PS	

(-1,3) U(3,00) U(-10,-4)

JUMP

i(x)

Yemovable

JUMP

fox

Jump

Where is the function continuous?

Input	Output	Left-hand limit	Right-hand	Limit
x = a	f(a)	$\lim_{x \to a} f(x)$	$ \lim_{x \to a^{+}} f(x) $	$\lim_{x \to a} f(x)$
-4		-2	1	DNE
-3	4	4	4	4.
-2	DNE	2	2	2
-1		2	-2	DNE.
3	3			
4	2	2	2	2.

Limit table for the function *f*.

2

Sketch the graph of a function satisfying the stated requirements.

- 1. $\lim_{x \to 0} f(x) = 2$ $x \rightarrow 1^+$
- $\lim_{x \to -1} f(x) = -1$ $x \rightarrow 1^{-}$
- f(1) is undefined

- 2. $\lim_{x \to 0} g(x) = 0$ $x \rightarrow -2^{-}$
- $\lim g(x) = 0$ $x \rightarrow -2^{-1}$
- g(-2) = 1

- 3. $\lim_{x \to -2} h(x) = -2$ $x\rightarrow 2^{-}$
- $\lim_{x \to 0} h(x) = 2$ $x \rightarrow 2^+$
- 4. $\lim_{x \to -1} i(x) = -1$ $x \rightarrow 0^{-}$
- $\lim i(x) = -2$ $x \rightarrow 0^+$
- 5. $\lim_{x \to 0} j(x) = 3$ $x \rightarrow -1$
- $\lim_{x \to -2} j(x) = -2$
- 6. $\lim_{x \to 0} k(x) = 1$ $x \rightarrow -3^{\circ}$
- $\lim k(x) = 1$ $x \rightarrow -3^+$
- hox) jump h(2) = 02 i(0) = -1

k(-3) is undefined

limits Continuity discontinuity

Let fox) be a function. Then we say

(1) the limit of fix) exists at x = a

if $\lim_{X \to a} f(x) = \lim_{X \to a^{+}} f(x)$.

and

(2) f(x) is continuous at x=a

if $\lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

Otherwise, we say fox is discontinuous at x=a

"X > at "means" X > a & X is pretty close to a"
"X > a" means" X < a & X is pretty close to a"