

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office IN PEOPLE
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 17 JAN 2005

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

4 January 2005

PEST AVAILABLE COPY

Patents Form

THE PATENT OFFICE

Patents Act 1977 (Pails 16)

2 6 NOV 2003 RECEIVED BY FAX

Request for grant of a patent

(See the notes on the back of this form. You can also get un explanatory leaflet from the Potent Office to help you fill in this form)

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

					MITOGOG	
	Your reference		P34234-/CML)/MCM		
				26NOV03 F855185	i-1 D02884	
	Patent application number	000710			P01/7700 0.00-0327493.3	
_	(The Patent Office will fill in th	032749			2 6 NOV 2003	
	Full name, address and postcode each applicant (underline all surns		The Queen's University Ro Belfast BT7 1NN	University of Belfast ad		
	Patents ADP number (If you know	v it)	8860 20	1006	•	
	If the applicant is a corporate be country/state of its incorporation		United Kingd	om		
4.	Title of the invention	:	"Treatment M	edicament"		
	Name of your agent (if you have "Address for service" in the Unito which all correspondence sh	ited Kingdom	Murgitroyd 8 Scotland Ho 165-169 Sco	use		
	(including the postcode)		Glasgow G5 8PL		·	
	Patents ADP number (if you kno	w it)	1198013 5			
6.	If you are declaring priority for earlier patent applications, give and the date of filing of the or earlier applications and (if you each application number	e the country of each of these	Country	Priority application num (if you know it)	ib er Date of filing (day / month / year)	
7.	If this application is divided or derived from an earlier UK ap give the number and the filing the earlier application	plication,	Number of earlier a	pplication	Date of fliing (day / month / year,	
8.	Is a statement of inventorship to grant of a patent required it this request? (Answer Yes'if: a) any applicant named in part 3 b) there is an inventor who is not applicant, or c) any named applicant is a corporate note (d)	n support of is not an inventor, or named as an	Yes	·		

Patents Form 1/77

0087107/26-Nov-03/04:38/

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

59

Claim(s)

5 ·

Abstract

لس

Drawing (s)

20 -

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination
(Patents Form 10/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Date

Murgitroyd & Company

26 November 2003

Name and daytime telephone number of person to contact in the United Kingdom

MALCOLM MAIN

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Patents Form 1/77

ı	"Treatment Medicament"
2	
3	Field of the Invention
4	المنافع
5	This application relates to a medicament and its use
6	in methods of treatment. In particular, it relates
7	to the treatment of cancer with a death receptor
8	ligand, e.g. a FAS (CD95 or TNF receptor 2) receptor
9	ligand, and a chemotherapeutic agent.
10	•
11	Background to the Invention
12	
13	Breast, oesophageal, colorectal, all forms of GI
14	cancer and head and neck cancers are highly
15	malignant with overall 5-year survival rates of less
16	than 50%. The clinical outcome of these patients is
17	predetermined by the presence of widely disseminated
18	tumour cells termed micrometastases with potential
19	for metastatic growth, prior to clinical
20	presentation. Approximately 50% of oesophageal
21	cancer patients are selected for surgical therapy

with 30% 5-year survival for this patient sub-group. 1 Randomised clinical trials of neoadjuvant 5FU-based 2 chemotherapy combined with fractionated radiotherapy 3 have demonstrated improvements in survival of 10-4 20%, although the overall 5-year outcome for the 5 treated groups remains at 30-35%. Those patients б who demonstrate complete pathological response in 7 their primary tumours as a result of neoadjuvant 8 treatment have a five-year survival of 80%. 9 Conversely, those patients who do not respond to 10 5FU-based chemotherapy are denied the opportunity 11 for earlier treatment by surgery or a different 12 neoadjuvant chemotherapeutic based regimen. Thus, 13 there is an urgent need for improved therapeutic 14 strategies. 15 16 5-FU4 is widely used in the treatment of a range of 17 cancers including colorectal, breast and cancers of 18 the aerodigestive tract. The mechanism of 19 cytotoxicity of 5-FU has been ascribed to the 20 misincorporation of fluoronucleotides into RNA and 21 DNA and to the inhibition of the nucleotide 22 synthetic enzyme thymidylate synthase (TS) (1). TS 23 catalyses the conversion of deoxyuridine 24 monophosphate (dUMP) to deoxythymidine monophosphate 25 (dTMP) with 5,10-methylene tetrahydrofolate (CH2THF) 26 as the methyl donor. This reaction provides the sole 27 intracellular source of thymidylate, which is 28 essential for DNA synthesis and repair. The 5-FU 29 30 metabolite fluorodeoxyuridine monophosphate (FdUMP) forms a stable complex with TS and CH2THF resulting 31 in enzyme inhibition (1). Recently, more specific

1	folate-based inhibitors of TS have been developed
2	such as RTX and MTA, which form a stable complex
3	with TS and dUMP that inhibits binding of CH_2THF to
4	the enzyme (2, 3). TS inhibition causes nucleotide
5	pool imbalances that result in S phase cell cycle
6	arrest and apoptosis (4-6).
7	
8	
9	Summary of the Invention
1.0	
11	As described herein, the present inventors have
12	surprisingly shown that by combining treatment using
13	a death receptor ligand, such as an anti FAS
14 .	antibody, with a chemotherapeutic agent such as 5-FU
15	or an antifolate drug, such as ralitrexed (RTX) or
16	pemetrexed (MTA, Alimta), a synergistic effect is
17	achieved in the killing of cancer cells.
18	
19	Accordingly, in a first aspect, the present
20	invention provides a method of killing cancer cells
21	comprising administration of a therapeutically
22	effective amount of a) a specific binding member
23	which binds to a cell death receptor or a nucleic
24	acid encoding said binding member and (b) a
25	chemotherapeutic agent.
26	
27	In a second aspect, the present invention provides a
28	method of treating cancer comprising administration
29	of a therapeutically effective amount of a) a
30	specific binding member which binds to a cell death
31	receptor or a nucleic acid encoding said binding

1	member and (b) a chemotherapeutic agent to a mammal
2	in need thereof.
3	
4	The specific binding member and the chemotherapeutic
5	agent may be administered simultaneously,
6	sequentially or simultaneously. In preferred
7	embodiments of the invention, the chemotherapeutic
8	agent is administered prior to the specific binding
9	member.
10	
11	In a third aspect, there is provided the use of (a)
12	a specific binding member which binds to a cell
13	death receptor or a nucleic acid encoding said
14	binding member and (b) a chemotherapeutic agent in
1.5	the preparation of a medicament for treating cancer.
16	· •
17	In a fourth aspect, there is provided a product
18	comprising a) a specific binding member which binds
19	to a cell death receptor or a nucleic acid encoding
20	said binding member and (b) a chemotherapeutic agent
21	as a combined preparation for the simultaneous,
22	separate or sequential use in the treatment of
23	cancer.
24	·
25	According to a fifth aspect, there is provided a
26	pharmaceutical composition for the treatment of
27	cancer, wherein the composition comprises a) a
28	specific binding member which binds to a cell death
29	receptor or a nucleic acid encoding said binding
30	member and (b) a chemotherapeutic agent and (c) a
31	pharmaceutically acceptable excipient, diluent or

carrier. 1 2 In a sixth aspect, there is provided a kit for the 3 treatment of cancer, said kit comprising a) a 4 specific binding member which binds to a cell death 5 receptor or a nucleic acid encoding said binding б member and (b) a chemotherapeutic agent and (c) 7 instructions for the administration of (a) and (b) 8 separately, sequentially or simultaneously. 9 10 The invention may be used to treat any cancer. 11 preferred embodiments of the invention, the cancer 12 is one or more of colorectal, breast, ovarian, 13 cervical, gastric, lung, liver, skin and myeloid 14 (e.g. bone marrow) cancer. 15 16 In preferred embodiments of the invention, the 17 binding member is an antibody or a fragment thereof. 18 In particularly preferred embodiments, the binding 19 member is the FAS antibody CH11 (Yonehara, S., 20 Ishii, A. and Yonehara, M. (1989) J. Exp. Med. 169, 21 1747-1756) (available commercially e.g. from Upstate 22 Biotechnology, Lake Placid, NY). 23 24 The binding member may bind to any death receptor. 25 Death receptors include, Fas, TNFR, DR-3, DR-4 and 26 DR-5. In preferred embodiments of the invention, the 27 death receptor is FAS. 28 29 In preferred embodiments, the binding member 30 comprises at least one human constant region. 31

Any suitable chemotherapeutic agent may be used in 1 the present invention. In preferred embodiments, the 2 agent is doxorubicin, oxaliplatin, taxol, tomudex 3 (TDX), 5-Fluorouracil (5-FU), Irinotecan (CPT11) or 4 an antifolate e.g. MTA or RTX. In one preferred 5 embodiment, the agent is tomudex, 5-Fluorouracil, an 6 antifolate (for example RTX or MTA), or a 7 8 combination thereof. In a particularly preferred embodiment, the agent is 5-FU or an antifolate. In 9 another preferred embodiment, the agent is an 10 antifolate. In a particularly preferred embodiment 11 12 the agent is MTA. 13 The invention also provides a method of treating 14 tumour cells, the method including the steps of 15 administering a compound capable of triggering or 16 binding a death receptor, e.g. a binding member and 17 administering a chemotherapeutic agent. 18 19 20 The concentrations of binding members and chemotherapeutic agents used are preferably 21 sufficient to provide a synergistic effect. 22 Synergism is preferably defined as an RI of greater 23 than unity using the method of Kern as modified by 24 Romaneli (13, 14). The RI may be calculated as the 25 ratio of expected cell survival (S_{exp} , defined as the 26 product of the survival observed with drug A alone 27 and the survival observed with drug B alone) to the 28 observed cell survival (S_{obs}) for the combination of 29 30 A and B (RI= S_{exp}/S_{obs}). Synergism may then be defined 31 as an RI of greater than unity.

32

0087107, 26-Nov-03, 04+38

1 In preferred embodiments of the invention, said 2 specific binding member and chemotherapeutic agent 3 are provided in concentrations sufficient to produce an RI of greater than 1.5, more preferably greater than 2.0, most preferably greater than 2.25. 5 6 The combined medicament thus preferably produces a 7 8 synergistic effect when used to treat tumour cells. 9 10 A seventh aspect of the present invention therefore provides a medicament for use in treating tumour 11 12 cells, the medicament comprising at least one antibody directed at FAS receptor and at least one 13 14 cancer chemotherapeutic agent. 15 The invention also provides in a eighth aspect a 16 method of treating tumour cells, the method 17 18 including the steps of administering a compound 19 capable of triggering or binding a death receptor 20 and administering simultaneously, sequentially or 21 separately a chemotherapeutic agent. 22 23 In an ninth aspect, the invention provides the use of an antibody directed at FAS receptor in 24 25 combination with a cancer chemotherapeutic agent in the preparation of a medicament for treatment of 26 27 tumour cells. 28 29 In a particular aspect, the application relates to 30 the use of an antibody or a fas ligand directed at a 31 death receptor e.g. the FAS receptor (CD95/TNF 32 receptor 2) to synergise with cancer

. 17

1	chemotherapeutic agents, e.g. 5-FU or an antifolate,
2	for example RTX or MTA, to enhance therapy and
3	enhance the removal or regression of tumour cells.
4	
5	This application is relevant for, but is not limited
6	to, breast cancer, oesophageal cancer, colorectal
7	cancer, all forms of GI cancer and head and neck
8	cancers and may also be used to target other cells
9	via death receptors.
10	
11	Preferred features of each aspect of the invention
12	are as for each of the other aspects mutatis
13	mutandis.
14	
15	Detailed Description
16 .	
17	Binding members
18	
19	In the context of the present invention, a "binding
20	member" is a molecule which has binding specificity
21	for another molecule, in particular a receptor, in.
22	particular a death receptor. The binding member may
23	be a member of a pair of specific binding members.
24	The members of a binding pair may be naturally
25	derived or wholly or partially synthetically
26	produced. One member of the pair of molecules may
27	have an area on its surface, which may be a
28	protrusion or a cavity, which specifically binds to
29	and is therefore complementary to a particular
30	spatial and polar organisation of the other member
31	of the pair of molecules. Thus, the members of the
32	pair have the property of binding specifically to
	·

1 each other. Examples of types of binding pairs are antigen-antibody, biotin-avidin, hormone-hormone 2 3 receptor, receptor-ligand, enzyme-substrate. binding member of the invention and for use in the 4 5 invention may be any moiety, for example an antibody or ligand, which can bind to a death receptor. 6 8 Antibodies 9 10 An "antibody" is an immunoglobulin, whether natural or partly or wholly synthetically produced. 11 12 term also covers any polypeptide, protein or peptide 13 having a binding domain which is, or is homologous 14 to, an antibody binding domain. These can be derived from natural sources, or they may be partly 15 or wholly synthetically produced. Examples of 16 antibodies are the immunoglobulin isotypes and their 17 18 isotypic subclasses and fragments which comprise an 19 antigen binding domain such as Fab, scFv, Fv, dAb, 20 Fd; and diabodies. 21 The binding member of the invention may be an 22 antibody such as a monoclonal or polyclonal 23 24 antibody, or a fragment thereof. The constant region of the antibody may be of any class including, but 25 not limited to, human classes IgG, IgA, IgM, IgD and 26 The antibody may belong to any sub class e.g. 27 IgG1, IgG2, IgG3 and IgG4. IgG1 is preferred. 28 29 30 As antibodies can be modified in a number of ways, the term "antibody" should be construed as covering 31 any binding member or substance having a binding 32

1 domain with the required specificity. Thus, this term covers antibody fragments, derivatives, 2 functional equivalents and homologues of antibodies. 3 including any polypeptide comprising an 4 immunoglobulin binding domain, whether natural or 5 wholly or partially synthetic. Chimeric molecules 6 comprising an immunoglobulin binding domain, or 7 8 equivalent, fused to another polypeptide are therefore included. Cloning and expression of 9 chimeric antibodies are described in EP-A-0120694 10 and EP-A-0125023. 11 12 It has been shown that fragments of a whole antibody 13 can perform the function of binding antigens. 14 Examples of such binding fragments are (i) the Fab 15 . fragment consisting of VL, VH, CL and CH1 domains; 16 (ii) the Fd fragment consisting of the VH and CH1 17 18 domains; (iii) the Fv fragment consisting of the VL 19 and VH domains of a single antibody; (iv) the dAb fragment (Ward, E.S. et al., Nature 341:544-546 20 (1989)) which consists of a VH domain; (v) isolated 21 CDR regions; (vi) F(ab')2 fragments, a bivalent 22 23 fragment comprising two linked Fab fragments (vii) single chain Fv molecules (scFv), wherein a VH 24 domain and a VL domain are linked by a peptide 25 linker which allows the two domains to associate to 26 27 form an antigen binding site (Bird et al., Science 242:423-426 (1988); Huston et al., PNAS USA 85:5879-28 5883 (1988)); (viii) bispecific single chain Fv 29

dimers (PCT/US92/09965) and (ix) "diabodies",

multivalent or multispecific fragments constructed

3.33 3

by gene fusion (WO94/13804; P. Hollinger et al., 1 Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993)). 2 3 A fragment of an antibody or of a polypeptide for 4 5 use in the present invention generally means a 6 stretch of amino acid residues of at least 5 to 7 contiguous amino acids, often at least about 7 to 9 7 contiguous amino acids, typically at least about 9 8 to 13 contiguous amino acids, more preferably at 9 10 least about 20 to 30 or more contiguous amino acids 11 and most preferably at least about 30 to 40 or more consecutive amino acids. 12 13 14 A "derivative" of such an antibody or polypeptide, 15 or of a fragment antibody means an antibody or polypeptide modified by varying the amino acid 16 sequence of the protein, e.g. by manipulation of the 17 nucleic acid encoding the protein or by altering the 18 19 protein itself. Such derivatives of the natural 20 amino acid sequence may involve insertion, addition, deletion and/or substitution of one or more amino 21 22 acids, preferably while providing a peptide having 23 death receptor, e.g. FAS neutralisation and/or binding activity. Preferably such derivatives 24 involve the insertion, addition, deletion and/or 25 substitution of 25 or fewer amino acids, more 26 27 preferably of 15 or fewer, even more preferably of 10 or fewer, more preferably still of 4 or fewer and 28 29 most preferably of 1 or 2 amino acids only. 30 31 The term "antibody" includes antibodies which have 32 been "humanised". Methods for making humanised

12

```
1
      antibodies are known in the art. Methods are
      described, for example, in Winter, U.S. Patent No.
 2
      5,225,539. A humanised antibody may be a modified
 3
      antibody having the hypervariable region of a
 4
      monoclonal antibody and the constant region of a
 5
 6
      human antibody. Thus the binding member may
 7
      comprise a human constant region.
 8
 9
      The variable region other than the hypervariable
10
      region may also be derived from the variable region
11
      of a human antibody and/or may also be derived from
      a monoclonal antibody. In such case, the entire
12
13
      variable region may be derived from murine
     monoclonal antibody and the antibody is said to be
14
15
    chimerised.
                   Methods for making chimerised
16
      antibodies are known in the art. Such methods
17
      include, for example, those described in U.S.
18
     patents by Boss (Celltech) and by Cabilly
      (Genentech). See U.S. Patent Nos. 4,816,397 and
19
20
      4,816,567, respectively.
21 .
22
      It is possible to take monoclonal and other
23
     antibodies and use techniques of recombinant DNA
     technology to produce other antibodies or chimeric
24
25
     molecules which retain the specificity of the
26
     original antibody. Such techniques may involve
27
      introducing DNA encoding the immunoglobulin variable
28
     region, or the complementary determining regions
      (CDRs), of an antibody to the constant regions, or
29
30
     constant regions plus framework regions, of a
31
     different immunoglobulin. See, for instance, EP-A-
32
      184187, GB 2188638A or EP-A-239400. A hybridoma or
```

. 35

20-11-03;17:11 | #Murgitroya ana ou.

32

other cell producing an antibody may be subject to 1 genetic mutation or other changes, which may or may 2 not alter the binding specificity of antibodies 3 produced. 4 5 A typical antibody for use in the present invention б is a humanised equivalent of CH11 or any chimerised 7 equivalent of an antibody that can bind to the FAS 8 receptor and any alternative antibodies directed at 9 the FAS receptor that have been chimerised and can 10 be use in the treatment of humans. Furthermore, the 11 typical antibody is any antibody that can cross-12 react with the extracellular portion of the FAS 13 receptor and either bind with high affinity to the 14 FAS receptor, be internalised with the FAS receptor 15 or trigger signalling through the FAS receptor. 16. 17 Production of Binding Members 18 19 The binding members for use in the present invention 20 may be generated wholly or partly by chemical 21 synthesis. The binding members can be readily 22 prepared according to well-established, standard 23 liquid or, preferably, solid-phase peptide synthesis 24 methods, general descriptions of which are broadly 25 available (see, for example, in J.M. Stewart and 26 J.D. Young, Solid Phase Peptide Synthesis, 2nd 27 edition, Pierce Chemical Company, Rockford, Illinois 28 (1984), in M. Bodanzsky and A. Bodanzsky, The 29 Practice of Peptide Synthesis, Springer Verlag, New 3.0 York (1984); and Applied Biosystems 430A Users 31

Manual, ABI Inc., Foster City, California), or they

may be prepared in solution, by the liquid phase 1 method or by any combination of solid-phase, liquid 2 phase and solution chemistry, e.g. by first 3 completing the respective peptide portion and then, 4 if desired and appropriate, after removal of any 5 protecting groups being present, by introduction of 6 the residue X by reaction of the respective carbonic 7 or sulfonic acid or a reactive derivative thereof. 8 9 Another convenient way of producing a binding member 10 suitable for use in the present invention is to 11 express nucleic acid encoding it, by use of nucleic 12 acid in an expression system. Thus the present 13 invention further provides the use of (a) nucleic 14 acid encoding a specific binding member which binds (8) 115 to a cell death receptor and (b) a chemotherapeutic agent in the preparation of a medicament for 17 treating cancer. 18 19 Nucleic acid for use in accordance with the present 20 invention may comprise DNA or RNA and may be wholly 21 or partially synthetic. In a preferred aspect, 22 nucleic acid for use in the invention codes for a 23 binding member of the invention as defined above. 24 The skilled person will be able to determine 25 substitutions, deletions and/or additions to such 26 nucleic acids which will still provide a binding 27 member suitable for use in the present invention. 28 29 Nucleic acid sequences encoding a binding member for 30 use with the present invention can be readily 31 prepared by the skilled person using the information 32

and references contained herein and techniques known ı in the art (for example, see Sambrook, Fritsch and 2 Maniatis, "Molecular Cloning", A Laboratory Manual, 3 Cold Spring Harbor Laboratory Press, 1989, and 4 Ausubel et al, Short Protocols in Molecular Biology, 5 John Wiley and Sons, 1992), given the nucleic acid 6 sequences and clones available. These techniques 7 include (i) the use of the polymerase chain reaction 8 (PCR) to amplify samples of such nucleic acid, e.g. 9 from genomic sources, (ii) chemical synthesis, or 10 (iii) preparing cDNA sequences. DNA encoding 11 antibody fragments may be generated and used in any 12 suitable way known to those of skill in the art, 13 including by taking encoding DNA, identifying 14 suitable restriction enzyme recognition sites either 15. 3 side of the portion to be expressed, and cutting out 16 said portion from the DNA. The portion may then be 17 operably linked to a suitable promoter in a standard 18 commercially available expression system. Another 19 recombinant approach is to amplify the relevant 20 portion of the DNA with suitable PCR primers. 21 Modifications to the sequences can be made, e.g. 22 using site directed mutagenesis, to lead to the 23 expression of modified peptide or to take account of 24 codon preferences in the host cells used to express 25 the nucleic acid. 26 27 The nucleic acid may be comprised as construct(s) in 28 the form of a plasmid, vector, transcription or 29 expression cassette which comprises at least one 30 nucleic acid as described above. The construct may 31 be comprised within a recombinant host cell which 32

1 comprises one or more constructs as above. Expression may conveniently be achieved by culturing 2 under appropriate conditions recombinant host cells 3 containing the nucleic acid. Following production by expression a specific binding member may be isolated and/or purified using any suitable б technique, then used as appropriate. Binding members-encoding nucleic acid molecules and 9 10 vectors for use in accordance with the present invention may be provided isolated and/or purified, 11 e.g. from their natural environment, in 12 13 substantially pure or homogeneous form, or, in the 14 case of nucleic acid, free or substantially free of nucleic acid or genes origin other than the sequence $\mathbb{T}^{\mathbb{N}}$ 15 encoding a polypeptide with the required function. 16 17 18 Systems for cloning and expression of a polypeptide 19 in a variety of different host cells are well known. Suitable host cells include bacteria, mammalian 20 cells, yeast and baculovirus systems. 21 Mammalian 22 cell lines available in the art for expression of a 23 heterologous polypeptide include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, 24 25 NSO mouse melanoma cells and many others. 26 preferred bacterial host is E. coli. 27 The expression of antibodies and antibody fragments 28 29 in prokaryotic cells such as E. coli is well 30 established in the art. For a review, see for example Plückthun, Bio/Technology 9:545-551 (1991). 31 Expression in eukaryotic cells in culture is also 32

available to those skilled in the art as an option 1 for production of a binding member, see for recent 2 3 review, for example Reff, Curr. Opinion Biotech. 4 4:573-576 (1993); Trill et al., Curr. Opinion Biotech. 6:553-560 (1995). 5 Suitable vectors can be chosen or constructed, 7 containing appropriate regulatory sequences, 8 9 including promoter sequences, terminator sequences. polyadenylation sequences, enhancer sequences, 10 marker genes and other sequences as appropriate. 11 12 Vectors may be plasmids, viral e.g. 'phage, or phagemid, as appropriate. For further details see, 13 for example, Sambrook et al., Molecular Cloning: A 14 15 Laboratory Manual: 2nd Edition, Cold Spring Harbor 16 Laboratory Press (1989). Many known techniques and protocols for manipulation of nucleic acid, for 17 example in preparation of nucleic acid constructs, 18 19 mutagenesis, sequencing, introduction of DNA into 20 cells and gene expression, and analysis of proteins, 21 are described in detail in Ausubel et al. eds., 22 Short Protocols in Molecular Biology, 2nd Edition, 23 John Wiley & Sons (1992). 24 25 The nucleic acid may be introduced into a host cell 26 by any suitable means. The introduction may employ any available technique. For eukaryotic cells, 27 28 suitable techniques may include calcium phosphate 29 transfection, DEAE-Dextran, electroporation, 30 liposome-mediated transfection and transduction using retrovirus or other virus, e.g. vaccinia or, 31 for insect cells, baculovirus. For bacterial cells, 32

1	suitable techniques may include calcium chioride
2	transformation, electroporation and transfection
3	using bacteriophage.
4	
5	Marker genes such as antibiotic resistance or
6	sensitivity genes may be used in identifying clones
7	containing nucleic acid of interest, as is well
8	known in the art.
9	• .
10	The introduction may be followed by causing or
11	allowing expression from the nucleic acid, e.g. by
12	culturing host cells under conditions for expression
13	of the gene.
1.4	
15	The nucleic acid may be integrated into the genome
16	(e.g. chromosome) of the host cell. Integration may
17	be promoted by inclusion of sequences which promote
18	recombination with the genome in accordance with
19	standard techniques. The nucleic acid may be on an
20	extra-chromosomal vector within the cell, or
21	otherwise identifiably heterologous or foreign to
22	the cell.
23	
24	Chemotherapeutic Agents
25	
26	As described above, the present invention is based
27	on the surprising demonstration that combining
28	treatment using a death receptor ligand such as the
29	CH11 antibody with a chemotherapeutic agent results
30	in a surprisingly enhanced synergistic therapeutic
31	effect.

Any suitable chemotherapeutic agent or agents may be 1 used in the present invention. For example, the 2 agent for use in the invention may include but is 3 not limited to: 5-Fluorouracil (5 FU), tomudex (TDX) 4 antifolates, for example RTX or MTA, Doxorubicin, 5 · taxol, Leucovorin, Irinotecan, Mitomycin C, 6 Oxaliplatin, Raltitrexed, Tamoxifen or Cisplatin. 7 In particularly preferred embodiments, the agent is 9 5-FU or an antifolate. More preferably, the agent 10 is an antifolate. In one preferred embodiment, the 11 agent is MTA. 12 13 Treatment 14 Treatment" includes any regime that can benefit a 115 The treatment may be in human or non-human animal. 16 respect of an existing condition or may be 17 prophylactic (preventative treatment). Treatment may 18 include curative, alleviation or prophylactic 19 effects. 20 21 "Treatment of cancer" includes treatment of 22 conditions caused by cancerous growth and includes 23 the treatment of neoplastic growths or tumours. 24 Examples of tumours that can be treated using the 25 invention are, for instance, sarcomas, including 26 osteogenic and soft tissue sarcomas, carcinomas, 27 e.g., breast-, lung-, bladder-, thyroid-, prostate-, 28 colon-, rectum-, pancreas-, stomach-, liver-, 29 uterine-, cervical and ovarian carcinoma, lymphomas, 30 including Hodgkin and non-Hodgkin lymphomas, 31 neuroblastoma, melanoma, myeloma, Wilms tumor, and

1	leukemias, including acute lymphoblastic leukaemia
2	and acute myeloblastic leukaemia, gliomas and
3	retinoblastomas.
4	
5	
6	The compositions and methods of the invention may be
7	particularly useful in the treatment of existing
8	cancer and in the prevention of the recurrence of
9	cancer after initial treatment or surgery.
10	
11	Administration
12	
13	Binding members and chemotherapeutic agents may be
14	administered simultaneously, separately or
15	sequentially.
16	
17	Where administered separately or sequentially, they
18	may be administered within any suitable time period
19	e.g. within 1, 2, 3, 6, 12, 24, 48 or 72 hours of
20	each other. In preferred embodiments, they are
21	administered within 6, preferably within 2, more
22	preferably within 1, most preferably within 20
23	minutes of each other. ***Please advise on preferred
24	.ranges***
25	
26	In a preferred embodiment, they are administered as
27	a pharmaceutical composition, which will generally
28 .	comprise a suitable pharmaceutical excipient,
29	diluent or carrier selected dependent on the
30	intended route of administration.
31	

Binding members and chemotherapeutic agents of and 1 for use in the present invention may be administered 2 to a patient in need of treatment via any suitable 3 route. The precise dose will depend upon a number of 4 factors, including the precise nature of the member 5 (e.g. whole antibody, fragment or diabody) and 6 chemotherapeutic agent. 7 8 Some suitable routes of administration include (but 9 are not limited to) oral, rectal, nasal, topical 10 (including buccal and sublingual), vaginal or 11 parenteral (including subcutaneous, intramuscular, 12 intravenous, intradermal, intrathecal and epidural) 13 administration. Intravenous administration is 14 preferred. 15 16 It is envisaged that injections (intravenous) will 17 be the primary route for therapeutic administration 18 of compositions although delivery through a catheter 19 or other surgical tubing is also envisaged. 20 formulations may be utilised after reconstitution 21 from powder formulations. 22 23 For intravenous, injection, or injection at the site 24 of affliction, the active ingredient will be in the 25 form of a parenterally acceptable aqueous solution 26 which is pyrogen-free and has suitable pH, 27 isotonicity and stability. Those of relevant skill 28 in the art are well able to prepare suitable 29 solutions using, for example, isotonic vehicles such 30 as Sodium Chloride Injection, Ringer's Injection, 31 Lactated Ringer's Injection. Preservatives, 32

1 stabilisers, buffers, antioxidants and/or other 2 additives may be included, as required. 3 Pharmaceutical compositions for oral administration 4 may be in tablet, capsule, powder or liquid form. 5 tablet may comprise a solid carrier such as gelatin 6 or an adjuvant. Liquid pharmaceutical compositions 7 generally comprise a liquid carrier such as water, 8 petroleum, animal or vegetable oils, mineral oil or 9 10 synthetic oil. Physiological saline solution, dextrose or other saccharide solution or glycols 11 12 such as ethylene glycol, propylene glycol or polyethylene glycol may be included. 13 14 The binding member, agent, product or composition 15 16 may also be administered via microspheres, liposomes, other microparticulate delivery systems 17 or sustained release formulations placed in certain 18 tissues including blood. Suitable examples of 19 20 sustained release carriers include semipermeable 21 polymer matrices in the form of shared articles, . 22 e.g. suppositories or microcapsules. Implantable or microcapsular sustained release matrices include 23 24 polylactides (US Patent No. 3, 773, 919; EP-A-0058481) copolymers of L-glutamic acid and gamma 25 26 ethyl-L-glutamate (Sidman et al, Biopolymers 22(1): 547-556, 1985), poly (2-hydroxyethyl-methacrylate) 27 or ethylene vinyl acetate (Langer et al, J. Biomed. 28 Mater. Res. 15: 167-277, 1981, and Langer, Chem. 29 Tech. 12:98-105, 1982). Liposomes containing the 30 31 polypeptides are prepared by well-known methods: DE 3,218, 121A; Epstein et al, PNAS USA, 82: 3688-3692, 32

```
1985; Hwang et al, PNAS USA, 77: 4030-4034, 1980;
1
    EP-A-0052522; E-A-0036676; EP-A-0088046; EP-A-
2
    0143949; EP-A-0142541; JP-A-83-11808; US Patent Nos
3
    4,485,045 and 4,544,545. Ordinarily, the liposomes
4
     are of the small (about 200-800 Angstroms)
5
    unilamellar type in which the lipid content is
6
     greater than about 30 mol. % cholesterol, the
7
     selected proportion being adjusted for the optimal
8
     rate of the polypeptide leakage.
9
10
     Examples of the techniques and protocols mentioned
11
      above and other techniques and protocols which may
12
     be used in accordance with the invention can be
13
      found in Remington's Pharmaceutical Sciences, 16th
14
      edition, Oslo, A. (ed), 1980.
15
16
      The binding member, agent, product or composition
17
      may be administered in a localised manner to a
18
      tumour site or other desired site or may be
19
      delivered in a manner in which it targets tumour or
20
      other cells. Targeting therapies may be used to
21
      deliver the active agents more specifically to
22
      certain types of cell, by the use of targeting
23
      systems such as antibody or cell specific ligands.
24
      Targeting may be desirable for a variety of reasons,
 25
       for example if the agent is unacceptably toxic, or
 26
       if it would otherwise require too high a dosage, or
 27
       if it would not otherwise be able to enter the
 28
       target cells.
 29
 30
       Pharmaceutical Compositions
 31
```

32

0087107 26-Nov-03 04:38:

1	As described above, the present invention extends to
. 2	a pharmaceutical composition for the treatment of
3	cancer, the composition comprising a) a specific
4	binding member which binds to a cell death receptor
5	or a nucleic acid encoding said binding member and
6	(b) a chemotherapeutic agent and (c) a
7	pharmaceutically acceptable excipient, diluent or
8	carrier. Pharmaceutical compositions according to
9	the present invention, and for use in accordance
10	with the present invention may comprise, in addition
11	to active ingredients, a pharmaceutically acceptable
12	excipient, carrier, buffer stabiliser or other
13	materials well known to those skilled in the art.
14	Such materials should be non-toxic and should not
15	interfere with the efficacy of the active
16	ingredient. The precise nature of the carrier or
17	other material will depend on the route of
18	administration, which may be oral, or by injection,
19	e.g. intravenous.
20	·
21	The formulation may be a liquid, for example, a
22	physiologic salt solution containing non-phosphate
23	buffer at pH 6.8-7.6, or a lyophilised powder.
24	·
25	Dose
26	
27	The binding members, agents, products or
28	compositions are preferably administered to an
29	individual in a "therapeutically effective amount",
30	this being sufficient to show benefit to the
31	individual. The actual amount administered, and
32	rate and time-course of administration will demand

on the nature and severity of what is being treated. 1 2 As described herein, the concentrations are preferably sufficient to show a synergistic effect. 3 Prescription of treatment, e.g. decisions on dosage 4 etc, is ultimately within the responsibility and at 5 6 the discretion of general practitioners and other 7 medical doctors, and typically takes account of the disorder to be treated, the condition of the Я 9 individual patient, the site of delivery, the method 10 of administration and other factors known to 11 practitioners. 12 13 The optimal dose can be determined by physicians 14 based on a number of parameters including, for 15 example, age, sex, weight, severity of the condition being treated, the active ingredient being 16 administered and the route of administration. For 17 18 example, with respect to binding members, in 19 general, a serum concentration of polypeptides and antibodies that permits saturation of receptors is 20 21 desirable. A concentration in excess of 22 approximately 0.1nM is normally sufficient. example, a dose of 100mg/m2 of antibody provides a 23 serum concentration of approximately 20nM for 24 25 approximately eight days. 26 As a rough guideline, doses of antibodies may be 27 given in amounts of 1ng/kg- 500mg/kg of patient 28 29 Equivalent doses of antibody fragments 30 should be used at the same or more frequent 31 intervals in order to maintain a serum level in

1	excess of the concentration that permits saturation
2	of death receptor.
3	
4	Doses of the binding members may be given at any
5	suitable dose interval e.g. daily, once, twice or
6	thrice weekly.
7	
8	For example, the periods of administration of a
9	humanised antibody could be from 1 bolus injection
10	to weekly administration for up to one year in
11	combination with chemotherapeutic agents. The
12	likely dose is upwards of 1mg/per kg/per patient.
13	
14	Doses of chemotherapeutic agent will depend on the
15	factors described above but preferably are
16	administered in doses which are within the normal
17	range or, preferably, at a lower concentration than
18	the normal range, wherein the normal range is the
19	range of concentrations at which the
20	chemotherapeutic agent is usually administered in
21	the absence of other therapeutic agents.
22	
23	It is anticipated that in embodiments of the
24	invention the binding members and chemotherapeutic
25	agent could be given in combination with other forms
26	of chemotherapy or indeed radiotherapy.
27	
28	Indeed it is believed that the advantages of the
29	invention may also be obtained when using specific
30	binding members of the invention and radiotherapy,
31	even in the absence of chemotherapeutic agents.
32	

£.1-

1 Thus, in a tenth aspect of the invention, there is provided a method of killing cancer cells comprising 2 administration of a therapeutically effective amount 3 of a) a specific binding member which binds to a cell death receptor or a nucleic acid encoding said 5 binding member and (b) radoiotherapy treatment. б In a eleventh aspect, the present invention provides 8 a method of treating cancer comprising 9 administration of a therapeutically effective amount 10 11 of a) a specific binding member which binds to a cell death receptor or a nucleic acid encoding said 12 binding member and (b) radiotherapy treatment to a 13 14 mammal in need thereof. 15 The specific binding member and the radiotherapy may 16 17 be administered simultaneously, sequentially or 18 simultaneously. In preferred embodiments of the 19 invention, the chemotherapeutic agent is administered prior to the radiotherapy. 20 21 22 The invention will now be described further in the following non-limiting examples. Reference is made 23 24 to the accompanying drawings in which: 25 Figure 1A illustrates Northern blot analysis of Fas 26 27 mRNA expression in MCF-7 cells 48 hours after 28 treatment with no drug (C) or 5µM 5-FU. Equal 29 loading was assessed by analysing β -tubulin mRNA 30 expression.

į. .

Figure 1B illustrates Western blot analysis of Fas 1 expression in MCF-7 cells 72 hours after treatment 2 with no drug (C), 5µM 5-FU or 25nM RTX. Equal 3 loading was assessed by analysing β -tubulin 4 expression. 5 6 Figure 1C illustrates MTT cell viability assays in 7 MCF-7 cells treated with no drug (control), CH-11 8 alone (250ng/ml), 5-FU alone (5µM), or co-treated 9 with 5-FU and CH-11. The decrease in cell viability 10 for the combined treatment was highly synergistic 11 (RI=2.40, p<0.0005). 12 13 Figure 1D illustrates MTT cell viability assays in 14 MCF-7 cells treated with no drug (control), CH-11 15 alone (250ng/ml), RTX alone (25nM), or co-treated 16 with RTX and CH-11. The decrease in cell viability 17 for the combined treatment was highly synergistic 18 19 (RI=2.22, p<0.0005).20 Figure 1E illustrates analysis of apoptosis in 5-FU 21 and CH-11 co-treated MCF-7 cells. 22 23 Figure 1F illustrates analysis of apoptosis in RTX 24 and CH-11 co-treated MCF-7 cells. Apoptosis was 25 assessed by analysing the sub-G1/G0 fraction of 26 propidium iodide stained cells by flow cytometry. 27 For both the MTT and flow cytometric analyses the 28 cells were pre-treated with each chemotherapeutic 29 drug for 72 hours followed by CH-11 for a further 24 30 31 hours.

```
Figure 2A illustrates Western blot analysis of Fas
1
     expression in HCT116p53+/+ cells treated with a range
2
     of concentrations of 5-FU for 48 hours.
3
4
     Figure 2B illustrates MTT cell viability assays in
5
     HCT116p53+/+ cells treated with no drug (control),
6
     CH-11 alone (250ng/ml), 5-FU alone (5μM), or co-
7
     treated with 5-FU and CH-11. The decrease in cell
8
     viability for the combined treatment was synergistic
9
      (RI=1.92, p<0.005).
10
11
     Figure 2C illustrates Western blot analysis of Fas
12
      expression in HCT116p53+/+ cells treated with a range
13
      of concentrations of RTX for 48 hours.
14
15
      Figure 2D illustrates MTT cell viability assays in
16
      HCT116p53+/+ cells treated with no drug (control),
17
      CH-11 alone (250ng/ml), RTX alone (50nM), or co-
18
      treated with RTX and CH-11. The decrease in cell
19
      viability for the combined treatment was highly
20
      synergistic (RI=3.44, p<0.0005).
21
22
      Figure 2E illustrates Western blot analysis of Fas
23
      expression in RKO cells treated with a range of
24
       concentrations of 5-FU for 48 hours.
25
26
       Figure 2F illustrates MTT cell viability assays in
 27
       RKO cells treated with no drug (control), CH-11
 28
       alone (250ng/ml), 5-FU alone (5\muM), or co-treated
 29
       with 5-FU and CH-11. The decrease in cell viability
 30
       for the combined treatment was synergistic (RI=1.74,
. 31
       p<0.005).
 32
```

1 Figure 2G illustrates Western blot analysis of Fas 2 expression in RKO cells treated with a range of 3 concentrations of RTX for 48 hours. 4 5 Figure 2H illustrates MTT cell viability assays in 6 RKO cells treated with no drug (control), CH-11 7 alone (250ng/ml), RTX alone (5nM), or co-treated 8 with RTX and CH-11. The decrease in cell viability 9 for the combined treatment was highly synergistic 10 (RI=2.31, p<0.0005). 11 Equal loading of Western blots was assessed by analysing β -tubulin expression. For 12 each combined treatment the cells were pre-treated 13 with chemotherapeutic drug for 72 hours followed by 14 15 CH-11 for a further 24 hours. 16 Figure 3A illustrates Western blot analysis of Fas, 17 FasL, procaspase 8 and BID expression in MCF-7 cells 18 treated with IC_{60} doses of 5-FU (5 μ M) and RTX (25nM) 19 for 72 hours. Equal loading was assessed using a $\beta\text{--}$ 20 21 tubulin antibody. 22 Figure 3B illustrates Western blot analysis of Fas, 23 procaspase 8 and BID expression in MCF-7 cells 24 treated no drug (control), CH-11 alone (250ng/ml), 25 5-FU alone (5µM) for 96 hours, or co-treated with 5-. 26 FU for 72 hours followed by CH-11 for a further 24 27 hours. Co-treatment with 5-FU and CH-11 resulted in 28 activation of caspase 8 and BID as indicated by 29 processing of procaspase 8 and full-length BID (lane 30 31 4).

1	Figure 3C illustrates Western blot analysis of
2	procaspase 8 and PARP expression in HCT116p53+/+
3	cells treated with no drug (control), 5µM 5-FU or
4	50nM RTX alone or in combination with 250ng/ml CH-
5	11.
6	
7	Figure 3D illustrates Western blot analysis
8	examining the kinetics of caspase 8 activation and
9	PARP cleavage in MCF-7 cells treated for 72 hours
10	with 5 μ M 5-FU followed by 250ng/ml CH-11 for the
11	indicated times.
12	
13	Figure 3E illustrates Western blot analysing Fas,
14	procaspase 8 and PARP expression, in MCF-7 cells
1.5	treated with 5µM 5-FU for 72 hours followed by
16	250ng/ml CH-11, 10µM IETD-fmk, or a combination of
17	CH-11 and IETD-fmk for 24 hours.
18	
19	Figure 4A illustrates tetracycline (tet)-regulated
20	expression of a TS trans-gene in M7TS90 cells.
21	
22	Figure 4B illustrates Western blot analysing the
23	effect of TS induction (-tet lanes) on Fas up-
24	regulation in M7TS90 cells in response to treatment
25	with 10µM 5-FU, 100nM RTX or 1µM MTA for 72 hours.
26	•••
27	
28	
29	Figure 4C illustrates an MTT assay showing the
30	impact of TS induction (-tet) on viability of M7TS9
31	cells following treatment with 5-FU (10µM) or RTX

(100nM) in the presence of co-treatment with 1 2 250ng/ml CH-11. 3 Figure 4D illustrates the impact of TS induction on 4 caspase 8 activation and processing of full-length 5 (118kDa) PARP in M7TS90 cells treated with 5-FU 6 7 (10μM), RTX (100nM) or MTA (1μM) followed by 8 250ng/ml CH-11. 9 Figure 4E illustrates Effect of exogenous TS 10 expression on the induction of apoptosis in M7TS90 11 cells treated with 5-FU (10µM) RTX (100nM) or MTA 12 (1 μ M) in the presence of co-treatment with 250ng/ml 13 CH-11. Apoptosis was assessed by analysing the sub-14 G_1/G_0 fraction of propidium iodide stained cells by 15 flow cytometry. Equal loading of Western blots was 16 assessed by analysing β -tubulin expression. For each 17 combined treatment the cells were pre-treated with 18 chemotherapeutic drug for 72 hours followed by CH-11 19 20 for a further 24 hours. 21 Figure 5A illustrates Western blot analysis of Fas 22 expression in p53 wild type (wt) M7TS90 and p53 null 23 (nl) M7TS90-E6 cells 72 hours after treatment with 24 no drug (Con), 10µM 5-FU, 100nM RTX or 1µM MTA. 25 26 Figure 5B illustrates MTT cell viability assays in 27 28 p53 null M7TS90-E6 cells treated with 10µM 5-FU, 100nM RTX or 1µM MTA in combination with 250ng/ml 29 30 CH-11. 31

1 Figure 5C illustrates Western blot analysis of procaspase 8 and full-length (118kDa) PARP 2 expression in M7TS90 (wt) and M7TS90-E6 (nl) cells 3 treated with 5-FU (10µM), RTX (100nM) or MTA (1µM) 4 followed by 250ng/ml CH-11. 5 6 7 Figure 5D illustrates Effect of CH-11 (250ng/ml) on the induction of apoptosis in M7TS90-E6 cells 8 treated with 5-FU (10µM) RTX (100nM) or MTA (1µM). 9 Apoptosis was assessed by analysing the sub-G1/G0 10 11 fraction of propidium iodide stained cells by flow 12 cytometry. Equal loading of Western blots was assessed by analysing β -tubulin expression. For each 13 14 combined treatment the cells were pre-treated with chemotherapeutic drug for 72 hours followed by CH-11 15 for a further 24 hours. 16 17 18 Figure 6A illustrates Western blot analysis of Fas expression in HCT116p53^{-/-} cells treated with a range 19 of concentrations of 5-FU for 48 hours. 20 21 22 Figure 6B illustrates MTT cell viability assays in HCT116p53-/- cells treated with no drug (control), 23 CH-11 alone (250ng/ml), 5-FU alone (10uM), or co-24 treated with 5-FU and CH-11. The decrease in cell 25 26 viability for the combined treatment was not synergistic (RI=1.01). 27 28 Figure 6C illustrates Western blot analysis of Fas 29 30 expression in HCT116p53^{-/-} cells treated with a range 31 of concentrations of RTX for 48 hours. 32

Figure 6D illustrates MTT cell viability assays in 1 HCT116p53-/- cells treated with no drug (control), 2 CH-11 alone (250ng/ml), RTX alone (50nM), or co-3 treated with RTX and CH-11. The decrease in cell 4 viability for the combined treatment was synergistic 5 (RI=1.62, p=0.01). 6 Figure 6E illustrates Western blot analysis of Fas 8 expression in H630 cells treated with a range of 9 concentrations of 5-FU for 48 hours. 10 11 Figure 6F illustrates MTT cell viability assays in 12 H630 cells treated with no drug (control), CH-11 13 alone (250ng/ml), 5-FU alone (10µM), or co-treated 14 with 5-FU and CH-11. The decrease in cell viability 15 for the combined treatment was not synergistic 16 (RI=0.99). 17 18 Figure 6G illustrates Western blot analysis of H630 19 cells treated with a range of concentrations of RTX 20 for 48 hours. 21 22 Figure 6H illustrates MTT cell viability assays in 23 H630 cells treated with no drug (control), CH-11 24 alone (250ng/ml), RTX alone (50nM), or co-treated 25 with 5-FU and CH-11. The decrease in cell viability 26 for the combined treatment was synergistic (RI=1.41, 27 28 p<0.005). Equal loading of Western blots was assessed by analysing \$\beta=\text{tubulin expression. For each}\$ 29 combined treatment the cells were pre-treated with 30 chemotherapeutic drug for 72 hours followed by CH-11 31

for a further 24 hours.

1	
2	MATERIALS AND METHODS
3	Cell Culture. All cells were maintained in 5% CO2 a
4	37°C. MCF-7, H630 and RKO cells were maintained in
5	DMEM with 10% dialyzed bovine calf serum
б	supplemented with 1mM sodium pyruvate, 2mM L-
7	glutamine and 50μg/ml penicillin/streptomycin (from
8	Life Technologies Inc., Paisley, Scotland). M7TS90
9	cells (6) were maintained in 'MCF-7 medium'
10	supplemented with lµg/ml puromycin, lµg/ml
11	tetracycline (from Sigma, Poole, Dorset, England),
12	and 100µg/ml G418 (from Life Technologies Inc).
13	M7TS90-E6 cells (6) were maintained in 'M7TS90
14	medium' supplemented with 200µg/ml hygromycin (Life
15	Technologies Inc). To induce expression of exogenous
16	TS, cells were washed three times in 1xPBS and
17	incubated in growth medium lacking tetracycline.
18	HCT116 p53+/+ and p53-/- isogenic human colon cancer
19	cells were kindly provided by Professor Bert
20	Vogelstein (John Hopkins University, Baltimore, MD).
21	HCT116 cell lines were grown in McCoy's 5A medium
22	(GIBCO) supplemented with 10% dialysed foetal calf
23	serum, 50µg/ml penicillin-streptomycin, 2mM L-
24	glutamine and 1mM sodium pyruvate.
25	
26	Northern blot analysis. Northern blots were
27	performed as described previously using a cDNA probe
28	complementary to the Fas coding region (7). Equal
29	loading was assessed using a β -tubulin cDNA probe.
30	

Western Blotting. Western blots were performed as 1 previously described (6). The Fas/CD95, Bcl-2 and 2 BID (Santa Cruz Biotechnology, Santa Cruz, CA), 3 caspase 8 (Oncogene Research Products, Darmstadt, 4 Germany) and PARP (Pharmingen, BD Biosciences, 5 Oxford, England) mouse monoclonal antibodies were 6 used in conjunction with a horseradish peroxidase 7 (HRP) - conjugated sheep anti-mouse secondary antibody 8 (Amersham, Little Chalfont, Buckinghamshire, 9 England). FasL rabbit polyclonal antibody (Santa 10 Cruz Biotechnology) was used in conjunction with an 11 HRP-conjugated donkey anti-rabbit secondary antibody 12 (Amersham). TS sheep monoclonal primary antibody 13 (Rockland, Gilbertsville, PA) was used in 14 conjunction with an HRP-conjugated donkey anti-sheep 15 secondary antibody (Serotech, Oxford, England). 16 Equal loading was assessed using a β -tubulin mouse 17 monoclonal primary antibody (Sigma). 18 19 Cell Viability Assays. Cell viability was assessed 20 by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-21 diphenyltetrazolium bromide, Sigma) assay (12). 22 Cells were seeded at 2,500 cells per well on 96-well 23 plates 24 hours prior to drug treatment and then 24 treated with a range of concentrations of 5-FU, RTX 25 and MTA for 72 hours, following which time the 26 agonistic Fas monoclonal antibody, CH-11 (MBL, 27 Watertown, MA), was added (10-250ng/ml) for a 28 further 24 hours. MTT (0.5mg/ml) was then added to 29 each well and the cells incubated at 37°C for a 30 further 3 hours. The culture medium was removed and 31 formazan crystals reabsorbed in 200µL DMSO. Cell 32

viability was determined by reading the absorbance 1 of each well at 570nm using a 96-well microplate 2 reader (Molecular Devices, Wokingham, England). 3 4 Flow Cytometric Analysis. Cells were seeded at 1x105 5 per well of a 6-well tissue culture plate. After 24 6 hours, 5-FU, RTX or MTA were added to the medium and 7 the cells cultured for a further 72 hours, after 8 which time 250ng/ml CH-11 was added for 24 hours. 9 DNA content of harvested cells was evaluated after 10 propidium iodide staining of cells using the EPICS 11 XL Flow Cytometer (Coulter, Miami, Fl). 12 13 Statistical Analyses. The nature of the interaction 14 between the chemotherapeutic drugs and CH-11 was 15 determined by calculating the R index (RI), which 16 was initially described by Kern and later modified 17 by Romaneli (13, 14). The RI is calculated as the 18 ratio of expected cell survival (Sexp. defined as the 19 product of the survival observed with drug A alone 20 and the survival observed with drug B alone) to the 21 observed cell survival (Sobs) for the combination of 22 A and B (RI= S_{exp}/S_{obs}). Synergism is then defined as 23 an RI of greater than unity. Romanelli et al. 24 suggest that a synergistic interaction may be of 25 pharmacological interest when RI values are around 26 2.0 (14). This method was selected because treatment 27 with CH-11 alone had little effect on cell 28 viability, which meant that other methods such as 29 the median effect principle (15) and isobologram 30 methods were not suitable (16). To further assess 31 the statistical significance of the interactions, 32

the inventors designed a univariate ANOVA analysis 1 using the SPSS software package. This was an 2 additive model based on the null hypothesis that 3 there was no interaction between the drugs. 4 5 6 RESULTS 7 Fas is highly up-regulated in response to 5-FU and RTX. Using DNA microarray profiling, the inventors 8 previously identified the Fas death receptor as 9 being highly up-regulated in response to 5-FU in 10 MCF-7 cells (7). Northern blot analyses confirmed 11 that Fas mRNA was up-regulated in MCF-7 cells 48 12 hours following treatment with an IC60 dose (5µM) of 13 5-FU (Fig. 1A). Analysis of Fas protein expression 14 in MCF-7 cells revealed that it was up-regulated by 15 -12-fold 72 hours after treatment with 5-FU (Fig. 16 1B). Fas was also highly up-regulated (by ~7-fold) 17 in response to treatment with an IC_{60} dose (25nM) of 18 19 RTX (Fig. 1B). 20 The agonistic Fas monoclonal antibody CH-11 21 synergistically activates apoptosis in response to 22 5-FU and RTX. To examine the role of the Fas 23 signalling pathway in mediating the response of MCF-24 7 cells to 5-FU and RTX, the inventors used the 25 agonistic Fas monoclonal antibody CH-11. Cells were 26 treated with IC60 doses of each drug for 72 hours, 27 after which time they were treated with 250ng/ml CH-28 11 for a further 24 hours. Treatment with $5\mu M$ 5-FU 29 alone resulted in a ~60% reduction in cell viability 30 compared to control (Fig. 1C). Treatment with CH-11 31 alone without prior incubation with 5-FU caused a 32

modest ~6% decrease in cell viability. However, 1 treatment with 5-FU followed by CH-11 was found to 2 result in an ~84% decrease in cell viability. The 3 combined treatment had an RI value of 2.40 4 indicating that the interaction was highly 15 synergistic. This was further confirmed by ANOVA 6 analysis, which indicated that the synergistic 7 interaction between the drugs was highly 8 statistically significant (p<0.0005). Similarly, 9 treatment with 25nM RTX for 72 hours followed by CH-10 11 for 24 hours produced a highly synergistic 11 decrease in cell viability (RI=2.22, p<0.0005, Fig. 12 1D). An IgM isotype control antibody had no effect 13 on the cell viability of drug-treated cells (data 14 not shown). 15 16 To assess the degree of apoptosis in MCF-7 cells 17 treated with 5-FU and RTX individually, or in 18 combination with CH-11, the inventors carried out 19 flow cytometry of propidium iodide stained cells and 20 analysed the sub-G1/G0 apoptotic fraction. Cells were 21 treated with either 5-FU or RTX for 72 hours 22 followed by 250ng/ml CH-11 treatment for 24 hours. 23 The inventors found that CH-11 alone had little 24 effect on apoptosis (Figs. 1E and F). Treatment with 25 5-FU alone for 96 hours resulted in a modest ~2-fold 26 induction of apoptosis in response to 5µM 5-FU (Fig. 27 1E). However, addition of CH-11 to 5-FU-treated 28 cells resulted in a dramatic increase in apoptosis, 29 with a -12-fold induction of apoptosis following co-30 treatment with 5µM 5-FU and CH-11. Similarly, the 31 combination of RTX with CH-11 resulted in dramatic

1 activation of apoptosis, with ~60% of cells in the 2 sub-G1/G0 apoptotic phase following combined 3 treatment with 25nM RTX and CH-11 compared to ~11% in untreated control cells, ~16% in cells treated 4 with RTX alone and ~18% in cells treated with CH-11 5 б alone (Fig. 1F). The activation of apoptosis by CH-11 in 5-FU and RTX treated cultures was observed 7 across a range of concentrations of each drug (Figs. 8 9 IE and F), indicating that the synergistic 10 interaction between CH-11 and both drugs was due to 11 activation of apoptosis. 12 The inventors next examined the ability of CH-11 to 13 activate apoptosis in other cell lines. Treatment of 14 HCT116p53*/* colon cancer cells with 5-FU resulted in 15 () potent up-regulation (>10-fold) of Fas expression 16 17 after 48 hours (Fig. 2A). Furthermore, treatment 18 with 5µM 5-FU followed by 250ng/ml CH-11 19 synergistically decreased cell viability in this 20 line with an RI value of 1.92 (p<0.005). Similarly, RTX treatment dramatically increased Fas expression 21 22 after 72 hours (Fig. 2C), while treatment with RTX 23 followed by CH-11 resulted in a highly synergistic 24 decrease in cell viability (Fig. 2D, RI=3.44, 25 p<0.0005). The inventors also examined another p53 wild type colon cancer_cell line, RKO. As was the 26 case with both MCF-7 and HCT116p53*/+ cells, both 5-27 FU and RTX treatment resulted in dramatic Fas up-28 regulation 48 hours post-treatment (Figs. 3E and F). 29 30 Furthermore, treatment of RKO cells with 5-FU or RTX 31 followed by CH-11 synergistically decreased cell viability with RI values of 1.74 (p<0.0005) and 2.31 32

(p<0.0005) respectively (Figs. 3F and G). These

1

results indicate that CH-11 not only activates 2 apoptosis of 5-FU- and RTX-treated MCF-7 breast 3 cancer cells, but also of HCT116p53+/+ and RKO colon 4 cancer cells. The inventors also found that 5 treatment with the antifolate MTA up-regulated Fas 6 expression and synergistically interacted with CH-11 7 to decrease cell viability in all three cell lines 8 (data not shown). 9 10 Effect of 5-FU and RTX on Fas signal transduction. 11 The inventors next examined drug-induced activation 12 of the Fas signalling pathway in response to 5-FU 13 and RTX. Although Fas was highly up-regulated (>10-14 fold) in MCF-7 cells in response to IC60 doses of 15 either drug, Fash expression was unaffected (Fig. 16 3A). Surprisingly, neither caspase 8, nor its 17 substrate BID were activated in 5-FU- or RTX-treated 18 cells as indicated by a lack of down-regulation of 19 the levels of procaspase 8 or full-length BID (Fig. 20 3A). The inventors subsequently analysed activation 21 of the Fas pathway in MCF-7 cells following co-22 treatment with 5-FU and CH-11. Fas, procaspase 8 and 23 BID expression levels were determined in cells 24 treated with 5µM 5-FU for 72 hours followed by 25 250ng/ml CH-11 for 24 hours and compared to cells 26 treated with 5-FU alone or CH-11 alone for the 27 appropriate time periods (Fig. 3B). Treatment with 28 CH-11 alone had no effect on Fas, procaspase 8 or 29 BID expression (Fig. 3B, lane 2). As already noted, 30 31 treatment with 5-FU alone resulted in dramatic upregulation of Fas, but had no effect on procaspase 8 32

or BID expression, indicating that neither molecule 1 2 was activated (Fig. 3B, lane 3). However, treatment of MCF-7 cells with 5-FU and CH-11 resulted in a 3 dramatic activation of both caspase 8 and BID as 4 indicated by complete loss of procaspase 8 and full-5 6 length BID expression in these cells (Fig. 3B, lane 4). Similarly, in HCT116p53^{+/+} cells activation of 7 caspase 8 was only observed following co-treatment 8 9 with either 5-FU and CH-11 or RTX and CH-11 (Fig. 3C). Furthermore, cleavage of PARP (poly(ADP) ribose 10 11 polymerase), a hallmark of apoptosis, was only observed in HCT116p53+/+ cells co-treated with each 12 13 drug and CH-11. 14 15 The inventors next compared the kinetics of caspase 16 8 activation with cleavage of PARP. Six hours after addition of CH-11 to MCF-7 cells pre-treated for 72 17 18 hours with 5µM 5-FU, procaspase 8 levels were 19 reduced by ~3-fold compared to time zero (Fig. 3D). This coincided with PARP cleavage, which is 20 21 indicative of cells undergoing apoptosis. Thus, 22 activation of caspase 8 coincided with the onset of 23 apoptosis. Twelve and 18 hours following CH-11 treatment, the levels of procaspase 8 had fallen to 24 less than 5% of that observed at time zero, 25 - 26 indicating potent activation of caspase 8. The inventors further examined the relationship between 27 caspase 8 activation and apoptosis using the 28 29 specific caspase 8 inhibitor IETD-fmk. Cells were pre-treated with 5µM 5-FU for 72 hours followed by 30 31 250ng/ml CH-11, 10µM IETD-fmk, or a combination of CH-11 and IETD-fmk for 24 hours. Fas was highly up-32

regulated in all treatment groups (Fig. 3D). As 1 noted above, the combination of 5-FU and CH-11 2 resulted in a dramatic activation of caspase 8 and 3 PARP cleavage (Fig. 3E, lane 2). Addition of the 4 caspase 8 inhibitor had no effect on protein 5 expression in cells treated with 5-FU alone (Fig. 6 3E, lane 3). However, IETD-fmk blocked processing of 7 procaspase 8 in cells co-treated with 5-FU and CH-11 8 (Fig. 3E, lane 4). This result indicates that 9 caspase 8 activity is necessary for procaspase 8 10 processing at the DISC and is consistent with the 11 induced proximity model proposed for caspase 8 12 activation (17). Significantly, blocking caspase 8 13 activation also inhibited PARP cleavage in 5-FU/CH-1.4 11 co-treated cells, indicating that apoptosis of 15 these cells is dependent on caspase 8 activation. 16 17 Effect of TS induction on the synergy between CH-11 18 and 5-FU, RTX and MTA. Treatment with 5-FU and TS-19 targeted antifolates has been shown to acutely 20 increase TS expression, most likely through 21 disruption of a negative feedback mechanism in which 22 TS binds to and inhibits translation of its own mRNA 23 (18). This constitutes a potential mechanism of 24 resistance as TS induction would facilitate recovery 25 of enzymatic activity. The inventors therefore 26 examined the effect of inducible TS expression on 5-27 FU and antifolate-mediated up-regulation of Fas and 28 the synergistic interaction between CH-11 and each 29 drug. To do this, the inventors used the MCF-7-30 derived M7TS90 cell line (6), in which transcription 31 of a TS trans-gene is activated following withdrawal 32

32

of tetracycline (tet) from the culture medium (Fig. 1 4A). In agreement with the inventors' previous 2 findings, TS induction in the M7TS90 cell line 3 4 abrogated RTX- and MTA-, but not 5-FU-mediated upregulation of Fas (Fig. 4B) (6). Furthermore, 5 induction of the TS trans-gene had little effect on 6 7 the synergistic interaction between 5-FU and CH-11 (Fig. 4C). However, TS induction completely abolished the synergistic decrease in cell viability 9 caused by the combination of both 100nM RTX and CH-10 11 and 1µM MTA and CH-11 (Fig. 4C). 11 12 The inventors next assessed the effect of inducible 1.3 TS on caspase 8 activation. The inventors found that 14 15) TS induction abrogated caspase 8 activation in 16 response to co-treatment with both antifolates and CH-11, but had no effect on caspase 8 activation in 17 response to co-treatment with 5-FU and CH-11 (Fig. 18 4D). Similarly, TS induction abrogated processing of 19 PARP in cells co-treated with the antifolates and 20 CH-11, but not in cells co-treated with 5-FU and CH-21 11 (Fig. 4D). The differential effects of TS 22 induction on apoptosis of 5-FU- and antifolate-23 treated M7TS90 cells was further analysed by flow 24 cytometry by assessing of the sub- G_0/G_1 fraction in 25 cells co-treated with drug and CH-11. Co-treatment 26 with 5-FU and CH-11 resulted in a dramatic -20-fold 27 induction of apoptosis in M7TS90 cells that was only 28 modestly reduced to ~17-fold when TS was induced 29 (Fig. 4E). In contrast, RTX and CH-11 co-treatment 30 resulted in a ~15-fold increase in the apoptoic 31

fraction, which was reduced to ~5-fold by TS

1 induction (Fig. 4E). Similarly, combined treatment 2 with MTA and CH-11 resulted in a dramatic ~26-fold 3 induction of apoptosis that was almost completely abolished by inducible TS expression (Fig. 4E). 4 These results indicate that the activation of Fas-5 mediated apoptosis in antifolate-treated cells was 6 highly dependent on TS expression levels. In 7 contrast, the 5-FU/CH-11 interaction was relatively 8 9 insensitive to TS induction in this cell line, 10 suggesting that non-TS-directed effects were primarily responsible for 5-FU cytotoxicity in these 11 12 cells. 13

Effect of p53 inactivation on the synergy between 1 CH-11 and 5-FU, RTX and MTA. The inventors next 2 examined the role of p53 in the observed synergy 3 4 between CH-11 and each drug. p53 has been reported 5 to be an important regulator of Fas expression, both 6 transcriptionally (19) and post-transcriptionally 7 (20). The inventors previously described the 8 generation of p53 null M7TS90-E6 cells by transfection of M7TS90 cells with human papilloma 9 10 virus (HPV)-E6 (6). Treatment of these p53 null M7TS90-E6 cells with 10µM 5-FU, 100nM RTX or 1µM MTA 11 12 did not result in Fas up-regulation (Fig. 5A). 13 Furthermore, in contrast to the parental line, the 14 combination of 5-FU and CH-11 did not 15 synergistically decrease cell viability (RI=0.97, Fig. 5B). Similarly, inactivation of p53 also 16 17 abolished the synergy between RTX and CH-11 and 18 between MTA and CH-11 (RI=0.85 and 1.02 19 respectively, Fig. 5B). 20 21 The inventors further examined the effects of p53 22 inactivation on drug sensitivity by comparing 23 caspase 8 activation in the p53 wild type and null isogenic M7TS90 lines. Activation of caspase 8 was 24 25 not observed in the p53 null M7TS90-E6 cells co-26 treated with each drug and CH-11 (Fig. 5C). In 27 contrast, caspase 8 was potently activated in the 28 parental p53 wild type cell line in response to each 29 co-treatment (Fig. 5C). Inactivation of p53 also 30 completely attenuated PARP cleavage in response to 31 co-treatment with 5-FU and CH-11 (Fig. 5C). However,

processing of PARP was evident in p53 null cells

treated with both the RTX/CH-11 and MTA/CH-11 1 combinations, although to a lesser extent than in 2 the p53 wild type line (Fig. 5C). As caspase 8 was 3 not activated, this suggests that antifolate-4 mediated PARP cleavage in the p53 null cells was not 5 due to activation of Fas-mediated apoptosis by CH-6 11. Indeed, the inventors found that PARP was also 7 processed in the p53 null cell line in response to 8 treatment with either RTX alone or MTA alone (data 9 not shown). These results indicate that treatment 10 with the antifolates activated p53-and Fas-11 independent apoptosis in M7TS90-E6 cells. This was 12 further confirmed by flow cytometric analysis of 13 apoptosis in the p53 null cell line. RTX (100nM) and 14 MTA (1µM) significantly induced apoptosis of M7TS90-:15 E6 cells by ~8-fold and ~6-fold respectively 96 16: hours after drug treatment (Fig. 5D). In contrast, 17 little apoptosis was observed in M7TS90-E6 cells 18 following treatment with 10µM 5-FU (Fig. 5D). 19 Importantly, CH-11 had no significant effect on 20 apoptosis induced by any of the drugs in the p53 21 22 null cell line. 23 The inventors extended their studies into the role 24 of p53 in regulating antimetabolite-induced Fas-25 mediated apoptosis by examining the interaction 26 between these drugs and CH-11 in the p53 null 27 HCT116p53-/- cell line. This cell line was derived 28 from the HCT116p53*/+ cell line by somatic knock-out 29 of both p53 alleles (21). Compared to the p53 wild 30 type cell line, there was very little Fas induction 31 in response to 5-FU (Fig. 6A) and RTX (Fig. 6C) in 32

the HCT116p53-/- cell line, with an approximate 2-3-1 fold induction of Fas expression observed in 2 response to 10µM 5-FU and 50nM RTX. Furthermore, no 3 synergistic interaction was observed between 5-FU 4 and CH-11 in the p53 null cell line (RI=1.01, Fig. 5 6B). Interestingly, a significant synergistic 6 interaction was still observed between RTX and CH-11 7 in $HCT116p53^{-/-}$ cells (RI=1.62, p=0.01, Fig. 6D), 8 although this was significantly less synergistic 9 than the interaction observed in the p53 wild type 10 parental line (Fig. 2D, RI=3.44, p<0.0005). This 11 suggests that RTX-mediated sensitization of HCT116 12 cells to CH-11 is not wholly p53-dependent. 13 14 The role of p53 in mediating Fas-mediated apoptosis 15 was further examined in the p53 mutant H630 colon 16 cancer cell line. Similar to the p53 null cell 17 lines, Fas was expression was not significantly 18 altered in H630 cells in response to 5-FU (Fig. 6E) 19 or RTX (Fig. 6G). No synergistic decrease in cell 20 viability was observed between 5-FU and CH-11 (Fig. 21. 6F, RI=0.99), however, a statistically significant 22 synergistic interaction was observed between RTX and 23 CH-11 (Fig. 6H, RI=1.64, p<0.0005). This interaction 24 was observed despite the lack of any apparent up-25 regulation of Fas in response to this agent, 26 suggesting that Fas expression is not the sole 27 determinant of sensitivity to CH-11 in this cell 28 29 line. The inventors have observed similar synergistic 30 interactions between anti-Fas monoclonal antibody 31 and both TDX and oxaliplatin (data not shown) in

٠, f

1 MCF-7 and HCT116 cell line models. Fas-targeted antibodies may thus be used to stimulate apoptosis 2 3 in chemosensitised cancer cells. 4 5 DISCUSSION 6 7 The inventors have found that the Fas death receptor 8 is highly up-regulated in response to 5-FU and the TS-targeted antifolates RTX and MTA in MCF-7 breast 9 cancer and HCT116p53*/* and RKO colon cancer cells. 10 11 However, this was in itself not sufficient to 12 activate caspase 8. To mimic the effects of immune 13 effector cells in their in vitro model, the inventors used the agonistic Fas monoclonal antibody 14 15 CH-11. The inventors found that CH-11 potently activated Fas-mediated cell death in 5-FU- and 16 17 antifolate-treated cells. Furthermore, the interaction between CH-11 and each drug was highly 18 19 synergistic. The inventors' results suggest that the Fas signalling pathway is an important mediator not 20 only of 5-FU-induced cell death, but also of 21 22 antifolate-induced cell death. 23 24 The inventors found that although Fash was not 25 induced following drug treatment, it was highly expressed in MCF-7 cells. Many tumour cells 26 27 overexpress FasL, and it has been postulated that 28 tumour FasL induces apoptosis of Fas-sensitive 29 immune effector cells, thereby inhibiting the 30 antitumor immune response. This hypothesis has been 31 supported by both in vitro and in vivo studies (24, 32 25). The strategy of overexpressing FasL requires

that the tumour cells develop resistance to Fas-1 mediated apoptosis to prevent autocrine and 2 paracrine induction of tumour cell death. Fas 3 signalling may be inhibited by a Fas splice variant 4 soluble Fas (sFas), which is a secreted protein that 5 lacks the transmembrane domain of full-length Fas 6 and may inhibit binding of FasL to Fas (26). 7 Similarly, the Fas decoy receptor DcR3 is another 8 secreted protein that binds to FasL with high 9 affinity inhibiting its interaction with Fas (27). 10 Downstream of Fas ligation, c-FLIP (FLICE-inhibitory 11 protein) and FAP-1 (Fas-associated phosphatase-1) 12 can inhibit caspase 8 recruitment and activation at 13 14 the Fas DISC (28, 29). The lack of caspase 8 activation in response to treatment with 5-FU and 15 the antifolates suggests that Fas-mediated apoptosis 16 17 may be inhibited in MCF-7, HCT116 and RKO cancer 18 cells. However, co-treatment with CH-11 was sufficient to overcome this resistance and activate 19 Fas-mediated apoptosis. 20 21 22 The inventors' findings raise the possibility of using antimetabolite drugs in combination with anti-23 Fas antibodies as a novel anticancer strategy. 24 25 Targeting Fas may be particularly useful against 26 tumour cells that overexpress FasL and Fas pathway inhibitors, and which thereby evade Fas-mediated 27 elimination by immune cells. However, systemic 28 treatment with Fas antibodies or rFasL in mouse 29 models has been shown to cause severe damage to 30 liver and other organs (31). Some recent studies 31 32 have focussed on local administration of rFasL, or

```
1
      the use of Fash-expressing vectors as gene therapy
      to overcome systemic toxicity (31). In addition, a
 2
       novel agonistic Fas-targeted antibody HFE7A has been
  3
       developed recently that was not hepatotoxic in
  4
      murine models, suggesting that it may be possible to
  5
       develop less toxic Fas-targeted antibodies (32).
 6
  7
 8
      Treatment with TS inhibitors has been shown to
      acutely induce TS expression in cell lines and
 9
10
      tumours (18, 33). Furthermore, pre-clinical and
      clinical studies have found that TS is a key
11
12
      determinant of sensitivity to 5-FU, with high TS
      expression correlating with increased resistance (1,
13
      34). The inventors therefore examined the effect of
14
     velevated TS expression on activation of Fas-mediated
15
16
      apoptosis in 5-FU- and antifolate-treated cells
      using a tetracycline-regulated TS expression system
17
      (M7TS90). Interestingly, the inventors found that
18
      activation of apoptosis by CH-11 in response to 5-FU
19
20
      was not affected by increased TS expression. In
      contrast, TS induction completely abrogated the
21
22
      synergistic interaction between both RTX and CH-11
      and MTA and CH-11. These findings correlated with
23
24
      Fas expression, the up-regulation of which was
      almost completely abrogated by TS induction in RTX-
25
26
      and MTA-treated cells, but not 5-FU-treated cells.
      These results indicate that the primary locus of 5-
27
28
      FU cytotoxicity in this cell line was not TS
29
      inhibition. Indeed, the inventors' previous studies
30
     have suggested that misincorporation of
      fluoronucleotides into RNA was the primary cytotoxic
31
      effect of 5-FU in this line (6). Thus, despite
32
```

. .

expressing high levels of TS, certain tumours may

1

still be sensitised to Fas-mediated apoptosis by 5-2 FU. However, high TS expression is likely to inhibit 3 Fas-mediated apoptosis in response to folate-based 4 TS inhibitors. 5 6 Several pre-clinical studies have demonstrated that 7 loss of p53 function reduces cellular sensitivity to 8 5-FU (6, 21). Furthermore, a number of clinical 9 studies have found that p53 mutations correlated 10 with resistance to 5-FU, although other studies 11 found no such association (34). The inventors 12 assessed the effect of p53 inactivation on drug-13 induced Fas-mediated apoptosis in two p53 wild type 14 and null isogenic cell line pairs: the MCF-7-derived i., 15 M7TS90 and M7TS90-E6 lines, and the HCT116p53*/+ and 16 HCT116p53-/- lines. p53 inactivation attenuated Fas 17 up-regulation in response to both drugs in both cell 18 lines and inhibited the activation of apoptosis by 19 CH-11 in 5-FU- and antifolate-treated cells; 20 ' indicating that p53 is an important determinant of 21 Fas-mediated apoptosis in response to these agents. 22 Interestingly, some synergy was still observed 23 between RTX and CH-11 in the HCT116p53-/- cell line, 24 although it was significantly reduced compared to 25 the p53 wild type cell line. The inventors also 26 examined activation of Fas-mediated apoptosis in 27 response to the antimetabolites in the p53 mutant 28 H630 colon cancer cell line. Similar to the 29 HCT116p53-/- cell line, little Fas induction was 30 observed following drug treatment and no synergy was 31 observed between 5-FU and CH-11. However, a 32

(

statistically significant synergistic interaction 1 was again observed between RTX and CH-11. The 2 inventors' results surprisingly suggest that RTX 3 (but not 5-FU) can sensitize at least some cancer 4 cell lines with non-functional p53 to Fas-mediated 5 apoptosis. Furthermore, this effect appears to be 6 independent of Fas up-regulation, suggesting that 7 factors other than increased Fas expression 8 contribute to the sensitisation of tumour cells to 9 Fas-mediated apoptosis in response to this agent. 10 11 The inventors | data suggest that tumours with 12 mutated p53 would be more resistant to Fas-mediated 13 apoptosis in response to antimetabolites, in 14 particular 5-FU. However, the discriminatory p53 15 mutants Pro-175 and Ala-143 have been shown to 16 transcriptionally up-regulate Fas expression (35), 17 suggesting that certain p53 mutant tumours may be 18 sensitised to Fas-mediated cell death by 19 chemotherapy. 20 21 In conclusion, the inventors have found that the 22 agonistic Fas monoclonal antibody CH-11 dramatically 23 increases the apoptotic response to 5-FU and TS-24 targeted antifolates in MCF-7, HCT116p53+/+ and RKO 25 cells. Induction of exogenous TS abrogated this 26 synergistic interaction for the antifolates but not 27 5-FU, however, the extent of the interaction was 28 highly p53-dependent for each drug. The inventors 29 findings suggest that the Fas signalling pathway is 30 an important regulator of 5-FU- and antifolate-31 mediated cell death and that targeting the Fas 32

3 I

32

2.

54

1 pathway in conjunction with either 5-FU or 2 antifolates may have therapeutic potential. 3 4 The inventors have observed similar synergistic interactions between anti-Fas monoclonal antibody 5 and both TDX (Fig. 6) and oxaliplatin (data not б shown) in MCF-7 and HCT116 cell line models. Fas-7 targeted antibodies may thus be used to stimulate 8 apoptosis in chemosensitised cancer cells. 9 10 11 All documents referred to in this specification are 12 herein incorporated by reference. Various modifications and variations to the described 13 embodiments of the inventions will be apparent to 14 those skilled in the art without departing from the 15 16 scope and spirit of the invention. Although the invention has been described in connection with 17 specific preferred embodiments, it should be 18 understood that the invention as claimed should not 19 20 be unduly limited to such specific embodiments. Indeed, various modifications of the described modes 21 of carrying out the invention which are obvious to 22 those skilled in the art are intended to be covered 23 24 by the present invention. 25 REFERENCES 26 Longley, D. B., Harkin, D. P., and Johnston, P. 27 1. 28 G. 5-fluorouracil: mechanisms of action and 29 clinical strategies. Nat Rev Cancer, 3: 330-30 338, 2003.

Hughes, L. R., Stephens, T. C., Boyle, F. T.,

and Jackman, A. L. Raltitrexed (Tomudex), a

0087107-26-Nov-03-04-38

```
1
           highly polyglutamatable antifolate thymidylate
 2
            synthase inhibitor, p. 147-165: Humana press,
 3
            1999.
       3.
            Shih, C., Chen, V. J., Gossett, L. S., Gates,
  4
            S. B., MacKellar, W. C., Habeck, L. L.,
  5
            Shackelford, K. A., Mendelsohn, L. G., Soose,
  6
            D. J., Patel, V. F., Andis, S. L., Bewley, J.
  7
            R., Rayl, E. A., Moroson, B. A., Beardsley, G.
  8
            P., Kohler, W., Ratnam, M., and Schultz, R. M.
  9
            LY231514, a pyrrolo[2,3-d]pyrimidine-based
10
 11
            antifolate that inhibits multiple folate-
            requiring enzymes. Cancer Res, 57: 1116-1123,
 12
 13
            1997.
            Aherne, G. W., Hardcastle, A., Raynaud, F., and
 14
       4.
            Jackman, A. L. Immunoreactive dUMP and TTP
15
            pools as an index of thymidylate synthase
16
            inhibition; effect of tomudex (ZD1694) and a
 17
            nonpolyglutamated quinazoline antifolate
 18
            (CB30900) in L1210 mouse leukaemia cells.
 19
 20
           Biochem Pharmacol, 51: 1293-1301, 1996.
            Longley, D. B., Ferguson, P. R., Boyer, J.,
 21
       5.
            Latif, T., Lynch, M., Maxwell, P., Harkin, D.
 22
            P., and Johnston, P. G. Characterization of a
 23
 24
            thymidylate synthase (TS)-inducible cell line:
 25
            a model system for studying sensitivity to TS-
            and non-TS-targeted chemotherapies. Clin Cancer
 26
 27
            Res, 7: 3533-3539, 2001.
 28
       6.
            Longley, D. B., Boyer, J., Allen, W. L., Latif,
            T., Ferguson, P. R., Maxwell, P. J., McDermott,
 29
 30
            U., Lynch, M., Harkin, D. P., and Johnston, P.
            G. The role of thymidylate synthase induction
 31
```

in modulating p53-regulated gene expression in

```
response to 5-fluorouracil and antifolates.
1
          Cancer Res, 62: 2644-2649, 2002.
2
          Maxwell, P. J., Longley, D. B., Latif, T.,
     7.
3
          Boyer, J., Allen, W., Lynch, M., McDermott, U.,
4
          Harkin, D. P., Allegra, C. J., and Johnston, P.
5
          G. Identification of 5-fluorouracil-inducible
6
           target genes using cDNA microarray profiling.
7
           Cancer Research, 63, 2003.
 8
           Mosmann, T. Rapid colorimetric assay for
 9
      12.
           cellular growth and survival: application to
10
           proliferation and cytotoxicity assays. J
11
           Immunol Methods, 65: 55-63, 1983.
12
           Kern, D. H., Morgan, C. R., and Hildebrand-
13
      13.
           Zanki, S. U. In vitro pharmacodynamics of 1-
14
           beta-D-arabinofuranosylcytosine: symergy of
15
           antitumor activity with cis-
16
           diamminedichloroplatinum(II). Cancer Res, 48:
17
           117-121, 1988.
18
           Romanelli, S., Perego, P., Pratesi, G.,
      14.
19
           Carenini, N., Tortoreto, M., and Zunino, F. In
20
           vitro and in vivo interaction between cisplatin
21
           and topotecan in ovarian carcinoma systems.
22
           Cancer Chemother Pharmacol, 41: 385-390, 1998.
23
           Chou, T. C. and Talalay, P. Quantitative
      15.
24
            analysis of dose-effect relationships: the
25
            combined effects of multiple drugs or enzyme
26
            inhibitors. Adv Enzyme Regul, 22: 27-55, 1984.
27
            Kano, Y., Ohnuma, T., Okano, T., and Holland,
       16.
 28
            J. F. Effects of vincristine in combination
 29
            with methotrexate and other antitumor agents in
 30
            human acute lymphoblastic leukemia cells in
 31
            culture. Cancer Res, 48: 351-356, 1988.
```

32

();

- Salvesen, G. S. and Dixit, V. M. Caspase 1 17. 2 activation: the induced-proximity model. Proc 3 Natl Acad Sci U S A, 96: 10964-10967, 1999. Chu, E., Koeller, D. M., Johnston, P. G., Zinn, 4 18. 5 S., and Allegra, C. J. Regulation of 6 thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and 7 8 interferon-gamma. Mol Pharmacol, 43: 527-533, 9 1993. 10 19. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. 11 L., Galle, P. R., Stremmel, W., Oren, M., and 12 Krammer, P. H. p53 activates the CD95 (APO-13 14 1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med, 188: 2033-2045, · : 15 16 1998. 17 20. Bennett, M., Macdonald, K., Chan, S. W., Luzio, 18 J. P., Simari, R., and Weissberg, P. Cell surface trafficking of Fas: a rapid mechanism 19 of p53-mediated apoptosis. Science, 282: 290-20 21 293, 1998. 22 Bunz, F., Hwang, P. M., Torrance, C., Waldman, 21. T., Zhang, Y., Dillehay, L., Williams, J., 23 24 Lengauer, C., Kinzler, K. W., and Vogelstein,
 - 28 24. O'Connell, J., Bennett, M. W., O'Sullivan, G.

Clin Invest, 104: 263-269, 1999.

B. Disruption of p53 in human cancer cells

alters the responses to therapeutic agents. J

25

26

- C., Collins, J. K., and Shanahan, F. The Fas
- 30 counterattack: a molecular mechanism of tumor
- immune privilege. Mol Med, 3: 294-300, 1997.

```
Bennett, M. W., O'Connell, J., O'Sullivan, G.
1
     25.
          C., Brady, C., Roche, D., Collins, J. K., and
2
          Shanahan, F. The Fas counterattack in vivo:
3
          apoptotic depletion of tumor-infiltrating
4
          lymphocytes associated with Fas ligand
5
           expression by human esophageal carcinoma. J
6
           Immunol, 160: 5669-5675, 1998.
7
          Ruberti, G., Cascino, I., Papoff, G., and
8
     26.
           Eramo, A. Fas splicing variants and their
9
           effect on apoptosis. Adv Exp Med Biol, 406:
10
           125-134, 1996.
11
           Pitti, R. M., Marsters, S. A., Lawrence, D. A.,
12
      27.
           Roy, M., Kischkel, F. C., Dowd, P., Huang, A.,
13
           Donahue, C. J., Sherwood, S. W., Baldwin, D.
14
           T., Godowski, P. J., Wood, W. I., Gurney, A.
15
           L., Hillan, K. J., Cohen, R. L., Goddard, A.
16
           D., Botstein, D., and Ashkenazi, A. Genomic
17
           amplification of a decoy receptor for Fas
18
           ligand in lung and colon cancer. Nature, 396:
19
           699-703, 1998.
20
           Krueger, A., Baumann, S., Krammer, P. H., and
21
      28.
           Kirchhoff, S. FLICE-inhibitory proteins:
22
           regulators of death receptor-mediated
23
           apoptosis. Mol Cell Biol, 21; 8247-8254, 2001.
24
           Sato, T., Irie, S., Kitada, S., and Reed, J. C.
      29.
25
           FAP-1: a protein tyrosine phosphatase that
26
           associates with Fas. Science, 268: 411-415,
27
           1995.
28
           Jiang, S., Song, M. J., Shin, E. C., Lee, M.
29
      30.
           O., Kim, S. J., and Park, J. H. Apoptosis in
30
```

human hepatoma cell lines by chemotherapeutic

```
drugs via Fas-dependent and Fas-independent
 1
 2
           pathways. Hepatology, 29: 101-110, 1999.
           Timmer, T., de Vries, E. G., and de Jong, S.
 3
      31.
 4
           Fas receptor-mediated apoptosis: a clinical
 5
           application? J Pathol, 196: 125-134, 2002.
 б
      32.
           Ichikawa, K., Yoshida-Kato, H., Ohtsuki, M.,
 7
           Ohsumi, J., Yamaguchi, J., Takahashi, S., Tani,
 8
           Y., Watanabe, M., Shiraishi, A., Nishioka, K.,
 9
           Yonehara, S., and Serizawa, N. A novel murine
           anti-human Fas mAb which mitigates
10
11
           lymphadenopathy without hepatotoxicity. Int
12
           Immunol, 12: 555-562, 2000.
13
           Swain, S. M., Lippman, M. E., Egan, E. F.,
      33.
14
           Drake, J. C., Steinberg, S. M., and Allegra, C.
15
           J. Fluorouracil and high-dose leucovorin in
16
           previously treated patients with metastatic
17
           breast cancer. J Clin Oncol, 7: 890-899, 1989.
           Longley, D. B., McDermott, U., and Johnston, P.
18
      34.
19
           G. Clinical significance of prognostic and
20
           predictive markers in colorectal cancer.
21
           Pharmacogenomics J, 2: 209-216, 2002.
           Munsch, D., Watanabe-Fukunaga, R., Bourdon, J.
22
      35.
23
           C., Nagata, S., May, E., Yonish-Rouach, E., and
24
           Reisdorf, P. Human and mouse Fas (APO-1/CD95)
25
           death receptor genes each contain a p53-
26
           responsive element that is activated by p53
27
           mutants unable to induce apoptosis. J Biol
28
           Chem, 275: 3867-3872, 2000.
29
30
31
32
```

1	Clai	Claims		
2		- ·		
3	1.	Use of (a) a specific binding member which		
4		binds to a cell death receptor or a nucleic		
5		acid encoding said binding member and (b) a		
6		chemotherapeutic agent in the preparation of a		
7		medicament for treating cancer.		
8				
9	2.	The use according to claim 1 wherein the cancer		
10		is one or more of colorectal, breast , ovarian,		
11		cervical, gastric, lung, liver, skin and		
12	,	myeloid (e.g. bone marrow) cancer.		
13				
14	3.	The use according to claim 1 or claim 2 wherein		
15		the binding member is an antibody or a fragment		
16		thereof.		
17				
18	4.	The use according to any one of the preceding		
19		claims wherein the death receptor is FAS.		
20				
21	5.	The use according to any one of the preceding		
22		claims wherein the binding member is the anti-		
23		FAS antibody CH11.		
24				
25	6.	The use according to any one of the preceding		
2,6		claims wherein the binding member comprises at		
27		least one human constant region.		
28				
29	7.	The use according to any one of the preceding		
30		claims wherein, wherein said active agent is 5-		
31		Fluorouracil or an antifolate.		

1	8.	The use according to claim 7 wherein said
2		active agent is MTA.
3		
4.	9.	A method of killing cancer cells comprising
5		administering a therapeutically effective
6		amount of a) a specific binding member which
7		binds to a cell death receptor or a nucleic
8		acid encoding said binding member and (b) a
9		chemotherapeutic agent.
10		
11	10.	A method of treating cancer comprising
12		administration of a therapeutically effective
13		amount of a) a specific binding member which
14		binds to a cell death receptor or a nucleic
15		acid encoding said binding member and (b) a
16		chemotherapeutic agent to a mammal in need
17	•	thereof.
18		
19		
20	11.	The method according to claim 9 or claim 10
21		wherein the cancer is one or more of
22		colorectal, breast , ovarian, cervical,
23		gastric, lung, liver, skin and myeloid (e.g.
24		bone marrow) cancer.
25		
26	12.	The method according to claim 9, 10 or 11
27		wherein the binding member is an antibody or a
28		fragment thereof.
29		
30	13.	The method according to any one of claims 9 to
31		12 wherein the death receptor is FAS.

1	14.	The method according to any one of claims 9 to
2		13 wherein the binding member is the anti-FAS
3		antibody CH11.
4		
5	15.	The method according to any one of claims 9 to
6		13 wherein the binding member comprises at
7		least one human constant region.
8		
9	16.	The method according to any one of claims 9 to
10		15 wherein, wherein said active agent is 5-
11		Fluorouracil or an antifolate.
12		
13	17.	The method according to claim 16 wherein said
14		active agent is MTA.
15	:	4 Harris Control of the Control of t
16	18.	A product comprising a) a specific binding
17		member which binds to a cell death receptor or
18		a nucleic acid encoding said binding member and
19		(b) a chemotherapeutic agent as acombined
20		preparation for the simultaneous, separate or
21		sequential use in the treatment of cancer.
22		
23	19.	
24		of cancer, wherein the composition comprises a)
25		a specific binding member which binds to a cell
26		death receptor or a nucleic acid encoding said
27		binding member and (b) a chemotherapeutic agent
28		and (c) a pharmaceutically acceptable
29		excipient, diluent or carrier.
30	•	
31	20	-
32		pharmaceutical composition according to claim

1		19 wherein the cancer is one or more of
2	•	colorectal, breast , ovarian, cervical,
3		gastric, lung, liver, skin and myeloid (e.g.
4		bone marrow) cancer.
5		
6	21.	The product according to claim 18 or claim 20
7		or the pharmaceutical composition according to
8		claim 19 or claim 20 wherein the binding member
9		is an antibody or a fragment thereof.
10		
11	22.	The product according to claim 18 or claim 20
12		or 21 or the pharmaceutical composition
13		according to claim 19 or claim 20 or 21 wherein
14		the death receptor is FAS.
15		·
16	23.	The product according to claim 18 or any one of
17		claims 20 to 22 or the pharmaceutical
18		composition according to claim 19 or or any one
19		of claims 20 to 22 wherein the binding member
20		is the anti-FAS antibody CH11.
21	•	
22	24.	The product according to claim 18 or any one of
23		claims 20 to 23 or the pharmaceutical
24		composition according to claim 19 or or any one
25		of claims 20 to 23 wherein the binding member
26		comprises at least one human constant region.
27		
28	25	. The product according to claim 18 or any one of
29		claims 20 to 24 or the pharmaceutical
30		composition according to claim 19 or or any one
31		of claims 20 to 24 wherein, wherein said active

1		agent is 5-Fluorouracil or an antifolate.
2		·
3	26.	The product or pharmaceutical composition
4		according to claim 25 wherein said active agent
5		is MTA.
6		,
7	27.	27. A kit for the treatment of cancer, said
8		kit comprising:
9		a) a specific binding member which binds to a
10		cell death receptor or a nucleic acid encoding
11		said binding member and (b) a chemotherapeutic
12		agent and
13		(c) instructions for the administration of (a)
14		and (b) separately, sequentially or
15		simultaneously.
16		
17		
18		

Figure 1A

Figure 1B

Figure 1D

Figure 1E

Figure 1F

6/20

Figure 2A

Figure 2B

Figure 2C

Figure 2D

Figure 2E

Figure 2F

Figure 2G

Figure 2H

10/20

Figure 3B

11/20

Figure 3E

Figure 4B

Figure 4C

Figure 4E

15/20

Figure 5A

÷;;

Figure 5B

a

Figure 6B

19/20

PCT/GB2004/005008

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BEURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.