

$$np - q \le m_0 \le np + p, \quad q = 1 - p.$$

Покажем, что при некотором m_0 вероятность $P_n(m)$ как функция натурального аргумента достигает своего наибольшего значения.

$$P_{n}(m) = C_{n}^{m} p^{m} q^{n-m} \qquad P_{n}(m+1) = C_{n}^{m+1} p^{m+1} q^{n-m-1}$$

$$\frac{P_{n}(m+1)}{P_{n}(m)} = \frac{C_{n}^{m+1} p^{m+1} q^{n-m-1}}{C_{n}^{m} p^{m} q^{n-m}} = \frac{n-m}{m+1} \cdot \frac{p}{q}$$

$$P_{n}(m+1) > P_{n}(m) \iff \frac{n-m}{m+1} \cdot \frac{p}{q} > 1$$

$$(n-m) p > (m+1) q$$

$$m < np-q$$

$$np - q \le m_0 \le np + p, \ q = 1 - p$$

$$P_{n}(m) = C_{n}^{m} p^{m} q^{n-m} \qquad P_{n}(m+1) = C_{n}^{m+1} p^{m+1} q^{n-m-1}$$

$$\frac{P_{n}(m+1)}{P_{n}(m)} = \frac{C_{n}^{m+1} p^{m+1} q^{n-m-1}}{C_{n}^{m} p^{m} q^{n-m}} = \frac{n-m}{m+1} \cdot \frac{p}{q}$$

$$P_{n}(m+1) < P_{n}(m) \iff \frac{n-m}{m+1} \cdot \frac{p}{q} < 1$$

$$m > np - q$$

Т.е. $P_n(m)$ возрастает, если m < np - q и убывает, если m > np - q, а значит, существует m_0 при котором $P_n(m)$ достигает своего наибольшего значения.

$$np - q \le m_0 \le np + p, \ q = 1 - p$$

Найдем число m_0 . По смыслу оно такое, что

$$P_{n}(m_{0}) \geq P_{n}(m_{0}+1) \wedge P_{n}(m_{0}) \geq P_{n}(m_{0}-1)$$

$$P_{n}(m_{0}) = C_{n}^{m_{0}} p^{m_{0}} q^{n-m_{0}}$$

$$P_{n}(m_{0}+1) = C_{n}^{m_{0}+1} p^{m_{0}+1} q^{n-m_{0}-1}$$

$$P_{n}(m_{0}-1) = C_{n}^{m_{0}-1} p^{m_{0}-1} q^{n-m_{0}+1}$$

$$np - q \le m_0 \le np + p, \ q = 1 - p$$

$$P_{n}(m_{0}) \geq P_{n}(m_{0}+1) \wedge P_{n}(m_{0}) \geq P_{n}(m_{0}-1)$$

$$P_{n}(m_{0}) = C_{n}^{m_{0}} \rho^{m_{0}} q^{n-m_{0}}$$

$$P_{n}(m_{0}+1) = C_{n}^{m_{0}+1} \rho^{m_{0}+1} q^{n-m_{0}-1}$$

$$C_{n}^{m_{0}} \rho^{m_{0}} q^{n-m_{0}} \geq C_{n}^{m_{0}+1} \rho^{m_{0}+1} q^{n-m_{0}-1}$$

$$\frac{1}{n-m_{0}} \geq \frac{p}{q(m_{0}+1)}$$

$$q(m_{0}+1) \geq p(n-m_{0})$$

$$m_{0} \geq np-q$$

$$np - q \le m_0 \le np + p, \quad q = 1 - p$$

$$P_n(m_0) \ge P_n(m_0 + 1) \quad \land \quad P_n(m_0) \ge P_n(m_0 - 1)$$

$$P_n(m_0) = C_n^{m_0} p^{m_0} q^{n - m_0}$$

$$P_n(m_0 - 1) = C_n^{m_0 - 1} p^{m_0 - 1} q^{n - m_0 + 1}$$

$$C_n^{m_0} p^{m_0} q^{n - m_0} \ge C_n^{m_0 - 1} p^{m_0 - 1} q^{n - m_0 + 1}$$

$$\frac{1}{m_0} \ge \frac{q}{p(n - m_0 + 1)}$$

$$p(n - m_0 + 1) \ge qm_0$$

$$m_0 \le np + p$$

$P_{n}(p_{m}) \neq 2 p_{n}^{m} p^{m} p$

Т.к. p+q=1, то существует хотя бы одно целое число m_0 , которое удовлетворяет полученному неравенству.

Пример. В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.

2. Формула Пуассона

Пуассон Симеон Дени

(1781–1840), французский математик, механик и физик. Автор более 300 работ по математическому анализу, математической физике, теоретической и небесной механике.

Теорема. Пусть в каждом из n независимых испытаний событие A наступает с вероятностью p, где $n \to \infty$, а $p \to 0$ таким образом, что произведение $\lambda = np$ является постоянным числом. Тогда вероятность того, что событие A наступит m раз

$$\lim_{n \to \infty} P_n(m) = \frac{e^{-\lambda} \cdot \lambda^m}{m!}$$

$$P_n(m) \approx \frac{e^{-\lambda} \cdot \lambda^m}{m!}$$

Формула Пуассона

$$\lim_{n\to\infty} P_n(m) = \frac{e^{-\lambda} \cdot \lambda^m}{m!}, \ \lambda = np$$

$$P_{n}(m) = C_{n}^{m} p^{m} q^{n-m}, \quad q = 1-p$$

$$P_n(m) = C_n^m p^m q^{n-m} = \frac{n!}{m!(n-m)!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m} =$$

$$=\frac{\lambda^m}{m!}\frac{n(n-1)...(n-m+1)}{n\cdot n\cdot ...\cdot n}\left(1-\frac{\lambda}{n}\right)^n\left(1-\frac{\lambda}{n}\right)^{-m}=$$

$$= \frac{\lambda^m}{m!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{m-1}{n}\right) \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-m} = \frac{\lambda^m}{n!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right)^{-m} = \frac{\lambda^m}{n!} \cdot 1 \cdot \left(1 - \frac$$

$$\lim_{n\to\infty} P_n(m) = \frac{e^{-\lambda} \cdot \lambda^m}{m!}, \ \lambda = np$$

$$P_{n}(m) = \frac{\lambda^{m}}{m!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{m-1}{n}\right) \left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{\lambda}{n}\right)^{-m}$$

$$\lim_{n \to \infty} P_{n}(m) =$$

$$\lim_{n\to\infty} \left(\frac{\lambda^m}{m!} \cdot 1 \cdot \left(1 - \frac{1}{n} \right) \cdot \dots \cdot \left(1 - \frac{m-1}{n} \right) \left(1 - \frac{\lambda}{n} \right)^n \left(1 - \frac{\lambda}{n} \right)^{-m} \right) =$$

$$= \frac{\lambda^m}{m!} \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) \cdot \dots \cdot \left(1 - \frac{m-1}{n} \right) \left(1 - \frac{\lambda}{n} \right)^n \left(1 - \frac{\lambda}{n} \right)^{-m} =$$

$$= \frac{\lambda^m}{m!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n =$$

$$\lim_{n\to\infty} P_n(m) = \frac{e^{-\lambda} \cdot \lambda^m}{m!}, \ \lambda = np$$

$$\frac{\lambda^m}{m!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = \frac{\lambda^m}{m!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-\frac{n}{\lambda}(-\lambda)} =$$

$$= \frac{\lambda^m}{m!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-\frac{n}{\lambda}(-\lambda)} = \frac{\lambda^m}{m!} e^{-\lambda}$$

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

$$P_n(m) \approx \frac{e^{-\lambda} \cdot \lambda^m}{m!}$$

$$P_n(m) \approx \frac{e^{-\lambda} \cdot \lambda^m}{m!}$$

Пример. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равно 0,0002. Найдите вероятность того, что на базу прибудут 3 негодных изделия.

А – изделие повредится при транспортировке

Простейший поток событий

Поток событий – последовательность событий, наступающих в случайные моменты времени (например, поток покупателей в магазине, поток отказов элементов и др.)

Поток называют *простейшим*, если он обладает свойствами *стационарности*, *ординарности*, *отсутствия последствий*.

Свойство *стационарности* означает, что вероятность появления k событий за время t зависит только от величины t (т.е. не зависит от начала отсчета). Следовательно, среднее число событий, появляющихся в единицу времени (*интенсивность потока*) есть величина постоянная ($\lambda = const$).

Свойство *ординарности* означает, что события появляются не группами, а поодиночке. Т.е. вероятность появления более одного события за время $\Delta t \to 0$ очень мала по сравнению с вероятностью появления только одного события за это время.

Свойство *отсутствия последствий* означает, что вероятность появления k событий на любом участке времени длины t не зависит от того, сколько событий появилось на любом другом, не пересекающемся с ним участке («будущее» потока не зависит от «прошлого»).

$$P_t(m) \approx \frac{e^{-\lambda t} \cdot (\lambda t)^m}{m!}$$

$$P_t(m) \approx \frac{e^{-\lambda t} \cdot (\lambda t)^m}{m!}$$

Пример. В работе службы скорой помощи районного центра происходит в среднем три вызова в час. Определите вероятность а) хотя бы одного вызова за один час;

б) пяти вызовов за 2 часа.

3. Локальная и интегральная теоремы Муавра-Лапласа

Абрахам де Муавр (1667 -1754) — английский математик французского происхождения, Лондонского член королевского общества, Парижской и Берлинской АН; нашёл (1707) правила (формулу Муавра) возведения в степень и извлечения корня степени для комплексных чисел; исследовал степенные ряды; в теории вероятностей доказал частный случай теоремы Лапласа.

Пьер-Симон, маркиз де **Лапла́с** (1749 - 1827) французский математик, механик, физик и астроном; известен работами области небесной механики, дифференциальных уравнений, один из создателей теории вероятностей. Заслуги Лапласа в области чистой и прикладной математики и особенно астрономии громадны: он усовершенствовал почти все разделы этих наук.

Теорема. (Локальная теорема Муавра-Лапласа) Если в каждом из n независимых испытаний событие A наступает с вероятностью p, где $0 , а <math>n \to \infty$, то вероятность того, что событие A наступит m раз

$$\lim_{n\to\infty} P_n(m) = \frac{1}{\sqrt{npq}} \varphi(x), \quad x = \frac{m-np}{\sqrt{npq}}.$$

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \varphi(x), \qquad x = \frac{m - np}{\sqrt{npq}}$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 - функция Гаусса

$$\varphi(x)$$
 - четная, т.е. $\varphi(-x) = \varphi(x)$

при $x \ge 4$ можно считать, что $\varphi(x) = 0$

Значения функции $\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$

x	0	1	2	3	4	5	6
0,0	0,3989	3989	3989	3988	3986	3984	3982
0,1	3970	3965	3961	3956	3951	3945	3939
0,2	3910	3902	3894	3885	3876	3867	3857
0,3	3814	3802	3790	3778	3765	3752	3739
0,4	3683	3668	3653	3637	3621	3605	3589
0,5	3521	3503	3485	3467	3448	3429	3410
0,6	3332	3312	3292	3271	3251	3230	3209
0,7	3123	3101	3079	3056	3034	3OH	2989
0,8	2897	2874	2850	2827	2803	2780	2756
0,9	2661	2637	2613	2589	2565	2541	2516
1,0	0,2420	2396	2371	2347	2323	2299	2275
1,1	2179	2155	2131	2107	2083	2059	2036
1,2	1942	1919	1895	1872	1849	1826	1804
1,3	1714	1691	1669	1647	1626	1604	1582
1,4	1497	1476	1456	1435	1415	1394	1374
1,5	1295	1276	1257	1238	1219	1200	1182
1,6	1109	1092	1074	1057	1 040	1023	1006
1,7	0940	0925	0909	0893	0878	0863	0848
1,8	0790	0775	0761	0748	0734	0721	0707
1.9	0656	0644	0632	0620	0608	0596	0584

$$\varphi(-1,34) =$$

$$= \varphi(1,34) =$$

$$= 0,1626$$

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \varphi(x), \qquad x = \frac{m - np}{\sqrt{npq}}$$

Пример. В честь праздника состоялся массовый забег на дистанцию 10 км. В забеге приняли участие 250 человек. Обычно в забегах такого типа из каждых десяти участников 8 доходят до финиша. Какова вероятность того, что до финиша добежали 200 человек?

А – один участник дошел до финиша

Значения функции
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$$

x	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0.25			2 622					2.21.2		

Теорема. (Интегральная теорема Муавра-Лапласа) Если в каждом из n независимых испытаний событие A наступает с вероятностью p, где $0 , а <math>n \to \infty$, то вероятность того, что событие A наступит от m_1 до m_2 раз

$$\lim_{n\to\infty} P_n\left(m_1 \le m \le m_2\right) = \left(\Phi\left(x_2\right) - \Phi\left(x_1\right)\right),\,$$

$$x_2 = \frac{m_2 - np}{\sqrt{npq}}, \quad x_1 = \frac{m_1 - np}{\sqrt{npq}},$$

$$\lim_{n\to\infty} P_n(m_1 \le m \le m_2) = (\Phi(x_2) - \Phi(x_1))$$

$$P_n(m_1 \le m \le m_2) \approx \Phi(x_2) - \Phi(x_1)$$

$$x_2 = \frac{m_2 - np}{\sqrt{npq}}, \quad x_1 = \frac{m_1 - np}{\sqrt{npq}}$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$
 - функция Лапласа

$$\Phi(x)$$
- нечетная, т.е. $\Phi(-x) = -\Phi(x)$

при $x \ge 5$ можно считать, что $\Phi(x) = 0,5$

$$P_{n}(m_{1} \le m \le m_{2}) \approx \Phi(x_{2}) - \Phi(x_{1})$$

 $x_{2} = \frac{m_{2} - np}{\sqrt{npq}}, \quad x_{1} = \frac{m_{1} - np}{\sqrt{npq}}$

Пример. В честь праздника состоялся массовый забег на дистанцию 10 км. В забеге приняли участие 250 человек. Обычно в забегах такого типа из каждых десяти участников 8 доходят до финиша. Какова вероятность того, что до финиша добежали от 180 до 210 человек?

X	$\Phi(x)$										
0,00	0,0000	0,50	0.1915	1,00	0.3413	1,50	0.4332	2,00	0.4772	3,00	0.49865
0,01	0,0040	0,51	0,1950	1,01	0,3438	1,51	0.4345	2,02	0,4783	3,20	0,49931
0,02	0,0080	0,52	0.1985	1,02	0.3461	1,52	0.4357	2,04	0.4793	3,40	0,49966
0,03	0.0120	0,53	0.2019	1,03	0,3485	1,53	0.4370	2,06	0,4803	3,60	0,499841
0,04	0.0160	0,54	0.2054	1,04	0.3508	1,54	0.4382	2,08	0.4812	3,80	0.499928
0,05	0.0199	0,55	0.2088	1,05	0,3531	1,55	0,4394	2,10	0,4821	4,00	0,499968
0,06	0.0239	0,56	0.2123	1,06	0,3554	1,56	0,4406	2,12	0,4830	4,50	0,499997
0,07	0.0279	0,57	0.2157	1,07	0,3577	1,57	0,4418	2,14	0,4838	5,00	0.499997
0,08	0,0319	0,58	0.2190	1,08	0,3599	1,58	0,4429	2,16	0,4846		3
0,09	0,0359	0,59	0.2224	1,09	0,3621	1,59	0.4441	2,18	0,4854		9)
0,10	0,0398	0,60	0,2257	1,10	0,3643	1,60	0,4452	2,20	0,4861	j	iii
0,11	0.0438	0,61	0.2291	1,11	0,3665	1,61	0.4463	2,22	0,4868		97

4. Вероятность отклонения относительной частоты события от постоянной вероятности в независимых испытаниях

Теорема. Если в каждом из n независимых испытаний событие A наступает с вероятностью p, где $0 , а <math>\frac{m}{n}$ – относительная частота события A, то для любого заданного числа $\varepsilon > 0$

$$|P_n\left(\left|\frac{m}{n}-p\right|\leq \varepsilon\right)\approx 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right)$$

$$P_n\left(\left|\frac{m}{n}-p\right|\leq\varepsilon\right)\approx2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right)$$

$$|P_n\left(\left|\frac{m}{n}-p\right|\leq \varepsilon\right)\approx 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right)$$

Пример. Вероятность выхода устройства из строя во время проведения эксперимента равна 0,2. Было проверено 625 устройств. Найдите вероятность, того, что абсолютная величина отклонения относительной частоты выхода из строя устройств от вероятности p=0,2 не превысит 0,02?

5. Общая теорема о повторении опытов

Пусть в n независимых испытаниях в каждом из которых может появиться или не появиться событие A, причем, вероятность появления события A в i-m опыте равна p_i и непоявления $q_i = 1 - p_i$, $i = \overline{1, n}$.

Найдем вероятность того, что в n независимых испытаниях событие A появиться ровно m раз.

 B_m - событие, состоящее в том, что в n независимых испытаниях событие A появиться ровно m раз

$$B_{m} = A_{1} \cdot A_{2} \cdot \dots \cdot A_{m} \cdot \overline{A}_{m+1} \cdot \dots \cdot \overline{A}_{n} +$$

$$+ A_{1} \cdot A_{2} \cdot \dots \cdot \overline{A}_{m} \cdot A_{m+1} \cdot \overline{A}_{m+2} \dots \cdot \overline{A}_{n} + \dots +$$

$$+ \overline{A}_{1} \cdot \overline{A}_{2} \cdot \dots \cdot \overline{A}_{n-m} \cdot A_{n-m+1} \cdot \dots \cdot A_{n}$$

Слагаемых C_n^m , но они не равновероятны.

$$P_{n}(m) = p_{1} \cdot p_{2} \cdot \dots \cdot p_{m} \cdot q_{m+1} \cdot \dots \cdot q_{n} +$$

$$+ p_{1} \cdot p_{2} \cdot \dots \cdot q_{m} \cdot p_{m+1} \cdot q_{m+2} \cdot \dots \cdot q_{n} + \dots +$$

$$+ q_{1} \cdot q_{2} \cdot \dots \cdot q_{n-m} \cdot p_{n-m+1} \cdot \dots \cdot p_{n}$$

Для того, чтобы составить все возможные произведения из *m* букв *p* и (n-m) букв *q* с разными индексами применим следующий формальный прием. Составим произведение биномов:

$$\varphi_{n}(z) = (q_{1} + p_{1}z)(q_{2} + p_{2}z)...(q_{n} + p_{n}z) =$$

$$= \prod_{i=1}^{n} (q_{i} + p_{i}z),$$

где z – произвольный параметр.

$$\varphi_n(z) = (q_1 + p_1 z)(q_2 + p_2 z)...(q_n + p_n z) =$$

$$= \prod_{i=1}^n (q_i + p_i z),$$

Если перемножить биномы, то коэффициент возле z^m будет получен так же, как и вероятность $P_n(m)$ в задаче о повторении опытов.

Функцию $\varphi_n(z)$ разложение которой по степеням параметра z дает в качестве коэффициентов вероятность $P_n(m)$, называют **производящей** функцией вероятностей $P_n(m)$ или просто производящей функцией.

Теорема (общая теорема о повторении опытов). Вероятность того, что событие A в n независимых испытаниях появиться ровно m раз, равна коэффициенту при z^m в выражении производящей функции

$$\varphi_n(z) = \prod_{i=1}^n (q_i + p_i z) = \sum_{m=0}^n P_n(m) z^m.$$

$$\sum_{m=0}^n P_n(m) = 1$$

$$\varphi_n(z) = \prod_{i=1}^n (q_i + p_i z) = \sum_{m=0}^n P_n(m) z^m.$$

Пример. Производится 4 независимых выстрела по одной и той же цели с различных расстояний; вероятности попадания при этих выстрелах равны соответственно

$$p_1 = 0.1$$
; $p_2 = 0.2$; $p_3 = 0.3$; $p_4 = 0.4$.

Найдите вероятности ни одного, одного, двух, трех и четырех попаданий.