Àlgebra Multilineal i Geometria

Entregable 6

FME, curs 2020-2021 Correlacions

Fixem $\mathbf{k} = \mathbb{R}$ i $n \geq 2$. Denotarem per $\mathbb{P}, \overline{\mathbb{P}}$ espais projectius de dimensió n i per $\mathbb{P}^*, \overline{\mathbb{P}}^*$ els seus duals.

Donada una aplicació bijectiva $f: \mathbb{P} \longrightarrow \mathbb{P}$, el teorema fonamental estableix una equivalència entre les versions geomètrica i algebraica de projectivitat:

$$f$$
 és una colineació $\iff f$ és una projectivitat.

Així, les colineacions transformen punts en punts, tectes en rectes, plans en plans, etc. Hi ha una altra mena de transformacions projectives: la dualitat estableix una bijecció

$$\perp: Subv(\mathbb{P}) \longrightarrow Subv(\mathbb{P}^*),$$

que trasnforma punts en hiperplans, hiperplans en punts, etc. La definició següent generalitza aquesta situació:

Definició. Una correlació de \mathbb{P} en $\overline{\mathbb{P}}$, $F: \mathbb{P} \leadsto \overline{\mathbb{P}}$, és una aplicació bijectiva

$$F: Subv(\mathbb{P}) \longrightarrow Subv(\overline{\mathbb{P}})$$

monòtona decreixent, això és,

$$V \subset W \iff F(V) \supset F(W), \quad V, W \subset \mathbb{P}.$$

- **1.** Proveu que \bot és una correlació \bot : $\mathbb{P} \leadsto \mathbb{P}^*$. L'anomenarem la *correlació canònica*. Identificant \mathbb{P} amb \mathbb{P}^{**} , denotarem de la mateixa forma la correlació canònica \bot : $\mathbb{P}^* \leadsto \mathbb{P}$.
- **2.** Proveu que si F és una correlació, aleshores

$$F(V \cap W) = F(V) \vee F(W), \qquad f(V \vee W) = F(V) \cap F(W).$$

- **3.** Proveu que la composició de dues correlacions és una projectivitat i que la composició d'una correlació i una projectivitat és una correlació.
- **4.** Proveu que, si F és una correlació, existeix una projectivitat $g: \mathbb{P} \longrightarrow \overline{\mathbb{P}}^*$ tal que $F = \bot \circ g$.
- 5. A partir d'aquest punt, suposarem que $\overline{\mathbb{P}} = \mathbb{P} = \mathbb{P}(E)$. Si $F = \bot \circ g$ és una correlació, sigui $F^* = \bot \circ g^*$, on g^* és la projectivitat dual de g. Proveu que $F^* = F^{-1}$.
- **6.** Proveu que $P \in F(Q) \iff Q \in F^*(P)$. Direm que F és una correlació simètrica si $F = F^*$. Deduïu que F és simètrica si, i només si, $P \in F(Q) \iff Q \in F(P)$.
- 7. Si $\mathcal Q$ és una quàdrica no degenerada, l'aplicació $P\mapsto H_P(\mathcal Q)$ indueix una correlació simètrica.
- 8. De fet, l'exemple de l'apartat 7 és universal: proveu que el conjunt de correlacions simètriques F està en bijecció al conjunt de classes de formes bilineals simètriques no degenerades sobre E, determinades llevat de proporcionalitat per un escalar no nul.