AMENDMENTS TO THE DRAWINGS

A new set of formal drawings is attached hereto. In the attached set of formal drawings, Figs. 1-5 have been labeled "prior art."

Attachment: 12 Replacement Sheets (Figs. 1-19)

Frame structure for uplink DPDCH/DPCCH

Fig. 1(b) (Prior Art)

Frame structure for downlink DPCH

Fig. 2 (Prior Art)

Appl. No. 09/511,242 Atty. Dkt.: 2380-169 Amdt. dated Dec. 19, 2003 REPLACEMENT SHEET

Frame structure types in downlink compressed transmission

Fig. 5(b) (Prior Art)

Appl. No. 09/511,242 Atty. Dkt.: 2380-169 Amdt. dated Dec. 19, 2003 REPLACEMENT SHEET

Fig. 6

Fig. 8(b)

Fig. 11

Fig. 12

Table 2: DPCCH fields

slots per Trans-mitted radio frame 10-14 10-14 10-14 8-15 8-15 8-15 6-8 8-9 6-8 N N F က က ō N က NTP N S S N N ပ က വ ω က Bits/ Slot Bits/ Frame SF Channel Symbol Rate (ksps) Channel Bit Rate (kbps) Slot Format #i

2A

N

OA

2B

က

2B

5A

S

(D)=(3,7),(4,6),(5,5),(6,4),(7,(D)=(1,6),(2,5),(3,4),(4,3),(5,(D) = (1,3), (2,2), (3,1)(D) = (1,2),(2,1)Combining Idle frame (7,7)=(0)2),(6,1) (S) (S) (S) ෆ Transmission time Reduction method Spreading factor reduction by 2 Table 3: Parameters for different TGLs in compressed mode Higher layer scheduling Puncturing length[ms] 1.73-1.99 2.40-2.66 2.27-2.53 6.40-6.66 6.27-6.53 9.07-9.33 8.93-9.19 1.60-1.86 4.40-4.66 4.27-4.53 de Spreading 512 - 4512 - 4 256-4 512 - 4 256- 4 256- 4 512 - 4 256-4 256-4 512 -4 Factor Adjustable Adjustable /fixed gap position Fixed Fixed ŏ Type ⋖ ⋖ മ ⋖ $\mathbf{\omega}$ 4 8 4 8 œ TGL 9 4 က 4

Table 3: Parameters for different TGLs in compressed mode

	(S) (D) =(1,2),(2,1)	(S) (D) =(1,2),(2,1) (S) (D) =(1,3),(2,2),(3,1)	(S) (D) =(1,2),(2,1) (S) (D)=(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)	(S) (D) = (1,2),(2,1) (S) (D) = (1,3),(2,2),(3,1) (S) (S) (D) = (1,6),(2,5),(3,4),(4,3),(5,2),(6,1) (D) = (3,7),(4,6),(5,5),(6,4),(7,2)
	(S) (D) =(1,2),(2,	(S) (D) =(1,2),(2, (S) (D) =(1,3),(2,2),	(S) (D) =(1,2),(2, (S) (D) =(1,3),(2,2), (S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	(S) (D) =(1,2),(2,2), (D) =(1,3),(2,2), (S) (S) (S) (S) (S) (S) (S) (S) (S) (S)
Puncturing	reduction by 2 Higher layer scheduling	ding lactor ction by 2 her layer teduling	ction by 2 ner layer teduling	ction by 2 ner layer seduling
Puncturing Spreading factor	reductic Higher schec	reductic Higher sched	reductic Higher scheo	Higher sched
1.73-1.99	1.60-1.86	1.60-1.86 2.40-2.66 2.27-2.53	1.60-1.86 2.40-2.66 2.27-2.53 4.40-4.66 4.27-4.53	1.60-1.86 2.40-2.66 2.27-2.53 4.40-4.66 6.40-6.66 6.27-6.53
	1.60-1	1.60-1.86 2.40-2.66 2.27-2.53	2.40-2	1.60-1.86 2.40-2.66 2.27-2.53 4.40-4.66 6.40-6.66 6.27-6.53
	256- 4	256- 4 512 - 4 256- 4	256- 4 512 - 4 256- 4 512 - 4	256- 4 512 - 4 512 - 4 512 - 4 512 - 4 512 - 4
	25	51,25	256 256 512 256	51, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
Fixed				
Adjustable Or Fixed	8	B 4 B	B 4 B 4 B	ω < ω < ω
⋖		! ! !		

Fig. 14

Fig. 15

Transport channel multiplexing structure for downlink

Fig. 16

Spreading for all downlink physical channels except SCH

 $S_{d1,a}$

75

S

Fig. 17

73

Spreading and modulation for SCH and P-CCPCH

Fig. 18

Fig. 19