1. 解答(20分)

(1) 小王学过英语和法语

个体: 小王

谓词: learned (X, Y):X 学过 Y

谓词公式: learned (小王, 英语) A learned (小王, 法语)

(2) 2 大于 3 仅当 2 大于 4

个体: 2, 3, 4

谓词: Bigger (x, y):x大于y

谓词公式: Bigger (2, 3) → Bigger (2, 4)

(3) 除非李健是东北人,否则他一定怕冷

个体: 李健

谓词: P(X):X是东北人

Q (X):X 怕冷

谓词公式: ¬P (李健) →Q (李健)

(4) 不是每一个计算机系的学生都喜欢编程

定义谓词

S(x): x 是计算机系学生

L(x, pragramming): x 喜欢编程序

将知识用谓词表示为:

 $\neg (\forall x) (S(x) \rightarrow L(x, pragramming))$

(5) 任何肯学习或者幸运的学生都可以通过考试

谓词: Study (x) : 学生 x 肯学习

Lucky(x):学生 x 是幸运的

Pass (x) :学生 x 通过考试

谓词公式: (∀x)((Study (x) V Lucky (x))→ Pass (x))

2. 解答(20分)

问题描述:

用谓词表示法求解机器人摞积木问题。设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。机械手有 4 个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。积木世界的布局如下图所示。

解答

个体:积木A,B,C

谓词:

(1) 描述状态的谓词:

CLEAR(x): 积木 x 上面是空的。 ON(x, y): 积木 x 在积木 y 的上面。 ONTABLE(x): 积木 x 在桌子上。 HOLDING(x): 机械手抓住 x。 HANDEMPTY: 机械手是空的。 其中, x 和 y 的个体域都是{A, B, C} 问题的初始状态是:

ONTABLE(B)

ON(C, A)

CLEAR(B)

CLEAR(C)

HANDEMPTY

问题的目标状态是:

ONTABLE(C)

ON(B, C)

ON(A, B)

CLEAR(A)

HANDEMPTY

(2) 描述动作的谓词:

在本问题中, 机械手的操作需要定义以下 4 个谓词:

Pickup(x): 从桌面上拣起一块积木 x。

Putdown(x): 将手中的积木放到桌面上。

Stack(x, y): 在积木 x 上面再摞上一块积木 y。 Upstack(x, y): 从积木 x 上面拣起一块积木 y。

其中,每一个操作都可分为条件和动作两部分,具体描述如下:

Pickup(x)

条件: ONTABLE(x), HANDEMPTY, CLEAR(x)

动作: 删除表: ONTABLE(x), HANDEMPTY

添加表: HANDING(x)

Putdown(x)

条件: HANDING(x)

动作: 删除表: HANDING(x)

添加表: ONTABLE(x), CLEAR(x), HANDEMPTY

Stack(x, y)

条件: HANDING(x), CLEAR(y)

动作: 删除表: HANDING(x), CLEAR(y)

添加表: HANDEMPTY, ON(x, y), CLEAR(x)

Upstack(x, y)

条件: HANDEMPTY, CLEAR(y), ON(y,x) 动作: 删除表: HANDEMPTY, ON(y,x)

添加表: HOLDING(y), CLEAR(x)

(3) 问题求解过程:

ONTABLE(A) ONTABLE(B) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY	ONTABLE(A) A,C) ONTABLE(B) HOLDING(C) CLEAR(A) CLEAR(B) CLEAR(C)	Putdown(C)	ONTABLE(A) ONTABLE(B) ONTABLE(C) CLEAR(A) CLEAR(B) CLEAR(C) HANDEMPT	Pickup(B)
ONTABLE(A) ONTABLE(C) HOLDING(B) CLEAR(A) CLEAR(B) CLEAR(C)	ONTABLE(A) ONTABLE(C) ON(B,C) CLEAR(A) CLEAR(B) HANDEMPTY	ONTABLI O(A) ON(B,C) CLEAR(A) CLEAR(B) HOLDING	Stack(B,A)	ONTABLE(C) ON(B,C) ON(A,B) CLEAR(A) HANDEMPT

3 语义网络求梨树(10 分)

解:

属性: 结梨, 结果, 有叶, 有根

4框架天气预报(10分)

解:

Frame<天气预报>

地域:北京

时段: 今天白天

天气: 晴

风向: 偏北

风力: 3级

气温: 最高: 12度

最低: -2度

降水概率: 15%

5证明(20分)

求证 G 是否是 F1,F2,··· ,Fn 的逻辑结论:

F1: $(\forall x) ((A(x) \land \neg B(x)) \rightarrow (\exists y) (D(x,y) \land C(y)))$

F2: $(\exists x) (E(x) \land A(x) \land (\forall y) (D(x,y) \rightarrow E(y)))$

F3: $(\forall x) (E(x) \rightarrow \neg B(x))$

G: $(\exists x) (E(x) \land C(x))$

证明:

将{F1,F2,F3, 一G}化简为子句集, 得:

 $\{\neg A(x) \lor B(x) \lor D(x,f(x)); \neg A(y) \lor B(y) \lor C(f(y)); E(a); A(a); \neg D(a,z) \lor E(z); \neg E(u) \lor \neg B(u); \neg E(v) \lor \neg C(v) \} // 然后用消解原理$

所以 G 是 F1,F2,···,Fn 的逻辑结论。

6.已知: "张和李是同班同学,如果 x 和 y 是同班同学,则 x 的教室也是 y 的教室,现在张在 302 教室上课。问:"现在李在哪个教室上课?" (20 分)

解答: 首先, 定义如下谓词:

C(x,y): x 和 y 是同班同学 At(x,u): x 在 u 教室上课

然后将上述各语句翻译为谓词公式:

已知条件: (1) C(zhang, li)

(2) $(\forall x) (\forall y) (\forall u) (C(x, y) \land At(x, u) \rightarrow At(y,u))$

(3) At(zhang, 302)

需求结论: (4) ¬At(li, v) V Ans(V)

上述公式化为子句集,得:

 $\{C(zhang, li), \neg C(x, y) \lor \neg At(x, u) \lor At(y, u); At(zhang, 302); \neg At(li, v) \lor Ans(v)\}$ 然后应用消解原理得:

所以,李在302教室上课.