Blatt 4

Abgabe Dienstag 18.11.2011

- (1) Sei $U\subseteq\mathbb{R}^N$ eine offene, sternförmige Menge. Zeigen Sie, dass U einfach zusammenhängend ist.
- (2) Beweisen Sie, dass die gelochte Ebene $\mathbb{R}^2 \setminus \{0\}$ nicht einfach zusammenhängend ist.
- (3) Gegeben sei eine zweimal stetig differenzierbare Funktion $u:\mathbb{R}^2 \to \mathbb{R}$ mit

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

(a) Zeigen Sie, dass die Funktion $F: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch

$$F(p) := \left(\frac{\partial u}{\partial y}(p), -\frac{\partial u}{\partial x}(p) \right), \qquad p \in \mathbb{R}^2,$$

ein Gradientenfeld ist.

(b) Sei weiterhin $\varphi: \mathbb{R}^2 \to \mathbb{R}$ ein Potential zu F. Zeigen Sie die Gleichheit

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0.$$

(c) Bestimmen Sie ein Potential zu der Abbildung $G:\mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$G(p) := \left(\frac{\partial \varphi}{\partial y}(p), -\frac{\partial \varphi}{\partial x}(p) \right), \quad p \in \mathbb{R}^2,$$

(4) Sei \mathcal{R} ein Mengenring über X und μ ein Prämaß auf \mathcal{R} . Zeigen Sie, dass μ stetig von unten ist, dass also für beliebige Mengen $B_n, B \in \mathcal{R}$, die $1_{B_n} \nearrow 1_B$ erfüllen, gilt

$$\lim_{n \to \infty} \int_X 1_{B_n} d\mu(x) = \int_X 1_B d\mu(x).$$

Erinnerung(en): $1_{B_n} \nearrow 1_B$ bedeutet $1_{B_n}(x) \le 1_{B_{n+1}}(x)$ und $\lim_{n\to\infty} 1_{B_n}(x) = 1_B(x)$ für alle $x \in X$. Für Indikatorfunktionen 1_A ist das Integral durch $\int_X 1_A(x) d\mu(x) = \mu(A)$ definiert.

Hinweis: Nutzen Sie die σ -Additivität des Prämaßes.