

EE 046202 - Technion - Unsupervised Learning & Data Analysis

Tal Daniel

Tutorial 10 - Generative Adversarial Networks (GANs)

• Image Source (https://becominghuman.ai/with-gans-world-s-first-ai-generated-painting-to-recent-advancement-of-nvidia-b08ddfda45b1)

- What are Generative Adversarial Networks??)
 - <u>Discriminative Vs. Generative</u>
 - Adversarial Training
 - A Game Theory Perspective Nash Equilibrium
- GANs Training Steps
 - Formulation
 - Algorithm
- Nash Equilibrium Proof
- 2D Demo
- GANs (Serious) Problems-Problems)
- Vanilla-GAN on MNIST with PyTorch
- The Latent Space
- Conditional GANs
- GANs Today
- <u>Tips for Training GANs</u>
- Cool GAN Projects (with Code))
- Recommended Videos
- Credits

```
In [1]: # imports for the tutorial
    import time
    import numpy as np
    import matplotlib.pyplot as plt

# pytorch
    import torch.nn.functional as F
    from torchvision import datasets
    from torchvision import transforms
    import torch.nn as nn
    from torch.utils.data import DataLoader

if torch.cuda.is_available():
        torch.backends.cudnn.deterministic = True
```

What Are Generative Adversarial Networks (GANs)?

- Generative learn a generative model that can generate new data.
- Adversarial trained in an adversarial setting (there is some competition during the model's training).
- Networks the model is implemented using deep neural networks.

GANs were first introduced in Generative Adversarial Networks (http://papers.nips.cc/paper/5423-generative-adversarial-nets), NIPS 2014, by Goodfellow et al.

Discriminative vs. Generative

- · So far, we have only seen discriminative models
 - ullet Given an image X, predict a label Y
 - That is, we learn $P(Y \mid X)$
- The problem with discriminative models:
 - During training, labels are required, as it is a supervised setting.
 - lacksquare Can't model P(X), i.e., the probability of seeing a certain image.
 - ullet As a result, can't sample from P(X), i.e., can't generate new images.
- Generative models can overcome these limitations!
 - ullet They can model P(X), implicitly (e.g. GANs) or explicitly (e.g. Variational Autoencoders VAEs).
 - Given a trained model, can generate new images (or data in general).

Image Source (https://arxiv.org/abs/1701.00160)

- Explicit density estimation: explicitly define and solve for $p_{model}(x).$
- Implicit density estimation: learn a model that can sample from $p_{model}(x)$ without explicitly defining it.

• Goal: given training data, generate new samples from the same distribution.

- In general adversarial setting (can also be discriminative):
 - We can generate adversarial samples to *fool* a dsicriminative model.
 - Using adversarial samples, we can make models more **robust**.
 - Doing this will require the adversarial samples to be of better quality over time.
 - This will require more effort in generating such quality samples!
 - Repeating this process will result in a better discriminative model.

- <u>Image Source</u>
 (https://www.researchgate.net/publication/325370539 Protecting Voice Controlled Systems Using Sound Source Identification Based on Acoustic Cu
- GANs extend this idea to generative models:
 - Generator: generate fake samples, tries to fool the *Discriminator*.
 - **Discriminator**: tries to dsitinguish between real and fake samples.
 - Train them **against** each other!
 - Repeat this and get a better *Generator* over time.

 Image Source (https://www.researchgate.net/publication/334100947 Partial Discharge Classification Using Deep Learning Methods-Survey of Recent Progress).

• Image Source (https://towardsdatascience.com/comprehensive-introduction-to-turing-learning-and-gans-part-2-fd8e4a70775)

GANs - A Game Theory Persepective - Nash Equilibrium

- GAN is based on a **zero-sum** cooperative game (minimax).
 - In short, if one wins the other loses.
- In game theory, the GAN model **converges** when the *discriminator* and the *generator* reach a **Nash equilibrium**.
- Nash equilibrium as both sides want to beat the other, a Nash equilibrium happens when one player will not change its action regardless of what the opponent may do.
- Cost functions may not converge using gradient descent in a minimax game.

- Training the Discriminator
 - Freeze the Generator and generate fake samples (that is, when backpropagating, don't update the generator weights)

- Training the Generator
 - Freeze the Discriminator, and update the Generator to get a higher score (like the real data) from the Discriminator

Formulation & Algorithm

- For a Discriminator (binary classifier) D, a Generator G and a reward function V, the GAN's objective function: $\min_G \max_D V(D,G)$
- It is formulated as a **minimax game**, where:
 - lacksquare The **Discriminator** D is trying to *maximize* its reward V(D,G)
 - $\, \blacksquare \,$ The ${\bf Generator} \, G$ is trying to ${\it minimize}$ the Discriminator's reward (or maximize its loss)
 - Why? Because minimizing the Discriminator's reward means that the Discriminator can not tell the difference between real and fake samples, thus, the Generator is "winning".

• In our case, the reward function V:

$$V(D,G) = \mathbb{E}_{x \sim p(x)} \left[\log D(x)
ight] + \mathbb{E}_{z \sim q(z)} \left[\log (1 - D\left(G(z)
ight))
ight]$$

- Recall from ML course that for binary classification (real or fake) we use the Binary Cross Entropy (BCE) (https://mlcheatsheet.readthedocs.io/en/latest/loss functions.html#cross-entropy) loss function.
- The Nash equilibrium is reached when:

 - $\begin{array}{ll} \bullet & P_{data}(x) = P_{gen}(x), \forall x \\ \bullet & D(x) = \frac{1}{2} \text{ (completely random classifier)}. \end{array}$

Generator

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right)$$

m: Number of samples z: Random noise How realistic are the generated samples?

samples G wants to maximize this.

x: Real samples

Discriminator

$$\left| \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

Make sure real samples are classified as being real.

Make sure generated samples are classified as

D wants to maximize this. D wants to minimize this.

Image Source (https://towardsdatascience.com/comprehensive-introduction-to-turing-learning-and-gans-part-2-fd8e4a70775)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$. Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

Generator updates

Discriminator updates

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Exercise - Convergence of GANs to Nash Equilibrium

Recall that the goal is that the Generator generates an example that is indistinguishable from the real data. Mathematically, probability density functions (i.e. the probability measure induced by the random variable on its range) are equal:

$$p_G(x) = p_{data}(x)$$

The optimization problem is (the value function of the min-max game):
$$V(G,D) := \mathbb{E}_{x \sim p_{data}(x)} \log(D(x)) + \mathbb{E}_{z \sim p_z(z)} \log(1 - D(G(z)))$$

The theorem: "The global minimum of the virtual training criterion $C(G) = \max_D V(G,D)$ is acheived **if and only if** $p_G = p_{data}$."

- 1. What is the optimal Discriminator D_G^{\ast} for some generator G?
- 2. Given an optimal Discriminator D_G^{st} is optimal, what is the optimal Generator G?

From the Radon-Nikodym Theorem (https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym theorem) it satisfies:

$$\mathbb{E}_{z \sim p_z(z)} \log(1 - D(G(z))) = \mathbb{E}_{x \sim p_G(x)} \log(1 - D(x))$$

- 1. What is the intuition for the above equality?
- 2. Let $D(x)=y, p_{data}(x)=a, p_G(x)=b$, write down the value function V(G,D) with a,b,y (without the expectancy \mathbb{E}).
- 3. Let $V(G,D)=\int_x f(y)dx$ (y is a function of x). Find the optimal Discriminator.
- 4. For the optimal Discriminator you found in (5), if the Generator is also optimal, what is the value of D? What is the meaning of this?
- 5. We showed that if $p_G=p_{data}$, the theorem is correct (and the minimum is acheived). Prove the second direction, that is, show that $p_G=p_{data}$. Hint: use the following:

$$JSD(p_G \mid\mid p_{data}) = JSD(p_{data} \mid\mid p_G) = rac{1}{2}KL\left(p_{data} \mid\mid \left(rac{p_{data} + p_G}{2}
ight)
ight) + rac{1}{2}KL\left(p_G \mid\mid \left(rac{p_{data} + p_G}{2}
ight)
ight)$$

1. The Discriminator tries to maximize the value function (to identify between fake and real points), which means:

$$D_G^* = arg \max_D V(G, D)$$

2. The optimal G minimizes the value function when $D=D_G^{st}$, thus:

$$G^* = arg\min_G V(G,D_G^*)$$

- 3. Basically, sampling $z\sim p_z(z)$ and transforming it to x is just like saying, let's sample $x\sim p_G(x)$, where $p_G(x)$ is the transforming distribution (eventually, we create x's, so the sampling of z's is already included in the process of creating x).
- 4. Solution:

$$V(G,D) = \int_x (a\log y + b\log(1-y)) dx$$

$$f^{'}(y)=0
ightarrowrac{a}{y}-rac{b}{1-y}=0
ightarrow y=rac{a}{a+b}$$

5. Let's do a bit of calculus, recall that we want to maximize the value function for D, so let's do it: $f^{'}(y)=0 \rightarrow \frac{a}{y}-\frac{b}{1-y}=0 \rightarrow y=\frac{a}{a+b}$ Recall that a,b>=0 as they are density functions (we assume non-zero points). Let's verify that it is a maximum point:

$$f''(y=rac{a}{a+b})=-rac{a}{\left(rac{a}{a+b}
ight)^2}-rac{b}{\left(1-rac{a}{a+b}
ight)^2}<0$$

GOOD! So if

$$D(x) = rac{p_{data}}{p_{data} + p_G}$$

we acheive the maximum.

6. The goal is $p_G = p_{data}$, so if this is satisfied, we get:

$$D_G^*=0.5$$

This means that the Discriminator is completely confused, outputting 0.5 for examples from both p_{data} and p_{G} .

7. On the one hand, if we assume that $p_G=p_{data}$ then:

$$egin{aligned} V(G, D_G^*) &= \int_x p_{data}(x) \log 0.5 + p_G(x) \log (1 - 0.5) dx \ &= -log2*1 - log2*1 = -log4 \end{aligned}$$

= -log2*1 - log2*1 = -log4 We need to show that this value is the minimum. Let's look from the other direction, that is, we now don't assume that $p_G = p_{data}$. For any G, we can plug in D_G^* into C(G):

$$C(G) = \int_x p_{data}(x) \log \left(\frac{p_{data}(x)}{p_{data}(x) + p_G(x)}\right) + p_G(x) \log \left(\frac{p_G(x)}{p_{data}(x) + p_G(x)}\right) dx$$
 Using the hint, we know that we need to get to the form of the JSD, so let's do it:

$$\begin{split} C(G) &= \int_x a \log \left(\frac{a}{a+b}\right) + b \log \left(\frac{b}{a+b}\right) dx \\ &= \int_x a \log \left(\frac{2a}{2(a+b)}\right) + b \log \left(\frac{2b}{2(a+b)}\right) dx \\ &= \int_x a \log(0.5) + a \log \left(\frac{2a}{a+b}\right) + b \log(0.5) + b \log \left(\frac{2b}{a+b}\right) dx \\ &= -\log 4 + 2JSD(p_G \mid\mid p_{data}) \end{split}$$

We also know that

$$JSD \geq 0$$

So we know that the minimum value C(G) can get is $-\log 4$ and when does that happen? ONLY when $JSD(p_G \mid\mid p_{data}) = 0$, which only happens

$$p_G = p_{data},$$

and we are DONE!

GAN Lab

(https://poloclub.github.io/ganlab/)

GANs (Serious) Problems

- Non-convergence: the model parameters oscilate, destabilize and (almost) never converge.
- Mode Collapse: the *Generator* collapses, which produces limited varieties of samples.
 - For example, on a 2D eight-Gaussians dataset:

- Image Source (https://mc.ai/gan-unrolled-gan-how-to-reduce-mode-collapse/)
- Vanisihng/Diminishing Gradient: the discriminator gets too good such that the generator gradient vanishes and learns nothing.
 - Proof: HW
 - Possible remedy: replace the problematic term with a **non-saturating** loss

$$\mathbb{E}_{z \sim q(z)}\left[\log(1-D\left(G(z)
ight)
ight)]
ightarrow - \mathbb{E}_{z \sim q(z)}\left[\log D\left(G(z)
ight)
ight]$$

- · GANs are highly sensitive to hyper-parameters!
 - Even the slightest change in hyper-parameters may lead to any of the above, e.g. even changing the learning rate from 0.0002 to 0.0001 may lead to instability.

Vanilla-GAN on MNIST with PyTorch

• Based on example by <u>Sebastian Raschka (https://github.com/rasbt/deeplearning-models)</u>

```
### MNIST DATASET
         ###############################
         # Note transforms.ToTensor() scales input images
         # to 0-1 range
         train_dataset = datasets.MNIST(root='./datasets',
                                          train=True,
                                          transform=transforms.ToTensor(),
                                          download=True)
         test_dataset = datasets.MNIST(root='./datasets',
                                         train=False,
                                         transform=transforms.ToTensor())
         train_loader = DataLoader(dataset=train_dataset,
                                     {\tt batch\_size=BATCH\_SIZE,}
                                     shuffle=True)
         test_loader = DataLoader(dataset=test_dataset,
                                    batch_size=BATCH_SIZE,
                                    shuffle=False)
         # Checking the dataset
         for images, labels in train_loader:
             print('Image batch dimensions:', images.shape)
             print('Image label dimensions:', labels.shape)
             break
         # let's see some digits
         examples = enumerate(test_loader)
         batch_idx, (example_data, example_targets) = next(examples)
         print("shape: \n", example_data.shape)
fig = plt.figure()
for i in range(6):
             ax = fig.add_subplot(2,3,i+1)
             ax.imshow(example_data[i][0], cmap='gray', interpolation='none')
ax.set_title("Ground Truth: {}".format(example_targets[i]))
             ax.set_axis_off()
         plt.tight_layout()
         Image batch dimensions: torch.Size([128, 1, 28, 28])
         Image label dimensions: torch.Size([128])
         shape:
          torch.Size([128, 1, 28, 28])
           Ground Truth: 7
                              Ground Truth: 2
                                                  Ground Truth: 1
```

Ground Truth: 0

Ground Truth: 4

Ground Truth: 1

```
### MODEI
       class GAN(torch.nn.Module):
           def __init__(self):
               super(GAN, self).__init__()
               # generator: z [vector] -> image [matrix]
               self.generator = nn.Sequential(
                  nn.Linear(LATENT_DIM, 128),
                  nn.LeakyReLU(inplace=True),
                  nn.Dropout(p=0.5),
                  nn.Linear(128, IMG_SIZE),
                  nn.Tanh()
               # discriminator: image [matrix] -> label (0-fake, 1-real)
               self.discriminator = nn.Sequential(
                  nn.Linear(IMG_SIZE, 128),
                  nn.LeakyReLU(inplace=True),
                  nn.Dropout(p=0.5),
                  nn.Linear(128, 1),
                  nn.Sigmoid()
           def generator_forward(self, z):
               img = self.generator(z)
               return img
           def discriminator_forward(self, img):
               pred = model.discriminator(img)
               return pred.view(-1)
```

```
In [5]: # constant the seed
    torch.manual_seed(random_seed)

# build the model, send it ti the device
    model = GAN().to(device)

# optimizers: we have one for the generator and one for the discriminator
    # that way, we can update only one of the modules, while the other one is "frozen"
    optim_gener = torch.optim.Adam(model.generator.parameters(), lr=generator_learning_rate)
    optim_discr = torch.optim.Adam(model.discriminator.parameters(), lr=discriminator_learning_rate)
```

```
### Training
        start_time = time.time()
        discr_costs = []
        gener_costs = []
        for epoch in range(NUM_EPOCHS):
           model = model.train()
           for batch idx, (features, targets) in enumerate(train loader):
               features = (features - 0.5) * 2.0 # normalize between [-1, 1]
features = features.view(-1, IMG_SIZE).to(device)
               targets = targets.to(device)
               # generate fake and real labels
               valid = torch.ones(targets.size(0)).float().to(device)
               ### FORWARD PASS AND BACKPROPAGATION
               # Train Generator
               # Make new images
               z = torch.zeros((targets.size(0), LATENT_DIM)).uniform_(-1.0, 1.0).to(device)
               generated_features = model.generator_forward(z)
               # Loss for fooling the discriminator
               discr_pred = model.discriminator_forward(generated_features)
               # here we use the `valid` labels because we want the discriminator to "think"
               # the generated samples are real
               gener_loss = F.binary_cross_entropy(discr_pred, valid)
               optim_gener.zero_grad()
               gener_loss.backward()
               optim_gener.step()
               # -----
               # Train Discriminator
               discr_pred_real = model.discriminator_forward(features.view(-1, IMG_SIZE))
               real_loss = F.binary_cross_entropy(discr_pred_real, valid)
               # here we use the `fake` labels when training the discriminator
               discr_pred_fake = model.discriminator_forward(generated_features.detach())
               fake_loss = F.binary_cross_entropy(discr_pred_fake, fake)
               discr_loss = 0.5 * (real_loss + fake_loss)
               optim_discr.zero_grad()
               discr_loss.backward()
               optim_discr.step()
               discr_costs.append(discr_loss)
               gener_costs.append(gener_loss)
               ### LOGGING
               if not batch_idx % 100:
                   print ('Epoch: %03d/%03d | Batch %03d/%03d | Gen/Dis Loss: %.4f/%.4f'
                          %(epoch+1, NUM_EPOCHS, batch_idx,
                            len(train_loader), gener_loss, discr_loss))
           print('Time elapsed: %.2f min' % ((time.time() - start_time)/60))
        print('Total Training Time: %.2f min' % ((time.time() - start_time)/60))
```

```
### Evaluation
        ###############################
        ax1 = plt.subplot(1, 1, 1)
        ax1.plot(range(len(gener_costs)), gener_costs, label='Generator loss')
        ax1.plot(range(len(discr_costs)), discr_costs, label='Discriminator loss')
        ax1.set_xlabel('Iterations')
        ax1.set_ylabel('Loss')
        ax1.legend()
        # Set scond x-axis
        ax2 = ax1.twiny()
        newlabel = list(range(NUM_EPOCHS+1))
        iter_per_epoch = len(train_loader)
        newpos = [e*iter_per_epoch for e in newlabel]
        ax2.set_xticklabels(newlabel[::10])
        ax2.set_xticks(newpos[::10])
        ax2.xaxis.set_ticks_position('bottom')
        ax2.xaxis.set_label_position('bottom')
        ax2.spines['bottom'].set_position(('outward', 45))
        ax2.set_xlabel('Epochs')
        ax2.set_xlim(ax1.get_xlim())
```

Out[7]: (-2344.950000000003, 49243.95)

The Latent Space

- As we learn how to transform a latent vector, z, to images, we actullay learn a latent continuous space.
- This continuous spcae allows us to perform interpolation and arithmetics.
- As this space is continuous, unlike the original data (images), it was found that some operations (like summing) perform really well when done on the latent space.
- As you can see below, those operations were demonstrated in the paper <u>Unsupervised Representation Learning with Deep Convolutional Generative</u>
 <u>Adversarial Networks, Alec Radford, Luke Metz, Soumith Chintala, ICLR 2016 (https://arxiv.org/abs/1511.06434)</u>

Conditional GANs

- As you probably have noticed, we don't too much control over the latent space, e.g., with vanilla-GAN trained on MNIST we can't control what digit we are generating.
- Conditional-GANs a simple modification to the original GAN framework that conditions the model on additional information for better multi-modal learning.
- In practice, we usually use the labels of the datasets to perform the conditioning.
 - ullet For example, on MNIST we will use the one-hot vector representation of the digit (1 o [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) along with the images from that class
- Leads to many practical applications of GANs when we have explicit supervision available.
- There is more than one way to perform conditioning, some approaches are presented below.

- Conditional Generative Adversarial Nets, Mehdi Mirza, Simon Osindero (https://arxiv.org/abs/1411.1784)
- Conditional GANs (https://assemblingintelligence.wordpress.com/2017/05/10/conditional-gans/)

- GANs are HARD to train and many researche studies try to improve training stability.
- · WGAN Wasserstein GANs use the Wasserstein (Earth Movers) distance as the loss function. Training is more stabilized than vanilla-GAN.
 - WGAN-GP improves upon the original WGAN by using Gradient Penalty in the loss function (instead of value clipping)
 - WGAN Paper (https://arxiv.org/abs/1701.07875), PyTorch Code (https://github.com/Zeleni9/pytorch-wgan)
 - WGAN-GP Paper (https://arxiv.org/abs/1704.00028), PyTorch Code (https://github.com/Zeleni9/pytorch-wgan)
- EBGAN Energy-Based GANs use autoencoders in their architecture (with the autoencoder loss).
 - EBGAN Paper (https://arxiv.org/abs/1609.03126), PyTorch Code (https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/ebgan/ebgan.py)
- BEGAN Boundary Equilibrium GANs combines autoencoders and Wassertein distance to balance the generator and discriminator during training.
 - BEGAN Paper (https://arxiv.org/abs/1703.10717), PyTorch Code (https://github.com/anantzoid/BEGAN-pytorch)
- Mimicry a lightweight PyTorch library aimed towards the reproducibility of GAN research GitHub (https://github.com/kwotsin/mimicry)

Tips for

Tips for Training GANs

All tips are here: Tips for Training GANs (https://github.com/soumith/ganhacks)

- Normalize the inputs usually between [-1,1]. Use TanH for the Generator output.
- · Use the modified loss function to avoid the vanishing gradients.
- Use a spherical Z sample from a Gaussian distribution instead of uniform distribution.
- BatchNorm (when batchnorm is not an option use instance normalization).
- · Avoid Sparse Gradients: ReLU, MaxPool the stability of the GAN game suffers if you have sparse gradients.
 - LeakyReLU is good (in both G and D)
 - For Downsampling, use: Average Pooling, Conv2d + stride
 - For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
- · Use Soft and Noisy Labels
 - Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3.
 - Make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator
- · Track failures early:
 - D loss goes to 0 -- failure mode.
 - Check norms of gradients: if they are over 100 things are not good...
 - When things are working, D loss has low variance and goes down over time vs. having huge variance and spiking.
- Don't balance loss via statistics (unless you have a good reason to)
 - For example, don't do that: while lossD > A: train D or while lossG > B: train G

Cool GAN Projects (with Code)

- gans-awesome-applications (https://github.com/nashory/gans-awesome-applications)
- pytorch-generative-model-collections (https://github.com/znxlwm/pytorch-generative-model-collections)

Warning!

- · These videos do not replace the lectures and tutorials.
- Please use these to get a better understanding of the material, and not as an alternative to the written material.

Video By Subject

- Introduction to GANs Introduction to GANs, NIPS 2016 I Ian Goodfellow, OpenAI (https://www.youtube.com/watch?v=9JpdAg6uMXs)
- Generative Models <u>Stanford CS231n Lecture 13 | Generative Models (https://www.youtube.com/watch?v=5WoltGTWV54)</u>
- Deep Generative Modeling MIT 6.S191 (2019): Deep Generative Modeling (https://www.youtube.com/watch?v=yFBFI1cLYx8)
- Wasserstein GANs Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance (https://www.youtube.com/watch? v=31mqB4yGgQY).
- Energy-Based GANs Energy-Based Adversarial Training and Video Prediction, NIPS 2016 I Yann LeCun, Facebook AI Research (https://www.youtube.com/watch?v=x4sl5qO6O2Y)

- Slides from CS 598 LAZ (http://slazebni.cs.illinois.edu/spring17/)
- · Slides by Lihi Zelnik-Mannor
- Slides from CMU 16720B Computer Vision (http://ci2cv.net/16720b/)
- Some material from Alexander Amini and Ava Soleimany, MIT 6.S191: Introduction to Deep Learning, IntroToDeepLearning.com/, Introduction to Deep Learning, Introduction to Deep Learning, Introduction-learning, <
- Proof of Nash Equilibrium in GANs (https://srome.github.io/An-Annotated-Proof-of-Generative-Adversarial-Networks-with-Implementation-Notes/)
- Icons from Icon8.com (https://icons8.com/) https://icons8.com (https://icons8.com)