Population Genomics

Week 3 PSMC

Overview

- Wrap up of Coalescense and Migration ~5 min
- Wrap up to Tajimas D ~5 min
- Introduction to PSMC (again) ~5 min
- Introduction to the Exercise ~5 min
- Exercise ~40 min
- BREAK = 15min
- Exercise ~30 min
- Class Wrap up ~ 30 min

Drift and mutation equilibrium

Drift and mutation equilibrium

$$\mathbb{P}(\text{coal. in t+1 \& no mutations}) \approx \frac{1}{2N} \left(1 - \frac{1}{2N} \right)^t (1 - \mu)^{2t}$$
 (4.9)
$$\approx \frac{1}{2N} e^{-t/(2N)} e^{-2\mu t}$$
 (4.10)

$$=\frac{1}{2N}e^{-t(2\mu+1/(2N))}\tag{4.11}$$

Then we can approximate the summation by an integral, giving us:

$$\frac{1}{2N} \int_0^\infty e^{-t(2\mu + 1/(2N))} dt = \frac{1/(2N)}{1/(2N) + 2\mu}$$
(4.12)

$$H = \frac{2\mu}{1/(2N) + 2\mu} = \frac{4N\mu}{1 + 4N\mu} \tag{4.13}$$

Probability of homozygosity (IBD):

Probability of heterozygosity:

$$\frac{1/2N}{1/2N + 2\mu} = \frac{1}{1 + 4N\mu} = \frac{1}{1 + \theta} \qquad \qquad \frac{2\mu}{1/2N + 2\mu} = \frac{4N\mu}{1 + 4N\mu} = \frac{\theta}{1 + \theta}$$

Tajimas D

Neutral

Tajimas D < 0

After a Sweep

Tajimas D > 0

Balancing Selection

PSMC

Recombination

The Exercise

Focus: Understand how PSMC works, and think about the caveats with using it

The PSMC File

N: This character represents a homozygous site¹. T: This character represents a heterozygous site¹.

Class Wrap Up

- What do you have to give PSMC?
 - How does PSMC work?
- Which assumptions should we have for PSMC to work?

Questions for next week

Weird Perl Error

- Run
- export LC_ALL="en_US.utf-8"