Turing - recognizable Language:-

Language is Turing – recognizable language if some Turing machine recognizes it.

(a) :

Let $\it L_{\rm 1}$ and $\it L_{\rm 2}$ be the Turing – recognizable languages that are recognized by the machines $\it M_{\rm 1}$ and $\it M_{\rm 2}$

We want to show that

• There is a Turing machine M' such that $L(M') = L_1 \cup L_2$.

The description of M' is as follow:

M' = "on input w:

1. Run M_1 on w. if M_1 accepts then **accept**

2. Else run $\,M_2^{}$ on $w_{}$ if $\,M_2^{}$ accept then $\it accept$

3. Else reject."

If any of M_1 and M_2 accept w, then M' will accept w.

Since the accepting TM will come to its accepting state after a finite number of steps.

If both M_1 and M_2 reject and either of them does so by looping then M' will loop.

Thus $L(M') = L_1 \cup L_2$ and Turing recognizable languages are closed under union.

(b) **Concatenation:**

Let L_1 and L_2 be the Turing – recognizable languages run by the machines M_1 and M_2

We want to show that

• There is a Turing machine M' such that $L(M') = L_1 o L_2$.

The description of M' is as follow:

M' = "on input w:

- 1. Non deterministically cut input w into w_1 and w_2 .
- 2. Run M_1 on w_1 . If it halts and rejects, **reject**.
- 3. Else Run $\,M_2^{}$ on $\,w_2^{}$. If $\,M_2^{}$ rejects then \it{reject}
- 4. Else accept.

Note the difference between the Turing machines for recognizable and decidable languages, here we need to take care of the fact that the machines M_1 and M_2 need not halt. Thus $L(M') = L_1 o L_2$ and Turing – recognizable languages are closed under concatenation.

(c) **Star:**

Let L_1 be the Turing – recognizable language that are recognized by the machine M_1 .

We want to show that

• there is a Turing machine M' such that $L(M') = L_1^*$

The description of M' is as follow:

浙ICP备16034203号-2

- 1. Cut w into parts $w_1, w_2, ... w_n$
- 2. Run M_1 on w_i for i=1,...n
- 3. If M_1 accepts all of them, **accept**
- 4. if M_1 halts and rejects for any i, reject"

If there is a way to cut w into strings $w_1w_2...w_n$ such that each w_i ? L_1 , then there is a computation path in M' that accepts w in a finite number of steps. Thus L(M') = L*and Turing – recognizable languages are closed under star.

(d) Intersection:

Let $\it L_{\rm l}$ and $\it L_{\rm 2}$ be the Turing – recognizable languages that are recognized by the machines $\it M_{\rm l}$ and $\it M_{\rm 2}$

We want to show that

• There is a Turing machine $\,M'\,$ such that $\,L(\,M') = L_1 \cap L_2.$

The description of M' is as follows:

M' = "on input w:

- 1. Run M_1 on w. if it halts and rejects, reject. If it accepts, go to step 2.
- 2. Run M_2 on w. if it halts and rejects, reject.

If it accepts, accept.

M' accepts a string w if both M_1 and M_2 accepts, thus w belongs to $L_1 \cap L_2$.

Thus $L(M') = L_1 \cap L_2$ and Turing – recognizable languages are closed under intersection.