* If an OS is preemptive, the CPU can schedule other processes in b/w that mill make OS a bit faster.

The CPU scheduling.

Why scheduling?

1. Efficient.

2. Steractive.

CONTEXT SWITCHING

When CPU smitches the process, it will have to store the state of previous process 4 fetch the state of current process time.

Smitches

=> A bot of content smitches aven't good for the yolen.

CPU Scheduling Algo

Assume (> 0 content smitch time

> Single core CPU (1 process at a time)

fcfs
SRTF
Round Robin

FCFS

Process.

Pid	arrival_time	timetocomple	
1	1	4	> Predicted
2	2	5	time.
3	3	6	
4	4	8	
6	4	2	
6	5	4	

Process to sun, it will the process with least arrival time, If more than I processes have sure sure arrival time the CPU mill pick the process with less process-id.

7 Non premptive Algo.

* Implement FCFS.

- 2) SRTF (Shortest Remaining Time first)

 7 Pre Emptive Ago.

 Already Manin Distance of the Dis
 - to sun a new process.
- -> Phis algo mill oun
 - Ja) boneveuer a new process comes in the system
 - (b) Whenever Carlier process completes.
- > Whenever the algo runs, it will calculate the remaining time of all the Processes in the System of CPV mit pick the Processes with least remaining time.

Bursa time

		<u>/</u> ·	
Pid	arrival_time	time to complete	. remaining time
ı	1	4	43×40
2	2_	ら	5
3	3	6	6
\ 4	<u> </u>	8	8
\$	4	2	-20
\	5	4	40

STARVATION :

Li A process mith large time to complete then it will trave to wait for longer time.

-> After energ q seconds, CPU mill pruse the current process & it mill pick the new process.

Prouses

id	Arrival time	time to complete
1	1	642
2	2	2 × 0
3	3	975
7	3	42
5	5	11

9 = 2 sec

* q is very large => FCFS.

* q is very small => Too many content suither

Forey time the protess process completes or time quantum is elapsed, pause the current process more it to the back of the quine I run the process from the front of the quine

Startation X
Partialty X

=> Load Balancer.

Throughput:

Throughput:

The experimental per unit of time.

The experimental processes of the second seco

Threads

about it.

Process = Program 94 Enecution.

Word Processor (MS Wood	(Google Doc)
	- Spell chooping
to mu give a good part	Anto Saved
I mil give a good parto my dream job	Grammar check
	> Suggestion
	> Auto repolates
	Count of woods
main() L	
-> print (tello)	Code enecutes line
- do Something ()	by line.
3	=>One tack at a time.
do Something () (
do Something () { rint (+1i)	
3	

Thread: Unit of CPU enceution.

Whenever anything is running on our myc there is a CPU running a twead which actually owns the source code.

MULTI THREADING

PCB

-> Au the thread of the same process will have the access to data.

Thread: CPU enervies the thread.

Process Vs Thread.	
Data Sharing: All the threads access the data from P but diff: Process can't access each others	· C I
data. L) (PC) (Inter los less Communication)	
→ Process takes more memory. (code, data)	
→ Process creation is time consuming that a thread.	4

⊁