LECTURE 9: CONTAGION AND VIRAL MARKET COM 44.11 Social Information National Analysis and Engineering Tricing Natural, 177- 2015

Models of Cascading Behavior

Last time:

Decision Based Models

- □ Utility based
- Deterministic
- "Node" centric: A node observes decisions of its neighbors and makes its own decision
- □ Require us to know too much about the data

□ Today: Probabilistic Models

- Let's you do things by observing data
- We loose "why people do things"

CLASSICAL MODELS OF DISEASE SPREADING

Spreading Models of Viruses

Virus Propagation: 2 Parameters:

- (Virus) birth rate β:
 - probability than an infected neighbor attacks
- \square (Virus) death rate δ :
 - □ probability that an infected node heals

More Generally: S+E+I+R Models

☐ General scheme for epidemic models:

□ Each node can go through phases:

■ Transition probs. are governed by the model parameters

SIR Model

□ SIR model: Node goes through phases

Susceptible Infected Recovered

Models chickenpox or plague:

Once you heal, you can never get infected again

 $\hfill\Box$ Assuming perfect mixing (the network is a

complete graph) the

$$\frac{dI}{dt} = \beta SI - \delta I$$

SIS Model

□ Susceptible-Infective-Susceptible (SIS) model

- □ Cured nodes immediately become susceptible
- □ Virus "strength": $s = \beta / \delta$
- □ Node state transition diagram:

SIS Model

Question: Epidemic threshold t

□ SIS Model:

Epidemic threshold of an arbitrary graph G is τ , such that:

- If virus strength $s = \beta / \delta < \tau$ the epidemic can not happen (it eventually dies out)
- □ Given a graph what is its epidemic threshold?

Epidemic Threshold in SIS Model

□ We have no epidemic if:

 $\blacktriangleright \lambda_{1,A}$ alone captures the property of the graph!

Experiments (AS graph)

Experiments

□ Does it matter how many people are initially infected?

MODELS OF INFORMATION SPREAD

Independent Cascade Model

□ Initially some nodes S are active

 \square Each edge (*u*,*v*) has probability (weight) ρ_{uv}

- □ When node v becomes active:
 - \blacksquare It activates each out-neighbor v with prob. p_{uv}
- Activations spread through the network

Independent Cascade Modal

- Independent cascade model is simple but requires many parameters!
 - Estimating them from data is very hard [Goyal et al. 2010]

□ Simple, but too simple

- [Goyal et al. 2010]

 Solution: Make all edges have the same weight (which brings us back to the SIR model)
- □ Can we do something better?

Exposures and Adoptions

- □ From exposures to adoptions
 - Exposure: Node's neighbor exposes the node to the contagion
 - □ Adoption: The node acts on the contagion

Exposure Curves

Diminishing returns:

Exposure curve: Probability of adopting new behavior depends on the number of friends who have already adopted What's the dependence? **But Street** **But

Critical mass:

Exposure Curves

- From exposures to adoptions
 Exposure: Node's neighbor exposes the node to information
 - □ Adoption: The node acts on the information
 - Adoption curve:

Example Application

- Marketing agency would like you to adopt/buy product X
- □ They estimate the adoption curve
- □ Should they expose you to X three times?
- □ Or, is it better to expose you X, then Y and then X again?

Diffusion in Viral Marketing

 Senders and followers of recommendations receive discounts on products

- □ Data: Incentivized Viral Marketing program
 - 16 million recommendations
 - 4 million people, 500k products
 - □ [Leskovec-Adamic-Huberman, 2007]

Exposure Curve: Validation

More Subtle Features

Exposure Curve: LiveJournal

□ Group memberships spread over the network □ Red circles represent

- existing group members
- □ Yellow squares may join

□ Question:

How does prob. of joining a group depend on the number of friends already in the group?

Exposure Curve: LiveJournal

□ LiveJournal group membership

What are We Really Measuring?

□ For viral marketing:

 $lue{}$ We see that node v receiving the i-th recommendation and then purchased the product

□ For groups:

■ At time t we see the behavior of node v's friends

☐ Good questions:

- When did v become aware of recommendations or friends' behavior?
- When did it translate into a decision by v to act?
- How long after this decision did v act?

Exposure Curve: Information

□ Twitter [Romero et al. '11]

□ Aug '09 to Jan '10, 3B tweets, 60M users

- Avg. exposure curve for the top 500 hashtags
- What are the most important aspects of the shape of
- □ Curve reaches peak fast, decreases after!

Modeling the Shape of the Curve

- □ Persistence of P is the ratio of the area under the curve P and the area of the rectangle of length max(P), width max(D(P))
 - \square D(P) is the domain of P
 - □ Persistence measures the decay of exposure curves
 - \square Stickiness of P is max(P).
 - □ Stickiness is the probability of usage at the most effective exposure

Exposure Curve: Persistence

- Manually identify 8 broad categories with at least 20 HTs in each
- · Idioms and Music
 - have lower persistence than that of a random subset of hashtags of Politics and Sports have higher persistence than that of a random subset of hashtags of

the same size

Exposure Curve: Stickiness

- Technology and Movies have lower stickiness than that of a random subset of hashtags $% \left\{ 1,2,\ldots,n\right\}$
- Music has higher stickiness than that of a random subset of hashtags (of the same size)

Network & External Exposures

Rnd. subset

- [Myers et al., KDD, 2012]
 - Exposures from the network
 - External exposures

Putting it all together

Model Inference Task

Experiment

- In social networks people post links to interesting articles
 - You hear about an article from a friend
 - You read the article and then post it
- Data from Twitter
 - □ Complete data from Jan 2011: 3 billion tweets
 - Trace the emergence of URLs
 Label each URL by its topic

Results: Different Topics

Adoption of URLs across Twitter:

		Kai	Duration	% Ext.	
	max P(k)	max P(k)	(hours)	Exposures	
Politics (25)	0.0007 +/- 0.0001	4.59 +/- 0.76	51.24 -/- 16.66	47.38 +/- 6.12	
World (824)	0.0013 +/- 0.0000	2.97 + - 0.10	43.54 +/- 2.94	26.07 +/- 1.19	
Entertain. (117)	0.0015 +/- 0.0002	3.52 +/- 0.28	89.89 +/- 16.13	17.87 +/- 2.51	
Sports (24)	0.0010 +/- 0.0003	4.76 +/- 0.83	87.85 +/- 38.03	43.88 +/- 6.97	
Health (81)	0.0016 +/- 0.0002	3.25 +/- 0.30	100.09 +/- 17.57	18.81 +/- 3.33	
Tech. (226)	0.0013 +/- 0.0001	3.00 + -0.16	83.05 +/- 8.73	18.36 +/- 1.80	
Business (298)	0.0015 ±/- 0.0001	3.18 +/- 0.16	49.61 +/- 5.14	22.27 +/- 1.79	
Science (106)	0.0012 +/- 0.0002	4.06 ±/- 0.30	135.28 +/- 16.19	20.53 +/- 2.78	
Travel (16)	0.0005 +/- 0.0001	2.33 + - 0.29	151.73 +/- 39.70	39.99 +/- 6.60	
Art (32)	0.0006 ±/- 0.0001	5.26 +/- 0.66	188.55 +/- 48.17	27.54 +/- 5.30	
Edu. (31)	0.0009 +/- 0.0001	3.77 +/- 0.51	130.53 +/- 38.63	21.45 +/- 6.40	
- M :- M					

□ More in Myers et al., KDD, 2012

MODELING INTERACTIONS
BETWEEN CONTAGIONS

Interactions

- So far we considered pieces of information as independently propagating
- □ Do pieces of information interact?
 - Does being exposed to blue change the probability of talking about red?

Modeling Interactions

- - □ Goal: Model interaction between many pieces of information
 - ■Some pieces of information may help each other in adoption
 - ■Other may compete for attention

Modeling Interactions

□ You are reading posts on Twitter:

- You examine posts one by one
- □ Currently you are examining X
- How does your probability of reposting X depend on what you have seen in the past?

P(post X | exposed to X, Y_1 , Y_2 , Y_3) = ?

Dataset: Twitter

- - Data from Twitter
 - □ Complete data from Jan 2011: 3 billion tweets
 - All URLs tweeted by at least 50 users: 191k
 - □ Task:

Predict whether a user will post URL X

- □ Train on 90% of the data, test on 10%
- Baselines:

 $P(X = u_i | Y_k = u_i) =$

 $=P(X=u_i)$ □ Infection Probability (IP):

 $= P(X = u_i) + \gamma_n$

■ IP + Node bias (NB):

■ Exposure curve (EC):

 $= P(X \mid \# times \ exposed \ to \ X)$

How to Tweets Interact?

□ How P(post u₂ | exp. u₁) changes if ...

- \square u_2 and u_1 are similar/different in the content?
- □ u₁ is highly viral?

