

XXI

International Conference on Building Pathology and Constructions Repair

June 16th - 18th, 2025

INGDE - Um aplicativo para auxílio na inspeção de pontes baseado no método GDE/UnB

Wanderlei Malaquias PEREIRA JUNIOR¹, Luiz Henrique Ferreira REZIO¹, **Marcus Vinicius do Nascimento FIRMINO**¹, Pedro Henrique Gomes DUARTE¹, Wellington Andrade da SILVA¹, Humberto Salazar Amorim VARUM²

¹Universidade Federal de Catalão, St. Universitário, Catalão, Brasil, 75705-220, <u>wanderlei junior@ufcat.edu.br</u>; <u>luiz rezio@discente.ufcat.edu.br</u>; <u>nascimentofirmino2024@gmail.com</u>; <u>pedro.gomes@discente.ufcat.edu.br</u>; <u>wellington andrade@ufcat.edu.br</u>;

Resumo: Este trabalho apresenta o desenvolvimento do aplicativo INGDE-Bridge, uma ferramenta digital voltada para a inspeção de pontes com base na metodologia GDE/UnB. A proposta surge como resposta à necessidade de padronização e automação dos processos de inspeção estrutural no Brasil, especialmente diante da elevada quantidade de pontes com danos estruturais e da carência de recursos técnicos nas gestões públicas. O *software* foi desenvolvido em Python, utilizando a biblioteca Streamlit, e permite o upload de planilhas e imagens de inspeção em formato padronizado, automatizando o cálculo dos índices de deterioração conforme os parâmetros da metodologia GDE. A interface possibilita a inserção dos fatores F_i (intensidade do dano) e F_p (ponderação), a seleção dos fatores de relevância estrutural (F_r) por família de elementos, e a geração automática de relatórios técnicos. O sistema foi aplicado à inspeção de uma ponte de concreto armado sobre o Rio do Braço, demonstrando sua funcionalidade e precisão na avaliação da condição estrutural. A inspeção gerou um índice de deterioração G_d = 35, classificando a ponte com nível médio de deterioração. A ferramenta se mostrou eficaz ao integrar dados técnicos, imagens e cálculo automatizado, promovendo maior agilidade e confiabilidade às avaliações.

Keywords: Inspeção, Pontes, Concreto Armado, Python, GDE/UnB

1. Introdução

A inspeção e a manutenção de pontes são atividades fundamentais para garantir a segurança, a durabilidade e a funcionalidade das infraestruturas de transporte. Em todo o mundo, incidentes envolvendo falhas estruturais, como o colapso da Ponte Morandi na Itália (MORGESE *et al.*, 2020) e o desabamento do Viaduto da Marginal Pinheiros em São Paulo (Galvão, 2018), chamam a atenção para a necessidade de aprimoramento nos processos de avaliação e gestão desses ativos (Deng, Lu; Wang; Yu, 2016).

No Brasil, boa parte das pontes apresenta idade avançada e enfrenta condições adversas de uso e manutenção, o que exige sistemas mais eficazes de acompanhamento de seu desempenho estrutural. Inspeções realizadas conforme as normas NBR 9452 (2023) e DNIT 010/2004-PRO (2004) identificaram que 4,2% das pontes avaliadas requerem ações imediatas ou de médio prazo de manutenção, reabilitação ou

²Universidade do Porto, Praça de Gomes Teixeira, Porto, Portugal, 4099-002, hvarum@fe.up.pt

reforço, enquanto aproximadamente 38% apresentam danos estruturais menores que demandam manutenção regular e monitoramento contínuo. Esses números evidenciam a necessidade urgente de políticas sistemáticas de gestão da manutenção (Oliveira; Greco; Bittencout, 2019).

Em termos de colapsos, estudos apontam que entre 1989 e 2000, mais de 500 colapsos de pontes foram registrados apenas nos Estados Unidos, muitos deles com perdas humanas e prejuízos econômicos expressivos (Wardhana; Hadipriono, 2003)

Embora existam metodologias consolidadas para inspeção de pontes, como o método GDE/UnB, ainda é comum o uso de procedimentos manuais e fragmentados, que dificultam a padronização das avaliações, aumentam a suscetibilidade a erros humanos e comprometem a rastreabilidade dos dados ao longo do tempo.

Nos últimos anos, novas tecnologias têm sido desenvolvidas com o objetivo de suprir as ineficiências nos processos de inspeção e manutenção de elementos estruturais. Entre essas inovações, destacam-se o uso de gêmeos digitais (digital twins), que permitem a simulação e o acompanhamento em tempo real do comportamento estrutural (Shim et al., 2019); o Building Information Modeling (BIM), que integra informações geométricas e funcionais ao longo do ciclo de vida da estrutura (Rodriguez Polania et al., 2025)e o aprendizado de máquina, que contribui para a análise automática de dados de inspeção e detecção de anomalias (Narazaki et al., 2021; Pereira Junior et al., 2024). Além disso, o emprego de sensores inteligentes e sistemas de monitoramento em tempo real (SHM - Structural Health Monitoring) tem permitido uma supervisão contínua do desempenho estrutural, possibilitando intervenções mais rápidas e assertivas (Deng, Zhihang et al., 2023).

Apesar dos avanços tecnológicos disponíveis, ainda existe uma lacuna significativa na integração entre metodologias tradicionais de inspeção, como o método GDE/UnB, e sistemas digitais que facilitem a coleta, o armazenamento, o tratamento e a geração de relatórios de forma padronizada e automatizada. Nesse contexto, este trabalho tem como objetivo central desenvolver uma ferramenta web, utilizando a linguagem Python, que permita a inserção de imagens e planilhas de inspeção conforme a metodologia GDE/UnB para pontes, possibilitando a geração automatizada de relatórios. A proposta será disponibilizada à comunidade, com o intuito de promover maior agilidade e padronização no processo de avaliação de estruturas de pontes.

2. Inspeção estrutural e o método GDE

A inspeção, é a avaliação sistemática com o objetivo de identificar o estado de uma edificação e de seus subsistemas, observando aspectos importantes como, defeitos, deterioração, e falhas que possam comprometer segurança, estabilidade, ou segurança operacional. Em termos de normativa a NBR 9452 (2023) considera 4 tipos de inspeção, são eles: (a) Cadastral, (b) Rotineira, (c) Especial, e (d) Extraordinária.

2.1 Metodologia GDE/UnB para pontes

A metodologia GDE/UnB empregada neste trabalho tem como base os trabalhos de Euqueres (2011) e Verly (2015). As etapas de verificação consistem em uma inspeção visual onde pretende-se preencher os formulários de avaliação da OAE que permitirá a atribuição de um Fatores de Intensidade do Dano (F_i) e um Fator de Ponderação do Dano (F_p). Após esse processo é possível calcular o Grau de Dano (D), conforme equação (1) e (2):

$$D = 0.80 \cdot F_i \cdot F_p \qquad \qquad F_i \le 2.0 \tag{1}$$

$$D = (12 \cdot F_i - 28) \cdot F_p \qquad \qquad F_i \ge 3.0 \qquad (2)$$

Definido o Grau de Dano (D) é possível estabelecer o Grau de Deterioração do Elemento (G_{de}) e o Grau de Deterioração da Família de Elementos (G_{df}) conforme equações (3) e (4).

$$G_{de} = D_{m\acute{a}x} \left[1 + \frac{(\sum_{i=1}^{n} D_i) - D_{m\acute{a}x}}{\sum_{i=1}^{n} D_i} \right]$$
 (3)

$$G_{df} = G_{de,m\acute{a}x} \left[1 + \frac{\left(\sum_{i=1}^{m} G_{de,i} \right) - G_{de, m\acute{a}x}}{\sum_{i=1}^{m} G_{de,i}} \right]$$
(4)

Para determinar o Grau de Deterioração da Estrutura (G_d) dado na equação (5) é necessário introduzir o Fator de Relevância Estrutural (F_r) conforme Tabela 1.

Tabela 1 – Fator de Relevância Estrutural das diversas famílias de elementos (F_r) .

Elemento	F _r
Barreira de defensas e/ou Guarda-rodas	1,0
Pista de rolagem	2,0
Cortinas, juntas de dilatação	3,0
Lajes, fundações, aparelhos de apoio, vigas secundárias	4,0
Vigas principais e pilares	5,0

$$G_d = \frac{\sum_{i=1}^k F_{r(i)} G_{df(i)}}{\sum_{i=1}^k F_{r(i)}}$$
(5)

Determinado o G_d é possível caracterizar qualitativamente o nível de deterioração da estrutura. A Tabela 2 apresenta esse detalhamento.

Tabela 2 – Nível de deterioração do elemento e as recomendações de ações em função do valor de G_d .

Nível de deterioração	G _d	Ações a serem adotadas		
Baixo	0 - 15	Estado aceitável. Manutenção preventiva.		
Médio	16 - 50	Definir prazo/natureza para nova inspeção. Planejar intervenção em longo prazo (máximo 2 anos).		
Alto	51 - 80	Definir prazo/natureza para inspeção especializada detalhada. Planejar intervenção em médio prazo (máximo 18 meses).		
Sofrível	81 - 100	Definir prazo/natureza para inspeção especializada detalhada. Planejar intervenção em curto prazo.		

3. Arquitetura do software

O software apresentado nas seções que seguem é uma aplicação desenvolvida em linguagem Python com uso da biblioteca Streamlit. O sistema desenvolvido tem como objetivo central a automatização da geração de relatórios de inspeção de pontes segundo a metodologia GDE/UnB descrita no item 2. A arquitetura do sistema foi projetada para garantir uma experiência de uso simples e interativa, permitindo que o usuário carregue dados técnicos e imagens de inspeção em uma interface web.

Para utilizar o *software*, o usuário deve primeiramente informar quantas famílias de elementos estruturais deseja-se inspecionar. Em seguida, para cada uma dessas famílias, é necessário fazer o *upload* de um arquivo compactado no formato .zip, que deve conter uma planilha de inspeção no formato .xlsx conforme modelo informado na própria interface e uma pasta denominada fotos, com as imagens correspondentes à inspeção realizada. A interface do sistema permite ainda que o usuário selecione, para cada família, o respectivo Fator de Relevância Estrutural (F_r) da família em questão.

Após o envio dos arquivos, a ferramenta processa automaticamente os dados das planilhas, realizando o cálculo dos parâmetros estruturais de vistoria conforme as equações (1) a (5). Ao final do processamento, o sistema retorna o índice G_d da estrutura, juntamente com o conjunto de imagens adquiridas durante a inspeção. Todas essas informações são organizadas e apresentadas em um relatório exibido na própria interface da aplicação, além de disponibilizado para download em formato .html. A Figura 1 apresenta o fluxograma completo da ferramenta, desde a inserção dos dados pelo usuário até a geração do relatório final.

Figura 1 – Fluxograma de funcionamento do algoritmo.

3.1 Memória de cálculo de um elemento estrutural

Está seção tem como objetivo apresentar a memória de cálculo de duas famílias de elementos formados por vigas e pilares hipotéticos com dados de inspeções também sintéticos. Ao todo são 6 elementos estruturais (4 pilares e 2 vigas) em concreto armado com os fatores de ponderação e intensidade informados na Tabela 3. O cálculo de *D* é dado conforme equações (1) e (2).

Danos	Fi	F _p	D	Estrutura inspecionada	Família	
Falha de Concretagem	1	3	2,4	Pilar 01		
Falha de Concretagem	1	3	2,4	Pilar 02	1	
Desagregação	1	3	2,4	Pilar 03		
Desagregação	1	3	2,4	Pilar 04		
Falha de Concretagem	1	2	1,6	Viga lateral 01		
Fissuras	1	2	1,6		2	
Falha de Concretagem	1	2	1,6	Viga lateral 02	2	
Fissuras	1	2	1,6			

Tabela 3 – Planilha hipotética de vistoria.

Com a avaliação de D é possível avaliar o G_{df} de cada uma das famílias. Para isto apresenta-se a Tabela 4 como o resumo dos procedimentos de cálculo obtidos pela plataforma. A Tabela 4 apresenta o resumo dos cálculos obtidos via plataforma.

Tabela 4 – Resumo da avaliação via GDE/UnB.

Elemento	D _{max}	ΣD	Gde	G _{de,max}	Fr	G_{df}
Pilar 1	2,4	2,4	2,4	2,4	5,0	3,2 2,94
Pilar 2	2,4	2,4	2,4	2,4		
Pilar 3	2,4	2,4	2,4	2,4		
Pilar 4	2,4	2,4	2,4	2,4		
Viga Principal 1	1,6	3,2	2,4	2,4	г 0	
Viga Principal 2	1,6	3,2	2,4	2,4	5,0	

Com a Tabela 4 preenchida verifica-se então o G_d total da estrutura que neste caso é dado conforme equação (6):

$$G_d = \frac{16 + 14,70}{5 + 5} = 3,07 \tag{6}$$

4. Vistoria Ponte sobre o Rio do Braço e uso do software INGDE

A metodologia aplicada para o presente trabalho foi a inspeção rotineira na ponte de concreto armado situada no Rio do Braço, distante da cidade de Ipameri cerca de 5 km (latitude -17.741046 S e longitude -48.091560 W), com 11 metros de largura e 40 metros de extensão, foi utilizada planilha para levantamento em campo dos dados necessários, máquina fotográfica para registrar os elementos estruturais e demais equipamentos, como fissurômetro, trena, entre outros. As fotos da inspeção seguem na Figura 2.

A ponte caracteriza-se como uma ponte de concreto armado, situado na rodovia GO-213 que liga as cidades de Ipameri e Campo Alegre no sudeste do Estado de Goiás, com trafegabilidade de veículos do tipo Classe 45 com trânsito leve a médio, suas fundações são do tipo bloco sobre estacas. A seção dos pilares é circular e a pista possui duas faixas para passagem de veículos, o maior vão da ponte é de 24 metros, a vistoria ocorreu dia 18/11/2024.

Após a vistoria diversas planilhas padronizadas foram preenchidas com as patologias identificadas. No caso desta ponte em sua maioria as patologias foram fissuras superficiais e falhas de concretagem. Alguns processos de infiltração foram encontrados no tabuleiro vistoriado. O modelo da planilha padrão é apresentado na Tabela 5.

Vale salientar que o *software* contém disponível para *download* planilhas no formato de todas as famílias. Logo é possível efetuar a vistoria de todos os elementos contidos na Tabela 1.

(a) Transversina 03

(c) Vista 1 Pilar 01

ista 1 Pilar 01 (d) Vista 2 Pilar 01 **Figura 2** – Imagens da ponte recolhidas durante a inspeção.

Tabela 5 – Planilha padrão do *software* para preenchimento de F_i e F_p .

Danos	Fi	Fp
Carbonatação		
Cobrimento Deficiente		
Contaminação por Cloretos		
Corrosão de armaduras		
Danos por impacto		
Desagregação		
Desplacamento		
Desvio de Geometria		
Eflorescência		
Falha de Concretagem		
Fissuras		

Flechas	
Manchas	
Infiltração de água	
Sinais de Esmagamento	

Essas planilhas estão disponíveis para download na própria interface do sistema e para estruturas como fundações a planilha é também oferecida. Após preenchimento destes dados e recolhimento das fotos a interface apresentada na Figura 3 permite que o arquivo .zip seja inserido para posterior determinação do G_d .

Como usar

Para gerar o relatório de inspeção automatizado via metodologia GDE, baixe a nossa planilha modelo (<u>acesse aqui</u>) e preencha os dados da inspeção.

Após o preenchimento da inspeção, crie um arquivo .zip que contenha os seguintes documentos:

```
dados.zip

— fotos

— image_1.png

— image_2.png

— ...

— planilha_inspecao.xlsx
```

Para quantas famílias de elementos você deseja gerar o relatório?

1 - +

Família 1

Faça upload do arquivo .zip para a Família 1

Figura 3 – Aba de inserção de dados no ambiente INGDE desenvolvido neste trabalho.

Na Figura 3 é possível perceber um espaço para inserção do arquivo .zip na padronização informada além de ser possível separar por tipo de família. Logo o usuário poderá realizar toda a inspeção e obter um relatório único.

No caso desta estrutura a inspeção realizada gerou um G_d igual a 33,5 que é equivalente a um grau médio onde é necessária novas inspeções e acompanhamento recorrente. As Figuras 4 a 6 apresentam trechos do relatório emitido pela plataforma INGDE. No caso o programa desenvolvido particiona o envio de arquivos por família, logo o relatório exibe o cálculo do G_{df} F_r por família e depois um resumo geral por família.

Resumo dos Resultados por Família

	Família / Arquivo	Fator de Importância (F_r)	F_r × G_df
0	Família 1 – vigas_laterais.zip	4	17.6363
1	Família 2 – pilares.zip	5	15.8745

Grau de Deterioração da Estrutura

	Descrição	Valor
0	$\Sigma(F_r \times G_df)$	33.51083401442643
1	ΣF_r	9

Figura 4 – Trecho do resumo emitido na tela principal da interface.

Resultados por peça (G_{de})

Elemento	$\sum D$	D_{max}	G_{de}	$F_r \times G_{df}$
Viga lateral (jusante)	3.6	3.6	3.6	14.4
Viga lateral (montante)	3.6	3.6	3.6	14.4

Fator de Importância: $F_{\tau}=4$ – Lajes, fundações, vigas secundárias, aparelhos de apoio

Cálculo do G_{df} (Grau de Deficiência Familiar):

$$G_{df} = 3.6000 \cdot \sqrt{1 + \frac{(7.2000 - 3.6000)}{7.2000}} = 4.4091$$

$$F_r \cdot G_{df} = 4.0000 \cdot 4.4091 = \mathbf{17.6363}$$

Figura 5 – Parte do relatório de inspeção para a primeira família inserida.

Cálculo do G_{eff} (Grau de Deficiência Familiar):

$$G_{df} = 2.4000 \cdot \sqrt{1 + \frac{(9.6000 - 2.4000)}{9.6000}} = 3.1748$$

 $F_r \cdot G_{df} = 5.0000 \cdot 3.1749 = 15.8745$

Fotos da inspeção:

Figura 6 – Organização do relatório fotográfico dentro do relatório de inspeção emitido pela plataforma.

5. Considerações finais

A utilização da metodologia GDE, adaptada para as Obras de Arte Especiais, é uma ferramenta eficaz para avaliar o grau de deterioração de estruturas de concreto. A implementação do método GDE/UnB, aliada à digitalização dos processos de inspeção, proporcionou uma abordagem mais precisa e sistemática para subsidiar a tomada de decisões relacionadas às atividades de manutenção. A utilização da linguagem de programação Python permitiu o desenvolvimento de um *software* acessível e de fácil uso, capaz de automatizar um processo tradicionalmente demorado: a inspeção e a elaboração de relatórios técnicos de OAEs. A ferramenta é acessível através do *link* https://ingde-bridge.streamlit.app/.

Após o preenchimento manual dos fatores F_p e F_i todo o processo de cálculo é conduzido de forma digital e automatizada pela plataforma INGDE-Bridge, permitindo que o usuário obtenha, de maneira ágil, relatórios técnicos detalhados a partir dos autos de inspeção. A análise aplicada à Ponte sobre o Rio do Braço exemplificou a aplicabilidade do sistema, demonstrando que tanto a metodologia quanto a ferramenta desenvolvida são adequadas para pontes em concreto armado, com potencial de adaptação futura para outras tipologias estruturais e materiais.

A análise realizada neste estudo também evidenciou desafios enfrentados pelas equipes de inspeção, como a ausência de documentação técnica e a escassez de recursos e mão de obra especializada, que comprometem a execução de manutenções adequadas. Nesse cenário, o aplicativo INGDE-Bridge configurase como uma ferramenta estratégica para gestores públicos, apoiando a tomada de decisões e o planejamento eficiente de intervenções.

Agradecimentos

Este grupo de pesquisa agradece a CAPES pelo financiamento da pesquisa mestrado através do número de processo 88887.914002/2023-00.

Referências

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 9452 – *Inspeção de pontes, viadutos e passarelas* – *Procedimento*. Rio de Janeiro: ABNT, 2023.

- Deng, L., Wang, W., Yu, Y. (2016). State-of-the-Art Review on the Causes and Mechanisms of Bridge Collapse. Journal of Performance of Constructed Facilities, v. 30, n. 2, p. 04015005; 2016.
- Deng, Z. et al. (2023). The Current Development of Structural Health Monitoring for Bridges: A Review. *Buildings*, v. 13, n. 6, p. 1360; 23 maio 2023.
- Departamento Nacional de Infraestruturas de Transportes (DNIT). (2004). DNIT 010/2004 PRO: Inspeções em pontes e viadutos de concreto armado e protendido Procedimento. Rio de Janeiro: DNIT; 2004.
- Euqueres, P. (2011). Metodologia de inspeção em estruturas de pontes de concreto armado. Mestrado em Engenharia Civil Universidade Federal de Goiás, Goiânia; 2011.
- Galvão, C. (2018). Vídeo mostra momento em que viaduto cede na Marginal Pinheiros em SP; veja. *G1, São Paulo*; 16 nov. 2018. Disponível em: https://g1.globo.com/sp/sao-paulo/noticia/2018/11/16/video-mostra-momento-em-que-viaduto-cede-na-marginal-pinheiros-em-sp-veja.ghtml. Acesso em: 5 abr. 2025.
- Morgese, M. et al. (2020). Post-Collapse Analysis of Morandi's Polcevera Viaduct in Genoa Italy. *Journal of Civil Structural Health Monitoring*, v. 10, n. 1, p. 69–85; 2020.
- Narazaki, Y. et al. (2021). Synthetic Environments for Vision-Based Structural Condition Assessment of Japanese High-Speed Railway Viaducts. *Mechanical Systems and Signal Processing*, v. 160, p. 107850; nov. 2021.
- Oliveira, C. B. L., Greco, M., Bittencourt, T. N. (2019). Analysis of the Brazilian Federal Bridge Inventory. *Revista IBRACON de Estruturas e Materiais*, v. 12, n. 1, p. 1–3; fev. 2019.
- Pereira Junior, W. M. et al. (2024). Avaliação da presença de fissuras em imagens de estruturas de concreto através do uso de redes neurais profundas. *Matéria (Rio de Janeiro)*, v. 29, n. 4, p. e20240354; 2024.
- Rodriguez Polania, D. et al. (2025). Bridges Monitoring and Assessment Using an Integrated BIM Methodology. *Innovative Infrastructure Solutions*, v. 10, n. 2, p. 59; fev. 2025.
- Shim, C.-S. et al. (2019). Development of a Bridge Maintenance System for Prestressed Concrete Bridges Using 3D Digital Twin Model. *Structure and Infrastructure Engineering*, v. 15, n. 10, p. 1319–1332; 3 out. 2019.
- Verly, R. C. (2015). Avaliação de metodologias de inspeção como instrumento de priorização de intervenções em obras de arte especiais. Mestrado em Engenharia Civil Universidade de Brasília, Brasília; 2015.
- Wardhana, K., Hadipriono, F. C. (2003). Analysis of Recent Bridge Failures in the United States. *Journal of Performance of Constructed Facilities*, v. 17, n. 3, p. 144–150; ago. 2003.