SCC0561 – Multimídia

Prof.: Dr. Marcelo G. Manzato

(mmanzato@icmc.usp.br)

Aula 4 – Compressão de Imagens - O Padrão JPEG.

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 3-111

1. O Padrão JPEG

- O quê é JPEG?
- Preparação da imagem/bloco.
- Transformada DCT.
- Quantização.
- Codificação por Entropia.
- Construção do Quadro.

1.1 O quê é JPEG?

- Joint Photographic Experts Group.
 - ISO, CCITT e IEC.
 - Padrão para codificação de imagens estáticas de tons contínuos.
 - Possui 4 modos de operação:
 - Sequencial (baseline mode).
 - Progressivo.
 - Sem perdas.
 - Hierárquico.

1.1 O quê é JPEG?

- Modo seqüencial
 - É um método de compressão com perdas.
 - Possui 5 etapas principais:
 - Preparação da imagem/bloco.
 - DCT.
 - Quantização.
 - Codificação.
 - Construção do quadro.

JPEG encoder

1.2 Preparação da imagem/bloco

- Imagem é dividida em blocos de 8 x 8 pixels.
- Isso permite aplicação mais eficiente da DCT.

1.3 Transformada DCT

- Transformada Discreta de Cossenos (DCT).
- Transformadas:
 - Transformam a informação de um formato (domínio) para outro.
- Transformada DCT aplicada a imagens:
 - Transforma matriz (imagem) em matriz de frequências espaciais.
 - Não produz perdas.

DCT = discrete cosine transform

$$F[i,j] = \frac{1}{4}C(i)C(j)\sum_{x=0}^{7}\sum_{y=0}^{7}P[x,y]\cos\frac{(2x+1)i\pi}{16}\cos\frac{(2y+1)j\pi}{16}$$

onde C(i) e $C(j) = 1/\sqrt{2}$ para i,j=0

= 1 para todos os outros valores de i e j.

 $x, y, i \in j$ todos variam de 0 a 7.

Increasina horizontal

$$P[x,y] = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C(i)C(j)F[i,j] \cos \frac{(2x+1)i\pi}{16} \cos \frac{(2y+1)j\pi}{16}$$

onde C(i) e $C(j) = 1/\sqrt{2}$ para i,j=0

= 1 para todos os outros valores de i e j.

 $x, y, i \in j$ todos variam de 0 a 7.

Transformada Discreta de Cossenos Inversa (IDCT)

 $P[x, y] = 8 \times 8$ matrix of pixel values

 $F[i, j] = 8 \times 8$ matrix of transformed values/spatial frequency coefficients

In F[i, j]: = DC coefficient = AC coefficients

 $f_{\rm H}=$ horizontal spatial frequency coefficient

 f_V = vertical spatial frequency coefficient

- Olho humano é menos sensível a distorções em regiões com alta frequência espacial.
- Se a amplitude, nas altas frequências, está abaixo de um limite, o olho não detecta a informação.
- Matriz transformada ajuda a detectar e eliminar tais informações (redundância psicovisual).

1.3 Transformada DCT

Após DCT:

- As regiões da imagem que possuem uma única cor geram matrizes com coeficientes DC idênticos (ou próximos) e poucos coeficientes AC.
- As regiões da imagem que possuem transições de cores geram matrizes com coeficientes DC distintos e muitos coeficientes AC.
- Tamanho do bloco na imagem.
- Regiões com pouca/muita transição de cor X coeficientes DC/AC.

1.3 Transformada DCT

1256,4	228,6	-50,0	17,7	-15,6	2	-2,7	5,8
154,8	-80	-93,2	27	-6,5	12,3	2	0,7
9,7	-92,3	57,3	39,3	-29	3,4	6,3	1,5
16,3	-12,7	35,4	-47,6	-6,9	17,8	-2,1	4,4
2,1	-18,2	4	-14,4	27,6	-5,7	-12,9	-1,4
-3	-3,9	0,6	-9,3	2,5	-17,8	12,3	6,1
-1,2	-5,4	1,9	-7,2	6,2	-1,5	6,2	-11,8
7,1	-2,9	3,8	0,9	-1,4	0	2	2,9

domínio de frequências

1.4 Quantização

- Quantização
 - Olho humano:
 - Boa resposta para coeficientes DC (baixa freq.).
 - Baixa resposta para coeficientes AC (alta freq.).
 - Busca reduzir a quantidade de dados.
 - Limite da amplitude para frequências: divide os valores da matriz transformada pelos valores correspondentes em uma tabela pré-definida.
 - Isso diminui os valores dos coeficientes proporcionalmente à posição dos mesmos na matriz.
 - Ocorre perda. No caso ideal, não perceptível.

		D	CT co	efficie	nts									Quai	ntized	coeffic	cients		
120	100	90	80	60	40	32	10					12	10	6	4	3	2	1	0
90	88	80	72	58	40	28	8					9	6	4	3	2	2	0	0
80	76	70	66	44	38	20	6					6	4	3	2	1	1	0	0
60	58	54	52	44	26	16	5		0			3	3	2	2	1	1	0	0
50	46	42	40	26	14	12	5		Qua	ntizer		2	2	2	1	1	0	0	0
30	28	25	23	10	8	6	3					1	1	1	0	0	0	0	0
15	11	10	8	7	6	4	1					0	0	0	0	0	0	0	0
5	4	4	3	3	2	1	1					0	0	0	0	0	0	0	0
													·				•		
						10	10	15	20	25	30	35	40						
						10	15	20	25	30	35	40	50						
						15	.20	25	30	35	40	50	60						
						20	25	30	35	40	50	60	70						
						25	30	35	40	50	60	70	80						
						30	35	40	50	60	70	80	90						
						35	40	50	60	70	80	90	100						
						40	50	60	70	80	90	100	110						

Quantization table

- Tabelas de quantização:
 - JPEG define duas tabelas default
 - Uma para luminância.
 - Uma para crominância.
 - JPEG permite a utilização de tabelas personalizadas.

- Explora duas características da matriz quantizada:
 - Coeficiente DC será o maior valor da matriz
 - Muitos dos coeficientes de alta frequência serão zero

- Envolve quatro passos:
 - Vetorização.
 - Codificação por diferença.
 - Codificação por carreira (run-length).
 - Codificação Estatística (método de Huffman).

Vetorização (zig-zag scan)

- Codificação dos coeficientes DC
 - Codificação por diferença e Huffman.
 - DCs possuem alto grau de correlação (redundância espacial).
 - São blocos adjacentes na imagem.
 - Exemplo:
 - Sequência de coeficientes DC de blocos adjacentes: 12, 13, 11, 11, 10, ...
 - Valores codificados: 12, 1, -2, 0, -1, ...

- Codificação dos coeficientes DC
 - Codificação na forma (SSS, value)
 - SSS: no. de bits necessários; value: bits

Exemplo anterior:

Seq. a ser codificada: 12, 1, -2, 0, -1

SSS 4 1 2	Value 1100 1 01
0	0
	4 1 2 0

(4,1100)(1,1)(2,01)(0)(1,0)

Difference value	Number of bits needed (SSS)	Encoded value
O -1, 1	0	1 = 1 , -1 = 0
-3, -2, 2, 3	2	2 = 10 , $-2 = 01$ $3 = 11$, $-3 = 00$
<i>-</i> 7 <i>−</i> 4, 4 7	3	4 = 100 , $-4 = 0115 = 101$, $-5 = 0106 = 110$, $-6 = 001$
-158, 815	4	7 = 111 , -7 = 000 8 = 1000 , -8 = 0111

- Codificação dos coeficientes DC
 - SSS: codificados segundo uma árvore de Huffman pré-definida

Exemplo anterior:

Seq. a ser codificada: 12, 1, -2, 0, -1

Valor	SSS	Value
12	4	1100
1	1	1
-2	2	01
0	0	010
-1	1	0

(101,1100)(011	.1)(100.01)(010)(011	.0)
(101,1100)(011	, , , (100,0 1	\mathcal{M}^{G}	$, \circ$

Number of bits needed (SSS)	Huffman codeword
0	010
1	011
2	100
3	00
4	101
5	110
6	1110
7	11110

- Codificação dos coeficientes AC
 - Codificação run-length (carreira).
 - Vetor de coeficientes possui longas cadeias de zeros.
 - Formato:

(skip, value): skip indica a quantidade de zeros a ser "pulada"; value é o próximo valor não zero da seq.

Codificação dos coeficientes AC

(skip, value): skip indica a quantidade de zeros a ser "pulada"; value é o próximo valor não zero da seq.

- Campo value é também codificado na forma SSS/value
 - Ex.: (0,6) → Skip = 0; SSS = 3; Value=110

Difference value	Number of bits needed (SSS)	Encoded value
0 -1, 1 -3, -2, 2, 3	0 1 2	1 = 1 , -1 = 0 2 = 10 , -2 = 01 3 = 11 , -3 = 00
-74, 4 7 -158, 815	3	4 = 100, $-4 = 0115 = 101$, $-5 = 0106 = 110$, $-6 = 0017 = 111$, $-7 = 0008 = 1000$, $-8 = 0111$
		1

4

1.5 Codificação por Entropia

Codificação dos coeficientes AC

(skip, value): skip indica a quantidade de zeros a ser "pulada"; value é o próximo valor não zero da seq.

- Campo value é também codificado na forma SSS/value
 - Ex.: (0,6) \rightarrow Skip = 0; SSS = 3; Value=110

codificado via árvore de Huffman

Difference value	Number of bits needed (SSS)	Encoded value
0 -1, 1 -3, -2, 2, 3	0 1 2	1 = 1 , -1 = 0 2 = 10 , -2 = 01 3 = 11 , -3 = 00
-74, 4 7 -158, 815	3	4 = 100, $-4 = 0115 = 101$, $-5 = 0106 = 110$, $-6 = 0017 = 111$, $-7 = 0008 = 1000$, $-8 = 0111$
		1

- Codificação estatística
 - Após a codificação Run-Length é aplicada uma codificação estatística.
 - JPEG usa Huffman.
 - A codificação estatística é aplicada no vetor inteiro, o que inclui o resultado das codificações dos DCs e ACs.
 - Vetor possui cadeias de bits apropriado para codificação estatística.
 - JPEG usa tabela de códigos (prefixo).
 - São 256 códigos possíveis.
 - Pré-definida ou enviada junto com o bitstream da imagem.

- Codificação estatística
 - Coeficientes DC
 - Codificação por Huffman nos bits do campo SSS
 - Coeficientes AC
 - Bits em Skip e SSS são tratados como um único símbolo e codificados segundo tabela Huffman contendo todas as combinações possíveis

1.6 Construção do Quadro

1.7 Decodificação

Exemplo – bloco original

[140]	144	147	140	139	155	179	175
144	152	140	147	140	148	167	179
152	155	136	167	163	162	152	172
168	145	156	160	152	155	136	160
162	148	156	148	140	136	147	162
147	167	140	155	155	140	136	162
136	156	123	167	162	144	140	147
148	155	136	155	152	147	147	136

Bloco com shifting

[12	16	19	12	11	27	51	47
16	24	12	19	12	20	39	51
24	27	8	39	35	34	24	44
40	17	28	32	24	27	8	32
34	20	28	20	12	8	19	34
19	39	12	27	27	12	8	34
8	28	-5	39	34	16	12	19
20	27	8	27	24	19	19	8

Após a DCT

185.88	-17.962	14.943	-9.0778	23.125	-9.0856	-13.901	-19.110
20.365	-34.045	26.557	-9.1747	-11.106	10.935	13.866	6.7143
-10.547	-23.469	-1.6402	5.9121	-18.238	3.3890	-20.329	-1.0530
-8.2518	-5.0009	14.524	-14.729	-8.3648	-2.5596	-3.0050	8.2253
-3.3750	9.5359	8.0480	1.2188	-11.125	18.051	18.450	15.068
3.7574	-2.1876	-18.039	8.4227	8.1706	-3.4929	0.92215	-6.9987
8.8337	0.65168	-2.8289	3.5882	-1.2401	-7.3423	-1.1098	-2.0184
0.014635	-7.8035	-2.3794	1.5633	1.1648	4.2876	-6.3987	0.26693

Tabela de quantização

[3	5	7	9	11	13	15	17
,	5	7	9	11	13	15	17	19
'	7	9	11	13	15	17	19	21
	9	11	13	15	17	19	21	23
1	1	13	15	17	19	21	23	25
1	.3	15	17	19	21	23	25	27
1	.5	17	19	21	23	25	27	29
$\lfloor 1$	7	19	21	23	25	27	29	31

Após quantização

Últimos passos

- Zig-zag sequence
- Intermediate symbol sequence
 - (6)(62), (0,3)(-4), (0,3)(4), (0,2)(-2), (0,3)(-5), (0,2)(2), (0,1)(-1), (0,2) (3), (0,2)(-3), (0,1)(-1), (3,1)(-1), (0,2)(2), (0,1)(-1), (0,1)(-1), (1,1)(1), (0,1)(1), (1,1)(1), (1,1)(1), (0,1)(-1), (0,1)(-1), (0,1)(1), (0,1)(-1), (0,1)(1), (0,1)(1), (0,1)(1), (1,1)(1), (0,0)
- Encoded bit sequence (total 154 bits)
 - (1110)(111110) (100)(011) (100)(100) (01)(01)
 (100)(010) (01)(10) (00)(0) (01)(11) (01)(00) (00)(0) (111010)(0) (01)
 (10) (00)(0) (00)(0) (1100)(1) (00)(1) (1100)(1) (1100)(1) (00)(0)
 (0) (00)(1) (00)(0) (00)(0) (00)(1) (111010)(0) (1111010)(0) (111010)(0)
 (111010)(1) (11111011)(1) (1100)(1) (1010)

1.8 Considerações Sobre JPEG

Exemplo de imagens antes e após DCT + quantização.

Melhor desempenho em imagens com transição suave de cores

1.8 Considerações Sobre JPEG

- Padrão abrangente.
- Alcança boas taxas de compressão para imagens de tons contínuos. (até 20:1).
- Desempenho diminui em imagens com muita transição de cores.
- Baseado em particularidades do sistema visual humano:
 - Não é necessário reproduzir cantos com fidelidade.
 - O olho humano não responde bem a transições nas altas frequências espaciais.
 - É adequado para imagens de tom contínuo.

Para Saber Mais

- Gonzales & Woods. Digital Image Processing. 2nd ed. Prentice-Hall, 2002. Capítulo 8, seção 8.1.
- Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 2, seção 2.4 e capítulo 3, seções 3.2 e 3.4.
- Pennebaker & Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, 1993.