

Extension-Trapping SNP Assay

Highly stringent annealing conditions (gDNA is biotinylated prior to assay):

FIGURE 1

Reduced Genome Single Base Extension Assay:

FIGURE 2

Complexity Reduction and Multiplex Assay

FIGURE 3

Complexity Reduction and Multiplex Assay

FIGURE 4

Complexity reduction and multiplex Assay

FIGURE 5

Complexity Reduction and Multiplex Assay

FIGURE 6

Solid Phase Locus-Specific Primer Extension

Starting material is immobilized, single stranded universal PCR product. There are several ways to generate this.

Alternate labeling scheme for primer extension (high signal)

FIGURE 8

Simplified QLA-PCR Assay Format

FIGURE 9

FIGURE 10

FIGURE 11

Principle of ICAN method

FIGURE 12

FIGURE 13A

↓ Ligase

↓ Denature

↓ + Primers
+ dNTP*
+ Amplification Enzyme

↓

↓ Detect

FIGURE 13B

SNP Genotyping: 1152 Multiplex; 96 DNAs

FIGURE 14

FIGURE 15

FIGURE 16

● cDNA synthesis on the robot was reproducible and as good as in the manual reaction (at least for the tested genes).

FIGURE 17

	pool 1	pool 2	pool 3	pool 4	pool 5	pool 6	pool 7	pool 8
cat	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07
cre	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00
E1A	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04
GFP	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04
gus	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05
lacZ	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05
luc	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06
neo	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06
bla	3.00E+05							
GST	3.00E+05							

FIGURE 18

Selecting 3 probes that perform well gives better data than averaging all probes.

Matrix 4, 238-plex, 100 ng total RNA background

FIGURE 19

- 3 fold detection range
- Error bars represent the range of intensities of 4 replicates.

FIGURE 20

250 ng of total RNA / sample
Ds DNA hybridization
Error bars represent the range of intensities of 4 replicates.

FIGURE 21

100 ng total RNA background, 12 replicates, 238-plex.
 # all pre-PCR and post-PCR processes identical to SciOps
 # including single stranded product hybridization to arrays.
 # Dynamic range: 2.5 - 3 logs; Precision: better than 3 fold change.

FIGURE 22

- 100.0% data points among 4 replicates within 2 fold change
- 99.8% data points among 4 replicates within 2 fold change

FIGURE 23

FIGURE 24

FIGURE 25

How to Handle Genes Expressed at Different Levels?

Title: Multiplex Nucleic Acid Reactions
Inventors: Chee et al.
Filing Date: Herewith
Attorney Client-Matter No.: 67234-015
(858-535-9001)

FIGURE 26

FIGURE 27