Projet 7 Implémentez un modèle de scoring

Sommaire

- Rappel de la Problématique et Environnement
- Présentation et nettoyage des données
- Analyses Exploratoires des Données
- Présentation de démarche de modélisation et choix des métriques
- Présentation de la synthèse des résultats et Visualisation du tracking via MLFlow UI
- Interprétabilité globale et locale du modèle
- Présentation du pipeline de déploiement
- Présentation de l'analyse de data drift
- Conclusion et Recommandations
- Présentation et démo du dashboard

Rappel de la Problématique

- "Prêt à dépenser", souhaite développer un outil de scoring crédit.
- Répondre à la demande de transparence de la part des clients.
- Construire un modèle de scoring pour prédire la probabilité de faillite d'un client.
- Construire un dashboard interactif permettant d'interpréter les prédictions faites par le modèle
- Mettre en production le modèle prédiction à l'aide d'une API, ainsi que le dashboard.

Environnement

- Python: 3.9.17
- Pandas: 2.0.3
- Numpy: 1.23.5
- Seaborn: 0.12.2
- Matplotlib: 3.7.2
- Missingno: 0.4.2
- Sklearn: 1.2.2
- Mlflow: 2.6.0
- Shap: 0.42.1
- Plotly: 5.15.0

Présentation du Jeu de Données

- Les données proviennent de la compétition Kaggle "Home Credit Default Risk"
- Il y a 10 fichiers avec 346 colonnes.
- Ils sont liés par des clés.
- If y a 25 % de valeur manquantes.

Les étapes du nettoyage

- Elimination de XNA de la colonne CODE_GENDER
- Remplacement des valeurs 365243, par np.nan dans la colonne DAYS_EMPLOYED (1000 ans de travail)
- Calculs
 arithmétiques
 PAYMENT_RATE =
 AMT_ANNUITY
 /AMT_CREDIT
- Aggregations ['max', 'mean', 'sum']

- Label encoding pour binary colonnes
- One hot encoding pour les autres colonnes catégorielles

- 10 fichiers avec 346 colonnes
- 1 fichier avec 797 colonnes

Changement des colonnes
DAYS_BIRTH et
DAYS_EMPLOYED
aux valeurs positives et en ans

Analyses Exploratoires des Données

Le taux de défaut de remboursement est plus élevé chez les clients de moins de 30 ans.

Les clients solvables ont un score EXT_SOURCE plus élevé que les non solvables.

La démarche de modélisation

Les métriques d'évaluation et Fonction coût métier

- FN mauvais client, prédit comme bon client : donc crédit accordé et perte en capital / -10
- FP bon client, prédit comme mauvais client : donc refus crédit et manque à gagner en marge/ -1
- TN mauvais client, prédit comme mauvais client : donc refus crédit et pas perte/ 0
- TP bon client, prédit comme bon client : donc crédit accordé et pas perte/ 0


```
total = (coeff_tn*tn + coeff_fp*fp + coeff_fn*fn + coeff_tp*tp)
max_gain = (tn + fp)*coeff_tn + (tp + fn)*coeff_tp
min_gain = (tn + fp)*coeff_fp + (tp + fn)*coeff_fn
gain = (total - min_gain) / (max_gain - min_gain)
```

Traitement du déséquilibre des classes

- On constate le changement considérable de l'accuracy.
- On obtient les meilleur résultats avec le méthode class weight balanced.

- RandomUnderSampler sous-échantillonnage
 - supprime aléatoirement des échantillons de la classe majoritaire
- SMOTE Suréchantillonnage
 - augmente la taille de la classe minoritaire
- Model(class_weight="balanced")
 - attribue des poids plus importants aux classes minoritaires pendant l'entraînement

model	accuracy	precision	recall	f1_score	roc_auc_score	custom_score	execution_time
lgbm_origine	0.92	0.55	0.03	0.06	0.78	0.55	14.535
lgbm_unders	0.70	0.17	0.70	0.28	0.77	0.70	5.846
lgbm_overs	0.92	0.52	0.03	0.05	0.77	0.54	28.776
lgbm_balanced	0.72	0.18	0.69	0.29	0.78	0.71	14.838

Sélection de 10 features les plus importants

	Avant	Après
custom score	0.71	0.69
roc auc	0.78	0.76
time (s)	14.7	1.87

- Sélection des 10 features les plus importantes
- Légère perdre de performance
- Gagne en termes de durée d'exécution et l'interprétabilité du modèle

L'algorithme d'optimisation et le seuil optimum pour le score métier.

- On a choisi LightGBM et effectué un GridSearchCV afin d'optimiser les hyperparamètres
- learning_rate: 0.05n estimators: 350
- Le seuil optimal: 0.54 score métier de: 0.7

Présentation de la synthèse des résultats

			Metrics					
Run Name	Created =↓	Duration	accuracy	custom_score	f1_score	precision	recall	rocauc
threshold_best_model	② 11 minutes ago	6.6s	0.74	0.7	0.28	0.18	0.63	0.76
best_model_lgbm		6.9s	0.7	0.7	0.27	0.17	0.68	0.76
gbm_balanced		34.2s	0.72	0.71	0.29	0.18	0.69	0.78
lgbm_overs		1.0min	0.92	0.54	0.05	0.52	0.03	0.77
lgbm_unders		15.8s	0.7	0.7	0.28	0.17	0.7	0.77
gbm_origine		34.3s	0.92	0.55	0.06	0.55	0.03	0.78
rf_balanced	⊙ 57 minutes ago	4.3min	0.92	0.53	0	0.59	0	0.73
rf_overs	⊙ 1 hour ago	10.7min	0.92	0.54	0.05	0.35	0.03	0.72
rf_unders	⊙ 1 hour ago	46.2s	0.69	0.69	0.26	0.16	0.68	0.75
rf_origine	⊙ 1 hour ago	5.7min	0.92	0.53	0	0.78	0	0.72
lr_balanced	⊙ 1 hour ago	37.6s	0.7	0.7	0.27	0.17	0.69	0.76
lr_overs	⊙ 1 hour ago	1.2min	0.71	0.68	0.26	0.17	0.65	0.75
lr_unders	⊙ 1 hour ago	12.5s	0.69	0.69	0.27	0.17	0.69	0.76

Après sélection

Avant sélection

Les modèles

Dummy Classifier

Régression Logistique

Random Forest

Light GBM

Equilibrage

Random Under Sampler

SMOTE

class_weight="balanced"

Feature sélection

GridSearchCV

Light GBM

Interprétabilité globale du modèle

Feature	Explication
EXT_SOURCE_2 et 3	Score normalisé provenant d'une source de données externe
PAYMENT_RATE	Taux de paiement
INSTAL_DPD_MEAN	Nombre de jours de retard de paiement pour le crédit précédent (moyenne)
DAYS_EMPLOYED	Durée du travail (ans)
NAME_EDUCATION_ TYPE_Highereducation	Niveau d'études le plus élevé (éducation supérieure)
CODE_GENDER	Genre female - 1 male - 0
PREV_CNT_PAYMENT _MEAN	Durée du crédit précédent (moyenne)
DAYS_BIRTH	Age (ans)
AMT_ANNUITY	Rente de prêt annuelle

- Faible valeur
 EXT_SOURCE_2 et 3
 est associée à un
 risque accru de défaut
- Valeur élevée INSTAL_DPD_MEAN augment le risque de défaut

Interprétabilité locale du modèle

Client l'ID 343913
 NAME_EDUCATION_TYPE_
 Highereducation et
 DAYS_BIRTH ont réduit le risque de défaut

Les features
 PAYMENT_RATE et
 AMT_ANNUITY ont
 augmenté le risque de défaut

impact négatif

impact positif

Présentation du pipeline de déploiement

Présentation du pipeline de déploiement

Présentation de l'analyse de data drift

- La qualité et de la distribution des données au fil du temps
- Il nécessite une surveillance continue pour maintenir la précision du modèle.
- On a testé la librairie evidently
- On constate qu'il n'y a pas de data drift pour notre dataset.

Conclusion et Recommandations

- On a construit un modèle de scoring pour prédire la probabilité de faillite d'un client.
- On a construit un dashboard interactif permettant d'interpréter les prédictions faites par le modèle.
- On a mis en production le modèle prédiction à l'aide d'une API, ainsi que le dashboard.

- Il serait préférable de collaborer avec les équipes métier pour créer une métrique plus adaptée à leurs besoins spécifiques.
- Nous pouvons améliorer la sélection des features les plus importantes en explorant d'autres méthodes, avec les experts métier pour répondre aux exigences du domaine et augmenter l'interprétabilité du modèle.
- On peut améliorer nos résultats en faisant des hyperparamètres tuning plus fin pour les modèles.

<u>Liens</u>

Le dossier Github : https://github.com/githubzey/p7 Home Credit

Api : https://apihomecredit-861d00eaed91.herokuapp.com/

Dashboard: https://dashboardhomecredit-1913c1e69feb.herokuapp.com/

