CSE 386D NOTES

Spring 2025

Author

Noah Reef UT Austin Spring 2025

Contents

1	\mathbf{The}	Ourier Transform	3
	1.1	The $L^1(\mathbb{R}^d)$ Theory	3

1 The Fourier Transform

1.1 The $L^1(\mathbb{R}^d)$ Theory

If $\xi \in \mathbb{R}^d$, the function

$$\varphi_{\xi}(x) = e^{-ix\cdot\xi} = \cos(x\cdot\xi) - i\sin(x\cdot\xi)$$

for $x \in \mathbb{R}^d$ is a plane wave in the direction ξ . Its period in the jth direction is $1\pi/\xi_j$.

Proposition 1.1. For such φ we have the following:

- 1. $|\varphi_{\xi}| = 1$ and $\bar{\varphi_{\xi}} = \varphi_{-\xi}$ for any $\xi \in \mathbb{R}^d$
- 2. $\varphi_{\xi}(x+y) = \varphi_{\xi}(x)\varphi_{\xi}(y)$ for any $x, y, \xi \in \mathbb{R}^d$
- 3. $-\Delta \varphi_{\xi} = |\xi|^2 \varphi_{\xi}$ for any $\xi \in \mathbb{R}^d$

Principle 1.2. If $f \in L^1(\mathbb{R}^d)$, the Fourier transform of f is

$$\mathcal{F}f(\xi) = \hat{f}(\xi) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} f(x)e^{-ix\cdot\xi} dx$$

Proposition 1.3. The Fourier transform

$$\mathcal{F}: L^1(\mathbb{R}^d) \to L^\infty(\mathcal{R}^d)$$

is a bounded linear operator, and

$$\|\hat{f}\|_{L^{\infty}(\mathcal{R}^d)} \le (2\pi)^{-d/2} \|f\|_{L^1(\mathbb{R}^d)}$$

Proposition 1.4. If $f \in L^1(\mathbb{R}^d)$ and τ_y is a translation by y, then

- 1. $\mathcal{F}(\tau_y f)(\xi) = e^{-iy \cdot \xi} \hat{f}(\xi)$ for all $y \in \mathbb{R}^d$.
- 2. $\mathcal{F}(e^{ix\cdot y}f)(\xi) = \tau_y \hat{f}(\xi)$ for all $y \in \mathbb{R}^d$
- 3. if r > 0 is given,

$$\mathcal{F}(f(rx))(\xi) = r^{-d}\hat{f}(r^{-1}\xi)$$

4. $\hat{\bar{f}}(\xi) = \overline{\hat{f}(-\xi)}$

Principle 1.5. A continuous function f on \mathbb{R}^d is said to vanish at infinity if for any $\epsilon > 0$ there is $K \subset\subset \mathbb{R}^d$ such that

$$|f(x)| < \epsilon$$

for $x \notin K$, The subspace of all such continuous functions is denoted

$$C_v(\mathbb{R}^d) = \{ f \in C^0(\mathbb{R}^d) : f \text{ vanishes at } \infty \}$$

Theorem 1.6. The space $C_v(\mathbb{R}^d)$ is a closed linear subspace of $L^{\infty}(\mathbb{R}^d)$

Theorem 1.7 (Riemann-Lebesgue Lemma). The Fourier transform

$$\mathcal{F}: L^1(\mathbb{R}^d) \to C_v(\mathbb{R}^d) \subset L^\infty(\mathbb{R}^d)$$

Then for $f \in L^1(\mathbb{R}^d)$

$$\lim_{|\xi| \to \infty} |\hat{f}(\xi)| = 0 \quad \text{and} \quad \hat{f} \in C^0(\mathbb{R}^d)$$

Proposition 1.8. If $f, g \in L^1(\mathbb{R}^d)$, then

- 1. $\int \mathcal{F}(f)g = \int f\mathcal{F}(g)$
- 2. $f * g \in L^1(\mathbb{R}^d)$ and $\mathcal{F}(f * g) = (2\pi)^{d/2}\mathcal{F}(f)\mathcal{F}(g)$

Theorem 1.9 (Generalized Young's Inequality). Suppose K(x,y) is measurable of $\mathbb{R}^d \times \mathbb{R}^d$ and there is some C > 0 such that

$$\int |K(x,y)| \, dx \le C \quad \text{ and } \quad \int |K(x,y)| \, dy \le C$$

for almost every $x, y \in \mathbb{R}^d$, respectively. Define the operator T by

$$Tf(x) = \int K(x, y)f(y) dy$$

If $1 \leq p \leq \infty$, then $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ is a bounded linear operator with operator norm $||T|| \leq C$.

Proposition 1.10 (Young's Inequality). If $1 \le p \le \infty$, $f \in L^p(\mathbb{R}^d)$ and $g \in L^1(\mathbb{R}^d)$, then $f * g \in L^p(\mathbb{R}^d)$ and

$$\|f\ast g\|_p\leq \|f\|_p\,\|g\|_1$$

Theorem 1.11 (Paley-Wiener Theorem). If $f \in C_0^{\infty}(\mathbb{R}^d)$, then $\mathcal{F}(f)$ extend to an entire holomorphic function on \mathbb{C}^d .

References