SENSOMETRIA

Adilson dos Anjos

Departamento de Estatística Universidade Federal do Paraná aanjos@ufpr.br

Curitiba, PR 12 de março de 2015

SENSOMETRIA

Métodos Discriminativos –

Teste holístico Duo-Trio Triangular Tetraédrico	Produto Ref. versus A B A A B A A B B	Protocolo Qual produto é igual a referência? Qual produto é diferente? Agrupe os produtos em grupos de 2 produtos idênticos.	Prob. 1/2 1/3 1/3
Teste orientado	Produto	Protocolo	Prob.
2AFC	АВ	Qual produto é mais?	1/2
3AFC	AAB	Qual produto dos 3 é mais?	1/3
mAFC	A A A A B	Qual produto dos m é mais?	1/m
Tetraédrico espec.	AABB	Quais 2 produtos são mais?	1/3
Igual/diferente	A A ou A B	Os produtos são iguais ou diferentes?	×

- São diferentes protocolos mas, as respostas são sempre do tipo 'certo' ou 'errado';
- As respostas seguem uma distribuição binomial;
- Guessing model: foco sobre o sujeito, interesse na capacidade de detectar diferenças entre produtos;
- Thurstonian model: foco sobre os produtos e como eles são percebidos;

- Em todos esses protocolos os avaliadores devem fornecer uma resposta, percebendo ou não uma diferença entre os produtos;
- Isso implica que o avaliador possui um probabilidade n\u00e3o nula de responder corretamente qual \u00e1 o produto diferente, por exemplo;
- ullet Essa probabilidade é denotada por p_g (guess: acerto casual);
- p_g depende do protocolo utilizado: por exemplo, no teste triangular, $p_g=1/3$;
- No Guessing model, diferentes protocolos podem gerar resultados diferentes;
- Guessing model é método específico;

- Os sujeitos que detectam diferenças entre produtos são os discriminadores;
- Essa proporção de discriminadores em um teste, pelo modelo
 Thurstoniano auxilia na avaliação de diferença entre dois produtos;
- p_c proporção de respostas corretas; p_d proporção de discriminadores;

•

$$p_c = p_d + p_g(1 - p_d)$$

$$p_d = \frac{p_c - p_g}{1 - p_g}$$

Exemplo: no triangular, $p_c=rac{1}{3}+p_drac{2}{3}$ e $p_d=rac{p_c-1/3}{2/3}$

- No guessing model, n\u00e3o \u00e9 poss\u00edvel comparar o resultado de diferentes testes;
- No Thurstonian model, o número de respostas corretas é transformado em uma "medida" chamada d';
- p_c é independente do método;
- ullet p_d depende do método, em particular, da probabilidade de acerto casual;

Exemplo: Dutcosky, 2013

Testes Discriminativos

Foi solicitada a substituição de um tipo de fosfato por outro na fabricação de um biscoito. O forneccedor alega que essa substituição não acarretará em mudança significativa na textura do produto e que isso não será percebido pelo consumidor.

Em um teste duo-trio com 100 avaliadores obteve-se 55 respostas corretas. Considerando $\alpha=0,05$, o número de respostas corretas para que fosse detectada diferença significativa é 59. Nesse caso, conclui-se que não há diferença significativa entre as amostras.

Testes Discriminativos

Não convencido do resultado, o gerente decidiu fazer um outro teste, agora de comparação pareada para avaliar a dureza do biscoito. Perguntou-se: qual dos dois biscoitos é o mais duro? Entre 30 avaliadores, 21 responderam que o biscoito atual era o mais duro. Pelo teste binomial, com $\alpha=0,05$, são necessárias 21 respostas para estabelecer uma diferença significativa entre as amostras.

Testes Discriminativos

Um terceiro teste foi conduzido, com um número maior de avaliadores e utilizando-se o teste triangular. Definiu-se que o número de discriminadores é inferior a 10%. O experimento foi realizado com 240 avaliadores. Foram obtidas 91 respostas corretas. Com $\alpha=0,05$ seriam necessárias 92 respostas corretas.

Testes Discriminativos

Exemplo, página 180, Dutcosky, 2013

Teste	Respostas Corretas	N	p_c	p_d	Diferenças?	d'
Duo-trio	55	100	0,55	0,10	$N\~{a}o(p > 0,05)$	0,76
Pareado (dureza)	21	30	0,70	0,40	Sim(p < 0.05)	0,74
Triangular	91	240	0,38	0,07	$N\~{a}o(p>0,05)$	0,73

Como obter o d':

• Existem funções psicométricas que relacionam o número de respostas corretas e o tipo de teste;

$$p_c = f_{ps}(d')$$

 Por exemplo, para o teste triangular a função psicométrica é dada portuguese

$$f_{tri}(d') = 2 \int_0^\infty \{\Phi[-z\sqrt{3} + d'\sqrt{2/3}] + \Phi[-z\sqrt{3} + d'\sqrt{2/3}]\}\phi(z)dz$$

 ϕ é a função densidade de probabilidade da distribuição normal padrão e Φ é a função de distribuição acumulada da distribuição normal padrão.

Exemplo, página 180, Dutcosky, 2013

No R, estes resultados podem ser obtidos da seguinte maneira:

- > library(sensR)
- > discrim(correct=55,total=100,
- + method='duotrio',test='difference')

Estimates for the duotrio discrimination protocol with 55 communication answers in 100 trials. One-sided p-value and 95 % two-sided intervals are based on the 'exact' binomial test.

	Estimate	Std. Error	Lower	Upper
рс	0.550	0.0497	0.5	0.650
pd	0.100	0.0995	0.0	0.299
d-prime	0.761	0.4040	0.0	1.419

Testes Discriminativos

Considere que existam 10 respostas corretas de 15 em cada um dos testes de discriminação discutidos. Sabe-se a proporção de respostas corretas estimada é

$$p_c = 0,667$$

 Para o teste duo-trio ou 2AFC as hipóteses testadas podem ser formuladas como segue:

> $H_0: p_c = 1/2$ $H_1: p_c > 1/2$

Testes Discriminativos

Pode-se obter o valor p por meio da distribuição Binomial

```
valor p = P(observar 10 ou mais ao acaso)
= P(x \ge 10); x \sim bin(15, 1/2)
= 0,1509
```

Testes Discriminativos

No R,

$$> 1 - pbinom(q = 9, size = 15, prob = 1/2)$$

[1] 0.1509

Testes Discriminativos

 Para o teste triangular ou 3AFC as hipóteses testadas podem ser formuladas como segue:

$$H_0: p_c = 1/3$$

Testes Discriminativos

Pode-se obter o valor p por meio da distribuição Binomial

```
valor p = P(observar 10 ou mais ao acaso)
= P(x \ge 10); x \sim bin(15, 1/3)
= 0,0085
```

Testes Discriminativos

No R,

$$> 1 - pbinom(q = 9, size = 15, prob = 1/3)$$

[1] 0.008504

- Nos testes duo-trio e 2AFC n\u00e3o rejeita-se H0;
- Nos testes triangular e 3AFC rejeita-se H_0 .

Planejamento do teste:

Testes Discriminativos

Na avaliação de um teste discriminativo, deve-se considerar 4 características:

- α: a probabilidade de considerar dois produtos como sendo diferentes quando não são;
- 2 $1-\beta$: (poder do teste) a probabilidade de considerar dois produtos diferentes quando eles são similares;
- ullet a proporção mínima de discriminadores p_d considerada como suficiente para dizer que dois produtos são diferentes;
- o número de avaliadores utilizados no teste;

Definindo-se 3 características, a quarta é obtida por dedução. No R, o tamanho de amostra pode ser encontrado com a função discrimSS() do pacote sensR:

Em um teste triangular, tem-se $\alpha=0,05$, $\beta=0,10$ (um poder de 0.90) e $p_d=0,20$ (pelo menos 20% dos avaliadores devem detectar a diferença).

> discrimSS(pdA=0.20,target.power=0.90,alpha=0.05, pGuess=1/

[1] 117

Testes Discriminativos

Supondo que apenas 80 avaliadores foram selecionados, há uma perda de poder do teste. Essa perda pode ser avaliada por meio da função discrimPWR.

> discrimPwr(pdA=0.20,sample.size=80,alpha=0.05, pGuess=1/3,

[1] 0.7367

Testes Discriminativos

Nestas condições, pode-se ter interesse em saber quantas respostas corretas entre os 80 seriam necessárias para concluir como significante a diferença entre dois produtos. Utiliza-se a função findor:

> findcr(sample.size=80,alpha=0.05, p0=1/3, test='difference

[1] 35