Neural Machine Translation with Source Dependency Representation

<u>Kehai Chen¹</u>, Rui Wang², Masao Utiyama², Lemao Liu³, Akihiro Tamura⁴, Eiichiro Sumita² and Tiejun Zhao¹

¹Harbin Institute of Technology, China

²National Institute of Information and Communications Technology, Japan

³Tencent AI Lab, China

⁴Ehime University, Japan

Overview

Traditional NMT Model

Overview

Our proposed NMT model

Inspired by the syntax knowledge in SMT, we want to explicitly integrate source dependency information into NMT

Related Work

- NMT with source syntax information
 - -Tree2seq (Eriguchi et al., 2016; Li et al., 2017; +other)
 Tree-based neural network is used to encode source phrase structures
 - -Extending source inputs with syntax labels (Sennrich et al., 2016; Chen et al., 2017; +other) Dependency labels are concatenated to source word

Related Work

- NMT with source syntax information
 - -Tree2seq (Eriguchi et al., 2016; Li et al., 2017; +other)
 Tree-based neural network is used to encode source phrase structures
 - -Extending source inputs with syntax labels (Sennrich et al., 2016; Chen et al., 2017; +other) Dependency labels are concatenated to source word
- Our work
 - -A compromise between the two kinds of works
 - -A novel double context approach to utilizing source dependency constraints

Source Dependency Representation (SDR)

• Extracting a dependency unit for each source word to capture source longdistance dependency constraints:

$$U_{j} = \langle PA_{x_{j}}, SI_{x_{j}}, CH_{x_{j}} \rangle$$

Source Dependency Representation (SDR)

• Extracting a dependency unit for each source word to capture source longdistance dependency constraints:

$$U_{j} = \langle PA_{x_{j}}, SI_{x_{j}}, CH_{x_{j}} \rangle$$

Where PA_{xj} , SI_{xj} , and CH_{xj} denote the parent, siblings and children words of source word x_j in a dependency structure.

Take
$$x_2$$
 as an example: $PA_{x_2} = \langle x_3 \rangle$, then, $U_2 = \langle x_3, x_1, x_4, x_7, \varepsilon \rangle$

$$SI_{x_2} = \langle x_1, x_4, x_7 \rangle,$$

$$CH_{x_2} = \langle \varepsilon \rangle,$$

Source Dependency Representation (SDR)

• Learn sematic representation of each dependency unit

Take
$$x_2$$
 as an example: $PA_{x_2}=< x_3>$, then, $U_2=< x_3, x_1, x_4, x_7, \varepsilon>$
$$SI_{x_2}=< x_1, x_4, x_7>,$$

$$CH_{x_2}=< \varepsilon>,$$

SDRNMT-1:

$$|h_j = f_{enc}(V_{x_j}: V_{U_j}, h_{j-1})|$$

Where the V_{xj} is 360-dim and the learned V_{Uj} is 260-dim.

Encoder: $h_j = f_{enc}(V_{x_j}, h_{j-1}),$ $d_j = f_{enc}(V_{U_j}, d_{j-1})$

Attention $\tilde{\alpha}$

Encoder:
$$h_{j} = f_{enc}(V_{x_{j}}, h_{j-1}),$$

$$d_{j} = f_{enc}(V_{U_{j}}, d_{j-1})$$
Attention: $e_{i,j}^{s} = f(s_{i-1}^{s} + h_{j}),$

$$e_{i,j}^{d} = f(s_{i-1}^{d} + d_{j}).$$

$$\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^{s} + (1 - \lambda)e_{i,j}^{d})}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^{s} + (1 - \lambda)e_{i,j}^{d})}$$

Encoder:
$$h_{j} = f_{enc}(V_{x_{j}}, h_{j-1}),$$
 $d_{j} = f_{enc}(V_{U_{j}}, d_{j-1})$

Attention: $e_{i,j}^{s} = f(s_{i-1}^{s} + h_{j}),$
 $e_{i,j}^{d} = f(s_{i-1}^{d} + d_{j}).$
 $\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^{s} + (1 - \lambda)e_{i,j}^{d})}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^{s} + (1 - \lambda)e_{i,j}^{d})}$

Decoder: $c_{i,j}^{s} = \sum_{j=1}^{J} \alpha_{i,j}h_{j}, c_{i,j}^{d} = \sum_{j=1}^{J} \alpha_{i,j}d_{j}$
 $s_{i}^{s} = \varphi(s_{i-1}^{s}, y_{i-1}, c_{i}^{s}),$
 $s_{i}^{d} = \varphi(s_{i-1}^{d}, y_{i-1}, c_{i}^{d}).$

Encoder:
$$h_{j} = f_{enc}(V_{x_{j}}, h_{j-1}),$$
 $d_{j} = f_{enc}(V_{U_{j}}, d_{j-1})$

Attention: $e_{i,j}^{s} = f(s_{i-1}^{s} + h_{j}),$
 $e_{i,j}^{d} = f(s_{i-1}^{d} + d_{j}).$

$$\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^{s} + (1 - \lambda) e_{i,j}^{d})}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^{s} + (1 - \lambda) e_{i,j}^{d})}$$

Decoder: $c_{i,j}^{s} = \sum_{j=1}^{J} \alpha_{i,j} h_{j}, c_{i,j}^{d} = \sum_{j=1}^{J} \alpha_{i,j} d_{j}$
 $s_{i}^{s} = \varphi(s_{i-1}^{s}, y_{i-1}, c_{i}^{s}),$
 $s_{i}^{d} = \varphi(s_{i-1}^{d}, y_{i-1}, c_{i}^{d}).$

$$p(y_{i} | y_{i-i}, x, T) = g(y_{i-1}, s_{i}^{s}, s_{i}^{d}, c_{i}^{s}, c_{i}^{d})$$

Encoder:
$$h_{j} = f_{enc}(V_{x_{j}}, h_{j-1}),$$
 $d_{j} = f_{enc}(V_{U_{j}}, d_{j-1})$

Attention: $e_{i,j}^{s} = f(s_{i-1}^{s} + h_{j}),$
 $e_{i,j}^{d} = f(s_{i-1}^{d} + d_{j}).$

$$\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^{s} + (1 - \lambda) e_{i,j}^{d})}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^{s} + (1 - \lambda) e_{i,j}^{d})}$$

Decoder: $c_{i,j}^{s} = \sum_{j=1}^{J} \alpha_{i,j} h_{j}, c_{i,j}^{d} = \sum_{j=1}^{J} \alpha_{i,j} d_{j}$
 $s_{i}^{s} = \varphi(s_{i-1}^{s}, y_{i-1}, c_{i}^{s}),$
 $s_{i}^{d} = \varphi(s_{i-1}^{d}, y_{i-1}, c_{i}^{d}).$

$$p(y_{i} | y_{i-i}, x, T) = g(y_{i-1}, s_{i}^{s}, s_{i}^{d}, c_{i}^{s}, c_{i}^{d})$$

Double Context NMT

Experimental

- Experiments on Chinese-to-English translation task, 1.42M *LDC corpus*
- Parse source sentences of training data by Stanford Parser (Chang et al., 2009)
- For the *SDRNMT-1* and *SDRNMT-2*, the dimension of V_{xj} is 360 and the dimension of V_{Ui} is 260, and input embedding of the baseline is 620
- The baselines include Phrase-Based Statistical Machine Translation
 (PBSMT) (Koehn et al., 2007), standard Attentional NMT (AttNMT)
 (Bahdanau et al., 2014), NMT with dependency labels (Sennrich and Haddow, 2016)

Experimental

System	Dev(NIST02)	NIST03	NIST04	NIST05	NIST06	NIST08	AVG
PBSMT	33.15	31.02	33.78	30.33	29.62	23.53	29.66
AttNMT	36.31	34.02	37.11	32.86	32.54	25.44	32.40
Sennrich-deponly	36.68	34.51	38.09	33.37	32.96	26.96	32.98
SDRNMT-1	36.88	34.98*	38.14	34.61**	33.58*	27.06	33.32
SDRNMT-2	37.34	35.91**	38.73*	34.18*	33.76**	27.64*	34.04

[&]quot;*" indicates statistically significant better than "Sennrich-deponly" at p-value < 0.05 and "**" at p-value < 0.01 by bootsrap resampling (Koehn, 2004)

Experimental Results

• Translation qualities for different sentence lengths

Conclusion

- Source dependency unit to capture source long-distance dependency constraint
- The proposed *SDRNMT-1* and *SDRNMT-2* consist of NMT and CNN, which are jointly trained to learn SDR and translation instead of separately trained
- Double-Context approach to further utilize source dependency representation