Najważniejsze wiadomości dla metod gradientowych

Gradientowe metody kierunków poprawy

Ogólny algorytm:

1. wyznaczenie kierunku poszukiwań

2. określenie minimum w tym kierunku (np. interpolacja kwadratowa lub sześcienna)

W metodzie Newtona do wyznaczenia kierunku poszukiwań wykorzystuje się gradient funkcji oraz Hessian – macierz drugich pochodnych. Metoda ta jest bardzo szybko zbieżna dla funkcji kwadratowych. Jej wadą jest rozbieżności dla niektórych funkcji i punktów początkowych oraz konieczność liczenia i odwracania Hessianu.

Oznaczenia:

- x₀ pierwsze przybliżenie rozwiązania (punkt startowy)
- x_i i-te przybliżenie rozwiązania
- H macierz drugich pochodnych (Hessian) $H = \nabla^2 f(x_i)$

ε – wymagana dokładność

Algorytm:

- 1. Ustal i:=0, x_0 , $\epsilon > 0$
- 2. Sprawdź, czy punkt x_i spełnia kryterium stopu jeśli $|\nabla^2 f(x_i)|^2 \le \varepsilon$ to x_i jest rozwiązaniem
- 3. Wyznacz kolejne przybliżenie rozwiązania $x_{i+1}=x_i+\lambda_i d_i$, gdzie
 - $d_i := -H^{-1}(x_i)\nabla f(x_i)$ jest kierunkiem poprawy,
 - H⁻¹(x_i) jest macierzą odwrotną do macierzy drugich pochodnych w punkcie x_i , natomiast λ_i >0 to długość kroku minimalizująca jednowymiarową funkcję

$$f(\lambda_i)=f(x_i + \lambda_i d_i)$$

- 4. i:=i+1
- 5. Idź do punktu 2.

Uzupełnienie do met. Newtona

Wzór:

 $A^{-1}=(A^D)^T \cdot 1/det(A)$

gdzie:

A⁻¹ - macierz odwrotna

A^D - macierz dopełnień algebraicznych

 $(A^D)^T$ - macierz dołączona - czyli transponowana z macierz dopełnień algebraicznych

det(A) - wyznacznik macierzy

MACIERZ MUSI BYĆ NIEOSOBLIWA CZYLI det(A)≠0!!!

Metoda gradientu prostego

W przeciwieństwie do metody bezgradientowej, <u>zamiast szukać</u> <u>minimum wykonywany jest krok o długości e</u>

Oznaczenia:

- x₀ arbitralnie wybrany punkt startowy
- *e* początkowa długość skoku
- β współczynnik zmniejszenia kroku
- ε wymagana dokładność obliczeń minimum
- n liczba zmiennych niezależnych

Metoda gradientu prostego

Algorytm obliczeń:

- 1. oblicz w punkcie startowym x_0 wartość funkcji celu $F_0 = f(x_0)$ oraz jej gradient $\nabla_0 = \nabla(x_0)$
- 2. wyznacz kierunek poszukiwań $\boldsymbol{\xi} = -\boldsymbol{\nabla}_0$
- 3. wzdłuż kierunku ξ wykonaj krok o długości e oraz określ współrzędne nowego punktu:

$$\boldsymbol{x}_{i+1} = \boldsymbol{x}_i + e \boldsymbol{\xi},$$

przy czym dla pierwszej iteracji $x_i = x_0$

Metoda gradientu prostego

4. Obliczamy w nowym punkcie wartość funkcji $F = f(x_{i+1})$ oraz gradientu $\nabla = \nabla(x_{i+1})$. Jeśli krok był pomyślny $F < F_0$, to powtarzamy od (2) podstawiając ∇ w miejsce ∇_0

W przeciwnym wypadku:

5. Sprawdzamy, czy osiągnęliśmy minimum. Jeśli nie, wracamy do (4) podstawiając

$$\boldsymbol{x}_{i} = \boldsymbol{x}_{i+1} - e\boldsymbol{\xi}$$

oraz zmniejszamy krok o βi przechodzimy do (3)

Schemat poszukiwania ekstremum f. 2 zmiennych

- 1. Liczymy pochodne cząstkowe I-go rzędu
- 2. Przyrównujemy te pochodne do zera, tworząc układ równań
- 3. Układ rozwiązujemy, mamy rozwiązania (o ile istnieją)
- 4. Każde rozwiązanie to tzw. "punkt stacjonarny", czyli taki, w którym może (ale nie musi) być ekstremum. Wypisujemy je (nie należące do dziedziny oczywiście odrzucamy)

Schemat poszukiwania ekstremum f. 2 zmiennych

Badanie istnienia ekstremów w punktach stacjonarnych

- Liczymy pochodne cząstkowe drugiego rzędu; (uwaga: pochodne mieszane powinny wyjść takie same)
- 2. Z pochodnych cząstkowych drugiego rzędu tworzymy wyznacznik
- 3. Do utworzonego wyznacznika wstawiamy jeden po drugim współrzędne kolejnych punktów stacjonarnych
 - jeśli $W(P_1) > 0$ wtedy w punkcie P_1 funkcja osiąga ekstremum
 - jeśli $W(P_1)$ < 0 wtedy w punkcie P_1 funkcja nie osiąga ekstremum
 - jeśli $W(P_1)$ = 0 nie możemy rozstrzygnąć, czy w punkcie P_1 funkcja osiąga ekstremum
- 4. Zajmujemy się już tylko punktami, w których funkcja osiągnęła ekstremum; Określamy, czy są to minima, czy maksima lokalne.