STAT 403 Tutorial. Week 12.

- Stratified random sompling. & SRS.

Example. Consider a population of 6 students. Suppose we know the test scores of the students to be:

a). Find the mean \overline{Y} and variance S^2 of the population; (So N=6). Solution: Denote the population by $U=\{1,2,3,4,5,6\}$ and the score of each student (unit) by Y_i (i=1,2,3,4,5,6). Then the population mean is the average of all Y_i 's ($i\in U$): $\overline{Y}=\frac{1}{N}\sum_{i=1}^{N}y_i=\frac{1}{6}\left(66+59+70+83+82+71\right)=71.83$

the population variance:

$$S^{2} = \frac{1}{N-1} \sum_{j=1}^{N} (y_{j} - \overline{y})^{2} = \frac{1}{5} \left[(66-71.83)^{2} + (59-71.83)^{2} + \dots + (71-71.83)^{2} \right] = 86.17.$$

- b). How many SRS's of size 4 are possible?
 - Solution: By definition, a simple random sample of size 4 is subset of U with 4 elements. Therefore, there are $\binom{6}{4} = \binom{6}{2} = 15$ possible SRS of size 4.
 - c). List all possible SRS's. For each, find the sample mean \bar{y} . Calculate the variance of \bar{y} .
 - \dot{X} . (i) Recall for an SRS of size n, the prob. that u is selected is $\frac{1}{\binom{N}{2}}$.
 - (ii) The variance of the sample mean \overline{y} under simple random sampling is. $\text{Var}(\overline{y}) = (1 \frac{n}{N}) \cdot \frac{S^2}{n} , \text{ where } S^2 \text{ is population variance}.$

Solution:	Sample	corresponding 41's:	probability	Sample mean $y = \frac{1}{n} \sum_{i=1}^{n} y_i$
	11,2,3,43	1 66, 59. 70, 83}	1/15	69.5
	{1,2,3,5}	1 66,59.70,82}	1/s	69.25
	{1,2,3,6}	{ 66,59,70,71}	1/15	66-2
	{1,2,4,5}	1 66, 59, 83, 823	1/15	72.5
	{1,2,4,6}	166,59,83,71}	1/15	69.75
	{1,2,5,6}	166,59,82,713	1/15	69.5
	1 1.3, 4.5}	{ 66, 70, 83, 82}	1/15	75.25
	{1,3,4,6}	1 66, 70, 83, 71}	1/15	72.5
	{1,3,5,6}	1 66, 70, 82, 713	1/15	72.25
	11,4,5,6}	{ 66,83.82,71}	1/15	75.5
	{2,3,4,5}	{ 59. 70, 83, 82}	1/15	73.5
	{2,3,4,6}	159, 70, 83, 713	1/15	70.75
	{2,3,5,6}	159,70,82,713	1/15	70.5
	{2,4,5,6}	{ 59, 83, 82, 71}	1/15	73.75
	{3,4,5,6}	1 70.83,82,713	1/15	76.5.
The vari	iance of y	can be calculate	ed in two 1	ways.

Way 1: $\frac{1}{15}(69.5 - 71.83)^2 + \frac{1}{15}(69.25 - 71.83)^2 + \dots + \frac{1}{15}(76.5 - 71.83)^2 = 7.18$ Way 2: $Var(\bar{y}) = (1 - \frac{n}{N}) \cdot \frac{S^2}{n} = (1 - \frac{4}{b}) \times \frac{8b.17}{4} = 7.18$.

of Students 4-6. How many Stratified random samples of size 4 are possible in which 2 Students are selected from each stratum? Solution: First select two students from the first stratum — $\binom{3}{1} = 3$ ways. In total there are $\binom{3}{1} \times \binom{3}{1} = 3 \times 3 = 9$ possible samples.

e) List the possible stratified samples. Which of the samples from (c) cannot occur with the stratified design?

(Note this is not the average

Solution:	•		of 4:'s corresponding t
Sample from stratum!	sample from stratum 2	sample	jample mean Th
{1,2}	12.45	71,2,4,5}	72.5
11,24	۲ 4.6}	{1,2,4,6}	69.75
{1,27	{5,6}	£ 1,2,5,6}	69.5
1,34	{4.5}	1,3,4.5}	75.25
{1,3}	{ 4, 6}	11,3,4,6}	72.5
{1,3}	1 5.6}	11.3.567	72.25
{2,3}	{ 4.5}	{2,3,4,5}	73.5
{2,3}	{ 4, 6}	{ z, 3, 4, 6}	70.75
{2,3}	15.6}	12.3.5.69.	70.5
	a		

Compared with the table cc, we know that samples {1,2,3,4}, {1,2,1,5}, {1,2,3,6}, {1,4,5,6}, {2,4,5,6}, {3,4,5,6} do not occur here.

f). Find the sample mean $\hat{\vec{r}}$ based on the stratified sampling for each possible sample listed in e). Find its variance $Var(\hat{\vec{r}})$ and compare it with $Var(\vec{y})$ calculated in c).

Solution: The sample mean is calculated in this way: First calculate the sample mean for 1st stratum \bar{y}_1 , and sample mean for 2^{nol} stratum \bar{y}_2 ; then $\hat{\bar{\gamma}} = \frac{N_1}{N} \bar{y}_1 + \frac{N_2}{N} \bar{y}_2$, where N_h is the number of units in stratum h. The numbers are filled in the last column of the table in (e). Again $Var(\hat{\bar{\gamma}})$ can be calculated in two ways:

Ci). Use last column of the table in (e), Since each sample occurs with Probability $\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$, $|E(\widehat{7}) = \frac{1}{7}(72.5 + 69.75 + ... + 70.5) = 71.83$.

 $\text{Var}(\hat{\vec{r}}) = \frac{1}{4} (72.5 - 71.83)^2 + \frac{1}{4} (69.75 - 71.83)^2 + \dots + \frac{1}{6} (70.5 - 71.83)^2 = 3.14.$ $\text{(ii)} \quad \text{Use} \quad \text{formula} \quad \text{Var}(\hat{\vec{r}}) = \frac{1}{12} \sum_{h=1}^{12} h_h^2 \left(\frac{1}{h_h} - \frac{1}{h_h} \right) S_h^2 = \frac{3}{3} \text{U} \left(\frac{1}{2} - \frac{1}{5} \right) \times \frac{1}{2} \left[(66 - 65)^2 + (59 - 65)^2 \right] + \left(\frac{1}{2} - \frac{1}{3} \right) \times \frac{1}{2} \left[(83 - 78.62)^2 + (82 - 78.62)^2 + (74 - 86)^2 \right] + \frac{1}{2} \left[(83 - 78.62)^2 + (82 - 78.62)^2 \right]$