Fibonacci Numbers

The Fibonacci numbers:

1,1,2,3,5,8,13,... are given by the recurrence relation:

$$F_1 = 1$$
 $F_2 = 1$ $F_{n+2} = F_{n+1} + F_n$

So:

$$F_3 = F_2 + F_1$$
 and $F_4 = F_3 + F_2$ and $F_5 = F_4 + F_3$ etc

We want a formula for F_n We will use the guess and prove method.

Guess:

$$F_n = \frac{a^n - b^n}{\sqrt{5}}$$
 where $a = \frac{1 + \sqrt{5}}{2}$ and $b = \frac{1 - \sqrt{5}}{2}$ (where did that come from?)

Proof:

Consider the equation $x^2 = x + 1$

(where did that come from?)

Solving with the quadratic equation formula gives:

$$x = \frac{1 \pm \sqrt{5}}{2}$$
 so $x = a$ or $x = b$

Now:

a and b satisfy $x^2 = x + 1$

So:

$$a^2 = a^1 + 1$$
 $a^3 = a^2 + a^1$... $a^{n+2} = a^{n+1} + a^n$

And:

$$b^2 = b^1 + 1$$
 $b^3 = b^2 + b^1$... $b^{n+2} = b^{n+1} + b^n$

According to our guess:

$$F_1 = \frac{a^1 - b^1}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$$

Correct

$$F_2 = \frac{a^2 - b^2}{\sqrt{5}} = \frac{(a^1 + 1) - (b^1 + 1)}{\sqrt{5}} = \frac{a^1 - b^1}{\sqrt{5}} = 1$$

Correct

$$F_{n+2} = \frac{a^{n+2} - b^{n+2}}{\sqrt{5}} = \frac{\left(a^{n+1} + a^n\right) - \left(b^{n+1} + b^n\right)}{\sqrt{5}} = \frac{\left(a^{n+1} - b^{n+1}\right) + \left(a^n - b^n\right)}{\sqrt{5}} = F_{n+1} + F_n$$

Correct

Let's look at the ratio of consecutive Fibonacci numbers:

$$\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \dots$$

As $n \rightarrow \infty$ these ratios tend to a limit called ϕ

Now:

$$F_{n+2} = F_{n+1} + F_n$$
 so $\frac{F_{n+2}}{F_{n+1}} = \frac{F_{n+1}}{F_{n+1}} + \frac{F_n}{F_{n+1}}$ so $\frac{F_{n+2}}{F_{n+1}} = 1 + \frac{F_n}{F_{n+1}}$

Letting $n \to \infty$ we get $\phi = 1 + \frac{1}{\phi}$ so $\phi^2 = \phi + 1$ so $\phi = \frac{1 + \sqrt{5}}{2}$

Note:

 ϕ is called the golden ratio. Look it up!

Theorem:

If F_n is prime then n is prime.

The converse of this theorem is not true – for example F_{19} is not prime.

Conjecture:

There are an infinite number of Fibonacci numbers that are prime.

EXERCISE

1) Write the Fibonacci sequence in mod 2.

Show that the 3rd, 6th, 9th, 12th ... Fibonacci numbers are all multiples of 2

2) Write the Fibonacci sequence in mod 3.

Show that the 4^{th} , 8^{th} , 12^{th} , 16^{th} ... Fibonacci numbers are all multiples of 3

3) Write the Fibonacci sequence in mod 5.

Show that the $5^{\text{th}},\,10^{\text{th}},\,15^{\text{th}},\,20^{\text{th}}$... Fibonacci numbers are all multiples of 5

4)

If d is a factor of F_{17} and F_{18} show that d is a factor of F_{16}

If d is a factor of F_{16} and F_{17} show that d is a factor of F_{15}

Show that consecutive Fibonacci numbers have no common factor.

5)

$$F_1 = F_3 - F_2$$

$$F_2 = F_4 - F_3$$

$$F_3 = F_5 - F_A$$

...

$$F_{n-1} = F_{n+1} - F_n$$

$$F_n = F_{n+2} - F_{n+1}$$

Show that:

$$F_1 + F_2 + F_3 + \dots + F_n = F_{n+2} - 1$$

SOLUTIONS

1) mod 2:

The sequence must now repeat because we are back to 1, 1 So the 3^{rd} , 6^{th} , 9^{th} , 12^{th} ... terms are all multiples of 2

2) mod 3:

The sequence must now repeat because we are back to 1, 1 So the 4th, 8th, 12th, 16th ... terms are all multiples of 3

3) mod 5:

The sequence must now repeat because we are back to 1, 1 So the 5^{th} , 10^{th} , 15^{th} , 20^{th} ... terms are all multiples of 5

4)

$$d$$
 is a factor of F_{16} because $F_{16} = F_{18} - F_{17}$

$$d$$
 is a factor of F_{15} because $F_{15} = F_{17} - F_{16}$

etc

d is a factor of
$$F_1$$

So consecutive Fibonacci numbers have no common factor

5)

add up the left-hand-sides:
$$F_1+F_2+F_3+...+F_n$$

add up the right-hand -sides: $F_{n+2}-F_2$

$$F_1 + F_2 + F_3 + \dots + F_n = F_{n+2} - F_2$$

$$F_1 + F_2 + F_3 + \dots + F_n = F_{n+2} - 1$$