AMENDMENTS TO THE CLAIMS

(IN REVISED FORMAT COMPLIANT WITH THE PROPOSED

REVISION TO 37 CFR 1.121)

- 1. (ORIGINAL) An apparatus comprising:
- an array of memory cells;
- a refresh circuit configured to refresh said array in response to a refresh control signal;
- a first monitor cell configured to have a charge leakage similar to said memory cells;
- a second monitor cell configured to have a discharge leakage similar to said memory cells;
- a control circuit configured to generate said refresh control signal in response to either a voltage level of said first monitor cell rising above a first pre-determined threshold level or a voltage level of said second monitor cell dropping below a second pre-determined threshold level, wherein said first and said second threshold levels are different.
- 2. (ORIGINAL) The apparatus according to claim 1, wherein said control circuit comprises:
- a first comparator circuit configured to generate a first control signal in response to said voltage level of said first

- 5 monitor cell rising above said first pre-determined threshold level;
 - a second comparator circuit configured to generate a second control signal in response to said voltage level of said second monitor cell rising above said second pre-determined threshold level; and

10

- a logic circuit configured to generate said refresh control signal in response to said first and said second control signals.
- 3. (ORIGINAL) The apparatus according to claim 2, wherein said logic circuit comprises a one-shot circuit configured to generate said refresh control signal having a predetermined pulse width.
- 4. (ORIGINAL) The apparatus according to claim 1, wherein said control circuit is configured to operate with both symmetrical and asymmetrical charge and discharge leakages.
- 5. (ORIGINAL) The apparatus according to claim 1, wherein said first monitor cell and said second monitor cell comprise memory cells that are structurally similar to memory cells of said array.

- 6. (ORIGINAL) The apparatus according to claim 5, wherein said monitor cells are configured to have a similar environment to said memory cells of said array.
- 7. (ORIGINAL) The apparatus according to claim 6, wherein a bitline of said first monitor cell and a bitline of said second monitor cell are set to an equalization potential of said array during a monitoring operation.
- 8. (ORIGINAL) The apparatus according to claim 1, further comprising:
- a plurality of monitor cells configured to have a charge leakage similar to said memory cells;

5

10

- a plurality of monitor cells configured to have a discharge leakage similar to said memory cells, wherein said control circuit is further configured to generate said refresh control signal in response to any of said monitor cells exceeding a respective one of said first pre-determined threshold level or said second pre-determined threshold level.
- 9. (ORIGINAL) The apparatus according to claim 1, wherein said first monitor cell and said second monitor cell comprise memory cells of said array.

- 10. (ORIGINAL) The apparatus according to claim 1, wherein said array of memory cells comprises 1T memory cells.
- 11. (ORIGINAL) The apparatus according to claim 1, further comprising a sense amplifier configured to program said first monitor cell with a first binary value and said second monitor cell with a second binary value in response to said refresh control signal.

5

5

10

12. (ORIGINAL) An apparatus for controlling a refresh of a memory array comprising:

means for monitoring a charge leakage of an array of memory cells;

means for monitoring a discharge leakage of an array of memory cells; and

means for generating a refresh control signal in response to either a voltage level of said first monitoring means rising above a first pre-determined threshold level or a voltage level of said second monitoring means dropping below a second pre-determined threshold level, wherein said first and second threshold levels are different.

13. (ORIGINAL) A method for controlling a refresh operation of a memory array comprising the steps of:

monitoring a charge leakage of a first monitor cell; monitoring a discharge leakage of a second monitor cell;

generating a refresh control signal in response to either a voltage level of said first monitor cell rising above a first pre-determined threshold level or a voltage level of said second monitor cell dropping below a second pre-determined threshold level, wherein said first and second pre-determined threshold levels are different.

5

10

5

and

14. (ORIGINAL) The method according to claim 13, further comprising the steps of:

programming said first monitor cell with a first binary value; and

- 5 programming said second monitor cell with a complement of said first binary value.
 - 15. (ORIGINAL) The method according to claim 13, further comprising the step of:

equalizing a bitline voltage level of said first monitor cell and a bitline voltage level of said second monitor cell with a bitline equalization voltage level of said memory array.

16. (ORIGINAL) The method according to claim 13, further comprising the steps of:

generating a first control signal in response to a comparison of a voltage level of said first monitor cell to said first pre-determined threshold level; and

5

5

generating a second control signal in response to a comparison of a voltage level of said second monitor cell to said second pre-determined threshold level.

17. (ORIGINAL) The method according to claim 13, further comprising the step of:

generating said refresh control signal having a predetermined pulse width.

18. (ORIGINAL) The method according to claim 13, further comprising the step of:

selecting said first and said second predetermined threshold levels to provide a margin between a refresh operation and a loss of retention.

19. (ORIGINAL) The method according to claim 18, wherein said first and said second predetermined thresholds are selected to balance maximizing a period between refresh operations and providing said margin.

20. (ORIGINAL) The method according to claim 13, Further comprising the step of:

refreshing a first stored value of said first monitor cell and a second stored value of said second monitor cell in response to said refresh control signal.

5