USN					

RV COLLEGE OF ENGINEERING®

Autonomous Institution affiliated to VTU V Semester B. E. Examinations Jab/Feb-21

Computer Science and Engineering

Computer Science and Engineering

ADVANCED ALGORITHMS (ELECTIVE)

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Compute $\sum_{1 \le k \le n} O(n)$.	02
	1.2	Solve the following recurrence relation	
		$T(n) = 3T(n/2) + n^2$.	02
	1.3	State the basic principle of Rabin Karp algorithm.	01
	1.4	What is the number of edges present in a complete graph having n	
		vertices?	01
	1.5	Bellmann ford algorithm provides solution for problems.	01
	1.6	Find the GCD of 244 and 117 using Euclid's method.	02
	1.7	What is the special property of red-black trees and what root should	
		always be?	02
	1.8	Consider the following graph:	
	1.9	Find the minimum cost to travel from node A to node C. Show the result of inserting 50 into the Red-Black tree depicted below:	02
		30	
		15 45	
		35 60	
		55	
		35	02
	1.10	What are splay trees?	01

1.11 1.12 1.13	What is the time complexity of Johnson's algorithm? What is the worst-case running time of Rabin-Karp algorithm? Obtain a splay tree for following tree, after inserting 40 to it.	01 01
	80	
	50 90	
	30 70	02

PART-B

2	a b	What are asymptotic notations? Explain them. Solve the following recurrence using master's theorem. Also state which case is applicable?	06
		which case is applicable? $T(n) = 4T(n/2) + n^2.$	05
	c	Solve the following recurrence relation using recursion tree method.	
		T(n) = 4T(n/2) + n.	05
3	а	Write the Naïve string matching algorithm. Show the operation of the	
		same, for the pattern $p = 0001$ in the test.	
	_	$T = 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1$	08
	b	Construct the string matching automation for the pattern $p = aabab$ and illustrate its operation on the text string.	
		T = $a a a b a b a a b a a b a a b a b a a b$	08
		OR	
4	a	Demonstrate with an algorithm, the working procedure Bellman-Ford algorithm for solving single source shortest path problem for the graph shown below.	
	b	Write an algorithm for single-source shortest path in BAG. Also apply the algorithm for the following graph and taking source vertex as 's'.	08
		E P	08

5	а	Find the maximum flow using basic ford Fulkerson algorithm.	
	b	Explain the properties of red-black tree. Construct a red-black tree by inserting following sequence of number: 8, 18, 5, 15, 17, 25, 40 & 80.	08
		OR	
6	a	Define Fibonacci heap. Write an algorithm to extract minimum node from the Fibonacci heap.	05
	b	Describe how to find maximum bipartite matching for a given graph, considering suitable example.	05
	c	Perform the splay delete operation on the given tree shown in figure below to node x.	
		(C) (G)	
		4 7	
		(2)2	06
7	a	Write modular-linear-equation-solver algorithm and using the same, solve the following $14 \times \equiv 30 \pmod{100}$.	08
	b	Apply the Chinese remainder theorem, to the following equations: i) $a \equiv 2 \pmod{5}$ ii) $a \equiv 3 \pmod{13}$	08
		u = 3(muu + 13)	08
8	a b	Investigate the two trays of representing polynomials. Characterize the efficient implementation of iterative FFT.	05 05
	С	Characterize the pseudocode for Artificial Bee Colony (ABC) algorithm.	06