§1 Discrete Random Variables

Random Variable	Support	P[X=i]	E[X]	Var(X)
$\overline{\text{Bernoulli}(p)}$	{0,1}	P[X=1] = p	p	p(1-p)
(Indicator)		P[X=0] = 1 - p		
$\operatorname{Bin}(n,p)$	$\left\{0,1,\ldots,n\right\}$	$\binom{n}{i} p^i (1-p)^{n-i}$	np	np(1-p)
$\operatorname{Hypergeometric}(N,B,n)$	$\{0,1,\ldots,n\}$	$\frac{\binom{B}{i}\binom{N-B}{n-i}}{\binom{N}{n}}$	$n\frac{B}{N}$	$n\frac{B}{N}(1-\frac{B}{N})(\frac{N-n}{N-1})$
$\mathrm{Uniform}\{1,\ldots,n\}$	$\{1,2,\ldots,n\}$	$\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
Geometric(p)	$\{1,2,3,\dots\}$	$(1-p)^{i-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\mathrm{Poisson}(\lambda)$	$\{0,1,2,\dots\}$	$rac{\lambda^i}{i!}e^{-\lambda}$	λ	λ

§2 Continuous Random Variables

Random Variable	Support	p.d.f., $f_X(x)$	c.d.f., $P[X \le x]$	E[X]	Var(X)
$\mathrm{Uniform}[0,\ell]$	$[0,\ell]$	$\frac{1}{\ell}$	$\frac{x}{\ell}$	$\frac{\ell}{2}$	$\frac{\ell^2}{12}$
$-$ Exp (λ)	$[0,\infty)$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\frac{\mathcal{N}(\mu, \sigma^2)}{\text{(Gaussian)}}$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	μ	σ^2

§3 Concentration Inequalities

Theorem (Markov's Inequality)

For nonnegative finite mean random variable X,

$$P[X \ge c] \le \frac{E[X]}{c} \qquad \forall c > 0$$

Theorem (Chebyshev's Inequality)

For finite mean random variable X,

$$P[|X - E[X]| \ge c] \le \frac{\operatorname{Var}(X)}{c^2} \qquad \forall c > 0$$

Theorem (Weak Law of Large Numbers)

For i.i.d. random variables X_1, X_2, \ldots with common expectation $E[X_i] = \mu \ \forall i$,

$$P\left[\left|\frac{1}{n}(X_1 + X_2 + \dots + X_n) - \mu\right| < \varepsilon\right] \to 1 \quad \text{as } n \to \infty \quad \forall \varepsilon > 0$$