

FoodX-251

Biasco Anna Marika, Pulerà Francesca e Zarantonello Massimo

Progetto di Visual Information Processing and Management

Overview

immagini

Training set Totale	118.475
Training set Etichettato	5.020
Test set	11.994

Analisi Esplorativa del Dataset

Prima di applicare qualsiasi modello di machine learning, è cruciale comprendere il dataset con cui stiamo lavorando.

Analizzeremo prima il TRAIN set etichettato, e poi il TEST set.

Identificazione dati inconsistenti

come le etichette errate

Esplorazione della qualità delle immagini

controllando aspetti come dimensioni, scala e formato

Calcolo della varianza del colore delle Immagini

tramite un'analisi della diversità visiva tra le classi per valutare la complessità della classificazione

Identificazione dati inconsistenti – TRAIN

È evidente che il dataset etichettato non è completamente pulito: a volte si possono trovare immagini non correlate al cibo (persone, locali o animali vivi), non rappresentative (ingredienti confezionati o scatole per la preparazione di un piatto), disegni anziché <u>fotografie</u>, <u>utensili e contenitori</u> (come la teiera di un ciambellone) ed etichette errate.

(ready in 45 minutes!)

Inoltre, la classe poi (116) non contiene immagini di cibo.

chili

chili

french_fries

Esplorazione della Qualità delle Immagini – TRAIN

Le immagini variano sia in larghezza che in altezza, e questa variabilità può influire sul

200 +

400

600

processo di preprocessing e sul comportamento del modello.

1200 - 1200 - 1000 - 15

800

Larghezza

1000

1200

1400

Distribuzione delle risoluzioni delle immagini

La gestione efficace delle dimensioni delle immagini è cruciale per garantire un

addestramento efficace e per evitare che le variazioni nelle dimensioni possano introdurre distorsioni o inefficienze nel modello.

Overview

	immagini	dimensioni medie immagini	range dimensioni
Training set Totale	118.475	341.21x287.14	larghezza (256-2733), altezza (256-2744)
Training set Etichettato	5.020	341.32x286.28	larghezza (256-1404), altezza (256-1408)
Test set	11.994	342.01x287.49	larghezza (256-1035), altezza (256-1274)

- Presenza di outlier con dimensioni molto grandi, che potrebbero richiedere normalizzazione
- Il training set ha un'ampia gamma di dimensioni, mentre il set etichettato e il test set sono più omogenei.
- Le dimensioni medie delle immagini sono simili (~341x287 px), ma ci sono outlier con risoluzioni molto diverse.

Calcolo della Varianza delle Immagini

Calcoliamo la complessità visiva utilizzando metodi come la <u>varianza del colore</u> tra le immagini nelle varie classi. Alcune classi potrebbero avere immagini più uniformi (ad esempio piatti con ingredienti simili), mentre altre potrebbero avere una grande variazione visiva. Questo potrebbe aiutare a capire la difficoltà di classificazione per ciascuna classe.

Distribuzione delle Classi – TEST

- Classe con meno immagini: 116
 (2 immagini)
- Classe con più immagini: 201 (69 immagini)

C'è uno squilibrio, il quale implica che alcune classi verranno testate su una base dati significativamente più ampia rispetto ad altre.

Identificazione dati inconsistenti – TEST

Per l'insieme di test non sono emerse anomalie. Tutte le immagini risultano coerenti con le etichette assegnate, e a differenza del training set, la classe *poi* contiene immagini di cibo (seppur poche).

Selezione dei Modelli

Siamo partiti valutando le prestazioni su questi tre modelli:

Massima memoria allocata: 1576.48 MB

Tempo di addestramento: 1876.51 s

Accuratezza del validation: 0.000

Numero di parametri:

01

SimpleCNN

Massima memoria: 850.67 MB

Tempo di addestramento: 2191.50 s

Accuratezza del validation : 0.15912

Numero di parametri: ≈ 11,315,563

ResNet18

02

Massima memoria: 499.55 MB

Tempo di addestramento: 2238.57 s

03

Accuratezza del validation: 0.16967

Numero di parametri ≈ 24,065,099

ResNet50

03

ResNet50

Train Loss
Validation Loss

15.0 17.5

Epoch

5.5

5.0 ·

3.5

2.5

Con tutti e tre i modelli precedenti, l'accuratezza ottenuta è stata inferiore alle aspettative.

Utilizzando **ResNet18 EfficientNet** e **VGG16**, combinati con il riaddestramento dell'ultimo layer fully connected, siamo riusciti a ottenere le migliori performance in termini di accuratezza e capacità di generalizzazione, segnando un <u>avanzamento</u> significativo nel nostro processo di addestramento.

ENSAMBLING

L'idea è di sfruttare le loro predizioni per **etichettare immagini non annotate**, selezionando solo quelle per cui tutti e tre i modelli **superano una determinata soglia di confidenza** -> ciclo iterativo di **auto-etichettatura e riaddestramento**.

Addestramento Ensambling

^{*} Calcolata su un sottoinsieme di validation

^{*&}lt;sup>2</sup> Somma a 1

Espansione del Training Set

Espansione del Training Set

Dataset iniziale: 5020 immagini Dataset non etichettato: 113,455 immagini 13 cicli

Nessuna accuratezza

registrata, aggiunte 52 immagini

Ciclo 0

Prime accuratezze

- \rightarrow EfficientNet: 21.6%,
- \rightarrow ResNet18: 18.5%,
- → VGG16: 18.3%

Cicli 1-3

Cicli 4-7

Crescita continua

- → EfficientNet: 24.8%,
 - \rightarrow ResNet18: 23.9%,
 - → VGG16: 21.8%

Cicli 8-13

Miglioramenti finali

- → EfficientNet: 28.4%,
- \rightarrow ResNet18: 26.5%,
- → VGG16: 24.7%

Risultato finale

Dataset di addestramento: 5537 immagini Dataset non etichettato: 112,935 immagini

Alcuni Esempi

Immagine Etichettata

Immagine NON Etichettata

Analisi delle Immagini Aggiunte al Training Set

Se molte immagini sono state aggiunte alla stessa classe, può essere un segnale che quella classe è più "facile" da classificare con <u>elevata confidenza</u>, probabilmente perché <u>ha caratteristiche visive distintive</u>.

Alcuni Esempi

Immagini coerenti con le etichette assegnate dal modello di ensembling

beignet

Altri Esempi

Errori rari, simili alle incertezze umane

True Label: stuffed_peppers Predicted Label: stuffed tomato

• Caso particolare: nella classe stuffed_tomαto, alcune immagini mostrano peperoni ripieni anziché pomodori

Problemi

- 🗹 Nuove immagini aggiunte principalmente da 60 classi specifiche (es. macaron, beignet, sashimi, cupcake...)
- lack Rischio di Overfitting: squilibrio nella distribuzione ightarrow il modello si focalizza troppo su alcune classi
- 🔽 Conseguenza: ridotta generalizzazione su classi meno rappresentate

Predizioni su Test con Ensambling

La pipeline ciclica dell'ensambling ha permesso di aggiungere nuove immagini, affinando le predizioni dei modelli e migliorando la generalizzazione.

adesso

Obiettivo: migliorare le predizioni sul test set tramite ensambling

Predizione Ponderata con Ensembling

- Le previsioni combinano i risultati di ResNet18, EfficientNet e VGG16.
- I pesi di ciascun modello sono basati sulla loro accuratezza finale.
- La classe finale è quella con la probabilità massima dopo la combinazione ponderata.

Alcuni Esempi

Predizioni Corrette

Confidenza media per le <u>corrette</u> <u>classificazioni</u>: 0.3410472

Predizioni Errate

Confidenza media per le <u>classificazioni</u> errate: 0.16867812\

Analisi Predizioni e Performance

- Accuracy iniziale: 27.8% → prestazioni iniziali moderate.
- Accuracy migliorata su un subset di 60 classi: 51% →
 miglioramento selezionando classi in cui il modello è
 più sicuro.
- Accuracy migliore raggiunta su un subset di 18 classi: 70.72% → riducendo il numero di classi, la performance aumenta.

<u>Conclusione</u>: la selezione di un sottoinsieme di classi più distinguibili migliora l'accuratezza, riducendo la complessità del problema e ottimizzando l'apprendimento del modello.

Analisi Predizioni e Performance

Dataset Degradato

Classificazione del validation set degraded

Pipeline 2

Analisi Esplorativa del dataset degradato

Costruzione di una Soluzione -> Pipeline di Correzione

1. Modello addestrato su dati puliti -> riceve in input il dataset degradato ma corretto tramite Pipeline

> Applicazione di rumori al train set ->
> Applicazione pipeline di migliroamento ->
> Addestramento

4. K-Nearest Neighbors (KNN) per apprendere funzione di denoising su immagini degradate

3. Modello addestrato su dati puliti -> applicata pipeline di miglioramento per individuare ed escludere immagini degradate

Esperimenti

Sviluppi Futuri

Metodi di Miglioramento del Rumore

Integrare <u>tecniche avanzate di denoising</u> o <u>identificazione</u> <u>del rumore</u> per selezionare solo immagini di alta qualità nella pipeline di miglioramento, ottimizzando il processo di pseudo-etichettatura.

KNN di Dimensione Ridotta

Esplorare tecniche di <u>ridimensionamento e</u>
<u>ottimizzazione del tensore</u>, come l'uso di un
autoencoder per comprimere le immagini, o la
conversione in scala di grigi per ridurre la complessità
computazionale, migliorando così l'efficienza del KNN e
facilitando l'elaborazione delle immagini.

Incremento del Ciclo di Aggiunta delle Immagini di Train

Proseguire il ciclo iterativo di pseudo-etichettatura ed espansione del training set, affinando progressivamente il modello. L'obiettivo è migliorare ulteriormente le prestazioni dell'ensemble, incrementando la qualità e la quantità dei dati etichettati con soglie di confidenza sempre più ottimizzate.

Grazie!

Biasco Anna Marika

Pulerà Francesca

Zarantonello Massimo

Bibliografia

ModelliResNet-18 e ResNet-50He, K., Zhang, X., Ren, S., & Sun, J. (2016).

Deep Residual Learning for Image Recognition.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.

https://doi.org/10.1109/CVPR.2016.90EfficientNetTan, M., & Le, Q. V. (2019).

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

Proceedings of the 36th International Conference on Machine Learning (ICML), 6105–6114.

https://arxiv.org/abs/1905.11946VGG16Simonyan, K., & Zisserman, A. (2014).

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Proceedings of the International Conference on Learning Representations (ICLR).

https://arxiv.org/abs/1409.1556DatasetFoodX251Zhang, Y., Sun, Y., Chen, X., & Hu, X. (2020).

FoodX251: A Multi-Label

Dataset for Fine-Grained Food Recognition.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1306–1315.

https://doi.org/10.1109/CVPR42600.2020.00138