Unofficial Kobe Beamer Theme

LATEX Presentation in Kobe Style

Yuki Yanai

Graduate School of Law

April 20, 2015

Outline

- Introduction
 - Beamer Theme for Kobe University

Basics

- **Basics**
 - Blocks
 - Equations
- 3 Tables and Figures
 - Tables
 - **Figures**
- Conclusion

Let's use KobeBeamer!

Kobe University's logo mark uses four colors:

- brick is the symbol color of the university
- green represents the mountain
- blue represents the ocean
- gray for characters

Use blocks

Block

This is a block environment.

Use blocks

Block

This is a block environment.

Example

This is an example block environment.

Use blocks

Block

This is a block environment.

Example

This is an example block environment.

Alert

This is an alert block environment.

Probability density function of $N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \tag{1}$$

PDF of Standard Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \tag{2}$$

Show the results with Tables

Table: Estimation by OLS: Vote share (%) is the outcome

		Estimates	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Explanatory variables	Model 1	Model 2
	Constant	7.91	-2.07
Color		(0.69)	(0.72)
	Experience	18.10	45.91
Experience × Expense (0.12) (0.16) -4.76 (0.21) Observations (n) 1124 1124		(1.23)	(1.58)
Experience \times Expense -4.76 (0.21) Observations (n) 1124 1124	Expense	1.85	4.87
Observations (n) (0.21) (124)		(0.12)	(0.16)
Observations (n) 1124 1124	Experience × Expense		-4.76
. ,			(0.21)
Adjusted R^2 0.56 0.70	Observations (n)	1124	1124
	Adjusted R ²	0.56	0.70

Note: Standard errors are in parentheses

Yanai KobeBeamer 6/9

Explain things with figures

Figure: Normal PDF

Pictures

Thomas Bayes

Pierre-Simon Laplace

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

Conclusion

With LATEX and KobeBeamer, you can

- create awesome slides
- express Kobe pride

Conclusion

With LATEX and KobeBeamer, you can

- create awesome slides
- express Kobe pride

Your feedback is highly appreciated! Email: yanai@lion.kobe-u.ac.jp