- **1.30.** Шарик падает с нулевой начальной скоростью на гладкую наклонную плоскость, составляющую угол α с горизонтом. Пролетев расстояние h, он упруго отразился от плоскости. На каком расстоянии от места падения шарик отразится второй раз?
- **1.32.** Из пушки выпустили последовательно два снаряда со скоростью $v_0 = 250$ м/с: первый под углом $\vartheta_1 = 60^\circ$ к горизонту, второй под углом $\vartheta_2 = 45^\circ$ (азимут один и тот же). Найти интервал времени между выстрелами, при котором снаряды столкнутся друг с другом.
- **1.34.** Частица движется в плоскости xy со скоростью $\mathbf{v} = \alpha \mathbf{i} + \beta x \mathbf{j}$, где \mathbf{i} и \mathbf{j} орты осей X и Y, α и β положительные постоянные. В начальный момент частица находилась в начале координат. Найти:
 - а) уравнение траектории частицы y(x);
 - б) радиус кривизны траектории как функцию x.
- **1.36.** Точка движется по окружности со скоростью $v = \alpha t$, где $\alpha = 0.50$ м/с². Найти ее полное ускорение в момент, когда она пройдет n = 0.10 длины окружности после начала движения.
- **1.39.** Частица движется по дуге окружности радиуса R по закону $l = A \sin \omega t$, где l смещение из начального положения, отсчитываемое вдоль дуги, A и ω постоянные. Найти полное ускорение частицы в точках l=0 и $l=\pm A$, если R=100 см, A=80 см и $\omega=2,00$ с $^{-1}$.
- **1.41.** Точка движется по плоскости так, что ее тангенциальное ускорение $a_{\tau} = \alpha$, а нормальное ускорение $a_n = \beta t^4$, где α и β положительные постоянные. В момент t=0 точка покоилась. Найти радиус кривизны R траектории точки и ее полное ускорение как функции пройденного пути s.

постоянные.

1.43. Частица A движется по окружности радиуса R=50 см так, что ее радиус-вектор ${\bf r}$ относительно точки O (рис. 1.5) поворачивается с постоянной угловой скоростью $\omega=0,40$ рад/с. Найти модуль скорости частицы, а также модуль и направление ее полного ускорения.

1.45. Снаряд вылетел со скоростью v = 320 м/с, сделав внутри ствола n = 2,0 оборота. Длина ствола l = 2,0 м. Считая движение снаряда в стволе равноускоренным, найти его угловую скорость вращения вокруг оси в момент вылета.

1.48. Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением $\beta = \alpha t$, где $\alpha = 2.0 \cdot 10^{-2}$ рад/с³. Через сколько времени после начала вращения вектор полного ускорения произвольной точки тела будет составлять угол $\phi = 60^{\circ}$ с ее вектором скорости?

1.49. Твердое тело вращается, замедляясь, вокруг неподвижной оси с угловым ускорением $\beta \sim \sqrt{\omega}$, где ω — его угловая скорость. Найти среднюю угловую скорость тела за время, в течение которого оно будет вращаться, если в начальный момент его угловая скорость была равна ω_0 .

1.50. Твердое тело вращается вокруг неподвижной оси так, что его угловая скорость зависит от угла поворота ϕ по закону $\omega = \omega_0 - a \phi$, где ω_0 и a — положительные постоянные. В момент t=0 угол $\phi=0$. Найти зависимости от времени:

- а) угла поворота;
- б) угловой скорости.

1.53. Шар радиуса R = 10.0 см катится без скольжения по горизонтальной плоскости так, что его центр движется с постоянным ускорением a = 2.50 см/с². Через t = 2.00 с после начала движения его положение соответствует рис. 1.6. Найти:

- а) скорости точек A и B;
- б) ускорения точек A и O.

Рис. 1.6

1.54. Цилиндр катится без скольжения по горизонтальной плоскости. Радиус цилиндра равен r. Найти радиусы кривизны траекторий точек A и B (рис. 1.6).

Рис. 1.6

1.55. Два твердых тела вращаются вокруг взаимно перпендикулярных пересекающихся осей с постоянными угловыми скоростями $\omega_1 = 3.0$ рад/с и $\omega_2 = 4.0$ рад/с. Найти угловую скорость и угловое ускорение одного тела относительно другого.