Differential Geometry I

Lecture notes

Andriy Haydys

September 19, 2023

This is a draft. If you spot a mistake, please let me know.

Contents

1	Smooth surfaces	2
	1.1 The notion of a smooth surface	2

Chapter 1

Smooth surfaces

1.1 The notion of a smooth surface

Let $U \subset \mathbb{R}^n$ be an open subset and $f \in C^1(U)$. It is known from analysis that $x_0 \in U$ is a point of extremum for f if

$$\frac{\partial f}{\partial x_i}(x_0) = 0$$

holds for all i = 1, ..., n. Notice that this is a necessary condition, which is not sufficient in general.

A more general type of problems does not fit into this scheme. For example, consider the following.

Problem. Among all rectangular parallelepipeds, whose diagonal has a fixed length, say 1, find the one with maximal volume.

Figure 1.1: A parallelepiped

Thus, we want to find a point of maximum of the function f(x, y, z) = xyz on the set

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x > 0, y > 0, z > 0 \quad \text{and} \quad x^2 + y^2 + z^2 = 1\} \subset S^2.$$
 (1.1)

However, V is *not* an open subset of \mathbb{R}^3 so that the receipy known from the analysis course is not readily applicable.

Figure 1.2: The spherical triangle x, y, z > 0

This problem is relatively easy to solve, however. Indeed, since z > 0, we obtain $z = \sqrt{1 - x^2 - y^2}$ so that we are essentially interested in the function

$$F(x,y) := f(x,y,\sqrt{1-x^2-y^2}) = xy\sqrt{1-x^2-y^2}$$

More precisely, we want to find points of maximum of F on the set $\{(x,y) \mid x^2 + y^2 < 1, x > 0, y > 0\}$, which is an open subset of \mathbb{R}^2 .

We compute

$$\frac{\partial F}{\partial x} = y\sqrt{1 - x^2 - y^2} - xy\frac{x}{\sqrt{1 - x^2 - y^2}} = 0,
\frac{\partial F}{\partial y} = x\sqrt{1 - x^2 - y^2} - xy\frac{y}{\sqrt{1 - x^2 - y^2}} = 0.$$
(1.2)

Since $x \neq 0$ and $y \neq 0$, we have

(1.2)
$$\iff \frac{1-x^2-y^2=x^2}{1-x^2-y^2=y^2} \implies x^2=y^2 \implies x=y$$

$$\implies 3x^2=1 \implies x=y=\frac{1}{\sqrt{3}}$$

$$\implies z=\frac{1}{\sqrt{3}}.$$

Hence, if there is a parallelepiped maximizing the volume among all rectangular parallelepipeds with the given length of the diagonal, this must be the cube.

Exercise 1.3. Show that $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ is a point of maximum indeed.

Consider a more general problem of constrained maximum/minimum. Given $f, \varphi \in C^{\infty}(\mathbb{R}^n)$ find a point of maximum/minimum of f on the set

$$S := \{ x \in \mathbb{R}^n \mid \varphi(x) = 0 \}.$$

Proposition 1.4. Assume that for $p \in S$ we have

$$\frac{\partial \varphi}{\partial x_n}(p) \neq 0. \tag{1.5}$$

Then there is a neighbourhood W of p in \mathbb{R}^3 , an open subset $V \subset \mathbb{R}^{n-1}$, and a smooth function $\psi \colon V \to \mathbb{R}$ such that for $x = (y, z) \in \mathbb{R}^{n-1} \times \mathbb{R}$ we have

$$x \in S \cap W \iff y \in V \text{ and } z = \psi(y).$$

This is a celebrated implicit function theorem, whose proof was given in the analysis course.

Theorem 1.6. Let $p \in S$ be a point of (local) maximum of f on S. If (1.5) holds, then there exists some $\lambda \in \mathbb{R}$ such that

$$\frac{\partial f}{\partial x_{i}}(p) = \lambda \frac{\partial \varphi}{\partial x_{i}}(p) \iff \nabla f(p) = \lambda \nabla \varphi(p)$$
(1.7)

holds for each $j = 1, \ldots, n$.

Proof. Let $p = (y_0, z_0)$ be a local maximum for f on S. Hence, y_0 is a local maximum for the function

$$F \colon V \to \mathbb{R}, \qquad F(y) \coloneqq f(y, \psi(y))$$

This yields

$$\frac{\partial F}{\partial y_{i}}(y_{0}) = \frac{\partial f}{\partial y_{i}}(p) + \frac{\partial f}{\partial x_{n}}(p) \frac{\partial \psi}{\partial y_{i}}(y_{0}) = 0$$

for all $j \leq n - 1$.

Furthermore, since $\varphi(y, \psi(y)) \equiv 0$, we have

$$\frac{\partial \varphi}{\partial y_j} + \frac{\partial \varphi}{\partial x_n} \frac{\partial \psi}{\partial y_j} \equiv 0.$$

This yields in turn

$$\frac{\partial \psi}{\partial y_j}\left(y_0\right) = -\frac{\partial \varphi}{\partial y_j}\left(p\right) \bigg/ \frac{\partial \varphi}{\partial x_n}\left(p\right) \qquad \Longrightarrow \qquad \frac{\partial f}{\partial y_j}\left(p\right) = \left(\frac{\partial f}{\partial x_n}\left(p\right) \bigg/ \frac{\partial \varphi}{\partial x_n}\left(p\right)\right) \cdot \frac{\partial \varphi}{\partial y_j}\left(p\right).$$

Thus, (1.7) holds for all $j \leq n-1$ with $\lambda := \frac{\partial f}{\partial x_n}(p) / \frac{\partial \varphi}{\partial x_n}(p)$ independent of j. For j=n we have

$$\frac{\partial f}{\partial x_n}(p) = \left(\frac{\partial f}{\partial x_n}(p) \middle/ \frac{\partial \varphi}{\partial x_n}(p)\right) \cdot \frac{\partial \varphi}{\partial x_n}(p) = \lambda \frac{\partial \varphi}{\partial x_n}(p).$$

Thus, (1.7) holds also for j = n with the same λ .

Let us come back to the example about maximal value of parallelepipeds with a fixed length of the diagonal. Thus, if (x,y,z) is a point of maximum of f on (1.1), then there exists $\lambda \in \mathbb{R}$ such that

$$yz = 2\lambda x$$

 $xz = 2\lambda y$ \Longrightarrow $(xyz)^2 = 8\lambda^3 xyz$ \Longrightarrow $xyz = 8\lambda^3$.
 $xy = 2\lambda z$

This yields in turn

$$8\lambda^3 = xyz = x(yz) = 2\lambda x^2.$$

Notice that $\lambda \neq 0$, since otherwise x = 0 or y = 0 or z = 0. Hence, we obtain $x = 2\lambda$.

A similar argument yields also $y = 2\lambda$ and $z = 2\lambda$. Therefore we obtain

$$4\lambda^2 + 4\lambda^2 + 4\lambda^2 = 1$$
 \Longrightarrow $\lambda = \frac{1}{2\sqrt{3}}$ \Longrightarrow $x = y = z = \frac{1}{\sqrt{3}}$

which is in agreement with our previous computation.

Coming back to Proposition 1.4, it is clear that it is only important that one of the partial derivatives of φ does not vanish. This leads to the following definition.

Definition 1.8 (Surface). A non-empty set $S \subset \mathbb{R}^3$ is called a (smooth) *surface*, if for any $p \in S$ there exists an open set $V \subset \mathbb{R}^2$ and a smooth map $\psi : V \to S$ such that the following holds:

- (i) $\psi(V) =: U$ is a neighbourhood of p in S.
- (ii) $\psi \colon V \to U$ is a homeomorphism.
- (iii) $D_q \psi \colon \mathbb{R}^2 \to \mathbb{R}^3$ is injective $\forall q \in V$.

Example 1.9. Assume $\varphi \in C^{\infty}(\mathbb{R}^3)$ satisfies

$$\frac{\partial \varphi}{\partial z}(p) \neq 0$$
 for all $p \in S := \varphi^{-1}(0)$.

Let ψ be as in Proposition 1.4. Define $\Psi(x,y) \coloneqq (x,y,\psi(x,y))$. If U and V are also as in Proposition 1.4, then $\Psi \colon V \to S \cap U$ is a homeomorphism, since $\pi \colon S \cap U \to V, \pi(x,y,z) = (x,y)$ is a continuous inverse. Furthermore,

$$D\Psi = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \partial_x \psi & \partial_y \psi \end{pmatrix}$$

is clearly injective at all points. Hence, S is a surface.

Again, the same conclusion holds if we assume only that $\nabla \varphi(p) \neq 0$ for all $p \in \varphi^{-1}(0)$. In particular,

- the sphere $S^2 = \{x^2 + y^2 + z^2 = 1\}$
- the cylinder $C = \{(x, y, z) \mid x^2 + y^2 = 1\}$
- the hyperboloid $H = \{x^2 + y^2 z^2 = 1\}$

are surfaces

Example 1.10 (Torus). Let C be the circle of radius r in the yz-plane centered at the point (0, a, 0) as shown on Fig. 1.4, where a > r.

More formally,

$$T := \{(\sqrt{x^2 + y^2} - a)^2 + z^2 = r^2\}.$$

Exercise 1.11. Check that T is a surface indeed.

Figure 1.3: The cylinder and hyperboloid

Figure 1.4: The torus as a circle rotated with respect to an axis

Example 1.12 (A non-example). A double cone $C_0 := \{x^2 + y^2 - z^2 = 0\}$ is not a surface. Indeed, assume C_0 is a surface. Then the tip of the cone p must have a neighbourhood U homeomorphic to an open disc in \mathbb{R}^2 .

Let $f: U \to D$ be a homeomorphism. Then $f: U \setminus \{p\} \to D \setminus \{f(p)\}$ is also a homeomorphism. However, this is impossible, since the punctured disc is connected but $U \setminus \{p\}$ is disconnected. Hence, p does not have a neighbourhood homeomorphic to a disc (or any open subset of \mathbb{R}^2).

Exercise 1.13. Show that a straight line is not a surface.

Remark 1.14.

- 1) The map ψ in the definition of the surface is called a *parametrization*.
- 2) Condition (iii) is equivalent to the following:

$$\partial_u \psi$$
 and $\partial_v \psi$ are linearly independent

at each point $(u, v) \in V$.

Proposition 1.15. Let S be a surface. For any $p \in S$ there exists a neighbourhood $W \subset \mathbb{R}^3$ and $\varphi \in C^{\infty}(W)$ such that

$$S \cap W = \{x \in W \mid \varphi(x) = 0\}$$
 and $\nabla \varphi(x) \neq 0$

for any $x \in S \cap W$.

Figure 1.5: The torus

Figure 1.6: The double cone

Proof. Choose a parametrization $\psi \colon V \to U \subset S$. Let $(u_0, v_0) \in V$ be a unique point such that $\psi(u_0, v_0) = p$. Choose a vector $n \in \mathbb{R}^3$ such that

$$\partial_u \psi (u_0, v_0), \quad \partial_v \psi (u_0, v_0), \quad n$$
 (1.16)

are linearly independent. Consider the map

$$\Psi \colon \mathbf{V} \times \mathbb{R} \to \mathbb{R}^3, \qquad \Psi(u, v, w) = \psi(u, v) + w \cdot n$$

The linear independence of (1.16) yields $\det D\Psi (u_0, v_0, 0) \neq 0$. By the inverse map theorem, there exists an open neighbourhood $W \subset \mathbb{R}^3$ of p and a smooth map $\Phi \colon W \to V \times \mathbb{R} \subset \mathbb{R}^3$ such that

$$\Psi \circ \Phi(x) = x \quad \forall x \in W.$$

If $\Phi = (\varphi_1, \varphi_2, \varphi_3)$, then

$$\Psi \circ \Phi(x) = \psi(\varphi_1(x), \varphi_2(x)) + \varphi_3(x) \cdot n = x.$$

Observe that

$$x \in S \cap W \iff \exists (u, v) \in V \text{ such that } \psi(u, v) = x$$

and consequently

$$\Psi(u, v, 0) = \psi(u, v) = x = \Psi(\varphi_1(x), \varphi_2(x), \varphi_3(x)).$$

Since Ψ is injective (on an open neighbourhood of $(u_0, v_0, 0)$), we have

$$x \in S \cap W \iff \varphi_3(x) = 0.$$

Furthermore, since $\det D\Phi\left(x\right)\neq0$ for all $x\in W$, the vectors $\nabla\varphi_{1}\left(x\right),\nabla\varphi_{2}\left(x\right),\nabla\varphi_{3}\left(x\right)$ are linearly independent at each $x\in W$. In particular, $\nabla\varphi_{3}\left(x\right)\neq0$ for all $x\in W$.

The following corollary follows immediately from Proposition 1.15.

Corollary 1.17. Any surface is locally the graph of a smooth function. \Box

Example 1.18 (A non-example). The union of two intersecting planes in \mathbb{R}^3 is *not* a surface. Indeed, assume that

$$S \coloneqq \{z = 0\} \cup \{x = 0\}$$

is a surface. Then there exists a smooth function φ defined in a neighbourhood W of the origin such that φ vanishes on S and $\nabla \varphi(0) \neq 0$ by Proposition 1.15. Notice that φ vanishes identically along S, hence φ vanishes identically along all three coordinate axes (at least in a neighbourhood of the origin). This yields in turn $\nabla \varphi(0) = 0$, which is a contradiction.