Exercice 106.

Calculer à la main $10\,001^2 - 9\,999^2$.

Exercice 107.

On donne les égalités :

$$4 \times 6 + 1 = 5^2$$
 et $7 \times 9 + 1 = 8^2$

- 1. Quelle conjecture peut-on émettre en langage naturel? Écrire cette conjecture en prenant n comme premier nombre.
- 2. Vérifier cette conjecture pour n=8 puis pour n=12.
- 3. Démontrer cette conjecture.

Exercice 108.

Résoudre graphiquement les équations suivantes :

1.
$$x^2 = 25$$

3.
$$x^2 = 0$$

2.
$$x^2 = 5$$

4.
$$x^2 = -3$$

Exercice 109.

Résoudre algébriquement les équations suivantes :

1.
$$4x^2 - 5 = 0$$

$$2. 2x^2 + 3 = 1$$

3.
$$\frac{4}{5}x^2 = 5$$

Exercice 110.

Comparer sans aucun calcul et en justifiant à l'aide des propriétés de la fonction carrée :

a.
$$2,356^2$$
 et $2,5^2$

b.
$$(-1,08)^2$$
 et $(-1,2)^2$

c.
$$(-1,6)^2$$
 et $1,57^2$

Exercice 111.

Donner un encadrement de x^2 sachant que :

a.
$$-3, 5 \le x \le -1$$

b.
$$0, 5 \le x \le 2, 5$$

c.
$$x \in]-2;1]$$

d.
$$x \in]-2;4]$$

Exercice 112.

À l'aide de la parabole d'équation $y=x^2$, déterminer l'ensemble des valeurs de x telles que :

1.
$$x^2 \ge 4$$

2.
$$x^2 > 4$$

3.
$$x^2 < 2$$

4.
$$x^2 \ge -5$$

Exercice 113.

Même consigne que précédemment :

1.
$$x^2 \ge 3$$

2.
$$x^2 \le 5$$

3.
$$x^2 < 100$$

4.
$$x^2 > 81$$

Exercice 114.

Résoudre algébriquement les équations suivantes :

1.
$$(x-1)^2 = 4$$

2.
$$(3x+4)^2 = 9$$

3.
$$(x+1)^2 = 3$$

4.
$$(-5x+1)^2 = 6$$

Exercice 115.

Simplifier:

1.
$$(\sqrt{5})^2$$

$$2. - \left(\sqrt{\frac{3}{4}}\right)^2$$

3.
$$(-2\sqrt{3})^2$$

4.
$$(3\sqrt{2})^2$$

Exercice 116.

Calculer $\sqrt{a+b}$ et $\sqrt{a} + \sqrt{b}$ pour :

1.
$$a = 1$$
 et $b = 3$

2.
$$a = 4$$
 et $b = 3$

Exercice 117.

Écrire sous la forme $a\sqrt{b}$ où a et b sont des entiers naturels :

1.
$$\sqrt{18}$$

2.
$$\sqrt{200}$$

3.
$$\sqrt{125}$$

4.
$$\sqrt{54}$$

5.
$$\sqrt{24}$$

Exercice 118.

Simplifier les sommes algébriques suivantes :

1.
$$2\sqrt{2} - 5\sqrt{2} + 4\sqrt{2}$$

2.
$$-\sqrt{5} + 2\sqrt{5} + 4\sqrt{5}$$

Exercice 119.

- 1. Simplifier au maximum $\sqrt{8}$, $\sqrt{18}$, $\sqrt{12}$ et $\sqrt{75}$.
- 2. Écrire sous la forme $a\sqrt{b}$ avec a et b entiers :

(a)
$$3\sqrt{2} - 4\sqrt{8} + 2\sqrt{18}$$

(b)
$$\sqrt{12} + 3\sqrt{3} - \sqrt{75}$$

Exercice 120.

Écrire sous la forme $a\sqrt{b}$ avec a et b entiers :

1.
$$\sqrt{27} - 2\sqrt{3} + \sqrt{48}$$

$$2. \ 4\sqrt{32} - 3\sqrt{8} + \sqrt{18}$$

Exercice 121.

Soient trois points A,B et C vérifiant :

$$AB = \sqrt{300}, BC = 2\sqrt{27} \text{ et } AC = \sqrt{48}.$$

Démontrer que ces trois points sont alignés.

Exercice 122.

Soient trois points A, B et C vérifiant :

$$AB = \sqrt{5} - \sqrt{3}$$

$$AB = \sqrt{5} - \sqrt{3},$$

$$AC = \sqrt{5} + \sqrt{3} \text{ et } BC = 4.$$

Le triangle ABC est-il rectangle?

Si oui, calculer son aire.

Exercice 123.

Comparer, sans calcul, à l'aide de la fonction racine carrée:

1.
$$\sqrt{2,5}$$
 et $\sqrt{1,8}$

2.
$$\sqrt{3,08} \text{ et } \sqrt{\pi}$$

Exercice 124.

Écrire l'ensemble des solutions des inéquations :

1.
$$\sqrt{x} < 2$$

2.
$$\sqrt{x} - 5 \le 0$$

3.
$$3 - \sqrt{x} < 5$$

4.
$$3 - 2\sqrt{x} \ge 0$$

Exercice 125.

Dans chacun des cas, donner le meilleur encadrement possible de \sqrt{x} en justifiant :

1.
$$0 \le x \le 4$$
.

2.
$$0,25 \leqslant x \leqslant 6,25$$
.

3.
$$\frac{1}{100} \leqslant x \leqslant 1$$
.