Engr 5011: Homework #1

ODEs: series solutions and recipes

Please submit with this page first, and the problems attached in order.

Due 12 October in class (or by 11PM in canvas)

Name (print):	TUID:							
	UES (A,B,C, ETC) WHI	I H EN A QUAN	G F	E D UMERICAL)	C B	A IS NEEDED		
"Technical points" possible for each question are s 1. Problem 1 [10 pt] score/comments	shown; excellent docur	nentation	will recieve	a bonus.				
2. Problem 2 [15 pt] score/comments								
3. Problem 3 [10 pt] score/comments								
4. Problem 4 [15 pt] score/comments								

Engr-5011 Engineering Mathematics I

Homework #1: ODE recipes and series-solution method

1. [10 pt] If a mass is dropped from a very large height the governing equation of motion for the (downward) velocity V is:

$$m \frac{dV}{dt} = m g - c(V)^{2}; \quad V(0) = 0$$

Here, c is the coefficient of drag in air.

- (a) Put this governing equation in dimensionless form. (Hint, think about the terminal velocity $V_{\rm T}$.)
- (b) Solve the problem in its dimensionless form.
- (c) Determine when the mass achieves 95% of its terminal velocity
- 2. **[15 pt]** Solve

$$y'' + K y = 0; y(1) = 0; y(5) + \Gamma y'(5) = 10$$

using the nested-series-solution method shown in class.

For the series-solution answer, please work out the derivative of y(x) as a series, too, so you can satisfy the boundary condition.

Here $K = \max([A.B,C])$ and $\Gamma = E + F + G$, where A,B,C,D,E,F are taken from your TUID.

- (a) Plot both your series solution and
- (b) plot the exact solution on $1 \le x \le 5$ on the same graph for comparison.
- 3. [10 pt] If $\Gamma = E + F + G$ and $K = \max([A.B,C])$ (taken from your TUID), solve the following using the Wronskian recipe

$$x^2y'' + x y' - y = Kx^2 + 4x;$$
 $y(1) = 0;$ $y(5) = \Gamma$

- (a) Write the solution in its integral form from the recipe.
- (b) Using the simpson-rule integrator to evaluate the integrals, to plot the solution on $1 \le x \le 5$
- 4. [15 pt] If $K = \max([A.B, C])$, solve the following using the method of Frobenius.| Here A, B, C, D are taken from your TUID.

$$x y'' + 2y' + y = 0;$$
 $y(1) = -10;$ $y(5) = 2K \times (-1)^D$

- (a) Compute your series solution using the nested recursion method, and plot this series-solution answer on $1 \le x \le 5$.
- (b) Plot the "Bessel trick" solution on the same plot for comparison.