Quantum scale metrologyHighly-precise measurements beyond phase estimation

Central European Workshop on Quantum Optics Milan, 5th July 2023

Jesús Rubio

University of Surrey

jesus-rubiojimenez.github.io

Our plan for today

- 1. Quantum metrology beyond phase estimation
- 2. The implications of scale invariance
- 3. Optimal strategies for scale estimation
- 4. A case study: atomic lifetimes

Quantum metrology beyond phase estimation

Quantum metrology: fundamental problem

Minimise the error functional

$$\bar{\epsilon}_{\mathbf{y}} = \int d\theta dx \, p(\theta) \mathrm{Tr}[\rho_{\mathbf{y}}(\theta) M_{\mathbf{y}}(x)] \mathcal{D}[\tilde{\theta}_{\mathbf{y}}(x), \theta]$$

w.r.t. $\tilde{\theta}_{y}(x)$, $M_{y}(x)$ for given $p(\theta)$, $\rho_{y}(\theta)$.

Setup	Estimation	Probabilities
$x \equiv$ measurand	$\theta \equiv$ hypothesis	$p(\theta) \equiv \text{prior}$
y ≡ calibration	$ ilde{ heta}_{y}(x) \equiv ext{estimator}$	$ \rho_{\mathbf{y}}(\theta) \equiv \text{state} $
$\Theta \equiv$ unknown	$\mathcal{D}[\tilde{\theta}_{y}(x), \theta] \equiv \text{deviation}$	$M_{y}(x) \equiv POM$

Quantum metrology: ultimate precision limits

Let $\tilde{\vartheta}_y(x)$, $\mathcal{M}_y(x)$ be the optimal strategy resulting from the minimisation problem above. Then,

$$\bar{\epsilon}_{y} \geqslant \bar{\epsilon}_{y}|_{\tilde{\mathfrak{d}}(x)} \geqslant \bar{\epsilon}_{y}|_{\tilde{\mathfrak{d}}_{y}(x), \mathcal{M}_{y}(x)}.$$

Quantum metrology: optimal data processing

$$\tilde{\vartheta}_{\pmb{y}}(\pmb{x}) \pm \Delta \tilde{\vartheta}_{\pmb{y}}(\pmb{x})$$
,

where $\Delta \tilde{\vartheta}_{\mathbf{v}}(x)$ is a suitable function of

$$\bar{\epsilon}_{\mathbf{y}}(x) = \int d\theta \, p(\theta|x,\mathbf{y}) \mathcal{D}[\tilde{\theta}_{\mathbf{y}}(x),\theta],$$

with $p(\theta|x, y) \propto p(\theta) \text{Tr}[\rho_{v}(\theta) M_{v}(x)] (\equiv \textit{Bayes theorem})$.

Typical metrology frameworks

Parameter	phase	location
Support	$o \leqslant \theta < 2\pi$	$-\infty < \theta < \infty$
Symmetry	$ heta\mapsto heta'= heta+2\gamma\pi$, $\gamma\in\mathbb{Z}$	$ heta\mapsto heta'= heta+\gamma$, $\gamma\in\mathbb{R}$
Ignorance	$p(\theta) = 1/2\pi$	$p(\theta) \propto 1$
Error $\mathfrak{D}(\tilde{\theta}, \theta)$	$4\sin^2[(\tilde{\theta}-\theta)/2]$	$(\tilde{\theta}-\theta)^2$

Remarks:

- The formulation of quantum metrology is greatly simplified by taking the notion of *error functional* as a primitive.
- The universality of this approach is apparent inasmuch as probability theory is an extension of propositional logic.
- Different types of parameters demand different estimation-theoretic frameworks.
- Phase estimation is just one of many.

The implications of scale invariance

Definition: scale parameter

Let $\mathbf{z} = (x, \mathbf{y})$. $\Theta \in (0, \infty)$ scales z_i if z_i is considered 'large' when $z_i/\Theta \gg 1$ and 'small' when $z_i/\Theta \ll 1$. This is **invariant under transformations**

$$z_i\mapsto z_i'=\gamma z_i$$
, $\Theta\mapsto\Theta'=\gamma\Theta$,

with positive γ , since $z_i/\Theta = z_i'/\Theta'$.

Examples:

• Light speed: v/c

• Rate: kt

• Lifetime: t/τ

• Temperature: $E/(k_BT)$ or βE

Maximum ignorance about scale parameters

- o Alice and Bob wish to estimate Θ . They are told Θ is a *scale parameter*, but they are completely ignorant otherwise.
- Alice encodes her information in $p(\theta)d\theta$, while Bob does so in $p(\theta')d\theta'$, where $\theta' = \gamma\theta$.
- \circ Since they hold the *same* information, $p(\theta)d\theta = p(\theta')d\theta'$, i.e.,

$$p(\theta) = \gamma p(\gamma \theta).$$

The solution is:

Jaynes's transformation groups: Jeffreys's prior

$$p(\theta) \propto 1/\theta$$

uniquely represents maximum ignorance about scales.

The logarithmic error family

- Let $\phi \in (-\infty, \infty)$ be a location parameter.
- By virtue of translation invariance, $\mathcal{D}(\tilde{\Phi}, \Phi) = |\tilde{\Phi} \Phi|^k$ and maximum ignorance is represented by $p(\Phi) \propto 1$.
- This scenario can be mapped to scale estimation by setting $\phi = \alpha \log(\theta/\theta_u)$, where α , θ_u are free parameters.
- That is, $p(\phi)d\phi = p(\theta)d\theta$ implies $p(\phi) \propto 1 \mapsto p(\theta) \propto 1/\theta$.

Therefore:

Deviation function: the logarithmic family

$$\mathcal{D}(\tilde{\theta}, \theta) = |\alpha \log (\tilde{\theta}/\theta)|^k$$

Deviation function: properties of the logarithmic family

- Scale invariant, i.e., $\mathcal{D}(\gamma \tilde{\theta}, \gamma \theta) = \mathcal{D}(\tilde{\theta}, \theta)$.
- Symmetric, i.e., $\mathcal{D}(\tilde{\theta}, \theta) = \mathcal{D}(\theta, \tilde{\theta})$.
- $\circ~$ Reaches its absolute minimum at $\tilde{\theta}=\theta,$ where it vanishes.
- o Grows (decreases) monotonically from (towards) that minimum when $\tilde{\theta} > \theta$ ($\tilde{\theta} < \theta$).
- Can be interpreted as a generalised **noise-to-signal ratio** when $\alpha = 1$, k = 2, i.e.,

$$\mathcal{D}(\tilde{\theta}, \theta) = \log^2{(\tilde{\theta}/\theta)}.$$

Why does the logarithmic error family matter?

- ∘ Alice and Bob wish to estimate Θ , with $\theta \in [0.01, 100]$.
- Alice is not sure about scale estimation, so she continues to use $p(\theta) \propto 1$ and minimises $\int d\theta \, p(\theta) (\tilde{\theta} \theta)^2$, finding

$$\tilde{\theta} = \int d\theta p(\theta) \theta \simeq 50.$$

• Bob, on the other hand, uses $p(\theta) \propto 1/\theta$ and minimises $\int d\theta \, p(\theta) \log^2(\tilde{\theta}/\theta)$, finding

$$\tilde{\theta} = \theta_u \exp \left[\int d\theta p(\theta) \log \left(\frac{\theta}{\theta_u} \right) \right] = 1.$$

 \circ $\tilde{\theta}=1$ is the middle point w.r.t. the orders of magnitude within the prior range, and so the correct answer.

In summary:

Parameter	scale	
Support	$0< heta<\infty$	
Symmetry	$ heta\mapsto heta'=\gamma heta$, $\gamma\in \mathbb{R}_{++}$	
Ignorance	$p(heta) \propto 1/ heta$	
Error $\mathcal{D}(\tilde{\theta}, \theta)$	$\log^2(\tilde{\theta}/\theta)$	

Optimal strategies for scale estimation

Quantum scale metrology: fundamental problem

Minimise the mean logarithmic error

$$\bar{\epsilon}_{\mathbf{y},\mathrm{mle}} = \int d\theta dx \, p(\theta) \mathrm{Tr}[\rho_{\mathbf{y}}(\theta) M_{\mathbf{y}}(x)] \log^2 \left[\frac{\tilde{\theta}_{\mathbf{y}}(x)}{\theta} \right]$$

w.r.t. $\ddot{\theta}_{y}(x)$, $M_{y}(x)$ for given $p(\theta)$, $\rho_{y}(\theta)$. Here, it is assumed that: (i) $p(\theta|y) \mapsto p(\theta)$, and (ii) Θ scales y, but not x, which is dimensionless.

This can be solved *analytically* via **Jensen's operator inequality and** an operator version of **the calculus of variations**.

Result 1: optimal strategy

Let $S_{\mathbf{y}} = \int ds \, \mathcal{P}_{\mathbf{y}}(s) \, s$ solve the Lyaponuv equation

$$S_{\mathbf{v}}\rho_{\mathbf{v},0} + \rho_{\mathbf{v},0}S_{\mathbf{v}} = 2\rho_{\mathbf{v},1}$$

where

$$\rho_{\mathbf{y},k} = \int d\theta \, p(\theta) \rho_{\mathbf{y}}(\theta) \log^k \left(\frac{\theta}{\theta_u}\right);$$

then, the **optimal estimator** is

$$ilde{ heta}_{m{y}}(x)\mapsto ilde{ heta}_{m{y}}(s)= heta_u\exp(s)$$
 ,

and the **optimal POM** is

$$M_{\mathbf{v}}(\mathbf{x}) \mapsto \mathcal{M}_{\mathbf{v}}(\mathbf{s}) = \mathcal{P}_{\mathbf{v}}(\mathbf{s}).$$

Result 2: ultimate precision limits

$$\bar{\epsilon}_{ extbf{y}, ext{mle}} \geqslant \bar{\epsilon}_{ extit{p}} - \mathfrak{K}_{ extbf{y}} \geqslant \bar{\epsilon}_{ extit{p}} - \mathcal{J}_{ extbf{y}}$$

$ar{\epsilon}_p$	$\int d\theta p(\theta) \log^2(\theta/\tilde{\vartheta}_p)$	prior error
$ ilde{artheta}_p$	$\theta_u \exp[\int d\theta p(\theta) \log(\theta/\theta_u)]$	prior estimate
$\mathcal{K}_{\boldsymbol{y}}$	$\int dx \left\{ \operatorname{Tr}[M_{\mathbf{y}}(x)\rho_{\mathbf{y},1}]^{2}/\operatorname{Tr}[M_{\mathbf{y}}(x)\rho_{\mathbf{y},0}] \right\}$	classical IG*
$\partial_{\boldsymbol{y}}$	$Tr(\rho_{\textbf{y}, 0} S_{\textbf{y}}^2) = Tr(\rho_{\textbf{y}, 1} S_{\textbf{y}})$	quantum IG*

^{*} $IG \equiv information gain$

Result 3: optimal data processing

$$\tilde{\vartheta}_{\mathbf{y}}(s) \pm \Delta \tilde{\vartheta}_{\mathbf{y}}(s) = \tilde{\vartheta}(s)[\mathbf{1} \pm \bar{\varepsilon}_{\mathbf{y},\mathrm{mle}}^{1/2}(s)]$$
,

where

$$\tilde{\vartheta}_{\mathbf{y}}(s) = \theta_u \exp\left[\int d\theta \, p(\theta|s, \mathbf{y}) \log\left(\frac{\theta}{\theta_u}\right)\right]$$

and

$$\bar{\epsilon}_{\mathbf{y},\mathrm{mle}}(s) = \int d\theta \, p(\theta|s,\mathbf{y}) \log^2\left(\frac{\theta}{\theta_u}\right) - \tilde{\vartheta}_{\mathbf{y}}^2(s),$$

with $p(\theta|s, \mathbf{y}) \propto p(\theta) \text{Tr}[\rho_{\mathbf{v}}(\theta) \mathcal{P}_{\mathbf{v}}(s)] \ (\equiv \text{Bayes theorem}).$

Remarks:

- We can now calculate *universally optimal* estimators and **POMs** for any given prior and state in scale metrology.
- This enables the search for ultimate precision limits and optimal protocols for data analysis in scale metrology.
- It may be argued that local estimation theory, while valid and useful in its regime of applicability, is not essential.

A case study: atomic lifetimes

- Let a two-level atom prepared as $|\psi\rangle = \sqrt{1-a} |g\rangle + \sqrt{a} |e\rangle$ undergo *spontaneous photon emission*.
- Such a process may be described as

$$\rho_t(\tau) = \begin{pmatrix} \left[1 - a \eta_t(\tau)\right] & \left[a(1 - a) \eta_t(\tau)\right]^{\frac{1}{2}} \\ \left[a(1 - a) \eta_t(\tau)\right]^{\frac{1}{2}} & a \eta_t(\tau) \end{pmatrix},$$

with $\eta_t(\tau) = \exp(-t/\tau)$, **lifetime** τ and elapsed time t.

Problem: quantum estimation of a time scale

Unknown parameter: $\Theta = \tau$; prior information: $\theta/t \in [0.01, 10]$, a = 0.9.

S. M. Barnett, Quantum Information, Oxford: Oxford University Press (2009)

- o **'Yes'/'No' measurement**: $M_{t,\tau_o}^Y = [1 \eta_t(\tau_o)] |e\rangle\langle e|$ ('Yes'), $M_{t,\tau_o}^N = |g\rangle\langle g| + \eta_t(\tau_o) |e\rangle\langle e|$ ('No').
- Informative (reduces $\bar{\epsilon}_p$), but τ easier to estimate when decay likely to have already happened ($\tau_0/t \ll 1$).
- o Initial 'hint' τ_0 needed, and generally suboptimal.

Quantum Sci. Technol. **8**, 015009 (2022)

• **SLD measurement**:
$$M_{t,\tau_o}^i = |\lambda_{t,\tau_o}^i\rangle\langle\lambda_{t,\tau_o}^i|$$
, with $L_t(\tau_o)|\lambda_{t,\tau_o}^i\rangle$
= $\lambda_{t,\tau_o}^i|\lambda_{t,\tau_o}^i\rangle$ and $L_t(\tau)\rho_t(\tau) + \rho_t(\tau)L_t(\tau) = 2\partial_{\tau}\rho_t(\tau)$.

- o More informative than 'Yes'/'No' measurement.
- Initial 'hint' τ_0 still needed, and suboptimal for $\tau_0/t \gg 1$.

Quantum Sci. Technol. 8, 015009 (2022)

- o **Optimal measurement**: $|\psi_{+}\rangle = 0.094 |g\rangle + 0.996 |e\rangle$, $|\psi_{-}\rangle = 0.996 |g\rangle 0.094 |e\rangle$.
- \circ Globally optimal (τ_{\circ} -independent).
- \circ Establishes the fundamental precision limit for the estimation of τ .

Quantum Sci. Technol. **8**, 015009 (2022)

Remarks:

- Scale metrology enables the possibility of **exploiting**

presence of finite prior information.

quantum resources to estimate time and other scales.

o Moreover, it can establish fundamental precision limits in the

Epilogue: multiparameter estimation á la Bayes

Multiparameter metrology: scales

$$\bar{\epsilon}_{y,\mathrm{mle}} \geqslant \sum_{i} w_{i} \left[\int d\theta \, p(\theta) \log^{2} \left(\frac{\theta_{i}}{\theta_{u,i}} \right) - \mathrm{Tr}(\rho_{y,\mathrm{I},i}^{\mathrm{mle}} S_{y,i}^{\mathrm{mle}}) \right]$$

Multiparameter metrology: locations

$$\bar{\epsilon}_{\mathbf{y},\mathrm{mse}} \geqslant \sum_{i} w_{i} \left[\int d\theta \, p(\theta) \theta_{i}^{2} - \mathrm{Tr}(\rho_{\mathbf{y},\mathbf{1},i}^{\mathrm{mse}} \mathcal{S}_{\mathbf{y},i}^{\mathrm{mse}}) \right]$$

- $\circ w_i \equiv$ importance weight for the *i*th parameter
- \circ Not saturable when $[S_{y,i}, S_{y,j}] \neq 0$ for $i \neq j$
- Starting point to study an uncertainty- and prior-dependent notion of quantum incompatibility

Quantum Sci. Technol. **8**, 015009 (2022) Phys. Rev. A **101**, 032114 (2020)

Conclusions:

- Scale metrology enables the most precise estimation of scale parameters that is allowed by quantum mechanics.
- It provides a more fundamental picture of metrology, while also being practical and easy to use.
- It opens the door to constructing new quantum estimation theories for all kinds of parameters.

Key works:

Quantum Sci. Technol. **8**, 015009 (2022) Phys. Rev. Lett. **127**, 190402 (2021) Phys. Rev. A **101**, 032114 (2020)