FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting

Ba-Ri Wulan^{a,b}, Sha-Sha Yi^b, Si-Jia Li^b, Yan-Xin Duan^b, Jun-Min Yan^{a,b,*}, Qing Jiang^b

- ^a State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
- b Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022. China

ARTICLE INFO

$\begin{tabular}{ll} Keywords: \\ g-C_3N_4 \\ Amorphous \\ Nickel pyrophosphate \\ Photocatalyst \\ Hydrogen \end{tabular}$

ABSTRACT

A noble-metal-free amorphous $Ni_2P_2O_7$ modified $g\text{-}C_3N_4$ nanocomposite $(a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4)$ has been successfully prepared by a facile calcined process. The experimental results suggest that $a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ displays the enhanced visible light absorption and improved charge separation relative to pristine $g\text{-}C_3N_4$, and shows smaller particle sizes and more negative conduction band edge potential than that of the crystalline $Ni_2P_2O_7$ modified $g\text{-}C_3N_4$ nanocomposite $(c\text{-}Ni_2P_2O_7/g\text{-}C_3N_4)$, resulting in large amount of active sites and enhanced reduction capacity. The resultant $a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ is evaluated as an excellent catalyst for photocatalytic hydrogen (H_2) generation under visible light irradiation, whose H_2 generation rate is almost 5 and 37 times higher than that of $c\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ and pristine $g\text{-}C_3N_4$, respectively, even better than that of $Pt/g\text{-}C_3N_4$. The improved activity of $a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ is mainly ascribed to the good visible light utilization, efficient electron-hole pairs' separation and transfer, small particle sizes and high reduction ability of electron.

1. Introduction

The overusing of fossil fuels has made negative impact on the environment in the past years. Many efforts have been done to explore the environmental-benign energy to replace the traditional fuels. As a sustainable approach for new energy sources, photocatalytic hydrogen (H_2) generation utilizing solar energy from water splitting has attracted much attention [1,2]. Undoubtedly, the development of highly efficient and stable photocatalysts, especially on using earth-abundant semiconductors for H_2 generation from water splitting under visible light irradiation, is highly desired but remains a big challenge from the practical point of view [3,4].

Recently, graphitic carbon nitride (g- C_3N_4), which is composed of extremely abundant elements, has been regarded as one of the most promising photocatalysts for solar conversion, owning to its appealing chemical stability, environment friendliness, and capability of visible-light harvesting with band gap energy of 2.7 eV [5,6]. Unfortunately, g- C_3N_4 still faces a long way to meet the practical requirements on account of its fast recombination of photo-induced electrons and holes. Hence, in order to improve its photocatalytic efficiency, several methods have been employed, such as increasing surface area [7], protonation and polymerization [8], loading with co-catalysts [9], etc. Modifying noble metals, such as Pt [10], Ag [11] and Au [12], on g-

C₃N₄ can efficiently improve the separation of electron-hole pairs. However, these noble metals are scarce and expensive, which is the serious barrier for their large scale application. Most recently, some very important non-noble metal-based materials, especially for Nibased compounds, such as NiS [13], Ni₂P [14,15], Ni(OH)₂ [16], and NiO [17] have been reported as the excellent co-catalysts for photocatalytic H₂ generation. However, to the best of our knowledge, the use of non-precious Ni-based amorphous pyrophosphates for photocatalytic H₂ generation is rarely reported. Amorphous materials hold the high concentrations of unsaturated coordinative sites and the isotropic structures, and this usually makes the activities of its being superior to those of the crystalline ones [18,19]. On the other hand, development of synthesis method to obtain amorphous photocatalysts, not crystalline ones, is highly desired. Therefore, pursuit of high-effective, low-cost and non-noble amorphous co-catalysts to fabricate novel structure and further increase the activity of g-C₃N₄ to H₂ generation from water splitting is highly desirable and valuable.

Herein, as a proof-of-concept experiment, the amorphous nickel pyrophosphate (a-Ni₂P₂O₇) modified g-C₃N₄ (a-Ni₂P₂O₇/g-C₃N₄) has been successfully synthesized by calcining a mixture of g-C₃N₄ and NiNH₄PO₄·H₂O for the first time. Compared with the pristine g-C₃N₄, a-Ni₂P₂O₇/g-C₃N₄ displays the advanced visible light utilization and improved charge separation. Furthermore, the increased amount of

E-mail address: junminyan@jlu.edu.cn (J.-M. Yan).

^{*} Corresponding author.

active sites and robust reduction ability of electron can also be obtained relative to crystalline $Ni_2P_2O_7$ modified $g\text{-}C_3N_4$ (c- $Ni_2P_2O_7/g\text{-}C_3N_4$), which is contributed to the better photocatalytic activity for H_2 generation from water splitting under visible light irradiation, and is even superior to $Pt/g\text{-}C_3N_4$.

2. Experimental section

2.1. Chemicals

Urea (H_2 NCON H_2 , Sinopharm Chemical Reagent Co., Ltd., $\geq 99\%$), triethanolamine (TEOA, (HOCH2CH2)3N, Sinopharm Chemical Reagent Co., Ltd., ≥78%), chloroplatinic acid hexahvdrate (H₂PtCl₆:6H₂O. Sinopharm Chemical Reagent Co., Ltd., ≥37% Pt basis), ammonia (NH₃·H₂O, Beijing Chemical Works, 25.0-28.0%), ethylene glycol (HOCH₂CH₂OH, Sinopharm Chemical Reagent Co., Ltd., ≥99%), nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, Sinopharm Chemical Reagent Co., \geq 98.5%), sodium dihydrogen phosphate (NaH₂PO₄·2H₂O, Sinopharm Chemical Reagent Co., Ltd., ≥99%), sodium carbonate (Na₂CO₃, Beijing Chemicals Works, ≥99%), anhydrous ethanol (CH₃CH₂OH, Beijing Chemical works, ≥99.7%) and sodium sulfate anhydrous (Na₂SO₄, Beijing Chemicals Works, ≥99%). Nafion solution (5 wt.%, Dupont). Ultrapure water with the specific resistance of $18.2\,\mathrm{M}\Omega\mathrm{\cdot cm}$ was obtained by reverse osmosis followed by ion-exchange and filtration.

2.2. Preparation of graphitic carbon nitride (g- C_3N_4)

The g- C_3N_4 was synthesized by directly heating urea in a muffle furnace at 600° C for 4 h with a heating rate of $0.5\,^{\circ}$ C min $^{-1}$. The asprepared yellow powder was obtained and then grinded.

2.3. Preparation of ammonium nickel phosphate (NiNH $_4$ PO $_4$ H $_2$ O) precursor

The precursor was obtained by a one-step solvothermal process [20]. Typically, ethylene glycol ($10\,\mathrm{mL}$) was added into the concentrated NH $_3$ ·H $_2$ O ($10\,\mathrm{mL}$) with stirring for 5 min to form an uniform mixture. Then, Na $_2$ CO $_3$ (5 mL, 1 M), NaH $_2$ PO $_4$ ($7.5\,\mathrm{mL}$, 1 M), and Ni (NO $_3$) $_2$ (5 mL, 1 M) were gradually added to the above liquid one by one at intervals of 5 min, and the final mixture was stirred for 1 h with the bright blue color. After that, the above mixed solution was transferred to a 50 mL Teflon-lined stainless-less autoclave, which was later maintained at 170 °C for 24 h. And then, the autoclave was cooled down to room temperature, and the precipitate was collected and washed with distilled water for three times and ethanol for once. The as-synthesized product was dried in vacuum at 60 °C overnight.

2.4. Preparation of amorphous (a-) and crystalline (c-) Ni₂P₂O₇

The a-Ni₂P₂O₇ was synthesized by calcining precursor of NiNH₄PO₄·H₂O in a muffle furnace at 500 °C for 2 h with a heating rate of 2 °C min $^{-1}$, and c-Ni₂P₂O₇ was obtained by the similar method but changing the calcining temperature to 600 °C.

2.5. Preparation of a-Ni₂P₂O₇/g-C₃N₄ and c-Ni₂P₂O₇/g-C₃N₄

Typically, the a-Ni₂P₂O₇/g-C₃N₄ was obtained as follows: firstly, NiNH₄PO₄·H₂O (48 mg) and g-C₃N₄ (400 mg) were ultrasonicated in ethanol (40 mL) for 30 min, and then magnetic stirred for 1 h. Secondly, the obtained mixture was washed by distilled water and dried at 60 °C for 10 h. After that, the as-prepared solid sample was grinded and put into an alumina crucible and calcined at 500 °C for 2 h with a heating rate of 2 °C min⁻¹ to get the a-Ni₂P₂O₇/g-C₃N₄ with 12 wt.% of initial content of NiNH₄PO₄·H₂O. The various loading contents of a-Ni₂P₂O₇ on g-C₃N₄ were also obtained by only changing the initial adding

content of NiNH₄PO₄·H₂O (5, 8 and 15 wt.%). For comparison, the crystalline c-Ni₂P₂O₇/g-C₃N₄ (12 wt.%) was also synthesized by the similar method by altering the calcined temperature from 500 to 600 °C.

2.6. Characterizations

Wide angle X-ray diffraction (XRD) measurements were performed on a Rigaku D/max-2500pc X-ray diffractometer with Cu Kα irradiation $(\lambda = 1.5406 \,\text{Å})$ by a scan rate of $4^{\circ} \, \text{min}^{-1}$. Transmission electron microscope (TEM) analyses were performed using a JEOL JEM-2010 microscope (accelerating voltage = 200 kV). X-ray photoelectron spectroscopy (XPS) analyses were performed using an ESCALAB MK II (Vacuum Generators) spectrometer using Al Ka radiation (300 W). All binding energies were referenced to the C 1s peak at 284.6 eV of the surface adventitious carbon. Ultraviolet photoelectron spectroscopy (UPS) measurements were performed with an unfiltered He I (21.22 eV) gas discharge lamp at a total instrumental energy resolution of 100 meV. Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) were recorded on a Shimadzu UV-3600 spectrophotometer using the same amount of photocatalysts, in which BaSO4 was used as the background. The photoluminescence (PL) spectra were detected on a Hitachi F-4500 fluorescence spectrophotometer with an excitation wavelength of 360 nm. Time-resolved photoluminescence (TRPL) spectra were recorded on a FLSP920 fluorescence lifetime spectrophotometer (Edinburgh, Instruments, UK) at an excitation wavelength of 360 nm. Fourier transform infrared spectroscopy (FTIR) of the samples were tested on a NEXUS-670 spectrometer at room temperature.

All electrochemical and photoelectrochemical tests were performed on a typical three-electrode system in $0.5\,M$ Na_2SO_4 solution (PH = 6.8) on a CHI760E electrochemical workstation at room temperature using Ag/AgCl as the reference electrode, Pt mesh as the counter electrode, and catalyst films as the working electrodes. The photocurrent measurements were performed at an applied potential of 0 V versus Ag/AgCl (vs. Ag/AgCl) under visible light irradiation. A 300 W Xe lamp (CEL-HXF 300, 320 $<\lambda<2500\,\text{nm}$) equipped with a cut off filter ($\lambda>420\,\text{nm}$) was served as the light source. The electrochemical impedance spectroscopy (EIS) was determined over the frequency range from 0.01 to 100,000 Hz with an alternating current (AC) amplitude of 10 mV at the open circuit voltage in dark.

2.7. Photocatalytic activity for H_2 generation

Reactions were carried out in a Pyrex top-irradiation reaction vessel connected to a glass closed gas system. H_2 generation was achieved by dispersing $100\,\text{mg}$ of photocatalyst (a-Ni_2P_2O_7/g-C_3N_4 with different initial adding contents of NiNH_4PO_4;H_2O (5, 8, 12 and 15 wt.%), c-Ni_2P_2O_7/g-C_3N_4 (12 wt.%) and pure g-C_3N_4) in aqueous solution (100 mL) containing 10 vol.% of TEOA as a sacrificial electron donor. The reaction system was degassed to remove air absolutely prior to irradiation under the Xe lamp (300 W) with a 420 nm cut off filter to remove the ultraviolet (UV) light. During the reaction, the temperature of the reaction solution was maintained at 8 °C by a flow of cooling water. The evolved gas was detected by gas chromatography (GC7900) equipped with a thermal conductive detector (TCD), using N2 as the carrier gas.

2.8. Photocatalytic stability

The stability experiment was operated as below: the H_2 generation reaction was firstly tested for 3 h by using the method mentioned above. After that, all the H_2 generated in the gas system was removed completely. Then, the photocatalytic reaction was continued for another 3 h. As a result, the above reaction was performed three times (9 h in total).

Fig. 1. (a) Scheme illustration of the preparation process for a-Ni₂P₂O₇/g-C₃N₄. (b,c) Low- and middle-magnification TEM images of a-Ni₂P₂O₇/g-C₃N₄ (Fig. 1c inset: HRTEM of a-Ni₂P₂O₇/g-C₃N₄). (d,e) Low- and middle-magnification TEM images of c-Ni₂P₂O₇/g-C₃N₄ (Fig. 1e inset: images of c-Ni₂P₂O₇ and g-C₃N₄). Initial weight percents of NiNH₄PO₄·H₂O in the specimens are both 12 wt.%.

3. Results and discussion

3.1. Structures and characterizations

The synthesis process for the a-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ is illustrated in Fig. 1a. Typically, NiNH $_4$ PO $_4$ ·H $_2$ O nanorods (NRs) and g-C $_3$ N $_4$ nanosheets (NSs) are prepared by solvothermal process and direct polycondensation of urea [20], respectively. And then, g-C $_3$ N $_4$ is regarded as the substrate to be mixed with the as-prepared NRs and followed with the calcination at 500 °C in air. In this way, a-Ni $_2$ P $_2$ O $_7$ particles can be successfully obtained and loaded on the surface of the g-C $_3$ N $_4$ NSs to form the a-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ composite. Similarly, the c-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$

can also be synthesized only by altering the calcined temperature from 500 to 600 $^{\circ}\text{C}.$

The morphology of the as-prepared specimens of a-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ (12 wt.%) and c-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ (12 wt.%) is characterized by the transmission electron microscope (TEM) and high resolution TEM (HRTEM). The a-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ and c-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ display the similar structure that the particles of Ni $_2$ P $_2$ O $_7$ are uniformly embedded on g-C $_3$ N $_4$ NSs (Fig. 1b–e). It can be obviously observed from the middle resolution TEM images (Fig. 1c and e) that, the particle sizes of a-Ni $_2$ P $_2$ O $_7$ (1–4 nm, Fig. S1a) are slightly smaller than those of c-Ni $_2$ P $_2$ O $_7$ (4–9 nm, Fig. S1b), which may be due to the lower calcination temperature of a-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$ (500 °C) than that of c-Ni $_2$ P $_2$ O $_7$ /g-C $_3$ N $_4$

Fig. 2. (a) XRD patterns and (b) FTIR spectra of g- C_3N_4 , a- $Ni_2P_2O_7/g$ - C_3N_4 and c- $Ni_2P_2O_7/g$ - C_3N_4 . Inset of Fig. 2 (a): the enlarged view of the dotted area. XPS spectra of (c) C 1s, (d) N 1s, (e) Ni 2p and (f) P 2p in a- $Ni_2P_2O_7/g$ - C_3N_4 .

(600 °C) during the synthesis process. The HRTEM image of Ni₂P₂O₇/g-C₃N₄ (inset of Fig. 1e) clearly reveals lattice fringes spacing of 0.298 and 0.326 nm, corresponding to the (12 $\overline{2}$) and (002) planes of Ni₂P₂O₇ and g-C₃N₄, respectively.

The structure and composition of the as-prepared samples are further investigated by the X-ray diffraction (XRD) patterns, Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The XRD patterns of g-C₃N₄, a-Ni₂P₂O₇/g-C₃N₄ (12 wt.%) and c-Ni₂P₂O₇/g-C₃N₄ (12 wt.%) are showed in Fig. 2a, the structure of g-C₃N₄ can be obviously found in all the specimens. The strong peaks at 27.7° can be indexed as the (002) plane caused by the in-terlayer stacking of π -conjugated aromatic systems and the weak one at 13.3° is attributed to in-plane structural motif of g-C₃N₄ [21–23], respectively. No obvious peaks of Ni₂P₂O₇ can be found in a-Ni₂P₂O₇/g-C₃N₄, and this may be resulted from the amorphous state of Ni₂P₂O₇. For specimen of c-Ni₂P₂O₇/g-C₃N₄, except for two discernable peaks of g-C₃N₄, there are another two small characteristic diffraction peaks at 29.9 and

35.4° which can be indexed to phase of Ni₂P₂O₇ (JCPDS No. 39-0710) [24], indicating the formation of crystalline Ni₂P₂O₇. In Fig. 2b, the FTIR spectra of the three specimens have the similar peaks with no peak shift, where the peaks located at 3000-3500 cm⁻¹ are attributed to the N-H stretching vibration and O-H vibration due to the uncondensed amino groups and physical adsorption of water [25], respectively. The wide absorption peaks in the range of 1100–1800 cm⁻¹ are ascribed to the typical stretching modes of CN heteocycles [26]. In addition, the sharp peak at around 809 cm⁻¹ is belonged to s-triazine ring modes of g-C₃N₄ [27]. Therefore, the presence of a- or c-Ni₂P₂O₇ has no influence in the structure of g-C₃N₄, which agrees well with the XRD results. In addition, the high resolution XPS spectra of a-Ni₂P₂O₇/g-C₃N₄ are also performed. Fig. 2c shows the XPS spectrum of C 1s are fitted with three peaks located at 284.6, 286.0 and 288.2 eV, respectively. The peak located at 284.6 eV can be attributed to the C-C bond from the XPS instrument itself, while the peak at 286.0 and 288.2 eV are assigned to C-NH₂ and N-C=N bonds of g-C₃N₄, respectively [28-30]. The N 1s in

Fig. 2d is separated into three peaks at binding energy values of 398.1, 399.5 and 400.9 eV, which are regarded as the N in bonds of C–N=C, N–(C)₃ and C–N–H, respectively [31]. As shown in Fig. 2e, the Ni 2p spectrum can be separated into two major peaks at 873.5 and 855.8 eV, corresponding to Ni $2p_{1/2}$ and Ni $2p_{3/2}$, respectively. The satellite peaks located at 879.6 and 861.5 eV are designed to the shake-up types of the Ni $2p_{1/2}$ and Ni $2p_{3/2}$, and all the peaks demonstrate the typical chemical states of Ni in Ni $_2P_2O_7$ [32]. The peaks centered at 135.8 and 133.5 eV prove the existence of P $2p_{1/2}$ and P $2p_{3/2}$, which are assigned as P in Ni $_2P_2O_7$ (Fig. 2f) [33].

In order to identify the composition of amorphous phase, the transformation process of NiNH₄PO₄·H₂O to Ni₂P₂O₇ is traced by XRD and FTIR analyses by changing calcination temperature of NiNH₄PO₄·H₂O from 25 to 600 °C. The XRD results (Fig. S2) show that, when temperature reaches 300 °C, the diffraction peaks of NiNH₄PO₄·H₂O (JCPDS No. 50-0425) [20] still can be observed even though the intensity is decreased obviously. However, the characteristic diffraction peaks of them are almost disappeared when temperature is up to 400 °C, which proves that the crystal structure of NiNH₄PO₄·H₂O is destroyed [34]. At 500 °C, there are no discernible peaks presented in the XRD pattern, indicating the formation of the amorphous phase. When the temperature reaches 600 °C, two obvious peaks can be observed, which are attributed to the phase of Ni₂P₂O₇ [24]. Therefore, it can be inferred that the amorphous phase obtained at 500 °C is composed of Ni₂P₂O₇. On the other hand, the FTIR spectra also prove the similar results (Fig. S3). At 300 °C, the FTIR peak intensity of NiNH₄PO₄·H₂O is gradually decreased due to the partial deamination and the dehydration of crystal water molecule [35]. With their further deamination, the band intensity of NiNH₄PO₄·H₂O is also reduced when the temperature reachs 400 °C. At 500 °C, a new weak band located at 530 cm⁻¹ is assigned to the deformation of symmetrical P-O-P which is belonged to the internal modes of $P_2O_7^{4}$, testifying the formation of the Ni₂P₂O₇ [36,37]. When the temperature is up to 600 °C, there is no apparent change between the samples which are calcined at 500 and 600 °C. It can be inferred that they have same functional groups corresponding to the Ni₂P₂O₇.

Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) and photoluminescence (PL) measurements are performed on a-Ni₂P₂O₇/g-C₃N₄, c-Ni₂P₂O₇/g-C₃N₄ and pure g-C₃N₄ for comparison. As shown in Fig. 3a, the pure g-C₃N₄ shows its fundamental absorption edge rising at 475 nm, which can be assigned to its intrinsic band gap of 2.60 eV (Fig. S4a) [38]. The absorption onset of a-Ni₂P₂O₇ and c-Ni₂P₂O₇ are about at 600 nm (Fig. S4b), which make it possible to sensitize g-C₃N₄ thus to increase the light response, corresponding to the band gaps of 2.24 and 2.13 eV (Fig. S4b, inset) [39], respectively. The a-Ni₂P₂O₇/g-C₃N₄ shows broader absorption in the visible light range relative to c-Ni₂P₂O₇/g-C₃N₄ and g-C₃N₄, demonstrating its highest capability for visible light harvesting. In Fig. 3b, the PL peak intensity of a-Ni₂P₂O₇/g-C₃N₄ is much lower than those of c-Ni₂P₂O₇/g-C₃N₄ and bare g-C₃N₄, which strongly indicates that addition of amorphous Ni₂P₂O₇ to g-C₃N₄ can efficiently accelerate the charge separation and transfer [40], and thus may lead to the enhanced photocatalytic H2 generation performance (vide infra).

To further verify the improved charge separation and transfer efficiencies, the transient photocurrent-time (i-t) responses are also performed on a-Ni₂P₂O₇/g-C₃N₄, c-Ni₂P₂O₇/g-C₃N₄ and g-C₃N₄. As shown in Fig. 3c, no currents are detected for all the specimens when turns the light off, while currents are quickly increased once the light is turned on, indicating their good response to the visible light. Among the three specimens, a-Ni₂P₂O₇/g-C₃N₄ exhibits the strongest photocurrent intensity, indicating its most efficient photo-induced charge transfer and separation ability [41]. Furthermore, the separation efficiency and charge transfer resistance are also investigated by the electrochemical impedance spectroscopy (EIS) [33], as shown in Fig. 3d. The smaller radius implies the lower charge transfer resistance and faster transport rate of photo-induced charge carriers [42]. Consequently, the smallest

radius of a-Ni₂P₂O₇/g-C₃N₄ proves its best efficiency on interfacial charge transfer relative to c-Ni₂P₂O₇/g-C₃N₄ and g-C₃N₄.

The time-resolved photoluminescence (TRPL) decay spectra are also performed. As shown in Fig. 4, the decay curves for pure $g\text{-}C_3N_4$, $c\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ and $a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ are fitted and the corresponding τ_{av} are calculated to be 2.23, 1.73 and 1.56 ns, respectively. The lifetime of $a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ is much shorter than that of $g\text{-}C_3N_4$, indicating that effective charge transfer is achieved between $g\text{-}C_3N_4$ and $a\text{-}Ni_2P_2O_7$ [43]. Furthermore, the amorphous catalyst shows better charge transfer compared with the crystalline one, which reduces the recombination of photo-induced electrons and holes. Therefore, suggesting that more electrons are involved in H_2 generation.

3.2. Photocatalytic H_2 generation properties

Photocatalytic H₂ generation of the samples are evaluated under the visible light irradiation (Fig. 5a). After addition of NiNH₄PO₄·H₂O (5-15 wt.%) to form a-Ni₂P₂O₇, the composite specimens show much higher activities than that of pure g-C₃N₄. Especially, when the initial content of NiNH₄PO₄·H₂O reaches 12 wt.%, the obtained a-Ni₂P₂O₇/g- C_3N_4 shows the best H_2 generation rate of 207 μ mol h^{-1} g^{-1} , which is about 37 times higher than that of pure $g-C_3N_4$ (5.5 μ mol h^{-1} g^{-1}). Furthermore, the H_2 generation tests of a-Ni₂P₂O₇/g-C₃N₄ (12 wt.%), c- $Ni_2P_2O_7/g$ - C_3N_4 (12 wt.%), Pt/g- C_3N_4 (0.5 wt.%) and g- C_3N_4 are also presented in Fig. 5b. It is obvious that a-Ni₂P₂O₇/g-C₃N₄ (207 μ mol h⁻¹ g⁻¹) exhibits much higher photocatalytic H₂ generation rate than that of c-Ni₂P₂O₇/g-C₃N₄ (41 μ mol h⁻¹ g⁻¹), and is even better than that of Pt/g- C_3N_4 (119 µmol h⁻¹ g⁻¹). Namely, a- $Ni_2P_2O_7$ can act as a good cocatalyst to g-C₃N₄ when compared with c-Ni₂P₂O₇ and Pt. The apparent quantum efficency (QE) of H_2 generation over a-Ni₂P₂O₇/g-C₃N₄ at 420 nm is about 0.158% (Fig. 5c). Moreover, the as-prepared a-Ni₂P₂O₇/g-C₃N₄ (12 wt.%) also shows a good recycling stability, as shown in Fig. 5d, no obvious decline of H₂ generation rate can be detected after 3 recycling tests (total reaction time is 9 h). In addition, it can be found that the average rate of H2 generation is slightly increased after the first recycling cycle, because the hydrogen generation reaction is an activated process, and the photons absorbed on the surface of the photocatalyst increase with increasing irradiation time [29,44].

3.3. Photocatalytic mechanism

To deeper explore the mechanism of enhanced photocatalytic H_2 generation performance, the positions of the lowest conduction band (E_{CB}) and the topmost valence band (E_{VB}) of $g\text{-}C_3N_4$, $a\text{-}Ni_2P_2O_7$ and $c\text{-}Ni_2P_2O_7$ are calculated with ultraviolet photoelectron spectroscopy (UPS) (Fig. S6). The ionization potential [equivalent to the valence band energy (E_{VB})] of $g\text{-}C_3N_4$, $a\text{-}Ni_2P_2O_7$ and $c\text{-}Ni_2P_2O_7$ can be calculated to be 1.59, 1.64 and 1.63 eV by subtracting the width of the He I UPS spectra from the excitation energy (21.22 eV). The E_{CB} for $g\text{-}C_3N_4$, $a\text{-}Ni_2P_2O_7$ and $c\text{-}Ni_2P_2O_7$ are estimated at -1.01, -0.60 and -0.50 eV from $E_{VB}\text{-}E_g$ [45]. The E_{CB} , E_{VB} and E_g values of samples in electron volts (eV) are converted to electrochemical energy potentials in volts (V) based on the reference standard for which 0 V versus reversible hydrogen electrode (RHE) equals -4.44 eV versus E_{evac} (vacuum level) [46–48], which are summarized in Table S1.

On the basis of the above analysis, the possible mechanism for the improved photocatalytic H_2 generation activity of $a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4$ can be speculated as follows (Scheme 1). The CB level of $g\text{-}C_3N_4$ is more negative than that of $a\text{-}Ni_2P_2O_7$, and the VB level of $a\text{-}Ni_2P_2O_7$ is also more positive than that of $g\text{-}C_3N_4$, forming a staggered band-gap type structure [49]. Consequently, CB-electrons in $g\text{-}C_3N_4$ can efficiently transfer to CB of $a\text{-}Ni_2P_2O_7$ under visible light irradiation, resulting in accumulation of electrons in CB of $a\text{-}Ni_2P_2O_7$ for reducing the H^+ to H_2 . Meantime, the holes reserved in VB of $a\text{-}Ni_2P_2O_7$ can transfer to that of $g\text{-}C_3N_4$, oxidizing the TEOA to TEOA $^+$. In such a way, the separation of electron-hole pairs can be efficiently improved, decreasing the

Fig. 3. (a) UV-vis DRS for g- C_3N_4 , a- $Ni_2P_2O_7/g$ - C_3N_4 and c- $Ni_2P_2O_7/g$ - C_3N_4 . (b) PL spectra of g- C_3N_4 , a- $Ni_2P_2O_7/g$ - C_3N_4 and c- $Ni_2P_2O_7/g$ - C_3

 $\textbf{Fig. 4.} \ \ \text{TRPL decay spectra of } g\text{-}C_3N_4, \ a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4 \ and } \ c\text{-}Ni_2P_2O_7/g\text{-}C_3N_4.$

probability of photo-induced carrier recombination.

On the other hand, the reduction ability of its electrons has a relationship with CB edge position of the semiconductor in the conduction process. The more negative of the CB potential, the higher reduction ability of the electrons [50]. The CB level of a-Ni₂P₂O₇ has more negative potential relative to the crystalline one, leading to the more electrons participating to the reaction of $\rm H^+$ reduction, which is consistent with the result of TRPL. Furthermore, with a-Ni₂P₂O₇ gradually transforms to the crystalline one, the increased particle sizes and the positively shifted CB potential bring to the negative effect on the photocatalytic H₂ generation [51]. Therefore, the advanced photocatalytic

H₂ generation can be attributed to the efficient electron-hole pairs' separation and transfer, the strong reduction ability of CB-electron, the good visible light absorption ability as well as the small particle sizes.

4. Conclusions

In summary, the noble-metal-free amorphous $Ni_2P_2O_7$ modified g- G_3N_4 nanocomposite $(a\text{-}Ni_2P_2O_7/g\text{-}C_3N_4)$ has been successfully synthesized by a facile calcination method. The amorphous state of a- $Ni_2P_2O_7$ on g- G_3N_4 exhibits the best photocatalytic performance compared with c- $Ni_2P_2O_7/g\text{-}G_3N_4$, g- G_3N_4 and even $Pt/g\text{-}G_3N_4$. The enhancement photocatalytic performance may be attributed to the good visible-light absorption ability, the efficient charge separation and transfer, high reduction capacity of CB-electron, and large amount of active sites. The present work may create a new insight for designing and synthesis of amorphous photocatalysts towards high efficiency and low-cost H_2 generation from water splitting by using solar energy.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (51522101, 51631004, and 51471075); Program for JLU Science and Technology Innovative Research Team (2017TD-09); and the Fundamental Research Funds for the Central Universities.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.02.045.

Fig. 5. (a) Comparison of the photocatalytic H_2 generation rates of $a-Ni_2P_2O_7/g-C_3N_4$ with different initial contents of $NiNH_4PO_4\cdot H_2O$ (0, 5, 8, 12 and 15 wt.%) under visible light irradiation ($\lambda > 420$ nm). (b) Photocatalytic H_2 generation activities on $a-Ni_2P_2O_7/g-C_3N_4$ (12 wt.%), $c-Ni_2P_2O_7/g-C_3N_4$ (12 wt.%), $Pt/g-C_3N_4$ (0.5 wt.% of Pt) and pure $g-C_3N_4$. (c) The apparent QE measurement of $a-Ni_2P_2O_7/g-C_3N_4$ 4 420 nm in 10% TEOA aqueous solution. (d) Stability test of the photocatalytic H_2 generation of $a-Ni_2P_2O_7/g-C_3N_4$ (12 wt.%).

 $\textbf{Scheme 1. Comparison of photocatalytic mechanism for a-Ni}_2P_2O_7/g\text{-}C_3N_4 \text{ and } c\text{-Ni}_2P_2O_7/g\text{-}C_3N_4.$

References

- [1] A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
- [2] X.Y. Liu, H. Chen, R. Wang, Y. Shang, Q. Zhang, W. Li, G. Zhang, J. Su, C.T. Dinh, F.P. de Arquer, J. Li, J. Jiang, Q. Mi, R. Si, X. Li, Y. Sun, Y.T. Long, H. Tian, E.H. Sargent, Z. Ning, Adv. Mater. 29 (2017) 1605646–1605653.
- [3] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28 (2016) 1917–1933.
- [4] Y. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016) 1529-1541.

- [5] A. Zada, M. Humayun, F. Raziq, X. Zhang, Y. Qu, L. Bai, C. Qin, L. Jing, H. Fu, Adv. Energy Mater. 6 (2016) 1601190–1601198.
- [6] X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, S. Yang, Adv. Funct. Mater. 26 (2016) 1719–1728.
- [7] Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6 (2016) 1601273–1601277.
- 8] D.J. Martin, P.J. Reardon, S.J. Moniz, J. Tang, J. Am. Chem. Soc. 136 (2014) 12568–12571.
- [9] X. Yue, S. Yi, R. Wang, Z. Zhang, S. Qiu, Sci. Rep. 6 (2016) 22268-22276.

- [10] X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 28 (2016) 2427–2431.
- [11] M. Wu, J.M. Yan, X.W. Zhang, M. Zhao, Q. Jiang, J. Mater. Chem. A 3 (2015) 15710–15714.
- [12] S. Samanta, S. Martha, K. Parida, ChemCatChem 6 (2014) 1453-1462.
- [13] J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen, X. Li, ACS Appl. Mater. Interfaces 9 (2017) 14031–14042.
- [14] D.P. Kumar, J. Choi, S. Hong, D.A. Reddy, S. Lee, T.K. Kim, ACS Sustainable Chem. Eng. 4 (2016) 7158–7166.
- [15] P. Ye, X. Liu, J. Iocozzia, Y. Yuan, L. Gu, G. Xu, Z. Lin, J. Mater. Chem. A 5 (2017) 8493–8498.
- [16] J. Wang, Z. Wang, Z. Zhu, Appl. Catal. B: Environ. 204 (2017) 577-583.
- [17] M.T. Uddin, Y. Nicolas, C. Olivier, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, Phys. Chem. Chem. Phys. 19 (2017) 19279–19288.
- [18] H. Yu, P. Xiao, P. Wang, J. Yu, Appl. Catal. B: Environ. 193 (2016) 217–225.
- [19] X. Ge, L. Chen, L. Zhang, Y. Wen, A. Hirata, M. Chen, Adv. Mater. 26 (2014)
- [20] H. Zhang, Y. Feng, Y. Zhang, L. Fang, W. Li, Q. Liu, K. Wu, Y. Wang, ChemSusChem 7 (2014) 2000–2006.
- [21] Q. Han, Z. Cheng, J. Gao, Y. Zhao, Z. Zhang, L. Dai, L. Qu, Adv. Funct. Mater. 27 (2017) 1606352–1606359.
- [22] S. Zhang, N.T. Hang, Z. Zhang, H. Yue, W. Yang, Nanomaterials 7 (2017) 12-22.
- [23] Z. Sun, C. Li, G. Yao, S. Zheng, Mater. Des. 94 (2016) 403-409.
- [24] H. Zhang, Y. Lu, C.-D. Gu, X.-L. Wang, J.-P. Tu, CrystEngComm 14 (2012) 7942–7950.
- [25] J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale 8 (2016) 2249–2259.
- [26] H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang, J. Zhang, J. Mater. Chem. A 3 (2015) 7375–7381.
- [27] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970–974.
- [28] B. Xue, H.Y. Jiang, T. Sun, F. Mao, Catal. Lett. 146 (2016) 2185-2192.
- [29] S.S. Yi, J.M. Yan, B.R. Wulan, S.J. Li, K.H. Liu, Q. Jiang, Appl. Catal. B: Environ. 200 (2017) 477–483.
- [30] D. Gao, Q. Xu, J. Zhang, Z. Yang, M. Si, Z. Yan, D. Xue, Nanoscale 6 (2014) 2577–2581.

- [31] N. Tian, H. Huang, Y. He, Y. Guo, Y. Zhang, Colloids Surf. A: Physicochem. Eng. Asp. 467 (2015) 188–194.
- [32] C. Wei, C. Cheng, S. Wang, Y. Xu, J. Wang, H. Pang, Chem. Asian J. 10 (2015) 1731–1737.
- [33] B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, J. Mater. Chem. A 3 (2015) 21553–21561.
- [34] W. Wu, S. Li, X. Wu, S. Liao, J. Cao, Chin. J. Chem. 28 (2010) 2389-2393.
- [35] G. Berhault, P. Afanasiev, H. Loboue, C. Geantet, Inorg. Chem. 48 (2009) 2985–2992.
- [36] U.C. Chung, J.L. Mesa, J.L. Pizarro, I. de Meatza, M. Bengoechea, J. Rodríguez Fernández, M.I. Arriortua, T. Rojo, Chem. Mater. 23 (2011) 4317–4330.
- [37] A. Ben Rhaiem, S. Chouaib, K. Guidara, Ionics 16 (2010) 455-463.
- [38] J. Ma, C. Wang, H. He, Appl. Catal. B: Environ. 184 (2016) 28-34.
- [39] J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, J. Mater. Chem. A 1 (2013) 3083-3090.
- [40] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29 (2017) 1605148–1605154.
- [41] J. Zhang, L. Qi, J. Ran, J. Yu, S. Qiao, Adv. Energy Mater. 4 (2014) 1301925–1301930.
- [42] X. Yu, R. Du, B. Li, Y. Zhang, H. Liu, J. Qu, X. An, Appl. Catal. B: Environ. 182 (2016) 504–512.
- [43] Z. Sun, H. Zheng, J. Li, P. Du, Energy Environ. Sci. 8 (2015) 2668–2676.
- [44] J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces 5 (2013) 10317–10324.
- [45] L.J. Zhang, S. Li, B.K. Liu, D.J. Wang, T.F. Xie, ACS Catal. 4 (2014) 3724-3729.
- [46] Y. Shi, J. Chen, Z. Mao, B.D. Fahlman, D. Wang, J. Catal. 356 (2017) 22-31.
- [47] J. Liu, Y. Yang, N. Liu, Y. Liu, H. Huang, Z. Kang, Green Chem. 16 (2014) 4559–4565.
- [48] J. Liu, N.Y. Liu, H. Li, L.P. Wang, X.Q. Wu, H. Huang, Y. Liu, F. Bao, Y. Lifshitz, S.T. Lee, Z.H. Kang, Nanoscale 8 (2016) 11956–11961.
- [49] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43 (2014) 5234–5244.
- [50] W. Luo, Z. Li, X. Jiang, T. Yu, L. Liu, X. Chen, J. Ye, Z. Zou, Phys. Chem. Chem. Phys. 10 (2008) 6717–6723.
- [51] I. Grigioni, M. Bernareggi, G. Sinibaldi, M.V. Dozzi, E. Selli, Appl. Catal. A: Gen. 518 (2016) 176–180.