2.8 EXERCISES

Exercises 1–4 display sets in \mathbb{R}^2 . Assume the sets include the bounding lines. In each case, give a specific reason why the set H is *not* a subspace of \mathbb{R}^2 . (For instance, find two vectors in H whose sum is *not* in H, or find a vector in H with a scalar multiple that is not in H. Draw a picture.)

by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

5. Let $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 8 \\ 2 \\ -9 \end{bmatrix}$. Determine if \mathbf{w} is in the subspace of \mathbb{R}^3 generated by \mathbf{v}_1 and \mathbf{v}_2 .

6. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ -7 \\ 9 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 5 \\ -8 \\ 6 \\ 5 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} -4 \\ 10 \\ -7 \\ -5 \end{bmatrix}$. Determine if \mathbf{u} is in the subspace of \mathbb{R}^4 generated

7. Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 8 \\ -7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -4 \\ 6 \\ -7 \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} 6 \\ -10 \\ 11 \end{bmatrix}$, and $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

a. How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

b. How many vectors are in Col A?

c. Is **p** in Col A? Why or why not?

8. Let
$$\mathbf{v}_1 = \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ -6 \\ 3 \end{bmatrix}$, and $\mathbf{p} = \begin{bmatrix} 1 \\ 14 \\ -9 \end{bmatrix}$. Determine if \mathbf{p} is in Col A, where $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

9. With A and \mathbf{p} as in Exercise 7, determine if \mathbf{p} is in Nul A.

10. With $\mathbf{u} = (-2, 3, 1)$ and A as in Exercise 8, determine if \mathbf{u} is in Nul A.

In Exercises 11 and 12, give integers p and q such that Nul A is a subspace of \mathbb{R}^p and Col A is a subspace of \mathbb{R}^q .

11.
$$A = \begin{bmatrix} 3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1 \end{bmatrix}$$

12.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11 \end{bmatrix}$$

13. For A as in Exercise 11, find a nonzero vector in Nul A and a nonzero vector in Col A.

14. For A as in Exercise 12, find a nonzero vector in Nul A and a nonzero vector in Col A.

Determine which sets in Exercises 15–20 are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify each answer.

15.
$$\begin{bmatrix} 5 \\ -2 \end{bmatrix}$$
, $\begin{bmatrix} 10 \\ -3 \end{bmatrix}$ 16. $\begin{bmatrix} -4 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$

17.
$$\begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -5 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ -5 \end{bmatrix}$$

19.
$$\begin{bmatrix} 3 \\ -8 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 6 \\ 2 \\ -5 \end{bmatrix}$

20.
$$\begin{bmatrix} 1 \\ -6 \\ -7 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 7 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 8 \\ 9 \end{bmatrix}$$

In Exercises 21 and 22, mark each statement True or False. Justify each answer.

- **21.** a. A subspace of \mathbb{R}^n is any set H such that (i) the zero vector is in H, (ii) \mathbf{u} , \mathbf{v} , and \mathbf{u} + \mathbf{v} are in H, and (iii) c is a scalar and $c\mathbf{u}$ is in H.
 - b. If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in \mathbb{R}^n , then Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the same as the column space of the matrix $[\mathbf{v}_1 \ \cdots \ \mathbf{v}_p]$.
 - c. The set of all solutions of a system of m homogeneous equations in n unknowns is a subspace of \mathbb{R}^m .
 - d. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
 - e. Row operations do not affect linear dependence relations among the columns of a matrix.
- **22.** a. A subset H of \mathbb{R}^n is a subspace if the zero vector is in H.
 - b. Given vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of these vectors is a subspace of \mathbb{R}^n .
 - c. The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^n .
 - d. The column space of a matrix A is the set of solutions of $A\mathbf{x} = \mathbf{b}$.
 - e. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.

Exercises 23–26 display a matrix A and an echelon form of A. Find a basis for Col A and a basis for Nul A.

23.
$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 & -5 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

24.
$$A = \begin{bmatrix} -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

25.
$$A = \begin{bmatrix} 1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 4 & 8 & 0 & 5 \\ 0 & 2 & 5 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

26.
$$A = \begin{bmatrix} 3 & -1 & 7 & 3 & 9 \\ -2 & 2 & -2 & 7 & 5 \\ -5 & 9 & 3 & 3 & 4 \\ -2 & 6 & 6 & 3 & 7 \end{bmatrix}$$
$$\sim \begin{bmatrix} 3 & -1 & 7 & 0 & 6 \\ 0 & 2 & 4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 27. Construct a nonzero 3×3 matrix A and a nonzero vector h such that **b** is in Col A, but **b** is not the same as any one of the columns of A.
- **28.** Construct a nonzero 3×3 matrix A and a vector **b** such that **b** is *not* in Col A.
- **29.** Construct a nonzero 3×3 matrix A and a nonzero vector h such that **b** is in Nul A.
- **30.** Suppose the columns of a matrix $A = [\mathbf{a}_1 \cdots \mathbf{a}_p]$ are $\lim_{n \to \infty} \mathbf{a}_n = \lim_{n \to \infty} \mathbf{a}_n = \lim_$ early independent. Explain why $\{a_1, \ldots, a_p\}$ is a basis for Col A.

In Exercises 31-36, respond as comprehensively as possible, and justify your answer.

- 31. Suppose F is a 5×5 matrix whose column space is not equal to \mathbb{R}^5 . What can you say about Nul F?
- 32. If R is a 6×6 matrix and Nul R is not the zero subspace, what can you say about Col R?
- 33. If Q is a 4×4 matrix and Col Q = 11, what can you say about solutions of equations of the form \mathbb{R}^4 ?
- **34.** If P is a 5×5 matrix and Nul P is the zero subspace, what can you say about solutions of equations of the form Px = bfor **b** in \mathbb{R}^5 ?
- **35.** What can you say about Nul B when B is a 5×4 matrix with linearly independent columns?
- **36.** What can you say about the shape of an $m \times n$ matrix A when the columns of A form a basis for \mathbb{R}^m ?

[M] In Exercises 37 and 38, construct bases for the column space and the null space of the given matrix A. Justify your work.

37.
$$A = \begin{bmatrix} 3 & -5 & 0 & -1 & 3 \\ -7 & 9 & -4 & 9 & -11 \\ -5 & 7 & -2 & 5 & -7 \\ 3 & -7 & -3 & 4 & 0 \end{bmatrix}$$
38.
$$A = \begin{bmatrix} 5 & 2 & 0 & -8 & -8 \\ 4 & 1 & 2 & -8 & -9 \\ 5 & 1 & 3 & 5 & 19 \\ -8 & -5 & 6 & 8 & 5 \end{bmatrix}$$

38.
$$A = \begin{bmatrix} 3 & 2 & 0 & -8 & -8 \\ 4 & 1 & 2 & -8 & -9 \\ 5 & 1 & 3 & 5 & 19 \\ -8 & -5 & 6 & 8 & 5 \end{bmatrix}$$

WEB Column Space and Null Space

A Basis for Col A WEB