annif tutorial

Ensembles

Algorithms make silly mistakes

Some reasons for mistakes:

- errors and skew in training data
- correlation ≠ causation
- homonyms (e.g. rock)
- misinterpreted names (e.g. Smith, AIDS)
- random noise

Each algorithm makes different mistakes

Ensembles

- Combine the predictions of multiple algorithms
- Idea:
 - Retain individual strengths
 - Reduce weaknesses

The three ensembles

Simple ensemble

Averages the scores given by different backends for all subjects.

No training of the ensemble

PAV ensemble

Applies isotonic regression to estimate the relationship between given scores and probability of relevance of a subject.

Must be trained

Wilbur, W. J., & Kim, W. (2014).

Stochastic Gradient Descent and the Prediction of MeSH for PubMed Records. AMIA Annual Symposium proceedings. AMIA Symposium, 2014, 1198-207.

Neural network ensemble

A lot like PAV. Starts off like a simple averaging ensemble, but fine-tunes the scores based on training.

Must be trained

Can learn further after training