

2 4- -------- 4- 2025

Conteúdo

1	Dat	o Ctmustumos
1		a Structures
	1.1	BIT2D
	1.2	BIT2DS parse
	1.3	PrefixSum2D
	1.4	SegTree
	1.5	SegTree Lazy SegTree Persistente SegTree Iterativa SegTree Lazy Iterativa SparseTable orderedSet
	1.6	SegTree Persistente
	1.7	SegTree Persistente
	1.8	SegTree Lazy Iterativa
	1.9	SparseTable
	1.10	orderedSet
	1.10	orderedset
_		
2	$^{ m dp}$	Digit DP
	$2.\overline{1}$	Digit DP
	2.2	LCS
	2.3	LIS
	$^{2.4}$	SOS DP
3	Coo	motor
J		ometry ConvexHull
	3.1	ConvexHull
	3.2	Geometry - General
	3.3	LineContainer
4	Gra	fos
-	4.1	
	4.2	2-SAT
	4.3	BlockCutTree
		Centroid Decomposition
	4.4	Dijkstra
	4.5	Dinic
	4.6	DSU Rollback
	4.7	DSU Persistente
	4.8	Euler Path
	4.9	HLD
	4.10	LCA
	4.11	LCA
	4.12	SCC - Kosaraju
	$\frac{4.12}{4.13}$	Tarjan
	4.10	Taijaii
J	α, •	1/
5	\mathbf{Stri}	ngs 10
	5.1	hash2
	5.2	hash2
	5.3	Aho-Corasick
	5.4	Suffix Array
	5.5	trie
	5.6	Manacher
	5.7	Z-Function
	J.1	2.2 4.2 5.3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0	4.1	10
6	othermorphisms	ers 12
	6.1	Hungarian
	6.2	MO
	6.3	MOTree
	6.4	MOTree 15 stressTest 15
	-	
7	Ma	\mathbf{h} 15
1	Mat	
	7.1	fexp
	7.2	CRT
	7.3	mint
	7.4	random
8	The	orems 14
O		Droppie de des Meterréties s
	8.1	Propriedades Matemáticas
	8.2	Geometria
	8.3	Grafos

)	Extra			
	9.1	Hash Function	16	

1 Data Structures

1.1 BIT2D

```
Complexity: O(L \circ g^2 N)
Bit.update(x, y, v); //Adiciona +v na posicao {x, y} da BIT
Bit.query(x, y); //Retorna o somatorio do retangulo de
     inicio \{1, 1\} e fim \{x, y\}
Bit.queryArea(xi, yi, xf, yf);
                                   //Retorna o somatorio do
     retangulo de inicio {xi, yi} e fim {xf, yf}
Bit.updateArea(xi, yi, xf, yf, v); //adiciona +v no retangulo
     de inicio {xi, yi} e fim {xf, yf}
IMPORTANTE! UpdateArea NAO atualiza o valor de todas as
     celulas no retangulo!!! Deve ser usado para Color Update
IMPORTANTE! Use query(x, y) Para acessar o valor da posicao
     (x, y) quando estiver usando UpdateArea
IMPORTANTE! Use queryArea(x, y, x, y) Para acessar o valor da
     posicao (x, y) quando estiver usando Update Padrao
3CE const int MAXN = 1e3 + 5;
4BA struct BIT2D {
3C6 int bit[MAXN][MAXN];
     void update(int X, int Y, int val){
        for (int x = X; x < MAXN; x += x& (-x))
          for (int y = Y; y < MAXN; y += y& (-y))
7D9
            bit[x][y] += val;
678
     int query(int X, int Y){
A93
        int sum = 0;
766
        for (int x = X; x > 0; x -= x&(-x))
          for (int y = Y; y > 0; y -= y& (-y))
            sum += bit[x][y];
6F2
E66
        return sum;
D3C
785 void updateArea(int xi, int yi, int xf, int yf, int val)
    ; //Same of BIT2DSparse
CDO int queryArea(int xi, int yi, int xf, int yf); //Same of
      BIT2DSparse
063 };
```

1.2 BIT2DSparse

```
Sparse Binary Indexed Tree 2D

Recebe o conjunto de pontos que serao usados para fazer os
    updates e as queries e cria uma BIT 2D esparsa que
    independe do "tamanho do grid".

Build: O(N Log N) (N -> Quantidade de Pontos)
Query/Update: O(Log N)
IMPORTANTE! Offline!

BIT2D(pts); // pts -> vecotor<pii> com todos os pontos em
```

que serao feitas queries ou updates

```
begin(v))
4BA struct BIT2D {
6C1 vector<int> ord;
     vector<vector<int>> bit, coord;
      BIT2D (vector<pii> pts) {
B03
        sort (begin (pts), end (pts));
7D3
        for(auto [x, y] : pts)
76B
          if(ord.empty() || x != ord.back())
580
            ord.push_back(x);
261
        bit.resize(ord.size() + 1);
3EB
        coord.resize(ord.size() + 1);
CC7
        sort (begin (pts), end (pts), [&] (pii &a, pii &b) { return
      a.second < b.second; });</pre>
7D3
        for(auto [x, y] : pts)
837
          for(int i=upper(ord, x); i < bit.size(); i += i&-i)</pre>
3E1
            if(coord[i].empty() || coord[i].back() != y)
739
              coord[i].push back(v);
        for(int i=0; i<bit.size(); i++) bit[i].assign(coord[i</pre>
     ].size()+1, 0);
461
      void update(int X, int Y, int v) {
        for(int i = upper(ord, X); i < bit.size(); i += i&-i)</pre>
          for(int j = upper(coord[i], Y); j < bit[i].size(); j</pre>
      += 16 - 10
            bit[i][j] += v;
7E5
      int query(int X, int Y){
A93
        int sum = 0;
2C2
        for (int i = upper(ord, X); i > 0; i -= i&-i)
          for (int j = upper(coord[i], Y); j > 0; j == j&=j)
B03
            sum += bit[i][j];
E66
        return sum;
398
     void updateArea(int xi, int yi, int xf, int yf, int val)
C02
        update(xi, yi, val);
061
        update(xf+1, yi, -val);
2ED
        update(xi, yf+1, -val);
2BC
        update(xf+1, yf+1, val);
49B
E1E
      int queryArea(int xi, int yi, int xf, int yf){
        return query(xf, yf) - query(xf, yi-1) - query(xi-1,
     yf) + query(xi-1, yi-1);
873
195 };
```

AA8 #define upper(v, x) (upper_bound(begin(v), end(v), x) -

1.3 PrefixSum2D

1.4 SegTree

```
CD5 template<typename T> struct SegTree {
130 vector<T> seq;
060 int N;
E7A SegTree(int n) : N(n), seg(4*n) {}
B01 SegTree(vector<T> &lista): N(lista.size()), seg(4*N) {
    build(1, 0, N-1, lista); }
T query (int ls, int rs) { return query (1, 0, N-1, ls, rs
    void update(int pos, T v) {
                                    update(1, 0, N-1, pos, v
    ); }
     T query (int no, int 1, int r, int a, int b) {
       if(b < 1 | | r < a) return 0;
       if(a <= 1 && r <= b) return seg[no];
214
       int m=(1+r)/2, e=no*2, d=no*2+1;
       return join(query(e, 1, m, a, b), query(d, m+1, r, a,
    b));
1BA
692
     void update(int no, int 1, int r, int pos, T v) {
       if(pos < 1 || r < pos) return;</pre>
       if(l == r){ seg[no] = v; return; } // set value ->
    change to += if sum
214
       int m=(1+r)/2, e=no*2, d=no*2+1;
       update(e, 1, m, pos, v);
B39
       update(d, m+1, r, pos, v);
F93
       seg[no] = join(seg[e], seg[d]);
986
230
     void build(int no, int 1, int r, vector<T> &lista){
5FB
       if(l == r) { seg[no] = lista[l]; return; }
214
       int m=(1+r)/2, e=no*2, d=no*2+1;
91F
       build(e, 1, m, lista);
415
       build(d, m+1, r, lista);
F93
       seg[no] = join(seg[e], seg[d]);
8E5 }
236 };
```

1.5 SegTree Lazy

```
229 const int MAXN = 1e6 + 5;
2A2 int seg[4*MAXN];
36D int lazy[4*MAXN];
6B5 void unlazy(int no, int 1, int r){
54D    if(lazy[no] == 0) return;
214    int m=(1+r)/2, e=no*2, d=no*2+1;
```

```
seg[no] += (r-l+1) * lazy[no];
     if(1 != r){
1C5
      lazy[e] += lazy[no];
9F9
       lazy[d] += lazy[no];
2DB
    lazy[no] = 0;
099
C5C int query(int no, int 1, int r, int a, int b){
5C5 unlazy(no, 1, r);
D5E if(b < 1 || r < a) return 0;
    if(a <= 1 && r <= b) return seq[no];</pre>
     int m=(1+r)/2, e=no*2, d=no*2+1;
     return query(e, 1, m, a, b) + query(d, m+1, r, a, b);
36D void update(int no, int 1, int r, int a, int b, int v) {
     unlazy(no, l, r);
     if(b < 1 || r < a) return;
     if(a <= 1 && r <= b)
F95
       lazv[no]+= v;
8D9
5C5
       unlazy(no, l, r);
       return;
C11
     int m=(1+r)/2, e=no*2, d=no*2+1;
     update(e, 1, m, a, b, v);
9D3
     update(d, m+1, r, a, b, v);
     seg[no] = seg[e] + seg[d];
789 }
2F3 void build(int no, int 1, int r, vector<int> &lista) {
58D if(1 == r) { seq[no] = lista[1-1]; return; }
     int m=(1+r)/2, e=no*2, d=no*2+1;
     build(e, 1, m, lista);
     build(d, m+1, r, lista);
415
     seg[no] = seg[e] + seg[d];
A65 }
5C1 -> Segment Tree - Lazy Propagation com:
407 - Query em Range
279 - Update em Range
08E build (1, 1, n, lista);
A32 query (1, 1, n, a, b);
F25 update(1, 1, n, a, b, x);
372 | n | o tamanho maximo da lista
449 | [a, b] | o intervalo da busca ou update
CEF | x | o novo valor a ser somada no intervalo [a, b]
96E | lista | o array de elementos originais
B61 Build: O(N)
E29 Ouery: O(log N)
C31 Update: O(log N)
240 Unlazy: O(1)
```

1.6 SegTree Persistente

```
-> Segment Tree Persistente: (2x mais rapido que com ponteiro)
Build(1, N) -> Cria uma Seg Tree completa de tamanho N;
    RETORNA o NodeId da Raiz
Update (Root, pos, v) -> Soma +V em POS; RETORNA o NodeId da
    nova Raiz;
Query (Root, a, b) -> RETORNA o valor do range [a, b];
Kth(RootL, RootR, K) -> Faz uma Busca Binaria na Seg de
    diferenca entre as duas versoes.
[ Root -> No Raiz da Versao da Seg na qual se quer realizar a
    operacao ]
Build: O(N) !!! Sempre chame o Build
Ouerv: O(log N)
Update: O(log N)
Kth: O(Log N)
80E const int MAXN = 1e5 + 5;
2D8 const int MAXLOG = 31 - __builtin_clz(MAXN) + 1;
4B4 typedef int NodeId;
6E2 typedef int STp;
EA9 const STp NEUTRO = 0;
B50 int IDN, LSEG, RSEG;
519 extern struct Node NODES[];
BF2 struct Node {
AEE STp val;
1BC NodeId L, R;
9DA Node(STp v = NEUTRO) : val(v), L(-1), R(-1) {}
2F4 Node& 1() { return NODES[L]; }
F2E Node& r() { return NODES[R]; }
5A4 };
318 Node NODES[4*MAXN + MAXLOG*MAXN]; //!!!CUIDADO COM O
     TAMANHO (aumente se necessario)
1E7 pair<Node&, NodeId> newNode(STp v = NEUTRO) { return {NODES
     [IDN] = Node(v), IDN++\}; }
C3F STp join(STp lv, STp rv) { return lv + rv; }
8B5 NodeId build(int 1, int r, bool root=true) {
85B if(root) LSEG = 1, RSEG = r;
844 if(1 == r) return newNode().second;
      int m = (1+r)/2;
DC6
     auto [node, id] = newNode();
C12   node.L = build(1,   m, false);
373    node.R = build(m+1, r, false);
     node.val = join(node.1().val, node.r().val);
45D
648
     return id;
9D5 }
2F1 NodeId update(NodeId node, int 1, int r, int pos, int v) {
      if( pos < 1 || r < pos ) return node;</pre>
     if(l == r) return newNode(NODES[node].val + v).second;
     int m = (1+r)/2;
EE4
BE4
     auto [nw, id] =newNode();
    nw.L = update(NODES[node].L, 1,  m, pos, v);
D4A
     nw.R = update(NODES[node].R, m+1, r, pos, v);
```

nw.val = join(nw.l().val, nw.r().val);

648 return id;

```
938 }
8C0 NodeId update(NodeId node, int pos, STp v) { return update(
    node, LSEG, RSEG, pos, v); }
BFA int query (Node& node, int 1, int r, int a, int b) {
83C if(b < 1 || r < a) return NEUTRO;
65A if (a <= 1 && r <= b) return node.val;
EE4 int m = (1+r)/2;
      return join(query(node.1(), 1, m, a, b), query(node.r(),
     m+1, r, a, b));
7B5 }
8B3 int query (NodeId node, int a, int b) { return query (NODES[
     node], LSEG, RSEG, a, b); }
DOA int kth(Node& Left, Node& Right, int 1, int r, int k) {
3CE if (1 == r) return 1;
     int sum =Right.1().val - Left.1().val;
     int m = (1+r)/2;
      if(sum >= k) return kth(Left.l(), Right.l(), l, m, k);
      return kth(Left.r(), Right.r(), m+1, r, k - sum);
A8D int kth(NodeId Left, NodeId Right, int k) { return kth(
     NODES[Left], NODES[Right], LSEG, RSEG, k); }
```

1.7 SegTree Iterativa

```
CD5 template<typename T> struct SegTree {
1A8 int n;
130
     vector<T> seg;
      T join(T&l, T&r) { return l + r; }
      void init(vector<T>&base) {
FC7
       n = base.size():
        seq.resize(2*n);
        for(int i=0; i<n; i++) seg[i+n] = base[i];</pre>
        for (int i=n-1; i>0; i--) seg[i] = join(seg[i*2], seg[i]
     *2+11);
D60
     T query(int 1, int r) { //[L, R] & [0, n-1]
       T ans = 0; //NEUTRO //if order matters, change to
     l_ans, r_ans
706
       for(1+=n, r+=n+1; 1<r; 1/=2, r/=2){
294
         if(1&1) ans = join(ans, seg[1++]);
1EF
          if(r&1) ans = join(seg[--r], ans);
E.85
BA7
        return ans;
DDF
     void update(int i, T v) { // Set Value seg[i+=n] = v //
     change to += v to sum
        for (seq[i+en] = v; i/e2;) seq[i] = join(seq[i*2], seq[i*2])
    i *2+11);
5E8
DE6 };
```

1.8 SegTree Lazy Iterativa

```
CD5 template<typename T> struct SegTree {
D16   int n, h;
```

```
97F vector<T> seq, lzy;
      vector<int> sz;
1DF
      T join(T&l, T&r) { return l + r; }
      void init(int _n){
       n = _n;
       h = 32 - \underline{\quad builtin\_clz(n);}
        seg.resize(2*n);
        lzy.resize(n);
        sz.resize(2*n, 1);
         for (int i=n-1; i; i--) sz[i] = sz[i*2] + sz[i*2+1];
         // for(int i=0; i<n; i++) seg[i+n] = base[i];
         // for (int i=n-1; i; i--) seg[i] = join(seg[i*2], seg[i+2])
     i *2+1]);
BEC
45B
      void apply(int p, T v) {
        seg[p] += v * sz[p];
        if(p < n) lzv[p] += v;
853
3B4
      void push(int p) {
835
        for (int s=h, i=p>>s; s; s--, i=p>>s)
          if(lzy[i] != 0) {
561
             apply(i*2, lzv[i]);
             apply(i*2+1, lzy[i]);
1AD
BC0
             lzy[i] = 0; //NEUTRO
5D8
848
F6E
      void build(int p) {
5B2
         for (p/=2; p; p/= 2) {
          seg[p] = join(seg[p*2], seg[p*2+1]);
C3C
          if(lzy[p] != 0) seg[p] += lzy[p] * sz[p];
972
      T query (int 1, int r) { //[L, R] \& [0, n-1]
0ED
         1+=n, r+=n+1;
F4B
        push(1); push(r-1);
        T ans = 0; //NEUTRO
         for(; 1<r; 1/=2, r/=2){
286
          if(1\&1) ans = join(seg[1++], ans);
06E
          if(r&1) ans = join(ans, seg[--r]);
BA7
         return ans;
D71
       void update(int 1, int r, T v) {
0ED
        1+=n, r+=n+1;
F4B
        push(1); push(r-1);
98D
        int 10 = 1, r0 = r;
DC6
         for(; 1<r; 1/=2, r/=2){
5D1
          if(1&1) apply(1++, v);
F.94
          if(r&1) apply(--r, v);
55B
FE7
         build(10); build(r0-1);
E29 3
0E4 };
```

1.9 SparseTable

```
80E const int MAXN = 1e5 + 5;
F44 const int MAXLG = 31 - __builtin_clz(MAXN) + 1;
03B int table[MAXLG][MAXN];
EDC void build(vector<int> &v) {
```

1.10 orderedSet

$2 ext{dp}$

2.1 Digit DP

```
Digit DP - Sum of Digits

Solve(K) -> Retorna a soma dos digitos de todo numero X tal que: 0 <= X <= K

dp[D][S][f] -> D: Quantidade de digitos; S: Soma dos digitos; f: Flag que indica o limite. int limite[D] -> Guarda os digitos de K.

Complexity: O(D<sup>2</sup> * B<sup>2</sup>) (B = Base = 10)
```

```
}
ll solve(ll k) {
    memset(dp, -1, sizeof dp);

int sz=0;
while(k) {
    limite[sz++] = k % 10LL;
    k /= 10LL;
}

return digitDP(sz-1, 0, true);
}
```

2.2 LCS

```
LCS - Longest Common Subsequence
Complexity: O(N^2)
* Recursive: memset(memo, -1, sizeof memo); LCS(0, 0);
* Iterative: LCS_It();
* RecoverLCS O(N)
 Recover just one of all the possible LCS
const int MAXN = 5*1e3 + 5;
int memo[MAXN][MAXN];
string s, t;
inline int LCS(int i, int j) {
 if(i == s.size() || j == t.size()) return 0;
 if (memo[i][j] != -1) return memo[i][j];
 if(s[i] == t[j]) return memo[i][j] = 1 + LCS(i+1, j+1);
 return memo[i][j] = max(LCS(i+1, j), LCS(i, j+1));
int LCS It(){
 for(int i=s.size()-1; i>=0; i--)
   for(int j=t.size()-1; j>=0; j--)
     if(s[i] == t[j])
        memo[i][j] = 1 + memo[i+1][j+1];
       memo[i][j] = max(memo[i+1][j], memo[i][j+1]);
  return memo[0][0];
string RecoverLCS(int i, int j) {
 if(i == s.size() || j == t.size()) return "";
 if(s[i] == t[j]) return s[i] + RecoverLCS(i+1, j+1);
 if (memo[i+1][j] > memo[i][j+1]) return RecoverLCS(i+1, j);
  return RecoverLCS(i, j+1);
```

```
LIS - Longest Increasing Subsequence

Complexity: O(N Log N)
* For ICREASING sequence, use lower_bound()
* For NON DECREASING sequence, use upper_bound()

int LIS(vector<int>& nums) {
    vector<int> lis;

    for (auto x : nums)
    {
        auto it = lower_bound(lis.begin(), lis.end(), x);
        if(it == lis.end()) lis.push_back(x);
        else *it = x;
    }

    return (int) lis.size();
}
```

2.4 SOS DP

```
SOS DP - Sum over Subsets

Dado que cada mask possui um valor inicial (iVal), computa para cada mask a soma dos valores de todas as suas submasks.

N -> Numero Maximo de Bits iVal[mask] -> initial Value / Valor Inicial da Mask dp[mask] -> Soma de todos os SubSets

Iterar por todas as submasks: for(int sub=mask; sub>0; sub=(sub-1)&mask)
```

```
F17 const int N = 20;
0A7 11 dp[1<<N], iVal[1<<N];
B70 void sosDP() \{ // O(N * 2^N) \}
        for (int i=0; i<(1<<N); i++)</pre>
0B3
            dp[i] = iVal[i];
      for (int i=0; i<N; i++)</pre>
        for (int mask=0; mask<(1<<N); mask++)</pre>
281
          if(mask&(1<<i))
EOE
            dp[mask] += dp[mask^(1<<i)];
E5B }
7E1 void sosDPsub(){ // O(3^N) //suboptimal
EA1 for (int mask = 0, i; mask < (1 << N); mask++)
        for (i = mask, dp[mask] = iVal[0]; i>0; i=(i-1) & mask)
      //iterate over all submasks
85B
          dp[mask] += iVal[i];
986 }
```

3 Geometry

3.1 ConvexHull

```
C19 struct PT {
OBE 11 x, y;
0A5 PT(11 x=0, 11 y=0) : x(x), y(y) {}
ODC PT operator- (const PT&a) const{ return PT(x-a.x, y-a.y)
A68
    11 operator% (const PT&a) const{ return (x*a.y - y*a.x)
    ; } //Cross // Vector product
5C7 bool operator == (const PT&a) const { return x == a.x && y
B4F bool operator< (const PT&a) const{ return x != a.x ? x <
     a.x : y < a.y; }
2EC };
D41 // Colinear? Mude >= 0 para > 0 nos while
CD7 vector<PT> ConvexHull(vector<PT> pts, bool sorted=false)
EC1 if(!sorted) sort(begin(pts), end(pts));
     pts.resize(unique(begin(pts), end(pts)) - begin(pts));
    if(pts.size() <= 1) return pts;</pre>
     int s=0, n=pts.size();
988
     vector<PT> h (2*n+1);
    for (int i=0; i<n; h[s++] = pts[i++])</pre>
       while (s > 1 \&\& (pts[i] - h[s-2]) \& (h[s-1] - h[s-2])
    >= 0 )
351
         s--:
     for(int i=n-2, t=s; ~i; h[s++] = pts[i--])
       while (s > t && (pts[i] - h[s-2]) % (h[s-1] - h[s-2])
    >= 0 )
351
         s--:
   h.resize(s-1);
81C return h:
D41 // FOR DOUBLE POINT //
D4E See Geometry - General
```

3.2 Geometry - General

```
D40 #define ld long double
D41 // !!! NOT TESTED !!! //
C19 struct PT {
OBE 11 x, y;
0A5 PT(11 x=0, 11 y=0) : x(x), y(y) {}
006 PT operator+ (const PT&a) const{ return PT(x+a.x, y+a.y)
ODC PT operator- (const PT&a) const{ return PT(x-a.x, y-a.y)
954 11 operator* (const PT&a) const{ return (x*a.x + y*a.y)
    ; } //DOT product // norm // lenght^2 // inner
A68 11 operator% (const PT&a) const{ return (x*a.y - y*a.x)
    ; } //Cross // Vector product
B54 PT operator* (l1 c) const{ return PT(x*c, y*c); }
    PT operator/ (11 c) const{ return PT(x/c, y/c); }
5C7 bool operator== (const PT&a) const{ return x == a.x && y
    == a.v: 
B4F bool operator< (const PT&a) const{ return x != a.x ? x <
     a.x : y < a.y; }
F71 bool operator<<(const PT&a) const{ PT p=*this; return (p
    a == 0 ? (p*p < a*a) : (p%a < 0); } //angle(p) < angle(
```

```
FD8 };
D41 // FOR DOUBLE POINT //
D39 const 1d EPS = 1e-9;
5B4 bool eq(ld a, ld b) { return abs(a-b) < EPS; } // ==
C1E bool lt(ld a, ld b) { return a + EPS < b; } // <
D22 bool gt(ld a, ld b) { return a > b + EPS; } // >
A82 bool le(ld a, ld b) { return a < b + EPS; } // <=
410 bool ge(ld a, ld b) { return a + EPS > b; } // >=
3AE bool operator == (const PT&a) const{ return eq(x, a.x) && eq
                     // for double point
5EF bool operator< (const PT&a) const{ return eq(x, a.x) ? lt(
    y, a.y) : lt(x, a.x); } // for double point
DBA bool operator<<(PT&a) { PT&p=*this; return eq(p%a, 0) ? lt(
    p*p, a*a) : lt(p%a, 0); } //angle(this) < angle(a)
D41 //Change LL to LD and uncomment this
D41 //Also, consider replacing comparisons with these
    functions
7C9 ld dist (PT a, PT b) { return sqrtl((a-b)*(a-b)); }
                       // distance from A to B
C43 ld angle (PT a, PT b) { return acos((a*b) / sqrtl(a*a) /
    sqrtl(b*b)); } //Angle between A and B
CBB PT rotate (PT p, double ang) { return PT(p.x*cos(ang) - p.y*
    sin(ang), p.x*sin(ang) + p.y*cos(ang)); } //Left rotation.
     Angle in radian
EA1 11 Area(vector<PT>& p) {
604 11 area = 0;
37F for(int i=2; i < p.size(); i++)
      area += (p[i]-p[0]) % (p[i-1]-p[0]);
     return abs(area) / 2LL;
7EF PT intersect (PT a1, PT d1, PT a2, PT d2) {
EB3 return a1 + d1 * (((a2 - a1) \% d2) / (d1 \% d2));
14D }
9DD ld dist_pt_line(PT a, PT l1, PT l2){
E5A return abs(((a-11) % (12-11)) / dist(11, 12) );
7EB ld dist_pt_segm(PT a, PT s1, PT s2){
E63 if (s1 == s2) return dist(s1, a);
348 PT d = s2 - s1;
9C4 ld t = max(0.0L, min(1.0L, ((a-s1)*d) / sqrtl(d*d)));
1E8 return dist(a, s1+(d*t));
4CE }
```

3.3 LineContainer

```
72C struct Line {
3E2    mutable 11 k, m, p;
CA5    bool operator<(const Line& o) const { return k < o.k; }
ABF    bool operator<(11 x) const { return p < x; }
7E3 };

781 struct LineContainer : multiset<Line, less<>> {
FD2    static const l1 inf = LLONG_MAX; // Double: inf = 1/.0,
    div(a,b) = a/b
10F    11 div(11 a, 11 b) { return a / b - ((a ^ b) < 0 && a %
    b); } //floored division

A1C    bool isect(iterator x, iterator y) {
        if(y == end()) return x->p = inf, 0;
9CB     if(x->k == y->k) x->p = x->m > y->m ? inf : -inf;
```

```
591
       else x->p = div(y->m - x->m, x->k - y->k);
870
        return x->p >= y->p;
2FA }
void add_line(ll k, ll m) { // kx + m // if minimum k
    *=-1, m*=-1, query*-1
     auto z = insert(\{k, m, 0\}), y = z++, x = y;
7B1
        while (isect (v, z)) z = erase(z);
141
        if(x != begin() \&\& isect(--x, y)) isect(x, y = erase(y))
    ));
1A4
        while ((y = x) != begin() \&\& (--x)->p >= y->p) isect(x,
     erase(y));
17C
    11 query(11 x) {
4AD
229
       assert(!empty());
7D1
       auto 1 = *lower_bound(x);
       return 1.k * x + 1.m;
96A
0B9 };
```

4 Grafos

4.1 2-SAT

```
2 SAT - Two Satisfiability Problem
Retorna uma valoracao verdadeira se possivel ou um vetor
    vazio se impossivel;
inverso de u = ~u
     A B | OR |
0 0 0 0
                        NOR
                              NAND
                                    XOR
                                          XNOR
                                                 IMPLY |
        0
                   0
                               1
                                     0
                         1
                                           1
                                                  1
         1
             1
                                                  1
     0
                   0
                         0
                                           0
         0
     1
                   0
                        0
                              1
                                           0
                                                  0
                                    1
```

```
D9D struct TwoSat {
060 int N:
     vector<vector<int>> E;
     TwoSat(int N) : N(N), E(2 * N) {}
    inline int eval(int u) const{ return u < 0 ? ((\sim u) + N)
    %(2*N): u; }
     void add_or(int u, int v) {
       E[eval(~u)].push_back(eval(v));
F37
       E[eval(~v)].push_back(eval(u));
30A
4B9
     void add_nand(int u, int v) {
9FA
       E[eval(u)].push_back(eval(~v));
CED
       E[eval(v)].push_back(eval(~u));
D1C
CEB
     void set_true (int u) { E[eval(~u)].push_back(eval(u)); }
     void set_false(int u) { set_true(~u); }
     void add_imply(int u, int v) { E[eval(u)].push_back(eval(
    v)); }
E81 void add_and (int u, int v) { set_true(u); set_true(v);
     void add_nor (int u, int v) { add_and(~u, ~v); }
     void add_xor (int u, int v) { add_or(u, v); add_nand(u,
A32
F65 void add_xnor (int u, int v) { add_xor(u, ~v); }
     vector<bool> solve() {
F18
       vector<bool> ans(N);
F40
        auto scc = tarjan();
```

```
51F
        for (int u = 0; u < N; u++)
FC2
          if(scc[u] == scc[u+N]) return {}; //false
951
          else ans[u] = scc[u+N] > scc[u];
BA7
        return ans: //true
166 }
BF2 private:
      vector<int> tarjan() {
401
        vector<int> low(2*N), pre(2*N, -1), scc(2*N, -1);
C23
7B4
        stack<int> st;
226
        int clk = 0, ncomps = 0;
3C1
        auto dfs = [&](auto&& dfs, int u) -> void {
FD2
          pre[u] = low[u] = clk++;
4A6
          st.push(u);
7F2
          for(auto v : E[u])
325
            if(pre[v] == -1) dfs(dfs, v), low[u] = min(low[u],
      low[v]);
295
16E
            if(scc[v] == -1) low[u] = min(low[u], pre[v]);
8AD
          if(low[u] == pre[u]){
78B
            int v = -1;
696
            while (v != u) scc[v = st.top()] = ncomps, st.pop()
9DF
            ncomps++;
CBB
860
        };
438
        for (int u=0; u < 2*N; u++)
DC6
          if(pre[u] == -1)
22C
            dfs(dfs, u);
        return scc: //tarian SCCs order is the reverse of
    topoSort, so (u->v \text{ if } scc[v] \le scc[u])
DC3 };
```

4.2 BlockCutTree

```
Block Cut Tree - BiConnected Component
BlockCutTree bcc(n);
bcc.addEdge(u, v);
bcc.build();

bcc.tree -> graph of BlockCutTree (tree.size() <= 2n)
bcc.id[u] -> componet of u in the tree
bcc.cut[u] -> 1 if u is a cut vertex; 0 otherwise
bcc.comp[i] -> vertex of comp i (cut are part of multiple
comp)
```

```
142 struct BlockCutTree {
0AD
        vector<vector<int>> q, tree, comp;
657
        vector<int> id, cut;
40B
        BlockCutTree(int n) : n(n), g(n), cut(n) {}
FAE
        void addEdge(int u, int v) {
7EA
            q[u].emplace_back(v);
4A3
            g[v].emplace_back(u);
1DB
0A8
        void build(){
            pre = low = id = vector<int>(n, -1);
```

```
for(int u=0; u<n; u++, chd=0) if(pre[u] == -1) // 229 const int MAXN = 1e6 + 5;
    if graph is disconected
86E
               tarjan(u, -1), makeComp(-1);
    find cut vertex and make components
            for (int u=0; u<n; u++) if (cut [u]) comp.
    emplace_back(1, u); //create cut components
584
            for (int i=0; i < comp.size(); i++)</pre>
                               //mark id of each node
679
                for(auto u : comp[i]) id[u] = i;
6A6
            tree.resize(comp.size());
            for(int i=0; i<comp.size(); i++)</pre>
584
5AE
                for(auto u : comp[i]) if(id[u] != i)
30E
                    tree[i].push_back(id[u]),
D8D
                    tree[id[u]].push_back(i);
1D5
BF2 private:
5D4
        vector<int> pre, low;
EA9
        vector<pair<int, int>> st;
226
        int n, clk = 0, chd=0, ct, a, b;
20D
        void makeComp(int u) {
DAB
            comp.emplace back();
016
            do √
986
                tie(a, b) = st.back();
D73
                st.pop back();
71A
                comp.back().push_back(b);
203
            } while(a != u);
7C1
            if(~u) comp.back().push_back(u);
5CF
701
        void tarjan(int u, int p) {
FD2
            pre[u] = low[u] = clk++;
5C6
            st.emplace_back(p, u);
DD3
            for (auto v : g[u]) if (v != p) {
                if(pre[v] == -1){
                    tarjan(v, u);
                    low[u] = min(low[u], low[v]);
                    cut[u] |= ct = (~p && low[v] >= pre[u]) ||
      (p==-1 \&\& ++chd >= 2);
                    if(ct) makeComp(u);
                else low[u] = min(low[u], pre[v]);
AC4
0D9
D8F };
```

4.3 Centroid Decomposition

```
Centroid Decomposition
Complexity: O(N*LogN)
dfsc() -> para criar a centroid tree
        -> True se U ja foi removido (pra dfsc)
        -> Size da subarvore de U (pra dfsc)
parent[u] -> Pai de U na centroid tree *parent[ROOT] = -1
distToAncestor[u][i] -> Distancia na arvore original de u para
seu i-esimo pai na centroid tree *distToAncestor[u][0] = 0
dfsc(u=node, p=parent(subtree), f=parent(centroid tree),
    sz=size of tree)
```

```
A34 vector<int> grafo[MAXN];
BE9 deque<int> distToAncestor[MAXN];
C76 bool rem[MAXN];
BBD int szt[MAXN], parent[MAXN];
1B0 void getDist(int u, int p, int d=0) {
F3E for(auto v : grafo[u])
       if(v != p && !rem[v])
A6B
334
          getDist(v, u, d+1);
FOD distToAncestor[u].emplace_front(d);
C46 }
3A5 int getSz(int u, int p) {
030 szt[u] = 1;
F3E for(auto v : grafo[u])
      if(v != p && !rem[v])
         szt[u] += getSz(v, u);
     return szt[u];
FD9 }
994 void dfsc(int u=0, int p=-1, int f=-1, int sz=-1) {
COF if(sz < 0) sz = qetSz(u, -1); //starting new tree
      for(auto v : grafo[u])
        if(v != p \&\& !rem[v] \&\& szt[v] *2 >= sz)
6F7
          return dfsc(v, u, f, sz);
     rem[u] = true, parent[u] = f;
     getDist(u, -1, 0); //get subtree dists to centroid
     for(auto v : grafo[u])
       if(!rem[v])
         dfsc(v, u, u, -1);
BOF }
```

4.4 Dijkstra

```
const int MAXN = 1e6 + 5;
#define INF 0x3f3f3f3f
#define vi vector<int>
vector<pii> grafo [MAXN];
vi dijkstra(int s){
 vi dist (MAXN, INF); // !!! Change MAXN to N
  priority_queue<pii, vector<pii>, greater<pii>> fila;
  fila.push({0, s});
  dist[s] = 0;
  while(!fila.empty())
    auto [d, u] = fila.top();
    fila.pop();
    if(d > dist[u]) continue;
    for(auto [v, c] : grafo[u])
     if( dist[v] > dist[u] + c )
        dist[v] = dist[u] + c;
        fila.push({dist[v], v});
```

```
return dist:
Dijkstra - Shortest Paths from Source
caminho minimo de um vertice u para todos os
outros vertices de um grafo ponderado
Complexity: O(N Log N)
dijkstra(s)
                 -> s : Source, Origem. As distancias serao
    calculadas com base no vertice s
grafo[u] = {v, c};    -> u : Vertice inicial, v : Vertice
    final, c : Custo da aresta
priority_queue<pii, vector<pii>, greater<pii>> -> Ordena pelo
     menor custo -> {d, v} -> d : Distancia, v : Vertice
```

4.5 Dinic

```
Dinic - Max Flow Min Cut
Algoritmo de Dinitz para encontrar o Fluxo Maximo.
Casos de Uso em [Theorems/Flow]
IMPORTANTE! O algoritmo esta 0-indexado
Complexity:
O(V^2 \star E)
                 -> caso geral
O( sqrt(V) * E ) -> grafos com cap = 1 para toda Edge //
    matching bipartido
* Informacoes:
 Crie o Dinic: Dinic dinic(n, src, sink);
 Adicione as edges: dinic.addEdge(u, v, capacity);
 Para calcular o Fluxo Maximo: dinic.maxFlow()
 Para saber se um vertice U esta no Corte Minimo:
    dinic.inCut(u)
* Sobre o Codigo:
 vector<Edge> edges; -> Guarda todas as edges do grafo e do
    grafo residual
 vector<vector<int>> adj; -> Guarda em adj[u] os indices de
    todas as edges saindo de u
 vector<int> ptr; -> Pointer para a proxima Edge ainda
    nao visitada de cada vertice
 vector<int> lvl: -> Distancia em vertices a partir do
    Source. Se iqual a N o vertice nao foi visitado.
 A BFS retorna se Sink e alcancavel de Source. Se nao e
    porque foi atingido o Fluxo Maximo
 A DFS retorna um possivel aumento do Fluxo
```

```
E9B struct Edge {
37D int u, v; 11 cap;
525 Edge(int u, int v, 11 cap) : u(u), v(v), cap(cap) {}
15B };
14D struct Dinic {
B82 int n, src, sink;
903 vector<vector<int>> adj;
321 vector<Edge> edges:
B4A vector<int> lvl, ptr; //pointer para a proxima Edge nao
    saturada de cada vertice
4Al Dinic(int n, int src, int sink) : n(n), src(src), sink(
    sink) { adj.resize(n); }
078 void addEdge(int u, int v, 11 cap)
```

```
F95 {
471
        adj[u].push_back(edges.size());
497
        edges.emplace_back(u, v, cap);
282
        adj[v].push_back(edges.size());
659
        edges.emplace_back(v, u, 0);
1F3
AD2
      11 dfs(int u, 11 flow = 1e9) {
87D
        if(flow == 0) return 0;
        if(u == sink) return flow;
B2A
        for(int &i = ptr[u]; i < adj[u].size(); i++)</pre>
AD2
F95
023
          int at = adj[u][i];
C99
          int v = edges[at].v;
          if(lvl[u] + 1 != lvl[v]) continue;
6A0
          if(ll got = dfs(v, min(flow, edges[at].cap)) )
4 A 1
F95
6FA
            edges[at].cap -= got;
E39
            edges[at^1].cap += got;
529
            return got;
357
656
        }
BB3
        return 0:
95A }
838
      bool bfs(){
        lv1 = vector<int> (n, n);
91E
        lvl[src] = 0;
        queue<int> q;
        q.push(src);
        while(!q.empty())
F95
E4A
          int u = q.front();
833
          q.pop();
E20
          for(auto i : adj[u]){
628
            int v = edges[i].v;
1B2
            if(edges[i].cap == 0 || lvl[v] <= lvl[u] + 1 )</pre>
     continue;
97B
            lvl[v] = lvl[u] + 1;
2A1
            q.push(v);
714
6D8
710
        return lvl[sink] < n;</pre>
752
     bool inCut(int u) { return lvl[u] < n; }</pre>
D6E
      11 maxFlow(){
       11 \text{ ans} = 0;
04B
6D4
        while( bfs() ){
11B
          ptr = vector<int> (n+1, 0);
CF2
          while(ll got = dfs(src)) ans += got;
815
BA7
        return ans;
E9E }
36C };
```

4.6 DSU Rollback

```
Disjoint Set Union with Rollback - O(Log n)
checkpoint() -> salva o estado atual
rollback() -> restaura no ultimo checkpoint
save another var? +save in join & +line in pop

4EA struct DSUr {
ECD vector(int) pai, sz, savept;
235 stack(pair(int) int) st.
```

```
stack<pair<int&, int>> st;
     DSUr(int n): pai(n+1), sz(n+1, 1) {
51E
       for(int i=0; i<=n; i++) pai[i] = i;</pre>
6CE
     int find(int u) { return pai[u] == u ? u : find(pai[u]);
      void join(int u, int v) {
B80
       u = find(u), v = find(v);
360
        if(u == v) return;
844
        if(sz[v] > sz[u]) swap(u, v);
A60
        save(pai[v]); pai[v] = u;
5DA
        save(sz[u]); sz[u] += sz[v];
047 }
2D0
     void save(int &x) { st.emplace(x, x); }
42D
     void pop(){
       st.top().first = st.top().second; st.pop();
6A1
        st.top().first = st.top().second; st.pop();
4DD
6E6
     void checkpoint() { savept.push_back(st.size()); }
     void rollback() {
5CF
8EB
        while(st.size() > savept.back()) pop();
520
       savept.pop_back();
BB2 }
9E2 };
```

4.7 DSU Persistente

```
SemiPersistent Disjoint Set Union - O(Log n)
find(u, q) -> Retorna o pai de U no tempo q
* tim -> tempo em que o pai de U foi alterado
2CE struct DSUp {
AE4 vector<int> pai, sz, tim;
      DSUp(int n): pai(n+1), sz(n+1, 1), tim(n+1) {
        for(int i=0; i<=n; i++) pai[i] = i;</pre>
50F
7F9
      int find(int u, int q = INT_MAX) {
        if( pai[u] == u || q < tim[u] ) return u;</pre>
        return find(pai[u], q);
0A1
    }
      void join(int u, int v) {
B80
       u = find(u), v = find(v);
```

4.8 Euler Path

```
Euler Path - Algoritmo de Hierholzer para caminho Euleriano
Complexity: O(V + E)
IMPORTANTE! O algoritmo esta 0-indexado
* Informações
 addEdge(u, v) -> Adiciona uma aresta de U para V
 EulerPath(n) -> Retorna o Euler Path, ou um vetor vazio se
 vi path -> vertices do Euler Path na ordem
 vi pathId -> id das Arestas do Euler Path na ordem
Euler em Undirected graph:
 - Cada vertice tem um numero par de arestas (circuito); OU
 - Exatamente dois vertices tem um numero impar de arestas
    (caminho):
Euler em Directed graph:
 - Cada vertice tem quantidade de arestas |entrada| ==
    Isaidal (circuito): OU
 - Exatamente 1 tem |entrada|+1 == |saida| && exatamente 1
    tem |entrada| == |saida|+1 (caminho);
* Circuito -> U e o primeiro e ultimo
* Caminho -> U e o primeiro e V o ultimo
```

```
OC1 #define vi vector<int>
229 const int MAXN = 1e6 + 5;
210 const bool BIDIRECIONAL = true;
7F4 vector<pii>> grafo[MAXN];
CBD vector<bool> used;
FAE void addEdge(int u, int v) {
FD8 grafo[u].emplace_back(v, used.size()); if(BIDIRECIONAL
    && u != v)
    grafo[v].emplace_back(u, used.size());
EDA
     used.emplace_back(false);
3C1 }
EFB pair<vi, vi> EulerPath(int n, int src=0){
79C int s=-1, t=-1;
    vector<int> selfLoop(n*BIDIRECIONAL, 0);
C30
    if(BIDIRECIONAL)
F95
COF
       for(int u=0; u<n; u++) for(auto&[v, id] : grafo[u]) if</pre>
    (u==v) selfLoop[u]++;
19E
     for (int u=0; u<n; u++)</pre>
D2B
         if((grafo[u].size() - selfLoop[u])%2)
A4F
           if(t != -1) return {vi(), vi()}; // mais que 2
    com grau impar
            else t = s, s = u;
```

if(t == -1 && t != s) return {vi(), vi()}; // so 1 com 4.9 HLD grau impar **if**(s == -1 || t == src) s = src; E.78 11 50 possivel, seta start como src E07 295 else F95 8E2 vector<int> in(n, 0), out(n, 0); 19E **for(int** u=0; u<n; u++) 0DB for(auto [v, edg] : grafo[u]) 8C0 in[v]++, out[u]++; 19E for(int u=0; u<n; u++)</pre> 074 if(in[u] - out[u] == -1 && s == -1) s = u; else 3C0 if(in[u] - out[u] == 1 && t == -1) t = u; else 825 if(in[u] !=out[u]) return {vi(), vi()}; if(s == -1 && t == -1) s = t = src;possivel, seta s como src if(s == -1 && t != -1) return {vi(), vi()}; // Existe if(s != -1 && t == -1) return {vi(), vi()}; // Existe T mas nao S 667 84C **for(int** i=0; grafo[s].empty() && i<n; i++) s =(s+1)%n; //evita s ser vertice isolado D41 ///// DFS ////// 66A vector<int> path, pathId, idx(n, 0); 982 stack<pii> st; // {Vertex, EdgeId} D1E st.push({s, -1}); while(!st.empty()) F95 723 auto [u, edg] = st.top(); while(idx[u] < grafo[u].size() && used[grafo[u][idx[u]</pre>]].second]) idx[u]++; if(idx[u] < grafo[u].size())</pre> F95 CAD auto [v, id] = grafo[u][idx[u]]; 3C1 used[id] = true; F26 st.push({v, id}); 5E2 continue; 2A1 960 path.push_back(u); E1A pathId.push_back(edg); 25A st.pop(); 5E9 301 pathId.pop_back(); 023 reverse (begin (path), end (path)); reverse (begin (pathId), end(pathId)); D41 /// Grafo conexo ? /// ADC int edgesTotal = 0; BIDIRECIONAL ? selfLoop[u] : 0); 0A8 if(BIDIRECIONAL) edgesTotal /= 2; 934 if(pathId.size() != edgesTotal) return {vi(), vi()}; return {path, pathId}; 722 }

```
Heavy-Light Decomposition
Complexity: O(LogN * (qry || updt))
Change qry(1, r) and updt(1, r) to call a query and update
    structure of your will
HLD hld(n); //call init
hld.add_edges(u, v); //add all edges
hld.build(); //Build everthing for HLD
tin[u] -> Pos in the structure (Seq, Bit, ...)
nxt[u] -> Head/Endpoint
IMPORTANTE! o grafo deve estar 0-indexado!
```

```
EAA const bool EDGE = false;
                                                                 403 struct HLD {
                                                                 673 public:
                                                                      vector<vector<int>> g; //grafo
                                                                       vector<int> sz, parent, tin, nxt;
                                                                       HLD(){}
                                                                 90C
                                                                       HLD(int n) { init(n); }
                                                                 940
                                                                       void init(int n){
                                                                 A34
                                                                        t = 0:
                                                                 8F5
                                                                         g.resize(n); tin.resize(n);
                                                                 7BA
                                                                         sz.resize(n);nxt.resize(n);
                                                                 62B
                                                                         parent.resize(n);
                                                                 D94
                                                                 FAE
                                                                       void addEdge(int u, int v){
                                                                 7EA
                                                                        g[u].emplace_back(v);
                                                                 4A3
                                                                        g[v].emplace back(u);
                                                                 1DB
                                                                       void build(int root=0){
                                                                         nxt[root]=root;
                                                                         dfs(root, root);
                                                                         hld(root, root);
                                                                 F40
                                                                       11 query_path(int u, int v){
                                                                         if(tin[u] < tin[v]) swap(u, v);</pre>
                                                                         if(nxt[u] == nxt[v]) return qry(tin[v]+EDGE, tin[u]);
                                                                         return qry(tin[nxt[u]], tin[u]) + query_path(parent[
                                                                      nxt[u]], v);
                                                                 C6B
                                                                      void update_path(int u, int v, 11 x){
                                                                         if(tin[u] < tin[v]) swap(u, v);</pre>
                                                                 D55
                                                                         if(nxt[u] == nxt[v]) return updt(tin[v]+EDGE, tin[u],
                                                                        updt(tin[nxt[u]], tin[u], x); update_path(parent[nxt[u]
                                                                      ]], v, x);
                                                                 177 }
                                                                 BF2 private:
                                                                 EBB 11 qry(int 1, int r) { if(EDGE && 1>r) return 0;/*NEUTRO
                                                                      */ } //call Seq, BIT, etc
4B4 for(int u=0; u<n; u++) edgesTotal += grafo[u].size() + ( 6D9 void updt(int 1, int r, 11 x) { if (EDGE && 1>r) return; }
                                                                          //call Seg, BIT, etc
                                                                 FB6
                                                                       void dfs(int u, int p) {
                                                                 573
                                                                         sz[u] = 1, parent[u] = p;
                                                                 E69
                                                                         for (auto &v : q[u]) if (v != p) {
                                                                 1FB
                                                                           dfs(v, u); sz[u] += sz[v];
                                                                 14A
                                                                           if(sz[v] > sz[g[u][0]] || g[u][0] == p)
                                                                 06F
                                                                             swap(v, g[u][0]);
                                                                 7E2
```

```
53F
6BB
      int t=0;
11E void hld(int u, int p) {
2C6
       tin[u] = t++;
BF0
        for (auto &v : q[u]) if (v != p)
B18
          nxt[v] = (v == g[u][0] ? nxt[u] : v),
42C
          hld(v, u);
36C
     /// OPTIONAL ///
D41
310
      int lca(int u, int v) {
        while(!inSubtree(nxt[u], v)) u = parent[nxt[u]];
582
E1D
        while(!inSubtree(nxt[v], u)) v = parent[nxt[v]];
40A
        return tin[u] < tin[v] ? u : v;</pre>
AEB
65E
     bool inSubtree(int u, int v) { return tin[u] <= tin[v] &&</pre>
      tin[v] < tin[u] + sz[u];
D41
      //query/update subtree[tin[u]+EDGE, tin[u]+sz[u]-1];
      vector<pair<int, int>> pathToAncestor(int u, int a) {
095
F77
            vector<pair<int, int>> ans;
7F3
            while(nxt[u] != nxt[a])
FCA
                ans.emplace_back(tin[nxt[u]], tin[u]),
5C3
                u = parent[nxt[u]];
B35
            ans.emplace_back(tin[a], tin[u]);
BA7
            return ans;
BF7 };
```

4.10 LCA

```
LCA - Lowest Common Ancestor - Binary Lifting
Algoritmo para encontrar o menor ancestral comum
entre dois vertices em uma arvore enraizada
IMPORTANTE! O algoritmo esta 0-indexado
Complexity:
buildBL() -> O(N Log N)
lca() -> O(Log N)
* Informacoes
 -> chame dfs(root, root) para calcular o pai e a altura de
    cada vertice
 -> chame buildBL() para criar a matriz do Binary Lifting
 -> chame lca(u, v) para encontrar o menor ancestral comum
 bl[i][u] -> Binary Lifting com o (2^i)-esimo pai de u
 lvl[u] -> Altura ou level de U na arvore
```

```
81D const int MAXN = 1e4 + 5;
633 const int MAXLG = 16;
A34 vector<int> grafo[MAXN];
A87 int bl[MAXLG][MAXN], lvl[MAXN];
80E void dfs(int u, int p, int 1=0) {
34C lv1[u] = 1;
4FB b1[0][u] = p;
F3E
     for(auto v : grafo[u])
F6B
       if(v != p)
0C5
         dfs(v, u, 1+1);
9A8 }
```

```
555 void buildBL(int N) {
977 for(int i=1; i<MAXLG; i++)
        for(int u=0; u<N; u++)</pre>
51F
69C
         bl[i][u] = bl[i-1][bl[i-1][u]];
59A }
310 int lca(int u, int v) {
DC4 if(lvl[u] < lvl[v]) swap(u, v);
      for(int i=MAXLG-1; i>=0; i--)
179
       if(lvl[u] - (1<<i) >= lvl[v])
319
         u = bl[i][u];
      if(u == v) return u;
60E
      for(int i=MAXLG-1; i>=0; i--)
       if(bl[i][u] != bl[i][v])
E01
         u = bl[i][u],
          v = bl[i][v];
4BC
      return bl[0][u];
381 }
```

4.11 MinCostMaxFlow

```
7C9 struct Aresta {
FOB int u, v; 11 cap, cost;
    Aresta(int u, int v, ll cap, ll cost) : u(u), v(v), cap(
    cap), cost(cost) {}
1D9 };
6F3 struct MCMF {
878 const 11 INF = numeric_limits<11>::max();
6B0 int n, source, sink;
903 vector<vector<int>> adj;
4DF vector<Aresta> edges;
39D vector<11> dist, pot;
E3B vector<int> from;
    MCMF(int n, int source, int sink) : n(n), source(source)
    , sink(sink) { adj.resize(n); pot.resize(n); }
     void addAresta(int u, int v, ll cap, ll cost){
471
       adj[u].push_back(edges.size());
986
       edges.emplace_back(u, v, cap, cost);
282
       adj[v].push_back(edges.size());
29F
       edges.emplace_back(v, u, 0, -cost);
D21
26A queue<int> q;
     vector<bool> vis;
791 bool SPFA() {
EF2
       dist.assign(n, INF);
0B5
       from.assign(n, -1);
543
       vis.assign(n, false);
7CD
       q.push(source);
506
       dist[source] = 0;
14D
       while(!q.empty()){
E4A
         int u = q.front();
833
         q.pop();
776
         vis[u] = false;
```

```
E20
          for(auto i : adj[u]){
F42
            if(edges[i].cap == 0) continue;
628
            int v = edges[i].v;
99A
            11 cost = edges[i].cost;
148
            if(dist[v] > dist[u] + cost + pot[u] - pot[v]){
DEC
              dist[v] = dist[u] + cost + pot[u] - pot[v];
203
              from[v] = i;
A1A
              if(!vis[v]) q.push(v), vis[v] = true;
888
652
          }
344
        }
19E
        for (int u=0; u<n; u++) //fix pot</pre>
067
          if(dist[u] < INF)</pre>
AB7
            pot[u] += dist[u];
9DE
        return dist[sink] < INF;</pre>
D50
     pair<11, 11> augment(){
        11 flow = edges[from[sink]].cap, cost = 0; //fixed
     flow: flow = min(flow, remainder)
940
        for(int v=sink; v != source; v = edges[from[v]].u)
73D
          flow = min(flow, edges[from[v]].cap),
          cost += edges[from[v]].cost;
871
940
        for(int v=sink; v != source; v = edges[from[v]].u)
86A
          edges[from[v]].cap -= flow,
674
          edges[from[v]^1].cap += flow;
884
        return {flow, cost};
668
      bool inCut(int u) { return dist[u] < INF; }</pre>
      pair<11, 11> maxFlow(){
        11 \text{ flow} = 0. \text{ cost} = 0;
D7D
        while(SPFA()){
274
          auto [f, c] = augment();
C87
          flow += f;
BEC
          cost += f*c;
35C
884
        return {flow, cost};
D37 }
22E };
```

4.12 SCC - Kosaraju

```
Kosaraju - Strongly Connected Component
Algoritmo de Kosaraju para encontrar Componentes Fortemente
Conexas

Complexity: O(V + E)
IMPORTANTE! O algoritmo esta 0-indexado

* Variaveis e explicacoes *
int C -> C e a quantidade de Componetes Conexas. As
componetes estao numeradas de 0 a C-1
dag -> Apos rodar o Kosaraju, o grafo das componentes
conexas sera criado aqui
comp[u] -> Diz a qual componente conexa U faz parte
order -> Ordem de saida dos vertices. Necessario para o
Kosaraju
grafo -> grafo direcionado
```

```
OC1 #define vi vector<int>
229 const int MAXN = 1e6 + 5;
C92 vi grafo[MAXN];
4ED vi greve[MAXN];
404 vi dag[MAXN];
104 vi comp, order;
B57 vector<bool> vis;
868 int C;
315 void dfs(int u) {
B9C vis[u] = true;
F3E for(auto v : grafo[u])
       if(!vis[v])
6B4
          dfs(v);
C75
     order.push back(u);
163 void dfs2(int u){
361 comp[u] = C;
     for(auto v : greve[u])
       if(comp[v] == -1)
          dfs2(v):
1F8 }
955 void kosaraju(int n) {
070 order.clear();
     comp.assign(n, -1);
     vis.assign(n, false);
      for (int v=0; v<n; v++)</pre>
C2D
       if(!vis[v])
6B4
          dfs(v);
796
    C = 0:
     reverse (begin (order), end (order));
961
      for(auto v : order)
750
       if(comp[v] == -1)
400
          dfs2(v), C++;
      //// Montar DAG ////
D41
     vector<bool> marc(C, false);
687
      for (int u=0; u<n; u++) {</pre>
F3E
       for(auto v : grafo[u])
F95
264
          if(comp[v] == comp[u] || marc[comp[v]]) continue;
812
          marc[comp[v]] = true;
F26
          dag[comp[u]].emplace_back(comp[v]);
0DC
09D
        for(auto v : grafo[u]) marc[comp[v]] = false;
A85
80A }
```

4.13 Tarjan

Tarjan - Pontes e Pontos de Articulação

```
Algoritmo para encontrar pontes e pontos de articulação.
Complexity: ○(V + E)
IMPORTANTE! Lembre do memset(pre, -1, sizeof pre);
* Variaveis e explicacoes *
pre[u] = "Altura", ou, x-esimo elemento visitado na DFS.
    Usado para saber a posicao de um vertice na arvore de DFS
low[u] = Low Link de U, ou a menor aresta de retorno (mais
    proxima da raiz) que U alcanca entre seus filhos
chd = Children. Ouantidade de componentes filhos de U. Usado
    para saber se a Raiz e Ponto de Articulacao.
any = Marca se alguma aresta de retorno em qualquer dos
    componentes filhos de U nao ultrapassa U. Se isso for
    verdade, U e Ponto de Articulação.
if(low[v] > pre[u]) pontes.emplace_back(u, v); -> se a mais
    alta aresta de retorno de V (ou o menor low) estiver
    abaixo de U, entao U-V e ponte
if(low[v] >= pre[u]) any = true;
                                        -> se a mais alta
    aresta de retorno de V (ou o menor low) estiver abaixo de
    U ou igual a U, entao U e Ponto de Articulacao
```

```
229 const int MAXN = 1e6 + 5;
F4C int pre[MAXN], low[MAXN], clk=0;
A34 vector<int> grafo [MAXN];
A2B vector<pair<int, int>> pontes;
252 vector<int> cut;
A76 #warning "lembrar do memset (pre, -1, sizeof pre);"
CF2 void tarjan(int u, int p = -1) {
FD2 pre[u] = low[u] = clk++;
     bool any = false;
378
      int chd = 0;
      for(auto v : grafo[u]){
730
       if(v == p) continue;
9BE
        if(pre[v] == -1)
F95
3D2
         tarjan(v, u);
E7F
          low[u] = min(low[v], low[u]);
334
          if(low[v] > pre[u]) pontes.emplace back(u, v);
23A
          if(low[v] >= pre[u]) any = true;
87D
          chd++;
302
295
201
         low[u] = min(low[u], pre[v]);
6D3
      if(p == -1 && chd >= 2) cut.push_back(u);
     if(p !=-1 \&\& anv)
                              cut.push back(u);
E3D }
```

5 Strings

$5.1 \quad hash2$

```
String Hash - Double Hash
precalc() -> O(N)
StringHash() \rightarrow O(|S|)
gethash() -> O(1)
StringHash hash(s); -> Cria o Hash da string s
hash.gethash(1, r); -> Hash [L,R] (0-Indexado)
229 const int MAXN = 1e6 + 5;
E8E const 11 MOD1 = 131'807'699;
D5D const 11 MOD2 = 1e9 + 9;
145 const 11 base = 157;
DB4 11 expb1[MAXN], expb2[MAXN];
921 #warning "Call precalc() before use StringHash"
FE8 void precalc() {
       expb1[0] = expb2[0] = 1;
6D8
7 F.4
     for (int i=1; i < MAXN; i++)</pre>
E0E
            expb1[i] = expb1[i-1]*base % MOD1,
C4B
            expb2[i] = expb2[i-1] *base % MOD2;
A02 }
3CE struct StringHash{
0DD
        vector<pair<11,11>> hsh;
AC0
        string s; // comment S if you dont need it
6F2
        StringHash(string& s) : s(s){
63F
            hsh.assign(s.size()+1, \{0,0\});
724
            for (int i=0;i<s.size();i++)</pre>
R7A
                hsh[i+1].first = ( hsh[i].first *base % MOD1
    + s[i] ) % MOD1,
08F
                hsh[i+1].second = ( hsh[i].second*base % MOD2
    + s[i] ) % MOD2;
5A6
2F0
       11 gethash(int a, int b) {
            11 h1 = (MOD1 + hsh[b+1].first - hsh[a].first *
    expb1[b-a+1] % MOD1) % MOD1;
            11 h2 = (MOD2 + hsh[b+1].second - hsh[a].second*
    expb2[b-a+1] % MOD2) % MOD2;
D23
            return (h1<<32) | h2;
C77
1D3 };
FE3 int firstDiff(StringHash& a, int la, int ra, StringHash& b
    , int lb, int rb)
F95 {
7E5 int l=0, r=min(ra-la, rb-lb), diff=r+1;
3D5
     while (1 \le r) {
       int m = (1+r)/2;
EE4
065
       if(a.gethash(la, la+m) == b.gethash(lb, lb+m)) l = m
72D
        else r = m-1, diff = m;
RAD
2B1
     return diff;
03D int hshComp(StringHash& a, int la, int ra, StringHash& b,
    int lb. int rb) {
E85 int diff = firstDiff(a, la, ra, b, lb, rb);
```

```
23E if(diff > ra-la && ra-la == rb-lb) return 0; //equal

D15 if(diff > ra-la || diff > rb-lb) return ra-la < rb-lb
    ? -2 : +2; //prefix of the other

C26 return a.s[la+diff] < b.s[lb+diff] ? -1 : +1;

8C4 }
```

5.2 KMP

```
692 vector<int> Pi(string &t) {
82B vector<int> p(t.size(), 0);
6F4
      for(int i=1, j=0; i<t.size(); i++){</pre>
90B
        while (j > 0 \&\& t[j] != t[i]) j = p[j-1];
        if(t[j] == t[i]) j++;
3C7
F8C
       p[i] = j;
9E8
74E
      return p;
85D }
2AD vector<int> kmp(string &s, string &t){
D9E vector<int> p = Pi(t), occ;
1EF
      for(int i=0, j=0; i<s.size(); i++){</pre>
705
        while ( j > 0 \&\& s[i] != t[j]) j = p[j-1];
566
        if(s[i]==t[j]) j++;
2F0
        if(j == t.size()) occ.push_back(i-j+1), j = p[j-1];
6C4
FB0
      return occ;
087 }
Optional: KMP Automato. j = state atual [root=j=0]
3E3 struct Automato {
632 vector<int> p;
78F
        string t;
119
      Automato(string &t) : t(t), p(Pi(t)){}
6DD
        int next(int j, char c) { //return nxt state
            if(final(j)) j = p[j-1];
E60
28D
            while(j \&\& c != t[j]) j = p[j-1];
5B4
            return j + (c == t[j]);
26F
DFA
        bool final(int j) { return j == t.size(); }
8C2 };
OF8 KMP - Knuth-Morris-Pratt Pattern Searching
05C Complexity: O(|S|+|T|)
DB8 kmp(s, t) -> returns all occurences of t in s
020 p = Pi(t) \rightarrow p[i] = biggest prefix that is a sufix of t[0,
    i 1
```

5.3 Aho-Corasick

```
Aho-Corasick: Trie automaton to search multiple patterns in a text

Complexity: O(SUM|P| + |S|) * ALPHA

for(auto p: patterns) aho.add(p);
aho.buildSufixLink();
auto ans = aho.findPattern(s);

parent(p), sufixLink(sl), outputLink(ol), patternID(idw)
outputLink -> edge to other pattern end (when p is a sufix of it)

ALPHA -> Size of the alphabet. If big, consider changing nxt to map
```

```
To find ALL occurrences of all patterns, don't delete ol in findPattern. But it can be slow (at number of occ), so consider using DP on the automaton.

If you need a nextState function, create it using the while in findPattern.

if you need to store node indexes add int i to Node, and in Aho add this and change the new Node() to it:

vector<trie> nodes;

trie new_Node(trie p, char c) {
   nodes.push_back(new Node(p, c));
   nodes.back()->i = nodes.size()-1;
   return nodes.back();
}
```

```
322 const int ALPHA = 26, off = 'a';
BF2 struct Node {
        Node* p = NULL;
A26
        Node * sl = NULL;
СЗА
        Node* ol = NULL;
CB8
        array<Node*, ALPHA> nxt;
        char c;
BBC
        int idw = -1;
        Node() { nxt.fill(NULL); }
212
        Node(Node* p, char c) : p(p), c(c) { nxt.fill(NULL); }
2CA typedef Node* trie;
C99 struct Aho {
        trie root;
        int nwords = 0;
        Aho() { root = new Node(); }
        void add(string &s) {
346
            trie t = root;
2.42
            for(auto c : s) { c -= off;
508
                if(!t->nxt[c])
02F
                    t->nxt[c] = new Node(t, c);
                t = t - > nxt[c];
E9A
71E
            t->idw = nwords++; //cuidado com strings iguais!
     use vector
625
       }
34A
        void buildSufixLink(){
A2F
            deque<trie> q(1, root);
14D
            while(!q.empty()){
81D
                trie t = q.front();
CED
                q.pop_front();
630
                 if(trie w = t->p) {
29D
                     do w = w \rightarrow s1; while (w \&\& !w \rightarrow nxt[t \rightarrow c]);
619
                     t->s1 = w ? w->nxt[t->c] : root;
D7B
                     t->ol = t->sl->idw == -1 ? t->sl->ol : t->
8DB
                for(int c=0; c<ALPHA; c++)</pre>
806
F72
                     if(t->nxt[c])
78D
                         q.push_back(t->nxt[c]);
693
09C
66F
        vector<bool> findPattern(string &s){
BFD
            vector<bool> ans(nwords, 0);
82D
            trie w = root:
242
            for(auto c : s) { c -= off;
```

```
A7A
                while(w && !w->nxt[c]) w = w->sl; // trie
    next(w, c)
AFA
                w = w ? w -> nxt[c] : root;
5BE
                for(trie z=w, nl; z; nl=z->ol, z->ol=NULL, z=
    nl)
972
                    if(z->idw != -1) //get ALL occ: dont
    delete ol (may slow)
31E
                        ans[z->idw] = true;
B04
BA7
            return ans;
CSE
FE8 };
```

5.4 Suffix Array

```
sf = suffixArray(s) -> O(N log N)
LCP(s, sf) \rightarrow O(N)
SuffixArray -> index of suffix in lexicographic order
LCP[i] -> LargestCommonPrefix of sufix at sf[i] and sf[i-1]
LCP(i,j) = min(lcp[i+1...j])
To better understand, print: lcp[i] sf[i] s.substr(sf[i])
B6C vector<int> suffixArray(string s){
        int n = (s += "$").size(); //if s is vector, push_back
     (-INF);
        vector<int> sf(n), ord(n), aux(n), cnt(n);
        iota(begin(sf), end(sf), 0);
        sort(begin(sf), end(sf), [&](int i, int j){ return s[i
    ] < s[j]; \});
104
        int cur = ord[sf[0]] = 0;
AA4
        for (int i=1; i<n; i++)</pre>
            ord[sf[i]] = s[sf[i]] == s[sf[i-1]] ? cur : ++cur;
OBB
C1E
        for(int k=1; cur+1 < n && k < n; k<<=1){</pre>
727
            cnt.assign(n, 0);
8FF
             for(auto &i : sf)
                                        i = (i-k+n) %n, cnt[ord[i]
     ]]++;
DC5
             for(int i=1; i<n; i++) cnt[i] += cnt[i-1];</pre>
             for(int i=n-1; i>=0; i--) aux[--cnt[ord[sf[i]]]] =
0A4
      sf[i];
71C
             sf.swap(aux);
662
             aux[sf[0]] = cur = 0;
AA4
             for (int i=1; i<n; i++)</pre>
AEB
                 aux[sf[i]] = ord[sf[i]] == ord[sf[i-1]] &&
E19
                 ord[(sf[i]+k)%n] == ord[(sf[i-1]+k)%n] ? cur :
      ++cur;
43A
            ord.swap(aux);
52E
61D
        return vector<int>(begin(sf)+1, end(sf));
1FC }
B1D vector<int> LCP(string &s, vector<int> &sf){
        int n = s.size();
        vector<int> lcp(n), pof(n);
E51
        for(int i=0; i<n; i++) pof[sf[i]] = i;</pre>
        for (int i=0, j, k=0; i<n; k?--k:k, i++) {</pre>
76D
            if(!pof[i]) continue;
D5B
             j = sf[pof[i]-1];
329
             while (i+k \le n \&\& j+k \le n \&\& s[i+k] == s[j+k]) k++;
```

5.5 trie

```
Trie - Arvore de Prefixos
insert(P) - O(|P|)
count(P) - O(|P|)
MAXS - Soma do tamanho de todas as Strings
sigma - Tamanho do alfabeto
```

```
AAF const int MAXS = 1e5 + 10:
70C const int sigma = 26;
F6C int trie[MAXS][sigma], terminal[MAXS], z = 1;
33B void insert(string &p){
B3D int cur = 0;
E2E
     for(int i=0; i<p.size(); i++){</pre>
1BF
       int id = p[i] - 'a';
BCF
       if(trie[cur][id] == -1 ){
616
         memset(trie[z], -1, sizeof trie[z]);
869
         trie[cur][id] = z++;
CAE
3AD
       cur = trie[cur][id];
B07
     terminal[cur]++;
C89 }
684 int count(string &p){
B3D int cur = 0;
      for(int i=0; i<p.size(); i++){</pre>
       int id = (p[i] - 'a');
C39
        if(trie[cur][id] == -1) return 0;
3AD
       cur = trie[cur][id];
ADB
89E return terminal[cur];
D3C }
CA2 void init(){
E6F memset(trie[0], -1, sizeof trie[0]);
34E z = 1;
A11 }
```

5.6 Manacher

```
DC6 vector<int> manacher(string &st) {
E13    string s = "$_";
821    for(char c : st) { s += c; s += "_"; }
095    s += "#";

995    int n = s.size()-2;
```

```
vector<int> p(n+2, 0);
     int l=1, r=1;
7CD
557
     for(int i=1, j; i<=n; i++)</pre>
F95
       p[i] = max(0, min(r-i, p[l+r-i])); //atualizo o valor
     atual para o valor do palindromo espelho na string ou
    para o total que esta contido
A5F
        while (s[i-p[i]] == s[i+p[i]]) p[i]++;
39C
        if(i+p[i] > r) l = i-p[i], r = i+p[i];
A83
6AE for(auto &x : p) x--; //o valor de p[i] e iqual ao
    tamanho do palindromo + 1
     return p;
907 }
BEF Manacher Algorithm
64E Find every palindrome in string
80E Complexidade: O(N)
```

Z-Function

```
403 vector<int> Zfunction(string &s){ // O(N)
163 int n = s.size();
     vector<int> z (n, 0);
      for (int i=1, l=0, r=0; i < n; i++) {
        if(i <= r) z[i] = min(z[i-1], r-i+1);</pre>
76D
F61
        while (z[i] + i < n \&\& s[z[i]] == s[i+z[i]]) z[i]++;
EAF
        if(r < i+z[i]-1) l = i, r = i+z[i]-1;
0CD
      }
070
     return z;
D58 }
```

others

6.1 Hungarian

```
Hungarian Algorithm - Assignment Problem
Algoritmo para o problema de atribuicao minima.
Complexity: O(N^2 \star M)
hungarian(int n, int m); -> Retorna o valor do custo minimo
getAssignment(int m)
                      -> Retorna a lista de pares
    Coluna > do Minimum Assignment
n -> Numero de Linhas // m -> Numero de Colunas
IMPORTANTE! O algoritmo e 1-indexado
IMPORTANTE! O tipo padrao esta como int, para mudar para
    outro tipo altere | typedef <TIPO> TP; |
Extra: Para o problema da atribuicao maxima, apenas
    multiplique os elementos da matriz por -1
```

```
3CE const int MAXN = 1e3 + 5;
657 const TP INF = 0x3f3f3f3f3f;
F31 TP matrix[MAXN][MAXN];
F10 TP row[MAXN], col[MAXN];
E1F int match[MAXN], way[MAXN];
E5E TP hungarian(int n, int m) {
715 memset (row, 0, sizeof row);
      memset(col, 0, sizeof col);
      memset(match, 0, sizeof match);
535
      for (int i=1; i<=n; i++)</pre>
F95
96C
        match[0] = i;
23B
        int j0 = 0, j1, i0;
        TP delta:
76E
693
        vector<TP> minv (m+1, INF);
C04
        vector<bool> used (m+1, false);
016
472
          used[i0] = true;
F81
          i0 = match[j0];
B27
          j1 = -1;
          delta = INF;
7DA
2E2
          for (int j=1; j<=m; j++)</pre>
F92
            if(!used[i]){
76D
               TP cur = matrix[i0][j] - row[i0] - col[j];
9F2
               if( cur < minv[j] ) minv[j] = cur, way[j] = j0;</pre>
               if(minv[j] < delta) delta = minv[j], j1 = j;</pre>
821
6FD
FC9
          for (int j=0; j<=m; j++)</pre>
E48
            if(used[i]){
7AC
               row[match[j]] += delta,
429
               col[i] -= delta;
72C
299
               minv[j] -= delta;
          i0 = j1;
6D4
A95
        } while (match[j0]);
016
        do {
B8C
          j1 = way[j0];
77A
          match[j0] = match[j1];
6D4
          i0 = i1;
196
        } while(†0);
7B1
A33
     return -col[0];
7FF }
3B4 vector<pair<int, int>> getAssignment(int m) {
F77 vector<pair<int, int>> ans;
      for (int i=1; i<=m; i++)</pre>
        ans.push_back(make_pair(match[i], i));
843
      return ans;
01D }
```

6.2 MO

```
Algoritmo de MO para query em range
Complexity: O( (N + Q) * SQRT(N) * F ) | F e a complexidade
    do Add e Remove
IMPORTANTE! Queries devem ter seus indices (Idx) 0-indexados!
Modifique as operações de Add, Remove e GetAnswer de acordo
    com o problema.
BLOCK_SZ pode ser alterado para aproximadamente SQRT (MAX_N)
861 const int BLOCK SZ = 700;
670 struct Ouerv{
738 int 1, r, idx;
      Query (int 1, int r, int idx) : l(1), r(r), idx(idx) {}
406
     bool operator < (Query q) const {</pre>
       if(1 / BLOCK_SZ != q.1 / BLOCK_SZ) return 1 < q.1;</pre>
        return (1 / BLOCK_SZ &1) ? ( r < q.r ) : (r > q.r );
667 }
F51 };
543 void add(int idx);
F8A void remove(int idx);
AD7 int getAnswer();
73F vector<int> MO(vector<Query> &queries) {
    vector<int> ans(queries.size());
      sort(queries.begin(), queries.end());
32D
      int L = 0, R = 0;
49E
     add(0);
FE9
      for(auto [1, r, idx] : queries){
128
        while (1 < L) add (--L);
C4A
        while (r > R) add (++R);
684
        while(l > L) remove(L++);
B50
        while(r < R) remove(R--);</pre>
830
        ans[idx] = getAnswer();
08D
BA7
      return ans;
ACF }
D41 /* IF you want to use hilbert curves on MO
OBD vector<11> h(ans.size());
CEC for (int i = 0; i < ans.size(); i++) h[i] = hilbert(
     queries[i].1, queries[i].r);
063 sort(queries.begin(), queries.end(), [&](Query&a, Query&b)
      { return h[a.idx] < h[b.idx]; }); */</pre>
E51 inline 11 hilbert (int x, int y) {
C85 static int N = 1 << (__builtin_clz(0) - __builtin_clz(
    MAXN));
     int rx, ry, s; 11 d = 0;
      for (s = N/2; s > 0; s /= 2) {
C95
       rx = (x \& s) > 0, ry = (y \& s) > 0;
F15
       d += s * (11)(s) * ((3 * rx) ^ rv);
```

 $if(ry == 0) { if(rx == 1) x = N-1 - x, y = N-1 - y;}$

swap(x, y);}

return d;

200

BE2

038 }

6.3 MOTree

```
Algoritmo de MO para query de caminho em arvore
Complexity: O((N + Q) * SQRT(N) * F) | F e a complexidade do
    Add e Remove
IMPORTANTE! 0-indexado!
80E const int MAXN = 1e5+5;
F5A const int BLOCK SZ = 500;
304 struct Query{int 1, r, idx;}; //same of MO. Copy operator
282 vector<int> g[MAXN];
212 int tin[MAXN], tout[MAXN];
03B int pai[MAXN], order[MAXN];
179 void remove(int u);
C8B void add(int u);
AD7 int getAnswer();
COA void go_to(int ti, int tp, int otp) {
B21 int u = order[ti], v, to;
61E to = tout[u];
AA5 while(!(ti <= tp && tp <= to)){ //subo com U (ti) ate
    ser ancestral de W
E7C
      v = pai[u];
BAF
        if(ti <= otp && otp <= to) add(v);</pre>
96E
       else remove(u);
A68
       11 = 77:
363
       ti = tin[u]:
       to = tout[u];
61E
462
915 int w = order[tp];
D88
     to = tout[w];
      while(ti < tp) { //subo com W (tp) ate U</pre>
082
80E
      v = pai[w];
F19
        if(tp <= otp && otp <= to) remove(v);</pre>
7AC
        else add(w);
9A1
       w = v;
FCA
       tp = tin[w];
D88
       to = tout[w];
34D
B15 }
1D4 int TIME = 0;
FB6 void dfs(int u, int p) {
49E pai[u] = p;
6FD
     tin[u] = TIME++;
A2B order[tin[u]] = u;
      for(auto v : g[u])
F6B
      if(v != p)
95E
         dfs(v, u);
916
      tout[u] = TIME-1;
686 }
73F vector<int> MO(vector<Query> &queries) {
    vector<int> ans(queries.size());
564
     dfs(0, 0);
     for(auto &[u, v, i] : queries)
```

```
563
        tie(u, v) = minmax(tin[u], tin[v]);
BFA
      sort(queries.begin(), queries.end());
49E
      add(0);
      int Lm = 0, Rm = 0;
7AC
FE9
      for(auto [1, r, idx] : queries) {
       if(1 < Lm) go_to(Lm, 1, Rm), Lm = 1;</pre>
9D4
0E8
        if(r > Rm) go_to(Rm, r, Lm), Rm = r;
        if(1 > Lm) go_to(Lm, 1, Rm), Lm = 1;
A5C
035
        if(r < Rm) go to (Rm, r, Lm), Rm = r;
        ans[idx] = getAnswer();
830
30A
BA7
     return ans;
64A }
```

6.4 stressTest

```
P=code #mude pro filename do codigo
Q=brute #mude pro filename do brute [correto]
q++ ${P}.cpp -o sol -02 || exit 1
g++ ${Q}.cpp -o ans -02 || exit 1
g++ gen.cpp -o gen -O2 || exit 1
for ((i = 1; ; i++)) do
 echo $i
  ./gen $i > in
  ./sol < in > out
  ./ans < in > out2
  if (! cmp -s out out2) then
    echo "--> entrada:"
    cat in
    echo "--> saida sol:"
    cat out
    echo "--> saida ans:"
    cat out2
   break:
 fi
done
```

7 Math

$7.1 \quad \text{fexp}$

```
11 mod = 1e9 + 7;

11 fexp(11 b, 11 p) {
    11 ans = 1;
    while(p) {
        if(p&1) ans = ans * b % mod;
        b = b * b % mod;
        p >>= 1;
    }
    return ans;
}
// O(Log P) // b - Base // p - Potencia
```

7.2 CRT

D40 #define ld long double

```
2D3 11 modinverse(11 a, 11 b, 11 s0 = 1, 11 s1 = 0) { return b
     == 0 ? s0 : modinverse(b, a % b, s1, s0 - s1 * (a / b));
D8B 11 mul(11 a, 11 b, 11 m) {
C95
     11 q = (1d) a * (1d) b / (1d) m;
       11 r = a * b - q * m;
1A8
B8B
       return (r + m) % m;
154 }
28D struct Equation {
4C5
       11 mod, ans;
08F
       bool valid;
0FC
       Equation() { valid = false; }
5E2
       Equation (11 a, 11 m) \{ \text{mod} = m, \text{ans} = (a \% m + m) \% m, \}
     valid = true; }
4D3
       Equation (Equation a, Equation b) {
355
            if(!a.valid | | !b.valid) { valid = false; return; }
85C
            11 g = gcd(a.mod, b.mod);
DBE
            if((a.ans - b.ans) % q != 0) { valid = false;
    return; }
AF0
            valid = true;
B98
            mod = a.mod * (b.mod / q);
2F6
            ans = a.ans;
B8E
            ans += mul( mul(a.mod, modinverse(a.mod, b.mod),
    mod), (b.ans - a.ans) / g, mod);
C4C
            ans = (ans % mod + mod) % mod;
F7C
       Equation operator+(const Equation& b) const { return
    Equation (*this, b); }
D41 // Equation eq1(2, 3); // x = 2 \mod 3
D41 // Equation eq2(3, 5); // x = 3 \mod 5
D41 // Equation ans = eq1 + eq2;
```

7.3 mint

7.4 random

8 Theorems

8.1 Propriedades Matemáticas

- Conjectura de Goldbach: Todo número par n > 2 pode ser representado como n = a + b, onde $a \in b$ são primos.
- Primos Gêmeos: Existem infinitos pares de primos p, p+2.
- Conjectura de Legendre: Sempre existe um primo entre n² e (n + 1)².
- Lagrange: Todo número inteiro pode ser representado como soma de 4 quadrados.
- Zeckendorf: Todo número pode ser representado como soma de números de Fibonacci diferentes e não consecutivos.
- Tripla de Pitágoras (Euclides): Toda tripla pitagórica primitiva pode ser gerada por $(n^2 m^2, 2nm, n^2 + m^2)$ onde $n \in m$ são coprimos e um deles é par.
- Wilson: n é primo se e somente se $(n-1)! \mod n = n-1$.
- Problema do McNugget: Para dois coprimos x e y, o número de inteiros que não podem ser expressos como ax + by é (x-1)(y-1)/2. O maior inteiro não representável é xy-x-y.
- Fermat: Se p é primo, então $a^{p-1} \equiv 1 \mod p$. Se x e m são coprimos e m primo, então $x^k \equiv x^{k \mod (m-1)} \mod m$. Euler: $x^{\varphi(m)} \equiv 1 \mod m$. $\varphi(m)$ é o totiente de Euler.
- Teorema Chinês do Resto: Dado um sistema de congruências:

 $x \equiv a_1 \mod m_1, \ldots, x \equiv a_n \mod m_n$

com m_i coprimos dois a dois. E seja $M_i = \frac{m_1 m_2 \cdots m_n}{m_i}$ e $N_i = M_i^{-1} \mod m_i$. Então a solução é dada por:

$$x = \sum_{i=1}^{n} a_i M_i N_i$$

Outras soluções são obtidas somando $m_1m_2\cdots m_n$.

• Números de Catalan: Exemplo: expressões de parênteses bem formadas. $C_0 = 1$, e:

$$C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i} = \frac{1}{n+1} \binom{2n}{n}$$

 Bertrand (Ballot): Com p > q votos, a probabilidade de sempre haver mais votos do tipo A do que B até o fim é: ^{p-q}/_{p+q} Permitindo empates: ^{p+1-q}/_{p+1}. Multiplicando pela combinação total (^{p+q}/_q), obtém-se o número de possibilidades.

- Linearidade da Esperança: E[aX+bY] = aE[X]+bE[Y]
- Variância: $Var(X) = E[(X \mu)^2] = E[X^2] E[X]^2$
- Progressão Geométrica: $S_n = a_1 \cdot \frac{q^n 1}{q 1}$
- Soma dos Cubos: $\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$
- Lindström-Gessel-Viennot: A quantidade de caminhos disjuntos em um grid pode ser computada como o determinante da matriz do número de caminhos.
- Lema de Burnside: Número de colares diferentes (sem contar rotações), com m cores e comprimento n:

$$\frac{1}{n} \left(m^n + \sum_{i=1}^{n-1} m^{\gcd(i,n)} \right)$$

• Inversão de Möbius:

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & n = 1 \\ 0, & \text{caso contrário} \end{cases}$$

• Propriedades de Coeficientes Binomiais:

$$\binom{N}{K} = \binom{N}{N-K} = \frac{N}{K} \binom{N-1}{K-1}$$

$$\sum_{k=0}^{m} (-1)^k \binom{n}{k} = (-1)^m \binom{n-1}{m}$$

$$\sum_{m=0}^{n} \binom{m}{k} = \binom{n+1}{k+1}$$

$$\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m}$$

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$$

$$\sum_{k=0}^{n} \binom{n-k}{k} = F_{n+1}$$

- Identidades Clássicas:
 - Hockey-stick: $\sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$
 - Vandermonde: $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$
- Distribuições de Probabilidade:

- Uniforme: $X \in \{a, a+1, ..., b\}, E[X] = \frac{a+b}{2}$
- Binomial: n tentativas com probabilidade p de sucesso:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad E[X] = np$$

 Geométrica: Número de tentativas até o primeiro sucesso:

$$P(X = x) = (1 - p)^{x-1}p, \quad E[X] = \frac{1}{p}$$

8.2 Geometria

- Fórmula de Euler: Em um grafo planar ou poliedro convexo, temos: V E + F = 2 onde V é o número de vértices,
 E o número de arestas e F o número de faces.
- Teorema de Pick: Para polígonos com vértices em coordenadas inteiras:

$$\text{Área} = i + \frac{b}{2} - 1$$

onde i é o número de pontos interiores e b o número de pontos sobre o perímetro.

- Teorema das Duas Orelhas (Two Ears Theorem):
 Todo polígono simples com mais de três vértices possui pelo menos duas "orelhas"— vértices que podem ser removidos sem gerar interseções. A remoção repetida das orelhas resulta em uma triangulação do polígono.
- Incentro de um Triângulo: É o ponto de interseção das bissetrizes internas e centro da circunferência inscrita. Se $a, b \in c$ são os comprimentos dos lados opostos aos vértices $A(X_a, Y_a), B(X_b, Y_b) \in C(X_c, Y_c)$, então o incentro (X, Y) é dado por:

$$X = \frac{aX_a + bX_b + cX_c}{a + b + c}, \quad Y = \frac{aY_a + bY_b + cY_c}{a + b + c}$$

- Triangulação de Delaunay: Uma triangulação de um conjunto de pontos no plano tal que nenhum ponto está dentro do círculo circunscrito de qualquer triângulo. Essa triangulação:
 - Maximiza o menor ângulo entre todos os triângulos.
 - Contém a árvore geradora mínima (MST) euclidiana como subconjunto.
- **Fórmula de Brahmagupta:** Para calcular a área de um quadrilátero cíclico (todos os vértices sobre uma circunferência), com lados *a. b. c* e *d*:

$$s = \frac{a+b+c+d}{2}, \quad \text{Area} = \sqrt{(s-a)(s-b)(s-c)(s-d)}$$

Se d=0 (ou seja, um triângulo), ela se reduz à fórmula de Heron:

Área =
$$\sqrt{(s-a)(s-b)(s-c)s}$$

8.3 Grafos

• Fórmula de Euler (para grafos planares):

$$V - E + F = 2$$

onde V é o número de vértices, E o número de arestas e F o número de faces.

- Handshaking Lemma: O número de vértices com grau ímpar em um grafo é par.
- Teorema de Kirchhoff (contagem de árvores geradoras): Monte a matriz M tal que:

$$M_{i,i} = \deg(i), \quad M_{i,j} = \begin{cases} -1 & \text{se existe aresta } i - j \\ 0 & \text{caso contrário} \end{cases}$$

O número de árvores geradoras (spanning trees) é o determinante de qualquer co-fator de M (remova uma linha e uma coluna).

- Condições para Caminho Hamiltoniano:
 - **Teorema de Dirac:** Se todos os vértices têm grau > n/2, o grafo contém um caminho Hamiltoniano.
 - **Teorema de Ore:** Se para todo par de vértices não adjacentes u e v, temos $\deg(u) + \deg(v) \ge n$, então o grafo possui caminho Hamiltoniano.
- Algoritmo de Borůvka: Enquanto o grafo não estiver conexo, para cada componente conexa escolha a aresta de menor custo que sai dela. Essa técnica constrói a árvore geradora mínima (MST).
- Árvores:
 - Existem C_n árvores binárias com n vértices (C_n é o n-ésimo número de Catalan).
 - Existem C_{n-1} árvores enraizadas com n vértices.
 - **Fórmula de Cayley:** Existem n^{n-2} árvores com vértices rotulados de 1 a n.
 - Código de Prüfer: Remova iterativamente a folha com menor rótulo e adicione o rótulo do vizinho ao código até restarem dois vértices.
- Fluxo em Redes:
 - Corte Mínimo: Após execução do algoritmo de fluxo máximo, um vértice u está do lado da fonte se level $[u] \neq -1$.

- Máximo de Caminhos Disjuntos:
 - * Arestas disjuntas: Use fluxo máximo com capacidades iguais a 1 em todas as arestas.
 - * Vértices disjuntos: Divida cada vértice v em $v_{\rm in}$ e $v_{\rm out}$, conectados por aresta de capacidade 1. As arestas que entram vão para $v_{\rm in}$ e as que saem saem de $v_{\rm out}$.
- Teorema de König: Em um grafo bipartido:

Cobertura mínima de vértices = Matching máximo

O complemento da cobertura mínima de vértices é o conjunto independente máximo.

- Coberturas:
 - * Vertex Cover mínimo: Os vértices da partição X que **não** estão do lado da fonte no corte mínimo, e os vértices da partição Y que **estão** do lado da fonte.
 - * Independent Set máximo: Complementar da cobertura mínima de vértices.
 - * Edge Cover mínimo: É N-matching, pegando as arestas do matching e mais quaisquer arestas restantes para cobrir os vértices descobertos.
- Path Cover:
 - * Node-disjoint path cover mínimo: Duplicar vértices em tipo A e tipo B e criar grafo bipartido com arestas de $A \to B$. O path cover é N matching.
 - * General path cover mínimo: Criar arestas de $A \to B$ sempre que houver caminho de A para B no grafo. O resultado também é N matching.
- Teorema de Dilworth: O path cover mínimo em um grafo dirigido acíclico é igual à **antichain máxima** (conjunto de vértices sem caminhos entre eles).
- Teorema do Casamento de Hall: Um grafo bipartido possui um matching completo do lado X se:

$$\forall W \subseteq X, \quad |W| \le |\text{vizinhos}(W)|$$

- Fluxo Viável com Capacidades Inferiores e Superiores: Para rede sem fonte e sumidouro:
 - * Substituir a capacidade de cada aresta por $c_{
 m upper} c_{
 m lower}$
 - * Criar nova fonte S e sumidouro T
 - * Para cada vértice v, compute:

$$M[v] = \sum_{\text{arestas entrando}} c_{\text{lower}} - \sum_{\text{arestas saindo}} c_{\text{lower}}$$

- * Se M[v] > 0, adicione aresta (S, v) com capacidade M[v]; se M[v] < 0, adicione (v, T) com capacidade -M[v].
- * Se todas as arestas de S estão saturadas no fluxo máximo, então um fluxo viável existe. O fluxo viável final é o fluxo computado mais os valores de $c_{\rm lower}$.

8.4 DP

• Divide and Conquer Optimization: Utilizada em problemas do tipo:

$$dp[i][j] = \min_{k < j} \{dp[i-1][k] + C[k][j]\}$$

onde o objetivo é dividir o subsegmento até j em i segmentos com algum custo. A otimização é válida se:

$$A[i][j] \le A[i][j+1]$$

onde A[i][j] é o valor de k que minimiza a transição.

• Knuth Optimization: Aplicável quando:

$$dp[i][j] = \min_{i < k < i} \{dp[i][k] + dp[k][j]\} + C[i][j]$$

e a condição de monotonicidade é satisfeita:

$$A[i][j-1] < A[i][j] < A[i+1][j]$$

com A[i][j] sendo o índice k que minimiza a transição.

- Slope Trick: Técnica usada para lidar com funções lineares por partes e convexas. A função é representada por pontos onde a derivada muda, que podem ser manipulados com multiset ou heap. Útil para manter o mínimo de funções acumuladas em forma de envelopes convexos.
- Outras Técnicas e Truques Importantes:
 - FFT (Fast Fourier Transform): Convolução eficiente de vetores.
 - CHT (Convex Hull Trick): Otimização para DP com funções lineares e monotonicidade.
 - Aliens Trick: Técnica para binarizar o custo em problemas de otimização paramétrica (geralmente em problemas com limite no número de grupos/segmentos).
 - Bitset: Utilizado para otimizações de espaço e tempo em DP de subconjuntos ou somas parciais, especialmente em problemas de mochila.

9 Extra

9.1 Hash Function

```
DE3 string getHash(string s){
909 ofstream ip("temp.cpp"); ip << s; ip.close();
EE9 system("g++ -E -P -dD -fpreprocessed ./temp.cpp | tr -d
    '[:space:]' | md5sum > hsh.temp");
CEF ifstream fo("hsh.temp"); fo >> s; fo.close();
A15 return s.substr(0, 3);
17A }
E8D int main(){
973 string 1, t;
3DA vector<string> st(10);
     while(getline(cin, 1)){
54F
      t = 1;
242
       for(auto c : 1)
F11
         if(c == '{') st.push_back(""); else
         if(c == '}') t = st.back() + 1, st.pop_back();
2F0
       cout << getHash(t) + " " + 1 + "\n";
1ED
       st.back() += t + "\n";
D1B }
B65 }
```