Prirodno-matematički fakultet Univerzitet u Nišu

MASTER RAD

KOMPAKTNI I RISOVI OPERATORI

mentor: Prof. dr Dragan Đorđević student: Jelena Jovanović

Sadržaj

1	NORMIRANI PROSTORI		3
	1.1	Osnovne definicije i teoreme	3
	1.2	Banahovi i Hilbertovi prostori	4
	1.3	Normiran prostor $L(X,Y)$	6
	1.4	Spektar i rezolventa	
2	KOMPAKTNI OPERATORI		11
	2.1	Definicija i osnovne osobine kompaktnih operatora	12
	2.2	Kompaktni operatori na Hilbertovim prostorima	
	2.3	Kompaktni ermitski operatori	21
	2.4	Spektralna teorema za kompaktne normalne operatore	28
	2.5	Ekstremalna svojstva sopstvenih vrednosti kompaktnog er-	
		mitskog operatora	32
	2.6	Teorema Arcela-Askoli	36
	2.7	Kompaktnost nekih integralnih operatora	37
	2.8	Spektar kompaktnog operatora	41
3	RISOVI OPERATORI		49
	3.1	Uvodni pojmovi i tvrđenja	49
	3.2	Karakterizacija Risovih operatora	
	3.3	Dekompozicija Risovih operatora	
4	Bio	grafija	65

Uvod

Funkcionalna analiza je jedno od najsadržajnijih i najznačajnijih područja savremene matematike. Nastala je krajem devetnaestog i početkom dvadesetog veka kao nadgradnja linearne algebre i nekih područja klasične analize. Predmet proučavanja funkcionalne analize su funkcije koje imaju neko zajedničko svojstvo, a ne individualna funkcija. Danas je funkcionalna analiza primenljiva u gotovo svim matematičkim disciplinama, ali i u fizici i tehnici.

U ovom radu razmatrani su veoma važni pojmovi u matematici uopšte, operatori. Konkretno, opisani su kompaktni i Risovi operatori. U prvoj glavi su, ukratko, date osnovne definicije i teoreme vezane za neke vektorske prostore. Najveća pažnja, jasno, ukazana je Banahovim i Hilbertovim prostorima. Zatim, dati su rezultati vezani za prostore ograničenih linearnih operatora.

Sa kompaktnim operatorima sretali smo se još u okviru kursa "Funkcionalna analiza", ali u ovom radu su detaljnije opisana svojstva kompaktnih operatora i rezultati vezani za spektar kompaktnog operatora, i za kompaktne operatore na različitim vektorskim prostorima. To je sadržaj druge glave.

Ako se zadržimo na spektralnoj teoriji kompaktnih operatora, i ignorisemo ostale njihove osobine, izvršili smo generalizaciju istih, i dobili takozvane Risove operatore. O njima ce biti reči u trećoj glavi.

Ovom prilikom želim da se zahvalim pre svega svom mentoru, prof. Dr Draganu Đorđevicu na ukazanoj pomoći pri izradi rada. Veoma sam zahvalna i na pomoći pri odabiru teme, i nadam se da sam uspela da ostvarim ono sto se od mene očekuje. Naravno, svesna sam da rad sadrži dosta propusta, i unapred se zbog njih izvinjavam.

Takođe, ogromnu zahvalnost dugujem svojoj porodici i prijateljima koji su bez izuzetka bili uz mene svih ovih godina i pružali mi bezgraničnu podršku. Ovom prilikom želim da izrazim neizmernu zahvalnost prema profesoru Miliću Mitroviću koji je davno probudio u meni ljubav prema matematici i usmerio me na ovaj put, i koji je oduvek verovao u mene i bodrio me.

1 NORMIRANI PROSTORI

1.1 Osnovne definicije i teoreme

Definicija 1.1.1. Funkcija $x \mapsto |x|$ sa vektorskog prostora X u skup realnih brojeva je norma na X ako ona ima svojstva:

- (N1) $x \ge 0$ za svako $x \in X$;
- (N2) |x| = 0 ako i samo ako je x = 0;
- (N3) $|\lambda x| = |\lambda| \cdot |x|$ za svaki skalar λ i svako $x \in X$ (homogenost norme);
- (N4) $|x+y| \le |x| + |y|$ za sve $x, y \in X$ (nejednakost trougla).

Uređen par (X, |.|) vektorskog prostora X i norme $x \mapsto |x|$ definisane na X naziva se normiran vektorski prostor.

Komentar: Norma se često označava i sa $\|\cdot\|$. Neka je $\Phi = C$ ili R.

Primer 1.1. Sa

$$|x|_1 = \sum_{i=1}^n |\xi_i|, \quad x = (\xi_1, \xi_2, ..., \xi_n)$$

data je norma na vektorskom prostoru Φ^n .

Primer 1.2. Sa

$$|x|_{\infty} = \max\{|\xi_1|, |\xi_2|, ..., |\xi_n|\},$$
 $x = (\xi_1, \xi_2, ..., \xi_n)$

data je norma na vektorskom prostoru Φ^n .

Primer 1.3. Ako je $(x,y)\longmapsto (x|y)$ skalarni proizvod na prostoru X , onda je

$$(1) x \longmapsto |x| = (x|x)^{1/2}$$

norma na X.

Norma iz Primera 1.3. zadovoljava relaciju paralelograma:

$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2, (x, y \in X).$$

Teorema 1.1.1.(P.Žordan- J. Fon Nojman) Ako norma $x \mapsto |x|$ na prostoru X zadovoljava relaciju paralelograma (1), onda je sa

$$(x|y) = \frac{1}{4}(|x+y|^2 - |x-y|^2)$$

dat skalarni proizvod na X u slučaju da je X realan prostor, odnosno sa

$$(x|y) = \frac{1}{4}(|x+y|^2 - |x-y|^2) + \frac{i}{4}(|x+iy|^2 - |x-iy|^2)$$

u slučaju da je X kompleksan prostor. U oba slučaja je

$$|x|^2 = (x|x).$$

Definicija 1.1.2. Funkcija $d: X \times X \longmapsto [0, \infty)$ je *metrika* na skupu X ako zadovoljava sledeće uslove:

- (M1) $d(x,y) \ge 0$ za sve $x,y \in X$;
- (M2) d(x, y) = 0 akko x = y;
- (M3) d(x,y) = d(y,x) za sve $x, y \in X$;
- (M4) $d(x,y) \leq d(x,z) + d(z,y)$, za sve $x,y,z \in X$ (nejednakost trougla). Uređen par (X,d) naziva se metrički prostor.

Teorema 1.1.2. Ako je $x \longmapsto |x|$ norma na vektorskom prostoru X, onda je

$$d(x,y) = |x - y|, \quad x, y \in X$$

 $metrika \ na \ X.$

Vektorski prostor X snabdeven skalarnim proizvodom (.|.) naziva se unitarni (pre-Hilbertov) prostor. U daljem razmatranju smatraćemo da je svaki unitaran prostor X snabdeven normom $x \longmapsto (x|x)^{\frac{1}{2}}$ (norma indukovana skalarnim proizvodom), i da je svaki normiran prostor X snabdeven metrikom $(x,y) \longmapsto |x-y|$ (metrika indukovana normom).

1.2 Banahovi i Hilbertovi prostori

Definicija 1.2.1. Za niz $(x_n)_n$ vektora normiranog vektorskog prostora X kažemo da konvergira po normi ka vektoru $x_0 \in X$ ako niz brojeva $|x_n - x_0|$ konvergira nuli.

Ako niz $(x_n)_n$ konvergira ka x_0 onda pišemo $x_0 = \lim x_n$.

Definicija 1.2.2. Red $\sum_{n=1}^{\infty} x_n$ konvergira ako niz $(s_n)_{n \in N}$ parcijalnih suma $s_n = x_1 + x_2 + ... + x_n$ konvergira po normi.

Definicija 1.2.3. Red $\sum_{n=1}^{\infty} x_n$ apsolutno konvergira ako brojni red $\sum_{n=1}^{\infty} |x_n|$ konvergira.

Definicija 1.2.4. Niz $(x_n)_{n\in\mathbb{N}}$ normiranog prostora X je Košijev niz ako

$$(\forall \varepsilon > 0)(\exists n(\varepsilon) \in N)(\forall p, q \geqslant n(\varepsilon) \Rightarrow |x_p - x_q| < \varepsilon).$$

Svaki konvergentan niz je Košijev. Medjutim, nije svaki Košijev niz konvergentan. Za vektorski prostor kažemo da je *kompletan* ako u njemu svaki Košijev niz konvergira.

Definicija 1.2.5. Normiran vektorski prostor X je $Banahov\ prostor$ ako je svaki Košijev niz elemenata prostora X konvergentan u X. Drugim rečima, normiran prostor X je Banahov ako je (X,d) kompletan metrički prostor, gde je d metrika indukovana normom.

Definicija 1.2.6. Kompletan unitaran prostor naziva se *Hilbertov prostor*.

Teorema 1.2.1. Normiran prostor X je kompletan ako i samo ako svaki apsolutno konvergentan red vektora iz X konvergira u X.

Definicija 1.2.7. Skup $F \subseteq X$ normiranog prostora X je :

- (a) zatvoren, ako sadrži sve granične vrednosti konvergentnih nizova iz F;
- (b) relativno kompaktan, ako svaki niz iz F ima konvergentan podniz;
- (c) kompaktan, ako svaki niz iz F sadrži konvergentan podniz čija granična vrednost pripada skupu F.

Zatvorenje skupa F u normiranom prostoru X jeste \overline{F} .

Ako je Y potprostor normiranog (unitarnog) prostora X, onda je i \overline{Y} potprostor od X. Takođe, lako se pokazuje da ako je X Banahov (Hilbertov prostor), takav je i \overline{Y} .

Teorema 1.2.2. Svaki konačno-dimenzionalan potprostor Y normiranog prostora X je Banahov prostor. Specijalno, svaki konačno-dimenzionalan normiran prostor je Banahov.

Posledica 1.2.3. Konačno-dimenzionalan potprostor Y normiranog prostora X je zatvoren skup u X.

Teorema 1.2.4. Zatvorena kugla u beskonačno-dimenzionalnom normiranom prostoru nije relativno kompaktan skup.

Navešćemo i jedan važan rezultat do kog je došao F.Ris. On je od velike važnosti onda kada ispitujemo kompaktnost skupova.

Teorema 1.2.5. Normiran prostor X je konačno-dimenzionalan ako i samo ako je svaki njegov ograničen i zatvoren podskup kompaktan.

1.3 Normiran prostor L(X, Y)

Neka su X i Y normirani vektorski prostori.

Definicija 1.3.1. Linearan operator $A:X\longrightarrow Y$ je ograničen ako postoji realan broj $M\geqslant 0$ takav da je

$$|Ax| \leqslant M|x| \qquad \forall x \in X.$$

Teorema 1.3.1. Neka su X i Y normirani vektorski prostori. Linearan operator $A: X \longrightarrow Y$ je ograničen ako i samo ako je A neprekidan na X.

Skup svih ograničenih linearnih operatora iz X u Y označen je sa L(X,Y). Specijalno L(X,X)=L(X).

Teorema 1.3.2. Ako je dim $X < \infty$, onda je svaki linearni operator koji slika X u Y neprekidan.

Definicija 1.3.2. Neka su X i Y normirani prostori. *Norma operatora* $A \in L(X,Y)$ je broj definisan sa:

$$|A| = \sup\{Ax : x \in X, |x| \leqslant 1\}$$

Teorema 1.3.3. Ako su X i Y normirani prostori, onda je L(X,Y) normiran prostor.

Jedan od najznačajnijih rezultata iz ove oblasti je sledeći:

Teorema 1.3.4. Ako je Y Banahov prostor, onda je L(X,Y) Banahov prostor.

1.4 Spektar i rezolventa

Ono što je važno za teoriju operatora uopšte, jeste da ako je X Banahov prostor, prostor L(X) predstavlja **Banahovu algebru**. Za elemenat $a \in A$, gde je A algebra, definisali smo spektar $\sigma(a)$ kao

$$\sigma(a) = \{ \lambda \in C : a - \lambda \notin A^{-1} \}$$

gde je sa A^{-1} označen skup svih elemenata iz A koji su invertibilni. Zato možemo posmatrati spektar operatora $T \in L(X)$.

Neka je X Banahov prostor i neka je $T \in L(X)$.

Definicija 1.4.1. Rezolventni skup operatora T, u oznaci $\rho(T)$ je skup kompleksnih brojeva λ za koje je $\lambda I - T$ invertibilan element Banahove algebre L(X).

Definicija 1.4.2. Spektar operatora T, $\sigma(T)$, definišemo kao

$$\sigma(T) = C \backslash \rho(T).$$

Definicija 1.4.3. Funkcija

$$\lambda \longmapsto (\lambda I - T)^{-1} \qquad (\lambda \in \rho(T))$$

naziva se rezolventa operatora T.

Teorema 1.4.1. Neka je $T \in L(X)$. Rezolventni skup $\rho(T)$ je otvoren

Teorema 1.4.2. Ako je $d(\lambda)$ rastojanje između λ i spektra $\sigma(T)$, onda

$$|(\lambda I - T)^{-1}| \geqslant \frac{1}{d(\lambda)}, \qquad (\lambda \in \rho(T)).$$

 $Stoga |(\lambda I - T)^{-1}| \longrightarrow \infty \ kada \ d(\lambda) \longrightarrow 0.$

Teorema 1.4.3. Neka je $T \in L(X)$. Tada je $\sigma(T)$ je kompaktan i neprazan skup.

Definicija 1.4.4. Spektralni radijus $\nu(T)$ definisan je sa

$$\nu(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}.$$

Teorema 1.4.4. Za spektralni radijus operatora T važi

$$\nu(T) = \lim |T^n|^{1/n} \leqslant |T|.$$

Definicija 1.4.5. Operator T je $\mathit{kvazi}\text{-}\mathit{nilpotentan}$ ako i samo ako je $\lim |T^n|^{1/n} = 0.$

Teorema 1.4.5. Neka je $T \in L(X)$.

- (i) T je kvazi-nilpotentan ako i samo ako $\nu(T) = 0$.
- (ii) T je kvazi-nilpotentan ako i samo ako je $\sigma(T) = \{0\}.$

Definicija 1.4.6. Za linearni operator T definišemo:

$$\sigma_p(T) = \{ \lambda \in C : \lambda I - T \text{ nije "} 1 - 1 \},$$

$$\sigma_c(T) = \{ \lambda \in C : \lambda I - T \text{ je "} 1 - 1 \text{"}, \overline{(\lambda I - T)X} = X, (\lambda I - T)X \neq X \},$$

$$\sigma_r(T) = \{ \lambda \in C : \lambda I - T \text{ je "} 1 - 1 \text{"}, \frac{(\lambda I - I)X}{(\lambda I - T)X} \neq X \}.$$

 $\sigma_p(T), \sigma_c(T), \sigma_r(T)$ nazivaju se, respektivno, tačkasti, neprekidni i rezidualni spektar operatora T. Očigledno:

$$\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T).$$

Za $\lambda \in \sigma_p(T)$ kažemo da je sopstvena vrednost operatora T. To znači da postoji nenula vektor x takav da je $Tx = \lambda x$. Taj vektor nazivamo sopstveni vektor odgovarajući sopstvenoj vrednosti λ od T.

Definicija 1.4.7. Neka je $T \in L(X)$. Aproksimativni tačkasti spektar operatora T, $\sigma_a(T)$, definišemo kao

 $\sigma_a(T)=\{\lambda\in C:$ postoji niz (x_n) u Xtakav da je $|x_n|=1,$ i $\lim |(\lambda I-T)x_n|=0\}.$

Teorema 1.4.6. Neka je U invertibilan element iz L(X). Pretpostavimo da postoji realan broj M takav da

$$|U^n| \leqslant M < \infty \quad (n \in Z).$$

Tada je $\sigma(U) \subseteq \{z : |z| = 1\}.$

Teorema 1.4.7. Neka je Y zatvoren potprostor od X. Tada postoji linearna izometrija $J_1: (X/Y)^* \longrightarrow Y$ koja je definisana sa

$$(x|J_1z) = ([x]_Y|z)$$

za svako $z \in (X/Y)^*$ i za svako $x \in X$, gde je $[x]_Y = \phi(T)$ kanonsko preslikavanje iz X u X/Y, koje je neprekidno, linearno i važi $|\phi| \leq 1$.

Definicija 1.4.8. Neka je X vektorski prostor nad poljem skalara K i neka su L i M potprostori prostora X. Tada je i $L \cap M$ potprostor od X. Suma potprostora L i M označava se sa L + M i definiše kao

$$L + M = \{x + y | x \in L, y \in M\}.$$

Kažemo da je suma potprostora L i M direktna (i označavamo je sa $L \oplus M$) ako je $L \cap M = \{0\}$.

Dakle, ako su potprostori L i M u direktnoj sumi, važi $X=L\oplus M.$ Odavde, proizvoljan vektor $x\in X$ se na jedinstven način može predstaviti u obliku

$$x = u + v, \quad u \in L, v \in M.$$

Ako je dim $X < \infty$, onda je

$$\dim(L+M) = \dim L + \dim M - \dim(L \cap M).$$

Očigledno,

$$\dim(L \oplus M) = \dim L + \dim M.$$

Definicija 1.4.9. Neka je X vektorski prostor nad poljem skalara K i neka je L potprostor od X. Potprostor M prostora X se naziva direktan komplement od L ako važi

$$X = L \oplus M$$
.

Ako je X konačno-dimenzionalan prostor i L potprostor od X onda postoji direktan komplement od L u X.

Teorema 1.4.8. Neka je $E \in L(X)$. E je projekcija ako i samo ako je $E^2 = E$. Ako je E projekcija, onda postoje zatvoreni potprostori X_1 i X_2 prostora X takvi da je $X_1 = R(E)$, $X_2 = N(E)$ i $X = X_1 \oplus X_2$.

Za zatvorene potprostore X_1 i X_2 prostora X kažemo da redukuju T ili da su redukujući potprostori za T ako je $X=X_1\oplus X_2$ i X_1 i X_2 su invarijantni u odnosu na T.

Teorema 1.4.9. Neka je $T \in L(X)$. Pretpostavimo da zatvoreni potprostori X_1 i X_2 prostora X redukuju T. Tada je $\sigma(T) = \sigma(T \upharpoonright_{X_1}) \cup \sigma(T \upharpoonright_{X_2})$.

Teorema 1.4.10. Neka je $T \in L(X)$. Neka Σ_0 označava Bulovu algebru na otvoreno-zatvorenim podskupovima skupa $\sigma(T)$. Ako je $\tau \in \sigma_0$, $E(\tau)$ je projekcija, $TE(\tau) = E(\tau)T$ i $\sigma(T \upharpoonright_{E(\tau)X}) = \tau$. Preslikavanje $\tau \longrightarrow E(\tau)$ je izomorfizam iz σ_0 na Bulovu algebru projekcija u L(X). To znači da $E(\emptyset) = 0$ i

$$E(\sigma(T)\backslash \tau) = I - E(\tau) \qquad (\tau \in \Sigma_0),$$

$$R(\tau_1 \cup \tau_2) = E(\tau_1) + E(\tau_2) - E(\tau_1)E(\tau_2),$$

$$E(\tau_1 \cap \tau_2) = E(\tau_1)E(\tau_2) \qquad (\tau_1, \tau_2 \in \Sigma_0).$$

Teorema 1.4.11. Neka je $T \in L(X)$ i neka je λ_0 izolovana tačka skupa $\sigma(T)$. Tada je λ_0 pol rezolvente $\lambda \longmapsto (\lambda I - T)^{-1}$ reda m, ako i samo ako je

$$(\lambda_0 I - T)^m E(\lambda_0) = 0, \qquad (\lambda_0 I - T)^{m-1} E(\lambda_0) \neq 0.$$

2 KOMPAKTNI OPERATORI

Posmatrajmo metrički prostor (X,d). Ako su M i S podskupovi metričkog prostora (X,d) i $\varepsilon>0$, tada se skup S naziva ε - mreža skupa M ako za svako $x\in M$ postoji $s\in S$ tako da je $d(x,s)<\varepsilon$. Ako je skup S konačan, tada se ε - mreža S naziva konačna ε - mreža skupa M. Skup M je totalno ograničen ako za svako $\varepsilon>0$ postoji konačna ε mreža skupa M. Skup M je totalno je totalno totalno

Kao što znamo podskup M metričkog prostora X je kompaktan ako svaki niz (x_n) iz M ima konvergentan podniz pri čemu granica tog podniza pripada skupu M. Lako se pokazuje da je podskup M metričkog prostora X relativno kompaktan ako i samo ako svaki niz (x_n) iz M ima konvergentan podniz; pri tome granična vrednost tog podniza može, ali ne mora da pripada skupu M.

Sada ćemo pristupiti izučavanju kompaktnih operatora. Videćemo da oni imaju mnoga svojstva operatora na konačno-dimenzionalnim prostorima. Ispitivaćemo kompaktne operatore na Hilbertovim prostorima, gde ćemo, između ostalog, pokazati da za kompaktan operator K na Hilbertovom prostoru X, postoji niz $(K_n)_{n\in N}$ konačno-dimenzionalnih linearnih operatora, koji po normi konvergiraju prema K.

Kompaktni operatori su se pojavili u teoriji integralnih jednačina, gde i danas imaju osnovnu primenu. Pokazalo se da osnovne teoreme teorije integralnih jednačina mogu biti prenesene na opšte prostore i linearne operatore koji imaju svojstvo da ograničene skupove prevode u relativno kompaktne skupove. To su upravo kompaktni operatori.

Podsetimo se još da su sledeća tri svojstva podskupa S kompletnog metričkog prostora Y ekvivalentna:

- (1) S je relativno kompaktan skup.
- (2) Svaki niz (y_n) iz S ima Košijev podniz.
- (3) Za svako $\varepsilon > 0$ skup S ima konačnu ε mrežu, tj. postoji $m \in N$ i

elementi $y_1, y_2, ... y_m$ u S takvi da je skup S sadržan u uniji kugli $K(y_i, \varepsilon)$:

$$S \subseteq \bigcup_{i=1}^{m} K(y_i, \varepsilon).$$

Odavde sledi da je svaki relativno kompaktan skup ograničen, dok obrnuto, u opštem slučaju, ne važi.

2.1 Definicija i osnovne osobine kompaktnih operatora

Definicija 2.1.1. Neka su X i Y normirani prostori. Linearan operator $A: X \longrightarrow Y$ je kompaktan (potpuno neprekidan) ako on jediničnu $K[0,1] = \{x \in X: |x| \leq 1\}$ prostora X slika u relativno kompaktan skup prostora Y.

Skup svih kompaktnih operatora A: XlongrightarrowY označavamo sa K(X,Y). Ukoliko je Y=X pisaćemo K(X). Kompaktne operatore ne moramo definisati preko jedinične kugle. Da bismo to videli dokazaćemo sledeće tvrđenje:

Teorema 2.1.1. Neka su X i Y normirani vektorski prostori. Operator $A: X \longrightarrow Y$ je kompaktan ako i samo ako za svaki ograničen niz (x_n) iz X, niz (Ax_n) ima konvergentan podniz.

Dokaz. Neka je $A \in K(X,Y)$ i neka je (x_n) ograničen niz u X. Označimo sa $Q = \{x_n, n \in N\}$ skup svih elemenata niza (x_n) . Skup Q je ograničen podskup u X. Bez gubljenja opštosti možemo pretpostaviti da je $|x_n| \leq 1$ za svako $n \in N$. Iz kompaktnosti operatora A sledi da je A(Q) relativno kompaktan skup, pa niz (Ax_n) ima konvergentan podniz.

Obrnuto, pretpostavimo da niz (Ax_n) ima konvergentan podniz, za svaki ograničen niz (x_n) iz X. Ako je K jedinična kugla u X, i (y_n) niz iz A(K), tada postoji niz (x_n) iz K (dakle ograničen) takav da je $y_n = Ax_n$, za svako $n \in N$. Prema tome, niz (y_n) ima konvergentan podniz. Dakle, A(K) je relativno kompaktan skup. \square

Odavde sledi da je operator $A: X \longrightarrow Y$ kompaktan ako i samo ako je A(Q) relativno kompaktan podskup u Y, za svaki ograničen podskup Q u X, što se takođe može uzeti za definiciju kompaktnih operatora.

Ako je $A \in K(X,Y)$, tada je slika $AK = \{Ax : x \in K\}$ jedinične kugle $K = \{x \in X : |x| \leq 1\}$ relativno kompaktan, pa dakle i ograničen skup u Y. To znači da postoji realan broj M > 0 takav da je $|Ax| \leq M$ za

 $x \in K$. Odavde, i iz činjenice da je A linearan operator, proizilazi da je $|Ax| \leq M|x|$ za svako $x \in X$. To pokazuje da je A ograničen operator. Dakle, $K(X,Y) \subseteq L(X,Y)$. Da obrat ne važi pokazuje sledeći primer:

Primer 2.1. Neka je X beskonačno-dimenzionalan normiran prostor i $I \in L(X)$ identičan operator. Operator I je ograničen ali nije kompaktan. Očigledno je $I \in L(X)$. Neka je $K[0,1] = \{x \in X : |x| \leq 1\}$. Tada je K[0,1] ograničen podskup u X, a I(K[0,1]) = K[0,1] nije relativno kompaktan podskup u X, na osnovu **Teoreme 1.2.4.**

Teorema 2.1.2. Neka su X, Y i Z normirani vektorski prostori.

- (i) K(X,Y) je potprostor prostora L(X,Y).
- (ii) Ako je jedan od operatora $A \in L(X,Y)$, $B \in L(Y,Z)$ kompaktan, onda je i njihova kompozicija kompaktan operator.

Dokaz.(i) Neka su $A, B \in K(X, Y)$ i (x_n) ograničen niz u X. Zbog kompaktnosti operatora A postoji podniz (u_n) niza (x_n) , takav da je (Au_n) konvergentan niz u Y. Podniz (u_n) je ograničen, pa zbog kompaktnosti operatora B postoji podniz (v_n) niza (u_n) takav da je (Bv_n) konvergentan u Y. Sada, zbog konvergencije nizova (Au_n) i (Bv_n) , za svaki par skalara α, β i niz $n \mapsto \alpha Av_n + \beta Bv_n$ konvergira. Dakle, za svaki ograničen niz (x_n) iz X postoji podniz (v_n) takav da niz $(\alpha Av_n + \beta Bv_n)$ konvergira u Y, pa je $\alpha A + \beta B$ kompaktan operator. Kako je $K(X,Y) \subseteq L(X,Y)$ to znači da je K(X,Y) potprostor od L(X,Y).

(ii) Neka su $A \in L(X,Y)$, $B \in K(Y,Z)$ i (x_n) ograničen niz u X. Kako je $A \in L(X,Y)$, niz (Ax_n) je ograničen u Y, a zbog kompaktnosti operatora $B: Y \longrightarrow Z$ za svaki ograničen niz iz Y, pa i za $(Ax_n)_n$, postoji podniz $(Ax_{p(n)})_n$ niza $(Ax_n)_n$ takav da je niz $(BAx_{p(n)})_n$ konvergentan u Z.

Ako je $A \in K(X,Y)$ onda postoji podniz $(x_{p(n)})_n$ niza $(x_n)_n$ takav da je $(Ax_{p(n)})_n$ konvergentan u Y. Neprekidnost operatora B povlači konvergenciju niza $(BAx_{p(n)})_n$.

Dakle, vidimo da u oba slučaja za svaki ograničen niz $(x_n)_n \subseteq X$ postoji podniz $(x_{p(n)})_n \subseteq (x_n)_n$ takav da niz $(BAx_{p(n)})_n$ konvergira u Z, to je $BA: X \longrightarrow Z$ kompaktan operator. \square

Teorema 2.1.3 Neka su X i Y normirani vektorski prostori.

(i) Ako je dim $X < \infty$ ili dim $Y < \infty$ onda je

$$K(X,Y) = L(X,Y).$$

(ii) Jedinični operator I prostora X je kompaktan ako i samo ako je dim X <

 ∞ .

(iii) Ako je dim $X = \infty$ i $A \in K(X)$, onda je A singularni operator, tj. $0 \in \sigma(A)$.

Dokaz.(i) Neka je (x_n) ograničen niz u X.

Ako je dim $Y < \infty$ i $A \in L(X, Y)$, onda je skup $\{Ax_n : n \in N\}$ ograničen, pa je kao takav u konačno-dimenzionalnom prostoru i relativno kompaktan. Dakle, $A \in K(X, Y)$.

Ako je dim $X < \infty$ i $A \in L(X,Y)$, onda je potprostor R(A) = AX konačno-dimenzionalan. Budući da je $\{Ax_n : n \in N\}$ ograničen skup u R(A) i dim $R(A) < \infty$, to postoji podniz $(x_{p(n)})$ niza (x_n) takav da niz $(Ax_{p(n)})$ konvergira u $R(A) \subseteq Y$. Dakle $A \in K(X,Y)$.

(ii) Iz Primera 2.1.

(iii) Pretpostavimo da je $A \in L(X)$ regularan operator. Tada postoji $B \in L(X)$ takav da je AB = BA = I. Sada je $A \in K(X), B \in L(X)$, pa je na osnovu **Teoreme 2.1.2.(ii)** $I = AB \in K(X)$. Ovo, na osnovu dela (ii) implicira dim $X < \infty$. Dakle, ako je dim $X = \infty$ i $X \in K(X)$, A je singularan operator.

Sada ispitujemo kakve je prirode operator kome niz kompaktnih operatora uniformno konvergira. Pokazaćemo, uz uslov da je Y Banahov prostor, da ako za niz $(A_n)_{n\in N}$ kompaktnih operatora iz L(X,Y) postoji operator $A\in L(X,Y)$ takav da $|A_n-A|\longrightarrow 0$ kada $n\longrightarrow \infty$, onda je A kompaktan operator. Drugim rečima, važi:

Teorema 2.1.4. Neka su X i Y normirani prostori. Ako je Y Banahov prostor, onda je K(X,Y) zatvoren potprostor u L(X,Y).

Dokaz. U dokazu ove teoreme koristićemo rezultat na koji smo ukazali na početku ovog poglavlja, tj. ako je metrički prostor (X,d) kompletan, tada je skup M relativno kompaktan ako i samo ako je M totalno ograničen. Neka je $(A_n)_{n\in N}$ niz operatora prostora K(X,Y), i neka je A granična vrednost tog niza. Treba dokazati da je A kompaktan operator. Skup Y je Banahov, te je dovoljno dokazati da je skup A(K), $K = \{x \in X : |x| \leq 1\}$ totalno ograničen, tj. da za svako $\varepsilon > 0$ postoji konačna ε - mreža skupa A(K). Iz $|A_n - A| \longrightarrow 0, n \longrightarrow \infty$, sledi da postoji $n_0 \in N$ tako da je $|A_n - A| < \frac{\varepsilon}{3}$ za svako $n \geq n_0$. Kako je $A_n \in K(X,Y)$ za svako $n \in N$, to su skupovi $A_n(K)$ relativno kompaktni za svako $n \in N$, pa su i totalno ograničeni. Dakle, postoje vektori $x_1, x_2, ... x_m \in K$ takvi da je $S_n = \{A_n x_1, A_n x_2, ..., A_n x_m\}$ $\frac{\varepsilon}{3}$ - mreža skupa $A_n(K)$, $\forall n \in N$. Izaberimo $x \in K$ i neka je $n \geq n_0$. Posma-

trajmo vektor $A_n x \in A_n(K)$. Kako je $S_n \frac{\varepsilon}{3}$ - mreža skupa $A_n(K)$, to vazi procena

$$|A_{n}x_{j} - A_{n}x| < \frac{\varepsilon}{3}, \forall j \in \{1, 2, ...m\}.$$

$$|Ax - Ax_{j}| \le |Ax - A_{n}x| + |A_{n}x - A_{n}x_{j}| + |A_{n}x_{j} - Ax_{j}||$$

$$\le |A - A_{n}||x| + |A_{n}x - A_{n}x_{j}| + |A - A_{n}||x_{j}| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Odavde vidimo da je $\{Ax_1, Ax_2, ..., Ax_m\}$ ε - mreža skupa A(K). Sledi, A(K) je relativno kompaktan skup, pa je $A \in K(X, Y)$. \square

2.2 Kompaktni operatori na Hilbertovim prostorima

Definicija 2.2.1. Neka su X i Y Hilbertovi prostori i $T \in L(X,Y)$, i neka je (.|.) skalarni proizvod u X, odnosno u Y. Operator $S \in L(Y,X)$, za koji važi da je

$$(\forall x \in X)(\forall y \in Y)(Tx|y) = (x|Sy)$$

nazivamo Hilbert-adjungovanim operatorom operatora T. Ovakav operator S je jedinstven, i pišemo $S=T^*$.

Neka su $S, T \in L(X, Y)$. Tada važi:

- (i) $(T^*)^* = T$;
- $(ii)(T+S)^* = T^* + S^*;$
- (iii) $(TS)^* = S^*T^*$;
- $(iv)(\lambda T)^* = \overline{\lambda}T^*$, za svako $\lambda \in C$.

Definicija 2.2.2. Neka je X Hilbertov prostor. Za operator $A \in L(X)$ kažemo da je:

- (1) ermitski(samokonjugovan) ako je $T = T^*$;
- (2) normalan ako je $TT^* = T^*T$;
- (3) unitaran ako je $TT^* = T^*T = I$.

Definicija 2.2.3. Neka su X i Y normirani vektorski prostori. Za operator $A \in L(X,Y)$ kažemo da je konačno-dimenzionalan operator, ako je dim $R(A) < \infty$.

Jasno, linearna kombinacija konačno-dimenzionalnih operatora je konačno-dimenzionalan operator. Ako je u kombinaciji AB gde je $A \in L(X,Y), B \in L(Y,Z)$ jedan od operatora konačno-dimenzionalan, tada je i kompozicija AB konačno-dimenzionalan operator.

Teorema 2.2.1. Neka su X i Y Hilbertovi prostori. Operator $A \in L(X,Y)$ je konačno-dimenzionalan ako i samo ako postoje nezavisni vektori $e_1, e_2, ..., e_n \in Y$ i vektori $f_1, f_2, ... f_n \in X$ takvi da je

(1)
$$Ax = \sum_{i=1}^{n} (x|f_i)e_i, \quad (x \in X).$$

Tada je $e_1, e_2, ..., e_n$ baza u $R(A), f_1, f_2, ...f_n$ baza u $R(A^*)$ i

(2)
$$A^*y = \sum_{i=1}^n (y|e_i)f_i, \quad (y \in Y).$$

 $Dakle, A je konačno-dimenzionalan ako i samo ako je <math>A^*$ konačno-dimenzionalan.

Dokaz. Ako operator $A: X \longrightarrow Y$ ima reprezentaciju (1), onda je $\dim R(A) \leq n$ pa je operator A konačno-dimenzionalan. Neka je $n = \dim R(A) < \infty$. Dokažimo da A ima reprezentaciju oblika (1). Neka je $e_1, e_2, ..., e_n$ baza u R(A). Tada je

(3)
$$Ax = \sum_{i=1}^{n} f'_{i}(x)e_{i}, \quad (x \in X),$$

gde su f_i neki funkcionali na X. Neka su $e_1, e_2, ..., e_n$ vektori prostora R(A) izabrani tako da je

(4)
$$(e'_i|e_j) = \delta_{ij}, \quad i, j = (1, 2, ..., n)$$

gde je $\delta_{ij} = \{ \substack{0, \\ 1, \\ i=j}$. Iz (3) i (4), množeći (3) sa e_i ' dobijamo $f_i'(x) = (Ax|e_i')$, što pokazuje da je f_i' linearan i neprekidan funkcional. Stavimo li

$$f_i = A^* e_i$$
 $(i = 1, ..., n),$

dobijamo

$$(x|f_i) = (x|A^*e_i') = (Ax|e_i') = f_i'(x)$$

tj. $f_i(x) = (x|f_i)$ pa (3) daje (1). Za $x \in X$ i $y \in Y$, koristeći (2) dobijamo

$$(A^*y|x) = (y|Ax) = \overline{(Ax|y)} = \sum_{i=1}^n (x|f_i)(e_i|y) = \sum_{i=1}^n (y|e_i)(f_i|x) = (\sum_{i=1}^n (y|e_i)f_i)x$$

odakle sledi (2). Iz (2) sledi dim $R(A^*) \leq n = \dim R(A)$. Iz istih razloga

$$\dim R(A) = \dim R[(A^*)^*] \leqslant \dim R(A^*)$$

pa je dim $R(A) = \dim R(A^*)$, što povlači nezavisnost vektora $f_1, f_2, ... f_n$, tj. $f_1, f_2, ... f_n$ čine bazu u $R(A^*)$. \square

Definicija 2.2.4. Neka je X Hilbertov prostor. Skup $\{e_1, e_2, ..., e_n, ...\}$ linearno nezavisnih vektora prostora X je baza prostora X ako se svaki vektor $x \in X$ na jedinstven način može predstaviti kao linearna kombinacija vektora $\{e_1, e_2, ..., e_n, ...\}$. Ukoliko su vektori $e_1, e_2, ..., e_n, ...$ medjusobno ortogonalni, i $|e_i| = 1, i \in N$, onda se baza $\{e_1, e_2, ..., e_n, ...\}$ vektorskog prostora X naziva ortonormirana baza.

Drugim rečima, baza $\{e_1, e_2, ... e_n...\}$ vektorskog prostora X je ortonormirana ako važi:

$$(e_i|e_j) = \begin{cases} 1, & i=j; \\ 0, & i\neq j, \end{cases}$$
 $i,j \in N.$

Lema 1. Neka je $(e_n, n \in N)$ ortonormirana baza u Hilbertovom prostoru X i neka je $(\lambda_n, n \in N)$ ograničen niz skalara. Postoji jedinstven operator $N \in L(X)$ takav da je

$$Ne_n = \lambda_n e_n, \qquad n \in \mathbb{N}.$$

Operator N je normalan i

$$\sigma(N) = \overline{\{\lambda_n : n \in N\}}.$$

Teorema 2.2.2. Neka je $(e_n, n \in N)$ ortonormirana baza u Hilbertovom prostoru X i neka je $(\lambda_n, n \in N)$ niz kompleksnih brojeva takvih da je

(5)
$$|\lambda_1| \geqslant |\lambda_2| \geqslant \dots; \lim \lambda_n = 0.$$

Tada je sa

$$Ax = \sum_{i=1}^{\infty} \lambda_i(x|e_i)e_i \qquad (x \in X)$$
 (*)

definisan je **normalan kompaktan operator A**. Dalje,

$$\sigma(A) = \{0, \lambda_1, \lambda_2, ..., \lambda_n, ...\}.$$

Svaki element $\lambda \in \sigma(A), \lambda \neq 0$ je sopstvena vrednost operatora A.

Dokaz. Na osnovu **Leme 1.** postoji jedinstven operator $N \in L(X)$ takav da je $Ne_n = \lambda_n e_n, n \in N$. Za $x = e_n$ vidimo da za operator definisan u (*) važi $Ae_n = \lambda_n e_n, n \in N$, pa iz jedinstvenosti sledi da je A normalan operator. Na osnovu leme takođe sledi da je $\sigma(A)$ zatvorenje skupa $\{\lambda_n, n \in N\}$. Kako je nula jedina tačka nagomilavanja niza $(\lambda_n, n \in N)$, to važi $\sigma(A) = \{0, \lambda_1, \lambda_2, ..., \lambda_n, ...\}$. Dokažimo sada kompaktnost operatora A. U tu svrhu, posmatrajmo konačno-dimenzionalne operatore A_n :

$$A_n x = \sum_{i=1}^n \lambda_i(x|e_i)e_i \qquad (x \in X).$$

Iz

$$|Ax - A_n x|^2 = |\sum_{i=n+1}^{\infty} \lambda_i(x|e_i)e_i|^2 = \sum_{i=n+1}^{\infty} |\lambda_i|^2 |(x|e_i)|^2 \stackrel{|\lambda_1| \geqslant |\lambda_2| \geqslant \dots}{\leqslant} |\lambda_{n+1}|^2 \sum_{i=1}^{\infty} |(x|e_i)|^2,$$

za $x = e_i$ dobijamo $|A - A_n| \leq |\lambda_{n+1}|$, što zbog (5) daje $|A - A_n| \longrightarrow 0, n \longrightarrow \infty$. Kako su A_n konačno-dimenzionalni operatori, dakle kompaktni, na osnovu **Teoreme 2.1.4.** i operator A je kompaktan.

Teorema 2.2.3. Neka je $(e_n, n \in N)$ ortonormirana baza Hilbertovog prostora X i (a_{ij}) beskonačna matrica takva da je

$$M = \sum_{i,j=1}^{\infty} |a_{ij}|^2 < \infty.$$

Tada je sa

$$Ae_j = \sum_{i=1}^{\infty} a_{ij}e_i, \qquad (j \in N)$$

odnosno sa

(6)
$$Ax = \sum_{i=1}^{\infty} (\sum_{j=1}^{\infty} a_{ij}(x|e_j))e_i, \qquad (x \in X),$$

definisan kompaktan operator na X.

Dokaz. Dokažimo da red (6) konvergira za svako $x \in X$. U tu svrhu dovoljno je dokazati da red

$$\sum_{i=1}^{\infty} |\sum_{j=1}^{\infty} a_{ij}(x|e_j)|^2$$

konvergira za svako $x \in X$. Iz

$$\left(\sum_{j=1}^{n} |a_{ij}(x|e_j)|\right)^2 \leqslant \sum_{j=1}^{n} |a_{ij}|^2 \cdot \sum_{j=1}^{n} |(x|e_j)|^2,$$

kada $n \longrightarrow \infty$ dobijamo

$$\left(\sum_{j=1}^{\infty} |a_{ij}(x|e_j)|\right)^2 \leqslant \sum_{j=1}^{\infty} |a_{ij}|^2 \cdot \sum_{j=1}^{\infty} |(x|e_j)|^2.$$

Sumiranjem po i dobijamo:

$$\sum_{i=1}^{\infty} (\sum_{j=1}^{\infty} |a_{ij}(x|e_j)|)^2 \leqslant \sum_{i=1}^{\infty} [\sum_{j=1}^{\infty} |a_{ij}|^2 \cdot \sum_{j=1}^{\infty} |(x|e_j)|^2]$$
$$= \sum_{i=1}^{\infty} (\sum_{j=1}^{\infty} |a_{ij}|^2) \cdot \sum_{j=1}^{\infty} |(x|e_j)|^2 \leqslant M|x|^2.$$

Dakle, ovaj red konvergira za svako $x \in X$. Sledi, sa (6) je definisan linearan operator A za koji je $|Ax|^2 \leq M|x|^2$, odnosno,

$$|A| \leqslant \sqrt{M} \qquad (*).$$

Za $n \in N$ definišimo operator A_n na sledeći način:

$$A_n x = \sum_{i=1}^n (\sum_{j=1}^n a_{ij}(x|e_j))e_i, \qquad (x \in X).$$

Primetimo da matrica (a_{ij}) operatora $A - A_n$ nastaje iz matrice (a_{ij}) tako što se elementi koji se nalaze u preseku prvih n vrsta i n kolona zamene nulama. Stoga, za operator $A - A_n$, koristeći (*), dobijamo:

$$|A - A_n|^2 \le \sum_{i,j=1}^{\infty} |a_{ij}^{i}|^2 = \sum_{i,j=1}^{\infty} |a_{ij}|^2 - \sum_{i,j=1}^{n} |a_{ij}|^2,$$

što teži nuli jer je $M < \infty$. Dakle, operator A_n je konačno-dimenzionalan i $|A - A_n| \longrightarrow 0$ kada $n \longrightarrow \infty$, pa je A kompaktan operator. \square

Uslov

$$M = \sum_{i,j=1}^{\infty} |a_{ij}|^2 < \infty$$

je dovoljan ali ne i potreban za kompaktnost operatora A definisanog u (6). Na primer matrica $(a_{ij}), a_{ij} = \frac{1}{\sqrt{j}} \delta_{ij}$ ne zadovoljava ovaj uslov, ali je sa (6) definisan operator A:

$$Ax = \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} (x|e_k) e_k \qquad (x \in X)$$

koji je kompaktan i normalan. Kompaktni operatori iz prethodne dve teoreme dobijeni su kao uniformni limesi konačno-dimenzionalnih operatora. Shodno tome, imamo sledeći rezultat:

Teorema 2.2.4. Neka je X normiran a Y Hilbertov prostor. Operator $A \in L(X,Y)$ je kompaktan ako i samo ako postoji niz $(A_n, n \in N)$ konačno-dimenzionalnih operatora $A_n \in L(X,Y)$ takvih da

$$|A - A_n| \longrightarrow 0.$$

Dokaz. Neka je $A \in K(X,Y)$ i neka je K jedinična kugla prostora X. Tada je skup AK relativno kompaktan u prostoru Y, pa je on totalno ograničen u Y. Dakle, za svako $\varepsilon > 0$ postoji konačna ε -mreža $y_1, ... y_{n(\varepsilon)}$ skupa AK. Neka je $x \in X$, |x| < 1. Tada postoji indeks $i \in \{1, ... n(\varepsilon)\}$ takav da je

$$|Ax - y_i| < \varepsilon$$
.

Potprostor Y_n koji razapinju vektori $y_1,...y_{n(\varepsilon)}$ ima dimenziju $n\leqslant n(\varepsilon)<\infty$. Označimo sa P_n ortogonalni projektor na Y_n . Operator $A_n=P_nA$ je konačno-dimenzionalan. Za $x\in X,\ |x|<1$, najbolja aproksimacija vektora Ax vektorima prostora Y_n data je sa P_nAx . Budući da je $A_nx=P_nAx$ najbolja aproksimacija, to je $|Ax-A_nx|\leqslant |Ax-y_i|<\varepsilon$. Dakle, za svako $x\in X,\ |x|<1$ imamo $|Ax-A_nx|<\varepsilon$, pa je $|A-A_n|\leqslant\varepsilon$. Kako je $\varepsilon>0$ proizvoljno, važi $|A-A_n|\longrightarrow 0, n\longrightarrow\infty$.

Obrnuto, neka su $A_n \in L(X,Y)$ konačno-dimenzionalni operatori takvi da $|A-A_n| \longrightarrow 0$. Tada je, na osnovu jedne od prethodnih teorema, A kompaktan operator, jer je Y kompletan prostor i svaki konačno-dimenzionalan operator je kompaktan.

Teorema 2.2.5. Neka su X i Y Hilbertovi prostori. Ako je $A \in L(X, Y)$, i A^*A kompaktan operator, onda je i A kompaktan operator.

Dokaz. Neka je (x_n) niz u X, $|x_n| \leq 1$, $n \in \mathbb{N}$. Tada je

$$|Ax_n - Ax_m|^2 = (Ax_n - Ax_m |Ax_n - Ax_m) =$$

$$(A^*A(x_n - x_m)|x_n - x_m) \leqslant$$

$$|A^*A(x_n - x_m)| \cdot |x_n - x_m| \Rightarrow$$

$$(7) \qquad |Ax_n - Ax_m|^2 \leqslant 2|A^*A(x_n - x_m)|.$$

Kako je A^*A kompaktan operator, niz $(x_n)_n$ ima podniz $(x_{p(n)})_n$ takav da je $(A^*Ax_{p(n)}, n \in N)$ konvergentan niz. Odavde, i iz (7) sledi da je

$$|Ax_{p(n)} - Ax_{p(m)}|^2 \le 2|A^*A(x_{p(n)} - x_{p(m)})|,$$

što pokazuje da je $(Ax_{p(n)}, n \in N)$ Košijev niz u Y. Kako je Y Hilbertov prostor, ovaj niz je konvergentan. Dakle, A je kompaktan operator.

Posledica 2.2.6. Neka su X i Y Hilbertovi prostori. Operator $A \in L(X,Y)$ je kompaktan ako i samo ako je operator $A^* \in L(Y,X)$ kompaktan.

Dokaz. Ako je $A \in K(X, Y)$, onda je $AA^* \in K(Y)$ (na osnovu **Teoreme 2.2.(ii)**). Budući da je za operator $A^* \in L(Y, X)$ operator $(A^*)^*A^* = AA^*$ kompaktan, to je, prema prethodnoj teoremi, operator A^* kompaktan.

2.3 Kompaktni ermitski operatori

Rezultati koji se odnose na kompaktne ermitske operatore spadaju u najznačajnije rezultate iz oblasti kompaktnih operatora. Sa stanovišta primene, važni su ne samo rezultati, već i način na koji su oni dokazani. Podsetimo se:

Definicija 2.3.1. Za linearan operator $H \in L(X)$, X unitaran prostor, kažemo da je ermitski (samokonjugovan) ako je

$$(Hx|y) = (x|Hy)$$
 $x, y \in X$.

Ako je X Hilbertov prostor, onda je svaki simetričan operator definisan na X ograničen ermitski operator. Nadalje, neka je X Hilbertov prostor. Za ograničen, ermitski operator H na Hilbertovom prostoru X, bitna je sledeća činjenica, koja će nam biti od značaja u daljem izlaganju: funkcija $x \mapsto (Hx|x)$ na Hilbertovom vektorskom prostoru X je realna. Takođe, važi formula:

$$|H| = \sup\{|(Hx|x)| : |x| = 1, x \in X\}.$$

Ako je dim $X=\infty$, onda jedinična sfera $S=\{x\in X:|x|=1\}$ nije relativno kompaktan skup. U sledećoj teoremi dokazaćemo da funkcija $x\longmapsto (Hx|x)$

uz određene pretpostavke dostiže najveću vrednost na S. Ta vrednost je dostignuta na sopstvenom vektoru operatora H i jednaka je normi operatora H.

Teorema 2.3.1. Ako je H kompaktan ermitski operator na Hilbertovom prostoru X, onda je bar jedan od brojeva |H|, -|H| sopstvena vrednost λ operatora H. Za odgovarajući sopstveni jedinični vektor e je

$$\lambda = (He|e).$$

Dokaz. Za H=0 nemamo šta dokazivati, zato ćemo pretpostaviti da je $H\neq 0$. Kako je $|H|=\sup\{|(Hx|x)|:|x|=1,x\in X\}$, to postoji niz (z_n) jediničnih vektora u X takav da je

$$(1) |H| = \lim |(Hz_n|z_n)|$$

Budući da je $H \neq 0$, možemo uzeti da je $(Hz_n|z_n) \neq 0$ za svako $n \in N$. Dalje, postoji podniz $(z_{p(n)} = y_n)$ niza (z_n) takav da je $(Hy_n|y_n)$ istog znaka za svako $n \in N$. No, tada na osnovu (1) sledi

$$M = \lim(Hy_n|y_n),$$

gde je M = |H|, ako su $(Hy_n|y_n)$ pozitivni, i M = -|H|, ako su $(Hy_n|y_n)$ negativni brojevi. Kako je H kompaktan operator i $|y_n| = 1$, to postoji podniz $(y_{q(n)} = x_n)$ niza (y_n) takav da niz $(Hx_n)_n$ konvergira u X, i neka je $x = \lim_{n \to \infty} Hx_n$.

$$|Hx_n - Mx_n|^2 = |Hx_n|^2 - 2M(Hx_n|x_n) + M^2 \le 2M^2 - 2M(Hx_n|x_n)$$

a ovo teži nuli kada $n \longrightarrow \infty$. Dakle,

(2)
$$v_n = (Hx_n - Mx_n) \longrightarrow 0, n \longrightarrow \infty.$$

No, tada niz $(x_n) = (\frac{1}{M}Hx_n - \frac{1}{M}v_n)$ konvergira vektoru $\frac{1}{M}x$. Iz $|x_n| = 1$ sledi $|\frac{1}{M}x| = 1$, tj. $x \neq 0$. Prelaskom na graničnu vrednost u (2) dobijamo $H(\frac{1}{M}x) - M(\frac{1}{M}x) = 0 \Rightarrow \frac{1}{M}H(x) - x = 0$, tj.Hx = Mx. Za jedinični vektor $e = \frac{|x|}{x}$, imamo He = Me, (He|e) = M.

Pored rezultata koje daju sledeće dve teoreme, sada posebnu pažnju treba obratiti i na način na koji su one dokazane. Postupak je značajan zato što daje algoritam za praktično pronalaženje sopstvenih vektora i sopstvenih

vrednosti ermitskog kompaktnog operatora.

Teorema 2.3.2. Neka je X Hilbertov prostor i $H \neq 0$ ermitski konačnodimenzionalan operator na X. Postoje ortonormirani vektori $e_1, e_2, ..., e_n$ i realni brojevi $\lambda_1, \lambda_2, ..., \lambda_n$ takvi da je:

(3)
$$|\lambda_1| \geqslant |\lambda_2| \geqslant \dots, |\lambda_n| > 0, He_i = \lambda_i e_i (i = 1, \dots, n)$$

$$(4) \qquad Hx = \sum_{i=1}^n \lambda_i (x|e_i) e_i, \qquad x \in X$$

$$(5) \qquad X = R(H) \oplus N(H).$$

Dokaz. H je ermitski konačno-dimenzionalan operator, pa je kao takav on ermitski kompaktan operator. Na osnovu prethodne teoreme, postoje jedinični vektor $e_1 \in X$ i realan broj λ_1 , $|\lambda_1| = |H|$, takvi da je $He_1 = \lambda_1 e_1$. Stavimo $X_1 = X$, i označimo sa X_2 ortogonalni komplement vektora e_1 , tj. skup $\{x \in X : (x|e_1) = 0\}$. Potprostor X_2 je invarijantan za H jer:

$$(x|e_1) = 0 \Rightarrow (Hx|e_1) = (x|He_1) = (x|\lambda_1e_1) = \lambda_1(x|e_1) = 0;$$

dakle, $x \in X_2 \Rightarrow Hx \in X_2$. Označimo sa H_2 operator kojeg $H = H_1$ indukuje na X_2 . Očigledno je i H_2 ermitski i kompaktan operator na X_2 . Ako je $H_2 \neq 0$ onda, prema prethodnoj teoremi, postoje jedinični vektor $e_2 \in X_2$ i realan broj λ_2 takvi da je $H_2e_2 = \lambda_2e_2$, gde je

$$|\lambda_2| = |H_2| = \sup\{|(H_2x|x) : |x| = 1, x \in X_2\}$$

$$= \sup\{|(Hx|x)| : |x| = 1, x \in X_2\}$$

$$\leq \sup\{|(Hx|x)| : |x| = 1, x \in X\} = |H| = |\lambda_1|.$$

Dakle, $|\lambda_1| \geqslant |\lambda_2|$, $(e_2, e_1) = 0$, $He_2 = H_2e_2 = \lambda_2e_2$. Neka je X_3 ortogonalni komplement potprostora $L(e_1, e_2)$, tj. skup svih $x \in X$ takvih da je $(x|e_1) = (x|e_2) = 0$. Ponovo je X_3 invarijantan potprostor u odnosu na operator H, a operator H_3 indukovan na X_3 operatorom H je ermitski i kompaktan. Ako je $H_3 \neq 0$, onda ponovo na osnovu prethodne teoreme, postoje jedinični vektor $e_3 \in X_3$ i realan broj λ_3 takvi da je $H_3e_3 = \lambda_3e_3$ i

$$|\lambda_3| = |H_3| = \sup\{|(H_3x|x) : |x| = 1, x \in X_3\}$$

$$= \sup\{|(H_2x|x)| : |x| = 1, x \in X_3\}$$

$$\leq \sup\{|(H_2x|x)| : |x| = 1, x \in X_2\} = |H_2| = |\lambda_2|.$$

Dakle, važi $|\lambda_1| \geqslant |\lambda_2| \geqslant |\lambda_3|$, $He_3 = H_3e_3 = \lambda_3e_3$ i e_1, e_2, e_3 su ortonormirani. Nastavimo li dalje, dolazimo do ortonormiranih vektora $e_1, e_2, ..., e_k$ i realnih brojeva $\lambda_1, \lambda_2, ..., \lambda_k$ takvih da važi (3). Ortogonalni komplement X_{k+1} potprostora $L(e_1, e_2, ..., e_k)$, tj. skup svih $x \in X$ takvih da je $(x|e_1) = ... = (x|e_k) = 0$ invarijantan je za operator H. Operator H_{k+1} indukovan na X_{k+1} operatorom H je ermitski i kompaktan, pa u slučaju $H_{k+1} \neq 0$ postupak se može nastaviti. Kako je dim $R(H) < \infty$ i $e_1, e_2, ...$ su ortonormirani, to postoji $n \in N$ takav da je $H_{n+1} = 0$. Tada vektor $\sum_{i=1}^{n} (x|e_i)e_i$ za $x \in X$ pretstavlja ortogonalnu projekciju od x na $L(e_1, e_2, ..., e_n)$ pa vektor

(6)
$$y_n = x - \sum_{i=1}^n (x|e_i)e_i$$

pripada prostoru X_{n+1} . To povlači $Hy_n = H_{n+1}y_n \stackrel{H_{n+1}=0}{=} 0$, tj.

$$Hx = \sum_{i=1}^{n} (x|e_i)He_i,$$

a to je upravo (4). Iz (6) i $Hy_n = 0$ sledi da je $X_{n+1} = N(H)$ nul-potprostor opertora H, dakle važi i (5).

Slučaj kada je dim $R(H)=\infty$ i H ermitski, kompaktan operator je trivijalan jer je tada dim $N(X)=\infty$, pa je nula sopstvena vrednost operatora $H.\Box$

Teorema 2.3.3. Neka je X Hilbertov prostor i H kompaktan ermitski beskonačno-dimenzionalan operator na X.

Tada postoji ortonormiran niz $(e_n, n \in N)$ u X i niz $(\lambda_n, n \in N)$ realnih brojeva λ_n takvih da je:

(6)
$$|\lambda_1| \geqslant |\lambda_2| \geqslant \dots \geqslant |\lambda_n| \geqslant \dots > 0$$

(7)
$$He_i = \lambda_i e_i \quad (i \in N)$$

(8)
$$\lim \lambda_i = 0,$$

(9)
$$Hx = \sum_{i=1}^{\infty} \lambda_i(x|e_i)e_i \quad (x \in X).$$

Ako je $\lambda \neq 0$ sopstvena vrednost operatora H, onda je $\lambda = \lambda_i$ za neko $i \in N$.

Sopstveni potprostor koji odgovara sopstvenoj vrednosti $\lambda = \lambda_i$ je konačnodimenzionalan i njegova dimenzija je jednaka frekvenciji s kojom se λ_i pojavljuje u nizu $\lambda_1, \lambda_2, \ldots$. Ortonormiran skup $(e_n, n \in N)$ je maksimalan u X ako i samo ako nula nije sopstvena vrednost operatora H.

Dokaz. Koristeći **Teoremu 2.3.1.** na isti način kao i u prethodnoj teoremi, izvodimo dokaz ovog tvrđenja. Ovde pretpostavka dim $R(H) = \infty$ povlači da je $H_{n+1} \neq 0$ za svako n. Prema tome, postupkom opisanim u prethodnom dokazu, dobijamo niz $\lambda_1, \lambda_2, \ldots$ realnih brojeva i ortonormiran niz vektora e_1, e_2, \ldots za koje važe (6) i (7). Kako je niz (6) monoton i odozdo ograničen, on je konvergentan. Neka je $a = \lim |\lambda_n|$. Dokažimo da ovaj niz teži nuli, tj. pokažimo da važi (8). Očigledno, $a \geqslant 0$. Zaista, ako bi bilo a > 0, onda bi niz $(\frac{e_n}{\lambda_n}, n \in N)$ bio ograničen. Zatim, kako je $e_n = H(\frac{e_n}{\lambda_n})$ i $|\frac{e_n}{\lambda_n}| \leqslant \frac{1}{a}$ to bi zbog kompaktnosti operatora H niz (e_n) imao konvergentan podniz. To je nemoguće jer je $|e_n - e_m| = \sqrt{2}$ za $n \neq m$. Dakle, mora biti a = 0, pa važi (8).

Za $x \in X$, vektor $y_n = x - \sum_{i=1}^n (x|e_i)e_i$ pripada prostoru X_{n+1} , pa je

$$|Hy_n| = |H_{n+1}y_n| \le |\lambda_{n+1}||y_n| \le |\lambda_{n+1}||x|.$$

Odavde, i iz (8) dobijamo da je $\lim |Hy_n| = 0$, tj.

$$\lim |Hx - \sum_{i=1}^{n} \lambda_i(x|e_i)e_i| = 0$$

dakle važi (9). Iz (9) vidimo da se svaki vektor iz R(H) može razviti u Furijeov red po vektorima e_1,e_2,\dots .

Ako je $Hx = \lambda x$ i $x \neq 0$, onda zamenom u (9) imamo da je

(10)
$$\lambda x = \sum_{i=1}^{\infty} \lambda_i(x|e_i)e_i.$$

Množeći ovu jednakost sa e_k i koristeći činjenicu da je $e_1, e_2, ...$ niz međusobno ortonormiranih vektora, dobijamo:

$$(11) (\lambda - \lambda_k)(x|e_k) = 0, k \in N.$$

Ako je $\lambda \neq \lambda_k$ za svako $k \in N$, onda iz (11) dobijamo $(x|e_k) = 0, \forall k \in N$, što zajedno sa (10) daje $\lambda x = 0$. Kako je $x \neq 0$ mora biti $\lambda = 0$. Prema

tome, niz $\lambda_1, \lambda_2, \dots$ sadrži sve od nule različite sopstvene vrednosti operatora H. Neka je m broj ponavljanja sopstvene vrednosti λ_1 u nizu $\lambda_1, \lambda_2, \dots$. Neka je $p \in N$ takav da je:

$$|\lambda_1| = \dots = |\lambda_p| > |\lambda_{p+1}|.$$

Tada je $m \leqslant p$ i $\lambda_1 = \lambda_{i_2} = \ldots = \lambda_{i_m}$, pa je $\lambda_i = -\lambda_1$ za $i \neq 1, i_2, \ldots i_m; i \leqslant p$. Sopstveni potprostor operatora H koji pripada sopstvenoj vrednosti λ_1 razapinju vektori $e_1, e_{i_2}, \ldots e_{i_m}$, pa je on m-dimenzionalan. Na sličan način se vidi da je sopstveni potprostor operatora H koji pripada sopstvenoj vrednosti $\lambda_k \neq 0$ konačno-dimenzionalan.

Ako je Hx = 0, onda je $(x|e_i) = (x|\frac{He_i}{\lambda_i}) = \frac{1}{\lambda_i}(Hx|e_i) = 0$ za svako $i \in N$. Odavde i iz (9) zaključujemo da je $x \perp R(H)$. Dakle, N(H) je ortogonalni komplement potprostora R(H). Prema tome, $\{e_n : n \in N\}$ je maksimalan ortonormiran skup u X ako i samo ako je $N(H) = \{0\}$, tj. ako i samo ako nula nije sopstvena vrednost operatora $H.\square$

Teorema 2.3.4. Neka je X Hilbertov prostor i H kompaktan ermitski beskonačno-dimenzionalan operator na X. Neka su λ_n i e_n dati kao malopre. Za svako $x \in X$ važi:

(12)
$$x = x_0 + \sum_{i=1}^{\infty} (x|e_i)e_i,$$

 $gde\ je\ x_0\ vektor\ nul-potprostora\ operatora\ H.\ Drugim\ rečima,$

(13)
$$X = N(H) \oplus R(H).$$

Nadalje je

$$\sigma(H) = \{0, \lambda_1, \lambda_2, \dots\}.$$

Dokaz. Na osnovu Beselove nejednakosti $(\sum_{i=1}^{\infty} |(x|e_i)|^2 \leqslant |x|^2)$ sledi konvergencija reda $\sum_{i=1}^{\infty} |(x|e_i)|^2$. Prostor X je kompletan, pa konvergira i red $\sum_{i=1}^{\infty} (x|e_i)e_i$. Označimo sa

$$x_0 = x - \sum_{i=1}^{\infty} (x|e_i)e_i.$$

Kada delujemo na x_0 operatorom H, zbog njegove neprekidnosti, dobijamo

$$Hx_0 = Hx - \sum_{i=1}^{\infty} (x|e_i)He_i = Hx - \sum_{i=1}^{\infty} \lambda_i(x|e_i)e_i,$$

što sa (9) daje $Hx_0 = 0 \Rightarrow x_0 \in N(H).\square$

Posledica 2.3.5. Ako je H ermitski kompaktan beskonačno-dimenzionalan operator na Hilbertovom prostoru X, onda vektori $(e_n, n \in N)$ iz Teoreme 2.3.3. obrazuju ortonormiranu bazu u X ako i samo ako nula nije sopstvena vrednost operatora H.

Za proizvoljan kompaktan operator H na Hilbertovom prostoru X imamo uopštenje prethodne teoreme:

Teorema 2.3.6. Neka su X i Y Hilbertovi prostori i $A: X \longrightarrow Y$ kompaktan beskonačno-dimenzionalan operator. Tada postoje nizovi ortonormiranih vektora (e_n) u X i (f_n) u Y i niz brojeva (s_n) takvih da je $s_1 \geqslant s_2 \geqslant ... \geqslant s_m \geqslant ... > 0$, $\lim s_n = 0$ i da važi

$$x = x_0 + \sum_{i=1}^{\infty} (x|e_i)e_i, \quad (x \in X)$$

(13)
$$Ax = \sum_{i=1}^{\infty} s_i(x|e_i) f_i, Ax_0 = 0.$$

Sa (13) je dat takozvani **Šmitov prikaz operatora A**.

Dokaz. Kako je A kompaktan operator, to je $H = A^*A$ kompaktan ermitski operator na X, pa na njega možemo primeniti **Teoremu 2.3.4.**. Naime, postoji ortonormiran niz (e_i) u X i niz (λ_i) realnih brojeva takvih da je $x = x_0 + \sum_{i=1}^{\infty} (x|e_i)e_i$, i $Hx_0 = 0$, $He_i = \lambda_i e_i$, $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n| \ge ... > 0$ i $\lim \lambda_i = 0$. Množenjem $He_i = \lambda_i e_i$ sa e_i , dobijamo da je

$$\lambda_i = (He_i|e_i) = (A^*Ae_i|e_i) = |Ae_i|^2 > 0 \Rightarrow s_i = \sqrt{\lambda_i} > 0.$$

Stavimo $f_i = \frac{Ae_i}{s_i}$. Tada je

$$(f_i|f_j) = \frac{1}{s_i s_j} (Ae_i|Ae_j) = \frac{1}{s_i s_j} (He_i|e_j) = \delta_{ij},$$

gde je δ_{ij} Kronekerov δ - simbol. Kada delujemo na vektor x neprekidnim operatorom A, dobijamo

$$Ax = Ax_0 + \sum_{i=1}^{\infty} (x|e_i)Ae_i = Ax_0 + \sum_{i=1}^{\infty} s_i(x|e_i)f_i.$$

Na kraju, $|Ax_0|^2 = (Ax_0|Ax_0) = (Hx_0|x_0) = 0$ povlači $Ax_0 = 0$. Time je dokazano i (13). \square

2.4 Spektralna teorema za kompaktne normalne operatore

Pre nego što pristupimo formulaciji i dokazu glavne teoreme, dokazaćemo neka tvrđenja na koja ćemo se pozivati u njenom dokazu.

Teorema 2.4.1. Neka su $P_1, P_2 : X \longrightarrow X$ ortogonalni projektori na zatvorene potprostore Y_1 i Y_2 Hilbertovog prostora X.

- (i) Operator $P = P_1P_2$ je ortogonalni projektor ako i samo ako je $P_1P_2 = P_2P_1$. Tada je P ortogonalni projektor na potprostor $Y_1 \cap Y_2$.
- (ii) Operator $P = P_1 + P_2$ je ortogonalni projektor ako i samo ako je $Y_1 \perp Y_2$. Tada je P ortogonalni projektor na $Y_1 \oplus Y_2$.

Teorema 2.4.2. (o graničnoj vrednosti niza ermitskih operatora iz L(X)) Ako je $(A_n, n \in N)$, monoton niz ermitskih operatora iz L(X) i ako je

$$M = \sup\{|A_n|, n \in N\} < \infty,$$

onda postoji ermitski operator $A \in L(X)$ takav da je $A_n \leqslant A, \forall n \in N$, odnosno $(A_n \geqslant A, \forall n \in N)$ i

$$Ax = \lim A_n x \quad (x \in X).$$

I ova teorema data je bez dokaza. Sledeća teorema je njena direktna posledica.

Teorema 2.4.3. Ako je $(X_n)_{n\in\mathbb{N}}$ niz zatvorenih medjusobno ortogonalnih potprostora Hilbertovog prostora X, onda je njihova ortogonalna suma

$$(1) \qquad \qquad \oplus_{n=1}^{\infty} X_n = X_1 \oplus X_2 \oplus \ldots \oplus X_n \oplus \ldots$$

zatvoren potprostor u X. Dalje je

(2)
$$Px = \sum_{n=1}^{\infty} P_n x \qquad (x \in X),$$

gde je P ortogonalni projektor na potprostor (1) i P_n ortogonalni projektor na X_n .

Dokaz. Podsetimo se da je ortogonalna suma (1) niza (X_n) definisana kao skup svih vektora $x \in X$ oblika

(3)
$$x = x_1 + x_2 + \dots + x_n + \dots \quad (x_n \in X_n).$$

Budući da je konvergencija reda (3) ekvivalentna konvergenciji brojnog reda

$$|x_1|^2 + |x_2|^2 + \dots + |x_n|^2 + \dots,$$

očigledno da je (1) potprostor od X.

Iz $X_n \perp X_m, n \neq m$ na osnovu **Teoreme 2.4.1.** zaključujemo da je $P_n P_m = 0 = P_m P_n$. Odavde sledi da je niz $A_n = P_1 + P_2 + ... + P_n$, ortogonalnih projektora, rastući. Na njega, dakle, možemo primeniti prethodnu teoremu pa je sa

$$Px = \lim A_n x \qquad (x \in X)$$

definisan ograničen ermitski operator. Iz

$$P^{2}x = P(Px) = \sum_{n=1}^{\infty} P_{n}(Px) = \sum_{n=1}^{\infty} P_{n}(\sum_{k=1}^{\infty} P_{k}x)$$

$$= \sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} P_n P_k x) = \sum_{n=1}^{\infty} P_n^2 x = \sum_{n=1}^{\infty} P_n x = P x$$

zaključujemo da je P ortogonalni projektor. Kada na vektor (3) delujemo sa P, dobijamo

$$Px = Px_1 + Px_2 + ... + Px_n + ... = x_1 + x_2 + ... + x_n + ... = x$$

što pokazuje da je prostor (1) sadržan u potprostoru $R(P) = \{x \in X : Px = x\}$. S druge strane, iz

$$x \in R(P) \Rightarrow x = Px = \sum_{n=1}^{\infty} P_n x,$$

pa je x oblika (3) sa $x_n = P_n x$. Dakle je $R(P) = X_1 \oplus X_2 \oplus ... \oplus X_n \oplus ...$ Na kraju, zbog neprekidnosti projektora P, potprostor R(P) je zatvoren. \square

Lema 1. Sopstveni potprostori odgovarajući različitim sopstvenim vrednostima normalnog operatora međusobno su ortogonalni.

Dokaz. Neka su λ' , λ'' sopstvene vrednosti normalnog operatora A i neka su X' i X'' odgovarajući sopstveni potprostori, odnosno $Ax' = \lambda'x'$, $Ax'' = \lambda''x''$. Tada je $(A - \lambda'I)x' = 0 \Rightarrow x' \in N(A - \lambda'I)$.

$$N(A-\lambda'I) \stackrel{(1)}{=} N((A-\lambda'I)^*(A-\lambda'I)) \stackrel{(A-\lambda'I))je \ norm.}{=} N((A-\lambda'I)(A-\lambda'I)^*) \stackrel{(2)}{=}$$

$$R((A-\lambda'I)(A-\lambda'I)^*)^{\perp} \stackrel{(3)}{=} R(A-\lambda'I)^{\perp}$$

$$Ax'' = \lambda''x'' \Rightarrow (A - \lambda'I)x'' = Ax'' - \lambda'x'' = (\lambda'' - \lambda')x'' \Rightarrow$$
$$x'' = \frac{1}{\lambda'' - \lambda'}(A - \lambda'I)x'' \in R(A - \lambda'I) \Rightarrow x' \perp x''.$$

- (1) Za normalan operator A važi: $N(A) = N(A^*A) = N(AA^*)$,
- (2) $N(A) = R(B^*)^{\perp}, (A \lambda' I)(A \lambda' I)^*$ je ermitski, tj. $((A \lambda' I)(A \lambda' I)^*)^* = (A \lambda' I)(A \lambda' I)^*,$
 - (3) Za normalan operator A važi $R(A) = R(AA^*) = R(A^*A)$.

Lema 2. Kompaktan normalan operator N ima bar jednu sopstvenu vrednost. Skup svih sopstvenih vrednosti operatora N je prebrojiv. Sopstveni potprostor odgovarajući sopstvenoj vrednosti $\lambda \neq 0$ operatora N je konačnodimenzionalan.

Dokaz. Operatori N, N^* i $H = NN^* = N^*N$ imaju isto jezgro. Prema **Teoremi 2.3.2.** $\overline{R(H)}$ je ortogonalni komplement prostora N(H). Potprostor $R(H) = X \ominus N(H)$ je invarijantan za H, N i N^* . Označimo sa N_1 operator indukovan operatorom N na $\overline{R(H)}$; on je kompaktan i normalan. Dalje, ermitski operator $H_1 = N_1N^*$ (kojeg na $\overline{R(H)}$ indukuje N) nema nulu kao sopstvenu vrednost ako je $N_1 \neq 0$. Budući da operatori H_1 i N_1 komutiraju, to su sopstveni potprostori operatora H_1 invarijantni i za operator N_1 . No, ovi potprostori su konačno-dimenzionalni pa N_1 , a tim pre i N, ima bar jedan invarijantan konačno-dimenzionalan potprostor, dakle N ima bar jednu sopstvenu vrednost. S druge strane, na osnovu **Teoreme 2.3.2.** sledi da je prostor $\overline{R(H)}$ separabilan. Odavde, i na osnovu **Leme 1.** operator N_1 , pa dakle i operator N, ima prebrojivo mnogo različitih sopstvenih vrednosti. Na kraju, sopstveni potprostor odgovarajući sopstvenoj vrednosti operatora N različitoj od nule, je konačno-dimenzionalan. □

Teorema 2.4.4. Za kompaktan, normalan operator N na Hilbertovom prostoru X postoje međusobno različiti kompleksni brojevi $\lambda_0, \lambda_1, \dots$ i medjusobno ortogonalni projektori P_0, P_1, \dots takvi da je

(4)
$$\sigma(N) = \overline{\{\lambda_0, \lambda_1, \dots\}},$$

- (5) $N = \sum \lambda_n P_n \ (konvergencija \ \text{u} \ L(X)),$
- (6) $(\forall x \in X) \quad x = \sum P_n x \ (konvergencija \ u \ X).$

Dokaz. Bez gubljenja opštosti, pretpostavićemo da je $N \neq 0$ i dim $X \neq 0$. Izaberimo sve od nule različite sopstvene vrednosti operatora N; neka su to $\lambda_1, \lambda_2, ...$ i neka su one numerisane tako da važi $|\lambda_1| \geqslant |\lambda_2| \geqslant ...$ Stavimo da je $\lambda_0 = 0$, ako je nula sopstvena vrednost operatora N. Sa X_n označimo sopstven potprostor operatora N odgovarajući sopstvenoj vrednosti λ_n a sa P_n odgovarajući ortogonalni projektor. Tvrdimo da je ortogonalna suma $Y = \bigoplus_n X_n = X$. Da bismo to dokazali, primetimo da je Y invarijantno za N i za N^* . No tada je i potprostor Y^{\perp} invarijantan za N i za N^* . Operator N_0 indukovan operatorom N na Y^{\perp} je kompaktan i normalan. Ako je dim $Y^{\perp} \geqslant 1$, onda prema **Lemi 2.** postoji broj α i vektor $a \in Y^{\perp}, a \neq 0$ takvi da je $N_0 a = \alpha a$. Tim pre je $N a = \alpha a$, tj $\alpha = \lambda_n$ za neko $n \in N$. To povlači $a \in X_n$, što je u kontradikciji sa $a \perp X_n, a \neq 0$.

Dakle dim $Y^{\perp} = 0$, tj. $X = X_0 \oplus X_1 \oplus ...$ Iz ovog poslednjeg sledi (6). Ako je $\sigma_p(N)$ konačan skup, gde je $\sigma_p(N) = \{\lambda \in C : \lambda I - N \text{ nije "} 1 - 1"\}$ tačkasti spektar operatora N, onda je (5) očigledno. Ako je $\sigma_p(N)$ beskonačan skup, onda primenom operatora N na (6) dobijamo:

$$Nx = \sum_{k=0}^{\infty} NP_k x = \sum_{k=1}^{\infty} \lambda_k P_k x \Rightarrow$$

$$|(N - \sum_{k=1}^{n} \lambda_k P_k) x|^2 = |\sum_{k=n+1}^{\infty} \lambda_k P_k x|^2 = \sum_{k=n+1}^{\infty} |\lambda_k|^2 |P_k x|^2$$

$$\leqslant |\lambda_{n+1}|^2 \sum_{k=n+1}^{\infty} |P_k x|^2 \leqslant |\lambda_{n+1}|^2 |x|^2 \Rightarrow$$

$$(7) \qquad |N - \sum_{k=1}^{n} \lambda_k P_k| \leqslant |\lambda_{n+1}|.$$

Budući da je $|\lambda_n|^2$ sopstvena vrednost kompaktnog ermitskog operatora $H=NN^*$, to je $|\lambda_n|^2\longrightarrow 0$ kada $n\longrightarrow \infty$. Odavde i iz (7) dobijamo (5). Ako broj α nije u zatvorenju skupa $\sigma_p(N)$, onda je niz $(\frac{1}{\alpha-\lambda_n})$ ograničen, pa je sa

$$Rx = \sum \frac{P_n x}{\alpha - \lambda_n} \qquad (x \in X)$$

definisan ograničen normalan operator na X. Iz $(\alpha I - N)R = R(\alpha I - N) = I$ sledi $x \in \sigma(N)$, pa je time i (4) dokazano.

Posledica 2.4.5. Ako je N kompaktan normalan operator na Hilbertovom prostoru X, onda je

$$X = N(N) + \overline{R(N)}, \quad N(N^*) = N(N).$$

Posledica 2.4.6. Normalan operator N je kompaktan ako i samo ako je svaki od nule različit element spektra $\sigma(N)$ sopstvena vrednost operatora N konačne višestrukosti i ako je nula jedina tačka nagomilavanja skupa $\sigma(N)$.

Posledica 2.4.7. Ako je N kompaktan normalan operator na Hilbertovom prostoru X, onda postoji ortonormirana baza (e_n) u X i niz kompleksnih brojeva (λ_n) takvih da je

$$Ne_{i} = \lambda_{i}e_{i}, \forall i;$$

$$x = x_{0} + \sum_{i}(x|e_{i})e_{i}, \quad \forall x \in X;$$

$$Nx = \sum_{i}\lambda_{i}(x|e_{i})e_{i}, \quad Nx_{0} = 0;$$

$$N^{*}x = \sum_{i}\lambda_{i}(\overline{x|e_{i}})e_{i}.$$

Ako je dim $R(N) = \infty$, onda je lim $\lambda_n = 0$.

Dokaz. U svakom potprostoru X_n iz **Teoreme 2.4.6.** izaberimo ortonormiranu bazu. Skup takvih baza čini ortonormiranu bazu u X koja ima sva svojstva navedena u formulaciji ove posledice.

2.5 Ekstremalna svojstva sopstvenih vrednosti kompaktnog ermitskog operatora

Neka je H ermitski kompaktan operator na Hilbertovom prostoru X. Pretpostavićemo da je H beskonačno-dimenzionalan i da ima beskonačno mnogo pozitivnih i beskonačno mnogo strogo negativnih sopstvenih vrednosti. Neka su $\lambda_1^+ \geqslant \lambda_2^+ \geqslant \dots$ sve strogo pozitivne, i $\lambda_1^- \leqslant \lambda_2^- \leqslant \dots$ sve strogo negativne sopstvene vrednosti operatora H. Prema **Teoremi 2.3.3.** postoje ortonormirani vektori $e_1^+, e_1^-, e_2^+, e_2^-, \dots$ takvi da je $He_i^+ = \lambda_i^+ e_i^+, He_i^- = \lambda_i^- e_i^-, \quad (i \in N)$ i

(1)
$$Hx = \sum_{i=1}^{\infty} \lambda_i^+(x|e_i^+)e_i^+ + \sum_{i=1}^{\infty} \lambda_i^-(x|e_i^-)e_i^-, \quad x \in X.$$

Iz (1) dobijamo:

(2)
$$(Hx|x) = \sum_{i=1}^{\infty} \lambda_i^+ |(x|e_i^+)|^2 + \sum_{i=1}^{\infty} \lambda_i^- |(x|e_i^-)|^2, \quad x \in X.$$

Teorema 2.5.1. Uz već navedene oznake je:

$$\lambda_1^+ = \max\{(Hx|x) : |x| = 1, x \in X\},$$

$$\lambda_2^+ = \max\{(Hx|x) : |x| = 1; x \perp e_1^+, x \in X\},$$

.

.

$$\lambda_i^+ = \max\{(Hx|x) : |x| = 1; x \perp e_1^+, ..., e_{i-1}^+; x \in X\},\$$

.

.

 $Nadalje\ je$

$$\begin{split} \lambda_1^- &= \min\{(Hx|x): |x| = 1, x \in X\}, \\ \lambda_2^- &= \min\{(Hx|x): |x| = 1; x \perp e_1^-, x \in X\}, \end{split}$$

•

.

$$\lambda_i^- = \min\{(Hx|x): |x| = 1; x \perp e_1^-, ..., e_{i-1}^-; x \in X\},$$

٠

•

Dokaz. Iz (2) za $x=e_1^+$ dobijamo $\lambda_1^+=(He_1^+|e_1^+)$ pa je

(3)
$$\sup\{(Hx|x) : |x| = 1, x \in X\} \geqslant \lambda_1^+.$$

S druge strane iz (2) zbog $\lambda_i^-<0$ i Beselove nejednakosti dobijamo:

$$(Hx|x) \leqslant \sum_{i=1}^{\infty} \lambda_i^+ |(x|e_i^+)|^2 \leqslant \lambda_1^+ \sum_{i=1}^{\infty} |(x|e_i^+)|^2 \leqslant \lambda_1^+ |x|^2,$$

što zajedno sa (3) povlači formulu za λ_1^+ koju izvodimo. Iz (2) za $x=e_2^+$ dobijamo $\lambda_2^+=(He_2^+|e_2^+)$. Za $x\perp e_1^+$ imamo:

$$(Hx|x) \leqslant \sum_{i=1}^{\infty} \lambda_i^+ |(x|e_i^+)|^2 = \sum_{i=2}^{\infty} \lambda_i^+ |(x|e_i^+)|^2 \leqslant \lambda_2^+ |x|^2,$$

što daje formulu za λ_2^+ koju tražimo.

Na sličan način se dokazuju formule za λ_i^+ .

Iz (2) za
$$x=e_1^-$$
 dobijamo $\lambda_1^-=(He_1^-|e_1^-)$ pa je

(4)
$$\inf\{(Hx|x) : |x| = 1, x \in X\} \leqslant \lambda_1^-.$$

Ponovo, zbog Beselove nejednakosti i ovog puta, zbog $\lambda_i^+ > 0$, iz (2) dobijamo:

$$(Hx|x) \geqslant \sum_{i=1}^{\infty} \lambda_i^- |(x|e_i^-)|^2 \geqslant \lambda_1^- \sum_{i=1}^{\infty} |(x|e_i^-)|^2 \geqslant \lambda_1^- |x|^2,$$

što zajedno sa (4) daje formulu za $\lambda_1^-.$ Slično bismo dokazali i formulu za $\lambda_i^-.\square$

Posledica 2.5.2. Ako su granice

$$m = \inf\{(Hx|x) : |x| = 1, x \in X\}, M = \sup\{(Hx|x) : |x| = 1, x \in X\}$$

 $kompaktnog\ ermitskog\ operatora\ H\ različite\ od\ nule,\ onda\ su\ m\ i\ M\ jedine\ sopstvene\ vrednosti\ operatora\ H\ .$

Prema **Teoremi 2.5.1.** sopstvene vrednosti kompaktnog ermitskog operatora H su ekstremne vrednosti kvadratne forme $x \longrightarrow (Hx|x)$ uz određene uslove za vektore x. Uz uslov |x| = 1, ova funkcija ima maksimum λ_1^+ i minimum λ_1^- .

Za određivanje sopstvene vrednosti λ_k^+ prema ovoj teoremi vezana je ekstremna vrednost funkcije $x \longmapsto (Hx|x)$. Zahteva se da $x \in X$ zadovoljava uslove $|x| = 1, x \perp e_1^+, ..., e_{k-1}^+$. S tim u vezi, izaberimo proizvoljne vektore $y_1, y_2, ..., y_{k-1}$ iz X i veze $|x| = 1, x \perp y_1, y_2, ..., y_{k-1}$, pa variranjem tih veza nastojimo dobiti sopstvenu vrednost λ_k^+ . U tu svrhu definišimo:

(5)
$$\lambda_k^+(H; y_1, ..., y_{k-1}) = \sup\{(Hx|x) : |x| = 1, x \perp y_1, y_2, ..., y_{k-1}, x \in X\}$$

Dokažimo da je

(6)
$$\lambda_k^+ = \lambda_k^+(H; e_1^+, ..., e_{k-1}^+) \leqslant \lambda_k^+(H; y_1, ..., y_{k-1})$$

Da bismo dokazali da važi (6), potražimo jedinični vektor $x_0 \in X$ takav da bude:

(7)
$$(x_0|y_j) = 0$$
 $(j = 1, ..., k - 1);$

(8)
$$\lambda_k^+ \leqslant (Hx_0|x_0) \leqslant \lambda_k^+(H; y_1, ..., y_{k-1});$$

Za vektor $x = \sum_{i=1}^k t_i e_i^+$, zahtevi $(x|y_j) = 0$, (j = 1, ..., k-1); upućuju na homogen sistem

$$\sum_{i=1}^{k} (e_i^+|y_j)t_i = 0, \qquad (j = 1, ..., k-1);$$

od k-1 jednačina sa k nepoznatih. Takav sistem uvek ima netrivijalno rešenje, pa vektor $x_0 = \frac{x}{|x|} = \sum_{i=1}^k \xi_i e_i^+$ zadovoljava (7). No, tada je

$$\lambda_k^+(H; y_1, ..., y_{k-1}) \geqslant (Hx_0|x_0) = \sum_{i=1}^k \lambda_i^+ |\xi_i|^2 = \lambda_k^+ |x_0|^2,$$

što i jeste nejednakost (8). Mi smo sada zapravo dokazali jednu teoremu, koja se često naziva **Fišerova minimaks teorema.**

Teorema 2.5.3. (Fišer, 1905.) Neka su oznake i uslovi kao u Teoremi 2.5.1. Tada važi:

(9)
$$\lambda_k^+ = \min[\max(Hx|x)],$$

(10)
$$\lambda_k^- = \max[\min(Hx|x)],$$

pri čemu se maksimum u (9) (minimum u (10)) uzima po svim jediničnim vektorima x koji su ortogonalni na proizvoljan sistem $y_1, y_2, ... y_{k-1}$ vektora iz X, a minimum u (9) (maksimum u (10)) uzima se po svim takvim sistemima.

Sada možemo da izvedemo neke nejednakosti koje se odnose na sopstvene vrednosti triju ermitskih kompaktnih operatora H', H''iH' + H''.

Teorema 2.5.4. Neka su H', H'' i H = H' + H'' ermitski kompaktni operatori na Hilbertovom prostoru X. Uz evidentne oznake sopstvenih vrednosti tih operatora imamo:

(11)
$$\lambda_{i+j-1}^{+} \leqslant \lambda_{i}^{'+} + \lambda_{j}^{''+} \quad (i, j = 1, 2, ...)$$

(12)
$$\lambda_{i+j-1}^{-} \geqslant \lambda_{i}^{'-} + \lambda_{i}^{''-} \qquad (i, j = 1, 2, ...).$$

Dokaz. Posmatrajmo proizvoljan skup $S = \{y_1, ... y_{i-1}, z_1, ..., z_{j-1}\}$ i jedinični vektor x. Imamo:

$$\lambda_{i}^{+}(H'; y_{1}, ..., y_{i-1}) + \lambda_{j}^{+}(H''; z_{1}, ..., z_{j-1}) = \sup_{x \perp (y_{1}, ..., y_{i-1})} (H'x|x) + \sup_{x \perp (z_{1}, ..., z_{j-1})} (H''x|x) \geqslant \sup_{x \perp S} (H'x|x) + \sup_{x \perp S} (H''x|x) \geqslant \sup_{x \perp S} [(H'x|x) + (H''x|x)] = \lambda_{i+j-1}^{+}(H; y_{1}, ..., y_{i-1}; z_{1}, ..., z_{j-1}) \geqslant \lambda_{i+j-1}^{+}$$

Dakle,

$$\lambda_i^+(H'; y_1, ..., y_{i-1}) + \lambda_i^+(H''; z_1, ..., z_{j-1}) \geqslant \lambda_{i+j-1}^+.$$

Pređemo li sada na infimum po $(y_1, y_2, ..., y_{i-1})$, a zatim po $(z_1, ..., z_{j-1})$, a onda koristeći (9) dobijamo (11). Slično se dokazuje i nejednakost za negativne sopstvene vrednosti operatora.

2.6 Teorema Arcela-Askoli

Neka je K kompaktan skup iz R^n ili C^n , odnosno proizvoljan kompaktan (Hausdorfov) topološki prostor. Sa C(K) označimo Banahov prostor svih neprekidnih funkcija $f:K\longrightarrow C$, sa normom $|f|=\max\{|f(x)|:x\in K\}$. Za skup $T\subseteq C(K)$ sa

$$\delta(T) = \sup\{|f-g|: f,g \in T\}$$

označavamo dijametar skupa T. Sa U(x) označavamo otvoren skup koji sadrži tačku x.

Definicija 2.6.1. Skup $T \subset C(K)$ je *ekvineprekidan u tački* $x_0 \in K$ ako za svako $\varepsilon > 0$ postoji okolina $U(x_0)$ tačke x_0 takva da je

$$(\forall f \in T)(\forall x \in U(x_0) \cap K) \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Skup T je ekvineprekidan na skupu $S \subseteq K$ ako je on ekvineprekidan u svakoj tački $x_0 \in S$.

Konačan skup je ekvineprekidan u svakoj tački $x_0 \in K$. Zaista, za $T = \{f_1, ... f_n\}, x_0 \in K$ i $\varepsilon > 0$ postoje okoline U_i tačke x_0 takve da $x \in U_i \cap K \Rightarrow |f_i(x) - f_i(x_0)| < \varepsilon$. Označimo sa $U = U_1 \cap ... \cap U_n$, tada je

$$(\forall x \in U \cap K)$$
 $|f_i(x) - f_i(x_0)| < \varepsilon, \quad i = 1, 2, ...n.$

Teorema 2.6.1. (Arcela-Askoli) Neka je K kompaktan skup u R^n odnosno C^n , odnosno kompaktan topološki prostor i T podskup Banahovog prostora C(K). Skup T je relativno kompaktan u C(K) ako i samo ako je ograničen i ekvineprekidan.

2.7 Kompaktnost nekih integralnih operatora

Označimo sa Δ segment u R, odnosno kvadrat u R^2 , odnosno n-dimenzionalni kvadar u R^n , a sa C(N) označavamo vektorski prostor svih neprekidnih funkcija definisanih na Δ , tj. vektorski prostor funkcija $x:\Delta\longrightarrow C$.

Vektorski prostor $C(\Delta)$ snabdeven je normom

$$|x| = \max\{|x(t)| : t \in \Delta\}.$$

U odnosu na metriku indukovanu ovom normom, $C(\Delta)$ je Banahov prostor. Takođe, vektorski prostor $C(\Delta)$ snabdeven je skalarnim proizvodom

$$(x|y) = \int_{\Delta} x(t) \overline{y(t)} dt.$$

Analogno se mogu definisati norma i skalarni proizvod na prostorima $C(\Delta)$ gde je $\Delta \subseteq R^2$ odnosno $\Delta \subseteq R^n$. Integralni operator A definisan sa:

(1)
$$Ax(s) = y(s) = \int_{\Delta} k(s, t)x(t)dt,$$

uz razne pretpostavke o jezgru κ i o skupu Δ , je kompaktan. To pokazuje teorema Arcela-Askolija. Te pretpostavke obezbeđuju da se na (1) može primeniti nejednakost Švarc-Koši-Bunjakovskog:

$$(2) |y(s)| = \left(\int_{\Delta} |\kappa(s,t)|^2 dt\right)^{\frac{1}{2}} \cdot \left(\int_{\Delta} |x(t)|^2 dt\right)^{\frac{1}{2}},$$

$$(3) |y(s_1) - y(s_2)| \leq \left(\int_{\Delta} |\kappa(s_1,t) - \kappa(s_2,t)|^2 dt\right)^{\frac{1}{2}} \cdot \left(\int_{\Delta} |x(t)|^2 dt\right)^{\frac{1}{2}}.$$

Teorema 2.7.1. Ako je jezgro κ operatora (1) neprekidna funkcija na $\Delta \times \Delta$, onda je sa (1) definisan kompaktan operator iz Hilbertovog prostora $C(\Delta)$ na Banahov prostor $C(\Delta)$.

Dokaz. Funkcija $\kappa \in C(\Delta \times \Delta)$ je uniformno neprekidna, jer je skup $\Delta \times \Delta$ kompaktan. Dakle,

(4)
$$(\forall \varepsilon > 0)(\exists \delta > 0)(|t_1 - t_2| + |s_1 - s_2| \leqslant \delta \Rightarrow |\kappa(s_1, t_1) - \kappa(s_2, t_2)| \leqslant \varepsilon).$$

Odavde, i iz (3) dobijamo

$$(5) |y(s_1) - y(s_2)| < \varepsilon \sqrt{\mu(\Delta)}$$

za svaku funkciju x iz jedinične kugle prostora $C(\Delta)$ i za sve $s_1, s_2 \in \Delta$, za koje je $|s_1 - s_2| \leq \delta$, gde smo sa $\mu(\Delta)$ označili meru n-kvadra Δ . Po definiciji, (5) kazuje da je funkcija y = Ax neprekidna funkcija za $x \in C(\Delta)$. Dakle, sa (1) je definisan operator koji slika $C(\Delta)$ u $C(\Delta)$.

Dalje, iz (5) vidimo da A slika jediničnu kuglu K prostora $C(\Delta)$ u ekvineprekidan skup. Neka je $M\geqslant 0$ takav broj da je

(6)
$$\int_{\Delta} |\kappa(s,t)|^2 dt \leqslant M, \quad s \in \Delta,$$

pa na osnovu (2) imamo da je

(7)
$$|y(s)| \leq \sqrt{M}, \quad s \in \Delta.$$

Pređimo na maksimum po s i dobijamo $\{|y(s)|:s\in\Delta\}\leqslant\sqrt{M}$, što povlači ograničenost operatora A i ograničenost skupa AK u Banahovom prostoru $C(\Delta)$. Konačno, skup AK, kao ograničen i ekvineprekidan zadovoljava uslove teoreme Arcela-Askolija, pa je relativno kompaktan. \square

Posledica 2.7.2. Ako je $\kappa \in C(\Delta \times \Delta)$, onda formula (1) definiše kompaktan operator sa Hilbertovog prostora $C(\Delta)$ u Hilbertov prostor $C(\Delta)$.

Teorema 2.7.3. Ako je $\kappa \in C(\Delta \times \Delta)$, onda je A simetričan operator ako i samo ako njegovo jezgro κ zadovoljava

(8)
$$\kappa(s,t) = \overline{\kappa(t,s)}, \quad s,t \in \Delta \quad (ermitska \ simetrija).$$

Dokaz. Za sve $x, y \in C(\Delta)$ imamo:

$$\begin{split} (Ax|y) &= \int_{\Delta} (Ax)(s) \overline{y(s)} ds = \int_{\Delta} (\int_{\Delta} \kappa(s,t) x(t) dt) \overline{y(s)} ds \Rightarrow \\ (x|Ay) &= \int_{\Delta} x(s) \overline{Ay(s)} ds = \int_{\Delta} x(s) \overline{(\int_{\Delta} \kappa(s,t) y(t) dt} ds \\ &= \int_{\Delta \times \Delta} \overline{\kappa(s,t) y(t)} x(s) dt ds \stackrel{s \rightleftharpoons t}{=} \int_{\Delta \times \Delta} \overline{\kappa(t,s) y(s)} x(t) ds dt \end{split}$$

pa (Ax|y) = (x|Ay) prelazi u

$$\int_{\Delta \times \Delta} \left[\kappa(s, t) - \overline{\kappa(t, s)} \right] x(t) \overline{y(s)} ds dt = 0,$$

što povlači (8).

Drugi smer je očigledan.□

Neka sada jezgro $\kappa \in C(\Delta)$ zadovoljava (8) i neka je $A \neq 0$ konačnodimenzionalan operator. Prema **Teoremi 2.3.2.** postoje realni brojevi $\lambda_1, \lambda_2, ... \lambda_n$ različiti od nule, i ortonormirane funkcije $e_1, e_2, ... e_n$ takve da je

(9)
$$Ax = \sum_{i=1}^{n} \lambda_i(x|e_i)e_i$$
$$Ae_i = \lambda_i e_i \qquad (i = 1, ...n),$$

odnosno

(10)
$$\int_{\Lambda} \kappa(s,t)e_i(t)dt = \lambda_i e_i(s).$$

Tada je

(11)
$$\kappa(s,t) = \sum_{i=1}^{n} \lambda_i e_i(s) \overline{e_i(t)} \qquad (s,t \in \Delta).$$

Da bismo dokazali (11) stavimo

$$\alpha(s,t) = \kappa(s,t) - \sum_{i=1}^{n} \lambda_i e_i(s) \overline{e_i(t)}.$$

Za $x \in C(\Delta)$ imamo:

$$\int_{\Delta} \alpha(s,t)x(t)dt = \int_{\Delta} \kappa(s,t)x(t)dt - \sum_{i=1}^{n} \lambda_{i}e_{i}(s) \int_{\Delta} x(t)\overline{e_{i}(t)}dt$$
$$= (Ax)(s) - \sum_{i=1}^{n} \lambda_{i}(x|e_{i})e_{i}(s) = 0$$

zbog (9). Odavde sledi $\alpha(s,t)=0$ za sve $s,t\in\Delta$, pa je time (11) dokazano. Ako $\kappa\in C(\Delta\times\Delta)$ zadovoljava (8) i ako A nije konačno-dimenzionalan, onda prema **Teoremi 2.3.3.** postoji niz (λ_n) realnih brojeva $|\lambda_1|\geqslant |\lambda_2|\geqslant ...>0$ i ortonormiran niz funkcija (e_n) takvih da je lim $\lambda_n=0$, da važi (10) i da red funkcija

(12)
$$Ax = \sum_{i=1}^{\infty} \lambda_i(x|e_i)e_i, \quad x \in C(\Delta)$$

konvergira u srednjem ka funkciji Ax.

Teorema 2.7.4.(Hilbert-Šmit) Ako jezgro $\kappa \in C(\Delta \times \Delta)$ zadovoljava ermitsku simetriju (8), i ako operator A nije konačno-dimenzionalan, onda red (12) uniformno konvergira funkciji Ax za svaku funkciju $x \in C(\Delta)$.

Dokaz. $\lambda_i \in R, \forall i \in \{1, ..., n\}$ pa iz (10), za fiksirano $s \in \Delta$ imamo:

(13)
$$\lambda_i \overline{e_i(s)} = \int_{\Lambda} \overline{\kappa(s,t)e_i(t)} dt,$$

što pokazuje da je $\lambda_i \overline{e_i(s)}$ Furieov koeficijent funkcije $t \longmapsto \overline{\kappa(s,t)}$ u odnosu na ortonormiran sistem (e_i) . No tada iz (7), na osnovu Beselove nejednakosti, sledi:

(14)
$$\sum_{i=1}^{n} |\lambda_i \overline{e_i(s)}|^2 \leqslant M, \quad n \in N.$$

Za dato $\varepsilon > 0$ zbog Beselove nejednakosti postoji $(n \in N)$ takvo da je

$$\sum_{i=n+1}^{\infty} |(x|e_i)|^2 \leqslant \varepsilon^2.$$

Za neko $p \in N$ imamo:

$$\sum_{i=n+1}^{n+p} |\lambda_i(x|e_i)e_i(s)| \leq (\sum_{i=n+1}^{n+p} \lambda_i e_i(s)|^2)^{1/2} \cdot (\sum_{i=n+1}^{n+p} |(x|e_i)|^2)^{1/2}.$$

Odavde, i iz (14) dobijamo:

$$\sum_{n=1}^{\infty} |\lambda_i(x|e_i)e_i(s)| \leqslant \varepsilon \sqrt{M} \qquad (s \in \Delta),$$

što pokazuje da red (12) konvergira uniformno.□

Teorema 2.7.5. Ako jezgro $\kappa \in C(\Delta \times \Delta)$ definiše beskonačno- dimenzionalan simetričan operator A, onda važi:

(15)
$$\kappa(s,t) = \sum_{i=1}^{\infty} \lambda_i e_i(s) \overline{e_i(t)},$$

(16)
$$\int_{\Delta \times \Delta} |\kappa(s,t)|^2 ds dt = \sum_{i=1}^{\infty} \lambda_i^2$$

i red (15) konvergira u srednjem funkciji κ.

Teorema 3.5.6.(Mercer) Neka funkcija κ zadovoljava sve uslove prethodne teoreme. Ako je $(Ax|x) \geq 0$ za svako $x \in C(\Delta)$, onda red (15) uniformno konvergira funkciji κ .

2.8 Spektar kompaktnog operatora

Neka je Akompaktan operator. Kako je za $\lambda \neq 0$ i $\lambda^{-1}A$ kompaktan operator i

(1)
$$\lambda I - A = \lambda (I - \lambda^{-1} A),$$

to bez gubljenja opštosti možemo uzeti da je $\lambda=1.$ Za $n\in N$ uvedimo sledeće oznake:

$$T = I - A$$
, $N_n = N[(I - A)^n]$, $R_n = R[(I - A)^n]$.

Pre nego pristupimo dokazivanju teorema vezanih za spektar kompaktnog operatora, dokazaćemo neka tvrđenja na koja ćemo se kasnije pozivati. Najpre, navešćemo jednu od osnovnih tvrđenja iz oblasti funkcionalne analize, a to je **Risova lema**: Neka je X Hilbertov prostor i K neprazan konveksan zatvoren skup u X. Za svako $x \in X$ postoji jedinstven vektor $y_0 \in K$, takav da je $|x - y_0| = \inf\{|x - y| : y \in K\}$.

Teorema 2.8.1. Ako je A kompaktan operator na normiranom prostoru X i n prirodan broj, onda je nul-potprostor N_n konačno-dimenzionalan. Ako je n dovoljno veliko, onda je $N_n = N_{n+1}$.

Dokaz. Da bismo dokazali prvi deo stava, posmatrajmo operator

(3)
$$U_n = T^n - I = -nA + \dots + (-1)^n A^n.$$

Operator U_n je kompaktan, pa $T^n = I + U_n$ pokazuje da operator $-U_n$ na N_n indukuje jedinični operator I_n . Zbog kompaktnosti operatora $-U_n$ i operator I_n je kompaktan, pa je dim $N_n < \infty$.

Kada bismo imali $N_n \neq N_{n+1}$ za svako n, onda iz

$$N_1 \subset N_2 \subset ...N_n \subset N_{n+1} \subset ...$$

na osnovu **Risove leme**, postoji jedinični vektor $e_n \in N_{n+1}$ takav da je $d(e_n, N_n) \geqslant \frac{1}{2}$. Ako je m < n, onda je

$$z = Te_n - Te_m + e_m \in N_n$$

pa imamo

$$|Ae_m - Ae_n| = |z - e_n| \geqslant d(e_n, N_n) \geqslant \frac{1}{2},$$

pa (Ae_n) nema Košijev podniz. To je nemoguće jer A je kompaktan operator i (e_n) je ograničen niz. Dakle, došli smo do kontradikcije, što dovodi do

zaključka da naša polazna pretpostavka nije tačna. Dakle, postoji prirodan broj n takav da je $N_n=N_{n+1}$. Tada, za svako $k\geqslant n, N_k=N_n$. \square

Definicija 2.8.1. Neka je X normiran prostor i $T \in L(X)$. Ako postoji $k \in \{0,1,...\}$ takav da je $N(T^k) = N(T^{k+1})$, tada se za operator T kaže da $ima\ konačan\ uspon$; u suprotnom se kaže da operator T $ima\ beskonačan\ uspon$. Uspon operatora T označava se sa $\alpha(T)$. Ako operator T ima konačan uspon, onda je

$$\alpha(T) = \min\{k \in \{0, 1, \dots\} : N(T^k) = N(T^{k+1})\} < \infty,$$

a ako operator T ima beskonačan uspon, onda je $\alpha(T) = \infty$.

U skladu sa ovom definicijom, $\alpha(T) < \infty$ ako i samo ako je T = I - A i A kompaktan operator.

Teorema 2.8.2. Ako je A kompaktan operator na normiranom prostoru X, onda je slika R_n operatora $(I-A)^n$ zatvoren potprostor. Ako je n dovoljno veliko, onda je $R_{n+1} = R_n$.

Dokaz. Uzmimo da je

$$(4) y_0 = \lim T^n x_k (x_k \in X).$$

Treba dokazati da je $y_0 \in R_n$. Niz $k \mapsto d_k = d(x_k, N_n)$ je ograničen. Zaista, ukoliko pretpostavimo suprotno, imamo da $d_k \to \infty$. Označimo sa $z_k = x_k/d_k$. Tada je $d(z_k, N_n) = 1$, pa postoji vektor $u_k \in N_n$ takav da je $|v_k| \leq 2, v_k = z_k - u_k$. Kako je (v_k) ograničen niz, možemo uzeti da niz $(U_n v_k, k \in N)$ konvergira nekom vektoru v', jer je $U_n = (T^n - I)$ kompaktan operator. Tada je

$$v_k = T^n v_k - U_n v_k = T^n z_k - T^n U_k - U_n v_k = T^n z_k - U_n v_k$$
$$= \frac{T^n x_k}{d_k} - U_n v_k \longrightarrow -v' = v.$$

Sledi, $d(v, N_n) = \lim d(v_k, N_n) = 1 - 0 = 1$, a to je u kontradikciji sa $T^n v = \lim T^n v_k = T^n z_k = 0$.

Dakle, postoji realni broj M>0 takav da je $d_k\leqslant M, \forall k\in N$. Iz $d(x_k,N_n)\leqslant M\Rightarrow (\exists x_k'\in X)(|x_k'|\leqslant 1+M$ i $x_k-x_k'\in N_n)$. Budući da je niz (x_k') ograničen, možemo uzeti da niz $(U_nx_k')_{k\in N}$ konvergira nekom vektoru a'. Tada $y_0=\lim T^nx_k=\lim T^nx_k'$ povlači $x_k'=T^nx_k'-U_nx_k'\longrightarrow y_0-a'$ pa je

 $y_0 = \lim T^n x_k' = T^n(y_0 - a')$, tj. $y_0 \in R_n$. Dakle, potprostor R_n je zatvoren. Ako bi bilo $R_{n+1} \neq R_n, \forall n \in N$ onda

$$R_1 \supset R_2 \supset ... \supset R_n \supset R_{n+1} \supset ...$$

Na osnovu **Risove leme**, postoji jedinični vektor $e_n \in R_n$ takav da je $d(e_n, R_{n+1}) \geqslant \frac{1}{2}$. Za m > n je $z = Te_n - Te_m + e_m \in R_{n+1}$, što povlači

$$|Ae_m - Ae_n| = |z - e_n| \geqslant d(e_n, R_{n+1}) \geqslant \frac{1}{2}.$$

Zaključujemo da (Ae_n) nema Košijev podniz, a to je nemoguće. Dakle, postoji prirodan broj n takav da je $R_{n+1} = R_n$. Tada je $R_k = R_n, \forall k \ge n$.

Definicija 2.8.2. Neka je X normiran prostor, i $T \in L(X)$. Ako postoji $k \in \{0, 1, 2...\}$, tako da je

$$R(T^k) = R(T^{k+1})$$

tada se kaže da operator T ima konačan pad; u suprotnom kažemo da operator T ima beskonačan pad. Pad operatora T se označava sa $\delta(T)$; ako operator T ima konačan pad, onda je

$$\delta(T) = \min\{k \in \{0, 1, 2, \ldots\} : R(T^k) = R(T^{k+1})\} < \infty$$

a ako operator T ima beskonačan pad, piše se jednostavno $\delta(T) = \infty$.

Iz prethodne teoreme sledi da je $\delta(T) < \infty$ ako je T = I - A i A kompaktan operator.

Teorema 2.8.3. Ako je X normiran prostora, $T \in L(X)$ i $\alpha(T), \delta(T) < \infty$, tada je $\alpha(T) = \delta(T)$.

Dokaz. Pretpostavimo da je $\delta(T)=0$ i dokažimo da je tada i $\alpha(T)=0$. Ako bi bilo $\alpha(T)>0$, to bi značilo da postoji $x_1\neq 0, x_1\in X$, tako da je $Tx_1=0$. Kako je R(T)=X, to postoji niz (x_n) iz X takav da za njegove članove važi $Tx_{n+1}=x_n$, za svako $n\in N$. Sada je $T^nx_{n+1}=x_1, T^{n+1}x_{n+1}=0$, i prema tome $x_{n+1}\in N(T^{n+1})\backslash N(T^n)$. Kako ovo važi za svako $n\in N$ sledi da je $\alpha(T)=\infty$. Ovo je u kontradikciji sa pretpostavkom teoreme, dakle, mora biti $\alpha(T)=0$.

Neka je $\delta(T) = p \geqslant 1$. Dokažimo da je

$$\alpha(T) \leqslant \delta(T)$$
.

Iz $\delta(T)=p$ sledi $R(T^p)=R(T^{p+1})=T(R(T^p))$. Ako je $T_1=T\upharpoonright_{R(T^p)}$ restrikcija operatora T na potprostor $R(T^p)$, tada je $\delta(T_1)=0$. Za svako $n=0,1,\ldots$ je očigledno T_1^n restrikcija operatora T^n na potprostor $R(T^p)$ i $N(T_1^n)\subset N(T^n)$. Sledi

$$N(T_1^{n+1})\backslash N(T_1^n) \subset N(T^{n+1})\backslash N(T^n),$$

odnosno $\alpha(T_1) \leqslant \alpha(T) < \infty$. Sada, na osnovu dokazanog prvog dela teoreme, sledi da je $\alpha(T_1) = 0$, a preslikavanje T_1 je injekcija. Neka je $x \in N(T^{p+1})$ i $T^p x = y$. Iz $y \in R(T^p)$ i $T_1 y = T y = T^{p+1} x = 0 \xrightarrow{N(T_1) = 0, T_1 je \ inj.} y = 0, x \in N(T^p)$. Ovim smo dokazali $\alpha(T) \leqslant \delta(T)$. Dokažimo da je

$$\alpha(T) \geqslant \delta(T)$$
.

Neka je $\delta(T)=p\geqslant 1$. Tada postoji $y\in R(T^{p-1})\backslash R(T^p)$ i $x\in X$ sa svojstvom $T^{p-1}x=y$. Neka je $z=Ty=T^px$. Primetimo još i da iz $T^pR(T^p)=R(T^{2p})=R(T^p)$ sledi da postoji $u\in R(T^p)$ tako da je $T^pu=z$. Ako je v=x-u, tada je $T^pv=T^p(x-u)=T^px-T^pu=z-z=0$, odnosno $v\in N(T^p)$.

Takođe

$$T^{p-1}v = T^{p-1}x - T^{p-1}u = y - T^{p-1}u \neq 0,$$

jer je $u\in T^p$. Odavde imamo da je $T^{p-1}u\in R(T^{2p-1})=R(T^p)$, i budući da je $y\notin R(T^p)$ sledi $y-T^{p-1}u\neq 0$. Dakle, $T^pv=0$ i $T^{p-1}v\neq 0$, pa je $N(T^p)\neq N(T^{p-1})$. Sledi da je $\alpha(T)\geqslant p$. Ovim je dokazano da je $\alpha(T)\geqslant \delta(T)$. Iz antisimetričnosti relacije " \geqslant " sledi jednakost $\alpha(T)=\delta(T)$. \square

Teorema 2.8.4. Neka je X normiran prostor i $T \in L(X)$ ograničen operator na X. Ako je $\alpha(T) < \infty$ i $\delta(T) < \infty$, onda je $\alpha(T) = \delta(T)$ i prostor X je direktna suma potprostora $N(T^p)$ i $R(T^p)$, gde je $p = \alpha(T) = \delta(T)$.

Dokaz. Ako je $y \in R(T^p) \cap N(T^p)$, tada je $T^p y = 0$ i postoji $x \in X$ tako da je $y = T^p x$. Očigledno je $T^{2p} x = 0$, (jer je $N((T)^{2p}) \supseteq N((T)^p)$, i $x \in N(T^{2p})$). Iz $N(T^{2p}) = N(T^p)$ sledi $y = T^p x = 0$. Ovim smo dokazali da je $R(T^p) \cap N(T^p) = \{0\}$. Ako je $z \in X$, tada postoji $u \in R(T^p)$ tako da je $T^p u = T^p z$. Iz z = u + (z - u) i $z - u \in N(T^p) \Rightarrow X = R(T^p) \oplus N(T^p)$. \square

Posledica 2.8.5. Ako je A kompaktan operator na normiranom prostoru X, onda je X direktna topološka suma konačno-dimenzionalnog potprostora N i zatvorenog potprostora R, gde je

$$N = N[(I - A)^p], R = R[(I - A)^p], i p = \alpha(I - A) = \delta(I - A).$$

Teorema 2.8.6. Neka je A kompaktan operator na normiranom prostoru X, T = I - A i $\delta(T) = p$. Tada na prostoru $R(T^p)$ operator T indukuje regularan operator.

Dokaz. Neka je T_0 onaj operator koji T indukuje na prostoru $R_p = R(T^p)$. Treba dokazati da je T_0 bijekcija, i da je operator T_0^{-1} neprekidan. Očigledno je T_0 sirjekcija. Neka je $x \in R_p$ takvo da je $T_0 = 0$. Tada je $x \in N_p$, pa je zbog $N_p \cap R_p = \{0\}, x = 0$. Sledi T_0 je i injekcija. Dakle T_0 je bijekcija sa R_p na R_p .

Da bismo dokazali neprekidnost operatora T_0^{-1} , dokazaćemo ekvivalent, a to je da T_0 zatvorene skupove slika u zatvorene skupove. Neka je $F \subseteq R_p$ zatvoren skup, i neka je $y_0 = \lim T_0 x_n (x_n \in F)$. Treba dokazati da $y_0 \in T_0 F$. Niz $n \longmapsto d_n = |x_n|$ je ograničen. Zaista, pretpostavimo da $d_n \longrightarrow \infty$. Vektori $z_n = \frac{x_n}{d_n}$ su jedinični, pa možemo uzeti da niz (Az_n) konvergira nekom vektoru z_0 . Sada iz

$$z_n = (I - A)z_n + Az_n = T_0 \frac{x_n}{d_n} + Az_n = \frac{T_0 x_n}{d_n} + Az_n$$

sledi $z_n \longrightarrow z_0.$ Odavde je $z_0 \in F$ i $T_0 z_n \longrightarrow T_0 z_0.$ Međutim,

$$\lim T_0 z_n = T_0 \frac{x_n}{d_n} = 0.$$

Dakle, $T_0 z_0 = 0$, odakle je $z_0 = 0$. Evo kontradikcije sa $|z_0| = \lim |z_n| = \lim |\frac{x_n}{dx_n}| = 1$. Dakle, niz (x_n) je ograničen.

Kako je A kompaktan operator, možemo uzeti da niz Ax_n konvergira nekom vektoru x'_0 . Tada

$$x_n = (I - A)x_n + Ax_n \longrightarrow y_0 + x_0' = x_0,$$

pa je $x_0 \in F$. Dalje je $y_0 = \lim T_0 x_n = T_0 x_0$, što pokazuje da je $y_0 \in T_0 F$. \square

Sada možemo pristupiti izučavanju glavnih karakteristika spektra kompaktnog operatora.

Teorema 2.8.7. Neka je X kompleksan normiran prostor i $A \in L(X)$ kompaktan operator.

- (i) Ako kompleksan broj $\lambda, \lambda \neq 0$ nije sopstvena vrednost operatora A, onda je $\lambda I A$ regularan operator.
- (ii) Operator A ima najviše prebrojivo mnogo sopstvenih vrednosti. Jedina moguća tačka nagomilavanja sopstvenih vrednosti operatora A je nula.

(iii) Sopstveni potprostor koji je pridružen sopstvenoj vrednosti $\lambda \neq 0$ operatora A je konačno-dimenzionalan.

Dokaz. (i) Pretpostavimo da $\lambda \neq 0$ nije sopstvena vrednost operatora A. Tada je $0 \neq \lambda I - A = \lambda(I - \lambda^{-1}A)$, pa je $B = \lambda^{-1}A$ kompaktan operator, i I - B je injekcija. Tada je $\alpha(I - B) = 0$ pa je i $\delta(I - B) = 0$, odakle je I - B bijekcija. Prema prethodnoj teoremi, I - B je regularan operator na X. No, tada je i $\lambda I - A$ regularan operator.

(ii) Neka je dim $X=\infty$ i $\varepsilon>0$. Dokazaćemo prvo da je skup svih sopstvenih vrednosti λ operatora A takvih da je $|\lambda|\geqslant \varepsilon$ konačan. Zaista, ukoliko bi ovaj skup bio beskonačan, postojao bi niz (λ_n) različitih sopstvenih vrednosti operatora A takvih da je $|\lambda_n|\geqslant \varepsilon$. Neka je $x_n\neq 0$ takav da je $Ax_n=\lambda_n x_n$ i sa X_n označimo potprostor razapet nad vektorima $x_1,x_2,...,x_n$. Kako su $\lambda_1,\lambda_2,...\lambda_n$ različite sopstvene vrednosti, vektori $x_1,x_2,...,x_n$ su nezavisni pa je $X_1\subset X_2\subset ...\subset X_n\subset ...$

Prema **Risovoj lemi** postoji jedinični vektor $e_n \in X$ takav da je $d(e_n, X_{n-1}) \ge \frac{1}{2}$. Za $x \in X_n$ postoje skalari α_i takvi da je $x = \sum_{i=1}^n \alpha_i x_i$. No tada je

$$(\lambda_n I - A)x_n = \sum_{i=1}^{n-1} \alpha_i (\alpha_n - \alpha_i)x_i \in X_{n-1},$$

dakle, $(\lambda_n I - A)x_n \in X_{n-1}$.

Specijalno, ako x_n zamenimo sa e_n , imamo da je $(\lambda_n I - A)e_n \in X_{n-1}$. Odavde, i iz $e_n \in X_n$, nalazimo da je $Ae_n \in X_n$, pa je

$$e = \lambda_n^{-1}(\lambda_n e_n - Ae_n + Ae_m) \in X_{n-1}$$

za $m \leq n-1$. Sada je

$$|Ae_n - Ae_m| = |\lambda_n e_n - (\lambda_n e_n - Ae_n + Ae_m)| = |\lambda_n (e_n - e)| = |\lambda_n| |e_n - e|$$

$$\geqslant |\lambda_n| d(e_n, X_{n-1}) \geqslant \frac{1}{2} |\lambda_n| \geqslant \frac{1}{2} \varepsilon,$$

što pokazuje da niz (Ae_n) ne sadrži Košijev podniz. To je u kontradikciji sa $|e_n|=1$ i činjenicom da je A kompaktan operator.

(iii) Kako je $N(I-B)=\{x\in X: (\lambda I-A)x=0\}$ i pošto je prema **Teoremi 2.8.1.** dim $N(I-B)<\infty$, to važi (iii).

Posledica 2.8.8. (Vajlova teorema) Neka je X Banahov prostor, $S \in L(X)$ i A kompaktan operator na X. Tada je

$$\sigma(S+A) \subseteq \sigma(S) \cup \sigma_p(S+A).$$

Dokaz. Neka je $\lambda \in \sigma(S+A)$ i $\lambda \notin \sigma(S)$. Tada je $\lambda I - S$ regularan operator, pa je

$$\lambda I - (S + A) = B^{-1}(I - BA), B = (\lambda I - S)^{-1}.$$

Odavde proizilazi da je I-BA singularan operator, tj. $1 \in \sigma(BA)$. Budući da je BA kompaktan operator, to je 1 sopstvena vrednost tog operatora. Dakle, postoji vektor $x_0 \neq 0$ takav da je $BAx_0 = x_0$. Odavde je $[\lambda I - (S+A)]x_0 = 0$, pa je $\lambda \in \sigma_p(S+A)$. \square

Sledeća posledica predstavlja osnovnu teoremu Fredholmove teorije integralnih jednačina. U tome se vidi značaj izučavanja kompaktnih operatora i poznavanja svojstava spektra kompaktnog operatora.

Posledica 2.8.9. Neka je Δ n-kvadar u R^n i $\kappa: \Delta \times \Delta \longrightarrow C$ neprekidna funkcija. Integralna jednačina

(1)
$$x(s) - \int_{\Delta} \kappa(s, t) x(t) dt = y(s) \quad (s \in \Delta)$$

ima jedinstveno rešenje za svaku neprekidnu funkciju $y \in C(\Delta)$ ako i samo ako odgovarajuća homogena jednačina

(2)
$$x(s) - \int_{\Delta} \kappa(s, t) x(t) dt = 0 (s \in \Delta)$$

ima samo trivijalno rešenje.

Dokaz. Označimo sa A integralni operator definisan sa

$$A(s) = \int_{\Delta} \kappa(s, t) x(t) dt, \quad x \in C(\Delta)$$

na Banahovom prostoru $C(\Delta)$. Operator A je kompaktan. Ako jednačina (1), tj. jednačina (I-A)x=y ima jedinstveno rešenje za svako y, onda je I-A bijekcija sa $C(\Delta)$ na $C(\Delta)$ pa 1 nije sopstvena vrednost operatora A. Tada (2) ima samo trivijalno rešenje.

S druge strane, ako (2), tj. jednačina (I-A)x=0 ima samo trivijalno rešenje, onda $1 \notin \sigma_p(A)$, pa **Teorema 2.8.7.** obezbeđuje regularnost operatora I-A. No, tada je $(I-A)^{-1}y$ jedinstveno rešenje jednačine (1), za svako $y \in C(\Delta)$.

Formulišimo apstraktnu varijantu prethodne posledice:

Posledica 2.8.10. Neka je A kompaktan operator na Banahovom prostoru X. Nehomogena jednačina

$$x - Ax = y$$

ima jedinstveno rešenje za svako $y \in X$ ako i samo ako homogena jednačina x - Ax = 0 ima samo trivijalno rešenje.

Teorema 2.8.11. Neka je $A \in L(X)$ kompaktan operator na kompleksnom normiranom prostoru X i $\lambda \neq 0$ sopstvena vrednost operatora A. Postoji jedinstven par u odnosu na A invarijantnih prostora $R(\lambda)$ i $N(\lambda)$ takvih da je:

- (i) $R(\lambda)$ zatvoren, $N(\lambda)$ konačno-dimenzionalan i $X = R(\lambda) \oplus N(\lambda)$;
- (ii) Na $R(\lambda)$ operator $\lambda I A$ indukuje regularan operator;
- (iii) Operator $\lambda I A$ na $N(\lambda)$ indukuje nilpotentan operator.

Dokaz. Za operator $T=I-\lambda^{-1}A$ i broj $p=\alpha(T)=\delta(T)$ potprostori $R(\lambda)=R(T^p)$ i $N(\lambda)=N(T^p)$ zadovoljavaju tvrdnje (i),(ii) i (iii) jer je restrikcija operatora $(\lambda I-A)^p$ na potprostor $N(\lambda)$ nul-operator. Dokažimo jedinstvenost.

Neka su R' i N' u odnosu na A invarijantni potprostori takvi da je dim $N' < \infty$, da je R' zatvoren, da $\lambda I - A$ indukuje na R' regularan operator i da je m celi broj takav da je restrikcija operatora $(\lambda I - A)^m$ na N' nul-operator, i da je $X = R' \oplus N'$. Za $x \in N'$ postoje $y \in R(\lambda)$ i $z \in N(\lambda)$ takvi da je x = y + z. Po pretpostavci je $T^m x = 0$. Budući da T na $R(\lambda)$ indukuje regularan operator, to $T^m x = T^m y = 0$ povlači y = 0, pa je $x \in N(\lambda)$. Dakle, $N' \subseteq N(\lambda)$.

Slično bismo pokazali da je $N(\lambda) \subseteq N'$, pa je, dakle $N(\lambda) = N'$.

Ako je $x=y+z\in R', y\in R(\lambda), z\in N(\lambda)$, tada $T^px=T^py$ povlači $T^p(R')\subseteq R(\lambda)$. Kako je TR'=R', to je $R'\subseteq R(\lambda)$. Slično se dobija $R(\lambda)\subseteq R'$ pa je $R'=R(\lambda)$. \square

3 RISOVI OPERATORI

3.1 Uvodni pojmovi i tvrđenja

Lema 3.1.1. Neka je $E \in L(X)$ i $E^2 = E$. E je kompaktan operator ako i samo ako je EX konačne dimenzije.

Dokaz. Ako je EX konačno-dimenzionalan, onda je E kompaktan operator, što smo dokazali u prethodnom poglavlju. Neka je E kompaktan operator. Tada je restrikcija od E na EX (identički operator na E(X)) takođe kompaktan operator. Odavde, zatvorena jedinična kugla u EX je kompaktan skup, tj. jedinična kugla je relativno kompaktan skup, pa je EX konačne dimenzije. \square

Definicija 3.1.1. Neka je $T \in L(X)$. Definišimo

$$\kappa(T) = \inf\{|T - C| : C \in K(X)\}\$$

gde je K(X) skup kompaktnih operatora na prostoru X. Za T kažemo da je asimptotski kvazi-kompaktan operator ako $\{\kappa(T^n)\}^{1/n} \longrightarrow 0$ kada $n \longrightarrow \infty$.

Definicija 3.1.2. Neka je $T \in L(X)$. Definišimo

$$\phi(T) = \inf\{|T - C| : C \in F(X)\}\$$

gde je F(X) skup operatora konačnog ranga na X. Za T kažemo da je $asimptotski kvazi-konačno-dimenzionalan ako <math>\{\phi(T^n)\}^{1/n} \longrightarrow 0$ kada $n \longrightarrow \infty$.

Definicija 3.1.3. Neka je $T \in L(X)$. Operator T je Risov operator ukoliko zadovoljava sledeća tri uslova:

- (i) Za svako $\lambda \neq 0$ i svaki prirodan broj n, jezgro $N_n(\lambda)$ operatora $(\lambda I T)^n$ je konačno-dimenzionalan potprostor od X. Dalje, $N_n(\lambda) = N_{n+1}(\lambda)$ za dovoljno veliko n.
- (ii) Za svako $\lambda \neq 0$ i svaki prirodan broj n, područje vrednosti $R_n(\lambda)$ operatora $(\lambda I T)^n$ je zatvoren potprostor od X. Dalje, $R_n(\lambda) = R_{n+1}(\lambda)$ za dovoljno veliko n.
- (iii) Sopstvene vrednosti operatora T imaju najviše jednu tačku nagomilavanja, a to je nula.

Dokazaćemo da se klasa kvazi-kompaktnih, klasa operatora kvazi-konačno-dimenzionalnih, i klasa Risovih operatora poklapaju. Najpre, dokažimo neke elementarne činjenice o kvazi-kompaktnim operatorima.

Teorema 3.1.2. Neka su $A, B \in L(X)$ kvazi-kompaktni operatori, takvi da je AB = BA. Tada su AB i A+B asimptotski kvazi-kompaktni operatori. Za proizvoljno $\lambda \in C, \lambda A$ je takođe asimptotski kvazi-kompaktan operator.

Dokaz. Neka [A] i [B] označavaju, respektivno, slike od A i B unutar kanonske projekcije od L(X) unutar količničke algebre L(X)/K(X), i neka je sa r(.) označen spektralni radijus druge algebre. Iz pretpostavke stava sledi r([A]) = r([B]) = 0 i [A][B] = [B][A]. Odavde je

$$0 \leqslant r([A][B]) \leqslant r([A])r([B]),$$

 $0 \leqslant r([A] + [B]) \leqslant r([A]) + r([B]).$

Sada je r([A] + [B]) = 0 = r([A][B]). Posledji deo stava je trivijalan.

Zbir i proizvod dva asimptotski kvazi-kompaktna operatora ne mora biti asimptotski kvazi-kompaktan, što pokazuje sledeći primer.

Primer 3.1. Neka je $X=l^2.$ Definišimo

$$x = \{x_1, x_2, x_3, x_4, ...\}$$

$$Sx = \{0, x_1, 0, x_3, ...\}$$

$$Tx = \{x_2, 0, x_4, 0, ...\}$$

$$STx = \{0, x_2, 0, x_4, ...\}$$

$$TSx = \{x_1, 0, x_3, 0, ...\}$$

$$(S+T)x = \{x_2, x_1, x_4, x_3, ...\}$$

Uočimo da $S, T \in L(X)$ i $S^2 = T^2 = 0$. Odavde su S i T asimptotski kvazikompaktni operatori. S druge strane, ST(X) je beskonačno-dimenzionalan, pa na osnovu **Leme 3.1.1.** $ST \notin K(X)$. Takođe $ST = (ST)^n$ i K(X) je zatvoren potprostor od L(X). Odavde,

$$\{\kappa((ST)^n)\}^{1/n} \longrightarrow 1, n \longrightarrow \infty$$

pa ST nije asimptotski kvazi-kompaktan operator. Dalje, $(S \subseteq T)^2 = I \notin K(X)$, pa sada sledi da S+T nije asimptotski kvazi-kompaktan. Uočimo još i to da ni S ni T nisu kompaktni, jer bi u suprotnom ST bio kompaktan, i kao takav imao bi sliku konačne dimenzije.

Teorema 3.1.3. Neka je $T \in L(X)$. Ako je T asimptotski kvazi-kompaktan operator, onda je i T^* asimptotski kvazi-kompaktan operator.

Dokaz. Neka je T asimptotski kvazi-kompaktan operator. T je kompaktan ako i samo ako je T^* kompaktan operator i važi procena

$$\{\kappa(T^*)^n\}^{1/n} \leqslant \{\kappa(T^n)\}^{1/n} \qquad n \in N$$

pa je i T^* asimptotski kvazi-kompaktan operator. \square

Dokažimo sada da je svaki asimptotski kompaktan operator - Risov operator. U tu svrhu uočimo sledeće:

Ako je $T \in L(X)$ asimptotski kvazi-kompaktan, tada za svaki pozitivan realan broj Λ postoji prirodan broj q takav da

$$\{\kappa(T^q)\}^{1/q} < \frac{1}{6\Lambda}, \quad \kappa(T^q) < \frac{1}{(6\Lambda)^q}.$$

Dakle, možemo naći kompaktan operator V takav da je

$$|T^q - V| < \frac{1}{(6\Lambda)^q}.$$

Stavimo $U = T^q - V$. Takođe, za $\lambda \in C$ i $n \in N$ definišemo:

$$N_n(\lambda) = \{ x \in X : (\lambda I - T)^n x = 0 \}.$$

Teorema 3.1.4. Neka je $T \in L(X)$ asimptotski kvazi-kompaktan operator i neka je $\lambda \neq 0$. Za svako $n \in N$, $N_n(\lambda)$ je konačno-dimenzionalni potprostor od X.

Dokaz. Neka je $\mu=\lambda^{-1}$. Dokažimo lemu za $|\mu|<\Lambda$. Kako je Λ proizvoljno izabran broj, ovo ne umanjuje opštost dokaza. Sada, pošto je $|U|<\frac{1}{(6\Lambda)^q}<\frac{1}{(6|\mu|)^q}$ sledi $|\mu^q U|<6^{-q}\leqslant\frac{1}{6}$, operator $I-\mu^q U$ ima ograničen inverz, dat sa

$$K = I + \mu^q U + (\mu^q U)^2 + \dots$$

Sada,

$$K(I+\mu T+\ldots +\mu^{q-1}T^{q-1})(I-\mu T)=K[I-\mu^q T^q]=K[I-\mu^q (U+V)]=I-\mu^q KV,$$

stoga, ako je $x \in N_1(\lambda) = \{x \in X | (\lambda I - T)x = 0\} = \{x \in X | \lambda (I - \mu T)x = 0\},$ imamo $(I - \mu^q KV)x = 0$. Međutim, $\mu^q KV$ je kompaktan operator, pa rešenja

ove jednačine čine konačno-dimenzionalan potprostor od X. Stoga je $N_1(\lambda)$, kao potprostor ovog prostora, takođe konačno-dimenzionalan. Na osnovu **Teoreme 3.1.2**,

$$(\lambda I - T)^n = \lambda^n I - T_0,$$

gde je T_0 asimptotski kvazi-kompaktan operator.

Lema 3.1.5. Neka je $T \in L(X)$ asimptotski kvazi-kompaktan operator, i neka je $\lambda \neq 0$. Postoji $p \in N$ takav da je $N_n(\lambda) = N_p(\lambda)$ za n > p.

Dokaz. Dovoljno je naći $p \in N$ za koje je $N_p(\lambda) = N_{p+1}(\lambda)$. Pretpostavimo suprotno, da je $N_p(\lambda)$ odgovarajući potprostor od $N_{p+1}(\lambda)$ za svako p. Ponovo, neka je $\mu = \lambda^{-1}$ i $|\mu| < \Lambda$. Tada, za svako $n \in N$ postoji $y_n \in N_{n+1}(\lambda), |y_n| = 1$ i $d(y_n, N_n(\lambda)) \geqslant \frac{1}{2}$, na osnovu Risove leme. Stavimo $z_n = \mu^q V y_n$. Tada

$$z_n = \mu^q (T^q y_n - U y_n) = \mu^q T^q y_n - \mu^q U y_n = (I - (I - \mu^q T^q)) y_n - \mu^q U y_n$$
$$= y_n - (I + \mu T + \dots + \mu^{q-1} T^{q-1}) (I - \mu T) y_n - \mu^q U y_n.$$

Kako je $(I + \mu T + ... + \mu^{q-1} T^{q-1})(I - \mu T) \in N_n(\lambda)$, sledi da je za n > m, $z_m = \mu^q V y_m$,

$$z_n - z_m = y_n - y - \mu^q U y_n + \mu^q U y_m,$$

gde je $y \in N_n(\lambda)$, pa je

$$|z_n - z_m| \ge |y_n - y| - |\mu^q U y_n| - |\mu^q U y_m| \ge \frac{1}{2} - \frac{1}{6} - \frac{1}{6} = \frac{1}{6}.$$

Dakle, (z_n) ne može sadržati konvergentan podniz. Ovo je u kontradikciji sa činjenicom da je V kompaktan operator. Time je tvrđenje dokazano.

Lema 3.1.6. Neka je $T \in L(X)$ asimptotski kvazi-kompaktan operator, i neka je $\lambda \neq 0$. Za svako $n \in N, (\lambda I - T)^n X$ je zatvoren potprostor od X. Štaviše, postoji prirodan broj p, takav da je

$$(\lambda I - T)^n X = (\lambda I - T)^p X \qquad (n > p).$$

Dokaz. Na osnovu **Teoreme 3.1.3**, T^* je asimptotski kvazi-kompaktan operator. Sledi, na osnovu **Teoreme 3.1.4**, za svaki prirodan broj n potprostor

$$Y = \{ y \in X^* : (\lambda I^* - T^*)^n y = 0 \}$$

je konačno-dimenzionalan. Štaviše, Y je slabo-zatvoren potprostor od X^* . Da bismo ovo dokazali, neka je $\{x_\alpha\}$ mreža elemenata iz Y u odnosu na slabu-topologiju na y. Pošto su sve Hausdorfove linearne topologije saglasne na konačno-dimenzionalnom prostoru, $\{x_\alpha\}$ konvergira ka y po normi prostora X^* . Kako je konačno-dimenzionalan potprostor od X^* zatvoren po normi, sledi da je Y slabo-zatvoren. Sledi, Y je anulator od $(\lambda I - T)^n X$ a ovo je zatvoren potprostor od X. Sada zaključak sledi iz **Teorema 3.1.3.** i **3.1.4.**

Lema 3.1.7. Neka je $T \in L(X)$ asimptotski kvazi-kompaktan operator. Sopstvene vrednosti operatora T imaju najviše jednu tačku nagomilavanja, nulu.

Dokaz. Neka je $\Lambda > 0$. Dovoljno je dokazati da postoji samo konačno mnogo sopstvenih vrednosti operatora T takvih da je $|\lambda^{-1}| \leqslant \Lambda$. Pretpostavimo suprotno, da je (λ_n) niz različitih sopstvenih vrednosti takvih da je $|\lambda_n| \leqslant \frac{1}{\Lambda}$ tj. $|\lambda_n^{-1}| \leqslant \Lambda$. Neka je x_n sopstveni vektor odgovarajući sopstvenoj vrednosti λ_n , i neka je Y_n potprostor koji razapinju linearno nezavisni vektori $x_1, x_2, ...x_n$. Na osnovu **Risove leme**, možemo naći niz (y_n) takav da je $y_n \in Y_n, |y_n| = 1$, i $d(y_n, Y_{n-1}) \geqslant \frac{1}{2}$. Niz $(\lambda_n^{-q} y_n)_n$ je ograničen. Definišimo

$$z_n = \lambda_n^{-q} V y_n = \lambda_n^{-q} T^q y_n - \lambda_n^{-q} U y_n = y_n - (I - \lambda_n^{-q} T^q) y_n - \lambda_n^{-q} U y_n.$$

Kako je y_n linearna kombinacija vektora $x_1, x_2, ...x_n$, i $(I - \lambda_n^{-q} T^q) y_n$ je linearna kombinacija vektora $x_1, x_2, ...x_{n-1}$. Dakle $y_n \in Y_{n-1}$. Sledi da za svako m < n

$$z_n - z_m = y_n - y - \lambda_n^{-q} U y_n + \lambda_m^{-q} U y_m,$$

gde je $y \in Y_{n-1}$, pa je

$$|z_n - z_m| \geqslant |y_n - y| - |\lambda_n^{-q} U y_n| - |\lambda_m^{-q} U y_m| \geqslant \frac{1}{2} - \frac{1}{6} - \frac{1}{6} = \frac{1}{6}.$$

Sledi, (z_n) ne može da sadrži ni jedan konvergentan podniz, što je u kontradikciji sa činjenicom da je V kompaktan operator.

Navodimo, bez dokaza, teoreme na koje ćemo se pozivati.

Teorema 3.1.8.. Neka je $T \in L(X)$ i neka je λ_0 pol rezolvente operatora T, reda m. Neka je $\tau = \sigma(T) \setminus \{\lambda_0\}$. Tada je λ_0 sopstvena vrednost operatora T. Uspon i pad operatora $\lambda_0 I - T$ su oba jednaka m. Takođe,

$$E(\lambda_0)X = N((\lambda_0 I - T)^m),$$

$$E(\tau)X = R((\lambda_0 I - T)^m).$$

Teorema 3.1.9. Neka je $T \in L(X)$ i neka je τ otvoreno-zatvoren podskup skupa $\sigma(T)$. Pretpostavimo da su zatvoreni potprostori X_1 i X_2 prostora X takvi da redukuju T i da je $\sigma(T \upharpoonright_{X_1}) \subseteq \tau, \sigma(T \upharpoonright_{X_2}) \subseteq C \backslash \tau$. Tada

$$E(\tau)X = X_1 \text{ i } (I - E(\tau))X = X_2.$$

Teorema 3.1.10. Neka je $T \in L(X)$ i neka je $\lambda_0 \in \sigma(T)$. Pretpostavimo da su $\alpha(\lambda_0 I - T)$, $\delta(\lambda_0 I - T)$ oba konačna (pa zato su i jednaki). Neka je $\alpha(\lambda_0 I - T) = \delta(\lambda_0 I - T) = m$. Pretpostavimo da je $(\lambda_0 I - T)^m X$ zatvoren skup. Tada je λ_0 pol rezolvente od T reda m.

3.2 Karakterizacija Risovih operatora

Teorema 3.2.1. Neka je $T \in L(X)$. Sledeći uslovi su ekvivalentni:

- (i) T je asimptotski kvazi-kompaktan operator.
- (ii) T je Risov operator.
- (iii) T je asimptotski kvazi-konačno-dimenzionalan.

Dokaz. Iz **Lema 3.1.5,3.1.6** i **3.1.7.** sledi da (i) implicira (ii).

Pretpostavimo sada da važi (ii) i neka je $\lambda \neq 0$ kompleksan broj. Preslikavanje $\lambda I - T$ ima konačan uspon i konačan pad. Prema jednom tvrđenju ova dva broja su jednaka među sobom, i jednaka su nekom broju m. Ako je m = 0 onda $\lambda \in \rho(T)$. Ako je $m \neq 0$ onda je λ sopstvena vrednost operatora T pa je kao takva izolovana tačka skupa $\sigma(T)$. Kako je $(\lambda I - T)^m X$ zatvoren skup, λ je pol rezolvente od T reda m, a to na osnovu **Teoreme 3.1.10.** Neka je $\varepsilon > 0$. Definišimo : $V = \sum_{|\lambda| > \varepsilon} E(\lambda) T$ i U = T - V gde je suma uzeta po konačnom broju tačaka iz $\sigma(T)$ koje su po apsolutnoj vrednosti veće od ε . Primetimo da $T^n = U^n + V^n$ pa je $U^n = T^n - V^n$, budući da je UV = 0. Takođe važi i da je

$$\sigma(U) \subseteq \{\lambda, |\lambda| \leqslant \varepsilon\}.$$

Sledi, $\mu I - U$ je invertibilan u L(X) ako $|\mu| > \varepsilon$ i

$$(\mu I - U)^{-1} = \sum_{n=0}^{\infty} U^n \mu^{-(n+1)}.$$

Uvedimo oznaku $\lambda = \mu^{-1}$. Tada

$$(I - \lambda U)^{-1} = \sum_{n=0}^{\infty} \lambda^n U^n \qquad (|\lambda| < \varepsilon^{-1})$$

pa je

$$\limsup |U^n|^{1/n} \leqslant \varepsilon.$$

U svakom slučaju, $\phi(T^n) \leq |U^n|$, jer je $U^n = T^n - V^n$ a V^n je konačno-dimenzionalan. Sledi da je T asimptotski kvazi-konačno-dimenzionalan. Dakle, $(ii) \Rightarrow (iii)$.

 $(iii) \Rightarrow (i)$: Očigledno.

Posledica 3.2.2. Neka je S(X) skup koji čine svi linearni operatori čije slike unutar kanonske projekcije iz L(X) na $L(X)/\overline{F(X)}$ su kvazi-nilpotentni elementi. Tada S(X) predstavlja klasu Risovih operatora.

Dokaz. Svaki operator iz S(X) je asimptotski kvazi-kompaktan. Ako je T asimptotski kvazi-konačno-dimenzionalan, tada je $T \in S(X)$. Željeni rezultat sada sledi primenom prethodne teoreme.

Teorema 3.2.3. Neka je $T \in L(X)$ Risov operator.

(i) $\sigma(T)$ je prebrojiv i nema tačaka nagomilavanja osim možda 0. Svaki nenula element iz $\sigma(T)$ je sopstvena vrednost operatora T, i uz to i pol rezolvente operatora T.

Neka je $\lambda \neq 0, \lambda \in \sigma(T)$ i neka je $v(\lambda)$ red pola λ .

(ii) Za svaki prirodan broj n, $N((\lambda I - T)^n)$ je konačno-dimenzionalan. Takođe,

$$N((\lambda I - T)^m) = N((\lambda I - T)^{m+1}) \qquad (m \geqslant v(\lambda))$$

a $v(\lambda)$ je najmanji prirodan broj sa ovim svojstvom.

(iii) Za svaki prirodan broj n, $(\lambda I - T)^n X$ je zatvoren. Takođe

$$(\lambda I - T)^{m+1} X = (\lambda I - T)^m X \qquad (m \geqslant v(\lambda))$$

a $v(\lambda)$ je najmanji prirodan broj sa ovim svojstvom.

(iv) Spektralna projekcija $E(\lambda)$ ima sliku konačne dimenzije (različite od nule), i data je sa

$$E(\lambda)X = N((\lambda I - T)^{v(\lambda)}).$$

Nul-prostor od $E(\lambda)$ je $(\lambda I - T)^{v(\lambda)}X$.

(v) Ako je $d(\lambda)$ dimenzija od $E(\lambda)X$, onda je $1 \leq v(\lambda) \leq d(\lambda)$.

Napomena. Veličine $v(\lambda)$ i $d(\lambda)$ se, respektivno, nazivaju *indeks* i *algebarska mnogostrukost* sopstvene vrednosti λ .

Dokaz. Pri dokazivanju **Teoreme 3.2.1.** ustanovili smo da je svaki nenula element iz $\sigma(T)$ pol rezolvente od T. Ovo opravdava tvrđenje pod (i).

Stavke (ii) i (iii) su takođe ustanovljene pri dokazivanju **Teoreme 3.1.7.** (iv) sledi iz **Posledice 3.8.5.**

Poslednju stavku dokazujemo tako što razmatramo restrikciju od $\lambda I - T$ na konačno-dimenzionalnom prostoru $E(\lambda)X$, koristeći se elementarnim operacijama u okviru linearne algebre.

Sada ćemo izložiti rezultate Vesta koji nam daju dovoljne uslove da je granična vrednost niza Risovih operatora - Risov operator.

Teorema 3.2.4. Neka je $T_n \in L(X)$ Risov operator za svako $n \in N$. Pretpostavimo da (T_n) konvergira po normi operatoru T, i pretpostavimo da T komutira sa $T_n, \forall n \in N$. Tada je T Risov operator.

Dokaz. Koristićemo činjenicu da je T Risov operator ako i samo ako je T asimptotski kvazi-kompaktan operator. Neka je $\varepsilon > 0$. Izaberimo p tako da je $|T - T_p| < \frac{\varepsilon}{3}$, i stavimo $U_p = T - T_p$. Tada je $|U_p| < \frac{\varepsilon}{3}$. Bez gubljenja opštosti možemo pretpostaviti da je $U_p \neq 0$, jer u suprotnom je $T = T_p$ pa tačnost tvrđenja direktno sledi.

Kako je za svako $n \in N$ operator T_n asimptotski kvazi-kompaktan, možemo izabrati q tako da je

$$\{\kappa(T_p^n)\}^{1/n} < \frac{\varepsilon}{3} \qquad (n > q)$$

Kako T_p komutira sa U_p (jer komutira sa samim sobom, a i sa T po pretpostavci), imamo:

$$T^{n} = (T_{p} + U_{p})^{n} = \sum_{r=0}^{q} {n \choose r} T_{p}^{r} U_{p}^{n-r} + \sum_{r=q+1}^{n} {n \choose r} T_{p}^{r} U_{p}^{n-r} \qquad (n \geqslant q)$$

pa je

$$\kappa(T^n) \leqslant \sum_{r=0}^{q} {n \choose r} |T_p|^r |U_p|^{n-r} + \sum_{r=q+1}^{n} {n \choose r} |T_p|^r |U_p|^{n-r}$$

$$= |U_p|^n \sum_{r=0}^q \binom{n}{r} (|T_p|/|U_p|)^r + \sum_{r=q+1}^n \binom{n}{r} \kappa(T_p^r) |U_p|^{n-r}.$$

Očigledno, $\sum_{r=0}^q \binom{n}{r} (|T_p|/|U_p|)^r$ je polinom, pa postoji pozitivna konstanta k takva da važi nejednakost

$$\sum_{r=0}^{q} {n \choose r} (|T_p|/|U_p|)^r < k \cdot 2^n$$

za dovoljno veliko n. Sledi

$$\kappa(T^n) < (\frac{\varepsilon}{3})^n \cdot k \cdot 2^n + \sum_{r=q+1}^n {n \choose r} (\frac{\varepsilon}{3})^r (\frac{\varepsilon}{3})^{n-r} \leqslant (k+1)(2\varepsilon/3)^n$$

za dovoljno veliko n. Pošto

$$(k+1)(2/3)^n \longrightarrow 0, n \longrightarrow \infty,$$

to

$$\kappa(T^n) < \varepsilon^n \Rightarrow {\kappa(T^n)}^{1/n} < \varepsilon$$

za dovoljno veliko n. Sledi, T je asimptotski kvazi-kompaktan operator. Dakle, T je Risov operator. \square

Teorema 3.2.5. Neka je $T \in L(X)$. T je Risov operator ako i samo ako zadovoljava sledeća dva uslova:

- (i) Svako $\lambda \in \sigma(T), \lambda \neq 0$ je pol rezolvente operatora T.
- (ii) Za svaku nenula tačku $\lambda \in \sigma(T)$, spektralna projekcija $E(\lambda)$ je konačnodimenzionalnog ranga.

Dokaz. Dokazano je u **Teoremi 3.2.3.** da Risov operator ima svojstva (i) i (ii).

Da dokažemo drugi smer,
pretpostavimo da $T \in L(X)$ zadovoljava (i) i (ii). Svaka nenula tačka i
z $\sigma(T)$ je sopstvena vrednost operatora T. Sledi da skup sopstvenih vrednosti operatora T ima eventualno jednu tačku nagomilavanja, 0. Takođe, za svako $\lambda \neq 0$, skup rešenja jednačine $(\lambda I - T)^n x = 0$ čini konačno-dimenzionalni potprosotor od X čija je nazavisnost od n obezbeđena za dovoljno veliko n. Za svako $\lambda \neq 0$, $(\lambda I - T)^n X$ je potprostor prostora X. Ako je $\lambda \in \rho(T)$, ovaj potprostor je sigurno zatvoren. Da bismo kompletirali dokaz treba da dokažemo da ovo važi i kada je $\lambda \in \sigma(T)$. Neka je λ pol rezolvente operatora T reda m. Tada je λ pol rezolvente operatora T* reda m. Neka je $F(\lambda)$ spektralna projekcija odgovarajuća otvoreno-zatvorenom podskupu $\{\lambda\}$ skupa $\sigma(T^*)$. Tada je $F(\lambda) = \{E(\lambda)\}^*$. Kako je $E(\lambda)X$ konačno-dimenzionalan potprostor, $E(\lambda)$ je kompaktan. Sledi, $\{E(\lambda =)\}^* = F(\lambda)$ je kompaktan, pa je sada $F(\lambda)$ konačno-dimenzionalnog ranga.

Neka je $n \in N$ i neka je $f \in X^*$ takvo da je zadovoljava $f(y) = 0, \forall y \in (\lambda I - T)^n X$. Na osnovu **Teoreme 2.8.2.** $f(y) = 0, \forall y \in (\lambda I - T)^m X$. Sledi,

$$y \in \{f : (\lambda I^* - T^*)^m f = 0\} = F(\lambda)X^*$$

a ovaj potprostor je konačno-dimenzionalan. Zato je anulator od $(\lambda I - T)^n X$ konačno-dimenzionalan potprostor od X^* i kao takav slabo-zatvoren. Sledi

 $(\lambda I - T)^n X$ je zatvoren i dokaz je kompletan.

Definicija 3.2.1. Neka je $T \in L(X)$. Risova tačka za T je tačka $\lambda \in \sigma(T)$ takva da je

- (i) λ je izolovana u $\sigma(T)$,
- (ii) X je direktna suma zatvorenog potprostora $F(\lambda)X$ i konačno-dimenzionalnog potprostora $N(\lambda)X$ tako da su oba ova potprostora invarijantna u odnosu na T, restrikcija $\lambda I T$ na $F(\lambda)X$ je linearni homeomorfizam i restrikcija od $\lambda I T$ na $N(\lambda)X$ je nilpotentan operator.

Teorema 3.2.6. Neka je $T \in L(X)$. Tada je T Risov operator ako i samo ako je svaka tačka $\lambda \in \sigma(T)$ različita od nule zapravo Risova tačka za T.

Dokaz. Ako je T Risov operator, onda je $\forall \lambda \in \sigma(T), \lambda \neq 0$, λ je Risova tačka za operator T. Da bismo ovo dokazali, uzmimo $N(\lambda)X = E(\lambda)X$ i $F(\lambda)X = (I - E(\lambda))X$. Primenimo **Teoremu 3.2.3.** i koristimo činjenicu da je $\lambda \in \rho(T|F(\lambda)X)$.

Obratno, pretpostavimo da $\forall \lambda \in \sigma(T), \lambda \neq 0, \lambda$ je Risova tačka za operator T. Ako E označava projekciju na $N(\lambda)X$, onda je ET = TE. Imamo $\{\lambda\} = \sigma(T \upharpoonright_{EX})$ i $\lambda \in \rho(T \upharpoonright_{(I-E)X})$. Prema **Teoremi 3.1.9.** je $E = E(\lambda)$. Izaberimo najmanji prirodan broj m takav da je $(\lambda I - T)^m E(\lambda) = 0$. Sledi da je $(\lambda I - T)^{m-1} E(\lambda) \neq 0$, pa je, prema **Teoremi 1.4.10**, λ pol rezolvente operatora T reda m. Sada na osnovu **Teoreme 3.2.5.** T je Risov operator. \square

Sledeću teoremu dajemo bez dokaza, budući da se pri njenom dokazivanju koriste analitičke funkcije i svojstva analitičkih funkcija, koja izlaze iz okvira predmeta izučavanja ovog teksta.

Teorema 3.2.7. Neka je $T \in L(X)$ Risov operator i neka je Y zatvoren potprostor od X invarijantan u odnosu na operator T. Tada je $T \upharpoonright_Y$ Risov operator.

Posledica 3.2.8. Neka je $T \in L(X)$. T je Risov operator ako i samo ako je T^* Risov operator.

Dokaz. Već smo dokazali da ako je T Risov operator, onda je i T^* Risov operator. Dokažimo, dakle, obrat. Neka je T^* Risov operator. Tada je T^{**} Risov operator. Sada, na osnovu prethodne teoreme, T, budući restrikcija operatora T^{**} na svoj zatvoren invarijantan potprostor od X, je Risov operator. \square

Posledica 3.2.9. Neka je $T \in L(X)$ Risov operator i neka je Y zatvoren potprostor od X invarijantan u odnosu na T. Tada je T_Y , operator indukovan operatorom T na količničkom prostoru X/Y, takođe Risov operator.

Dokaz. Prema **Posledici 3.2.8**, T^* je Risov operator. Još, Y^{\perp} , anulator potprostora Y, je zatvoren potprostor od X^* invarijantan u odnosu na operator T^* , pa je $T^* \upharpoonright_{Y^{\perp}}$ Risov operator. Pošto možemo identifikovati T_Y^* i $T^* \upharpoonright_{Y^{\perp}}$, to je na osnovu iste posledice, T_Y Risov operator.

Neka je $T \in L(X)$ Risov operator. Iz **Posledice 3.2.8.** sledi da je T^* Risov operator. Neka je $0 \neq \lambda \in \sigma(T) = \sigma(T^*)$. Već je dokazano da je λ , kao pol rezolvente od T, istog reda kao i λ , kao pol rezolvente od T^* . Dalje, pokazujemo da je dimenzija prostora $E(\lambda;T)X$ jednaka dimenziji prostora $E(\lambda;T^*)X^*$. Ovde $E(\lambda;T)X$ i $E(\lambda;T^*)X^*$ označavaju, respektivno, spektralnu projekciju odgovarajuću otvoreno-zatvorenom potskupu $\{\lambda\}$ od $\sigma(T) = \sigma(T^*)$.

3.3 Dekompozicija Risovih operatora

Definicija 3.3.1. Za potprostor M vektorskog prostora F kažemo da ima konačnu kodimenziju u F ako i samo ako količnički prostor F/M ima konačnu dimenziju. Ako M ima konačnu kodimenziju, onda se dimenzija prostora F/M zove kodimenzija od M u F i označava sa codim M.

Lema 3.3.1. Potprosotor M vektorskog prostora F ima konačnu kodimenziju n u F ako i samo ako postoji n-dimenzionalan potprostor N prostora F takav da je $F = M \oplus N$.

Dokaz. Pretpostavimo da je $codimM = n < \infty$ i neka je

$$\{x_1 + M, x_2 + M, \dots x_n + M\}$$

baza prostora F/M. Lako je uočiti da je $\{x_1,x_2,...x_n\}$ linearno nezavisan skup i da je njegov lineal N takav da je $F=M\oplus N$. Dokažimo da važi obrat. Pretpostavimo da je n-dimenzionalni potprostor N prostora F takav da je $F=M\oplus N$. Restrikcija kanonske projekcije $x\longmapsto x+M$ na N je injektivno linearno preslikavanje iz N na F/M, pa je zbog toga F/M dimenzije $n.\square$

Ako je F konačno-dimenzionalni vektorski porstor, a M i N potprostori prostora F, takvi da je $F = M \oplus N$, onda je dim $F = \dim M + \dim N$. Sledi, na osnovu **Leme 3.3.1.** da je dim $F = \dim M + \operatorname{codim} M$. Sada na osnovu teoreme o jezgru i rangu, da ako je S linearan operator na F

(1)
$$codimR(S) = \dim N(S).\square$$

Vratimo se sada na Risove operatore.

Teorema 3.3.2. Neka je $T \in L(X)$ Risov operator. Tada je R(I-T) konačne kodimenzije u X i

$$codimR(I-T) = \dim N(I-T).$$

Dokaz. Ako je $1 \in \rho(T)$ tvrđenje je očigledno tačno. Dakle, bez gubljenja opštosti možemo pretpostaviti da je $1 \in \sigma(T)$. Tada je $(I-T)(I-E(1))X \subseteq E(1)X$; kao i

$$(I-T)(I-E(1))X = (I-E(1))X,$$

te je

$$R(I - T) = (I - T)X = (I - T)E(1)X \oplus (I - T)(I - E(1))X$$

$$(I - T)X = (I - T)E(1)X \oplus (I - E(1))X.$$
(2)

Prema **Posledici 3.2.2.(iv)** E(1)X je konačno-dimenzionalan potprostor od X pa je stoga

$$N((I-T)\upharpoonright_{E(1)X}) = N(I-T)$$

jer je $N(I-T) \subseteq E(1)X$. Primenjujući (1) na na operator $(I-T) \upharpoonright_{E(1)X}$, vidimo da su dimenzija od N(I-T) i kodimenzija od (I-T)E(1)X u E(1)X. Na osnovu **Leme 3.3.1.** postoji potprostor N prostora E(1)X čija je dimenzija jednaka kodimenziji od (I-T)E(1)X u E(1)X takav da je $E(1)X = (I-T)E(1)X \oplus N$. Stoga,

$$X = E(1)X \oplus (I - E(1))X$$

$$= N \oplus (I - T)E(1)X \oplus (I - E(1))X$$

$$\stackrel{(2)}{=} N \oplus (I - T)X.$$

Pomenuta lema sada pokazuje da je R(I-T)konačne kodimenzije u Xi da je

$$codimR(I-T) = \dim N = \dim N(I-T).\square$$

Posledica 3.3.3. Neka je $T \in L(X)$ Risov operataor. Tada je

$$\dim N(I-T) = \dim N(I^*-T^*).$$

Dokaz. Prema prethodnoj teoremi dim N(I-T) = codim R(I-T). Sledi

$$\dim N(I-T) = \dim X/R(I-T)$$

$$= \dim \{X/R(I-T)\}^*$$

$$= \dim[R(I-T)^{\perp}]$$

$$= \dim N(I^*-T^*).$$

Teorema 3.3.4. Neka je $T \in L(X)$ Risov operataor i neka je $0 \neq \lambda \in \sigma(T)$. Tada je za svaki prirodan broj $n \dim N((\lambda I - T)^n) = \dim N((\lambda I^* - T^*)^n)$.

Dokaz. Prema Teoremi 3.1.2.

$$(\lambda I - T)^n = \lambda^n I - K,$$

gde je K Risov operator. Stoga

$$N((\lambda I - T)^n) = N(I - \lambda^{-n}K^*),$$

i $\lambda^{-n}K$ je Risov operator. Prva jednakost sledi na osnovu **Teoreme 3.3.2**, a poslednja sledi ako uzmemo za indeks sopstvene vrednosti λ upravo $n.\square$

Teorema 3.3.5. Neka je K kompaktan operator na X i neka je $Q \in L(X)$ kvazi-nilpotentan operator. Tada je K+Q Risov operator.

Dokaz. Neka je $n \in N$. Budući da kompaktni operatori čine ideale u L(X) to je

$$(K+Q)^n = Q^n + C,$$

gde je C kompaktan operator. Sledi da je

$$\{\kappa(K+Q)^n\}^{1/n} \leqslant |Q^n|^{1/n} \qquad (n=1,2,3,...)$$

pa je K+Q kvazi-kompaktan operator. Sada tačnost tvrđenja direktno sledi iz teoreme o karakterizaciji Risovih operatora. \square

Risovi operatori na kompleksnom Hilbertovom prostoru mogu biti izraženi kao zbir kompaktnog i kvazi-nilpotentnog operatora. Postupak dokazivanja ove činjenice analogan je postupku super-dijagonalizacije matrice, a onda razlaganja iste na zbir dijagonalne i nilpotentne matrice. Super-dijagonalizacija matrica zavisi od postojanja odgovarajućih invarijantnih zatvorenih potprostora. Međutim, u teoriji Risovih operatora nisu poznati ekvivalentni rezultati, pa (bez njih) ne možemo očekivati kompletnu teoriju super-dijagonalizacije takvih operatora.

Neka je H beskonačno-dimezionalan kompleksan Hilbertov prostor i neka je K Risov operator na H. Postoje tri mogućnosti:

- (i) $\sigma(K) = \{0\};$
- (ii) $\sigma(K)$ je konačan skup koji sadrži nenula elemente;
- (iii) $\sigma(K)$ je beskonačan skup.

Vestova dekompozicija je trivijalna u slučaju (i). U slučaju (ii) definišemo:

$$C = \sum_{r=1}^{n} KE(\lambda_r; K)$$

gde su $\{\lambda_r : r = 1, 2, ...n\}$ različite nenula sopstvene vrednosti operatora K i $E(\lambda_r; K)$ je spektralna projekcija odgovarajuća otvoreno-zatvorenom skupu $\{\lambda_r\}$ u $\sigma(K)$. Ako je Q = K - C tada je K = Q + C dekompozicija željenog tipa, pošto je po teoremi o spektralnoj projekciji $\sigma(Q) = \{0\}$.

Razmotrimo sada slučaj (iii). Označimo sa $\sigma_0(K)$ netrivijalan spektar operatora K. U ovom slučaju $\sigma_0(K)$ je beskonačan niz $\{\lambda_r\}_{r=1}^{\infty}$ čiji su članovi numerisani tako da zadovoljavaju sledeći uslov

$$|\lambda_1| \geqslant |\lambda_2| \geqslant |\lambda_3| \geqslant \dots$$

Neka je $N_r = E(\lambda_r; K)H$ i za $k \geqslant 0$

$$L_k = \bigoplus_{r=1}^k N_r. \tag{3}$$

Posmatraćemo familiju potprostora

$$\mathfrak{F}_0 = \{\{0\}, L_1, L_2, \ldots\}.$$

Proces super-dijagonalizacije (S.D.P.) za K je familija $\Im = \{M_r\}$ različitih potprostora M_r koji su tako uređeni da za r=1,2,...

 $KM_r \subseteq M_r$ i dim $M_r = r$. Potprostori L_k , definisani u (3), su invarijantni u

odnosu na K i konačno-dimenzionalni. Zato, za svako k, možemo posmatrati maksimalni (konačni) S.D.P. u L_k za operatore $K|_{L_k}$. Neka je \mathfrak{T}_1 taj maksimalni S.D.P. u L_1 : možemo konstruisati maksimalan S.D.P. \mathfrak{T}_2 u L_2 koji sadrži \mathfrak{T}_1 kao podfamiliju. Nastavljajući postupak, možemo konstruisati, za svako k, maksimalni S.D.P. \mathfrak{T}_k u L_k koji sadrži $\mathfrak{T}_1, ..., \mathfrak{T}_k$ kao podfamilije.

$$\overline{\mathfrak{F}} = \bigcup_{k=1}^{\infty} \{\mathfrak{F}_k\}$$

je S.D.P. koji sadrži svako \Im_k . Pisaćemo $\overline{\Im} = \{M_r\}_{r=0}^{\infty}$, gde je dim $M_r = r$. Izabraćemo ortonormirani sistem $\{e_n\}_{n=1}^{\infty}$ takav da

$$e_r \in M_r/M_{r-1} \qquad (r \geqslant 1)$$

Tada za svako r

$$Ke_r = \alpha_r e_r + f_{r-1} \tag{4}$$

gde su $f_{r-1} \in M_{r-1}$ i α_r nezavisni od izbora e_r . Razmatranjem operatora $K \upharpoonright_{M_r}$ zapažamo da $\alpha_r \in \sigma(K \upharpoonright M_r)$. Kako je M_r konačno-dimenzionalan, α_r je sopstvena vrednost za $K \upharpoonright_{M_r}$. Sledi $\alpha_r \in \sigma(K)$. Ako je $\lambda \in \sigma_0(K)$, definišemo dijagonalnu višestrukost od λ kao broj različitih potprostora M_r sa $\alpha_r = \lambda$. Činjenica da se radi o konačnoj dimenziji ukazuje da je dijagonalna višestrukost od λ jednaka njenoj algebarskoj višestrukosti kao sopstvene vrednosti od K.

Svaki vektor u H može biti napisan kao

$$x = \sum_{r=1}^{\infty} (x, e_r)e_r + y \tag{5}$$

gde je $(y, e_r) = 0$ za r=1,2,... Jednakosti (4) i (5) daju

$$Kx = \sum_{r=1}^{\infty} \alpha_r(x, e_r)e_r + \sum_{r=1}^{\infty} (x, e_r)f_{r-1} + Ky.$$

Definišimo linearna preslikavanja $C, Q: H \longrightarrow H$ sa:

$$Cx = \sum_{r=1}^{\infty} \alpha_r(x, e_r)e_r, \qquad (x \in H)$$

$$Q = K - C$$
.

Teorema 3.3.6. Neka je H kompleksan Hilbertov prostor i neka je $K \in L(X)$ Risov operator. Tada je K = C + Q, gde je C kompaktan operator na H i Q kvazi-nilpotentan operator.

Literatura

- (1) Dowson H. R.; Spectral theory of linear operators, London, Math. Soc. Monographs, No 12, Academic Press, London and New York, 1978.
- (2) Kurepa Svetozar; Funkcionalna analiza-Elementi teorije operatora, Školska knjiga, Zagreb, 1981.
- (3) Rakočević Vladimir; *Funkcionalna analiza*, Naučna knjiga, Beograd, 1994.

4 Biografija

Jelena Jovanović je rođena 12.12.1991. godine u Prokuplju, Republika Srbija. Osnovnu školu "Miloje Zakić" je završila u Kuršumliji. Gimnaziju, prirodno-matematički smer, završila je u Kuršumliji. Prirodno-matematički fakultet u Nišu, odsek za matematiku, upisala je školske 2010/11. Osnovne akademske studije je završila školske 2012/13. sa prosečnom ocenom 8,63. Iste godine upisuje master akademske studije na smeru Matematika. Prosečna ocena na master akademskim studijama je 8,4 (bez ocene master rada).