Judging Judges of IV Validity How to Not Fail Hausman and Omnibus

Hutchings, Nate, Passey, Roundy

Brigham Young University

April 15, 2024

Motivating Question

 How does the presence of multicollinearity in IV affect the output of overidentification tests?

	Hausman Test	Omnibus Test
Z'Z	?	?
Z'X	?	?

Omnibus and Hausman Tests

- Omnibus: All instruments valid $\implies \hat{o} = nR^2$ should not be too different from 0.
- Hausman: All instruments valid $\implies \hat{b}_{\sf sub}$ and $\hat{b}_{\sf all}$ should not be too far apart
- If we construct valid instruments, could multicollinearity lead us to rejection more than 5 percent of the time?

Z'Z and Z'X in Over-identification Tests

Omnibus:

$$\hat{o} = n * (1 - \frac{\hat{u} - Z(Z^T Z)^{-1} Z^T \hat{u}}{\hat{u}^T \hat{u}})$$

$$\hat{u} = y - X(X^T Z(Z^T Z)^{-1} Z^T X)^{-1} X^T Z(Z^T Z)^{-1} Z^T y$$

Hausman:

$$\hat{h} = rac{\hat{b}_{\mathsf{sub}} - \hat{b}_{\mathsf{all}}}{\sqrt{\hat{V}_{\mathsf{sub}} - \hat{V}_{\mathsf{all}}}}$$
 $\hat{V} = rac{\hat{u}^T \hat{u}}{n - p} (X^T Z (Z^T Z)^{-1} Z^T X)^{-1}$

Z'Z Data Generating Process

Structure:

$$Y = X\beta + \epsilon$$
$$X = Z\pi + \gamma$$
$$\epsilon = \gamma + \eta$$

- η, γ are drawn randomly.
- $Z \sim N(0,1)$
- By construction, instruments are valid (relevant and exclusive)

Moment Condition

Moment Condition:

$$m_i(\beta) = Z_i(Y_i - X_i'\beta)$$

 $E[m_i(\beta)] = 0$

It holds by construction.

Visualizing the DGP

Constructing Multicollinear Instruments

• $z_2 = z_1 + D$, where *D* is the mechanism of collinearity:

$$\mathop{D}_{n\times 1} s.t. \sum_{i=1}^{n} |d_i| = C$$

Iterate Monte-Carlo tests over levels of C

Constructing Multicollinear Instruments

Compute condition index for each iteration of C

$$extbf{C.I.} = rac{\sigma_{ extbf{Max}}}{\sigma_{ extbf{Min}}},$$

where σ_x are singular values from matrix Z'Z

As C increases, multicollinearity (C.I.) in Z'Z decreases

Z'Z Condition Index

Figure: Lines at 30, 10

Z'Z Results

Z'Z Results

Explaining Hausman Results

Explaining Hausman Results

Hausman Estimated Variance

Z'X Data Generating Process

- Craft Z'X that displays multicollinearity
- Instruments still satisfy relevance and exclusion conditions (classically valid)

Z'X Data Generating Process

Construct

$$Y = X\beta + \epsilon$$
,

where
$$\epsilon = e_1 + e_2 + \eta$$

- Fix $Z: z_1, z_2, z_3 \sim N(0, 1)$
- Two independent variables:

•
$$x_1 = Z\alpha + e_1$$

•
$$x_2 = Z\pi + e_2$$

• Note: x_i are endogenous by construction, z_i are not.

Proof of Collinearity in Z'X

$$E[z_i x_i^T] = E[z_i [x_{1i}^T x_{2i}^T]] = E[z_i [(z_i^T \alpha + e_1) (z_i^T \pi + e_2)]$$
$$= E[z_i [z_i^T \alpha z_i^T \pi]]$$

given that $E[z_ie_1] = E[z_ie_2] = 0$.

Thus, $E[z_i z_i^T \alpha \ z_i z_i^T \pi]$ becomes collinear as $\alpha \to \pi$

Z'X Data Generating Process

For independent variables:

•
$$x_1 = Z\alpha + e_1$$

•
$$x_2 = Z\pi + e_2$$

- $\alpha = [1, 1, 1, 1]$
- $\pi = \alpha + D$, where

$$\mathop{D}_{n\times 1} s.t. \sum_{i=1}^{n} |d_i| = C$$

 Iterating over C allows us to test different levels of multicollinearity in the linear combinations of Z that represent x_i

Z'X Condition Index

Z'X Instrument Failure

Z'X Results

Z'X Results

Effects on test statistics as collinearity increases

	Hausman Test	Omnibus Test
Z'Z	?	No Effect
Z'X	↑ Rej.Rate	↑ Rej.Rate

Conclusion

 Classically valid instruments that exhibit high levels of multicollinearity can lead to increased rejection rates in standard overidentification tests