Nitrogen Cycle Cheatsheet (Chronological Order)

Step	Process	Main Players	Core Equation (simplified)	Oxidation state of N	What it does
Fixation	$N_2 \rightarrow NH_3/NH_4^+$	Nitrogen-fixing bacteria (Rhizobium, free-living), lightning, Haber process	$N_2 + 8H^+ + 8e^-$ $\rightarrow 2NH_3 + H_2$	0 → −3	Converts inert N_2 into usable reduced N
Ammonification	Organic N \rightarrow NH ₃ /NH ₄ ⁺	Decomposers	$R-NH_2 + H_2O$ $\rightarrow NH_3 + other$ products	–3 stays –3	Recycles N from organic matter
Nitrification (1)	$NH_4^+ \rightarrow NO_2^-$	Nitrosomonas	$NH_4^+ + 1.5O_2$ $\rightarrow NO_2^- + 2H^+$ $+ H_2O$	- 3 → + 3	First oxidation step in soil
Nitrification (2)	$NO_2^- \rightarrow NO_3^-$	Nitrobacter	$NO_2^- + 0.5O_2$ $\rightarrow NO_3^-$	+3 → +5	Produces nitrate (main plant source)
Assimilation	NO_3^-/NH_4^+ \rightarrow Organic N	Plants, microbes	NO_{3}^{-} (+5) + $8e^{-}$ + $10H^{+}$ \rightarrow NH_{4}^{+} (-3) \rightarrow amino acids	+5/ - 3 → -3	Incorporation into biomass
Denitrification	$NO_3^- \rightarrow N_2$	Facultative anaerobes (Pseudomonas)	$2NO_3^- + 10e^- + 12H^+ \rightarrow N_2 + 6H_2O$	+ 5 → 0	Returns N ₂ to atmosphere