# ΜΕΜ-Θ602: Μαθηματική Χρηματοοικονομία

Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης (https://kesmarag.gitlab.io)

2η διάλεξη - 10.10.2022

## Στοιγεία θεωρίας πιθανοτήτων

## Χώρος πιθανότητας

- ▶  $\Omega$  : Δειγματικός χώρος (πιθανά αποτελέσματα)

  ▶  $\mathcal{F}$  : σ-αλγέβρα ενδεχομένων του  $\Omega$  (ενδεκό μενα)

  ▶  $\mathbb{P}$  : Μέτρο πιθανότητας στον  $(\Omega, \mathcal{F})$   $\mathbb{P}$   $\mathcal{F}$   $\mathcal$

Η τριπλέτα  $(\Omega, \mathcal{F}, \mathbb{P})$  καλείται χώρος πιθανότητας.

#### σ-άλγεβρα στο Ω

Ονομάζουμε μια συλλογή υποσυνόλων  $\mathcal F$  του  $\Omega$ , σ-άλγεβρα εάν ικανοποιούνται οι παρακάτω ιδιότητες

$$\begin{array}{c} \bullet \ \Omega \in \mathcal{F} \\ \bullet \ A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F} \end{array} \Rightarrow \bigcirc \bullet \overbrace{\bullet}$$

$$A_i \in \mathcal{F}, i = 1, 2, \dots \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

### Μεγαλύτερη σ-άλγεβρα στο Ω

Το δυναμοσύνολο του  $\Omega$  (συλλογή όλων των υποσυνόλων) αποτελεί την μεγαλύτερη σ-άλγεβρα στο  $\Omega$ . Το συμβολίζουμε ως  $2^{\Omega}$ .

## σ-άλγεβρα που παράγεται από μια συλλογή υποσυνόλων $\mathcal G$

Ονομάζεται η μικρότερη σ-άλγεβρα που περιέχει τη συλλογή  $\mathcal G$ . Την συμβολίζουμε ως  $\sigma(\mathcal G)$ 

$$(\alpha, \beta) = \bigcup_{m=1}^{\infty} \left[ \alpha + \frac{1}{m}, \beta - \frac{1}{m} \right], \left[ \alpha, \beta \right] = \bigcap_{m=1}^{\infty} \left( \alpha - \frac{1}{m}, \beta + \frac{1}{m} \right)$$

# $\sigma$ -άλγεβρα Borel $\mathcal{B}(\mathbb{R})$

Ονομάζεται η σ-άλγεβρα που παράγεται από την συλλογή των ανοικτών υποσυνόλων του  $\mathbb R$ . Δηλαδή  $\mathcal{B}(\mathbb{R}) = \sigma((a,b), -\infty \leq a < b \leq \infty)$ 

$$ισοδύναμα,  $\mathcal{B}(\mathbb{R}) = \sigma((-\infty, x], x \in \mathbb{R})$ 

$$(-\infty, \times] = \bigcap_{n=1}^{\infty} (-\infty, \times + \frac{1}{n})$$$$

# Μέτρο πιθανότητας

Μια απεικόνιση  $\mathbb P$  από τη σ-άλγεβρα  $\mathcal F$  στο διάστημα [0,1] ονομάζεται μέτρο πιθανότητας εάν ισχύουν οι παρακάτω ιδιότητες:

$$ightharpoonup \mathbb{P}(\Omega) = 1$$
 and  $\delta \omega$ 

Στοιχεία θεωρίας πιθανοτήτων

$$S = \{1,0\}$$
  $P = \{0, S-, [1], \{0\}\}$   
 $X(w) = w, w \in S$ 

Τυχαία μεταβλητή

Μια απεικόνιση 
$$X:\Omega o\mathbb{R}$$
 για την οποία

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$$

X = 0 C

για κάθε 
$$x \in \mathbb{R}$$
 καλείται τυχαία μεταβλητή.

# Πιθανότητα τυχαίας μεταβλητής

για κάθε 
$$A\in\mathcal{B}(\mathbb{R})$$

$$P_X(A) = \mathbb{P}(\omega \in \Omega : X(\omega) \in A)$$
  $\times : \Omega \rightarrow \mathbb{R}$   $\times (A) \in \mathcal{B}(\mathbb{R})$ 

Αξία προιόντος - Την περιγράφουμε με μια στοχαστική διαδικασία

$$(t,\omega) \to S_t(\omega) \in \mathbb{R}_{\geq 0}, \quad t \in \mathbb{T}, \ \omega \in \Omega$$

- ▶ Δοσμένο  $ω^* ∈ Ω: S_t(ω^*)$  μια πραγματοποίηση (τροχιά).
- $\blacktriangleright$  Δοσμένο  $t^*\in\mathbb{T}$ :  $S_{t^*}(\omega)$  τυχαία μεταβλητή που περιγράφει την αξία την χρονική τιμή  $t^*$ .

## Παράδειγμα: Τυχαίος περίπατος με 2 βήματα

- lacktriangle Κίνηση στον πραγματικό άξονα σε διακριτές χρονικές στιγμές ( $\mathbb{T}=\{0,1,2\}$ )
- ightharpoonup Αρχική θέση  $Y_0 = 0$
- ightharpoonup Βήματα στους διακριτούς χρόνους t=1,2

$$Y = \begin{cases} 1 & \text{if } \pi \text{if } \pi$$

# Μοντέλο για τη μεταβολή της αξίας ενός προϊόντος

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

- $ightharpoonup t \in \mathbb{T} = [0, T]$ : Χρόνος
- $ightharpoonup W_t$ : Κίνηση Brown (Brownian motion)

 Θα δείξουμε στη πορεία του μαθήματος ότι η λύση της παραπάνω στοχαστικής εξίσωσης δίδεται ως:

$$S_t = S_0 \exp(\mu t) \exp(\sigma W_t - 0.5\sigma^2 t)$$

 $\blacktriangleright$  Το  $\mu$ θα δούμε ότι σχετίζεται με το προϊόν χωρίς ρίσκο

#### Κίνηση Brown (Brownian motion)

Ονομάζεται η στοχαστική διαδικασία σε συνεχή χρόνο με τις ακόλουθες ιδιότητες

$$\mathbf{Q}$$
  $\mathbf{W}_{t+\delta t} - W_t \sim \mathcal{N}(0, \delta t)$ , για κάθε  $\delta t > 0$ 

## Πόρισμα

$$\blacktriangleright$$
  $W_t \sim \mathcal{N}(0,t)$ 

$$\blacktriangleright W_t = \sqrt{t}Z, \ Z \sim \mathcal{N}(0, 1)$$

$$(0,\pm)$$
 $W_{F}-W_{0}\sim \mathcal{N}(0,\pm)$ 



Cov(X,Y)= F { (M, -1E(W)) } = E { (M, -1E(X)) (Y-1E(X)) }  $ightharpoonup \mathbb{E}(W_t) = 0$  $ightharpoonup Var(W_t) = t$ Για  $t \neq s$  θα υπολογίσουμε το  $Corr(W_t, W_s)$ = 1E \ X Y \ Z, EW

Κίνηση Brown (Brownian motion)

t>5 Wt = Wt - Ws + Ws 4+5

COV (WE, WS) = E { WE WS } = E { (WE-WS) WS } + E { NS } =  $\mathbb{E}^{\frac{1}{2}}(W_{4}-W_{5})(W_{5}-W_{0})^{\frac{1}{2}}+\mathbb{E}^{\frac{1}{2}}(W_{5}-\mathbb{E}^{\frac{1}{2}}W_{5}^{\frac{1}{2}})^{\frac{1}{2}}=*$ 

$$ightharpoonup \mathbb{E}(W_t) = 0$$

$$ightharpoonup Var(W_t) = t$$

Για  $t \neq s$  θα υπολογίσουμε το  $\operatorname{Corr}(W_t, W_s)$ 

$$= \min \left\{ \left( \frac{1}{5}, \sqrt{\frac{5}{t}} \right) \right\}$$

#### Κίνηση Brown (Brownian motion)



Έστω  $W_t^{(1)},~W_t^{(2)}$  ανεξάρτητες κινήσεις Brown. Για ποιες τιμές  $a,b\in\mathbb{R}$  η στοχαστική διαδικασία  $B_t=aW_t^{(1)}+bW_t^{(2)}$  αποτελεί κίνηση Brown;

$$|E\{B_{t}\} = \alpha |E\{W_{t}^{(1)}\} + b |E\{W_{t}^{(2)}\} = 0$$

$$|E\{B_{t}\} = \alpha^{2} |W_{t}^{(1)}\} + b^{2} |V_{t}^{(2)}\} = 0$$

$$|E\{B_{t}\} = \alpha^{2} |W_{t}^{(1)}\} + b^{2} |V_{t}^{(2)}\} = 0$$

Θα κατασκευάσουμε 2 συσχετισμένες κινήσεις Brown  $W_t,\ B_t$  με  $\mathrm{Corr}(W_t,B_t)=r\in (-1,1).$ 

$$Cov \{B_{t}, W_{t}^{(1)}\} = \mathbb{E} \{B_{t} W_{t}^{(1)}\} =$$

$$= \mathbb{E} \{(W_{t}^{(1)}) + b W_{t}^{(2)}\} W_{t}^{(1)}\} =$$

$$= \alpha \mathbb{E} \{(W_{t}^{(1)})^{2}\} + b \mathbb{E} \{W_{t}^{(2)} W_{t}^{(1)}\} =$$

$$= \alpha t \qquad Corr \{B_{t}, W_{t}^{(1)}\} = \frac{\alpha t}{t^{2} t^{2}} = \alpha$$

$$\alpha = r \qquad b = (1 - r^{2})^{\frac{1}{2}}$$

## Κινήση Brown (Brownian motion)

## Προσέγγιση της κινήσεως Brown σε διακριτοποιημένο χρόνο

$$ightharpoonup$$
  $\mathbb{T} = [0, T]$ 

Ορίζουμε 
$$\delta t = T/n, \ t_k = k \delta t, \ k = 0, \dots, n$$

$$W_{t_k} - W_{t_{k-1}} \sim \mathcal{N}(0, \delta t), \ k = 1, \dots, n$$

## Εφαρμογή

Η τιμή μιας μετοχής περιγράφεται από τη στοχαστική διαδικασία

$$S_t = S_0 \exp(\mu t) \exp(\sigma W_t - 0.5\sigma^2 t), \ S_0 = 1$$

με μ = 0.1 και σ = 0.25.

Θα παρουσιάσουμε 10 πιθανά σενάρια για την πορεία της τιμής της μετοχής για τον επόμενο χρόνο (ανάλυση ανά μια μέρα).

Ποια είναι η αναμενόμενη τιμή της μετοχής με την συμπλήρωση του έτους?

## Εφαρμογή