Предел числовой последовательности

$$x_n = \frac{(-1)^{n+1}}{n}$$

 $x_n=\frac{(-1)^{n+1}}{n}$ Пусть $\epsilon>0$ Тогда $|x_n-0|=\frac{1}{n}<\epsilon$ если $n>\frac{1}{\epsilon}$ $N=\left\lfloor\frac{1}{\epsilon}\right\rfloor+1$ (округление вниз)

Начиная с номера N x_n приближается к нулю с точностью ϵ

Определение

Если задана последовательность x_n , то $\lim_{n\to\infty} x_n = a \Rightarrow \forall \epsilon > 0 \ \exists N = N(\epsilon)$:

 $\forall n > N \Rightarrow |x_n - a| < \epsilon$

Или $\epsilon > 0; O_{\epsilon} = \{x | |x-a| < \epsilon\}$ - ϵ окрестность точки a

 $\forall \epsilon > 0 \; \exists N : \forall n > N \Rightarrow x_n \in O_{\epsilon}(a)$

Удтверждение 1

 $\lim \overline{x_n = a} \iff \forall \epsilon > 0$ вне окрестности точки a имеется лишь конечное множество членов последовательности

Доказательство $\forall \epsilon > 0 \; \exists N : \forall n > N \Rightarrow x_n \in O_{\epsilon}(a)$

то есть только $x_1, x_2, ..., x_n$ могут не принадлежать $O_{\epsilon}(a)$

И в обратную сторону: $\epsilon > 0; x_{n1}, x_{n2}, ..., x_{nk} \notin O_{\epsilon}(a)$

Пусть $N = max(n_1, n_2, ..., n_k)$, следовательно $\forall n > N \Rightarrow x_n \in O_{\epsilon}(a)$, что и является определнием предела, что и требовалось доказать.

Обычно данное удтверждение используется для доказательства несходимости ряда

Пример $x_n = (-1)^{n+1}$

Удтверждение 2

Если предел последовательности существует, то он определен однозначно.

Доказательство

Рассуждаем от противного. Пусть $\lim_{n\to\infty}x_n=a_1$ и $\lim_{n\to\infty}x_n=a_2$ и $a_1\neq a_2$

Возьмем $\epsilon = \frac{|a_1 - a_2|}{3}$, значит окрестности a_1 и a_2 не пересекаются.

Но тк $\lim x_n = a_1$, то вне окрестности a_1 находится только конечное число членов последовательности.

Значит в окрестности a_2 лежит конечное число членов последовательности, что противоречит определению предела.

Определение

 $\{x_n\}$

Последовательность ограничена сверху, если $\exists M \ \forall n \Rightarrow x_n \leq M$

Последовательность ограничена снизу, если $\exists M \ \forall n \Rightarrow x_n \geq M$

Последовательность ограничена, если она ограничена сверху и снизу или $\exists M \ \forall n \Rightarrow |x_n| < M.$

Удтверждение 3

Сходящаяся последовательность ограничена.

Доказательство

Пусть $\lim_{n\to\infty} x_n = a$; Возьмем $\epsilon = 1$

$$|x_n| = |(x_n - a) + a| \le |x_n - a| + |a|$$

Тогда
$$\exists N : \forall n > N \Rightarrow |x_n| \le |x_n - a| + |a| \le 1 + |a|$$

Пусть
$$M = max(|x_1|, |x_2|, ..., |x_N|, 1 + |a|)$$
, тогда $\forall n \to x_n \le M$

<u>Удтверждение 4</u> Теорема о двух полицейских или теорема о зажатой последовательности

 $x_n \leq y_n \leq z_n$, при этом $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, тогда $\lim_{n \to \infty} y_n = a$

Доказательство

Возьмем $\epsilon > 0$, значит $\exists N_1 : \forall n > N_1 \Rightarrow x_n \in O_{\epsilon}(a)$

Для того же $\epsilon \exists N_2 : \forall n > N_2 \Rightarrow z_n \in O_{\epsilon}(a)$

Пусть $N=\max(N_1,N_2)\Rightarrow \forall n>N: x_n\in O_\epsilon(a)$ и $z_n\in O_\epsilon(a)\Rightarrow y_n\in O_\epsilon(a)\Rightarrow \lim_{n\to\infty}y_n=a$

Пример

$$\lim_{n \to \infty} \frac{\frac{n}{a^n} = 0, (a > 1)}{a^n} = \frac{n}{0}, (a > 1)$$

$$a = 1 + \alpha, \alpha > 0 \text{ и } 0 < \frac{n}{a^n} = \frac{n}{(1+\alpha)^n} = \frac{n}{1+n\cdot\alpha+\frac{n(n-1)}{2}\alpha^2+\dots} < \frac{n}{\frac{n(n-1)}{2}\alpha^2} = \frac{n}{\alpha^2} \cdot \frac{1}{n-1} \to 0 (n \to \infty)$$

$$\lim_{n\to\infty} x_n = a \iff \lim_{n\to\infty} (x_n - a) = 0$$
, ну очев сорре.

2 Бесконечно малые последовательности

 $x_n =$ б.м.п, если $\lim_{n \to \infty} x_n = 0$

Удтверждение 5

- 1. Если $\{x_n\}$ и $\{y_n\}$ б.м.п, то $\{x_n \pm y_n\}$ б.м.п
- 2. Если $\{x_n\}$ б.м.п, $\{y_n\}$ ограниченная посл., то $\{x_n\cdot y_n\}$ б.м.п

Доказателсьтво

Пусть $\epsilon>0; |y_n|\leq M, n=1,2,\dots$ $\frac{\epsilon}{M}>0,$ тогда $\exists N\; \forall n>N\Rightarrow |x_n-0|<\frac{\epsilon}{M}$ Тогда $|x_n\cdot y_n|=|x_n|\cdot |y_n|<\frac{\epsilon}{M}\cdot M=\epsilon\Rightarrow \lim x_n\cdot y_n=0$ Пример

Пусть $k \in \mathbb{N}$, $\lim_{n \to \infty} \frac{n^k}{a^n} = 0 \ (a > 1)$

$$\frac{n^k}{a^n}=(\frac{n}{(\sqrt[k]a)^n})^k,$$
 поскольку $a>1\Rightarrow \sqrt[k]{a}=b>1$

Тогда $(\frac{n}{b^n})^k$ и так как $\frac{n}{b^n}$ - б.м.п и произведение б.м.п является б.м.п, то данная последовательность также является б.м.п