M53 - Partie 2

octobre 2015

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} imes \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R}$$
 $(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- ▶ positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n$$

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- ▶ positive : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n$$

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R}$$
 $(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- ▶ positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n$$

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n$$

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\begin{array}{c} \overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\ (\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} \, | \overrightarrow{w} \rangle \end{array}$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\begin{array}{c} \overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\ (\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} \, | \overrightarrow{w} \rangle \end{array}$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- définie : $\langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0$,
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

- 1. La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- 2. Et une formule inverse (de polarisation) est :

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2)$$

3. De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4. On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$

- 1. La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- 2. Et une formule inverse (de polarisation) est :

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2).$$

3. De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4. On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$

- 1. La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- 2. Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3. De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v}\left|\overrightarrow{w}\right\rangle \right| \leq \left\|\overrightarrow{v}\right\| \left\|\overrightarrow{w}\right\|$$

4. On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$

- 1. La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- 2. Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3. De plus la norme et la produit scalaire sont reliés par *l'inégalité de Cauchy-Schwarz*

$$\left| \left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4. On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

- 1. La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- 2. Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3. De plus la norme et la produit scalaire sont reliés par *l'inégalité de Cauchy-Schwarz*

$$\left| \left\langle \overrightarrow{v} \, \middle| \, \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4. On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0,\pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \langle \vec{v} | \vec{w} \rangle = 0$
- 2. Soit $\overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}^{\perp} = \{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \mid \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \overrightarrow{v} \perp \overrightarrow{w} \}$.
- 3. Soit $\overline{\mathcal{F}}_1, \overline{\mathcal{F}}_2 \subset \overline{\mathcal{E}}$, alors $\overline{\mathcal{F}}_1 \perp \overline{\mathcal{F}}_2 \Leftrightarrow \overline{\mathcal{F}}_1 \subset \overline{\mathcal{F}}_2^{\perp}$.
- 4. \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{.}{\oplus} \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^\perp = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^\perp = \overrightarrow{\mathcal{F}}_1$

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \langle \vec{v} | \vec{w} \rangle = 0$.
- 2. Soit $\overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}^{\perp} = \{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \mid \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \overrightarrow{v} \perp \overrightarrow{w} \}$
- 3. Soit $\overline{\mathcal{F}}_1, \overline{\mathcal{F}}_2 \subset \overline{\mathcal{E}}$, alors $\overline{\mathcal{F}}_1 \perp \overline{\mathcal{F}}_2 \Leftrightarrow \overline{\mathcal{F}}_1 \subset \overline{\mathcal{F}}_2^{\perp}$.
- 4. \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\scriptscriptstyle \perp}{\oplus} \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^\perp = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^\perp = \overrightarrow{\mathcal{F}}_1$

- 1. $\vec{\mathbf{v}} \perp \vec{\mathbf{w}} \Leftrightarrow \langle \vec{\mathbf{v}} | \vec{\mathbf{w}} \rangle = 0$.
- 2. Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- 3. Soit $\overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^{\perp}$.
- 4. \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\circ}{\oplus} \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \langle \vec{v} | \vec{w} \rangle = 0$.
- 2. Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- 3. Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- 4. \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\overline{\mathcal{E}} = \overline{\mathcal{F}}_1 \oplus \overline{\mathcal{F}}_2 \Leftrightarrow \overline{\mathcal{F}}_1^\perp = \overline{\mathcal{F}}_2 \Leftrightarrow \overline{\mathcal{F}}_2^\perp = \overline{\mathcal{F}}_1$

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \langle \vec{v} | \vec{w} \rangle = 0$.
- 2. Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- 3. Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- 4. $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$

- 1. $\vec{\mathbf{v}} \perp \vec{\mathbf{w}} \Leftrightarrow \langle \vec{\mathbf{v}} | \vec{\mathbf{w}} \rangle = 0$.
- 2. Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- 3. Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- 4. $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \langle \vec{v} | \vec{w} \rangle = 0$.
- 2. Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- 3. Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- 4. $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$.

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \langle \vec{v} | \vec{w} \rangle = 0$.
- 2. Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- 3. Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- 4. $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\oplus\overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1\perp\overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \overset{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1.$

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- ▶ symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- ▶ inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A, B) = \|\overrightarrow{AB}\|$$

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- ▶ séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- ▶ inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A, B) = \|\overrightarrow{AB}\|$$

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- ▶ inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \|\overrightarrow{AB}\|.$$

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- ▶ symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- ▶ inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- ▶ inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|.$$

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- ▶ inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A, B) = \left\| \overrightarrow{AB} \right\|.$$

Définition

- Si A est compacte et B est fermée, les deux non vides, alors il existe un couple de points (M, N) ∈ A × B tel que d(A, B) = d(M, N).
 Et pour A seulement fermée?
- 2. La propriété précédente reste <u>vraie</u> pour A et B des sous-espaces affines. De plus $\overline{MN} \perp (\overline{A} + \overline{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Définition

Soit $\mathcal A$ et $\mathcal B$ deux parties d'un espace affine euclidien $\mathcal E$. On pose $d(\mathcal A,\mathcal B)=\inf_{(M,N)\in\mathcal A\times\mathcal B}d(M,N).$

1. Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M, N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A}, \mathcal{B}) = d(M, N)$. Et pour \mathcal{A} seulement fermée?

- 2. La propriété précédente reste <u>vraie</u> pour A et B des sous-espaces affines. De plus $\overline{MN} \perp (\overline{A} + \overline{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Définition

- 1. Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N)\in\mathcal{A}\times\mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B})=d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2. La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Définition

- 1. Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2. La propriété précédente reste vraie pour \overrightarrow{A} et \overrightarrow{B} des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Définition

- 1. Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2. La propriété précédente reste vraie pour \overrightarrow{A} et \overrightarrow{B} des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Définition

- 1. Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2. La propriété précédente reste vraie pour \overrightarrow{A} et \overrightarrow{B} des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

6/24

Distance entre parties

Définition

- 1. Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M, N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A}, \mathcal{B}) = d(M, N)$. Et pour \mathcal{A} seulement fermée?
- 2. La propriété précédente reste vraie pour \overrightarrow{A} et \overrightarrow{B} des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3. Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F}, \mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- 4. Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : isométrie vectorielle

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

1.
$$\forall \vec{v} \in \vec{\mathcal{E}}$$
,

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

2.
$$\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

3.

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : isométrie vectorielle

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

1. $\forall \vec{v} \in \vec{\mathcal{E}}$,

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

2. $\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

3.

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : isométrie vectorielle

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

1. $\forall \vec{v} \in \vec{\mathcal{E}}$,

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

2. $\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$,

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id}$$

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

1. $\forall \vec{v} \in \vec{\mathcal{E}}$,

$$\|\overrightarrow{\phi}(\overrightarrow{v})\| = \|\overrightarrow{v}\|.$$

2. $\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$,

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

1. $\forall \vec{v} \in \vec{\mathcal{E}}$,

$$\|\overrightarrow{\phi}(\overrightarrow{v})\| = \|\overrightarrow{v}\|.$$

2. $\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$,

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : isométrie vectorielle

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

1. $\forall \vec{v} \in \vec{\mathcal{E}}$,

$$\|\overrightarrow{\phi}(\overrightarrow{v})\| = \|\overrightarrow{v}\|.$$

2. $\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$,

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overline{\phi}(\overline{\mathcal{F}}^{\perp}) = \overline{\mathcal{F}}^{\perp}.$$

2. En particulier, si \mathcal{F} n'est pas trivial, \mathcal{E} se décompose en somme directe orthogonale de deux sous-espaces stables par ϕ : $\mathcal{E} = \mathcal{F} \oplus \mathcal{F}^{\perp}$. Si on note $\phi_1 = \phi \mid_{\mathcal{F}}$ et $\phi_2 = \phi \mid_{\mathcal{F}_{\perp}}$, alors ϕ_1 et ϕ_2

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2$$

- 1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,
 - 2. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose er somme directe orthogonale de deux sous-espaces stables

Si on note $\overline{\phi}_1 = \overline{\phi}|_{\overline{\mathcal{F}}}$ et $\overline{\phi}_2 = \overline{\phi}|_{\overline{\mathcal{F}}^{\perp}}$, alors $\overline{\phi}_1$ et $\overline{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2$$

1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

somme directe orthogonale de deux sous-espaces stables par ϕ : $\mathcal{E} = \mathcal{F} \oplus \mathcal{F}^{\perp}$.

Si on note $\phi_1 = \phi|_{\mathcal{F}}$ et $\phi_2 = \phi|_{\mathcal{F}_1}$, alors ϕ_1 et ϕ_2

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal

$$\vec{\phi}(\vec{\mathcal{F}}^{\perp}) = \vec{\mathcal{F}}^{\perp}$$

2. En particulier, si \mathcal{F} n'est pas trivial, \mathcal{E} se décompose en somme directe orthogonale de deux sous-espaces stables par $\overline{\phi}: \overline{\mathcal{E}} = \overline{\mathcal{F}} \oplus \overline{\mathcal{F}}^{\perp}$.

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^{\perp}}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\scriptscriptstyle\perp}{\oplus} \overrightarrow{\phi}_2$$
.

- 1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,
 - $ec{\phi}(ec{\mathcal{F}}^{\perp}) = ec{\mathcal{F}}^{\perp}.$
- 2. En particulier, si \mathcal{F} n'est pas trivial, \mathcal{E} se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$. Si on note $\overrightarrow{\phi}_1 = \overrightarrow{\phi}|_{\overline{\mathcal{F}}}$ et $\overrightarrow{\phi}_2 = \overrightarrow{\phi}|_{\overline{\mathcal{F}}^{\perp}}$, alors $\overrightarrow{\phi}_1$ et $\overrightarrow{\phi}_2$

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2$$

1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

2. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Si on note $\overrightarrow{\phi}_1 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}}$ et $\overrightarrow{\phi}_2 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}^{\perp}}$, alors $\overrightarrow{\phi}_1$ et $\overrightarrow{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\vec{\phi}(\vec{\mathcal{F}}^{\perp}) = \vec{\mathcal{F}}^{\perp}.$$

2. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$. Si on note $\overrightarrow{\phi}_1 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}}$ et $\overrightarrow{\phi}_2 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}^{\perp}}$, alors $\overrightarrow{\phi}_1$ et $\overrightarrow{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\scriptscriptstyle \perp}{\oplus} \overrightarrow{\phi}_2.$$

1. Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\vec{\phi}(\vec{\mathcal{F}}^{\perp}) = \vec{\mathcal{F}}^{\perp}.$$

2. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$. Si on note $\overrightarrow{\phi}_1 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}}$ et $\overrightarrow{\phi}_2 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}^{\perp}}$, alors $\overrightarrow{\phi}_1$ et $\overrightarrow{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \overset{\perp}{\oplus} \overrightarrow{\phi}_2.$$

3. Si λ est valeur propre (réelle) de $\overrightarrow{\phi}$ alors $\lambda = \pm 1$.

- Le groupe des isométries de \mathcal{E} est noté $O(\mathcal{E})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^n M = I_n \}$.)
- Soit $\phi \in \mathcal{O}(\mathcal{E})$, alors $\det(\phi) = \pm 1$
 - On note (V^{*}(ε) ou S((ε) (resp. (V_ε ou S(V_θ))) elsembles des isométries à déterminant 1, dites directes, de Ε΄
 - De même l'ensemble des isométries à déterminant −1, dites indirectes est noré OT(E) (rese OT)
 - $(O^+(\overline{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\overline{\mathcal{E}})$, mais $O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}$.)

lacksquare Soit $\phi\in O(\mathcal{E})$, alors $\det(\phi)=\pm 1$

 $(O^+(\overrightarrow{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\overrightarrow{\mathcal{E}})$ mais $O^-(\overrightarrow{\mathcal{E}})$ n'en est pas un.)

- Le groupe des isométries de $\overline{\mathcal{E}}$ est noté $O(\overline{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\phi \in O(\overline{\mathcal{E}})$, alors $\det(\phi) = \pm 1$.
 - On note $O^+(\mathcal{E})$ ou $SO(\mathcal{E})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\overrightarrow{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - ▶ De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\overline{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\widetilde{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\widetilde{\mathcal{E}})$ mais $O^-(\widetilde{\mathcal{E}})$ n'en est pas un.)

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- ▶ Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - ▶ On note $O^+(\overrightarrow{\mathcal{E}})$ ou $SO(\overrightarrow{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\overrightarrow{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - ▶ De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\overline{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\overline{\mathcal{E}})$ mais $O^-(\overline{\mathcal{E}})$ n'en est pas un.)

- Le groupe des isométries de $\overline{\mathcal{E}}$ est noté $O(\overline{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- ▶ Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - ▶ On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - ▶ De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\overrightarrow{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}),$ mais $O^-(\vec{\mathcal{E}})$ n'en est pas un.)

- Le groupe des isométries de $\overline{\mathcal{E}}$ est noté $O(\overline{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- ▶ Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - ▶ On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - ▶ De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}),$ mais $O^-(\vec{\mathcal{E}})$ n'en est pas un.)

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- ▶ Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - ▶ On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - ▶ De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}),$ mais $O^-(\vec{\mathcal{E}})$ n'en est pas un.)

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- ▶ Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - ▶ On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - ▶ De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}),$ mais $O^-(\vec{\mathcal{E}})$ n'en est pas un.)

- $O_1 = \{1, -1\}.$
- $O_2 = O_2^+ \sqcup O_2^-$, où
 - $O_2^+ = \{ \overline{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est le sous-groupe des rotations,
 - $\bullet \ \ \mathcal{O}_2^- = \{ \overline{\mathcal{S}}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions.

Les règles de composition sont :

- $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} (=505,200),$
 - $r S_n \circ S_n = R_{n-n}$
- $u = \tilde{S}_{\alpha} \circ \tilde{R}_{\gamma} = \tilde{S}_{\alpha = \gamma} \text{ et } \tilde{R}_{\gamma} \circ \tilde{S}_{\beta} = \tilde{S}_{\gamma + \beta}.$

- $O_1 = \{1, -1\}.$
- $O_2 = O_2^+ \sqcup O_2^-$, où
 - $P = O_2^+ = \left\{ \overline{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \right\}$ est le sous-groupe des rotations,
 - $\bullet \ O_2^- = \big\{ \overline{S}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\}$ est l'ensemble des réflexions.
 - Les règles de comparition cont :

Les règles de composition sont :

- $= \underline{R}_{\alpha} \circ \underline{R}_{\beta} = \underline{R}_{\alpha+\beta} (= 50.5 \pm 0.5).$
- $r S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$
- $S_{lpha}\circ R_{\gamma}=S_{lpha-\gamma} ext{ et } R_{\gamma}\circ S_{eta}=S_{\gamma+eta}$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - $\begin{array}{l} \bullet \quad O_2^- = \left\{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \right\} \\ \text{est l'ensemble des réflexions.} \end{array}$

(${\sf S}_lpha$ est la symétrie par rapport à la droite d'angle lpha/2 .)

Les règles de composition sont :

- $ightharpoonup \vec{R}_{\alpha} \circ \vec{R}_{\beta} = \vec{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
- $\triangleright \hat{S}_{\alpha} \circ \hat{S}_{\beta} = R_{\alpha-\beta}$
- $ightharpoonup \overrightarrow{S}_{lpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{lpha \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{eta} = \overrightarrow{S}_{\gamma + \beta}.$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \blacktriangleright \ \, \textit{O}_2^+ = \big\{ \overrightarrow{\textit{R}}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \, \, \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - $\begin{array}{l} \bullet \quad O_2^- = \left\{ \overrightarrow{S}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{smallmatrix} \right) \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \right\} \\ \text{est l'ensemble des réflexions.} \end{array}$
 - $(S_{\alpha} \text{ est la symétrie par rapport à la droite d'angle <math>\alpha/2$.) Les règles de composition sont :
 - $ightharpoonup R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
 - $\triangleright S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$
 - $\triangleright S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}.$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \bullet \ \ O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - $\begin{array}{l} \bullet \quad O_2^- = \big\{ \overrightarrow{S}_\alpha = \left(\begin{matrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{matrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est l'ensemble des réflexions.} \end{array}$

(S_{α} est la symétrie par rapport à la droite d'angle $\alpha/2$.)

- $ightharpoonup \overrightarrow{R}_{\alpha} \circ \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha + \beta} \ (\Rightarrow SO_{\beta} \cong \mathbb{S}^{1})$
 - $\triangleright S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$
 - $\triangleright S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}.$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{ll} \blacktriangleright & \textit{O}_2^+ = \big\{\overrightarrow{\textit{R}}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - ▶ $O_2^- = \{ \overrightarrow{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\overrightarrow{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

- $ightharpoonup R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
- $\triangleright S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$
- $\triangleright S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}.$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \blacktriangleright \ \, \textit{O}_2^+ = \big\{ \overrightarrow{\textit{R}}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \, \, \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - $\begin{array}{l} \bullet \ \ O_2^- = \big\{ \overrightarrow{S}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{ est l'ensemble des réflexions.} \\ \overrightarrow{(S}_\alpha \ \text{est la symétrie par rapport à la droite d'angle } \alpha/2.) \end{array}$

Les règles de composition sont :

- $\qquad \qquad \stackrel{\wedge}{R}_{\alpha} \circ \stackrel{\wedge}{R}_{\beta} = \stackrel{\wedge}{R}_{\alpha+\beta} \ (\Rightarrow 50_2 \cong \mathbb{S}^1),$
- $\triangleright S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \blacktriangleright \ \, \textit{O}_2^+ = \big\{ \overrightarrow{\textit{R}}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \, \, \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - ▶ $O_2^- = \{ \overrightarrow{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\overrightarrow{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

 $ightharpoonup \overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \blacktriangleright \ \ \textit{O}_2^+ = \big\{ \overrightarrow{\textit{R}}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - ▶ $O_2^- = \{ \overrightarrow{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\overrightarrow{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$ightharpoonup \overrightarrow{R}_{lpha} \circ \overrightarrow{R}_{eta} = \overrightarrow{R}_{lpha+eta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$\triangleright \ \overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha-\gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma+\beta}.$$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \blacktriangleright \ \ \textit{O}_2^+ = \big\{ \overrightarrow{\textit{R}}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - ▶ $O_2^- = \{ \overrightarrow{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\overrightarrow{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$ightharpoonup \overrightarrow{R}_{lpha} \circ \overrightarrow{R}_{eta} = \overrightarrow{R}_{lpha+eta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{ll} \blacktriangleright & \textit{O}_2^+ = \big\{\overrightarrow{\textit{R}}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - $\begin{array}{l} \bullet \ \ O_2^- = \big\{ \overrightarrow{S}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{ est l'ensemble des réflexions.} \\ \overrightarrow{(S}_\alpha \ \text{est la symétrie par rapport à la droite d'angle } \alpha/2.) \end{array}$

Les règles de composition sont :

$$ightharpoonup \overrightarrow{R}_{lpha} \circ \overrightarrow{R}_{eta} = \overrightarrow{R}_{lpha+eta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$\vec{S}_{\alpha} \circ \vec{S}_{\beta} = \vec{R}_{\alpha-\beta},$$

$$\vec{S}_{\alpha} \circ \vec{R}_{\gamma} = \vec{S}_{\alpha-\gamma} \text{ et } \vec{R}_{\gamma} \circ \vec{S}_{\beta} = \vec{S}_{\gamma+\beta}.$$

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+\sqcup O_2^-$, où
 - $\begin{array}{l} \blacktriangleright \ \ O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$
 - ▶ $O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\overrightarrow{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$ightharpoonup \overrightarrow{R}_{\alpha} \circ \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$\vec{S}_{\alpha} \circ \vec{S}_{\beta} = \vec{R}_{\alpha-\beta},$$

$$\stackrel{\cdot}{S}_{\alpha} \circ \stackrel{\cdot}{R}_{\gamma} = \stackrel{\cdot}{S}_{\alpha-\gamma} \text{ et } \stackrel{\cdot}{R}_{\gamma} \circ \stackrel{\cdot}{S}_{\beta} = \stackrel{\cdot}{S}_{\gamma+\beta}.$$

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- ▶ ρ_a : $z \mapsto az$ avec |a| = 1, et dans ce cas c'est une rotation d'angle arg(a), ou
- ▶ $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- $ho_{e^{i heta}}=\overline{R}_{ heta}$
- $\triangleright \sigma_{e^{i\theta}} = S_{\theta}$

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- ▶ σ_a : $z \mapsto a\overline{z}$ avec |a| = 1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- $ightharpoonup \sigma_{e^{i\theta}} = S_{\theta}$

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- ▶ $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- ▶ $\sigma_a: z \mapsto a\overline{z}$ avec |a| = 1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- $ightharpoonup
 ho_{e^{i heta}} = \widetilde{R}_{ heta}$
- $\triangleright \sigma_{e^{i\theta}} = S_{\theta}$

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- ▶ $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par :

- $\triangleright \rho_{e^{i\theta}} = \overline{R}_{\theta}$
- $ightharpoonup \sigma_{e^{i\theta}} = S_{\theta}$

Les isométries de \mathbb{C} (dimension 2)

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- ▶ $\sigma_a : z \mapsto a\overline{z}$ avec |a| = 1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $\mathit{O}(\mathbb{C})$ est donnée par :

Les isométries de \mathbb{C} (dimension 2)

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $\mathit{O}(\mathbb{C})$ est donnée par :

Les isométries de \mathbb{C} (dimension 2)

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\rho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $\mathit{O}(\mathbb{C})$ est donnée par :

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\vec{\phi} \in O^+(\vec{\mathcal{E}})$ ssi il existe une b.o.n $\{\vec{u}, \vec{v}, \vec{w}\}$ dans laquelle la matrice de $\vec{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\phi = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^-(\mathcal{E})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\left(\begin{array}{ccc} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{array} \right)$$

Dans ce cas $\overline{\phi}$ est la composée de la rotation $\overline{\rho}_{\overline{w},\alpha}$ avec la symétrie $\overline{\sigma}_{\langle \overline{u},\overline{v}\rangle}$ par rapport au plan engendré par \overline{u} et \overline{v} , et on dit que $\overline{\phi}$ est une anti-rotation.

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in \mathcal{O}(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\phi = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^-(\mathcal{E})$ ssi il existe une b.o.n $\{\overline{u}, \overline{v}, \overline{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Dans ce cas $\overline{\phi}$ est la composée de la rotation $\overline{\rho}_{\overline{w},\alpha}$ avec la symétrie $\overline{\sigma}_{\langle \overline{u},\overline{v}\rangle}$ par rapport au plan engendré par \overline{u} et \overline{v} , et on dit que $\overline{\phi}$ est une anti-rotation.

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in \mathcal{O}(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}=\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^-(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\left(\begin{array}{ccc} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{array} \right).$$

Dans ce cas $\overline{\phi}$ est la composée de la rotation $\overline{\rho}_{\overline{w},\alpha}$ avec la symétrie $\overline{\sigma}_{\langle \overline{u},\overline{v}\rangle}$ par rapport au plan engendré par \overline{u} et \overline{v} , et on dit que $\overline{\phi}$ est une anti-rotation.

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in \mathcal{O}(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}=\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétrie $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}_{\rangle}}$ par rapport au plan engendré par \overrightarrow{u} er \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $ightarrow \overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétrie $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Forme standard des isométries

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\overline{\phi} \in O^{-}(\overline{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0).

Forme standard des isométries

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0).

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une <mark>réflexion</mark>.

(Une réflexion est une isométrie indirecte.)

Proposition

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$. Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\triangleright \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\blacktriangleright \ \phi \in O(\overline{\mathcal{E}}).$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\blacktriangleright \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\qquad \qquad \phi \in O(\overline{\mathcal{E}}).$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\blacktriangleright \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $ightharpoonup \vec{\phi} \in O(\vec{\mathcal{E}}).$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\blacktriangleright \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$

On note $lso(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\blacktriangleright \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$

On note $\operatorname{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\operatorname{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

- ▶ $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- ▶ $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries (directes).
- Une homothétie de rapport λ multiplie les distances par |λ|, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in Aff(\mathcal{E})$ est dite symétrie (affine) orthogonale (respectionale) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (respectible) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ► Toute translation est le produit de deux réflexions

- ▶ $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- ▶ $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries (directes).
- Une homothétie de rapport λ multiplie les distances par |λ|, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (respective value) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (respective value) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

- ▶ $lso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- ▶ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries (directes).
- Une homothétie de rapport λ multiplie les distances par |λ|, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (responsible out) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (responsible out) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ▶ Toute translation est le produit de deux réflexions

- ▶ $lso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- ▶ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries (directes).
- Une homothétie de rapport λ multiplie les distances par |λ|, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

- ▶ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- ▶ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries (directes).
- Une homothétie de rapport λ multiplie les distances par |λ|, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (responsible out) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (responsible out) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ▶ Toute translation est le produit de deux réflexions

- ▶ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- ▶ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries (directes).
- ▶ Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (respréflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ▶ Toute translation est le produit de deux réflexions

- ▶ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- ▶ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries (directes).
- ▶ Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ▶ Toute translation est le produit de deux réflexions

- ▶ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- ▶ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries (directes).
- ▶ Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

- ▶ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- ▶ $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries (directes).
- ▶ Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ▶ Toute translation est le produit de deux réflexions.

- ▶ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- ▶ $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries (directes).
- ▶ Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- ► Toute translation est le produit de deux réflexions.

Structure des isométries affines

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- lacktriangleright soit ϕ possède un point fixe Ω , et dans ce cas $\phi\in O(\mathcal{E}_\Omega)$
- ▶ soit il existe un unique $\overrightarrow{V}(\neq 0)$, vecteur fixe de ϕ , tel que $T_{\nabla} \circ \phi = \phi \circ T_{\nabla}$ possède (su moins) un point fixe.

Structure des isométries affines

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- ▶ soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- ▶ soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- ▶ soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- ▶ soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

- ▶ $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. $(\phi \text{ est la composée d'au plus 2 réflexions.})$

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

- ▶ $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. $(\phi \text{ est la composée d'au plus 2 réflexions.})$

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- ▶ $\operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2).$ ▶ $\phi \in \operatorname{Iso}^+(\mathbb{R}^2)$ ssi

 $\phi \in \operatorname{Iso}^-(\mathbb{R}^2)$ ssi

- ▶ $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. $(\phi \text{ est la composée d'au plus } 2 \text{ réflexions.})$
- - $\phi \in \mathrm{Iso}^+(\mathbb{R}^2)$ ssi

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou $\phi = T_{\nabla}$ est une translation.

 ϕ (c.5 d. $\phi \in D$), et dans ce cas on dit que ϕ est un symétrie plasses.

- ▶ $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. $(\phi \text{ est la composée d'au plus } 2 \text{ réflexions.})$
- $Iso(\mathbb{R}^2) = Iso^+(\mathbb{R}^2) \sqcup Iso^-(\mathbb{R}^2).$
 - $\phi \in \mathrm{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi=R_{\Omega,lpha}$ est la rotation de centre Ω d'angle lpha, ou

- ▶ $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. $(\phi \text{ est la composée d'au plus } 2 \text{ réflexions.})$
- - $\phi \in \mathrm{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\quad \bullet \ \phi \in \mathrm{Iso}^-(\mathbb{R}^2) \ \mathrm{ssi}$

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $Iso(\mathbb{R}^2) = Iso^+(\mathbb{R}^2) \sqcup Iso^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathsf{Iso}^+(\mathbb{R}^2) \; \mathsf{ssi}$
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = S_D$ est la symétrie par rapport à une droite affine D, ou
 - $\phi = I \nabla \circ S_{\overline{D}}$ avec $v \neq 0$ un vecteur fixe par la symétrie ϕ (c.-à-d. $\phi \in \overline{\mathcal{D}}$), et dans ce cas on dit que ϕ est une symétrie glissée.
 - $(\phi$ est la composée d'au plus 3 réflexions.)

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $Iso(\mathbb{R}^2) = Iso^+(\mathbb{R}^2) \sqcup Iso^-(\mathbb{R}^2).$
 - $\phi \in \mathrm{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D}_{\cdot} ou
 - $\phi = I_{\nabla} \circ S_{\mathcal{D}}$ avec $v \neq 0$ un vecteur fixe par la symétrie ϕ (c.-à-d. $\phi \in \mathcal{D}$), et dans ce cas on dit que ϕ est une symétrie glissée.
 - $(\phi$ est la composée d'au plus 3 réflexions.)

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $Iso(\mathbb{R}^2) = Iso^+(\mathbb{R}^2) \sqcup Iso^-(\mathbb{R}^2).$
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{D}}$ avec $\overrightarrow{v} \neq 0$ un vecteur fixe par la symétrie $\overrightarrow{\phi}$ (c.-à-d. $\overrightarrow{\phi} \in \overrightarrow{\mathcal{D}}$), et dans ce cas on dit que ϕ est une symétrie glissée.

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $Iso(\mathbb{R}^2) = Iso^+(\mathbb{R}^2) \sqcup Iso^-(\mathbb{R}^2).$
 - $\phi \in \mathrm{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{D}}$ avec $\overrightarrow{v} \neq 0$ un vecteur fixe par la symétrie $\overrightarrow{\phi}$ (c.-à-d. $\overrightarrow{\phi} \in \overrightarrow{\mathcal{D}}$), et dans ce cas on dit que ϕ est une symétrie glissée.

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $Iso(\mathbb{R}^2) = Iso^+(\mathbb{R}^2) \sqcup Iso^-(\mathbb{R}^2).$
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\overrightarrow{D}}$ avec $\overrightarrow{v} \neq 0$ un vecteur fixe par la symétrie $\overrightarrow{\phi}$ (c.-à-d. $\overrightarrow{\phi} \in \overrightarrow{D}$), et dans ce cas on dit que ϕ est une symétrie glissée.

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- ▶ $\operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{D}}$ avec $\overrightarrow{v} \neq 0$ un vecteur fixe par la symétrie $\overrightarrow{\phi}$ (c.-à-d. $\overrightarrow{\phi} \in \overrightarrow{\mathcal{D}}$), et dans ce cas on dit que ϕ est une symétrie glissée.

Les isométries affines de C

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z\mapsto \alpha z+\beta \overline{z}+\gamma$.

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z\mapsto \alpha z+\beta \overline{z}+\gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - ▶ Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$
 - ▶ Si a=1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C}) ssi \phi(z) = a\overline{z} + b avec |a| = 1.$
 - ▶ Si $\overline{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - ightharpoonup Sinon ϕ est une symétrie glissée.

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(\mathsf{z}) = \mathsf{a}\mathsf{z} + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - ▶ Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - ▶ Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C}) ssi \phi(z) = a\overline{z} + b avec |a| = 1.$
 - ▶ Si $\overline{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - Sinon φ est une symétrie glissée.

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C})$ ssi $\phi(z) = az + b$ avec |a| = 1.
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - ▶ Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C}) ssi \phi(z) = a\overline{z} + b avec |a| = 1.$
 - ightharpoonup Si $ab^2\in\mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R}+b/2$
 - \triangleright Sinon ϕ est une symétrie glissée.

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z\mapsto \alpha z+\beta \overline{z}+\gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \mathsf{ssi} \ \phi(z) = \mathsf{az} + \mathsf{b} \mathsf{avec} \ |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - ▶ Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C}) ssi \phi(z) = a\overline{z} + b avec |a| = 1.$
 - \triangleright Si $ab^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - ightharpoonup Sinon ϕ est une symétrie glissée.

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C})$ ssi $\phi(z) = az + b$ avec |a| = 1.
 - ▶ Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - ▶ Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - ▶ Si $\bar{a}b^2 \in \mathbb{R}_{-}$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

Les isométries affines de C

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C})$ ssi $\phi(z) = az + b$ avec |a| = 1.
 - ▶ Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - ▶ Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - ▶ Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon φ est une symétrie glissée.

Rappel : Les applications affines de l'espace euclidien $\mathbb C$ sont de la forme $z\mapsto \alpha z+\beta \overline{z}+\gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \mathsf{ssi} \ \phi(z) = \mathsf{az} + \mathsf{b} \mathsf{ avec} \ |\mathsf{a}| = 1.$
 - ▶ Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - ▶ Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - ▶ Si $\overline{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon φ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathrm{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi=R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe $\mathcal{D},$ ou bien
 - $ightharpoonup \phi = T_{\overrightarrow{V}} \circ R_{\mathcal{D},\alpha}$, avec $\widetilde{\mathcal{D}} = \langle \overrightarrow{V} \rangle$
 - » si $\alpha=0$, c. à-d. $\phi=T_{\mathcal{V}},$ c'est une translation,
 - si α ≠ 0, on dit que φ est un vissage d'axe D et d'angle α.
- $\qquad \phi \in \mathsf{Iso}^-(\mathbb{R}^3) \; \mathsf{ssi}$
 - lacktriangledown $\phi = R_{\mathcal{D}, lpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - » si $\alpha=0$, c. 3-d. $\phi=S_{20}$ est la symétrie par rapport au plan affine \mathcal{H}
 - imes si lpha
 eq 0, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\nabla} \circ S_{\mathcal{H}}$ avec $\overline{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - - lacktriangle si lpha=0, c.-à-d. $\phi=T_{\overline{V}}$, c'est une translation,
 - $m{ iny si} \; lpha
 eq 0$, on dit que ϕ est un vissage d'axe $\mathcal D$ et d'angle α
- $\quad \bullet \ \phi \in \mathrm{Iso}^-(\mathbb{R}^3) \ \mathrm{ssi}$
 - $lacktriangledown \phi = R_{\mathcal{D},lpha}\circ S_{\mathcal{H}}$ avec $\mathcal{D}\perp\mathcal{H}$
 - e si $\alpha=0$, c. à d. $\phi=S_{tt}$, est la symétrie par rapport au plan affine ${\cal H}$
 - st si lpha
 eq 0 , on dit que ϕ est une anti-rotation.
 - $\phi=T_{\overline{v}}\circ S_{\mathcal{H}}$ avec $\overline{v}\neq 0$ est un vecteur fixe par la symétrie $\overline{\phi}$, et dans ce cas on dit que ϕ est une symétrie discuss

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - - ightharpoonup si lpha=0, c.-à-d. $\phi=T_{\overrightarrow{V}}$, c'est une translation,
 - ightharpoonup si lpha
 eq 0, on dit que ϕ est un vissage d'axe $\mathcal D$ et d'angle lpha.
- $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi
 - $ightharpoonup \phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - e si $\alpha=0$, c. à-d. $\phi=S_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - \succ si $\alpha \neq 0$, on dit que ϕ est une auto-roll
 - $\phi = T_{\overline{V}} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétric dissipation

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathrm{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D},lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - ▶ si $\alpha = 0$, c.-à-d. $\phi = T_{\overrightarrow{v}}$, c'est une translation,
 - ▶ si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
- $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi
 - $lacktriangledown \phi = R_{\mathcal{D}, lpha} \circ S_{\mathcal{H}} \text{ avec } \mathcal{D} \perp \mathcal{H}$
 - e si $\alpha=0$, c.3 d. $\phi=S_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - $m \phi = T_{\overline v} \circ S_{\mathcal H}$ avec $\overline v
 eq 0$ est un vecteur fixe par la symétrie $\overline \phi$
- $(\phi \text{ est la composée d'au plus } 4 \text{ réflexions.})$

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D},lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - ▶ si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
- $\qquad \phi \in \mathsf{Iso}^-(\mathbb{R}^3) \; \mathsf{ssi}$
 - $ightharpoonup \phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - plan affine *H* or $\alpha \neq 0$, on dir que of est une anti-rotation.
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $V \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symmetrie ϕ .

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D},lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - ightharpoonup si lpha=0, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe $\mathcal D$ et d'angle α .
- $\qquad \phi \in \mathsf{Iso}^-(\mathbb{R}^3) \; \mathsf{ssi}$
 - $ightharpoonup \phi = \kappa_{\mathcal{D},\alpha} \circ \mathsf{S}_{\mathcal{H}} \text{ avec } \mathcal{D} \perp \mathcal{H}$
 - > si $\alpha \neq 0$, on dit que ϕ est <
 - $\phi = T_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ est dans ce cas on dit que ϕ est une so

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe $\mathcal D$ et d'angle α .
- $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $lack \phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}} \text{ avec } \mathcal{D} \perp \mathcal{H}$
 - ightharpoonup si lpha=0, c.-à-d. $\phi=S_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - \triangleright si $\alpha \neq 0$, on dit que ϕ est une anti-rotation
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lack \phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
- $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - ▶ si $\alpha=0$, c.-à-d. $\phi=S_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - ightharpoonup si $\alpha \neq 0$, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
- $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - si $\alpha=0$, c.-à-d. $\phi=\mathcal{S}_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - ightharpoonup si $\alpha \neq 0$, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe $\mathcal D$ et d'angle α .
- $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - si $\alpha=0$, c.-à-d. $\phi=\mathcal{S}_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - si $\alpha \neq 0$, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
- $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - \blacktriangleright si $\alpha=0$, c.-à-d. $\phi={\cal S}_{\mathcal H}$, est la symétrie par rapport au plan affine $\mathcal H$
 - si $\alpha \neq 0$, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si $\alpha=0$, c.-à-d. $\phi=T_{\overrightarrow{v}}$, c'est une translation,
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe $\mathcal D$ et d'angle α .
- $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - si $\alpha=0$, c.-à-d. $\phi=\mathcal{S}_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - si $\alpha \neq 0$, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

$$\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3).$$

- $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou bien
 - $lacktriangledown \phi = T_{\overrightarrow{m{v}}} \circ R_{\mathcal{D}, lpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{m{v}}
 angle$
 - si α = 0, c.-à-d. φ = T_{v̄}, c'est une translation,
 si α ≠ 0, on dit que φ est un vissage d'axe D et d'angle
 - si $\alpha \neq 0$, on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
- $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$
 - si $\alpha=0$, c.-à-d. $\phi=\mathcal{S}_{\mathcal{H}}$, est la symétrie par rapport au plan affine \mathcal{H}
 - si $\alpha \neq 0$, on dit que ϕ est une anti-rotation.
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.
- $(\phi \text{ est la composée d'au plus } 4 \text{ réflexions.})$

Rappel : Une réflexion est une isométrie indirecte.

Proposition

Soient $\mathcal E$ un espace affine de dimension n, et $\phi \in \mathsf{Iso}(\mathcal E)$. Alors ϕ est le produit de $k(\le n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Rappel : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k (\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Rappel : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$. Alors ϕ est le produit de $k(\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Rappel : Une réflexion est une isométrie indirecte.

Proposition

Soient $\mathcal E$ un espace affine de dimension n, et $\phi \in \operatorname{Iso}(\mathcal E)$.

Alors ϕ est le produit de $k (\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impair $\phi \in \mathsf{Iso}^-(\mathcal{E})$.

Définition d'une similitude

Définition

▶ Une application linéaire $\overline{\phi} \in \mathcal{L}(\overline{\mathcal{E}})$ est dite similitude vectorielle si elle multiplie les normes par une constante k > 0.

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = k \| \overrightarrow{v} \|, \quad \forall \overrightarrow{v} \in \overrightarrow{\mathcal{E}}.$$

▶ Une application affine $\phi \in \text{Aff}(E)$ est dite similitude affine si elle multiplie les distances par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}$$

Définition d'une similitude

Définition

▶ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dite similitude vectorielle si elle multiplie les normes par une constante k > 0:

$$\|\vec{\phi}(\vec{v})\| = k \|\vec{v}\|, \quad \forall \vec{v} \in \vec{\mathcal{E}}.$$

▶ Une application affine $\phi \in \text{Aff}(E)$ est dite similitude affine si elle multiplie les distances par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}.$$

Définition

▶ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dite similitude vectorielle si elle multiplie les normes par une constante k > 0:

$$\|\vec{\phi}(\vec{v})\| = k \|\vec{v}\|, \quad \forall \vec{v} \in \vec{\mathcal{E}}.$$

▶ Une application affine $\phi \in \mathsf{Aff}(E)$ est dite similitude affine si elle multiplie les distances par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}.$$

Définition

▶ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dite similitude vectorielle si elle multiplie les normes par une constante k > 0:

$$\|\vec{\phi}(\vec{v})\| = k \|\vec{v}\|, \quad \forall \vec{v} \in \vec{\mathcal{E}}.$$

▶ Une application affine $\phi \in \mathsf{Aff}(E)$ est dite similitude affine si elle multiplie les distances par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}.$$

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Les isométries sont des similitudes (k = 1).
- ► Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Les isométries sont des similitudes (k = 1).
- ▶ Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- ▶ Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

Propriétés des similitudes

Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.

- Les isométries sont des similitudes (k = 1).
- ▶ Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- ▶ Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Les isométries sont des similitudes (k = 1).
- ▶ Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h_k} \circ \overrightarrow{\psi}$, où $\overrightarrow{h_k}$ est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- ▶ Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Les isométries sont des similitudes (k = 1).
- ▶ Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- ▶ Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Les isométries sont des similitudes (k = 1).
- ▶ Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_{\underline{k}} \circ \overrightarrow{\psi}$, où $\overrightarrow{h}_{\underline{k}}$ est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- ▶ Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Les isométries sont des similitudes (k = 1).
- ▶ Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h_k} \circ \overrightarrow{\psi}$, où $\overrightarrow{h_k}$ est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- ▶ Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectorielles (resp. affines, resp. directes) forment un groupe.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- ► En particulier :
 - Les similitudes préservent les sous-espaces parallèles
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- ► En particulier :
 - Les similitudes préservent les sous-espaces parallèles
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- ► En particulier :
 - Les similitudes préservent les sous-espaces parallèles
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.
- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.