FIRST MIDTERM PRACTICE PROBLEMS MATH H54, FALL 2021

- (1) (a) Let A be an $m \times n$ matrix, and $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the associated linear transformation. Suppose T_A is <u>injective</u>. What can you say about the relation between m and n? What can you say about the dimensions of the column space and the null space of A? Provide justifications for your answers.
 - (b) Same problems as in Part (a), but replace injective with surjective.
- (2) Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^n . Then $\vec{u}\vec{v}^T$ is an $n \times n$ matrix. Prove that $\det(\mathbb{I}_n + \vec{u}\vec{v}^T) = 1 + u_1v_1 + u_2v_2 + \cdots + u_nv_n.$
- (3) Let V be an n-dimensional vector space and $T \colon V \to V$ a linear transformation such that $\ker(T) = \operatorname{Im}(T)$.
 - (a) Prove that n is even.
 - (b) Give an example of such a linear transformation T.
- (4) Let A and B be $m \times n$ matrices. Then A+B also is an $m \times n$ matrix. Prove that

$$rank(A + B) \le rank(A) + rank(B)$$
.

- (5) Let A be a square matrix. Suppose there exists a positive integer k such that $A^k = 0$ (here 0 denotes the zero matrix). Prove that the matrix $\mathbb{I} A$ is invertible.
- (6) Let V be the set consisting of 5×5 real matrices with the property that the entries in each row and column sum to zero. More concretely, a 5×5 matrix $A = [a_{ij}]$ belongs to the set V if and only if

$$a_{i1} + a_{i2} + \dots + a_{i5} = 0$$
 and $a_{1j} + a_{2j} + \dots + a_{5j} = 0$ for any $1 \le i, j \le 5$.

It is not hard to see that $\,V\,$ is a vector space. Find the dimension of $\,V\,$, and prove your answer.

- (7) Let V_1, V_2, V_3 be real vector spaces, and $T: V_1 \to V_2$, $S: V_2 \to V_3$ be linear transformations. Prove that the following two statements are equivalent to each other:
 - (a) $\operatorname{Im}(S \circ T) = \operatorname{Im}(S)$;
 - (b) $Ker(S) + Im(T) = V_2$.