Dataset #1:

<u>Author</u>: C.J. Chiara and F.G. Kondev <u>Citation</u>: Nuclear Data Sheets 111,141 (2010)

	Parent I E(level)		Parent T _{1/2}	Decay Mode	GS-GS Q-value (keV)	Daughter Nucleus		
²⁰⁸ ₈₄ Po	0.0	0+	2.898 y <i>2</i>	α: 99.9960 <i>4</i> %	5215.3 <i>13</i>	²⁰⁴ ₈₂ Pb	Decay Scheme	ENSDF file

Alphas:

Energy (keV)	Intensity (%)	Dose (MeV/Bq-s)	
4220 15	2.4E-4 % 7	1.0E-5 3	
5114.9 14	99.9958 % 4	5.1147 14	

Dataset #2:

Author: M. J. Martin Citation: Nuclear Data Sheets 108,1583 (2007)

Parent Nucleus	Parent F E(level)		Parent T _{1/2}	Decay Mode	GS-GS Q-value (keV)	Daughter Nucleus		
²⁰⁸ ₈₄ Po	0.0	0+	2.898 y <i>2</i>	ε: 0.0040 <i>4</i> %	1400.5 24	²⁰⁸ 83	Decay Scheme	

Electrons:

	Energy (keV)		Intensity (%)	Dose (MeV/Bq-s)	
Auger L	8.15		0.0045 % 3	3.68E-7 <i>21</i>	
CE L	15.41	10	0.0013 % 3	2.0E-7 5	
CE M	27.80	10	3.1E-4 % 8	8.5E-8 <i>23</i>	
CE N	30.86	10	7.8E-5 % <i>21</i>	2.4E-8 7	
CE O	31.72	10	1.6E-5 % 4	5.0E-9 <i>14</i>	
CE P	31.80	10	1.8E-6 % 5	5.7E-10 <i>14</i>	
CE L	46.74	10	0.0020 % 3	9.4E-7 15	
Auger K	58.2		1.42E-4 % 19	8.3E-8 <i>11</i>	
CE M	59.13	10	4.8E-4 % 8	2.9E-7 5	
CE N	62.19	10	1.23E-4 % <i>19</i>	7.6E-8 <i>12</i>	
CE O	63.05	10	2.5E-5 % 4	1.58E-8 <i>25</i>	
CE P	63.13	10	2.9E-6 % 4	1.8E-9 3	
CE K	201.28	5	7.5E-4 %	1.5E-6	
CE L	275.42	5	1.45E-4 %	4.0E-7	
CE M	287.81	5	3.49E-5 %	1.01E-7	
CE N	290.87	5	8.9E-6 %	2.59E-8	
CE O	291.73	5	1.79E-6 %	5.2E-9	
CE P	291.81	5	2.04E-7 %	6.0E-10	

CE	K	447.86	8	4.0E-5 % 5	1.78E-7 <i>23</i>
CE	K	479.60	7	9.4E-5 % <i>11</i>	4.5E-7 5
CE	K	510.99	7	6.3E-5 % 8	3.2E-7 4
CE	L	522.00	8	6.8E-6 % 9	3.5E-8 4
CE	M	534.39	8	1.58E-6 % 20	8.4E-9 11
CE	N	537.45	8	4.0E-7 % 5	2.2E-9 3
CE	0	538.31	8	8.3E-8 % 10	4.5E-10 6
CE	P	538.39	8	9.9E-9 % <i>13</i>	5.3E-11 7
CE	L	553.74	7	1.59E-5 % <i>19</i>	8.8E-8 <i>11</i>
CE	M	566.13	7	3.7E-6 % 5	2.1E-8 3
CE	N	569.19	7	9.5E-7 % <i>11</i>	5.4E-9 7
CE	0	570.05	7	1.95E-7 % 24	1.11E-9 <i>13</i>
CE	P	570.13	7	2.3E-8 % 3	1.33E-10 <i>16</i>
CE	L	585.13	7	1.06E-5 % 13	6.2E-8 7
CE	M	597.52	7	2.5E-6 % 3	1.49E-8 <i>18</i>
CE	N	600.58	7	6.4E-7 % 8	3.8E-9 5
CE	0	601.44	7	1.30E-7 % 16	7.8E-10 <i>9</i>
CE	P	601.52	7	1.56E-8 % <i>19</i>	9.4E-11 <i>11</i>
CE	K	771.29	8	5.4E-6 % 7	4.2E-8 5
CE	K	834.58	13	4.5E-6 % <i>22</i>	3.8E-8 <i>18</i>
CE	L	845.43	8	1.16E-6 % 14	9.8E-9 <i>12</i>
CE	M	857.82	8	2.8E-7 % 3	2.4E-9 3
CE	N	860.88	8	7.1E-8 % 9	6.1E-10 8
CE	0	861.74	8	1.42E-8 % 18	1.23E-10 <i>15</i>
CE	P	861.82	8	1.56E-9 % <i>19</i>	1.34E-11 <i>17</i>
CE	L	908.72	13	1.0E-6 % 5	9E-9 5
CE	M	921.11	13	2.5E-7 % <i>12</i>	2.3E-9 11
CE	N	924.17	13	6E-8 % 3	6E-10 3
CE	0	925.03	13	1.3E-8 % 6	1.2E-10 6
CE	P	925.11	13	1.5E-9 % 7	1.4E-11 7

Gamma and X-ray radiation:

	nergy (keV)	Intensity (%)	Dose (MeV/Bq-s)	
XR l	10.8	0.00290 % 23	3.13E-7 <i>25</i>	
	31.8 1	2.7E-5 % 4	8.5E-9 <i>14</i>	
	63.13 10	3.4E-4 % 5	2.2E-7 3	
XR kα2	74.815	0.00109 % 9	8.2E-7 6	
XR kα1	77.107	0.00182 % 14	1.41E-6 <i>11</i>	
XR kβ3	86.83	2.21E-4 % 17	1.92E-7 <i>15</i>	
XR kβ1	87.349	4.2E-4 % 3	3.7E-7 <i>3</i>	
XR kβ2	89.784	1.55E-4 % <i>12</i>	1.39E-7 <i>11</i>	
	291.81 5	0.00227 %	6.6E-6	

538.39	8	5.0E-4 % 6	2.7E-6	3
570.13	7	0.00138 % 17	7.9E-6	9
601.52	7	0.00107 % 13	6.4E-6	8
861.82	8	7.4E-4 % 9	6.4E-6	8
925.11	13	5E-5 % 3	4.8E-7	24

<u>Gamma Coincidence Data</u>: For each gamma, the list of gammas in coincidence is given. If experimentally known, an estimate of the average time interval (in seconds) between both gammas is given

E(γ) Coincidence 31.8 63.13, 291.81, 538.39, 601.52 63.13 31.8, 291.81, 538.39, 570.13, 861.82 291.81 31.8, 63.13, 538.39, 570.13, 601.52 538.39 31.8, 63.13, 291.81 570.13 63.13, 291.81 601.52 31.8, 291.81 861.82 63.13