						Verifica	di fisica					
Nome e cognome:							Classe:		Data:		Griglia	
$\mathbf{R}^{:}$	isposte (vari	ante 99)										
		1	2	3	4	5	6	7	8	9	10	
		11	12	13	14	15	16	17	18	19	20	
 Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)? (a) L'atto di osservazione o misurazione (apertura della scatola). (b) Il decadimento dell'atomo radioattivo all'interno della scatola. (c) La volontà del gatto. 								sizione a uno				
	` '		scorso dal	l'inizio de	ell'esperir	nento.						
2.	Nell'effetto	Compton,	un fotone	X intera	gisce con	un elettro	one libero	o (o debol:	mente leg	ato). Cos	sa succede al f	otone?
	(a) Pa	ssa attrav	erso l'elet	trone sen	za intera	gire.						
	(b) Vi	ene diffuse	o (scattera	ato) con u	ına frequ	enza mino	ore (lungh	ezza d'on	ıda maggi	ore).		

- (c) Viene assorbito completamente dall'elettrone.
- (d) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
- Completare la seguente reazione di decadimento beta meno (β^-): ${}^{14}_{6}C \rightarrow ? + e^- + \bar{\nu}_e$
 - (b) ${}_{5}^{14}B$ (a) ${}_{6}^{13}$ C
- Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio (⁴₂He)?
 - (a) Decadimento Beta più (β^+)

(c) Emissione Gamma (γ)

(b) Decadimento Alfa (α)

- (d) Decadimento Beta meno (β^{-})
- Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) Gli urti tra atomi eccitati producono lo spettro.
 - (b) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
 - (c) Il nucleo atomico vibra emettendo fotoni.
 - (d) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
- La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Che l'energia emessa fosse quantizzata fin dall'inizio.
 - (b) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
 - (c) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (d) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).
- Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?

- (a) $E_B = m_{nucleo}c^2$. (b) $E_B = (\Delta m)c^2$. (c) $E_B = (\Delta m)/c^2$. (d) $E_B = (\sum m_{costituenti})c^2$.

(d) ${}_{6}^{14}C$

- In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (b) La variazione è indipendente dall'angolo θ .
 - (c) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
 - (d) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).
- 9. Il nucleo di Deuterio (${}_{1}^{2}$ H) è formato da 1 protone ($m_{p} \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_{n} \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141$ u. Qual è approssimativamente il difetto di massa Δm ?

	(a)	$2\mathrm{mg}$	(b)	8 mg	(c)	$4\mathrm{mg}$	(d)	1 mg	
12.	Cosa po	Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?							
	(a)	Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.							
	(b)	Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.							
	(c)	Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario. Un atomo emette radiazione solo quando viene ionizzato.							
	(d)	Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita							
		permessa di energia inferiore.							
13.		etare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $\binom{18}{9}$ F) adere β^+ : $\binom{18}{9}$ F \rightarrow ? $+ e^+ + \nu_e$							
	(a)	$^{18}_{10}\mathrm{Ne}$	(b)	${}^{17}_{9}{ m F}$	(c)	$^{18}_{8}\mathrm{O}$	(d)	$^{19}_{9}{ m F}$	
	14. Una radiazione di frequenza $f = 1.0 \times 10^{15}\text{Hz}$ colpisce un metallo con lavoro di estrazione $W = 2.0\text{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34}\text{J} \cdot \text{s}$ e $1\text{eV} \approx 1.6 \times 10^{-19}\text{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14\text{eV}$)								
	(a)	$K_{max} \approx 2.14 \mathrm{eV}$	(b)	$K_{max} \approx 4.14 \text{eV}$	(c)	$K_{max} \approx 2.0 \text{eV}$	(d)	$K_{max} \approx 6.14 \text{eV}$	
15.	5. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?								
	(a)	Che il principio di indeterminazione non è valido.							
	(b)	Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.							
	(c)	Che la luce è composta da particelle (fotoni).							
	(d)	Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.							
16.		Nel range di energie tipico della radiodiagnostica (es. $30 - 150 \text{keV}$), quale interazione tra fotoni X e tessuti biologici (a asso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?							
	(a)	Scattering di Rayleigh (co	eren	te).	(c)	Effetto fotoelettrico.			
	(b)	Effetto Compton.			(d)	Produzione di coppie $(e^+$	$-/e^{-})$		
	17. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?								
	(a)	Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.							
	(b)	Perché a basse frequenze la luce si comporta solo come un'onda.							
	(c)	Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.							
	(d)	Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.							
18.	Identific	Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}\mathrm{U} \to X + \alpha$							

(c) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo

11. Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2}=5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo,

(c) $\Delta m \approx (1.0073 + 1.0087) - 2.0141 = 0.0019 \,\mathrm{u}$

(d) $\Delta m \approx 2.0141 - (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$

(a) $\Delta m \approx 2.0141 \,\mathrm{u}$

quantistico.

(b) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$

(d) Della teoria della relatività di Einstein.

(b) Del modello atomico di Bohr.

quanti milligrammi rimarranno dopo 20 giorni?

10. Il principio di indeterminazione è una conseguenza fondamentale:

(a) Degli errori sperimentali inevitabili negli strumenti di misura.

(a)	$X = ^{234}_{90}$	Th	(Torio-
	234)		

(b)
$$X = {}^{234}_{88}$$
 Ra (Radio-234)

(b)
$$X = {}^{234}_{88}$$
 Ra (Radio- (c) $X = {}^{238}_{90}$ Th (Torio- 234) 238)

(d)
$$X = {}^{234}_{92}$$
 U (Uranio-234)

- 19. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Lo stato "gatto morto".
 - (b) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
 - (c) Lo stato "gatto vivo".
 - (d) Uno stato indeterminato che non è né vivo né morto.
- 20. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t = 0.
 - (b) Il tempo di dimezzamento del campione.
 - (c) L'attività del campione al tempo t.
 - (d) Il numero di nuclei decaduti al tempo t.