Histogram Processing

What is a Histogram?

- In Statistics, **Histogram** is a graphical representation showing a visual impression of the distribution of data.
- An **Image Histogram** is a type of histogram that acts as a graphical representation of the lightness/color distribution in a digital image. It plots the number of pixels for each value.

Why Histogram?

- Histograms are the basis for numerous spatial domain processing techniques
- Histogram manipulation can be used effectively for image enhancement
- Histograms can be used to provide useful image statistics
- Information derived from histograms are quite useful in other image processing applications, such as image compression and segmentation.

Introductory Example of Histograms

- As an introduction to the role of histogram processing in image enhancement, consider Fig. 3.15 shown in four basic gray-level characteristics: dark, light, low contrast, and high contrast.
- The right side of the figure shows the histograms corresponding to these images.
- The horizontal axis of each histogram plot corresponds to gray level values, r_k .
- The vertical axis corresponds to values of $h(r_k)=n_k$ or $p(r_k)=n_k/n$ if the values are normalized.
- Thus, as indicated previously, these histogram plots are simply plots of $h(r_k)=n_k$ versus r_k or $p(r_k)=n_k/n$ versus r_k .

Introductory Example of Histograms... Cont.

Histogram in MATLAB

h = imhist (f, b)

Where f, is the input image, h is the histogram, b is number of bins (tick marks) used in forming the histogram (b = 255 is the default)

A bin, is simply, a subdivision of the intensity scale. For example, if we are working with uint8 images and we let b = 2, then the intensity scale is subdivided into two ranges: 0 - 127 and 128 - 255. the resulting histograms will have two values: h(1) equals to the number of pixels in the image with values in the interval [0,127], and h(2) equal to the number of pixels with values in the interval $[128 \ 255]$.

Image Enhancement: Histogram Based Methods

What is the histogram of a digital image?

• The histogram of a digital image with gray values r_0, r_1, \dots, r_{L-1} is the discrete function

$$p(r_k) = \frac{n_k}{n}$$

 n_k : Number of pixels with gray value r_k

n: total Number of pixels in the image

• The function $p(r_k)$ represents the fraction of the total number of pixels with gray value r_k .

Some Typical Histograms

• The shape of a histogram provides useful information for contrast enhancement.


```
>> clear;
[ix,map]=imread('Fig3_15a.jpg');
imshow(ix)
figure;
ix=double(ix);
h=histogram(ix);
figure
stem(0:255,h);
...
```


Histogram Equalization

- What is the histogram equalization?
- The histogram equalization is an approach to enhance a given image. The approach is to design a transformation T(.) such that the gray values in the output is uniformly distributed in [0, 1].
- Let us assume for the moment that the input image to be enhanced has continuous gray values, with r = 0 representing black and r = 1 representing white.
- We need to design a gray value transformation s = T(r), based on the histogram of the input image, which will enhance the image.

How to implement histogram equalization?

Step 1:For images with discrete gray values, compute:

$$p_{in}(r_k) = \frac{n_k}{n} \qquad 0 \le r_k \le 1 \qquad 0 \le k \le L - 1$$

L: Total number of gray levels

 n_k : Number of pixels with gray value r_k

n: Total number of pixels in the image

Step 2: Based on CDF, compute the discrete version of the previous transformation :

$$s_k = T(r_k) = \sum_{j=0}^k p_{in}(r_j)$$
 $0 \le k \le L - 1$

Example:

Consider an 8-level 64 x 64 image with gray values (0, 1, ...,
7). The normalized gray values are (0, 1/7, 2/7, ..., 1). The normalized histogram is given below:

k	r_k	n_k	$p(r_k) = n_k/n$
0	0	790	0.19
1	1/7	1023	0.25
2	2/7	850	0.21
3	3/7	656	0.16
4	4/7	329	0.08
5	5/7	245	0.06
6	6/7	122	0.03
7	1	81	0.02

NB: The gray values in output are also (0, 1/7, 2/7, ..., 1).

Applying the transformation,

$$s_k = T(r_k) = \sum_{i=1}^{k} p_{in}(r_j)$$
 we have

$$s_0 = T(r_0) = \sum_{j=0} p_{in}(r_j) = p_{in}(r_0) = 0.19 \rightarrow \frac{1}{7}$$

$$s_1 = T(r_1) = \sum_{j=0}^{1} p_{in}(r_j) = p_{in}(r_0) + p_{in}(r_1) = 0.44 \rightarrow \frac{3}{7}$$

$$s_2 = T(r_2) = \sum_{i=0}^{2} p_{in}(r_i) = p_{in}(r_0) + p_{in}(r_1) + p_{in}(r_2) = 0.65 \rightarrow \frac{5}{7}$$

$$s_3 = T(r_3) = \sum_{i=0}^{3} p_{in}(r_i) = p_{in}(r_0) + p_{in}(r_1) + \dots + p_{in}(r_3) = 0.81 \rightarrow \frac{6}{7}$$

$$s_4 = T(r_4) = \sum_{j=0}^4 p_{in}(r_j) = p_{in}(r_0) + p_{in}(r_1) + \dots + p_{in}(r_4) = 0.89 \rightarrow \frac{6}{7}$$

$$s_5 = T(r_5) = \sum_{i=0}^{5} p_{in}(r_j) = p_{in}(r_0) + p_{in}(r_1) + \dots + p_{in}(r_5) = 0.95 \rightarrow 1$$

$$s_6 = T(r_6) = \sum_{i=0}^{6} p_{in}(r_j) = p_{in}(r_0) + p_{in}(r_1) + \dots + p_{in}(r_6) = 0.98 \rightarrow 1$$

$$s_7 = T(r_7) = \sum_{i=0}^7 p_{in}(r_j) = p_{in}(r_0) + p_{in}(r_1) + \dots + p_{in}(r_7) = 1.00 \rightarrow 1$$

• Notice that there are only five distinct gray levels --- (1/7, 3/7, 5/7, 6/7, 1) in the output image. We will relabel them as $(s_0, s_1, ..., s_4)$.

• With this transformation, the output image will have histogram

k	s_k	n_k	$p(s_k) = n_k/n$
0	1/7	790	0.19
1	3/7	1023	0.25
2	5/7	850	0.21
3	6/7	985	0.24
4	1	448	0.11

• Note that the histogram of output image is only approximately, and not exactly, uniform. This should not be surprising, since there is no result that claims uniformity in the **discrete** case.

Example

Original image and its histogram


```
>> clear;
[ix,map]=imread('Fig3_15a.jpg');
imshow(ix)
figure;
ix=double(ix);
h=histogram(ix);
stem(0:255,h);
```

Histogram equalized image and its histogram


```
>> clear
>> [ix,map]=imread('Fig3_15a.jpg');
>> imshow(ix);
>> iy=histeq(ix);
>> figure
>> imshow(iy);
>> iy=double(iy);
>> hy=histogram(iy);
>> figure
>> stem(0:255,hy);
```

What can the (normalized) histogram tell about the image?

Histograms

The MEAN VALUE (or average gray level)

$$M = \sum_{g} g h(g)$$

The MEAN value is the average gray value of the image, the 'overall brightness appearance'.

2. The VARIANCE

$$V = \sum_{g} (g-M)^2 h(g)$$

(with M = mean)

or similar:

The STANDARD DEVIATION

D = sqrt(V)

VARIANCE gives a measure about the distribution of the histogram values around the mean.

The STANDARD DEVIATION is a value on the gray level axis, showing the average distance of all pixels to the mean

VARIANCE and STANDARD DEVIATION of the histogram tell us about the average contrast of the image!

The higher the VARIANCE (=the higher the STANDARD DEVIATION), the higher the image's contrast!

Example:

Image and blurred version

Histograms with MEAN and STANDARD DEVIATION

M=0.73 D=0.32

M=0.71 D=0.27