Chemistry 123: Final Exam B

The 68 pts exam consists of 7 questions and students have the whole class period to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table is provided at the end. Fill in your name along with your student ID number.

Problem 1 : Sulfur Phase Diagram Answer the following questions for the phase diagram of sulfur. (4 pts)

Phase diagram for sulfur

(a) Determine all triple points.

(b) Suppose a sulfur sample is at 1 atm and 140° C. The sample is cooled to 80° C at constant pressure then subsequently, the pressure is decreased to 10^{-3} atm at constant temperature. What state of matter is sulfur?

Problem 2 : Osmotic Pressure Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. (8 pts)

(a) For the image above, there is pure water and glucose solutions separated by a semipermeable membrane. Describe what will happen to the water level of each solution once equilibrium is achieved.

(b) What is the osmotic pressure of a solution prepared by adding 10.35 g of sucrose (C₁₂H₂₂O₁₁) to water to make 175.0 mL of solution at 25.00°C.

 (a) Give a brief answer why I₂ is a solid at room temperature while Bromine (Br₂) is a gas. (b) Draw a graph of the heating curve for I₂ described in the problem above. Label the y-axis temperature (°C) and the x-axis as heat added. 	mater heat t Entha	them 3: Heating Curve Iodine (I_2) is a unique element in that the non-metallic and dark-grey rial is solid at room temperature. Suppose you have 115.0g of I_2 at room temperature 25.0°C and the material to 175.5°C. The melting and boiling points of I_2 are 114°C and 184°C, respectively. alpy of fusion and enthalpy of vaporization are 7.824 kJ/mol and 20.752 kJ/mol, respectively. I_2 has specific heat of 0.427 J/(g °C) and liquid I_2 has specific heat of 2.150 J/(g °C). (10 pts)
temperature (°C) and the x-axis as heat added. (c) Using the graph in (b), calculate the total heat in kJ required to heat 115.0g I ₂ from 25.0°C		
temperature (°C) and the x-axis as heat added. (c) Using the graph in (b), calculate the total heat in kJ required to heat 115.0g I ₂ from 25.0°C		
		Using the graph in (b), calculate the total heat in kJ required to heat 115.0g I ₂ from 25.0°C to 175.5°C.

	blem 4 : Intermolecular Forces For the following compounds : H ₂ SO ₃ , C ₁₀ H ₂₂ (decane), H ₂ O, CH ₃ CF ₃ . Answer the following questions. (10 pts)						
(a)	List out all types of intermolecular forces for the compounds listed above.						
(b)	Rank from highest to lowest boiling point.						
(c)	Rank from highest to lowest vapor pressure.						
(d)	Rank from strongest to weakest intermolecular interactions.						
(e)	Extra Credit (5 pts): Dispersion is present in all materials. Provide both the textbook definition and Prof. Nguyen's landmark publication definition of dispersion. Include illustration if needed. No partical credit is given for this question.						

Problem 5 : Photoelectric Effect When light shines on a metal, electrons can be ejected from the surface of the metal in a phenomenon known as the photoelectric effect. You perform an experiment to eject electrons from nickel (Ni) metal. It is known that a wavelength of 400 nm is the minimum energy to eject an electron from Ni. (12 pts)

(a) Determine the work function (Φ) , or the minimum energy in J to eject an electron, of the Ni metal.

(b) How much energy in kJ is required to eject a mole of electrons from Ni metal? (Hint : One photon with enough energy ejects 1 electron.)

(c) What is the velocity of the electron if a photon with a frequency 1.5×10^{15} Hz hits the surface of Ni metal and ejects an electron? The mass of an electron is 9.109×10^{-31} kg.

Problem 6 : Valence Bond Theory and Molecular Orbital Theory $(10~\mathrm{pts})$

	definitions of		d molecular o	orbital theor	y. What is	the nua
			d molecular o	orbital theor	y. What is	the nua
			d molecular o	orbital theor	y. What is	the nua
			d molecular o	orbital theor	y. What is	the nua
			d molecular o	orbital theor	y. What is	the nua
			d molecular o	orbital theor	y. What is	the nua
Provide the difference b			d molecular o	orbital theor	y. What is	the nua

Problem 7: Limiting Reagent Magnesium silicide (Mg_2Si) is a type of semiconductor. However, it is highly reactive reactive with water (H_2O) according to the unbalanced chemical equation (14 pts)

$$Mg_2Si(s) + H_2O(l) \rightarrow Mg(OH)_2(aq) + SiH_4(g)$$

- (a) Write the balanced chemical equation of the reaction above.
- (b) Which reactant is the limiting if there are $50.0g\ H_2O(l)$ and $70.0g\ Mg_2Si(s)$?

(c) How much $Mg(OH)_2$ in g is produced based on the amount of reactant in part (b)?

(d) What is the percent yield if a scientist collected 78.9g of $Mg(OH)_2$?

Chemistry 123 : Apppendix 2 - Formulas and Constants

$$c = \lambda \nu$$

$$E = h\nu = \frac{hc}{\lambda}$$

$$h = 6.626 \times 10^{-34} \text{ J s}$$

$$c = 3.00 \times 10^8 \text{ m/s}$$

$$KE = h\nu - \Phi$$

$$KE = \frac{1}{2}mv^2$$

$$m_{\text{electron}} = 9.109 \times 10^{-31} \text{ kg}$$

$$N_A = 6.022 \times 10^{23} \text{particles/mol}$$

$$q = mc\Delta T$$

$$q = n\Delta H_{\text{fus/vap}} = m\Delta H_{\text{fus/vap}}$$

$$\Pi = iMRT$$

$$R = 8.3145 \text{J/(mol K)} = 0.08205 \text{L atm/(mol K)}$$

2 Helium 4.003	Neon 20.180	18 Ar Argon 39.948	36 Krypton 83.798	54 Kenon 131.293	Rn Padon [222]	00 00 09anes son [294]		
	9 Fluorine 18.998	Chorine 35.45	35 Br Bromine 79.904	53 — lodine 126,904	At Astatine [210]	117 5 Ennes sine [293]		
	8 Oxygen 15.999	16 S uffur 32.06	Selenium 78.97	53 E Tellurium 127.60	84 PO Polonium [209]	116 LV Livermorium [293]		
				51 Sb Antimony 121.760			70 Yb xterbium 173.045	
	6 Carbon 12.011	28.085	32 Ge Germanium 72.630	50 Tm 118.710	82 Pb Lead 207.2	114 Flerovium [289]		
	5 Boron 10.81	13 A I Aluminum 26.982	31 Gallium 69.723	49	81 Thallium 204.38	Nhonium [286]		
			30 Zinc zinc 65.38	48 Cd Cadmium 112.414	81 Hg Mercury 200.592	Cn Coperacium [285]		
			29 Comper 63.546	47 Ag silver 107.868	80 AU 604 196.997	Roentgenium [281]		
			28 Nickel 58.693	Pd Palladium 106.42	79 Platinum 195.084	DS Darmstackiun [281]	65 Tb Ferbium 158.925	97 Bk Berkelium [247]
			27 CO cobalt 58.933	45 Rh Rhodium 102:906	78	109 Meitnerium [278]		
			26 Feb	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 EU Europium 151.964	95 Am Americium [243]
			25 Mn Manganes e 54.938	43 E Fechnetium [97]	75 Re Rhenium 186.207	Bohrium [270]	62 Samarium 150.36	94 Plutonium [244]
				42 MO Molybdenum 95.95			Pm Promethium [145]	
			23 Vanadium 50.942	41 Nbinim Nobium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]		92 Unanium 238.029
			22 ———————————————————————————————————	40 Z r zirconium 91.224	72 Hafnium 178.49	104 Rutherfordium [267]	59 Pr Praseodymium 140.908	91 Pa Protactinium 231.036
			Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967		58 Cerium 140.116	90 Th Thorium 232.038
					* 57 - 70	** 89 - 102	57 La Lanthanum 138.905	89 AC Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	20 Cakium 40.078	Strontium 87.62				
1 Hydrogen 1.008	3 Lithium 6.94	Na Sædium 22.990	19 K	Rubidium 85.468	55 Cestum 132.905	87 Fr Fancium [223]	*Lanthanide series	**Actinide series