BEZY I WYMIARY

BAZA

Jesli mamy podzbior przestrzeni liniowej $B\subseteq V$, to wowczas:

$$B$$
 jest $lnz i Lin(B) = V$

B jest lnz i $\forall v \in V \setminus B$ $B \cup \{v\}$ jest lz

Wynika z poprzedniego zalozenia oraz $B \cup \{v\}$ jest liniowo zalezny jesli $v \in V \setminus B$

B jest max $\ln z$

Jesli A jest lnz oraz $B \subseteq A$, to wowczas B tez jest lnz.

 $\forall v \in V \quad v$ zapisuje sie jednoznaczie jako komb lin el B

Wezmy $v \in V$. Jesli $v \in B$ to oznacza, ze sam siebie zapisuje. Jesli $v \notin B$, to wowczas z dwoch poprzednich twierdzen wiemy, ze $B \cup \{v\}$ jest liniowo zalezne, wiec mozemy znalezc w zbiorze B wektory:

$$\alpha \cdot v + \sum_{k=1}^{n} \alpha_k v_k = 0,$$

ale nie moze byc lpha=0, bo to by przeczylo temu, ze B jest lnz ($\sum\limits_{k=1}^{\overline{n}}lpha_kv_k$). W takim razie

$$\alpha \cdot v = -\sum_{k=1}^{n} \alpha_k v_k$$

$$v = \sum_{k=1}^{n} (-\alpha \alpha_k) v_k$$

Zalozmy, ze $v=\sum\limits_{k=1}^n \alpha_k v_k=\sum\limits_{k=1}^n \beta_k v_k$. Odejmujac obie strony rownania parami Dostajemy

$$\sum_{k=1}^{n} (\alpha_k - \beta_k) v_k = 0$$

ale B jest lnz, wiec wszystkie $\alpha_k - \beta_k = 0$, czyli $\alpha_k = \beta_k$.

Ostatnie zolte twierdzenie mowi, ze kazdy wektor zapisuje sie jednoznacznie jako kombinacja liniowa elementow B. Z tego wynika, ze $\mathrm{Lin}(B)=V$, a skoro B jest lnz, to w szczegolnosci wektor O zapisuje sie jednoznacznie:

$$\sum_{k=1}^{n} \alpha_k v_k = \stackrel{\rightarrow}{0} = \sum_{k=1}^{n} 0 \cdot v_k$$

Z jednoznaczności zapisu wektorow mamy $\forall k \quad \alpha_k = 0.$

.....

BAZA przestrzeni liniowej V nazywamy taki zbiorB, ktory spelnia wszystkie powyzsze warunki

PRZYKLADY:

Baza K^n jest zbior $\{e_1,e_2,...,e_n\}$, takich, ze na k-tej pozycji wektor e_k ma 1, a na pozostalch 0.

Jesli A jest skonczony, to baza K^A jest zbior funkcji postaci

$$f_a(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a. \end{cases}$$

Ten zbior jest liniowo niezalezny, gdyz $\sum \alpha_a f_a = 0$, czyli suma wszystkich funkcji jest funckja zerowa. Wtedy

$$\forall b \in A \quad \sum \alpha_a f_a(b) = 0$$

Rozpina cala przestrzen:

Wezmy $f \in K^A$. Wowczas mozemy te funckje zapisac jako

$$f = \sum f(a) \cdot f_a$$

Wtedy $f(b) = \sum f(a) \cdot f_a(b)$, ktore faktycznie tyle wynosi, bo prawie wszystko sie zeruje poza tym jednym wyrazem gdzie jest 1 i tam mamy $f_a(b)$.

Jesli A jest nieskonczone, to $\{f_a:a\in A\}$ jest lnz, ale nie rozpina calego zbioru. Na przyklad funkcja stala ktora zawsze przyjmuje 1 nie moze byc zapisana jako kombinacja liniowa wektorow z $\{f_a:a\in A\}$.

W zbiorze wszystkich wielomianow o wspolczynnikach z X W[X] mamy baze $\{1,X,X^2,X^3,...\}$. Jesli nasze wielomiany maja co najwyzej okreslony stopien n, to wtedy baza zbiory $K_n[X]$ jest rowna $\{1,X,X^2,X^3,...,X^n\}$.

LEMAT KURATOWKIEGO-ZORNA - jezeli mamy zbior czesciowo uporzadkowany (P,\leq) taki, ze $P\neq\emptyset$ i kazdy lancuch w P ma ograniczenie gorne, to wtedy P ma element maksymalny.

TWIERDZENIE O ISTNIENIU BAZY - kazda przestrzen liniowa ma baze.

Ustalmy dowolna przestrzen liniowa V nad cialem K. Chcemy zastosowac lemat K-Z. Niech $P=\{\text{liniowo niezalzezne p iuporzadkowane przez} \leq \subseteq$. Na pewno $P\neq\emptyset$, bo $\emptyset\in P$.

Wezmy $L \leq P$, ktory jest lancuchem. Wtedy $l^* = \bigcup L = \{v : \exists l \in L \ v \in l\}$ jest ograniczeniem gornym. Wystarczy sprawdzic, ze $l^8 \in P$. Wezmy dowolny uklad $v_1,...,v_n \subset l^*$ roznych wektorow. Chcemy sprawdzic, czy jest on lnz. Kazdy $v_k \in l_k \in L$, ale poniewaz L jest lancuchem, to

$$\exists k_0 \ \forall k \quad l_{k_0} \supseteq l_k$$

Wtedy $v_1,...,v_n \in l_{k_0} \in P$, wiec jest $\overline{ ext{lnz.}}$

 ${\tt Z}$ LK- ${\tt Z}$ P ma element maksymalny, czyli V ma baze.

Jezeli V jest pzestrzenia liniowa i mamy jej podzbiory $N\subseteq G\subseteq V$ takii, ze N jest lnz, a Lin(G)=V (G rozpina przestrzen V), to wtedy istnieje baza dla V taka, ze $N\subseteq N$ i $b\subseteq G$.

Rozwazamy $P=\{A\subseteq G:N\subseteq A\land A \text{ jest lnz}\}.$ $P\neq$, bo $N\in P.$ Drugie zalozenie LK-Z sprawdzamy analogicznie do poprzedniego dowodu. Stad dostajemy analogicznie maksymalny liniowo niezalezny podzbior $B\subseteq G$, ktory jest nadzbiorem N. Zostaje sprawdzic, ze on jest baza, czyli rozpina V.

Poniewaz B jest max $\ln z \le G$. W takim razie $\forall \ g \in G \quad g \in \text{Lin}(B)$, czyli $G \subseteq \text{Lin}(B)$. Skoro Lin(G) = V, to $\text{Lin}(G) = V \subseteq \text{Lin}(\text{Lin}(B)) = \text{Lin}(B)$.

Jezeli V jest przestrzenia liniowa, to wtedy $\forall \ N \subseteq V$ lnz $\exists \ b \supseteq N$ oraz $\forall \ G \subseteq V$ Lin $(G) = V \ \exists \ B \subseteq G$

CWICZENIA $v_a,...,v_k$ - ln i v_{k+1} nie jest kombinacja lin $v_1,...,v_k$, to wtedy $v_1,...,v_{k+1}$ jest lnz

Zalozmy, ze $V = \text{Lin}(v_1,..,v_k)$ i zdefiniujmy rekurencyjnie podzbiory:

$$B_0 = \quad B_{k+1} = \begin{cases} B_k & v_{k+1} \in \text{Lin}(B_k) \\ B_k \cup v_{k+1} \end{cases}$$

Wtedy B_n jest baza V.

Dowod: $v_k \in \text{Lin}(B_k) \subseteq \text{Lin}(B_n)$ bo w innym przypadku dorzucamy go w kroku rekurencyjnym. To teraz wiemy, ze $\text{Lin}(B_n) \supseteq \text{Lin}(v_1,...,v_n)$, czyli B_n rozpina V.

Pokazujemy, ze B_n jest lnz przez indukcje:

 B_0 jest lnz

Jezeli B_k jest lnz, to wtedy

a. jesli $V_{k+1} \in \text{Lin}(B_k)$, to wtedy $B_{k+1} = B_k$ i jest lnz

b. jesli $v_{k+1} \notin \text{Lin}(B_k)$, to wtedy B_{k+1} jest liniowo niezalezny.

LEMAT STEINITZA

Jesli B jest baza V, a $a_1,...,a_n\in V$ sa lnz, to B ma przynajmniej n elementow

B ma $c_1,...,c_n \in B$ takie, ze $(B \setminus \{c_1,...,c_n\} \cup \{a_1,...,a_n\})$ jest baza.

Wniozek to twierdzenie o wymiarze - kazde dwie bazy V maja tyle samo elementow.

Dowod tylko kiedy jedna z baz jest skonczona.

Niech B_1, B_2 to skonczone bazy V. Z tw. dla B_1 i ciagu $\{a_1,...,a_n\} = B_2$ dostajemy $|B_1| \geq n = |B_2|$. Symetrycznie, $|B_2| \ge |B_1|$. W takim razie, $|B_1| = |B_2|$.

WYMIAR przestrzeni liniowej V (dim V) to moc dowolnej bazy V.

Na przyklad

$$\dim K^n = n$$

$$\dim_{\mathbb{C}} \mathbb{C}^n = n \quad \dim_{\mathbb{R}} \mathbb{C}^n = 2n$$

$$\dim_{\mathbb{O}} \mathbb{C} = 2^{\aleph_0} = \mathfrak{c}$$

Jesli B jest baza V i jakis wektor $a=\sum\limits_{b\in B}\alpha_b b$, to wtedy dla $c\in B$ taie, ze $\alpha_c\neq 0$, to mozemy wyrzucic c i

 ${\tt dodac}\ a$ i ${\tt dostajemy}\ {\tt baze}\ V$

Z zalozenia mozemy wrzucic c na druga strone:

$$c = \alpha_c^{-1}(a - \sum_{c \in B \setminus \{c\}} \alpha_b b) \implies c \in \text{Lin}((B \setminus \{c\}) \cup \{a\}) \implies B \subseteq \text{Lin}((B \setminus \{c\}) \cup \{a\}) = V$$

Teraz pokazujemy lnz:

$$\beta_a \cdot a + \sum_{b \in B \setminus \{c\}} \beta_b b = 0$$

 $Za \ a \ popdstawiamy sume$

$$\beta_a \cdot \sum_{b \in B} \alpha_b b + \sum_{b \in B \setminus \{c\}} \beta_b b = \beta_a \alpha_c c + \sum_{b \in B \setminus \{c\}} (\beta_b + \beta_a \alpha_b) b = 0$$

Jest to kombinacja liniowa elementow B. Wszystkie te wspolczynniki sa rowne 0, wiec $eta_alpha_c=0$, wiec $eta_a=0 \ \lor \ lpha_c=0$, ale w zalozeniu mielismy, ze $lpha_c
eq 0$, skad mamy, ze $eta_a=0$, ale Wowczas

$$0 = 0c + \sum_{b \in B \setminus \{c\}} (0\alpha_b + \beta_b)b$$

$$0 = \sum_{b \in B \setminus \{c\}} \beta_b$$

wiec wszystkie $\beta_a = 0$.

DOWOD LEMATU STEINITZA

B - baza, $a_1,...,a_n$ jest lnz. Szukamy $c_1,...,c_n$ tak ze $(B\setminus\{c_1,...,c_n\})\cup\{a_1,...,a_n\}$ jest baza. Dowood indukcyjnie B jest baza i $a_1\in V$, czyli $0\neq a_1=\sum\limits_{b\in B}\alpha_b\cdot b\implies \exists \ c_1\in B$ takie, ze $\alpha_{c_1}\neq 0$. Co

sugeruje, ze istnieje $B_1 = (B \setminus \{c_1\}) \cup \{a_1\}$.

Wydaje sie, ze mozemy teraz powtorzyc ten argument, ale to mogloby sie nie sprawdzic, bo moze wybralisy ten sam wektor co w pierwszym kroki.

Wezmy $a_2 = \sum\limits_{b \in B_1} \alpha_b b = \alpha_{a_1} a_1 + \sum\limits_{b \in B_1 \setminus \{a_1\}} \alpha_b b$ i wtedy ktorys ze wspolczynnikow jest niezerowy, wiec mozemy

wziac jakis element $c_2 \in B_1 \setminus \{a_1\} = B \setminus \{c_1\}$. W szczegolnosci $c_1 \neq c_1$. Zalozmy, ze mamy $c_1,...,c_k \subseteq B$ parami rozne, takie, ze $B_k >))2 \setminus \{c_1,...,c_k\} \cup \{a_1,...,a_k\}$ l ktora jest baza. Teraz zauwazamy, ze $a_{k+1} \in \text{Lin}(B_k) = \sum\limits_{\{b \in B_k\}} \alpha_b b = \alpha_{a_1} a_1 + ... + \alpha_{a_k} a_k + \sum\limits_{b \in B_k} \alpha_b b$, czyli jais element tej

sumy jest niezerowy.

Wezmy $c_{k+1} \in B_k'$ taki, ze $\alpha_{k+1} \neq 0$ i z twierdzenia

$$B_{k+1} = (B'_k \setminus \{c_{k+1}\}) \cup \{a_{k+1}\} = B \setminus \{c_1, c_2, ..., c_{n+1}\} \cup \{a_1, ..., a_{n+1}\}$$

ten zbior jest baza.

 $c_{k+1} \neq c_1, ..., c_k$.

 B_n dziala, czyli jest baza.