

课程名称:数据挖掘
实验名称: <u>实验一: weka 使用与聚类分析</u>
ا جاء ١٨ توجاد
实验完成人:
姓名:平雅霓学号:2017211949
指导教师: 牛琨

日期: 2019年 10月 26日

一、实验目的

熟悉 WEKA 软件的使用,加深对数据处理和聚类分析的理解。

二、实验内容

- (a) 熟悉 WEKA 软件的使用;
- (b) 给出本数据的数据描述报告;
- (c) 采用 K 均值算法对给定数据集进行聚类,给出聚类结果。改变 K 的不同取值,研究 K 值改变给聚类结果所带来的变化。改变初始簇心,研究簇心变化给聚类结果所带来的变化;
 - (d) 给出你认为最优的模型并加以解释。

三、 实验环境

Windows 环境、weka-3-8

四、实验过程及结果

1. 数据描述

该数据集收集了 2003 年-2012 年之间上市的 1411 款手机的相关信息,其中的每条数据项中属性包括产品型号、品牌、颜色、价格、市场定位、硬件等。

- 产品 ID: 自增长,从1开始,到 1411.
- 产品颜色: 共有7个颜色, 众数为1。
- 产品上市时间: 共有 9 个年限, 众数为 2010 年。
- 产品市场定位: 共有7个定位, 众数为0 (即经济实用型)。
- 芯片平台: 共有高通和威盛两个值, 众数为高通。
- G网: 众数为 0, 即大多数为 G 网。
- 芯片主频: 取值在 40~2400 之间, 平均数为 196.149, 众数为 96。
- AP: 取值为 0 有 830 个, 1 有 581 个, 即众数为 0。

- 频段数量:有5个取值,众数为1。
- 零售价格: 取值为 184~9380, 平均值为 1117.0198, 众数为 298。
- 外观类型:有5个取值,其中众数为0,占总数的82.1%。
- 厚度: 取值为 9~85, 平均厚度为 14.9489, 众数为 15。
- 产品重量: 范围为 48.4~790.2, 平均重量为 107.6030, 众数为 110。
- 屏幕数量:有单双之分,众数为1,即大多数为95.2%为单屏幕。
- 主屏幕尺寸: 取值为 0~7, 平均值为 2.41, 众数为 2.4。
- 显示分辩率: 平均值为 82613.703, 众数为 76800。
- 触摸屏: 有三种触摸屏, 众数为 0, 即大多数为为触摸屏。
- 键盘类型:有三种键盘,众数为1,即大多数为数字键盘。
- RAM: 取值范围为 1~4096, 平均值为 139.4232, 众数为 64。
- ROM: 取值范围为 0~16384, 平均值为 306.5258, 众数为 128。
- Flash 内存:取值范围为 0~16384,平均值为 239.5981,众数为 0。
- 摄像头:取值范围为 0~1300,平均值为 125,众数为 30。
- 定位: 众数为 0, 即 71.2%无定位功能。
- FM 广播: 众数为 0, 即 53.8%无 FM 广播。
- 电视: 众数为 0, 即 98.6%无点视功能。
- Modem: 众数为 1。即 60%有调制解调器。
- 红外: 众数为 0, 即 98.6%无红外。
- 蓝牙: 众数为 0,55%无蓝牙功能,45%有蓝牙功能。
- WLAN: 众数为 0, 86.9% 手机不能使用无线网。
- 电池容量: 平均数为 1134.8936, 众数为 1000。
- 重力感应器: 众数为 0,82.4%的手机无重力感应器。
- 方向感应器: 众数为 0,90.7%的手机无方向感应器。
- 文字输入方法数:有3种输入法,众数为1。
- 智能系统: 众数为 0,81.7%的手机无智能系统。

详细的属性描述如下表所示:

产品 ID	产品编号,每个产品的唯一标识,1~1411	触摸屏	无 0,电阻 1,电容 2
产品型号	每个产品所属型号	键盘类型	无 0,数字 1,全 2
产品品牌	每个产品所属品牌	RAM	1~4096
产品颜色	1~7	ROM	0~16384
产品上市时间	2003~2012	Flash 内存	0~16384
产品市场定位	经济实用 0,新潮炫酷 1,娱乐小资 2,商务功能 3 品味尊贵 4,老年机 5,儿童机 6	摄像头	0~1300
芯片平台	高通 0,威盛 1 定位		是 1,否 0
G 🕅	是 1,否 0	FM 广播	是 1,否 0

芯片主频	40~2400	电视	是 1,否 0
AP	是1,否0	Modem	是 1,否 0
频段数量	1~5	红外	是 1,否 0
零售价格	184~9380	蓝牙	是 1,否 0
外观类型	直板 0,翻盖 1,滑盖 2,旋转 3,座机 4	WLAN	是 1,否 0
厚度	9~85	电池容量	100~4000
产品重量	48.4~790.2	重力感应器	是 1,否 0
屏幕数量	单 1,双 2	方向感应器	是 1,否 0
主屏幕尺寸	0~7	文字输入方法数	1~3
显示分辩率	6240~921600	智能系统	是 1,否 0

2. 聚类过程

(1) 多次聚类尝试

A. 只去掉属性 id

首先将数据项中的 id 属性去掉,每个产品都具有一个 id, 所以 id 是无效项,对于聚类来说没有什么实际意义。

之后将聚类结果 sum of squared errors 绘制了图表(其中横轴为簇的个数,纵轴为误差平方和):

簇的个数	误差平方和
1	6538. 508728
2	5717.677398
3	5342. 47308
4	5188. 528383
5	5057. 416559
6	4862. 476821
7	4847. 497349
8	4691.946623
9	4642. 449334
10	4603.37647
11	4547. 324843
12	4509.085444
13	4435. 521756
14	4411.739105

从图中可以看出误差平方和的范围在 4400-6400 之间,下降速率在 1-6 间下降较为快速,6 之后下降变缓,说明当簇的个数超过 7 个之后,聚类的效果不再显著,虽然误差平方和还会继续下降,但是簇越多并不见得效果越好,如果每个产品一个类误差平方和肯定会变小,但是失去了聚类的意义。

B. 去掉属性 id、型号、品牌

考虑到品牌和型号很多,基本超过了30种,所以对于聚类为10个以下的类来讲,会出现把不同型号不同品牌的产品聚集在了一个类中,这样会影响聚类的效果,所以在第二次尝试中,我将型号和品牌这两个属性也去掉了。

聚类的结果的误差平方和如下:

簇的个数	误差平方和
1	3822.508728
2	3022. 416385
3	2639. 464049
4	2503.152727
5	2317.750088
6	2165. 410354
7	2117. 366361
8	2054. 076966
9	2047. 303771
10	1924. 125488

从图中可以看出,误差平方和的范围在 1900-3900 之间,比上一次尝试(只去除 id)的误差平方和小了一倍,效果十分显著。下降速率在 1-6 间下降较为快速,在 6 之后下降变缓。

C. 去掉其他属性值:

① 在去掉 id、品牌、型号的基础上再去掉**上市时间(K=6、seed=10):**

Number of iterations: 19

Within cluster sum of squared errors: 2128.615189521237

② 在去掉 id、品牌、型号的基础上再去掉**颜色(K=6、seed=10):**

Number of iterations: 18

Within cluster sum of squared errors: 2133.9893365287717

可以看出,和只去掉 id、品牌、型号比较,去掉其他的属性并没有显著的变化,所以最终我们之去掉 id、品牌、型号这三项。

(2) 确定 k 的值

由上面的聚类实验可以得出,在簇的个数为 6 的时候,聚类效果的变化开始缓慢,因此我们将 6 作为最佳的簇数量,即 k=6,并且采用第二次的数据处理(即去掉 id、型号、品牌)。

从聚类结果中可以看出,本次聚类经过了19次迭代,且误差平方和约2165。

Number of iterations: 19

Within cluster sum of squared errors: 2165.410354028998

Clustered Instances

- 0 287 (20%) 1 288 (20%)
- 2 200 (14%)
- 3 149 (11%) 4 232 (16%)
- 5 255 (18%)

(3) 改变初始簇心(调整 seed 的值)

本次实验中,以 10 为间距从 0 开始来测试,测试的 seed 数有 0、10、20、30、40、50、60、70、80、90、100、110、120、130

结果如图所示

seed	误差平方和
0	2227. 925445
10	2165.410354
20	2176. 288826
30	2237.895234
40	2373.026712
50	2209.062893
60	2231.613147
70	2346.799913
80	2186.613231
90	2294. 811038
100	2259.514562
110	2240.655859
120	2194. 415635
130	2227. 250598

从图中可以看出, seed=10 的时候, 误差平方和最小, 为 2165.41035402899

3. 模型分析

经过以上的分析,最终我们选择的最佳模型为数据预处理去除 id、型号、品牌这三项属性、k=6,seed=10 的模型,误差平方和为 2165.41035402899。