Small-scale sim study results

Morris, S.

May 1, 2015

Simulation study settings

All: $\mathbf{s} \in [0, 6] \times [0, 6]$

- 1. GEV link
 - a. $\alpha = 0.3$, 144 knots, 1% rareness, $\rho = 0.542$, $\xi = 0.25$
 - b. $\alpha = 0.7, 144 \text{ knots}, 1\% \text{ rareness}, \rho = 0.542, \xi = 0.25$
 - c. $\alpha = 0.3, 144 \text{ knots}, 5\% \text{ rareness}, \rho = 0.542, \xi = 0.25$
 - d. $\alpha = 0.7$, 144 knots, 5% rareness, $\rho = 0.542$, $\xi = 0.25$
- 2. Logit link
 - a. $\rho = 3$, 144 knots, 1% rareness
 - b. $\rho = 1, 144 \text{ knots}, 1\% \text{ rareness}$
 - c. $\rho = 3$, 144 knots, 5% rareness
 - d. $\rho = 1, 144 \text{ knots}, 5\% \text{ rareness}$

where ρ is the bandwidth parameter.

Models fit

We fit three different models using MCMC

- 1. Spatial logit
- 2. Spatial probit
- 3. Spatial GEV

The chains ran for 40000 iterations with a burnin period of 30000 iterations.

Prior distributions

For all models, we fit an intercept-only model.

For the logit model, we use the following priors:

$$\beta \sim N(0, 100)$$

$$\rho \sim \text{Unif}(0, 10)$$

$$\sigma^2 \sim IG(1, 1)$$
(1)

$$\tau^2 \sim \text{IG}(1,1) \tag{2}$$

For the probit model, we use the following priors:

$$\beta \sim N(0, 100)$$
 (3)
 $\rho \sim \text{log-Normal}(-1, 2)$

For the GEV model, we use the following priors:

$$\xi \sim N(0, 0.5)$$

$$\beta \sim N(0, 100)$$

$$\alpha \sim \text{Unif}(0, 1)$$

$$\rho \sim \text{Unif}(0, 9)$$
(4)

Brier skill scores

We average the Brier skill scores across all 10 datasets and multiply them by 1000 in the following tables.

Table 1: Results from settings with GEV link

	1a	1b	1c	1d
Spatial Logit	8.9705	10.363	26.494	44.056
Spatial Probit	7.3856	10.047	15.127	36.776
Spatial GEV	8.8898	10.053	22.033	43.069
Spatial GEV: fixed params	7.2892	9.96	14.44	36.349

Table 2: Results from settings with logit link

	2a	2b	2c	2d
Spatial Logit	16.445	16.506	84.697	69.547
Spatial Probit	16.3	16.367	81.815	66.387
Spatial GEV	16.272	16.667	83.082	68.74

So, when we can fix the spatial settings at their true values for the GEV link, we get some very minor improvements over the spatial probit model. However, when we fit them in the MCMC, our method doesn't perform as well.

Iteration plots

Data setting 1a

Fit using spatial logit

Fit using spatial probit

2000 4000 6000 8000

iteration

 β iterplot

$\alpha \text{ iterplot}$

Data setting 1b

$\alpha \text{ iterplot}$

iteration

Data setting 1c

Data setting 1d

$\alpha \text{ iterplot}$

ρ iterplot

Data setting 2a

iteration

Data setting 2b

Data setting 2c

$\alpha \text{ iterplot}$

Data setting 2d

Fit using spatial probit

2000 4000 6000 8000

iteration

4.

0

α iterplot

