Equations Différentielles I

UE11, Mines Paris - PSL

Question 1 Les solutions maximales de $\dot{x} = f(x)$ avec $f: \mathbb{R}^n \to \mathbb{R}^n$ continue
\square existent pour toute condition initiale $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. \square sont définies sur \mathbb{R} . \square sont soit définies sur \mathbb{R} , soit divergent en temps fini.
Question 2 L'équation différentielle $\dot{x} = tx^2 + t$ de condition initiale $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}$
\square admet une unique solution. \square admet une unique solution maximale définie sur \mathbb{R} . \square admet une unique solution maximale définie sur un intervalle ouvert borné de \mathbb{R} .
Question 3 Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ continue. Dire que les solutions de $\dot{x} = f(x)$ varient continûment par rapport à leur condition initiale sur leur intervalle de définition est
\Box vrai. \Box vrai si f est continûment différentiable par rapport à $x.$ \Box aucun des deux.
Question 4 Le comportement d'un système chaotique est difficile à prédire parce que
 □ il admet plusieurs solutions pour certaines conditions initiales. □ ses solutions ne varient pas continûment par rapport à la condition initiale. □ il est impossible d'assurer une précision suffisante sur la condition initiale pour obtenir une erreur raisonnable au delà d'un certain temps caractéristique.
Question 5 On peut dire que le système $\dot{x} = -ax + bx^2$ avec $a, b > 0$,
 □ admet un point d'équilibre instable. □ admet un point d'équilibre localement asymptotiquement stable. □ admet un point d'équilibre globalement asymptotiquement stable.

Question 6

Le système

$$\dot{x}_1 = x_1 - x_2
\dot{x}_2 = 4x_1 - 3x_2$$

admet plusieurs points d'équilibre.
admet 0 comme point d'équilibre localement asymptotiquement stable.
admet 0 comme point d'équilibre globalement asymptotiquement stable
a ses solutions de la forme $x(t) = (e^{-t}c_1, e^{-t}c_2)$, avec c_1, c_2 constantes.