Matching

A Tale of Two Colleges

Differences between a private and public college:

- **Tuition:** private colleges cost \$20k/year more on average
- School quality: private colleges may have smaller classes, better teachers, smarter students etc.
- Earnings potential: wage premium for private college graduates

Does private college education increase future earnings?

Simple Public/Private Comparisons

Is a simple comparison of earnings between private and public college graduates ceteris paribus?

- Likely not ceteris paribus.
- Pre-treatment differences in earnings potential:
 - SAT scores, parental income, motivation etc.
 - These covariates may jointly determine school choice and future earnings
- Private and public school graduates are not comparable → selection bias

Matching

Suppose the only things that matter for future earnings are SAT score (as a proxy for ability) and school choice

- For each private school alumni, identify a public school alumni with the same (or similar) SAT score → counterfactual for the missing potential outcome
- Compute average of the earnings differences within matched pairs → estimate of ATT
- Find matches for both private and public school alumni → estimate of ATE

Matching on a Single Covariate

Matching on Many Covariates

Matching

- Identify observable characteristics (i.e. covariates) that you think jointly determine treatment and outcome
- Take a treated unit and find a non-treated unit that has very similar covariate values → matched pairs
- Compute the average of the within matched-pair differences:

$$\hat{\tau}_{ATT} = \frac{1}{N_t} \sum_{i=1}^{N_t} (Y_i - Y_{j(i)})$$

- where $Y_{j(i)}$ is the observed outcome of a control unit such that $X_{j(i)}$ is the closest value to X_i among all control units

Conditional Independence Assumption (CIA)

$$(Y_i^0, Y_i^1) \perp D_i | X_i$$

- Treatment is "as good as random" after controlling for covariates X_i
- No unmeasured confounders by assumption
- If CIA holds → selection on observables
- CIA is not testable; is the assumption plausible?

Common Support Assumption

$$0 < \Pr(D_i = 1 | X_i) < 1$$

- For each value of X, there is a positive probability of being treated (and untreated)
- We need overlaps in covariates of treated and untreated units to find adequate matches
- Common support is testable

Exact Matching

- For each treated unit, find a control unit that has the exact same covariate values (i.e. $X_i = X_i$)
- If there are many control units with the same covariates, randomly select one of those control units to be the match
- Alternatively, take the average outcome of control units that are a perfect match
- Statistical programs will do the matches for you

Example – Exact Matching

Private				Public				Matched Control			
	Student	SAT	Earnings		Student	SAT	Earnings		Student	SAT	Earnings
	1	1400	105		→ 6	1400	100		6	1400	100
	2	1250	110		7	1350	80				
	3	1200	100		8	1300	85		9	1200	105
	4	1050	115		→ 9	1200	105		10	1050	95
	5	800	65		1 0	1050	95		13	800	60
	•				11	950	70				
					12	850	65				
					13	800	60				
	Average: 99				,		82.5				
	Matched avg: 96.25										90

- ATT with exact matching: 96.25 90 = 6.25
- Simple difference in means: 99 82.5 = 16.5

Example – Approximate Matching

Student	ΤΛ2	Earnings		Student	SΔT	Earnings	Student	SΔT	Earnings
		•				•			•
1	1400	105	1	6	1400	100	6	1400	100
2	1250	110		7	1350	80	<u>-9</u> -	12-00	1 0 5
3	1200	100		8	1300	85	9	1200	105
4	1050	115		9	1200	105	10	1050	95
5	800	65		10	1050	95	13	800	60
				11	950	70			
				12	850	65			
				13	800	60			

Example – Approximate Matching

Studen	t SAT	Earnings	Student	SAT	Earnings	Student	SAT	Distance	Earnings
1	1400	105	6	1400	100	6	1400	0	100
2	1250	110	7	1350	80	9	1200	50	105
3	1200	100	8	1300	85	9	1200	0	105
4	1050	115	9	1200	105	10	1050	0	95
5	800	65	10	1050	95	13	800	0	60
			11	950	70				
			12	850	65				
			13	800	60				
Averag	ge:	99			82.5			10	93

- ATT with approximate matching: 99 93 = 6
- Simple difference in means: 99 82.5 = 16.5

Example – Approximate Matching with Averaging

Student	SAT	Earnings		Student	SAT	Earnings	5	Student	SAT	Distance	Earnings
1	1400	105		6	1400	100		6	1400	0	100
2	1250	110		7	1350	80		8/9	1250	0	95
3	1200	100	- \	8	1300	85		9	1200	0	105
4	1050	115		9	1200	105		10	1050	0	95
5	800	65		10	1050	95		13	800	0	60
				11	950	70					
				12	850	65					
				13	800	60					
Average	: :	99				82.5				0	91

- ATT with <u>approx. matching</u> and <u>averaging controls</u>: 99 91 = 8
- Simple difference in means: 99 82.5 = 16.5

Nearest Neighbor Matching

For each treated unit, find a control unit that has the closest covariate values

To measure closeness, we need a *distance metric* which maps one or more covariate differences into a single number

- The normalized Euclidean distance scales each variable by the variable's variance → closeness is standardized across covariates
- The Mahalanobis distance additionally adjusts for the covariance in the data
 - If two covariates are highly correlated, their contribution to the distances should be smaller

Distance Metrics

Normalized Euclidean distance (for *K* covariates):

$$||X_i - X_j|| = \sqrt{\sum_{k=1}^K \frac{(X_{ik} - X_{jk})^2}{\hat{\sigma}_k^2}}$$

Mahalanobis distance:

$$||X_i - X_j|| = \sqrt{(X_i - X_j)' \hat{\Sigma}_X^{-1} (X_i - X_j)}$$

• where $\widehat{\Sigma}_X$ is the estimated variance-covariance matrix of X

Propensity Score Matching

Covariate matching may run into the "curse of dimensionality" problem

 It's increasingly difficult to find adequate matches as the number of covariates on which we match increases

Propensity score matching compares units which, based on their observables, had similar probabilities (i.e. propensity scores) to get the treatment

- Criterion for a good match is based on a single variable
- Propensity score: $e_i(X_i) = Pr(D_i = 1|X_i)$

Propensity Score Matching

- 1. Estimate the propensity score using a probit or logit regression
- 2. Match each individual to the individual in the opposite treatment with the closest estimated value of the propensity score
- 3. Check that matched pairs have similar values of covariates X that you used to model the propensity score (checking for covariate balance)
- 4. Compute the differences between the treated and untreated individuals in each matched pair to get an estimate of the ATE

Credits:
Alain Cohn
Assistant Professor of Information

© Alain Cohn All Rights Reserved

Regression

Regression

Regression helps us to learn how two variables are related

Two ways to interpret regression:

- 1. Descriptive (correlation)
- 2. Causal

"Students with higher SAT scores earn higher wages later in life"

"SAT scores cause higher wages"

Population Relationship

- Population relationship between number of reviews and average rating of recipes on a cooking site
- Positive relationship between number of reviews and average rating
- We want to estimate the relationship between these two variables

Conditional Expectation Function

Conditional expectation is the population average conditional on holding certain variables fixed:

$$E[Y_i|X_i=x]$$

Conditional expectation function (CEF) is the function that gives the mean of Y_i at various values of X_i :

$$\mu(X_i) = E[Y_i|X_i]$$

Properties of the CEF

The CEF is a useful tool to predict how Y_i changes as a function of X_i

We can split the outcome variable Y_i into two components, the CEF and an error u_i :

$$Y_i = E[Y_i|X_i] + u_i$$

- By definition: $E[u_i|X_i] = E[u_i] = 0$
- Y_i can be decomposed into the part "explained by X_i " and a part that is uncorrelated with X_i

The CEF is the function of X_i that best predicts (in a mean squared error sense) Y_i :

$$E[(Y_i - g(X_i))^2] \ge E[(Y_i - \mu(X_i))^2]$$

Regression and the CEF

Let's assume the CEF is linear:

$$\mu(X_i) = E[Y_i|X_i] = \alpha + \beta X_i$$

The intercept α is the conditional mean of Y_i if $X_i = 0$:

$$E[Y_i|X_i=0]=\alpha$$

The slope β is the average change in the mean of Y_i for a one-unit increase in X_i :

$$E[Y_i|X_i = x + 1] - E[Y_i|X_i = x] = \beta$$

Regression = Best Linear Approximation of the CEF

The best linear function that approximates the CEF is given by:

$$(\alpha, \beta) = \arg\min_{a,b} E[(Y_i - (a + bX_i))^2]$$

The solution is:

$$b = \beta = \frac{Cov[X_i, Y_i]}{V[X_i]} = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{V[X_i]}$$

$$a = \alpha = E[Y_i] - \beta E[X_i]$$

The **population regression function** is the best linear approximation of the CEF even if the CEF is nonlinear

Population Regression Function

How To Estimate the Population Regression Line?

To get the sample line of best fit, we replace the population expectations with the sample versions:

$$(\hat{\alpha}, \hat{\beta}) = \arg\min_{a,b} \frac{1}{n} \sum_{i=1}^{n} (Y_i - (a + bX_i))^2$$

$$b = \hat{\beta} = \frac{\text{Sample Covariance between } X_i \text{ and } Y_i}{\text{Sample Variance of } X_i} = \frac{\sum_{i=1}^n (Y_i - \overline{Y})(X_i - \overline{X})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

$$a = \hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$

This estimator is called ordinary least squares (OLS)

OLS: Sample Line of Best Fit

Sample Regression (OLS)

Intuition of the OLS Estimator

We define a **fitted value** of Y_i for a particular observation with explanatory variable X_i as:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} X_i$$

The **residual** is the "mistake" we make:

$$\widehat{u}_i = Y_i - \widehat{Y}_i$$

$$= Y_i - (\widehat{\alpha} + \widehat{\beta}X_i)$$

OLS Minimizes the Residuals

The residuals \hat{u}_i tell us how well the line fits the data:

 Smaller residuals → better at predicting Y_i

OLS chooses $\hat{\alpha}$ and $\hat{\beta}$ so as to minimize the sum of squared residuals:

$$\sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} + \hat{\beta} X_i)^2$$

OLS Standard Errors

The constant variance assumption (homoskedasticity) helps to derive the sampling variance of $\hat{\beta}$:

$$V[u_i|X_i=x]=\sigma_u^2$$

Use the residuals to estimate the unobserved variance of the errors:

$$\hat{\sigma}_{u}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_{i}^{2}$$

The standard error of the slope estimate in a bivariate regression is given by:

$$\widehat{SE}(\widehat{\beta}) = \frac{\widehat{\sigma}_u}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}$$

Homoskedasticity Assumption

Robust Standard Errors

A common fix for heteroskedasticity is to estimate "robust" standard errors

 Most statistical software programs provide an option to calculate robust standard errors

Robust standard errors are usually larger than conventional standard errors (but not always)

Heteroskedastic

Models with Logs

What if we suspect that the relationship between X_i and Y_i is non-linear?

To account for the non-linearity, we can transform X_i or Y_i using the natural logarithm

Interpreting Logged Variables

Model	Equation	$oldsymbol{eta}$ Interpretation			
Level-Level	$Y = \alpha + \beta X$	1-unit $\Delta X = eta \Delta Y$			
Log-Level	$\log(Y) = \alpha + \beta X$	1-unit $\Delta X pprox 100 imes eta \% \Delta Y$			
Level-Log	$Y = \alpha + \beta \log(X)$	$1\% \ \Delta X \approx (\frac{\beta}{100}) \ \Delta Y$			
Log-Log	$\log(Y) = \alpha + \beta \log(X)$	$1\% \Delta X pprox \beta\% \Delta Y$			

Recipe Ratings and Number of Reviews

```
. regress recipe stars ln reviews, robust
Linear regression
                                                    Number of obs
                                                                                  100
                                                    F(1, 98)
                                                                                 6.41
                                                    Prob > F
                                                                               0.0130
   A 1% increase in the number of reviews is associated with
                                                    R-squared
                                                                               0.0718
     a (0.08/100) = 0.0008 increase in the average rating
                                                    Root MSE
                                                                               .41814
                               Robust
recipe stars
                     Coef.
                              Std. Err.
                                                    P>|t| [95% Conf. Interval]
                                                    0.013
  ln reviews
                  .0753077
                                            2.53
                                                                .0162659
                               .029752
                                                                             .1343496
       cons
                  4.041276
                               .1280673
                                           31.56
                                                    0.000
                                                                3.78713
                                                                            4.295421
```

Recipe Ratings and Number of Reviews

regress recipe stars ln reviews, robust Line 100 So do more reviews cause higher ratings? . . . 6.41 0.0130 0.0718 **Probably not** 41814 Robust recipe stars Coef. Std. Err. t P>|t| [95% Conf. Interval] ln reviews .0753077 .029752 2.53 0.013 .0162659 .1343496 cons .1280673 31.56 3.78713 4.295421 4.041276 0.000

Recap of Regression

- Regression provides the best linear approximation of the CEF
- Regression is relatively simple (linear approach, easy interpretation, computational simplicity etc.)
- Statistical models are not meant to replicate the real world but to provide useful insights
- Regression is a flexible tool (e.g. $Y_i = \alpha + \beta X_i^2 + u_i$)

Credits:
Alain Cohn
Assistant Professor of Information

© Alain Cohn All Rights Reserved

Regression and Causality

Regression and Causality

When can we interpret a regression coefficient causally?

- Randomized experiments: coefficient on binary treatment is an estimate of the ATE
- Fancier techniques for observational data (regression discontinuity, differences-indifferences, instrumental variables etc.)
- Controlled regression: coefficients can be interpreted as causal effects but only if we control for all confounders

Zero Conditional Mean Assumption

The error u_i has expected value of 0 for any value of the explanatory variable X_i :

$$E[u_i|X_i=x]=0$$
 for all values x

- Interpretation: all the other stuff that affects Y_i except X_i is the same at every level of X_i
- Plausible? Probably not
- Zero conditional mean is *not* testable (because the population regression function is unknown)

Example – Zero Conditional Mean Assumption

Suppose we want to estimate the effect of years of schooling on wages

• *u* is unobserved ability

Mean independence requires that:

$$E[ability|X_i = 8] = E[ability|X_i = 12] = E[ability|X_i = 16]$$

- As people choose education levels partly based on ability (selection bias), this
 assumption is almost certainly violated
- In addition, there may be other unobserved confounders than ability captured in u

Zero Conditional Mean Assumption

Zero Conditional Mean Assumption

Assumption is not violated

When is this assumption most plausible?

- When X_i is randomly assigned in experimental data
- The X_i 's are by design unrelated to the u_i 's

A Tale of Two Colleges

Student	SAT	Earnings	Student	SAT	Earnings
1	1400	105	6	1400	100
2	1250	110	7	1350	80
3	1200	100	8	1300	85
4	1050	115	9	1200	105
5	800	65	10	1050	95
			11	950	70
			12	850	65
			13	800	60

Regression Model

Let's specify our population regression model:

$$\underline{Y_i} = \alpha + \beta \underline{P_i} + \gamma \underline{A_i} + \underline{u_i}$$

- Y_i is student i's earnings later in life
- P_i is a dummy variable that equals to 1 if student i attended private college and 0 otherwise
- A_i is a discrete variable for student i's SAT score (as a proxy for ability)
- u_i is the error term

Regression Model

Let's specify our population regression model:

$$Y_i = \alpha + \beta P_i + \gamma A_i + u_i$$

How can we interpret this model?

$$E[Y_i|P_i=1] - E[Y_i|P_i=0] = (\alpha + \beta + \gamma A_i) - (\alpha + \gamma A_i) = \beta$$

• β identifies the *causal* effect of private school on earnings ... if we assume that private school attendance is "as good as random" conditional on SAT score (zero conditional mean assumption)

OLS Estimates

. reg earnings	s private sat,	robust					
Linear regress	sion			Number of	f obs	=	13
			F(2, 10)		=	19.54	
						=	0.0004
				R-squared	d	=	0.6111
				Root MSE		=	13.017
earnings	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
private sat _cons	14.96479 .0558259 20.39373	7.896228 .0148261 15.724	1.90 3.77 1.30	0.087 0.004 0.224	-2.629 .0227 -14.64	7913	32.55868 .0888605 55.42898

OLS Estimates

Omitted Variable Bias

$$Y_i = \alpha + \beta P_i + \gamma A + u_i$$

What if we run a regression without controlling for SAT scores?

. reg earnings	private, robu	st						
o a mp i p a a	Coof	. reg earnings	private sat	, robust				
earnings	Coef.	earnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
private _cons	16.5 82.5	private sat _cons	14.96479 .0558259 20.39373	7.896228 .0148261 15.724	1.90 3.77 1.30	0.087 0.004 0.224	-2.629103 .0227913 -14.64153	32.55868 .0888605 55.42898

- Our estimate of the treatment effect gets larger
- But it's <u>biased</u> because we violate the zero conditional mean assumption:

$$E[u_i|P_i] \neq 0$$

Omitted Variable Bias

Long regression:
$$Y_i = \alpha^l + \beta^l P_i + \gamma^l A_i + u_i^l$$

Short regression:
$$Y_i = \alpha^S + \beta^S P_i + u_i^S$$
 $u_i^S = \gamma^l A_i + u_i^l$

How does $\widehat{\boldsymbol{\beta}}^s$ relate to $\widehat{\boldsymbol{\beta}}^l$?

indicates "long"

$$\mathsf{Bias}(\widehat{\boldsymbol{\beta}}^s) = \widehat{\boldsymbol{\beta}}^s - \widehat{\boldsymbol{\beta}}^l$$

Omitted Variable Bias Formula

Relationship between $\hat{\beta}^{s}$ and $\hat{\beta}^{l}$:

$$\hat{\beta}^s = \hat{\beta}^l + \hat{\gamma}^l \, \hat{\pi}_1$$

Omitted Variable Bias (OVB)

• $\hat{\pi}_1$ is the coefficient on P_i in a regression of A_i on P_i :

$$A_i = \pi_0 + \pi_1 P_i + \nu_i$$

OVB = ("effect" of
$$A_i$$
 on Y_i) × ("effect" of P_i on A_i) = (omitted \rightarrow outcome) × (included \rightarrow omitted)

Omitted Variable Bias

In practice we often have no choice but to omit A_i

Remember that by OLS:
$$\widehat{\pi}_1 = \frac{\widehat{Cov}(P_i, A_i)}{\widehat{V}(P_i)}$$

We can sign the possible bias if we know the signs of the P_i and A_i relationship and the Y_i and A_i relationship

	$\widehat{Cov}(P_i, A_i) > 0$	$\widehat{Cov}(P_i, A_i) < 0$	$\widehat{Cov}(P_i, A_i) = 0$
$\widehat{\hat{\gamma}^l} > 0$	Positive bias	Negative bias	No bias
$\hat{\gamma}^l < 0$	Negative bias	Positive bias	No bias
$\hat{\gamma}^l = 0$	No bias	No bias	No bias

Example – Omitted Variable Bias

Suppose we don't observe students' SAT scores:

- We speculate that private school alumni have higher ability $\rightarrow \widehat{Cov}(P_i, A_i) > 0$
- It's plausible that ability is positively related to earnings $\to \, \hat{\gamma}^{\,l} > 0$

	$\widehat{Cov}(P_i, A_i) > 0$	$\widehat{Cov}(P_i, A_i) < 0$	$\widehat{Cov}(P_i,A_i)=0$
$\hat{\gamma}^l > 0$	Positive bias	Negative bias	No bias
$\hat{\gamma}^l < 0$	Negative bias	Positive bias	No bias
$\hat{\gamma}^l = 0$	No bias	No bias	No bias

Example – Omitted Variable Bias

(omitted \rightarrow outcome): $\hat{\gamma}^l = 0.05582$

. reg earnings private sat

earnings	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
private	14.96479	7.435714	2.01	0.072	-1.603013	31.53259
sat	.0558259	.0170084	3.28	0.008	.0179287	.093723
_cons	20.39373	19.47352	1.05	0.320	-22.99599	63.78344

(included \rightarrow omitted): $\hat{\pi}_1 = 27.5$

. reg sat private

sat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
private	27.5	131.5532	0.21	0.838	-262.0467	317.0467
_cons	1112.5	81.58584	13.64		932.9308	1292.069

Bias
$$(\hat{\beta}^s) = \hat{\gamma}^l \hat{\pi}_1 = 0.05582 \times 27.5 = 1.535$$

Example – Omitted Variable Bias

Long regression: $\hat{\beta}^l = 14.96479$

. reg earnings private sat, robust

earnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
private	14.96479	7.896228	1.90	0.087	-2.629103	32.55868
sat	.0558259	.0148261	3.77	0.004	.0227913	.0888605
_cons	20.39373	15.724	1.30	0.224	-14.64153	55.42898

Short regression: $\hat{\beta}^s = 16.5$

. reg earnings private, robust

earnings	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
private	16.5	10.49889	1.57	0.144	-6.607902	39.6079
_cons	82.5	6.00071	13.75	0.000	69.29253	95.70747

Bias
$$(\hat{\beta}^s) = \hat{\beta}^s - \hat{\beta}^l = 16.5 - 14.96479 = 1.535$$

Regression Sensitivity Analysis

We can never be sure whether our set of controls is enough to eliminate omitted variable bias

- Check sensitivity of regression estimates of treatment effects to the inclusion of controls
- If the coefficient on the treatment variable is stable after the inclusion of controls,
 we can take this as a sign that omitted variable bias is limited
- See Oster (2019) for a more advanced method to deal with selection on unobservables

Credits:
Alain Cohn
Assistant Professor of Information

© Alain Cohn All Rights Reserved