TAREFA

Cálculo de Parâmetros de Linhas de Transmissão I

Resolva as questões da Tarefa a seguir de acordo com a TABELA a seguir associada ao seu número da Planilha de Monitoramento.

NÚM.	CABO X	ALTURA Y
1 – 66 – 67	CAA 2 AWG SPARROW	8 m
2 -59 - 68	CAA 2 AWG SPARROW	7 m
3 - 58 - 69	CAA 2 AWG SPARROW	6 m
4 – 57 - 70	CAA 1 AWG ROBIN	8 m
5 – 56 – 71	CAA 1 AWG ROBIN	7 m
6 – 55 – 72	CAA 1 AWG ROBIN	6 m
7 – 54 – 73	CAA 3 AWG SWALLOW	8 m
8 – 53 – 74	CAA 3 AWG SWALLOW	7 m
9 – 52 – 75	CAA 3 AWG SWALLOW	6 m
10 - 51 -76	CAA 1/0 RAVEN	8 m
11 – 50- 77	CAA 1/0 RAVEN	7 m
12 – 49- 78	CAA 1/0 RAVEN	6 m
13 – 48- 79	CAA 2/0 QUAIL	8 m
14 – 47- 80	CAA 2/0 QUAIL	7 m
15 – 46- 81	CAA 2/0 QUAIL	6 m
16 – 45- 82	CAA 2 AWG SPARROW	8 m
17 – 44- 83	CAA 2 AWG SPARROW	7 m
18 – 43 - 84	CAA 2 AWG SPARROW	6 m
19 – 42 - 85	CAA 1 AWG ROBIN	8 m
20 – 41 - 86	CAA 1 AWG ROBIN	7 m
21 – 40 - 87	CAA 1 AWG ROBIN	6 m
22 – 39 - 88	CAA 3 AWG SWALLOW	8 m
23 – 38 - 89	CAA 3 AWG SWALLOW	7 m
24 – 37- 90	CAA 3 AWG SWALLOW	6 m
25 – 36	CAA 1/0 RAVEN	8 m
26 – 35	CAA 1/0 RAVEN	7 m
27 – 34	CAA 1/0 RAVEN	6m
28 - 33	CAA 2/0 QUAIL	8 m
29 – 32	CAA 2/0 QUAIL	7 m
30 – 31	CAA 2/0 QUAIL	6 m
61 – 62	CAA 2 AWG SPARROW	8 m
63 - 64	CAA 2 AWG SPARROW	7 m
65 – 64	CAA 2 AWG SPARROW	6 m
60 - 65	CAA 1 AWG ROBIN	8 m

Figura 1

Considere a linha de distribuição de 10 km em 13,8 kV com cabo X, cuja cruzeta está mostrada na Figura 1, com altura efetiva de Y Admita que a temperatura máxima em regime permanente para o cabo é de 75°C. pede-se:

- Dados do cabo condutor: raio, raio médio geométrico, resistência a 50°C e 75°C
- 2. Matriz impedância da linha de 13,8 kV considerando o conceito de condutor imagem
- 3. Matriz impedância da linha de 13,8 kV desconsiderando o conceito de condutor imagem
- 4. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem
- 5. Impedância aparente do condutor da fase a, da fase b e da fase c desconsiderando o conceito de condutor imagem
- 6. Impedância de serviço da linha de 13,8 kV considerando o conceito de condutor imagem
- 7. Impedância de serviço da linha de 13,8 kV desconsiderando o conceito de condutor imagem.

Resolva a seguinte questão, usando a Figura 2, de acordo com o seu número na Planilha de Acompanhamento.

Considere a linha de distribuição em 69 kV com cabo X, cuja estrutura está mostrada na Figura 2. Esta linha de transmissão não tem cabo pára-raios e não é transposta. Admita que a temperatura máxima em regime permanente para o cabo é de 75°C. pede-se:

Figura 2 - LT 69 kV

NÚM.	CABO X	FLECHA MÉDIA
1 - 66 - 67	CA OXLIP 4/0	1,5 m
2 -59 - 68	CA PHLOX 3/0	1,85 m
3 - 58 - 69	CA SNEEZEWORF 250	1,45 m
4 – 57 - 70	CA VALERIAN 250	1,35 m
5 – 56 – 71	CAA PIGEON 3/0	1,35 m
6 - 55 - 72	CAA PENGUIN 4/0	1,30 m
7 - 54 - 73	CAA WAXWING 266,8	1,28 m
8 - 53 - 74	CA OXLIP 4/0	1,5 m
9 – 52 – 75	CA PHLOX 3/0	1,85 m
10 - 51 -76	CA SNEEZEWORF 250	1,45 m
11 – 50- 77	CA VALERIAN 250	1,35 m
12 – 49- 78	CAA PIGEON 3/0	1,35 m
13 – 48- 79	CAA PENGUIN 4/0	1,30 m
14 – 47- 80	CAA WAXWING 266,8	1,28 m
15 – 46- 81	CA OXLIP 4/0	1,5 m
16 - 45- 82	CA PHLOX 3/0	1,85 m
17 – 44- 83	CA SNEEZEWORF 250	1,45 m
18 – 43 - 84	CA VALERIAN 250	1,35 m
19 – 42 - 85	CAA PIGEON 3/0	1,35 m
20 - 41 - 86	CAA PENGUIN 4/0	1,30 m
21 – 40 - 87	CAA WAXWING 266,8	1,28 m
22 – 39 - 88	CA OXLIP 4/0	1,5 m
23 - 38 - 89	CA PHLOX 3/0	1,85 m
24 – 37- 90	CA SNEEZEWORF 250	1,45 m
25 – 36	CA VALERIAN 250	1,35 m
26 – 35	CAA PIGEON 3/0	1,35 m
27 – 34	CAA PENGUIN 4/0	1,30 m
28 - 33	CAA WAXWING 266,8	1,28 m
29 – 32	CA OXLIP 4/0	1,5 m
30 – 31	CA PHLOX 3/0	1,85 m
61 – 62	CA SNEEZEWORF 250	1,45 m
63 - 64	CA VALERIAN 250	1,35 m
65 – 64	CAA PIGEON 3/0	1,35 m
60 - 65	CAA PENGUIN 4/0	1,30 m

- 1. Dados do cabo condutor: raio, raio médio geométrico, resistência a 75°C
- 2. Matriz impedância da linha considerando o conceito de condutor imagem
- 3. Matriz impedância da linha desconsiderando o conceito de condutor imagem
- 4. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem

- 5. Impedância aparente do condutor da fase a, da fase b e da fase c desconsiderando o conceito de condutor imagem
- Impedância de serviço da linha de considerando o conceito de condutor imagem
- Impedância de serviço da linha desconsiderando o conceito de condutor imagem.

Considere a linha de distribuição em 230 kV com cabo X, cuja estrutura está mostrada na Figura 3. Esta linha de transmissão cabo pára-raios isolados e é transposta de acordo com a Figura 4. Admita que a temperatura máxima para o cabo é de 75°C. e o comprimento de 100 km, pede-se:

Figura 3

Figura 4

NÚM.	CABO X	ESPAÇAMENTO Y [m]
1 – 66 – 67	CAA DUCK 605 AWG	0,4
2 -59 - 68	CAA KINGBIRD 636 AWG	0,35
3 – 58 - 69	CAA SWIFT 636 AWG	0,3
4 – 57 - 70	CAA ROOK 636 AWG	0,4
5 – 56 – 71	CAA GROSBEAK 636 AWG	0,35
6 – 55 – 72	CAA DUCK 605 AWG	0,3
7 – 54 – 73	CAA KINGBIRD 636 AWG	0,4
8 – 53 – 74	CAA SWIFT 636 AWG	0,35
9 – 52 – 75	CAA ROOK 636 AWG	0,3
10 – 51 –76	CAA GROSBEAK 636 AWG	0,4
11 – 50- 77	CAA DUCK 605 AWG	0,35
12 – 49- 78	CAA KINGBIRD 636 AWG	0,3
13 – 48- 79	CAA SWIFT 636 AWG	0,4
14 – 47- 80	CAA ROOK 636 AWG	0,35
15 – 46- 81	CAA GROSBEAK 636 AWG	0,3
16 – 45- 82	CAA DUCK 605 AWG	0,4
17 – 44- 83	CAA KINGBIRD 636 AWG	0,35
18 – 43 - 84	CAA SWIFT 636 AWG	0,3
19 – 42 - 85	CAA ROOK 636 AWG	0,4
20 – 41 - 86	CAA GROSBEAK 636 AWG	0,35
21 – 40 - 87	CAA DUCK 605 AWG	0,3
22 – 39 - 88	CAA KINGBIRD 636 AWG	0,4
23 - 38 - 89	CAA SWIFT 636 AWG	0,35
24 – 37- 90	CAA ROOK 636 AWG	0,3
25 – 36	CAA GROSBEAK 636 AWG	0,4
26 – 35	CAA DUCK 605 AWG	0,35
27 – 34	CAA KINGBIRD 636 AWG	0,3
28 - 33	CAA SWIFT 636 AWG	0,4
29 – 32	CAA ROOK 636 AWG	0,35
30 – 31	CAA GROSBEAK 636 AWG	0,3
61 – 62	CAA DUCK 605 AWG	0,4
63 - 64	CAA KINGBIRD 636 AWG	0,35
65 – 64	CAA SWIFT 636 AWG	0,3
60 - 65	CAA ROOK 636 AWG	0,4

- 1. Dados de cada subcondutor: raio, raio médio geométrico, resistência a 75°C.
- Dados do feixe de subcondutores: raio, raio médio geométrico, resistência a 50°C e 75°C
- 3. **Matriz impedância da linha de transmissão** 3x3 considerando o conceito de condutor imagem **para cada trecho da transposição da LT**.
- 4. **Matriz impedância da linha de transmissão** 3x3 considerando o conceito de condutor imagem **para toda a LT**.
- 5. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem do primeiro trecho da LT
- 6. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem do segundo trecho da LT
- 7. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem do terceiro trecho da LT
- 8. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem do quarto trecho da LT
- 9. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem de toda a LT
- 10. Impedância de serviço de toda a linha de considerando o conceito de condutor imagem
- 11. Matriz impedância da linha de transmissão LT1 resultante do seccionamento da LT em 40% 3x3 considerando o conceito de condutor imagem.
- 12. Matriz impedância da linha de transmissão LT2 resultante do seccionamento da LT dos 60% restantes com dimensão 3x3 desconsiderando o conceito de condutor imagem.
- 13. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem da LT1.
- 14. Impedância aparente do condutor da fase a, da fase b e da fase c considerando o conceito de condutor imagem da LT2.
- 15. Impedância de serviço da linha LT1 considerando o conceito de condutor imagem

16. Impedância de serviço da linha LT2 considerando o conceito de condutor imagem.

Resolva a seguinte questão de acordo com o seu número na Planilha de Acompanhamento.

Considere duas linhas de 500 kV num circuito duplo com feixe de quatro subcondutores Y espaçamento Z, e dois **cabos guarda multiaterrados** CAA DOTTEREL 176,9 AWG cuja estrutura está mostrada na Figura 3. Admita que a temperatura máxima para o cabo é de 75°C e ambas tem 360 km. pede-se:

Figura 3 - LT 500 kV a circuito duplo

Figura 4 – Transposição da LT a circuito duplo

NÚM.	Υ	ESPAÇAMENTO Z [m]
1 – 66 – 67	CAA DUCK 605 AWG	0,4
2 -59 - 68	CAA KINGBIRD 636 AWG	0,35
3 – 58 - 69	CAA SWIFT 636 AWG	0,3
4 – 57 - 70	CAA ROOK 636 AWG	0,4
5 – 56 – 71	CAA GROSBEAK 636 AWG	0,35
6 – 55 – 72	CAA DUCK 605 AWG	0,3
7 – 54 – 73	CAA KINGBIRD 636 AWG	0,4
8 - 53 - 74	CAA SWIFT 636 AWG	0,35
9 – 52 – 75	CAA ROOK 636 AWG	0,3
10 – 51 –76	CAA GROSBEAK 636 AWG	0,4
11 – 50- 77	CAA DUCK 605 AWG	0,35
12 – 49- 78	CAA KINGBIRD 636 AWG	0,3
13 – 48- 79	CAA SWIFT 636 AWG	0,4
14 – 47- 80	CAA ROOK 636 AWG	0,35
15 – 46- 81	CAA GROSBEAK 636 AWG	0,3
16 – 45- 82	CAA DUCK 605 AWG	0,4
17 – 44- 83	CAA KINGBIRD 636 AWG	0,35
18 – 43 - 84	CAA SWIFT 636 AWG	0,3
19 – 42 - 85	CAA ROOK 636 AWG	0,4
20 - 41 - 86	CAA GROSBEAK 636 AWG	0,35
21 – 40 - 87	CAA DUCK 605 AWG	0,3
22 - 39 - 88	CAA KINGBIRD 636 AWG	0,4
23 - 38 - 89	CAA SWIFT 636 AWG	0,35
24 - 37- 90	CAA ROOK 636 AWG	0,3
25 – 36	CAA GROSBEAK 636 AWG	0,4
26 – 35	CAA DUCK 605 AWG	0,35
27 – 34	CAA KINGBIRD 636 AWG	0,3
28 - 33	CAA SWIFT 636 AWG	0,4
29 – 32	CAA ROOK 636 AWG	0,35
30 – 31	CAA GROSBEAK 636 AWG	0,3
61 – 62	CAA DUCK 605 AWG	0,4
63 - 64	CAA KINGBIRD 636 AWG	0,35
65 – 64	CAA SWIFT 636 AWG	0,3
60 - 65	CAA ROOK 636 AWG	0,4

- Dados de cada subcondutor: raio, raio médio geométrico, resistência a 50°C e 75°C.
- 2. Dados do feixe de subcondutores: raio, raio médio geométrico, resistência a a 50°C e 75°C.
- 3. Matriz impedância das linhas de transmissão 8x8 contando com os cabos para-raios considerando o primeiro trecho da transposição da LT.
- 4. Matriz impedância das linhas de transmissão reduzida 6x6 contando com os cabos para-raios considerando o primeiro trecho da transposição da LT.
- 5. Matriz impedância das linhas de transmissão 8x8 contando com os cabos para-raios considerando o segundo trecho da transposição da LT.
- 6. Matriz impedância das linhas de transmissão reduzida 6x6 contando com os cabos para-raios considerando o segundo trecho da transposição da LT.
- 7. Matriz impedância das linhas de transmissão 8x8 contando com os cabos para-raios considerando o terceiro trecho da transposição da LT.
- 8. Matriz impedância das linhas de transmissão reduzida 6x6 contando com os cabos para-raios considerando o terceiro trecho da transposição da LT.
- 9. Matriz impedância das linhas de transmissão transpostas 8x8 contando com os cabos para-raios multiaterrados.
- 10. Matriz impedância das linhas de transmissão transpostas reduzida 6x6 contando com os cabos para-raios multiaterrados.
- 11. Impedância aparente do condutor da **fase a**, **da fase b** e da **fase c** da LT1 transposta.
- 12. Impedância aparente do condutor da **fase a**, **da fase b** e da **fase c** da LT2 transposta.
- 13. Impedância de serviço da linha de transmissão transposta LT1 e da LT2
- 14. A impedância mútua da LT1 é positiva ou negativa? Alterando a posição dos condutores D, E e F na estrutura alteramos o valor da impedância mútua? Pode alterar o sinal da impedância mútua? Mostre sua resposta de forma qualitativa.