{2}\right)^2 + (8 - 0)^2}$ $= 10$ $PQ \parallel BS and/en PQ = BS$	✓ correct subst into form/korrekte subst in formule ✓ BS = 10 ✓ BS = PQ
	PQBS = parallelogram (1 pair opp sides = and $ /1 pr tos sye = en /)$	✓ reason/rede
	OR/OF midpoint of/midpt van QS: $\left(\frac{-1+7.5}{2}; \frac{5+8}{2}\right) = \left(\frac{13}{4}; \frac{13}{2}\right)$ midpoint of/midpt van PB: $\left(\frac{5+1.5}{2}; \frac{13+0}{2}\right) = \left(\frac{13}{4}; \frac{13}{2}\right)$	$ 4) $ $ \sqrt{\frac{-1+7.5}{2}; \frac{5+8}{2}} $ $ \sqrt{\frac{5+1.5}{2}; \frac{13+0}{2}} $
	PQBS = parallelogram (diags bisect each other/hoekl halv mekaar)	$\checkmark \left(\frac{13}{4}, \frac{13}{2}\right)$ $\checkmark \text{ reason/rede}$ (4)
	OR/OF	

$m_{\text{QB}} = \frac{5-0}{-1-1,5} = \frac{5}{-2,5} = -2$ $m_{\text{PS}} = \frac{13-8}{5-7,5} = \frac{5}{-2,5} = -2$ $m_{\text{QB}} = m_{\text{PS}}$ $\therefore \text{QB} \text{PS}$ PQ BS PQBS = parallelogram (both pairs opp sides ///beide pr tos sye //)	\checkmark m_{QB} \checkmark m_{PS} \checkmark QB PS \checkmark reason/rede (4)
BS = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{\left(\frac{15}{2} - \frac{3}{2}\right)^2 + (8 - 0)^2}$ \therefore PQ = BS = 10 QB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ correct subst into form/korrekte subst in formule ✓ PQ = 10
$= \sqrt{(-1-1,5)^2 + (5-0)^2} = \sqrt{(2,5)^2 + (5)^2} = \frac{5\sqrt{5}}{2} \text{ or } 5,59$ $PS = \sqrt{(5-7,5)^2 + (13-8)^2} = \sqrt{(2,5)^2 + (5)^2} = \frac{\sqrt{125}}{2} \text{ or } 5,59$ $QB = PS$ $PQBS = \text{parallelogram (both pairs opp sides } = / \text{beide pr tos sye} =)$	✓ QB = PS ✓ reason/rede (4) [18]

4.1.1	Radius = $\sqrt{(2+1)^2 + (4-2)^2}$	$\sqrt{(2+1)^2+(4-2)^2}$
	$r = \sqrt{13}$	or/of $\sqrt{13}$
	Equation of circle/vgl van sirkel:	$\sqrt{(x-2)^2+(y-4)^2}$
	$(x-2)^2 + (y-4)^2 = 13$	√13
		(3)
	OR/OF	
	$(x-2)^2 + (y-4)^2 = r^2$	$\begin{array}{ c c c c c }\hline \checkmark (x-2)^2 + (y-4)^2 \\ \checkmark (-1-2)^2 + (2-4)^2\end{array}$
	$(-1-2)^2 + (2-4)^2 = r^2$	$\sqrt{(-1-2)^2+(2-4)^2}$
	$r^2 = 13$	
	$\therefore (x-2)^2 + (y-4)^2 = 13$	√13 (2)
4.1.2	At/by D:	(3)
7.1.2	$\frac{-1+x_D}{2} = 2 \qquad \frac{2+y_D}{2} = 4$	
	$-1 + x_D = 4 \qquad \text{and/en} \qquad 2 + y_D = 8$	
	$x_D = 5 y_D = 6$	$\checkmark x$ – value/waarde
	D(5; 6)	✓ y - value/waarde
	OR/OF	(2)
		✓ x - value/waarde
	By inspection/deur inspeksie: D(5; 6)	✓ y - value/waarde
		(2)

4.1.3	$m_{\text{MC}} = \frac{4-2}{2+1} = \frac{2}{3}$ $m_{\text{AB}} \times m_{\text{MC}} = -1 \qquad \text{(Tangent } \perp \text{ radius/} raaklyn } \perp radius\text{)}$ $m_{\text{AB}} = -\frac{3}{2}$ $y - y_1 = m(x - x_1) \qquad \textbf{OR/OF} \qquad y = mx + c$ $y - 2 = -\frac{3}{2}(x+1) \qquad \qquad 2 = -\frac{3}{2}(-1) + c$	$\checkmark m_{MC} = \frac{4-2}{2+1} = \frac{2}{3}$ $\checkmark m_{AB} \times m_{MC} = -1$ $\checkmark m_{AB} = -\frac{3}{2}$ $\checkmark \text{subst } m \text{ and } (-1; 2)$
	$y = -\frac{3}{2}x + \frac{1}{2}$ $y = -\frac{3}{2}x + \frac{1}{2}$	into eq /subst m en (-1; 2) in vgl ✓ eq in standard form/ vgl in st vorm (5)
4.1.4	At/by E: $(0-2)^2 + (y-4)^2 = 13$ $(y-4)^2 = 9$ $y-4=\pm 3$ y=7 or $y=1E(0;7)$	 ✓ x = 0 ✓ simplification/ vereenvoudiging ✓ y - values/waardes ✓ E(0;7)
	OR/OF	
	At/by E: $(0-2)^{2} + (y-4)^{2} = 13$ $4 + y^{2} - 8y + 16 = 13$ $y^{2} - 8y + 7 = 0$ $(y-7)(y-1) = 0$ $y = 7 \text{ or } y = 1$ E(0; 7)	 ✓ x = 0 ✓ simplification/ vereenvoudiging ✓ y - values/waardes ✓ E(0;7)
4.1.5	$m_{\text{EM}} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{4 - 7}{2 - 0}$ $= -\frac{3}{2}$ $m_{\text{AB}} = -\frac{3}{2}$ $\therefore \text{EM} \mid \text{AB} \qquad (m_{\text{EM}} = m_{\text{AB}})$	$✓ m_{\rm EM} = -\frac{3}{2}$ $✓ reason/rede$ (2)

4.2	The centres of the circles are / Die middelpunte van die sirkels is	✓ both centres/albei
	P(-2; 4) and $/ en Q(5; -1)$	Midpte
		✓ QP
	$QP^2 = (-2-5)^2 + (4-(-1))^2$	✓ correct subst into
		form/korrekte subst
	$OP = \sqrt{74} \approx 8,60 \text{ units}$	in formule
	$QP = \sqrt{74} \approx 8,60 \text{ units}$	✓ distance between
		2 centres/afstand
		tussen 2 midpte
	$r_{\rm M} + r_{\rm P} = 5 + 3$	_
	= 8	
	$\therefore r_{\rm M} + r_{\rm P} < {\rm QP}$	$\sqrt{r_{\rm M}} + r_{\rm P} < {\rm QP}$
	∴ The two circles do not intersect/ <i>Die twee sirkels sny nie</i>	141 1
		(6)
		[22]

5.1	$x^2 + y^2$	
3.1		
	$=(3\sin\theta)^2+(3\cos\theta)^2$. 1/
	$=9\sin^2\theta+9\cos^2\theta$	✓ simpl/vereenv
	$=9(\sin^2\theta+\cos^2\theta)$	\checkmark CF/GF = 9
	=9(1)	
	=9	✓ answer/antw
		(3)
5.2	$\sin(540^{\circ} - x).\sin(-x) - \cos(180^{\circ} - x).\sin(90^{\circ} + x)$	$\checkmark \sin(540^\circ - x) = \sin x$
	$\sin(180^{\circ} - x).\sin(-x) - \cos(180^{\circ} - x).\sin(90^{\circ} + x)$	$\checkmark \sin(-x) = -\sin x$
	$= (\sin x)(-\sin x) - (-\cos x)(\cos x)$	$\checkmark \cos(180^{\circ} - x) = -$
	$=-\sin^2 x + \cos^2 x$	$\cos x$
	$= \cos 2x$	
	- cos 2x	$\checkmark \sin(90^\circ + x) = \cos x$
		$\sqrt{-\sin^2 x + \cos^2 x}$
		$\checkmark \cos 2x$
		(6)
5.3.1	$OT = \sqrt{x^2 + p^2}$	$\checkmark OT = \sqrt{x^2 + p^2}$
	$\sin \alpha = \frac{y_T}{QT}$	$\checkmark \sin \alpha = \frac{y_T}{OT}$
	OT	OI
	_ <i>p</i>	
	$=\frac{p}{\sqrt{x^2+p^2}}$	
	$\frac{p}{\sqrt{x^2 + p^2}} = \frac{p}{\sqrt{1 + p^2}}$	
	$\sqrt{x^2 + p^2} \qquad \sqrt{1 + p^2}$	$\sqrt{x^2} = 1$
	$x^2 = 1$	$\mathbf{v} \mathbf{x}^{-} = \mathbf{I}$
	x = -1	
		(3)
	OR/OF (P lies in 3 rd quadrant)	
	$x^2 + y^2 = r^2$	$\checkmark x^2 + y^2 = r^2$
		x + y = i
	$x^2 + p^2 = \left(\sqrt{1 + p^2}\right)^2$	✓ subst
	$x^2 + p^2 = 1 + p^2$	
	$x^2 = 1$	$\sqrt{x^2} = 1$
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	x = -1 (P lies in 3 rd quadrant)	
		(3)
5.3.2	202 (1900 + 2)	(3)
5.5.2	$\cos (180^\circ + \alpha)$	
	$=-\cos\alpha$	$\sqrt{-\cos\alpha}$
	$\begin{pmatrix} -1 \end{pmatrix}$	
	$=-\left \frac{1}{\sqrt{1-\frac{1}{2}}}\right $	
	$= -\left(\frac{-1}{\sqrt{1+p^2}}\right)$	
	1	
	$=\frac{1}{\sqrt{1+p^2}}$	
	$\sqrt{1+p}$	✓ answer/antw
		(2)

5.3.3 $\cos 2\alpha$ $= \cos^2 \alpha - \sin^2 \alpha$ $= \left(\frac{-1}{\sqrt{1+p^2}}\right)^2 - \left(\frac{p}{\sqrt{1+p^2}}\right)^2$ $= \frac{1}{1+p^2} - \frac{p^2}{1+p^2}$ $= \frac{1-p^2}{1+p^2}$

✓ expansion/
uitbreiding

✓✓ squaring each term/kwadreer elke term

(3)

OR/OF

 $\cos 2\alpha$ $= 1 - 2\sin^2 \alpha$ $= 1 - 2\left(\frac{p}{\sqrt{1+p^2}}\right)^2$

✓ expansion/
uitbreiding

 $= 1 - 2\left(\frac{p^2}{1+p^2}\right)$ $= 1 - \frac{2p^2}{1+p^2}$ $= \frac{1+p^2 - 2p^2}{1+p^2}$ $= \frac{1-p^2}{1+p^2}$

✓ writing as single fraction/skryf as enkelterm

✓ squaring/kwadrering

OR/OF

 $\cos 2\alpha$ $= 2\cos^{2} \alpha - 1$ $= 2\left(\frac{-1}{\sqrt{1+p^{2}}}\right)^{2} - 1$ $= 2\left(\frac{1}{1+p^{2}}\right) - 1$ $= \frac{2}{1+p^{2}} - 1$ $= \frac{2-1-p^{2}}{1+p^{2}}$ $= \frac{1-p^{2}}{1+p^{2}}$

✓ expansion/
uitbreiding

✓ squaring/kwadrering

✓ writing as single fraction/skryf as enkelterm

(3)

(3)

5.4.1	The identity is undefined for/die identiteit is ongedefinieerd as:	✓ <i>x</i> = 0°
J. 4 .1	$2\sin^2 x = 0$	$\checkmark x = 0$ $\checkmark x = 90^{\circ}$
		$\checkmark x = 90$ $\checkmark x = 180^{\circ}$
	$\therefore \frac{\sin x = 0}{\cos x} x = 0^{\circ} ; 180^{\circ}$	v X - 100
	or/of	(2)
	$\frac{\tan x = \infty}{\cos x} x = 90^{\circ}$	(3)
	$\therefore x = 0^{\circ}; 90^{\circ}; 180^{\circ}$	
5.4.2	$LHS/LK = \frac{2 \tan x - \sin 2x}{2 \sin^2 x}$	
		$\sqrt{\sin x}$
	$2\left(\frac{\sin x}{\cos x}\right) - 2\sin x \cos x$	$\sqrt{\frac{1}{\cos x}}$
		$\sqrt{2\sin x \cdot \cos x}$
	$-\frac{2\sin^2 x}{}$	251112.0052
	$(2\sin x - 2\sin x\cos^2 x)$ 1	/ cimplify numerator/
	$= \left(\frac{2\sin x - 2\sin x \cos^2 x}{\cos x}\right) \times \frac{1}{2\sin^2 x}$	✓ simplify numerator/
	,	vereenv teller
	$= \frac{2\sin x (1 - \cos^2 x)}{\cos x} \times \frac{1}{2\sin^2 x}$	✓ factorising/fakt
	$2\sin x(\sin^2 x)$ 1	$\checkmark 1 - \cos^2 x = \sin^2 x$
	$= \frac{2\sin x(\sin^2 x)}{\cos x} \times \frac{1}{2\sin^2 x}$	
		✓ simplify to/vereenv
	$=\frac{\sin x}{x}$	$na \frac{\sin x}{\sin x}$
	$\cos x$	$na {\cos x}$
	$= \tan x$	COS A
	= RHS/RK	(6)
	OR/OF	(0)
	$LHS/LK = \frac{2 \tan x - \sin 2x}{2 + x^2}$	
	$2\sin^2 x$	
	$2(\sin x)$.•
	$= \frac{2\left(\frac{\sin x}{\cos x}\right) - 2\sin x \cos x}{2\sin^2 x} \times \frac{\cos x}{\cos x}$	$\sqrt{\frac{\sin x}{}}$
	$=\frac{(\cos x)}{2}\times\frac{2}{\cos x}$	$\cos x$
	$2 \sin x \cos x$	$\checkmark 2\sin x.\cos x$
	$-\frac{2\sin x - 2\sin x \cos^2 x}{2\sin x \cos^2 x}$	
	$=\frac{2\sin^2 x \cos x}{2\sin^2 x \cos x}$	✓ simpl/vereenv
	$2\sin x(1-\cos^2 x)$	
	$=\frac{-\frac{x}{2\sin^2 x \cos x}}$	✓ factorising/fakt
	$=\frac{2\sin x \cdot \sin^2 x}{2}$	$\sqrt{1-\cos^2 x} = \sin^2 x$
	$-2\sin^2 x \cos x$	
	$-\sin x$	✓ simplify to /vereenv
	$={\cos x}$	$\sin x$
	$= \tan x$	na ——
	= RHS/RK	$\cos x$
		(6)
		[26]

6.1

6.1.1	In ΔTAK : $\frac{AK}{KT} = \sin K\hat{T}A$ $AK = KT.\sin x$	✓ correct trig ratio/ korrekte trigverh.
	$= 2\sin x$ \mathbf{OR}/\mathbf{OF}	✓ answer/antw (2)
	$\frac{\sin K\hat{T}A}{AK} = \frac{\sin K\hat{A}T}{KT}$ $\frac{\sin 90^{\circ}}{2} = \frac{\sin x}{AK}$ $AK = 2\sin x$	✓ correct subst into sine rule/korrekte subst in sin-reël ✓ answer/antw (2)

6.1.2	In ΔAKF:	
	KF AK	
	$\frac{1}{\sin K \hat{A} F} = \frac{1}{\sin A \hat{F} K}$	✓ using sine rule/
	$\frac{KF}{KF} = \frac{AK}{KF}$	gebruik sin-reël
	$\frac{1}{\sin(90^\circ + x)} = \frac{1}{\sin 2x}$	✓ correct subst into sine rule/korrekte
	$KF = \frac{AK.\sin(90^{\circ} + x)}{a}$	subst in sin-reël
	$\operatorname{Kr} = \frac{1}{\sin 2x}$	$\checkmark \sin(90^\circ + x) = \cos x$
	$= \frac{2\sin x \cdot \cos x}{2\sin x \cdot \cos x}$	✓ 2sinx.cosx
	= 1	(5)
	OR/OF	
	In ΔAKF:	
	KF AK	
	$\frac{1}{\sin \hat{A}F} = \frac{1}{\sin \hat{A}FK}$	✓ using sine rule/
	KF AK	gebruik sin-reël
	$\frac{1}{\sin(90^\circ + x)} = \frac{1}{\sin 2x}$	✓ correct subst into
	$KF = \frac{AK.\sin(90^\circ + x)}{1.5}$	sine rule/korrekte subst in sin-reël
	$KF = \frac{1}{\sin 2x}$	suosi in sin-reei
	AT. tan x. cos x	
	$=\frac{1}{2\sin x.\cos x}$ AT	$\checkmark \sin(90^\circ + x) = \cos x$
	$2\cos x \cdot \frac{\sin x}{2} \cdot \cos x$ $\cos x = \frac{1}{2}$	$\checkmark 2\sin x.\cos x$
	$= \frac{\cos x}{ } \qquad \qquad \therefore AT = 2\cos x$	
	$2\sin x.\cos x$	
	= 1	√ 1 (5)
		(5)

6.2

6.2.2	$\hat{\mathbf{p}}\hat{\mathbf{A}}\mathbf{C} = 48.50^{\circ}$ (/ at aantra=2) / at aims / (by milet 2) / (-11)	√ S
0.2.2	$B\widehat{A}C = 48,59^{\circ} \qquad (\angle \text{ at centre} = 2 \times \angle \text{ at circ} / \angle \text{ by midpt} = 2 \times \angle \text{omt})$	✓ S
	$\hat{ABC} = \hat{BAC} = 48,59^{\circ}$ (\angle 's opp equal sides/ \angle e teenoor = sye)	√82,82°
	$\therefore \hat{ACB} = 82,82^{\circ} \qquad (\text{sum of } \angle \text{s of } \Delta / \text{som van } \angle e \text{ van } \Delta)$	(3)
	OR/OF	, ,
	$A\hat{C}B = \frac{1}{2}A\hat{O}B \qquad (\angle at centre = 2 \times \angle at circle) (\angle by midpt = 2 \times \angle omt)$	✓ S
	$=\frac{1}{2}[360^{\circ}-2(97,18^{\circ})]$	
	= 82,82°	✓ S
	- 62,62	√82,82°
	OR/OF	(3)
	$\hat{OCB} = \frac{1}{2}(180^{\circ} - 97,18^{\circ})$ (\angle 's opp equal sides; sum of \angle s of Δ)	
		✓ S
	$A\hat{C}B = 2(41,41^{\circ})$	✓ S
	= 82,82°	√82,82°
		(3)
6.2.3	Area/ $Oppervlakte \Delta ABC$	
	$= \frac{1}{2} (BC)(AC) \sin A\hat{C}B$	
	$= \frac{1}{2}(15)(15)(\sin 82,82^{\circ})$	✓ correct subst into area rule/korrekte subst in opp-reël
	$=111,62 \text{ cm}^2$	<i>subst in opp-reet</i> ✓ 111,62 cm ² (2) [16]
	<u>L</u>	[10]

7.1	MB = 10 cm	✓ answer/antw	
			(1)
7.2	line from centre to midpoint of chord is perpendicular to chord/lyn	✓ answer/antw	
	vanaf midpt na midpt van koord is loodreg op koord		(1)
	OR/OF		
	line from centre bisects chord/lyn vanaf midpt halveer koord	✓ answer/antw	
			(1)
7.3	$\frac{MP}{OM} = \frac{5}{2}$	$\checkmark \frac{x + OP}{x} = \frac{5}{2}$	
		x 2	
	$\frac{x + OP}{x} = \frac{5}{2}$	2	
		$\checkmark \text{ OP} = \frac{3x}{2}$	
	2x + 2OP = 5x	2	(2)
	$OP = \frac{3x}{2}$		(2)
	$OI = \frac{1}{2}$		
		$\sqrt{\frac{OP}{A}} - \frac{3}{2}$	
	OR/OF	OM 2	
	OP 2	$\checkmark \frac{OP}{OM} = \frac{3}{2}$ $\checkmark OP = \frac{3x}{2}$	
	$\frac{OP}{OM} = \frac{3}{2}$ $OP = \frac{3x}{2}$	2	(2)
	UM Z		(2)
	$OP = \frac{3x}{2}$		

7.4	$OM^2 + MB^2 = OB^2$	
	$x^2 + 10^2 = \left(\frac{3x}{2}\right)^2$	✓ subst into/subst
	$x + 10 = \left(\frac{1}{2}\right)$	Pythagoras
	$4x^2 + 400 = 9x^2$	$4x^2 + 400 = 9x^2$
	$5x^2 = 400$	
	$x^2 = 80$	
	$x = 8.94$ or $4\sqrt{5}$ or $\sqrt{80}$	✓ answer/antw
		(3)
		[7]

8.1.1	$\hat{D} = \frac{1}{2} \hat{O}_1 = 55^{\circ} \ (\angle \text{ at centre} = 2 \times \angle \text{at circ} / \angle \text{by midpt} = 2 \times \angle \text{by omt})$	√S √R	(2)
8.1.2	$\hat{A} = \frac{1}{2}\hat{O}_1 = 55^{\circ} \ (\angle \text{ at centre} = 2 \times \angle \text{at circ} / \angle \text{ by midpt} = 2 \times \angle \text{by omt})$	✓S ✓R	(2)
	OR/OF		
	$\hat{A} = \hat{D} = 55^{\circ}$ (\angle s in same segment/ \angle e in dieselfde segment)	√S √R	(2)
8.1.3	$\hat{B}_1 = \hat{D} = 55^{\circ}$ (alternate $\angle s/verwiss \angle e$; AB DC)	√S√R	
	$\hat{E}_2 = \hat{B}_1 + \hat{A}$ (ext \angle of Δ = sum of opp \angle ^s /buite \angle v Δ =som v tos \angle e) = 55° + 55°	√R	
	$\hat{E}_2 = 110^{\circ}$	✓ answer/antw	
			(4)
8.2	$\hat{E}_2 = \hat{O}_1 = 110^{\circ} \qquad \text{(proven in/bewys in 8.1.3)}$	√S	
	BEOC is a cyclic quadrilateral (equal ∠s subtended by line/	√R	
	gelyke ∠e onderspan deur lyn)		(2)
		[[10]

9.1	the interior opposite angle/die teenoorstaande binnehoek.	✓ answer/antw
		(1)

9.2

Construction: Draw diameter CT and join CV. Konstruksie: Trek middellyn CT en verbind CV.

$\hat{\mathbf{V}}_1 + \hat{\mathbf{V}}_2 = 90^{\circ}$	∠ in semi-circle/∠in halfsirkel	✓ S ✓ R
$\hat{\mathbf{T}}_2 = 90^{\circ} - x$	Tangent ⊥ diameter/radius/raaklyn ⊥ middellyn/radius	✓ R
$\therefore \hat{\mathbf{C}} = \mathbf{x}$	Sum of the angles of triangle/Som van die hoeke van 'n driehoek	✓ S
$\therefore \hat{\mathbf{S}} = x$	∠'s same segment/∠e in dieselfde segment	✓ R
$\therefore V\hat{T}R = \hat{S}$		(5)

9.3

9.3.1	Equal chords subtend equal \(\s/\) Gelyke koorde onderspan gelyke \(\section \)	✓ R
		(1)
9.3.2	$\hat{W}_4 = 30^{\circ}$ (tan chord theorem/rkl-koordst)	✓ answer/antw
	$\hat{\mathbf{W}}_1 = 30^{\circ}$	✓ reason/rede
	W1 50	✓ answer/antw
9.3.3(a)	D W 500 (4-2 decal decay) 111 - 10	(3) ✓ S ✓ R
7.3.3(a)	$\hat{R}_4 = \hat{W}_2 = 50^\circ$ (tan chord theorem/rkl-koordst)	J. S. K
	$\hat{\mathbf{S}}_2 = \hat{\mathbf{R}}_3 + \hat{\mathbf{W}}_2 \qquad (\text{ext} \angle \text{ of } \Delta/\text{buite } \angle v \Delta)$	
	$\therefore \hat{S}_2 = 80^{\circ}$	✓ S
		(3)
	OR/OF	
	$\hat{R}_2 = \hat{R}_3 = 30^\circ$ (= chords subtend = \angle s /= kde onderspan= \angle e)	✓ S ✓ R
		S R
	$R_4 = W_2 = 50^{\circ}$ (tan chord theorem/rkl-koordst)	
	$\therefore \hat{\mathbf{S}}_2 = 80^{\circ}$	✓ S
		(3)

9.3.3(b)	^ ^	ext \angle of cyclic quad/buite \angle van koordevh) ext \angle of \triangle /buite \angle van \triangle)	✓ S ✓ R ✓ S ✓ S ✓ (4)
9.3.4	In Δ RVW and/ en Δ RV	WS:	✓ using the correct Δs/ gebruik korrekte Δe
	$\hat{R}_2 = \hat{R}_3 = 30^{\circ}$ $\hat{V} = \hat{W}_2 = 50^{\circ}$ $V\hat{W}R = \hat{S}_1$ $\therefore \Delta RVW \mid \Delta RWS$	(proven/bewys in 9.3.1) (proven/bewys in 9.3.3) (3rd \angle in \triangle) (\angle \angle \angle)	\checkmark S \checkmark S \checkmark R (3rd ∠ in Δ) or (∠∠∠)
	$\therefore \frac{WR}{RV} = \frac{RS}{WR}$ $\therefore WR^2 = RV.RS$	$(\Delta RVW \Delta RWS)$	✓ S (5) [22]

10.1.1	corresponding ∠s/ooreenkomstige∠e; PN RT	✓ answer/antw
		(1)
10.1.2	\angle ; \angle ; \angle OR / OF \angle ; \angle	✓ answer/antw
10.2	PM PN (ADDRESS OF THE PROPERTY)	(1)
10.2	$\frac{1 \text{ W}}{\text{RM}} = \frac{1 \text{ V}}{\text{RT}} \qquad (\Delta \text{PNM} \Delta \text{RTM})$	✓ S
	$=\frac{PN}{3PN}$	✓ S
	$=\frac{1}{3}$	
	3	(2)
10.3	$\frac{PM}{RM} = \frac{1}{3}$ $\therefore \frac{RP}{RM} = \frac{2}{3}$	(
	RM 3 RM 3	✓ Use of Pyth. for RN ² and PN ²
	$ RN^2 - PN^2 = (RM^2 + NM^2) - (PM^2 + NM^2)$ (Pyth)	
	$= RM^2 - PM^2$	\checkmark RM = $\frac{3}{2}$ RP
	$(3_{\rm pp})^2 (1_{\rm pp})^2$	$\checkmark PM = \frac{1}{2}RP$
	$= \left(\frac{3}{2}RP\right)^2 - \left(\frac{1}{2}RP\right)^2$	_
	$=\frac{9}{4}RP^2-\frac{1}{4}RP^2$	$\sqrt{\frac{9}{4}}RP^2 & \frac{1}{4}RP^2$
	·	(4)
	$=2RP^{2}$	
	OR/OF	
	<u> </u>	

$RN^{2} - PN^{2} = (RM^{2} + NM^{2}) - (PM^{2} + NM^{2})$ $= RM^{2} - PM^{2}$ $= (3PM)^{2} - PM^{2}$ $= 8PM^{2}$ $= 2(2PM)^{2}$ $= 2RP^{2}$	(Pyth)	✓ Use of Pyth. for RN^2 and PN^2 ✓ $RM = RP + PM$ ✓ $(3PM)^2 - PM^2$ ✓ $RP = 2PM$ (4)
OR/OF		
$RN^{2} - PN^{2} = (RM^{2} + NM^{2}) - (PM^{2} + NM^{2})$ $= RM^{2} - PM^{2}$ $= (RP + PM)^{2} - PM^{2}$ $= RP^{2} + 2RP.PM + PM^{2} - PM^{2}$ $= RP^{2} + 2RP. \frac{1}{2}RP$ $= 2RP^{2}$	(Pyth)	✓ Use of Pyth. for RN^2 and PN^2 ✓ $RM = RP + PM$ ✓ expansion/ uitbreiding ✓ $PM = \frac{1}{2}RP$ (4)

TOTAL/TOTAAL: 150