Maths 3D

Exercices

- Chaque journée contiendra un ensemble d'exercices / tests à réaliser.
- Seul les tests unitaires seront notés (à rendre avant le 31/12/2024 à 23h59).
- Une partie des exercices seront à faire sur papier. Vous pouvez scanner ou prendre en photo vos feuilles si vous souhaitez m'envoyer vos résultats.
- Pensez à récupérer votre licence étudiante Rider si vous souhaitez gagner du temps pour les tests unitaires.

Référence principal du cours

Les Matrices

(Partie 1)

Pourquoi utiliser des matrices?

Les matrices permettent de résoudre certaines équations plus rapidement et plus simplement.

$$\begin{cases} x+4y-2z=0 \\ 2x+y+z=6 \\ -3x+3y-5z=-13 \end{cases} \rightarrow \begin{bmatrix} 1 & 4 & -2 \\ 2 & 1 & 1 \\ -3 & 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ -13 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 4 & -2 \\ 2 & 1 & 1 \\ -3 & 3 & -5 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 6 \\ -13 \end{bmatrix} = \begin{bmatrix} \frac{45}{19} \\ \frac{1}{19} \\ \frac{23}{19} \end{bmatrix}$$

Pourquoi utiliser des matrices ?

On retrouve également les matrices dans certains algorithmes de pathfinding.

Pourquoi utiliser des matrices ?

Enfin les matrices sont très pratiques pour changer de repère de coordonnées (ex: coordonnées locales vers coordonnées monde).

Définition

Une matrice est un tableau à deux dimensions contenant des nombres.

Représentation d'une matrice

$$F = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \end{bmatrix}$$

Taille d'une matrice

On dit qu'une matrice est de taille **n** x **m** :

- **n** : nombre de **lignes**
- m: nombre de colonnes

$$\begin{bmatrix} 1 & 4 & 7 \\ 8 & 10 & 115 \end{bmatrix} \quad \begin{bmatrix} 1 & 7 \\ 4 & 3 \\ 17 & 23 \end{bmatrix} \quad \begin{bmatrix} 1 & 8 & 5 & 9 & 7 \end{bmatrix}$$

Taille: 3x2 Taille: 1x5

Matrice carrée

On dit qu'une matrice est carrée lorsqu'elle contient le même nombre de lignes et

de colonnes.

$$\begin{bmatrix} 18 & 45 \\ 21 & 57 \end{bmatrix}$$

Matrice carrée de taille 2x2 de taille 3x3

10	18	96	115
1224	$\sqrt{13}$	23	$\frac{1}{15}$
2	10	$\frac{1}{2}$	24
11	$\frac{2}{3}$	27	34

Matrice carrée de taille 4x4

Matrice transposée

La transposée d'une matrice est une matrice ou les lignes et les colonnes sont échangées.

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \qquad M^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Matrice transposée

$$(M^T)^T = M$$

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \longrightarrow M^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \longrightarrow (M^T)^T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Somme de 2 matrices

Faire la somme de deux matrices revient à additionner respectivement chacun des éléments à la même position :

$$\begin{bmatrix} 1 & 5 & 6 \\ 2 & 3 & 9 \end{bmatrix} + \begin{bmatrix} 9 & 1 & 3 \\ 4 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1+9 & 5+1 & 6+3 \\ 2+4 & 3+1 & 9+2 \end{bmatrix} = \begin{bmatrix} 10 & 6 & 9 \\ 6 & 4 & 11 \end{bmatrix}$$

Multiplier une matrice par un scalaire

Il est possible de multiplier une matrice par un scalaire. Le facteur est appliqué sur chacun des éléments qui compose la matrice :

$$2 \times \begin{bmatrix} 5 & 1 & 3 \\ 4 & 8 & 12 \end{bmatrix} = \begin{bmatrix} 2 \times 5 & 2 \times 1 & 2 \times 3 \\ 2 \times 4 & 2 \times 8 & 2 \times 12 \end{bmatrix} = \begin{bmatrix} 10 & 2 & 6 \\ 8 & 16 & 24 \end{bmatrix}$$

Le symbole Σ : Définition

Le symbole Σ permet de définir une somme de valeurs à partir d'une variable compris dans un intervalle.

$$\sum_{i=1}^{10} i \longrightarrow 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$$

Le symbole Σ : Série

Il est possible de définir une variable en haut du symbole Σ . On écrira alors.

$$\sum_{i=1}^{n} 2^{i} \iff 2^{1} + 2^{2} + \dots + 2^{n}$$

Le symbole Σ : Autres exemples

$$\sum_{i=1}^{n} \frac{1}{i} = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$\sum_{i=1}^{n} (i+1) = (1+1) + (2+1) + \dots + (n+1)$$

$$\sum_{i=1}^{n} (i \times i) = (1 \times 1) + (2 \times 2) + \dots + (n \times n)$$

Multiplication entre 2 matrices

Deux matrices F et G peuvent être multipliées ensemble si le nombre de colonnes de F correspond au nombre de lignes de G.

Le résultat donne une matrice de taille **m** x **p** si :

F est de taille **m** x **n**

G de taille **n** x **p**.

Chaque élément (d'indice *i,j*) de la matrice de résultat devra être calculé de la façon suivante :

$$(F \times G)_{ij} = \sum_{k=1}^{m} F_{ik} \times G_{kj}$$

Multiplication entre 2 matrices

$$\begin{bmatrix} 1 & 4 \\ 2 & 1 \\ 7 & 5 \end{bmatrix} \times \begin{bmatrix} 4 & 3 & 5 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 4 + 4 \times 1 & 1 \times 3 + 4 \times 2 & 1 \times 5 + 4 \times 1 \\ 2 \times 4 + 1 \times 1 & 2 \times 3 + 1 \times 2 & 2 \times 5 + 1 \times 1 \\ 7 \times 4 + 5 \times 1 & 7 \times 3 + 5 \times 2 & 7 \times 5 + 5 \times 1 \end{bmatrix} = \begin{bmatrix} 8 & 11 & 9 \\ 9 & 8 & 11 \\ 33 & 31 & 40 \end{bmatrix}$$

$$3x3$$

La matrice identité

La matrice identité est une matrice carrée avec des 1 sur les diagonales et des 0 partout ailleurs.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrice identité de Taille 2x2

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrice identité de Taille 3x3

Matrice identité de Taille 4x4

Matrices : quelques théorèmes

Soit a et b des scalaires et F, G et H des matrices de tailles n x m :

1)
$$F + G = G + F$$

2)
$$(F+G)+H=F+(G+H)$$

3)
$$a(bF) = (ab)F$$

4)
$$a(F+G) = aF + aG$$

5)
$$(a+b)F = aF + bF$$

Matrices : quelques théorèmes

Soit a un **scalaire**, F **une matrice de taille n x m**, G **une matrice de taille m x p**, et H une **matrice de tailles p x q** :

$$1) (aF)G = a(FG)$$

2)
$$(FG)H = F(GH)$$

3)
$$(FG)^T = G^T F^T$$

Exercices

Exercice 1 : Matrices Tailles

Donner la taille des matrices suivantes et indiquer le(s) matrice(s) carrée(s) :

a)
$$\begin{bmatrix} 1 & 8 & 4 \\ 3 & 5 & 10 \end{bmatrix}$$
 b) $\begin{bmatrix} 7 & 7 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$

b)
$$\begin{vmatrix} 7 & 7 \\ 1 & 1 \\ 2 & 2 \end{vmatrix}$$

d)
$$\begin{bmatrix} 1 & 2 & 3 \\ 8 & 17 & 8 \\ 1 & 0 & 0 \end{bmatrix}$$
 e) $\begin{bmatrix} 4 & 7 & 3 \end{bmatrix}$

c)
$$\begin{bmatrix} 7 & 27 & 42 & 84 \\ 2 & 1 & 24 & 102 \\ 76 & 3 & 83 & 17 \\ 13 & 5 & 47 & 23 \\ 51 & 34 & 5 & 0 \end{bmatrix}$$

Exercice 2 : Matrices transposées

Transposer les matrices suivantes :

$$\mathsf{a)}\begin{bmatrix}0&0\\1&1\\2&2\end{bmatrix}$$

$$\mathsf{d}) \begin{bmatrix} 0 & 7 & 1 \\ 8 & 1 & 9 \\ 4 & 2 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 8 & 3 & 4 \\ 5 & 9 & 1 & 0 \\ 5 & 5 & 4 & 4 \end{bmatrix}$$
 c) $\begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$

$$e) \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 \\ 4 \\ 9 \\ 47 \\ 54 \end{bmatrix}$$

Exercice 3 : Matrice identité

Écrire les matrices identités de taille 2x2, 5x5 et 6x6.

Exercice 4.1 : Matrices opérations

Calculer le résultat des opérations suivantes :

a)
$$\begin{bmatrix} 1 & 7 \\ 8 & 5 \\ 4 & 17 \end{bmatrix} + \begin{bmatrix} 65 & 4 \\ 3 & 1 \\ 48 & 2 \end{bmatrix}$$

b)
$$2 \times \begin{bmatrix} 12 & 7 \\ 4 & 3 \\ 24 & 23 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$

Exercice 4.2 : Matrices opérations

Calculer le résultat des opérations suivantes :

a)
$$\begin{bmatrix} 1 & 4 \\ 2 & 2 \\ 7 & 6 \\ 23 & 1 \end{bmatrix} \times \begin{bmatrix} 8 & 5 & 2 \\ 3 & 1 & 2 \end{bmatrix}$$
 b) $\begin{bmatrix} 75 & \frac{13}{17} \\ \sqrt{29} & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Exercice 5: Tests Unitaires

Ecrire le(s) classe(s) nécessaire(s) pour faire passer les tests unitaires situées dans le dossier ci-dessous (jusqu'à **Tests07_TransposeMatrices** inclus)

