Практикум 3.ОММ, ОМП, ОМС.

- 1.1. $X_1, ..., X_n \sim Beta(a, b)$. Построить график функции правдоподобия при разных n, найти на нем ОМП, сравнить с истинным значением параметров.
- 1.2. $X_1, \ldots, X_n \sim Beta(a, b)$. Сравнить ОММ, построенные по $\mathbf{E} X^k$ для параметра a (параметр b известен): найти выборочные дисперсии этих оценок, построить гистограммы.
- 1.3. $X_1, ..., X_n \sim Beta(a, b), \ \widehat{\theta}_1 = (\widehat{a}_1, \widehat{b}_1) \text{OM}\Pi, \ \widehat{\theta}_2 = \widehat{a}_2, \widehat{b}_2) \text{OMC}.$
- 1) Построить по выборке оценки $\widehat{\theta}_1$ и $\widehat{\theta}_2$ (найти численно).
- 2) Сравнить, какая из оценок $\hat{\theta}_1$ и $\hat{\theta}_2$ чаще оказывается ближе к θ при разных n (отдельно по каждой координате и смысле расстояния на плоскости), смоделировав для этого по 1000 реализаций (для каждого n).
- 3) Построить гистограммы для $\sqrt{n}(\hat{\theta}_i \theta)$ на одном графике, сравнить разбросы.
- 1.3^* . X_1, \dots, X_n выборка из распределения, являющегося смесью $\mathcal{N}(\theta, \exp(\theta^{-4}))$ и Beta(2,5) с весами 1/2, 1/2. Построить график функции правдоподобия.
- Замечание. 1) X_i генерируется следующим образом: сначала генерируем с.в. Bern(1/2), если она равна 0, то генерируем $X_i \sim \mathcal{N}(\theta, \exp(\theta^{-2}))$, если 1, то $X_i \sim \mathcal{N}(0, 1)$.
- 2) Плотность распределения X_i равна взвешенной сумме плотностей $\mathcal{N}(\theta, \exp(\theta^{-4}))$ и Beta(2,5) с весами 1/2, 1/2.
- $2.1.\ X_1,...,X_n \sim Gamma(a,b)$. Построить график функции правдоподобия при разных n, найти на нем ОМП, сравнить с истинным значением параметров.
- 2. 2. $X_1, \ldots, X_n \sim Gamma(a, b)$. Сравнить ОММ для параметра масштаба, построенные по $\mathbf{E} X^k$: найти выборочные дисперсии этих оценок, построить гистограммы.
- 2. 3. $X_1,...,X_n \sim Gamma(a,b), \widehat{\theta}_1 = (\widehat{a}_1,\widehat{b}_1) \text{OM}\Pi, \widehat{\theta}_2 = \widehat{a}_2,\widehat{b}_2) \text{OMC}$.
- 1) Построить по выборке оценки $\widehat{\theta}_1$ и $\widehat{\theta}_2$ (найти численно).
- 2) Сравнить, какая из оценок $\hat{\theta}_1$ и $\hat{\theta}_2$ чаще оказывается ближе к θ при разных n (отдельно по каждой координате и смысле расстояния на плоскости), смоделировав для этого по 1000 реализаций (для каждого n).
- 3) Построить гистограммы для $\widehat{\theta}_i$, сравнить с нормальной плотностью.
- 4) Построить гистограммы для $\sqrt{n}(\hat{\theta}_i \theta)$ на одном графике, сравнить разбросы.
- 2.4^* . X_1, \ldots, X_n выборка из распределения, являющегося смесью $\mathcal{N}(\theta, \exp(e^{-\theta}))$ и Gamma(5,5)с весами 1/2, 1/2. Построить график функции правдоподобия.
- Замечание. 1) X_i генерируется следующим образом: сначала генерируем с.в. Bern(1/2), если она равна 0, то генерируем $X_i \sim \mathcal{N}(\theta, \exp(\theta^{-2}))$, если 1, то $X_i \sim \mathcal{N}(0, 1)$.
- 2) Плотность распределения X_i равна взвешенной сумме плотностей $\mathcal{N}(\theta, \exp(e^{-\theta}))$ и Gamma(5,5) с весами 1/2, 1/2.
- 3.1. $X_1,...,X_n \sim f_{\theta}(x) = \frac{a}{\pi(a^2+(x-\theta)^2)}$. Построить график функции правдоподобия при разных n, найти на нем ОМП, сравнить с истинным значением параметров.
- 3.2. $X_1, \dots, X_n \sim \mathcal{R}[0, \theta]$. Сравнить ОММ, построенные по $\mathbf{E} X^k$: найти выборочные дисперсии этих оценок, построить гистограммы.
- 3.3. $X_1, ..., X_n \sim f_{\theta}(x) = \frac{a}{\pi(a^2 + (x b)^2)}, \ \widehat{\theta}_1 = (\widehat{a}_1, \widehat{b}_1) \text{OM}\Pi, \ \widehat{\theta}_2 = \widehat{a}_2, \widehat{b}_2) \text{OMC}.$
- 1) Построить по выборке $\widehat{\theta}_{i}$ (где нужно, найти численно).
- 2) Сравнить, какая из оценок $\hat{\theta}_1$ и $\hat{\theta}_2$ чаще оказывается ближе к θ при разных n (отдельно по каждой координате и смысле расстояния на плоскости), смоделировав для этого по 1000 реализаций (для каждого n). Для параметра b добавить к сравнению оценку MED.
- 3) Построить гистограммы для $\hat{\theta_i}$, сравнить с нормальной плотностью.
- 4) Построить гистограммы для $\sqrt{n}(\hat{\theta}_i \theta)$ на одном графике, сравнить разбросы.
- 3.4^* . X_1, \ldots, X_n выборка из распределения, являющегося смесью $\mathcal{N}(\theta, \exp(\theta^{-2}))$ и $\mathcal{N}(0,1)$ с весами 1/2, 1/2. Построить график функции правдоподобия.
- Замечание: X_i генерируется следующим образом: сначала генерируем с.в. Bern(1/2), если она равна 0, то генерируем $X_i \sim \mathcal{N}(\theta, \exp(\theta^{-2}))$, если 1, то $X_i \sim \mathcal{N}(0, 1)$.