Step 0: Recursive structure.

Consider an arbitrary optimum solution $s_1 \cdots s_{p_\ell} / s_{p_\ell+1} \cdots s_m$ (for some $1 \le \ell \le k$). Then breaks $p_1, \ldots, p_{\ell-1}$ must be performed in some optimum order on $s_1 \cdots s_{p_\ell}$ and breaks $p_{\ell+1}, \ldots, p_k$ must be performed in some optimum order on $s_{p_\ell+1} \cdots s_m$ —otherwise we would get a better overall solution.

Step 1: Array definition.

Let T[i,j] be the minimum time to perform all the breaks on substring $s_{p_i+1} \cdots s_{p_j}$, for $0 \le i < j \le k+1$ (where we set $p_0 = 0$ and $p_{k+1} = m$).

Step 2: Recurrence relation.

- T[i, i+1] = 0 for $0 \le i \le k$ (no break in between positions p_i and p_{i+1}).
- $T[i,j] = \min_{\ell=i+1}^{j-1} \{(p_j p_i + 1) + T[i,\ell] + T[\ell,j]\}$ for $0 \le i < j-1 \le k$ (by the reasoning in Step 0, where $p_j p_i + 1$ is the cost for the break at p_ℓ).

Step 3: Iterative algorithm.

Compute values for decreasing *i* to ensure smaller subproblems solved first.

```
for i \leftarrow k, k-1, ..., 0:

T[i, i+1] \leftarrow 0

for j \leftarrow i+2, i+3, ..., k+1:

T[i, j] \leftarrow \infty

for \ell \leftarrow i+1, i+2, ..., j-1:

t \leftarrow T[i, \ell] + T[\ell, j] + p_j - p_i + 1

if t < T[i, j]:

T[i, j] \leftarrow t
```

Step 4: Solution reconstruction.

Use second array U[i,j] to record value of ℓ that makes $T[i,j] = T[i,\ell] + T[\ell,j] + p_j - p_i + 1$, then recursively build break order using values of U.

```
\begin{aligned} & \text{MinCost}(p_0 = 0, p_1, \dots, p_k, p_{k+1} = m) : \\ & \text{for } i \leftarrow k, k - 1, \dots, 0 : \\ & T[i, i+1] \leftarrow 0; \quad U[i, i+1] \leftarrow 0 \\ & \text{for } j \leftarrow i + 2, i + 3, \dots, k + 1 : \\ & T[i, j] \leftarrow \infty; \quad U[i, j] \leftarrow 0 \\ & \text{for } \ell \leftarrow i + 1, i + 2, \dots, j - 1 : \\ & t \leftarrow T[i, \ell] + T[\ell, j] + p_j - p_i + 1 \\ & \text{if } t < T[i, j] : \\ & T[i, j] \leftarrow t; \quad U[i, j] \leftarrow \ell \end{aligned} & \text{return BreakOrder}(U, 0, k + 1) & \text{BreakOrder}(U, i, j) : \\ & \text{if } U[i, j] = 0 : \\ & \text{return } [] \\ & \text{else:} \end{aligned} & \text{return } [U[i, j]] + \text{BreakOrder}(U, i, U[i, j]) + \text{BreakOrder}(U, U[i, j], j)
```

Total running time is $\Theta(k^3 + k) = \Theta(k^3)$.