ae-2017-1 to 13

AI24BTECH11020 - Rishika

- 1) Given the vectors $\mathbf{v_1} = \hat{i} + 3\hat{j}$; $\mathbf{v_2} = 2\hat{i} 4\hat{j} + 3\hat{k}$, the vector $\mathbf{v_3}$ that is perpendicular to both $\mathbf{v_1}$ and $\mathbf{v_2}$ is given by:
 - a) $\mathbf{v}_3 = \mathbf{v}_1 (\mathbf{v}_1 \cdot \mathbf{v}_2) \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$

 - c) $v_3 = v_2 (v_1 \cdot v_2) \frac{v_1}{\|v_1\|}$ d) $v_3 = \frac{v_1 \times v_2}{\|v_1 \times v_2\|}$
- 2) The value of the integral $I = \int_{C} ((x-y) dx + x^{2} dy)$, with C the boundary of the square $0 \le x \le 2$; $0 \le 1$
- 3) Let $\mathbf{v}(\mathbf{t})$ be a unit vector that is a function of the parameter t. Then $\mathbf{v} \cdot \frac{d\mathbf{v}}{dt} =$ 4) The eigenvalues λ_n and eigenfunctions $u_n(x)$ of the sturm-Liouville problem

$$\frac{d^2y}{dx^2} + k^2\lambda y = 0, 0 < x < 1; y(0) = 0, y(1) = 0$$

are given by:

- a) $\lambda_n = n^2 \pi^2$; $u_n(x) = \sin \lambda_n x, n = 0, \pm 1, \pm 2, \dots, \infty$
- b) $\lambda_n = \frac{n^2 \pi^2}{k^2}$; $u_n(x) = \sin kn\pi x$, $n = 0, \pm 1, \pm 2, \cdots, \infty$ c) $\lambda_n = \frac{n^2 \pi^2}{k^2}$; $u_n(x) = \sin kn\pi x$, $n = 0, \pm 1, \pm 2, \cdots, \infty$ d) $\lambda_n = n^2 \pi^2$; $u_n(x) = \sin n\pi x$, $n = 0, \pm 1, \pm 2, \cdots, \infty$
- 5) 3-point Gaussian integration formula is given by: $\int_{-1}^{1} f(x) dx \approx \sum_{j=1}^{3} A_j f(x_j)$ with $x_1 = 0, x_2 = -x_3 = 0$ $-\sqrt{\frac{3}{5}}$; $A_1 = \frac{8}{9}$, $A_2 = A_3 = \frac{5}{9}$. This formula exactly integrates
 - a) $f(x) = 5 x^7$
 - b) $f(x) = 2 + 3x + 6x^4$
 - c) $f(x) = 13 + 6x^3 + x^6$ d) $f(x) = e^{-x^2}$
- 6) Which one of the following statements is NOT true
 - a) The pitching moment of any airfoil at any angle of attack is always zero at the center of pressure
 - b) The pitching moment of any airfoil at any angle of attack is always zero at the aerodynamic center
 - c) The center of pressure and aerodynamic center coincide for a symmetric airfoil
 - d) The pitching moment about the aerodynamic center, for any airfoil, does not vary with angle of attack
- 7) Which one of the following statements is NOT true
 - a) Compared to a laminar boundary layer, a turbulent boundary layer is more desirable on a wing operating at large angle of attack
 - b) The skin friction drag for a turbulent boundary layer is larger than that for a laminar boundary
 - c) The location of transition from laminar to turbulent boundary layer depends only on the operating Reynolds number
 - d) A seperated flow does not necessarily lead to a turbulent boundary layer

- 8) A De Laval nozzel is to be designed for an exit Mach number of 1.5. The reservoir conditions are given as $P_{\circ} = 1atm(gage)$, $T_{\circ} = 20^{\circ}C$, $\gamma = 1.4$. Assuming shock free flow in the nozzle, the exit absolute pressure(in atm) is _____ (in three decimal places)
- 9) Consider a steady one dimensional flow of a perfect gas with heat transfer in a duct. The T-s diagram (shown below) shows both the static and the stagnation conditions at two locations, A and B,in the duct. A_t and B_t denote stagnation conditions for states A and B, respectively. It is known that $(\Delta T)_A = (\Delta T)_B . M_A$ and M_B are the Mach numbers of the flow at locations A and B.

Which of the following statements is true about the flow.

- a) Flow is subsonic and $M_A < M_B$
- b) Flow is supersonic and $M_A > M_B$
- c) Flow is subsonic and $M_A > M_B$
- d) Flow is supersonic and $M_A < M_B$
- 10) To ensure only the longitudinal static stability (and not the condition for equilibrium) of a low speed aircraft, the aircraft components must be designed to satisfy which one of the following conditions:

 - a) $\frac{\partial C_m}{\partial \alpha} < 0$ and $C_{m0} > 0$ b) $\frac{\partial C_m}{\partial \alpha} < 0$ c) $\frac{\partial C_m}{\partial C_L} < 0$ and $C_{m0} < 0$ d) $\frac{\partial C_m}{\partial C_L} = 0.0$
- 11) Which of the following statement(s) is/are true about the shear centre of a cross-section:
 - P: It is that point in the cross-section through which shear loads produce no twisting.
 - Q: This point is also the centre of twist of sections subjected to pure torsion.
 - R: The normal stress at this point is always zero.
 - a) P, Q and R
 - b) P only
 - c) P and Q only
 - d) P and R only
- 12) Let $\overline{N_m}$ and $\overline{N_0}$ be respectively the non-dimensional locations of the stick-fixed maneuver point and stick-fixed neutral point of a low speed convectional aircraft. These distances are measured with respect to the nose of the fuselage. The numerical value of $N_m - N_0$
 - a) will always be negative
 - b) will always be positive
 - c) will always be zero
 - d) can have any value depending on the location of the center of gravity of the aircraft