Introduction à l'optimisation

Quentin Fortier

September 15, 2021

Cours

Le cours est disponible sur Internet :

https://github.com/fortierq/oc-m1-2021

Soit $f:\Omega\longrightarrow\mathbb{R}$ une fonction et $\mathcal{S}\subseteq\Omega$ l'ensemble des solutions admissibles.

Objectif

Trouver $\min_{s \in \mathcal{S}} f(s)$ et s^* tel que $f(s^*) = \min_{s \in \mathcal{S}} f(s)$

Soit $f:\Omega\longrightarrow\mathbb{R}$ une fonction et $\mathcal{S}\subseteq\Omega$ l'ensemble des solutions admissibles.

Objectif

Trouver
$$\min_{s \in \mathcal{S}} f(s)$$
 et s^* tel que $f(s^*) = \min_{s \in \mathcal{S}} f(s)$

- Si Ω est fini : optimisation combinatoire
- Sinon : optimisation continue/différentiable

Objectif

Trouver
$$\min_{s \in \mathcal{S}} f(s)$$
 et s^* tel que $f(s^*) = \min_{s \in \mathcal{S}} f(s)$

Pour prouver qu'un algorithme renvoie une solution optimale :

 $\textbf{0} \ \ \mathsf{Montrer} \ \mathsf{que} \ \mathsf{l'algorithme} \ \mathsf{renvoie} \ \mathsf{une} \ \mathsf{solution} \ \mathsf{s} \ \mathsf{admissible} \ (\mathsf{s} \in \mathcal{S})$

Objectif

Trouver
$$\min_{s \in \mathcal{S}} f(s)$$
 et s^* tel que $f(s^*) = \min_{s \in \mathcal{S}} f(s)$

Pour prouver qu'un algorithme renvoie une solution optimale :

- **①** Montrer que l'algorithme renvoie une solution s admissible $(s \in \mathcal{S})$
- Montrer que s est optimale. Pour cela on raisonne souvent par l'absurde : on considère s* une solution meilleure que s et on trouve une contradiction.

Objectif

Trouver $\min_{s \in \mathcal{S}} f(s)$ et s^* tel que $f(s^*) = \min_{s \in \mathcal{S}} f(s)$

Problème	\mathcal{S}	f
Arbre couvrant min	Ensemble des arbres	Poids d'un arbre
d'un graphe G	couvrants de G	
Plus court chemin	Ensemble des chemins	Poids d'un chemin
Problème du sac à dos	Ensemble des façons	Valeur des objets
	de remplir un sac à dos	dans le sac

Complexité

Considérons un problème d'optimisation combinatoire de minimisation de f sur un ensemble Ω .

On suppose de plus que chaque élément de Ω a une certaine taille n.

Complexité

Considérons un problème d'optimisation combinatoire de minimisation de f sur un ensemble Ω .

On suppose de plus que chaque élément de Ω a une certaine taille n.

Comme Ω est fini, on pourrait énumérer toutes les possibilités et conserver le minimum.

Complexité

Considérons un problème d'optimisation combinatoire de minimisation de f sur un ensemble Ω .

On suppose de plus que chaque élément de Ω a une certaine taille n.

Comme Ω est fini, on pourrait énumérer toutes les possibilités et conserver le minimum. Mais la complexité serait exponentielle en n... on cherche donc des algorithmes plus efficaces.

NP-difficile

De nombreux problèmes intéressants sont NP-difficiles et il n'existe probablement pas d'algorithme polynomial pour les résoudre...

NP-difficile

De nombreux problèmes intéressants sont NP-difficiles et il n'existe probablement pas d'algorithme polynomial pour les résoudre...

On pourra alors essayer de chercher une approximation de la solution optimale.

Plan du cours

- Algorithmes gloutons
 - ightarrow sac à dos, Kruskal, Prim
- Programmation dynamique
 - → Bellman-Ford, plus longue sous-suite croissante
- Problèmes de flots
 - → Ford-Fulkerson, max flow min cut, max flow min cost
- Recherche locale
 - → Heuristique, hill climbing, recuit simulé
- Programmation linéaire
 - \rightarrow Simplexe, PLNE, branch & bound, génération de colonnes
- **6** ...