Question 4A

Puisque nous nous intéressons seulement aux bilans de productions/consommations et du niveau du bassin sur des périodes de T[h], nous pouvons exprimer toutes nos variables en fonction de cette période. Voici deux tableaux reprenant les notations principales utilisées pour cette seconde partie.

Nom	Signification
c_i	Capacité éolienne installée sur le i ^{ème} site
t_{j}	Énergie à envoyer en turbinage choisie durant la j ^{ème} période
p_j	Énergie de pompage choisie durant la j ^{ème} période

Table 1: Table des notations des variables de décisions utilisées pour le modèle de la question 4.

Nom	Signification	
T	Durée des périodes (en heures)	
n	Nombre de sites éoliens	
m	Nombre de périodes de $T[h]$ dans une année	
$e_i(j)$	Rendement éolien du i ^{ème} site durant la j ^{ème} période	
c_i^{\max}	Capacité maximale installable sur le ième site	
a_j	Apport fluvial durant la j ^{ème} période	
$cons_j$	Consommation énergétique durant la j ^{ème} période	
$t_{ m max}$	Capacité maximale d'énergie générée par le turbinage (par heure)	
$p_{ m max}$	Capacité maximale de pompage (par heure)	
$stock_{max}$	Capacité de stockage maximale	
η	Rendement de turbinage	
costs	Vecteur donnant les valeurs du coût d'installation d'un site éolien (onshore/offshore) $costs_i = Coût$ d'installation d'un site onshore si le site d'index i est onshore, et inversement.	

Table 2: Table des notations des constantes utilisées pour le modèle.

Le modèle peut alors s'écrire ainsi :

 $\min_{c_i,t_i,p_i} \text{costs}^{\mathsf{T}} \mathbf{c}$

tel que
$$\sum_{i=0}^{n-1} c_i e_i(j) + \eta \cdot t_j - p_j \ge \text{cons}_j \quad \forall j \in \{0, \dots, m-1\}$$
 (1)

$$0 \le \frac{\operatorname{stock_{\max}}}{2} + \sum_{j=0}^{k} p_j - t_j + a_j \le \operatorname{stock_{\max}} \quad \forall k \in \{0, \dots, m-2\}$$
 (2)

$$\sum_{j=0}^{m-1} p_j - t_j + a_j = 0 (3)$$

$$0 \le c_i \le c_i^{\text{max}} \quad \forall i \in \{0, \dots, n-1\}$$

$$\tag{4}$$

$$0 \le \eta \cdot t_j \le T \cdot t_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$
 (5)

$$0 \le p_j \le T \cdot p_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$

La fonction objectif représente le coût total d'installation des éoliennes (en tenant compte des différences entre les installations offshore et onshore).

La contrainte (2) fait le bilan lié aux variations des opérations de turbinage/pompage décidées et de l'apport fluvial naturel depuis la période j=0 jusqu'en toute période j=k (donc nous faisons le bilan en toute période k de notre total de pompage, turbinage, et afflux naturel) afin de calculer l'augmentation/la diminution du niveau de l'eau dans le bassin et imposer que le niveau de l'eau reste dans les limites du stockage maximal.

La contrainte (3) indique que le niveau final du bassin doit revenir au même niveau qu'initialement. Autrement dit, les opérations de turbinage/pompage et l'apport fluvial doivent se sommer à 0 à la fin de la dernière période.

Les contraintes (4), (5) et (6) indiquent respectivement les bornes sur les capacités éoliennes maximales installables sur chaque site, les capacités maximales de turbinages et les capacités maximales de pompages pour des périodes de T[h], regroupées au niveau européen, bien entendu. Nous avons cependant supposé pour la (5) contrainte, liée au turbinage, que la valeur t_j est ce que nous extrayons du bassin, puis la capacité $T \cdot t_{\text{max}}$ (T fois cette capacité car nous travaillons sur des périodes de T heures) restreint alors l'énergie en sortie de la turbine ($\eta \cdot t_j$), qui sert à la production électrique dans la contrainte (1).

Question 4B

Suite à l'implémentation de notre problème d'optimisation sur le notebook Jupyter, nous obtenons un coût moyen qui est d'environ 58.282€/MWh¹. Nous avons implémenté ce problème avec la bibliothèque CVXPY qui a été recommandée. Cependant, plusieurs solvers sont disponibles au sein de la librairie, la valeur de la fonction objectif est la même pour tous les solvers testés, mais les valeurs des variables de décision peuvent varier.

Pour cette résolution, nous avons utilisé SCIPY (la liste des solvers étant disponible ici : https://www.cvxpy.org/tutorial/solvers/index.html) car celui-ci fournissait les meilleures performances en termes de temps d'exécution et retournait des choix de variables de décision plus cohérents que les autres solvers (très subjectif, techniquement ils sont tous aussi valides si adaptés à la programmation linéaire).

Nous pouvons voir que les sites choisis ne se retrouvent que 8 fois en dehors des valeurs $\{0,1\}$, donc notre résolution tend souvent à soit installer la capacité maximale sur un site, soit ne rien n'y installer, en moyenne comme nous pouvons le voir sur la figure 1. Nous voyons également sur la figure 3 que nous retrouvons bien le niveau du bassin initial à la fin de l'année. Sur la figure 4, nous observons des écarts significatifs entre la production et la consommation, c'est-à-dire qu'à certains moments, nous "gaspillons" de l'énergie car nous produisons trop (où nous avons bien retiré à la production l'énergie stockée dans le bassin sur le graphe afin de mettre en évidence le surplus de production). Notre temps de résolution est de 38.9 secondes, ce qui semble à priori raisonnable étant donné notre nombre de variables qui est de 6482 et notre nombre de contraintes qui est de 21723 (bien que certains modèles puissent se résoudre plus rapidement avec certaines contraintes ou variables en plus, nous pouvons nous attendre à ce qu'un tel modèle ne puisse pas être résolu aussi rapidement à la main).

Figure 1: Représentation graphique de la proportion de la capacité éolienne installée sur chaque site pour le modèle de la question 4 par période de T=3 heures sur une année.

¹C'est une valeur qui semble cohérente, surtout pour un modèle comme ici, assez libre et qui ne prétend pas refléter les réalités, le prix moyen de l'énergie par MWh en Europe actuellement est aux alentours de quelques centaines d'euros, d'après la Commission européenne : https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics, consulté le 8 mai 2024 à 01h08.

Figure 2: Représentation graphique du turbinage et du pompage influençant le niveau du bassin (2) pour le modèle de la question 4 par période de T=3 heures sur un an.

Figure 3: Représentation graphique du niveau du bassin (2) pour le modèle de la question 4 par période de T=3 heures sur un an.

Figure 4: Représentation graphique de la production et de la consommation (en MWh) (1) pour le modèle de la question 4 par période de T=3 heures sur un an.

Question 4C

Pour traiter cette question, il faut s'intéresser au problème dual. Les résultats théoriques quant à l'influence des modifications des contraintes sur la fonction objectif s'obtiennent pour un problème sous forme standard. En réajustant le modèle dans la bonne formulation, nous avons alors :

$$\min_{c_i, t_i, n_i} \text{costs}^{\mathsf{T}} \mathbf{c}$$

tel que
$$\sum_{i=0}^{n-1} c_i e_i(j) + \eta \cdot t_j - p_j - s_{1,j} = \text{cons}_j \quad \forall j \in \{0, \dots, m-1\}$$
 (7)

$$\sum_{j=0}^{k} p_j - t_j + a_j + s_{2,k} = \frac{\text{stock}_{\text{max}}}{2} \quad \forall k \in \{0, \dots, m-2\}$$
 (8)

$$\sum_{j=0}^{k} p_j - t_j + a_j - s_{3,k} = -\frac{\text{stock}_{\text{max}}}{2} \quad \forall k \in \{0, \dots, m-2\}$$
 (9)

$$\sum_{j=0}^{m-1} p_j - t_j + a_j = 0 \tag{10}$$

$$c_i + s_{4,i} = c_i^{\text{max}} \quad \forall i \in \{0, \dots, n-1\}$$
 (11)

$$\eta \cdot t_j + s_{5,j} = T \cdot t_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$

$$\tag{12}$$

$$p_j + s_{6,j} = T \cdot p_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$
 (13)

$$c_i, t_j, p_j, s_{1,j}, s_{2,k}, s_{3,k}, s_{4,i}, s_{5,j}, s_{6,j} \ge 0$$
 (14)

Où nous avons ajouté des variables d'écart $s_{\cdot,j}$ pour chaque contrainte contenant une inégalité. Le problème dual s'écrit alors :

$$\max_{y} \quad b^{\mathsf{T}} y$$
tel que
$$A^{\mathsf{T}} y \le c$$
$$y \text{ libres}$$

Les solutions de ce problème dual sont également données par le solver SCIPY après la résolution du primal, ce qui nous permet de calculer les variations de la fonction objectif lorsque nous modifions les capacités de stockage, de turbinage et de pompage.

Stockage

Si nous augmentons d'une unité notre stockage, nous avons donc que $\operatorname{stock_{max}} \leftarrow \operatorname{stock_{max}} + 1$ (réassignation). Donc dans notre modèle, notre vecteur b est modifié, et devient b plus un vecteur comprenant $\frac{1}{2}$ pour les contraintes (8), $-\frac{1}{2}$ pour les contraintes (9) et 0 sinon. Si nous notons ce vecteur $\Delta b_{\operatorname{stock}}$, alors notre coût optimal augmentera de $y^{*\dagger} \cdot \Delta b_{\operatorname{stock}}$ où y^* est la solution du problème dual. Cela correspond en fait simplement à la somme des valeurs des variables duales associées aux contraintes (8) et (9) multipliées par $\frac{1}{2}$ et $-\frac{1}{2}$ respectivement. Après l'implémentation en Python, nous avons que le coût optimal reste le même, donc l'augmentation de notre capacité de stockage d'une unité n'influence pas notre coût total.

Pompage

Nous pouvons procéder d'une manière similaire pour observer l'influence d'une augmentation de la capacité de pompage d'une valeur de $1[\mathrm{MW}]$. Puisque nous travaillons sur des périodes de $T=3[\mathrm{h}]$, la valeur de la contrainte (13) est modifiée de $T \cdot p_{\mathrm{max}}$ à $T \cdot p_{\mathrm{max}} + T = 3 \cdot p_{\mathrm{max}} + 3$. Nous sommons alors les valeurs des variables duales associées à cette contrainte que nous multiplions par 3 pour obtenir la variation du coût optimal. Après l'implémentation en Python, nous avons que le coût optimal reste inchangé après l'augmentation de la capacité de pompage, donc l'augmentation de notre capacité de pompage d'une unité n'influence pas notre coût total.

Turbinage

Enfin, nous pouvons observer l'influence d'une augmentation de la capacité de turbinage d'une valeur de $1[\mathrm{MW}]$. Puisque nous travaillons sur des périodes de $T=3[\mathrm{h}]$, la valeur de la contrainte (12) est modifiée de $T \cdot t_{\mathrm{max}}$ à $T \cdot t_{\mathrm{max}} + T = 3 \cdot t_{\mathrm{max}} + 3$. Nous sommons alors les valeurs des variables duales associées à cette contrainte que nous multiplions par 3 pour obtenir la variation du coût optimal et nous obtenons que le coût optimal diminue d'une valeur de $1.583.760, 79 \in$, soit environ 0.001% de diminution. Cette diminution peut être expliquée par le fait que nous pouvons profiter davantage de l'apport fluvial pour la consommation d'énergie et ainsi moins dépendre des installations éoliennes.

Tout notre raisonnement reste valide par rapport aux contraintes car nous considérons que pour des petites variations, notre solution reste admissible.

Question 5

Modèle

Nous devons à présent choisir, pour chaque site d'éoliennes, si nous installons 0%, 50% ou 100% de la capacité maximale installable sur ce site. Pour ce faire, nous rédéfinissons les variables c_i de la question 4:

Nom	Signification
$c_i \in \{0, 1, 2\}$	Proportion de la capacité maximale c_i^{max} installée sur le ième site
t_j	Énergie à envoyer en turbinage choisie durant la j ^{ème} période
p_j	Énergie de pompage choisie durant la j ^{ème} période

Table 3: Table des nouvelles notations des variables de décisions utilisées pour le modèle de la question 5.

La puissance installée sur le ième site équivaut alors à $0.5 \cdot c_i \cdot c_i^{\text{max}}$. Le modèle devient alors :

$$\min_{c_i \in \mathbb{Z}, t_j, p_j} \quad \operatorname{costs}^{\mathsf{T}} \begin{pmatrix} 0.5 \cdot c_0 \cdot c_0^{\max} \\ \vdots \\ 0.5 \cdot c_{n-1} \cdot c_{n-1}^{\max} \end{pmatrix}$$
tel que
$$\sum_{i=0}^{n-1} 0.5 \cdot c_i c_i^{\max} e_i(j) + \eta \cdot t_j - p_j \ge \operatorname{cons}_j \quad \forall j \in \{0, \dots, m-1\} \tag{15}$$

$$0 \le \frac{\operatorname{stock_{\max}}}{2} + \sum_{j=0}^{k} p_j - t_j + a_j \le \operatorname{stock_{\max}} \quad \forall k \in \{0, \dots, m-2\}$$
 (16)

$$\sum_{j=0}^{m-1} p_j - t_j + a_j = 0 \tag{17}$$

$$0 \le c_i \le 2 \quad \forall i \in \{0, \dots, n-1\} \tag{18}$$

$$0 \le \eta \cdot t_j \le T \cdot t_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$

$$\tag{19}$$

$$0 \le p_j \le T \cdot p_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$
 (20)

Ici, seule les contraintes sur les c_i ont été modifiées. Nous imposons maintenant que les c_i soient des entiers compris entre 0 et 2 (compris). La fonction objectif a également dû être adaptée selon notre nouveau choix de variables.

Résolution

Pour la résolution de ce modèle, nous avons dû réduire la durée étudiée, en effet, nous avons tout d'abord testé avec 2920 périodes (au complet), avec le solver par défaut de CVXPY, nous avions dépassé les 180 minutes d'exécution et avons alors arrêté. Nous avons ensuite testé avec le solver SCIPY et avons arrêté au-dessus de 120 minutes. Nous avons en second lieu réduit le nombre de périodes à 1500, nous avions excédé les 65 minutes avec encore le solver SCIPY. Enfin, nous avons défini le nombre de périodes à 1000, et nous arrivons à 46 minutes et 10.5 secondes de calcul. Nous avons conclu que ce dernier choix de durée était raisonnable. Pour la résolution du problème de la question 4 restreint à 1000 périodes, nous avons 4.9 secondes de calcul, la différence de performance est gigantesque, pourtant nous n'avons fait que transformer des variables continues en discrètes, mais les variables discrètes sont bien moins performantes en règle générale en grand nombre. Ensuite, nous supposons que le coût d'installation des éoliennes est réduit à la durée étudiée, c'est à dire que notre vrai vecteur de coûts sera donné par " $\frac{1000}{2920}$ costs". Nous effectuons les calculs sur le solver pour le coût initial (costs), ensuite nous ajustons par ce facteur ($\frac{1000}{2920}$) pour vous présenter les résultats.

Modèle	Coût moyen (€/MWh)
Variables éoliennes discrètes (Question 5)	44.914
Variables éoliennes continues (Question 4)	44.899

Table 4: Comparaison des coûts moyens (ajustés par rapport à 1000 périodes) de la question 4 et 5.

Nous constatons que le coût moyen a légèrement augmenté (bien que cela reste assez important à l'échelle de l'Europe en termes de coût), c'est assez normal car nous restreignons les valeurs possibles d'installation de puissances de chaque site éolien, mais visiblement nous n'avons pas une augmentation si importante, peut-être par le fait que lors de la résolution de la question 4 (Figure 1), nous n'avions pas tellement de sites comportant des valeurs de capacités installées intermédiaires, mais plus concentrées à 0 et à 1. Nous illustrons la différence sur le choix de l'installation de la capacité éolienne en fonction de notre modèle avec des variables discrètes et continues (figure 5). Nous pouvons voir sur la figure 6 que le turbinage est un peu plus varié qu'à la question 4, moins de valeurs extrêmes (au maximum/minimum), et cette fois-ci, le pompage est exploité contrairement à la question 4 où il est nul sur toute la période étudiée. Nous remontons encore une fois bien au niveau initial à la fin de la période (figure 7). Sur la figure 8, nous constatons que la production est beaucoup plus proche de la consommation par rapport à la question précédente.

Figure 5: Représentation graphique de la proportion de la capacité éolienne installée sur chaque site pour le modèle de la question 5 en comparaison avec le modèle de la question 4, par période de T=3 heures sur 1000 périodes.

Figure 6: Représentation graphique du turbinage et du pompage influençant le niveau du bassin (16) pour le modèle de la question 5 par période de T=3 heures sur 1000 périodes.

Figure 7: Représentation graphique du niveau du bassin (16) pour le modèle de la question 5 par période de T=3 heures sur 1000 périodes.

Figure 8: Représentation graphique de la production et de la consommation (en MWh) (15) pour le modèle de la question 5 par période de T=3 heures sur 1000 périodes.

Question 6

Modèle

Pour ce dernier modèle, nous avons également la possibilité d'installer des centrales à gaz, qui peuvent être utilisées pour produire de l'électricité en cas de besoin. La puissance totale à installer fait partie des variables de décision, ainsi que l'énergie produite par ces centrales en chaque période de T[h]. Nous avons donc les nouvelles variables suivantes :

Nom	Signification
c_i	Capacité éolienne installée sur le i ^{ème} site
$ t_j $	Énergie à envoyer en turbinage choisie durant la j ^{ème} période
p_j	Énergie de pompage choisie durant la j ^{ème} période
$g_{ m tot}$	Puissance totale à installer pour les centrales à gaz
g_j	Énergie produite par les centrales à gaz durant la j ^{ème} période

Table 5: Table des notations des variables de décisions utilisées pour le modèle de la question 6.

Nous devons alors prendre en compte, en plus du coût d'installation des éoliennes, le coût d'installation des centrales à gaz ainsi que leur coût de fonctionnement. Le modèle devient alors :

$$\min_{c_i, t_j, p_j} \quad \text{costs}^{\mathsf{T}} \mathbf{c} + \text{gas_prod_cost} \cdot \sum_{j=0}^{m-1} g_j + \text{gas_install_cost} \cdot g_{\text{tot}}$$
tel que
$$\sum_{j=0}^{n-1} c_i e_i(j) + g_j + \eta \cdot t_j - p_j \ge \text{cons}_j \quad \forall j \in \{0, \dots, m-1\} \tag{21}$$

$$0 \le \frac{\operatorname{stock_{\max}}}{2} + \sum_{j=0}^{k} p_j - t_j + a_j \le \operatorname{stock_{\max}} \quad \forall k \in \{0, \dots, m-2\}$$
 (22)

$$\sum_{j=0}^{m-1} p_j - t_j + a_j = 0 \tag{23}$$

$$0 \le c_i \le c_i^{\text{max}} \quad \forall i \in \{0, \dots, n-1\}$$

$$0 \le \eta \cdot t_i \le T \cdot t_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$
 (25)

$$0 \le p_j \le T \cdot p_{\text{max}} \quad \forall j \in \{0, \dots, m-1\}$$
 (26)

$$0 \le g_j \le T \cdot g_{\text{tot}} \quad \forall j \in \{0, \dots, m-1\}$$

où gas_prod_cost est le coût de production d'énergie par les centrales à gaz et gas_install_cost est le coût d'installation des centrales à gaz.

La fonction objectif tient maintenant compte du coût d'installation et de production des centrales à gaz. La contrainte (21) est modifiée pour prendre en compte la production d'énergie par les centrales à gaz dans le bilan total de production. Enfin, une dernière contrainte (27) est ajoutée pour limiter la production d'énergie par les centrales à gaz à la puissance totale installée.

Résolution

Après la résolution numérique, nous obtenons une valeur moyenne de **45.28** €/MWh, ce qui est mieux que le résultat de la question 4 (**58.282** €/MWh). Cela peut s'expliquer par le fait que nous avons plus de possibilités, dans le sens que nous pouvons ajuster la production avec un levier en plus, ce qui fait que nous pouvons mieux répartir notre production énergétique afin de minimiser le coût.

Notre temps de résolution passe de 38.9 secondes à 1 minute et 35.8 secondes, ce qui semble cohérent car nous sommes passés de 6482 variables à 9403, puis de 21723 à 27563 contraintes, chose qui semble cohérente car nous augmentons la taille du problème, donc en général la complexité augmente. L'introduction des variables concernant le gaz ne semble pas avoir beaucoup influencé les capacités installées par rapport à la question 4 (Figure 1 / Figure 9), nous avons globalement le même nombre de variables intermédiaires (ni 0 ni 1) et le reste concentré aux proportions extrêmes de 0 et 1. Le pompage est cette fois plus utilisé que dans la question 4 (Figure 2) Bien que délicat à bien illustrer, nous pouvons voir que les valeurs de production et de consommation sont assez proches (comme nous pouvons le voir sur la figure 12).

Figure 9: Représentation graphique de la proportion de la capacité éolienne installée sur chaque site pour le modèle de la question 6 par période de T=3 heures sur une année.

Figure 10: Représentation graphique du turbinage et du pompage influençant le niveau du bassin (22) ainsi que de la production de gaz pour le modèle de la question 6 par période de T=3 heures sur un an.

Figure 11: Représentation graphique du niveau du bassin (22) pour le modèle de la question 6 par période de T=3 heures sur 1000 périodes.

Figure 12: Représentation graphique de la production et de la consommation (en MWh) (21) pour le modèle de la question 6 par période de T=3 heures sur un an.

Contributions au projet du groupe 49

Nom	Noma	Contribution
AHOU Lucas	3594-22-00	Formalisation des modèles mathématiques pour les questions 4 et 6 + Rédaction du rapport
AHOU Samuel	4408-19-00	Résolution du problème 4 et réponses aux sous- questions 4.B et 4.C dans le rapport
FIORINI Lucien	7502-22-00	Formalisation du modèle de la question 5 + comparaison avec question 4 dans le rapport
PORTIER Adrien	5337-22-00	Résolution de la question 5 + formalisation et résolution de la question 6