- 3.1.- Decodificadores.
- 3.2.- Codificadores.
- 3.3.- Convertidores de código.
- 3.4.- Multiplexores.
- 3.5.- Demultiplexores.
- 3.6.- Comparadores binarios.
- 3.7.- Sumadores binarios.

#### TEMA 3: CIRCUITOS COMBINACIONALES INTEGRADOS DE USO COMÚN

3.1.- Decodificadores

## DEFINICIÓN DE DECODIFICADOR

Es un circuito combinacional con n entradas y m salidas, tal que para cada combinación de los bits de entrada se selecciona una y sólo una de las salidas.

#### Ejemplo:



**ENTRADAS DE** DIRECCIÓN

(Address)

#### TABLA DE VERDAD

| Е | $A_1A_0$ | O <sub>0</sub> | O <sub>1</sub> | O <sub>2</sub> | O <sub>3</sub> |
|---|----------|----------------|----------------|----------------|----------------|
| 1 | 0 0      | 1              | 0              | 0              | 0              |
| 1 | 0 1      | 0              | 1              | 0              | 0              |
| 1 | 10       | 0              | 0              | 1              | 0              |
| 1 | 11       | 0              | 0              | 0              | 1              |
| 0 | * *      | 0              | 0              | 0              | 0              |

Se activa la salida cuyo número decimal coincide con el número codificado en binario natural en las entradas: en las salidas aparecen decodificadas las entradas. Este concepto se denomina direccionamiento.

Nota: Cuando el decodificador está habilitado, cada salida realiza un producto canónico de Liss A. entradas de dirección.
Marqués. Dopt. de Electrópica
UNIVERSIDAD DE VALLADOLID

3.1.- Decodificadores



3.1.- Decodificadores

# **DECODIFICADOR COMERCIAL '138**

Es un decodificador de 3 bits de dirección (binario natural) y 8 salidas activas en baja. Posee además 3 entradas de habilitación, una activa en alta y las otras dos en baja.

Luis A. Marqués. Dept. de Electrónica UNIVERSIDAD DE VALLADOLI



| $\overline{E_1}\overline{E_2}E_3$ | A <sub>2</sub> A <sub>1</sub> A <sub>0</sub> | $\overline{O_0}  \overline{O_1}  \overline{O_2}  \overline{O_3}  \overline{O_4}  \overline{O_5}  \overline{O_6}  \overline{O_7}$ |
|-----------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0 0 1                             | 0 0 0                                        | 0 1 1 1 1 1 1 1                                                                                                                  |
| 0 0 1                             | 0 1 0                                        |                                                                                                                                  |
| 0 0 1                             | 0 1 1                                        | 1 1 1 0 1 1 1 1                                                                                                                  |
| 0 0 1                             | 1 0 1                                        |                                                                                                                                  |
| 0 0 1                             | 1 1 0                                        | 1 1 1 1 1 1 1 0 1                                                                                                                |
| 1 * *                             | * * *                                        | 1 1 1 1 1 1 1 1                                                                                                                  |
| * * 0                             | * * *                                        | 1 1 1 1 1 1 1 1 1                                                                                                                |

Conexión de 2 decodificadores '138 para conseguir uno de 4 bits de dirección y 16 salidas:



3.1.- Decodificadores

#### UTILIDADES DE LOS DECODIFICADORES

- a) Operaciones de direccionamiento o decodificación.
- b) Generación de funciones lógicas. Para una función de n variables se necesita un decodificador de n bits de dirección.

Ejemplo: implementar la función  $Z(A,B,C) = \sum (0,1,3,5,6)$ 



c) Operaciones de demultiplexación.

Luis A.
Marqués. Dept. de Electrónica
UNIVERSIDAD DE VALLADOLID

3.2.- Codificadores

# **DEFINICIÓN DE CODIFICADOR**

Es un circuito combinacional con m entradas y n salidas, tal que cuando una sola de las entradas adopta un estado lógico diferente al de las demás, en sus salidas aparece la combinación binaria correspondiente a dicha entrada. Por tanto, el codificador realiza la función opuesta a la del decodificador:



| E | A <sub>1</sub> A <sub>0</sub> | O <sub>0</sub> | O <sub>1</sub> | 02 | $O_2O_3$ |  |  |  |
|---|-------------------------------|----------------|----------------|----|----------|--|--|--|
| 1 | 0 0                           | 1              | 0              | 0  | 0        |  |  |  |
| 1 | 0.1                           | 0              | 1              | 0  | 0        |  |  |  |
| 1 | 10                            | 0              | 0              | 1  | 0        |  |  |  |
| 1 | 11                            | 0              | 0              | 0  | 1        |  |  |  |
| 0 | * *                           | 0              | 0              | 0  | 0        |  |  |  |



| Ε | Ι | l <sub>o</sub> | I <sub>1</sub> | $I_2$ | $I_3$ | O <sub>1</sub> O <sub>0</sub> |
|---|---|----------------|----------------|-------|-------|-------------------------------|
| 1 |   | 1              | 0              | 0     | 0     | 0 0                           |
| 1 |   | 0              | 1              | 0     | 0     | 0 1                           |
| 1 |   | 0              | 0              | 1     | 0     | 1 0                           |
| 1 |   | 0              | 0              | 0     | 1     | 1 1                           |
| 0 | Т | *              | *              | *     | *     | 0 0                           |

Cuando más de una entrada puede estar activa a la vez, se introduce una **prioridad**: en la salida aparece codificada la entrada activa de mayor peso numérico.

Para distinguir situaciones que producen las mismas salidas, se introducen dos salidas más, la **señal de grupo** (GS) y la **habilitación de salida** (EO).



| E | I <sub>0</sub> | $I_1$ | $I_2$ | $I_3$ | O <sub>1</sub> O <sub>0</sub> | GS | EO |
|---|----------------|-------|-------|-------|-------------------------------|----|----|
| 1 | 0              | 0     | 0     | 0     | 0 0                           | 0  | 1  |
| 1 | 1              | C     | 0     | 0     | 0 0                           | 1  | 0  |
| 1 | × .            | 1     | 0     | 0     | 0 1                           | 1  | 0  |
| 1 | *              | *     | 1     | 0     | 1 0                           | 1  | 0  |
| 1 | *              | *     | *     | 1     | 1 1                           | 1  | 0  |
| 0 | *              | *     | *     | *     | 0 0                           | 0  | 0  |

**GS**: Se activa sólo cuando hay alguna entrada activa.

**EO**: Es el complemento de GS cuando el codificador está habilitado.

3.2.- Codificadores

#### **CODIFICADOR COMERCIAL '148**

Es un codificador de prioridad de 8 líneas de entrada y 3 bits de salida (binario natural). Todos sus terminales son activos en baja.

Luis A. Marqués. Dept, de Electrónica UNIVERSIDAD DE VALLADOLID



| Ē | $\overline{I_0}$ | $\overline{I_1}$ | $\overline{I_2}$ | $\overline{I_3}$ | $\overline{I_{\!4}}$ | $\overline{I_{5}}$ | $\overline{I_6}$ | $\overline{T_7}$ | $\overline{O_2}$ | O <sub>1</sub> | $\overline{O_0}$ | GS | EO |
|---|------------------|------------------|------------------|------------------|----------------------|--------------------|------------------|------------------|------------------|----------------|------------------|----|----|
| 0 | 1                | 1                | 1                | 1                | 1                    | 1                  | 1                | 1                | 1                | 1              | 1                | 1  | 0  |
| 0 | 0                | 1                | 1                | 1                | 1                    | 1                  | 1                | 1                | 1                | 1              | 1                | 0  | 1  |
| 0 | *                | 0                | 1                | 1                | 1                    | 1                  | 1                | 1                | 1                | 1              | 0                | 0  | 1  |
| 0 | *                | *                | 0                | 1                | 1                    | 1                  | 1                | 1                | 1                | 0              | 1                | 0  | 1  |
| 0 | *                | *                | *                | 0                | 1                    | 1                  | 1                | 1                | 1                | 0              | 0                | 0  | 1  |
| 0 | *                | *                | *                | *                | 0                    | 1                  | 1                | 1                | 0                | 1              | 1                | 0  | 1  |
| 0 | *                | *                | *                | *                | *                    | 0                  | 1                | 1                | 0                | 1              | 0                | 0  | 1  |
| 0 | *                | *                | *                | *                | *                    | *                  | 0                | 1                | 0                | 0              | 1                | 0  | 1  |
| 0 | *                | *                | *                | *                | *                    | *                  | *                | 0                | 0                | 0              | 0                | 0  | 1  |
| 1 | *                | *                | *                | *                | *                    | *                  | *                | *                | 1                | 1              | 1                | 1  | 1  |

Conexión de 2 codificadores '148 para conseguir uno de 16 entradas:



3.3.- Convertidores de código

# DEFINICIÓN DE CONVERTIDOR DE CÓDIGO

Es un circuito combinacional que traduce información de un código binario a otro diferente. Puede considerarse como la conexión en serie de un decodificador y un codificador:



3.3.- Convertidores de código

# **CONVERTIDOR DE CÓDIGO COMERCIAL '4511**

Traduce información numérica codificada en BCD al llamado **código de 7 segmentos**, utilizado por los **displays** o **visualizadores de 7 segmentos**:





 $A_3$ ,  $A_2$ ,  $A_1$ ,  $A_0$ : Entrada BCD.

E (Enable): Entrada de habilitación.

LT (Lamp Test): Ilumina todos los segmentos.

BL (Blanking): Deja al visualizador sin iluminación.

| Dec | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | BL | LT | abcdefg            |
|-----|----------------|----------------|----------------|----------------|----|----|--------------------|
| *   | *              | *              | *              | *              | *  | 0  | 1111111            |
| *   | *              | *              | *              | *              | 0  | 1  | 0000000            |
| 0   | 0              | 0              | 0              | 0              | 1  | 1  | 1111110            |
| 1   | 0              | 0              | 0              | 1              | 1  | 1  | 0110000            |
| 2   | 0              | 0              | 1              | 0              | 1  | 1  | 1101101<br>1111001 |
| 3   | 0              | 0              | 1              | 1              | 1  | 1  | 1111001 🖪          |
| 4   | 0              | 1              | 0              | 0              | 1  | 1  | 0110011            |
| 5   | 0              | 1              | 0              | 1              | 1  | 1  | 1011011            |
| 6   | 0              | 1              | 1              | 0              | 1  | 1  | 0011111            |
| 7   | 0              | 1              | 1              | 1              | 1  | 1  | 1110000            |
| 8   | 1              | 0              | 0              | 0              | 1  | 1  | 1111111            |
| 9   | 1              | 0              | 0              | 1              | 1  | 1  | 1110011 🖣          |
| 10  | 1              | 0              | 1              | 0              | 1  | 1  | 0000000            |
| 11  | 1              | 0              | 1              | 1              | 1  | 1  | 0000000            |
| 12  | 1              | 1              | 0              | 0              | 1  | 1  | 0000000            |
| 13  | 1              | 1              | 0              | 1              | 1  | 1  | 0000000            |
| 14  | 1              | 1              | 1              | 0              | 1  | 1  | 0000000            |
| 15  | 1              | 1              | 1              | 1              | 1  | 1  | 0000000            |

Luis A.
Marqués. Dept. de Electrónica
UNIVERSIDAD DE VALLADOLID

3.3.- Convertidores de código

# CONVERTIDOR DE CÓDIGO COMERCIAL '4511 NÚMEROS DE MÁS DE UNA CIFRA

Para visualizar números de más de una cifra sin que aparezcan ceros a la izquierda, los convertidores deben conectarse en cascada mediante una serie de puertas OR:



# **DEFINICIÓN DE MULTIPLEXOR**

Es un combinacional que permite seleccionar en su salida una de entre varias entradas:



#### MULTIPLEXOR COMERCIAL '157

Es un multiplexor 2 a 1 cuádruple, es decir, permite seleccionar una de entre dos palabras de 4 bits. Posee además una entrada de habilitación activa en baja.



 $A_3$ ,  $A_2$ ,  $A_1$ ,  $A_0$ : Entrada A.

B<sub>3</sub>, B<sub>2</sub>, B<sub>1</sub>, B<sub>0</sub>: Entrada B.

A/B: Bit de selección.

$$O_3$$
,  $O_2$ ,  $O_1$ ,  $O_0$ : Salida  $O = \begin{cases} A \cdot si A/\overline{B} = 1 \\ B \cdot si A/\overline{B} = 0 \end{cases}$ 

E: Entrada de habilitación. Cuando el multiplexor está deshabilitado las salidas se ponen a 0.

Luis A. Marqués. Dept, de Electrónica UNIVERSIDAD DE VALLADOLIO

# UTILIDADES DE LOS MULTIPLEXORES

a) Operaciones de multiplexación.

b) Transformación de datos en formato paralelo a serie.
Si en un multiplexor se van recorriendo secuencialmente todas las combinaciones de los bits de selección, en su salida irán apareciendo en formato serie los bits que en salida están en formato paralelo.

A ~ I<sub>0</sub>
B ~ I<sub>1</sub>
C ~ I<sub>2</sub>
D ~ I<sub>3</sub>

$$\begin{array}{c|c} \textbf{A} & \overset{\frown}{} & \overset{\frown}{} & \overset{\frown}{} & \overset{\frown}{} \\ \textbf{A} & \overset{\frown}{} & \textbf{I}_0 & \textbf{S}_1 \textbf{S}_0 \\ \textbf{B} & \overset{\frown}{} & \textbf{I}_1 & \textbf{MUX} & \overset{\frown}{} & \overset{\frown}{} & \overset{\frown}{} & \textbf{A}, \textbf{B}, \textbf{C}, \textbf{D} \\ \textbf{C} & \overset{\frown}{} & \textbf{I}_2 & \textbf{MUX} & \overset{\frown}{} & \overset{\frown}{$$

00.01.10.11

c) Generación de funciones lógicas. Para una función de n variables se necesita un multiplexor de n bits de selección (2<sup>n</sup> canales de entrada).

Ejemplo: implementar la función:



Luis A.Nota: con un inversor adicional se podría generar cualquier función de n+1 variables.

Murqués. Dept. de Electrácia

3.5.- Demultiplexores

# **DEFINICIÓN DE DEMULTIPLEXOR**

Es el combinacional que realiza la función inversa del multiplexor. Permite conectar su entrada a una de entre varias salidas en función de unos bits de selección:



3.6.- Comparadores binarios

# LA COMPARACIÓN EN BINARIO NATURAL

Para comparar dos números **A** y **B** en decimal, se empieza por las cifras más significativas. Si son distintas, la mayor de ellas nos indica cuál es el número mayor. Si son iguales habrá que pasar a comparar las cifras de la etapa anterior, y así sucesivamente.

#### Ejemplo:



La comparación de dos números **A** y **B** en binario natural es más sencilla porque sólo hay dos cifras posibles, el 0 y el 1.

Para llevar a cabo la comparación, se empieza por los bits más significativos. Si son distintos, el que vale 1 nos indica cuál es el número mayor. Si son iguales habrá que pasar a comparar los bits de la etapa anterior, y así sucesivamente.



3.6.- Comparadores binarios

# LA COMPARACIÓN EN BINARIO NATURAL

Diseñaremos un módulo comparador básico para los bits enésimos A y B de los dos números A y B.

Si son iguales, tendrá en cuenta dos entradas I<sub>A>B</sub> e I<sub>A<B</sub> tales que:

| I <sub>A&gt;B</sub> | I <sub>A<b< sub=""></b<></sub> | Significado                                     |
|---------------------|--------------------------------|-------------------------------------------------|
| 0                   | 0                              | A=B hasta la etapa n-1                          |
| 0                   | 1                              | A <b etapa="" hasta="" la="" n-1<="" td=""></b> |
| 1                   | 0                              | A>B hasta la etapa n-1                          |
| 1                   | 1                              | Caso imposible                                  |



Suministrará dos salidas,  $O_{A>B}$  y  $O_{A<B}$ , tales que:

| O <sub>A&gt;B</sub> | $O_{A^{$ | Significado                                   |
|---------------------|----------|-----------------------------------------------|
| 0                   | 0        | A=B hasta la etapa n                          |
| 0                   | 1        | A <b etapa="" hasta="" la="" n<="" td=""></b> |
| 1                   | 0        | A>B hasta la etapa n                          |
| 1 1                 |          | Caso imposible                                |

Ecuaciones:  $O_{A>B} = A \cdot \overline{B} + (\overline{A \oplus B}) \cdot I_{A>B}$ 

$$O_{A < B} = \overline{A} \cdot B + (\overline{A \oplus B}) \cdot I_{A < B}$$

(A⊕B) = 1 sólo si A=B

A O<sub>A>B</sub>
O<sub>A<B</sub>
O<sub>A<B</sub>
O<sub>A<B</sub>
O<sub>A<B</sub>

Un circuito comparador para números de 4 bits será:



3.6.- Comparadores binarios

#### **EL COMPARADOR COMERCIAL '85**

El comparador '85 es un integrado comercial que permite comparar dos números **A** y **B** en binario natural de 4 bits. Suministra 3 salidas independientes que indican si **A**<**B**, **A**=**B** o **A**>**B**. Incluye tres entradas que permiten su conexión en cascada para aumentar la capacidad de comparación.

En la tabla de funcionamiento se han incluido todas las combinaciones posibles de entradas,





# LA SUMA ARITMÉTICA EN BINARIO NATURAL

La suma de dos números decimales se hace por etapas, cifra a cifra. Cuando el resultado en una etapa es mayor o igual que 10 (raíz), se suma 1 (acarreo) a la etapa siguiente.

Al igual que ocurre con la suma de números decimales, haremos la suma aritmética de dos números en binario natural cifra a cifra (bit a bit). Cuando el resultado sea mayor o igual que 2, se producirá un acarreo (bit 1) que hay que sumar a la siguiente etapa:

### LA SUMA ARITMÉTICA EN BINARIO NATURAL SUMADORES

El circuito combinacional que realice una etapa de la suma tendrá tres entradas: A (bit del primer número), B (bit del segundo número) y Cl (*carry input*, entrada de acarreo de la etapa anterior); y dos salidas: S (bit de suma) y CO (*carry output*, salida de acarreo para la etapa siguiente). Verificará:



Simplificando se obtiene:

$$S = A \oplus B \oplus CI$$
  
 $CO = A \cdot CI + B \cdot CI + A \cdot B$ 





Un circuito sumador para números de 4 bits será:



#### **SUMADOR COMERCIAL '14008**

Es un sumador para números en binario natural de 4 bits. A diferencia del esquema anterior, calcula los acarreos en paralelo, por lo que se trata de un sumador más rápido. Posee entrada y salida de acarreo que permiten la conexión en cascada de varios sumadores.

A<sub>3</sub>, A<sub>2</sub>, A<sub>1</sub>, A<sub>0</sub>: Entrada A.

 $B_3$ ,  $B_2$ ,  $B_1$ ,  $B_0$ : Entrada B.

CI: Entrada de acarreo (se suma a A<sub>0</sub> y B<sub>0</sub>).

S<sub>3</sub>, S<sub>2</sub>, S<sub>1</sub>, S<sub>0</sub>: Bits de la suma aritmética.

CO: Acarreo de salida (bit S<sub>4</sub> de la suma).



Conexión de dos sumadores '14008 para conseguir un sumador de números de 8 bits:



Luis A. Marqués. Dept. de Electrénica UNIVERSIDAD DE VALLADOLID

3.7.- Sumadores binarios

#### LA RESTA REPRESENTACIÓN DE LOS NÚMEROS NEGATIVOS

En el sistema decimal, los números negativos se representan con una notación de magnitud v signo:

Signo  $\rightarrow$  + 5 Signo  $\rightarrow$  - 5 Magnitud

Magnitud

De la misma forma, en binario se podría utilizar una notación similar donde el bit de más a la izquierda representara el signo (0: signo positivo, 1: signo negativo) y el resto de bits la magnitud del número.

Ejemplo: supongamos que tenemos números de 4 bits en binario natural.



Inconveniente: la resta no puede hacerse como la suma del opuesto.

Luis A. Marqués. Dept. de Electrónica UNIVERSIDAD DE VALLADOLID

# LA RESTA LA NOTACIÓN COMPLEMENTO A DOS

Para que la resta se pueda hacer como la suma del opuesto, habrá que buscar combinaciones binarias tales que sumadas con las correspondientes a los números positivos se obtenga 0 como resultado.



Con n bits se representan en complemento a dos los números comprendidos en el intervalo: [-2<sup>n-1</sup>, 2<sup>n-1</sup>-1]

Luis A. Marqués. Dept. de Electrónica UNIVERSIDAD DE VALIADOLIO

# LA RESTA LA NOTACIÓN COMPLEMENTO A DOS

En la práctica, dado un número expresado en complemento a dos, su opuesto se halla complementando bit a bit y sumando la unidad.

Ejemplos:

PRECAUCIÓN: la expresión de un número en complemento a dos depende del número total de bits que se esté considerando.

Ejemplo: Para 4 bits, el 5 es la combinación 0101 y el -5 la 1011.

Para 5 bits, el 5 es la combinación 00101 y el -5 es: 11011.



#### LA RESTA LA NOTACIÓN COMPLEMENTO A DOS

Utilizando la notación complemento a dos las restas se reducen a la suma del opuesto.

Ejemplos: consideraremos que el número total de bits es 4.

Operación 7-5 1 1 1 Operación 5-7 1
7: 0111 0 1 1 
$$\rightarrow$$
 7 7: 0111 0 1 0  $\rightarrow$  5
5: 0101  $\times$  0 0 1 0  $\rightarrow$  2 7: 1001 1 1 0  $\rightarrow$  -2

Así, se podrán utilizar sumadores como base para la realización de restadores. Por ejemplo, si queremos hacer la resta **A-B** de dos números **A**  $(A_3A_2A_1A_0)$  y **B**  $(B_3B_2B_1B_0)$  de 4 bits:

