

GRADO EN INGENIERÍA DE TECNOLOGÍAS INDUSTRIALES

Escuela Superior de Ciencias Experimentales y Tecnología

Curso académico 2023-2024

Trabajo Fin de Grado

Escribe el título del trabajo aquí con la segunda línea aquí

Tutor: Julio Vega Pérez

Autor: David Campoamor Medrano

Este trabajo se distribuye bajo los términos de la licencia internacional CC BY-NC-SA International License (Creative Commons AttributionNonCommercial-ShareAlike 4.0). Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato; y (b) adaptar: remezclar, transformar y crear a partir del material. El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia:

- Atribución. Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No comercial. Usted no puede hacer uso del material con propósitos comerciales.
- Compartir igual. Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la la misma licencia del original.

Documento de David Campoamor Medrano.

Agradecimientos

Nunca es tarea fácil agradecer a tantas personas el apoyo, la ayuda y los consejos que han contribuido en mi beneficio, tanto personal como académico, durante todos estos años.

En primer lugar, me gustaría dar las gracias tanto a la Universidad Rey Juan Carlos como a todos los profesores de los que he tenido el privilegio de ser alumno, por haber sido capaces de transmitir la dedicación, pasión, disciplina y el esfuerzo tan imprescindible como necesarios para la praxis de una profesión como lo es la de ingeniero, y más concretamente en mi caso, la de ingeniero industrial.

Quisiera expresar mi gratitud a mi tutor, Julio Vega, por guiarme, acompañarme y ayudarme durante estos meses de trabajo, para mí fue todo un honor saber que finalmente había aceptado dirigir este trabajo final de grado, y de este modo cerrar un bonito círculo que empezó con él como profesor mío de informática en el colegio, donde nos enseñó, entre otras muchas cosas, que más allá de los editores de texto convencionales, existen otros sistemas para la preparación de documentos, por esto, este trabajo también es en parte suyo, ya que tanto estas líneas como el resto del documento están basados en sus enseñanzas.

Asimismo, me gustaría agradecer a Robotplus, por cumplimentar mi formación académica y darme mi primera oportunidad laboral en el ámbito industrial, y más concretamente a mis compañeros del departamento de servicio técnico y a los del departamento de I+D+i, ya que gracias a ellos hoy por hoy he podido entender y experimentar más en profundidad muchos de los principios teóricos y de los problemas que únicamente conocía sobre el papel, pudiendo desarrollarme de una manera más completa como profesional.

Agradecer también a mis amigos y compañeros de clase, los *Hijos de la Ingeniería* y David, por no haber dejado que me rindiera incluso en los peores momentos y con todo en contra, y por haber sido un gran apoyo tanto dentro como fuera de la universidad.

A mis amigos del equipo de baloncesto en Alcorcón, en especial a Rober y a Adri, por haber confiado siempre en que este momento llegaría, antes o después, y haber formado parte de este proceso del que desde antes de empezar la universidad ya formaban parte, al igual que mis amigos de Móstoles del colegio, el *Cártel de La Manga*. Y sobre todo, gracias a Sandra, por ser para mí el claro ejemplo de que la dedicación y el trabajo duro merecen la pena, pero más allá de todo esto, por estar a mi lado día a día y ser mi compañera de vida, sin ella no habría podido soñar con finalmente llegar hasta aquí.

No querría concluir los agradecimientos sin hacer partícipe a toda mi familia, y en especial a mis padres y mi hermano, la paciencia que han tenido todo este tiempo conmigo, sobre todo en época de entregas y de éxamenes, pero sobre todo y más importante, la confianza depositada en mí, que mediante palabras y gestos de apoyo incondicional han demostrado. Ha sido gracias a este amor y apoyo que solo la familia sabe darte cuando más lo necesitas, por lo que sido más fácil poder alcanzar esta meta. Gracias a mis tíos y a mis primos mayores, por hacer que me interesase en el mundo de las ciencias, y más concretamente en la ingeniería y la construcción, faceta en la que ya desde pequeño había fijado mi atención jugando con aquellos bloques fabricados en plástico ABS y de colorines, ya que sin duda, fue gracias a ellos por lo que terminé de decidir embarcarme, ya desde el colegio, en las materias que guardaban mayor similitud con estos aspectos antes que en otras, puesto que veía en ellos una referencia a seguir. Pero sobre todo, gracias a mis abuelos, que como suele decirse, deberían ser eternos. Si antes hablaba de referencias, sin duda ellos han sido el máximo exponente en esto, puesto que sin sus enseñanzas y consejos, y no solo en aspectos académicos, no podría haber llegado hasta aquí. Todos ellos siempre formarán parte de mi y estarán presentes en cada una de las tomas de decisiones importantes que tenga que llevar a cabo, en las desilusiones y en los malos ratos, pero también en la consecución de mis éxitos y logros, como es el caso, aunque algunos de ellos ya no se encuentren entre nosotros o no puedan recordarlo. Espero haber podido aprender y retener algo de la sabiduría que me habéis mostrado y trasmitido.

> A todas aquellas personas que, con trabajo y esfuerzo, terminan consiquiendo todo aquello que se proponen.

> > Madrid, xx de xxxxxx de 20xx
> >
> > David Campoamor Medrano

Resumen

Escribe aquí el resumen del trabajo. Un primer párrafo para dar contexto sobre la temática que rodea al trabajo.

Un segundo párrafo concretando el contexto del problema abordado.

En el tercer párrafo, comenta cómo has resuelto la problemática descrita en el anterior párrafo.

Por último, en este cuarto párrafo, describe cómo han ido los experimentos.

Acrónimos

AERO Autonomous Exploration Rover

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

EKF Extended Kalman Filter

FOA Focus of Attention

GA Genetic Algorithm

GPIO General Purpose Input/Output

GPS Global Positioning System

HCI Human-Computer Interaction

HRI Human-Robot Interaction

Índice general

1.	Intr	oducci	iór	1																		1
	1.1.	Robots	s y	rol	bóti	ica																2
		1.1.1.	R	obo	ot Iı	ndu	stri	ial														4
		1.1.2.	R	obo	ot d	le S	ervi	icio	٠.													9
		1.1.3.	R	obo	ot N	Méd:	ico															9
	1.2.	Segund	da	sec	ciór	n.																10
		1.2.1.	N	úm	eros	s .																10
		1.2.2.	L	ista	S													•				10
2.	Obj	etivos																				12
	2.1.	Descri	pc	ión	del	pro	oble	ema	ι.													12
	2.2.	Requis	site	os .																		12
	2.3.	Metod	lolo	ogía	.																	12
	2.4.	Plan d	de 1	trab	ajo) .																12
3.	Plat	taforma	a e	de (des	arr	oll	o														13
4.	Dise	eño																				14
	4.1.	Snippe	ets																			14
	4.2.	Verbat	tim	1																		14
	4.3.	Ecuaci	ion	es.																		15
	4.4.	Tablas	s o	cua	adro	os								٠				•				15
5 .	Con	clusior	ne	\mathbf{s}																		17
	5.1.	Conclu	usi	one	s .																	17
	5.2.	Correc	cto	r or	·tog	ráfi	.co								•							18
Bi	hliog	rrafía																				19

Índice de figuras

1.1.	Primer robot industrial	4
1.2.	Robot Shakey	5
1.3.	Standford Arm	6
1.4.	Diagrama mecatrónico de construcción de máquinas inteligentes	6
1.5.	Robot Cincinnati Milacron T3	7
1.6.	Uno de los primeros prototipos de robot SCARA	8
1.7.	Robot ABB IRB 360 Flexpicker	9
1.8.	Robot aspirador Roomba de iRobot.	10

Listado de códigos

4.1.	Función para buscar elementos 3D en la imagen	14
4 2	Cómo usar un Slider	15

Listado de ecuaciones

4.1.	Ejemplo de ecuación con fracciones	15
4.2.	Ejemplo de ecuación con array y letras y símbolos especiales	15

Índice de cuadros

1.1.	Las tres leyes de la robótica según Asimov	3
4.1.	Parámetros intrínsecos de la cámara	16

Introducción

Desde sus inicios, la robótica ha proporcionado un sinfín de posibilidades y alternativas ante problemas que anteriormente carecían de las soluciones adecuadas, pero, ¿qué es realmente la robótica?

Se podría definir *robótica* como el proceso mediante el cual una máquina intercambia energía e información con su entorno, con el propósito de alcanzar una serie de objetivos específicos. Este campo tecnológico en expansión es el resultado de décadas de colaboración contínua entre biólogos, informáticos e ingenieros [Koditschek, 2021].

Dada esta multidisciplina, la robótica abarca una amplia gama de aplicaciones, desde la industria hasta la medicina, pasando por la exploración espacial, la domótica o la conducción autónoma, entre otras. Es un campo en constante evolución, impulsado por la búsqueda de soluciones innovadoras para mejorar la calidad de vida y permitir superar desafíos de manera más eficiente y segura.

La industria agrícola no es una excepción, ya que ha contemplado históricamente tareas que requieren una dedicación laboral considerable. No obstante, gracias a la robótica y a los sistemas de visión artificial, surge la oportunidad de transformar una serie de procesos, como puede ser la recolección de cultivos, a través de la detección automatizada para su posterior recolección.

En las siguientes secciones describiremos brevemente algunas de las aplicaciones más importantes de la robótica en la sociedad actual, así como los distintos conceptos en los cuales se basa la investigación y el desarrollo llevado a cabo.

1.1. Robots y robótica

Según la Federación Internacional de Robots (IFR) se define robot según el vocabulario establecido por la International Organization for Standardization (ISO), y esto es como "mecanismo accionado programado con cierto grado de autonomía para realizar tareas de locomoción, manipulación o posicionamiento" [ISO/TC299, 2021].

El término "robot" fue utilizado por primera vez por Karel Capek (en su obra de teatro "Rossum's Universal Robots" publicada en 1920. Esta palabra viene del vocablo checo "robota" que significa "trabajo", en el sentido de la obligatoriedad, entendido como servidumbre, trabajo forzado o esclavitud [Sánchez Martín et al., 2007a].

Aunque esta definición es un punto de partida, es cierto que es posible diferir en aspectos como si un robot debe controlarse automáticamente o podría ser autónomo o si un robot debe ser reprogramable. A un nivel más amplio, cualquier máquina que pueda utilizarse para llevar a cabo acciones o tareas complejas de forma automática puede considerarse un robot [Raj and Seamans, 2019].

Históricamente, las civilizaciones antiguas, como la egipcia y la griega, dieron los primeros pasos en lo que se puede denominar robótica clásica, construyendo autómatas y mecanismos diseñados para imitar acciones humanas, con características mecánicas rudimentarias. Con el paso del tiempo, la ciencia y la ingeniería avanzaron, y los conceptos de la robótica comenzaron a tomar forma más definida hasta que, en el siglo XX, con el desarrollo de la ingeniería en sus diferentes ramas (mecánica, electrónica, informática, telecomunicaciones), **Isaac Asimov** (1920-1992) utilizó por primera vez el término "robótica" y postuló las tres leyes de la robótica en su libro I Robot publicado en 1950, coincidiendo con el apogeo de la robótica moderna. Asimov consideró necesario añadir una cuarta ley, antepuesta a las demás, la número cero, que afirma que un robot no debe actuar simplemente para satisfacer intereses individuales, sino que sus acciones deben preservar el beneficio común de toda la humanidad [Sánchez Martín et al., 2007b].

- 1. Un robot no debe dañar a un ser humano ni, por su pasividad, dejar que un ser humano sufra daño.
- 2. Un robot no debe obedecer las órdenes que le son dadas por un ser humano, excepto cuando estas órdenes están en oposición con la primera Ley.
- 3. Un robot debe proteger su propia existencia, hasta donde esta protección no esté en conflicto con la primera o segunda Ley.

Cuadro 1.1: Las tres leyes de la robótica según Asimov.

Es también en 1950, cuando **Alan Mathison Turing** publica "Computing Machinery and Intelligence" y propone una prueba (test o máquina de Touring), en forma de entidad matemática abstracta, que demuestra la existencia de problemas computacionales irresolubles que ninguna máquina es capaz de solventar. Se puede afirmar que un programa de ordenador no llegará nunca a ser tan inteligente como un ser humano y que un robot no podrá suplir al ser humano de forma completa, [Sánchez Martín et al., 2007b] preocupación sobre el potencial de sustitución de la mano de obra, que históricamente, ha atenuado el entusiasmo en torno a las nuevas tecnologías [Mokyr et al., 2015].

Partiendo de todos estos avances y del interés por automatizar las tareas de producción, la robótica va adquiriendo un gran desarrollo [Sánchez Martín et al., 2007b]. Es debido a este desarrollo, que atendiendo al propósito y al contexto en el que se utilicen estos robots, se fueron creando varios grupos en función de los que clasificarles. Estos tres grandes grupos en función de una serie de criterios generales fueron: robots industriales, robots de servicio y robots médicos.

1.1.1. Robot Industrial

Se define *robot industrial* como un "manipulador polivalente, reprogramable y controlado automáticamente, programable en tres o más ejes, que puede ser fijo o móvil para su uso en aplicaciones de automatización industrial" [ISO/TC299, 2021].

El inicio de la robótica industrial, tal como la definimos actualmente, puede datarse en la década de 1950, aunque algunos tipos de automatización en el entorno industrial empezaron a aparecer desde los tiempos de la Revolución Industrial. La evolución de los robots industriales puede subdividirse en cuatro categorías: las tres primeras abarcan el período comprendido entre los años cincuenta y finales de los noventa, mientras que la cuarta generación abarca desde 2000 hasta nuestros días [Gasparetto and Scalera, 2019].

Primera generación o primeros manipuladores (1950-1967): Estos robots eran básicamente máquinas programables que no tenían comunicación con el entorno externo y con algoritmos de control sencillos (punto a punto). En cuanto al hardware, contaban con equipos de baja tecnología, sin servocontroladores. Sin embargo, en 1954, George Devol y Joseph Engelberger formaron la empresa Unimation, empresa que desarrollaría Unimate, considerado el primer robot industrial de la historia, fabricado en 1961 [Zamalloa et al., 2017].

(a) Joseph Engelberger y George Devol

(b) Robot Unimate

Figura 1.1: Primer robot industrial.

Empresas como Ford y General Motors empezaron a plantearse la automatización de sus plantas productivas, por lo que, en 1962, la empresa AMF Corporation fabricó un nuevo robot llamado Versatan, un robot cilíndrico que Ford encargó para sus fábricas. Este robot, fue también el primero que se instaló en un centro productivo en Japón [Gasparetto and Scalera, 2019].

■ Segunda generación o robots sensorizados (1968-1977): eran máquinas programables básicas con posibilidades limitadas de comportamiento autoadaptativo y capacidades elementales para reconocer el entorno externo, poseían sistemas sensoriales avanzados y eran robots de gran volumen que se utilizaban principalmente en automoción [Zamalloa et al., 2017]. En 1968, en el Stanford Artificial Inteligente Laboratory (SRI) se confecciona el WAVE, el primer lenguaje de programación para robots. También en el mismo centro surge Shakey, provisto de múltiples sensores y medios para desplazarse por el suelo, además de control remoto por radio [Sánchez Martín et al., 2007b].

Figura 1.2: Robot Shakey.

Shakey podía realizar tareas de planificación, búsqueda de rutas y reordenación de objetos sencillos, siendo el primer robot móvil con capacidad para percibir y razonar sobre su entorno [SRI, 2023].

En 1969, Unimation concendió a Kawasaki Heavy Industries Ltd. la licencia para producir robots para el mercado japonés y asiático, conduciendo al desarrollo del Kawasaki-Unimate 2000, el primer robot industrial construido en Japón. Es también en este año cuando Víctor Scheinman, un estudiante de ingeniería mecánica de la Universidad de Standford, diseñó y construyó el primer prototipo de brazo robótico, cuya cinemática inversa podía resolverse de manera analíticamente cerrada, permitiendo una rápida ejecución de la trayectoria [Gasparetto and Scalera, 2019].

(b) Standford Arm

Figura 1.3: Standford Arm.

El ingeniero de la compañía Yaskawa, **T** Mori, en 1969 acuña el término mecatrónica que integra el conjunto de mecanismos de control automático imprescindibles para el desarrollo de cualquier máquina inteligente [Sánchez Martín et al., 2007b].

Figura 1.4: Diagrama mecatrónico de construcción de máquinas inteligentes.

En 1973, KUKA construyó el primer robot industrial con 6 ejes electromecánicos llamado Famulus. Un año más tarde, Cincinnati Milacron introdujo en el mercado el robot T3. Cincinnati Milacron (adquirida por ABB en 1990). El robot T3 fue el primer robot comercial controlado por un microordenador [Zamalloa et al., 2017].

Figura 1.5: Robot Cincinnati Milacron T3.

Tercera generación o robots industriales (1978-1999): los robots de esta generación disponían de controladores específicos (ordenadores), siendo un punto clave en la caracterización de este generación, además del surgimiento de nuevos lenguajes de programación para el control de los robots, la posibilidad de reprogramarlos y la inclusión parcial de la visión artificial [Zamalloa et al., 2017]. Entre finales de los años setenta y principios de los ochenta, otros avances científicos y técnicos contribuyeron a la difusión de los robots [Gasparetto and Scalera, 2019], que junto a que las empresas de todo el mundo invirtieron miles de millones de dólares en del mundo para automatizar tareas básicas en sus cadenas de montaje, supusieron que los robots poblaran muchos sectores industriales para automatizar una amplia variedad de actividades [Zamalloa et al., 2017].

Unimation diseñó y fabricó en 1978 el robot PUMA. El PUMA (acrónimo de Programmable Universal Machine for Assembly) fue considerado durante muchas décadas el arquetipo de los robots antropomórficos [Gasparetto and Scalera, 2019].

En 1978, el científico japonés *Hiroshi Makino*, de la Universidad de Yamanashi, propuso una nueva estructura cinemática. El robot con esta estructura se denominó *SCARA* (acrónimo de "Selective Compliance Assembly Robot Arm"), ya que su conformidad en la dirección horizontal resultó menor que la conformidad en la dirección vertical. Por esta razón, así como por la ligereza de la cadena cinemática (que permitía un controlador más sencillo y rápido), este robot era adecuado para ser empleado en tareas como el ensamblaje de objetos pequeños [Makino and Furuya, 1980].

Figura 1.6: Uno de los primeros prototipos de robot SCARA.

Más tarde, en 1981 en la Universidad Carnegie-Mellon se desarrolló un robot de impulsión directa que utiliza motores eléctricos en las articulaciones, evitando la distorsión de las transmisiones mecánicas convencionales. En 1982 *IBM* introduce el robot de montaje industrial RS-1 que utiliza un brazo constituido por 3 dispositivos de deslizamiento [Sánchez Martín et al., 2007b].

De la idea de emplear cadenas cinemáticas paralelas en lugar de las clásicas cadenas cinemáticas en serie, junto con la de crear un robot ligero capaz de moverse a gran velocidad, surgió el arquetipo del robot Delta (que apareció en 1992), concebido por el científico suizo *Reymond Clavel* en la Escuela Politécnica Federal de Lausana (EPFL) [Clavel, 1991]. En comparación con los robots en serie, los robots paralelos tienen un espacio de trabajo más pequeño, pero pueden funcionar a una velocidad mucho mayor, siendo la arquitectura cinemática ideal para los robots dedicados a operaciones de pick-and-place de alta velocidad. Basado en este tipo de estructura, unos años después, en 1998, ABB desarrolló el Flex-Picker, el robot de picking más rápido del mundo [Gasparetto and Scalera, 2019].

Figura 1.7: Robot ABB IRB 360 Flexpicker.

■ Cuarta generación o robots inteligentes (2000-Actualidad): entre las características de esta generación de robots se encuentra la inclusión de capacidades informáticas avanzadas, ya que los ordenadores no sólo trabajan con datos, si no también pueden realizar razonamientos lógicos y aprender, puesto que la Inteligencia Artificial comienza a ser incluida parcial y experimentalmente en estos robots. Los sensores son más sofisticados, y envían información al controlador y la analizan mediante estrategias de control complejas para que el robot pueda basar sus acciones en información sólida y fiable. Es en esta generación cuando se introducen los robots colaborativos [Zamalloa et al., 2017].

1.1.2. Robot de Servicio

Se define robot de servicio como un robot que realiza tareas útiles para las personas o los equipos, incluyendo en esta la manipulación o el servicio de artículos, el transporte, el apoyo físico, la orientación o información, el aseo personal, la cocina y la manipulación de alimentos y la limpieza en el ámbito personal, y la inspección, vigilancia, manipulación de objetos, transporte de personas, orientación o información, cocina y manipulación de alimentos y limpieza en el ámbito profesional [ISO/TC299, 2021].

1.1.3. Robot Médico

Se define *robot médico* a aquellos dispositivos electromecánicos que desempeñan parcial o totalmente algunas funciones de los seres humanos o de sus órganos al resolver problemas médicos, ayudando a mejorar la asistencia al paciente y los resultados, a la

vez que aumenta la eficiencia operativa [Kraevsky and Rogatkin, 2010].

En los textos puedes poner palabras en *cursiva*, para aquellas expresiones en sentido *figurado*, palabras como *robota*, que está fuera del diccionario castellano, o bien para resaltar palabras de una colección: (a) es la primera letra del abecedario, (b) es la segunda, etc.

Al poner las dos líneas del anterior párrafo, este aparecerá separado del anterior. Si no las pongo, los párrafos aparecerán pegados. Sigue el criterio que consideres más oportuno.

1.2. Segunda sección

No olvides incluir imágenes y referenciarlas, como la Figura 1.8.

Figura 1.8: Robot aspirador Roomba de iRobot.

Ni tampoco olvides de poner las URLs como notas al pie. Por ejemplo, si hablo de la Robocup¹.

1.2.1. Números

En lugar de tener secciones interminables, como la Sección ??, divídelas en subsecciones.

Para hablar de números, mételos en el entorno math de LaTeX, por ejemplo, 1.5Kg. También puedes usar el símbolo del Euro como aquí: $1.500 \in$.

¹http://www.robocup.org

1.2.2. Listas

Cuando describas una colección, usa itemize para ítems o enumerate para enumerados. Por ejemplo:

- Entorno de simulación. Hemos usado dos entornos de simulación: uno en 3D y otro en 2D.
- Entornos reales. Dentro del campus, hemos realizado experimentos en Biblioteca y en el edificio de Gestión.
- 1. Primer elemento de la colección.
- 2. Segundo elemento de la colección.

Referencias bibliográficas Las referencias, con todo su contenido, están recogidas en el fichero bibliografia.bib. El contenido de estas referencias está en formato BibTex. Este formato se puede obtener en muchas ocasiones directamente, desde plataformas como Google Scholar u otros repositorios de recursos científicos.

Existen numerosos estilos para reflejar una referencia bibliográfica. El estilo establecido por defecto en este documento es APA, que es uno de los estilos más comunes, pero lo puedes modificar en el archivo memoria.tex; concretamente, cambiando el campo apalike a otro en la instrucción \bibliographystyle{apalike}.

Y, para terminar este capítulo, resume brevemente qué vas a contar en los siguientes.

Objetivos

Quizás algún fragmento de libro inspirador...

Autor, Título

Escribe aquí un párrafo explicando brevemente lo que vas a contar en este capítulo. En este capítulo lo ideal es explicar cuáles han sido los objetivos que te has fijado conseguir con tu trabajo, qué requisitos ha de respetar el resultado final, y cómo lo has llevado a cabo; esto es, cuál ha sido tu plan de trabajo.

2.1. Descripción del problema

Cuenta aquí el objetivo u objetivos generales y, a continuación, concrétalos mediante objetivos específicos.

2.2. Requisitos

Describe los requisitos que ha de cumplir tu trabajo.

2.3. Metodología

Qué paradigma de desarrollo software has seguido para alcanzar tus objetivos.

2.4. Plan de trabajo

Qué agenda has seguido. Si has ido manteniendo reuniones semanales, cumplimentando objetivos parciales, si has ido afinando poco a poco un producto final completo, etc.

Plataforma de desarrollo

Quizás algún fragmento de libro inspirador...

Autor, Título

Escribe aquí un párrafo explicando brevemente lo que vas a contar en este capítulo. En este capítulo, explica qué has usado a nivel hardware y software para poder desarrollar tu trabajo: librerías, sistemas operativos, plataformas, entornos de desarrollo, etc.

Diseño

Quizás algún fragmento de libro inspirador...

Autor, Título

Escribe aquí un párrafo explicando brevemente lo que vas a contar en este capítulo. En este capítulo (y quizás alguno más) es donde, por fin, describes detalladamente qué has hecho y qué experimentos has llevado a cabo para validar tus desarrollos.

4.1. Snippets

Puede resultar interesante, para clarificar la descripción, mostrar fragmentos de código (o *snippets*) ilustrativos. En el Código 4.1 vemos un ejemplo escrito en C++.

```
void Memory::hypothesizeParallelograms () {
  for(it1 = this->controller->segmentMemory.begin(); it1++) {
    squareFound = false; it2 = it1; it2++;
    while ((it2 != this->controller->segmentMemory.end()) && (!squareFound))
        {
        if (geometry::haveACommonVertex((*it1),(*it2),&square)) {
            dist1 = geometry::distanceBetweenPoints3D ((*it1).start, (*it1).end);
            dist2 = geometry::distanceBetweenPoints3D ((*it2).start, (*it2).end);
        }
        // [...]
```

Código 4.1: Función para buscar elementos 3D en la imagen

En el Código 4.2 vemos un ejemplo escrito en Python.

4.2. Verbatim

Para mencionar identificadores usados en el código —como nombres de funciones o variables— en el texto, usa el entorno literal o verbatim

```
def mostrarValores():
    print (w1.get(), w2.get())

master = Tk()
w1 = Scale(master, from_=0, to=42)
w1.pack()
w2 = Scale(master, from_=0, to=200, orient=HORIZONTAL)
w2.pack()
Button(master, text='Show', command=mostrarValores).pack()
mainloop()
```

Código 4.2: Cómo usar un Slider

hypothesizeParallelograms(). También se puede usar este entorno para varias líneas, como se ve a continuación:

```
void Memory::hypothesizeParallelograms () {
  // add your code here
}
```

4.3. Ecuaciones

Si necesitas insertar alguna ecuación, puedes hacerlo. Al igual que las figuras, no te olvides de referenciarlas. A continuación se exponen algunas ecuaciones de ejemplo: Ecuación 4.1 y Ecuación 4.2.

$$H = 1 - \frac{\sum_{i=0}^{N} \frac{\binom{d_{js} + d_{je}}{2}}{N}}{M} \tag{4.1}$$

Ecuación 4.1: Ejemplo de ecuación con fracciones

$$v(entrada) = \begin{cases} 0 & \text{if } \epsilon_t < 0,1\\ K_p \cdot (T_t - T) & \text{if } 0,1 \le \epsilon_t < M_t\\ K_p \cdot M_t & \text{if } M_t < \epsilon_t \end{cases}$$
(4.2)

Ecuación 4.2: Ejemplo de ecuación con array y letras y símbolos especiales

4.4. Tablas o cuadros

 un ejemplo.

Parámetros	Valores
Tipo de sensor	Sony IMX219PQ[7] CMOS 8-Mpx
Tamaño del sensor	$3.674 \times 2.760 \text{ mm } (1/4) \text{ format}$
Número de pixels	3280 x 2464 (active pixels)
Tamaño de pixel	$1.12 \times 1.12 \text{ um}$
Lente	f=3.04 mm, f/2.0
Ángulo de visión	$62.2 \times 48.8 \text{ degrees}$
Lente SLR equivalente	29 mm

Cuadro 4.1: Parámetros intrínsecos de la cámara

Conclusiones

Quizás algún fragmento de libro inspirador...

Autor, Título

Escribe aquí un párrafo explicando brevemente lo que vas a contar en este capítulo, que básicamente será una recapitulación de los problemas que has abordado, las soluciones que has prouesto, así como los experimentos llevados a cabo para validarlos. Y con esto, cierras la memoria.

5.1. Conclusiones

Enumera los objetivos y cómo los has cumplido.

Enumera también los requisitos implícitos en la consecución de esos objetivos, y cómo se han satisfecho.

No olvides dedicar un par de párrafos para hacer un balance global de qué has conseguido, y por qué es un avance respecto a lo que tenías inicialmente. Haz mención expresa de alguna limitación o peculiaridad de tu sistema y por qué es así. Y también, qué has aprendido desarrollando este trabajo.

Por último, añade otro par de párrafos de líneas futuras; esto es, cómo se puede continuar tu trabajo para abarcar una solución más amplia, o qué otras ramas de la investigación podrían seguirse partiendo de este trabajo, o cómo se podría mejorar para conseguir una aplicación real de este desarrollo (si es que no se ha llegado a conseguir).

5.2. Corrector ortográfico

Una vez tengas todo, no olvides pasar el corrector ortográfico de LATEXa todos tus ficheros .tex. En Windows, el propio editor TeXworks incluye el corrector. En Linux, usa aspell ejecutando el siguiente comando en tu terminal:

aspell --lang=es --mode=tex check capitulo1.tex

Bibliografía

- [Clavel, 1991] Clavel, R. (1991). Conception d'un robot parallèle rapide à 4 degrés de liberté. Docteur thesis es sciences techniques, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne.
- [Gasparetto and Scalera, 2019] Gasparetto, A. and Scalera, L. (2019). A Brief History of Industrial Robotics in the 20th Century. *Advances in Historical Studies*, 8:24–35.
- [ISO/TC299, 2021] ISO/TC299 (2021). ISO 8373:2021 Robotics Vocabulary, pages 1–22. International Organization for Standardization. Only informative sections of standards are publicly available.
- [Koditschek, 2021] Koditschek, D. E. (2021). What Is Robotics? Why Do We Need It and How Can We Get It? *Annual Review of Control, Robotics, and Autonomous Systems*, 4(1):1–33.
- [Kraevsky and Rogatkin, 2010] Kraevsky, S. and Rogatkin, D. (2010). Medical robotics: the first steps of medical robots. *Russian Journal: Technologies of live systems*, 7(4):3–14.
- [Makino and Furuya, 1980] Makino, H. and Furuya, N. (1980). Selective Compliance Assembly Robot Arm. In *Proceedings of 1st International Conference on Assembly Automation (ICAA)*, pages 77–86, Brighton.
- [Mokyr et al., 2015] Mokyr, J., Vickers, C., and Ziebarth, N. L. (2015). The History of Technological Anxiety and the Future of Economic Growth: Is This Time Different? Journal of Economic Perspectives, 29(3):31–50.
- [Raj and Seamans, 2019] Raj, M. and Seamans, R. (2019). Primer on artificial intelligence and robotics. *Journal of Organization Design*, 8:1–14.
- [SRI, 2023] SRI (2023). Shakey the robot.
- [Sánchez Martín et al., 2007a] Sánchez Martín, F., Millán Rodríguez, F., Salvador Bayarri, J., Palou Redorta, J., Rodríguez Escovar, F., Esquena Fernández,

BIBLIOGRAFÍA 20

S., and Villavicencio Mavrich, H. (2007a). Historia de la robótica: de Arquitas de Tarento al robot Da Vinci (Parte I). *Actas Urológicas Españolas*, 31:69 – 76.

- [Sánchez Martín et al., 2007b] Sánchez Martín, F., Millán Rodríguez, F., Salvador Bayarri, J., Palou Redorta, J., Rodríguez Escovar, F., Esquena Fernández, S., and Villavicencio Mavrich, H. (2007b). Historia de la robótica: de Arquitas de Tarento al Robot Da Vinci. (Parte II). Actas Urológicas Españolas, 31:185–196.
- [Zamalloa et al., 2017] Zamalloa, I., Kojcev, R., Hernández, A., Muguruza, I., Usategui, L., Bilbao, A., and Mayoral, V. (2017). Dissecting Robotics historical overview and future perspectives.