

CORDEUSE

DOCUMENTS RESSOURCES

Table des matières

Fiche 1	Présentation Générale	3
Conte	exte industriel	3
Const	ituants principaux	3
Fiche 2	Mise en service de la cordeuse	
	en œuvre	
Fiche 3	Réalisation de mesures	
	ser une mesure avec le logiciel la Cordeuse	
	aliser la mesure	
	ualiser les résultats	
Vis	ualisation sur l'oscilloscope	
Fiche 4	Description structurelle et technologique	6
Descr	iption générale	6
Le po	tentiomètre linéaire	
For	nction et localisation sur le système	7
Pri	ncipe de fonctionnement du potentiomètre linéaire	
Docui	mentation constructeur Potentiomètre	8
Docui	mentation constructeur Moteur Réducteur	9
Fiche 5	Ingénierie Système	13
Diagra	amme de contexte	13
_	amme des cas d'utilisation	
Ū	amme des exigences	
_	amme de définition des blocs	
Diagra	attitie de detitition des biots	T

Diagra	mme de bloc interne	16
Diagra	mme de séquence – Initialisation	17
Fiche 6	Création de courbes avec l'éditeur de courbe Meca3D	18

Fiche 1 Presentation Generale

Contexte industriel

Pour que les joueurs de tennis ou de badminton puissent atteindre leur meilleur niveau, il est indispensable que leurs raquettes soient cordées à leur convenance avec des tensions de cordage reproductibles.

Les centres de compétition et les magasins spécialisés disposent de machines à corder les raquettes. La partie automatisée de la machine permet d'assurer la réalisation précise de la tension de chaque brin.

La figure ci-dessous met en évidence les éléments de la structure de la machine (modèle SP55).

Constituants principaux

- Le berceau reçoit le cadre de la raquette sur lequel il est fixé efficacement.
- L'extrémité de la corde est attachée sur le cadre puis glissée dans le mors de tirage. L'opérateur met la machine sous tension électrique. Celle-ci, asservie en effort, ajuste la valeur de la tension, préréglée sur le pupitre de commande.
- Des pinces maintiennent la corde pendant que l'opérateur la retire du mors, la glisse au travers des œillets du cadre et retourne le berceau pour pouvoir la saisir à nouveau et la tendre.
- La cordeuse est instrumentée : des capteurs et prises de mesure ont été installés en plus des éléments existants pour enregistrer et visualiser plusieurs grandeurs physiques (tension dans la corde, déplacement et vitesse du mors de tirage, tension et intensité du moteur électrique, ...).

Fiche 2 MISE EN SERVICE DE LA CORDEUSE

Mise en œuvre

- 1. S'assurer que la cordeuse et la centrale de mesure sont allumées.
- 2. A l'aide du pupitre, choisir une tension de cordage, par exemple 20 kgF, ce qui correspond à environ 200N de tension dans la corde (Il faut multiplier par 10).
- 3. Coincer la corde dans le mors de tirage.
- 4. Presser situé sur le capot supérieur de la cordeuse.
- 5. Serrer la corde avec une pince.
- 6. Relâcher la tension en appuyant à nouveau sur le bouton.
- 7. Dans le cadre d'un fonctionnement normal, il est possible de desserrer le berceau, et de lui faire faire un demitour. Dans notre cas, le fil du capteur d'effort empêche cette manipulation.
- 8. Remettre la corde sous tension.
- 9. Enlever la pince.

Fiche 3 REALISATION DE MESURES

Réaliser une mesure avec le logiciel la Cordeuse

Réaliser la mesure

- 1. Lancer le logiciel d'acquisition. Pour cela :
 - Menu démarrer
 - Programmes
 - o DMS
 - Logiciel SP55 CPGE (Dossier)
 - Logiciel SP55 CPGE (Application)

Pour lancer une mesure :

- 2. SUR LE PC:
 - o Aller dans le menu Mesures
 - Cliquer sur le bouton initialiser
- 3. SUR LA CENTRALE DE MESURE
 - o Presser le Bouton Départ
- 4. SUR LA CORDEUSE
 - o Lancer une mise en traction ou un cycle de mesure
- 5. SUR LE PC
 - o Attendre le traitement et fermer la fenêtre de mesures

Visualiser les résultats

- Aller dans le menu « courbes » et sélectionner la mesure souhaitée, par exemple :
 - o Cliquer sur Abscisse puis sur Temps pour avoir le temps en abscisse
 - o Cliquer sur Ordonnée puis sur Fc pour avoir la tension de la corde en ordonnée
 - O Cliquer sur Tracer pour afficher l'effort dans la corde en fonction du temps

Visualisation sur l'oscilloscope

L'oscilloscope est réglé. Si ce n'est pas le cas, faites appel au professeur.

Les seuls boutons à utiliser sont a priori ceux mentionnés ci-dessous.

On obtiendra à l'oscilloscope les relevés suivants :

Fiche 4 DESCRIPTION STRUCTURELLE ET TECHNOLOGIQUE

Description générale

Le potentiomètre linéaire

Fonction et localisation sur le système

La chaîne de mesure est constituée d'un potentiomètre linéaire qui mesure l'écrasement du ressort de compression (R). Ce capteur permet donc d'évaluer l'effort exercé par la chaîne sur le Chariot. Sous certaines conditions (statique), cet effort traduit la tension dans la corde. Ce capteur sert dans l'asservissement en tension de la cordeuse. L'écrasement λ du ressort et l'effort T exercé sur le ressort sont reliés par la relation : $T = K \lambda$ où K est la raideur du ressort

Principe de fonctionnement du potentiomètre linéaire

On détermine une position linéaire en mesurant une variation de résistance. La résistance est proportionnelle à la longueur du fil résistant.

L'objet dont on désire mesurer la position ou le déplacement, est rendu solidaire mécaniquement du curseur du potentiomètre. On applique une tension continue Va entre ses extrémités A et B et on mesure la tension Vm entre A et C.

La portion de résistance Rm entre A et C ainsi obtenue est proportionnelle au déplacement du curseur λ et à la résistance totale Ra: $(Rm = \frac{\lambda}{\lambda_{max}} Ra)$. La mesure de la tension aux bornes de la résistance totale Ra correspond à un déplacement maximal du curseur.

Le potentiomètre peut être modélisé par un pont diviseur de tension :

Les caractéristiques du potentiomètre sont les suivantes :

- Va = 5V
- Ra = 5 kOhms
- Déplacement maximal mesuré : 15 mm

Sciences Industrielles de l'ingénieur

Documentation constructeur Potentiomètre

Spéc. électriques	MM11	MM15	MM20	MM30
Course électrique (±0.5mm)	10	15	20	30
Résistance (kOhm)		0.5, 1,	2, 5, 10	
Tolérance ohmique standard (%)		±	10	
Meilleure tol ohmique (%)			-	
Linéarité standard (%)	± 1		± 0.5	
Meilleure linéarité (%)	± 0.5			
Ondulation (%)	< 0.01			
Dissipation à 40°C (W)	0.2	0.3	0.4	0.5
Coef de température (ppm/K)	400			
Résiduelle (%)	< 2			
Résistance d'isolement (Mohm)	> 1000 (sous 1000VDC)			
Tension de claquage		1000 Veff / 1 min		
Courant curseur max (mA)		1		·
Courant curseur recommandé (µA)		<	:1	

	MM15	MM20	MM30	
)+2	15+2	20+2	30+2	
	0.	.3		
	2	0		
30				
2 x paliers lisses				
2				
MM: 40E+6 / MMR: 20E+6				
Duroplast				
Acier inox				
Pins à souder (AMP serie 110 28x0.5)				
		3 2 x palie MM : 40E+6 / Duro Acier	30 2 x paliers lisses 2 MM : 40E+6 / MMR : 20E+6 Duroplast Acier inox	

Spec. environnementales	MM11	MM15	MM20	MM15
Température de service (°C)	-30 + 105			
Température de stockage (°C)	-40 +125			
Vibrations	15 q / 10 2000 Hz			
Chocs	50 g / 11 ms			
Etanchéité	IP 40 (opt IP 54)			

	Options mécaniques	Options électriques
	Axes spéciaux (long, forme, diamètre)	Tolérances spéciales
2	Ressort de rappel	Valeurs ohmiques spéciales
3	IP54 : Joint d'étanchéité augmentant la force de manoeuvre	Prises intermédiaires

Série	Ressort	Course	Résistance	Tolérance	Linéarité
MM	R	11	R5KOHM	W±10%	L±1%
	- : pas de ressort				
	R: avec rssort				

Documentation constructeur Moteur Réducteur

Moto réducteur VALÉO MFD 250

1. Principe de fonctionnement

Les moto-réducteurs à courant continu employés en essuyage comportent deux sous ensembles :

2

- la partie électromagnétique qui constitue l'origine de la puissance : le moteur (1)
- La partie mécanique, qui permet l'adaptation de la première au besoin (couple, vitesse) : le réducteur (2)

Le moteur électromagnétique :

La circulation d'un courant dans les spires (bobine du rotor ou induit (3)) génère un flux magnétique électroaimant), qui transforme l'énergie électrique en énergie mécanique par effet vis-à-vis du champ magnétique permanent (carcasse + inducteur (4)).

Le sens de rotation du moteur est fixé par la polarité du branchement de l'alimentation électrique.

L'inversion du branchement provoque donc une inversion du sens de rotation.

Le réducteur mécanique :

Il permet d'adapter la vitesse et le couple au besoin du système qu'il entraîne.

Le réducteur situé à l'intérieur du socle (5), est composé d'un premier train par roue ou pignon (6) et vis sans fin (7) et dans certain cas, d'un multiplicateur d'angle (moteur 4GA et 4BGA), ou second étage (8) (moteurs MFD).

2. Caractéristiques du moto réducteur

UN	Tension Nominale (12 ou 24)	Volts (V)
l _o	Courant à vide (sans charge sur le réducteur)	Ampères (A)
IMAX	Courant à vide Maximal (couple bloqué)	, , , ,
C ₈	Couple utile à 5 tr/mn	Newton, Mètre (N.m)
Смх	Couple utile maximal (couple bloqué)	,
N ₀	Vitesse à vide	Tours par minute (tr/mn)
Pun	Puissance utile (mécanique restituée) nominale	Watts (W)
Pumx	Puissance utile maximale	Trails (T)
Pa _N	Puissance absorbée (électrique) nominale	Watts (W)
Pa _{MAX}	Puissance absorbée maximale	11013 (11)
ρι	Rendement réducteur	
ρ	Rendement global	
	1	1

Rapport de réduction du réducteur : 1/50

MOTOREDUCTEUR double étage, à sortie rotative

MFD 250

Caractéristiques générales

Tension d'utilisation 12 V

Limites thermiques -30°C à +80°C

Masse 1,195 Kg

Vitesse Bi-vitesse

Sens de rotation SH ou SIH

Ø arbre de sortie 10 mm

Encombrement

Socle droit / Right hand gearbox

Socie gauche / Left hand gearbox

Performances

Courbe de vitesse et intensité

	PV	GV
Vitesse à vide	50 tr/mn	78 tr/mn
Courant à vide	2 A	2,5 A
Couple à 5 tr/mn	28 Nm	25 Nm
Courant Maxi cons.	25 A	30 A
Puissance abs. Maxi	340 W	400 W
Niveau de bruit	55 dBA	60 dBA

Options

Protection thermique Protection d'étanchéité Antiparasitage Mono-vitesse Tension 24 V

Schéma de branchement

Constante de couple du moteur : Ki=0.0386Nm/A

Le dimensionnement du moteur se fait à partir du couple en sortie de moteur (prendre en compte le rapport de réduction dans le cas d'un motoréducteur).

Caractéristique couple - vitesse

- ① Caractéristique permanente correspondant à un échauffement de 100K pour une température ambiante de 40°C.
- ② Caractéristique du couple maximum dépendant du variateur associé.

Choix d'un moteur en fonction d'un cycle rapide – équivalence thermique

A chaque phase correspond:

- un couple *Ci*
- un temps *ti*
- une vitesse moyenne Ni

Le couple thermique équivalent Ceq est tel que :

$$Ceq^2.T = \sum (Ci^2.ti)$$

Soit ${\it Nmoy}$ la vitesse moyenne au cours du cycle :

$$Nmoy.T = \sum (Ni.ti)$$

Pour dimensionner le moteur, il faut reporter sur la caractéristique couple-vitesse ci-dessous le point dont les coordonnées sont *Nmoy* et *Ceq*. Si ce point est dans la zone de fonctionnement permanent ① on peut considérer en première approximation que le moteur convient à l'application.

 ${f Nota}$: La durée ${m ti}$ des phases dont le couple ${m Ci}$ est important doit être faible devant la constante de temps thermique du moteur considéré. A défaut cette méthode ne peut s'appliquer.

Courbes caractéristiques du moteur Valéo MFD 250

Fiche 5 INGENIERIE SYSTEME

Diagramme de contexte

Diagramme des cas d'utilisation

Diagramme des exigences

Intitulé	Critères	Niveau	Limite
Tendre la corde sur la raquette	Précision – écart statique	Force demandée par l'utilisateur en N.	+/- 1%
	Rapidité – Temps de réponse à 5%	Minimum	<0,5s
	Stabilité	Stable	Aucune
Fixer la raquette	Déformation du berceau	Déformation longitudinale maxi du cadre de raquette : 5mm pour une tension de 350N sur 16 cordes	
Orienter la raquette	Rotation	360°	
Fixer la corde sur les mors	Glissement	Serrage sans écrasement permanent de la corde (essais)	
Acquérir la consigne de tension		Tous les 10N	
Être ergonomique	Effort à fournir	Normes X35 – 106/107/109	
Respecter les normes de sécurité	Sécurité	Normes R233-15 à R233-30	
Être esthétique	Estime		
Modifier l'énergie	Puissance	220 W	
S'adapter à différents types de raquette	Dimensions raquettes	Dimension intérieure longitudinale du cadre : 395mm maxi	
Maintenir la tension	Glissement	Serrage sans écrasement permanent de la corde	
	Tension corde		

Diagramme de définition des blocs

Diagramme de bloc interne

Diagramme de séquence – Initialisation

Fiche 6 CREATION DE COURBES AVEC L'EDITEUR DE COURBE MECA3D

• Ouvrir l'éditeur de courbe (Menu Démarrer->Meca3D->Outils-> Nouvel éditeur de courbe

• Créer un nouveau fichier, puis entrer des fonctions définies par morceaux :

