Interior Point Methods for Linear Programming Problems

Lecture 2

Debdas Ghosh

1

Contents

Interior point methods

Logarithmic barrier method

Primal-dual interior point method

Interior point methods

- Logarithmic barrier method
- Path-following
- Center method
- Affine scaling
- Potential reduction

Contents

Interior point methods

Logarithmic barrier method

Primal-dual interior point method

Given LPP

$$\text{(P)} \quad \begin{cases} \min & c^T x \\ \text{subject to} & Ax = b, x \geq 0. \end{cases}$$

The log-barrier formulation of (P) is

(LBP)
$$\begin{cases} \min & \phi_B(x;\mu) \equiv \frac{c^T x}{\mu} - \sum_{i=1}^n \ln(x_i) \\ \text{subject to} & Ax = b. \end{cases}$$

The first order necessary and sufficient optimality conditions for (LBP) is

(LBP OC)
$$\begin{cases} \nabla \phi_B(x;\mu) + \sum_{i=1}^m \lambda_i \nabla h_j(x) = 0 \\ Ax = b \end{cases}$$

5

Given LPP

$$\text{(P)} \quad \begin{cases} \min & c^T x \\ \text{subject to} & Ax = b, x \geq 0. \end{cases}$$

The log-barrier formulation of (P) is

(LBP)
$$\begin{cases} \min & \phi_B(x;\mu) \equiv \frac{c^T x}{\mu} - \sum_{i=1}^n \ln(x_i) \\ \text{subject to} & Ax = b. \end{cases}$$

The first order necessary and sufficient optimality conditions for (LBP) is

(LBP OC)
$$\begin{cases} \frac{c}{\mu} - X^{-1}e + A^T\lambda = 0 \\ Ax = b. \end{cases}$$

b

Notations

$$\circ \overset{\circ}{\mathcal{F}}(P) = \{ x \in \mathbb{R}^n : Ax = b, x > 0 \}$$

$$\quad \ \ \, \stackrel{\circ}{\mathcal{F}}(D) = \{(y,s) \in \mathbb{R}^m \times \mathbb{R}^n : A^Ty + s = c, s > 0\}$$

Existence of a minimizer of $\phi_B(x;\mu)$

A necessary and sufficient condition for the existence of a minimizer $\phi_B(x;\mu)$ in $\overset{\circ}{\mathcal{F}}(P)$ is ' $\overset{\circ}{\mathcal{F}}(P)$ and $\overset{\circ}{\mathcal{F}}(D)$ nonempty'.

For a given $\mu > 0$, let $(x(\mu), y(\mu), s(\mu))$ be the solution to (PD OCS)

7

Central path

- $\{x(\mu): \mu > 0\}$ is called the primal central path.
- $\{(x(\mu),y(\mu),s(\mu):\mu>0\}$ is called primal-dual central path.

Analytic center

If the feasible region of (P) is bounded, then the central path starts (i.e., when $\mu \to \infty$) from the unique point

$$\operatorname{argmin} \sum_{i=1}^{n} -\ln(x_i),$$

which is called the analytic center of the feasible region.

Central path

If μ decreases, then $c^T x(\mu)$ decreases and $b^T y(\mu)$ increases.

On the central path, $c^T x(\mu) - b^T y(\mu) = n\mu$.

Example 1

Find the central path and analytic center of the LPP:

$$\max 2x_1 + x_2$$
 subject to $-1 \le x_1 \le 1, -1 \le x_2 \le 1$.

9

Examples of central paths

Example 2

Find the central path and analytic center of the LPP:

$$\max 2x_1 + x_2$$
 subject to $x_1 \le 1, x_2 \le 1$.

Examples of central paths

Example 2

Find the central path and analytic center of the LPP:

$$\max 2x_1 + x_2$$
 subject to $x_1 \le 1, x_2 \le 1$.

Example 3

Find the central path and analytic center of the LPP:

$$\max -x_1-3x_2-4x_3$$
 subject to
$$x_1+x_2+x_3=1$$

$$x_1\geq 0, x_2\geq 0, x_3\geq 0.$$

Questions arise to find the following:

- The method to approximately solve the barrier problem.
- Criteria to terminate the approximate minimization.
- ullet Updating scheme for $\mu.$

Log-barrier formulation of the dual of (P) is

$$\min \ \psi_B(y;\mu) \equiv -\frac{b^Ty}{\mu} - \sum_{i=1}^n \ln(s_i)$$
 subject to $A^Ty + s = c.$

Log-barrier formulation of the dual of (P) is

$$\min \quad \psi_B(y; \mu) \equiv -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(s_i)$$

subject to
$$A^T y + s = c$$
.

•
$$\psi_B(y; \mu) = -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(c_i - a_i^T y)$$

Log-barrier formulation of the dual of (P) is

$$\min \ \psi_B(y; \mu) \equiv -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(s_i)$$

subject to $A^T y + s = c$.

•
$$\psi_B(y; \mu) = -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(c_i - a_i^T y)$$

•
$$g(y;\mu) := \nabla \psi_B(y;\mu) = -\frac{b}{\mu} + AS^{-1}e$$

Log-barrier formulation of the dual of (P) is

min
$$\psi_B(y;\mu) \equiv -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(s_i)$$

subject to $A^T y + s = c$.

•
$$\psi_B(y; \mu) = -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(c_i - a_i^T y)$$

•
$$g(y;\mu) := \nabla \psi_B(y;\mu) = -\frac{b}{\mu} + AS^{-1}e$$

$$\bullet \ H(y;\mu) \coloneqq \nabla^2 \psi_B(y;\mu) = \sum_{i=1}^n \frac{a_i a_i^T}{(c_i - a_i^T y)^2} = A S^{-2} A^T.$$

Log-barrier formulation of the dual of (P) is

min
$$\psi_B(y;\mu) \equiv -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(s_i)$$

subject to $A^T y + s = c$.

•
$$\psi_B(y; \mu) = -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(c_i - a_i^T y)$$

•
$$g(y;\mu) := \nabla \psi_B(y;\mu) = -\frac{b}{\mu} + AS^{-1}e$$

$$\bullet \ H(y;\mu) \coloneqq \nabla^2 \psi_B(y;\mu) = \textstyle \sum_{i=1}^n \frac{a_i a_i^T}{(c_i - a_i^T y)^2} = A S^{-2} A^T.$$

Newton direction:

$$d(y;\mu) := -H^{-1}g = (AS^{-2}A^T)^{-1}\left(\frac{b}{\mu} - AS^{-1}e\right)$$

Algorithm of logarithmic barrier method

To solve

$$\min - \frac{b^Ty}{\mu} - \sum_{i=1}^n \ln(s_i)$$
 subject to $A^Ty + s = c.$

Algorithm of logarithmic barrier method

To solve

$$\min -\frac{b^T y}{\mu} - \sum_{i=1}^n \ln(s_i)$$
 subject to $A^T y + s = c$.

Input

- $\varepsilon'>0$ \to accuracy parameter for the duality gap (for the outer loop)
- $\varepsilon'' > 0 \to {\rm accuracy\ parameter\ for\ the\ optimal\ solution\ (in\ the\ outer\ loop)}$
- $m{\bullet}$ $heta \in (0,1)
 ightarrow ext{reduction factor of the barrier parameter } \mu$
- ullet $\mu_0
 ightarrow$ initial value of the barrier parameter
- ullet $y^0
 ightarrow$ initial guess to start Newton's iteration

Algorithm of logarithmic barrier method

Algorithm 1

- 1. Initialize $\mu \leftarrow \mu_0$ and $y \leftarrow y^0$
- 2. (Outer loop) While $n\mu > \varepsilon'$ $\mu \leftarrow \theta \mu$
 - $\begin{aligned} \text{2.1} \quad & \text{(Inner loop) While } \|g(y;\mu)\| > \varepsilon'' \\ & \text{Compute } d(y;\mu) = -H^{-1}g = (AS^{-2}A^T)^{-1}\left(\frac{b}{\mu} AS^{-1}e\right) \\ & \text{Compute } \alpha = \operatorname{argmin}\left\{\psi_B(y+\alpha d;\mu): y+\alpha d \in \overset{\circ}{\mathcal{F}}(D)\right\} \\ & \text{Update } y \leftarrow y+\alpha d \end{aligned}$
- 3. Output $y(\mu)$ is an ε' -optimal point.

An example for the execution of Algorithm 1

Example

Consider to solve the following (dual) problem by logarithmicbarrier method with pure Newton method in the inner loop:

$$\label{eq:subject_to} \max \quad y_1 + 2y_2$$
 subject to $y_1 \leq 0, y_2 \leq 0.$

Find the minimum of this problem taking $\mu_0=1$, $\theta=\frac{1}{2}$, $\varepsilon'=10^{-2}$, $\varepsilon''=10^{-1}$ and $y^0=\begin{bmatrix} -1\\ -1 \end{bmatrix}$

Algorithm 2

- 1. Initialize $\mu \leftarrow \mu_0$ and $y \leftarrow y^0$
- 2. (Outer loop) While $n\mu > \varepsilon$

$$\mu \leftarrow (1 - \theta)\mu$$

Compute
$$d(y;\mu)=-H^{-1}g=(AS^{-2}A^T)^{-1}\left(\frac{b}{\mu}-AS^{-1}e\right)$$

2.1 (Inner loop) While $||d(y;\mu)||_H > \frac{1}{2}$

$$\begin{array}{l} \text{Compute } d(y;\mu) = -H^{-1}g = (AS^{-2}A^T)^{-1}\left(\frac{b}{\mu} - AS^{-1}e\right) \\ \text{Compute } \alpha = \operatorname{argmin}\left\{\psi_B(y+\alpha d;\mu): y+\alpha d \in \overset{\circ}{\mathcal{F}}(D)\right\} \\ \text{Update } y \leftarrow y+\alpha d \end{array}$$

3. Output $y(\mu)$ is an ε -optimal point.

Maximum outer iterations

Let z^* be the optimum value of the dual problem of (P). Then, after at most $\frac{1}{\theta} \ln \left(\frac{4n\mu_0}{\varepsilon} \right)$, Algorithm 2 ends up with a point y such that $z^* - b^T y \leq \varepsilon$.

Maximum outer iterations

Let z^* be the optimum value of the dual problem of (P). Then, after at most $\frac{1}{\theta} \ln \left(\frac{4n\mu_0}{\varepsilon} \right)$, Algorithm 2 ends up with a point y such that $z^* - b^T y \leq \varepsilon$.

Maximum inner iterations

Each outer iteration of Algorithm 2 requires at most

$$\frac{11\theta}{(1-\theta)^2} \left(\theta n + \frac{3}{2}\sqrt{n}\right) + \frac{11}{3}$$

inner iterations.

Total number of Newton iterations

An upper bound of the total number of Newton iterations is given by

$$\left[\frac{11}{(1-\theta)^2}\left(\theta n + \frac{3}{2}\sqrt{n}\right) + \frac{11}{3}\right] \ln\left(\frac{4n\mu_0}{\varepsilon}\right)$$

Total number of Newton iterations

An upper bound of the total number of Newton iterations is given by

$$\left[\frac{11}{(1-\theta)^2}\left(\theta n + \frac{3}{2}\sqrt{n}\right) + \frac{11}{3}\right] \ln\left(\frac{4n\mu_0}{\varepsilon}\right)$$

 ${
m iny }$ To obtain an $\varepsilon\text{-optimal}$ solution, Algorithm 2 needs $O(n\ln\frac{n\mu_0}{\varepsilon})$ Newton iterations.

Algorithm 2

- 1. Initialize $\mu \leftarrow \mu_0$ and $y \leftarrow y^0$
- 2. (Outer loop) While $n\mu > \varepsilon$

$$\mu \leftarrow (1 - \theta)\mu$$

Compute
$$d(y;\mu)=-H^{-1}g=(AS^{-2}A^T)^{-1}\left(\frac{b}{\mu}-AS^{-1}e\right)$$

2.1 (Inner loop) While $||d(y;\mu)||_H > \frac{1}{2}$

$$\begin{aligned} & \text{Compute } d(y;\mu) = -H^{-1}g = (AS^{-2}A^T)^{-1}\left(\frac{b}{\mu} - AS^{-1}e\right) \\ & \text{Compute } \alpha = \operatorname{argmin}\left\{\psi_B(y+\alpha d;\mu): y+\alpha d \in \overset{\circ}{\mathcal{F}}(D)\right\} \\ & \text{Update } y \leftarrow y+\alpha d \end{aligned}$$

3. Output $y(\mu)$ is an ε -optimal point.

In log barrier algorithm, there are three main difficulties

- Inner loop increases the computational cost.
- Hessian matrix H suffers from ill-conditioning as $\mu \to 0$.
- Identification of α in the inner loop.

In log barrier algorithm, there are three main difficulties

- Inner loop increases the computational cost.
- Hessian matrix H suffers from ill-conditioning as $\mu \to 0$.
- Identification of α in the inner loop.

Idea

- Solve the Newton scheme directly instead of computing H^{-1} .
- Device a method that will not need the inner loop.

Contents

Interior point methods

Logarithmic barrier method

Primal-dual interior point method

Given LPP

(P)
$$\begin{cases} \min & c^T x \\ \text{subject to} & Ax = b, x \ge 0. \end{cases}$$

The primal-dual optimality system (perturbed KKT system) is

(PD OCS)
$$\begin{cases} A^T y + s = c, \\ Ax = b, \\ Sx = \mu e, \end{cases}$$

i.e.,

$$F_{\mu}(x, y, s) \equiv \begin{bmatrix} A^{T}y + s - c \\ Ax - b \\ SXe - \mu e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Newton scheme to solve $F_{\mu}(x,y,s)=0$ is

$$JF_{\mu}(x^{k}, y^{k}, s^{k}) \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = -F_{\mu}(x^{k}, y^{k}, s^{k})$$
i.e.,
$$\begin{bmatrix} 0 & A^{T} & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} A^{T}y + s - c \\ Ax - b \\ SXe - \mu e \end{bmatrix}, \tag{1}$$

where $\Delta x = x^k - x^{k+1}$, $\Delta y = y^k - y^{k+1}$ and $\Delta s = s^k - s^{k+1}$.

If $(x,y,s)\in \overset{\circ}{\mathcal{F}}(P)\times \overset{\circ}{\mathcal{F}}(D)$, then the Newton system (1) reduces to

(PD NS)
$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ SXe - \mu e \end{bmatrix}$$

- Corresponding to $\mu=0$, the system $F_{\mu}(x,y,s)=0$, gives the optimum solution.
- To solve (PD NS) approximately, replace μ by $\sigma \tau(x,s)$, where σ is a regulating (centering) parameter that regulates the trade-off between the movements towards central path and optimum solution.

Solve the approximate Newton system (1) reduces to

(PD ANS)
$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ SXe - \sigma\tau(x, s)e \end{bmatrix},$$

where
$$\tau(x,s) = \frac{1}{n} \sum_{i=1}^{n} x_i s_i$$
.

Solve the approximate Newton system (1) reduces to

$$\text{(PD ANS)} \quad \begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ SXe - \sigma\tau(x,s)e \end{bmatrix},$$

where $\tau(x,s) = \frac{1}{n} \sum_{i=1}^{n} x_i s_i$.

Observation

- If we are on the central path, then $\tau(x,s)=\mu$, but τ is also defined off the central path.
- Recall that $x_is_i>0$. Thus, $XSe\in\mathbb{R}^n_{++}$. The mapping $(x,y,s)\mapsto XSe$ from $\overset{\circ}{\mathcal{F}}(P)\times\overset{\circ}{\mathcal{F}}(D)$ to \mathbb{R}^n_{++} is a bijection (H.W.). Hence we can study the central path in the xs-space.

Neignborhood of the central path

$$\quad \text{Denote } \overset{\circ}{\mathcal{F}} = \overset{\circ}{\mathcal{F}}(P) \times \overset{\circ}{\mathcal{F}}(D)$$

Two-norm neighborhood ($\beta \geq 0$)

$$\mathcal{N}_2(\beta) = \left\{ (x, y, s) \in \overset{\circ}{\mathcal{F}} : \|XSe - \tau(x, s)e\|_2 \le \beta \tau(x, s) \right\}.$$

One sided infinity-norm neighborhood ($0 \le \gamma \le 1$)

$$\mathcal{N}_{-\infty}(\gamma) = \left\{ (x, y, s) \in \overset{\circ}{\mathcal{F}} : x_i s_i \ge \gamma \tau(x, s) \text{ for all } i = 1, 2, \dots, n \right\}.$$

Neignborhood of the central path

Observation (H. W.)

• For $0 \le \beta_1 \le \beta_2 \le 1$,

$$\mathsf{CP} = \mathcal{N}_2(0) \subset \mathcal{N}_2(\beta_1) \subset \mathcal{N}_2(\beta_2) \subset \overset{\circ}{\mathcal{F}}.$$

• For $0 \le \gamma_1 \le \gamma_2 \le 1$,

$$\mathsf{CP} = \mathcal{N}_{-\infty}(1) \subset \mathcal{N}_{-\infty}(\gamma_2) \subset \mathcal{N}_{-\infty}(\gamma_1) \subset \mathcal{N}_{-\infty}(0) = \overset{\circ}{\mathcal{F}}.$$

Approximate Newton system at (x^k, y^k, s^k)

$$(\mathsf{PD} \; \mathsf{ANS}^k) \quad \begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ S^k X^k e - \sigma \tau^k e \end{bmatrix},$$

where $\tau^k = \tau(x^k, s^k) = \frac{1}{n} \sum_{i=1}^n x_i^k s_i^k$.

Short-step path following algorithm

SPF Algorithm

Input:

- The initial starting point $(x^0,y^0,s^0)\in\mathcal{N}_2\left(\frac{1}{2}\right)$
- Gap precision $\varepsilon > 0$
- Centering parameter $\sigma = 1 \frac{2}{5\sqrt{n}}$
- 1. Initialize $k \leftarrow 0$, $\tau^0 = \frac{1}{n} \sum_{i=1}^n x_i^0 s_i^0$
- 2. While $\tau^k > \varepsilon$
 - 2.1 Determine Δx^k , Δy^k and Δs^k by solving (PD ANS^k)
 - 2.2 Update $x^{k+1}=x^k-\Delta x^k$, $y^{k+1}=y^k-\Delta y^k$, $s^{k+1}=s^k-\Delta s^k$
 - 2.3 Update $\tau^{k} = \frac{1}{n} (x^{k+1})^{T} s^{k+1}$ and $k \leftarrow k+1$.
- 3. Output: (x^k, y^k, s^k) is an ε -optimal point to primal and dual.

Complexity of SPF method

Result for SPF method

• Let $(x^0,y^0,s^0)\in\mathcal{N}_2\left(\frac{1}{2}\right)$ and $\tau_0<\frac{1}{\varepsilon^\nu}$ for some $\nu>0$ and a given $\varepsilon\in(0,1)$. Then, there exists an index $K\in O(\sqrt{n}|\ln\varepsilon|)$ such that

$$\tau^k < \varepsilon$$
 for all $k \ge K$

Complexity of SPF method

Result for SPF method

• Let $(x^0,y^0,s^0)\in\mathcal{N}_2\left(\frac{1}{2}\right)$ and $\tau_0<\frac{1}{\varepsilon^\nu}$ for some $\nu>0$ and a given $\varepsilon\in(0,1)$. Then, there exists an index $K\in O(\sqrt{n}|\ln\varepsilon|)$ such that

$$\tau^k < \varepsilon$$
 for all $k \ge K$

• Let the parameters $\beta \in (0,1)$ and $\sigma \in (0,1)$ be chosen to satisfy

$$\frac{\beta^2 + n(1 - \sigma)^2}{\sqrt{8}(1 - \beta)} \le \sigma\beta.$$

If $(x^k, y^k, s^k) \in \mathcal{N}_2(\beta)$, we have

$$(x^{k+1}, y^{k+1}, s^{k+1}) \in \mathcal{N}_2(\beta).$$

Long-step path following algorithm

LPF Algorithm

Input:

- The initial starting point $(x^0,y^0,s^0)\in\mathcal{N}_{-\infty}\left(\gamma\right)$
- Gap precision $\varepsilon > 0$
- σ_{\min} and σ_{\max} with $0 < \sigma_{\min} < \sigma_{\max} < 1$.
- The neighborhood parameter $\gamma \in (0,1)$.
- Initialize: $k \leftarrow 0$, $\tau^0 = \frac{1}{n} \sum_{i=1}^n x_i^0 s_i^0$.

Long-step path following algorithm

LPF Algorithm

- 1. While $\tau^k > \varepsilon$
 - 1.1 Determine Δx^k , Δy^k and Δs^k by solving (PD ANS k) for a $\sigma^k \in [\sigma_{\min},\sigma_{\max}]$
 - 1.2 Update $x^{k+1}=x^k-\Delta x^k$, $y^{k+1}=y^k-\Delta y^k$, $s^{k+1}=s^k-\Delta s^k$
 - 1.3 Find the largest $\alpha_k \in (0,1]$ such that

$$(x^k - \alpha_k \Delta y^k, y^k - \alpha_k \Delta y^k, s^k - \alpha_k \Delta s^k) \in \mathcal{N}_{-\infty}(\gamma)$$

1.4 Update

$$x^{k+1} = x^k - \alpha_k \Delta y^k, y^{k+1} = y^k - \alpha_k \Delta y^k, s^{k+1} = s^k - \alpha_k \Delta s^k$$

- 1.5 Update $\tau^k = \frac{1}{n} (x^{k+1})^T s^{k+1}$ and $k \leftarrow k+1$.
- 2. Output: (x^k, y^k, s^k) is an ε -optimal point to primal and dual.

Complexity of LPF method

Result for LPF method

• Let $(x^0,y^0,s^0)\in\mathcal{N}_{-\infty}\left(\gamma\right)$ and $\tau_0<\frac{1}{\varepsilon^{\nu}}$ for some $\nu>0$ and a given $\varepsilon\in(0,1)$. Then, there exists an index $K\in O(n|\ln\varepsilon|)$ such that

$$\tau^k < \varepsilon$$
 for all $k \ge K$

References

- 1. D. den Hertog (2012). Interior point approach to linear, quadratic and convex programming: algorithms and complexity, Springer.
- W. Forst and D. Hoffmann (2010). Optimization—theory and practice.
 Springer.
- A. V. Fiacco and G. P. McCormick (1987). Nonlinear programming: sequential unconstrained minimization techniques, Classics in applied mathematics, Vol. 4, Society for Industrial and Applied Mathematics.
- R. J. Vanderbei (2020). Linear programming: foundations and extensions. Vol. 285. Springer Nature, 2020.
- Wright, M. (2005). The interior-point revolution in optimization: history, recent developments, and lasting consequences, *Bulletin of the American mathematical society* 42(1), 39–56.