Table 15: Rubidium 87 D₁ ($5^2S_{1/2} \longrightarrow 5^2P_{1/2}$) Hyperfine Dipole Matrix Elements for σ^+ transitions ($F = 2, m_F \longrightarrow F', m_F' = m_F + 1$), expressed as multiples of $\langle J = 1/2||er||J' = 1/2\rangle$.

7	(J+1), expressed as multiples of $(J=1/2 er J'=1/2)$.						
		$m_F = -2$	$m_F = -1$	$m_F = 0$	$m_F = 1$	$m_F = 2$	
	F'=2	$\sqrt{\frac{1}{6}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{1}{6}}$		
	F'=1	$\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{1}{12}}$			

Table 16: Rubidium 87 D₁ ($5^2S_{1/2} \longrightarrow 5^2P_{1/2}$) Dipole Matrix Elements for π transitions ($F = 2, m_F \longrightarrow F'$, $m'_F = m_F$), expressed as multiples of $\langle J = 1/2 | |er| | J' = 1/2 \rangle$.

	$m_F = -2$	$m_F = -1$	$m_F = 0$	$m_F = 1$	$m_F = 2$
F'=2	$-\sqrt{\frac{1}{3}}$	$-\sqrt{\frac{1}{12}}$	0	$\sqrt{\frac{1}{12}}$	$\sqrt{\frac{1}{3}}$
F'=1		$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{1}{3}}$	$\sqrt{\frac{1}{4}}$	

Table 17: Rubidium 87 D₁ ($5^2S_{1/2} \longrightarrow 5^2P_{1/2}$) Dipole Matrix Elements for σ^- transitions ($F=2, m_F \longrightarrow F'$, $m_F'=m_F-1$), expressed as multiples of $\langle J=1/2||er||J'=1/2\rangle$.

	$m_F = -2$	$m_F = -1$	$m_F = 0$	$m_F = 1$	$m_F = 2$
F'=2		$-\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{1}{4}}$	$-\sqrt{\frac{1}{4}}$	$-\sqrt{\frac{1}{6}}$
F'=1			$\sqrt{\frac{1}{12}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{1}{2}}$