Multistep Input Reduction for High Dimensional Uncertainty Quantification

Paul W. Talbot¹, CongJian Wang², Cristian Rabiti², Anil K. Prinja¹

> ¹University of New Mexico ²Idaho National Laboratory

PHYSOR 2016, Sun Valley, Idaho

Outline

Discussion Points

- 1 Introduction
- 2 Methods
 - PCA
 - Sensitivity
- 3 Results

Uncertainty Quantification

Uncertainty Quantification

How well do we know what we know?

- Quantity of Interest Distribution
- Failure Probabilities
- Accurate Margins

Uncertainty Quantification Methods

Monte Carlo, Latin Hypercube

- (Mostly) Agnostic of Dimensionality
- Very slow in converging $\left(\frac{c}{\sqrt{N}}\right)$

Grid-based Polynomial Expansions

- Fast convergence for low (<50) dimensions</p>
- Very slow convergence for high (>1000) dimensions

Uncertainty Quantification in Reactor Physics

Specific to Reactor Physics

- Large input spaces (tens of thousands)
- Computationally-intensive models
- Long solve times

Want few samples to characterize high-dimensional input space

Uncertainty Quantification in Reactor Physics

Nature of input space

- Mostly cross sections
- Significant correlation between tabulation points, energies...
- Many cross sections have relatively low impact

We can leverage these properties

Methods

Principle Component Analysis

Principle Component Analysis

Correlated input variables orthogonalized

- Start with many correlated "manifest" input dimensions
- Use linear PCA to pick characteristic "latent" dimensions
- Eliminate dimensions with sufficiently small impact

$$M \approx QL$$

- \blacksquare *M* is the manifest set of input variables (*Nx*1),
- Q is the PCA reduction matrix (NxM),
- L is the reduced latent variables(Mx1)
- M < N

∟_{PCA}

Results

RAVEN: PCA Reduction

Decomposition Eigenvalues

```
<ImportanceRank>
 <pcaindex>
   <ans>
      <variable>y1
        <index>0.434532487017</index>
        <dim>1</dim>
      </variable>
      <variable>y2
        <index>0.289611617218</index>
        <dim>2</dim>
      </variable>
      <variable>v3
        <index>0.188352017943</index>
        <dim>3</dim>
      </variable>
      <variable>v4
        <index>0.0778091082631</index>
        <dim>4</dim>
      </variable>
```

L_{PCA}

Methods

Principle Component Analysis

Figure: PCA Reduction

Sensitivity

Methods

Sensitivity-Based Reduction

Sensitivity

Methods

Sensitivity-Based Reduction

Eliminating low-impact inputs

- Calculate global sensitivity indices
- Remove inputs of low impact

Calculation is often costly (Linear regression)

$$L\approx PR$$
,

- \blacksquare *L* is the set of (once-reduced) input variables (Mx1),
- \blacksquare *P* is the sensitivity reduction matrix (MxK),
- R is the twice-reduced variables(Kx1)
- K < M

__Methods

Sensitivity

Results

RAVEN: Sensitivity Reduction

Sensitivity Coefficients

```
<ReducedOrderModel>
  <ans>
   <mean>0.781756851724</mean>
   <variance>0.275604991951
   <numRuns>9</numRuns>
   <indices>
     <tot variance>0.275604991951</tot variance>
     <variables>v1
       <partial variance>0.264042832714</partial variance>
       <Sobol index>0.958048077595</Sobol index>
     </variables>
     <variables>v2
       <partial variance>0.00984470571011</partial variance>
       <Sobol index>0.035720346139/Sobol index>
     </variables>
     <variables>v4
       <partial_variance>0.00157893548534</partial variance>
       <Sobol index>0.00572897999474/Sobol index>
     </variables>
```

Sensitivity

Methods

Sensitivity-Based Reduction

Figure: Sensitivity Reduction

Combined Reduction

Combine PCA and Sensitivity Reduction

$$M \approx PQR$$

$$|R|<|L|<|M|$$

Reduction can be several orders of magnitude

Results

Demonstration Case

Demonstration Case

Demonstration Case

- 308 correlated uncertain input variables
- Originally cross sections from SCALE 44-group library
- Simulation is simple polynomial of input variables

Demonstration Procedure

- Use Monte Carlo to establish benchmark (308)
- 2 Perform PCA reduction
- Use Monte Carlo to sample PCA-reduced space (50)
- Perform Sensitivity Analysis
- 5 Use Monte Carlo to sample various sensitivity reductions

Demonstration Twice-Reduced Mean

(a) Mean Values

(b) Mean Errors

Demonstration Twice-Reduced Variance

(a) Variance Values

(b) Variance Errors

Results

Automated Sensitivity

What if we could automate reduction?

Automated Sensitivity: Adaptive Sobol

Sobol decomposition:

$$f(x, y, z) = f_0$$

$$+ f_1(x) + f_2(y) + f_3(z)$$

$$+ f_{1,2}(x, y) + f_{1,3}(x, z) + f_{2,3}(y, z)$$

$$+ f_{1,2,3}(x, y, z),$$

where
$$f_1(x) = \int \int f(x, y, z) dy dz - f_0$$
, etc.

Adaptive Sobol: construction based on sensitivities

Demonstration: Adaptive Sobol

Questions?

Thank you for attending!

This project was funded through LDRD at Idaho National Laboratory.