Cody Hubbard 004843389

CSM146, Winter 2018

Problem Set 4

Problem 1

(a) (b) (c) Solution:

i	label	Hypothesis 1				Hypothesis 2			
		D_0	$f_1 \equiv [x > 2]$	$f_2 \equiv [y > 5]$	$h_1 \equiv [x > 2]$	D_1	$f_1 \equiv [x > 6]$	$f_2 \equiv [y > 11]$	$h_1 \equiv [y > 11]$
1	-	0.1	-	+	-	0.0625	-	-	-
2	-	0.1	-	-	-	0.0625	-	-	-
3	+	0.1	+	+	+	0.0625	-	-	-
4	-	0.1	-	-	-	0.0625	-	-	-
5	-	0.1	-	+	-	0.0625	-	+	+
6	-	0.1	+	+	+	0.25	+	-	-
7	+	0.1	+	+	+	.0625	+	-	-
8	-	0.1	-	-	-	.0625	-	-	-
9	+	0.1	-	+	-	0.25	-	+	+
10	+	0.1	+	+	+	.0625	-	=	=

(c cont.)

Due to the weights on the errors created using h_1 the new best classifier is $f_2 \equiv [y > 11]$

$$\alpha_0 = \frac{1}{2} ln(\frac{1-\epsilon}{\epsilon})$$

$$= \frac{1}{2} ln(\frac{1-\frac{2}{10}}{\frac{2}{10}})$$

$$= \frac{1}{2} ln(\frac{8}{2})$$

$$= ln(4)^{\frac{1}{2}}$$

so for correctly classified $e^{-\alpha_0}=\frac{1}{e^{\ln(4)^{\frac{1}{2}}}}=\frac{1}{2}$ and for incorrectly classified $e^{\alpha_0}=e^{\ln(4)^{\frac{1}{2}}}=2$. so $D_1=\frac{D_0}{Z_0}\cdot e^{-\alpha_0}$ and $Z_0=\frac{1}{10}(8\cdot\frac{1}{2}+2\cdot 2)=0.8$ then $D_1=\frac{0.1}{0.8}\cdot 2=0.25$ for incorrect points and $D_1=\frac{0.1}{0.8}\cdot\frac{1}{2}=0.0625$ for correct points

(d) Solution:
$$\epsilon_1 = 4 \cdot 0.625 = .25 \text{ and } \alpha_1 = \ln(3)^{\frac{1}{2}}$$

For Ada-boost $Hfinal(x) = sgn(\sum \alpha_t h_t(x)) = sgn[\ln(4)^{\frac{1}{2}} \cdot sgn(x-2) + \ln(3)^{\frac{1}{2}} \cdot sgn(y-11)]$

1

Problem 2

- (a) Solution: (i) K classifiers for One vs. All and $\frac{K(K-1)}{2}$ classifiers of All vs. All
- (ii) One vs. All uses m examples and All vs. All uses $\frac{2m}{k}$ examples
- (iii) I would use argmax for One vs. All and majority vote for All vs. All.
- (iv) O(km) for both One vs. All and All vs All
- (b) Solution: I prefer All vs. All due to how it is less prone to separability and imbalanced data set problems. Furthermore the method would be learned using a machine so I personally would not see much of the extra computation costs cased by All vs All.
- (c) Solution: Using a kernel perception the the complexity for One vs. All becomes $O(km^2)$ and All vs All becomes $O(m^2)$. It doesn't really change my analysis above except that it improves All vs All making my choice even more sensible.
- (d) Solution: One vs All becomes $O(kdm^2)$ and All vs. All becomes $O(dm^2)$. All vs All is more efficient.
- (e) Solution: One vs All becomes $O(kd^2m)$ and All vs. All becomes $O(d^2m)$. All vs All is more efficient..
 - (f) Solution: For counting method the complexity is $O(k^2)$ and for knockout it is O(k).