

PH

INSTALLATION RESTORATION PROGRAM PHASE II - CONFIRMATION/QUANTIFICATION

STAGE 1

APPENDICES FOR FINAL REPORT FOR

UNITED STATES AIR FORCE PLANT NO. 59 JOHNSON CITY, NEW YORK

March 1988

Prepared by:

Fred C. Hart Associates, Inc. 530 Fifth Avenue New York, NY 10036

USAF CONTRACT No. F33615-84-D-4404 Delivery Order No. 0007

USAF Technical Program Manager: James W. Better

Prepared For:

Headquarters Air Force Systems Command
Aeronautical Systems Division/Facilities Management (ASD/PMDA)
Wright-Patterson Air Force Base, Ohio 45433-6503

United States Air Force Occupational and Environmental Health Laboratory (USAFOEHL) Brooks Air Force Base, Texas 78235-5501

LIST OF APPENDICES

TITLE

A	Definitions, Nomenclature, Units of Measure	A-1
В	Task Description - AF Statement of Work	B-1
C	Additional Data - Literature Search	C-1
	C.1 Geologic Data	C.1-1 C.2-1
	AFP 59	C.2-1 C.2-4
	Quality Data	C.2-6 C.2-1 C.2-1 C.3-1 C.4-1
D	Well Numbering System	D-1
Ε	Borings and Well Logs	E-1
	E.1 HART - Boring Logs	E.1-1 E.2-1 E.3-1 E.4-1 E.5-1
F	Sampling and Analytical Procedures	F-1
	F.1 Field Sampling Methods	F.1-1 F.2-1
G	Chain of Custody Forms	G-1
H	Analytical Data	H-1
	H.1 PTL Inorganic Analytical Results	H.1-1 H.2-1 H.3-1 H.4-1 H.5-1
•	Surrounding Area	H.6-1
j	References	I-1
J	Biographies of Key Personnel	J-1
K	Technical Operations Plan and Safety Plan	K-1
(CL5119A (01071-0) 0-86007-00)	

APPENDIX A DEFINITIONS, NOMENCLATURES, UNITS OF MEASURE

Accesso For	
NTIS ISAM CONCORD IN THE CONCORD IN THE CONCORD IN CONC	i
Ev E	
Land Autor Code	5
Cont Section	
A	

DEFINITIONS

Most of the following are derived from the AGI (1976) Glossary.

Term	Definition				
Aquifer	Stratum or zone below the surface of the earth capable of producing a significant amount of water as from a well.				
Floodplain	That portion of the river valley, adjacent to the river channel, which is built of sediments during the present regimen of the stream and which is covered with water when the river overflows its banks at flood stages.				
Flow Velocity	The rate a moving fluid travels. Measured in distance travelled over a given period of time.				
Gradient	Slope of a stream or land surface.				
Groundwater	That part of the subsurface water which is in the zone of saturation.				
Hydraulic Conductivity	Ratio of flow velocity to driving force for viscous flow under saturated conditions of a specified liquid in a porous medium.				
Lithology	The physical character of a rock.				
Permeability	The capacity of a rock or sediment for transmitting a fluid. Degree of permeability depends upon the size and shape of the pores, the size and shape of their interconnections, and the extent of the latter. It is measured by the rate at which a fluid of standard viscosity can move a given distance through a given interval of time.				
Piezometric Surface	Surface to which water in an aquifer would rise by hydrostatic pressure.				
Porosity	The ratio of the void volume of a rock or soil to its total volume.				
Recharge	a.) Intake. The processes by which water is absorbed and is added to the zone of saturation, either directly or indirectly by way of another formation.				
	b.) The quantity of water that is added to the zone of saturation.				

<u>DEFINITIONS</u> (CONTINUED)

Term	Definition					
Saturated Thickness	The interval of rock or soil which is saturated with respect to water if all its interstices are filled with water.					
Sediment	Solid material settled from suspension in a liquid.					
Specific Capacity	A constant indicating the discharge expressed as a rate yield per unit of drawdown.					
Specific Yield	The ratio of the volume of water which a rock or soil, after being saturated, will yield by gravity to its own volume.					
Stratigraphy	That branch of geology which deals with the formation, composition, sequence and correlation of the stratified rocks as parts of the earth's crust.					
Transmissivity	The ease with which water moves through a unit width of aquifer.					
Uniformity Coefficient	An expression of variety in sizes of grains that constitutes a granular material.					
Water Table	The upper surface of a zone of saturation, except where that surface is formed by an impermeable body.					
Zone of Saturation	A subsurface zone in which all the interstices are filled with water under pressure greater than that of the atmosphere.					

<u>DEFINITIONS</u> (CONTINUED)

Abbreviation/ Unit of Measure	Definition						
A	Surface cross-section through which water flows, where Q = KIA						
ADI	Acceptable Daily Intake						
AGI	American Geologic Institute						
AWQC	Ambient Water Quality Criteria						
С	coarse (grain size)						
cm	centimeter						
cm/sec	centimeters per second						
COE	United States Army Corps of Engineers						
Cu	Uniformity Coefficient (grain size where D_{60}/D_{10})						
D	Diameter (grain size in millimeters; example: D ₅₀)						
EPA	United States Environmental Protection Agency						
ESE	Environmental Science and Engineering						
et al.	and others						
F	Fine						
ft	feet						
ft/day	feet per day						
ft ² /day	squared feet per day						
GE	General Electric Company						
gpd/ft	gallons per day per foot						

DEFINITIONS (CONTINUED)

Abbreviation/ Unit of Measure	Definition
gpm	gallons per minute
HART	Fred C. Hart Associates, Inc. (USAF consultant)
HSA	hollow stem auger
I	Gradient (slope of the water), where $Q = KIA$; $V = KI/p$
IN	inch
IRP	Installation Restoration Program (of USAF)
K	Permeability, where $Q = KIA$; $V = KI/p$
М	Medium (grain size)
MCLs	Maximum Concentration Level
mg/kg	milligrams per kilogram
mg/l	milligrams per liter
min	minutes
mm	millimeters
msl	mean sea level (feet above)
NA	Not Analyzed
NC	Not Computable
ND	No Data; Not Detected
NIDWS	National Interim Drinking Water Standards
NR	Not Reported
NYSAWQSGVs	New York State Ambient Water Quality Standards and Guidance Values

<u>DEFINITIONS</u> (CONTINUED)

Abbreviation/ Unit of Measure	Definition					
USAFOEHL	USAF Occupational and Environmental Health Laboratory					
p	porosity, where V = KI/p					
р.	page					
pp	pages					
ppb	parts per billion					
PPCLs	Preliminary Protective Concentration Limits					
ppm	parts per million					
PTL	Princeton Testing Laboratory (HART consultant)					
PVC	Polyvinyl chloride (well casing)					
QA	Quality Assurance					
QC	Quality Control					
Sec	Seconds					
тос	Top of Casing					
UCR	Unit Cancer Risk					
ug/gm	micrograms per gram					
ug/1	micrograms per liter					
USAF	United States Air Force					
USAFOEHL	United States Air Force Occupational and Environmental Health Laboratory					
USGS	United States Geological Survey					
V	Velocity					
VOC	Volatile Organic Compound					
(CL5119A) (01071-00-86007-00))					

APPENDIX B

TASK DESCRIPTION - AF STATEMENT OF WORK

INSTALLATION RESTORATION PROGRAM PHASE II - CONFIRMATION/QUANTIFICATION (STAGE 1) Air Force Plant 59, Johnson City, New York Modification*

DESCRIPTION OF WORK

The overall objective of the Installation Restoration Program (IRP) Phase II investigation is to assess potential contamination at past hazardous waste disposal and spill sites on Air Force installations. A series of staged field investigations may be required to meet this objective.

The intention of this staged investigation is to undertake a field and laboratory study at Air Force Plant 59, Johnson City NY: (1) to confirm the presence or absence of contamination within the specified areas of investigation; (2) if possible, to determine the extent and degree of contamination and the potential for migration of those contaminants in the various environmental media; (3) to identify public health and environmental hazards of migrating pollutants based on State or Federal standards for those contaminants; and (4) to delineate additional investigations required beyond this stage to reach the Phase II objectives.

The Phase I IRP Report (mailed under separate cover) incorporates the background and description of the sites/zones for this task. To accomplish g actions: this survey effort, the contractor shall take the following actions:

A. General Requirements

- 1. Conduct a literature search of local hydrogeologic conditions to complement the Phase I Report (mailed under separate cover). Use this data to determine optimum well depth and locations. Include the pertinent literature search information in an appendix of the Final Report. Develop the literature search data using the following guideline:
 - a. Topographic data
 - b. Geologic data
 - (1) Structure
 - (2) Stratigraphy
 - (3) Lithology
 - c. Hydrogeologic data
- (1) Location of all existing and abandoned wells, including observation wells, and springs, natural ponds and seepages, that occur on or off the installation within a one-mile radius of sites to be investigated.

*Modifications are highlighted by underlined material.

- (2) Groundwater table and piezometric contours
- (3) Depth to groundwater
- (4) Surface and groundwater quality
- (5) Recharge, discharge and contributing areas
- (6) Geologic setting, yield and hydrographs of springs and natural seepages
- d. Data on all existing and abandoned wells, to include observation holes, on or off the installation and within a one-mile radius of sites to be investigated
 - (1) Location, depth, diameter, types of wells, and logs
- (2) Static and pumping water levels, hydrographs, yield, and specific capacity
 - (3) Present and projected groundwater development and use
- (4) Corrosion, incrustation, well interference, and similar operation and maintenance problems
 - (5) Observation well networks
 - (6) Existing water sampling sites
 - e. Aquifer data
 - (1) Type, such as unconfined, artesian, or perched
 - (2) Thickness, depths, and formational designation
 - (3) Boundaries
 - (4) Transmissivity, storativity, and permeability
 - (5) Specific retention
 - (6) Discharge and recharge
 - (7) Ground and surface water relationships
 - (8) Aquifer models

f. Climatic data

- (1) Precipitation (total and net)
- (2) Evapotranspiration
- 2. Determine the areal extent of the sites by reviewing historical and current panchromatic and infrared aerial photography.

B. Technical Operations Plan

Immediately after the Notice To Proceed (NTP) for the delivery order, develop a Technical Operations Plan (TOP) based on the technical requirements specified in this task description. (See Sequence No. 19 or 20, Item VI below). Follow the TOP format (mailed under separate cover). Provide the TOP to the USAFOEHL within two weeks of the NTP.

C. Health and Safety

Comply with USAF, OSHA, EPA, state and local health and safety regulations regarding the proposed work effort. Use EPA guidelines for designating the appropriate levels of protection needed at the study sites. Prepare a written Health and Safety Plan for the proposed work effort and coordinate it directly with applicable regulatory agencies prior to commencing field operations. Provide an information copy of the Health and Safety Plan to the USAFOEHL after coordination with regulatory agencies. The Health and Safety Plan is specified in Sequence No. 7, Item VI below.

D. Drilling

- 1. Determine the exact location of all monitor wells <u>and soil borings</u> during the planning/mobilization phase of the field investigation. Consult with plant personnel to minimize disruption of plant activities, to properly position wells with respect to exact site locations, and to avoid underground utilities. Direct the drilling and sampling and maintain a detailed log of the conditions and materials penetrated during the course of the work.
- 2. Monitor the ambient air during well drilling, work with a photo-ionization meter or equivalent organic vapor detector to identify the generation of potentially hazardous and/or toxic vapors or gases. Include air monitoring results in the boring logs. In addition, soil samples shall be collected every 5 feet in the unsaturated zone and continuously in the aquifer and stored in glass containers. The head space of the container is to be monitored with a photoionization meter to determine if drill cuttings and fluids should be drummed. If soil encountered during borehole drilling is suspected to be hazardous because of discoloration, odor, air monitoring or sampling monitoring levels, containerize the soil cuttings in new, unused drums. Enter into the boring logs the depth(s) from which suspected contaminated soil cuttings were collected for containerization. Collect a maximum of 13 composite samples, one from the contents of each drum. Test each composite sample for the parameters specified in Table 1 for drummed materials. Use

RCRA criteria to determine if soil cuttings must be classified as hazardous waste (40 CFR 261.24).

- 3. Groundwater Monitoring Wells
 - a. Installation of Ground Water Monitoring Wells
- (1) Comply with the U.S. EPA Publication 330/9-S1-002, NEIC Manual for Ground Water/Subsurface Investigations at Hazard Waste Sites for monitoring well installation.
- (2) All well drilling, development, purging, sampling methods, and other activity pertaining to this effort must conform to State and other applicable regulatory agency requirements. Cite references in an appendix to the Final Report.
- (3) Install wells at a sufficient depth to collect samples representative of aquifer quality and to intercept contaminants if they are present.
- (4) Avoid, when possible, installing wells in depressions or areas subject to frequent flooding and standing water. If wells must be installed in such areas, design the wells such that standing water does not leak into the top of the casing or cascade down the annular space.
- $\mbox{(5)}$ Drill all monitoring wells using the following specifications:
- (a) Drill wells that are less than 100 feet deep using hollow-stem auger techniques. A center stem, plug, and bit attached to the stem may be inserted into the auger for use while drilling. This will prevent material from entering into the hollow stem of the auger.
- (b) Take lithologic samples at five-foot intervals and prepare borehole log descriptions. Include pilot boring logs and well completion summaries in the Final Report (Item VI, below).
- (c) Drill a maximum of 3 wells. Total footage for all wells in this task shall not exceed 150 linear feet. Refer to the site specific details in Section I.H.
- (d) Construct each well with two-inch inside diameter (I.D.) Schedule 80 PVC casing. Use threaded screw-type joints, glued fittings are not permitted. Flush thread all connections. Screen each well using two-inch I.D. casing having up to 0.020 inch slots; slot size may be smaller based upon borehole geology. Screen material must be the same as that of the casing. Cap the bottom of the screen.
- (e) Screen all wells so as to collect floating contaminants and to allow for yearly fluctuations of the water table. Screen all shallow wells a minimum of fifteen feet.

- (6) Complete all monitoring wells using the following specifications:
- (a) Once the casing is installed, allow the soil formation to collapse around the well screen. Supplement the natural gravel-pack with washed and bagged rounded silica sand or gravel with a grain size distribution compatible with the screen and soil formation. Place the pack from the bottom of the borehole to two feet above the top of the screen. Tremie a five foot bentonite seal (granulated or pellets) above the sand/gravel pack. Ensure the bentonite forms a complete seal. Grout the remainder of the annulus to the land surface with a Type I Portland cement/bentonite slurry.
- (b) Check with the Plant point of contact (POC) to determine whether wells shall be completed flush or project above the ground surface.
- $\underline{2}$ Provide locks for the flush well assemblies. Turn over the lock keys to the Plant POC following completion of the field effort.
- (g) Develop each well as soon as practical after completion with a submersible pump, bailer, and/or airlift method. Continue well development until the discharge water is clear and free of sediment. Measure the rate of water produced, the pH, specific conductance and water temperature during well development and include this information in the final report.
- (d) Determine by survey the elevation of all newly installed monitoring wells to an accuracy of 0.01 foot. Notch the top of the riser casing where well elevations are established. Horizontally locate the new wells to an accuracy of 1.0 foot and record the position on both project and site specific maps. Bench marks used must have previously been established from and are traceable to a USCGS or USCGS survey marker.
- (e) Measure water levels at all monitoring wells as feet below the ground surface or below the top of casing elevation to the nearest 0.01 foot. Report as mean sea level (MSL). Measure static water levels in wells prior to well development and before all well purging which precedes sampling events.

- b. Recommend a candidate well abandonment method(s) or technique(s) which is applicable to the type of monitoring wells installed and geological conditions. Consider that these wells will be abandoned at some future date after the study objectives have been met and there is no longer a need for the wells. The actual process of well abandonment is not a part of this task order. Assure that the recommended method(s) meets state and/or local well abandonment guidelines or regulations.
- c. Complete permits, applications, and other documents which may be required by local and/or State regulatory agencies for the installation of monitor wells. File these documents with appropriate agencies and pay all permitting and filing fees.

4, Well Cleanup

- a. Remove all well cuttings, soil borings, soil samples and waste-water and clean the general area following the completion of each well.
- b. Containerize and accumulate well cuttings, soil borings and wastewater suspected of being contaminated according to paragraph I.D.2 of this order.
- c. Label and transport these drummed wastes to a location designated by the Plant POC.
- d. Transport the drummed wastes determined to be hazardous to a disposal site approved by appropriate state and federal regulatory agencies.
- e. ASD/PMD is the Generator of these hazardous wastes and will sign the manifest and track and report the disposal of these hazardous wastes.

5. Soil Borings

a. Conduct a maximum of 3 soil borings not to exceed a total of 30 linear feet using hollow stem techniques. Secure two split spoon samples at each borehold and analyze these 6 samples plus 2 other samples furnished by Air Force for the parameters specified in Table 1.

E. Decontamination Procedures

- 1. Decontaminate all sampling equipment, including internal components, prior to use and between samples to avoid cross contamination. Wash equipment with a laboratory-grade detergent followed by drinking quality water, solvent (methanol), and distilled water rinses. Allow sufficient time for the solvent to evaporate and the equipment to dry completely before reuse.
- 2. Dedicate for each well the monofilament line or steel wire used to lower sampling equipment into the well; do not use a line in more than one well. Decontaminate the calibrated water level probe for measuring well volume and water level elevation before use in each well.

3. Thoroughly clean and decontaminate the drilling rig and tools before initial use and after each borehole completion. As a minimum, steam clean drill bits after each borehole is installed. Drill from the "least" to the "most" contaminated sites, if possible.

F. Field Sampling

1. Strictly comply with the sampling techniques, maximum holding times, and sample preservation as specified in the following references: Standard Methods for the Examination of Water and Wastewater, 16th Edition (1985), pages 37-44; ASTM, Section 11, Water and Environmental Technology; Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 2nd Edition (USEPA, 1984); Methods for Chemical Analysis of Waters and Wastes, EPA Manual 600/4-79-020, pages xiii to xix (1983); and the Handbook for Sampling and Sample Preservation of Water and Wastewater, EPA Document 600/4-82-029 (1982).

2. Groundwater Monitoring Wells

- a. Allow wells to stabilize after development for a minimum of 10 days before sampling.
- b. Prior to purging the wells, examine the surface of the water table for the presence of hydrocarbons and take water level measurements to the nearest 0.01 foot with respect to the established survey point on top of the well casing. If applicable, measure the thickness of the hydrocarbon layer.
- c. Purge the well using a submersible pump, bailer, or other pertinent method. Purge until a minimum of three well volumes (based on borehole diameter) of water have been displaced and the pH, temperature, specific conductance, color, and odor of the discharge have stabilized using the following criteria: pH \pm 0.1 unit, temperature \pm 0.5°C, and specific conductance \pm 10 µmhos. Include the final measurements in the Results section of the report.
- d. Collect water samples with a Teflon bailer. However, to collect representative aquifer samples where floating hydrocarbons are present, use a "thief sampler" or similar device to minimize the influence of the free product.
- e. If the well(s) cannot be sampled due to well development, well characteristics, or other reason(s), indicate the reason(s) in the report as specified in Item VI below.
- f. Remeasure water levels after sampling and the wells have stabilized.
- 3. Split all water samples. Analyze one set and immediately ship the other set (the same collection day) to:

USAFOEHL/SA Bldg 140 Brooks AFB TX 78235-5501 For all split samples sent to the USAFOEHL, complete an AF Form 2752A "Environmental Sampling Data" and/or an AF Form 2752B "Environmental Sampling Data - Trace Organics", (working copies will be provided under separate cover) with the following information:

- a. Date and time collected
- b. Purpose of sample (analyte and sample group)
- c. Installation name (base)
- d. Sample number (on containers)
- e. Source/location and depth of sample
- f. Contract Task Numbers and Title of Project
- g. Method of collection (bailer, suction pump, air-lift pump, etc.)
 - h. Volumes removed before sample taken (well samples only)
 - i. Special Conditions (use of surrogate standard, etc.)
 - i. Preservatives used
 - k. Collector's name or initials

In addition, label each sample container with a permanent ink pen (laundry marker) to reflect the data in a, b, c, d, j and k above.

- 6. For every 10 field samples collected, take at least one additional sample (a field duplicate) for quality control purposes. Table 1 provides a 10% allowance for these additional analyses. Duplicates shall be indistinguishable from other analytical samples such that personnel performing the analyses are not able to determine which samples are duplicates.
- 7. For every 20 field water samples collected, prepare and submit for analysis one field blank for all parameters analyzed in water. A minimum of one field blank for each parameter is required. Allowances for these additional analyses are included in Table 1.
- 8. Maintain chain-of-custody records for all samples, field blanks, and quality control samples.

G. Chemical Analyses

1. Analyze water and soil samples collected as specified in Section H below, Specific Actions. The analytical parameters are summarized in Table 1 along with the required methods.

- 2. All analyses shall meet the required limits of detection for the applicable EPA method identified in Table 1.
- 3. For those methods which employ gas chromatography (GC) as the analytical technique (E601, E602, SW8010, SW8020) positive confirmation of _dentity is required for all analytes having concentrations higher than the Method Detection Limit (MDL). Conduct positive confirmation by second-column GC; however, gas chromatography/mass spectroscopy (GC/MS) can be used for positive confirmation if the quantity of each analyte to be confirmed is above the detection level of the GC/MS instrument. Analytes which cannot be confirmed will be reported as "Not Detected" in the body of the report, but results of all second-column GC or GC/MS confirmational analyses are to be included in the report appendix along with other raw analytical data. Base the quantification of confirmed analytes on the first-column analysis. The maximum number of second-column confirmational analyses shall not exceed fifty percent (50%) of the actual number of field samples (to include duplicates). The total number of samples for each GC method listed in Table 1 includes this allowance. If GC/MS, or a combination of second-column GC and GC/MS, is used. the total cost of all such analyses for a particular parameter shall not exceed the funding allowed for positive confirmation using only second-column GC.
- 4. All chemical/physical analyses shall conform to state and other applicable Federal and local regulatory agency legal requirements. If a regulatory agency specifies that a type of analysis be performed in a certified laboratory, assure compliance with the requirement and furnish documentation showing laboratory certification with the first analytical data supplied to the USAFOEHL/TS.
- 5. Archive all raw data, including QA/QC and standards data, for not less than five years after project completion. Supply these data to the USAFOEHL/TS upon request.

H. Specific Site Work

In addition to items delineated in I.A. through I.G. above, conduct the following specific actions at the sites listed below:

- 1. Locate three sites, one up gradient and two down gradient of the Air Force Plant, for three new monitoring wells. Drill three soil borings to a maximum depth of 50 feet using a hollow stem 6-inch outside diameter auger. Monitor the bored material continuously using an OVA and record all results. Select two soil samples from each boring, one at the soil and groundwater interface, and another sample from the most contaminated portion as determined by the monitoring of the bored material. Analyze each sample for volatile hydrocarbons, volatile halocarbons, primary metals, petroleum hydrocarbons and cyanide. Take two undisturbed samples from each well and determine falling head permeability. Take two additional samples and determine grain size distribution.
- 2. Using the three bore holes, construct three monitoring wells. Each well to be cased with 2 inch flush joint PVC piping with a 10 foot length screened with a 0.01 inch slot opening.

- 3. Sample all monitoring and production wells and analyze the samples for specific conductivity, temperature, pH, the primary metals (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag), petroleum hydrocarbons and volatile hydrocarbons, volatile halocarbons and cyanide.
- 4. Locate on a plot plan of the facility, the surveyed location of all wells, monitoring and production, referenced to a permanent bench mark at the facility. On the same plot plan show by an evaluation drawing the evaluation of a fixed permanent mark on each well casing relative to mean sea level.
 - 5. Measure and report the water level in all wells.
- 6. Prepare a manual to instruct Air Force designated representative how to measure water levels, how to take water samples, and how to prepare monthly reports of these measurements and the results from the sampling of all wells.

I. Data Review

- 1. Tabulate field and analytical laboratory results, including field and laboratory parameters and QA/QC data, as they become available and incorporate them into the next monthly R&D Status Report (Sequence No.1, Item VI below) forwarded to the USAFOEHL. In addition to the results, report the following:
- a. the time and dates of sample collection, extraction (if applicable) and analysis;
 - b. the method used and Method Detection Limits achieved;
 - c. the chain-of-custody forms;
- d. a cross-reference of laboratory sample numbers and field sample numbers; and
- e. a cross-reference of field sample numbers to wells, boreholes, sites, etc.
- 2. Upon completion of all analyses, tabulate and incorporate all results into an Informal Technical Information Report (Sequence No. 3, Item VI below) and forward the report to USAFOEHL for review a minimum of two weeks prior to submission of the draft report. Provide as a minimum the information specified in I.I.1 above.
- 3. Immediately report to the USAFOEHL Program Manager or his supervisor via telephone, data/results generated during this investigation which indicate a potential health risk (for example, a contaminated drinking water aquifer). Follow the telephone notification with a written notice within three days; attach a copy of the laboratory raw data (i.e., chromatogram).

J. Reporting

- 1. Prepare a draft report delineating all findings of this field investigation and forward it to the USAFOEHL (as specified in Sequence No. 4. Item VI below) for Air Force review and comment. Strictly adhere to the ISAFOEHL report format (mailed under separate cover). The format is an integral part of this delivery order. Draft reports are considered "drafts" only in the sense that they have not been reviewed and approved by Air Force officials. In all other respects, "drafts" must be complete, in the proper format, and free of grammatical and typographical errors. Include as a minimum, discussion of the regional/site specific hydrogeology, well and boring logs, data from water level surveys, groundwater surface and gradient maps, water quality and soil analysis results, available geohydrologic cross sections, and laboratory and field QA/QC information. For State's requiring the field work or technical effort be supervised by a State registered geologist, engineering geologist or professional engineer, insert this information in the report to include registration numbers, certificates and seals (as appropriate).
- 2. Review the Results, Conclusions and Recommendations concerning the sites listed in this task which were investigated during a previous IRP Phase II staged work effort. Use this information and data from previous efforts to establish trends and develop conclusions and recommendations. Integrate all investigative work done at each site to date so the report reflects the total cumulative information for each site studied in this effort.
- 3. In the Results section, include water and soil analytical results and field quality control sample data. Report all internal laboratory quality control data (lab blanks, lab spikes and lab duplicates) and laboratory quality assurance information in an appendix of the report. Also provide second-column confirmation results and quantities, and include which columns were used, instrument operating conditions, and retention times. Summarize in the appendix the specific collection technique, analytical method (Standard Methods, EPA, etc.), holding time, and limit of detection for each analyte.
- 4. Make estimates of the magnitude, extent and direction which detected contaminants are moving. Identify potential environmental consequences of the discovered contaminants based upon State or Federal standards.
- 5. Plot and map all field data collected for each site according to surveyed positions.
- 6. In the Recommendation section, address each site and list them by category:
- a. Category I consists of sites where no further action (including remedial action) is required. Data for these sites are considered sufficient to rule out unacceptable public health or environmental hazards.

- b. Category II sites are those requiring an additional Phase II effort to determine the direction, magnitude, rate of movement and extent of detected contaminants. Identify potential environmental consequences of discovered contamination.
- c. Category III sites are those that will require remedial action (ready for IRP Phase IV). In the recommendations for Category III sites, include any possible influence on sites in Categories I and/or II due to their connection with the same hydrological system. Clearly state any dependency between sites in different categories. Include a list of candidate remedial action alternatives, including Long Term Monitoring (LTM) as remedial action. and the corresponding rationale that should be considered in selecting the remedial action for a given site. List all alternatives that could potentially bring the site into compliance with environmental standards. For contaminants that do not have standards, EPA recommended safe levels for noncarcinogens (Health Advisory or Suggested-No-Adverse-Response Levels) and target levels for carcinogens (1 x 10 cancer risk level) may be used. Unless specifically requested, do not perform any cost analyses, or cost/benefit review for remedial action alternatives. However, in those situations where field survey data indicate immediate corrective action is necessary, present specific, detailed recommendations.

For each category above, summarize the results of field data, environmental or regulatory criteria, or other pertinent information supporting conclusions and recommendations. Reduce this summary information into a table (or tables) and insert it (them) into the text and the Executive Summary.

- 7. Provide cost estimates by line item for future efforts recommended for Category II sites and LTM Category III sites. Submit these estimates concurrently with the approved final technical report in a separate document. Only the cost requirements outlined in Sequence No. 2, Item VI, need be submitted.
- a. For Category II sites, develop detailed site-specific estimates using prioritized costing format (i.e., cost of conducting the required work on: the highest priority site only; the first two highest priority sites only; the first three highest priority sites only; etc., until all required work is discretely costed) for the proposed work effort. The Air Force determines the priority of sites from contractor recommendations. Consider the type of contaminants, their magnitude, the direction and rate of their migration, and their subsequent potential for environmental and health consequences when developing recommendations for site prioritization.
- b. For Category III sites slated for long term monitoring, develop site specific estimates which detail the costs associated with: (1) permanent installation of monitoring wells; (2) ground water sampling interface equipment, including permanent installation of pumps and sampling lines; and (3) four quarterly (1 year period) sample collections and laboratory chemical analyses of ground water, etc.
- 8. Provide an inventory of all on-base wells, to include production, irrigation, monitoring, etc. If the well has been abandoned, note the reason.

9. Reference in an appendix any local, state and/or Federal regulations which require specific well drilling techniques, materials, well development, purging, and sampling methods as specified in this work effort.

K. Meetings

The contractor's project leader shall attend 3 meeting(s) to take place at a time to be specified by the USAFOEHL. Each meeting shall take place at Johnson City, New York, for a duration of one eight-hour day.

II. SITE LOCATION AND DATES:

Air Force Plant 59 Date to be established

III. PLANT SUPPORT:

ASD/PMD will provide Base/Plant Support as stated in Appendix 1, hereto.

- IV. GOVERNMENT FURNISHED PROPERTY: None
- V. GOVERNMENT POINTS OF CONTACT:
 - 1. USAFOEHL Technical Program Manager James W. Better USAFOEHL/TSS Brooks AFB TX 78235-5501 (512) 536-2158 AUTOVON 240-2158/2159 1-800-821-4528
- 2. MAJCOM Monitor
 Col Marlan J. Humerickhouse
 HQ AFSC/SGPB
 Andrews AFB DC 20334-5000
 (301) 981-5235
 AUTOVON 888-5235
- 3. Monitor
 Lt Peter Reynolds
 ASD/PMD
 Wright-Patterson AFB OH 45433-6503
 (513) 255-3076
 AUTOVON 785-3076
- VI. In addition to sequence numbers 1, 5 and 11 listed in Attachment 1 to the contract, and which apply to all orders, the sequence numbers listed below are applicable to this order. Also shown are dates applicable to this order.

Sequence No.	Para No.	Block 10	Block	11	<u>B10</u>	ck 12	2 .	Block 13	Block 1	4
19 or 20 (TOP)*	I.B.	OTIME	86 AU	G 18	86	AUG 2	25		15	
(Health & Safety)	I.C.	OTIME	86 AU	G 18	86	AUG 2	25		3	
3 (Prelim Data)	I.I.2	OTIME	**		**				3	
4 (Tech. Rpt)	I.J.1.	ONE/R	87 MA	R 13	87	APR 1	14	88 MAR 01	***	
2 (cost data)	I.J.7.	OTIME	87 AP	R 14	87	DEC 3	31		****	
14 (Manhour Exp Chart)	end	MONTHLY	86 SE	P 08	86	SEP 1	15	****	3	
15 (Funds Expen Chart)	đ	MONTHLY	86 SE	P 08	86	SEP 1	15	****	3	
#The Technical	Openations	Diana (TOD) name	inad	for	thia	ata	an in dua	within	

^{*}The Technical Operations Plans (TOP) required for this stage is due within two weeks of the Notice to Proceed.

***Two draft reports (25 copies of each) and one final report (50 copies plus the original camera ready copy) are required. Incorporate Air Force comments into the second draft and final reports as specified by the USAFOEHL. Supply the USAFOEHL with an advance copy of the first draft, second draft, and final reports for acceptance prior to distribution. Distribute the remaining 24 copies of each draft report and 49 copies of the final report as specified by the USAFOEHL.

****Submit cost estimates (five copies) in a separately bound document with the Final Report only. Provide estimates for only those sites recommended for additional Phase II work (Category II) and Phase IV, Long Term Monitoring, (Category III).

*****Submit monthly hereafter.

^{**}Upon completion of the total analytical effort and before submission of the first draft report.

TABLE 1 AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

				Number	of Sam		
						2nd Col	
<u>Par</u>	ameters	Method	Water	Soil	QA/QC	Conf	Total
1.	Specific Conductance	E1 20.1	4				4
2.	pH	E150.1	4				4
3.	Temperature	E170.1	4				4
4.	Petroleum hydrocarbons						
	(Water)	E418.1	4		1		5
	(Soil)	SW3550 E418.1		6	1		7
5.	Primary Metals						
-	(Water)	E200.7	4		1		5
	As	E206.2	4		1		
	Hg	E245.1	4		1		5 5 5
	Se	E270.2	4		1		5
	(Soil/Sediment)	EP Toxicity		14	1		<u>15</u>
6.	Halogenated Volatile Or	ganics					
	(Water)	E601	4		2	3 2	<u>9</u>
	(Soil)	<u>SW5030</u> SW8010		6	ī	2	9
7.	Aromatic Volatile Organ	ics					
	(Water)	E602	4		2	3	9
	(Soil)	SW5030 SW8020		6	<u>2</u> 1	3 2	99
8.	Size Distribution			6			6
9.	Permeability			6			6
10.	Cyanide	A41 2D SW901 0	4	6	1		11
11.	Total Chromium	SW3030 SW7191		<u>8</u>			<u>8</u>
12.	12. Drummed materials (a maximum of 12 composite samples to be funded)						
	Primary Metals						
	Soil	EPA Toxicity		12	1		13
	Water	E200.7		12	1		13
	As	E206.2		12	1		13
	Нд	E245.1		12	1		13
	Se	E270.2		12	1		13
	· -						

APPENDIX 1

PLANT SUPPORT, INSTALLATION RESTORATION PROGRAM (IRP) AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

- 1. The plant will provide the following support for services and materials for the IRP at Air Force Plant 59:
- a. Personnel identification badges and vehicle passes and/or entry permits.
 - b. A staging area for storage of equipment and supplies.
- c. A supply of potable water to be used in borehole flushing, equipment cleaning, etc.
- d. An area where drilling equipment can be cleaned and decontaminated. Water and electrical hook-ups will be provided if possible.
- e. Access to a telephone for use by the contractor. Contractor shall pay for all long distance telephone calls made by his personnel from this phone.
- f. Provide engineering site plans, drawings, diagrams, aerial photographs, etc., to be used by the contractor to locate underground utilities affecting the sites to be investigated. The contractor shall return these data items to the plant upon completion of the field work.
- 2. Hazardous wastes generated by the investigation (drill cuttings, cleaning fluids) shall be properly stored at the site or in specified accumulation areas. Determination of the waste to be hazardous and disposal of any hazardous waste shall be done within ninety (90) days of generation (accumulation into barrels). Disposal of waste will be manifested by the Air Force and disposed of by the IRP contractor.

APPENDIX C ADDITIONAL DATA - LITERATURE SEARCH

APPENDIX C.1
GEOLOGIC DATA

APPENDIX C.2
HYDROGEOLOGIC DATA

APPENDIX C.2.1

LOCATIONS AND BORING LOGS FOR WELLS AND BORINGS WITHIN A ONE-MILE RADIUS OF AFP 59

TABLE C.2-1

1LIST OF TEST BORINGS AND WELLS WITHIN A ONE-MILE RADIUS OF AFP 59 AS SHOWN ON FIGURE C.2-1

WELL LOCATIONS

11-24 02-32 03-46 03-49 03-57 04-03 04-09 03-17 26-41

TEST BORING LOCATIONS

05-53b 08-58b 17-06b 59-07b 51-11b 55-12b 56-12b 42-25b 40-35b 43-38b 39-41b 38-46b 39-28b 10-25b 09-09b 11-09b 18-10b 11-11b 14-11b 23-16b 13-23b 13-39b 13-04b 05-16b

¹ Refer to Appendix E.3 for well logs corresponding to these well and boring numbers.

APPENDIX C.2.2 HISTORICAL GROUNDWATER CONTOUR MAPS

APPENDIX C.2.3
HISTORICAL SURFACE AND GROUNDWATER QUALITY DATA

Source: New York DEC, Bulletin 73, 1977.

FIGURE C.2.3-2 Trends in chloride concentration, 1929-69.

Source: New York DEC, Bulletin, 73, 1977.

Table C.2.3-1--Estimated average hardness, chloride concentration, and dissolved-solids concentration in water from several sources.

[All values in milligrams per liter.]

Constituent or property of water	Susquehanna River, approach- ing Binghamton1/	Chenango Rive approaching Binghamton ² /	R: Johns	uehanna lver at son City	Ground water, Clinton Street- Ballpark aquifer ⁵ /
			North bank ³ /	Entire river4/	
Average hardness					
(as CaCo ₃)	55	95	85	75	330
Average chloride concentration	4	4.5	5.5	6.0	35
Average dissolved-sol: concentration	ids				
(residue)	85	125	110	105	400-500

^{1/} Based on daily samples at Conklin, 1955 (Pauszek, 1959, p. 88), adjusted to represent long-term median flow (1931-60).

Source: New York DEC, Bulletin 73, 1977.

^{2/} Based on daily samples at Greene, 1957 (U.S. Geol. Survey, 1960) and miscellaneous samples elsewhere (Pauszek, 1959, p. 92); adjusted to represent long-term median flow (1931-60).

^{3/} Based on intermittent samples at Goudey Station in Johnson City, 1953-68 (unpub.), adjusted to represent long-term median flow (1931-60). Because of sewer outfalls upstream from Goudey Station and because the Chenango and Susquehanna Rivers do not mix thoroughly for several miles below their confluence (McDuffie, 1970), samples collected near the north bank at Goudey Station resemble Chenango River water more closely than Susquehanna River water.

Estimated, assuming complete mixing of Chenango and Susquehanna Rivers and sewage.

^{5/} Based on latest samples analyzed through 1969 from wells not affected by induced recharge; dissolved solids estimated from measured hardness.

Table C.2.3-2

EFFLUENT MONITORING DATA FROM AF PLANT 59 OUTFALL 001

September 1983 through May 1984

Parameter	3/84 Avg	3/84 - 5/84 Avg Hax (1b/day)	12/83 Avg (1b,	3 - 2/84 Max 1b/day)	9/83 - Avg (1b/d	9/83 - 11/83 Avg Max (1b/day)	6/83 - Avg_ (1b/	6/83 - 8/83 Avg Hax (1b/day)	3/83 - 5/83 Avg Hax (1b/day)	5/83 Max ay l	12/82 - 1/83 Avg Hax (kg/day)	- 1/83 Max Iay)	9/82 - 11/82 Avg Max (kg/day)	11/82 Max (day)
Oil and Grease	1	13.4	:	6.5	5.91			30.6*	13.26	26.72*	2.47	5.15		24.27*
Limits	1	15.0	:	15.0	16.7	25.0		25.0	16.7	25.0	7.60			11.40
Total Chromium	1	0.14	;	1.01	.520			1.45	.29	1.02	.13		.10	.70
Limits	1	2.5	;	2.5	1.25	2.5	1.25	2.5	1.25	2.5	.57		.57	1.14
Chromium (Hex)	1	•08	ł	.07	.151*	.501*	•064	.263*	.17*	.58*	* 60.	.25*	*80.	.63*
Limits	1	.26	1	.26	.13		.13	.26	.13	.26	90.		90•	.12
[æad	1	.10	;	ŀ										
Limits	ì	.13	1	.13										
Nickel	1	.02	ł	.07	.125		.10	.43	90.	.17	•03	.08	.02	.07
Limits	1	.13	;	.13	1.25	2.5	1.25	2.5	1.25	2.5	.57	1.14	.57	1.14
Suspended Solids	1	68.6*	:	50.0	28.4		42.96	71.07	32.33	85.10	4.63	12.66	1.97	3.85
Limits	1	55.9	ł	. 6*55	49.9	8.66	49.9	8.66	49.9	8.66	22.70	45.40	22.70	45.40

*Parameter exceeded limits.

Source: CH₂M Hill, 1984.

Table C.2.3-3
OUTFALL 001 EFFLUENT ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS
AF PLANT 59

		Concer	ntrations	(µg/L)	
Date	Aug 82	July 83	2/13/84	2/14/84	2/15/84
1,1,1-trichloroethane	1	2	NDa	NDa	$\mathtt{ND}^\mathtt{a}$
Trichloroethylene (TCE)	24	23	120	47	87
Methylene chloride			105	8	80
Freons			NDb	ND	ирр

Source: CH₂M Hill, 1984.

^{--:} Not analyzed for

 $[\]mbox{ND}^{\mbox{\scriptsize a}}\colon\mbox{None detected; Detertion limit 1.0 $\mu\mbox{g}/\mbox{L}$}$

 $[{]m ND}^{\rm b}$: None detected; Detection limit 5.0 ${
m \mu g/L}$

Table C.2.3-4. -- Partial chemical analyses of water from wells

Coordinates of latitude and longitude shown for each well. strips of latitude, beginning with the southernmost strip. Wells listed from east to west within successive 1-minute See text for detailed explanation. Location:

Well depth: All depths below land surface.

QG Unconsolidated deposits (gravel or sand), Pleistocene age. D Bedrock, Devonian age. Aquifer:

Most analyses by New York State Department of Health; others by various private laboratories and municipal water departments. Source of analyses:

by 4.43. Hardness and alkalinity reported as CaCO3. Total reported as nitrogen (N); to convert to nitrate, multiply Results in milligrams per liter except pH. Nitrate (NO3) solids determined as residue on evaporation. Chemical data:

From: USGS, Bulletin 69, 1972.

Table C.2.3-4. -- Partial chemical analyses of water from wells (Continued)

~	-	~	9	0	320	06	176) (C	2	176	135	250	007					700	3	82				~	•	0 4	•	300	221	192	504	210	140	152	250	210	173
160	2	156	=	* * -	0	~	00	O 4	r	8	*	N :	3	^	4	s .	-			20		~	N	192	278	242	175	176	0 7 -	175	175	134	95	143	162	7 1	134
				m		53	~									9	091					360	•		297					4							
•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•		7.3			7.1		7.3		7.4	7.4		•	•	•		•	•	•	
			2.0		*0.					1.6		•	•	•							\$. C	:	96.			4,1	9.	.64	09.	•	4.	.70	•	•	.20	.24	
																							• 00		10.							10.					
	• 00	60•	∹	•	0.4	. 25	• 20	• 15		.02	~	8	0	-	2.0	00.	0.						.02		• 20		• 03	.10		90.	.03	• 05		.11	~	• 02 <	
				•		•	•	=					~							24					09		•			25					~		
0	28	36		15		02	22	→ <	Э .	12							60	. ·										33	•	•	•	15	•	•	•		0.6
9 9 ~ 9	6 1 13 6	0 1 7 6	9 28 6	7 25 4	6 10 29 6	7 24 4	7 24 4	7 24 4	12 20 4	6 5 23 6	G 10 16 6	6 6 65	9 30 6	e	3 9 9	6 9 10 5	6 7 2 5	4 11 10 4	_	2 22 4	6 5 6 6 2 3 6 6	4 2 2 9	9 4 9	6 12 20 4	7 10 4	12 20 4	10 30 5	•	6 12 19 3	11	28 5	1 6	6 7 31 3	11 4 5	30 5	11 23 6	6 10 11 3
9	0	20	•	182	_	\sim	\sim	so -	-	_	0	~		~	2		•	•			_	-	, ,,,	•	•	,	4		001								9.6
	ELMIRA MATER BO	ELMIRA MATER BD	TOWN OF CONKLIN	STATE HOSPITAL	J ROGFRS SCHOOL	CROWLEY MILK CO	FOWLER DEPT STOR	HAZARD LEWIS	MAZAKO LEWIS	VESTAL W DIST &	ENDICOTT W DEPT	VESTAL W DIST 1			MATER	WATER	MATER	_			HELIDAY INN			~	•				JOHNSON CITY						•		JOHNSON CITY
7649	7649	1649	7549	1549	7550	7554	7554	7558	1258	9 7600	8 7602	5 7603		6 7647 1	7647	7647	7647	764B			6 7550	2 7551 4	8 7554 1	1 7555 1	6 7555 4	7556	0001		6 755				755A 4				7 7558 42
								205	202	205 4	205 4	~	1	205 2		205	202				4206 0	1 400	206 5	206 3	206 3	400	C 007		4206 4								4206 47
	49 7649 22 ELHIRA MATEH BD 46 QG 7 6 66 40 25	49 7649 22 ELMIRA MATEH BD 46 9G 7 6 66 40 .09 7.6 160 25 36 7649 27 ELMIRA MATEH BD 80 9G 1 13 65 28 .09 7.7 152 21	49 7649 22 ELHIRA MATEH BD 46 GG 7 6 66 40 .09 7.6 160 25 36 7649 27 ELHIRA MATEH BD 60 GG 1 13 65 26 .09 7.7 152 21 36 7649 31 ELMIRA MATEH BD 58 GG 1 7 65 36 .09 7.6 156 22	49 7649 22 ELMIRA MATER BD 46 GG 7 6 66 40 .09 7.6 160 25 36 7649 27 ELMIRA MATER BD 60 GG 1 13 65 26 .09 7.7 152 21 36 7649 31 ELMIRA MATER BD 58 0G 1 7 65 36 .09 7.6 156 22 24 7549 47 TDWN QF CONKLIN 46 QG 9 28 66 5.0 .14 5.0 6.3 31 5	49 7649 22 ELWIRA WATEN BD 46 QG 7 6 66 40 .09 7.6 160 152 36 77 152 35 7649 27 ELWIRA WATEN BD 60 QG 1 13 65 28 .09 7.7 152 35 7649 31 ELWIRA WATEN BD 58 QG 1 7 65 35 .09 7.6 156 24 7549 31 ELWIRA WATEN BD 58 QG 9 28 66 5.0 .14 5.0 6.3 7535 144 51 7549 57 STATE HDSPITAL 182 D 7 25 45 4150 < 1.0 9.0 .15 6.3 7535 144	49 7649 22 ELMIRA MATER BD 46 QG 7 6 66 40 .09 7.6 160 2 36 7649 27 ELMIRA MATER BD 60 QG 1 13 65 28 .09 7.7 152 2 36 7649 31 ELMIRA MATER BD 58 QG 1 7 65 36 .09 7.6 156 2 24 7549 47 TOWN OF CONKLIN 46 QG 9 28 66 5.0 .14 5.0 6.3 7535 144 8 51 7549 57 STATE HOSPITAL 182 0 7 25 45 4150 < 1.0 9.0 .15 6.3 7535 144 8	49 7649 22 ELMIRA MATER BD 46 QG 7 6 66 40 .09 7.6 160 2 36 7649 27 ELMIRA MATER BD 60 QG 1 13 65 28 .09 7.7 152 2 36 7649 31 ELMIRA MATER BD 58 QG 1 7 65 36 .09 7.6 1.5 2 2 24 7549 47 TOWN OF CONKLIN 46 QG 9 28 66 5.0 .14 5.0 6.3 7535 144 8 51 7549 57 STATE HOSPITAL 182 0 7 25 45 4150 < 1.0 9.0 .15 6.3 7535 144 8 59 7550 56 J ROGERS SCHOOL 81 QG 10 29 64 74 4.0 .09 6.8 1292 239 37 7554 11 CROMLEY MILK CO 425 0 7 24 45 670 < 1.0 .25 .03 6.5 1292 239	49 7649 22 ELMIRA MATER BD 46 QG 7 6 66 40 .09 7.6 150 2 155 2 160 2 150 2 10 7 2 10	49 7649 22 ELMIRA MATER BD 46 0G 7 6 66 40 .09 7.6 152 28 36 7.7 152 28 36 37 7.7 152 2 2 156 2 1 13 65 2 8 .09 7.7 152 2 2 156 2 1 13 65 3 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 156 2 1 1 156 2 1 1 156 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49 7649 22 ELMIRA MATER BD 46 0G 7 6 66 40 .09 7.7 150 25 21 35 7.7 152 21 35 7.7 152 21 35 7.4 150 25 35 7.4 150 25 35 7.6 1.3 65 26 .09 7.6 1.3 65 26 1.0	49 7649 22 ELMIRA MATER BD 46 GG 7 6 66 40 .09 7.6 150 152 152 160 15	49 7649 22 ELHIRA MATER BD	49 7649 22 ELMIRA MATER BD 46 GG 7 6 66 40 .09 7.7 152 36 7649 27 ELMIRA MATER BD 60 GG 1 13 65 26 .09 7.7 36 7649 27 ELMIRA MATER BD 60 GG 1 13 65 26 .09 7.7 36 7649 31 ELMIRA MATER BD 60 GG 1 1 7 65 36 .09 7.6 36 7649 31 ELMIRA MATER BD 60 GG 1 7 65 36 .09 7.6 36 7549 47 TDMN OF CONKLIN 46 GG 9 26 66 5.0 .09 7.6 37 7549 47 TDMN OF CONKLIN 46 GG 9 26 66 5.0 .09 7.6 37 7559 57 550 56 J ROGFRS SCHOOL 61 GG 10 29 64 74 6.0 .10 .25 .03 6.3 1292 239 7554 11 CROINEY MILK CO 425 0 J 7 24 45 1475 < 1.0 .25 .03 6.5 1292 239 7556 00 HAZARD LEWIS 114 D 12 20 45 600 11 .15 .05 .05 1.6 39 7556 00 HAZARD LEWIS 114 D 12 20 45 600 12 .00 11 .15 .05 1.0 145 145 140 145 140 110 110 110 110 110 110 110 110 110	49 7649 22 ELHIRA MATER BD 46 QG 7 6 66 40 .09 7.7 152 160 26 13 65 26 .09 7.7 152 152 154 154 27 1549 27 ELHIRA MATER BD 60 QG 113 65 26 .09 7.6 159 7.6 156 28 7549 47 TDMN OF CONKLIN 46 QG 9 28 66 5.0 .14 5.0 6.3 7535 144 51 7549 57 STATE HOSPITAL 182 D 7 25 45 4150 < 1.0 9.0 .15 6.3 7535 144 51 7554 51 CROMERY MILK CO 425 D 7 24 45 1475 < 1.0 9.0 .03 7554 11 CROMERY MILK CO 425 D 7 24 45 1475 < 1.0 .20 .03 7.9 2672 183	49 7649 22 ELMIRA MATER BD	49 7649 22 ELMIRA MATER BD	49 7649 22 ELMIRA MATER BD 46 GG 7 6 66 40 .09 7.7 152 28 .09 7.7 152 28 .09 7.7 152 28 .09 7.7 152 28 .09 7.7 152 28 .09 7.7 152 28 7549 27 ELMIRA MATER BD 58 GG 1 7 65 45 415 6 .10 9.0 .14 5.0 6.3 7535 144 5.1 754 11 CROMEY MILK CO 475 0 7 24 45 415 6 1.0 9.0 .15 .03 7535 144 5.2 7554 11 CROMEY MILK CO 475 0 7 24 45 1475 6 1.0 .25 .03 7.9 2672 183 779 7554 11 CROMEY MILK CO 475 0 7 24 45 1475 6 1.0 .25 .03 7.9 2672 183 779 7554 11 CROMEY MILK CO 475 0 7 24 45 1475 6 1.0 .25 .03 7.9 2672 183 779 779 2672 183 779 779 779 2672 183 779 779 779 779 779 779 779 779 779 77	49 7449 22 ELHIRA MATER BD 46 0G 7 6 66 40 .09 7.7 152 152 156 156 156 156 156 156 156 156 156 156	49 7649 22 ELHIRA MATER BD	49 7649 22 ELHIRA MATER BD	49 7649 22 ELMIRA MATER BD	99 7649 22 ELHIRA WATER BD 60 GG 7 6 66 40 .09 15 7649 27 ELHIRA WATER BD 60 GG 17 6 56 40 .09 15 7649 27 ELHIRA WATER BD 60 GG 17 65 36 .09 15 7649 27 ELHIRA WATER BD 60 GG 17 65 36 .09 17 764 27 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 27 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 27 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 7 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 7 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 7 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 7 TOWN OF CONKLIN 46 GG 9 26 66 5.0 17 64 7 TOWN OF CONKLIN 46 GG 9 26 66 5 GG 9 10 66 6 10 6	204 49 7649 22 ELHIRA MATER BD	9 7649 22 ELHIRA MATER BD	205 24 7649 22 ELMIRA MATER BD 60 06 1 7 65 6 6 6 6 0 09 775 213 152 213 152 213 154 275 8 47 TOWN OF CONTRICT BD 58 06 1 7 65 35 0 09 775 777 777 777 778 778 778 778 778 778	205 24 7649 22 ELMIRA MAITH BD	205 51 7549 22 ELHHRA MATER BD	205 15 7449 27 ELHIRA MATER BD	205 15 7449 22 ELHIRA MATER BD 60 0 0 1 1 3 6 5 2 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	204 15 7449 22 ELHIRA MATER BD 60 66 1 13 6 6 6 6 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	204 16 7649 22 ELHIRA MATER BD 00 06 11 7 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	205 51 7549 27 ELHIRA MATER BD 60 066 11 865 28	204 27 549 27 ELHIRA MATER BD 00 06 1 13 65 20 109 109 109 109 109 109 109 109 109 10	201 2 7549 27 ELHIRA MATER BD	204 5 7449 22 ELHIRA MATER 8D	204 5 7449 22 ELHIRA MATER 80	201 2 7449 22 ELNIRA MATER 80

Table C.2.3-4. -- Partial chemical analyses of water from wells (Continued)

TOTAL HARD- NESS	176 208 156	190 230	300 270 300 198 171	212 230 588 588	128 42 292 324 250	252 268 260 260 260	186 132 150 150	176 300 330 320 330	320 280 270 210 232
101AL ALKAL- INITY	155 148 135	9 ~	210 234 213 155	170 165 637 594	81 233 254 218	232 216 240 262	13.26 9.56 9.55 9.55	152 174 221 191 237	231 202 195 197 170
TUTAL SULTOS			204	421 712 798 835					
Ŧ	7.3	7.9	7.7.	7.7 6.5 6.5	09447	7.77	7.77.10.7	4444	7.7.7 7.5.3 7.5.0
NITRATE (N)	1.2 .70 .16		1.1	* \	0		2.0	2.6 2.0 30 .20	13002
MAN GAN ESE				• 05	.00	.01	600	90.	00.
180N (FE)	20.	• 09	N 0 0 0 0 0			2.2	2.5	2.5	.20 .20 .28
SUL- FATE (504)			•	21					
CHLOR- IVE (CL)	-8-		9 0 0 V	59 28 120 140 115	24 32 36 10	13 23 52	7.0 10 21 14 9.6	7.8 40 37 23	29 29 23 23
DATE OF COLLECTION	3 10 54 12 19 67 10 17 63	20 6	1 26 63 10 1 63 8 23 66 8 26 42 2 22 63	7 13 45 11 18 60 6 10 67 6 15 67 6 21 67	2 26 64 49 9 22 58 7 60 6 15 61	7 31 61 7 27 65 7 20 65 4 60	3 21 66 4 12 66 2 15 65 7 5 50 7 31 30	11 13 12 10 66 60 60 60 60 56	8 22 56 8 56 7 7 26 56 9 14 49
AQUI FER	9	9	9 9	9 9 9 9 9 9	99999	5 5 5 6	99999	g g g	0 0 0 0
MELL DEPTH CFT)	113	136	6 S S	159	61 101 98 89	~ o.	4 4 4 60 4 60 60 60	98 101 101	1117 115 109
OWNER	VESTAL M DIST &	10 #	ENDICOTT W DEPT ENDICOTT W DEPT	1 B M CORP Endicott m dept Broome County	DWEGO WATER WKS OWEGO WATER WKS ELHIRA WATER BO ELMIRA MATER BO GENERAL ELEC CO	GÉNERAL ELEC CO Hardingé bros	CORNING GLASS CORNING GLASS ADOISON VILLAGE ADDISON VILLAGE JOHNSON CITY	JOHNSON CITY Johnson City Johnson City	JOHNSON CITY JOHNSON CITY JOHNSON CITY JOHNSON CITY
LOCATION	7559 50	7559 5	7601 01 7601 07	7602 09 7604 55 7604 56	7616 26 7616 27 7648 10 7649 12	0 7649 11 5 7649 17	7708 38 7708 39 7713 50 7714 12	7557 32 7557 46 7557 49	7557 57 7558 03 7558 09 7558 17
	£208 37		4206 06 4206 00	4206 01 4206 01 4206 01	4206 42 4206 42 4206 42 4206 42	4206 40 4206 55	4206 58 4206 48 4206 22 4206 19	4207 02 4207 03 4207 03	4207 03 4207 04 4207 04 4207 03

APPENDIX C.2.4 RECHARGE/DISCHARGE DATA

-- Pumpage from the Clinton Street-Ballpark aquifer, 1930-67. Solid lines indicate pumpage according to records of well owners; dashed lines are estimates. Pumpages shown for GAP wells near Charles Street are actual pumpage less any artificial recharge. Figure C.2.4-1

Source: New York DEC, Bulletin 73, 1977.

[In millions of gallons. Horizontal lines in first column indicate groups of wells whose pumpage was combined when flow lines were drawn and fecharge was computed. Table C.2.4-1 .-Pumpage and artificial recharge, Clinton Street-Ballpark aquifer, September 1958 to October 1968

Point of withdraws	Source of		•	0 000000	20 (11)	d belon	10000	Ve at em	Pummare or (10 preceded by messive siem) recharse		
or racharas 1/	data 2/	1958 3/	1959	1960	1961	1962	1961	7961	1965	1966	19 1961
Int Business Machines											
Country Club wells	E2		=	=	29	53	53	\$	29	53	23
Total pumpage	×	519	1784	1343	1344	1348	1318	1295	1325	1377	1068
rumpage derived from	G	270	933	201	208	510	867	964	201	220	405
Johnson City well 5	E.	;	9	22	136	8	9	153	109	8	1113
Johnson City wells											
Vell 4	¥:	;	;	2	97	2	25	1	1	;	;
Well 6	I =	! ^	} {	\$? £	95	<u> </u>	984	2 5	7,	23	3 ;
Pagoda vell	: =	3	} ;	164	H	8	3	3 1	E 1	6 1	<u> </u>
CAF Camera Plant well	ea.	-	~	~	-		-	•	•		^
Fairbanks Co. well		۱,	•	•	•	•	•	•	•	•	• •
GAF Charles Street wells Pumpage, wells 3, 5	•	1\$1	470	780	625	479	135	435	694	817	327.
Artificial recharge	•	21-13	-250	-240	-193	89 -	-110	-55	-28	9	-54
Titchener Co. well 6/	13	•	%	36	2	8	2	2	*	2	28
GAF well 10	•	ł	183	224	92	197	216	198	36	92	~
CAF vell 6	•	<u>5</u> / 20	8	Ç	62	120	115	105	65	2	124
GAF well 9	0	\$7 168	643	669	104	383	967	377	376	397	345
GAF well 8	0 =	5/ 136	443	417	570	390	320	419	248	220	220
GAF well 7		ş/ 125	454	2 06,	\$ 57		. 53	Ş	, š	674	7 9 2
1/ Wells arranged from west to east E estimated E estimated from pump rated capacity and owner's recollection of hours normally operated E2 estimated from pump rated capacity and owner's recollection of hours normally operated multiplied by 0.8 to allow for recharge from irrigation return water and for days not used; because of rain E3 estimated as 32 percent of total pumpage for 1958-59; 37 percent thereafter; based on flow lines in plates 7 and 8. Remainder of pumpage originates in or beyond Susquehanna River	mp rated cap ours normall mp rated cap ours normall to allow fo vater and f ercent of to nt thereafter and 8. Rem	acity and own y operated secity and own secity and own is recharge if or days not tall pumpage it is besed on elanna River	ner's ner's ros for for spage	9	(continued) H setimated from test of p from count's record of h measured by propeller so extiction in pigeline striction in pigeline settlerion in pigeline September 35 to December 31 January 1 to October 6 Estimated as 25 percent of total till of pumpage combined will of recharge	ntinued) setameted from test of pump capacity from owner's record of hours operated measured by propeller meter measured by pressure drop across constitction in pipeline from across conservation of the following is to December 31 meany 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated annuary 1 to Occober 6 imated annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated as 25 percent of measured annuary 1 to Occober 6 imated annuary 1 to Occober 7 imated annuary 1 to Occober 6 imated annuary 1 to O	rest of cord of cord of peller cepting for the cepting for the cepting	pump ca hours of sector rop acro 31 f messur sith GAF	(continued) H setimated from test of pump capacity and from owner's record of hours operated H measured by propeller meter O messured by pressure drop across constriction in pipeline striction in pipeline Sptember 25 to December 31 January 1 to October 6 Estimated as 25 percent of measured annual total Half of pumpage combined with GAF wells 3 and 5, half with GAF wells 6 and 10 for computation of recharge	nd and tation	

Source: New York DEC, Bulletin 73, 1977.

APPENDIX C.2.5 WATER LEVEL AND PUMPAGE DATA

the lowest since records began in 1947, the water-level decline Johnson City production wells 1, 2, and 3, whose average annual production rate decreased 25 percent after 1959. Therefore, end of the Clinton Street-Ballpark aquifer (lat 42⁰06'57 N." although water levels during the drought of the 1960's were in Johnson City, 1956-1967. This well is near the west Figure C.2.5-1 --Water levels in U.S. Geological Survey observation well and is approximately 1,000 feet (300 meters) north of here was not as great as farther east in the aquifer. separating the aquifer from the Susquehanna River, long 75058'35 W.") where there is no ridge of till

Source: New York DEC, Bulletin 73, 1977.

Table C. 2.5-1 -- Halle in which water-level messurement could be made as of 1971

[Wells listed from east to west within successive 1-minute attips of latitude. Depths, logs, and other specifications of these wells are given in Rendell (1972).]

Main Identification Marcife Control of Marc		1				Measuring point	int		
	3	1 1dent1	fication.			Elevetion			
Second S	•	and locar.	/ 40			above (4) or		Source of	
154 42 Cutler Ice Co. Top of casing, in pit -2.6 840 TM 45 0.8. Gaol. Survey Top 2-inch hole in plug 0 845 TM 46 40. Top threads on 6-inch caping 4.9 840.5 USGS 46 40. Top threads on 6-inch caping 7.9 840.5 USGS 47 40. Top threads on 6-inch caping 6.0 841.9 840.5 50 40. Top of 2.5-inch casing 7.1 842.8 40. 51 40. Top of 2.5-inch casing 7.1 842.8 40. 52 40. Top of 4-inch caping 7.2 837.5 40. 53 60. Top of 6-inch caping 7.3 837.5 40. 54 60. Top of 1.25-inch casing 7.3 837.5 40. 55 50. Gaol. Survey Top of 1-in. plate atop 7.7 837.5 40. 56 60. Top of 1-in. plate atop 7.7 837.5 40. 57 60. Gaol. Survey Top of 1-in. plate atop 7.7 837.5 40. 58 60. Top of 1-in. plate atop 7.7 837.5 40. 59 60. Top of 1-in. plate atop 7.7 837.5 40. 50 60. Survey Top of 1-in. plate atop 7.7 837.5 40. 51 U.S. Gaol. Survey Top of 6-inch caping 7.2 840.5 40. 52 60. Survey Top of 6-inch caping 8.0 837.9 40. 53 60. Top of 2-inch casing, in 7.8 832.2 40. 54 60. Top of 2-inch caping 8.0 837.8 40. 55 60. Survey Top of 6-inch caping 9.0 837.8 40. 56 60. Survey Top of 6-inch caping 9.0 837.9 40.		1000				helou(+) or		Source of	
1206 34 7544 42 Cutler lee Co. Top of casing, in pit (see) 170 15 45 10.5. Gaol. Survey Top 2-fach hole in plug 0 845 TM acceptance of clack coupling +.9 840.5 USCS COUPLING Casing +.1 842.8 USCS COUPLING +.1 842.8 USCS COUPLING +.1 842.8 USCS COUPLING +.1 842.8 USCS COUPLING +.2 837.5 USC			-			/ 1000			
15 45 62 Cutler Ice Co. Top of casing, in pit -2.6 640 TM 15 45 0.8. Gaol. Survey Top 2-fatch hole is plug 0 645 TM 21 46 40. Top of e-fatch casing 1.18 642.8 Go. 22 46 40. Top of e-fatch coupling 1.18 642.8 Go. 23 50 40. Top of e-fatch coupling 1.1 642.8 Go. 24 48 40. Top of 2.5-inch casing 1.1 642.8 Go. 25 50 40. Top of e-fatch coupling 0 641.9 40. 26 51 CAP Corp. Top of 1.25-inch casing 1.1 642.8 Go. 27 51 CAP Corp. Top of 1.1 m plate stop 1.2 610.3 Go. 28 51 U.S. Gaol. Survey Top of 1-in. plate stop 1.2 610.3 Go. 29 51 U.S. Gaol. Survey Top of e-inch coupling 0 617.9 Go. 29 51 U.S. Gaol. Survey Top of e-inch coupling 0 617.9 Go. 20 11 1355 OS CAF Corp. Top of e-inch coupling 0 617.9 Go. 21 22 52 U.S. Gaol. Survey Top of e-inch coupling 0 617.9 Go. 22 21 1355 OS CAF Corp. Top of e-inch coupling 0 617.9 Go. 23 24 10 10 10 10 10 10 10 10 10 10 10 10 10	de	- 1	- 1	Domer_/	mare the tou	(teet)	(Jeet)	Bent /	Description of well location; remarks
15 45 0.5. Geol. Survey Top 2-farch hole in plug 0 645 TH atop 6-farch casing 1 1 45 40. Top of 6-farch coupling 1 1 842.8 40. Top of 6-farch coupling 1 1 842.8 40. Top of 2.5-farch casing 1 1 1 842.8 40. Top of 2.5-farch casing 1 1 1 842.8 40. Top of 2.5-farch casing 1 1 1 842.8 40. Top of 2.5-farch casing 1 1 842.9 40. Top of 2.5-farch casing 1 1 842.0 40. Top of 6-farch coupling 0 8136.3 40. Top of 6-farch coupling 1 1 842.0 40. Top of 1.25-farch casing 1 1 842.0 40. Top of 1.25-farch casing 1 1 842.0 40. Top of 1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4206 34	7554 42		Top of cesing, in pit	-2.6	940	¥	Pumphouse slongeide Cutler Ice Co. building.
13 45 U.S. Geol. Survey Top effective casing 4.9 640.5 Th archer casing 4.9 640.5 USCS 227 45 60. Top of 6-inch coupling 4.9 640.5 USCS coopping Top of 1.5-inch casing 4.1.1 842.8 do. Top of 1.5-inch casing 4.1.1 842.8 do. Top of 6-inch coupling 0 641.9 do. Top of 6-inch coupling 0 641.9 do. Top of 6-inch coupling 7.1 842.0 do. Top of 1.25-inch casing 4.2 837.5 do. Top of 1.40. Top of					•				Pumped continuously.
11 46 40. Top of 6-inch coupling 4.19 840.5 USGS		22			Top 2-tuch hole in pl		945	£	I feet north of base of railroad track support
11 1355 OS GAF Corp. 12 13 13		7			Ton of fellock country		\$ 070	Here	the fact from the day and and 300 Second
27		1 7			doctor and the second and	•		7	The of Auto habital 288 Front Creater 2 1235
Top of 1.5-inch casing +1.1 842.8 do. 10 48 do. Top of 6-inch coupling 0 641.9 do. 11 55 50 do. Top of 6-inch coupling 0 641.9 do. 12 51 51 do. Top of 6-inch coupling +1.2 842.0 do. 13 51 CAF Corp. Top of 1.25-inch casing +2.2 837.5 do. 14 13 52 U.S. Gaol. Survay Top of 1.25-inch ain plug +2 840.3 do. 15 51 U.S. Gaol. Survay Top of 6-inch coupling 0 837.9 do. 16 13 13 55 O.S. Gal. Survay Top of 6-inch coupling 0 837.9 do. 16 13 14 155 OS CAF Corp. Top of 24-inch casing. 10 -6.9 , 836.4 do. 17 10 30 18 do. Top of casing. 10 -6.9 , 836.4 do. 18 10 10 10 10 10 10 10 10 10 10 10 10 10		3			constine			;	TOP OF BARE, DESIGN AND STREET, STREET, STREET
10 48 do. Top of 6-inch coupling 0 641.9 do. 15 50 do. Top of 6-inch coupling + .1 842.0 do. 17 51 do. Top of 6-inch coupling + .2 837.5 do. 18 51 do. Top of 1.25-inch casing + .2 837.5 do. 19 51 CAF Corp. Top of 1.25-inch casing + .2 837.5 do. 10 52 53 U.S. Gaol. Survey Top of 1.4 m plus + .2 840.3 do. 11 57 CAF Corp. Top of casing, in -8.4 833.4 do. 12 53 U.S. Gaol. Survey Top of 6-inch coupling 0 837.9 do. 10 30 18 do. Top of casing, in -6.9 836.4 do. 11 12 10 Gaol. Survey Top of casing, in -6.9 836.4 do. 12 13 Ao. Top of casing, in -8.3 831.2 do. 14 15 16 19 E. H. Titchemer, -8.8 839.2 do. 15 19 10.5. Gaol. Survey Top of casing, in -8.3 831.2 do. 17 18 19 10.5. Gaol. Survey Top of casing, in -8.3 831.2 do. 18 19 10.5. Gaol. Survey Top of casing, in -8.3 831.2 do. 19 10 10 10 10 10 10 10					Top of 2.5-inch casin		842.8	do.	
25 50 do. Top of 2.5-inch casing +.1 842.0 do. 27 51 do. Top of 6-inch coupling 0 816.3 do. 29 51 GAF Corp. Top of 1.25-inch casing +.2 817.5 do. 29 51 GAF Corp. Top of 1-in. plate atop -7.5 812.5 do. 20 51 GAF Corp. Top of 1-in. plate atop -7.5 812.5 do. 20 31 57 GAF Corp. Top of casing, in callar +2 840.5 do. 20 31 755 O5 GAF Corp. Top of casing, in callar -6.9 817.9 do. 30 18 do. Top of casing, in callar -6.9 818.4 do. 40 19 E. H. Titchaner, Top of casing, in callar -6.9 819.2 do. 41 19 E. H. Titchaner, Top of casing, in callar -6.9 855.8 do. 42 10 U.S. Geol. Survey Top of casing, in callar -6.9 855.8 do. 43 10 U.S. Geol. Survey Top of casing, in callar -6.9 855.8 do. 44 16 19 E. H. Titchaner, Top 9-inch hole in plug 0 851.9 do. 45 10 U.S. Geol. Survey Top of casing, in callar -6.9 855.8 do. 46 170 20 U.S. Geol. Survey Top 9-inch hole in plug 0 851.9 do. 47 20 U.S. Geol. Survey Top 9-inch hole in plug 0 851.9 do. 48 20 U.S. Geol. Survey Top 9-inch hole in plug 0 851.9 do. 49 20 U.S. Geol. Survey Top 9-inch hole in plug 0 851.9 do.		30			Top of 6-inch couplin		841.9	do.	South property line 294 Front Street,
15 50 do. Top of 2.5-inch casing + .1 842.0 do. 27 51 do. Top of 6-inch coupling 0 835.3 do. 19 51 GAF Corp. Top of 1.25-inch casing + .2 837.5 do. 10 52 51 GAF Corp. Top of 1-in. plate atop -7.5 832.5 do. 11 52 52 U.S. Gaol. Survey Top 2-inch hole in plug +2 840.5 do. 26 57 U.S. Gaol. Survey Top of casing, in -8.4 833.4 do. 27 51 U.S. Gaol. Survey Top of casing, in -6.9, 836.4 do. 28 51 U.S. Gaol. Survey Top of casing, in -6.9, 836.4 do. 29 31 7355 OS GAF Corp. Top of casing, in -6.9, 836.4 do. 20 10 13 do. Top of casing, in -8.8 829.2 do. 20 11 12 E. H. Titchaner, callar							•		feet from atreet;
25 50 do. Top of 6-inch coupling 0 836.3 do. 27 51 do. Top of 1.25-inch casing + .2 837.5 do. 79 51 GAF Corp. Top of 1.25-inch casing + .2 837.5 do. 70 61 1.25-inch casing + .2 837.5 do. 70 61 1.25-inch casing + .2 837.5 do. 70 62 1.25-inch casing + .2 837.5 do. 70 70 71 10 10 10 10 10 10 10 10 10 10 10 10 10					Top of 2.5-inch cenin		842.0	do.	
127 51 do. Top of 4-inch coupling + .25 237.5 do. 129 51 GAF Corp. Top of 1-in. place atop -7.5 672.5 do. 120 52 51 U.S. Geol. Survey Top 2-inch hole in plug 42 640.5 do. 120 52 U.S. Geol. Survey Top 2-inch hole in plug 42 640.5 do. 120 52 U.S. Geol. Survey Top 6 casing, in callar casing, in callar do. 120 51 U.S. Geol. Survey Top of casing, in -6.9 , 836.4 do. 120 30 18 do. Top of casing, in -6.9 , 836.4 do. 121 13 do. Top of casing, in -6.9 , 836.4 do. 122 14 15 do. Top of casing, in -8.8 829.2 do. 123 15 15 00 do. Top of casing, in -8.8 829.2 do. 124 15 15 do. Top of casing, in -8.8 829.2 do. 125 16 19 E. H. Titchener, callar casing. 126 19 E. H. Titchener, callar casing. 127 20 U.S. Geol. Survey Top of 6-inch coupling 0 835.8 do. 128 10 10.5. Geol. Survey Top of 6-inch casing.		\$			Top of 6-inch couplin		836.3	.	
Top of 1.25-inch casing + .2 837.5 do. 12 51 GAF Corp. Top of 1-in. plate atop -7.5 832.5 do. 12 52 U.S. Gaol. Survey Top 2-inch hole in plug +2 840.5 do. 26 31 17 GAF Corp. Top of casing, in callar 26 57 U.S. Gaol. Survey Top of casing, in -6.9 , 835.4 do. 27 10 30 18 do. Top of 24-inch casing, in callar 28 31 7555 05 GAF Corp. Top of casing, in callar 29 31 7555 05 GAF Corp. Top of casing, in callar 20 10 30 18 do. Top of casing, in -8.8 829.2 do. 21 20 10.5. Gaol. Survey Top of 6-inch coupling 0 855.8 do. 29 20 do. Top 3-inch hole in plug 0 851.9 do. 20 20 40. Top 3-inch hole in plug 0 851.9 do.		23		do.	Top of 6-inch couplin		837.5	do.	South property line 266 Front Street,
7 29 51 GAF Corp. Top of 1-in. plate atop -7.5 532.5 do. casing, in callar atop barrey Top 2-inch hole in plug +2 840.5 do. casing, low side atop barre 6-inch casing, low side 131 57 GAF Corp. Top of casing, in callar 1355 05 GAF Corp. Top of casing, in -6.9, 836.4 do. callar 13 do. Top of 24-inch casing, 10 -6.9, 836.4 do. callar 10 30 18 do. Top of casing, in -8.8 829.2 do. callar 17 20 U.S. Geol. Survey Top of 6-inch coupling 0 835.8 do. 17 20 U.S. Geol. Survey Top of 6-inch casing 0 835.9 do. callar 17 20 U.S. Geol. Survey Top of 6-inch casing 0 835.9 do. callar 17 20 U.S. Geol. Survey Top of 6-inch casing 0 835.9 do. callar 18 20 do. casing 19 g. H. Titchaner, 19 casing 19					Top of 1.25-inch cant		837.5	.	100 1661 1108 611661 4 WELLS
12 55 U.S. Geol. Survey Top of l-in. plate atop -7.5 832.5 do. casing, in cellar 42 840.5 do. scop bant 6-inch callar 57 GAF Corp. Top of casing, in cellar 58.4 833.4 do. callar 57 U.S. Geol. Survey Top of casing, in -8.4 833.4 do. callar 10 30 18 do. Top of casing, in -6.9 , 836.4 do. callar 10 30 18 do. Top of casing, in -8.3 829.2 do. in callar 10 30 18 g. W. Titchener, callar 17 20 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. 17 20 U.S. Geol. Survey Top of 6-inch coupling 0 855.9 do. satop 6-inch casing 10 855.9 do. callar 17 20 U.S. Geol. Survey Top of 6-inch casing 10 855.9 do. callar 17 20 U.S. Geol. Survey Top of 6-inch casing 10 855.9 do. casing 20 do. Top 9-inch hole in plug 0 855.9 do. casing 20 do. Top 9-inch hole in plug 0 855.9 do. casing 20 do. casing 2								}	
12 55 U.S. Geol. Survey Top 2-inch hole in plug +2 640.5 do. atop bent 6-inch casing, low side 11 57 GAF Corp. Top of casing, in -8.4 833.4 do. 26 57 U.S. Geol. Survey Top of 6-inch coupling 0 837.9 do. 27 10 13 do. Top of 24-inch casing, -8.8 829.2 do. 28 10 E. H. Titchener, -1.0 of 24-inch coupling 0 835.8 do. 29 20 do. Top of 6-inch coupling 0 835.9 do. 20 do. Top 3-inch hole in plug 0 835.9 do. 20 do. Top 3-inch hole in plug 0 835.9 do.	c 3	29			Top of 1-in, plate at		832.5	do.	Pumphouse, behind 276 Front Street
11 57 GAF Corp. Top of casing, in —8.4 833.4 do. 26 57 U.S. Geol. Survey Top of 6-inch coupling 0 837.9 do. 27 U.S. Geol. Survey Top of 24-inch caping 0 837.9 do. 28 10 13 do. Top of 24-inch casing, in —6.9 829.2 do. 29 10 1.8 do. Top of casing, in —8.8 829.2 do. 20 do. Top of casing, in —8.3 831.2 do. 20 do. Top of 6-inch coupling 0 855.8 do. 20 do. Top 3-inch hole in plug 0 851.9 do. 20 do. Top 3-inch hole in plug 0 851.9 do.		5			Casing, in Celler		\$ 077	Ą	Seet curb at bend in Karlada Orive
11 755 05 GAF Corp. Top of casing, in -8.4 833.4 do. 26 57 U.S. Geol. Survey Top of 6-inch coupling 0 837.9 do. 31 7555 05 GAF Corp. Top of 24-inch casing, in -6.9, 836.4 do. 31 13 do. Top of 24-inch casing, -8.8 829.2 do. 30 18 do. Top of 24-inch casing, -8.3 831.2 do. 16 19 E. M. Titchener, -1 17 20 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. 39 20 do. Top 3-inch hole in plug 0 855.9 do. 26 do. atop 6-inch casing		*			atop bent 6-inch		Ì	į	
26 57 U.S. Gaol. Survey Top of 6-inch coupling 0 637.9 do. 31 7555 O5 GAF Corp. Top of casing, in -6.9, 836.4 do. 31 13 do. Top of 24-inch casing, -6.8 829.2 do. 10 18 do. Top of casing, in -8.3 831.2 do. 20 18 Go. Top of casing, in -8.3 831.2 do. 21 19 E. M. Titchener,	9	æ		GAF Corp.	Top of casing, in	-8.4	833.4	ę.	Pumphouse, at bend in Karlada Drive
31 7555 05 GAF Corp. Top of casing, in callar -6.9 , 836.4 do. 31 13 do. Top of 24-inch casing. -8.8 829.2 do. 30 18 do. Top of casing. in callar callar -8.3 831.2 do. 16 19 E. W. Titchener.		76			Top of 6-inch couplin		637.9	op	Southeast corner of property at 259-265
11 7555 05 GAF Corp. Top of casing, in -6.9, 836.4 do. 2011a. 11 13 do. Top of 24-inch casing, -8.8 829.2 do. 10 18 do. Top of casing, in -8.3 831.2 do. 10 19 E. M. Titchaner, 10 10.5. Geol. Survey Top of 6-inch coupling 0 855.8 do. 17 20 U.S. Geol. Survey Top 3-inch hole in plug 0 851.9 do. 19 20 do. Top 3-inch casing									Front Street
11 13 do. Top of 24-inch casing, -8.8 829.2 do. 15 do. Top of casing, in -8.3 831.2 do. 16 19 E. M. Titchener, 17 20 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. 19 20 do. Top 3-inch hole in plug 0 851.9 do. 19 20 do. atop 6-inch casing				GAF Corp.	Top of casing, in cellar	, 6.9		ģ	Pumphouse, 290 feet west of Osk Street
10 18 do. Top of casing, in -8.3 831.2 do. callar 16 19 E. M. Titchener, 170 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. 19 20 do. Top 3-inch hole in plug 0 851.9 do. atop 6-inch casing		. 31			Top of 24-inch casing		829.2	do.	Pumphouse. Messuring point is 12.3 feet
19 E. H. Titchener, Inc. 20 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. 20 do. Top 3-inch hole in plug 0 851.9 do. atop 6-inch ceaing	C 10				Top of casing, in	-8.3	831.2	do.	Pumphouse, 70 feet east of Mygatt Street
19 K. Hitchener, Inc. Inc. 20 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. 20 do. Top 3-inch hole in plug 0 851.9 do. atop 6-inch cefing									The state of the s
20 U.S. Geol. Survey Top of 6-inch coupling 0 855.8 do. West curb fitchener Street Imposite E. Titchener side entrance 20 do. West curb Mygatt Street, just north of atop 6-inch casing 0 851.9 do. West curb Mygatt Street, just north of atop 6-inch casing		16			:	;	:	:	Production wall, no provision for water-fever measurement
20 do. Top 3-inch hole in plug 0 851.9 do. atop 6-inch casing		17		U.S. Geol. Survey	Top of 6-inch couplin		855.8	qo.	onposite E.
atop 6-inch casing		2			Ton 1-tuch hole in pi		851.9	qo.	Titchener side entrance West curb Mygatt Street, just north of
		ŝ			atop 6-inch casing				Cypress Street

Table C.2.5-1 -- Wells in which water-level measurement could be made as of 1971 (Continued)

						•									,	u		•	L .	, e			•				;	:	en t
				:	Description of well location, remerks	Room at north end of GAF Building 102,	cell create	Londonnes vers unesed	response: Well unused	Water level measured daily by air line	by GAF Corp. Uster level messured della ba etc 16me	by GAF Corp.	Pumphouse.	Pumphouse.	04 A	north side Balcom Street	84 feet west of Colfax Street, 72 feet	Midway between Colfax and Holland Streets, 240 feet north of May Street	South aide Julian Street, 120 feet west of	noilens street. East side Street, 340 feet north of	Room on north aide of Pairbanks factory	North aide Julian Street, 55 feet west of	Johnson Street South side Clinton Street, 55 feet west of Janette Street	Schoolyard, south of gate in west fence	feet from fence, northwest corner of	Manhole near fence, east end of property	85 feet north of menhole and well 38-30	in spall park, equication ilos raik Street and Grand Boulevard	Former production well, in pumphouse of criental design, unused; taped measurement
		Source of	Alcicude	Reabure-	ment Z/	CV &		: 4		;	;		GAP	ę.	90011	200	CAP	ė	ę.	Q	nscs	GAP	qo.	nscs	do.	đo.	CAF	8580	¦
Ţ			Alt1-		(Leel)	845.7		; ;	9.00	;	;		840.4	836.3	0 1 70		841+	842.3	841.2	860.2	800.8	641.3	862.2	875.2	869.4	851.5	862.5	8 /2.0	ŧ
Heasuring point	Elevation	sbove(+) or	ow(-) land	ourface3/	(feet)	9 .	•	- (;	(-13.7)	;	;		(-10.3)	-8.3	•	•		+2.8	4 .2	+ .2	+1.0	+1.3	+1.8	+	•	6.1-	+	.	
Hea	13	oq•	bel	Description sur		Top of 2-inch coupling	welded in steel plate	Top of casing	top of 10-inch casing,	1	ţ		Top of casing, in	Lip of slot in con-	crete, in cellar	10p 4-1nch hole in 6-inch plug embedded in concrete	Air line	Top of 6-inch coupling	Top of 2-inch casing	Floor of recorder	Lip north vent hole,	Top of 2-inch coupling	Top of 2-inch coupling	Top 3-inch hole in plug	Top 2-inch hale in plug	Top hole in senitary	Top of 2-inch coupling	Top 2-inch hole in plug atop 6-inch casing	;
					7	خ		. .	do.	do.	4	;	do.	do.	,	U.S. Geol. Survey	ė	do.	đo.	do.	ks &,	؞ؘ	do.	U.S. Geol. Survey	ф.	؞	do.	U.S. Geol. Survey	Endicott-Johnson Corp.
				,	Ovner	GAF Corp.		٠	ð	ð	•	•	ð	ð		e. s. ce	CAF Corp.	7	ō	Ð	Fairbanks Co.	GAF Corp.	4	U.S. Ge	Ť	GAF Corp.	Ð	U.S. Ge	Endscot Corp.
	cation	નૃ		Longi-	tude	7555 38	;	6.	<u>.</u>	0,	\$	2	77	94		3	28	89	7556 05	80	=	13	16	17	25.	2		44	53
	dentifi	and location2/		Lat 1-	tude	4206 36		~	93	36	;	.	36	38	:	7	07	63	4	38	30	45	36	51	23	38	39	34	28
	Well 1	pue	Owner's		number	G 2 A 42		c 2	4	G North	;	r sonce	c 3	c 5			0 11	G 21 T	6 23 T	C 25 T		G 24 T	C 26 T				C 27 T		Pagoda

Source: New York DEC, Bulletin 73, 1977.

Table C.2.5-1 -- Wells in which vater-level nessurenent could be nade as of 1971 (Continued)

į

Well identificand and location	Well identification	5			Elevation above(+) or		Source of	
Owner's well Latt- number tude	Lati- Longi- tude tude	1	Ouner	Description	below(-) land surface2/ (feet)	Alti- tude (feet)	altitude measure- menty/	Description of well location; remarks
75 7506 46	1551	33	Wilson Hospital U.S. Gool. Survey	Top 2-inch hole in plug	+2.5 18 +1.5	849.3	USGS do.	Pumphouse, in parking lot End of St. Charles Street, at toe of railroad
	43 7558 09	8	do.	Top of 6-inch casing	•	842.6	do.	South Curb Taylor Street, 40 feet from
	23	35	Ġ ġ	Floor of recorder shelter	+3.2	836.9	do.	niversize Drive East curb Camden Street, 50 feet south of Main Street; continuous water-level record since 1950
_	97	07	Johnson City	Center air line gage	+3.4	842.2	qo.	Pumphouse; measurement by air line
2	99	42	do.	Center air line gage	+3.8	838.9	qo.	Pumphouse; measurement by air line
3 4207 15	47 42	2 5	do. U.S. Geol. Survey	Center air line gage Top of 6-inch coupling	(+2.9) + .2	840.6 857.1	ф ф.	Pumphouse; measurement by air line Parking lot, next to curbing along sidewalk,
,			;					140 feet east of creek
4207 11	11 7557 24		Johnson City	Top of 2-inch casing in aquare depression in pumphouse floor		:	;	10 feet east of Ballpark well in sime pumphouse
Ballperk	=	77	.op	Center air line gage	;	:	;	Pumphouse, Broad St., opposite Carlton St., messurement by air line
4	03	22	qo.	Lower lip, north access	+1.2	839.7	uscs	Fenced enclosure
•	03	9	do.	lover lip, west access	6. +	838.9	ę.	Cinder-block pumphouse, 70 feet from creek
1.4	03	.64	do.	Top of 6-inch coupling	+3.1	837.1	do.	270 feet west of creek
. t	6	2	do.	Top of 6-inch coupling		839.4	ę.	Area regraded, measuring point several feet above 1971 land surface
7.	04 7558	03	do.	Top of 6-inch coupling	+2.4	0.46.0	ę	150 feet north of railroad
, , ,	03 17	7	do.	Lover 11p, west access		834.8	q 0.	Pumphouse
	26	7	U.S. Geol. Survey	Top 2-Inch hole in plug	0	841.5	op	Shoulder of paved road, 47 feet from
	19 7559 10	01	Int. Business	Sures casus	;	;	;	Production well; not examined for water-level
	16	13	Machines Corp. do.	:	;	:	;	measurement Production well; measurement impossible prior to 1968 renovation
/Each w	eli le Idei	wed	1/Each well is identified by owner 's well number (if any) or by seconds of istitude followed by seconds of longitude. G, GAF Corporation;	well number (if any) or by seconds longitude. G, GAF Corporation;	seconds Hon;	4		GAF, spirit leveling by GAF Corp., copied from corporation records. TM, estimated from topographic map. USCS, determined by spirit leveline as part of this study; must home

5/ Water level measured inside pump column. Measuring point lover lip of flange on pump discharge, 0.8 feet above pumphouse floor (altitude 847.6 feet), but because tape must run 0.9 feet horizontally before dropping, altitude of MP is listed as 849.3 feet.

2/ Wells owned by the U.S. Geol. Survey were installed for actentific purposes on public rights of way or private land by permission of the landowner. For information contact District Chief, U.S. Geological Survey, Albany, N.Y., 12201. 3/ Values in parentheses are referred to pumphouse floor elevated above grade.

New York DEC, Bulletin 73, 1977. Source: APPENDIX C.3
CLIMATIC DATA

Table C.3-1
METEOROLOGICAL DATA SUMMARY FOR AF PLANT 59, NEW YORK (1952-1982)

(BO)	January	February	March	Apr 11	Мау	June	July	August	September	October	November	December	Annual
Mean Average Daily Maximum Average Daily Minimum Highest Recorded Lowest Recorded	20 28 13 63 -20	23 30 15 66	31 39 82 -6	4 2 8 8 4 4 7 2 9	55 65 89 25	64 77 94 33	69 78 95 39	67 76 58 94	60 51 56 57	49 58 40 82	38 32 37 52 8	26 20 20 -18	46 34 37 -20
Precipitation (inches)													
Mean Maximum Monthly Minimum Monthly Maximum in 24 hours Days with Thunderstorms	2.5 0.0 1.8 0.0	64.00 64.70 10	2.8 6.0 0.7 2.0	2.9	3.2 6.5 1.8	3.7 3.2 7	3.7 7.2 7.2	3.2 5.5 5.5	w 0.0 m w 1.0 m	3.0 4.0 1.9 1.9	3.0 7.5 1.0 2.7	2.9 5.8 0.9 1.6	36.6 9.7 0.3 3.9
Snowfall (inches) Mean Maximum Monthly Maximum in 24 hours	19.4 41.0 18.4	18.1 44.3 23.0	14.6 33.5 15.8	4.8 16.4 11.5	0 E E	0.0	0.0	0.0	E- E- E-	2.6	7.8 24.4 10.1	19.1 59.6 15.6	84.5 59.6 23.0
Relative Humidity (%) Mean	9/	74	72	99	68	7.2	22	92	79	74	11	79	73
Surface Winds (knots) Mean Maximum Prevailing Direction	12 59 WSW	12 66 SSE	12 61 NW	12 52 HNW	10 54 NNW	6 9 MNN	8 58 WSW	8 88 SSW	9 42 SSW	10 72 NSW	11 57 NNW	11 59 WSW	10 72 HSM

T = Trace

Source: National Oceanic and Atmospheric Administration, Local Climatological Data, Binghamton, NY 1982.

From: CH2M HILL, 1934.

C.3-2SUSQUEHANNA RIVER BASIN

01513110 SUSQUEHANNA RIVER AT JOHNSON CITY, NY

LOCATION.--Lat 42°06'37", long 75°58'30", Broome County, Hydrologic Unit 02050103, at intake of the New York State Electric and Gas Corp., Goudey Station, at Johnson City, 100 ft upstream from Little Choconut Creek, 0.5 mi downstream from C.F.J. Memorial Bridge, 3.5 mi downstream from Chenango River and 4.5 mi upstream from discontinued discharge station (01513500) at Vestal.

DRAINAGE AREA. -- 3,891 m12.

PERIOD OF RECORD.--Water years 1956 to current year. Prior to October 1960, published as 01513500, "at Johnson City", and prior to October 1967, published as 01513500, "at Vestal"; however, all water-temperature records were collected at present site.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURES: October 1955 to current year.

REMARKS. -- Daily water-temperature measurements made at 0800 hours. Measurements are reported to whole degrees Celsius. During winter periods water is at times recirculated from inside the plant through the intake to prevent icing conditions, thus resulting in reported water temperatures that are slightly above actual river temperatures.

COOPERATION .-- Water-temperature records furnished by the New York State Electric and Gas Corp.

EXTREMES FOR PERIOD OF DAILY RECORD. WATER TEMPERATURES: Maximum daily, 29.0°C Aug. 4, 1979, July 21, 1980; minimum daily, freezing point on many days during winter periods, except 1967, 1976, 1976-80 and 1982-3.

WATER TEMPERATURES: Maximum daily, 28.0°C July 5; minimum daily, 1.0°C on many days during February.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1982 to SEPTEMBER 1983

(ONCE DAILY AT 0800)

DAY	OCT	VON	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.0	12.0	7.0	2.0	2.0	4.0	4.0	12.0	16.0	22.0	26.0	23.0
3	17.0 17.0	14.0 15.0	10.0 11.0	2.0 3.0	2.0 2.0	6.0 6.0	6.0 7.0	12.0 13.0	15.0 16.0	23.0 26.0	25.0 24.0	23.0 23.0
	18.0	16.0	11.0	2.0	1.0	6.0	7.0	14.0	18.0	27.0	25.0	23.0
5	17.0	13.0	12.0	2.0	1.0	7.0	7.0	12.0	17.0	28.0	24.0	23.0
6	18.0	8.0	14.0	2.0	1.0	7.0	7.0	11.0	18.0	24.0	26.0	24.0
7	18.0	8.0	13.0	2.0	1.0	7.0	7.0	12.0	18.0	22.0	25.0	25.0
8 9	18.0 18.0	8.0 9.0	10.0 10.0	2.0	1.0	7.0 6.0	9.0 8.0	13.0 11.0	18.0 18.0	23.0 24.0	26.0 26.0	23.0 22.0
10	17.0	7.0	9.0	2.0	1.0	6.0	9.0	10.0	19.0	22.0	24.(23.0
11	16.0	7.0	4.0	3.0	2.0	4.0	8.0	8.0	19.0	22.0	24.0	24.0
12	14.0	7.0	3.0	3.0	1.0	4.0	8.0	10.0	21.0	23.0	23.0	24.0
13	14.0	9.0	4.0	2.0	1.0	3.0	7.0	11.0	23.0	25.0	20.0	22.0
14	13.0	7.0	4.0	2.0	1.0	4.0	8.0	13.0	23.0	24.0	21.0	19.0
15	13.0	6.0	4.0	2.0	1.0	5.0	9.0	15.0	25.0	25.0	22.0	18.0
16	12.0	4.0	4.0	2.0	1.0	5.0	7.0	14.0	26.0	27.0	23.0	18.0
17	10.0	4.0	4.0	2.0	3.0	6.0	5.0	11.0	24.0	26.0	24.0	17.0
18	9.0 9.0	4.0	2.0	2.0	3.0	6.0	7.0	11.0	24.0	27.0	24.0	18.3
19 20	10.0	5.0 6.0	3.0 3.0	2.0 2.0	2.0	7.0 8.0	6.0 4.0	12.0 13.0	24.0	26.0 26.0	25.0 26.0	19.0 21.0
			=					13.0				
21	12.0	7.0	3.0	2.0	3.0	6.0	3.0	14.0	23.0	26.0	24.0	22.0
22 23	11.0 9.0	9.0	3.0	2.0	3.0	6.0	4.0	15.0	23.0	24.0	23.0	19.0 16.0
24	8.0	9.0 10.0	3.0 5.0	2.0 2.0	3.0 4.0	3.0 2.0	7.0 8.0	16.0 16.0	24.0 26.0	23.0 23.0	23.0 23.0	15.0
25	8.0	7.0	5.0	2.0	3.0	2.0	6.0	15.0	25.0	24.0	23.0	15.0
26	7.0	6.0	6.0		-					24.0	24.0	16.3
27	8.0	12.0	5.0	2.0 2.0	3.0 2.0	2.0 4.0	5.0 7.0	16.0 15.0	23.0 23.0	24.0	25.0	16.0
28	9.0	9.0	5.0	2.0	3.0	4.0	8.0	14.0	25.0	25.0	26.0	17.0
29	9.0	9.0	5.0	2.0		4.0	10.0	16.0	21.0	26.0	26.0	17.0
30	11.0	12.0	6.0	2.0		3.0	11.0	14.0	22.0	26.0	26.0	17.0
31	12.0		4.0	2.0		4.0		17.0		25.0	25.0	
MEAN	13.0	8.5	6.0	2.0	2.0	5.0	7.0	13.0	21.5	24.5	24.0	20.3
XAM	18.0	16.0	14.0	3.0	3.0	8.0	11.0		26.0	28 - 0	26.0	20.5
MIN	7.0	4.0	2.0	2.0	1.0	2.0	3.0	8.0	15.0	22.0	20.0	15.0
CAL YR		MEAN	11.5	MAX	28.0		IN	1.0				
WTR YR	1983	MEAN	12.5	MAX	28.0	м	IN	1.3				

From: USGS, Water Data Report NY-83-3, 1983

Figure C.3-1.--Departures from normal rainfall and runoff during the 1962-67 drought.

- A) Precipitation at Binghamton, near the Clinton Street-Ballpark aquifer, and at Norwich, 35 miles (56 kilometers) northeast of Binghamton.
- B) Runoff from Oswego Creek, 18 miles (29 kilometers) west of Binghamton, and from Genegantslet Creek, 22 miles (35 kilometers) north of Binghamton. The cumulative runoff departure from September 30, 1961 through September 30, 1967 was equal to 1.3 and 1.5 years of normal runoff in these two basins, and to 1.5 years runoff in the entire eastern Susquehanna River basin in New York (not shown).

Source: New York DEC, Bulletin 73, 1977.

APPENDIX C.4
WASTE OIL DATA

(CL5121A)

DATE: 02/04/88 Source: Pat Gilligan, General Electric

SUBJECT: OILS USED DURING TIME PERIOD OF BURRIED WASTE OIL TANKS

MOBIL OIL ∞ .

VACTRA NO. 1 LUBRICATING OIL VACTRA NO. 2 VACTRA NO. 4 LUBRICATING OIL VACTRA NO. 4

VELOCITE NO. 3

VELOCITE NO. 6

VELOCITE NO. 10

VELOCITE D

LUBRICATING OIL

UERICATING OIL

UERICATING OIL

UERICATING OIL

UERICATING OIL VELOCITE D HYDRAULIC FLUSH HYDRAULIC FLUSH MOBIL SOL MOBILMENT 406 MOBIL JET HYDRAULIC OIL VACUUM FUMP OIL DELVAC MOBILMENT OMIGRON LUBRICATING OIL DIE LITE HYDRAULIC OIL HYDRAULIC OIL DTE 24

GULF OIL CO.

ENDURANCE 19
WAY 68
ULBRICATING OIL
SENATE 375
ULBRICATING OIL
SENATE 54
ULBRICATING OIL
SAE 30
PARAMOUNT 37
HARMONY 68
HARMONY 48AW
HARMONY 48AW
HARMONY 44
HARMONY 97
HARMONY 97
HARMONY 22
HARMONY 22
HARMONY 32AW
HARMONY 32AW
HARMONY 32AW
HARMONY 32AW
ULBE AND HYDRAULIC OIL
HARMONY 46AW
ULBE AND HYDRAULIC OIL
HARMONY 32AW
HARMONY 32AW
HARMONY 32AW
ULBE AND HYDRAULIC OIL
HARMONY 46AW
ULBE AND HYDRAULIC OIL
SUPERQUENCH
QUENCH OIL
SUPERQUENCH
QUENCH OIL

SUN OIL CO.

SUNVIST 754

SUNVIST 951

SUNVIST 951

SUNUP 1050

PREVER 33

VACUM FURP OIL

HYDRAULIC OIL

OAKITE

OAKITE 202

DETERGENT

VAN STRATTEN

VANIROL 653 CUTTING VANIROL 707 CUTTING 5495X CUTTING

TEXACO

AIRCRAFT 15

HYDRAULIC OIL

PENNZOIL

NO. 22 HYDRAULIC OIL STODDARD SOLVENT DETERGENT AW 68 HYDRAULIC OIL

WHITE AND BAGLEY

NO.2190 CUTTING OIL

EXXXX

DORTAN 34 CUTTING OIL ISOPAR M CUTTING OIL

DUBOIS

MPO 10 HYDRAULIC LUBE OIL
MPO 20 HYDRAULIC LUBE OIL
EGO 80/90 HYDRAULIC LUBE OIL

ELOXOL

NO. 13 CUTTING OIL

HUBERS

NO. 202 CUTTING OIL

TRIM

TRIMSOL CUTTING

ROBERTS MAINT.

POWER PLUS DETERGENT A33 DISTNIFECTANT

LEYBOLD HERAEUS

HE 175 VACUUM FUMP OIL

SARGENT WELCH

DUO SEAL VACUUM PUMP OIL

D.A. STUART

THREAD CUT 99

CUTTING OIL

SUNNEN

MB30-5

HONING OIL

GRAHAM

RED TRACTION

LUBRICATING OIL

MONSANTO

SANTOTRAC-50

CUTTING OIL

WCS 02/04/88

APPENDIX D WELL NUMBERING SYSTEM

D. WELL NUMBERING SYSTEM

A well numbering system was used to identify each well constructed during the on-site remedial investigation. The numbering system provides a tracking procedure to allow retrieval of information about a particular site and assure that each well is uniquely numbered. A listing of well numbers was maintained by the HART field team leader. Each sample number consisted of three parts as described below.

Project Identification

The designation AFP 59 was used to identify the Air Force Plant 59, now known as General Electric electro-mechanical systems production facility.

Site Identification

Each well was identified by a two-letter identifier code, with the following prefix:

SW - Shallow well

A numerical suffix unique to each prefix follows.

Example

AFP 59. SW-1. Air Force Plant No. 59; shallow monitoring well #1.

APPENDIX E
BORINGS AND HELL LOGS

APPENDIX E.1

HART - BORING LOGS

DATE DRILLED: 9/9/86

WELL INSTALLED: SN-1

ON SITE GEOLOGIST : V. DEVILLEZ

DRILLING METHOD: H.S.A.(4.25 IN.)

PROJECT MUMBER: 01071-00 BORING MUMBER: SW1 BOREHOLE GRND ELEV.: 831.90

DRILLING COMPANY: EMPIRE

					Recov. I	: :	0.V.A.		
	Depth :				Ft. :		ppa	; e	
	i Beg in : Ft. :		Sample: Collect:			i i	i !	i e I t Visual Classification	
							· · · · · · · · · · · · · · · · · · ·		
SS-11	0.5	2.0				! !	; NO	ISMI 0 to 0.5 blacktop. Shale fragments.	
	<u> </u>		<u> </u>			<u> </u>	!	i i proprio Snate fragments.	
,	 	,	. ;	1	•			2	
	<u> </u>	 !		<u>-</u>			!		
			j	,	•			3	
<u></u>	<u>'</u>	<u>'</u>	<u>-</u>	<u>'</u>		1 1			
		i	i	i	•		•	4 8 8 8 8	
<u>'</u>		<u>-</u>	<u>-</u>			- i - i -	- 		
SS-2:	5.0:	•	•			;		No recovery.	
:	:		!	4:		<u> </u>	1		
:	ì		!	41				6 10 10 10 10 10 10 10 10 10 10 10 10 10	
	:		:	5:		1 1			
;	. ;	j	i	;				7 [1] [1]	
	!	<u></u>	:	i		1 1	<u> </u>		
i	i	i	i	i	į			i a (1888)	
ŀ	 !	<u>-</u> -	1			1 1			
;			1			1 1		9 [13]	
;	1		1	;	;	; ;	!		
SS-3:	10.0	12.0	SS	21	0.4;	1 1	1 101	Brown, fine, sandy si	ilt:
:	1	1	1	4:		1 1	1	slightly moist; sand	,
;	1	;		41				lens 0.5 in	
	1	:	;	4;		: :	1		
SS-41	12.0	14.0	SS	4;	0.5	1 1	<u> </u>	Same as above; wet.	
1	1	;	ŀ	31		; ;	;		
	1	1		51		ii	1	13 13 11 11 11 11 11 11 11 11 11 11 11 1	
1		1		4;	!	1 1	1		
SS-51	14.0	16.0	SSI			<u> </u>	: NH	L 14 Large rounded gravel	and
;	;	i	i	5;		; ;	;	sandy silt; wet.	
1		i		7:		<u> </u>	1	J 15 15 15 15 15 15 15 15	
;		1	•	10:		: :	•		
SS-61	16.01	18.0	SSI	5;		1 1	1 100	Li 16 No recovery.	
:	:	;	1	5:		1 - 1 -	1		
	1			<u> 7:</u>		1 1	<u> </u>	」 17 国际国际	
:	:	;	:	10:		: :	;		
SS-7:	18.01	20.0;	SSI			1 1	<u> </u>	li 18 Brown silty sand; we	t.
;	;	;	;	5;		1	;		
1			<u> </u>	61		1 1	!	<u>」</u> 19 [新聞]	
:	•	:	ł	6;		1 1	1		
SS-81	20.01	22.0	SSI	31					h
:	1	;	!	6:		; ;	;	trace of clay; wet.	
				7;		<u> </u>		<u> </u>	
		:	+	10;		1 1	;		
SS-91	22.01	24.01	SS:	6;	1.21		1 100	li 22 Same as above.	
:	:	:	:	7;	1	: :	:		

DATE DRILLED: 9/9/86
WELL INSTALLED: SW-1

ON SITE GEOLOGIST : V. DEVILLEZ
DRILLING METHOD: H.S.A.(4.25 IN.)

PROJECT MUMBER: 01071-00 BORING NUMBER: SW1 BOREHOLE GRND ELEV.: 831.90 DRILLING COMPANY: EMPIRE

				: Hethod:			1	;	! O.V.A.!	F	
			Depth			Ft.	1	1	; ppe :	e	
				: Sample:		+	1	1	: :	e	
i	Ft.	ŀ	Ft.	:Collect:	Drive :	t	!	1	1 1	t	Visual Classification
1		I.		1	7:	1	:	l	1 1	23 toleda	1:4
i	-	1		1 1	131		:	1	1 1		###
SS-101	24.	0 <u> </u>	26.0	: SS:	8:	0.31	:	:	! NM!	24	Coarse, rounded gravel.
;		1		: :	121	:	:	1	1 1		
;		;		<u> </u>	20;	}	;	1		25	
1		1		1 1	181	ŧ	;	-	1 1		
SS-11:	26.	01	28.0	: SS:	161	0.41		<u> </u>	: NM:	26	Medium sand with medium
:		1		1 1	141	ŀ	1	Ī	1 1		rounded gravel; wet.
		1		1 1	91			<u> </u>	1 1	27	
!		1		1 1	81	:	1	1	1 1		
SS-121	28.	0!	30.0	SS:	4:	2.01	<u> </u>		1 1001	28	Medium to coarse sand.
1		1		1	51	1	;	1	: :		
;		1		1 1	7:	<u> </u>	<u> </u>		<u> </u>	29	[]
;		ł		1 1	71	:	1	;	1 1		
SS-131	30.	01	32.0	SS:	41	0.81	<u> </u>	1	i NM:	30	Same as above with
:		ľ		; ;	5:	1	;	1	1 1		minor gravel.
		1		<u> </u>	7:	!	<u> </u>	<u>!</u>		31	
{		;		1	91	1	;	1	1 1		111
<u>55-141</u>	32.0	0:	34.0	l SSI	NR:	1.0:	<u>l</u>	<u> </u>	: NM:	32	Same as above.
;		;		: :	1	:	ł	1	1 1		
- !		<u>!</u>		<u> </u>			<u> </u>	<u>i</u>	<u> </u>	33	
		ł		;	1	1	+	1	1 1		
<u>55-15:</u>	34.0	<u>0:</u>	36.0	: SS:	MR:	1.11	<u> </u>		i neri	34	same as above.
		1		: :	;	i			1		
		<u> </u>		<u>! </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>	35	
		I				!		1		_ []	
		<u>.</u>		<u> </u>	i	<u> </u>	<u> </u>		<u>.j</u> j	36 <u>: : : : : : : : : : : : : : : : : : :</u>	

PROJECT NAME: USAF-JOHNSON CITY
DATE DRILLED: 9/11/86
WELL INSTALLED: SW-2
ON SITE GEOLOGIST: V. DEVILLEZ
DRILLING METHOD: C.M.E.

PROJECT NUMBER: 01071~00 BORING NUMBER: SW2 BOREHOLE GRND ELEV.: 828.90 DRILLING COMPANY: EMPIRE

luaber :	Sample : Depth : Begin :	Depth :	Sample:	per : 6" of :		 	: O.V.A. : ppm :	: e :
!	Ft. I	Ft.	Collect:	Drive :	1	1 1	1	t Visual Classification
SS-1:	0.5	2.0				; ;	i NH	To the Rest
			1	81				j l∰iliji moist.
	i		•	111	1	: :	:	
<u> </u>	<u>-</u>				<u>-</u>		<u>-</u>	2 2
i	i	i	i	i	i	i i	i	
i		<u>i</u>	<u>-</u>	<u>-</u>	<u>-</u> _	<u> </u>	<u>i</u>	3
	•					! !	• !	
				-			!	
SS-2:	•	,	•	8:	0.7:			1; 5 Brown silt and measum
!	3.4.		:	141		- 	!	sand; moist.
i	i		ì	91			i	6
1	1	<u> </u>	1	5;	<u>-</u>	1 1	1	
}				. 1			1	7 [10]
1	1		1	1	:	1 1	i	
- !		1				1 1	1	_1 8 福富高麗
;	:	1	:	1	1	1 :	ì	
					- !	<u> </u>		1 9 Easy drilling at 9 Ft
;		i	:	ł	;	; ;	1	
\$\$-31	10.01	12.0						
;	:	i	;	41	ł	1 1		; sand with trace of silt
			1 71 1 1		_			
	:	•	•	71				
SS-4:	12:	14:	SS:	61	1.3!			- (
i	i	į	į	61	į		į	aore silt.
i	<u>i</u>	<u>i</u>	<u>i</u>	7! 61			<u>i</u>	<u>.</u> 13
i 00_£1	•	•	•	6i 91	0.61	i i	i iNH	ti 14 Same as above.
\$\$-5:	17.01	16.01	33 i		V.Di		iNI	i i company des de doute.
1		1	•	71		1 1	•	15
 ;				41				
SS-6:	16.0	18.0	•	31	0,6		•	16 Hedium rounded gravel
<u> </u>	19.71		<u> </u>		the silty sand.			
i	į		:	121				17
	 :	<u>'</u>		12:				
\$\$-71	18:	201			0.31	ii		1 18 Fine to medium silty
!	<u> </u>	!	1			i i		sand; wet.
	;		1	211				19
1	:		l		!	1 1	1	7 8888
55-81	20.01	22.0	SSI	291	0.51	1		
1	;	;	1 221 1 1		fragments; vet.			
	1	1	1	17:				」 21 [][[[]][[]]
1		:	1			1 1	1	
\$\$-9 :	22.0	24.0	SSI				<u> </u>	Ni 22 Same as above; saturate
;	:	;	;	121	;	1 1	!	

DATE DRILLED: 9/11/86 WELL INSTALLED: SW-2

ON SITE GEOLOGIST : V. DEVILLEZ

DRILLING METHOD: C.M.E.

PROJECT NUMBER: 01071-00 BORING NUMBER: SN2 BOREHOLE GRND ELEV.: 828.90 DRILLING COMPANY: EMPIRE

				: Method:			ŀ	1	- 1	D. V. A. I	F	
lumber i	Depti	1	Depth	: of :	per :	Ft. !	;	1	+	ppm :	e	
;	Begin	1	End	: Sample:	6" of 1	;	;	1	1	1	e	
				Collect			;	ł	1	1	t	Visual Classification
- 1		1		1 1	151	1	1	1	1		23 1 1 1	13
1		;		; ;	10!			;	;			
SS-10:	24.	0:	26.0	: SS:	181	1.01			<u> </u>	NH:	24	Same as above.
;		;		1 1	211	1	;	1		1		
		1		: :	15;	;	;	-	L		25	
1		;			141	1	i					
		1		: :	!	1	:	:		1	26	43

DATE DRILLED: 9/10/86
WELL INSTALLED: SW-3
ON SITE GEOLOGIST: R. GOLDMAN
DRILLING METHOD: H.S.A.(4.25 IN.)

PROJECT NUMBER: 01071-00 BORING NUMBER: SH3 BOREHOLE GRND ELEV.: 829.40 DRILLING COMPANY: EMPIRE

Sa o ple:	Sample :	Sample	Method:	Blows :	Recov.:	1	: O.V.A.:	F	
luaber :	Depth:	Depth :	of :	per :	Ft. :	1 1	: ppe :	e	
:	Begin :	End :	Sample:	6" of 1	:	: :	1 1	e	
			Collect:		1	; ;	1 1	t	Visual Classification
SS-1!	0;	2.0	SSI	4, 51	0.31	1 1	: 0:	kalada	[:[[SM] 0 to 4" topsoil: dark
	<u> </u>	:	:	5;	1	1 1	1 1	1 1 1 1 1 1 1	brown with trace of gravel.
	-			51		! !	1 1		
;	:	;	1	1	;		1 1	2	
:	:		1		1	: :	: :		
;	:	,	į		j	i i	i	3	
!			<u> </u>	:	<u> </u>	<u> </u>	!!!		18
1	:		i	i	į	i	ii	4 1111	1 8
- 1	:		<u>i</u>	1		1 1	1 !		[4]
SS-21	5.01	7.0	SSI	121	0.6	ii		5	Silty, medium brown sand
	1			181	!		1 1		and pebbles.
ì	i			251	i	ii		6	
!		:		17:	<u>:</u>				18
:	j	•	i	!				7	
!	<u>!</u>	<u>-</u>	<u>-</u> <u>-</u>	<u>-</u>	<u> </u>				
	į	,	:	•	•	1 1		8	<u> </u>
		<u></u>		<u> </u>					
	;	;	;	;	:	1 1	1 1	9	
- 					<u>'</u>			' [1]	
CC_21	10.01	•	•	-	•	1 1		10	Cilhu dias ha sassa and
SS-3; 10.	10.0	12,01	SS:	10:	1.01		<u> </u>	10 [1]	Silty, fine to coarse sand
		•		221	i	i i	i i		and pebbles.
		i	<u> </u>	341	<u>i</u>			11	
i 00 41	10.01		•	38;	•	j j	i i		
SS-4:	12.0!	14.0		251	0.3!	<u> </u>	0;	12	Same as above.
į	i	į		121	:	i		1966	
<u>i</u>	<u>.</u>	<u>.</u>	<u>_</u>	111				13	
			1	111	1				
SS-5!	14.0;	16.0:	SS:	81	1.01		2.8	14	Same as above.
i	1	;	1	101		; ;			樹
		<u>i</u>		131		<u></u>		15	:1:3
			•	151	:	: :	1 1		43
SS-6;	16.0:	18.0;		201	1.01		0.41	16	Same as above.
;	:	:	ŀ	18;	:	1 1	: :		10
		!		231	<u> </u>	<u> </u>		17	181
;		-		251	;	1	1 1	- 開稿	11
SS-7:	18.0:	20.01	<u> </u>	161	1.01	1	: 2.41	18	Same as above; moist.
1	:	;	-	141	;	1 1	1 1		13 1
<u> </u>	;		1	141				19	14
:	1	;	1	201	ŀ	1 1			<u> </u>
\$\$-8;	20.0;	22.0;	SS	24;	1.0;		: 0.4;	20	Same as above; moist.
1	:		;	251	;	1 1	1		
!	1	;	!	24;			;	21	18
;	:	:	:	261	1	1 1	1 1		10
\$\$-91	22.01	24.01	SSI	8;	0,9		9.0	22	Medium to coarse sand; wet
				141				== 1/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	

DATE DRILLED: 9/10/86
WELL INSTALLED: SW-3
ON SITE GEOLOGIST : R. GOLDMAN

DRILLING METHOD: H.S.A. (4.25 IN.)

PROJECT NUMBER: 01071-00 BORING NUMBER: SN3 BOREHOLE GRND ELEV.: 829.40 DRILLING COMPANY: EMPIRE

Sample:	Sample	:	Sample	! Hethod!	Blovs !	Recov. !	1	1	: (D. V. A. !	F	
				i of i			1	;	1	ppa :	e	
				: Sample:			;		:		e	
				Collect			ŧ	:	;	;	t	Visual Classification
		1		1 1	13:				1		23	:1:1
ţ		;		1	111	1	-	;				33
SS-10:	24.	0:	26.0	SS!	101	0.91			:	1.2	24	Medium to coarse sand and
1		1		1 1	101			1	:			gravel.
- 1		1		: ;	18:				:	1	25	
;		1			16:	1	<u> </u>		;			
SS-11:	26.	0:	28.0	: SS:	251	0.71			1	1.21	26	Medium to coarse sand wit
:		1		: :	241		!	1	- :			trace of gravel.
}		1		1	201	•	į	į	i	•	27	
		1		1 1	17:	:	!	<u> </u>	1			
SS-12 <u>:</u>	28.	01	30.0	i SSI		0.71				1.61	28	Same as above.
-		-			19;		1	1	1	·	- 1	
;		1			121	•	•	ì	i	i	29	翻
1		;		1 1	17:	·	1	:	<u> </u>		- 7 Hill	翻
1		•		!	- ;	•	i		i	i	30	43

DATE DRILLED: 9/12/87
ON SITE GEOLOGIST: V. DEVILLEZ
DRILLING METHOD: H.S.A.(2.25 IN.)

PROJECT NUMBER: 01071-00 BORING NUMBER: SB1 DRILLING COMPANY: EMPIRE

Sample	Sample	; ;	Sample	: Method:	RECOV. !	ŀ	1	ļ	!	ł	F
Number :	Depth	1.1	Depth	i of i	FT. :	:	1	}	1	1	e
ł	Begin	:	End	: Sample:	1	;	;	ŧ	ł	1	e
				Collect		ł	;	1	;	;	t Visual Classification
!		1			;	1		:	;	;	操作性性(SM) Blacktop to 0.5 ft.
SS-11	0.5	<u>:</u>	2.0	: SS:	0.31	ļ			1		1 Brown silty fill.
;		;		i i	1	1	;	1	ł	1	
SS-21	2.0) <u> </u>	4.0	SS:	0.6	;;;	l	ļ	- 1		2 Brown, sandy, silty fill.
;		1		: :	:			i	;		
{		1		1		ſ	!	:	f	1	3 (1888)
1		;			;	-	;	:	:		
<u>55-3:</u>	4.0	1	6.0	SS!	0.5	1	:	ł	ł	1	4 Brown sandy, silty fill
;		;		: :	;		;	;	1		with gravel/pebbles.
;		ŀ				ł	1	1	;	1	5
;		1		: :	1	1	ļ	:	;	<u>-</u>	
SS-41	6.0	1	8.0	SSI	0;	1	1	:	:	:	6 No recovery.
<u>;</u>		:		1	}			1	1		
		;			1	1	1	:	:	;	7 [4] [4]
:		1		1	ı		i	:	!		
SS-51	8.0	1	10.0	SS	0.13	1	1	:	1	1	8 Very little recovery.
1		;			1		1	:			
1		1		1	:	1	+	;	:	1	9
:		;		;	1	1	;	1	1		
i		:			i		ì	1	1	•	10 日本日本
		-		· · · · · · ·		<u> </u>					** Marketia

PROJECT MAME: USAF-JOHNSON CITY DATE DRILLED: 9/12/86 ON SITE GEOLOGIST: V. DEVILLEZ DRILLING METHOD: H.S.A.(2.25 IN.) PROJECT NUMBER: 01071-00 BORING NUMBER: SB2 DRILLING COMPANY: EMPIRE

Sample:	Sample	;	Sample	Method:	RECOV. I	:	!	:	1	!	F
luaber :						1	:	:	:	;	e
;	Begin	;	End :	Sample:	1	!	1	1	1	1	•
;	Ft.			Collect:	;	1	1	ł	;	:	t Visual Classification
SS-11	0.5	5;	2.0	SS:	0.81	:	;	1	;	1	[전문][전[SN] Blacktop to 0.5 ft.;
:		1		!	1	_ :	:		1		1 brown silty fill.
;		1	:	:	ŀ	:	1	1	1		
SS-21	2,() <u>:</u>	4.0:	SS!	0.1;		1	1	. !		2 Very little recovery.
1		1	1	;	:	;	+	!	Ī	-	
- 1		1		1							3 高高高高
ť		1	;	:	1	1	1	:	ł		
SS-3!	4.0):	6.0	S\$:	0.5		1				4 Brown silty fill with
;		ŀ	:	:	;	;	ł	}	:	1	rock fragments.
		<u>_</u>							<u> </u>	i	5 [3][3][3]
!		1	:	;	1	1	1	;	:	1	
SS-4:	6.0	<u>):</u>	8.0;	SSI	0.71		<u> </u>				6 Same as above.
:		:	i	:	;	;	ł	;	;	1	
		<u> </u>	<u>.</u>								7 [4] [4] [4] [4]
		1				ŀ	1	;	+	1	
\$S-5:	8.0	<u>); </u>	10.0	SSI	0,21	_ <u>-</u> -		- ! -			8 No recovery other than rock
		!	;		!	:	!		1	!	frag ee nts.
		÷		<u>-</u>					<u> </u>		9 [] [] []
		i			i	i	i	;	i	i	
		<u>.</u>	<u>i</u>						<u> </u>	i	10 日本日本

PROJECT NAME: USAF-JOHNSON CITY

DATE DRILLED: 9/12/86
ON SITE GEOLOGIST: V. DEVILLEZ
DRILLING NETHOD: H.S.A.(2.25 IN.)

PROJECT NUMBER: 01071-00 BORING NUMBER: SB3 DRILLING COMPANY: EMPIRE

Sample:	Sample	: Sampl	e: Method:	RECOV. :	1	;	ŧ	1	:	F	
luaber :	Depth	: Depth	i of i	FT. I	- 1	ŧ	1	1	1	6	
1	Begin	: End	: Sample:	:	1	:	ŀ	1	1	e	
;	Ft.	Ft.	Collect	;	1	;	ť	1	1	t	Visual Classification
;		;	; ;	;	1	1	;	;	;	bleleld	SMl Blacktop to 0.5 ft.;
\$\$-11	0.5	2.	01 SS;	01	1		•			1 (1) (1)	No recovery.
i		!	1 1	1	ŀ	1	}	1	:		
SS-2:	2.0	4.	0: SS:	0,61		!				2	Brown silty fill with rock
ŀ		ŧ	: :	:	1	1	1	1	1		fragments; moist in bottom
			1 1		L	1				3	
:		1	; ;		 		1	:	1		
SS-3:	4.0	6.	0: \$\$;	0.3						4 総裁裁針	Brown silty fill;
:			1 1	1	:		:	;			slightly moist.
1		.	1 1	:_					;	5 1 1 1 1 1	-
		;	: :		1			1			
SS-4:	6.0	8.	0: SS:	0.5	_ L				;	6	Brown medium silty sand.
:		:	1 1	1	- I		!	- ;	;		
:			: :	}		- !			;	7 14 14 14	
;		:	1 1	;		!	;	;	;		
SS-5:	8,0	10.	0: SS:	0.4;	1	;				8 10 10 10	Same as above with
;			; ;	;	;	1	!	1	1	1999	rock fr agments.
;		!	1			;				9 [13]	•
;		:	; ;	1	;	1	1	1			
		!	1 1	!	1		•	•	!	10	

APPENDIX E.2
OTHER AFP 59 BORING LOGS

(CL5119A) (01071-00-86007-00)

THE THE TRANSPORT OF THE STANDARD COMPLICATION OF THE TRANSPORT OF THE TRA

I AWN CARLY

5-21-74

SHIVER CREEK, ISLY.

				Tr. "	August	20,	3.74
grander ang. a	· v						
		Corporation :			na od mang de od na o		
- 2	. FOLDE''"; Ter	ry Allenson		NOT DELICE	Test: 2.	, Hours	
Tienethri,	13.25" Dapin	:_94 .5% PAR C	r mani o	wvel(X)Po	ak()old F	olo (%)	
Drive Figs	: 12e(X)Yo()		Lingths	81 ft. 9	in.	# 201	Stainěess
Screent 18	·s(X)No() Than	eter 113/8" n 12	1/2" 0, 5,	. langth:	20' 🏗	o∈: stee	el tele-
Show Shee:	Top 5 ft. # 4	0, bottom 15 ft.	# 80	Overn	ll longil:		e type
Tap al Bar	2.5 G 85 11.	Longth für Line:	_XX_fi.	Micchang	o Tipe: 8	in.	
Drifter Si	.:e: 4in. Ti	TI HWA: Tabine	(X) Survey	rsib lo ()	Spetien ()	
TYPE DEPTH	I FEARING DIVIC	D: Altitude Gauge	() Elco	urical Wat	er Level (X)	
SPATIC WAT	ier lyyel: 15	ft. Water sampl	e taken b	Y: None t	aken	######################################	•
TIME	BACK FRESS I	n inches opifice	Grat AL	TITUDE WA	TER LUVEL	LITER L	
7:30 AM 7:45 8:15 8:45 9:15	(#T#0.57)	4" 4" 4" 4" 4" 4"	60 70 80 80 120		20' 45' 60' 65' 80		from top of casing
9:45		4"	120		80		

ALLENDALE POAD SHAMTON N. N. 13903 722 - 0030

COSTELLO'S LABORATORY INC.

SUCCESSOR TO NELSON & LAUDER CHARLES V. COSTELLO CONSULTING SANITARY CHEMIST LABORATORY FOR
SAN TARY & ANALYT CAL
CHEMISTRY

RESULTS OF EXAMINATION OF WATER

LABORATORY NO. C-	<u> </u>	COLLEC	TED BY - Think	<u>e Mall Drillars</u>	
DATE COLLECTED	5/25/7/	- RECEIVED	6/16/2	REPORTED	<u> </u>
PLACE	CITY TOWN VILLAGE	OR HAMLET		COUNTY	Етрета
CANER			TF	NANT	
BACTERIAL EXAMINA		Appendix Marketin Apple of the Control of the Contr	TEST FOR COL	IFORM GROUP	
BACTERIA PER ML. AGA			·		
Marie vie des Propagations de res Antiques de la Propagation de res		ISFACTORY SANITAR	W QUALITY WHEN THE S	AMPLE WAS COLLECTED	
COLOR		TURE	потту	ODOR + COL	0 Ve3 + MOT
CHEMICAL EXAMINA	TION		RESULTS	S IN PARTS PER MILLI	ON
IRON (FE)	.10	AMMONIA F	REE (AS N)	OXYGEN CONSUMED) (0)
MANGANESE (MN) les as Rec'd	_	ALB. AMMON	(IA (AS N)	CHLORIDES (C1) -	
CARBON DIOXIDE (CO2)		ALB. AMMON	10	HARDNESS (AS CA	2/4
TOTAL SOLIDS	499	LOSS OF IGI	N,	CALCIUM (AS CAC	282
DICARBONATES	318	SULFATES	140	MAGNESIUM (AS C	(ACO2) 99
SILICA		COPPER		ELECTROMETRIC PH VALUE	7.3
TOTAL PHOSPHATES	·		SPHATES	META PHOSPHATES	
BUSPENDED MATTER		TEMPT AIR		TEMPT WATER 'F	

REMARKS:

Paules V. Catell

CHARLES V. COSTELLO

* MOST PROBABLE NUMBER +1=VERY SLIBHT, S=SLIGHT, S=DISTINCT, 4=DECIDED S=EXTREME

上海门市场 VE.2-6 地位比较的态

WATER C. TEST BORINGS

INDUSTRIAN RESIDENTIAN

WE A SUPPLIES - WATER TYSTE 'S WATER TONDETONERS

(THE Place of LOSS

SHARD CRUSHING

RM MAIN STREET

SILVER CRIEK, N. Y.

		May 14,	15, .374
CONTRACTOR	POLICE OF MAIN TORK	P/GE €	1
Control General Electric Corr Johnson City, New Yor	k	ടെയ്ത്ത് അട്ടേയ്യ്യത്ത്യ ശ്രാധ്യമ ശ്ര	D. SELVE WELST
WELL # 1 FORE IAN: Douglas	Tubbs	PURATION OF THEF: _24	Hours
Diameter: 13.25" Lepth: 94	Sit. The of Mall:	Consequent (x) moves for postants	arcocki)
Drive Pipe: Tes(X)No() Diam	eter: 14" OD Lengt	h: 75 ft.	
Screen: Yes(X)No() Diameter	113/6" I.D. 125" 0	.D. Length: 20 Ty	p a:
Slot Size: Top 5 ft. # 40	bottom 15 ft. # 80	Overall Length:	2211"
Top of Bowls 3_75_ft. Lon	th Air Line: XX f	t. Discharge Pipe: 8	in.
Orifice Size: 5 in. TIPE P	NP: Nurbine (X) MOUNT	 \$262 239 082\$2\$# \$18 38488	M/M
TYPE DEPTH READING DEVICE: A	ltitude Gauge () 🖽	ectrical Water Level (x)
STATIC WATER LEVEL: 15.35 ft.	WATER SAMPLE TAKEN	BY: Robert L. Ehmke	WATER LEVEL
TIME BACK FRESS IN IN	CHES ORIFICE GPM	ALTITUDE WATER LEVEL	DI 03S. HOLE
The second section of the second seco	STATESTAND OF STATES OF	CONTRACTOR OF CO	PROTECTION OF THE PROTECTION O
4:55 PM 0	5" 0	STATIC	
. 5: 0 0 27	" 510	45 '	
5:30 29	" 530	52 '	
6:00 29	" 530	55'	*
6130	" 540	56'	
7:00	" 548 " 548	57'	
11,7:30 21,000	340	57 '	
्रिक6;00 31 ४८ 8:30 31	" 548 " 548	57' 57'	
9:00	" 548	57'	
- 9:30 31	" 548	58'	
10:00 * 31	" 548	. 58'	
10: 30	" 548	581	
નું 11:00 31	" 548	59'	a pr
*; 11:30 PM 31	548	59'	
12:00 Midnite 31	-" 548	. 591	
7-12-30 AM 31	" 548	59'	2-7
31	" 548	59'	
w 1:30 31	" 548	59'	and the second
2:00,	7 548 T	59'	
7 2: 30 ° 7 . · · · · 31	" 548 " 548	59'	
31 31 31 31 31	" 548 " 548	59' 59'	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31 30 31 31 31	" 548	59'	
4: 30	" 548	59'	
\$:00 31	" 548	591	
5:30 AM 31	" 548	59'	

FUTORI	OF	UID 1	TEST
r . uni	O.		1 , 1

PACE # 2 VATER LEVEL

	TIME	BACK TRESS IN INCHES	ORIFICE	GUM ALTITUDE	WATER LEVEL	IN OBS. HOLE
	Comment of the same of the sam	Special control on the control of th	A C. MINERAL OL.	- 100 PER 100	CONTRACTOR OF THE PROPERTY OF	a and the same of
-15-74	6:00 AM	31	5''	548	59 '	
	6:30	31 ,	**	548	59 '	
	7:00	31	11	548	591	
	7:30	31	11	548	59 '	
	8:00	31	11	548	59'	
	8:30	31	**	548	59 '	
	9:00	31	"	548	59'	
	9: 30	31	11	548	59'	
	10:00	31	*1	548	59'	
	10:30	31	**	548	59'	
	11:00	31	11	548	59*	
	11:30 AM	31	**	548	59'	
	12:00 Noon	31	11	548	59'	
	12:30 PM	31	11	548	59 1	•
	1:00	31	**	548	59'	
	1:30	31	н	548	59'	•
	2:00	3 2	11	556	59'6"	فبر
	2:30	32	11	556	59'6"	•
	3:00	32	**	556	59'6"	
	3:30	32	11	556	59'6"	•
	4:00	33	*1	562	60 '	
	4: 30	33	11	562	60'	%
	5:00 PM	33	H	562	60'	• , - •

Rebound: From 60 ft. back to 21 ft. in 2 minutes and 15 seconds, after that 2 inches per minute

Specific capacity of this well is 12.5 GPM per foot 6f drawdown, maximum drawdown being 60 ft. We pumped this well at 75% of drawdown, so possible capacity at time of pumping test would be 750 GPM. We would recommend a 500 GPM pump for this well having a 75 ft. column and shafting in the casing.

CASH BLASPBE AMTON N. Y. 13903 722 - 0030

E.2-8 COSTELLO'S LABORATORY INC.

S. COLSSOR TO NELSON & LAUDER CHARLES V COSTELLO CONSULTING SANITARY CHEMIST

LABIHATORY FOR SANITARY & ANALYTICAL CHEM.STRY

RESULTS OF EXAMINATION OF WATER

LABORATORY NO. C. (2/2/		COLLECTED BY	<u> </u>	all lrillari	
TATE COLLECTED	PEC	E'VED	51-512	REPURTED	: c/n
FLACE CONT. TOWN VILLAGE SAMPLING POINT	36 HA			COUNTY	
CWNED		THE RESERVE OF THE PERSON OF T	TENAN1		
EACTERIAL EXAMINATION			TEST FOR COLIFCE	M GROUP	
BACTERIA FER ML. AGAR 3500 - 24 HRS			M P N. * / 100	ML	
THIS WATER WAS OF A SAT	SFAC	CRY SANITARY QUALI	TY WHEN THE SAMP	E WAS COLLECTED	
PHYSICAL EXAMINATION					
COLOR2	*******	T' RBIDITY -	1	ODOR + COLD VAS	T HOT
CHEMICAL EXAMINATION			RESULTS IN	PARTS PER MILLION	
IFON (FE)		AMMONIA FREE (AS	N)	- OXYGEN CONSUMED (OF _	· · · · · · · · · · · · · · · · · · ·
MANGANESE (MN) less than Ol as Rec'd	2 Z	ALB. AMMONIA (AS	3 N)	CHLORIDES (C1)	33
CARBON DICKIDE (COS)	MITROGEN CONSTITUENTS	\ ' NITRITES (AS N) =		TOTAL HARDNESS (AS CACOS) -	<u>3</u> 80
FLOURIDES (F)	2 00	NITRATES (AS N) -	.10	ALKALINITY (AS CACOS) _	265
TOTAL SOLIDS 499	<u> </u>	LOSS OF IGNITION -		- CALCIUM (AS CACOS)	282
BICARBONATES 328		SULFATES	140	MAGNESIUM (AS CACOS)	99
BILICA		COPPER		ELECTROMETRIC PH VALUE	7.3
TOTAL PHOSPHATES	-	ORTHO PHOSPHATES		META PHOSPHATES	
SUSPENDED MATTER		TEMPT AIR * F		TEMPT WATER "F	
DETERGENTS					

REMARKS:

CATOH Environmental Companies, Inc. One Industrial Place, Savannah, New York 13146 Phone: 315/365-2891

Project: Client: Date Started: Date Completed:		Gene	ral Elec Martin 5/85	tric	Faci	li+v	John:	son (Project No.: C364 Boring No.: 1 Surface Elev.: Groundwater Depth-Casing In: -25' Below Ground SurfCasing Out(hole grouted)				
Driller:	•	A. U							•				
Inspecto	<u>. </u>			BLO	WS OI	N SAM	PLER	7	Sheet 1 of 3				
DEPTH	SAM DEP		SAMPLE NO.	0/	F /	112"/	18"/	N	MATERIAL DESCRIPTION				
_ 0 _				<u> </u>		ļ .		+	Asphalt 0.5				
				i — –	<u> </u>								
-				1									
<u> </u>	5.0-6.5	<u> </u>	1_1_	4	7	9		16					
_		_	 		¦	 		 	little to some gravel.				
- 						 		·					
<u> </u>	10.0-11	.51	2	3	9	11		20	Brown sandy silt, trace gravel.				
_						ļ							
_				ļ				 					
_ _ 15 _	15.016.	51	3	3	6	4-4		10	Gray saturated fine sandy silt, trace				
_			ļ			 		18	gravel.				
_						 		 					
_ _ 20 _													
_	20.0-21	.5'	4	_3	3	3		6	Gray silt, trace clay.				
_													
_ _ 25 _													
	25.0-26	.5'	5	4	7	4		11_	Gray silt, trace clay.				
_				 		†		-					
_ _ 30 _						 		 					
_ 30 _	30.0-31	.5'	6	3	3	5		8	Gray silt, crace clay.				
			<u> </u>										
_													
<u> </u>	35.0-36	.5'	7	4	5	5		_01	Gray silt, trace clay.				
_						 		-					
<u>-</u>						†		ļ					
_ 40 _			 	<u> </u>	 _	l	<u> </u>	 					
	o. of blow Type:		rive_2'' hoi 1	_spoc	n <u>12"</u> em au	_w/_1	40 16	weig	ght_ <u>30''</u> _each blow. 				

Phone: 315/365-2891

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364 Boring No.: 1

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started:

11/25/85

Groundwater Depth-Casing In: -25'

Date Completed:

11/27/85 A. Utter

Below Ground Surf.-Casing Out: (hole grouted)

Inspector			_					Sheet 2 of 3	;
DEPTH	SAMPLE DEPTH	SAMPLE		WS ON 6" 12"	12" 18"	1:8	N	MATERIAL DESCRIPTION	
- 40-	40.0-41.5'	6	3	4	4		C	Gray silt. *race clay.	-

	DEPTH	110	<u>/ 6''</u>	12"	/18"	<u> /24''</u>	N		
40-	40.0-41.5'	8	3	4	4		5	Gray silt. *race clay.	
45—	45.0-46.5'	9	4	4	5		9	Gray silt, trace clay.	
50-	50.0-51.5	10	5	5	7		12	Gray silt, trace to little clay.	
55—	55.0-56.5'	11	7	8	0		16	Gray silt, trace to little clay.	
60 —	60.0-61.5	12	4	3	4		7	Gray silt, trace to little clay.	
65	65.0-66.5'	13	_2	3	2		5_	Gray Stit, trace clay.	
70	70.0-71.5	14	3	4	5		9	Gray silt, trace clay.	
75	75.0-76.5'	15	_7	9	10		19	Gray silt, trace clay.	
									79.0

N = No. of blows to drive $\frac{2^{11}}{\text{hollow stem auger}}$ spoon $\frac{12^{11}}{\text{wl}} \frac{\text{wl}}{140}$ lb. weight $\frac{30^{11}}{140}$ each blow.

Phone: 315/365-2891

Project:		Gener	al Elec	tric	Facil	ity,	Johns	on (Sitallation City, NY Project No.: C364 Boring No.: 1
Client: Date Star Date Con Druicii	npleted:	R.J. 11/25 11/27 A. Ut	7/85	Cons	uiting	, Engi	neers	•	Sur' : E'ev.: Groundwater Depth-Casing In: -22 Below Ground SurfCasing Out: (hole grouted
Inspector	<u>r:</u>			,				. —	Sheet 3 of 3
DEPTH	SAM! DEP		SAMPLE NO	0/	WS ON	12"/	18"/	1	MATERIAL DESCRIPTION
— 80 <i>—</i> —	80.0-81		16	9	11	1,7	L	23	Grav silty fine sand. 82.0
 85	85.0-86	.5'	17	8	10	10		20	Gray silt, trace clay.
-									88.0
 90-									00.0
_ 90 <i>-</i> -	90.0-91	۰0،	18	41	62			103	Gray silt and gravel, little sand, truce clay.
- - -	94.0 93	.0'	19	36	34			70	Gray silt and gravel, little sand, trace clay.
- 95 -								} }	
_	97.5-97	.5'	20	100 =	1			100/0	Boring terminated at 97.5' (refusal)
- 100 - 		-	-		 				NOTE: Drilled $4\frac{1}{4}$ " I.D. hollow sterauger casing from 0.0-92.0"
_ _ _ 105									Drilled 4" tricone rotary from 92.0-97.5"
									Upon completion of boring, installed grout by tremie method from -20.0' to ground le
110									to ground re
-									
115									
_									
- -					-				
_ 120 _					<u> </u>	h			int 30" each blow.

Phone: 315/365-2891

ro			

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

C364 Project No.:

Foring No.:

Client: Date Started: R.J. Martin Consulting Engineers

Surface Elev.:

Casing Type: _

11/27/85

201 Groundwater Depth-Casing In:

Date Completed: Below Ground Surf.-Casing Out: A. Utter Driller: Inspector: 3 Sheet of BLOWS ON SAMPLER SAMPLE 0" 6" 12" 18" **DEPTH** SAMPLE MATERIAL DESCRIPTION **DEPTH** Asphalt 0.51 Brown moist to wet coarse to fine gravel and coarse to fine sand, little silt. 5 -8.01 10 _ 15 -Brown moist silty sand, trace gravel, 20.0-22.0 19 24 trace clay. 26 23 25 _ Brown wet fine sand, trace gravel. 30.01 30 _ 30.0-32.0 Brown saturated fine sand. 8 35 .

N = No. of blows to drive $\frac{2^{11}}{2}$ spoon $\frac{12^{11}}{2}$ w/ $\frac{140}{2}$ lb. weight $\frac{30^{11}}{2}$ each blow. hollow stem auger

Phone: 315/365-2891

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

C364 Project No.:

Boring No.:

Client:

R.J. Hartin Consulting Engineers

Surface Elev.:

Date Started: Date Completed: 11/27/85

Groundwater Depth-Casing In: 20'

Below Ground Surf.-Casing Out:

Driller:

A. Utter

nspecto	<u>r:</u>						,	Sheet ∠ oí 3
DEPTH	SAMPLE UEPTH	SAMPLE	0.	6"/	12"/ 18"	18"/ 24"	N	MATERIAL DESCRIPTION
- 40 -	40.0-42.0'	3	21	14		!		Brown saturated fine sand, some sitt.
-					12	17	29	, , , , , , , , , , , , , , , , , , , ,
-			 		 	 	 	
- -45 —								
- 45 -		 -			 	ļ	ļ	1.7
-		 	-	i	<u> </u>	 		47
- -					ļ			
- 50	50 0 50 01	4	21			<u></u>	1	
-	50.0-52.01	4	21	÷	9	10	19	prown saturated siity and and gravel.
-		 -			-	 	[
_			 	 	 	 		
- - ₅₅			Ī	ļ				
_		 	-		 	 		
- -					_			
-60 —	(0.0.(0.0)	 		<u> </u>	!	 		Gray moist silt, a see 'ey.
_	60.0-62.01	5		9_	9	8	17	
_						I		
-		 	-			 		
-65 —								
_		 	 -	 	ļ	 	<u> </u>	·
-		1	 		 	1		
- -70 —			-					Gray saturated silty fine sand.
-	70.0-72.01	6	11	11	↓	9	19	
-		1			1			
_		ļ	 		 	 	ļ	
-75 —		1			 	 	-	
- -						Ī		
-		 	ļ		 	 		
- -80 —		<u> </u>	 	 	1			

N = No. of blows to drive 2" spoon 12" w/ 140 lb weight 30" each blow.

Casing Type: hollow stem auger Casing Type: _____

Phone: 315/365-2891

_							
\boldsymbol{L}	•	\sim	,	Δ	^	•	٠
•	,	O	ı	Ç	·	ı	٠

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

€364 Project No.:

Boring No.:

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started:

Casing Type: _____

11/27/85

Groundwater Depth-Casing In: Below Ground Surf.-Casing Out:

Date Completed:

A litter

Driller:	Α. υ	ltter						_
Inspecto	r:		1 = : =				۱	Sheet 3 of 2
DEPTH	SAMPLE DEPTH	SAMPLE NO.		6 12"	12"/ 18"	18'	1	MATERIAL DESCRIPTION
- 80-	80.0-82.0'	7	14	16		<u> </u>	30	Brown saturated fine sand.
-					17	15		
_			}	ļ		<u> </u>	ļ	
_ 85	<u> </u>			 -	 			
85 <i>_</i> _ _	85.0-86.5'	8	14	20	19	 	39	Rrown saturated fine sand.
_ _ _ 90 <i>_</i> _		}	ļ	<u> </u>	ļ		ļ	
_ 90_	90.0-90.6'	9	100	-	 	!	100	Gray silty fine sand, trace gravel.
-	70.0 70.0		>	<u> </u>	1			didy strey time saile, crace graver.
_							<u> </u>	
_	01: 0-05: 01	10	61	80	 	 	141	Gray sand and gravel, some silt.
_ 95 <i>-</i> _	94.0-95.01	10	01	00	f		141	diay sand and graver, some sitt.
_							1	
_		<u> </u>	¦ 	 	ļ ——·	├	 	
		 -	 		 	<u> </u>	 	1
100	100.0-100.01	11	70.0			1	100	
_		ļ	I		ļ	<u> </u>	ļ	
_ _ _ 105	ļ	ļ <u>.</u>	 	·	 	ļ	 	
105		 	 	 	 	-	 	Boring terminated at 104.0' (refusal)
_						1]
_	ļ	 	<u> </u>	 	 	-	├	NOTE: Drilled 4½'' D. hollow stem lauger casing from ロルータン・ロータン・ロータン・ロータン・ロータン・ロータン・ロータン・ロータン・ロ
_		 	 	!]	 	 -	Drilled 4" tricone, rotary from 90.^'-
_ 110 _					İ	1		104.01
_				 	 		ļ	lless completion of boring installed are
_	<u> </u>	 	 		·	 	 	Upon completion of boring, installed gro by tremie method from -20.0 to ground
_		<u> </u>	<u> </u>	 				surface.
_ _115_					Ţ			
_	<u> </u>	ļ	 		 	 	-	1
		 	 -	 	 	 	-	1
]
120		1	!	1	1	1	I	1

C364

3

Project No.: Boring No.:

	Phone: 315/365-2891
Project:	Test Borings and Observation Well Installation

R.J. Martin Consulting Engineers Client: Surface Elev.: 12/9/85 -201 Date Started: Groundwater Depth-Casing in: Below Ground Surf.-Casing Out:

Date Completed: 12/11/85 A. Utter

BLOWS ON SAMPLER	
LE 0" 6" 12" 18 MATERIAL DESCRIPTION	
Topsoil	0.2
Brown damp ashes, cinders, sand	, Clay.
	
-Fill-	8.0
-+++	
	
	
	
32 29 61 Brown wet silty sand, little gra	avel,
41 43 84 trace clay.	
	
	
	
	
	28.0
32 40 72 Brown saturated graverry sand.	
29 30 59	
-++	
	33.0
14 12 26. Brown saturated fine sand, trace	e silt.
_ _ _ _14 _16 _130	
	38.0
42 51 93 Brown saturated gravelly sand.	
54 56 110	

Phone: 315/365-2891

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

0364 Project No.:

2 c+ 3

3 Boring No.:

Client: Date Started: R.J. Martin Consulting Engineers

Surface Elev.:

Date Completed: 12/11/85

12/9/85

Groundwater Depth-Casing In:

Sheet

Below Ground Surf.-Casing Out:

Driller:

A. Utter Inspector:

Hapecio	·		BLOWS ON SAMPLER					Sileet - C >		
DEPTH	SAMPLE	SAMPLE		16"/	[12"/	18"		MATERIAL DESCRIPTION		
	DEPTH	NU	6''	12"	18"	24"	N			
- 40-					1	<u> </u>				
-										
-	43.0-45.01	5	9	8	∔		17	Brown saturated fine sand, trace		
- - 45—	45.0-45.0	1 2			9	9	18	gravel, trace silt.		
· サンー										
-		<u> </u>			↓		↓			
-	48.0-50.01	6	14	12	 	 	26	Brown saturated fine sand, trace gravel, trace silt. 49.		
. 50 — '	40.0 50.0	 	'-	12	13	14	27	gravel, trace silt. 49.		
. 50 —					↓					
			ļ	ļ			ļ			
	53.0-55.0'	7	12	16	 -			brown wet fine sand, trace silt.		
· FE	75.0 75.0	 	'-	10	14	16	30	second not true same, erade street		
55—							ļ —	1		
			_	·	↓		↓			
	 				 -	 	 			
		 	<u> </u>	·	 		†			
- : -	60.0-62.01	8	13	10			23	Brown wet fine sand, trace silt.		
		ļ	ļ	ļ	11	13	24			
		 	ļ	ļ	 -	-				
65_		 	}	 	 	<u> </u>				
	65.0-67.01	9	10	11			21	Brown wet fine sand, trace silt.		
		 		 	11	12	23			
		 			╁		+	69.0		
70_			ļ	 	 		 -			
, , , _	70.0-72.0'	10	9	10			19	Brown with gray wet fine sand and sile		
		 	ļ	ļ	11.	10	21_			
		 	 	 -	 	 	+-	1		
. 75		 -	<u> </u>	ļ	 	 	 	1		
. ,, _	75.0-77.01	11	9	9			18	Gray saturated silt, trace fine sand,		
		 	 	· 	8	9	17_	trace clay.		
		 	 	 	 	 	-			
80		 		†	 	i	 			
		1		· _	1	1	1			

N = No. of blows to drive 2^{11} spoon 12^{11} w/ 140 lb. weight 30^{11} each blow. hollow stem auger Casing Type: _

٠,

Phone: 315/365-2891

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

C364 Project No.:

Boring No.:

3

-20 .

Client: Date Started: R.J. Martin Consulting Engineers

Surface Elev.: Groundwater Depth-Casing In:

Date Completed: 12/11/85

12/9/85

Below Ground Surf.-Casing Out:

Driller:

A. Utter

Inspecto	r:		T D. O.			<u> </u>	, 	Sheet 3 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO	0"	WS ON	1400 7	18"/ 24"	1 1	MATERIAL DESCRIPTION
- 80- - -	80.0-82.01	i Z	10	•	34	49	21 83	Gray saturated si'. trace fine sand, trace clay. 82.0
 85 90	85.0-87.0'	13	41	54	39	51	95 90	Gray wet silty sand and gravel, some clay.
_ _ _ _ 95_	93.0-94.0	14	61	82			143	Gray wet silty sand and grave, some clay. Boring terminated at 94.0
								NOTE: Drill 4½" I.D. hollow stem auger casing from 0.0-83.0". Drilled 4" tricone rotary from 83.0 to 94.0"
								Installed 2" dia. stainless steel well screen from -75.0 to -70.0' 2 galvanized riser from -70.0 to -5' Manhole and lockable cap at 9.00.3
105 								surface. Grouted by tremie method from -20.01 to ground surface.
110								•
_ 115								
_ _ _ _ 120 _								

N = No. of blows to drive $\frac{2^{11}}{2^{11}}$ spoon $\frac{12^{11}}{2^{11}}$ w/ $\frac{140}{2^{10}}$ lb. weight $\frac{30^{11}}{2^{11}}$ each blow. hollow stem auger Casing Type: _

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364

Boring No.:

B-4

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started:
Date Completed:

2/17/86 2/19/86 Groundwater Depth-Casing In: Below Ground Surf.-Casing Out:

Driller:

M. Skardinski

Inspecto	r:							Sheet 1 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.		WS ON 6"/ 12"	12"/	18'	N	MATERIAL DESCRIPTION
<u> </u>								
_		 					-	
 5 —								
_								
-								·
<u> </u>	10.0-11.5	1	16	16	18		34	Brown wet coarse to fine gravel and sand, trace clay.
								·
— 15 <i>—</i>		-						
-								
_ _ 20 _								
-		 						
- -								
_ 25 _ _	25.0-26.51	2	4	3	4		7	Grey wet fine silty clay, trace of fine gravel and sand.
-								
30								•
_								
_ _ 35_		<u> </u>				-		
- -	35.0-36.51	3	2	2	4		6	Grey wet silty fine sand, trace clay.
- -		+						
- 40		 						

N = No. of blows to drive 2" spoon 12" w/ 140 lb. weight 30" each blow. Casing Type: hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.:

C364

Boring No.:

B-4

Client: Date Started: R.J. Martin Consulting Engineers

Surface Elev.: Groundwater Depth-Casing In:

Date Completed: 2/19/86

2/17/86

Below Ground Surf.-Casing Out:

M. Skardinski

Oriller:		kardins	ki					
nspecto	r: 		1 01 0	4/6 01		0: 50	ı ——	Sheet 2 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.	0" 6"	WS ON 6"/ 12"	12"/	18'	1	MATERIAL DESCRIPTION
- 40-		<u> </u>	ļ					
-								
- 45		↓	 		-	 	-	
-								
- 45 -	45.0-46.51	4	3	6	7_		13	Grey wet silty fine sand, trace clay
-					 		 	·
-		İ						
- - 50 		ļ	ļ			ļ	 	
-		 						
-								
- -				ļ				
- 55	55.0-56.51	5	2	3	3		6	Grey wet silty fine sand, trace clay
•	77.0 70.7							tricy wet strity trine sails, trace cray
-		-						
-		1			 	 	 	
- 60		 						
-								
-		 				 	 	
-						_		
- 65	65.0-66.51	6	3	4	8		12	Grey wet filty fine sand, trace clay
- -								medium to fine sand seam.
-		-				 -		•
70		†						
- /0 — -								
-		-						
-		 				•		
- - 75 -		1						
-	75.0-76.5	7	6	10	12_	ļ	22_	Grey wet silty fine sand, trace clay
-		 				 		
-								
- 80 <u>-</u>								

N = No. of blows to drive $\frac{2^{11}}{\text{hollow stem auger}}$ w/ $\frac{140}{\text{lb. weight}}$ b. weight $\frac{30^{11}}{\text{each blow.}}$ Casing Type: _

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: Boring No.:

C364 B-4

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started: Date Completed: 2/19/86

2/17/86

Groundwater Depth-Casing In: Below Ground Surf.-Casing Out:

Driller:

M. Skardinski

Inspecto		Kardinsi					. —	Sheet 3 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.	0" 6"	WS ON 6" 12"	12" 18"	PLER 18"/ 24"	1	MATERIAL DESCRIPTION
- 80 -	DEFIN			12		2-		
_		1						
_		-				 	\vdash	
_ _ 85 _	85.0-86.5'	8	7	11	17		28	Grey wet silty fine sand. trace of clay.
_								
— — — — — 90 —								
_								
_ _ 95	95.0-96.51	9	WOR					Grey wet silty fine sand, trace of clay.
_								
		 						
— 100— —								Boring terminated at 100.5! (auger refuse
	<u> </u>	 						to the committee de roots (cogo: roxes
- - - 105-								Upon completion of boring, installed grout by tremie method from -20.0'
-								to ground level.
_ _ _ 110								
_ ```								
-								
_ 115		-					-	
— 115— —		1						
_		-				ļ		7
_								
— — 120—								

N = No. of blows to drive $\frac{2^{11}}{2^{11}}$ spoon $\frac{12^{11}}{2^{11}}$ w/ $\frac{140}{2^{10}}$ lb. weight $\frac{30^{11}}{2^{10}}$ each blow. Casing Type: _____ hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.:

C364 B-5

Client:

R.J. Martin Consulting Engineers

Boring No.: Surface Elev.:

Date Started: Date Completed: 2/19/86

2/19/86

Groundwater Depth-Casing In: Below Ground Surf.-Casing Out:

Driller:

M. Skardinski

Driller:		kardins	ci					
Inspecto	or:		, —				, —	Sheet 1 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.	0" 6"	WS ON	12"/ 18"	18"/	1	MATERIAL DESCRIPTION
_ 0 _								
	<u> </u>	 		 	-	 	-	1
_					† ·	ļ —		
- -								
- - 5 —	 	 			-		├	
-	<u> </u>	 					-	
- -								
-					ļ			
_ 10	10.0-11.5'	1 1	17	14	15	<u> </u>	29	Brown coarse to fine sand, some fine
-	10.05	 '	- 7		ر.		-2	gravel.
-								
-		ļ						
- 15 —								
-		 						
- ;								
- 20 —	<u> </u>	 						
-								
25	25.0-27.0'	2	13	9			22	Brown saturated medium to fine sand,
•	27.0 27.0		''	-	9	12	21	little fine gravel.
	27.0-29.0'	3	10	_5			15	Grey wet silty clay, tracel gravel.
					5	6	_11	
. 30 —	30.0-31.5'	4	4	5			<u>_</u>	Grey wet silty clay.
•	20.0 21.2	-			5	6	11	diey wet stilly tray.
]	
- 35 —	35.0-36.51	5	3	4	6		10	Grey wet silty clay, trace sand.
· }	77.0 70.5				-		-'4	uley wet silty clay, trace sand.
. [\Box				
1.0		1		1		1	- i	

N = No. of blows to drive 2'' spoon 12'' w/ 140 lb. weight 30'' each blow. Casing Type: hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166

Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.:

C364

Client:

R.J. Martin Consulting Engineers

Boring No.: Surface Elev.: 2-5

Date Started:

2/19/86

Groundwater Depth-Casing In:

Date Completed: 2/19/86

Below Ground Surf.-Casing Out:

Driller: Inspector M. Skardinski

riller: hspecto							,	Sheet 2 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.		WS ON 6"/ 12"	12"/ 18"	18"/ 24"	1	MATERIAL DESCRIPTION
- 40 -	40.0-41.5	6	3	5	7		12	Grey wet silty sand, trace clay.
- 45 —	45.0-47.0	7	9	10	13	13	19	Grey wet silty sand, trace clay.
50 —	50.0-51.5'	8	8	9	14		23	Grey wet silty sand, trace clay.
55 —	55.0-56.5' 57.0-59.0'	9	11	15	24		39	trace fine gravel, little silt.
60 —	60.0-62.01	11	17	19	14	15 29	29 36 53	gravel. Grey wet silty fine sand, trace gravel.
65 —	64.0-66.0	12	13	14	17	24	38 41 27	
	66.0-68.0'	14	11	13_	16	12	28 24 22	trace gravel. Sandy gravel layered with silty fine sand. 68
70	70.0-72.0	15	4	3 	3	5	7 8 9	Grey silt , trace clay. Grey silt , little clay.
			•		_4_	_6	10	
75 —	75.0-77.0'	17	3	4	4	. 6		Grey silt , little clay.
90								

N = No. of blows to drive $\frac{2^{11}}{2}$ spoon $\frac{12^{11}}{2}$ w/ $\frac{140}{2}$ lb. weight $\frac{30^{11}}{2}$ each blow. hollow stem auger Casing Type: _____

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364

Boring No.:

B-5

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started:

2/19/86

Groundwater Depth-Casing In:

Date Completed: 2/19/86

M. Skardinski

Below Ground Surf.-Casing Out:

Driller:		kardinsk	ci					•
Inspecto) <u>r:</u>	-,	1 =				, —	Sheet 3 of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.	0 BFO	WS OI	12"/ 18"	18"	1	MATERIAL DESCRIPTION
- 80-	80.0-82.01	18	WOR					Grey silt, little clay.
-		 	├		WOR	WOR	-	
- - - 85-		ļ						
- 85	85.0-87.01	19	5	15			20	Grey silt, little clay.
					21	26	47	
 90							二	:
<u> </u>	90.0-92.01	20	8	7			15	Grey silt, little clay.
					9	13_	22	•
_								
95								Boring terminated at 94.01 (refusal)
-								
_								
_ 100								
-	· · · · · · · · · · · · · · · · · · ·							
_								
_ 105_								
_ [
_							\Box	
_ 110_								
-			·				\dashv	
=								
- 115-							彐	
- [T	$\overline{-}$		
-							コ	
120								

N = No. of blows to drive 2" spoon 12" w/ 140 lb. weight 30" each blow. hollow stem auger Casing Type: _

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

C364 Project No.:

Boring No.:

Client: Date Started: R.J. Martin Consulting Engineers

Surface Elev.:

3/31/86

Groundwater Depth-Casing In: 25.01 Below Ground Surf.-Casing Out: 22.01

Date Completed:

4/3/86 A. Utter

Driller: 3 Inspector: Sheet of **BLOWS ON SAMPLER** DEPTH SAMPLE NO. 16"/ SAMPLE 12" 18" MATERIAL DESCRIPTION **DEPTH** ا3.3 Black top 5 -10 -15-30.0-32.01 20 19 39 Brown saturated sandy medium to fine 21 18 39 gravel. 35-

N = No. of blows to drive 2^{11} spoon 12^{11} w/ 140 tb. weight 30^{11} each blow. hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364

Boring No.: 8-6

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started:

3/31/86

Groundwater Depth-Casing in: 25.01

Date Completed:
Driller:

4/3/86 A. Utter Below Ground Surf.-Casing Out: 22.01

Inspecto	r:		· ——					Sheet 2 of 3
DEPTH	SAMPLE	SAMPLE	0/	WS ON	12" 18"	18"/ 24"		MATERIAL DESCRIPTION
- 40 -	DEPTH	NO.	6"		18"	24"	<u> </u>	
	40.0-42.01	2	26	20		 _	46	Brown saturated sandy medium to fine
_		 		 	19	15	34	gravel.
_								
- - 45 <i>-</i> -								45.
- - - - 50 —								1
_								
_								
- 50—	50.0-52.0	3	24	22			46	Brown saturated medium to fine sand.
-	•				20	21	41	brown saturated mearum to rifle saila.
-								
- - 55 —								
- 55 —								
]								57.
- }						<u> </u>		
- - 60 —	59.0-61.01	4	29	28			57	Brown wet silty gravel, little sand,
- 60 —					28	27	55	few cobbles.
-								63.
·								
65 —								
·								
	68.0-70.01	5	19	18			37	Grey saturated silty fine sand.
. 70			∤	}	18	21_	39	
·								
ַ בֿ								
. [—∤					
- 75 —						─	\dashv	
								77•
	79 0 00 01							
· _ }	78.0-80.0'	٤	41	62	68		103 142	Grey wet sandy gravel, little silt an clay
80					-00	/9 	194	

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166

Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Elctric Facility, Johnson City, NY

C364 Project No.: B-6 Boring No.:

Surface Elev.:

Client:

R.J. Martin Consulting Engineers

Groundwater Depth-Casing In:

25.01

Date Started: Date Completed: 3/31/86

Below Ground Surf.-Casing Out: 22.01

Driller:

4/3/86 A. Utter

Inspecto	<u>r:</u>							Sheet 3 of 3
			BLO	WS ON	SAM	PLER]	
DEPTH	SAMPLE	SAMPLE		6''	12"/		i	MATERIAL DESCRIPTION
OEP III	DEPTH	NO.	6"	12"	18"	18"/	N	MATERIAL DESCRIPTION
- 80	DEFIN		K .	12	10	24	111	
00		Ī	, ·	i — —				
		1				 		
_		 		 				
		 					<u> </u>	
			<u> </u>	<u> </u>				
— — 85—		 -	<u> </u>	<u> </u>				
_		ļ						
			L					
_								
~	88.0-89.0	7	62	100			162	Grey damp sandy gravel, some silt.
- - 90 -								are, comp saile, graver, some stit.
— 90 —		·						
- 1								
1								
_								
	''							
- - 95 -								
_ 77 _								
_								
-								98.0'
-	98.0-98.21	8	14.2				122	Conv. chal-
- 1.QQ-	70.0 70.2						~4	Grey shale.
- 100-					}			Boring terminated at 98.21
_ }	<u> </u>							
_								
_ 105_								
- 105-								
 }								
- F			 +		 -{		\dashv	
- H				∤		∤	{	
- l								
_ 110_					1			
1						l		
-								
- }								
-								
115							i	
- 115}				+			-	
- ↓								
_								
_	1			اـــــــــــــــــــــــــــــــــــــ	i			
_ [·			T	T		
-,,, r								
_ 120				<u></u> t				

N = No. of blows to drive 2^{11} spoon 12^{11} w/ 140 lb. weight 30^{11} each blow. Casing Type: _____ hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Filone. 313/034-000

^			٠				
u		•	١.	0	C	٠	٠
	• •	J	١,	U	·	4	

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: 0364
Boring No.: 67

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started: 5/6

5/6/86

Groundwater Depth-Casing In: 21.01 Below Ground Surf.-Casing Out:

Date Completed: 5/8/86

Oriller: A. Utter

Inspector: Sheet 1 of 2 BLOWS ON SAMPLER DEPTH SAMPLE SAMPLE 6'' 12"/ MATERIAL DESCRIPTION 18"/ NO. DEPTH 0-Asphalt 0.25' Brown silty fine sand, trace clay 5-8.01 10-15-20 -25.0-27.01 21 20 41 Brown saturated coarse to fine sand 16 14 30 and medium to fine gravel, trace silt. 30.0-32.01 17 16 Brown saturated coarse to fine sand 15 19 and medium to fine gravel, trace silt. 35.0' 35.0-37.01 Brown saturated medium to fine gravel, 19 16 35 14 and fine sand, trace silt. 26

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364

Client: R.J. Martin Consulting Engineers Boring No.:

Date Started: 5/6/86

Surface Elev.: Groundwater Depth-Casing In: 21.01

Date Completed: 5/8/86

Below Ground Surf.-Casing Out:

Driller:	A. U	tter						2 4 3
Inspecto	r:		1 01 0	M/C O		01.55	٦	Sheet ² of 3
DEPTH	SAMPLE DEPTH	SAMPLE NO.		6"/ 12"	12"/ 18"	18"/	1	MATERIAL DESCRIPTION
- 40-	40.0-42.0	4	17	20	21	23	37	Brown wet silty sand, little gravel.
_							E	·
45 	45.0-47.0	5	19	18	20	22	37	Brown wet silty sand, little gravel.
-					20	22	142	
_ _ 50_	50.0-52.0'	6	24	27			51	Brown wet sandy silt, little gravel.
_					30	31	61	brown wet sainty stree, freeze graver.
- - 55-	55.0.57.01						_	
-	55.0-57.0'	7	19	22	29	28	41 57	Brown wet silty sand and gravel.
- - 60 <i>-</i> -	•							
-	60.0-62.0'	8	14	16	19	20	30 39	Brown wet silty sand and gravel.
- -								
- 65 <u>-</u>	65.0-67.01	9	21	19	19	22	40	Brown wet silty sand, little gravel.
-								, ·
70_								70.0
- - }	70.0-72.0'	.10	29	34	39_		63 81	Brown moist silty sand, trace gravel.
- - - 75 _								
- '/-	75.0-77.0'	11	30	29	28	36	59 64	Brown moist silty sand, little gravel.
}								
- 🔥 h		 						

spoon 12" N = No. of blows to drive 2^{11} w/ 140 lb. weight 30" each blow. Casing Type: . hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166

Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364

Boring No.: 57

Client: R.J. Martin Consulting Engineers

Surface Elev.:

Date Started: 5/6/86

Groundwater Depth-Casing In: 21.01

Below Ground Surf.-Casing Out:

Date Completed:

5/8/86 A. Utter

Driller: Inspecto		itter						Sheet 3 of 3
	Ī		BLO	NS ON		PLER]	
DEPTH	SAMPLE DEPTH	SAMPLE NO.	0	6"/12"	12''/	18"/	N	MATERIAL DESCRIPTION
<u> </u>	80.0-82.01	12	19	21			40	Brown moist silty sand, trace gravel.
				 -	20	26	46_	
_								
— 85 —	85.0-87.01	13	35	47			82	Grey moist clayey silt, little sand
_	05.0-07.0		35	7/	60	90	150	and gravel.
_		 	 		├	 	 	Boring erminated at 87.0'
_ 90		 		 	 	<u> </u>	<u> </u>	NOTE: Upon completion of boring,
— 30 — —						[abandoned drill hole with
_		 		-		 -	 	cement/bentonite grout.
_								
— 95 —		 			 	├ ─	<u> </u>	
_	<u> </u>		}	<u> </u>			 	
-	<u> </u>	 			 	 -	 	
_100 _								
_	·							
-		-	ļ ——	 	 	 -	}	
105								
_		 	<u> </u>		Ĺ. <u>.</u>	 	-	,
_								
_110 _	;	ļ					 	
_		 	ļ	 			_	_
_		ļ		 				
_115 _		 				-	-	
_								
_				ļ		ļ		
		 		} -		 	-	
_120 _								f

N = No. of blows to drive 2" spoon 12" w/ 140 lb. weight 30" each blow. Casing Type: _______bollow stem suger______

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364

Boring No.:

7 B

Client: Date Started: R.J. Martin Consulting Engineers

Surface Elev.:

5/8/86

Groundwater Depth-Casing In: 18.01

Date Completed: 5/12/86 Driller:

A. Utter

Below Ground Surf.-Casing Out:

Driller: Inspecto		Jiter						Sheet 1 of 3
DEOTH	CANADIE	T	BLO	WS OF	SAM	PLER		MATERIAL BECCRIPTION
DEPTH	DEPTH	SAMPLE SAMPLE DEPTH NO.	6	12"	12"/	18"/	N	MATERIAL DESCRIPTION
- 0-								Asphalt 0.25
_								
_		+		-			-	Brown damp sandy gravel.
- - 5-								or own damp sandy graver.
				 			-	
_								
_	·	<u> </u>		 -	<u> </u>			
_ 10 _		 			-			
_	ļ	 -					 	
_ _ 15 <i>_</i>								
- ·,,-		ļ						
		 						
_								·
<u> </u>	· 							
_								
_								23.0'
_ _ 25								·
_ 25 _	25.0-27.0'	1	2	1			3	Grey wet silt, trace clay.
-		 			_1_	_3_	4	
		 						·
_ _ 30 _								
_	30.0-32.0	2	_3	3_	4	-	8	Grey wet silt, trace clay.
-						-3-		-
- 35-	35.0-37.01	3	4	3			7	Grey wet silt. trace clay. 36.0'
-					5	5	10	Grey wet silt, trace clay. 36.0' Brown moist coarse to fine sand, little
-		╂╼╼═╅						medium to fine gravel, trace silt.
_ _ 40_								
	J			I				

spoon 12" w/ 300 lb. weight 24" each blow. N = No. of blows to drive $2^{(1)}$ Casing Type: _ hollow stem auger

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166

Phone: 315/834-6603

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364 Boring No.: 🤰 8

Client:

R.J. Martin Consulting Engineers

Surface Elev.:

Date Started:

5/8/86

Groundwater Depth-Casing In: 18.01

Date Completed:

5/12/86

Below Ground Surf.-Casing Out:

EPTH				MIC OL	I CAL	01.00	1	1
	SAMPLE DEPTH	SAMPLE NO.		WS ON 6"/ 12"	12"/ 18"	18"	1	MATERIAL DESCRIPTION
40—	40.0-42.01	4	8	10			18	Brown moist coarse to fine sand, little
					14	16	30	medium to fine gravel, trace silt.
45-								
45-	45.0-47.0'	5	10	14	17	16	33	Brown wet coarse to fine sand, trace gravel, trace silt.
		 					-	
50—	50.0-52.01	6	7	8			15	Brown saturated coarse to fine sand,
}		6			8	9	17	trace gravel.
	52.0-54.0'	7	9	10	10	9	1 <u>9</u>	Brown moist medium to fine sand.
55—	55.0-57.0'	8	4	4			8	Brown wet coarse to fine sand, little
ļ					5	6	11_	gravel.
	•							
60 —	60.0-62.0'	9	5	7	6	6	12	Brown wet silty coarse to fine sand, trace gravel.
								trace graver.
65_		+						65.
65 —	65.0-67.0'	10	8	7	8	9	15 17	Brown wet silty fine sand.
								ı
70 —	70.0-72.0'	11	6	6			12	Grey wet silt.
,		 			7	R	15_	=
75 —	75.0-77.0'	12	6	6			12	Grey wet silt.
}					6	5_	11	

N = No. of blows to drive 2^{11} spoon 12^{11} w/ 300 lb. weight 24^{11} each blow. hollow stem auger Casing Type: _

16 Drumlin Drive, P.O. Box 560 Weedsport, New York 13166 Phone: 315/834-6603

Project:

Client:

Test Borings and Observation Well Installation

General Electric Facility, Johnson City, NY

Project No.: C364 Boring No.:

Surface Elev.:

78

Date Started:

R.J. Martin Consulting Engineers 5/8/86

Groundwater Depth-Casing In: Below Ground Surf.-Casing Out:

18.01

Date Completed:

5/12/86

	Driller:	Δ (Utter						and a dame dam daying day.
ł	Inspecto		0.00.						Sheet 3 of 3
ŀ		i i		BLO	WS OI	J SAN	101 60	7	Sneet 3 of 3
	DEPTH	SAMPLE	SAMPLE		6"	12"	18"	7	MATERIAL DESCRIPTION
	D L	DEPTH	NO.	6	12"	18"	1/34	N	WIATERIAL DESCRIPTION
	- 80-		1					1	
	_	80.0-82.0	13		/		 	14	Grey wet silt, trace very fine sand.
	_		 	 	 	9	9	18	
	_	ļ 	 	 	 	 	∤	├	·
			} -	 		 	 	+	
	- 85	85.0-87.01	14	7	9		├ ──	16	
	-	07.0 07.0	 		-	10	111	21	i di di morat arre, rittre medium to
			 				 ``	+=-	fine gravel. 87.0'
	-	,	 			 	 	┼	
			 				 -	 	
	— 90—	90.0-02.01	15	28	25		 	53	Gray moint ciley same and
	- 1					25	25	50	Grey moist silty coarse sand, trace
	-)		 				1-2	120	, Clay.
٠	-						1	†	
•								_	
•	- 95 	95.0-97.01	16	60	90		<u> </u>	50	Grey moist silt, some sand and gravel.
٠	-								Boring terminated at 96.0' (Refusal)
•	_							† 	Total serminates at Join (Relusar)
	_ {								NOTE: Upon completion of drilling,
	_ 100								abandoned borehole with cement/
	_ 100[bentonite grout.
_	_ {								3 . 2.2.
	_ [· ·
	_ 105								· ·
_	_								
_									
_	_								
_	_ 110		<u></u>]	
_	_ J.								-
_	_								
_	_ -								
_	- -								
	- 115						∤		
_	- }								·
_	- ⊦		∤				∤		
_	- -				∤				
_	- -								
_	- 120 -				∤				
-									

2" spoon 12" w/ 300 lb. weight 24" each blow. N = No. of blows to drive_

APPENDIX E.3

LOGS OF WELLS IN SURROUNDING AREA

TABLE E.3-1

LOGS OF TEST BORINGS

```
4206 05 7557 53 Alzitude 875 ft. Log by Giles
                                                                                                                         7558 25. Altitude about 832 ft. Log by
Oriling Corporation

O- 25 ft Brown clay silt, some sand, some gravel and small boulders (Till - ADR)
                                                                                                            Acker Orill Company
0- 14 ft Cinders
                                                                                                              14- 19 ft Sand, gravel and clay
                                                                                                              19- 29 ft Sand, gravel, wet
 4206 08 7557 58 Altitude 849 ft. Log by Giles
                                                                                                              29- 34 ft Sand, gravel, and clay
34- 44 ft Coarse sand
Drilling Corporation
                                                                                                              14-46 ft Blue clay and gravel
         7 ft Medium brown sand and gravel, trace silt
                                                                                                             46- 48 ft Sandstone and Slate
48- 50 ft Clay and shale
   7- 23 ft Medium brown sand and gravel, trace silt,
                small boulders
                                                                                                            Note: Other nearby horings suggest rock should be deeper than 46 ft here. If not rock, the material 46-50 ft is procably till - ADR
  23= 25 ft Medium brown sand and gravel, some silt
 4206 17 7558 06 Altitude 835 ft. Log by Giles
Orilling Corporation
                                                                                                            4206 40 7558 35 Altitude 830 ft.Log by Giles Drilling Corporation
0- 9 ft Fill
9- 13 ft Brown silt
   0- 15 ft Medium brown sand and gravel, trace silt
  15- 25 ft Gray clay silt, some medium send, some
gravel (Till - ADR)
4206 59 7558 07 Altitude 842 ft. Log from records of N.Y. Dept. of Transportation
                                                                                                              13- 18 ft Brown fine sand, some slit
18- 30 ft Gray coarse to fine sand and gravel
                                                                                                             30-47 ft Fine gray sand, trace silt
47-52 ft Gray silt and fine sand
   0- 35 ft Sand and gravel, trace of silt, loose,
                brown
  35- 50 ft Silt, trace of sand, medium-firm, brown
  35- 50 ft Silt, trace or sand, medium-rirm, oro---
50- 76 ft Silt, some clay; silt and clay, medium-
firm to soft, plastic, gray
76-105 ft Silt, trace sand and clay; silt, some clay,
trace sand; medium-firm, plastic, gray
                                                                                                            4206 43
Orilling
                                                                                                                            7558 38 Altitude 824 ft. Log by Giles Corporation
                                                                                                              0- 6 ft Fill: black and brown sand, gravel
6- 10 ft Brown fine to medium sand
10- 20 ft Brown fine to medium sand, gravel
 105-107 ft Sand and gravel, some clay and silt;
                                                                                                              20- 30 ft Gray fine to coarse sand, gravel, and
                 loose, plastic, gray
4206 51 7558 11 Altitude 834 ft. Log from records of N.Y. Dept. of Transportation 0- 15 ft Sand and gravel, traces silt and roots;
                                                                                                              30- 47 ft Gray fine to coarse sand, some silt
                                                                                                             47- 50 ft Brown fine to medium sand, some silt
                                                                                                            4206 39 7558 41 Altitude 816+ ft. Log by Giles
                 loose, brown
                                                                                                            Drilling Corporation

9- 8 ft Water

8- 12 ft Brown fine to medium sand, trace silt,
   15- 30 ft Silt, soft, plastic, gray
   30- 40 ft Fine sand, some silt; silt, some fine sand;
  gray 40- 50 ft Fine sand, trace gravel at top, loose, gray
                                                                                                              some grave?

12-28 ft Gray fine sand, some silt
28-33 ft Gray fine sand, small gravel, some silt
33-38 ft Gray fine sand, small gravel, some silt
38-42 ft Oark gray fine sand, some silt
  50- 60 ft Silt, medium-firm, gray
60- 75 ft Interbedded coarse and fine sand, trace
  75- 80 ft Fine sand, some silt, compact, gray-brown
80- 95 ft Coarse sand, some silt and angular stone,
                                                                                                            4206 38 7558 46 Altitude 816 ft. Log by Giles Orilling Corporation
                 compact, slightly plastic, gray
                                                                                                               9- 12 ft Water
 4206 55 7558 12 Altitude 834 ft. Log from records of N.Y. Dept. of Transportation
                                                                                                              12- 16 ft Brown fine to medium sand, some silt,
                                                                                                              some gravel

16- 32 ft Gray fine sand, some silt
32- 37 ft Gray fine sand and silt
37- 49 ft Gray fine sand, some silt
   0- 16 ft Sand and gravel, trace silt, loose, brown
  16- 22 ft Sand and gravel, some silt, trace roots,
                 loose, grav
 22- 32 ft Sand, traces silt and gravel, loose, gray
32- 38 ft Sand and gravel, some silt, loose, gray
38- 60 ft Sand and gravel, trace silt, loose, gray
60- 87 ft Sand and gravel, alternating some to trace
                                                                                                            Log 39 7559 28 Altitude about 830 (±10 Log by Stewart Brothers, Inc. 3- 7 ft Gravel, medium to coarse, gray 7- 12 ft Clay, yellow 12- 28 ft Clay, blue
                                                                                                                         7559 28 Altitude about 830 (+10 ft).
                 silt, loose to compact, gray
  87- 98 ft Sand, trace silt; sand and silt, trace clay; loose to medium-firm, brown, slightly
                                                                                                              28- 62 ft Clay, gray
62-108 ft Silt, gray
                 plastic
  98-110 ft Sand and gravei, trace silt and clay,
                 slightly plastic, compact, gray
4206 56 7558 12 Altitude 833 ft. Log from records of N.Y. Jept. of Transportation
                                                                                                                 07 10 7557 25 Altitude 840 ft. Log from records
New York Dept. of Transportation
  0- 35 ft Sand and gravel, trace of silt (some silt
15-20), loose, brown (9-20) to gray
35- 45 ft Sand, trace of silt, compact, gray
                                                                                                                0- 2 ft Silt, trace sand and organic; soft; brown
2- 8 ft Silt, some clay, trace sand; soft, brown
8-/15 ft Silt, some fine sand, trace clay; layered;
 45- 95 ft Silt, some sand; silt, some clay, trace of sand; silt, traces of sand and clay;
                                                                                                              15- 39 ft Fine to coerse sand, some small gravel and
                 gray (45-55) to brown; soft to medium-
                                                                                                                               silt; medium-compact; broa
                 firm
                                                                                                              39- 52 ft Silt and clay, some sand; layered; loose-
  35-177 ft Sand, trace of silt, loose, gray
                                                                                                                              compact: brown
 100-105 ft Sand, some gravel and silt, compret,
                                                                                                              52- 91 ft 511t, fine to coarse sand, and smell gravel;
                 gray
                                                                                                                              medium-compact; brown
```

Note:

 $\frac{4207 \text{ } 13}{\text{Latitude}}$ $\frac{7558 \text{ } 39}{\text{Longitude}}$ Test Boring/Well Location and Numbering System.

Source: USGS, Bulletin 69, 1972.

195-197 ft Gravel, some sand and silt, loose, gray

TABLE E.3-1

LOGS OF TEST BORINGS

```
4207 14 7558 11 Altitude 830 ft. Log from records
4207 09 7558 09 Altitude 831 ft. Log from records of New York Dept. of Transportation
                                                                                                                      of New York Dept. of Transportation
0-10 ft Silt, trace sand (top) to sand, trace silt.
 0-15 ft Sand, some silt; silt, some sand; loose
(top) to compact, brown
15-55 ft Sand and gravel; trace silt except some
silt 30-40; loose, gray
55-65 ft Gravel, some sand and silt; gravel, some
                                                                                                                        10- 15 ft Sand, some gravel, trace silt, loose, gray-
                                                                                                                                       brown
                                                                                                                        15- 30 ft Silt, some sand, loose, brown
30- 35 ft Sand, trace silt, loose, brown
35- 55 ft Gravel, some sand, trace silt, loose, brown
                  silt; loose; gray
  65- 93 ft Sand and gravel, trace silt, loose, gray
                                                                                                                        55- 60 ft Sand, some gravel and silt, trace clay,
                                                                                                                        loose, gray-brown, slightly plastic
60- 65 ft Sand, traces silt and clay, loose, slightly
4207 11 7558 09 Altitude 831 ft. Log from records of New York Dept. of Transportation
 0- 8 ft Silt, traces sand, wood, and organic matter
8- 15 ft Sand, traces silt, organic matter, and
gravel
15- 40 ft Gravel, some sand, trace silt, loose, gray
                                                                                                                        plastic, gray
65- 86 ft Silt, sandy at base, gray
                                                                                                                       86-91 ft Silt and sand, some gravel, loose, gray 91-113 ft Sand and gravel, trace silt, loose, gray
 40- 61 ft Sand, trace silt; silt; trace send and clay, loose to medium, gray
61- 66 ft Sand and silt, some gravel, medium firm,
                                                                                                                         207 23 7558 16 Altitude 835 ft. Log from records f New York Gept. of Transportation 0-10 ft Silt, some sand, gravel, organic; sand, some
 gray
66- 76 ft Sand and gravel, trace silt, loose, gray
76- 81 ft Sand, trace silt, loose, gray
                                                                                                                                        silt
                                                                                                                        10- 40 ft Gravel, some sand, trace silt, loose, brown
                                                                                                                        40- 45 ft Gravel, some silt and sand, compact, brown
45- 62 ft Gravel, some sand, trace clay, gray; boulders
  81-102 ft Sand and gravel, trace silt, loose; gray
                                                                                                                                         53-55 and 56-60 (Till? - ADR)
4207 18 7558 10 Altitude 830 ft. Log from records

Of New York Dept. of Transportation

- 8 ft Silt, trace sand and organic, brown to gray, hard

8- 20 ft Sand and gravel, trace silt, loose, gray

20- 35 ft Sand, some silt, loose, brown

- 15 ft Sand and gravel, trace silt, loose, gray
                                                                                                                      4207 13 7558 23 Altitude 830 ft. Log from records of New York Dept. of Transportation
                                                                                                                         0- 12 ft Silt, some to trace sand and clay; soft;
                                                                                                                                        brown
 35-45 ft Sand, some silt, trace clay, slightly plastic, gcay
45-55 ft Silt, some sand, gray
55-107 ft Gravel and sand, trace silt, loose, gray
                                                                                                                        12- 17 ft Silt, some sand and gravel; compact; brown
                                                                                                                        17- 40 ft Send and gravel, some silt; firm; brown 40- 42 ft Fine to coarse sand; firm; brown
                                                                                                                        42-63 ft Silt and sand, some gravel; medium; gray
63-84 ft Silt, trace clay; firm; gray
                                                                                                                        84-101 ft Silt and sand, some gravel, trace clay, gray (Till? - ADR)
     07 11 7558 11 Altitude 830 ft. Log from records
New York Dept. of Transportation
   0- 1) ft Silt, some sand, trace gravel, medium-firm,
                  brown
                                                                                                                       6207 13 7558 39 Altitude 827 ft. Log from sample study by A.O. Randall, U.S. Geological Survey
  11- 38 ft Gravel, some sand, trace silt, loose, brown
  38- 60 ft Sand, some silt, traces of gravel, medium-
firm, gray
60- 70 ft Silt, some to trace sand, trace clay,
                                                                                                                          0- 7 ft Silt, a little clay, a few rounded
pebbles, 5Y4/1 (top), mottled 10YR5/4
(bottom); non-calcareous
  slightly plastic, gray
70-87 ft Silt, traces send and gravel, gray (top)
                                                                                                                          7- 12 ft Gravel, sandy, silty, IOYR5/4, compact, non-calcareous; bright, pepper-and-salt
                  to brown
                                                                                                                                          sand with chert, gneiss, quartzite, and local shale in pebble sizes
  87- 92 ft Sand, some silt, compact, brown
92- 98 ft Sand and silt, trace clay, slightly plastic,
                                                                                                                         12- 55 ft Gravel and coarse to very coarse sand
                  brown
                                                                                                                                         a little medium to fine sand (except 50% medium to fine sand at 25 ft), slightly
  98-103 ft Sand, some silt, traces gravel and clay,
slightly plastic, gray
103-109 ft Sand, trace silt, loose, gray
                                                                                                                                          silty to silt-free; calcareous, bright
                                                                                                                                           numerous exotics including blue and gray
 109-114 ft Gravel, trace sand and silt, loose, gray
                                                                                                                                          limestone; 10YR4/2
114-119 ft Sand, traces silt and gravel, loose, brown
119-125 ft Sand, trace silt, loose, brown
125-136 ft Gravel, some sand, trace silt, loose,
                                                                                                                         55-109 ft Silt, some clay below 65 ft, 5Y5/2, cal-
careous; interbedded thin reddish clay
                                                                                                                                          layers noted below 85 ft, thin gravel layers 105-109 ft
                  brown
 136-141 ft Sand, trace gravel, loose, gray
                                                                                                                        109-116 ft Gravel, and very coerse to fine sand,
 141-151 ft Gravel and sand, trace silt, compact (top)
                                                                                                                                          slightly to moderately silty, calcareous;
5Y-5GY4/1; layers of very silty medium
to very fine sand and very silty gran-
                  to loose, gray; lost water at 151 ft
                                                                                                                                          ule-pebble gravel noted; send is nearly
all shale grains, with a few limestone
```

Note:

4207 13 7558 39 = Test Boring/Well Location and Numbering System.

Latitude Longitude

and quartz grains

TABLE E.3-1 LOGS OF TEST BORINGS

```
4207 13 7559 04 Altitude 827 ft. Log from records of New York Dept. of Transportation
      0- 2 ft Silt, trace clay, organic, and gravel;
                               soft; brown
     2- 10 ft Silt, some fine sand, trace fine gravel
   and clay; soft; brown
10- 13 ft Silt, some sand; soft; brown
13- 20 ft Fine-medium sand, some silt, trace clay;
                                 soft; gray
   soft; gray
20- 24 ft Silt, some sand; soft; gray
24- 52 ft Silt, some to trace sand and clay; com-
pact; brown
77-101 ft Silt and sand, some gravel, trace clay;
                                 compact; brown
4207 05 7559 16 Altitude 827 ft. Log from sample study by A.D. Randall, U.S. Geological Survey 0-14 ft Silt, non-calcareous, moderate-yellow-brown 10785/4, in part mottled or streaked with dark-yellow-brown 10783/2
   14- 22 ft Silt and very fine sand, non-calcareous,
SY5/2 - 10YR5/4; thin layer medium to
fine sand
   22- 48 ft Gravel, some rounded pubbles larger than
                                 1 inch, sandy below 40 ft, somewhat silty 30.40 ft, but very little silt 22-30 and 40.48 ft; calcareous; 57-107R5/2. Pabble counts:16 local/4 is/7 other
   48- 52 ft Sand, medium to fine, no silt, highly calcareous, 5YR-10YR4/2
   calcareous, 5YR-IOYRM/Z
52- 60 ft Gravel, some send and silt, highly cal-
careous, blue limestone present
60- 69 ft Sand, coarse to medium, some fine sand
at too, very little silt, except for a
few streaks(?) of silty sand; highly
                                   calcareous
    69- 72 ft Gravel, sandy and very silty, calcareous, blue limestone present
72- 82 ft Sand, very coarse to fine, a few pebbles, probably alternating thin slightly silty and very silty layers
82-100 ft Gravel, sandy and silty to your silty
    and very silty layers

82-100 ft Gravel, sandy and silty to very silty,
calcareous 5Y-5GY5/1. Pebbles generally
rounded, almost but not quite all of
local rocks. Samples at 85 and 95 ft
so compact and coherent as to strongly
resemble till
 100-105 ft Unable to get good sample. Presumably samm as above, but perhaps cleaner
105-118 ft Chiefly till: engular stones, almost but not quite all local rocks, in matrix of silt with some send, compact, coherent. One thin layer of silty vfs. Send and silt are calcareous, color light olive to greenish gray (5Y-5GY5/1)
118-121 ft Gravelly, semi-sorted till(?) - angular stones, send, and silt, almost but not quite all local rocks, calcareous, 5Y-5GY6/1. Sample poorly sorted but not coherent and less silty than those above
   100-105 ft Unable to get good sample. Presumably
```

Note:

4207 13 7558 39 = Test Boring/Well Location and Numbering System.

Latitude Longitude

TABLE E.3-1

LOGS OF WELL BORINGS

```
4206 46 7557 31 Altitude 847 ft. Log from records of long island Water Supply Co., driller.

0-20 ft Not reported 20-40 ft Sand
                                                                                                4207 93 7557 46 Altitude 938 ft. Log from records of C.W. Lauman, Inc., driller.
                                                                                                  0-10 ft fill
10-11 ft Bark gray clay
11-18 ft Coarse sand, grits, gravel, and boulders
18-22 ft Coarse dark gray sand
22-27 ft Silt
40-55 ft Sand and small gravel
55-60 ft Large gravel
                                                                                                  27- 54 ft Coarse sand, grits, gravel, and boulders 54- 65 ft Boulders, stones, shale, and mock
                                                                                                  63-75 ft Gravel and sand
75-83 ft Medium to coarse sand
4205 42 7557 39 Altitude 841 ft. Log from sample study by Ted Arnow, U.S. Geol. Survey. Analysis by
                                                                                                  85-87 ft Sand and stone, little clay
87-92 ft Medium to coarse sand, gravel, some clay
92-108 ft Medium to coarse sand and gravel
field kit.
O- 4 ft Fill: ashes
4-25 ft Clay, sand, and gravel, brown
25-31 ft Clay, sand, and gravel, blue-gray
31-38 ft Clay and gravel, blue, "hardpan"; drilled
very hard, hole remained open 5 ft assad
                                                                                                 108-118 ft Some clay and heavy gravel
4207 03 7557 49 Altitude 833 ft. Log from sample
                                                                                                  study by G. Sidney Fox of Leggette, Brashears and
                                                                                                 Graham.
42-44 ft Gravel, coarse, some gray clay, water-
                                                                                                    0- 5 ft Silt, brown, with fine sand and some
              bearing
                                                                                                                   fine gravel
44- ft Gravel and blue clay, "hardpan?"
                                                                                                   5- 20 ft Silt, brown, with fine sand and fine to
                                                                                                                   medium gravel
                                                                                                  20- 30 ft Sitt, and sand, fine, gray, with a few coarse sand grains and a few peobles
4207 11 7557 24 Altitude 840 ft. Log from records of Kelly Heil Drilling Co., driller.
                                                                                                   50- SO ft Clay and silt, sticky, gray
50- SS ft Gravel, chopped up, silty and clayer,
                                                                                                   gray
55- 60 ft Sand and gravel, medium to coarse, gray
 0-11 ft Clay, gravel
11-14 ft Gravel
 14-16 ft Glay
16-30 ft Sand, gravel
30-47 ft Glay, sandy, blue, and stones
                                                                                                                   and red
                                                                                                   60- 65 ft Sand, medium to coarse, gray and red
65- 75 ft Same, with fine to medium gravel
75- 85 ft Gravel, fine to medium, gray, some sand,
 47-48 Ct Hardpan
  48-56 ft Gravel, hard, and stones
                                                                                                                   a little silt
                                                                                                  85- 90 ft Gravel, fine to coarse, slightly silty,
 56-75 ft Sand, gravel, stones, and boulders
75-82 ft Gravel, hard, clay, and boulders
                                                                                                   gray and red
90-95 ft Gravel, fine to coarse, silty, gray
                                                                                                   95-100 ft Sand, coarse, and gravel, fine, gray
                                                                                                                  and red
                                                                                                  100-116 ft Same, with chopped up gravel 116-119 ft Shale, soft, gray
  1207 32 7557 52 Altitude 889 ft. Log from records
   0-3 ft fill
3-16 ft Brown clay
  16-44 ft Sand, grits, gravel, large boulders
44-55 ft Fine and coarse sand, prits, silty clay
                                                                                                  4207 03 7557 57 Altitude 938 ft. Log from sample
                                                                                                  study by G. Signey Fox of Leggette, Brashears and
  55-67 ft Fine to coarse sand and grits
  67-74 it line to coarse sand, grits, gravel, and
                                                                                                    0- 5 ft Silt and gravel, fine, brown, with a few
                lumos of clay
                                                                                                sand grains
5-10 ft Sand, fine, silty, brown
10-15 ft Clay and silt, brown, with a few coarse
 74-78 ft Fine to coarse sand, grits, gravel and
               Stones
  78-85 ft Fine sand, some grits, silt and clay
 85-86 ft Shale
86-99 ft Fine to coarse sand, grits, gravel and
                                                                                                                   send grains
                                                                                                   15- 35 ft Clay and silt, sticky, gray
```

Note

4207 13 7558 39 = Test Boring/Well Location and Numbering System.

Latitude Longitude

TABLE E.3-1

LOGS OF WELL BURINGS

```
4207 03 7558 17 Altitude 854 ft. Log from records
4207 04
                7558 03 Altitude 931 ft. Log from sample
                                                                                                                                             of Kelly sell Drilling Co., driller.

0-12 ft Fill

12-31 ft Stones and rocks with clay
51-53 ft Fine sand
           by 7. Sidney Fox of Leggette, Brashears and
Cranam.
    0- 5 ft Clay, brown (fill)
   5- 10 ft Clay, silty, brown, some gravel, very little sand
                                                                                                                                                55- 64 ft Sand, gravel, rocks, stones
64- 99 ft Sand, stones, rocks, gravel with clay
99-112 ft Sand, gravel, rocks, stones
 10-27 ft Clay, gray
27-30 ft Clay, silty, gray, with a little gravel
30-35 ft Silt, sandy, brown (soupy)
35-40 ft Same, with much gravel
40-45 ft Sand, reddish brown, silty
                                                                                                                                              112-117 ft Silt or clay
117-125 ft Send and silt
at 125 ft Bedrock
  45- 50 ft No sample
50- 55 ft Sand, medium to coarse, and pravel, gray,
 silty
55- 60 ft Sand, medium to coarse, very little gravel,
 sand, mediam to dorree, very little proven
gray, slightly silty
60-70 ft Same, but very little or no silt
70-80 ft Sand, fine to course, and gravel, medium,
red and gray, very little silt
80-90 ft Sand, fine to medium, silty, brown and
90-90 ft Sand, fine to medium, silty, brown and gray, a few redium gravel pebbles
90-95 ft Sand, fine, red and gray
95-100 ft Sand, fine to coarse, red and gray, a few fine gravel pebbles
100-105 ft Sand, fine to coarse, and gravel, fine, gray, some brown silt
105-110 ft Same, no silt
110-115 ft Sand, medium to comrse, and gravel, fine,
                        gray
 4207 04 7558 09 Altitude 830 ft. Log from sample
  study by 7. Sidney Fox of Largette, Brashears and
Granam.

O- 5 ft Loam, brown, with very few sand grains
5- 10 ft Clay and silt, brown, with some gravel
and very few sand grains
10- 15 ft Sand, fine, clayey and silty, with a
couple of small nebbles

Came with chunks of brown clay, and
   15- 20 ft Same, with chunks of brown clay, and medium pravel
   20- 30 ft Sand, fine to medium, with a little
brown silt, and some reddish brown medium
   30- 35 ft Silt, grayish brown, with very few sand grains and a few pebbles
35- 40 ft Sand. wery fine, very silty, grayish brown
40- 45 ft Silt, grayish brown, with very fine sand
45- 50 ft Gravel, silty, grayish brown
50- 55 ft Send, fine to medium, gray, and small
   50- 35 ft Sand, time to medium, Kiny, and gravel, very silty
55- 80 ft Sand, coarse, and gravel, fine, gray, slightly silty top 10 feet
    80- 85 ft Send, coarse, and gravel, fine to coarse,
                       Sand, coarse, and gravel, fine, gray
Sand, coarse, and gravel, fine, gray,
extremely silty, lumps of clay in lower
    90-100 ft Sand, coarse
  part
100-105 ft Sand, medium, reddish gray, very slightly
                          silty
  105-110-ft Send, fine, reddish gray, very slightly silty
   110-120 ft Sand, medium to coarse, reddish gray,
                           milty
   120-125 ft Gravel and clay, gray
   125-137 ft Gravel, gray, and clay, tan
137-140 ft Shale, gray, soft
```

```
4207 26 7558 41 Altitude 641 ft. Log from sample
        study by Ted Armow, U.S. Gool. Survey. Analyses by
        field kit.
          O-37 ft Clay, sand, and gravel; brown; drills
easily; very sandy at 20 ft, bedded clay
layers at 30 ft
       57-45 ft Sand, fine to medium, and gravel; brown; water-bearing. Hardness 156, alkalinity 152, chloride 18 mg/l
        45-46 ft Clay, sand, and gravel, brown
48-55 ft Gravel and sedima to coarse sand, brown,
water-bearing. Hardness 152, alkalinity
140, chloride 22 mg/1
```

Note:

4207 13 7558 39 = Test Boring/Well Location and Numbering System. Latitude Longitude

APPENDIX E.4
GRAIN SIZE DATA

SUMMARY OF TEST RESULTS USAF JOHNSON CITY NEW YORK FRED C HART ASSOCIATES SEPTEMBER 21, 1986 01071-00-86007-00

part sec. 7-1	DAZIE CALP	MC. 8V	Page No.
100 No. 8681/9.01	MOS NAME 0/07/- 00 - 86.007-00	HART	LISAF Johnson Ch, NY
ENGINEER V De V. Nez	DATE ASSIGNED 9-13	DATE DUE ASAP	

7.17-86	9-21-86	28	,
DATE REC.	DAJE CAP	#C 87	Page No.

		NWNS	SUMMARY OF LABORATORY TEST RESULTS	OF LA	BORAI	TORY 1	TEST A	ESULT	46								
POBINC					ATTERBERG LIMITS		UNICON COMPRESS.	Name S.A.		1	9218 8126	—	┺-		l	TRIABIAL	
SAMAL No	DEPTH - toes	CLASSIF I CATION	8	COMPLET COMPLET	LIMIT	PLASTIC STRESS LIMIT (1.4)		STRAMM (%)	10 C 14 C	DEAVITY	SMAE		M 140	3	13	CE11	PESSURE
5.25	10-12										*			<u> </u>			
1-88	28-30										*	_	 -	<u> </u>			
5-W2 5-22	15:14										*	-	_				
5W.2 55-9	22-24'										*	-	-	<u> </u>			
Sev. 3 55. 2	5:7'										+		-				
SW-3 58-11	28.30										*						
												-		<u> </u>			
														<u> </u>			
														ļ			
											-						
							·										
:	# See lest Curres	1831	TEST COMP and CHECKED	CHECKE	٩					111	TEST IN PROCRESS	00	\$6.55				

10.1 TESTING COMPANY

(4)

111 TESTING COMPANY

JAL TESTING COMPANY

JA I TRETING COMPANY

APPENDIX A RAW DATA

GRAIN SIZE ANALYSIS

PROJECT NAME HART

JOB 40. 35B119-01

PROJECT LOCATION USAF JOHNSON CITY

BORING NO. BW-1

BAMPLE MO. 98-3

DERTH:10-12

MAT. DESCRIPTION APP-59

DATE:9-21-36

BY JB

SIEVE SIZE	WT.GMS	PERCENT PASSING
3 INCH	. ଅପ	190.000
E IM CH	. 99	190.00 0
INCH	. 39	190.000
.75 INCH	. ଉଡ	190.990
50 INCH	. 30	199.999
10. 4	15.30	39.914
<u>0</u> . 13	7.30	34.772
Ö. 20	7.40	79.894
D. id	17.30	58 . 388
ເບີ້. ຮູອີ	ำ. อีดี	53.546
Ĉ. 188	::.38	56.397
(Č. 290	14.50	46.473

GRAIN SIZE ANALYSIS-MECHANICAL

Project Job No	86B/17-01
Location of Project LISAF Boring	No. Sw-1 Sample No. 33
Description of Soll AFP-55 Depth	of Sample
Tested By Date of	f testing

Sieve	Openings	U. S. Standard	Weight Retained	Percent	Retained	Percent Finer
Inches	Millimeters	Sieve Sise or Mumber	in grand	Partial	Total	by Weight
3.00		3-in.				
2.00		2-in.	<u> </u>			
1.50		1-1/2-in.				<u> </u>
1.00	25.4	1-in.				
0.750	19.1	3/4-in.				
0.500	12.7	1/2-1a.			- 	↓
0.375	9.52	3/8-12.	 			
0.157	4.76	No. 4	15.3			
		Pen				
	 					
0.079	2.00	No. 10	7,8			ļ
0.033	0.84	No. 20	7, 4			
0.0165	0.42	No. 40	170			
	0.28	No. 69	7.3			
.0059	0.149	No. 100	11.3			
.0029	0.07	No. 200	14,6			
		Pen			 	
704	al wight in gr	***	<u></u>			ــــــــــــــــــــــــــــــــــــــ
il Sampl	e Size (ASTM	D1140-54)				
largest p		Wt. of s	te minimum ample, g			
No. 10 No. 4			00 00			

Wt. of dry sample + container	190.0
Wt. of container	38.3
Wt. of dry sample, W,	

GRAIN SIZE ANALYSIS

PROJECT MAME HART

500 MO. 950119-01

PROJECT LOCATION USAF JOHNSON CITY

BORING NO. BW-1

SAMPLE NO. 53-12

DEPTH 22-20

MAT. DESCRIPTION 2 JARS

SATE 9-21-86

SY JB

SIEVE SIZE	MT.GMS	PERCENT PASSING
3 INCH 2 INCH 1 INCH .75 INCH .80 INCH 40. 4 40. 28 40. 48 40. 58 40. 58 40. 288	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	190.000 190.000 190.000 190.000 76.575 72.256 68.599 53.151 21.294 8.249

GRAIN SIZE ANALYSIS-MECHANICAL

Project	HART		Job No	868	119-01	
Location of Project	LISAF		Boring NoSu	W-1	Sample No.	55-16
Description of Soil .	(ZJAR)		Depth of Sample		28-30	
Tested By		<u>-p</u>	Date of testing _	21.	19	
	カケヨ	/				

Sieve	peninge	U. S. Standard Sieve Sise	Weight Retained	Percent I	Retained	Percent Finer
Inches	Willimeters	or Mumber	in grams	Partial	Total	by Weight
3.00		3-in.				
2.00		2-1n.				
1.50		1-1/2-in.				T
1.00	25.4	1-in.				
0.750	19.1	3/4-in.				
0.500	12.7	1/2-in.	60.2			
0.375	9.52	3/8-1a.				
						
0.187	4.76	No. 4	11,1			
		Pea				T
						
0.079	2.00	No. 10	9.1			
	-		227			
0.033	0.84	No. 20	39,7			
	 		81.9			
0.0165	0.42	. No. 40	81./			
	0.25	30, 60	33.5			
0.0059	0.169	No. 100	7.7			1
						1
0.0029	0.074	No. 200	2.9			
		Pen				1

Soil Sample Size (ASTM D1140-54)

Nominal diameter of Approximate minimum largest particle Wt. of sample, g

No. 10 sieve 200

No. 4 sieve 500

3/4 in, 1500

Technician Computed by Checked by

Wt. of dry sample + container	296.2
Wt. of container	39 L
Wt. of dry sample, W',	

GRAIN SIZE ANALYSIS

FROUEST MAME HART

JIB 40. 8€B119-01

PROJECT LOCATION USAF JOHNSON CITY

30RING NO. 34-2

BAMPLE NO. 38-4

DERTH 12-14

MAT. IESCRIPTION/2 JARS

297E 9-21-36

34 JB

BIEVE BIES	WT.SMS	FERCENT PASSING
3 INCH 2 INCH 1 INCH .75 INCH .50 INCH NO. 40 NO. 40 NO. 20 NO. 20 NO. 100 NO. 100	.30 .30 .30 .30 .30 3.40 .40 23.13 14.40 5.70	130.000 130.000 130.000 130.000 130.000 34.774 34.552 34.330 79.554 23.315

GRAIN SIZE ANALYSIS-MECHANICAL

Project	MAR	!T	_ Job No	86B1/9-01	
Location of Project			Boring No. SW-Z Sample No. SS-4		
Description of Soll (Z JAL)			Depth of Sample	12'-14	
			Date of testing	9-19	

Sieve Openings		U. S. Standard Retained Sieve Size	Percent Retained		Percent Finer	
Inches	Millimeters	or Rumber	in grees	Partial	Total	by Weight
3.00		3-ta.				
2.00		2-18.				
1.50	<u> </u>	1-1/2-in.				
1.00	25.4	1-in.				
0.750	19.1	3/4-in.				
0.500	12.7	1/2-in.				
0.375	9.52	3/8-in.				ļ
0.187	4.76	No. 4	9.4			
		Pen				
0.079	2.00	No. 10	0,4			<u> </u>
0.033	0.8	No. 20	0,4			
0.0165	0.42	No. 40	28.2			
	0.25	No. 60	51.1			
0.0059	0.119	No. 100	14.4			
0.0000	0.074	No. 200	6.7			
		Pen				

Soil Sample Size (ASTM D1140-54)

Nominal diameter of largest particle Wt. of sample, g
No. 10 sieve 200

No. 4 sieve 500 3/4 in. 1500

Technician _____ Computed by _____ Checked by.

Wt. of dry sample + container	218.4
Wt. of container	38.5
Wt. of dry sample, W,	

GRAIN SIZE ANALYSIS

FROUTEST HAME HART

705 HO. 895119481

PROJECT LOCATION USAF JOHNSON CITY

BORING NO. 34-2

SAMPLE MO. 33-3

ISRTY 12-14 MAT. DESCRIPTION 1 JAR

TRTS 9-21 488 59 78

	.=	
BIEVE BIZE	AT.BMS	PERCENT PASSING
3 INCH	. 38	190.000
2 INCH	. ଅପ	19 0. 99 0
: IMCH	. ଅପ	: 38 . 888
.75 INCH	35.90	99.730
. FØ INCH	₹8. <i>€</i> 0	59.348
%O. 4	34.79	3 1. 723
-00. ta	19.29	21.417
40. 28	11.80	15.083
10. 40 10. 90	5.20	12.292
HO. 55	ି. ଅଣ	11,357
96. 180 48. 280	2.99	9.983
HO. 280	2.30	9.749

GRAIN SIZE ANALYSIS-MECHANICAL

Project HART		Job No		
Location of Project	ISAF	Boring No. Sw- 2 Sample No. 3	- 5	
Description of Soil		Depth of Sample 27-24		
Tested By	<u> </u>	Date of testing		

penings	U. S. Standard Sieve Sise	Weight Retained	Percent	Retained	Percent Finer
Millimeters	or Rumber	in grame	Partial	Total	by Weigh
	3-1n-				
	2-in.				
<u> </u>	1-1/2-1a.				1
25.4	1-in.				
19.1	3/4-in.	359			
12.7	1/2-in.	56.6			
9.52	3/8-1a.				
ļ					
4.76	No. 4	34.7			
	Pen				
2.00	No. 10	19.2			
0.84	No. 20	11,8			
0.42	No. 40	5.2			<u></u>
0.28	Rg. 60			·	
0.149	Ro. 100	2.0			
0.074	No. 200	2.3			<u> </u>
	Pen				
i weight in gr					
	25.h 19.1 12.7 9.52 h.76 2.00 0.8h 0.42 0.28 0.1b9	3-in. 2-in. 1-1/2-in. 1-1/2-in. 25.4 1-in. 19.1 3/4-in. 12.7 1/2-in. 9.52 3/8-in. 4.76 No. 4 Pun 2.00 No. 10 0.84 No. 20 0.12 No. 40 0.159 No. 100	3-in. 2-in. 1-1/2-in. 1-1/2-in. 19.1	3-in. 2-in. 1-1/2-ia. 25.b 1-in. 19.1 3/b-in. 35 9 12.7 1/2-ia. 56.6 9.52 3/8-ia. b.76 No. b 34.7 Pun 2.00 No. 10 /9.2 0.84 No. 20 //, 8 0.12 No. b0 5.2 0.28 No. 60 2.3 0.109 No. 100 2.0 0.076 No. 200 2.3 Pun	3-in. 2-in. 1-1/2-in. 19.1

Wt. of dry sample + container	225.1
Wt. of container	38.8
Wt. of dry sample, W,	

GRAIN SIZE ANALYSIS

PROJECT HAME HART

JOB MO. 36B119-01

PROJECT LOCATION USAF JOHNSON CITY

SCRING NO. 94-3

39**MPLE** MO. 33-2

TERTH 5-7

MAT. DESCRIPTION'S JAR

DATE 9-21-96

EY JB

SIEVE SIZE	MT.SMS	PERCENT PASSING
3 INCH 2 INCH 1 INCH .75 INCH .50 INCH .10. 4 .10. 10 .10. 20 .10. 40 .10. 50	.00 .00 .00 12.10 12.10 50.70 12.70 13.10 10.00	190.990 190.990 190.990 95.252 71.495 47.220 35.591 28.112 24.119
10. 190 10. 200	7.10 3.30	13.598 1 5. 348

GRAIN SIZE ANALYSIS-MECHANICAL

Project	HART	Job No. 868119-01		
Location of Project	t	Boring No. 5W-3 Sample No. 55-2		
Description of Soi	ı	Depth of SampleS'-7'		
Tested By	Jr.	Date of testing 9/19		

Sieve	Openings	U. S. Standard Sieve Size	Weight Retained	Percent	Retained	Percent Finer
Inches	Millimeters	or Rusber	in grame	Partial	Total	by Weight
3.00		3-in.				<u> </u>
2.00		2-1n.				
1.50		1-1/2-in.				
1.00	25.4	1-in.			 	<u> </u>
0.750	19.1	3/4-in.	12.1			<u> </u>
0.500	12.7	1/2-in.	40.7		. ———	<u> </u>
0.375	9.52	3/8-in.				
0.187	4.76	No. 4	62.0			
	<u></u>	Pen				<u> </u>
0.079	2.00	No. 10	29.7			<u> </u>
0.033	0.84	No. 20	19.1			
0.0165	0.42	No. 40	102			
	0.29	No. 40	7,0			†
0.0059	0.149	Mo. 100	7./			
0.0009	0.07	No. 200	8.3			
		Pea				<u> </u>
Total	al weight in gr	***	l			1
oil Sampl	e Size (ASTM	D1140-54)				
ominal di largest p	ameter of article	Approximat Wt. of sa		•		
No. 10			00			

Computed by_

Wt. of dry sample + container	2935
Wt. of container	38.1
Wt. of dry sample, W,	

Technicien

Checked by_

GRAIN SIZE ANALYSIS

PROJECT NAME HART

JOB NO. 36B119-01

PROJECT LOCATION USAF JOHNSON CITY

BORING NO. SW-3

SAMPLE NO. 38-12

DEPTH: 28-30

MAT, DESCRIPTION 2 JARS

DATE: 9-21-36

BY:JB

SIEVE SIZE	мт.sms	PERCENT PASSING
3 INCH 2 INCH 1 INCH .75 INCH .50 INCH 40. 10 40. 20 40. 20 40. 50 40. 200	.00 .00 79.80 80.00 49.00 72.20 35.30 54.70 34.50 18.90 14.90	100.000 100.000 36.682 73.162 54.980 52.578 46.543 37.299 23.018 17.694 14.500

GRAIN SIZE ANALYSIS-MECHANICAL

Project	HART	Job No	86 B1/9-01		
Location of Project _	UMAF	Boring No	SW-3 Sample No.	21-22	
Description of Soil	\	Depth of Sam	ple	<u>'</u>	
Tested By		Date of testing	<u> </u>		

Sieve Openings		Weight	rems of material > No. 4 s Percent Retained		Percent Finer
Millimeters		in grees	Partial	Total	by Unight
	3-1a.				
	2-1a.				T
	1-1/2-in.				
25.4	l-in.	78.8			
19.1	3/4-in.	70.0			<u></u>
12.7	1/2-in.	49.3			<u> </u>
9.52	3/8-12.				
h 76	Wa. A	72.2		<u></u>	 -
<u> </u>	Pen				
					
2.00	No. 10	36.3			
0.84	No. 20	547			
0.42	No. 40	84.5			
0.15	- 40	3/5			
0.149	No. 100	189			
0.07	Fo. 200	146			
0.0[4		· · · · · ·			
weight in a					1
meter of article sieve	Approximate Wt. of second 2	ample, g 100 100			
	25.h 19.1 12.7 9.52 4.76 2.00 0.8h 0.42 0.28 0.189 0.074 Size (ASTN meter of microelieve	### ### ### ### ### ### ### ### ### ##	### 10	### Percent Standard Standard Standard Standard Standard Standard In gross Percent	Serings St. 5, St. 6 S

	D: 7	Div
Wt. of dry sample + container	373.0	336.4
Wt. of container	3 <i>9</i> , 0	38.7
Wt. of dry sample, W,	294.5	297.7

J& L TESTING COMPANY
Georgennical - esting

APPENDIX B

CHAIN OF CUSTODY FORM

1,

FRED C. HART ASSOCIATES, INC. 486 FIFTH AVENUE MEW YORK, N.Y. 10036

	CHAIN OF CUSTODY
JACK BOSCHUCK	ML Sample No.:
Client Bone: USAF-Johnson Gy, W Client	No. 1 A/474 - 2 9/ 107 M
Serole Nene: " "-12 12 m34" need/21 - 8 -	anlada
2m-5) 11-41 15-14"	mbred:
Sample Location: " '" q, 27-24'	
Sample Name: " '\-\2 75-30' Date/Time Sample Location: " \" 9, 27-24' \ Sw-2 \-2 7-24' \ Sw-3 \-2 7-24' \ No. of Sample Bottles: Preservatives:	General Chem: 4° C
Temperature:	Oil & Grease: HCl Hetala : HNO3
Sampled by: V. DeVillez_	
Sampling Devices used: Split Spoon	
Potential Contamination/Interference:	
	• •
Sample Mistory or Special Motes:	
Date Received by Lab: By:	
Transmitted to Lab by:	
Same	title
?hone:	
1 1/4/	, ,
Relinquished by: 5	- Date: 9/12/26
Ralinquished by: 51. Alleg Ralinquished by: Bull Jil Toston	Date: 9/12/26 Date: 9/13/10
(in storese)
icinquicited by:	Date:
Relinquished by:	Date:
Relinquished by:	
Final Disposition of samples:	
Date: Location:	
Terrendone Bloom (11) this fam out on adulation or accept	

Instructions: Please fill this form out as emplotely as possible. When the form is received by the Laboratory request a copy for your file. The abbreviated form for Chain of Castedy is used simultaneously as the Analysis Request Form for the above sample or sample group.

APPENDIX E.5
SUMMARY OF WELL CONSTRUCTION

Table E.5-1
WELL CONSTRUCTION DATA

H Depth Of Borehole Ft	27	26	53	
G Depth Of Well From TOC Ft	29.93	28.19	30.81	
F Screened Interval Ft	17-27	16-26	19_29	
E Depth To Sand Pack Ft	15	14		=
D Depth To Bentonite Seal Ft	13	: 6	<u> </u>	5
c Stick- Up Ft	7 93	6.3	2.19	1.8
B Elev. Ground Surface Ft	THOM:	831.90	828.90	829.40
Elev. TOC	(MSL)	834.83	831.09	831.21
We]]	}	SK-1	SW-2	SK-3

The values in columns C,D,E,F and H are measurements taken during well construction relative to the ground surface. NOTE:

APPENDIX F SAMPLING AND ANALYTICAL PROCEDURES

(CL5121A)

APPENDIX F.1
FIELD SAMPLING METHODS

FIELD ANALYTICAL PROCEDURES AND DATA REPORTING

Chemical Data

- Procedures for Field Measurement of pH. Readings were taken periodically in buffer solutions of the appropriate range at the same temperature during repeated sampling events. The users manual for the pH meter was available to field personnel.
- Procedures for Field Measurement of Electrical Conductivity. When rapid sample changes did not occur, replicate measurements were made. A standard solution of known conductivity was made available for checking precision. Several readings were taken and the arithmetic mean used as the reported value. The users manual for the electrical conductivity meter was available to field personnel.
- Procedures for Field Measurement of Volatile Organics.

 Approximately 20 ml of soil was placed in VOA vials. The vials were placed in a 40°C hot water bath for ten minutes. An aliquot of air from the headspace within the vial was then withdrawn by syringe for direct injection into the OVA.

Hydraulic Data

Procedures for Measurements. An M-scope was used to measure to
 0.01 foot the water level under static conditions.

Soil Boring Data

Soil Sampling. Continuous split spoon samples were collected at each test boring site. Sample depth was monitored by the subcontractor (driller) under the supervision of the on-site hydrogeologist.

Blow Counts. Soil density was determined by recording the number of blows necessary for the split spoon to penetrate six inches of soil.

SAMPLE NUMBERING SYSTEM

A sample numbering system was used to identify each sample taken during the on-site remedial investigation. The numbering system provides a tracking procedure to allow retrieval of information about a particular site and assure that each sample is uniquely numbered. A listing of sample numbers was maintained by the HART field team leader. Each sample number consisted of four parts as described below.

Project Identification

The designation AFP 59 was used to identify the Air Force Plant 59, now known as General Electric electro-mechanical systems production facility.

Site Identification

Each sampling site was identified by a two-letter identifier code, with the following prefix:

SW - Shallow well

SB - Soil boring

A numerical suffix unique to each prefix follows.

Sequence Number

A two-letter code was used to identify the type of sample collected such as (groundwater samples were identified as "water"):

SS - Soil sample collected during drilling

WATER - Groundwater sample

Sample Depth

The depth or depth interval at which the sample was collected.

Split Sampling

Two sets of samples were collected. The labels HART, for Fred C. Hart Associates, and USAFOEHL to indicate the sample that was sent to the USAFOEHL laboratory, were used to differentiate the analyzer of each set.

Examples

Examples of sample numbers are:

- * AFP 59, SW-1, 18'-20', HART 004. Air Force Plant 59; shallow Monitoring Well #1; soil sample collected between a depth of eighteen and twenty feet below the surface; retained by HART. Fourth soil sample collected from SW-1.
- AFP 59, SW-1, 18'-20', USAFOEHL 004. Same as previous sample;
 except that it is retained by USAFOEHL.
- *AFP 59, SB-1, 8'-10', HART 002. Air Force Plant 59; soil boring #1; soil sample collected at a depth of 8-10 feet; retained by HART. Second soil sample from SB-1 collected.
- AFP 59, SW-1, WATER, HART 001. Air Force Plant 59; Shallow Monitoring Well; first groundwater sample collected; retained by HART.

Blanks, Knowns, Spikes, Splits and Duplicates

QA/QC blank and duplicate samples, sent to the USAFOEHL laboratory and the HART subcontractor, Princeton Testing Laboratories at Princeton, NJ, were given sample numbers similar to those for collected samples. The (CL5119A) (01071-00-86007-00)

identity of QA/QC duplicate samples was recorded in field log books, but was not marked in any way on the sample containers.

USAFOEHL Samples

Samples sent to the USAFOEHL laboratory were accompanied by the following information:

- 1. Purpose of sample (analyte).
- 2 Installation name (base).
- 3. Sample number (on container).
- 4. Source/location of sample.
- 5. Contract task number and title of project.
- 6. Method of collection (bailer, suction pump, air-lift pump, etc.).
- 7. Volumes removed before sample taken.
- 8. Special conditions (use of surrogates, filtering, etc.).
- 9. Preservatives used, especially nonstandard types.

Soil Sampling

Soil samples were collected during drilling with split spoon drive samplers of two-inch outside diameter. Decontamination procedures for sampling equipment are described in Chapter III. Samples were taken continuously (i.e., from two-foot intervals the length of the boring) using a two-foot long split spoon sampler. All soil samples were logged in general accordance with "Description of Soils (Visual Manual Procedure)". ASTM D2488-69. which is based on the Unified Soil Classification System.

A portion of the soil sample from the least disturbed center of the split spoon was placed in a VOA vial for on-site OVA analysis. The remaining portion of the soil sample was placed in a properly labeled glass jar. The VOA vials were analyzed in the field for the presence of volatile organic compounds and the results recorded. Based on the results, soil samples were selected for submittal to the laboratories for further analysis. Up to two (2) samples per borehole were selected. (CL5119A)

(01071-00-86007-00)

These consisted of one soil sample from the water table interface and one additional sample from the unsaturated zone. Also, two samples per borehole were obtained for grain size analysis.

GROUNDWATER MONITORING AND SAMPLING

A total of four wells were sampled. This includes the three wells installed for this study and the existing production well. All measuring, purging and sampling equipment was decontaminated prior to data collection.

Groundwater Level Measurements

After all well installation was completed, the groundwater levels of all the wells were measured within a 24-hour period. The instrument (M-scope: Slope Indicator Co., Model 51453) was lowered down the well and the depth to water was measured from the top of the steel casing. the electrode of the M-scope came into contact with water, an audio signal was emitted. The instrument was also used to sound the bottom of the well. HART trained GE personnel to take additional groundwater levels in the monitor wells that were installed during this investigation. Groundwater levels must be periodically monitored in order to determine groundwater flow directions over time. It is not cost-effective for HART personnel to travel to the site for the limited time period required to take these measurements. GE personnel were trained to perform monthly groundwater level measurements in the wells.

On-Site Analysis

Monitor Well Sampling. In order for valid representative groundwater samples to be collected from the monitor wells, it was very important to properly prepare the well prior to sample collection. This preparation entailed removing all the water which was standing in the casing and grabbing the sample from water which had recently been recharged from the aquifer.

(CL5119A) (01071-00-86007-00) To accomplish this, the depth to water from the top of the steel well casing was measured. This value was used in conjunction with the total casing length to determine the height of the water column. The volume of water standing in the well was then calculated. At least five times this volume was removed by pumping or bailing before the sample was collected.

Once the well was adequately evacuated, sample collection was then accomplished by lowering a stainless steel, bottom loading bailer with a teflon check valve into the well. Each bailer was fitted with a stainless steel wire leader and a new piece of nylon cord. A different pre-cleaned bailer was devoted to each well. If the bailer had not been used for well evacuation, the first three bails of water were wasted to rinse off any cleaning agents which might still have been present on the bailer. The samples were poured directly from the bailers to sample jars for temperature, pH and specific conductance.

Temperature. Measurements of the sample temperature were taken using a decontaminated mercury thermometer. The field measurement represents the temperature of the aquifer unit at a particular location and time. Variations in sample temperature enabled interpretation of a temperature gradient which reflects aquifer hydraulics. This measurement was also used to calibrate the pH and conductivity meters in the field.

pH. The pH of each sample was measured with a Corning Model 3 pH Meter. Field measurements of sample pH were used as a relative check of the lab measurements. The pH of a sample tends to change upon contact with air, and stabilizes once the sample becomes fully aerated. Therefore, the pH measurements of aerated samples were used as relative indicators of groundwater contamination.

<u>Specific Conductivity</u>. The specific conductivity of each sample was measured with a Markson Model 800-525-5114 Conductivity Meter. Elevated specific conductivities may indicate the presence of conductive ions such as chlorides and sulfides in the groundwater. High concentrations of these ions may indicate contamination.

(CL5119A) (01071-00-86007-00)

Sampling Details

Prior to sampling for lab analysis, all wells were properly flushed as described above. Bailers were used to obtain groundwater samples. Bailers were decontaminated between wells. Samples were filtered in the field for metals analysis. All samples were preserved according to the details provided in Table 1. Samples were placed in properly prepared bottles and placed in a cooler at 4°C. Coolers were sealed and shipped overnight to the designated laboratory. One sample was split and was shipped to the USAFOEHL and the other was sent to Princeton Testing Labs. Proper chain-of-custody procedures were followed when transferring the samples from the field to the laboratory. In addition, accurate records were kept of all sampling activity and include the following information: date, time, location, sample number, depth to water measurement, method and volume of water evacuation and sampling techniques.

A total of five samples (including one duplicate) were analyzed for volatile organics, total petroleum hydrocarbons, primary metals and cyanide. This includes the wells installed during this investigation and the existing production well.

Detailed Investigations of Individual Storage Sites

Hazardous Waste Storage Area No. 1 and the Plant Site Investigation. This investigation entailed the installation and continuous sampling of three well borings (SW-1, SW-2 and SW-3) (Figure 1). Based on OVA readings, HART selected up to two soil samples per boring for volatile organic. total petroleum hydrocarbon. primary metals and cvanide analyses. One sample was split. One sample was shipped HART-designated laboratory and one to the UASFOEHL. Also, two samples per boring were analyzed for grain size distribution. Three two-inch diameter PVC monitor wells (SW-1, SW-2 and SW-3) were installed. Drill cuttings were immediately drummed upon removal from the borehole and analyzed with the OVA as to their hazardousness. In addition, all seven samples from these three boreholes indicated results below EP Toxicity maximum (CL5119A) (01071-00-86007-00)

TABLE 1
SAMPLE CONTAINERS AND PRESERVATION

Parameter	Volume Required	Container	Preservative	Holding Time
Total Petroleum Hydrocarbons	l liter	glass	H ₂ SO ₄ to pH <2	28 Days
Primary Metals	l liter	НОРЕ	Filter on-site HNO ₃ to pH <2	6 months
Volatile Organics	2 bottles	VOA vials	2-3 crystals Na ₂ S ₂ O ₃	14 days
Cyanide	500 ml	glass	NaOH to pH >12	14 days

(CL5119A/1)

contaminant levels. This information was used by GE to determine disposal requirements. Four water samples (includes one duplicate sample) were collected from the three wells installed during this study and one sample was also collected from the existing production well.

Area No. 2 Investigation. This investigation entailed the installation and continuous sampling of three ten-foot test borings (Figure 1). HART selected six soil samples for EP Toxicity Metals and total chromium analysis. Samples were shipped to the HART-designated laboratory.

In addition to the borehole samples, one soil sample from well boring SW-1 was submitted as a background sample and one sample taken underneath the plating building floor was submitted for analysis.

(CL5119A) (01071-00-86007-00)

APPENDIX F.2 LABORATORY DETECTION LIMITS (PTL)

TABLE F.2-1

METHOD DETECTION LIMITS
METALS AND MISCELLANEOUS COMPOUNDS

MATRIX		SOIL	<u>WATER</u>
	ANALYTICAL METHOD	METHOD DETECTION L1	MIT
		mg/L	mg/L
Arsenic	E206.2	0.01	0.005
Barium	E200.7	0.05	0.01
Cadmium	E200.7	0.01	0.005
Chromium	E200.7	0.02	0.02
Lead	E200.7	0.02	0.02
Mercury	E245.1	0.001	0.001
Selenium	E270.2	0.01	0.005
Silver	E200.7	0.01	0.01
Total Chromium	E200.7	1.0 (mg/kg)	NA
Cyanide	A412D/SW9010	0.35 (mg/kg)	0.01
Petroleum Hydrocarbons	E418.1	10.0 (mg/kg)	0.5

NA Not Analyzed

(CL5120A)

TABLE F.2-2

METHOD DETECTION LIMITS VOLATILE ORGANIC COMPOUNDS

MATRIX		SOIL	WATER
	ANALYTICAL METHOD		HOD ON LIMIT
	TIC THOS	mg/L	mg/L
Chloromethane	EPA 601	800	20
Bromethane	EPA 601	400	10
Dichlorodifluoromethane	EPA 601	200	5
Vinyl Chloride	EPA 601	80	1
Chloroethane	EPA 601	80	2
Methylene chloride	EPA 601	200	1
Trichlorofluoromethane	EPA 601	200	5
1,1-dichloroethene	EPA 601	40	1
1,1-dichloroethane	EPA 601	40	1
trans-1,2-dichloroethene	EPA 601	40	1
Chloroform	EPA 601	40	2
1,2-dichloroethane	EPA 601	40	1
1,1,1-trichloroethane	EPA 601	80	2
Carbon Tetrachloride	EPA 601	80	2
Bromodichloromethane	EPA 601	80	2
1,2-dichloropropane	EPA 601	40	1
trans-1,3-dichloropropene	EPA 601	200	5
Trichloroethene	EPA 601	80	2
Dibromochloromethane	EPA 601	80	2

(CL5120A)

TABLE F.2-2 (CONTINUED)

METHOD DETECTION LIMITS VOLATILE ORGANIC COMPOUNDS

MATRIX		SOIL	WATER
	ANALYTICAL METHOD	METH DETECTION	
		mg/L	mg/L
1,1,2-trichloroethane	EPA 601	200	0.5
cis-1,3-dichloropropene	EPA 601	200	5
2-chloroethylvinylether	EPA 601	200	5
Bromoform	EPA 601	400	10
1,1,2,2-tetrachloroethane	EPA 601	400	0.18
Tetrachloroethene	EPA 601	80	2
Benzene	EPA 602	40	1
Toluene	EPA 602	40	1
Chlorobenzene	EPA 602	40	1
Ethylbenzene	EPA 602	40	1
1,3-dichlorobenzene	EPA 602	40	1
1,2-dichlorobenzene	EPA 602	40	1
1,4-dichlorobenzene	EPA 602	40	1

APPENDIX G
CHAIN OF CUSTODY FORMS

Addendum to Chain of Custody Record (G-2) Soil Samples From Well Borings

Sample Numbers: AFP 59, SW-1, 18'-20', Hart 004

AFP 59, SW-1, 24'-26', Hart 007 AFP 59, SW-2, 22'-24', Hart 009 AFP 59, SW-2, 24'-26', Hart 010 AFP 59, SW-3, 22'-24', Hart 009 AFP 59, SW-3, 24'-26', Hart 010

AFP 59, SW-4, 22'-24', Hart 001

Analyses Requested: Total Petroleum Hydrocarbons

EP Toxicity Metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag) Halogenated and Aromatic Volatile Organic Compounds

Cyanide

Sample Matrix: Soil

Preservatives: None

Date Sampled: 9/9/86 - SW-1

9/10/86 - SW-2, SW-4

9/11/86 - SW-3

Date Shipped: 9/12/86 via Federal Express

Date Received: 9/15/86 by Princeton Testing Laboratories

(CL5124A/1)

'n

FRED C. HART ^{O'} SOCIATES, INC. 530 FIFTH AVENUE NEW YORK, N.Y. 10036

- .		
•	CHAIN OF	CUSTODY

	ML Sample No.:
Client Name: FCHA	Client No.:
Sample Name: Soil - from Wellboring Date	Time Sampled: 9/9-9/11/46
Sample Location: Johnson City, NY (SE)	PLANT)
Sample ID: 54-1824-26;	18-20: 5w-28 24-26 22-24.
No. of Sample Bottles: 7 5ω-3,22-2. Preservation	24'. 24-26', Sw-48 22-24' ives: General Chem: 4° C
Temperature:	Oil & Grease: HCl Metals: HNO3
Sampled by: V. De Villez	::
Sampling Devices used: SPIT 90001	
Potential Contamination/Interference: 5w	-1955-10, 24-26-loss: ble cross
	'an ination from ice water in cooler
Sample History or Special Notes: Analyze for	in & Patrole m Hydrocarbons (SW 3550/
PRIMARY METALS (EPTOXICITY) · HA logenated and Volatile Orognics
(5/1157)3010(11/11/00 (C/119010) "	By:
Transmitted to Lab by: FEDER	
name	title
Phone:	
Relinquished by: V. DeViller	Date: 9/12/96
Relinquished by:	Date:
Relinquished by:	yate:
Relinquished by:	Date:
Relinquished by:	Date:
Final Disposition of samples:	
Date: 9/15/36 Location: 1/15	

Instructions: Please fill this form out as completely as possible. When the form is received by the Laboratory request 3 copy for your file. The abbreviated form for Chain of Custody is used simultaneously as the Analysis Esquest form for the above cample or sample group.

Addendum to Change of Custody Record (G-4) Soil Samples From Test Borings

Sample Numbers:

AFP 59, SB-1, 2'-4', Hart 002
AFP 59, SB-1, 4'-6', Hart 003
AFP 59, SB-2, 0.5'-2', Hart 001
AFP 59, SB-2, 6'-8', Hart 004
AFP 59, SB-3, 2'-4', Hart 001
AFP 59, SB-3, 8'-10', Hart 004

AFP 59, Plating Room East-2, GE 002 AFP 59, SW-1, 20'-22', Hart 005

Analyses Requested:

EP Toxicity Metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)

Total Chromium

Sample Matrix:

Soil

Preservatives:

None

Date Sampled:

9/12/86 - SB Series

9/9/86 - AFP 59, SW-1, 20'-22', Hart 005

9/10/86 - AFP 59, Plating Room East-2, GE 002

Date Shipped:

9/12/86 via Federal Express

Date Received:

9/13/86 by Princeton Testing Laboratories

(CL5124A/1)

CHAIN OF CUSTODY

FRED C. HART ASSOCIATES, INC. 630 FIFTH AVENUE NEW YORK, N.Y. 10036

	ML Sample No.:
Client Name: FCHA	Client No.: <u>C1071-00-86007</u> 0
	Time Sampled:
Sample LOSSOTOS: SB-122-4, 4-6, 5	8-2: 0.5-2' 6-8'
Sample Losses: SB-1:2-4, 4-6, 5 SB-3:2-4, 8-10; 5	W-1: 20-22 : PI-Pam EAST
No. of Sample Bottles: Preservat:	ives: General Chem: 4° C
Temperature:	Oil & Grease: HCl Metals : ANG3
Sampled by: V. Delliller	
Sampling Devices used: Split gran	
Potential Contamination/Interference:	
Sample History or Special Notes: Lold fo	arelypis intil 9/2/86
——————————————————————————————————————	y:
Transmitted to Lab by: FEOEX	
name	title
Phone:	
Relinquished by: //www.of/ Delile	Date: 2/12/86
Relinquished by:	Date:
Relinquished by:	pate:
Relinquished by:	
Relinquished by:	Date:
Final Disposition of samples:	
Date: Location:	

Instructions: Please fill this form out as completely as possible. When the form is received by the Laboratory request a copy for your file. The abbreviated form for Chain of Custody is used simultaneously as the Analysis Request Form for the above sample or sample group.

Addendum to Chain of Custody Record (G-6) Composite Soil Sample From Drum

Sample Numbers:

AFP 59, SW-3, Drum Composite, Hart 013

Analyses Requested:

EP Toxicity Metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)

Sample Matrix:

Soil

Preservatives:

None

Date Sampled:

9/12/86

Date Shipped:

9/15/86 delivered by HART

Date Received:

9/15/86 by Princeton Testing Laboratory

(CL5124A/1)

CHAIN OF CUSTODY

FRED C. HART ASSOCIATES, INC. 630 FIFTH AVENUE NEW YORK, N.Y. 10036

\mathbb{C}	OPY	ML Sample No.:
Client Name: FCHA		at No.: 01071-00 800 For
Sample Name: At Laif - Siv-3(Date/Time	Sampled:
Sample Location:		
No. of Sample Bottles:	Preservatives:	General Chem: 4° C Oil & Grease: HCl Metals: HNO3
Sampled by: V. Deli'1/c2 Sampling Devices used: 8 Tich.		
Sampling Devices used: 8 Tide	ref	·
Potential Contamination/Interfer Sample History or Special Notes:		VID.
		Metals Only
Date Received by Lab:	Ву:	
Transmitted to Lab by:		title
Phone:		
Relinquished by: Markesay!	alle	Date: 9/586
Relinquished by:	,	Date:
Reiinquished by:		· ·
Relinquished by:		
Relinquished by:		
Final Disposition of samples:		
Date: 9/15/16 12:05 Location		

Instructions: Please fill this form out as completely as possible. When the form is received by the Laboratory request a copy for your file. The abbreviated form for Chain of Custody is used simultantously as the Analysis Request form for the above sample or sample group.

Addendum to Chain of Custody Record (G-8) Soil Sampling Field Blank

Sample Numbers:

AFP 59, Field Blank, Water, Hart 001

Analyses Requested:

Total Petroleum Hydrocarbons

Aromatic and Halogenated Volatile Organic Compounds

Sample Matrix:

Water

Preservatives:

See Table 1 (p.G-15)

Date Sampled:

9/12/86

Date Shipped:

9/12/86 via Federal Express

Date Received:

9/15/86 by Princeton Testing Laboratories

(CL5124A/1)

CHAIN OF CUSTODY

FRED C. HART ASSOCIATES, INC. 530 FIFTH AVENUE NEW YORK, N.Y. 10036

	1	ML Sample No.:
Client Name: FCHA	Client	
Sample Name: Field & LAN	K Date/Time Sam	pled: 9/12/86
Sample Location: Johnson G	ty, M	
No. of Sample Bottles:	Preservatives:	General Chem: 4° 6 Oil & Grease: HCl
Temperature:		Metals : HNO ₃
Sampled by: V. Delillez		
Sampling Devices used: plik	moon	
Potential Contamination/Interfe	ereace: Analyze for	-8 Arenetic and
Potential Contamination/Interferences Halogental Organics	(EGNI + E 602).	Potraleum Hilmourbo
Sample History or Special Note:	Proceed to the	baic 11 (0 CE418-1)
	s. Meserchaeos por	CH 3- MESTER
for TPH-142 SOY		
Date Received by Lab:	Ву:	
Transmitted to Lab by:	·	
Phone:		title
Relinquished by: Minessa	Mersley	Date: 9/n/86
Relinquished by:		Date:
Relinquished by:		Dace:
Relinquished by:		
Relinquished by:		
Final Disposition of samples:		
Date: Locati		

Instructions: Please fill this form out as completely as possible. When the form is received by the Laboratory request a copy for your file. The abbreviated form for Chain of Custody is used simultaneously as the Analysis Request Form for the above sample or sample group.

Addendum to Chain of Custody Record (G-10) Groundwater Samples From Monitoring Wells

Sample Numbers: AFP 59, SW-1, Water, Hart 001

AFP 59, SW-2, Water, Hart 002 AFP 59, SW-3, Water, Hart 003 AFP 59, SW-4, Water, Hart 004

AFP 59, Production Well, Water, Hart 007 AFP 59, Field Blank, Water, Hart 005

Analyses Requested: Total Petroleum Hydrocarbons

Metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)

Aromatic and Halogenated Volatile Organic Compounds

Cyanide

Sample Matrix: Water

Preservatives: See Table 1 (p. G-15)

Metals Sample Filtered in the Field

Date Sampled: 9/23/86

Date Shipped: 9/23/86 via Federal Express

Date Received: 9/24/86 by Princeton Testing Laboratories

(CL5124A/1)

((() () () () () () () () ()		Ž		,	CHAIN	5	CUSTODY RECORM (WATER)	X KE	ORB	WATE	\mathbb{Z}							I
		:	0 11	•	-							¥	ANALYSIS	- (REQUIRED			
	roject F. J	Ans.	USAF-Johnson CA, LL	4			Extract anic			988919		[BT]U9	90	S		318u	STAIL	
Sampleys Signature	Della	18.	age of the second		abilea	OT, TO	STORI	<u>Anio</u> Retals	binsvi	9 110	insgru	N\secd iselov	insari.	PSCEEK	Stisc.	30 1	S KENAKKS	
Stat.# Date Time	dwoo	d s 1 0	Stati	Station Location													Tarambie	
38 22.6 1-ms		Х	SW-1 (MONITORING WALL)	(Jan bust)			-	X,	X				7	-	-		Weath organics, Attocher	,
SWZ			Sw-2 ("	(h								-		-			1.7	
S.w.3			Sev-3("	<i>("</i>			-								-			
4015			")h-ms	*			-	-					-					
Signy V			500	1 13 753	9) - - -	ر خ					-	-					
Sk-7			600		. 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							-	-				
			14													-		
						++	-+										G-10	
Relinquished by: (signeture)	W.	Pa 23	Date/time	Received by:		1	-	Relin (sign	Relinquished by:	hed b		-		See -	Date/time	7,5	Received by: (signature)	
Relinquished by: (signature)		0	.1	Received by: (signature)				Relin (sign	Relinquished by: (signature)	hed b	; ;			Date	Date/time		Received by: (signature)	
Relingished by: (signature)		Pa Pa	Date/time	Received for laboratory by(signature):	1abo	rator	>	Date	Date/time			REMARKS	S					
		1	-								7							

, Princeton Testing Laboratory, PU Box 3108, Princeton, NJ 08540

Addendum to Chain of Custody Record (G-12) USAFOEHL Groundwater Monitoring Well Sample Split

Sample Numbers:

AFP 59, SW-2, Water, USAFOEHL 002

Analyses Requested:

Total Petroleum Hydrocarbons

Metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)

Aromatic and Halogenated Volatile Organic Compounds

Cyanide

Sample Matrix:

Water

Preservatives:

See Table 1 (p.G-15)

Metals Sample Filtered in the Field

Date Sampled:

9/23/86

Date Shipped:

9/23/86 via Federal Express

Date Received:

Unknown (no records returned by USAFOEHL)

CHAIN-OF-CUSTODY

•	Base Sample No.: AF \$59. Sw-2, ware H
	Work Site Identifier: AFP59
BASE CODE: AFP59	
BASE: Johnson City, NY	COMMERCIAL PHONE: (5/2)536-2/58
ADDRESS: 600 Main ST. 13790	AUTOVON: 240-2158/2159
sampling location: <u>SW-2</u>	
COLLECTOR'S NAME: Venessa J. De	Villey 9/23/86 Signature and Date) (4:30p)
DATE SAMPLED: 9/23/86	TIME SAMPLED: 1630 Hours
TYPE OF PROCESS PRODUCING THE WASTE:	
FIELD INFORMATION: Sample collected	W/ STAINLESS STEEL BAILER
SHIP TO: USAF OEHL/SA BLDG 140 BROOKS AFB TX 78235-5501 SHIPPER: V. De VILLE - HART Asses.	PHONE: 2/2 840-3990
ADDRESS: 530 Fifth Arenve NY, NY 10036	
CHAIN-OF-POSSESSION:	
SIGNATURE	LE INCLUSIVE DATES
1. Vanesaff / Villy Hydro	ASSOCS.) 9/23/86 TO
2	то
3	
4. <u>·</u>	
5	T 0

USAF OEHL Sampling Guide July 1985

	`*	2'		*	* S	G	-13	ويعد س	**	4	2 - 4	Sect Sec		1
E	NVIRONMEN	TAL	SAMP	LING DA	TA 🥀		OEHL USE ONLY			1	T			1
(Use this space for	or mechanical imprir	10)					SAMPLING SITE		1	9	1		00	1
							(AFR 19.7)	7	깇	7	2 14	12	PI	
1							AFP59							
ļ						•	SAMPLING SITE DESCR							
DATE COLLEC		7141		TION BEGAI	<u> </u>			Siv	<u></u>	20	0	6		
	190,213	(24 h	our clock	30	~		GRAB CO	MPOS	117	e		HOURS		
MAJL	ORIGINAL	AI	FPS	9 USA	FOEH	4/.	SA BLDGHO	18	×	OOKS	RI	FETS	7	
REPORTS TO (circle if	COPY 1		TT									5-550		
changed)	COPY 2		TT				4.4.3							
DO Nill	L - Hydr			J_HK	INT AS	50	Varessa.	A	20	ide	2	240-	2158	100
REASON FOR		A-A		/INCIDENT	C+	COM	PLAINT P.POL	owu.	_	LEAND	7		/~	437
SUBMISSION	ER	R-R		PERIODIC	N-I	NPO	ES O-OTH		- , -	ומ				
BASE SA	MPLE NUMBER	A	F	P5	95W	2	CER. NO	و شاه	_	3 25 3 2 2				
	CROUM.	_	Wanda	ANALYSES		:D (theck appropriate blocks)	1						
┝╌┸┸┸	GROUP A	╀	Hardnes		00900	Н	Silica 009		4	2, 4, 5				9740
Ammonia Chemical O	00610	╁	Iron		01045		Specific Conductance 000		4	2, 4, 5-	TP-SI	lvex	. 39	9760
Chemical O		╀			01051	Н	Sulfate 009	-	4			_	_	
Kjeldahl Nit		╀	Magnesi		00927	Н	Surfactane-MBAS 382		_}	6			$\rightarrow \Rightarrow$	\ -
Nitrate	00620	 	Mangan		01055		Turbidity 4 000	76	4	TALL	721	y Me	tals	└-} _
Nitrite	00615	ĮŽ	Mercury	<u>,</u>	71900				4			1 17 2		
Oil & Greass		-	Nickel		01067				4		_			
Organic Car			Potassiu		00937		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		4	•		·		
Orthophosp		\nearrow	Seleniur	n	01147		GROUP	-+	4					
Phosphorus	Total 00665	<u> </u>	Silver		01077		Aldrin : 393		4					
	r 1	╄	Sodium		00929	·-	BHC Isomers 393	+	4					
	GROUP D	↓_	Thalliun	<u> </u>	, 01059		等►BHC + 393	-	_				<u>~</u>	
Cyanide, To		╄	Zinc	` .	01092		. ★₹ ЬВНС % 393	 -	4	-	·			
Cyanide, Fr	00722	╀-	1		· · · · · · · ·		4 ∜4-BHC		_	-				
		丄		; ·			Chlordane 🧦 393		1		\perp			CLE 1
	GROUPE	上	Ш	G	ROUP G		DDT Isomers 2393	70		Sulfide	1		0	0745
Phenois	32730	↓_	Acidity,		70508		, p-DDD 393	10	\Box					
-		1_	Alkalini	ity, Total	00410	·	電p, p-DDE 393	20					· _	
	GROUP F		Alkalini	ity, Bicarbonat	te 00425	٠	p, p-DDT 393	00		<u> </u>				
Antimony	01097	上	Bromide	e	71870	1	Dieldrin 393	80			ON S	ITE ANAL		
Arsenic	01002		Carbon	Dioxide	00405	Ŀ	Dursban 779	69		PAR	AMET		VAL	.U E
Barium	01007	1	Chloride	<u> </u>	00940		Endrin - 240 393	90	Flo	w		50050		wied
Beryllium	01012	$oldsymbol{\perp}$	Color		00080		Heptachlor 394			lorine, T		50060		mg !
Boron	01022		Fluorid		00951		Heptachlor Epoxide 394	20	Di	solved (xyge	n 00300		mg/l
Cadmium	01027	\perp	Residue		00500		Lindane System 397	82	<u> </u>			00400		unuts
Calcium	00916		Residue	, Filterable (T	'DS) 70300		Methoxychlor · 394	-+	Te	mperatu	1.6	00010		<u>°c</u>
Chromium,		1_	Residue	Nonfilterable	e 00530		Pramitol XY42000 (Premeton)	00	04	lor		- 00086		
Chromium '	VI 01032		Residue	, Settleable	50085	- ا	Toxaphene 🗠 394	00	loc	dide		- 71865		
Copper	01042		Residue	, Volatile :	00505	Ŀ	2, 4D 5365 391	30	Su	lfite		t: 00740		
FL	ld Fil	ter	To a	for m	etab			ا عوامد د	4.					

TO OME STORE AND STORE TO REPLACE AF FORM 2782, JAN 81, WHICH WILL BE USED.

ENIVIDONIA CA	TAL C.		C DATA 14		_		7	7		
ENVIRONMEN	E ORGANIC	.1N 'S'	GDATA G-1	PARTICIPATE CO.	٧.	1 1		350		
it se this space for mechanical imprin		<u>=/</u>		IDENTIFIER A	F	P5	950	Z	00	d
			.	AFR 19-7		COLLECT	20			4
			. 1	AFP 59						
				AED CO	SCR	IPTION				
DATE COLLECTION BEGAN	IME COLLECTIO	3 N	BEGAN	COLLECTION METH	00					
816101912131	24 hour clock	2 <i>/</i>)	PERA.	co	MPOSITE		10085		
ORIGINAL	वनवर्ति	1	USAFUEHL	- KA BLD	6	140	Ru			
MAIL REPORTS	// / P//	╀╌	US/K	/3/(/45/		, , , -	U REGIE	SAF	PTX	
(circle if		\perp		·				78235	-550	<i>/</i>
changed) COPY 2		Γ								
SAMPLE COLLECTED BY (Name,		<u></u>	11.00	SIGNATURE			11	AUTO	/ON	/
De Villez -	Hydroger	6	ist-Assocs.	Uneson	<u> </u>	uv	la	240	-2.158	715
REASON FOR SUBMISSION	A-ACCIDENT/II R-ROUTINE/PE		DENT C-COMPLA	AINT F-FOLL G-GTHE		ipecify)	102			
BASE SAMPLE NUMBER	AF	P	5 95142	OEHL	MO)				
	AN/	AL'	SES REQUESTED (check	appropriate blocks)					لـــلـــا	
VOLATILE HALOCARBONS (VOH)	(10860)		Trichlorofluoromethane	34488	Tu.	SCELLAN	FOUS			
PRES GR		┪	Vinyl Chloride	39175		VOLATI				
	1001460PH	ᅥ	· · · · ·				7.1	5 GROUP	• T1	
Volatile Halocarbon Screen Bromodichloromethane	32101	┪		· · · · · · · · · · · · · · · · · · ·	Н	Xylene				1710
Bromoform	32104	7				Methylet	hyl ketone		81	1595
Bromomethane	34413	TR	IHALOMETHANES (THM) 14 ~ (10860)		Methylis	obutyl ketor	e	8	1596
Carbon Tetrachloride	32102		PRES	GROUP TI		Total org	anic halides		100210)60H
Chlorobenzene	34301		Trihalomethane Potential							
Chloroethane	34311		Total Trihalomethanes	~ 8208n						
2-Chloroethylvinyl ether	34576			N \$						
Chlorotorm	32106	_	OLATILE AROMATICS	VOA1 (10850)						
Chloromethane	34418	_]	PRE	S GROUP TI	igspace					
Dibromochloromethane	32105		Volatile Aromatic Screen	1001461PA	L	L				
1, 2-dichlorobenzene	34536		Benzene	- 34030	МІ	SCELLAN				
1, 3-dichlorobenzene	34566/	_	Chlorobenzene	34301	L	EXTRA	CTABLES			
1, 4-dichlorobenzene	34571	_	1, 2-dichlorobenzene	34536	├-	Ш	PR	ES GROU		-
Dichlorodifluoromethane	34668	4	1, 3-dichlorobenzene	34566	\vdash	PCB's				9516
1, 1-dichloroethane	34496	_	1, 4-dichlorobenzene	34571	╀-		e Esters Scre		100000	
1, 2-dichloroethane	34531	_	Ethylbenzene	34371	_	 	hylhexyl) pi			19100
1 1 dichloroethene	34501	4	Toluene	34010	╁_		nzyl phthal			19116
trans-1, 2-dichloroethene	34546	닉			┼-		yl phthalate			39116 34336
1, 2-dichloropropane	34541				+		phthalate		<u>_</u>	34341
crs-1, 3-dichloropropene	34704 34699				╀		yl phthalate yl phthalate			34596
trans-1. 3-dichloropropene Methylene Chlonde	34423	-			十	Di-m-oct	y i pii maiate			
1, 1, 2, 2-tetrachioroethane	34516	_			+	 				
Tetrachioroethylene	34475				\forall	12	roleum	HUM	KOCAK	ERONS
1, 1, 1-trichloroethane	34506	-			1	<u> </u>	MAC ALL	13717	, //	
1. 1. 2-trichloroethane	34511	_	•		T	 				
Trichloroethylene	39180				†		·.			
REMARKS						<u> </u>		: '.		
		3):						- 1 h-		

TABLE 1
SAMPLE CONTAINERS AND PRESERVATION

<u>Parameter</u>	Volume Required	Container	Preservative	Holding Time
Total Petroleum Hydrocarbons	l liter	glass	H ₂ SO ₄ to pH <2	28 Days
Primary Metals	l liter	HDPE	Filter on-site HNO ₃ to pH <2	6 months
Volatile Organics	2 bottles	VOA vials	2-3 crystals Na ₂ S ₂ O ₃	14 days
Cyanide	500 ml	glass	NaOH to pH >12	14 days

(CL5119A/1)

APPENDIX H
ANALYTICAL DATA

SUBSURFACE SOIL SAMPLE CROSS REFERENCE TABLE

						Holding I'me
ă	Date	Date of	Date of	Type of	œ	Recommended/Actual
2	Received	Extraction	Analysis	Analysis	Page	(deys)
09/15/86	2/86	09/22-23/86	09/30/86	As, Ba, Cd,	H.1-1	180/14
		00/22-23/86	98/62/60	Se. As	H.1-1	180/14
		09/22-23/86	98/62/60	6W	H.1-1	28/14
		NA NA	10/02/86	Petroleum	H.1-1	28/23
				Hydrocarbons		
		09/54/86	09/55/86	Cyanide	H.1-1	14/15
		NA.	09/19/86	EPA 601/602	H.3-1	14/10
09/15/86	8	09/22-23/86	98/30/89	As, Bs, Cd,	н.1-1	180/14
		A\$1.75-57.86	09/29/86	Se, Ag	H.1-1	180/14
		00/22-23/86	09/53/86	9	H.1-1	28/14
		*	10/02/86	Petroleum	H.1-1	28/23
				Hydrocarbons		
		09/5//86	09/25/86	Cyanide	H.1-1	14/15
		4	09/19/86	EPA 601/602	H.3-1	14/10
09/15/86	8	09/22-23/86	09/30/86	As, 8a, Cd,	H.1-1	180/12
			787 007 00		1-1	180/12
		08/57-77/60	98/67/60	, c	F-1-1	28/12
		09/52-23/60 NA	10/02/86	Petroleum	H.1-1	28/21
		i		Hydrocarbons		
		09/5//86	09/25/86	Cyanide	H.1-1	14/13
			707.07	EDA 401/602	H.3-1	14/8

NA - Not Applicable (a) - Sample split-spoon number from boring logs (Appendix E.1)

SUBSURFACE SOIL SAMPLE CROSS REFERENCE TABLE

Holding Time	Recommended/Actual	Page (days)	H.1-1 180/14		•		H.1-1 28/23			H.3-1 14/10	H.1-1 180/14				N.1-1 28/23		H.1-1 14/15		H.1-1 180/12		H.1-1 180/12	H.1-1 28/12			H.1-1 14/13	8/7t t'z n
	Type of	Anelysis	As, Ba, Cd,	cr, Pb	Se, As	5	Petroleum	Mydrocarbons	Cyanide	EPA 601/602	As, Ba, Cd,	cr, Po	Se, Ag	B	Petroleum	Hydrocarbons	Cyanide	EPA 601/602	As, Ba, Cd,	G, P	Se, Ag	D.	Petroleum	Hydrocarbons	Cyanide	(077 507 502
	Date of	Analysis	98/30/86		98/52/60	98/62/60	10/02/86		09/52/86	09/19/86	98/20/80		98/62/60	98/52/60	10/02/86		98/52/60	09/19/86	98/30/86		98/62/60	09/53/86	10/02/86		09/25/86	78707700
	Date of	Extraction	09/22-23/86		09/22-23/86	09/22-23/86	¥		09/54/86	*	09/22-23/86		09/22-23/86	09/22-23/86	MA		09/54/86	*	09/22-23/86		09/22-23/86	09/22-23/86	¥		09/54/86	1
	Date	Received	09/15/86								09/15/86								09/15/86							
	Date	Sampled	98/60/60								98/60/60								09/11/86							
HART	Sample	Number	AFP59, SW-1	18' - 20'	Hert 004	SS-7(®)					AFP59, SW-1	54' - 26'	Hart 007	ss-10					AFP59, SW-2	22' - 24'	Hert 009	6-88				
PIL	Sample	NUMBER								100								005								

NA - Not Applicable (a) - Sample split-spoon number from boring logs (Appendix E.1)

Subsurface Soil Sample Cross Reference Table (Continued)

1	HART							Holding time
Sample	Sample	Date	Date	Date of	Date of	Type of		Recommended/Actual
Number	Number	Sampled	Received	Extraction	Analysis	Analysis	Page	(days)
	AFP59, SW-2	09/11/86	09/15/86	09/22-23/86	09/30/86	As, 8a, Cd,	H.1-1	180/12
	.9272					cr, Pb		
	Nart 010			09/22-23/86	09/53/86	Se, Ag	H.1-1	180/12
	SS-10			09/22-23/86	09/52/80	9	H.1-1	28/12
				\$	10/02/86	Petroleum	H.1-1	28/21
						Hydrocarbons		
				09/57/86	09/52/80	Cyanide	#.1-1	14/13
%				\$	09/19/86	EPA 601/602	н.3-3	14/8
	AFP59, SW-3	09/10/86	09/15/86	09/22-23/86	09/30/86	As, Ba, Cd,	H.1-1	180/13
	22' - 24'					cr, Pb		
	Nart 009			09/22-23/86	09/53/86	Se, Ag	H.1-1	180/13
	6- SS			09/22-23/86	98/52/60	2	H.1-1	28/13
				≨	10/02/86	Petroleum	H.1-1	28/22
						Hydrocarbons		
				98/57/60	09/52/86	Cyanide	H.1-1	14/14
500				¥	09/19/86	EPA 601/602	н.3-3	14/9
	AFP59, SW-3	98/10/86	09/15/86	09/22-23/86	09/30/86	As, Ba, Cd,	H.1-1	180/13
	54' - 26'					cr, Pb		
	Nert 010			09/22-23/86	98/62/60	Se, Ag	H.1-1	180/13
	SS-10			09/22-23/86	09/53/86	9	H.1-1	28/13
				¥	10/02/86	Petroleum	H.1-1	28/22
						Mydrocarbons		
				09/57/86	09/25/86	Cyanide	H.1-1	14/14
906				¥¥	09/19/86	EPA 601/602	H.3-3	6/51

Subsurface Soil Sample Cross Reference Table (Continued)

Time	Actual	m	~	ĸ	7		•		•	6	0	•	•			•	•	0
Holding Time	Recommended/Actual (days)	180/13	180/1	28/1	28/2		1/71	14/9	180/10	28/2	180/2	180/1	180/20		28/5	180/2	180/14	180/2
-	Page	н.1-2	н.1-2	н.1-2	н.1-2		н.1-2	H.3-5	н.1-5	H.1-3	H.1-3	H.1-3	H.1-3		H.1-3	H.1-3	H.1-3	H.1-3
, and a second	Anelysis	As, Be, Cd, Cr. Pb	Se, Ag	8	Petroleum	Hydrocarbons	Cyanide	EPA 601/602	As, Bs, Cd, Cr, Pb, Hg, Se, Ag	9	š	Total Cr	As, 8a, Cd,	Cr, Pb, Ag	5	Şe	Total Cr	As, Ba, Cd,
***************************************	Anelysis	98/30/86	98/52/60	98/62/60	10/02/86		09/22/86	09/19/86	09/25/86	10/09/86	10/07/86	98/30/86	10/08/86		10/09/86	10/07/86	98/30/86	10/08/86
Dete	Extraction	09/22-23/86	09/22-23/86	09/22-23/86	W		09/24/86	VN V	09/22/86	10/1-2/86	10/1-2/86	09/25-56/86	10/1-2/86		10/1-2/86	10/1-2/86	09/25-26/86	10/1-2/86
d ted	Received	09/15/86							09/15/86	09/13/86					09/13/86			
o e te	Sampled	09/10/86							09/12/86	09/12/86					09/12/86			
HART	Number	AFP59, SW-4 22' - 24'	Mart 001						AFP59, SW-3 Drum Composite Nart 013	AFP59, SB-1	2' - 4'	Mart 002			AFP59, S8-1	,9 - ,7	Mart 003	\$5.3
PTL	Number							200										

urfac	Subsurface Soil Sample Cross Reference Table (Continued)	oss Reference	Table (Continu	(Du				ent time
PTL Sample Number	HART Sample Number	Date Sampled	Date Received	Date of Extraction	Date of Analysis	Type of Analysis	95e	Recommended/Actual (days)
	AFP59, SB-2 0.5' - 2' Mart 001 SS-1	09/12/86	09/13/86	10/1-2/86 10/1-2/86 09/25-26/86 10/1-2/86	10/09/86 10/07/86 09/30/86 10/08/86	Mg Se Total Cr As, 8s, Cd, Cr, Pb, Ag	H.1-3 H.1-3 H.1-3	28/20 180/20 180/14 180/20
	AFP59, SB-2 6' - B' Wart 004 SS-4	09/12/86	09/13/86	10/1-2/86 10/1-2/86 09/25-26/86 10/1-2/86	10/09/86 10/07/86 09/30/86 10/08/86	Mg Se Totel Cr As, Ba, Cd, Cr, Pb, Ag	H.1-3 H.1-3 H.1-3	28/20 180/20 180/14 180/20
	AFP59, SB-3 2' - 4' Hert 001 SS-2	09/12/86	09/13/86	10/1-2/86 10/1-2/86 09/25-26/86 10/1-2/86	10/09/86 10/07/86 09/30/86 10/08/86	Ng Se Total Cr As, Bs, Cd, Cr, Pb, Ag	H. 1-3 H. 1-3 H. 1-3 H. 1-3	28/20 180/20 180/14 180/20
	AFP59, SB-3 B' - 10' Hart 004 SS-5	09/12/86	09/13/86	10/1-2/86 10/1-2/86 09/25-26/86 10/1-2/86	10/09/86 10/07/86 09/30/86 10/08/86	Ng Se Total Cr As, Ga, Cd, Cr. Pb. Ag	H.1-4 H.1-4 H.1-3	28/20 180/20 180/14 180/20

Subsurface Soil Sample Cross Reference Table (Continued)

HART								Holding Time
S	aple .	Date	Date	Date of	Date of	Type of	•	ecommended/Actual
킕	- La	Sampled	Received	Extraction	Analysis	Analysis	Page	(days)
AF	AFP59, SW-1	98/60/60	09/13/86	10/1-2/86	10/09/86	#B		28/23
2	, - 55,			10/1-2/86	10/07/86	Se	H.1-4	180/23
Ī	r 005			09/25-26/86	09/30/86	Total Cr	H.1-4	180/17
SS	æò.			10/1-2/86	10/08/86	As, Ba, Cd,	H.1-4	180/23
						Cr, Pb, Ag		
ž	Plating Rm.	09/10/86	09/13/86	10/1-2/86	10/09/86	Ηg	H.1-6	28/22
Ē	East - 2			10/1-2/86	10/07/86	Se	H.1-6	180/22
넁	GE 002			09/55-56/86	09/30/86	Total Cr	H.1-4	180/16
				10/1-2/86	10/08/86	As, Ba, Cd,	N.1-4	180/22
						Cr, Pb, Ag		
AF	, 56,	98/60/60	09/15/86	¥	09/19/86	EPA 601/602	H.3-7	14/10
: §	Field Blank, Water.							
2	Hert 001							

GROUNDWATER SAMPLE CROSS REFERENCE TABLE

PTL	HART							Holding Time	
Sample	Sample	Date	Date	Date of	Date of	Type of		Recommended/Actual	
Number	Number	Sampled	Received	Analysis	Confirmation	Analysis	Page	(days)	
100	AFP59, SW-1	09/23/86	09/54/86	10/03/86	K	EPA 601/602	H.3-10	14/10	
	Water,			09/25/86	KA	Ag, 6a, Cd,	н.1-6	180/2	
	Wart 001					Cr, Pb			
				09/52/86	¥.	As, Se	н.1-6	180/6	
				98/62/60	NA NA	E M	н.1-6	58/6	
				10/06/86	VN.	Cyanide	н.1-6	14/13	
				10/15/86	4	Petroleum	н.1-6	28/22	
						Hydrocarbons			
200	AFP59, SU-2	09/23/86	09/54/86	10/03/86	NA	EPA 601/602	H.3-10	14/10	
	Water,			09/25/86	¥¥	Ag, 8a, Cd,	H.1-6	180/2	
	Nart 002					Cr, Pb			
				98/52/60	KA	As, Se	H.1-6	180/6	
				98/52/60	¥¥	D	H.1-6	28/6	
				10/06/86	¥	Cyanide	н.1-6	14/13	
				10/15/86	¥¥	Petroleum	H.1-6	28/22	
						Hydrocarbons			
003	ņ	09/53/86	09/54/86	10/03/86	10,04/86	EPA 601/602	н.3-10	14/10	
	Water,			09/25/86	¥¥	Ag, Ba, Cd,	H.1-6	180/2	
	Hert 003					cr, P			
				98/62/60	¥¥	As, Se	H.1-6	180/6	
				98/62/60	MA	Ş	H.1-6	28/6	
				10/06/86	¥	Cyanide	H.1-6	14/13	
				10/15/86	MA	Petroleum	н.1-6	28/22	
						Hydrocarbons			

NA - Not Applicable

Groundwater Sample Cross Reference Table (Continued)

PIL	HART							Holding Time	
Sample	Sample	Date	Date	Date of	Date of	Type of		Recommended/Actual	
Number	Number	Sampled	Received	Analysis	Confirmation	Analysis	Page	(days)	
96	AFP59, SW-4	09/23/86	09/54/86	10/03/86	KA	EPA 601/602	H.3-12	14/10	
	Vater,			09/25/86	NA NA	Ag, 8a, Cd,	H.1-6	180/2	
	Hart 004					Cr, Pb			
				09/53/86	¥	As, Se	н.1-6	180/6	
				98/52/60	MA.	5 X	н.1-6	28/6	
				10/06/86	¥	Cyanide	н.1-6	14/13	
				10/15/86	¥	Petroleum	H.1-6	28/22	
						Hydrocarbons			
89	AFP59,	09/23/86	08/57/80	10/03/86	10/04/86	EPA 601/602	H.3-12	14/10	
	Production			09/25/86	¥	Ag, Ba, Cd,	н.1-6	180/2	
	Well, Water					Cr, Pb			
	Nart 007			98/52/60	¥	5	н.1-6	58/6	
				98/52/60	≨	As, Se	H.1-6	180/6	
				10/06/86	MA	Cyanide	H.1-6	14/13	
				10/15/86	¥	Petroleum	H.1-6	28/22	
						Hydrocarbons			
Field	AFP59,	09/23/86	09/24/86	10/03/86	¥	EPA 601/602	H.3-12	14/10	
Field	Water Nart 005			10/15/86	≦	Petroleum Hydrocarbons	н.1-6	28/22	

APPENDIX H.1 PTL INORGANIC ANALYTICAL RESULTS

(CL5121A)

Princeton Service Center, US Route One, Princeton, NJ 08540

TO: Fred C. Hart Associates

530 Fifth Avenue New York, NY 10036 Mailing Address: PO Box 3108, Princeton, NJ 08543

DATE: October 23, 1986

JOB NO. 86GW2873

AUTHORIZATION: PO 01071-00-86001

٦

Attn: Robert Goldman

SAMPLE: Soil - 7

REPORT OF ANALYSIS

SAMPLING DATE: 9/12/86 EXTRACTION : 9/22-23		1/11/86 K	SIEA				
EP TOXICITY (METALS)	AFP 59 SW-1 18'-20' Hart 004	AFP 59 SW-1 24'-26' Hart 007	AFP 59 SW-2 22'-24' Hart 009	AFP 59 SW-2 24'-26' Hart 010	AFP 59 SW-3 22'-24' Hart 009	AFP 59 SW-3 24'-26' Hart 010	
Arsenic	0.02	0.02	0.01	0.01	<0.01	0.03	
Barium	0.52	0.44	0.35	0.20	0.14	0.50	
Cadmium	0.04	0.02	0.02	0.01	0.02	0.06	
Chromium	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Lead	0.16	0.15	0.03	0.03	0.05	0.18	
Mercury	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Selenium	<0.01	0.01	<0.01	<0.01	<0.01	0.01	
Silver	0.01	<0.01	<0.01	<0.01	<0.01	0.01	
		mg/kg					
Petroleum Hydrocarbons	<10.0	11.4	<10.0	<10.0	<10.0	<10.0	
Cyanide	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	

Received 9/15/86

Edna A. Alinea, Manager

Water, Wastewater & Microbiology

/rk

NOTE: RCRA Method employed according to Federal Register May 19, 1980.

Princeton Service Center US Route L 509.452.4051 11 \ <4/3492

Fred C. Hart Associates

530 Fifth Avenue New York NY 10036 Attn: Robert Goldman

TO:

P.O. Box 22 in Production N.1 (18840).

DATE:

10-23-86

JOB NO.

86GW2873

AUTHORIZATION: 01071-00-86007-C

SAMPLE:

REPORT OF ANALYSIS

Soil-7

EP-TOXICITY (METALS)	AFP 59 SW-4 22'-24' Hart 001	AFP 59 Field Blank Water Hart 001	DATE OF ANALYSIS	DETECTION LIMIT (mg/1)
Arsenic	<0.01		9/30/86	0.01
Barium	0.10		9/30/86	0.05
Cadmium	0.02		9/30/86	0.01
Chromium	<0.02		9/30/86	0.02
Lead	0.06		9/30/86	0.02
Mercury	<0.001		9/29/86	0.001
Selenium	<0.01		9/29/86	0.01
Silver	<0.01		9/29/86	0.01
mg/kg Cyanide Petroleum	<0.35		9/24 Distil 9/25 Colori	
Hydrocarbons	<10.0	<.5	10/2/86	10.0

Note: RCRA Method employed according to Federal Register

May 19, 1980.

Sampling Date: 9/11/86 - 9/12/86 9|9|86-9|62/86 KS|EA

Extration Date : 9/22-23/86

Sample Received: 9-15-86

Edna A. Alinea, Manager

Princeton Service's enter L.S. Route i Servi452-4050 Lt NS+3472

Fred C. Har Associates

530 Fifth Avenue New York NY 10036

Attn: Robert Goldman

TO:

POB COS Paraton NT 8840

DATE:

10-13-86

JOB NO.

86W2971

AUTHORIZATION: 01071-00-86007

SAMPLE:

Soil-8

REPORT OF ANALYSIS

EP-TOXICITY: mg/1	AFP 59 SB-1 2'-4' HART 002	AFP 59 SB-1 4'-6' HART 003	AFP 59 SB-2 0.5'-2' HART 001	AFP 59 SB-2 6'-8' HART 004	AFP 59 SB-3 2'-4' HART 001
Arsenic	<0.01	<0.01	0.01	0.01	0.01
Barium	<0.05	<0.05	<0.05	0.06	<0.05
Cadmium	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	<0.02	<0.02	<0.02	<0.02	<0.02
Lead	<0.02	0.08	0.06	0.10	0.04
Mercury	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	<0.01	<0.01	<0.01	<0.01	<0.01
mg/kg					
Total Chromium Note: RCRA	7.70 Method emp	12.4 Ployed accor	12.6 ding to Fed	l6.1 eral Registe	18.0 r

May 19, 1980.

Edna A. Alinea, Manager

Princeton Service Center US Route i 609-432 7050 TLX54/3492

Fred C. Hart Associates

530 Fifth Avenue New York NY 10036 Attn: Robert Goldman

TO:

P.O. B. V. 1948, Print atom, N.J. 48540.

DATE:

10-13-86

JOB NO.

86W2971

AUTHORIZATION: 01071-00-86007

SAMPLE:

Soil-8

REPORT OF ANALYSIS

should be	-TOXICITY: → mg/kg	AFP 59 SB-3 8'-10' HART 004	AFP 59 SW-1 20'-22' HART 005	Plating Roc East-2 GE 002	om Date	of Analysis
mg/L - Conversation	Arsenic	<0.01	0.01	0.02	AA -	10/8/86
2DG & Edna Alinea 1/20/87	Barium	<0.05	0.51	0.19		10/8/86
	Cadmium	<0.01	0.02	<0.01		10/8/86
	Chromium	<0.02	0.02	<0.02		10/8/86
	Lead	0.07	0.78	0.31		10/8/86
	Mercury	<0.001	<0.001	<0.001		10/9/86
	Selenium	<0.01	0.01	<0.01		10/7/86
	Silver	<0.01	0.01	<0.01		10/8/86
	mg/kg Total Chromium	67.4	5.43	43.6 Di	gestion	9/25 - 9/26/86 9/30/86
	MDT - 1 0					

MDL - 1.0

Note: RCRA Method employed according to Federal Register

May 19, 1980.

Date of Sampling: 9/9/86 - 9/12/86 K5/EA

Date of Extraction: 10/1-2/84 JAJEA

9/13/86 Date Received:

Edna A. Alinea, Manager

RECEIVED BOT 1 4 1986 princeion testing laboratory

609,452,9060

Princeton Service Center, US Route One, Princeton, NJ 08540

Fred C. Hart Associates

530 Fifth Avenue New York, NY 10036 Mailing Address PO Box 3108, Princeton No 08543

DATE: October 10, 1986

JOB NO. 86W2872

(Corrected)

AUTHORIZATION: 01071-00-86007-00

SAMPLE: Soil - 1

Attn: Alexis Alfasso

REPORT OF ANALYSIS

	SW-3 Drum Composite Hart 013	Date of Analysis
EP TOXICITY (Metals Only)	mg/l	
Arsenic	0.02	9/25
Barium	0.39	9/25
Cadmium	0.04	9/25
Chromium	< 0.02	9/25
Lead	0.71	9/25
Mercury	< 0.001	9/28
Selenium	< 0.01	9/25
Silver	0.01	9/25

Date of Sampling: 9/12/86

Date of Sample Extraction: 9/22/86

Date Received: 9/15/86

Water, Waste Water & Microbiology

TO:

ନିମ୍ୟ ଅନ୍ତ ହାନ

Princeton Service Center, US Route One, Princeton, NJ 08540

Fred C. Hart Associates

530 Fifth Avenue

New York NY 10036 Attn: Robert Goldman Mailing Address PO Box 3108, Princeton Nucl8543

DATE:

10-20-86

JOB NO.

86GW2970

AUTHORIZATION:

01071-00-36007

SAMPLE:

Water-5

REPORT OF ANALYSIS

(Johnson City Proje

	ANALYSIS DATE	AFP 59 SW-1 Water Hart 001	AFP 59 SW-2 Water Hart 002	AFP 59 SW-3 Water Hart 003	AFP 59 SW-4 Water Hart 004	AFP 59 Production Well Water Hart 007	AFP 59 Field Blank Water Hart 00'
Silver E 200.7	9/25	<0.01	<0.01	<0.01	<0.01	<0.01	
Barium " "	9/25	0.21	<0.01	0.05	<0.01	0.14	
Cadmium " "	9/25	0,007 €, EA	0.01 KS	(0.005	<0.005	<0.005	
Lead " "	9/25	0.30	0.03	0.14	0.07	0.13	
Arsenic E 206.2	9/29	0.02	<0.005	0.01	0.01	0.01	
Mercury E 245.1	9/29	<0.001	<0.001	<0.001	<0.001	<0.001	
Selenium E 270.2 Chromum E 200.7 Petroleum Hydrocarbon E 418.1	9/29 9/35 10/15	<0.005 <c.e3 <0.5</c.e3 	<0.005 <c z<br="" ∘=""><0.5</c>	<0.005 <0.5 <0.5			 -> EA <0.5
Cyanide A4120	10/6	<0.01	<0.01	<0.01	<0.01	<0.01	

Date Sampled: 9-23-86

Date Received : 9-23-86 4124186 KS/EA

Edna A. Alinea, Manager

Water, Wastewater and Microbiology

APPENDIX H.2 PTL INORGANIC ANALYTICAL QA/QC RESULTS

(CL5121A)

Princeton Service Center, US Route One, Princeton, NJ 08540

TO: Fred C. Hart Associates

530 Fifth Avenue New York, NY 10036 Attn: Robert Goldman Mailing Address: PO Box 3108, Princeton, NJ 08543

DATE: October 13, 1986

JOB NO. 86W2971

AUTHORIZATION: 01071-00-86007-00

SAMPLE: Soil

REPORT OF ANALYSIS

QA/QC DATA

AFP 59, SB-3, 8'-10', HART 004

			Spike Solution	Spiked Sample	
ELEMENT	<u>DUP I</u>	DUP II	Added	Result	% Recovery
Arsenic	< 0.01	∠ 0.01	0.100	0.084	84%
Barium	∠ 0.05	< 0.05	0.170	0.163	96%
Cadmium	< 0.01	< 0.01	0.170	0.17	100%
Chromium	< 0.02	< 0.02	0.17	0.17	100%
Lead	0.07	0.07	0.170	0.24	100%
Mercury	< 0.001	< 0.001	0.005	0.0046	92%
Selenium	< 0.01	< 0.01	0.100	0.089	89%
Silver	< 0.01	< 0.01	0.170	0.15	88%

EDNA A. ALINEA, Manager

Water, Waste Water & Microbiology

Ana daj dje j

Princeton Service Center, US Route One, Princeton, NJ 08540

Mailing Address PO Box 3108, Princeton No. 18843

DATE:

10-20-86

JOB NO.

86GW2970

AUTHORIZATION:

Fred C. Hart Associates 530 Fifth Avenue New York NY 10036

Attn: Robert Goldman

1

SAMPLE:

Quality Control

REPORT OF ANALYSIS

QUALITY CONTROL

mg/1

C	T.T_	1

ELEMENT	DUP 1	DUP II	SPIKE SOLUTION ADDED	SPIKE SOLUTION SAMPLE	% RECOVERY
Silver	<0.01	<0.01	0.17	0.15	88
Barium	0.21	0.21	0.17	0.36	88
Cadmium	<0.005	<0.005	0.17	0.17	100
Chromium	<0.02	<0.02	0.17	0.16	94
Lead	0.30	0.29	0.17	0.45	88
Arsenic	0.022	0.021	0.100	0.110	88
Mercury	<0.001	<0.001	0.0050	0.0049	98
Selenium	<0.005	<0.005	0.100	0.090	90
Cyanide #3054	<0.01	<0.01	.09	.08	89

Edna A. Alinea, Manager

APPENDIX H.3 PTL ORGANIC ANALYTICAL RESULTS

(CL5121A)

PRINCETON TESTING LABORATORY SAMPLE ANALYSIS REPORT

For Fred C. Hant Associates

530 Fifth Avenue New York, NY 10036 Report Date: 10/23/86

100 No.1 25G#2571

Date Reserves: 39/15/35

Units: 13/K3

Hart sample nos. at bottom of page TEST PERFORMED: Vol. maiocanbons & Anomatics, Non-4d. + 3010/3020

	TERRIORINES: VS 1 7	-a cca, 50	3 & A, C	33, 40, -4.	
COMP	OUND	DET _MTS	001	302	303
74 + 3 7 - 3	On onomethane	330	NO.	NO.	·.]
74-93-9	3romometran e	433	N3	V 3	`w
75-11-3	Digniphodif uphp= methane	200	NO	V3	٠, ٠
75-01-4	viny On price	30	ND	OF	\
75-33-3	Onloncethane	3.0	CV	NO	\ 3
75-09-2	Methy ere Chionide	200	\	√ ⊃	NO.
75-69-4	Inichlorofluoro- methane	200	.N.O	СN	V 0
75-35-4	1.1-Dichioncethene	40	NO	ND	NO
75-34-3	1,1-0:chloroetrane	4.0	NO	N O	CW
56-60-5			NO	NO	CN
	Chlorofronm	40	CM	ND	NO
107-06-2	1,2-Dichloroethane	40	GN	ND	N 3
7 `-55-3	i, i, i-Trichlono- ethane	80	CP	ND	N3
56-23-5	Carbon Tetra- chloride	80	NO	GN	NO
75-27-4	Bromodichion- methane	80	NO	ND	C/
78-37-5	1,2-Dichloro- propane	40	NO	СN	/3
10051-02-6	Trans-1,3-Dichlor- opropene	200	NO.	GV	V3
79-01-5	Thich ordethene	3 C	GP	ND	NO.
	Ofbromochloro- methane	30	ND	NO	V 3
79-00-5	1,1,2-Trichloro- ethane	200	ND	CV	ND
10061-01-5	cis-1,3-Dichloro- propens	200	CV	ND	NO
100-75-8	2-Chloroethyl- vinylether	200	ND	CM	NO
75-25-2		400	NO	CV	NO.
79-34-5	1,1,2,2-Tetra- chlorosthane	400	CN	ND	NO
127-18-4		30	CN	ND	CN
71-43-2		40	ND	ND	NO
108-88-3	Toluene	40	ND	NO	NO.

[&]quot;Confirmation analyses MDLs are the same as the 8010/8020 MDL's"

AFP 59	AFP 59	AFP 59
SW-1	SW-1	SW-2
18'-20'	24'-26'	22'-24'
Hart 004	Hart 007	Hart 009

SAMPLE ANALYSIS REPORT

72-		: O. Hant Associat Aifth Avenue	2 8	:	Repont Cate. [0/23/86
		Yonk, NY 10036		:	,co No.: 86G/ Cate Received. .nits: UG/KG	
	Har	t sample nos. at bo	ottom of page	•	. 1165: 36716	
	~ ES~	PERFORMED: Vol	. маўрсатэрг	ns & Anomatic	s. Von-4g.+	301043000
	33 v o	ouna .	357 1773	331	332	333
:::3-	9:	On propenzene	43	ND	NO	·, ː
	41-4		40	√ ⊃	\ 3	• :
5: -	3	.3-0°ch ono-	4.0	V.O	V 3	V.C
		penzene				
95-	·50-1	1.2-0fcnlons-	4.3	\ 3	\)	V D
		penzene				
105-	45-7	1.4-Dian pro-	4 C	VD.	√ ⊃	V D
		penzene				
				AFP 59 SW-1	AFP 59 SW-1	AFP 59 SW-2
		ECOVERY DATA		18'-20'	24'-26'	22'-24'
	% ₹EC	OVERY				
				Hart 004	Hart 007	Hart 009
		methane				
4 - 3 nom	:0+ u0	nopenzene				
	-0514	- -,				
DATE R	ECEIV	£0:		9/15/86	9/15/96	9/15/85
DATE A	ALA: U7	- n		2 / 1 2 / 2 5	0 / 1 0 / 0 0	3 / 2 0 / 2 5
JA = A	NALYZ	EU:		9/19/86	9/19/86	9/19/95
 V2VU	- · o:	* c a .		4		
*UL *U	- - .	. E.K.:				
SPIKE	COMPO	POM				
	COVER					
•	0012.	•				
viny:	Chlor	ide		N/A	N/A	\/A
		pethene		N/A	N/A	N/A
		pethane		N/A	N/A	N/A
Triani				N/A	N/A	\/A
		loroethane		N/A	N/A	N/A
Benzen				N/A	N/A	V/A
		benzene		N/A	N/A	N/A
		chloride		N/A	N/A	N/A
· · ·				.,	• • • • • • • • • • • • • • • • • • • •	-, -,

[&]quot;Confirmation analyses MDLs are the same as the 9010/8020 MDL's"

SAMPLE ANALYBIB REPORT

For Fred D. Hant Associates E30 Fifth Avenue New York, NY 10035

Resort Date 10/23/86

100 No.: 85340871 Date Rederved. 29 (5.86)

Hart sample nos. at bottom of page

un tal 13/43 TEST RERFORMED. . No., Ha odanbons & Andrabros, Non-Ad. - 8010 8000

5.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-a quangon:			
2 1 4 2	(10%)	067 L973	004	2.2.5	205
74-37-3	On charethane	800	\2	A =	*, <u>*</u>
4-33-9	Bromomathame	100	¥	N.2	1.2
	Dis ionos filono-		,4 3	5.2	٠. ـ
	rethane				
15-01-4		3 C	NO.	ND:	`. ⊃
	On proethane		`+ 2	V2	`• -
	Methylene Iniomice	200	∵ ⊃	NO.	V 2
78-89-4			V O	N.O.	\ 0
	metrane				
15-35-4	1,1-01an andethene	4.0	\ 0	\ .2	\ 0
	','-D'ch'oncethane		NO.	% 3	NO
53-53-5			NO.	NO.	N C
	petrere				
67-65-3		‡ 3	V D	NO.	NO.
	1,2-Dranioncethane	4.0	NO.	↓ [¥-2
7:-55-3		3.0	NO.	NO.	¥-3
	etfane				
55-23-5		3.0	ヽ ン	ND.	¥ D
	anioniae				
75-27-4		3.0	ND	` \)	4.5
	methane				
13-87-5	1, 2 -0%an and-	40	V D	NO.	N.S
	ensgorg				
0081-02-8		200	` ,	NO	N.D
	conobene				
~9-01-S	Thich once there	80	NO	ND	V0
124-43-1	Diamondono-	3.0	N D	N3	N2
	methane				
79-00-5	1,1,2-Trichloro-	200	CV	V.C	√0
	ethan e				
0061-01-5	cis-1,3-Dichloro-	200	NO.	\ 0	√ 5
	propene				
100-75-8	2-Chloroethy!-	233	N D	\ 0	· \> >
	vinylether				
75-25-2	Bromoform	400	CV	NO	∨ ⊃
79-34-5	1,1,2,2-Tetna-	400	GM	CV	√ ⊃
	chioroethane				
127-18-4	Tetrach loroethere	80	CV	ND	CV
71-43-2	Benzene	4.3	V.O	NO	CV
.08-88-3	Toluene	40	· ND	GM	V٥

[&]quot;Confirmation analyses MDLs are the same as the 8010/8020 MDL's"

AFP 59	AFP 59	AFP 59
SW-2	SW-3	SW-3
24'-26'	22'-24'	24'-26'
Hart 010	Hart 009	Hart 010

PRINCETON TESTING LABORATORY SAMPLE ANALYSIS REPORT

For	For Fred C. Hant Associates 530 Fifth Avenue				Report Date 10/23/86		
	New `	York, NY 10035			udb No ESBA Data Recenves:		
	Har	t sample nos. at b	oottom of page	e	.^/ ts : ∪3/43		
	-E3-	PERFORMED: Vo	a ocanpor	ns & Anorati	as. Nan-4a 1	1:1:1:	
	00420	DUND.	DET _MT3	204	3.3.5	: : :	
03-	90	On onobenzene	۵ -	N 3	N_	• •	
100-	4 -1	Ethy perzene	10	V.	NO	-	
51	_3	1,3-0:aniana-	4.0	\	N.2		
		penzene					
\$5~	50-:	1.2-Dian one-	40	\ 3	V3	·	
		penzene					
35-4	43-7	1.4-Dian ons-	4.0	V O	V.O.	V D	
		penzene					
				AFP 59	AFP 59	AFP 59	
2.3300	. T = 3:	E001/E3V 04E4		SW-2	SW-3	SW-3	
	4 RECC	ECOVERY DATA		24'-26'	22'-24'	24'-26'	
	5 NEUL	2V=4.		Hart 010	Hart 009	Hart 010	
20700	2 2505	etrare		nare oro	1141 C 003	1141 6 010	
		ropenzene					
	- uu-	006, 20. 6					
DATE RE	ECEIVE	EO :		9/15/85	9/15/98	9/15/85	
				-, -, -,	-,	· · · · · · · · · · · · · · · · · · ·	
DATE AN	NALYZE	D:		9/19/95	9/19/95	9,119798	
MOL MUI	:>L:	ER:		•	•		
SPIKE 0	COMPOU	COM.					
% REC	COVERY	,					
		· -i -					
Vinyl				N/A	N/A	N / A	
1,1-046				N/A	N/A	`. / A	
1,2-Did				N/A N/A	V / A	% / △ N / △	
Trianla		oroethane		N/A	N/A	√ , Δ	
Benzene		ordetane .		N/A	N/A	√, Δ √, Δ	
		benzene		N/A	N/A	1/A	
		ichloride		N/A N/A	V/A	N/A	
04: JUN		ich ice		*/ A	¥7. M	¥/ ×	

^{&#}x27;Confirmation analyses MDLs are the same as the $8010/8020\ \text{MDL}'s'$

SAMPLE ANALYSIS REPORT

For Fred C. Hant Associates 530 Fifth Avenue

530 Fifth Avenue New York, NY 10036 Report Date: 10/23/86

vob Vol: 333%2373
Date Received: 33, 5 33

Units: UG/KG

Hart sample no. at bottom of page

TEST PERFORMED: Vol. Ha ocambons & Anomatics, Non-Aq. - 3010/8021

JOMP	OUND	DET _MT3	007
-:-97-3	On promethane	900	NO
74-33-5	Bromomethane	400	NΘ
75-7-3	Dianiphoaif Long-	233	ИÐ
	metrare		
75-01-4	/iny ' On 'oride	9.0	NO
75-00-3	On Shoethane	30	ΝŠ
75-09-2	Methylene In onide	200	ΝĴ
75-69-4	Thich orbit word-	200	ΝŌ
	methane	- • •	
75-35-4	i,i-Dian proethere	40	NO.
75-34-3	','-Dichionoethane	40	Ν̈́O
156-60-5	Trans-1,2-Dichio-	40	GN
	oetrene		
87-86-3	Chionofranm	40	NO
37-05-2	1,2-Dich ordethane	40	N3
71-55-6	1,1,1=Tr/an'oro=	30	NO.
, 30 0	ethane	50	13
56-23-5	Carpon Tetra-	ac	NO
70 23 3	ch`onide	•	• •
75-27-4	Bromodichion-	80	NO.
	metrane	00	,,,
73-87-5	1,2-0:anlono-	4 C	CV
3 0 3	propane	7.5	,,,
008:-02-5	Tnans+1.3-0(c)\on-	200	NO
	oprese	200	, ,
79-01-6	Trichloroethene	80	V.O
24-48-	Dianomognioro-	80	ND
	methane		
79-00-5	1,1,2-Trichloro-	200	CV
	ethane		
0061-01-5	cis-1,3-Dichloro-	200	NO.
	propene		
.00-75-8	2-Chloroethyl-	200	NO
	vinylether		
75-25-2	Bromoform	400	GM
79-34-5	1,1,2,2-Tetra-	400	QV
	cnloroethane		•
127-18-4	Tetrachloroethene	80	NO
7:-43-2	Benzene	43	ND
108-88-3	Toluene	40	ND
. 50 00 0			.,,,

"Confirmation analyses MDLs are the same as the 9010/8020 MDL's"

AFP 59 SW-4 22'-24' Hart 001

SAMPLE ANALYSIS REPORT

For Fred C. Hant Associa 530 Fifth Avenue New York, NY 10035	1195	Report Date: 10/23/86	
Hart sample no. at	bottom of page	Date Received: 09/15/31 Units: UG/43	
TEST PERFORMED: Vo	o). Halodanoons & Anoma	tics, Non-Ad 3010/3020	
00M20UND	DET LYTS DOT		
103-90- Onionosenzene 100-4 -4 Ethylbenzene 541-73-1 1,3-0/chlono- benzene 30-50-1 1,2-0/chlono- cenzene 105-45-7 1,4-0/chlono- benzene 105-45-7 2,4-0/chlono- benzene 105-45-7 3,4-0/chlono- benzene	40 NO		
DATE RECEIVED:	9/15/ 9/19/		
MDL MULTIPLIER: SPIKE COMPOUNDS % RECOVERY	•		
Viny Chloride 1,1-Dichloroethene 1,2-Dichloroethene Thichloroethene 1,1,1-Thichloroethene Benzene 1,4-Dichlorobenzene Carbon Tetrachloride	N/A N/A N/A N/A N/A		

[&]quot;Confirmation analyses MDLs are the same as the $8010/8020~\mathrm{MDL}^{+}\mathrm{s}^{+}$

SAMPLE ANALYSIS REPORT

For Fred C. Fant Associates Report Date: 10/23/86 530 Fifth Avenue Rew York, NY 10035 John Received: 19/ 5.35

Hart sample nos. at bottom of page units: 23/K3

TEST PERFORMED: | Volatifie == alocandons & Anomatics, Ad. EPA 507/801

INJORMOL		DET LMTS	FIELD BLK1	FIELD ELKS	(2	
-4-97-3	On promethane	2.3	ND	ND		
	Bromom etha ne	1.2	V3	ND CV		
	Dian predit wone-		ND	V D		
	metrane					
15-01-4	Viny On aride	2	NO.	NO.		
75-30-3	In proetrane	2	V3	VO.		
75-09-2	Methy ene Chioride	5	V D	NO		
	inten prof were-		NO.	V 3		
	retnane					
/ 5 - 3 s - 4	i."-Dich broethene	•	VO.	ND		
⁻ 5 - 3 4 - 3	, `-Dichiproethane		NO.	ND		
35-50-5	Thans-1,2-0:dhion-	•	NO.	ND		
	oethene					
87-85-3	Ch proform	2	V O	V D		
107-05-2	1,2-3 ch oncethane	•	√ ⊃	√3		
71-55-5	1,1,1-Thichlore	2	GV	NO		
	ethane					
36-23-5	Carbon Tetra-	2	NO.	NO.		
	anioniae					
75-27-4	-ono:ap:apro-	2	' ')	√ 5		
	methare					
79-87-5	1,2-Dichloro+	•	√ ⊃	ND		
•	propane					
1005 -02-5	Trans-1,3-Dichlor-	5	V O	V D		
	opropere					
79-31-5	Thichioroethene	2	V3	V D		
24-48-1	Diamomochiono-	2	N. 3	V O		
	methane					
19-00-5	1,1,2-Trichloro-	5	N O	ND		
	ethane					
10061-01-5	cis-1,3-Dichloro-	5	ND	NO		
	propene					
100-75-8	2-Chloroethyl-	5	ND	GK		
	vinylether					
	Bromoform	10	NO.	ΘΨ		
79-34-5	1,1,2,2-Tetra-	· 0	ND	NO		
	ch:oroethane					
	etrachloroethylene		ND	ND		
	3enzene	21	ND	В		
108-88-3	Toluene	2 1	CN	ND CK		
		K2/20				

"Confirmation analyses MDLs are the same as the 8010/8020 MDL's"

AFP 59 AFP 59
Field Blank Field Blank Water Water Hart 001 Hart 001

PRINCETON TESTING LABORATORY SAMPLE ANALYSIS REPORT

=0-		C. mant Æssociate Fifth Avenue	es	;	Report Date: 10/23/86
		York, NY 10036			op No.: 353#2373
	Har	t sample nos. at bo	ottom of page		Bate Received: 19 (5) 15 Inits: UG/KG
	-ES-	PERFORMED: Vo a	iti e ma oca	andons & Andr	matics - 204 607/601
) () M P	CUND	DET LMTS	FIELD BLKT	#1EU0 2141
		Or onabenzene	21	NO	N D
33- 5::-	1 1 - 1 73 - 1	Stry perzene .3-0%ch ond-	۶ ۱ ج	N0 N0	NO NO
95-	50-·	penzene 1.2-0%c%chp+ cenzene	۱ ج	NO	ν2
. 28 –	43-7	,4-0°an°ano-	21	NO.	V D
		perzene	K3/3D		
	ATE 3 % 3E01	ECOVERY DATA OVERY	·	Water	Field Blank Water
		methane		Hart 001	nart our
4-3nom		nopenzene			
DATE R	ECEIV	ED:			
DATE A	NALYZ	ED:		9/19/86	9/19/36
MOL MU		IER:			
321KE (COMPOL COVERY				
Viny (N/A	\/A
		pethene pethane		\/A \/A	N/A N/A
Thichic				N/A	N/A
		ioroethane		N/A	N/A
Benzene	9			N/A	N/A
		benzene		N/A	N/A
Carbon	Tetra	schloride		N/A	N/A

[&]quot;Confirmation analyses MDLs are the same as the 8010/8020 MDL's"

James E. Dennison Ph.D., CIH

Vice President and Technical Director

	35Gw2373 .		Energia de la compansión de la compansió	 Hant Associat	
•			C C 3.	2 1 A3300 31	. 🕳 😅
		3 A M > _		y 3 ∃ R S	
	>	. Sustomen #		>=_ #	
•	12.	5A-1 (24-25			3 4 + 3
-		3A-2 .22-24 5A-2 .24-28 5A-3 .22-24	5)		•
	2.2.3	3473 (22724	•)		·
			•		
• •			•		

SAMPLE ANALYSIS REPORT

	C. Hant Associates			Report Date.	10/23/86
	Frith Avenue York, NY 10036			uso No	
На	rt sample nos. at bot	tom of page	!	7 13 73/ T	with a strain of
TEST	PERFORMED: Volat	:)e majoca	rpons & A	knomatics. At.	E94 80 81
) (v =	QUNI	087 _ * *\$	30.	332	
74-37-3	On promethane	20	√3	* • •	• *
71-83-4	Enomomethane		V3	, j	
75-71-3	Dian propri Jano-	5	NS	. 5	
•	rethane	•	15	• •	*
75-3:-/	viny) Chibride		V.O	NO.	4. 0
75-22-3	Onlance The	,		ΝŠ	
75 75 7	On lonce thane	2	NO NO		₩ <u>1</u>
75 00	Yathy ene On on de		V O	`+ 2	√ 2
15-65-4	Thich onof lucho-	5	V D	V 3	V O
	methane				
75-35-4	1.1-Dich oroethere	•	ND	`\	NO.
75-34-3	i,'-Dichloroethane	•	ΝD	\ □	N D
156-60-5	• • • • • • • • • • • • • • • • • • • •	•	V O	` ``	N D
	aethene	_			
67-66-3	Oh.oroform	2	CV	¥2	\ 2
	1,2-Dichloroethane	•	√ 3	V3	V 3
7 -55-5	1.1,1-Trichloro-	2	CV	CV	N.S
	ethane				
56-23-5	Carpon Tetra-	2	NO	4 0	1.0
	anioriae				
75-27-4	Bromodichioro-	2	N D	√ ∋	V 2
	methane				
78-87-5	1,2-Dianiono-		ND.	CV	\. 5
•	propane			1.5	
3061-32-6	Trans-1,3-Dichlon-	5	GV	V2	1, 3
000 02 0		3	•0	▼ <u>-</u>	• -
70-11-2	opropene Trianiondethene	3	N.O.		
124-48-1	2 thannah lang	2	7.5 7.5	V 3	5
24-45-		2	ΝĐ	N D	V O
	methane				
79-00-5	1,1,2-Trichloro-	0.5	ND	V 3	V 3
	ethane	_	_		
0061-01-5	cis-1,3-Dichloro-	5	ΝD	NO	\ 3
	propene				
100-75-8	2-Chloroethyl-	5	Cν	V3	٧D
	vinylether				
75-25-2	3romoform -	1 3	7 0	NO.	V 2
79-34-5	1,1,2,2-Tetra-	0.18	OV	NO	V 3
	chioroethane				
127-18-4 Te	strach loroethy lene	2	GM	V3	NO.
71-43-2	Benzene	21	ND	N 3	\sigma
108-88-3	Toluene	ا ج	70	NO GN	√3
100 00-3	U . U . U . U . U . U . U . U . U . U .	ES/JD	40	40	• 5
nfirmation	analyses MDLs are t		s the 601	/602 MOLs'	
	-				
			AFP 59	AFP 59	AFP 59
			SW-1	SW-2	SW-3
			M-1	Maton	Watan

Water

Hart 001

Water

Hart 002

Water

Hart 003

PRINCETON TESTING LABORATORY SAMPLE ANALYSIS REPORT

Ŧ 5 m	for fred O. Hamt Associates 530 Fifth Avenue				Resont Date: 10/23/86		
		Yank, NY 10036			lop No.: 353w Date Received:		
	Han	rt sample nos. at b	ottom of page	2	inits: 03/1		
	~ E 3 ~	PERFORMED: Vol.	ati e maloca	cnA & anodr	matics - EPA S	0 . 500	
	30 * >	ou No	3ET _WTG	30.	332		
19-	\$ J - T	ûn onbbenzene	# 1	NO	\2	4.1	
	4 1	Stry perzere	Z 1	¥2	V 2	`. 5	
541-	_ 3	1.3-0:sh and-	2 1	\ 3	<i>N</i> 3	V.1	
2.5	~ ~ .	cenzene			. 5	_	
32-	2-	1,2-Dianiona-	21	V 3	٧٥	N.D.	
	45-7	penzene 1.4-Dian anb-	اح	\ 0	V3	٧D	
Ç C =	45-	penzene		\ J	\ _	* ~	
		26 26 6	F2/2D				
				AFP 59	AFP 59	AFP 59	
SURROG.	ATE R	ECOVERY DATA		SW-1	SW-2	SW-3	
•	% REC	CVERY		Water	Water	Water	
				Hart 001	Hart 002	Hart 003	
		methane					
4 - 3 nom	of 'uo	noperzene					
5 A T = 5		= 0		3 31 36	2/24/26	2:24:25	
DATE R	ECE.V	E J :		9/24/85	9/24/86	9/24/85	
DATE 4	NALYZ	ED:		.2/3/85	`\$/3/36	10/3/95	
701 YU.	_=:>_	15x:		•			
391 <i>\E</i> :	COMPO	UNDS					
% RE	COVER	Y					
V:5y:				N/A	N/A	N/4	
		pethene		N/A	N/A	N/A	
		oethane		N/A	N/A	V/A	
Trich's				N/A	N/A	N / A N / A	
		Coroethane		N/A N/A	N/A N/A	N // A N // A	
Benzene		benzene		N/A N/A	N/A	N/A	
		ocenzene schloride		N/A	N/A	N/A	
5 4 , 50 11	. 🕳 🕒 .	20.1.101 : G u			1/ 5	7/ 5	

^{&#}x27;Confirmation analyses MDLs are the same as the 601/602 MDLs'

PRINCETON TESTING LABORATORY SAMPLE ANALYSIS REPORT

For Fred C. Hant Associates

Report Date: 10/23/86

530 Fifth Avenue New York, NY 10035

Job No.: 853%2970 Date Received: 19/04 [5

units: UG/L

Hart sample nos. at bottom of page

TEST PERFORMED: Volati e maiocampons & Ambhat da. 4d. EP4 501 500

SIMBOTAS) ET _ MTS	004	0.0.5	F 111 31.
74-37-2	On ghorethane	20	NO	\ 2	
74-33-9	Bromomethane	• 3	N3	ND	
75-7 -3	Die vieneerfülene-	5	VΟ	NO.	·, <u>:</u>
	methane				
75-01-4	viny: On onide	•	√ 3	VD.	* <u>-</u>
75-00-3	On proetnane	2	ND	NO	ΝĪ
15-09-2	Methy ene Chioride	•	NO	NO.	√ ⊃
75-39-4	Thishlorofluoro-	5	νĎ	ΝŽ	٧Ō
	methane	-	-		
15-35-4	','-J'ch'oncethene	•	V.D	ND.	NO
	.'-Dichionpethane	•	V.S	· 5	V2
155-50-5		•	ΝŌ	6.5	ΝĎ
	cetnene		• •	• •	
57-55-3		2	NO	NO.	V3
	1,2-Dichionoethane	·	No	NO	√3
71-55-5	1.1.1-Thichloro-	2	GN	9	√3
	etnane	J		•	
56-23-5		2	NO	V O	√ ⊃
	chionide	·	1.2	,,,	
75-27-4		2	CV	NO	√ ⊃
	methane	•	, -	`•	. •
19-37-5	1.2~Dichioro-		ND	ND	NO
	propane		· -		· ·
10061-02-5		5	NO	NO.	NO
	opropene	-			
79-01-6		2	NO	• •	\ 3
124-48-1		2	CN	No	NŠ
	methane	•	· · · ·	. •	
79-00-5		2.5	CV	ND	N۵
	ethane	•	- -		_
10061-01-5		5	CV	ND	NO
	propene	•			
130-75-8		5	NO	ND	NO
	vinylether	•			
75-25-2	Bromoform	• 0	CN	ND	NO
79-34-5	1,1,2,2-Tetra-	0.18	GN	ND	NS
	chloroetnane	5	.,,	• •	· -
127-18-4 T	etrachioroethylene	2	ND	ND	ND
71-43-2	Benzene	٦	ND	ND	N5
108-88-3		ء ا	ND	NO	NO.
		K2/20	.15	., .	, 5
	anniuman MDI a ann a			500 MD: - "	

"Confirmation analyses MDLs are the same as the 601/602 MDLs"

AFP 59	AFP 59	AFP 59
SW-4	Production	Field Blank
Water	We11	Water
Hart 004	Water	Hart 005
	Hart 007	

SAMPLE ANALYSIS REPORT

=0^		C. dant Associate	e s		Report Date: 1	0/23/86
New York, NY 10036			Job No.: 85GW2970 Date Received: 09/24/35			
Hart sample nos. at bottom of pag			ottom of pag	e	inits: U3/L	
	TEST	PERFORMED: Vola	atile maloca	andons & And	matics - EPA :	501/502
	00 v >	OUND	DET LMTS	304	0.05	FIELD ELA
		Ch'onopenzene	21	ND	№ ⊃	* D
100-	1 ' -4	Ethy benzene	2 1	CV	NO	√3
541-1		',3-Dichloro- penzene	2 1	CV	V 0	ND
95-3	5 C − .	1,2-Diantono- penzene	2 1	ND	NO	VΟ
136-4	45-7	1,4-Diantara-	21	Qν	NO	CV
		penzene	KS/JD			
• • •			•	450 50	450 50	45D 53
		ECOVERY DATA Overy		AFP 59 SW-4 Water	AFP 59 Production Well	AFP 59 Field Blank Water
		nethane		Hart 004	Water Hart 007	Hart 005
4 - 3 nome	o+ `~o'	ropenzene			1147 C 007	
DATE RE	ECEIV	ED:		9/24/86	9/24/86	9/24/85
DATE AN	NALYZ	ED:		10/3/86	10/3/86	10/3/85
MOL MUL	[5]	IER:		•		•
SPIKE 0	COMPOU COVER'					
· Viny: C	Chion	ide		N/A	N/A	N/A
1,1-010	chiord	oeth ene		N/A	N/A	N/A
		pethane		N/A	N/A	N/A
Trichic				N/A	N/A	N/A
		loroethane		N/A	N/A	N/A
Benzene				N/A	\/A	N/A
		obenzene		N/A	N/A	N/A
Carpon	Tetra	achloride		N/A	N/A	N/A

^{&#}x27;Confirmation analyses MDLs are the same as the 601/602 MDLs"

SAMPLE NUMBERS Customen #						iates
. 331						
1002	•	>== #	 Custome	er ‡	 . ° # .	
1002			3=7-39	S	 223	
. 134 . 4-9-50 Sw-4		002	4-2-59	S ∻ -2		. TION WELL
		003	457-59	SW-3		•
 . 		504	4-2-50	SA-4		
• • • • • • • • • • • • • • • • • • •						

Princeton Service Center U.S. Route 1 609-452-9050 TLX 84-3492

Job 86GW2970

(JOHNSON CITY)

PO 01071-00-86007-00

FRED C. HART ASSOCIATES 530 FIFTH AVENUE NEW YORK, NY 10036

Attn: Robert Goldman

2.0 3 N. 3103, Princeton, N.J. 08540

AFP 59 SW-3 Water Hart 003

METHOD: EPA 601/602 (SW-3) DATE SAMPLED: 9/23/86

METHOD: EPA 624 (CONFIRMATORY ANALYSIS)

Micrograms/liter

(SW-3) 10/3/8610/4/86 (CONFIRM.) DATE RUN Chloromethane ND ND Bromomethane ND ND Dichlorodifluoromethane ND ND Vinyl Chloride ND ND Chloroethane ND ND Methylene Chloride ND ND Trichlorofluoromethane ND ND 1.1-dichloroethene ND ND 1.1-dichloroethane ND ND trans-1,2-dichloroethene ND ND Chloroform ND ND 1.2-dichloroethane ND ND 1.1.1-trichloroethane ND ND Carbon Tetrachloride ND ND Bromodichloromethane ND ND 1,2-dichloropropane ND ND trans-1.3-dichloropropene ND ND Trichloroethene 6 Dibromochloromethane ND ND 1.1.2-trichloroethane **VD** ND cis-1.3-dichloropropene ND ND 1-chloroethylvinylether ND ND Bromeform ND ND 1.1.2.2-tetrachloroethane Tetrachloroethene ND ND ND Benzene ND ND Taluene ND ND Chlorob<mark>e</mark>nzene ND ND Ethwibe**nzene** ND []-iichlorobenzene ND .l-iishTorobenzene ND 1,1-iconfortbenzene CK

ND = Not Detected

Nancy S. Dunn, Manager Organic Laborator

FRED C. HART ASSOCIATES 530 FIFTH AVNEUE NEW YORK, NY 10036

Attn: Robert Goldman

P.O. 30x 3108, Princeton, N.J. 08540

October 22, 1986

JOB 86GW2970 PO 01071-00-86007-00 (JOHNSON CITY)

METHOD 624 CONFIRMATORY ANALYSIS 10/4/86

AFP 59 Production Well Water Hart 007

METHOD 601/602 AFP 59 - PRODUCTION WELL SAMPLED: 9/23/86 ANALYZED: 10/3/86

Micrograms/liter

(See attached sheet for MDL)

		·]
Chloromethane	ND	ND
Bromomethane	ND	ND
Dichlorodifluoromethane	ND	ND
Vinyl Chloride	ND	ND
Chloroethane	ND	ND
Methylene Chloride	ND	ND
Trichlorofluoromethane	ND	ND
1,1-dichloroethene	ND	ND
1,1-dichloroethane	16	15
trans-1,2-dichloroethene	66	73
Chloroform	ND	ND
1,2-dichloroethane	ND	ND
1,1,1-trichloroethane	9	3
Carbon Tetrachloride	ND	ND
Bromodichloromethane	ND	ND
1,2-dichloropropane	ND	ND
trans-1,3-dichloropropene	ND	ND
Trichloroethene	11	8
Dibromochloromethane	ND	ND
1,1,2-trichloroethane	ND	ND
cis-1,3-dichloropropene	ND	ND
2-chloroethylvinylether	ND	ND
Bromoferm	ND	ND
1,1,2,2-tetrachloroethane	ND	ND
Tetrachloroethene	ND	ND
Benzene	ND	ND
Toluene	ND	ND
Chlorobenzene	ND ·	ND
Ethylbenzene	ЙD	ND
1.3-dichlorobenzene	ND	ND
1,2-dichlorobenzene	ND	ND
1.4-dichloropensene	ND	ND

ND = Not Detected

Nancy S. Dunn, Manager Organic Laboratory APPENDIX H.4
PTL ORGANIC ANALYTICAL QA/QC RESULTS

(CL5121A)

SAMPLE ANALYSIS REPORT

Fon: Fred O. Hant Associates 530 Fifth Avenue

Report Date: 10/23/86

Samble No.: 31474 Job Numben: 85343671

New York, NY 10035

Test Penformed: volatile malocandons & Anomatics, Ad. EPA 501/501

DATA		DET LIMIT	323.173
74-87-3	On onemethans	20	NO.
74-33-9	3nomomethane	· 3	ND.
75-71-3	Dishiphosifiluono- nethane	5	NO
75-01-4	Viny Chioride	2	V.S
25-00-3	On oncethane	2	N 3
75-09-2	Methy ene Ch or (de	5	NO
75-69-4	Thich orof word- methane	5	NO.
75-35-4	1,1-Dichkorpethene		ND
75-34-3	1,1-Dichloroethane	•	NÖ
	Thans-1,2-0fcm'or- oethene		NO
57-55-3	3h oroform	2	NO.
	1,2-Dichloroetname	1	NO
71-55-6	i,i,i-Trichiono- ethane	2	N3
56-23-5		2	NO.
75-27-4	<pre>3romod(chloro- methane</pre>	2	CV
3-37-5	1,2-Dichloro- propane	:	NO.
10061-02-6	Trans-1,3-Dichlor- opropene	5	CV
79-01-5	Trianionoethene	2	NO
124-48-1	Dibromochloro- methane	2	NO
79-00-5	1,1,2-Trichlora- ethene	5	ND
10051-01-5		5	NO.
100-75-8	2-Chloroethy!- vinylether	5	NO
75-25-2	Bromoform	1 0	CN
	1,1,2,2-Tetra- cniorcethane	10	ND
127-18-4 T	etrachlorosthy iene	2	V.O
	Benzene	2	NÖ
108-88-3	Toluene	2	ND

^{&#}x27;Confirmation analyses MDLs are the same as the 8010/8020 MDL's'

SAMPLE ANALYSIS REPORT

For:	Fred C. hart Associates 530 Fifth Avenue	Report Date.	10/23/86
	vew York, NY 10036	Sample No : Job Number:	
	Test Penformed: Volative Halocanbons	& Anomatics - EPA	501/800
	DATA	DET LIMIT	783,173
	108-90-7 Onloropenzene 100-41-4 Ethylpenzene 541-73- 1,3-2-5-	2 2 2	N 1 N 2 N 2
	penzene 95-50-* 1,2-Dichkono- penzene	2	NO.
	135-45-7 1,4~3:2n.ono- penzene	2	ND
	SURROGATE RECOVERY DATA % RECOVERY		
	Bromocnloromethane 4-Bromofluoropenzene		9 9 92
	DATE RECEIVED:		
	DATE ANALYZED:		9/9/38
	MOL MULTIPLIER:		
	331KE COMPOUNDS % RECOVERY		
	Viny! Chloride 1,1-Dichloroethene 1,2-Dichloroethene Trichloroethene 1,1,1-Trichloroethene 8enzene 1,4-Dichlorobenzene		N/A N/A N/A N/A N/A
	Carbon Tetrachloride		N/A

"Confirmation analyses MDLs are the same as the 8010/8020 MDL's"

James E. Dennison Ph.D., CIH Vice President and Technical Director

parlingston Restling Reporciony

86GW2873 108 NO.

ANALYST: Peter Reynolds	9-9-86	MATRIX: Aqueous	METHOD: EPA 601,602	Balaise
	CONTROL REPORT DATE:	Danie Amolycie	_	
U.S. Route I	Princeton Service Center	000-101 (400)	95	n, N.J. U634U

	In the state of th	CONCENTRA	CONCENTRATION (URLL)	Relative Percent Difference
COMPOUND	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D2)	(RPD)*
Sample 10	ł	30.95	28.76	7.0
	Vinyl Chloride			
	desired to the second s	24.71	24.80	0.3
	I 1-Dichtoroethene			
	Trans 1,2-Dichloroethene	24.85	24.84	0.1
	Carbon tetrachloride	24.87	24.84	0.5
		+		
	Bromoform	24.10	23.84	2:1
				,
		24.47	25.09	2.5
	Benzene			
		24.66	25.23	2.3
	Ethyl Benzene			
		25.34	25.45	0.4
	1.2-Dichlorobenzene			
:				

*HPD * $\left[\frac{(D_1 - D_2)}{(D_1 + D_2)^2}\right] \times 100$

Potiffinesestostil
fiscatting
Fin
fiscattestosty
F.O. Box 3108, Princeton, N.J.

86GW2987 .ON 80t

ANALYST: Peter Reynolds	98-6-6	Aqueous	EPA 601, 602	
ANALYST:	DATE:	MATRIX:	METHOD:	
CONTROL REPORT		Mallix Spike Allalysis		
U.S. Roule 1 Princeton Service Center	(609) 452-9050		V.J. 08540	
lotul	K otew	/ IE VIII:	08, Princeton, N.J. 08540	

COMPOUND	0	I	1crograms/Liter		×
Sample 1D	COMPOUND NAME	Sample Result (SR)	Spiked Sample Result (SSR)	Spike Added (SA)	Recovery*
2873 Spike	Vinyl Chloride	CN.	30.95	25	124
	1,1-Dichloroethene	QN .	24.71	2\$	56
	Trans-1,2-Dichloroethene	Æ	24.85	25	66
	Carbon tetrachloride	92	24.87	25	66
	Bromoform	GN.	24.10	25	96
	Benzene	CN NO	24.47	25	98
	Ethyl Bezene	Q.	24.66	25	66
	1.2.Dichlorobenzene	ND	25.34	25	101

PRINCETON TESTING LABORATORY SAMPLE ANALYSIS REPORT

For: Free C. mant Associates 530 Fifth Avenue

Pepart Date: 10/23/86

New York, NY 10035

Bamble No.: BLANK Job Number: 353W2970

Test Performed: Volati e Halppanbons & Anomatics, Aq. EPA 501/500

) A -A		DET LIMIT	RE3ULT5
74-97-3	Onconomethane	2 0	N.D
14-33-9	3nomometrane		N.5
75-7 -8		5	N.3
	retrane		
75-01-4	Viny' On'onide	2	NI
	Chloroetrane	2	NO
75-09-2	Yetry ene Chionice	5	NO.
75-59-4	Thishiphofiuono- methane	5	ND
75-35-4	, 1-Dich:oroethene	•	NO.
75-34-3	1,1-Dichloroethane	•	ČΑ
56-50-5	Trans-1,2-Dichlor-	•	NO
	pethere		
37-56-3		2	N9
107-05-2	1,2-Dichloroethane	•	ND
7 55 - 6	1,1,1-Th/chlono- etnane	2	NO
55-23-5	Carbon Tetra- crionide	2	V O
15-27-4		2	СN
78-87-5		•	VO.
10061-02-6		5	NO
79-31-6	Trichloroethene	2	NO
124-48-1	Dipromochioro-	2	ND
79-00-5	1,1,2-Trichiono- ethane	5	NO
10061-01-5	cis-1,3-Dichloro- propene	5	ND
100-75-8	2-Chloroethy!- vinylether	5	ND
75-25-2	Bromoform	· 3	NO
79-34-5	1,1,2,2-Tetra- chloroethane	1.0	ND
127-18-4 T	etrach loroethy lene	2	ND
	Senzene	2	ΝĐ
	Toluene	2	ND
'Confirmation an	alyses MDLs are the	same as the 601/60	2 MDLs"

SAMPLE ANALYSIS REPORT

=a^:	Fred C. Hant Associates 530 Fifth Avenue	Report Dat	e: 10/23/86
	New York, NY 13036	Samp e No. Job Number	
	Test Performed: Volatile Halodanbons	& Anomatics - Ep	A 501/502
	24-4	DET LIMIT	9331173
	08-90-7 Onlandbenzene 000-41-4 Ethyldenzene	2 2	ND NE
	541-73- ,3-Dichiona- penzene 95-50-1 1,2-Dichiona-	2	N.S.
	penzene 186-46-7 1,4-0(anland- penzene	2	V D
	SURROGATE RECOVERY DATA % RECOVERY		
	Snomoch onomethane 4-Bromof uonopenzene		99
	DATE RECEIVED:		
	DATE ANALYZED:		10/13/86
	WOL MULTIPLIER:		-
	SPIKE COMPOUNDS % RECOVERY		
	Viny Chloride 1,1-Dichloroethene 1,2-Dichloroethene Trichloroethene 1,1,1-Trichloroethene		N/A N/A N/A N/A
	Benzene 1,4-Dichlorobenzene Carbon Tetrachloride		N/A N/A N/A

"Confirmation analyses MDLs are the same as the 601/602 MDLs"

James E. Dennison Ph.D., CIH
Vice President and Technical Director

princeton testing leboratory

P.O. Box 3108, Princeton, N.J. 08540

U.S. Route 1 Princeton Service Center (609) 452-9050

QUALITY

86GW2970 JOB NO. EPA 601, 602 METHOD:

Peter Reynolds 10/13/86 Aqueous

CONTROL REPORT	ANALYST: P	~
Matrix Snike Analysis	DATE:	-
	MATRIX	<

COMPOUND					*
Semple ID	COMPOUND NAME	Sample Result (SR)	Spiked Sample Result (SSR)	Spike Added (SA)	Recovery*
2970 Spike	Vinyl chloride	QX	31.08	25.0	124
	1.1-Dichloroethene	Ð	21.66	25.0	87
	Trans-1.2-Dichloroethene	EN.	22.45	25.0	80
	Carbon tetrachloride	æ	22.46	25.0	06
	Bromoform	Q.	20.42	25.0	82
	Benzene	CN.	16.20	25.0	67
2	Ethyl denzene	QN	17.23	25.0	69
	1.2-Dichlorobenzene	Q.	17.24	25.0	70

*% Recovery = (SSR · SR) × 100

princeton

QUALITY

86GW2970 JOB NO.

	TILE CALL U.S. Route 1	QUALITY	ANALYST	Peter Reynolds	olds
	Princeton Service Center	CONTROL REPORT		10/13/86	
		Similar A section C	MATRIX	Aqueous	
P.O. Box 3	P.O. Box 3108, Princeton, N.J. 06540	Duplicate Allarysis	METHOD:		2
COMPOUND			CONCENTRATION (ug/1)	T10N (ug/1)	Relative Percent
Sample 1D	COMPOUND NAME	NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
2970 Spike	Vinyl chloride		31,08	34.51	10.5
Dup.	1 1-Dichlorosthane		77 16	36 90	
			61:00	70.67	£*61
	Trans-1,2-Dichloroethene		22.45	25.02	10.8
	Carbon Tetrachloride		22.46	25.56	12.9
	Bromoform		20.42	22.23	8.4
	Benzene		16.70	24.67	37.4
	Ethyl Benzene		17.23	25.39	38.3
	1.2-Dichlorobenzene		17.24	26.98	44.1

*RPD * $\left[\frac{(D_1 - D_2)}{(D_1 + D_2)}\right] \times 100$

P.O. Box 3108, Princeton, N.J. 08540

U.S. Route 1 Princeton Service Center (609) 452-9050

QUALITY

CONTROL REPORT

Recovery Summary **Surrogate Percent**

JOB NO.

869 W2930 10/03/86 PE/mw EPA 401/402 ANALYST: MATRIX: METHOD: DATE:

COMPOUND	(Willigrams per Kilogram)	CONCENTRA	ATION (ME/KE)	×
Sample ID	SURROGATE NAME	Spiked Sample Spike Result (SSR) Added (SA)	Spike Added (SA)	Recovery
١-٠٩٥	Bromechlenmethane	328	940	96.5
<u> </u>				
<u> </u>				
-				
<u> </u> 				
				·
: :				

Confineration of the first of t

P.O. Box 3108, Princeton, N.J. 08540

U.S. Route I Frinceton Service Center (609) 452-9050

CONTROL REPORT

Recovery Summary μη|@ Surrogate Percent

JOB NO.

869W 2873

58/51/01 MIR DAVE PE/mw ANAL YST: MATRIX: DATE:

ErA 601/602 METHOD:

OUND	(Milligrams per Kilogram)	CONCENTRATION (MATRE	ONCENTRATION (MACKED)	×
ple ID	SUHROGATE NAME		Spike Added (SA)	Recovery
59 th	Barmon	336	340	98.8

COMPOUND	(Milligrams per Kilogram)	CONCENTRA	TION (Mg/Kg)	×
Sample 1D	SURROGATE NAME	Spiked Sample Spike Result (SSR) Added (SA)	Spike Added (SA)	Recovery
AFP-59 Sw-4	Barrochlowmethane	336	340	88.8
			1	
			1	
				•
		-		
		:	,	
		,		

princeton testing leboratory P.O. Box 3108, Princeton, N.J. 08540

U.S. Route 1 Princeton Service Center (609) 452-9050

QUALITY
CONTROL REPORT

Duplicate Analysis

JOB NO. 86(10 2813	ANALYST: THE DAVE	DATE: 10115 86	MATRIX: PElmu	METHOD: EPA - 601/602
13				602

Sample ID COMPOUND NAME Run 1 (D1) Run 2 (D2)	COMPOUND		CONCENTRATION (ug/1)	\TION (ug/1)	Relative Percent
The Hydrae Chaide 11- D'Chabaethane ethorger m 1, 2. D'Chloroe thane O O O	Sample ID	COMPOUND NAME	Run 1 (D ₁)	Run 2 (D ₂)	(RPD)*
1, 2. Dichovathane 0 1, 2. Dichovathane 0	\$ AFP-64,5w.7		0	0	0
eshowerm 1, 2. Picthous Mare 0 1, 2. Picthous Mare		1,1- Dichowethone	0	0	0
1, 2 - Dicklows Mare		etlorgerm	Ð	0	0
		1,2- Dicklowe Hang	0	0	0
	ż				

*RPD = $\left[\frac{(D_1 - D_2)}{(D_1 + D_2)^2}\right] \times 100$

Sample Name SAMPLE# 86-2873 I. C. Hart Seil Sw - 3 (250 Ld) Doup

Date: 10/08/1986 15:01 Method: eXPERm Operator: MRD Interface: 701 Cycle#: 4 Channel#: B Vial#: -1

Instrumental Parameters

Instrument: VARIAN3700 Column: 1%SP1000 Column Length: 2 Meters
Start Temp-Time (deg-min): 50 Ramp Hold (deg-min): 7
Frogram Rate (deg/min): 5 End Time-Temp (deg-min): 224

H.4-13 £ - 1 9.23

```
Sample Name SAMPLE# STD: RSAM + IS (Now).

Date: 10/08/1986 18:03 Method: EXPERM Operator: MRD
Interface: 701 Cycle#: 5 Channel#: A Vial#: -1
Instrumental Parameters
Instrument: VARIAN3700
```

Column: 1%SP1000 Column Length: 2 Meters
Start Temp-Time (deg-min): 50 Ramp Hold (deg-min): 7
Frogram Rate (deg/min): 5 End Time-Temp (deg-min): 224
Frog Slope (# or Linear): L Inj Port Temp: 200

Split Ratio:

net 2-Type & Temp: PID,300

Bample Name Shufflertig-Imp - 86.2970 - F.C. Host Spi-Sw-3

Date: 10/03/1985 22:50 Method: eXPERm Date: 10/03/1935 | 22:50 | Mathed: eXPERD | Coerator: MPD | Interface: 701 | Cyclat: 20 | Channelt: 5 | Visit: -(

Instrumental Parameters

Instrument: VARIAND700

Start Temp-Time (deg-min): SO Ramo Hold (deg-min): 7
Program Rate (deg/min): 5 End Time-Temp (deg-min): 224
Prog Slope (# or Linear): L Inj Port Temp: 200
Flowrate/Gas: 30ml/m Ma Color

Flowrate/Gas: 30ml/m He Split Ratio: Det 1-Type & Tamp: HALL,300

Det 2-Type & Temp: PID.300

Notes: EFA601/602 PRINCETON TESTING LABS

WARNING: File Already Exists, Raw Data Name Changed To JO28B117B WARNING: File Already Exists, Raw Data Name Changed To JO28B117C WARNING: File Already Emists, Raw Data Name Changed To JO2RB117D

NOTE: The Data Was Stored In File JOCRB117D: ,707,0,1

*** AREA PERCENT REPORT ***

Data From Sample SAMPLE#+IS-IML Collected on 10/03/1986 22:50 Delay Time : 0.00 min Run End : 60.00 min

	Time [min]	Area [uV-sec]	Area %	_		Normalized to Max Peak		
•	7.971		25.8580	_		40.337	215.3	
_	9.410		66.5834			100,000	38.4	Normal
త	25.576	44602	6.5586	1	1792	7.850	25.2	Normal

Total Area = 680055 uV-sec Area Reject = 0 u Sampling Rate = 1.00 pts/sec Bunch Factor = 3 pts O uV-sec Noise Threshold = 2 uV Area Threshold = 1000 uV-sec

Data From Sample SAMPLE#+IS-IML - Collected on 10/00/1995 | 22:50

Delay Time: 0.00 Run Time: 50.0 Area Reject = 0 uV Sampling Rate = 1.00 pts/sec Run Time : 50.00

Bunch Factor = 3 pts

Area Threshold = 1000 uV-sec

Noise Threshold = 2 uV Sample Amount = 1 ug/l

Injection Vol = 1

Multiplier Amount = Dilution Factor = 1

Peak Pet Peak Concentration as

4/0 Pesk Ref

% Selta

4914 2.37382 44002 1702 Normal 1 3) .5474.2755 Total Amount = 2.37862 WARNING: File Already Exists, Area File Name Changed To JO2881175 WARNING: File Already Exists, Area File Name Changed To JO2881176 WARNING: File Already Exists, Area File Name Changed To JO288117d NOTE: Grass. Times, and Heights Stored in Jo298117d:,707,0,1 Start times (.00) Stop times 60.00 minutes Lowest Value = 5.806 mV Highest Value = 19.241 mV Sc 19.241 mV Scale factor = 1 - 7.97 9.41 - 25.50

From Figure 2 1 grs

There Figure 3 1 grs

There Figure 3 1 grs

There Figure 3 1 grs

There is a 1 graph of the figure 3 g

ogak	Ret	Peak	Concentration as			A/ 3	peak	Rg-	% Deita	
Nua	Tiae	S RE#	- ug:1	4rea	Height	Range	Type	Peik	Rec Trae	Araa Papunt
1	a. 15	TRICHLORGELUGRONETHANE	.30376	40337	1:33	Normai	1	1	-1.152	130639.1468
2		BRONGCHLOROMETHANE	297.28635	2106595	59577	Normal	2	2	o o	7085.0812
3	16.55	CHLORCFORM	1.70528	303006	5827	Normal	2	3	0	177636.3831
4	20.57	1,1,1-TRICHLORDETHANE	1.39292	179398	5829	Normal	2	4	Ð	128792.7803
		TRICHLORCETHENE	6.14021	1037436	29251	Normal	1	5	9	158957.3190

Total Amount = 306.83351

WARNING: File Already Exists. Area File Name Changed To JO2RA117b
WARNING: File Already Exists, Area File Name Changed To JO2RA117c
WARNING: File Already Exists, Area File Name Changed To JO2RA117d
NOTE: Areas, Times, and Heights Stored in JO2RA117d:,707,0,1
Start time= 0.00 Stop time= 60.00 minutes
Lowest Value = 31.010 mV Highest Value = 93.698 mV Scale factor = 1


```
Exmale hama SAMPLE#+13-17 86 2970 - SW-3 (10m) + ISCIMO)
  Pots: 19703/1986 20:50 Method: 8:958m Cherator: MRD Intervace: 701 Cucled: 30 Unarreld: A Walt: 40
(distrumental Parametare
Instrument: VARIANG700
Column: 1%581000
                                      Column Length: 2 Meters
Start Temp-Time (deg-min): 50
                                        Ramp Hold (deg-min): 7
Program Rate (deg/min): 5 End Time-Temp (deg-min): 224 Prog Slope (# or Linear): L Inj Port Temo: 200
                             Inj Port Tema: 200
Flowrate/Gas: 30ml/m He Split Ratio:
Det 1-Type & Temp: HALL.300
                                        Det 2-Type % Temp: PID.300
Notes: EPA601/602 PRINCETON TESTING LABS
WARNING: You Do Not Have Enough Entries In Your Seq File To Update The Next Cycl
WARNING: File Already Exists, Raw Data Name Changed To J02RA117B
WARNING: File Alceady Exists, Raw Data Name Changed To J02RA117C
WARNING: File Already Exists, Raw Data Name Changed To JO2RA117D NOTE: The Data Was Stored In File JO2RA117D:,707,0,1
                      *** AREA PERCENT REPORT ***
Data From Sample SAMPLE#+IS-1ML
                                    Collected on 10/03/1986 22:50
Delay Time: 0.00 min
                                      Run End : 60.00 min
               Area Area B Ht Normalized Ar/Ht A/D uV-sec] % L [uV] to Max Peak [sec] Range
Pk Time
No. [min] [uV-sec]
 1 8.147 40337 1.1001 1 1133 1.915 35.6 Normal 2 13.762 2106595 57.4509 2 59577 100.000 35.4 Normal 3 16.850 303006 8.2636 2 5827 14.384 52.0 Normal
             303006 8.2636 2 5827
179398 4.8925 2 5829
  4 20.566
                                           8.516
                                                     30.8
                                                             Normal
  5 25.691 1037436 28.2929 1 29251
                                           49.247 35.5
Total Area = 3666772 uV-sec Area Reject =
                                                      0 uV-sec
Sampling Rate = 1.00 pts/sec Bunch Factor = 3 pts
Noise Threshold = 2 uV Area Threshold = 1000 uV-sec
********** EXTERNAL STANDARD REPORT *************************
Data From Sample SAMPLE#+IS-IML Collected on 10/03/1986 22:50
                                     Run Time: 60.00
Delay Time.: 0.00
Area Reject = 0 uV Sampling Pate = 1.00,pts/sec
Bunch Factor = 3 pts
Noise Threshold = 2 uV
                         Area Threshold = 1000 uV-sec
Sample Amount = 1 ug/l
                               Injection Vol = 1
Dilution Factor = 1 Multiplier Amount =
                                              1.0000
Peak Ret Peak
                  Concentration as
                                                Peak
```

Area Height Range

Type

Peak

Ret Time Area/Amount

Nus Tine Yase

uq/l

```
Sample Hame CATHLER+15-17L 86-2070 - F-C-HONT SW-4 (COM) +ISE(M)
  Date: 10/04/1986 0:03 Method: EXPERm
                                              Operator: MRD
   Vial#: -1
 nstrumental Parametars
histoument: VARIANG700
clumn: 1%SF1000
                                  Column Length: 2
tart Temp-Time (deg-min): 50
                                    Ramp Hold (deg-min): 7
rogram Rate (deg/min): 5 End Time-Temp (deg-min): 224
rog Slope (# or Linear): L Inj Port Temp: 200
lowrate/Gas: 30ml/m He
                         Split Ratio:
et 1-Type & Temp: HALL,300
                                    Det 2-Type & Temp: PID.300
lotes: EFA601/602 PRINCETON TESTING LABS
MARNING: You Do Not Have Enough Entries In Your Seg File To Update The Next C of
JARNING: File Already Exists, Raw Data Name Changed To J02RA1178
ARNING: File Already Exists, Raw Data Name Changed To J02RA117C
JARNING: File Already Exists, Raw Data Name Changed To J02RA117D JARNING: File Already Exists, Raw Data Name Changed To J02RA117E
IDTE: The Data Was Stored In File J02RA117E: ,707,0,1
                   *** AREA PERCENT REPORT ***
)ata From Sample SAMPLE#+IS-1ML
                                 Collected on 10/04/1986 0:03
Delay Time: 0.00 min
                                  Run End : 60.00 min
2k Time
             Area
                     Area B Ht Normalized Ar/Ht A/D
No. [min] [uV-sec] % L [uV] to Max Peak [sec] Range
              36878 1.4182 1 1013 1.439
 1 8.093
                                                36.4
                                                      Normal
 2 13.733
            2563359 98.5818 1 66795
                                      100.000
                                                38.4
                                                      Normal
Total Area = 2600237 uV-sec Area Reject = .
Sampling Rate = 1.00 pts/sec Bunch Factor
                                                0 uV-sec
                               Bunch Factor = 3 pts
Noise Threshold = 2 uV Area Threshold = 1000 uV-sec
Collected on 10/04/1986 0:03
Data From Sample SAMPLE#+IS-1ML
Delay Time : 0.00
                                  Run Time : 50.00
Area Reject =
             O uV Sampling Rate = 1.00 pts/sec
Bunch Factor = 3 pts
Noise Threshold = 2 uV
                       Area Threshold = 1000 uV-sec
                           Injection Vol = 1
Sample Amount = 1 ug/l
Dilution Factor = 1
                      Multiplier Amount =
                                           1,0000
Peak Ret Peak
                Concentration as
                                           Peak
                                                         I Delta
Num Time Name
                   ug/l
                              Area Height Range
                                           Type
                                                  Peak
                                                         Ret Time Area/Amount
 1 8.09 TRICHLOROFLUORCHETHAME .28229
                                                          -1.170 130639,1466
                              36878
                                  1013 Mormal
                                           1
                             2565359 66795 Moreal :
                                                          1.3797 708e.0811
2 13.73 BROMGCHLOROMETHANE 361.74564
------
*.... ......
```



```
Start Famo-Time (deg-min): 50 Ramp Hold (deg-min): 70 Ramp Hold (deg-min): 224 Frogram Rate (deg/min): 5 End Time-Temp (deg-min): 224 Inj Port Temp: 200
                                         Column Length: D - Messes
                                         Ramp Hold (deg-min): 7
Flowrate/Gas: 30ml/m He
                              Split Ratio:
Det 1-Type % Temp: HALL,TOO
                                          Det 2-Type & Temp: PID.300
Motes: EPA601/602 PRINCETON TESTING LABS
wARNING: File Already Exists, Raw Data Name Changed To J02881178
WARNING: File Already Exists, Raw Data Name Charted To JO2RB117C WARNING: File Already Exists, Raw Data Name Changed To JO2RB117D WARNING: File Already Exists, Raw Data Name Changed To JO2RB117E
NOTE: The Data Was Stored In File J02RB117E: ,707,0,1
                       *** AREA PERCENT REPORT ***
Data From Sample SAMPLE#+IS-IML
                                       Collected on 10/04/1986 0:03
Delay Time: 0.00 min
                                       Run End : 60.00 min
     Time
                Area
                         Area B
                                   Ht
                                         Normalized
                                                      Ar/Ht
No. [min]
             [uV-sec] % L [uV] to Max Peak [sec] Range
      7.387
             132208 23,5536 2 600
                                           30.811 220.5
                                                              Normal
  2 9.378
              429100 76.4464 2 12252
                                            100.000 35.0
                                                             Normal
Sampling Rate = 1.00 nte/co-
                                                       0 uV-sec
                 1.00 pts/sec Bunch Factor ≈ 3 pts
Noise Threshold = 2 uV Area Threshold = 1000 uV-sec
  Data From Sample SAMPLE#+IS-1ML
                                       Collected on 10/04/1986
Delay Time: 0.00
                                       Run Time: 60.00
                         Sampling Rate = 1.00 pts/sec
Area Reject = 0 uV
Bunch Factor = 3 pts
Noise Threshold = 2 uV
                           Area Threshold = 1000 uV-sec
Sample Amount = 1 ug/l
                               Injection Vol = 1
Dilution Factor = 1
                         Multiplier Amount = 1.0000
Peak Ret Peak
                   Concentration as
                                                 Peak
                                                        Ref
                                                                 I Delta
Nes Time Name
                      04/1
                                  Area Height Range
                                                Type
                                                        Peak
                                                                 Ret Time
                                                                        Area/Asount
 2 1.38 SENZENE
                       27.69417
                                  429100 12252 Normal 2
                                                         2
                                                                        15494,2366
Total Amount =
                       27.69417
WARNING: File Already Exists, Area File Name Changed To J02RB117b
```

WARNING: File Already Exists, Area File Name Changed To J02RB117c
WARNING: File Already Exists, Area File Name Changed To J02RB117d
WARNING: File Already Exists, Area File Name Changed To J02RB117e
NOTE: Areas, Times, and Heights Stored in J02RB117e:,707,0,1
Start time= 0.00 Stop time= 60.00 minutes
Lowest Value = 5.697 mV Highest Value = 19.841 mV Scale factor = 1


```
Sample Name SAMPLE#+IS-IML 86 2990 - Spl. Production well (reml)
  Date: 10/04/1986 1:15 Method: EXPERm
                                                     Operator: MRD
   Interface: 701 Cycle#: 22 Channel#: A
                                                            Vial#: -1
Instrumental Parameters
Instrument: VARIAN3700
Column: 1%SP1000
                                       Column Length: 2
                                                            Meters
Start Temp-Time (deg-min): 50
                                         Ramp Hold (deg-min): 7
Program Rate (deg/min): 5 End Time-Temp (deg-min): 224
Prog Slope (# or Linear): L Inj Port Temp: 200
                            Split Ratio:
Flowrate/Gas: 30ml/m He
Det 1-Type & Temp: HALL,300
                                          Det 2-Type & Temp: PID,300
Notes: EPA601/602 PRINCETON TESTING LABS
```

WARNING: You Do Not Have Enough Entries In Your Seq File To Update The Ne. t Evel

```
073444777444477444477444440046046044077444666466667
                                                                 ng <del>a</del>ng at an tagging
   Sample Name EAMFLE#+15-17L 86 2770 - Spl. Production well (10ml)
  Date: 10/04/1986 1:15 Method: EXPERm Operator: MRD Interface: 701 Ovcle#: 22 Onabbel#: A Visl#:
                                                        Vial#: -1
Instrumental Parameters
Instrument: VARIANT700
Tolumn: 1MSP1000 Column Length: 1 Moders
Start Temp-Time (deg-min): 50 Ramp Hold (deg-min): 7
Program Rate (deg/min): 5 End Time-Temp (deg-min): 224
Prog Slope (# or Linear): L Inj Port Temp: 200
Flowrate/Gas: 30ml/m He Split Ratio: 3et 1-Type & Temp: HALL,300
                                        Dat 2-Type & Temp: PID.300
Votes: EPA601/602 PRINCETON TESTING LABS
WARNING: You Do Not Have Enough Entries In Your Seq File To Update The Namt Seal
WARNING: File Already Exists, Raw Data Name Changed To JO2RA1178
WARNING: File Already Exists, Raw Data Name Changed To J02RA117C
WARNING: File Already Exists, Raw Data Name Changed To JOZRA117D
WARNING: File Already Exists, Raw Data Name Changed To JOSEA117E
WARNING: File Already Exists, Raw Data Name Changed To J02RA117F
NOTE: The Data Was Stored In File J02RA117F:,707,0,1
                     *** AREA PERCENT REPORT ***
Data From Sample SAMPLE#+IS-IML
                                    Collected on 10/04/1985 1:15
Delay Time: 0.00 min
                                     Run End: 60.00 min
Pk Time Area Area B Ht Normalized Ar/Ht A/D No. [min] [uV-sec] % L [uV] to Max Feak [sec] Range
Pk Time
------
 1 3.630 46398 .2699 1 2588 .575 17.9 Normal 2 8.008 105001 .6108 1 3102 1.300 33.9 Normal 3 12.932 42906 .2496 1 2360 .531 18.2 Normal 4 13.678 2503138 14.5600 2 72792 31.000 34.4 Normal 5 14.952 1992208 11.5881 2 77166 24.672 25.8 Normal 6 16.328 8074654 46.9680 2 200547 100.000 40.3 Normal
                                          16.423 32.7 Normal
 7 17.636 1326072 7.7134 2 40547
  8 20.444 1205649 7.0129 1 43262
                                          14.931 27.9 Normal
  9 25.651 1895801 11.0273 1 56272
                                          23.478 33.7
                                                            Normal
Total Area = 17191827 uV-sec Area Reject =
                                                     0 uV-sec
Sampling Rate = 1.00 pts/sec Bunch Factor = 3 pts
Noise Threshold = 2 uV Area Threshold = 1000 uV-sec
Data From Sample SAMPLE#+IS-1ML
                                    Collected on 10/04/1986 1:15
Delay Time: 0.00
                                     Run Time: 60.00
Area Reject =
              0 uV Sampling Rate = 1.00 pts/sec
Bunch Factor = 3 pts
Noise Threshold = 2 uV
                         Area Threshold = 1000 uV-sec
                          Injection Vol = 1
Sample Amount = 1 ug/l
Dilution Factor = 1 Multiplier Amount =
                                          A.D Pask Raf
Peak Pet Peak
                  Concentration as
                                                              . . . . . . . . . . . . .
```

Peak	Ret	Peak	Concentration as			A/D	Peak	Ref	% Delta	
Nua	Tiag	Name	ug/l	Area	Height	Range	Type	Peak	Ret Time	Area/Aaount
1	3.63	VINYL CHLORIDE	.49345	46398	2588	Mormal	1	1	0	94027.7457
.2	8.01	METHYLENE CHLORIDE	.63869	105001	3102	Mormal	1	2	0	164399.0017
3	12.93	1,1-DICHLORCETHENE	.34595	42906	2360	Normal	1	3	٥	124025.0189
4	13.68	BRONOCHLORONETHANE	353.24720	2503138	72772	Moreal	2	4	0	7086.0812
5	14.95	1,1-DICHLORGETHAME	15.71574	1992208	77166	Mormal	2	5	0	126765.1342
6	16.33	1,2-DICHLORDETHENE	65.54571	8074654	200547	Normal	2	6	0	123191.1928
7	17.64	1,2-DICHLORGETHAME	14.09557	1326072	40547	Mormai	2	7	0	94077,2790
8	20.44	1,1,1-TRICHLORGETHANE	9.36115	1205649	43262	Normal	1	8	0	128792.7803
9	25.65	TRICHLORGETHENE	11.22056	1895801	56272	Mormal	ì	9	1.4775	168957.5170

Tetal Amount = 470.66401

WARNING: File Already Exists, Area File Name Changed To JO2RA117b WARNING: File Already Exists, Area File Name Changed To JO2RA117c WARNING: File Already Exists, Area File Name Changed To JO2RA117d WARNING: File Already Exists, Area File Name Changed To JO2RA117e WARNING: File Already Exists, Area File Name Changed To JO2RA117f NOTE: Areas, Times, and Heights Stored in JO2RA117f:,707,0,1 Start time= 0.00 Stop time= 60.00 minutes


```
Sample Name SAMPLE#+IS-IML F.C. Harly & - 2070 Production Well (10MI)
   Date: 10/04/1986 1:15
                      Method: eXPERm
                                      Operator: MRD
   Interface: 701
                Cycle#: 22 Channel#: B
                                           Vial#: -1
 Instrumental Parameters
 Instrument: VARIAN3700
                              Column Length: 2
 Column: 1%SP1000
                                           Meters
_ Start Temp-Time (deg-min): 50
                              Ramp Hold (deg-min): 7
Program Rate (deg/min): 5 End Time-Temp (deg-min): 224
 Prog Slope (# or Linear): L
                       Inj Port Temp: 200
 Flowrate/Gas: 30ml/m He
                      Split Ratio:
 Det 1-Type & Temp: HALL,300
                              Det 2-Type & Temp: PID,300
 Notes: EPA601/602 PRINCETON TESTING LABS
 ****************
 WARNING: File Already Exists, Raw Data Name Changed To JOZRB117B
```

WARNING: File Already Exists, Raw Data Name Changed To J02RB117C WARNING: File Already Exists, Raw Data Name Changed To J02RB117D WARNING: File Already Exists, Raw Data Name Changed To J02RB117E Parameter To J02RB117E Data Name Changed To J02RB117E

Sample Amount = 1 ug/l Injection Vol = 1 Dilution Factor = 1 Multiplier Amount = 1.0000

Time									
1785	Name	ug/1	Area	Height	Range	Type	Peak	Ret Tiee	Area/Aqount
3.63	VINYL CHLORIDE	. 49345	46398	2588	Mormal	1	1	0	94027.7457
8.01	METHYLENE CHLORIDE	. 63869	105001	3102	Normal	1	2	0	164399.0017
2.93	1,1-DICHLORCETHENE	.34595	42906	2360	Normal	i	3	0	124025.0189
3.48	BRONOCHLOROMETHANE	353.24720	2503138	72772	Normal	2	4	0	7086.0812
4.95	1.1-DICHLORGETHANE	15.71574	1992208	77166	Moreal	2	5	0	126765, 1342
	•	65.54571	8074654	200547	Moreal	2	6	0	123191.1928
7.64	1.2-DICHLOROETHAME	14.09557	1326072	40547	Mormal	2	7	0	94077,2790
0.44	1.1.1-TRICHLOROETHANE	9.36115	1205649	43262	Normal	t	8	0	128792.7803
		11.22056	1895801	56272	Normal	i	9	1.4773	168957,3190
	3.63 8.01 2.93 3.68 4.95 6.33 7.64	3.63 VINYL CHLORIDE 8.01 METHYLENE CHLORIDE 2.93 1,1-DICHLORDETHENE 3.68 BROMOCHLOROMETHANE 4.95 1,1-DICHLORGETHANE 6.33 1,2-DICHLORDETHENE 7.64 1,2-DICHLOROETHANE	3.63 VINYL CHLORIDE .49345 8.01 NETHYLENE CHLORIDE .63869 2.93 1,1-DICHLOROETHENE .34595 3.68 BRONOCHLOROMETHANE 353.24720 4.95 1,1-DICHLORGETHANE 15.71574 6.33 1,2-DICHLORDETHENE 65.54571 7.64 1,2-DICHLOROETHANE 14.09557 0.44 1,1,1-TRICHLOROETHANE 9.36115	3.63 VINYL CHLORIDE .49345 46398 8.01 METHYLENE CHLORIDE .63869 105001 2.93 1,1-DICHLOROBETHENE .34595 42906 3.68 BROMOCHLOROMETHANE 353.24720 2503138 4.95 1,1-DICHLOROBETHANE 15.71574 1792208 6.33 1,2-DICHLOROBETHENE 65.54571 B074654 7.64 1,2-DICHLOROBETHANE 14.09557 1326072 0.44 1,1,1-TRICHLOROBETHANE 9.36115 1205649	3.63 VINYL CHLORIDE .49345 46398 2588 8.01 NETHYLENE CHLORIDE .63869 105001 3102 2.93 1,1-DICHLOROBETHENE .34595 42906 2360 3.68 BROMOCHLOROMETHANE 353.24720 2503138 72772 4.95 1,1-DICHLOROBETHANE 15.71574 1792208 77166 6.33 1,2-DICHLOROBETHENE 65.54571 8074654 200547 7.64 1,2-DICHLOROBETHANE 14.09557 1326072 40547 0.44 1,1,1-TRICHLOROETHANE 9.36115 1205649 43262	3.63 VINYL CHLORIDE .49345 46398 2588 Mormal 8.01 METHYLENE CHLORIDE .63869 105001 3102 Mormal 2.93 1,1-DICHLOROBETHENE .34595 42906 2360 Mormal 3.68 BROMOCHLOROMETHANE 353.24720 2503138 72772 Mormal 4.95 1,1-DICHLORGBETHANE 15.71574 1992208 77166 Mormal 6.33 1,2-DICHLOROBETHENE 65.54571 8074654 200547 Mormal 7.64 1,2-DICHLOROBETHANE 14.09557 1326072 40547 Mormal 0.44 1,1,1-TRICHLOROBETHANE 9.36115 1205649 43262 Mormal	3.63 VINYL CHLORIDE .49345 46398 2588 Mormal 1 8.01 NETHYLENE CHLORIDE .63869 105001 3102 Mormal 1 2.93 1,1-DICHLORDETHENE .34595 42906 2360 Mormal 1 3.68 BRONDCHLORDMETHANE 353.24720 2503138 72772 Mormal 2 4.95 1,1-DICHLORGETHANE 15.71574 1992208 77166 Mormal 2 6.33 1,2-DICHLORDETHENE 65.54571 8074654 200547 Mormal 2 7.64 1,2-DICHLORDETHANE 14.09557 1326072 40547 Mormal 2 0.44 1,1,1-TRICHLORDETHANE 9.36115 1205649 43262 Normal 1	3.63 VINYL CHLORIDE	3.63 VINYL CHLORIDE .49345 46398 2588 Normal 1 1 0 8.01 NETHYLENE CHLORIDE .63869 105001 3102 Normal 1 2 0 2.93 1,1-DICHLOROETHENE .34595 42906 2360 Normal 1 3 0 3.68 BRONOCHLOROMETHANE 353.24720 2503138 72772 Normal 2 4 0 4.95 1,1-DICHLORGETHANE 15.71574 1992208 77166 Normal 2 5 0 6.33 1,2-DICHLOROETHENE 65.54571 8074654 200547 Normal 2 6 0 7.64 1,2-DICHLOROETHANE 14.09557 1326072 40547 Normal 2 7 0 0.44 1,1,1-TRICHLOROETHANE 9.36115 1205649 43262 Normal 1 8 0

Total Amount = 470.66401

WARNING: File Already Exists, Area File Name Changed To J02RA117b WARNING: File Already Exists, Area File Name Changed To J02RA117c WARNING: File Already Exists, Area File Name Changed To J02RA117d WARNING: File Already Exists, Area File Name Changed To J02RA117e WARNING: File Already Exists, Area File Name Changed To J02RA117f NOTE: Areas, Times, and Heights Stored in J02RA117f:,707,0,1 Start time= 0.00 Stop time= 60.00 minutes

Lowest Value = 23.679 mV Highest Value = 240.145 mV Scale factor = 1

- 3.63

- 6.01

- 12.93

- 14.95

- 16.33

- 17.84

- 20.44

File: 29701VA

Quantitation Report

```
Data 29701VA. TI
10-05/95 10:27.00
Sample: 35-2970 F.C. HART#PROD. WELL
Cands. IOML PURGE
Submitted by F.C.H.
                           Analyst: RD
AMOUNT=AREA * REF AMNT/(REF AREA * RESP FACT)
Resp. fac. from Library Entry
 No Name
    CIOL
          SROMOCHLOROMETHANE ****INTERNAL STANDARD #1****
  2 CI10 1,4-DIFLUOROBENZENE ****INTERNAL STANDARD #2****
  3 CI20 CHLCROBENZENE-D5 ****INTERNAL STANDARD #3****
    CHLOROMETHANE
  5
    BROMOMETHANE
     VINYL CHLORIDE
  6
     CHLORGETHANE
  B METHYLENE CHLORIDE
     1. 1-DICHLOROETHENE
 10 1,1-DICHLORGETHANE
 11
    1, 2-DICHLORDETHYLENE(TRANS)-
 12
    CHLOROFORM
 13
    1, 2-DICHLOROETHANE
    1, 1, 1-TRICHLOROETHANE
 14
 15
     CARBON TETRACHLORIDE
     BROMODICHLOROMETHANE
 16
 17
     1, 2-DICHLOROPROPANE
 18
    TRANS-1, 3-DICHLOROPROPENE
 19
    TRICHLOROETHYLENE
 20 DIBROMOCHLOROMETHANE
     1, 1, 2-TRICHLOROETHANE
 21
 22
    BENZENE
    CIS-1.3-DICHLOROPROPENE
 23
 24
     CHLORGVINYL ETHYL ETHER
     3ROMOFORM
 25
 26
     TETRACHLOROETHYLENE
     1, 1, 2, 2-TETRACHLOROETHANE
 27
 28
    TOLUENE
 29
    CHLOROBENZENE
 30
    ETHYLBENZENE
 31
     0-XYLENE
    CS15 1.2-DICHLOROETHANE-D4
                                         ****SURROGATE #1***
 32
 33 CSO5 TOLUENE-D8
                                         ****SURROGATE #2***
    CS10 4~BROMOFLUOROBENZENE
                                         ****SURROGATE #3***
 No
     m/z Scan
                 Time
                       Ref
                             RRT Meth
                                          Area(Hght)
                                                      Amount
                                                                     %Tot
                                                      50,000 UG/L
     19
           316
                       1 1.000
                                 A BB
                                                                     7.43
  1
                9: 57
                                          310020.
                        2 1.000
     114
           645
                20:19
                                  A BB
                                          857764.
                                                       50.000 UG/L
                                                                     7.43
  2
                                         1185410.
  3
     117
           802 25:16
                        3 1.000 A BB
                                                      50.000 UG/L
                                                                     7.43
     NOT FOUND
  5
     NOT FOUND
                                                       0.023 UG/L
      62
           123
                3: 52
                        1 0.389 A BB
                                              64.
                                                                     0.00
     NOT FOUND
  7
  8
           222
                7: 00
                        1 0.703 A BB
                                            7816.
                                                       6. 976 UG/L
                                                                     1.04
     84
                                                       73. 215 UG/L
  9
                       1 1.155 A BB
                                          199616.
                                                                    10.88
      96
           365% 11:30
                        1 1.089 A BB
1 1.155 A BB
                                                       14.838 UQ/L
                                                                    2. 21
 10
           344% 10:50
                                           84808.
      63
                                                       73, 215 UG/L 10.88
           365 11:30
                                          199616.
 11
     95
    NOT FOUND
 12
     ארד באו אה
```

1 + 15	PT 44T NOT FOUND	14 05	2 0, 693	A 3B	11575	2. 72	G UG/L	0 41
16 17 19 19	NOT FOUND NOT FOUND NOT FOUND 130 545 NOT FOUND	17: 19	2 0. 845	A BB	50194.	7. 5 4	6 U G /L	1. 12
21 2 2	NOT FOUND 78 559	17: 37	2 0.867	A#BB	240.	0. 01	1 UG/L	0.00
23 24 25 26	NOT FOUND NOT FOUND	20: 19	2 1.000	A BB	225256.	224. 68	2 UG/L	33. 40
27 28 29 30	NOT FOUND	24: 17	3 0.961	A*88	224.	0. 00	9 UG/L	0. 00
31 32 33 34	98 765	24: 06	1 1.275 3 0.954 3 1.207	A BB A BB	209352. 1724630. 843464.	53. 73	8 UG/L 10 UG/L 15 UG/L	6. 70 7. 99 7. 76
No 1 2 3 4	Ret(L) Rati 9:46 1.02 20:06 1.01 25:03 1.01 1:44	1.000	Ratio 1.00 1.00 1.00	Amn t 50, 00 50, 00 50, 00	Amnt(L) 50,00 50,00 50,00	R. Fac R 1.000 1.000 1.000	1.000 1.000 1.000	Ratio 1.00 1.00 1.00
5 6 7	2: 52 3: 41 1. 05 4: 43	0. 294 0. 377 0. 484	1. 03	0. 02	200. 00	0. 000	0. 456	0. 00
9 10 11	6: 46 1. 03 11: 20 1. 01 10: 37 1. 02 11: 20 1. 01	0. 694 1. 161 1. 087	1. 01 0. 99 1. 00 0. 99	6. 98 73. 21 14. 84 73. 21	200.00 200.00 200.00 200.00	0.006 0.161 0.068 0.161	0. 181 0. 440 0. 922 0. 440	0, 03 0, 37 0, 07 0, 37
12 13 14 15	11:49 12:34 13:52 1:02 14:14 14:41	1. 210 1. 287 0. 690 0. 708 0. 730	1. 00	2. 73	200. 00	0, 003	0. 247	0. 01
17 18 19 20	16: 08 16: 21 16: 57 1. 01 17: 25	0. 803 0. 813 0. 843 0. 867	1. 00	7. 55	200. 00	Q. 015	0. 388	0. 04
21 22	17: 35 17: 31 1. 01		0. 99	0. 01	200.00	0.000	1. 330	0.00
23 24 25 26 27	17: 37 20: 06 1: 01 20: 06 22: 39	1. 000 0. 9 04	1. 00	224. 68	200.00	0. 066	0. 059	1. 12
28 29 30 31	22: 28 24: 02 1, 01 25: 10 27: 21 33: 23	0.897 0.960 1.005 1.092 1.333	1. 00	0. 01	200. 00	0.000	1. 020	0. 00
32 33 34	12:28 1.02 23:51 1.01 30:09 1.01	1. 277 0. 952	1.00 1.00 1.00	45. 09 53. 73 52. 24	50. 00 50. 00 50. 00	0. 675 1. 455 0. 712	0. 749 1. 354 0. 681	0. 90 1. 07 1. 04

DIAGNOSTIC REPORT PROCEDURE TOA

10/14/86 14 EE 1

DATA FILE. 29701VA

NAME LIST: VOA - INITIALIZATION OPTION: 2 PROCESSING OPTION. 3
REPORT: VV

< --- STANDARDS ---- >< --- PLUS UNKNOWNS --- >< - LIST NAMES - > PROC USED POSS RMS PROC USED POSS RMS STANDARD/UNKNOWN 3 2 1 0 34 12 1 103 VV/VB

34 COMPOUNDS PROCESSED, 11 FOUND

- م	OMP	C GNUE	,		- SEA	ARCH		;	>< SAT	><	CH	HRO	
-		ENTRY	REF	PRED		DELTA	PEAKS		PEAKS	M/Z	TOP	DELTA	PEAR
1	VO	4	303	316	316		1	1000		49	316	•	
2	VO.	5	-633	645	4.0					114	645		
3	VO	6	-791	802	802		1	997		117	805	•	
4	VO	7	45	57						50			
5	VO	é	87	99						94		•	
6	vo	9	-111	123			•			62	123		
7	vo	10	-145	157		•			•	64	•		
8	VO	11	-210	222	222		1	980		84	222		
9	va	13	-355	367	365	-5	1	993		96	365	•	
10	VO	14	-332	344	344		1	973	•	63	344	•	
11	VO	15	-355	367	365	-2	1	966	•	96	365	•	
12	VO	16	-370	382						83	•		
13	VO	17	-394	406						62		•	
14	VO	18	-434	446	447	1	1	892		97	447		
15	VO	19	-446	458					•	117	•	•	
16	VO	20	-461	473				•		83	•		
17	VO	21	-507	519	•	•				63	•	•	
13	VO	36	-515	527			•		•	75		•	
19	VO	22	-534	546	545	-1	1	993	•	130	545	•	
20	VO	38	-549	561	•	•	•	•	•	129		•	
21	VO	24	-554	566	•	•	•		•	97			
22	VO		-552	564	•	•	•	•	•	78	559	•	
23	VQ		-555	567		•	•	•	•	75	645		
24	YO		-634	645			•	•	•	63	043		
25	VO		-634	645	•	•		•		173	•	•	
26	VO		711	722		•	•	•	•	166 83	•	•	
27	VQ		705	716	•	•	•	•	•	91	771	•	
28	VQ.		-759	770	•	•	•	•		112	//1	•	
29	Va		-795	806	•	•	•	•	•	106	•	•	
30	VQ		-862	873	•	•	•	•	•	91	•		
31	VQ		-1053	1064				999		45 65	403		
32	VO	_	-391	403	403		1	996		98	765		
33	VQ		-753	764	765				-	95	968		
34	VQ	1	957	968	968		1	990		73	700		

PROCEDURE: TCA DATA FILE: 29702V

DIAGNOSTIC REPORT

10/06/86 11 30 4

< ---- STANDARDS ---- >< --- PLUS UNKNOWNS --- >< - LIST NAMES - > PROC USED POSS RMS PROC USED POSS RMS STANDARD/UNKNOWN 3 2 2 785 34 10 1 96 VV/VB

34 COMPOUNDS PROCESSED, 9 FOUND

< c	OMPO	C GNU	<		SE/	ARCH -			C SAT	><	CI	HRO
NO	LIB	ENTRY	REF	PRED		DELTA	PEAKS	FIT	PEAKS	M/Z	TOP	DELTA PEAR
1	VO	4	303	309	316	7	2	999		49	316	•
2	VO	5	~633	645						114	645	•
3	VO	6	-791	806	803	-3	1	997		117	803	•
4	VO	7	45	57						50		
5	VO	8	87	99						94		
6	VO	9	-111	123						62		
7	VΟ	10	-145	157						64		
8	VO	11	-210	222	555		1	967		84	355	
9	VO	13	~355	367	365	~2	1	804		96	365	
10	YO	14	-332	344	344		1	906		63	344	•
11	VO.	15	-355	367						96	365	
12	VD	16	-370	382			•			83		
13	VO	17	-394	406						62		•
14	VO	18	-434	446						97	446	,
15	VD	19	-446	458						117		,
16	VO	20	-461	473						83		
17	VO	21	-507	519						63		
18	YO	36	-515	527						75		
19	VO	52	-534	546	545	~1	1	988		130	545	
20	VO	38	-549	561						129		
21	YO	24	-554	566						97		•
22	VO	23	-552	564						78	564	
23	VO	37	-555	567						75		
24	VO	35	-634	645		•				63	645	
25	VO	25	-634	645						173		
26	VQ	26	711	722						166		
27	VO	27	705	716						63		
28	VO	28	-759	770						71	771	
29	VO	29	-795	806						112		
30	VO	30	-862	873						106		•
31	VO		-1053	1064						91		
32	VO	2	-391	403	403		1	995		65	403	•
33	VO	3	-7 53 °	764	765	1	1	998		98	765	
34	VO	1	960	971	970	-1	1	996		95	970	

```
File: 29702V
Quantitation Report
Data 29702V TI
10/06/86 9:25:00
Sample
Conds
                            Analyst: RD
Submitted bu:
AMOUNT=AREA * REF AMNT/(REF AREA * RESP FACT)
Resp. fac. from Library Entry
 No Name
           BROMOCHLOROMETHANE ****INTERNAL STANDARD #1****
     CIOI
          1,4-DIFLUOROBENZENE ****INTERNAL STANDARD #2****
   CIIO
    CI2C CHLOROBENZENE-D5 ****INTERNAL STANDARD #3****
    CHLOROMETHANE
     BROMOMETHANE
     VINYL CHLORIDE
     CHLOROETHANE
   METHYLENE CHLORIDE
    1,1-DICHLORGETHENE
 10
    1, 1-DICHLORGETHANE
 11
     1, 2-DICHLORGETHYLENE (TRANS)
    CHLOROFORM
 12
 13
    1, 2-DICHLORGETHANE
 14
    1, 1, 1-TRICHLORDETHANE
15
    CARBON TETRACHLORIDE
    BROMODICHLOROMETHANE
 16
 17
     1, 2-DICHLOROPROPANE
    TRANS-1, 3-DICHLOROPROPENE
 18
 19
    TRICHLOROETHYLENE
 20 DIBROMOCHLOROMETHANE
    1, 1, 2-TRICHLORDETHANE
 21
 22
     BENZENE
    CIS-1, 3-DICHLOROPROPENE
 23
    CHLOROVINYL ETHYL ETHER
 24
 25
    BROMOFORM
    TETRACHLORGETHYLENE
 26
     1, 1, 2, 2-TETRACHLORDETHANE
 27
 29
     TOLUENE
 29
    CHLOROBENZENE
 30
    ETHYLBENZENE
 31
     0-XYLENE
    CS15 1.2-DICHLORDETHANE-D4
CS05 TOLUENE-D8
CS10 4-BROMOFLUOROBENZENE
                                          ****SURROGATE #1***
 32
                                          ****SURROGATE #2***
 33
                                          ****SURROGATE #3***
 34
 No
     m/z
          Scan
                 Time
                       Ref
                             RRT Meth
                                           Area(Hght)
                                                       Amount
                                                                       %Tot
                                  A BB
                                           332696.
                                                        50.000 UG/L
     49
                 9: 57
                        1 1.000
           316
                                                                       9.93
  2
     114
           645
                20:19
                        2 1.000 A BB
                                           256624.
                                                        50.000 UG/L
                                                                       9.93
     117
           803
                25:18
                        3 1.000 A BB
                                          1145730.
                                                        50.000 UG/L
                                                                       9.93
    NOT FOUND
    NOT FOUND
     NOT FOUND
     NOT FOUND
                                              7896.
                                                         6. 567 UG/L
      84
           222
                 7:00
                         1 0.703
                                   A BB
                                                                       1.30
  0
      96
           365
                11:30
                            1. 155
                                   A BB
                                               800.
                                                         0. 273 UG/L
                                                                       0.05
                         1
 10
                           1.089 A BB
     63
           344
                10:50
                                              128.
                                                         0.021 UQ/L
                                                                       0.00
                         1
     95
                         1 1.155 A BB
                                               800.
                                                         0. 273 UG/L
                                                                       0.05
           365
                11:30
 11
```

12 NOT FOUND

14	ST NET FIL		4 05 7	I 3 a91	A 38	230	ပ္ ေျခ	J UGZL	0 01
15 17 13 19		JND JND 545 1	7. 10	2 0.845	3 A 38	12368.	1.86	2 UG/L	0. 37
20 21 22	NOT FOUNCT FOU	JND	7: 46	2 0.874	A 88	15024.	0. 70	S UG/L	0.14
23 24	NOT FOR	UND 545 20	D: 19	2 1.000		224480.	223. 21	.5 UG/L	44. 32
25 26 27	NOT FOUNDT FOUNDT FOUNDT	DND							
28 29 30		771 24 JND	4:17	3 0.960	A BB	80.	0.00	3 UG/L	0.00
31	NOT FOU	DND	2: 42	1 1.275	S A BB	222366.	44. 62	27 UG/L	8. 86
33 34	98	765 24	4: 06 0: 33	3 0. 953 3 1. 208	A BB	1755020. 849372.	34. 20	5 UG/L	10. 76 10. 35
No 1 2 3 4 5	Ret(L) 9: 46 20: 06 25: 03 1: 44 2: 52 3: 41	Ratio 1.02 1.01 1.01	1.000 1.000 1.000 0.177 0.294 0.377	Ratio 1.00 1.00 1.00	Amnt 50.00 50.00 50.00	Amnt(L) 50.00 50.00 50.00	R. Fac R 1.000 1.000 1.000	1. Fac(L) 1.000 1.000 1.000	Ratio 1.00 1.00 1.00
7 8 9	4: 43 6: 46 11: 20	1. 03 1. 01	0. 484 0. 694 1. 161	1. 01 0. 99	6. 5 7 0. 2 7	200. 00 200. 00	0. 00 6 0. 001	0. 181 0. 440	0. 03 0. 00
10	10:37	1. 02	1.087	1.00	0. 02	200.00	0.000	0. 922	0. 00
11	11:20 11:49	1.01	1. 161 1. 210	0. 99	0. 27	200.00	0. 001	0. 440	0.00
13 14	12: 34 13: 52	1. 01	1. 287 0. 690	1. 00	0. 06	200.00	0. 000	0. 247	0.00
15 16	14: 14 14: 41		0.708 0.730 0.803						
17 19	16: 0 8 16: 21		0. 813						
19 20	16: 57 17: 25	1. 01	0, 843 0, 867	1. 00	1.86	200.00	0. 004	0.388	0. 01
21 22	17: 35 17: 31	1. 01	0. 875 0. 871	1. 00	0. 70	200.00	0. 005	1. 330	0. 00
23	17: 37		0. 876						
24 25 26	20: 06 20: 06 22: 39	1. 01	1.000 1.000 0.904	1. 00	223. 22	200.00	0.066	0. 059	1. 12
27 28 29 30 31	22: 28 24: 02 25: 10 27: 21 33: 23	1. 01	0.897 0.960 1.005 1.092 1.333	1. 00	0.00	200. 00	0. 000	1. 020	Q. 00
32 33 34	12: 28 23: 51 30: 09	1. 02 1. 01 1. 01	1. 277 0. 952 1. 204	1.00 1.00 1.00	44. 63 54. 20 52. 15	50.00 50.00 50.00	0. 668 1. 468 0. 710	0. 749 1. 354 0. 681	0.89 1.08 1.04
					_				

APPENDIX H.5
OTHER AFP 59 ANALYTICAL RESULTS

(CL5121A)

Purgeable Priority Pollutants

CLIENT	GENERAL ELE	CTRIC_	Westover			_JOB NO2672	2.008.517
DESCRIPTION	Well						
SAMPLE NO.			5-23-85	DATE REC'D.	5-24-85	DATE ANALYZED	6-5-85
			ppb			F	pb
Chlorometh	nane		< 1.	1,2-Dichlor	ropropane	<	1.
Bromometh	nane		İ	t-1,3-Dichle	oropropene	<	1.
Dichlorodif	luoromethane			Trichloroet	thene		5.
Vinyl chlori	de			Benzene		<	1.
Chloroetha	ne			Dibromoch	nloromethane		
Methylene	chloride		}	1.1,2-Trich	loroethane		
Trichloroflu	oromethane			c-1,3-Dichl	loropropene		\downarrow
1,1-Dichlor	oethene		↓	2-Chloroet	hylvinyl ether	<:	10.
1,1-Dichlor	oethane		11.	Bromoform	n	<	10.
: 1,2-Dichic	proethene		37.	1,1,2,2-Teti	rachloroethan	e <	1.
Chloroform	1		< 1.	Tetrachlor	pethene		ļ
1.2-Dichlore	oethane		< 1.	Toluene			
1,1.1-Trich!	oroethane		2.	Chloroben	zene		Ì
Carbon tetr	achloride		< 1.	Ethylbenze	ene		\downarrow
Bromodich	loromethane		< 1.				
Methodology: Fe	edera! Register — 40	OCFR, Part	136. December 3, 197	9			
Comments:							
Freo	n 113		2.				
Tempo	erature, Fie	1 d	22 0 C				
pH,	Field		7.7				

O Brier & Gere Engineers Inc Box 4873 - 1304 Buckley Rd - Syracuse NY / 13221 (315) 451-4700 nuthorized: BC1 ffff

Freon 113

Purgeable Priority Pollutants

CLIENT GENERAL ELECTRIC COMPANY	/	J	ов но 2672.008.517
DESCRIPTION Well Site			
SAMPLE NO. 30861 DATE COLLECTED	2-12-85	DATE REC'D. 2-12-85	
	ppb		ppb
Chloromethane	<1.	1,2-Dichloropropane	<1.
Bromomethane		t-1,3-Dichloropropene	<1.
Dichlorodifluoromethane		Trichloroethene	8.
Vinyl chloride		Benzene	<1.
Chloroethane		Dibromochloromethane	
Methylene chloride		1,1,2-Trichloroethane	
Trichlorofluoromethane	:	c-1,3-Dichloropropene	\downarrow
1,1-Dichloroethene	\downarrow	2-Chloroethylvinyl ether	<10.
1,1-Dichloroethane	11.	Bromoform	<10.
t-1,2-Dichloroethene	63.	1,1,2,2-Tetrachioroethane	<1.
Chloroform	<1.	Tetrachloroethene	
1,2-Dichloroethane	<1.	Toluene	
1,1,1-Trichloroethane	3.	Chlorobenzene	
Carbon tetrachloride	<1.	Ethylbenzene	\downarrow
Bromodichloromethane	<1.		•
Methodology: Federal Register — 40 CFR, Part 136, D	ecember 3, 197	9	
Comments:			

5.

O Brien & Gere Engineers Inc Box 4873 - 1304 Buckley Rd - Syracuse NY - 13221 - (315) 451-4700 Authorized: 2-15-85

Methodology: Federal Register — 40 CFR, Part 136, December 3, 1979

O'Brien & Gere Engineers, Inc. Box 4873 / 1304 Buckley Rd. / Syracuse, NY / 13221 / (315) 451-4700

Comments:

Laboratory Report

Units: mg/((ppm) unless otherwise noted

CLIE	NT GENERAL ELEC	TRIC, Johnson	City	·····	JOB N	2672.	008.517
DESC	CRIPTION METT Mace:						
DATI	COLLECTED 2-7-85	DATE REC	D 2-7-85		DATE ANALY	ZED	
	SAMPLE		27795				
Ţ	Antimony	SB	< 0.1				
•	Arsenic	AS	< 0.01	i i			
	Beryllium	BE	< 0.01				
~	Cadmium	CD	< 0.01			•	
	CHromi um	CR	< 0.01		a a per care		
•	Copper	cυ	< 0.01		- "	1	I
,	Lead	PB	< 0.01				
-4	Mercury	HG	< 0.0005			-	
•	Nickel	NI	0.03				
•	Selenium	SE	< 0.01				
K	Silver	AG	< 0.01	and the contract of the party	The Control of the Co	Agric 19 Aug. g.	
•	Thellium	TL	< 1.		/		
	Zinc	ZN	< 0.01	•			
	Cyanide	CN	< 0.05				
Ĺ	Total Phenols	PHENOL	< 0.001	ran on range	CARACCE C. TO COMMA	**	
2	h - 2° annari - 4, dan per antas _{de} linistrati i 4, da dibi <mark>lita (1888)</mark>	talket talkit kundistriini see sat terministrii s	له الجمعانيين والمافتين. المها	· · · · · · · · · · · · · · · · · · ·	A ST LIBE CANDIDANA	Sand 1994	
<u> </u>	The same of the sa					SEE OF THE SEE	
. 40	The same and the same same and same	hayeline kul salandiseria e Pasii nashid		- Table 1995		The second of th	•.
		And the second		The state of			general trade
281 Juli	tie verschilber in der State verschilber zu der State von der					المنطقينية المنطقة فيما	to the second second
(3.3						ار ام نوالة المراسقة جور يُعدد .	- Zeelee
	A CONTRACT OF THE PARTY OF THE				35 1 4 th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ar and income a stand	ter court -

Pesticide/PCB Priority Pollutants

GENERAL GENERAL Well Wa	ELECTRIC, Johnson City ter		JOB NO. 2672.008.517
34MPLE NO. 27795	DATE COLLECTED 2-7-85	_DATE REC'D	DATE ANALYZED 2-25-85
	ррв		ppb
α-BHC	< 0.1	Endosulfan II	< 0.1
y-BHC	< 0.1	4,4'-DDT	< 0.5
B-BHC	< 0.1	Endosulfan Sulfate	< 0.5
Heptachlor	< 0.1	Endrin Aldehyde	< 0.5
&BHC	< 0.1	Chlordane	< 1.0
Aldrin	< 0.1	Toxaphene	< 5.0
Heptachlor Epoxide	< 0.1	PCB-1221	< 1.0
Endosulfan I	< 0.1	PCB-1232	< 1.0
4,4'-DDE	< 0.1	PCB-1016/1242	< 1.0
Dieldrin	< 0.1	PCB-1248	< 1.0
Endrin	< 0.1	PCB-1254	< 1.0
4,4'-DDD	< 0.5	PCB-1260	< 1.0

Methodology: Federal Register — 40 CFR, Part 136, December 3, 1979

Comments:

Methoxyclor

< 0.5

O'Brien & Gere Engineers Inc Box 4873 - 1364 Buckley Rd - Syracuse NY - 13221 - (315) 451-4700 Authorized: 607 461

Priority Pollutants

< 250

CLIENT GENERAL ELECTRON DESCRIPTION Well Water	IC, Johnson City	JOB #	NO. 2672.008.517
SAMPLE NO. 27795 DATE C	OLLECTED 2-7-8	DATE REC'D. 2-7-85 DATE	ANALYZED 4-29-85
	ppb		ррь
2-Chlorophenol	< 25	2,4,6-Trichlorophenol	< 25
2-Nitrophenol	< 25	4-Chloro-3-methylphenol	< 25
Phenol	< 25	2,4-Dinitrophenol	< 25
2,4-Dimethylphenol	< 25	2-Methyl-4,6-dinitrophenol	< 250
2,4-Dichlorophenol	< 25	Pentachlorophenol	< 250
		4-Nitrophenol	< 250

Methodology: Federal Register - 40 CFR, Part 136, December 3, 1979

Comments:

O'Brien & Gere Engineers, Inc. Box 4873 / 1304 Buckley Rd / Syracuse, NY / 13221 / (315) 451-4700

Base/Neutral Priority Pollutants

CLIENT GENERAL EL DESCRIPTION Well Water	ECTRIC, Johnson	City			_JOB NO267	2.008.51
5AMPLE NO. 27795	PATE COLLECTED	2-7-85 p	ATE REC'D.	2-7-85	_DATE ANALYZED	4-29-8
	ppb					ppb
1,3-Dichlorobenzene	< 10		Diethylphth	alate	<	10
1,4-Dichlorobenzene	< 10	٠	N-nitrosodi	phenylamine	<	10
1,2-Dichlorobenzene	< 10		Hexachloro	benzene	<	10
Hexachloroethane	< 10		4-Bromophe	enyl phenyl el	ther <	10
Bis (2-chloroethyl) ether	< 10		Phenanthre	ne	<	10
Bis (2-chloroisopropyl) ethe	er < 10	•	Anthracene		<	10
N-Nitrosodi-n-propylamine	< 10		Di-n-butyl p	hthalate	<	10
Nitrobenzene	< 10	1	Fluoranthen	е .	<	10
Hexachlorobutadiene	< 10		Pyrene		<	10
1,2,4-Trichlorobenzene	< 10	<i>f</i>	Benzidine		<	10
Isophorone	< 10	· ·	Butyl benzy	l phthalate	<	10
Naphthalene-	< 10		Bis(2-ethylh	exyl)phthalat	e <	10
Bis (2-chloroethoxy) metha	ne < 10	•	Chrysene		<	10
Hexachlorocyclopentadiene	< 10	•	Benzo(a)an	thracene	<	10
2-Chloronaphthalene	< 10		3,3-Dichloro	benzidine	<	10
Acenaphthylene	< 10	ĺ	Di-n-octylpl	nthalate	<	10
Acenaphthene	< 10		Benzo(b)flu	oranthene	<	10
Dimethyl phthalate	< 10	÷	Benzo(k)flu	oranthene	<	10
2,6-Dinitrotoluene	< 10	ř	Benzo(a)py	rene	<	10
Fluorene	< 10		Indeno(1,2,	3-cd)pyrene	<	25
4-Chlorophenyl phenyl ethe	or < 10	, .	Dibenzo(a,t)anthracene	<	25
2,4-Dinitrotoluene	< 10	E	Benzo(g,h,i	perylene	··· ·	25
1,2-Diphenylhydrazine	< 10		N-Nitrosodi	methyl Amine	· · · · · · · · · · · · · · · · · · ·	10

O'Brien & Gere Engineers, Inc Box 4873 - 1304 Buckley Rd / Syracuse, NY / 13221 / (315) 451-4700

Comments:

uthorized: 6CT-ff

RECEIVED DEC 6 198 11 × 84 4 4 1

H.5-7

PORCH SP 12 INTERSAN

November 29-1985 DATE:

JOB NO.

41458

AUTHORIZATION: Project G 106

SAMPLE: Water - 1

530 Fifth Ave. Mew York, NY 10036

Att: Rob Goldman

Fred C. Hart

TO:

REPORT OF ANALYSIS

SUPPLY WELL

mg/1

Oil & Grease < .5

TOC <2.0

рΗ 7.35

Specific Conductivity 730

TOX (micrograms per liter) 13

MDL - 10 " " "

Rec'd. 11/1/85

Water, Waste Water & Microbiology

APPENDIX H.6 ANALYTICAL RESULTS FROM WELLS IN SURROUNDING AREA

(CL5121A)

RECEIVED DEC 3 1 1366 H.6-1

Broome County Memorandum

To:

Vanessa DeVillez
Tony Mastrangelo Amminis

From:

December 23, 1986

Date: Subject:

Johnson City (V) Water Supply

Enclosed are results of organic, inorganic, trihalomethane, and pesticide/herbicide sampling during the past three years as requested on December 17, 1986.

I have also included a copy of the sole source aquifer determination for the Clinton Street - Ballpark Aquifer in the Federal Register.

If you have any additional information, feel free to call this department at (607) 772-2887.

AMM:kls

575 BROAD HOLLOW BOAD, MELVILLE, N.Y. 11747 . 516-694-3040

Broome County Health Dept. 1 Wall Street

Binghamton, NY 13901

Results reported meet

N.Y.S. Drining Water Limits. Date Reported: 11/3/86

Sample Lab No. 662108 Date Collected: 10/16/86 Date Received: 10/17/86 Type: Potable Water

Point: Sta. #2-Johnson City Well #7

Collected By: DA 99

RESULTS FOR VOLATILE HALOGENATED ORGANICS Compound vinyl chloride < 1 dichlorodifluoromethane. . . < 1 methylene chloride < 1 trichlorofluoromethane . . . < 1 1,1-dichloroethylene . . . < 1 1,1-dichloroethane < 1 trans-1,2-dichloroethylene . . < 1 cis-1,2-dichloroethylene . . . < 1 1,1,2-trichlorotrifluoroethane.< 1 1,2-dichloroethane < 1 1,1,1-trichloroethane. . . . < 3 Bereineu carbon tetrachloride < 1 bramodichloramethane < 1 1,2-dichloropropane....<1 2,3-dichloropropene....<1 NGV 1 7 1986 trans-1,3-dichloropropene. . . < 1 trichloroethylene. < 1 BAUCKE COUNTY 1,1,2-trichloroethane. . . . < 1 HEALTH DEPARTMENT chlorodibromomethane < 1 cis-1,3-dichloropropene. . . < 1 1,1,1,2-tetrachloroethane. . . < 1 tetrachloroethylene. < 1 1,1,2,2-tetrachloroethane. . . < 1 chlorobenzene. < 1 VOLATILE NON-HALOGENATED ORGANICS benzene......

S.C. McLendon, P.E. Laboratory Director

Maiville New York + Farmingdale New York + Rivernead New York + Fairfield New Jersey

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040

Broome County Health Dept.

1 Wall Street

Binghamton, NY 13901

Sample Lab No. 662107

Date Collected: 10/16/86

Date Received: 10/17/86 Type: Potable Water

Point: Sta. #1 - Johnson city well #2 - 0940 Hrs.

Collected By: DA 99

RESULTS FOR VOLATILE HALOGENATED ORGANICS

RESULTS FOR VOLATIL				
Compound		<u>ug/</u>]	<u>1</u>	
vinyl chloride		. <	1	
dichlorodifluoromet	hane	. <	1	
methylene chloride				
trichlorofluorometh				
1,1-dichloroethylen				
1,1-dichloroethane				
trans-1,2-dichloroet				
cis-1,2-dichloroethy				
chloroform				
1,1,2-trichlorotrif				
1,2-dichloroethane				
1,1,1-trichloroethar				DT'
carbon tetrachloride				**
bromodichloromethane				
1,2-dichloropropane.				NO.
2,3-dichloropropene.				
trans-1,3-dichloropi				BACC
trichloroethylene				REALT!
1,1,2-trichloroethar				
chlorodibromomethane		-		
cis-1,3-dichloroprop				
bromoform				
1,1,1,2-tetrachloroe				
tetrachloroethylene.				
1,1,2,2-tetrachloroe				
chlorobenzene				
VOLATILE NON-HALOGEN				
benzene				
toluene				
ethylbenzene				
p-xylene				
o-xylene				
m-xylene		. <	1	
Results reported mee				
N.Y.S. Drining Water				.
Date Reported: 11/3/	′86			

9.C. McLendon, P.E. Laboratory Director

ilie, New York + Farmingdale. New York + Riverhead. New York + Fairfield, New Jersey

PERENTED)

NOV 1 7 1286

BAGGRE COURTY KEALTH DEPARTMENT

HOLZMACHER, McLENDON and MURRELL, P.C . CONSULTING ENGINEERS, ENVIRONMENTAL SCIENTISTS and PLANNERS 575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 . 516-694-3040

Broome County Health Dept.
1 Wall Street

Binghamton, NY 13901

Sample Lab No. 661808
Date Collected: 10/7/86
Date Received: 10/9/86
Type: Potable Water

Point: Sta. #3 - Johnson City well #3 - 1030 Hrs.

Collected By: TMM 99

RESULTS FOR VOLATILE HALOGENATED ORGANICS

RESULTS FOR VOLATILE HALLGENATE		
Campound	uç	1/1
vinyl chloride	<	1
dichlorodifluoromethane	<	1
methylene chloride trichlorofluoromethane	<	1
trichlorofluoromethane	<	
1,1-dichloroethylene		1
1.1-dichloroethane	<	1
trans-1,2-dichloroethylene	<	1
cis-1,2-dichloroethylene	<	1
		1
1,1,2-trichlorotrifluoroethane.	<	1
1,2-dichloroethane	<	1
	<	9
carbon tetrachloride	<	1
bromodichloromethane	<	1
1,2-dichloropropane	<	1
2,3-dichloropropene	<	7
	<	1
	<	1
	<	1
	<	1
	<	1
bromoform	<	1
	<	1
	<	1
	`	1
		1
VOLATILE NON-HALOGENATED ORGANIC	CS	•
benzene	₹	ำ
toluene		
ethylbenzene		
p-xylene		
o-xylene		
m-xylene		1
Results reported meet	•	•
N.Y.S. Drinking Water Limits.		
Date Reported: 11/4/86		
Date 1/2/00		

BELEINEN

NOV 1 7 1986

HEALTH DEPARTMENT

*Andla *

6.C. McLendon, P.E.

Laboratory Director

575 BROAD HOLLOW RCAD, MELVILLE, N.Y. 11747 • 516-694-3040

Broome County Health Dept.
1 Wall Street

N.Y.S. Drinking Water Limits.

Results reported meet

Date Reported: 11/4/86

Binghamton, NY 13901

Sample Lab No. 661809 Date Collected: 10/7/86 Date Received: 10/9/86 Type: Potable Water

Point: Sta. #4 - Johnson City well #6 - 1100 Hrs.

Collected By: TMM 99

RESULTS FOR VOLATILE HALOGENATED ORGANICS Compound vinyl chloride dichlorodifluoromethane. . . . < 1 methylene chloride < 1 trichlorofluoromethane . . . < 1 1,1-dichloroethylene 1,1-dichloroethane < 1 trans-1,2-dichloroethylene . . < 1 cis-1,2-dichloroethylene . . . < 1 1,1,2-trichlorotrifluoroethane.< 1 1,2-dichloroethane < 1 1,1,1-trichloroethane. . . . < 8 carbon tetrachloride < 1 bromodichloromethane < 1 1,2-dichloropropane. . . . < 1 2,3-dichloropropene. . . . < 1 1220 maris 54 trans-1,3-dichloropropene. . . < 1 trichloroethylene....< 1 1,1,2-trichloroethane. . . . < 1 NOV 1 7 JES chlorodibromomethane < 1 cis-1,3-dichloropropene. . . < 1 BHOOME COUNTY rearm basomingum 1,1,1,2-tetrachloroethane. . . < 1 5 tetrachloroethylene. 1 01,1,2,2-tetrachloroethane. . . VOLATILE NON-HALOGENATED ORGANICS toluene...... ethylbenzene 1

* Reported value represents total.

S.C. McLendon, P.E. Laboratory Director

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040

Broome County Health Dept. 1 Wall Street

Binghamton, NY 13901

Date Reported: 7/16/86

Sample Lab No. 657146 Date Collected: 6/25/86 Date Received: 6/26/86 Type: Potable Water

Point: Johnson City Well #3 Taken @ 1345 Hrs. Collected By: TM 99 Raw tap at wellhouse

RESULTS FOR VOLATILE HALOGENATED ORGANICS Campound ug/l vinyl chloride < 1 dichlorodifluoromethane. . . . < 1 methylene chloride < 1 trichlorofluoromethane . . . < 1 1,1-dichloroethylene < 1 1,1-dichloroethane 5 trans-1,2-dichloroethylene . . Ccis-1,2-dichloroethylene . . . 1,1,2-trichlorotrifluoroethane.< 1 1,2-dichloroethane < 1 1,1,1-trichloroethane. . . . < 1 carbon tetrachloride <! bromodichloromethane < 1 1,2-dichloropropane. . . . < 1 2,3-dichloropropene. . . . < 1 trans-1,3-dichloropropene. . . < 1 trichloroethylene. < 1 1,1,2-trichloroethane. . . . < 1 chlorodibromomethane < 1 RECEIVED cis-1,3-dichloropropene. . . < 1 1,1,1,2-tetrachloroethane. . . < 1 JUL 24 1986 tetrachloroethylene. . . . < 1 1,1,2,2-tetrachloroethane. . . < 1 BEGGGGE COUNTY HEALTH DEPARTMENT VOLATILE NON-HALOGENATED ORGANICS benzene. toluene. ethylbenzene Results reported meet N.Y.S. * Reported value represents total. Drinking Water Limits.

Middil

S.C. McLendon, P.E. Laboratory Director

Melville, New York + Farmingdale, New York + Riverhead, New York

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040 CLIENT NAME AND ADDRESS

Broome County Health Dept. 1 Wall Street Binghamton, NY 13901 Lab. No. 556812

Type Water Potable Water

Sampling Pt. Johnson City Well #2

Treated @ Well 1020 Hrs.

Date Sampled 6/4/85

Collected By CL 99

VOLATILE HALOGENATED	ug/1	
VOLATILE HALOGENATED vinyl chloride		
dichlorodifluoromethane	< 1	
methylene chloride		
trichlorofluoromethane	1	
1,1-dichloroethylene	< 1	
1,1-dichloroethane		
trans-1,2-dichloroethylene		
cis-1,2-dichloroethylene		
chloroform		
1,1,2-trichlorotrifluoroethane		
1,2-dichloroethane		
1,1,1-trichloroethane		
carbon tetrachloride		
bromodiciloromethere		
1,2-dichloropropane		
2,3-dichloropropene		
trans-1,3-dichloropropene		
trichloroethylene		
1,1,2-trichloroethane		
chlorodibromomethane		
cis-1,3-dichloropropene		
bromoform.		
1,1,1,2-tetrachloroethane		
tetrachloroethylene		
1,1,2,2-tetrachloroethane	<i>(</i> 1	
chlorobenzene		
VOLATILE NON-HALOGENATED	•••••	
benzene.	c 1	
toluene.		
ethylbenzene		
m-xylene		
o-xylene		
		PEREINTA
p-xylene* Reported value represents total.	****	ā ·
Results reported meet N.Y.S.	*/(////////////////////////////////////	. In the second second
Drinking Water Limits.	4/1/2/1/1/2	J. Commission
Dissuing races minutes.	AMINA	
Date Reported: 6/17/85	S.C. McLendon, P.E.	DA D
2000 Reported: 0/17/03	Taboratory Mirector	III.

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040 CLIENT NAME AND ADDRESS

Broome County Health Dept. 1 Wall St. Binghamton, NY 13901

Lab. No. 556813

Type Water Potable Water
Sampling Pt. Johnson City Well #1

Treated @ Weil 1025 Hrs.

Date Sampled 6/4/85

Collected By CL 99

vinyl chloride	ug/1 1
dichlorodifluoromethane	
methylene chloride <	
trichlorofluoromethane	
1,1-dichloroethylene	1
1,1-dichloroethane	
trans-1,2-dichloroethylene	1
cis-1,2-dichloroethylene	1
chloroform	
1,1,2-trichlorotrifluoroethane	1
1,2-dichloroethane	
1,1,1-trichloroethane	3
carbon tetrachloride	1
bramodichloramethane	7
1,2-dichloropropane	1
2,3-dichloropropene	1
trans-1,3-dichloropropene	1
trichloroethylene <	1
1,1,2-trichloroethane	1
chlorodibromomethane	1
cis-1,3-dichloropropene <	1
bromoform	1
1,1,1,2-tetrachloroethane	1
tetrachloroethylene <	
1,1,2,2-tetrachloroethane	1
chlorobenzene	
VOLATILE NON-HALOGENATED benzene <	
benzene	1
toluene <	1
ethylbenzene <	1
m-xylene	December
o-xylene	
p-xylene	1//
* Reported value represents total.	# ** # 302.00 A
Results reported meet N.Y.S.	19
Drinking Water Limits.	KL STATE
/* (b/ted/******)	****
Date Reported: 6/17/85 S.C. McLendo	n, P.E.
Laboratory Dire	ctor
*	

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040 CLIENT NAME AND ADDRESS

Broome County Health Dept. 1 Wall St.

Binghamton, NY 13901

Lab. No. 556814

Type Water Potable Water Sampling Pt. Johnson City Well #6

Treated @ Well 1100 Hrs. Date Sampled 6/4/85 Collected By Cl 99

VOLATILE HALOGENATED	ug/l
vinyl chloride	1
dichlorodifluoramethane	1
methylene chloride <	1
trichlorofluoromethane	i
1,1-dichloroethylene	
1,1-dichloroethane	· 1
trans-1,2-dichloroethylene	
cis-1,2-dichloroethylene	
chloreform	1
1,1,2-trichlorotrifluoroethane	1
1,2-dichloroethane	·
1,1,1-trichloroethane	
carbon tetrachloride.	
branodichi aranethane	1
1,2-dictionopropane	1
2,3-dichloropropene	
trans-1,3-dichloropropene	
trichloroethylene	
1,1,2-trichloroethane	
chlorodibromomethane	1
cis-1,3-dichloropropene	1
bramoform	
1,1,1,2-tetrachloroethane	
tetrachloroethylene	
1,1,2,2-tetrachloroethane	- I ↑
chlorobenzene.	
VOLATILE NON-HALOGENATED	DECEMBER 1
benzene <	· · · · · · · · · · · · · · · · · · ·
toluene	1
	JUN 2 0 1035
ethylbenzene	1
m-xylene	1
o-xylene	1 / / Enails of Engineering
p-xylene	
* Reported value represents total.	1/.//
Results reported meet N.Y.S.	
Drinking Water Limits. * * * * * * * * * * * * * * * * * * *	Lli
770	
- 11	on, P.E.
Laboratory Dike	ector

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040

CLIENT NAME AND ADDRESS

Broome County Health Dept. 1 Wall St. Binghamton, NY 13901

Lab. No. 556657 Type Water Potable Water Sampling Pt. Vill. of Johnson City - Well #7 Treated Water Tap in Well house - Taken @ 1329 Hrs. Date Sampled 5/30/85 Collected By CL 99

71714

VOLATILE HALOGENATED vinyl chloride. dichlorodifluoromethane. methylene chloride. trichlorofluoromethane. 1,1-dichloroethylene. 1,1-dichloroethylene. trans-1,2-dichloroethylene. cis-1,2-dichloroethylene. chloroform. 1,1,2-trichlorotrifluoroethane. 1,2-dichloroethane. 1,1,1-trichloroethane. carbon tetrachloride. bromodichloromethane. 1,2-dichloropropane. 2,3-dichloropropene. trans-1,3-dichloropropene. trichloroethylene. 1,1,2-trichloroethane. chlorodibromomethane.	<pre></pre>	
cis-1,3-dichloropropenebromoform		
1,1,1,2-tetrachloroethane tetrachloroethylene		
1,1,2,2-tetrachloroethane		
VOLATILE NON-HALOGENATED benzene	< 1	paramen
tolueneethylbenzenem-xylene		JUN 1 3 1985
o-xylenep-xylene		DOCOME COMMY MEALTH DEPARTMENT
* Reported value represents total. Results reported meet N.Y.S. Drinking Water Limits.	*	WH)
Date Reported: 6/10/85	S.C. McLendon, P.E. Laboratory Director	70.5

575 BROAD HOLLOW ROAD, MELVILLE, N.Y. 11747 • 516-694-3040

CLIENT NAME AND ADDRESS

Broome County Health Dept. 1 Wall St. Binghamton, NY 13901 Lab. No. 556656

Type Water Potable Water
Sampling Pt. Vill. of Johnson City Well #3

Treated Water Tap in Well House - Taken @ 1319 Hrs.

Date Sampled 5/30/85 Collected By CL 99

VOLATILE HALOGENATED	<u>ug/l</u>	
vinyl chloride	< 1	
dichlorodifluoromethane		
methylene chloride	< 1	
trichlorofluoromethane	1	
1,1-dichloroethylene	< 1	
1,1-dichloroethane	1	
trans-1,2-dichloroethylene	< 1	
cis-1,2-dichloroethylene		
chloroform		
1,1,2-trichlorotrifluoroethane	1	
1,2-dichloroethane	< 1	
1,1,1-trichloroethane	< 2	
carbo tetrachloride		
bromodichloromethane	< 1	
1,2-dichloropropane	1	
2,3-dichloropropene		
trans-1,3-dichloropropene	1	
trichloroethylene	< 1	
1,1,2-trichloroethane	< 1	
chlorodibromomethane	< 1	
cis-1,3-dichloropropene	< 1	
bromoform	< 1	
1,1,1,2-tetrachloroethane	< 1	
tetrachloroethylene	< 1	RECEIVED
1,1,2,2-tetrachloroethane	< 1	#Ridenalist Transfer
chlorobenzene		F-1
VOLATILE NON-HALOGENATED		JUN 1 3 1985
benzene		
toluene		Engine Co
ethylbenzene		Hall bereit
m-xylene		
o-xylene	1	. 1
p-xylene		11 41 4
* Reported value represents total.	******	1800
Results reported meet N.Y.S.	* 1 1 1 1 1 1	•
Drinking Water Limits.		
	*****	my is
Date Reported: 6/10/85	S.C. McLendon, P.E. Laboratory Director	7750

Safe Drinking Water Act

Date: August 28, 1986

CLIENT JOHNSON CITY WATER DEPARTMENT	JOB NO. 2750.001.517				
DESCRIPTION					
DATE COLLECTED 8-12-86 DATE REC'D.	8-13-8	6	_DATE ANALYZ	8-19-	86
Trihalomethane Analysis	Sample	Chloro- form	Bromo- Dichloro- Methane	Chioro- DiBromo- Methane	Bromo- Form
Description	Number	(ppb)	(ppb)	(ppb)	(ppb)
5 Riverside Drive	A2122			XXIII Y	
General Machine Shop	A2123	<1. <1.	<1.	∢1.	<1.
236 Penna Road	3.5			2.	2.
IBM Field House	A2125	<1. • √1.	<1.	٠. ١٠٠٠ - ١	2.
Blank	WSEAC 120				
	医心情 对				
	7				
				里之子	
美国的					
建				Ferral Control	14,257,3
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	P. Carlo		4. 显示		Line State
and the second second				72.40	100

Methodology: Federal Register — 40 CFR, Part 141, November 29, 1979

OBG Laboratories, Inc. Box 4942 / 1304 Buckley Rd. / Syracuse, NY / 13221 / (315) 457-1494

Comments:

9-16-85

Date: ____

CLIENT JOHNSON CITY			OB N	<u> </u>	
DESCRIPTION				· 	
DATE COLLECTED 8-6-85 DATE REC'D.	8-7-85		_DATE ANALYZ	9-2-85	
Trihalomethane Analysis , POTENTIAL	Sample Number	Chioro- form (ppb)	Bromo- Dichloro- Methane	Chloro- DiBromo- Methane	Bromo- Form
Description IBM Field House	5032	9.	(ppb)	(ppb)	(ppb)
15 Riverside Drive	5032	12.	9.	7.	5.
Manhan Chan	5034	4.	5. The state of th	4.	3.
Hill Top Manor	5035	5.	4.	4.	9.
Try top name.	3.000			200	
The second secon	and in a lateral server	برواد المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم	الده ويخصب تشايل والد.		- Marie Marie
	Maria Santa				
			. Dec		
			CCT	1530	
			Armen's		

	A STATE OF THE STA				
			in the second		
	The second secon			A CONTRACTOR OF THE SECOND	Access of State .
Methodology: Federal Register, Vol. 44, No. 231, N		0ct.2	6,1984		
comments: All sites were dosed with Zup after seven days, 14-15ppm wa	pm or chio s remainin	rine and		00-7	7-

O'Brien & Gere Engineers, Inc. Box 4873 / 1304 Buckley Rd. / Syracuse, NY / 13221 / (315) 451-4700

Safe Drinking Water Act

CLIENT JOHNSON CITY				JOB N	o. <u>2750.0</u>	01.517
DESCRIPTION			<u>. </u>			
DATE COLLECTED 11-11-83 DATE	E REC'D	11-16-8	33	DATE ANALYZ	11-22-8	3
Trihalomethane Analysis		Sample Number	Chloro- form (ppb)	Bromo- Dichloro- Methane (ppb)	Chloro- DiBromo- Methane (ppb)	Bromo- Form (ppb)
Instantaneous:		· · · · · · · · · · · · · · · · · · ·		*** · ** · *		
Gen. Mach. Shop	1	71222	<1.	<1.	<1.	<1.
Schusters Big M		71223	<1.	<1.	1.	<1.
IBM		71224	<1.	<1.	2.	<1.
Hill Top		71225	<1.	<1.	<1.	3.
Field Blank		71226	<1.	<1.	<1.	<1.
Terminal: (MTP) Main Plant #2 Well #6 Pump Station		71227 71228	15. 6.	11. 6.	4.	<1.
chlouir residual		<u>.</u> . <u>.</u>				·• ·
Main plant #2 23 #6 pump station 21	ppn				<u> </u>	
		. ,	•			••·· • •
				in and an in in		
			•· • · · ••	****		
And the second s		-	·			
Methodology: Federal Register, Vol. 44, No. 231, Nove	ember 29,	1979, pg. 6867	2-68689			
Comments:						
O'Brien & Gere Engineers, Inc. Box 4873 / 1304 Buckley Rd. / Syracuse, NY / 13	3221 / (31	5) 451-4700		ed: <u>Dr. Hee</u> ite: 12-7-		

Safe Drinking Water Act

7-12-83

CLIENT JOHNSON CITY			JOB N	o. <u>2750.0</u>	01.517
DESCRIPTION					
DATE COLLECTED 6-14-83 DATE	REC'D. 6-15-83		_DATE ANALYZ	6-21-8	3
Trihalomethane Analysis	Sample Number	Chloro- form (ppb)	Bromo- Dichloro- Methane (ppb)	Chloro- DiBromo- Methane (ppb)	Bromo- Form (ppb)
Big M Instantan	eous 61430	<1.	~ <1.	<1.	3.
Gen.Mach.Shop "	61431	<1.	<1.	<1.	3.
Hill Top "	61432	<1.	<1.	<1.	5.
IBM C.C. "	61433	<1.	1.	3.	5.
Well 3 before Cl Terminal	61434	14.	11.	5.	<1.
Well 6 before Cl " (MTF	61435	8.	8.	4.	<1.
		A Total	in in a surface	e, man care	
					1 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		<u></u>	 .	,	
					-
		, AL MAN (4-11) AN (4-11)	aggingue into diretor		
			; • -	·- •. ·	
				-	
Methodology: Federal Register, Vol. 44, No. 231, Novem Comments:	nber 29, 1979, pg. 6867.	2-68689	. Jou		

O'Brien & Gere Engineers, Inc. Box 4873 / 1304 Buckley Rd. / Syracuse, NY / 13221 / (315) 451-4700

MEW 70AA STARE BERARTMERT UR HEALTH Wadsworth vewfer for Laborateries and research FINAL REPORT REBULTS OF EXAMINATION BOURGE IG - 685000 - - DRAINAGE BASIN. 06 - GAZETTEER-CODE: 0303 FOLISTICAL PUBLISHERS FOR SERVICE V. COUNTY: BROOME Z DIRECTION: , DESCRIPTION TAP AT WELLHOUSE REPORTING LAB TOX: LAB FOR ORGANIC ANALYTICAL CHEMISTRY - TEST PATTERN -----XPESTH:ORGANOCHLORINE PESTICIDES & HERBICIDES -- - --AT ESTAL UNGANUCHLOR)

AT ESTAL UNGANUCHLOR)

AT ESTAL UNGANUCHLOR)

TIME OF SAMPLET TO THE PLING: 86/06/25 13:45 DATE PRINTED: 86/07/30 , TIME OF SAMPLING: 86/06/25 13:45 JANALYSIS. XPEST ORGANOCHLORINE PESTICIDES (DES 310-2) T15705 HCH, ALPHA < 0.04 MCG/L < 0.04 MCG/L T15009 HCHABETA ------(-0.-04-MCG/L--------- TG5807 HCH, GAMMA (LINDANE) -- - - - ---------T1600F HCH.DELTA
T0800F HEFTACHLOR < 0.04 MCG/L < 0.05 MCG/L - -- -- MCG/L ----TOBOOF HERTACHLOR EPOXIDE TABOOF ENDOBULFAN I < 0.05 MCG/L THE SECTION OF MCG/L CO. 05 MCG < 0.05 MCG/L TOSEOF DIELDRIN < 0.02 MCG/L < 0.02 MCG/L AUG 6 1986 TOBACE EMBRIN TARAGE DOD -PAKA, BARA

TARAGE STRONGULFAM II

TETATE ENDRIN ALDEREDE

TETATO ENDOSULFAN BULFATE

TETATO ENDOSULFAN BULFATE

AUG OLDS CO. 05 MCG/L

BROOME COUNTY CO. 05 MCG/L

MEALTH DEPARTMENT CO. 05 MCG/L T14709 DDT HPARA, FARA < 0.05 MCG/L TUBERS METHOXYCHLOR < 1.0 MCG/L -< 1.0 MCG/L ----T35509 -T0%APHENE ---- --TOBECE CHLORDANE < 0.1 MCG/L .7 %. DATE REPORTED: 86/07/09 REPORT MAILED OUT - ------RESULT------T08809 2:4-D 4: T42509 SILVEX (2:4:5-TP) < 0.5 MCG/L < 0.1 MCG/L 5.5 **** CONTINUED ON NEXT PAGE *** 143 1-2 $_{a}()$ COPIES SENT TO: CO(1), RO(1), LPHE(2), FED(0), INFO-P(0), INFO-L(0) --- - DIFELITE OF EMPIREMMENTAL SANITATION BROOMER COMMEN HEALTH DEPT.

SUBMITTED BY: ALBECK

1 WALL STREET

NEW 704% STATE DEPARTMENT IN HEALTH H.6-17 WADSWORTH CENTER FOR LABORATORIES AND RESEARCH

T	9448 S		RESULTS OF EXAMINATION	FI	NAL REPORT
		SUBDIVIÈICM. J		26/ CHARG COUNTY BROOME	E: 23 4)
1		- JOHNSON CIT MALING- 85/05	· · · · · · ·	DATE PRINTE	D: 83. 07/07
		OLLOWING PARM	METERS NOT PART OF TEST PA	TTERM	· · · · · · · · · · · · · · · · · · ·
, !	AMALY51S	AMA	NITROGEN CONTAINING PESTI	CIDES (DES 310-2	3)
1			DATE REPORTED: -86/07/15		
		FARAMETER		RESULT	(
10	-	- EPTC-(EPTAM) BUTYLATE (SU	TAN)		
	TAC 03	TO TELLIDAL TAL		2 1 MCA/I	
() ·		DIAZINON (SP ALACHLOR (LA		< 1. MCG/L < 1. MCG/L	~ ` (
<u>.</u> .			650) (DUAL-)		the state of the s
;'			(DURSBAN)	< 1. MCG/L	_
2		MALATHION		< 1. MCG/L	•
₹.			LADEX)		•
. ::	Tinana	IFORENPHOS (< 1. MCG/L	
3	·				
2	ANALYSIS	ADD-HERB	ADDITIONAL HERBICIDES DATE REPORTED: 88/07/15	REFORT M	AILED OUT
•		PARAMETER		RESULT	
: -	T10005	PROMETON (PR	AMITROL)	< 1. MCG/L	
		-BROMACIL - HY			N A
		GLYPHOSATE (DIURON (DREX			NA NA :
1 2	. <u></u>			**	
	•				
36	i.				; -, ·
37					• #
	•		-		js (
<u> </u>					
1	*			144	~~ . ∏ (
ده د ح	·				ins ins
	•			BECEIVED	
•	•				
				AUG 6 1988	
i					
				COUNTY	
•			•	The state of the s	
					-

Safe Drinking Water Act

CLIENT JOHNSON CITY			JOB NO	2750.001.517	
DESCRIPTION 44 Camden Street					
SAMPLE NO. 41003 DATE COLLEC	TED 7-25-84	DATE REC'D	-84 _DATE ANALYZ	ZED	
Primary Inorganic Chemicals	ррт	Secondary Inorg	anic Chemicals	5 ppm	
Arsenic	<0.01	Chloride			
Barium	<0.1	Copper	in the second second		
Cadmium	<0.01	Iron			
Chromium	<0.01	Manganese			
Fluoride	<0.1	Sodium			
Lead	<0.01	Sulfate	• -		
Mercury	<0.0005	Zinc	_		
Nitrate	0.11	Corrosivity			
Silver	<0.01				
Selenium	<0.01				
Organic Chemicals	ppb				
Endrin					
Lindane					
Methoxychlor					

Toxaphene

2, 4-D

2, 4, 5-TP Silvex

Methodology: Federal Register — 40 CFR, Part 136, December 3, 1979

Comments:

Authorized: 8-24-84

O Brief & Gere Engineers Inc. 1994 (315) 451 4700

Osto

APPENDIX I REFERENCES

References

- Barksdale, H.C., O'Bryan, Deric, and Schneider, W.J., <u>Effect of Drought on Water Resources in the Northeast</u>, U.S. Geol. Survey Hydrol. Inv. Atlas HA-243, 1966.
- Broome County Health Department, Unpublished Data, 1986.
- Broome County Health Department, Unpublished Data, 1987.
- CH₂M Hill, <u>Installation Restoration Program Records Search for Air Force Plant 59</u>, Gainesville, Florida, October 1984.
- Coates, D.R., <u>Discussion of K.M. Clayton "Glacial Erosion in the Finger Lakes Region (New York, U.S.A.)</u>, <u>Berlin, Zeitschr. Geomorphologie, Neue Folge, Bd. 10, Heft 4, S. 469, [new ser., v.10, no.4, p.469]. 1966.</u>
- Denny, C.S. and Lyford, W.H., <u>Surficial Geology and Soils of the Elmira</u> <u>Williamsport Region</u>, <u>New York Pennsylvania</u>, USGS Prof. Paper 379, 60 p., 1963.
- Gilligan, W.P., Personal Communication, General Electric Company, 1986.
- Gilligan, W.P., Personal Communication, General Electric Company, 1988.
- Moss, J.H. and Ritter, D.F., New Evidence Regarding the Binghamton
 Substage in the Region Between the Finger Lakes and the Catskills, Am.
 Jour. Sci., v.260, p.81, 1962.
- New York State DEC, <u>Records of Wells and Test Borings in the Susquehanna River Basin</u>, New York, Bulletin 69, 1972.
- New York State DEC, <u>The Clinton Street Ballpark Aquifer in Binghamton</u> and Johnson City, New York, Bulletin 73, 1977.
- New York State DEC, <u>Stratified-Drift Aquifers in the Susquehanna River Basin</u>, New York, Bulletin 75, 1982.
- Powers, J.P., <u>Construction Dewatering: A Guide to Theory and Practice</u>, John Wiley and Sons, Inc., New York, 1981.
- Randall, A.D., Movement of Bacteria from River to Municipal Well: A Case History, Jour. Am. Water Works Assoc., v.62, no.11, p.716-720, 1970.

(CL5119A) (01071-00-86007-00)

- Randall, A.D., Personal Communication, USGS, 1988.
- Sax, N. Irving, <u>Dangerous Properties of Industrial Materials</u>; Sixth Edition, Van Nostrand Reinhold Company, New York, 1984.
- Schneider, Wayne, Personal Communication, General Electric Company, 1987
- USDA, <u>Soil Survey of Broome County</u>, <u>New York</u>, Soil Conservation Service, March 1971.
- USEPA, <u>Laboratory Data Validation: Functional Guidelines for Evaluating Inorganics Analyses</u>, TDD No. HQ-8410-01, Hazardous Site Control Division, Washington, D.C., 1985.
- USEPA, Clinton Street Ballpark Valley Aquifer System Broome and Tioga County Areas, NY; Sole Source Aquifer Final Determination, Federal Register, v.50, no. 9, p. 2025-2027, Jan. 14, 1985.
- USGS, Hydrogeology of the Valley Fill Aquifer in the Endicott-Johnson City Area, Broome County, New York, Open-File Report 82-268, 1982.
- USGS, Water Resources Data New York Water Year 1983, New York NY-83-3, 1983

(CL5119A) (01071-00-86007-00) APPENDIX J
BIOGRAPHIES OF KEY PERSONNEL

Robert D. Goldman

Fields of Competence

Hydrogeological investigations for groundwater contamination, soil and groundwater sampling, geophysical exploration for oil and gas, and well-site geology.

Experience Summary

Five years varied geologic, hydrogeologic, and geophysical experience, including hazardous waste site investigations involving development and installation of groundwater monitoring programs, geophysical applications and processing, and well-site geology.

Education

B.A., Geology, University of Colorado, Boulder, 1979

Key Projects

1

- Field team leader at Michigan Superfund site; responsible for groundwater sampling, monitoring well installation, installation and maintenance of long-term monitoring and supervision of general field activities.
- Responsible for three dimensional modeling of the groundwater flow at a Michigan Superfund site to design remedial activities, utilizing USGS 3D Finite Difference model.
- Field team leader for exploratory borehole program to determine extent of contamination from underground tanks at New Jersey factory.
- Manager of field operations for the remedial investigation of a lead and cadmium contamination problem from mine tailings in Aspen, Colorado. Study included soil sampling, test pit and borehole investigation, soils mapping, and surface water budget study.
- Assistant Project Manager for two NURE (National Uranium Resource Evaluation) contracts in the Mississippi Embayment. Work involved extensive research and field sampling of the groundwater and surface water distribution with emphasis on hydrochemical trends for mineral exploration.
- Development of groundwate: monitoring programs for Phase II of the Air Force's Installation Restoration Program.

(0018R)

- Participated in the preparation of RCRA Part B permit applications for various facilities, including a land treatment facility and a sanitary landfill.
- Installation of groundwater monitoring well system in compliance with RCRA guidelines for Part B permit.
- Preparation of model to rank the degree of remedial action needed for 37 hazardous waste sites.
- Project geologist for numerous hydrogeologic investigations to monitor release from underground tanks.
- Site evaluation and design of an investigative sampling plan for determining the presence of hazardous waste contamination concerning an industrial plant closure.
- Interpreted seismic data in geologically complex onshore areas, including the Overthrust Belt, Paradox Basin and the Great Basin.
- Project geologist for Devonian shale degasification study in western New York. Responsible for site investigation, development of a drilling program and drilling prognoses of 15 wells.

Professional Affiliations

National Well Water Association (Association of Ground Water Scientists and Engineers)

James P. Mack

Fields of Competence

Geology; hydrogeology; water resources evaluation; groundwater monitoring programs; geophysical surveys; groundwater characterization; environmental impact statements and permits; groundwater remediation.

Experience Summary

Twelve years of hydrogeological experience including design of ground-water monitoring systems, hazardous waste site investigations, application of hazard ranking models, preparation of RCRA compliance plans, including monitoring, maintenance and contingency plans, and spill response plans.

Education

B.S., Geology, Waynesburg College, 1974 M.S., Geology, Adelphi University, 1980

Key Projects

- Conducted and supervised Phase II confirmation studies for the Air Force's Installation Restoration Program (IRP). This involved developing scopes of work, estimating costs, coordinating subcontractors, supervising field work, preparing draft and final reports and attending meetings.
- Conducted hydrogeologic investigations of landfills and soil contamination problems in Ohio, West Virginia, Connecticut New Jersey, New York, New Mexico, Maryland, Alabama and North Dakota.
- Prepared a draft Corrective Actions Permit Writers Manual for EPA. Manual specified techniques EPA permit writer could use to evaluate the effectiveness of proposed groundwater cleanup programs.
- Participated in the design of a groundwater monitoring system for a major hazardous waste disposal site near Niagara Falls, New York. Because of the unique characteristics of the hydrogeologic environment, a new design was developed for monitoring wells.
- Project Manager for a site investigation and remedial design at a location in Toledo, Ohio, where excessive chromium contamination had been discovered in low permeable clay soil. Work consisted of the construction of 9 test pits, approximately 40 test borings and collection of over 300 soil samples which were analyzed for total chromium, hexavalent chromium, EP Toxic chromium. Remedial option considered consisted of soil excavation, capping, monitoring and an area of limited use.

- Conducted extensive hydrogeologic field investigations at a hazardous waste disposal site near Baltimore, Maryland, including drilling of test borings, installation of monitoring wells, natural gamma logging, aquifer tests, groundwater flow analysis and an estimate of potential impacts.
- Prepared an off-site spill response plan for a hazardous waste processing facility near Chicago, Illinois. Included coordinating site personnel, contacting local emergency response agencies and establishing a sequence of procedures for corporate personnel in the event of a spill.
- Participated in several Initial Assessment Studies for the US Navy. He has prepared water resources, soils and geology sections for IASs for the Indian Head Naval Ordnance Station, Earl Naval Weapons Station, Patuxent River Naval Air Station, Mechanicsburg Ships Parts Control Center and the Davisville Construction Battalion Center. Collected available published and filed reports, conducted interviews with appropriate personnel, evaluated potential groundwater and surface water impacts from identified disposal areas and ranked designated sites according to the Navy ranking model.
- Prepared earth and water resources sections for major environmental impact statements on 201 Facilities Plans for large river basins in the Northeast and Puerto Rico. This work included an evaluation of the potential effects expanded suburban development may have on regional groundwater quality and quantity. Characterized existing hydrogeologic conditions, prepared hydrologic budgets, delineated productive aquifers, performed safe yield determinations and identified aquifer recharge areas.
- Performed a hydrogeological analysis of a proposed hazardous waste disposal site (for PCBs) in the Upper Hudson region of New York. This included an evaluation of the site for compliance with New York State and Federal Hazardous Waste Disposal Regulations, suitability of the leachate collection system and adequacy of the groundwater monitoring plan.

Professional Afficiations

National Well Water Associations

Publications

Mr. Mack prepared Earth & Water Resources sections for the following studies:

- Environmental Impact Statement on the 201 Facilities Plan for the Upper Passaic River Basin in New Jersey.
- Environmental Impact Statement on the 201 Facilities Plan for the Upper Rockaway River Basin, New Jersey.

(0032R) (7/1/86)

- Environmental Impact Statement on the 201 Facilities Plan for the Lajas Valley, in Puerto Rico.
- Environmental Impact Statement on the 201 Facilities Plan for the Upper Hudson-Lake George Region in New York.
- Environmental Impact Statement on the Dredging and Upland Disposal of PCB-Laden River Bed Sediments in the Upper Hudson, Fort Edwards, New York.

"Potential Groundwater Contamination from Development at Various Densities at Elwood, New York." Town of Huntington, Department of Environmental Protection, Huntington, New York.

"Environmental Impact Statement on the Imperial Gardens Subdivision With Special Reference to Anticipated Groundwater Contamination, Commack, New York." Town of Huntington, Department of Environmental Protection, Huntington, New York.

"Monitoring, Maintenance and Contingency Plan for SCA Chemical Services, Inc., Model City, New York."

"Off-Site Spill Emergency Response Plan for SCA Chemical Services Chicago Facility."

"Phase I Field Investigations and Risk Assessment of the Solley Road Site."

Hydrogeology Assessment of the Laurel Park Landfill, Naugatuck, CT.

IAS Study, Naval Ordnance Station, Indian Head, Maryland.

IAS Study, Naval Weapons Station, Earl, New Jersey.

IAS Study, Naval Air Station, Patuxent River, Maryland.

IAS Study, Ships Parts Control Center, Mechanicsburg, Pennsylvania.

IAS Study, Construction Battalion Center, Davisville, Rhode Island.

Development of a Comprehensive Groundwater Monitoring System to Meet Federal and State Requirements.

Evaluating RCRA Corrective Actions Program.

Investigation and Corrective Action: How It Was Done at a Superfund Site in Connecticut.

"Equipment for Data Collection at Hazardous Wastes Sites - An Overview for Environmental Professionals" (with T.J. Morahan) in <u>The Proceedings of the National Conference on Hazardous Wastes and Hazardous Materials</u>, March 1986.

(7/1/86)

Jill F. Greenberg

Fields of Competence

Toxicology of environmental and occupational contaminants; industrial hygiene/health and safety procedures; solid waste, hazardous waste and hazardous materials management; receptor analysis; risk assessment; data collection and quality assurance/quality control procedures; environmental compliance audits.

Experience Summary

Five years of experience in reviewing, assessing and disseminating to the public and private sectors information on chemical substances regarding their chemical properties and toxicity; evaluation of epidemiologic data on animal and human carcinogens; preparation of public outreach programs; site investigation and development of remedial action plans for hazardous waste sites.

Education

B.S., Biological Sciences, State University of New York-Binghamton, 1977

M.P.H. Candidate, Environmental Sciences, Columbia University School of Public Health

Key Projects

- Responsible for the development and modification of interim status operating permits for the SCA Chemical Services, Inc., Model City facility. Reformatted and revised the closure and post-closure plan, closure cost estimates, personnel training plan, Part A hazardous waste permit application, and the monitoring, maintenance and contingency plan to meet RCRA and state requirements for container and bulk storage, tank operations, wastewater treatment, PCB storage, solvent recovery and secure landfills.
- Performed a technical review of the Record of Decision for the PRP committee of the McAdoo Associates site. Evaluated the validity of water quality criteria/maximum acceptable contaminant levels proposed by EPA for 23 organic compounds detected on-site and prepared a critique of risk assessment assumptions utilized by EPA in the ROD.
- Responsible for the preparation and development of a guidance document on hazardous materials management for the fixed base operator/air taxi industry. Environmental compliance management areas covered included operational and procedural guidelines for storage and handling of flammable/combustible liquids, acids and

compressed gases, hazardous substance release reporting and federal, state and local hazard communication/right-to-know legislation.

- Conducted an environmental compliance audit and risk assessment of hazardous waste management facilities used by a Fortune 100 chemical company. Used quantitative ranking to define corporate liability under RCRA and CERCLA.
- Assisted in the development of an EPA Part B Permit Writer's Guidance Manual for Hazardous Waste Storage Tanks. Work included development of sections pertaining to operating procedures for tank systems that store or treat ignitable, reactive or incompatible wastes.
- Preparation of an Endangerment Assessment for a Superfund site in New Mexico where numerous volatile organics, such as toluene and l,l,l-trichloroethane, and heavy metals, including chromium, nickel, lead and zinc, were detected in soil and groundwater. Work included development of aquatic, soil and airborne contaminant source-pathway-receptor analyses and an evaluation of laboratory QA/QC and reliability of analytical results.
- Prepared an Endangerment Assessment for a hazardous waste disposal site located in Delaware. Detailed toxicity profiles were developed for substances of concern, such as chromium, cadmium and ethylbenzene, and included identification of acute and chronic health risks and aquatic fate processes.
- Developed a hazard ranking system based on waste characteristics values for 22 organic and 18 inorganic compounds detected at 14 hazardous waste disposal sites of a Fortune 50 corporation in order to fulfill the requirements for an environmental liability audit. Substances of concern included heavy metals (chromium, lead), asbestos, inorganic acids, herbicides and organochlorine, organophosphate and carbamate insecticides.
- Developed the personnel training plan for the RCRA Part B permit application of a major New Jersey pharmaceutical manufacturing firm.
- Obeveloped an extensive groundwater/surface water sampling plan for a long-term monitoring program at a Superfund site in Delaware as part of overall site QA/QC required by the remedial action workplan.
- Responsible for the classification and preparation of inventories on chemicals used in the semi-conductor industry, for compliance purposes under the OSHA Hazard Communication Standard and right-to-know training programs.

- Assisted in the development of RCRA Part B applications for the aqueous waste treatment and container storage facilities of a major automobile manufacturer in St. Louis, Missouri. Work included development of procedures to prevent hazards and an exposure assessment report for the regulated units at the facility. This included identification and assessment of source contaminants and potential exposure pathways.
- Assisted in a study of chemical exposures in the auto repair industry in the greater Metropolitan New York area. Developed a comprehensive manual for educational purposes.
- Completion of a nationwide review of state and local regulations pertaining to access to data on chemical composition and hazardous materials.
- Aided in the design and development of a new research technique and methodology for integrated pest management using the enzymelined immunosorbent assay.
- Served as an editor and writer for a national health publication, which focused on critical issues in the area of environmental and occupational health, with analyses of its effect on health policy.
- Aided in the preparation of reports for public dissemination concerning availability of epidemiologic data on humans exposed to animal carcinogens and other toxic substances, such as arsenic, 1,3-butadiene and ethylene dibromide.
- Developed an extensive plan of remedial action for homeowners concerned about health effects from exposure to chlordane and Dursban, pesticides used by commercial applicators for termite eradication.
- Coordinator and moderator of a seminar series for community organizations that provided scientific and technical information in areas of environmental and health policy. Responsible for overall evaluation of project, preparation of proceedings for publication and community outreach.

Professional Affiliations

American Public Health Association Graduate Women in Science (AAAS) Scientists Institute for Public Information

Publications

Greenberg, J., AirTran News, National Air Transportation Association, September 1986. Environmental Spotlight Column: "Shop Storage of Chemicals: Incidental Not Accidental."

Karstadt, M. and Greenberg, J., "Access to Data on Chemical Composition of Products Used in Auto Repair and Body Shops." Resurvey of Product Marketers (1985) (in preparation).

Karstadt, M. and Greenberg, J., "Access to Data on Chemical Composition of Products Used in Workplaces: Impact of the New York State Worker Right to Know Law (1985)" (in preparation).

Greenberg, J., 1982. "The Fight for Safety and Health at the Work-place." Consumer Health Perspectives, Volume VIII, No. 6, New York.

Greenberg, J., Editor, 1982. "Critical Issues in Workplace Health." Consumer Health Perspectives, Volume IX, No. 1, New York.

Langridge, W.H.R., Granados, R.R. and Greenberg, J.F., Journal of General Virology, 1981, Volume 54, pp. 443-448. "Detection of Baculovirus Protein in Cell Culture and Insect Larvae by Enzyme-linked Immunosorbent Assay (ELISA)."

Langridge, W.H.R. and Greenberg, J.F., Journal of General Virology, 1981, Volume 57, pp. 215-219. "Detection of Entomopoxvirus Proteins in Insect Cell Culture by Enzyme-linked Immunosorbent Assay (ELISA)."

Langridge, W.H.R., Granados, R.R. and Greenberg, J.F., Journal of Invertebrate Pathology, 1981, Volume 38, pp. 242-250. "Detection of Autographa californica and Heliothis zea Baculovirus Proteins by Enzyme-linked Immunosorbent Assay (ELISA)."

(0119R)

Vanessa J. DeVillez

Fields of Competence

Hydrogeologic analysis, including groundwater monitoring programs, aquifer testing, interpretation of analytical data, development and implementation of site investigations and sampling programs, site assessment, technical report preparation, and proposal development.

Experience Summary

Three years of varied hydrogeologic experience pertaining to hazardous waste, including the design and implementation of site investigations and assessments at NYS Superfund sites and remedial investigation/feasibility studies. Other work includes RCRA and ECRA compliance.

Education

B.S. Geology, Indiana University, 1982 Two years of graduate work in Geology, SUNY, Buffalo

Key Projects

- Assisted in a large-scale hydrogeologic investigation of a politically sensitive industrial site in Michigan, which included the implementation of a variety of well installation techniques, groundwater sampling methods, and sampling instruments.
- Conducted an ECRA investigation of a manufacturing plant site in New Jersey to determine the extent of potential contaminant migration from an underground tank source. The tasks performed included test borings and soil sampling, installation of and sampling of groundwater monitoring wells, and interpretation and evaluation of analytical data.
- Conducted information searches, site inspections, and wrote Phase I reports for several Superfund Sites in New York State.
- Performed a Geotechnical investigation at an inactive plant site in Pennsylvania owned by a major electronics corporation. This included site inspection, subsurface investigation, and soil sampling.
- Assisted in the development of a groundwater monitoring plan for a large hazardous waste landfill in Niagara Falls, New York owned by a major waste disposal corporation. This included subsurface investigations, statistical analysis of priority pollutant analytical data to determine background levels of groundwater contamination, and establishment of upgradient and downgradient groundwater monitoring points.

(7/1/86)

- Provided investigative and technical support to a major waste disposal corporation for a politically sensitive hazardous waste landfill in New York State.
- Performed various geotechnical investigations at a plant site in Oklahoma owned by a major electronics corporation. These included subsurface investigation, monitoring well installation, permeability testing, and determination of the extent of plume migration.

Professional Affiliations

National Water Well Association

APPENDIX K TECHNICAL OPERATIONS PLAN AND SAFETY PLAN

TECHNICAL OPERATIONS PLAN
INSTALLATION RESTORATION PROGRAM
PHASE II (STAGE I) - CONFIRMATION/QUANTIFICATION
AIR FORCE PLANT 59
JOHNSON CITY, NEW YORK

Prepared by:

Fred C. Hart Associates, Inc. 530 Fifth Avenue New York, New York 10036

Prepared for:

Department of the Air Force Occupational and Environmental Health Laboratory Brooks Air Force Base, Texas 78235

September 1986

(0078G-1)

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
	1.1 Purpose of Study	1 2 2 6 6 7
2.0	SITE INVESTIGATION SUMMARY	8
	2.1 Introduction	12
3.0	FIELD SET-UP	13
	3.1 Detailed Work Plan	13 13 13
4.0	CALIBRATION OF FIELD EQUIPMENT	15
5.0	PREVENTIVE MAINTENANCE OF FIELD EQUIPMENT	16
6.0	FIELD ANALYTICAL PROCEDURES AND DATA REPORTING	17
	6.1 Chemical Data	17 17 17 18
7.0	SAMPLE NUMBERING SYSTEM	19
	7.1 Project Identification	19 19 19 20 20 20 21 21

TABLE OF CONTENTS

		<u>Page</u>
8.0	DRILLING AND INSTALLATION OF GROUNDWATER MONITORING WELLS .	22
	8.1 Drilling	22 23 24 25
9.0	GROUNDWATER MONITORING AND SAMPLING	26
	9.1 Groundwater Level Measurements	26 26 26 28
10.0	DECONTAMINATION PROCEDURES	29
	10.1 Drilling, Soil Sampling and Monitoring Well Installation	29 29 30 30 30
11.0	SAMPLING HANDLING AND PACKING	32
	11.1 Split Sample Procedure	32 33 33 34
12.0	SAMPLE CUSTODY AND DOCUMENTATION	36
	12.1 Sample Identification Documents	36 37 40 41 41
13.0	SITE CLEAN-UP	42

TABLE OF CONTENTS

																												Page
14.0	FIELD) TE	EAM	OR	GAN	ΙΙZ	'AT	íI0	M	ΑI	ND	R	RESPONSI			[B]	BILITIES						•					43
	14.1 14.2	Org Res	jani Bon	za	tic bil	n i i t	ie		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43 43
	14.3	Tra	aini	ng	•				•	•	•	•	•	•	:	:		:									•	
15.0	SCHE	DULE		•	•	•	•	•	•		•					•	•	•		•		•	•	•			•	46
Apper	ndix A	۱ -	Sit	e	Sat	et	y	ΡĮ	aı	1							•	•	•									A-1
Apper	ıdix E	3 –	Con	tr	act	•					_										_		_					B-1

LIST OF FIGURES

<u>Figure</u>		Page
1	Location and Vicinity Map of Air Force Plant 59	3
2	Site Map Indicating Areas of Potential Contamination	4
3	Location of Groundwater Monitoring Wells	9
4	Generalized Well Construction Diagram	10
5	Chain-of-Custody Form	38
6	Environmental Sampling Data Form 2752	39
7	Proposed Schedule	47

1.0 INTRODUCTION

As requested by the U.S. Air Force Occupational and Environmental Laboratory (OEHL), Fred C. Hart Associates has prepared the following Technical Operations Plan for Phase II confirmation work at the Air Force Plant 59 (AFP), in Johnson City, New York. The recommended work is based upon review of several documents; Phase I – Records Search (October 1984), and assorted data provided by the U.S. Air Force (USAF) and General Electric Company (GE) at the AFP, personnel and included data gathered at a site visit conducted on October 31, 1985. This specific approach was taken with the intent to fulfill the requirements of the USAF Phase II investigation philosophy.

1.1 Purpose of Study

The purpose of this study is to conduct a contaminant source investigation at the Air Force Plant 59 to determine: 1) the presence or absence of contamination within the specified areas of the field survey; 2) the potential for migration within the specified areas of the field survey; 3) the extent/magnitude of contamination of the AFP property; and 4) potential environmental consequences and health risks of migrating contaminants (if found) based on state and federal standards for these contaminants. HART will prepare a final report evaluating the results of the field investigation which will include all historic and current data collected by HART on the facility, an analysis of all data collected during the investigation and an identification of any contaminants which may have originated from property other than the AFP.

1.2 Site Description

The AFP is located in Broome County, New York, in the Village of Johnson City, about 3 miles west-northwest of the center of the City of Binghamton, and about 4 miles east of the center of the Village of Endicott. Other nearby towns (within 5 miles) include Maine, Chenango, Dickinson, Union, Binghamton, and Vestal. A location and vicinity map of AFP is shown in Figure 1, and a site map is shown in Figure 2.

The total land area of AFP is 29.6 acres. The main entrance of AFP is at 600 Main Street (New York State Route 17C), which is the northern boundary of the installation. The AFP is located on a bend of Little Choconut Creek which runs just to the east and south of the installation. The confluence of Little Choconut Creek and the Susquehanna River is about 1,000 feet west of the southwest corner of the plant. A 0.6-acre parking lot which is part of AFP property, but not contiguous with the main plant-site, is located north of Main Street.

The AFP is an Air Force-owned electro-mechanical systems production facility operated under contract by the General Electric Company. Air-craft electronic equipment is manufactured for both military and commercial clients. Authority to use Government-owned facilities for non-government work is obtained on a continuing basis from the Defense Logistics Agency.

The mission of AFP is the manufacture and assembly of electronic and electro-mechanical equipment. General Electric Company is currently producing flight control systems, weapons control systems, laser systems, internal navigation and guidance systems, and aerospace ground support equipment.

1.3 Site History

The AFP was designed and built by PLANCOR, the Defense Plant Corporation, a subsidiary of the Reconstruction Finance Corporation in 1942. The

original building contained 621,500 square feet of floor space and has remained essentially unchanged.

The original contractor at the plant was Remington Rand, Incorporated. Remington Rand manufactured aluminum aircraft propellers for the Second World War effort from 1942 to 1945, and then closed. In April 1949, AFP was reopened as an aircraft controls manufacturing facility with General Electric Company as the sole contractor. The major manufacturing process at that time was parts machining for electro-mechanical control systems. Machine shop activity peaked in 1967 at the height of the Vietnam War effort.

Activity at the plant dropped off markedly in the 1970's. Parts machinery activities were further curtailed as a result of technological advances that have made control systems more strictly electrical in nature. Currently, 2,300 employees work at AFP on three shifts.

Several improvements have been made to the outdoor facilities at AFP over the years. In 1959, the gravel and dirt parking lots surrounding the manufacturing building were paved. New York State built an earthen containment dike along the banks of the Little Choconut Creek as part of a mid-1960s flood control project. A water supply well was drilled immediately south of the manufacturing building to reduce the plant's usage of municipal water in 1974. A water recharge well for non-contact cooling water was also drilled at this time but its use was quickly discontinued due to subsurface subsidence. General Electric Company discontinued its use of the railroad spur in the early 1950s, the spur was paved over, and the trestle over Little Choconut Creek was eventually removed in 1980.

General Electric Company currently manufactures flight control, laser systems, weapons control, internal navigation, and guidance systems at AFP. These systems are used in various military aircraft including the F-18, F-15, F-111, and B-1. In addition, a small amount of work is done for Boeing 757 and 767 commercial jets.

1.4 Hazardous Materials Handling

Industrial operations at AFP were performed by Remington Rand from 1942 to 1945, and by AFP from 1949 to the present. The plant was idle during the intervening 4 years. Remington Rand manufactured airplane propellers; AFP manufactures aerospace control and electrical systems. Manufacture of these aircraft—associated parts resulted in generation of varying quantities of the same waste products. Wastes generated are (a) waste oils, including cutting oils, lubricating oils, and coolants; (b) spent solvents, including degreasers; (c) spent process chemicals, including plating acids, caustics, chromium and cyanide solutions; and (d) paint residues. The total quantity of these wastes currently generated is about 50,000 gallons per year. Waste quantities are dependent on contractor workload and have varied over time.

In general, the standard procedures for past and present industrial waste disposal practices have been as follows: (1) concentrated plating baths have been neutralized in an above ground holding tank and removed by a contractor (1952 to present); (2) plating rinsewater was treated in a settling tank for metal precipitation prior to discharge to Outfall 001 (1952 to 1969); plating rinsewater was treated in a settling tank for chromium reduction and metal precipitation prior to discharge to Outfall 001 (1969 to July 1984); plating rinsewater is treated by an anion and cation exchange column and reused (July 1984 to present); (3) waste oils were primarily recovered, with some waste oils being discharged to an oil/water separator upstream of Outfall 002 (1942 to 1953); waste oils are discharged to two underground waste oil storage tanks and removed by a contractor (1953 to present); and (4) kerosene-based degreasing solvents were disposed of with the waste oils (1942 to 1969); spent solvents are drummed and removed by a contractor (1969 to present).

1.5 Potential Sources of Environmental Contamination

One main area of potential environmental contamination will be investigated in this study of the AFP. This is the Underground Waste Oil Storage Tanks area (Site No. 1) that has been used for the temporary

storage of waste oils since the two 1,000-gallon underground tanks were installed in 1953 (Figure 2). Waste oils including synthetic hydraulic oils, cutting oils, and coolants are collected from the various machining areas of the plant by a "Spencer Vac" system, which consists of a small mobile collection tank and vacuum system. Prior to 1969, some non-chlorinated kerosene-based degreasers were also placed in the storage tanks. Once collected, the waste oils are then pumped from the "Spencer Vacs" by an air pump located inside the main building to the two underground waste oils tanks located outside of Building No. 4. The waste oils are then temporarily stored for subsequent vacuum truck pickup and disposal by a private contractor.

The waste oil tanks are inspected daily to prevent overtopping of the tanks. However, waste oil spills have occurred during the contractor removal of the tank contents, which is conducted on a monthly basis. Interviewees reported that the spills were the result of the release of the residual volume of the vacuum truck suction hose. The area surrounding the tanks had been backfilled with gravel during their installation. The gravel area surrounding both tanks was heavily stained. In the past, the stained gravel had been removed and replaced with fresh gravel for aesthetic reasons.

1.5.! Area 1. Area No. 1 was been identified as a potential threat due to the close proximity of wells and the fact that the population within 3 miles of the site is served by groundwater. The waste oils are identified are hazardous and persistent.

2.0 SITE INVESTIGATION SUMMARY

2.1 Introduction

The remedial investigation proposed by HART is designed to monitor the entire site of the AFP. The existing production well on site will be sampled as part of this investigation.

2.2 Task 2 Groundwater Supply Production Well

A groundwater production well at the AFP will be sampled, and the samples split with OEHL according to the Technical Operations Plans. The well will be tested in the field for specific conductance, temperature and pH. The laboratory analyses include Halogenated Volatile Organics, Aromatic Volative Organics, RCRA Metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag), Cyanide, and Petroleum Hydrocarbon.

2.3 Task 3 Groundwater Monitoring Well Installation

Three shallow boreholes (35 feet) SW-1, SW-2, SW-3, will be drilled around the Area 1 (two downgradient, one upgradient) and be completed as groundwater monitoring wells with a split spoon sampler (Figure 3). Wells will be constructed of 2 inch Schedule 40 PVC flush joint casing with machine slotted 10 slot (.01 inch) screen that are 10 feet in length (Figure 4).

Each well will receive a filter pack, bentonite seal, have the annular space grouted to the surface, and a protective casing with locking cap will be installed. Each sample that is described will be screened with an Organic Vapor Analyzer (OVA) to determine the presence and degree of hydrocarbon contamination. Wells will be installed through a 6 inch O.D. hollow stem auger. The augers will be cleaned with a steam cleaner between each borehole.

The boreholes sampled every 5 feet in the unsaturated zone and be continuously sampled in the aquifer.

Geochemical analysis will be performed on six soil samples, two from each borehole. One sample will be taken from the soil-water interface and another from the most contaminated portion of the borehole. The laboratory analyses will be performed for Halogenated Volatile Organics, Aromatic Volatile Organics, Cyanide and Petroleum Hydrocarbons. RCRA metals (As, Ba, Cd, Cr, Pb, Hg, Se, Ag). A duplicate sample will be analyzed for the same parameters.

Geotechnical analyses will be performed on soil samples to determine permeability and grain size distribution. Six shelby tube samples, two from each well, will be taken in the saturated zone and the underlying clay for falling head permeability testing. The sample depth will be chosen in the field. Additionally, two soil samples from each of the three shallow wells will be analyzed for grain size distribution (sieve and hydrometer analysis). If possible, one sample from each borehole will be unsaturated and the other saturated.

The soil from the boreholes will be drained in DOT approved 55 gallon drums and left in a temporary staging area along with the development water (if presence of contamination is found) until analysis is complete. If the drums prove to be non-hazardous they will be left at the AFP. If they are classified as hazardous waste, then HART will supervise their removal to an approved disposal site.

2.4 Task 4 Groundwater Sampling Program

A total of 4 wells will be sampled (Figure 3). This includes the 3 wells installed for this study and the existing production well. Prior to sampling, all wells will be properly flushed to provide representative samples. Bailers will be decontaminated between wells. Samples will be placed in properly prepared bottles, and placed in a cooler at 4°C. Coolers will be sealed and shipped overnight to Princeton Testing Laboratories. Samples will be split and a set of samples will be sent to OEHL in Texas. Proper chain-of-custody procedures will be followed which are described in Section 14.0.

The wells will be tested in the field for specific conductance, temperative and pH. The laboratory analyses include Halogenated Volatile Organics, Aromatic Voltile Organics, RCRA metals (As, Ba, Cd, Cr, Pb, Mg, Se, Ag), Cyanide and Petroleum Hydrocarbons. One duplicate sample will also be taken and analyzed for the same parameters.

QA/QC procedures for Princeton Testing Laboratories and detection limits for the various testing parameters are found in Section 7.7.

Wells will be sampled all at once rather than individually because it is more convenient to perform one round of sampling, than sample individual wells as they are completed. Also, samples cannot be stored for any length of time, requiring samples to be shipped within a few days of their collection.

2.5 Task 5 - Surveying of Wells

A professional surveyor will survey the horizontal and vertical locations of the wells.

2.6 Task 6 - Water Level Measurements

Measurements will be made of all the water levels in all groundwater monitoring wells at the AFP. This will be completed in one day.

2.7 <u>Task 7 - Training of USAF Personnel to Perform Certain On-Going</u> <u>Portions of the Work</u>

Hart Associates will train USAF personnel to take groundwater levels and samples in the monitor wells, and prepare monthly reports.

3.0 FIELD SET-UP

3.1 Detailed Work Plan

Prior to undertaking sampling or drilling operations, HART will prepare for an effective and safe field investigation at the AFP. This will include establishing a command office and materials storage area. Portable decontamination equipment necessary to perform operations will be provided as described in Section 11.0, Decontamination Procedures. HART and its subcontractors will also have sufficient safety equipment of adequate quality and level to equip the number of personnel necessary to perform the sampling described in this plan, according to the Site Safety Plan prepared for this investigation (Appendix A).

HART is responsible for having in the field the subcontracted drilling, sampling and well testing equipment necessary to perform the required work. This will include providing drums and other facilities necessary for temporary field storage of potentially contaminated soil, and disposable equipment. In particular, drilling cuttings will be placed in drums during the drilling operations. This material will be tested for hazardousness (EP Toxicity and Ignitability tests) and if found hazardous, AFP will arrange for disposal of the material in a secured landfill.

This Technical Operations Plan contains the details of the work planned at the AFP and will be available to on-site personnel.

3.2 Health and Safety Plan

To protect the health and safety of field personnel a Health and Safety Plan identifying the expected hazardous material and levels of safety is found in Appendix A.

3.3 Subcontractors

Several subcontractors have been identified to perform work on this site and are listed below:

1

Laboratory Analysis

Princeton Testing Laboratories
Princeton, New Jersey

Surveyor

Hawk Engineering Binghamton, New York

Geotechnical Testing

J & L Testing Laboratory Pittsburgh, Pennsylvania

Borehole Drilling & Monitoring Well Installation

Empire Soil Investigations Inc. Groton, New York

4.0 CALIBRATION OF FIELD EQUIPMENT

The following measuring equipment will be necessary to use for the on-site remedial investigation.

<u>OVA</u>. For in-field analysis of soil-gas during drilling, screening of soil samples taken during drilling and sediment samples. Calibration required: The OVA will be calibrated so that the relative response of the instrument will be 100% for tetrachloroethylene or methane.

<u>pH Meter</u>. For in field analysis of water samples. Calibration required: Factory or laboratory buffer and litmus paper will be used.

<u>Electrical Conductivity Meter</u>. For measurement during well sampling. Calibration: Factory calibrated annually.

<u>Mercury Thermometers</u>. For measurement of water temperatures during sampling. Calibration: Factory calibrated once.

<u>M-Scope</u>. For measurement of water level in well. Calibration: Periodically measured against surveyor's tape.

Other equipment that might become necessary during the field investigation will be calibrated according to the manufacturers' recommendations and/or generally accepted practice. Calibration procedures will be documented for the project file.

5.0 PREVENTIVE MAINTENANCE OF FIELD EQUIPMENT

All equipment used by HART and it subcontractors for work for the off-site remedial investigation will be required to be maintained under a preventive maintenance program. HART uses a program of preventive maintenance for the following equipment expected to be used.

- OVA
- pH Meter
- Electrical Conductivity Meter
- Mercury Thermometers
- M-scope

HART will subcontract the following activities during the study.

- Drilling and installation of monitoring wells
- Surveying of measuring points for wells

HART has specified or will specify to subcontractor firms providing these services that any and all equipment used at the AFP be maintained in a proper and safe working order. Any equipment or device determined to not be in such order by HART field personnel will be replaced, repaired, or corrected.

6.0 FIELD ANALYTICAL PROCEDURES AND DATA REPORTING

6.1 Chemical Data

- Procedures for Field Measurement of pH. Readings will be taken periodically in buffer solutions of the appropriate range at the same temperature during repeated sampling events. The users manual for the pH meter will be available to field personnel.
- Procedures for Field Measurement of Electrical Conductivity. When rapid sample changes are not occurring or expected, replicate measurements will be made. A standard solution of known conductivity may be made available for checking precision. Several readings are taken and the arithmetic mean used as the reported value. The users manual for the electrical conductivity meter will be available to field personnel.
- Procedures for Field Measurement of Volatile Organics. Approximately 20 ml of soil will be placed in VOA vials. The vials will be placed in a 50°C hot water bath for 10 minutes. An aliquot of air from the head space within the vial will then be withdrawn by syringe for direct injection into the OVA. Air monitoring during drilling will be performed utilizing the OVA in the survey mode.

6.2 Hydraulic Data

Procedures for Measurements. An M-scope will be used to measure to 0.01 foot the water level under static (non-pumping/static) conditions.

6.3 Soil Boring Data

 <u>Soil Sampling</u>. Continuous split spoon samples and Shelby tubes will be collected at each test boring site. Sample depth will be monitored by the subcontractor (driller) under the supervision of the on-site geologist. Blow Counts. Soil density shall be determined by recording the number of blows necessary for the split spoon to penetrate six inches of soil.

6.4 Surveying Data

- * Horizontal Location. All sampling sites and monitoring wells will be located on aerial photographs or other map by reference to known features. Location accuracy will be one foot in general.
- <u>Vertical Location</u>. The elevation of all new monitoring wells and existing wells will be surveyed by a subcontracted licensed surveyor to the nearest 0.05 foot.

7.0 SAMPLE NUMBERING SYSTEM

A sample numbering system will be used to identify each sample taken during the on-site remedial investigation. The numbering system will provide a tracking procedure to allow retrieval of information about a particular site and assure that each sample is uniquely numbered. A listing of sample numbers will be maintained by the HART field team leader. Each sample number will consist of five parts as described below.

7.1 Project Identification

The designation AFP 59 will be used to identify the Air Force Plant 59.

7.2 Site Identification

Each sampling site will be identified by a three to four letter identifier code, with the following prefix:

- DW Deep Production well
- SW Shallow monitoring well

A numerical suffix unique to each prefix will follow. A map and surveyors data will be used to locate each sampling site.

7.3 Sequence Number

A two letter code will be used to identify the type of sample collected, such as:

- SS soil sample collected during drilling
- SD sediment sample
- GW groundwater sample
- WS Surface water sample

7.4 Sample Depth

The depth or depth interval at which the sample is collected will be noted on the label.

7.5 Investigation Sequence Sample Number

In addition to the numbers and symbols used to identify the location, type and depth of a sample, a numbering system will be used to indicate the the order in which samples are sent to the various laboratories. This system will begin with the first chemical sample selected and end with the last. It will consist of a three digit number and will sequentially record the the chemical samples selected during the investigation. The purpose is to track the chemical samples in order to identify any gaps. A duplicate system will be maintained for the split samples.

7.6 Split Sampling

Two sets of samples will be collected for the groundwater samples. The labels HART, for Fred C. Hart Associates, and USAF OEHL to indicate the sample that will be sent to the USAF OEHL laboratory, will be used to differentiate the analyzer of each set.

7.7 Examples

Examples of sample numbers are:

- * AFP 59. SM-1. SS-3. 4'-6'. HART 005. Air Force Plant 59; 35 foot deep Monitoring Well #1; third soil sample collected between a depth of four and six feet below the surface; retained by HART. Fifth chemical sample selected for analysis.
- AFP 59. SW-1. SS-3. 4'-6'. EPA 005. Same as previous sample, except it is retained for analysis by EPA-designated laboratory.
 Also identified as fifth chemical sample split and sent to OEHL.
 EPA.

7.8 Blanks, Knowns, Spikes, Splits and Duplicates

QA/QC blank and duplicate samples, to be sent to the USAF OEHL laboratory and the HART subcontractor, Princeton Testing Laboratories at Princeton, NJ, will be given sample numbers similar to those for collected samples except that the sequence number will be unique. The identity of QA/QC samples will be recorded in field log books, but will not be marked in any way on the sample containers. Ten percent of all soil samples and ten percent of all water samples will be duplicates and there will be one trip blank for every shipment of VOAs of groundwater. Five percent of each sample type will be trip blanks.

7.9 USAF OEHL Samples

Samples sent to the USAF OEHL laboratory will be accompanied by the following information:

- 1. Purpose of sample (analyte).
- 2. Installation name (base).
- 3. Sample number (on container).
- 4. Source/location of sample.
- 5. Contract task number and title of project.
- 6. Method of collection (bailer, suction pump, air-lift pump, etc.).
- 7. Volumes removed before sample taken.
- 8. Special conditions (use of surrogates, filtering, etc.).
- 9. Preservatives used, especially nonstandard types.

8.0 <u>DRILLING AND INSTALLATION OF GROUNDWATER</u> MONITORING WELL

Three new monitoring wells are planned for installation. The proposed locations are shown in Figure 2. Each well site and maximum depth of drilling and casing are described below:

SW-1. SW-2. SW-3 - Depth = 35 feet; screened interval = 25 to 35 feet., 2-inch diameter casing in 6-inch diameter hole.

Subcontractor specifications for drilling and installing the groundwater monitoring well have been prepared by HART and will be used for the project.

8.1 Drilling

The boreholes will be drilled using 6-inch O.D. hollow stem auger. Prior to drilling the wells, each site will be staked and underground utilities will be checked by AFP personnel.

All drilling equipment and materials will be decontaminated prior to and after use according to procedures found in Section 11, Decontamination Procedures. Hollow auger drilling will be performed with hollow-stem augers having an internal diameter large enough to accommodate a 2-inch diameter sampler. The lead flight of augers will be equipped with an appropriate cutting bit to allow penetration of a wide range of materials varying from clay and silt to sand and gravel.

Solid waste from the drilling will be analyzed as they are generated with the OVA. Drill cuttings will be drummed as they are generated. If hazardous chemicals of concern are not detected, the materials will be disposed of on-site. If drill materials are determined to be hazardous, they will be drummed for later disposal by AFP. Drummed materials will be tested for EP Toxicity and Ignitibility as well as Priority Pollutants.

Proper disposal of the material will depend on test results.

8.2 Soil Sampling

Soil samples will be collected during drilling with split-spoon drive samplers of two-inch outside diameter. Decontamination procedures for sampling equipment are described in Section 11.0. Samples will be taken every five feet in the unsaturated zone and in the aquifer continuously (i.e., from two foot intervals the length of the boring) using a two foot long split spoon sampler. All soil samples will be logged in general accordance with "Description of Soils (Visual Manual Procedure)", ASTM D2488-69, which is based on the Unified Soil Classification System.

A portion of the soil sample from the least disturbed center of the split spoon will be placed in a VOA vial for on-site OVA analysis. The remaining portion of the soil sample will be placed in a properly labeled glass jar. The VOA vials will be analyzed in the field for the presence of volatile organic compounds and the results recorded. Based on the results, soil samples will be selected for submittal to the laboratories for further analysis.

Undisturbed samples for triaxial permeability tests using a Shelby tube sampler will be taken if a confining layer is encountered during drilling. Both ends of the retrieved shelby tube shall be sealed with wax and no other form of sampling will be attempted from the tube to insure the integrity of the undisturbed sample. Ilso, two samples per borehole will be obtained for grain size analysis.

Unless otherwise indicated by the OVA screening tests, it is anticipated that all soil samples will contain only low or medium concentrations of organics and low concentrations of inorganics.

8.3 Monitoring Well Construction and Completion

A maximum depth for each well has been established in the Scope of Work. The well screen will be installed at a depth to capture any floating contaminants. A generalized well construction diagram is shown in Figure 4.

The open borehole below the interval to be screened will be backfilled with appropriate material such as clean sand, or gravel pack.

All wells will be 2-inch diameter PVC flush joint riser and have 10 foot length screens. All screens will have a slot (aperture) size of 0.010 inch. Riser pipe will be the same diameter as the screen and connected only by threaded type joints.

The gravel pack will consist of acid-resistant, washed and graded silica sand. The sand will be furnished in sacks and will be clean and free from oil, acid, organic matter or other deleterious substances.

The gravel pack material will continue to be added to the annulus until the entire screen is surrounded and the gravel has extended about 3 feet above the top of the screen. A 5 foot thick bentonite pellet layer will then be placed in the annulus through the augers and set directly on the gravel pack. The bentonite pellet seal will assure that no grout materials will percolate through the gravel pack and enter the well.

All but the top 2 feet of remaining annulus will then be tremmie grouted with a granular bentonite/cement slurry mixture. A 5 foot long steel casing will be set into this cement. If possible, this outer steel casing will extend about 3 feet above ground surface. The outer protective steel casing will come to rest within several inches of the top of the riser pipe, and will have a locking cap.

Following the completion of each monitor well, HART field personnel will construct a detailed well-completion sketch. This well summary will also detail the composition and amount of the materials used during well construction.

8.4 Well Development

All groundwater monitoring wells will be developed as part of the well installation process. Development will be done to create a good hydraulic connection between the well and the aquifer in which it is screened. This is important for obtaining reliable groundwater data and representative groundwater samples. Well development is achieved by removing fine grained geologic materials away from the well screen. Each well will be developed as soon as practical after completion by jetting. If possible, well development will continue until discharge water is clear and free of sediments.

9.0 GROUNDWATER MONITORING AND SAMPLING

A total of 4 wells will be sampled. This includes the 3 wells (SW-1, SW-2, SW-3) installed for this study and the one existing production well (DW-1). All measuring, purging and sampling equipment will be decontaminated as described in Section 12.0 prior to data collection.

9.1 Groundwater Level Measurements

After all well installation is completed, the groundwater level of all the wells will be measured within a 24-hour period. The instrument (M-scope: Slope Indicator Co., Model 51453) or similar instrument will be lowered down the well and measured from the top of the PVC casing. When the electrode of the M-scope comes into contact with water, an audio signal will be emitted. The instrument will also be used to sound the bottom of the well. HART will train AFP personnel to take additional groundwater levels in the monitor wells that will be installed during this investigation. Groundwater levels must be periodically monitored in order to determine groundwater flow directions over time. It is not cost-effective for HART personnel to travel to the site for the limited time period required to take these measurements. AFP personnel will be trained to provide monthly groundwater level measurements in the wells.

9.2 Surveying of Wells

A professional surveyor will survey the horizontal and vertical locations of the wells. Survey elevations of all newly installed monitor wells will be done with respect to a U.S.G.S. Bench Mark and will be measured to an accuracy of 0.01 feet. Horizontal locations will be done to an accuracy of 1 foot and recorded on site maps. It is necessary to establish the elevation of well casings for calculation of groundwater elevations.

9.3 On-Site Analysis

<u>Monitor Well Sampling</u>. In order for valid representative groundwater samples to be collected from the monitor wells, it is very important to (0076G)

properly prepare the well prior to sample collection. This preparation entails removing all the water which is standing in the casing and grabbing the sample from water which has recently been recharged from the aquifer.

To accomplish this, the depth to water from the top of the well casing is measured. This value will be used in conjunction with the total casing length to determine the height of the water column. The volume of water standing in the well will then be calculated. Three times this volume will be removed by pumping or bailing before the sample is collected. In cases where a well is emptied until dry and is very slow to recover, the volume required for evacuation may be reduced to two or three standing water volumes.

Once the well is adequately evacuated, sample collection will be accomplished by lowering a stainless steel, bottom loading bailer with a teflon check valve into the well. Each bailer will be fitted with a stainless steel wire leader and a new piece of nylon cord. A different pre-cleaned bailer will be devoted to each well. If the bailer has not been used for well evacuation, the first 3 bails of water will be wasted to rinse any cleaning agents which might still be present on the bailer. The samples will be poured directly from the bailers to sample jars for temperature, pH, and specific conductance.

<u>Temperature</u>. Measurements of the sample temperature will be taken using a decontaminated mercury thermometer. The field measurement represents the temperature of the aquifer unit at a particular location and time. Variations in sample temperature may enable interpretation of a temperature gradient which reflects aquifer hydraulics. This measurement will also be used to calvibrate the pH and conductivity meters in the field.

 \underline{pH} . The pH of each sample will be measured with a Corning Model 3 pH Meter or similar instrument. Field measurements of sample pH will be used as a relative check of the lab measurements. The pH of a sample tends to change upon contact with air, and stabilizes once the sample becomes fully

aerated. Therefore, the pH measurements of aerated samples will be used as a relative indicator of groundwater contamination.

<u>Specific Conductivity</u>. The specific conductivity of each sample will be measured with a Hach Model 17250 Conductivity Meter or similar instrument. Elevated specific conductivities indicate the presence of conductive ions such as chlorides and sulfides in the groundwater. High concentrations of these ions indicate contamination.

9.4 Sampling for Off-Site Analysis

Prior to sampling for lab analysis, all wells will be properly flushed as described above in Section 9.3. Bailers will be used to obtain ground-water samples. Bailers will be decontaminated between wells. Samples will be placed in properly prepared bottles, and placed in a cooler at 4°C. Coolers will be sealed and shipped overnight to the designated laboratory. Samples will be split and one sample will be shipped to Princeton Testing Labs. Proper chain-of-custody procedures will be followed when transferring the samples from the field to the laboratory. In addition, accurate records will be kept of all sampling activity, and will include the following information: Date, time, location, sample number, depth to water measurement, method and volume of water evacuation and sampling techniques. Analytical parameters can be found in Section 2.0.

10.0 DECONTAMINATION PROCEDURES

All equipment which comes in contact with potentially contaminated soil or water, including OVA, drilling, soil and water sampling, water-level measuring and sample preparation equipment, will be cleaned prior to and after each use on this project. Decontamination will consist of combinations of steam cleaning and/or detergent (trisodium phosphate) wash, water rinse, methanol rinse and distilled water rinse.

10.1 Drilling, Soil Sampling and Monitoring Well Installation

All drilling equipment will be decontaminated by steam-cleaning between locations, to prevent the chance of cross contamination from one location to another. All tools used for soil sampling and packaging, including split barrel samplers, sample-cutting knives, etc., will be decontaminated prior to the collection of each sample. Decontamination of these tools will include a wash in distilled water, a solvent rinse, and a second rinse with distilled water. Monitoring well casing, screens and fittings are to be delivered to the site in a clean condition.

During the field sampling program, the OVA will be checked periodically for contamination by running an analysis of a known compound of air. When necessary, the equipment will be decontaminated prior to continuing work, but not less frequently than once per day. OVA equipment to be decontaminated as necessary will include syringes, injection ports, columns and detectors.

10.2 Well Development

All equipment used for well development will be decontaminated prior to and after use at each well. This will include decontamination of downhole piping. The decontamination procedures will be similar to those described for drilling equipment in Section 10.1.

10.3 <u>Water Level Measurement</u>

The electrical sounding (M-Scope) tape used to measure water levels will be cleaned with a disposable soap-impregnated cloth and wiped with methanol upon removal from each well to avoid chemical cross-contamination between wells.

10.4 Water Sampling

Stainless steel bailers will be decontaminated before and after each use by detergent wash, clean water rinse, methanol rinse and distilled water rinse. No bailer shall be used at more than a single well after and prior to decontamination. A new piece of nylon rope will be used as the hoisting line and disposed of when sampling is completed at each well.

Submersible pump, piping and fittings will be decontaminated prior to and after use at each well. The equipment will be decontaminated by either steam-cleaning or hot water and detergent wash rinse followed by a methanol rinse, and rinsed with distilled water.

10.5 Personnel Decontamination

The personnel decontamination procedures to be used at AFP will be performed at each drilling location or other sampling sites prior to entering vehicles or leaving the study area. HART and each subcontractor will provide all protective clnothing for its own personnel and the equipment necessary to comply with decontamination procedures specified in the Site Safety Plan (Appendix A).

In the interest of expediency and efficiency, the following personnel decontamination procedures will be followed, if necessary. However, it is anticipated that field investigation activities will be conducted at level D.

 Remove disposable booties (if used) and place into plastic bag for disposal.

- 2. Wash outer gloves in detergent solution and rinse in clean water. Remove outer gloves and place into plastic bag for disposal or retain for subsequent reuse.
- 3. Wash neoprene boots with detergent solution and rinse with clean water. Remove boots and retain for subsequent reuse.
- 4. Remove the tyvek coveralls. Take care to prevent the release and dispersion of dusts which may have accumulated on the coveralls during on-site operations and place overalls into the disposable plastic bag.
- 5. Place all independent disposable bags into one larger bag. Seal this bag and dispose of as garbage unless OVA probe of samples indicates contact with high concentrations of hazardous materials. If high concentrations are indicated, disposables will be placed in a 55-gallon drum with other solid wastes for eventual disposal by AFP.
- 6. Thoroughly wash hands and face.

11.0 SAMPLE HANDLING AND PACKING

11.1 Split Sample Procedures

All water, sediment and soil samples shall be split along the guidelines of Quality Assurance/Quality Control (QA/QC) protocols and procedures established by HART. One set of samples will be forwarded for analysis through overnight delivery to Princeton Testing Laboratories, Princeton, New Jersey. The other set of samples will be forwarded for analysis through overnight delivery to OEHL.

The following procedures will be used for splitting soil and ground-water samples.

<u>Soil</u>. Only fairly homogenous samples will be chosen providing a minimum of pebble-sized particles. Initially, the sample will be placed in a stainless steel bowl. Prior to placing the sample in the bowl, the bowl would have been washed with a detergent, rinsed with distilled water and washed again with a solvent (methanol). The sample will be mixed with a stainless steel trowel (prepared in a manner similar to the bowl) until the sample is well combined. Then a sample will be split into halves and a portion of each half placed into a sample container. The sample then will be remixed, split again, and portions placed into the containers. This procedure will be followed until the sample containers are filled.

Groundwater. A properly prepared bailer will be used to obtain a sample. If the sample is to be tested for volatile organic compounds (VOA), the VOA vials will be placed into a properly cleaned beaker whose depth is greater than the height of the vials. Water from the bailer will be care fully poured into the beaker so that the level rises above the height of the opening on the VOA vials. Once the VOA vials are filled, they will be closed by stainless steel tongs and lifted from the beaker. For other parameters, one-half of the water in the bailer will be poured into one container and the other half into the other container. Additional bails will be obtained and split in a similar manner until a sufficient volume of sample is obtained.

11.2 Sample Containers

Glass jars for soil samples in borings will be provided by HART. HART will also supply VOA vials for on site OVA analysis. Water and soil samples for chemical analyses will be placed in glass jars or plastic containers supplied by the laboratory subcontracted by HART.

11.3 Sample Handling and Decontamination

The collected sample and its container represent on of the major avenues of personnel and environmental exposure. Precautions will be taken to ensure that all the samples removed from the site are within the sample container and that no residue remains on the outside of the container.

The procedure for collecting soil and sediment samples will be as follows:

- Identify and document sample collection point or points, depth increment of samples collected, and sampling devices used (See Section 14.0, sample Custody and Documentation).
- * Complete log book entries, sample tags, field record sheets with sample identification point, date, time and names or initials of all persons handling the sample in the field.
- Clean the outer surface of glass jars containing soil samples with paper towers and clean water.
- Place Sample Tags on sample containers.
- When filling jars, place small plastic bag around outside of sample container and hold in place with rubber band so that sample spilled outside of container will not contact jar.

- Sealed sample containers will be carried by the sampling team member to the packaging area. The outer plastic bag and rubber band should be removed by the sampler without touching the external surface of the jar any more than necessary. The volume level should then be placed by the sampler on a clean surface to be packaged for shipment.
- The contaminated plastic bags, rubber bands, and residual soil from the mixing pan will be bulked in large plastic bags for disposal as garbage.

The procedures for collecting water samples are generally the same as for soil and sediment, except that the water is discharged directly from the bailer to the sample container(s), following filtration if necessary, and appropriate preservatives are added to the containers prior to capping.

11.4 Procedures for Packing Samples

Most samples collected during this investigation are expected to contain low concentrations (less than 10 ppm) of organic and inorganic chemical compounds and will, therefore, be considered environmental samples. Procedures for packing low-concentration soil and water samples for shipment will be as follows:

- Determine maximum weight allowed per package from your shipper (140 pounds for Federal Express shipment).
- * Secure sample bottle lids or plastic caps on brass tubes with stripping tape or evidence tape.
- Mark volume level on bottles with grease pencil.
- Place about three inches of inert cushioning material, such as vermiculite or zonolite in bottom of cooler.

- <u>Labels/Sample Tags</u>. Numbered sample tags should be used on <u>all</u> samples. Cover the labels with clear plastic tape.
- Place containers in cooler in such a way that they do not touch.
- Put VOA vials in Ziploc plastic bags and place them in the center of the cooler.
- Pack bottles, especially VOA vials, in inert cushioning material.
- * Fill cooler with inert cushioning material and blue ice if sample refrigeration is required.
- Put paperwork, chain-of-custody and Form 2752 (for OEHL), in plastic bags and tape with masking tape to inside lid of cooler.
- Tape cooler drain shut.
- * After acceptance by Federal Express or shipper, wrap cooler completely with strapping tape at two locations. Secure lid by taping. Do not cover any labels.
- Place lab address on top of cooler.
- Put "THIS SIDE UP" labels on all four sides and "FRAGILE" labels on at least two sides.
- * Affix numbered custody seals on front right and back left of cooler. Cover seals with wide, clear tape.

12.0 SAMPLE CUSTODY AND DOCUMENTATION

Sample custody and documentation procedures described in this section will be followed throughout all sample collection at AFP. See Section 7.0 for the Sample Numbering System to be used by HART.

12.1 <u>Sample Identification Documents</u>

All samples will be labeled for identification by the Sample Numbering System described in Section 7.0.

<u>Sample Tags</u>. Samples will be removed from the sample location and transferred to Princeton Testing Laboratory. Split samples will be sent to the OEHL. Before removal, however, samples will be separated as necessary into fractions depending on the analysis to be performed. Each portion will be preserved in accordance with prescribed procedures. Each portion will be identified with separate identification tag. Each tag should indicate in the "Remarks" section that it is a split sample. The information recorded on the tag will include:

- Purpose of the sample (analyte)
- * Installation name (location)
- Sample number
- Source/location of sample
- Contract Task Number and Title of Project
- Method of collection (split spoon, bailer, etc.)
- Volumes removed before sample taken
- Preservatives used, especially any non-standard types
- Project code (an HART project number)
- Date
- Time (a four-digit number indicating the 24-hour clock time of collection; for example: 1430 for 2:30 pm)

- Type of sample (grab or composite)
- Sampler's name
- Special conditions/remarks (for example, use of filtering)

<u>Custody Seals</u>. When samples are shipped to a laboratory or returned to a HART office, they must be placed in padlocked containers or containers sealed with custody seals. Two seals must be placed on each shipped container (cooler), one at the front and one at the back. Clear tape should be placed over the seals to ensure that seals are not accidentally broken during shipment.

12.2 Chain-of-Custody Records

All samples will be accompanied by a Chain-of-Custody Record, examples of which are shown on Figure 5. When transferring samples, the individuals relinquishing and receiving should sign, date and note the time on the record. This record will be used to document sample custody transfer from the sampler, to another HART team member, to a shipper, to a laboratory or to a HART office. Sample splits made for CEHL will be transferred with Chain-of-Custody Record and Environmental Sampling Data Form 2752 (Figure 6).

Samples will be packaged properly for shipment and dispatched to the appropriate laboratory for analysis, with a separate Chain-of-Custody Record accompanying each shipment. The method of shipment, courier name(s), and other pertinent information should be entered in the "Remarks" section of the Chain-of-Custody Record.

All shipments will be accompanied by the Chain-of-Custody Record identifying its contents. The original record accompanies the shipment, and the yellow copy should be given to the HART field team leader.

Shipments will be sent by common carrier and a bill of lading will be used. Air freight shipments will be sent collect. Bills of lading will be retained as part of the permanent documentation.

크용 Hanganese (Mn) Iron (Fe) By (Init.): ML 19 Date/Time: Date sent: Notes Date Rec'd: POWH : Client No: ID or Permit No.: Chromium (Hex.) BOD5, COD, TOC Zinc Dis. 02 Coli - Fecal 011 & Grease Coli - Total Flow (gpm) Temp. CHAIN OF CUSTOUY
Abbreviated Form Date: PO4 A1, Co, Cu, Mo, Ni Cond. Pield Ca, Hg, Na, K Dis. Solids Total Solids Sus. Solids Turbidity Sample Group IU Received by: or site name: Field pH Client Name: Date Sampled Shipment Method & Carrier (1f applicable): HART ASSOCIATES, INC. As, Ba, Cd, Cr, Pb, Hg, Se, Ag Sb, Be, Sr, Ti, Tl, V pH, Alkalinity, Conductivity Acidity (Mineral or Total) NH3, NO3, NO2, TKN, 07g. N CN, CN-free, F Final Disposition of Sample(n) NEW YORK, N.Y. 10036 530 FIFTH AVENUE Sample Name or Outfall No. Analysis Requested: Requested by: Sampled by: **70**S ü

				The Name of Page	A STREET STREET	ENVS TO	The last
ENVIRONMENTAL SAMPLING DATA			- one	2-3 24.7	1.13年1		
(Ver this space for mechanical imprint)				SAMPLING SITE			
				(AFR 19-7)	MPLE COLLECT		
				·	MPLE COLLECT	20	
				SAMPLING SITE	DESCRIPTION		
_		•					
DATE COLLECTION BEGAN TIPL COLLECTION DEGAN (TYMEDD) (74 hour clock)				COLLECTION METHOD			
التاليال	للبلا	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		GRAD	COMPOSITE	HOURS	
MAIL ORIGINAL	\bot	1 2					
TO COPY 1	$\bot \downarrow \downarrow$	E .			·		
changed) COPY 2							
AMPLE COLLECTED	BY (Name,C	Grade,AFSC)		SIGNATURE		AUTOV	ON
REASON FOR	<u> </u>	A-ACCIDENT/INCID	ENT C	-COMPLAINT	F-FOLLOWUP	CLEANUP	
UBMISSION		R-ROUTINE/PERIO	DIC I	N-NPDES	O-OTHER(op	elly)	
BASE SAMPLE NU	HOER	70		CEINE POS		FEE	SF R
		ANALYSES RE	QUESTED (check appropriate			***
	ROUP A	Hardness	00900	Residue, Set	50086	1 2 3 5	GROUP
Ammonia	00610	Iron	01045	Residue.Vol	00505		32
Chemical Oxygen	00340 Demand	Lead	01051	Silica	00955		ethane
Kjeldahl Nitrogen	00625	Magnesium	00927	Specific Con	ductance 00095		17
Nitrate	00620	Manganese	01055	Suifate	00945	Chloroform	32
Nitrite	00615	Mercury	71900	Sulfite	00740	Chloromethane	34
Oil & Grease	00560	Nickel	01067	Serfactents	MBAS 38260	Dibromochlerom	thene ³²
Organic Carbon	00680	Potassium	00937	Turbidity	00076		3.4
Orthophosphate	00671	Selenium	01147		,	Tetrachloroethy	14
Phosphorus, Total	00665	Silver	01077			1,1,1-Tricklore	2.4
		Sodium	00929	急光线管照	GROUP H	Trichlomethyle	e 39
E TO G	ROUP D	Thallium	01059	BHC Isomer	39340	Tribalomethener	82
Cyanide, Total	00720	Ziac	01092	Chlordene	39350	PCBe	39
Cyanide Free	00722			DDT Isomer	39370		
				Dieldrin	3 9380		
美国共和省	ROUP E	可以 可以 可以 可以 可以 可以 可以 可以 可以 可以	ROUP G	Eedria	39390		
Phenois	32730	Acidity, Total	70508	Heptachlor	39410		
		Alkalinity, Total	00410	Heptachlor l	Epozide 39420		
· San Car	ROUP F	Alkalinity, Bicarbo		Lindene	39787	1 1	
Antimony	01097	Bromide	71870	Methoxychic	39 48 0		
Arsenic	01002	Carbon Dioxide	00405	Toxaphene	39400		
Berium	01007	Chloride	00940	2,4-D	39730	ON SITE ANA	LYSES
Beryllium	01012	Color	00080	2,4,5-TP-S.	lvex 39760	Perameter	Value
Boron	01022	Fluoride	00951	2,4,5-T	39740	Flow 50050	
Cadmium	01027	lodide	71865			Chlorae, Total	
Calcium	00916	Odor	00086			Dissolved Orygen	
T	01034	Residue, Total	00500			pH 00400	u
Chromium, Total					, -T	1	
Chromium, Total Chromium VI	01032 01042	Residue, Filterable	7DS) 70300		GROUP J	Temperature 00010	<u> </u>

AF FORM 2752

12.3 Field Log Books

Bound Field Log Books will be maintained by the HART field team leader and other team members to provide a daily record of significant events, observations and measurement during the field investigation. All entries must be signed and dated.

All information, except drill logs, pertinent to the field survey and/ or sampling will be recorded in the log books. These must be bound books, preferably with consecutively numbered pages that are at least 41/2 inches by 7 inches in size. Waterproof ink will be used in making all entries. Entries in the log book must include at least the following

- Name and title of author, date and time of entry, and physical/ environmental conditions during field activity.
- Purpose of sampling activity
- Location of sampling activity
- Name and address of field contact
- Name and title of field crew
- Name and title of any site visitors
- * Type of sampled media (e.g., soil, sediment, groundwater, etc.)
- Sample collection method
- Number and volume of sample(s) taken
- Description of sampling point(s)
- Date and time of collection
- Sample identification number(s)
- Sample distribution (e.g., laboratory)
- References for all maps and photographs of the sampling site(s)

- Field observations
- Any field measurements made, such as pH, water level, etc. All sample documentation such as:
- Bottle lot numbers
 - Custody seal numbers
- Dates and method of sample shipments
- Chain of Custody Records
- All documentation for drums or other containers generated
 - Contents and approximate volume
 - Type and predicted level of contamination
 - Custody seal numbers
- Summary of daily tasks (including costs) and documentation on any cost or scope of work changes required by field conditions.

12.4 Corrections to Documentation

Unless prohibited by weather conditions, all original data recorded in Field Log Books, Sample Tags, and Chain-of-Custody Records, will be written with waterproof ink. None of these accountable serialized documents are to be destroyed or thrown away, even if they are illegible or contain inaccuracies that require a replacement document.

If an error is made on an accountable document assigned to one individual, that individual should make all corrections simply by crossing a line through the error and entering the correct information. The erroneous information should not be obliterated. Any subsequent error discovered on an accountable document should be corrected by the person who made the entry. All subsequent corrections must be initialed and dated.

12.5 Shipping of Samples

Samples will be delivered to the Princeton Testing Laboratory or to a OEHL for analysis as soon as practical after the number of samples and number of coolers is sufficient to comprise a shipment, preferably the same day the sample was taken. The sample will be accompanied by the Chain-of-Custody Record to Princeton Testing Laboratory and Chain-of-Custody Record and Form 2752 to OEHL.

13.0 SITE CLEAN-UP

Following the completion of the on-site remedial investigation at AFP, all sampling sites will be restored within reason to their pre-activity condition. All well and boring cuttings will be removed and the general area, following the completion of each well and boring, will be cleaned. New groundwater monitoring wells will be locked. Only those drill cuttings suspected of being hazardous waste (based on discoloration, odor and organic vapor detection instruments) will be properly containerized by HART for eventual disposal by AFP. The suspected hazardous waste shall be tested by HART for EP Toxicity and Ignitability.

All sampling and testing equipment will be decontaminated and removed from the site following completion of work.

14.0 FIELD TEAM ORGANIZATION AND RESPONSIBILITIES

14.1 Organization

The HART project field team will be organized according to the sampling activity. For on-site sampling work, the actual sampling team makeup will be dependent on the type and extent of sampling and will consist of a combination of the following:

- Project Manager
- Site Safety Officer
- Field Team Leader
- Geologists (1)
- Technician
- OVA Operator

Subcontractors will be used to provide crews and equipment for drilling, final well development and pump testing, geophysical logging and waste hauling. One individual may perform more than one of the functions listed above.

14.2 Responsibilities

Specific responsibilities for field team members are described below:

<u>Project Manager</u>: The HART Project Manager will be present at the beginning of field operations. He will brief the field team on the objectives of the sampling program and general procedures to be followed. In his absence from the site, the Field Team Leader will be his representative.

In the absence of Air Force field personnel, the Project Manager (or Field Team Leader) will direct all inquiries to the Air Force Project officer.

<u>Site Safety Officer</u>: The Site Safety Officer will be responsible for the adherence to all site safety requirements by the team members. The Safety Officer will assist in conducting site briefing meetings and will perform the final safety check. Additional responsibilities are:

- Updating equipment or procedures based upon new information gathered during the site inspection.
- * Upgrading the levels of protection based upon site observations. Enforcing the "buddy system" where appropriate.
- Determining and posting locations and routes to medical facilities, including poison control centers; arranging for emergency transportation to medical facilities.
- Notifying local public emergency officers, i.e., police and fire departments, of the nature of the team's operations and posting their telephone numbers.
- Entering exclusion areas in emergencies when at least one other member of the field team is available to stay behind and notify emergency services; or after he/she has notified emergency services.
- * Examining work party members for symptoms of exposure or stress.
- Providing emergency medical care and first aid as necessary on-site. The Safety Officer has the ultimate responsibility to stop any operation that threatens the health or safety of the team or surrounding populace.

<u>Field Team Leader</u>: The Field Team Leader will be responsible for the coordination of all sampling efforts, will assure the availability and maintenance of all sampling equipment and materials, and provide for shipping and packing materials. He will supervise the completion

of all Chain-of-Custody Records, the proper handling and shipping of the samples collected, be responsible for the accurate completion of Field Log Books and represent the Project Manager in his absence.

<u>Geologist</u>: The geologist will be responsible for directing drilling activities and installation of monitoring wells, including soil sampling, and initial development.

<u>Technician</u>: The Sample Preparation Technician will assume custody of samples to be shipped. He/she will be responsible for completing all Chain-of-Custody Forms. He/she will dispense sample containers, sample identification tags, etc., to the team members and retain records for control purposes.

<u>OVA Operator</u>: The OVA Operator will be responsible for performing all in-field OVA analyses of soil samples.

14.3 <u>Training</u>

Field personnel will be adequately trained with regard to hazardous waste site experience.

For site-specific training, field personnel will receive the Technical Operations Plan, Site Safety Plan and the Project Work Plan in a timely manner to allow for a sufficient review period. Prior to the initiation of site sampling, a field staff orientation and briefing will be held to acquaint personnel with the site, with the operation of any unfamiliar sampling equipment, and to assign field responsibilities.

All sampling activities will be based on, and will be in compliance with, the site Level of Protection classification, as described in the Site Safety Plan (Appendix A).

15.0 SCHEDULE

HART has scheduled the tasks described in this Technical Operations Plan to be completed as shown in Figure 7. While every reasonable effort will be made to meet these task deadlines, unexpected drilling conditions or weather events may require adjustment of this schedule.

FIGURE 7

PROPOSED SCHEDULE

APPENDIX A

HEALTH AND SAFETY PLAN

PHASE II HEALTH & SAFETY PLAN
AFP 59
Johnson City, New York

Prepared by:

Fred C. Hart Associates, Inc. 530 Fifth Avenue New York, NY 10036

Project Coordinator

James Mack

Fred C. Hart Associates, Inc.

Site Safety Officer

Robert Goldman

Fred C. Hart Associates, Inc.

1.0 Health and Safety Plan

This Health and Safety Program exists to protect employees from the hazards encountered during field investigations of uncontrolled hazardous waste sites. It is the result of experience gained from working on hazardous waste sites and handling hazardous materials, as well as consideration of all applicable government regulations and guidelines, and consultation with health and safety experts.

Personnel engaged in field investigations of hazardous waste storage, treatment, and disposal sites and remedial response activities encounter a wide variety of hazards, including potential exposure to toxic chemicals and radiation, fire and explosion hazards, and other physical hazards due to unstable, deteriorating structures. There is a great degree of uncertainty about an abandoned or uncontrolled site at all stages of an investigation, and there may always be a significant risk encountered at these sites.

This Health and Safety Program is intended to comply with Section 111(c) of CERCLA, EPA Orders 1440.1 and 1440.3, the Occupational Health and Safety Act (OSHA) of 1970, 5 U.S.C. 7902(c)(1).

1.1 Safety Considerations For Remedial Investigations

This section describes the administrative policies and procedures applicable to this remedial investigation.

Although the degree and type of hazard encountered by field teams varies greatly depending on the type of site (e.g. abandoned hazardous waste site or active facility) and the detail of field activity (e.g. preliminary site inspection or multimedia sampling), certain administrative policies and procedures must be adhered to. These include use of properly trained personnel, specific criteria for field team organization and size, site characterization to establish hazard level, proper selection, use and maintenance of personal protective equipment, and basic safety procedures.

1.2 Field Team Organization

A field team must be organized to efficiently and safely carry out the objectives of the project. These objectives may include such activities as sampling of hazardous wastes, monitoring well installation, site mapping, metal detection or performing geophysical surveys. The team will typically include individuals with many different technical skills, such as chemists, geologists, and engineers. In addition to performing its task objectives, the team must provide for its own safety to prevent injury or exposure to hazardous materials. This can be accomplished by assignment of specific roles and responsibilities to members of the field team and by assuring that the proper team size is used to effectively accomplish specific objectives.

There are a number of roles which are required for the safe and competent operation of a field investigation team. The four roles which are necessary at every site where a field team will be working are Project Manager, Field Team Leader, Equipment Specialist and the Work Party. Additional roles such as Command Post Supervisor, Personnel Decontamination Station Operator and an Emergency Response Team are added to the field team when the scope, magnitude, or hazard of the investigation justifies the need for them. A team member may take on more than one role, but the roles must be clearly assigned and must cover all those required rather than describe one team organization for all the different types of field investigations. Guidelines are presented here for assignment of responsibilities to team members to assure safety and for establishing the team size.

1.2.1 <u>Project Manager</u>. The Project Manager is responsible for the overall effectiveness of the field investigation. The specific responsibilities of the project manager include preparing and organizing all project work assignments, briefing team personnel on specific duties, obtaining site access permission from the owner or responsible party, ensuring that the health and safety requirements of the field team are complete and approved by the Health & Safety Director, preparing a Site Safety Plan, completing reports and maintaining the evidentiary file,

complying with chain-of-custody procedures, and coordinating with government representatives and subcontractors.

- 1.2.2 <u>Field Team Leader</u>. The Field Team Leader is accountable for the organization, operation, and safety of the field team. This role may be filled by the Project Manager. The Field Team Leader is responsible for proper field operations, maintaining a field notebook which records all site activities, completion of the objectives of the site Work Plan, compliance with document control procedures and proper field documentation of operating procedures, and determining the level of personal protection necessary to insure the health and safety of the field team. If subcontractors or outside observers are present, the Field Team Leader must enforce health and safety procedures.
- 1.2.3 Site Safety Officer. The Site Safety Officer has primary responsibility for all safety procedures and operations on-site. role is usually filled by the Project Manager. The Site Safety Officer is responsible for upgrading, if necessary, the level of personal protection based upon observations and changing circumstances during the field investigation, enforcing the buddy system (personnel working in pairs); posting and briefing the field team of an approved safety plan which outlines locations, routes, and telephone numbers of the closest medical facilities and poison control centers; posting other emergency telephone numbers, such as the fire and police department and Health and Safety Director; and verifying that team members have met the health and safety requirements for field assignment. The Site Safety Officer has the authority to halt any operation that threatens the health or safety of the team.
- 1.2.4 Equipment Specialist. The Equipment Specialist is responsible for obtaining, inspecting, and maintaining all equipment in proper operating order. This requires specialized training in maintenance of equipment, such as self-contained breathing apparatus. The Equipment Specialist is responsible for preparing all sampling containers and equipment.

1.2.5 <u>Work Party</u>. The Work Party is ultimately responsible for the safe and successful completion of the work assignment. The members of the Work Party share many active and important functions which are necessary to fulfill the objectives of the investigation. These include setting up the personnel decontamination station, performing site hazard characterization, taking photographs, collecting samples of various media, decontaminating sample containers, packaging and shipping of the samples in accordance with chain-of-custody procedures, and decontaminating the entire Work Party prior to leaving the site.

1.3 Field Investigation Team Size

The size of an investigation team is determined by the hazard level of the investigation, the level of protection employed, the investigation, objectives, and the site characteristics and type. The team must be large enough to assure safety, but not so excessively large as to sacrifice economy.

1.3.1 <u>Two-Person Team</u>. A minimum of a two-person team consisting of HART, personnel will be used at the AFP 59 to collect environmental samples. A two-person team is appropriate for sites where extensive personal decontamination is not required and where the likelihood of emergency rescue is minimal. The two-person team is suitable when up to Level C protection is required. In the event of an emergency, the team member can summon outside assistance. Team responsibilities for the AFP 59 study are identified in the enclosed Site Safety Plan.

1.4 Selection. Use, and Maintenance of Personal Protective Equipment

Proper selection, use and maintenance of respiratory protective equipment and other personal protective equipment is extremely important in protecting the health and safety of field investigation personnel. An inadequate level of protection may result in unnecessary exposure to toxic

chemicals or other hazards. An excessively high level of protection may encumber field personnel unnecessarily and result in decreased efficiency, fatigue, and other hazards. Improper use or maintenance of protective equipment also exposes field personnel to unnecessary risks.

The site hazard assessment will be based on a site characterization obtained from previous site investigations. Once the site hazard assessment is completed, the Site Safety Officer will select the level of protection.

- 1.4.1 Respiratory Protection. The selection of adequate respiratory protection depends primarily on the type of hazardous substances to be encountered. Proper respirator use requires formal training and continued maintenance of the equipment, in accordance with 30 CFR Part 11 and provisions of the National Institute for Occupational Safety and Health. OSHA regulations pertaining to respiratory protection require a training program that encompasses user responsibilities, training for proper use, and respirator maintenance. OSHA also requires qualitative fit testing of face-pieces. Facial hair (beards) and wearing contact lenses is prohibited.
- 1.4.1.1 <u>Air-Purifying Respirator (APR)</u>. The APR, which will be available to team members and may be used at the AFP 59, if necessary, removes contaminants from the atmosphere to some degree and can be used only in atmospheres containing sufficient oxygen to sustain life (in open air this is usually not a problem) and when other criteria, discussed below, are met.

Specific concentration limitations exist for specific devices. The chemical-cartridge respirator provides respiratory protection against certain gases and vapors in concentrations not in excess of that labelled on the cartridge. It can only be used in an area where minimal concentrations might occur and where SCBA has been determined unnecessary. Many types of cartridges are available and field personnel should select the appropriate one for the contaminants expected.

Air purifying respirators or cartridge respirators are worn when:

- Any unidentified and potentially hazardous odor is detected.
- * Hazardous materials in the air are not greater than 10 times the permissible exposure limit (PEL), and have good warning properties.
- The Project Manager judges that respirators are needed as a precaution against generation of low levels of toxic substances in air due to sampling, handling, decontaminating, or other operations.
- The capacity of the cartridge will not be exceeded by extended periods of use on-site. (If used for extended periods, cartridges must be changed.)

Users of air purifying respirators must comply with the following:

- At least 19.5 percent oxygen must be present for respirator use, or unprotected breathing.
- Cartridge respirators do not supply oxygen. They are of no use in oxygen-deficient atmospheres.
- Air purifying respirators provide less protection than SCBAs and supplied air devices.
- Air purifying respirators must be NIOSH-approved.
- Cartridges also must be NIOSH-approved and should be matched to the respirator by the manufacturer.
- Cartridges must not be used past the expiration date.

- Air purifying respirators will provide adequate protection only if they have good face seals. A qualitative fit test is required for each employee using these respirators.
- * Upon experiencing any warning property such as difficulty breathing, dizziness, or other distress, strong taste, or smell, the user must immediately leave the site. The Field Team Leader or Site Safety Officer may require that a user of an air purifying respirator carry an emergency escape air mask.
- Users of air purifying respirators must follow the manufacturer's instructions on the donning and use of the equipment.
- Cartridges must sometimes be replaced as often as each hour of use, or when the user senses or smells the vapor. If the contaminant of interest does not have warning properties, the APR cartridge must not be used.
- 1.4.2 Protective Clothing. Protective clothing must be worn by all personnel at hazardous waste sites to prevent skin exposure and to minimize spread of contamination. All on-site operations require protective clothing. Protective clothing may include, but is not limited to chemical-resistant pants and jackets or coveralls, disposable coveralls, steel toe and shank boots, protective gloves, hard hats, face shields or chemical safety glasses. Once adequate protective clothing is chosen, employees must also note that alertness is a significant safety factor. Since protective clothing is cumbersome, it hastens the on-set of fatigue and heat exhaustion, it can decrease alertness, and it limits staytime.

The following section describes Level D protective equipment which is appropriate for the AFP 59.

1.4.2.1 <u>Level D</u>. Level D is the basic work uniform and is used where significant exposure to hazardous materials is unlikely. Field personnel must not be permitted to work in civilian clothes.

Level D protection consists of:

- Coveralls, cotton
- Boots/shoes, safety, with steel toe and shank
- Safety glasses
- Hard hat with optional faceshield
- Gloves

Air-purifying respirators (previously described) with appropriate cartridges will be readily available at the site and will be used, if required, during excavation, drilling, sampling, decontamination or other operations.

1.5 Basic Safety Practice

Field personnel will observe basic safety practices. The Health and Safety Director will be responsible for informing all field personnel of these practices. They will include, but not be limited to, the following:

- Observe the buddy system (work in pairs)
- Eating, drinking, and smoking are prohibited on-site
- Alcohol consumption is prohibited 24 hours prior to and 24 hours after being on a hazardous waste site
- Contact lenses cannot be worn with any respirators
- Practice contamination avoidance by avoiding obvious contaminated objects/areas and by not sitting or kneeling on the ground
- Do not climb over drums or obstacles

Maintain contact with the Site Safety Officer

1.6 Site Safety Plan

A written Site Safety Plan must be prepared prior to any field operation. The purpose of the form is to provide information about the site being investigated, an evaluation of the hazards present, and the plan developed to protect the field personnel and to prepare for emergency action. The plan is prepared by the Project Manager and submitted to the Health and Safety Director for review and approval prior to the operation.

A standard form is used for the Site Safety Plan which has five parts. The first part provides general information, including the name and location of the site and the objective(s) of the investigation. The second part provides information on the site and waste characteristics, including a description of the facility and its history. The third part of the form is a hazard evaluation, which assesses the potential hazards to site inspection personnel, based on available information. The fourth part of the form is the work plan itself. It establishes the work area, the personal protection (level of protection and equipment) to be used, decontamination procedures, site entry procedures, the site entry team members and their responsibilities, and work limitations. The last part of the form provides emergency information, including emergency contacts and resources, and emergency routes to hospitals or other facilities.

The Site Safety Plan must contain specific information describing the safety precautions and procedures to be used and justification for them. The hazard evaluation is a key part of the form, since the plan must be developed on the basis of the evaluation of known or potential hazards. If hazard information (e.g. possibility of explosive or toxic atmospheres) is not available, the safety plan must include a procedure for obtaining the necessary information or for protecting personnel from unknown but potential hazards.

1.6.1 Reporting Incidents Involving Personal Injury or Exposure to Hazardous Materials. All incidents involving personal injury or exposure to potentially hazardous materials during any field activity must be documented and reported immediately to the Health and Safety Director. A standardized incident report is used for this purpose.

It is important to report all exposures and injuries, even though the incident is not considered serious or no adverse health effects or symptoms are apparent at the time. Often exposure to a toxic agent may have delayed or latent effects which may only be detected by specific diagnostic tests. Documenting an exposure may aid in identifying the cause of symptoms or changes in health status indicators (diagnostic blood tests or pulmonary function, for example) at a later time. Likewise, an injury, such as an eye injury caused by dust particles, may result in delayed damage to the eye.

4.6.2 <u>Site-Specific Safety Plan</u>. The Site-Specific Safety Plan for the AFP 59 is detailed in Attachment 1. The safety plan provides information on site/waste characterizations, hazards, work plan, investigation-derived material disposal plan, and emergency/contingency information.

Level D protection will be adequate during all site activities including the sampling and corrective action activities. Investigation activities will be performed in Level D protection with constant Organic Vapor Analyzer (OVA) Model 128 monitoring to warn against the sudden release of volatile organics into the air. A sudden significant increase in volatile organic emmissions may require immediate withdrawal of site personnel and re-evaluation of protection levels. If OVA readings in excess of 100 ppm are obtained, the OVA will be run in the gas chromatography (GC) mode to estimate the percentages of methane and non-methane hydrocarbons. If non-methane hydrocarbons exceed 10 ppm at any location, personnel will don air-purifying respirators with organic vapor and acid gas cartridges. Additionally, monitoring for the presence of sulfuric acid will be conducted with Draeger tubes. Soil and

water samples obtained during the field investigation will be collected with PVC or neoprene gloves.

Field investigations and sampling activities can result in the generation of contaminated materials. Proper presampling planning must include a management plan for the disposal of materials encountered during field investigations in order to minimize the impact to the environment and the risk to public health. The contaminated materials that will be generated include decontamination rinse water and used disposable clothing. Disposable clothing and rinse water will be disposed of on the site.

ATTACHMENT A SITE SAFETY PLAN

SITE SAFETY PLAN

A. GENERAL INFORMATION

SITE: Air Force Plant 59

PROJECT NO.: G106

LOCATION: Johnson City, NY

PREPARED BY: Rebekah Dunn

DATE: 12/3/85

APPROVED BY: Francie Barker

DATE: 12/3/85

OBJECTIVE(S): Conduct sampling for remedial investigation to identify extent

and magnitude of contaminated soil and groundwater.

PROPOSED DATE(S) OF INVESTIGATION: Summer 1986

BACKGROUND REVIEW:

COMPLETE: X

PRELIMINARY:

DOCUMENTATION/SUMMARY: OVERALL HAZARD: SERIOUS

MODERATE

LOW X

UNKNOWN

B. SITE/WASTE CHARACTERISTICS

WASTE TYPE(S): LIQUID X

SOLID

SLUDGE

GAS

CHARACTERISTIC(S): CORROSIVE

06745

IGNITABLE X

RADIOACTIVE

VOLATILE X

TOXIC X

REACTIVE

UNKNOWN

OTHER (NAME):

FACILITY DESCRIPTION: AF 59 is an Air Force owned electro-mechanical systems production facility operated by General Electric Company.

PRINCIPAL DISPOSAL METHOD (type and location): Storage of hazardous waste off-site by contractors.

UNUSUAL FEATURES (dike integrity, power lines, terrain, etc.)
None presently known, will be determined on site.

STATUS (active, inactive, unknown): Active

HISTORY (worker or nonworker injury; compliants from public; previous agency action): No history

C. HAZARD EVALUATION

There is potential for dermal exposure to soils contaminated with waste oils, degreasers, process chemicals, and paint residues during soil sampling. In addition ambient air concentrations of volatile organics may be exacerberated during drilling if drilling occurs in contaminated areas.

D. SITE SAFETY WORK PLAN

See Fig. 2
PERIMETER ESTABLISHMENT: MAP/SKETCH ATTACHED Tech. SITE SECURED? Yes
Operation Plan
PERIMETER IDENTIFIED ZONE(S) IF CONTAINMENT IDENTIFIED Yes

PERSONNEL PROTECTION

LEVEL OF PROTECTION: A B C D X

MODIFICATIONS:

During drilling, upgrade to Level C if non-methane hydrocarbons exceed 5-10 ppm above background.

SURVEILLANCE EQUIPMENT AND MATERIALS: Urganic Vapor Analyzer

DECONTAMINATION PROCEDURES: Washing boots, gloves, split spoons, all sampling equipment rinse with determent and water, rinse with clean water, methanol rinse, then distilled water. Steam cleaning of drilling equipment.

SPECIAL EQUIPMENT, FACILITIES, OR PROCEDURES:

Decon waste will be drummed for proper disposal.

SITE ENTRY PROCEDURES: N/A

TEAM MEMBER (Major)

Jim Mack Robert Goldman

Aaron Levy

RESPONSIBILITY

Project Director Field Team Leader/QA/QC/ Site Safety/Hydrogeology Field Technician

WORK LIMITATIONS (time of day, etc.): Daylight hours

INVESTIGATION-DERIVED MATERIAL DISPOSAL: Disposable clothes and equipment to be bagged and disposed of as waste, unless contaminated, when it will be drummed and disposed of by AFB off-site.

E. EMERGENCY INFORMATION

LOCAL RESOURCES

AMBULANCE: (607) 772-1010

HOSPITAL EMERGENCY ROCM: (607) 770-6611

POISON CONTROL CENTER: (607) 770-6611

POLICE: (607) 729-9321

FIRE DEPARTMENT: (607) 729-9512

AIRPORT: (607) 798-7171

EXPLOSIVES UNIT:

None

XERA CONTACT: Mr. Patrick Gilligan (607) 77U-2216

USAF

SITE RESOURCES

WATER SUPPLY:

At Plant

TELEPHONE: (607) 770-2216

RADIO:

N/A

OTHER: N/A

EMERGENCY CONTACTS

CORPORATE SAFETY DIRECTOR Laurence Kaufman, Ph.D. (202) 296-7902

PROJECT LEADER

Jim Mack

(212) 840-3990

FCHA OFFICE

(212) 840-3990

F. EMERGENCY ROUTES

(give road or other directions; attach map)

HOSPITAL:

Turn east on Main Street from plant exit, proceed 3/4 mile. Wilson Hospital is located on south side of road.

OTHER:

Location and Vicinity Map of AF Plant 59.