2022 Fall IE 313 Time Series Analysis

4. Models for Stationary Time Series

Yongjae Lee Department of Industrial Engineering

Chapter 4. Models for Stationary Time Series

4.1 General Linear Processes

4.2 Moving Average (MA) Processes

■ 4.3 Autoregressive (AR) Processes

4.4 The Mixed Autoregressive Moving Average (ARMA) Model

4.5 Invertibility

Chapter 4.1

General Linear Processes

Before we start

- From now on,
 - $-\{Y_t\}$ denotes the observed time series
 - $-\{e_t\}$ represents an unobserved white noise series
 - A sequence of i.i.d. zero-mean random variables
 - In many cases, the assumption of independence could be replaced by the weaker assumption of 'uncorrelated'
 - Independent r.v.s are uncorrelated,
 but uncorrelated r.v.s are not always independent

■ A general linear process $\{Y_t\}$ is one that can be represented as a weighted linear combination of present and past white noise terms as

$$Y_t = e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$$

 If the right-hand side is an infinite series, then the following condition is usually assumed for mathematical tractability

$$\sum_{i=1}^{\infty} \psi_i^2 < \infty$$

– Without loss of generality, we will assume that the coefficient on e_t to be 1 (i.e., $\psi_0=1$)

- Example
 - Consider the case where the ψ 's form an exponentially decaying sequence

$$\psi_j = \phi^j, \qquad \phi \in (-1,1)$$

- Then,

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots$$

For this example,

$$E(Y_t) = E(e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots) = 0$$

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots$$

- Example
 - For this example,

$$E(Y_t) = E(e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots) = 0$$

$$\begin{split} Var(Y_t) &= Var(e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots) \\ &= Var(e_t) + \phi^2 Var(e_{t-1}) + \phi^4 Var(e_{t-2}) + \cdots \\ &= \sigma_e^2 (1 + \phi^2 + \phi^4 + \cdots) \\ &= \frac{\sigma_e^2}{1 - \phi^2} \text{ (by summing a geometric series)} \end{split}$$

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots$$

- Example
 - For this example,

$$\begin{aligned} Cov(Y_t,Y_{t-1}) &= Cov(e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots, \\ &e_{t-1} + \phi e_{t-2} + \phi^2 e_{t-3} + \cdots) \\ &= Cov(\phi e_{t-1}, e_{t-1}) + Cov(\phi^2 e_{t-2}, \phi e_{t-2}) + \cdots \\ &= \phi \sigma_e^2 + \phi^3 \sigma_e^2 + \phi^5 \sigma_e^2 + \cdots \\ &= \phi \sigma_e^2 (1 + \phi^2 + \phi^4 + \cdots) \\ &= \frac{\phi \sigma_e^2}{1 - \phi^2} \end{aligned}$$

$$Corr(Y_t, Y_{t-1}) = \left[\frac{\phi \sigma_e^2}{1-\phi^2}\right] / \left[\frac{\sigma_e^2}{1-\phi^2}\right] = \phi$$

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \cdots$$

- Example
 - Similarly,

$$Cov(Y_t, Y_{t-k}) = \frac{\phi^k \sigma_e^2}{1 - \phi^2}$$

$$Corr(Y_t, Y_{t-k}) = \phi^k$$

- Therefore, this process is stationary
 - Mean is constant
 - Autocovariance depends only on time lag
- For a general linear process $Y_t = e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$,

$$E(Y_t) = 0$$
, $\gamma_k = Cov(Y_t, Y_{t-k}) = \sigma_e^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+k}$ for $k \ge 0$

Chapter 4.2

Moving Average Processes

Moving average process

- Moving Average (MA) process
 - Only a finite number of the ψ -weights are nonzero
 - For moving average processes, we will change notation as

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q}$$

- Our textbook puts negative signs before θ 's, but some others put plus signs. So you should be careful when dealing with MA processes on other books or softwares
- We call the above process as **a moving average of order** $oldsymbol{q}$, or $oldsymbol{MA(q)}$

Consider a first-order MA process

$$Y_t = e_t - \theta e_{t-1}$$

- Then,

$$\begin{split} E(Y_t) &= E(e_t - \theta e_{t-1}) = 0 \\ Var(Y_t) &= Var(e_t - \theta e_{t-1}) \\ &= Var(e_t) + \theta^2 Var(e_{t-1}) \\ &= \sigma_e^2 (1 + \theta^2) \\ Cov(Y_t, Y_{t-1}) &= Cov(e_t - \theta e_{t-1}, e_{t-1} - \theta e_{t-2}) \\ &= Cov(-\theta e_{t-1}, e_{t-1}) \end{split}$$

$$Cov(Y_t, Y_{t-2}) = Cov(e_t - \theta e_{t-1}, e_{t-2} - \theta e_{t-3}) = 0$$

 $=-\theta\sigma_{e}^{2}$

Consider a first-order MA process

$$Y_t = e_t - \theta e_{t-1}$$

- Similarly, $Cov(Y_t, Y_{t-k}) = 0$ for $k \ge 2$
 - That is, MA(1) process has no correlation beyond lag 1
- In summary, for an MA(1) model,

$$E(Y_t) = 0$$

$$\gamma_0 = Var(Y_t) = \sigma_e^2(1 + \theta^2)$$

$$\gamma_1 = Cov(Y_t, Y_{t-1}) = -\theta\sigma_e^2 \qquad \leftarrow \text{stationary!}$$

$$\rho_1 = (-\theta)/(1 + \theta^2)$$

$$\gamma_k = \rho_k = 0, \qquad k \ge 2$$

Exhibit 4.1 Lag 1 Autocorrelation of an MA(1) Process for Different θ

 $\rho_1 = -\theta/(1+\theta^2)$ $\rho_1 = -\theta/(1+\theta^2)$ θ θ -0.4410.1 -0.0990.6 0.2 -0.1920.7 -0.4700.3 -0.2750.8 -0.4880.4 -0.3450.9 -0.4970.5 -0.4001.0 -0.500

Exhibit 4.2 Time Plot of an MA(1) Process with $\theta = -0.9$

- MA(1) with $\theta = -0.9$ (i.e., $Y_t = e_t + 0.9e_{t-1}$)
 - For this process, $\rho_1=0.4972$ (moderately strong)
 - Consecutive observations tend to be closely related
 - Plot is relatively smooth with occasional large fluctuations

Exhibit 4.3 Plot of Y_t versus Y_{t-1} for MA(1) Series in Exhibit 4.2 Exhibit 4.4 Plot of Y_t versus Y_{t-2} for MA(1) Series in Exhibit 4.2

- MA(1) with $\theta = -0.9$ (i.e., $Y_t = e_t + 0.9e_{t-1}$)
 - Exhibit 4.3 shows moderate lag 1 autocorrelation
 - Exhibit 4.4 shows zero autocorrelation at lag 2

Exhibit 4.5 Time Plot of an MA(1) Process with $\theta = +0.9$

- MA(1) with $\theta = +0.9$ (i.e., $Y_t = e_t 0.9e_{t-1}$)
 - For this process, $\rho_1 = -0.4972$ (moderately strong)
 - Consecutive observations tend to be negatively related
 - Plot is quite jagged over time

Exhibit 4.6 Plot of Y_t versus Y_{t-1} for MA(1) Series in Exhibit 4.5 Exhibit 4.7 Plot of Y_t versus Y_{t-2} for MA(1) Series in Exhibit 4.5

- MA(1) with $\theta = +0.9$ (i.e., $Y_t = e_t 0.9e_{t-1}$)
 - Exhibit 4.6 shows strong negative lag 1 autocorrelation
 - Exhibit 4.7 shows zero autocorrelation at lag 2

Consider a second-order MA process

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$$

- Then,

$$E(Y_t) = E(e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}) = 0$$

$$Var(Y_t) = Var(e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2})$$

$$= Var(e_t) + \theta_1^2 Var(e_{t-1}) + \theta_2^2 Var(e_{t-2})$$

= $\sigma_e^2 (1 + \theta_1^2 + \theta_2^2)$

$$\begin{aligned} Cov(Y_t, Y_{t-1}) &= Cov(e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}, e_{t-1} - \theta_1 e_{t-2} - \theta_2 e_{t-3}) \\ &= Cov(-\theta_1 e_{t-1}, e_{t-1}) + Cov(-\theta_2 e_{t-2}, -\theta_1 e_{t-2}) \\ &= [-\theta_1 + (-\theta_1)(-\theta_2)]\sigma_e^2 = (-\theta_1 + \theta_1 \theta_2)\sigma_e^2 \end{aligned}$$

Consider a second-order MA process

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} \leftarrow \text{stationary!}$$

$$\begin{array}{l} - \text{ But,} \\ \textit{Cov}(Y_t, Y_{t-2}) = \textit{Cov}(e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}, e_{t-2} - \theta_1 e_{t-3} - \theta_2 e_{t-4}) \\ = \textit{Cov}(-\theta_2 e_{t-2}, e_{t-2}) = -\theta_2 \sigma_e^2 \quad \leftarrow \text{ non-zero!} \end{array}$$

Thus, for an MA(2) process,

$$\rho_{1} = \frac{-\theta_{1} + \theta_{1}\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}$$

$$\rho_{2} = \frac{-\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}$$

$$\rho_{k} = 0, \quad \text{for } k \ge 3$$

• That is, MA(2) process has no correlation beyond lag 2

Exhibit 4.8 Time Plot of an MA(2) Process with $\theta_1 = 1$ and $\theta_2 = -0.6$

- MA(2) with $\theta_1 = 1$ and $\theta_2 = -0.6$ (i.e., $Y_t = e_t e_{t-1} + 0.6e_{t-2}$)
 - For this process, $ho_1=-0.678$ and $ho_2=0.254$
 - Consecutive observations tend to be negatively related

Exhibit 4.9 Plot of Y_t versus Y_{t-1} for MA(2) Series in Exhibit 4.8 Exhibit 4.10 Plot of Y_t versus Y_{t-2} for MA(2) Series in Exhibit 4.8

- MA(2) with $\theta_1 = 1$ and $\theta_2 = -0.6$ (i.e., $Y_t = e_t e_{t-1} + 0.6e_{t-2}$)
 - Exhibit 4.9 shows strong negative lag 1 autocorrelation
 - Exhibit 4.10 shows weak positive autocorrelation at lag 2

Exhibit 4.11 Plot of Y_t versus Y_{t-3} for MA(2) Series in Exhibit 4.8

- MA(2) with $\theta_1 = 1$ and $\theta_2 = -0.6$ (i.e., $Y_t = e_t e_{t-1} + 0.6e_{t-2}$)
 - Exhibit 4.9 shows strong negative lag 1 autocorrelation
 - Exhibit 4.10 shows weak positive autocorrelation at lag 2
 - Exhibit 4.11 shows zero autocorrelation at lag 3

General MA(q) process

Consider a general MA(q) process

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q} \qquad \leftarrow \text{stationary!}$$

Similar calculations show that

•
$$\gamma_0 = Var(Y_t) = (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2)\sigma_e^2$$
• $\rho_k = \begin{cases} \frac{-\theta_k + \theta_1\theta_{k+1} + \theta_2\theta_{k+2} + \dots + \theta_q - k\theta_q}{1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2} & \text{for } 1 \le k \le q \\ 0 & \text{for } k > q \end{cases}$

- The autocorrelation function "cuts off" after lag q (become zero)
- Its shape can be almost anything for the earlier lags

Chapter 4.3

Autoregressive Processes

Autoregressive process

- Autoregressive (AR) process
 - As its name suggests, regression on itself
 - A pth-order autoregressive process, or AR(p) can be written as

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

- The current value of Y_t is a linear combination of the p most recent past values of itself plus an "innovation" term e_t
 - > e_t incorporates everything new in the series at time t that is not explained by the past values
 - > Thus, for every t, we assume that e_t is independent of $Y_{t-1}, Y_{t-2}, ...$

Consider a first-order AR process

$$Y_t = \phi Y_{t-1} + e_t$$

- Assume that the process is stationary and its mean is zero
 - If the process has nonzero mean, we can subtract out its mean
 - Conditions for stationarity will be considered later
- Then,

$$\gamma_0 = Var(Y_t) = Var(\phi Y_{t-1} + e_t) = \phi^2 \gamma_0 + \sigma_e^2$$

– Solving for γ_0 yields

$$\gamma_0 = \frac{\sigma_e^2}{1-\phi^2} \quad \text{we can see that } \phi^2 < 1 \text{ or } |\phi| < 1$$

$$\text{(Note that when } \phi = 1 \text{, it becomes a random walk, which is non-stationary)}$$

Consider a first-order AR process

$$Y_t = \phi Y_{t-1} + e_t$$

– Now multiply Y_{t-k} to the both sides of the above equation and take expected values

$$E(Y_{t-k}Y_t) = \phi E(Y_{t-k}Y_{t-1}) + E(e_tY_{t-k})$$

or

$$\gamma_k = \phi \gamma_{k-1} + E(e_t Y_{t-k})$$

$$\gamma_k = \phi \gamma_{k-1} + E(e_t Y_{t-k})$$

$$\begin{aligned} \gamma_k &= Cov(Y_t, Y_{t-k}) \\ &= E(Y_t Y_{t-k}) - E(Y_t) E(Y_{t-k}) \\ &= E(Y_t Y_{t-k}) \ (\because E(Y_t) = E(Y_{t-k}) = 0) \end{aligned}$$

- Since e_t is independent of Y_{t-k} and Y_t is stationary with zero mean,

$$E(e_t Y_{t-k}) = E(e_t) E(Y_{t-k}) = 0 \implies \gamma_k = \phi \gamma_{k-1}, \text{ for } k = 1,2,3,...$$

 $\gamma_k = \phi \gamma_{k-1}$, for k = 1, 2, 3, ...

Consider a first-order AR process

$$Y_t = \phi Y_{t-1} + e_t$$

- Setting k=1,

•
$$\gamma_1 = \phi \gamma_0 = \frac{\phi \sigma_e^2}{1 - \phi^2}$$

– With k=2,

•
$$\gamma_2 = \phi \gamma_1 = \phi^2 \gamma_0 = \frac{\phi^2 \sigma_e^2}{1 - \phi^2}$$

In general,

•
$$\gamma_k = \phi^k \gamma_0 = \frac{\phi^k \sigma_e^2}{1 - \phi^2}$$

And thus,

•
$$\rho_k = \frac{\gamma_k}{\gamma_0} = \phi^k$$
, for $k = 1, 2, 3, ...$

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \phi^k$$
, for $k = 1, 2, 3, ...$

Exhibit 4.12 Autocorrelation Functions for Several AR(1) Models

Decay is quite slow

Decay is quite rapid

For $-1 < \phi < 0$, lag 1 correlation is negative and the signs of successive autocorrelations alternate from positive to negative

• Since $|\phi| < 1$, the magnitude of AFC decreases exponentially as the number of lags, k, increases

Exhibit 4.13 Time Plot of an AR(1) Series with $\phi = 0.9$

- AR(1) with $\phi = 0.9$ (i.e., $Y_t = 0.9Y_t + e_t$)
 - Hangs together
 - Remains on the same side of the mean for extended periods

 Y_{t-1}

- AR(1) with $\phi = 0.9$ (i.e., $Y_t = 0.9Y_t + e_t$)
 - Exhibit 4.14 shows strong lag 1 autocorrelation ($\rho_1 = \phi = 0.9$)

 Y_{t-2}

- Exhibit 4.15 shows still strong autocorrelation at lag 2 ($\rho_2 = \phi^2 = 0.81$)
- Exhibit 4.16 shows still strong autocorrelation at lag 3 ($\rho_3 = \phi^3 = 0.729$)

 Y_{t-3}

General linear process version of AR(1) model

- The recursive definition of the AR(1) process is extremely useful for interpreting the model
- For other purposes (e.g., calculating ACF), it is convenient to express the AR(1) model as a **general linear process**
 - Notice that $Y_{t-1} = \phi Y_{t-2} + e_{t-1}$
 - Then,

$$Y_t = \phi(\phi Y_{t-2} + e_{t-1}) + e_t$$

= $e_t + \phi e_{t-1} + \phi^2 Y_{t-2}$

- Repeat this for k-1 times, we get

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \dots + \phi^{k-1} e_{t-k+1} + \phi^k Y_{t-k}$$

General linear process version of AR(1) model

- The recursive definition of the AR(1) process is extremely useful for interpreting the model
- For other purposes (e.g., calculating ACF), it is convenient to express the AR(1) model as a **general linear process**
 - Assuming $|\phi|<1$ and letting k increase without bound, it seems reasonable that we should obtain the infinite series representation

$$Y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \phi^3 e_{t-3} + \cdots$$

– Notice that this is in the form of the general linear process with $\psi_j=\phi^j$, which we already investigated in Section 4.1

Now consider the AR(2) series satisfying

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$$

- $-e_t$ is independent of Y_{t-1} , Y_{t-2} , Y_{t-3} , ...
- To discuss stationarity, we introduce AR characteristic polynomial

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2$$

And the corresponding AR characteristic equation

$$1 - \phi_1 x - \phi_2 x^2 = 0$$

Stationarity of the AR(2) process

It can be shown that AR(2) process

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$$

is **stationary** if and only if **the roots of the AR characteristic equation**

$$1 - \phi_1 x - \phi_2 x^2 = 0$$

exceed 1 in absolute value (modulus for complex roots)

- This statement will be generalized into the pth-order case without change
 - Also applies in AR(1) case. Its AR characteristic equation is $1-\phi x=0$ with root $1/\phi$, which exceeds 1 in absolute value if and only if $|\phi|<1$

- Stationarity of the AR(2) process
 - Note that the roots of the AR characteristic equation

$$1 - \phi_1 x - \phi_2 x^2 = 0$$

can be easily found to be

$$\frac{\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}}{-2\phi_2}$$

Quadratic formula (근의 공식)

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$\frac{\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}}{-2\phi_2}$

Stationarity of the AR(2) process

For stationarity, the roots should exceed 1 in absolute value.
 It can be shown that this is true if and only if the following three conditions are satisfied:

$$\phi_1 + \phi_2 < 1$$
, $\phi_2 - \phi_1 < 1$, $|\phi_2| < 1$

Exhibit 4.17 Stationarity Parameter Region for AR(2) Process

 These are called the stationarity conditions for the AR(2) model

ACF for the AR(2) process

— As we have done for AR(1) (in pages 27 - 28), multiply Y_{t-k} to the both sides of

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$$

and take expectations. Assuming stationarity, zero means, and that e_t is independent of Y_{t-k} , we get

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2},$$

for
$$k = 1,2,3,...$$

or, dividing through by γ_0 ,

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$$
, for $k = 1, 2, 3, \dots$

These are called the Yule-Walker equations

Yule-Walker equations

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2}$$
, for $k = 1,2,3,...$
 $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$, for $k = 1,2,3,...$

- ACF for the AR(2) process
 - If we set k=1 for the Yule-Walker equation,

$$\rho_1 = \phi_1 \rho_0 + \phi_2 \rho_{-1}$$

– Since $\rho_0=1$ and $\rho_{-1}=\rho_1$,

$$\rho_1 = \phi_1 + \phi_2 \rho_1 \implies \rho_1 = \frac{\phi_1}{1 - \phi_2}$$

– Then, we can plug the values of ρ_0 and ρ_1 into the Yule-Walker equation for k=2 to find ρ_2

$$\rho_2 = \phi_1 \rho_1 + \phi_2 \rho_0 = \frac{\phi_2 (1 - \phi_2) + \phi_1^2}{1 - \phi_2}$$

– Successive values of ho_k can be calculated recursively

Exhibit 4.18 Autocorrelation Functions for Several AR(2) Models

ACF of AR(2) can have many different shapes

Exhibit 4.19 Time Plot of an AR(2) Series with $\phi_1 = 1.5$ and $\phi_2 = -0.75$

– Periodic behavior of ρ_k shown in Exhibit 4.18 is clearly reflected in the **nearly periodic behavior** of the series

$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$

Yule-Walker equations

 $\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2}, \text{ for } k = 1,2,3,...$ $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}, \text{ for } k = 1,2,3,...$

- Variance for the AR(2) model
 - If we take the variance of the AR(2) equation,

$$\begin{split} \gamma_0 &= Var(Y_t) \\ &= \phi_1^2 Var(Y_{t-1}) + \phi_2^2 Var(Y_{t-2}) + 2\phi_1 \phi_2 Cov(Y_{t-1}, Y_{t-2}) + \sigma_e^2 \\ \gamma_0 &= (\phi_1^2 + \phi_2^2)\gamma_0 + 2\phi_1 \phi_2 \gamma_1 + \sigma_e^2 \end{split}$$

– Setting k=1 for the Yule-Walker equation gives

$$\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_{-1} = \phi_1 \gamma_0 + \phi_2 \gamma_1$$

– Then, we have two equations with two unknown variables γ_0 , γ_1

$$\gamma_0 = \frac{(1-\phi_2)\sigma_e^2}{(1-\phi_2)(1-\phi_1^2-\phi_2^2)-2\phi_2\phi_1^2} = \left(\frac{1-\phi_2}{1+\phi_2}\right) \frac{\sigma_e^2}{(1-\phi_2)^2-\phi_1^2}$$

$$\gamma_1 = \frac{\phi_1}{1-\phi_2} \gamma_0 = \left(\frac{\phi_1}{1+\phi_2}\right) \frac{\sigma_e^2}{(1-\phi_2)^2-\phi_1^2}$$

General linear process version of AR(2) model

- General liner process representation for an AR(2) series
 - We can substitute the general linear process representation using the following equation

$$Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$$

for Y_t , for Y_{t-1} , and for Y_{t-2} into $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$

- That is, we have
 - $Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$
 - $Y_{t-1} = \psi_0 e_{t-1} + \psi_1 e_{t-2} + \psi_2 e_{t-3} + \cdots$
 - $Y_{t-2} = \psi_0 e_{t-2} + \psi_1 e_{t-3} + \psi_2 e_{t-4} + \cdots$

General linear process version of AR(2) model

- General liner process representation for an AR(1) series
 - We can substitute the general linear process representation using the following equation

$$Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$$

for Y_t , for Y_{t-1} , and for Y_{t-2} into $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$

- That is, we have
 - $Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$
 - $\phi_1 Y_{t-1} = \phi_1 \psi_0 e_{t-1} + \phi_1 \psi_1 e_{t-2} + \phi_1 \psi_2 e_{t-3} + \cdots$
 - $\phi_2 Y_{t-2} = \phi_2 \psi_0 e_{t-2} + \phi_2 \psi_1 e_{t-3} + \phi_2 \psi_2 e_{t-4} + \cdots$

General linear process version of AR(2) model

- General liner process representation for an AR(1) series
 - We can substitute the general linear process representation using the following equation

$$Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$$

for Y_t , for Y_{t-1} , and for Y_{t-2} into $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$

- That is, we have

- Therefore,
 - $\psi_0 = 1$
 - $\psi_1 = \phi_1 \psi_0$ or $\psi_1 \phi_1 \psi_0 = 0$
 - $\psi_j = \phi_1 \psi_{j-1} + \phi_2 \psi_{j-2}$ or $\psi_j \phi_1 \psi_{j-1} \phi_2 \psi_{j-2} = 0$ for j = 2,3,...

Consider the pth-order autoregressive model

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

with AR characteristic polynomial

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p$$

- and corresponding AR characteristic equation

$$1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p = 0$$

 $-e_t$ is independent of Y_{t-1} , Y_{t-2} , Y_{t-3} , ...

$\begin{aligned} & \underline{\mathsf{AR}(\mathsf{p})} \\ & Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t \\ & \mathsf{AR} \ \mathsf{characteristic} \ \mathsf{equation} \end{aligned}$

 $1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_n x^p = 0$

- Stationarity of AR(p) process
 - AR(p) is stationary if and only if the p roots of the AR characteristic equation each exceed 1 in absolute value (modulus for complex roots)

For a complex number z = x + iy, its modulus is $|z| = \sqrt{x^2 + y^2}$

Necessary conditions for stationarity (not sufficient)

•
$$\phi_1 + \phi_2 + \dots + \phi_p < 1$$

•
$$|\phi_p| < 1$$

AR(p) $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$ AR characteristic equation $1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p = 0$

- Yule-Walker equations for AR(p) process
 - Multiply Y_{t-k} to the AR(p) equation and take expectations and divide by γ_0 . Then we get

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \dots + \phi_p \rho_{k-p} \text{ for } k \ge 1$$

– Then put k=1,2,..., and p into the above equation, and use $\rho_0=1$ and $\rho_{-k}=\rho_k$ to get the general **Yule-Walker equations**

•
$$\rho_1 = \phi_1 + \phi_2 \rho_1 + \phi_3 \rho_2 + \dots + \phi_p \rho_{p-1}$$

•
$$\rho_2 = \phi_1 \rho_1 + \phi_2 + \phi_3 \rho_1 + \dots + \phi_p \rho_{p-2}$$

•

•
$$\rho_p = \phi_1 \rho_{p-1} + \phi_2 \rho_{p-2} + \phi_3 \rho_{p-3} + \dots + \phi_p$$

- Note that these are a system of p linear equations with p unknowns $(\rho_1, \rho_2, ..., \rho_p)$
 - Can solve for ρ_1 , ρ_2 , ..., ρ_p with the values of ϕ_1 , ..., ϕ_p

AR(p) $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$ AR characteristic equation

 $1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_n x^p = 0$

- Yule-Walker equations for AR(p) process
 - Noting that

$$E(e_t Y_t) = E[e_t(\phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t)]$$

= $E(e_t^2) = \sigma_e^2$

– We may multiply the AR(p) equation by Y_t and take expectations to find

$$\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \dots + \phi_p \gamma_p + \sigma_e^2$$

– Using $\rho_k = \gamma_k/\gamma_0$, the above can be rewritten as

$$\gamma_0 = \frac{\sigma_e^2}{1 - \phi_1 \rho_1 - \phi_2 \rho_2 - \dots - \phi_p \rho_p}$$

• i.e., Variance can be found using σ_e^2 , ϕ_1 , ... , ϕ_p and ρ_1 , ... , ρ_p

- General linear process representation for AR(p) process
 - Assuming stationarity, AR(p) can also be expressed in the general linear process form of $Y_t=e_t+\psi_1e_{t-1}+\psi_2e_{t-2}+\cdots$
 - But, ψ -coefficients are complicated functions of the parameters ϕ_1, \dots, ϕ_p
 - They can be found numerically (see Appendix C on page 85 of the textbook)

Chapter 4.4

The Mixed Autoregressive Moving Average Model

Autoregressive moving average model

 A series is partly autoregressive and partly moving average would become a quite general time series model

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}$$

 $-\{Y_t\}$ is called autoregressive moving average process of orders p and q (or ARMA(p,q))

Consider the following defining equation

$$Y_t = \phi Y_{t-1} + e_t - \theta e_{t-1}$$

■ To derive Yule-Walker type equations, first note that

$$E(e_{t}Y_{t}) = E[e_{t}(\phi Y_{t-1} + e_{t} - \theta e_{t-1})]$$

= σ_{e}^{2}

and

$$E(e_{t-1}Y_t) = E[e_{t-1}(\phi Y_{t-1} + e_t - \theta e_{t-1})]$$

= $\phi \sigma_e^2 - \theta \sigma_e^2 = (\phi - \theta)\sigma_e^2$

$$E(e_t Y_t) = \sigma_e^2$$

$$E(e_{t-1} Y_t) = (\phi - \theta)\sigma_e^2$$

Consider the following defining equation

$$Y_t = \phi Y_{t-1} + e_t - \theta e_{t-1}$$

- To derive Yule-Walker type equations,
 - Now multiply Y_{t-k} to ARMA(1,1) equation and take expectation

$$E(Y_{t-k}Y_t) = E(\phi Y_{t-k}Y_{t-1} + Y_{t-k}e_t - \theta Y_{t-k}e_{t-1})$$

- For k=0, $\gamma_0 = \phi \gamma_1 + [1-\theta(\phi-\theta)]\sigma_e^2$
- For k=1, $\gamma_1 = \phi \gamma_0 \theta \sigma_e^2$
- For $k \geq 2$,

$$\gamma_k = \phi \gamma_{k-1}$$

$$\gamma_0 = \phi \gamma_1 + [1 - \theta(\phi - \theta)]\sigma_e^2$$

$$\gamma_1 = \phi \gamma_0 - \theta \sigma_e^2$$

$$\gamma_k = \phi \gamma_{k-1}$$

Consider the following defining equation

$$Y_t = \phi Y_{t-1} + e_t - \theta e_{t-1}$$

- To derive Yule-Walker type equations,
 - Solving the first two equations yields

$$\gamma_0 = \frac{1 - 2\phi\theta + \theta^2}{1 - \phi^2} \sigma_e^2$$

Solving the simple recursion gives

It decays exponentially as the lag k increases.

$$\rho_k = \frac{(1 - \theta\phi)(\phi - \theta)}{1 - 2\theta\phi + \theta^2} \phi^{k-1} \quad \text{for } k \ge 1$$

$$\gamma_0 = \phi \gamma_1 + [1 - \theta(\phi - \theta)]\sigma_e^2$$

$$\gamma_1 = \phi \gamma_0 - \theta \sigma_e^2$$

$$\gamma_k = \phi \gamma_{k-1}$$

Consider the following defining equation

$$Y_t = \phi Y_{t-1} + e_t - \theta e_{t-1}$$

 The general linear process form of the model be obtained (In a recursive manner that we did for AR(1))

$$Y_t = e_t + (\phi - \theta) \sum_{j=1}^{\infty} \phi^{j-1} e_{t-j}$$

– That is,
$$\psi_j = (\phi - \theta)\phi^{j-1}$$
 for $j \ge 1$

■ Note that the AR characteristic equation is $1 - \phi x = 0$, hence, the stationarity condition is $|\phi| < 1$

ARMA(p,q) model

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}$$

- For the general ARMA(p,q) model, the following facts are stated without proof
 - ARMA(p,q) equation is stationary if and only if all the roots of the AR characteristic equation $\phi(x)=0$ exceeds 1 in absolute value (modulus for complex roots)
 - If the stationarity conditions are satisfied, then the model can also be written as the general linear process with ψ -coefficients

•
$$\psi_0 = 1$$

•
$$\psi_1 = -\theta_1 + \phi_1$$

•
$$\psi_2 = -\theta_2 + \phi_2 + \phi_1 \psi_1$$

•
$$\psi_j = -\theta_j + \phi_p \psi_{j-p} + \phi_{p-1} \psi_{j-p+1} + \dots + \phi_1 \psi_{j-1}$$

 $\psi_j = 0$ for j < 0

 $\theta_i = 0$ for i > q

ARMA(p,q) model

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}$$

- For the general ARMA(p,q) model, the following facts are stated without proof
 - If the stationarity conditions are satisfied, ACF can easily be shown to satisfy

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \dots + \phi_p \rho_{k-p}$$
 for $k > q$

– Similar equations can be derived for k=1,2,3,...,q that involve $\theta_1,\theta_2,...,\theta_q$ (but very complex). An algorithm suitable for numerical computation of the complete ACF is given in Appendix C on page 85 of the textbook

Chapter 4.5

Invertibility

- lacktriangle We know that an AR process can always be reexpressed as a general linear process through the ψ -coefficients
 - AR process may also be thought of as an infinite-order MA process
- For some purposes, the autoregressive representations are also convenient

Can an MA process be reexpressed as an AR?

Consider an MA(1) model

$$Y_t = e_t - \theta e_{t-1}$$

- First rewriting this as $e_t = Y_t + \theta e_{t-1}$
- Then, since $e_{t-1} = Y_{t-1} + \theta e_{t-2}$,

$$e_{t} = Y_{t} + \theta(Y_{t-1} + \theta e_{t-2})$$

= $Y_{t} + \theta Y_{t-1} + \theta^{2} e_{t-2}$

– If $|\theta| < 1$, we may continue this substitution "infinitely" into the past and obtain the expression

$$e_t = Y_t + \theta Y_{t-1} + \theta^2 Y_{t-2} + \cdots$$

or

$$Y_t = (-\theta Y_{t-1} - \theta^2 Y_{t-2} - \theta^3 Y_{t-3} - \cdots) + e_t$$

- If $|\theta| < 1$, we see that MA(1) model can be inverted into an infinite-order AR model
 - MA(1) model is **invertible** if and only of $|\theta| < 1$
- For a general MA(q) or ARMA(p,q) model, we define the MA characteristic polynomial as

$$\theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \theta_3 x^3 - \dots - \theta_q x^q$$

And the corresponding MA characteristic equation

$$1 - \theta_1 x - \theta_2 x^2 - \theta_3 x^3 - \dots - \theta_q x^q = 0$$

■ MA(q) model is **invertible**; that is, there are coefficients π_j such that

$$Y_t = \pi_1 Y_{t-1} + \pi_2 Y_{t-2} + \pi_3 Y_{t-3} + \dots + e_t$$

if and only if the roots of the MA characteristic equation exceed 1 in absolute value (in modulus for complex roots)

■ Note that the following two MA(1) models (for $|\theta| < 1$)

$$-Y_{t} = e_{t} - \theta e_{t-1}$$
$$-Y_{t} = e_{t} - \frac{1}{\theta} e_{t-1}$$

have the same ACF (please check it by yourself)

- But, only the first one is invertible with root $\frac{1}{\theta}$
- From here on, we will restrict our attention to the physically sensible class of invertible models
 - For a general ARMA(p,q) model, we require both stationarity and invertibility

Summary

General linear process

$$Y_t = e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$$

Moving average process: MA(q)

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q}$$

- Stationary
- Autocorrelation cuts off after lag q
- Can be represented in AR form
- Autoregressive process: AR(p)

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

- Not always stationary (Can check stationarity using AR characteristic equation)
- Yule-Walker equations can be used to find its autocorrelations and autocovariances
- Can be represented in general linear process form (just like MA)

Summary

Autoregressive Moving average process: ARMA(p,q)

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}$$

- Not always stationary (Can check stationarity using AR characteristic equation)
- Can be represented in general linear process form (just like MA)
- Can be represented in AR form

