VE311 Mid Review - Op Amp

Zeyu Zhang

University of Michigan-Shanghai Jiao Tong University Joint Institute

June 28, 2023

Overview

Zeyu Zhang (UM-SJTU JI)

Intro

- ► Op Amp is a nonlinear circuit element
 - ightharpoonup Low input signal ightarrow Linear
 - ► High input signal → Saturation
- ▶ Op Amp

 Differential & Single-ended amplifier
 Single-ended: the output appears between terminal 3 and
 ground (not differential)

Differential Amplifier

single-ended Amplifier

Intro

An amplifier receives a signal from a source and delivers it to a load. Gains are dimensionless, and are usually expressed in terms of decibels (dB):

$$A_{v} = \frac{v_{o}}{v_{i}}$$
 (1)
$$A_{v}(dB) = 20 \log A_{v}$$
 (4)

$$A_i = \frac{i_o}{i_i}$$
 (2) $A_i(dB) = 20 \log A_i$ (5)

$$A_p = A_v A_i \qquad (3) \qquad A_p(dB) = 10 \log A_p \qquad (6)$$

Ideal op amp

- ► Infinite input impedance
- ► Zero output impedance
- Zero common-mode gain or, equivalently, infinite common-mode rejection
- ▶ Infinite open-loop gain A
- ▶ Infinite bandwidth

Differential and Common-Mode Signals

(8)

$$v_{Id} = v_2 - v_1 \quad v_{Icm} = \frac{1}{2}(v_1 + v_2)$$
 (7)

$$v_1 = v_{lcm} - \frac{v_{ld}}{2}$$
 $v_2 = v_{lcm} + \frac{v_{ld}}{2}$

The inverting configuration

Determine the closed-loop gain using virtual ground ($v_- = v_+ = 0$)

$$v_O = -\frac{R_2}{R_1} v_I \tag{9}$$

Example

Hw3 Question 2

The Weighted Summer

$$v_{O} = -\left(\frac{R_{f}}{R_{1}}v_{1} + \frac{R_{f}}{R_{2}}v_{2} + \dots + \frac{R_{f}}{R_{n}}v_{n}\right)$$
(10)

Exercise

 $R_1=5\mathrm{k}\Omega,R_2=10\mathrm{k}\Omega,R_a=10\mathrm{k}\Omega,R_b=10\mathrm{k}\Omega,R_3=2.5\mathrm{k}\Omega,R_c=10\mathrm{k}\Omega,R_4=10\mathrm{k}\Omega,$ determine v_O

Exercise

 $R_1=5\mathrm{k}\Omega,R_2=10\mathrm{k}\Omega,R_a=10\mathrm{k}\Omega,R_b=10\mathrm{k}\Omega,R_3=2.5\mathrm{k}\Omega,R_c=10\mathrm{k}\Omega,R_4=10\mathrm{k}\Omega,$ determine v_O

Solution: $v_0 = 2v_1 + v_2 - 4v_3 - v_4$

The noninverting configuration

$$v_O = v_I (1 + \frac{R_2}{R_1}) \tag{11}$$

The voltage follower

A special noninverting case such that $R_1 = \infty$ and $R_2 = 0$

$$v_O = v_I \tag{12}$$

Difference Amplifiers

$$v_O = A_d v_{Id} + A_{cm} v_{Icm} \tag{13}$$

$$CMRR = 20 \log \frac{|A_d|}{|A_{cm}|} \tag{14}$$

Difference Amplifier

Inverting part + noninverting part + voltage divider (superposition)

$$\frac{R_4}{R_4 + R_3} \left(1 + \frac{R_2}{R_1} \right) = \frac{R_2}{R_1} \tag{15}$$

$$\frac{R_4}{R_3} = \frac{R_2}{R_1} \tag{16}$$

Difference Amplifier

The differential gain

$$A_d = \frac{v_O}{v_{Id}} = \frac{R_2}{R_1} \tag{17}$$

What about the common-mode gain A_{cm} ?

$$A_{cm} \equiv \frac{v_O}{v_{lcm}} = \left(\frac{R_4}{R_4 + R_3}\right) \left(1 - \frac{R_2}{R_1} \frac{R_3}{R_4}\right) \tag{18}$$

The Instrumentation Amplifier

Two noninverting (A_1, A_2) + difference amplifier (A_3)

$$v_O = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) v_{ld} \tag{19}$$

Example

Hw3 Question 3

Inverting & Noninverting (Finite gain)

Inverting:

$$G \equiv \frac{v_O}{v_I} = \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/A} \tag{20}$$

Noninverting:

$$G \equiv \frac{v_O}{v_I} = \frac{1 + (R_2/R_1)}{1 + \frac{1 + (R_2/R_1)}{A}} = \frac{A}{1 + A\beta}$$
 (21)

where $\beta = \frac{R_1}{R_1 + R_2}$ is called the feedback factor.

Output and input resistance

Output resistance (both inverting and noninverting):

$$R_{out} = \frac{R_o}{1 + A\beta} \| (R_1 + R_2)$$
 (22)

Input resistance (noninverting):

$$R_{\rm in} = R_{id}(1 + A\beta) \tag{23}$$

Input resistance (inverting):

$$R_{\text{in}} = R_1 + R_{id} \| \left(\frac{R_2}{1+A} \right)$$
 (24)

Example

Hw3 Question 4

Voltage follower (Finite gain)

$$v_{Id} = v_I - v_O \quad v_{Icm} = \frac{v_I + v_O}{2}$$
 (25)

$$v_O = A_d v_{Id} + A_{cm} v_{Icm} (26)$$

$$v_O = A_d \left[(v_I - v_O) + \frac{v_I + v_O}{2 \text{CMRR}} \right]$$
 (27)

$$A_{v} = \frac{v_{O}}{v_{I}} = \frac{A_{d} \left[1 + \frac{1}{2\text{CMRR}} \right]}{1 + A_{d} \left[1 - \frac{1}{2\text{CMRR}} \right]}$$
(28)

Nonideal amplifier

Input offset voltage V_{OS} , usually $1mV \leq V_{OS} \leq 5mV$

Exercise: Use the model below to sketch the transfer characteristic v_O versus $v_{Id}(v_O=v_3$ and $v_{Id}=v_2-v_1)$ of an op amp having an open-loop dc gain $A_0=10^4 V/V$, output saturation levels of $\pm 10 V$, and V_{OS} of +5 mV.

Transfer characteristic

Solution:

Figure E2.21 Transfer characteristic of an op amp with $V_{OS} = 5$ mV.

Output saturation

Clipping: Theoretical output voltage > Rated output voltage

Exercise

Consider an op amp connected in the inverting configuration to realize a closed-loop gain of -100V/V utilizing resistors of $1k\Omega$ and $100k\Omega$. A load resistance R_L is connected from the output to ground, and a low-frequency sine-wave signal of peak amplitude V_p is applied to the input. Let the op amp be ideal except that its output voltage saturates at $\pm 10V$ and its output current is limited to the range $\pm 20mA$.

- ► For $R_L = 1k\Omega$, what is the maximum possible value of V_p while an undistorted output sinusoid is obtained?
- ► Repeat (a) for $R_L = 200 kΩ$.
- ▶ If it is desired to obtain an output sinusoid of 10 V peak amplitude, what minimum value of R_L is allowed?

Slew rate

A large signal effect, "saturation in rate of change of output voltage"

$$SR = \left. \frac{dv_O}{dt} \right|_{\text{max}} \tag{29}$$

For a unity-gain voltage-follower,

Suggestion

- Read questions carefully (inverting&noninverting, ideal&nonideal, AC&DC...)
- Practice more to get familiar with simple models mentioned in class
- Write some important conclusions and definitions in your ctpp (e.g. voltage gain, CMRR)
- Try to decompose complex circuits to multiple simple circuits when you get stucked in exam (superposition principle)
- **.** . . .

Thank You&Good Luck