Solution to Homework 8

Problem 1. Let $F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$, where $f_i(\mathbf{x})$ is differentiable and L-smooth. Suppose j is uniformly sampled from $\{1, 2, \dots, n\}$. Show that

$$\mathbb{E}[\|\nabla f_j(\mathbf{x})\|_2^2] \le L^2 \mathbb{E}[\|\mathbf{x} - \mathbf{x}^*\|_2^2] + \mathbb{E}[\|\nabla f_j(\mathbf{x}) - \nabla F(\mathbf{x})\|_2^2]$$

where \mathbf{x}^* is a minimizer of $F(\mathbf{x})$.

Solution.

$$\mathbb{E}[\|\nabla f_j(\mathbf{x})\|_2^2] = \mathbb{E}[\|\nabla f_j(\mathbf{x}) - \nabla F(\mathbf{x}) + \nabla F(\mathbf{x})\|_2^2]$$

$$= \mathbb{E}[\|\nabla f_j(\mathbf{x}) - \nabla F(\mathbf{x})\|_2^2] + \mathbb{E}[(\nabla f_j(\mathbf{x}) - \nabla F(\mathbf{x}))^\top \nabla F(\mathbf{x})] + \mathbb{E}[\|\nabla F(\mathbf{x})\|_2^2]$$

$$= \mathbb{E}[\|\nabla f_j(\mathbf{x}) - \nabla F(\mathbf{x})\|_2^2] + \mathbb{E}[\|\nabla F(\mathbf{x}) - \nabla F(\mathbf{x}^*)\|_2^2]$$

$$\leq L^2 \mathbb{E}[\|\mathbf{x} - \mathbf{x}^*\|_2^2] + \mathbb{E}[\|\nabla f_j(\mathbf{x}) - \nabla F(\mathbf{x})\|_2^2]$$

The last equation is due to $\nabla F(\mathbf{x}^*) = 0$ and $\mathbb{E}[\nabla f_i(\mathbf{x})] = \nabla F(\mathbf{x})$.

Problem 2. In this problem, we study a stochastic gradient method with a projection step. Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable and μ -strongly convex, and let \mathcal{C} be a closed, convex set. Consider the projected stochastic gradient method

$$\mathbf{x}_{t+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{x}_t - \eta_t G(\mathbf{x}_t)),$$

where $G(\mathbf{x}_t)$ is an unbiased estimate of $\nabla f(\mathbf{x}_t)$. Assume that the randomness in $G(\mathbf{x}_t)$ is independent of all past randomness in the algorithm. Letting $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$, prove that the iterates satisfy the bound

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2] \le (1 - 2\eta_t \mu) \mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|_2^2] + \eta_t^2 B^2$$

where $B^2 = \sup_{\mathbf{x} \in \mathcal{C}} \mathbb{E} \|G(\mathbf{x})\|_2^2$.

Solution. We use non-expansiveness of the projection operator and the fact that $\mathbf{x}_t \in \mathcal{C}$ to obtain

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2 &= \|\mathcal{P}_{\mathcal{C}}(\mathbf{x}_t - \eta_t G(\mathbf{x}_t)) - \mathcal{P}_{\mathcal{C}}(\mathbf{x}^*)\|_2^2 \\ &\leq \|\mathbf{x}_t - \mathbf{x}^* - \eta_t G(\mathbf{x}_t)\|_2^2 \\ &= \|\mathbf{x}_t - \mathbf{x}^*\|_2^2 + \eta_t^2 \|G(\mathbf{x}_t)\|_2^2 - 2\eta_t \langle G(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle \\ &\leq \|\mathbf{x}_t - \mathbf{x}^*\|_2^2 + \eta_t^2 \|G(\mathbf{x}_t)\|_2^2 - 2\eta_t \langle G(\mathbf{x}_t) - G(\mathbf{x}^*), \mathbf{x}_t - \mathbf{x}^* \rangle \end{aligned}$$

where the last inequality follows from optimality of \mathbf{x}^* . Now taking the expectations on both sides conditioned on \mathbf{x}_t , we have

$$\mathbb{E}_{t}[\|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|_{2}^{2}] \leq \|\mathbf{x}_{t} - \mathbf{x}^{*}\|_{2}^{2} + \eta_{t}^{2}B^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}) - \nabla f(\mathbf{x}^{*}), \mathbf{x}_{t} - \mathbf{x}^{*}\rangle$$

$$\leq (1 - 2\eta_{t}\mu) \|\mathbf{x}_{t} - \mathbf{x}^{*}\|_{2}^{2} + \eta_{t}^{2}B^{2}$$

where the second line follows by μ -strong convexity of f. By taking expectation on both side, we can get the conclusion.

The original slides has a typo: " $\eta \leq \frac{\theta}{t+1}$ " should be " $\eta = \frac{\theta}{t+1}$ ". So Problem 3 does not count towards the score.

Problem 3. Prove the conclusion on page 10 of the slides.

Solution. Similar to the solution of Problem 2, we have

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2] \le (1 - 2\eta\mu)\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|_2^2] + \eta^2\sigma^2.$$

Then we prove this conclusion by induction. When t = 0, we can get $\mathbb{E}[\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2] \le \frac{\alpha_{\theta}}{t+1}$ by the definition of α_{θ} . Now we suppose $\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|_2^2] \le \frac{\alpha_{\theta}}{t+1}$. For the case of "t + 1", we know

$$\mathbb{E}[\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2] \le (1 - 2\eta\mu)\mathbb{E}[\|\mathbf{x}_t - \mathbf{x}^*\|_2^2] + \eta^2\sigma^2$$

$$\le \left(1 - \frac{2\mu\theta}{t+1}\right) \frac{\alpha_\theta}{t+1} + \frac{\theta^2\sigma^2}{t+1}$$

$$\le \left(1 - \frac{2\mu\theta}{t+1}\right) \frac{\alpha_\theta}{t+1} + \frac{2\mu\theta - 1}{2(t+1)^2}\alpha_\theta$$

$$= \left(\frac{1}{t+1} - \frac{2\mu\theta + 1}{2(t+1)^2}\right)\alpha_\theta$$

$$= \left(\frac{t+2}{t+1} - \frac{(2\mu\theta + 1)(t+2)}{2(t+1)^2}\right) \frac{\alpha_\theta}{t+2}$$

$$\le \left(\frac{t+2}{t+1} - \frac{t+2}{(t+1)^2}\right) \frac{\alpha_\theta}{t+2}$$

$$= \left(1 - \frac{1}{2(t+1)^2}\right) \frac{\alpha_\theta}{t+2}$$

$$\le \frac{\alpha_\theta}{t+2}$$

where we use the fact that $2\mu\theta > 1$. By induction, it completes the proof.