# **ASSIGNMENT 4: DECISION TREES**



**Johannes Kofler** 





#### **Copyright statement:**

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

## **Introductory Example (taken from Wikipedia)**

#### Survival of passengers on the Titanic



- "sibsp" is the number of spouses or siblings aboard.
- The figures under the leaves show the probability of survival and the percentage of observations in the leaf.
- Summarizing: Chances of survival were good if you were (i) a female or (ii) a male younger than 9.5 years with strictly less than 3 siblings.

### **Decision tree learning: Part 1**



- All decision tree learning algorithms are recursive, depth-first search algorithms that perform hierarchical splits.
- There are three main design issues:
  - Splitting criterion: which splits to choose?
  - Stopping criterion: when to stop further growing of the tree?
  - ☐ Pruning: whether/how to collapse unnecessarily deep sub-trees?
- The two latter: relevant for adjusting the complexity of decision trees (underfitting vs. overfitting).



## Decision tree learning: Part 2: Recursive procedure

- Given:
  - $\square$  Training set  $\mathbf{Z} = \{(\mathbf{x}_i, y_i) \mid i = 1, \dots, l\}$
  - Stopping criterion
  - Splitting criterion
- **Call DecTree(Z, Root node,**  $S = \{$ all possible splits $\}$ )
- $\blacksquare$  DecTree(**Z**, N, S)
  - If stopping criterion is fulfilled, exit.
  - $\square$  Determine split  $s \in S$  such that splitting criterion is maximal.
  - □ Divide **Z** into disjoint subsets  $\mathbf{Z}_{s,t}$  according to split s and result t.
  - $\square$  For all t such that  $\mathbf{Z}_{s,t} \neq \emptyset$ 
    - Generate new node  $N_t$
    - Call DecTree( $\mathbf{Z}_{s,t}, N_t, S \setminus \{s\}$ )

#### \*

## Splitting: categorical vs. numerical features

- Categorical features:
  - ☐ Binary split:

$$\mathbf{Z}_L = \{ (\mathbf{x}, y) \in \mathbf{Z} \mid x_i = c \}, \mathbf{Z}_R = \{ (\mathbf{x}, y) \in \mathbf{Z} \mid x_i \neq c \}$$

- $\square$  Split according to entire feature:  $\mathbf{Z}_j = \{(\mathbf{x}, y) \in \mathbf{Z} \mid x_i = c_j\}$
- Typically, all possible (binary or entire feature) splits w.r.t. all features are considered.
- Numerical features:
  - $\square$  Apply threshold c to i-th feature, i.e.

$$\mathbf{Z}_L = \{ (\mathbf{x}, y) \mid x_i < c \}, \mathbf{Z}_R = \{ (\mathbf{x}, y) \mid x_i \ge c \}.$$

- ☐ Typically, all possible splits w.r.t. all features are considered
- □ Thresholds are chosen as mean values of "neighboring" values occurring in the data.

#### **Common splitting criteria:**



- Classification:
  - □ Information gain
  - ☐ Gini impurity (gain)
- Regression:
  - Variance reduction
- Nowadays mostly Gini impurity and variance reduction are used.

#### Information gain



For any (sub)set of data  $\mathbb{Z}$ , the relative proportions of samples belonging to the k-th class (of classes  $1, \ldots, M$ ) are defined as:

$$p_k(\mathbf{Z}) = \frac{|\{(\mathbf{x},y) \in \mathbf{Z}|y=k\}|}{|\mathbf{Z}|}.$$

The entropy of Z w.r.t. the target is defined as

$$H(\mathbf{Z}) = -\sum_{k=1}^{M} p_k(\mathbf{Z}) \ln p_k(\mathbf{Z}).$$

- $\square$  Maximal ( $\ln M$ ) if classes are uniformly distrib. in the set **Z**.
- ☐ Minimal (0) if all samples of **Z** belong to one single class.
- ☐ The smaller/larger the entropy the larger/smaller the information.
- Information gain (Kullback-Leibler divergence) of employing the s-th split for partitioning  $\mathbf{Z}$  into sets  $\mathbf{Z}_{s,t=1},\ldots,\mathbf{Z}_{s,t=K_s}$  is then defined as

$$g_E(\mathbf{Z}, s) = H(\mathbf{Z}) - \sum_{t=1}^{K_s} \frac{|\mathbf{Z}_{s,t}|}{|\mathbf{Z}|} H(\mathbf{Z}_{s,t}).$$

- $\mathbf{g}_E$  is maximized if subset entropies  $H(\mathbf{Z}_{s,t})$  are minimized, i.e. subsets should be as homogeneous as possible (limiting case: only one class).
- Typically, in each step, all possible splits are considered and the one with highest information gain is selected.

### **Gini impurity (gain)**



■ With the notation from above: Gini impurity of Z is defined as

$$I_G(\mathbf{Z}) = \sum_{k=1}^{M} p_k(\mathbf{Z}) (1 - p_k(\mathbf{Z})) = 1 - \sum_{k=1}^{M} p_k^2(\mathbf{Z})$$

- Interpretation: gives probability of incorrectly classifying randomly chosen element in dataset if it were randomly labeled according to the class distribution in the dataset.
- Value is:
  - $\square$  Maximal (1-1/M) if classes are uniformly distributed in the set  ${\bf Z}$ .
  - $\ \square$  Minimal (0) if all samples of  $\mathbf Z$  belong to one single class.
- Gini impurity (gain) of employing the s-th split for partitioning  $\mathbf{Z}$  into sets  $\mathbf{Z}_{s,t=1},\ldots,\mathbf{Z}_{s,t=K_s}$  is then defined as:

$$g_G(\mathbf{Z}, s) = I_G(\mathbf{Z}) - \sum_{t=1}^{K_s} \frac{|\mathbf{Z}_{s,t}|}{|\mathbf{Z}|} I_G(\mathbf{Z}_{s,t}).$$

- $g_V$  is maximized if subset Gini impurities  $I_G(\mathbf{Z}_{s,t})$  are minimized, i.e. subsets should be as homogeneous as possible.
- Standard splitting criterion employed by the decision tree algorithm CART for classification.

### **Computing predictions**



- Tree recursively partitions/splits training set into subsets, each of which is associated with leaf node.
- "Assignment" of samples to leaf nodes is the basis for making predictions with decision trees.
- For new input x traverse through tree by answering questions associated with each node until leaf node is reached to which sample x is assigned.
- Classification:
  - Assign class to leaf node that appears most prominently among training samples associated with this leaf node
  - □ Alternatively: compute relative frequencies of classes in leaf node and use frequencies as estimates of conditional probabilities  $p(y = k \mid \mathbf{x})$ .
- Regression: use mean target value of samples associated with leaf node.

#### **Pros and Cons of decision trees**



#### Pros:

- Simple and computationally efficient
- □ Built-in feature selection
- Interpretable models
- Can be applied to categorical and numerical attributes
- ☐ Scaling-invariant for numerical features
  - Can be applied both to classification and regression

#### Cons:

- Greedy splitting may lead to sub-optimal solutions.
- Only axis-parallel splits of numerical features
- Shallow trees are not accurate (high bias), deep trees overfit (high variance). Number of parameters not fixed before training.