Discrete Mathematics Logic

Contents

1	Propositional Logic
2	Applications of Propositional Logic
3	Propositional Equivalences
4	Predicates and Quantifiers
5	Nested Quantifiers
6	Rules of Inference

Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement with another statement with *the same truth value*.

Because of this, methods that produce propositions with the same truth value as a given compound proposition are used extensively in the construction of *mathematical arguments*.

Note that we will use the term "compound proposition" to refer to an expression formed from propositional variables using logical operators, such as $p \land q$.

Propositional Equivalences

DEFINITION 1

A compound proposition that is *always true*, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*.

A compound proposition that is *always false* is called a *contradiction*.

Example 1

Consider the truth tables of $p \lor \neg p$ and $p \land \neg p$.

TABLE 1 Examples of a Tautology and a Contradiction.					
p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$		
T	F	Т	F		
F	T	Т	F		

DEFINITION 2

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

The symbol \Leftrightarrow is sometimes used instead of \equiv to denote logical equivalence.

Example 2

One way to determine whether two compound propositions are equivalent is to use a truth table.

Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

Example 3

Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	

$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

Constructing New Logical Equivalences

A proposition in a compound proposition *can be replaced* by a compound proposition that is logically equivalent to it without changing the truth value of the original compound proposition.

Example 4

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

$$\neg(p \to q) \equiv \neg(\neg p \lor q)$$
$$\equiv \neg(\neg p) \land \neg q$$
$$\equiv p \land \neg q$$

Example 5

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

Example 6

Show that $(p \land q) \rightarrow (p \lor q)$ are a tautology.