<u>Задача 10-4</u>

Российский химик А. Е. Фаворский, проводя опыты с веществом **A**, обнаружил некоторые необычные и неожиданные превращения. Известно, что **A** не имеет оптических изомеров, а при сжигании его навески массой 12.7 г в избытке кислорода образуется 8.96 л углекислого газа, 4.48 л хлороводорода и 5.4 мл воды (объёмы измерены при н.у.).

- Рассчитайте молекулярную формулу вещества A и изобразите все возможные для него структурные формулы, удовлетворяющие приведённым выше данным.
- **2.** Из структур, приведённых в п. 1, выберите верную, с учётом того, что молекулы **A** содержат три типа атомов водорода в соотношении 3:3:2.

Нагреванием $\bf A$ со спиртовым раствором едкого кали в запаянной ампуле до $120\,^{\circ}$ С Фаворский получил вещество $\bf B$, дающее серый осадок с аммиачным раствором гидроксида серебра. При нагревании $\bf A$ со спиртовым раствором щёлочи до $170\,^{\circ}$ С вместо $\bf B$ неожиданно для экспериментатора основным продуктом оказалось изомерное вещество $\bf C$, не дающее осадка с аммиачным раствором гидроксида серебра. Оказалось, что длительное кипячение спиртового раствора щёлочи с веществом $\bf B$ также приводит к его превращению в $\bf C$.

Чтобы объяснить наблюдаемые превращения, было предположено, что в условиях реакции образуется изомерное промежуточное соединение \mathbf{D} . Для проверки этого предположения были проведены эксперименты с веществами \mathbf{F} и \mathbf{H} , относящимися к тому же классу соединений, что и \mathbf{B} и \mathbf{C} . Фаворским было установлено, что нагревание \mathbf{F} со спиртовым раствором щёлочи приводит к образованию изомерного продукта \mathbf{G} гомологичного \mathbf{D} , а \mathbf{H} не вступает в аналогичную реакцию вовсе.

При встряхивании раствора C в 85%-й серной кислоте образуется высокосимметричное вещество I, не поддающееся каталитическому гидрированию при комнатной температуре. Массовые доли углерода в веществах C и I равны.

Позднее Фаворским была также открыта реакция веществ того же класса, что ${\bf B}$ и ${\bf C}$, с кетонами и альдегидами, например, вещества ${\bf J}$. Эта реакция использовалась в одной из первых предложенных схем синтеза углеводорода ${\bf M}$, из которого получают полезный полимерный продукт.

3. Изобразите структурные формулы веществ $\mathbf{B} - \mathbf{M}$. Изобразите структурную формулу элементарного звена полимера, получаемого из вещества \mathbf{M} . Предложите метод получения вещества \mathbf{A} исходя из \mathbf{B} (не более двух стадий).

Решение задачи 10-4 (автор: Трофимов И.А.)

1. Определим молекулярную формулу А по данным о сжигании его навески.

Вначале запишем уравнение реакции в общем виде:

$$\begin{split} C_a H_b C l_c O_d + (2a + b/2 - c/2 - d)/2 O_2 &\rightarrow a C O_2 + (b/2 - c/2) H_2 O + c H C l \\ \nu(C O_2) &= \frac{8.96 \ \pi}{22.4 \ \pi/\text{моль}} = 0.4 \ \text{моль} \rightarrow \nu(C) = \nu(C O_2) = 0.4 \ \text{моль}; \\ \nu(H C l) &= \frac{4.48 \ \pi}{22.4 \ \pi/\text{моль}} = 0.2 \ \text{моль} \rightarrow \nu(C l) = \nu(H C l) = 0.2 \ \text{моль}. \\ \nu(H_2 O) &= \frac{5.4 \ \text{мл} \cdot 1 \frac{\Gamma}{\text{мл}}}{18 \frac{\Gamma}{\text{моль}}} = 0.3 \ \text{моль} \rightarrow \nu(H) = 2 \nu(H_2 O) + \nu(H C l) = 0.8 \ \text{моль}; \end{split}$$

Проверим наличие кислорода в соединении:

$$m = \nu(C) \cdot M(C) + \nu(H) \cdot M(H) + \nu(Cl) \cdot M(Cl) =$$

= $4.8 + 0.8 + 7.1 = 12.7 \ \Gamma = m_{\text{Harecku}}$

Находим, что в состав вещества А не входят атомы кислорода.

Итак, в состав вещества **A** входят C: H: Cl = 4:8:2 = 2:4:1. Простейшей формуле $(C_2H_4Cl)_n$ соответствует единственное соединение с брутто-формулой $C_4H_8Cl_2$. Отсутствие оптических изомеров говорит о том,

что вещество **A** может представлять собой 1,1-дихлорбутан, 1,4-дихлорбутан, 2,2-дихлорбутан, 2-метил-1,1-дихлорпропан, 2-метил-1,2-дихлорпропан или 2-метил-1,3-дихлорпропан.

2. Из приведённых выше соединений три типа атомов водорода в соотношении 3 : 3 : 2 содержит лишь 2,2-дихлорбутан. Значит, это и есть соединение **A**.

3. В среде спиртового раствора щёлочи галогеналканы отщепляют молекулы галогеноводородов с образованием ненасыщенных углеводородов. Судя по способности В давать осадок серого цвета с аммиачным раствором гидроксида серебра, это терминальный алкин; единственный терминальный алкин, который может образоваться в этих условиях – бутин-1. Значит, В – это бутин-1.

Вещество С неизвестного строения изомерно бутину-1 и не реагирует с аммиачным раствором гидроксида серебра, при этом оно относится к тому же классу соединений, что и $\bf B$, то есть является алкином. Тогда $\bf C$ – это бутин-2, алкин, изомерный бутину-1. При единственный его встряхивании с концентрированной серной кислотой образуется не поддающееся гидрированию при стандартных условиях вещество І, которое при этом содержит столько же углерода по массе, что и бутин-2. С учётом того, характерны реакции тримеризации с образованием что для алкинов производных бензола, логично предположить, что І – это гексаметилбензол.

Бутиллитий — сильное основание, значит, реакции с ним должны приводить к отщеплению протонов. Депротонирование бутина-1 **В** сначала происходит по терминальному атому водорода с образованием бутинида лития **Е**. Второй эквивалент бутиллития депротонирует бутинид-анион по пропаргильному положению, в результате чего образуется дианион, который

далее метилируется одним эквивалентом метилиодида по более реакционноспособному пропаргильному положению. После нейтрализации образуется 3-метилбутин-1 **F**. Аналогичным методом из **F** можно получить *трет*-бутилацетилен **H**.

Образование промежуточного соединения в реакции «сдвига» тройной связи можно объяснить тем, что миграция кратных связей происходит поочерёдно — сначала интернальной становится одна π-связь, и лишь затем — вторая. Значит, **D** — бутадиен-1,2 и **G** — 3-метилбутадиен-1,2. Действительно, в жёстких условиях терминальные алкины также депротонируются по пропаргильному положению, при этом из-за большей термодинамической устойчивости происходит «сдвиг» тройной связи через промежуточно образующийся кумулированный диен.

Вторая часть цепочки стартует с вещества **J**. Согласно схеме, из **J** можно получить бутин-2 путём депротонирования, а затем добавления двух эквивалентов метилиодида. Отсюда можно заключить, что исходное соединение **J** – ацетилен. Ацетилен далее вступает в реакцию Фаворского с ацетоном. Гидроксид калия в жидком аммиаке является сильным основанием, приводящим к депротонированию ацетилена по одному из положений и образованию ацетиленид-иона, который затем нуклеофильно присоединяется к атому углерода в карбонильной группе ацетона с образованием 2-метилбутин-3-ола-2 К. В полученном соединении К при его восстановлении водородом на (Pd/BaSO₄, катализаторе хинолин) отравленном восстанавливается до двойной с образованием вещества L. На последней стадии происходит дегидратация при нагревании на оксиде алюминия, что приводит к образованию изопрена М, из которого получают каучук.

приводит к образованию изопрена
$$M$$
, из которого получают каучук.

 $H_3C-C\equiv C-CH_3$
 $(2) CH_3I (2 экв.)$
 $(2) CH_3I (2 экв.)$
 $(3) CH_3I (2 экв.)$
 $(4) CH_3I (2 экв.)$
 $(5) CH_3I (2 экв.)$
 $(6) CH_3I (2 экв.)$
 $(7) CH$

Наиболее простой (хотя и не очень селективный) метод превращения вещества **В** в **А** – реакция бутина-1 с избытком HCl. Вещество **А** также можно получить из бутина-1 в две стадии: сначала получив бутанон-2 по реакции Кучерова, а потом его взаимодействием с пентахлоридом фосфора.

HC
$$\equiv$$
C $\xrightarrow{\text{H}_3\text{O}^+}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{PCI}_5}$ $\xrightarrow{\text{CI}}$ $\xrightarrow{\text{CI}}$ $\xrightarrow{\text{CI}}$ $\xrightarrow{\text{A}}$

Система оценивания:

1.	Расчёт молекулярной формулы А по данным сжигания	2 балла
	Изображение шести возможных структурных формул - по 0.5	3 балла
	балла каждая	
2.	Выбор верной структурной формулы	1 балл
3.	Структурные формулы веществ ${\bf B} - {\bf M} -$ по 1 баллу	12 баллов
	Структурная формула полимера	1 балл
	Метод получения А	1 балл
	ИТОГО	: 20 баллов