Statement: 3=5

Prodicate: n > 3, n = 3

Expression: xty

A \Rightarrow B = 7A \B

\(\tau(A \neq B) \) \((\tau(A \neq B)) \)

\(\tau(A \neq B) \) \(\tau(A \neq B) \)

\(\tau(A \neq B) \) \(\tau(A \neq B) \)

Sun of degrees is 2e.

e \(\frac{3}{4}\) \(\)

 $\forall x \exists y (P(x_iy) \land \neg Q(x_iy))$ $\exists \forall x \exists y \neg (\neg P(x_iy) \lor Q(x_iy))$ $\exists \forall x \exists y \neg (P(x_iy) \Rightarrow) Q(x_iy))$ $\exists \neg \forall y \exists x (P(x_iy) \Rightarrow) Q(x_iy))$ $\neg \forall x \exists y \neg (P(x_iy) \Rightarrow) Q(x_iy))$ $\neg \forall x \exists y \neg (P(x_iy) \Rightarrow) Q(x_iy)$

The () lof x17,002 are the (XATYATZ) V (TXAYATZ) V(TXATYAZ)

In SMI, no man may get his favorite woman

Contradiction - use ful to prove something that DNE 70

Well-Ordering principle - always a = first "

Optimal Partner - best partner in stable pairing.

Planar - drawn on plane what crossings

1-1: injective

Onto: surjective.

FLT: For any prime pand any a $\in \{1,2...p-1\}$, we have $a^{p+1} \equiv 1 \mod p$.

e.g. $3^{5000} \mod 11 = (3^{10})^{500} \mod 11$ $1^{100} \mod 11 = 1$ $1^{7} \equiv 1 \mod 7$ $1^{7} \equiv 1 \mod 7$ Aices $1^{3} \equiv 1 \mod 3$ $1^{7} \equiv 1 \mod 7$ $1^{7} \equiv 1 \mod 7$

J Bijection of I multiplicative inverse unique

f: X → Y

onto: every y ∈ Y has at least one x ∈ X

such that f(x) = y

1-1: every y & Y is mapped to from at most one x & X

CRT! $x \equiv a_i b_i \frac{M}{m_i} + ... + a_r b_r \frac{M}{m_r} \mod M$ $M = m_i \cdot m_2 \cdot ... \cdot m_r$ $b_i \frac{M}{m_i} \equiv l \mod m_i$ If $x \equiv a \mod p$ and $x \equiv a \mod q_i$

x = a mid pg.

Planar Drawing

-ench edge adjacent to at most 2 faces

-minimum length cycle 6, each face
adjacent to >6 edges

V+F=2+E

Tree: total degrees = 2e n vertices, n-1 edges no cycles connected removal of any edge disconnects addition of any edge creates cycle: sequence of edges where VI... Vn are distinct starts and ends at same vertex by except firlest walk: sequence of edges w/ repeated vertices Pepth - edges to leaf. tour : walk that starts and ends at same vertex Evlerium walk ; walk that uses each edge once or 2 odd dagree Eulerian tour: 1 ends at starting point. - iff even degree and connected visits every edge once. alz > x=ld, lez | dapalb => ala-b rational -> r= a/b, a, b & Z even: a=2k, odd: a=2k+1 Dimple Path: Sequence of edges where vertices are distinct - # edges removed to disconnect hypercube > # vertices in smaller side, jost removal Hamiltonian Path! path that visits each vertex exactly Simple path between every pair of vertices -> connected -> acyclic (no cycle) - w/ cycle, at least two simple paths X > connected, acyclic = tree. There exists pairings in which where more than one man is notched to his least for vonte partner is unstable

-max number of solutions for ze in range (O, N-13 For equation ax=b(mrd N) is d, gcd(a, N) = d.

- crossing edges -> remove edge.

x=y (mod m)

(x-y)

(x,y have same remainder wrt m)

(x=y+km) for k E Z

Mod-isolate x by multiplying by

multiplicative inverse

4x=5 (mod 7)

2.4x=2.5 m7

8x=10 m7

x=3 m7

1-1 - unique input for each output onto- size of domain / codomain are the same

ged (x,y) = ged(y, mod(x,y)) ged = Z, -> ged(z,o)

Bijection - gcd(a,m) = 1 $-3 \mod 4 = 1$

Compute mod! a: b (=) + v

Evelid's Algorithm

ged (16,16)

16 = 10.1+6

6 = 16-10.1

6 = 4.1+2

4 = 2.2+0

2 = 6-4.1

2 = 16-10.1

6 - (10-6.1).1

= -10 + 6.2 $2 = -10 + (16 - 10 \cdot 1) \cdot 2$ $= 2 \cdot 16 - 10 \cdot 3$ $= 2 \times -3 y$ x = 2, y = -3

ged (8,22) 22=2.8+6 ged (8,6) 8=1.6+2 ged (6,2) 6=2.3+0 ged (2,0) ai=qi·bi+ri

gcd(x,y) = ax+by x m d n 1 = gcd(n,x) = an+bx b x = 1 m d n, b is MI a(p-1)(g-1) = 1 m d pg

```
IF X and Y are independent, COVCX, Y) 20
                           ECCX-ECX))(Y-ECX))]
  COVCX, Y) = E(XY) - E(X) ECY) If terms
  ECXY) = & xy PrCX = x, Y = y) independent,
             all possible combinations
 L(Y|X) = E(Y) + COV(X,Y) (X-E(X)) = E(Y)?
 Projection Property: E[(Y-L(YIX))X]=0
                   E(Y-LCYIX)) =0
 LCYIX) = atbx is projection of Y on LCX)
 if Y-LCYIX) I every linear function of X, i.e.
E((Y-a-6X)(c+dx))=0, 4c, dER
E(Y) = a+ SE(X), E((Y-a-5X)X) = 0
 E(XIY) = EnPr(X=x1Y) (Pr(X=x1Y=y)
                              = Pr (X=x, Y=y)
Counting
                                    Prcy=y)
         total #letters e.g. Anaconda
Angram! Til Til Tw!
Order matters: n. n. n. n. n. II Muplacement, n. = nz = nk .. nk
Orderdoesn4: (2) -1ess
cards - ansider suls/values differently
Dont funtance
Halting
```

Wrapper (P) -> program used to solve question TestHalt -> program that tests halting an PCX) Wrapper (Test/talt) flip twice tget 2 Th

equally likely to be far or brased. Pr(H)=0.7. eg. F; # additional flips E(F/e) = E(F/e, fair) P(fairle) + E(F/e, biased) P(biarel/e) Boyes ... Pr(fairle) : Pr(elfair) Pr(fair) Prielfair) Pritain) + Prielbiard) Priyord)

> 女任)一届了(支) Pr(binsedle): 1- 7

By memorylers property, ECFle, fair) = E(Flfair) geometric distribution ... ECFle)= 2(3)+ 与(引)

Conditional Expectation E(Y|X=x) = & y. P(Y=y|X=x) E(YIX) is function of X, E(Y|X=x) is specific value E[a,Y, +a,24,2 | X] = a, E, (Y, | X) + a, E(Y, | X) E(LCX).YIX) = LCX)XELYIX] X, Y independent => ECXIX) = ECX) E(Y)= & E(Y|X=x) = E(E(YIX)) MSE= E((X-g(X))2) = 2 (y-g(x))2P(X=x, Y=y) Covarrance $Cov(X,X) = E(X^2) - E^2(X) = Var(X)$ cov (x, a4+5) = a · cov (x, y) cov (X, Y+Z) = cov(X, Y) + cov(X, Z) Var (X+Y) = cov (X+Y, X+Y) = var(X) + var(Y) +2cov(X)) Markor Chains irreducible - there exists some path between unique. every pair of states -always has invariant distribution aperiodic - length of all paths starting at Xi and ending at Xi has GCD 1 perrodicity - what period occurence of state has R.g. perrod 2; can be on, even/odd, but not both invariant - Tn = TTo, Yn 20 (Stationary) TIP= TT balance equations ! TC1), T(2), T(3) ..., T(n) = T(1) ... T(n) e.g. 123 T(1) = 3 T(2) T(C2) = T(1) + T(3) 2 3 0 1/3

3/0 10 TC3) = Y3 TC2)

Long tem fraction - solve TI(n) → TC1)+ ... +T(n) > 1. expected time = hitting time Hotting time - Probability of going to everything that you can transition to from x.

E(Xn) - calculate = E(Xn | Xn-1) Epossible values of Xn . Pr(value) Replace K W/ Xny 67 E(Xn | Xn-1) = f(Xn-1) GE(E(Xn/Xny)) = E(Xn) = E(f(Xny)) Plug in X1, X2, X3 (find for each) Find pattern

CLT: 95% confidence within 250 of mean | for layer, mean 11, 14 var 5 50% within 0.67 0

```
Sample Space - pool of outcomes
                                                                                               70
E(x) = x @ mod N , N=pg
                                      x 12-1 = 1 modp.
                                                        Events - one event its ample space
                                     xp 1 x coprime p
DCx) z zd mod N, e relatively prime
                                           Bayes P(AIB) = P(AOB) MCE'. BlAn,
                                                                                   PCAIB) = PCBIA)P(A)
                                                               PCB) MAP! AnlB
  d=m1, e md (p-1) (q-1) (p-1)(q-1)
                                                  PCANB) = PCA) PCB(A)
                                                                                    + correlation!
                                   = 1 mod p.g
                                                                                   PREAMB) > Preappres)
                                                             = PCB) . PCA1B)
                                                                                   - comelation',
Pr(AAB) < Pr(A) Pr(B)
                                            Total: P(B) = P(ANB) + P(ANB)
                                                          = PCBIA). PCA) + PCBIA)(I-PCA)
                                                           = PCA) -P (BIA) + PCA) · PCBIA)
                                                                                    Boyes
Pr(AIB) = Pr(BIA) Pr(A)
         = x(xk(p-1)(q-1)-1) = 0 mod N
                                             Independence: P(A) = P(A113)
   Nepg -> show divisive by p and q
                                                            PCANIS) = P(A) - PCIS)
                                              Write down all known probablition
                                               Product Rule for sequence of choices.
                         K(8-1)
                                               Pr (no Ai) = Pr(Ai) · Pr(Az | Ai) · Pr (Az | A. MAz)
                                               Pr(U, A1) = 2 pr(A1) - 2 pr(A1) + 2 pr(A1) A1) + 2 pr(A1) A2)
         => x (p-1) (ab-1) -1 = 0 midp.
                             (4) mod 7 = 2.
                               what = I mid GA e.g. Pr (A, UAz UA3) = Pr(A, ) + Pr(Az) + Pr(A3)
      >K people can figure out
                                                                    - P-(A, MAZ) - Pr(A, MAZ)
                               Interpolation:
                                                                    - Pr(A2 MA3) - Pr(A, MA2 MA3)
 Watchout for GIECT) parepoin Dit pos azti.
                                                Disjoint: (notually exclusive): P(ANB)=0
 e.g. (x-4)(n-5) = 4(x-4)(x-5) mod7.
                                                        Pr (Vi-1 Ai) = & Pr (Ai)
                                                 Union Bound Pr(Ui= Ai) & EPr(Ai)
  Errors Erasur: n = Send, k = lost
                                                  eg. no collisions
                                                        find all prossible parts, enumerate.
                                                         mkeys, nlocation
                                                          K = (m) = n(n-1) possible pairs
                                                         Pr(Au) (collision) = in.
                                                         Mutually Independent: All are independent of each other
                                                    Pr(niezAi) = TTiez Pr(Ai)
                                                 Mutual Independence => pairwise independence.
                                                                       by only pairs.
  Set S is countable iff bijection between
                                                  A=>B
                                                 PrCAMB)=PrCA)
                                                If PrCAIB) > PrCA), PrCBIA) > PrCB)
                                                 E[X2-X] 3 -1
                                                I-C Prca), Prca) Prcais) & Prcais) False
                                                   K indistinguishable items among in slots
 p numbers divisible by &
                                                          V n bins, K balls
                                          Balls/bins -> Stars/bars.
Dag in polynomial defined by n+1 pts.
```

RSA

DCE(x)) = x mod N

4 (xe)d = x mod N

Case 1: - plx, 91x

Case 2: xp-1= 1 mod p

use polynomial deg n-1

gruth GF(g)

E(x)= (x-e,) ... (x-ex)

received valve. of degree 1+ deg PCx)

Q(x)=YxE(x)

S and IN

PB Set [0 ... P8-13 & numbers divisible by D

inf | C.I.

General

ntk packets

Secret Shaning:

(xp-1) K(a-1) = 1

2,4=1 MI

ed = 1 mod (p-1)(q-1) x ed = x + 11(p-1)(q-1)

$$Var(X) = E(X - E(X))^{2}$$

$$Var(XY) = E(X^{2}) - (E(X))^{2}$$

$$Var(XYY) = Var(X) + Var(Y) + 2cov(X,Y)$$

$$E(X^{2}) = \sum_{i=1}^{n} E(X_{i}^{2}) + \sum_{i\neq j} E(X_{i}X_{j})$$

$$E(X^{2}) = Pr(X_{i} = 1) = Probability X_{i} is$$
as desired
$$Var(cX) = c^{2} Var(X)$$

$$Var(x + Y) = Var(x) + Var(Y)$$

$$Var(x + Y) = Var(x) + Var(Y)$$

$$E(XY) = E(X)E(Y)$$

$$E(X) \qquad Var(X) P_{k}^{2} \stackrel{!}{Z} maximiZ^{3}$$

$$E(X) \qquad Var(X) P_{k}^{2} \stackrel{!}{Z} maximiZ^{3}$$

$$Binonial P(X=k) = (k)p(lp)^{n-k} np np (l-p) nvm svc(eljes)$$

$$Geometric P(X=k) = (l-p)^{k-l} p \qquad \frac{1-p}{p^{2}} howlog 64 svc(els)$$

$$Poisson P(X=k) = \frac{\chi k}{k!} e^{-\chi} \qquad \chi \qquad averages; = \chi$$

Coupon Collector - collect n. E(X) = n(lnn+Y), y=0.5772.

Linearity of Expectation.

E(X+Y) = E(X) + E(Y)

E(CX) = CE(X)

E(c) = C

constant

= Roll a die n tines. Xn be average nun rolls

var[Xn] = \(\frac{1}{n} \var[X_1] \)

\[\times_1 = 4, \times_2 = 3...
\]

var[X_1] = \(\var[X_1 \times_1 \times_1 \times_1] \)

Taylor Series: $e^{x} = 1 + x + \frac{x}{2!} + \frac{x}{3!} + \dots$ $n \ge \frac{1}{4 \cdot \epsilon^{3} \cdot \delta} \quad \epsilon = error, \delta = confidence$

Chebyshev's Inequality'.

Pr $[1X-\mu 1 \ge \alpha] \le \frac{Var(X)}{\alpha^2}$ $E(X) = \mu$ Pr $[1X-\mu 1 \ge \beta \sigma] \le \frac{1}{\beta^2}$ $E(X) = \mu$ independent, identical R.V. variances.

Chebysher:

Pr[|X-E[x]| \geq a] \leq \frac{Var[x]}{a^2} \quad \text{en more than a away from mean.}

Markor:

Pr[x \geq a] \leq \frac{E(x)}{a} \quad \text{Pr(|x-E(x)| < a)} = 1-\text{Pr(|x-E(x)| \geq a)} \quad \geq 1-\frac{Var(x)}{a^2}

 $\ln (1-\xi) \approx -\xi$ $\exp \{-\xi\} \approx 1-\xi$ $(a+5)^n = \widehat{\xi} \binom{n}{m} a^n b^{n-m}$ $(a+5)^n = \frac{n}{m-1} \binom{n}{m} a^n b^{n-m}$

1+2+...+ n = n Ca+1)

Symmetry: if we pick balls from a bag, w/out implace ment Proballs is wed) = Proball lis red) Order of balls = permutation All permutations have same probability.

Random Experiment defined by set of probabilies and sample space.

If P(X), P(Y), then P(X|Z), P(Y|Z) False If X is indep Y, $P(X] = \{2, P(2, X|Y)\}$ The. If P(X), P(Y), then P(X|Z), P(Y|Z) False

Y and Y independent, X = G(p), Y = G(q) $Pr(X \leq Y) = \underset{\approx 0}{\text{?}} Pr(X = x, Y \geq \infty) = \underset{\approx 1}{\text{?}} (1-p)^{x-1} p (1-q)^{x-1}$ $= p \underset{\approx 1}{\text{?}} [(1-p)(1-q)]^{x}$ def G(P) $= \frac{p}{1-(1-p)(1-q)}$

Program (Q, P)

return the

Random Varrable: a real valued function of the outcome of a random experiment

There is I polynomial of degree & d with modulo prime p that contains any d+1: (x, Y,)... (xa11, Yani) w/x; distin

Cleg d polynomial has & d solutions.