

鼎信总线(TC-BUS)协议

青岛鼎信通讯股份有限公司 QINGDAO TOPSCOMM COMMUNICATION CO., LTD. 2017-07

鼎信现场控制核心技术

■ 全自主知识产权总线通信技术

鼎信消防的全自主知识产权总线通信技术,可广泛应用于消防报警系统、集中抄表系统、智能家居系统、灯光控制系统、停车场系统、工业自动化系统等领域。其特点是发码采用电压门限跟随技术,回码采用定压恒流调制技术,从设计原理上解决了现场长线传输过程存在的各种干扰问题。相比其他总线通信技术,改四线制为二线制架构,同时支持大电流供电,无需单独敷设电源线,中断上报机制实现现场设备信息的快速上传。目前该技术已批量应用于消防报警系统中,该技术处于国内领先水平。

■ 全自主知识产权载波直流供电通信技术

鼎信消防的全自主知识产权载波直流供电通信技术,主要应用于定压广播系统、疏散指示系统等领域。其特点是采用二线制同时传输直流电源信号、载波通信信号及其它信号(例如音频信号)。该二线制多路信号复用技术简化了布线、降低了工程造价,并提高了系统的稳定性。载波通信采用优化的编码和扩频码规则,并采用自主研发的载波通讯芯片,实现载波信号的接收及发送,保证了通信的可靠性。本技术适用于从低压到高压供电控制系统,目前应用于120V广播系统中。该技术处于国内领先水平。

■ 全自主知识产权的集成化芯片技术

依托公司集成电路设计团队研发出系列通讯芯片,实现硬件高度集成化,提高设备的通讯可靠性。适用于总线通信的集成芯片包括 TC100B、TC001B、TC001C、TC200 及 TC201 芯片,芯片内部集成信号整形、抗干扰设计及完善的保护电路。目前系列芯片大量应用于消防报警产品中,同时其他公司在水表、智能疏散等领域也大量应用,满足市场及客户的需要。适用于载波通信的集成芯片包括 TC601、TC602 及 TC603 芯片,芯片内部集成扩频算法、码分多址算法、低功耗算法,提高了接收灵敏度、抑制了信道干扰及降低了功耗。目前系列芯片大量应用于消防广播系统、智能疏散与应急照明系统。

■ 总线设备低功耗设计技术

鼎信消防的低功耗技术,主要应用于现场控制系统。公司针对于现场设备需通过总线通信同时供电的需求,设计出了低功耗的总线通信芯片,同时结合公司通信协议,采用分时控制分时工作,使得现场设备在特定时间进行自身任务及与主站设备进行通信,实现了现场设备的低功耗。低功耗指示灯驱动电路、低功耗声音驱动电路及 PWM 继电器驱动专利技术使系统不但实现监视状态的低功耗,同时实现设备启动状态的低功耗。目前,该技术已普遍应用于公司火灾自动报警系统中。采用该技术设计的火灾自动报警系统现场设备,总线产品静态功耗低于 88uA,载波产品静态功耗低于 1mA,大大降低了系统功耗,为系统全两线制的实现奠定了基础。低功耗技术提高了设备间的通信距离,可采用更细的导线,降低了系统的综合成本,提高了系统的稳定性。该技术处于国内领先水平。

■ 社会智能化统一控制平台

鼎信消防自主研发的 TC-BUS 总线协议包含 PDC-B、PDC-C、PDC-W、MPI、MMS 多级架构,可灵活配置满足不同的组网需求。其中 PDC-B 协议实现现场设备的二总线通信,最大供电电流 1.8A,支持低功耗模式; PDC-C 协议实现现场设备的载波通信,最大供电电流 10A,支持低功耗模式; PDC-W 协议实现局部无线控制; MPI 协议实现短距离、快速通信; MMS 协议实现上位机与控制器间的通信。整个 TC-BUS 系统统一编址,每个设备分配全生命周期唯一 ID 号,可以实现多个不同系统的统一管理及控制,如智能楼宇、智慧社区等。

目 录

1 绪	论	1
	1.1 鼎信技术概述	1
	1.1.1 鼎信原创技术	1
	1.1.2 鼎信技术体系	1
	1.2 TC-BUS 概述	2
	1.2.1 TC-BUS 的产生	2
	1.2.2 TC-BUS 的组成	2
	1.2.3 TC-BUS 的应用领域	4
	1.2.4 TC-BUS 的相关术语	4
2 TC-	-BUS 通信模型	6
	2.1 概述	6
	2.2 物理层	6
	2.3 数据链路层	7
	2.3.1 报文传输方式	7
	2.3.2 帧格式	7
	2.3.3 帧分类	12
	2.3.4 介质访问控制	12
	2.4 应用层	12
	2.5 报文传输流程	13
3 PD	С-В	14
	3.1 PDC-B 概述	14
	3.1.1 特点	14
	3.1.2 范围	14
	3.2 PDC-B 物理层	14
	3.2.1 总线接口	14
	3.2.2 传输介质	15
	3.2.3 电气特性	15
	3.2.4 信号码元	15
	3.3 PDC-B 数据链路层	16
	3.3.1 PDC-B 报文传输格式	16
	3.3.2 介质访问控制	17
	3.3.3 主站发码时序	17
	3.3.4 单从站回码时序	20

	3.3.5 多从站回码时序	. 21
	3.4 PDC-B 应用层	. 22
	3.4.1 PDC-B 设备注册	. 22
	3.4.2 PDC-B 巡检上报	. 22
	3.5 PDC-B 主站接口芯片	. 22
	3.5.1 芯片特点	. 22
	3.5.2 引脚定义	. 23
	3.5.3 参考电路	. 25
	3.6 PDC-B 从站接口芯片	. 28
	3.6.1 芯片特点	. 28
	3.6.2 引脚定义	. 28
	3.6.3 参考电路	. 29
4 TC-	-BUS-MMS	. 32
	4.1 MMS 概述	. 32
	4.2 特点	. 32
附录.		. 33
	附录 A 关键字定义	33
	A.1 ID 定义	
	A.2 LA 定义	
	A.3 UC 定义	
	附录 B 报文传输流程	
	B.1 广播报文传输流程	
	B.2 组播报文传输流程	
	B.3 单播报文传输流程	
	B.4 单播、组播混合报文传输流程	. 37
	B.5 设备注册报文输流程	
	B.6 巡检上报报文传输流程	. 37
	B.7 巡检上报优先级定义	. 38
	B.8 网络报文传输流程	. 39
	附录 C 设备注册	. 40
	附录 D 巡检上报	
	D.1 PDC-B 巡检上报	
	附录 E PDC-B 节拍与从站休眠	. 43
	附录 F 常见问题集锦	. 45

1绪论

1.1 鼎信技术概述

1.1.1 鼎信原创技术

青岛鼎信是一个先有原创技术,并以原创技术为立足点迅速崛起的高科技型民营企业。目前,公司拥有自主知识产权 100 余项,以下是两种有代表性的原创技术。

(1) 鼎信载波通信技术

青岛鼎信的"三相过零窄带扩频电力线载波通信技术"(简称鼎信载波通信技术,TC-PLC)是基于 我国电能用户信息采集系统、采集终端对于载波通信技术的市场需求而量身定做的,是根据我国电力网 络的特点所研发的专用于我国电力线通信介质的载波通信技术。该技术主要应用于低压电力线载波通信 的集中抄表、路灯控制、石油矿山等远程控制系统。(专利号: 201520079353.5)

(2) 鼎信现场总线技术

青岛鼎信的"可供电二线制实时总线通讯方法"是针对现场控制网络,尤其是家居、楼宇等智能化控制网络而设计的一种新型串行总线通讯技术。该技术采用两线制安装,可满足长距离通讯和供电的双重要求,用于替代传统的四线制通讯方法;针对智能控制系统要求响应速度快的特点,设计了中断上报机制,保证了信息的实时处理;同时,使用具有自主知识产权的集成芯片完成电路设计,降低了功耗,提高了系统的抗感染性、稳定性和可靠性。此外,为使现场设备的安装和调试更便捷,节点采用无极性设计方案。(专利号: 200610152932.3)

1.1.2 鼎信技术体系

青岛鼎信从公司的初创期到现的快速发展时期,始终坚持技术创新是企业生存的立足点;同时明确 企业要想持续发展和壮大必须对技术创新进行提炼、整合,形成完备、科学的技术体系作为保障。

经过不断的修正和完善,公司探索出了一套由原创技术、行业技术和专业技术构成的"三位一体" 具有青岛鼎信特色的技术体系框架,如所示。

-1-

1.2 TC-BUS 概述

现场总线(Fieldbus)是 20 世纪 80 年代随着计算机、通信和控制等技术(简称 3C 技术)发展而出现的一门新兴技术,代表自动化领域发展的新阶段。随着现场总线技术的发展,各种控制功能、应用功能、网络功能、系统管理等内容的不断扩充,现场总线走出了原有的定位范围,不再只是通信标准和通信技术,而成为控制系统和网络系统。标准化是实现大规模生产的重要保证,是规范市场秩序、连接国内外市场的重要手段。至今在不同领域形成的现场总线已有百余种,主流的现场总线有:FF总线、CIP总线、PROFIBUS总线、P-Net总线、World FIP总线、INTERBUS总线、CC-Link总线、HART总线、CAN总线、Modbus总线、Lonworks总线、DeviceNet总线、M-BUS和485总线等。

1. 2. 1 TC-BUS 的产生

目前,国内外现场总线技术的发展趋势主要体现在两个方面:一是低速现场总线技术的继续完善和发展,二是高速现场总线技术的亟需发展。

传统的低速现场控制系统中大量使用 485 总线,但在使用过程中存在很多局限性,例如,总线只负责通信、但不能给节点设备供电;总线节点容量少且不支持长距离、任意分支通信;此外,总线有极性、安装调试不方便。近年来,随着信息技术的飞速发展,人们对高速设备的自动化控制需求越来越强烈。虽然以以太网(Ethernet)为代表的高速网络迅速发展并得以应用,但其通信设备复杂、昂贵、功耗大且系统响应速度慢的特点,不能满足自动化控制系统对低成本、低功耗和高实时性的要求。

青岛鼎信为了规范产品设计以更好地满足客户需求,以低压可供电二总线发明专利技术(专利号: 200610152932.3)和电力线载波通信技术(专利号: 201520079353.5)为基础,结合企业的技术优势及长期的现场经验,自主研发了一套现场总线规范-鼎信总线协议(Topscomm Bus, TC-BUS)。

TC-BUS 具有开放性、系统性、灵活性、实时性、可靠性和超低功耗等特点。

1. 2. 2 TC-BUS 的组成

TC-BUS 包括三个子集:

■ PDC 协议(Powered Distributed Control)

中文名:可供电分布式控制协议。该协议适用于传输距离长、节点设备多且需供电的分布式控制系统。根据信号的传输模式不同,PDC 又可分为三个子集:

- PDC-B 协议 (- Baseband)
 - 中文名:基带 PDC 协议。PDC-B 适用于节点设备功率较小的控制系统。
- PDC-C 协议(- Carrier)
 - 中文名:载波 PDC 协议。PDC-C 适用于节点设备功率较大的控制系统。
- PDC-W 协议(- Wireless)
 - 中文名:无线 PDC 协议。PDC-W 适用于现场布线困难的局域控制,可作为 PDC-B 和 PDC-C 的有效补充。
- MPI 协议(Multi Peer Interface)
 - 中文名:对等控制协议。该协议适用于高速、对等控制系统。
- MMS 协议(Monitor Message Specification)

中文名: 监控信息协议。该协议适用于上位机或其它监控设备与 TC-BUS 控制系统之间通信。

上述三个协议在应用方面各有侧重: PDC 协议为现场级的总线规范, MPI 协议为控制级的总线规范, 而 MMS 协议为管理级的总线规范; 三者的灵活组合,可快速、便捷地组建不同的控制系统。典型的 TC-BUS 两级总线系统如图 1-2 所示。

图 1-2 TC-BUS 典型结构

说明:

①PDC-B 总线系统

采用固定主-从传输方式;主站与总线通信接口为 TC100 芯片,从站与总线通信接口为 TC001 芯片;通信介质为双绞线,标准 PDC-B 总线系统双绞线截面积≥0.75mm²,总线最大工作电流 0.6A,大电流 PDC-B 总线系统双绞线截面积≥4.0mm²,总线最大工作电流 1.8A;该总线系统下行通信速率典型值 9.6Kbps,上行通信速率典型值 19.2Kbps,最长通信距离 2000m;一个 PDC-B 系统的主站最多可挂接 252 个从站。

②PDC-C 总线系统

采用固定主-从传输方式;标准 PDC-C 总线系统双绞线截面积≥0.75mm²;该总线系统通信速率典型值 10Kbps,最长通信距离 1200m。

③PDC-W 总线系统

采用固定主-从传输方式; 2.4G 信号。

④IMT (Internal Message Transfer) 总线系统

中文名:内部消息传输总线系统。该系统基于 MPI 协议,采用固定主-从传输方式;主站、从站与总线通信接口均为 TC200 芯片;通信介质为双绞线,截面积≥0.5mm²;该总线系统上行、下行通信速率典型值均为 750Kbps,最长通信距离 50m;一个 IMT 系统主站最多可挂接 100 个从站。

⑤TC-BUS 两级总线系统

TC-BUS 两级总线系统是由 PDC-B 总线系统和 IMT 总线系统构成;每个 PDC-B 总线系统的主站可 挂接 252 个节点设备,而每个 IMT 总线系统的主站可管理 100 个 PDC-B 总线系统;因此,TC-BUS 两级

总线系统最多可管理 25200 个节点设备。

⑥ANT(Area Network Transfer)总线系统

中文名: 局域网络传输总线系统。该系统基于 MPI 协议,采用令牌控制的对等传输方式;每个站点与总线通信接口均为 TC200 芯片;通信介质为双绞线,截面积≥0.75mm²;该总线系统下行通信速率典型值 9.6Kbps,上行通信速率典型值 19.2Kbps,最长通信距离 2000m,一个 ANT 系统最多可挂 100 个对等站点。

1.2.3 TC-BUS 的应用领域

TC-BUS 适用于社区能源计抄(水、热、气三表集抄)、消防报警、安防监控、智能家居、楼宇自动化、工业控制等多种自动化控制领域。

1. 2. 4 TC-BUS 的相关术语

(1) 总线

从广义说,总线(Bus)就是传输信号或信息的公共路径,是遵循同一技术规范的连接与操作方式。

- (2) 总线段
- 一组设备通过总线连在一起称为总线段(Bus Segment),或总线网络。
- (3) 主站

可主动在总线上发起信息传输的设备,称为主设备(Bus Master),或主站。

(4) 从站

不能在总线上主动发起通信,只能对主站请求进行响应的设备,称为从设备(Bus Slaver),或从站。

(5) 主-从网

在主-从网络(Master-slave Network)中,由一个主站控制着多个从站;主站发出命令,从站给出响应,配合主站完成对数据链路的控制。

(6) 对等网

对等网(Peer to Peer)中的站点既可以作为主站也可以作为从站。

(7) 主站令牌

主站令牌(Master Token)是对等网中一种特殊的机制,它在站点间传递主站控制权。对等网中的站点如果得到令牌,则表明其当前的身份是主站(临时),因此允许执行主站工作,即根据主从关系与其他从站(临时)通信。

(8) ID

设备识别号(Identification, ID)是在生产时为每个设备分配的终身唯一的编号,长度为 12 个字节,详见附录 A。

(9) LA

设备逻辑地址(Logical Address,LA)是不同子网中主站分配给从站的本网内识别编号,长度为 1个字节;同一子网内的设备 LA 唯一,详见附录 A。

(10) UC

用户编码(User Code, UC)是对设备安装位置以及设备类型的描述,长度可根据需求自定义;整个 TC-BUS 控制网络内的设备 UC 唯一,详见附录 A。

(11) CC

汉字编码(Chinese Code, CC)是对设备安装位置以及设备类型的详细文字描述,长度可根据需求自定义,默认32字节。

(12) PARA

关键参数(Parameter, PARA)是对设备的配置信息,长度可根据需求自定义,默认8字节。

(13) 设备注册

设备注册(Device Registration)又称设备登录,是组网或设备更新时,主站获取网内所有从站设备 ID、LA、UC、CC 和 PARA 等关键信息的过程,详见附录 C。

(14) 设备巡检

设备巡检(Device Polling)是主站检测临级从站设备是否在线的一种方式,详见附录 D。

(15) 中断上报

中断上报(Interrupt Reporting),是指从站将某些结果以事件的形式上报主站的过程,其采用"竞争"机制实现。竞争的原理是: 当有的从站发送数据 1 (隐性),有的从站发送数据 0 (显性)时,主站收到的是两者相"与"的结果,即 0 (显性)。仲裁期间,每个从站都会对发送的数据位与主站的反馈信息进行比较,如果一致,则这个从站可继续发送; 否则,该从站主动退出发送状态。所以,数值越小的优先权越高,详见附录 D。

(16) 功能寄存器

功能寄存器(Register),用于定义设备的功能、属性和操作,其与帧格式中数据标识(DI)的地址对应,与具体的存储介质无关;功能寄存器包括特殊寄存器、位寄存器、单字节寄存器和多字节寄存器四类。

2 TC-BUS 通信模型

2.1 概述

TC-BUS 规范的 PDC 协议、MPI 协议遵从 ISO/OSI 参考模型中的物理层、数据链路层和应用层规范,如图 2-1 所示。MMS 协议有两种情况:应用于串行链路上时遵从物理层、数据链路层和应用层规范;应用于 TCP/IP 等其他网络时只包含应用层,如图 2-2 所示。

	ISO/OSI模型	PDC协议	MPI协议
第7层	应用层	应用层	应用层
第6层	表示层		
第5层	会话层	空	空
第4层	传输层	工	工
第3层	网络层		
第2层	数据链路层	数据链路层	数据链路层
第1层	物理层	物理层	物理层

图 2-1 PDC-B 协议、MPI 协议通信模型

	ISO/OSI模型	MMS	协议
第7层	应用层	应用层	应用层
第6层	表示层		空
第5层	会话层	空	工
第4层	传输层	工	TCP
第3层	网络层		IP
第2层	数据链路层	数据链路层	IEEE 802
第1层	物理层	物理层	IEEE 802

图 2-2 MMS 协议通信模型

2.2 物理层

TC-BUS 规范 3 个子协议规定的物理层特性不尽相同,其中 PDC 和 MPI 的传输介质相同、接口芯片不同,详细内容将在在后续章节分别进行介绍。

2.3 数据链路层

2.3.1 报文传输方式

TC-BUS 支持以下两种报文传输方式。

(1) 字节传输

当按字节传输时先传低位后传高位, 其格式如图 2-3 所示, 我们称之为一个帧字符 (Frame Character, FC)。每个帧字符包括 1 位起始位 (0)、8 位信息位、1 位偶校验位 (E) 和 1~2 位停止位 (1); 其中, 发码设置帧字符 12 位, 收码设置帧字符 11 位。

图 2-3 12 位帧字符格式

当多个连续的字节传输时, 先传低地址字节, 后传高地址字节。例如, 要传输的数据为 B_{n-1} ... B_2 B_1B_0 ,其中 B_0 为低字节、 B_{n-1} 为高字节。其传输次序如图 2-4 所示。

(2) 位传输

在某些特殊应用场合(例如,设备注册和事件上报),报文不按帧字符传输,而是按位传输。

2.3.2 帧格式

TC-BUS 规范通用帧由 9 个不同的域组成,格式如图 2-5 所示。

域名称	帧起始符	帧长度	控制码	多级地址管理	地址	帧序号	数据标识	数据	帧校验
标识符	HEAD	LEN	CTR	MAM	ADDR	SER	DI	DATA	FCS

图2-5 通用帧格式

说明:

- ①帧长度、控制码和数据标识3个域支持扩展;
- ②一帧报文至少包含5个域:帧长度、控制码、帧序号、数据标识和帧校验。
- (1) 帧起始符域

帧起始符(HEAD)标志着一帧数据的开始,占1个字节。

(2) 帧长度域

帧长度(LEN)定义为从帧长度域到数据域所包含的字节总数,用无符号数表示。LEN 占字节数可变,默认用 1 个字节 LEN $_0$ 表示,最多用 2 个字节 LEN $_0$ 和 LEN $_1$ 来表示,如表 2-1 所示。

位	说明	功能				
LEN ₀ .b ₇	扩展帧长度标识	0: 无扩展帧长度 LEN ₁ ; 1: 有扩展帧长度 LEN ₁				
LEN ₀ .b ₆ -b ₀	基本帧长度位	若 LEN ₀ .b ₇ =0,LEN =LEN ₀ . b ₆ -b ₀ (4≤ LEN≤127)				
LEN ₁ .b ₇ -b ₀	扩展帧长度位	若 LEN ₀ .b ₇ =1, LEN= LEN ₁ .b ₇ -b ₀ +LEN ₀ . b ₆ -b ₀ (4≤ LEN≤(32K-1))				

表 2-1 帧长度 LEN 定义

说明:

- ①对于 PDC-B 协议, 帧长度 LEN 传输格式是主站发码以反码传输, 从站回码以原码传输;
- ②对于 MPI 和 MMS 协议, 帧长度传输格式是主站发码和从站回码均以原码传输。

(3) 控制码域

 $CTR_0.b_3$

 $CTR_0.b_2-b_0$

读、写控制标识

从站的寻址方式

控制码 (CTR) 用来描述帧的相关属性。CTR 占字节数可变,默认用单字节 CTR₀表示。通过 CTR₀. b_7 控制是否有扩展的控制码 CTR₁,以此类推至 CTR_n。CTR 的定义如表 2-2 和表 2-3 所示。

说明 功能 位 0: 有扩展控制码; 1: 无扩展控制码 CTR₀.b₇ 扩展控制码标识 帧传送方向标识 0: 应答帧; 1: 命令帧 $CTR_0.b_6$ 多级地址标识 0: 有多级地址; 1: 无多级地址 $CTR_0.b_5$ 单播通信时,目标级从站如 0: 先定时通信应答, 后通过事件上报进行命令应答; 何将执行结果上报主站标识 1: 定时命令应答 $CTR_0.b_4$ 从站应答状态标识 0: 异常应答; 1: 正常应答

表 2-2 控制码 CTR₀定义

表 2-3 扩展控	正明11号 し口	K ₁ 疋又
-----------	----------	-------------------

详见表 2-4。

0: 写模式; 1: 读模式

位	说明	功能
CTR ₁ .b ₇	扩展控制码标识	0: 有扩展控制码; 1: 无扩展控制码
CTR ₁ .b ₆	后续帧标识	0: 有后续数据帧; 1: 无后续数据帧
CTR ₁ .b ₅	主站地址标识	0: 有主站地址; 1: 无主站地址
CTR ₁ .b ₄ -b ₃	预留	默认值 1
CTR ₁ .b ₂ -b ₀	主站的寻址方式	详见表 2-4。

表 2-4 寻址方式定义

	编码		∃ → - .	2五元147	单位地址长度
b_2	b ₁	b_0	寻址方式	通配格式	(字节)
1	1	1	广播	无	无
1	1	0	LA	支持字节通配	1
1	0	1	ID	支持半字节、字节及以上通配	12
1	0	0	UC	类型支持字节通配,其他同上	n
0	1	1	预留	-	-
0	1	0	预留	-	-
0	0	1	预留	-	-
0	0	0	预留	-	-

说明:

- ①通信应答是从站对主站命令帧接收成功的应答;
- ②命令应答是目标级从站对主站命令帧执行结果的应答:
- ③TC-BUS 规范支持三种寻址方式:广播(Broadcast)、组播(Multicast)和单播(Unicast);
- ④ID 寻址、LA 寻址和 UC 寻址支持单播和组播,其中组播时采用通配格式(0xF或0xFF);
- ⑤UC 寻址时规定 2≤ n≤8;
- ⑥从站支持所有寻址方式,而主站只支持 LA、ID 和 UC 的单播寻址方式。
- (4) 多级地址管理域

多级地址管理(MAM)规定两级及以上总线的设备间信息传送时从站地址设置规则,占1个字节。

位 说明 功能 0: 传递,始终存在全部地址; 是否传递全部从站地址标识 MAM.b₇ 1: 不传递,下发层层剥离地址,上传层层增加地址 000: 八级; 001: 七级; 010: 六级; 011: 五级; 需要传递的总地址级数标识 $MAM.b_6-b_4$ 100: 四级; 101: 三级; 110: 二级; 111: 保留 中间级从站是否需要上传目 0: 中间级设备需要上传命令应答: $MAM.b_3$ 标级从站的命令应答标识 1: 中间级设备不需要上传命令应答 000: 八级; 001: 七级; 010: 六级; 011: 五级; $MAM.b_2-b_0$ 已传递的地址级数标识 100: 四级; 101: 三级; 110: 二级; 111: 一级

表 2-5 多级地址管理 MAM 定义

(5) 地址域

设备地址(ADDR)可包含主站地址(MA)和从站地址(SA),格式如图 2-6 所示。ADDR 可以是ID、LA、UC 三种类型。

MA	SA_0		SA_i			
图 2-6 MA 与 SA 的地址格式						

ID: 12 字节,格式如图 2-7 所示。

图 2-7 ID 地址格式

LA: 1字节,格式如图 2-8 所示。

LA₀

图 2-8 LA 地址格式

UC: n字节,格式如图 2-9 所示。

图 2-9 UC 地址格式

说明:

- ①广播寻址时,命令帧地址域为空;
- ②地址域包含主站地址 MA 和从站地址 SA 时, 先发送 MA 后发送 SA;
- ③地址域包含多级从站地址时, 先发送临级从站地址 SA₀。

(6) 帧序号域

帧序号(SER)由主站产生,占1个字节,要求1≤SER≤255。

说明:

- ①命令帧与对应应答帧的 SER 相同;
- ②主站发送命令帧后, 当在规定时间内没有收到从站应答, 那将重发该命令帧时, SER 不变;
- ③从站连续两次收到具有相同 SER 的命令帧,如果为广播命令则不处理第 2 次的命令帧;如果此命令需要应答,说明第 1 次的应答未被主站收到,这种情况下,从站只重发应答帧;
 - ④从站不能同时响应多个命令帧,即在开始响应一个新命令帧之前,必须将前一个先处理完毕。

(7) 数据标识域

数据标识(DI)是为实现对设备功能寄存器的操作而设计,DI可扩展。DI分为特殊寄存器操作、位寄存器操作、单字节寄存器操作、多字节寄存器操作和寄存器块操作四个子类,如表 2-6 和表 2-7 所示。

(8) 数据域

数据域(DATA)的内容与 DI 相关联, DATA 占字节数可变。

(9) 校验域

校验域 (FCS) 采用 CRC 校验方法,从帧起始符域到数据域均进行 CRC 校验,占 2 个字节。典型的生成多项式采用 CRC-16(0x8005),即 $X^{16}+X^{15}+X^2+1$ 。

	表 2-6 数据标识 DI ₀ 定义					
DI ₀ .b ₇ -b ₆	操作类型	格式	说明			
00	特殊寄存器操作	DI ₀ b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ 0 0 x x x x x x x +特殊寄存器地址 -操作类型	地址格式: DI ₀ .b ₅ -b ₀ 寻址范围: 0x00~0x3F 读、写操作 DATA 域: 详见《TC-BUS 产品设计规范》 特殊寄存器与其他寄存器采用独立编址			
01	位寄存器操作	DI ₀ b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ 0 1 d x x x x x x	地址格式: DI ₀ .b ₄ -b ₀ 寻址范围: 0x00~0x1F 读、写操作的数据位: DI ₀ .b ₅ 读、写操作的 DATA 域: DATA=空			
10	单字节寄存器操作	DI ₀ b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ 1 0 x x x x x x x 奇存器地址 操作类型	地址格式: DI ₀ .b ₅ -b ₀ 寻址范围: 0x00~0x3F 读操作 DATA 域 (回码): DATA=单字节数据 写操作 DATA 域 (发码): DATA=单字节数据 (低地址) + 单字节掩码 (高地址)			
11	DI扩展标识	DI ₀ b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ 1 1 x x x x x x x ↑	寄存器操作类型由 DI ₁ 控制,详见表 2-7			

表 2-6 数据标识 DI。定义

表 2-7 数据标识 DI₁ 定义

2.3.3 帧分类

TC-BUS 各子协议的帧格式按发起方不同分为两类:命令帧和应答帧。命令帧是主站向从站发出的命令和请求,而应答帧是从站对主站命令或请求的响应。

2. 3. 4 介质访问控制

在数据链路层,TC-BUS 使用多种介质访问控制方式来实现相关站点之间的通信。

PDC-B 采用固定主-从控制。MPI 采用基于主站令牌的对等控制,但其中的主站令牌不采用令牌环中按规定时间、固定顺序进行传递,而是采用谁需要、谁申请的方式。MMS 采用两种控制方式: 当使用串行接口时,采用固定主-从方式; 在其他网络上,包含了 MMS 协议的消息转换为在此网络上使用的帧或包结构进行对等传输。任何一个控制器既可以作为主站也可以作为从站,但在"消息级"上仍然采用主-从原则。如果一个控制器发送一消息,它是作为主设备,并期望从设备进行响应。同样,当控制器接收到一消息,它将作为从站建立应答帧格式并返回给发送的控制器。

TC-BUS 协议规定:主站发码,按字节(帧字符)进行,异步传输。从站回码分两种情况:当主从一对一通信时,从站按字节(帧字符)进行,异步传输;当多个从站同时应答时,为防止总线访问冲突,按位进行,并引入"竞争"的仲裁机制。

介质访问控制的具体时序参见后继章节。

2.4 应用层

应用层是直接面对用户的一层,其功能是为用户提供各种操作命令。TC-BUS 规范采用寄存器的形式

定义各种操作命令。按功能分为特殊寄存器、字节寄存器和位寄存器。详见《TC-BUS 寄存器定义表》。

- 特殊寄存器是指被确切定义的、统一或特殊的功能;
- 字节寄存器可按字节或多字节操作;
- 位寄存器可按位操作。

2.5 报文传输流程

TC-BUS 报文传输流程详见附录 B。

3 PDC-B

3.1 PDC-B 概述

3.1.1 特点

- 两线制、既通信又供电、无极性;
- 支持环形拓扑结构、总线型拓扑结构;
- 主-从式控制、半双工、一个主站最多可挂接 252 个从站;
- 主站发码电压调制 (DC: 10~36V), 收码定压 (DC: 5V) 电流环解调;
- 主站发码速率 9.6Kbps, 收码速率 19.2Kbps, 最大通信距离 2000m;
- 提供标准电流 0.6A 和大电流 1.8A, 并可根据需求进行定制;
- 主站端的接口芯片为 TC100 系列,从站端的接口芯片为 TC001 系列;
- 引入"中断上报"机制,实现信息实时上传;
- 支持从站低功耗模式。

3.1.2 范围

PDC-B 适用于传输距离长、设备节点多、且需供电的分布式控制网络。

3.2 PDC-B 物理层

PDC-B 通信协议的物理层主要定义总线接口、传输介质及电气特性等。

3.2.1 总线接口

PDC-B 总线采用集成芯片实现信息的调制、解调,其中主站端的接口芯片为 TC100 系列,从站端的接口芯片为 TC001 系列。总线连接如图 3-1 所示。

图 3-1 PDC-B 总线连接框图

3.2.2 传输介质

PDC-B 总线采用普通双绞线(RVS)作为传输介质,其规格要求如表 3-1 所示。

表 3-1 PDC-B 总线的双绞线规格

指 标	推荐值	单 位
导线截面积(标准 PDC- B)	≥0.75	mm^2
导线截面积(大电流 PDC-B)	≥4.0	mm^2

3.2.3 电气特性

PDC-B 总线的相关电气特性如表 3-2 所示。

表 3-2 PDC-B 总线电气特性

参	数	最小值	典型值	最大值	单 位	备 注
总线	下行	高电平: 10	高电平: 24	高电平: 36	**	p.g.
电压	上行	低电平: 0	低电平: 0 定压: 5	低电平: 0	V	DC
驱动	标准	-	-	0.6		
电流	大电流	-	-	1.8	A	
通信	下行	1	9.6	1	Kbps	
速率	上行	1	19.2	1	Kops	
通信	言距离	-	2000	-	m	
管理	节点数	-	-	252	个	
事件」	上报时间	-	100	-	ms	

说明:

- ①PDC-B 总线的实际通信距离与现场设备的耗电量及其分布位置有关;
- ②若要增加通信距离,可在总线上增加中继器。

3.2.4 信号码元

PDC-B 通信协议的物理层定义了 5 种码元,如表 3-3 所示。

表 3-3 PDC-B 码元定义

码元	码元意义	发送方	调制方式	接收方	解调方式	
TH	主站发送1信号	가 가	满幅高电压	从站	电压比较	
TL	主站发送0信号	主站	0V 低电压	外垍		
RH	从站发送1信号		0mA 电流		5V 定压	
RL	单从站发送0信号	从站	20mA 恒流	主站	10mA 鉴别	
RL'	多从站发送0信号		30mA 限流		30mA 限流	

说明:

①当单个从站回码时, PDC-B 总线保持 5V 定压;

②当多个从站同时回码时, PDC-B 总线无法保持 5V 定压。

PDC-B 通信协议五种码元波形如图 3-2 所示。

图 3-2 PDC-B 码元定义

3.3 PDC-B 数据链路层

PDC-B 的数据链路层规定了数据传输格式和介质访问控制时序。

3. 3. 1 PDC-B 报文传输格式

PDC-B 协议规定:主站按帧格式(命令帧)下发命令,如图 3-3 所示;如果下发的命令帧为一对一的定址寻址,从站按帧格式应答(应答帧),如图 3-4 所示。在某些特殊应用场合,为提高通信速度,主站、从站通信不采用帧格式,而是采用特殊传输格式。特殊传输格式只包含要传输的数据(位或单字节),如图 3-5 所示。

图 3-4 PDC-B 应答帧格式

INF

图 3-5 PDC-B 特殊传输格式

说明:

- ①PDC-B 协议应答帧不带帧起始符域 HEAD;
- ②PDC-B 协议应用于终端设备层, 帧格式中不包含多级地址管理域 MAM;
- ③PDC-B 协议的特殊传输格式主要用于设备注册、设备巡检和事件上报,可以按位或单字节传输。

3.3.2 介质访问控制

在数据链路层,PDC-B总线使用主-从控制方式。同时,PDC-B的从站设备采用总线供电,即主站下行发送TH码时给从站供电、储电。

PDC-B 协议规定: 至少保证 2/3 的总线供电时间,即主站发送 TH 码时间至少占通信时间 2/3。

3.3.3 主站发码时序

PDC-B 协议规定:主站下行发码(命令帧)按字节(帧字符)进行,且需要插入一些控制码。这些控制码包括:帧间隔码(Frame Interval, FI)、时钟同步码(Clock Synchronization, CS)、字节延时(Single Byte Delay, SBD)和命令延时(Command Delay, CD)。PDC-B 主站发码时序如图 3-6 所示。

(1) 帧间隔码

PDC-B 协议规定: 主站发送每一条命令帧之前首先要持续一段时间的 TH 码, 称为帧间隔码, 其作用是隔离前后两帧报文。其时序如图 3-7 所示。

说明:

- ① t_0 ~ t_1 : 发送帧间隔码(T_{FI});要求 T_{FI} >16ms,典型值 T_{FI} =20ms;
- ②主站按一定节拍下发命令帧,节拍的大根据实际需要确定,巡检上报节拍的典型值为 25ms。
- (2) 时钟同步码

为了节省成本,从站 MCU 通常采用内部自带 RC 时钟。但是,内部 RC 时钟受温度等环境因素的影响较大,可能出现精度偏离现象,从而导致总线工作不正常。为此,需要对从站 RC 时钟进行定期校准。

PDC-B 协议规定: 主站按帧字符格式发送时钟同步码 0x7F。其时序如图 3-8 所示。

图 3-8 PDC-B 时钟校准时序

说明

- ①主站时钟校准速率的典型值 F_{cor}=2.4Kbps, T_{cor}≈416.6us;
- ②t₁~t₄: 发送时钟同步码 0x7F;
- ③T_{CS}: 同步时间, T_{CS}=t₁~t₃=T_{cor}*8≈3333us;
- ④T_{CSD}: 时钟稳定延时(Clock Synchronization Delay, CSD), T_{CSD}=t₄~t₅, 要求 T_{CSD}>3ms, 典型值 T_{CSD}=3.5ms;

从站进行 RC 时钟校准的流程如下: 首先,在捕获到 t_1 时刻的下降沿开始计时; 然后,在捕获到 t_3 时刻的下降沿计时结束; 最后,根据 T_{CS} 进行 RC 时钟的校准。此外,为保证校准时钟稳定,要求持续一段时间(T_{CSD})的 TH 码。

如果从站不需要进行时钟校准, 此部分内容可略过。

(3) 命令帧与字节延时

主站在发送命令帧的过程中,为了满足 PDC-B 总线供电条件,每发送一个字节(帧字符)后需要判断是否需要插入字节延时。其依据是要发送帧字符(12 位数据)中 TH 码的个数,如果 TH 码的个数≥8,则该帧字符发送完毕后接着发送下一个帧字符,两者之间无需字节延时。否则,在当前帧字符发送完毕后插入字节延时。字节延时的计算公式如下:假设当前 12 位帧字符中 TH 码的个数为 n_0 ,需发送字节延时 TH 码的个数为 N。如果 $0 \le n_0 < 8$,则 $N \ge 24 - 3n_0$; 否则 N = 0。具体示例如表 3 - 4 所示。

字节 帧字符 Ν n_0 0x7F 10 0 起始位 8位数据位 偶校验位 停止位 1 0x13 6 ≥6 起始位 8位数据位 偶校验位 停止位

表 3-4 PDC-B 字节发送示例

命令帧与字节延时时序如图 3-9 所示。

图 3-9 PDC-B 命令帧与字节延时时序

说明:

①主站发送/从站接收命令帧速率的典型值 F_{MT} =9.6Kbps, T_{MT} \approx 104.2us;

②t5~t9: 发送命令帧和字节延时;

③T_{FC}: 帧字符发送时间, T_{FC}=t₅~t₆或 t₆~t₇;

④T_{SBD}: 字节延时时间 (Single Byte Delay, SBD), T_{SBD}=t₇~t₈;

⑤从站接收字节超时: 从站在接收帧数据的过程中, 如果接收到的连续两个字节时间间隔超时(Slave Bytes Timeout, SBT)则直接放弃该帧数据, 并重新判断帧起始条件; 要求 $T_{SBT}>3ms$, 典型值 $T_{SBT}=10ms$;

(4) 命令延时

PDC-B 协议规定: 主站发送完一命令帧后,需插入命令延时,其目的是给从站预留帧解析时间,同时给从站充电。寻址方式不同,对应的延时时间不同,如表 3-5 所示。命令延时时序如图 3-10 所示。

命令延时时间 单位 寻址方式 最小值 典型值 最大值 广播寻址 18 20 25 ms ID寻址 18 25 20 ms LA寻址 4 5 10 ms UC寻址 4 5 10 ms

表 3-5 PDC-B 命令延时时间要求

说明:

① T_{CD} : 命令延时时间, $T_{CD} = t_9 \sim t_{10}$;

②t10时刻: 主站一次下行发码结束后,可能进入接收态或按节拍等待发送下一命令帧;

3.3.4 单从站回码时序

PDC-B 协议规定:单从站上行回码(应答帧)分块(Multi Bytes, MB)按字节(帧字符)进行,且需要插入一些控制码。这些控制码包括:单从站回码延时(Single Response Delay, SRD)和块延时(Multi Bytes Delay, MBD)。单从站回码时序如图 3-11 所示。

说明:

- ①单从站回码/主站收码速率的典型值 F_{SSR}=19.2Kbps, T_{SSR}≈52.1us;
- ②T_{SRD}: 单从站回码延时, T_{SRD}=t₁₀~t₁₀', 要求 T_{SRD}>0.25ms, 典型值 T_{SRD}=6T_{SSR}, t₁₀~t_a=T_{SRD}/6;
- ③t₁₀'~ t₁₅: 从站发送应答帧和块延时;
- ④T_{MB}: 块发送时间,T_{MB}=t₁₀'~t₁₁、t₁₂'~t₁₃ 或 t₁₄'~t₁₅;
- ⑤T_{MBD}: 块延时, T_{MBD}=t₁₁~t₁₂或 t₁₃~t₁₄, 典型值 T_{MBD}=14ms;
- ⑥t₁₅时刻:从站一次回码结束;
- ⑦主站接收时从站无应答超时(Master Receive Timeout,MRT): 主站在 t_{10} 时刻计时,在规定的时间内没有收到从站的应答,退出接收态; 典型值 T_{MRT} =2.5ms;
- ⑧主站接收字节超时(Master Bytes Timeout,MBT): 如果主站收到的连续两个字节间隔时间 $T_{MBT}>1ms$,则直接放弃该应答帧; 典型值 $T_{MBT}=2ms$;
- ⑨为保证从站准确捕获下降沿定时点(例如 t_{10} 、 t_{12} 、 t_{14}),规定主站发送 TH 码误差范围[-0.5ms,+2.5ms],从站在此基础最少留有 1ms 余量,即以沿为基准提前 1.5ms 准备捕获下降沿,退后 3.5ms 没捕获到下降沿结束本次收码,重新准备收码;为保证对上升沿(例如 t_{11} 、 t_{13} 、 t_{15})的准确捕获,规定从站在回码完成计时开始的 2ms 内没有检测到 TH 码则结束本次回码,重新准备收码;从站串口回码时间(Slave UART Transmit,SUARTT):从站从 t_{10} 时刻计时,规定 280us $\leq t_{SUARTT} \leq 340$ us 开串口接收;主站接收开串口时间(Master UART Receive,MUARTR):主站在 t_{10} 时刻计时,规定 200us $< t_{MUARTR} < 280$ us 开串口接收。

(1) 单从站回码延时

从站应答时,需进行状态转换,即主站转为接收态,从站转为发送态。

PDC-B 协议规定: 主站插入命令延时后,首先发送一段时间 TL 码,然后转入接收态并持续一段时间,这段时间被称为回码延时。插入回码延时的目的是为了保证从站发送态稳定、主站接收态稳定,时序如图 3-11 所示。

(2) 块发送与块延时

从站回码时,依靠自身储能供电而非主站供电。为了保证总线通信正确和从站工作电压稳定,需要 插入块延时。

PDC-B 协议规定: 当应答帧长度大于 10 个字节时,从站每发送 10 个字节(称为一个块)一停顿,主站给从站充电一定时间 T_{MBD}(块延时),然后从站继续以 10 个字节为单位发送后续数据,直到发送完毕,时序如图 3-11 所示。

3.3.5 多从站回码时序

PDC-B 协议规定: 多从站同时回码按位进行、采用"竞争"机制,且需要插入一些控制码。这些控制码包括: 多从站回码延时(Multiple Response Delay,MRD)、位确认码(Bit Confirm,BC)和收发冲突延时(Transmit and Receive Conflict,TRC)。多从站回码时序如图 3-12 所示。

3-12 PDC-B 多从站回码时序

说明:

- ①多从站回码/主站收码速率的典型值 F_{MSR}=3.2Kbps, T_{MSR}≈312.5us;
- ② T_{MRD} : 多从站回码延时, T_{MRD} = t_{10} ~ t_{10} '= T_{MSR} /3, t_{10} ~ t_{x} = T_{MSR} /6, t_{x} ~ t_{10} '= T_{MSR} /6;
- ③RF: 应答请求位(Request Flag), T_{RF}=t₁₀'~t₁₁';
- ④b₀~b_{n-1}: 数据位;
- ⑤T_{BC}: 位确认时间,T_{BC}=t₁₃~t₁₄或 t₁₆~t₁₇; T_{BC}=2T_{MSR}或 3T_{MSR};
- ⑥ T_{TRC} : 收发冲突延时, $T_{TRC}=t_{12}$ ' $\sim t_{13}$ 、 t_{15} ' $\sim t_{16}$ 或 t_{19} ' $\sim t_{20}$,其目的是为了保证从站数据位发送完毕,防止收发冲突; T_{TRC} 最小值 $T_{MSR}/6$,最大值 $T_{MSR}/3$ (步长 $T_{MSR}/6$);
 - ⑦t₂₀时刻:从站一次回码结束,主站进入发送态,从站进入接收态;
- ⑧为保证下降沿定时点 (例如 t_{10} 、 t_{14} 、 t_{18})准确捕获,规定主站发送 TH 码误差范围[-0.5ms,+2.5ms],从站在此基础最少留有 1ms 余量;为保证上升沿(例如 t_{13} 、 t_{16} 、 t_{20})的准确捕获,规定从站在回码完成计时开始的 2ms 内没有检测到 TH 码则结束本次回码,重新准备收码;从站位回码时间:以 t_{10} 时刻为基准偏差范围[- $T_{MSR}/6$,+ $T_{MSR}/6$](保证采样 3 次)。
 - (1) 多从站回码延时
 - 多从站回码延时时序如图 3-12 所示。
 - (2) 请求位、数据位、位确认与收发冲突延时

多从站"竞争"应答及主站发送位确认码步骤如下:

- ①如果从站有信息需要上报主站,则在 t_{10} 时刻发送应答请求位 RF (RF=0),时间长度为 $1T_{MSR}$;
- ②为了滤除干扰、增加采样的准确性,主站在 t_{10} '~ t_{11} '的一个周期(T_{MSR})内按 1/6、1/2 和 5/6 进行 3 次采样(t_{11} 时刻进行第 3 次采样);如果采样值为 0(取值相同的两次采样值),说明有(一个或多个)从站需要上报信息;否则说明从站无信息上报,退出接收态;
- ③假设主站对 RF 的采样值 0,说明有从站请求信息上报;这些有信息上报的从站同时在 t_{11} '时刻发送自己的信息位 b_0 (值为 0 或 1);
 - ④主站在 $t_{11}'\sim t_{12}'期间对 b_0 进行采样;$
- ⑤主站在 t_{13} 时刻检测从站是否发送完毕 b_0 ; 检测到 1, 跳到⑥执行; 检测到 0, 主站过一段时间重新检测,最多检测 3 次, 如果第 3 次检测到的还是 0 则认为从站发送错误退出本次接; 如果主站 3 次内检测到 1, 跳到⑥执行;
- ⑥主站在 t_{13} 时刻由接收态转为发送态,并根据对 b_0 的采样结果向从站发送位确认码(T_{BC});采样数据为 0, $T_{BC}=2T_{MSR}$,采样数据为 1, $T_{BC}=3T_{MSR}$;
- ⑦从站根据 $t_{13}\sim t_{14}$ 判断是否与自己发送的数据位相匹配的,如果匹配则在 t_{14} 时刻继续发送数据位 b_1 ,否则停止后续信息位的发送,即退出本次"竞争"应答。

多从站应答时间参数如表 3-6 和表 3-7 所示。

表 3-6 PDC-B 主站时间参数

时刻(T _{MSR})	t 9	t ₁₀	t_X	t ₁₁	t ₁₂	t ₁₃	t ₁₄	t_{Y}	t ₁₅	t ₁₆	t ₁₇
与前一时刻差	-	T_{CD}	1/6	1	1	T_{TRC}	T_{BC}	1/6	1	$T_{TRC}+1/6$	T_{BC}

表 3-7 PDC-B 从站时间参数

时刻(T _{MSR})	t 9	t ₁₀	t ₁₀ '	t ₁₁ '	t ₁₂ '	t ₁₃	t ₁₄	t ₁₄ '	t ₁₅ '	t ₁₆	t ₁₇
与前一时刻差	-	T_{CD}	1/3	1	1	T _{TRC} -1/6	T_{BC}	1/3	1	T_{TRC}	T_{BC}

3.4 PDC-B 应用层

介绍两种典型的应用。

3. 4. 1 PDC-B 设备注册

详见附录C。

3. 4. 2 PDC-B 巡检上报

详见附录 D。

3.5 PDC-B 主站接口芯片

PDC-B 总线主站的通信接口为 TC100 系列芯片,具体包括 TC100 和 TC101。

3.5.1 芯片特点

- (1) TC100 和 TC101 共同特点
- 宽电压工作,范围 10V~36V;

- 内部稳压输出 5V、10mA;
- 静态功耗 <1mA;
- 工作温度 -40℃~+85℃;
- QFN-16 封装。
- (2) TC100 自有特点
- 功率器件、过流保护器件外置,驱动能力可灵活定制;
- 标准驱动电流 ≤600mA, 大电流 ≤1.8A。
- (3) TC101 自有特点
- 功率器件、过流保护器件内置,外围电路设计简单;
- 驱动电流 ≤200mA, 适合小型控制系统。

3.5.2 引脚定义

(1) TC100B 引脚分布与说明

TC100B 引脚分布如图 3-13 所示,引脚说明如表 3-8 所示。

图 3-13 TC100B 芯片引脚分布

表 3-8 TC100B 引脚说明

引脚号	引脚名称	说 明	I/O
1	ЕО	总线过流检测输出	0
2	RXD	解调总线输入信号至串口输出,与主站单片机 RXD 对接	0
3	BUSL	总线驱动输出低电平,由 VOUT 驱动	0
4	GND	芯片地	-
5	VOUT	稳压输出; 电压 5V, 电流 10mA	0
6	VDD	RXD 与 EO 的输入电源; 3V~6.5V	I
7	RB	基准电流控制;对地串接±1%的120K偏置电阻	0
8	VDET	总线限压监测;方法: VDET 与 REVIN 比较	I
9	REVIN	接收总线输入信号; 10mA 鉴别, 30mA 限流	I
10	VB	产生 BUSH 所需的偏置电压;外接 10uF 电容	I
11	BUSH	总线驱动输出高电平	0

12	VCC	芯片电源输入; VCC=10V~36V	I
13	IDET	总线电流过流检测输入,与 EO 配合使用;限压 90mV	I
14	NC	预留	-
15	R/\overline{T}	收/发状态控制; 高电平为接收态, 低电平为发送态	I
16	TXD	调制串口输入信号至总线输出,与主站单片机 TXD 对接	I

(2) TC101 引脚分布与说明

TC101 引脚分布如图 3-14 所示,引脚说明如表 3-9 所示。

图 3-14 TC101 芯片引脚分布

表 3-9 TC101 引脚说明

引脚号	引脚名称	说 明	I/O
1	TXD	调制串口输入信号至总线输出,与主站单片机 TXD 对接	I
2	RXD	解调总线输入信号至串口输出,与主站单片机 RXD 对接	0
3	R/\overline{T}	收/发状态控制; 高电平为接收态, 低电平为发送态	I
4	EN	芯片使能,低电平有效;高电平芯片进入低功耗模式	I
5	CS	芯片片选功能引脚,低电平有效	I
6	EO	总线过流检测输出	0
7	VOUT	稳压输出; 电压 5V, 电流 10mA	0
8	VDD	RXD 与 EO 的输入电源; 3V~6.5V	I
9	GND	芯片地	1
10	RB	基准电流控制;对地串接±1%的 120K 偏置电阻	О
11	BUS	总线驱动输出	0
12	REVIN	接收总线输入信号; 10mA 鉴别, 30mA 限流	I
13	L	防止总线电流突变电感引脚	I
14	NC	预留	-
15	VCC	芯片电源输入; VCC=10V~36V	I
16	NC	预留	-

使能和片选功能引脚真值表如表 3-10 所示。

表 3-10 状态描述真值表

EN	CS	芯片状态描述
0	0	芯片正常工作
1	0	芯片进入低功耗模式,所有模块关闭,BUS 输出低电平
0	1	BUS 输出高电平,正常驱动能力;总线电平不受 TXD 控制
1	1	BUS 输出低电平,总线电平不受 TXD 控制

3.5.3 参考电路

(1) TC100B 典型电路设计

TC100B 典型电路如图 3-15 和图 3-16 所示。

- (2) TC100B 典型电路功能实现
- 收/发控制

当 R/T=0时,打开发送调制电路、关闭接收解调电路,使芯片处于发送状态。主站发送态时电压调制(0~VCC),调制原理: 主站 MCU 的 TTL 信号经过光耦隔离电路 TXD_MCU 后由 TXD 引脚输入 TC100 芯片,在总线上形成调制信号;如果 TXD=1,则置 BUSH=VCC-5V,BUSL=0V,此时 P型 MOS 管 VM1 导通,N型 MOS 管 VM2 关闭,总线输出 1;如果 TXD=0,则置 BUSH=VCC,BUSL=5V,此时 VM1 关闭,VM2 导通,总线输出 0。

图 3-15 TC100B 典型电路(1.8A)

图 3-16 TC100B 隔离电路

当 R/T=1 时,打开接收解调电路、关闭发送调制电路,使芯片处于接收状态。主站接收态时定压(5V)电流解调,解调原理:主站接收态时,TC100 通过 REVIN 引脚(\approx 5.7V)接收总线信号,解调后由 RXD引脚输出 TTL 信号经过光耦隔离电路 RXD_MCU 给主站 MCU;如果 REVIN 引脚检测到有电流(大于鉴别电流 10mA,小于限流 30mA),则置 RXD=0;如果 REVIN 引脚没检测到有电流(或小于鉴别电流 10mA),则置 RXD=1。

主站由发送态转接收态的实现原理: VDET 引脚电压与 REVIN 引脚比较,如果 U_{VDET}>U_{REVIN},则置 BUSL=5V,此时 VM2 导通,总线电压迅速下拉并稳定在 5V,进入接收态(发送态时,REVIN 处于高 阻态,VDET 不产生 30uA 恒流,电压与总线电压一致)。

■ 光耦隔离通信

本系统主站端 TXD 和 RXD 的光耦隔离电路如图 3-16 所示。工作原理: PDC-B 总线要求发码速率为 9.6Kbps,收码速率为 19.2Kbs,传统方案采用普通单光耦电路响应时间慢的特点难以满足需求,而高速光耦存在功耗大、成本高的特点。本方案在电平的跳变时利用电容 C1、C2 的充放电作用能够迅速响应,从而实现低功耗和高速的统一。

■ 过流检测与保护

发送态时,当 IDET 引脚检测到总线上有过流现象(V_{VCC} - V_{IDET} > 90 mV),会对芯片进行保护(PWM 原理),同时 EO 引脚输出低电平,作为过流故障输出的指示。

(3) TC100B 典型电路关键器件分析

R11-R14 为总线过流采样电阻。如图 3-15 所示的应用电路中,芯片的过流采样电压为 90mV,采样电阻 150m Ω /4,过流保护值 I_P =2.4A,总负载工作电流 I_{LOAD} 的设计原则是: $2I_{LOAD}$ \geq I_P \geq 1.2 I_{LOAD} 。同时,需要根据驱动电流值,选择不同功率的 VM1。R15 的作用是对 IDET 引脚进行过压保护。R16、R21 的作用是分别用来防护当总线上电平跳变时通过 VM1、VM2 的极间电容耦合到 BUSL、BUSH 从而损伤 TC100。R16、R21 阻值选择原则:满足 VM1、VM2 驱动要求的前提下尽可能加大阻值以实现对 BUSL、

BUSH 的保护。R18 作用是保护引脚 VDET。发送态时防止总线电压跳变产生的冲击,接收态时防止总线电压变化造成 VDET 脚误动作开启了 VM2。R18 阻值选择原则:当 TC100 由发送态转为接收态时,VDET 产生 30uA 的恒流,所以总线电压不是 5V,如果 R18 过大,会造成 TC100 解码第一位的时间变短,甚至造成误码。R19 的作用是产生芯片内部基准电流(10uA),要求电阻精度±1%。R20、R21 的作用是限流:情况①,当 TC100 由发送态转为接收态时,需要通过 VM2 泄放电流;情况②,从站整流桥和防倒灌的二极管短路损坏;情况③,VM1 损坏,即 s、d 极短路时。R20、R21 阻值选择原则:满足 VM2和限流电阻的功率要求。

电解电容 E1 作用是当总线上电瞬间,充电电流很大时起到缓冲作用。C3-C8 的作用是滤波、稳压作用。L1 的作用是防护当总线接大的容性负载时上电时产生的大电流对 VM1 的损伤。VD1 的作用是给电感 L1 续流,防止由于感应电动势的存在导致在限流保护时无法关闭 VM1; VD1 选择的原则:根据过流保护值 I_P确定。VD2 的作用是反向保护 REVIN 引脚。VD3、R17 的作用是对总线反接 24V 时起到限流保护 REVIN。保护原理:假如 BUS-接 24V+、BUS+接 24V 地,由于 VD4 的电压钳位作用使得 BUS+为负电压(瞬时-10V,稳定为-2V),当 TC100 处于发送态时 REVIN=0V,如果不加防护,电流过大过大会损坏 REVIN; 当 TC100 处于接收态时 REVIN=5.7V,由于芯片内 30mA 限流,所以不会损坏 TC100 芯片。F1、F2、VD4 和 BK1 作用是总线防护,包括 AC 220V 防护、雷击浪涌防护。F1、F2、VD4 和 BK1 选择原则:根据总线的防护级别而定。

(4) TC101 典型电路设计

TC101 典型电路如图 3-17 所示。

图 3-17 TC101 典型电路

注意事项:

①TC100 和 TC101 引脚 0 与引脚 1 相连,均为 GND,引脚 0 位于芯片引脚面中间部分,注意 PCB 焊盘及布线:

②TC100 和 TC101 总线大电流短路时会产生高频 (≈1M)的开关信号,产生的电磁干扰影响主站工作,因此 PCB 布线应该使 BUS-进入主站前先经过 E1 地再进入芯片地。

3. 6 PDC-B 从站接口芯片

PDC-B 总线从站的通信接口为 TC001 系列芯片,具体包括 TC001B 和 TC001C。

3.6.1 芯片特点

- (1) TC001B 和 TC001C 共同特点
- 总线供电;
- 宽电压工作, 范围 7V~36V;
- 工作温度 -40℃~+85℃;
- MSOP-8 封装。
- (2) TC001B 自有特点
- 自带稳压输出 3.3V/5V, 10mA;
- 静态功耗 <100uA。
- (3) TC001C 自有特点
- 自带稳压输出 5V, 10mA; 静态功耗 <30uA;
- 芯片接口采用加强型 ESD 防护;
- 内置数模混合滤波电路, 抗干扰能力更强。

3. 6. 2 引脚定义

(1) TC001B 引脚分布与说明

TC001B 引脚如图 3-18 所示, 引脚说明如表 3-11 所示。

图 3-18 TC001B 引脚分布

表 3-12 TC001B 引脚说明

引脚号	引脚名称	说 明	I/O
1	NC	预留	-
2	SIN	总线信号接入	I
3	GND	芯片地	-
4	TXD	调制串口输入信号至总线输出,与从站单片机 TXD 对接	I
5	VOUT	稳压输出; 电压 3.3V 或 5V, 电流 10mA	0
6	SEL	电源输出选择:与 VOUT 引脚相接,VOUT 输出 5V;与 GND 引脚相接,VOUT 输出 3.3V	I
7	RXD	解调总线输入信号至串口输出,与从站单片机 RXD 对接	О
8	VCC	芯片电源输入,由总线提供	I

(2) TC001C 引脚分布与说明

TC001C 引脚如图 3-19 所示, 引脚说明如表 3-13 所示。

图 3-19 TC001C 引脚分布

表 3-13 TC001C 引脚说明

引脚号	引脚名称	说 明	I/O
1	VIN	总线信号接入	I
2	VCC	芯片电源输入,由总线提供	I
3	DOUT	内部 MOS 管漏极输出,用于驱动 LED	О
4	GND	芯片地	-
5	VOUT	稳压输出; 电压 3.3V 或 5V, 电流 10mA	О
6	D_EN	使能内部 MOS 管输出	I
7	RXD	解调总线输入信号至串口输出,与从站单片机 RXD 对接	О
8	TXD	调制串口输入信号至总线输出,与从站单片机 TXD 对接	I

3.6.3 参考申.路

(1) TC001B 典型电路设计

TC001B 典型应用电路如图 3-20 所示。

图 3-20 TC001B 典型应用电路

(2) TC001B 典型电路功能实现

■ 无极性

无极性电路由图 3-20 中 D1 实现。

■ 收/发控制

当芯片 TC001B 处于接收态时,总线电压信号由 SIN 引脚输入,解调后由 RXD 引脚输出 TTL 信号给从站 MCU。如果 $V_{SIN}>VCC-0.7$,RXD=1,否则 RXD=0。

当芯片 TC001B 处于发送态时,从站 MCU 的 TTL 信号由 TXD 引脚输入芯片形成调制信号。若仅 1个从站发送 TXD=0,此 TC001 产生 20mA 恒流,若多个从站同时发送 TXD=0,则某个 TC001B 产生的

电流大小跟总线所接从站数及其在总线上的位置有关;如果 TXD=1, TC001B 关闭恒流源,总线无电流。

(3) TC001B 典型电路关键器件分析

热敏电阻 RT1 的作用是 220V 防护。此外,RT1 与 C1 或 C2 构成 RC 滤波,其作用是缓冲长线通信时上升沿产生的电压震荡对 TC001B 的损伤。RT1 的选型原则:从站 5V 定压回码,当发送 TXD=0 时需由 SIN 引脚产生 20mA 恒流,如果 RT1 太大会造成 SIN 引脚电压过低,无法满足恒流要求; RT1 阻值太小保护能力减弱。C1、C2 选型原则: C1、C2 越大,滤波效果越好,但会造成总线波形延时。

R1 的作用是缓冲从站上电时电流过大对电解电容 E1 的冲击。R1 选型原则:单从保护 E1 的角度分析,R1 越大越好;但 R1 过大一方面会造成 SIN 引脚与 VCC 引脚的压差变大,从而影响从站解调低电平;另一方面会影响总线低压(10V)系统时,VCC 引脚的正常工作,VCC 引脚的最低工作电压 6.5V(典型值 7V)。因此要求 R1 上的压降 $U_{R1} \le 0.7$ V(典型值 0.5V),同时,R1 的阻值与从站用电的平均电流 I_{cz} 有关,一般满足 $R1 = U_{R1}/I_{cz}$ 。

VD1 的作用是:第一,对总线瞬时大电压干扰的防护,第二,防止总线电压变低时,电解电容 E1 电流回灌, VCC 电压被拉低,造成工作异常。C3、C4 的作用是滤波、稳压作用。

E1 的作用是储电、供电。E1 选型原则:回码时,从站完全由E1 供电,为了保证 VCC 能正常工作,要求回码后的电压E1^t满足 \triangle U=E1-E1^t \le 0.7V(典型值 0.5V)。根据公式 C* \triangle U =I_{cz}*T 可算得从站每消耗 I_{cz} =1mA 的电流时,电源储能电容所需要的电容量数(uF/mA),其中 T 为一次回码时间(10 个字节)。 经计算 PDC-B 总线的 uF/mA 数为 12.5,从站设计时电源储能电容严格按照该值计算:

- 标准 PDC-B 总线总电源最大电容量 12.5*600=7500uF:
- 大电流 PDC-B 总线总电源最大电容量 12.5*1800=22500uF。

(4) TC001B 典型电路从站设备供电方案

图 3-21 TC001B 大电流取电电路

图 3-22 TC001B 隔离电路

TC001B 芯片必须要由总线供电,从站其他设备的电源供给方案如下:

- ①通过 VOUT 引脚从 TC001B 供电 3.3V/5V,如图 3-20 所示;此供电方案适用于从站设备静态电流 (I_{czi}) 和动态电流 (I_{czi}) 较小的情况 $(I_{czi}<1mA$ 且 $I_{czd}/I_{czi}<20)$ 。
- ②通过总线取电,由 E2 提供,如图 3-21 所示;此供电方案适用于从站设备静态较大或动态功耗较大的情况($I_{czi} \ge 1$ mA 或 I_{czd} / $I_{czi} \ge 20$)。
 - ③无需总线供电,采用隔离方式。隔离方式与主站端 TC100 及外围电路设计类似,如图 3-22。

(5) TC001C 典型电路

TC001C 典型电路分别如图 3-23 和图 3-24 所示。

图 3-23 TC001C 小电流取电电路

图 3-24 TC001C 大电流取电电路

4 MMS

4.1 MMS 概述

MMS 是 OSI 模型第 7 层上的应用层报文传输协议,其定义与基础通信层无关。本协议制定的目的是实现其他网络与 TC-BUS 控制系统之间信息的传递。

4.2 特点

- 任意(有线/无线)网络传输介质;
- 报文采用 TC-BUS 通用帧格式,详见 2.3.2 小节。

附录

附录 A 关键字定义

A. 1 ID 定义

设备 ID 占 12 字节,由 24 位压缩 BCD 码构成,如表 A-1 所示。

表 A-1 ID 地址格式

IL) ₁₁	ID	10	II	D ₉	II	D ₈	II) ₇	II) ₆	II) ₅	II	O ₄	II) ₃	II	D ₂	II) 1	II	O_0
		设备	类型			国	家代	码		厂家	代码		年	份		日期			<u> </u>	上产 ₹	れく	<u>1</u>	
		Equip	ment	t		C	Countr	у		Fact	tory		Ye	ear		Date				Sei	rial		
E ₅	E ₄	E_3	E_2	E_1	E ₀	C ₂	C_1	C_0	F ₃	F ₂	F_1	F ₀	\mathbf{Y}_1	Y_0	D_2	D_1	D_0	S_5	S_4	S_3	S_2	S_1	S_0

(1) 设备类型

E₅E₄: 代表设备的行业类别。

 $E_3E_2E_1E_0$: 代表设备的具体名称,同样的数值在不同的行业可以代表不同的设备。

(2) 国家代码

国家代码 $C_2C_1C_0$ 按标准的国际标号进行定义,如表 A-2 所示。

表 A-2 部分国家代码

国家或地区	$C_2C_1C_0$
中国	086
•••	•••

(3) 厂家代码

厂家代码 $F_3F_2F_1F_0$ 编号如表 A-3 所示。

表 A-3 部分厂家代码

厂家名称	$F_3F_2F_1F_0$
鼎信通讯	0001
•••	•••

(4) 年份日期

年份 Y_1Y_0 : 记录年份的后两位。

日期 $D_2 D_1 D_0$: 表征是一年的第几天生产的。

(5) 生产流水号

生产流水号 $S_5S_4S_3S_2S_1S_0$ 建议采用:工位号+顺序号的方式产生。

A. 2 LA 定义

设备 LA 占 1 个字节。不同类型设备 LA 定义如表 A-4 所示,其它未用地址作为系统预留。

表 A-4 LA 地址

设备类型	LA				
以留矢空	DEC	HEX			
控制器	1~100	0x01~0x64			
回路卡	1~100	0x01~0x64			
现场设备	1~252	0x01~0xFC			
系统回路卡	200	0xC8			
局域联网卡	210	0xD2			
广域联网卡	211	0xD3			

A. 3 UC 定义

设备 UC 占 n 个字节。5 字节定义如表 A-5 所示, 其中设备类型为高字节。

表 A-5 UC 地址

类型	区号(BCD编码)	层号(BCD编码)	位置号(BCD编码)	设备类型(Hex)
人主	Area (xx)	Floor (xxx)	Room (xxx)	Type (xx)
总线设备	01~99	001~999	001~999	0x01~0xFE

说明:

- ①ID、LA 和 UC 所有位全 0 为预留地址,所有位全 1 为全通配地址;此外,ID 支持半字节、字节、1 个半字节及以上通配;LA 支持字节通配;UC 中的设备类型支持字节通配,其他与ID 相同;
 - ②UC 地址中的层号 001~899 代表地上 1~899, 层号 901~999 代表地下-1~-99 层, 900 为预留地址。

附录 B 报文传输流程

在TC-BUS控制系统中,报文传输分为本地传输和网络传输。我们以TC-BUS两级总线系统为例加以说明。该系统主站下发命令帧的目标地址有两类:一类用于临级传输,另一类用于多级传输(透级传输)。CTR0.b₅代表是否需要多级传输,如果需要,通过MAM域对多级地址进行管理。多级传输的地址格式如图B-1所示。

图 B-1 多级地址格式

其中,N是需要传输的总级数,n是传输的当前级数。下面按照寻址方式不同分类说明。

B.1 广播报文传输流程

广播多级传输的帧格式要求如表 B-1 所示, 传输流程如图 B-2 所示。

表 B-1	广播多级传输的帧格式要求	÷
√X D-1	丿 惟多纵似制即恻怆八女》	Ċ

条件	描 述			
CTR ₀ .b ₅ =0b0	有多级传输			
CTR ₀ .b ₂ -b ₀ =0b111	广播寻址			
DI<>0x3A、0x3B 或 0x3C	DI 不是 LA、UC 或 ID 注册命令			

图 B-2 两级广播传输流程

主站发送广播命令帧规则:连续发送三遍;从站应答规则:中间级从站和目标级从站均无需通信应答;目标级从站如果需要命令应答,采用事件上报。

B. 2 组播报文传输流程

组播多级传输的帧格式要求如表 B-2 所示, 传输流程如图 B-3 所示。

表 B-2 组播播多级传输的帧格式要求

条件	描 述					
CTR ₀ .b ₅ =0b0	有多级传输					
CTR ₀ .b ₂ -b ₀ =0b110、101 或 100	LA、ID 或 UC 寻址					
DI<>0x3A、0x3B 或 0x3C	DI 不是 LA、UC 或 ID 注册命令					
MAM.b ₇ =0b1	下发命令帧,地址层层剥离,上传应答帧地址层层增加					

图 B-3 两级组播传输流程

主站发送组播命令帧规则:连续发送三遍;从站应答规则:中间级从站和目标级从站均无需通信应答;目标级从站如果需要命令应答,采用事件上报。

B. 3 单播报文传输流程

LA、ID 或 UC 三种寻址方式时,支持单播报文传输。

单播多级传输的帧格式要求如表 B-3 所示, 传输流程如图 B-4 所示。

条件	描 述
CTR ₀ .b ₅ =0b0	有多级传输
CTR ₀ .b ₂ -b ₀ =0b110、101 或 100	LA、ID 或 UC 寻址
MAM.b ₇ =0b1	下发命令帧,地址层层剥离,上传应答帧地址层层增加
MAM.b ₃ =0b0	中间级设备需要上传目标级设备的命令应答
DI<>0x3C、0x3D、0x3E 或 0x3F	DI 不是 ID、LA、UC 注册命令和巡检上报命令

表 B-3 单播寻址多级传输的帧格式要求

图 B-4 两级单播传输流程

主站发送单播命令帧规则:最多发送三遍;从站应答规则:目标级设备采用定时通信(命令)应答,中间级设备采用通信应答和事件上报方式应答。

青岛鼎信通讯股份有限公司 TC-BUS 协议·

B. 4 单播、组播混合报文传输流程

(1) 中间级单播、目标级组播

中间级单播、目标级组播传输的帧格式要求如表 B-4 所示, 传输流程如图 B-5 所示。

条件
 描述
 CTR₀.b₅=0b0
 有多级传输
 CTR₀.b₂-b₀=0b110、0b101、0b100
 LA、ID 或 UC 寻址
 MAM.b₇=0b1
 下发命令帧,地址层层剥离,上传应答帧地址层层增加
 MAM.b₃=0b0
 中间级设备需要上传目标级设备的命令应答
 DI ◇0x3A、0x3B、0x3C、0x3E 或 0x3F
 DI 不是 LA、UC 、ID 注册命令和巡检上报命令

表 B-4 中间级单播、目标级组播的帧格式要求

图 B-5 中间级单播、目标级组播传输流程

(2) 中间级组播、目标级单播

中间级组播、目标级单播传输的帧格式要求如表 B-5 所示, 传输流程如图 B-6 所示。

条件	描 述
CTR ₀ .b ₅ =0b0	有多级传输
CTR ₀ .b ₂ -b ₀ =0b110、0b101、0b100	LA、ID 或 UC 寻址
MAM.b ₇ =0b1	下发命令帧,地址层层剥离,上传应答帧地址层层增加
MAM.b ₃ =0b0	中间级设备需要上传目标级的命令应答
DI⇔0x3A、0x3B、0x3C、0x3E 或 0x3F	DI 不是 LA、UC 、ID 注册命令和巡检上报命令

表 B-5 中间级组播、目标级单播的帧格式要求

B.5 设备注册报文输流程

主站发送设备注册命令采用广播寻址方式, DI=0x3A、0x3B 或 0x3C 为特殊寄存器寻址。从站采用竞争上报机制上传设备 ID, 如图 B-7 所示。

B. 6 巡检上报报文传输流程

巡检上报命令用于临级传输,其寻址方式是 LA,但 DI=0x3F 又代表着通配寻址,因此数据帧传输需要特殊处理,如图 B-7 所示。主站发送巡检上报命令帧规则:最多发送三遍。

青岛鼎信通讯股份有限公司 TC-BUS 协议·

图 B-6 中间级组播、目标级单播传输流程

图 B-7 设备注册传输流程

图B-7 巡检上报传输流程

B. 7 巡检上报优先级定义

(1) PRI_M

巡检上报命令帧数据域中事件的优先级掩码PRI_M占1个字节,其位定义如表B-8所示:

表 B-8 PRI_M

DDI MLLLLLLL	当前优先级是否有效
PRI_M.b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀	0=优先级功能无效;1=优先级功能有效

说明:

- ①随着 b_0 到 b_7 的升序,优先级依次从高至低降低级别。
- ②举例:如果主站下发的 PRI_M 为 96H (二进制表示为 0b10010110),这时主站要求优先级为第 2、
- 3、5、8级的从站做出响应,如果优先级在这4种范围之内的从站有中断事件发生,必须进行上报。

(2) PRI S

从站回码优先级PRI_S由事件类型TYPE1的高3bit组成,即PRI_S.b₂b₁b₀=TYPE1.b₇b₆b₅,如表B-9所示。

表 B-9 PRI_S

4 2		PRI_S		功能描述		
优先级别	b_2 b_1 b_0		b_0	切配细处		
第1优先级	0	0	0	为了节省应答的时间,应答帧的优先级的		
第2优先级	0	0	1	定义异于请求帧的定义,使用 3 个 bit 的数值组		
第3优先级	0	1	0	合代表 8 个优先级。000b 为最高优先级,111b		
第4优先级	0	1	1	为最低优先级。随着数值0到7的升序,优先		
第5优先级	1	0	0	级依次从高至低降低级别。		
第6优先级	1	0	1			
第7优先级	1	1	0			
第8优先级	1	1	1			

(3) 事件类型

事件类型码TYPE(2个字节)定义为上传事件的类型,事件类型的不同,相应的竞争上传的优先级也不同。

为了对中断上传的信息有明确的区分,所以需要对信息进行分类。详细请参见《TC-BUS产品设计规范》中的事件类型定义。

B.8 网络报文传输流程

网络传输流程与上述本地报文传输流程基本相同,唯一不同的是网络传输需要增加主站地址。

附录 C 设备注册

TC-BUS 支持 3 种设备注册方式: ID 注册、LA 注册和 UC 注册。下面以 ID 注册为例加以说明。

图 C-1 ID方式注册流程图

附录 D 巡检上报

主站发出巡检上报命令帧后,从站的回码包括两部分:一是巡检应答,即被点名到从站设备的应答; 二是事件上报,即有事件需要上报的从站应答。

TC-BUS 通信规范规定: 巡检应答时,被巡检到的从站仅上传自身 LA(帧字符格式),但需按序、定时应答;主站根据应答信息确定从站状态是正常或不正常。当主站发现某一从站不能正确应答时,需通过多次巡检点名进行状态确认。事件上报时,从站采用采用"竞争"方式。

D. 1 PDC-B 巡检上报

PDC-B总线巡检上报命令帧格式如图 D-1 所示。

0x7F	0xF9	0xFE	无	LA	SER	0x3F	0xFF	FCS	
------	------	------	---	----	-----	------	------	-----	--

图 D-1 PDC-B 巡检上报命令帧格式

(1) 设备巡检

PDC-B 总线一次巡检点名 8 个设备,巡检应答时序如图 D-2 所示。

图 D-2 PDC-B 巡检上报应答时序

说明:

- ① $t_{10} \sim t_{10}$ '、 $t_{12} \sim t_{12}$ '、 $t_{14} \sim t_{14}$ '、 $t_{29} \sim t_{29}$ '为单从站回码延时 T_{SRD} ;
- ②t₁₆~t₁₆'为多从站回码延时 T_{MRD};
- ③主站接收超时 (MRT): 主站在 t_{10} 时刻计时,在规定的时间内没有收到从站的应答,退出接收态; 典型值 T_{MRT} =0.6ms;

主站发送巡检上报命令帧(t_0 ~ t_9), t_9 时刻插入命令延时 T_{CD} , t_{10} 时刻由发送态转为接收态,从站由接收态转为发送态。一次被点名到的一组从站设备(满足 LA 高 5 位相同)按 LA 低 3 位由小到大顺序(0~7)定时上报自己的 LA,即第一个从站在 t_{10} '到 t_{12} 的时间段内必须完成巡检应答、同时主站为下一次点名做好准备,依次类推。

巡检应答(t₁₀~t₁₆)时间参数如表 D-1 所示。

 时刻(单位: ms)
 t9
 t10
 t12
 t14
 t16

 与前一时刻的差
 TCD
 3.5
 3.5

表 D-1 PDC-B 巡检时间参数

(2) 事件上报

主站巡检点名完毕后将检查是否有从站进行事件上报。主站从 t_{15} 时刻发送 TH 码,到 t_{16} 时刻由发送 态转为接收态。在 t_{17} 时刻检测事件上报标志位。如果有事件上报,则继续采样 t_{17} " t_{17} "时间段内上传的优

先级信息。优先级信息(11位)由事件优先级 PRI_S(3位)和从站 LA(8位)组成。

某从站的事件类型信息上报成功后,主站在 t_{27} ~ t_{28} 时刻分别回传 LA 原码及 LA 反码进行确认,LA 确认成功的从站将事件信息在 t_{29} 时刻进行上传。若主站成功接收从站上传的事件,则本次上报成功。若主站未成功接收到从站上报数据,则主站不改变帧序号(SER),重新发送本巡检帧,上一帧进行过事件上报的从站在接收到 SER 相同的巡检帧后,再次"竞争"上报事件。

 t_{16} ~ t_{26} 参照表 3-6 和表 3-7。 t_{23} 时刻至 t_{27} 时刻如表 D-2 所示。 t_{29} 时刻至 t_{30} 时刻的时间参数参照图 3-11。

表 D-2 PDC-B 总线 LA 确认时间参数

时 刻(单位: ms)	t ₂₆	t ₂₇	t ₂₈	t ₂₉
与前一时刻的差	-	1.5	3	2.5

说明:

- ①t₂₆~t₂₇允许误差[-0.5ms, +0.5ms];
- ②从站接收原码、反码超时典型值 3ms;

附录 E PDC-B 节拍与从站休眠

为了降低功耗、提高设备使用寿命,PDC-B支持从站休眠模式,如表 E-1 所示。

模式	说明
M0	从站不休眠,正常模式
M1	从站休眠,休眠节拍 100ms
M2	从站休眠,休眠节拍 200ms
M3	从站休眠,休眠节拍 400ms (默认)

表 E-1 PDC-B 从站休眠模式

PDC-B 发码/收码节拍及从站休眠时序如图 E-1 所示:

简要步骤如下:

- (1) M 时刻, PDC-B 主站上电并发送/接收各类命令(总线时序); S 时刻:某从站上电并以正常态工作;
 - (2) t₁ 时刻, 主站按从站休眠节拍发送巡检上报命令;
 - (3) ts 时刻,从站成功接收命令巡检帧,并判断满足休眠条件进入休眠态;
- (4) t_4 时刻,从站允许下降沿中断; t_5 时刻,从站由下降沿中断(第一个)触发转换为正常态工作, t_6 时刻再次触发下降沿中断(第二个),从站进行时钟校准; 如果下降沿中断触发错误,从站也将进入正常态工作;
- (5) t_7 时刻,从站成功接收命令巡检帧,并解析 LA 得到将在本休眠节拍中被点名;因满足休眠条件,首先进入休眠态, t_8 时刻开启下降沿中断, t_9 时刻进入正常态, t_{10} 时刻成功接收对本从站的巡检命令; t_{11} 时刻,从站点名应答成功,之后满足休眠条件继续进入休眠态;
 - (6) t₁₂ 时刻开启下降沿中断, t₁₃ 时刻进入正常态, t₁₄ 时刻成功接收其他命令帧并进行处理;
 - (7) t₁₆ 时刻,从站成功接收到巡检命令帧,满足休眠条件进入休眠态;
 - (8) t₁₇时刻,从站通过 25ms 中断唤醒进入正常态检测到有事件上报(t₁₅~t₁₇<375), t₁₉时刻成功接收

普通巡检帧并按时序进行事件上报;从站在 t_{20} 时刻(一个休眠节拍内)成功事件上报后满足休眠条件进入休眠态,否则保持正常态;如果从站在 t_{18} 时刻通过 25 ms 中断唤醒进入正常态检测到有事件上报(t_{15} ~ t_{17} =375),将进行时钟校准;

- (9) t₂₁ 时刻开启下降沿中断, t₂₂ 时刻进入正常态, t₂₃ 时刻成功接收其他命令帧并进行处理;
- (10) t₂₄ 时刻从站允许下降沿中断主板接收命令巡检帧。

说明:

- ①PDC-B 总线巡检上报命令节拍为 100ms, 主站发码节拍节拍误差为+1%, 从站收码误差为-1%;
- ②休眠态: 低速时钟状态, 响应 25ms 中断;
- ③正常态: 高速时钟状态,响应 1ms 和 25ms 中断;
- ④巡检上报命令节拍如表 E-2 所示,休眠节拍特点如表 E-3 所示;

第1轮	第2轮	第3轮	第4轮	第5轮	第6轮	第7轮	第8轮
0x00	0x02	0x04	0x06	0x01	0x03	0x05	0x07
0x08	0x0A	0x0C	0x0E	0x09	0x0B	0x0D	0x0F
0x10	0x12	0x14	0x16	0x11	0x13	0x15	0x17
0x18	0x1A	0x1C	0x1E	0x19	0x1B	0x1D	0x1F
0xF0	0xF2	0xF4	0xF6	0xF1	0xF3	0xF5	0xF7
0xF8	0xFA	0xFC	0xFE	0xF9	0xFB	0xFD	0xFF

表 E-2 PDC-B 巡检上报节拍

表 E-3 PDC-B 休眠节拍特点

命令巡检帧	普通巡检帧	普通巡检帧	普通巡检帧
0bXXX00XXX	0bXXX01XXX	0bXXX10XXX	0bXXX11XXX

- ⑤休眠条件:从站收到命令巡检帧后,如果无需点名应答、无其他自身任务、无事件需要上报,则 进入休眠态;
 - ⑥从站时钟校准节拍的典型值 400ms。

附录 F 常见问题集锦

1、现场总线的发展趋势是什么?主要应用领域?

- 一是低速现场总线技术的继续完善和发展,二是高速现场总线技术的亟需发展;
- 低速现场总线主要应用:传输距离长、通信速度慢、信息量小、散列点式现场控制;
- 高速现场总线主要应用:传输距离短、通信速度快、信息量大、高速自动化设备控制或桥接低速现场设备。

2、鼎信总线提出的目的?

- 针对传统低速现场总线存在的问题,提出二线制、无极性、可供电和支持低功耗的 PDC-B 总线;
- 针对亟需发展的高速现场总线,提出速率高达 25M、支持多路总线备份和对等控制的 MPI 总线。

3、鼎信总线的应用领域?

消防报警、安防监控、能源监测、智能家居、工业自动化、楼宇智能化等。

4、鼎信总线如何保证报文传输的准确性?

- 报文发送时,按帧字符发送采用偶校验,整帧报文采用 CRC16 校验;
- 主站发码满幅电压调制,收码定压电流环解调;
- 主站对同一报文可多遍发送;
- 报文发送时插入帧间隔码,保证前后两帧报文隔离;
- 对于重要信息,采用软件锁的方法发送;
- 采用自主产权的总线通信芯片,提升系统的稳定性和抗干扰性。

5、如何提高鼎信总线信息传输的实时性?

● 采用基于优先级的竞争上报机制。

6、PDC-B 总线主站发码采用电压调制,从站回码采用定压电流环调制,为什么采用这种不对称的控制方式?

- PDC-B 总线的主站发码采用电压调制的主要原因是为了给从站供电;此外,从站解调不是电压满幅解调,即使在传输的过程中波形有一些畸变,也不会解调错误,保证了通信的可靠性。主站发码不采用电流调制的原因是如果采用电流调制,因为下行电流是变化的,主站对其不可控,同时从站也没有合适的方法解调。
- 从站发码采用电流环调制的原因是长线传输时噪声一般是电压干扰,而电流信号对噪声并不敏感,因而有利于长线传输。从站回码不采用电压调制的原因:从站回码若采用电压方式,为满足长距离传输,需要从站提供高电压,而从设备没有提供高压的能力,因而无法实现。采用定压回码的原因是从站回码采用电流,如果电压不定,会产生电流从而影响主站误解调。

7、PDC-B 总线传输电压选择的范围及原则?

- 我国国家标准 GB3805-83《安全电压》中规定,安全电压值的等级有 42、36、24、12、6V 五种,同时还规定: 当电器设备采用了超过 24V 时,必须采取防直接接触带电体的保护措施。
- PDC-B 总线主要应用于各个工业现场领域,因此也必须遵守国家标准,综合考虑选定工作电压为 10V~36V,典型值选用中间值 24V。典型值的选用考虑到两个方面的因素:一方面,如果电压太高,虽然传输距离会更远,但元器件的耐压参数等将上升一个等级,这样价格会更高,性

价比降低,同时电压高会使元器件易老化、绝缘性能下降;另一方面,电压又不能太低,由于传输线路具有阻抗,长距离传输时末端的电压会很低(<7V),会造成从站 TC001 无法正常工作。

8、现场总线与计算机网络对比?

比较项目	计算机网络	现场总线控制网络
网络节点	PC(标准形态)	智能装置(嵌入式系统)
工作环境	办公室	适用于各种环境
信息量	大	小
传输速率	快	慢
实时性	差	好
设备功耗	大	小
成本	高	低

9、鼎信总线与其它现场总线对比?

- 传统的低速现场控制系统中大量使用 485 总线,但在使用过程中存在很多局限性,例如,总线只负责通信、但不能给节点设备供电;总线节点容量少且不支持长距离任意分支通信;此外,总线有极性、安装调试不方便。
- 近年来,随着信息技术的飞速发展,人们对高速设备的自动化控制需求越来越强烈。虽然以以太网(Ethernet)为代表的高速网络迅速发展并得以应用,但其通信设备复杂、昂贵、功耗大且系统响应速度慢的特点,不能满足自动化控制系统对低成本、低功耗和高实时性的要求。

10、 E1 是否会出现电量不足现象?

- 主站发码时通过字节延时保证为 E1 充电;
- 从站回码时每回码 10 字节需要主站充电;
- 主站没有其他命令时,发送巡检上报命令为 E1 充电。