5/8/2024

Tedra Cannella Cannella Snyder 315 W. Ponce de Leon Ave, Suite 885 Decatur, GA 30030

Re: FR26 Amended Report

File: Bryson v. Rough Country

Quest File No: 10519

Dear Ms. Cannella,

This document serves as an amendment to the FR26 report previously submitted on October 12, 2023, regarding the case of Bryson v. Rough Country. The purpose of this amendment is to address an unforeseen technical issue that resulted in the loss of the original simulation file, which was used in some of my initial findings.

My intention was to produce the entire simulation, including raw data and all reports but because data was lost, we ran an amended simulation as spelled out below.

As this report discusses, my conclusions have not changed. The amended simulation results in a nearly identical amount of crush as was found in the initial simulation. Analysis of both simulations result in the same conclusion:

Calculations and simulations of the accident with the F250 at factory height produced a collision that reduced the Escape's crush and resulted in damage which would not have penetrated to the rear seat such that the rear occupant compartment would not have been compromised.

Background

The subject crash involved a lifted Ford F250, which rear-ended a Ford Escape at 51 mph. The F250 overrode key structural components of the Escape by engaging with the hatch, rather than the bumper. As discussed in the previously submitted FR26 report, a simulation was run to study the effect of bumper height on the dynamics of the crash. Since this simulation had been corrupted and the precise parameters can no longer be extracted, a simulation was run again and is discussed in this report.

BRYSON 009348

Work Performed

The initial simulation and the rerun simulation were generated using the same methodology, by using the software Human Vehicle Environment (HVE) by Engineering Dynamics Company (EDC), using Simulation Model Non-Linear (SIMON).

Our attempt to precisely reproduce the simulation discussed in my October 12, 2023 report were unsuccessful because data used in that simulation was lost. Therefore, we ran an amended simulation, which was performed consistent with my deposition testimony.

<u>Initial Simulation Comparison to Rerun Simulation</u>

In the amended simulation, instead of using Neptune data for the stiffness coefficients, the properties for the F250 came directly from the Vehiclemetrics database. I testified in my deposition that I would use this data if it was available in the software suite, and because we have now located it after the deposition, I used it in the amended simulation. Essentially, my intent was to use any default data from HVE in my simulation, if possible, and I am doing this to this day. To be clear, we originally, and still are using HVE's Ford Escape properties.

In my deposition, stated the offset was one foot to the driver's side on the Escape, which has been used in the simulation rerun. My conclusion is that the lateral offset between the vehicles was 1 foot, as evidenced on the accident Escape's rear hatch and Ford F250's front.

The amended simulation includes no braking on either vehicle, even though the black box data indicates the F250 driver applied the brakes shortly before impact. Applying braking would tend to reduce crush on the Escape. Omitting braking makes my estimate of the increased crush the lift causes more conservative.

The opposing expert indicates that the tire sizes used in the simulation should have been larger. I updated the simulation accordingly.

Vehicles

HVE contains a default vehicle database from EDC. Vehicle databases, such as Vehiclemetrics, may also be imported to HVE. The vehicles were both weighed at the inspection on 2/22/2022 by a representative of Quest Engineering & Failure Analysis.

The vehicle used for the subject F250 was a 2008-2016 year range Ford F250 Super Duty XL 4x4 from the Vehiclemetrics database. This vehicle was the regular cab body style, while the subject truck was a crew cab. The regular cab geometry was replaced with a scan-based crew cab geometry. The scan was based off an exemplar stock 2015 F250 Super Duty 4x4 Crew Cab (VIN: 1FT7W2BT2FEC86347). The geometry was generated by an EDC Modeling Partner, Baker Sneddon Consulting. The exemplar F250 placard had slightly smaller wheels than the subject F250 placard, with a total difference in wheel radius of 0.45 inches, however the simulation wheels were modified to match the original accident vehicle tire diameters. The weight was adjusted to the measured weight of the accident truck plus the weights of the occupant and cargo, totaling 8485 pounds (*Appendix A*). The dimensions were verified

using Expert AutoStats. The tires used on the F250 were P275/60R20 (as this was the closest option in the database to the stock subject truck), which were about 0.55 inches smaller in radius. The radius was then adjusted to the stock accident wheel radius of 17.05 inches. The bumper height of the stock F250 of 29 inches in the simulation was verified through measurements of the exemplar truck (Figure 1), in addition to the measurements of the exemplar F250 used in the crash test that was performed by Exponent (*Figure 2*). Other properties of the F250 used in the simulation rerun were defaults.

Figure 1: F250 Exemplar (Quest)

Figure 2: F250 Exemplar (Exponent)

The vehicle used for the subject Escape was a 2001-2011 year range Ford Escape from the EDC database. The weight was adjusted to the measured weight of the accident vehicle plus the weights of the occupants and cargo, totaling 3743 pounds (*Appendix A*). Other properties of the Escape used in the simulation rerun were defaults.

Positions

In the simulation rerun, the Escape was placed at 0 mph in an arbitrary location. The front of the F250 was placed just behind the rear of the Escape with a lateral offset of 12 inches to the left of the Escape. The speed of the F250 was 51 mph.

Simulation

Once the parameters discussed above had been set, the simulation was run. The target for the simulation was reaching a longitudinal delta-V on the F250 of 17.92 mph that was recorded in the black box of the subject F250. This was achieved by varying the relaxation length, which resulted to be 0.099.

Observations and Results

<u>F250</u>

The HVE software uses a consistent methodology to measure crush, which it applied to the F-250 and the Ford Escape in both simulated crashes. The difference in bumper crush between the two simulation

runs was on average less than 0.1 feet (*Figure 3*). The delta-V resulted to be 17.9 mph, consistent with the black box data.

10519 Simulation Crush Comparison

Δ Crush $\approx +0.7$ feet

Figure 3: F250 Crush Comparison

Escape

The difference in bumper-level crush between the two simulation runs was on average less than 0.1 feet (*Figure 4*). The delta-V on the Escape resulted to be 40.2 mph, 0.4 mph more than in the initial simulation.

10519
Simulation Crush Comparison
@ 2.2' Above Ground
@ 2.2' Above Ground

Δ Crush \approx -2.1 feet

2008 Ford Escape 4x2

Red: Accident Damage Blue: Initial Simulation Damage Green: Rerun Simulation Damage

1:3

Figure 4: Escape Crush Comparison

Opinions

The simulation rerun results were very similar in results such that none of my opinions need to be amended. I am providing a full electronic copy of my simulation run such that defense experts can verify results, if they want to do so. The methodology discussed in my deposition is the same methodology I have used here, with the exceptions outlined above, which make my work simply more accurate to the subject accident. My conclusion also remains the same. None of my conclusions, which are detailed on pages 10-11 in my October 12, 2023 Report, have changed. In my deposition, I detailed these opinions and my work which is essentially unchanged. I have now also provided a working copy of the simulation to help support my opinions.

The reports generated by HVE are attached (*Appendix B*).

I reserve the right to continue to supplement my opinions as discovery is ongoing.

Sincerely,

QUEST ENGINEERING & FAILURE ANALYSIS, INC.

G. Bryant Buchner, P.E.

G. Byant Bucker

Chief Engineer

GBB/MAP

F-250 Weight Calculation

 $Weight_{250} = 8040 \ \textit{lbf}$

 $Driver_{250} = 170 \ \textit{lbf}$

 $Chainsaw = 15.6 \ lbf$

 $Storagebox_{250} = 159 \ lbf$

 $Tools_est = 100 \ lbf$

 $Total_{250} \coloneqq Weight_{250} + Driver_{250} + Chainsaw + Storagebox_{250} + Tools_est$

 $Total_{250} = (8.485 \cdot 10^3) \ lbf$

Ford Escape Weight Calculation

 $Weight_{Escape} = 3410 \ \textit{lbf}$

 $Occupants_{Escape} = 318 \ lbf$

 $Car_Seat := 15.2$ **lbf**

 $Total_{Escape} \coloneqq Weight_{Escape} + Occupants_{Escape} + Car_Seat$

 $Total_{Escape} = (3.743 \cdot 10^3) \ lbf$

 $Total_{total} \coloneqq Total_{Escape} + Total_{250} = \left(12.228 \cdot 10^3\right) \ \textit{lbf}$

Untitled
Accident History-SIMON, Simulation
Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:09:23 HVE 2021 Version 17.00 PAGE 1

---- ACCIDENT HISTORY -----

	time	Х	Y	Heading	Vtot	U	V	Yaw Vel
	(sec)	(ft)	(ft)	(deg)	(mph)	(mph)	(mph)	(deg/sec)
-Start of Simulation-								
Ford Escape 4-Dr	0.0000	0.1	-0.0	0.0	0.0	0.0	0.0	0.0
Ford F-250 Super Duty		-17.8	-1.0	0.0	51.0	51.0	0.0	0.0
At Impact								
Ford Escape 4-Dr	0.0190	0.1	-0.0	0.0	0.2	0.0	-0.0	0.0
Ford F-250 Super Duty		-16.4	-1.0	-0.0	51.0	51.0	0.0	-0.0
At Separation								
Ford Escape 4-Dr	0.1450	4.8	0.2	0.3	39.7	39.6	1.4	-2.2
Ford F-250 Super Duty		-9.1	-1.1	1.5	33.1	33.1	-1.3	13.5
At Final/Rest								
Ford Escape 4-Dr	1.0010	53.8	-0.8	-2.8	38.7	38.7	-0.4	0.9
Ford F-250 Super Duty	1.0010	32.0	-0.0	2.2	32.5	32.5	-0.0	-0.0

Untitled
Damage Data-SIMON, Simulation
Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:10:00 HVE 2021 Version 17.00 PAGE 1

VEHICLE COLLISION KINETICS								
Vehic	le Name: Ford Escape 4		dadam B	.1	_	•		
Imp No 1	Collision With Ford F-250 Super Dut	Start (sec)	End (sec)	Length (sec)	Pe Accel (g) 44.58	Force (lb)	Delta-V (mph) 40.2	(deg)
Vehic	le Name: Ford F-250 Su							
Imp		Coll Start	ision Pu End		Pe		Dol+o-V	DDOE
No 1	Collision With Ford Escape 4-Dr	(sec)	(sec)	(sec)	(g) 19.41	(lb)	Delta-V (mph) 17.9	(deg)
		VEHIC	LE DAMAC	GE PROFI	LES			
Vehic	le Name: Ford Escape 4							
4 C11 L C	10 name. Ford Bacape 4	DI		Damage	Width	Damage	Height	Max
Imp			CDC		Offset			
No 1	Collision With Ford F-250 Super Duty		EJ224b	(in)	(in) -2.0	(in)	(in) -8.6	
1	rold r-250 Super Ducy	U	OBDAWS	63.2	-2.0	42.3	-8.6	19.2
Vehic	le Name: Ford F-250 Sup	per Duty				_		
qmI			CDC		Width Offset			
No	Collision With	SA						
1	Ford Escape 4-Dr				8.0			
		VEHICLE	CRUSH I	DEPTH TAI	BLES			
Vehic	le Name: Ford Escape 4	-Dr						
Imp		Elev	/Dist	Crus	sh Depths C2	C3	Free Spa	ce) C5
No	Collision With	(in)	(in)	(in)			(in)
1	Ford F-250 Super Duty			0.0	7.9	2.8	6.8	0.0
			9.2	0.0	14.1			
			8.6 2.0	0.0	15.0 19.2	14.3	12.9 17.3	
			2.5	0.0	9.0	19.0 7.9	8.4	0.0
Vehic	le Name: Ford F-250 Su	per Duty						
					sh Depths			ace)
Imp	Collision Mith		/Dist	C1	C2	C3	C4	C5
No 1	Collision With Ford Escape 4-Dr		in) 3.4	(in) 0.0	(in) 0.0	(in) 0.3	(in) 0.6	(in) 0.0
-			3.3	0.0	8.9	9.8	8.7	0.0
		-	3.1	0.0	9.9	9.7	8.8	0.0
			7.1	2.4	11.1	12.6	11.5	0.0
		1	0.0	2.7	9.7	12.1	11.2	0.0

Untitled
Driver Controls-SIMON, Simulation
Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:10:40 HVE 2021 Version 17.00 PAGE 1

----- DRIVER CONTROLS -----

Driver Controls for: Ford Escape 4-Dr

	DRIVER	CONTROL TABLES	(OPEN-LOOP)		
	Steer		Pedal		Throttle
Time	Angle	Time	Force	Time	Position
(sec)	(deg)	(sec)	(lb)	(sec)	(%/100)
0.0000	0.00	0.0000	0.00	0.0000	0.00

Driver Controls for: Ford F-250 Super Duty

	DRIVER (CONTROL TABLES	(OPEN-LOOP)		
	Steer		Pedal		Throttle
Time	Angle	Time	Force	Time	Position
(sec)	(deg)	(sec)	(lb)	(sec)	(%/100)
0.0000	0.00	0.0000	0.00	0.0000	0.00

Untitled Wed 05/08/24 17:10:54 Environment Data-SIMON, Simulation HVE 2021 Version 17.00 Licensed User: Quest Engineering & Failure Analysis PAGE 1

GENERAL ENVIRONMENT DATA

3-D ENVIRONMENT TERRAIN DATA

<pre>3-D Terrain Filename:</pre>		None
Total Number of Polygons:		0
<pre>GetSurfaceInfo:</pre>	From Previous Polygon, S	Sorted
Minimum Terrain Elevation (ft):		0.00
Maximum Terrain Elevation (ft):		0.00

Untitled

Event Data-SIMON, Simulation

Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:11:07 HVE 2021 Version 17.00 PAGE 1

INTER-VEHICLE COLLISION DATA

Relaxn

Length Friction Restitn

Ford Escape 4-Dr vs. Ford F-250 Super Duty

(%/100) Coef Coef 0.099 0.550 0.130

STATIC VEHICLE LOADS

Vehicle Axle Loads (lb):

Empty

Ford Escape 4-Dr

Axle 1: 2267.9 Axle 2: 1475.0

Total: 3743.0

Ford F-250 Super Duty

Axle 1: 5091.3

Axle 2: 3393.7

Total: 8485.0

VEHICLE EVENT DATA

Event Data for Ford Escape 4-Dr:

Payload Information: (No Payloads)

Accelerometer Information: (No Accelerometers)

Collision Pulse Information: (No Collision Pulse)

Event Wheel Data, First Axle ---

Wheel Damage: (No Damaged Wheels on this axle)

Brake Temp/Adjustment Data: (Generic Brakes; No Data)

Brake Failure Data: (No Failed Brakes on this axle)

Tire Blow-outs: (No Tire Blow-outs on this axle)

Tire-Terrain Model Data:

Right Side Left Side -----

Tire-Terrain Model:

Point

Point

Tire Hydroplaning: (No Hydroplaning at this axle)

Event Wheel Data, Second Axle ---

Wheel Damage: (No Damaged Wheels on this axle)

Brake Temp/Adjustment Data: (Generic Brakes; No Data)

Brake Failure Data: (No Failed Brakes on this axle)

Tire Blow-outs: (No Tire Blow-outs on this axle)

Untitled
Event Data-SIMON, Simulation

Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:11:08 HVE 2021 Version 17.00 PAGE 2

Tire-Terrain Model Data:

Right Side

Left Side

Tire-Terrain Model:

Point

Point

Tire Hydroplaning: (No Hydroplaning at this axle)

Event Data for Ford F-250 Super Duty:

Payload Information: (No Payloads)

Accelerometer Information: (No Accelerometers)

Collision Pulse Information: (No Collision Pulse)

Event Wheel Data, First Axle ---

Wheel Damage: (No Damaged Wheels on this axle)

Brake Temp/Adjustment Data: (Generic Brakes; No Data)

Brake Failure Data: (No Failed Brakes on this axle)

Tire Blow-outs: (No Tire Blow-outs on this axle)

Tire-Terrain Model Data:

Right Side

Left Side

Tire-Terrain Model:

Point

Point

Tire Hydroplaning: (No Hydroplaning at this axle)

Event Wheel Data, Second Axle ---

Wheel Damage: (No Damaged Wheels on this axle)

Brake Temp/Adjustment Data: (Generic Brakes; No Data)

Brake Failure Data: (No Failed Brakes on this axle)

Tire Blow-outs: (No Tire Blow-outs on this axle)

Tire-Terrain Model Data:

Right Side

Left Side

Tire-Terrain Model:

Point

Point

Tire Hydroplaning: (No Hydroplaning at this axle)

Untitled Messages-SIMON, Simulation Licensed User: Quest Engineering & Failure Analysis Wed 05/08/24 17:11:16 HVE 2021 Version 17.00 PAGE 1

MESSAGES

No Messages

Untitled Wed 05/08/24 17:11:25 Program Data-SIMON, Simulation HVE 2021 Version 17.00 Licensed User: Quest Engineering & Failure Analysis

GENERAL PROGRAM INFORMATION

Execution Information ---

HVE Version: HVE 2021 Version 17.00 SIMON Version: 5.40 Date of Execution: Wed 05/08/24 Time of Execution: 17:06:54

Simulation Controls ---

Integration Method: Fixed Runge-Kutta Maximum Simulation Time (sec): 1.0000 Integration Timestep (sec): 0.0010 Output Interval (sec): 0.0100 Linear Term Vel (mph): 2.00 Angular Term Vel (deg/sec): 5.00

Calculation Options ---

GetSurfaceInfo: From Previous Polygon, Sorted Tire Model Method: Semi-empirical, Vers. 3 Steer Degree Of Freedom: Off Articulation Option: On DyMESH Option: On Hydroplaning Option: Off

DYMESH COLLISION MODEL INFORMATION

DyMESH Version No: 4 Include Environment: Off Force To x-y Plane: Off Restitution Model: Relaxation Length Search Option: Set Box Size User-assigned Box Size (in): 20.00 Smoothing Option: Version 2 Accident History Basis: Use Impact Force PAGE 1

Untitled
References-SIMON, Simulation
Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:11:36 HVE 2021 Version 17.00 PAGE 1

----- TECHNICAL REFERENCES -----

- Day, T.D., Roberts, S.G., 'SIMON: A New Vehicle Simulation Model for Vehicle Design and Safety Research,' SAE Technical Paper No. 2001-01-0503, Society of Automotive Engineers, Warrendale, PA, 2001.
- York, A.R., Day, T.D., 'The DyMESH Method for Three-Dimensional Multi-Vehicle Collision Simulation,' SAE Technical Paper No. 1999-01-0104, Society of Automotive Engineers, Warrendale, PA, 1999.
- Roberts, S.G., Day, T.D., 'Integrating Design and Virtual Test Environments for Brake Component Design and Material Selection,' SAE 2000-01-1294, Society of Automotive Engineers, Warrendale, PA, 2000.
- 4. Day, T.D., 'Validation of the SIMON Model for Vehicle Handling and Collision Simulation - Comparison of Results with Experiments and Other Models,' SAE Technical Paper No. 2004-01-1207, Society of Automotive Engineers, Warrendale, PA, 2004.
- Jackson, L., Poland, K., 'Downhill Commercial Vehicle Simulations Part A (Tractor/Semi-trailer Brake Fade),' National Transportation Safety Board, HVE White Paper No. WP-2003-1, Engineering Dynamics Corporation, Beaverton, OR, 2003.
- 6. Jackson, L., Poland, K., 'Downhill Commercial Vehicle Simulations Part B (Intercity Bus Equipped with an Engine Data Recorder),' National Transportation Safety Board, HVE White Paper No. WP-2003-1, Engineering Dynamics Corporation, Beaverton, OR, 2003.
- 7. Parry, I., March, F., 'Investigating the Use of Simulation Model Non-linear (SIMON) for the 'Virtual Testing' of Road Humps,' Transportation Research Laboratory (UK), HVE White Paper No. WP-2003-4, Engineering Dynamics Corporation, Beaverton, OR, 2003.
- 8. Johnston, G., Parry, I., '"Computerised Simulation of Car and 4WD Impacts into Alternative Median Barrier Profiles Using the DyMESH Collision Algorithm Within the HVE Simulation Environment' Transportation Research Laboratory (Aus), HVE White Paper No. WP-2004-4, Engineering Dynamics Corporation, Beaverton, OR, 2004.
- 9. Day, T.D., 'Simulation of Tire Interaction with Curbs and Irregular Terrain,' HVE White Paper No. WP-2005-6, Engineering Dynamics Corporation, Beaverton, OR, 2005.
- 10. Day, T.D., 'A Computer Graphics Interface Specification for Studying Humans, Vehicles, and Their Environment,' SAE Paper No. 930903, Society of Automotive Engineers, Warrendale, PA, 1993.
- Day, T.D., 'An Overview of the HVE Vehicle Model, SAE Paper No. 950308, Society of Automotive Engineers, Warrendale, PA, 1995.
- 12. Day, T.D., Metz, L.D., 'The Simulation of Driver Inputs Using a Vehicle Driver Model,' SAE Paper No. 2000-01-1313, Society of Automotive Engineers, Warrendale, PA, 2000.
- 13. Canova, J.H., 'Vehicle Design Evaluation Using the Digital Proving Ground,' SAE Paper No. 2000-01-0126, Society of Automotive Engineers, Warrendale, PA, 2000.
- 14. Blythe, W., Day, T.D., Grimes, W.D., '3-Dimensional Simulation of Vehicle Response to Tire Blow-outs,' SAE Paper No. 980221, Society of Automotive Engineers, Warrendale, PA, 1998.
- 15. Day, T.D., Roberts, S.G., 'A Simulation Model for Vehicle Braking Systems Fitted

Untitled Wed 05/08/24 17:11:36
References-SIMON, Simulation HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis PAGE 2

with ABS,' SAE Paper No. 2002-01-0559, Society of Automotive Engineers, Warrendale, PA, 2002.

16. Deyerl, E.S., Fitch, M.J., 'Evaluation of the Automatic Transmission Model in HVE Version 7.1,' Dial Engineering, HVE White Paper No. WP-2003-1, Engineering Dynamics Corporation, Beaverton, OR, 2010.

```
Wed 05/08/24 17:11:48
Untitled
Vehicle Data-SIMON, Simulation
                                                                                                        HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis
                                                                                                                                     PAGE 1
                                                           VEHICLE DATA
        General Information ---
                                                                                              Ford Escape 4-Dr
                                                         Vehicle Name:
                                                         Vehicle Type:
                                                                                                 Sport-Utility
                                                         Vehicle Make:
                                                                                                           Ford
                                                                                                          Escape
                                                        Vehicle Model:
                                                         Vehicle Year:
                                                                                                        2001-2011
                                              Vehicle Body Style: 4-Door
Version No: V 8.20 (RCS $Revision: 1.12
                                                   Number of Axles:

Driver Location:
Engine Location:
Drive Axle(s):

Vocation teleprocess Arevision

Left Side
Front Engine
Axle 1
                                                                                                  Front Engine
         Steady-State Handling Properties ---
                    Total Understeer Gradient (deg/g):
                                                                                                            1.45
                                                                                                         59.79
                  Steering Wheel Sensitivity (deg/g):
            Roll Gradient (deg/g): 3.30
Roll Couple Distribution, F/R (%/100): 0.63
Weight Distribution, F/R (%/100): 0.61
Static Weight, Front Tires (lb): 2267.95
Static Weight, Rear Tires (lb): 1475.05

      Sional Data ---
      Overall Length (in):
      175.20

      Overall Width (in):
      70.10

      Overall Height (in):
      68.13

      Ground Clearance (in):
      11.98

      Wheelbase (in):
      103.10

      CG to Front Axle (in):
      40.02

      CG to Back Axle (in):
      -63.08

      CG Height (in):
      28.83

      Front Overhang (in):
      35.58

      Rear Overhang (in):
      36.52

         Sprung Mass Dimensional Data ---
         Sprung Mass Inertial Data ---
   Total Weight (lb): 3743.00
Sprung Weight (lb): 3545.01
Sprung Mass (lb-sec^2/in): 9.17
Sprg Mass Rot Inertia (lb-sec^2-in) - Roll: 5033.17
Pitch: 24756.02
Yaw: 25213.82
XZ Product: 0.00
                              Surface Name: Front
Drag Coefficient: 0.4000
Proj. Surface Area (in^2): 3892.65
Center of Pressure (in) - x: 75.60
y: 0.00
         Sprung Mass Aerodynamic Parameters ---
         Body Mesh Data ---
                                         3-D Geometry Filename: MPFordEscape054Dr.h3d
                                                    Number of Nodes:
                                                                                                              1355
                                     Number of Damaged Nodes:
                                                                                                                    Ω
                                                   ----- Node Stiffness Data (3-Dimensional) -----
                                                    Front Right Back Left Top Bottom
```

Untitled Vehicle Data-SIMON, Simulati Licensed User: Quest Engine		ailure A	nalysis		VE 20		17:11:48 ion 17.00 PAGE 2
Const (lb/in^2):	14.12	3.43	8.61	3.		8.33	8.33
<pre>Linear (lb/in^3):</pre>	5.43	3.07	3.63	3.		1.67	1.67
Quadratic (lb/in^4):	0.00	0.00	0.00	0.		0.00	0.00
Cubic (lb/in^5):	0.00	0.00	0.00	0.	0.0	0.00	0.00
Conversion Factor(in):	30.00	30.00	30.00	30.	00	30.00	30.00
Brake System Data							
-	Brake Sys	tem Type	.	Н	ydrau	lic	
		Axle 1			sc Br		
		Axle 2		Di	sc Br		
Brake Peda	al Ratio	(psi/lb)	:		21.5	0	
	ntroller Sampl	e Method: y Method:	: :	Thi Wh	lip A s Veh eel-B eel-B 10.0	ased ased	n
	d Veloci				4.0		
Steering System Paramet							
	គ្ន	rst Axle:	,	q	teera	hlo.	
Steering Gear				٥	17.1		
Ackermann					On	•	
		<i>J</i> 1					
			5. 1.			T - 64 03	: do
			Right	Side		Left Si	
C	Caster (d	ea):					
C Inclination	Caster (d Angle (d			1.60 3.60			.60
Inclination Steering	Angle (d Offset (eg): in):	1	1.60 3.60 0.00		1.	. 60 . 60
Inclination Steering Stub Axle	Angle (d Offset (Length (eg): in): in):	1	1.60 3.60 0.00 3.78		1 . 13 . 0 .	. 60 . 60
Inclination Steering	Angle (d Offset (Length (eg): in): in): - x:	1	1.60 3.60 0.00 3.78 0.02		1 . 13 . 0 . 3 . 40 .	. 60 . 60 . 00 . 78
Inclination Steering Stub Axle	Angle (d Offset (Length (eg): in): in): - x: y:	1 4 2	1.60 3.60 0.00 3.78 0.02 6.87		1 13 0 3 40 -26	. 60 . 60 . 00 . 78 . 02
Inclination Steering Stub Axle	Angle (d Offset (Length (eg): in): in): - x:	1 4 2	1.60 3.60 0.00 3.78 0.02		1 . 13 . 0 . 3 . 40 .	. 60 . 60 . 00 . 78 . 02
Inclination Steering Stub Axle	Angle (d Offset (Length (ord (in)	eg): in): in): - x: y:	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27		1 1 3 3 4 0 5 - 26 6 14 5	. 60 . 60 . 00 . 78 . 02
Inclination Steering Stub Axle Initial Steer Axis Coo	Angle (d Offset (Length (ord (in)	eg): in): in): - x: y: z:	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27		1 1 3 3 4 0 5 - 26 6 14 5	. 60 . 60 . 00 . 78 . 02
Inclination Steering Stub Axle Initial Steer Axis Coo	Angle (d Offset (Length (ord (in) Sec	eg): in): in): - x: y: z: ond Axle:	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27	Stee	13. 13. 0. 3. 40. -26. 14.	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En	Angle (do Offset (Length (ord (in)) Secondary Designe	eg): in): in): - x: y: z: ond Axle: cription: wer (HP):	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27	Stee	13. 03. 40. -26. 14. rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu	Angle (do Offset (Length (ord (in))) Seconding Designing Designing Designing Torque	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb):	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27	Stee 6 5-S	13. 03. 40. -26. 14. rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio	Angle (do Offset (Length (ord (in))) Secondarian Designation Torque on Forward	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds:	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27	Stee 6 5-S 200 193 5	13. 03. 40. -26. 14. rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio	Angle (do Offset (Length (ord (in))) Seconding Designing Designing Designing Torque	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds:	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27	Stee 6 5-S 200 193	13. 03. 40. -26. 14. rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio	Angle (do Offset (Length (ord (in))) Secondary Secondary Power Torque on Forward ferential	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: l Speeds:	1 4 2 1	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not	Stee 6 5-S 200 193 5 1	1. 13. 0. 3. 40. -26. 14. rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed	Angle (do Offset (Length (ord (in))) Secondary Secondary Secondary Secondary Power Torque on Forward ferential (RPM):	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds:	1 4 2 1 3	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not	Stee 6 5-S 200 193 5 1	133 040 -263 143 rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed	Angle (do Offset (Length (ord (in))) Security S	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: 1 Speeds:	1 4 2 1 3 2600 4 93	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not	Stee 6 5-S 200 193 5 1	1. 13. 0. 3. 40. -26. 14. rable	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed Powe Torque (Angle (doffset (Length (ord (in))) Security of the security o	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: 1 Speeds: 500 5	1 4 2 1 3 2600 4 93 188	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not .OL V-	Stee 6 5-S 200 193 5 1 6000 200 175	113333340334034034045454545454545454545454	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed Powe Torque (Closed Throttle, Speed	Angle (doffset (Length (ord (in))) Sector of the sector o	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: 1 Speeds: 500 500	1 4 2 1 3 2600 4 93 188 2600 4	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not .OL V-	Stee 6 5-S 200 193 5 1 6000 200 175	7600 110 7600	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed Powe Torque (Closed Throttle, Speed	Angle (doffset (Length (ord (in))) Second (in) Second (eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: 1 Speeds: 500 5	2600 4 93 188 2600 4 -13	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not .OL V-	Stee 6 5-S 200 193 5 1 6000 200 175	113333340334034034045454545454545454545454	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed Powe Torque (Closed Throttle, Speed	Angle (doffset (Length (ord (in))) Security of the security o	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: 1 Speeds: 500 50 -0 -5	2600 4 93 188 2600 4 -13	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not .OL V-	Stee 6 5-S 200 193 5 1 6000 200 175 6000 -71	7600 110 7600 111	. 60 . 60 . 00 . 78 . 02 . 87 . 27
Inclination Steering Stub Axle Initial Steer Axis Coo Drivetrain Parameters - En Ma Maximu Transmissio Dif Wide-open Throttle, Speed Powe Torque (Closed Throttle, Speed Powe Torque (Angle (doffset (Length (ord (in))) Security of the security o	eg): in): in): - x: y: z: ond Axle: cription: wer (HP): (ft-lb): d Speeds: 1 Speeds: 500 50 -0 -5	2600 4 93 188 2600 4 -13 -27	1.60 3.60 0.00 3.78 0.02 6.87 4.27 Not .OL V-	Stee 6 5-S 200 193 5 1 6000 200 175 6000 -71	7600 110 7600 111	. 60 . 60 . 00 . 78 . 02 . 87 . 27

Differential Gear Ratio: 2.930

Untitled Vehicle Data-SIMON, Simulation

Licensed User: Quest Engineering & Failure Analysis

Wed 05/08/24 17:11:48 HVE 2021 Version 17.00 PAGE 3

Electronic Stability Systems Properties ---

(No ESS Systems Installed.)

Wheel Location Information, First Axle ---

Left Side	Right Side	
40.02	40.02	Initial Wheel Coordinates (in) - x:
-30.65	30.65	у:
14.34	14.34	z:

Suspension Information, First Axle ---

First Axie
Suspension Type:
''--1h/deq): Auxiliary Roll Stiffness (in-lb/deg):

Independent 2196.02

	Right Side	Left Side
Wheel Rate (lb/in):	274.84	274.84
<pre>Viscous Damping (lb-sec/in):</pre>	12.56	12.56
Coulomb Friction (lb):	50.00	50.00
Friction Null Band (in/sec):	5.00	5.00
Deflection to Jounce Stop (in):	-5.00	-5.00
Stop Linear Rate (lb/in):	300.00	300.00
Stop Cubic Rate (lb/in^3):	600.00	600.00
Stop Energy Ratio (%/100):	0.50	0.50
Deflection to Rebound Stop (in):	5.00	5.00
<pre>Stop Linear Rate (lb/in):</pre>	300.00	300.00
<pre>Stop Cubic Rate (lb/in^3):</pre>	600.00	600.00
Stop Energy Ratio (%/100):	0.50	0.50
Roll Steer Const. Coef (deg):	0.00	0.00
Roll Steer Linear Coef (deg/in):	0.00	0.00
Roll Steer Quadratic Coef (deg/in):	0.00	0.00
Roll Steer Cubic Coef (deg/in):	0.00	0.00

Camber and Half-track Tables

	Right :	Side		Left Si	.de
Susp		1/2-track	Susp		1/2-track
Defl	Camber	Change	Defl	Camber	Change
(in)	(deg)	(in)	(in)	(deg)	(in)
-5.00	-1.00	0.00	-5.00	-1.00	0.00
0.00	-1.00	0.00	0.00	-1.00	0.00
5.00	-1.00	0.00	5.00	-1.00	0.00

Tire Information, First Axle ---

	Right Side	Left Side
Tire Name:	Generic	Generic
Tire Manufacturer:	Generic	Generic
Tire Model:	Generic	Generic
Tire Size:	P235/70R16	P235/70R16
Version No:	V 5.20	V 5.20
Unloaded Radius (in):	14.49	14.49
Static Loaded Radius (in):	13.73	13.73
Nominal Width (in):	9.25	9.25
Tread Width (in):	7.40	7.40
<pre>Init. Radial Stiffness (lb/in/tire):</pre>	1500.00	1500.00
<pre>2nd Radial Stiffness (lb/in/tire):</pre>	15000.00	15000.00
Defl. @ 2nd Stiffness (in):	5.19	5.19
Max Deflection (in):	6.49	6.49

```
Untitled
                                                                           Wed 05/08/24 17:11:48
Vehicle Data-SIMON, Simulation
                                                                          HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis
                                                                                              PAGE 4
Rebound Energy Ratio (%/100):

Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/ 14.62
Steer Inertia (Tire+Whl+Brk, lb-sec^2-in 7.31
Weight (Tire+Whl+Brk, lb/tire): 49.50
Roll Resistance Const: 0.01
Roll Resististance Linear Coef (sec/in): 0.00
Min Fz For Skidmark (lb): 496.00
Pneumatic Trail (in): -1.18
                                                                                        1.00
                                                                                      14.62
                                                                                        7.31
                                                                                      49.50
                                                                                       0.01
                                                                                     496.00
                                                                                        -1.18
  Cornering Stiffness (lb/deg/tire): Right Side
                                                                                  Left Side
                                             _____
                            Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0
                      Speeds (in/sec): 528.0 528.0

Load No.: 1 2 3 1 2 3

Speed No. 1: 221.6 331.6 387.0 221.6 331.6 387.0
      Camber Stiffness (lb/deg/tire): Right Side Left Side
                                              _____
                            Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0
                     Speeds (in/sec): 528.0 528.0

Load No.: 1 2 3 1 2 3

Speed No. 1: 22.2 33.2 38.7 22.2 33.2 38.7
                    Tire Friction Table: Right Side
                                                                                Left Side
                                              ______
                            Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0
              Speeds (in/sec): 528.0 528.0 Speed No. 1, Load No.: 1 2 3 1 2 3
                               Peak Mu: 0.9000 0.8500 0.8000 0.9000 0.8500 0.8000
             Slide Mu: 0.7500 0.6000 0.5000 0.7500 0.6000 0.5000 Slip @ Peak Mu (%/100): 0.1600 0.1600 0.1600 0.1600 0.1600
         Long. Stiffness (lb/slip): 7000.0 13000.0 18000.0 7000.0 13000.0 18000.0
      Brake Information, First Axle ---
                                                          Right Side Left Side
                                                           -----
 Brake Assembly Type: Generic Brake Generic Brake
Brake Time Lag (sec): 0.0000 0.0000
Brake Time Rise (sec): 0.0000 0.0000
Pushout Pressure (psi): 0.00 0.00
Nominal Brake Torque Ratio (in-lb/psi): 21.08
                   ABS Parameters ---
Min Wheel Lin Vel (mph): 4.00 4.00
Min Wheel Slip (%/100): 0.0500 0.0500
Max Wheel Slip (%/100): 0.1500 0.1500
Apply Delay (sec): 0.0500 0.0500
Pri Apply Rate (psi/sec): 5000.00 5000.00
Sec Apply Rate (psi/sec): 500.00 0.0500
Release Delay (sec): 0.0500 0.0500
Release Rate (psi/sec): 10000.00 10000.00
                         ABS Parameters ---
      Wheel Location Information, Second Axle ---
                                                         Right Side Left Side
                                                    -63.08
                                                                               -63.08
      Initial Wheel Coordinates (in) - x:
                                                               30.45
14.34
                                                                                      -30.45
                                                у:
                                                                                       14.34
                                                7.:
      Suspension Information, Second Axle ---
                                     Suspension Type: Independent
```

Untitled Wed 05/08/24 17:11:48
Vehicle Data-SIMON, Simulation HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis PAGE 5

Auxiliary Roll Stiffness (in-lb/deg): 0.00

	Right Side	Left Side
Wheel Rate (lb/in):	183.84	183.84
<pre>Viscous Damping (lb-sec/in):</pre>	8.18	8.18
Coulomb Friction (lb):	50.00	50.00
Friction Null Band (in/sec):	5.00	5.00
Deflection to Jounce Stop (in):	-5.00	-5.00
Stop Linear Rate (lb/in):	300.00	300.00
<pre>Stop Cubic Rate (lb/in^3):</pre>	600.00	600.00
Stop Energy Ratio (%/100):	0.50	0.50
Deflection to Rebound Stop (in):	5.00	5.00
Stop Linear Rate (lb/in):	300.00	300.00
Stop Cubic Rate (lb/in^3):	600.00	600.00
Stop Energy Ratio (%/100):	0.50	0.50
Roll Steer Const. Coef (deg):	0.00	0.00
Roll Steer Linear Coef (deg/in):	0.00	0.00
Roll Steer Quadratic Coef (deg/in):	0.00	0.00
Roll Steer Cubic Coef (deg/in):	0.00	0.00

Camber and Half-track Tables

	· Right Si	.de		Left Si	de
Susp		1/2-track	Susp		1/2-track
Defl	Camber	Change	Defl	Camber	Change
(in)	(deg)	(in)	(in)	(deg)	(in)
-5.00	0.20	0.00	-5.00	0.20	0.00
0.00	0.20	0.00	0.00	0.20	0.00
5.00	0.20	0.00	5.00	0.20	0.00

Tire Information, Second Axle ---

	Right Side	Left Side
Tire Name:	Generic	Generic
Tire Manufacturer:	Generic	Generic
Tire Model:	Generic	Generic
Tire Size:	P235/70R16	P235/70R16
Version No:	V 5.20	V 5.20
Unloaded Radius (in):	14.49	14.49
Static Loaded Radius (in):	14.00	14.00
Nominal Width (in):	9.25	9.25
Tread Width (in):	7.40	7.40
<pre>Init. Radial Stiffness (lb/in/tire):</pre>	1500.00	1500.00
<pre>2nd Radial Stiffness (lb/in/tire):</pre>	15000.00	15000.00
Defl. @ 2nd Stiffness (in):	5.19	5.19
Max Deflection (in):	6.49	6.49
Rebound Energy Ratio (%/100):	1.00	1.00
Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/	14.62	14.62
Steer Inertia (Tire+Whl+Brk, lb-sec^2-in	7.31	7.31
<pre>Weight (Tire+Whl+Brk, lb/tire):</pre>	49.50	49.50
Roll Resistance Const:	0.01	0.01
Roll Resististance Linear Coef (sec/in):	0.00	0.00
Min Fz For Skidmark (lb):	496.00	496.00
Pneumatic Trail (in):	-1.18	-1.18

Cornering Stiffness (lb/deg/tire): Right Side Left Side

Loads (1b): 992.0 1984.0 2976.0 992.0 1984.0 2976.0

Speeds (in/sec): 528.0 528.0

```
Untitled
                                                                                                                                                             Wed 05/08/24 17:11:49
Vehicle Data-SIMON, Simulation
                                                                                                                                                           HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis
                                                        Load No.: 1 2 3 1 2 3
Speed No. 1: 221.6 331.6 387.0 221.6 331.6 387.0
             Camber Stiffness (lb/deg/tire): Right Side
                                                                                                                                                                             Left Side
                                                                                                   ------
                                             Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0 Speeds (in/sec): 528.0 528.0 Load No.: 1 2 3 1 2 3 Speed No. 1: 22.2 33.2 38.7 22.2 33.2 38.7
                                          Tire Friction Table: Right Side Left Side
                                                                                               _____
                                                        Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0
                             Speeds (in/sec): 528.0 528.0
Speed No. 1, Load No.: 1 2 3 1 2
                                                                Peak Mu: 0.9000 0.8500 0.8000 0.9000 0.8500 0.8000
                                                              Slide Mu: 0.7500 0.6000 0.5000 0.7500 0.6000 0.5000
                          Slip @ Peak Mu (%/100): 0.1600 0.1600 0.1600 0.1600 0.1600 0.1600
                  Long. Stiffness (lb/slip): 7000.0 13000.0 18000.0 7000.0 13000.0 18000.0
             Brake Information, Second Axle ---
                                                                                                                         Right Side Left Side
                                                   Brake Assembly Type: Generic Brake Generic Brake
                                                  Brake Time Lag (sec): 0.0000 0.0000
                                               Brake Time Rise (sec):
                                                                                                                                    0.0000
                                                                                                                                                                                     0.0000
 Pushout Pressure (psi):

Nominal Brake Torque Ratio (in-lb/psi):

Brake Proportioning Pressure (psi):

Brake Proportioning Ratio:

0.000

8.77

200.00

0.33
                                                                                                                                                                                      0.00
8.77
                                                                                                                                                                                   200.00
                                                                                                                                                                                         0.33
                                                     ABS Parameters ---
                                      Min Wheel Lin Vel (mph): 4.00 4.00

Min Wheel Slip (%/100): 0.0500 0.0500

Max Wheel Slip (%/100): 0.1500 0.1500

Apply Delay (sec): 0.0500 0.0500

Pri Apply Rate (psi/sec): 5000.00 5000.00

Sec Apply Rate (psi/sec): 500.00 500.00

Release Delay (sec): 0.0500 0.0500

Release Rate (psi/sec): 10000.00
             General Information ---
                                                                    Vehicle Name:
Vehicle Type:
Vehicle Make:
Vehicle Model:
Vehicle Year:
Vehicle Body Style:
Version No:
             Steady-State Handling Properties ---
                 Total Understeer Gradient (deg/g):

Steering Wheel Sensitivity (deg/g):

Roll Gradient (deg/g):

Roll Couple Distribution, F/R (%/100):

Weight Distribution, F/R (%/100):

Static Weight, Front Tires (lb):

1.89

1.89

1.698

0.698

0.68
```

```
Untitled
                                                                          Wed 05/08/24 17:11:49
Vehicle Data-SIMON, Simulation
                                                                         HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis
                                                                                             PAGE 7
                 Static Weight, Rear Tires (lb):
                                                                         3393.74
      Sprung Mass Dimensional Data ---
                               Overall Length (in):
                                                                        246.00
                                Overall Width (in):
                                                                          80.00
                               Overall Height (in):
                                                                          81.00
                             Ground Clearance (in):
                                                                          19.88
                                     Wheelbase (in):
                                                                        156.00
                             CG to Front Axle (in):
                                                                         60.13
                              CG to Back Axle (in):
                                                                        -95.87
                                     CG Height (in):
                                                                    38.00
52.00
                                                                          31.86
                               Front Overhang (in):
Rear Overhang (in):
                       ertial Data ---

Total Weight (lb):

Sprung Weight (lb):

8068.30

Sprung Mass (lb-sec^2/in):

20.88

15537.71

84579.82
      Sprung Mass Inertial Data ---
  Sprg Mass Rot Inertia (lb-sec^2-in) - Roll:
                                                   Yaw:
                                                                     81906.98
                                          XZ Product:
                                                                           0.00
      Sprung Mass Aerodynamic Parameters ---
                    Surface Name: Bottom
                Drag Coefficient: 0.0000
     Proj. Surface Area (in^2):17656.98
  Center of Pressure (in) - x: 0.00
                                         0.00
                                  у:
                                   z: 12.63
      Body Mesh Data ---
                            3-D Geometry Filename: 2015-Ford-F-250.h3d
                                    Number of Nodes:
                                                                 4769
                          Number of Damaged Nodes:
                                   ----- Node Stiffness Data (3-Dimensional) -----
                                   Front Right Back Left Top Bottom
   Const (lb/in^2): 21.83 2.60 9.69 2.60 8.33 8.33
Linear (lb/in^3): 5.92 1.33 4.10 1.33 1.67 1.67
Quadratic (lb/in^4): 0.00 0.00 0.00 0.00 0.00 0.00
Cubic (lb/in^5): 0.00 0.00 0.00 0.00 0.00 0.00
Conversion Factor(in): 30.00 30.00 30.00 30.00 30.00
      Brake System Data ---
                                 Brake System Type:
Axle 1:
Axle 2:
                                                                     Hydraulic
Disc Brakes
                                                                      Disc Brakes
                      Brake Pedal Ratio (psi/lb):
                                                                             5.41
                        ABS System: Tire Slip Algorithm
ABS Controller Location: This Vehicle
Sample Method: Wheel-Based
Delay Method: Wheel-Based
Threshold Pressure (psi): 10.00
Threshold Velocity (mak):
                         Threshold Velocity (mph):
                                                                           4.00
```

Untitled Wed 05/08/24 17:11:49
Vehicle Data-SIMON, Simulation HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis PAGE 8

recibed ober. Quest Bugineering & railule Analysis

First Axle: Steerable
Steering Gear Ratio (deg/deg): 21.46
Ackermann Steering Option: On

	Right Side	Left Side
Caster (deg):	2.80	2.80
<pre>Inclination Angle (deg):</pre>	12.30	12.30
Steering Offset (in):	4.35	4.35
Stub Axle Length (in):	7.71	7.71
Initial Steer Axis Coord (in) - x:	60.13	60.13
у:	26.79	-26.79
z:	14.86	14.86

Second Axle: Not Steerable

Drivetrain Parameters ---

Engine Description: 6.2L_V8_
Maximum Power (HP): 385

Maximum Torque (ft-lb): 405

Transmission Forward Speeds: 6

Differential Speeds: 1

Wide-open Throttle, Speed (RPM): 500 2000 4500 5500 5600 Power (HP): 5 140 347 385 384 Torque (ft-lb): 53 368 405 368 360

Closed Throttle, Speed (RPM): 500 2000 4500 5500 5600 Power (HP): -1 -19 -99 -147 -153 Torque (ft-lb): -13 -51 -115 -141 -143

Transmission Type: Automatic

Shift Points - Min Max Engine Speed (RPM): 1520 4580 Shift Up, WOT (%/100): 0.20 0.60 Shift Down, WOT (%/100): 0.50 0.90

Transmission Gear: Rev 1st 2nd 3rd 4th 5th 6th Numerical Ratio: -3.12 3.97 2.31 1.51 1.14 0.85 0.67

Differential Gear Ratio: 3.730

Electronic Stability Systems Properties ---

(No ESS Systems Installed.)

Wheel Location Information, First Axle ---

Suspension Information, First Axle ---

Suspension Type: Independent Auxiliary Roll Stiffness (in-lb/deg): 8157.78

Untitled Vehicle Data-SIMON, Simulation Licensed User: Quest Engineering & Failure	Analysis	Wed 05/08/24 17:11:49 HVE 2021 Version 17.00 PAGE 9
<pre>Viscous Damping (lb-sec/in):</pre>	6.55	6.55
Coulomb Friction (lb):	50.00	50.00
Friction Null Band (in/sec):	5.00	5.00
Deflection to Jounce Stop (in):	-3.94	-3.94
Stop Linear Rate (lb/in):	300.00	300.00
<pre>Stop Cubic Rate (lb/in^3):</pre>	600.00	600.00
Stop Energy Ratio (%/100):	0.50	0.50
Deflection to Rebound Stop (in):	2.54	2.54
Stop Linear Rate (lb/in):	300.00	300.00
<pre>Stop Cubic Rate (lb/in^3):</pre>	600.00	600.00
Stop Energy Ratio (%/100):	0.50	0.50
Roll Steer Const. Coef (deg):	-0.05	0.05
Roll Steer Linear Coef (deg/in):	0.03	-0.03
Roll Steer Quadratic Coef (deg/in):	-0.00	0.00
Roll Steer Cubic Coef (deg/in):	0.00	-0.00

Camber and Half-track Tables

	Right	Side		Left :	C: do
0	Right			тетс ,	
Susp		1/2-track	Susp		1/2-track
Defl	Camber	Change	Defl	Cambe	r Change
(in)	(deg)	(in)	(in)	(deg)) (in)
-1.93	0.10	0.00	-1.93	0.10	0.00
-1.30	0.10	-0.02	-1.30	0.10	0 -0.02
-0.65	0.10	0.00	-0.65	0.10	0.00
0.00	0.20	0.00	0.00	0.20	0.00
0.63	0.20	0.00	0.63	0.20	0.00
1.36	0.25	0.00	1.36	0.2	5 0.00
2.11	0.25	0.00	2.11	0.2	5 0.00
2.38	0.30	-0.02	2.38	0.30	0 -0.02
2.46	0.35	0.00	2.46	0.39	5 0.00

Tire Information, First Axle ---

Static Loaded Radius (in): 15.35 15.35 Nominal Width (in): 10.83 10.83 10.83 Tread Width (in): 8.66 8.66			
Tire Manufacturer: Generic Generic Tire Model: Generic Generic Tire Size: P275/60R20 P275/60R20 Version No: \$\DB\VM\$ \$\DB\VM\$ Unloaded Radius (in): 17.05 17.05 Static Loaded Radius (in): 15.35 15.35 Nominal Width (in): 10.83 10.83 Tread Width (in): 8.66 8.66 Init. Radial Stiffness (lb/in/tire): 1500.00 1500.00 2nd Radial Stiffness (lb/in/tire): 1500.00 1500.00 Defl. @ 2nd Stiffness (in): 5.04 5.04 Max Deflection (in): 6.30 6.30 Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/Steer Inertia (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resististance Linear Coef (sec/in): 0.00 Roll Resististance Linear Coef (sec/in): 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17		Right Side	Left Side
Tire Manufacturer: Generic Generic Tire Model: Generic Generic Tire Size: P275/60R20 P275/60R20 Version No: \$\DB\VM\$ \$\DB\VM\$ Unloaded Radius (in): 17.05 17.05 Static Loaded Radius (in): 15.35 15.35 Nominal Width (in): 10.83 10.83 Tread Width (in): 8.66 8.66 Init. Radial Stiffness (lb/in/tire): 1500.00 1500.00 2nd Radial Stiffness (lb/in/tire): 1500.00 1500.00 Defl. @ 2nd Stiffness (in): 5.04 5.04 Max Deflection (in): 6.30 6.30 Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/Steer Inertia (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resististance Linear Coef (sec/in): 0.00 Roll Resististance Linear Coef (sec/in): 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17	Tire Name:G	eneric P275/60R2G	eneric P275/60R2
Tire Model: Generic Generic Tire Size: P275/60R20 Version No: s\DB\VM Unloaded Radius (in): 17.05 Static Loaded Radius (in): 15.35 Nominal Width (in): 10.83 Tread Width (in): 8.66 Init. Radial Stiffness (lb/in/tire): 1500.00 2nd Radial Stiffness (lb/in/tire): 15000.00 Defl. @ 2nd Stiffness (in): 5.04 Max Deflection (in): 6.30 Rebound Energy Ratio (%/100): 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/Steer Inertia (Tire+Whl+Brk, lb/tire): 66.50 Roll Resistance Const: 0.01 Roll Resistance Linear Coef (sec/in): 0.00 Min Fz For Skidmark (lb): 496.00 Pneumatic Trail (in): -1.17			•
Tire Size: P275/60R20 P275/60R20 Version No: s\DB\VM S\DB\SMAS S\DB\VM S\DB\SMAS S\DB\VM S\DB\SMAS S\DB\VM S\DB\SMAS S\DB\			
Version No: S\DB\VM			
Unloaded Radius (in): 17.05 17.05 Static Loaded Radius (in): 15.35 15.35 Nominal Width (in): 10.83 10.83 Tread Width (in): 8.66 8.66 Init. Radial Stiffness (lb/in/tire): 1500.00 1500.00 2nd Radial Stiffness (lb/in/tire): 15000.00 15000.00 Defl. @ 2nd Stiffness (in): 5.04 5.04 Max Deflection (in): 6.30 6.30 Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/ 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb-sec^2-in/ 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 496.00 Pneumatic Trail (in): -1.17 -1.17			
Static Loaded Radius (in): 15.35 15.35 Nominal Width (in): 10.83 10.83 10.83 Tread Width (in): 8.66 8.66	Unloaded Radius (in):		· · · · · · · · · · · · · · · · · · ·
Nominal Width (in):	Static Loaded Radius (in):	15.35	15.35
Init. Radial Stiffness (lb/in/tire): 1500.00 1500.00 2nd Radial Stiffness (lb/in/tire): 15000.00 15000.00 000 000 000 000 000 000 000 000	Nominal Width (in):		10.83
2nd Radial Stiffness (lb/in/tire): 15000.00 15000.00 Defl. @ 2nd Stiffness (in): 5.04 5.04 Max Deflection (in): 6.30 6.30 Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/ 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb-sec^2-in 13.19 13.19 Weight (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 496.00 Pneumatic Trail (in): -1.17 -1.17	Tread Width (in):	8.66	8.66
Defl. @ 2nd Stiffness (in): 5.04 5.04 Max Deflection (in): 6.30 6.30 Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/ 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb-sec^2-in 13.19 13.19 Weight (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17	<pre>Init. Radial Stiffness (lb/in/tire):</pre>	1500.00	1500.00
Max Deflection (in): 6.30 6.30 Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/Steer Inertia (Tire+Whl+Brk, lb-sec^2-in late) 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb-sec^2-in leight (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17 -1.17	<pre>2nd Radial Stiffness (lb/in/tire):</pre>	15000.00	15000.00
Rebound Energy Ratio (%/100): 1.00 1.00 Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/ 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb-sec^2-in 13.19 13.19 Weight (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17	Defl. @ 2nd Stiffness (in):	5.04	5.04
Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/ 26.40 26.40 Steer Inertia (Tire+Whl+Brk, lb-sec^2-in 13.19 13.19 Weight (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17 -1.17	Max Deflection (in):	6.30	6.30
Steer Inertia (Tire+Whl+Brk, lb-sec^2-in Weight (Tire+Whl+Brk, lb/tire): Roll Resistance Const: 0.01 0.01 13.19 Roll Resistance Const: Roll Resistance Linear Coef (sec/in): 0.00 0.00 0.01 0.00 Min Fz For Skidmark (lb): 496.00 Pneumatic Trail (in): -1.17 -1.17	Rebound Energy Ratio (%/100):	1.00	1.00
Weight (Tire+Whl+Brk, lb/tire): 66.50 66.50 Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17 -1.17	Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/	26.40	26.40
Roll Resistance Const: 0.01 0.01 Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17	Steer Inertia (Tire+Whl+Brk, lb-sec^2-in	13.19	13.19
Roll Resististance Linear Coef (sec/in): 0.00 0.00 Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17 -1.17	<pre>Weight (Tire+Whl+Brk, lb/tire):</pre>	66.50	66.50
Min Fz For Skidmark (lb): 496.00 496.00 Pneumatic Trail (in): -1.17 -1.17	Roll Resistance Const:	0.01	0.01
Pneumatic Trail (in): -1.17 -1.17	Roll Resististance Linear Coef (sec/in):	0.00	0.00
	Min Fz For Skidmark (lb):	496.00	496.00
Cornering Stiffness (lb/deg/tire): Right Side Left Sid	Pneumatic Trail (in):	-1.17	-1.17
	Cornering Stiffness (lb/deg/tire):	Right Side	Left Side

Loads (1b): 992.0 1984.0 2976.0 992.0 1984.0 2976.0

```
Untitled
                                                                                 Wed 05/08/24 17:11:49
Vehicle Data-SIMON, Simulation
                                                                                HVE 2021 Version 17.00
Licensed User: Quest Engineering & Failure Analysis

    Speeds (in/sec):
    528.0
    528.0

    Load No.:
    1
    2
    3
    1
    2
    3

    Speed No. 1:
    232.8
    334.5
    384.0
    232.8
    334.5
    384.0

      Camber Stiffness (lb/deg/tire): Right Side
                                                                                     Left Side
                                                  Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0 Speeds (in/sec): 528.0 528.0 Load No.: 1 2 3 1 2 3 Speed No. 1: 23.3 33.5 38.4 23.3 33.5 38.4
                      Tire Friction Table: Right Side
                                                                                          Left Side
                                                 ------
               Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0 Speeds (in/sec): 528.0 528.0 Speed No. 1, Load No.: 1 2 3 1 2 3
                                 Peak Mu: 1.1500 1.1000 1.0500 1.1500 1.1000 1.0500
             Slide Mu: 0.9000 0.8500 0.8000 0.9000 0.8500 0.8000 Slip @ Peak Mu (%/100): 0.1600 0.1600 0.1600 0.1600 0.1600
         Long. Stiffness (lb/slip): 7000.0 13000.0 18000.0 7000.0 13000.0 18000.0
      Brake Information, First Axle ---
                                                               Right Side Left Side
Brake Assembly Type: Generic Brake Generic Brake
Brake Time Lag (sec): 0.0000 0.0000
Brake Time Rise (sec): 0.0000 0.0000
Pushout Pressure (psi): 0.00 0.00
Nominal Brake Torque Ratio (in-lb/psi): 124.42 124.42
                    ABS Parameters ---
Min Wheel Lin Vel (mph): 4.00 4.00
Min Wheel Slip (%/100): 0.0500 0.0500
Max Wheel Slip (%/100): 0.1500 0.1500
Apply Delay (sec): 0.0500 0.0500
Pri Apply Rate (psi/sec): 5000.00 5000.00
Sec Apply Rate (psi/sec): 500.00 500.00
Release Delay (sec): 0.0500 0.0500
Release Rate (psi/sec): 10000.00
                           ABS Parameters ---
      Wheel Location Information, Second Axle ---
                                                               Right Side Left Side
                                                                                       -----
                                                                -----
      Initial Wheel Coordinates (in) - x:
                                                                      -95.87
                                                                                          -95.87
                                                   y:
z:
                                                                      34.00
                                                                                             -34.00
                                                                      14.79
                                                                                              14.79
      Suspension Information, Second Axle ---
  Suspension Type: Solid Axle

Axle+Wheels Roll/Yaw Inertia (lb-sec^2-in): 498.28

Axle Roll Ctr Ht Below CG (in): 13.05
                   Axle Roll Ctr Ht Below CG (in):
                                                                                 13.05
                          Axle Roll Steer (deg/deg):
                                                                                  0.00
45.00
                       Lateral Spring Spacing (in):
     Nominal Track Width (in):
Total (Axle+Wheels) Unsprung Weight (lb):
Auxiliary Roll Stiffness (in-lb/deg):
                                                                                   68.00
                                                                                 283.70
                                                                Right Side Left Side
                Wheel Rate (lb/in): 392.90 392.90
Viscous Damping (lb-sec/in): 3.63 3.63
```

```
Untitled
                                                                                         Wed 05/08/24 17:11:50
 Vehicle Data-SIMON, Simulation
                                                                                        HVE 2021 Version 17.00
 Licensed User: Quest Engineering & Failure Analysis
                                                                                                              PAGE 11
                     riction Null Band (in/sec): 5.00
ection to Jounce Stop (in): -4.72
Stop Linear Rate (lb/in): 300.00
Stop Cubic Rate (lb/in^3): 600.00
Stop Energy Ratio (%/100): 0.50
etion to Rebound Stop (in): 3.46
Stop Linear Rate (lb/in): 300.00
Stop Cubic Rate (lb/in): 300.00
Stop Cubic Rate (lb/in^3): 600.00
Stop Energy Ratio (%/100): 0.50
Camber Constant (deg): 0.00
                                                                                                     100.00
                            Coulomb Friction (lb):
                                                                100.00
                 Friction Null Band (in/sec):
                                                                                                     5.00
-4.72
                                                                                              -4.72
300.00
600.00
              Deflection to Jounce Stop (in):
                                                                                                      0.50
3.46
             Deflection to Rebound Stop (in):
                                                                                                    300.00
                                                                                                     600.00
                                                                                                       0.50
                                                                                                         0.00
        Tire Information, Second Axle ---
                                                                      Right Side Left Side
                                                                                                Left Side
                                             Tire Name: Generic P275/60R2Generic P275/60R2
                                  Tire Manufacturer: Generic Generic
Tire Model: Generic Generic
                                             Tire Size:
                                                                    P275/60R20
                                                                                               P275/60R20
                                            Version No:
                                                                     s\DB\VM
                                                                                                s\DB\VM
                                                                17.05
15.92
10.83
8.66
1500.00
15000.00
                             Unloaded Radius (in):
                                                                                                       17.05
                      Static Loaded Radius (in):
                                                                                                       15.92
                                Nominal Width (in):
                                                                                                      10.83
                                   Tread Width (in):
                                                                                                        8.66
                                                                                                8.66
1500.00
15000.00
      Init. Radial Stiffness (lb/in/tire):
Max Deflection (in):

Rebound Energy Ratio (%/100):

Spin Inertia (Tire+Whl+Brk, lb-sec^2-in/
Steer Inertia (Tire+Whl+Brk, lb-sec^2-in

Weight (Tire+Whl+Brk, lb/tire):

Roll Resistance Const:

Roll Resistance Linear Coef (sec/in):

Min Fz For C'
         2nd Radial Stiffness (lb/in/tire):
                                                                                                       6.30
Roll Resistance Const:
Roll Resististance Linear Coef (sec/in):
Min Fz For Skidmark (lb):
Pneumatic Trail (in):
                                                                          0.01
0.00
496.00
-1.17
                                                                                                        0.00
                                                                                                     496.00
                                                                                                       -1.17
   Cornering Stiffness (lb/deg/tire): Right Side Left Side
                                                        ------
                                 Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0
                          Speeds (in/sec): 528.0 528.0

Load No.: 1 2 3 1 2 3

Speed No. 1: 232.8 334.5 384.0 232.8 334.5 384.0
        Camber Stiffness (lb/deg/tire): Right Side Left Side
                                                          ______
                          Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0 Speeds (in/sec): 528.0 528.0 Load No.: 1 2 3 1 2 3 Speed No. 1: 23.3 33.5 38.4 23.3 33.5 38.4
                         Tire Friction Table: Right Side
                                                                                      Left Side
          Loads (lb): 992.0 1984.0 2976.0 992.0 1984.0 2976.0 Speeds (in/sec): 528.0 528.0 Speed No. 1, Load No.: 1 2 3 1 2 3 Peak Mu: 1.1500 1.1000 1.0500 1.1500 1.1000 1.0500 Slide Mu: 0.9000 0.8500 0.8000 0.9000 0.8500 0.8000 Slip @ Peak Mu (%/100): 0.1600 0.1600 0.1600 0.1600 0.1600 0.1600 Long. Stiffness (lb/slip): 7000.0 13000.0 18000.0 7000.0 13000.0 18000.0
```

Untitled Wed 05/08/24 17:11:50

Vehicle Data-SIMON, Simulation HVE 2021 Version 17.00

Licensed User: Quest Engineering & Failure Analysis PAGE 12

Brake Information, Second Axle ---

	Right Side	Left Side
Brake Assembly Type:	Generic Brake	Generic Brake
Brake Time Lag (sec):	0.0000	0.0000
Brake Time Rise (sec):	0.0000	0.0000
Pushout Pressure (psi):	0.00	0.00
Nominal Brake Torque Ratio (in-lb/psi):	67.87	67.87
ABS Parameters		
Min Wheel Lin Vel (mph):	4.00	4.00
Min Wheel Slip (%/100):	0.0500	0.0500
Max Wheel Slip (%/100):	0.1500	0.1500
Apply Delay (sec):	0.0500	0.0500
<pre>Pri Apply Rate (psi/sec):</pre>	5000.00	5000.00
<pre>Sec Apply Rate (psi/sec):</pre>	500.00	500.00
Release Delay (sec):	0.0500	0.0500
Release Rate (psi/sec):	10000.00	10000.00

