1)
$$f(x) = \sin x + x - 1$$

$$x_0 = 1.5$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$$

$$f(x) = \cos x + 1$$

$$f(x_n) = \cos x + 1$$

n	x_n
0	1.5
1	0.101436
2	0.501114
3	0.510961
4	0.510973
5	0.510973
6	0.510973
7	0.510973
8	0.510973
9	0.510973
10	0.510973

2) $f(x) = 2n(x+1)-1$ $x_0 = 1.7$ $f(x_n)$ $f(x_n)$	-7
Because $f'(x_n) = \frac{1}{x_{n+1}}$, we have $x_{n+1} = x_n - (\ln(x_n + 1) - 1)(x_n + 1) = 1 + 2x_n - (x_n + 1)\ln(x_n + 1)$.	2
i. The root is about	5 8 9

0	1.7
1	1.71822
2	1.71828
3	1.71828
4	1.71828
5	1.71828
6	1.71828
7	1.71828
8	1.71828
9	1.71828
10	1.71828

3)

A preliminary sketch of the two curves seems to indicate that they intersect once, near x = 1.5. Let $f(x) = x^3 - (x^2 + 1)$. Then $f'(x_n) = 3x_n^2 - 2x_n$. The Newton's method formula becomes

$$x_{n+1} = x_n - \frac{x_n^3 - x_n^2 - 1}{3x_n^2 - 2x_n}.$$

If we use an initial estimate of $x_0 = 1.5$, we obtain $x_1 = 1.46667$, $x_2 = 1.46557$, $x_3 = 1.46557$, so there appears to be a point of intersection near x = 1.46557.

4)

A preliminary sketch of the two curves seems to indicate that they intersect twice on the given interval, once just to the right of 0, and once between 2 and 2.5. Let $f(x) = 4\sqrt{x} - (x^2 + 1)$. Then $f'(x_n) = 2/\sqrt{x_n} - 2x_n$. The Newton's method formula becomes

$$x_{n+1} = x_n - \frac{4\sqrt{x_n} - (x_n^2 + 1)}{2/\sqrt{x_n} - 2x_n}.$$

If we use an initial estimate of $x_0 = .1$, we obtain $x_1 = .0583788$, $x_2 = .0629053$, $x_3 = .0629971$, so there appears to be a point of intersection near x = .06299.

If we use an initial estimate of $x_0 = 2.25$, we obtain $x_1 = 2.23026$, $x_2 = 2.23012$, $x_3 = 2.23012$, so there appears to be a point of intersection near x = 2.23012.

5)

A preliminary sketch of the two curves seems to indicate that they intersect twice on the given interval, once just to the right of 0, and once between 1 and 1.5

Let $f(x) = \ln x - (x^3 - 2)$. Then $f'(x_n) = 1/x_n - 3x_n^2$. The Newton's method formula becomes

$$x_{n+1} = x_n - \frac{\ln(x_n) - (x_n^3 - 2)}{1/x_n - 3x_n^2}.$$

If we use an initial estimate of $x_0 = .1$, we obtain $x_1 = .13045$, $x_2 = .13557$, $x_3 = .135674$, so there appears to be a point of intersection near x = .13567.

If we use an initial estimate of $x_0 = 1.4$, we obtain $x_1 = 1.32111$, $x_2 = 1.31501$, $x_3 = 1.31498$, and $x_4 = 1.31498$ so there appears to be a point of intersection near x = 1.31498.

6)

Residual = $f(x_n)$

Because the residuals become small quickly, the convergence of x_n is quite slow.

This is related to the extreme flatness of the graph of x^{10} between 0 and 1/2.

\overline{n}	x_n	Error	Residual
0	.5	.5	.000976563
1	.45	.45	.000340506
2	.405	.405	.000118727
3	.3645	.3645	.0000413976
4	.32805	.32805	.0000144345
5	.295245	.295245	$5.0329x \times 10^{-6}$
6	.265721	.265721	1.75489×10^{-6}
7	.239148	.239148	6.11893×10^{-7}
8	.215234	.215234	2.13354×10^{-7}
9	.19371	.19371	7.43919×10^{-8}
10	.174339	.174339	2.59389×10^{-8}

Solutions to Math 1014 (Tutorial 10)

7)

- a. If r is a root of $x^2 a$, then $r^2 a = 0$, so $r^2 = a$, and $|r| = \sqrt{a}$, so either $r = \sqrt{a}$ or $r = -\sqrt{a}$. If we also insist that r > 0, then $r = \sqrt{a}$.
- b. The Newton's method recursion is

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{2x_n^2 - (x_n^2 - a)}{2x_n} = \frac{x_n^2 + a}{2x_n} = \frac{1}{2}\left(x_n + \frac{a}{x_n}\right).$$

c. Because $3^2 = 9 < 13$ and $4^2 = 16 > 13$, a good starting value for $\sqrt{13}$ would be a number between 3 and 4 (but closer to 4), like 3.6.

Because $8^2 = 64 < 73$ and $9^2 = 81 > 73$, a good starting value for $\sqrt{73}$ would be a number between 8 and 9, like 8.5.

d. The first chart is for $\sqrt{13}$ and the second is for $\sqrt{73}$.

n	$ x_n $	n	$ x_n $
0	3.6	0	8.5
1	3.605555555556	1	8.54411764706
2	3.60555127547	2	8.54400374608
3	3.6055127546	3	8.54400374532
4	3.6055127546	4	8.54400374532
5	3.6055127546	5	8.54400374532
6	3.6055127546	6	8.54400374532
7	3.6055127546	7	8.54400374532
8	3.6055127546	8	8.54400374532
9	3.6055127546	9	8.54400374532
10	3.6055127546	10	8.54400374532

8)

- a. We are seeking solutions of f(x) = ax(1-x) = x. This can be written as $ax^2 + x(1-a) = 0$, or x(ax+(1-a)) = 0. The solutions of this equation are x=0 and $x=\frac{a-1}{a}$. If 0 < a < 1, this does not give a value of x in the range (0,1). If $1 \le a \le 4$, we do get a fixed point $x=\frac{a-1}{a}$.
- b. $g(x) = f(f(x)) = f(ax(1-x)) = a(ax(1-x))(1-ax(1-x)) = (a^2x a^2x^2)(1-ax+ax^2) = a^2x a^2x^2 a^3x^2 + a^3x^3 + a^3x^3 a^3x^4 = a^2x a^2x^2 a^3x^2 + 2a^3x^3 a^3x^4$. This is a fourth degree polynomial.
- c. From left to right, with a = 2, then a = 3, then a = 4:

d. The graphs of y = g(x) together with y = x for a = 2, then a = 3, then a = 4.

When a=2, we have $g(x)=-8x^4+16x^3-12x^2+4x$, so we are looking for a root of $g(x)-x=-8x^4+16x^3-12x^2+4x-x=-8x^4+16x^3-12x^2+3x=x(-8x^3+16x^2-12x+3)$. Clearly x=0 is one root, and the diagram indicates that g(x)=x near x=.5. A quick check shows that x=.5 is a root of g(x)-x, so .5 is a fixed point of g.

When a=3, we have $g(x)=-27x^4+54x^3-36x^2+9x$, so we are looking for a root of $g(x)-x=-27x^4+54x^3-36x^2+9x-x=-27x^4+54x^3-36x^2+8x=x(-27x^3+54x^2-36x+8)$. Clearly x=0 is one root, and the diagram indicates that g(x)=x near x=.6. Applying Newton's method to g(x)-x with an initial estimate of .6 yields a root of approximately $\overline{.6}=2/3$. A quick check shows that 2/3 is a fixed point of g.

When a=4, we have $g(x)=-64x^4+128x^3-80x^2+16x$, so we are looking for a root of $g(x)-x=-64x^4+128x^3-80x^2+16x-x=-64x^4+128x^3-80x^2+15x=x(-64x^3+128x^2-80x+15)$. Clearly x=0 is one root, and the diagram indicates that g(x)=x near x=.3 and x=.75 and x=.9. Checking the value of .75=3/4, we confirm that g(3/4)=3/4. Applying Newton's method to g(x)-x with an initial estimate of .3 yields a root of approximately .345492, and applying it with an initial estimate of .9 yields a root of approximately .904508.

Thus the fixed points of g with a=4 are 0, .345492, .75, and .904508.