

数据的运算

Data Operation

李杉杉

CONTENT 目录

01 逻辑运算

02 算数运算

01 逻辑运算

位组合

- 二进制是计算机编码存储和操作信息的核心
- 计算机要解决一个真正的问题,必须能唯一的识别出许多不同的数值,而不仅仅是0和1
- 唯一的识别多个数值,必须对多个位进行组合
- 如果用8位(对应8根线路上的电压)
 - 0100 1110, 1110 0111.....
 - 最多能区分出256(即28)个不同的值
- 如果有k位,最多能区分出 2^k 个不同的值
 - 每一种组合都是一个编码,对应着某个特定的值

位组合运算

- 除了需要表示出不同的数值之外,还需要对这种表示出来的信息进行运算
 - 1679年,德国数学家莱布尼茨发表了一篇关于二进制表示及算术运算的论文
 - 英国数学家乔治·布尔在1854年给出了二进制的逻辑运算,布尔代数即由此得名
 - 这些工作奠定了现代计算机工作的数学基础

逻辑运算

- 又称布尔运算,用数学方法研究逻辑问题,等式表示判断,推理表示等式的变换
 - 布尔代数:变换的有效性依赖于符号的组合规律
 - 20世纪30年代,逻辑运算在电路系统上获得应用
 - 复杂电子计算机系统遵从布尔代数的变换规律
- 逻辑表达式: 用逻辑运算符将关系表达式或逻辑量连接起来的有意义的式子
 - 运算结果是一个逻辑值,即"true"或"false"
 - C语言编译系统逻辑运算结果对应二进制的1和0
- 运算类型
 - 按位运算 "&" "|" "~" "^"
 - 移位运算 "<< " ">>"
 - 逻辑运算 "&&" "||" "!"

布尔代数

- 英国数学家George Boole
- 逻辑值True(真)和False(假)
- 编码为二进制位的1和0
- 逻辑推理的基本原则
 - 实现逻辑表达式
 - 描述逻辑函数
 - 表示逻辑运算

布尔代数运算符

- 数值取值非0即1
- 三种典型的运算符,分别表示与、或、非函数:
 - "与(AND)"运算符使用符号"•"表示
 - A•B, 即A AND B, 当且仅当二者取值都为1时, 结果才为1
 - "或(OR)"运算符使用符号"+"表示
 - A+B, 即A OR B, 当其中至少有一个变量取值为1时, 结果为1
 - "非(NOT)"运算符使用符号"⁻"表示
 - A, 即NOT A, 当A取值为1时, 结果为0; 当A取值为0时, 结果为1

真值表

- 表示逻辑运算的简便方法
- *n*+1列
 - 前*n*列对应*n*个源操作数
 - 最后一列表示每种组合的输出
- · 2ⁿ行
 - 每个源操作数0或1,源操作数组合有2ⁿ种可能
 - 每组值组合(输入组合): 真值表中的一行

Α	В	AND/OR/NOT
0	0	
0	1	
1	0	
1	1	

与函数(AND)

- A•B, 二元函数, 需要两个源操作数
- 如果两个操作数中有一个为0,那么与函数的输出就为0
- 当且仅当两个操作数都为1时,与函数的输出为1
- 真值表2列源操作数,4种输入组合,输出为0001

Α	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

或函数(OR)

- A+B, 二元函数, 需要两个操作数
- 如果两个操作数中有一个为1,那么或函数的输出就为1
- 当且仅当两个操作数都为0时,或函数的输出为0
- 真值表2列源操作数,4种输入组合,输出为0111

Α	В	AND
0	0	0
0	1	1
1	0	1
1	1	1

非函数(NOT)

- A, 一元函数, 只作用于一个操作数
- 结果通过对输入进行补运算,即取反操作得到,也被称作补运算
- 当输入为1时,输出为0;输入为0时,结果为1

Α	NOT
0	1
1	0

逻辑完备性

- 其他任何逻辑函数都可以写成这三种基本逻辑运算符的逻辑组合
 - 异或函数,可以写成: $(\overline{A} \bullet B) + (A \bullet \overline{B})$
 - 可以利用该逻辑组合的真值表来证明

异或函数 (XOR)

- A XOR B, 二元函数, 需要两个源操作数
- 若两个源操作数不同则异或运算输出为1, 否则为0, 即"相异为1, 相同为0"

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

按位(逻辑)运算

- 对两个*m*位的位组合对应位上的数字按位运算
- 位组合的编号规则
 - 自右向左,顺序编号,最右边的一位是[0],最左边是[*m*-1]
 - 32位组合A
 - 0001 0010 0011 0100 0101 0110 0111 1000
 - [31]位是0, [30]位是0, [29]位是0, [28]位是1
 - 记为A[31: 0]

按位与运算

- 对两个m位的位组合对应位上的数字按位做与运算
 - a, b是8位的位组合, c是a和b做与运算的结果
 - a: 00111010
 - b: 11110000
 - c: 00110000
 - c的左边4位与a的左边4位相同,而c的右边4位均为0
- 与0做与运算结果为0,与1做与运算结果保持不变

按位与运算

- 假设有一个8位的位组合,称为A,最右边的两位有特殊的重要性。根据存储在A中的最右边两位数,要求计算机处理4个任务之一。如何把这两位孤立出来?
 - 位屏蔽为0000011
 - 和A做与运算,从7位到2位的位置上都为0,而0位和1位中的原来的值还在0和1的位置上
 - 屏蔽了7位到2位上的值,孤立出有重要性的0位和1位
 - 结果将是四种组合之一: 00000000, 00000001, 00000010或00000011

按位或运算

- 对两个m位的位组合按位进行或运算,也被称为包含或运算(inclusive-OR)
 - a, b是8位的位组合, c是a和b做或运算的结果
 - a: 00111010
 - b: 11110000
 - c: 11111010
 - c的左边4位均为1,右边4位与a的右边4位相同
- 与1做或运算结果为1,与0做或运算结果保持不变

按位非运算

- 对一个*m*位的位组合按位进行非运算
 - c是对a进行非运算的结果
 - a: 00111010
 - c: 11000101

按位异或运算

- 对m位的位组合做异或运算
- 假如a和b是8位的位组合, c是a和b的异或运算:
 - a: 00111010
 - b: 11110000
 - c: 11001010
 - c的左边4位为a的左边4位按位取反的结果,而c的右边4位则与a的右边4位相同
- 与1做异或运算结果表示取反,与0做异或运算结果保持不变

按位取反

• 假如a是8位的位组合, b是11111111, c是a和b的异或运算:

• a: 00111010

• b: 11111111

• *c*: 11000101

• c即为a取反的结果

C的位运算符

- C语言的低级语言特征之一
- 对数值进行位(布尔)运算的运算符集合
 - "&":按位"与"运算
 - "|":按位"或"运算
 - "~":按位"非"
 - "^":按位"异或"
 - "<<": 执行左移
 - ">>": 执行右移

示例

位运算表达式	二进制	位运算结果	十六进制
~0x41	~[0100 0001]	[1011 1110]	0xBE
~0x00	~[0000 0000]	[1111 1111]	0xFF
0x69 & 0x55	[0110 1001]&[0101 0101]	[0100 0001]	0x41
0x69 0x55	[0110 1001] [0101 0101]	[0111 1101]	0x7D

移位运算符

- "<<"执行左移
- ">>" 执行右移
- 第一个操作数是被移位的数值
- 第二个操作数是移动的位数
- 左移,零填充
- 右移,符号扩展

示例

• 8位整数: 01100111 << 3 (算数/逻辑左移)

示例

• 8位整数: 01100111 >> 3 (逻辑右移)

示例

• 8位整数: 01100111 >> 3 (算数右移)

• 8位整数: 11100111 >> 3 (算数右移)

示例

- 0x1234 << 3
- 0x1234 >> 2
- 1234 << 3
- 1234 >> 2
- 0x1234 << 5
- 0xFEDC >> 3

- ▶ /*等于0x91A0*/
- ▶ /*等于0x048D*/
- ▶ /*等于9872*/
- > /*等于308*/
- ▶ /*等于0x4680,结果仍是16位*/
- ▶ /*等于0xFFDB,需进行符号扩展*/

优先级及结合性

- 优先级
 - 1. 非(~)
 - 2. 左移(<<) = 右移(>>)
 - 3. 与(&) > 异或(^) > 或(|)
- 自左向右结合

优先级及结合性

- x = ~a | ~b; /*如果a=3, b=4*/
 - $x = \sim (0011) \mid \sim (0100)$
 - $x = \sim (0011) \mid \sim (0100) = (1100) \mid \sim (0100)$
 - $x = (1100) | \sim (0100) = (1100) | (1011)$
 - x = (1100) | (1011) = (1111)
- C语言的按位运算符,操作数都不能是浮点数, 语句中的x、a、b都是整数。
- ➤ x = (11111) = -1, 这里x是有符号整数

C的逻辑运算符

- 与位运算不同
- 所有非零的参数都为True,只有参数0为False
 - 位运算只有在特殊的数值条件下才得到0或1
- 逻辑运算的运算符集合
 - "&&": "与"(AND)
 - "||": "或"(OR)
 - "!": "非"(NOT)

示例

逻辑运算表达式	结果
!0x41	0x00
!0x00	0x01
‼0x41	0x01
0x69 && 0x55	0x01
0x69 0x55	0x01
if(a && 5/a)	若a=0,则结果为0x00

02 算术运算

算数运算

算数运算

- 用于数值计算
- 无符号/有符号(补码)整数的加减乘除运算
- 定点/浮点数加减乘除运算
- 变量与常数间的乘除运算

补码整数加减运算

补码整数加法运算

- $[X + Y]_{\lambda h} = [X]_{\lambda h} + [Y]_{\lambda h}$
- 例:已知 X=+10010 Y= -10101(此处为原码表示) 求X+Y
 - $[X]_{k}=010010 [Y]_{k}=101011$
 - $[X+Y]_{\dot{k}}=[X]_{\dot{k}}+[Y]_{\dot{k}}=010010+101011=1111101$
 - 故X+Y= 00011

补码整数加减运算

补码整数减法运算

- $[X-Y]_{\stackrel{1}{N}} = [X]_{\stackrel{1}{N}} [Y]_{\stackrel{1}{N}} = [X]_{\stackrel{1}{N}} + [-Y]_{\stackrel{1}{N}}$
 - [-Y]_{*\}= [[Y]_{*\}]_{*\}
 - [Y]_补按位取反加1
- 例: 已知 [Y]_补 =10011 求 [-Y]_补
 - $[Y]_{\frac{1}{4}} = 10011 \quad Y = -1101 \quad -Y = 1101$
 - [-Y]_补 = 01101 对比 [Y]_补 =10011
- 例:已知 X=+10101 Y=+10010 求X-Y
 - $[X]_{\dot{k}}=010101$, $[Y]_{\dot{k}}=010010$, $[-Y]_{\dot{k}}=101110$
 - $[X-Y]_{\dot{\gamma}}=[X]_{\dot{\gamma}}+[-Y]_{\dot{\gamma}}=010101+101110=1 000011$
 - X Y= + 00011

X+X

- 与十进制运算十分相似
- 把一个数x加上它自身
- 每位上的数字都向左移了一位,乘以2
 - 61可以表示为 0×26+ 1×25+ 1×24+ 1×23+ 1×22+0×21+ 1×20
 - 61 + 61 = 2×61,可以表示为 2×(0×2⁶+ 1×2⁵+ 1×2⁴+ 1×2³+ 1×2²+0×2¹+ 1×2⁰)
 - 也就是 0×2⁷+ 1×2⁶+ 1×2⁵+ 1×2⁴+ 1×2³+0×2²+ 1×2¹

恰当的位数

- 为减少占用空间,会采用恰当的位数来表示数值
 - 6
 - 用4位(<mark>0</mark>110)
 - 用16位(00000000000000110)
 - -6
 - 用4位(1010)
 - 用16位(1111 1111 1111 1010)

不同长度数值做加法

• 为了对两个具有不同长度的数值做加法,首先必须将它们表示为相同的长度

000000000001110

+ 1100

?

符号扩展

- 如果用0来扩展一个正数的左端,它的值不会改变
- 如果用1来扩展一个负数的左端, 其值亦不会改变
- 在这两种情况中扩展的都是符号位,这种运算被称为符号扩展(Sign-EXTension, SEXT)
- 用于对不同长度的数值之间的运算

 0000 0000 0000 1110 (14)
 0000 0000 0000 1110 (14)

 + 0000 0000 0000 1100 (12)
 + 1111 1111 1111 1100 (-4)

 0000 0000 0000 1010 (26)
 0000 0000 0000 0000 1010 (10)

溢出

• 使用4位补码数据类型, 计算2+6:

1000

- 计算结果为-8, 为什么会出现错误?
 - 4位表示的数值范围[-8,+7]
 - 2+6=8, 大于+7, 即大于0111
 - 0111是使用4位的补码数据能够表示的最大正数
 - 因此8不能用4位的补码表示出来

溢出的概念:

运算结果超出某种数据 类型的表示范围。

溢出

两个正数之和为负数!

两个负数之和为正数!

检测溢出

- 溢出只可能发生在同符号数相加时,包括[X]_补与[Y]_补; [X]_补 与[-Y]_补同号;
- 方法1: 对操作数和运算结果的符号位进行检测,符号不相同时就表明发生了溢出
 - 设X0, Y0 为参加运算数的符号位, S0 为结果的符号位
 - $V = X_0 Y_0 \overline{S_0} + \overline{X_0} \overline{Y_0} S_0$,当V=1时,运算结果溢出
- 方法2:对最高有效进位和符号进位进行检测,相异则发生溢出
 - 设运算时最高有效数据位产生的进位为C1,符号位产生的进位为C0
 - 溢出检测电路为: V= C0 ⊕ C1, 当V=1时, 运算结果溢出
 - 0.X1+0.Y1, C0=0, 若C1=1; 1.X1+1.Y1, C0=1, 若C1=0, 都改变了符号位, 发生溢出
 - 方法3: 用变型补码
 - [X]_{*}= X_{f1}X_{f2}. X₁X₂.....X_n,溢出判断: V= X_{f1} ⊕ X_{f2},当V=1时,运算结果溢出
 - X = -10010 Y = -10101 X + Y = 1101110 + 1101011 = 11011001
 - V= 1 ⊕ 0 = 1 故发生溢出

检测溢出

- 溢出只可能发生在同符号数相加时,包括[X]_补与[Y]_补; [X]_补 与[-Y]_补同号;
- 方法4:溢出判断的软件方法

```
int tadd_ok(int x,int y) {
    int sum=x+y;
    int neg_over=x<0&&y<0&&sum>=0;
    int pos_over=x>=0&&y>=0&&sum<0;
    return !neg_over&&!pos_over;
}</pre>
```

体会软/硬件功能的等效性和差异性! 软/硬协同的系统观!

IEEE-754浮点数表示

$$V = (-1)^{S} \times M \times 2^{E}$$

阶码的值	尾数的值	表示
0(全0)	0	+/- 0
0(全0)	非0	非规格化数
1~254	任意	规格化数
255(全1)	0	+/- ∞
255(全1)	非0	NaN

$$(-1)^{s} \times 1. f \times 2^{e-127}, \ 1 \le e \le 254$$

$$V_{float} = \{ (-1)^{s} \times 0. f \times 2^{-126}, \ e = 0$$

$$(-1)^{s} \times 1. f \times 2^{128} = Infinity(+and -), \ e = 255, f = 0$$

$$NaN(Not \ a \ Number), \ e = 255, f \ne 0$$

IEEE754浮点数标准规定的五种异常

- 无效运算(结果为NaN)
 - 运算时有一个数是非有限数,如:加/减 ±∞,±∞/±∞, 0×±∞,等
 - 结果无效,如: 0/0,源操作数为NaN,一个数对0取余等
- 有限数除以0(结果为±∞)
- · 数太大(阶上溢,结果为±∞):如对于单精度,阶码 > 127
- 数太小(阶下溢, 结果用非规格化数表示): 如对于单精度,阶码 < -126
 - 注: IEEE754出现前阶下溢一般为0,换言之, IEEE754解决了这一问题
- 结果不精确(舍入时引起): 如1/3不能精确表示为一个浮点数

浮点数加减运算方法及步骤

$$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E}$$

$$X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E}$$

$$X_E \le Y_E$$

- ① 对阶: 小阶向大阶看齐(右移阶码小的浮点数的尾数并同步增加其阶码), 直至两数阶码相等
 - $X_S \times B^{X_E} = X_S \times B^{X_E Y_E} \times B^{Y_E}$, X_S 尾数右移 $(Y_E X_E)$ 位,阶数增加 $(Y_E X_E)$ 位
- ② 尾数运算:对阶后的尾数做加(减)法运算
 - 符号位+尾数的二进制数补码运算(隐藏位参与运算)
 - 同号数相加,结果符号不同表示溢出;异号数相加不会溢出
 - 求和(差):
 - [x+y]_补=[x]_补+[y]_补(正数三码合一)
 - [x-y]*=[x]*+[-y]* ([-y]*=[y]*按位取反加1)

浮点数加减运算

③ 结果规格化:对运算结果进行规格化处理

• 左规: $0.0...01b...bb(k-1\uparrow 0)$ 则尾数左移 $k\dot{u}$, $Y_E = Y_E - k$

• 右规: 11.bb...bb则<mark>尾数右移1位</mark>, $Y_E = Y_E + 1$

④ 舍入操作: 右移规格化时可能丢失一些低位的数值位, 为提高精度, 可采取舍入的方法

•0 舍 1 入: 若右移出的是1则在最低位加1

•恒置 1: 只要数字位1被移掉,就将最后一位恒置成1

⑤ 溢出处理: 浮点数溢出的标志, 指数/阶码是否溢出

•阶码上溢: 阶码的符号位为01, 超出最大能表示的指数范围(单精度127, 双1023)

•阶码下溢: 阶码的符号位为10, 超出最小能表示的指数范围(单精度-126, 双-1022)

示例: 2+6

- 转成二进制规格化小数
 - [X] $\stackrel{?}{\Rightarrow}$ =2=10=1.0×2¹= 0 10000000 0000 0000 0000 0000 0000
 - [Y] $\stackrel{?}{\Rightarrow}$ =6=110=1.10×2²= 0 10000001 1000 0000 0000 0000 0000

① 对阶

- X的阶码小于Y的阶码
- 将X的尾数向右移动1位,同时阶码加1,对阶后的X为:
- [X] $\stackrel{?}{\Rightarrow}$ = 0.10 ×2²= 0 10000001 1000 0000 0000 0000 0000

示例: 2+6

- ② 尾数加法运算:
 - 2: 00. 100 0000 0000 0000 0000 0000
 - 6: 01. 100 0000 0000 0000 0000 0000
 - 尾数相加得到: 10.00 000 0000 0000 0000 0000 0000 (隐藏位进位)
- ③ 尾数规格化处理
 - 右规(尾数右移,小数点左移)1位,阶码加1变为3(e=130),S=0
- ④ 舍入(0舍1入)
 - 尾数最低位的0舍去
- ⑤ 溢出处理
 - 阶码00 10000001 + 00 0000 0001 = 00 1000 0010无溢出

示例: 8.25-1.25

- 转成二进制规格化小数

① 对阶

- $[\Delta E] \stackrel{?}{=} = [Ex] \stackrel{?}{=} + [-Ey] \stackrel{?}{=} = 00 \ 10000010 + 11 \ 100000001 = 00 \ 000000011 = (3)_{10}$
- X的阶码大于Y的阶码
- 将Y的尾数向右移动3位,同时阶码加3,对阶后的Y为:

示例: 8.25-1.25

② 尾数加法运算:

• 8.25: **01**. 0000 1000 0000 0000 0000 000

• 1.25; 00. 0010 1000 0000 0000 0000 000

-1.25: 11. 1101 1000 0000 0000 0000 000

8.25和-1.25尾数相加得到: 00. 1110 0000 0000 0000 0000 0000 000 (隐藏位借位)

③ 尾数规格化处理

• 左规(尾数左移,小数点右移)1位,阶码减1变为2(e=129), S=0

④ 舍入(0舍1入)

最低位补0

⑤ 溢出处理

• 阶码129无溢出

0 10000001 1100 0000 0000 0000 0000 000

浮点数运算

•
$$(3.14 + 1e^{10}) - 1e^{10} = 0.0$$

• $3.14 + (1e^{10} - 1e^{10}) = 3.14$

• $(1e^{20} \times 1e^{20}) \times 1e^{-20} = + \infty$

• $1e^{20} \times (1e^{20} \times 1e^{-20}) = 1e^{20}$

• $1e^{20} \times (1e^{20} - 1e^{20}) = 0.0$

• $(1e^{20} \times 1e^{20}) - (1e^{20} \times 1e^{20}) = NaN$

加法不具备结合性

乘法不具备结合性

乘法在加法上不具备结合性

- 书面作业
 - 6.9
 - 6.16

谢谢

诚耀百世節 雄创一流