

DATA STRUCTURES AND ALGORITHMS

Lecture 1: Introduction

Lecturer: Mohsin Abbas

National University of Modern Languages, Islamabad

- Data Structures and Algorithm Analysis in C++ (By Mark Allen Weiss)
- Data Structures and Algorithms (By A. V. Aho, J. E. Hopcroft, J. D. Ullman)
- Data Structures Using C and C++ (By Y. Langsam, M. J. Augenstein, A. M. Tenenbaum)
- Schaum's Outline Series, Theory and problems of Data Structures (By Seymour Lipschutz)

COURSE OUTLINE

TAN OF MODERAN LANGE

- Introduction to Data Structures
- Arrays
- Pointers
- Linked List
- Recursion
- Stack
- Queues
- Sorting Algorithms
- Trees
- Searching
- Graphs

WHAT WE DISCUSS?

- Data
- Structure
- Algorithm

- Data are values or set of values.
 - E.g.: Ali, 37, H.52.
- **Data item** refers to single unit of values.
 - Group Item:
 - Data item that can be sub-divided into sub-item.
 - E.g.: Name can be divided into First Name, Middle Name and Last Name.
 - Elementary Item:
 - Data item that can not be sub-divided into sub-item.
 - E.g.: CNIC Number / Roll No. is treated as single-item
- Collection of data are frequently organized into a hierarchy of fields, records and files.

• Entity:

- Something that has certain attributes or properties which may be assigned values.
- Values may be numeric or non-numeric.
- For Example: Student of a Class.

Attributes:	Name	Age	Gender	Roll No
Values:	Ali	22	Male	1
	Faiza	21	Female	2

- Entities having same attributes form an entity set.
 - E.g.: all students of a class.
- Each attribute of an entity set has a range of values.
 - The set of possible values that could be assigned to a certain attribute.

• Information: Data with given attribute or processed data.

- Organization of data into a hierarchy of fields, records and files:
 - Reflects relationship between attributes, entities and entity set.

- **Field** is a single elementary unit of information representing an attribute of an entity.
- **Record** is the collection of field values of a given entity.
- File is the collection of records of the entities in a given entity set.

Name	Age	Gender	Roll No.	Hometown
Ali	22	Male	1	Chakwal
Faiza	21	Female	2	Rawalpindi
Hassan	21	Male	3	Islamabad
Musa	23	Male	4	D. G. Khan
Falak	22	Female	5	Islamabad
Hussain	22	Male	6	Lahore
Nida	23	Female	7	Gujranwala

- In general, any representation that is used for storing information is a data structure.
- More typically, a data structure provides a way of organization for a collection of data items
- A data structure is a way to store and organize data in order to facilitate the access and modifications.
- Data structure is the logical or mathematical model of a particular organization of data
 - Example: An integer, structures, classes, linked lists, etc.

BASIC DATA STRUCTURES

- The choice of efficient data structure makes the difference between a program running in a few seconds or many days.
- The choice of particular data model depends on two consideration:
 - It must be rich enough in structure to represent the relationship between data elements.
 - The structure should be simple enough that one can effectively process the data when necessary.

- A solution is said to be *efficient* if it solves the problem within its resource constraints.
 - Space
 - Time
- The cost of a solution is the amount of resources that the solution consumes.

- Each data structure has costs and benefits.
- It is very difficult to find a data structure that is better than others in all situations.
- A data structure requires:
 - space for each data item it stores,
 - time to perform each basic operation,
 - programming effort.

- Linear: In Linear data structure, values are arrange in linear fashion.
 - *Array*: Fixed-size
 - Linked-list: Variable-size programming effort.
 - Stack: Add to top and remove from top
 - Queue: Add to back and remove from front
 - **Priority queue**: Add anywhere, remove the highest priority

- **Non-Linear**: In Non-linear data structure, data values are not arranged in order.
 - Hash tables: Unordered lists which use a 'hash function' to insert and search
 - *Tree*: Data is organized in branches.
 - *Graph*: A more general branching structure, with less strict connection conditions than for a tree

- <u>Homogenous</u>: In this type of data structures, values of the same types of data are stored.
 - Array
- **Non-Homogenous**: In this type of data structures, data values of different types are grouped and stored.
 - Structures
 - Classes

- A cellular service company provides contracts to its 10 million users.
- Due to new security enforcements, the company wants to prevent issuing of multiple contracts to users.
- Method of Detecting Multiple Contracts
 - Before issuing a new contract to user
 - First search the id of user in existing contracts database
 - In case of failure, issue a new contract
 - In case of success, do not issue a new contract to user

NIC#	Name	Address
4437621-9	Ali Ahmed	House No 3 Gulshan Bahar Sec 16, Karachi
1456778-5	Muhammad Fawad	D-17 Shams Plaza Block-B N. Nazimabad, Karachi
0809770-2	Shahzad Khan	H No 106 Hazara Colony, Quetta
3459762-9	Zameer Ahmed	Street 3 Gulshanabad Rawalpindi
7665246-7	Sameer Qayyum	Post Office Jahaniyan, Khanewal
4715457-6	Zahid Ahmed	H.No. 425, Sector G-8/4, Islamabad
2886469-9	Syed Yasir Rizvi	People's Colony Sector 2, Faisalabad

• Linear Array (with 10 million entries)

- 3 arrays (NIC, name, address)
- structure array
- class's object array

- Any disadvantage of Linear Array?
- How to improve?

EXAMPLE

- Improved Data Structure
 - Create a dictionary data structure
 - Group all those records together that start with similar NIC (first digit) numbers, and add a dictionary entry for each distinct digit (0-9)
 - Example: <u>4</u>437621-9, <u>7</u>665246-7, <u>4</u>715457-6.
 - 4 and 7 are dictionary entries
 - In case of searching, first search the dictionary entry, and then proceed to searching contracts

NIC#	Name	Address
4437621-9	Ali Ahmed	House No 3 Gulshan Bahar Sec 16, Karachi
1456778-5	Muhammad Fawad	D-17 Shams Plaza Block-B N. Nazimabad, Karachi
0809770-2	Shahzad Khan	H No 106 Hazara Colony, Quetta
3459762-9	Zameer Ahmed	Street 3 Gulshanabad Rawalpindi
7665246-7	Sameer Qayyum	Post Office Jahaniyan, Khanewal
4715457-6	Zahid Ahmed	H.No. 425, Sector G-8/4, Islamabad
2886469-9	Syed Yasir Rizvi	People's Colony Sector 2, Faisalabad

CONCLUSION

- In this lecture we have studied:
 - Data, entity and entity set
 - Organization of data
 - Definition of data structures
 - Benefits of data structures
 - Types of data structures

Question?