Lecture 7 Recall:

Let G be a finite group.

Let x be an element of G,

 $x \neq 1$. Let d = ord(x).

Thus $\langle x \rangle = \{1, x, \dots, x^{d-1}\}$.

Suppose $G \neq \langle x \rangle$.

3 means "there exists"

Thus $\exists y \in G$ such that $y \notin \langle x \rangle$. Then, we saw that the elements y, yx, -- , yxd-1 are all distinct. Also, if we denote the set {y, yx, ---, yxd-1} by y(x), then $(x) \cap y(x) = \emptyset$ \$\phi\$ is the symbol for the empty set.

If z is such that
$$z \notin \langle x \rangle$$
 and $z \notin y \langle x \rangle$, then the elements z, zx , - · · · , zx^{d-1} are all distinct. Also, if $z\langle x \rangle = \{z, zx, - \cdot \cdot \cdot , zx^{d-1}\}$, then $\langle x \rangle \cap z \langle x \rangle = \emptyset$ and

 $y(x) \cap z(x) = 0$

And so on....
... until we run out of group elements.

Now let us write all this more formally.

Notation

Let G be a group and S be any subset of G.

Let y ∈ G be some element.

We define yS to be the set of all elements of the form yx, where $x \in S$.

 $yS = \{yx \mid x \in S\}$ Note that if s_1, s_2 are distinct elements of S, then

ys, \neq ys₂. Indeed, if ys, = ys₂, then by cancelling y, we get $s_1 = s_2$ — contradiction. Thus, the function $\varphi: S \rightarrow yS$ defined by $\varphi(s) = ys$ for $s \in S$, is a one-to-one function. φ is also onto:

Any element of yS is of the form ys for some $s \in S$. $S_0 \varphi(s) = yS$ Thus, the function φ gives a <u>bijection</u> from S to yS.

This explains why the elements y, yx, -.., yx^{d-1} were all distinct.

Disjointness arguments

Suppose y, z are two elements

that $y(x) \cap z(x) = \emptyset$?

火ス>ハマくx> ≠ ゆ Suppose $yx' = zx^{j}$ for some Then, i and j. So $z = yx^{i-j}$.

But $yx^{i-1} \in y \langle x \rangle$. So we see that $z \in y \langle x \rangle$. So, we conclude the following: If $z \notin y(x)$, then the sets y(x) and z(x) are disjoint.

This explains why the sets <x>, y<x>, z<x>, etc. were disjoint.

Suppose $y(x) \cap z(x) \neq \emptyset$. Then we saw that $z = yx^r$ for some r.

Let us look at elements of z(x). $zx^{i} = yx^{r} \cdot x^{i} = yx^{r+i} \in y\langle x\rangle$

So Z(x) = y(x)

But we also have $y = z \cdot x^{-r}$

So $yx^i = zx^{-1} \cdot x^i = zx^{i-1} \in z\langle x\rangle$

So $y(x) \subseteq z(x)$.

So, we see that y(x) = z(x)

Thus, we have proved that for any two elements y,z in G, we have either $y(x) \cap z(x) = \phi$

$$y\langle x\rangle = z\langle x\rangle$$

Observe We di

We did not use the assumption that ord(x) is finite. So, our conclusion holds for any x.

So, what properties of the set $\langle x \rangle$ did we really use?

We used two properties: (1) A product of two powers of x is a power of x. (2) The inverse of a power of x is a power of x.

But any subgroup has such properties, not just $\langle x \rangle$.

Cosets

Let H be a subgroup of G If g is any element of G,

is called a left coset of H

gH = {gh | h & H }

the set

Similarly, the set $Hg = \{hg \mid h \in H \}$ is called a right coset

of H.

Proposition Let G be a group and let H be a subgroup of G. Then, given two left cosets giH and gzH of H, either giH Ng2H = \$ OR $g_1H = g_2H$.

Proof Suppose $g_1H \wedge g_2H \neq \phi$. Then, $g_1h_1 = g_2h_2$ for some hi, hz in H. So $g_1 = g_2 h_2 h_1$ Then, for any h & H,

have $g_1h = g_2(h_2h_1^{-1}h) \in g_2H$. So $g_1H \subseteq g_2H$.

Similarly, g2= g,h,h21.

So g2H ⊆ g, H.

So $g_1H = g_2H$.

So, for any $h \in H$, $g_2h = g_1(h_1h_2^{-1}h) \in g_1H$.

Notation

The set of all left cosets of H is denoted by G/H.

So

G/H = {H, aH, bH, cH, --- }

The set of all right coxets

The set of all right cosets of H is denoted by H/G.

Note that every element g of G is contained in some left coset of H, namely 9 H. So, the union of all left cosets of H is G.

So, we observe the following: (1) The union of all left cosets of H is G. (2) Two distinct left cosets do not intersect. So, the left cosets of H give a partition of G.

Cardinality of cosets We saw earlier that there is a 1-1 correspondence from H to gH for any g & G. So, if H is finite, we see that IgHI = IHI for any qEG.

Theorem Let G be a finite group and let H be a subgroup of G. Then HI divides |G|. Proof As G is a finite set, the set G/H is also finite.

G is the union of all the left cosets of H. Any two distinct cosets are disjoint. For any coset gH, we have 1gH) = 1H). So |G|= |G/H|. |H|.

So IHI divides 161.

Corollary Let G be a finite group. Then, for any x GG, ord(x) divides IGI.

Proof: Apply the theorem with

 $H = \langle x \rangle$.