#### Lecture 8: 29 April, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

How do we use decision trees for regression?



- How do we use decision trees for regression?
- Partition the input into intervals



- How do we use decision trees for regression?
- Partition the input into intervals
- For each interval, predict mean value of output, instead of majority class



- How do we use decision trees for regression?
- Partition the input into intervals
- For each interval, predict mean value of output, instead of majority class
- Regression tree



Regression tree for noisy quadratic centered around  $x_1 = 0.5$ 



- Regression tree for noisy quadratic centered around  $x_1 = 0.5$
- For each node, the output is the mean y value for the current set of points



- Regression tree for noisy quadratic centered around  $x_1 = 0.5$
- For each node, the output is the mean y value for the current set of points
- Instead of impurity, use mean squared error (MSE) as cost function



- Regression tree for noisy quadratic centered around  $x_1 = 0.5$
- For each node, the output is the mean y value for the current set of points
- Instead of impurity, use mean squared error (MSE) as cost function
- Choose a split that minimizes MSE



 Approximation using regression tree 0.197  $x1 \le 0.197$ Depth = 1 mse = 0.0980.8 samples = 200 value = 0.354 Depth=0 0.6 -False True 0.4 x1 <= 0.092 x1 <= 0.7720.772 mse = 0.038mse = 0.0740.092 samples = 44 samples = 156 0.2 De th= value = 0.689value = 0.2590.0 mse = 0.018mse = 0.013mse = 0.015mse = 0.036samples = 20 samples = 24 samples = 110 samples = 46 -0.2value = 0.854value = 0.552value = 0.111value = 0.6150.4 0.6 0.8 1.0 0.0  $x_1$ 

 Extend the regression tree one more level to get a finer approximation



- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop



 Extend the regression tree one more level to get a finer approximation

 Set a threshold on MSE to decide when to stop

 Classification and Regression Trees (CART)

Clin, Induse

MSE + Mean Entry - Quinlan - C4.5



- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop
- Classification and Regression Trees (CART)
  - Combined algorithm for both use cases



- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop
- Classification and Regression Trees (CART)
  - Combined algorithm for both use cases
- Programming libraries typically provide CART implementation



 Overfitting: model too specific to training data, does not generalize well



- Overfitting: model too specific to training data, does not generalize well
- Regression use regularization to penalize model complexity



- Overfitting: model too specific to training data, does not generalize well
- Regression use regularization to penalize model complexity
- What about decision trees?



- Overfitting: model too specific to training data, does not generalize well
- Regression use regularization to penalize model complexity
- What about decision trees?
- Deep, complex trees ask too many questions



- Overfitting: model too specific to training data, does not generalize well
- Regression use regularization to penalize model complexity
- What about decision trees?
- Deep, complex trees ask too many questions
- Prefer shallow, simple trees



■ Remove leaves to improve generalization

- Remove leaves to improve generalization
- Top-down pruning
  - Fix a maximum depth when building the tree
  - How to decide the depth in advance?

- Remove leaves to improve generalization
- Top-down pruning Fix # levels < K
  - Fix a maximum depth when building the tree
  - How to decide the depth in advance?
- Bottom-up pruning
  - Build the full tree
  - Remove a leaf if the reduced tree generalizes better
  - How do we measure this?



#### Overfitted tree





#### Overfitted tree





#### Pruned tree





Madhavan Mukund Lecture 8: 29 April, 2021 DMML Apr-Jul 2021

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?

9/28

Madhavan Mukund Lecture 8: 29 April, 2021 DMML Apr-Jul 2021

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set

9/28

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set ✓
- Use sampling theory [Quinlan]

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]
- Given n coin tosses with h heads, estimate probability of heads as h/n

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]
- Given n coin tosses with h heads, estimate probability of heads as h/n
  - Estimate comes with a confidence interval: (h/n) &



- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]
- Given *n* coin tosses with *h* heads, estimate probability of heads as h/n
  - **E**stimate comes with a confidence interval:  $h/n = \delta$
  - As *n* increases,  $\delta$  reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000

Build the full tree, remove leaf if the reduced tree generalizes better

- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]





- As n increases,  $\delta$  reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000
- Impure node, majority prediction, compute confidence interval



- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]
- Given n coin tosses with h heads, estimate probability of heads as h/n
  - **E**stimate comes with a confidence interval:  $h/n \pm \delta$
  - As n increases,  $\delta$  reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000
- Impure node, majority prediction, compute confidence interval
- Pruning leaves creates a larger impure sample one level above

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]

- C.45
- Given n coin tosses with h heads, estimate probability of heads as h/n
  - **E**stimate comes with a confidence interval:  $h/n \pm \delta$
  - As n increases,  $\delta$  reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000
- Impure node, majority prediction, compute confidence interval
- Pruning leaves creates a larger impure sample one level above
- Does the confidence interval decrease (improve)?



# Example: Predict party from voting pattern [Quinlan]

- Predict party affiliation of US legislators based on voting pattern
  - Read the tree from left to right

```
physician fee freeze = n:
       adoption of the budget resolution = y: democrat (151)
       adoption of the budget resolution = u: democrat (1)
       adoption of the budget resolution = n:
           education spending = n: democrat (6)
           education spending = y: democrat (9)
           education spending = u: republican (1)
   physician fee freeze = y:
       synfuels corporation cutback = n. republican (97
       synfuels corporation cutback = u: republican (4)
       synfuels corporation cutback = y:
           duty free exports = y: democrat (2)
           duty free exports = u: republican (1)
           duty free exports = n:
               education spending = n: democrat (5/2)
               education spending = y: republican (13/2)
               education spending = u: democrat (1)
   physician fee freeze = u:
       water project cost sharing = or democrat (0)
       water project cost sharing = y: democrat (4)
       water project cost sharing = u:
           mx missile = n: republican (0)
           mx missile = y: democrat (3/1)
           mx missile = u: republican (2)
```

# Example: Predict party from voting pattern [Quinlan]

- Predict party affiliation of US legislators based on voting pattern
  - Read the tree from left to right
- After pruning, drastically simplified tree

In terms of confidure

```
physician fee freeze = n: democrat (168/2:6)
physician fee freeze = y: republican (123/13.9)
physician fee freeze = u:
mx missile = n: democrat (3/1.1)
mx missile = y: democrat (4/2.2)
mx missile = u: republican (2/1)
```

10 / 28

# Example: Predict party from voting pattern [Quinlan]

- Predict party affiliation of US legislators based on voting pattern
  - Read the tree from left to right
- After pruning, drastically simplified tree
- Quinlan's comment on his use of sampling theory for post-pruning

Now, this description does violence to statistical notions of sampling and confidence limits, so the reasoning should be taken with a large grain of salt. Like many heuristics with questionable underpinnings, however, the estimates it produces seem frequently to yield acceptable results.

```
physician fee freeze = n: democrat (168/2:6)
physician fee freeze = y: republican (123/13.9)
physician fee freeze = u:
    mx missile = n: democrat (3/1.1)
    mx missile = y: democrat (4/2.2)
    mx missile = u: republican (2/1)
```

10 / 28

- As before
  - Attributes  $\{A_1, A_2, \dots, A_k\}$  and
  - Classes  $C = \{c_1, c_2, \dots c_\ell\}$

11 / 28

- As before
  - Attributes  $\{A_1, A_2, \dots, A_k\}$  and
  - Classes  $C = \{c_1, c_2, \dots c_{\ell}\}$
- Each class c<sub>i</sub> defines a probabilistic model for attributes
  - $Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i)$

11 / 28

- As before
  - Attributes  $\{A_1, A_2, \dots, A_k\}$  and
  - Classes  $C = \{c_1, c_2, \dots c_{\ell}\}$
- Each class c<sub>i</sub> defines a probabilistic model for attributes
  - $Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i)$
- Given a data item  $d = (a_1, a_2, ..., a_k)$ , identify the best class c for d

11 / 28

- As before
  - Attributes  $\{A_1, A_2, \dots, A_k\}$  and
  - Classes  $C = \{c_1, c_2, \dots c_\ell\}$



- Each class c; defines a probabilistic model for attributes
  - $Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i)$
- Given a data item  $d = (a_1, a_2, \dots, a_k)$ , identify the best class c for d
- Maximize  $Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$

P (Class Hem)



- To use probabilities, need to describe how data is randomly generated
  - Generative model



12 / 28

- To use probabilities, need to describe how data is randomly generated
  - Generative model
- Typically, assume a random instance is created as follows
  - Choose a class  $c_j$  with probability  $Pr(c_j)$
  - Choose attributes  $a_1, \ldots, a_k$  with probability  $Pr(a_1, \ldots, a_k \mid c_j)$



- To use probabilities, need to describe how data is randomly generated
  - Generative model

Choise a, --, an tren c

- Typically, assume a random instance is created as follows
  - Choose a class  $c_i$  with probability  $Pr(c_i)$

Choose c then a. - are

- Choose attributes  $a_1, \ldots, a_k$  with probability  $Pr(a_1, \ldots, a_k \mid c_i)$
- Generative model has associated parameters  $\theta = (\theta_1, \dots, \theta_m)$ 
  - **Each** class probability  $Pr(c_i)$  is a parameter
  - Each conditional probability  $Pr(a_1, ..., a_k \mid c_i)$  is a parameter

Data generated -> gen c -> gen an-are

- To use probabilities, need to describe how data is randomly generated
  - Generative model
- Typically, assume a random instance is created as follows
  - Choose a class  $c_j$  with probability  $Pr(c_j)$
  - Choose attributes  $a_1, \ldots, a_k$  with probability  $Pr(a_1, \ldots, a_k \mid c_j)$
- Generative model has associated parameters  $\theta = (\theta_1, \dots, \theta_m)$ 
  - Each class probability  $Pr(c_j)$  is a parameter
  - Each conditional probability  $Pr(a_1, ..., a_k \mid c_j)$  is a parameter
- We need to estimate these parameters

• Our goal is to estimate parameters (probabilities)  $\theta = (\theta_1, \dots, \theta_m)$ 

13 / 28

- Our goal is to estimate parameters (probabilities)  $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies



13 / 28

- Our goal is to estimate parameters (probabilities)  $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- **Example:** Tossing a biased coin, single parameter  $\theta = Pr(\text{heads})$ 
  - N coin tosses. H heads and T tails
  - Why is  $\hat{\theta} = H/N$  the best estimate?

13 / 28

Lecture 8: 29 April. 2021

- lacktriangle Our goal is to estimate parameters (probabilities)  $heta=( heta_1,\ldots, heta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- **Example:** Tossing a biased coin, single parameter  $\theta = Pr(\text{heads})$ 
  - N coin tosses, H heads and T tails
  - Why is  $\hat{\theta} = H/N$  the best estimate?
- Likelihood
  - Actual coin toss sequence is  $\tau = t_1 t_2 \dots t_N$
  - Given an estimate of  $\theta$ , compute  $Pr(\tau \mid \theta)$  likelihood  $L(\theta)$

- lacktriangle Our goal is to estimate parameters (probabilities)  $heta=( heta_1,\ldots, heta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- **Example:** Tossing a biased coin, single parameter  $\theta = Pr(\text{heads})$ 
  - N coin tosses, H heads and T tails
  - Why is  $\hat{\theta} = H/N$  the best estimate?
- Likelihood
  - Actual coin toss sequence is  $\tau = t_1 t_2 \dots t_N$
  - Given an estimate of  $\theta$ , compute  $Pr(\tau \mid \theta)$  likelihood  $L(\theta)$
- $\hat{\theta} = H/N$  maximizes this likelihood  $\underset{\theta}{\operatorname{arg max}} L(\theta) = \hat{\theta} = H/N$ 
  - Maximum Likelihood Estimator (MLE)



■ Maximize  $Pr(C = c_i \mid A_1 = a_1, \ldots, A_k = a_k)$ 





14 / 28

- Maximize  $Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$
- By Bayes' rule,

$$P(A|B) = P(B|A) \cdot P(A)$$

$$P(B)$$

$$Pr(C = c_i \mid A_1 = a_1, ..., A_k = a_k)$$

$$Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

$$Pr(A_1 = a_1, ..., A_k = a_k)$$

14 / 28

■ By Bayes' rule,

- $\blacksquare \text{ Maximize } Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$

$$Pr(C = c_i \mid A_1 = a_1, \ldots, A_k = a_k)$$

$$= \frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, \dots, A_k = a_k)} + \text{(As)}$$

$$= \underbrace{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}_{\sum_{j=1}^{\ell} Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_j) \cdot Pr(C = c_j)}$$

14 / 28

P(AIC) C<C

P(MC).P(G)

- $\blacksquare \text{ Maximize } Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$
- By Bayes' rule,

$$Pr(C = c_{i} \mid A_{1} = a_{1}, \dots, A_{k} = a_{k})$$

$$= \frac{Pr(A_{1} = a_{1}, \dots, A_{k} = a_{k} \mid C = c_{i}) \cdot Pr(C = c_{i})}{Pr(A_{1} = a_{1}, \dots, A_{k} = a_{k})}$$

$$= \frac{Pr(A_{1} = a_{1}, \dots, A_{k} = a_{k} \mid C = c_{i}) \cdot Pr(C = c_{i})}{\sum_{j=1}^{\ell} Pr(A_{1} = a_{1}, \dots, A_{k} = a_{k} \mid C = c_{j}) \cdot Pr(C = c_{j})}$$

■ Denominator is the same for all  $c_i$ , so sufficient to maximize

$$Pr(A_1 = a_1, \ldots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

14 / 28

| A | В | С |
|---|---|---|
| m | Ь | t |
| m | S | t |
| g | q | t |
| h | 5 | t |
| g | q | t |
| g | q | f |
| g | 5 | f |
| h | Ь | f |
| h | q | f |
| m | b | f |

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- $Pr(A = g, B = q \mid C = t) = 2/5$



 $\blacksquare$  To classify A = g, B = g

■ 
$$Pr(C = t) = 5/10 = 1/2$$
  
■  $Pr(A = g, B = q \mid C = t) = 2/5$ 

$$Pr(A = g, B = q \mid C = t) = 2/5$$

■ 
$$Pr(A = g, B = q \mid C = t) \cdot Pr(C = t) = 1/5$$

| A | В | C |
|---|---|---|
| m | b | t |
| m | S | t |
| g | q | t |
| h | S | t |
| g | q | t |
| g | q | f |
| 6 | 3 | f |
| h | Ь | f |
| h | q | f |
| m | Ь | f |

$$Pr(C = t) = 5/10 = 1/2$$

$$Pr(A = g, B = q \mid C = t) = 2/5$$

■ 
$$Pr(A = g, B = q \mid C = t) \cdot Pr(C = t) = 1/5$$

$$Pr(C = f) = 5/10 = 1/2$$

$$Pr(A = g, B = q \mid C = f) = 1/5$$

| A | В | С |
|---|---|---|
| m | Ь | t |
| m | S | t |
| g | q | t |
| h | 5 | t |
| g | q | t |
| g | q | f |
| g | 5 | f |
| h | Ь | f |
| h | q | f |
| m | Ь | f |

$$Pr(C = t) = 5/10 = 1/2$$

$$Pr(A = g, B = q \mid C = t) = 2/5$$

■ 
$$Pr(A = g, B = q \mid C = t) \cdot Pr(C = t) = 1/5$$

$$Pr(C = f) = 5/10 = 1/2$$

■ 
$$Pr(A = g, B = q \mid C = f) = 1/5$$

■ 
$$Pr(A = g, B = q \mid C = f) \cdot Pr(C = f) = 1/10$$

| A | В | С |
|---|---|---|
| m | b | t |
| m | S | t |
| g | q | t |
| h | S | t |
| g | q | t |
| g | q | f |
| g | S | f |
| h | b | f |
| h | q | f |
| m | b | f |

$$Pr(C = t) = 5/10 = 1/2$$

■ 
$$Pr(A = g, B = q \mid C = t) = 2/5$$

■ 
$$Pr(A = g, B = q \mid C = t) \cdot Pr(C = t) = 1/5$$

$$Pr(C = f) = 5/10 = 1/2$$

$$Pr(A = g, B = q \mid C = f) = 1/5$$

■ 
$$Pr(A = g, B = q \mid C = f) \cdot Pr(C = f) = 1/10$$

■ Hence, predict 
$$C = t$$

| A | В | C |
|---|---|---|
| m | b | t |
| m | S | t |
| g | q | t |
| h | 5 | t |
| g | q | t |
| g | q | f |
| g | 5 | f |
| h | Ь | f |
| h | q | f |
| m | b | f |

### Example . . .

■ What if we want to classify A = m, B = q?

|          | A      | В          | C |
|----------|--------|------------|---|
|          | m      | · <i>b</i> | t |
|          | m      | S          | t |
|          | g<br>h | q          | t |
|          |        | S          | t |
|          | g      | 9          |   |
| $\Gamma$ | g      | q          | f |
|          | g      | S          | f |
|          | h      | Ь          | f |
|          | h      | q<br>b     | f |
|          | m      | Ь          | f |
|          |        |            |   |

### Example . . .

- What if we want to classify A = m, B = q?
- $Pr(A = m, B = q \mid C = t) = 0$

| A | В | С |
|---|---|---|
| m | Ь | t |
| m | S | t |
| g | q | t |
| h | 5 | t |
| g | q | t |
| g | q | f |
| g | 5 | f |
| h | Ь | f |
| h | q | f |
| m | Ь | f |

# Example . . .

- What if we want to classify A = m, B = q?
- $Pr(A = m, B = q \mid C = t) = 0$
- Also  $Pr(A = m, B = q \mid C = f) = 0!$

What to do?

| Α | В | С |
|---|---|---|
| m | b | t |
| m | S | t |
| g | q | t |
| h | 5 | t |
| g | q | t |
| g | q | f |
| g | 5 | f |
| h | Ь | f |
| h | q | f |
| m | b | f |