Saddle point problems in liquid crystal modelling

Alison Ramage
Mathematics and Statistics
University of Strathclyde
Glasgow, Scotland

Eugene C. Gartland, Jr.
Mathematics
Kent State University
Ohio, USA

Liquid Crystals

occur between solid crystal and isotropic liquid states

Liquid Crystals

occur between solid crystal and isotropic liquid states

- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions, . . .

Liquid Crystal Displays

twisted nematic device

Static and Dynamic Continuum Theory of Liquid Crystals, lain W. Stewart (2004)

Modelling: Director-based Models

- director: average direction of molecular alignment unit vector $\mathbf{n} = (\cos\theta\cos\psi, \cos\theta\sin\psi, \sin\theta)$
- order parameter: measure of orientational order

$$S = \frac{1}{2} < 3\cos^2\theta_m - 1 >$$

minimise the free energy density

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \psi, \nabla \theta, \nabla \psi) + \int_{\mathcal{S}} F_{surface}(\theta, \psi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

minimise the free energy density

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \psi, \nabla \theta, \nabla \psi) + \int_{\mathcal{S}} F_{surface}(\theta, \psi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

 if fixed boundary conditions are applied, surface energy term can be ignored

minimise the free energy density

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \psi, \nabla \theta, \nabla \psi) + \int_{\mathcal{S}} F_{surface}(\theta, \psi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

- if fixed boundary conditions are applied, surface energy term can be ignored
- solutions with least energy are physically relevant

minimise the free energy density

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \psi, \nabla \theta, \nabla \psi) + \int_{\mathcal{S}} F_{surface}(\theta, \psi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

- if fixed boundary conditions are applied, surface energy term can be ignored
- solutions with least energy are physically relevant
- use calculus of variations: Euler-Lagrange equations

Elastic Energy

Frank-Oseen elastic energy

$$F_{elastic} = \frac{1}{2}K_1(\nabla \cdot \mathbf{n})^2 + \frac{1}{2}K_2(\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + \frac{1}{2}K_3(\mathbf{n} \times \nabla \times \mathbf{n})^2 + \frac{1}{2}(K_2 + K_4)\nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}]$$

Frank elastic constants

$$K_1$$
 splay K_2 twist K_3 bend $K_2 + K_4$ saddle-splay

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla (\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = ||\nabla \mathbf{n}||^2$$

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla (\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = \|\nabla \mathbf{n}\|^2$$

• elastic energy $F_{elastic} = \frac{1}{2}K\|\nabla\mathbf{n}\|^2$

Electrostatic Energy

- ullet applied electric field ullet of magnitude ullet
- electrostatic energy

$$F_{electrostatic} = -\frac{1}{2}\epsilon_0 \epsilon_{\perp} \mathbf{E}^2 - \frac{1}{2}\epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2$$

- dielectric anisotropy $\epsilon_a = \epsilon_{\parallel} \epsilon_{\perp}$
- permittivity of free space ϵ_0

Model Problem: Twisted Nematic Device

• two parallel plates distance d apart

strong anchoring parallel to plate surfaces (n fixed)

• rotate one plate through $\pi/2$ radians

• electric field $\mathbf{E} = (0, 0, E(z))$, voltage V

Equilibrium Equations 1

• equilibrium equations on $z \in [0, d]$

$$F = \frac{1}{2} \int_0^d \left\{ K \|\nabla \mathbf{n}\|^2 - \epsilon_0 \epsilon_\perp E^2 - \epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2 \right\} dz$$

- director $\mathbf{n} = (u, v, w)$, $|\mathbf{n}| = 1$
- constraint applied using Lagrange multiplier λ
- electric potential ϕ : $E = \frac{d\phi}{dz}$
- unknowns u, v, w, ϕ, λ

Alternative Model: Q-tensor Theory

tensor order parameter

$$Q = \sqrt{\frac{3}{2}}S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I\right)$$

symmetric tensor

$$Q = \begin{bmatrix} q_1 & q_2 & q_3 \\ q_2 & q_4 & q_5 \\ q_3 & q_5 & -q_1 - q_4 \end{bmatrix}$$

$$tr(Q) = 0,$$
 $tr(Q^2) = S^2$

• five unknowns q_1 , q_2 , q_3 , q_4 , q_5

Equilibrium Equations 2

• nondimensionalised equilibrium equations on $z \in [0, 1]$

$$F = \frac{1}{2} \int_0^1 \left[(u_z^2 + v_z^2 + w_z^2) - \alpha^2 \pi^2 (\beta + w^2) \phi_z^2 - \lambda (u^2 + v^2 + w^2 - 1) \right] dz$$

dimensionless parameters

$$\alpha^2 = \frac{\epsilon_0 \epsilon_a V^2}{K \pi^2}, \qquad \beta = \frac{\epsilon_\perp}{\epsilon_a}$$

boundary conditions:

at
$$z = 0$$
: $\mathbf{n} = (1, 0, 0)$, at $z = 1$: $\mathbf{n} = (0, 1, 0)$

Off State

$$\theta(z) \equiv 0, \qquad \psi(z) = \frac{\pi}{2}z, \qquad \phi(z) = z$$

On State

Critical Voltage

switching occurs at

$$V_c = \frac{\pi}{2} \sqrt{\frac{3K}{\epsilon_0 \epsilon_a}}$$

Discrete Free Energy

- grid of N+1 points z_k a distance Δz apart
- approximate integral by mid-point rule

$$F \simeq \frac{\Delta z}{2} \sum_{k=0}^{N-1} \left\{ \left[\frac{u_{k+1} - u_k}{\Delta z} \right]^2 + \left[\frac{v_{k+1} - v_k}{\Delta z} \right]^2 + \left[\frac{w_{k+1} - w_k}{\Delta z} \right]^2 - \alpha^2 \pi^2 \left(\beta + \left[\frac{w_k^2 + w_{k+1}^2}{2} \right] \right) \left[\frac{\phi_{k+1} - \phi_k}{\Delta z} \right]^2 - \lambda_k \left[\frac{u_k^2 + u_{k+1}^2}{2} + \frac{v_k^2 + v_{k+1}^2}{2} + \frac{w_k^2 + w_{k+1}^2}{2} - 1 \right] \right\}$$

set

$$\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$$

equal to zero

$$\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$$

equal to zero

$$\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$$

$$\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$$
 for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$

$$N+1$$
 gridpoints $\Rightarrow n=N-1$ unknowns

- set $\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$ equal to zero
- solve $\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$ N+1 gridpoints $\Rightarrow n = N-1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{F}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{F}(\mathbf{x}_j)$$

- set $\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$ equal to zero
- solve $\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$ N+1 gridpoints $\Rightarrow n = N-1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{F}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{F}(\mathbf{x}_j)$$

• $5n \times 5n$ coefficient matrix is Hessian $\nabla^2 \mathbf{F}(\mathbf{x}_i)$

$$abla^2 \mathbf{F} = \left[egin{array}{cccc}
abla_{\mathbf{n}\mathbf{n}}^2 \mathbf{F} &
abla_{\mathbf{n}\phi}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \\
abla_{\mathbf{n}\mathbf{n}}^2 \mathbf{F} &
abla_{\mathbf{n}\phi}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \\
abla_{\mathbf{n}\mathbf{n}}^2 \mathbf{F} &
abla_{\mathbf{n}\phi}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \\
abla_{\mathbf{n}\lambda}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \end{array}
ight]$$

• matrix notation: $\nabla^2_{nn} \mathbf{F} = A$

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^{2} \mathbf{F} & 0 & 0 \\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^{2} \mathbf{F} & 0 \\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^{2} \mathbf{F} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

• A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks

• matrix notation: $\nabla^2_{nn} \mathbf{F} = A$

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^{2} \mathbf{F} & 0 & 0 \\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^{2} \mathbf{F} & 0 \\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^{2} \mathbf{F} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

- A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks
- $A_{uu}=A_{vv}=rac{1}{\Delta z} exttt{tri}(-1,2-\Delta z^2 \lambda_j,-1)$
- $A_{ww} = \frac{1}{\Delta z} \text{tri}(-1, 2 \Delta z^2 \lambda_j \gamma_j, -1)$

$$\gamma_j = \frac{\alpha^2 \pi^2}{2} [(\phi_{j+1} - \phi_j)^2 + (\phi_j - \phi_{j-1})^2]$$

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j=1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j=1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis
- $\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \Delta z(\pi^2 \lambda_1) > 0$ A_{uu} and A_{vv} are initially positive definite
- $\sigma_{\min}(A_{ww}) \simeq \Delta z (\pi^2 (1-\alpha^2) \lambda_1)$ A_{ww} is initially positive definite iff $V < \frac{2}{\sqrt{3}} V_c$

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j=1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis
- $\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \Delta z(\pi^2 \lambda_1) > 0$ A_{uu} and A_{vv} are initially positive definite
- $\sigma_{\min}(A_{ww}) \simeq \Delta z (\pi^2 (1 \alpha^2) \lambda_1)$ $A_{ww} \text{ is initially positive definite iff } V < \frac{2}{\sqrt{3}} V_c$
- at subsequent Newton iterations, A_{uu} , A_{vv} , A_{ww} may all be indefinite
- ullet number of negative eigenvalues increases with V

• matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{F} = B$

• the $3n \times n$ matrix B has structure

$$B = \Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad egin{array}{l} B_u = \operatorname{diag}(\mathbf{u}) \\ B_v = \operatorname{diag}(\mathbf{v}) \\ B_w = \operatorname{diag}(\mathbf{w}) \end{array}$$

• matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{F} = B$

• the $3n \times n$ matrix B has structure

$$B = \Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad \begin{aligned} B_u = \operatorname{diag}(\mathbf{u}) \\ B_v = \operatorname{diag}(\mathbf{v}) \\ B_w = \operatorname{diag}(\mathbf{w}) \end{aligned}$$

 \bullet $B^TB = \Delta z^2 I_n$

• $\operatorname{rank}(B) = \operatorname{rank}(B^T) = \operatorname{rank}(BB^T) = \operatorname{rank}(B^TB) = n$

- matrix notation: $\nabla^2_{\phi\phi} \mathbf{F} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

• matrix notation: $\nabla^2_{\phi\phi} \mathbf{F} = -C$

$$\nabla_{\phi\phi}^2 \mathbf{F} = -C$$

• the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \mathrm{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_{j-1}^2 + w_j^2)) > 0$$

$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_j^2 + w_{j+1}^2)) > 0$$

• matrix notation: $\nabla^2_{\phi\phi} \mathbf{F} = -C$

$$\nabla_{\phi\phi}^2 \mathbf{F} = -C$$

• the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C=rac{1}{\Delta z} {
m tri} (-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_{j-1}^2 + w_j^2)) > 0$$

$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_j^2 + w_{j+1}^2)) > 0$$

diagonally dominant with positive real diagonal entries

C is positive definite

Hessian Components 4

matrix notation:

$$\nabla_{\mathbf{n}\phi}^2 \mathbf{F} = D$$

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0 \\ 0 \\ D_w \end{bmatrix}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_w = \text{diag}(\mathbf{w}) \text{tri}(\phi_j - \phi_{j-1}, \phi_{j-1} - 2\phi_j + \phi_{j+1}, \phi_j - \phi_{j+1})$$

Hessian Components 4

• matrix notation: $\nabla^2_{\mathbf{n}\phi}\mathbf{F} = D$

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0 \\ 0 \\ D_w \end{bmatrix}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_{w} = \text{diag}(\mathbf{w}) \text{tri}(\phi_{j} - \phi_{j-1}, \phi_{j-1} - 2\phi_{j} + \phi_{j+1}, \phi_{j} - \phi_{j+1})$$

- D_w has complex eigenvalues in conjugate pairs and one zero eigenvalue (N even)
- $\operatorname{rank}(D) = n 1$

Full Hessian Structure

$$\nabla^{2}\mathbf{F} = \begin{bmatrix} \nabla_{\mathbf{n}\mathbf{n}}^{2}\mathbf{F} & \nabla_{\mathbf{n}\phi}^{2}\mathbf{F} & \nabla_{\mathbf{n}\lambda}^{2}\mathbf{F} \\ \nabla_{\phi\mathbf{n}}^{2}\mathbf{F} & \nabla_{\phi\phi}^{2}\mathbf{F} & \nabla_{\phi\lambda}^{2}\mathbf{F} \\ \nabla_{\lambda\mathbf{n}}^{2}\mathbf{F} & \nabla_{\lambda\phi}^{2}\mathbf{F} & \nabla_{\lambda\lambda}^{2}\mathbf{F} \end{bmatrix}$$

$$\nabla^2 \mathbf{F} = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

saddle-point problem

Four Saddle-Point Problems

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$

$$H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix} \qquad H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

$$H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ \hline B^T & 0 & 0 \end{bmatrix}$$

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \phi]$

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \qquad H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

double saddle-point structure

Iterative Solution

- outer iteration: Newton's method tol=1e-4
- inner iteration: MINRES tol=1e-4
- check accuracy by calculating energy of final solution

Matrix Conditioning

- eigenvalues of H lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(H)$	$\lambda_s(H)$	$\lambda_{s+1}(H)$	$\lambda_{\max}(H)$
8	1.64e+6	-6.68e+2	-5.40e-4	1.88e-1	3.07e+1
16	2.58e+7	-1.44e+3	-6.26e-5	2.19e-1	6.33e+1
32	4.09e+8	-2.98e+3	-7.68e-6	1.28e-1	1.28e+2
64	6.51e+9	-6.07e+3	-9.56e-7	6.60e-2	2.56e+2
128	1.04e+11	-1.23e+4	-1.20e-7	3.33e-2	5.12e+2
256	1.66e+12	-2.46e+4	-1.50e-8	1.67e-2	1.03e+3
	$O(N^4)$	O(N)	$O(N^{-3})$	$O(N^{-1})$	O(N)

Diagonal Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$\mathcal{D} = \left[egin{array}{cccc} D_A & 0 & 0 & 0 \ 0 & \Delta z \, I & 0 \ 0 & 0 & D_C \end{array}
ight] \qquad egin{array}{cccc} D_A &= \operatorname{diag}(A) \ D_C &= \operatorname{diag}(C) \end{array}$$

Diagonal Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$\mathcal{D} = \left[egin{array}{cccc} D_A & 0 & 0 & 0 \ 0 & \Delta z \, I & 0 \ 0 & 0 & D_C \end{array}
ight] \qquad egin{array}{cccc} D_A &= \operatorname{diag}(A) \ D_C &= \operatorname{diag}(C) \end{array}$$

• estimated condition of $\mathcal{D}^{-1}H$ is $O(N^2)$

$$\lambda_{\min} = -2$$
, $\lambda_s = O(N^{-2})$, $\lambda_{s+1} = O(N^{-2})$, $\lambda_{\max} = 2$

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

Projected Preconditioned Conjugate Gradients
 Dollar et al. (2006)

$$C_1 = egin{bmatrix} D_A & 0 & D \ 0 & \Delta z I & 0 \ D^T & 0 & -C \end{bmatrix}, \qquad C_2 = egin{bmatrix} A & 0 & D \ 0 & \Delta z I & 0 \ D^T & 0 & -C \end{bmatrix}$$

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

Projected Preconditioned Conjugate Gradients
 Dollar et al. (2006)

$$C_1 = \begin{bmatrix} D_A & 0 & D \\ 0 & \Delta z I & 0 \\ D^T & 0 & -C \end{bmatrix}, \qquad C_2 = \begin{bmatrix} A & 0 & D \\ 0 & \Delta z I & 0 \\ D^T & 0 & -C \end{bmatrix}$$

• estimated condition of $C_1^{-1}H$ is $O(N^2)$

$$\lambda_{\min} = O(N^{-1}), \ \lambda_s = O(N^{-2}), \ \lambda_{s+1} = O(N^{-2}), \ \lambda_{\max} = 2$$

• estimated condition of $C_2^{-1}H$ is $O(N^2)$

$$\lambda_{\min} = -0.1, \ \lambda_s = O(N^{-2}), \ \lambda_{s+1} = 1, \ \lambda_{\max} = 1.1$$

Iteration Counts

• iteration counts at first Newton step

N	8	16	32	64	128	256
\mathcal{D}	15	40	117	382	1293	5126
C_1	13	25	50	98	195	387
C_2	7	9	8	9	7	8

Iteration Counts

iteration counts at first Newton step

N	8	16	32	64	128	256
\mathcal{D}	15	40	117	382	1293	5126
C_1	13	25	50	98	195	387
C_2	7	9	8	9	7	8

iteration counts at last Newton step

N	8	16	32	64	128	256
\mathcal{D}	37	134	414	1617	7466	34755
C_1	22	55	226	635	2259	7166
C_2	6	14	23	43	65	114

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \mathbf{l} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -\nabla \mathbf{n} \\ -\nabla \mathbf{l} \\ -\nabla \mathbf{p} \end{bmatrix}$$

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \mathbf{l} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -\nabla \mathbf{n} \\ -\nabla \mathbf{l} \\ -\nabla \mathbf{p} \end{bmatrix}$$

 Idea: use information about nullspace of B to eliminate constraint blocks

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \mathbf{l} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -\nabla \mathbf{n} \\ -\nabla \mathbf{l} \\ -\nabla \mathbf{p} \end{bmatrix}$$

- Idea: use information about nullspace of ${\cal B}$ to eliminate constraint blocks
- use $Z \in \mathbb{R}^{3n \times 2n}$ whose columns form a basis for the nullspace of B^T

$$B^T Z = Z^T B = 0$$

• $\operatorname{rank}(Z) = 2n$

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \mathbf{l} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -\nabla \mathbf{n} \\ -\nabla \mathbf{l} \\ -\nabla \mathbf{p} \end{bmatrix}$$

- Idea: use information about nullspace of B to eliminate constraint blocks
- use $Z \in \mathbb{R}^{3n \times 2n}$ whose columns form a basis for the nullspace of B^T

$$B^T Z = Z^T B = 0$$

- $\operatorname{rank}(Z) = 2n$
- system size will reduce from $5n \times 5n$ to $3n \times 3n$

Basis for Nullspace of B^T

permute entries of B:

$$B = \Delta z \begin{bmatrix} \mathbf{n}_1 & & & \\ & \mathbf{n}_2 & & \\ & & \ddots & \\ & & & \mathbf{n}_n \end{bmatrix}, \quad \mathbf{n}_i = \begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix}$$

Basis for Nullspace of B^T

permute entries of B:

$$B = \Delta z \begin{bmatrix} \mathbf{n}_1 & & & \\ & \mathbf{n}_2 & & \\ & & \ddots & \\ & & \mathbf{n}_n \end{bmatrix}, \quad \mathbf{n}_i = \begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix}$$

eigenvectors of orthogonal projection

$$I - \mathbf{n}_{i} \otimes \mathbf{n}_{i} = \begin{bmatrix} 1 - u_{i}^{2} & -v_{i}u_{i} & -w_{i}u_{i} \\ -u_{i}v_{i} & 1 - v_{i}^{2} & -w_{i}v_{i} \\ -u_{i}w_{i} & -v_{i}w_{i} & 1 - w_{i}^{2} \end{bmatrix}$$

will be orthogonal to n_i

Nullspace of B^T cont.

eigenvectors of orthogonal projection:

$$\mathbf{l}_{i} = \begin{bmatrix} -\frac{v_{i}}{u_{i}} \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{m}_{i} = \begin{bmatrix} -\frac{w_{i}}{u_{i}} \\ 1 \\ 0 \end{bmatrix} \quad (u_{i} \neq 0)$$

$$\mathbf{l}_{i} = \begin{bmatrix} 1\\ -\frac{u_{i}}{v_{i}}\\ 0 \end{bmatrix}, \quad \mathbf{m}_{i} = \begin{bmatrix} 1\\ -\frac{w_{i}}{v_{i}}\\ 0 \end{bmatrix} \quad (v_{i} \neq 0)$$

$$\mathbf{l}_{i} = \begin{bmatrix} 1\\0\\-\frac{u_{i}}{w_{i}} \end{bmatrix}, \quad \mathbf{m}_{i} = \begin{bmatrix} 1\\0\\-\frac{v_{i}}{w_{i}} \end{bmatrix} \quad (w_{i} \neq 0)$$

• at least one of u_i, v_i, w_i nonzero as $|\mathbf{n}_i| = 1$

Nullspace of B^T cont.

Nullspace of B^T cont.

$$Z = \begin{bmatrix} \mathbf{l}_1 & \mathbf{m}_1 & & & & \\ & \mathbf{l}_2 & \mathbf{m}_2 & & & \\ & & & \mathbf{l}_n & \mathbf{m}_n \end{bmatrix}$$

• consider $B^T Z \mathbf{p}$ where $\mathbf{p} = [p_1, q_1, p_2, q_2, \dots, p_n, q_n]^T$:

$$B^{T}Z\mathbf{p} = \begin{bmatrix} \mathbf{n}_{1}^{T} & & & \\ & \mathbf{n}_{2}^{T} & & \\ & & \ddots & \\ & & & \mathbf{n}_{n}^{T} \end{bmatrix} \begin{bmatrix} p_{1}\mathbf{l}_{1} + q_{1}\mathbf{m}_{1} \\ p_{2}\mathbf{l}_{2} + q_{2}\mathbf{m}_{2} \\ \vdots \\ p_{n}\mathbf{l}_{n} + q_{n}\mathbf{m}_{n} \end{bmatrix} = 0$$

• columns of Z form a basis for nullspace of B^T

Nullspace Method Revisited

$$A\delta\mathbf{n} + B\delta\mathbf{l} + D\delta\mathbf{p} = -\nabla\mathbf{n}$$

$$B^{T}\delta\mathbf{n} = -\nabla\mathbf{l}$$

$$D^{T}\delta\mathbf{n} - C\delta\mathbf{p} = -\nabla\mathbf{p}$$
(1)
(2)

Nullspace Method Revisited

$$A\delta\mathbf{n} + B\delta\mathbf{l} + D\delta\mathbf{p} = -\nabla\mathbf{n} \tag{1}$$

$$B^T \delta \mathbf{n} = -\nabla \mathbf{l} \tag{2}$$

$$D^T \delta \mathbf{n} - C \delta \mathbf{p} = -\nabla \mathbf{p} \tag{3}$$

write solution of (2) as

$$\delta \mathbf{n} = \widehat{\delta \mathbf{n}} + Z\mathbf{z}$$

- particular solution satisfies $B^T \widehat{\delta \mathbf{n}} = -\nabla \mathbf{l}$
- $Z\mathbf{z} \in \mathbb{R}^{2n}$ lies in nullspace of B^T

Nullspace Method Revisited

$$A\delta\mathbf{n} + B\delta\mathbf{l} + D\delta\mathbf{p} = -\nabla\mathbf{n} \tag{1}$$

$$B^T \delta \mathbf{n} = -\nabla \mathbf{l} \tag{2}$$

$$D^T \delta \mathbf{n} - C \delta \mathbf{p} = -\nabla \mathbf{p} \tag{3}$$

write solution of (2) as

$$\delta \mathbf{n} = \widehat{\delta \mathbf{n}} + Z\mathbf{z}$$

- particular solution satisfies $B^T \widehat{\delta \mathbf{n}} = -\nabla \mathbf{l}$
- $Z\mathbf{z} \in \mathbb{R}^{2n}$ lies in nullspace of B^T
- find $\widehat{\delta \mathbf{n}}$ via $\widehat{\delta \mathbf{n}} = -B(B^TB)^{-1}\nabla \mathbf{l}$
- here $B^TB = \Delta z^2 I_n$ so solve is cheap

Nullspace Method cont.

reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla \mathbf{n} + A \widehat{\delta \mathbf{n}}) \\ -\nabla \mathbf{p} - D^T \widehat{\delta \mathbf{n}}. \end{bmatrix}$$

Nullspace Method cont.

reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla \mathbf{n} + A \widehat{\delta \mathbf{n}}) \\ -\nabla \mathbf{p} - D^T \widehat{\delta \mathbf{n}}. \end{bmatrix}$$

recover full solution from

$$\delta \mathbf{n} = Z\mathbf{z} + \widehat{\delta \mathbf{n}}$$

$$\delta \mathbf{l} = (B^T B)^{-1} B^T (-\nabla \mathbf{n} - A\delta \mathbf{n} - D\delta \mathbf{p})$$

Nullspace Method cont.

reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{p} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla \mathbf{n} + A \widehat{\delta \mathbf{n}}) \\ -\nabla \mathbf{p} - D^T \widehat{\delta \mathbf{n}}. \end{bmatrix}$$

recover full solution from

$$\delta \mathbf{n} = Z\mathbf{z} + \widehat{\delta \mathbf{n}}$$

$$\delta \mathbf{l} = (B^T B)^{-1} B^T (-\nabla \mathbf{n} - A\delta \mathbf{n} - D\delta \mathbf{p})$$

• here $B^TB = \Delta z^2 I_n$ so solve is cheap

Condition of Reduced System

- eigenvalues of H lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(H)$	$\lambda_s(H)$	$\lambda_{s+1}(H)$	$\lambda_{\max}(H)$
8	1.28e+3	-7.44e+2	-2.13e+1	1.71e+0	3.39e+3
16	1.51e+4	-1.51e+3	-9.77e+0	8.14e-1	1.89e+4
32	2.13e+5	-3.06e+3	-4.77e+0	4.04e-1	1.40e+5
64	3.29e+6	-6.20e+3	-2.37e+0	2.02e-1	1.10e+6
128	4.97e+7	-1.24e+4	-1.18e+0	1.01e-1	8.78e+6
256	7.84e+8	-2.50e+4	-5.91e-1	5.05e-2	7.02e+7
	$O(N^4)$	O(N)	$O(N^{-1})$	$O(N^{-1})$	$O(N^3)$

Iteration Counts for Reduced System

iteration counts at first Newton step

N	8	16	32	64	128	256
none	26	83	339	1695	10758	79803
\mathcal{D}	20	61	192	647	2408	9746

iteration counts at last Newton step

N	8	16	32	64	128	256
none	28	94	448	2546	19036	163406
\mathcal{D}	21	71	241	967	3772	12268

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$:

$$\mathcal{A} = \left[\begin{array}{cc} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{array} \right]$$

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$:

$$\mathcal{A} = \left[\begin{array}{cc} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{array} \right]$$

• block preconditioner: $G = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix}$

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$:

$$\mathcal{A} = \left[\begin{array}{cc} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{array} \right]$$

- block preconditioner: $\mathcal{G} = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix}$
- preconditioned matrix:

$$\tilde{\mathcal{A}} = \mathcal{G}^{-1/2} \mathcal{A} \mathcal{G}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

$$M = C^{-1/2} \bar{D} \bar{A}^{-1/2}$$

Preconditioned Spectrum

$$\tilde{\mathcal{A}} = \mathcal{G}^{-1/2} \mathcal{A} \mathcal{G}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

- $M = C^{-1/2}Z^TD(Z^TAZ)^{-1/2}$
- rank(M)=n-1
- non-zero singular values σ_k

Preconditioned Spectrum

$$\tilde{\mathcal{A}} = \mathcal{G}^{-1/2} \mathcal{A} \mathcal{G}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

- $M = C^{-1/2}Z^TD(Z^TAZ)^{-1/2}$
- rank(M)=n-1
- non-zero singular values σ_k
- 3n eigenvalues of $\tilde{\mathcal{A}}$ are
 - (i) 1 with multiplicity n+1 (ii) -1 with multiplicity 1

(iii)
$$\pm \sqrt{1+\sigma_k^2}$$
 for $k=1,\ldots,n-1$

Sample Eigenvalue Plots

Iteration Counts

N	8	16	32	64	128	256
first Newton step	5	5	5	5	5	5
last Newton step	5	5	5	5	5	5

independent of problem size and Newton iteration

Iteration Counts

N	8	16	32	64	128	256
first Newton step	5	5	5	5	5	5
last Newton step	5	5	5	5	5	5

independent of problem size and Newton iteration

Computing Time

- elapsed time (tic/toc)
- A: full direct, B: reduced direct, C: reduced block

Computing Time

- elapsed time (tic/toc)
- A: full direct, B: reduced direct, C: reduced block

N	Α	В	С
8	7.54e-02	7.17e-02	2.85e-03
16	7.67e-03	7.37e-03	2.60e-03
32	1.11e-02	1.06e-02	3.51e-03
64	1.67e-02	1.56e-02	4.95e-03
128	3.55e-02	3.30e-02	8.62e-03
256	1.18e-01	1.26e-01	1.26e-02
512	4.89e-01	4.40e-01	2.26e-02
1024	1.40e+00	1.37e+00	4.64e-02
2048	5.25e+00	5.15e+00	1.12e-01
4096	2.11e+01	2.12e+01	1.78e-01

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.
- Can the convergence analysis be pushed further?
- Does the same method work well for more complicated liquid crystal cells?
- What about 2D models?
- Reduced block preconditioner is cheap to invert here: could approximate solves (e.g. multigrid) be used for other problems with less structure?

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.
- Can the convergence analysis be pushed further?
- Does the same method work well for more complicated liquid crystal cells?
- What about 2D models?
- Reduced block preconditioner is cheap to invert here: could approximate solves (e.g. multigrid) be used for other problems with less structure?

THANKS!