Introduction.
Flux: amount of substance renamed
line (avea).
the substance concentration.
b N = x - Cs
where is the mass transfer coefficient.
Tombien se prede definir el llex cons
$N = \mathcal{E} \frac{C}{L}$ (Fick's law.
La conserte está donde por el products
N. AM = Convent.

Ficks' Law:
The flux of a sixtence throug a tornerse area
The flux of a sixtance throug a torrerse area A is given by
$\bar{\tau} = A\bar{t}$
where is the current don't y: particles
per unit! three per unit own.
where j'is the current clausity: particles per unit I three per unit over. Ne purposed that
j = -D PC
where D's a coefficient dependent on the obstacle.
whether the 12 of the transfer
VIOSTE COR.
= 5 J = -AB VC
\mathbb{R}_{n} , \mathbb{R}_{n}
By conservator of ness
$\frac{3t}{3c} + 4 \cdot 2 \cdot 3 = 0$
<u> 7</u> t

From where we get:

$$\frac{\partial C}{\partial t} = -\nabla \left(-A \mathcal{D} \nabla C \right) = \mathcal{D} \nabla^2 C + \nabla A \nabla C$$

Organents Písico: citual es el perfil de correntación en la region 1 de largo 1? Teremos que 2 - D - C, A (i (2) - j(z+12)) = 0 El lado deredro es coro, debido a que no hay aumbión. Dividrado por el volumen de la origión tenemos $\Rightarrow -\left(\frac{j(2+\Delta t)-j(t)}{\Delta t}\right)=0$ to el limite \$t -> 0 $-\frac{dj}{dt} = 0$ j=-Ddc De averdo ca Ficle, $\Rightarrow + 2 \frac{d^{2}}{dz^{2}} = 0$ $C(z) = \left(\frac{(z-c)}{2}\right) + c_1$ => C = Q 2 + b c(l) = al+b=Ce $C(9) = \beta = C^{1}$

$$\frac{\partial E}{\partial t} = \frac{\partial^2 C}{\partial t^2}$$

$$\frac{d^3}{dt} = \frac{2}{40} \cdot \frac{-1}{2} t^{-3/2} - \frac{1}{2} t^{-3/2} - \frac{1}{$$

$$\frac{\partial C}{\partial t} = \frac{\partial C}{\partial t} = \frac{\partial 3}{\partial t} = \frac{\partial C}{\partial t} =$$

$$= \mathcal{D} \frac{\partial^2 C}{\partial z^2} \left(\frac{\partial z}{\partial z} \right)^2$$

$$=) \frac{\partial C}{\partial 3} \left(\frac{-1}{2} \frac{\cancel{\cancel{2}}}{\cancel{\cancel{40t}}} \right) = \frac{\cancel{\cancel{3}}}{\cancel{\cancel{3}}} \frac{\cancel{\cancel{2}}}{\cancel{\cancel{40t}}}$$

$$\frac{2}{3}$$
 - 22t3 $\frac{2}{3}$

Integro differential form

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$\frac{\partial^{2} \Psi}{\partial \vec{3}^{2}} = -\left((_{+}(\vec{3}) - (_{-}(\vec{3})) \right)$$

$$4' = -\int_{0}^{3} d3! \left((+(3!) - (-(3!)) \right) < 0$$

We can write the diffusion system as
$$\frac{\partial \zeta}{\partial t} = \mathcal{D}_{+} \left(\frac{\partial^{2} \zeta_{+}}{\partial \vec{s}^{2}} - \frac{\partial \zeta_{+}}{\partial \vec{s}} - \frac{\partial \zeta_{+}}{\partial \vec{s}^{2}} - \frac{\partial^{2} \zeta_{+}}{\partial \vec{s}^{2}} \right)$$

->
$$\frac{3c}{3c} = 2c + \left(\frac{3c}{3c} + \frac{3c}{3c} + \frac{3c}{$$

$$\frac{\partial C}{\partial t} = \frac{\partial^{2}C}{\partial t^{2}} - \frac{\partial^{2}C}{\partial t^{2}} - \frac{\partial^{2}C}{\partial t^{2}} \left(\frac{3}{4} \left(\frac{3}{4} \right) - \left(\frac{3}{4} \right) \right)$$

$$\frac{94}{94} = 20^{+} \left(\frac{93}{93} \right) + \frac{93}{93} \left(\frac{93}{(13)} - (-13) \right) + (^{+}13)(413) - (73)$$

$$\frac{\partial C}{\partial t} = 9 - \left[\frac{\partial^2 C}{\partial z^2} - \frac{\partial C}{\partial z} \right] \left(\frac{1}{3} + \frac{1}{3} \right) - \left(\frac{1}{3} + \frac{1}{3} \right) - \left(\frac{1}{3} + \frac{1}{3} \right) = 0$$

Discretization

$$\frac{34}{9(4-6)^{4}} = \frac{24}{6}$$

$$\int_{0}^{3} d3'(c_{+}(3)-(-13)) = \sum_{i=1}^{3} \Delta 3\cdot (c_{+}(i\Delta 3)-(-(i\Delta 3)))$$

		•	•

		•	•