Holographic Embeddings of Knowledge Graphs

Maximilian Nickel, Lorenzo Rosasco, Tomaso A. Poggio. AAAI 2016

Abstract

- HolE:全息嵌入
- 采用循环相关(circular correlation)来创建构图表示
- 可以捕获丰富的交互信息但同时仍然有效计算, 易于训练, 并可扩展到 非常大的数据集。

Compositional Representations

Compositional Representations 简介

可能存在的三元组:Rp(subject,object) φp:E×E→ {±1}

$$\Pr(\phi_p(\mathbf{s}, \mathbf{o}) = 1 | \Theta) = \sigma(\eta_{spo}) = \sigma(\mathbf{r}_p^{\top}(\mathbf{e}_s \circ \mathbf{e}_o))$$
 (1)

σ(关系 (实体。实体))

Compositional Representations 简介

xi表示三元组,yi={+-1}表示标签,对于一个数据集D(包含正负样本),根据eq1学习最能解释D的表示Θ可以通过最小化eq2的损失.

$$\min_{\Theta} \sum_{i=1}^{m} \log(1 + \exp(-y_i \eta_i)) + \lambda \|\Theta\|_2^2.$$
 (2)

Compositional Representations 简介

但是真实世界的知识图谱中,一般只会存放正确的存在故意的错例比较少或者不会被储存.

可以用pairwise ranking loss ,eq3来使得正三元组的概率比负三元组高.

$$\min_{\Theta} \sum_{i \in \mathcal{D}_{+}} \sum_{j \in \mathcal{D}_{-}} \max(0, \gamma + \sigma(\eta_{j}) - \sigma(\eta_{i})) \tag{3}$$

important property of compositional models

- 1. 实体的表示和意义不会随着实体在组合表示中的位置而变化.(作为 subject和object的时候是一样的)
- 由于所有实体和关系的表示是在eq2,eq3中共同学习的,所以模型学习到了三元组之间传播的信息,以及数据的全局依赖关系.

compositional operators

Tensor Product

all pairwise multiplicative interactions between the features of a and b:

$$[\boldsymbol{a}\otimes\boldsymbol{b}]_{ij}=a_ib_j. \tag{4}$$

Intuitively, a feature in the tuple representation a \otimes b is "on"

(has a high absolute magnitude), if and only if the corresponding features of both entities are "on" (See also fig. 1a).

Concatenation, Projection, and Non-Linearity

Let ⊕: Rd1 × Rd2 → Rd1+d2 denote concatenation and

 $\psi: R \to R$ be a non-linear function such as tanh.

The composite tuple representation is then given by $a \circ b = \psi(W (a \oplus b)) \in Rh$, such that

$$[\psi(W(\boldsymbol{a} \oplus \boldsymbol{b}))]_i = \psi\left(\sum_j w_{ij}^a a_j + \sum_j w_{ij}^b b_j\right)$$
 (5)

the projection matrix W ∈ Rh×2d is learned in combination with the entity and relation embeddings.

Non-compositional Methods

TRANSE models the score of a fact as the distance between relation-specific translations of entity embeddings:

score(Rp(s, o)) = - dist(es + rp, eo) . (6)

Figure 1: RESCAL and HOLE as neural networks. RESCAL represents pairs of entities via d^2 components (middle layer). In contrast, HOLE requires only d components.

(a) Compositional Representations

Operator	0	Memory	Runtime		
		r _p	$r_p^{\top}(\boldsymbol{e}_s \circ \boldsymbol{e}_o)$		
Tensor Product	\otimes	$\mathcal{O}(d^2)$	$\mathcal{O}(d^2)$		
Circular Correlation	*	$\mathcal{O}(d)$	$\mathcal{O}(d \log d)$		

Holographic Embeddings

Combine tensor product and TransE

the circular correlation of vectors to represent pairs of entities,用循环相关的向量表示实体对.

we use the compositional operator:

$$\boldsymbol{a} \circ \boldsymbol{b} = \boldsymbol{a} \star \boldsymbol{b},\tag{7}$$

where $\star : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ denotes circular correlation:¹

$$[\boldsymbol{a} \star \boldsymbol{b}]_k = \sum_{i=0}^{d-1} a_i b_{(k+i) \bmod d}. \tag{8}$$

全息嵌入(holographic embeddings)模型

the probability of triple:

Hence, we model the probability of a triple as

$$\Pr(\phi_p(\mathbf{s}, \mathbf{o}) = 1 | \Theta) = \sigma(\mathbf{r}_p^{\top}(\mathbf{e}_s \star \mathbf{e}_o)). \tag{9}$$

circular correlation

可以解释为张量积的压缩.

the tensor product assigns a separate component cij = aibj for each pairwise interaction of entity features, in correlation each component corresponds to a sum over a fixed partition of pairwise interactions.

节点表示张量积中的元素,箭头表示求和

Figure 2: Circular correlation as compression of the tensor product. Arrows indicate summation patterns, nodes indicate elements in the tensor product. Adapted from (Plate 1995).

circular correlation

- 1. 在语义相近交互的部分可以共享一个权重.(例子:当建立partyof 模型的时候,知道subject和object是自由党人+自由党,或者是保守党人+保守党是很有用的)
- 2. 这些interactions会被分在同一组.
- 3. a subset of latent features are relevant to model relational patterns.
- 4. 然后可以将不相关的交互分组在相同的分区中,并在rp中分配了一个小权重。
- 5. 分区不是学习,,而是相关操作的预先准备.

circular correlation computation

$$\mathbf{a} \star \mathbf{b} = \mathcal{F}^{-1} \left(\overline{\mathcal{F}(\mathbf{a})} \odot \mathcal{F}(\mathbf{b}) \right)$$

F(·) and F −1(·) denote the fast Fourier transform (FFT) and its inverse.[快速傅里叶变化]

F(a)带上标 denotes the complex conjugate of F(a) ∈ Cd

https://zh.wikipedia.org/wiki/%E5%85%B1%E8%BD%AD%E5%A4%8D%E6%95%B0

den denotes the Hadamard (entrywise) product.[例:矩阵每个对应位置元素乘]

快速傅里叶变换

快速傅里叶变换(英语: Fast Fourier Transform, FFT),是快速计算序列的<u>离散傅里叶变换</u>(DFT)或其逆变换的方法^们。 <u>傅里叶分析</u>将信号从原始域(通常是时间或空间)转换到<u>频域</u>的表示或者逆过来转换。FFT会通过把<u>DFT矩阵分解为稀疏</u> (大多为零)因子之积来快速计算此类变换。^② 因此,它能够将计算DFT的<u>复杂度</u>从只用DFT定义计算需要的 {\displaystyle O(n^{2})}, 降低到 {\displaystyle O(n\log n)}, 其中 {\displaystyle n} 为数据大小。

Circular convolution
$$[\mathbf{a} * \mathbf{b}]_k = \sum_{i=0}^{d-1} a_i b_{(k-i) \bmod d}$$
. (10)

在组合运算中,相关与起循环卷积有两个好处

非交换:可以体现出关系的非对称性

相似成份:

Non Commutative Correlation, unlike convolution, is not commutative, i.e., $a \star b \neq b \star a$. Non-commutativity is necessary to model asymmetric relations (directed graphs) with compositional representations.

Similarity Component In the correlation $a \star b$, a single component $[a \star b]_0 = \sum_i a_i b_i$ corresponds to the dot product $\langle a, b \rangle$. The existence of such a component can be helpful to model relations in which the similarity of entities is important. No such component exists in the convolution a * b (see also fig. 1 in the supplementary material).

To compute the representations for entities and relations, we minimize either eq. (2) or (3) via stochastic gradient descent (SGD). Let $\theta \in \{e_i\}_{i=1}^{n_e} \cup \{r_k\}_{k=1}^{n_r}$ denote the embedding of a single entity or relation and let $f_{spo} = \sigma(\mathbf{r}_p^{\top}(\mathbf{e}_s \star \mathbf{e}_o))$. The gradients of eq. (9) are then given by

$$\frac{\partial f_{spo}}{\partial \theta} = \frac{\partial f_{spo}}{\partial \eta_{spo}} \frac{\partial \eta_{spo}}{\partial \theta},$$

where

$$\frac{\partial \eta_{spo}}{\partial \mathbf{r}_p} = \mathbf{e}_s \star \mathbf{e}_o, \quad \frac{\partial \eta_{spo}}{\partial \mathbf{e}_s} = \mathbf{r}_p \star \mathbf{e}_o, \quad \frac{\partial \eta_{spo}}{\partial \mathbf{e}_o} = \mathbf{r}_p * \mathbf{e}_s.$$
(11)

The partial gradients in eq. (11) follow directly from

$$\mathbf{r}_p^{\top}(\mathbf{e}_s \star \mathbf{e}_o) = \mathbf{e}_s^{\top}(\mathbf{r}_p \star \mathbf{e}_o) = \mathbf{e}_o^{\top}(\mathbf{r}_p * \mathbf{e}_s)$$
 (12)

and standard vector calculus. Equation (12) can be derived as follows: First we rewrite correlation in terms of convolution:

$$a \star b = \widetilde{a} \star b$$

where \tilde{a} denotes the *involution* of a, meaning that \tilde{a} is the mirror image of a such that $\tilde{a}_i = a_{-i \mod d}$ (Schönemann 1987, eq. 2.4). Equation (12) follows then from the following identities in convolution algebra (Plate 1995):

$$c^{\top}(\widetilde{a}*b) = a^{\top}(\widetilde{c}*b); \quad c^{\top}(\widetilde{a}*b) = b^{\top}(a*c).$$

Similar to correlation, the circular convolution in eq. (11) can be computed efficiently via $\mathbf{a} * \mathbf{b} = \mathcal{F}^{-1}(\mathcal{F}(\mathbf{a}) \odot \mathcal{F}(\mathbf{b}))$.

Associative Memory

Experiments

数据集

WN18 WordNet is a KG that groups words into synonyms and provides lexical relationships between words. The WN18 dataset consists of a subset of WordNet, containing

40,943 entities, 18 relation types, and 151,442 triples.

FB15k Freebase is a large knowledge graph that stores general facts about the world (e.g., harvested from Wikipedia, Music Brainz, etc.). The FB15k dataset consists of a subset of Freebase, containing

14,951 entities, 1345 relation types, and 592,213 triples.

国家数据集上的任务

locatedIn(e1, e2)和neighborOf(e1, e2)。

在实验中任务是预测locateIn(c, r), 其中c包含所有国家, r包括所有地区数据。

80%训练集,10%验证集,10%测试集,使用3个不同的设置

国家数据集上的任务

- S1:验证与测试集中的locatedin(c,r)缺失,正确关系由下式预测
 - locatedln(c, s) \land locatedln(s, r) \Rightarrow locatedln(c, r)
 - o s是国家的subregion.
- S2:在S1的基础设置上,使得对于国家c的locatedIn(c,s)也缺失,正确关系由下式预测:
 - o neighborOf(c1, c2) \land locatedIn(c2, r) \Rightarrow locatedIn(c1, r)
- S3:在S1\S2的基础上,所有国家的locatedIn(n,r)缺失,正确关系由下式预测:
 - neighborOf(c1, c2) \land locatedIn(c2, s) \land locatedIn(s, r) \Rightarrow locatedIn(c1, r)

Figure 3: Removed edges in countries experiment: S1) dotted S2) dotted and dashed S3) dotted, dashed and loosely dotted.

Table 2: Results for link prediction on WordNet (WN18), Freebase (FB15k) and Countries data.

(a)									(b)					
	WN18					FB15k					Countries			
MRR		Hits at		MRR		Hits at			AUC-PR					
Method	Filter	Raw	1	3	10	Filter	Raw	1	3	10	Method	S1	S2	S 3
TRANSE	0.495	0.351	11.3	88.8	94.3	0.463	0.222	29.7	57.8	74.9	Random	0.323	0.323	0.323
TRANSR	0.605	0.427	33.5	87.6	94.0	0.346	0.198	21.8	40.4	58.2	Frequency	0.323	0.323	0.308
ER-MLP	0.712	0.528	62.6	77.5	86.3	0.288	0.155	17.3	31.7	50.1	ER-MLP	0.960	0.734	0.652
RESCAL	0.890	0.603	84.2	90.4	92.8	0.354	0.189	23.5	40.9	58.7	RESCAL	0.997	0.745	0.650
Hole	0.938	0.616	93.0	94.5	94.9	0.524	0.232	40.2	61.3	73.9	Hole	0.997	0.772	0.697