CHAPTER 2 LANGUAGES

In what follows, we write A* to represent the set of all finite sequences or strings formed using the symbols in A.

eg(1)

If $A = \{0,1\}$, some elements of A^* are:

eg(2)

If A = {he, runs, slowly}, some elements of A* are:

A <u>language</u> consists of these components:

- (1) S = set of all symbols or "words" that are allowed.
- (2) Syntax of the language a set of rules on how the words in S can be arranged to form acceptable sentences, ie what sequences of words are considered "properly constructed sentences".
- (3) Semantics of the language specification of the meaning of properly constructed sentences.

Not all strings in S* are properly constructed sentences. Not all properly constructed sentences have meaning.

<u>eg(3)</u>	
In English, the sequence of wordsproperly constructed sentence.	is not a
	are properly
constructed sentences, but has no meaning.	

eg(4)

In the language of elementary arithmetic, the symbol set is $S = \{0,1,2,3,4,5,6,7,8,9,+,-,\times,\div,(,)\}.$

These symbols can be arranged in some proper order to form "syntactically correct" arithmetic expressions.

 $((3 + 4) \times 0 - 4)$ is a properly constructed sentence.

The meaning is _____

$$((3 + \times 4) \times -0 - 4 \text{ is }$$

Phrase Structure Grammar

A <u>phrase structure grammar</u> consists of these components:

- (1) S = set of all allowed "words". These words are used to form sentences.
- (2) V = a finite set consisting of all the words in S and some additional symbols used to describe the structure of sentences but do not become parts of sentences.
- (3) A <u>production relation</u>, → representing a set of substitution rules specifying what strings may be replaced by some other strings in constructing sentences.

eg. $w \mapsto z$ means the string w may be replaced by the string z whenever w occurs.

 $v_0 \in V - S$, representing the starting point for substitution.

Eg:

```
too fast - <u>Adverb phrase</u> (AdvP)
very happy - <u>Adjective phrase</u> (AP)
the massive dinosaur - <u>Noun phrase</u> (NP)
at dinner - <u>Preposition phrase</u> (PP)
watch movie - <u>Verb phrase</u> (VP)
```

<u>eg(5)</u>

Consider the phrase structure grammar $G = [V, S, v_o, \rightarrow]$ where

```
S = {He, She, drives, runs, carefully, slowly, frequently}
V= S ∪ {sentence, noun, predicate, verb, adverb}
  v_0 = sentence
  Sentence → noun predicate
  noun \mapsto He
  noun \rightarrow She
  predicate → verb adverb
  verb \rightarrow drives
  verb → runs
  adverb → carefully
  adverb \, \mapsto \, slowly
  adverb \rightarrow frequently
  Show how the sentence "He drives carefully" may be
  constructed.
```

Solution:

Sentence → noun predicate

- → noun verb adverb
- → He verb adverb
- → He drives adverb
- → He drives carefully

The process of substitution may be represented in a tree diagram:

This is called a <u>derivation tree</u> for the sentence

The words in S are called <u>terminal symbols</u>. Any sentence constructed must consist of terminal symbols only. The symbols in V–S, such as "sentence", "noun", "predicate", "verb", and "adverb" are non-terminal symbols. They should be totally replaced by terminal symbols in the final sentence produced.

Direct derivability

y is said to be <u>directly derivable</u> from x if x can be substituted by y using <u>one</u> of the productions to replace all or part of x.

Then we write $x \Rightarrow y$.

The relation \Rightarrow is called direct derivability.

eg(6)

In the last example,

_____is directly derivable from _____

_____is directly derivable from _____

eg(7)
Suppose a production rule is: aV → bcd
Then baVe may be replaced by _____
bbcde is directly derivable from _____

The transitive closure of \Rightarrow is written as \Rightarrow^{∞} $x \Rightarrow^{\infty} y$ means x can be converted into y by using a sequence of substitutions, ie by using a combination of one or more productions. We say y is derivable from x.

<u>eg(8)</u>

In eg(5), show that sentence \Rightarrow^{∞} He verb adverb sentence \Rightarrow^{∞} He drives carefully.

Solution:

If $w \in S^*$ and $v_0 \Rightarrow \infty$ w, then w is called a

[$w \in S^*$ means w is a string formed using terminal symbols only.

 $v_o \Rightarrow^{\infty} w$ means w is derivable from v_o by a sequence of substitutions.]

Let $G = [V, S, v_o, \mapsto]$ be a Grammar. The set of all properly constructed sentences is called the <u>language</u> of G. $L(G) = \{w: w \in S^* \text{ and } v_o \Rightarrow^{\infty} w \}$

<u>eg(9)</u>

Consider the grammar in eg(5).

"He drives carefully" \in L(G).

How many properly constructed sentences are there in L(G)?

Types of Grammars

Grammars are partitioned into 4 types, based on their complexity. Let $G = (V, S, v_o, \rightarrow)$ be a phrase structure grammar. Then we say G is

Type 0: If no restrictions are placed on the productions of G

Type 1: I f for any production $w_1 \mapsto w_2$, the length of w_1 is less than or equal to the length of w_2 (where the length of a string is the number of words in that string)
Eg:

Type 2: If the left side of each rule is a single nonterminal and the right -hand side has one or more symbols. Type 2 grammars are called context- free grammars since a nonterminal symbol that is the left side of a production can be replaced in a string whenever it occurs, no matter what else is in the string.

Eg:

Type 3: If the left -hand side of each production is a single, nonterminal symbol and right- hand side has one or more symbols, including at most one nonterminal symbol, which must be at the extreme right of the string.

Eg:

Types of Grammars

BNF notation (Backus-Naur Form)

Production relation → is represented as ::= Non-terminal symbols are put in <> Symbols without <> are terminal symbols. Multiple alternatives are separated by |

eg(10)

Rewrite the production relation in eg(5) in BNF notation. Solution:

eg(11)

Let $G = [V, S, v_o, \mapsto]$ be given by $V = \{v_o, w, a, b, c\}, S = \{a, b, c\}.$

Production \mapsto described in BNF notation:

$$<$$
v $_{\mathbf{o}}>::=$ a $<$ w $>$

$$<$$
w $>$::= bb $<$ w $>|c|$

Sketch a tree diagram to show how sentences may be produced.

A syntactically correct sentence is one of these:

So $L(G) = \{ab^{2n}c \text{ where } n = \text{ an integer } \geq 0\}$ May also write $L(G) = \{a(b^2)^*c\}$ where * means "repeat any number of times". A production in which the symbol on the left occurs again on the right, such as <w> ::= (...)<w>, is described as a recursive production. Such a production can be used

Parsing a sentence

repeatedly any number of times.

Given a sentence, we wish to check whether it is syntactically correct. It is analysed to show the structure, and a derivation tree may be drawn for it. This process of analysing sentence structure is called <u>parsing</u>, and the tree obtained is called a <u>parse tree</u>.

In converting a programming language, a compiler parses a sentence and searches the parse tree. As each vertex is visited, the sentence is translated into another language.

eg(12)

For the language of the Grammar in eg(5), obtain a parse tree for the sentence "She runs slowly".

Syntax diagrams

These diagrams are drawn to represent productions (substitution rules). Terminal symbols are put in circles. Non-terminal symbols are put in square boxes. Arrows show direction of flow.

<u>eg(13)</u>

 $\langle v_o \rangle ::= a \langle w \rangle$ is drawn as

Solution:

$$<$$
w $> ::= a|b|c<$ x $>$

<w> ::= <x><y>|<x>a|bc<y> is drawn as

The recursive production <w> ::= ab<w> may be drawn as

<w>::= bb<w>|c is drawn as

<w> ::= ab | ab <w> may be drawn as

If we can combine all the component diagrams into a single diagram which involves only terminal symbols, that diagram is called the <u>master diagram</u> of that Grammar.

<u>eg(14)</u>

Draw the master diagram for $G = [V, S, v_o, \rightarrow]$ where $S = \{a,b,c\}, V = S \cup N, N = V - S = \{v_o,w\}.$

$$< v_o > ::= a < w >$$

$$< w > ::= bb < w > |c|$$

Solution:

Reading this diagram following the arrows, we obtain properly constructed sentences like:

eg(15)

Let the set of terminal symbols $S = \{0,1,2,3,4,5,6,7,8,9,\bullet\}$ Set of non-terminal symbols $N = \{\text{decimal number, decimal fraction, unsigned integer, digit}\}.$

```
 \begin{array}{l} \text{V = S} \cup \text{N} \\ \text{v_o = decimal number} \\ \text{<decimal number} ::= <u \text{signed integer} > | <decimal fraction} > \\ \text{<u \text{signed integer}} > | <decimal fraction} \\ \text{<decimal fraction} > ::= • <u \text{signed integer} > \\ \text{<u \text{signed integer}} > ::= <digit} > | <digit} > <u \text{signed integer} > \\ \text{<digit} > ::= 0|1|2|3|4|5|6|7|8|9} \\ \end{array}
```

Draw a syntax diagram for this Grammar.

Draw a derivation tree for the decimal number 56.84

Is 56.84.12 a syntactically correct decimal number?

d represents the above.

Derivation Tree for 56.84.

Reading through the master syntax diagram, we see that a decimal number has at most one decimal point whichever branch we follow, so 56.84.12 is not syntactically correct.

Regular Grammars & Regular Expressions

A <u>regular grammar</u> is a grammar in which the left-hand side of each production is a single, nonterminal symbol, and the right-hand side has one or more symbols including at most one nonterminal symbol, which must be at the extreme right of the string.

eg:

The language of a regular grammar can be represented by a regular expression. A regular expression over the set S is a string formed using the symbols in S, possibly with the help of the symbols *, \(^{\vee}, and (), where

 a^* means a repeated any number of times = a^n for $n \ge 0$, $a \lor b$ means either a or b, that is a^nb^{1-n} for n = 0 or 1.

() may be used to enclose a sequence of symbols treated together as one block.

Example:

ab* represents strings like _____

(ab)* represents strings like _____

a v b* represents _____

(a v b)* = ____

Strings represented include _____

(ab)ⁿ for $n \ge 1$ may be written as ______

There is a correspondence between segments of the master diagram of a Grammar and regular expressions. Alternative branches correspond to \vee . A loop corresponds to *. Segments in sequence correspond to strings joined together.

<u>Ex.1:</u> Write a regular expression to represent the language of each Grammar whose master diagram is given as follows:

Solution:

<u>Ex.2</u> Draw a master diagram for each of the Grammars whose languages are represented by these regular expressions:

(1) (abc) \(\text{(de)} \)

(2) $ab(c \lor d)e$

Solution:

(3) abc*d

(4) $a(bc)*d(e \lor f)$

Solution:

(5) $abc(bc)*d(e \lor f)*g$

OR

Extra Example 1:

A Grammar, G is described in Backus-Naur Form (BNF) by

$$< v_0 > : = ab < v_0 > | ac < v_0 > | bb < v_1 >$$

 $< v_1 > : = bb < v_1 > | c < v_2 > | d < v_2 >$
 $< v_2 > : = e < v_2 > | e$

- (i) List all the nonterminal symbols used in G.
- (ii) List all the terminal symbols used in G.
- (iii) Draw the syntax diagram for G.

Extra Example 2:

Given $G = (V, S, v_0, \rightarrow)$ is a grammar where $V = \{v_0, v_1, v_2, x, y, z\}$, $S = \{x, y, z\}$ and the production relation \rightarrow described by

$$v_0 \rightarrow xyv_0$$

$$v_0 \rightarrow yv_1$$

$$v_1 \rightarrow yv_1$$

$$v_1 \rightarrow zzv_2$$

$$v_1 \rightarrow xv_2$$

$$v_2 \rightarrow y$$

- (i) Write the BNF (Backus-Naur Form) for the production.
- (ii) Draw the master syntax diagram for G.
- (iii) Draw a derivation tree for *xyyzzy*.
- (iv) Write the L(G).

Extra Example 3:

Let $G = (V, S, v_0,)$ be a grammar where $V = \{v_0, v_1, v_2, a, b\}$, $S = \{a, b\}$ and the production relation \mapsto is described as:

- $v_0 \mapsto bav_1$ $v_1 \mapsto av_0$ $v_1 \mapsto bv_2$ $v_1 \mapsto b$ $v_2 \mapsto bbv_2$ $v_2 \mapsto babv_2$ $v_2 \mapsto a$
- (i) Write the Backus-Naur Form (BNF) for the production.
- (ii) Draw the master syntax diagram of G.
- (iii) Draw the derivation tree for the sentence babbbbaba.
- (iv) Write the regular expression to represent the form of all possible syntactically correct sentences.

Extra Example 4:

Let $G = (V, S, v_0, \mapsto)$ where $V = \{v_0, v_1, v_2, 0, 1\}, S = \{0, 1\}$ and the production relation \mapsto is described as follows:

```
v_{0} \mapsto 1v_{0}
v_{0} \mapsto 101v_{1}
v_{1} \mapsto 00v_{1}
v_{1} \mapsto 1v_{2}
v_{1} \mapsto 11
v_{2} \mapsto 1v_{2}
v_{2} \mapsto 0v_{2}
v_{2} \mapsto 01
```

- (i) Write the Backus-Naur Form (BNF) for the production.
- (ii) Draw the master syntax diagram to illustrate the production of G.
- (iii) Write the regular expression that corresponds to the master syntax diagram in part (ii).
- (iv) Draw the derivation tree for the sentence 110110001.

Extra Example 5:

```
G = (V, S, v_0, \mapsto) is a grammar, where V = { v_0, v_1, v_2, a, b, c, d, e, f, g }, S = { a, b, c, d, e, f, g } and the production relation \mapsto is described as follows: v_0 \mapsto a v_0 v_0 \mapsto b v_0 v_0 \mapsto c v_1 v_1 \mapsto d d v_1 v_1 \mapsto e e v_2 v_1 \mapsto f v_2 v_2 \mapsto g
```

- (i) Write the production relation in BNF notation.
- (ii) Draw a derivation tree for the sentence *abacddfg*.
- (iii) Determine whether *aacdddeeg* is a synthetically correct sentence.
- (iv) Draw the master syntax diagram for G.
- (v) Write a regular expression to represent the form of all possible synthetically correct sentences.

Extra Example 6:

Let $G = (V, S, v_0, \mapsto)$ where $V = \{v_0, v_1, v_2, a, b, c, d\}, S = \{a, b, c, d\}$ and the production relation \mapsto is described as follows:

```
v_{0} \mapsto v_{1}
v_{0} \mapsto v_{2}
v_{1} \mapsto abv_{1}
v_{1} \mapsto abv_{3}
v_{1} \mapsto d
v_{2} \mapsto abbv_{2}
v_{2} \mapsto d
v_{3} \mapsto ccv_{3}
v_{3} \mapsto d
```

- (i) Write the Backus-Naur Form (BNF) for the production.
- (ii) Draw a master syntax diagram of G.
- (iii) Find the regular expression that corresponds to the master syntax diagram.
- (iv) Draw a derivation tree for the sentence *ababccccd*.