Day 11-Permissions and Security in Linux

Linux Security *®*

Linux security covers a range of topics essential for system administration and DevOps. Below is a concise overview.

Access Control @

· Access control uses user and password-based authentication to determine who can log into the system.

PAM (Pluggable Authentication Modules) @

- PAM is used to authenticate users to various services and programs in Linux.
- Configuration files for PAM are located in /etc/pam.d/.

Network Security @

- Tools like iptables and firewalld control access to services running on the system.
- Example:

```
sudo firewall-cmd --list-all
sudo iptables -L
```

SSH - Secure Shell @

- · SSH is used for secure remote access over an untrusted network.
- · SSH hardening includes:
 - o Disabling root login
 - · Allowing only specific users
 - Enforcing key-based authentication
- Example:

```
grep -i ^root /etc/passwd # Check if root account is active
sudo vi /etc/ssh/sshd_config # Modify SSH settings
```

SELinux - Security-Enhanced Linux @

- SELinux enforces security policies to isolate applications from each other.
- Example:

```
getenforce # Check SELinux status
setenforce 1 # Temporarily enable enforcing mode
```

User and Group Accounts *⊘*

- · Every user has:
 - Username
 - UID (User ID)
 - GID (Group ID)
 - Home directory
 - o Default shell

· View this information:

id <username>

cat /etc/passwd | grep <username>

- User info is stored in: /etc/passwd
- Group info is stored in: /etc/group
- · Superuser (root):
 - UID = 0
 - Has unrestricted system access

System and Service Accounts @

- · Created during installation or when software is installed
- Typically have UIDs < 100 or between 500-1000
- Used by services like sshd and mail
- · Often do not have home directories or login shells

Viewing Users *⊘*

· List currently logged-in users:

who

· Show historical login data:

last

· Switch user:

su <username>

• Gain root/admin privileges:

sudo <command>

Sudoers Configuration *@*

- sudo permissions are defined in: /etc/sudoers
- Use visudo to edit this file safely

Disabling Root Login @

· Check root entry:

grep -i ^root /etc/passwd

· In SSH config:

sudo vi /etc/ssh/sshd_config

PermitRootLogin no

Access Control Files and User Management @

Access control in Linux relies heavily on system files stored under the /etc directory.

Important Access Control Files *⊘*

- /etc/passwd
 - Stores basic user information like username, UID, GID, home directory, and shell.
 - Format:
 - USERNAME: PASSWORD: UID: GID: GECOS: HOMEDIR: SHELL
 - o GECOS contains user info such as full name, location, and phone number.

- /etc/shadow
 - o Stores hashed passwords and password aging policies.
 - o Format:
 - USERNAME: PASSWORD: LASTCHANGE: MINAGE: MAXAGE: WARN: INACTIVE: EXPDATE
- /etc/group
 - o Stores information about system groups.
 - Format:
 - GROUPNAME: PASSWORD: GID: MEMBERS

User Management Commands *⊘*

- · Create a new user:
 - o useradd <username>
- Set or change a password:
 - o passwd <username>
- View current user:
 - whoami

Useful options with useradd: @

```
-c "<comment>" # Add custom comment (e.g., full name)
-d <home_dir> # Set custom home directory
-e <expiry_date> # Set account expiry date
-g <GID> # Assign user to a primary group by GID
-G <group1,group2> # Assign user to multiple secondary groups
-s <shell> # Set user login shell
-u <UID> # Assign specific UID
```

- Example:
 - ∘ useradd -c "Dev User" -d /dev/home/fatima -e 2025-12-31 -g dev -G docker, wheel -s /bin/bash -u 1101 fatima
- · Delete a user account:
 - o userdel <username>

Group Management Commands @

- · Create a group:
 - o groupadd <groupname>
 - o Example:
 - groupadd -g 1001 dev
- · Delete a group:
 - o groupdel <groupname>

File Permissions @

File Type Identifiers *⊘*

The first character of ls -l output indicates the file type:

- d : Directory
- -: Regular file

- · c : Character device file
- I: Symbolic link
- s : Socket
- p : Named pipe
- b : Block device
- Example:

```
• ls -l sample_script.sh # -rwxrwxr-x fatima fatima ... sample_script.sh
```

Permission Structure @

The permission section is divided into three parts:

```
- rwxrwxr-x

1. Owner (user): rwx

2. Group: rwx

3. Others (world): r-x
```

Each permission has an octal value:

	Permission	Symbol	Octal Value
1	read	r	4
2	write	w	2
3	execute	х	1
4	no access	-	0

Changing Permissions with chmod *⊘*

Two ways to set permissions:

- · Symbolic Mode:
 - \circ u = user, g = group, o = others, a = all
 - ∘ chmod u+rwx,g+r,o-x test.txt
- · Numeric Mode:
 - chmod 777 test.txt # Full permissions to all
 - chmod 555 test.txt # Read and execute for all, no write
 - chmod 660 test.txt # User and group can read/write, others no access

Changing Ownership $\mathscr O$

- Change owner and group:
 - ∘ chown owner:group file
- · Change only owner:
 - o chown owner file
- Change only group:
 - ∘ chgrp group file
- · Examples:
 - o chown fatima:dev team_report.txt

- ∘ chown root /opt/script.sh
- ∘ chgrp developers app.log

SH (Secure Shell) @

SSH is used to securely log in to and execute commands on a remote machine over an untrusted network.

- · Basic usage:
 - o ssh <username>@<IP/hostname>
- By default, SSH operates on port 22.
- Example:
 - o ssh fatima@192.168.1.100

Passwordless SSH Login @

To set up passwordless login:

- Generate a key pair on your local machine:
 - o ssh-keygen -t rsa
- Public key is saved at:
 - o /home/<user_name>.ssh/id_rsa.pub
- Private key is saved at:
 - o /home/<user_name>/.ssh/id_rsa
- · Copy the public key to the remote server:
 - o ssh-copy-id <user_name>@<server_ip>
- · The public key will be added to:
 - o /home/<user_name>/.ssh/authorized_keys
- · Now you can connect without entering a password:
 - o ssh <user_name@<server_ip>

iptables – Linux Firewall Utility ⊘

- iptables is a command-line tool for configuring the Linux kernel's netfilter firewall.
- Installation (for Debian/Ubuntu)
 - sudo apt install iptables
- · View current rules:
 - ∘ iptables -L
- · Three default chains:
 - $\circ\;$ INPUT $\;$: Handles incoming traffic to the host
 - $\circ\;$ OUTPUT $\;$: Handles outgoing traffic from the host
 - FORWARD : Handles traffic routed through the host
- Add a rule:
 - iptables -A INPUT -p tcp -s 192.168.1.0/24 --dport 22 -j ACCEP
- Flags:
 - o -A: Append a rule to a chain
 - $\circ~$ -I : Insert a rule at the top
 - ∘ -p : Protocol (e.g., tcp, udp)
 - o -s: Source IP or network

- -d : Destination IP (optional)
- $\circ\,\,$ --dport : Destination port
- ∘ -j : Action (ACCEPT, DROP, REJECT)
- o Examples:
- Allow HTTP traffic:
 - iptables -A INPUT -p tcp --dport 80 -j ACCEPT
- Allow SSH from a specific subnet:
 - iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 22 -j ACCEPT
- Drop all other SSH traffic:
 - iptables -A INPUT -p tcp --dport 22 -j DROP
- o Delete a rule:
 - iptables -D OUTPUT <rule_number>
 - Example:
 - iptables -D OUTPUT 1
- Rules are applied in order. First match wins.
- Use iptables-save to view complete rule set
- Use iptables -F to flush (remove) all rules