THE GEOMETRY OF PERCEPTRONS

MATT RAYMOND

Lemma 0.1. Define D to be the set of input-output pairs. We call the elements of D datapoints. Fix $(\mathbf{x}_i, y_i) \in D$, $\mathbf{w} \in \mathbb{R}^n$ and $\varphi : \mathbb{R} \to \{-1, 1\}$ the binary step activation function.

- (a) The data-point (\mathbf{x}_i, y_i) is misclassified if and only if $y_i(\varphi(\mathbf{w}^T \mathbf{x}_i)) \leq 0$.
- (b) The inequality $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) > 0$ holds if and only if (\mathbf{x}_i, y_i) was classified correctly.

Proof. If $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) \leq 0$ then $y_i > 0$ and $\varphi(\mathbf{w}^T\mathbf{x}_i) < 0$ or $y_i < 0$ and $\varphi(\mathbf{w}^T\mathbf{x}_i) > 0$. It follows that either $y_i > \varphi(\mathbf{w}^T\mathbf{x}_i)$ or $y_i < \varphi(\mathbf{w}^T\mathbf{x}_i)$. In both cases, $y_i \neq \varphi(\mathbf{w}^T\mathbf{x}_i)$. Hence, (\mathbf{x}_i, y_i) is misclassified. By a similar argument, it is easy to show the converse. Then (a) holds. Since (b) is the contrapositive of (a), (b) holds. This completes the proof.

Definition 0.2. Let V be a k-dimensional vector space over \mathbb{R} . A subspace H is called a hyperplane if it has codimension 1.

Theorem 0.3. For each \mathbf{x}_i , define a orthogonal hyperplane $H(\mathbf{x}_i)$ to \mathbf{x}_i . That is, for each $\mathbf{w} \in H(\mathbf{x}_i)$, $\mathbf{w}^T \mathbf{x}_i = 0$. Define $W_{\uparrow}(\mathbf{x}_i)$ to be the set of $\mathbf{w} \in \mathbb{R}^n$ with $\mathbf{w}^T \mathbf{x}_i < 0$, and $W_{\downarrow}(\mathbf{x}_i)$ the set of $\mathbf{w} \in \mathbb{R}^n$ with $\mathbf{w}^T \mathbf{x}_i > 0$.

- (a) If $y_i > 0$, then any \mathbf{w} with $y_i(\varphi(\mathbf{w}^T \mathbf{x}_i)) > 0$ is an element of W_{\uparrow} .
- (b) If $y_i < 0$, then any w with $y_i(\varphi(\mathbf{w}^T \mathbf{x}_i)) > 0$ is an element of W_{\perp} .
- (c) The complement of $W_{\uparrow}(\mathbf{x}_i) \cup W_{\perp}(\mathbf{x}_i)$ is $H(\mathbf{x}_i)$.

Proof. If $y_i > 0$ and $y_i(\varphi(\mathbf{w}^T \mathbf{x}_i)) > 0$ then $\varphi(\mathbf{w}^T \mathbf{x}_i) > 0$. It follows that $\mathbf{w}^T \mathbf{x}_i > 0$, so $\mathbf{w} \in W_{\uparrow}(\mathbf{x}_i)$. Hence (a) holds. The proof of (b) is so similar it is omitted. If \mathbf{w} is in the complement of $W_{\uparrow}(\mathbf{x}_i) \cup W_{\downarrow}(\mathbf{x}_i)$, then $0 \leq \mathbf{w}^T \mathbf{x}_i$ and $\mathbf{w}^T \mathbf{x}_i \leq 0$. It follows that $\mathbf{w}^T \mathbf{x}_i = 0$ so $\mathbf{w} \in H(\mathbf{x}_i)$. The other inclusion is similar, so (c) holds. This completes the proof.

Corollary 0.4. Fix $\mathbf{x}_i \in \mathbb{R}^n$.

- (a) The union $H(\mathbf{x}_i) \cup W_{\uparrow}(\mathbf{x}_i) \cup W_{\downarrow}(\mathbf{x}_i) = \mathbb{R}^n$.
- (b) The intersection $H(\mathbf{x}_i) \cap W_{\uparrow}(\mathbf{x}_i) \cap W_{\downarrow}(\mathbf{x}_i) = \varnothing$.

Definition 0.5. Fix $\mathbf{w} \in \mathbb{R}^n$. Define the geometric margin of $H(\mathbf{w})$ as

$$\gamma_{H(\mathbf{w})} = \min_{(\mathbf{x}_i, y_i) \in D} \|\mathbf{w}^T \mathbf{x}_i\|$$

Theorem 0.6. If there exists some \mathbf{w}^* with $y_i(\varphi(\mathbf{x}_i^T\mathbf{w}^*)) > 0$ for every choice of (\mathbf{x}_i, y_i) , then the perceptron learning algorithm converges in a finite number of steps.

Proof. Fix R > 0, set $\|\mathbf{w}^*\| = R$ and constrain $\|\mathbf{x}_i\| \le R$. Choose \mathbf{w} with $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) \le 0$. Then after k updates $\mathbf{w}^T\mathbf{w}^* \ge k\gamma_{H(\mathbf{w}^*)}$ and $\mathbf{w}^T\mathbf{w} \le k$. It suffices to show that k is bounded above. By elementary algebra, $k \le R/\gamma_{H(\mathbf{w}^*)}^2$. The result follows.

Remark 0.7. This result of course depends on the existence of \mathbf{w}^* . In 1969, Minsky and Papert showed - among other things, that the perceptron could not classify datasets which are not linearly separable. Perhaps the most famous example of this is the XOR problem.

TRINITY GRAMMAR SCHOOL

Date: March 29, 2020.