Решение на контролна работа 3 по Алгебра 1

Задача 1. Спрямо някакъв базис на линейно пространство V над полето $\mathbb C$ на комплексните числа, линейният оператор $\phi: V \to V$ има матрица

$$A = \left(\begin{array}{rrr} 4 & 1 & 5 \\ 9 & 4 & 15 \\ -3 & -1 & -4 \end{array}\right).$$

 \mathcal{A} а се намери базис на V, в който матрицата D на ϕ е диагонална, както и тази матрица D.

Решение: Пресмятаме характеристичния полином

$$f_{\phi}(x) = f_{A}(x) = \begin{vmatrix} 4 - x & 1 & 5 \\ 9 & 4 - x & 15 \\ -3 & -1 & -4 - x \end{vmatrix} = \begin{vmatrix} 4 - x & 1 & 5 \\ 9 & 4 - x & 15 \\ 1 - x & 0 & 1 - x \end{vmatrix} =$$

$$= (1 - x) \begin{vmatrix} 4 - x & 1 & 5 \\ 9 & 4 - x & 15 \\ 1 & 0 & 1 \end{vmatrix} = (1 - x) \begin{vmatrix} -1 - x & 1 & 5 \\ -6 & 4 - x & 15 \\ 0 & 0 & 1 \end{vmatrix}$$

след прибавяне на първия ред към третия, изнасяне на общ множител 1-x от третия ред и изваждане на третия стълб от първия. Развитието по третия ред дава

$$f_{\phi}(x) = -(x-1) \begin{vmatrix} -1-x & 1 \\ -6 & 4-x \end{vmatrix} = -(x-1)[(x+1)(x-4)+6] =$$
$$= -(x-1)(x^2 - 3x + 2) = -(x-1)(x-1)(x-2) = -(x-1)^2(x-2).$$

Следователно ϕ има характеристични корени $\lambda_1 = \lambda_2 = 1 \in \mathbb{C}$, $\lambda_3 = 2 \in \mathbb{C}$ от основното поле \mathbb{C} на комплексните числа, които са и собствени стойности.

Собствените вектори на ϕ , отговарящи на собствената стойност $\lambda_1 = \lambda_2 = 1$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_1 E_3 = A - E_3 = \begin{pmatrix} 3 & 1 & 5 \\ 9 & 3 & 15 \\ -3 & -1 & -5 \end{pmatrix}.$$

Получената система линейни уравнения има единствено уравнение $3x_1 + x_2 + 5x_3 = 0$ и решение

$$x_2 = -3x_1 - 5x_3$$
 за произволни $x_1, x_3 \in \mathbb{C}$.

За $x_1=1, x_3=0$ получаваме собствения вектор $v_1=(1,-3,0)$. Полагаме $x_1=0, x_3=1$ и получаваме собствения вектор $v_2=(0,-5,1)$, който допълва v_1 до базис на собственото подпространство на V, отговарящо на собствената стойност $\lambda_1=\lambda_2=1$.

Собствените вектори на ϕ , отговарящи на собствената стойност $\lambda_3=2$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_3 E_3 = A - 2E_3 = \begin{pmatrix} 2 & 1 & 5 \\ 9 & 2 & 15 \\ -3 & -1 & -6 \end{pmatrix}.$$

Прибавяме третия ред към първия. Умножаваме третия ред по 3, прибавяме към втория ред и свеждаме към

$$\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -3 \\ -3 & -1 & -6 \end{pmatrix}.$$

Умножаваме първия ред по (-3) и прибавяме към третия ред. Умножаваме първия и втория ред по (-1) и получаваме

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{array}\right).$$

Изпускаме третия ред поради неговата пропорционалност на втория и намираме решението

$$x_1 = -x_3, \ x_2 = -3x_3$$
 за произволно $x_3 \in \mathbb{C}$

на съответната хомогенна система линейни уравнения. За $x_3 = -1$ получаваме собствения вектор $v_3 = (1, 3, -1)$ на ϕ , отговарящ на собствената стойност $\lambda_3 = 2$.

По този начин получихме, че относно базиса

$$v_1 = (1, -3, 0), \quad v_2 = (0, -5, 1), \quad v_3 = (1, 3, -1)$$

на V, линейният оператор ϕ има диагонална матрица

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

За да проверим този отговор, пресмятаме

$$Av_1^t = \begin{pmatrix} 4 & 1 & 5 \\ 9 & 4 & 15 \\ -3 & -1 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix},$$

$$Av_2^t = \begin{pmatrix} 4 & 1 & 5 \\ 9 & 4 & 15 \\ -3 & -1 & -4 \end{pmatrix} \begin{pmatrix} 0 \\ -5 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -5 \\ 1 \end{pmatrix}$$

$$Av_3^t = \begin{pmatrix} 4 & 1 & 5 \\ 9 & 4 & 15 \\ -3 & -1 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix}.$$

Задача 2. Спрямо ортонормиран базис e_1, e_2, e_3, e_4 на евклидовото пространство \mathbb{R}^4 , линейният оператор

$$\varphi: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$

действа по правилото

$$\varphi(x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4) =$$

$$= (x_1 + 3x_2 + 4x_3 + 5x_4)e_1 + (-2x_1 - x_2 - 3x_3 - 5x_4)e_2 +$$

$$+ (3x_1 + 4x_2 + 7x_3 + 10x_4)e_3 + (-x_1 + 2x_2 + x_3)e_4$$

за всички вектори $x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 \in \mathbb{R}^4$.

Да се намерят:

- (i) ортогонални базиси на ядрото $\ker \varphi$ и на образа $\operatorname{im} \varphi$ на оператора φ ;
- (ii) ортогоналната проекция $u \in \operatorname{im}\varphi \ u$ перпендикулярът $h \in (\operatorname{im}\varphi)^{\perp}$ от вектора $v = e_1 + 2e_2 + 2e_3 + 3e_4$ към образа $\operatorname{im}\varphi$ на оператора φ .

Решение: За да намерим матрицата A на φ спрямо дадения ортонормиран базис, полагаме $x_1=1, x_2=x_3=x_4=0$ и получаваме, че $\varphi(e_1)=e_1-2e_2+3e_3-e_4$. Аналогично пресмятаме, че $\varphi(e_2)=3e_1-e_3+4e_3+2e_4$, $\varphi(e_3)=4e_1-3e_2+7e_3+e_4$, $\varphi(e_4)=5e_1-5e_2+10e_3$ и матрицата

$$A = \left(\begin{array}{rrrr} 1 & 3 & 4 & 5 \\ -2 & -1 & -3 & -5 \\ 3 & 4 & 7 & 10 \\ -1 & 2 & 1 & 0 \end{array}\right)$$

на φ , образувана по стълбове от координатите на $\varphi(e_1)$, $\varphi(e_2)$, $\varphi(e_3)$, $\varphi(e_4)$ спрямо базиса $e=(e_1,e_2,e_3,e_4)$. Координатите на ядрото $\ker \varphi$ на φ са решенията на хомогената система линейни уравнения с матрица от коефициенти A. Умножаваме първия ред на A по 2 и прибавяме към втория ред. Умножаваме първия ред по (-3) и прибавяме към третия. Прибавяме първия ред към четвъртия и свеждаме към

$$\begin{pmatrix}
1 & 3 & 4 & 5 \\
0 & 5 & 5 & 5 \\
0 & -5 & -5 & -5 \\
0 & 5 & 5 & 5
\end{pmatrix}$$

Изпускаме третия и четвъртия ред поради тяхната пропорционалност с втория. Делим втория ред на 5. Умножаваме така получения втори ред по (-3), прибавяме към първия ред и свеждаме към

$$\left(\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

Решението на получената хомогенна система линейни уравнения е

$$x_1 = -x_3 - 2x_4$$
, $x_2 = -x_3 - x_4$ за произволни $x_3, x_4 \in \mathbb{R}$.

За $x_3 = -1$, $x_4 = 0$ получаваме вектора $a_1 = (1, 1, -1, 0) \in \ker \varphi$. Търсим такъв вектор $a_2 \in \ker \varphi$, който е ортогонален на a_1 . С други думи, a_2 е ненулево решение на хомогенната система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & -1 & 0 \end{array}\right).$$

Изваждаме първия и втория ред от третия и получаваме

$$\left(\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -3 & -3 \end{array}\right).$$

Делим третия ред на 3. Прибавяме така получения трети ред към първия и втория, за да сведем към

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{array}\right).$$

Решението на получената хомогенна система линейни уравнения е

$$x_1 = -x_4, \quad x_2 = 0, \quad x_3 = -x_4$$
 за произволно $x_4 \in \mathbb{R}$.

За $x_4 = -1$ получаваме вектора $a_2 = (1,0,1,-1) \in \ker \varphi$, който е ортогонален на $a_1 \in \ker \varphi$, така че a_1, a_2 е ортогонален базис на ядрото $\ker \varphi$ на φ .

Дефектът на φ е $d(\varphi) := \dim \ker \varphi = 2$, откъдето рангът на φ е

$$\dim \operatorname{im} \varphi =: \operatorname{rk} \varphi = \dim \mathbb{R}^4 - d(\varphi) = 4 - 2 = 2.$$

Произволни два непропорционални стълба на A образуват базис на $\mathrm{im}\varphi$. Например, първите два стълба $c_1=(1,-2,3,-1),\ c_2=(3,-1,4,2)$ образуват базис на $\mathrm{im}\varphi$. За да получим ортогонален базис на $\mathrm{im}\varphi$, прилагаме ортогонализация по метода на Грам-Шмид към c_1 и c_2 . Полагаме $b_1=c_1=(1,-2,3,-1)$. Търсим

$$b_2 = c_2 + \lambda_{2,1}b_1$$

с такова $\lambda_{2,1} \in \mathbb{R}$, за което

$$0 = \langle b_2, b_1 \rangle = \langle c_2 + \lambda_{2,1} b_1, b_1 \rangle = \langle c_2, b_1 \rangle + \lambda_{2,1} \langle b_1, b_1 \rangle.$$

По-точно,

$$\lambda_{2,1} = -\frac{\langle c_2, b_1 \rangle}{\langle b_1, b_1 \rangle} = -\left[\frac{3.1 + (-1)(-2) + 4.3 + 2(-1)}{1^2 + (-2)^2 + 3^2 + (-1)^2} \right] = -\frac{15}{15} = -1.$$

Следователно

$$b_2 = c_2 - b_1 = (3, -1, 4, 2) - (1, -2, 3, -1) = (2, 1, 1, 3).$$

По този начин получаваме ортогонален базис $b_1 = (1, -2, 3, -1), b_2 = (2, 1, 1, 3)$ на образа $\operatorname{im}\varphi$ на φ .

(ii) Търсим ортогоналната проекция u на v=(1,2,2,3) върху іт φ във вид на линейна комбинация $u=x_1b_1+x_2b_2\in \mathrm{im}\varphi$ на намерения ортогонален базис b_1,b_2 на іт φ с реални коефициенти $x_1,x_2\in\mathbb{R}$. За да намерим x_1,x_2 използваме, че

$$h = v - u = v - x_1 b_1 - x_2 b_2 \in (\text{im}\varphi)^{\perp}$$
.

Това е в сила тогава и само тогава, когато

$$0 = \langle h, b_1 \rangle = \langle v - x_1 b_1 - x_2 b_2, b_1 \rangle = \langle v, b_1 \rangle - x_1 \langle b_1, b_1 \rangle =$$
$$= [1.1 + 2.(-2) + 2.3 + 3.(-1)] - x_1 [1^2 + (-2)^2 + 3^2 + (-1)^2] = 0 - 15x_1$$

И

$$0 = \langle h, b_2 \rangle = \langle v - x_1 b_1 - x_2 b_2, b_2 \rangle = \langle v, b_2 \rangle - x_2 \langle b_2, b_2 \rangle =$$
$$= [1.2 + 2.1 + 2.1 + 3.3] - x_2 [2^1 + 1^2 + 1^2 + 3^2] = 15 - 15x_2.$$

Следователно $x_1=0,\,x_2=1,\,$ откъдето ортогоналната проекция на v=(1,2,2,3) върху $\mathrm{im}\varphi=l(b_1,b_2)$ е

$$u = 0.b_1 + 1.b_2 = b_2 = (2, 1, 1, 3),$$

а перпендикулярът от v към $\mathrm{im}\varphi$ е

$$h = v - u = (1, 2, 2, 3) - (2, 1, 1, 3) = (-1, 1, 1, 0).$$

Задача 3. Спрямо някакъв базис $e = (e_1, \dots, e_n)$ на линейно пространство V над полето \mathbb{Q} на рационалните числа, линейният оператор $\phi: V \to V$ има матрица

$$A = \begin{pmatrix} r_1 \\ \dots \\ r_i \\ \dots \\ r_n \end{pmatrix}$$

с вектор-редове $r_i = (a_{i1}, \ldots, a_{ij}, \ldots, a_{in}), 1 \le i \le n$. Да предположим, че съществуват $\mu_1, \ldots, \mu_n \in \mathbb{Q}$ с поне едно $\mu_i \ne 0$, така че

$$\mu_1 r_1 + \ldots + \mu_i r_i + \ldots + \mu_n r_n = \lambda(\mu_1, \ldots, \mu_i, \ldots, \mu_n)$$

за някакво фиксирано рационално число $\lambda \in \mathbb{Q}$. Ако $\mathrm{Id}_V: V \to V$, $\mathrm{Id}_V(v) = v$, $\forall v \in V$ е тъждественият линеен оператор, кои от следните твърдения са в сила:

- (i) $\det(A \lambda E_n) \neq 0$;
- (ii) ϕ има характеристичен корен λ ;
- (iii) операторът $\phi \lambda \operatorname{Id}_V$ е обратим;
- (iv) onepamopom $\phi \lambda \operatorname{Id}_V$ не е обратим;
- (v) образът $\operatorname{im}(\phi \lambda \operatorname{Id}_V) = V$ на $\phi \lambda \operatorname{Id}_V : V \to V$ покрива цялото пространство V:

- (vi) ядрото $\ker(\phi \lambda \operatorname{Id}_V)$ на линейния оператор $\phi \lambda \operatorname{Id}_V$ е ненулево;
- (vii) рационалното число $\lambda \in \mathbb{Q}$ не е собствена стойност на оператора ϕ ;
- (viii) съществува такъв ненулев вектор $v \in V \setminus \{\mathcal{O}_V\}$, за който $\phi(v) = \lambda v$;
- (ix) операторът $\phi: V \to V$ има едномерно ϕ -инвариантно подпространство;
- (x) всяко ϕ -инвариантно подпространстви U на V е c размерност $\dim U \geq 2$.

Решение: За всяко естествено $1 \le i \le n$, *i*-тият ред на единичната матрица E_n е

$$e_i = \left(\underbrace{0,\ldots,0}_{i-1},1,\underbrace{0,\ldots,0}_{n-i}\right).$$

Следователно i-тият ред на матрицата $A - \lambda E_n$ е $r_i - \lambda e_i$ и линейната комбинация

$$\sum_{i=1}^{n} \mu_i (r_i - \lambda e_i) = \sum_{i=1}^{n} \mu_i r_i - \sum_{i=1}^{n} \mu_i \lambda e_i =$$

$$= \sum_{i=1}^{n} \mu_i r_i - \lambda \sum_{i=1}^{n} \mu_i e_i = \sum_{i=1}^{n} \mu_i r_i - \lambda (\mu_1, \dots, \mu_i, \dots, \mu_n) = \underbrace{(0, \dots, 0)}_{n}$$

е равна на нулевата n-торка, съгласно даденото условие. Понеже съществува $\mu_j \neq 0$, редовете на матрицата $A - \lambda E_n$ са линейно зависими и $\det(A - \lambda E_n) = 0$. Следователно λ е характеристичен корен на A и на ϕ . Характеристичният корен λ на ϕ е от полето $\mathbb Q$ на рационалните числа, така че λ е собствена стойност на ϕ . Затова (i) не е в сила, (ii) е в сила, (viii) не е в сила, (viii) е в сила, (ix) е в сила, защото 1-мерните ϕ -инвариантни подпространства са точно породените от собствените вектори на ϕ и (x) не е в сила.

Операторът $\phi - \lambda \mathrm{Id}_V$ има матрица $A - \lambda E_n$ и $\det(A - \lambda E_n) = 0$, така че $A - \lambda E_n$ и $\phi - \lambda \mathrm{Id}_V$ не са обратими. Следователно (iii) не е вярно, (iv) е вярно, (v) не е вярно, защото образът на оператор покрива цялото пространство точно когато операторът е обратим и (vi) е вярно, защото ядрото на оператор е ненулево точно когато операторът не е обратим.