COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

HW6 due Nov 24

PR2 due Dec 5

No lecture on Thursday (Nov 19)

Previously on COS 433...

Crypto from Minimal Assumptions

What's Known

A PRF

F(k,1) F(k,2) F(k,3) F(k,4) F(k,5) F(k,6) F(k,6) F(k,8) F(k,9) F(k,10) F(k,11) F(k,12) F(k,13) F(k,14)

Today

OWP → PRGs OWF → One-time Signature Black box separations

If time, cryptocurrencies

One-way *permutation* \rightarrow PRGs

OWP = OWF that is also a permutation

• **F:D→D** is a permutation

Examples:

- RSA function
- Discrete exponentiation

One-way *permutation* \rightarrow PRGs

Let **h** be a hardcore bit for **F**

Hardcore bit equivalent to PRG security

Hardcore bits for OWPs?

Known OWPs have hardcore bits

• E.g. LSB, Half for RSA, Half for Dlog

What about general OWPs?

Yao's Method

Let **F** be a OWP with domain **{0,1}**ⁿ

Claim: $\exists i$ such that $\forall PPT A$ $Pr[A(F(x)) = x_i] < 1 - 1/2n$

Proof: otherwise, $\forall i$, $\exists A_i$ s.t. $Pr[A_i(F(x)) = x_i] \ge 1 - 1/2n$

Adversary $A(y) = A_1(y)||A_2(y)||...$ $Pr[A(F(x)) = x] \ge 1/2$

Yao's Method

Let **F** be a OWP with domain **{0,1}**ⁿ

Claim:
$$\exists i$$
 such that $\forall PPT A$
 $Pr[A(F(x)) = x_i] < 1 - 1/2n$

Let
$$F'(x^{(1)},...,x^{(t)}) = (F(x^{(1)}),...,F(x^{(t)})$$

 $h(x^{(1)},...,x^{(t)}) = x^{(1)}, \oplus x^{(2)}, \oplus ... \oplus x^{(t)},$

Yao's XOR lemma \Rightarrow **h** is hardcore for **F'**

Goldreich Levin

Let **F** be a OWP with domain **{0,1}**ⁿ and range **Y**

Let
$$F':\{0,1\}^{2n} \to \{0,1\}^n \times Y$$
 be:
 $F'(r,x) = r,F(x)$

Define $h(r,x) = \langle r,x \rangle = \sum_i r_i x_i \mod 2$

Theorem (Goldreich-Levin): If **F** is one-way, then **h** is a hc bit for **F**'

OWF → PRGs

Yao, Goldreich-Levin also work for general OWFs

However, (**F(x),h(x)**) may not be a PRG for a general OWF

- Output may be shorter than input
- **F** may be biased

With some effort, can build PRF from any one-way function using similar ideas

Lamport Signatures

Let **F:X→Y** be a one-way function

Let M={0,1}ⁿ be message space

Lamport Signatures

Sign(sk, m):
$$(x_{i,m_i})_{i=1,...,n}$$

Ver(pk,m,
$$\sigma$$
): F(x_{i,m_i}) = y_{i,m_i}

Lamport Signatures

Theorem: If **F** is a secure OWF, then **(Gen,Sign,Ver)** is a (weakly) secure one-time signature scheme

Since $\mathbf{m}^* \neq \mathbf{m}$, $\exists i \text{ s.t. } \mathbf{m}^*_i \neq \mathbf{m}_i$

Suppose we know i, $m_i = 1-b$, $m_i^* = b$

Construct adversary that inverts OWF

View of \hbar exactly as in 1-time CMA experiment, assuming

- ith bit of $\mathbf{m} = \mathbf{b}$
- ith bit of $m^* = 1-b$

If \mathbb{R} always chooses $\mathbf{m,m^*}$ with these properties, and forges with probability $\mathbf{\varepsilon}$, then \mathbb{Z} inverts with probability $\mathbf{\varepsilon}$

In general, \hbar may choose **m,m*** to differ at arbitrary places

- May be randomly chosen, may depend on \mathbf{pk} , may even depend on $\boldsymbol{\sigma}$
- May never be at certain places

How do we make still succeed?

pk independent of (i,b)

- m independent of (i,b)
- Therefore, $Pr[m_i=1-b]=\frac{1}{2}$

Conditioned on $m_i=1-b$,

- Signing succeeds
- σ independent of **i**
- 🦹 forges with probability ε, independent of i

We know if ₹ forges, then m*≠m

Since $\mathbf{m^*}$ independent of \mathbf{i} , have prob at least $\mathbf{1/n}$ that $\mathbf{m^*}_{\mathbf{i}}=\mathbf{1-m}_{\mathbf{i}}=\mathbf{b}$

In this case, ***** succeeds in inverting **y***

• Prob = $\frac{1}{2} \times \epsilon \times \frac{1}{n} = \epsilon/2n$

What's Known

Generally Believed That...

OWF ⇒ CRHF, OWP, PKE

CRHF ⇒ OWP, PKE

OWP ⇒ CRHF, PKE

PKE

⇒ CRHF

Black Box Separations

How do we argue that you cannot build collision resistance from one-way functions?

We generally believe both exist!

Observation: most natural constructions treat underlying objects as black boxes (don't look at code, just input/output)

Maybe we can rule out such natural constructions

Black Box Separations

Present a world where one-way functions exist, but collision resistance does not

Hopefully, natural (black box) constructions make sense in this world

• Can construct PRGs, PRFs, PRPs, Auth-Enc, etc

Separating PKE from OWF, CRHF

Recall: random oracle model

Computation power is unlimited, but number of calls to random oracle is polynomial

Separating PKE from OWF

In ROM, despite unlimited computational power, one-way functions, CRHF exist

- $\cdot F(x) = H(x)$
- Can only invert oracle by brute-force search (exponentially many queries)
- Can only find collisions by birthday attack (also exponentially many queries)

Separating PKE from OWF

Theorem: If \mathbf{H} is a random oracle, then for any PKE in which Alice and Bob make at most \mathbf{n} queries, there is an (inefficient) adversary than makes at most $O(\mathbf{n}^2)$ queries

Intuition: if Alice can send message to Bob, then either

- (1) Message can be learned from communication alone, or
- (2) Alice and Bob must have a common RO query

In case (2), Alice and Bob's RO queries can't have too much entropy \rightarrow Adversary can learn with few queries

Cryptocurrency/Blockchain

Features of Physical Cash

Essentially anonymous

Hard to counterfeit

Easy to verify

Limitations of Physical Cash

Cannot be used online

- Instead, need to involve banks
- Banks see all transactions
- Merchants can also track you

Requires central government to issue

 Ok for most people in US, but maybe you don't trust the government

Digital Cash

Currency is now 1s and 0s

Crypto can make digital currency easy to verify, hard to mint

Major challenge: prevent double spending (Also decentralizing minting process)

Bank transfers \$\$ to Alice

Each bill has unique serial number

Bank transfers \$\$ to Alice

Alice transfers \$\$ to Bob

Bank transfers \$\$ to Alice

Alice transfers \$\$ to Bob

Bank maintain ledger?

- But then bank must be involved in every transaction
- How does bank prevent malicious Bob from claiming Alice transferred money to him?

Anonymity also lost, since all transactions public

Solution: Use Signatures

 pk_{Bank} transfers \$\$ to pk_A , σ_1

 $\sigma_1 = \text{Sign}(sk_{Bank}, "pk_{Bank} \text{ transfers $$$ to pk_A"})$

Solution: Use Signatures

 pk_{Bank} transfers \$\$ to pk_A , σ_1

 pk_A transfers \$\$ to pk_B , σ_2

 σ_2 = Sign(sk_A, "pk_A transfers \$\$ to pk_B")

Solution: Use Signatures

By using public key as identity, transactions not immediately traced to individual

Though can still trace sequences of transactions

By signing, prevents Bob from claiming Alice gave him money when she didn't

Decentralized Currency

Removing the bank is hard:

- How is ledger maintained?
- How to prevent ledger from being tampered with
- Who mints new currency?
- How do we limit supply?

Proofs of Work

Prove that some amount of computation has been performed

Ex:

- Let H be a hash function (modeled as a RO)
- An input x such that $H(x) = 0^{t*****}$ is a "proof" that you computed approximately 2^t hashes

Proofs of Work and Cryptocurrency

Idea: currency is a proof of work

- Limits supply of money, so keeps inflation in check
- Now, anyone can mint new money

Proofs of work not the only option

- Proofs of stake
- Proofs of space

Immutable public ledger

Block:

Hashes to O^{†***}

Immutable public ledger

Block:

By making each block a proof of work, hard to modify blockchain

So proofs of work used to:

- Mint new money
- Add transactions to blockchain

Why would anyone go through the effort of adding transactions to the blockchain?

Idea: combine minting and adding blocks

Block:

Double Spending

Double Spending

To prevent double spending, everyone always uses longest chain as the blockchain

If Alice tries to double spend, she will need to create a separate chain that is as long as the main chain

 As long as she has <<50% of computing power of mining power, will not be possible