Miniproject - Algebraic Geometry

Simon Pohmann

1 Part I

Definition 1. Let V be a vector space. Then define the d-th exterior power as

$$\bigwedge^d(V) := V^{\otimes d} \ / \ \sum_{i=1}^{d-1} V^{\otimes (i-1)} \otimes \operatorname{span} \big\{ v \otimes v' + v' \otimes v \ \big| \ v, v' \in V \big\} \otimes V^{\otimes (d-i-1)}$$

Use the notation $v_1 \wedge ... \wedge v_d := [v_1 \otimes ... \otimes v_d] \in \bigwedge^k(V)$.

Lemma 2. Let $v_1, ..., v_d \in V$. Have for $\pi \in S_d$ that

$$v_{\pi(1)} \wedge ... \wedge v_{\pi(k)} = \operatorname{sgn}(\pi)(v_1 \wedge ... \wedge v_d)$$

Furthermore if $v_i = v_j$ for some $i \neq j$, then

$$v_1 \wedge ... \wedge v_d = 0$$

Proof. Note that

$$u \otimes v \otimes v' \otimes w = -(u \otimes v' \otimes v \otimes w)$$

for all $u \in \bigwedge^{i-1}(V), w \in \bigwedge^{(d-i-1)}(V), v, v' \in V$.

Every $\pi \in S_d$ has a decomposition $\pi = \xi_1...\xi_n$ into transpositions ξ_i . Applying this inductively, we find that

$$v_1 \wedge ... \wedge v_d = \operatorname{sgn}(\xi_i...\xi_n)(v_{(\xi_i...\xi_n)(1)} \wedge ... v_{(\xi_i...\xi_n)(k)})$$

and so

$$v_1 \wedge ... \wedge v_d = \operatorname{sgn}(\pi)(v_{\pi(1)} \wedge ... \wedge v_{\pi(k)})$$

Furthermore, we find that

$$u \otimes v \otimes v \otimes w = -(u \otimes v \otimes v \otimes w) = 0$$

must be zero. Hence, if $v_1, ..., v_d \in V$ with $v_i = v_j$ for some $i \neq j$, then there is a permutation $\pi \in S_d$ with $\pi(1) = i, \pi(2) = j$ and

$$v_1 \wedge ... \wedge v_d = (\operatorname{sgn}(\pi))(v_i \wedge v_j \wedge v_{\pi(3)} \wedge ... \wedge v_{\pi(k)}) = \operatorname{sgn}(\pi)0 = 0$$

Lemma 3 (1a). Let dim $(V) \leq 3$. Then every element of $\bigwedge^k(V)$ is decomposable.

Proof. Now let v_1, v_2, v_3 be a set of generators of V. Consider $u_1 = \sum \lambda_i v_i, u_2 = \sum_i \mu_i v_i, u_3 = \sum_i \rho_i v_i$. Then by applying Lemma 2, we see that

$$u_{1} \wedge u_{2} = \sum_{i,j} \lambda_{i} \mu_{j} \underbrace{(v_{i} \wedge v_{j})}_{= 0 \text{ if } i = j} = \sum_{i < j} \lambda_{i} \mu_{j} (v_{i} \wedge v_{j}) - \sum_{i > j} \lambda_{i} \mu_{j} (v_{i} \wedge v_{j})$$

$$= \sum_{i < j} (\lambda_{i} \mu_{j} - \lambda_{j} \mu_{i}) (v_{i} \wedge v_{j}) = \alpha (v_{1} \wedge v_{2}) + \beta (v_{1} \wedge v_{3}) + \gamma (v_{2} \wedge v_{3})$$

$$= \begin{cases} \beta v_{1} + \gamma v_{2} \wedge \frac{\alpha}{\beta} v_{2} + v_{3} & \text{if } \beta \neq 0 \\ \alpha v_{1} - \gamma v_{3} \wedge v_{2} & \text{otherwise} \end{cases}$$

and

$$u_{1} \wedge u_{2} \wedge u_{3} = \sum_{i,j,l} \lambda_{i} \mu_{j} \rho_{l} \underbrace{(v_{i} \wedge v_{j} \wedge v_{l})}_{= 0 \text{ unless } i,j,l \text{ pairwise distinct}}$$

$$= \sum_{\pi \in S_{3}} \lambda_{\pi(1)} \mu_{\pi(2)} \rho_{\pi(3)} (v_{\pi(1)} \wedge v_{\pi(2)} \wedge v_{\pi(3)})$$

$$= \sum_{\pi \in S_{3}} \lambda_{\pi(1)} \mu_{\pi(2)} \rho_{\pi(3)} \operatorname{sgn}(\pi) (v_{1} \wedge v_{2} \wedge v_{3})$$

$$= (v_{1} \wedge v_{2} \wedge v_{3}) \sum_{\pi \in S_{2}} \lambda_{\pi(1)} \mu_{\pi(2)} \rho_{\pi(3)} \operatorname{sgn}(\pi)$$

are decomposable. Further, it is easy to see from Lemma 2 that $\bigwedge^k(V) = \{0\}$ for $k \geq 4$, which is trivially decomposable.

Example 4 (1b). Consider $V = k^4$. Then the element $w := (e_1 \wedge e_2) + (e_3 \wedge e_4) \in \bigwedge^2(V)$ is not decomposable.

Proof. Assume it was, then there are $a, b \in k^4$ such that

$$w = \sum_{i} a_i e_i \wedge \sum_{j} b_j e_j = \sum_{i < j} (a_i b_j - a_j b_i) (e_i \wedge e_j)$$

In other words

$$a_1b_2 - a_2b_1 = 1$$
, $a_3b_4 - a_4b_3 = 1$, $a_ib_j - a_jb_i = 0$ for all $(i, j) \neq (1, 2), (3, 4)$

Clearly $a_1b_2 \neq 0$ or $a_2b_1 \neq 0$. Similarly, have $a_3b_4 \neq 0$ or $a_4b_3 \neq 0$. As all expressions are symmetric w.r.t swapping a_1, b_2 with a_2, b_1 and a_3, b_4 with a_4, b_3 , we may assume wlog that $a_1b_2, a_3b_4 \neq 0$.

Have $a_1b_4=a_4b_1$ and $a_2b_4=a_4b_2$. We know that $a_1b_4\neq 0$ and so

$$\frac{a_2}{a_1} = \frac{a_2b_4}{a_1b_4} = \frac{a_4b_2}{a_4b_1} = \frac{b_2}{b_1} \implies a_2b_1 = a_1b_2$$

This contradicts $a_1b_2 - a_2b_1 = 1$.

Lemma 5. Let $A = (a_{ij}) \in GL_d(k)$ and $v_1, ..., v_d \in V$. Then

$$\left(\sum_{j} a_{1j}v_{j}\right) \wedge \dots \wedge \left(\sum_{j} a_{dj}v_{j}\right) = \det(A)(v_{1} \wedge \dots \wedge v_{d})$$

Proof. By a direct computation using Lemma 2, we find

$$\left(\sum_{j} a_{ij}v_{j}\right) \wedge \dots \wedge \left(\sum_{j} a_{dj}v_{j}\right) = \sum_{j_{1},\dots,j_{d}} a_{1j_{1}}\dots a_{dj_{d}}(v_{j_{1}} \wedge \dots \wedge v_{j_{d}})$$

$$= \sum_{\pi \in S_{d}} a_{1\pi(1)}\dots a_{d\pi(d)}(v_{\pi(1)} \wedge \dots \wedge v_{\pi(d)})$$

$$= \sum_{\pi \in S_{d}} a_{1\pi(1)}\dots a_{d\pi(d)}\operatorname{sgn}(\pi)(v_{1} \wedge \dots \wedge v_{d})$$

$$= (v_{1} \wedge \dots \wedge v_{d}) \sum_{\pi \in S_{d}} \operatorname{sgn}(\pi) \prod_{j=1}^{d} a_{j\pi(j)} = \det(A)(v_{1} \wedge \dots \wedge v_{d})$$

where the last equality holds due to the Leibniz determinant formula.

Lemma 6. For $v_1, ..., v_d \in V$ have

$$v_1 \wedge ... \wedge v_d = 0 \Leftrightarrow v_1, ..., v_d \ linearly \ dependent$$

Proof. For the direction \Rightarrow , assume that $v_1, ..., v_d$ are not independent. Then there is a nonzero vector $a_1 \in k^d$ with $\sum a_{1i}v_i = 0$. Clearly, we can extend a_1 to a basis $a_1, ..., a_d$ of k^d , which gives a matrix $A = (a_{ij}) \in GL_d(k)$.

However by Lemma 5 we now get

$$0 = 0 \land \left(\sum_{j} a_{2j} v_{j}\right) \land \dots \land \left(\sum_{j} a_{dj} v_{j}\right) = \left(\sum_{j} a_{1j} v_{j}\right) \land \dots \land \left(\sum_{j} a_{dj} v_{j}\right)$$
$$= \det(A)(v_{1} \land \dots \land v_{d})$$

and so $v = v_1 \wedge ... \wedge v_d = 0$ as $\det(A) \neq 0$.

Direction
$$\Leftarrow$$
 TODO

Lemma 7. Let $v \in V$ and $u \in \bigwedge^{d-1}U$ for a linear subspace $U \leq V$. If $v \wedge u \in \bigwedge^d U$ then $v \in U$ or u = 0.

Lemma 8 (1c). Let d be even. An element $\omega \in \bigwedge^d V$ is decomposable if and only if $\omega \wedge \omega \in \bigwedge^{2d} V$ is zero.

Proof. The direction \Rightarrow even holds generally. Assume $\omega = v_1 \wedge ... \wedge v_d$. Then

$$\omega \wedge \omega = v_1 \wedge \ldots \wedge v_d \wedge v_1 \wedge \ldots \wedge v_d = 0$$

by Lemma 2. The other direction is more interesting.

Let $\omega = v_1 + ... + v_t$ for linearly independent decomposable vectors $v_i \in \bigwedge^2 V$. Then

$$0 = \omega \wedge \omega = \sum_{i,j} v_i \wedge v_j = \sum_{i < j} (v_i \wedge v_j) + (v_j \wedge v_i)$$
$$= \sum_{i < j} 2(v_i \wedge v_j) = 2\sum_i v_i \wedge \left(\sum_{j > i} v_j\right)$$

Here we used that the permutation $(1\ 2d)(2\ (2d-1))...(d\ (d+1)) \in S_{2d}$ has always sign 1 (since d is even).

Note that for any nonzero decomposable vector

$$u_1 \wedge u_2 \in \left(\bigwedge^2 \operatorname{span}\{v_2, ..., v_t\} \right) \setminus \{0\}$$

find

$$u_1, u_2 \in \text{span}\{v_2, ..., v_t\}$$

In particular, we know that

$$v_1 \wedge \left(\sum_{j>i} v_j\right) \in \bigwedge^2 \operatorname{span}\{v_2, ..., v_t\}$$

and so $v_1 \in \operatorname{span}\{v_2, ..., v_t\}$ unless $\sum_{j>i} v_j = 0$ by Lemma 7. We assumed that the v_i are linearly independent, so the former would give a contradiction. Hence $\sum_{j>i} v_j = 0$ and thus t=1, i.e. $\omega=v_1$ is decomposable.

2 Part II

In this part, we want to consider the connection of external powers to the Grassmanian. First of all, assume there are two bases $v_1, ..., v_d$ and $u_1, ..., u_d$ of a d-dimensional vector space U. Then there exists a basis change matrix $A = (a_{ij}) \in GL_d(k)$ with

$$u_i = \sum_j a_{ij} v_j$$

So by Lemma 5, it follows that

$$u_1 \wedge ... \wedge u_d = \det(A)(v_1 \wedge ... \wedge v_d)$$

As $v_1, ..., v_d$ resp. $u_1, ..., u_d$ are bases, they are linearly independent and in particular, we see that

$$v_1 \wedge ... \wedge v_d \neq 0$$
 and $u_1 \wedge ... \wedge u_d \neq 0$

by Lemma 6. Hence they have well-defined images $[v_1 \wedge ... \wedge v_d]$ resp. $[u_1 \wedge ... \wedge u_d]$ in the projective space $\mathbb{P}(\bigwedge^d V)$. By the above, find

$$[v_1\wedge\ldots\wedge v_d]=[u_1\wedge\ldots\wedge u_d]$$

This allows us to study the Grassmanian Gr(d, V) of a fixed vector space V.

Definition 9. Define the map

$$\phi: \operatorname{Gr}(d,V) \to \mathbb{P}(\bigwedge^d V), \quad \operatorname{span}\{v_1,...,v_d\} \mapsto [v_1 \wedge ... \wedge v_d]$$

which is well-defined by Lemma 5 as described above.

Lemma 10 (1a). *We have*

$$\operatorname{im} \phi = D := \{ [v] \in \mathbb{P}(\bigwedge^d V) \mid v \ decomposable \} \}$$

Proof. First of all, note that the set D is well-defined, as v is decomposable if and only if λv is decomposable, for all $\lambda \in k^*$.

By definition of ϕ , we can directly observe that $\operatorname{im}\phi \subseteq D$. So consider an element $[v] \in D$. As v is decomposable, it follows that $v = v_1 \wedge ... \wedge v_d$ for $v_i \in V$. Not it suffices to show that the v_i are linearly independent, then clearly $\operatorname{span}\{v_1, ..., v_d\}$ is a well-defined d-dimensional vector subspace of V, thus an element of $\operatorname{Gr}(d, V)$.

This follows directly from Lemma 6.

Definition 11. Let $Gr(d, n) := Gr(d, k^n)$.

In the lecture, we considered an embedding of Gr(d, n) into projective space given by minors of the basis matrix. This corresponds to the following definition.

Definition 12. Define the map

$$\rho: \operatorname{Gr}(d, n) \to \mathbb{P}\left(k^{\{1, \dots, n\}^{(d)}}\right) \cong \mathbb{P}^{\binom{n}{d} - 1},$$

$$\operatorname{span}\{v_1, \dots, v_d\} \mapsto \left[\det \begin{pmatrix} v_{1i_1} & \dots & v_{di_1} \\ \vdots & \ddots & \vdots \\ v_{1i_d} & \dots & v_{di_d} \end{pmatrix}\right]_{\{i_1, \dots, i_d\} \in \{1, \dots, n\}^{(d)}}$$

where $\{1,...,n\}^{(d)}:=\{I\subset\{1,...,n\}\mid \#I=d\}$ is the set of all d-element subsets of $\{1,...,n\}$.

Lemma 13. There is a linear isomorphism

$$\begin{split} f: \bigwedge^d & k^n \to k^{\{1,\dots,n\}^{(d)}}, \\ \sum_j v_1^{(j)} \wedge \dots \wedge v_d^{(j)} & \mapsto \left(\sum_j \det \begin{pmatrix} v_{1i_1}^{(j)} & \dots & v_{di_1}^{(j)} \\ \vdots & \ddots & \vdots \\ v_{1i_d}^{(j)} & \dots & v_{di_d}^{(j)} \end{pmatrix} \right)_{\{i_1,\dots,i_d\} \in \{1,\dots,n\}^{(d)}} \end{split}$$

Proof. For vectors $v_1, ..., v_d$ and $I = \{i_1, ..., i_d\} \in \{1, ..., n\}^{(d)}$ write

$$A_{I}(v_{1},...,v_{d}) := \begin{pmatrix} v_{1i_{1}} & ... & v_{di_{1}} \\ \vdots & \ddots & \vdots \\ v_{1i_{d}} & ... & v_{di_{d}} \end{pmatrix}$$

First of all, we show that f is well-defined. Note that the tensor product can be described as

$$V^{\otimes d} := k^{V \times ... \times V} / \operatorname{span} \{ (v_1 \otimes ... \otimes v_{i-1} \otimes (v_i + v_i') \otimes v_{i+1} \otimes ... \otimes v_d) - (v_1 \otimes ... \otimes v_d) - (v_1 \otimes ... \otimes v_{i-1} \otimes v_i' \otimes v_{i+1} \otimes ... \otimes v_d),$$

$$(v_1 \otimes ... \otimes v_{i-1} \otimes \lambda v_i \otimes v_{i+1} \otimes ... \otimes v_d) - \lambda (v_1 \otimes ... \otimes v_{i-1} \otimes v_i \otimes v_{i+1} \otimes ... \otimes v_d) \mid i \leq d, v_j, v_i' \in V \}$$

where $v_1 \otimes ... \otimes v_d := \chi_{(v_1,...,v_d)}$. Hence the external power can be described as

So it suffices to show that for all $I \in \{1, ..., n\}^{(d)}$ and vectors $v_1, ..., v_d, v_i' \in V$

$$\det(A_I(v_1,...,v_i+v_i',...,v_d)) = \det(A_I(v_1,...,v_d)) + \det(A_I(v_1,...,v_i',...,v_d))$$

and

$$\det(A_I(v_1, ..., \lambda v_i, ..., v_d)) = \lambda \det(A_I(v_1, ..., v_d))$$

and

$$\det(A_I(v_1,...,v_{j+1},v_j,...,v_d)) = -\det(A_I(v_1,...,v_d))$$

However, these properties follow from the well-known properties of the determinant. In particular, det is linear in each column and swapping columns negates the determinant. It follows that f is indeed well-defined.

It is clear by definition that f is linear, so it is left to show that it is bijective. To show surjectivity, note that the $\pm e_I$, $I \in \{1, ..., n\}^{(d)}$ form a basis of $k^{\{1, ..., n\}^{(d)}}$. Clearly for $I = \{i_1, ..., i_d\}$, $J \in \{1, ..., n\}^{(d)}$ we have that

$$f(e_{i_1} \wedge ... \wedge e_{i_d})_J = \det(A_J(e_{i_1}, ..., e_{i_j})) = \begin{cases} 0 & \text{if } J \not\subseteq I \\ \pm 1 & \text{if } J \subseteq I \end{cases}$$

so $f(e_{i_1} \wedge ... \wedge e_{i_d}) = e_I$ and we deduce that $\inf f = \mathbb{P}^{\{1,...,k\}^{(d)}}$. Finally, note that

$$e_{i_1} \wedge ... \wedge e_{i_d}$$

for $i_1 < ... < i_d$ form a basis of $\bigwedge^d k^n$. Clearly, they span $\bigwedge^d k^n$, and the following argument shows that they are linearly independent. Assume

$$\sum_{i_1 < \dots < i_d} \lambda_{i_1, \dots, i_d} (e_{i_1} \wedge \dots \wedge e_{i_d}) = 0$$

Then

$$0 = e_1 \wedge \left(\sum_{1 < i_2 < \dots < i_d} \lambda_{1, i_2, \dots, i_d} (e_{i_2} \wedge \dots \wedge e_{i_d}) \right) + \sum_{1 < i_1 < \dots < i_d} \lambda_{i_1, \dots, i_d} (e_{i_1} \wedge \dots \wedge e_{i_d})$$

Clearly $e_1 \notin \text{span}\{e_2, ..., e_n\}$ and so by Lemma 7 we see that

$$\sum_{1 < i_2 < \dots < i_d} \lambda_{1, i_2, \dots, i_d} (e_{i_2} \wedge \dots \wedge e_{i_d}) = 0$$

Repeating this argument inductively shows that $\lambda_{1,2,\dots,d} = 0$. As k^n is symmetric w.r.t. permuting the e_j , we see that all $\lambda_{i_1,\dots,i_d} = 0$ are zero.

It follows that $\dim(\bigwedge^d k^n) = \dim(\mathbb{P}^{\{1,\dots,n\}^{(d)}})$ and we find that f is also injective.

Corollary 14 (2b). Let $\bar{f}: \mathbb{P}(\bigwedge^d k^n) \to \mathbb{P}^{\binom{n}{d}-1}$ be the map f from before modulo k^* .

$$\rho = f \circ \phi$$

and in particular, we see that $\phi(Gr(d,n))$ is a projective variety and isomorphic to $\rho(Gr(d,n))$.

Proposition 15 (2c). The map ϕ is injective.

Proof. Consider two d-dimensional subspaces U, W of k^n with $\phi(U) = \phi(W)$. Let $u_1, ..., u_l$ be a basis of $U \cap W$ and extend it to bases $u_1, ..., u_d$ of U and $u_1, ..., u_l, w_{l+1}, ..., w_d$ of W. As $\phi(U) = \phi(W)$, we can assume that the u_i, w_i are scaled such that

$$0 = (u_1 \wedge ... \wedge u_d) - (u_1 \wedge ... \wedge u_l \wedge w_{l+1} \wedge ... \wedge w_d)$$

= $u_1 \wedge ... \wedge u_l \wedge ((u_{l+1} \wedge ... \wedge u_d) - (w_{l+1} \wedge ... \wedge w_d))$

By Lemma 7 we see that

$$u_2 \wedge ... \wedge u_l \wedge ((u_{l+1} \wedge ... \wedge u_d) - (w_{l+1} \wedge ... \wedge w_d)) = 0$$

as $u_1 \notin \text{span}\{u_2, ..., u_d, w_{l+1}, ..., w_d\}$. Inductively, this argument shows that

$$(u_{l+1} \wedge ... \wedge u_d) - (w_{l+1} \wedge ... \wedge w_d) = 0$$

If l < d, we can now apply Lemma 7 again to see that

$$u_{l+1} \in \text{span}\{u_{l+2}, ..., u_d, w_{l+1}, ..., w_d\}$$

as $u_{l+2} \wedge ... \wedge u_d \neq 0$ by Lemma 6. However, this contradicts the linear independence of $u_{l+1}, ..., u_d, w_{l+1}, ..., w_d$. Hence it must be l = d and so U = W.

3 Part III

In this part, we want to investigate the geometric properties of the Grassmanian resp. the image of ϕ . First of all, we introduce coordinates on $\mathbb{P}(\bigwedge^d k^n)$.

Definition 16. Note that in the proof of Lemma 13 it was shown that $v_{i_1} \wedge ... \wedge v_{i_d}$ for $i_1 < ... < i_d$ is a basis of $\bigwedge^d k^n$ if $v_1, ..., v_n$ is a basis of V. We introduce the homogeneous coordinates w.r.t. that basis, namely

$$x: \mathbb{P}(\bigwedge^{d} k^{n}) \to \mathbb{P}_{k}^{\{1,\dots,n\}^{(d)}} \cong \mathbb{P}_{k}^{\binom{n}{d}-1},$$
$$\left[\sum_{i_{1} < \dots < i_{d}} \lambda_{i_{1},\dots,i_{d}}(v_{i_{1}} \wedge \dots \wedge v_{i_{d}})\right] \mapsto \left[\lambda_{i_{1},\dots,i_{d}}\right]_{i_{1} < \dots < i_{d}}$$

The individual coordinates will be denoted by x_I for some $I \in \{1, ..., n\}^{(d)}$ or $x_{i_1, ..., i_d}$ for $i_1 < ... < i_d$.

Proposition 17 (3a). For the embedding $\phi : Gr(2, V) \to \bigwedge^2 V$ we have

$$Gr(2, V) \cong im\phi = V(I)$$

where

$$I := \langle x_{i,j} x_{u,v} + x_{i,v} x_{j,u} - x_{i,u} x_{j,v} \mid i < j < u < v \rangle \le k \left[\mathbb{P}(\bigwedge^d V) \right] = k [x_{i,j} \mid i < j]$$

Proof. By Lemma 14 we have that

$$[\omega] \in \mathrm{im}\phi \iff \omega \text{ decomposable}$$

and so by Lemma 8

$$\omega \in \mathrm{im} \phi \iff \omega \wedge \omega = 0$$

In $\mathbb{P}(\bigwedge^d V)$ we find that

$$\left(\sum_{i < j} x_{i,j}(e_i \wedge e_j)\right) \wedge \left(\sum_{u < v} x_{u,v}(e_u \wedge e_v)\right) = \sum_{\substack{i < j \\ u < v}} x_{i,j} x_{u,v}(e_i \wedge e_j \wedge e_u \wedge e_v)$$

$$= 2 \sum_{\substack{i < j < u < v}} x_{i,j} x_{u,v}(e_i \wedge e_j \wedge e_u \wedge e_v) + 2 \sum_{\substack{i < u < j < v}} x_{i,j} x_{u,v}(e_i \wedge e_j \wedge e_u \wedge e_v)$$

$$+ 2 \sum_{\substack{u < i < j < v}} x_{i,j} x_{u,v}(e_i \wedge e_j \wedge e_u \wedge e_v)$$

$$= 2 \sum_{\substack{i < j < u < v}} (x_{i,j} x_{u,v} - x_{i,u} x_{j,v} + x_{j,u} x_{i,v})(e_i \wedge e_j \wedge e_u \wedge e_v)$$

As the $e_i \wedge e_j \wedge e_u \wedge e_v$ are linearly independent, we see that for $[\omega] \in \mathbb{P}(\bigwedge^2 V)$ we have

$$[\omega] \in \text{im}\phi \iff \forall i < j < u < v : (x_{i,j}x_{u,v} + x_{i,v}x_{j,u} - x_{i,u}x_{j,v})(\omega) = 0$$

Hence $\operatorname{im} \phi = \mathbb{V}(I)$.