

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Т <u>«СПЕЦИАЛЬНОЕ МАШИНОСТРОЕНИЕ»</u>								
КАФЕДРА	ЕДРА «РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)								
	дом	АШНІ	ЕЕ ЗАДАНІ	ME					
		по дис	сциплине:						
	Баллисти	ка ракетно	ого и ствольного	оружия					
		НА	ТЕМУ:						
((Внутрибал	листическ	сое проектирова	ние РДТТ»					
		ВАРИАНТ N СОСТАВ ТР	13						
Выполнил: студ	дент группы	CM6-71	(подпись, дата)	Гарпинич Д.Н. (И.О. Фамилия)					
Проверил			(подпись, дата)	Федотова К.В. (И.О. Фамилия)					

Исходные данные

Таблица 1. Исходные данные

	Oci	новные исходн	ые дан	ные		
Наружный ди	аметр РДТТ <i>D</i>	H, MM			610	
Полный импу	льс тяги РДТТ	ГІР, кН∙с			2250	
Продолжител	ьность работы	РДТТ в номин	альном	режиме $t_{\text{ном}}$, c 20	
Примечание (OTPK ATACMS (CIIIA)					
		Характеристи	ки ТРТ	Γ	·	
Краткое обозначение	Содержание,	Условна химическ		Δh_{f298}^0 ,	ρ,	
ОООЗПАЧЕНИЕ	70	формула	a	кДж / кг	кг/м ³	
ПБКГ	14	$C_{7.075}H_{10.65}O_{0.223}N_{0.063}$ -890			920	
ПХА	66	NH ₄ ClO	4	-2510	1950	
Гидрид алюминия	20	AlH ₃ -420			1500	
	Пара	метры закона	горени	я ТРТ		
<i>u</i> ₁ , мм/с·МПа 4,38						
	29					
u, мм/с ($p = 5$ МПа) 7,0					0	
		0,002				

Таблица 1. Продолжение

Характеристики воспламен	ительн	ого состава			
Состав	П				
	74% K	INO3			
		13,6% C			
Содержание компонентов		10,4% S			
Δh_{f298}^0 , кДж / кг		-39	40		
Зависимость скорости горения от давления (<i>u</i> в мм / c)	$\frac{p}{066,5}$)0,226				
К-т температурной чувствительности скорос горения D_{tb} , $1/K$	01				
δ , kg/m ³	50				
Характеристики материала кор	опуса РД	LTT (AISI 434)	0)		
Плотность ρ_{κ} , $\kappa \Gamma/M^3$	Плотность ρ_{κ} , $\kappa \Gamma/M^3$ 7800				
Предел прочности σ _{вр} , МПа 1830					
Условный предел текучести σ _{0.2} , МПа					
Характеристики материалов теплоз	ащитн	ых покрытий	(ТЗП)		
Плотность материала ТЗП камер	1500				
Плотность материала ТЗП сопла	1750				
Плотность материала защитно-крепящего с	920				
Плотность материала вкладыша критическо	2200				

1. Термодинамический расчет

Для заданного состава СТРТ проводится расчёт в программе «*Terra*». Давление в камере 4 МПа, давление атмосферное 0,1 МПа, режим адиабатического расширения, расширение «замороженное».

Полученные данные для трех участков ДУ приведены в табл. 2.

Таблица 2. Результат термодинамического расчёта

Параметры термодинамического равновесия									
p, MΠa	4	<i>I</i> , кДж / кг	-1865,2	T_p , K	2999,5				
Те	Теплофизические характеристики продуктов сгорания								
<i>c_p</i> , Дж / (кг·К)	2,2367	Z	0,3239						
<i>c_{pg}</i> , Дж / (кг·К)	2,5429		0,48726	μ _g , Па∙с	0,8363·10 ⁻⁴				
	Параметры потока в критическом сечении сопла								
β, м / с 1649,3 <i>І</i> _{удн} , м / с			2039,5	n	1,1604				
	Параметр	ы потока в вых	кодном сече	нии сопла					
		(равновесное р	расширение))					
<i>v_a</i> , м / с	2550,2	<i>I</i> _{удп} , м / с	2812,2	n	1,1619				
Параметры потока в выходном сечении сопла									
(«замороженное» расширение)									
<i>v_a</i> , M / c	v _a , м / с 2532								

2. Определение диапазонов варьирования входных проектных параметров

Входными проектными параметрами являются относительная площадь выходного сечения сопла f_a и степень расширения сопла v_a :

$$f_a = \frac{F_a}{F_m}$$
; $v_a = \frac{F_a}{F_{KD}}$.

Чтобы определить рациональные диапазоны варьирования проектных параметров необходимо определить границы области допустимых баллистических решений (ОДБР). При решении данной задачи используются следующие ограничения:

- по уровню номинального давления ($p_{\text{ном}} = p_{\text{min}} \dots p_{\text{max}}$, где $p_{\text{min}} = 4 \text{ МПа}$, а $p_{\text{max}} = 20 \text{ МПа}$);
- по отсутствию перерасширения сопла ($p_a \ge p_h$, где $p_h = 0,1$ МПа);
- по удельному импульсу ($I_{YA} \ge I_{YA \min}$);
- по поперечным габаритам сопла ($f_a \ge f_{a \max}$, где $f_{a \max} = 0.9$).

Определение границ ОДБР начинается с нахождения точек пересечения границы $p_a = p_h$ с границами $p_{\text{ном}} = p_{\text{min}}$ (точка 1) и $p_{\text{ном}} = p_{\text{max}}$ (точка 2). При заданном давлении ($p = p_{\text{ном}}$) приведённая скорость потока в выходном сечении сопла для заданных точек находится из газодинамической (ГД) функции (1)

$$\lambda_a(p) = \lambda_{\text{max}} \sqrt{1 - \left(\frac{p_a}{p}\right)^{\frac{n-1}{n}}}, \tag{1}$$

где

$$\lambda_{\max} = \sqrt{\frac{n+1}{n-1}} \,.$$

Показатель политропы n во всех расчётах равен показателю политропы в выходном сечении сопла для «замороженного» адиабатического расширения, если не указывается иное значение.

Относительная площадь выходного сечения сопла, необходимая для обеспечения заданного уровня тяги, определяется по формуле (2)

$$f_a(p, \lambda_a) = \frac{\eta_f}{\frac{p}{p_h} (\lambda_a^2 + 1) \varepsilon(\lambda_a) \zeta(\lambda_a) - 1},$$
(2)

где:

• приведённая тяга (η_f) определяется по формуле

$$\eta_f = \frac{P}{p_h F_m},$$

где площадь миделя ЛА (F_m) определяется по формуле

$$F_m = \frac{\pi D_{\rm H}^2}{\Delta};$$

• ГД функция є определяется по формуле

$$\varepsilon(\lambda_a) = \left(1 - \frac{k-1}{k+1}\lambda_a^2\right)^{\frac{1}{k-1}},$$

где показатель адиабаты равен показателю политропы (k = n);

 поправочный коэффициент, учитывающий потери тяги и удельного импульса, обусловленные наличием конденсированной фазы в продуктах сгорания (ζ) определяется по формуле

$$\zeta(\lambda_a) = (1-z) + z \frac{2k}{k+1} \frac{\lambda_a^2}{\lambda_a^2 + 1}.$$

Удельный импульс двигателя, реализуемый в точках 1 и 2, определяется по формуле (3)

$$I_{yx}(p, \lambda_a) = \beta \left(\left(\lambda_a + \lambda_a^{-1} \right) \varepsilon(1) \zeta(\lambda_a) - \frac{p_h}{p} \frac{1}{q(\lambda_a)} \right).$$

$$\beta = \frac{\sqrt{R_{cm} \chi T_p}}{A_n},$$
(3)

где:

$$R_{\text{cm}} = R_g (1-z); \ A_n = \sqrt{n \left(\frac{2}{n+1}\right)^{\frac{n+1}{n-1}}}.$$

Для постоянной расхода (A_n) используется показатель политропы (n), соответствующий критическому сечению сопла.

Значение, полученное при определении удельного импульса двигателя в точке 1, является минимальным на линии 1-2 ($I_{\rm уд1}$). Приведённая скорость потока в точке 3, для которой $p_{\rm ном} = p_{\rm max}$ и $I_{\rm уд} = I_{\rm уд1}$, определяется итерационным путём из условия

$$I_{\mathrm{y}\mathrm{I}}(p_{\mathrm{max}}, \lambda_{a3}) = I_{\mathrm{y}\mathrm{I}1},$$

где значение λ_{a3} определяется из диапазона $1...\lambda_{a1}$.

Определив значения λ_{a3} определяется значение f_{a3} по формуле (2).

Также для точек 1, 2 и 3 определяются ГД функции v_a и p_a :

$$v_a(\lambda_a) = \frac{1}{q(\lambda_a)}; \tag{3}$$

$$p_a(p, \lambda_a) = p\pi(\lambda_a), \tag{4}$$

где ГД функции q и π определяются по формулам:

$$q(\lambda_a) = \frac{\lambda_a \left(1 - \frac{k-1}{k+1} \lambda_a^2\right)^{\frac{1}{k-1}}}{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}}; \ \pi(\lambda_a) = \left(1 - \frac{k-1}{k+1} \lambda_a^2\right)^{\frac{k}{k-1}}.$$

Результаты расчётов параметров в точках 1, 2, 3 по формулам (1-4) представлены в табл. 3.

Таблица 3. Значения параметров в трёх точках

Точка	λ_a	v_a	f_a	$p_{\scriptscriptstyle{ ext{HOM}}}$, $ ext{HOM}$	p_a / p_h	<i>I</i> _{уд} , м / с
				МПа		
1	2,29	6,23	0,40	4	1	2421
2	2,60	21,57	0,24	20	1	2788
3	2,03	3,07	0,04	20	13,22	2421

Границы ОДБР в координатах (v_a , f_a) определяются параметрическим способом. Для этого с некоторым шагом (0,001) задаются диапазоны значений λ_a , соответствующие линиям 1–2, 3–2 и 3–1. Для каждой линии определяются значения v_a по формуле (3) и значения f_a :

• для линии $1-2 (p_a = p_h)$

$$f_a(\lambda_a) = \frac{\eta_f}{\frac{p_a}{p_h} \frac{\lambda_a^2 + 1}{\tau(\lambda_a)} \zeta(\lambda_a) - 1},$$

где

$$\tau(\lambda_a) = 1 - \frac{k-1}{k+1} \lambda_a^2;$$

- для линии 3-2 ($p_{\text{ном}} = p_{\text{max}}$) расчёт выполняется по формуле (2);
- для линии 3-1 ($I_{yд} = I_{yд1}$)

$$f_a(\lambda_a) = \eta_f \left(\frac{\beta}{I_{yx}} (\lambda_a + \lambda_a^{-1}) \epsilon(1) \zeta(\lambda_a) - 1 \right).$$

График границ ОДБР, построенных в координатах (v_a, f_a), представлен на рис.1.

Рис. 1. Границы ОДБР

В качестве опорного значения рассматривается $f_a = f_{a2}$.

Минимальное значение λ_a , соответствующее f_a , равняется большему из корней уравнения

$$a\lambda_a^2 + b\lambda_a + c = 0,$$

где коэффициенты a, b и c равны:

$$a = 1 + z \frac{n-1}{n+1};$$

$$b = -\frac{I_{y\pi 1}}{\beta \varepsilon (1)} \left(1 + \frac{f_a}{\eta_f} \right);$$

$$c = 1 - z.$$

Максимальное значение λ_a , соответствующее f_a , при $f_a = f_{a2}$ равняется λ_{a2} . Полученные значения $\lambda_{a \text{ min}}$ и $\lambda_{a \text{ max}}$ представлены в табл. 4 (1 и 11 точки соответственно).

3. Обоснование проектных параметров РДТТ

С помощью заданных величин $D_{\rm H}$, I_{P} , $t_{\rm Hom}$ и известных характеристиках ТРТ сочетание f_a и λ_a определяются все оставшиеся проектные параметры РДТТ.

Диапазон значений $\lambda_{a \text{ min}}...\lambda_{a \text{ max}}$ разбивается на 11 расчётных точек. Для каждой точки проводится ряд вычислений, позволяющих определить массовые и габаритные характеристики РДТТ. После сравнения полученных вариантов осуществляется выбор наилучшего на основе определённого критерия качества.

3.1. Определение номинального давления в камере сгорания

Удельный импульс двигателя в атмосфере (из условия заданного уровня тяги) определяется по формуле (5)

$$I_{yx}(I_{yxx}) = I_{yxx}(\lambda_a) \frac{\eta_f}{\eta_f + f_a}, \tag{5}$$

где удельный импульс двигателя в пустоте ($I_{\text{удп}}$) рассчитывается по формуле

$$I_{\text{удп}}(\lambda_a) = \beta((\lambda_a + \lambda_a^{-1})\epsilon(1)\zeta(\lambda_a)).$$

Номинальное давление в камере сгорания (КС) определяется по формуле (6):

$$p_{\text{ном}}\left(\mathbf{v}_{a},\,I_{\text{удп}},\,I_{\text{уд}}\right) = p_{h} \frac{\beta \mathbf{v}_{a}\left(\lambda_{a}\right)}{I_{\text{удп}}\left(\lambda_{a}\right) - I_{\text{уд}}\left(\lambda_{a}\right)}. \tag{6}$$

Также ещё выполняется рассчёт давления в выходном сечении сопла (p_a) по формуле (4).

Результаты расчётов значений пармаетров по формулам (4 – 6) представлены в табл. 4.

Таблица 4. Определение номинального давления в камере сгорания

	λ_a	v_a	f_a	$p_{\text{ном}}$, МПа	p_a/p_h	<i>I</i> _{уд} , м / с
1	2,18	4,466	0,24	4,824	1,892	2424,487
2	2,222	5,037	0,24	5,363	1,785	2459,929
3	2,264	5,72	0,24	6,003	1,684	2495,579
4	2,306	6,54	0,24	6,767	1,587	2531,425
5	2,348	7,535	0,24	7,686	1,494	2567,456
6	2,39	8,749	0,24	8,801	1,405	2603,662
7	2,432	10,245	0,24	10,165	1,321	2640,034
8	2,474	12,107	0,24	11,848	1,24	2676,565
9	2,516	14,447	0,24	13,947	1,163	2713,245
10	2,558	17,422	0,24	16,593	1,089	2750,068
11	2,6	21,25	0,24	19,971	1,018	2787,027

3.2. Выбор формы топливного заряда и определение его геометрических характеристик

Для выбора формы заряда предварительно строится зависимость приведённой толщины свода (e_d) от номинального давления в КС из условия обеспечения заданной продолжительности работы РДТТ (7)

$$e_d(u) = \frac{2}{D_{\text{\tiny MO}}} u(p) t_{\text{\tiny HOM}}, \tag{7}$$

где:

• закон горения определяется по формуле (8)

$$u(p) = u_1 p^{\vee}; \tag{8}$$

• внутренний диаметр КС

$$D_{\rm KC} = 0.96 D_{\rm H}$$
.

По среднему значению диапазона e_d определяется форма заряда. Из результатов, представленных в табл. 5, делается вывод о том, что заряд щелевой с цилиндрическим каналом ($e_d = 0,5...0,75$).

После выбора формы заряда задаются характерные значения его основных геометрических параметров.

Рекомендуемые значения параметров щелевого заряда:

- количество щелей (n = 4);
- относительная длина щели ($\bar{a} = 0.3$);
- относительная ширина щели ($\bar{c} = 0.3$);

Из полученных по формуле (7) значений e_d выбираются точки, для которых выполняется условие применимости для щелевого заряда

$$e_d(u) < 1 - \overline{c}$$

Коэффициент заполнения объёма цилиндрической части КС для заряда щелевого типа рассчитывается по формуле (9)

$$\varepsilon_{\omega}\left(\varepsilon_{f}, f_{\mathbf{m}}\right) = \varepsilon_{f}\left(\overline{d}\right) - \overline{a}f_{\mathbf{m}}\left(\overline{d}\right), \tag{9}$$

где:

• коэффициент заполнения поперечного сечения КС для заряда щелевого типа рассчитывается по формуле

$$\varepsilon_f(\overline{d}) = 1 - \overline{d}(e_d)^2$$

где

$$\overline{d}(e_d) = 1 - e_d(u);$$

• относительная суммарная площадь поперечного сечения щелей (f_{III})

$$f_{\text{III}}\left(\overline{d}\right) = \frac{n}{\pi} \left(\overline{c}\sqrt{1-\overline{c}^2} - \overline{c}\sqrt{\overline{d}^2 - \overline{c}^2} + \arcsin\left(\overline{c}\right) - \overline{d}^2 \arcsin\left(\frac{\overline{c}}{\overline{d}}\right)\right).$$

Масса топлива (из условия обеспечения заданного полного импульса тяги при реализуемом удельном импульсе) определяется по формуле (10)

$$\omega(I_{\rm yg}) = \frac{I_P}{I_{\rm yg}(I_{\rm ygn})}. \tag{10}$$

Длина заряда из условия размещения необходимой массы топлива (11)

$$l_{\rm sap}(\omega, \, \varepsilon_{\omega}) = \frac{\omega(I_{\rm yg})}{\rho_{\rm T} \varepsilon_{\omega}(\varepsilon_f, f_{\rm inj}) F_{\rm kc}}, \tag{11}$$

где:

• плотность ТРТ определяется по формуле

$$\frac{1}{\rho_{\mathrm{T}}} = \sum_{i=1}^{n} \frac{q_i}{\rho_i} \,,$$

где q_i – массовая доля i-го компонента в составе ТРТ;

• площадь КС

$$F_{\rm KC} = \frac{\pi D_{\rm KC}^2}{4} \, .$$

Параметр Победоносцева (начальное значение) для заряда щелевого типа определяется по формуле (12)

$$\kappa \left(l_{\text{sap}}, e_d\right) = \frac{4l_{\text{sap}}\left(\omega, \varepsilon_{\omega}\right)}{D_{\text{kc}}\left(1 - e_d\left(u\right)\right)}.$$
(12)

Результаты расчётов значений пармаетров по формулам (7 – 12) представлены в табл. 5.

Табл. 5. Результаты вычислений

	и, мм / с	e_d	ϵ_{ω}	ω, κΓ	l_{3ap} , M	κ
1	6,913	0,472	0,703	928,032	3,056	39,549
2	7,129	0,487	0,718	914,66	2,95	39,274
3	7,366	0,503	0,734	901,594	2,846	39,117
4	7,626	0,521	0,751	888,828	2,743	39,106
5	7,913	0,54	0,768	876,354	2,642	39,279
6	8,23	0,562	0,787	864,168	2,544	39,687
7	8,581	0,586	0,806	852,262	2,448	40,406
8	8,971	0,613	0,827	840,63	2,355	41,548
9	9,405	0,642	0,848	829,265	2,266	43,291
10	9,891	0,676	0,869	818,161	2,181	45,925
11	10,437	0,713	0,89	807,312	2,1	49,974

По значениям из табл. 5 строятся графики зависимостей параметров e_d , ϵ_{ω} и к от номинального давления в КС. Графики представлены на рис. 2.

Рис. 2. Графики зависимостей $e_d(p_{\text{ном}})$, $\epsilon_{\omega}(p_{\text{ном}})$, $\kappa(p_{\text{ном}})$