DRP: Fourier Analysis on Groups

Adithya Ganesh

October 11, 2019

1 Introduction to Finite Markov Chains

A finite Markov chain is a process which moves among the elements of a finite set Ω in the following manner: when at $x \in \Omega$, the next position is chosen according to a fixed probability distribution $P(x,\cdot)$.

(More formal definition.)

Theorem.

Definition. For $x \in \Omega$, define the **hitting time** for x to be

$$\tau_x := \min\left\{t \ge 0, X_t = x\right\},\,$$

that is, the first time at which the chain visits state x.

2 Meeting 1

 s_0, \ldots, s_n family of random variables. \mathcal{F}_i is the filtration at time i, which is equal to $\sigma(s_0, s_1, \ldots, s_i)$, the signal algebra generated by s_0, \ldots, s_i .

A probability space is a given of three things:

$$(\Omega, \mathcal{F}, p),$$

where Ω is the state space, \mathcal{F} is a sigma-algebra, and p is a prob measures

When \mathcal{F} is the power set in the discrete case. The σ algebra is a collection C of subsets such that

- $\emptyset \in C$.
- $A \in C \implies A^C \in C$.
- $A_1, A_2, \dots, A_n \in C \implies \bigcup A_i \in C$.

A probability measure is a function $p: \mathcal{F} \to [0,1]$ such that

•
$$p(\emptyset) = 0$$

•
$$p(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) \text{ if } A_i \cap A_j \neq \emptyset.$$

Why sigma algebras? Consider a sequence of n coin tosses. We can write

$$(\Omega, \mathcal{F}, p) = \left(\{0, 1\}^n, 2^{\{0, 1\}^n}, p = \textit{uniform} \right).$$

In the continuous case, (Ω, \mathcal{F}, p) , $\Omega = [0, 1]$, where p = uniform measure, p((a, b)) = b - a.

Definition. Martingales.

Definition. *If* is a σ -algebra, X is an RV, then

$$\mathbb{E}[X|]$$

is the unique rv s.t.

$$\mathbb{E}[X1_A] = \mathbb{E}\left[\mathbb{E}\left[x\right] \mid 1_A\right],$$

for all $A \in$.

Let T = stopping time, which is the property that

$$\{T \le n\} \in \mathcal{F}_n = \sigma(S_0, \dots, S_n).$$

The optimal stopping theorem states that

$$\mathbb{E}\left[S_T\right] = 0,$$

if $S_{\min(N,T)}$ is bounded.

The Gambler's problem is a martingale.

$$\mathbb{E}\left[S_T\right] = 0,$$

so

$$P(S_T = -b)(-b) + P(S_T = a)a = 0,$$

so $p = \frac{b}{a+b}$.

Exercise. Gambler ruin with bias. Suppose $S_n = X_1 + X_2 + \cdots + X_n$, $\mathbb{E}[X_i] = p < 0$.