

Data Engineering: MapReduce, Hadoop and Spark

Apache Hadoop

Apache Hadoop is an open source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.

- Created by Doug Cutting and Mike Cafarella in 2005
- Named the project after son's toy elephant

Apache Hadoop: Inspired by Google's

- GFS (2003)
- MapReduce (2004)
- BigTable (2006)

Size Timeline

Date	Size reported by Yahoo
April 2006	188
May 2006	300
October 2006	600
April 2007	1,000
February 2008	10,000 (index generation)
March 2009	24,000 (17 clusters)
June 2011	42,000 (100+ PB)

Apache Framework Basic Modules

- Hadoop Common
- Hadoop Distributed File System (HDFS)
- Hadoop Yarn
- Hadoop MapReduce

Hadoop Distributed File System (HDFS)

- Hardware Failure
- Batch Processing
- Large Datasets
- Simple Coherency model

HDFS Server Architecture

From the File Perspective

...divided into 128MB chunks...

File...

Client Protocol

NameNode: All System-wide Activity

DataNode Protocol

Metadata Functionality

- Create Directory
- Delete Directory
- Write File
- Read File
- Delete File

Replication

- Reliability
- Read/Write Bandwidth
- Block Distribution

Replica Placement

Single Point of Failure: NameNode

Secondary NameNode

Hadoop MapReduce

TaskTracker TaskTracker TaskTracker TaskTracker TaskTracker

Hadoop MapReduce Classic

Data Engineering:

Responsibilities of the MapReduce JobTracker

MapReduce Classic: Limitations

- Scalability
- Availability
- Resource Utilization
- Runs Only MapReduce Applications

Scalability

< 4,000 nodes

< 40,000 tasks

Utilization

Static

Fixed-size

(Decide on M/R at configuration time)

Utilization

Мар

Reduce

Apache Hadoop YARN

The Fundamental Idea Behind YARN

Single Use System

Batch Apps

HADOOP 1.0

MapReduce (cluster resource management & data processing)

HDFS

(redundant, reliable storage)

Multi Purpose Platform

Batch, Interactive, Online, Streaming, ...

HADOOP 2.0

Scalability

10,000 nodes

100,000 tasks

Hadoop v2 Architecture

- Resource Manager
 - Manage and Allocates Cluster Resources
 - Application Scheduling
 - Application Manager
- Node Manager
 - Per-machine Agent
 - Manage Life-cycle of Container
 - Monitor Resources
- Application Master
 - Per-application
 - Manage Application Scheduling and Task Execution

Scheduling Algorithms

- FIFO Scheduler
- Capacity Scheduler
- Fair Scheduler

Figure 1: YARN Schedulers' cluster utilization vs. time

Berkeley design of MapReduce programming.

Spark Architecture Overview

- Resilient Distributed Dataset (RDD)
- Directed Acyclic Graph (DAG)

Resilient Distributed Datasets (RDDs):

Read-only, partitioned collection of records.

Resilient Distributed Dataset (RDD)

Operators

- Transformations
- Actions

Resilient Distributed Dataset (RDD)

Directed Acyclic Graph (DAG)

Worker 2

Worker 3

Worker 4

References

- Apache Spark architecture
- Big Data for Engineers 2018-ETH course
- MapReduce: Simplified Data Processing on Large Clusters-Jeffrey Dean and Sanjay Ghemawat
- Fundamentals of Database Systems-Ramez Elmasri and Shamkant B.
 Navathe
- Hadoop Platform and Application Framework-Coursera
- Real-Time Big Data Analytics: Emerging Architecture-Mike Barlow

References

- Apache Hadoop YARN-Arun C. Murthy and etc.
- Apache Hadoop YARN: Yet Another Resource Negotiator-Vinod Kumar Vavilapalli and etc.
- Apache Spark-CS240A, Winter 2016. T Yang

