Multiview 2D/3D Rigid Registration via a Point-Of-Interest Network for Tracking and Triangulation

Haofu Liao^{1*}, Wei-An Lin^{2*}, Jiarui Zhang³, Jingdan Zhang⁴, Jiebo Luo¹, S. Kevin Zhou^{5,6}

¹University of Rochester

²University of Maryland, College Park

³Rutgers University

⁴Z2W Corporation

⁵Chinese Academy of Sciences

⁶Peng Cheng Laboratory, Shenzhen

Contents

- 1. Motivation and introduction
- 2. Architecture
- 3. Experiments

Motivation

- 1. In 2D/3D rigid registration for intervention, the goal is to find a rigid pose of a pre-intervention 3D data, e.g., computed tomography (CT), such that it aligns with a 2D intra-intervention image of a patient, e.g., fluoroscopy.
- 2. To establish 2D point-to-point correspondences between the pre- and intraintervention images by tracking a set of point- of-interests (POIs).

(a) before registration

(b) after registration

Digitally Reconstructed Radiographs (DRRs)

- 1. Digitally reconstructed radiographs (DRRs) can be produced from CT using ray casting [21].
- 2. The generation of DRRs simulates how an X-ray is captured, which makes them visually similar to the X-rays.
- 3. are leveraged to facilitate the 2D/3D registration as we can observe the misalignment between the CT and patient by directly comparing the intra-intervention X-ray and the generated DRR.

Methodology

1. 3D data: a CT or CBCT volume, which is the most accessible and allows the

generation of DRR.

2. 2D data: we use X-rays.

$$\mathbf{T} = \begin{bmatrix} \mathbf{R}(\boldsymbol{\theta}) & \mathbf{t} \\ 0 & 1 \end{bmatrix},$$
 $\mathbf{t} = (t_x, t_y, t_z)^T$ $\boldsymbol{\theta} = (\theta_x, \theta_y, \theta_z)^T$

$$\mathbf{I}^{\mathrm{D}}(\mathbf{x}) = \int_{\mathbf{p} \in \boldsymbol{l}(\mathbf{x})} \mathbf{V}(\mathbf{T}^{-1}\mathbf{p}) d\mathbf{p},$$

Figure 2: The X-ray imaging model of the canonical-view (bottom-left to upper-right) and a non-canonical view (bottom-right to upper-left).

Methodology

for a point $\mathbf{X} = (X, Y, Z)^T$ in the isocenter coordinate, its projection \mathbf{x} on the detector is given by

$$\mathbf{x}' = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{h} \end{bmatrix} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix},$$

where

$$\mathbf{K} = \begin{bmatrix} -d & 0 & 0 \\ 0 & -d & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{h} = \begin{pmatrix} 0 \\ 0 \\ -c \end{pmatrix}.$$

projection $\mathbf{x} = (x, y) = (x'/z', y'/z').$

$$\mathbf{x}' = \mathbf{K} \begin{bmatrix} \mathbf{R}_{\text{view}} & \mathbf{t}_{\text{view}} + \mathbf{h} \end{bmatrix} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix},$$
 (4)

$$\mathbf{I}_{\text{view}}^{\text{D}}(\mathbf{x}) = \int_{\mathbf{p} \in \boldsymbol{l}(\mathbf{x})} \mathbf{V}(\mathbf{T}^{-1}\mathbf{T}_{\text{view}}^{-1}\mathbf{p}) d\mathbf{p}.$$
 (5)

Figure 2: The X-ray imaging model of the canonical-view (bottom-left to upper-right) and a non-canonical view (bottom-right to upper-left).

Constructing a transformation matrix

- Translation along 3 directions: tX, tY, tZ
- 2. Rotation along 3 directions: angleX, angleY, angleZ

$$\mathcal{R}_x(heta_x) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta_x & -\sin heta_x \ 0 & \sin heta_x & \cos heta_x \end{bmatrix}$$

$$\mathcal{R}_y(heta_y) = egin{bmatrix} \cos heta_y & 0 & \sin heta_y \ 0 & 1 & 0 \ -\sin heta_y & 0 & \cos heta_y \end{bmatrix}$$

$$\mathcal{R}_z(heta_z) = egin{bmatrix} \cos heta_z & -\sin heta_z & 0 \ \sin heta_z & \cos heta_z & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{M}(lpha,eta,\gamma)=\mathcal{R}_z(\gamma)\mathcal{R}_y(eta)\mathcal{R}_x(lpha)$$

$$\mathcal{R}_y(heta_y) = egin{bmatrix} \cos heta_y & 0 & \sin heta_y \ 0 & 1 & 0 \ -\sin heta_y & 0 & \cos heta_y \end{bmatrix} \hspace{1cm} \mathcal{M}(lpha,eta,\gamma) = egin{bmatrix} \coslpha\cos\gamma - \coseta\sinlpha\cos\gamma - \coseta\sin\gamma & -\coseta\cos\gamma\sinlpha - \coslpha\sin\gamma & \sinlpha\sin\gamma \ -\coslpha\sin\gamma & -\coslpha\sin\gamma & -\coslpha\sin\gamma \ -\coslpha\sin\gamma & -\coslpha\sin\gamma & -\coslpha\sin\gamma \ -\coslpha\sin\gamma & -\coslpha\sin\gamma \ -\coslpha\alpha\sin\gamma \ -\coslpha\alpha\alpha\sin\gamma \ -\coslpha\alpha\alpha\alpha\alpha\alpha \ -\coslpha\alpha\alpha\alpha\alpha \ -\coslpha\alpha\alpha\alpha\alpha \ -\coslpha\alpha\alpha\alpha\alpha \ -\coslpha\alpha\alpha\alpha\alpha \ -\coslpha\alpha\alpha\alpha \ -\coslpha\alpha\alpha \ -\coslpha\alpha \ -\cosl$$

$$\mathcal{M}(\alpha,\beta,\gamma) = \begin{bmatrix} \cos\alpha\cos\gamma - \cos\beta\sin\alpha\sin\gamma & -\cos\beta\cos\gamma\sin\alpha - \cos\alpha\sin\gamma & \sin\alpha\sin\beta \\ \cos\gamma\sin\alpha + \cos\alpha\cos\beta\sin\gamma & \cos\alpha\cos\beta\cos\gamma - \sin\alpha\sin\gamma & -\cos\alpha\sin\beta \\ \sin\beta\sin\gamma & \cos\gamma\sin\beta & \cos\gamma\sin\beta \end{bmatrix}$$

$$\mathsf{Matrix} = \begin{array}{c} \cos\alpha\cos\gamma - \cos\beta\sin\alpha\sin\gamma & -\cos\beta\cos\gamma\sin\alpha - \cos\alpha\sin\gamma & \sin\alpha\sin\beta & \mathsf{tX} \\ \cos\gamma\sin\alpha + \cos\alpha\cos\beta\sin\gamma & \cos\alpha\cos\beta\cos\gamma - \sin\alpha\sin\gamma & -\cos\alpha\sin\beta & \mathsf{tY} \\ \sin\beta\sin\gamma & \cos\gamma\sin\beta & \cos\beta & \mathsf{tZ} \\ 0 & 0 & 0 & 1 \end{array}$$

Case0005 groundtruth transformation

0.999800	0.018406	0.007847	14.714686
-0.019786	0.967802	0.250932	11.056741
-0.002976	-0.251037	0.967973	-11.534423
0.000000	0.000000	0.000000	1.000000

POINT

Figure 4: The architecture of the POINT network.

$$\hat{\mathbf{M}}_i^{\mathrm{X}} = \mathbf{F}^{\mathrm{X}} * (\mathbf{W} \odot \mathbf{F}^{\mathrm{D}}(\mathbf{x}_i^{\mathrm{D}})),$$

POINT2

Figure 5: The overall framework of POINT².

Triangulation

from the i-th view, and we obtain the 2D X-ray POI by

$$\hat{\mathbf{x}}_{ij}^{X} = \frac{1}{\sum_{\mathbf{x}} \hat{\mathbf{M}}_{ij}^{X}(\mathbf{x})} \sum_{\mathbf{x}} \hat{\mathbf{M}}_{ij}^{X}(\mathbf{x}) \mathbf{x}.$$
 (7)

Next, we rewrite Equation (4) as

$$\mathbf{D}(\mathbf{x})\mathbf{R}_{\text{view}}\mathbf{X} = c\mathbf{x} - \mathbf{D}(\mathbf{x})\mathbf{t}_{\text{view}},\tag{8}$$

where

$$\mathbf{D}(\mathbf{x}) = \begin{bmatrix} d & 0 \\ 0 & d \end{bmatrix}.$$

Thus, by applying Equation (8) for each view, we can get

$$\begin{cases}
\mathbf{D}(\hat{\mathbf{x}}_{1j}^{X})\mathbf{R}_{1}\hat{\mathbf{X}}_{j}^{X} &= c\hat{\mathbf{x}}_{1j}^{X} - \mathbf{D}(\hat{\mathbf{x}}_{1j}^{X})\mathbf{t}_{1}, \\
\mathbf{D}(\hat{\mathbf{x}}_{2j}^{X})\mathbf{R}_{2}\hat{\mathbf{X}}_{j}^{X} &= c\hat{\mathbf{x}}_{2j}^{X} - \mathbf{D}(\hat{\mathbf{x}}_{2j}^{X})\mathbf{t}_{2}, \\
&\vdots \\
\mathbf{D}(\hat{\mathbf{x}}_{nj}^{X})\mathbf{R}_{n}\hat{\mathbf{X}}_{j}^{X} &= c\hat{\mathbf{x}}_{nj}^{X} - \mathbf{D}(\hat{\mathbf{x}}_{nj}^{X})\mathbf{t}_{n}.
\end{cases} \tag{9}$$

Let

$$\mathbf{A} = \begin{bmatrix} \mathbf{D}(\hat{\mathbf{x}}_{1j}^{X}) \mathbf{R}_{1} \\ \mathbf{D}(\hat{\mathbf{x}}_{2j}^{X}) \mathbf{R}_{2} \\ \vdots \\ \mathbf{D}(\hat{\mathbf{x}}_{nj}^{X}) \mathbf{R}_{n} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} c\hat{\mathbf{x}}_{1j}^{X} - \mathbf{D}(\hat{\mathbf{x}}_{1j}^{X}) \mathbf{t}_{1} \\ c\hat{\mathbf{x}}_{2j}^{X} - \mathbf{D}(\hat{\mathbf{x}}_{2j}^{X}) \mathbf{t}_{2} \\ \vdots \\ c\hat{\mathbf{x}}_{nj}^{X} - \mathbf{D}(\hat{\mathbf{x}}_{nj}^{X}) \mathbf{t}_{n} \end{bmatrix}, (10)$$

then $\hat{\mathbf{X}}_{i}^{X}$ is given by

$$\hat{\mathbf{X}}_{j}^{\mathbf{X}} = \mathbf{A}^{+}\mathbf{b}.\tag{11}$$

The triangulation can be plugged into a loss function that regulates the training of POINT networks of different views.

$$\mathcal{L} = \frac{1}{mn} \sum_{i} \sum_{j} BCE(\sigma(\hat{\mathbf{M}}_{ij}^{X}), \sigma(\mathbf{M}_{ij}^{X})) + \frac{w}{n} \sum_{j} ||\hat{\mathbf{X}}_{j}^{X} - \mathbf{X}_{j}^{X}||_{2}, \quad (12)$$

Shape Alignment

DIAL @ Department of Biomedical Engineering

Shape Alignment. Let $P^D = [X_1^D \ X_2^D \ \dots \ X_m^D]$ be the selected CT POIs and $\mathbf{P}^{X} = [\hat{\mathbf{X}}_{1}^{X} \hat{\mathbf{X}}_{2}^{X} \dots \hat{\mathbf{X}}_{m}^{X}]$ be the estimated 3D POIs ³. The shape alignment finds a transformation matrix T^* such that the transformed P^D aligns closely with \mathbf{P}^{X} , i.e.,

$$\mathbf{T}^* = \arg\min_{\mathbf{T}} ||\mathbf{T}\mathbf{P}^{\mathbf{D}} - \mathbf{P}^{\mathbf{X}}||_F, \text{ s.t., } \mathbf{R}\mathbf{R}^T = \mathbf{I}$$
 (13)

Ablation Study

- (1) POI selection
- **2** POI convolution
- 3 Shift-invariant tracking

Figure 7: Training and validation losses of different POI selection methods.

Table 1: Ablation study of the proposed POINT network.

	Kernel size		POI type			Weight		mPD	
#	1	3	5	land.	Harris	rand.	w/	w/o	(mm)
1	√					✓	√		8.46
2		\checkmark				\checkmark	✓		8.12
3	İ		\checkmark			\checkmark	✓		9.49
4		\checkmark			\checkmark		✓		9.87
5	İ	\checkmark		✓			✓		12.72
6		\checkmark				✓		\checkmark	11.26

Figure 8: POI tracking results. (a) X-ray image. (b-d) DRR images with different in-plane offsets. The heatmaps of the tracking results are all aligned with the X-ray images and appear similar, showing the shift-invariant property.

Table 2: 2D/3D registration performance comparing with the state-of-the-art results.

	mTRE (mm)			GFR	Reg.
	50th	75th	95th	GFK	time
Initial	20.4	24.4	29.7	92.9%	N/A
Opt-NGI [16]	0.62	25.2	57.8	40.0%	23.5s
Opt-GO [4]	6.53	23.8	44.7	45.1%	22.8s
Opt-GC [4]	7.40	25.7	56.5	47.7%	22.1s
MDP [13]	5.40	8.62	27.6	<u>16.4%</u>	1.74s
POINT	5.63	<u>7.72</u>	<u>12.8</u>	18.6%	0.75s
$POINT^2$	<u>4.22</u>	5.70	9.84	4.9%	<u>0.78s</u>
MDP [13] + Opt	1.06	2.25	24.6	15.6%	3.21s
POINT + Opt	1.19	4.67	<u>21.8</u>	14.8%	2.16s
POINT ² + Opt	0.55	0.96	5.67	2.7%	<u>2.25s</u>

Limitations

- 1) First, similar to other learning-based approaches, our method requires a considerably large dataset from the targeting medical domain for learning reliable feature representations. When the data is insufficient, the proposed method may fail.
- 2) Second, although our method alone is quite robust and its accuracy is state-of-the-art through a combination with the optimization-based approach, it is still desirable to come up with a more elegant solution to solve the problem directly.
- 3) Finally, due to the use of triangulation, our method requires X-rays from at least two views to be available. Hence, for the applications where only a sin- gle view is acceptable, our method will render an estimate of registration parameter with inherent ambiguity.