Background

Bayesian Model Averaging **Estimator for Binary** Outcome, Treatment and Confounders

Bayesian Model Averaging

Yunlong Nie

Department of Stat, UBC

July 31, 2013

Background

Double Robustness

Bayesian Model Averaging

Simulation & Conclusion

Potential Outcome Framework

Simplest situation: observational study, $d_{1:n}$

Simplest situation: observational study, $d_{1:n}$

Outcome Y

Simplest situation: observational study, $d_{1:n}$

- Outcome Y
- Treatment X: 0 unexposed; 1 exposed

Potential Outcome Framework

Simplest situation: observational study, $d_{1:n}$

- Outcome Y
- Treatment X
- Confounders $C = (C_1, \ldots, C_r)$, support C, $|C| = 2^r$

Potential outcomes:

- *Y*₁
- Y₀

Potential outcomes:

- Y_1 what would happen if a unit is treated
- Y₀

- *Y*₁
- Y₀

$$Y = (1 - X)Y_0 + XY_1$$

Objective: the causal effect of treatment X

Background

mean if entire pop exposed - mean if entire pop unexposed

$$\Delta \equiv \mu_1 - \mu_0 = E(Y_1) - E(Y_0)$$

Challenge

Background

Challenges:

• Y_1 or Y_0 is missing

Challenges:

• Y_1 or Y_0 is missing

$$Y = (1 - X)Y_0 + XY_1$$

leads to $E(Y|X = 1) = E(Y_1|X = 1) \neq E(Y_1)$

Solution

Assumption (i):

$$(Y_0, Y_1) \perp \!\!\! \perp X$$

Solution

Assumption (i):

$$(Y_0, Y_1) \perp \!\!\! \perp X$$

exchangeability

Assumption (i):

$$(Y_0, Y_1) \perp \!\!\! \perp X$$

Too strong?

Assumption (ii):

$$(Y_0,Y_1) \perp \!\!\! \perp X|\mathbf{C}$$

Solution for observational study

Assumption (ii):

$$(Y_0, Y_1) \perp \!\!\! \perp X | \mathbf{C}$$

leads to
$$E(Y_0) = E\Big\{E(Y|X=0,\mathbf{C})\Big\}$$

Solution for observational study

Assumption (ii):

$$(Y_0,Y_1) \perp \!\!\! \perp X|\mathbf{C}$$

conditional exchangeability

Solution for observational study

Assumption (ii): "no-unmeasured-confounders"

$$(Y_0,Y_1) \perp \!\!\! \perp X|\mathbf{C}$$

Unverifiable

- Regression
- Inverse-probability-weighting (IPW)
- Double Robustness

Regression

Background

Outcome model:

$$m_x(\mathbf{C}; \beta_x) = E(Y|X=x, \mathbf{C}), x \in \{0, 1\}$$

Bayesian Model Averaging

e.g., 4 confounders. β_x will have 6 components including intercept.

$$\hat{\mu}_{x,reg} = \frac{1}{N} \sum_{i=1}^{N} m_1(\mathbf{c}_{\mathbf{x}}, \hat{\beta}_x).$$

 $\hat{\mu}_{0,reg}$ and $\hat{\mu}_{1,reg}$ consistent to $\underline{\mu}_0$ and $\underline{\mu}_1$

Treatment model:

$$\pi(C, \alpha) = Pr(X = 1|C)$$

Bayesian Model Averaging

e.g., 4 confounders. α will have 5 components including intercept.

$$\hat{\mu}_{1,ipw} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i y_i}{\hat{\pi}(\mathbf{c}_i, \hat{\alpha})},$$

$$\hat{\mu}_{0,ipw} = \frac{1}{n} \sum_{i=1}^{n} \frac{(1-x_i)y_i}{1-\hat{\pi}(\mathbf{c}_i,\hat{\alpha})}.$$

$$\hat{\Delta}_D = \hat{\mu}_{1,D} - \hat{\mu}_{0,D}$$

$$\hat{\mu}_{1,D} = \frac{1}{n} \sum_{i=1}^n \frac{y_i x_i - (x_i - \hat{\pi}(c_i)) \hat{m}_1(c_i)}{\hat{\pi}(c_i)}$$

$$\hat{\mu}_{0,D} = \frac{1}{n} \sum_{i=1}^n \frac{y_i (1 - x_i) + (x_i - \hat{\pi}(c_i)) \hat{m}_0(c_i)}{(1 - \hat{\pi}(c_i))}$$

Background

$$\hat{\mu}_{1,D} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i x_i - (x_i - \hat{\pi}(c_i)) \hat{m}_1(c_i)}{\hat{\pi}(c_i)}$$

Bayesian Model Averaging

$$\hat{\mu}_{1,D} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i x_i - (x_i - \hat{\pi}(c_i)) \hat{m}_1(c_i)}{\hat{\pi}(c_i)}$$

• if $m_1(C,\beta)$ is correctly specified,

$$\hat{\mu}_{1,D} = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{m}_1(c_i))x_i + \hat{\pi}(c_i)\hat{m}_1(c_i)}{\hat{\pi}(c_i)}$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \hat{m}_1(c_i) \equiv \hat{\mu}_{1,reg}$$

$$\hat{\mu}_{1,D} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i x_i - (x_i - \hat{\pi}(c_i)) \hat{m}_1(c_i)}{\hat{\pi}(c_i)}$$

• if $\pi(C, \alpha)$ is correctly specified,

$$\hat{\mu}_{1,D} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{y_i x_i}{\hat{\pi}(c_i)} \equiv \hat{\mu}_{1,ipw}$$

$$\Delta = \sum_{c \in \mathcal{C}} Pr(C = c) \left(Pr(Y = 1 | X = 1, c) - Pr(Y = 1 | X = 0, c) \right)$$
$$= \sum_{c \in \mathcal{C}} q_c(p_{c1} - p_{c0})$$

Bayesian Model Averaging

•
$$q_c = Pr(C = c)$$

•
$$p_{cx} = Pr(Y = 1|X = x, c = c)$$

Another View

 $d_{1:n}:(Y,X,\mathbf{C})\to 2\times 2\times |\mathcal{C}|$ table with cell counts as

$$n_{cxy} = \sum_{i=1}^{n} I(c_i = c, x_i = x, y_i = y), c \in \mathcal{C}$$

Bayesian Model Averaging

 $\hat{P}r()$: sample proportion to the table.

e.g.

$$\hat{P}r(Y=1|X=x,C=c) = \frac{n_{cx1}}{n_{cx1} + n_{cx0}} = \frac{n_{cx1}}{n_{cx\bullet}}$$
$$\hat{P}r(C=c) = \frac{n_{c\bullet\bullet}}{n} = \frac{n_{c1\bullet} + n_{c0\bullet}}{n}$$

Another View

$$\hat{\mu}_{1,D} = \sum_{c \in \mathcal{C}} \hat{Pr}(C = c) \left\{ w_1(c) \hat{m}_1(c) + (1 - w_1(c)) \hat{Pr}(Y = 1 | X = 1, C = c) \right\},$$

Bayesian Model Averaging

where

$$w_1(c) = 1 - \frac{\hat{P}r(X=1|C=c)}{\hat{\pi}(c)}.$$

Another View

$$\hat{\mu}_{1,D} = \sum_{c \in \mathcal{C}} \hat{Pr}(C = c) \left\{ w_1(c) \hat{m}_1(c) + (1 - w_1(c)) \hat{Pr}(Y = 1 | X = 1, C = c) \right\},$$

Bayesian Model Averaging

where

$$w_1(c) = 1 - \frac{\hat{Pr}(X=1|C=c)}{\hat{\pi}(c)}.$$

compromises between parametric and non-parametric outcome models

Background

Another View

$$\hat{\mu}_{1,D} = \sum_{c \in \mathcal{C}} \hat{Pr}(C = c) \bigg\{ w_1(c)\hat{m}_1(c) + (1 - w_1(c))\hat{Pr}(Y = 1 | X = 1, C = c) \bigg\},$$

where

$$w_1(c) = 1 - \frac{\hat{Pr}(X=1|C=c)}{\hat{\pi}(c)}.$$

- compromises between parametric and non-parametric outcome models
 - treatment model controls the weighting

New Scheme for Compromise

$$\hat{\Delta}_B = w_B \hat{\Delta}_{reg} + (1 - w_B) \hat{\Delta}_S$$

• w_B posterior probability that parametric model is correct.

New Scheme for Compromise

$$\hat{\Delta}_B = w_B \hat{\Delta}_{reg} + (1 - w_B) \hat{\Delta}_S$$

Bayesian Model Averaging

w_B posterior probability that parametric model is correct.

$$\hat{\Delta}_{reg} = \frac{1}{n} \sum_{i=1}^{n} \left\{ m_1(c_i; \hat{\beta}) - m_0(c_i; \hat{\beta}) \right\}$$
$$\equiv \sum_{c} \hat{Pr}(C = c) \left\{ m_1(c; \hat{\beta}) - m_0(c; \hat{\beta}) \right\}$$

Non-parametric Part: Saturated

$$\hat{\Delta}_S = \sum_{c \in \mathcal{C}} \hat{Pr}(C = c) \left(\hat{Pr}(Y = 1 | X = 1, c) - \hat{Pr}(Y = 1 | X = 0, c) \right)$$

$$\Delta = \sum_{c \in \mathcal{C}} q_c(p_{c1} - p_{c0})$$

- $q_c = Pr(C = c)$ with the prior $\mathbf{q} \sim Dirichlet(k_q, \cdots, k_q)$.
- $p_{cx} = Pr(Y = 1 | X = x, c = c)$ with prior $p_{cx} \sim Beta(k_n, k_n)$
- q and each p_{cx} posteriori independent

Non-parametric Part: Saturated

$$\hat{\Delta}_{S0} = \sum_{c \in \mathcal{C}} E(q_c | d_{1:n}) (E(p_{c1} | d_{1:n}) - E(p_{c0} | d_{1:n}))$$

$$= \sum_{c \in \mathcal{C}} \frac{k_q + n_{c \bullet \bullet}}{|\mathcal{C}| k_q + n} \left[\frac{k_p + n_{c11}}{2k_p + n_{c1 \bullet}} - \frac{k_p + n_{c01}}{2k_p + n_{0 \bullet}} \right]$$

27

Bayesian Model Averaging

$$w_B = \frac{\kappa f_{reg}(y|x,c)}{\kappa f_{reg}(y|x,c) + (1-\kappa)f_{S0}(y|x,c)},$$

where κ prior probability of correctness of parametric model

$$\hat{\Delta}_B = w_B \hat{\Delta}_{reg} + (1 - w_B) \hat{\Delta}_{S0}$$

• $\mathbf{C} = (C_1, C_2, C_3, C_4)$: thresholding correlated standard normals (correlation equals $\rho = 0.3$) at zero

•
$$\mathbf{C} = (C_1, C_2, C_3, C_4)$$
:

$$logit Pr(X = 1 | \mathbf{C}) = \alpha_0 + \alpha_1 (C_1 + C_2 + C_3 - 1.5),$$

$$\alpha_1 = \frac{\mathsf{logit}(0.5) - \mathsf{logit}(0.05)}{4},$$
$$\alpha_0 = \frac{\mathsf{logit}(0.5) + \mathsf{logit}(0.05)}{2},$$

•
$$\mathbf{C} = (C_1, C_2, C_3, C_4)$$
:

• X

$$logitPr(X = 1 | \mathbf{C}) = \alpha_0 + \alpha_1(C_1 + C_2 + C_3 - 1.5),$$

Y

$$logit Pr(Y = 1 | X, \mathbf{C}) = \gamma_0 + \gamma_1 X + \lambda X (C_1 C_2 - \mu_{12})$$

$$\gamma_0 = -1.2, \gamma_1 = 0.7$$

•
$$\mathbf{C} = (C_1, C_2, C_3, C_4)$$
:

• X

$$logit Pr(X = 1 | \mathbf{C}) = \alpha_0 + \alpha_1 (C_1 + C_2 + C_3 - 1.5),$$

Y

$$logitPr(Y = 1|X, \mathbf{C}) = \gamma_0 + \gamma_1 X + \lambda X(C_1 C_2 - \mu_{12})$$

•
$$n = 100, 200, 500$$

34

Simulation 1: estmators

- $\widehat{\Delta}_{rea}$: fitted with only main effect: X, C_1, \dots, C_4
- $\widehat{\Delta}_D$: fitted with only main effect
- $\widehat{\Delta}_{S0}: k_p = k_q = 1$
- $\widehat{\Delta}_B : \kappa = 0.5$

Simulation 1: estmators

- $\widehat{\Delta}_{reg}$: fitted with only main effect: X, C_1, \dots, C_4
- $\widehat{\Delta}_D$: fitted with only main effect
- $\widehat{\Delta}_{S0}: k_p = k_q = 1$
- $\widehat{\Delta}_B : \kappa = 0.5$
- True value

$$\Delta = E\{E(Y|X=1,C) - E(Y|X=0,C)\}\$$

Note that

$$Pr(C=c) = E\bigg(\Phi\{(\rho^{-1}-1)^{-1/2}Z\}^{r-g(c)}[1-\Phi\{(\rho^{-1}-1)^{-1/2}Z\}]^{g(c)}\bigg),$$

where
$$g(c) = \sum_{i=1}^{r} C_{i}, Z \sim N(0, 1)$$
.

100

200

500

Simulation 1

0.175

Figure : Root-mean-squared error of estimates $D=\widehat{\Delta}_D, S=\widehat{\Delta}_{S0}, P=\widehat{\Delta}_{reg}, B=\widehat{\Delta}_B$. N marks the true value of Δ .

Background

$$\begin{aligned} & \mathsf{logit} Pr(X=1|\mathbf{C}) = \alpha_0 + \alpha_1 C_1 C_2 C_3 \\ & \alpha_0 = \mathsf{logit}(0.05), \alpha_1 = \mathsf{logit}(0.5) - \alpha_0 \end{aligned}$$

Simulation 1

$$\begin{split} & \operatorname{logit} Pr(X=1|\mathbf{C}) = \alpha_0 + \alpha_1 C_1 C_2 C_3 \\ & \alpha_0 = \operatorname{logit}(0.05), \alpha_1 = \operatorname{logit}(0.5) - \alpha_0 \end{split}$$

Figure : Root-mean-squared error of estimates $D=\widehat{\Delta}_D, S=\widehat{\Delta}_S, P=\widehat{\Delta}_{reg}, B=\widehat{\Delta}_B.$ N marks the true value of Δ .

Limitation: sparisty

Non-sparsity:

$$\hat{P}r(C=c) > 0 \Rightarrow 1 > \hat{P}r(X=1|C=c) > 0$$

$$n_{c \bullet \bullet} > 0 \Rightarrow n_{c1 \bullet} > 0, n_{c0 \bullet} > 0$$

Sparsity: 21 some $n_{c1\bullet}$ or $n_{c0\bullet}$ zero, inflating the posterior variance of $\hat{\Delta}_{S0}$

Hierarchical Modelling

Background

Background

Hierarchical Modelling

Stage1:

Background

$$P_{cx} \equiv Pr(Y=1|X=x,C=c) \sim Beta(h_{x0},h_{x1})$$

Bayesian Model Averaging

hyperparameter $\mathbf{h}_x = (h_{x0}, h_{x1})$ when $X = x, x \in \{0, 1\}$

Stage2:

$$\mathbf{h}_x \sim f_x$$

HyperPrior

- f_x a discrete Grid G_x
- "mean":

$$m_x \equiv h_{x0}/h_{x0} + h_{x1}$$

• "concentration": $c_x \equiv h_{x0} + h_{x1}$; $m_x \rightarrow , c_r \uparrow , \text{ var } \uparrow$

Hierarchical Saturated Estimator

$$\hat{\Delta}_{Sh} = \sum_{c \in \mathcal{C}} E(q_c | d_{1:n}) (E(p_{c1} | d_{1:n}) - E(p_{c0} | d_{1:n}))$$

$$E(q_c | d_{1:n}) = \frac{k_q + n_{c \bullet \bullet}}{|C| k_q + n}$$

$$E(p_{c1} | d_{1:n}) = \sum_{\mathbf{h}_1 \in G_1} \frac{h_{10} + n_{c11}}{h_{10} + h_{11} + n_{c1 \bullet}} f(\mathbf{h}_1 | d_{1:n})$$

$$E(p_{c0} | d_{1:n}) = \sum_{\mathbf{h}_0 \in G_0} \frac{h_{00} + n_{c01}}{h_{00} + h_{01} + n_{c0 \bullet}} f(\mathbf{h}_0 | d_{1:n})$$

Simulation 2

Data-generating scheme: Same as Simulation 123

- Sample size fixed : n = 500.
- Number of confounders, r: 4 to 18. $> 9 \rightarrow \text{sparsity}$: $2^9 = 512 > 500$ different C strata

Simulation 2

- $\widehat{\Delta}_{reg}$: fitted with only main effect: X, C_1, \ldots, C_r
- $\widehat{\Delta}_{S0}: k_p = k_q = 1$
- $\widehat{\Delta}_{S1}$:
 - * $G_0\&G_1$: mean (0.01,0.99) length of 20; con (1,20) length of 20. In total, 22×22 points

Simulation2 res

Figure : Root-mean-squared error of estimates $\widehat{\Delta}_{S0}$, $\widehat{\Delta}_{S1}$. 'N' marks the true value of Δ . Each panel is simulated under a different number of confounders ranging from 4 to 18.

Simulation2 res

DR estimator : parametric and non-parametric outcome models

Bayesian model averaging estimator: a "cousin" of DR estimator

- DR estimator: parametric and non-parametric outcome models
- Bayesian model averaging estimator: a "cousin" of DR estimator
- Hierarchical structure helps when dealing with sparse data

- DR estimator: parametric and non-parametric outcome models
- Bayesian model averaging estimator: a "cousin" of DR estimator
- Hierarchical structure helps when dealing with sparse data

Future Work

- Continuous outcome, treatment and confounders
- Real data analysis
- R packages: https://github.com/YunlongNie/BayDR

Future Work

- Continuous outcome, treatment and confounders
- Real data analysis
- R packages: https://github.com/YunlongNie/BayDR

Thanks!