While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Techniques like Code refactoring can enhance readability. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Normally the first step in debugging is to attempt to reproduce the problem. Normally the first step in debugging is to attempt to reproduce the problem. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. It is very difficult to determine what are the most popular modern programming languages. It is usually easier to code in "high-level" languages than in "low-level" ones. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Following a consistent programming style often helps readability. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages.