Divide-and-Conquer

Heejin Park

Division of Computer Science and Engineering Hanyang University

Recurrences

- When an algorithm contains a recursive call to itself, its running time can often be described by a recurrence.
- A *recurrence* is an equation or inequality that describes a function in terms of its value on smaller inputs.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n>1, \end{cases}$$

Recurrences

Solving recurrences

• Obtaining asymptotic " Θ ", "O" bounds on the solution.

Three methods for solving recurrences

- Substitution method
- Recursion-tree method
- Master method

Technicalities

- Neglect of technical details
 - The assumption of integer arguments
 - Boundary conditions

Technicalities

The assumption of integer arguments

- The running time T(n) is only defined when n is an integer.
- For example, the recurrence for Merge-Sort is really,

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n>1. \end{cases}$$

• But normally, it is represented as

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n>1. \end{cases}$$

Because the solution is not changed.

Technicalities

Omit boundary conditions

- Boundary conditions are omitted because T(n) is normally constant for small n.
- for example

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n>1, \end{cases}$$

$$T(n) = 2T(n/2) + \Theta(n)$$

- The substitution method consists of two steps
 - 1. Guess the solution.
 - 2. Use mathematical induction to prove the guess is right.

Determining an upper bound on the recurrence

$$T(n) = 2T(|n/2|) + n$$

• Guess:

$$T(n) = O(n \lg n)$$

• Prove:

$$T(n) \le cn \lg n$$

(for an appropriate choice of the constant c>0)

- Mathematical induction
 - Basis or boundary conditions
 - Inductive step

- Inductive step
 - Assume that this bound holds for $\lfloor n/2 \rfloor$, that is, $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$.

```
T(n) = 2T(\lfloor n/2 \rfloor) + n \le 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n

\le cn \lg(n/2) + n

= cn \lg n - cn \lg 2 + n

= cn \lg n - cn + n

\le cn \lg n

(as long as c \ge 1)
```

- Boundary conditions
 - $T(n) \le cn \lg n$ for n = 1 (?)
 - It is impossible because T(1) = 1 but c11g1 = 0.

- Note that we don't have to prove $T(n) = \operatorname{cn} \lg n$ for all n.
 - We only have to prove $T(n) = cn \lg n$ for $n \ge n_0$ for n_0 .
 - Thus, let $n_0 = 2$.
 - T(2) = 2T(1) + 2 = 4
 - $T(2) = 4 \le c2 \lg 2$
 - $c \ge 2$ satisfies the inequality.

• Observe T(3) depends directly on T(1).

•
$$T(3) = 2T(1) + 3$$

- T(3) = 5.
- To show $T(3) = 5 \le c3 \lg 3$.
- Any choice of $c \ge 2$ satisfies the inequality.

- How to guess a good solution?
- We can guess the solution using the recursion-tree method.
 - Later, the solution is proved by the substitution method.

Consider solving the following recurrence.

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2).$$

- Show $T(n) = \Theta(n^2)$.
 - Show $T(n) = \Omega(n^2)$.
 - Obvious
 - Show $T(n) = O(n^2)$.
 - Guess by the recursion-tree method
 - Prove by the substitution method

- Cost computation
 - Subproblem size for a node at depth i: $n/4^i$
 - The number of nodes at depth $i: 3^i$
 - The number of levels: $\log_4 n + 1$.
 - Because the subproblem size hits n = 1 when $n/4^i = 1$ or, equivalently, when $i = \log_4 n$.

- Cost of each depth
 - The total cost of all nodes at depth *i*
 - Except the last level: $3^i c(n/4^i)^2 = (3/16)^i cn^2$
 - The last level: $\Theta(3^{\log_4 n}) = \Theta(n^{\log_4 3})$

Cost of all depths

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2)$$

- We have derived a guess of $T(n) = O(n^2)$ for the recurrence $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$.
- We prove $T(n) = O(n^2)$ by the substitution method.

• Show that $T(n) \le dn^2$ (for some d > 0 and for the same c > 0)

$$T(n) = 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\leq 3d\lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= 3/16 dn^{2} + cn^{2}$$

$$\leq dn^{2}$$

where the last step holds as long as $d \ge (16/13)c$.

- Another example
 - Given T(n) = T(n/3) + T(2n/3) + O(n), to show $T(n) = O(n \lg n)$.

- the cost of each level: cn
- height
 - $n \to (2/3)n \to (2/3)^2n \to \cdots \to 1$ => $(2/3)^k n = 1$ when $k = \log_{3/2} n$, => $\log_{3/2} n$.
- Total: each level cost x height $=> O(cn\log_{3/2}n) = O(n \lg n)$

- Prove the upper bound $O(n \lg n)$
- Show that $T(n) \le dn \lg n$ for some constant d. (self-study)

$$T(n) \le T(n/3) + T(2n/3) + cn$$

$$\le d(n/3)\lg(n/3) + d(2n/3)\lg(2n/3) + cn$$

$$= (d(n/3)\lg n - d(n/3)\lg 3) +$$

$$(d(2n/3)\lg n + d(2n/3)\lg(2/3)) + cn$$

$$= dn\lg n + d(-(n/3)\lg 3 + (2n/3)\lg(2/3)) + cn$$

```
= dn \lg n + d(-(n/3) \lg 3 + (2n/3) \lg (2/3)) + cn
= dn \lg n + d(-(n/3) \lg 3 + (2n/3) \lg 2 - (2n/3) \lg 3) + cn
= dn \lg n + dn(-\lg 3 + 2/3) + cn
\leq dn \lg n, \text{ as long as } d \geq c/(\lg 3 - (2/3))
```

Self-study

- Use only recursion tree method.
 - Exercise 4.4-1 (4.2-1 in the 2nd ed.)
 - Exercise 4.4-6 (4.2-2 in the 2nd ed.)