PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-073374

(43)Date of publication of application: 15.03.1994

(51)Int.CI.

CO9K 11/06 CO8G 61/10

H05B 33/14

(21)Application number: 05-106483

(71)Applicant:

SUMITOMO CHEM CO LTD

(22)Date of filing:

07.05.1993

(72)Inventor:

ONISHI TOSHIHIRO

NOGUCHI MASANOBU KUWABARA MASATO

(30)Priority

Priority number: 04165961

Priority date: 24.06.1992

Priority country: JP

(54) ORGANIC ELECTROLUMINESCENT ELEMENT

(57)Abstract:

PURPOSE: To improve the luminance of an organic electroluminescent element by forming a luminescent layer contg. an org.-solvent-sol. conjugated polymer having a specified molecular structure and an electron-transporting compd. between a pair of transparent or translucent anode and cathode.

CONSTITUTION: On a transparent substrate such as glass is formed a cathode comprising tin oxide, etc., on which is applied a toluene soln., etc., of a conjugated polymer of the formula (wherein Ar is an arylene or arom. heterocyclic group substd. by a group such as a 1-22C alkyl, alkenyl, alkylthio, or 6-22C arom. hydrocarbon group provided it forms the π electron conjugation with the adjacent arylene or arom. heterocyclic group; and n>5)[e.g. a poly(3- alkyl-2,5-thienylene)] followed by thermal treatment under a reduced pressure, thus forming a luminescent layer with a thickness of 0.5μm to 10μm. On the luminescent layer is formed an electron–transporting layer comprising a benzoquinone compd., etc., followed by the vacuum deposition of an Mg-Ag alloy, etc., to form an electron injection cathode. Thus, the objective element exhibiting a high luminance at a low driving voltage is obtd.

LEGAL STATUS

[Date of request for examination] 09.07.1999 [Date of sending the examiner's decision of rejection] 23.04.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3362440 25.10.2002 [Date of registration] 2002-09138 [Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of 22.05.2002

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-73374

(43)公開日 平成6年(1994)3月15日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 9 K 11/06

Z 9159-4H

C 0 8 G 61/10

NLF

8215-4 J

H 0 5 B 33/14

審査請求 未請求 請求項の数2(全 11 頁)

(21)出願番号

特願平5-106483

平成5年(1993)5月7日

(31) 假先権主張番号 特願平4-165961

(32) 優先日

(22)出願日

平4(1992)6月24日

(33) 優先権主張国

日本(JP)

(71)出願人 000002093

住友化学工業株式会社

大阪府大阪市中央区北浜 4丁目 5番33号

(72)発明者 大西 敏博

茨城県つくば市北原 6 住友化学工業株式

会社内

(72)発明者 野口 公信

茨城県つくば市北原 6 住友化学工業株式

会社内

(72)発明者 桑原 真人

茨城県つくば市北原 6 住友化学工業株式

会社内

(74)代理人 弁理士 久保山 隆 (外1名)

(54)【発明の名称】 有機エレクトロルミネッセンス素子

(57)【要約】

【目的】塗布法により容易に均一性に優れた発光層を形 成できる共役系高分子を発光材料として用いた低電圧駆 動、高輝度の有機EL索子を提供すること。

【構成】ポリ(3-ヘキシル-2,5-チエニレン)と 2-(4-ビフェニリル)-5-(4-t-ブチルフェ ニル)-1,3,4-オキサジアゾールの混合物を発光 層とした有機エレクトロルミネッセンス素子。

【特許請求の範囲】

【請求項1】少なくとも一方が透明または半透明である 一対の陽極および陰極からなる電極間に、少なくとも発 光層を有する有機エレクトロルミネッセンス素子におい て、該発光層が、下式

【化1】

$$-$$
Ar \rightarrow n

(CCでArは、繰り返し単位を示し、芳香族環または 芳香族性複素環に少なくとも1つの炭素数1~22のア 10 ルキル、アルコキシおよびアルキルチオ基ならびに炭素 数6~22の芳香族炭化水素基から選ばれた置換基を有 するアリーレン基または芳香族性複素環化合物基であ り、且つ該芳香族環または芳香族性複素環が隣接する緑 り返し単位の該芳香族環または芳香族性複素環と連続し たπ電子共役系を形成するものであり、nは5以上の整 **数である。)で表される構造を有し、有機溶媒に可溶な** 共役系髙分子および電子輸送性化合物を含むことを特徴 とする有機エレクトロルミネッセンス素子。

一対の陽極および陰極からなる電極間に少なくとも発光 層を有する有機エレクトロルミネッセンス素子におい て、該発光層が、下式

【化2】

-Ar \rightarrow n

(CCでArは、繰り返し単位を示し、芳香族環または 芳香族性複素環に少なくとも1つの炭素数1~22のア ルキル、アルコキシおよびアルキルチオ基ならびに炭素 数6~22の芳香族炭化水素基から選ばれた置換基を有 30 するアリーレン基または芳香族性複素環化合物基であ り、日つ該芳香族環または芳香族性複素環が隣接する緑 り返し単位の該芳香族環または芳香族性複素環と連続し たπ電子共役系を形成するものであり、n は5以上の整 数である。)で表される構造を有し、有機溶媒に可溶な 共役系高分子よりなり、且つ陰極と該発光層との間に、 該発光層に隣接して電子輸送性化合物からなる層を設け たことを特徴とする有機エレクトロルミネッセンス素 子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は有機エレクトロルミネッ センス素子(以下有機EL素子)に関するものである。 詳しくは、溶媒可溶な共役系高分子を発光材料として用 い、それと共に電子輸送材料を用いた有機EL素子に関

[0002]

【従来の技術】従来から用いられている無機エレクトロ ルミネッセンス素子(以下無機EL素子)は発光させる は有機蛍光色素を発光層とし、それに電子写真の感光体 等に用いられていた有機電荷輸送化合物を積層した二層 構造を有する有機EL素子を作製し、発光層のみを有す

L素子を実現させた(特開昭59-194393号公 報)。有機EL素子は無機EL素子に比べ、低電圧駆

るものに比較して低電圧駆動、高効率、高輝度の有機E

動、髙輝度に加えて多数の色の発光が容易に得られると いう特長があることから、素子構造や有機蛍光色素、有 機電荷輸送化合物について多くの試みが報告されている

〔ジャパニーズ・ジャーナル・オブ・アプライド・フィ ジックス (Jpn. J. Appl. Phys.) 27

巻、L269(1988年)]、〔ジャーナル・オブ・ アプライド・フィジックス (J. Appl. Phy

s.) 65巻、3610頁(1989年)]。これまで に、発光材料としては低分子量の有機蛍光色素が一般に 用いられており、高分子の発光材料としては、WO90 13148号公開明細書、特開平3-126787号公

報、アプライド・フィジックス・レターズ(Appl. Phys. Lett.) 58巻、1982頁(1991

【請求項2】少なくとも一方が透明または半透明である 20 年)、ジャパニーズ・ジャーナル・オブ・アプライド・ フィジックス (Jpn. J. Appl. Phys.) 3

0巻、L1938(1991年)、同30巻、L194 1(1991年)などで提案されているにすぎなかっ

[0003]

【発明が解決しようとする課題】しかしながら、これま で報告されてきた高分子発光材料を用いた有機EL素子 は駆動電圧が高く、輝度も必ずしも十分とは言い難いも のであった。高分子発光材料は熱的に安定であり、また 塗布法により容易に均一性に優れた発光層を形成できる ことから、それらの長所を生かしながら、より駆動電圧 が低く、高輝度である有機EL素子が要望されている。 【0004】本発明の目的は塗布法により容易に均一性 に優れた発光層を形成できる高分子発光材料を用いた低 電圧駆動、高輝度の有機EL素子を提供することにあ

[0005]

【課題を解決するための手段】本発明者等は、高分子発 光材料を発光層として用いた有機EL素子の低電圧駆 40 動、高輝度化を鋭意検討してきた。その結果、高分子発 光材料として、溶媒に可溶な共役系高分子を用い、これ に電子輸送性化合物を添加したものを発光層として用い るか、または、髙分子発光層と陰極との間に髙分子発光 層に隣接して電子輸送性化合物の層を形成することによ り、高分子発光材料を単独で用いた場合に比べて低電圧 駆動化、高輝度化が実現されることを見い出し本発明に 至った。

【0006】すなわち、本発明は、少なくとも一方が透 明または半透明である一対の陽極および陰極からなる電 のに高電圧が必要であった。最近、C. W. Tangら 50 極間に少なくとも発光層を有する有機エレクトロルミネ

3 .

ッセンス素子において、(1)該発光層が下記化3で表 される構造を有し、溶媒可溶な共役系髙分子および電子 輸送性化合物を含むこと、あるいは(2)該発光層が下 記化3で表される構造を有し、溶媒可溶な共役系高分子 よりなり、且つ該発光層と陰極の間に該発光層に隣接し て電子輸送性化合物の層を有することを特徴とする有機 EL素子を提供することにある。

[0007] 【化3】

-Ar \rightarrow n

(CCでArは、繰り返し単位を示し、芳香族環または 芳香族性複素環に少なくとも1つの炭素数1~22のア ルキル、アルコキシおよびアルキルチオ基ならびに炭素 数6~22の芳香族炭化水素基から選ばれた置換基を有 するアリーレン基または芳香族性複素環化合物基であ り、且つ該芳香族環または芳香族性複素環が隣接する繰 り返し単位の該芳香族環または芳香族性複素環と連続し たπ電子共役系を形成するものであり、nは5以上の整 数である。)

【0008】以下、本発明の有機EL素子について詳細 に説明する。本発明に用いられる共役系高分子は有機E L素子の発光材料として用いられ、その構造は上記化3 で表されるように、少なくとも1つの炭素数1~22の アルキル、アルコキシおよびアルキルチオ基ならびに炭 素数6~22の芳香族炭化水素基から選ばれた置換基を 有する芳香族環または芳香族性複素環を繰り返し単位と し、それらが、隣合う繰り返し単位の芳香族環または芳 香族性複素環の間でπ電子共役系を形成する結合をとお れば特に制限はない。

【0009】Ar基としては炭素数1~22のアルキ ル、アルコキシおよびアルキルチオ基ならびに炭素数6 ~22の芳香族炭化水素基から選ばれた置換基を有する p-フェニレン基、ナフタレン-1, 4-ジイル基、ナ フタレン-1,5-ジイル基、ナフタレン-2,6-ジ イル基、アントラセン-9、10-ジイル基、2、5-チエニレン基、アズレン-1,3-ジイル基、カルバゾ -ル-2, 7-ジイル基、カルバゾール-3, 6-ジイ ル基等が例示される。強いエレクトロルミネッセンスを 40 のの繰り返し単位の番号である。) 示す基としてはp‐フェニレン基、2,5 ‐チエニレン 基、カルバソールー2、7ージイル基の核置換体が好ま

しく、より好ましくはp-フェニレン、2、5-チエニ レンの核置換体が好ましい。

【0010】さらに、化3で示される共役系高分子は溶 媒に可溶であることが必須であることから、炭素数1~ 22のアルキル基、アルコキシ基およびアルキルチオ基 ならびに炭素数6~22の芳香族炭化水素基から選ばれ た基が1個以上核置換していることが必要である。良好 な可溶性を与えるには、置換基の内、少なくともそれら の一つが炭素数4~22のアルキル基、アルコキシ基ま 10 たはアルキルチオ基であることが好ましい。これらのな かで成膜性が良好な炭素数4~22のアルキル基、アル コキシ基が特に好ましい。

【0011】上記炭素数1~22のアルキル基として は、例えば、メチル基、エチル基、プロピル基、プチル 基、ペンチル基、ヘキシル基、ヘプチル基、オクチル 基、デシル基、ラウリル基、ドデシル基、オクタデシル 基などであり、ペンチル基、ヘキシル基、ヘプチル基が 好ましい。または炭素数1~22のアルコキシ基として は、メトキシ基、エトキシ基、プトキシ基、ペンチルオ 20 キシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチ ルオキシ基、ラウリルオキシ基、ドデシルオキシ基、オ クタデシルオキシ基などであり、ペンチルオキシ基、ヘ キシルオキシ基、ヘプチルオキシ基が好ましい。アルキ ルチオ基としては、メチルチオ基、エチルチオ基、プロ ビルチオ基、ブチルチオ基、ベンチルチオ基、ヘキシル チオ基、ヘプチルチオ基、オクチルチオ基、ラウリルチ オ基、ドデシルチオ基、オクタデシルチオ基などであ り、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基 が好ましい。芳香族炭化水素基としてはフェニル基、4 して5個以上結合しているもので、有機溶媒に可溶であ 30 - アルコキシフェニル基(アルコキシ基としては例えば メトキシ基、エトキシ基、ブトキシ基、ペンチルオキシ 基、ヘキシルオキシ基、ヘプチルオキシ基)、4-アル キルフェニル基(アルキル基としては例えばメトキシ 基、エトキシ基、ブトキシ基、ペンチルオキシ基、ヘキ シルオキシ基、ヘプチルオキシ基)、1-ナフチル基、 2-ナフチル基が例示される。

> 【0012】具体的には、下記表1~6に示す繰り返し 単位をもつ高分子が例示される。(表中の数字は繰り返 し単位中のアルキル基が左記のアルキル基に該当するも

[0013]

【表1】

繰り返し単位構造	恭	繰り返し単位構造の番号	構造の番号		
アルキ	アルキル基種類:チチタ	√ † 沙	ላንቻሉ	下沙	オクタデンル
3-75キホー2, 5-チェニレン	-	5	ဇာ	4	ស
3, 4-37/14/4-2, 5-fr=1/2	6	_	&	တ	2
2-7/44/1-ローフェニレン	=	. 12	<u></u>	4	ਨ
2, 5-ジアルキルーローフェニレン	16	11	8	6	20
2, 3, 5-トリアルキルーローフェニレン	21	22	23	24	52
2-7小キルナフタレン-1,5-ジイル	. 58	27	28	53	. 30
3-714417962-1,5-344	31	32	33	34	35
4-7/14/17962-1,5-34/1	36	37	38	33	40 .
2,4-ジアルキルナフタレン-1,5-ジイル	41	42	43	44	45
2, 6-37/14/1/ナクレン-1, 5-3イル	46	47	48	49	20
2, 7-ジアがキルナフタレンー1, 5-ジイル	51	25	53	54	52
1-7/14/179627-2, 8-34/1	28	21	58	23	09
3-7144177962-2, 6-348	61	62	63	64	65
4-711411179122.6-348	99	4	89	69	20
1, 4-37/14/179/2-2, 8-34/1	7	72	73	74	75
1, 5-37/14/1/79/27-2, 6-34/1	78	11	82	79	88
1, 7-9764617962-2, 8-546	8	82	83	84	82

[0014]

【表2】

~
•
•

一条事分無 151 178			繰り返し	繰り返し単位構造の番号)番号	
_	アルキル基種類:	. J.F.B.	443/4	1751	kŦM_	村分子沙
1-7年4月ントラセン-9, 10岁イル	11/16	. 98	87	88	88	96
3-(4-7小キルフェニル)-2, 5-チェニレン	5ーチェニレン	91	35	93	94	95
3, 4-EX(4-7114117111)-2, 5-FILV)-2. 5-FI=by	96	16	88	66	100
2,5-ビス(4-アルキルフェニル)-p-フェニレン)-p-7±=1/	101	102	103	104	105
2-(4-744/17x=14)+79/12-1,5-34/4	レソー1, 5-ジイル	108	107	108	109	110
3-(4-7*4#7==#)+79by-1,5-94#	レソー1, 5-ジイル	=	112	113	114	115
4-(4-7###7x=#)+79by-1,5-94#	レソー1, 5-ジイル	116	117	118	119	120
2,4-ビス(4-アルキルフェニル)ナフタレン-1,5-シイル)ナフタレソー1, 5-岁イル	121	122	123	124	125
2, 6-E1(4-71)+71=11)+791-7-1, 5-9411)ナフタレソー1, 5-34师	128	127	128	129	130

【0015】 【表3】

0

一种分别 [] 19		繰り返(繰り返し単位構造の番号)番号	
(株分) から 中世 神也 アルキル 基種類:	75.4	4436	小孙	作予沙孙	オクタデンル
2, 7ーどス(4-7ポキホフェニホ)ナフタレンー1, 5-ジイル	131	132	133	134	135
1-(4-70+107==10)+7902-2,6-3410	136	137	138	139	140
3-(4-アルキルフェニル)ナフタレン-2,6-シイル	141	142	143	144	145
4-(4-アルキルフェニル)ナフタレンー2。6ーシイル	146	147	148	149	150
1, 4-ビス(4-アルキルフェニル)ナフタレン-2, 6-シイル	151	152	153	154	155
1, 5-ビス(4-アルキルフェニル)ナフタレン-2, 6-シイル	156	157	158	159	160
1, 7-Ex(4-70+B7x=B)+79by-2, 6-340	161	162	163	164	165
1-(4-アルキルフェニル)アントラセン-9,10-シイル	166	167	168	169	170

(0)

【0016】 【表4】

10

20

30

		11							(7)								12	特開平
	オクタデンルオキシ	175	180	185	190	195	200	205	210	215	220	225	230	235	240	245	250	255
電池の番号	デンルオキシ	174	179	184	189	194	199	204	503	214	219	224	229	234	239	244	249	254
繰り返し単位構造の番号	ላቻቶለተን	173	178	183	188	193	198	203	208	213	218	223	228	233	238	243	248	253
200	ヘキシルオキシ	172	177	182	187	192	197	202	207	212	217	222	227	232	237	242	247	252
	類:介わ	171	176	181	186	191	196	201	206	211	218	221	226	231	236	241	246	251
繰り返し単位構造	アルコキン基種類:	3-7ルコキシー2, 5-チェニレン	3, 4-37/1/12+2-2, 5-F1=1/3	2-7/bコキシ-p-フェニレン	2, 5- ୬ アルコキシーpーフェニbン	2, 3, 5-147/174-p-71-17	2-アルコキッナフタレソー1, 5-ジイル	3-71-147-17917-1, 5-341	4-7024377903-1, 5-340	2, 4-リアルコキッナフタレソー1, 5-ジイル	2, 6-37034377907-1, 5-340	2, 7ージブルコキシナフタレツー1, 5ージイル	1-7ルコキシナフタレン-2, 6-ツイル	3-71/12+3/1791/3-2, 6-3/11	4-7ルコキシナフタレンー2, 6-シイル	1, 4ージアルコキシナフタレンー2, 6ージイル	1, 5-9702+>+790>-2, 6-940	1, 7ージアルコキンナフタレンー2, 6ージイル

[0017]

【表5】

繰り返し単位構造		繰り返し	繰り返し単位構造の番号	番号	
アルコキシ基種類:	升秒	\ 43/6 459	八子孙柱沙	于沙林科	デッルオキシ オクタデッルオキシ
1-7/51 \$977 \527-9, 10-34/6	258	257	258	259	260
3-(4-74)+)7x=4)-2,5-fx=4)	261	262	263	264	265
2-(4-アルコキシフェニル)-2,5-チェニレン	266	287	268	583	270
2、5-ビス(4-アルコキシフェニル)-p-エヒン	271	272	273	274	275
2-(4-7ルコキシフェニル)ナフタレン-1, 5-シイル	278	277	278	279	280
3-(4-7ルコキシフェニル)ナフタレンー1,5ーシイル	281	282	283	284	285
4-(4-7ルコキシフェニル)ナフタレンー1,5ーシイル	286	287	288	289	290
2, 4-EX(4-71)3 \$>7.5 \$> 1791>-1, 5-941)	291	292	293	294	292
2, 8-ビス(4-アルコキシフェニル)ナフタレンー1, 5ーシイル	536	297	298	299	300

【0018】 【表6】

【0019】とれらの共役系高分子化合物の中で高輝度 や製膜性の観点から、上記繰り返し単位の番号で1~1 0, 11~20, 91~105, 171~180, 18 1~190、261~275が好ましく、より好ましく は、2~5、17~20、186~190である。これ らの共役系高分子は単独で用いてもよいし、2種類以上 を混合して用いてもよい。また、これらの重合体に対応 するモノマーの2種類以上を混合して重合した共重合体 でもよい。

【0020】化3において、nは繰り返し単位の数を表 し、5以上であれば特に限定されないが、余りにも小さ 16

すぎると均一な膜が得られにくい場合があり、また、余 りに大きすぎても溶解性が低下し、均一に製膜すること が困難になる場合があるのでnの範囲は10以上が好ま しく、10~10000がより好ましい。

【0021】 これらの有機溶媒可溶性の共役系高分子を 用いて溶液から成膜する場合、この溶液を塗布後乾燥に より溶媒を除去するだけでよく、また、電子輸送性化合 物を混合した場合においても同様な手法が適用でき、製 造上非常に有利である。

10 【0022】上記化3で示される共役系高分子の合成法 としては特に限定されないが、相当するモノマーを電解 重合する方法、3価の鉄などの酸化剤で酸化重合する方 法、相当する繰り返し単位のジハロゲン化合物をグリニ ャール化して重合する反応、同様に0価ニッケル錯体に より重合させる方法などが例示される。また、これらの 共役系高分子を有機 E L素子の発光層として用いる場 合、その純度が発光特性に影響を与えるため、合成後、 再沈精製、クロマトグラフィーによる分別等の純化処理 をすることが望ましい。

20 【0023】本発明に用いられる電子輸送性化合物とし ては、発光材料として使用する共役系高分子に対して電 子輸送性が高ければ特に限定されないが、例えば、オキ サジアゾール系化合物、ベンゾキノン系化合物、ナフト キノン系化合物、アントラキノン系化合物、テトラシア ノアントラキノジメタン系化合物、ジフェニルジシアノ エチレン系化合物、ジフェノキノン系化合物等が例示さ れる。具体的には、特開昭63-70257、同63-175860号公報、特開平2-135361、同2-135359、同3-152184号公報に記載されて 30 いるもの等、公知のものが使用可能であるが、オキサジ アゾール系化合物、ベンゾキノン系化合物、アントラキ ノン系化合物が好ましく、特に、2-(4-ビフェニリ ル) -5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノンが好 ましい。これらの電子輸送性化合物は単独で用いてもよ いし、2種類以上を混合して用いてもよい。

【0024】本発明の有機EL素子の発光層として、発 光材料として用いられる化3で示される共役系高分子に 電子輸送性化合物を混合して使用する場合、その量は少 なすぎると効果が小さく、多すぎると発光に寄与しない 電流が増加するため、有機EL素子にした場合、輝度等 の特性が悪くなる。使用する電子輸送性化合物の分子量 によっても異なるが、混合する割合は化3で示される共 役系高分子に対して0.01~40wt%が好ましく、 より好ましくは0.1~30wt%、さらに好ましくは 0.1~10wt%である。混合方法としては電子輸送 性化合物と該共役系髙分子を同一溶媒に溶解させ、混合 溶液とし、これを塗布する方法が一般的に例示される。 【0025】化3で示される共役系高分子を溶解させる

溶媒は製膜できる程度に溶解性があれば、特に制限はな

く、該共役系高分子の種類により最適溶媒は異なるので、 適宜選択する。共役系高分子の繰り返し単位中に炭素数 4以上のアルキル基、アルコキシ基またはアルキルチオ 基等の長鎖基が含まれている場合にはクロロホルム、塩 化メチレン、塩化エチレン、4塩化炭素、ジメチルホル ムアミド、ジメチルアセトアミド、ジメチルスルホキシ ド、テトラヒドフラン、N-メチルピロリドン、トルエ ン、キシレン、プロピレンカーボネート等が例示され る。これらの内で製膜性が良好で、しかも、上記の電子 エン、テトラヒドロフランが好ましい。

【0026】本発明においては、化3で示される共役系 高分子に、既知の発光材料を分散させたものを発光層と して用いることも含まれる。発光材料としては特に限定 されないが、例えば、ナフタレン及びその誘導体、アン トラセン及びその誘導体、ペリレン及びその誘導体、ポ リメチン系、キサンテン系、クマリン系、シアニン系な どの色素類、8-ヒドロキシキノリンおよびその誘導体 の金属錯体、芳香族アミン、テトラフェニルシクロペン タジェン及びその誘導体、テトラフェニルブタジェン及 20 びその誘導体などを用いることができる。具体的には、 例えば特開昭57-51781、同59-194393 号公報に記載されているもの等、公知のものが使用可能

【0027】本発明の有機EL素子の製造について以下 に述べる。陽極および陰極からなる一対の電極で、透明 または半透明な電極としては、ガラス、透明プラスチッ ク等の透明基板の上に透明または半透明の電極を形成し たものが用いられる。陽極の材料としては、導電性の金 にはインジウム・スズ・オキサイド (ITO)、酸化ス ズ (NESA)、Au、Pt、Ag、Cu等が用いられ る。作製方法としては真空蒸着法、スパッタリング法、 メッキ法などが用いられる。

【0028】次いで、この陽極上に共役系髙分子の発光 層を形成する。成膜方法としては共役系高分子を有機溶 媒に溶解した溶液を使用したスピンコーティング法、キ ャスティング法、ディッピング法、パーコート法、ロー ルコート法、スプレー法等の塗布法が例示される。

【0029】発光層の膜厚としては0.5nm~10 μ m、好ましくは1nm~lµmである。電流密度を上げ て発光効率を上げるためには10~500ヵmの範囲が 好ましい。なお、塗布法により薄膜化した場合には、溶 媒を除去するため、減圧下あるいは不活性雰囲気下、3 0~200℃、好ましくは60~100℃の温度で熱処 理することが望ましい。

【0030】次いでこの発光層の上に電子輸送層を形成 する。電子輸送性化合物の成膜方法としては、特に限定 されないが、真空蒸着法、あるいは該化合物を有機溶媒

法、ディッピング法、バーコート法、ロールコート法、 スプレー法等の塗布法を用いたり、さらに既知の高分子 化合物と電子輸送性化合物とを溶液状態または溶融状態 で混合した後、スピンコーティング法、キャスティング 法、ディッピング法、バーコート法、ロールコート法、 スプレー法等の塗布法を用いて成膜することができる。 混合する既知の高分子化合物としては、特に限定されな いが、電荷輸送を極度に阻害しないものが好ましく、ま た、可視光に対する吸収が強くないものが好適に用いら 輸送材料も溶解させる溶媒としてはクロロホルム、トル 10 れる。例えば、ポリ(N-ビニルカルバゾール)、ポリ アニリン及びその誘導体、ポリ(p-フェニレンビニレ ン)及びその誘導体、ポリ(2,5-チエニレンビニレ ン)及びその誘導体、ポリカーボネート、ポリメタクリ レート、ポリメチルメタクリレート、ポリスチレンおよ びポリ塩化ビニル等のビニル系ポリマー、ポリシロキサ ンなどが例示される。製膜が容易に行なえるという点で

18

【0031】電子輸送層の膜厚は、少なくともピンホー ルが発生しないような厚みが必要であるが、あまり厚い と素子の抵抗が増加し、高い駆動電圧が必要となり好ま しくない。したがって、電子輸送層の膜厚は0.5nm ~10μm、好ましくは1nm~1μm、さらに好まし くは5~200 n m である。

は、塗布法を用いることが好ましい。

【0032】上記は共役系高分子からなる発光層と電子 輸送層を積層して設ける場合について述べたが、共役系 高分子と電子輸送性化合物を含む発光層を形成する場合 は共役系高分子と電子輸送化合物を有機溶媒に溶解した 混合溶液を用いてスピンコーティング法、キャスティン グ法、ディッピング法、バーコート法、ロールコート 属酸化物膜、半透明の金属薄膜等が用いられる。具体的 30 法、スプレー法等の塗布法により成膜する方法が採用さ れる。膜厚は前記発光層の厚みと同様な範囲である。ま た、本発明においては、共役系高分子からなる発光層と 共役系髙分子と電子輸送性化合物を含む発光層を積層す ることも可能である。

> 【0033】次いで、発光層が共役系高分子と電子輸送 性化合物との混合層の場合はこの層の上に、また発光層 と電子輸送層が積層されている場合は電子輸送層の上に 電極を設ける。この電極は電子注入陰極となる。その材 料としては、特に限定されないが、イオン化エネルギー 40 の小さい材料が好ましい。例えば、Al、In、Mg、 Mg-Ag合金、In-Ag合金、Mg-In合金、C aおよびそれらの合金、Liおよびそれらの合金、グラ ファイト薄膜等が用いられる。これら陰極材料のうち空 気中で不安定な材料の場合、保護膜として、例えばA 1. Au、Ag、Ptなどの空気中で安定な材料を更に 陰極材料の上に作成してもよい。陰極の作製方法として は真空蒸着法、スパッタリング法等公知の方法が用いら

【0034】なお、本発明のEL素子の構造としては、 に溶かした後、スピンコーティング法、キャスティング 50 これまで述べた陽極/発光層(発光材料と電子輸送性化 合物の混合物) /陰極 (/は層を積層したことを示 す)、あるいは陽極/発光層/電子輸送層/陰極の構造 以外に、さらに公知の正孔輸送層を積層する場合は陽極 /正孔翰送層/発光層/電子輸送層/陰極、陽極/正孔 輸送層/発光層(発光材料と電子輸送性化合物の混合 物)/陰極の構造が挙げられる。さらに陽極と発光層も しくは正孔輸送層の間、または陰極と電子輸送層との間 に既知のバッファー層を有する積層構造等をとることも

[0035]

【実施例】以下、本発明の実施例を示すが、本発明はと れらに限定されるものではない。

【0036】参考例

〔ポリ(3-ヘキシル-2,5-チエニレン)の合成〕 3-ヘキシルチオフェン1.7gをクロロホルムに10 0m1に溶解させ、これに塩化第2鉄を3-ヘキシルチ オフェンの4倍当量加え、室温で5時間反応した。反応 後、メタノールを500m1加えたところ、緑色の沈澱 が生じた。これを濾過、洗浄後乾燥した。沈澱物は1. 6 g 得られた。赤外吸収スペクトル、紫外可視吸収スペ 20 【0039】比較例 クトルからポリ(3-ヘキシル-2,5-チェニレン) の構造を確認した。また、GPCによるポリスチレン換 算の数平均分子量は43,000であった。

【0037】実施例1

スパッタリングによって、40nmの厚みでITO膜を 付けたガラス基板に、参考例1で得たポリ(3-ヘキシ ル-2,5-チエニレン)と電子輸送性化合物として2 (4-ビフェニリル)-5-(4-t-ブチルフェニ ル) -1, 3, 4-オキサジアゾール(以下PBD) レン) に対する混合割合は1.4 w t %である] の0. 4wt%クロロホルム溶液を用い、スピンコートにより 30 nmの厚みで成膜した。次いで、これを減圧下60 ℃で1時間乾燥した後、その上に陰極としてMg-Ag 合金 (Mg: Agは重量比で10:1)を150nm蒸 着して有機EL素子を作製した。蒸着のときの真空度は 3×10-プTorr以下であった。この素子に暗室内で 電圧19Vを印加したところ、電流密度602mA/c m'の電流が流れ、輝度4.58cd/m'の赤色のE

20

L発光が観察された。輝度は輝度計LS-100(ミノ ルタ(株)製)で測定した。このとき暗室内の明るさは 0.01cd/m'以下であった。

10 【0038】実施例2

電子輸送性化合物としてPBDの代わりにアントラキノ ンを使用した〔ここでアントラキノンのポリ(3-ヘキ シルー2.5ーチエニレン)に対する混合割合は1.5 wt%であった〕以外は実施例1と同じ方法で30 n m の厚みの発光層をもつ、有機EL索子を作成した。との 素子を実施例1と同じ方法で輝度を測定したところ、輝 度3.22cd/m'の赤色のEL発光が観察された。 このとき印加した電圧は13Vであり、602mA/c m'の電流が流れた。

ポリ(3-ヘキシル-2,5-チエニレン)に電子輸送 性化合物を混合しない以外は実施例1と同じ方法で30 nmの厚みの発光層を有する有機EL素子を作製した。 この素子を実施例1と同じ方法で輝度を測定したとこ ろ、輝度0.83cd/m²のEL発光が観察された が、色は確認できなかった。このとき印加した電圧は1 5 V であり、602 m A / c m² の電流が流れた。 [0040]

【発明の効果】以上説明したように、本発明の有機EL [ことでPBDのポリ(3-ヘキシル-2.5-チエニ 30 素子は、従来のものと比較して、低電圧駆動で、しかも 輝度が向上しており、バックライトとしての面状光源、 フラットパネルディスプレイ等の装置としての使用が可 能である。