LECTURE SLIDES ANNOTATION WITH CODE-SWITCHED SPEECH

Done By: Yusuf Muhammad Eissa Ahmed Eissa Ammar

Supervisors: Dr. Nada Sharaf & Dr. Caroline Sabty

TABLE OF CONTENTS

- I. Introduction
- II. Methodology
- III. Results
- IV. Conclusion
- V. Future Work

I INTRODUCTION

INTRODUCTION

- Education & Technology
- Objective

II METHODOLOGY

SYSTEM ARCHITECTURE

PHASE 1 - LECTURE VIEWING MODULE

Description

❖Input:

Lecture PDF File

***Output:**

- Audio Recording (WAV)
- Slide Switching Timestamps

PHASE 1 - LECTURE VIEWING MODULE

- Components
- PDF Viewer
- Sound Recorder
- Stopwatch

- ***Website Flow**
- **♦**Controls

- Description
- Challenges

- **❖Input:**
- Audio Recording (WAV)
- ***Output:**
- Text

Automatic Speech Recognition (ASR) System Selection

- **Test Set**: 20 short audio files (10 English-Only & 10 Arabic-Only)
- Speech Recognition Open Source Libraries
- 1. VOSK
- 2. CMUSphinx
- Speech Recognition API(s)
- 1. Google Cloud Speech To Text
- 2. Microsoft-Azure Speech To Text
- Results

Microsoft-Azure Speech To Text API Configuration/Inputs

- Subscription Key and Region
- Audio File (WAV) Path
- Language Code
- Enabling Word-Level Confidence
- Enabling Word-Level Timestamps
- Enabling Profanity Filter
- Enabling Detailed Output Format
- Using Continuous Speech Recognition Method

<u>Approach 1:</u> Continuous Speech Recognition With Continuous Language Identification

Step 1: Recognizing Audio File Using Continuous Language Identification Feature
-Candidate Languages

Step 2: Output text (includes timestamp & confidence level of each word)

Approach 2: Continuous Speech Recognition With Overlap Filtration

Step 1: Recognizing Each Language Separately

Step 2: Merging Outputs & Ordering by Timestamps

Step 3: Overlap Filtration

 $Overlap = FirstWordOffset + FirstWordDuration - SecondWordOffset \\ OverlapPercentage = Overlap/SecondWordDuration$

Figure 3.3: Overlap Calculation

Step 4: Output text (includes timestamp & confidence level of each word)

Description

❖Input:

- Lecture PDF File
- Text
- Slide Switching Timestamps

Output:

Generated Lecture PDF with Notes

Step 1: Time Alignment

- 1. Splitting text into chunks using slide switching timestamps
- 2. Matching chunks to slides correspondingly.
- -After this step, every slide will have the text said when the slide was viewed, regardless of the contents of the slide

Step 2: Sentence Similarity Using Deep Learning

- Extract text from the lecture PDF file
- 2. Split matched notes of every slide into smaller chunks on silences that last for more than 5 seconds
- 3. Compare the smaller chunks of each slide to the text of all the slides, using a sentence similarity deep learning model and cosine similarity in an attempt to find a better match for each smaller chunk

Deep Learning Model

- Name: Pyjay/sentence-transformers-multilingual-snli-v2-500k
- Library: Sentence-Transformers
- **Description:** Multilingual model that finds sentence similarity between code-switched text and English text.

Input:

- Reference Sentence
- Sentences to be compared to reference sentence

Output:

Embeddings.

Cosine similarity is used to get a similarity score for each sentence compared to the reference sentence by using the embeddings created by the model

How the deep learning model was chosen?

- **Test Set:** 100 Code-Switched sentences, 100 English-Only sentences, and 10 slides (contains English-Only text)
- Models Tested: 9 multilingual models and 2 English-Only models
- **Test 1:** Matching Code Switched Sentences to Slides
- \star Pyjay/sentence-transformers-multilingual-snli-v2-500 (multilingual model) \rightarrow 87% (Highest Accuracy)
- **Test 2:** Matching English-Only Sentences to Slides
- \star all-mpnet-base-v2 (English-Only model) \rightarrow 85% (Highest Accuracy)
- ❖ Pyjay/sentence-transformers-multilingual-snli-v2-500 (multilingual model) → 83% (2nd-Highest Accuracy)
- Chosen Model & Trade-Off (processing time)

Step 3: Generating New Lecture PDF

WORD ERROR RATE (WER)

What is WER?

WER & System Accuracy Relation

• WER= Added + Substituted + Deleted (words)

Total Words

(actually spoken)

Test Set:

Short Code Switched Audio Files

Quantity: 8 Duration: 3-6 secs

Speaker: Me

Description: 1 Intra-sentential code switched sentence.

Long Code Switched Audio File

Quantity: 1 Duration: 13 Minutes

Speaker: Me

Description: 100 Intra-sentential code switched sentences. Live lecture explanation

during slide matching module testing.

Test Set:

English-Only Audio File

Quantity: 2 Duration: 1:15 & 12:30

Speaker: Dr. Hassan Soubra (Embedded Systems Course, GUC VOD)

Description: Speaker is French & not an native English speaker.

- Approach 1: Continuous Speech Recognition With Continuous Language Identification
- Approach 2: Continuous Speech Recognition With Overlap Filtration

Audio File	Approach 1 (WER)	Approach 2 (WER)
Short Code Switched (avg)	21%	8.8%
Long Code Switched	24.6%	13.3%
English-Only (avg)	2.18%	9.75%

Figure 4.5: WER Approaches Comparison

Observation & Chosen Approach

DETALED RESULTS

Approach 1

Audio File	WER
CS-Short1.wav	25%
CS-Short2.wav	0%
CS-Short3.wav	44.4%
CS-Short4.wav	33.3%
CS-Short5.wav	25%
CS-Short6.wav	12.5%
CS-Short7.wav	20%
CS-Short8.wav	9%
Average	21%

Figure 4.1: WER of the Short Code Switched Audio Files

Audio File	WER
English-Short.wav	2.6%
English-Long.wav	1.76%
Average	2.18%

Figure 4.2: WER of the English-Only Audio Files

Approach 2

Audio File	WER
CS-Short1.wav	0%
CS-Short2.wav	20%
CS-Short3.wav	0%
CS-Short4.wav	16.6%
CS-Short5.wav	12.5%
CS-Short6.wav	12.5%
CS-Short7.wav	0%
CS-Short8.wav	9%
Average	8.8%

Figure 4.3: WER of the Short Code Switched Audio Files

Audio File	WER
English-Short.wav	5.8%
English-Long.wav	13.7%
Average	9.75%

SLIDE MATCHING MODULE

Testing Slide Matching Module & Full System

Testing Procedure

- Creating Mock Lecture
- ➤ Using Website

Results

- ➤ Test 1 (Speech Related To Slide Text) → 13.3% WER, 9/10 Slides
- ➤ Test 2 (Speech **NOT** Related To Slide Text) → 13.3% WER, 9/10 Slides

IV. CONCLUSION

V FUTURE WORK

THANKYOU FOR LISTINING

QUESTIONS?

