Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Error Functions

Inverse Laplace Transforms: Expressions with Error Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\exp(ap^2)\operatorname{erfc}(p\sqrt{a})$	$\frac{1}{\sqrt{\pi a}} \exp\left(-\frac{x^2}{4a}\right)$
2	$\frac{1}{p}\exp(ap^2)\operatorname{erfc}(p\sqrt{a})$	$\operatorname{erf}\left(\frac{x}{2\sqrt{a}}\right)$
3	$\operatorname{erfc}\left(\sqrt{ap}\right), a > 0$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ \frac{\sqrt{a}}{\pi x \sqrt{x - a}} & \text{if } a < x. \end{cases}$
4	$\frac{1}{\sqrt{p}}\operatorname{erfc}(\sqrt{ap}), a > 0$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ \frac{1}{\sqrt{\pi x}} & \text{if } x > a. \end{cases}$
5	$e^{ap}\operatorname{erfc}ig(\sqrt{ap}ig)$	$\frac{\sqrt{a}}{\pi\sqrt{x}(x+a)}$
6	$rac{1}{\sqrt{p}}e^{ap}\operatorname{erfc}ig(\sqrt{ap}ig)$	$\frac{1}{\sqrt{\pi(x+a)}}$
7	$\frac{1}{\sqrt{p}}\operatorname{erf}\left(\sqrt{ap}\right), a > 0$	$\begin{cases} \frac{1}{\sqrt{\pi x}} & \text{if } 0 < x < a, \\ 0 & \text{if } x > a. \end{cases}$
8	$\operatorname{erf}ig(\sqrt{a/p}ig)$	$\frac{1}{\pi x}\sin(2\sqrt{ax})$
9	$\frac{1}{\sqrt{p}}\exp(a/p)\operatorname{erf}\left(\sqrt{a/p}\right)$	$\frac{1}{\sqrt{\pi x}}\sinh(2\sqrt{ax})$
10	$\frac{1}{\sqrt{p}}\exp(a/p)\operatorname{erfc}\left(\sqrt{a/p}\right)$	$\frac{1}{\sqrt{\pi x}} \exp(-2\sqrt{ax})$

Notation: erf z is the error function and erfc z is the complementary error function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Error Functions