Тема: Самостоятельная работа по теме «Атомное ядро и элементарные частицы»

Цель: Проверить знания учащихся по разделам «Атомная и ядерная физика», умение применять теоретические знания при решении задач.

Задания

Вариант – 1

- 1. Каков состав ядра изотопа углерода ${}^{11}_{6}C$?
- 2. Ядро тяжелого элемента $^{234}_{91}Z$ захватило электрон и затем испустило α -частицу. Какое ядро образовалось в результате превращений?
- 3. Вычислите в мегаэлектонвольтах энергию связи $E_{\rm cB}$ ядра 2_1 H, если его относительная атомная масса равна 2,01410 а.е.м. Масса протона m_p =1,00783 а.е.м., масса нейтрона m_n =1,008665 а.е.м.
- 4. За 8000 лет число атомов радиоактивного элемента уменьшилось в 4 раза. Определите период полураспада этого радиоактивного элемента.
- 5. Какую энергию необходимо затратить, чтобы разрушить ядро изотопа гелия ⁴He, удалив образующее его частицы на такое расстояние друг от друга, на котором ядерными силами взаимодействия можно пренебречь, не сообщая частицам кинетической энергии?

Вариант – 2

- 1. Каков состав ядра изотопа углерода $^{128}_{52}Te$?
- 2. Ядро атома урана ^{238}U бомбардируется α -частицами, полученный элемент β -радиоактивен, какой элемент образуется в результате всех ядерных первращений? Записать ядерные реакции.
- 3. Период полураспада радия T= 1600 лет. Через какое время t число атомов уменьшилось в 16 раз?
- 4. Найдите в мегаэлектронвольтах энергию связи ядра изотопа лития 6_3Li , если атомные массы частиц равны $m_{Li}=6,01513$ а. е. м.; $m_p=1,00783$ а. е. м.; $m_n=1,00866$ а. е. м.
- 5. Выделяется или поглощается энергия при следующей ядерной реакции ${}^9_4Be + {}^4_2He \rightarrow {}^{12}_6C + {}^1_0n$

Относительные атомные массы $m_{Be}=9,01218$ а. е. м.; $m_{He}=4,0026$ а. е. м.; $m_{C}=12,000$ а. е. м. $m_{n}=1,00866$ а. е. м.