

Wetter				
Aufgabennummer: A_070				
Technologieeinsatz:	möglich □	erforderlich ⊠		

Statistiken aus meteorologischen Daten sind die Grundlage für die Wettervorhersage. Das aktuelle Wetter stimmt nur mit einer gewissen Wahrscheinlichkeit mit der jeweiligen Prognose überein.

- a) Man kann davon ausgehen, dass die jährliche Niederschlagsmenge an einem bestimmten Ort annähernd normalverteilt ist.
 - Für einen Ort in Niederösterreich ist der Erwartungswert der Jahresniederschlagsmenge 615 mm bei einer Standardabweichung von 50 mm.
 - Berechnen Sie die Wahrscheinlichkeit in Prozent, dass die Niederschlagsmenge in einem bestimmten Jahr zwischen 650 mm und 700 mm liegt.
- b) Die beiden untenstehenden Grafiken zeigen die errechneten Wahrscheinlichkeitsdichtefunktionen der langjährig statistisch festgehaltenen Jahresniederschlagsmengen an 2 verschiedenen Orten. (Man geht davon aus, dass die Jahresniederschlagsmenge normalverteilt ist.)

 Vergleichen Sie die j\u00e4hrlichen Niederschlagsmengen mithilfe der ablesbaren Parameter der Wahrscheinlichkeitsdichtefunktionen.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Wetter 2

Möglicher Lösungsweg

a) $P(650 \le X \le 700) = P(X \le 700) - P(X \le 650)$

z-Wert für 700 mm:
$$z = \frac{700 - 615}{50} = 1,7$$

z-Wert für 650 mm: $z = \frac{650 - 615}{50} = 0,7$

$$\phi(1,7) - \phi(0,7) = 0,9554 - 0,7580 = 0,1974$$

Die Wahrscheinlichkeit beträgt 19,74 %.

Die Berechnung kann auch mit Technologie erfolgen.

b) Der größere Erwartungswert bei Ort *B* besagt, dass dort der Mittelwert der gefallenen Regenmenge größer ist als bei Ort *A*.

Die kleinere Standardabweichung besagt allerdings, dass bei Ort *B* die Regenmengen nicht so stark vom Mittelwert abgewichen sind wie bei Ort *A*.

Wetter 3

Klassifikation

Nassiination		
⊠ Teil A	□ Teil B	
Wesentlicher Bereich der Inhaltsdimension:		
a) 5 Stochastikb) 5 Stochastik		
Nebeninhaltsdimension:		
a) — b) —		
Wesentlicher Bereich der Handlungsdimension:		
a) B Operieren und Technologieeinsatzb) C Interpretieren und Dokumentieren		
Nebenhandlungsdimension:		
a) — b) —		
Schwierigkeitsgra	d:	Punkteanzahl:
a) leicht b) leicht		a) 1 b) 2
Thema: Umwelt		
Quellen: –		