Chapter 8

Cloud Application Development in Python

Arshdeep Bahga • Vijay Madisetti

Outline

- Design methodology for laaS service model
- Design methodology for PaaS service model
- Cloud application case studies including:
 - Image Processing App
 - Document Storage App
 - MapReduce App
 - Social Media Analytics App

Design methodology for IaaS service model

Component Design

- Indentify the building blocks of the application and to be performed by each block
- Group the building blocks based on the functions performed and type of cloud resources required and identify the application components based on the groupings
- Identify the inputs and outputs of each component
- List the interfaces that each component will expose
- Evaluate the implementation alternatives for each component (design patterns such as MVC, etc.)

Architecture Design

- Define the interactions between the application components
- Guidelines for loosely coupled and stateless designs use messaging queues (for asynchronous communication), functional interfaces (such as REST for loose coupling) and external status database (for stateless design)

Deployment Design

• Map the application components to specific cloud resources (such as web servers, application servers, database servers, etc.)

Design methodology for PaaS service model

- For applications that use the Platform-as-a-service (PaaS) cloud service model, the architecture and deployment design steps are not required since the platform takes care of the architecture and deployment.
- Component Design
 - In the component design step, the developers have to take into consideration the platform specific features.
- Platform Specific Software
 - Different PaaS offerings such as Google App Engine, Windows Azure Web Sites, etc., provide platform specific software development kits (SDKs) for developing cloud applications.
- Sandbox Environments
 - Applications designed for specific PaaS offerings run in sandbox environments and are allowed to perform only those actions that do not interfere with the performance of other applications.
- Deployment & Scaling
 - The deployment and scaling is handled by the platform while the developers focus on the application development using the platform-specific SDKs.
- Portability
 - Portability is a major constraint for PaaS based applications as it is difficult to move the

Image Processing App - Component Design

Functionality:

- A cloud-based Image Processing application.
- This application provides online image filtering capability.
- Users can upload image files and choose the filters to apply.
- The selected filters are applied to the image and the processed image can then be downloaded.

Component Design

- Web Tier: The web tier for the image processing app has front ends for image submission and displaying processed images.
- Application Tier: The application tier has components for processing the image submission requests, processing the submitted image and processing requests for displaying the results.
- **Storage Tier:** The storage tier comprises of the storage for processed images.

Component design for Image Processing App

Image Processing App – Architecture Design

- Architecture design step which defines the interactions between the application components.
- This application uses the Django framework, therefore, the web tier components map to the Django templates and the application tier components map to the Django views.
- A cloud storage is used for the storage tier. For each component, the corresponding code box numbers are mentioned.

Architecture design for Image Processing App

Image Processing App – Deployment Design

- Deployment for the app is a multi-tier architecture comprising of load balancer, application servers and a cloud storage for processed images.
- For each resource in the deployment the corresponding Amazon Web Services (AWS) cloud service is mentioned.

Deployment design for Image Processing App

Image Processing App Demo

Upload image file

Cloud Drive App – Component Design

Functionality:

- A cloud-based document storage (Cloud Drive) application.
- This application allows users to store documents on a cloudbased storage.

Component Design

- **Web Tier:** The web tier for the Cloud Drive app has front ends for uploading files, viewing/deleting files and user profile.
- Application Tier: The application tier has components for processing requests for uploading files, processing requests for viewing/deleting files and the component that handles the registration, profile and login functions.
- Database Tier: The database tier comprises of a user credentials database.
- **Storage Tier:** The storage tier comprises of the storage for files.

Component design for Cloud Drive App

Cloud Drive App – Architecture Design

- Architecture design step which defines the interactions between the application components.
- This application uses the Django framework, therefore, the web tier components map to the Django templates and the application tier components map to the Django views.
- A MySQL database is used for the database tier and a cloud storage is used for the storage tier.
- For each component, the corresponding code box numbers are mentioned.

Architecture design for Cloud Drive App

Cloud Drive App – Deployment Design

- Deployment for the app is a multi-tier architecture comprising of load balancer, application servers, cloud storage for storing documents and a database server for storing user credentials.
- For each resource in the reference architecture the corresponding Amazon Web Services (AWS) cloud service is mentioned.

Deployment design for Cloud Drive App

Cloud Drive App Demo

MapReduce App – Component Design

Functionality:

- This application allows users to submit MapReduce jobs for data analysis.
- This application is based on the Amazon Elastic MapReduce (EMR) service.
- Users can upload data files to analyze and choose/upload the Map and Reduce programs.
- The selected Map and Reduce programs along with the input data are submitted to a queue for processing.

Component Design

- **Web Tier:** The web tier for the MapReduce app has a front end for MapReduce job submission.
- Application Tier: The application tier has components for processing requests for uploading files, creating MapReduce jobs and enqueuing jobs, MapReduce consumer and the component that sends email noti fications.
- Analytics Tier: The Hadoop framework is used for the analytics tier and a cloud storage is used for the storage tier.
- Storage Tier: The storage tier comprises of the storage for files.

Component design for MapReduce App

MapReduce App – Architecture Design

- Architecture design step which defines the interactions between the application components.
- This application uses the Django framework, therefore, the web tier components map to the Django templates and the application tier components map to the Django views.
- For each component, the corresponding code box numbers are mentioned.
- To make the application scalable the job submission and job processing components are separated.
- The MapReduce job requests are submitted to a queue.
- A consumer component that runs on a separate instance retrieves the MapReduce job requests from the queue and creates the MapReduce jobs and submits them to the Amazon EMR service.
- The user receives an email notification with the download link for the results when the job is complete.

Architecture design for MapReduce App

MapReduce App – Deployment Design

- Deployment for the app is a multi-tier architecture comprising of load balancer, application servers and a cloud storage for storing MapReduce programs, input data and MapReduce output.
- For each resource in the deployment the corresponding Amazon Web Services (AWS) cloud service is mentioned.

Deployment design for MapReduce App

Social Media Analytics App – Component Design

Functionality:

- A cloud-based Social Media Analytics application.
- This application collects the social media feeds (Twitter tweets) on a specified keyword in real time and analyzes the sentiments of the tweets and provides aggregate results.

Component Design

- Web Tier: The web tier has a front end for displaying results.
- Application Tier: The application tier has a listener component that collects social media feeds, a consumer component that analyzes tweets and a component for rendering the results in the dashboard.
- Database Tier: A MongoDB database is used for the database tier and a cloud storage is used for the storage tier.
- **Storage Tier:** The storage tier comprises of the storage for files.

Component design for Social Media Analytics App

Social Media Analytics App – Architecture Design

- Architecture design step which defines the interactions between the application components.
- To make the application scalable the feeds collection component (Listener) and feeds processing component (Consumer) are separated.
- The Listener component uses the Twitter API to get feeds on a specific keyword (or a list of keywords) and enqueues the feeds to a queue.
- The Consumer component (that runs on a separate instance) retrieves the feeds from the queue and analyzes the feeds and stores the aggregated results in a separate database.
- The aggregate results are displayed to the users from a Django application.

Architecture design for Social Media Analytics App

Social Media Analytics App – Deployment Design

- Deployment for the app is a multi-tier architecture comprising of load balancer, application servers, listener and consumer instances, a cloud storage for storing raw data and a database server for storing aggregated results.
- For each resource in the deployment the corresponding Amazon Web Services (AWS) cloud service is mentioned.

Deployment design for Social Media Analytics App

Social Media Analytics App – Dashboard

Further Reading

- A. Bahga, V. Madisetti, Rapid Prototyping of Advanced Cloud-Based Systems, IEEE Computer, vol. 46, iss. 11, Nov 2013.
- Amazon Web Services, http://aws.amazon.com, Retrieved 2013.
- boto, http://boto.readthedocs.org/en/latest/, Retrieved 2013.
- Django, https://docs.djangoproject.com/en/1.5/, Retrieved 2013.
- Django Models, https://docs.djangoproject.com/en/1.5/topics/db/models/
- Django Views, https://docs.djangoproject.com/en/1.5/topics/http/views/
- Django Templates, https://docs.djangoproject.com/en/1.5/ref/templates/builtins/
- Django URL dispatcher, https://docs.djangoproject.com/en/1.5/topics/http/urls/