

Emissions Test Report Class II Permissive Change

EUT Name: RFID Reader **Model No.:** TR-001-44

CFR 47 Part 15.225:2015 and RSS 210:2010

Prepared for:

Carol Rogers Escano Illumina, Inc

5200 Illumina Way.

San Diego, CA 92122 Tel: (510) 670-9319

Fax: (510) 670-9302

Prepared by:

TUV Rheinland of North America, Inc.

1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124

http://www.tuv.com/

Report/Issue Date: November 2, 2015 Report Number: 31563301.001

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

FCCID: ZWF-TR00144, IC: 9859A-TR00144

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	11/02/2015	Original Document	N/A

Note: Latest revision report will replace all previous reports.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

FCCID: ZWF-TR00144, IC: 9859A-TR00144

Statement of Compliance

Manufacturer: Illumina, Inc

5200 Illumina Way. San Diego, CA 92122

(510) 670-9319

Requester / Applicant: Carol Rogers Escano

Name of Equipment: RFID Reader Model No. TR-001-44

Type of Equipment: Industrial, Scientific, or Medical (ISM)
Application of Regulations: CFR 47 Part 15.225:2015 and RSS 210:2010

Test Dates: October 27, 2015 to October 30, 2015

Guidance Documents:

Emissions: ANSI C63.10: 2013

Test Methods:

Emissions: ANSI C63.10: 2013

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Kerwinn Corpuz02 November 2015David Spencer02 November 2015Test EngineerDateA2LA SignatoryDate

F©

Industry Canada

Testing Cert #3331.02

US5254

2932M-1

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

FCCID: ZWF-TR00144, IC: 9859A-TR00144

Table of Contents

1	Exe	ecutive Summary	7
	1.1	Scope	
	1.2	Purpose	
	1.3	Summary of Test Results	7
	1.4	Special Accessories	7
	1.5	Equipment Modifications	7
2	Lab	poratory Information	
	2.1	Accreditations & Endorsements	
	2.1.	US Federal Communications Commission	8
	2.1.3		
	2.1.4		
	2.2	Test Facilities	
	2.2.	Emission Test Facility	9
	2.2.2	2 Immunity Test Facility	9
	2.3	Measurement Uncertainty	9
	2.3.2		
_	2.4	Calibration Traceability	
3	Pro	duct Information	
	3.1	Product Description	12
	3.2	Equipment Configuration	12
	3.3	Operating Mode	12
	3.4	Unique Antenna Connector	13
	3.4.	Results	
4	Em	issions	14
	4.1	Carrier Field Strength Requirements	14
	4.1.		1.5
	4.1.2		
	4.2 4.2.	Occupied Bandwidth	
	4.2.		18
	4.3	Out-of-Band Emissions	
	4.3.	Test Method	21
	4.3.2	2 Test Result	22
	4.4	Transmitter Spurious Emissions	
	4.4.1 4.4.2	C7	26 27
	4.4.3	•	
	4.4.4	4 Sample Calculation	43

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Table of Contents

5 I	Frequency Stability	4	
5.1	Voltage Variation	44	
5	5.1.1 Test Methodology	44	
5	5.1.2 Test results	44	
5.2	Maximum Permissible Exposure	48	
5	5.2.1 Test Methodology		
5	5.2.2 RF Exposure Limit (FCC)	48	
5	5.2.3 RF Exposure Limit (IC)		
5	5.2.4 EUT Operating Condition	49	
5	5.2.5 Classification	49	
5	5.2.6 Test Results	49	
5	5.2.7 Sample Calculation	50	
6	Test Equipment List	51	
6.1	Equipment List	51	
7 1	EMC Test Plan	52	
7.1			
7.2	Customer	52	
7.3	Equipment Under Test (EUT)	53	
7.4	Test Specifications	55	

Index of Tables

Table 1: Summary of Test Results	7
Table 2: Summary of Uncertainties	10
Table 3: RF Fundamental Field Strength – Test Results	15
Table 4: Occupied Bandwidth – Test Results	19
Table 5: 20 dB Bandwidth Frequency – Test Results	19
Table 6: Out of Band Emissions Limit	21
Table 7: Out of Band Emissions – Test Results	22
Table 10: Voltage Variation – Test Results	44
Table 11: Customer Information	52
Table 12: Technical Contact Information	52
Table 13: EUT Specifications	53
Table 14: Interface Specifications	54
Table 15: Supported Equipment	
Table 16: Description of Sample used for Testing	
Table 17: Description of Test Configuration used for Radiated Measurement.	
Table 18: Test Specifications	

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.225:2015 and RSS 210:2010 based on the results of testing performed on October 27, 2015 through October 30, 2015 on the RFID Reader Model TR-001-44 manufactured by Illumina, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.4	Test Parameters (from Standard)	Result	
Transmitter Spurious Emissions	CFR47 15.209, RSS-GEN Sect.6.13	Class B	Complied	
Occupied Bandwidth	CFR47 15.215 (c), RSS GEN Sect.6.6	N/A	Complied	
Carrier Field Strength	CFR47 15.225 (a),	124 dBuV/m at 3	Complied	
Carrier Field Strength	RSS 210 Sect. A 2.6 (a)	meter	Сотриса	
Out of Band Emissions	CFR47 15.225 (b), (c) RSS 210 Sect. A 2.6 (b) (c)	Per Standards.	Complied	
Voltage Variation	CFR47 15.225 (e), RSS 210 Sect. A 2.6	100ppm / +0.01%	Complied	
RF Exposure	CFR47 Part 1.1310, RSS-102	General Population	Complied	

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Lane, Ste. A., Pleasanton, CA 94566, is accredited by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to

and accepted by the FCC (FRN # US5254). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the A2LA Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2005 and ISO 9002 (Testing Cert #3331.02).

The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

Industry Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology

Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Lane, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration Nos. A-0031).

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Ste. A, Pleasanton, California 94566, USA. The 2305 Mission College, Santa Clara, 95054, USA location is considered a Pleasanton annex.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2014, at test distances of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2014, at test distances of 3 meters and 5 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate $50~{\rm cm}~x~50~{\rm cm}~x~3.175~{\rm mm}$ thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measured. The fraction may be viewed as the coverage probability or level of confidence of the interval.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{\textit{dB}\mu V \, / \, \textit{m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 \text{ dBuV/m} + 17.5 \text{ dB} - 20 \text{ dB} + 1.0 \text{ dB} = 23.5 \text{ dBuV/m}$$

2.3.2 Measurement Uncertainties

Table 2: Summary of Uncertainties

	$ m U_{lab}$	$ m U_{cispr}$					
Radiated Disturbance	Radiated Disturbance						
30 MHz – 25,000 MHz	3.2 dB	5.2 dB					
Conducted Disturbance @ 1	Mains Terminals						
150 kHz – 30 MHz	2.4 dB	3.6 dB					
Disturbance Power							
30 MHz – 300 MHz	3.92 dB	4.5 dB					

Note: U_{lab} is the calculated Combined Standard Uncertainty

 U_{cispr} is the measurement uncertainty requirement per CISPR 16.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is $\pm 4.1\%$.

The estimated combined standard uncertainty for radiated immunity measurements is $\pm 2.7 dB$.

The estimated combined standard uncertainty for conducted immunity measurements is \pm 1.4dB.

The estimated combined standard uncertainty for damped oscillatory wave immunity measurements is \pm 8.8%.

The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 0.45\%$.

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is ± 3.88 Hz

The estimated combined standard uncertainty for carrier power measurements is \pm 1.59 dB.

The estimated combined standard uncertainty for adjacent channel power measurements is \pm 1.47 dB.

The estimated combined standard uncertainty for modulation frequency response measurements is ± 0.46 dB.

The estimated combined standard uncertainty for transmitter conducted emission measurements is $\pm 4.01~dB$

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Guide 17025:2005.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

3 Product Information

3.1 Product Description

The TR-001-44 RF ID Reader module is an ACK RFID operating at 13.56MHz.

3.2 Equipment Configuration

A description of the equipment configuration is given in Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The TR-001-44 uses U.FL coaxial connector attached to external loop antenna.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

4 Emissions

Testing was performed in accordance with CFR 47 Part 15.225:2015 and RSS 210 Annex 2:2010. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in ANSI C63.10: 2013 were used.

4.1 Carrier Field Strength Requirements

The RF fundamental field strength requirement is the power radiated in the direction of the maximum level under specified conditions of measurements in the presence of modulation.

The RF fundamental field strengths shall not exceed CFR47 Part 15.225 (a):2015 and RSS 210 A2.6 (a):2010.

The field strength of any emission in the band of 13.553 and 13.567MHz shall be less than 84 dBuV/m at 30 meter distance; or 124 dBuV/m at 3 meter.

4.1.1 Test Method

The radiated method was used to measure the field strength of the fundamental signal according to ANSI C63.10:2013 Section 6.3. The measurement was performed with modulation. All three axis were conducted. The worst result indicated below.

Test Setup:

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 3: RF Fundamental Field Strength – Test Results

Test Conditions: Radiated Measurement, Normal Temperature and Voltage only							
Antenna Type: External Loop Power Setting: 200mW Chipset Output							
Signal State: Modulated			Duty	Cycle: 100 %			
Ambient Temp.: 22 °C			Relat	ive Humidity	:34 %		
Operating Frequency:			Test	Results			
13.56 MHz	Measured Level [dBuV/m]	Loop Position	Table [degree]	Antenna [cm]	Limit [dBuV/m]	Margin [dB]	
X-Axis	62.29	90	246	100	124.00	-61.71	
Y-Axis	63.82	90	278	100	124.00	-60.18	
Z-Axis	62.22	90	86	100	124.00	-61.78	
	Note: 1. Measurements were taken at 3 meter distance, and the limit was extrapolated accordingly.						

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Figure 1: X-Axis Power Output

Figure 2: Y-Axis Power Output

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Figure 3: Z-Axis Power Output

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.

The 20dB bandwidth is defined the bandwidth of 20 dBr from highest transmitted level of the fundamental frequency.

The bandwidth shall be documented per Section CFR47 15.215(c) 2015 and RSS Gen Sect. 6.6: 2014. Intentional radiators operating under the alternative provisions to the general emission limits, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If the frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

4.2.1 Test Method

The radiated method was used to measure the occupied bandwidth according to ANSI C63.10:2013. The measurement was performed with modulation. This test was performed on all three axis of RFID. The worst sample result indicated below.

Test Setup:

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

4.2.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 4: Occupied Bandwidth – Test Results

Test Conditions: Radiated Measurement, Normal Temperature and Voltage only							
Antenna Type: Exte	Antenna Type: External Loop Power Setting: 200mW Chipset Output						
Signal State: Modul	Signal State: Modulated Duty Cycle: 52.8 %						
Ambient Temp.: 22	Ambient Temp.: 22 °C Relative Humidity:35%						
Occupied Bandwidth for 13.56 MHz RFID							
Sample Limit (kHz) 99% BW (kHz) 20 dB BW (kHz) Results							
RFID Reader N/A 2.543 2.915 Pass							
Note: All lower and	upper markers of 99%	Note: All lower and upper markers of 99% Bandwidth and 20 dB Bandwidth are within the allowable band;					

13.553 MHz to 13.567MHz

Table 5: 20 dB Bandwidth Frequency – Test Results

Test Conditions: Radiated Measurement, Normal Temperature and Voltage only						
Antenna Type: external Loop Power Setting: 200mW Chipset Output						
Signal State: Modulated Duty Cycle: 52.8 %						
Ambient Temp.: 22 °C Relative Humidity:35%						
20 dB Bandwidth Frequencies for 13.56 MHz RFID						
Sample Occupied Band Lower Freq. Upper Freq. Results						
RFID Reader	13.553 < X < 13.567	13.5585425	13.5614575	Pass		
Note: All lower and upper markers of 20 dB Bandwidth are within the allowable band; 13.553 MHz to 13.567MHz; where X is the lower frequency and upper frequency.						

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Figure 4: 99% Bandwidth and 20 dB Bandwidth

4.3 Out-of-Band Emissions

The out of band emission is leakage measurement of the main carrier outside the allocated operating frequency band; 13.553 MHz to 13.567 MHz.

According to CFR47 Part 15.225: 2015 and RSS210 A2.6: 2010, the out of band emission shall;

- -Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (84 dBuV/m) at 30 meters,
- -Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter (40.5 dBuV/m) at 30 meters.

Table 6: Out of Band Emissions Limit

Limit at 30m	Limit at 3m	Comment			
(dBuV/m)	(dBuV/m)				
29.5	69.5	CFR47 15.225 (d), RSS210 A2.6 (d). Out of Band			
40.5	80.5	CFR47 15.225 (c), RSS210 A2.6 (c). Out of Band			
50.5	90.5	CFR47 15.225 (b), RSS210 A2.6 (b). Out of Band			
84.0	124.0	CFR47 15.225 (a), RSS210 A2.6 (a), Inband			
04.0	124.0	(Carrier)			
50.5	90.5	CFR47 15.225 (b), RSS210 A2.6 (b), Out of Band			
40.5	80.5	CFR47 15.225 (c), RSS210 A2.6 (c), Out of Band			
29.5	69.5	CFR47 15.225 (d), RSS210 A2.6 (d), Out of Band			
Note: The limit was extrapolated 40dB/decade per CFR47 Part 15.31 (f)(3).					
	(dBuV/m) 29.5 40.5 50.5 84.0 50.5 40.5 29.5	(dBuV/m) (dBuV/m) 29.5 69.5 40.5 80.5 50.5 90.5 84.0 124.0 50.5 90.5 40.5 80.5 29.5 69.5			

4.3.1 Test Method

The radiated method was used to measure the out-of-band emission requirement. The measurement was performed with modulation per CFR47 15.225 (b) (c) 2015 and RSS 210 A2.6. (b) (c): 2010. This test was performed on three axis. The worst result indicated below.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

4.3.2 Test Result

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 7: Out of Band Emissions – Test Results

Test Conditions: Conducted Measurement, Normal Temperature and Voltage only Antenna Type: External Loop Power Setting: 250mW Chipset Output Signal State: Modulated **Duty Cycle: 52.8 %** Ambient Temp.: 21 °C **Relative Humidity:**37% Loop **Spectrum Mask** Result Limit Sample Antenna (13.410 to 14.010MHz) **Position** 0 Figure 5 Pass See Table 6 X-Axis 90 Figure 6 Pass 0 Figure 7 Pass Y-Axis See Table 6 90 Figure 8 Pass 0 Figure 9 Pass **Z-Axis** See Table 6 90 Figure 10 Pass Note: All maximized emissions within 12 MHz to 15 MHz are below the spectrum mask limit per Table 6.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Figure 5: Out of Band Spectrum Mask for RFID Module; 0 Degree Loop Antenna – X axis

Figure 6: Out of Band Spectrum Mask for RFID Module; 90 Degree Loop Antenna – X axis

Figure 7: Out of Band Spectrum Mask for RFID Module; 0 Degree Loop Antenna – Y axis

Figure 8: Out of Band Spectrum Mask for RFID Module; 90 Degree Loop Antenna – Y axis

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Figure 9: Out of Band Spectrum Mask for RFID Module; 0 Degree Loop Antenna – Z axis

Figure 10: Out of Band Spectrum Mask for RFID Module; 90 Degree Loop Antenna – Z axis

4.4 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.225(d), RSS GEN Sect. 6

4.4.1 Test Methodology

4.4.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

4.4.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final spurious emission scans performed on the Z-Axis.

4.4.1.3 Deviations

None.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

Page 26 of 55

4.4.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2015 and RSS GEN Section.8.9: 2014.

Measurement Field strength distance (microvolts/meter) (meters) Frequency (MHz) 300 30 1.705-30.0..... 30 30-88..... 100 ** 3 3 3 Above 960..... 500 3

4.4.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	ted Emissions	Tracking # 31563301.001 Page 1 of 15		
EUT Name	RFID Reader	Date	October 27-28 2015	
EUT Model	TR-001-44	Temp / Hum in	22°C / 36%rh	
EUT Serial	Prototype	Temp / Hum out	N/A	
EUT Config.	Standalone Module – Orientation X axis	Line AC / Freq	3.3Vdc	
Standard	CFR47 Part 15 Subpart C	RBW / VBW	See Note	
Dist/Ant Used	3m / 6502 & JB3	Performed by	Kerwinn Corpuz	

9	ίHz	. – 3	0M	Hz

9KHZ — 30IVIHZ									
Frequency	Raw	Corrected Level	LDetector LHei		Turntable	Limit	Limit Margin		Comment
MHz	dBuV/m	dBuV/m		cm	degree	dBuV/m	dB	degree	
0.56	35.60	47.07	Pk	100	59	72.60	-25.53	0	Spurious
0.71	31.59	43.06	Pk	100	361	70.61	-27.55	0	Spurious
1.08	28.21	39.90	Pk	100	0	66.93	-27.04	0	Spurious
1.55	26.37	38.04	Pk	100	80	63.79	-25.75	0	Spurious
13.56	38.55	50.74	Pk	100	196	124.00	-73.26	0	Fundamental
0.53	35.66	47.13	Pk	100	297	73.16	-26.03	90	Spurious
0.76	31.86	43.29	Pk	100	335	70.00	-26.72	90	Spurious
1.61	24.91	36.57	Pk	100	256	63.48	-26.91	90	Spurious
13.56	50.11	62.29	Pk	100	246	124.00	-61.71	90	Fundamental
27.12	20.31	30.64	Pk	100	77	69.50	-38.86	90	Spurious

Spec Margin = E-Field QP – Limit, E-Field QP = FIM QP+ Total CF \pm Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Note: 1. An AC PSU (TDK-Lambda, model LS25-3.3) was used to power DC voltage to EUT, Ferrite bead on DC wire.

2. RBW/VBW Setting:

9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz 150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	01.001	Page 2	of 15		
EUT Name	RFID Reader	October 27-28	2015		
EUT Model	TR-001-44	Temp / Hum in	22°C / 36%rh		
EUT Serial	Prototype	Temp / Hum out	N/A		
EUT Config.	Standalone Module – Orientation X axis	Line AC / Freq	3.3Vdc		
Standard	CFR47 Part 15 Subpart C	RBW / VBW	See Note		
Dist/Ant Used	3m / 6502 & JB3	Performed by	Kerwinn Corpu	Z	

30MHz - 1000MHz

Frequency	Raw	Cable Loss	AF	Level	Detector	Polarity	Height	Azimuth	Limit	Margin	Comment
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
813.60	41.43	5.53	-9.50	37.47	QP	Н	102	200	46.00	-8.53	Spurious
705.11	36.22	5.25	-11.02	30.45	QP	V	111	270	46.00	-15.55	Spurious
759.35	42.37	5.41	-10.04	37.74	QP	V	104	14	46.00	-8.26	Spurious

Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty

Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Note: 1. An AC PSU (TDK-Lambda, model LS25-3.3) was used to power DC voltage to EUT, Ferrite bead on DC wire.

2. RBW/VBW Setting:

9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz 150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz

Tel: (925) 249-9123, Fax: (925) 249-9124

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

FCCID:ZWF-TR00144, IC: 9859A-TR00144

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

Page 31 of 55

Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	ted Emissions	Tracking # 31563301.001 Page 6 of 15							
EUT Name	RFID Reader	Date	October 27-28 2015						
EUT Model	TR-001-44	Temp / Hum in	22°C / 36%rh						
EUT Serial	Prototype	Temp / Hum out	N/A						
EUT Config.	Standalone Module – Orientation Y axis	Line AC / Freq	3.3Vdc						
Standard	CFR47 Part 15 Subpart C	RBW / VBW	See Note						
Dist/Ant Used	3m / 6502 & JB3	Performed by	Kerwinn Corpuz						
OLU OOMU									

\sim 1			\sim	_			
9k	HТ	_	:3	()	IVΙ	н	7

9K1Z - 30W1Z									
Frequency	Raw	Corrected Level Detector		Height	Turntable	Limit	Limit Margin		Comment
MHz	dBuV/m	dBuV/m		cm	degree	dBuV/m	dB	degree	
0.51	36.14	47.61	Pk	100	303	73.51	-25.90	0	Spurious
0.68	32.70	44.18	Pk	100	43	70.90	-26.72	0	Spurious
0.95	30.15	41.75	Pk	100	214	68.03	-26.28	0	Spurious
1.46	26.65	38.32	Pk	100	98	64.30	-25.98	0	Spurious
13.56	40.17	52.35	Pk	100	184	124.00	-71.65	0	Fundamental
0.53	34.65	46.12	Pk	100	224	73.16	-27.04	90	Spurious
1.22	28.28	39.96	Pk	100	158	65.84	-25.88	90	Spurious
1.55	26.79	38.45	Pk	100	356	63.80	-25.35	90	Spurious
13.56	51.64	63.82	Pk	100	278	124.00	-60.18	90	Fundamental
27.12	21.05	31.39	Pk	100	358	69.50	-38.11	90	Spurious

Spec Margin = E-Field QP – Limit, E-Field QP = FIM QP+ Total CF \pm Uncertainty Total CF = Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Note: 1. An AC PSU (TDK-Lambda, model LS25-3.3) was used to power DC voltage to EUT, Ferrite bead on DC wire.

2. RBW/VBW Setting:

9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz 150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	ted Emissions	Tracking # 315633	01.001	Page 7	of 15
EUT Name	RFID Reader	Date	October 27-28	2015	
EUT Model	TR-001-44	Temp / Hum in	22°C / 36%rh		
EUT Serial	Prototype	Temp / Hum out	N/A		
EUT Config.	Standalone Module - Orientation Y axis	Line AC / Freq	3.3Vdc		
Standard	CFR47 Part 15 Subpart C	RBW / VBW	See Note		
Dist/Ant Used	3m / 6502 & JB3	Performed by	Kerwinn Corpu	Z	

30MHz - 1000MHz

						OOM 12	100011111	_				
	Frequency	Raw	Cable Loss	AF	Level	Detector	Polarity	Height	Azimuth	Limit	Margin	Comment
	MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
	47.03	45.25	2.75	-22.32	25.68	QP	٧	202	8	40.00	-14.32	Spurious
	50.01	50.25	2.77	-23.60	29.42	Pk	V	100	97	40.00	-10.58	Spurious
	596.54	42.36	4.97	-12.63	34.70	Pk	V	100	44	46.00	-11.30	Spurious

Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty

Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Note: 1. An AC PSU (TDK-Lambda, model LS25-3.3) was used to power DC voltage to EUT, Ferrite bead on DC wire.

2. RBW/VBW Setting:

9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz 150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Tel: (925) 249-9123, Fax: (925) 249-9124

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466

Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	ted Emissions	Tracking # 31563301.001 Page 11 of 15		
EUT Name	RFID Reader	Date	October 27-28 2015	
EUT Model	TR-001-44	Temp / Hum in	22°C / 36%rh	
EUT Serial	Prototype	Temp / Hum out	N/A	
EUT Config.	Standalone Module – Orientation Z axis	Line AC / Freq	3.3Vdc	
Standard	CFR47 Part 15 Subpart C	RBW / VBW	See Note	
Dist/Ant Used	3m / 6502 & JB3	Performed by	Kerwinn Corpuz	

	9kHz – 30MHz								
Frequency	Raw	Corrected Level	Detector	Height	Turntable	Limit	Margin	Ant	Comment
MHz	dBuV/m	dBuV/m		cm	degree	dBuV/m	dB	degree	
0.59	34.60	46.07	Pk	100	10	72.18	-26.11	0	Spurious
0.87	30.65	42.11	Pk	100	96	68.79	-26.68	0	Spurious
1.19	27.66	39.34	Pk	100	21	66.08	-26.73	0	Spurious
1.60	25.04	36.71	Pk	100	38	63.51	-26.80	0	Spurious
13.56	33.69	45.87	Pk	100	11	124.00	-78.13	0	Fundamental
0.64	33.07	44.54	Pk	100	291	71.52	-26.98	90	Spurious
0.86	30.19	41.64	Pk	100	358	68.93	-27.28	90	Spurious
1.41	27.42	39.10	Pk	100	250	64.60	-25.50	90	Spurious

86

90

124.00

69.50

-61.78

-39.00

90

90

Fundamental

Spurious

Pk Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Pk

Combined Standard Uncertainty $U_c(y) = \pm 3.2 \text{ dB}$ Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

100

100

1. An AC PSU (TDK-Lambda, model LS25-3.3) was used to power DC voltage to EUT, Ferrite bead on DC wire. Note:

2. RBW/VBW Setting:

50.03

20.17

62.22

30.50

13.56

27.12

9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz 150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466

Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	ted Emissions	Tracking # 315633	Page 1	2 o	f 15	
EUT Name	RFID Reader	Date	October 27-28	2015		
EUT Model	TR-001-44	Temp / Hum in	22°C / 36%rh			
EUT Serial	Prototype	Temp / Hum out	N/A			
EUT Config.	Standalone Module – Orientation Z axis	Line AC / Freq	3.3Vdc			
Standard	CFR47 Part 15 Subpart C	RBW / VBW	See Note			
Dist/Ant Used	3m / 6502 & JB3	Performed by	Kerwinn Corpu	Z		

30MHz - 1000MHz

	00WH2 1000WH2										
Frequency	Raw	Cable Loss	AF	Level	Detector	Polarity	Height	Azimuth	Limit	Margin	Comment
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
705.11	45.87	5.25	-11.02	40.10	QP	Н	111	22	46.00	-5.90	Spurious
759.35	42.22	5.41	-10.04	37.58	QP	Н	105	192	46.00	-8.42	Spurious
48.35	45.30	2.76	-22.98	25.09	QP	V	171	34	40.00	-14.92	Spurious

Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty

Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Note: 1. An AC PSU (TDK-Lambda, model LS25-3.3) was used to power DC voltage to EUT, Ferrite bead on DC wire.

2. RBW/VBW Setting:

9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz 150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

Tracking # 31563301.001 Page 13 of 15 **SOP 1** Radiated Emissions **EUT Name RFID Reader Date** October 27-28 2015 **EUT Model** TR-001-44 Temp / Hum in 22°C / 36%rh **EUT Serial** Prototype Temp / Hum out N/A Line AC / Freq **EUT Config.** Standalone Module - Orientation Z axis 3.3Vdc **RBW / VBW** Standard CFR47 Part 15 Subpart C See Note Dist/Ant Used 3m / 6502 & JB3 Performed by Kerwinn Corpuz 9 kHz to 30 MHz Plot at Loop Antenna Facing EUT (0 degree) 28 Oct 15 13:40 -dAnv/m TUV Rheinland of North America [1] Vertical Pk Lmt 120.0 Av Lmt 100.d 80.0 40.0 [1] Meas Dist 3m 20.0 Spec Dist 3m Frequency: MHz 0.0 Illumina, RFID TR-001-44, EUT Z axis (EUT antenna laying down); 3.3Vdc Filename: c:\program files (x86)\emisoft - vasona\results\20151028_Illumina_3-3V_30M_RE9.em dBu∀/m 28 Oct 15 13:46 --TUV Rheinland of North America [1] Vertical Pk Lmt 120.d Av Lmt 100.0 80.0 60.0 40.0 Meas Dist 3m [1] Spec Dist 3m 20.0 Frequency: MHz 0.0 1.0 10.0 30.0 Illumina, RFID TR-001-44, EUT Z axis (EUT antenna laying down); 3.3Vdc Filename: c:\program files (x86)\emisoft - vasona\results\20151028_Illumin_3-3V_30M_RE10.em Notes: 9 kHz to 150 kHz; RBW = 200Hz, VBW = 1kHz

150 kHz to 30 MHz; RBW = 9kHz, VBW = 30kHz

SOP 1 Radi	ated Emi	ssions				T	racking # 3	315633	01.001 P	age 15 of 15
EUT Name	RFID Rea	ader					Date		October	27-28 2015
EUT Model	TR-001-4	! 4					Temp / Hu	m in	22°C / 30	6%rh
EUT Serial	Prototype						Temp / Hu	m out	N/A	
EUT Config.	Standalo				Z axis		Line AC / I	•	3.3Vdc	
Standard	CFR47 P		ubpart C				RBW / VB	N	See Note	е
Dist/Ant Used	l 3m / 6502	2 & JB3					Performed	l by	Kerwinn	Corpuz
100 000									27 (Det 15 11:01
dDuM/m			T1.07						27 (Oct 15 11:21
dBuV/m 80.0			TUV	Rhein	land o	f Nortl	n Americ	a	27 (Oct 15 11:21 – — [1] Horizont: — [2] Vertical
			TUV	Rhein	land o	f Norti	n America	a	27 (— [1] Ḥorizonta
70.0			TUV	Rhein	land o	f Norti	n America	a	27 (— [1] Ḥorizonta

Notes: 30 MHz to 1000 MHz; RBW = 120kHz, VBW = 300kHz

330.0

430.0

530.0

630.0

Illumina, RFID TR-001-44, EUT Z axis (EUT antenna laying down); 3.3Vdc Filename: c:\program files (x86)\emisoft - vasona\results\20151027_Illumina_3-3V_RE3.emi

730.0

830.0

0.0

130.0

230.0

Meas Dist 3m Spec Dist 3m Frequency: MHz

930.0 1000.0

4.4.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB) CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\frac{dB\mu V/m}{20}$

 $\mu V/m = 10^{\frac{1}{20}}$

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

Page 43 of 55

5 Frequency Stability

In accordance with 47 CFR Part 15.225(e) the frequency stability of RFID devices must be such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. The Manufacturer declares the operating temperature ranges of $+0^{\circ}$ to $+35^{\circ}$ C.

5.1 Voltage Variation

In accordance with 47 CFR Part 15.31 (e) intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.1.1 Test Methodology

The ac supply voltage was varied between 85% and 115% of the nominal rated supply voltage. The fundamental frequency was observed during the variation. The RF ID standalone module was powered 3.3V DC by programmable power supply. The voltage was varied from 2.97VDC to 3.63VDC mean while the fundamental frequencies were observed and recorded for the maximum drift in ppm; part per millions.

5.1.2 Test results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s). The fundamental frequencies drifted less than ± 100 ppm.

Table 8: Voltage Variation – Test Results

Temperature	-6 dB Lower Edge (MHz)	+6 dB Upper Edge (MHz)	Center Frequency (MHz)	РРМ
2.97V DC	13.559556	13.560021	13.559784	-15.93
3.30V DC	13.559562	13.560027	13.559793	-15.27
3.63V DC	13.559565	13.560030	13.559796	-15.04

Note: All frequency drifts were less than ±100 ppm from 13.56 MHz No frequency change was observed with time.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

Figure 11: Voltage Variation at 2.97V DC

Figure 12: Voltage Variation at 3.30V DC

Figure 13: Voltage Variation at 3.63V DC

5.2 Maximum Permissible Exposure

5.2.1 Test Methodology

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this product is measured in a Semi-Anechoic Chamber, and also the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

5.2.2 RF Exposure Limit (FCC)

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ₂)	Average Time (minutes)				
	(A)Limits For Occupational / Control Exposures							
300 - 1500			F/300	6				
1500 - 100,000			5	6				
(B	B)Limits For Gener	ral Population / Un	controlled Exposu	re				
300 - 1500			F/1500	6				
1500 - 100,000			1.0	30				

F = Frequency in MHz

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

5.2.3 RF Exposure Limit (IC)

According to RSS-102 Issue 5 table 4: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as defined in RSS-GEN

RF FIELD STRENGTH LIMITS FOR DEVICES USED BY THE GENERAL PUBLIC (UNCONTROLLED ENVIRONMENT)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m ₂)	(minutes)
0.003-1021	83	90	=	Instantaneous*
0.1-10	-	0.73/f	-	6**
1.1-10	87/ f 0.5	=	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f 0.25	0.1540/f 0.25	8.944/ f 0.5	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f 0.3417	0.008335 f 0.3417	0.02619f0.6834	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f 1.2
150000-300000	0.158 f 0.5	4.21 x 10-4 f 0.5	6.67 x 10-5 <i>f</i>	616000/ f 1.2

Note: *f* is frequency in MHz.

5.2.4 EUT Operating Condition

The software provided by Manufacturer enabled the EUT to transmit at the regulated power for RFID; The chipset output power was 200 mW using 9.1.6 FPGA firmware.

5.2.5 Classification

The antenna of the product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping at least 20cm or more separation distance with the antenna should be included in user's manual. So, this device is classified as a **Mobile Device**.

5.2.6 Test Results

5.2.6.1 Antenna Gain

The transmitting antenna was attached. Carrier field strength of each RFID was measured.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

Page 49 of 55

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

5.2.6.2 Output Power into Antenna & RF Exposure value at distance 20cm:

Calculations for this report are based on highest carrier field strength measurement.

The highest carrier field strength was +63.82 dBuV/m at 3 meter distance.

The calculated EIRP is -31.41 dBm or 0.0007228mW

Using the Friss transmission formula, the EIRP is Pout*G, and R is 20cm.

 $Pd = (0.0007228) / (1600\pi) = 1.438E-7 \text{ mW/cm}^2$, which is well below to the limit.

The RFID main carrier is not regulated per FCC 1.1310; furthermore, the calculated power density of RFID Module is less than 1mW/cm² which meet limit stated above.

As stated, the EUT was found to be compliant to the requirements of the test standard(s).

5.2.7 Sample Calculation

The Friss transmission formula: Pd = (Pout*G) / $(4*\pi*R^2)$

Where;

 $Pd = power \ density \ in \ mW/cm_2$ $Pout = output \ power \ to \ antenna \ in \ mW$ $G = gain \ of \ antenna \ in \ linear \ scale$ $\pi \approx 3.1416$

R = distance between observation point and center of the radiator in cm

Ref.: David K. Cheng, Field and Wave Electromagnetics, Second Edition, Page 640, Eq. (11-133).

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

6 Test Equipment List

6.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Bilog Antenna	Sunol Sciences	JB3	A102606	07/08/2014	07/08/2016
Horn Antenna	Sunol Sciences	DRH-118	A040806	02/10/2015	02/10/2016
Antenna (18-40 GHz)	Com-Power	AHA-840	105005	07/08/2015	07/08/2016
Active Loop Antenna	ETS-Lindgren	6502	9110-2683	03/17/2015	03/17/2016
Spectrum Analyzer	Rohde & Schwarz	FSL6	100169	01/13/2015	01/13/2016
Spectrum Analyzer	Agilent	N9038A	MY51210195	01/12/2015	01/12/2016
Spectrum Analyzer	Agilent	N9030A	MY51380689	01/19/2015	01/19/2016
Spectrum Analyzer	Rohde Schwarz	ESIB	832427/002	01/13/2015	01/13/2016
Spectrum Analyzer	Rohde Schwarz	FSV40	1321.3008K40	11/01/2015	11/01/2016
Amplifier	Sonoma Instruments	310	213221	09/30/2014	09/30/2015
Amplifier	Miteq	TTA1800-30-4G	1842452	01/13/2015	01/13/2016
Amplifier	Rohde & Schwarz	TS-PR26	100011	07/24/2015	07/24/2016
Amplifier	Rohde & Schwarz	TS-PR40	100012	02/21/2015	02/21/2016
Power Meter	Agilent	E4418B	MY45103902	01/15/2015	01/15/2016
Power Sensor	Hewlett Packard	8482A	US37295801	01/15/2015	01/15/2016
Thermometer	Fluke	52II	96480032	07/15/2015	07/15/2016
Thermo Chamber	Espec	BTZ-133	0613436	03/16/2015	03/16/2016
DC Power Supply	Agilent	E3634A	MY400004331	01/12/2015	01/12/2016
Notch Filter	Micro-Tronics	BRM50716	003	01/30/2015	01/30/2016
Signal Generator	Anritsu	MG3694A	42803	01/13/2015	01/13/2016
Signal Generator	Rohde & Schwarz	SMF100A	1167.0000K02	10/14/2014	10/14/2015
Signal Generator	Rohde & Schwarz	SMBV100A	1407.6004K02	12/04/2014	12/04/2015
Power Sensors	Rohde & Schwarz	OSP120	1520.9010.02	12/19/2014	12/14/2015

^{*} Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

EMC / Rev 11/5/2015

Page 51 of 55

7 EMC Test Plan

7.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

7.2 Customer

Table 9: Customer Information

Company Name	Illumina, Inc		
Address	5200 Illumina Way.		
City, State, Zip San Diego, CA 92122			
Country USA			
Phone (510) 670-9319			
Fax	(510) 670-9302		

Table 10: Technical Contact Information

Name	Carol Rogers Escano			
E-mail	cescano@illumina.com			
Phone	(510) 670-9319			
Fax	(510) 670-9302			

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

7.3 Equipment Under Test (EUT)

Table 11: EUT Specifications

EUT Specification				
Dimensions:	8mm X 8mm X 40mm			
Power Supply:	3.3 VDC, 10 mA			
Environment	Controlled Laboratory			
Operating Temperature Range:	0 to 35 degrees C			
Multiple Feeds:	☐ Yes and how many☐ No. RFID receives 3.3 Vdc from Host System power supply.			
Hardware Version	1.2			
RFID Software Version	Image file version 3.3			
Operating Mode	RFID Reader			
Transmitter Frequency Band	13.56 MHz			
Chipset Rated Power Output	200 mW			
Power Setting @ Operating Channel	Fixed. Power controls by FPGA firmware.			
Antenna Type	External Loop			
Modulation Type	☐ AM ☐ FM ☐ Phase ☐ Other describe: OOK			
Data Rate	26.4 kbit/s.			
Max. Duty Cycle	53.3%			
Type of Equipment	☐ Table Top ☐ Wall-mount ☐ Floor standing cabinet ☐ Other describe: Host System			

Table 12: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
N/A				
Note: No supporting device was used for testing				

Table 13: Supported Equipment

Equipment	Manufacturer	Model	Serial	Used for
RFID Tag				
Note: None				

Table 14: Description of Sample used for Testing

Device	Serial Number	Configuration	Used For
RFID Module	le Prototype	Radiated Sample	Max. Carrier Field Strength Occupied Bandwidth Out of Band Emission TX Spurious Radiated Emission RX Spurious Radiated Emission AC Conducted Emission
		Conducted Sample	Frequency Stability Voltage Variation
Note:	•		

Table 15: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Description
RFID Reader	Internal	Transmit & Receive	EUT all 3 axis's
Note: Testing was performed for all 3 orthogonal axis's.			

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44

7.4 Test Specifications

Testing requirements

Table 16: Test Specifications

Emissions and Immunity		
Standard	Requirement	
CFR 47 Part 15.225: 2015	All	
RSS 210 Iss. 8 2010	All	

Report Number: 31563301.001 EUT: RFID Reader Model: TR-001-44