B.1 (0.1 pt)

Rod 1 temperature:

Wiedemann-Franz Law - Answer Sheet

Part A: Electric conductivity of copper, aluminum and brass (1.5 points)

number	Copper	Aluminum	Brass	
		I		
(pt)				
	Copper	Aluminum	Brass	
ectrical conductiv	/itv			

B.5 (1.0 pt)

B.2 (0.5 pt))										
B.3 (0.1 pt)											
<i>P</i> =											
B.4 (0.5 pt))										
	Time	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8		

Draw in the additional graph papers the temperature as a function of location.

A2-3
English (Official)

B.6 (0.5 pt)

$$\kappa_0 =$$

$$\frac{\Delta T}{\Delta t} =$$

B.7 (0.3 pt)

Circle the correct answer:

$$\kappa > \kappa_0 \text{ or } \kappa < \kappa_0 \text{ or } \kappa = \kappa_0$$

A2-4
English (Official)

Part C: Estimating the heat loss and the heat capacity of copper (4.0 points)

C.2 ($(1.0 ext{ pt})$
İ	Draw in the additional graph papers the average temperature as function of time

C.3 (1.0 pt) Expression:			
$c_p =$			
$P_{loss} =$			
Value:			
$c_p =$			
$P_{loss} =$			
C.4 (1.0 pt)			

C.4 $(1.0 \, \mathrm{pt})$ Expression: $\kappa_{copper} =$ Value: $\kappa_{copper} =$

Part D: Measure the heat conductivity of brass and aluminum (1.0 points)

D.1 (0.1 pt)			
Rod 2 : T =			

A2-6
English (Official)

D.2	(0.2)	pt)
------------	-------	-----

Reading time:

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8

$\boxed{\Delta T_{Copper-1}/\Delta x}$	$\Delta T_{Brass}/\Delta x$	$\Delta T_{Aluminum}/\Delta x$	$\Delta T_{Copper-2}/\Delta x$

D.3 (0.7 pt)

Expression:

 $\kappa_{Aluminum} =$

 $\kappa_{Brass} =$

Value:

 $\kappa_{Aluminum} =$

 $\kappa_{Brass} =$

Part E: Wiedemann-Franz law (0.5 points)

E.1 (0.5 pt)

	Copper	Aluminum	Brass
Electrical conductivity			
Heat conductivity			
Lorenz coefficient			

A2-8
English (Official)

A2-9
English (Official)

A2-10 English (Official)

A2-11 English (Official)

