

Bramki logiczne

Mapa Karnaugh'a 4 zmiennych

Numeracja pól

X ₁ X ₀				
X3 X2	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

Grupy do sklejania

Rysunek 6 - Grupy 8. sąsiednich pól na mapie Karnaugh'a dla 4. zmiennych

Grupy czwórek do sklejania

Rysunek 7 - Grupy czterech sąsiednich pól na mapie Karnaugh'a dla 4. zmiennych

Grupy par do sklejania $\sum_{x_1 \atop 00 \quad 01 \quad 11 \quad 10}^{x_2} par do sklejania$

Rysunek 8 - Pary sąsiednich pól na mapie Karnaugh'a 4. zmiennych

Zaprojektować układ kombinacyjny realizujący tunkcję boolowską czterech zmiennych daną w postaci dziesiętnej $y=\Sigma$

(1,3,6,9,11,12,13,14)

Układy cyfrowe

Funkcje nie w peł ni określone

Rozwiązanie

Można utworzyć dwie czwórki:

(2, 3, 6, 7) oraz (4, 6, 12, 14)

Pokrywają one wszystkie jedynki funkcji

Zaprojektować układ arytmetycznego dodawania dwóch n bitowych liczb zapisanych naturalnym kodzie binarnym NKB

a _i b _i c _i	\mathbf{y}_{i}	C _{i+1}
000	0	0
100	1	0
010	1	0
110	0	1
001	1	0
101	0	1
011	0	1
111	1	1

Mapy Karnaugha sumatora

 y_{i}

C_{i+}.

Sumator wielopozycyjny

Projektowanie z bramkami NAND

Projektowanie z bramkami NOR

Zadania

1. Dany jest układ zbudowany na bramkach NAND jak na rysunku

- a) Wypełnić mapę Karnaugh'a odpowiadającą temu układowi.
- b) Znaleźć minimalną postać sumacyjną funkcji realizowanej przez dany układ.
- c) Zrealizować na bramkach NAND układ składający się z najmniejszej liczby układów scalonych.
- d) Z Ilu i jakich bramek składa się rozwiązanie tego zadania jeśli wzbudzenie $x_3x_2x_1x_0$ (1110) nie występuje (funkcja jest nieokreślona).

Zadania

- 2. Dane są dwie funkcje: $y_1 = (1,2,3,6)$ i $y_2 = (0,2)$.
- A. Zaprojektować układ realizujący obydwie funkcje. Czy istnieje rozwiązanie wykorzystujące tylko jeden układ scalony zawierający 4 dwuwejściowe bramki NAND.

3. Zaprojektować układ sprawdzający, czy liczba jedynek w trzybitowym słowie wejściowym jest większa lub równa 2. Wykorzystać tylko bramki NAND.