Sens de variations

D Suite croissante

Une suite u est croissante, si pour tout entier naturel $n:u_{n+1}\geqslant u_n$ ou $u_{n+1}-u_n\geqslant 0$

Dans le cas où les termes de la suite u sont tous strictement positifs : $\frac{u_{n+1}}{u_n} \geqslant 1$

D Suite décroissante

Une suite u est **décroissante**, si pour tout entier naturel $n:u_{n+1}\leqslant u_n$ ou $u_{n+1}-u_n\leqslant 0$

Dans le cas où les termes de la suite u sont tous strictement positifs : $\dfrac{u_{n+1}}{u_n}\leqslant 1$

D Suite monotone

Une suite $oldsymbol{u}$ est **monotone** si elle est croissante ou décroissante.

Les suites suivantes sont-elles monotones ?

 $oxed{1} u_n = (-1)^n$ pour $n \in \mathbb{N}$

 $u_n=5n+9$ pour $n\in\mathbb{N}$

 $u_n=rac{1}{n+1}$ pour $n\in\mathbb{N}$

 $u_n=rac{1}{2^n}$ pour $n\in\mathbb{N}$

5 $u_n=n^2-6n+9$ pour $n\in\mathbb{N}$

 $oxed{6} u_n = n^2 - 8n + 18$ pour $n \in \mathbb{N}$

N_2 | Sens de variations : $u_n = f(n)$

P Propriété

Soit une suite u définie par $u_n=f(n)$ avec $n\in\mathbb{N}$ et f une fonction définie sur $[0;+\infty[$.

- Si f est croissante sur $[0; +\infty[$ alors u est croissante.
- Si f est décroissante sur $[0; +\infty[$ alors u est décroissante.

Les suites suivantes sont-elles monotones ?

 $oxed{1} u_n = 2 imes n - 9$ pour $n \in \mathbb{N}$

 $\fbox{2}$ $u_n=10-3n$ pour $n\in\mathbb{N}$

 $u_n=rac{-2}{4n-4}$ pour $n\in\mathbb{N}$

 $u_n=\sqrt{n+2}$ pour $n\in\mathbb{N}$

 $u_n=4n^2-9n+1$ pour $n\in\mathbb{N}$

 $u_n=4n-9n^2+1$ pour $n\in\mathbb{N}$

$\overline{N_3}$ Sens de variation d'une suite arithmétique

Soit u une suite arithmétique de raison $r \neq 0$ et de premier terme u_0 .

r	$oldsymbol{u}$
r > 0	est croissante
r < 0	est décroissante

- Soit (u_n) une suite arithmétique de premier terme $u_0=-8$ et de raison r=9. Etudier la monotonie de (u_n) .
- Soit (u_n) une suite arithmétique de premier terme $u_0=1$ et de raison $r=rac{1}{6}$. Etudier la monotonie de (u_n) .
- Soit (u_n) une suite arithmétique de premier terme $u_0=-7$ et de raison $r=-rac{11}{2}$. Etudier la monotonie de (u_n) .

Sens de variation d'une suite géométrique

P Propriété

Soit u une suite géométrique de raison q
eq 0 et de premier terme u_0 .

u_0	q	$oldsymbol{u}$
$u_0 > 0$	0 < q < 1	est décroissante
$u_0 > 0$	q > 1	est croissante
$u_0 < 0$	0 < q < 1	est croissante
$u_0 < 0$	q > 1	est décroissante
	q < 0	n'est pas monotone

- Soit (u_n) une suite géométrique de premier terme $u_0=1$ et de raison q=7. Etudier la monotonie de (u_n) .
- Soit (u_n) une suite géométrique de premier terme $u_0=-7$ et de raison q=2. Etudier la monotonie de (u_n) .
- Soit (u_n) une suite géométrique de premier terme $u_0=-1$ et de raison $q=rac{3}{5}$. Etudier la monotonie de (u_n) .
- Soit (u_n) une suite géométrique de premier terme $u_0=5$ et de raison $q=rac{1}{5}$. Etudier la monotonie de (u_n) .
- Soit (u_n) une suite géométrique de premier terme $u_0=5$ et de raison $q=-rac{9}{5}$. Etudier la monotonie de (u_n) .

N₅ Suite convergente

D Limite et convergence

Une suite u converge vers un réel l quand ses termes u_n se rapprochent de plus en plus vers l lorsque n devient de plus en plus grand. Cela signifie que u_n tend vers le réel l quand n tend vers $+\infty$ et on note :

$$u_n \longrightarrow 0$$

Quand une suite u converge vers le réel l, l est appelé la **limite** de la suite u.

Quand une suite u converge vers le réel l, on note : $\displaystyle \lim_{n o +\infty} u_n = l$

Une suite u est **divergente** quand elle ne converge pas vers un réel ou bien que ses termes tendent vers $+\infty$ ou $-\infty$. On a donc $\lim_{n\to +\infty} u_n = +\infty$ ou $\lim_{n\to +\infty} u_n = -\infty$

A l'aide d'une calculatrice, conjecturer la limite éventuelle des suites $oldsymbol{u}$:

$$u_n=rac{2n+1}{n-1}$$
 pour $n>1$

$$u_n=rac{2n^2-1}{n+1}$$
 pour $n\in\mathbb{N}$

$$\overbrace{\hspace{0.2cm}}^{\hspace{0.2cm}} u_0=4$$
 et $u_{n+1}=2u_n$

$$oxed{9} u_n = 2n^2 - 5n - 2$$
 pour $n \in \mathbb{N}$

$$u_n=rac{2n+1}{n^2+4}$$
 pour $n\in\mathbb{N}$

$$u_n=rac{5n+1}{3n-2}$$
 pour $n\in\mathbb{N}$

$$oxed{6} u_0=2$$
 et $u_{n+1}=-rac{1}{2}\,u_n$

$$u_n=(-4)^n$$
 pour $n\in\mathbb{N}$

$$oxed{10} u_n = -3n^3 + 4n^2 - 1$$
 pour $n \in \mathbb{N}$

$n^{\circ}1$ Suite (a_n)

Ecrire un algorithme permettant d'afficher les 100 premiers termes de la suite (a_n) définie par : $a_0=0$ et $a_{n+1}=a_n+2$. Que remarque-t-on ?

$n^{\circ}2$ Balle rebondissante

Une balle rebondissante est telle que chaque rebond a une hauteur égale à 80% du rebond précédent.

- lacktriangle Si on appelle h_n la hauteur en cm du n-ième rebond, montrer que (h_n) est une suite géométrique.
- Étudier les variations de cette suite. Étudier la limite de cette suite.
- 3 Au bout de combien de rebonds sa hauteur sera-t-elle inférieure au cinquième de sa hauteur initiale ?

n°3 | Ecologie

On jette chaque année $160 \ kg$ de déchets dans un bois. On estime que 20% de la totalité des déchets présents se dégradent. On note u_n la quantité de déchets présents l'année 2014 + n, sachant qu'en 2014 un grand nettoyage du bois a été effectué et que l'on suppose donc que $u_0 = 0$.

- Montrer que $u_{n+1}=0,8u_n+160$ pour tout entier naturel n.
- Construire les six premiers termes de la suite (u_n) (échelle : 1 cm pour 50 kg sur les deux axes).
- Conjecturer le sens de variations ainsi que la convergence de la suite.
- 4 Que peut-on en déduire quant à l'évolution de la quantité de déchets dans ce bois ?

n°4 | Filtre lumineux

En traversant une plaque de verre teintée, un rayon lumineux perd 23% de son intensité lumineuse. On superpose n plaques de verre identiques et on note i l'intensité du rayon à la sortie de la n-ème plaque exprimée en candela.

- i_0 étant l'intensité lumineuse du rayon avant son entrée dans la première plaque de verre et i_1 l'intensité à la sortie de cette plaque de verre, exprimer i_1 en fonction de i_0 .
- Quelle est la nature de la suite (i_n) ? Exprimer i_n en fonction de n et de i_0 .
- Etudier les variations et la convergence de la suite (i_n) .
- Déterminer l'intensité initiale d'un rayon dont l'intensité après avoir traversé $\bf 4$ plaques teintées est égale à $\bf 15$ candelas.
- Combien faut-il au minimum qu'un rayon traverse de plaques pour que son intensité lumineuse soit divisée par 5 ?

n°5 | Compte rémunéré

Au premier janvier 2015, on place $1500 \in$ sur un compte rémunéré. Cette rémunération représente 1% de la somme disponible sur ce compte **par mois**. A partir de février on place $100 \in$ de plus chaque premier du mois. Soit (u_n) la suite dont le terme u_n représente la somme disponible sur ce compte au mois n+1. On a donc $u_0=1500$

- Démontrer que $u_1=1615$ et que $u_2=1731,15$. Calculer u_3 . Que représente u_3 dans le contexte de l'exercice ?
- Démontrer que (u_n) n'est ni une suite arithmétique ni une suite géométrique.
- Déterminer la forme récurrente de (u_n) . Démontrer que (u_n) est croissante et donner sa limite
- Ecrire un algorithme permettant de déterminer le plus petit entier n pour que le capital de ce compte soit au moins de $2200 \in$
- En dressant un tableau donner la valeur de n de la question précédente puis le mois auquel la somme de $2200 \in \text{sera}$ atteinte.