

$\begin{array}{c} \text{fundamental theorem of symmetric} \\ \text{polynomials} \end{array}$

 ${\bf Canonical\ name} \quad {\bf Fundamental Theorem Of Symmetric Polynomials}$

Date of creation 2013-03-22 19:07:40 Last modified on 2013-03-22 19:07:40

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 7

Author pahio (2872)
Entry type Theorem
Classification msc 13B25
Classification msc 12F10

Synonym fundamental theorem of symmetric functions

Every symmetric polynomial $P(x_1, x_2, \ldots, x_n)$ in the indeterminates x_1, x_2, \ldots, x_n can be expressed as a polynomial $Q(p_1, p_2, \ldots, p_n)$ in the elementary symmetric polynomials p_1, p_2, \ldots, p_n of x_1, x_2, \ldots, x_n . The polynomial Q is unique, its coefficients are elements of the ring determined by the coefficients of P and its degree with respect to p_1, p_2, \ldots, p_n is same as the degree of P with respect to x_1 .