AMC 10 Preparation

16. Circle – Radius, Circumference, and Areas

SOLUTIONS:

Problem 1. Solution: (A).

The area of the shaded region for one tile is $(9 \times 2)(9 \div 2) - \pi \times (9 \div 2)^2 =$

$$81 - \frac{81}{4}\pi$$
.

Since there are $36 \times 72 \div (9 \times 18) = 16$ tiles in the entire floor, the area of the total shaded

region in square feet is $16(81 - \frac{81\pi}{4}) = 1296 - 324\pi$.

Problem 2. Solution: (B).

The radius of the large circle is (12 + 8)/2 = 10, so its area is 100π .

The area of the shaded region is $(100\pi - 36\pi - 16\pi)/2 = 24\pi$. The area of the unshaded region is $100\pi - 24\pi = 76\pi$.

The ratio is $24\pi / 76\pi = 6/19$.

Problem 3. Solution: (E).

Let A_A be the area of sector A, and let A_B be the area of sector B.

Let C_A be the circumference of circle A. Let C_B be the circumference of circle B.

By the formula
$$A = \pi r^2 \times \frac{\theta}{360}$$
, with $A_A = A_B \Rightarrow \pi r_A^2 \times \frac{25^\circ}{360} = \pi r_B^2 \times \frac{100^\circ}{360}$

$$\Rightarrow \qquad \left(\frac{r_A}{r_B}\right)^2 = \frac{100^\circ}{25^\circ} = 4 \Rightarrow \quad \frac{r_A}{r_B} = \frac{2}{1}$$

Thus the ratio of the circumferences is $\frac{C_A}{C_B} = \frac{2\pi r_A}{2\pi r_B} = \frac{r_A}{r_B} = \frac{2}{1}$.

AMC 10 Preparation

16. Circle - Radius, Circumference, and Areas

Problem 4. Solution: (A).

Extend AC to meet the circle at E.

By the Power of Points formula:

$$AD^2 = AE \times AB$$
 $\Rightarrow 10^2 = (7 + BE) \times 7 \Rightarrow BE = \frac{51}{7}$

The radius is 51/14, which is half of the diameter *BE*.

So the area is
$$\pi \times (\frac{51}{14})^2 = \frac{2601}{196} \pi$$
.

Problem 5. Solution: (D).

The grazing area consists of

1. three quarters of a big 50ft-radius circle, which has area

$$\frac{3}{4}\pi \times 50^2 = 1875\pi$$
.

2. one quarter of a 20ft-radius circle on the left, which has

area
$$\frac{1}{4}\pi \times 20^2 = 100\pi$$

3. one quarter of a small 10ft-radius circle on the top,

which has area
$$\frac{1}{4}\pi \times 10^2 = 25\pi$$
.

Problem 6. Solution: (D).

Let x be the length of the side of the square.

At any point on Charles' walk, he can see all the points inside a circle of radius 2 km. The portion of the viewable region inside the square consists of the interior of the square except for a smaller square with side length x-4 km. This portion of the viewable region has area $x^2-(x-4)^2=8x-16$ km². The portion of the viewable

region outside the square consists of four rectangles, each x km by 2 km, and four

quarter-circles (which make one whole circle), each with a radius of 2 km. This portion of the viewable region has area $4 \times 2x + \pi \times 2^2 = (8x + 4\pi) \text{ km}^2$. The area of the entire

viewable region is $8x-16+(8x+4\pi)=144+4\pi$ $\Rightarrow 16x-160=0 \Rightarrow x=10$.

Problem 7. Solution: (B).

Since AC = 6 and BC = 8, AB = 10.

By formula (16.11),
$$r = \frac{AC + BC - AB}{2} = \frac{6 + 8 - 10}{2} = 2$$

The area of the circle is $\pi r^2 = 4\pi$

The area of the triangle is
$$\frac{AC \times BC}{2} = \frac{6 \times 8}{2} = 24$$

The answer is $24 - 4\pi$.

Problem 8. Solution: (B).

Since the area of the circle is 4π , the radius is 2.

Method 1:

As shown in the figure, OD = 2, $\angle DAO = 30^{\circ}$, AO = 4, AD

=
$$2\sqrt{3}$$
. The area of $\triangle ADO$ is $\frac{AD \times DO}{2} = \frac{2\sqrt{3} \times 2}{2} = 2\sqrt{3}$.

The area of triangle *ABC* is 6 times of the area of $\triangle ADO$, or $6 \times 2\sqrt{3} = 12\sqrt{3}$.

Method 2:

CD is the median of triangle ABC, so since DO = 2, CO = 4 and CD = 6.

Applying Pythagorean Theorem to the right triangle *ACD* gives: $x^2 + 6^2 = (2x)^2 \Rightarrow x = 2\sqrt{3}$

The area of triangle *ABC* is

$$\frac{AB \times CD}{2} = \frac{2x \times 6}{2} = 6x = 6 \times 2\sqrt{3} = 12\sqrt{3} .$$

AMC 10 Preparation 16. Circle – Radius, Circumference, and Areas

Problem 9. Solution: (C).

Triangle ABC is a 3-4-5 right triangle with AB = 3 and BC = 4. Let BO = x. We know that AO = CO = 4-x.

Applying Pythagorean Theorem to triangle ABO gives:

$$AB^2 + BO^2 = AO^2$$

or
$$3^2 + x^2 = (4 - x)^2 \implies 3^2 + x^2 = 16 - 8x + x^2 \implies 8x = 7 \implies x = \frac{7}{9}$$

The radius is $4-x = 4 - \frac{7}{8} = \frac{32-7}{8} = \frac{25}{8}$.

As a consequence, the circle has area $\pi (\frac{25}{8})^2 = \frac{625}{64} \pi$.

Problem 10. Solution: (A).

Method 1:

Triangle *ODC* is a 30 - 60 - 90 triangle, so OD = 12/2 = 6. From the Pythagorean Theorem, $CD = \sqrt{12^2 - 6^2} = 6\sqrt{3}$ and $BC = 12\sqrt{3}$ follows.

The area of the equilateral triangle with side $12\sqrt{3}$ equals

$$A = \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4}(12\sqrt{3})^2 = 108\sqrt{3}.$$

Method 2: Let AO be 2x and OD be x. The diameter of the circle is 12, so 2x = 12 and x = 6. AD = 3x = 18. D is the midpoint of CB, so AC = 2CD. By the Pythagorean Theorem,

$$AC^{2} - CD^{2} = 18^{2} \Rightarrow AC^{2} - (\frac{1}{2}AC)^{2} = 18^{2} \Rightarrow AC = 12\sqrt{3}$$

The area of the triangle is equal to $\frac{1}{2} \times 12\sqrt{3} \times 18 = 108\sqrt{3}$.

Problem 11 Solution: (D).

Draw $PF \perp AB$ and $OE \perp AB$.

Connect BD.

Triangle *BEO* is a 30°-60°-90° triangle and BP = 2PF = 2. Let OE = r.

We know that $BO = 2OE \implies 2$

 $2r = r + 3 \implies r = 3$

We know that $r = \frac{1}{6}a\sqrt{3}$, where *a* is the length of the side of

triangle *ABC*. So $3 = \frac{1}{6}a\sqrt{3}$ $\Rightarrow a = 6\sqrt{3}$

We know that $S_{\triangle ABC} = \frac{1}{4}a^2\sqrt{3}$. So $S_{\triangle ABC} = \frac{1}{4} \times (6\sqrt{3})^2\sqrt{3} = 27\sqrt{3}$

Problem 12. Solution: (D).

Draw $PF \perp AB$ and $OE \perp AB$.

Connect BD.

Triangle BEO is a 30°-60°-90° triangle and BO = 2OE. OE = 45 and BO = 2OE = 90, and BD = 90 + 45 = 135. Let PF = r.

Triangle *BFP* is a 30°-60°-90° triangle and BP = 2r.

In other word, BP = BO - 45 - r.

So
$$2r = BO - 45 - r$$
 $\Rightarrow 3r = 90 - 45 = 45$.

So r = 15.

The area is $\pi(15)^2 = 225\pi$.

By Heron's formula,

$$\begin{split} S_{\Delta ABC} &= \sqrt{s(s-a)(s-b)(s-c)} \\ &= \sqrt{21(21-15)(21-14)(21-13)} = 84 \,, \end{split}$$

where
$$s = \frac{1}{2}(a+b+c) = \frac{1}{2}(15+14+13) = 21$$
.

Connect OD, OE, and OC.

AMC 10 Preparation 16. Circle – Radius, Circumference, and Areas

$$\begin{split} S_{\Delta ABC} &= \frac{1}{2}AC \times OD + \frac{1}{2}BC \times OE \\ &= \frac{1}{2} \times (14 + 13) \times OD = 84 \\ \text{So } 27OD = 168 \quad \Rightarrow \quad OD = 56/9. \end{split}$$

Problem 14. Solution: (D).

Since \overline{BC} is the diameter, and ABC is the isosceles triangle, $\angle A = 90^\circ$, $\angle D = \angle E = 45^\circ$. When we connect BF and CF and we see that four triangles are congruent. So the ratio is 1:3.

Problem 15. Solution: 4.

Method 1:

Applying Pythagorean Theorem to right triangle *ABC*:

$$AC = \sqrt{10^2 - (2\sqrt{5})^2} = \sqrt{100 - 20} = \sqrt{80} = 4\sqrt{5}$$
.

Connect CD. We get $\angle ADC = 90^{\circ}$.

$$S_{\triangle ABC} = \frac{1}{2}BC \times AC = \frac{1}{2}AB \times CD$$

$$\frac{1}{2} \times 2\sqrt{5} \times 4\sqrt{5} = \frac{1}{2} \times 10 \times CD$$

$$\Rightarrow 40 = 10CD \Rightarrow CD = 4.$$

Method 2:

Connect CD. We get $\angle ADC = 90^{\circ}$.

 $\angle ACB = 90^{\circ}$ (given).

Let AD = x. By the power of points formula, we get $BC^2 = AB \times DB$ or $(2\sqrt{5})^2 = 10 \times DB$, then DB = 2.

$$AD = 8$$
, so $CD^2 = AD \times DB = 2 \times 8 = 16$, then $CD = 4$.

Problem 16. Solution: (C).

Method 1

Draw segment FC. Angle CFD is a right angle since arc CFD is a semicircle.

Then right triangles DOE and DFC are similar, so DO/DF = DE/DC.

Let DO = r and DC = 2r. Substituting, we have 1/8 = 6/2r, $2r^2 = 48$, $r^2 = 24$.

Then the area of the circle is $\pi r^2 = 24\pi$.

Let OA = OB = r and OE = x. Substituting into $AE \cdot EB = DE \cdot EF$ gives $(r + x)(r - x) = 6 \cdot 2$ so $r^2 - x^2 = 12$. In right triangle EOD, $r^2 + x^2 = 36$. Add to find $2r^2 = 48$. Thus, the area of the circle is $\pi r^2 = 24\pi$.

Method 3:

Construct $OG \perp DF$ with G on DF. Then DG = (1/2)DF = 4. Since OG is an

altitude to the hypotenuse of right triangle *EOD*, we have DE/DO = DO/DG. Let DO = r. Then 6/r = r/4, so $r^2 = 24$, and the area of the circle is $\pi r^2 = 24\pi$.

Problem 17. Solution: (B).

Method 1 (official solution)

Since point *E* divides every chord through *E* into two segments whose product is constant, $CE \cdot ED = AE \cdot EB$ or $CE \cdot 3 = 2 \cdot 6$, so CE = 4.

Thus chords AB and CD have lengths 8 and 7, respectively. Now the center O of the circle lies at the intersection of the

perpendicular bisectors of chords CD and AB which is $\frac{1}{2}$

unit above and 4 units to the right of point A. The radius OA is the hypotenuse of a right triangle with legs AM = 4 and $OM = \frac{1}{2}$;

$$OA^2 = AM^2 + OM^2 = 4^2 + (\frac{1}{2})^2 = 65/4.$$

Thus the length of the diameter is $2OA = 2\sqrt{65/4} = \sqrt{65}$.

Method 2 (our solution):

AMC 10 Preparation

16. Circle - Radius, Circumference, and Areas

By the Power of points Theorem, we have $CE \cdot ED = AE \cdot EB$ or $CE \cdot 3 = 2 \cdot 6$, so CE = 4.

Connect AC, BC. Applying Pythagorean Theorem to

 $\triangle AEC$: $AC = \sqrt{4^2 + 2^2} = 2\sqrt{5}$. Applying Pythagorean

Theorem to $\triangle BEC$: $CB = \sqrt{4^2 + 6^2} = 2\sqrt{13}$. We also have AB = 8.

By Heron's formula, $A = \sqrt{s(s-a)(s-b)(s-c)} = r \times s = 1$,

where
$$s = \frac{1}{2}(a+b+c)$$

Then we use the formula to calculate $R = \frac{abc}{4A} = \frac{2\sqrt{5} \times 2\sqrt{13} \times 8}{4} = \frac{\sqrt{65}}{2}$.

Thus $d = \sqrt{65}$.

Problem 18. Solution: (D).

Method 1:

Connect OB, PA. Extend PA to D with DA = OB. Connect OD. So $OD \perp PD$.

Applying Pythagorean Theorem to triangle *ODP*:

$$OD^2 + DP^2 = OP^2$$
 \Rightarrow $OD^2 + (5+3)^2 = 16^2$ \Rightarrow

$$OD = 8\sqrt{3}$$
.

OBAD is a rectangle so $AB = 8\sqrt{3}$.

Method 2:

Triangle *OBC* is similar to triangle *PAC*.

$$\frac{OB}{AP} = \frac{OC}{CP} \qquad \Rightarrow \qquad \frac{3}{5} = \frac{16 - CP}{CP} \Rightarrow \quad CP = 10.$$

So OC = 16 - 10 = 6.

$$OB^2 + BC^2 = OC^2$$
 \Rightarrow $6^2 - 3^2 = BC^2 \Rightarrow BC = 3\sqrt{3}$

Applying Pythagorean Theorem to triangle *ACP*:

$$AP^2 + AC^2 = CP^2$$
 \Rightarrow $5^2 + AC^2 = 10^2$ $\Rightarrow AC = 5\sqrt{3}$.

$$AB = 3\sqrt{3} + 5\sqrt{3} = 8\sqrt{3}$$
.

Problem 19. Solution: (E).

We connect the centers of three small circles and we know that triangle ABC is an equilateral triangle with the side of 8. So the height BE is

$$\frac{8}{2} \times \sqrt{3} = 4\sqrt{3} .$$

The centroid is G and $GB = \frac{2}{3} \times BE = \frac{2}{3} \times 4\sqrt{3} = \frac{8}{3}\sqrt{3}$. The

radius is $GB + BD = \frac{8}{3}\sqrt{3} + 4$.

We draw the diameter EF as shown in the figure.

Applying Pythagorean Theorem to right triangles ADC:

$$(2r)^2 + (2r)^2 = (2-2r)^2$$
 \Rightarrow $r = \sqrt{2} - 1$.

Problem 21. Solution: (A).

Method 1:

Annotate the figure as shown. The Pythagorean theory tells us that: $AB^2 + BC^2 = AC^2 \implies 4^2 + 4^2 = AC^2 \implies AC = 4\sqrt{2}$.

The square has the side length 8 + 8 = 16.

The area of the smaller circle with a radius of $4\sqrt{2} - 4$ is $\pi (4\sqrt{2} - 4)^2$.

The area of the larger circle with a radius of 4 is $\pi \times 4^2 = 16\pi$.

The area of the shaded region is $16^2 - 4 \times 16\pi - \pi (4\sqrt{2} - 4)^2$

$$= 256 + (32\sqrt{2} - 112)\pi.$$

Method 2:

Annotate the figure as shown to the right.

AMC 10 Preparation 16. Circle – Radius, Circumference, and Areas

$$OC^{2} = 8^{2} + 8^{2} = 2 \times 8^{2} \implies OC = 8\sqrt{2}$$

$$\Rightarrow OO_{1} = \frac{1}{2}OC = 4\sqrt{2}.$$

The area of the smaller circle with a radius of $4\sqrt{2} - 4$ is $\pi(4\sqrt{2} - 4)^2$.

The square has the side length 8 + 8 = 16.

The area of the larger circle with a radius of 4 is $\pi \times 4^2 = 16\pi$.

The area of the shaded region is $16^2 - 4 \times 16\pi - \pi (4\sqrt{2} - 4)^2$

$$=256+(32\sqrt{2}-112)\pi$$
.

Problem 22. Solution: (B).

Connect two opposite vertices of the square and label the figure as shown.

We know that AC = BC = 1. So $AB = DF = \sqrt{2}$.

$$AD = AB + BF + FD = \sqrt{2} + 1 + 2r + 1 + \sqrt{2}$$

= $2(\sqrt{2} + 2 + r)$.

Since the side of the square is 6, we have

$$6\sqrt{2} = 2(\sqrt{2} + 2 + r) \quad \Rightarrow \quad 3\sqrt{2} = (\sqrt{2} + 2 + r)$$
$$\Rightarrow \quad 2\sqrt{2} - 2 = r.$$

The area of the shaded region is $6^2 - \pi \times (1)^2 \times 4 - \pi \times (2\sqrt{2} - 2)^2$

$$=36+(8\sqrt{2}-16)\pi$$
.

