Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 21: Sintesi del regolatore

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

Nella scorsa lezione

- ⊳ Sistema duale e sue proprietà
- ▶ Rivelabilità

In questa lezione

▶ Il regolatore: struttura ed equazioni dinamiche

▶ Principio di separazione

▶ Esempio

Il regolatore

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ $y(t) = Hx(t)$

m ingressi *p* uscite *n* stati

Il regolatore

$$x(t+1) = Fx(t) + Gu(t)$$
 m ingressi p uscite $y(t) = Hx(t)$ n stati

Il regolatore

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite $y(t) = Hx(t)$ n stati

= stimatore dello stato + controllo in retroazione dallo stato

Il regolatore: equazioni dinamiche

$$x(t+1) = Fx(t) + Gu(t)$$

sistema Σ :

$$y(t) = Hx(t)$$

legge di controllo:
$$u(t) = K\hat{x}(t) + v(t)$$

stimatore dello stato:
$$\hat{x}(t+1) = F\hat{x}(t) + Gu(t) - L(y(t) - H\hat{x}(t))$$

note

Il regolatore: equazioni dinamiche

$$x(t+1) = Fx(t) + Gu(t)$$

sistema Σ : v(t) = Hx(t)

legge di controllo: $u(t) = K\hat{x}(t) + v(t)$

stimatore dello stato: $\hat{x}(t+1) = F\hat{x}(t) + Gu(t) - L(y(t) - H\hat{x}(t))$

$$\Rightarrow \text{ regolatore:} \quad \begin{bmatrix} x(t+1) \\ \hat{x}(t+1) \end{bmatrix} = \begin{bmatrix} F & GK \\ -LH & F+GK+LH \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix} + \begin{bmatrix} G \\ G \end{bmatrix} v(t)$$
$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}$$

Regolatori stabilizzanti

regolatore:
$$\begin{bmatrix} x(t+1) \\ \hat{x}(t+1) \end{bmatrix} = \begin{bmatrix} F & GK \\ -LH & F+GK+LH \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix} + \begin{bmatrix} G \\ G \end{bmatrix} v(t)$$
$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}$$

Definizione: Un regolatore si dice stabilizzante se il sistema che descrive il regolatore è asintoticamente stabile.

Definizione: Un regolatore si dice dead-beat se l'evoluzione dello stato del sistema regolatore va a zero in un numero finito di passi.

In questa lezione

▶ Il regolatore: struttura ed equazioni dinamiche

▶ Principio di separazione

▶ Esempio

$$\begin{bmatrix} x(t+1) \\ \hat{x}(t+1) \end{bmatrix} = \begin{bmatrix} F & GK \\ -LH & F+GK+LH \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix} + \begin{bmatrix} G \\ G \end{bmatrix} v(t)$$

$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}$$

Consideriamo il cambio di base
$$T = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix}$$
 e sia $e(t) \triangleq x(t) - \hat{x}(t)$

note

$$egin{aligned} egin{aligned} x(t+1) \ \hat{x}(t+1) \end{bmatrix} &= egin{bmatrix} F & GK \ -LH & F+GK+LH \end{bmatrix} egin{bmatrix} x(t) \ \hat{x}(t) \end{bmatrix} + egin{bmatrix} G \ G \end{bmatrix} v(t) \end{aligned} \ y(t) &= egin{bmatrix} H & 0 \end{bmatrix} egin{bmatrix} x(t) \ \hat{x}(t) \end{bmatrix} \end{aligned}$$

Consideriamo il cambio di base
$$T = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix}$$
 e sia $e(t) \triangleq x(t) - \hat{x}(t)$

regolatore nella base
$$T$$
:

$$\begin{bmatrix} x(t+1) \\ e(t+1) \end{bmatrix} = \begin{bmatrix} F + GK & -GK \\ 0 & F + LH \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} G \\ 0 \end{bmatrix} v(t)$$
$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

note

regolatore nella base T:

$$\begin{bmatrix} x(t+1) \\ e(t+1) \end{bmatrix} = \begin{bmatrix} F + GK & -GK \\ 0 & F + LH \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} G \\ 0 \end{bmatrix} v(t)$$
$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

autovalori di $\begin{bmatrix} F+GK & -GK \\ 0 & F+LH \end{bmatrix}$ = autovalori di $F+GK \cup$ autovalori di F+LH !!!

G. Baggio

Lez. 21: Sintesi del regolatore

regolatore nella base
$$T$$
:

$$\begin{bmatrix} x(t+1) \\ e(t+1) \end{bmatrix} = \begin{bmatrix} F + GK & -GK \\ 0 & F + LH \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} G \\ 0 \end{bmatrix} v(t)$$

$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

autovalori di
$$\begin{bmatrix} F+GK & -GK \\ 0 & F+LH \end{bmatrix} =$$
 autovalori di $F+GK \cup$ autovalori di $F+LH$!!!

Principio di separazione: Gli autovalori del sistema regolatore sono l'unione di quelli delle due matrici F + GK e F + LH. Quindi la sintesi della legge di controllo in retroazione (allocazione degli autovalori di F + GK) e la sintesi dello stimatore (allocazione degli autovalori di F + LH) possono essere effettuate in modo indipendente.

Esistenza di regolatori stabilizzanti

regolatore nella base
$$T$$
:

$$\begin{bmatrix} x(t+1) \\ e(t+1) \end{bmatrix} = \begin{bmatrix} F + GK & -GK \\ 0 & F + LH \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} G \\ 0 \end{bmatrix} v(t)$$
$$y(t) = \begin{bmatrix} H & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

Teorema: Dato un sistema Σ il sistema ammette un regolatore stabilizzante se e solo se Σ è sia stabilizzabile che rivelabile.

Teorema: Dato un sistema Σ il sistema ammette un regolatore dead-beat se e solo se Σ è sia controllabile che ricostruibile.

In questa lezione

▶ Il regolatore: struttura ed equazioni dinamiche

▶ Principio di separazione

▶ Esempio

Esempio

$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(t)$$
 $y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x(t)$

Costruire, se esiste, un regolatore dead-beat.

G. Baggio

Lez. 21: Sintesi del regolatore

Esempio

$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u(t)$$
 $y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x(t)$

Costruire, se esiste, un regolatore dead-beat.

Il sistema è controllabile e ricostruibile per cui un regolatore dead-beat esiste.

Il regolatore dead-beat ha matrici
$$K = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}$$
 e $L = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$.

note

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 21: Sintesi del regolatore

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

⊠ baggio@dei.unipd.it

Il regolatore: equazioni dinamiche

sistema Σ : x(t+1) = Fx(t) + Gu(t)y(t) = Hy(t)

y(t) = Hx(t)

legge di controllo: $u(t) = K\hat{x}(t) + v(t)$

stimatore dello stato: $\hat{x}(t+1) = F\hat{x}(t) + Gu(t) - L(y(t) - H\hat{x}(t))$

$$\sum_{x \in \mathcal{E}} \{x(t+1) = Fx(t) + Gu(t)$$

(y(t)= Hx(t)

G. Baggio Lez. 2

del regolatore 9 A

legge di controllo:
$$u(t) = K\hat{x}(t) + v(t)$$

 $H\times(t)$

stimatore dello stato: $\hat{x}(t+1) = F\hat{x}(t) + Gu(t) - L(y(t) - H\hat{x}(t))$

Sistema regolatore: $x_{reg}(t) = \begin{cases} x(t) \\ \hat{x}(t) \end{cases}$

x(t+1) = Fx(t)+ Gu(t) = Fx(t)+ GK x(t) + Gv(t)

 $\hat{x}(t+1) = F\hat{x}(t) + Gu(t) - LH(x(t) - \hat{x}(t))$

= F x(t) + G K x(t) + G v(t) - LH x(t) + LH x(t)

= (F+GK+LH) x(t) - LHx(t)+ Gv(t)

y(t) = Hx(t)

 $\begin{cases} x_{\text{reg}}(t+1) = \begin{bmatrix} x(t+1) \\ \hat{x}(t+1) \end{bmatrix} = \begin{bmatrix} F & G \\ -LH & F+Gk+LH \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix} + \begin{bmatrix} G \\ G \end{bmatrix} \sqrt{t}$

y(t) = [H O][x(t)]

Zreg = sistema regelatore