Distillation

Processos de Separação

LEQB

2023/2024

McCabe Thiele Method

- Binary mixtures with ideal behavior
- Molar units

Molar latent heat of the mixture is constant and independent of composition

L and V flowrates are constants

McCabe Thiele Method

OL = Operating Line

Enriching OL

$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1}$$

Feed OL

$$y_i = \frac{i}{i-1}x_i - \frac{x_F}{i-1}$$

Stripping OL

$$y_{m+1} = \frac{\overline{L}}{\overline{V}} x_m - \frac{Bx_B}{\overline{V}}$$

McCabe Thiele Method - graphical resolution

Enriching OL

$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1}$$

$$\begin{cases} \text{when } x_n = x_D \implies y_{n+1} = x_D \\ \text{when } x_n = 0 \implies y_{n+1} = \frac{x_D}{R+1} \end{cases}$$

Feed OL

$$\mathbf{i} = \frac{moles\ of\ liquid\ flowing\ down}{moles\ of\ feed} = \frac{\overline{L} - L}{F}$$

$$y_i = \frac{i}{i-1}x_i - \frac{x_F}{i-1}$$

when
$$x_i = x_F \implies y_i = x_F$$

i-1

> 0

 ∞

- a) Subcooled liquid
- b) Saturated liquid
- c) Saturated L+V
- d) Saturated vapor
- e) Superheated vapor

- i > 1
- i = 1
 - 1
- 0 < i < 1 < 0
- i = 0
 - i < 0 → 0

Stripping OL

$$y_{m+1} = \frac{\overline{L}}{\overline{V}} x_m - \frac{Bx_B}{\overline{V}}$$

when
$$x_m = x_B \implies y_{m+1} = x_B$$

$$(\overline{L} = \overline{V} + B)$$

The stripping OL will be determined by knowing that the three OL's intersect in a single point

a) Subcooled liquid i > 1

b) Saturated liquid i = 1

c) L+V saturated 0 < i < 1

d) Saturated vapor i = 0

e) Superheated Vapor i < 0

McCabe - Thiele Method

McCabe - Thiele Method

Equations needed

① Overall mass balance

$$F = B + D$$

$$F x_F = B x_B + D x_D$$

$$i = \frac{\overline{L} - L}{F}$$

$$R = L/D$$

$$V = L + D$$

 $\overline{L} = \overline{V} + B$

2 Enriching OL

$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1} \begin{cases} y_{n+1}|_{x_n = x_D} = x_D \\ y_{n+1}|_{x_n = 0} = \frac{x_D}{R+1} \end{cases}$$

3 Feed OL

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$
 $\begin{cases} y_i|_{x_i = x_F} = x_F \\ y_i|_{x_i = 0} = -\frac{x_F}{i-1} \end{cases}$

4 Stripping OL

$$y_{m+1} = \frac{\overline{L}}{\overline{V}} x_m - \frac{Bx_B}{\overline{V}} \qquad y_{m+1}|_{x_m = x_B} = x_B$$

5 The three OL's intersect in a single point

Problem 1

A distillation column is used to separate 100 mol/h of a mixture made of two compounds A and C. The feed mixture consists of equal parts of saturated vapor and liquid, with a molar composition of 35% A. It is intended to obtain a distillate with a molar composition of 93% A and a residue with a molar composition of 97.8% C. The reflux ratio is equal to 4.

- a) How many equilibrium stages are needed in each section of the column?
- b) What is the optimal plate for the feed inlet?
- c) Determine the minimum reflux ratio (Rmin).
- d) Determine the minimum number of theoretical plates required (Nmin).

McCabe - Thiele Method

What is the effect in a distillation column when we

change:

the physical state of the feed

NOTE: x_F , x_D and x_B constants

Physical state of Feed - i

If we fix x_F , x_D , x_B and R what happens when i increases?

 $\downarrow \downarrow$

- The enriching section decreases
- The stripping section increases

If we fix x_F , x_D , x_B and i what will happen when R increases?

What happens to the operating lines?

R = L/D

If we fix x_F , x_D , x_B and i what will happen when R increases?

=> the slope of the enriching and stripping OLs are affected

Enriching OL

$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1}$$

If R >

R = L/D

If we fix x_F , x_D , x_B and i what will happen when R increases?

=> the slope of the enriching and stripping OLs are affected

OL's move away from equilibrium

line

=> Number of stages >>

Reflux → ⇔ N >

What are the limits of variation of R?

R = L/D

Total Reflux (infinite)

Total Reflux, R → ∞

$$R = L/D$$

V=L+D

When
$$R \rightarrow \infty$$

When
$$R \rightarrow \infty$$
 $D \rightarrow 0 \Rightarrow L = V$

$$y_{n+1} = \frac{L}{V} x_n + \frac{Dx_D}{V}$$

Х

Total Reflux, R → ∞

$$R = L/D$$

V=L+D

When
$$R \rightarrow \infty$$

When
$$R \rightarrow \infty$$
 $D \rightarrow 0 \Rightarrow L = V$

$$y_{n+1} = \frac{L}{V} x_n + \frac{Dx_D}{V}_{=0}$$

Total reflux

Minimum N

Minimum reflux

Infinite N

$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1}$$

• V_n in equilibrium with L_n (Equilibrium line)

• V_n in equilibrium with L_{n-1} (Operating line)

• V_{n+1} in equilibrium with L_n (Operating line)

: Infinite number of stages

 x_F , x_D , x_B and i constants

$$y_{n+1} = \frac{R_{\min}}{R_{\min} + 1} x_n + \frac{x_D}{R_{\min} + 1}$$

For this system AH_{vap} is reasonably independent of

on diagram: <u>Methanol + Water</u>

