Circuits

Nodal and Mesh analysis

Spring 2022

Analysis

Until now

Each circuit is unique and the analysis was generally a mix between:

- KCL
- KVL
- Ohm's law

Approach

Usually, we need some experience to know when to apply which law. . .

Methodical approach

We are gonna see 2 generic approaches:

- Nodal analysis
- Mesh analysis

Principle

Nodal analysis is based on KCL

Essential node: definition

An essential node is a point at which **3 or more elements** are connected to

Reference node

Nodal analysis will introduce a reference node: voltages will be defined from that node

the earth ground

How many nodes?
How many essential nodes?

Pick a reference node

Usually, the analysis is easier if you choose the node that interconnects the most branches

- mandatory to be an essential node
- classically located at the bottom of the circuit
- use a symbol similar to ground

Place the reference node and label the essential nodes

Strategy

- Express the currents as functions of the voltages at essential nodes
- and then apply KCL at each essential node (excluding the reference node)

System of equations

It should lead to a system of N equations with N unknowns

N is the number of essential nodes (excluding the reference node), and the unknowns are the **voltages at these nodes**

$$i_1 = i_2 + i_8$$

$$i_2 + i_9 = i_3$$

$$-\frac{1}{R_2} \cdot v_1 + \left(\frac{1}{R_3 + R_4} + \frac{1}{R_2}\right) \cdot v_2 = i_9$$

Summary

7 steps to follow:

- Identify essential nodes
- 1 Pick a reference node (essential . hathm , must hranches)
- Second Second
- Apply KCL to these nodes
- Oetermine the currents as functions of nodal voltages
- Solve linear system of equations for the voltages
- Post-process any variable of interest

equations =# essential nides in when

GHAI

Examples

Determine the voltage v_1 if A is (a) $2i_1$; (b) $2v_1$.

Supernode

Problem with nodal analysis

If essential nodes (excluding the reference node) are connected through a branch with a single voltage source (dependent or independent), the current in that branch cannot be expressed simply as a function of node voltages. We can't decide the our rent of the chart branch

Solution

Get rid of the current variable in that branch by applying KCL to a **supernode**

An extra equation is then required (voltage equation for that branch)

Supernode

Supernode 0000

Supernode

Supernode 0000

Examples

Determine the nodal voltages in the circuit.

Principle

Mesh analysis is based on KVL

Mesh: definition

A mesh is a loop that does not enclose another loop

Virtual currents

The strategy for mesh analysis is to consider that some **virtual mesh currents** are flowing through each mesh.

The unknowns for Mesh Analysis are these virtual mesh currents

How many loops? How many meshes? 3

Virtual currents

Labeling the circuit with mesh currents

Meshes = min # equations of Analyzing by KVL

Applying KVL for each mesh

$$\mathbf{v}_0 - R_1 \cdot \mathbf{i}_1 - R_8 \cdot (\mathbf{i}_1 - \mathbf{i}_2) = 0$$

$$R_8 \cdot (i_1 - i_2) - R_2 \cdot i_2 - v_9 = 0$$

$$v_9 - (R_3 + R_4) \cdot i_3 = 0$$

System of equations

- $\blacksquare (R_1 + R_8) \cdot i_1 R_8 \cdot i_2 = v_0 \quad \text{the wikibours inequality}$
- $R_8 \cdot i_1 (R_2 + R_8) \cdot i_2 = v_9$
- $R_3 + R_4 \cdot i_3 = v_9$

Summary

6 steps to follow:

- Check if you have a planar circuit
- Identify and label the virtual currents for each mesh
- Apply KVL to these meshes
- Oetermine the voltages as functions of mesh currents
- Solve linear system of equations for the currents
- Post-process any variable of interest

Planar

上海纽约大学 NYU SHANGHAI

Mesh's a property of planear chruit.

and is underfined for a non-planear circuit.

Planar

Examples

Determine the current i_1 in the circuit.

Supermesh

Problem with mesh analysis

If some mesh has some current source (dependent or independent), the voltage across the source cannot be expressed simply as a function of virtual currents.

Solution

Get rid of the voltage variable for the source by applying KVL to a **supermesh**

An extra equation is then required (source current expressed as a function of virtual currents)

Supermesh

Supermesh

- KVL on supermesh: $R_8 \cdot (i_1 i_2) R_2 \cdot i_2 (R_3 + R_4) \cdot i_3 = 0$
- Extra equation: $i_9 = -i_2 + i_3$

Examples

GHAI

Determine the current i_1 in the circuit.

Circuits - Spring 2022 - Ping-Ping DING