TECNOLOGIE PER CIRCUITI INTEGRATI ESPERIENZA DI LABORATORIO #1

Per i transistor nMOS e pMOS si utilizzino i modelli N_12_HSL130E e P_12_HSL130E della libreria umc13mmrf. Per tutti i transistor si utilizzi la lunghezza di canale minima (disegnata) $L_{min} = 120$ nm.

• Si caratterizzino le resistenze equivalenti dei transistor nMOS e pMOS, $R_{eq,n}$ e $R_{eq,p}$, evidenziandone la dipendenza dalla lunghezza di canale W:

$$R_{
m eq,n}=rac{R_{
m eq,n}^*}{W_n} \qquad R_{
m eq,p}=rac{R_{
m eq,p}^*}{W_p}$$

Utilizzando il simulatore si estraggano i coefficienti $R_{\text{eq},n}^*$ e $R_{\text{eq},p}^*$.

Suggerimento: per estrarre $R_{\text{eq,n}}^*$ e $R_{\text{eq,p}}^*$ si carichi un inverter con una capacità di 10 pF e si estraggano le resistenze equivalenti dei transistor a partire dai tempi di propagazione ottenuti tramite simulazione; si ripetano le simulazioni per almeno 4 valori differenti delle larghezze di canale dei transistor.

• Si caratterizzino le capacità equivalenti di gate e drain dei transistor nMOS e pMOS, $C_{G,n}$, $C_{D,n}$, $C_{G,p}$, $C_{D,p}$, evidenziandone la dipendenza dalla lunghezza di canale W:

$$C_{G,n} = C_{G0,n} \cdot W_n$$
 $C_{D,n} = C_{D0,n} \cdot W_n$ $C_{G,p} = C_{G0,p} \cdot W_p$ $C_{D,p} = C_{D0,p} \cdot W_p$

Utilizzando il simulatore si estraggano i coefficienti $C_{G0,n}$, $C_{D0,n}$, $C_{G0,p}$ e $C_{D0,p}$.

Suggerimento: si estraggano le capacità equivalenti di gate e drain dei transistor a partire dai tempi di propagazione ottenuti tramite simulazione; si ripetano le simulazioni per almeno 4 valori differenti delle larghezze di canale dei transistor.

• Si progetti un inverter bilanciato dinamicamente, che abbia, cioè, $t_{pLH} = t_{pHL}$. Si consideri il caso in cui l'inverter progettato sia caricato da 4 copie (identiche) dell'inverter stesso, come illustrato nella figura seguente:

Si calcolino i tempi di propagazione dell'inverter INV_0 così caricato e si confronti la stima ottenuta con il risultato di una simulazione.

• Si ripeta la simulazione dei tempi di propagazione svolta al punto precedente utilizzando i modelli dei corner di processo fast-fast (FF) e slow-slow (SS). Si confrontino i risultati ottenuti con quelli del caso tipico (TT) ottenuti in precedenza.