Fachrichtung Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übung 19.12. bis 5.1.2015

Analysis I

11. Übungsblatt: Limes superior und limes inferior, Stetigkeit

Aufgabe 11.1

Seien (a_n) , (b_n) Folgen in \mathbb{R} . Beweisen oder widerlegen Sie die folgenden Aussagen.

- (a) (a_n) hat endlich viele Häufungspunkte $\Longrightarrow (a_n)$ ist beschränkt,
- (b) $\limsup (a_n + b_n) = \limsup a_n + \limsup b_n$,
- (c) $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$,
- (d) $\liminf (a_n + b_n) \le \liminf a_n + \liminf b_n$.

(In (b), (c), (d) sei keine der vorkommenden Größen gleich $+\infty$ oder $-\infty$).

Aufgabe 11.2

Sei (a_n) eine beschränkte Folge in \mathbb{R} und

$$H := \{ \alpha \in \mathbb{R}; \ \alpha \text{ ist Häufungspunkt von } (a_n) \}$$

(nach dem Satz von Bolzano-Weierstraß ist H nichtleer).

Zeigen Sie: $\limsup_{n\to\infty} a_n = \max H$.

Aufgabe 11.3

Note that \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} , i.e.,

$$\forall x \in \mathbb{R} \ \forall \varepsilon > 0 \colon \mathbb{Q} \cap (x - \varepsilon, x + \varepsilon) \neq \emptyset \text{ and } (\mathbb{R} \setminus \mathbb{Q}) \cap (x - \varepsilon, x + \varepsilon) \neq \emptyset.$$

Define $f, g, h: (0,1) \to \mathbb{R}$ by

$$f(x) := \begin{cases} 0 & \text{if } x \text{ is rational,} \\ 1 & \text{if } x \text{ is irrational,} \end{cases}$$

$$g(x) := \begin{cases} x & \text{if } x \text{ is rational,} \\ 1 - x & \text{if } x \text{ is irrational,} \end{cases}$$

$$h(x) := \begin{cases} 0 & \text{if } x \text{ is irrational,} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ with relatively prime } p, q \in \mathbb{N}. \end{cases}$$

Determine the points at which f, g and h are continuous, respectively.

Aufgabe 11.4

Sei $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{x^2+4}$. Bestimmen Sie zu jedem $\varepsilon > 0$ ein $\delta > 0$ so, dass für alle $x \in \mathbb{R}$ mit $|x-1| < \delta$ die Ungleichung $|f(x) - f(1)| < \varepsilon$ erfüllt ist.

Aufgabe 11.5 (H)

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $a \in D$. Untersuchen Sie (Nachweis oder Gegenbeispiel), aus welchen der folgenden Bedingungen die Stetigkeit von f in a folgt.

Hinweis: Benutzen Sie Forster, Kapitel 11, Satz 3.

- (a) [1] $\forall \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D \colon |x a| < \delta \text{ und } |f(x) f(a)| < \varepsilon.$
- (b) [2] $\forall \alpha \in (0,1) \exists \beta > 0 \colon |f(x) f(a)| \le \alpha \text{ für alle } x \in D \text{ mit } |x a| \le \beta.$
- (c) [2] $\forall \delta > 0 \ \forall \varepsilon > 0 \colon |f(x) f(a)| < \varepsilon$ für alle $x \in D$ mit $|x a| < \delta$.

$\underline{\text{Aufgabe } 11.6} \text{ (H)}$

- (a) [1] Sei $X \subseteq \mathbb{R}$ und $a \in X$ ein isolierter Punkt von X, d.h. es gibt ein $\delta > 0$ so, dass $(a \delta, a + \delta) \cap X = \{a\}$ ist. Zeigen Sie, dass jede Funktion $f: X \to \mathbb{R}$ in a stetig ist.
- (b) [2] Sei $X := \left\{\frac{1}{n}; n \in \mathbb{N}_{\geq 1}\right\} \subseteq \mathbb{R}$. Geben Sie die Menge aller stetigen Funktionen $f \colon X \to \mathbb{R}$ an.
- (c) [2] Sei $X := \{0\} \cup \left\{\frac{1}{n}; n \in \mathbb{N}_{\geq 1}\right\} \subseteq \mathbb{R}$. Geben Sie die Menge aller stetigen Funktionen $f \colon X \to \mathbb{R}$ an.