ALGORITHMS

Lab 01Tasks

A. Odd or Even?		

Time limit: 1 second Memory limit: 256 MB

You are given T numbers, and for each number, you have to tell whether it's odd or even.

Input:

- First line: Integer T ($1 \le T \le 100$)
- Next T lines: Each line contains an integer N ($-10^5 \le N \le 10^5$)

Output:

- For each number, print "{N} is an Even number." or "{N} is an Odd number."

Example:

Input:

5

10

19

7

100

Output:

10 is an Even number.

19 is an Odd number.

7 is an Odd number.

3 is an Odd number.

100 is an Even number.

B. Can you solve Arithmetic Expressions?

Time limit: 1 second Memory limit: 256 MB Solve arithmetic expressions and print the result.

Input:

- First line: T $(1 \le T \le 1000)$
- Next T lines: Each line contains an expression like "calculate 67 + 41"

Output:

- Print the result with 6 decimal places

Example:

Input:

3

calculate 67 + 41

calculate 85 / 5

calculate 13 - 56

Output:

108.000000

17.000000

-43.000000

C. Array Reverse

·

Time limit: 1 second Memory limit: 256 MB

Reverse the array and print the last K elements.

Input:

- First line: Two integers N and K $(1 \le K \le N \le 10^6)$
- Second line: N space-separated integers

Output:

- K space-separated integers from reversed array

Example:

Input:

53

56789

Output:

D. Fast Sum Time limit: 1 second Memory limit: 256 MB Find the sum from 1 to N efficiently. Input: - First line: T $(1 \le T \le 10^4)$ - Next T lines: Each line contains integer N ($1 \le N \le 10^6$) Output: - Sum from 1 to N Example: Input: 3 2 5 10 Output: 15 55 E. Bubble Sort? Time limit: 1 second Memory limit: 256 MB Modify the Bubble Sort algorithm to run in $\theta(n)$ time in the best case.

Input:

- First line: Integer N ($1 \le N \le 10^5$)

- Second line: N integers

Output:

- Sorted array

Example:

Input:

5

32145

Output:

12345

F. Sorting Again??

Time limit: 1 second Memory limit: 256 MB

Sort students based on marks. If marks are equal, use Student ID.

Input:

First line: N (1 ≤ N ≤ 1000)Second line: N student IDs

- Third line: N corresponding marks

Output:

- First line: Minimum swaps

- Next N lines: Sorted ID and Marks

Example:

Input:

4

7253

80 60 80 50

Output:

Minimum swaps: 2 ID: 5 Mark: 80 ID: 7 Mark: 80 ID: 2 Mark: 60 ID: 3 Mark: 50

G. Trains?

Time limit: 3 seconds Memory limit: 256 MB

Sort train schedules by name, then latest time, then original order.

Input:

First line: N (1 ≤ N ≤ 100)Next N lines: Train description

Output:

- Sorted train descriptions

Example:

Input:

3

ABCD will departure for Mymensingh at 00:30

ABC will departure for Dhaka at 17:30

ABCD will departure for Chittagong at 01:00

Output:

ABC will departure for Dhaka at 17:30 ABCD will departure for Chittagong at 01:00 ABCD will departure for Mymensingh at 00:30

LAB 02 TASK

A. Two Sum Trouble

Time Limit: 1 second **Memory Limit:** 256 MB

Bob has a sorted list of **N** integers in non-decreasing order. Given a target sum **S**, determine if there are two distinct elements whose sum equals **S**.

Input

First line: Two integers N (1≤N≤10⁶), S (1≤S≤10⁹)

• Second line: N integers (1≤a_i≤10°) in non-decreasing order

Output

- Two distinct 1-based indices i and j (i < j) such that a_i + a□ = S
- If no such pair exists, print -1

Examples

makefile

CopyEdit

Input:

4 10

1 3 5 7

Output:

2 4

makefile

CopyEdit

Input:

6 18

1 5 8 9 9 10

Output:

3 6

makefile

CopyEdit

Input:

4 7

2 4 6 8

Output:

-1

B. A Beautiful Sorted List

Time Limit: 1 second Memory Limit: 1024 MB

Merge two non-decreasing sorted lists into one in O(N+M) time.

Input

- Line 1: N (length of Alice's list)
- Line 2: Alice's N integers
- Line 3: M (length of Bob's list)
- Line 4: Bob's M integers

Output

• A merged sorted list of length N+M

Example

makefile

CopyEdit

Input:

4

1 3 5 7

4

2 2 4 8

Output:

1 2 2 3 4 5 7 8

C. Longest Subarray Sum

Time Limit: 1 second **Memory Limit:** 256 MB

Find the length of the longest contiguous subarray with a sum \leq K.

Input

- Line 1: Two integers N and K
- Line 2: N integers (array elements)

Output

• Single integer: Length of longest subarray

Example

makefile

CopyEdit

Input:

5 4

4 1 2 1 5

Output:

3

D. Can You Iterate the Binary String?

Time Limit: 0.5 seconds **Memory Limit:** 256 MB

For each binary string, find the index of the **first occurrence** of 1.

Input

- First line: T (1 ≤ T ≤ 10⁴)
- Next T lines: Binary strings S $(1 \le |S| \le 4000)$

Output

• 1-based index of first 1, or -1 if not found

Example

makefile

CopyEdit

Input:

3

00000

11111

Output:

-1

5

1

E. Count the Numbers

Time Limit: 1 second **Memory Limit:** 256 MB

Count how many elements fall in a given range [x, y].

Input

- Line 1: n (array size), q (number of queries)
- Line 2: n sorted integers
- Next q lines: Queries of the form x y

Output

• For each query, print count of elements in range [x, y]

Example

makefile

CopyEdit

Input:

5 3

10 20 20 45 79

20 50

5 45

1 100

Output:

3

LAB 03 TASK

A. Count the Inversion

Use Merge Sort to count inversions in a permutation of numbers from 1 to N.

Input

- Line 1: N $(1 \le N \le 10^5)$
- Line 2: N integers (a permutation of 1 to N)

Output

- Line 1: Total number of inversions
- Line 2: Sorted array

Example

makefile

CopyEdit

Input:

5

1 2 5 4 3

Output:

3

1 2 3 4 5

B. Pair Maximization

Use Divide and Conquer to find max value of $(A[i] + A[j])^2$ for i < j.

Input

- Line 1: N
- Line 2: N integers A

Output

• Single integer: Max (A[i]+A[j])²

Example

makefile

CopyEdit

Input:

5

4 3 1 5 6

Output:

121

C. Fast Power Drift

Compute abmod 107a^b \mod 107abmod107

Input

• Two integers: a (1≤a≤10⁴), b (1≤b≤10¹²)

Output

• Result of abmod 107a^b \mod 107abmod107

Example

makefile

CopyEdit

Input:

100 3

Output:

D. Fast Series Drift

Compute (a1+a2+...+an)mod $m(a^1 + a^2 + ... + a^n) \mod m(a1+a2+...+an)$ mod m(a1+a2+...+an)mod m(a1+a2+...+an)

Input

- T (number of test cases)
- Each of T lines: a n m

Output

• T lines with results

E. Ordering Binary Tree

Reorder array so that BST built from insertions has minimum height.

Input

- N
- N sorted integers

Output

• A reordered list that produces a balanced BST

F. 220 Trees

Given in-order and pre-order traversal, print post-order.

Input

- N
- Line 2: in-order traversal
- Line 3: pre-order traversal

Output

Post-order traversal

LAB04 TASKS

A. Adjacency Matrix Representation

Time Limit: 1 second

Memory Limit: 256 megabytes

You are given a directed weighted graph with N nodes and M edges. The nodes are numbered from 1 to N. Each edge represents a direct connection between two nodes. There is no self loop or multi edge.

Input

The first line contains two integers N and M (1 \leq N \leq 100, 0 \leq M \leq N(N-1)/2) — the number of vertices and the total number of edges.

The next M lines will contain three integers ui vi wi $(1 \le ui, vi \le N, 1 \le wi \le 1000)$ — denoting there is an edge from node ui to vi with cost wi.

Output

The output consists of an N×N adjacency matrix representing the directed weighted graph. Each row corresponds to a node, and each column represents its directed edges to other nodes. The value at position (i, j) denotes the weight of the edge from node i to node j. If there is no edge, the value is 0.

Examples

Input

- 6 7
- 1 5 6
- 6 3 5
- 1 3 9
- 3 4 7
- 4 6 1
- 5 6 8
- 6 1 6

Output

- 0 0 9 0 6 0
- 0 0 0 0 0
- 000700
- 000001
- 000008
- 6 0 5 0 0 0

Input

```
1 3 8
```

3 2 5

1 4 2

Output

0 0 8 2

0 0 0 0

0500

0 0 0 0

B. Adjacency List Representation

Time Limit: 1 second

Memory Limit: 256 megabytes

You are given a directed weighted graph with N nodes and M edges. The nodes are numbered from 1 to N. Each edge represents a direct connection between two nodes. There is no self loop or multi edge.

Input

The first line contains two integers N and M (1 \leq N \leq 100, 0 \leq M \leq N(N-1)/2) - the number of vertices and the total number of edges.

The second line contains M integers u1, u2, ..., um $(1 \le ui \le N)$ — the i-th integer represents the node that is one endpoint of the i-th edge.

The third line contains M integers v1, v2, ..., vm $(1 \le vi \le N)$ - the i-th integer represents the other endpoint of the i-th edge.

The fourth line contains M integers w1, w2, ..., wm $(1 \le wi \le 1000)$ - the i-th integer represents the weight of the i-th edge.

Output

Output the adjacency list representation as shown in the sample output.

Examples

Input

- 4 5
- 4 1 4 3 3
- 3 2 2 2 1
- 4 4 10 8 5

Output

- 1: (2,4)
- 2:
- 3: (2,8) (1,5)
- 4: (3,4) (2,10)

Input

- 4 4
- 3 3 2 4

```
2 1 1 3
```

9 5 8 10

Output

1:

2: (1,8)

3:(2,9)(1,5)

4: (3,10)

C. Graph Metamorphosis

Time Limit: 1 second

Memory Limit: 256 megabytes

You are given a directed unweighted graph with N nodes in an adjacency list format. The nodes are numbered from 0 to N-1. Your task is to convert it into an adjacency matrix representation.

Input

The first line contains a single integer N (1 \leq N \leq 100) – the number of vertices.

The next N lines describe the adjacency list:

The i-th line starts with an integer k, indicating the number of nodes adjacent to node i.

The next k space-separated integers represent the nodes adjacent to node i.

Output

Print an $N \times N$ adjacency matrix, where the cell at row i and column j is:

- 1 if there is an edge between nodes i and j
- 0 otherwise

Examples

Input

5

2 1 2

1 0

1 0

1 4

1 3

Output

0 1 1 0 0

1 0 0 0 0

1 0 0 0 0

Input

CopyEdit

5

0

2 2 3

3 1 3 4

2 1 2

1 2

Outpu

00000

0 0 1 1 0

0 1 0 1 1

0 1 1 0 0

0 0 1 0 0

D. The Seven Bridges of Königsberg

Time Limit: 1 second

Memory Limit: 256 megabytes

You are given an undirected unweighted connected graph with N nodes and M edges. There can be self loops or multiple edges. Your task is to determine whether an Eulerian Path exists.

Input

The first line contains two integers N and M (1 \leq N \leq 2×10 $^{\circ}$, 0 \leq M \leq 3×10 $^{\circ}$)

The second line contains M integers u1, u2, ..., um

The third line contains M integers v1, v2, ..., vm

The i-th edge of this graph is between ui and vi.

Output

Print "YES" if an Eulerian Path exists, otherwise print "NO".

Examples

Inpu

5 10

5 5 5 2 2 2 3 3 4 2

2 3 1 3 4 1 4 1 2 4

Output

YES

Input

5 4

1 4 3 2

Output

YES

Input

8 7

4 4 6 6 3 1 8

6 5 3 2 7 8 7

Output

NO

Input

7 6

3 5 7 6 4 2

5 7 6 4 2 1

Output

YES

E. Edge Queries

Time Limit: 1 second

Memory Limit: 256 megabytes

You are given a directed unweighted graph with N nodes and M edges.

Input

First line: Two integers N and M $(1 \le N \le 2 \times 10^5, 0 \le M \le 3 \times 10^5)$

Second line: M integers u1, ..., um

Third line: M integers v1, ..., vm

Each edge is from node ui to vi.

Output

Print a single line with N space-separated integers, where the i-th integer is the difference of indegree and outdegree of node i.

Examples

Input

5 10

2 5 4 3 2 4 3 4 1 3

5 1 5 5 1 2 2 1 3 4

Output

2 0 -2 -2 2

Input

```
5 3 3 2
```

Output

```
2 0 -2 1 -1
```

Input

8 7

7 7 7 2 1 4 1

2 6 3 4 2 8 5

Output

-2 1 1 0 1 1 -3 1

F. The King of Königsberg

Time Limit: 1 second

Memory Limit: 256 megabytes

You are given an N×N chessboard and the initial position $(x,\ y)$ of a King.

Input

• First line: N (1 \leq N \leq 2×10⁵) - size of the chessboard

• Second line: $x y (1 \le x, y \le N)$ — initial position of the King **Output** First print K - number of valid moves. Then K lines with two integers each, sorted in ascending order. **Examples** Input 8 1 1 **Output** 3 1 2 2 1 2 2 Input 8 1 2 OutpuT 5

1 3

2 1

2 2

2 3

Input

8

2 2

Output

8

1 1

1 2

1 3

2 1

2 3

3 1

3 2

3 3

G. Coprime Graph

Time Limit: 2 seconds

Memory Limit: 256 megabytes

You are given an integer N. Construct an undirected graph with N nodes, where node i is connected to node j if gcd(i, j) = 1 and $i \neq j$.

There are Q queries. Each query contains X and K - find the K-th smallest node connected to node X.

Input

```
First line: Two integers N and Q (1 \le N \le 2000, 1 \le Q \le 3×10^5) Next Q lines: Each contains X and K
```

Output

For each query, print the K-th smallest node connected to X. If it doesn't exist, print -1.

Examples

Input

CopyEdit

- 5 6
- 1 3
- 3 1
- 4 2
- 5 5
- 3 4
- 5 2

Output

4

1

3

-1

5

2

Input

2000 3

903 24

702 563

942 50

Output

41

1829

149

Input

1 1

1 1

Output

diff

CopyEdit

-1

Input

2 1

2 1

Output

1

LAB 05 TASK

Task A: Can You Traverse - 1 (BFS Traversal)

Time Limit: 5 seconds Memory Limit: 256 MB

Graph Type: Undirected, unweighted, connected (no self-loops or multi-edges)

Perform a **Breadth-First Search (BFS)** starting from node 1. Print the order in which the nodes are visited. You may print any valid BFS traversal.

📥 Input

- First line: Two integers N M (number of nodes and number of edges)
- Next M lines: Each line contains two integers u v representing an edge between node u and node v.

Output

• A single line: space-separated list of nodes in the BFS traversal order, starting from node 1.

📌 Example 1

Input:

43

14

32

13

Output:

1342

P Example 2

Input:

6 10

3 1

16

64

4 5

52

62

4 3

5 6

Output:

Time Limit: 1 second Memory Limit: 1024 MB

Graph Type: Undirected, unweighted, connected (no self-loops or multi-edges)

Perform a **Depth-First Search (DFS)** starting from node 1. Print the order in which nodes are visited. You may print any valid DFS traversal.

📥 Input

- First line: Two integers N M
- Second line: M integers u1 u2 ... um (first endpoint of edges)
- Third line: M integers v1 v2 ... vm (second endpoint of edges)

Each edge is between ui and vi.

📤 Output

• A single line: space-separated list of nodes in DFS traversal order starting from node 1.

📌 Example 1

Input:

43

131

423

Output:

1324

Example 2

Input:

15346164 53462331

Output: 1 3 4 6 2 5

Task C: Lightning McQueen (Shortest Path + Lexicographic Order)

Time Limit: 1 second
Memory Limit: 256 MB

Graph Type: Undirected, unweighted (may be disconnected)

Find the **shortest path** from source S to destination D. If multiple paths exist, return the **lexicographically smallest** one.

📥 Input

- First line: Four integers N M S D
- Second line: M integers u1 u2 ... um
- Third line: M integers v1 v2 ... vm

Each edge connects ui and vi.

A Output

- If path exists:
 - Line 1: distance (number of edges)
 - Line 2: space-separated path from S to D
- If no path exists:
 - -1

Example 1

Input:

5 10 5 3 2 1 5 3 1 4 2 4 1 4

5545223133

Output:

1

53

📌 Example 2

Input:

5425

5124

1332

Output:

3

2315

Example 3

Input:

6665

121553

514242

Output:

-1

* Task D: Through the Jungle (Shortest Path via Node K)

Time Limit: 1 second
Memory Limit: 256 MB

Graph Type: Directed, unweighted

Find the **shortest path** from source S to destination D, **passing through node K**. If no such path exists, print -1.

📥 Input

- First line: Five integers N M S D K
- Next M lines: Two integers u v for each edge (directed from u to v)

Output

- If path exists:
 - Line 1: number of edges
 - Line 2: space-separated path from S to D via K
- If no path exists:
 - -1

Example 1

Input:

- 5 10 5 3 5
- 25
- 5 1
- 45
- 35
- 12
- 24
- 32
- 14
- 13
- 34

Output:

- 2
- 513

Example 2

Input:

66222

5 1

12

14

52

0 2

4 5

32

Output:

0

2

Task E: Cycle Detection (Directed Graph)

Time Limit: 1 second
Memory Limit: 256 MB

Graph Type: Directed, unweighted

Check whether the given graph contains any **cycle**. If yes, print YES, else print NO.

📥 Input

- First line: Two integers N M
- Next M lines: Two integers u v representing a directed edge from u to v

📤 Output

- Print YES if the graph has a cycle
- Print N0 otherwise

📌 Example 1

Input:

4 7

13

12

24

3 1

23

4 3

4 1

Output:

YES

Example 2

Input:

65

64

63

4 5

62

4 1

Output:

NO

▼ Task F: Diamonds Under W (2D Grid Search)

Time Limit: 1 second **Memory Limit:** 256 MB

You are given a **2D grid** with rows R and columns H.

Each cell is one of:

• . → empty cell (can move)

- D → cell with diamond (can move and collect)
- # → obstacle (cannot move)

You can **start from any non-obstacle cell** and move **up/down/left/right** to collect diamonds. Find the **maximum number of diamonds** that can be collected from any valid starting cell.

- First line: Two integers R H
- Next R lines: each with H characters describing the grid

A Output

 A single integer — the maximum number of diamonds collectable from any valid starting point

📌 Example 1

Input:

5 5

.#.DD

##.#.

###D

#DDD#

#..DD

Output:

5

Input:

D#### ##.D# #..D# ###D#

..##D

Output:

3

Example 3

Input:

15

D....

Output:

1

LAB -06 TASK

A. Advising

Time limit per test: 1 second

Memory limit per test: 1024 megabytes

There are N courses and M requirements ("Course A must be before Course B"). Find a valid order of courses, or -1 if none.

Input

First line: N M Next M lines: Ai Bi

Output

Valid order or -1

Example Input

54

24

25

43

Example Output

24315

Example Input

46

12

13

4 1

23

24

43

Example Output

-1

B. A Football Match

Time limit per test: 2 seconds

Memory limit per test: 1024 megabytes

Players tackle each other: Robots only tackle Humans and Humans only tackle Robots. Given tackles, find maximum possible number of Robots or Humans.

Input

First line: N M Next M lines: ui vi

Output

Maximum number of Robots or Humans

Example Input

56

3 4

3 2

5 4

52

4 1

12

Example Output

3

Example Input

43

13

3 2

35

Example Output

4

C. The Knight of Königsberg

Time limit per test: 1 second

Memory limit per test: 256 megabytes

Given an N×N chessboard, find minimum knight moves from (x1,y1) to (x2,y2), or -1 if impossible.

Input

Ν

x1 y1 x2 y2

Output

Minimum moves or -1

Example Input

3

1213

Example Output

3

Example Input

3

1122

Example Output

-1

D. Easy Tree Queries

Time limit per test: 1 second

Memory limit per test: 1024 megabytes

Given a rooted tree with N nodes and Q queries, find subtree size of given nodes. Input NRN-1 lines edges Q Q lines with X Output Subtree size per query Example Input 4 1 3 1 12 4 2 3 1 4 2 **Example Output** 1

E. What's the Diameter?

Time limit per test: 1 second

Memory limit per test: 1024 megabytes

Given a connected tree, find two nodes with longest path and its length.

Input

N

2

N-1 lines edges

Output

Length

Two nodes

Example Input

5

- 14
- 4 2
- 3 2

Example Output

- 4
- 35

Example Input

- 5
- 12
- 53
- 32
- 24

Example Output

- 3
- 5 1

F. An Ancient Ordering

Time limit per test: 1 second

Memory limit per test: 256 megabytes

Given N words sorted in a custom lexicographical order, find the order of letters or print -1 if impossible.

Input

Ν

N lines words

Output

Letter order or -1

Example Input

3

eat

tea

ate

Example Output

eta

Example Input

6

abc

ab

р

pq

pqr

pqrs

Example Output

-1

LAB -07 TASKS

A. Shortest Path

Time limit per test: 1 second

Memory limit per test: 1024 megabytes

You are given a directed weighted graph with N nodes and M edges. Nodes are numbered from 1 to N. No self-loops or multiple edges.

There is a source S and destination D. Find shortest distance from S to D and print the path taken. If multiple shortest paths exist, print any. If no path exists, print -1.

Input

First line: N M S D

Second line: M integers u1 u2 ... uM (starting node of each edge) Third line: M integers v1 v2 ... vM (ending node of each edge) Fourth line: M integers w1 w2 ... wM (weights of edges)

Output

If path exists, first line shortest distance, second line nodes on path in order. Otherwise -1.

Example Input

4342

134

223

3 4 5

Example Output

9

Example Input

6515

14164

21626

33434

Example Output

-1

Example Input

2121

2

1

7

Example Output

7

2 1

Example Input

5724

1154232

5435543

3826643

Example Output

7

234

B. Where to Meet?

Time limit per test: 2 seconds

Memory limit per test: 1024 megabytes

Alice starts from S, Bob from T in a directed weighted graph with no self-loops or multiple edges. Find node where they can meet minimizing max arrival time. They can wait at any node.

Input

First line: N M S T Next M lines: ui vi wi

Output

Print two integers: minimum meeting time and node number. If multiple nodes, smallest node. If no meeting possible, print -1.

Example Input

Example Output

Example Input

- 4 1 3

Example Output

-1

Example Input

Example Output

Example Input

Example Output

C. Minimize the Danger

Time limit per test: 2 seconds

Memory limit per test: 1024 megabytes

Given N cities and M bi-directional roads with danger levels (weights). From city 1 to every other city, find minimum danger level, defined as max edge danger on path. If unreachable print -1. Danger for city 1 is always 0.

Input

First line: N M

Next M lines: ui vi wi

Output

N integers: minimum danger for each city from 1.

Example Input

43

213

235

343

Example Output

0355

Example Input

65

123

145

162

263

461

Example Output

0 3 -1 2 -1 2

Example Input

2 1

215

Example Output

Example Input

5 7

153

142

531

546

525

344

328

Example Output

05323

D. Beautiful Path

Time limit per test: 2 seconds

Memory limit per test: 1024 megabytes

Directed graph with N nodes and M edges (no self-loops/multi-edges). Nodes have weights. Find minimum cost path sum of node weights from S to D. If none exists, print -1.

Input

First line: N M S D

Second line: N integers w1 w2 ... wN (weights of nodes)

Next M lines: ui vi (edges)

Output

Minimum cost or -1.

Example Input

4312

3454

12

32

43

Example Output

7

Example Input

6553

334341

```
4 1
```

16

62

46

Example Output

-1

Example Input

2111

76

2 1

Example Output

7

Example Input

5735

38266

15

14

53

4 5

25

3 4

23

Example Output

14

E. Parity Edges

Time limit per test: 1.5 seconds

Memory limit per test: 1024 megabytes

Directed weighted graph with no self-loops/multi-edges. Find shortest distance from node 1 to node N with constraint: no two consecutive edges on path have same parity (both even or both odd). Print -1 if impossible.

Input

First line: N M

Second line: M integers u1 u2 ... uM

Third line: M integers v1 v2 ... vM Fourth line: M integers w1 w2 ... wM

Output

Minimum distance or -1.

Example Input

43

132

443

3 4 5

Example Output

3

Example Input

65

14164

21626

33434

Example Output

4

Example Input

2 1

2

1

7

Example Output

-1

Example Input

5 7

1145232

4534453

3826643

Example Output

8

F. Shortest Path Revisited

Time limit per test: 3 seconds

Memory limit per test: 1024 megabytes

Bidirectional weighted graph with no self-loops/multi-edges. Find cost of the **second shortest path** from S to D (strictly greater than shortest). If none exists, print -1.

Input

First line: N M S D Next M lines: ui vi wi

Output

Cost of second shortest path or -1.

Example Input

4323

213

235

343

Example Output

11

Example Input

6534

123

145

162

263

461

Example Output

-1

Example Input

2122

215

Example Output

10

Example Input

5725

153

142

531

525

3 4 4

328

Example Output

7

LAB 08 TASK

A. Friendship

Time Limit: 1 second

Memory Limit: 1024 MB

Study Material: http://www.shafaetsplanet.com/?p=763

There is a group of **N** people living in a small village. Each person has a unique ID labeled from **1 to N**. Initially, everyone has no friends.

You're given information about **K** friendships. After each friendship, you need to print the size of the friend circle that the two people belong to (after they become friends).

Input

- First line: Two integers **N**, **K** ($1 \le N$, $K \le 3 \times 10^5$)
- Next **K** lines: Two integers **ai**, **aj** (1 ≤ ai, aj ≤ N, ai ≠ aj)

Output

• For each friendship, print a single integer representing the size of the friend circle after that friendship is formed.

Example Input

- 8 7
- 2 4
- 4 5
- 3 6

- 4 7
- 3 1
- 2 7
- 6 2

Example Output

2

3

2

4

3

4

7

Explanation

After each union, the size of the combined friend circle is printed. If the two people are already in the same group, the size remains unchanged.

B. Help the King!

Time Limit: 1 second
Memory Limit: 1024 MB

There are **N** cities and **M** bidirectional roads. Each road has a maintenance cost. The king wants to **minimize the total maintenance cost** while still making sure **all cities are connected**.

Input

- First line: Two integers N, M $(2 \le N \le 2 \times 10^5, 1 \le M \le 3 \times 10^5)$
- Next **M** lines: Three integers **ui**, **vi**, **wi** $(1 \le ui, vi \le N, 1 \le wi \le 10^6)$

Output

• Print a single integer: the **minimum total maintenance cost** that connects all cities.

Example Input

- 4 3
- 3 4 5
- 3 1 5
- 2 1 2

Example Output

12

Example Input

- 6 5
- 2 6 3
- 2 3 3
- 2 1 4
- 6 5 1
- 5 4 2

Example Output

13

C. Again MST

Time Limit: 1 second **Memory Limit:** 256 MB

You are given a connected undirected weighted graph with **N** nodes and **M** edges. You need to find the **second-best Minimum Spanning Tree** (MST), which is a spanning tree with strictly greater cost than the MST, and as low as possible.

Note

- There are no self-loops or multiple edges.
- If no second-best MST exists, print -1.

Input

- First line: Two integers **N**, **M** ($2 \le N \le 1000$, $1 \le M \le 2000$)
- Next **M** lines: Three integers **ui**, **vi**, **wi** (1 ≤ ui, vi ≤ N, 1 ≤ wi ≤ 10⁶)

Output

• A single integer: the total cost of the second-best MST, or -1 if it doesn't exist.

Example Input

```
6 7
```

1 2 1

2 3 2

3 1 3

1 4 5

4 5 4

5 6 5

6 4 5

Example Output

18

Example Input

```
5 5
```

1 2 3

2 3 4

3 4 5

4 5 1

5 1 2

Example Output