Потоки в сетях

Теорема о максимальном потоке и минимальном разрезе

Сеть

- ▶ Ориентированный граф G с пропускными способностями дуг $u: E(G) \to \mathbf{R}^+$ и две выделенные вершины s (источник) и t (сток).
- ightharpoonup Четверка (G, u, s, t) называется **сетью**.
- ightharpoonup Главная задача транспортировать так много единиц продукта, как возможно, одновременно из s в t. Решение этой задачи назовем максимальным потоком.

Поток

Определение Дан орграф G с пропускными способностями (вместимостями) $u \colon E(G) \to \mathbf{R}^+$,

s-t-потоком называется функция $f: E(G) \to \mathbb{R}^+$, если выполняются условия:

- 1) $0 \le f(e) \le u(e)$ для всех $e \in E(G)$
- 2) f удовлетворяет **закону сохранения** в каждой вершине $v \in V$ кроме вершин s и t:

$$\sum_{e \in \delta^{-}(v)} f(e) = \sum_{e \in \delta^{+}(v)} f(e).$$

 $\delta^+(v)$ –ребра, исходящие из вершины v,

 $\delta^-(v)$ –ребра. входящие в вершину v.

s-t-Поток

Дана сеть (G, u, s, t) и s-t-поток f.

Определим величину s-t-потока функцией

$$v(f) = \sum_{e \in \delta^{+}(s)} f(e) - \sum_{e \in \delta^{-}(s)} f(e)$$

вершина *s* - источник

 $\delta^+(s)$ –ребра, исходящие из вершины s

 $\delta^-(s)$ –ребра, входящие в вершину s

Задача «Максимальный Поток»

Дано: Сеть (G, u, s, t).

*Найти s-t-*поток максимальной величины.

Пример

G и поток f

Видно, что больше нельзя добавить поток, но по-другому было бы лучше

Oстаточный граф G_f

- ^{*}Дан орграф G с вместимостями u: $E(G) \to R_+$ и поток f, определим **остаточный** граф G_f :
 - 1) Множество вершин графа G_f совпадает с V.
- 2) Для каждой дуги e=(v,w), такой что f(e)< u(e) создаем **прямую** дугу $e_f=(v,w)$ и определим ее пропускную способность $u(e_f)=u(e)-f(e)$.
- 3) Для каждой дуги e=(v,w), такой что f(e)>0 создаем **обратную** дугу $e_f^*=(w,v)$ и определим ее пропускную способность $u(e_f^*)=f(e)$.

Увеличивающий Путь

- Даны поток f и простой путь P из s в t в остаточном G_f .
- Определим γ как минимальную пропускную способность дуги в пути P.
- **Увеличение** f вдоль P на γ означает следующее для каждой дуги из пути:
- ightharpoonup если это прямая дуга e, то увеличим f(e) на γ ,
- ightharpoonup если это обратная дуга e^* , то уменьшим f(e) на γ .

Увеличивающий Путь

Алгоритм Форда-Фалкерсона

Input: Сеть (G, u, s, t).

Output: s-t-поток f максимальной величины.

- 1. Положим f(e) = 0 для всех $e \in E(G)$, остаточный граф G_f совпадает с графом G.
- 2. Найти f-увеличивающий путь P в графе G_f If такого пути нет then stop.
- 3. Вычислить $\gamma := \min_{e \in E(P)} u_f(e)$.
- 4. Увеличить f вдоль P на γ , обновить G_f и **go to** 2.

Предполагаем, что все пропускные способности целые

Замечание 1 Полученный алгоритмом f является s-t-потоком в графе G.

Необходимо проверить, что $u(e) \ge f(e)$ и закон сохранения потока.

Это выполняется по способу построения остаточного графа и увеличения потока вдоль пути.

Предполагаем, что все пропускные способности целые

Замечание 2

На каждом шаге алгоритма Φ - Φ величины потока f(e) и остаточные пропускные способности $u(e_f)$ — целые числа.

Изначально все целое, изменение происходит на величину γ , которая тоже целая.

Предполагаем, что все пропускные способности целые

Замечание 3

На каждом шаге алгоритма Φ - Φ величина потока v(f) строго возрастает.

Пусть f поток, который был на шаге 2. γ >0.

Первое ребро e в пути P должно выходить из s в остаточном графе.

Это не может обратное ребро, т.к. все пути P простые.

Значит это прямое ребро.

Значит новая величина потока $v(f) = v(f) + \gamma$

Предполагаем, что все пропускные способности целые

Замечание 4

Пусть $C = \sum_{e \in \delta^+(s)} u(e)$, тогда алгоритм Ф-Ф завершится не более чем за C итераций основного цикла.

Это следует из замечаний 2 и 3

Замечание

Найти увеличивающий путь легко (любой s-t-путь в G_f). Если выбирать произвольный увеличивающий путь в G_f , то

Существует пример с иррациональными вместимостями дуг, когда алгоритм никогда не остановится.

Существует пример с целыми вместимостями дуг, на котором алгоритм производит экспоненциальное от размера входа число увеличений.

Пример с бесконечным числом итераций

(все линии представляют ребра, то есть поток может идти в оба направления)

$$u(x_1, y_1)=1, u(x_2, y_2)=\sigma, u(x_3, y_3)=u(x_4, y_4)=\sigma^2$$

$$\sigma = \frac{\sqrt{5}-1}{2}$$

$$\sigma = \frac{\sqrt{5} - 1}{2}$$

Целочисленный пример с экспоненциальным числом итераций

2R итераций.

Длина входа — $O(\log \mathbf{R})$.

s-t-Paspes

Пусть $V(G) = V_1 \cup V_2$, $s \in V_1$ и $t \in V_2$ тогда s-t-разрез (V_1) — это множество дуг вида (v, w), таких что $v \in V_1$ и $w \in V_2$. пропускной способностью s-t-разреза называется сумма вместимостей его дуг (ребер).

Под минимальным s-t-разрезом в (G, u, s, t) мы понимаем s-t-разрез с минимальной пропускной способностью (относительно u) в G.

s-t-Поток и s-t-разрез

Лемма 1

Для всех $V(G) = V_1 \cup V_2$ таких, что $s \in V_1$, $t \in V_2$, и любого s-t-потока f верно

$$v(f) = \sum_{e \in \delta^{+}(V_{1})} f(e) - \sum_{e \in \delta^{-}(V_{1})} f(e)$$
 (a)

$$v(f) \le \sum_{e \in \delta^+(V_1)} u(e) \tag{b}$$

Величина максимального потока не превосходит пропускной способности минимального разреза.

Доказательство (а)

$$v(f) = \sum_{e \in \delta^{+}(s)} f(e) - \sum_{e \in \delta^{-}(s)} f(e) = \sum_{v \in V_{1}} \left(\sum_{e \in \delta^{+}(v)} f(e) - \sum_{e \in \delta^{-}(v)} f(e) \right) = \sum_{e \in \delta^{+}(V_{1})} f(e) - \sum_{e \in \delta^{-}(V_{1})} f(e)$$

Первое равенство по определению.

Во втором добавили все вершины из V_1 , а для них выполняется закон сохранения потока (кроме вершины s, которая тоже входит в V_1).

В последнем заметили, что если обе вершины дуги лежат в V_1 , то эта дуга посчитается два раза (как входящая и исходящая) и сократится.

Доказательство (b)

$$v(f) = \sum_{e \in \delta^+(V_1)} f(e) - \sum_{e \in \delta^-(V_1)} f(e) \le \sum_{e \in \delta^+(V_1)} f(e) \le \sum_{e \in \delta^+(V_1)} u(e)$$

Первое равенство из доказанного в а).

Во втором неравенстве учли положительность потока.

В последнем использовали, что поток не превосходит пропускной способности.

В итоге получили, что величина s-t-потока не превосходит величины s-t-разреза.

Замечание

В частности, из доказательства следует, что каждому максимальному потоку соответствует s-t-разрез, пропускная способность которого равна величине потока.

s-t Поток и s-t Разрез

-Лемма 2

Если f — такой s — t поток, для которого не существует s — t пути в остаточном графе G_f , то в G существует s — t разрез, величина которого совпадает с величиной потока v(f).

Соответственно f имеет максимальную величину среди всех потоков в G.

Доказательство

Пусть f- такой s-t поток, для которого не существует s-t пути в остаточном графе G_f

Максимальный поток и минимальный разрез

Теорема Форда-Фалкерсона

Величина максимального s-t-потока равна пропускной способности минимального s-t-разреза.