Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

149.9 31A

ARS 44-79-1 JULY 1961

U. S. DEPT. OF AGRICULTURE
LIBRARY
JUL 2 1 1961
CURRENT SERIAL RECORDS

Random Sample EGG PRODUCTION TESTS 1959 - 60 Combined Summary

HOW DID THEY PERFORM?

Egg production; Mortality;

Feed conversion; Body weight;

Egg weight; Income over feed

and chick costs; Interior quality;

Shell thickness

AGRICULTURAL RESEARCH SERVICE · U.S. DEPARTMENT OF AGRICULTURE

FOREWORD

This is a combined summary of the Random Sample Egg Production Tests conducted in the United States during 1959-60. This summary, within the limits of acceptable statistical procedures, provides a basis for a sound comparison of the performance of a stock with any other stock tested, All stocks are listed, in alphabetical sequence, with the performance data (Regressed Means) and the LSD Range for each trait at the 0.05 level of probability. It is essential when comparing the performance of two stocks to determine whether the Regressed Mean of one stock falls within the LSD Range of the other stock. If it does, the odds are 19 to 1 that the two stocks are approximately equal in that trait. If it does not, by the same odds, the difference can be considered as real. To avoid misinterpretation of the data the explanatory material on pages 3 through 6 should be carefully reviewed.

CONTENTS

	Page
Introduction	3
How to Tell Whether Differences are Real	3
How to Use the Results	4
Explanation of Income Figures	4
Explanation of Terms and Abbreviations	5
Analytical Procedures	5
The adjustment Factors Used to Adjust for Test Differences	7
Starting Date, Ending Date, Pullets per Entry and Length of 1959-60 Tests	8
Analytical Data for the Traits Measured	8-9
All Stocks Entered, with Regressed Means and LSD Range for Each Trait	10-42
Stocks Entered in 1959-60 Random Sample Egg Production Tests	43-47
Random Sample Egg Production Tests and Supervisors, 1959-60	48

This publication is based upon recommendations of the National Committee on Random Sample Poultry Testing and the Council of American Official Poultry Tests. Information in the report was compiled by the Poultry Research Branch, Animal Husbandry Research Division, Agricultural Research Service, from data supplied by Test Supervisors and analyzed by Biometrical Services, ARS. The regressed means provide the best estimates of performance based upon all available information from the 15 Random Sample Egg Production Tests for 1959-60. The publication of this report should not be construed, however, as implying approval or endorsement by the U. S. Department of Agriculture of any of the stocks tested.

INTRODUCTION

Random Sample Egg Production Tests are designed to provide a reliable guide for poultrymen, hatcherymen and breeders concerning the performance of stocks offered for sale by breeders and hatcheries. Entries consist of a random sample of hatching eggs or chicks of the stock to be tested. The samples are drawn by prescribed methods to insure that the entry is typical of the stock it represents. All entries within a test are treated the same with respect to housing, feeding, management, and disease control with the objective of avoiding differences in performance, due to environment.

All tests follow these basic principles in their operation. However, there are differences between tests including climatic conditions and other environmental factors which effect the results. For this reason direct comparisons of the results of two stocks in different tests may be misleading.

The primary purpose of this summary is the presentation of test results in a manner that will support sound evaluation of all stocks tested. To accomplish this, the results of all tests are combined, by stocks, with adjustments for test differences and the use of other accepted statistical procedures. The results of these computations are published as the regressed mean of each stock for each trait. The regressed means provide a sound basis for comparisons between stocks.

HOW TO TELL WHETHER DIFFERENCES ARE REAL

Errors of two kinds influence the results of even the most carefully designed and operated tests. The first kind of error is the chance deviation or unavoidable "sampling error" made when a small sample of eggs or chicks represents an entry. The other kind of error is due to uncontrolled or unknown environmental differences between entries that happen in spite of all efforts to treat each entry exactly alike. The differences between the results reported for two entries in a single test may be due to these chance variations rather than to a real difference in the performance capabilities of the two stocks. The effect of such errors can be materially reduced by basing the comparisons on the combined results of several tests. If all entries compared were entered in the same tests, the simple averages could be utilized without adjustment.

The performance data (regressed means) reported in this summary are derived from the results reported by the individual tests. It is unlikely, however, that these means for any stock, even though entered in only one test, will coincide precisely with the performance data published by the test. The variations are due to adjustments for test differences, the number of tests entered, and the number of replicates per test. These statistical adjustments allow predictions to be made of what the average performance would have been for each stock if all stocks had been entered in all tests.

The statistical treatment applied to the test data is designed to reduce the influence of nongenetic variations but this cannot be accomplished perfectly. Consequently, estimates or predictions of performance cannot be made with absolute precision. Reliable predictions, within prescribed limitations, can be made as to whether a difference in the reported performance of two stocks represents a real difference in their performance. These predictions involve the use of the least significant difference (LSD) 1/figures which have been computed for each trait or performance factor reported.

As the name implies, the least significant difference figures prescribe the approximate limits of differences that may be due to chance. Differences that equal or exceed the LSD probably are due to inherent differences in the stocks. The LSD is a reliable guide for the appraisal of differences but it is not infallible. Appraisals of differences, based on comparison with the LSD may be wrong and the probability of such errors are considered in computing the LSD.

1/ The least significant differences (LSD) referred to in this report were computed from the approximate standard error of the regressed mean and the significant studentized range values for 20 means as given in Duncan's tables.

The LSD's for the data in this summary were computed at three levels of significance (10%, 5%, and 1%). These may be expressed as odds of 9:1, 19:1, and 99:1, respectively, against differences as large as the LSD being due to chance alone. The conclusion as to whether a difference is real may depend on the tolerance for error that is acceptable. For example, two stocks being compared for mortality during the laying period are reported to have regressed means of 7.5% and 11.2%, or a difference of 3.7%. The difference required for significance (LSD) for this trait at odds of 9:1 is 3.4%. Since the difference reported exceeds the LSD, a real difference between the stocks is indicated. If less tolerance for error is desired, the LSD at odds of 19:1 (4.0%) or 99:1 (5.1%) may be used. At these odds the LSD exceeds the reported difference indicating no real difference between the stocks. In the final analysis the person using the report must decide what odds he is willing to accept that the differences are real and not due to chance alone.

HOW TO USE THE RESULTS

All differences among the set of regressed means for the same trait are measured with essentially the same amount of reliability. Hence, the approximate amount of difference required for significance among any two of these means can be computed. The approximate differences required for significance at three levels of significance (0.10 level or 9:1 odds, 0.05 level or 19:1 odds, and 0.01 level or 99:1 odds) are tabulated below:

Approximate Differences Required For Significance (LSD) Among Regressed Means (1959-60 Test Data)

	Morta	ality	Age at 50%	Egg Prod	uction		Feed	Average
Odds	Growing Laying		Production	Hen Housed	Hen Day	Income	Conversion	Egg Wt.
	(%) (%)		(days)	(no.)	(%)	(\$)	(lbs.)	(oz.)
9:1	0.4	3.4	6	14.1	3. 2	0.27	0.25	0.5
19:1	. 5	4.0	7	16.8	3. 8	. 32	. 30	. 6
99:1	. 6	5. 1	9	21.6	4. 9	. 42	. 38	. 8

			Blood	Spots	Meat	Spots	
			1/8 Inch	Less than	1/8 Inch	Less than	Shell
Odds	Body Weight	Albumen Quality	or More	1/8 Inch	or More	1/8 Inch	Thickness
	(lbs.)	(Haugh Units)	(%)	(%)	(%)	(%)	(1/1000 Inch)
9:1	0.3	2.6	1.1	1.2	3, 6	3. 8	0.003
19:1	. 4	3. 1	1.3	1.4	4, 3	4.5	.004
99:1	. 5	4.0	1.7	1.8	5, 5	5. 8	. 005

When reference is made to the significance of differences among the performance of different stocks, the level of significance used should be given.

As an aid to the evaluation of significant differences among stocks, the approximate LSD range at the 0.05 level of probability (19:1 odds) is given for each regressed mean in the alphabetic listing of all stocks. The LSD range represents the regressed mean of a stock, plus and minus the LSD (less one unit of measurement) at the 0.05 level. As an example, for the "Age at 50% Production" trait, the LSD is 7 days. Thus stock 1, with a regressed mean of 175 days has an LSD range of 169 (175 minus 6) to 181 (175 plus 6). Stock 4, with a regressed mean of 165 days, does not fall within the LSD range of stock 1 (169-181) and consequently is considered to be significantly different from stock 1. Likewise, stocks 2, 3, and 5, with regressed means of 177, 174, and 169, respectively, are not significantly different from stock 1 since each regressed mean falls within the LSD range of stock 1.

EXPLANATION OF INCOME FIGURES

The "Income Over Feed and Chick Cost" figures reported in this summary represent the sales value of the eggs produced and of the hens at the end of the test minus the cost of the chicks and the feed used during the growing and laying periods. These figures may be useful in comparing the overall performance of stocks, but they should not be considered as predictions of "profit" to be obtained under commercial

operations. The "income" figures should be reduced by other costs, such as labor, building and equipment depreciation, vaccination, litter, interest, taxes and insurance, to approximate profits that might be expected under commercial conditions. Surveys conducted among commercial producers indicate that such costs may range from \$1.00 to \$2.00 per pullet housed.

EXPLANATION OF TERMS AND ABBREVIATIONS

Stock:	A term used to identify a specific breeding combination of chickens. These breeding combinations may include pure strains, strain crosses, breed crosses, or combinations thereof.
Overall Mean:	The average of the test adjusted means for all stocks. This estimates what the overall average would have been if all stocks had been entered in all tests.
Range:	The range represents the difference between the maximum and minimum performance among the 165 stocks, based on the regressed means.
Repeat- ability:	This figure can vary from 0.00 to 1.00. The higher the figure the greater is the likelihood of stocks ranking in the same order from one test to another.
Correlation Among Replicates:	This correlation measures the repeatability among replicates of the same stock in the same test. It may vary from 0.00 to 1.00 but can not be lower than the repeatability of stock performance between tests. The higher the correlation among replicates the less need there is for replication of stocks within tests.
Test Adjustment Factor:	The amount by which a given test was above or below the average of the seven tests which reported data for all 15 traits. These factors were determined on an intra-stock basis with a least-squares analysis.
Regressed Mean:	The test adjusted stock mean after weighting it according to the number of tests in which the stock was entered, the number of replicates per test, the repeatability, and the correlation among replicates in the same test.
Least Significant Difference:	The LSD figure prescribes the approximate limits of difference that may be due to chance. This has been computed at three levels of significance (10%, 5%, and 1%) and may be expressed as odds of 9:1, 19:1, and 99:1, respectively, against differences as large as the LSD being due to chance alone.
LSD Range:	These figures represent the regressed mean of a stock, plus and minus the LSD (less one unit of measurement).
Kind of Stock:	WL White Leghorn PS Pure Strain BPR Barred Plymouth Rock LX Line Cross WPR White Plymouth Rock SX Strain Cross RIR Rhode Island Red BX Breed Cross RIW Rhode Island White INX Inbred Cross NH New Hampshire IN Incross

ANALYTICAL PROCEDURES

California Gray

Austra White

White Austra

CG

AW

WΑ

This summary includes performance data on 165 stocks entered in the 15 Random Sample Egg Production Tests for 1959-60. However, only 7 of the 15 tests reported data for all of the 15 traits considered in this summary. Tests that were not included in the computation of the regressed means for each of the 15 traits are shown under the heading "Tests Not Included" in the tabulation on pages 8 and 9. Although the Intermountain test reported performance data on "Number of Eggs per Pullet Housed" and on "Percent Laying House Mortality," these data were excluded in the analysis because this test did not report data on "Percent Hen Day Production." Otherwise, all data reported from all tests were included in the combined analysis.

Syn.

Synthetic

The performance data were reported by replicate pens by most tests with replicates. The replicate data were analysed by least-squares procedures to obtain the test adjustment factors (page 7), the repeatability estimates for each trait and the correlation among replicates within tests (pages 8 and 9). The replicate data from the Texas test were averaged for this analysis because of the small number of birds per replicate.

Each stock entered in the Iowa test was tested in replicate pens at each of four locations. The number of birds per pen varied from 48 to 194. Only the combined data (adjusted for location effects) for a given stock over all four locations and all eight replicates were reported for inclusion in the combined analysis. However, since this information resulted from tests at four locations and from eight replicate pens it was treated as such in computing the regressed means.

Each stock entered in the California test was tested in replicate pens or groups at each of two separate locations, i.e., floor and cage. Each stock entered in the New Hampshire test was tested in a single replicate at each of three locations. These data were reported separately by replicate at each location. Hence, the California test data were treated as two locations and four replicates and the New Hampshire test data were treated as three locations and three replicates in computing the regressed means.

In order to place the results for all traits on a comparable environmental basis, the adjustment factors used to adjust for test differences (page 7) were expressed as a plus or minus deviation from the average for the seven tests which reported complete performance information. These factors were then used to obtain the test adjusted stock averages (the least-squares stock means). The adjusted stock averages were then regressed toward the overall mean ($\hat{\mu}$) to account for variations in number of tests entered and number of replicates per test.

The formula used to compute the regressed means is:

Regressed Mean =
$$\hat{\mu}$$
 + $\frac{nkr}{1+(k-1)x+(n-1)kr}$ = (\hat{s}_1)

where.

 $\hat{\mu}$ = the average of the test adjusted stock means

n = the number of tests entered.2/

k = the average number of replicates per test.

r = repeatability.

x = the correlation among replicates.

 \hat{s}_i = the test adjusted stock average minus the overall mean $(\hat{\mu})$

2/ Only the combined data for a given stock over all four locations and all eight replicates were reported from the Iowa test. However, this information was treated as four test locations and eight replicates in computing the regressed means. The three locations for the New Hampshire test were also considered as three test locations.

Shell Thickness	-0.044	065	067	003	**	+ .127	124	+ .195	**	**	****	092	+ .056	+ .078	158	084	***	+ .160
% Meat Spots Less than 1/8 Inch	-0.29	+1.62	+1.11	-2, 62	**	**	**	+1.48	* * * * *	* * * *	** ** ** *	** ** **	**	* * * *	-1.06	+2, 42	-1.57	-6. 47
% Meat Spots 1/8 inch or More	-0.03	00.	61	-1. 22	* * *	* * * *	**	+1.23	* * * *	* * * *	* * * *	* * * *	* * * *	* * * *	. 85	+2.26	-1. 40	-1.96
% Blood Spots	-1. 28	89	-2.65	+1.21	* * *	* * * *	**	+ . 08	* * *	* * * * *	* * * * *	+1.22	01	+ .05	+ .02	60°+	+ . 56	90 . +
% Blood Spots 1/8 inch or More	+0, 18	29	-1.57	<i>-</i> 4 . 97	* * * *	* * * *	* * * * *	+ .71	* * * *	* * * * *	* * * *	+ .07	+ . 49	+ .14	-1.29	+ .16	44.	02
yslau Quality estinU dgusH	+4.78	+4.80	+4.08	+1.41	* * * *	-3.81	+5. 42	-5.92	**	* * * * *	* * * *	+1.54	01	+2,20	+2.44	+2, 46	***	-9, 97
Body Weight-Lbs.	-0.06	+ .21	11	+ .20	+ . 41	02	+ .05	+ .17	30	**	* * * * *	01	36	37	- , 35	00.	27	17
Egg Weight-Oz.	-0.02	+ 08	+ .16	+ . 49	+ .05	+ .15	-2.62	+ .37	54	* * * *	* * * *	+ .30	83	87	74	08	62	10
Feed Per 24 Oz. of Eggs-Lbs.	+0.24	02	* * *	+ .30	89	* * *	- 08	63	28	34	-1.51	13	07	- , 30	+ .12	+ .17	19	18
Income Over Feed and Chick Cost-\$	+1.36	-1.28	* * *	17	20	* * * *	+ .68	+ . 39	+ .13	69 +	+1.37	04	- 45	22	+ .72	31	+1.00	71
Egg Production	+3.29	-1.02	+4,34	-1.21	* * *	+8.67	+ .74	+1.02	58	+3,58	+8.01	+1.61	+ .64	47	11	+1.19	+7.85	-3.16
Egg Production Hen-Housed-No.	+24. 52	-12.27	+ 2.03	- 2.79	****	+43.76	+ 3, 90	- 3, 36	+14.23	+35.80	+33,25	+18.27	+ 4.75	+ 3,94	+ 3, 55	- 6.78	+34,08	- 2.88
Days of Age at 50% Production	- 6.07	+ 4.19	+ 7.68	+ 6.79	- 9.12	-13.89	-12.41	- 8.02	-22. 67	* * * * *	***	-14.87	- 5.93	- 9.63	+ .01	+ 2, 58	- 6.73	+ .52
% Mortality Laying Period	- 6.50	+ 5.81	+ 4.89	- 1.20	****	- 3,05	+ 4, 48	+ 4, 34	- 1.65	-12.73	+ 5, 53	- 1.54	+ .93	- 1.77	52	+ 1.17	- 3.19	- 3.09
% Mortality Growing Period	+ 1.37	+ 3, 39	* * * *	+ .17	- 2, 67	- 4.06	-13.81	78	+ .10	- 6.11	10	* * * * * * * * * * * * * * * * * * * *	60 . +	+ .20	+ 1.27	- 5.79	+ 1,63	+ .36
Test	Arizona	California Floor	California Cage	Florida	Intermountain	Iowa	Minnesota	Missouri	New Hampshire #1	New Hampshire #2	New Hampshire #3	New Jersey	Central New York	Western New York	North Carolina	Pennsylvania	Texas	Wisconsin

Starting Date, Ending Date, Pullets per Entry and Length of 1959-60 Tests

Test	Starting Date	Ending Date	Pullets per Entry	Length of Test
Arizona	May 13, 1959	September 23, 1960	100	500 days
California (1st lot) (2nd lot)	March 3, 1959 March 24, 1959	September 5, 1960 September 26, 1960	108	553 days 553 days
Florida	March 28, 1959	August 8, 1960	50	500 days
Iowa (1st lot) '' (2nd lot) '' (3rd lot) '' (4th lot)	February 20, 1959 March 6, 1959 March 20, 1959 April 4, 1959	June 21, 1960 July 5, 1960 July 19, 1960 August 2, 1960	((960 ((Approx.)	((486 days ((Approx.)
Minnesota	April 3, 1959	August 16, 1960	100	500 days
Missouri	March 20, 1959	August 1, 1960	50	500 days
New Hampshire	April 23, 1959	August 31, 1960	490	496 days
New Jersey	March 31, 1959	August 11, 1960	50	500 days
Central New York	February 27, 1959	July 11, 1960	50	500 days
Western New York	March 27, 1959	August 8, 1960	50	500 days
North Carolina	February 13, 1959	June 26, 1960	100	500 days
Pennsylvania	May 1, 1959	September 15, 1960	50	500 days
*Tennessee	September 3, 1958	March 16, 1960	60	560 days
Texas	February 24, 1959	July 7, 1960	48	500 days
Utah	April 6, 1959	August 17, 1960	70	500 days
Wisconsin	March 9, 1959	July 20, 1960	50	500 days

NOTE: Records for the California Test were terminated when the birds reached 500 days of age for the purpose of the Combined Summary (1959-60).

Analytical Data For The Traits Measured

Ar	nalytical Data For The	Traits Mea	asured			
Trait	Tests Not Included	Overall Means	Regress Min.	ed Means Max.	Repeat- ability	Correlation Among Replicates
Percent mortality to 150 days or subsequent age at housing	New Jersey, & California-cage	4. 58	3. 8	5, 3	0.030	0.641
Percent laying house mortality computed from 150 days or subsequent age at housing to 500 days of age.	Intermountain	12.70	7, 2	18.0	. 148	. 148
Days of age to 50% production calculated from the first day of the first two consecutive days of 50% production for living birds in the entry at that time.	None	174.07	159	193	. 512	. 512

^{*}Data from the Third Tennessee Test were included in the 1958-59 Combined Summary.

The Fourth Tennessee Test data will be included in the 1960-61 Combined Summary.

Ana	lytical Data For The	Traits Me	asured		p	orrelation
	Tests Not	Overall	Regresse		Repeat-	_
Trait	Included	Means	Min.	Max.	ability 1	Replicates
Number of eggs per pullet housed to 500 days of age.	Intermountain	213.09	195.2	238, 5	0.363	0.503
Percent hen-day production from the time the birds reached 50% production to 500 days of age.	Intermountain	68.00	64.1	74.1	. 346	. 463
Income over feed and chick cost per pullet housed, with chick cost in 1,000 lots at hatch date adjusted for mortality (accidental deaths, sexing errors and missing chicks not included).	California-cage, & Iowa	2.24	1.75	2.60	. 219	. 453
Pounds of feed per 24 ounces of egg produced, computed from a bulk weighing of eggs one day every two weeks or at least 2 days a month at equal intervals.	California-cage, & Iowa	4. 42	4. 07	4. 79	. 408	. 626
Average annual egg weight computed from bulk weighings at least every two weeks or two days a month at equal intervals.	None	24. 53	23.5	25, 5	. 532	. 575
Body weight at end of test	None	4.73	4. 0	6.6	. 892	. 904
Albumen quality-Haugh Units measured on one day's eggs per quarter or every three months, at equal intervals, broken-out basis.	Intermountain, New Hampshire, & Texas	81.80	72.0	87.1	. 607	. 656
Percentage of eggs with (one or more) large blood spots 1/8 inch or more, computed from at least 3 days eggs per quarter, brokenout basis.	Intermountain, Iowa Minnesota, & New Hampshire	2. 29	. 9	3.7	. 248	. 248
Percentage of eggs with (one or more) small blood spots less than 1/8 inch, computed from at least 3 days eggs per quarter, brokenout basis.	Intermountain, Iowa Minnesota, & New Hampshire	3, 72	2. 1	5. 6	. 203	. 203
Percentage of eggs with (one or more) large colored meat spots 1/8 inch or more, computed from at least 3 days eggs per quarter, broken-out basis.	Intermountain, Iowa Minnesota, New Hampshire, New Jer Central N. Y., & Western N. Y.		0.0	16. 5	. 680	. 939
Percentage of eggs with (one or more) small colored meat spots less than 1/8 inch, computed from at least 3 days eggs per quarter, broken-out basis.	Intermountain, Iowa Minnesota, New Hampshire, New Je Central N. Y., & Western N. Y.		. 1	30. 2	. 896	. 944
Shell thickness by direct measurement to nearest 1/1000 inch from at least one breakout each quarter	Intermountain, New Hampshire,	. 140	.134	. 14	4 . 321	. 321

at least one breakout each quarter. & Texas

					MORT	ALITY		
STOCK	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR TRADENAME	GROW			'ING %)	
				RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD*	
1	A & M Poultry Farm & Hatchery Santa Rosa, California	WL PS	One Grade	4. 5	4. 1 4. 9	12. 3	8. 4 16. 2	
2	Allstate Hatchery Willmar, Minnesota	WL SX	LX 300	4. 5	4. 1 4. 9	11.5	7.6 15.4	
3	Allstate Hatchery Willmar, Minnesota	WL	LX 330	4. 8	4. 4 5. 2	12.8	8. 9 16. 7	
4	Ames In-Cross Des Moines, Iowa	INX	415 B	4. 6	4. 2 5. 0	12.0	8. 1 15. 9	
5	Ames In-Cross Des Moines, Iowa	INX	424	4. 6	4. 2 5. 0	14. 4	10.5 18.3	
6	Ames In-Cross Des Moines, Iowa	INX	434	4. 2	3, 8 4, 6	12. 5	8. 6 16. 4	
7	Ames In-Cross Des Moines, Iowa	INX	434 R	4. 6	4, 2 5, 0	12, 3	8. 4 16. 2	
8	Ames In-Cross Des Moines, Iowa	INX	505	4. 7	4. 3 5. 1	9. 9	6. 0 1 3. 8	
10	Anthony, Geo. M & Sons Strausstown, Pennsylvania	WL SX	Anthony	4. 4	4. 0 4. 8	10. 9	7.0 14.8	
1 38	Arbor Acres Farm, Mt. Hope Div. North Stonington, Connecticut	WL SX	Mt. Hope Queen	4. 2	3. 8 4. 6	14. 4	10. 5 18. 3	
11	Avery, T. C. & Son Colrain, Massachusetts	WR x RIR BX	Avery	5. 3	4. 9 5. 7	16. 5	12. 6 20. 4	
12	Babcock Poultry Farm Box 286, Ithaca, New York	WL SX	Barbara Ann	4. 6	4. 2 5. 0	12. 9	9. 0 16. 8	
13	Babcock Poultry Farm Box 286, Ithaca, New York	WL SX	Bessie	4. 7	4. 3 5. 1	11.9	8. 0 15. 8	
15	Bagby Poultry Farm Sedalia, Missouri	WL PS	One Grad e	4, 5	4. 1 4. 9	12, 4	8. 5 16. 3	
16	Bagby Poultry Farm Sedalia, Missouri	RIR PS	Production Red	4. 5	4. 1 4. 9	13, 2	9. 3 17. 1	
17	Ball Poultry Farm Owego, New York	WL	551	4.7	4. 3 5. 1	13.0	9. 1 16. 9	

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait

			EGG PROD	UCTION		INCOME	OVER	FEED	PER					
AGE A						FEED AN	D CHICK	24 OZ. C	F EGGS		GG GHT	3Of		
(Da		HEN H		HEN		CO		PROD (lb			z)		bs)	STOCK
RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
175	169 181	211.4	228. 1 194. 7	66. 9	70.6 63.2	2. 12	2. 43 1. 81	4. 51	4. 22 4. 80	24. 1	24. 6 23. 6	4. 5	4. 2 4. 8	1
177	171 183	217. 3	234. 0 200. 6	68.6	72. 3 64. 9	2.24	2.55 1.93	4. 44	4. 15 4. 73	24. 9	25. 4 24. 4	4. 4	4. 1 4. 7	2
174	168 180	218.1	234.8 201.4	69. 3	73.0 65.6	2. 24	2.55 1.93	4. 44	4. 15 4. 73	24.8	25. 3 24. 3	4. 8	4. 5 5. 1	3
165	159 171	225. 8	242. 5 209. 1	69. 4	73.1 65.7	2, 22	2. 53 1. 91	4. 41	4.12 4.70	24.2	24.7 23.7	4. 9	4. 6 5. 2	4
169	163 175	210.9	227. 6 194. 2	67.6	71. 3 63. 9	1. 98	2. 29 1. 67	4. 53	4. 24 4. 82	24.0	24. 5 23. 5	4. 8	4. 5 5. 1	5
161	155 167	230.9	247.6 214.2	71.7	75. 4 68. 0	2. 25	2.56 1.94	4. 34	4.05 4.63	24. 0	24. 5 23. 5	5. 0	4. 7 5. 3	6
159	153 165	217.6	234. 3 200. 9	67.6	71. 3 63. 9	2. 09	2.40 1.78	4. 56	4. 27 4. 85	23.6	24. 1 23. 1	4. 9	4. 6 5. 2	7
168	162 174	229.8	246. 5 213. 1	69.8	73.5 66.1	2. 15	2.46 1.84	4. 47	4.18 4.76	24.5	25. 0 24. 0	5. 9	5. 6 6. 2	8
171	165 177	227.6	244. 3 210. 9	70.7	74. 4 67. 0	2. 37	2.68 2.06	4. 35	4.06 4.64	24. 5	25. 0 24. 0	4. 8	4. 5 5. 1	10
175	169 181	226. 5	243. 2 209. 8	72.5	76. 2 68. 8	2. 42	2.73 2.11	4. 20	3. 91 4. 49	24. 5	25.0 24.0	4. 2	3. 9 4. 5	138
177	171 183	213.1	229. 8 196. 4	71.8	75. 5 68. 1	2. 15	2. 46 1. 84	4. 78	4. 49 5. 07	24. 2	24.7 23.7	5. 9	5. 6 6. 2	11
173	167 179	216.7	233. 4 200. 0	69. 5	73. 2 65. 8	2. 26	2.57 1.95	4. 33	4. 04 4. 62	24. 4	24. 9 23. 9	4. 5	4. 2 4. 8	12
175	169 181	222.7	239. 4 206. 0	71.0	74.7 67.3	2. 35	2.66 2.04	4. 25	3. 96 4. 54	24.7	25. 2 24. 2	4. 3	4. 0 4. 6	13
168	162 174	220.9	237.6 204.2	69.8	73.5 66.1	2, 33	2.64	4. 36	4. 07 4. 65	24.6	25. 1 24. 1	5. 1	4. 8 5. 4	15
172	166 178	213.1	229. 8 196. 4	68. 4	72. 1 64. 7	2, 25	2.56 1.94	4. 42	4.13 4.71	24. 1	24. 6 23. 6	5. 3	5. 0 5. 6	16
176	170 182	224. 4	241.1 207.7	72.1	75. 8 68. 4	2. 41	2.72 2.10	4. 26	3. 97 4. 55	24.6	25. 1 24. 1	4. 3	4. 0 4. 6	17

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					MORTALITY					
STOCK	BREEDER'S NAME AND ADDRESS	BREED	DING	STRAIN OR TRADENAME	GROV	ving ()		(ING %)		
					RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE		
18	Ballew, Ken, Hatchery Mansfield, Missouri	WL	sx	Ballew	4. 7	4. 3 5. 1	15. 0	11.1		
20	Beamsdale Farm Rt. 2, Lawndale, North Carolina	WL	sx	Beamsdale 66	4. 5	4. 1 4. 9	16. 3	12. 4 20. 2		
22	Booth Farms & Hatchery Clinton, Missouri		INX	Booth Line 351	4. 6	4. 2 5. 0	12.9	9. 0 16. 8		
23	Booth Farms & Hatchery Clinton, Missouri	WL	PS	Booth	4. 6	4. 2 5. 0	12. 9	9. 0 16. 8		
24	Brender's Leghorn Farm Ferndale, New York	WL	sx	1234	4. 2	3. 8 4. 6	10.4	6. 5 14. 3		
25	Bulkley's Leghorns Odessa, New York	WL	sx	Bulkley			11.1	7.2 15.0		
26	Bundesen Bros. Petaluma, California	CG x V	WL BX	Graycie	4. 5	4. 1 4. 9	12.7	8.8 16.6		
27	Burr's Poultry Farm Tunkhannock, Pennsylvania	WL	LX	LC 89	4. 7	4. 3 5. 1	14. 4	10.5 18.3		
28	Butler County Hatchery Poplar Bluff, Missouri	WL	PS	Supreme Grade	4. 9	4. 5 5. 3	14.1	10.2 18.0		
29	Cameron Hatchery Beaver Springs, Pennsylvania	WL	sx	DMX	4. 5	4. 1 4. 9	12. 2	8. 3 16. 1		
30	Carey Farms Rt. 7, Marion, Ohio	WL	sx	Carey Nicks	4. 6	4. 2 5. 0	11.0	7.1 14.9		
31	Cashman Leghorn Farm Webster, Kentucky	WL	sx	Hi-Cash	4. 2	3. 8 4. 6	12. 3	8. 4 16. 2		
32	Childers Hatchery Santa Ana, California	CG x V	WL BX	Childers	4. 5	4. 1 4. 9	12.0	8.1 15.9		
33	Clark's Hatchery Rock Falls, Wisconsin	WL	sx	Nu-Line 308	4. 6	4. 2 5. 0	12.8	8. 9 16. 7		
34	Colonial Poultry Farms Pleasant Hill, Missouri	WL	PS	Best Egg Grade	4. 5	4. 1 4. 9	13. 2	9. 3 17. 1		
35	Colonial Poultry Farms Pleasant Hill, Missouri	WL	IN	True Line 365	4. 9	4. 5 5. 3	15.6	11.7 19.5		

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

AGE A	AT 50%		EGG PROD	UCTION		INCOME		FEED 24 OZ. O		E	gg.	301	DY	
PRODU	JCTION	HENH	OUSED	HEN	DAY	FEED AN		PROD		₩EI	GHT	WEIG	ЭНТ	STOCK
(Da	Ť	(Ne		(% RE-		(\$) LSD*	(lb	s) LSD*	RE-	z)	RC-	bs)	CODE
GRESSED MEAN	RANGE	GRESSED MEAN	LSD* RANGE	GRESSED MEAN	LSD* RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	LSD* RANGE	GRESSED MEAN	RANGE	
177	171 183	195. 4	212. 1 178. 7	64. 5	68. 2 60. 8	1. 99	2. 30 1. 68	4. 66	4. 37 4. 95	24. 2	24. 7 23. 7	4. 8	4. 5 5. 1	18
176	170 182	214.1	230.8 197.4	71.8	75.5 68.1	2. 34	2.65	4. 30	4. 01 4. 59	24.1	24. 6 23. 6	4. 2	3. 9 4. 5	20
172	166 178	214.8	231.5 198.1	67.8	71. 5 64. 1	2.04	2. 35 1.73	4. 52	4. 23 4. 81	24. 9	25. 4 24. 4	4. 3	4. 0 4. 6	22
172	166 178	215.1	231.8 198.4	68.5	72. 2 64. 8	2, 23	2. 54 1. 92	4. 42	4.13 4.71	24. 2	24.7 23.7	4. 6	4. 3 4. 9	23
176	170 182	222. 5	239. 2 205. 8	70.0	73.7 66.3	2. 31	2. 62 2. 00	4. 34	4.05 4.63	25. 5	26.0 25.0	4. 5	4. 2 4. 8	24
174	168 180	220. 3	237.0 203.6	68.5	72. 2 64. 8	2. 29	2.60 1.98	4. 37	4. 08 4. 66	24, 5	25. 0 24. 0	4. 0	3. 7 4. 3	25
170	164 176	227.6	244. 3 210. 9	70.6	74. 3 66. 9	2. 26	2.57 1.95	4, 44	4.15 4.73	24.7	25. 2 24. 2	5, 2	4. 9 5. 5	26
177	171 183	213.1	229. 8 196. 4	70.3	74.0 66.6	2.20	2.51 1.89	4. 44	4. 15 4. 73	24. 3	24. 8 23. 8	4. 5	4. 2 4. 8	27
179	173 185	197.6	214. 3 180. 9	64.1	67.8 60.4	2. 01	2. 32 1.70	4. 67	4. 38 4. 96	23.6	24. 1 23. 1	4. 6	4. 3 4. 9	28
174	168 180	225. 9	242.6 209.2	71.0	74.7 67.3	2. 39	2.70 2.08	4. 16	3. 87 4. 45	24. 3	24. 8 23. 8	4. 4	4. 1 4. 7	29
171	165 177	223. 4	240.1 206.7	69.8	73.5 66.1	2, 33	2.64 2.02	4. 32	4.03 4.61	24. 5	25. 0 24. 0	4. 6	4. 3 4. 9	30
171	165 177	234.2	250.9 217.5	73.8	77. 5 70. 1	2. 39	2.70 2.08	4. 31	4. 02 4. 60	24, 2	24. 7 23. 7	4. 9	4. 6 5. 2	31
166	160 172	231. 2	247.9 214.5	71.7	75. 4 68. 0	2. 39	2.70 2.08	4. 31	4. 02 4. 60	24.8	25. 3 24. 3	5. 2	4. 9 5. 5	32
175	169 181	218. 1	234.8 201.4	70.1	73.8 66.4	2. 27	2. 58 1. 96	4. 35	4. 06 4. 64	24. 5	25. 0 24. 0	4. 3	4. 0 4. 6	33
177	171 183	206.7	223. 4 190. 0	66.7	70. 4 63. 0	2.15	2. 46 1. 84	4. 59	4. 30 4. 88	24.6	25. 1 24. 1	4. 6	4. 3 4. 9	34
175	169 181	214.0	230.7 197.3	69. 9	73.6 66.2	2. 08	2. 39 1. 77	4. 46	4. 17 4. 75	24. 3	24. 8 23. 8	4. 3	4. 0 4. 6	35
	4 70	1												

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

						MORT	ALITY	
STOCK CODE	BREEDER'S NAME AND ADDRESS	BREED	DING	STRAIN OR TRADENAME	GROW		LAY	ING %)
					RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
213	Colonial Poultry Farms Pleasant Hill, Missouri	WL	sx	West Line 702	4. 6	4. 2 5. 0	12. 2	8. 3 16. 1
37	Cornell University Ithaca, New York	WL	PS	Random Bred	4. 9	4. 5 5. 3	12.6	8.7 16.5
42	Darby Leghorn Farm Somerville, New Jersey	WL	sx	Darby DX	4. 3	3. 9 4. 7	10.7	6.8 14.6
43	Darby Leghorn Farm Somerville, New Jersey	WL	PS	Darby Pure	4. 8	4. 4 5. 2	12.8	8. 9 16. 7
45	DeKalb Agricultural Association Sycamore, Illinois		INX	101	4. 3	3. 9 4. 7	10.7	6.8 14.6
46	DeKalb Agricultural Association Sycamore, Illinois		INX	111	4. 5	4. 1 4. 9	11.2	7.3 15.1
47	DeKalb Agricultural Association Sycamore, Illinois		INX	121	4. 6	4, 2 5, 0	11.2	7.3 15.1
48	DeKalb Agricultural Association Sycamore, Illinois		INX	131	4. 1	3. 7 4. 5	9. 5	5. 6 13. 4
49	Del Rio Hatchery Mesa, Arizona	RIR	PS	A	4. 6	4. 2 5. 0	11. 9	8.0 15.8
50	Del Rio Hatchery Mesa, Arizona	RIR	PS	В	4. 6	4. 2 5. 0	12.7	8. 8 16. 6
51	Demler Farms Anaheim, California	WL	sx	One Grade	4. 6	4. 2 5. 0	12.6	8.7 16.5
52	Demler Farms Anaheim, California	Syn x	WL BX	Demler Kross	4. 5	4. 1 4. 9	10.5	6. 6 14. 4
224	Dirkse Leghorn Farm Zeeland, Michigan	WL	PS	Dirkse Superior	4. 6	4. 2 5. 0	12. 3	8. 4 16. 2
53	Douglaston Manor Farm Pulaski, New York	RIR	PS	Commercial	4, 8	4. 4 5. 2	14, 1	10.2 18.0
54	Drake, John W. Skillman, New Jersey	WL	PS	One Grade			17. 3	13.4 21.2
55	Eby's Poultry Farm Carrollton, Texas	WL	sx	Grade #1	4. 7	4. 3 5. 1	11.2	7.3 15.1

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

			ECC DDOE	NICTION		T						T		
AGE A	T 50%		EGG PROD	DUCTION		FEED AN		FEED 24 OZ. C		E	33	301	ΣY	
PRODU	CTION	HENH	OUSED	HEN	DAY		ST	PROD	UCED	WEI	GHT	WEIG	SHT	sтоск
(Da	ys)	(No	o.)	(%)	(\$)	(lb			z)	-	s)	CODE
GRESSED MEAN	LSD*	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
171	165 177	220. 5	237.2 203.8	68. 3	72. 0 64. 6	2, 21	2. 52 1. 90	4. 41	4. 12 4. 70	24. 0	24. 5 23. 5	4. 6	4. 3 4. 9	213
174	168 180	222. 1	238.8 205.4	70.5	74. 2 66. 8	2. 08	2.39 1.77	4. 50	4. 21 4. 79	24. 0	24. 5 23. 5	4. 5	4. 2 4. 8	37
179	173 185	225. 6	242. 3 208. 9	70.6	74. 3 66. 9	2. 37	2. 68 2. 06	4. 35	4.06 4.64	25.0	25. 5 24. 5	4. 4	4. 1 4. 7	42
175	169 181	223. 1	239. 8 206. 4	70.3	74. 0 66. 6	2. 17	2. 48 1. 86	4. 55	4. 26 4. 84	24. 1	24. 6 23. 6	4. 8	4. 5 5. 1	43
169	163 175	224. 2	240.9 207.5	68.8	72. 5 65. 1	2. 27	2. 58 1. 96	4. 20	3. 91 4. 49	24. 6	25. 1 24. 1	4. 5	4. 2 4. 8	45
173	167 179	219. 1	235.8 202.4	68.4	72. 1 64. 7	2. 27	2. 58 1. 96	4. 28	3. 99 4. 57	25. 1	25. 6 24. 6	4. 4	4. 1 4. 7	46
170	164 176	222. 4	239. 1 205. 7	69. 1	72. 8 65. 4	2. 29	2.60 1.98	4. 29	4, 00 4, 58	25. 0	25. 5 24. 5	4. 6	4. 3 4. 9	47
165	159 171	238.5	255, 2 221, 8	73.0	76. 7 69. 3	2.48	2, 79	4. 07	3.78 4.36	24. 1	24. 6 23. 6	4. 3	4. 0 4. 6	48
171	165 177	212.8	229. 5 196. 1	67.0	70.7 63.3	2. 07	2. 38 1. 76	4.70	4. 41 4. 99	24. 2	24. 7 23. 7	5. 9	5. 6 6. 2	49
172	166 178	209. 0	225.7 192.3	66.1	69. 8 62. 4	2. 20	2. 51 1. 89	4.71	4. 42 5. 00	24. 3	24.8 23.8	5. 6	5. 3 5. 9	50
171	165 177	213.4	230. 1 196. 7	68.3	72. 0 64. 6	2. 27	2, 58 1, 96	4. 31	4. 02 4. 60	24. 5	25. 0 24. 0	4, 1	3. 8 4. 4	51
164	158 170	226. 1	242.8 209.4	69.2	72. 9 65. 5	2. 30	2. 61 1. 99	4. 40	4. 11 4. 69	24. 2	24.7 23.7	4. 9	4. 6 5. 2	52
174	168 180	228.8	245, 5 212, 1	72.8	76. 5 69. 1	2. 18	2. 49 1. 87	4. 51	4. 22 4. 80	24. 0	24. 5 23. 5	4. 6	4. 3 4. 9	224
183	177 189	202.8	219. 5 186. 1	66.8	70. 5 63. 1	2.04	2. 35 1. 73	4.76	4. 47 5. 0 5	24. 3	24.8 23.8	5, 5	5. 2 5. 8	53
176	170 182	195. 2	211. 9 178. 5	65. 5	69. 2 61. 8	1. 94	2.25	4.70	4. 41 4. 99	24. 4	24. 9 23. 9	4. 6	4. 3 4. 9	54
173	167 179	218.7	235. 4 202. 0	68. 1	71.8 64.4	2. 26	2. 57 1. 95	4. 49	4.20 4.78	24.7	25. 2 24. 2	4. 1	3. 8 4. 4	55

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

						MORT	ALITY	
STOCK	BREEDER'S NAME AND ADDRESS	BREEC	DING	STRAIN OR TRADENAME	GROW (%			ING %)
					GRESSED MEAN	RANGE	GRESSED MEAN	RANGE
57	Edmond's Trapnest Leghorns Luverne, Minnesota		INX	X Cross 103	4. 7	4. 3 5. 1	14. 3	10. 4 18. 2
58	Eelman Poultry Farm Wayne, New Jersey	WL	PS	Eelman			13, 8	9. 9 17. 7
59	Erath Egg Farm Stephenville, Texas	WL	sx	Erath Str. X	4. 6	4, 2 5, 0	11.9	8. 0 1 5. 8
60	Fletcher Hatchery Concord, North Carolina	WL	sx	FX 100	4, 5	4. 1 4. 9	11.4	7.5 15.3
61	Ford's Leghorn Farm Lockport, New York	WL	sx	Ford V88	4. 6	4. 2 5. 0	10.8	6. 9 14. 7
62	Forsgate Farms Jamesburg, New Jersey	WL	sx	Forsgate			14, 5	10.6 18.4
63	Fox-Den Farm Cary, North Carolina		вх	Black Diamond	4. 5	4. 1 4. 9	13.2	9. 3 17. 1
65	Garber Poultry Breeding Farm Modesto, California	CG x V	WL BX	Garber	4, 5	4. 1 4. 9	11.4	7.5 15.3
66	Garber Poultry Breeding Farm Modesto, California	WL	sx	G 200	4, 5	4. 1 4. 9	10.0	6. 1 13. 9
67	Garber Poultry Breeding Farm Modesto, California	WL	sx	G 300 C	4. 5	4. 1 4. 9	12.8	8. 9 16. 7
69	Garrison, Earl W. Bridgeton, New Jersey	RIR x	WR BX	Golden Sex-Link	4. 7	4. 3 5. 1	13, 4	9. 5 17. 3
70	Gasson's Poultry Farm Versailles, Ohio	WL	sx	G 33	4. 3	3. 9 4. 7	10.9	7.0 14.8
72	Ghostley's Poultry Farm Anoka, Minnesota	WL	sx	Pearl	4. 1	3. 7 4. 5	11.7	7.8 15.6
74	Graybill, L. J. Poultry Farm McAlisterville, Pennsylvania	WL	PS	Graybill	4. 7	4. 3 5. 1	14, 5	10.6 18.4
75	Great Plains Hatcheries Effingham, Illinois	RIR	PS	Egg Master	4, 5	4. 1 4. 9	12.1	8. 2 16. 0
76	Great Plains Hatcheries Effingham, Illinois		вх	Golden Cross	4. 4	4. 0 4. 8	12. 9	9. 0 16. 8

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

			EGG PROD	UCTION		INCOME	OVER	FEED	PER					
	AT 50% JCTION	HENH	OUSED	HEN	DAY	FEED AN		24 OZ. C			GG GHT	JOE WEIG		STOCK
(Da	iys)	(No		(%		(\$		(16		(0	z)	(1)	bs)	CODE
RE- GRESSED MEAN	I SD:	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
182	176 188	210. 4	227.1 193.7	69.2	72. 9 65. 5	2.09	2. 40 1. 78	4.75	4. 46 5. 04	24. 1	24. 6 23. 6	5. 2	4. 9 5. 5	57
184	178 190	209.7	226. 4 193. 0	70.8	74. 5 67. 1	2. 22	2. 53 1. 91	4. 37	4. 08 4. 66	24.7	25. 2 24. 2	4. 2	3. 9 4. 5	58
176	170 182	218. 5	235. 2 201. 8	69.5	73.2 65.8	2, 32	2.63	4. 27	3. 98 4. 56	24.7	25. 2 24. 2	4.1	3. 8 4. 4	59
175	169 181	218.7	235. 4 202. 0	68. 5	72. 2 64. 8	2. 38	2. 69 2. 07	4. 36	4. 07 4. 65	25.0	25. 5 24. 5	4. 3	4. 0 4. 6	60
177	171 183	222.7	239. 4 206. 0	70.2	73. 9 66. 5	2. 20	2. 51 1. 89	4. 48	4. 19 4. 77	24. 3	24. 8 23. 8	4. 9	4. 6 5. 2	61
181	175 187	205. 5	222. 2 188. 8	67.7	71. 4 64. 0	2. 13	2. 44	4. 52	4. 23 4. 81	24. 5	25. 0 24. 0	4. 2	3. 9 4. 5	62
174	168 180	205. 2	221. 9 188. 5	66. 5	70. 2 62. 8	1. 90	2. 21	4. 63	4. 34 4. 92	24.7	25. 2 24. 2	5.8	5. 5 6. 1	63
165	159 171	230.7	247.4 214.0	71.9	75.6 68.2	2. 31	2. 62	4. 35	4. 06 4. 64	24.7	25. 2 24. 2	4.8	4. 5 5. 1	65
172	166 178	228.7	245. 4 212. 0	71. 3	75.0 67.6	2. 39	2.70	4. 28	3. 99 4. 57	24.6	25. 1 24. 1	4. 2	3. 9 4. 5	66
176	170 182	219.0	235.7 202.3	69.7	73.4 66.0	2. 33	2.64	4. 32	4. 03 4. 61	24.6	25. 1 24. 1	4. 3	4. 0 4. 6	67
177	171 183	205.0	221.7 288.3	67.0	70.7 63.3	2. 16	2. 47 1. 85	4. 57	4. 28 4. 86	25. 3	25. 8 24. 8	6. 1	5. 8 6. 4	69
169	163 175	233.5	250. 2 216. 8	72.5	76. 2 68. 8	2. 54	2.85	4. 12	3.83 4.41	24. 5	25. 0 24. 0	4. 3	4. 0 4. 6	70
175	169 181	227.7	244. 4 211. 0	71.9	75.6 68.2	2. 39	2.70	4. 29	4. 00 4. 58	24. 5	25. 0 24. 0	4. 4	4. 1 4. 7	72
177	171 183	202.0	218.7 185.3	67.3	71.0 63.6	2. 01	2. 32	4.69	4. 40 4. 98	24.8	25. 3 24. 3	4. 9	4. 6 5. 2	74
174	168 180	216.4	233. 1 199. 7	. 68. 2	71. 9 64. 5	2. 34	2.65 2.03	4. 42	4. 13 4. 71	24.8	25. 3 24. 3	5. 7	5. 4 6. 0	75
175	169 181	214, 1	230.8 197.4	68. 3	72.0 64.6	2. 33	2.64	4. 41	4. 12 4. 70	25. 1	25.6 24.6	5. 6	5. 3 5. 9	76

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					MORT	ALITY	
STOCK CODE	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR TRADENAME	GROW			'ING %)
				RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
78	Hall Bros. Hatchery Wallingford, Connecticut	WL SX	Commercial	4. 4	4. 0 4. 8	11. 2	7. 3 15. 1
79	Hall Bros. Hatchery Wallingford, Connecticut	BX	Silver Hallcross	4. 7	4. 3 5. 1	13.6	9.7 17.5
80	Hansen's Leghorn City Puyallup, Washington	WL	Criss Cross H25	4. 5	4. 1 4. 9	11.1	7. 2 15. 0
82	Hansen's Leghorn City Puyallup, Washington	WL SX	Criss Cross 61	4. 5	4. 1 4. 9	13.0	9. 1 16. 9
83	Hansen, P., Poultry Breeding Farm Fresno, California	AW BX	One Grade	4. 6	4. 2 5. 0	12. 0	8. 1 15. 9
84	Hanson, J. A. & Son Corvallis, Oregon	WL SX	Super Nick	4. 8	4. 4 5. 2	11.6	7.7 15.5
85	Harco Orchards & Poultry Farms South Easton, Massachusetts	RIR PS	Flock Mating	5. 2	4. 8 5. 6	11.0	7.1 14.9
225	Harco Orchards & Poultry Farms South Easton, Massachusetts	RIR x BPR BX	Sex Link	4. 5	4. 1 4. 9	15, 2	11.3 19.1
86	Hardy, C. Nelson & Son Essex, Massachusetts	BX	Sex Link	4. 5	4. 1 4. 9	15. 1	11.2 19.0
87	Harper's Poultry Farm Freehold, New Jersey	WL SX	Harper Huskie	4. 7	4. 3 5. 1	12.6	8.7 16.5
88	Heisdorf & Nelson Farms Kirkland, Washington	WL SX	H & N Nick Chick	4. 4	4. 0 4. 8	9. 0	5. 1 12. 9
89	Heisdorf & Nelson Farms Kirkland, Washington	CG x WL BX	H & N	4. 6	4. 2 5. 0	11.7	7.8 15.6
90	Hobart Poultry Farm Hobart, New York	WL PS	Hobart	4. 5	4. 1 4. 9	12. 1	8. 2 16. 0
92	Honegger Breeder Hatchery Forrest, Illinois	WL SX	Honegger Layer	4. 3	3. 9 4. 7	10.8	6. 9 14. 7
93	Honegger Breeder Hatchery Forrest, Illinois	WL SX	Honegger Layer #62	4. 5	4. 1 4. 9	11.5	7.6 15.4
95	Hubbard Farms Walpole, New Hampshire	RIR x NH BX	Н 496	4. 9	4. 5 5. 3	17. 3	13.4 21.2
95	Hubbard Farms	RIR x NH		4. 9	4. 5	17. 3	

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

AGE A	AT S0%		EGG PROD	UCTION		INCOME FEED AN		FEED 24 OZ. C		E	ag	301	DΥ	
PRODU	ICTION	HENH	OUSED	HEN	DAY		ST		UCED	WEI	GHT	WEIG	ЭНТ	sтоск
(Da		(No		(%	-	(\$		(lb			z)	 	bs)	CODE
RE- GRESSED MEAN	RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSŌ* RANGE	
178	172 184	220. 1	236.8 203.4	69. 1	72. 8 65. 4	2. 29	2.60 1.98	4. 43	4. 14 4. 72	24.7	25. 2 24. 2	4. 4	4. 1 4. 7	78
166	160 172	212.5	229. 2 195. 8	67.5	71. 2 63. 8	2.23	2. 54 1. 92	4. 62	4. 33 4. 91	24. 4	24. 9 23. 9	6.6	6. 3 6. 9	79
169	163 175	228. 2	244. 9 211. 5	70.9	74.6 67.2	2, 42	2.73	4. 22	3. 93 4. 51	24. 8	25. 3 24. 3	4. 6	4. 3 4. 9	80
172	166 178	219.5	236. 2 202. 8	70.0	73.7 66.3	2, 23	2. 54 1. 92	4. 32	4. 03 4. 61	24. 5	25. 0 24. 0	4. 3	4. 0 4. 6	82
170	164 176	223. 1	239. 8 206. 4	70. 4	74. 1 66. 7	2. 27	2. 58 1. 96	4. 41	4. 12 4. 70	25. 2	25.7 24.7	5, 2	4. 9 5. 5	83
169	163 175	225. 0	241.7 208.3	70.1	73.8 66.4	2, 30	2. 61 1. 99	4. 33	4. 04 4. 62	23. 5	24. 0 23. 0	4. 4	4. 1 4. 7	84
175	169 181	216.6	233. 3 199. 9	69. 1	72. 8 65. 4	2. 17	2. 48 1. 86	4. 56	4. 27 4. 85	25. 3	25.8 24.8	5. 8	5. 5 6. 1	85
174	168 180	209.0	225. 7 192. 3	66.9	70.6 63.2	2, 26	2, 57 1, 95	4. 77	4. 48 5. 06	25, 1	25. 6 24. 6	5. 9	5, 6 6, 2	225
177	171 183	200.4	217. 1 183. 7	65.3	69. 0 61. 6	2. 18	2. 49 1. 87	4. 79	4. 50 5. 08	25. 0	25. 5 24. 5	6. 4	6. 1 6. 7	86
179	173 185	212.4	229. 1 195. 7	67.8	71. 5 64. 1	2. 16	2. 47 1. 85	4. 51	4. 22 4. 80	24.7	25. 2 24. 2	4. 4	4. 1 4. 7	87
168	162 174	235. 4	252. 1 218. 7	72. 5	76. 2 68. 8	2, 41	2.72 2.10	4. 31	4. 02 4. 60	23. 9	24. 4 23. 4	4. 3	4. 0 4. 6	88
165	159 171	237.6	254. 3 220. 9	72.8	76. 5 69. 1	2. 34	2, 65 2, 03	4. 34	4. 05 4. 63	24.6	25. 1 24. 1	5. 0	4. 7 5. 3	89
173	167 179	210.6	227. 3 193. 9	66.9	70. 6 63. 2	2. 08	2. 39 1. 77	4. 57	4. 28 4, 86	24. 3	24. 8 23. 8	4. 5	4. 2 4. 8	90
177	171 183	227.6	244. 3 210. 9	72.1	75. 8 68. 4	2. 40	2.71 2.09	4. 27	3. 98 4. 56	24. 4	24. 9 23. 9	4. 3	4. 0 4. 6	92
172	166 178	224.2	240. 9 207. 5	70.0	73.7 66.3	2. 28	2.59	4. 40	4. 11 4. 69	24. 2	24. 7 23. 7	4. 8	4. 5 5. 1	93
172	166 178	209.1	225. 8 192. 4	68. 4	72. 1 64. 7	2.10	2. 41 1. 79	4, 69	4. 40 4. 98	24.8	25. 3 24. 3	6.0	5. 7 6. 3	95
												1,0		

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

	All blocks Billered, with Regret						ALITY	
STOCK	BREEDER'S NAME AND ADDRESS	BREE	DING	STRAIN OR TRADENAME	GROW (% RE- GRESSED MEAN			(ING %) LSD* RANGE
97	Hy-Line Poultry Farms Des Moines, Iowa		INX	934 A	4. 4	4. 0 4. 8	11.2	7. 3 15. 1
99	Hy-Line Poultry Farms Des Moines, Iowa		INX	934 C	3. 8	3. 4 4. 2	10.5	6. 6 14. 4
101	Ideal Hatchery & Poultry Farm Cameron, Texas	WL	sx	H-3-W	4. 4	4. 0 4. 8	14.1	10.2 18.0
102	Indian Head Hatchery Toms River, New Jersey	WL	sx	Indian Head			15.2	11. 3 19. 1
103	Indiana Farm Bureau Coop. Indianapolis, Indiana	WL	SX	10-33	4. 5	4. 1 4. 9	12.7	8.8 16.6
104	Indiana Farm Bureau Coop. Indianapolis, Indiana	WL	sx	10-42	4. 8	4. 4 5. 2	11.6	7.7 15.5
106	Jacobs Poultry Farm Aurora, New York	WL	SX	Commercial	4. 7	4. 3 5. 1	14.2	10. 3 18. 1
107	Kahn's Leghorn Farm Toms River, New Jersey	WL	SX	Commercial			1 3, 2	9. 3 17. 1
108	Kerr, Dr. Hatcheries Minneota, Minnesota	WL	IN	409 C	4. 5	4. 1 4. 9	12.7	8. 8 16. 6
109	Keystone Poultry Breeding Farm Ephrata, Pennsylvania	WL	sx	Keystone Leghorns	4. 6	4. 2 5. 0	11.8	7.9 15.7
110	Kimber Farms, Inc. Niles, California	WL	SX	K 137	4. 5	4. 1 4. 9	7.2	3. 3 11. 1
112	Kimber Farms, Inc. Niles, California	WL	SX	K 155	4. 2	3. 8 4. 6	10.7	6.8 14.6
113	Kruger's Poultry Breeding Farm Dinuba, California	WL	SX	Commercial	4. 5	4. 1 4. 9	14. 9	11.0 18.8
114	Lakewood Egg Farm Lakewood, New Jersey	WL	LX	Commercial			13.7	9.8 17.6
115	Lasher Hatchery Petaluma, California	WL	PS	Commercial	4. 6	4. 2 5. 0	11.4	7.5 15.3
116	Lawton, A. C. & Sons Foxboro, Massachusetts	WPR	PS	Certified Candidate	4. 8	4. 4 5. 2	15.2	11. 3 19. 1

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

			EGG PROD	DUCTION		INCOME	OVER	FEED	PER					
	AT SO%					FEEO AN					GG GUT	300 WE10		
PROOL	ICTION	HEN H	OUSEO	HEN	DAY	CO	ST	PROD	UCEO	WEI	GHT	WEIG	эп I	STOCK
(Da	ys)	(No	p.)	(%)	(\$)	(lb	s)	(0	z)	(11	s)	COOE
RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
172	166 178	223. 1	239. 8 206. 4	70.1	73.8 66.4	2. 35	2. 66 2. 04	4, 23	3. 94 4. 52	25. 0	25. 5 24. 5	4. 2	3, 9 4, 5	97
169	163 175	234, 5	251. 2 217. 8	73.2	76. 9 69. 5	2. 40	2.71 2.09	4. 09	3. 80 4. 38	24. 9	25. 4 24. 4	4. 0	3. 7 4. 3	99
173	167 179	223, 0	239.7 206.3	71.9	75.6 68.2	2. 36	2.67 2.05	4. 25	3. 96 4. 54	24, 8	25. 3 24. 3	4. 3	4. 0 4. 6	101
169	163 175	212. 9	229. 6 196. 2	69. 5	73, 2 65, 8	2. 18	2. 49 1. 87	4. 45	4. 16 4. 74	24. 6	25. 1 24. 1	4. 6	4. 3 4. 9	102
180	174 186	214. 1	230.8 197.4	67.5	71. 2 63. 8	2.19	2. 50 1. 88	4. 51	4. 22 4. 80	25, 0	25. 5 24. 5	4. 4	4. 1 4. 7	103
179	173 185	218.0	234.7 201.3	69. 9	73. 6 66. 2	2. 19	2.50 1.88	4. 39	4. 10 4. 68	24. 1	24. 6 23. 6	4. 6	4. 3 4. 9	104
183	177 189	205. 5	222. 2 188. 8	67.4	71.1 63.7	2. 01	2. 32 1. 70	4, 55	4. 26 4. 84	24.7	25. 2 24. 2	4. 6	4. 3 4. 9	106
177	171 183	220.6	237.3 203.9	70.4	74. 1 66. 7	2, 29	2.60 1.98	4, 42	4. 13 4. 71	24.7	25. 2 24. 2	4. 6	4. 3 4. 9	107
165	159 171	225. 3	242.0 208.6	70.2	73. 9 66. 5	2, 41	2. 72 2. 10	4. 10	3. 81 4. 39	24. 8	25. 3 24. 3	4. 6	4. 3 4. 9	108
179	173 185	221.8	238. 5 205. 1	.69.6	73.3 65.9	2. 39	2.70	4. 34	4. 05 4. 63	24.8	25.3 24.3	4, 5	4. 2 4. 8	109
167	161 1 7 3	237.9	254.6 22 1 .2	72.5	76. 2 68. 8	2.60	2. 91 2. 29	4. 16	3. 87 4. 45	25.0	25. 5 24. 5	4. 3	4. 0 4. 6	110
164	158 170	233. 4	250. 1 216. 7	71.8	75. 5 68. 1	2. 45	2.76 2.14	4. 26	3. 97 4. 55	24.6	25. 1 24. 1	4. 6	4. 3 4. 9	112
174	168 180	212.8	229. 5 196. 1	69. 4	73. 1 65. 7	2.11	2. 42	4. 48	4. 19 4. 77	24. 3	24. 8 23. 8	4. 4	4. 1 4. 7	113
185	179 191	209. 2	225. 9 192. 5	69.0	72.7 65.3	2. 18	2. 49	4. 42	4. 13 4. 71	24.6	25. 1 24. 1	4.6	4. 3 4. 9	114
173	167 179	226. 9	243. 6 210. 2	71.1	74.8 67.4	2. 36	2. 67 2. 05	4. 37	4. 08 4. 66	24. 4	24. 9 23. 9	4. 8	4. 5 5. 1	115
181	175 187	198.2	214.9 181.5	65. 5	69. 2 61. 8	2. 02	2.33 1.71	4. 62	4. 33 4. 91	24.7	25. 2 24. 2	5. 6	5. 3 5. 9	116
	3													

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					MORT	ALITY	
STOCK CODE	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR TRADENAME	RE-	(a)	RE-	(ING %) LSD*
				GRESSED MEAN	RANGE	GRESSED MEAN	RANGE
117	Lawton, A. C. & Sons Foxboro, Massachusetts	RIR x WPR BX	Buff Sex Link	4. 6	4. 2 5. 0	13.8	9.9 17.7
118	Leader, Guy A. & Sons York, Pennsylvania	WL SX	10X	4. 5	4. 1 4. 9	13. 3	9. 4 17. 2
248	Lee's Poultry Farm Brookville, Ohio	WPR PS	Lee	4. 7	4. 3 5. 1	12. 9	9. 0 16. 8
121	Leonard's Hatchery Osage, Iowa	вх	Lanco 505	4. 6	4. 2 5. 0	14.1	10.2 18.0
122	Liechty's Poultry Farm Wauseon, Ohio	WL SX	L 240	4. 4	4. 0 4. 8	12. 4	8.5 16.3
124	Lux Leghorn Land Farms Hopkinton, Iowa	WL SX	H-D-6	4. 6	4. 2 5. 0	10.7	6.8 14.6
126	Mathews Poultry Farm Burlington, Wisconsin	WL SX	M 138	4. 5	4. 1 4. 9	14.8	10. 9 18. 7
127	McDonald, Raymond, Hatchery Fort Worth, Texas	WL SX	McDonald	4. 6	4. 2 5. 0	12.2	7.8 16.1
128	McDonald, Roy, Hatchery Dallas, Texas	WL SX	McDonald	4. 5	4. 1 4. 9	13.1	9.2 17.0
132	Meadow View Hatchery Eau Claire, Wisconsin	WL SX	3 way	4. 5	4. 1 4. 9	11.2	7.3 15.1
1 33	Merryknoll Farms Attleboro, Massachusetts	вх	Merryknoll 400	4. 5	4.1 4.9	15.4	11.5 19.3
134	Midwest Poultry Farm Marshall, Missouri	WL PS	Best Egg Grade	4. 5	4. 1 4. 9	12. 1	8. 2 16. 0
135	Midwest Poultry Farm Marshall, Missouri	RIR PS	Production Red	4. 6	4. 2 5. 0	12.6	8.7 16.5
1 36	Missouri Valley Hatchery Marshall, Missouri	WL PS	Best Egg Contest	4. 4	4. 0 4. 8	11.8	7.9 15.7
1 37	Missouri Valley Hatchery Marshall, Missouri	BX	Ski Line Layers	4. 4	4. 0 4. 8	11.5	7.6 15.4
139	Niles Poultry Breeding Farm Niles, California	WL SX	Niles	4. 6	4. 2 5. 0	10.0	6. 1 13. 9

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

			EGG PROE	UCTION		INCOME	OVER	FEED	PER					
	AT 50% UCTION	HENH	OUSED	HEN	DAY	FEED AN		24 OZ. C		WEI	33 GHT	30t		sтоск
(Da	ıys)	(No		(%		(\$,)	(lb		(0	z)	(ll	bs)	CODE
RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RC- GRESSED MEAN	LSD* RANGE	
178	172 184	204. 9	221. 6 188. 2	65. 6	69. 3 61. 9	2. 26	2. 57 1. 95	4. 76	4. 47 5. 05	25. 0	25. 5 24. 5	5. 2	4. 9 5. 5	117
174	168 180	216.7	233. 4 200. 0	69. 4	73.1 65.7	2.24	2. 55 1. 93	4. 40	4. 11 4. 69	24.7	25. 2 24. 2	4. 3	4. 0 4. 6	118
176	170 182	205.8	222. 5 189. 1	66. 1	69. 8 62. 4	2. 11	2. 42 1. 80	4. 77	4. 48 5. 06	24. 8	25. 3 24. 3	6. 6	6. 3 6. 9	248
178	172 184	200. 1	216. 8 183. 4	65.7	69. 4 62. 0	2.10	2. 41 1. 79	4. 52	4. 23 4. 81	24. 4	24. 9 23. 9	4. 7	4. 4 5. 0	121
175	169 181	222. 9	239. 6 206. 2	70.0	73.7 66.3	2. 35	2.66 2.04	4. 31	4. 02 4. 60	24. 6	25. 1 24. 1	4. 3	4. 0 4. 6	122
173	167 179	229. 0	245. 7 212. 3	70.9	74.6 67.2	2. 38	2. 69 2. 07	4. 32	4. 03 4. 61	24. 5	25. 0 24. 0	4.6	4. 3 4. 9	124
178	172 184	211.2	227. 9 194. 5	68. 9	72. 6 65. 2	2. 16	2.47 1.85	4. 44	4. 15 4. 73	24.7	25. 2 24. 2	4. 7	4. 4 5. 0	126
174	168 180	218. 4	235. 1 201. 7	68.6	72. 3 64. 9	2. 30	2. 61 1. 99	4. 38	4. 09 4. 67	24.8	25. 3 24. 3	4. 4	4. 1 4. 7	127
175	169 181	217. 2	233.9 200.5	68.9	72. 6 65. 2	2. 26	2. 57 1. 95	4. 42	4. 1 3 4. 71	24.7	25. 2 24. 2	4. 5	4. 2 4. 8	128
171	165 177	222, 5	239.2 205.8	68. 9	72. 6 65. 2	2. 34	2. 65 2. 03	4. 28	3. 99 4. 57	24. 5	25. 0 24. 0	4. 3	4. 0	1 32
176	170 182	207. 3	224. 0 190. 6	67.5	71. 2 63. 8	2. 17	2. 48 1. 86	4. 66	4. 37 4. 95	24. 9	25. 4 24. 4	6. 0	5. 7 6. 3	133
170	164 176	222.0	238.7 205.3	69.7	73. 4 66. 0	2. 36	2. 67 2. 05	4. 32	4. 03 4. 61	24.7	25. 2 24. 2	4. 6	4. 3 4. 9	134
174	168 180	214. 1	230.8 197.4	68. 3	72. 0 64. 6	2. 27	2, 58 1, 96	4. 42	4. 1 3 4. 71	24.0	24. 5 23. 5	5, 9	5. 6 6. 2	135
169	163 175	223. 5	240. 2 206. 8	70.0	73.7 66.3	2. 35	2.66	4. 33	4. 04 4. 62	24.6	25. 1 24. 1	4. 1	3. 8 4. 4	136
169	163 175	223. 5	240. 2 206. 8	69. 8	7 3, 5 66. 1	2. 39	2.70	4. 28	3. 99 4. 57	24.7	25. 2 24. 2	4. 4	4. 1 4. 7	1 37
172	166 178	213. 3	230.0 196.6	66. 5	70. 2 62. 8	2. 20	2. 51 1. 89	4. 48	4. 19 4. 77	24. 8	25. 3 24. 3	4. 4	4. 1 4. 7	139

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					MORT	ALITY	
STOCK	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR TRADENAME	GROW			(ING %)
				RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
140	Niles Poultry Breeding Farm Niles, California	CG x WL BX	Commercial	4. 6	4. 2 5. 0	11.7	7. 8 15. 6
141	Nimton Leghorn Breeding Farm Bridgeton, New Jersey	WL SX	Nimton	4. 5	4. 1 4. 9	13. 9	10.0 17.8
142	Norco Poultry Breeding Farm Norco, California	WL PS	Grade A	4. 6	4. 2 5. 0	11.1	7.2 15.0
143	Norris, Vernon Valencia, Pennsylvania	WL PS	Efficiency Leghorns	4. 6	4. 2 5. 0	14.8	10.9 18.7
144	Oster, Jacob Poultry Farm Flemington, New Jersey	WL SX	Oster			11. 5	7.6 15.4
145	Ottawa Central Experimental Farm Ottawa, Canada	WL PS	Random Bred Control	4. 8	4. 4 5. 2	18.0	14. 1 21. 9
148	Parmelee, Harold R. Rockfall, Connecticut	BPR PS	Certified	4.7	4. 3 5. 1	14. 1	10, 2 18, 0
149	Parmenter Reds Franklin, Massachusetts	RIR PS	Certified	4.7	4. 3 5. 1	13. 5	9.6 17.4
151	Peerless Hatchery Spencer, Iowa	WL SX	Peerless 262	4. 4	4. 0 4. 8	11.6	7.7 15.5
152	Pa. Farm Bureau Hatchery Harrisburg, Pennsylvania	WL SX	LSC 55	4. 8	4. 4 5. 2	12. 3	8. 4 16. 2
154	Pillsbury Company Clinton, Iowa	WL SX	Maxi-Lay Queens	4. 4	4. 0 4. 8	13.0	9. 1 16. 9
157	Purdue Regional USDA Laboratory Lafayette, Indiana	RIR x WL BX	Random Bred Control	4. 5	4. 1 4. 9	12. 0	8. 1 15. 9
158	Randall Hatchery & Breeding Farm Montclair, California	WL SX	Randall	4. 5	4. 1 4. 9	12.0	8. 1 15. 9
159	Randall Hatchery & Breeding Farm Montclair, California	CG x WL BX	Randall	4. 5	4. 1 4. 9	10.8	6. 9 14. 7
160	Rapp Leghorn Farm Farmingdale, New Jersey	WL SX	Rapp Linecross	4. 3	3. 9 4. 7	13.3	9. 4 17. 2
161	Reid's Valley Hatchery Spring Valley, Wisconsin	CG x WL BX	VH 354	4. 5	4. 1 4. 9	12. 2	8. 3 16. 1

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

	A T 50%		EGG PROD	UCTION		INCOME	OVER	FEED	PER			300		
	AT 50% UCTION	HENH	OUSED	HEN	DAY		D CHICK ST		UCED		33 GHT	WEIG		STOCK
(D	ays)	(No	o.),	(%	5)	(\$)	(lb	s)		z)	(lb	s)	CODE
RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
167	161 173	233.5	250. 2 216. 8	72.0	75.7 68.3	2. 30	2.61 1.99	4. 43	4. 1 4 4. 72	25. 1	25. 6 24. 6	5. 3	5. 0 5. 6	140
175	169 181	227.7	244. 4 211. 0	74.1	77.8 70.4	2. 29	2, 60 1, 98	4. 29	4.00 4.58	24.7	25. 2 24. 2	4. 3	4. 0 4. 6	141
175	169 181	212. 5	229. 2 195. 8	67.5	71. 2 63. 8	2. 11	2. 42 1. 80	4. 52	4, 23 4, 81	24. 9	25. 4 24. 4	4. 8	4. 5 5. 1	1 42
179	173 185	197.2	213.9 180.5	65.6	69. 3 61. 9	2.01	2. 32 1. 70	4. 53	4. 24 4. 82	24.5	25.0 24.0	4. 1	3. 8 4. 4	143
184	178 190	211.6	228. 3 194. 9	67.5	71. 2 63. 8	2. 19	2. 50 1. 88	4. 45	4. 16 4. 74	24.7	25. 2 24. 2	4. 2	3. 9 4. 5	144
181	175 187	197.5	214. 2 180. 8	67.0	70.7 63.3	1.75	2.06 1.44	4.70	4. 41 4. 99	23.6	24. 1 23. 1	4. 4	4. 1 4. 7	145
193	187 199	201.3	218.0 184.6	67.9	71.6 64.2	2.04	2. 35	4.72	4. 43 5. 01	24.8	25. 3 24. 3	5. 7	5. 4 6. 0	1 48
180	174 186	205.0	221.7 188.3	65.9	69. 6 62. 2	2.09	2. 40 1. 78	4.72	4. 43 5. 01	24. 3	24.8 23.8	5. 7	5. 4 6. 0	149
177	171 183	224. 1	240.8 207.4	71.5	75. 2 67. 8	2. 33	2.64	4. 43	4. 14 4. 72	24. 6	25. 1 24. 1	5.0	4. 7 5. 3	151
185	179 191	208.0	224.7 191.3	67.1	70. 8 63. 4	2.15	2. 46 1. 84	4. 36	4. 07 4. 65	24.8	25. 3 24. 3	4. 3	4. 0 4. 6	1 52
174	168 180	219. 5	236. 2 202. 8	70.6	74. 3 66. 9	2. 31	2. 62	4. 32	4. 03 4. 61	24.7	25. 2 24. 2	4. 4	4. 1 4. 7	154
173	167 179	214.7	231.4	68.2	71. 9 64. 5	2.18	2. 49 1. 87	4. 57	4. 28 4. 86	24.8	25. 3 24. 3	5, 6	5. 3 5. 9	1 57
172	166 178	216. 4	233.1 199.7	68.7	72. 4 65. 0	2.29	2.60 1.98	4. 33	4. 04 4. 62	24. 3	24. 8 23. 8	4. 2	3. 9 4. 5	158
165	159 171	233. 8	250. 5 217. 1	71.9	75.6 68.2	2. 41	2.72	4. 34	4. 05 4. 63	24.8	25. 3 24. 3	5. 1	4. 8 5. 4	159
177	171 183	223.1	239. 8 206. 4	72.5	76. 2 68. 8	2. 35	2.66	4. 25	3. 96 4. 54	24. 2	24. 7 23. 7	4. 2	3. 9 4. 5	160
167	161 173	220.4	237.1 203.7	69. 2	72. 9 65. 5	2. 30	2. 61 1. 99	4. 31	4. 02 4. 60	24.9	25. 4 24. 4	5. 2	4. 9 5. 5	161

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					MORT	ALITY	
STOCK CODE	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR TRADENAME	GROW			(ING %)
				RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
164	Richardson Poultry Breeding Farm Redlands, California	WA BX	Commercial	4. 7	4. 3 5. 1	11.8	7.9 15.7
165	Richardson Poultry Breeding Farm Redlands, California	WA	Commercial MWA	4. 5	4. 1 4. 9	12. 0	8. 1 15. 9
170	Ruckers (Imperial) Poultry Farm Ottumwa, Iowa	INX	GW 389 A	4. 7	4. 3 5. 1	11.8	7.9 15.7
171	Ruckers (Imperial) Poultry Farm Ottumwa, Iowa	INX	GW 389 C	4. 5	4. l 4. 9	11.8	7.9 15.7
173	Sand Hills Farm Almond, New York	WL PS	Commercial	4. 5	4. 1 4. 9	9. 4	5. 5 13. 3
175	Schaible, Louis D. Shiloh, New Jersey	WL	Commercial	4. 8	4. 4 5. 2	11.6	7.7 15.5
176	Schaible, Louis D. Shiloh, New Jersey	WL SX	Commercial 2	4. 6	4. 2 5. 0	11.8	7.9 15.7
177	Schildmeyer's Poultry Breeding Fr. Orange, California	WL PS	Commercial	4.6	4, 2 5, 0	11. 1	7.2 15.0
178	Schildmeyer's Poultry Breeding Fr. Orange, California	CG x WL	Commercial	4. 5	4. l 4. 9	13.1	9.2 17.0
179	Schubkegel, Martin Lakewood, New Jersey	WL SX	M&S Cross			13.8	9.9 17.7
180	Schuyler Poultry Farms LeRoy, New York	WL SX	Egg Champs	4. 6	4. 2 5. 0	10.7	6. 8 14. 6
181	Shaver Poultry Breeding Farm Galt, Ontario, Canada	WL SX	Starcross 288	4. 5	4. l 4. 9	10.5	6.6 14.4
182	Shenango Valley Hatchery Greenville, Pennsylvania	WL SX	Hamblin X	4. 6	4, 2 5, 0	13. 4	9.5 17.3
183	Sierra Farms Hatchery Riverside, California	CG x WL	Silver Gray	4. 5	4. 1 4. 9	11.1	7.2 15.0
184	Spruce Poultry Breeding Farm Bound Brook, New Jersey	WL SX	S-3	4. 5	4. 1 4. 9	12. 0	8. 1 15. 9
187	Stever Hatchery Huntingdon, Pennsylvania	WL SX	300 A	4. 5	4. 1 4. 9	10.6	6.7 14.5

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

AGE A	AT S0%		EGG PROD	DUCTION		INCOME		FEED		E	36	JOE	DΥ	
PRODL	ICTION	HENH	OUSED	HEN	DAY	FEED AN		24 OZ. C		WEI	GHT	WEIG	энт	sтоск
(Da	vs)	(No		(%		(\$)	(lb		(0	z)	(11	s)	CODE
RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
168	162 174	238. 4	255. 1 221. 7	74.0	77.7 70.3	2. 23	2. 54 1. 92	4. 46	4. 17 4. 75	23.6	24. 1 23. 1	5. 3	5. 0 5. 6	164
171	165 177	225. 5	242. 2 208. 8	71.6	75. 3 67. 9	2. 21	2. 52 1. 90	4. 39	4. 10 4. 68	24.7	25. 2 24. 2	4. 8	4. 5 5. 1	165
175	169 181	215. 4	232. 1 198. 7	67.5	71. 2 63. 8	2. 09	2. 40 1. 78	4. 42	4. 13 4. 71	23. 5	24. 0 23. 0	4. 5	4. 2 4. 8	170
171	165 177	211.2	227. 9 194. 5	66.7	70. 4 63. 0	2. 20	2. 51 1. 89	4, 28	3. 99 4. 57	23. 5	24. 0 23. 0	4. 6	4. 3 4. 9	171
170	164 176	220.7	237.4 204.0	67.8	71. 5 64. 1	2. 33	2.64	4. 30	4. 01 4. 59	24.7	25. 2 24. 2	4, 3	4. 0 4. 6	17 3
173	167 179	230.6	247.3 213.9	71.9	75.6 68.2	2. 51	2.82 2.20	4. 17	3. 88 4. 46	24. 6	25, 1 24, 1	4. 3	4. 0 4. 6	175
176	170 182	217.8	234.5 201.1	68. 2	71. 9 64. 5	2. 25	2.56 1.94	4. 40	4. 11 4. 69	24. 4	24. 9 23. 9	4. 3	4. 0 4. 6	176
173	167 179	221.8	238. 5 205. 1	69.7	7 3. 4 66. 0	2. 15	2. 46 1. 84	4. 44	4. 15 4. 73	24. 4	24. 9 23. 9	4. 4	4. 1 4. 7	177
171	165 177	218.7	235. 4 202. 0	69. 5	73.2 65.8	2, 18	2. 49 1. 87	4. 45	4. 16 4. 74	24. 3	24. 8 23. 8	5. 0	4. 7 5. 3	178
175	169 181	208.6	225. 3 191. 9	68.8	72. 5 65. 1	2. 16	2. 47 1. 85	4. 50	4.21 4.79	24. 6	25. 1 24. 1	4, 6	4. 3 4. 9	179
176	170 182	234.0	250.7 217.3	73.5	77. 2 69. 8	2. 51	2. 82 2. 20	4, 25	3. 96 4. 54	24. 2	24.7 23.7	4. 1	3. 8 4. 4	180
173	167 179	235.7	252. 4 219. 0	73.9	77.6 70.2	2. 41	2.72	4. 31	4. 02 4. 60	25. 0	25. 5 24. 5	4. 6	4. 3 4. 9	181
173	167 179	216.8	233.5 200.1	69.9	73.6 66.2	2, 28	2. 59 1. 97	4. 32	4. 03 4. 61	24. 5	25. 0 24. 0	4. 2	3. 9 4. 5	182
168	162 174	232,7	249. 4 216. 0	71.8	75. 5 68. 1	2. 34	2. 65 2. 03	4. 38	4. 09 4. 67	24. 9	25. 4 24. 4	5. 2	4. 9 5. 5	183
181	175 187	223. 0	239.7 206.3	71.3	75.0 67.6	2. 31	2.62 2.00	4. 42	4.13 4.71	24. 4	24. 9 23. 9	4. 5	4. 2 4. 8	184
175	169 181	221.0	237.7 204.3	69. 1	72. 8 65. 4	2. 40	2.71	4. 24	3. 95 4. 53	24.0	24. 5 23. 5	4. 1	3. 8 4. 4	187

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					MORTALITY					
STOCK CODE	BREEDER'S NAME AND ADDRESS	BREE	DING	STRAIN OR TRADENAME	GROWING (%) RE- GRESSED MEAN RANGE			'ING %) LSD* RANGE		
188	Stever Hatchery Huntingdon, Pennsylvania	WL	SX	300 B	4. 5	4. 1	13. 3	9. 4		
190	Stone's Poultry Farm Dinuba, California	WL	SX	н 56	4. 5	4. 1 4. 9	11.1	7.2 15.0		
192	Stone Bros. Hatchery Madelia, Minnesota	WL	SX	128	4. 4	4. 0 4. 8	13.0	9. 1 16. 9		
194	Struthoff, Bernard Vincetown, New Jersey	WL	SX	Commercial			12. 1	8.2 16.0		
196	Sunnyside Hatchery Watertown, Wisconsin	CG x	WL BX	Wisco White	4. 6	4. 2 5. 0	13. 3	9. 4 17. 2		
197	Swift & Co. Chicago, Illinois	WL	SX	Ski -H i 316	4. 5	4. 1 4. 9	11. 9	8.0 15.8		
199	Townline Poultry Farm Zeeland, Michigan	WL	SX	SC-30	4. 6	4. 2 5. 0	11.9	8.0 15.8		
200	Truway Farms East Berlin, Pennsylvania	WL	PS	Truway	4. 7	4. 3 5. 1	13.9	10.0 17.8		
201	University of Missouri Columbia, Missouri	WL	PS	Intra Flock	4. 5	4. 1 4. 9	12. 1	8.2 16.0		
202	Vancrest Farms Hyde Park, New York		вх	All Red	4. 7	4. 3 5. 1	13.6	9.7 17.5		
203	Vancrest Farms Hyde Park, New York	WL	SX	Regular Mating	4. 4	4. 0 4. 8	11.3	7.4 15.2		
208	Warren, J. J. North Brookfield, Massachusetts	RIR x	RIW	Sex-Sal-Link	4. 9	4. 5 5. 3	13.6	9.7 17.5		
209	Weber Hatchery Mohntown, Pennsylvania	WL	SX	Weber Cross	4. 6	4. 2 5. 0	12. 9	9.0 16.8		
210	Webster Poultry Farms Auburn, New York	RIR	PS	Certified	4. 9	4. 5 5. 3	16.7	12.8 20.6		
211	Welp's Breeding Farm Bancroft, Iowa		INX	341	4. 6	4. 2 5. 0	10.0	6. 1 13. 9		
212	Welp's Breeding Farm Bancroft, Iowa	WL	sx	901	4. 4	4. 0 4. 8	9. 9	6. 0 1 3. 8		

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

			EGG PROD	UCTION		INCOME	OVER	FEED	PER	I .				
	AT 50% UCTION						D CHICK	24 OZ. O			GG GHT	301 WEI		5ТОСК
	ays)	HEN H	OUSED	HEN		(\$		PROD (lb		(0	z)	(a)	bs)	CODE
RE- GRESSEI MEAN	I SD*	RE- GRESSED MEAN	LSD+ RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	1.57*	
171	165 177	209. 8	226. 5 193. 1	67.1	70. 8 63. 4	2. 14	2. 45 1. 83	4. 46	4. 17 4. 75	24. 3	24. 8 23. 8	4. 3	4. 0 4. 6	188
172	166 178	235.1	251.8 218.4	73.5	77. 2 69. 8	2. 41	2.72	4. 28	3. 99 4. 57	25.0	25. 5 24. 5	4. 5	4. 2 4. 8	190
177	171 183	215.8	232.5 199.1	69. 4	73.1 65.7	2, 22	2. 53 1. 91	4. 40	4. 11 4. 69	24. 2	24.7 23.7	4. 6	4. 3 4. 9	192
173	167 179	221. 4	238. 1 204. 7	69. 4	73.1 65.7	2.22	2. 53 1. 91	4. 50	4. 21 4. 79	24. 0	24. 5 23. 5	4. 5	4. 2 4. 8	194
171	165 177	217.1	233.8 200 _• 4	68.7	72. 4 65. 0	2. 21	2.52 1.90	4. 43	4. 14 4. 72	24. 4	24. 9 23. 9	5. 1	4. 8 5. 4	196
177	171 183	227.4	244. 1 210. 7	72.4	76. 1 68. 7	2. 34	2. 65 2. 03	4. 28	3. 99 4. 57	24. 5	25.0 24.0	4. 5	4. 2 4. 8	197
177	171 183	219. 4	236. 1 202. 7	69.0	72. 7 65. 3	2. 29	2.60 1.98	4. 35	4. 06 4. 64	24. 1	24. 6 23. 6	4. 2	3. 9 4. 5	199
175	169 181	213.8	230.5 197.1	68.8	72. 5 65. 1	2. 19	2.50 1.88	4. 39	4. 10 4. 68	24.6	25. 1 24. 1	4. 4	4. 1 4. 7	200
173	167 179	218. 1	234.8 201.4	69. 0	72. 7 65. 3	2. 30	2. 61 1. 99	4. 28	3. 99 4. 57	24. 1	24.6 23.6	4. 9	4. 6 5. 2	201
183	177 189	214.2	230.9 197.5	70.4	74. 1 66. 7	2. 30	2.61 1.99	4. 40	4.11 4.69	24. 9	25. 4 24. 4	5. 4	5. 1 5. 7	202
174	168 180	228. 2	244. 9 211. 5	71.2	74. 9 67. 5	2. 45	2.76 2.14	4. 29	4.00 4.58	24. 6	25. 1 24. 1	4. 2	3. 9 4. 5	203
178	172 184	208.6	225. 3 191. 9	67.8	71. 5 64. 1	2. 25	2. 56 1. 94	4. 44	4.15 4.73	25. 0	25.5 24.5	5. 3	5. 0 5. 6	208
174	168 180	217.7	234. 4 201. 0	70. 3	74. 0 66. 6	2. 30	2.61	4. 36	4. 07 4. 65	24. 5	25. 0 24. 0	4. 5	4. 2 4. 8	209
183	177 189	205.7	222. 4 189. 0	68. 2	71. 9 64. 5	2. 07	2.38 1.76	4. 57	4. 28 4. 86	25. 2	25.7 24.7	5. 5	5. 2 5. 8	210
170	164 176	229. 2	245. 9 212. 5	70.6	74. 3 66. 9	2. 35	2.66	4. 36	4. 07 4. 65	24.1	24. 6 23. 6	4. 6	4. 3 4. 9	211
172	166 178	228.0	244.7 211.3	71.0	74.7 67.3					24. 5	25. 0 24. 0	4. 3	4. 0 4. 6	212
	1						1							

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

				MORTALITY				
STOCK	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR TRADENAME	GROW			ING	
				RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	
214	Wheelock, Walter E. Chambersburg, Pennsylvania	WL	Wheelock	4. 7	4. 3 5. 1	13.1	9. 2 17. 0	
216	Willow Dale Poultry Farm Holland, New York	WL	Commercial	4. 5	4. 1 4. 9	12.6	8.7 16.5	
217	Wirtz Bros. Leghorn Farm Lebanon, New Jersey	WL LX	Linecross	4. 5	4. 1 4. 9	13.4	9.5 17.3	
218	Wirtz Bros. Leghorn Farm Lebanon, New Jersey	WL SX	Commercial	4.7	4. 3 5. 1	12.7	8.8 16.6	
219	Wood Poultry Breeding Farm Pomona, California	AW BX	Commercial	4. 5	4. 1 4. 9	11.4	7.5 15.3	
				-				
				}				

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

						,		,		,		,		
4.25	A.T. 50°		EGG PROD	UCTION		INCOME		FEED				1		
	AT 50% JCTION	050	OUSED		5.414		D CHICK ST	24 OZ. O		E WEI	GHT	30 WEI		STOCK
(Da	1vs)	(No		HEN		. (\$		PROD (lb		(0	7)	0	bs)	CODE
RE-	I SD*	RE-	LSD*	RE- GRESSED	LSD*	RE-	LSD*	RE-	LSD*	RE-	LSD*	RE-	1.60*	
GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	
176	170	220. 8	237.5	71.0	74.7	2. 34	2.65	4. 28	3. 99	24. 8	25. 3	4. 3	4. 0	214
	182		204. 1		67. 3 73. 2	1	2.03		4. 57 4. 05		24. 3 25. 0		4. 6 4. 2	216
175	181	218.2	201. 5	69.5	65. 8	2. 28	1. 97	4. 34	4. 63	24. 5	24. 0	4. 5	4. 8	210
179	173 185	208.6	225. 3 191. 9	67.3	71.0 63.6	2. 12	2. 43 1. 81	4. 50	4. 21 4. 79	24. 7	25. 2 24. 2	4. 3	4. 0 4. 6	217
1 7 5	169 181	215. 5	232. 2 198. 8	68. 6	72. 3 64. 9	2. 28	2. 59 1. 97	4. 38	4. 09 4. 67		25. 4 24. 4	4. 5	4. 2 4. 8	218
172	166 178	224. 5	241.2 207.8	70.2	73. 9 66. 5	2. 23	2. 54 1. 92	4. 46	4. 17 4. 75	24. 4	24. 9 23. 9	4. 9	4. 6 5. 2	219
									}					
							,							
									1					

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

		ALBUMEN			BLOOD	SPOTS			MEAT :	0.1.5			
STOCK	STRAIN OR TRADENAME	QUAI		1/8 IN OR MO		LESS 1/8 II		1/8 II OR M		LESS 1/8 I		SHE THICK	
CODE		(Haugh	units)	(%)	LSD*	RE-	LSD*	(%	LSD*	(% RE-	LSD*	(1/1000	
		RE- GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	RE- GRESSED MEAN	RANGE	RE- GRESSED MEAN	RANGE	GRESSED MEAN	RANGE	RE- GRESSED MEAN	LSD* RANGE
1	A & M One Grade	83. 4	86. 4 80. 4	3. 2	2.0 4.4	4. 0	2. 7 5. 3	0. 3	0.0 4.5	2.0	0.0 6.4	0.141	0.144
2	Allstate LX 300	81.6	84.6 78.6	2, 3	1. 1 3. 5	4. 2	2. 9 5. 5					. 141	. 144
3	Allstate LX 330	83. 2	86.2 80.2									.140	. 143
4	Ames 415 B	74. 3	77.3 71.3	1.9	. 7 3. 1	2.8	1.5 4.1	. 3	. 0 4. 5	1.7	. 0 6. 1	. 140	. 143
5	Ames 424	77. 1	80. 1 74. 1	2.0	. 8 3. 2	3. 0	1.7 4.3	1.5	. 0 5. 7	2. 3	. 0 6. 7	. 1 39	. 1 42
6	Ames 434	72.0	75.0 69.0	1.7	. 5 2. 9	3. 5	2. 2 4. 8	. 9	. 0 5. 1	2.2	.0 6.6	. 1 38	. 141
7	Ames 434 R	74.1	77.1 71.1	3, 2	2. 0 4. 4	3. 3	2. 0 4. 6	1.5	. 0 5. 7	1.8	.0 6.2	. 1 38	.141
8	Ames 505	79.2	82. 2 76. 2	1.8	. 6 3. 0	5. 6	4. 3 6. 9	9.8	5. 6 14. 0	30.2	25. 8 34. 6	. 142	.145
10	Anthony WL	83. 5	86. 5 80. 5	2. 3	1. 1 3. 5	3. 1	1.8 4.4	1.8	. 0 6. 0	2. 5	. 0 6. 9	. 138	. 141
138	Arbor Acres Mt. Hope Queen	83.9	86. 9 80. 9	2, 2	1.0 3.4	4. 3	3. 0 5. 6	. 3	. 0 4. 5	1.6	. 0 6. 0	.141	. 144
11	Avery WR x RIR	80. 1	83.1 77.1	2.0	. 8 3. 2	4. 1	2. 8 5. 4	3. 5	. 0 7. 7	14.9	10.5 19.3	. 141	. 144
12	Babcock Barbara Ann	82.0	85. 0 79. 0	2.8	1.6 4.0	4.0	2.7 5.3	1.5	. 0 5. 7	1.8	. 0 6. 2	.141	. 1 44
1 3	Babcock Bessie	82.3	85. 3 79. 3	2.5	1. 3 3. 7	3. 4	2. 1 4. 7	. 5	. 0 4. 7	2.1	. 0 6. 5	. 142	.145
15	Bagby One Grade	83. 5	86. 5 80. 5	2. 2	1. 0 3. 4	4.1	2. 8 5. 4	1.5	. 0 5. 7	1.8	6.2	. 140	. 143
16	Bagby Production Red	82.1	85. 1 79. 1	2.7	1. 5 3. 9	4.7	3. 4 6. 0	3. 1	. 0 7. 3	20. 9	16. 5 25. 3	. 138	. 141
17	Ball 551	82.1	85. 1 79. 1	2.2	1.0 3.4	4. 2	2. 9 5. 5	1.8	. 0 6. 0	2.8	.0 7.2	. 141	. 144

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

				BLOOD	SPOTS			MEAT	- SHELL				
STOCK		ALBU		1/8 IN		LESS		1/8 IN OR MO		LESS 1/8 I		THICK	
CODE	STRAIN OR TRADENAME	(Haugh	units)	(%		(07		(%)		(%		(1/1000	inch)
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
18	Ballew WL	81.2	84. 2 78. 2	2. 4	1. 2 3. 6	3. 9	2. 6 5. 2	1.5	0. 0 5. 7	1.8	0.0 6.2	0.140	0.143
20	Beamsdale 66	83. 9	86. 9 80. 9	2. 3	1. 1 3. 5	4. 4	3. 1 5. 7	1.1	. 0 5. 3	2.0	. 0 6. 4	. 139	. 142 . 136
22	Booth Line 351	84. 3	87. 3 81. 3	1.9	. 7 3. 1	3. 8	2. 5 5. 1	. 8	. 0 5. 0	1.2	. 0 5. 6	. 141	.144
23	Booth WL	83. 9	86. 9 80. 9	2. 6	1. 4 3. 8	3. 6	2. 3 4. 9	1.5	. 0 5. 7	3. 7	. 0 8. 1	. 141	. 1 44 . 1 38
24	Brender 1234	80.8	83.8 77.8	1.4	. 2 2. 6	3. 3	2. 0 4. 6	1.8	. 0 6. 0	2.5	. 0 6. 9	. 141	. 144
25	Bulkley WL	83. 2	86. 2 80. 2	1.8	. 6 3. 0	3, 5	2. 2 4. 8					. 1 39	. 142 . 136
26	Bundesen Graycie	79.8	82.8 76.8	1.7	. 5 2. 9	3, 4	2. 1 4. 7	. 1	. 0	1.5	. 0 5. 9	. 1 38	. 141
27	Burr LC 89	81.8	84.8 78.8	3. 2	2. 0 4. 4	4, 6	3. 3 5. 9	2.2	. 0 6. 4	2.6	.0 7.0	. 136	. 1 39
28	Butler County Supreme Grade	83.0	86. 0 80. 0	1.9	. 7 3. 1	4. 1	2. 8 5. 4	2.2	. 0 6. 4	3. 5	.07.9	. 1 39	. 142
29	Cameron DMX	82. 4	85. 4 79. 4	3. 1	1.9 4.3	3. 7	2. 4 5. 0	2.2	. 0 6. 4	3. 4	. 0 7. 8	. 140	. 1 43
30	Carey Nicks	85. 0	88. 0 82. 0	1.5	. 3 2. 7	2.6	1. 3 3. 9	. 3	. 0	1.6	. 0 6. 0	.142	. 145
31	Cashman Hi-Cash	80.4	83.4 77.4	3. 2	2. 0 4. 4	4. 7	3. 4 6. 0	1.7	. 0 5. 9	2. 5	. 0 6. 9	. 139	. 1 42
32	Childers CG x WL	79. 8	82. 8 76. 8	1.9	. 7 3. 1	3, 5	2. 2	. 3	. 0 4. 5	1.5	. 0 5. 9	. 138	. 141
33	Clark Nu-Line 308	83. 0	86. 0 80. 0	1.9	. 7 3. 1	3, 3	2. 0 4. 6	. 6	. 0 4. 8	4. 0	. 0 8. 4	.141	. 144
34	Colonial Best Egg Grade	84. 6	87.6 81.6	2. 3	1. 1 3. 5	3. 3	2. 0 4. 6	2, 1	. 0 6. 3	1.8	. 0 6. 2	. 141	. 144
35	Colonial Trueline 365	82. 9	85.9 79.9	2. 5	1.3 3.7	4, 5	3. 2 5. 8	. 3	. 0 4. 5	1.4	. 0 5. 8	. 141	. 144

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

		ALBUMEN -			BLOOD SPOTS				MEAT	SHELL			
STOCK CODE	STRAIN OR TRADENAME	QUAI QUAI (Haugh	LITY	1/8 IN OR MO	ORE	LESS 1/8 I		1/8 II OR M	ORE	1/8	THAN INCH %)	THICK (1/100)	(NESS
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE+ GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
213	Colonial Westline 702	81.1	84. 1 78. 1	2. 6	1. 4 3. 8	3. 4	2. 1 4. 7	2. 4	0. 0 6. 8	4. 7	0. 3 9. 1	0.143	0.146 .140
37	Cornell Random Bred	80.8	83. 8 77. 8	3. 0	1.8 4.2	4. 3	3. 0 5. 6	. 5	. 0 4. 7	2.0	. 0 6. 4	. 139	. 142
42	Darby DX	82.4	85. 4 79. 4	2.8	1.6 4.0	4. 1	2. 8 5. 4	1.4	. 0 5. 6	1.7	. 0 6. 1	. 142	. 145
43	Darby Pure WL	81. 1	84. 1 78. 1	2.1	. 9 3. 3	3. 4	2. 1 4. 7	1.5	. 0 5. 7	2. 4	. 0 6. 8	. 141	. 144
45	DeKalb 101	82.8	85.8 79.8	1.1	. 0 2. 3	2.9	1.6 4.2	. 8	. 0 5. 0	2.2	. 0 6. 6	. 141	. 144
46	DeKalb 111	82.4	85. 4 79. 4	2.0	. 8 3. 2	3. 2	1. 9 4. 5	2. 8	. 0 7. 0	4. 9	. 5 9. 3	. 141	. 144
47	DeKalb 121	81.6	84.6 78.6	3. 7	2. 5 4. 9	3. 5	2. 2 4. 8	2. 6	. 0 6. 8	2. 5	. 0 6. 9	. 140	. 143
48	DeKalb 131	82.7	85.7 79.7	2. 1	. 9 3. 3	3. 4	2. 1 4. 7	1.5	. 0 5. 7	2. 5	.0 6.9	. 140	. 143
49	Del Rio RIR-A	80.1	83.1 77.1	2.4	1. 2 3. 6	3, 2	1. 9 4. 5	6. 3	2. 1 10. 5	25. 0	20.6 29.4	. 138	.141
50	Del Rio RIR-B	82. 3	85. 3 79. 3	1.8	. 6 3. 0	3. 7	2. 4 5. 0	1.6	. 0 5. 8	28. 2	23.8	. 139	. 142
51	Demler One Grade	83. 0	86. 0 80. 0	2, 3	1. 1 3. 5	3, 3	2. 0 4. 6	6.1	. 0 4. 3	1.6	. 0 6. 0	. 143	. 146
52	Demler Kross	79.8	82. 8 76. 8	2. 3	1. 1 3. 5	3. 5	2. 2 4. 8	. 1	. 0 4. 3	1. 5	.0 5.9	. 138	. 141
224	Dirkse Superior	79.6	82. 6 76. 6	3. 2	2. 0 4. 4	3, 1	1.8 4.4	. 3	. 0 4. 5	1. 5	. 0 5. 9	. 140	. 143
53	Douglaston Commercial	82. 4	85. 4 79. 4	1.9.	. 7 3. 1	3, 2	1. 9 4. 5					. 1 36	.139
54	Drake One Grade	81.1	84. 1 78. 1	1.4	. 2 2. 6	3. 5	2. 2 4. 8					. 140	.143
55	Eby Grade #1	82.4	85. 4 79. 4	2.7	1. 5 3. 9	2. 9	1.6 4.2	. 8	. 0 5. 0	. 9	. 0 5. 3	. 141	. 144
 49 50 51 52 224 53 54 	Del Rio RIR-A Del Rio RIR-B Demler One Grade Demler Kross Dirkse Superior Douglaston Commercial Drake One Grade	80. 1 82. 3 83. 0 79. 8 79. 6 82. 4	79.7 83.1 77.1 85.3 79.3 86.0 80.0 82.8 76.8 82.6 76.6 85.4 79.4 84.1 78.1	2. 4 1. 8 2. 3 2. 3 3. 2 1. 9.	3. 3 1. 2 3. 6 3. 0 1. 1 3. 5 1. 1 3. 5 2. 0 4. 4 . 7 3. 1 . 2 2. 6	3. 2 3. 7 3. 3 3. 5 3. 1 3. 2 3. 5	4. 7 1. 9 4. 5 2. 4 5. 0 2. 0 4. 6 2. 2 4. 8 1. 8 4. 4 1. 9 4. 5 2. 2 4. 8 1. 6	6. 3	5. 7 2. 1 10. 5 . 0 5. 8 . 0 4. 3 . 0 4. 5 0	25. 0 28. 2 1. 6 1. 5 1. 5		6.9 20.6 29.4 23.8 32.6 .0 6.0 .0 5.9 .0 5.9	6.9 .140 20.6 .138 23.8 .139 .0 .143 .0 .143 .0 .138 .0 .140 .136 .140 .140 .140 .140

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

					BLOOD	SPOTS			MEAT :	SPOTS			
STOCK		QUA		1/8 IN		LESS		1/8 II OR M		LESS 1/8	THAN	THICK	
CODE	STRAIN OR TRADENAME	(Ilaugh	units)	(%)		(%		(%	;)	(%		(1/1000	inch)
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
57	Edmonds X Cross 103	79. 8	82. 8 76. 8									0. 140	0.143
58	Eelman WL	83. 4	86. 4 80. 4	1.8	. 6 3. 0	4. 5	3, 2 5, 8					. 1 37	. 140
59	Erath Str. X			2. 2	1. 0 3. 4	3. 8	2. 5 5. 1	2. 6	. 0 6. 8	2. 4	. 0 6. 8		
60	Fletcher FX 100	82. 3	85. 3 79. 3	2. 2	1. 0 3. 4	4. 0	2. 7 5. 3	. 5	. 0 4. 7	1.0	. 0 5. 4	. 144	. 147
61	Ford V 88	79. 8	82. 8 76. 8	2.7	1. 5	4. 9	3. 6 6. 2	2, 2	. 0 6. 4	3, 2	.0 7.6	. 141	. 144
62	Forsgate WL	85, 0	88. 0 82. 0	3. 5	2. 3 4. 7	3. 9	2. 6 5. 2					. 138	. 141
63	Fox-Den Black Diamond	80.7	83.7 77.7	2. 5	1. 3 3. 7	3. 7	2. 4 5. 0	11.7	7. 5 15. 9	25, 5	21.1 29.9	. 1 37	. 140
65	Garber CG x WL	80.6	83.6 77.6	1.5	. 3 2. 7	3, 5	2. 2 4. 8	. 3	. 0 4. 5	1. 5	. 0 5. 9	. 1 39	. 1 42
66	Garber G-200	85. 1	88.1 82.1	1.2	. 0 2. 4	2.6	1. 3 3. 9	. 1	. 0 4. 3	1, 5	. 0 5. 9	. 140	. 1 43
67	Garber G-300 C	83.4	86. 4 80. 4	2. 1	. 9 3. 3	3. 6	2. 3 4. 9	2, 2	. 0 6. 4	2. 6	. 0 7. 0	. 140	. 143
69	Garrison Golden Sex-Link	82.6	85.6 79.6	2.6	1. 4 3. 8	4. 9	3. 6 6. 2	2. 7	. 0 6. 9	9. 3	4. 9 13. 7	. 140	. 143
70	Gasson G-33	82.6	85.6 79.6	2, 3	1. 1 3. 5	3. 3	2. 0 4. 6	. 5	. 0 4. 7	1.8	. 0 6. 2	. 142	.145
72	Ghostley Pearl	83, 5	86. 5 80. 5	2. 2	1.0 3.4	4.0	2. 7 5. 3	. 3	. 0 4. 5	1, 2	. 0 5. 6	. 141	. 144
74	Graybill WL	82.4	85. 4 79. 4	2.5	1.3 3.7	3. 3	2. 0 4. 6	2. 9	. 0 7. 1	2. 6	. 0 7. 0	. 140	. 1 43
75	Great Plains Egg Master	82.6	85.6 79.6	2. 1	. 9 3. 3	4.5	3. 2 5. 8	5, 5	1. 3 9. 7		21, 3 30, 1	. 137	. 140
76	Great Plains Golden Cross	82.1	85. 1 79. 1	2.6	1. 4 3. 8	4. 6	3. 3 5. 9	5.8	1. 6 10. 0	7.5	3. 1 11. 9	. 139	. 1 42

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

	1 100				BLOOD	SPOTS			MEAT :	SPOTS			
		ALBU		1/8 IN		LESS	THAN	1/8 11	1CH	LESS		SHEL	
STOCK	STRAIN OR TRADENAME	(Haugh		OR MC		1/8 11		OR M		1/8		(1/1000	
		RE+ GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE-	LSD* RANGE
78	Hall Bros. Commercial	81.7	84. 7 78. 7	2, 3	1. 1 3. 5	3. 9	2. 6 5. 2	2, 2	0. 0 6. 4	2. 6	0.0 7.0	0.141	. 144
79	Hall Bros. Silver Hallcross	81.4	84. 4 78. 4	1.6	. 4 2. 8	3. 4	2. 1 4. 7					.141	.144
80	Hansen (Wash.) Criss Cross H-25	82.0	85.0 79.0	2. 5	1. 3 3. 7	4. l	2. 8 5. 4	2. 1	.06.3	2. 8	.0 7.2	.140	.143
82	Hansen (Wash.) Criss Cross 61	82, 2	85. 2 79. 2	3. 1	1. 9 4. 3	4. 3	3. 0 5. 6	. 0	. 0 4. 2	1. 3	. 0 5. 7	. 139	.142
83	Hansen (Calif.) One Grade	78.7	81.7 75.7	1.2	. 0 2. 4	2. 1	. 8 3. 4	2.6	. 0 6. 8	6. 3	1.9 10.7	.141	.144
84	Hanson Super Nick	81.7	84.7 78.7	2. 1	. 9 3. 3	3. 4	2. 1 4. 7	. 3	. 0 4. 5	1.7	. 0 6. 1	. 139	. 142
85	Harco Flock Mating	82.6	85.6 79.6	1. 2	.0 2.4	4. 4	3. 1 5. 7	8. 7	4. 5 12. 9	22. 0	17.6 26.4	.134	. 137
225	Harco Sex Link												
86	Hardy Sex Link												
87	Harper Huskie	81.0	84.0 78.0	3. 3	2. 1 4. 5	3. 0	1.7 4.3					. 143	. 146
88	H & N Nick Chick	84. 5	87.5 81.5	2.0	. 8 3. 2	2. 9	1. 6 4. 2	. 3	. 0 4, 5	1.0	. 0 5. 4	. 139	. 142
89	H & N CG x WL	79.2	82. 2 76. 2	2. 3	1. 1 3. 5	3. 0	1.7 4.3	. 1	. 0 4. 3	2. 0	. 0 6. 4	. 1 37	.140
90	Hobart WL	81.7	84.7 78.7	2. 1	. 9 3. 3	3. 7	2. 4 5. 0					.141	.144
92	Honegger Layer	82.6	85.6 79.6	1.7	. 5 2. 9	3. 5	2. 2 4. 8	. 5	. 0 4. 7	1.4	. 0 5. 8	.143	. 146
93	Honegger Layer #62	83.6	86. 6 80. 6	1.9	. 7 3. 1	4. 0	2. 7 5. 3	1.5	. 0 5. 7	2. 4	. 0 6. 8	. 1 39	. 142
95	Hubbard H496	82. 5	85. 5 79. 5	. 9	. 0 2. 1	2.7	1.4 4.0	16. 5	12. 3 20. 7	23. 9	19.5 28.3	. 135	.138
										Ī			

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

					BLOOD	SPOTS			MEAT S	SPOTS		511.5	
STOCK	STRAIN OR TRACEMANT	QUAL		1/8 IN		LESS		1/8 IN OR M		LESS 1/8 I		SHE THICK	
CODE	STRAIN OR TRADENAME	(llaugh		(%)	r	(%	6)	(%		(%		(1/1000	
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
97	Hy-Line 934 A	78. 1	81.1 75.1	1.7	. 5 2. 9	2. 6	1. 3 3. 9	0.1	0. 0 4. 3	0.5	0.0 4.9	0. 141	0.144
99	Hy-Line 934 C	77,2	80.2 74.2	1.8	. 6 3. 0	2.4	1. 1 3. 7	. 1	. 0 4. 3	. 1	. 0 4. 5	. 140	. 143
101	Ideal H-3-W	80.6	83.6 77.6	2.6	1. 4 3. 8	3. 8	2. 5 5. 1	. 2	. 0 4. 4	1.4	. 0 5. 8	. 141	. 144
102	Indian Head WL	82.7	85.7 79.7	2. 9	1.7 4.1	3. 1	1.8 4.4	 				. 141	.144
103	Ind. F. B. Coop. 10-33	82.1	85.1 79.1	2. 1	. 9 3. 3	4. 1	2. 8 5. 4	1.8	. 0 6. 0	2, 1	. 0 6. 5	. 140	.143
104	Ind. F. B. Coop. 10-42	81.6	84.6 78.6	2, 2	1. 0 3. 4	3. 5	2. 2 4. 8	1.5	. 0 5. 7	1.8	. 0 6. 2	. 142	.145
106	Jacobs Commercial	82. 1	85. 1 79. 1	2.2	1. 0 3. 4	4. 9	3. 6 6. 2					. 140	. 143
107	Kahn Commercial	81.0	84.0 78.0	2. 5	1. 3 3. 7	4. 3	3. 0 5. 6					. 141	. 144
108	Kerr 409 C	81.9	84.9 78.9									. 143	. 146
109	Keystone Leghorns	81.6	84. 6 78. 6	2. 1	. 9 3. 3	3. 2	1.9 4.5	3. 1	.0 7.3	2.6	.0 7.0	. 140	.143
110	Kimber K-137	83.8	86.8 80.8	2.7	1.5	3.8	2. 5 5. 1	. 7	. 0	1. 5	. 0 5. 9	. 144	. 147
112	Kimber K-155	83.5	86. 5 80. 5	2. 5	1. 3 3. 7	3. 6	2. 3 4. 9	. 8	. 0 5. 0	1.8	. 0 6. 2	. 141	.144
113	Kruger Commercial	79.6	82. 6 76. 6	3. 6	2. 4 4. 8	4. 3	3. 0 5. 6	. 3	. 0 4. 5	1.7	.06.1	. 1 37	.140
114	Lakewood Commercial	83.1	86. 1 80, 1	1.7	. 5 2. 9	3, 2	1.9 4.5					. 142	. 145
115	Lasher Commercial	81.3	84. 3 78. 3	2, 2	1.0 3.4	3. 3	2. 0 4. 6	. 1	. 0	1.5	. 0 5. 9	. 141	. 144
116	Lawton Certified Cand.	83, 3	86. 3 80. 3	1.8	. 6 3. 0	3. 1	1. 8 4. 4					. 138	.141

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

					BLOOD	SPOTS			MEAT :	SPOTS			
STOCK	575444 60 7545	QUAI		1/8 IN		LESS 1/8 i		1/8 II OR M		LESS 1/8 I		THICK	
CODE	STRAIN OR TRADENAME	(Haugh	units)	(%,)	(9		(%)	(%	;)	(1/100	() inch)
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
117	Lawton Buff Sex Link												
118	Leader 10-X	83. 3	86. 3 80. 3	2, 0	0. 8 3. 2	3, 5	2. 2 4. 8	2. 9	0.0 7.1	2.6	0. 0 7. 0	0.141	0.144
248	Lee WR	81. 2	84. 2 78. 2	1.8	. 6 3. 0	5, 2	3. 9 6. 5	4. 3	. 1 8. 5	17.2	12.8 21.6	. 140	. 143
121	Leonard Lanco 505	83.8	86.8 80.8	2. 7	1. 5 3. 9	3. 9	2. 6 5. 2	1.5	. 0 5. 7	2, 6	.0 7.0	. 138	. 141
122	Liechty L-240	82. 9	85. 9 79. 9	1.9	. 7 3. 1	3. 7	2. 4 5. 0	1.5	. 0 5. 7	2.4	. 0 6. 8	.139	. 142
124	Lux H-D-6	81. 5	84. 5 78. 5	2. 9	1.7 4.1	4. 6	3. 3 5. 9	1.8	. 0 6. 0	4. 1	. 0 8. 5	. 141	. 144
126	Mathews M-138	82.7	85.7 79.7	2. 9	1.7 4.1	3, 3	2. 0 4. 6	1.7	. 0 5. 9	5. 9	1.5 10.3	. 140	.143
127	McDonald, Ray			2.0	. 8 3. 2	4. 1	2. 8 5. 4	. 8	. 0 5. 0	. 3	. 0 4. 7		
128	McDonald, Roy WL	-		2, 5	1. 3 3. 7	4. 1	2. 8 5. 4	1.7	. 0 5. 9	1.7	. 0 6. 1		
132	Meadow View 3 way	82.6	85. 6 79. 6	1.8	. 6 3. 0	3, 5	2. 2 4. 8	1.1	. 0 5. 3	4. 3	. 0 8. 7	. 142	. 145
133	Merryknoll 400												
134	Midwest Best Egg Grade	80.9	83. 9 77. 9	2. 2	1.0 3.4	4. 0	2.7 5.3	1. 5	. 0 5. 7	3. 0	.0 7.4	.141	. 144
135	Midwest Production Red	87.1	90.1 84.1	2. 1	. 9 3. 3	4. 1	2. 8 5. 4	2.6	. 0 6. 8	15. 1	10.7 19.5	. 138	. 141
136	Missouri Valley Best Egg Contest	84.0	87.0 81.0	2, 2	1. 0 3. 4	4.0	2. 7 5. 3	1.5	. 0 5. 7	2. 4	.0 6.8	. 140	. 143
1 37	Missouri Valley Ski Line Layers	82. 5	85.5 79.5,	2. 9	1.7 4.1	3. 9	2. 6 5. 2	1.5	. 0 5. 7	1.8	.0 6.2	.141	.144
1 39	Niles WL	82.7	85. 7 79. 7	2, 5	1. 3 3. 7	4. 4	3. 1 5. 7	. 4	. 0 4. 6	1.6	. 0 6. 0	.141	. 144

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

					BLOOD	SPOTS			MEAT S	SPOTS		SHE	
STOCK	STRAIN OR TRADENAME	QUA	LITY	1/8 IN OR MO	RE	LESS 1/8 II	1CH	1/8 II OR M	ORE	LESS 1/8 I	исн	THICK	NESS
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	1.004	RE- GRESSED MEAN	LSD* RANGE
140	Niles Commercial	77.3	80. 3 74. 3	1.5	0. 3 2. 7	3. 0	1.7 4.3	0. 1	0. 0 4. 3	1.5	0. 0 5. 9	0. 138	0.141
141	Nimton WL	81.4	84. 4 78. 4	1.2	. 0 2. 4	3. 0	1.7 4.3	. 5	. 0 4. 7	1.5	. 0 5. 9	. 138	. 141 . 135
142	Norco Grade A	83, 0	86. 0 80. 0	2, 0	. 8 3. 2	4, 2	2. 9 5. 5	. 1	. 0	1.5	. 0 5. 9	. 140	.143
143	Norris Efficiency Leghorns	83.8	86. 8 80. 8	2, 2	1. 0 3. 4	3. 0	1.7 4.3	2, 7	. 0 6. 9	2. 6	. 0 7. 0	. 140	. 143
144	Oster WL	83. 5	86.5 80.5	3. 3	2. 1 4. 5	3. 8	2. 5 5. 1					. 141	.144
145	Ottawa Random Bred	82. 3	85. 3 79. 3	2.8	1.6 4.0	4. 4	3. 1 5. 7					. 140	. 143
148	Parmelee Certified	79. 5	82. 5 76. 5	2. 1	. 9 3. 3	2. 8	1.5 4.1					. 138	. 1 41
149	Parmenter Certified	83. 5	86. 5 80. 5	2.0	. 8 3. 2	4. 1	2. 8 5. 4	10.7	6. 5 14. 9	22. 8	18.4 27.2	. 136	.139
151	Peerless 262	82. 1	85. 1 79. 1	2.6	1. 4 3. 8	3. 5	2. 2 4. 8	. 4	. 0 4. 6	1.6	. 0 6. 0	. 141	.144
152	Penna. F. B. LSC-55	85. 3	88. 3 82. 3	2. 3	1.1 3.5	3. 7	2. 4 5. 0	2, 2	. 0 6. 4	3. 3	.0 7.7	.141	.144
154	Pillbury Maxi-Lay Queens	83.7	86.7 80.7	2. 1	. 9 3. 3	3. 8	2. 5 5. 1	. 5	. 0	. 5	. 0 4. 9	.141	. 144
157	Purdue Random Bred	78.7	81.7 75.7	1.3	. 1 2. 5	3. 0	1.7 4.3	7. 1	2. 9 11. 3	8. 2	3. 8 12. 6	.139	.142
158	Randall WL	82. 8	85. 8 79. 8	3. 4	2. 2 4. 6	4.8	3. 5 6. 1	. 1	. 0	1.5	. 0 5. 9	. 142	.145
159	Randall CG x WL	80.4	83. 4 77. 4	2.0	. 8 3. 2	4. 2	2. 9 5. 5	. 1	. 0	1.5	. 0 5. 9	. 138	.141
160	Rapp Linecross	81.9	84. 9 78. 9	2. 6	1. 4 3. 8	4.7	3. 4 6. 0	1.5	. 0 5. 7	2. 5	. 0 6. 9	. 140	. 143
161	Reid VH 354	81.9	84. 9 78. 9	2.4	1. 2 3. 6	3. 9	2. 6 5. 2	1. 2	. 0 5. 4	5. 0	. 6 9. 4	.138	.141

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

164 Richardson Commercial 77. 9 80. 9 74. 9 1. 9 0. 7 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 74. 9 1. 9 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 1. 9 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 1. 9 1. 9 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9		<u> </u>	A. 73.11	451		BLOOD	SPOTS			MEAT	SPOTS		SHE	
CODE	STOCK		i										THICK	
164 Richardson Commercial 77. 9 80. 9 74. 9 1. 9 0. 7 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 74. 9 1. 9 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 1. 9 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 1. 9 1. 9 3. 1 3. 0 1. 7 1. 7 0. 0 4. 6 0. 2 9. 0 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9	CODE	STRAIN OR TRADENAME		units)	(%)		(%		-)		6)	(1/100) inch)
Commercial 77. 9 74. 9 1. 9 3. 1 3. 0 4. 3 1. 5. 9 4. 0 9. 0 165 Richardson Commercial MWA 77. 7 80. 7 74. 7 1. 3 . 1 2. 8 1. 5 2. 4 . 0 6. 6 3. 7 . 0 8. 1 170 Rucker GW 389A 77. 9 80. 9 74. 9 3. 5 2. 3 3. 9 2. 6 1. 2 . 0 5. 4 1. 9 . 0 6. 3 171 Rucker GW 389C 78. 1 81. 1 75. 1 3. 3 2. 1 3. 5 2. 2 1. 5 . 0 5. 7 2. 5 . 0 6. 9 173 Sand Hills Commercial 80. 9 83. 9 77. 9 2. 8 1. 6 3. 7 2. 4 4. 0 5. 7 2. 5 . 0 6. 9 175 Schaible Commercial 84. 6 87. 6 81. 6 2. 6 1. 4 3. 8 2. 6 1. 8 6. 0 2. 1 6. 5 176 Schaible Commercial 2 83. 4 86. 4 80. 4			RE- GRESSED MEAN		GRESSED		GRESSED				GRESSED	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
Commercial MWA 174.7 175.7 Rucker GW 389A 177.9 Roy 380.9 Roy 380.9 Roy 389C 178.1 Roy 380.9 Roy 380	164		77.9		1. 9		3. 0		1.7		4. 6		0. 142	0.145
GW 389A	165		77.7		1. 3		2. 8		2. 4		3. 7		. 143	. 146
GW 389C 173 Sand Hills Commercial 80.9 83.9 77.9 2.8 1.6 3.7 2.4 175 Schaible Commercial 84.6 81.6 83.4 86.4 80.4 2.4 1.2 3.6 3.8 2.5 1.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	170		77.9		3. 5		3, 9		1.2		1.9		. 141	. 144
Commercial 80.7 77.9 2.8 4.0 3.7 5.0	171		78.1		3, 3		3, 5		1.5		2, 5		. 141	. 144
Commercial 84.6 81.6 2.6 3.8 5.9 5.2 1.8 6.0 2.1 6.5 176 Schaible Commercial 2 83.4 86.4 80.4 2.4 1.2 3.8 2.5 1.5 .0 5.7 3.0 7.4 177 Schildemeyer Commercial WL 80.6 83.6 77.6 3.3 2.1 3.8 2.5 1.1 .0 4.3 1.5 5.9 178 Schildemeyer Commercial CGxWL 78.7 75.7 1.9 .7 3.1 3.8 2.5 1.1 .0 4.3 1.5 5.9 179 Schubkegel M& SCross 83.5 86.5 80.5 1.4 .2 2.6 2.9 1.6 180 Schuyler Egg Champs 82.1 85.1 79.1 2.6 1.4 3.9 2.6 2.2 .0 3.4 7.8 181 Shaver Starcross 288 82.0 85.0 79.0 1.6 .4 3.8 3.9 2.6 6.4 3.4 7.8 182 Shenango Hamblin X 81.3 84.3 78.3 1.9 .7 3.4 2.1 2.2 .0 4.8 1.9 .0 4.8 183 Sierra 78.7 81.7 2.3 1.1 2.9 1.6 3 .0 1.5 .0	173		80.9		2.8		3, 7						. 140	.143
Commercial 2 80. 4 2. 4 3. 6 5. 1 1. 5 5. 7 3. 5 7. 4 177 Schildemeyer Commercial WL 80. 6 83. 6 77. 6 3. 3 2. 1 3. 8 2. 5 1 1 . 0 4. 3 1. 5 5. 9 178 Schildemeyer Commercial CGxWL 78. 7 75. 7 1. 9 . 7 3. 1 3. 8 2. 5 1 1 . 0 4. 3 1. 5 5. 9 179 Schubkegel M& S Cross 83. 5 86. 5 80. 5 1. 4 . 2 2. 6 2. 9 1. 6 4. 2	175		84. 6		2.6		3. 9		1.8		2. 1		. 142	.145
Commercial WL 77.6 3.4 4.5 5.1 1.4 4.3 5.9 1.7 5.9 1.7 8.17 7.6 5.9 1.9 3.1 3.8 2.5 1.1 0.0 1.5 0.0 1.	176		83.4		2, 4		3, 8		1, 5	. 0 5. 7	3. 0		. 141	. 144
Commercial CGxWL 75.7 75.7 3.1 3.0 5.1 1 4.3 1.5 5.9 179 Schubkegel M& S Cross 83.5 86.5 80.5 1.4 .2 2.6 2.9 1.6 180 Schuyler Egg Champs 82.1 85.1 79.1 2.6 1.4 3.8 3.9 2.6 2.2 .0 3.4 .0 6.4 7.8 181 Shaver Starcross 288 82.0 85.0 79.0 1.6 .4 2.8 3.9 2.6 5.2 .6 .6 .0 1.9 .0 6.3 182 Shenango Hamblin X 81.3 84.3 78.3 1.9 .7 3.1 2.9 1.6 3 .0 1.5 .0	177	,	80.6		3. 3		3. 8		. 1	. 0 4. 3	1.5		. 139	. 1 42
180 Schuyler Egg Champs 82.1 85.1 79.1 2.6 1.4 3.8 3.9 2.6 2.2 0.0 3.4 0.0 6.4 3.4 7.8 181 Shaver Starcross 288 82.0 85.0 79.0 1.6 2.8 3.9 2.6 5.2 0.6 4.8 1.9 0.0 6.3 182 Shenango Hamblin X 81.3 84.3 78.3 1.9 3.1 3.4 2.1 4.7 2.2 0.4 6.4 3.3 7.7 183 Sierra 78.7 81.7 2.3 1.1 2.9 1.6 3.3 0.1 5.0	178	•	78.7		1.9	. 7 3. 1	3, 8		. 1	. 0 4. 3	1.5	.0 5.9	. 139	. 142
Egg Champs	179	_	83, 5		1.4		2. 9						. 138	. 141 . 135
Starcross 288 79.0 1.0 2.8 5.2 4.8 1.7 6.3 182 Shenango Hamblin X 81.3 84.3 78.3 1.9 .7 3.1 2.2 .0 6.4 3.3 7.7 183 Sierra 78.7 81.7 2.3 1.1 2.9 1.6 3 .0 1.5 .0	180		82. 1		2. 6		3. 9	2. 6 5. 2	2. 2	. 0 6. 4	3, 4		.140	. 143
Hamblin X 78.3 1.7 3.1 4.7 2.2 6.4 7.7 183 Sierra 78.7 81.7 2.3 1.1 2.9 1.6 3 .0 1.5 .0	181		82.0		1.6		3. 9		.6	.0 4.8	1.9		. 142	. 1 45
	182	0	81.3		1. 9		3, 4		2. 2		3. 3		. 141	. 144
Silver Gray 75.7 3.5 4.2 4.5 5.9	183	Sierra Silver Gray	78.7	81.7 75.7	2, 3	1. 1 3. 5	2. 9	1.6 4.2	. 3	.0 4.5	1.5	. 0 5. 9	. 138	. 141
184 Spruce S-3 82.7 85.7 2.6 1.4 3.5 2.2	184		82.7		2.6	1. 4 3. 8	3. 5	2. 2 4. 8					. 139	. 142
187 Stever 80.8 83.8 2.9 1.7 3.4 2.1 4 .0 1.8 .0 6.2	187		80.8		2. 9		3, 4	2. 1 4. 7	. 4	.0 4.6	1.8		. 141	.144

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

All Stocks Entered, with Regressed Means and LSD Range for each Trait, (Cont'd.)

					BLOOD	SPOTS			MEAT	SPOTS	-	SHE	
STOCK	STRAIN OR TRADENAME	ALBU QUA (Haugh	LITY	1/8 IN OR MO	DRE	LESS 1/8 I	NCH	1/8 II OR M	ORE	LESS 1/8	NCH	THICK	
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	1.50*	RE- GRESSED MEAN	1.50*	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
188	Stever 300-B	82.0	85.0 79.0	2.4	1, 2 3, 6	3. 6	2. 3 4. 9					0.141	0.144
190	Stone (Calif.) H-56	81.9	84. 9 78. 9	1. 3	. 1 2. 5	2.8	1.5 4.1	0.3	0.0 4.5	1.5	0. 0 5. 9	.141	. 144
192	Stone (Minn.) 128	83. 3	86. 3 80. 3									. 142	.145
194	Struthoff Commercial	80.8	83.8 77.8	2.4	1, 2 3, 6	3. 1	1. 8 4. 4					. 140	. 143
196	Sunnyside Wisco White	80.2	83.2 77.2	1.8	. 6 3. 0	3. 1	1.8 4.4	3, 1	.0 7.3	6. 6	2.2 11.0	.140	. 143
197	Swift Ski Hi 316	82. 4	85. 4 79. 4	2. 5	1. 3 3. 7	3. 5	2. 2 4. 8	1. 2	. 0 5. 4	1.2	. 0 5. 6	. 143	. 146
199	Townline SC 30	81.6	84.6 78.6	2. 0	. 8 3. 2	4. 6	3. 3 5. 9	1.8	. 0 6. 0	2, 5	. 0 6. 9	.140	. 143
200	Truway WL	83.9	86.9 80.9	2.1	. 9. 3. 3	3. 4	2. 1 4. 7	2, 2	. 0 6. 4	2. 6	.0 7.0	. 139	. 1 42
201	Univ. of Missouri Intra Flock	84. 3	87.3 81.3	2.4	1.2 3.6	3. 1	1.8 4.4	1.5	. 0 5. 7	1.8	.0 6.2	. 141	.144
202	Vancrest All Red	85. 4	88. 4 82. 4	1.4	2.6	3. 4	2. 1 4. 7					. 138	.141
203	Vancrest Reg. Mating WL	81.2	84. 2 78. 2	2. 3	1.1 3.5	3. 6	2. 3 4. 9					. 141	.144
208	Warren Sex-Sal-Link	81.5	84. 5 78. 5	1.0	. 0 2. 2	3. 2	1.9	12. 3	8. 1 16. 5	18.1	13.7 22.5	. 137	.140
209	Weber Cross	81.2	84. 2 78. 2	2. 4	1. 2 3. 6	3. 1	1.8 4.4	2, 2	. 0 6. 4	3. 9	. 0 8. 3	.140	.143
210	Webster Certified	83, 2	86. 2 80. 2	1.6	. 4 2. 8	3. 2	1.9 4.5					. 134	. 1 37
211	Welp 341	78.7	81.7 75.7	2.7	1.5 3.9	4. 2	2. 9 5. 5	. 1	. 0 4. 3	1.5	. 0 5. 9	. 141	. 144
212	Welp 901	79.7	82.7 76.7									. 138	.141

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

					BLOOD	SPOTS			MEATS	SPOTS			
STOCK		AL8U QUAL		1/8 IN		LESS		1/8 IN		LESS 1/8 I		THICK	
CODE	STRAIN OR TRADENAME	(Haugh	units)	OR MO		1/8 11		(%		(%		(1/100) inch)
		RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE	RE- GRESSED MEAN	LSD* RANGE
214	Wheelock WL	83. 1	86. 1 80. 1	1.9	0.7 3.1	3. 7	2. 4 5. 0	2. 2	0.0 6.4	2. 6	0.0 7.0	0. 141	0.144
216	Willow Dale Commercial	81.3	84. 3 78. 3	3. 1	1.9 4.3	4. 3	3. 0 5. 6					. 138	.141
217	Wirtz Linecross	83. 5	86. 5 80. 5	2.6	1. 4 3. 8	3. 0	1.7 4.3	3. 5	.0 7.7	4. 1	.0 3.5	. 143	. 146
218	Wirtz Commercial	81.6	84.6 78.6	3. 5	2. 3 4. 7	4. 1	2. 8 5. 4					. 141	.144
219	Wood Commercial	81.1	84. 1 78. 1	1.0	. 0 2. 2	2. 3	1.0 3.6	3. 2	. 0 7. 4	5. 6	1.2 10.0	. 140	.143
								,					
		1											

^{*} If the regressed mean of another stock falls within this LSD range, these two stocks are not significantly different at the 5% level.

Stocks Entered in 1959-60 Random Sample Egg Production Tests (Listed alphabetically and showing tests entered)

Wisc,			×	×		××	***	××
Texas	×	×	×				××	×
Penna.	×	××	××	×	××	××	×××	
и° С°		××	×	×		×	××	
W, W, Y.	×	×	×	× ×	×	×	×	×
C N X		×××	×	×	×		××	r haddelffer Browning Williams in sel
и. т.		×	×		×		××	
'H 'N	and the second s	×	××	To the second	×			
,oM		××××	××××	×××××	××	××	** **	××
,aniM	×	×	×			×	× ×	
swoI		××	×		1 or		××	
Inter, Mt.		×	×		×		×	×
Ela.	×	×	XXX				××	×
Calif.	× ×	×	×	×	×	××	××	×
.sirA								
No. Entries		3 2 3 10	2 1 17 1	4 1 2 4 1	1 1 1 1 1		1 13 1 11 4	2 7 1
Stock	One Grade LX 300 LX 330 415B 424	434 434R 505 Anthony Mt. Hope Queen	Avery Barbara Ann Bessie One Grade Prod, Red	551 Ballew Beamsdale 66 Booth Line 351 Booth	1234 Bulkley Graycie LC 89 Supreme Grade	DMX Carey Nicks Hi-Cash Childers Nu-Line 308	Best Egg Grade True Line 365 Westline 702 Random Bred Darby DX	Darby 101 111
Breeding	WL PS WL SX WL SX INX	INX INX INX WL SX WL SX	WR x RIR BX WL SX WL SX WL PS	WL SX WL SX WL SX INX WL PS	WL SX WL SX CG x WL BX WL LX WL PS	×	1	WL PS INX INX
Breeder	A & M Allstate Allstate Ames	Ames Ames Ames Anthony Arbor Acres	Avery Babcock Babcock Bagby Bagby	Ball Ballew Beam sdale Booth Booth	Brender Bulkley Bundesen Burr Butler Co.	Cameron Carey Cashman Childers	Golonial Golonial Golonial Gornell	Darby DeKalb DeKalb
Stock	1 2 8 4 3	6 7 8 10 138	11 12 13 15 16	17 18 20 22 23	24 25 26 27 28	29 30 31 32 33	34 35 213 37 42	43 45 46

Stocks Entered in 1959-60 Random Sample Egg Production Tests (Cont'd.) (Listed alphabetically and showing tests entered)

		.DaiW																					×	×		-				×					-	;	×	
	or period of motionspi-	Техая		×			4				×			×										×													XXX	
1		Penna.	×													×				_	×	×			×		×		×				×				×	
		и° с°		×			+								×			×						×		-							×				×	
	°X	M° M°							×							×								×				×					×			1	×	
	°X	С° И°		×												×								×			×			×						×	×	
		и° 1.	×							×			×				×							×												×	×	
		'н 'и					Ī																	×										×	×		×	
		.oM		×							×												×	×	>	×			×			×	-				×	
		Minn.		×								×	-											×					×								×	
	-	swol		×																				×													×	
ered	,1M	Inter.					T																	×													×	
ts ent		Fla.	×	×																				X													×	
tes		Calif,				>	< ;	××											×	×				×						×	×	×					××	-
wing		Ariz.			×	×	1							_																							×	
ly and sho		No. Entries	3	7	1	1 2	7		-	г	2		-1	1	-	3	1	1	-1	1	1		2	14		-	2	1	3	8	ı	2	8	-	-	2	1 8	
(Listed alphabetically and showing tests entered)		Stock	121	131	А	a C	One Grade	Dirkse Superior	Commercial	One Grade	Grade #1	X Cross 103	Eelman	Erath Str. X	FX 100	Ford V88	Forsgate	Black Diamond	Garber	G 200	G 300C	Golden Sex-Link	G 33	Pearl	Graybill Fac Master	Golden Cross	Commercial	Silver Hallcross	Criss Cross H25	Criss Cross 61	One Grade	Super Nick	Flock Mating	Sex Link	Sex Link	Harper Huskie	Nick Chick H&N	
		Breeding	INX	INX	RIR PS	RIR PS		Syn x WL BX WL PS			WL SX	INX		WL SX	WL SX	WL SX	WL SX	BX	CG x WL BX	WL SX	WL SX	RIR x WR BX			WL PS	.1	WL SX	BX	WL SX	WL SX	AW BX	WL SX	RIR PS	RIR x BPR BX			WL SX CG x WL BX	
		Breeder	DeKalb	DeKalb	Del Rio	Del Rio	Demler	Demler	Douglaston	Drake	Eby	Edmond	Eelman	Erath	Fletcher	Ford	Forsgate	Fox-Den	Garber	Garber	Garber	Garrison	Gasson	Ghostley	Graybill Great Dlaine	Great Plains	Hall Bros.	Hall Bros.	Hansen, (Wash.)	Hansen, (Wash.)	Hansen, (Calif.)	Hanson	Harco	Harco	Hardy	Harper	H H Z Z	
		Stock Code	47	48	49	50	10	52	53	54	52	57	58	59	09	61	62	63	9	99	29	69	20	72	74	16	78	62	80	82	83	84	85	225	86	87	88	

Stocks Entered in 1959-60 Random Sample Egg Production Tests (Cont'd.) (Listed alphabetically and showing tests entered)

Wisc.	××	×	×			×× ×		
гехэТ	×	XXX	X			××		Security common services and security of the security of
Penna.	××	×× ×	××		××		,	and communications asserting to the co
и° С°	××	×	×					
M° N° K°	×	××	× ×	×	×			
C° N° X°	××	××	× ××			×		
и° 1.	×	××	×	× ×			A T TO COLUMN THE STATE OF THE	×
'н 'и	× ×	×			×		×	
,oM	** *	×× ××	×	×	××	×	××××	
.nniM		×	× ×					
Swol	*	×	×			×		
Inter. Mt.	* *	××		×				
Els.	XX X	X	XX	×				×
Calif.	×××	××	×	×× ×				×××
.sirA		×	×	×				
No. Entries	1 13 1 5	18 8 1 2 2	2 1 1 2 1 15	6 1 1 1	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4		2 - 2
Stock	Hobart Honegger Layer Honegger Layer #62 H 496 934A	934C H-3-W Indian Head 10-33 10-42	Commercial Commercial 409C Keystone Leghorn K 137	K 155 Commercial Commercial Commercial Commercial	Buff Sex Link 10X Lee Lanco 505 L 240	H-D-6 M 138 McDonald McDonald 3 way	Merryknoll 400 Best Egg Grade Prod. Red Best Egg Contest Ski Line Layers	Niles Commercial Nimton
Breeding	WL PS WL SX WL SX RIR × NH BX	INX WL SX WL SX WL SX		WL SX WL SX WL LX WL PS	RIR × WPR BX WL SX WPR PS BX WL SX	WL SX WL SX WL SX	BX WL PS RIR PS WL PS BX	WL SX CG x WL BX WL SX
Breeder	Hobart Honegger Honegger Hubbard Hv-Line	Hy-Line Ideal Indian Head Indian F. B.	Jacobs Kahn Kerr Keystone Kimber	Kimber Kruger Lakewood Lasher Lawton	Lawton Leader Lee Lee Leonard	Lux Mathews McDonald, Ray McDonald, Roy Meadow View	Merryknoll Midwest Midwest Missouri Valley Missouri Valley	Niles Niles Nimton
Stock	90 92 93 95	99 101 102 103	106 107 108 109	112 113 114 115	117 118 248 121	124 126 127 128 132	133 134 135 136	139 140 141

Stocks Entered in 1959-60 Random Sample Egg Production Tests (Cont'd.) (Listed alphabetically and showing tests entered)

				_			-								
			:			.1M									
	Breeding	Stock	No. Entries	,zirA	Calif.	Inter.	swol	.nniM	.oM	.н.и	С° И° И° 1°	M° M°	и° С°	Ьеппа	Техая
		Grade A			×										
		Efficiency Leghorns									k			×	
		Oster	-								~ *				
m-serie gas	WL PS	Random Bred	2								×	×			
	BPR PS	Certified	1									×			
Parmenter	RIR PS	Certified	5				×			×		×	×	×	
-	WL SX	Peerless 262	2		×				×						
B.	WL SX	LSC 55	2									×		×	
	WL SX.	Maxi-Lay Queens			×										
	RIR x WL BX	Random Bred	1		×										
	WL SX	Randall			×					-					
	CG × WL BX	Randall	1		×										
	WL SX	Rapp Line Cross	∞				×		×		^ ×	×	×	×	
	CG x WL BX	VH 354	-1								_				
Richardson	WA BX	Commercial	1		×				-		-				
Richardson	WA BX	Commercial MWA	П		×										
	INX	GW 389A	2									×			×
	INX	GW 389C	1						×						
Sand Hills		Commercial	2								_	×			
	WL SX	Commercial	3	\dashv					×			~		×	
	WL SX	Commercial 2							×						
Schildmeyer	WL PS	Commercial	ı		×										
Schildmeyer	CG × WL BX	Commercial	-		×			_							
Schubkegel	WL SX	M&S Cross	-								×				
	WL SX	Egg Champs	2								-	×		×	
		Starcross 288	9		×	× 			×	×		×		×	
	WL SX	Hamblin X												×	
	- >c	Silver Gray			 ×										
		S-3	2							_	×	×			
	WL SX	300A	2		×					_		_		×	
	WL SX	300B	1								Ê	×			
Stone (Calif.)	WL SX	H-56	-1		×										
Stone (Minn.)	WL SX	128	1					×							
		Commercial		_							×				
	- 25	Wisco White													
Swift	WL SX	Ski-Hi 316	3	-	-	_		×		-	L	-	_		×
		SC 30	2						×					×	
	WL PS	Truwav	2								×	_	_	>	

Stocks Entered in 1959-60 Random Sample Egg Production Tests (Cont'd.) (Listed alphabetically and showing tests entered)

						i							
Wisc.				×									
техэг													
Penna,		harden and the		×	×				×		×		
N° C°				×	****								
W° N° X°		×		×		×				×			
C' N' L'			×									×	
И, Л,				derive a c							×		
'H 'N				×									
.oM	×			×									
Minn,													
swoI				×				×					
Inter, Mt.													
Fla.													
Calif.				×			×						×
.sirA												_	
No. Entries	1	-		∞	_	1	-	1	7	-	2	-	,
Stock	Intra Flock	All Red	Regular Mating	Sex-Sal-Link	Weber Cross	Certified	341	901	Wheelock	Commercial	Line Cross	Commercial	Commercial
Breeding	WL PS	BX	WL SX	RIR x RIW BX	WL SX	RIR PS	INX	WL SX	WL SX	WL PS	WL LX	WL SX	AW BX
Breeder	Univ. of Missouri	Vancrest	Vancrest	Warren	Weber	Webster	Welp	Welp	Wheelock	Willow Dale	Wirtz	Wirtz	Wood
Stock	201	202	203	208	506	210	211	212	214	216	217	218	519

- Arizona Random Sample Test
 Ernest L. Parker, Arizona State University, Tempe
- California Official Random Sample Egg Laying Test Emery A. Johnson, Route 3, Box 1145, Modesto
- Florida Random Sample Test A. W. O'Steen, Chipley
- Intermountain Random Sample Egg Laying Test
 J. David Carson, Utah State University, Logan, Utah
- Iowa Multiple Unit Poultry Test

 LeRoy Kruskop, Iowa Poultry Association, National Plans Division Board,

 535 E. Lincolnway, Ames
- Minnesota Random Sample Test

 Roy D. Carlson, Department of Agriculture, Dairy and Food,

 State Office Building, St. Paul 1
- Missouri Official Random Sample Poultry Test Noel Hall, Mountain Grove
- New Hampshire Multiple Unit Egg Production Test
 W. C. Skoglund, Department of Poultry Science,
 University of New Hampshire, Durham
- New Jersey Random Sample Egg Laying Test
 R. L. Squibb, Rutgers University, New Brunswick
- Central New York Official Random Sample Poultry Test, Horseheads Dean R. Marble, Cornell University, Ithaca
- Western New York Official Random Sample Poultry Test, Stafford Dean R. Marble, Cornell University, Ithaca
- North Carolina Random Sample Egg Laying Test
 G. A. Martin, School of Agriculture, North Carolina State College, Raleigh
- Pennsylvania Random Sample Laying Test Paul J.' Turek, Route 2, Harrisburg
- *Tennessee Random Sample Laying Test
 O. E. Goff, University of Tennessee, Knoxville
 - Texas Random Sample Egg Production Test Bill H. Doran, Texas A & M College, College Station
 - Wisconsin Random Sample Egg Production Test, Oregon
 Arnold Guthrie, Department of Agriculture, State Capitol, Madison 2
 - * Data from the Third Tennessee Test were included in the 1958-59 Combined Summary.

 The Fourth Tennessee Test data will be included in the 1960-61 Combined Summary.

