Continuité

1 Continuité en un point

Définition 1 (Continuité en un point)

Soit f une fonction définie sur un intervalle I, soit $x_0 \in I$.

• On dit que f est continue en x_0 lorsque f admet une limite finie en x_0 . Cette limite est alors nécessairement égale à $f(x_0)$ (cf. chapitre précédent)

Autrement dit:

f est continue en $x_0 \iff$

- Si f n'est pas continue en x_0 , on dit que x_0 est un point de discontinuité de f.
- On dit que f est continue à gauche (resp. à droite) en x_0 lorsque :

Remarque 1

Bien-sûr, pour que f soit continue en x_0 , il est nécessaire que f soit définie en x_0 !

Proposition 1 (Continuité à gauche et à droite)

Soit $x_0 \in I$, qui n'est pas une extrémité de I.

f est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0 .

Preuve:

D'après le Théorème 1 du chapitre "Limites de fonctions",

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0) \Longleftrightarrow \lim_{x \to x_0} f(x) = f(x_0).$$

Exemple

La fonction partie entière $x \mapsto |x|$ n'est pas continue aux points entiers.

Si $k \in \mathbb{Z}$, elle est continue à droite en k, mais pas à gauche de k!

Elle est en revanche continue en tout point de $\mathbb{R} \setminus \mathbb{Z}$.

✓ Dessin:

Exercice 1

On définit $f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$. Montrer que f est continue en 0.

2 Fonctions continues

2.1 Définition et exemples fondamentaux

Définition 2 (Fonction continue sur un intervalle)

Soit D une partie de \mathbb{R} (en pratique : un intervalle ou une union d'intervalles).

On dit qu'une fonction $f: D \to \mathbb{R}$ est continue sur le domaine D lorsqu'elle est continue en tout point x_0 de D.

L'ensemble des fonctions continues sur D (et à valeurs dans \mathbb{R}) est noté

ou plus succinctement

Proposition 2 (Continuité des fonctions usuelles)

- Les polynômes et les fractions rationnelles (= quotient de deux polynômes),
- La valeur absolue $x \mapsto |x|$,
- Les fonctions puissances $x \mapsto x^{\alpha}$ (pour $\alpha \in \mathbb{R}$), la racine carrée $x \mapsto \sqrt{x}$,
- L'exponentielle exp, le logarithme ln,
- Les fonctions trigonométriques sin, cos, tan, arctan sont toutes continues sur leurs domaines de définition.

Remarque 2

Ce domaine de définition n'est pas toujours un intervalle!

La fonction $f: x \mapsto \frac{x^2+1}{x(x-1)}$ est continue en tout point de $D_f =$

2.2 Opérations et continuité

Proposition 3 (Somme, produit, quotient de fonctions continues)

Soient f et g deux fonctions continues sur un domaine D, soit $\lambda \in \mathbb{R}$.

Alors les fonctions f + g, fg, λf et $\frac{f}{g}$ (lorsqu'elle existe) sont continues sur D.

Preuve:

Conséquence directe des règles de calcul de limites. Exemple pour la somme : pour tout $x_0 \in D$,

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0) = (f+g)(x_0).$$

Proposition 4 (Composition de fonctions continues)

Si $f \in \mathcal{C}(D_f, \mathbb{R})$ et $g \in \mathcal{C}(D_g, \mathbb{R})$ avec $f(D_f) \subset D_g$, alors $g \circ f \in \mathcal{C}(D_f, \mathbb{R})$.

Preuve:

Conséquence directe du résultat de composition de limites : pour tout $x_0 \in D_f$,

$$\lim_{x \to x_0} (g \circ f)(x) = \lim_{x \to x_0} g(f(x)) = \lim_{y \to f(x_0)} g(y) = g(f(x_0)) = (g \circ f)(x_0).$$

Après avoir déterminé le domaine de définition D_f d'une fonction f, on pourra souvent annoncer :

"f est continue sur D_f comme somme/produit/quotient/composée de fonctions usuelles".

Exemples

- $f: x \mapsto xe^x$ est continue sur \mathbb{R} comme produit de fonctions usuelles.
- $g: x \mapsto \frac{\sqrt{x-1}}{1+x^2}$ est continue sur $[1, +\infty[$ comme composée et quotient de fonctions usuelles.

Prolongement par continuité en un point

Exercice 2

On pose $g: x \mapsto \frac{\ln(1+x)}{x}$. 1. Déterminer le domaine de définition de g. 2. Peut-on prolonger g en une fonction continue \widetilde{g} sur un domaine plus grand?

Dessin:

业 Théorème 1 (Prolongement par continuité)

Soit I un intervalle, $x_0 \in I$ et $f: I \setminus \{x_0\} \to \mathbb{R}$.

Si f admet une limite finie ℓ en x_0 , alors on peut prolonger f par continuité en x_0 :

La fonction
$$\widetilde{f}$$
 définie sur I par $\forall x \in I, \ \widetilde{f}(x) = \left\{\right.$

est appelée prolongement par continuité de f en x_0 .

- La fonction \widetilde{f} est continue en x_0 .
- De plus, si f est continue sur $I \setminus \{x_0\}$, alors \widetilde{f} est continue sur I tout entier.

✓ Dessin :

Preuve du Théorème 1:

- On a $\lim_{x \to x_0} \widetilde{f}(x) = \lim_{x \to x_0} f(x) = \ell$. (Si ce n'est pas clair, considérer les limites à gauche/droite). Comme par définition $\widetilde{f}(x_0) = \ell$, on obtient $\lim_{x \to x_0} \widetilde{f}(x) = \widetilde{f}(x_0) : \widetilde{f}$ est continue en x_0 .
- Supposons de plus que f est continue sur $I \setminus \{x_0\}$. Vérifions alors que \widetilde{f} est continue sur $I \setminus \{x_0\}$. Soit $x_1 \in I \setminus \{x_0\}$, vérifions que $\lim_{x \to x_1} \widetilde{f}(x) = \widetilde{f}(x_1)$. On a :

$$\lim_{x \to x_1} \widetilde{f}(x) = \lim_{x \to x_1} f(x) \quad \left(\text{ car } f(x) = \widetilde{f}(x) \text{ au voisinage de } x_1 \right)$$
$$= f(x_1) \quad \left(\text{ car } f \text{ est continue en } x_1 \right)$$
$$= \widetilde{f}(x_1) \quad \left(\text{ car } f(x) = \widetilde{f}(x) \text{ pour } x \neq x_0 \right), \text{ d'où le résultat.}$$

ã Méthode : Montrer qu'une fonction est prolongeable par continuité en un point.

Soit I un intervalle, $x_0 \in I$ et $f: I \setminus \{x_0\} \to \mathbb{R}$.

(le point x_0 peut être une extrémité de I, ou bien être dans l'intérieur de I).

Pour montrer que la fonction f est prolongeable par continuité en x_0 , il faut et il suffit de vérifier que la limite $\ell = \lim_{x \to x_0} f(x)$ existe et est finie (i.e différente de $\pm \infty$).

On peut alors en "étendre" naturellement la définition de f au point x_0 en posant " $f(x_0) = \ell$ ". Au lieu de "redéfinir" directement la fonction f, on introduit souvent une nouvelle fonction \widetilde{f} .

Exemple

Rappelons que pour $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, la fonction $f: x \mapsto x^{\alpha}$ est définie uniquement sur En revanche, pour un exposant $\alpha > 0$, cette fonction est prolongeable par continuité en 0!

On a en effet $\lim_{x\to 0} f(x) = \lim_{x\to 0^+} e^{\alpha \ln(x)} = \lim_{y\to -\infty} e^{\alpha y} = 0 \quad (\operatorname{car} \, \alpha > 0).$

Ainsi, on peut définir le prolongement par continuité : $\widetilde{f}(x) =$

Il s'agit alors d'une fonction définie et continue sur

3 Théorème des valeurs intermédiaires (TVI)

3.1 Le théorème

★ Théorème 2 (Théorème des valeurs intermédiaires (TVI))

Soient $a, b \in \mathbb{R}$ avec a < b. Soit f une fonction continue sur [a, b] (i.e $f \in \mathcal{C}([a, b], \mathbb{R})$). Alors:

✓ Dessin :

Remarques 3

- La notation [f(a), f(b)] désigne : { Le segment [f(a), f(b)] si $f(a) \le f(b)$ Le segment [f(b), f(a)] si $f(b) \le f(a)$
- $\bullet\,$ Notons qu'un tel réel c n'est pas forcément unique! On verra que l'unicité nécessite une hypothèse supplémentaire sur f: la stricte monotonie.

A Attention !

Le TVI ne décrit pas <u>toutes les valeurs atteintes</u> par f sur le segment [a,b] !

Il se contente d'affirmer que "toute valeur entre f(a) et f(b) est atteinte par f sur [a,b]".

Ceci pourrait s'exprimer en disant : $[f(a), f(b)] \subset f([a, b])$.

L'inclusion réciproque est fausse en général!

(toutes les valeurs atteintes sur [a,b] ne sont pas forcément entre f(a) et f(b))

Exemple: La fonction sin est continue sur le segment $I = [0, \frac{3\pi}{4}], \sin(0) = 0, \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}.$

D'après le TVI, toute valeur λ entre 0 et $\frac{\sqrt{2}}{2}$ est atteinte par sin sur I.

Mais toutes les valeurs atteintes par sin sur I ne sont pas entre 0 et $\frac{\sqrt{2}}{2}$: $\sin(\frac{\pi}{2}) = 1 > \frac{\sqrt{2}}{2}$.

Le TVI s'emploie souvent conjointement avec un tableau de variation.

Exemple

x	0	1	3
f(x)	2	-3	1

Si une fonction continue f admet ce tableau de variation, **d'après le TVI**, on peut affirmer :

- $\exists c_1 \in [0,1], \ f(c_1) = 0$
- $\exists c_2 \in [1,3], \ f(c_2) = -2.$

(par exemple!)

3	gorithme de ve du TVI :	dichotomie			
	Dessin:				

Cet algorithme de dichotomie peut être implémenté concrètement en Python pour déterminer une solution approchée d'une équation $f(c) = \lambda$ (d'inconnue c).

Il suffit de construire progressivement les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$: on a toujours l'encadrement $a_n\leqslant c\leqslant b_n$, et cet encadrement devient de plus en plus précis à mesure que n augmente!

Exercice 3

Pour tout x > 0, on pose $f(x) = x^2 - 2 - \ln(x)$.

- 1. Justifier qu'il existe $c \in [1,2]$ tel que f(c) = 0. On admet qu'un tel c est unique.
- 2. Compléter le programme suivant pour que l'appel de dichotomie(eps) (pour un eps= $\varepsilon > 0$) renvoie deux valeurs encadrant c à eps près.

```
import numpy as np

def f(x):
    y = .....
    return(y)

def dichotomie(eps):
    a=1; b=2
    while .....:
        c = (a+b)/2
        if .....:
        a = .....
    else:
        b = ......
    return(a,b)
```

3.3 Applications du TVI

• Corollaire 1 (Changement de signe et annulation)

- Si une fonction continue change de signe sur un intervalle, alors elle s'annule au moins une fois sur cet intervalle.
- Contraposée : Si une fonction continue ne s'annule pas sur un intervalle, alors elle est de signe constant sur cet intervalle.

Exercice 4

Retrouver le fait (déjà évoqué!) que tout polynôme de degré impair admet au moins une racine.

₩ Méthode : Monter qu'une équation admet (au moins) une solution

On considère une équation de la forme $f(x) = \lambda$, d'inconnue x. $(\lambda \in \mathbb{R} \text{ est fixé})$.

On veut montrer que cette équation admet au moins une solution sur l'intervalle I.

- $\boxed{1}$ Affirmer (en justifiant éventuellement) que f est continue sur I.
- 2 Monter que λ se situe entre deux valeurs atteintes par f (Pour cela, on peut éventuellement dresser le tableau de variation de f sur I.)
- 3 Citer le Théorème des Valeurs Intermédiaires et conclure.

Remarque : Pour une équation de la forme f(x) = g(x) d'inconnue x, on posera plutôt h(x) = f(x) - g(x) pour se ramener à l'équation h(x) = 0 d'inconnue x. On applique le TVI à la fonction h pour espérer conclure.

Exercice 5

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $x = e^{-nx}$ admet (au moins) une solution dans \mathbb{R}_+ .
- 2. Soit $f:[0,1] \to [0,1]$ une fonction continue.

Montrer que f admet un point fixe, c'est à dire qu'il existe $x \in [0,1]$ tel que f(x) = x.

3.4 Autre interprétation du TVI : image d'un intervalle par une fonction continue

Définition 3 (Qu'est-ce qu'un intervalle?)

$$[x,y] = \{ z \in \mathbb{R} \mid x \leqslant z \leqslant y \}$$

 \bullet Intervalle : On dit qu'une partie I de $\mathbb R$ est un intervalle si elle satisfait :

Pour tous
$$x, y \in I$$
 avec $x \leq y$, $[x, y] \subset I$.

Autrement dit, tout segment tracé entre deux points de I reste dans I. (Cette propriété s'appelle la convexité.)

Remarque 4

Bien-sûr, concrètement, on sait qu'un intervalle I est nécessairement de la forme :

$$[a,b] \ \text{ou} \]a,b] \ \text{ou} \ [a,b[\ \text{ou} \]a,b[\ \text{avec} \ a \in \mathbb{R} \cup \{-\infty\} \text{ et } b \in \mathbb{R} \cup \{+\infty\}.$$

Le Théorème des Valeurs Intermédiaires a la conséquence suivante :

Proposition 5 (Image d'un intervalle par une fonction continue)

Soit f une fonction continue sur un intervalle I.

Alors l'ensemble image $f(I) = \{f(x), x \in I\}$ est

On peut résumer cette propriété ainsi :

L'image d'un intervalle par une fonction continue est

Preuve:

Remarque 5

On utilise en fait "intuitivement" cette propriété depuis longtemps, lorsque l'on lit l'image directe d'un intervalle par une fonction (continue) sur un tableau de variation ou sur un graphe!

Exercice 6

On considère $f: \begin{array}{c} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{array}$. Déterminer f([1,2]), f(]-1,1[) et l'ensemble image $f(\mathbb{R})$.

4 Théorème de la bijection

Le Théorème de la bijection monotone a déjà été évoqué (en "spoiler") dans le chapitre "Applications". On peut à présent en donner un énoncé précis.

★ Théorème 3 (Théorème de la bijection (monotone))

Soit f une fonction **continue** et **strictement monotone** sur un intervalle I.

Alors f réalise une bijection de I dans J=f(I), qui est également un intervalle.

La bijection réciproque $f^{-1}: J \to I$ est

Son sens de variation est

Preuve partielle:

Soit $f \in \mathcal{C}(I, \mathbb{R})$, strictement monotone.

- On a déjà vu (cf. chapitre "Fonctions numériques usuelles") qu'une fonction strictement monotone est injective. Ainsi f est injective, donc réalise automatiquement une bijection de I dans son image J = f(I).
- On sait que l'image d'un intervalle par une fonction continue est un intervalle (Proposition 5), donc J = f(I) est un intervalle.
- Si f est strictement croissante, alors f^{-1} également. En effet : soient $x, y \in I$ avec x < y. Si on avait $f^{-1}(x) \ge f^{-1}(y)$, alors en composant par $f : x \ge y$, absurde! Donc $f^{-1}(x) < f^{-1}(y)$.
- De même, si f est strictement décroissante, alors f^{-1} également.
- On admet que f^{-1} est continue sur J. (Preuve délicate "avec des ε "...)

Remarques 6

• Comme d'habitude, l'intervalle J = f(I) se lit facilement à partir du tableau de variation de f! Dans le cas où f est strictement croissante par exemple :

- Si
$$I = [a, b]$$
 alors $f(I) = [\alpha, \beta]$.
- Si $I =]a, b]$ alors $f(I) =]\alpha, \beta]$.
- Si $I = [a, b[$ alors $f(I) = [\alpha, \beta[$.
- Si $I =]a, b[$ alors $f(I) =]\alpha, \beta[$.

On note en particulier que : f([a,b]) =

• Rappel : On sait que la courbe représentative de f^{-1} est la symétrique de celle de f par apport à la diagonale y = x. On retrouve ainsi, sur un dessin, la continuité et le sens de variation de f^{-1} .

✓ Dessin :

• Corollaire 2 (TVI avec stricte monotonie)

Soient $a, b \in \mathbb{R}$ avec a < b. Soit f une fonction continue et <u>strictement monotone</u> sur [a, b]. Alors :

Preuve:

D'après le théorème de la bijection, f réalise une bijection de [a,b] vers f([a,b])=[f(a),f(b)]. L'unique réel c tel que $f(c)=\lambda$ est tout bonnement $c=f^{-1}(\lambda)$!

™ Méthode : Monter qu'une équation admet une unique solution

On considère une équation de la forme $f(x) = \lambda$, d'inconnue x. $(\lambda \in \mathbb{R} \text{ est fixé})$.

On veut montrer que cette équation admet une unique solution sur l'intervalle I.

- 1 Affirmer (en justifiant éventuellement) que f est continue et strictement monotone sur I.
- [2] Monter que λ se situe entre deux valeurs atteintes par f (Pour cela, on peut éventuellement dresser le tableau de variation de f sur I.)
- 3 Citer le Théorème de la bijection et conclure.

Remarque : Pour une équation de la forme f(x) = g(x) d'inconnue x, on posera plutôt h(x) = f(x) - g(x) pour se ramener à l'équation h(x) = 0 d'inconnue x.

Exercice 7

Étude d'une suite implicite.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $x = e^{-nx}$ admet une unique solution dans \mathbb{R}_+ . On note cette solution $u_n \in \mathbb{R}_+$.
- 2. En notant que pour tout $n \in \mathbb{N}$, $f_n \leqslant f_{n+1}$, montrer que $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge. On note $\ell = \lim_{n\to+\infty} u_n$.
- 4. En raisonnant pas l'absurde, montrer que $\ell = 0$.

5 Fonction continue sur un segment
Théorème 4 (Théorème des bornes atteintes (admis))
Soit f une fonction continue <u>sur un segment</u> $[a,b]$. Alors :
Remarque 7
Ce résultat est faux si l'on ne se place pas sur un segment! Si f est une fonction continue sur un intervalle I ouvert au moins d'un côté, il est possible que : • f ne soit pas majorée et/ou pas minorée • f soit bornée mais n'atteigne pas sa borne supérieure et/ou sa borne inférieure.
✓ Dessin:

Proposition 6 (Image d'un segment par une fonction continue)

Soit f une fonction sur un segment [a, b].

Alors en notant $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$, on a f([a,b]) =

On peut résumer cette propriété ainsi :

L'image d'un segment par une fonction continue est

Preuve:

À savoir faire à l'issue de ce chapitre :

Au minimum

- \bullet Justifier qu'une fonction est continue lors que c'est nécessaire.
- Étudier la continuité d'une fonction en un point particulier.
- Montrer qu'une fonction est prolongeable par continuité en un point.
- Utiliser le TVI et le Théorème de la bijection pour montrer qu'une équation admet une (unique) solution.

Pour suivre

- Étudier une suite implicite de type $f_n(u_n) = 0$.
- Connaître et exploiter le Théorème des bornes atteintes

Pour les ambitieux

• Connaître parfaitement l'algorithme de dichotomie et savoir le programmer en Python.