SQL BUSSINESS CASE STUDY

1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

1.Q. Data type of all columns in the "customers" table.

```
column_name,
data_type
FROM
```

 $`poetic\text{-}standard\text{-}396616.SQL_BUSSINESS_CASE.INFORMATION_SCHEMA.COLUMNS`$

where table_name = 'customers';

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAI
Row	column_name 🔻	(1	data_type ▼	1
1	customer_id		STRING	
2	customer_unique_id	I	STRING	
3	customer_zip_code	_prefix	INT64	
4	customer_city		STRING	
5	customer_state		STRING	

Insights: We observe that ,customer table consists of String and int data types.

Recommendation: customer table consists of String and int data types.

2.Q Get the time range between which the orders were placed.

select min(order_purchase_timestamp) from_date ,max(order_purchase_timestamp)to_date from `SQL_BUSSINESS_CASE.orders`;

Query results JOB INFORMATION RESULTS JSON EXECUTION DETAIL Row from_date ✓ to_date ✓ 1 2016-09-04 21:15:19 UTC 2018-10-17 17:30:18 UTC

Insights: The time range between which the orders were placed between

2016-09-04 21:15:19 UTC and 2018-10-17 17:30:18 UTC

3.Q Count the Cities & States of customers who ordered during the given period.

select customer_city,customer_state,count(*) total_count from
`SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o

on c.customer_id=o.customer_id

group by customer_city,customer_state

order by customer_city,customer_state;

105 111	EODLIATION	DECLUTO	1001	EVECUTION DET		OLIA DE COCA	
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	CHART PREVI	EW
Row /	customer_city ▼	11	customer_state	→	total_count	▼ //	
1	abadia dos dourad	os	MG			3	
2	abadiania		GO			1	
3	abaete		MG			12	
4	abaetetuba		PA			11	
5	abaiara		CE			2	
6	abaira		ВА			2	
7	abare		BA			2	
8	abatia		PR			3	
9	abdon batista		SC			1	
10	abelardo luz		SC			6	
11	abrantes		BA			2	

Insights: Observed that, the count of orders are not consistent, they were fluctuating over the months and years.

Assumptions: Thinking that ,there may be customers, who haven't placed any orders, so, I filter them by using 2 tables (customers and orders)

2.In-depth Exploration:

1.Q Is there a growing trend in the no. of orders placed over the past years?

select extract(year from order_purchase_timestamp) Year ,count(*)No_Of_Orders

from `SQL_BUSSINESS_CASE.orders`

group by Year

order by Year;

Query results

Insights: Observed that,no. of orders are increaing year by year .So,we can say that the no of orders are growing trend over years.

The increasing percentage in no. of orders over years are also not constant, we can see there is a drastic change in them

3.Q Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

select extract(year from order_purchase_timestamp) Year,extract(Month from order_purchase_timestamp) Month,count(*)

from 'SQL BUSSINESS CASE.orders'

group by Year, Month

order by Year, Month;

Query results

JOB II	NFORMATION	RESULTS	JSON	EXECUTION
Row	Year ▼	Month ▼	/	No_Of_Orders ▼
1	2016		9	4
2	2016		10	324
3	2016		12	1
4	2017		1	800
5	2017		2	1780
6	2017		3	2682
7	2017		4	2404
8	2017		5	3700
9	2017		6	3245
10	2017		7	4026
11	0017		^	4001

Insights: The seasonality of the months is gradually maintained the consistency in the year 2017 and in 2018 but there is a huge drop on orders at the end of 2018.

3.Q During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn

7-12 hrs: Mornings

13-18 hrs: Afternoon

19-23 hrs: Night

with cte as(

select *,case

when extract(hour from order_purchase_timestamp) >= 0 and extract(hour from order_purchase_timestamp)<7 then "Dawn"

when extract(hour from order_purchase_timestamp)>=7 and extract(hour from order purchase timestamp)<13 then "Mornings"

when extract(hour from order_purchase_timestamp)>= 13 and extract(hour from order_purchase_timestamp)<19 then "Afternoon"

when extract(hour from order_purchase_timestamp)>=19 and extract(hour from

```
order_purchase_timestamp)<=23 then "Night"
end as temp
from `SQL_BUSSINESS_CASE.orders`)</pre>
```

select temp time_of_the_day,count(*) no_of_orders from cte
group by temp

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXEC
Row	time_of_the_day	~	no_of_orders	· /
1	Mornings		27	7733
2	Dawn		į	5242
3	Afternoon		38	8135
4	Night		28	3331

Insights: The count of orders is increased at Afternoon time of the day. The smaller number of orders are placed at Dawn.

Recommendation: To introduce new order items, I think it is better to introduce the products at Afternoon time of the day

3. Evolution of E-commerce orders in the Brazil region:

1.Q Get the month on month no. of orders placed in each state.

with cte as

(select c.customer_state,extract(year from order_purchase_timestamp) order_year, extract(month from order_purchase_timestamp) order_month, count(*) no_of_orders from `SQL_BUSSINESS_CASE.orders` o join `SQL_BUSSINESS_CASE.customers` c on o.customer_id=c.customer_id

group by order_year,order_month,customer_state

order by order_year,order_month)

select customer_state,order_year,

order_month, no_of_orders-(lag(no_of_orders) over(order by order_year,order_month)) from cte

order by order_year,order_month,customer_state

JOB IN	NFORMATION	RESULTS	JSON EX	XECUTION DETAILS	CHART PREVIE
Row	customer_state	· //	order_year ▼	order_month ▼	f0_ ▼
1	RR		2016	9	null
2	RS		2016	9	0
3	SP		2016	9	1
4	AL		2016	10	-9
5	BA		2016	10	2
6	CE		2016	10	-32
7	DF		2016	10	2
8	ES		2016	10	-3
9	GO		2016	10	6
10	MA		2016	10	0

Insights: State to State the count orders placed for a month are completely varying. There is no consistency in the rise or fall of orders that are placed by different state people

2.Q How are the customers distributed across all the states?

select customer_state,count(customer_id)No_of_customers_per_state from `SQL_BUSSINESS_CASE.customers`

group by customer_state

order by No_of_customers_per_state

Query results JOB INFORMATION **RESULTS** JSON **EXECUTION DETAILS** Row customer_state ▼ No_of_customers_per_state ▼ 1 SP 41746 2 RJ 12852 MG 11635 4 RS 5466 5 PR 5045 SC 6 3637 7 BΑ 3380 DF 8 2140 9 ES 2033 G0 2020 10 11 PE 1652

desc,customer_state

Insights: we observed that highest no. of customers are from State (SP)

4.Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1.Q Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

with cte as(

select extract(year from order_purchase_timestamp) Year,sum(p.payment_value) total

from `SQL_BUSSINESS_CASE.payments` p join `SQL_BUSSINESS_CASE.orders` o on p.order_id = o.order_id

where extract(year from order_purchase_timestamp) in (2017,2018) and

extract(month from order_purchase_timestamp)>0 and extract(month from order_purchase_timestamp)<9

group by Year)

select distinct ((select total from cte where year=2018)-(select total from cte where

year=2017))*100/(select total from cte where year=2018) percent increase from 2017 to 2018 from cte

Insights: Observed that, there is about 57% increase in the cost of orders from year 2017 to 2018 between jan to Aug only

2. Q Calculate the Total & Average value of order price for each state.

select c.customer_state,round(sum(oi.price),2) total,round(avg(oi.price),2) average from `SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o on c.customer_id=o.customer_id

join `SQL_BUSSINESS_CASE.order_items` oi on o.order_id=oi.order_id
group by c.customer_state
order by c.customer_state

Query results JOB INFORMATION RESULTS JSON **EXECUTION DETAILS** Row customer_state ▼ total ▼ average 🔻 1 AC 15982.95 173.73 2 AL80314.81 180.89 3 22356.84 135.5 AM AΡ 13474.3 164.32 4 511349.99 134.6 5 BA 6 CE 227254.71 153.76 7 DF 302603.94 125.77 8 ES 275037.31 121.91 9 GO 294591.95 126.27 10 119648.22 145.2 MΑ

Insights: the highest total price of orders is from the state with code SP

3 Q .Calculate the Total & Average value of order freight for each state.

select c.customer_state,round(sum(oi.freight_value),2) total,round(avg(oi.freight_value),2) average from `SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o on c.customer_id=o.customer_id

join `SQL_BUSSINESS_CASE.order_items` oi on o.order_id=oi.order_id
group by c.customer_state
order by c.customer_state

Query results

JOB IN	IFORMATION	RESULTS	JSON EX	ECUTION DETAILS
Row	customer_state -		total ▼	average ▼
1	AC		3686.75	40.07
2	AL		15914.59	35.84
3	AM		5478.89	33.21
4	AP		2788.5	34.01
5	BA		100156.68	26.36
6	CE		48351.59	32.71
7	DF		50625.5	21.04
8	ES		49764.6	22.06
9	GO		53114.98	22.77
10	MA		31523.77	38.26
11	MC		270252 46	20.63

Insights: the highest freight value is from the state with code SP

5. Analysis based on sales, freight and delivery time

1 Q Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

from 'SQL BUSSINESS CASE.orders';

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

```
time_to_deliver = order_delivered_customer_date - order_purchase_timestamp

diff_estimated_delivery = order_estimated_delivery_date - order_delivered_customer_date

select order_id,date_diff(order_delivered_customer_date,order_purchase_timestamp,day)
time_to_deliver,date_diff(order_estimated_delivery_date,
order_delivered_customer_date,day) diff_estimated_delivery
```

JOB IN	FORMATION RESULTS	JSON EXECUTION	ON DETAILS CHART PREVIEW
Row /	order_id ▼	time_to_deliver ▼	diff_estimated_delivery ▼
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0
6	68f47f50f04c4cb6774570cfde	29	1
7	276e9ec344d3bf029ff83a161c	43	-4
8	54e1a3c2b97fb0809da548a59	40	-4
9	fd04fa4105ee8045f6a0139ca5	37	-1

Insights: some of the orders are delivering on the expected date, some of the orders are taking more time than expected and some taking less time than expected. The lag between the delivery is in a small number of days only.

2. Find out the top 5 states with the highest & lowest average freight value.

```
with cte1 as(

select row_number() over(order by avg(oi.freight_value) desc)
high,c.customer_state,round(avg(oi.freight_value),2) average from
`SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o on
c.customer_id=o.customer_id join `SQL_BUSSINESS_CASE.order_items` oi on
o.order_id=oi.order_id

group by c.customer_state

order by high)
,cte2 as(

select row_number() over(order by avg(oi.freight_value) asc)
low,c.customer_state,round(avg(oi.freight_value),2) average from
`SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o on
c.customer_id=o.customer_id

join `SQL_BUSSINESS_CASE.order_items` oi on o.order_id=oi.order_id
```

```
group by c.customer_state order by low)
```

select cte1.customer_state highest,cte2.customer_state lowest

from cte1 join cte2

on cte1.high = cte2.low

where cte1.high <=5 and

Query results

	JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET/
	Row	highest ▼	le	lowest ▼	li.
	1	RR		SP	
	2	PB		PR	
	3	RO		MG	
	4	AC		RJ	
_	5	PI		DF	

cte2.low<=5

Insights: The first 5 states are highest avg freight value and last 5 states are lowest freight value.

3. Q Find out the top 5 states with the highest & lowest average delivery time.

WITH cte AS (

```
with cte1 as(
```

```
select row_number() over(order by avg(o.order_delivered_customer_date-o.order_purchase_timestamp) desc) high,c.customer_state,round(avg(oi.freight_value),2) average from `SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o on c.customer_id=o.customer_id
join `SQL_BUSSINESS_CASE.order_items` oi on o.order_id=oi.order_id
group by c.customer_state
order by high)
```

```
select row_number() over(order by avg(o.order_delivered_customer_date-o.order_purchase_timestamp) asc) low,c.customer_state,round(avg(oi.freight_value),2) average from `SQL_BUSSINESS_CASE.customers` c join `SQL_BUSSINESS_CASE.orders` o on c.customer_id=o.customer_id
join `SQL_BUSSINESS_CASE.order_items` oi on o.order_id=oi.order_id
group by c.customer_state
order by low)
```

select cte1.customer_state highest,cte2.customer_state lowest

from cte1 join cte2

on cte1.high = cte2.low

where cte1.high <=5 and

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET
Row	highest ▼	6	lowest ▼	1
1	RR		SP	
2	AP		PR	
3	AM		MG	
4	AL		DF	
5	PA		SC	

cte2.low<=5

Insights: The first 5 states are highest avg delivery time and last 5 states are lowest freight value.

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

with cte as

(select c.customer_state, (avg(date_diff(order_delivered_customer_date, order_purchase_timestamp,day))-avg(date_diff(order_estimated_delivery_date, order_delivered_customer_date,day))) average from `SQL_BUSSINESS_CASE.orders` o join `SQL_BUSSINESS_CASE.customers` c on o.customer_id=c.customer_id

group by c.customer_state)

select customer state from

(select customer_state,dense_rank() over(order by cte.average desc) highest from cte t where highest <= 5

order by highest

Insights: Observed that this top 5 states above are the states where the order delivery is really fast as compared to the estimated date of delivery.

6.. Analysis based on the payments:

1.Q Find the month on month no. of orders placed using different payment types.

with cte as

(select p.payment_type,extract(year from order_purchase_timestamp)
order_year,extract(month from order_purchase_timestamp) order_month, count(*)
no_of_orders

from `SQL_BUSSINESS_CASE.orders` o join `SQL_BUSSINESS_CASE.payments` p on o.order_id = p.order_id

group by order_year,order_month,payment_type

order by order_year,order_month)

select payment_type,order_year,order_month, no_of_orders-(lead(no_of_orders) over(order by order_year,order_month)) month_on_month from cte

order by order year, order month

OB IN	IFORMATION	RESULTS	JSON	EXECUTION DETA	AILS	CHART PREVIEW
v /	payment_type ▼	//	order_year ▼	order_month	· /	month_on_month
1	credit_card		201		9	-251
2	credit_card		201	6	10	191
3	voucher		201	6	10	21
4	debit_card		201	6	10	1
5	UPI		201	6	10	40
6	credit_card		201	6	12	-582
7	credit_card		201	7	1	386
8	UPI		201	7	1	136
9	debit_card		201	7	1	-1347
10	voucher		201	7	1	52

Insights: payment_type to payment_type the count orders placed for a month are completely varying. There is no consistency in the rise or fall of orders that are placed by different payment type

6. Q Find the no. of orders placed on the basis of the payment installments that have been paid.

select payment_installments,count(distinct order_id)no_of_orders from `SQL_BUSSINESS_CASE.payments` where payment_installments > 0

group by payment_installments;

Quer	y results				
JOB IN	IFORMATION		RESULTS	JS0	N
Row	payment_installme	nt	no_of_orders	→	
1	1		4	9060	
2	2		1	2389	
3	3		1	0443	
4	4			7088	
5	5			5234	
6	6			3916	
7	7			1623	
8	8			4253	
9	9			644	
10	10			5315	
11	4.4			00	

Insights: These are the total no. of orders placed on the basis of the payment installments that have been paid.(i.e.>0)