Accelerated Life Test

110024521 邱婉如 110024516 邱繼賢

26, May, 2022

- Introduction
- 2 Example

- 1 Introduction
- 2 Example

Motivation and Background for Accelerated Testing

- Modern products are designed to last for years or decades.
- Need timely information on high reliability products.

Methods of Acceleration

- Three different methods of accelerating a reliability test:
 - Increase the **use-rate** of the product.
 - 2 Increase the aging-rate of the product.
 - **3** Increase the **level of stress** under which test units operate.
- Use a physical/chemical or empirical model relating degradation or lifetime at use condition.

Accelerated Life Test

- 1 Introduction
- 2 Example

Superalloy Data

Pseudostress	Thousands of Cycles	Status	Pseudostress	Thousands of Cycles	Status
80.3	211.629	F	99.8	43.331	F
80.6	200.027	F	1.001	12.076	F
80.8	57.923	С	100.5	13.181	F
84.3	155.000	F	113.0	18.067	F
85.2	13.949	F	114.8	21.300	F
85.6	112.968	С	116.4	15.616	F
85.8	152.680	F	118.0	13.030	F
86.4	156.725	F	118.4	8.489	F
86.7	138.114	С	118.6	12.434	F
87.2	56.723	F	120.4	9.750	F
87.3	121.075	F	142.5	11.865	F
89.7	122.372	С	144.5	6.705	F
91.3	112.002	F	145.9	5-733	F

 \Rightarrow $T_{\mathsf{Stress}} \sim \mathit{Weibull}(\mu_{\mathsf{Stress}}, \sigma_{\mathsf{Stress}})$

Fitting Model 2

$$\mu = \beta_0^{[\mu]} + \beta_1^{[\mu]} \log x + \beta_2^{[\mu]} (\log x)^2, \text{ and } \log \sigma = \beta_0^{[\sigma]} + \beta_1^{[\sigma]} \log x.$$

	Parameter	ML estimate	Standard error	Lower	Upper
Model 1	β_0	217.61	62.1	95.9	339.3
	β_1	-85.52	26.53	-137.5	-33.53
	β_2	8.48	2.83	2.93	14.03
	σ	0.375	0.067	0.26	0.53
Model 2	$eta_0^{[\mu]}$	243.2	58.12	129.3	357.1
	$eta_1^{[\mu]}$	-96.54	24.73	-145.0	-48.07
	$eta_2^{[\mu]}$	9.67	2.63	4.52	14.8
	$eta_0^{[\sigma]}$	4.47	4.17	-3.71	12.6
	$eta_1^{[\sigma]}$	-1.18	0.89	-2.93	0.58

Question

17.10 Consider the model used in <u>Example 17.9</u> and the corresponding ML estimates for model 2 in <u>Table 17.2</u>.

- a. Show that it is possible to have $t_p(x_1) < t_p(x_2)$ when $x_1 < x_2$.
- b. Explain why the relationship in part (a) is physically unreasonable.

Weibull PDF under different Stress

Regression Model for Mean μ

$$\hat{\mu} = \hat{\beta}_0^{[\mu]} + \hat{\beta}_1^{[\mu]} \log x + \hat{\beta}_2^{[\mu]} (\log x)^2$$

Stress v.s. Mean of Life Time

Regression Model for Mean μ

$$\hat{\mu} = \hat{\beta}_0^{[\mu]} + \hat{\beta}_1^{[\mu]} \log x + \hat{\beta}_2^{[\mu]} (\log x)^2$$

Stress v.s. Mean of Life Time

Regression Model for Mean μ

$$\hat{\mu} = \hat{\beta}_0^{[\mu]} + \hat{\beta}_1^{[\mu]} \log x + \hat{\beta}_2^{[\mu]} (\log x)^2$$

Stress v.s. Mean of Life Time

