মূল বইয়ের অতিরিক্ত অংশ

পঞ্চদশ অধ্যায়: ক্ষেত্রফল সম্পর্কিত উপপাদ্য ও সম্পাদ্য

পরীক্ষায় কমন পেতে আরও প্রশ্নু ও সমাধান

প্রশ্ন ▶১ ABC একটি সমদ্বিবাহু সমকোণী ত্রিভুজ। BC এর অতিভুজ এবং P. BC এর উপর যে কোন বিন্দ। PO⊥AB. PR⊥AC।

- ক. উদ্দীপকের তথ্য চিত্রের মাধ্যমে প্রকাশ কর।
- খ. প্রমাণ কর যে, $PB^2 = 2PQ^2$.
- গ. প্রমাণ কর যে, $PB^2 + PC^2 = 2PA^2$

১ নং প্রশ্নের সমাধান

চিত্রে, ABC একটি সমকোণী সমদ্বিবাহু ত্রিভুজ। অতিভুজ BC এর উপর P যেকোনো বিন্দু এবং PQ ⊥ AB, PR ⊥ AC।

খ বিশেষ নির্বচন: মনে করি, সমদ্বিবাহু সমকোণী $\triangle ABC$ -এর AB = AC এবং অতিভুজ BC। P, BC এর উপর যেকোনো বিন্দু। P, A যোগ করি। প্রমাণ করতে হবে যে, $PB^2 = 2PQ^2$. অঙকন: P বিন্দু থেকে AB এবং AC বাহুর উপর যথাক্রমে PQ এবং PR লম্ব টানি।

যথাৰ্থতা

প্রমাণ: ধাপ

(১) ∆ABC-এর, ∠A = 90°

[দেওয়া আছে]

এবং $\angle B = \angle C = 45^\circ$

[:: AC = AB]

এখন, ∆PBQ-এর, ∠Q = 90°

 $[:: PQ \perp AB]$

সুতরাং, ∠QPB = ∠PBQ = 45°

 \therefore PQ = BQ

ক

(২) PBQ সমকোণী ত্রিভুজে PB অতিভুজ হওয়ায়,

$$PB^2 = BQ^2 + PQ^2$$

$$= PQ^2 + PQ^2$$

$$[:: BQ = PQ]$$

- \therefore PB² = 2PQ² (প্রমাণিত)
- গ অনুশীলনীর ১৪নং প্রশ্নের সমাধান দ্রম্টব্য।

প্রশ্ন ▶২ ABCD ও EBCF সামান্তরিক দুইটি একই ভূমি BC এর উপর এবং একই সমান্তরাল রেখাযুগল AF ও BC এর মধ্যে অবস্থিত। [नाऱाथानी जिना ञ्कून, नाऱाथानी]

- ক. প্রদত্ত তথ্যানুসারে উপর্যুক্ত সামান্তরিক দুইটির চিত্র আঁক।
- খ. প্রমাণ কর যে, সামান্তরিক ক্ষেত্র ABCD এর

ক্ষেত্রফল = সামান্তরিক ক্ষেত্র EBCF এর ক্ষেত্রফল।

গ. প্রমাণ কর যে, ABCD সামান্তরিকের কর্ণদ্বয় সামান্তরিক ক্ষেত্রটিকে চারটি সমান ত্রিভুজক্ষেত্রে বিভক্ত করে।

প্রদত্ত তথ্যানুসারে সামান্তরিক দুটির চিত্র আঁকা হলো।

- খ পাঠ্যবইয়ের অধ্যায়-১৫ এর উপপাদ্য-৩৮ এর অনুরূপ। পৃষ্ঠা- ২৮৭
- গ অনুশীলনীর ৫নং প্রশ্নের সমাধান দ্রম্টব্য।

প্রশ্ন ▶৩ PQR সমদ্বিবাহু সমকোণী ত্রিভুজের অতিভুজ QR-এর উপর M যে কোনো বিন্দু। D, PQ-এর উপর একটি বিন্দু।

- ক. তথ্যগুলো চিত্রের মাধ্যমে প্রকাশ কর।
- খ. দেখাও যে, $RQ^2 + PD^2 = PQ^2 + RD^2$.
- গ. প্রমাণ কর যে, $MR^2 + MQ^2 = 2PM^2$.

৩ নং প্রশ্নের সমাধান

ক চিত্ৰে, PQR একটি সমকোণী সমদ্বিবাহু ত্রিভুজ যার ∠P = 90°, অতিভুজ QR এর উপর M যেকোনো একটি বিন্দু। D, PQ এর উপরস্থ একটি বিন্দু।

যোগ করি।

প্রমাণ করতে হবে যে, $RQ^2 + PD^2 = PQ^2 + RD^2$

উপরস্থ একটি বিন্দু। R, D

ধাপ-১. ∆PRQ সমকোণী যার অতিভূজ RQ

:. $RQ^2 = PR^2 + PQ^2 (i)$

[পিথাগোরাসের উপপাদ্য]

[পিথাগোরাসের উপপাদ্য]

ধাপ-২. ∆PRD সমকোণী যার অতিভূজ RD

 $\therefore RD^2 = PR^2 + PD^2$ বা, $PD^2 = RD^2 - PR^2 \dots$ (ii)

ধাপ-৩. (i) নং ও (ii) নং যোগ করে পাই,

 $RQ^2 + PD^2 = PR^2 + PQ^2 + RD^2 - PR^2$

বা, $RQ^2 + PD^2 = PQ^2 + RD^2$

 $RQ^2 + PD^2 = RD^2 + PQ^2$ (প্রমাণিত)

িগ মনে করি, সমদ্বিবাহু সমকোণী ∆PRQ-এর PR = PQ এবং অতিভূজ RQ । M, RQ এর উপর যেকোনো বিন্দু। M, P যোগ করি। প্রমাণ করতে হবে যে, $MR^2 + MQ^2 = 2PM^2$.

অঙকন: M বিন্দু থেকে PR এবং PQ বাহুর উপর যথাক্রমে MF এবং ME লম্ব টানি।

প্রমাণ:

ধাপ-১. ∆PRQ-এর, ∠P = 90°

এবং ∠R = ∠Q = 45°

[: PQ = PR]

এখন, ∆MEQ-এর, ∠E = 90°

[: $ME \perp PQ$]

সুতরাং, $\angle EMQ = \angle EQM = 45^{\circ}$

 \therefore QE = ME

অনুরূপভাবে প্রমাণ করা যায়, MRF সমকোণী ত্রিভুজে, MF = RF ধাপ-২. MEQ সমকোণী ত্রিভুজে MQ অতিভুজ হওয়ায়

 $MQ^2 = ME^2 + QE^2$ [পিথাগোরাসের উপপাদ্য]

$$= ME^2 + ME^2$$

[:: ME = QE]

 $\therefore MQ^2 = 2ME^2 \dots \dots \dots (i)$

ধাপ-৩. MRF সমকোণী ত্রিভুজে MR অতিভূজ হওয়ায়,

$$MR^2 = RF^2 + MF^2$$

$$= MF^2 + MF^2$$

[:: RF = MF]

$$\therefore MR^2 = 2MF^2 \dots \dots \dots (ii)$$

ধাপ-8. (i) এবং (ii) নং যোগ করে পাই,

 $MQ^2 + MR^2 = 2ME^2 + 2MF^2 = 2(ME^2 + MF^2)$

আবার, PEMF একটি আয়ত।

 $[\angle F = \angle P = \angle E =$ এক সমকোণ]

 \therefore MF = PE

[∵ আয়তক্ষেত্রের বিপরীত বাহুদ্বয়

পরস্পর সমান]

 $MQ^2 + MR^2 = 2(ME^2 + PE^2) \dots \dots (iii)$

ধাপ-৫. PEM সমকোণী ত্রিভুজে MP অতিভুজ হওয়ায়,

$$MP^2 = ME^2 + PE^2$$

[পিথাগোরাসের উপপাদ্য]

ধাপ-৬. (iii) নং হতে পাই.

 $MQ^2 + MR^2 = 2MP^2$

 $MR^2 + MQ^2 = 2PM^2$ (প্রমাণিত)

প্রশ্ন \triangleright 8 \triangle PQR এর PQ = QR = 4 সে.মি. এবং ∠Q = এক সমকোণ।

- ক. ত্রিভূজটি অঙকন কর এবং এক্ষেত্রে পিথাগোরাসের উপপাদ্যটি
- খ. PR বাহুর উপর A যেকোনো বিন্দু হলে, প্রমাণ কর যে, $AP^2 + AR^2 = 2AQ^2.$
- গ. এমন একটি সামান্তরিক অঙ্কন কর যার একটি কোণ 60° এবং যার দ্বারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল প্রদত্ত ∆-ক্ষেত্র PQR এর ক্ষেত্রফলের সমান।

<u>৪ নং প্রশ্নের সমাধান</u>

চিত্রে, ∆PQR এর PQ=QR=4 সে.মি. এবং ∠Q=এক সমকোণ। এক্ষেত্রে পিথাগোরাসের উপপাদ্যটি হবে— PQR সমকোণী ত্রিভুজের অতিভুজ PR এর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল অপর দুই বাহু PQ ও QR এর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টির সমান। অর্থাৎ $PR^2 = PQ^2 + QR^2$

বিশেষ নির্বচন: মনে করি, সমদ্বিবাহু সমকোণী ∆QPR-এর QP = QR এবং অতিভূজ PR। A, PR এর উপর যেকোনো বিন্দু। A, Q যোগ করি। প্রমাণ করতে হবে যে, $AP^2 + AR^2 = 2AQ^2$.

অঙকন: A বিন্দু থেকে QP এবং QR বাহুর উপর যথাক্রমে AE এবং AF লম্ব টানি।

প্রমাণ: ধাপ

যথাৰ্থতা

(১) ∆QPR-এর, ∠Q = 90°

[দেওয়া আছে]

এবং $\angle P = \angle R = 45^\circ$

[:: QR = QP]

এখন, ∆AFR-এর, ∠F = 90°

 $[:: AF \perp QR]$

সুতরাং, ∠FAR = ∠FRA = 45°

 \therefore RF = AF

অনুরূপভাবে প্রমাণ করা যায়, APE সমকোণী ত্রিভুজে, AE = PE

(২) AFR সমকোণী ত্রিভুজে AR অতিভুজ হওয়ায়

[পিথাগোরাসের উপপাদ্য]

$$AR^2 = AF^2 + RF^2$$

$$= AF^2 + AF^2 \qquad [:: AF = RF]$$

 $AR^2 = 2AF^2 \dots \dots (i)$

(৩) APE সমকোণী ত্রিভূজে AP অতিভূজ হওয়ায়,

$$AP^2 = PE^2 + AE^2$$

$$= AE^2 + AE^2$$

$$[:: PE = AE]$$

$$\therefore AP^2 = 2AE^2 \dots \dots (ii)$$

(8) (i) এবং (ii) নং যোগ করে পাই,

$$AR^2 + AP^2 = 2AF^2 + 2AE^2 = 2(AF^2 + AE^2)$$

আবার, QFAE একটি আয়ত।

$$[\angle E = \angle Q = \angle F =$$
এক সমকোণ]

$$\therefore$$
 AE = QF

$$\therefore$$
 AR² + AP² = 2(AF² + QF²) (iii)

(৫) QFA সমকোণী ত্রিভুজে AQ অতিভুজ হওয়ায়,

$$AQ^2 = AF^2 + QF^2$$

[পিথাগোরাসের উপপাদ্য]

(৬) (iii) নং হতে পাই,

$$AR^2 + AP^2 = 2AQ^2$$

 $AP^2 + AR^2 = 2AQ^2$ (প্রমাণিত)

মনে করি, PQR একটি ত্রিভূজক্ষেত্র এবং ∠x একটি নির্দিষ্ট কোণ। এরূপ একটি সামান্তরিক আঁকতে হবে যার একটি কোণ $\angle x = 60^\circ$ এর সমান এবং যা দ্বারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল APQR এর ক্ষেত্রফল সমান।

অঙ্কনের বিবরণ:

- (১) QR বাহুকে A বিন্দুতে সমদ্বিখণ্ডিত করি।
- (২) AR রেখাংশের A বিন্দুতে $\angle x$ এর সমান $\angle RAD$ আঁকি।
- (৩) P বিন্দু দিয়ে QR বাহুর সমান্তরাল PC রশ্মি টানি এবং মনে করি তা AD রশ্মিকে D বিন্দুতে ছেদ করে।
- (8) R বিন্দু দিয়ে AD রেখাংশের সমান্তরাল RC রশ্মি টানি এবং মনে করি তা PC কে C বিন্দুতে ছেদ করে। তাহলে ARCD ই উদ্দিষ্ট সামান্তরিক।

প্রা \triangleright ৫ \triangle ABC এর $AC^2 = AB^2 + BC^2$

- ক. তথ্যানুসারে চিত্রটি অঙ্কন কর।
- খ. প্রমাণ কর যে, ∠B = এক সমকোণ।
- গ. CE ও AF ত্রিভুজটির মধ্যমা হলে দেখাও যে,

$$4(CE^2 + AF^2) = 5AC^2$$

৫ নং প্রশ্নের সমাধান

 $\triangle ABC$ -এ, $AC^2 = AB^2 + BC^2$ এবং $\angle ABC = 90^\circ$

মনে করি, $\triangle ABC$ -এ $AC^2 = AB^2 + BC^2$ প্রমাণ করতে হবে যে, ∠B = এক সমকোণ

অঙকন : DEF একটি ত্রিভুজ আঁকি, যার ∠E = এক সমকোণ DE = AB এবং EF = BC

প্রমাণ : যেহেতু ∠E = এক সমকোণ

∴ পিথাগোরাসের উপপাদ্যের সাহায্যে পাই. $DF^2 = DE^2 + EF^2$

বা, $DF^2 = AB^2 + BC^2$ [: অঙকন অনুসারে, DE = AB

বা, $DF^2 = AC^2$ এবং EF = BC]

 \therefore DF = AC

এখন ΔABC এবং ΔDEF -এ

AB = DE [অঙ্কন অনুসারে]

BC = EF [একই কারণে]

এবং AC = DF

 \therefore $\triangle ABC \cong \triangle DEF$

∴ $\angle B = \angle E$ [অঙকন অনুসারে]

কিন্তু ∠E = এক সমকোণ

∴ ∠B = এক সমকোণ। **(প্রমাণিত)**

গ দেওয়া আছে, ABC সমকোণী ত্রিভুজে ∠B = এক সমকোণ। অর্থাৎ ∠ABC = 90°. AF এবং CE যথাক্রমে BC ও AB বাহুর উপর মধ্যমা।

দেখাতে হবে যে, $4(CE^2 + AF^2) = 5AC^2$

প্রমাণ:

ধাপ-১. AF, BC বাহুর মধ্যমা [দেওয়া আছে]

 $\therefore BF = CF = \frac{1}{2}BC$

ধাপ-২. CE, AB বাহুর মধ্যমা [দেওয়া আছে]

 $\therefore BE = AE = \frac{1}{2}AB$

ধাপ-৩. সমকোণী ত্রিভুজ ∆ABC এ, ∠ABC = 90° এবং অতিভূজ = AC [দেওয়া আছে]

∴ পিথাগোরাসের উপপাদ্য অনুসারে, $AC^2 = AB^2 + BC^2$ (i)

ধাপ-৪. সমকোণী ত্রিভুজ ∆ABF-এ, অতিভুজ = AF

.. পিথাগোরাসের উপপাদ্য অনুসারে.

 $AF^2 = AB^2 + BF^2$ (ii)

ধাপ-৫. সমকোণী ত্রিভুজ ∆BCE-এ, অতিভুজ = CE

∴ পিথাগোরাসের উপপাদ্য অনুসারে, $CE^2 = BC^2 + BE^2$ (iii)

ধাপ-৬. (ii) + (iii) নং যোগ করে পাই,

 $AF^2 + CE^2 = AB^2 + BF^2 + BC^2 + BE^2$

বা, $AF^2 + CE^2 = BF^2 + BE^2 + AC^2$ [(i) নং থেকে]

 $4(AF^2 + CE^2) = 4(BF^2 + BE^2 + AC^2)$

বা, $4(AF^2 + CE^2) = 4BF^2 + 4BE^2 + 4AC^2$ [4 দ্বারা গুণ করে] $=(2BF)^2+(2BE)^2+4AC^2$ $=BC^2 + AB^2 + 4AC^2$

[∴ 2BF = BC 32BE = AB] $= AC^2 + 4AC^2$ [(i) নং থেকে]

 \therefore 4(CE² + AF²) = 5AC² (দেখানো হলো)

প্রশ্ন ▶৬ ABC একটি সমবাহু ত্রিভুজ। ∠C সূক্ষ্মকোণ এবং AD⊥BC।

ক. সমকোণী ত্রিভূজ ও সমবাহু ত্রিভূজের মধ্যে দুটি পার্থক্য লেখ। ২

খ. প্রমাণ কর যে, $4AD^2 = 3AB^2$

গ. দেখাও যে, $AB^2 = AC^2 + BC^2 - 2BC.CD$

৬ নং প্রশ্নের সমাধান

ক (১) সমকোণী ত্রিভুজে এক কোণ অবশ্যই 90° হতে হবে। কিন্তু সমবাহু ত্রিভুজ তিনটি কোণই 60°।

(২) সমবাহু ত্রিভূজে তিনটি বাহুই সমান কিন্তু সমকোণী ত্রিভূজে তিনটি বাহু কখনোই সমান হতে পারে না।

খ দেওয়া আছে, ∆ABC-সমবাহু অর্থাৎ AB = BC = CA এবং AD, BC এর উপর লম্ব। প্রমাণ করতে হবে যে, $4AD^2 = 3AB^2$ প্রমাণ: AD \perp BC [দেওয়া আছে]

 \therefore \angle ADB = \angle ADC = 90°.

এখন, সমকোণী 🗚BD এবং সমকোণী 🗚CD-এ অতিভুজ AB = অতিভুজ AC [∵ ABC সমবাহু ত্রিভুজ]

এবং AD সাধারণ বাহু।

 $\therefore \Delta ABD \cong \Delta ACD$

[∵ সমকোণী ত্রিভুজদ্বয়ের অতিভুজ এবং অপর একটি বাহু সমান] সুতরাং, BD = CD

 \therefore BC = 2BD

আবার, সমকোণী ∆ABD-এ ∠ADB = 90°

এবং অতিভুজ = AB.

∴ পিথাগোরাসের উপপাদ্য অনুসারে,

$$AB^2 = AD^2 + BD^2$$

 $\overline{AD}^2 = AB^2 - BD^2$

বা, 4AD² = 4AB² – 4BD² [উভয়পক্ষকে 4 দ্বারা গুণ করে]

বা, $4AD^2 = 4AB^2 - (2BD)^2$

 \lnot 1, $4AD^2 = 4AB^2 - BC^2$ [∴ BC = 2BD]

 \lnot 1, $4AD^2 = 4AB^2 - AB^2$ [∴ AB = BC]

∴ 4AD² = 3AB². (প্রমাণিত)

প্রশ ▶ ৭

চিত্রে PQ > PR এবং S, QR এর মধ্যবিন্দু।

ক. পীথাগোরাসের উপপাদ্যটি লিখ।

খ. প্রমাণ কর যে, ∠PSQ স্থূলকোণ।

গ. প্রমাণ কর যে, $PO^2 + PR^2 = 2(PS^2 + OS^2)$.

৭ নং প্রশ্নের সমাধান

ক পীথাগোরাসের উপপাদ্য: সমকোণী ত্রিভুজের R অতিভূজের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টির সমান। PQR সমকোণী ত্রিভুজে,

 $PQ^2 + PR^2 = QR^2$ [পীথাগোরাসের উপপাদ্য অনুসারে]

খ

বিশেষ নির্বচন: দেওয়া আছে, APQR-এ PQ > PR এবং S, QR এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, ∠PSQ স্থূলকোণ। প্রমাণ: ধাপ

[দেওয়া আছে] ($\boldsymbol{\lambda}$) $\Delta PQR \triangleleft PQ > PR$ [ত্রিভুজের বৃহত্তম বাহুর বিপরীত $\therefore \angle PRQ > \angle PQR$ কোণ, ক্ষুদ্রতম বাহুর বিপরীত কোণ অপেক্ষা বৃহত্তর]

(২) এখানে ∠PRQ = ∠PRS এবং ∠PQR = ∠PQS

 $\therefore \angle PRS > \angle PQS$

[ধাপ (১) থেকে]

এবং PQ > PR]

(৩) APQS ও APSR এর মধ্যে

QS = SR $\therefore \angle SPR > \angle QPS$ [S, QR এর মধ্যবিন্দু] [QS ও SR বাহুদ্বয় QR সমান্তরাল রেখার উপর অবস্থিত

(৪) ∆PQS এর বহি:স্থ $\angle PSR = \angle PQS + \angle QPS$

[কোনো ত্রিভুজের বহি:স্থ কোণ তার বিপরীত অন্ত:স্থ কোণদ্বয়ের সমষ্টির সমান]

(৫) আবার ∆PSR এর বহি:স্থ $\angle PSQ = \angle SPR + \angle PRS$ [একই কারণে]

(৬) ধাপ (২) ও ধাপ (৩) যোগ করে $\angle PRS + \angle SPR > \angle PQS + \angle QPS$

 $\angle PSQ > \angle PSR$ [ধাপ (৪) ও ধাপ (৫) হতে]

(9) $\angle PSQ + \angle PSR = 180^{\circ}$

[সরলকোণ]

 $\therefore \angle PSQ > 90^{\circ}$

[ধাপ (৬) থেকে]

∴ ∠PSQ স্থূলকোণ। **(প্রমাণিত)**

বিশেষ নির্বচন: APQR এর PQ > PR এবং S, QR এর মধ্যবিন্দু। প্রমাণ করতে হবে যে $PQ^2 + PR^2 = 2(PS^2 + QS^2)$ অঙ্কন: P বিন্দু থেকে QR এর উপর PC লম্ব টানি।

প্রমাণ:

যথাৰ্থতা

(১) ∆PSC-এ ∠PCS = 90° এবং অতিভুজ PS $\therefore PS^2 = PC^2 + SC^2$

[পীথাগোরাসের উপপাদ্য]

(২) $\triangle PQC$ এ $\angle PCQ = 90^\circ$ এবং অতিভুজ PQ [পীথাগোরাসের $PQ^{2} = PC^{2} + QC^{2}$ $= PC^{2} + (QS + SC)^{2}$ $= PC^{2} + QS^{2} + 2QS.SC + SC^{2}$ $= PC^{2} + SC^{2} + QS^{2} + 2QS.SC$ উপপাদ্য]

[ধাপ (১) থেকে]

 $\therefore PQ^2 = PS^2 + QS^2 + 2QS.SC$ (৩) △PRC -এ ∠PCR = 90° এবং অতিভূজ PR

∴
$$PR^2 = PC^2 + CR^2$$

 $= PC^2 + (SR - SC)^2$
 $= PC^2 + SR^2 - 2.SR.SC + SC^2$
 $= PC^2 + SC^2 + SR^2 - 2SR.SC$
 $= PS^2 + SR^2 - 2SR.SC$ [ধাপ (১) থেকে]
 $PR^2 = PS^2 + QS^2 - 2QS.SC$ [< SR = QS]

(8) ধাপ (২) ও ধাপ (৩) হতে পাই, PO² + PR² $= PS^2 + QS^2 + 2QS.SC + PS^2 + QS^2 - 2QS.SC$ $=2PS^2 + 2QS^2 = 2(PS^2 + QS^2)$

$$\therefore PQ^2 + PR^2 = 2(PS^2 + QS^2)$$
 (প্রমাণিত)

প্রশ্ন ▶৮ △PQR এ ∠P = এক সমকোণ এবং QR বাহুর মধ্যবিন্দু S.

উদ্দীপকের আলোকে চিত্রটি অঙকন কর।

প্রমাণ কর যে, $QR^2 = PQ^2 + PR^2$ 8

দেখাও যে, $PS = \frac{1}{2}QR$. 8

৮ নং প্রশ্নের সমাধান

ক

চিত্রে, PQR একটি সমকোণী ত্রিভূজ, যার ∠P = 90°, এবং অতিভূজ QR এর মধ্যবিন্দু S।

খ দেওয়া আছে, ∆PQR এর ∠P = এক সমকোণ। ধরি, PQ = r, PR = q এবং QR = p প্রমাণ করতে হবে যে, $QR^2 = PQ^2 + PR^2$

PR বাহুকে S পর্যন্ত এমনভাবে বর্ধিত করি, যেন RS = PQ = r হয়। S বিন্দুতে $TS \perp PS$ আঁকি যেন TS = PR = q হয় ৷ R, T ও Q, Tযোগ করি।

প্রমাণ: ΔPQR ও ΔRST ত্রিভুজদ্বয়ের মধ্যে,

PQ = RS, PR = TS এবং

অন্তর্ভুক্ত কোণ ∠RPQ = অন্তর্ভুক্ত কোণ ∠RST = এক সমকোণ।

 \therefore $\triangle PQR \cong \triangle RST$

∠PQR = ∠TRS এবং RT = QR = P

এখন, $\angle PQR + \angle PRQ =$ এক সমকোণ

 \therefore $\angle TRS + \angle PRQ = এক সমকোণ$

কিন্তু, $\angle PRQ + \angle QRT + \angle TRS =$ দুই সমকোণ

∴ ∠ORT = এক সমকোণ

আবার, ট্রাপিজিয়াম PQTS এর ক্ষেত্রফল = △PQR এর ক্ষেত্রফল $+ \Delta QRT$ এর ক্ষেত্রফল $+ \Delta RST$ এর ক্ষেত্রফল

 $\overline{1}, \frac{1}{2}(PQ + TS)PS = \frac{1}{2} \times PR \times PQ + \frac{1}{2} \times QR \times RT + \frac{1}{2} \times RS \times TS$

$$\boxed{4}, \quad \frac{1}{2}(r+q)(q+r) = \frac{1}{2}qr + \frac{1}{2}p^2 + \frac{1}{2}qr$$

$$\overline{q}$$
, $\frac{1}{2}(q+r)^2 = \frac{1}{2}(qr+p^2+qr)$

$$\boxed{4}, \quad q^2 + 2qr + r^2 = 2qr + p^2$$

বা, $q^2 + r^2 = p^2$

বা, $p^2 = r^2 + q^2$

 $QR^2 = PQ^2 + PR^2$ (প্রমাণিত)

গ

বিশেষ নির্বচন: মনে করি, ΔPQR -এ $\angle P$ এক সমকোণ এবং $S,\ QR$ এর মধ্যবিন্দু । $P,\ S$ যোগ করি । প্রমাণ করতে হবে যে, $PS=\frac{1}{2}\ QR$

অঙ্কন: PQ এর মধ্যবিন্দু E নিই এবং S, E যোগ করি।

- (১) ΔPQR-এ E ও S যথাক্রমে PQ ও QR এর মধ্যবিন্দু।
 - ∴ ES || PR
 - \therefore $\angle QES = \overline{u}$ নুর্প $\angle EPR = এক সমকোণ।$ এবং $\angle SEP = \angle EPR = এক সমকোণ$
- (২) এখন AQES ও APES-এ

QE = PE

[: E, PQ এর মধ্যবিন্দু]

ES = ES

[∴ সাধারণ বাহু]

এবং অন্তর্ভুক্ত $\angle QES = \overline{QES} = \overline{Q$

- \therefore $\triangle QES \cong \triangle PES$
- \therefore QS = PS
- (৩) কিন্তু $QS = \frac{1}{2}QR$
 - \therefore PS = $\frac{1}{2}$ QR (দেখানো হলো)

প্রশ্ন⊳১

BC এবং DC ও বুতে ছেদ করেছে। B

∆ABC এ DE || BC এবং DC ও BE পরস্পর O বিন্দুতে ছেদ করেছে।

- ক. দেখাও যে, ∆BOC ও ∆DOE সদৃশকোণী।
- খ. প্রমাণ কর যে, AD % BD = AE % CE।
- গ. যদি D, AB এর মধ্যবিন্দু হয়, তবে প্রমাণ কর যে, $\Delta ABC = 4(\Delta ADE).$

৯ নং প্রশ্নের সমাধান

ক ΔABC এ DE || BC এবং
DC ও BE পরস্পর O
বিন্দুতে ছেদ করেছে।
যেহেতু DE || BC এবং BE

এদের ছেদক। B ^Ł সুতরাং ∠DEB = ∠EBC [একান্তর কোণ]

অর্থাৎ, ∠DEO = ∠OBC

আবার, DE || BC এবং CD এদের ছেদক।

∠EDC = ∠DCB [একান্তর কোণ]

অর্থাৎ, ∠EDO = ∠OCB

∴ ABOC & ADOE 4, ∠DEO = ∠OBC

∠EDO = ∠OCB এবং ∠BOC = ∠DOE [বিপ্রতীপ কোণ]

- ∴ ত্রিভুজদ্বয় সদৃশকোণী। (দেখানো হলো)
- খ পাঠ্যবইয়ের অনুশীলনী-১৪.১ এর উপপাদ্য-২৮ দ্রম্টব্য। পৃষ্ঠা-২৬৮

গ মনে করি ∆ABC-এর AB বাহুর মধ্যবিন্দু D। D,E যোগ করি। প্রমাণ করতে হবে যে,

 Δ -ক্ষেত্র $ABC = 4(\Delta$ -ক্ষেত্র ADE) $\stackrel{\ }{B}$ অঙকন: B, E যোগ করি।

প্রমাণ: D, AB বাহুর মধ্যবিন্দু এবং DE || BC [দেওয়া আছে]

∴ E বিন্দুই হবে AC এর মধ্যবিন্দু।

∆ ABE-এ DE, AB এর উপর মধ্যমা।

 Δ -ক্ষেত্র ADE = $\frac{1}{2}$ (Δ -ক্ষেত্র ABE)

[∵ DE মধ্যমা ∆-ক্ষেত্র ABE-কে সমদ্বিখণ্ডিত করে]

আবার, ∆ABC- এ BE, AC-এর উপর মধ্যমা।

 \therefore \triangle -ক্ষেত্র $ABE = \frac{1}{2} \left(\triangle$ -ক্ষেত্র $ABC \right)$ [একই কারণে]

 $\therefore \Delta$ -ক্ষেত্র $ADE = \frac{1}{2} \left\{ \frac{1}{2} \left(\Delta$ -ক্ষেত্র $ABC \right) \right\} = \frac{1}{4} \left(\Delta$ -ক্ষেত্র $ABC \right)$

অর্থাৎ, Δ -ক্ষেত্র ADE এর ক্ষেত্রফল $=\frac{1}{4}(\Delta$ -ক্ষেত্র ABC এর ক্ষেত্রফল)

 $\therefore \Delta$ -ক্ষেত্র ABC = $4(\Delta$ -ক্ষেত্র ADE) (প্রমাণিত)

প্রামি ১০ Δ PQR এর PR = QR, QR কে M পর্যন্ত বর্ধিত করা হল যেন QR = MR.

- ক. জ্যামিতিক উপপাদ্যের প্রমাণে ধাপগুলো কী কী?
- থ. দেখাও যে, PQ + PM > 2PR.
- প্রমাণ কর যে, ∠QPM = 1 সমকোণ।

১০ নং প্রশ্নের সমাধান

জ্যামিতিক উপপাদ্যের প্রমাণে সাধারণত নিম্নাক্ত ধাপগুলো থাকে:
(১) সাধারণ নির্বচন (২) চিত্র ও বিশেষ নির্বচন (৩) প্রয়োজনীয়
অঙ্কনের বর্ণনা এবং (৪) প্রমাণের যৌক্তিক ধাপগুলোর বর্ণনা।

দেওয়া আছে, ΔPQR এ QR = RP। QR কে M পর্যন্ত বর্ধিত করা হলো যেন QR = MR হয়। P, M যোগ করা হলে প্রমাণ করতে হবে যে, QP + PM > 2PR

প্রমাণ: ধাপ

যথাৰ্থতা

(**১**) ΔPQM এ

ত্রিভুজের যেকোনো দুই বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর]

PQ + PM > QM

- বা, PQ + PM > QR + RM
- বা, PQ + PM > 2QR
- ∴ PQ + PM > 2PR (প্রমাণিত)

দেওয়া আছে, ΔPQR এ $PR=QR\mid QR$ কে M পর্যন্ত বর্ধিত করা হলো যেন RM = QR হয়। প্রমাণ করতে হবে যে, ∠QPM = 1 সমকোণ।

প্রমাণ: ধাপ যথাৰ্থতা

- (3) $\triangle PQR \triangleleft PR = QR$ [দেওয়া আছে] ∴ $\angle PQR = \angle QPR$... (i) [সমান সমান বাহুর বিপরীত আবার, ΔPRM এ কোণদ্বয় সমান] [:: PR = QR, QR = MR]PR = MR
 - \therefore $\angle PMR = \angle RPM \dots (ii)$ বা, $\angle QPR + \angle RPM = \angle PQR + \angle PMR [(i) + (ii)]$ করে]
 - $\therefore \angle QPM = \angle PQM + \angle PMQ \dots \dots (iii)$
- (২) এখন, APQM এ

 $\angle QPM + \angle PQM + \angle PMQ = 180^{\circ}$ [ত্রিভুজের তিন কোণের বা, ∠QPM + ∠QPM = 180° [(iii) থেকে] [সমষ্টি দুই সমকোণ] বা, 2∠QPM = 180°

∴ ∠QPM = 1 সমকোণ (প্রমাণিত)

প্রশ্ন ▶১১ ∆PQR এ ∠PQR = 1 সমকোণ এবং PQ = QR, Q থেকে PR এর উপর QM লম্ব PR কে M বিন্দুতে ছেদ করে। N, PQ এর মধ্যবিন্দু।

- ক. উপরের তথ্যানুসারে চিত্র আঁক।
- খ. প্রমাণ কর যে, $PR = \sqrt{2}PQ$.
- গ. প্রমাণ কর যে, MN = $\frac{1}{2}$ QR.

১১ নং প্রশ্নের সমাধান

 Δ PQR এ \angle PQR = 1 সমকোণ | QM \perp PR এবং N, PQ বাহুর মধ্যবিন্দু।

খ ΔPQR এ $\angle PQR = 1$ সমকোণ এবং PQ = QR | প্রমাণ করতে হবে যে, $PR = \sqrt{2} PQ$

প্রমাণ:

প্রমাণ:

এখানে, ΔPQR এ $\angle PQR = 1$ সমকোণ

∴ পীথাগোরাসের উপপাদ্য অনুসারে পাই,

 $PR^2 = PO^2 + OR^2$

বা, $PR^2 = PQ^2 + PQ^2$

[:: PQ = QR]

বা, $PR^2 = 2PQ^2$

∴ PR = $\sqrt{2}$ PQ (প্রমাণিত)

[: বর্গমূল করে]

গ ∆PQR এ ∠PQR = 1 সমকোণ ও PQ = QR। Q হতে PR এর উপর QM লম্ব যা PR কে M বিন্দুতে ছেদ করে। আবার N, PQ এর মধ্যবিন্দু। M, N যোগ করি। প্রমাণ করতে হবে যে, $MN = \frac{1}{2}QR$ ।

∆PQM ଓ ∆QMR এ

PQ = QRQM = QM [দেওয়া আছে]

[সাধারণ বাহু]

 $\angle QMP = \angle QMR = 1$ সমকোণ

 $[:: QM \perp PR]$

 $\therefore \Delta PQM \cong \Delta QMR$

 $\therefore PM = RM$

অর্থাৎ M, PR এর মধ্যবিন্দু।

আবার, N, PQ এর মধ্যবিন্দু।

আমরা জানি, ত্রিভুজের যেকোন দুই বাহুর মধ্যবিন্দুর সংযোজক রেখাংশের দৈর্ঘ্য তৃতীয়

বাহুর অর্ধেক।

এখন, ΔPQR-এ

PQ ও PR বাহুর মধ্যবিন্দু যথাক্রমে N ও M

∴ MN = $\frac{1}{2}$ QR (প্রমাণিত)

প্রশ্ন ▶ ১২

8

M ও N যথাক্রমে QR ও PQ এর মধ্যবিন্দু।

- ক. $\angle P = 2 \angle R$ হলে, $\angle P$ এর পরিমাণ নির্ণয় কর।
 - প্রমাণ কর যে, $4 (MP^2 + RN^2) = 5PR^2$
- গ. PR এর মধ্যবিন্দু S হলে, প্রমাণ কর যে, $QS = \frac{1}{2} PR$.

১২ নং প্রশ্নের সমাধান

ক দেওয়া আছে, ∆PQR এ ∠Q = 90° এবং ∠P = 2∠R আমরা জানি, ত্রিভূজের তিনকোণের সমষ্টি 180°

∴
$$\triangle PQR \triangleleft$$
, $\angle P + \angle Q + \angle R = 180^{\circ}$
 $\boxed{4}$, $2\angle R + 90^{\circ} + \angle R = 180^{\circ}$

বা,
$$3 \angle R = 180^{\circ} - 90^{\circ}$$
 বা, $3 \angle R = 90^{\circ}$

$$\therefore \angle P = 2 \times 30^{\circ} = 60^{\circ} \text{ (Ans.)}$$

খ দেওয়া আছে, ∆PQR এ

∠Q = একসমকোণ এবং QR ও PQ এর মধ্যবিন্দু যথাক্রমে M ও N।P, M ও R, N যোগ করা হল। প্রমাণ করতে হবে যে, 4(PM² + RN²) = 5PR²

প্রমাণ:

ধাপ-১. ΔPQR এ $\angle Q=$ একসমকোণ হওয়ায় PR অতিভুজ

$$\therefore PR^2 = PQ^2 + QR^2 \cdot \dots \cdot (i)$$

[পীথাগোরাসের উপপাদ্য অনুসারে]

অনুরূপভাবে, ΔPQM এ $PM^2 = PQ^2 + QM^2$

$$= PQ^2 + \left(\frac{1}{2}QR\right)^2 = PQ^2 + \frac{1}{4}QR^2$$
 [M, QR এর মধ্যবিন্দু]

$$\therefore 4PM^2 = 4PQ^2 + QR^2 \cdot \cdots \cdot (ii)$$

ধাপ-২. ΔRQN এ $RN^2 = QN^2 + QR^2$

$$= \left(\frac{1}{2} PQ\right)^2 + QR^2$$

[N, PQ এর মধ্যবিন্দু]

$$=\frac{1}{4}PQ^2 + QR^2$$

$$\therefore 4 \text{ RN}^2 = PQ^2 + 4QR^2 \cdot \cdot \cdot \cdot \text{ (iii)}$$

ধাপ-৩. [(ii) + (iii)] হতে পাই,

$$4PM^2 + 4RN^2 = 5PQ^2 + 5QR^2$$

বা,
$$4(PM^2 + RN^2) = 5(PQ^2 + QR^2)$$

বা,
$$4(PM^2 + RN^2) = 5PR^2$$

[(i) নং হতে]

$$\therefore 4(PM^2 + RN^2) = 5PR^2$$
 (প্রমাণিত)

গ দেওয়া আছে, ∆PQR এ ∠Q = এক সমকোণ। PQ ও PR এর মধ্যবিন্দু যথাক্রমে N ও S। Q, S যোগ করি।

প্রমাণ করতে হবে যে, $QS = \frac{1}{2}PR$

প্রমাণ:

ধাপ-১. ΔPQR এ PQ ও PR এর মধ্যবিন্দ্ যথাক্রমে N ও S

∴ NS || QR

 $\therefore \angle PNS = \angle NQR$

[অনুরূপকোণ]

ধাপ-২. APNS এবং AQNS এ

PN = QNNS = NS [N, PQ এর মধ্যবিন্দু] [সাধারন বাহু]

এবং ∠PNS = ∠SNQ

[প্রত্যেকে এক সমকোণ]

 $\therefore \Delta PNS \cong \Delta QNS$

 $\therefore PS = QS$

ধাপ-৩. কিন্তু $PS = \frac{1}{2}PR$

[S, PR এর মধ্যবিন্দু]

∴ QS = $\frac{1}{2}$ PR (প্রমাণিত)

ক. OP \perp AB হলে প্রমাণ কর যে, AP = $\frac{1}{2}$ AB |

খ. প্রমাণ কর যে, 2∠AEC = (∠BOD + ∠AOC)

গ. ΔBEC এর $\angle E=90^\circ$ এবং Q,BC এর মধ্যবিন্দু প্রমাণ কর যে, $EQ^2 = BQ^2 = \frac{1}{4}BC^2$

৪ নং প্রশ্নের সমাধান

ক O কেন্দ্রবিশিষ্ট বৃত্তে OP ⊥ AB. প্রমাণ করতে হবে যে, $AP = \frac{1}{2}AB$ ।

অঙ্কন: O, A; O, B যোগ করি। প্রমাণ:

ধাপ-১. OP \perp AB হওয়ায়,

∠OPA = ∠OPB = এক সমকোণ

অতএব, ΔΟΑΡ ও ΔΟΡΒ উভয়েই সমকোণী ত্রিভুজ।

ধাপ-২. এখন, OAP এবং OPB সমকোণী ত্রিভুজদ্বয়ের মধ্যে

অতিভুজ OA = অতিভুজ OB এবং OP = OP

[উভয়েই একই বৃত্তের ব্যাসার্ধ]

0

[সাধারণ বাহু]

 $\triangle OAP \cong \triangle OPB$

 $\therefore AP = PB$

∴ AP = $\frac{1}{2}$ AB (প্রমাণিত)

খ O কেন্দ্রবিশিষ্ট বৃত্তে AB ও CD জ্যা দুইটি পরস্পরকে E বিন্দুতে সমকোণে ছেদ করে। প্রমাণ করতে হবে যে, $2\angle AEC = (\angle BOD + \angle AOC) + (\angle AOC)$

অঙ্কন: O, A; O, B; O, C; O, D

এবং C, B যোগ করি।

ধাপ-১. △BEC-এ বহি:স্থ ∠AEC = অন্ত:স্থ [ত্রিভুজের বহি:স্থ $(\angle BCE + \angle CBE)$ কোণ অন্ত:স্থ বা, $\angle AEC = \angle BCD + \angle ABC$ বিপরীত কোণদ্বয়ের ধাপ-২. এখন, BD চাপের উপর অবস্থিত সমষ্টির সমান। ∠BCD বৃত্তস্থ কোণ এবং ∠BOD কেন্দ্রস্থ [বৃত্তের একই চাপের

কোণ।

দণ্ডায়মান কেন্দ্ৰস্থ কোণ বৃত্তস্থ কোণের

∴ ∠BOD = 2∠BCD

ধাপ-৩. আবার, AC চাপের উপর অবস্থিত দ্বিগুণী

∠ABC বৃত্তস্থ কোণ এবং ∠AOC কেন্দ্রস্থ [ঐ একই কারণে] কোণ।

∴ ∠AOC = 2∠ABC

ধাপ-8. ∴ ∠BOD + ∠AOC = 2∠BCD + 2∠ABC

 $= 2(\angle BCD + \angle ABC) = 2\angle AEC$

∴ 2∠AEC = (∠BOD + ∠AOC) (প্রমাণিত)

গ O কেন্দ্রবিশিষ্ট বৃত্তে ∆BEC এবং ∠E = 90° এবং Q, BC এর মধ্যবিন্দু। E, Q যোগ করি। প্রমাণ করতে হবে যে, $EQ^2 = BQ^2 = \frac{1}{4}BC^2$

অঙকন: EC এর মধ্যবিন্দু F নিয়ে F, Q যোগ করি।

ধাপ-২. এখন, ΔCFQ এবং ΔEFQ এর [কল্পনা]

ধাপ-১. ΔBEC এর F ও Q যথাক্রমে CE [অঙ্কন এবং কল্পনানুসারে] এবং BC এর মধ্যবিন্দু। [< ত্রিভুজের যে কোন দুই ∴ FQ || EB বাহুর মধ্যবিন্দুর সংযোজক ∴ ∠CFQ = ∠FEB = এক সমকোণ রেখা এর বাহুর সমান্তরাল।]

মধ্যে CF = FE, FQ বাহু সাধারণ এবং

অପ୍ତର୍ତ୍ତ ∠CFQ = ଅପର୍ତ୍ତ ∠EFQ | Δ CFQ $\cong \Delta$ EFQ

[< F, CE এর মধ্যবিন্দু]
[< প্রত্যেকে সমকোণ]

∴ CQ = EQ

ধাপ-৩. কিন্তু $CQ = \frac{1}{2}BC = BQ$

$$\therefore BQ = EQ = \frac{1}{2}BC$$

∴
$$BQ^2 = EQ^2 = \frac{1}{4} BC^2$$
 (প্রমাণিত)

সৃজনশীল প্রশ্নব্যাংক

প্রশ্ন ►১৪ AABC একটি সমবাহু ত্রিভুজ AD ⊥ BC.

- ক. উদ্দীপকের আলোকে চিত্রটি অংকন কর।
- খ. প্রমাণ কর যে, $3AB^2 = 4AD^2$.
- গ. যদি উক্ত ত্রিভুজের AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে x ও y হয় তবে প্রমাণ কর যে, $\Delta AXY = \frac{1}{4}\Delta ABC$.

প্রান্ন ►১৫ ABCD ও EBCF সামান্তরিক দুইটি একই ভূমি BC এর উপর এবং একই সমান্তরাল রেখাযুগল AF ও BC এর মধ্যে অবস্থিত।

- ক. প্রদত্ত তথ্যানুসারে উপযুক্ত সামান্তরিক দুইটি আঁক।
- খ. প্রমাণ কর যে, সামান্তরিক ক্ষেত্র ABCD এর ক্ষেত্রফল = সামান্তরিক ক্ষেত্র EBCF এর ক্ষেত্রফল।
- গ প্রমাণ কর যে, ABCD সামান্তরিকের কর্ণদ্বয় সামান্তরিক ক্ষেত্রটিকে চারটি সমান ত্রিভজক্ষেত্রে বিভক্ত করে।

প্রশ্ন ►১৬ ABC সমদ্বিবাহু সমকোণী ত্রিভুজের অতিভুজ BC এর উপর M যে কোন বিন্দু। N, AB এর উপর একটি বিন্দু।

- ক. তথ্যগুলোকে চিত্রের মাধ্যমে প্রকাশ কর।
- খ. প্রমাণ কর যে, $BC^2 + AN^2 = AB^2 + CN^2$
- গ. দেখাও যে, $MC^2 + MB^2 = 2MA^2$

প্রশ্ন ▶১৭ ABC একটি সমকোণী ত্রিভূজ যার ∠A = এক সমকোণ।

- ক. পীথাগোরাসের উপপাদ্যটি লিখ।
- খ. প্রমাণ কর যে, $BC^2 = AB^2 + AC^2$
- গ. যদি ABC ত্রিভুজের AB > AC হয় এবং ∠A এর সমদ্বিখন্ডক AG, BC বাহুকে G বিন্দুতে ছেদ করে, তবে প্রমাণ কর যে, ∠AGB স্থূলকোণ।

প্রশ্ন ►১৮ AABC ও ADBC ত্রিভুজন্বয় একই ভূমি BC এর উপর এবং একই সমান্তরাল রেখাযুগল BC ও AD এর মধ্যে অবস্থিত।

- ক. পিথাগোরাসের সমকোণী ত্রিভুজ সংক্রান্ত উপপাদ্যটি বিবৃত কর।
- খ. প্রমাণ কর যে, Δক্ষেত্র ABC এর ক্ষেত্রফল = Δক্ষেত্র BCD এর ক্ষেত্রফল। 8
- গ. উদ্দীপকের ABC ত্রিভুজটি যদি সমবাহু হয় এবং AD, BC এর উপর লম্ব হয় তবে প্রমাণ কর যে, $4AD^2 = 3AB^2$.

প্রশ্ন ▶ ১৯

- ক. এমন একটি ত্রিভুজ অঙ্কন কর যা দ্বারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল একটি নির্দিষ্ট চতুর্ভুজক্ষেত্রের ক্ষেত্রফলের সমান। ২
- খ. প্রমাণ কর যে, $AB^2 = AD^2 + BD^2$
- গ. প্রমাণ কর যে, $AB^2 = AC^2 + BC^2 + 2BC.CD$

প্রশ্ন ▶২০ ∆PQR এর একটি মধ্যমা QD।

- ক্র উদ্দীপকের আলোকে আনুপাতিক চিত্র আঁক। ২
- খ. প্রমাণ কর যে, PQ² + QR² = 2(PD² + QD²)
- গ. PQ = QR = PR হলে দেখাও যে, $4QD^2 = 3PQ^2$.

প্রশ ▶ ২১ চিত্রে ∠A = 90° AC = AB

- ক. BC = 5cm এবং AB = 3cm হলে ত্রিভুজটির ক্ষেত্রফল কত? (যেখানে $\angle A \neq 90^{\circ}$)
- খ. প্রমাণ করো যে, $XA^2 = \frac{1}{2} (BX^2 + CX^2)$
- গ. AX মধ্যমা হলে প্রমাণ করো যে, $\frac{1}{2}\left(AB + AC\right) > AX$. 8

প্রশ্ন ▶ ২২

চিত্রে $\triangle ABC$ -এ $\angle A$ = এক সমকোণ।

- ক. AB = 6cm এবং AC = 8cm হলে, ΔABC -এর ক্ষেত্রফল নির্ণয় কর। ২
- খ. প্রমাণ কর যে, $\mathrm{BC}^2 = \mathrm{AB}^2 + \mathrm{AC}^2$.
- গ. প্রমাণ কর যে, $BC^2 + AD^2 = BD^2 + AC^2$.

উত্তর: ক. 24 বর্গ সে.মি.

প্রশ্ন ►২৩ ΔABC ও ΔDBC এর একই ভূমি BC এবং উভয়ই BC ও AD সমান্তরাল রেখাযুগলের মধ্যে অবস্থিত।

- চ. উদ্দীপকের তথ্যানুসারে ∆ABC ও ∆DBC আঁক।
- খ. প্রমাণ কর যে, Δ-ক্ষেত্র ABC এর ক্ষেত্রফল = Δ-ক্ষেত্র DBC এর ক্ষেত্রফল। 8
- গ. উদ্দীপকের ΔABC এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে X ও Y হলে, প্রমাণ কর যে, ∆-ক্ষেত্র AXY এর ক্ষেত্রফল

$$=rac{1}{4}\left(\Delta$$
-ক্ষেত্র ABC এর ক্ষেত্রফল $ight)$

প্রশ্ন ▶ ২৪

চিত্রে $\triangle ABC$ -এ $\angle A$ = এক সমকোণ।

- ক. AB=6cm এবং AC=8cm হলে, ΔABC-এর ক্ষেত্রফল নির্ণয় কর। ২
- খ. প্রমাণ কর যে, $BC^2 = AB^2 + AC^2$.
- গ. প্রমাণ কর যে, $BC^2 + AD^2 = BD^2 + AC^2$.

উত্তর: ক. 24 বর্গ সে.মি.

প্রশ্ন ▶২৫ ADEF-এর DM একটি মধ্যমা।

- ক. রেখা প্রতিসমতা নেই এমন দুটি চিত্র অঙ্কন কর।
- খ. প্রমাণ কর যে, $DE^2 + DF^2 = 2(DM^2 + EM^2)$
- গ. যদি DM, \angle EDF-এর অন্তর্দ্বিখন্ডক হয়, তবে প্রমাণ কর যে, EM \sharp MF = ED \sharp DF.

প্রশ্ন ▶২৬ ABC একটি সমকোণী ত্রিভুজ যার ∠A = এক সমকোণ, BC বাহুর মধ্যবিন্দু D.

- ক. প্রদত্ত তথ্যানুযায়ী ABC ত্রিভুজটি অঙ্কন কর।
- খ. দেখাও যে, AB + AC > 2AD 8
- গ. প্রমাণ কর যে, $AD = \frac{1}{2}BC$

নিজেকে যাচাই করার জন্য অধ্যায়ের মডেল প্রশ্নপত্রের ওপর পরীক্ষা দাও। তোমার করা উত্তরগুলো পরের পৃষ্ঠায় দেওয়া উত্তরপত্র থেকে মিলিয়ে নাও। প্রয়োজনে উত্তরপত্রটি শিক্ষক বা অভিভাবককে দিয়ে মূল্যায়ন করাও।

সূজনশীল বহুনির্বাচনি প্রশ্ন

সময়: ৩০ মিনিট: মান-৩০

নিচের কোনটি সঠিক?

K i ଓ ii L i ଓ iii M ii & iii N i, ii & iii

নিচের চিত্রের আলোকে (৯ ও ১০) নং প্রশ্নের উত্তর

দাও:

চিত্রে, $\triangle ABC$ সমবাহু, $AD \perp BC$ এবং AB = 4 সে.মি.।

৯. BD = কত সে.মি.?

K $2\sqrt{3}$ L $2\sqrt{5}$ M 2 N 4

১০. ত্রিভূজটির উচ্চতা কত সে.মি.? K $2\sqrt{3}$ L $2\sqrt{5}$ M $4\sqrt{3}$ N $4\sqrt{5}$

১১. যে চতুর্ভুজের প্রত্যেকটি কর্ণ 5 সে.মি. এবং পরস্পরকে সমকোণে সমদ্বিখন্ডিত করে এরপ চত্রভূজ কোন ধরনের?

K সামান্তরিক

∟ রম্বস N ট্রাপিজিয়াম

M বর্গক্ষেত্র ১২. ABCD রম্বসের কর্ণদ্বয় O বিন্দুতে ছেদ করে। রম্বসের ক্ষেত্রফল 64 বর্গ সে.মি. হলে. ΔΑΟΒ এর ক্ষেত্রফল কত বর্গ সে.মি.?

K 16 L 32 M 64 N 128

১৩. $\triangle ABC$ এর $AB^2 = AC^2 + BC^2$ হলে নীচের কোনটি সঠিক?

> L ∠B = 45° $K \angle A = 45^{\circ}$ $M \angle B = 90^{\circ}$ $N \angle C = 90^{\circ}$

১৪. ABC সমকোণী ত্রিভুজের ∠B = এক সমকোণ এবং D অতিভুজ AC এর মধ্যবিন্দু হলে নিচের কোনটি সঠিক?

K AB = BDL BC = BD MAB = BCN BD = CD

১৫. সমদ্বিবাহু ত্রিভুজের সমান সমান দুই বাহুর দৈর্ঘ্য 5m এবং অপর বাহুর দৈর্ঘ্য 6m হয়, তবে সমদ্বিবাহু ত্রিভূজের ক্ষেত্রফল কত? K 12 L 20 M 24 N 40

নিচের চিত্রের আলোকে (১৬-১৮) নং প্রশ্নের উত্তর

চিত্রে, AC = 24cm, BD = 10cm

১৬. বাহুর দৈর্ঘ্য কত?

M 240

K 30 সে. মি. L 17 সে. মি. M 15 সে. মি. N 13 সে. মি.

১৭. ABCD এর ক্ষেত্রফল cm² এককে কত? K 60 I 120 N 480

K 5 L 25 M 50 N 125

১. ΔABC এ EF || BC, EF = 2 সে.মি. এবং BC = 4 সে.মি. হলে, ΔABC ও ΔAEF-এর ক্ষেত্রফলদ্বয়ের অনুপাত কত?

K 1:4 L 2:3 M 9:16 N 2:3

২. ΔABC ও ΔBDC এর উচ্চতা সমান। ΔABC এর ক্ষেত্রফল 54 বর্গ একক হলে, ABDC এর ক্ষেত্রফল কত বর্গ একক?

L 27 M 54 N 108 K 9

O.

ABCD সামান্তরিকের ক্ষেত্রফল 180 বর্গ সে.মি. হলে ΔAOB-এর ক্ষেত্রফল কত সে.মি.? K 90 L 60 M 45 N 30

8. 🛮 🛆 ABC এ AB = AC = 6 সে.মি. এবং D, BC এর মধ্যবিন্দু । $AD^2 + CD^2 =$ কত বর্গ সে.মি.? K 18 L 36 M 54 N 72

Œ.

ABCD ট্রাপিজিয়ামে DE লম্ব হলে —

i. ADE একটি সমকোণী ত্রিভূজ।

ii. AB || CD.

iii. ΔACD-এর ক্ষেত্রফল = ABCD ট্রাপিজিয়ামের ক্ষেত্রফল – ∆ABC-এর ক্ষেত্রফল।

নিচের কোনটি সঠিক?

Кigii L i ଓ iii M ii 8 iii N i, ii ଓ iii

৬. একটি সামান্তরিক ক্ষেত্রের এবং সমান ক্ষেত্রফল বিশিষ্ট একটি আয়তক্ষেত্র একই ভূমির উপর এবং এর একই পাশে অবস্থিত হলে—

□ আয়তক্ষেত্রের চেয়ে সামান্তরিকের পরিসীমা কম ☑ আয়তক্ষেত্রের চেয়ে সামান্তরিকের পরিসীমা বেশি ► সামান্তরিকের পরিসীম আয়তক্ষেত্রের পরিসীমার দ্বিগুণ

ΔABC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও Ε হলে ΔΑΒC : ΔΑDE = কত? K 1:2 L 2:1 M 1:4 N 4:1

BC || DE এবং AB || CD চিত্ৰে —

i. Δ ক্ষেত্র ABC = Δ ক্ষেত্র BDC ii. Δ ক্ষেত্ৰ BDC = আয়তক্ষেত্ৰ BCFE

iii. সামান্তরিক ক্ষেত্র ABCD = আয়তক্ষেত্র BCFE

১৮. AAOD এর ক্ষেত্রফল কত বর্গ সে.মি.? K 120 L 60 M 30 N 15

১৯. ABCD সামান্তরিকের অভ্যন্তরের P যেকোনো বিন্দু। PAB ও PCD ত্রিভুজ ক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টি 50 বর্গমিটার হলে ABCD এর ক্ষেত্রফল কত বর্গ মিটার?

K 50 L 100 M 150 N 200

২০. ΔABC-এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু X ও Y হলে —

i. BC ও XY সমান্তরাল।

ii. Δ ক্ষেত্র AXY-এর ক্ষেত্রফল $=\frac{1}{4}\Delta$ ক্ষেত্র ABC-এর ক্ষেত্রফল।

iii. Δ ক্ষেত্র XBC-এর ক্ষেত্রফল = Δ ক্ষেত্র YBC-এর ক্ষেত্রফল।

নিচের কোনটি সঠিক?

K i ଓ ii L i & iii iii & ii M N i, ii ଓ iii

২১. চিত্রে —

i. $AD^2 = AB^2 + BD^2$.

ii. ADB সমকোণী ত্রিভুজ। iii. ADC স্থূলকোণী ত্রিভূজ।

নিচের কোনটি সঠিক?

K i ଓ ii L i ଓ iii M ii 🛭 iii N i, ii 3 iii

২২. ΔABC-এ BC ভূমির সমান্তরাল যেকোনো সরলরেখা AB ও AC বাহুকে D ও Eবিন্দুতে ছেদ করে। ΔDBC-এর ক্ষেত্রফল 40 বর্গ একক হলে ΔEBC -এর ক্ষেত্রফল কত বৰ্গ একক?

K 20 L 40 M 80 N 160

২৩.

BCEF সামান্তরিকে ক্ষেত্রফল 200 বর্গ সে.মি. হলে $\triangle ABC$ ত্রিভুজের ক্ষেত্রফল কত বৰ্গ সে.মি.?

K 300 L 200 M 100 N 50

২৪. 5 সে. মি. ভূমির উপর এবং একই সমান্তরাল রেখাযুগলের মধ্যে অবস্থিত দুইটি ত্রিভুজের একটির ক্ষেত্রফল 25 বর্গমিটার হলে অপরটির ক্ষেত্রফল কত বর্গমিটার?

নিচের তথ্যের ভিত্তিতে (২৫-২৭) নং প্রশ্নের উত্তর দাও:

চিত্রে আতয়ক্ষেত্র ABCD এ BE = 2BC এবং BE = 8 সে.মি., AE = $2\sqrt{17}$ সে.মি.। ২৫. AB সমান কত সে.মি.?

K 2 L 4 M 6 N 17

২৭. ত্রিভূজ ABE এর ক্ষেত্রফল কত বর্গ সে.মি.? K 32 L 16 M 8 N 4

নিচের তথ্যের ভিত্তিতে (২৯ ও ৩০) নং প্রশ্নের উত্তর দাও:

চিত্রে, ত্রিভুজ ABC এর D ও E বিন্দু যথাক্রমে AB ও AC বাহুর মধ্যবিন্দু এবং AABC এর ক্ষেত্রফল 16 বর্গ সে.মি.।

২৯. ত্রিভুজ ABE এর ক্ষেত্রফল কত বর্গ সে.মি.? K 16 L 12 M 8 N 4

৩০. ত্রিভুজ ADE এর ক্ষেত্রফল কত বর্গ সে.মি.? K 8 L 4 M 2 N 1

স্জনশীল রচনামূলক প্রশ্ন

সময়: ২ ঘণ্টা ৩০ মিনিট; মান-৭০ [বি. দ্র. যে কোনো ৭টি প্রশ্নের উত্তর দিতে হবে। প্রতি প্রশ্নের মান ১০

২

8

 $50 \times 9 = 90$

- ১.▶ △ABC এবং △DEF দুইটি সদৃশ বাহু।
- ক. দুইটি ত্রিভুজ সদৃশ হওয়ার শর্ত কী?
- খ. প্রমাণ করো যে, $\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$
- গ. যদি AD, \triangle ABC-এর মধ্যমা হয় তবে প্রমাণ করো যে,

 $AB^2 + AC^2 = 2(AD^2 + BD^2)$

২. ▶

- ক. পিথাগোরাসের উপপাদ্যটি লেখ।
- খ. X, AB এবং Y, AC এর মধ্যবিন্দু হলে প্রমাণ কর যে, $4 \Delta AXY = \Delta$ ক্ষেত্র ABC.
- ণ. ত্রিভুজটি সমবাহু এবং $AP \perp BC$ হলে প্রমাণ কর যে, $4AP^2 = 3AB^2.$
- ৩. ▶ △PQR এ ∠P = এক সমকোণ এবং QR বাহুর মধ্যবিন্দু S
- ক. পীথাগোরাসের উপপাদ্যটি লিখ।
- খ. প্রমাণ কর যে, $PQ^2 + PR^2 = QR^2$
- গ. দেখাও যে, QR = 2PS
- 8.▶ ABC একটি ত্রিভুজ যেখানে ∠B = এক সমকোণ।
- ক্র দুইটি ত্রিভুজের সদৃশ্যতার দুইটি শর্ত লিখ।
- খ. যদি AB=BC হয় এবং R, AC এর উপর যেকোন বিন্দু হয় তবে প্রমাণ কর $RA^2+RC^2=2RB^2$ ।
- গ. প্রমাণ কর যে, $AC^2 = AB^2 + BC^2$
- ৫.► ΔABC ও ΔPQR দু'টি সদৃশ্যকোণী ত্রিভুজ।
- ক. সদৃশ বহুভুজ কাকে বলে?
- খ. প্রমাণ কর যে, $\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR}$ ।
- গ. যদি PQ = QR = PR এবং D, PR এর মধ্যবিন্দু হয়, তবে প্রমাণ কর যে, $4QD^2 = 3PQ^2$.
- ৬. ▶ △ABC এর তিনটি বাহুর দৈর্ঘ্য যথাক্রমে 3 সে.মি., 4 সে.মি. এবং 5 সে.মি.।
- ক. প্রদত্ত তথ্যানসারে ত্রিভূজটির ক্ষেত্রফল নির্ণয় করো।
- খ. ত্রিভুজটির সমান ক্ষেত্রফলবিশিষ্ট একটি সামান্তরিক আঁক যার একটি কোণ $\angle x$ এর সমান। যেখানে $\angle x = 45^\circ$

- গ. ত্রিভুজটির AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে X ও Y হলে প্রমাণ কর যে, Δ ক্ষেত্র AXY এর ক্ষেত্রফল $=\frac{1}{4}\left(\Delta$ ক্ষেত্র ABC এর ক্ষেত্রফল)8
- **৭.▶** ABC একটি সমকোণী ত্রিভূজ। যেখানে ∠B = 1 সমকোণ।
- ক. $AC = 2\sqrt{2}$ এবং AB = BC হলে, AB এর দৈর্ঘ্য নির্ণয় কর।
 - প্রমাণ কর যে, $AC^2 = AB^2 + BC^2$ 8
- গ. যদি AB = BC হয় এবং $P,\ AC$ এর উপরস্থ যেকোন বিন্দু হয়, তাহলে প্রমাণ কর যে, $PA^2 + PC^2 = 2PB^2$
- ৮. ►ΔPQR-এ ∠Q = এক সমকোণ এবং ΔDEF একটি সমবাহু ত্রিভুজ যার DG একটি মধ্যমা।
- ক. PR = 13 সে.মি., RQ = 12 সে.মি., হলে PQ এর দৈর্ঘ্য নির্ণয় কর। ২
- ধ. প্রমাণ কর যে, $PR^2 = PQ^2 + RQ^2$.
- গ. প্রমাণ কর যে, $4DG^2 = 3DF^2$.
- **৯.** ► △ABC এর BC, AC এবং AB বাহুর মধ্যবিন্দু যথাক্রমে D, E এবং F | ABC ত্রিভুজের AD ও BE মধ্যমান্বয় পরস্পর G বিন্দুতে ছেদ করে |
- ক. উদ্দীপকের আলোকে চিত্র অঙকন কর।
- খ. প্রমাণ কর যে, ΔAEF এর ক্ষেত্রফল $= \frac{1}{4} \left(\Delta ABC \right)$ এর ক্ষেত্রফল) = 8
- গ. যদি G বিন্দুর মধ্য দিয়ে অঙ্কিত DE এর সমান্তরাল রেখাংশ AC কে Y বিন্দুতে ছেদ করে তবে প্রমাণ কর যে, AC = 6 EY।
- ১০.▶ ABC ও DBC ত্রিভুজ ক্ষেত্রদ্বয় একই ভূমি BC এর উপর এবং একই সমান্তরাল রেখাযুগল BC ও AD এর মধ্যে অবস্থিত।
- ক. তথ্যানুসারে চিত্র অঙ্কন করো।
- খ. প্রমাণ কর যে, ∆ABC এর ক্ষেত্রফল = ∆DBC এর ক্ষেত্রফল।
- গ. যদি ABC সমবাহু ত্রিভুজ হয় এবং AD \perp BC হয়, প্রমাণ কর যে, $4AD^2 = 3AB^2$.
- ১১.▶ ABCD একটি সামান্তরিক যার একটি কোণ 60°।
- ক. সন্নিহিত বাহুদ্বয় 3 সে.মি. ও 3.4 সে.মি. হলে সামান্তরিকটি অঙ্জন করো।
- খ. প্রদত্ত সামান্তরিক এবং একটি ত্রিভুজ একই ভূমি ও একই সমান্তরাল রেখা
 যুগলের মধ্যে অবস্থিত হলে, প্রমাণ কর যে, ত্রিভুজক্ষেত্রের ক্ষেত্রফল $= \frac{1}{2}$ (সামান্তরিক ABCD)
- ABCD সামাত্তরিক অঙ্কন কর যার একটি কোণ প্রদত্ত কোণের সমান ও যা দ্বারা সীমাবন্ধ ক্ষেত্র একটি ত্রিভুজ ক্ষেত্রের ক্ষেত্রফলের সমান।

সৃজনশীল বহুনির্বাচনি মডেল প্রশ্নপত্রের উত্তর																														
١	K		২	M	೨	М	8	L	œ	Ν	৬	М	٩	Ν	b	L	৯	М	১০	Κ	77	М	১২	Κ	১৩	Ν	84	Ν	ንራ	Κ
১৬	Ν	:	۹۹	L	ንራ	M	ኔ ৯	L	২০		২১		২২			M	২৪	L	২৫	Κ	২৬	L	২৭	М	২৮	L	২৯	M	೨೦	L

সৃজনশীল রচনামূলক | মডেল প্রশ্নপত্রের উত্তর

৬. ক. 6 বর্গ সে.মি.

৭. ক. 2

৮. ক. 5 সে.মি.

সৃজনশীল বহুনির্বাচনি প্রশ্ন

সময়: ৩০ মিনিট; মান-৩০

- ΔABC এর AB ও AC এর মধ্যবিন্দু যথাক্রমে
 D ও E হলে ΔBDE : ΔABC = কত?
 K 1:√2 L 1:2 M 1:3 N 1:4

- 8. ΔABC এ EF || BC, EF = 2 সে.মি. এবং BC = 4 সে.মি. হলে, ΔABC ও ΔAEF-এর ক্ষেত্রফলদ্বয়ের অনুপাত কত? Κ 1:4 L 2:3 M 9:16 N 2:3
- ৫. ΔABC ও ΔBDC এর উচ্চতা সমান। ΔABC এর ক্ষেত্রফল 54 বর্গ একক হলে, ΔBDC এর ক্ষেত্রফল কত বর্গ একক?

K 9 L 27 M 54 N 108 নিচের চিত্রের আলোকে (৬-৮) নং প্রশ্নের উত্তর দাও:

ABCD রম্বসটির ক্ষেত্রফল 192 বর্গ সে.মি. এবং একটি কর্ণের দৈর্ঘ্য BD = 24 সে.মি.। AE রম্বসটির উচ্চতা।

৬. AC কর্ণের দৈর্ঘ্য কত?

K 96 (স.ম. L 48 (স.মি. M 20 (স.ম. N 16 (স.মি.

- 9. BC বাহুর দৈর্ঘ্য কত?
 K 14.42 সে.মি. L 16 সে.মি.
 M 16.24 সে.মি. N 20.42 সে.মি.

নিচের চিত্রের আলোকে (৯ ও ১০) নং প্রশ্নের উত্তর দাও:

চিত্রে, $\triangle ABC$ সমবাহু, $AD \bot BC$ এবং AB=4 সে.মি.।

৯. BD = কত সে.মি.?

- ১০. ত্রিভুজটির উচ্চতা কত সে.মি.? K 2√3 L 2√5 M 4√3 N 4√5
- ১১. বর্গের ক্ষেত্রফল কত বর্গমিটার যখন পরিসীমা 20 মিটার?

K 36 L 25 M 16 N 9

১২. যে চতুর্ভুজের প্রত্যেকটি কর্ণ 5 সে.মি. এবং পরস্পরকে সমকোণে সমদ্বিখন্ডিত করে এর্প চতুর্ভুজ কোন ধরনের?

K সামান্তরিক L রম্বস M বর্গক্ষেত্র N ট্রাপিজিয়াম

- ১৩. কোনো আয়তক্ষেত্রের প্রস্থ দৈর্ঘ্যের অর্ধেক। দৈর্ঘ্য ৪ সে.মি. হলে ক্ষেত্রফল কত বর্গ সে.মি.? K 128 L 48 M 32 N 16
- ১৪. ABCD রয়েসের কর্ণয়য় O বিন্দুতে ছেদ করে। রয়সের ক্ষেত্রফল 64 বর্গ সে,মি. হলে, △AOB এর ক্ষেত্রফল কত বর্গ সে.মি.? K 16 L 32 M 64 N 128
- ১৫. $\triangle ABC$ এর $AB^2 = AC^2 + BC^2$ হলে নীচের কোনটি সঠিক?

 K $\angle A = 45^\circ$ L $\angle B = 45^\circ$ N $\angle C = 90^\circ$
- ১৬. ABCD বর্গের কর্ণ AC এবং প্রত্যেক বাহুর দৈর্ঘ্য √2 সে.মি. হয় তবে AC-এর দৈর্ঘ্য কত সে.মি.?

K √2 L 2 M 2√2 N 4
১৭. 5 সে. মি. ভূমির উপর এবং একই সমান্তরাল রেখাযুগলের মধ্যে অবস্থিত দুইটি ত্রিভুজের একটির ক্ষেত্রফল 25 বর্গমিটার হলে অপরটির

ক্ষেত্রফল কত বর্গমিটার? K 5 L 25 M 50 N 125

১৮. ত্রিভূজের ভূমি $\frac{2}{3}$ মিটার ও উচ্চতা 3 মিটার হলে তার ক্ষেত্রফল কত বর্গমিটার?

K1 L2 M3 N9

১৯.

ABCD সামান্তরিকের ক্ষেত্রফল 180 বর্গ সে.মি. হলে ∆AOB-এর ক্ষেত্রফল কত সে.মি.? K 90 L 60 M 45 N 30

২০. ABCD সামান্তরিকের অভ্যন্তরের P যেকোনো বিন্দু। PAB ও PCD ত্রিভুজ ক্ষেত্রদ্বরের ক্ষেত্রফলের সমষ্টি 50 বর্গমিটার হলে ABCD এর ক্ষেত্রফল কত বর্গ মিটার?

K 50 L 100 M 150 N 200

 ১ AABC এ AB = AC = 6 সে.মি. এবং D, BC এর মধ্যবিন্দু | AD² + CD² = কত বর্গ সে.মি.?
 K 18
 M 54
 N 72

ABCD ট্রাপিজিয়ামে DE লম্ব হলে —

i. ADE একটি সমকোণী ত্রিভুজ।

- ii. AB || CD.
- iii. ΔACD-এর ক্ষেত্রফল = ABCD ট্রাপিজিয়ামের ক্ষেত্রফল – ΔABC-এর ক্ষেত্রফল।

নিচের কোনটি সঠিক?

K i ଓ ii L i ଓ iii M ii ଓ iii N i, ii ଓ iii

- ২৩. 18 মিটার লম্বা একটি খুঁটি ভূমি থেকে 5
 মিটার উপরে ভেজো সম্পূর্ণ বিচ্ছিন্ন না হয়ে
 মাটি স্পর্শ করে। ভাজা অংশ খুঁটির গোড়া
 থেকে কত মিটার দূরে মাটি স্পর্শ করে?
 K 22 L 12 M 10 N 8
- ২৪. একটি মই-এর এক প্রান্ত ভূমি থেকে ৪ মিটার উঁচু দালানের ছাদ বরাবর পৌছায় এবং অপর প্রান্ত 6 মিটার দূরে থাকে। মই-এর দৈর্ঘ্য কত মিটার? K 18 L 16 M 10 N 8
- ২৫. একজন লোক একটি নির্দিষ্ট স্থান থেকে যাত্রা শুরু করে 28 কি.মি. ঠিক উত্তরে যাওয়ার পর 21 কি.মি. ঠিক পূর্ব দিকে যায়। সেখান থেকে ঠিক দক্ষিণ দিকে 8 কি.মি. যায়। যাত্রা শোষে লোকটি যাত্রা শুরুর স্থান থেকে কত কি.মি. দূরে অবস্থান করবে?

 K 20 L 21 M 24 N 29

২৬. চিত্ৰে — A

i. AD² = AB² + BD².
ii. ADB সূক্ষ্মকোণী ত্রিভুজ।
iii. ADC স্থূলকোণী ত্রিভুজ।
নিচের কোনটি সঠিক?

Kigii Ligiii Miigiii Ni,iigiii

২৭. ΔΑΒC-এর ΑΒ ও ΑC বাহুদ্বয়ের মধ্যবিন্দু Χ ও Υ হলে —

i. BC ও XY সমান্তরাল।

- ii. Δ ক্ষেত্র AXY-এর ক্ষেত্রফল $= \frac{1}{4}\Delta$ ক্ষেত্র ABC-এর ক্ষেত্রফল |
- iii. Δ ক্ষেত্র XBC-এর ক্ষেত্রফল = Δ ক্ষেত্র YBC-এর ক্ষেত্রফল।

নিচের কোনটি সঠিক?

দাও:

K i ও ii L i ও iii M ii ও iii N i, ii ও iii নিচের তথ্যের ভিত্তিতে (২৮-৩০) নং প্রশ্নের উত্তর

চিত্রে আতয়ক্ষেত্র ABCD এ BE = 2BC এবং BE = 8 সে.মি., AE = $2\sqrt{17}$ সে.মি.।

২৮. AB সমান কত সে.মি.?

K 2 L 4 N 17

২৯. ABCD আয়তক্ষেত্রের ক্ষেত্রফল কত বর্গ সে.মি.? K 4 L 8 M 16 N 32

oo. ত্রিভুজ ABE এর ক্ষেত্রফল কত বর্গ সে.মি.? K 32 L 16 M 8 N 4

সূজনশীল রচনামূলক প্রশ্ন

সময়: ২ ঘণ্টা ৩০ মিনিট; মান-৭০

[বি. দ্র. যে কোনো ৭টি প্রশ্নের উত্তর দিতে হবে। প্রতি প্রশ্নের মান ১০

 $\delta \circ \times \theta = \theta \circ$

ا. ک

- ক. উপরোক্ত চিত্রের জ্যামিতিক বর্ণনা দাও।
- খ. প্রমাণ কর যে, $OO^2 + OR^2 = 2OP^2$
- গ. PR = 4.4 সে.মি., হলে দেখাও যে, Δ -ক্ষেত্র $PQR = 2 \times \Delta$ -ক্ষেত্র POQ.8
- ২. ► ABCD একটি সামান্তরিক যার একটি কোণ 60°।
- ক. সন্নিহিত বাহুদ্বয় 3 সে.মি. ও 3.4 সে.মি. হলে সামান্তরিকটি অঙ্কন করো।
- খ. প্রদত্ত সামান্তরিক এবং একটি ত্রিভুজ একই ভূমি ও একই সমান্তরাল রেখা যুগলের মধ্যে অবস্থিত হলে, প্রমাণ কর যে, ত্রিভুজক্ষেত্রের ক্ষেত্রফল $=\frac{1}{2}$ (সামান্তরিক ABCD)
- গ. ABCD সামান্তরিক অঙকন কর যার একটি কোণ প্রদত্ত কোণের সমান ও যা দ্বারা সীমাবন্ধ ক্ষেত্র একটি ত্রিভূজ ক্ষেত্রের ক্ষেত্রফলের সমান। ৪
- ৩. ► △ABC এর ∠C সৃক্ষকোণ। AD, BC এর উপর লয়।
- ক. উপরোক্ত তথ্যের আলোকে চিত্রটি আঁক।
- খ. দেখাও যে, $AB^2 = AC^2 + BC^2 2BC.CD$
- গ. $\triangle ABC$ এর মধ্যমা যদি AD হয়, তাহলে প্রমাণ কর যে, $AB^2 + AC^2 = 2(BD^2 + AD^2)$
- 8.▶ △DEF এর শিরঃকোণ ∠D এর সমদ্বিখন্ডক ভূমিকে P বিন্দুতে ছেদ করেছে।
- ক. প্রদত্ত তথ্য অনুসারে চিত্র আঁক।
- খ. EP: PF = ED: DF প্রমাণ করো।
- গ. △DEF এর ক্ষেত্রফলের সমান ক্ষেত্রফলবিশিষ্ট একটি সামান্তরিক আঁক যার একটি কোণ একটি নির্দিষ্ট কোণের সমান। (অজ্কনের চিহ্ন ও বিবরণ আবশ্যক)
- ৫. ► ΔPQR এর PQ ও PR এর মধ্যবিন্দু যথাক্রমে M ও N এবং PQ = 7 সে.মি, PR = 8 সে.মি. ও QR = 9 সে. মি.
- ক. ΔPQR এর ক্ষেত্রফল নির্ণয় করো।
- খ. দেখাও যে, MN || QR এবং MN = $\frac{1}{2}$ QR.
- গ. প্রমাণ কর যে Δ ক্ষেত্র PMN এর ক্ষেত্রফল $= \frac{1}{4} \left(\Delta$ ক্ষেত্র PQR এর ক্ষেত্রফল $\right)$

- ৬. ► △ABC এর তিনটি বাহুর দৈর্ঘ্য যথাক্রমে 3 সে.মি., 4 সে.মি. এবং 5 সে.মি.।
- ক. প্রদত্ত তথ্যানুসারে ত্রিভূজটির ক্ষেত্রফল নির্ণয় করো।
- খ. ত্রিভুজটির সমান ক্ষেত্রফলবিশিষ্ট একটি সামান্তরিক আঁক যার একটি কোণ ∠x এর সমান। যেখানে ∠x = 45°
- গ. ত্রিভুজটির AB ও AC বাহুদ্নয়ের মধ্যবিন্দু যথাক্রমে X ও Y হলে প্রমাণ কর যে, Δ ক্ষেত্র AXY এর ক্ষেত্রফল $=\frac{1}{4}(\Delta$ ক্ষেত্র ABC এর ক্ষেত্রফল)8
- **৭.▶** ABC ও DBC ত্রিভুজ ক্ষেত্রদ্বয় একই ভূমি BC এর উপর এবং একই সমান্তরাল রেখাযুগল BC ও AD এর মধ্যে অবস্থিত।
- ক. তথ্যানুসারে চিত্র অঙ্কন করো।
- খ. প্রমাণ কর যে, ∆ABC এর ক্ষেত্রফল = ∆DBC এর ক্ষেত্রফল। ৪
- গ. যদি ABC সমবাহু ত্রিভুজ হয় এবং AD \perp BC হয়, প্রমাণ কর যে, $4 \text{AD}^2 = 3 \text{AB}^2$.
- ৮. ▶ PQR সমকোণী ত্রিভুজে ∠PQR = 1 সমকোণ এবং PE ও RF দুইটি মধ্যমা।
- ক. PR = 13 সে.মি., PQ = 12 সে.মি. হলে PQR সমকোণী ত্রিভূজটির ক্ষেত্রফল নির্ণয় করো।
- খ. প্রমাণ করো যে, $PR^2 = PQ^2 + QR^2$
- গ. দেখাও যে, $4(PE^2 + RF^2) = 5PR^2$
- ৯. ► △ABC এর D, BC এর মধ্যবিন্দু।
- ক. সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য 4 সে.মি. হলে এর ক্ষেত্রফল নির্ণয় করো।
- খ. প্রমাণ কর যে, AB + AC > 2AD |
- গ. AB = BC = CA এবং $AD \perp BC$ হয় তবে দেখাও যে, $4AD^2 = 3AB^28$

۱. o.

8

২

8

- ক. পিথাগোরাসের উপপাদ্যটি লেখ।
- খ. X, AB এবং Y, AC এর মধ্যবিন্দু হলে প্রমাণ কর যে, $4~\Delta AXY = \Delta$ ক্ষেত্র ABC.
- গ. ত্রিভুজটি সমবাহু এবং $\mathrm{AP} \perp \mathrm{BC}$ হলে প্রমাণ কর যে,
- 4AP² = 3AB². **১১.** ► ΔABC এবং ΔDEF দুইটি সদৃশ বাহু।
- ক. দুইটি ত্রিভুজ সদৃশ হওয়ার শর্ত কী?
- খ. প্রমাণ করো যে, $\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$
- গ. যদি AD, \triangle ABC-এর মধ্যমা হয় তবে প্রমাণ করো যে, $AB^2 + AC^2 = 2(AD^2 + BD^2)$

	সৃজনশীল বহুনির্বাচনি মডেল প্রশ্নপত্রের উত্তর																												
٤	Ν	২	L	:	=	:	: :		M		=	:	:	: :		৯	=		:	۲۲			: :	=	:	: :	Κ		: :
১৬	L	١٩	L	72	Κ	አ ৯	М	২০	L	২১	L	રર	Ν	২৩	L	২৪	М	২৫	Ν	২৬	Ν	২৭	Ν	২৮	Κ	২৯	L	೨೦	М

স্জনশীল রচনামূলক | মডেল প্রশ্নপত্রের উত্তর

- ৫. ক. 26.83 বর্গ সে. মি. (প্রায়)
 - . ক. 6 বর্গ সে.মি.

- **৮. ক.** 30 বর্গ সে.মি.
- **৯. ক.** 4√3 বর্গ সে.মি.