Mathematics 327

SVD and least squares

Today we'll investigate how to solve least squares problems using singular value decompositions. Remember how this works: if we have an equation $A\mathbf{x} = \mathbf{b}$ that is inconsistent, we orthogonally project \mathbf{b} onto $\operatorname{Col}(A)$ to obtain $\widehat{\mathbf{b}}$. We say that the least squares approximate solution to $A\mathbf{x} = \mathbf{b}$ is the vector $\widehat{\mathbf{x}}$ that satisfies $A\widehat{\mathbf{x}} = \widehat{\mathbf{b}}$.

1. Suppose that A is a matrix whose singular value decomposition is $A = U\Sigma V^T$ where

$$\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}.$$

What are the dimensions of the matrices A, U and V?

What is rank(A)?

Let's write $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$. Which vectors of U form a basis for the column space of A?

Form a matrix Q whose vectors form an orthonormal basis for Col(A). How is Q obtained from U?

Think back to earlier in the course and explain the signficance of the matrices QQ^T and Q^TQ ?

Explain why the least squares approximate solution to $A\mathbf{x} = \mathbf{b}$, satisfies $A\hat{\mathbf{x}} = QQ^T\mathbf{b}$.

We will also form the matrix $\widehat{\Sigma}$, which is obtained from Σ by removing the bottom rows of zeroes:

 $\widehat{\Sigma} = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}.$

What is Σ^{-1} ?

Write the product $U\Sigma$ in terms of the columns of U. Then explain why $U\Sigma=Q\widehat{\Sigma}$.

Now we have $A = U\Sigma V^T = Q\widehat{\Sigma}V^T$ so that $A\widehat{\mathbf{x}} = QQ^T\mathbf{b}$ becomes

$$Q\widehat{\Sigma}V^T\widehat{\mathbf{x}} = QQ^T\mathbf{b}.$$

Multiply both sides of this equation on the left by Q^T and explain why $\widehat{\Sigma}V^T\widehat{\mathbf{x}}=Q^T\mathbf{b}$.

Explain why the least squares approximate solution of Ax = b is

$$\widehat{\mathbf{x}} = V\widehat{\Sigma}^{-1}Q^T\mathbf{b}.$$

2. Sage interlude: you can find the singular value decomposition of a matrix A using A.SVD(). One catch, however, is that you need to declare the matrix A to be a floating point matrix. You can do this with

$$A = matrix(RDF, 2, 2, [1,2,2,1])$$

where we have added \mathtt{RDF} to tell Sage to interpret the matrix as floating point. You may ask Sage to store the results by saying

$$U$$
, Sigma, $V = A.SVD()$

Remember that, if M is a matrix, you also have commands

M.matrix_from_columns(list)

M.matrix_from_rows(list).

3. Suppose that we would like to find the least squares approximate solution to $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 4 \\ -3 & 3 \\ 5 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -16 \\ 28 \\ 6 \end{bmatrix}.$$

Find the singular value decomposition of *A*.

Find the matrices Q and $\widehat{\Sigma}$.

Find the least squares approximate solution $\hat{\mathbf{x}} = V \hat{\Sigma}^{-1} Q^T \mathbf{b}$.

4. Find the line $y = \beta_0 + \beta_1 x$ that comes closest to passing through the points (1, 1), (2, 1), and (3, 3) using a singular value decomposition.