rowers or Dialog

Polymeric material with reduced coefficient of friction - based on copolymer of formaldehyde and dioxolan with carbonised carbon fibre and polyurethane additive

Patent Assignee: DNEPR CHEM TECHN INST

Inventors: BASHTANNIK P I; LEBEDEV YU M; OKHOTNIK K A

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Туре
SU 1835412	A1	19930823	SU 4871102	Α	19901002	199510	В

Priority Applications (Number Kind Date): SU 4871102 A (19901002)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
SU 1835412	A1		3	C08L-059/00	

Abstract:

SU 1835412 A

Composite comprises (mass %): 77.5-80.5 copolymer of formaldehyde and dioxolan, 1.0-2.0 barium sulphate, 15.0-20.0 carbonised C fibre based on cellulose hydrate and heat treated at 2,500deg.C with a density of 1,380 kg/m3 and filament dia. of 5-7 mum, and 1.5-2.5 thermoplastic polyurethane.

USE - The material is used to make components that work under dry friction conditions.

ADVANTAGE - The material has a dynamic coefft. of friction of 0.15-0.23 and a tensile strength of 67 MPa (cf. 0.30 and 63.7 MPa for prototype).

Dwg.0/0

Derwent World Patents Index © 2005 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 10172614

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(1835412 A1

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР)

5 C 08 L 59/00, C 08 K 13/06 (C 08 L 59/00, 75:04)(C 08 K 13/06, 3:30, 9:00)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

BUTTON TENANTSHAD BUTTON TENANTSHAD BUTTON TENA

(21) 4871102/05

(22) 02.10.90

(46) 23.08.93. Бюл. № 31

(71) Днепропетровский химико-технологический институт им. Ф.Э.Дзержинского

(72) П.И.Баштанник, К.А.Охотник, Ю.М.Лебедев, В.Н.Анисимов и В.П.Мары-гин

(56) Авторское свидетельство СССР № 525726, кл. С 08 L 59/00, 1974.

(54) КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

(57) Использование: композиционные полимерные материалы на основе термо-пластичных связующих и волокнистого наполнителя, предназначенные для из-

готовления деталей машин, работающих в условиях трения без смазки (подшип~ ники скольжения, уплотнения и т.п.). Композиционный материал обладает низким коэффициентом трения, что позволяет использовать его в качестве антифрикционного материала в узлах трения машин и механизмов. Сущность изобретения: известный композиционный материал на основе сополимера.формальдегида с диоксоланом и сернокислого бария дополнительно содержит карбонизованные углеродные волокна и термопластичный полиуретан при определенном массовом соотношении. 3 табл. .

2

Изобретение относится к композиционным материалам на основе термопластичных связующих и волокнистого наполнителя, предназначенных для изготовления деталей машин, работающих в условиях трения без смазки (подшипники скольжения, уплотнения, зубчатые колеса).

Наиболее близким по технической сущности и достигнутому результату к изобретению является композиционный материал на основе полиацеталя (сополимера формальдегида с диоксоланом) и сернокислого бария. Композиционный материал содержит 98% сополимера формальдегида с диоксоланом и 2% сернокислого бария. Его коэффициент трения без смазки достаточно высок (0,28-0,31), что ограничивает области применения.

Цель изобретения — снижение коэффициента трения в условиях трения без смазки.

Поставленная цель достигается тем, что известный композиционный материал на основе сополимера формальдегида с диоксоланом и сернокислого бария, дополнительно содержит карбонизованные углеродные волокна и термопластичный полиуретан при следующем соотнюшении компонентов, мас.%:

Сополимер формальдегида с диоксоланом (ТУ 6-05-1543-87) 77,5-80,5 Сернокислый барий (ГОСТ 3158-75) 1,0-2,0 Карбонизованные углеродные волокна 15,0-20,0 Термопластичный полиуретан 1,5-2,5 (19) SU (11) 1835412 A

Карбонизованные углеродные волокна на основе гидратцеллюлозы получают путем фрагментации ткани ТГН-2М (ТУ 48-20-19-77), конечная температура термообработки которой составляет 2500°C. Характеризуются свойствами: плотность 1380 кг/м³, диаметр филаментов 5-7 мкм, разрывная нагрузка филаментов 1000 МПа.

Термопластичный полиуретан представляет собой продукт взаимодействия диизоцианата с низкомолекулярными гликолями. Выбран термопластичный полиуретан марки Витур T-1413-85, син- ₁₅ тезированный на основе сложного полиэфира - полиэтиленбутиленгликольадипината, 1,4-бутандиола и 4,4 $^{\prime}$ -дифенилметандиизоцианата при соотношении NCO/OH=1 (ТУ,-6-05-221-526-82). Физико-механические свойства термопластичного полиуретана Витур Т-1413-85: плотность 1160 кг/м³, твердость по Шору А 85+2 усл.ед., условная прочность при растяжении не менее 20 МПа, относительное удлинение при разрыве не менее 250%, остаточное удлинение не более 80%, сопротивление раздиру - не менее 55 Н/мм, интенсивность изнашивания при трении без смазки (Р 0,8 МПа, V 0,3 м/с) 2,5 MT/KM.

Композиционный материал готовят по следующей методике. Ингредиенты композиционного материала сначала смешиваются при нормальных условиях на Z-образном лопастном смесителе, а затем в червячно-дисковом экструдере при температуре 190-200°С. Получен-

ный гранулят используют для переработки методом литься под давлением. При этом при температуре 190-210°С изготавливают образцы для испытаний фрикционных свойств.

Пример. Готовят композиционные материалы, состав которых приверен в табл. 1. Из композиционных материалов отливают образцы, которые используют для испытания фрикционных свойств при трении без смазки на машине трения 2070 СМТ-1 по схеме дисколодка. В качестве контртела используют сталь 40X, термообработанную до твердости НРС 38-48 с показетелем шероховатости R_{α} 0,63 мкм. Фрикционные свойства композитов приведены в табл. 2 и 3.

Формула изобретения

Композиционный материал, включающий сополимер формальдегида с диоксоланом и сернокислый барий, о т л и ч а ю щ и й с я тем, что, с целью снижения коэффициента трения при трении без смазки, он дополнительно содержит карбонизованные углеродные волокна и термопластичный полиуретан при следующем соотношении компонентов, мас. %:

Сополимер формальдегида	
с диоксоланом	77,5-80,5
Сернокислый барий	1,0-2.0
Карбонизованные угле-	
родные волокна	15,0-20,0
Термопластичный поли-	·
уретан	1,5-2,5

Таблица 1

Компоненты	Содержание компонентов по примерам, мас.%								
	1	2	3	. 4	5	- 6	7	Прототип	
Сополимер формальдегида с диоксоланом	73.5	77,5	79,0	80,5	82,5	83,0	96,0	98,0	
Сернокислый барий	0,5	1,0	1,5	2,0	2,5	2,0	2,0	2,0	
Карбонизованные углерод- ные волокна	25,0	20,0	17,5	15,0	12,0	15,0		-	
Термопластичный полиуре~ тан	1,0	1,5	2,0	2,5	3,0	-	2,0	~ .	

	p			: .		T	абл	нца 2	
Свойства	Примеры								
	1	2	3	4	5	6	7	Прототип	
Динамический коэффициент трения (Р 0,8 МПа, V 0,3 м/с)	0,18	0,16	0,15	0,17	0,19	0,18	0,23	0,30	

Таблица 3 Физико-механические свойства композиционных материалов на основе полиацеталей

Показатель	Заявляемый композицион- ный материал (пример 2)	Прото- тип
Прочность при растяжении, МПа	67	63,7
Относительное удлинение при	7.5	
разрыве	7,5	26
Модуль упругос- ти, ГПа	1.1	n r
	•	0,5
Усадка, %	0,88	1,94

Редактор Г. Мельникова Техред М. Моргентал Корректор И. Максимишинец

Заказ 2976 Тираж Подписное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101

.