Simple Linear Regression Model Assessment

Data science for Engineers

First level model assessment- Recap

- How good is the linear model?
- Which coefficients of the linear model are significant

In this lecture

- Second level model assessment
 - · Can we improve quality of linear model?
 - Are there bad measurements in the data (outliers)

Simple Linear regression

Data science for Engineers

Checking for outliers in data

- Outliers: Points which do not conform to the pattern in bulk of the data
- A point is considered an outlier if the corresponding standardized residuals lies outside [-2, 2] at 5 % level of significance

Handling outliers in data

- Even if several residuals lie outside confidence region, identify only one outlier at every iteration
- Apply regression to reduced sample set
- Iterate until no outliers are detected

Simple Linear regression

Data science for Engineers

Residual analysis

 To know the indices of the outliers we use the function

identify()

Residual Plot

Simple Linear regression

33

identify()

- Reads the position of the graphics pointer when the mouse button is pressed.
- It then searches the coordinates given in x and y for the point closest to the pointer
- If this point is close enough to the pointer, its index will be returned as part of the value of the call

SYNTAX

identify(x,y)

x, y coordinates of points in a scatter plot.

Simple Linear regression

Data science for Engineers


```
plot(bondsmod$fitted.values,rstandard(bondsmod),
    main = "Residual Plot",
    xlab = "Predicted Values for Bid Price",
    ylab = "Standardized Residuals")
abline(h=2,lty=2)
abline(h=-2,lty=2)
identify(bondsmod$fitted.values,rstandard(bondsmod))

| Files | Plots | Packages | Help | Viewer |
| Locator active (Esc to finish) | Residual Plot
```


Predicted Values for Bid Price

Removing outiers

 Lets start by removing the farthest outlier i.e. sample 13 and building a new model

 Identify the indices of the outliers on the residual plot

Simple Linear regression

Data science for Engineers

31

Comparison between old and new model

```
With outliers
                                                                                                                    Without sample 13
                                                                                                   > summary(bondsmod1)
> summary (bondsmod)
                                                                                                   Call:
                                                                                                   lm(formula = bonds_new$BidPrice ~ bonds_new$CouponRate)
lm(formula = BidPrice ~ CouponRate, data = bonds)
                                                                                                   Residuals:
                                                                                                   Min 1Q Median 3Q Max
-7.0393 -1.7780 -0.5931 1.6511 11.7264
Min 1Q Median 3Q Max
-8.249 -2.470 -0.838 2.550 10.515
                                                                                                   Coefficients:
                                                                                                   | Estimate Std. Error t value Pr(>|t|) | (Intercept) | 70.5679 | 2.8147 | 25.07 | < 2e-16 | bonds_new$CouponRate | 3.4959 | 0.3016 | 11.59 | 5.42e-13 |
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.7866 2.8267 26.458 < 2e-16 ***
CouponRate 3.0661 0.3068 9.994 1.64e-11 ***
                                                                                                   (Intercept) ***
bonds_new$CouponRate ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
                                                                                                   Signif. codes: 0 '***' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.175 on 33 degrees of freedom
Multiple R-squared: 0.7516, Adjusted R-squared: 0.7441
                                                                                                   Residual standard error: 3.683 on 32 degrees of freedom
Multiple R-squared: 0.8077, Adjusted R-squared: 0.8017
F-statistic: 134.4 on 1 and 32 DF, p-value: 5.417e-13
F-statistic: 99.87 on 1 and 33 DF, p-value: 1.645e-11
```

Simple Linear regressi

3

Confirm if further development is needed

- Remove the remaining sample points one by one after removing 13
- After removing,
 - · 35th, R2=0.8846
 - · 4th, R2=0.9852
 - · 34th, R2=0.9891

Simple Linear regression

Data science for Engineers

Plot

Summary

- Steps in building simple linear regression models
- Model summary
- Residual analysis
- Checking need for refinement
- Refined model building

