# Retele neuronale

IA 2022/2023

## Conținut

#### Introducere

Perceptronul
Antrenarea perceptronului

Rețele neuronale multi-strat

FII, UAIC

2/52

#### Istoric

- McCulloch&Pitts '43 propun primul model matematic al unui neuron artificial
  - Nu poate învăța, parametrii se stabilesc analitic
- Minsky '51 primul circuit electronic construit ca o rețea neuronală artificială (subcircuite ce funcționează ca niște neuroni interconectați)
- Rosenblatt '58 dezvolta Perceptronul, prima rețea neuronală functională
- ▶ Hinton '06 pune bazele *Deep Neural Network*



FII, UAIC Curs 6 IA 2022/2023 3/52

Sunt inspirate din modul de structurare și funcționare a creierului



Încercarea de a reproduce inteligența (comportamentul unui neuron biologic).

FII, UAIC Curs 6 IA 2022/2023 4/52

Un neuron se conectează cu alți neuroni prin intermediul dendritelor. Neuronii comunică între ei prin intermediul sinapselor (excitatorii sau inhibitorii). Neuronul se poate activa și produce un semnal electric care e transmis mai departe prin axon.



Interconectarea neuronilor asigură puterea de calcul.

FII, UAIC Curs 6 IA 2022/2023 5 / 52

Un ansamblu de unități funcționale (neuroni) interconectate



- ► Antrenarea presupune determinarea parametrilor rețelei, pornind de la datele de antrenare
- Sunt sisteme adaptive de tip "cutie neagră" care extrag un model printr-un proces de învățare.

# Unitate funcțională (neuron artificial): un model computațional simplificat al neuronului

- semnale de intrare
- ponderi sinaptice atașate conexiunilor
- prag de activare
- iesire

#### Analogii

| RN biologică   | RN artificială |
|----------------|----------------|
| corpul celulei | neuron         |
| dendrite       | intrări        |
| axon           | ieșire         |
| sinapsă        | pondere        |



### Metode de învățare

- ► Supervizată (clasificare, regresie)
  - Exemple de antrenare etichetate
  - Scop: estimarea parametrilor care minimizează eroarea (diferența între răspunsurile corecte și cele produse de rețea)
- Nesupervizată (clusterizare, asociere, reducerea dimensionalității)
  - Date de antrenare care nu sunt etichetate
  - Scop: obţinerea de informaţii

### Aplicații: Clasificare

Dată o mulțime de instanțe (atribute, etichete), să se identifice clasa la care aparține o instanță nouă. (supervizată)

Exemplu: identificarea speciei din care face parte o floare de iris

- ▶ atribute: lungime și lățime sepale/petale
- clase: Iris versicolor, Iris setosa, Iris virginica



### Aplicații: Regresie

Dată o succesiune de valori, să se determine relația dintre două sau mai multe variabile (aproximarea unei funcții)



Diferența dintre clasificare și regresie: tipul ieșirii (discret vs. continuu)

10 / 52

# Conținut

Introducere

Perceptronul
Antrenarea perceptronului

Rețele neuronale multi-strat



FII, UAIC Curs 6

11 / 52

# Perceptronul (Rosenblatl, 1958)

Intrare: un vector de valori reale  $x_i$  Calculează o combinație liniară a acestora.



inputs weights

 $w_1, \dots w_n$  ponderi (const. reale) atașate conexiunilor;  $w_i$  contribuția intrării  $x_i$  la rezultat

Pragul b modelează pragul de activare al neuronului. Returnează 1 dacă rezultatul e mai mare decât b, -1 altfel.

FII, UAIC Curs 6 IA 2022/2023 12 / 52

### Perceptronul

Intrare: un vector de valori reale  $x_i$ 

Calculează o combinație liniară a acestora.

Returnează 1, dacă rezultatul e mai mare decât un prag  $(-w_0)$ , -1 altfel.

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{daca } w_0 + w_1 x_1 + \dots w_n x_n > 0 \\ -1 & \text{altfel} \end{cases}$$
 (1)



Învățarea unui perceptron: alegerea ponderilor  $w_0, \ldots, w_n$ .

←□▶←□▶←□▶←□▶
●

FII, UAIC Curs 6 IA 2022/2023 13 / 52

#### Perceptron

Notație simplificată: o intrare constantă  $x_0 = 1$ .

$$\sum_{i=0}^{n} w_i x_i > 0$$
, sau  $\overrightarrow{w} \cdot \overrightarrow{x} > 0$ .

$$o(\overrightarrow{x}) = F(\overrightarrow{w} \cdot \overrightarrow{x})$$

Funcția de activare treaptă

$$F(y) = \begin{cases} 1 & \text{daca } y \ge 0 \\ 0 & \text{altfel} \end{cases}$$



Functia de activare semn

$$F(y) = \begin{cases} 1 & \text{daca } y \ge 0 \\ -1 & \text{altfel} \end{cases}$$



Step Function



Step Function

Sign Function

Linear Function

Perceptron: un neuron artificial care utilizează funcția de acțivare treaptă.

FII, UAIC Curs 6 IA 2022/2023 14 / 52

# Puterea de reprezentare a perceptronilor

- Scopul perceptronului este să clasifice intrările  $x_1, \ldots x_n$  în 2 clase
- Perceptronul: un hiperplan care împarte spațiul vectorilor de intrare (n-dimensional) în 2 regiuni (regiunea pentru care  $\overrightarrow{w} \cdot \overrightarrow{x} > 0 \Leftrightarrow o = 1$  și regiunea pentru care o = -1)

Ecuația hiperplanului:  $\overrightarrow{w} \cdot \overrightarrow{x} = 0$ 





Separabile liniar (pentru un perceptron cu două intrări)

# Puterea de reprezentare a perceptronilor

Un perceptron poate fi utilizat pentru a reprezenta funcții booleene.

Pentru a reprezenta funcția AND, setăm ponderile, spre ex.  $w_0 = -1.5$ ,  $w_1 = w_2 = 1$ 

| r | X2 | $x_1$ |
|---|----|-------|
| 0 | 0  | 0     |
| 0 | 1  | 0     |
| 0 | 0  | 1     |
| 1 | 1  | 1     |



FII, UAIC

## Puterea de reprezentare a perceptronilor

Funcția XOR (1  $\Leftrightarrow$   $x_1 \neq x_2$ ) nu poate fi reprezentată de un singur perceptron.



*Orice* funcție booleană poate fi reprezentată de o rețea de unități interconectate.

17 / 52

FII, UAIC Curs 6 IA 2022/2023

# Conținut

Introducere

Perceptronul
Antrenarea perceptronului

Rețele neuronale multi-strat



FII, UAIC Curs 6

18 / 52

# 1. Regula de antrenare a perceptronului

- ▶ Învățarea ponderilor: identifică vectorul de ponderi a.i. perceptronul să returneze ieșirea corectă pentru fiecare exemplu de antrenare.
- Generează ponderi aleatoare,

calculează ieșirea pentru fiecare exemplu de antrenare, modifică ponderile atunci când clasifică greșit un exemplu.

Repetă acest procedeu până când perceptronul clasifică corect exemplele de antrenare.

19 / 52

### Regula de antrenare a perceptronului

Ponderile sunt modificate conform regulii de antrenare a perceptronului:

$$w_i \leftarrow w_i + \Delta w_i$$

unde

$$\Delta w_i = \eta(t - o)x_i$$

t este ieșirea dorită pentru exemplul de antrenare, o este ieșirea generată de perceptron,  $\eta$  rata de învățare (const. pozitivă)

FII, UAIC Curs 6 IA 2022/2023 20 / 52

# Intuiție (regula de antrenare a perceptronului)

- ▶ Dacă exemplul este clasificat corect t o = 0;  $\Delta w_i = 0 \rightarrow$  ponderile nu sunt actualizate
- Dacă perceptronul returnează -1 când ieșirea corectă este +1 și  $\eta = 0.1, x_i = 0.8$ , atunci  $\Delta w_i = 0.1(1 (-1))0.8 = 0.16$
- ▶ Dacă perceptronul returnează +1 cand ieșirea corectă este -1, atunci ponderea scade

FII, UAIC Curs 6 IA 2022/2023 21/52

# Regula de antrenare a perceptronului

Atunci când exemplele de antrenare sunt separabile liniar și  $\eta$  suficient de mic,

procedura converge (considerând un nr. finit de aplicări a regulii de antrenare a perceptronului)

la un vector de ponderi care clasifică toate exemplele de antrenare.

FII, UAIC Curs 6 IA 2022/2023 22 / 52

### 2. Regula delta

Regula de antrenare a perceptronului poate eșua dacă exemplele nu sunt separabile liniar.

Regula delta: utilizează *Gradient descent* pentru a căuta în spațiul vectorilor de ponderi.

Dorim antrenarea unei unități liniare pentru care ieșirea este  $o(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x}$ .

Eroarea de antrenare pentru un vector de ponderi w:

$$E(\overrightarrow{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

unde D mulțimea datelor de antrenare,  $t_d$  ieșirea dorită pentru exemplul d,  $o_d$  ieșirea unității liniare pentru d.

- 4日 > 4個 > 4 恵 > 4 恵 > - 恵 - 釣 Q @

# Vizualizarea spațiului de ipoteze

Suprafața erorii are forma parabolica, cu un minim global.



Gradient descent: modifică în mod repetat vectorul de ponderi. La fiecare pas, vectorul este modificat în direcția care produce cea mai abruptă coborâre. Acest proces continuă pâna la atingerea erorii minime globale.

#### Gradient descent

Gradientul specifică direcția care produce cea mai abruptă ascensiune în E.

$$\nabla E(\overrightarrow{w}) = \left[\frac{\delta E}{\delta w_0}, \frac{\delta E}{\delta w_1}, \dots, \frac{\delta E}{\delta w_n}\right]$$

Regula de antrenare pentru *Gradient descent*:  $\overrightarrow{w} \leftarrow \overrightarrow{w} + \Delta \overrightarrow{w}$ , unde  $\Delta \overrightarrow{w} = -\eta \nabla E(\overrightarrow{w})$ ,  $\eta$  este *rata de învățare* (const. pozitivă).

$$w_i = w_i + \Delta w_i, \quad \Delta w_i = -\eta \frac{\delta E}{\delta w_i}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

FII, UAIC Curs 6 IA 2022/2023 25 / 52

#### Gradient descent

$$\begin{split} \frac{\delta E}{\delta w_i} &= \frac{\delta}{\delta w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} \frac{\delta}{\delta w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} 2 (t_d - o_d) \frac{\delta}{\delta w_i} (t_d - o_d) \\ &= \sum_{d \in D} (t_d - o_d) \frac{\delta}{\delta w_i} (t_d - \overrightarrow{w} \cdot \overrightarrow{x_d}) \\ \frac{\delta E}{\delta w_i} &= \sum_{d \in D} (t_d - o_d) (-x_{id}) \end{split}$$

 $x_{id}$  componenta  $x_i$  a exemplului de antrenare d.

Actualizarea ponderii  $\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$ 

FII, UAIC Curs 6 IA 2022/2023 26 / 52

#### Gradient descent

#### GRADIENT-DESCENT(training\_examples, n)

Each training example is a pair of the form  $\langle \vec{x}, t \rangle$ , where  $\vec{x}$  is the vector of input values, and t is the target output value.  $\eta$  is the learning rate (e.g., .05).

- . Initialize each wi to some small random value
- . Until the termination condition is met, Do
  - Initialize each Δw<sub>i</sub> to zero.
  - For each  $(\vec{x}, t)$  in training\_examples, Do
    - Input the instance  $\vec{x}$  to the unit and compute the output o
    - For each linear unit weight w<sub>i</sub>, Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i \tag{T4.1}$$

For each linear unit weight w<sub>i</sub>, Do

$$w_i \leftarrow w_i + \Delta w_i \tag{T4.2}$$

IA 2022/2023

27 / 52

FII, UAIC Curs 6

# Stochastic gradient descent

Problemele algoritmului Gradient descent:

- convergență lentă
- existenta mai multor minime locale

Stochastic gradient descent: actualizarea ponderilor incremental, calculând eroarea pentru fiecare exemplu individual

$$\Delta w_i = \eta(t - o)x_i$$

unde t valoarea dorită, o ieșirea reală,  $x_i$  a i-a intrare pentru exemplul de antrenare

Ecuația T4.1 este înlocuită cu  $w_i \leftarrow w_i + \eta(t-o)x_i$ .

Regula de antrenare  $\Delta w_i = \eta(t-o)x_i$  se mai numește regula delta/regula LMS (*least-mean-square*)/regula Adaline.

FII, UAIC Curs 6 IA 2022/2023 28 / 52

# Conținut

Introducere

Perceptronul
Antrenarea perceptronului

Rețele neuronale multi-strat



FII, UAIC Curs 6

29 / 52

#### Retele neuronale multi-strat

O rețea neuronală cu propagare înainte (feed-forward) cu

- un strat de intrare
- unul sau mai multe straturi ascunse
- un strat de ieșire



- ▶ Semnalele de intrare sunt propagate înainte prin straturile rețelei
- Calculele se realizează în neuronii din straturile ascunse și din stratul de iesire

#### Rețele neuronale multi-strat

Pot exprima suprafețe de decizie neliniare.

Exemplu: Rețea antrenată să recunoască între 10 vocale ("h\_d").



Semnalul vocal este reprezentat de doi parametri numerici, obtinuți din analiza spectrala a sunetului. Punctele din graficul din dreapta sunt exemplele de testare.

# Proprietatea de aproximare universală

- O rețea neuronală cu un strat ascuns, cu un nr. posibil infinit de neuroni, poate aproxima orice funcție reală continuă
- Un strat suplimentar poate însă reduce foarte mult nr. de neuroni necesari în straturile ascunse

IA 2022/2023

32 / 52

## Unitate sigmoid



Calculează o combinație liniară a intrarilor, apoi aplică un prag. leșirea este o funcție continuă a intrărilor.

$$o = \sigma(\overrightarrow{w} \cdot \overrightarrow{x}), \quad \sigma(y) = \frac{1}{1 + e^{-y}}$$

 $\sigma$  funcția sigmoidă; derivata  $\frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))$ 

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

FII, UAIC Curs 6 IA 2022/2023 33 / 52

### Funcții de activare neliniară

Funcția sigmoidă (logistică)  $f(x) = \frac{1}{1+e^{-x}}, \quad f'(x) = f(x)(1-f(x))$ 

Funcția sigmoidă bipolară (tangenta hiperbolică)  $f(x) = \frac{1 - e^{-2x}}{1 - e^{-2x}}, \quad f'(x) = 1 - f(x)^2$ 

► Funcția ReLU (Rectified Linear Unit)

$$f(x) = \begin{cases} 0 & \text{daca } x < 0 \\ x & \text{daca } x \ge 0 \end{cases}, \quad f'(x) = \begin{cases} 0 & \text{daca } x < 0 \\ 1 & \text{daca } x \ge 0 \end{cases}$$



FII, UAIC Curs 6 IA 2022/2023 34 / 52

#### Rețele neuronale multi-strat

- Un perceptron cu un singur strat are aceleași limitări chiar dacă folosește o funcție de activare neliniară
- ▶ Un perceptron multi-strat cu funcții de activare liniare este echivalent cu un perceptron cu un singur strat
  - o combinație liniară de funcții liniare este tot o funcție liniară ex: f(x)=2x+1, g(y)=y-3, g(f(x))=(2x+1)-3=2x-2

# Algoritmul Backpropagation

- ► Rumelhart, Hinton& Williams, '86
- Învață ponderile într-o rețea multi-strat. Folosește Gradient descent pentru a minimiza eroarea pătratică între ieșirea rețelei și valorile dorite.
- Deoarece avem rețele cu mai multe unități de ieșire, redefinim E

$$E(\overrightarrow{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2$$

unde *outputs* mulțimea de unități de ieșire,  $t_{kd}$  și  $o_{kd}$  valorile dorite și de ieșire asociate cu unitatea de ieșire k și exemplul de antrenare d.

FII, UAIC Curs 6 IA 2022/2023 36 / 52

#### Are două faze:

- Reteaua primește vectorul de intrare și propagă semnalul înainte, strat cu strat, până se generează ieșirea
- Semnalul de eroare este propagat înapoi, de la stratul de iesire către stratul de intrare, ajustându-se ponderile rețelei

### Pașii algoritmului Backpropagation

- ► Inițializarea: alege numărul de intrări, unități ascunse și de ieșire; initializează ponderile si pragurile cu valori aleatorii mici
  - ▶ în general, pot fi valori din intervalul [-0.1, 0.1]

#### Activarea

- ightharpoonup se activează rețeaua prin aplicarea vectorului de antrenare  $\overrightarrow{x}$
- se calculează ieșirile neuronilor din stratul ascuns
- ▶ se calculează ieșirile neuronilor din stratul de ieșire  $o = \sigma(\overrightarrow{w} \cdot \overrightarrow{x})$



leşirile neuronilor din stratul ascuns

$$o_h = \sigma(\sum_{i=0}^n w_{hi} x_i)$$

leşirile neuronilor din stratul de ieşire

$$o_k = \sigma(\sum_{i=0}^m w_{ki}o_i)$$



Actualizează fiecare pondere proporțional cu rata de învățare  $\eta$ , valoarea de intrare  $x_{ji}$  și eroarea  $\delta_j$ .

- ► Pentru neuronii de ieșire
  - ▶ se calculează gradienții de eroare ai neuronilor din stratul de ieșire Pentru unitatea de ieșire *k*,

$$\delta_k = (t_k - o_k)o_k(1 - o_k)$$

- Pentru neuronii din stratul ascuns
  - se calculează gradienții de eroare ai neuronilor din stratul ascuns Pentru unitatea ascunsă h, se însumează erorile  $\delta_k$  pentru fiecare unitate de ieșire influențată de h, ponderate cu  $w_{kh}$  (ponderea de la stratul ascuns h la stratul de ieșire k):

$$\delta_h = o_h(1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$



### Actualizarea ponderilor

Pentru fiecare exemplu de antrenare d:  $w_{ji}=w_{ji}+\Delta w_{ji}, \Delta w_{ji}=-\eta \frac{\delta E_d}{\delta w_{ji}}$ , unde  $E_d$  este eroarea pentru exemplul de antrenare d

$$E_d(\overrightarrow{w}) = \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

Ponderile unei unități de ieșire

$$\Delta w_{ji} = \eta \delta_j x_{ji}, \quad \delta_j = (t_j - o_j)o_j(1 - o_j)$$

Ponderile unui neuron ascuns

$$\Delta w_{ji} = \eta \delta_j x_{ji}, \quad \delta_j = o_j (1 - o_j) \sum_{k \in Downstream(j)} \delta_k w_{kj}$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

FII, UAIC Curs 6 IA 2022/2023 41/52

Pentru rețele feed-forward cu număr arbitrar de straturi,

$$\delta_r = o_r(1 - o_r) \sum_{s \in layer \ m+1} w_{sr} \delta_s$$

 $\delta_r$  pentru unitatea r din stratul m este calculată din valorile  $\delta$  de la următorul strat m+1



FII, UAIC Curs 6 IA 2022/2023 42 / 52

### Derivarea

- $x_{ii}$  = the *i*th input to unit *j*
- $w_{ji}$  = the weight associated with the *i*th input to unit *j*
- $net_j = \sum_i w_{ji} x_{ji}$  (the weighted sum of inputs for unit j)
- $o_i$  = the output computed by unit j
- $t_j$  = the target output for unit j
- $\sigma$  = the sigmoid function
- outputs = the set of units in the final layer of the network
- Downstream(j) = the set of units whose immediate inputs include the output of unit j

### Utilizăm regula de înlănțuire:

$$\frac{\delta E_d}{\delta w_{ji}} = \frac{\delta E_d}{\delta net_j} \frac{\delta net_j}{\delta w_{ji}} 
= \frac{\delta E_d}{\delta net_i} x_{ji}$$
(2)



FII, UAIC Curs 6 IA 2022/2023 43 / 52

#### Derivarea

Case 1: Training Rule for Output Unit Weights. Just as  $w_{ji}$  can influence the rest of the network only through  $net_j$ ,  $net_j$  can influence the network only through  $o_i$ . Therefore, we can invoke the chain rule again to write

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} \tag{4.23}$$

To begin, consider just the first term in Equation (4.23)

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

The derivatives  $\frac{\partial}{\partial o_j}(t_k - o_k)^2$  will be zero for all output units k except when k = j. We therefore drop the summation over output units and simply set k = j.

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= \frac{1}{2} 2 (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j) \tag{4.24}$$

Next consider the second term in Equation (4.23). Since  $o_j = \sigma(net_j)$ , the derivative  $\frac{\partial o_j}{\partial net_j}$  is just the derivative of the sigmoid function, which we have already noted is equal to  $\sigma(net_i)(1 - \sigma(net_i))$ . Therefore,

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}$$

$$= o_j(1 - o_j) \tag{4.25}$$

Substituting expressions (4.24) and (4.25) into (4.23), we obtain

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) \ o_j (1 - o_j) \tag{4.26}$$

▶ 4 분 ► 분 9 Q @

#### Derivarea

Case 2: Training Rule for Hidden Unit Weights. In the case where j is an internal, or hidden unit in the network, the derivation of the training rule for  $w_{ji}$  must take into account the indirect ways in which  $w_{ji}$  can influence the network outputs and hence  $E_d$ . For this reason, we will find it useful to refer to the set of all units immediately downstream of unit j in the network (i.e., all units whose direct inputs include the output of unit j). We denote this set of units by Downstream(j). Notice that  $net_j$  can influence the network outputs (and therefore  $E_d$ ) only through the units in Downstream(j). Therefore, we can write

$$\begin{split} \frac{\partial E_d}{\partial net_j} &= \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k w_{kj} o_j (1-o_j) \end{split}$$

(4.28)

Rearranging terms and using  $\delta_j$  to denote  $-\frac{\partial E_d}{\partial net}$ , we have

$$\delta_j = o_j(1 - o_j) \sum_{k \in Downstream(j)} \delta_k \ w_{kj}$$

and

$$\Delta w_{ji} = \eta \delta_j x_{ji}$$

### Stochastic Gradient Descent

Backpropagation(training\_examples,  $\eta$ ,  $n_{in}$ ,  $n_{out}$ ,  $n_{hidden}$ )

Each training example is a pair of the form  $(\vec{x}, \vec{t})$ , where  $\vec{x}$  is the vector of network input values, and  $\vec{t}$  is the vector of target network output values.

 $\eta$  is the learning rate (e.g., .05).  $n_{in}$  is the number of network inputs,  $n_{hidden}$  the number of units in the hidden layer, and  $n_{out}$  the number of output units.

The input from unit i into unit j is denoted  $x_{ji}$ , and the weight from unit i to unit j is denoted  $w_{ji}$ .

- Create a feed-forward network with nin inputs, nhidden units, and nout output units.
- Initialize all network weights to small random numbers (e.g., between -.05 and .05).
- Until the termination condition is met, Do
- For each  $(\vec{x}, \vec{t})$  in training\_examples, Do

Propagate the input forward through the network:

1. Input the instance  $\vec{x}$  to the network and compute the output  $o_u$  of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term  $\delta_k$ 

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k) \tag{T4.3}$$

3. For each hidden unit h, calculate its error term  $\delta_h$ 

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k \tag{T4.4}$$

4. Update each network weight wii

$$w_{ii} \leftarrow w_{ii} + \Delta w_{ii}$$

where

$$\Delta w_{ii} = \eta \, \delta_i \, x_{ii} \tag{T4.5}$$

- ► Se iterează peste toate exemplele (vectori) de antrenare (o epocă)
- Antrenarea rețelei continuă până când eroarea medie pătratică ajunge sub un prag acceptabil sau până când se atinge un nr. maxim de epoci de antrenare

Exemplu: din Artificial Intelligence. A Guide to Intelligent Systems.

FII, UAIC Curs 6 IA 2022/2023 47 / 52

- Convergența: algoritmul Backpropagation converge către un minim local
- Invăţare incrementală vs. învăţare pe lot (batch learning)
  - batch learning: ponderile se actualizează o singură dată la sfârsitul unei epoci, după prezentarea tuturor vectorilor din grup

Avantaj: rezultatele antrenării nu mai depind de ordinea în care sunt prezentati vectorii de antrenare

## Varianta cu "moment" a algoritmului Backpropagation

Ajustarea ponderilor de la epoca curentă se calculează pe baza gradientului precum și a ajustărilor de la epoca anterioară

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n-1)$$

unde  $\Delta w_{ji}(n)$  ajustarea ponderii la epoca n,  $0 \le \alpha < 1$  const. momentum (inerție)

Why Momentum Really Works, https://distill.pub/2017/momentum/

FII, UAIC Curs 6 IA 2022/2023 49 / 52

## Overfitting



Soluții: weight decay (include o penalitate), k-fold cross-validation



FII, UAIC Curs 6 IA 2022/2023 50 / 52

## Proiectarea rețelelor neuronale: Etape

- Arhitectură: număr de nivele și de unități pe fiecare nivel, topologie (mod de interconectare), funcții de activare
   Arhitecturi: unidirectionale vs. recurente
- Antrenare: determinarea valorilor ponderilor
- Validare: testarea modelului pe date de test

https://playground.tensorflow.org/

FII, UAIC Curs 6 IA 2022/2023 51/52

# Bibliografie

- Ch. 4 Artificial Neural Networks, T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- Ch. 18.7 Artificial Neural Networks, S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- Ch. 6. Multilayer neural networks. M. Neqnevitsky. Artificial Intelligence. A Guide to Intelligent Systems, 2005