Deep Neural Networks and Discrete Choice Models (Part 3)

Shenhao Wang 191105

Part 0. Recap

Outline

1

Decisionmaking under uncertainty: prospect theory (25 min) 2

Modeling time uncertainty in transportation (5 min)

3

Working paper: theory-based deep residual network (20 min) 4

Multitask & transfer learning (10 min)

5

Working paper: MTLDNN to combine RP & SP (20 min)

Part 1. Decision-making under uncertainty: prospect theory

Examples: decision-making under uncertainty

New technology adoption (e.g. autonomous vehicles)

Gamble

Insurance

Smoking: health risk

Asset investment

Natural disasters

Governance: belt and smoking regulations

Consumption: quality uncertainty

Urban transportation: time uncertainty

Decision-making under time uncertainty

Option A (Ride Hailing)

Option B (Ride Sharing)

Travel cost: \$5 Travel cost: \$3

Travel time: 15 minutes Travel time: between 15-25 minutes

Decision-making under time uncertainty

Option A (Ride Hailing)

Travel cost: \$5

Travel time: 15 minutes

Option B (Ride Sharing)

Travel cost: \$3

Travel time: between 15-25 minutes

How to characterize uncertainty? Math concepts

1. Full continuous distribution

2. Discrete distribution (in survey)

3. Mean and variance

Mean: 20 minutes STD: 5 minutes

4. Min and max (or 5% and 95 percentiles)

Min: 10 minutes
Max: 30 minutes

5% percentile: 12 minutes 95% percentile: 28 minutes

Confusing concepts: risk, uncertainty, and "black swan" events

1. Risk vs. uncertainty

Academic difference: full probability distribution vs. no full probability

distribution

Colloquial difference : only loss vs. both loss and gains

2. Totally unpredictable: "black swan" events.

Self-eliminating: why bother?

Self-contradictory: extremely small probability vs. unpredictable.

etc.

I will always use mathematical concepts, but avoid these confusing concepts.

Models

Given wealth W, a person needs to choose between two **monetary** options:

$$(\$x_1, p_1; \$x_2, p_2) \ vs. \$0$$

e.g. $(+\$1,000, 50\%; -\$1,000,50\%) \ vs. \$0$

Note: options can be any probability distribution.

How to compute utilities of the two options to predict choices?

- 1) Expected utility : $p_1 * v(W + x_1) + p_2 * v(W + x_2)$ vs. v(W);
- 2) Prospect theory: $\pi(p_1)v(x_1) + \pi(p_2)v(x_2)$ vs. v(0) W & reference point $\pi(p)$
- 3) Black box: $f: (\$x_1, p_1; \$x_2, p_2; W) \rightarrow (0,1)$

Prospect theory: five characteristics

$$\pi(p_1)v(x_1) + \pi(p_2)v(x_2)$$

Probability weighting function $\pi(p)$

- 1) Concavity over gains
- 2) Convexity over losses
- 3) Framing over gains and losses (reference dependent)
- 4) Loss aversion
- 5) Probability weighting

Prospect Theory

$$\pi(p_1)v(x_1) + \pi(p_2)v(x_2)$$

#1) Concavity over gains(risk averse)

(50%, \$1000; 50%, \$0) < \$500

#2) Convexity over losses(risk seeking)

(50%, -\$1000; 50%, \$0) > -\$500

12

Prospect Theory

$$\pi(p_1)v(x_1) + \pi(p_2)v(x_2)$$

3) Framing over gains and losses

Asian disease experiment

PT: Framing over gains and losses (Asian disease experiment)

"Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is expected to kill 600 people. Two alternative programs to combat the disease have been proposed."

Experiment 1 (A vs. B)

A [72%]

200 people will be saved

B [28%]

there is a 1/3 probability that 600 people will be saved, and a 2/3 probability that no people will be saved

Experiment 2 (C vs. D)

C [22%]

400 people will die

D [78%]

there is a 1/3 probability that nobody will die, and a 2/3 probability that 600 people will die

A = C

B = D

PT: Framing over gains and losses (Asian disease experiment)

Experiment 1 (A vs. B)

A [72%]

200 people will be saved

B [28%]

there is a 1/3 probability that 600 people will be saved, and a 2/3 probability that no people will be saved

Experiment 2 (C vs. D)

C [22%]

400 people will die

D [78%]

there is a 1/3 probability that nobody will die, and a 2/3 probability that 600 people will die

Prospect Theory

$$\pi(p_1)v(x_1) + \pi(p_2)v(x_2)$$

4) Loss aversion (the kink)

0 > (50%, +\$1000; 50%, -\$1000)

Prospect Theory

$$\pi(p)v(x) + \pi(q)v(y)$$

5) Probability weighting

Russian Roulette Game

$$\pi(p)v(x) + \pi(q)v(y)$$

5) Probability weighting intuition

WTP from 5 to 4 bullets: WTP_54 WTP from 4 to 3 bullets: WTP_43 WTP from 3 to 2 bullets: WTP_32 WTP from 2 to 1 bullets: WTP_21 WTP from 1 to 0 bullets: WTP_10

Intuition:

WTP_54 > WTP_32 WTP_10 > WTP_32

Example: gamble

Russian roulette game: trade your life with probabilities

Function forms of prospect theory

$$v(x) = \begin{cases} (x-r)^{.88} & \text{if } x \ge r; \\ -2.25(-(x-r))^{.88} & \text{if } x < r, \end{cases}$$

Probability weighting function:

$$w(p) = \frac{p^{.65}}{\left(p^{.65} + (1-p)^{.65}\right)^{1/.65}}$$

Other value functions
Other probability weighting functions

One open question: what is a right reference point?

Possible reference points

- Status quo (PT 79)
- Past values/prices
- Aspirations/goals
- Social comparison
- Expectations

Critiques

- Overfitting/refutability/complexity (e.g. coin flip example)
- Model training: identification challenges

Four generations of PT

(Allen et al. 2014)

Part 2. Modeling travel time uncertainty in urban transportation

Different levels of uncertainty

- 1. Continuous probability distribution
- 2. Discrete probability distribution
- 3. Mean and variance
- 4. Min and max (or 5% and 95% percentiles)

Comments: current practice of using PT and DCM for time uncertainty

PT targets the first two cases (#1 and #2 uncertainty information).

PT is not commonly used in travel behavioral research.

DCMs with #3 and #4 uncertainty information are most common.

Travel mode choice with time uncertainty

Example 1. mean-variance model

$$U = \beta_T T + \beta_{SD} SD(T) + \beta_C C$$

Value of time (VOT): β_T/β_C ;

Value of reliability (**VOR**): β_{SD}/β_C ;

Reliability ratio: VOR/VOT

Travel mode choice with time uncertainty

Example 2. scheduling model

$$U = \beta_T T + \beta_{SDE} SDE + \beta_{SDL} SDL + \beta_C C$$

Choice A

SDE =
$$(7 + 4 + 1 + 0 + 0)/5 = 2.4$$

$$SDL = (0 + 0 + 0 + 5 + 9)/5 = 2.8$$

Related to PT

Reference dependence: PAT

Loss aversion

Linear approximation to PT

PLEASE CIRCLE EITHER CHOICE A OR CHOICE B	
Average Travel Time 9 minutes	Average Travel Time 9 minutes
You have an equal chance of arriving at any of the following times:	You have an equal chance of arriving at any of the following times:
7 minutes early	3 minutes early
4 minutes early	3 minutes early
1 minute early	2 minute early
5 minutes late	2 minutes early
9 minutes late	On time
Your cost: \$0.25	Your cost: \$1.50
Choice A	Choice B

Do people use PT in modeling travel time uncertainty?

Rarely seen: Li and Hensher (2017)

Reasons

- 1) We may not need the full PT in urban transportation. e.g. VOR
- 2) It is hard to estimate the full PT

Further steps: PT and DNN

- A competitive view: can we use ML classifiers (DNN) to achieve higher prediction accuracy? Research is missing...
- A complementary view: can we jointly use PT (or DCM) and DNN to achieve a better result?

Part 3. Theory-based deep residual network for individual decision-making

Domain-Specific Models

Machine Learning Models

Spatial-temporal prediction

Demand analysis (DCM, PT)

Network analysis

Feedback & system control

CNN/RNN/LSTM

Supervised learning (DNN)

Graphical neural networks

Reinforcement learning

Domain-Specific Models

Machine Learning Models

Interpretation - - - -

Domain-Specific Models

←--- Prediction

Machine Learning
Models

Robustness - - - -

How to provide mutual benefits between domain-specific and generic-purpose models for individual decision-making?

$$V(x) = V_T(x) + \delta V_{DNN}(x)$$

- 1. δ controls the ratio between utility theory and DNN utilities. (Use λ regularization constant to implement it; λ is roughly the inverse of δ)
- 2. Two-stage training: (1) $V_T(x)$ and (2) $V_{DNN}(x)$ Information theory
 Simultaneous training is unreasonable "Politically correct"
- 3. Generic for any utility maximization framework and DNN architectures

Theory-Based Residual Neural Network (TB-ResNet)

$$V(x) = V_T(x) + \delta V_{DNN}(x)$$

ResNet

TB-ResNet

Intuition of Theory-Based Residual Neural Network

Three Instances of Theory-Based Residual Neural Network

- 1. CM-ResNet (choice modeling)
 - e.g. choose between K alternatives

Three Instances of TB-ResNets

$$V(x) = V_T(x) + \delta V_{DNN}(x)$$

- 2. PT-ResNet (prospect theory)
 - e.g. choose between two risky payoffs (x, p)

- 3. HD-ResNet (hyperbolic discounting)
 - e.g. temporal decisions (x, t)

Comparing TB-ResNet to DNNs and Theories Based Model on Three Metrics

$$V(x) = V_T(x) + \delta V_{DNN}(x)$$

- 1. Prediction Accuracy
- 2. Interpretation (local information)
- 3. Robustness

1. Prediction Accuracy

CM

PT

HD

2. Interpretability of Utility Function in the CM Scenario

2. Interpretability of Utility Function in the PT Scenario

3. Robustness

First Gradient Sign Method (FGSM) and Target Gradient Sign Method (TGSM)

Comparing TB-ResNet to DCMs and DNNs

	Compare to CM, PT, and HD	Compare to DNNs		
Prediction Accuracy	Significant Improvement (by addressing function misspecification)	Marginal Improvement (by localization and regularization)		
Interpretability	Significant Improvement (by augmenting and enriching utility functions)	Significant Improvement (by stabilizing local information)		
Robustness 11/6/19	NA	Significant Improvement (by stabilizing local information)		

Conclusion

A neat and generic framework

Flexible combination of DCMs and DNNs

Analogy to ResNet

Provide mutual benefits to DCMs and DNNs

Higher prediction accuracy

Better interpretability (substitution patterns)

Robust to various adversarial attacks (pointwise in-sample, out-of-sample, attacks beyond pointwise, etc.)

Future potentials: TB-ResNet for all of them?

Part 4. Multitask Learning & Transfer Learning

Baseline, Transfer Learning, and Multitask Learning

Reality always involve multiple similar tasks.

Examples (travel mode choice)

Target task: travel mode choice in MA. Source task: travel mode choice in CA. (Geographical difference)

Target task: travel mode choice in 2010. Source task: travel mode choice in 2000. (Temporal difference)

Target task: auto ownership in MA. Source task: travel mode choice in MA. (Output difference)

Target task: travel mode choice with an experiment. Source task: travel mode choice with NHTS dataset. (Dataset difference)

Target task: field experiment for travel mode choice. Source task: some lab experiment for travel mode choice. (Procedure difference)

	Training	Testing		
Baseline machine learning	Task 1	Task 1		
Transfer learning (TL)	Task 1	Task 2		
Multitask learning (MTL)	Task 1 & Task 2	Task 1 & Task 2		

Multitask learning baseline (Caruana, 1997)

Key intuition: control similarities and differences

Multitask learning examples

Duong et al., 2015

Ruder et al., 2017

Long and Wang, 2015

Misra et al., 2016

A baseline transfer learning example (Yosinski et al., 2014)

- 1. Freeze lower layers
- 2. Initialize lower layers

Transfer learning example: intuition

- 1. Classical Frequentist choice models as freezing.
- 2. Classical Bayesian models as initialization.

Part 5. Multitask Learning Deep Neural Networks to Combine Revealed and Stated Preference Data

"T-shaped" datasets for the demand analysis of new product/service (e.g. AV)

Shallow but wide

revealed preference data (historical, observational, etc.)

Stated preference data (experimental survey, etc.)

Narrow but deep

Background

RP+SP as a Classical Question

- Pros and cons of RP and SP (Ben-Akiva et al., 1994; Hausman et al., 1998)
- Joint RP+SP (Ben-Akiva et al., 1994; Hensher and Bradley, 1993; Polydoropoulou and Ben-Akiva, 1994)
- Nested logit model as one classical method (Hensher and Bradley, 1993; Louviere et al. 1999)

MTLDNNs as a New Method

- A multitask learning perspective
- "Multiple tasks arise naturally..." (Caruana, 1997)
- Wide applications: NLP (Collobert and Weston, 2008; Hashimoto et al. 2016); healthcare drug discovery (Ramsundar et al. 2015); etc.

A MTLDNN Example (Caruana, 1997)

Block: layers in DNNs Grey: **shared** layers

Green/Red layers: **task-specific** layers
Flexible MTLDNN architecture: different

depth and width

Formulation of MTLDNNs

Feature Transformation

$$\begin{split} V_{k_r,i} &= (g_r^{M_2,k_r} \circ g_r^{M_2-1} \circ \dots \circ g_r^1) \circ (g_0^{M_1} \circ g_0^{M_1-1} \circ \dots \circ g_0^1)(x_{r,i}) \\ V_{k_s,t} &= (g_s^{M_2,k_s} \circ g_s^{M_2-1} \circ \dots \circ g_s^1) \circ (g_0^{M_1} \circ g_0^{M_1-1} \circ \dots \circ g_0^1)(x_{s,t}) \end{split}$$

Softmax Activation

$$P(y_{k_r,i}; w_r, w_0) = \frac{e^{V_{k_r,i}}}{\sum_{j_r=1}^{K_r} e^{V_{j_r,i}}}$$
$$P(y_{k_s,t}; w_s, w_0, T) = \frac{e^{V_{k_s,t}/T}}{\sum_{j_s=1}^{K_s} e^{V_{j_s,t}/T}}$$

Formulation of MTLDNNs

Empirical Risk Minimization

2 Regularizations: Scale Controls

Formulation of NLs

Feature Transformation

$$V_{k_r,i} = \beta_{k_r}^T \phi(x_{r,i})$$
$$V_{k_s,t} = \beta_{k_s}^T \phi(x_{s,t})$$

Softmax Activation
$$P(y_{k_r,i}; \beta_r) = \frac{e^{\beta_{k_r}^T \phi(x_{r,i})}}{\sum_{j_r=1}^{K_r} e^{\beta_{j_r}^T \phi(x_{r,i})}}$$

$$P(y_{k_s,t}; \beta_s) = \frac{e^{\beta_{k_s}^T \phi(x_{s,t})/\theta}}{\sum_{j_s=1}^{K_s} e^{\beta_{j_s}^T \phi(x_{s,t})/\theta}}$$

Formulation of NLs

Empirical Risk Minimization

MTLDNNs are More Generic than NLs.

MTLDNNs

- Automatic feature learning
- 2. "Soft" constraints to describe the similarities between RP and SP
 - Architectural design (e.g. # of shared vs. task-specific layers)
 - Regularizations (e.g. λ_3)

NLs

- Handcrafted feature learning
- 2. "Hard" constraints to describe the similarities between RP and SP
 - Shared vs. task-specific parameters (e.g. β_r vs. β_s)

Experiment Setup: Data and Training

Dataset: online survey collected in Singapore

RP: four travel modes (walking, public transit, ridesharing, and driving)

SP: add AV

Sample size: RP (1,592) + SP (8,418)

Training vs. testing sets (4:1)

Hyperparameter searching and comparison for MTLDNNs

- Depth & width of MTLDNN architectures
- Regularization constants

Experiment Setup: Comparing Four Groups (Eight Models)

- 1. Top 1 MTLDNN (MTLDNN)
- 2. Top 10 MTLDNN Ensemble (MTLDNN-E)
- 3. Feedforward DNN separately trained for RP and SP (DNN-SPT)
- 4. Feedforward DNN jointly trained for RP and SP (DNN-JOINT)
- 5. Nested logit model with full parameter constraints (NL-C)
- 6. Nested logit model without parameter constraints (NL-NC)
- 7. Multinomial logit model separately trained for RP and SP (MNL-SPT)
- 8. Multinomial logit model jointly trained for RP and SP (MNL-JOINT)

1) Prediction: MTLDNNs perform better than NLs by about 5% prediction accuracy

	MTLDNI	MTLDNN MTLDNN		DNN- DNN-	NL-C	NL-NC	MNL-	MNL-
	(Top1)	${f E}$	\mathbf{SPT}	JOINT	į		\mathbf{SPT}	JOINT
	i	(Top 10)						
		Panel :: Prediction Accuracy						
Joint RP+SP (Testing)	60.0%	58.7%	53.4%	53.8%	55.4%	55.0%	55.0%	51.9%
RP (Testing)	69.9%	66.6%	65.8%	65.8%	65.4%	64.7%	64.5%	44.0%
SP (Testing)	58.2%	57.2%	51.1%	51.5%	53.5%	53.2%	53.2%	53.5%

2) Causes: the soft constraints specific to multitask learning are effective in improving prediction accuracy

(a) Six Different Architectures: (5-0);(4-1);(3-2);(2-3);(1-4);(0-5)

We should not naively use feedforward DNN architectures. Model design specific to multitask learning is important!

3) Interpretation: extracting the substitution patterns of AVs with other alternatives from MTLDNNs

3) Interpretation: rank the importance of input variables by computing elasticities for AV adoption

Variable	Elasticity		
AV Cost	-0.981		
AV In-Vehicle Time	-0.905		
Age	-0.561		
AV Wait Time	-0.375		
Income	0.102		

Elasticity Table

An intriguing question: MTLDNNs and NLs

Future Studies

Other applications

- Data fusion (e.g. across cities, states, etc.)
- Joint decisions (e.g. activity pattern, mode choice, etc.)
- More than two tasks.
- etc.

Other MTLDNN architectures

Using the transfer learning framework

Summary

- 1. Introduce: MTLDNNs and RP&SP
- 2. MTLDNNs are more general than NLs
- 3. Results
 - Empirically MTLDNNs outperform NLs in prediction
 - The better performance can be attributed to the soft constraints (e.g. architectures & regularizations)
 - MTLDNN provides valuable information for AV adoption.
- 4. Future directions: other MTLDNNs and applications

End & Thank You