

Master's Thesis Presentation

Active Colloids in Shear Flow

Bishwa Ranjan Si

B.Tech M.Tech dual degree student

Department of Chemical Engineering Indian Institute of Technology (IIT) Kanpur

28th June, 2019

What are Active Particles?

- Colloidal particles (~1 nm 1000 nm) which can self-propel by using energy from surroundings and perform directed motion at short times.
- Classification: Biological and Artificial

Biological Swimmers

Turner et al. J. Bacteriol, 2000

cells

N. Petkov et al. 2007

Turner et al. J. Bacteriol, 2000

Artificial Active Matter

Artificial Active Colloids : Significance

Mechanisms of propulsion

Key requirements:

- A local gradient(chemical /physical)
- Asymmetry in particle composition

A bit about self-diffuiophoresis

Self-propelling **Janus particle** (made of silica and Platinum(Pt)) in water + H₂O₂ medium

2 wt% H₂O₂ in water

Maldrelli et al. Phy. Of. Fluid.,(2016)

Brownian Motion

- Colloid undergoes random Brownian Motion
- Slope of MSD vs time elapsed gives Brownian
 Diffusivity 'D'.
- Stokes Einstein Relation

$$D = \frac{kT}{6\pi\eta a}$$

Self-Propelled Motion

o Rotational Diffusion $au_R = rac{kT}{8\pi\eta R^3}$

$$MSD = 2D\Delta t + v^2 \Delta t^2 \quad \Delta t << \tau_R$$

What so far?

Ren et. al (2017)

Au-Rh microrods in ${\rm H_2O_2}$ solution, Chemical - Acoustic hybrid propulsion

Particles exhibit upstream Rheotaxis

What so far?

Katuri et. al (2018)

Particles exhibit Cross-Stream migration

o When?

Conditions in which cross migration will be present

o How much?

Variation in extent of cross migration with varying flow

Experimentation

Synthesis of Janus particles

Experimentation

Flow Experiments and Data Analysis

Schematic of the experimental set-up

Control Experiments

- o Active Motion (0.5 wt%, 1 wt%, 2 wt% of H_2O_2)
- o Flow without activity (100, 200, 500, 750, 900, 1000µL/hr)

Active motion in shear flow experiment

 \circ Combination of different H_2O_2 concentrations and flow rates.

- Single particle tracking usingMicroscope
 - Data anslysis using Image J and
 Matlab

0.5 wt% H₂O₂ in water

1 wt% H₂O₂ in water

2 wt% H₂O₂ in water

Active motion – Speed Calculation

Active motion - τ_R Calculation

$$C(t) = \left\langle \frac{\vec{v}(t + \Delta t).\vec{v}(t)}{|v(t + \Delta t)||v(t)|} \right\rangle$$

where,

C(t) = autocorrelation function v(t) = velocity of particle at time 't' Δt = lag time

$$C(\Delta t) = 4D\delta(\Delta t) + e^{-2\Delta t/\tau_R}$$

Active motion(Autocorrelation function)

Note:

- o Reynold's No. $\operatorname{Re} = \frac{\rho v_x a}{\eta} = 4.77 \times 10^{-5} \text{ (very low \sim10$-5)}$
- o Effect of flow on reaction is minimal

o
$$Pe = \frac{v_x a}{D_s} = 0.0053 \text{ (very low <<1)}$$

Defining anisotropy (α) in the system

We define anisotropy alpha as

$$\alpha = \frac{\left(\frac{\Delta y_{\text{max}}}{\Delta x_{\text{max}}}\right)_{activity + flow}}{\left(\frac{\Delta y_{\text{max}}}{\Delta x_{\text{max}}}\right)_{flow}}$$

For a given trajectory,

Distribution of α for different systems

Key observations

- Low flow $\rightarrow \alpha \sim 1$
- \circ Moderate flow \rightarrow range of α widens towards higher values
- o High flow \rightarrow Range of α starts to shrink
- o Behaviour universal and dependent on the activity of particle

We define dimensionless parameter

$$\lambda = \frac{v_{x,flow}}{v_{activation}}$$

Variation with λ

Variation of D_r with λ

$$D_r = \frac{1}{\tau_r}$$

Angle β as a function of λ

Angle β as a function of λ

Locked out of plane rotation due to activity

Competing mechanisms

No flow + Active motion

Das et al. Nature Comm., (2015)

Restoring rotation to bring the Janus boundary perpendicular to the plane

$$\Omega_{y}(\theta) = -\Gamma(\theta - \theta_{s})$$

$$\left| \Gamma_{activity} \sim \frac{v_{activity}}{a} \right|$$

$$\frac{\Gamma_{shear}}{\Gamma_{activity}} \sim \frac{v_{x,flow}}{v_{activity}} = \lambda$$

No Activity + Shear flow

Out of plane rotation of Janus boundary

$$\Gamma_{shear} \sim \frac{v_{x,flow}}{a}$$

Random motion and migration along flow

Migration across Stream Lines

Conclusions

Because of presence of wall Active Propulsion brings the Janus boundary perpendicular to the plane

Shear flow tries to rotate the Janus boundary out of plane

Low Flow rates restoring rotation due to activity is quick compared to rotation due to flow

Random motion

Moderate flow rates due to competing rotational mechanisms \rightarrow Particles migrate across streamlines

Non-dimensional parameter λ explains the observations universally

Acknowledgements

Colloids And Polymer Physics Group

- Dr. Rahul Mangal, Principal Investigator
- Fellow lab members

Special thanks to:

- Dr. Asish Garg, MSE IITK
- Dr. Shashank Sekhar, MSE IITK
- Dr. Animangsu Ghatak, CHE IITK
- ACMS, IITK
- Nanoscience, IITK

