5.218. Найти изменение ΔS энтропии при плавлении массы m=1 кг льда (t=0 ° C).

Решение:

При, плавлении массы m льда при температуре T имеем $\Delta S = \frac{m \lambda}{T}$, где $\lambda = 0.33\,\mathrm{MДж/кг}$ — удельная теплота плавления. $\Delta S = 1209\,\mathrm{Дж/кг}$.

5.219. Массу $m = 640 \,\mathrm{r}$ расплавленного свинца при температуре плавления $t_{\mathrm{n},\mathrm{n}}$ вылили на лед ($t = 0^{\circ}$ С). Найти изменение ΔS энтропии при этом процессе.

Решение:

таянин

потерь тепла во внешнюю среду не происходит и весь образовавшийся пар сконденсировался и остался внутри системы в виде воды. Тогда изменение энтропии системы ΔS будет складываться из изменения энтропии свинца ΔS_1 при затвердевании, изменения энтропии свинца ΔS_2 при охлаждении до t = 0° С и изменения энтропии льда

Предположим, что система «свинец — лед» замкнута, т.е.

рассматриваем при условии, что льда имеется достаточное **колич**ество для поддержания температуры $t = 0^{\circ}$ С. **Об**означим $T_1 = 600 \, \text{K}$ — температура плавления свинца, $T_2 = 273 \, \text{K}$ — температура льда. Имеем $dS_1 = dQ_1 \, / \, T$ или

 ΔS_3 . Т. е. $\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3$. Задачу

 $\Delta S_1 = -\int_1^2 \frac{dQ_1}{T_1} = -\frac{m\lambda}{T_1}$, где $\lambda = 22.6$ кДж/кг — удельная те-

плота плавления (кристаллизации) свинца. $dS_2 = \frac{dQ_2}{T}$, от-

куда
$$\Delta S_2 = \int_{T_1}^{T_2} \frac{mc_c dT}{T} = mc_c \ln \frac{T_2}{T_1}$$
, где $c_c = 126$ Дж/(кг·К) — удельная теплоемкость свинца. $dS_3 = \frac{dQ_3}{T}$ или $\Delta S_3 = \frac{Q_3}{T_2}$. В соответствии с законом сохранения энергии $Q_3 = Q_1 + Q_2 = \lambda m + cm(T_1 - T_2)$, отсюда $\Delta S_3 = \frac{\lambda m + cm(T_1 - T_2)}{T_2}$. Следовательно, полное изменение энтропии системы $\Delta S = -\frac{m\lambda}{T_1} + mc_c \ln \frac{T_2}{T_1} + \frac{\lambda m + cm(T_1 - T_2)}{T_2}$. Подставляя в полученную формулу числовые данные, окончательно получаем $\Delta S = -\frac{0.64 \cdot 22.6 \cdot 10^3}{600} + 0.64 \cdot 126 \cdot (-0.79) + \frac{22.6 \cdot 10^3 \cdot 0.64 + 126 \cdot 0.64(600 - 273)}{273} = 62.2$ Дж/К.

5.220. Найти изменение ΔS энтропии при переходе массы m = 8 г кислорода от объема $V_1 = 10$ л при температуре $t_1 = 80^{\circ}$ С к объему $V_2 = 40$ л при температуре $t_2 = 300$ ° С.

Решение: Изменение энтропии при переходе вещества из состояния 1 в состояние 2 $\Delta S = \int_{1}^{2} \frac{dQ}{T}$, где, согласно первому началу термодинамики, $dQ = dU + dA = \frac{m}{\mu}C_V dT + pdV$. Т. к. из уравнения Менделеева — Клапейрона давление $p = \frac{m}{\mu} \times$

$$imes rac{RT}{V}$$
, то $dQ = rac{m}{\mu} C_1 \cdot dT + rac{m}{\mu} rac{RT}{V} dV$. Тогда $\Delta S = \int\limits_{1}^{2} rac{m}{\mu} C_1 \cdot dT + \int\limits_{1}^{2} rac{m}{\mu} rac{RT}{V} dV$; $\Delta S = rac{m}{\mu} C_1 \cdot ln rac{T_2}{T_1} + rac{m}{\mu} R ln rac{V_2}{V_1} = 5.4 \; \mbox{Дж/кг.}$

5.221. Найти изменение ΔS энтропии при переходе массы m=6 г водорода от объема $V_1=20$ л под давлением $p_1=150$ кПа к объему $V_2=60$ л под давлением $p_2=100$ кПа.

Решение:

Имеем
$$\Delta S = \frac{m}{\mu} C_1 \cdot ln \frac{T_2}{T_1} + \frac{m}{\mu} R ln \frac{V_2}{V_1}$$
 (см. задачу 5.220). Т. к.

из уравнения Менделеева — Клапейрона $\frac{T_2}{T_1} = \frac{p_2 V_2}{p_1 V_1}$, то

$$\begin{split} \Delta S &= \frac{m}{\mu} C_{1'} \ln \frac{p_2}{p_1} + \frac{m}{\mu} C_{1'} \ln \frac{V_2}{V_1} + \frac{m}{\mu} R \ln \frac{V_2}{V_1}; \ \Delta S &= \frac{m}{\mu} C_{1'} \ln \frac{p_2}{p_1} + \\ &+ \frac{m}{\mu} C_p \ln \frac{V_2}{V_1}; \ \Delta S &= 71 \ \text{Дж/K}. \end{split}$$

5.222. Масса m=6.6 г водорода расширяется изобарически от **объе**ма V_1 до объема $V_2=2V_1$. Найти изменение ΔS энтропии **пр**и этом расширении.

Решение:

В предыдущей задаче мы выразили изменение энтропии через параметры p и V: $\Delta S = \frac{m}{\mu} C_V \ln \frac{p_2}{p_1} + \frac{m}{\mu} C_p \ln \frac{V_2}{V_1}$.

При p = const первое слагасмое обращается в ноль, тогда

$$\Delta S = \frac{m}{U} C_p \ln \frac{V_2}{V_c} = 66.3 \text{ Дж/K}.$$

5.223. Найти изменение ΔS энтропии при изобарическом расширении массы m=8 г гелия от объема $V_1=10$ л до объема $V_2=25$ л.

Решение:

Изменение энтропии
$$\Delta S = \int_1^2 \frac{dQ}{T}$$
, где $dQ = c_p m dT$, т. к. $p = const$. Теплоемкссть при постоянном давленин $C_p = \frac{i+2}{2} \frac{R}{\mu}$, тогда $\Delta S = \int_1^2 c_p m \frac{dT}{T} = \frac{i+2}{2} \frac{m}{\mu} R \ln T \Big|_1^2 = \frac{i+2}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1}$. Т. к. гелий — одноатомный газ, то число степеней свободы $i=3$, и т. к. $p = const$, то $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ или $\frac{V_2}{V_1} = \frac{T_2}{T_1}$, следовательно, $\Delta S = \frac{5}{2} \frac{m}{\mu} R \ln \frac{V_2}{V_1}$; $\Delta S = 38,1 \, \text{Дж/K}$.

5.224. Найти изменение ΔS энтропии при изотермическом расширении массы m=6 г водорода от давления $p_1=100$ кПа до давления $p_2=50$ кПа.

Решение:

Имеем
$$\Delta S = \frac{m}{\mu} C_V \ln \frac{T_2}{T_1} + \frac{m}{\mu} R \ln \frac{V_2}{V_1}$$
 (см. задачу 5.220). Т. к. при изотермическом процессе $\frac{V_2}{V_1} = \frac{p_1}{p_2}$, а $\ln \frac{T_2}{T_1} = 0$, то изменение ΔS энтропии при изотермическом расширении: $\Delta S = \frac{m}{\mu} R \ln \frac{p_1}{p_2} = 17.3$ Дж/К.

5.225. Масса m = 10.5 г азота изотермически расширяется от **66ьема** $V_1 = 2$ л до объема $V_2 = 5$ л. Найти изменение ΔS энтромии при этом процессе.

Решение:

Изменение энтропии
$$\Delta S = \int_{1}^{2} \frac{dQ}{T}$$
, где $dQ = pdV$. Из

уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$ давле-

ние
$$p = \frac{m}{\mu} \frac{RT}{V}$$
, тогда $dQ = \frac{m}{\mu} RT \frac{dV}{V}$, а изменение энтро-

тии
$$\Delta S = \frac{m}{\mu} R \int_{1}^{2} \frac{dV}{V} = \frac{m}{\mu} R \ln \frac{V_2}{V_1}$$
; $\Delta S = 2.85$ Дж/К.

5.226. Масса m = 10 г кислорода нагревается от температуры $t_2 = 150^{\circ}$ С. Найти изменение ΔS энтропии, если нагревание происходит: а) изохорически; б) изобарически.

Решение:

а) При изохорическом нагревании $dQ = c_v m dT$, тогда из-

менение энтропии
$$\Delta S = \int_{1}^{2} \frac{dQ}{T} = c_{\nu} m \int_{1}^{2} \frac{dT}{T} = \frac{i}{2} \frac{m}{\mu} R \ln \frac{T_{2}}{T_{1}}$$
. Т. к.

кислород — двухатомный газ, то число степеней свободы

$$i=5$$
 и изменение энтропии $\Delta S = \frac{7}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1};$

 $\Delta S = 1,75 \, \text{Дж/K}$. б) При изобарическом расширении (см.

задачу 5.223), изменение энтропии
$$\Delta S = \frac{7}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1}$$
;

 $\Delta S = 2,45$ Дж/К.

5.227. При нагревании количества $\nu = 1$ кмоль двухатомного газа его термодинамическая температура увеличивается от T_1 до $T_2 = 1.5T_1$. Найти изменение ΔS энтропии, если нагревание происходит: а) изохорически; б) изобарически.

Решение:

Т. к. по условию газ двухатомный, то число степеней свободы i=5. а) При изохорическом нагревании (см. задачу 5.226) изменение энтропии $\Delta S = \frac{5}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1} = \frac{5}{2} \nu R \ln \frac{T_2}{T_1}$; $\Delta S = 8.5$ кДж/К. б) При изобарическом нагревании изменение энтропии $\Delta S = \frac{7}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1} = \frac{7}{2} \nu R \ln \frac{T_2}{T_1}$; $\Delta S = 11.8$ кДж/К.

5.228. В результате нагревания массы $m=22\,\mathrm{r}$ азота его термодинамическая температура увеличилась от T_1 до $T_2=1.2T_1$, а энтропня увеличилась на $\Delta S=4,19\,\mathrm{Дж/K}$. При каких условиях производилось нагревание азота (при постоянном объеме или при постоянном давлении)?

Решение:

Изменение энтропии (см. задачу 5.226) $\Delta S = \frac{x}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1}$, причем если x=7, то p=const, а если x=5, то V=const. Тогда $x=\frac{2\mu\Delta S}{mR\ln(T_2/T_1)}$; x=7, значит, нагревание производилось при постоянном давлении.

5.229. Найти изменение ΔS энтропии при переходе газа из состояния A в состояние B в условиях задачи 5.194, если переход совершается: а) по участку ACB; б) по участку ADB.

Решение:

а) По участку
$$ACB$$
, изменение энтропии $\Delta S = \Delta S_{AC} + \Delta S_{CB}$, где при $V_{i} = const$ (см. задачу 5.226)

$$_{\text{при}} V_1 = const$$
 (см. задачу 5.226)

энтропии
$$\Delta S = \Delta S_{AC} + \Delta S_{CB}$$
, где p при $V_1 = const$ (см. задачу 5.226) p_1 $\Delta S_{AC} = \frac{7}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1}$, а при давле- p_2 C

нии
$$p_2 = const$$
 $\Delta S_{CB} = \frac{7}{2} \frac{m}{\mu} R \times$

ACB
$$\Delta S = 7 \frac{m}{\mu} R \ln \frac{T_2}{T_1}$$
. Из уравнения Менделеева — Кла-

пейрона
$$p_1V_1 = \frac{m}{\mu}RT_1$$
 имеем $\frac{m}{\mu}R = \frac{p_1V_1}{T_1}$, следовательно,

$$\Delta S = \frac{7p_1V_1}{T_1}ln\frac{T_2}{T_1}$$
. Учитывая, что $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$ или

$$\frac{T_2}{T_1} = \frac{p_2 V_2}{p_1 V_1}$$
, окончательно находим $\Delta S = \frac{7 p_1 V_1}{T_1} ln \frac{p_2 V_2}{p_1 V_1}$;

 $\Delta S = 5.4 \, \text{Дж/K}$. б) По участку ADB, изменение энтропии

$$\Delta S = \Delta S_{AD} + \Delta S_{DB}$$
, right $\Delta S_{AD} = \frac{7}{2} \frac{m}{u} R \ln \frac{T_2}{T_1}$ If

$$S_{DB} = \frac{7}{2} \frac{m}{\mu} R \ln \frac{T_2}{T_1}$$
, отсюда, $\Delta S = 7 \frac{m}{\mu} R \ln \frac{T_2}{T_1} = \frac{7 p_1 V_1}{T_1} \ln \frac{T_2}{T_1}$

или
$$\Delta S = \frac{7 p_1 V_1}{T_1} ln \frac{p_2 V_2}{p_1 V_1}$$
; $\Delta S = 5.4 \text{ Дж/K}$. Таким образом,

изменение энтропии ΔS не зависит от того, каким образом осуществляется переход газа из одного состояния в другое.

5.230. Объем $V_1 = 1 \,\mathrm{m}^3$ воздуха, находящегося при температуре $t_1 = 0^{\circ}$ С и давлении $p_1 = 98$ кПа, изотермически расширяется от объема V_1 до объема $V_2 = 2V_1$. Найти изменение ΔS энтропии при этом процессе.

Решение:

При изотермическом расширении изменение энтропии (см. задачу 5.225) $\Delta S = \frac{m}{\mu} R \ln \frac{V_2}{V_1}$. Из уравнения Менделеева —

задачу 5.225)
$$\Delta S = \frac{m}{\mu} R \ln \frac{V_2}{V_1}$$
. Из уравнения Менделеева — Клапейрона $p_1 V_1 = \frac{m}{\mu} R T_1$ имеем $\frac{m}{\mu} R = \frac{p_1 V_1}{T_1}$, тогда изменение энтропии $\Delta S = \frac{p_1 V_1}{T_1} \ln \frac{V_2}{V_1} = \frac{p_1 V_1}{T_1} \ln \frac{2V_1}{V_1} = 500$ Дж/К.

5.231. Изменение энтропии на участке между двумя адиабатами в цикле Карно $\Delta S = 4,19 \, \text{кДж/K}$. Разность температур между двумя изотермами $\Delta T = 100 \, \text{K}$. Какое количество теплоты Q превращается в работу в этом цикле?

Решение:

Изменение энтропии $\Delta S = \int \frac{dQ}{T} = \frac{Q}{T_1}$, откуда $T_1 = \frac{Q}{\Delta S}$ — температура нагревателя. К. п. д. цикла Карно $T_1 - T_2$ $\Delta T \Delta S$

 $\eta = \frac{T_1 - T_2}{T_1} = \frac{\Delta T \Delta S}{Q}$. С другой стороны, $\eta = \frac{A}{Q}$, тогда $\frac{\Delta T \Delta S}{Q} = \frac{A}{Q}$, откуда $A = \Delta S \Delta T$; $A = 419 \, \text{кДж}$.