Точные оценки вероятности переобучения для симметричных семейств алгоритмов

Фрей Александр Ильич

Московский физико-технический институт (Государственный университет) Факультет Управления и Прикладной Математики Кафедра «Интеллектуальные Системы» (ВЦ РАН)

Научный руководитель: к.ф.-м.н. Воронцов Константин Вячеславович

22 сентября 2009

Проблема переобучения

- ullet Строки таблицы $\{x_1\,\dots\,x_6\}$ объекты полной выборки
- ullet Столбцы $\{a_1 \ldots a_D\}$ векторы ошибок алгоритмов

	a_1	a ₂	 a _d	 a_D
<i>x</i> ₁	0	1	 0	 1
<i>x</i> ₂	1	1	 0	 0
<i>X</i> 3	0	0	 0	 0
<i>X</i> 4	1	1	 1	 1
<i>X</i> 5	1	0	 1	 0
<i>x</i> ₆	0	0	 1	 0

- Метод обучения минимизация эмпирического риска
- Цель: получить точные, вычислительно-эффективные оценки вероятности переобучения.

Содержание

- 💶 Наделить структурой произвольное множество алгоритмов
 - Группа симметрий множества алгоритмов
 - Классы идентичных алгоритмов
- Вывести общую оценку вероятности переобучения с учетом симметрии семейства
 - Рандомизированный метод обучения
 - Теорема о равном вкладе идентичных алгоритмов в вероятность переобучения
- Исследовать семейства алгоритмов простой структуры
 - Явная формула для связки монотонных цепочек
 - Графики вероятности переобучения для трех случаев

Группа симметрий множества алгоритмов

- ullet Генеральная выборка $\mathbb{X}=(x_i)_{i=1}^L$
- ullet Алгоритм бинарный вектор $a\equiv (a(x_i))_{i=1}^L$ длины L
- ullet Множество $\mathbb{A}=\{0,1\}^L$ все алгоритмы длины L
- Аналогия:

Точка на плоскости Плоскость \mathbb{R}^2 Плоская фигура $F \subset \mathbb{R}^2$ Группа движений плоскости

Алгоритм Множество всех алгоритмов \mathbb{A} Множество алгоритмов $A \subset \mathbb{A}$ Группа перестановок S_L

Определение (Группа симметрий)

Группой симметрий S(A) множества алгоритмов $A\subset \mathbb{A}$ назовем его стационарную подгруппу:

$$S(A) = \{ \pi \in S_L \colon \pi(A) = A \}.$$

Классы идентичных алгоритмов

- Орбитой элемента m множества M, на котором действует группа G, называется подмножество $Gm = \{gm \colon g \in G\}$.
- Две орбиты либо не пересекаются, либо совпадают.
- ullet Разбиение на орбиты: $M = Gm_1 \sqcup Gm_2 \sqcup \cdots \sqcup Gm_k$.
- ullet Группа S(A) действует на множестве алгоритмов A.
- Алгоритмы внутри одной орбиты назовем идентичными.
- ullet Обозначим $\Omega(A)$ множества орбит, $\omega \in \Omega(A)$ класс идентичных алгоритмов.

Теорема

Идентичные алгоритмы имеют равное число ошибок на полной выборке.

Рандомизированный метод обучения

• Метод минимизации эмпирического риска ставит в соответствие обучающей выборке алгоритм из заранее фиксированного множества: $\mu: 2^{\mathbb{A}} \times [\mathbb{X}]^{\ell} \to \mathbb{A}$

Определение

Рандомизированный метод обучения — это отображение вида

$$\mu: 2^{\mathbb{A}} \times [\mathbb{X}]^{\ell} \times \mathbb{A} \to [0,1],$$

такое что для всех $A\subset \mathbb{A}$, $X\in [\mathbb{X}]^\ell$, $a,b\in A$ и $\pi\in S_L$ имеем

- ② $n(a, X) = n(b, X) \rightarrow \mu(A, X, a) = \mu(A, X, b);$
- **3** $\mu(A, X, a) = \mu(\pi(A), \pi(X), \pi(a)).$

Вероятность переобучения

• Вероятность получить алгоритм в результате обучения

$$P(a,A) = \frac{1}{C_L^{\ell}} \sum_{X \in [\mathbb{X}]^{\ell}} \mu(A,X,a).$$

ullet Bклад алгоритма $a\in A$ в вероятность переобучения:

$$Q_{\varepsilon}(a,A) = \frac{1}{C_L^{\ell}} \sum_{X \in [\mathbb{X}]^{\ell}} \mu(A,X,a) \big[\delta(a,X) \geq \varepsilon \big].$$

ullet Вероятность переобучения: $Q_{arepsilon}(A) = \sum_{a \in A} Q_{arepsilon}(a,A).$

Теорема

Идентичные алгоритмы дают равный вклад в вероятность переобучения:

$$Q_{arepsilon}(A) = \sum_{\omega \in \Omega(A)} |\, \omega| \; Q_{arepsilon}(A, a_{\omega}).$$

Семейства простой структуры

- (1) Связка из монотонных цепочек
 - р число ветвей
 - D длина каждой ветви

- Частные случаи:
 - (2) Монотонная цепочка: p = 1.
 - (3) Унимодальная цепочка: p = 2.
 - ullet (4) Единичная окрестность лучшего алгоритма: D=1.

Явная формула вероятности переобучения

 Рандомизированный метод минимизации эмпирического риска.

Теорема

Для связки из р монотонных цепочек вероятность переобучения рандомизированного метода минимизации эмпирического риска может быть записана в явном виде:

$$Q_{\varepsilon}(A) = \sum_{h=0}^{D} \sum_{S=h}^{pD} \sum_{F=0}^{p} \frac{|\omega_{h}| R_{D,p}^{h}(S,F)}{1+S} \frac{C_{L'}^{\ell'}}{C_{L}^{\ell}} H_{L'}^{\ell',m}(s(\varepsilon)),$$

где L' = L - S - F, $\ell' = \ell - F$, $s(\varepsilon) = \left\lfloor \frac{\ell}{L} (m + h - \varepsilon k) \right\rfloor$; $|\omega_h| = 1$ при h = 0 и $|\omega_h| = p$ при $h \ge 1$, $H_{L'}^{\ell',m}(s) - \phi$ ункция гипергеометрического распределения.

Численные результаты - сравнение оценок

Численные результаты - сравнение оценок

Рис.: L = 100, $\ell = 60$, p = 10, m = 20.

Основные результаты и направления исследований

- 📵 Наделить структурой произвольное множество алгоритмов
 - Группа симметрий множества алгоритмов
 - Классы идентичных алгоритмов
- Вывести общую оценку вероятности переобучения с учетом симметрии семейства
 - Рандомизированный метод обучения
 - Теорема о равном вкладе идентичных алгоритмов в вероятность переобучения
- Исследовать семейства алгоритмов простой структуры
 - Явная формула для связки монотонных цепочек

Направления дальнейших исследований:

- Монотонные и унимодальные сетки большой размерности
- Исследование семейств алгоритмов, возникающих в реальных задачах

