تمارين تدريبية في الحماب مع الحلول

التمرين 01 :

نعتبر a عدد طبيعي غير معدوم.

. 6 يقبل القسمة على $A = a(a^2 - 1)$ بين أن العدد (1

. 6 كا عدد طبيعي n يكون العدد $A_n = a(a^{2n}-1)$ على n يكون العدد طبيعي n قابلا للقسمة على

 $S_n = a_1^{2n+1} + a_2^{2n+1} + \dots + a_n^{2n+1}$ و $S = a_1 + a_2 + \dots + a_n :$ عن أجل كل عدد طبيعي n نضع n نضع n نضع n غير معدومة . n عيث n أعداد طبيعية غير معدومة . n أعداد طبيعية غير معدومة .

. 6 و S_n لهما نفس الباقي في القسمة على 6 أ) برهن أن

. 6 على $(2002^{1443} + 2003^{1443} + \dots + 2022^{1443})$ على 2 باعين باقي قسمة المجموع :

. $N = \overline{abab}^5$: كيكن N عدد طبيعي مكتوب في النظام الخماسي (ذي الأساس 5) على الشكل N

. $a \equiv b[3]$: أيرهن أن N يقبل القسمة على δ إذا وافقط إذا كان N

ب) استنتج أكبر قيمة للعدد N الذي يقبل القسمة على 6.

التمرين 02 :

 $a_n = 2 \times 5^n + 7 : n$ نضع من أجل كل عدد طبيعي

 a_n : فردي a_n فردي a_n فردي أنه من أجل كل عدد طبيعي ما

. 8 على العدد الطبيعي n بواقي القسمة الإقليدية للعدد 5^n على العدد بين حسب قيم العدد الطبيعي بواقي القسمة الإقليدية للعدد الطبيعي والماء العدد ا

 $a_n \equiv 1[8]$: يكون $n \in \mathbb{N}$ يكون يا باتنتج أنه من أجل كل

. x = 257[1000] : فإن $\begin{cases} x = 1[8] \\ x = 7[125] \end{cases}$: فإن (2 - 257[1000])

. $a_n \equiv 257[1000]$: يكون $n \ge 3$ يكون أنه من أجل كل

 $(2 \times 5^{2020} + 7)(2 \times 5^{2021} + 7)$ جـ ما هي الأرقام الثلاث الأخيرة للعدد

 $. 5a_{2n} - a_{2n+1} = 28$: ون اجل کل عدد طبیعي n يكون اجل کل عدد طبيعي 3

. 7 بين أن d يختلف عن $PGCD(a_{2n};a_{2n+1})=d$ بين أن

. d غندئذ جــج

التمرين 03 :

. 7 عين تبعا لقيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 3^n على 1

 $(2020^{1962} \times n + 4 \times 1441^{1954}) \equiv 0[7] :$ ب حدد الأعداد الطبيعية n بحيث يكون

. $N_p = \overline{\underbrace{111....1}_{p\,fois}}$: نعتبر العدد الطبيعي N_p المكتوب في النظام العشري على الشكل المجتوب في النظام العشري على المجتوب في النظام العشري على المجتوب في المجتوب

. $N_p \equiv p[3]$: أـ بين أن

 \cdot 3 على العدد N_{2020} على العدد باقي قسمة العدد

. 2 على على قابلا للقسمة على n يكون العدد (3^n-1) قابلا للقسمة على n

. د ـ بين أن العدد $N_{_{p}}$ يقبل القسمة على 7 إذا وافقط إذا كان العدد $(3^{p}-1)$ يقبل القسمة على 7 أيضا

. ملی N_{2020} علی 3 هــ استنتج باقي قسمة العدد

3x-7y=4 : المعادلة \mathbb{Z}^2 المعادلة (3

. $\begin{cases} a \equiv 1[3] \\ 2a \equiv 3[7] \end{cases}$: التي تحقق الجملة : الصحيحة a التي تحقق الجملة : بالتنتج الأعداد الصحيحة a

 ~ 21 على العدد N_{2020} على العدد

. $M = \overline{abb2a0}^4$: نعتبر العدد الطبيعي M المكتوب في النظام ذي الأساس 4 على الشكل $M = \overline{abb2a0}^4$

 $M-4\equiv 0$ [7]: أ. عين قيم a و b علما أن

ب. إستنتج قيم M و مكتوبة في النظام العشري.

التمرين 04:

الجزء الأول:

من تبعا لقيم العدد الطبيعي n باقي قسمة العدد 4^n على 1

$$.7$$
 على $(2019^{2020} + 2020^{1441} + 1441^{1962})$ على $(2019^{2020} + 2020^{1441} + 1441^{1962})$

. $2020^{6n+5} + 1441^{6n+6} + 5n \equiv 0$ [7]: جـ عين قيم العدد الطبيعي n بحيث يكون

.
$$U_n = 1 + 4 + 4^2 + \dots + 4^{n-1}$$
: n عدد طبيعي عن أجل ڪل عدد عبيع

. 7 مضاعفا لـ 7 إذا وافقط إذا كان (4^n-1) مضاعفا لـ 7 أـ بين أن الله يكون مضاعفا لـ 1

. 7 متى يكون U_n قابلا للقسمة على n

الجزء الثاني:

101u - 72v = 1: أـ باستعمال خوارزمية إقليدس عين العددين الصحيحين u و v عيث u

.
$$\mathbb{Z}^2$$
 ب اشرح الذا المعادلة (E) عند المعادلة (E) عند المعادلة بالمعادلة والمعادلة المعادلة ا

جـ عين حلا خاصا للمعادلة (E) ، ثم استنتج جميع حلول هذه المعادلة .

.
$$\begin{cases} PGCD(x,y) = 3 \\ PPCM(x,y) = 24948 \end{cases}$$
: عين الحل (x,y) للمعادلة (E) الذي يحقق (2

التمرين 05 :

. $4x \equiv 33[5]$: عين مجموعة الأعداد الصحيحة x حيث الأعداد

. 4x-5y=33(E) التالية: (x,y) العادلة ذات المجهول (x,y) التالية: \mathbb{Z}^2

.
$$(\lambda \in \mathbb{Z})$$
 مع $\begin{cases} \lambda \equiv 55[5] \\ \lambda \equiv 22[4] \end{cases}$: بـ استنتج حلول الجملة

|x+y+3|<27: عين كل الثنائيات (x,y) حلول المعادلة (E) و التي تحقق الثنائيات و (x,y)

 \cdot 11 على 11 أـ أدرس حسب قيم العدد الطبيعي n بواقي قسمة العدد \cdot 3 على \cdot 11

$$\begin{cases} n-5^n\equiv 0[11] \\ n\equiv 2[5] \end{cases}$$
 : عين مجموعة قيم العدد الطبيعي n التي تحقق الجملة :

. $\alpha \neq 0$: غين 4 عدد طبيعي يكتب $N = \overline{\alpha \beta \beta \alpha \beta \alpha}$ في نظام التعداد ذو الأساس 4 حيث $N = \overline{\alpha \beta \beta \alpha \beta \alpha}$

عين α و β يحيث يكون N قابلا للقسمة على 33 ، ثم أكتب العدد β في النظام العشري .

حلول مقترحة للتمارين

حل مقترح للتمرين 01:

A = a(a-1)(a+1) : أي تصبح $A = a(a^2-1)$: لدينا (1

ملاحظة: الأعداد الطبيعية: a+1 و a+1 متتابعة و نعلم أن: جداء عددين طبيعيين متتاليين يكون زوجيا و أيضا جداء ثلاث أعداد طبيعية متتالية يكون مضاعفا لــ 3 .

إذن: العدد A يقبل القسمة على 2 و على 3 و بالتالي يقبل القسمة على 3 لأن: 2 و 3 أوليان فيما بينهما 3 تنبيك يمكن إستعمال جدول الموافقة بترديد 3 و نجد أن العدد 3 يقبل القسمة على 3 .

.
$$A_n = a \left(a^2 - 1\right) \left[\left(a^2\right)^{n-1} + \left(a^2\right)^{n-2} + \dots + 1\right]$$
 : و منه $A_n = a \left[\left(a^2\right)^n - 1\right]$: لدينا

. 6 على القسمة على 6 أي $a(a^2-1)=6k$ و بالتالي فالعدد A_n يقبل القسمة على 6 .

- . $S_n = a_1^{2n+1} + a_2^{2n+1} + \dots + a_n^{2n+1}$ و $S = a_1 + a_2 + \dots + a_n$: لدينا (2
- . 6 مضاعف لـ $S_n S$ لفرق $S_n S$ مضاعف لـ 6 مضاعف أن نبين أن الفرق $S_n S$ مضاعف لـ 6
 - : على على $S_n S = a_1^{2n+1} + a_2^{2n+1} + \dots + a_n^{2n+1} (a_1 + a_2 + \dots + a_n)$ أي نتحصل على (*

6 حسب السؤال السابق وجدنا أنه من أجل كل عدد طبيعي غير معدوم a العدد $a(a^{2n}-1)$ يقبل القسمة على

. 6 هو يقبل القسمة على 6 . و منه : الفرق $S_n - S$ هو عبارة عن مجموع لمضاعفات 6 إذن : فهو يقبل القسمة على

و بالتالي فإن : S و S لهما نفس الباقي على 6 .

و (2002+2003+.....+2022) بهما نفس الباقي على 6 و (2002+2003+.....+2022) و (2002+2003+.....+2022¹⁴⁴³) بهما نفس الباقي على 6 و من جهة أخرى نعلم أن : (2002+2003+.....+2022) هو مجموع لأن : الأس 1443 يكتب على الشكل 2n+1 و من جهة أخرى نعلم أن : (2002+2003+.....+2022) هو مجموع متتالية حسابية أساسها 1 أي : (2002+2003+.....+2022)

. (2002+2003+.....+2022)=42252 : و منه

العدد 42252 يقبل القسمة على 2 (عدد زوجي) و يقبل القسمة على 3 (مجموع أرقامه مضاعف L 3) إذن هو يقبل القسمة على 6.

. 0 هو 6 على على 6 هو $(2002^{1443} + 2003^{1443} + + 2022^{1443})$ على 6 هو

 $\cdot (0 \le b < 5)$ و (0 < a < 5) و $N = a \times 5^3 + b \times 5^2 + a \times 5 + b$ و $N = \overline{abab}^5$ (3) لدينا (3)

 $N \equiv -a + b - a + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + b \times (-1)^2 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + a \times (-1)^3 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + a \times (-1)^3 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + a \times (-1)^3 + a \times (-1) + b \begin{bmatrix} 6 \end{bmatrix}$: $a \times (-1)^3 + a \times (-$

(a,b) و نعلم أن a=b $\{0,1,2,3,4\}$ و a=b $\{0,1,2,4\}$ و a=b

a 4 هي b لختار أكبر قيمة لa و هي 4 كذلك أكبر قيمة لb هي b .

N=624 : يكتب في النظام العشري $\sqrt{N=624}$.

حل مقترح للتمرين 02:

 $a_n = 2 \times 5^n + 7 : n \in \mathbb{N}$ لدينا من أجل ڪل

ا نلاحظ أن a_n هو عبارة عن مجموع عددين أحدهما زوجي $\left(2\times 5^n\right)$ و الآخر فردي $\left(7\right)$ إذن : هو فردي .

وهذا ما يدل $a_n = 2(5^n + 3) + 1$ وهذا ما يدل $a_n = 2 \times 5^n + 2 \times 3 + 1$ وهذا ما يدل على أن a_n فردي .

. $5^2 \equiv 1[8]$, $5^1 \equiv 5[8]$, $5^0 \equiv 1[8]$: ب

. $5^n \equiv 5[8]$: من أجل n = 2k + 1 و من أجل n = 2k + 1 و من أجل n = 2k يكون n = 2k

ج-نميزحالتين:

 $a_n \equiv 1[8]:$ عالم: $a_n \equiv 1[8]:$ و منه $2 \times 5^n + 7 \equiv 9[8]:$ أي $2 \times 5^n \equiv 2[8]:$ أي $2 \times 5^n \equiv 1[8]:$ و منه والم

. $\boxed{a_n \equiv 1[8]}$: عند $2 \times 5^n + 7 \equiv 17[8]$: أي $2 \times 5^n \equiv 10[8]$: غند $2 \times 5^n \equiv 5[8]$: فردي فإن n = 2k + 1 عالمت المراجع عند أي ال

. $a_n \equiv 1[8]$: فإن $a_n \equiv 1$ فإن السابقتين نستنتج أنه من أجل كل عدد طبيعي السابقتين نستنتج

. x = 257[1000] : فإن $\begin{cases} x = 1[8] \\ x = 7[125] \end{cases}$ فإن (2 - 257[1000])

3x = 771 [1000]: نجد $\begin{cases} 125x = 125 [1000] \\ 128x = 896 [1000] \end{cases}$ نجد $\begin{cases} 125x = 125 [1000] \\ 8x = 56 [1000] \end{cases}$ نجد $\begin{cases} x = 1[8] \times 125 \\ x = 7[125] \times 8 \end{cases}$:

9x = 313[1000] : 9x = 2313[1000] : أي : 9x = 2313[1000] : نجد نجد : 9x = 2313[1000] و نعلم أن : 9x = 313[1000]

<u>أو كطريقة أخرى :</u>

 $8\alpha \equiv 6ig[125ig]:$ لدينا $8\alpha = 125eta + 6:$ $8\alpha = 125eta + 6:$ $8\alpha + 1 = 125eta + 7:$ ومنه $8\alpha = 125eta + 1:$ $8\alpha = 125\beta + 1:$ $8\alpha = 125\beta + 1:$ الدينا $8\alpha = 125\beta + 1:$

و منه : $4\alpha \equiv -93$ [125] : بالطرح نجد $\alpha \equiv -93$ [125] و منه : $\alpha \equiv -93$ [125] غيث عند : $\alpha \equiv -93$ [125] و منه : $\alpha \equiv -93$ [125] غيث عند : $\alpha \equiv -93$

. x = 257[1000] : وهذا ما يدل على أن x = 1000k + 257

 $. (5^3 = 125)$ مثلا ($5^3 = 125$) مثلا من أجل $n \ge 3$ مثلا يكون $n \ge 3$

. $a_n \equiv 7 \begin{bmatrix} 125 \end{bmatrix}$: فإن $n \geq 3$ فإن $n \geq 3$ أي $a_n \equiv 7 \begin{bmatrix} 125 \end{bmatrix}$ أي $a_n \equiv 7 \begin{bmatrix} 125 \end{bmatrix}$ أذن : من أجل $a_n \equiv 7 \begin{bmatrix} 125 \end{bmatrix}$

. لدينا مما سبق أن $a_n \equiv 257[1000]$ و $a_n \equiv 7[125]$ هو المطلوب $a_n \equiv 7[125]$ هو المطلوب لدينا مما سبق أن $a_n \equiv 7[125]$

. $(2 \times 5^{2020} + 7)(2 \times 5^{2021} + 7) = a_{2020} \times a_{2021} :$ ج-لدینا - ج

 $a_{2020} \times a_{2021} \equiv 66049 igl[1000 igr] :$ و منه $a_{2020} \times a_{2021} \equiv 257^2 igl[1000 igr] :$ أي $a_{2020} \times a_{2021} \equiv 257^2 igl[1000 igr] :$ ومنه $a_{2020} \times a_{2021} \equiv 257 igl[1000 igr] :$ حسب ما سبق لدينا

. $5a_{2n}-a_{2n+1}=28$: إذن

 $\left(2\times5^{2n}
ight)$: فعلم أن $a_{2n}=2\times5^{2n}+7$. لكن $a_{2n}=2\times5^{2n}+7$ و يعلم أن $a_{2n+1}=a_{2n$

: d جايجاد قيم

. $\boxed{d/28}$: ومنه $d/5a_{2n}-a_{2n+1}$: لدينا d/a_{2n+1} و d/a_{2n} : أي أن $PGCD(a_{2n},a_{2n+1})=d$ الدينا a_n : فردي a_n : المكنة هي $d/2a_{2n+1}$ لكن $d/2a_{2n+1}$ و أيضا حسب السؤال (أ) فإن $d/2a_{2n+1}$ فردي بالتالي فحسب الشروط السابقة نستنتج أن $d/2a_{2n+1}$. $d/2a_{2n+1}$

حل مقترح للتمرين 03:

1) أ) بواقى قسمة العدد 3^n على 7

$$3^6 \equiv 1[7]$$
 و $3^5 \equiv 5[7]$ ، $3^4 \equiv 4[7]$ ، $3^3 \equiv 6[7]$ ، $3^2 \equiv 2[7]$ ، $3^1 \equiv 3[7]$ ، $3^0 \equiv 1[7]$: نجد

و نلخصها في الجدول التالي:

قيم العدد الطبيعي n	6 <i>k</i>	6 <i>k</i> +1	6k + 2	6k + 3	6 <i>k</i> + 4	6 <i>k</i> + 5
بواقي قسمة العدد ³ على 7	1	3	2	6	4	5

. $1441 \equiv -1[7]$: (2020 أي $= -3[7] = 2020 \equiv -3[7]$ أي $= 441 \equiv -1[7]$ أي $= 441 \equiv -1[7]$ أي $= 441 \equiv -1[7]$

 $3^{1962} \times n + 4 \times 1 \equiv 0$ [7] : إذن $: (-3)^{1962} \times n + 4 \times (-1)^{1954} \equiv 0$ معناه $: (-3)^{1962} \times n + 4 \times 1441^{1954} \equiv 0$ معناه $: (-3)^{1962} \times n + 4 \times 1441^{1954} \equiv 0$ معناه $: (-3)^{1962} \times n + 4 \times 1441^{1954} \equiv 0$ ومنه $: (-3)^{1962} \times n + 4 \times 1441^{1954} \equiv 0$

: ومنه $N_p = 10^{p-1} + 10^{p-2} + \dots + 10^0$: إذن $N_p = \overline{11.....1}$: ونعلم أيضا $N_p = \overline{11.....1}$: إن لدينا المناء (2

. باخن يكون $N_p \equiv [1]$ هو المطلوب $N_p \equiv [1+1+\dots+1]$ هو المطلوب $N_p \equiv [3]$

. $N_{2020} \equiv 1[3]$: $N_{2020} \equiv 2020[3]$: و منه يكون و منه يكون و $N_p \equiv p[3]$. الدينا و بالتالي باقي قسمة العدد $N_p \equiv N_p$ على 3 هو 1 .

. 2 يقبل القسمة على $[2] = 3^n = 1$ و منه $[2] = 3^n = 1$ و بالتالي فإن العدد $[2] = 3^n = 1$ و منه $[2] = 3^n = 1$

.
$$N_p \equiv (3^{p-1} + 3^{p-2} + \dots + 1)[7]$$
 : إذن $N_p \equiv (3^{p-1} + 3^{p-2} + \dots + 10^{p-1})[7]$ و $N_p \equiv (3^{p-1} + 3^{p-2} + \dots + 10^{p-1})[7]$

1 نلاحظ أن $(3^{p-1}+3^{p-2}+....+3^{p-2})$ هو عبارة عن مجموع لمتتالية هندسية أساسها $3^{p-1}+3^{p-2}+....+1$

.
$$2N_p \equiv (3^p - 1)[7]:$$
 ومنه $N_p \equiv \left(\frac{3^p - 1}{2}\right)[7]:$ أي $N_p \equiv \left(\frac{3^p - 1}{3 - 1}\right)[7]:$ ومنه $N_p \equiv \left(\frac{3^p - 1}{3 - 1}\right)[7]:$

14 يقبل القسمة على 7 ونعلم أن $1 - 3^p$ يقبل القسمة على 2 إذن $1 - 3^p$ يقبل القسمة على 14

.
$$\overline{N_p = 7\alpha}$$
 : ومنه $\frac{3^p-1}{2} = 7\alpha$: نجد على 2 نجد $3^p-1 = 14\alpha$ ومنه أي يكون

. 7 يقبل القسمة على $N_{\scriptscriptstyle p}$ يقبل القسمة على

 $3^{p}-1=14$ و منه $N_{p}=7$ و بالعكس نفرض $N_{p}=7$ يقبل القسمة على 7 أي $N_{p}=7$ أي $N_{p}=7$ و منه $N_{p}=7$ و منه $N_{p}=7$ و بالعكس نفرض $N_{p}=7$ و منه $N_{p}=7$ و م

. 7 يقبل القسمة على 7 إذا وافقط إذا كان العدد N_p يقبل القسمة على 7 النتيجة: العدد N_p

$$2N_{2020} \equiv \left(3^{6k+1}-1\right)\left[7
ight]$$
 ومنه : $N_{2020} = \left(3^{2020}-1\right)\left[7
ight]$ ومنه : $N_{2020} = \left(\frac{3^{2020}-1}{2}\right)\left[7
ight]$ ومنه : $N_{2020} = \left(\frac{3^{2020}-1}{2}\right)\left[7
ight]$

. $N_{2020} \equiv 5[7]$: غن نجد $N_{2020} \equiv 5[7]$ و منه يكون $N_{2020} \equiv 12[7] \equiv 12[7]$ إذن نجد $N_{2020} \equiv 12[7]$ إذن نجد $N_{2020} \equiv 12[7]$ على 7 هو 5 .

: 3 الطرح نجد (6,2) هي حل خاص للمعادلة أي: 3x-7y=4 بالطرح نجد (6,2) هي حل خاص للمعادلة أي: 3x-7y=4 بالطرح نجد (3,2)

(x-6) و 7 أولي مع 3 إذن حسب مبرهنت غـوص فإن (x-6) و 3(x-6) و 3(x-6) و 3(x-6) ، لدينا (x-6)x = 3k + 2: بالتعويض نجد x = 7k + 6 ومنه x = 7k + 6

. $(k \in \mathbb{Z})$ مع $(x,y) = \{(7k+6,3k+2)\}$ عبد المعادلة هي الخادلة المعادلة المعادل

3u+1=7v+5: ب لدينا الجملة: $\begin{cases} a=3u+1 \\ a=7v+5 \end{cases}$ إذن: $\begin{cases} a=1[3] \\ a=5[7] \end{cases}$ ومنه: $\begin{cases} a=1[3] \\ 8a=12[7] \end{cases}$ أي: $\begin{cases} a=1[3] \\ 2a=3[7] \end{cases}$

 $\left(k\in\mathbb{Z}
ight)$ مع $\left[a=21k+19
ight]$: إذن $\left[a=3\left(7k+6\right)+1: \left[u=x=7k+6\right]$ مع $\left[a=21k+19\right]$ مع $\left[a=21k+19\right]$

.
$$N_{2020} = 21k + 19$$
 : وحسب السؤال السابق يكون $N_{2020} \equiv 1[3]$. ج. لدينا $N_{2020} \equiv 5[7]$

19 هو 21 على 21 هو اذن باقى قسمة العدد

 $M = a \times 4^5 + b \times 4^4 + b \times 4^3 + 2 \times 4^2 + a \times 4$ اذن $0 \le b < 4$ و 0 < a < 4 و $0 \le b < 4$ و $0 \le b < 4$ و $0 \le a < 4$ و $0 \le a < 4$

$$4 = -3[7]:$$
 نعلم أن $(a \times 4^5 + b \times 4^4 + b \times 4^3 + 2 \times 4^2 + 4a) - 4 = 0[7]:$ نعلم أن $(a \times 4^5 + b \times 4^4 + b \times 4^3 + 2 \times 4^2 + 4a) - 4 = 0[7]:$ أي يكون $(a \times (-3)^5 + b \times (-3)^4 + b \times (-3)^3 + 2 \times (-3)^2 + 4a) - 4 = 0[7]:$ ومنه نجد

.
$$a+2b = 0[7]$$
 أو $-a-2b = 0[7]$: $a+2b=0[7]$

b و a و نستعين بالجدول التالي لتعيين قيم : إذن يكون a + 2b = 0 إذ يكون

a b	0	1	2	3
1	1	3	5	0
2	2	4	6	1
3	3	5	0	2

 $M = \overline{322230}^4$ و $M = \overline{133210}^4$: بيكون لدينا M = 3756 j M = 2020 : بعد الحساب نجد

حل مقترح للتمرين 04:

حل الجزء الأول:

:7 على العدد 4^n على العدد الطبيعي العدد n بواقي قسمة العدد 4^n على العدد الطبيعي العدد العدد الطبيعي العدد الطبيع العدد العدد العدد الطبيع العدد ال

 $4^3 = 1[7]$ ، $4^2 = 2[7]$ ، $4^1 = 4[7]$ ، $4^0 = 1[7]$: نجد

. $k\in\mathbb{Z}$ مع $4^{3k+2}\equiv 2$ [7] و $4^{3k+1}\equiv 4$ و $4^{3k}\equiv 1$ مع $4^{3k}\equiv 1$

ب الإستنتاج:

. $1441 \equiv -1[7]$. و [7] = 2010 و [7] = 2020 و [7] = 2010 أي : [7] = -4[7] أي : [7] = 2010 الدينا :

(1441 = 3k' + 1) و (2020 = 3k + 1) , $2019^{2020} + 2020^{1441} + 1441^{1962} \equiv (-4)^{2020} + 4^{1441} + (-1)^{1962} [7]$ إذن :

 $2019^{2020} + 2020^{1441} + 1441^{1962} \equiv (4^{3k+1} + 4^{3k'+1} + 1)[7]$:

 $2019^{2020} + 2020^{1441} + 1441^{1962} \equiv 9 \lceil 7 \rceil$: فومنه : $(4+4+1) \lceil 7 \rceil$ ان $(4+4+1) \lceil 7 \rceil$ ان $(4+4+1) \lceil 7 \rceil$ ان $(4+4+1) \lceil 7 \rceil$

. $2019^{2020} + 2020^{1441} + 1441^{1962} = 2[7]$ إذن:

 $\cdot 2:$ هو : $2 \cdot 1019^{2020} + 2020^{1441} + 1441^{1962}$ على 7 هو : 2

ج) تعيين قيم العدد الطبيعي : n

لدينا : [7] و نعلم أن : (6n+6) اي : (5n+6) و نعلم أن : (6n+6) و نعلم أن : (6n+6) (وجي

```
: إذن [7] في تصبح أبذن [7] أي تصبح أبذن أبي أون أبي أبينا أبي أبينا أبي أبينا أبي تصبح أبي تصبح أبي تصبح أبي تصبح
 15n \equiv 12\big[7\big]: 2n \equiv 4\big[7\big]: 3n \equiv 4\big[7\big]: 3n \equiv -3\big[7\big]: 3n \equiv -3\big[7\big]: 3n \equiv -3\big[7\big]: 3n \equiv -3\big[7\big] ومنه 4^{3k+2} + 4^{3k} + 5n \equiv 0\big[7\big]
                                                                                                                                   . k \in \mathbb{N} مع n = 7k + 5
                                                                 U_n = 1 + 4 + 4^2 + \dots + 4^{n-1} : n 2) لدينا من أجل كل عدد طبيعي
                                       اللحظ أن U_n هو مجموع لحدود متتالية هندسية أساسها 4 و عدد الحدود n حدا
                                                                                                     . \left| U_n = \frac{4^n - 1}{3} \right| : ومنه U_n = 1 \times \frac{4^n - 1}{4 - 1} : أي نجد
                                           . أ(4^n-1) أي البرهان : أولا نبين أنه إذا كان U_n مضاعفا لـ 7 فإن أولا نبين أنه إذا كان أي البرهان : أولا نبين أنه إذا كان أي البرهان الماء أولا نبين أنه إذا أي الماء أي الماء
                                              4^{n}-1=7k\times 3: ففرض U_{n}=7k: أي U_{n}=7k: أي U_{n}=7k: أي نفرض U_{n}=7k:
                                                                                                     (1) ..... را ، مضاعف لـ 7 ..... اذن نستنتج أن : (4^n - 1) مضاعف لـ
                                                                        . 7 مضاعف لU_n أن مضاعف لU_n مضاعف لU_n مضاعف ال
       7 بما أن : (4^n-1) مضاعف لـ 7 و نعلم أن : U_n = \frac{4^n-1}{3} أي : مضاعف لـ (4^n-1) مضاعف لـ
                       . 7 مضاعف لـ 7 و نعلم أن : U_n = 7U_n - 3 \times 2U_n ، لدينا : U_n = 7U_n - 3 \times 2U_n ، ونعلم أن
                                                                                                       (2) ..... مضاعف ل(2) مضاعف ل
                           من (1) و (2) نستنتج أن U_n مضاعف لـ 7 إذا وافقط إذا كان (4^n-1) مضاعفا لـ 7
  7 أن القسمة على 7 إذا وافقط إذا كان (4^n-1) قابلا للقسمة على 7 إذا وافقط إذا كان (4^n-1) قابلا للقسمة
                                                                          k \in \mathbb{N} مع n = 3k مع 4^n = 1[7] مع 4^n = 1[7] مع
                                                                                                                                                                     حل الجزء الثاني :
                                                                  v و v و v و v المتخدام خوارزمية إقليدس لتعيين العددين الصحيحين v
                          لدينا: 29-2×14=1 ، 101=72×1+29 إذن: 1=14×2+1 ، 72=29 أي:
                                29-2\times72-2\times72=1 و منه: 29-2\times72+4\times29=1 أي: 29-2(72-29\times2)=1
                          5 \times 101 - 7 \times 72 = 1 . 5 \times 101 - 7 \times 72 = 1 \times 5 \times 101 - 7 \times 72 = 1 . في: 1 = 5 \times 101 - 7 \times 72 = 1
                                                                                                                                                       . (u,v)=(5,7) : إذن
                             PGCD(2020,1440) = 20 و 20 يقسم \mathbb{Z}^2 و 20 يقسم \mathbb{Z}^2 بن المعادلة (E) بالمعادلة
                  101u - 72v = 1: ولدينا (E): 2020x - 1440y = 60 ولدينا والمعادلة
                                                                                                     . (15,21) : إذن الحل الخاص هو (3u,3v) أي :
                                 : بالطرح نجد \begin{cases} 101x - 72y = 3 \\ 101(15) - 72(21) = 3 \end{cases} بالطرح نجد : (E) بالطرح نجد : استنتاج جميع حلول المعادلة
                                                                          . 101(x-15) = 72(y-21) : 01(x-15) = 72(y-21) = 0
x-15 د يقسم (x-15) و 72 أولي مع 101 حسب مبرهنة غوص نستنتج أن (x-15) يقسم 72 يقسم 72 يقسم
                                                    . y = 101k + 21 : بالتعويض نجد x = 27k + 15 و منه x - 15 = 27k
                                                                  S = \{(x, y) = (72k + 15, 101k + 21); k \in \mathbb{Z}\} و عليه الحلول هي :
 \begin{cases} x = 72k + 15 \\ y = 101k + 21 \end{cases} : (E) حل له (x, y) حل له (x, y) جما أن (x, y) حل له (x, y) حل له (x, y) حل له (x, y) على المرينا (x, y)
```

.
$$\begin{cases} 72k + 15 = 0[3].....(1) \\ 101k + 21 = 0[3].....(2) \end{cases}$$
 : أي أن $PGCD(x, y) = 3$

$$PPCM(x,y) = \frac{x \times y}{PGCD(x,y)}$$
 : و نعلم أن $\begin{cases} y = 101k + 21 \\ y = 101(3\alpha) + 21 \end{cases}$ و نعلم أن $\begin{cases} x = 72k + 15 \\ x = 72(3\alpha) + 15 \end{cases}$ إذن $\begin{cases} x = 72k + 15 \\ x = 72(3\alpha) + 15 \end{cases}$

 $(216\alpha+15)(303\alpha+21)=74844:$ ومنه $x \times y = 74844:$ أي $x \times y = 74844:$ أي $x \times y = 74844:$

: غلی نحصل علی ($72\alpha+5$) ($101\alpha+7$) = 8316 أي : $3(72\alpha+5)\times 3(101\alpha+7)=74844$

. $7272\alpha^2 + 1009\alpha - 8281 = 0$: و منه $7272\alpha^2 + 504\alpha + 505\alpha + 35 - 8316 = 0$

. $\boxed{\alpha=1}$: وعليه $\alpha=-\frac{8281}{7272}\not\in\mathbb{Z}$ أو $\alpha=1$ وعليه $\alpha=1$ وعليه الاحظ أن مجموع المعاملات يساوي $\alpha=1$

و منه: x = 231,324 و x = 324 و x = 231 و منه:

حل مقترح للتمرين 05:

x = -3[5]: و نعلم أن x = -3[5]: و منه تصبح x = 3[5]: و نعلم أن x = -3[5]: و منه تصبح x = 3[5]: أي x = 3[5]: مع x = 3[5]: مع x = 3[5]: مع x = 3[5]:

. [x = 5k + 2] . [

y = 4k - 5 ومنه: y = 4k - 5 في 3y = 20k - 25 في 4(5k + 2) - 5y = 33 .

. $(k \in \mathbb{Z})$ مع (x,y) = (5k+2,4k-5) عمد المعادلة هي المعادلة على المعادلة المعادلة على المعادلة المعادلة

4v-5u=33: ب) لدينا $\lambda=5u-4v=33:$ أي $\lambda=5u+55=4v+22:$ أي يكون $\lambda=5u+55=4v+22:$ و منه $\lambda=5u+55=4v+22:$

u = 4k - 5 و v = 5k + 2: لكن حسب رأ) يكون

. $(k\in\mathbb{Z})$ مع $\lambda=5u+55$ مع $\lambda=5(4k-5)+55$ مع $\lambda=5u+55$ لدينا

: |x+y+3| < 27 بحيث (E) لـ (x,y) لحلول

-3 < k < 3 : المينا |k| < 3 : |9k| < 27 : |5k + 2 + 4k - 5 + 3| < 27 : |5k + 2 + 4k - 5 + 3| < 27 : لدينا المينا أي : |5k + 2 + 4k - 5 + 3| < 27

. (x,y)=(-8,-13),(-3,-9),(2,-5),(7,-1),(12,3) : (x,y)=(-8,-13),(-3,-9),(2,-5),(7,-1),(12,3) : (x,y)=(-8,-13),(-3,-9),(-3,-9),(2,-5),(12,3)

 $3_{)}$ أ) بواقي قسمة العدد 5^{n} على 11.

. $5^5 \equiv 1[11]$ و $5^4 \equiv 9[11]$ ، $5^3 \equiv 4[11]$ ، $5^2 \equiv 3[11]$ ، $5^1 \equiv 5[11]$ ، $5^0 \equiv 1[11]$: نجد

و نلخصها في الجدول التالي:

قيم العدد الطبيعي n	5 <i>k</i>	5 <i>k</i> +1	5k + 2	5k + 3	5k + 4
بواقي قسمة العدد ⁷ على 11	1	5	3	4	9

. $10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv 0[11]$. $10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1}$

5n-4=5k+1 : ومنه 5n-4=5n-5+5-4 أي 5n-4=5n-5+5-4 ومنه

5n-1=5k+4: الدينا 5n-1=5n-5+5-1 اي 5n-1=5n-5+5-1 ومنه

$$\begin{split} 10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} &\equiv \left(-1\right)^{10n} + 5^{5k+1} + 5^{5n+2} + 5^{5n+3} + 5^{5k+4} \begin{bmatrix} 11 \end{bmatrix} : \dot{\xi} \\ 10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} &\equiv 1 + 5 + 3 + 4 + 9 \begin{bmatrix} 11 \end{bmatrix} : \dot{\xi} \\ \dot$$

$$5k+2-3\equiv 0igl[11igr]:$$
 و منه $5k+2-5^{5k+2}\equiv 0igl[11igr]:$ و منه $5k+2-5^{5k+2}\equiv 0igl[11igr]:$ و منه $5k+2-3\equiv 0igl[11igr]:$ و منه $5k+2-3\equiv 0igl[11igr]:$

$$k = 9[11]: k = -2[11]: k =$$

. $(0 \le \beta < 4)$ و $(0 < \alpha < 4)$: أي $N = \overline{\alpha \beta \beta \alpha \beta \alpha}^4$: لدينا

$$4 \equiv 1[3]$$
 و نعلم أن $N = \alpha \times 4^5 + \beta \times 4^4 + \beta \times 4^3 + \alpha \times 4^2 + \beta \times 4 + \alpha$ الدينا

.
$$N \equiv 0[3]$$
 ومنه : $N \equiv 3\alpha + 3\beta[3]$: أي $N \equiv \alpha + \beta + \beta + \alpha + \beta + \alpha[3]$ ومنه

. 11 يقبل القسمة على 3 مهما كان α و β و بالتالي يقبل القسمة على 33 إذا قبل القسمة على 4 يقبل القسمة على 3 المائل القسمة على 4 قبل القسمة على 4 قبل القسمة على 4 قبل القسمة العدد α على 11 المائل الما

$$. \begin{cases} 7 = -4[11] \\ 5 = -6[11] \end{cases}$$
 لأن $N = -4\alpha - 6\beta[11] :$

 $2\alpha \equiv -3\beta[11]: 0$ إذن $N \equiv 0$ معناه $N \equiv 0$ أي $N \equiv 0$ أي يكون $N \equiv 0$ أي يكون أي يكون $N \equiv 0$ أ

بواقي القسمة على 11:

α β	0	1	2	3
1	1	8	4	0
2	2	9	5	1
3	3	10	6	2

. $\beta=3$ و $\alpha=1$: إذن يكون : $\alpha-4$ $\beta=0$ [11] و . $\alpha-4$ و منه بالتعويض نجد أن : $\overline{N=2013}$.

كتابة الأستاذ: بلقاسم عبدالرزاق