

USN:_____055

Department of Artificial Intelligence and Machine Learning

Course Code: 21AI41

Sem:IV

Date: 05-Sept-2023 Duration: 90 Minutes

MAKEUP TEST Statistics for Data Science Answer all the Questions

SL.	Questions	M	BT	CO
1	Given that X and Y are two Random variables, is it always true that $Var(X+Y) = Var(X) + Var(Y)$? Justify your choice.	05	02	01
2	Identify as to when each of the following cases can occur. A and B are events defined on the sample space S. (a) $P(A B) = P(A)$ (b) $P(A \text{ intersection } B) = 0$ (c) $P(A B) = 1$	05	02	01
3	A professor tries to count the number of students attending his lecture. For each student in the audience, the professor either counts the student properly with probability p or overlooks with probability 1-p. The exact number of students in the course is 70. (a) The number of students counted by the professor is a random variable N. What is the PMF of N? (b) Let U = 70 - N denote the number of uncounted students. What is the PMF of U?	05	03	01
4	The daily sales total (excepting Saturday) at a small restaurant has a probability distribution that is approximately normal, with a mean μ = \$1230 per day and a standard deviation σ equal to \$120. a) What is the probability that the sales will exceed \$1400 for a given day? b) The restaurant must have at least \$1000 in sales per day to break even. What is the probability that on a given day the restaurant will not break even?	05	03	02
5	Compute c and $E[X]$ for the following continuous random variable X. $f_X(x) = cx(1-x^2) \text{ for } 0 \le x \le 1 \text{ and } 0 \text{ otherwise.}$	05	02	01

USN:

Department of Artificial Intelligence and Machine Learning

Marks Distribution	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4	L5
	Max	20	15	05	10			20	20	10	
	Marks										