Поддерживающие временные ряды в MSSA (продолжение)

Ткаченко Егор Андреевич, группа 19.Б04

Санкт-Петербургский государственный университет Прикладная математика и информатика Кафедра статистического моделирования Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э.

21 декабря 2021г.

1/9

Erop Ткаченко Supportive MSSA 21.12.2021

Базовые определения

Временной ряд

Вещественный временной ряд длины N_p :

$$F_p = (f_0^{(p)}, \dots, f_{N_p-1}^{(p)}), f_j^{(p)} \in \mathbb{R}.$$

Многомерный временной ряд

Многомерный временной ряд F — набор s временных рядов F_p длин N_p :

$$\{\mathsf{F}_p, p=1,\ldots,s\}$$

2/9

Eгор Ткаченко Supportive MSSA 21.12.2021

Траекторная матрица

L-Траекторная матрица ряда F_p :

$$\mathcal{T}_{SSA}(\mathsf{F}_p) = \begin{pmatrix} f_0^{(p)} & f_1^{(p)} & \dots & f_{K-1}^{(p)} \\ f_1^{(p)} & f_2^{(p)} & \dots & f_K^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ f_{L-1}^{(p)} & f_L^{(p)} & \dots & f_{N_p-1}^{(p)} \end{pmatrix};$$

для многомерного ряда $F: \mathcal{T}_{MSSA}(\mathsf{F}) = [\mathcal{T}_{SSA}(\mathsf{F}_1) : \ldots : \mathcal{T}_{SSA}(\mathsf{F}_s)].$ Из траекторной матрицы можно восстановить ряд.

Ранг

Ранг ряда F_p (многомерного ряда F) — это ранг его траекторной матрицы: $r_p = \text{rank } \mathcal{T}_{SSA}(\mathsf{F}_p) \quad (r_{MSSA} = \text{rank } \mathcal{T}_{MSSA}(\mathsf{F}))$

Егор Ткаченко Supportive MSSA 21.12.2021 3/9

Применение SSA и MSSA

Вход: Ряд F_1 для SSA или многомерный ряд F для MSSA; длина окна $L \le N_1$ для SSA или $L \le N_p$ для MSSA; ранг аппроксимирующего ряда r.

Алгоритм

- 1 Получение L-траекторной матрицы \mathbf{X} временного ряда: $\mathbf{X} = \mathcal{T}_{SSA}(\mathsf{F}_1)$ для SSA или $\mathbf{X} = \mathcal{T}_{MSSA}(\mathsf{F})$ для MSSA.
- 2 Методом SVD матрица \mathbf{X} раскладывается на сумму d матриц \mathbf{X}_i ранга 1, где: $d=\operatorname{rank} \mathbf{X}$.
- 3 Первые r матриц \mathbf{X}_i складываются и восстанавливаются в ряд (SSA) или многомерный ряд (MSSA)

Выход: Аппроксимирующий ряд конечного ранга г.

4/9

Erop Tкаченко Supportive MSSA 21.12.2021

Линейная рекуррентная формула; управляемый ЛРФ ряд

Ряд $F_p = (f_i)_{i=0}^{N_p-1}$ — управляемый ЛРФ, если существуют такие $a_1, \ldots, a_d, \text{ 4TO:}$

$$f_{i+d} = \sum_{k=1}^{d} a_k f_{i+d-k}, \ 0 \le i \le N_p - 1 - d, \ a_d \ne 0, \ t < N_p - 1.$$

Замечание

Ряд конечного ранга является управляемым ЛРФ.

Прогноз ряда

Прогноз вещественного временного ряда F_p :

$$\widetilde{\mathsf{f}}_{N_p} = \sum_{k=1}^{L-1} a_k f_{N_p-k}.$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 21.12.2021

Задача

Пусть имеется временной ряд $F_1 = S_1 + R_1$, где

- Сигнал S_1 ряд управляемый ЛРФ.
- Шум R₁ ряд без структуры.

Задача: спрогнозировать сигнал S_1 .

Пусть помимо ряда F_1 имеется временной ряд F_2 .

Идея: использование ряда F_2 может улучшить прогноз сигнала S_1 .

- Второй ряд дает алгоритму больше данных, которые могут улучшить ЛРФ.
- Второй ряд может сделать прогноз хуже, если его структура отличается от первого.

6/9

Erop Ткаченко Supportive MSSA 21.12.2021

Ошибка прогноза S сигнала S_1

$$\mathsf{MSE}(\overset{\sim}{\mathsf{S}},\mathsf{S}_1) = \frac{1}{N_f} \sum_{i=N}^{N+N_f-1} (\overset{\sim}{\mathsf{s}}_i - \mathsf{s}_i)^2$$

Поддерживающий ряд (для прогноза)

Ряд F_2 — поддерживающий, если $\mathsf{MSE}(\widetilde{\mathsf{S}}_{\mathsf{MSSA}},\mathsf{S}_1) < \mathsf{MSE}(\widetilde{\mathsf{S}}_{\mathsf{SSA}},\mathsf{S}_1)$

Вопрос: Как понять, что ряд поддерживающий?

<u>Согл</u>асованность

- ullet Сигналы $\mathsf{S}_1,\mathsf{S}_2$ полностью согласованы, если $\mathit{r}_{MSSA}=\mathit{r}_1=\mathit{r}_2$
- ullet Сигналы $\mathsf{S}_1,\mathsf{S}_2$ полностью не согласованы, если $\mathit{r}_{MSSA}=\mathit{r}_1+\mathit{r}_2$

7/9

Erop Ткаченко Supportive MSSA 21.12.2021

Численные эксперименты

Гипотеза

Если сигналы рядов согласованы и шум второго небольшой, то ряд F_2 — поддерживающий.

Вопрос

На сколько можно исказить сигнал второго ряда, прежде чем он перестанет быть поддерживающим?

Шаблоны рядов в экспериментах:

$$s_j^{(i)} = \cos(\frac{2\pi j}{12}) \exp(j\lambda_i)$$

$$s_i^{(i)} = \cos(\frac{2\pi j}{T_i})$$

$$s_i^{(i)} = \cos(\frac{2\pi j}{12}) + \exp(j\lambda_i)$$

Шумы R_1, R_2 — независимые белые гауссовские шумы со средними, равными 0, и дисперсиями σ_1^2, σ_2^2 , соответственно.

Cra

8/9

Планы

- Как по структуре рядов понять согласованность?
- Что если ранги рядов разные?

9/9