Polymères Dirigés

&

Réseaux Conducteurs de Chaleur

Systèmes de mécanique statistique à l'équilibre et hors équilibre

Alain CAMANES

alain.camanes@univ-nantes.fr

Laboratoire Jean Leray - Université de Nantes

Soutenance de thèse 02 décembre 2008

Plan de l'exposé

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Les polymères dirigés

- Modèle
 - Transitions de phase
- Température critique
- 4 Temps continu

Les réseaux conducteurs de chaleur

- Modèle
- Oscillateurs harmoniques
- Régularité et support
- Principe de Lasalle

Soutenance de thèse 2/32

Les polymères dirigés

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

- Modèle
- 2 Transitions de phase
- Température critique
- 4 Temps continu

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

4/32

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

4/32

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

4/32

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Polymères Dirigés Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Position du monomère i ω_i

Énergie du polymère à l'instant $n: H_n(\omega) = \sum g(i, \omega_i)$.

Température : $T = 1/\beta$.

Fonction de partition

: $Z_n = \mathbf{P} \left[e^{\beta H_n(\omega)} \right]$. : $\mu_n(\cdot) = \mathbf{P} \left[\cdot e^{\beta H_n} \right] / Z_n$. Mesure polymère

Soutenance de thèse

Transitions de phase

Polymères Dirigés &

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Hypothèses :

$$(g(i,x))_{i,x}$$
 i.i.d. sous la loi \mathbf{Q} , $\lambda(\beta) = \ln \mathbf{Q} \left[e^{\beta g}\right] < +\infty$.

► La fonction de partition et l'énergie libre

$$W_n = e^{-n\lambda} Z_n$$

$$p_n = \frac{1}{n} \ln W_n$$

Transitions de phase

Polymères
Dirigés
&
Réseaux

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Hypothèses :

$$(g(i,x))_{i,x}$$
 i.i.d. sous la loi \mathbf{Q} , $\lambda(\beta) = \ln \mathbf{Q} \left[e^{\beta g} \right] < +\infty$.

► La fonction de partition et l'énergie libre

$$\begin{array}{cccc} W_n & = & e^{-n\lambda} Z_n & \xrightarrow{p.s.} & W_{\infty}, \\ p_n & = & \frac{1}{n} \ln W_n & \xrightarrow{p.s.} & p. \end{array}$$

► Existence d'une transition de phase

Soutenance de thèse

Les conséquences de la transition de phase

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

▶ Principe d'invariance [Comets, Yoshida 06] : Si $\beta < \beta_c$ alors pour toute F continue bornée, B mouvement Brownien de matrice de covariance $d^{-1}Id$

$$\mu_n\left[F\left(\frac{1}{\sqrt{n}}\omega_{nt}\right)\right]\to \mathbf{E}[F(B)].$$

▶ Localisation [Carmona, Hu 02] : Si $\beta > \beta_c$ alors il existe $c_0 > 0$ t.q.

$$\limsup \mu_{n-1} \left(\omega_n^1 = \omega_n^2 \right) \ge c_0.$$

► Températures critiques :

$$eta_c = 0$$
 $d = 1, 2$ [Carmona, Hu 02] $\widetilde{\beta}_c = 0$ $d = 1$ [Comets, Vargas 06]

▶ Moments d'ordre 2 [Bolthausen 89] : il existe une température β_2 telle que

$$\beta_2 \leq \beta_c$$
.

Les moments fractionnaires

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

critique Méthode des

moments Condition

entropique
Temps continu

▶ L'uniforme intégrabilité [Carmona, Hu 02] : $\beta < \beta_c$ si et seulement si $(W_n)_n$ est uniformément intégrable.

Il existe
$$\alpha \in (1,2]$$
 t.q. $\sup_{n} \mathbf{Q} [W_n(\beta)^{\alpha}] < +\infty$ $\Rightarrow \beta < \beta_c$.

► Méthode des moments fractionnaires [Derrida, Evans 92] :

$$Z_n^{\alpha} = \mathbf{P} \left[e^{\beta H_n} \right]^{2\alpha/2}$$

$$= \mathbf{P}^{\otimes 2} \left[e^{\beta H_n(\omega^1) + \beta H_n(\omega^2)} \right]^{\alpha/2}$$

$$= \mathbf{P}^{\otimes 2} \left[e^{\beta \sum_{i=1}^n g(i,\omega_i^1) + g(i,\omega_i^2)} \right]^{\alpha/2}$$

Soutenance de thèse 7/32

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Méthode des

Condition

Temps continu

La condition d'uniforme intégrabilité

▶ On s'intéresse alors aux instants de rencontre des marches aléatoires :

➤ On introduit les quantités

$$\begin{array}{l} & p_{t,x} = \mathbf{P}\bigg(\omega^1, \omega^2 \text{ se rencontrent pour la 1ère fois en } (t,x)\bigg), \\ & \pi_d = \sum p_{t,x}. \end{array}$$

► Condition d'uniforme intégrabilité [Derrida, Evans 92] : S'il existe $\alpha \in (1,2]$ tel que $\lambda(\alpha\beta) - \alpha\lambda(\beta) < -\ln \sum_{t,x} p_{t,x}^{\alpha/2}$ alors

$$\beta \leq \beta_c$$
.

Polymères Dirigés

& Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique Méthode des moments

Condition entropique

Temps continu

La température critique

▶ Une borne inférieure sur la température inverse critique :

$$\beta_{\alpha} = \sup \left\{ \beta; \ \lambda(\alpha\beta) - \alpha\lambda(\beta) < -\ln \sum_{t,x} p_{t,x}^{\alpha/2} \right\}.$$

▶ Graphe de la fonction $\alpha \mapsto \beta_{\alpha}$,

▶ La température β_2 n'est pas optimale dès que

$$\frac{\partial}{\partial \alpha} \beta_{\alpha} \big|_{\alpha=2} < 0.$$

Remarque : Lorsque g suit une loi gaussienne, la fonction $\alpha \mapsto \beta_{\alpha}$ est strictement concave conferenance de thèse

Polymères Dirigés & Réseaux Conducteurs

de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Méthode des

Condition entropique

Temps continu

De l'uniforme intégrabilité à l'entropie

► On introduit les entropies

$$\begin{array}{lcl} \mathbf{\textit{h}}_{\mathbf{Q}} & = & \mathbf{Q} \left[\frac{e^{\beta_2 \mathbf{\textit{g}}}}{e^{\lambda(\beta_2)}} \ln \frac{e^{\beta_2 \mathbf{\textit{g}}}}{e^{\lambda(\beta_2)}} \right], \\ \mathbf{\textit{h}}_{\nu} & = & - \sum_{t, \mathbf{\textit{x}}} \frac{p_{t, \mathbf{\textit{x}}}}{\pi_d} \ln \frac{p_{t, \mathbf{\textit{x}}}}{\pi_d}. \end{array}$$

Théorème ([C., Carmona 08])

Si $h_{\mathbf{Q}} < h_{\nu}$ alors $\beta_2 < \beta_c$.

► Par exemple

d	$h_ u$	$h_{\mathbf{Q}}$		
		binomial	poisson	gaussien
3	5.18	4.96	6.42	2.16
4	4.08	7.59	10.30	3.29
5	3.52	9.17	12.73	4

Soutenance de thèse 10,

Récapitulatif

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température

critique Méthode des

Condition

Condition entropique

Temps continu

Les polymères dirigés en temps continu

Polymères Dirigés R Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Équation d'Anderson parabolique Changement

Marche aléatoire de taux de saut κ ω

Environnement au point x à l'instant $t: B_x(t)$.

: $H_t(\omega) = \int_0^t dB_{\omega_s}(s)$. Hamiltonien

: $W_t(\beta) = P\left[e^{\beta H_t - \frac{t\beta^2}{2}}\right]$. : $p_t(\beta) = \frac{1}{t} \ln W_t$. Fonction de partition

Énergie libre

Soutenance de thèse

Fonction de partition et énergie libre

Polymères Dirigés &

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

.

Temps continu Équation d'Anderson parabolique Changement

Théorème

Il existe une variable aléatoire W_{∞} et une fonction $p(\beta)$ telles que

$$W_t(\beta) \xrightarrow{p.s.} W_{\infty}(\beta),$$
 $p_t(\beta) \xrightarrow{p.s.} p(\beta).$

Structure de la démonstration

▶ Propriété de Markov + Suradditivité \Rightarrow Convergence L^1 :

$$\mathbf{Q}[p_t] \to \mathbf{Q}[p].$$

► Calcul de Malliavin ⇒ Concentration :

$$\mathbf{Q}(|\ln W_t - \mathbf{Q}[\ln W_t]| \ge u) \le 2e^{-\frac{u^2}{2\beta^2t}}.$$

Polymères et équation d'Anderson parabolique

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu Équation d'Anderson

parabolique Changement ► La fonction de partition point à point

$$W_t(\beta; x, y) = \mathbf{P}_x \left[e^{\beta H_t(\omega) - t\beta^2/2} \mathbb{1}_{\omega_t = y} \right].$$

► L'équation d'Anderson parabolique

$$dW_t(\beta; 0, x) = \kappa \, \Delta W_t(\beta; 0, \cdot)(x) \, dt + \beta \, W_t(\beta; 0, x) \, dB_x(t).$$

► Fonction de Lyapunov [Cranston, Mountford, Shiga 02] : il existe une fonction γ et une constante $\alpha > 0$ telles que

$$\frac{1}{t} \ln \mathbf{P} \left[e^{\int_0^t dB_{\omega s}(s)} \right] \to \gamma(\kappa),$$

avec $\gamma(\kappa) \ln(\kappa) \sim_0 -\frac{\alpha^2}{4}$.

Asymptotique de l'énergie libre

Polymères Dirigés

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Transitions de phase

Température critique

Temps continu

Équation d'Anderson parabolique Changement d'échelle

Théorème

Il existe une constante $\alpha > 0$ telle que pour tout $\kappa > 0$,

$$p(\beta) + \frac{\beta^2}{2} \sim_{\beta \to \infty} \frac{\alpha^2}{8} \frac{\beta^2}{\ln \beta}.$$

► Changement d'échelle du mouvement brownien :

$$B^{(c)} = \left(\frac{1}{\sqrt{c}}B_{ct}\right)_{t>0} \stackrel{loi}{=} B.$$

► Application du changement d'échelle :

$$p(\kappa, \beta) = \lim_{t \to \infty} \frac{1}{t} \mathbf{Q} \ln \mathbf{P} \left[e^{\beta H_t(\omega, \mathbf{B}^{(c)})} \right] - \beta^2 / 2$$

$$= c \lim_{t} \frac{1}{ct} \mathbf{Q} \ln \mathbf{P} \left[e^{\frac{\beta}{\sqrt{c}} H_{ct}(\widetilde{\omega}, B)} \right] - \beta^2 / 2$$

$$= \beta^2 \gamma(\kappa / \beta^2) - \beta^2 / 2.$$

Les réseaux conducteurs de chaleur

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

- Modèle
- Oscillateurs harmoniques
 - Régularité et support
- Principe de Lasalle

Polymères Dirigés & Réseaux Conducteurs

de Chaleur A. Camanes

Modèle

Équations Températures

constantes La chaîne d'oscillateur

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Atomes

: 0

Soutenance de thèse

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Équations

Températures

constantes La chaîne d'oscillateur

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle Š

Atomes

: ° : *V*

Potentiel d'accrochage

Soutenance de thèse 17

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Équations

Températures constantes La chaîne

d'oscillateur Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Atomes : \circ Potentiel d'accrochage : V

Potentiel d'interaction : U

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle Équations

Températures

constantes
La chaîne
d'oscillateur

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Atomes : \circ Potentiel d'accrochage : V

Potentiel d'interaction : *U*

Atomes du bord : •,•

Soutenance de thèse

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Équations

Températures constantes La chaîne d'oscillateur

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Atomes : \circ Potentiel d'accrochage : VPotentiel d'interaction : UAtomes du bord : \bullet , \bullet Position : q_i Quantité de mouvement : p_i

► L'hamiltonien :

$$H(q,p) = \sum_{i \in \mathcal{V}} rac{p_i^2}{2} + \sum_{i \in \mathcal{V}} \left(V(q_i) + rac{1}{2} \sum_{j \sim i} U(q_i - q_j)
ight)$$

► Hypothèse : U, V polynômes pairs, U symétrique.

Soutenance de thèse

La dynamique

Polymères Dirigés &

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Équations

Températures constantes La chaîne d'oscillateur

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle ▶ Les équations différentielles stochastiques

$$\begin{cases} dq_i = \partial_{p_i} H \ dt \\ dp_i = -\partial_{q_i} H \ dt + \dots \\ + \left(-p_i \ dt + \sqrt{2T_i} \ dB_i \right) \mathbb{1}_{i \in \partial \mathcal{V}} \end{cases}$$

▶ Le générateur du semigroupe (P_t)

$$\mathcal{L} = \sum_{i \in \mathcal{V}} \partial_{p_i} H \, \partial_{q_i} - \partial_{q_i} H \, \partial_{p_i} - \sum_{i \in \partial \mathcal{V}} p_i \partial_{p_i} + \sum_{i \in \partial \mathcal{V}} T_i \partial_{p_i}^2.$$

▶ Les mesures invariantes

$$\mathcal{L}^{\star} u = 0.$$

Un cas particulier

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Équations

Températures constantes

La chaîne d'oscillateur

Oscillateurs harmoniques

Régularité et

support

Principe de Lasalle Lorsque les températures sont égales,

$$T_i = T > 0, \forall i \in \partial \mathcal{V}.$$

▶ L'adjoint du générateur

$$\mathcal{L}^{\star} = -\nabla_{p} H \cdot \nabla_{q} + \nabla_{q} H \cdot \nabla_{p} + \sum_{i \in \partial \mathcal{V}} p_{i} \partial_{p_{i}} + |\partial \mathcal{V}| + T \sum_{i \in \partial \mathcal{V}} \partial_{p_{i}}^{2}.$$

▶ La mesure de Gibbs $(\beta = 1/T)$

$$\mu(dz) = \frac{e^{-\beta H}}{7} dz,$$

est invariante

$$\mathcal{L}^{\star} u = 0.$$

Les résultats précédents

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle Équations Températures

La chaîne d'oscillateur

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle ► Les chaînes d'oscillateurs [Eckmann, Pillet, Rey-Bellet 99] : dans le cadre d'une chaîne d'oscillateurs, lorsque l'interaction est plus forte que l'accrochage, il existe une unique mesure invariante.

► Les réseaux d'oscillateurs [Maes, Netočnỳ, Vershuere 03] : sous des conditions reliant le potentiel d'interaction à l'ordre du réseau, il existe au plus une mesure invariante.

Soutenance de thèse 20/

La condition d'asymétrie

Polymères Dirigés

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Asymétrie

Complétude

Régularité et support

Principe de Lasalle

▶ La matrice d'adjacence $\Lambda = (\Lambda_{ii})_{i,i}$:

▶ La matrice d'adjacence
$$\Lambda = (\Lambda_{ij})_{i,j}$$
:

$$\Lambda_{ij}=\delta_{i\sim j}.$$

$$\Lambda = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

► La condition d'asymétrie :

$$\begin{split} \mathcal{E}_{\Lambda,\partial\mathcal{V}} &= & \operatorname{Vect}\left\{\Lambda^k e_i, \ i \in \partial\mathcal{V}, k \in \mathbb{N}\right\} \\ &= & \mathbb{R}^N. \end{split}$$

► Exemples :

Asymétrie et unicité

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs

harmoniques

Asvmétrie

Complétude

Contre-exemp

Régularité et support

Principe de Lasalle On suppose ici que les potentiels sont harmoniques, c'est-à-dire que

$$U(x) = V(x) = \frac{x^2}{2}.$$

Théorème

Si le graphe $(G, \sim, \partial V)$ est asymétrique alors la diffusion admet une unique mesure invariante.

Théorème

Si le graphe n'est pas asymétrique alors la diffusion admet soit aucune, soit une infinité de mesures invariantes.

Valeurs propres et complétude : Idée de la preuve

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Asvmétrie

Complétude

Régularité et

support

Principe de Lasalle

Théorème

Si le graphe $(G, \sim, \partial V)$ est asymétrique alors la diffusion admet une unique mesure invariante.

On remarque que pour $x, y \in \mathbb{R}^n$,

$$||P_t^{\star} \delta_x - P_t^{\star} \delta_y|| \leq ||Z_t^x - Z_t^y||$$

$$\leq ||e^{Mt} (x - y)||,$$

οù

$$M = \begin{pmatrix} 0 & I \\ \Lambda - D - I & -I_{\partial V} \end{pmatrix}.$$

Lorsque la condition d'asymétrie est satisfaite, la partie réelle des valeurs propres de M est négative et on a donc la majoration

$$||P_{t}^{\star}\delta_{x}-P_{t}^{\star}\delta_{y}|| < Ce^{-\mu_{0}t}||x-y||.$$

On conclut en utilisant la complétude des espaces de Wasserstein.

Soutenance de thèse 23/3

Polymères Dirigés

Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Asymétrie Complétude

Complétude Contre-exemple

Régularité et support

Principe de Lasalle

Symétrie et non-unicité : Idée de la preuve

Théorème

Si le graphe n'est pas asymétrique et s'il existe une mesure invariante μ alors la diffusion admet une infinité de mesures invariantes.

On exhibe une quantité invariante par le flot hamiltonien qui ne dépend pas des atomes du bord.

$$\begin{split} \mathcal{L}^{\star}f &= -\{H,f\} + \sum_{i \in \partial \mathcal{V}} p_{i}\partial_{p_{i}}f + |\partial \mathcal{V}|f + \sum_{i \in \partial \mathcal{V}} T_{i}\partial_{p_{i}}^{2}f \\ &= -\{H,f\} + \mathcal{L}_{\partial \mathcal{V}}^{\star}f. \end{split}$$

Quantité conservée :

$$K(q, p) = \langle z, p \rangle^2 + \alpha \langle z, q \rangle^2,$$

 $\Lambda z = \alpha z, \ z \in \mathcal{E}_{\Lambda, \partial \mathcal{V}}^{\perp}$

Alors, pour toute constante $\gamma>0$, la mesure suivante est une mesure invariante :

$$\frac{e^{-\gamma K}}{7} \mu(dz)$$

Condition de Hörmander et régularité

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Régularité Support et

contrôle
Support et récurrence
Contrôlabilité faible et support

Principe de Lasalle ► L'algèbre de Lie associée à la diffusion :

$$\mathfrak{L} = \bigg\{ \partial_{p_i}, \ i \in \partial \mathcal{V} + \text{ stabilit\'e par crochet} \\$$
 interne et par
$$\sum_i \partial_{p_j} H \partial_{q_j} - \partial_{q_j} H \ \partial_{p_j}, \ \bigg\}.$$

- ▶ La condition de Hörmander : Si pour tout $z \in \mathbb{R}^n$, dim $\mathfrak{L}(z) = n$ alors le semigroupe est fortement fellerien et la mesure invariante admet une densité \mathcal{C}^{∞} par rapport à la mesure de Lebesgue.
- ► Remarque : Lorsque U, V sont harmoniques la condition d'asymétrie est équivalente à la condition de Hörmander.

Soutenance de thèse 25,

Contrôle et support

Polymères Dirigés r Réseaux Conducteurs de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Régularité

Support et contrôle

Support et Contrôlahilité faible et support

Principe de Lasalle

Système stochastique

Système stochastique Système déterministe
$$dZ_t = f(Z_t) \ dt + \sigma \circ dB_t$$
 $\dot{z}_t = f(z_t) + \sigma \ u(t), \ u \in \mathcal{C}^{more}$

► Théorème du support [Stroock-Varadhan 1972] : Pour tout $t_0 > 0, x \in \mathbb{R}^n$

Supp
$$P_{t_0}(x,\cdot) = \mathcal{C}\ell\{z_{t_0}; \exists u \in \mathcal{C}^{morc}, z_0 = x, \dot{z}_t = f(z_t) + \sigma u(t)\}$$

▶ Contrôlabilité faible : Pour tout $z \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$, il existe $T_{z,A} > 0$, u t.q.

$$z_0 = z$$
, $z_{T_{z,A}} \in A$.

Support et récurrence

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

support Régularité

Support et contrôle

Support et

Contrôlabilité faible et support

Principe de Lasalle

Théorème

Supposons que la condition de Hörmander soit satisfaite et qu'il existe une mesure μ t.q.

- Supp $\mu = \mathbb{R}^n$,
- μ est invariante.

Alors, la diffusion (Z_t^z) est récurrente.

 μ est ergodique

 $h(z) = \mathbf{P}[\mathbb{1}_{Z_t \in A}]$ est invariante \Rightarrow (Z_t^z) est récurrente.

 $h(Z_t)$ est convergente

 $h(z) = 1 \mu$ -p.s.

Corollaire

Le système déterministe (S) est alors faiblement contrôlable

Remarque : Pour des températures égales, le système est faiblement contrôlable.

Contrôlabilité et unicité

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Régularité Support et contrôle Support et

récurrence Contrôlabilité

Principe de

▶ Unicité de la mesure invariante [Hairer 2005] : Supposons que la condition de Hörmander soit satisfaite. Si (S) est faiblement contrôlable alors la mesure invariante μ de (Σ) est unique (si elle existe) et $\operatorname{Supp} \mu = \mathbb{R}^n$.

Remarque : Pour toute matrice σ inversible, la contrôlabilité faible des systèmes suivants est équivalente :

$$(S_1)$$
 $\dot{z}_t = f(z_t) + \sigma u(t)$

$$(S_2) \qquad \dot{z}_t = f(z_t) + u(t)$$

Théorème

Si la condition d'Hörmander est satisfaite et les températures sont toutes strictement positives, la diffusion possède au plus une mesure invariante.

Freinage sans excitation

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Freinage et

Principe de Lasalle et

Lasalle et support Perspectives ► Thermostats à température nulle :

 \mathcal{D} : •, •: Atomes freinés.

 $\partial \mathcal{V}: \bullet$: Atomes freinés et excités.

► Les équations différentielles stochastiques :

$$\begin{cases} dq_i = \partial_{p_i} H \ dt \\ dp_i = -\partial_{q_i} H \ dt + \cdots \\ \cdots - p_i \mathbb{1}_{i \in \mathcal{D}} \ dt + \sqrt{2T_i} \mathbb{1}_{i \in \partial \mathcal{V}} \ dB_i \end{cases}$$

Supports disjoints & Principe de Lasalle

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Freinage et thermostats Principe de

Perspectives

▶ Régularité : (P_t) est asymptotiquement fortement fellerien au point z s'il existe $d_n(x,y) \to \mathbb{1}_{x\neq y}$, (t_n) telles que

$$\lim_{\gamma \to 0} \limsup_{n \to \infty} \sup_{y \in \mathcal{B}(z,\gamma)} \|P_{t_n}(z,\cdot) - P_{t_n}(y,\cdot)\|_{d_n} = 0.$$

▶ Principe de Lasalle : S'il existe une unique solution à l'équation $\dot{H}(z) = 0$ alors toute solution de l'équation sans bruit converge vers l'unique minimum de H.

► Propriété [Hairer, Mattingly 06] : Si le semigroupe est ASF en c alors c appartient au support d'au plus une mesure invariante.

Soutenance de thèse 30/3:

Conditions de régularité et d'unicité

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Freinage et thermostats Principe de Lasalle et

support Perspectives On note c le point où H atteint son minimum.

▶ Condition de rigidité : On dit que le réseau est rigide si toute solution de l'équation sans bruit satisfaisant $p_i \mathbb{1}_{i \in \mathcal{D}} \equiv 0$ est la solution constante z = c.

Théorème

Lorsque le semigroupe est fortement fellerien en c et le réseau est rigide, il existe au plus une mesure invariante. De plus, $c \in Supp \mu$.

Remarque : Lorsque les potentiels sont harmoniques, le système est rigide si et seulement si $\dim \mathcal{E}_{M,\mathcal{D}} = n$.

Soutenance de thèse 31

Perspectives

Polymères
Dirigés
&
Réseaux
Conducteurs
de Chaleur

A. Camanes

Modèle

Oscillateurs harmoniques

Régularité et support

Principe de Lasalle

Freinage et thermostats Principe de Lasalle et

Perspectives

▶ Étude de la production entropique : [Maes, Netočnỳ, Vershuere 03] La production d'entropie est strictement négative si et seulement si les températures sont différentes.

- ► Généraliser les résultats sur les vitesses [Hairer 08] de convergence aux réseaux.
- ► Lorsque l'interaction est quadratique et l'accrochage au moins de degré 4, la convergence n'est pas exponentielle.