Representations and the symmetric group - Diaconis data

George McNinch

2024-02-07

character table of S_5

```
Let's use GAP to find the character table of S_5.
gap> G:=SymmetricGroup(5);
Sym([1..5])
gap> tab:=CharacterTable(G);
CharacterTable( Sym( [ 1 .. 5 ] ) )
gap> Display(tab);
CT1
    2 3 2 3 1 1 2 .
    3 1 1 . 1 1 . .
      1a 2a 2b 3a 6a 4a 5a
   2P 1a 1a 1a 3a 3a 2b 5a
   3P 1a 2a 2b 1a 2a 4a 5a
   5P 1a 2a 2b 3a 6a 4a 1a
X.1
       1 -1 1 1 -1 -1 1
       4 -2 . 1 1 . -1
       5 -1 1 -1 -1 1
Х.З
X.4
       6 . -2 . . . 1
    5 1 1 -1 1 -1 .
X.5
X.6
      4 2 . 1 -1 . -1
       1 1 1 1 1 1 1
X.7
gap>
```

Diaconis example – survey data

This data is taken from the paper (Diaconis 1989)

It describes 5,738 completed ballots rank-ordering 5 candidates.

View a rank-ordered ballot as an element of the symmetric group S_5 ; we want to study the frequency function f.

first ranking table

Table 2
Percentage of voters ranking candidate i in position j

	Rank							
Candidate	1	2	3	4	5			
1	18	26	23	17	15			
2	14	19	25	24	18			
3	28	17	14	18	23			
4	20	17	19	20	23			
5	20	21	20	19	20			

the regular representation

Table 3
Decomposition of the regular representation

М	=	V_1	Ф	V_2	Ф	V_3	Ф	V_4	Ф	V_5	0	V_6	0	V ₇
Dim 120		1		16		25		36		25		16		1
SS/120		2286		298		459		78		27		7		0

This diagram shows the decomposition of the regular representation into isotypic components.

Be careful: the notation Diaconis is using here does not match that used by GAP above. For example, the representation Diaconis writes as V_3 is the isotypic component determined by the irreducible representation labeled X.5 by GAP.

The second row reflects the decomposition of the frequency function f. Namely, write

$$f = \sum_{i=1}^{7} f_i \quad \text{with } f_i \in V_i.$$

The second row entries are the "sums of squares" $\langle f_i, f_i \rangle$.

Remember that we can compute the f_i using the *idempotents* in $\mathbb{C}[G]$.

For example,

$$f_1 = \frac{1}{5!} \sum_{\sigma \in S_5} \sigma.f$$

More generally, if χ_i denotes the character of the irreducible representation L_i with $V_i=\mathbb{C}[G]_{(L_i)}$ then

$$f_i = \frac{1}{5!} \sum_{\sigma \in S_5} \chi_i(\sigma^{-1}) \sigma. f$$

Note that $\langle f_3,f_3\rangle=459$ is relatively large (ignoring $\langle f_1,f_1\rangle$ since f_1 is trivial).

normalizing the first-order data

TABLE 4
First order effects

	Rank							
Candidate	1	2	3	4	5			
1	-94	371	165	- 145	- 296			
2	-372	-70	267	268	-92			
3	461	-187	-354	-97	178			
4	24	-175	-58	16	193			
5	-18	62	- 19	-41	17			

THe i, j entry in this table is the number of votes ranking candidate i in the j-th position, minus the sample size over 5. In particular, rows and columns sum to 0.

This normalization can also be achieved as follows:

Let f_2 be the projection on V_2 , and consider the functions

$$\sigma \mapsto \delta_{i,\sigma(j)}$$
.

The i,j entry of the preceding table is $\langle f_2,\delta_{i,\sigma(j)}\rangle$

Table 5 Second order, unordered effects

	Rank										
Candidate	1,2	1,3	1,4	1,5	2,3	2,4	2,5	3,4	3, 5	4,5	
1,2	- 137	-20	18	140	111	22	4	6	- 97	- 46	
1,3	476	-88	-179	-209	-147	-169	-160	107	128	241	
1,4	-189	51	113	24	-9	98	99	-65	23	-146	
1,5	-150	57	47	45	43	49	56	-48	-53	- 48	
2, 3	-42	84	19	-61	30	-16	82	-76	-39	72	
2, 4	157	-20	-43	-25	-93	-76	-56	8	38	112	
2,5	22	-44	7	15	-117	69	25	62	99	-138	
3, 4	-265	-7	72	199	39	140	85	19	-52	-233	
3, 5	-169	10	88	70	78	44	47	-51	-36	-80	
4, 5	296	-24	-142	-130	-5	-163	-128	38	-9	267	

Interpretation in this last table:

Compute the projection f_3 of f into the component V_3 of $M = \mathbb{C}[S_5]$.

Now, consider the easily understood functions

$$\sigma \mapsto \delta_{\{i,i'\},\{\sigma(j),\sigma(j')\}}$$

in $\mathbb{C}[S_5]$ for distinct i, i' and distinct j, j'.

The space of these functions is a 100 dimensional subspace of $W \mathbb{C}[G]$.

The entries in the table are the inner products

$$\langle f_3, \delta_{\{i,i'\}, \{\sigma(j), \sigma(j')\}} \rangle$$

Summary observations

The data were to elect a president for the American Psychological Association. Candidates 1 and 3 were clinicians while candidates 4 and 5 were academicians, two groups within the association with somewhat divergent perspectives.

In the second-order table, we see a preference for candidates 1 & 3 witnessed by the entry 376 corresponding to the entry for candidates $\{1,3\}$ and ranks $\{1,2\}$.

And we see a (slightly smaller) preference for candidates 4 and 5 witnessed by the entry 296 corresponding to the entry for candidates $\{4,5\}$ and ranks $\{1,2\}$.

Bibliography			

Bibliography

Diaconis, Persi. 1989. "A Generalization of Spectral Analysis with Application to Ranked Data." *The Annals of Statistics* 17 (3): 949–79. https://www.jstor.org/stable/2241705.