超高频 RFID 阅读器通信协议

(V1.3)

广州煜微智能科技有限公司

文件修改跟踪页

版次	作者	文件修改原因	日期	修改页
1.0	Ken	撰写初稿	2010-07-04	
1.1	Ken	增加设置网口参数	2012-01-16	第 47-49 页
1.2	Ken	增加 FastID、Tagfocus 功能,获取环境 RSSI 值功能	2013-10-20	第 49-54 页
1.3	Ken	增加获取设备 ID 功能 增加读、写、锁、kill、blockwrite、blockerase 的 EPC、TID、USR 区数据过滤功能; 清点前过滤参数设置; 波特率设置功能; Block Write 和 Block erase 功能 软件复位模块 功能 增加天线设置、天线工作时间、天线间隔 时间的 掉电保存功能 连续寻卡等待时间设置改为连续寻卡工作及等待 时间设置,并增加掉电保存功能 增加 Dual 模式和 Singel 模块可配置,掉电保存	2013-11-1	第 12-13 页 第 25 页 第 34-36 页 第 54-59 页 第 61-74 页

目 录

目	录		3
1.	概述		6
2.	数据传输帧	格式	6
	2.1. 帧	头和帧尾	6
	2.2. 帧	i长度	6
	2.3. 帧	类型	6
	2.4. 数	据	9
	2.5. 校	验码	10
3.	通信帧说明		10
	3.1. 版	本管理类帧	10
	3.1.1.	获取硬件版本号	10
	3.1.2.	获取硬件版本号应答	10
	3.1.3.	获取固件版本号	11
	3.1.4.	获取固件版本号应答	11
	3.1.5.	获取唯一 ID	12
	3.1.6.	获取唯一 ID 应答	12
	3.2. 参	数设置类帧	13
	3.2.1.	设置发射功率	13
	3.2.2.	设置发射功率应答	13
	3.2.3.	获取当前设备发射功率	14
	3.2.4.	获取当前设备发射功率应答	14
	3.2.5.	跳频设置	15
	3.2.6.	跳频设置应答	16
	3.2.7.	获取当前设备跳频设置状态	16
	3.2.8.	获取当前设备跳频设置状态应答	17
	3.2.9.	设置 Gen2 参数	17
	3.2.10.	设置 Gen2 参数应答	20
	3.2.11.	获取当前 Gen2 参数设置	20
	3.2.12.	获取当前 Gen2 参数设置应答	21
	3.2.13.	CW 设置	23
	3.2.14.	CW 设置应答	24
	3.2.15.	获取当前设备 CW 设置	24
	3.2.16.	获取当前设备 CW 设置应答	25
	3.2.17.	天线设置	25
	3.2.18.	天线设置应答	26
	3.2.19.	获取当前设备天线设置	26
	3.2.20.	获取当前设备天线设置应答	27
	3.2.21.	区域设置	27
	3.2.22.	区域设置应答	28
	3.2.23.	获取区域设置	28

3.2.24.	获取区域设置应答	29
3.2.25.	获取端口回波损耗(驻波比)	30
3.2.26.	获取端口回波损耗(驻波比)应答	30
3.2.27.	获取设备当前温度	31
3.2.28.	获取设备当前温度应答	31
3.2.29.	设置温度保护	32
3.2.30.	设置温度保护应答	32
3.2.31.	获取温度保护设置	33
3.2.32.	获取温度保护设置应答	33
3.2.33.	设置连续寻卡工作及等待时间	34
3.2.34.	设置连续寻卡工作及等待时间应答	34
3.2.35.	获取连续寻卡工作及等待时间设置	35
3.2.36.	获取连续寻卡工作及等待时间设置应答	35
3.2.37.	获取错误标志	36
3.2.38.	获取错误标志应答	36
3.2.39.	清除错误标志	37
3.2.40.	清除错误标志应答	37
3.2.41.	GPIO 操作	38
3.2.42.	GPIO 操作应答	38
3.2.43.	获取 GPIO 状态	39
3.2.44.	获取 GPIO 状态应答	39
3.2.45.	设置天线工作时间	40
3.2.46.	设置天线工作时间应答	41
3.2.47.	获取天线工作时间	41
3.2.48.	获取天线工作时间应答	42
3.2.49.	设置多天线工作间隔时间	42
3.2.50.	设置多天线工作间隔应答	43
3.2.51.	获取多天线工作间隔时间	43
3.2.52.	获取多天线工作间隔时间应答	44
3.2.53.	设置推荐 RF 链路组合	44
3.2.54.	设置推荐 RF 链路组合应答	45
3.2.55.	获取推荐 RF 链路组合设置	45
3.2.56.	获取推荐 RF 链路组合设置应答	46
3.2.57.	设置蜂鸣器状态	46
3.2.58.	设置蜂鸣器状态应答	47
3.2.59.	设置网口参数	47
3.2.60.	设置网口参数应答	48
3.2.61.	设置 wifi 参数	49
3.2.62.	设置 wifi 参数应答	49
3.2.63.	设置 FastID 功能	50
3.2.64.	设置 FastID 功能应答	50
3.2.65.	获取 FastID 功能状态	
3.2.66.	获取 FastID 功能状态应答	
3.2.67.	设置 Tagfocus 功能	

	3.2.68.	设置 TagFocus 功能应答	52
	3.2.69.	获取 TagFocus 功能状态	53
	3.2.70.	获取 TagFocus 功能状态应答	53
	3.2.71.	获取环境 RSSI 值	54
	3.2.72.	获取环境 RSSI 值应答	54
	3.2.73.	设置模块波特率	55
	3.2.74.	设置模块波特率应答	55
	3.2.75.	软件复位	56
	3.2.76.	软件复位应答	56
	3.2.77.	设置 Dual 和 Singel 模式	57
	3.2.78.	设置 Dual 和 Singel 模式应答	57
	3.2.79.	获取 Dual 和 Singel 模式	58
	3.2.80.	获取 Dual 和 Singel 模式应答	58
	3.2.81.	寻标签过滤设置	59
	3.2.82.	寻标签过滤设置应答	60
3.3.	标签	· 操作类帧	60
	3.3.1.	单次寻标签	60
	3.3.2.	单次寻标签应答	61
	3.3.3.	连续寻标签	62
	3.3.4.	连续寻标签应答	62
	3.3.5.	停止连续寻标签	63
	3.3.6.	停止连续寻标签应答	63
	3.3.7.	读数据	64
	3.3.8.	读数据应答	65
	3.3.9.	写数据	65
	3.3.10.	写数据应答	66
	3.3.11.	锁标签	67
	3.3.12.	锁标签应答	68
	3.3.13.	Kill 标签	68
	3.3.14.	Kill 标签应答	69
	3.3.15.	快速读取 TID	69
	3.3.16.	快速读取 TID 应答	70
	3.3.17.	时间段寻标签	71
	3.3.18.	时间段寻标签应答	
	3.3.19.	获取时间段寻标签结果	72
	3.3.20.	Block Write 数据	
	3.3.21.	Block Write 数据应答	73
	3.3.22.	Block Erase 数据	74
	3.3.23.	Block Erase 数据应答	75
3.4.	操作	=失败应答帧	75
	3 4 1	握作失 附 应 答 帧	75

1. 概述

UHF RFID 读写器应用层通信协议是读写器模块对外通信协议。通过该协议,实现上位机和读卡器之间的数据通信。

本协议适用于 UM210、UM220C、UM230 系列模块, UD200、UD300、UD600 系列读写器。

超高频 RFID 阅读器与上位机采用异步串行接口(UART)进行数据通信, 串口波特率默认为 115200,8 位数据位,1 位停止位,无校验位,无硬件流控制。 数据按照固定的帧格式进行传输。

2. 数据传输帧格式

数据帧由帧头、帧长度、帧类型、数据、校验码和帧尾组成。如表 1 所示。

表 1 数据帧传输格式

帧头	帧长度	帧类型	数据	校验码	帧尾
2 字节	2 字节	1 字节	N 字节	1 字节	2 字节

2.1. 帧头和帧尾

帧头代表数据包的开始,共2个字节,为固定值 0xA5、0x5A,帧尾表示数据包的结束,共2个字节,为固定值 0x0d、0x0a(回车加换行)。

2.2. 帧长度

帧长度为一帧数据的长度,其具体计算公式为: 帧长度 = 2+2+1+N+1+2,N 为数据长度。

2.3. 帧类型

帧类型用以区分不同的控制命令,读卡器根据帧类型执行相应的操作。

表 2 帧类型列表

帧功能描述	帧类型	备注		
获取读卡器硬件版本号	0x00			
获取读卡器硬件版本号应答	0x01			
获取读卡器固件版本号	0x02			
获取读卡器固件版本号应答	0x03			
获取模块 ID	0x04			
获取模块 ID 应答	0x05			
Reserve	0x06~0x0f	保留,扩展用		
设置发射功率	0x10			
设置发射功率应答	0x11			
获取当前设备发射功率	0x12			
获取当前设备发射功率应答	0x13			
跳频设置	0x14			
跳频设置应答	0x15			
获取当前设备跳频设置状态	0x16			
获取当前设备跳频设置状态应答	0x17			
设置 Gen2 参数	0x20			
设置 Gen2 参数应答	0x21			
获取当前 Gen2 参数设置	0x22			
获取当前 Gen2 参数设置应答	0x23			
CW 设置	0x24			
CW 设置应答	0x25			
获取当前设备 CW 设置	0x26			
获取当前设备 CW 设置应答	0x27			
天线设置	0x28			
天线设置应答	0x29			
获取当前设备天线设置	0x2a			
获取当前设备天线设置应答	0x2b			
区域设置	0x2c			
区域设置应答	0x2d			
获取区域设置	0x2e			
获取区域设置应答	0x2f			
获取端口回波损耗	0x32			
获取端口回波损耗应答	0x33			
获取设备当前温度	0x34			
获取设备当前温度应答	0x35			
设置温度保护	0x38			
设置温度保护应答	0x39			
获取温度保护设置	0x3A			
获取温度保护设置应答	0x3B			

连续寻卡等待时间设置	0x3C
连续寻卡等待时间设置应答	0x3D
获取连续寻卡等待时间设置	0x3E
获取连续寻卡等待时间设置应答	0x3F
获取错误标志	0x40
获取错误标志应答	0x41
清除错误标志	0x42
清除错误标志应答	0x43
GPIO 操作	0x46
GPIO 操作应答	0x47
获取 GPIO 状态	0x48
获取 GPIO 状态应答	0x49
设置天线工作时间	0x4A
设置天线工作时间应答	0x4B
获取天线工作时间	0x4C
获取天线工作时间应答	0x4D
设置多天线工作间隔时间	0x4E
设置多天线工作间隔时间应答	0x4F
获取多天线工作间隔时间	0x50
获取多天线工作间隔时间应答	0x51
设置推荐 RF 链路组合	0x52
设置推荐 RF 链路组合应答	0x53
获取推荐 RF 链路组合设置	0x54
获取推荐 RF 链路组合设置应答	0x55
设置蜂鸣器状态	0x56
设置蜂鸣器状态应答	0x57
设置网口参数	0x58
设置网口参数应答	0x59
设置 wifi 参数	0x5A
设置 wifi 参数应答	0x5B
设置 FastID 功能	0x5C
设置 FastID 功能应答	0x5D
获取 FastID 功能状态	0x5E
获取 FastID 功能状态应答	0x5F
设置 TagFocus 功能	0x60
设置 TagFocus 功能应答	0x61
获取 TagFocus 功能状态	0x62
获取 TagFocus 功能状态应答	0x63
获取环境 RSSI 值	0x64
获取环境 RSSI 值应答	0x65
设置模块波特率	0x66

设置模块波特率应答	0x67	
软件复位	0x68	
软件复位应答	0x69	
设置 Dual 和 Singel 模式	0x6A	
设置 Dual 和 Singel 模式应答	0x6B	
获取 Dual 和 Singel 模式	0x6C	
获取 Dual 和 Singel 模式应答	0x6D	
寻标签过滤设置	0x6E	
寻标签过滤设置应答	0x6F	
Reserve	0x70~0x7f	保留,扩展用
单次寻标签	0x80	
单次寻标签应答	0x81	
连续寻标签	0x82	
连续寻标签应答	0x83	
停止连续寻标签	0x8c	
停止连续寻标签应答	0x8d	
读数据	0x84	
读数据应答	0x85	
写数据	0x86	
写数据应答	0x87	
锁标签	0x88	
锁标签应答	0x89	
Kill 标签	0x8a	
Kill 标签应答	0x8b	
快速读取 TID	0x8e	
快速读取 TID 应答	0x8f	
时间段内寻标签命令	0x90	
时间段内寻标签命令应答	0x91	
获取时间段内寻标签结果	0x92	
Block Write 标签	0x93	
Block Write 标签应答	0x94	
Block Erase 标签	0x95	
Block Erase 标签应答	0x96	
Reserve	0x97~0xfa	保留,扩展用
操作失败应答	0xff	

2.4. 数据

根据帧类型,数据包含有数据和控制信息。对于命令帧,表示控制信息,对 于应答帧,表示数据信息。

2.5. 校验码

每帧数据所有字节(除去帧头和帧尾)异或。

例如:

0xA5 0x5A 0x00 0x0A 0x43 0x01 0x25 CRC 0x0d 0x0a $CRC = 0x00 \land 0x0A \land 0x43 \land 0x01 \land 0x25 = 0x6D$

3. 通信帧说明

3.1. 版本管理类帧

3.1.1. 获取硬件版本号

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x00 数据: 无 校验码: 0x08 帧 尾: 0x0d 0x0a

功能: 获取硬件版本信息

表 3 获取硬件版本命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x00	无	0x08	0x0D
帧尾							
0x0A							

说明:该命令无数据

例: 获取读卡器硬件版本

命令: A5 5A 00 08 00 08 0D 0A

3.1.2. 获取硬件版本号应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x01

数据: 共3个字节,包含主版本、次版本和补充版本 校验

码: 0xxx

帧尾: 0x0d 0x0a

功能: 发送硬件版本信息

表 4 获取硬件版本应答帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x01	主版本	次版本	补 充 版
校验码	帧尾						
0xxx	0x0D	0x0A					

说明:无

例:硬件版本号为 V2.3.5 的读卡器应答

命令: A5 5A 00 0B 01 02 03 05 0E 0D 0A

3.1.3. 获取固件版本号

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x02 数据 : 无 校验码: 0x0A 帧尾: 0x0d 0x0a

功能: 获取固件版本信息

表 5 获取固件版本命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x02	无	0x0A	0x0D
帧尾							
0x0A							

说明: 该控制命令无数据

例: 获取读卡器固件版本

命令: A5 5A 00 08 02 0A 0D 0A

3.1.4. 获取固件版本号应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x03

数据: 共3个字节,包含主版本、次版本和补充版本 校验

码: 0xxx

帧尾: 0x0d 0x0a

功能: 发送固件版本信息

表 6 获取固件版本应答帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x03	主版本	次版本	补充版 本
校验码	帧尾						
0xxx	0x0D	0x0A					

说明:无

例: 固件版本号为 V2.3.5 的读卡器应答

命令: A5 5A 00 0B 03 02 03 05 0C 0D 0A

3.1.5. 获取唯一 ID

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x04 数据: 无 校验码: 0x0C 帧 尾: 0x0d 0x0a 功能: 获取模块 ID

表 7 获取模块 ID 命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x04	无	0x0C	0x0D
帧尾							
0x0A							

说明:无

例: 获取模块 ID

命令: A5 5A 00 08 04 0C 0D 0A

3.1.6. 获取唯一 ID 应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0C

帧类型: 0x05

数据: 共4个字节,模块 ID。

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: 获取模块 ID 应答。

表 8 获取模块 ID 应答帧

帧头		帧长度		帧类型	数据			
	0xA5	0x5A	0x00	0x0C	0x05	Dbyte3	DByte2	DByte1

数据	校验码	帧尾	
DByte0	0xxx	0x0D	0x0A

说明: DByte3-Dbyte0 十六进制转换为十进制数,即为唯一 ID。

例: 唯一 ID 为 1328 的阅读器应答

命令: A5 5A 00 0C 05 00 00 05 30 3C 0D 0A

3.2. 参数设置类帧

3.2.1. 设置发射功率

帧头: 0xA5 0x5A 帧长度: 0x00 0x0E

帧类型: 0x10

数据: 共 6 个字节, status 占一个字节, 天线号占一个字节, 读功率和写功率各占 2 个字节, 读写功率单位都为 dBm

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: 对特定的天线,设置其读写功率

表 9 设置发射功率命令帧

帧头 帧长原		帧长度	帧长度		数据		
0xA5	0x5A	0x00	0x0E	0x10	Status	天线号	读(MSB)
数据			校验码	帧尾			
读(LSB)	写(MSB)	写(LSB)	0xxx	0x0D	0x0A		

表 10 Status 各 bit 说明

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Rev	Rev	Rev	Rev	Rev	Rev	0: 不保 存 1: 保存	0: 开环 1: 闭环

说明: status: bit7-bit2 保留, bit0 为 0 表示开环状态 (默认使用的状态), bit0 为 1 表示闭环状态; bit1 为 0 表示当前设置在断电后会丢失, bit1 为 1 表示当前设置在掉电后会保存,下次上电默认功率值为该设置值。天线号十六进制表示; 读写功率×100 后,再转换为十六进制。

例:设置天线 3 的读功率为 15dBm, 写功率为 30dBm,开环,不保存 命令: A5 5A 00 0E 10 00 03 05 DC 0B B8 77 0D 0A

3.2.2. 设置发射功率应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x11 数据: 设置是否成功标志,成功:

0x01; 失败: 0x00 校验码: 0xxx

帧尾: 0x0d 0x0a

功能:设置发射功率是否成功

表 11 设置发射功率应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00 0x09		0x11	OK-0x01	0xxx	0x0D
					Fail-0x00		
帧尾							

说明:无

0x0A

例:设置发射功率成功

命令: A5 5A 00 09 11 01 19 0D 0A

3.2.3. 获取当前设备发射功率

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x12 数据: 无 校验码: 0x1A 帧 尾: 0x0d 0x0a

功能: 获得当前设备发射功率

表 12 获取当前设备发射功率命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x12	无	1A	0x0D
帧尾							
0x0A							

说明:无

例: 获取当前设备发射功率

命令: A5 5A 00 08 12 1A 0D 0A

3.2.4. 获取当前设备发射功率应答

帧头: 0xA5 0x5A 帧长度: 不固定 帧类型: 0x13

数据: status、天线号和该天线的读写功率,读写功率单位都为dBm

校验码: 0xxx

帧尾: 0x0d 0x0a

功能: 获取设备各个天线的读写功率

表 13 获取当前设备发射功率应答帧

帧头		帧长度		帧类型	数据			
0xA5	0x5A	0xxx	0xxx	0x13	Status	天线号	读(MSB)	
数据								
读(LSB)	写(MSB)	写(LSB)	天线号	读(MSB)	读(LSB)	写(MSB)	写(LSB)	
数据						校验码	帧尾	
	天线号	读(MSB)	读(LSB)	写(MSB)	写(LSB)	0xxx	0x0D	
帧尾								
0x0A								

说明: status: 0x00 表示开环状态,0x01 表示闭环状态,其他值错误;读写功率×100 后,再转换为十六进制,若是负功率,取补码形式;天线号为设备的已使用天线

例:当前设备处于闭环状态,天线 1 读功率为-7dBm,写功率为 21dBm,天线 5 读功率为 3dBm,写功率为 14dBm

命令: A5 5A 00 13 13 01 01 FD 44 08 34 05 01 2C 05 78 D0 0D 0A

3.2.5. 跳频设置

帧头: 0xA5 0x5A 帧长度: 不固定 帧类型: 0x14

数据: 跳频频点个数和跳频频率表 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置设备跳频状态和跳频表,注意,UM220系列暂不支持该命令。

表 14 跳频设置命令帧

帧头		帧长度		帧类型	数据			
0xA5	0x5A	0xxx	0xxx	0x14	跳频频道	Freq[1]	Freq[1]	
					个数	(MSB)		
数据					校验码	帧尾		
Freq[1]		Freq[n]	Freq[n]	Freq[n]	0xxx	0x0D	0x0A	
(LSB)		(MSB)		(LSB)				

说明: 跳频频点个数为 1 时,表示定频, Freq[1]表示定频的频点。频点 Freq的单位为 KHz

例:设置设备处于跳频状态,共 5 个跳频频点,分别为 920125(0E0A3D)、921250(0E0EA2)、921625(0E1019)、922375(0E1307)、924375(0E1AD7)

命令: A5 5A 00 18 14 05 0E 0A 3D 0E 0E A2 0E 10 19

0E 13 07 0E 1A D7 4C 0D 0A

3.2.6. 跳频设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x15

数据: 设置成功: 0x01; 设置失败: 0x00 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 跳频设置应答,注意,UM210 系列暂不支持该命令。

表 15 跳频设置应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x15	ok: 0x01 fail: 0x00	0xxx	0x0D
帧尾							
0x0A							

说明:无

例: 跳频设置失败

命令: A5 5A 00 09 15 00 1C 0D 0A

3.2.7. 获取当前设备跳频设置状态

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x16 数据: 无 校验码: 0x1E 帧 尾: 0x0d 0x0a

功能: 获取当前设备跳频状态和跳频表,注意, UM210 系列暂不支持该命令。

表 16 获取当前设备跳频设置状态命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x16	无	0x1E	0x0D
帧尾							
0x0A							

说明:无

例: 获取当前设备跳频设置状态

命令: A5 5A 00 08 16 1E 0D 0A

3.2.8. 获取当前设备跳频设置状态应答

帧头: 0xA5 0x5A 帧长度: 不固定 帧类型: 0x17

数据: 跳频频点个数和跳频频率表 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获取设备跳频状态和跳频表,注意, UM210 系列暂不支持该命令。

表 17 获得当前设备跳频设置应答帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0xxx	0xxx	0x17	跳频频道 个数	Freq[1] (MSB)	Freq[1]
数据				校验码	帧尾		
Freq[1] (LSB)		Freq[n] (MSB)	Freq[n] (LSB)	0xxx	0x0D	0x0A	

说明: 跳频频点个数为1时,表示定频,Freq[1]表示定频的频点。频点Freq的单位为KHz

例:设备处于跳频状态,共5个跳频频点,分别为920125(0E0A3D)、921250(0E0EA2)、921625(0E1019)、922375(0E1307)、924375(0E1AD7)

命令: A5 5A 00 18 17 05 0E 0A 3D 0E 0E A2 0E 10 19 0E 13 07 0E 1A D7 4F 0D 0A

3.2.9. 设置 Gen2 参数

帧头: 0xA5 0x5A 帧长度: 0x00 0x10

帧类型: 0x20

数据: Session、Q、Coding 等设置 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置 gen2 参数,注意, UM210 系列暂不支持该命令。

表 18 设置 gen2 命令帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x10	0x20	DByte7	DByte6	DByte5
数据					校验码	帧尾	
DByte4	DByte3	DByte2	DByte1	DByte0	0xxx	0x0D	0x0A

说明:数据各位的定义如表 24 所示

表 19 数据定义说明

D	Byt	te7						D	Byt	æ6						D	Ву	te5						D	Byt	te4					
Та	arge	et	A	ctic	n	Т	Q	St	art(Q		M	(inC)		N	Iax	Q		D	C		P	Se	el	Se	es	G	LI	7	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	ζ	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
D	Byt	te3						D	Byt	æ2						D	Ву	te1						D	byt	e0					
Re	ese	rve																													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Target 设置: select 命令的 Target 参数

S0	B'000
S1	B'001
S2	B'010
S3	B'011
SL	B'100

Action 设置: select 命令的 Action 参数

Action	Matching	Non-Matching
000	assert SL or inventoried →A	de-assert SL or inventoried $\rightarrow B$
001	assert SL or inventoried $\rightarrow A$	do nothing
010	do nothing	de-assert SL or inventoried $\rightarrow B$
011	negate SL or $(A \rightarrow B, B \rightarrow A)$	do nothing
100	de-assert SL or inventoried $\rightarrow B$	de-assert SL or inventoried $\rightarrow A$
101	de-assert SL or inventoried $\rightarrow B$	do nothing
110	do nothing	de-assert SL or inventoried \rightarrow A
111	do nothing	negate SL or $(A \rightarrow B, B \rightarrow A)$

T 设置: select 命令的 Truncate 参数

Disable truncation	B'0
Enable truncation	B'1

Q 设置:

固定Q算法	B'0
动态Q算法	B'1

注意:在固定 Q 算法下, Q 固定为 StartQ, 忽略 MinQ 和 MaxQ。startQ 设置:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

MinQ 设置:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110

3	B'0011	7	B'0111	11	B'1011	15	B'1111
Max	Q 设置:						
0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

D设置: query 命令的 DR 参数

8	B'0
64/3	B'1

Coding 设置: query 命令的 M 参数

FM0	B'00
Miller2	B'01
Miller4	B'10
Miller8	B'11

P 设置: query 命令的 TRext 参数

No pilot tone	B'0
Use pilot tone	B'1

sel 设置: query 命令的 sel 参数

All	B'00
All	B'01
~SL	B'10
SL	B'11

ses 设置: query 命令的 session 参数

S0	B'00
S1	B'01
S2	B'10
S3	B'11

G设置: query 命令的 Target 参数

_	
A	B'0
В	B'1

Link Frequency 设置:

40KHz	B'000
160KHz	B'001
200KHz	B'010
250KHz	B'011
300KHz	B'100
320KHz	B'101
400KHz	B'110
640KHz	B'111

例: Target 设置为 SO, Action 为 B'100, Truncate 参数为 Disable Truncate, 动态 Q 算法, startQ 为 4, minQ 为 0, maxQ 为 15, DR 为 8, M 参数为 Miller4, TRext 参数为 No pilot tone, sel 参数参数为 ALL, Session 参数为 S2, Target 参数

为 A, Link Frequency 为 160KHz

命令: A5 5A 00 10 20 11 40 F4 21 00 00 00 00 B4 0D 0A

3.2.10. 设置 Gen2 参数应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x21

数据: 设置成功: 0x01; 设置失败: 0x00 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置 gen2 参数,注意,UM210 系列暂不支持该命令。

表 20 设置 gen2 参数应答 帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00 0x09		0x21	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

说明:无

0x0A

例:设置 gen2 参数成功

命令: A5 5A 00 09 21 01 29 0D 0A

3.2.11. 获取当前 Gen2 参数设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x22 数据: 无 校验码: 0x2A 帧 尾: 0x0d 0x0a

功能: 获取设备 gen2 参数设置,注意, UM210 系列暂不支持该命令。

表 21 获取当前 gen2 参数命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x22	无	0x2A	0x0D
帧尾							
0x0A							

说明:无

例: 获取当前设备 gen2 参数设置

命令: A5 5A 00 08 22 2A 0D 0A

3.2.12. 获取当前 Gen2 参数设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x10

帧类型: 0x23

数据: Session、Q、Coding 等设置 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获取设备 Gen2 参数设置,注意, UM210 系列暂不支持该命令。

表 22 获取当前 Gen2 参数应答帧

帧头		帧长度		帧类型	数据					
0xA5	0x5A	0x00	0x10	0x23	DByte7	DByte6 DByte5				
数据					校验码	帧尾				
DByte4	DByte3	DByte2	DByte1	DByte0	0xxx	0x0D	0x0A			

说明:数据各位的定义如表 24 所示

表 23 数据定义说明

D	DByte7 D								Byt	æ6				DByte5									D	Byt	te4						
Т	arge	et	A	ctic	n	Т	Q	St	tart(Q		M	(inÇ)		M	Iax(Q		D	C		P	Se	el	Se	es	G	Ll	7	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
D	Ву	te3						D	Byt	æ2						DByte1 Dbyte0															
R	Reserve																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Target 设置: select 命令的 Target 参数

S0	B'000
S1	B'001
S2	B'010
S3	B'011
SL	B'100

Action 设置: select 命令的 Action 参数

Action	Matching	Non-Matching
000	assert SL or inventoried →A	de-assert SL or inventoried $\rightarrow B$
001	assert SL or inventoried $\rightarrow A$	do nothing
010	do nothing	de-assert SL or inventoried $\rightarrow B$

011	negate SL or $(A \rightarrow B, B \rightarrow A)$	do nothing
100	de-assert SL or inventoried $\rightarrow B$	de-assert SL or inventoried $\rightarrow A$
101	de-assert SL or inventoried $\rightarrow B$	do nothing
110	do nothing	de-assert SL or inventoried \rightarrow A
111	do nothing	negate SL or $(A \rightarrow B, B \rightarrow A)$

T 设置: select 命令的 Truncate 参数

Disable truncation	B'0
Enable truncation	B'1

Q 设置:

固定Q算法	B'0
动态Q算法	B'1

注意:在固定 Q 算法下, Q 固定为 StartQ, 忽略 MinQ 和 MaxQ。startQ 设置:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

MinQ 设置:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

MaxQ 设置:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

D设置: query 命令的 DR 参数

8	B'0
64/3	B'1

Coding 设置: query 命令的 M 参数

FM0	B'00
Miller2	B'01
Miller4	B'10
Miller8	B'11

P设置: query 命令的 TRext 参数

No pilot tone	B'0
Use pilot tone	B'1

sel 设置: query 命令的 sel 参数

All	B'00
All	B'01
~SL	B'10
SL	B'11

ses 设置: query 命令的 session 参数

S0	B'00
S1	B'01
S2	B'10
S3	B'11

G设置: query 命令的 Target 参数

A	B'0
В	B'1

Link Frequency 设置:

40KHz	B'000
160KHz	B'001
213KHz	B'010
256KHz	B'011
320KHz	B'100
640KHz	B'101

例: Target 设置为 S0, Action 为 B'100, Truncate 参数为 Disable Truncate, 动态 Q 算法, start Q 为 4, min Q 为 0, max Q 为 15, DR 为 8, M 参数为 Miller 4, TRext 参数为 No pilot tone, sel 参数参数为 ALL, Session 参数为 S2, Target 参数为 A, Link Frequency 为 160KHz

命令: A5 5A 00 10 23 11 40 F4 21 00 00 00 00 B7 0D 0A

3.2.13. CW 设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x24

数据: 开CW: 0x01; 关CW: 0x00

校验码: 0xxx 帧尾: 0x0d 0x0a 功能: 打开或关闭 CW

表 24 CW 设置命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x24	开: 0x01 关: 0x00	0xxx	0x0D
帧尾							
0x0A							

说明:无

例: 开 CW

命令: A5 5A 00 09 24 01 2C 0D 0A

3.2.14. CW 设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x25

数据: 设置成功: 0x01; 设置失败: 0x00 校验码:

0xxx

帧尾: 0x0d 0x0a 功能: 打开或关闭 CW

表 25 CW 设置应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x25	ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

0x0A

说明:无

例:设置成功

命令: A5 5A 00 09 25 01 2D 0D 0A

3.2.15. 获取当前设备 CW 设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x26 数据: 无 校验码: 0x2E 帧 尾: 0x0d 0x0a

功能: 获取当前设备 CW 状态

表 26 获取当前设备 CW 参数命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x26	无	0x2E	0x0D
帧尾							
0x0A							

说明:无

例: 获取当前设备 CW 设置

命令: A5 5A 00 08 26 2E 0D 0A

3.2.16. 获取当前设备 CW 设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x27

数据: CW 开: 0x01; CW 关: 0x00 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获取当前设备 CW 状态

表 27 获取当前设备 CW 参数应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x27	开: 0x01	0xxx	0x0D
					关: 0x00		
帧尾							

0x0A

说明:无

例: CW 处于开的状态

命令: A5 5A 00 09 27 01 2F 0D 0A

3.2.17. 天线设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x28

数据: 共 3 个字节, 16 位,每位对应一个天线,该位为 1 时,选择对应天线,该位为 0 时,取消选择对应天线 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置设备使用的天线

表 28 天线设置命令

帧

帧头	帧头		帧长度		数据		
0xA5	0x5A	0x00	0x0B	0x28	DByte2	DByte1	DByte0
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: Dbyte2=0x01,表示天线设置掉电保存,Dbyte2=0x00,表示设置掉电不保存。数据位定义如表所示

表 29 天线设置数据位定

<u>X</u>

Ant16	Ant15	Ant14	Ant13	Ant12	Ant11	Ant10	Ant9			
DByte0										
Ant8	Ant7	Ant6	Ant5	Ant4	Ant3	Ant2	Ant1			

例:选择第 2 号天线和 14 号天线,设置掉电保存命令: A5 5A 00 0B 28 01 20 02 01 0D 0A

3.2.18. 天线设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x29

数据:设置成功: 0x01;设置失败: 0x00 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置设备使用的天线

表 30 天线设置应答

帧

帧头	帧头		帧长度		数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x29	Ok: 0x01 fail: 0x00	0xxx	0x0D
帧尾							
0x0A							

说明:无

例:设置成功

命令: A5 5A 00 09 29 01 21 0D 0A

3.2.19. 获取当前设备天线设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x2a 数据: 无 校验码: 0x22 帧 尾: 0x0d 0x0a

功能: 获得当前设备使用的天线号

表 31 获取天线设置命令

帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x2a	无	0x22	0x0D
帧尾							

0x0A

说明:无

例: 获取当前设备天线设置

命令: A5 5A 00 08 2a 22 0D 0A

3.2.20. 获取当前设备天线设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x2b

数据: 共 2 个字节, 16 位,每位对应一个天线,该位为 1 时,对应天线被选择,该位为 0 时,对应天线未被选择 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获得当前设备使用的天线号

表 32 获取天线设置应答

帧

帧头	帧头		帧长度		数据		校验码
0xA5	0x5A	0x00	0x0A	0x2b	DByte1	DByte0	0xxx
帧尾							
0x0D	0x0A						

说明:数据位定义如表所示

表 33 天线设置数据位定义

DByte1												
Ant16	Ant15	Ant14	Ant13	Ant12	Ant11	Ant10	Ant9					
DByte0	DByte0											
Ant8	Ant7	Ant6	Ant5	Ant4	Ant3	Ant2	Ant1					

例: 当前第1号天线、第5号天线、第10号天线和第14号天线被选择命令: A5 5A 00 0A 2b 22 11 12 0D 0A

3.2.21. 区域设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x2C 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a 功

能:设置区域

表 34 区域设置命令 帧

帧头	帧头		帧长度		数据		校验码
0xA5	0x5A	0x00	0x0A	0x2c	保存设置 标志	DByte0	0xxx
帧尾							
0x0D	0x0A						

说明:保存设置标志为0时,不保存设置,为1时保存设置,下次开机时默认为当前 region。数据位 DByte0 定义如表所示

China1	0x01
China2	0x02
Europe	0x04
USA	0x08
Korea	0x16
Japan	0x32

例:保存设置,设置区域为 USA

命令: A5 5A 00 0A 2C 01 08 2F 0D 0A

3.2.22. 区域设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x2D

数据:设置成功: 0x01;设置失败: 0x00

校验码: 0xxx 帧 尾: 0x0d 0x0a 功能: 设置区域

表 35 区域设置应答 帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x2D	Ok: 0x01 fail: 0x00	0xxx	0x0D
帧尾							
0x0A							

说明:无

例:设置成功

命令: A5 5A 00 09 2D 01 25 0D 0A

3.2.23. 获取区域设置

帧头: 0xA5 0x5A

帧长度: 0x00 0x08 帧类型: 0x2E 数据: 无 校验码: 0x26 帧 尾: 0x0d 0x0a

功能: 获取设备的区域设置

表 36 获取区域设置命令

帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x2E	无	0x26	0x0D
帧尾							
0x0A							

说明:无

例: 获取区域设置

命令: A5 5A 00 08 2E 26 0D 0A

3.2.24. 获取区域设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x2F 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取设备的区域设置

表 37 获取区域设置应答

帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x2f	Ok: 0x01 fail: 0x00	DByte0	0xxx
帧尾							
0x0D 0x0A							

说明:数据位定义如表所示

China1	0x01
China2	0x02
Europe	0x04
USA	0x08
Korea	0x16
Japan	0x32

例: 当前设备区域设置为 China2

命令: A5 5A 00 0A 01 2F 02 26 0D 0A

3.2.25. 获取端口回波损耗(驻波比)

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x32 数据 : 无 校验码: 0x3A 帧尾: 0x0d 0x0a

功能: 获取设备接收灵敏度, 注意, UM210 系列暂不支持该命令。

表 38 获取当前设备反射功率命令帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0xA5 0x5A		0x08	0x32	无	0x3A	0x0D
帧尾							
0x0A							

说明:无

例: 获取设备反射功率

命令: A5 5A 00 08 32 3A 0D 0A

3.2.26. 获取端口回波损耗(驻波比)应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x33

数据: 获取标志, 0x01 成功, 0x00 失败。反射功率, 占 2 个字节, 单位为

dBm 校验码: 0xxx 帧

尾: 0x0d 0x0a

功能: 获取设备回波损耗应答,注意, UM210 系列暂不支持该命令。

表 39 获取当前设备回波损耗应答帧

帧头		帧长度		帧类型	数据			
0xA5	0x5A	0x00	0x0B	0x33	Ok: 0x01	回波损耗	回波损耗	
					fail: 0x00	(MSB)	(LSB)	
校验码	帧尾							
0xxx	0x0D 0x0A							

说明:接收灵敏度×100,转换为十六进制后,负数则取补码

例: 获取成功,设备端口回波损耗为-10dB

命令: A5 5A 00 0B 33 0x01 FC 18 F1 0D 0A

3.2.27. 获取设备当前温度

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x34 数据: 无 校验码: 0x3C 帧 尾: 0x0d 0x0a

功能: 获取设备当前温度,该温度值和实际温度值的 最大误差为 ± 6 °、注意, UM210 系列暂不支持该命令。

表 40 获取设备当前温度

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A 0x00 (0x08	0x34	无	0x3C	0x0D
帧尾							
0x0A							

说明:无

例: 获取设备温度

命令: A5 5A 00 08 34 3C 0D 0A

3.2.28. 获取设备当前温度应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x35

数据: 获取标志, 0x01 成功, 0x00 失败。温度值×100, 占 2 个字节, 单位为℃

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: 获取设备当前温度应答,注意, UM210 系列暂不支持该命令。

表 41 获取设备当前温度应答帧

帧头		帧长度		帧类型	数据			
0xA5	0x5A	0x00	0x0B	0x35	Ok: 0x01	温度	温度	
					fail: 0x00	(MSB)	(LSB)	
校验码	帧尾							
0xxx	0x0D	0x0A						

说明:温度×100,转换为十六进制后,负数则取补码

例: 获取成功,设备温度为-40℃

命令: A5 5A 00 0B 35 01 F0 60 AF 0D 0A

3.2.29. 设置温度保护

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x38

数据: 1 字节, Data0, 0x00—无温度保护, 0x01—温度保护 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置温度保护选项,注意,UM210 系列暂不支持该命令。

表 42 设置温度保护

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x38	Data0	0xXX	0x0D
帧尾							
0x0A							

说明:温度保护,指当模块检测到的温度值超过 60 摄氏度时,会自动降低 寻卡速率,当温度值超过 85 摄氏度时,自动停止,并上报温度过高异常。

例:设置为温度保护

命令: A5 5A 00 09 38 01 30 0D 0A

3.2.30. 设置温度保护应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x39

数据:设置成功标志,0x01成功,0x00失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置温度保护应答,注意,UM210 系列暂不支持该命令。

表 43 设置温度保护应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	xA5 0x5A		0x09	0x39	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

0x0A

说明:无

例:设置成功

命令: A5 5A 00 09 39 01 31 0D 0A

3.2.31. 获取温度保护设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x3A 数据: 无 校验码: 0x32 帧 尾: 0x0d 0x0a

功能: 获取温度保护设置,注意, UM210 系列暂不支持该命令。

表 44 获取温度保护设置

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0xA5 0x5A		0x08	0x3A	无	0x32	0x0D
帧尾							
0x0A							

说明:温度保护,指当模块检测到的温度值超过 60 摄氏度时,会自动降低 寻卡速率,当温度值超过 85 摄氏度时,自动停止,并上报温度过高异常。

例: 获取温度保护设置

命令: A5 5A 00 08 3A 32 0D 0A

3.2.32. 获取温度保护设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x3B

数据: 获取成功标志, 0x01 成功, 0x00 失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获取温度保护设置应答,注意, UM210 系列暂不支持该命令。

表 45 获取温度保护设置应答 帧

帧头		帧长度		帧类型	数据		校验码
0xA5 0x5A		0x00	0x0A	0x3B	Ok: 0x01	Data0	0xxx
					fail: 0x00		
帧尾							

帧尾 0x0D 0x0A

说明: Data0, 0x00—无温度保护; 0x01—温度保护

例: 获取成功, 当前状态为温度保护

命令: A5 5A 00 0A 3B 01 01 31 0D 0A

3.2.33. 设置连续寻卡工作及等待时间

帧头: 0xA5 0x5A 帧长度: 0x00 0x0D

帧类型: 0x3C

数据: 5字节,单位为ms

校验码: 0xxx 帧尾: 0x0d 0x0a

功能:设置连续寻卡工作及等待时间,注意, UM210、UM630 系列暂不支持该命令。

			13 13 113				
帧头		帧长度		帧类型	数据		
0xA5 0x5A		0x00	0x0D	0x3C	DByte4 DByte3 DByte2		
数据		校验码	帧尾				
DByte1 DByte0		0xXX	0x0D	0x0A			

表 46 设置连续寻卡工作及等待时间

说明:连续寻卡工作及等待时间设置,主要是方便用户自行调整阅读器工作时间及休息时间,在满足客户需求的情况下,尽可能保证阅读器休息时间,连续寻卡工作时间和连续寻卡等待时间,最小为值0,最大值为65535ms(0xFFFF)。DByte4为掉电保存标志,0表示不保存,1表示保存;DByte3、DByte2为工作时间,高字节在前,DByte1、DByte0为等待时间,高字节在前

例:设置连续寻卡工作时间为 50ms,等待时间为 100ms,掉电保存。命令: A5 5A 00 0D 3C 01 00 32 00 64 66 0D 0A

3.2.34. 设置连续寻卡工作及等待时间应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x3D

数据:设置成功标志,0x01成功,0x00失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置连续寻卡工作及等待时间应答,注意, UM210,UR830,UM630 系列暂不支持该命令。

表 4/ 设直连续寻卞上作及等待时间应答	뗏
----------------------	---

帧头		帧长度		帧类型	数据	校验码	帧尾	
0xA5	5	0x5A	0x00	0x09	0x3D	Ok: 0x01 fail: 0x00	0xxx	0x0D
帧尾				•				
0x0A	1							

说明:无

例:设置成功

命令: A5 5A 00 09 3D 01 35 0D 0A

3.2.35. 获取连续寻卡工作及等待时间设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x3E 数据: 无 校验码: 0x36 帧 尾: 0x0d 0x0a

功能: 获取连续寻卡工作及等待时间设置,注意, UM210,UR830,UM630 系列暂不支持该命令。

表 48 获取连续寻卡工作及等待时间设置

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x3E	无	0x36	0x0D
帧尾							
0x0A							

说明:无。

例: 获取连续寻卡工作及等待时间设置 命令: A5 5A 00 08 3E 36 0D 0A

3.2.36. 获取连续寻卡工作及等待时间设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0D

帧类型: 0x3F

数据: 获取成功标志, 0x01 成功, 0x00 失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获取连续寻卡工作及等待时间设置应答,注意, UM210, UR830, UM630 系列暂不支持该命令。

表 49 获取连续寻卡工作及等待时间设置应答 帧

帧头		帧长度		帧类型	数据		
0xA5 0x5A		0x00	0x0D	0x3F	Ok: 0x01 DByte3 DBy fail: 0x00		DByte2
数据		校验码	帧尾				

DByte1 DByte0	0xxx	0x0D	0x0A
---------------	------	------	------

说明: DByte3、DByte2 表示工作时间; DByte1、DByte0 表示等待时间,单位为 ms, 高位在前,最大 65535ms

例: 获取成功, 当前工作时间为 50, 等待时间为 100 命令: A5 5A 00 0D 3F 01 00 32 00 64 65 0D 0A

3.2.37. 获取错误标志

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x40 数据 : 无 校验码: 0x48 帧尾: 0x0d 0x0a

功能: 获取错误标志,注意, UM210 系列暂不支持该命令。

表 50 获取错误标志

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x40	无	0x48	0x0D
帧尾							
0x0A							

说明:无。

例: 获取错误标志

命令: A5 5A 00 08 40 48 0D 0A

3.2.38. 获取错误标志应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x41

数据: 获取成功与否标志, 0x01 成功, 0x00 失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: 获取错误标志应答,注意, UM210 系列暂不支持该命令。

表 51 获取错误标志应答帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x41	Ok: 0x01	ErrFlag(ErrFlag(L
					fail: 0x00	MSB)	SB)
校验码	帧尾						

0xxx 0x0D 0x0A

例: 获取成功, 当前错误标志为 0x0402

命令: A5 5A 00 0B 41 01 04 02 4D 0D 0A

3.2.39. 清除错误标志

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x42 数据 : 无 校验码: 0x4A 帧尾: 0x0d 0x0a

功能:清除错误标志,注意,UM210 系列暂不支持该命令。

表 52 清除错误标志

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x42	无	0x4A	0x0D
帧尾							
0x0A							

说明:无。

例:清除错误标志

命令: A5 5A 00 08 42 4A 0D 0A

3.2.40. 清除错误标志应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x43

数据:成功与否标志,0x01成功,0x00失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:清除错误标志应答,注意,UM210 系列暂不支持该命令。

表 53 清除错误标志应答帧

帧头	帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x09	0x43	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

例:清除成功

0x0A

命令: A5 5A 00 09 43 01 4B 0D 0A

3.2.41. GPIO 操作

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x46 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a 功

能: GPIO 操作。

表 54 GPIO 操作

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x46	DByte1	DByte0	0xxx
帧尾							
0x0D	0x0A						

说明:数据位定义如表所示

表 55 GPIO 操作数据位定

义

DByte1										
GPIO8	GPIO7	GPIO6	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1			
DByte0										
H/L	H/L	H/L	H/L	H/L	H/L	H/L	H/L			

数据是对 GPIO 输出配置,H/L 位为 1 时,表示 GPIO 输出高电平,H/L 为 为 0 时,表示 GPIO 输出低电平。GPIO 最高可以配置 8 个 GPIO。对于 UM6 系 列模块,GPIO 只有三个,用户只能操作 GPIO1、GPIO2 及 GPIO3,对于 UR830 整机,共有 4 个输出 GPIO 和 4 个输入 GPIO,其中输出 GPIO 为 GPIO1~GPIO4,输入 GPIO 为 GPIO5~GPIO8.

例:设置 GPIO1 输出高电平,设置 GPIO3 输出低电平,其他 GPIO 状态不变。

命令: A5 5A 00 0A 46 05 01 4A 0D 0A

3.2.42. GPIO 操作应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x47

数据:成功与否标志,0x01成功,0x00失败。 校验码:

0xxx

帧尾: 0x0d 0x0a 功能: GPIO 操作应答

表 56 GPIO 操作应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x47	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帖尾							

帧尾

0x0A

例:操作成功

命令: A5 5A 00 09 47 01 4E 0D 0A

3.2.43. 获取 GPIO 状态

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x48 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d 0x0a

功能:获取 GPIO 状态。

表 57 获取 GPIO 状态

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x48	DByte0 Rev		0xxx
帧尾							
0x0D	0x0A						

说明:数据位 DByte0 定义如表所示

表 58 获取 GPIO 状态数据位定义

DByte0							
GPIO8	GPIO7	GPIO6	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1

数据 DByte0 表示需要获取的具体 GPIO 的状态。Rev 表示保留为扩展使用。

例: 获取 GPIO3 状态

命令: A5 5A 00 0A 48 04 00 46 0D 0A

3.2.44. 获取 GPIO 状态应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B

帧类型: 0x49

数据:三个字节。 校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: 获取 GPIO 状态应答

表 59 获取 GPIO 状态应答帧

帧头	帧头 帧长度			帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x49	Ok: 0x01 fail: 0x00	DByte1	DByte0
校验码	帧尾						
0xxx	0x0D	0x0A					

说明:数据位 DByte1、DByte0 定义如表所示表 60 获取 GPIO 状态数据位定义

DByte1										
GPIO8	GPIO7	GPIO6	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1			
DByte0										
H/L	H/L	H/L	H/L	H/L	H/L	H/L	H/L			

数据是 GPIO 当前状态指示,H/L 位为 1 时,表示 GPIO 当前输出高电平,H/L 为为 0 时,表示 GPIO 当前输出低电平。最多可以获取 8 个 GPIO 的状态。

例: 当前 GPIO3 输出高电平, GPIO2 输出高电平, GPIO1 输出低电平, 收到获取 GPIO1、GPIO3 状态的命令, 获取状态成功

命令: A5 5A 00 0B 49 01 05 04 43 0D 0A

3.2.45. 设置天线工作时间

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x4A 数据 : 3 个字节 校验码 : 0xxx 帧尾: 0x0d

0x0a

功能:设置天线工作时间,注意,UM210 系列暂不支持该命令。

表 61 设置天线工作时间

帧头	1头 帧长度			帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x4A	DByte2 DByte1 DByte0		
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: DByte2 的低 4bit (bit0-bit3) 表示天线号,范围为 1-16, DByte2 的

bit4 表示是否掉电保存,为 0 表示不保存,为 1 表示掉电保存。DByte1 和 DByte0 为工作时间,共 16 位,单位为毫秒,范围为 10ms~65535ms。注意,单天线的模块,只能设置天线 1,多天线的模块才支持其他天线的设置。

例:设置天线 3 的工作时间为 300ms, 掉电保存设置值。 命令: A5 5A 00 0B 4A 13 01 2C 7F 0D 0A

3.2.46. 设置天线工作时间应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x4B

数据:成功与否标志,0x01成功,0x00失败。

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能:设置天线工作时间应答,注意,UM210 系列暂不支持该命令。

表 62 设置天线工作时间应答

帧头	头 帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x09	0x4B	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

例:操作成功

0x0A

命令: A5 5A 00 09 4B 01 43 0D 0A

3.2.47. 获取天线工作时间

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x4C 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取天线工作时间, 注意, UM210 系列暂不支持该命令。

表 63 获取天线工作时间

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x4C	Ant num	Rev	0xxx
帧尾							
0x0D	0x0A						

说明: ant num 表示天线号。

例: 获取天线 1 工作时间

命令: A5 5A 00 0A 4C 01 00 47 0D 0A

3.2.48. 获取天线工作时间应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0C 帧类型: 0x4D 数据: 四个字节。 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取天线工作时间应答,注意, UM210 系列暂不支持该命令。

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0C	0x4D	Ok: 0x01 fail: 0x00	ant num	DByte1
数据	校验码	帧尾					
DByte0	0xxx	0x0D	0x0A				

表 64 获取天线工作时间应答帧

说明: ant num 表示天线号, DByte1 和 DByte0 表示对应天线工作时间。注意,单天线的模块,只能获取天线1,多天线的模块才支持其他天线的获取。

例: 获取天线 2 的工作时间成功,天线 2 的工作时间为 400ms 命令: A5 5A 00 0C 4D 01 02 01 90 D3 0D 0A

3.2.49. 设置多天线工作间隔时间

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x4E 数据: 3个字节 校验码: 0xxx 帧尾: 0x0d

0x0a

功能:设置天线工作时间,注意,UM210 系列暂不支持该命令。

表 65 设置天线工作时间

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x4E	DByte2	DByte1	DByte0
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: DByte2 表示设置值是否掉电保存,为 0 表示不保存,为 1 表示保存。 DByte1 和 DByte0 为多天线工作间隔时间,共 16 位,单位为毫秒,范围为 0ms~65535ms。注意,单天线的模块,无此设置。

例:设置间隔时间为 300ms, 掉电保存设置值。 命令: A5 5A 00 0B 4E 01 01 2C 69 0D 0A

3.2.50. 设置多天线工作间隔时间应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x4F

数据:成功与否标志,0x01成功,0x00失败。

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能:设置多天线工作间隔时间应答,注意,UM210 系列暂不支持该命令。

表 66 设置多天线工作间隔时间应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x4F	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

例:操作成功

0x0A

命令: A5 5A 00 09 4F 01 47 0D 0A

3.2.51. 获取多天线工作间隔时间

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x50 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取多天线工作间隔时间,注意, UM210 系列暂不支持该命令。

表 67 获取多天线工作间隔时间

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x50	Rev Rev		0xxx
帧尾							
0x0D	0x0A						

说明:无。

例: 获取工作间隔时间

命令: A5 5A 00 0A 50 00 00 5A 0D 0A

3.2.52. 获取多天线工作间隔时间应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x51 数据: 三个字节。 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取天线工作时间应答,注意, UM210 系列暂不支持该命令。

表 68 获取天线工作时间应答帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x51	Ok: 0x01 fail: 0x00	DByte1	DByte0
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: DByte1 和 DByte0 表示对应工作间隔时间。注意,单天线的模块无此功能。

例:工作间隔时间为 400ms

命令: A5 5A 00 0B 51 01 01 90 CA 0D 0A

3.2.53. 设置推荐 RF 链路组合

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x52 数据 : 三个字节 校验码

: 0xxx 帧尾: 0x0d

0x0a

功能:设置推荐 RF 链路组合,注意,UM210 系列暂不支持该命令。

表 69 设置推荐 RF 链路组合

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x52	Rev	DByte1	DByte0
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: DByte1 为 1 时,掉电保存设置,为 0 时,掉电不保存设置。DByte0 如下表所示的设置

DByte0	组合
0x00	DSB_ASK /FM0/ 40 KHz
0x01	PR _ASK /Miller4/ 250KHz
0x02	PR _ASK /Miller4/ 300KHz
0x03	DSB_ASK /FM0/ 400KHz
0xxx	非法

例:设置 RF 链路组合为 DSB_ASK/FM0/40 KHz, 掉电不保存。 命令: A5 5A 00 0B 52 00 00 00 59 0D 0A

3.2.54. 设置推荐 RF 链路组合应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x53

数据:成功与否标志,0x01成功,0x00失败。 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:设置推荐 RF 链路组合应答,注意,UM210 系列暂不支持该命令。

表 70 设置推荐 RF 链路组合应答 帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x53	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

例:设置成功

0x0A

命令: A5 5A 00 09 53 01 5B 0D 0A

3.2.55. 获取推荐 RF 链路组合设置

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x54 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取推荐 RF 链路组合设置,注意, UM210 系列暂不支持该命令。

表 71 获取推荐 RF 链路组合设置

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x54	Rev	Rev	0xxx
帧尾							
0x0D	0x0A						

说明:无。

例: 获取推荐 RF 链路组合设置

命令: A5 5A 00 0A 54 00 00 5E 0D 0A

3.2.56. 获取推荐 RF 链路组合设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x55 数据 : 三个字节。 校验 码: 0xxx 帧尾: 0x0d 0x0a

功能: 获取推荐 RF 链路组合设置应答,注意, UM210 系列暂不支持该命令。

表 72 获取推荐 RF 链路组合设置应答帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0B	0x55	Ok: 0x01 fail: 0x00	Rev	DByte0
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: DByte0 如下表所示的设置

DByte0	组合
0x00	DSB_ASK /FM0/ 40 KHz
0x01	PR _ASK /Miller4/ 250KHz
0x02	PR _ASK /Miller4/ 300KHz
0x03	DSB_ASK /FM0/ 400KHz
0xxx	非法

例: 当前推荐 RF 链路组合为 DSB_ASK/FM0/400KHz 命令: A5 5A 00 0B 55 01 00 03 58 0D 0A

3.2.57. 设置蜂鸣器状态

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x56 数 据: 2 个字节 校 验码: 0xxx 帧尾: 0x0d 0x0a

功能:控制蜂鸣器滴响一次,注意,只有 UR830 支持该命令。

表 73 设置蜂鸣器状

态

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x56	Rev Rev		0xxx
帧尾	^{侦尾}						
0x0D	0x0A						

说明:无。

例:设置蜂鸣器滴响一次。

命令: A5 5A 00 0A 56 00 00 5C 0D 0A

3.2.58. 设置蜂鸣器状态应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x57 数据 : 一个字节。 校验

码: 0xxx 帧尾:

0x0d 0x0a

功能:设置蜂鸣器滴响应答.注意,只有UR830支持该命令。

表 74 设置蜂鸣器状态应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x57	Ok: 0x01 fail: 0x00	0xxx	0x0D
帧尾							
0x0A							

例:设置成功

命令: A5 5A 00 09 57 01 5F 0D 0A

3.2.59. 设置网口参数

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x58 数据: 18个字节 校验码: 0xxx 帧尾: 0x0d 0x0a

功能:设置网口参数,注意,该命令只针对具有网口通讯的 *UR830* 阅读器。 表 75 设置网口参数

帧头		帧长度	帧长度		数据		
0xA5	0x5A	0x00	0x1A	0x58	目标 IP	目标 IP	目标 IP
					0xxx	0xxx	0xxx
目标IP	目标端口	目标端口	本机 IP	本机 IP	本机 IP	本机 IP	本机端口
0xxx	0xxx	0xxx	0xxx	0xxx	0xxx	0xxx	0xxx
本机端口	本机网关	本机网关	本机网关	本机网关	工作模式	Rev	校验码
0xxx	0xxx	0xxx	0xxx	0xxx	0xxx	Rev	0xxx
帧尾							
0x0D	0x0A						

- ▶ 目标 IP: 连接目标的 IP, 十六机制表示, 低位在前, 当阅读器的工作模式设置为 Client 时才起作用, 阅读器作为 Server 时, 目标 IP 无效。
- ▶ 目标端口:连接目标的端口号,十六机制表示,低位在前,当阅读器的工作模式设置为 Client 时才起作用,阅读器作为 Server 时,目标 IP 无效。
- ➤ 本机 IP: 阅读器的 IP 地址,十六机制表示,低位在前。
- ▶ 本机端口:阅读器的端口号,十六机制表示,低位在前。
- ▶ 本机网关: 阅读器的网关,十六机制表示,低位在前。
- ➤ 工作模式: 0—UDP 方式; 1—TCP Client 方式; 2—UDP Server 方式; 3—Tcp Server 方式 (默认方式)

例:设置目标 IP192.168.1.1,目标端口 8234,本机 IP192.168.1.10,本机端口 20108,本机网关192.168.1.201,工作模式TcpServer方式。

命令: A5 5A 00 1A 58 01 01 A8 C0 2A 20 0A 01 A8 C0 8C 4E C9 01 A8 C0 03 00 22 0D 0A

3.2.60. 设置网口参数应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x59 数据: 一个字节。 校验码: 0xxx 帧尾: 0x0d 0x0a

功能:设置网口参数应答。注意,该命令只针对具有网口通讯的 UR830 阅读器。

表 76 设置网口参数应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00 0x09		0x59	Ok: 0x01	0xxx	0x0D
					fail: 0x00		

帧尾 0x0A

例:设置成功

命令: A5 5A 00 09 59 01 51 0D 0A

3.2.61. 设置 wifi 参数

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x5A 数据 : n个字节 校验码 : 0xxx 帧尾: 0x0d 0x0a

功能:设置wifi参数,注意,该命令只针对具有wifi通讯的阅读器。

表 77 设置 wifi 参数

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x56	Rev Rev		0xxx
帧尾							
0x0D	0x0A						

说明:该功能正在开发中。

例:设置 wifi 参数。

命令:

3.2.62. 设置 wifi 参数应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x5B 数据: 一个字节。 校验码: 0xxx 帧尾: 0x0d

0.0

0x0a

功能:设置wifi参数应答,注意,该命令只针对具有wifi通讯的UR830阅读器。

表 78 设置 wifi 参数应答

帧

帧头	帧头			帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x5B	Ok: 0x01 fail: 0x00	0xxx	0x0D
帧尾							

0x0A

例:设置成功

命令: A5 5A 00 09 5B 01 53 0D 0A

3.2.63. 设置 FastID 功能

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x5C 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a 功能: 开启或关闭 FastID 功能,注意, UM210 系列暂不支持该命令。

表 79 设置 FastID

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x5C	ON: 1 Rev OFF: 0		0xxx
帧尾							
0x0D	0x0A						

说明: 开启: 0x01, 关闭: 0x00。

例: 开启 FastID 功能。

命令: A5 5A 00 0A 5C 01 00 57 0D 0A

3.2.64. 设置 FastID 功能应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x5D 数据: 一个字节。 校验码 : 0xxx 帧尾: 0x0d

0x0a

功能:设置 FastID 功能应答,注意, UM210 系列暂不支持该命令。

表 80 设置 FastID 应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00 0x09		0x5D	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
計口							

帧尾 0x0A

例:设置成功

命令: A5 5A 00 09 5D 01 55 0D 0A

3.2.65. 获取 FastID 功能状态

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x5E 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0a

功能:获取当前阅读器 FastID 状态,是否开启,注意,UM210 系列暂不支 持该命令。

表 81 获取 FastID 状态

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x5E	Rev Rev		0xxx
帧尾							
0x0D	0x0A						

说明:无。

例: 获取 FastID 状态。

命令: A5 5A 00 0A 5E 00 00 54 0D 0A

3.2.66. 获取 FastID 功能状态应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x5F 数据: 两个字节。 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 获取 FastID 状态应答,注意, UM210 系列暂不支持该命令。

表 82 获取 FastID 状态应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x5F	OK: 1	ON: 1	0xxx
					Fail: 0	OFF: 0	
帧尾							
0x0D	0x0A						

例: 获取成功, 当前 FastID 功能是开启状态 命令:

5A 00 0A 5F 01 01 55 0D 0A *A5*

3.2.67. 设置 Tagfocus 功能

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x60 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

0x0

功能: 开启或关闭 TagFocus 功能,注意, UM210 系列暂不支持该命令。

表 83 设置 TagFocus

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x60	ON: 1 OFF: 0	Rev	0xxx
帧尾							
0x0D	0x0A						

说明: 开启: 0x01, 关闭: 0x00。

例:开启 TagFocus 功能。

命令: A5 5A 00 0A 60 01 00 6B 0D 0A

3.2.68. 设置 TagFocus 功能应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x61 数据: 一个字节。 校验码 : 0xxx 帧尾: 0x0d

0x0a

功能:设置 TagFocus 功能应答,注意, UM210 系列暂不支持该命令。

表 84 设置 TagFocus 应答帧

帧头	帧头 帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x09	0x61	Ok: 0x01	0xxx	0x0D
					fail: 0x00		
帧尾							

0x0A

例:设置成功

命令: A5 5A 00 09 61 01 69 0D 0A

3.2.69. 获取 TagFocus 功能状态

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x62 数据: 2个字节 校验码: 0xxx 帧尾: 0x0d

功能: 获取当前阅读器 TagFocus 状态,是否开启,注意, UM210 系列暂不支持该命令。

表 85 获取 TagFocus 状态

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x62	Rev Rev		0xxx
帧尾							
0x0D	0x0A						

说明:无。

例: 获取 TagFocus 状态。

命令: A5 5A 00 0A 62 00 00 68 0D 0A

3.2.70. 获取 TagFocus 功能状态应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x63 数据: 两个字节。 校验码:

0xxx 帧尾: 0x0d

0x0a

功能: 获取 FastID 状态应答,注意, UM210 系列暂不支持该命令。

表 86 获取 TagFocus 状态应答帧

帧头		帧长度		帧类型	数据	数据	
0xA5	0x5A	0x00	0x0A	0x63	OK: 1	ON: 1	0xxx
					Fail: 0	OFF: 0	
帧尾							
0x0D	0x0A						

例: 获取成功, 当前 TagFocus 功能是开启状态 命令: A5 5A 00 0A 63 01 01 69 0D 0A

3.2.71. 获取环境 RSSI 值

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x64 数据: 0个字节 校验码: 0x6C 帧尾: 0x0d

0x0a

功能: 获取阅读器 RSSI 值,注意, UM210 系列暂不支持该命令。

表 87 获取 RSSI

帧头	帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x08	0x64	无	0x6C	0x0D
帧尾							
0x0A							

说明:无。

例: 获取 RSSI。

命令: A5 5A 00 08 64 6C 0D 0A

3.2.72. 获取环境 RSSI 值应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0B 帧类型: 0x65 数据: 三个字节。 校验码: 0xxx 帧尾: 0x0d

功能: 获取 RSSI 值应答,注意, UM210 系列暂不支持该命令。

表 88 获取 RSSI 值应答帧

帧头 帧长度		帧类		数据			
0xA5	0x5A	0x00	0x0B	0x65	OK: 1	Data1	Data0
					Fail: 0		
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: RSSI 以补码的形式表示, 共 16bit, 为实际值×10。如-65.7dBm,则RSSI=FD6F。

例: 获取成功, 当前 RSSI 值为-65.7dBm。

命令: A5 5A 00 0B 65 01 FD 6F FD 0D 0A

3.2.73. 设置模块波特率

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x66 数据: 1个字节 校验码: 0xXX 帧尾: 0x0d 0x0a

功能:设置模块波特率,注意,UM210 系列暂不支持该命令。

表 89 设置模块波特率

帧头	帧头 帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x09	0x66	DByte0	0xXX	0x0D
帧尾							
0x0A							

说明: DByte0: = 0x00 表示波特率设置值为 9600

= 0x01 表示波特率设置值为 19200

= 0x02 表示波特率设置值为 38400

= 0x03 表示波特率设置值为 57600

= 0x04 表示波特率设置值为 115200

= 0x05 表示波特率设置值为 230400

= 0x06 表示波特率设置值为 460800

= 0x07 表示波特率设置值为 921600

其他值为无效值。

例:设置模块波特率为 19200。

命令: A5 5A 00 09 66 01 6E 0D 0A

3.2.74. 设置模块波特率应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x67 数据 : 一个字节。 校验 码: 0xxx 帧尾: 0x0d 0x0a

功能:设置模块波特率应答,注意,UM210 系列暂不支持该命令。

表 90 设置模块波特率应答帧

帧头	帧头 帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x09	0x67	OK: 1	0xxx	0x0D
					Fail: 0		
I. I- I I							

帧尾 0x0A

说明:波特率设置成功后,须重启模块,新的波特率才能生效。

例:波特率设置成功。

命令: A5 5A 00 09 67 01 6F 0D 0A

3.2.75. 软件复位

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x68 数据: 0个字节 校验码: 0xXX 帧尾: 0x0d

0x0a

功能:软件复位模块,注意,UM210 系列暂不支持该命令。

表 91 软件复 位

帧头	帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x08	0x68	无	0x60	0x0D
帧尾							
0x0A							

说明:发送软件复位命令,可以复位阅读器。

例:发送软件复位命令。

命令: A5 5A 00 08 68 60 0D 0A

3.2.76. 软件复位应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x69 数据: 一个字节。 校验码: 0xxx 帧尾: 0x0d 0x0a

功能: 软件复位应答,注意, UM210 系列暂不支持该命令。

表 92 软件复位应答帧

帧头	帧头 帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00 0x09		0x69	OK: 1	0xxx	0x0D
					Fail: 0		
11							

帧尾 0x0A

说明:无。

例:复位成功。

命令: A5 5A 00 09 69 01 61 0D 0A

3.2.77. 设置 Dual 和 Singel 模式

0x0a

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x6A 数据 : 2 个字节 校验码 : 0xXX 帧尾: 0x0d

功能:设置阅读器工作在 Dual 模式还是 Singel 模式,上电默认 Dual 模式,注意, UM210 系列暂不支持该命令。

表 93 设置 Dual 和 Singel 模式

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x6A	DByte1 DByte0		0xxx
帧尾							
0x0D	0x0A						

说明: DByte1 表示设置是否掉电保存, 0x01 表示掉电保存, 0x00 表示掉电不保存; DByte0 为 0x00 时,表示设置 Dual 模式, DByte0 为 0x01 时,表示设置 Singel 模式。Singel 模式下多标签性能要优于 Dual 模式。

例:设置 Singel 模式,设置值掉电保存。

命令: A5 5A 00 0A 6A 01 01 60 0D 0A

3.2.78. 设置 Dual 和 Singel 模式应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x6B 数据: 一个字节。 校验码 : 0xxx 帧尾: 0x0d 0x0a

功能:设置Dual和Singel模式应答,注意,UM210系列暂不支持该命令。

表 94 设置 Dual 和 Singel 模式应答帧

帧头	帧头		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x09	0x6B	OK: 1	0xxx	0x0D
					Fail: 0		

帧尾

0x0A

说明:无。

例:设置成功。

命令: A5 5A 00 09 6B 01 63 0D 0A

3.2.79. 获取 Dual 和 Singel 模式

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x6C 数据: 0个字节 校验码: 0xXX 帧尾: 0x0d

0x0a

功能:获取阅读器当前工作在 Dual 模式还是 Singel 模式,注意, UM210 系列暂不支持该命令。

表 95 获取 Dual 和 Singel 模式设置

帧头	[头 帧长度		帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x08	0x6C	无	0x60	0x0D
帧尾							
0x0A							

说明:获取阅读器当前工作在 Dual 模式还是 Singel 模式。

例:发送获取Dual和Singel模式命令。

命令: A5 5A 00 08 6C 64 0D 0A

3.2.80. 获取 Dual 和 Singel 模式应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型: 0x6D 数据: 二个字节。 校验码 : 0xxx 帧尾: 0x0d 0x0a

功能: 获取 Dual 和 Singel 模式应答,注意,UM210 系列暂不支持该命令。

表 96 获取 Dual 和 Singel 模式设置应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x6D	OK: 1	DByte0	0xxx
					Fail: 0		
帧尾	帧尾			•			
0x0D	0x0A						

说明: DByte0 为 0x00 表示 Dual 模式, DByte0 为 0x01 表示 Singel 模式。

例: 获取 Dual 和 Singel 模式应答, 当前设置为 Dual 模式命令: A5 5A 00 0A 6D 01 00 66 0D 0A

3.2.81. 寻标签过滤设置

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx 帧类型: 0x6E 数据: n个字节 校验码: 0xXX 帧尾: 0x0d

0x0a

功能: 寻标签过程中,标签群的范围选择,注意, UM210 系列暂不支持该命令。

表 97 寻标签过滤设置

帧头 帧长度			帧类型	数据			
0xA5	0x5A	0x00	0xxx	0x6E	DByte0	MMB	MSA
							(MSB)
数据							
MSA	MDL	MDL	MData				MData
(LSB)	(MSB)	(LSB)	(MSB)				(LSB)
校验码	帧尾						
0xxx	0x0D	0x0A					

说明: DByte0 为 0x01 表示掉电保存设置值,为 0x00 表示不保存; MMB 为过滤操作的 bank 号,0x01 表示 EPC,0x02 表示 TID,0x03 表示 USR,其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit,0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0。

例 1: 设置寻标签过滤规则: TID 区过滤,过滤地址为 TID 区第 0bit,过滤长度为 96bit,过滤数据为 0xE2003414013301001038D2B5,掉电保存该过滤设置。命令: A5 5A 00 1A 6E 01 02 00 00 00 60 E2 00 34 14

01 33 01 00 10 38 D2 B5 A9 0D 0A

3.2.82. 寻标签过滤设置应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09 帧类型: 0x6F 数据: 一个字节。 校验码: 0xxx 帧尾: 0x0d

0x0a

功能: 寻标签过滤设置应答, 注意, UM210 系列暂不支持该命令。

表 98 寻标签过滤设置应答帧

帧头	帧头 帧长度			帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x6F	OK: 1	0xxx	0x0D
					Fail: 0		
帧尾							
0x0A							

说明:无。

例:设置成功

命令: A5 5A 00 09 6F 01 67 0D 0A

3.3. 标签操作类帧

3.3.1. 单次寻标签

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x80

数据: Timeout (高位在前),超时时间,单位为毫秒,若寻卡成功、或 Timeout 时间到, RFID 模块必须回传应答帧,任意一个条件发生,即回传应答。

校验码: 0xxx 帧尾: 0x0d 0x0a 功能: 寻标签

表 99 单次寻标签命令帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x80	Timeout	Timeout	0xxx

			(MSB)	(LSB)
帧尾				
0x0D	0x0A			

说明:无

例: 寻标签

命令: A5 5A 00 0A 80 00 64 EE 0D 0A

3.3.2. 单次寻标签应答

帧头: 0xA5 0x5A 帧 长度: 0x00 0xxx 帧类型: 0x81 数据: PC+EPC、RSSI 校验码: 0xxx 帧

尾: 0x0d 0x0a

功能: 寻标签应答,将标签和读写器相关信息回传表 100 单次寻标签应答

帧

帧头	帧长度			帧类型	数据		
0xA5	0x5A	0x00	0xxx	0x81	PC	PC	EPC
					(MSB)	(LSB)	(MSB)
数据							
EPC	EPC	EPC	EPC	EPC	EPC	EPC	EPC
数据						校验码	帧尾
EPC	EPC	EPC	RSSI	RSSI	Ant Num	0xxx	0x0D
		(LSB)	(MSB)	(LSB)			
帧尾							
0x0A							

说明: RSSI 以补码的形式表示, 共 16bit, 为实际值×10。如-65.7dBm, 则 RSSI=FD6F。

注意: EPC 的长度有 PC 决定,这个是根据 Gen2 协议的,所以帧长度不固定。在 FastID 功能开启后,若读取到标签的 TID 数据,应答帧的 EPC(LSB)后会增加 96bit 的 TID 数据,然后才是 RSSI 值。

例: 标签 *PC=0x3000*, *EPC=0xE2003411B802011383258566* 应答, *RSSI=-65.7dBm*,天线2寻到。

命令: A5 5A 00 19 81 30 00 E2 00 34 11 B8 02 01 13 83 25 85 66 FD 6F 02 12 0D 0A

3.3.3. 连续寻标签

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x82

数据:连续寻标签次数,共2个字节校验码:

0xxx

帧尾: 0x0d 0x0a 功能: 连续寻标签。

表 101 连续寻标签命令

帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x82	Num[1]	Num[0]	0xxx
帧尾							
0x0D	0x0A						

说明:连续寻标签次数范围为 1~0xFFFF,次数为 0 时,无限次数寻标签。 注意:连续寻标签期间,阅读器不响应其他命令,若需执行其他命令,需发送 停止连续标签命令,等待停止连续寻标签应答后,再发送需执行的命令。

例: 连续寻标签次数为 10000(0x2710)次

命令: A5 5A 00 0A 82 27 10 BF 0D 0A

3.3.4. 连续寻标签应答

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx 帧类型:

0x83 数据: PC+EPC、RSSI、

天线号 校验码: 0xxx 帧尾: 0x0d 0x0a

功能: 寻标签应答, 将标签和读写器相关信息回传

表 102 连续寻标签应答

帧

帧头 帧长度			帧类型	数据			
0xA5	0x5A	0x00	0xxx	0x83	PC	PC	EPC
					(MSB)	(LSB)	(MSB)
数据							
EPC	EPC	EPC	EPC	EPC	EPC	EPC	EPC
数据						校验码	帧尾
EPC	EPC	EPC	RSSI	RSSI	Ant Num	0xxx	0x0D
		(LSB)	(MSB)	(LSB)			
帧尾			•	•			

说明: RSSI 以补码的形式表示,共 16bit,为实际值×10。如-65.7dBm,则 RSSI=FD6F。

注意: EPC 的长度由 PC 决定,这个是根据 Gen2 协议的,所以帧长度不固定。在 FastID 功能开启后,若读取到标签的 TID 数据,应答帧的 EPC(LSB)后会增加 96bit 的 TID 数据,然后才是 RSSI 值。

例: 标签 *PC=0x3000*, *EPC=0xE2003411B802011383258566* 应答, *RSSI=-65.7dBm*,天线2寻到。

命令: A5 5A 00 19 83 30 00 E2 00 34 11 B8 02 01 13 83 25 85 66 FD 6F 02 10 0D 0A

3.3.5. 停止连续寻标签

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x8C 数据: 无 校验码: 0x84 帧 尾: 0x0d 0x0a 功能: 停止连续寻卡

表 103 停止连续寻卡命令

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x08	0x8C	无	0x84	0x0D
帧尾							
0x0A							

例:停止连续寻卡

命令: A5 5A 00 08 8C 84 0D 0A

3.3.6. 停止连续寻标签应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x09

帧类型: 0x8D

数据:标志 flag:成功:0x01;失败:0x00

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能:停止连续寻标签应答

表 104 停止连续寻标签应答帧

帧头		帧长度		帧类型	数据	校验码	帧尾
0xA5	0x5A	0x00	0x09	0x8D	Flag	0xxx	0x0D
帧尾							

0x0A

说明:无

例:成功

命令: A5 5A 00 09 8D 01 85 0D 0A

3.3.7. 读数据

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x84

数据: AP(访问密码)、MMB、MSA、MDL、MData、memory Bank、SA 起始地址(字为单位)、DL 需读取的数据长度(字为单位),字的长度为 2 个字节在Gen2 的协议中

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: 读取特定标签的特定地址和特定长度的数据

表 105 读数据命令

帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0xxx	0xxx	0x84	AP	AP	AP
					(MSB)		
数据							
AP	MMB	MSA	MSA	MDL	MDL	MData	MData
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)	
数据							
MData					MData	MData	MB
						(LSB)	
数据				校验码	帧尾		
SA	SA	DL	DL	0xxx	0x0D	0x0A	
(MSB)	(LSB)	(MSB)	(LSB)				

说明: AP 为标签的 AccPwd 值; MMB 为启动过滤操作的 bank 号,0x01 表示 EPC,0x02 表示 TID,0x03 表示 USR,其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit,0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0; MB 为 memory bank,用户需要读取的数据的 bank 号; SA 为需读取的数据的起始地址,单位为字; DL 为需读取的数据长度,单位为字

例 1: 不过滤,读取 TID 区 3 个字的数据,起始地址为 2,访问密码为 0x55555555

命令: A5 5A 00 16 84 55 55 55 00 00 00 00 00 02 00 02 00 02 00 03 91 0D 0A

例 2: TID 区过滤,过滤地址为 TID 区第 2bit,过滤长度为 13bit,过滤数据为 1110001000000 'b,读取 EPC 区 6 个字的数据,起始地址为 2,访问密码为 0x00000000

命令: A5 5A 00 18 84 00 00 00 00 02 00 02 00 0D E2 00 01 00 02 00 06 76 0D 0A

3.3.8. 读数据应答

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x85

数据: 读数据是否成功标志 flag: 成功: 0x01; 失败: 0x00

错误标志 Errflag: 读数据失败后返回的错误标志 读取数据的

长度 DL: 单位为字 读取的数据 Data:

校验码: 0xxx 帧尾:

功能:将特定地址和特定长度的数据回传

表 106 读数据应答

帧

帧头		帧长度 帧类型			数据		
0xA5	0x5A	0xxx	0xxx	0x85	Flag	Errflag	DL
							(MSB)
数据					校验码	帧尾	
DL	Data			Data	0xxx	0x0D	0x0A
(LSB)	(MSB)			(LSB)			

说明:读取的数据 Data 由读数据命令中的数据长度决定,此外,读数据失败,则应答帧无 Data 数据;读数据成功,错误标志 Errflag 为 0x00

例:成功读取 TID 区 3 个字的数据: 0x123456789abc

命令: A5 5A 00 12 85 01 00 00 03 12 34 56 78 9A BC BB 0D 0A

3.3.9. 写数据

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x86

数据: AP(访问密码)、MMB、MSA、MDL、MData、memory Bank、SA 起始地址(字为单位)、DL 需写入的数据长度(字为单位)、Data 需写入的数据

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: 写入特定长度的数据到标签的特定地址

表 107 写数据命令 帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0xxx	0xxx	0x86	AP	AP	AP
					(MSB)		
数据							
AP	MMB	MSA	MSA	MDL	MDL	MData	MData
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)	
数据							
MData					MData	MData	MB
						(LSB)	
数据							
SA	SA	DL	DL	Data			Data
(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			(LSB)
校验码	帧尾	<u>.</u>			•		
0xxx	0x0D	0x0A					

说明: AP 为标签的 AccPwd 值; MMB 为启动过滤操作的 bank 号, 0x01 表示 EPC, 0x02 表示 TID, 0x03 表示 USR, 其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit, 0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0; MB 为 memory bank,用户需要写入的数据的 bank 号; SA 为需写入的数据的起始地址,单位为字; DL 为需写入的数据长度,单位为字; Data 为写入的数据,高位在前

例 1: 不过滤,写入 EPC 区 6 个字的数据, Data=0x00112233445566778899 aabb, 起始地址为 2,访问密码为 0x12345678

命令: A5 5A 00 22 86 12 34 56 78 00 00 00 00 00 01 00 02 00 06 00 11 22 33 44 55 66 77 88 99 AA BB A9 0D 0A

例2: *TID*区过滤,过滤地址为*TID*区第0bit,过滤长度为96bit,过滤数据为0xE2003414013301001038D2B5,写入EPC区6个字的数据,Data=0x00112233445566778899aabb,起始地址为2,访问密码为0x00000000

命令: A5 5A 00 2E 86 00 00 00 00 02 00 00 00 60 E2 00 34 14 01 33 01 00 10 38 D2 B5 01 00 02 00 06 00 11 22 33 44 55 66 77 88 99 AA BB 71 0D 0A

3.3.10. 写数据应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x87

数据: 写数据是否成功标志 flag: 成功: 0x01; 失败: 0x00 错误标志 Errflag: 写数据失败后返回的错误标志

表 108 写数据应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x87	Flag Errflag		0xxx
帧尾							
0x0D	0x0A						

说明: 写数据成功,错误标志 Errflag 为 0x00

例:数据写入失败,错误标志为 0x03

命令: A5 5A 00 0A 87 00 03 8E 0D 0A

3.3.11. 锁标签

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x88

数据: AP(访问密码)、MMB、MSA、MDL、MData、LD(共 3 个字节) 校验

码: 0xxx

帧尾: 0x0d 0x0a

功能: 锁定标签的 memory bank

表 109 锁标签命令 帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0xxx	0x88	AP	AP	AP
					(MSB)		
数据							
AP	MMB	MSA	MSA	MDL	MDL	MData	MData
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)	
数据							
MData					MData	MData	LD
						(LSB)	(MSB)
数据		校验码	帧尾				
LD	LD	0xxx	0x0D	0x0A			
	(LSB)						

说明: AP 为标签的 AccPwd 值; MMB 为启动过滤操作的 bank 号, 0x01 表示 EPC, 0x02 表示 TID, 0x03 表示 USR, 其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit, 0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0; LD 共 3 个字节 24bit,其中,高 4bit 无效,第 0~9bit(共 10bit)为 Action 位,第 10~19bit(共 10bit)为 mask 位

例: TID 区过滤, 过滤地址为 TID 区第 0bit, 过滤长度为 96bit, 过滤数据为 0xE2003414013301001038D2B5, 锁定 EPC+RFU 区(LD=0x0FC2A0), 访问密码为 0x760039AD

命令: A5 5A 00 20 88 76 00 39 AD 02 00 00 00 60 E2 00 34 14 01 33 01 00 10 38 D2 B5 0F C2 A0 FB 0D 0A

3.3.12. 锁标签应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x89

数据: 锁标签是否成功标志 flag: 成功: 0x01; 失败: 0x00

错误标志 Errflag: 锁标签失败后返回的错误标志 校验码:

0xxx

帧尾: 0x0d 0x0a 功能: 锁标签应答

表 110 锁标签应答

帧

帧头	帧头			帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x89	Flag	Errflag	0xxx
帧尾							
0x0D	0x0A						

说明:锁操作成功,错误标志 Errflag 为 0x00

例:锁定成功

命令: A5 5A 00 0A 89 01 00 82 0D 0A

3.3.13. Kill 标签

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x8A

数据: KP(kill 密码)、MMB、MSA、MDL、MData 校验码:

0xxx

帧尾: 0x0d 0x0a 功能: kill 标签

表 111 kill 标签命令帧

帧头	帧头 帧长度			帧类型	数据				
0xA5	0x5A	0x00	0xxx	0x8A	KP	KP	KP		
					(MSB)				
数据	数据								
KP	MMB	MSA	MSA	MDL	MDL	MData	MData		
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			

数据								
MData					MData	MData (LSB)	0xxx	
帧尾								
0x0D	0x0A							

说明: KP 为标签的 KillPwd 值; MMB 为启动过滤操作的 bank 号, 0x01 表示 EPC, 0x02 表示 TID, 0x03 表示 USR, 其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit, 0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0; 当标签的 KillPwd 区的值为 0x000000000 时,标签会忽略 kill 命令, kill 命令不会成功

例: *EPC*区过滤,过滤地址为*EPC*区第 32bit,过滤长度为 96bit,过滤数据为 0x00112233445566778899AABB, kill 密码为 0x760039AD

命令: A5 5A 00 1D 8A 76 00 39 AD 01 00 20 00 60 00 11 22 33 44 55 66 77 88 99 AA BB 34 0D 0A

3.3.14. Kill 标签应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x8B

数据: kill 标签是否成功标志 flag: 成功: 0x01; 失败: 0x00

错误标志 Errflag: kill 标签失败后返回的错误标志 校验码:

0xxx

帧尾: 0x0d 0x0a 功能: kill 标签应答

表 112 kill 标签应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00 0x0A		0x8B	Flag Errflag		0xxx
帧尾							
0x0D	0x0A						

说明: Kill 操作成功,错误标志 Errflag 为 0x00

例: kill 成功

命令: A5 5A 00 0A 8B 01 00 80 0D 0A

3.3.15. 快速读取 TID

帧头: 0xA5 0x5A 帧长度: 0x00 0x0C

帧类型: 0x8e

数据: SA 起始地址(字为单位)、DL 需读取的数据长度(字为单位) 校验码:

0xxx

帧尾: 0x0d 0x0a

功能:读取标签 TID 区特定地址和特定长度的数据,注意, UM210 系列暂不支持该命令。

表 113 快速读取 TID 命令帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0c	0x8e	SA	SA	DL
					(MSB)	(LSB)	(MSB)
数据	校验码	帧尾					
DL	0xxx	0x0D	0x0A				
(LSB)							

说明: SA 为需读取的数据的起始地址,单位为字; DL 为需读取的数据长度,单位为字

例:快速读取 TID 区 3 个字的数据,起始地址为 2

命令: A5 5A 00 0C 8e 00 02 00 03 83 0D 0A

3.3.16. 快速读取 TID 应答

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x8f

数据:读数据是否成功标志 flag:成功:0x01;失败:0x00 错误标

志 Errflag: 读数据失败后返回的错误标志 读取数据的长度

DL: 单位为字 读取的数据 Data:

校验码: 0xxx 帧尾:

0x0d 0x0a

功能:将 TID 区特定地址和特定长度的数据回传,注意, UM210 系列暂不支持该命令。

表 114 快速读取 TID 应答帧

帧头	帧头		帧类型	数据			
0xA5	0x5A	0xxx	0xxx	0x8f	Flag	Errflag	DL
							(MSB)
数据	数据					帧尾	
DL	Data			Data	0xxx	0x0D	0x0A
(LSB)	(MSB)			(LSB)			

说明:读取的数据 Data 由读数据命令中的数据长度决定,此外,读数据失败,则应答帧无 Data 数据;读数据成功,错误标志 Errflag 为 0x00

例:成功读取TID区3个字的数据: 0x123456789abc

命令: A5 5A 00 12 8F 01 00 00 03 12 34 56 78 9A BC B1 0D 0A

3.3.17. 时间段寻标签

帧头: 0xA5 0x5A 帧长度:

0x00 0x0A 帧类型:

0x90 数据:时间段,10ms-

30000ms 校验码: 0xxx

帧尾: 0x0d 0x0a

功能:时间段寻标签,用户可设置阅读器在 Timeout 时间内连续寻卡,等待 Timeout 时间后,阅读器立即将该段时间内的所读取到的标签个数上报,若用户 需要标签 EPC 数据,发送获取时间段寻卡命令即可。注意,*UM210* 系列暂不 支 持该命令。

表 115 时间段寻标签命令 帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0x90	Timeout (MSB)	Timeout (LSB)	0xxx
帧尾							
0x0D	0x0A						

说明:时间段范围为 0x000A~0x7530 (10--30000)。

例: 500ms 内寻卡

命令: A5 5A 00 0A 90 01 F4 6F 0D 0A

3.3.18. 时间段寻标签应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0C 帧类型: 0x91 数据: 标签个数 校验码: 0xxx 帧尾: 0x0d

0x0a

功能:时间段寻标签应答帧,表示该时间段内寻到的标签个数,注意,*UM210* 系列暂不支持该命令。

表 116 时间段寻标签应答 帧

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0x00	0x0C	0x91	标签个数	标签个数	标签个数

				(MSB)
数据	校验码	帧尾		
标签个数 (LSB)	0xxx	0x0D	0x0A	

说明: 标签个数用四个字节表示, 范围为 0x00000000—0xFFFFFFFF (0--4294967295)。

例:该时间段内共寻到 10 个标签。

命令: A5 5A 00 0C 91 00 00 00 0A 97 0D 0A

3.3.19. 获取时间段寻标签结果

帧头: 0xA5 0x5A 帧长度: 0x00 0x08 帧类型: 0x92 数据 : 无 校验码: 0xxx 帧尾: 0x0d 0x0a

功能: 获取时间段寻标签的执行结果,注意, UM210 系列暂不支持该命令。

表 117 获取时间段寻标签命令帧

帧头 帧长度			帧类型	数据	校验码	帧尾	
0xA5	0x5A	0x00	0x08	0x92	无	0xxx	0x0D
帧尾							
0x0A							

说明:无

例: 获取时间段寻标签命令

命令: A5 5A 00 08 92 9A 0D 0A

3.3.20. Block Write 数据

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x93

数据: AP(访问密码)、MMB、MSA、MDL、MData、memory Bank、SA 起始地址(字为单位)、DL 需写入的数据长度(字为单位)、Data 需写入的数据

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: Block Write 特定长度的数据到标签的特定地址,注意, UM210 系列 暂不支持该命令。

表 118 Block Write 命令帧

帧头		帧长度		帧类型	数据			
0xA5	0x5A	0xxx	0xxx	0x93	AP	AP	AP	
					(MSB)			
数据								
AP	MMB	MSA	MSA	MDL	MDL	MData	MData	
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)		
数据								
MData					MData	MData	MB	
						(LSB)		
数据								
SA	SA	DL	DL	Data			Data	
(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			(LSB)	
校验码	帧尾	•		•	•	•	•	
0xxx	0x0D	0x0A						

说明: AP 为标签的 AccPwd 值; MMB 为启动过滤操作的 bank 号, 0x01 表示 EPC, 0x02 表示 TID, 0x03 表示 USR, 其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit, 0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0; MB 为 memory bank,用户需要写入的数据的 bank 号; SA 为需写入的数据的起始地址,单位为字; DL 为需写入的数据长度,单位为字; Data 为写入的数据,高位在前

例:标签*PC*=0*x*3000,*EPC*=0*x*E2003411B802011383258566,写入*EPC*区6个字的数据,*Data*=0*x*00112233445566778899aabb,起始地址为 2,访问密码为0*x*74290fd8

命令: A5 5A 00 2B 93 74 29 0f d8 30 00 E2 00 34 11 B8 02 01 13 83 25 85 66 01 00 02 00 06 00 11 22 33 44 55 66 77 88 99 AA BB 2D 0D 0A

3.3.21. Block Write 数据应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x94

数据: Block Write 数据是否成功标志 flag: 成功: 0x01; 失败: 0x00

错误标志 Errflag: 操作失败后返回的错误标志

校验码: 0xxx 帧尾: 0x0d 0x0a

功能: Block Write 数据应答,注意,UM210 系列暂不支持该命令。

表 119 Block Write 数据应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5 0x5A		0x00	0x0A	0x94	Flag	Errflag	0xxx
帧尾							

0x0D 0x0A

说明:操作成功,错误标志 Errflag 为 0x00

例:数据写入失败,错误标志为 0x01

命令: A5 5A 00 0A 94 00 01 9F 0D 0A

3.3.22. Block Erase 数据

帧头: 0xA5 0x5A 帧长度: 0x00 0xxx

帧类型: 0x95

数据: AP(访问密码)、MMB、MSA、MDL、MData、memory Bank、SA 起始地址(字为单位)、DL 需擦除的长度(字为单位)

校验码: 0xxx 帧 尾: 0x0d 0x0a

功能: Block Erase 特定长度到标签的特定地址,注意, UM210 系列暂不支持该命令。

帧头		帧长度		帧类型	数据		
0xA5	0x5A	0xxx	0xxx	0x95	AP	AP	AP
					(MSB)		
数据							
AP	MMB	MSA	MSA	MDL	MDL	MData	MData
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)	
数据							
MData					MData	MData	MB
						(LSB)	
数据				校验码	帧尾		
SA	SA	DL	DL	0xxx	0x0D	0x0A	
(MSB)	(LSB)	(MSB)	(LSB)				

表 120 Block Erase 命令帧

说明: AP 为标签的 AccPwd 值; MMB 为启动过滤操作的 bank 号,0x01 表示 EPC,0x02 表示 TID,0x03 表示 USR,其他值为非法值; MSA 为启动过滤操作的起始地址,单位为 bit; MDL 为启动过滤操作的过滤数据长度,单位为 bit,0x00 表示无过滤; MData 为启动过滤时的数据,单位为字节,若 MDL 不足整数倍字节,不足位低位补 0; MB 为 memory bank,用户需要写入的数据的 bank 号; SA 为需写入的数据的起始地址,单位为字; DL 为需写入的数据长度,单位为字.

例: 标签 *PC*=0*x*3000, *EPC*=0*x*E2003411B802011383258566, *Erase* 标签 *EPC* 区 6 个字的数据, 起始地址为 2, 访问密码为 0*x*74290fd8

命令: A5 5A 00 1F 95 74 29 0f d8 30 00 E2 00 34 11 B8 02 01 13 83 25 85 66 01 00 02 00 06 1F 0D 0A

3.3.23. Block Erase 数据应答

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A

帧类型: 0x96

数据: Block Erase 数据是否成功标志 flag: 成功: 0x01; 失败: 0x00

错误标志 Errflag: 操作失败后返回的错误标志 校验码:

0xxx

帧尾: 0x0d 0x0a

功能: Block Erase 数据应答,注意,UM210 系列暂不支持该命令。

表 121 Block Erase 数据应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5 0x5A		0x00	0x0A	0x96	Flag	Errflag	0xxx
帧尾							
0x0D	0x0A						

说明:操作成功,错误标志 Errflag 为 0x00

例:数据 Erase 成功,错误标志为 0x00

命令: A5 5A 00 0A 96 01 00 9D 0D 0A

3.4. 操作失败应答帧

3.4.1. 操作失败应答帧

帧头: 0xA5 0x5A 帧长度: 0x00 0x0A 帧类型:

0xFF 数据:错误类型,共两

个字节 校验码: 0xxx 帧尾: 0x0d 0x0a 功能: 失败操作应答。

表 122 操作失败应答帧

帧头		帧长度		帧类型	数据		校验码
0xA5	0x5A	0x00	0x0A	0xFF	Err code	Err Code	0xxx
					(MSB)	(LSB)	
帧尾							
OvOD	$\Omega_{\mathbf{Y}}\Omega\Lambda$						

说明:操作失败后,返回的错误标志 错误标志: 0001—寻 卡失败

0002—通信帧校验码错误

0003—温度过高0004—反射功率过大

例: Err Code 为 0x0001

命令: A5 5A 00 0A FF 00 01 F4 0D 0A