CS4224/CS5424 Project

Objectives

- Provide students the opportunity to acquire practical experience with using distributed database systems for application development.
- Learning Tasks:
 - ► How to install a distributed database system on a cluster of machines
 - ► How to design a data model and implement transactions to support an application by taking into consideration of the application workload and features of the database system
 - ► How to benchmark the performance of an application
- Develop an application for a wholesale supplier using two different APIs of YugabyteDB:
 - YSQL: PostgreSQL-compatible API
 - YCQL: Cassandra-compatible API

Wholesale Supplier Application

- 5 entities (Warehouse, District, Customer, Order, Item) and
- 2 relationships (Order-Line, Stock)
 - Order-Line specifies the items contained in each customer's order
 - Stock specifies the availability information of items in each warehouse
- 10 warehouses
- Each warehouse covers 10 districts ⇒ 100 districts
- Each district serves 3000 customers ⇒ 30,000 customers per warehouse
- 100,000 items per warehouse

Schema

Warehouse

W_ID

W_NAME

W_STREET_1

W_STREET_2

W_CITY

W_STATE

W_ZIP

W_TAX

W YTD

Order

O_W_ID
O_D_ID
O_ID
O_C_ID
O_CARRIER_ID
O_OL_CNT
O_ALL_LOCAL
O_ENTRY_D

District

D_W_ID
D_ID
D_NAME
D_STREET_1
D_STREET_2
D_CITY
D_STATE
D_ZIP
D_TAX
D_YTD
D_NEXT_O_ID

Item

I_ID I_NAME I_PRICE I_IM_ID I_DATA

Customer

C W ID

C D ID C ID C FIRST C MIDDLE C LAST C STREET 1 C STREET 2 C CITY. C STATE C ZIP C PHONE C SINCE C CREDIT C CREDIT LIM C DISCOUNT C BALANCE C YTD PAYMENT C PAYMENT CNT C DELIVERY CNT C DATA

OrderLine

OL_W_ID
OL_D_ID
OL_O_ID
OL_NUMBER
OL_I_ID
OL_DELIVERY_D
OL_AMOUNT
OL_SUPPLY_W_ID
OL_QUANTITY
OL_DIST_INFO

Stock

S W ID SID S QUANTITY S YTD S ORDER CNT S REMOTE CNT S DIST 01 S DIST 02 S DIST 03 S DIST 04 S DIST 05 S DIST 06 S DIST 07 S DIST 08 S DIST 09 S DIST 10 S DATA

Warehouse

Attribute	Meaning	Type
W_ID	Warehouse number	INT
W_NAME	Warehouse name	VARCHAR(10)
W_STREET_1	Warehouse address	VARCHAR(20)
W_STREET_2	Warehouse address	VARCHAR(20)
W_CITY	Warehouse address	VARCHAR(20)
W_STATE	Warehouse address	CHAR(2)
W_ZIP	Warehouse address	CHAR(9)
W_TAX	Warehouse sales tax rate	DECIMAL(4,4)
W_YTD	Year to date amount paid to warehouse	DECIMAL(12,2)

District

Attribute	Meaning	Type
D_W_ID	Warehouse number	INT
D_ID	District number	INT
D_NAME	District name	VARCHAR(10)
D_STREET_1	District address	VARCHAR(20)
D_STREET_2	District address	VARCHAR(20)
D_CITY	District address	VARCHAR(20)
D_STATE	District address	CHAR(2)
D_ZIP	District address	CHAR(9)
D_TAX	District sales tax rate	DECIMAL(4,4)
D_YTD	Year to date amount paid to district	DECIMAL(12,2)
D_NEXT_O_ID	Next available order number for district	INT

D_W_ID is a foreign key that refers to Warehouse table.

Customer

Attribute	Meaning	Туре
C_W_ID	Warehouse number	INT
C_D_ID	District number	INT
C_ID	Customer number	INT
C_FIRST	Customer name	VARCHAR(16)
C_MIDDLE	Customer name	CHAR(2)
C_LAST	Customer name	VARCHAR(16)
C_STREET_1	Customer address	VARCHAR(20)
C_STREET_2	Customer address	VARCHAR(20)
C_CITY,	Customer address	VARCHAR(20)
C_STATE	Customer address	CHAR(2)
C_ZIP	Customer address	CHAR(9)
C_PHONE	Customer phone	CHAR(16)
C_SINCE	Date and time when entry was created	TIMESTAMP
C_CREDIT	Customer credit status	CHAR(2)
C_CREDIT_LIM	Customer credit limit	DECIMAL(12,2)
C_DISCOUNT	Customer discount rate	DECIMAL(4,4)
C_BALANCE	Balance of customer's outstanding payment	DECIMAL(12,2)
C_YTD_PAYMENT	Year to date payment by customer	FLOAT
C_PAYMENT_CNT	Number of payments made	INT
C_DELIVERY_CNT	Number of deliveries made to customer	INT
C_DATA	Miscellaneous data	VARCHAR(500)

(C_W_ID, C_D_ID) is a foreign key that refers to District table.

Order

Attribute	Meaning	Туре
O_W_ID	Warehouse number	INT
O_D_ID	District number	INT
O_ID	Order number	INT
O_C_ID	Customer number	INT
O_CARRIER_ID	Identifier of carrier who delivered the order	INT
O_OL_CNT	Number of items ordered	DECIMAL(2,0)
O_ALL_LOCAL	Order status (whether order includes only	
	home order-lines)	DECIMAL(1,0)
O_ENTRY_D	Order entry data and time	TIMESTAMP

(O_W_ID, O_D_ID, O_C_ID) is a foreign key that refers to Customer table. The range of O_CARRIER_IDis [1,10].

Item

Attribute	Meaning	Type
I_ID	Item identifier	INT
I_NAME	Item name	VARCHAR(24)
I_PRICE	Item price	DECIMAL(5,2)
I_IM_ID	Item image identifier	INT
I_DATA	Brand information	VARCHAR(50)

Order-Line

Attribute	Meaning	Type
OL_W_ID	Warehouse number	INT
OL_D_ID	District number	INT
OL_O_ID	Order number	INT
OL_NUMBER	Order-line number	INT
OL_I_ID	Item number	INT
OL_DELIVERY_D	Data and time of delivery	TIMESTAMP
OL_AMOUNT	Total price for ordered item	DECIMAL(6,2)
OL_SUPPLY_W_ID	Supplying warehouse number	INT
OL_QUANTITY	Quantity ordered	DECIMAL(2,0)
OL_DIST_INFO	Miscellaneous data	CHAR(24)

(OL_W_ID, OL_D_ID, OL_O_ID) is a foreign key that refers to Order table. OL_I_ID is a foreign key that refers to Item table.

An order-line is classified as a home order-line if OL_SUPPLY_W_ID = OL_W_ID; otherwise, it it classified as a remote order-line. An order's O_ALL_LOCAL is set to *true* if and only if all its order-lines are home order-lines.

Stock

Attribute	Meaning	Туре
S_W_ID	Warehouse number	INT
S_I_ID	Item number	INT
S_QUANTITY	Quantity in stock for item	DECIMAL(4,0)
S_YTD	Year to date total quantity ordered	DECIMAL(8,2)
S_ORDER_CNT	Number of orders	INT
S_REMOTE_CNT	Number of remote orders	INT
S_DIST_01	Information on district 1's stock	CHAR(24)
S_DIST_02	Information on district 2's stock	CHAR(24)
S_DIST_03	Information on district 3's stock	CHAR(24)
S_DIST_04	Information on district 4's stock	CHAR(24)
S_DIST_05	Information on district 5's stock	CHAR(24)
S_DIST_06	Information on district 6's stock	CHAR(24)
S_DIST_07	Information on district 7's stock	CHAR(24)
S_DIST_08	Information on district 8's stock	CHAR(24)
S_DIST_09	Information on district 9's stock	CHAR(24)
S_DIST_10	Information on district 10's stock	CHAR(24)
S_DATA	Miscellaneous data	VARCHAR(50)

S_I_ID is a foreign key that refers to Item table. S_W_ID is a foreign key that refers to Warehouse table.

Transaction Types

- 1. **New Order Transaction** processes a new customer order.
- 2. Payment Transaction processes a customer payment for an order.
- 3. **Delivery Transaction** processes the delivery of the oldest yet-to-be-delivered order for each of the 10 districts in a specified warehouse.
- 4. Order-Status Transaction queries the status of the last order of a specified customer.
- 5. **Stock-Level Transaction** checks the stock level of a specified number of last items sold at a warehouse district.
- 6. **Popular-Item Transaction** identifies the most popular items sold in each of a specified number of last orders at a specified warehouse district.
- 7. **Top-Balance Transaction** identifies the top-10 customers with the highest outstanding payment balance.
- 8. Related-Customer Transaction identifies the customers related to a specified customer.

Transaction Workload

Transaction	
Type	Frequency (%)
New-Order	40
Payment	20
Delivery	20
Order-Status	4
Stock-Level	4
Popular-Item	4
Top-Balance	6
Related-Customer	2

- 1. Number of items per new order: [5, 20]
- 2. Stock threshold *T* in Stock-level transactions: [10, 20]
- 3. Number L in Stock-level and Popular-item transactions: [20, 50]

Project Scope

For each YugabyteDB API (YSQL & YCQL), perform the following tasks to optimize the transaction throughput for the workload:

- 1. Design a data model
- 2. Implement a function for each of the 8 transaction types
- 3. Install & configure YugabyteDB on a cluster of 5 servers
- 4. Benchmark the performance of the implementation for the workload
 - Implement a main driver program that simulates a client executing transactions on the database
 - ★ Program reads its inputs from stdin until EOF
 - ★ Each input specifies an instance of one of the 8 transaction types
 - For each transaction read, program invokes the appropriate transaction function
 - ► Benchmark the performance of the implementation

Project Deliverables

- Due on October 7 (Friday, 11:59pm):
 - One-page progress report
- Due on November 4 (Friday, 11:59pm):
 - Code
 - Project report