MATH 213 - Tutorial 9: Fourier series Solutions

- 1. a) Compute the Fourier series of $f(x) = x^2$ on $-\pi < x < \pi$.
 - b) Draw a picture of the periodic continuation of f on the interval from -3π to 3π .
 - c) Plot the truncated Fourier series to N=8 (Using some software). Do you see Gibbs phenomena in this case?

Solution:

a) First, note that x^2 is even and therefore we know The Fourier sin coefficients are zero. The coefficients for this Fourier cosine series are computed directly. First for $n \ge 1$,

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos(nx) dx,$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos(nx) dx,$$

$$= \frac{2}{n\pi} \left[x^{2} \sin(nx) \right]_{0}^{\pi} - \frac{4}{n\pi} \int_{0}^{\pi} x \sin(nx) dx,$$

$$= -\frac{4}{n^{2}\pi} \left(-\left[x \cos(nx) \right]_{0}^{\pi} + \int_{0}^{\pi} \cos(nx) dx \right),$$

$$= -\frac{4}{n^{2}\pi} \left(-\pi \cos(n\pi) + \frac{1}{n} \left[\sin(nx) \right]_{0}^{\pi} \right),$$

$$= \frac{4}{n^{2}} \cos(n\pi)$$

$$= \frac{(-1)^{n} 4}{n^{2}}.$$

Then for n=0,

$$a_0 = \frac{1}{\pi} \int_0^{\pi} x^2 dx,$$

= $\frac{1}{3\pi} [x^3]_0^{\pi},$
= $\frac{\pi^2}{3}.$

Therefore the Fourier series is

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos(nx)}{n^2}.$$

b)

c) We plot the original plot along side

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{8} (-1)^n \frac{\cos(nx)}{n^2}.$$

2. Recall that a function is C^1 if it is differentiable and its derivative is continuous.

Marmie found that

$$f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is C^1 on \mathbb{R} but wants you yo double check her work. Show that f(x) is C^1 on all of \mathbb{R} .

Hint 1: Consider two cases, $x \neq 0$ and x = 0.

Hint 2: At x = 0 you must use the definition of the derivative as the limit of the difference quotient (from calc 1) in order to compute the derivative.

Hint 3: The squeeze theorem is a thing.

Solution: If $x \neq 0$ then we can use the product rule to write

$$\frac{d}{dx}\left(x^3\sin\left(\frac{1}{x}\right)\right) = 3x^2\sin\left(\frac{1}{x}\right) - x^3x^{-2}\cos\left(\frac{1}{x}\right)$$
$$= 3x^2\sin\left(\frac{1}{x}\right) - x\cos\left(\frac{1}{x}\right).$$

Clearly this is a well-defined and continuous for all $x \neq 0$ and thus f is C^1 on $\mathbb{R}/\{0\}$.

At x = 0 by definition we have

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{\Delta x^3 \sin\left(\frac{1}{\Delta x}\right) - 0}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \Delta x^2 \sin\left(\frac{1}{\Delta x}\right).$$

By the squeeze theorem the above limit is 0. Explicitly

$$-(\Delta x)^2 \le \Delta x^2 \sin\left(\frac{1}{\Delta x}\right) \le (\Delta x)^2$$

and in the limit the bounding terms go to zero. Thus

$$f'(x) = \begin{cases} 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

By the squeeze theorem $\lim_{x\to 0} f'(x) = 0$ and thus f is C^1 .

- 3. Consider the function $g(t) = |\sin(t)|$ on the interval $t \in (0, \pi)$.
 - a) Find the complex Fourier series of g(t). Hint: To evaluate the integral, it may be helpful to rewrite $\sin(t)$ in terms of exponential functions by using Euler's formula $(e^{i\theta} = \cos(\theta) + i\sin(\theta))$.
 - b) Use this Fourier series along with the assumption that the series converges to g(t) (it does and we will be able to prove it later) to show that

$$\sum_{n=1}^{\infty} \frac{4}{\pi (4n^2 - 1)} = \frac{2}{\pi}$$

Solution:

a) The function g(t) has period $\tau = \pi$ and hence the frequency increment is $\omega_0 = 2\pi/\tau = 2$. The complex Fourier coefficients are computed by

$$c_n = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin(t)| e^{-in\omega_o t} dt.$$

Since $|\sin(t)|$ is periodic with period π , then we can rewrite c_n as

$$c_n = \frac{1}{\pi} \int_0^{\pi} \sin(t)e^{-in\omega_o t} dt$$

and using Euler's formula, replace $\sin(t)$ as follows

$$c_n = \frac{1}{2i\pi} \int_0^{\pi} (e^{it} - e^{-it})e^{-in2t}dt = \frac{1}{2i\pi} \int_0^{\pi} (e^{-i(2n-1)t} - e^{-i(2n+1)t})dt.$$

Solving the integral leads to

$$c_n = \frac{1}{2i\pi} \left[\frac{-e^{-i(2n-1)t}}{(2n-1)i} + \frac{e^{-i(2n+1)t}}{(2n+1)i} \right]_0^{\pi}$$
$$= \frac{1}{2\pi} \left[\frac{e^{-i(2n-1)\pi}}{(2n-1)} - \frac{e^{-i(2n+1)\pi}}{(2n+1)} - \frac{1}{2n-1} + \frac{1}{2n+1} \right].$$

From Euler's formula, we have that $e^{\pm i\pi} = \cos(\pm \pi) + i\sin(\pm \pi) = \cos(\pi) = -1$. In a similar manner, $e^{-2in\pi} = 1$. It follows that

$$c_n = \frac{1}{2\pi} \left[\frac{-1}{2n-1} + \frac{1}{2n+1} - \frac{1}{2n-1} + \frac{1}{2n+1} \right]$$
$$= \frac{1}{2\pi} \left[\frac{-2}{2n-1} + \frac{2}{2n+1} \right]$$
$$= \frac{-2}{\pi (4n^2 - 1)}.$$

Therefore, the complex form of the Fourier series of $f(t) = |\sin(t)|$ is

$$\sum_{n=-\infty}^{\infty} \frac{-2e^{2int}}{\pi(4n^2-1)}.$$

b) Since the π -periodic extension of $|\sin(t)|$ is continuous a theorem we will have later along with our work in part a) implies that

$$\sum_{n=-\infty}^{\infty} \frac{-2e^{2int}}{\pi(4n^2 - 1)} = |\sin(t)|$$

for all $t \in \mathbb{R}$. Examining this expression when t = 0 gives

$$\sum_{n=-\infty}^{\infty} \frac{-2e^{2in0}}{\pi(4n^2-1)} = |\sin(0)| \quad \text{or} \quad \sum_{n=-\infty}^{\infty} \frac{-2}{\pi(4n^2-1)} = 0.$$

Using the symmetry of the summand we rewrite the sum as

$$0 = \sum_{n=-\infty}^{-1} \left(\frac{-2}{\pi (4n^2 - 1)} \right) + \frac{-2}{\pi (4 \cdot 0^2 - 1)} + \sum_{n=1}^{\infty} \frac{-2}{\pi (4n^2 - 1)} = \frac{2}{\pi} + 2 \sum_{n=1}^{\infty} \frac{-2}{\pi (4n^2 - 1)}.$$

Thus

$$\sum_{n=1}^{\infty} \frac{4}{\pi (4n^2 - 1)} = \frac{2}{\pi}$$

as desired.