Representation and Extraction of Causality Statements

Vasundra Touré¹, Åsmund Flobak², Astrid Laegreid², Martin Kuiper¹

¹Department of Biology

²Department of Clinical and Molecular Medicine

In collaboration with

EBI – Reactome, PSI-MI
Institut Curie
ENS

The DrugLogics Initiative

Towards the development of precision and personalised medicine

Crossover Research

Structured Knowledge
Commons resource
DbTF curation
Scicura

DrugLogics

Drug development of anti-cancer combinations

COLOSYS

Drug resistance prediction in colon cancer via computer models

Personal tasks within the DrugLogics

Facilitate the process of building biological models with causal statements

Representation of causal statements

Causal interaction between two biological entities (gene, RNA, protein, complexes, etc...)

Representation of causal statements

How to represent meaningful causal interactions?

What is FOXO3's state? (active/inactive)

When and where does this interaction occurs?

Which molecular function is down-regulated?

What is the regulation type? (phosphorylation, acetylation, dephosphorylation)

Is it a direct or indirect Interaction?

Minimum Information for Causality Statements

Entity – Source & Target

- ID ex: causaIDB:FOXO3
- Reference ID HGNC; Uniprot; Entrez
 - For Complex: ComplexPortal?
- Name ex: FOXO3
- Type gene, RNA, protein, complex
- Molecular function GO:MF
- Compartment GO

Causal Relationship

- Regulation type down-regulates
- Mechanism PSI MOD?
- Modified residue Tyr@P202
- Provenance ex: Reactome, PMID
- Evidence ECO
- Confidence intact-miscore
- Interaction depth 0 (direct); 1; 2; etc...

Context - case specific

- General biological context
 - Species TaxID
 - Tissue type Brenda Tissue Ontology (BTO), Uberon?
 - Cell type BTO, Cell Line Ontology (CLO)?
- Text Scicura sentence (http://scicura.org/info.html)
- Experimental conditions
 - Tissue / Cell state
- Source context
 - State of chromatin
 - Concentration could be a number, a range

Controlled Vocabulary and Ontologies – essential to make data sustainable, shareable and interoperable

Extraction from prior knowledge

Aggregation of causal data from several existing resources

Pathways, reactions

Pathways of cancer related signaling networks

DB of causal interactions

DB of molecular interactions

Case 1: extraction from Reactome

Reactome data model extraction using Neo4j and Cypher Query language

Case 1: extraction from Reactome

Reactome data model extraction using Neo4j and Cypher Query language

Example: Get all reactions regulated by a physical entity or catalysed by a catalyst activity

MATCH (rle:ReactionLikeEvent)-[:regulatedBy|catalystActivity]->(o)-[:regulator|physicalEntity]->(source:PhysicalEntity)

OPTIONAL MATCH (input:PhysicalEntity)<-[:input]-(rle)-[:output]->(output:PhysicalEntity)

RETURN rle.stld AS ReactionID,

rle.displayName AS Reaction,

COLLECT(input.displayName) AS Inputs,

COLLECT(output.displayName) AS Outputs,

o.simpleLabel AS Regulation,

source.displayName AS Regulator

"Cypher is your friend" - A. Fabregat

Case 1: resulting outputs

ReactionId	Reaction	Compartment	Inputs	Effect	Outputs	Regulator
R-HSA- 452338	Expression of TDGF1 (CRIPTO)	cytosol	["TDGF1 gene [nucleoplasm]"]	NegativeGeneExp ressionRegulation	["N-aspartyl- glycosylphosphatidyli nositolethanolamine- TDGF1(31-188) [plasma membrane]"]	NR6A1(GCNF):TDGF1 gene [nucleoplasm]
R-HSA- 8936628	GP1BA gene transcription is stimulated by the complex containing RUNX1, PRMT1 and GATA1 and inhibited by the complex of RUNX1, SIN3A and PRMT6	plasma membrane	["GP1BA gene [nucleoplasm]"]	NegativeGeneExp ressionRegulation	["GP1BA [plasma membrane]"]	RUNX1:CBFB:SIN3A, (SIN3B):PRMT6:HDA C1:GP1BA gene:H3K4me2,H3R2 me2a-Nucleosome [nucleoplasm]
R-HSA- 8944497	PTEN mRNA translation is negatively regulated by microRNAs	cytosol	["PTEN mRNA [cytosol]"]	NegativeGeneExp ressionRegulation	["PTEN [cytosol]"]	miR-20 RISC:PTEN mRNA [cytosol]
			A			

Case 1: Some numbers - Version 61

Number of pathways: 22 723 Number of reactions: 84 759

Case 1: questions / challenges raised

Exclude trivial molecules

Missing IDs for the modified mechanism type (event categories)

Transfers
Translocates from ... to
Transports
Exchanges ... for ...
Cotransports
Regulates

Inference of causal interactions from reaction networks

$$\begin{array}{c|c}
C & C - A^p \\
\hline
A - A^p \\
\hline
A^p - A \\
\end{array}$$

ACSN data model follows SBGN PD schema from CellDesigner tool

How to convert reaction types to causal interactions?

Suppose R, a regulator targeting each reaction below

Catalysis, unknown catalysis, trigger, physical stimulation → positive influences Inhibition, unknown inhibition → negative influences Modulation → not defined influence

Manual inference of causal interactions from the Cell Cycle – APC module

List of causal interactions:

CDK2_CyclinA - | FZR1

CDK1_CyclinB - FZR1

CDC14A -> FZR1

APC C CDC20 - CCNA2

APC_C_FZR1 - CCNA2

APC_C_CDC20 - CCNB1

CDK1_CyclinB -> CDC20

Undefined causality:

CDK1_CyclinB regulates Wee1

CHEK1 regulates Wee1

→ How to interpret when both reactant and product are regulators...?

Atlas of Cancer Signaling Network – pathways of biochemical interactions

SBML with CellDesigner annotations

Difficult to parse

Easier to parse More intuitive

2 659 CATALYSIS:2 537 – regulatory interactions122 – boolean gates

Case 2: Possible improvements in ACSN's BioPAX

- BioPAX online validator: No.unification.xref errors
- Family information missing: use 'memberEntityReference'?
- Complex association / dissociation: better defined with 'spontaneous' in ComplexAssembly?
- Annotations on Entities: PMIDs should be on Reactions

Future work

- Pipeline to extract causal interactions from PD networks with conversion rules defined
- Model checking to validate our models
- Discuss MICAST with the community (curation workshop in Dec)

Thank you for your attention!

The DrugLogics team

Dept of Biology

Martin Kuiper Steven Vercruysse Wim De Mulder Vladimir Mironov Vasundra Touré Stian Holmås Rafel Riudavets

Dept of Clinical and Molecular Medicine

Astrid Lægreid
Liv Thommesen
Åsmund Flobak
Miguel Vazquez
Marcio Acencio
Barbara Niederdorfer
Evelina Folkesson
Kathleen Heck

Dept of Philosophy and Religious Studies

Rune Nydal Ane Møller Gabrielsen Anamika Chatterjee

Norwegian University of Science and Technology

Acknowledgments

Andrei Zinovyev Inna Kuperstein Mihály Koltai Laurence Calzone Emmanuel Barillot Antonio Fabregat Steve Jupe Noemi Del Toro Sandra Orchard Henning Hermjakob

Aurélien Naldi Denis Thieffry

Funding:

