1. Quick Review Differentiation:

(a) Find
$$dy/dx$$
 for $x^2 - y^3 = x \sin(y)$.
 $2x - 3y^2 \frac{dy}{dx} = 1 \cdot S \ln(y) + x \cos(x) \frac{dy}{dx} = \frac{2x - S \ln(y)}{3y^2 + x \cos(x)}$
 $2x - S \ln(y) = \frac{dy}{dx} (3y^2 + x \cos(x)) + \frac{dy}{dx} = \frac{2x - S \ln(y)}{3y^2 + x \cos(x)}$

(b) Find
$$y'$$
 for $y = x(\sin(x))^{-1}$ = $\times cscx$
 $y' = 1 \cdot (sin(x))^{-1} + \times (-1)(sin(x))^{-2}$ = $cscx + \times (-cscx \cot x)$
 $= \frac{1}{sin(x)} - \frac{\times cos(x)}{(sin(x))^2}$ = $cscx - \times cscx \cot(x)$

(c) Find y' for $y = x \sin^{-1}(x)$

$$y = 1 \cdot \sin(x) + x \cdot \frac{1}{\sqrt{1-x^2}} = \sin(x) + \frac{x}{\sqrt{1-x^2}}$$

(a)
$$f'(0) \approx \frac{e^{0.001} - e^{0}}{0.001 - 0} = 1.0005 \approx f(0) = 1$$

(c) Find
$$y'$$
 for $y = x \sin^{-1}(x)$

$$y' = l \cdot \sin^{-1}(x) + x \cdot \frac{1}{\sqrt{1-x^2}} = \sin^{-1}(x) + \frac{x}{\sqrt{1-x^2}}$$
2. Let $f(x) = e^x$. Estimate $f'(x)$ (a.k.a. the slope of the tangent line) using the slope of a secant line for each of the values below. (Use a calculator!)

(a) $f'(0) \approx \frac{e^{0.001} - e^{0}}{0.001 - 0} = 1.0005 \approx f(0) = 1$

(b) $f'(1) \approx \frac{e^{1.001} - e^{1}}{1.001 - 1} = 2.71964 \approx f(1) = e^{1} = 2.71828$

(c) $f'(2) \approx \frac{2.001}{2} = 7.39275 \approx f(2) = e^{1} = 7.38905$

(d) $f'(-1) \approx \frac{e^{1.001} - e^{1}}{-1.001 - (-1)} = 0.36769 \approx f(-1) = e^{1} = 0.36787$

$$\frac{2.001-2}{2.001-2} = 7.39275 \approx f(z) = e^{z} = 7.3.8905$$

$$\frac{e^{-1.001} \sim e^{-1.001}}{-1.001 - (-1)} = 0.36769 \approx f(-1) = e^{-1} = 0.36787$$

3. Derivative Rules for Exponential Functions

$$\frac{d}{dx} \left[a^{x} \right] = (\ln a) a^{x}$$

Note:
$$a^{\times} = e^{(\ln a) \times}$$

Do you see the relationship?

(a)
$$y = x^4 e^x$$

$$y' = 4xe^{x} + x^{4}e^{x}$$

 $f' \cdot g + f \cdot g'$

(b)
$$y = e^{x^2} = e^{(x^2)}$$
 chain rule!
 $y' = (e^{x^2})(2x) = 2x e^{x^2}$

(c)
$$y = 5^{-x} = 5^{(-x)}$$
 chain yule!
 $y = (\ln 5) 5^{-x} (-1)$ $\frac{\text{Alternata}}{y = (\frac{1}{5})^{x}}$:
 $= (-\ln 5) 5^{-x}$ $y' = \ln(\frac{1}{5})(\frac{1}{5})$

(c)
$$y = 5^{-x} = 5^{(-x)}$$
 chain $y = (\ln 5) \cdot 5^{-x}$ (d) $f(x) = x^5 + 5^x$

$$y' = (\ln 5) \cdot 5^{-x}$$

$$y' = (-\ln 5) \cdot 5^{-x}$$

$$y' = \ln(\frac{1}{5}) \cdot (\frac{1}{5})^{x}$$

5. Let
$$P(t) = P_0 e^{kt}$$
. Write $P'(t)$ in terms of $P(t)$.

P'(t)=(P_o)(e^{kt})(k)
$$= P_o k e^{kt}.$$

5. Let
$$P(t) = P_0 e^{kt}$$
. Write $P'(t)$ in terms of $P(t)$.

P(t)= $P_0 e^{kt}$. Write $P'(t)$ in terms of $P(t)$.

P(t)= $P_0 e^{kt}$. Write $P'(t)$ in terms of $P(t)$.

P(t) is proportional to $P(t)$.

- 6. A population of bacteria has an initial population of 200 bacteria. The population is growing at a rate of 4 % per hour. $\rightarrow P = 0.04 P$ or K = 0.04
 - (a) Write an exponential function P(t) that relates the total population as a function of t where the units of t should be hours and the units of P should be number of bacterial.

Check:
$$P(0) = 700 e^{0} = 200$$

 $P(1) = 200 e^{0.04} = 208.162$
 $\frac{208-200}{200} = \frac{8}{200} = \frac{4}{100} = 4\%$

(b) Find and interpret
$$P'(1)$$
.

$$P'(t) = (200)(0.04) e^{0.04t} =$$
 $P'(t) = 8 e^{0.04} \approx 8.3264$

(b) Find and interpret
$$P'(1)$$
.

$$P'(t) = (200)(0.04) e^{0.04t} = 8 e^{0.04t} / At 1 hour, the population$$

$$P(t) = 8 e^{0.04} \approx 8.3264.$$

of 8 bacteria per hour.

(c) Find and interpret
$$P'(T0)$$
. $P'(106)$

$$P'(100) = 8e^{4} = 436.7$$