DS 9 : énoncé

Les calculatrices ne sont pas autorisées.

Dans tout ce problème, \mathbb{K} désigne un corps et E est un \mathbb{K} -espace vectoriel de dimension finie, égale à $n \in \mathbb{N}$.

On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

Partie I : polynôme minimal

1°) Soit I un idéal non nul de $\mathbb{K}[X]$. Montrer qu'il existe un unique polynôme P dont le coefficient dominant est égal à 1 et tel que I est l'ensemble des multiples de P.

Lorsque
$$P = \sum_{n \in \mathbb{N}} b_n X^n \in \mathbb{K}[X]$$
 et $u \in L(E)$, on note $P(u) = \sum_{n \in \mathbb{N}} b_n u^n$.
En particulier, avec $P = 1 = X^0$, $P(u) = u^0 = Id_E$.

- **2°)** Soit $u \in L(E)$. Montrer que l'application $\varphi_u : \mathbb{K}[X] \longrightarrow L(E)$ est un morphisme d'algèbres.
- **3°)** Soit $u \in L(E)$. Montrer que la famille $(Id_E, u, u^2, \dots, u^{n^2})$ est liée. En déduire qu'il existe un unique polynôme π_u dans $\mathbb{K}[X]$, de coefficient dominant égal à 1, tel que pour tout $P \in \mathbb{K}[X]$, $P(u) = 0 \iff \pi_u \mid P$. On dira que π_u est le polynôme minimal de u.
- $\mathbf{4}^{\circ}$) Déterminer les endomorphismes u de E tels que $\deg(\pi_u) = 0$, puis tels que $\deg(\pi_u) = 1.$
- $\mathbf{5}^{\circ}$) On suppose pour cette question que $E = \mathbb{K}^2$ et que u est l'endomorphisme canoniquement associé à une matrice $M \in \mathcal{M}_2(\mathbb{K})$. Montrer que $M^2 - \text{Tr}(M)M + \det(M)I_2 = 0$. En déduire le polynôme minimal de u.
- 6°) Pour cette question, on suppose que n=4, que $e=(e_1,e_2,e_3,e_4)$ est une base de E et que f est un endomorphisme de E dont la matrice dans la base est e est égale à

$$M = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ -a_1 & a_0 & -a_3 & a_2 \\ -a_2 & a_3 & a_0 & -a_1 \\ -a_3 & -a_2 & a_1 & a_0 \end{pmatrix}.$$
Colcular la polynôme minimal de A

Partie II: ordre d'un vecteur

Pour toute la suite du problème, on fixe $f \in L(E)$.

Lorsque $P \in \mathbb{K}[X]$ et $u \in E$, on notera P(f)(u) la valeur prise en u par l'endomorphisme P(f).

 7°) Soit $u \in E$.

Montrer qu'il existe un unique polynôme P_u , de coefficient dominant égal à 1, tel que pour tout $P \in \mathbb{K}[X]$, $P(f)(u) = 0 \iff P_u \mid P$.

On dira que P_u est l'ordre de u (relatif à f).

8°) Pour cette seule question, $E=\mathbb{Q}^4$ et f est l'endomorphisme canoniquement associé à la matrice

$$\left(\begin{array}{cccc}
0 & 2 & -1 & 2 \\
1 & 0 & 0 & 0 \\
0 & 0 & -3 & 7 \\
0 & 0 & -1 & 3
\end{array}\right).$$

On note $c = (c_1, c_2, c_3, c_4)$ la base canonique de \mathbb{Q}^4 . Montrer que $(c_3, f(c_3), f^2(c_3), f^3(c_3))$ est une base de \mathbb{Q}^4 . Calculer P_{c_3} .

 9°) Montrer que π_f est un multiple de P_u .

On note S l'espace vectoriel engendré par la famille $(f^i(u))_{i\in\mathbb{N}}$.

- 10°) Montrer que $S = \{P(f)(u) / P \in \mathbb{K}[X]\}$. En déduire que $f(S) \subset S$.
- 11°) Montrer que $\dim(S) = \deg(P_u)$.
- 12°) On note g l'endomorphisme induit par f sur S: Montrer que $\pi_g = P_u$.

Partie III : familles f-génératrices

On dira qu'une famille (e_1, \ldots, e_k) de vecteurs de E est f-génératrice si et seulement si pour tout $x \in E$, il existe des polynômes Q_1, \ldots, Q_k dans $\mathbb{K}[X]$ tels que

$$x = \sum_{i=1}^{k} Q_i(f)(e_i).$$

- 13°) Pour cette seule question, reprenons l'exemple de la question 8 : montrer que (c_3) est f-génératrice, où (c_3) désigne la famille constituée par le seul vecteur c_3 .
- 14°) Montrer que E possède toujours au moins une famille f-génératrice de vecteurs.
- 15°) Soit (e_1, e_2, \dots, e_k) une famille f-génératrice de E.

Montrer que le polynôme minimal de f est égal au PPCM des ordres de e_1, \ldots, e_k , c'est-à-dire des polynômes P_{e_1}, \ldots, P_{e_k} .

Partie IV : le polynôme minimal est l'ordre d'un vecteur

Soient y_1, y_2, \ldots, y_k des vecteurs de E, dont les ordres relatifs à f, c'est-à-dire les polynômes P_{y_1}, \ldots, P_{y_k} , sont deux à deux premiers entre eux. On pose $y = y_1 + y_2 + ... + y_k$.

16°) Montrer que, pour tout
$$i \in \mathbb{N}_k$$
, P_{y_i} divise $P_y \prod_{\substack{1 \le j \le k \\ i \ne j}} P_{y_j}$.

17°) Montrer que
$$P_y = \prod_{i=1}^k P_{y_i}$$
.

On rappelle, et on ne demande pas de démontrer, le théorème de décomposition des noyaux, établi au DS 6 : si Q_1, \ldots, Q_n sont n polynômes de $\mathbb{K}[X]$ deux à deux premiers

entre eux, alors
$$\bigoplus_{i=1}^{n} \operatorname{Ker}(Q_{i}(f)) = \operatorname{Ker}\left(\left[\prod_{i=1}^{n} Q_{i}\right](f)\right)$$
.

Notons $\pi_f = \prod_{i=1}^{n} P_i^{\alpha_i}$ la décomposition de π_f en facteurs irréductibles dans $\mathbb{K}[X]$.

Pour tout $i \in \mathbb{N}_k$, appelons F_i le noyau de $P_i^{\alpha_i}(f)$.

18°) Soit $i \in \mathbb{N}_k$. Notons $e = (e_1, \dots, e_r)$ une base de F_i .

Montrer que, pour tout
$$j \in \mathbb{N}_r$$
, il existe $\beta_j \in \mathbb{N}$ tel que $P_{e_j} = P_i^{\beta_j}$.
Notons $\beta = \max_{1 \le j \le r} \beta_j$: Montrer que $\left(P_i^{\beta} \prod_{\substack{1 \le j \le k \\ j \ne i}} P_j^{\alpha_j}\right)(f) = 0$.

19°) Montrer qu'il existe $y \in E$ tel que $\pi_f = P_y$

Partie V : Endomorphismes cycliques

On dira que f est cyclique si et seulement si il existe $u \in E$ tel que la famille $(u, f(u), \ldots, f^{n-1}(u))$ est une base de E. Dans ce cas, on dira que u est un f-générateur de E.

- 20°) Lorsque f est l'endomorphisme de la question 8, f est-il cyclique?
- 21°) On suppose que f est cyclique. Montrer que $\{g \in L(E) \ / \ f \circ g = g \circ f\} = \{Q(f) \ / \ Q \in \mathbb{K}[X]\}.$
- 22°) Montrer que f est cyclique si et seulement si π_f est de degré n.

Pour la fin de ce problème, on suppose que f est cyclique et que $\pi_f = \prod_i P_i$, où les polynômes P_1, \ldots, P_t sont deux à deux premiers entre eux.

23°) Pour tout $i \in \{1, \ldots, t\}$, montrer que $\operatorname{Ker}(P_i(f))$ est stable par f (c'est-à-dire que $f(\operatorname{Ker}(P_i(f))) \subset \operatorname{Ker}(P_i(f))$).

On note f_i l'endomorphisme induit par f sur $Ker(P_i(f))$.

Montrer que $\operatorname{Ker}(P_i(f)) = \operatorname{Ker}(\pi_{f_i}(f)).$

En déduire que $\pi_{f_i} = P_i$.

24°) Pour tout $i \in \{1, \dots, t\}$, montrer que f_i est cyclique.