Methods of Applied Stats, Generalized Linear Models

Patrick Brown, University of Toronto and St Mike's Hospital

Sept to Dec 2020

Outline

- Examples
- Generalized Linear Models
- Likelihood-based inference
- Applications

Motivating example: Shuttle data

```
> data("shuttle", package = "SMPracticals")
> rownames(shuttle) = as.character(rownames(shuttle))
> shuttle[1:4, ]
  m r temperature pressure
1 6 0
               66
                         50
2 6 1
               70
                        50
3 6 0
               69
                        50
4 6 0
               68
                         50
```

- m: number of rings
- r: number of damaged rings

Questions and models

- Are shuttle rings more likely to get damaged in cold weather?
- Pressure is a confounder
- The data aren't Gaussian
- Binomial distribution r failures from m trials
- Model failure probability as a function of temperature, pressure

Motivating example: Fiji birth data

- Fiji Fertility Survey, 1974 opr.princeton.edu/archive/wfs/FJ.aspx
- pbrown.ca/teaching/appliedstats/data/fiji.RData created from pbrown.ca/teaching/appliedstats/data/fiji.R

rural

rural

0 - 7

1t0

> fiji[1:4,]

	age	${\tt ageMarried}$	monthsSinceM	failedPreg	pregnancies	children	sons
1	25	18to20	72	0	0	0	0
2	31	15to18	184	0	6	6	2
3	40	15to18	269	0	2	2	1
4	46	15to18	206	0	9	9	6
	firs	stBirthInter	val residence	e literacy	${ t ethnicity}$	-	
1		60-	Inf rural	L yes	fijian		
2		12	-23 rural	L yes	fijian		

ves

ves

fijian

fijian

Questions and models

- Do literate women tend to have smaller families?
- Is this only because illiterate women marry earlier?
- > table(fiji\$ageMarried=='0to15
- + fiji\$literacy)

yes no FALSE 3483 778 TRUE 323 333

children ∼ Poisson

Motivating example: Smoking

2014 American National Youth Tobacco Survey

```
> smoke[1:4, c("Age", "Sex", "Race", "RuralUrban", "state",
+ "ever_cigarettes")]
```

```
Age Sex
             Race RuralUrban state ever_cigarettes
 13
       M hispanic
                      Urban
                               AZ
                                           FALSE
2 12
       F hispanic
                      Urban
                               AZ
                                           FALSE
3 14 M
                               AZ
           native
                     Urban
                                           FALSE
  13
       M hispanic
                     Urban
                               AZ
                                           FALSE
```

> table(smoke\$ever_cigarettes, smoke\$Race)

	${\tt white}$	black	hispanic	asian	${\tt native}$	pacific
FALSE	7576	2626	4543	844	250	56
TRUE	2243	731	1397	118	83	26

OLS in R

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	29.600	1.230	24.070	0
disp	-0.041	0.005	-8.747	0

$$Y_i \sim N(\beta_0 + X_i \beta_1, \sigma^2)$$

- mpg is the response variable
- disp is the *explanatory* variable or covaraite

Maximum Likelihood Estimation

(Intercept)

29.59985476 -0.04121512

- Model parameters: β , σ
- Likelihood function:

$$L(\beta,\sigma|Y) = \pi(Y;\beta,\sigma)$$

MLE's:

$$(\hat{\beta},\hat{\sigma}) = \mathrm{argmax}_{\beta,\sigma} L(\beta,\sigma|Y)$$

- Here myLik calculates $-\log L(\beta, \sigma|Y)$
- and optim minimizes it
- 1m knows the exact answer is

$$\widehat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$
 Closed form solution

```
> myLik = function(param) {
   mu = param[1] + param[2] * mtcars$disp
+ - sum(dnorm(mtcars$mpg, mean=mu,
          sd=param[3], log=TRUE))}
> myLik(c(1,1,1))
[1] 974915.4
> optim(c(10,0.1,1), myLik,
+ control = list( parscale = c(1,0.01,1))
+ )$par R
[1] 29.58930278 -0.04117094 3.14674642
> mtFit$coef
```

disp

Generalized Linear Models

$$Y_i \sim \!\! G(\mu_i, \theta)$$

$$h(\mu_i) = \!\! X_i^\mathsf{T} \beta$$

- G is the distribution of the response variable
- μ_i is a location parameter for observation i
- θ are additional parameters for the density of G?
- h is a link function
- X_i are covariates for observation i
- β is a vector of regression coefficients fixed effects
- Ch 6 of Wakefield 2013
- Ch 4,5 of Davison 2003 http://books1.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks1/cambridgeonline/2012-11-08/1/9780511815850
- Ch 6 of Faraway 2005 http://www.tandfebooks.com/isbn/9780203492284

Ordinary Least Squares again

- G is a Normal distribution
- ullet θ is the variance parameter, denoted σ^2
- *h* is the identity function

Binomial (or logistic) regression

$$Y_i \sim \! \mathrm{Binomial}(N_i, \mu_i)$$

$$\log \left(\frac{\mu_i}{1 - \mu_i}\right) = \! \underline{X_i} \! \beta$$

- ullet G is a Binomial distribution
- ...or a Bernoulli if $N_i = 1$
- ullet h is the logit link

- $X_i^{\mathsf{T}}\beta$ can be negative
- μ_i is between 0 and 1.

Are shuttle rings more likely to get damaged in cold weather?

$$Y_i \sim \! \mathsf{Binomial}(N_i, \mu_i) \\ \log \left(\frac{\mu_i}{1-\mu_i}\right) = \! X_i \beta$$

- m: number of rings, N_i
- r: number of damaged rings Y_i
- pressure, temperature: covariates X_i
- μ_i : probability of a ring becoming damaged given X_i
- $\beta_{\text{pressure}}, \beta_{\text{intercept}}$: confounders $\beta_{\text{temperature}}$: parameter of interest

Inference: parameter estimation

$$\begin{aligned} Y_i \sim & G(\mu_i, \theta) \\ h(\mu_i) = & X_i \beta \end{aligned} \\ \pi(Y_1 \dots Y_N; \beta, \theta) = \prod_{i=1}^N f_G(Y_i; \mu_i, \theta) \\ \log L(\beta, \theta; y_1 \dots y_N) = \sum_{i=1}^N \log f_G(y_i; \mu_i, \theta) \end{aligned}$$

- The Y_i are independently distributed
- Joint density π of random variables $(Y_1 \dots Y_N)$ is the product of the marginal densities f_G
- **Likelihood function** L given observed data $y_1 \dots y_N$ is a function of the parameters
- Maximum Likelihood Estimation:

$$\hat{\beta}, \hat{\theta} = \operatorname{argmax}_{\beta,\theta} L(\beta,\theta;y_1 \dots y_N)$$

 The best parameters are those which are most likely to produce the observed data

Shuttle example in R

- glm works like lm with a family argument
- Binomial models in GLM require y to be a matrix with two columns
- ... y and N-y, which is unfortunate

```
> shuttle$notDamaged = shuttle$m - shuttle$r
> shuttle$y = as.matrix(shuttle[,c('r','notDamaged')])
> shuttleFit = glm(y ~ temperature + pressure, */
+ family=binomial(link='logit'), data=shuttle)
> shuttleFit$coef

(Intercept) temperature pressure
2.520194641 -0.098296750 0.008484021
```

Shuttle example the hard way

```
E - lay L(B;Y)
> logLikShuttle = function(param) {
   muLogit = param[1] + param[2] * shuttle$temperature +
     param[3] * shuttle$pressure
   mu = exp(muLogit)/(1+exp(muLogit))
   - sum(dbinom(shuttle$r, size=shuttle$m, prob=mu, log=TRUE))}
> optim(c(2,0,0), logLikShuttle,
   control = list(parscale = c(1,0.01,0.01)))par
[1] 2.51894107 -0.09828029 0.00848237
> shuttleFit$coef
 (Intercept) temperature
                             pressure
2.520194641 -0.098296750 0.008484021
```

Efficient maximization

- ullet Iterative Reweighted Least Squares is the 'classic' algorithm when G is in the exponential family
- ... but GLM's are easy for any density which is differentiable
- ullet The derivatives wrt eta are easy to compute with the chain rule /

$$\frac{\partial}{\partial \beta_p} \log L(\beta,\theta;y_1\dots t_N) = \frac{1}{3}$$

$$\sum_{i=1}^N \left[\frac{d}{d\mu} \log f_G(Y_i; \mu, \theta) \right]_{\mu = h^{-1}(X_i^\mathsf{T}\beta)} \left[\frac{d}{d\eta} h^{-1}(\eta) \right]_{\eta = X_i^\mathsf{T}\beta} \cdot X_{ip}$$

- Analytical expressions exist for the derivatives of $\log f_G$ and h^{-1}
- Second derivatives are also tractable
- Numerical maximization to find $\hat{\beta}$ is fast when derivatives are available

Numerical maximizers

- There are hundreds of them
- optim is the standard R optimizer, which has 6 methods available
 - some methods will use gradients if you provide them
- TrustOptim uses derivatives and 'trust regions', the method used in INLA
- ipopt is probably the cutting edge
- Statisticians don't make enough use of of-the-shelf optimizers

Automatic differentiation

$$\sum_{i=1}^N \left[\frac{d}{d\mu} \log f_G(Y_i; \mu, \theta) \right]_{\mu = h^{-1}(X_i^\mathsf{T}\beta)} \left[\frac{d}{d\eta} h^{-1}(\eta) \right]_{\eta = X_i^\mathsf{T}\beta} \cdot X_{ip}$$

- Overkill for most GLM's, but infinitely extensible
- computers evaluate logs, sines, and other functions through some Taylor-series like polynomial thing.
- ... which are easy to differentiate
- AD programs can take computer code and figure out how to differentiate it
- used in Neural Nets, Hamiltonian MCMC, optimization, and many more

```
> shuttleFitAD <- glmmTMB::glmmTMB(
+ y ~ temperature + pressure,
+ family=binomial(link='logit'),
+ data=shuttle)
> shuttleFitAD$fit$par
```

beta

beta

0.008484022

beta

2.520195003 -0.098296758

Taylor series expansion of older み

$$\frac{\log L(\beta, \theta; \mathbf{y}) \approx \log L(\beta_0, \theta; \mathbf{y}) + (\beta - \beta_0)^\mathsf{T} \left[\frac{\partial}{\partial \beta} \log L(\beta_0, \theta; \mathbf{y}) \right] + \left[\frac{1}{2} (\beta - \beta_0)^\mathsf{T} \left[\frac{\partial^2}{(\partial \beta)^2} \log L(\beta_0, \theta; \mathbf{y}) \right] (\beta - \beta_0) \right]}{\left(\frac{1}{2} (\beta - \beta_0)^\mathsf{T} \left[\frac{\partial^2}{(\partial \beta)^2} \log L(\beta_0, \theta; \mathbf{y}) \right] (\beta - \beta_0)}$$

• Set $\beta_0 = \hat{\beta}$ and the first derivative is zero

$$L(\beta, \theta; \mathbf{y}) \approx L(\hat{\beta}, \theta; \mathbf{y}) \exp \left\{ \left(\frac{1}{2}\right) (\hat{\beta} - \beta)^\mathsf{T} \left[\frac{\partial^2}{(\partial \beta)^2} \log L(\hat{\beta}, \theta; \mathbf{y}) \right] (\hat{\beta} - \beta) \right\}$$

- Looks like a Normal distribution $\hat{eta}\sim \mathsf{N}\left[eta,I(\hat{eta})^{-1}
 ight]$ ruformation motify
- Roots of diagonal elements of $I(\hat{\beta})^{-1}$ are standard errors

Inference

Information Matrix:

$$I(\hat{\beta}|Y) = \frac{\partial}{\partial \beta \partial \beta^{\mathsf{T}}} - \log L(\beta|Y) \Big|$$

 MLE's are approximately Normal

$$\hat{\beta} \sim \mathsf{MVN}(\beta, I(\hat{\beta}|Y)^{-1})$$

 standard errors are roots of diagonals of inverted Information Matrix

```
I(\hat{\beta}|Y) = \frac{\partial}{\partial \beta \partial \beta^{\mathsf{T}}} - \log L(\beta|Y) \Big|_{\hat{\beta}} + \underbrace{\text{f=logLikShuttle}}_{\text{f=logLikShuttle}} \times \text{shuttle}
                                                 f=logLikShuttle, x=shuttleFit$coef))
                                                             [,1]
                                                                             [,2]
                                                                                              [,3]
                                                       7.81222 504.4844 1415.968
                                            [1,]
                                                    504.48442 33096.7647 90802.259
                                            [3.] 1415.96790 90802.2589 274388.164
                                           > sqrt(diag(solve(infMat)))
                                            [1] 3.486838277 0.044890480 0.007677616
```

> knitr::kable(summary(shuttleFit)\$coef, digits = 4) _9 \w

	Estimate	St	d. Error	z value	Pr(> z)
(Intercept)	2.5202	1	3.4868	0.7228	0.4698
temperature	-0.0983	0.0449	-2.1897	0.0285	
pressure 0.008			0.0077/	1.1051	0.2691

> knitr::kable(summary(shuttleFitAD)\$coef\$cond, digits = 4) _ TMB

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.5202	3.4753	0.7252	0.4684
temperature	-0.0983	0.0448	-2.1948	0.0282
pressure	0.0085	0.0077	1.1076	0.2681

> sqrt(diag(solve(infMat)))

[1] 3.486838277 0.044890480 0.007677616

Some notes

- Don't confuse
 - Models,
 - Inference methodologies, and
 - Algorithms.
- Models: Generalized linear models, ARIMA time series, population sampling
- Inference methodologies: Frequentist or Likelihood-based, Bayesian, Method-of-moments, partial likelihood.
- Algorithms: Least Squares, IRWLS, Markov Chain Monte Carlo, INLA, the Lasso

Likelihood ratio tests

$$2[\log L(\hat{\beta}; \mathbf{y}) - \log L(\beta; \mathbf{y})] \sim \chi_P^2$$

where P is the number of parameters in $\boldsymbol{\beta}$

Comparing nested models

- H_0 : $\beta_k = C_k$ for all $k \in \Omega$
 - $\Omega \subset \{1 \dots P\}$
- H_1 : β unconstrained.
- **Nested**: H_0 is a special case of H_1
- Write $\hat{\beta}^{(C)}$ as the constrained MLE's under H_0

$$2[\log L(\hat{\beta};\mathbf{y}) - \log L(\hat{\beta}^{(C)};\mathbf{y})] \sim \chi^2_{|\Omega|}$$

What about θ ?

$$Y_i \sim \!\! G(\mu_i, \theta)$$

$$h(\mu_i) = \!\! X_i^\mathsf{T} \beta$$

- When G is Poisson or Binomial. θ isn't used
- When G is exponential family θ factors out
 - ullet e.g. σ^2 for Gaussian models
- Suppose G is Weibull and θ is a shape parameter?
- ullet Derivatives of $\log L$ wrt heta are still straightforward
 - but more complicated than wrt β
- The Taylor series expansion and information matrix are still valid
 - but not used much in practice
- Most software packages estimate a $\hat{ heta}$ with numerical optimization
 - and treat it as 'known' and fixed when making inference on β

What you need to know

- No closed form MLE's for GLM's
- Derivatives are easy so maximization is quick
- There are nice parameters and nasty parameters
 - Easy standard errors for $\hat{\beta}$ based on Normal/2nd order Taylor approximation.
 - \bullet The θ parameters are non-linear and more challenging.

Interpreting logistic models

$$Y_i \sim \! \mathsf{Binomial}(N_i, \mu_i)$$

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \sum_{p=1}^P X_{ip}\beta_p$$

$$\left(\frac{\mu_i}{1-\mu_i}\right) = \prod_{p=1}^P \exp(\beta_p)^{X_{ip}}$$

•
$$\mu_i$$
 is a probability

- $\log[\mu_i/(1-\mu_i)]$ is a log-odds
- $\mu_i/(1-\mu_i)$ is an odds
- If $\mu_i \approx 0$, then $\mu_i \approx \mu_i/(1-\mu_i)$

Suppose $X_{1n} = X_{2n}$ for all p except $X_{2n} = X_{1n} + 1$

$$\beta_q = \log\left(\frac{\mu_2}{1 - \mu_2}\right) - \log\left(\frac{\mu_1}{1 - \mu_1}\right)$$
$$\exp(\beta_q) = \left(\frac{\mu_2}{1 - \mu_2}\right) / \left(\frac{\mu_1}{1 - \mu_1}\right)$$

- β_a is the log-odds ratio
- $\exp(\beta_a)$ is the odds ratio
- $\exp(\text{intercept})$ is baseline odds, when $X_{i2} \dots X_{iP} = 0$.

Centring parameters

```
> quantile(shuttle$temperature)
   0% 25% 50% 75% 100%
   53 67 70 75 81
> quantile(shuttle$pressure)
   0% 25% 50% 75% 100%
```

50 75 200 200 200

- \bullet Currently the intercept is log-odds when temperature =0 and pressure =0
- centre the covariates so the intercept refers to
 - temperature = 70 (degrees Farenheit)
 - pressure = 200 units of something
- > shuttle\$temperatureC = shuttle\$temperature 70
- > shuttle\$pressureC = shuttle\$pressure 200
- > shuttleFit2 = glm(y ~ temperatureC + pressureC, family = "binomial",
- + data = shuttle)

Pmisc

```
> install.packages("Pmisc", repos = "http://r-forge.r-project.org")
```

Shuttle odds parameters

- > knitr::kable(exp(parTable),
- + digits=3)

est	2.5	97.5
0.070	0.028	0.176
0.906	0.830	0.990
1.009	0.993	1.024
	0.070 0.906	0.070 0.028 0.906 0.830

Table 1: MLE's of baseline odds and odds ratios, with 95% confidence intervals.

Interpreting shuttle parameters

	est	2.5	97.5
Baseline	0.070	0.028	0.176
temperatureC	0.906	0.830	0.990
pressureC	1.009	0.993	1.024

 The odds of a ring being damaged when temperature = 70 and pressure = 200 is 0.0697, which corresponds to a probability of

```
> signif(exp(parTable[1,'est']) / (1+exp(parTable[1,'est'])), 3)
```

[1] 0.0651

 Each degree increase in temperature (in Yankee units) decreases the odds of damage by (in percent)

```
> signif(100 * (1 - exp(parTable[2, "est"])), 3)
[1] 9.36
```

Inter-quartile range

```
> quantile(shuttle$temperature)
                                          • A one-unit change in pressure means
 0%
      25% 50% 75% 100%
                                            less than a one-unit change in
  53
       67
            70
               75
                                            temperature
> quantile(shuttle$pressure)
                                          • Inter-quartile range: odds ratio
  0%
     25% 50% 75% 100%
                                            between 75th and 25th percentiles of
                                            a variable
  50
     75 200 200 200
   shuttleIQR = apply(shuttle[,c('temperatureC','pressureC')], 2,
            function(xx) diff(quantile(xx, probs=c(0.25, 0.75))) )
   shuttleIQR
 temperatureC
                  pressureC
             8
                         125
```

Odds ratios for interquartile ranges

> parTableIQR = exp(

confidence intervals

```
+ diag(c(1,shuttleIQR[c('temperatureC','pressureC')]) ) %*% parTable)
> parTableIQR[1,] = parTableIQR[1,] / (1+parTableIQR[1,])
> rownames(parTableIQR) = gsub("C$", "", rownames(parTable))
> Pmisc::mdTable(parTableIQR, digits=3, caption = "MLEs of baseline probab
```

Table 6: MLEs of baseline probabilities and odds ratios for interquartile ranges, with 95pct

	est	2.5	97.5
Baseline	0.065	0.027	0.149
temperature	0.455	0.225	0.921
pressure	2.888	0.440	18.942

: MLEs of baseline probabilities and odds ratios for interquartile ranges, with 95pct

Plotting the likelihood function

```
> x = expand.grid(intercept = seq(-6, -1, len=41),
     temperatureC = seq(-0.4, 0.2, len=41))
 > x$lik = mapply(function(intercept, temperatureC) {
     meanLogit = intercept + shuttle$temperatureC * temperatureC
     meanProb = exp(meanLogit)/(1+exp(meanLogit))
      sum(dbinom(shuttle$r, shuttle$m, meanProb, log=TRUE))
 + }, intercept = x$intercept, temperatureC = x$temperatureC)
> head(x)
                                         x$temperatureC
  intercept temperatureC
                                 lik
     -6.000
                     -0.4 - 28.65212
                                                 -110
2
     -5.875
                     -0.4 - 28.55750
3
     -5.750
                     -0.4 - 28.53083
4
     -5.625
                     -0.4 - 28.57420
5
     -5.500
                     -0.4 - 28.68961
6
     -5.375
                     -0.4 - 28.87898
                                                         x$intercept
```

Likelihood function 3d

Evaluate the log-likelihood surface in the vicinity of the MLE

```
> shuttleL = Pmisc::likSurface(shuttleFit2)
>
> dim(shuttleL$logLik)
[1] 19 19 19
```

> head(shuttleL\$parameters)

```
(Intercept) temperatureC
                              pressureC
[1,]
      -4.079471 -0.2329679 -0.014547274
[2.] -3.922171
                -0.2180044 -0.011988241
[3.]
    -3.764872
                -0.2030410 -0.009429208
Γ4.]
    -3.607572
                -0.1880775 -0.006870175
[5.]
    -3.450272
                -0.1731140 -0.004311143
[6.]
     -3.292972
                 -0.1581506 -0.001752110
```


Likelihood as a function of the intercept and temperature coefficient, for different values of the pressure coefficient.

Shuttle LR test

```
are neither temperature nor pressure important?
> shuttleFitNoCovariates = glm(y ~ 1, family = "binomial",
+ data = shuttle)
> lmtest::lrtest(shuttleFit, shuttleFitNoCovariates)
Likelihood ratio test
Model 1: y ~ temperature + pressure
Model 2: v ~ 1
 #Df LogLik Df Chisa Pr(>Chisa)
1 \quad 3 \quad -15.053
2 1 -18.895 -2 7.6847 0.02144 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Colours are differences of χ^2_3 quantiles from the maximum (-15.0529).

Profile likelihood

- The 'pressure' covariate is a confounder (or a nuisance variable).
- It isn't significant, but we'll keep it in the model to be conservative
- Suppose we want to test $\beta_{\text{intercent}} = \text{logit}(0.1) \approx -2.2$ and $\beta_{\text{temperature}} = 0$?
- Unconstrained model: maximize $L(\beta_{\text{intercept}}, \beta_{\text{temperature}}, \beta_{\text{pressure}})$
- Constrained model: maximize $L(-2.2, 0, \beta_{\text{pressure}})$
- **Profile likelihood function** of the intercept and temperature:

$$\tilde{L}(a,b) = \max_{\beta_{\text{pressure}}} L(a,b,\beta_{\text{pressure}})$$

• More generally, $\theta = \{\theta_1 \dots \theta_P\}$ and $C \subset \{1 \dots P\}$

$$\tilde{L}_C(\{\theta_q; q \in C\}) = \max_{\theta_r; r \notin C} L(\{\theta_q; q \in C\} \cup \{\theta_r; r \notin C\})$$

Profile likeihood for the shuttle data

```
> dim(shuttleL$logL)
[1] 19 19 19
> shuttleProfL = apply(shuttleL$logL, 1:2, max)
> dim(shuttleProfL)
[1] 19 19
> breaks2df = max(shuttleL$logL) - gchisg(shuttleL$breaks.
+ df = 2)/2
 image(shuttleL$parameters[, 1], shuttleL$parameters[, 2],
   shuttleProfL, breaks = breaks2df, col = shuttleL$col,
   xlab = "intercept", ylab = "temperature")
> mapmisc::legendBreaks("bottomright", shuttleL, inset = 0)
```

Profile likelihood for the shuttle data

Profile likelihoods

- The apply function is used to find the maximum of the 19 likelihoods computed for each pair of intercept and temperature variables.
- Strictly speaking, a numerical optimizer should be used, varying the the pressure parameter continuously.
- The ξ^2 quantiles are computed for 2 degrees of freedom (intercept and temperature parameters)
- \bullet A 1-D profile likelihood for the temperature parameter takes the maximum of the $19\cdot 19$ likelihoods computed for each temperature parameter value.

1-D Profile likelihood

```
> dim(shuttleL$logL)
[1] 19 19 19
> colnames(shuttleL$parameters)
[1] "(Intercept)" "temperatureC" "pressureC"
> shuttleProfTemp = apply(shuttleL$logL, 2, max)
> breaks1df = max(shuttleL$logL) - gchisg(shuttleL$breaks,
+ df = 1)/2
> plot(shuttleL$parameters[, 2], shuttleProfTemp, type = "o",
   xlab = "temperature", ylab = "logL")
> abline(h = breaks1df, lty = 3)
> text(par("usr")[2] - 4 * par("cxy")[1], breaks1df, shuttleL$breaks,
+ pos = 4, col = "red")
```


Information-based v profile likelihoods

- Profile likelihoods are not often used in Applied Statistics
- Is this for historical reasons, or are they not very useful?
- Information-based confidence regions are regarded as good enough.
- Joint confidence regions from 2-D profile likelihoods are interesting (?)

Where we are

- discussed applied statistics
- reviewed GLM's
- profile likelihoods and LR tests
- saw exaples in R

Next

- GLM's with continuous variables
- conclusions
- practical in R

The Poisson Distribution

$$\begin{split} X_i \sim \mathsf{Poisson}(\lambda_i) \\ pr(X_i = x) &= \lambda_i^x \exp(-\lambda_i)/x! \\ X_1 + X_2 \sim \mathsf{Poisson}(\lambda_1 + \lambda_2) \end{split}$$

Poisson regression

$$\begin{aligned} Y_i \sim & \mathsf{Poisson}(\mu_i) & Y_i \sim & G(\mu_i, \theta) \\ \log(\mu_i) = & X_i \beta & h(\mu_i) = & X_i^\mathsf{T} \beta \end{aligned}$$

- ullet G is a Poisson distribution

Infinitely Divisible Laws

Normal	Poisson	Gamma
$\begin{aligned} Y_i \sim & N(\mu_i, \sigma^2) \\ Y_i = \sum_i X_{ik} \end{aligned}$	$\begin{aligned} Y_i \sim & Poisson(\lambda_i) \\ Y_i = \sum_i X_{ik} \end{aligned}$	$Y_i \sim \!\! Gamma(\alpha,\beta_i)$ $Y_i = \sum_i X_{ik}$
$X_{ik} \sim N(\mu_i/K, \sigma^2/K)$	$X_{ik} \sim \! Poisson(\lambda_i/K)$	$X_{ik} \sim Gamma(\alpha/K, \beta_i)$

- ullet When our observed Y_i are actually the sum of many unobserved X_{ij} ...
 - Number of cigarettes smoked last month is sum of daily counts
 - Height of a child is sum of inches grown each month
- ... we're justified in considering only distributions which are infinitely divisible

Not infinitely divisible

Binomial

Uniform

$$X_{ik} \sim \mathsf{Unif}(a_i,b_i)$$

- $\sum_{i} X_{ij}$ isn't uniform.
- Can't construct a uniform Y_i from a sum.

$$Y_i \sim \mathsf{Binom}(\rho_i, N)$$

$$Y_i = \sum_{k=1}^K X_{ik}$$

$$X_{ij} \sim \! \mathsf{Binom}(\rho_i, N/K)$$

- Not true for all K
- Only valid when N is a multiple of K

Log-Normal

$$\begin{split} X_{ik} \sim & \mathsf{LN}(\mu_i/K, \sigma/K) \\ \log(X_{ik}) \sim & \mathsf{N}(\mu_i/K, \sigma^2/K) \end{split}$$

- $\sum_{k} X_{ik}$ isn't log-Normal
- but

$$\prod_k X_{ik} \sim \mathsf{LN}(\mu_i, \sigma)$$

 \bullet a good model when Y_i is a share price?

Do literate Fijians tend to have fewer children?

$$Y_i \sim \text{Poisson}(O_i \mu_i) \qquad \text{(1)} \\ \log(\mu_i) = X_i \beta$$

monthsSinceM literacy children

		,	
1	72	yes	0
2	184	yes	6
3	269	yes	2
4	206	yes	9

or

 $Y_i \sim \mathsf{Poisson}(\rho_i)$ (2)

$$\log(\rho_i) = \!\! X_i \beta + \log(O_i)$$

- Y_i : number of children of women i
- μ_i : rate of children born, per month
- O_i: Offset term, number of months since first married
- X_i : intercept, literacy
- Write (1) when communicating with humans.
- Write (2) when communicating with computers.

Poisson Processes in time

• Suppose P_i are a sequence of event times

$$\{P_1 \dots P_N\} \sim \mathsf{Poisson} \ \mathsf{process}(\lambda)$$

Definition

 $\{P_1 \dots P_N\}$ is a homogeneous Poisson process with intensity λ if

- 1. $|\{P_i \in A\}| \sim \mathsf{Poisson}(\lambda|A|)$ for any time interval A
- 2. Given $P_i, P_j \in A$, P_i and P_j are independent and uniformly distributed in A

A property

 $|\{i;P_i\in A_k\}|\sim \mathsf{Poisson}(\lambda|A_k|) \text{ for any non-overlapping regions } A_1 \text{ and } A_2.$

Fijian births as a Poisson process

- μ_i is the intensity, per month, of children born from woman i
- $O_i = |A_i|$ where A_i is the time interval since first married to the date the survey was given
- $Y_i \sim \mathsf{Poisson}(\mu_i O_i)$
- Infinitely divisible: divide A_i into trillions of one nanosecond long time intervals δ_{ik}
- X_{ik} is the number of children born to woman i in interval δ_{ik}

$$\begin{split} X_{ik} \sim & \mathsf{Poisson}\left(\mu_i \frac{1}{10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 30}\right) \\ \sum_k X_{ik} \sim & \mathsf{Poisson}(\mu_i O_i) \end{split}$$

Is this a good model

Yes

- The data look Poisson: non-negative counts, right skewed
- ullet μ_i can be interpreted independently of O_i
- It's simple because it's a GLM
- other model could be constructued, but this one has a rigorous mathematical foundation
- A good balance betwen being right and being useful
- ... at least as a starting point

No

- Dividing our data into nanosecond-long intervals isn't necessary
- Dependence: births can't be closer than about 8 months apart
- Overdispersion: fertility and desired family size vary from person to person
- Inhomogeneity: fertility decreases with age

The log-log link function

- Suppose shuttle rings during launch i break following a Poisson process with intensity λ_i .
- During launch i, ring j has failure times P_{ijk} for $k = 1 \dots K_{ij}$
- $K_{ij} \sim \text{Poisson}(\delta \lambda_i)$ where δ is the duration of a mission.
- We only observe $Z_{ij}=0$ if $K_{ij}=0$ and $Z_{ij}=0$ if $K_{ij}>0$

$$\begin{split} \{P_{ijk}; k = 1 \dots K_{ij}\} \sim & \mathsf{Poisson\ process}(\lambda_i) \\ & \log(\lambda_i) = & X_i \beta \\ & pr(K_{ij} = 0) = \exp(-\delta \lambda_i) \\ & pr(Z_{ij} = 1) = & \mu_i \\ & \mu_i = & 1 - \exp[-\delta \exp(X_i \beta)] \\ & \log[-\log(1 - \mu_i)] = & \log(\delta) + X_i \beta \end{split}$$

Notes on the log-log link

$$\log[-\log(1-\mu_i)] = \log(\delta) + X_i\beta$$

- If $Y_i = \sum_{j=1}^{N_i} Z_{ij}$, then Y_i is $\operatorname{Binomial}(N_i, \mu_i)$.
- If we ignore δ , the intercept parameter becomes $\beta_0 + \log(\delta)$
- \bullet β parameters with log-log links are rate ratios rather than odds ratios
- The logit link function is the 'standard' approach. In practice, there would need to be a reason given when using a log-log link.
- It is rarely possible for the data to tell you which link function provides the better fit.

Cricket data

```
> data('cricketer', package='DAAG')
> cricketer[4000:4003,]
      left year life dead acd kia inbed cause
4073 right 1888 27
                                         acd >
                 86 1 0 0
                                        inbed 5
4074 right 1890
                 90 1 0 0
4075 right 1896
                                      1 inbed
4076 right 1916 72 1 0
                                      1 inbed
Remove cricketers born after 1890 and those killed
as soldiers.
                                              20
> dat = cricketer[cricketer$year < 1890 &
     cricketer$kia == 0.]
> hist(dat$life, xlab='lifetime', main='')
                                                                 80
                                                  20
                                                                      100
                                                          lifetime
```

The problem

- Doug Altman and Martin Bland (2005). "Do the left-handed die young?" In: Significance 2.4, pp. 166–170. DOI: 10.1111/j.1740-9713.2005.00130.x
- Do left handed people live less long than right-handers?
- The hypothesis is yes, they die in accidents using right-handed equipment.
- This is really a 'survival analysis' problem requiring a proportional-hazards model, but we'll use GLM's for illustrative purposes.

Gamma distribution

$$X \sim \mathsf{Gamma}(\phi, \nu)$$

$$f(x;\phi,\nu) = \frac{(x/\phi)^{\nu-1} \exp(-x/\phi)}{\Gamma(\nu)\phi}$$

- \bullet ϕ is the range parameter
- ullet u is the shape parameter

$$E(X) = \phi \nu, \ var(X) = \phi^2 \nu$$

Coefficient of variation:

$$1/\sqrt{\nu}=\operatorname{sd}(X)/\operatorname{E}(X)$$

Gamma regression

$$Y_i \sim \!\! \mathsf{Gamma}(\mu_i/\nu, \nu) \\ \log(\mu_i) = \!\! X_i \beta$$

```
• E(Y_i) = \mu_i
```

- glm reports a 'dispersion' parameter $1/\nu$.
- and the log-link isn't the default

```
> dat\$decade = (dat\$year - 1850)/10
```

- > cFit = glm(life ~ decade + left, data=dat, family=Gamma(link='log'))
- > knitr::kable(rbind(summary(cFit)\$coef.
- + shape=c(1/summary(cFit)\$dispersion, NA, NA, NA)), digits=4)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.1751	0.0085	490.3097	0.0000
decade	0.0242	0.0038	6.3081	0.0000
leftleft	-0.0162	0.0136	-1.1901	0.2341
shape	18.7245	NA	NA	NA

Is this a good model?

- Let's see if a histogram of the data looks Gamma distributed.
- Confine ourselves to right-handers born near 1850 to limit the effect of year and handedness on the distribution
- and overlay the density of the fitted Gamma distribution
- for individuals in the baseline group, lifetimes are Gamma distributed with the following parameters
- > shape = 1/summary(cFit)\$dispersion
- > scale = exp(cFit\$coef["(Intercept)"])/shape

Modelled and empirical distribution

```
> hist(dat$life[dat$left == "right" &
+    abs(dat$decade) < 2], prob = TRUE,
+    main = "", xlab = "life")
> xSeq = seq(0, 120, len = 1000)
> lines(xSeq, dgamma(xSeq, shape = shape,
+    scale = scale), col = "red")
```

- the prob=TRUE argument plots empirical densities instead of frequencies.
- xSeq is a vector of ages
- dgamma is the density of a Gamma distribution
- the Gamma hasn't capture the right-skewness.

Weibull regression

```
> library('survival')
> cFitS = survreg(Surv(life) ~ decade + left,
```

+ data=dat, dist='weibull')
> knitr::kable(summary(cFitS)\$table,digits=2)

	Value	Std. Error	z	р
(Intercept)	4.27	0.01	605.35	0.00
decade	0.02	0.00	5.20	0.00
leftleft	-0.01	0.01	-0.65	0.51
Log(scale)	-1.68	0.02	-90.20	0.00

- Weibull is the 'standard' for event times
- survreg's scale is the Weibull shape parameter
- shape = 0.187, right skewed.

Gompertz regression

```
> library('flexsurv')
> cFitG = flexsurvreg(Surv(life)~decade+left,
+ data = dat, dist = 'gompertz')
```

	est	L95%	U95%	se
shape	0.079	0.076	0.082	0.001
rate	0.000	0.000	0.000	0.000
decade	-0.092	-0.125	-0.060	0.017
leftleft	0.033	-0.082	0.149	0.059

> knitr::kable(cFitG\$res, digits = 3)

Box-Cox transformation

```
> library("MASS")
  boxcox(life ~ decade + left, data = dat,
       lambda = seq(1.5, 2.5, len = 20))
      95%
log-Likelihood
  4580
          1.6
                  1.8
                          2.0
                                  2.2
                                          2.4
```


Ordinary Least Squares with transformed data

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4488.34	72.20	62.17	0.00
decade	208.48	32.50	6.41	0.00
leftleft	-135.52	115.52	-1.17	0.24

Notes on GLM's with continuous data

- It's not easy to test which distribution is best, since they're not nested.
- GLM's are not often used with continuous data
 - they're almost always Binomial or Piosson
 - with the notable exception of the Weibull for event times
- 'standard practice' is to transform continuous data to normality (logs, Box-Cox)
- The squared transform model is simplest (?)
- The Weibull is easier to interpret. The percentage change in expected lifetime for left-handers (with 95% confidence interval) is

```
> 100*(exp(cFitS$coef['leftleft'] +
+ c(0, -2, 2) * summary(cFitS)$table['leftleft', 'Std. Error']) - 1)
[1] -0.7163102 -2.8803498   1.4959491
```

Diagnostics for GLM's

- Assessing model fit is difficult for binary and count data!
- residuals don't have nice properties
- Histograms can be useful
- as can exploratory plots
- For the homework question on fruit flies, it will suffice to show that (or if) the Gamma is a good fit.

Where we are

- discussed applied statistics
- binary, Poisson and continuously-valued GLM's

Next

contrasts

A more complex glm

```
> cFitCause = glm(life~decade+left*cause,
   data = dat, Gamma(link='log'))
> summary(cFitCause)$coef[,1:2]
                       Estimate Std. Error
(Intercept)
                     3.81442882 0.057493774
decade
                     0.02379132 0.003789957
leftleft.
                    -0.15479897 0.103518957
causeinbed
                     0.36433991 0.057388596
leftleft:causeinbed
                     0.14360209 0.104423075
> table(dat$cause)
alive acd inbed
        23 1945
```

$$Y_i \sim \!\! \mathsf{Gamma}(\mu_i/\nu, \nu)$$

$$\log(\mu_i) = \!\! X_i \beta$$

$$\mathrm{E}(Y_i) = \!\! \mu_i$$

- $\beta_1 = \text{time trend}$
- $\beta_2 = \text{left v right contrast}$
- $\beta_3 = \text{right in bed v accident}$ contrast
- $\beta_4 = \text{contrast of left cause v}$ right cause
- β_0 = intercept 1850, right, accidental death

Looking inside

```
> cFitCause$model[c(1,2,15,604),]
    life decade left cause
2576 43 -0.4 right acd
2577 47 3.7 right inbed
2606 68 -0.1 left inbed
3689
      40 1.0 left acd
> model.matrix(cFitCause$formula, cFitCause$model)[c(1,2,15,604),]
     (Intercept) decade leftleft causeinbed leftleft:causeinbed
2576
                  -0.4
2577
                  3.7
2606
                  -0.1
3689
                   1.0
```

On the natural scale

$$\begin{split} f(Y_i;\phi,\nu) = & \frac{(x/\phi)x^{\nu-1}\exp(-x/\phi)}{\Gamma(\nu)\phi} \\ & Y_i \sim & \mathsf{Gamma}(\mu_i/\nu,\nu) \\ & \log(\mu_i) = & X_i\beta \end{split}$$

	Estimate
(Intercept)	3.81442882
decade	0.02379132
leftleft	-0.15479897
causeinbed	0.36433991
leftleft:causeinbed	0.14360209

• when i is a lefty, j is a righty, $X_{ip} = X_{jp}$ for $p \neq 2$

$$\exp(\beta_2) = \mu_i/\mu_j$$

• k died in bed, ℓ accidental, both righties, same birth year

$$\exp(\beta_3) = \mu_k/\mu_\ell$$

 m, n are lefties died in bed and accidentally respectively.

$$\exp(\beta_4) = \frac{\mu_m/\mu_n}{\mu_k/\mu_\ell}$$

• β_2 is the contrast between log-expected lifetimes of a lefty and righty

Suppose I want to report different contrasts?

```
Estimate
(Intercept) 3.81442882
decade 0.02379132
leftleft -0.15479897
causeinbed 0.36433991
leftleft:causeinbed 0.14360209
```

- Rate ratio for cause, with left-handers
- $\bullet \ \mu_m/\mu_n = \exp(\beta_3 + \beta_4)$
- What's the standard error for this thing?
- Use $\hat{\beta} \sim \mathsf{N}\left[\beta, I(\hat{\beta})^{-1}\right]$

$$\begin{split} \beta_3 + \beta_4 = & A\beta \\ \beta_3 + \beta_4 \sim & \mathsf{N}\left[A\beta, AI(\hat{\beta})^{-1}A^\mathsf{T}\right] \end{split}$$

- > Avec = c(0, 0, 0, 1, 1)
- > c(est=crossprod(Avec, cFitCause\$coef),
- + stderr=sqrt(crossprod(Avec, summary(cFitCause)\$cov.scaled) %*% Avec))

est stderr 0.50794200 0.08722727

Conclusions

- GLM's are easy
- ullet Before 1990 one could be forgiven for modelling r/m as Gaussian with the shuttle data
- ...now there's no excuse.

Exercise: Fiji data

- glm with 'family='poisson'
- create a variable 'logMonthsSinceM'
- put offset(logMonthsSinceM) in the model formula

References I

- Altman, Doug and Martin Bland (2005). "Do the left-handed die young?" In: Significance 2.4, pp. 166–170. DOI: 10.1111/j.1740-9713.2005.00130.x.
 - Davison, A.C. (2003). *Statistical Models*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. URL: http://books1.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks1/cambridgeonline/2012-11-08/1/9780511815850.
- Faraway, J.J. (2005). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman & Hall/CRC Texts in Statistical Science. CRC Press. URL:
 - http://www.tandfebooks.com/isbn/9780203492284.
- Wakefield, J. (2013). *Bayesian and Frequentist Regression Methods*. Springer Series in Statistics. Springer New York. DOI: 10.1007/978-1-4419-0925-1.