Multiplexor (Mux)

- Mux: Another popular combinational building block
 - Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux → 3 select inputs
 - N inputs → log₂(N) selects
 - Like a rail yard switch

Mux Internal Design

Mux Example

- City mayor can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3

Use 4x1 mux

Muxes Commonly Together – N-bit Mux

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) – each is 8-bits wide
 - Choose which to display on D using two inputs x and y
 - Pushing button sequences to the next item
 - Use 8-bit 4x1 mux

Additional Considerations Non-Ideal Gate Behavior -- Delay

- Real gates have some delay
 - Outputs don't change immediately after inputs change

Circuit Delay and Critical Path

- Wires also have delay
- Assume gates and wires have delays as shown
- Path delay time for input to affect output
- Critical path path with longest path delay
- Circuit delay delay of critical path 32

Active Low Inputs

- Data inputs: flow through component (e.g., mux data input)
- Control input: influence component behavior
 - Normally active high 1 causes input to carry out its purpose
 - Active low Instead, 0 causes input to carry out its purpose
 - Example: 2x4 decoder with active low enable
 - 1 disables decoder, 0 enables
 - Drawn using inversion bubble

Schematic Capture and Simulation

Schematic capture

Computer tool for user to capture logic circuit graphically

Simulator

- Computer tool to show what circuit outputs would be for given inputs
 - Outputs commonly displayed as waveform

Appendix: Boolean properties and examples

Boolean Algebra Properties

- Commutative
 - a + b = b + a
 - a * b = b * a
- Distributive
 - a*(b+c) = a*b+a*c
 - Can write as: a(b+c) = ab + ac
 - a + (b * c) = (a + b) * (a + c)
 - (This second one is tricky!)
 - Can write as: a+(bc) = (ab)(ac)
- Associative
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Identity
 - -0+a=a+0=a
 - -1*a=a*1=a
- Complement
 - a + a' = 1
 - a * a' = 0
- To prove, just evaluate all possibilities

Example uses of the properties

- Show abc' equivalent to c'ba.
 - Use commutative property:
 - a*b*c' = a*c'*b = c'*a*b = c'*b*a
- Show abc + abc' = ab.
 - Use first distributive property
 - abc + abc' = ab(c+c').
 - Complement property
 - Replace c+c' by 1: ab(c+c') = ab(1).
 - Identity property
 - ab(1) = ab*1 = ab.
- Show x + x'z equivalent to x + z.
 - Second distributive property
 - Replace x+x'z by (x+x')*(x+z).
 - Complement property
 - Replace (x+x') by 1,
 - Identity property
 - replace 1*(x+z) by x+z.

Example that Applies Boolean Algebra Properties

- Want automatic door opener circuit (e.g., for grocery store)
 - Output: f=1 opens door
 - Inputs:
 - p=1: person detected
 - h=1: switch forcing hold open
 - c=1: key forcing closed
 - Want open door when
 - h=1 and c=0, or
 - h=0 and p=1 and c=0
 - Equation: f = hc' + h'pc'

Can the circuit be simplified?

$$f = hc' + h'pc'$$

 $f = c'h + c'h'p$ (by the commutative property)
 $f = c'(h + h'p)$ (by the first distrib. property)
 $f = c'((h+h')*(h+p))$ (2nd distrib. prop.; tricky one)
 $f = c'((1)*(h+p))$ (by the complement property)
 $f = c'(h+p)$ (by the identity property)

Simplification of circuits is covered 38 in Sec. 2.11 / Sec 6.2.

Example that Applies Boolean Algebra Properties

- Found inexpensive chip that computes:
 - f = c'hp + c'hp' + c'h'p
 - Can we use it for the door opener?
 - Is it the same as f = hc' + h'pc'?
- Apply Boolean algebra:

- Commutative
 - a + b = b + a
 - a * b = b * a
- Distributive

- Associative
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Identity
 - 0 + a = a + 0 = a
 - -1*a=a*1=a
- Complement
 - a + a' = 1
 - a * a' = 0

f = c'hp + c'hp' + c'h'p

$$f = c'h(p + p') + c'h'p$$
 (by the distributive property)

$$f = c'h(1) + c'h'p$$
 (by the complement property)

$$f = c'h + c'h'p$$
 (by the identity property)

$$f = hc' + h'pc'$$
 (by the commutative property)

Same! Yes, we can use it.

Boolean Algebra: Additional Properties

- Null elements
 - -a+1=1
 - a * 0 = 0
- Idempotent Law
 - a + a = a
 - a * a = a
- Involution Law
 - (a')' = a
- DeMorgan's Law
 - (a + b)' = a'b'
 - (ab)' = a' + b'
 - Very useful!
- To prove, just evaluate all possibilities

Example Applying DeMorgan's Law

(a + b)' = a'b'(ab)' = a' + b'

Aircraft lavatory sign example

- Behavior
 - Three lavatories, each with sensor (a, b, c), equals 1 if door locked
 - Light "Available" sign (S) if any lavatory available
- Equation and circuit

•
$$S = a' + b' + c'$$

- **Transform**
 - (abc)' = a'+b'+c' (by DeMorgan's Law)
- S = (abc)'
- New circuit

- Alternative: Instead of lighting "Available," light "Occupied"
- Opposite of "Available" function

$$S = a' + b' + c'$$

- So S' = (a' + b' + c')'
 - S' = (a')' * (b')' * (c')'
 (by DeMorgan's Law)
 - S' = a * b * c (by Involution Law)
- Makes intuitive sense
 - Occupied if all doors are locked

Example Applying Properties

Commutative

$$-a + b = b + a$$

 $-a * b = b * a$

Distributive

$$-a * (b + c) = a * b + a * c$$

 $-a + (b * c) = (a + b) * (a + c)$

Associative

$$-(a + b) + c = a + (b + c)$$

 $-(a * b) * c = a * (b * c)$

Identity

$$-0 + a = a + 0 = a$$

 $-1 * a = a * 1 = a$

Complement

$$-a + a' = 1$$

 $-a * a' = 0$

• Null elements

$$-a + 1 = 1$$

 $-a * 0 = 0$

Idempotent Law

Involution Law

$$-(a')' = a$$

DeMorgan's Law

$$-(a + b)' = a'b'$$

 $-(ab)' = a' + b'$

 For door opener f = c'(h+p), prove door stays closed (f=0) when c=1

$$- f = c'(h+p)$$

$$-$$
 Let $c = 1$ (door forced closed)

$$- f = 1'(h+p)$$

$$- f = 0(h+p)$$

$$- f = 0h + 0p$$
 (by the distributive property)

$$- f = 0 + 0$$
 (by the null elements property)

$$- f = 0$$

Complement of a Function

- Commonly want to find complement (inverse) of function F
 - 0 when F is 1; 1 when F is 0
- Use DeMorgan's Law repeatedly
 - Note: DeMorgan's Law defined for more than two variables, e.g.:
 - (a + b + c)' = (abc)'
 - (abc)' = (a' + b' + c')
- Complement of f = w'xy + wx'y'z'
 - f' = (w'xy + wx'y'z')'
 - f' = (w'xy)'(wx'y'z')' (by DeMorgan's Law)
 - f' = (w+x'+y')(w'+x+y+z) (by DeMorgan's Law)
- Can then expand into sum-of-products form