3

OBJECTIVES

When you finish studying this chapter, you should be able to:

- Understand the concept of thermal resistance and its limitations, and develop thermal resistance networks for practical heat conduction problems,
- Solve steady conduction problems that involve multilayer rectangular, cylindrical, or spherical geometries,
- Develop an intuitive understanding of thermal contact resistance, and circumstances under which it may be significant,
- Identify applications in which insulation may actually increase heat transfer.
- Analyze finned surfaces, and assess how efficiently and effectively fins enhance heat transfer, and
- Solve multidimensional practical heat conduction problems using conduction shape factors.

STEADY HEAT CONDUCTION

n heat transfer analysis, we are often interested in the rate of heat transfer through a medium under steady conditions and surface temperatures. Such problems can be solved easily without involving any differential equations by the introduction of the *thermal resistance concept* in an analogous manner to electrical circuit problems. In this case, the thermal resistance corresponds to electrical resistance, temperature difference corresponds to voltage, and the heat transfer rate corresponds to electric current.

We start this chapter with *one-dimensional steady heat conduction* in a plane wall, a cylinder, and a sphere, and develop relations for *thermal resistances* in these geometries. We also develop thermal resistance relations for convection and radiation conditions at the boundaries. We apply this concept to heat conduction problems in *multilayer* plane walls, cylinders, and spheres and generalize it to systems that involve heat transfer in two or three dimensions. We also discuss the *thermal contact resistance* and the *overall heat transfer coefficient* and develop relations for the critical radius of insulation for a cylinder and a sphere. Finally, we discuss steady heat transfer from *finned surfaces* and some complex geometrics commonly encountered in practice through the use of *conduction shape factors*.

3-1 • STEADY HEAT CONDUCTION IN PLANE WALLS

Consider steady heat conduction through the walls of a house during a winter day. We know that heat is continuously lost to the outdoors through the wall. We intuitively feel that heat transfer through the wall is in the *normal direction* to the wall surface, and no significant heat transfer takes place in the wall in other directions (Fig. 3–1).

Recall that heat transfer in a certain direction is driven by the *temperature* gradient in that direction. There is no heat transfer in a direction in which there is no change in temperature. Temperature measurements at several locations on the inner or outer wall surface will confirm that a wall surface is nearly *isothermal*. That is, the temperatures at the top and bottom of a wall surface as well as at the right and left ends are almost the same. Therefore, there is no heat transfer through the wall from the top to the bottom, or from left to right, but there is considerable temperature difference between the inner and the outer surfaces of the wall, and thus significant heat transfer in the direction from the inner surface to the outer one.

The small thickness of the wall causes the temperature gradient in that direction to be large. Further, if the air temperatures in and outside the house remain constant, then heat transfer through the wall of a house can be modeled as *steady* and *one-dimensional*. The temperature of the wall in this case depends on one direction only (say the x-direction) and can be expressed as T(x).

Noting that heat transfer is the only energy interaction involved in this case and there is no heat generation, the *energy balance* for the wall can be expressed as

$$\begin{pmatrix} Rate \text{ of } \\ heat \text{ transfer } \\ into \text{ the wall} \end{pmatrix} - \begin{pmatrix} Rate \text{ of } \\ heat \text{ transfer } \\ out \text{ of the wall} \end{pmatrix} = \begin{pmatrix} Rate \text{ of change } \\ \text{ of the energy } \\ \text{ of the wall} \end{pmatrix}$$

or

$$\dot{Q}_{\rm in} - \dot{Q}_{\rm out} = \frac{dE_{\rm wall}}{dt}$$
 (3-1)

But $dE_{\text{wall}}/dt = 0$ for *steady* operation, since there is no change in the temperature of the wall with time at any point. Therefore, the rate of heat transfer into the wall must be equal to the rate of heat transfer out of it. In other words, *the rate of heat transfer through the wall must be constant*, $\dot{Q}_{\text{cond, wall}} = \text{constant}$.

Consider a plane wall of thickness L and average thermal conductivity k. The two surfaces of the wall are maintained at constant temperatures of T_1 and T_2 . For one-dimensional steady heat conduction through the wall, we have T(x). Then Fourier's law of heat conduction for the wall can be expressed as

$$\dot{Q}_{\rm cond, \, wall} = -kA \, \frac{dT}{dx} \quad (W)$$
 (3–2)

where the rate of conduction heat transfer $\dot{Q}_{\text{cond, wall}}$ and the wall area A are constant. Thus dT/dx = constant, which means that the temperature through the wall varies linearly with x. That is, the temperature distribution in the wall under steady conditions is a straight line (Fig. 3–2).

FIGURE 3-1

Heat transfer through a wall is onedimensional when the temperature of the wall varies in one direction only.

FIGURE 3-2

Under steady conditions, the temperature distribution in a plane wall is a straight line. Separating the variables in the preceding equation and integrating from x = 0, where $T(0) = T_1$, to x = L, where $T(L) = T_2$, we get

$$\int_{x=0}^{L} \dot{Q}_{\text{cond, wall}} dx = -\int_{T=T_1}^{T_2} kA dT$$

Performing the integrations and rearranging gives

$$\dot{Q}_{\text{cond, wall}} = kA \frac{T_1 - T_2}{L} \quad \text{(W)}$$
 (3-3)

which is identical to Eq. 1–21. Again, the rate of heat conduction through a plane wall is proportional to the average thermal conductivity, the wall area, and the temperature difference, but is inversely proportional to the wall thickness. Also, once the rate of heat conduction is available, the temperature T(x) at any location x can be determined by replacing T_2 in Eq. 3–3 by T, and L by x.

Thermal Resistance Concept

Equation 3–3 for heat conduction through a plane wall can be rearranged as

$$\dot{Q}_{\text{cond, wall}} = \frac{T_1 - T_2}{R_{\text{wall}}} \quad (W)$$
 (3-4)

where

$$R_{\text{wall}} = \frac{L}{kA} \quad (\text{K/W}) \tag{3-5}$$

is the *thermal resistance* of the wall against heat conduction or simply the **conduction resistance** of the wall. Note that the thermal resistance of a medium depends on the *geometry* and the *thermal properties* of the medium. Note that thermal resistance can also be expressed as $R_{\text{wall}} = \Delta T/\dot{Q}_{\text{cond, wall}}$, which is the ratio of the driving potential ΔT to the corresponding transfer rate $\dot{Q}_{\text{cond, wall}}$.

This equation for heat transfer is analogous to the relation for *electric* current flow I, expressed as

$$I = \frac{\mathbf{V}_1 - \mathbf{V}_2}{R_e} \tag{3-6}$$

where $R_e = L/\sigma_e$ A is the electric resistance and $\mathbf{V}_1 - \mathbf{V}_2$ is the voltage difference across the resistance (σ_e is the electrical conductivity). Thus, the rate of heat transfer through a layer corresponds to the electric current, the thermal resistance corresponds to electrical resistance, and the temperature difference corresponds to voltage difference across the layer (Fig. 3–3).

Consider convection heat transfer from a solid surface of area A_s and temperature T_s to a fluid whose temperature sufficiently far from the surface is T_{∞} , with a convection heat transfer coefficient h. Newton's law of cooling for convection heat transfer rate $\dot{Q}_{\rm conv} = hA_s(T_s - T_{\infty})$ can be rearranged as

$$\dot{Q}_{\rm conv} = \frac{T_s - T_{\infty}}{R_{\rm conv}} \quad (W)$$
 (3-7)

FIGURE 3-3

Analogy between thermal and electrical resistance concepts.

where

$$R_{\text{conv}} = \frac{1}{hA} \quad \text{(K/W)}$$

is the *thermal resistance* of the surface against heat convection, or simply the **convection resistance** of the surface (Fig. 3–4). Note that when the convection heat transfer coefficient is very large $(h \to \infty)$, the convection resistance becomes *zero* and $T_s \approx T_{\infty}$. That is, the surface offers *no resistance to convection*, and thus it does not slow down the heat transfer process. This situation is approached in practice at surfaces where boiling and condensation occur. Also note that the surface does not have to be a plane surface. Equation 3–8 for convection resistance is valid for surfaces of any shape, provided that the assumption of h = constant and uniform is reasonable.

When the wall is surrounded by a gas, the *radiation effects*, which we have ignored so far, can be significant and may need to be considered. The rate of radiation heat transfer between a surface of emissivity ε and area A_s at temperature T_s and the surrounding surfaces at some average temperature T_{surr} can be expressed as

$$\dot{Q}_{\rm rad} = \varepsilon \sigma A_s (T_s^4 - T_{\rm surr}^4) = h_{\rm rad} A_s (T_s - T_{\rm surr}) = \frac{T_s - T_{\rm surr}}{R_{\rm rad}} \quad (W)$$
 (3-9)

where

$$R_{\rm rad} = \frac{1}{h_{\rm rad} A_{\rm s}} \quad (\text{K/W}) \tag{3-10}$$

is the *thermal resistance* of a surface against radiation, or the **radiation resistance**, and

$$h_{\text{rad}} = \frac{\dot{Q}_{\text{rad}}}{A_s(T_s - T_{\text{surr}})} = \varepsilon \sigma(T_s^2 + T_{\text{surr}}^2)(T_s + T_{\text{surr}}) \quad (\text{W/m}^2 \cdot \text{K})$$
 (3-11)

is the **radiation heat transfer coefficient**. Note that both T_s and $T_{\rm surr}$ must be in K in the evaluation of $h_{\rm rad}$. The definition of the radiation heat transfer coefficient enables us to express radiation conveniently in an analogous manner to convection in terms of a temperature difference. But $h_{\rm rad}$ depends strongly on temperature while $h_{\rm conv}$ usually does not.

A surface exposed to the surrounding air involves convection and radiation simultaneously, and the total heat transfer at the surface is determined by adding (or subtracting, if in the opposite direction) the radiation and convection components. The convection and radiation resistances are parallel to each other, as shown in Fig. 3–5, and may cause some complication in the thermal resistance network. When $T_{\text{surr}} \approx T_{\infty}$, the radiation effect can properly be accounted for by replacing h in the convection resistance relation (Eq. 3–8) by

$$h_{\text{combined}} = h_{\text{conv}} + h_{\text{rad}} \quad (\text{W/m}^2 \cdot \text{K})$$
 (3-12)

where h_{combined} is the **combined heat transfer coefficient** discussed in Chapter 1. This way all complications associated with radiation are avoided.

FIGURE 3-4
Schematic for convection resistance
at a surface.

FIGURE 3-5

Schematic for convection and radiation resistances at a surface.

FIGURE 3-6

The thermal resistance network for heat transfer through a plane wall subjected to convection on both sides, and the electrical analogy.

Thermal Resistance Network

Now consider steady one-dimensional heat transfer through a plane wall of thickness L, area A, and thermal conductivity k that is exposed to convection on both sides to fluids at temperatures $T_{\infty 1}$ and $T_{\infty 2}$ with heat transfer coefficients h_1 and h_2 , respectively, as shown in Fig. 3–6. Assuming $T_{\infty 2} < T_{\infty 1}$, the variation of temperature will be as shown in the figure. Note that the temperature varies linearly in the wall, and asymptotically approaches $T_{\infty 1}$ and $T_{\infty 2}$ in the fluids as we move away from the wall.

Under steady conditions we have

$$\begin{pmatrix} \text{Rate of} \\ \text{heat convection} \\ \text{into the wall} \end{pmatrix} = \begin{pmatrix} \text{Rate of} \\ \text{heat conduction} \\ \text{through the wall} \end{pmatrix} = \begin{pmatrix} \text{Rate of} \\ \text{heat convection} \\ \text{from the wall} \end{pmatrix}$$

or

$$\dot{Q} = h_1 A(T_{\infty 1} - T_1) = kA \frac{T_1 - T_2}{L} = h_2 A(T_2 - T_{\infty 2})$$
 (3-13)

which can be rearranged as

$$\dot{Q} = \frac{T_{\infty 1} - T_1}{1/h_1 A} = \frac{T_1 - T_2}{L/kA} = \frac{T_2 - T_{\infty 2}}{1/h_2 A}$$

$$= \frac{T_{\infty 1} - T_1}{R_{\text{conv}, 1}} = \frac{T_1 - T_2}{R_{\text{wall}}} = \frac{T_2 - T_{\infty 2}}{R_{\text{conv}, 2}}$$
(3-14)

Once the rate of heat transfer is calculated, Eq. 3–14 can also be used to determine the intermediate temperatures T_1 or T_2 . Adding the numerators and denominators yields (Fig. 3–7)

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} \quad (W)$$
 (3–15)

where

$$R_{\text{total}} = R_{\text{conv, 1}} + R_{\text{wall}} + R_{\text{conv, 2}} = \frac{1}{h_1 A} + \frac{L}{kA} + \frac{1}{h_2 A}$$
 (K/W) (3-16)

Note that the heat transfer area A is constant for a plane wall, and the rate of heat transfer through a wall separating two media is equal to the overall temperature difference $(T_{\infty 1} - T_{\infty 2})$ divided by the total thermal resistance between the media. Also note that the thermal resistances are in *series*, and the equivalent thermal resistance is determined by simply *adding* the individual resistances, just like the electrical resistances connected in series. Thus, the electrical analogy still applies. We summarize this as the rate of steady heat transfer between two surfaces is equal to the temperature difference divided by the total thermal resistance between those two surfaces.

Another observation that can be made from Eq. 3–15 is that the ratio of the temperature drop to the thermal resistance across any layer is constant, and thus the temperature drop across any layer is proportional to the thermal resistance of the layer. The larger the resistance, the larger the temperature drop. In fact, the equation $\dot{Q} = \Delta T/R$ can be rearranged as

$$\Delta T = \dot{O}R \quad (^{\circ}C) \tag{3-17}$$

which indicates that the *temperature drop* across any layer is equal to the *rate* of heat transfer times the thermal resistance across that layer (Fig. 3–8). You may recall that this is also true for voltage drop across an electrical resistance when the electric current is constant.

It is sometimes convenient to express heat transfer through a medium in an analogous manner to Newton's law of cooling as

$$\dot{Q} = UA \Delta T \quad (W)$$
 (3–18)

where U is the **overall heat transfer coefficient** with the unit W/m²·K. The overall heat transfer coefficient is usually used in heat transfer calculations associated with heat exchangers (Chapter 11). It is also used in heat transfer calculations through windows (Chapter 9), commonly referred to as U-factor. A comparison of Eqs. 3–15 and 3–18 reveals that

$$UA = \frac{1}{R_{\text{total}}} \quad \text{(W/K)}$$

Therefore, for a unit area, the overall heat transfer coefficient is equal to the inverse of the total thermal resistance.

Note that we do not need to know the surface temperatures of the wall in order to evaluate the rate of steady heat transfer through it. All we need to know is the convection heat transfer coefficients and the fluid temperatures

FIGURE 3–7
A useful mathematical identity.

FIGURE 3-8

The temperature drop across a layer is proportional to its thermal resistance.

on both sides of the wall. The *surface temperature* of the wall can be determined as described above using the thermal resistance concept, but by taking the surface at which the temperature is to be determined as one of the terminal surfaces. For example, once \hat{Q} is evaluated, the surface temperature T_1 can be determined from

$$\dot{Q} = \frac{T_{\infty 1} - T_1}{R_{\text{conv}, 1}} = \frac{T_{\infty 1} - T_1}{1/h_1 A}$$
 (3-20)

Multilayer Plane Walls

In practice we often encounter plane walls that consist of several layers of different materials. The thermal resistance concept can still be used to determine the rate of steady heat transfer through such *composite* walls. As you may have already guessed, this is done by simply noting that the conduction resistance of each wall is *LlkA* connected in series, and using the electrical analogy. That is, by dividing the *temperature difference* between two surfaces at known temperatures by the *total thermal resistance* between them.

Consider a plane wall that consists of two layers (such as a brick wall with a layer of insulation). The rate of steady heat transfer through this two-layer composite wall can be expressed as (Fig. 3–9)

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} \tag{3-21}$$

where R_{total} is the total thermal resistance, expressed as

$$R_{\text{total}} = R_{\text{conv}, 1} + R_{\text{wall}, 1} + R_{\text{wall}, 2} + R_{\text{conv}, 2}$$

$$= \frac{1}{h_1 A} + \frac{L_1}{k_1 A} + \frac{L_2}{k_2 A} + \frac{1}{h_2 A}$$
(3-22)

FIGURE 3-9

The thermal resistance network for heat transfer through a two-layer plane wall subjected to convection on both sides. The subscripts 1 and 2 in the $R_{\rm wall}$ relations above indicate the first and the second layers, respectively. We could also obtain this result by following the approach already used for the single-layer case by noting that the rate of steady heat transfer Q through a multilayer medium is constant, and thus it must be the same through each layer. Note from the thermal resistance network that the resistances are *in series*, and thus the *total thermal resistance* is simply the *arithmetic sum* of the individual thermal resistances in the path of heat transfer.

This result for the *two-layer* case is analogous to the *single-layer* case, except that an *additional resistance* is added for the *additional layer*. This result can be extended to plane walls that consist of *three* or *more layers* by adding an *additional resistance* for each *additional layer*.

Once Q is *known*, an unknown surface temperature T_j at any surface or interface j can be determined from

$$\dot{Q} = \frac{T_i - T_j}{R_{\text{total}, i - j}} \tag{3-23}$$

where T_i is a *known* temperature at location i and $R_{\text{total}, i-j}$ is the total thermal resistance between locations i and j. For example, when the fluid temperatures $T_{\infty 1}$ and $T_{\infty 2}$ for the two-layer case shown in Fig. 3–9 are available and Q is calculated from Eq. 3–21, the interface temperature T_2 between the two walls can be determined from (Fig. 3–10)

$$\dot{Q} = \frac{T_{\infty 1} - T_2}{R_{\text{conv}, 1} + R_{\text{wall}, 1}} = \frac{T_{\infty 1} - T_2}{\frac{1}{h_1 A} + \frac{L_1}{k_1 A}}$$
(3-24)

The temperature drop across a layer is easily determined from Eq. 3–17 by multiplying \dot{Q} by the thermal resistance of that layer.

The thermal resistance concept is widely used in practice because it is intuitively easy to understand and it has proven to be a powerful tool in the solution of a wide range of heat transfer problems. But its use is limited to systems through which the rate of heat transfer \dot{Q} remains *constant*; that is, to systems involving *steady* heat transfer with *no heat generation* (such as resistance heating or chemical reactions) within the medium.

EXAMPLE 3-1 Heat Loss through a Wall

Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal conductivity is k=0.9 W/m·K (Fig. 3–11). On a certain day, the temperatures of the inner and the outer surfaces of the wall are measured to be 16°C and 2°C, respectively. Determine the rate of heat loss through the wall on that day.

To find
$$T_1$$
: $\dot{Q} = \frac{T_{\infty 1} - T_1}{R_{\text{conv},1}}$

To find T_2 : $\dot{Q} = \frac{T_{\infty 1} - T_2}{R_{\text{conv},1} + R_{\text{wall},1}}$

To find T_3 : $\dot{Q} = \frac{T_3 - T_{\infty 2}}{R_{\text{conv},2}}$

FIGURE 3-10

The evaluation of the surface and interface temperatures when $T_{\infty 1}$ and $T_{\infty 2}$ are given and Q is calculated.

FIGURE 3–11 Schematic for Example 3–1.

SOLUTION The two surfaces of a wall are maintained at specified temperatures. The rate of heat loss through the wall is to be determined.

Assumptions 1 Heat transfer through the wall is steady since the surface temperatures remain constant at the specified values. 2 Heat transfer is one-dimensional since any significant temperature gradients exist in the direction from the indoors to the outdoors. 3 Thermal conductivity is constant.

Properties The thermal conductivity is given to be $k = 0.9 \text{ W/m} \cdot \text{K}$.

Analysis Noting that heat transfer through the wall is by conduction and the area of the wall is $A=3 \text{ m} \times 5 \text{ m} = 15 \text{ m}^2$, the steady rate of heat transfer through the wall can be determined from Eq. 3–3 to be

$$\dot{Q} = kA \frac{T_1 - T_2}{L} = (0.9 \text{ W/m} \cdot ^{\circ}\text{C})(15 \text{ m}^2) \frac{(16 - 2)^{\circ}\text{C}}{0.3 \text{ m}} = 630 \text{ W}$$

We could also determine the steady rate of heat transfer through the wall by making use of the thermal resistance concept from

$$\dot{Q} = \frac{\Delta T_{\text{wall}}}{R_{\text{wall}}}$$

where

$$R_{\text{wall}} = \frac{L}{kA} = \frac{0.3 \text{ m}}{(0.9 \text{ W/m} \cdot ^{\circ}\text{C})(15 \text{ m}^2)} = 0.02222 ^{\circ}\text{C/W}$$

Substituting, we get

$$\dot{Q} = \frac{(16 - 2)^{\circ} \text{C}}{0.02222^{\circ} \text{C/W}} = 630 \text{ W}$$

Discussion This is the same result obtained earlier. Note that heat conduction through a plane wall with specified surface temperatures can be determined directly and easily without utilizing the thermal resistance concept. However, the thermal resistance concept serves as a valuable tool in more complex heat transfer problems, as you will see in the following examples. Also, the units W/m·°C and W/m·K for thermal conductivity are equivalent, and thus interchangeable. This is also the case for °C and K for temperature differences.

EXAMPLE 3-2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm and a thermal conductivity of $k=0.78~\rm W/m\cdot K$. Determine the steady rate of heat transfer through this glass window and the temperature of its inner surface for a day during which the room is maintained at 20°C while the temperature of the outdoors is -10°C. Take the heat transfer coefficients on the inner and outer surfaces of the window to be $h_1=10~\rm W/m^2\cdot K$ and $h_2=40~\rm W/m^2\cdot K$, which includes the effects of radiation.

SOLUTION Heat loss through a window glass is considered. The rate of heat transfer through the window and the inner surface temperature are to be determined.

Assumptions 1 Heat transfer through the window is steady since the surface temperatures remain constant at the specified values. 2 Heat transfer through the wall is one-dimensional since any significant temperature gradients exist in the direction from the indoors to the outdoors. 3 Thermal conductivity is constant.

Properties The thermal conductivity is given to be $k = 0.78 \text{ W/m} \cdot \text{K}$.

Analysis This problem involves conduction through the glass window and convection at its surfaces, and can best be handled by making use of the thermal resistance concept and drawing the thermal resistance network, as shown in Fig. 3–12. Noting that the area of the window is $A = 0.8 \text{ m} \times 1.5 \text{ m} = 1.2 \text{ m}^2$, the individual resistances are evaluated from their definitions to be

$$R_i = R_{\text{conv, 1}} = \frac{1}{h_1 A} = \frac{1}{(10 \text{ W/m}^2 \cdot \text{K})(1.2 \text{ m}^2)} = 0.08333^{\circ}\text{C/W}$$

$$R_{\text{glass}} = \frac{L}{k A} = \frac{0.008 \text{ m}}{(0.78 \text{ W/m} \cdot \text{K})(1.2 \text{ m}^2)} = 0.00855^{\circ}\text{C/W}$$

$$R_o = R_{\text{conv, 2}} = \frac{1}{h_1 A} = \frac{1}{(40 \text{ W/m}^2 \cdot \text{K})(1.2 \text{ m}^2)} = 0.02083^{\circ}\text{C/W}$$

Noting that all three resistances are in series, the total resistance is

$$R_{\text{total}} = R_{\text{conv, 1}} + R_{\text{glass}} + R_{\text{conv, 2}} = 0.08333 + 0.00855 + 0.02083$$

= 0.1127°C/W

Then the steady rate of heat transfer through the window becomes

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} = \frac{[20 - (-10)]^{\circ}\text{C}}{0.1127^{\circ}\text{C/W}} = 266 \text{ W}$$

Knowing the rate of heat transfer, the inner surface temperature of the window glass can be determined from

$$\dot{Q} = \frac{T_{\infty 1} - T_1}{R_{\text{conv, 1}}} \longrightarrow T_1 = T_{\infty 1} - \dot{Q}R_{\text{conv, 1}}$$

$$= 20^{\circ}\text{C} - (266 \text{ W})(0.08333^{\circ}\text{C/W})$$

$$= -2.2^{\circ}\text{C}$$

Discussion Note that the inner surface temperature of the window glass is -2.2° C even though the temperature of the air in the room is maintained at 20°C. Such low surface temperatures are highly undesirable since they cause the formation of fog or even frost on the inner surfaces of the glass when the humidity in the room is high.

EXAMPLE 3-3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two 4-mm-thick layers of glass ($k=0.78~\text{W/m}\cdot\text{K}$) separated by a 10-mm-wide stagnant air space ($k=0.026~\text{W/m}\cdot\text{K}$). Determine the steady rate of heat

151 CHAPTER 3

FIGURE 3–12 Schematic for Example 3–2.

STEADY HEAT CONDUCTION

FIGURE 3–13 Schematic for Example 3–3.

transfer through this double-pane window and the temperature of its inner surface for a day during which the room is maintained at 20°C while the temperature of the outdoors is -10° C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be $h_1 = 10 \text{ W/m}^2 \cdot \text{K}$ and $h_2 = 40 \text{ W/m}^2 \cdot \text{K}$, which includes the effects of radiation.

SOLUTION A double-pane window is considered. The rate of heat transfer through the window and the inner surface temperature are to be determined. *Analysis* This example problem is identical to the previous one except that the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses that enclose a 10-mm-wide stagnant air space. Therefore, the thermal resistance network of this problem involves two additional conduction resistances corresponding to the two additional layers, as shown in Fig. 3–13. Noting that the area of the window is again $A = 0.8 \text{ m} \times 1.5 \text{ m} = 1.2 \text{ m}^2$, the individual resistances are evaluated from their definitions to be

$$R_i = R_{\text{conv, 1}} = \frac{1}{h_1 A} = \frac{1}{(10 \text{ W/m}^2 \cdot \text{K})(1.2 \text{ m}^2)} = 0.08333^{\circ}\text{C/W}$$

$$R_1 = R_3 = R_{\text{glass}} = \frac{L_1}{k_1 A} = \frac{0.004 \text{ m}}{(0.78 \text{ W/m} \cdot \text{K})(1.2 \text{ m}^2)} = 0.00427^{\circ}\text{C/W}$$

$$R_2 = R_{\text{air}} = \frac{L_2}{k_2 A} = \frac{0.01 \text{ m}}{(0.026 \text{ W/m} \cdot \text{K})(1.2 \text{ m}^2)} = 0.3205^{\circ}\text{C/W}$$

$$R_o = R_{\text{conv, 2}} = \frac{1}{h_2 A} = \frac{1}{(40 \text{ W/m}^2 \cdot \text{K})(1.2 \text{ m}^2)} = 0.02083^{\circ}\text{C/W}$$

Noting that all three resistances are in series, the total resistance is

$$R_{\text{total}} = R_{\text{conv, 1}} + R_{\text{glass, 1}} + R_{\text{air}} + R_{\text{glass, 2}} + R_{\text{conv, 2}}$$

= 0.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083
= 0.4332°C/W

Then the steady rate of heat transfer through the window becomes

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} = \frac{[20 - (-10)]^{\circ}\text{C}}{0.4332^{\circ}\text{C/W}} = 69.2 \text{ W}$$

which is about one-fourth of the result obtained in the previous example. This explains the popularity of the double- and even triple-pane windows in cold climates. The drastic reduction in the heat transfer rate in this case is due to the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

$$T_1 = T_{\infty 1} - \dot{Q}R_{\text{conv, 1}} = 20^{\circ}\text{C} - (69.2 \text{ W})(0.08333^{\circ}\text{C/W}) = 14.2^{\circ}\text{C}$$

which is considerably higher than the -2.2°C obtained in the previous example. Therefore, a double-pane window will rarely get fogged. A double-pane window will also reduce the heat gain in summer, and thus reduce the airconditioning costs.

(b) Actual (imperfect) thermal contact

FIGURE 3-14

Temperature distribution and heat flow lines along two solid plates pressed against each other for the case of perfect and imperfect contact.

3-2 • THERMAL CONTACT RESISTANCE

In the analysis of heat conduction through multilayer solids, we assumed "perfect contact" at the interface of two layers, and thus no temperature drop at the interface. This would be the case when the surfaces are perfectly smooth and they produce a perfect contact at each point. In reality, however, even flat surfaces that appear smooth to the eye turn out to be rather rough when examined under a microscope, as shown in Fig. 3–14, with numerous peaks and valleys. That is, a surface is *microscopically rough* no matter how smooth it appears to be.

When two such surfaces are pressed against each other, the peaks form good material contact but the valleys form voids filled with air in most cases. As a result, an interface contains numerous $air\ gaps$ of varying sizes that act as insulation because of the low thermal conductivity of air. Thus, an interface offers some resistance to heat transfer, and this resistance for a unit interface area is called the **thermal contact resistance**, R_c . The value of R_c is determined experimentally using a setup like the one shown in Fig. 3–15, and as expected, there is considerable scatter of data because of the difficulty in characterizing the surfaces.

Consider heat transfer through two metal rods of cross-sectional area *A* that are pressed against each other. Heat transfer through the interface of these two rods is the sum of the heat transfers through the *solid contact spots* (solid-to-solid conduction) and the *gaps* (conduction and/or radiation across the gaps) in the noncontact areas (which is a major contributor to heat transfer) and can be expressed as

$$\dot{Q} = \dot{Q}_{\mathrm{contact}} + \dot{Q}_{\mathrm{gap}}$$
 (3–25)

It can also be expressed in an analogous manner to Newton's law of cooling as

$$\dot{Q} = h_c A \, \Delta T_{\text{interface}} \tag{3-26}$$

FIGURE 3-15

A typical experimental setup for the determination of thermal contact resistance.

From Song et al., 1993.

where A is the apparent interface area (which is the same as the cross-sectional area of the rods) and $\Delta T_{\rm interface}$ is the effective temperature difference at the interface. The quantity h_c , which corresponds to the convection heat transfer coefficient, is called the **thermal contact conductance** and is expressed as

$$h_c = \frac{\dot{Q}/A}{\Delta T_{\text{interfero}}} \quad (\text{W/m}^2 \cdot \text{K})$$
 (3–27)

It is related to thermal contact resistance by

$$R_c = \frac{1}{h_c} = \frac{\Delta T_{\text{interface}}}{\dot{Q}/A} \quad (\text{m}^2 \cdot \text{K/W})$$
 (3–28)

That is, thermal contact resistance is the inverse of thermal contact conductance. Usually, thermal contact conductance is reported in the literature, but the concept of thermal contact resistance serves as a better vehicle for explaining the effect of interface on heat transfer. Note that R_c represents thermal contact resistance for a *unit area*. The thermal resistance for the entire interface is obtained by dividing R_c by the apparent interface area A.

The thermal contact resistance can be determined from Eq. 3–28 by measuring the temperature drop at the interface and dividing it by the heat flux under steady conditions. The value of thermal contact resistance depends on the *surface roughness* and the *material properties* as well as the *temperature* and *pressure* at the interface and the *type of fluid* trapped at the interface. The situation becomes more complex when plates are fastened by bolts, screws, or rivets since the interface pressure in this case is nonuniform. The thermal contact resistance in that case also depends on the plate thickness, the bolt radius, and the size of the contact zone. Thermal contact resistance is observed to *decrease* with *decreasing surface roughness* and *increasing interface pressure*, as expected. Most experimentally determined values of the thermal contact resistance fall between 0.000005 and 0.0005 m²·K/W (the corresponding range of thermal contact conductance is 2000 to 200,000 W/m²·K).

When we analyze heat transfer in a medium consisting of two or more layers, the first thing we need to know is whether the thermal contact resistance is *significant* or not. We can answer this question by comparing the magnitudes of the thermal resistances of the layers with typical values of thermal contact resistance. For example, the thermal resistance of a 1-cm-thick layer of an insulating material for a unit surface area is

$$R_{c, \text{ insulation}} = \frac{L}{k} = \frac{0.01 \text{ m}}{0.04 \text{ W/m·K}} = 0.25 \text{ m}^2 \cdot \text{K/W}$$

whereas for a 1-cm-thick layer of copper, it is

$$R_{c, \text{ copper}} = \frac{L}{k} = \frac{0.01 \text{ m}}{386 \text{ W/m} \cdot \text{K}} = 0.000026 \text{ m}^2 \cdot \text{K/W}$$

Comparing the values above with typical values of thermal contact resistance, we conclude that thermal contact resistance is significant and can even dominate the heat transfer for good heat conductors such as metals, but can be

disregarded for poor heat conductors such as insulations. This is not surprising since insulating materials consist mostly of air space just like the interface itself.

The thermal contact resistance can be minimized by applying a thermally conducting liquid called a *thermal grease* such as silicon oil on the surfaces before they are pressed against each other. This is commonly done when attaching electronic components such as power transistors to heat sinks. The thermal contact resistance can also be reduced by replacing the air at the interface by a *better conducting gas* such as helium or hydrogen, as shown in Table 3–1.

Another way to minimize the contact resistance is to insert a *soft metallic foil* such as tin, silver, copper, nickel, or aluminum between the two surfaces. Experimental studies show that the thermal contact resistance can be reduced by a factor of up to 7 by a metallic foil at the interface. For maximum effectiveness, the foils must be very thin. The effect of metallic coatings on thermal contact conductance is shown in Fig. 3–16 for various metal surfaces.

There is considerable uncertainty in the contact conductance data reported in the literature, and care should be exercised when using them. In Table 3–2 some experimental results are given for the contact conductance between similar and dissimilar metal surfaces for use in preliminary design calculations. Note that the *thermal contact conductance* is *highest* (and thus the contact resistance is lowest) for *soft metals* with *smooth surfaces* at *high pressure*.

EXAMPLE 3-4 Equivalent Thickness for Contact Resistance

The thermal contact conductance at the interface of two 1-cm-thick aluminum plates is measured to be $11,000 \text{ W/m}^2 \cdot \text{K}$. Determine the thickness of the aluminum plate whose thermal resistance is equal to the thermal resistance of the interface between the plates (Fig. 3–17).

SOLUTION The thickness of the aluminum plate whose thermal resistance is equal to the thermal contact resistance is to be determined.

Properties The thermal conductivity of aluminum at room temperature is $k = 237 \text{ W/m} \cdot \text{K}$ (Table A–3).

Analysis Noting that thermal contact resistance is the inverse of thermal contact conductance, the thermal contact resistance is

$$R_c = \frac{1}{h_c} = \frac{1}{11,000 \text{ W/m}^2 \cdot \text{K}} = 0.909 \times 10^{-4} \text{ m}^2 \cdot \text{K/W}$$

For a unit surface area, the thermal resistance of a flat plate is defined as

$$R = \frac{L}{k}$$

where L is the thickness of the plate and k is the thermal conductivity. Setting $R=R_c$, the equivalent thickness is determined from the relation above to be

$$L = kR_c = (237 \text{ W/m} \cdot \text{K})(0.909 \times 10^{-4} \text{ m}^2 \cdot \text{K/W}) = 0.0215 \text{ m} = 2.15 \text{ cm}$$

TABLE 3-1

Thermal contact conductance for aluminum plates with different fluids at the interface for a surface roughness of 10 µm and interface pressure of 1 atm (from Fried, 1969).

Fluid at the interface	Contact conductance, h_c , W/m ² ·K		
Air	3640		
Helium	9520		
Hydrogen	13,900		
Silicone oil	19,000		
Glycerin	37,700		

FIGURE 3-16

Effect of metallic coatings on thermal contact conductance.

From Peterson, 1987.

TABLE 3-2

Thermal contact conductance of some metal surfaces in air (from various sources)

Material	Surface condition	Roughness, μm	Temperature, °C	Pressure, MPa	$h_c,^*$ W/m 2 ·K
Identical Metal Pairs			·		
416 Stainless steel	Ground	2.54	90–200	0.17-2.5	3800
304 Stainless steel	Ground	1.14	20	4–7	1900
Aluminum	Ground	2.54	150	1.2-2.5	11,400
Copper	Ground	1.27	20	1.2-20	143,000
Copper	Milled	3.81	20	1–5	55,500
Copper (vacuum)	Milled	0.25	30	0.17–7	11,400
Dissimilar Metal Pairs					
Stainless steel-				10	2900
Aluminum		20–30	20	20	3600
Stainless steel-				10	16,400
Aluminum		1.0-2.0	20	20	20,800
Steel Ct-30-				10	50,000
Aluminum	Ground	1.4-2.0	20	15–35	59,000
Steel Ct-30-				10	4800
Aluminum	Milled	4.5-7.2	20	30	8300
				5	42,000
Aluminum-Copper Gro	Ground	1.17-1.4	20	15	56,000
				10	12,000
Aluminum-Copper	Milled	4.4–4.5	20	20–35	22,000

^{*}Divide the given values by 5.678 to convert to Btu/h·ft².°F.

FIGURE 3–17 Schematic for Example 3–4.

Discussion Note that the interface between the two plates offers as much resistance to heat transfer as a 2.15-cm-thick aluminum plate. It is interesting that the thermal contact resistance in this case is greater than the sum of the thermal resistances of both plates.

EXAMPLE 3-5 Contact Resistance of Transistors

Four identical power transistors with aluminum casing are attached on one side of a 1-cm-thick 20-cm \times 20-cm square copper plate ($k=386~\text{W/m}\cdot\text{K})$ by screws that exert an average pressure of 6 MPa (Fig. 3–18). The base area of each transistor is 8 cm², and each transistor is placed at the center of a 10-cm \times 10-cm quarter section of the plate. The interface roughness is estimated to be about 1.5 μm . All transistors are covered by a thick Plexiglas layer, which is a poor conductor of heat, and thus all the heat generated at the junction of the transistor must be dissipated to the ambient at 20°C through the back surface of the copper plate. The combined convection/radiation heat transfer coefficient at the back surface can be taken to be 25 W/m²-K. If the case temperature

of the transistor is not to exceed 70°C, determine the maximum power each transistor can dissipate safely, and the temperature jump at the case-plate interface.

SOLUTION Four identical power transistors are attached on a copper plate. For a maximum case temperature of 70°C, the maximum power dissipation and the temperature jump at the interface are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer can be approximated as being one-dimensional, although it is recognized that heat conduction in some parts of the plate will be two-dimensional since the plate area is much larger than the base area of the transistor. But the large thermal conductivity of copper will minimize this effect. 3 All the heat generated at the junction is dissipated through the back surface of the plate since the transistors are covered by a thick Plexiglas layer. 4 Thermal conductivities are constant.

Properties The thermal conductivity of copper is given to be $k=386 \text{ W/m} \cdot \text{K}$. The contact conductance is obtained from Table 3–2 to be $h_c=42,000 \text{ W/m}^2 \cdot \text{K}$, which corresponds to copper-aluminum interface for the case of $1.17-1.4 \mu \text{m}$ roughness and 5 MPa pressure, which is sufficiently close to what we have.

Analysis The contact area between the case and the plate is given to be 8 cm², and the plate area for each transistor is 100 cm². The thermal resistance network of this problem consists of three resistances in series (interface, plate, and convection), which are determined to be

$$R_{\text{interface}} = \frac{1}{h_c A_c} = \frac{1}{(42,000 \text{ W/m}^2 \cdot \text{K})(8 \times 10^{-4} \text{ m}^2)} = 0.030^{\circ}\text{C/W}$$

$$R_{\text{plate}} = \frac{L}{kA} = \frac{0.01 \text{ m}}{(386 \text{ W/m} \cdot \text{K})(0.01 \text{ m}^2)} = 0.0026^{\circ}\text{C/W}$$

$$R_{\text{conv}} = \frac{1}{h \cdot A} = \frac{1}{(25 \text{ W/m}^2 \cdot \text{K})(0.01 \text{ m}^2)} = 4.0^{\circ}\text{C/W}$$

The total thermal resistance is then

$$R_{\text{total}} = R_{\text{interface}} + R_{\text{plate}} + R_{\text{ambient}} = 0.030 + 0.0026 + 4.0 = 4.0326$$
°C/W

Note that the thermal resistance of a copper plate is very small and can be ignored altogether. Then the rate of heat transfer is determined to be

$$\dot{Q} = \frac{\Delta T}{R_{\text{total}}} = \frac{(70 - 20)^{\circ}\text{C}}{4.0326^{\circ}\text{C/W}} = 12.4 \text{ W}$$

Therefore, the power transistor should not be operated at power levels greater than 12.4 W if the case temperature is not to exceed 70°C.

The temperature jump at the interface is determined from

$$\Delta T_{\text{interface}} = \dot{Q}R_{\text{interface}} = (12.4 \text{ W})(0.030^{\circ}\text{C/W}) = 0.37^{\circ}\text{C}$$

which is not very large. Therefore, even if we eliminate the thermal contact resistance at the interface completely, we lower the operating temperature of the transistor in this case by less than 0.4°C.

157 CHAPTER 3

FIGURE 3–18 Schematic for Example 3–5.

158 STEADY HEAT CONDUCTION

FIGURE 3-19

Thermal resistance network for two parallel layers.

FIGURE 3-20

Thermal resistance network for combined series-parallel arrangement.

3-3 • GENERALIZED THERMAL RESISTANCE NETWORKS

The *thermal resistance* concept or the *electrical analogy* can also be used to solve steady heat transfer problems that involve parallel layers or combined series-parallel arrangements. Although such problems are often two- or even three-dimensional, approximate solutions can be obtained by assuming one-dimensional heat transfer and using the thermal resistance network.

Consider the composite wall shown in Fig. 3–19, which consists of two parallel layers. The thermal resistance network, which consists of two parallel resistances, can be represented as shown in the figure. Noting that the total heat transfer is the sum of the heat transfers through each layer, we have

$$\dot{Q} = \dot{Q}_1 + \dot{Q}_2 = \frac{T_1 - T_2}{R_1} + \frac{T_1 - T_2}{R_2} = (T_1 - T_2) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
 (3-29)

Utilizing electrical analogy, we get

$$\dot{Q} = \frac{T_1 - T_2}{R_{\text{total}}}$$
 (3–30)

where

$$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} \longrightarrow R_{\text{total}} = \frac{R_1 R_2}{R_1 + R_2}$$
 (3-31)

since the resistances are in parallel.

Now consider the combined series-parallel arrangement shown in Fig. 3–20. The total rate of heat transfer through this composite system can again be expressed as

$$\dot{Q} = \frac{T_1 - T_{\infty}}{R_{\text{total}}} \tag{3-32}$$

where

$$R_{\text{total}} = R_{12} + R_3 + R_{\text{conv}} = \frac{R_1 R_2}{R_1 + R_2} + R_3 + R_{\text{conv}}$$
 (3-33)

and

$$R_1 = \frac{L_1}{k_1 A_1}$$
 $R_2 = \frac{L_2}{k_2 A_2}$ $R_3 = \frac{L_3}{k_3 A_3}$ $R_{\text{conv}} = \frac{1}{h A_3}$ (3-34)

Once the individual thermal resistances are evaluated, the total resistance and the total rate of heat transfer can easily be determined from the relations above.

The result obtained is somewhat approximate, since the surfaces of the third layer are probably not isothermal, and heat transfer between the first two layers is likely to occur.

Two assumptions commonly used in solving complex multidimensional heat transfer problems by treating them as one-dimensional (say, in the *x*-direction) using the thermal resistance network are (1) any plane wall normal to the *x*-axis is *isothermal* (i.e., to assume the temperature to vary in the *x*-direction only) and (2) any plane parallel to the *x*-axis is *adiabatic* (i.e., to assume heat transfer to occur in the *x*-direction only). These two assumptions result in different resistance networks, and thus different (but usually close) values for the total thermal resistance and thus heat transfer. The actual result lies between these two values. In geometries in which heat transfer occurs predominantly in one direction, either approach gives satisfactory results.

EXAMPLE 3-6 Heat Loss through a Composite Wall

A 3-m-high and 5-m-wide wall consists of long 16-cm \times 22-cm cross section horizontal bricks ($k=0.72~\rm W/m\cdot K$) separated by 3-cm-thick plaster layers ($k=0.22~\rm W/m\cdot K$). There are also 2-cm-thick plaster layers on each side of the brick and a 3-cm-thick rigid foam ($k=0.026~\rm W/m\cdot K$) on the inner side of the wall, as shown in Fig. 3–21. The indoor and the outdoor temperatures are 20°C and $-10°\rm C$, respectively, and the convection heat transfer coefficients on the inner and the outer sides are $h_1=10~\rm W/m^2\cdot K$ and $h_2=25~\rm W/m^2\cdot K$, respectively. Assuming one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall.

SOLUTION The composition of a composite wall is given. The rate of heat transfer through the wall is to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of change with time. 2 Heat transfer can be approximated as being one-dimensional since it is predominantly in the *x*-direction. 3 Thermal conductivities are constant. 4 Heat transfer by radiation is negligible.

Properties The thermal conductivities are given to be $k = 0.72 \text{ W/m} \cdot \text{K}$ for bricks, $k = 0.22 \text{ W/m} \cdot \text{K}$ for plaster layers, and $k = 0.026 \text{ W/m} \cdot \text{K}$ for the rigid foam.

Analysis There is a pattern in the construction of this wall that repeats itself every 25-cm distance in the vertical direction. There is no variation in the horizontal direction. Therefore, we consider a 1-m-deep and 0.25-m-high portion of the wall, since it is representative of the entire wall.

Assuming any cross section of the wall normal to the *x*-direction to be *isothermal*, the thermal resistance network for the representative section of the wall becomes as shown in Fig. 3–21. The individual resistances are evaluated as:

$$R_{i} = R_{\text{conv, 1}} = \frac{1}{h_{1}A} = \frac{1}{(10 \text{ W/m}^{2} \cdot \text{K})(0.25 \times 1 \text{ m}^{2})} = 0.40^{\circ}\text{C/W}$$

$$R_{1} = R_{\text{foam}} = \frac{L}{kA} = \frac{0.03 \text{ m}}{(0.026 \text{ W/m} \cdot \text{K})(0.25 \times 1 \text{ m}^{2})} = 4.62^{\circ}\text{C/W}$$

$$R_{2} = R_{6} = R_{\text{plaster, side}} = \frac{L}{kA} = \frac{0.02 \text{ m}}{(0.22 \text{ W/m} \cdot \text{K})(0.25 \times 1 \text{ m}^{2})}$$

$$= 0.36^{\circ}\text{C/W}$$

$$R_{3} = R_{5} = R_{\text{plaster, center}} = \frac{L}{kA} = \frac{0.16 \text{ m}}{(0.22 \text{ W/m} \cdot \text{K})(0.015 \times 1 \text{ m}^{2})}$$

$$= 48.48^{\circ}\text{C/W}$$

FIGURE 3–21 Schematic for Example 3–6.

$$R_4 = R_{\text{brick}} = \frac{L}{kA} = \frac{0.16 \text{ m}}{(0.72 \text{ W/m·K})(0.22 \times 1 \text{ m}^2)} = 1.01^{\circ}\text{C/W}$$

$$R_o = R_{\text{conv}, 2} = \frac{1}{h_2 A} = \frac{1}{(25 \text{ W/m}^2 \cdot \text{K})(0.25 \times 1 \text{ m}^2)} = 0.16 \text{°C/W}$$

The three resistances R_3 , R_4 , and R_5 in the middle are parallel, and their equivalent resistance is determined from

$$\frac{1}{R_{\text{mid}}} = \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} = \frac{1}{48.48} + \frac{1}{1.01} + \frac{1}{48.48} = 1.03 \text{ W/°C}$$

which gives

$$R_{\rm mid} = 0.97^{\circ} {\rm C/W}$$

Now all the resistances are in series, and the total resistance is

$$R_{\text{total}} = R_i + R_1 + R_2 + R_{\text{mid}} + R_6 + R_o$$

= 0.40 + 4.62 + 0.36 + 0.97 + 0.36 + 0.16
= 6.87°C/W

Then the steady rate of heat transfer through the wall becomes

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} = \frac{[20 - (-10)]^{\circ}\text{C}}{6.87^{\circ}\text{C/W}} = 4.37 \text{ W} \text{ (per 0.25 m}^2 \text{ surface area)}$$

or 4.37/0.25 = 17.5 W per m² area. The total area of the wall is A=3 m \times 5 m = 15 m². Then the rate of heat transfer through the entire wall becomes

$$\dot{Q}_{\text{total}} = (17.5 \text{ W/m}^2)(15 \text{ m}^2) = 263 \text{ W}$$

Of course, this result is approximate, since we assumed the temperature within the wall to vary in one direction only and ignored any temperature change (and thus heat transfer) in the other two directions.

Discussion In the above solution, we assumed the temperature at any cross section of the wall normal to the *x*-direction to be *isothermal*. We could also solve this problem by going to the other extreme and assuming the surfaces parallel to the *x*-direction to be *adiabatic*. The thermal resistance network in this case will be as shown in Fig. 3–22. By following the approach outlined above, the total thermal resistance in this case is determined to be $R_{\text{total}} = 6.97^{\circ}\text{C/W}$, which is very close to the value 6.85°C/W obtained before. Thus either approach gives roughly the same result in this case. This example demonstrates that either approach can be used in practice to obtain satisfactory results.

FIGURE 3–22

Alternative thermal resistance network for Example 3–6 for the case of surfaces parallel to the primary direction of heat transfer being adiabatic.

3-4 • HEAT CONDUCTION IN CYLINDERS AND SPHERES

Consider steady heat conduction through a hot-water pipe. Heat is continuously lost to the outdoors through the wall of the pipe, and we intuitively feel that heat transfer through the pipe is in the normal direction to the pipe surface and no significant heat transfer takes place in the pipe in other directions (Fig. 3–23). The wall of the pipe, whose thickness is rather small, separates two fluids at different temperatures, and thus the temperature gradient in the radial direction is relatively large. Further, if the fluid temperatures inside and outside the pipe remain constant, then heat transfer through the pipe is *steady*. Thus heat transfer through the pipe can be modeled as *steady* and *one-dimensional*. The temperature of the pipe in this case depends on one direction only (the radial r-direction) and can be expressed as T = T(r). The temperature is independent of the azimuthal angle or the axial distance. This situation is approximated in practice in long cylindrical pipes and spherical containers.

In *steady* operation, there is no change in the temperature of the pipe with time at any point. Therefore, the rate of heat transfer into the pipe must be equal to the rate of heat transfer out of it. In other words, heat transfer through the pipe must be constant, $\dot{Q}_{\rm cond,\,cyl} = {\rm constant}$.

Consider a long cylindrical layer (such as a circular pipe) of inner radius r_1 , outer radius r_2 , length L, and average thermal conductivity k (Fig. 3–24). The two surfaces of the cylindrical layer are maintained at constant temperatures T_1 and T_2 . There is no heat generation in the layer and the thermal conductivity is constant. For one-dimensional heat conduction through the cylindrical layer, we have T(r). Then Fourier's law of heat conduction for heat transfer through the cylindrical layer can be expressed as

$$\dot{Q}_{\rm cond, \, cyl} = -kA \, \frac{dT}{dr} \quad (W)$$
 (3–35)

where $A = 2\pi rL$ is the heat transfer area at location r. Note that A depends on r, and thus it *varies* in the direction of heat transfer. Separating the variables in the above equation and integrating from $r = r_1$, where $T(r_1) = T_1$, to $r = r_2$, where $T(r_2) = T_2$, gives

$$\int_{r=r_1}^{r_2} \frac{\dot{Q}_{\text{cond, cyl}}}{A} dr = -\int_{T=T_1}^{T_2} k \, dT$$
 (3-36)

Substituting $A = 2\pi rL$ and performing the integrations give

$$\dot{Q}_{\text{cond, cyl}} = 2\pi L k \frac{T_1 - T_2}{\ln(r_2/r_1)}$$
 (W) (3-37)

since $\dot{Q}_{\rm cond,\,cyl}$ = constant. This equation can be rearranged as

$$\dot{Q}_{\text{cond, cyl}} = \frac{T_1 - T_2}{R_{\text{cyl}}}$$
 (W) (3–38)

where

$$R_{\rm cyl} = \frac{\ln(r_2/r_1)}{2\pi Lk} = \frac{\ln({\rm Outer\ radius/Inner\ radius})}{2\pi\times {\rm Length}\times {\rm Thermal\ conductivity}}$$
 (3–39)

FIGURE 3-23

Heat is lost from a hot-water pipe to the air outside in the radial direction, and thus heat transfer from a long pipe is one-dimensional.

RE 3-24

A long cylindrical pipe (or spherical shell) with specified inner and outer surface temperatures T_1 and T_2 .

FIGURE 3-25

The thermal resistance network for a cylindrical (or spherical) shell subjected to convection from both the inner and the outer sides. is the *thermal resistance* of the cylindrical layer against heat conduction, or simply the *conduction resistance* of the cylinder layer. Note that Eq. 3–37 is identical to Eq. 2–59 which was obtained by using the "standard" approach by first solving the heat conduction equation in cylindrical coordinates, Eq. 2–29, to obtain the temperature distribution, Eq. 2–58, and then using the Fourier's law to obtain the heat transfer rate. The method used in obtaining Eq. 3–37 can be considered an "alternative" approach. However, it is restricted to one-dimensional steady heat conduction with no heat generation.

We can repeat the analysis for a *spherical layer* by taking $A = 4\pi r^2$ and performing the integrations in Eq. 3–36. The result can be expressed as

$$\dot{Q}_{\text{cond, sph}} = \frac{T_1 - T_2}{R_{\text{sph}}} \tag{3-40}$$

where

$$R_{\rm sph} = \frac{r_2 - r_1}{4\pi r_1 r_2 k} = \frac{{\rm Outer\ radius\ - \ Inner\ radius}}{4\pi ({\rm Outer\ radius}) ({\rm Inner\ radius}) ({\rm Thermal\ conductivity})} \tag{3-41}$$

is the *thermal resistance* of the spherical layer against heat conduction, or simply the *conduction resistance* of the spherical layer. Note also that Eq. 3–40 is identical to Eq. 2–61 which was obtained by solving the heat conduction equation in spherical coordinates.

Now consider steady one-dimensional heat transfer through a cylindrical or spherical layer that is exposed to convection on both sides to fluids at temperatures $T_{\infty 1}$ and $T_{\infty 2}$ with heat transfer coefficients h_1 and h_2 , respectively, as shown in Fig. 3–25. The thermal resistance network in this case consists of one conduction and two convection resistances in series, just like the one for the plane wall, and the rate of heat transfer under steady conditions can be expressed as

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} \tag{3-42}$$

where

$$R_{\text{total}} = R_{\text{conv}, 1} + R_{\text{cyl}} + R_{\text{conv}, 2}$$

$$= \frac{1}{(2\pi r_1 L)h_1} + \frac{\ln(r_2/r_1)}{2\pi Lk} + \frac{1}{(2\pi r_2 L)h_2}$$
(3-43)

for a cylindrical layer, and

$$R_{\text{total}} = R_{\text{conv}, 1} + R_{\text{sph}} + R_{\text{conv}, 2}$$

$$= \frac{1}{(4\pi r_1^2)h_1} + \frac{r_2 - r_1}{4\pi r_1 r_2 k} + \frac{1}{(4\pi r_2^2)h_2}$$
(3-44)

for a spherical layer. Note that A in the convection resistance relation $R_{\rm conv}=1/hA$ is the surface area at which convection occurs. It is equal to $A=2\pi rL$ for a cylindrical surface and $A=4\pi r^2$ for a spherical surface of radius r. Also note that the thermal resistances are in series, and thus the total thermal resistance is determined by simply adding the individual resistances, just like the electrical resistances connected in series.

Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells can be handled just like multilayered plane walls discussed earlier by simply adding an *additional resistance* in series for each *additional layer*. For example, the steady heat transfer rate through the three-layered composite cylinder of length L shown in Fig. 3–26 with convection on both sides can be expressed as

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} \tag{3-45}$$

where R_{total} is the *total thermal resistance*, expressed as

$$\begin{split} R_{\text{total}} &= R_{\text{conv, 1}} + R_{\text{cyl, 1}} + R_{\text{cyl, 2}} + R_{\text{cyl, 3}} + R_{\text{conv, 2}} \\ &= \frac{1}{h_1 A_1} + \frac{\ln(r_2/r_1)}{2\pi L k_1} + \frac{\ln(r_3/r_2)}{2\pi L k_2} + \frac{\ln(r_4/r_3)}{2\pi L k_3} + \frac{1}{h_2 A_4} \end{split} \tag{3-46}$$

where $A_1 = 2\pi r_1 L$ and $A_4 = 2\pi r_4 L$. Equation 3–46 can also be used for a three-layered spherical shell by replacing the thermal resistances of cylindrical layers by the corresponding spherical ones. Again, note from the thermal resistance network that the resistances are in series, and thus the total thermal resistance is simply the *arithmetic sum* of the individual thermal resistances in the path of heat flow.

Once \dot{Q} is known, we can determine any intermediate temperature T_j by applying the relation $\dot{Q}=(T_i-T_j)/R_{\text{total},\ i-j}$ across any layer or layers such that T_i is a *known* temperature at location i and $R_{\text{total},\ i-j}$ is the total thermal resistance between locations i and j (Fig. 3–27). For example, once \dot{Q} has been calculated, the interface temperature T_2 between the first and second cylindrical layers can be determined from

FIGURE 3-26

The thermal resistance network for heat transfer through a three-layered composite cylinder subjected to convection on both sides.

$$\begin{split} \dot{Q} &= \frac{T_{\infty 1} - T_1}{R_{\text{conv},1}} \\ &= \frac{T_{\infty 1} - T_2}{R_{\text{conv},1} + R_1} \\ &= \frac{T_1 - T_3}{R_1 + R_2} \\ &= \frac{T_2 - T_3}{R_2} \\ &= \frac{T_2 - T_{\infty 2}}{R_2 + R_{\text{conv},2}} \end{split}$$

FIGURE 3-27

The ratio $\Delta T/R$ across any layer is equal to \dot{Q} , which remains constant in one-dimensional steady conduction.

FIGURE 3–28 Schematic for Example 3–7.

$$\dot{Q} = \frac{T_{\infty 1} - T_2}{R_{\text{conv}, 1} + R_{\text{cyl}, 1}} = \frac{T_{\infty 1} - T_2}{\frac{1}{h_1(2\pi r_1 L)} + \frac{\ln(r_2/r_1)}{2\pi Lk_2}}$$
(3-47)

We could also calculate T_2 from

$$\dot{Q} = \frac{T_2 - T_{\infty 2}}{R_2 + R_3 + R_{\text{conv}, 2}} = \frac{T_2 - T_{\infty 2}}{\frac{\ln(r_3/r_2)}{2\pi L k_2} + \frac{\ln(r_4/r_3)}{2\pi L k_2} + \frac{1}{h_*(2\pi r_4 L)}}$$
(3-48)

Although both relations give the same result, we prefer the first one since it involves fewer terms and thus less work.

The thermal resistance concept can also be used for *other geometries*, provided that the proper conduction resistances and the proper surface areas in convection resistances are used.

EXAMPLE 3-7 Heat Transfer to a Spherical Container

A 3-m internal diameter spherical tank made of 2-cm-thick stainless steel ($k=15~\text{W/m}\cdot\text{K}$) is used to store iced water at $T_{\infty 1}=0^{\circ}\text{C}$. The tank is located in a room whose temperature is $T_{\infty 2}=22^{\circ}\text{C}$. The walls of the room are also at 22°C. The outer surface of the tank is black and heat transfer between the outer surface of the tank and the surroundings is by natural convection and radiation. The convection heat transfer coefficients at the inner and the outer surfaces of the tank are $h_1=80~\text{W/m}^2\cdot\text{K}$ and $h_2=10~\text{W/m}^2\cdot\text{K}$, respectively. Determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that melts during a 24-h period.

SOLUTION A spherical container filled with iced water is subjected to convection and radiation heat transfer at its outer surface. The rate of heat transfer and the amount of ice that melts per day are to be determined.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at the boundaries do not change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the midpoint. 3 Thermal conductivity is constant.

Properties The thermal conductivity of steel is given to be k=15 W/m·K. The heat of fusion of water at atmospheric pressure is $h_{if}=333.7$ kJ/kg. The outer surface of the tank is black and thus its emissivity is $\varepsilon=1$.

Analysis (a) The thermal resistance network for this problem is given in Fig. 3–28. Noting that the inner diameter of the tank is $D_1=3$ m and the outer diameter is $D_2=3.04$ m, the inner and the outer surface areas of the tank are

$$A_1 = \pi D_1^2 = \pi (3 \text{ m})^2 = 28.3 \text{ m}^2$$

 $A_2 = \pi D_2^2 = \pi (3.04 \text{ m})^2 = 29.0 \text{ m}^2$

Also, the radiation heat transfer coefficient is given by

$$h_{\rm rad} = \varepsilon \sigma (T_2^2 + T_{\infty 2}^2) (T_2 + T_{\infty 2})$$

But we do not know the outer surface temperature T_2 of the tank, and thus we cannot calculate h_{rad} . Therefore, we need to assume a T_2 value now and check

the accuracy of this assumption later. We will repeat the calculations if necessary using a revised value for T_2 .

We note that T_2 must be between 0°C and 22°C, but it must be closer to 0°C, since the heat transfer coefficient inside the tank is much larger. Taking $T_2 = 5$ °C = 278 K, the radiation heat transfer coefficient is determined to be

$$h_{\text{rad}} = (1)(5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4)[(295 \text{ K})^2 + (278 \text{ K})^2][(295 + 278) \text{ K}]$$

= 5.34 W/m²·K = 5.34 W/m²·°C

Then the individual thermal resistances become

$$R_i = R_{\text{conv, 1}} = \frac{1}{h_1 A_1} = \frac{1}{(80 \text{ W/m}^2 \cdot \text{K})(28.3 \text{ m}^2)} = 0.000442 \text{°C/W}$$

$$R_1 = R_{\text{sphere}} = \frac{r_2 - r_1}{4\pi k r_1 r_2} = \frac{(1.52 - 1.50) \text{ m}}{4\pi (15 \text{ W/m·K})(1.52 \text{ m})(1.50 \text{ m})}$$

$$= 0.000047$$
°C/W

$$R_o = R_{\text{conv}, 2} = \frac{1}{h_2 A_2} = \frac{1}{(10 \text{ W/m}^2 \cdot \text{K})(29.0 \text{ m}^2)} = 0.00345 \text{°C/W}$$

$$R_{\text{rad}} = \frac{1}{h_{\text{rad}} A_2} = \frac{1}{(5.34 \text{ W/m}^2 \cdot \text{K})(29.0 \text{ m}^2)} = 0.00646 \text{°C/W}$$

The two parallel resistances R_o and $R_{\rm rad}$ can be replaced by an equivalent resistance $R_{\rm equiv}$ determined from

$$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_o} + \frac{1}{R_{\text{rad}}} = \frac{1}{0.00345} + \frac{1}{0.00646} = 444.7 \text{ W/°C}$$

which gives

$$R_{\rm equiv} = 0.00225$$
°C/W

Now all the resistances are in series, and the total resistance is

$$R_{\text{total}} = R_i + R_1 + R_{\text{equiv}} = 0.000442 + 0.000047 + 0.00225 = 0.00274$$
°C/W

Then the steady rate of heat transfer to the iced water becomes

$$\dot{Q} = \frac{T_{\infty 2} - T_{\infty 1}}{R_{\odot 1}} = \frac{(22 - 0)^{\circ}\text{C}}{0.00274^{\circ}\text{C/W}} = 8029 \text{ W} \quad \text{(or } \dot{Q} = 8.029 \text{ kJ/s)}$$

To check the validity of our original assumption, we now determine the outer surface temperature from

$$\dot{Q} = \frac{T_{\infty 2} - T_2}{R_{\text{equiv}}} \longrightarrow T_2 = T_{\infty 2} - \dot{Q}R_{\text{equiv}}$$

$$= 22^{\circ}\text{C} - (8029 \text{ W})(0.00225^{\circ}\text{C/W}) = 4^{\circ}\text{C}$$

which is sufficiently close to the 5°C assumed in the determination of the radiation heat transfer coefficient. Therefore, there is no need to repeat the calculations using 4°C for T_2 .

(b) The total amount of heat transfer during a 24-h period is

$$Q = \dot{Q} \Delta t = (8.029 \text{ kJ/s})(24 \times 3600 \text{ s}) = 693,700 \text{ kJ}$$

Noting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount of ice that will melt during a 24-h period is

$$m_{\text{ice}} = \frac{Q}{h_{if}} = \frac{693,700 \text{ kJ}}{333.7 \text{ kJ/kg}} = 2079 \text{ kg}$$

Therefore, about 2 metric tons of ice will melt in the tank every day.

Discussion An easier way to deal with combined convection and radiation at a surface when the surrounding medium and surfaces are at the same temperature is to add the radiation and convection heat transfer coefficients and to treat the result as the convection heat transfer coefficient. That is, to take h = 10 + 5.34 = 15.34 W/m²·K in this case. This way, we can ignore radiation since its contribution is accounted for in the convection heat transfer coefficient. The convection resistance of the outer surface in this case would be

$$R_{\text{combined}} = \frac{1}{h_{\text{combined}} A_2} = \frac{1}{(15.34 \text{ W/m}^2 \cdot \text{K})(29.0 \text{ m}^2)} = 0.00225 \text{°C/W}$$

which is identical to the value obtained for equivalent resistance for the parallel convection and the radiation resistances.

EXAMPLE 3-8 Heat Loss through an Insulated Steam Pipe

Steam at $T_{\infty 1}=320^{\circ}\mathrm{C}$ flows in a cast iron pipe ($k=80~\mathrm{W/m\cdot K}$) whose inner and outer diameters are $D_1=5~\mathrm{cm}$ and $D_2=5.5~\mathrm{cm}$, respectively. The pipe is covered with 3-cm-thick glass wool insulation with $k=0.05~\mathrm{W/m\cdot K}$. Heat is lost to the surroundings at $T_{\infty 2}=5^{\circ}\mathrm{C}$ by natural convection and radiation, with a combined heat transfer coefficient of $h_2=18~\mathrm{W/m^2\cdot K}$. Taking the heat transfer coefficient inside the pipe to be $h_1=60~\mathrm{W/m^2\cdot K}$, determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation.

SOLUTION A steam pipe covered with glass wool insulation is subjected to convection on its surfaces. The rate of heat transfer per unit length and the temperature drops across the pipe and the insulation are to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the centerline and no variation in the axial direction. 3 Thermal conductivities are constant. 4 The thermal contact resistance at the interface is negligible.

Properties The thermal conductivities are given to be k = 80 W/m·K for cast iron and k = 0.05 W/m·K for glass wool insulation.

Analysis The thermal resistance network for this problem involves four resistances in series and is given in Fig. 3–29. Taking L=1 m, the areas of the surfaces exposed to convection are determined to be

$$A_1 = 2\pi r_1 L = 2\pi (0.025 \text{ m})(1 \text{ m}) = 0.157 \text{ m}^2$$

 $A_3 = 2\pi r_3 L = 2\pi (0.0575 \text{ m})(1 \text{ m}) = 0.361 \text{ m}^2$

Then the individual thermal resistances become

$$R_{i} = R_{\text{conv, 1}} = \frac{1}{h_{1}A_{1}} = \frac{1}{(60 \text{ W/m}^{2} \cdot \text{K})(0.157 \text{ m}^{2})} = 0.106^{\circ}\text{C/W}$$

$$R_{1} = R_{\text{pipe}} = \frac{\ln(r_{2}/r_{1})}{2\pi k_{1}L} = \frac{\ln(2.75/2.5)}{2\pi(80 \text{ W/m} \cdot \text{K})(1 \text{ m})} = 0.0002^{\circ}\text{C/W}$$

$$R_{2} = R_{\text{insulation}} = \frac{\ln(r_{3}/r_{2})}{2\pi k_{2}L} = \frac{\ln(5.75/2.75)}{2\pi(0.05 \text{ W/m} \cdot \text{K})(1 \text{ m})} = 2.35^{\circ}\text{C/W}$$

$$R_{o} = R_{\text{conv, 2}} = \frac{1}{h_{2}A_{3}} = \frac{1}{(18 \text{ W/m}^{2} \cdot \text{K})(0.361 \text{ m}^{2})} = 0.154^{\circ}\text{C/W}$$

Noting that all resistances are in series, the total resistance is determined to be

$$R_{\text{total}} = R_i + R_1 + R_2 + R_0 = 0.106 + 0.0002 + 2.35 + 0.154 = 2.61$$
°C/W

Then the steady rate of heat loss from the steam becomes

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{total}}} = \frac{(320 - 5)^{\circ}\text{C}}{2.61^{\circ}\text{C/W}} = 121 \text{ W} \quad \text{(per m pipe length)}$$

The heat loss for a given pipe length can be determined by multiplying the above quantity by the pipe length L.

The temperature drops across the pipe and the insulation are determined from Eq. 3-17 to be

$$\Delta T_{\text{pipe}} = \dot{Q}R_{\text{pipe}} = (121 \text{ W})(0.0002^{\circ}\text{C/W}) = 0.02^{\circ}\text{C}$$

 $\Delta T_{\text{insulation}} = \dot{Q}R_{\text{insulation}} = (121 \text{ W})(2.35^{\circ}\text{C/W}) = 284^{\circ}\text{C}$

That is, the temperatures between the inner and the outer surfaces of the pipe differ by 0.02°C, whereas the temperatures between the inner and the outer surfaces of the insulation differ by 284°C.

Discussion Note that the thermal resistance of the pipe is too small relative to the other resistances and can be neglected without causing any significant error. Also note that the temperature drop across the pipe is practically zero, and thus the pipe can be assumed to be isothermal. The resistance to heat flow in insulated pipes is primarily due to insulation.

3-5 - CRITICAL RADIUS OF INSULATION

We know that adding more insulation to a wall or to the attic always decreases heat transfer. The thicker the insulation, the lower the heat transfer rate. This is expected, since the heat transfer area *A* is constant, and adding insulation always increases the thermal resistance of the wall without increasing the convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a different matter. The additional insulation increases the conduction resistance

FIGURE 3–29 Schematic for Example 3–8.

16

STEADY HEAT CONDUCTION

FIGURE 3-30

An insulated cylindrical pipe exposed to convection from the outer surface and the thermal resistance network associated with it.

FIGURE 3-31

The variation of heat transfer rate with the outer radius of the insulation r_2 when $r_1 < r_{cr}$.

of the insulation layer but decreases the convection resistance of the surface because of the increase in the outer surface area for convection. The heat transfer from the pipe may increase or decrease, depending on which effect dominates.

Consider a cylindrical pipe of outer radius r_1 whose outer surface temperature T_1 is maintained constant (Fig. 3–30). The pipe is now insulated with a material whose thermal conductivity is k and outer radius is r_2 . Heat is lost from the pipe to the surrounding medium at temperature T_{∞} , with a convection heat transfer coefficient h. The rate of heat transfer from the insulated pipe to the surrounding air can be expressed as (Fig. 3–31)

$$\dot{Q} = \frac{T_1 - T_{\infty}}{R_{\text{ins}} + R_{\text{conv}}} = \frac{T_1 - T_{\infty}}{\frac{\ln(r_2/r_1)}{2\pi Lk} + \frac{1}{h(2\pi r_2 L)}}$$
(3-49)

The variation of \dot{Q} with the outer radius of the insulation r_2 is plotted in Fig. 3–31. The value of r_2 at which \dot{Q} reaches a maximum is determined from the requirement that $d\dot{Q}/dr_2 = 0$ (zero slope). Performing the differentiation and solving for r_2 yields the **critical radius of insulation** for a cylindrical body to be

$$r_{\text{cr, cylinder}} = \frac{k}{h}$$
 (m) (3–50)

Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient k. The rate of heat transfer from the cylinder increases with the addition of insulation for $r_2 < r_{\rm cr}$, reaches a maximum when $r_2 = r_{\rm cr}$, and starts to decrease for $r_2 > r_{\rm cr}$. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when $r_2 < r_{\rm cr}$.

The important question to answer at this point is whether we need to be concerned about the critical radius of insulation when insulating hot-water pipes or even hot-water tanks. Should we always check and make sure that the outer radius of insulation sufficiently exceeds the critical radius before we install any insulation? Probably not, as explained here.

The value of the critical radius $r_{\rm cr}$ is the largest when k is large and h is small. Noting that the lowest value of h encountered in practice is about 5 W/m²·K for the case of natural convection of gases, and that the thermal conductivity of common insulating materials is about 0.05 W/m·K, the largest value of the critical radius we are likely to encounter is

$$r_{\text{cr, max}} = \frac{k_{\text{max, insulation}}}{h_{\text{min}}} \approx \frac{0.05 \text{ W/m} \cdot \text{K}}{5 \text{ W/m}^2 \cdot \text{K}} = 0.01 \text{ m} = 1 \text{ cm}$$

This value would be even smaller when the radiation effects are considered. The critical radius would be much less in forced convection, often less than 1 mm, because of much larger h values associated with forced convection. Therefore, we can insulate hot-water or steam pipes freely without worrying about the possibility of increasing the heat transfer by insulating the pipes.

The radius of electric wires may be smaller than the critical radius. Therefore, the plastic electrical insulation may actually *enhance* the heat transfer

from electric wires and thus keep their steady operating temperatures at lower and thus safer levels.

The discussions above can be repeated for a sphere, and it can be shown in a similar manner that the critical radius of insulation for a spherical shell is

$$r_{\rm cr, \, sphere} = \frac{2k}{h} \tag{3-51}$$

where k is the thermal conductivity of the insulation and h is the convection heat transfer coefficient on the outer surface.

EXAMPLE 3-9 Heat Loss from an Insulated Electric Wire

A 3-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mmthick plastic cover whose thermal conductivity is k = 0.15 W/m·K. Electrical measurements indicate that a current of 10 A passes through the wire and there is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a medium at $T_{\infty} = 30^{\circ}$ C with a heat transfer coefficient of $h = 12 \text{ W/m}^2 \cdot \text{K}$. determine the temperature at the interface of the wire and the plastic cover in steady operation. Also determine whether doubling the thickness of the plastic cover will increase or decrease this interface temperature.

SOLUTION An electric wire is tightly wrapped with a plastic cover. The interface temperature and the effect of doubling the thickness of the plastic cover on the interface temperature are to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the centerline and no variation in the axial direction. 3 Thermal conductivities are constant. 4 The thermal contact resistance at the interface is negligible. 5 Heat transfer coefficient incorporates the radiation effects. if any.

Properties The thermal conductivity of plastic is given to be k = 10.15 W/m·K.

Analysis Heat is generated in the wire and its temperature rises as a result of resistance heating. We assume heat is generated uniformly throughout the wire and is transferred to the surrounding medium in the radial direction. In steady operation, the rate of heat transfer becomes equal to the heat generated within the wire, which is determined to be

$$\dot{Q} = W_e = VI = (8 \text{ V})(10 \text{ A}) = 80 \text{ W}$$

The thermal resistance network for this problem involves a conduction resistance for the plastic cover and a convection resistance for the outer surface in series, as shown in Fig. 3-32. The values of these two resistances are

$$A_2 = (2\pi r_2)L = 2\pi (0.0035 \text{ m})(5 \text{ m}) = 0.110 \text{ m}^2$$

$$R_{\text{conv}} = \frac{1}{hA_2} = \frac{1}{(12 \text{ W/m}^2 \cdot \text{K})(0.110 \text{ m}^2)} = 0.76 \text{°C/W}$$

$$R_{\text{plastic}} = \frac{\ln(r_2/r_1)}{2\pi kL} = \frac{\ln(3.5/1.5)}{2\pi(0.15 \text{ W/m·K})(5 \text{ m})} = 0.18^{\circ}\text{C/W}$$

FIGURE 3-32 Schematic for Example 3–9.