# **Exploring Weather Trends**

- Suraj Singh Shahi

## **Extracting the data**

I have extracted data from the given database, using SQL queries.

2 datasets extracted

• Global Temperature ('global\_data.csv') USING:

```
SELECT *
FROM global_data
```

• City Temerature ('delhi\_temp.csv') As I live in New Delhi, India.

```
SELECT *
FROM city_data
WHERE Country = 'India' AND City = 'Delhi'
```

#### In [1]:

```
# Impoting the python Libraries and the dataset.
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sb
%matplotlib inline

df_global = pd.read_csv('global_data.csv')
df_delhi = pd.read_csv('delhi_temp.csv')
```

# **Exploring the datasets**

```
In [2]:
```

```
df_global.sample()
```

Out[2]:

|    | year | avg_temp |
|----|------|----------|
| 73 | 1823 | 7.72     |

```
In [3]:
```

```
df_delhi.sample()
```

#### Out[3]:

|    | year | city  | country | avg_temp |
|----|------|-------|---------|----------|
| 76 | 1872 | Delhi | India   | 24.94    |

#### In [4]:

```
df_global.info()
```

#### In [5]:

```
df_delhi.info()
```

#### In [6]:

```
pd.isna(df_delhi.avg_temp).sum()
```

#### Out[6]:

17

### In [7]:

df\_delhi[df\_delhi['avg\_temp'].isnull()]

Out[7]:

|    | year | city  | country | avg_temp |
|----|------|-------|---------|----------|
| 12 | 1808 | Delhi | India   | NaN      |
| 13 | 1809 | Delhi | India   | NaN      |
| 14 | 1810 | Delhi | India   | NaN      |
| 15 | 1811 | Delhi | India   | NaN      |
| 16 | 1812 | Delhi | India   | NaN      |
| 62 | 1858 | Delhi | India   | NaN      |
| 63 | 1859 | Delhi | India   | NaN      |
| 64 | 1860 | Delhi | India   | NaN      |
| 65 | 1861 | Delhi | India   | NaN      |
| 66 | 1862 | Delhi | India   | NaN      |
| 67 | 1863 | Delhi | India   | NaN      |
| 68 | 1864 | Delhi | India   | NaN      |
| 69 | 1865 | Delhi | India   | NaN      |
| 70 | 1866 | Delhi | India   | NaN      |
| 71 | 1867 | Delhi | India   | NaN      |
| 72 | 1868 | Delhi | India   | NaN      |
| 73 | 1869 | Delhi | India   | NaN      |

## **Assessment:**

- 17 null values in delhi dataset.
- Betweeen years 1808 and 1869 average temperature values are missing at variarous places.

## Solution:

- We know that null values will create problems later.
- We will consider data in both the datasets after **1869** to prevent future problems.

```
In [8]:
```

```
df_delhi = df_delhi.query('year > 1869')
df_delhi.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 144 entries, 74 to 217
Data columns (total 4 columns):
            144 non-null int64
year
            144 non-null object
city
            144 non-null object
country
           144 non-null float64
avg_temp
dtypes: float64(1), int64(1), object(2)
memory usage: 5.6+ KB
In [9]:
df_global = df_global.query('year > 1869')
df_global.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 146 entries, 120 to 265
Data columns (total 2 columns):
            146 non-null int64
year
            146 non-null float64
avg_temp
dtypes: float64(1), int64(1)
memory usage: 3.4 KB
```

#### In [10]:

```
plt.plot(df_delhi['year'], df_delhi['avg_temp'], label = "Delhi")
plt.grid(True)
plt.show()
```



#### Assessment:

• As we plot average annual temperature over time, it creates graphs that is not easy to read.

### Solution:

To create moving average of average temperature to smooth out the graph lines.

```
In [11]:
```

```
global_mavg = df_global['avg_temp'].rolling(10).mean()
delhi_mavg = df_delhi['avg_temp'].rolling(10).mean()
```

# **Visualization**

#### In [12]:

```
plt.plot(df_delhi['year'], delhi_mavg, label = "Delhi")
plt.title("Delhi's Average Temprature Over Time")
plt.xlabel('Year')
plt.ylabel('Average Temperature in degree Celcius')
plt.grid(True)
plt.show()
```



#### In [13]:

```
plt.plot(df_global['year'], global_mavg, label = "Global Temperatures")
plt.title('Global Average Temprature Over Time')
plt.xlabel('Year')
plt.ylabel('Average Temperature in degree Celcius')
plt.grid(True)
plt.show()
```



# **OBSERVATION**

- Both Delhi's and Global temperature has increased overtime.
- In the last few decades the rate of increase of temperature is considerable larger.

#### In [14]:

```
df_delhi.avg_temp.mean() - df_global.avg_temp.mean()
```

Out[14]:

16.700742960426176

```
In [15]:
```

df\_delhi.avg\_temp.mean() , df\_global.avg\_temp.mean()

#### Out[15]:

(25.339236111111106, 8.63849315068493)

#### In [16]:

float(df\_delhi.query('year == "2013"').avg\_temp.values) - float(df\_delhi.query('year ==
"1870"').avg\_temp.values)

#### Out[16]:

#### 1.82000000000000003

#### In [17]:

# temperature difference in Delhi in the first and last decade.
del\_last\_decade = df\_delhi.query('year >=2004 and year <=2013')['avg\_temp'].mean()
del\_first\_decade = df\_delhi.query('year >= 1870 and year < 1880')['avg\_temp'].mean()
print("Delhi's average temperature between 1870 to 1880: ",del\_first\_decade,"\nDelhi's
 average temperature between 2004 to 2013: ",del\_last\_decade)
print('Difference :',del\_last\_decade - del\_first\_decade)</pre>

Difference: 1.200999999999934

#### In [18]:

# temperature difference in the World in the first and the last decade.
glb\_last\_decade = df\_global.query('year >=2006 and year <=2015')['avg\_temp'].mean()
glb\_first\_decade = df\_global.query('year >= 1870 and year <1880')['avg\_temp'].mean()
print("World's average temperature between 1870 to 1880: ",glb\_first\_decade,"\nWorld's
 average temperature between 2006 to 2015: " ,glb\_last\_decade)
print("Difference :",glb\_last\_decade - glb\_first\_decade)</pre>

World's average temperature between 1870 to 1880: 8.277

World's average temperature between 2006 to 2015: 9.59399999999998

Difference: 1.316999999999984

#### In [19]:

```
# Comparing the two
plt.plot(df_global['year'], global_mavg, label='Global')
plt.plot(df_delhi['year'], delhi_mavg, label = 'Delhi')
plt.grid(True)
plt.legend()
plt.xlabel('Years')
plt.ylabel('Temperature in degree Celcius')
plt.show()
```



## **FINAL OBSERVATIONS:**

- Both Delhi's and Global temperature has increased overtime.
- In the last few decades the rate of increase of temperature is accelerated.
- Since 1975 Global average temperature is raising without any stops.
- The difference between year **1870** and **2015** in temperature is more than **1.32** °C in the Global average chart.
- The difference between year **1870** and **2015** in temperature is more than 1.2 °C in the National Capital of India, Delhi.
- From the data it looks like world has gotten much hotter than Delhi from 1870 to 2015.
- Delhi is on average 16.7 °C hotter than the world.

# **CONCLUSION:**

There are statistically significant evidences suggesting that the global temperature is raising over the years which support the case of climate change.

### **TOOLS USED:**

- SQL for extraction of data from given database.
- Python libraries to convert the raw data into meaningful, understandable pieces of knowledge by the help of numeric data points, graphs and conclusions. (Pandas, Numpy, Matplotlib).