课程内容回顾

- 数制与码制(第一章)
- 逻辑代数(第二章)
- 组合逻辑电路(第四章)
- 触发器(第五章)
- 时序逻辑电路(第六章)
- 集成门电路(第三章)
- 脉冲波形产生及整形(第七章)

问题1:如何使波形较为理想?

问题2:如何改变脉冲宽度?

问题3: 时钟信号从哪里来?

第七章 脉冲波形的产生和整形

问题1: 如何使波形较为理想?

7.2 施密特触发器

7.3 单稳态触发器

问题2: 如何改变脉冲宽度?

7.4 多谐振荡器

7.5 555定时器及应用

问题3:时钟信号从哪里来?

ck _____

7.5.1 555定时器及应用

7.5.1 555定时器及应用

对称结构,约定: S'与Q同侧

电压比较器

Comparator

V₊ > V₋ 时, Vc = 高电平 Vc = H; Vc = 1;

555多功能定时器

$$V_{\rm R1} = V_{\rm CO}, V_{\rm R2} = \frac{1}{2} V_{\rm CO}$$

当5端接有 V_{CO} 时: $V_{\text{R1}} = V_{\text{CO}}, V_{\text{R2}} = \frac{1}{2}V_{\text{CO}}$ 将上述分析中的 $\frac{2}{3}V_{\text{CC}} \longrightarrow V_{\text{CO}}$

所有结论仍成立。

输入			过 渡		输出					
R' _D	$v_{\rm I1}$	V_{12}	v _{C1}	$V_{ m C2}$	$v_{ m o}$	T _D 状态				
0	X	X	X	X	0	导通				
1	$>\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	1	0	导通				
1	$<\frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{\rm CC}$	1	1	不变	不变				
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	截止				
1	$> \frac{2}{3}V_{\rm CC}$			0	1	截止				

CB555的功能表(5端悬空)

输入		过 渡		输出		-	
R_{D}'	$v_{\rm I1}$	V_{12}	$V_{\rm C1}$	$V_{\rm C2}$	$v_{\rm o}$	Tn状态	
0	X	X	X	X	0	导通	由表可得如下口诀:
1	$> \frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{\rm CC}$	0	1	0	导通	⇒ 大于、大于、出0;
1	$<\frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{\rm CC}$	1	1	不变	不变	──────────────────────────────────────
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	截止	□⇒小于、小于、出1;
1	$> \frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	0	0	1	截止	

555 定时器的电源电压范围较宽,

CMOS类: Vdd为3~18伏,(UdH≥Vdd95% ,Iom≤4mA)

TTL类: Vcc为5~16伏, (Uoн≥Vcc90%), Iom≈200mA)

TTL非门电压传输特性曲线

V_{IH}>1.4V时,T2,T5导通 实际要求V_{IH}>2.0V

7.5.2 用555定时器接成施密特触发器

一、普通反相器和施密特反相器的比较

从电压波形知: 此为施密特反相器

$$V_{\text{T+}} = \frac{2}{3}V_{\text{CC}}, V_{\text{T-}} = \frac{1}{3}V_{\text{CC}}$$

$$\Delta V_{\text{T}} = \frac{1}{3}V_{\text{CC}}$$

7.5.2 施密特非门的电压传输特性

施密特触发器的特点

- 1. 输入信号从低电平上升的过程中,电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。
- 2. 电路状态转换时,通过电路 内部的正反馈过程使输出电 压波形的边沿变得很陡。

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-}$$

ΔV_T称为回差电压

施密特触发器的应用

一、用于波形变换

例:

已知U_I为半波,U_{I m}=9V,

电路的 $V_{T+}=6V$, $V_{T-}=3V$ v_1

U_{OH} = V_{DD}. 试画U_O波形。

二、用于脉冲整形

7.5.3 555定时器接成单稳态触发器

单稳态触发器是一种常用的脉冲整形电路,简称单稳。

工作特性:

- ① 它有稳态和暂稳态两个不同的工作状态;
- ② 在外界触发脉冲作用下,能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,电路能自动返回稳态;
- ③ 暂稳态不能长久保持,其维持时间的长短取决于电路自身参数,与外界触发脉冲无关。

脉冲产生电路的暂态分析

脉冲波形产生与整形电路多是由RC充放电电路构成的。

- ① 开关闭合的一瞬间,电容器上电压不能突变,满足开关定理 $U_{\mathbb{C}}(0_{+})=U_{\mathbb{C}}(0_{-})$ 。
- ② 充电暂态过程结束后,流过电容器的电流 $i_{\rm c}(\infty)$ 为0,即电容器相当于开路。

③ 电路的时间常数 $\tau = RC$, τ 决定了暂态时间的长短。根据三要素公式,可以得到电压随时间变化的方程为

$$u_C(t) = U_C(\infty) + [U_C(\theta_+) - U_C(\infty)]e^{-t/\tau}$$

④令 $\mathbf{u}_{\mathbb{C}}(\mathbf{t}_{\mathbb{W}})=U_{\mathbb{T}}$,则从暂态过程的起始值 $U_{\mathbb{C}}(\mathbf{0}_{+})$ 变到 $U_{\mathbb{T}}$ 所经历的时间 $\mathbf{t}_{\mathbb{W}}$ (脉冲宽度)可用下式计算:

$$t_{W} = RC1n \frac{U_{C}(\infty) - U_{C}(\theta_{+})}{U_{C}(\infty) - U_{T}}$$

7.5.3 用555定时器接成的单稳态触发器

总之: 不触发, Uo=0; 触发, Uo=1

Uo=1维持一段时间又返回Uo=0

充电回路: $Vcc^+ \rightarrow R \rightarrow C \rightarrow Vcc^-$ (充电慢)

放电回路: $C^+ \rightarrow T_D \rightarrow C^-$ (放电快)

电压波形

$$Tw \approx RC \ln \frac{V_{CC}-0}{V_{CC}-\frac{2}{3}V_{CC}}$$

 $T_W \approx RC \ln 3 = 1.1RC$

注意; 第二次触发必须在第一次触发稳定之后进行。

单稳态触发器的应用举例

1.脉冲定时

单稳态触发器做定时控制的应用

7.5.4 555定时器接成多谐振荡器

多谐振荡器是一种常用的脉冲信号产生电路。

工作特性:

- ① 无稳态,具有两个暂稳态;
- ② 自激振荡器——在接通电源后,不需外加触发信号,便能自动产生矩形脉冲;
- ③ 矩形波中除基波外,还含有丰富的高次谐波——故称为多谐振荡器。

7.5.4 用555定时器接成的多谐振荡器

一、电路组成和工作原理

电压波形

本例:

$$T_1 = 0.7(R_1+R_2)C;$$

 $T_2 = 0.7R_2C;$

二、电路计算

$$T_1 = (R_1 + R_2)C \ln \frac{V_{CC} - V_{T^-}}{V_{CC} - V_{T^+}}$$

$$T_2 = R_2 C \ln \frac{0 - V_{T^+}}{0 - V_{T^-}}$$

$$T = 0.7(R_1 + 2 R_2)C;$$

$$q = T_1/T = \frac{R_1 + R_2}{R_1 + 2 R_2}$$

为了得到小于或等于50%的占空比,

可对电路加以改进。

充电: D_1 导通, D_2 截至

$$T_1 = R_1 C \ln 2$$

放电: D₂导通, D₁截至

$$T_2 = R_2 C \ln 2$$

$$q = \frac{T_1}{T_1 + T_2} = \frac{R_1}{R_1 + R_2}$$

若 R_1 = R_2 ,则q=50%,输出为方波。 电路的振荡周期:

$$T = T_1 + T_2 = (R_1 + R_2) C \ln 2$$

用施密特触发器构成多谐振荡器

工作原理

1、组成

接通Vcc瞬间,C中无电荷,所以:

1)
$$U_C=0 \rightarrow U_I=0 \rightarrow U_O=1$$

2)
$$U_0=1 \rightarrow C$$
充电 $\rightarrow U_1^{\uparrow}$, $U_1^{\uparrow}=V_{T+} \rightarrow U_0=0$

3、电压波形

则:

$$T_1 = RC \ln \frac{V_{CC} - V_{T^-}}{V_{CC} - V_{T^+}}$$

$$T_2 = RC \ln \frac{0 - V_{T^+}}{0 - V_{T^-}}$$

$$T=T_1+T_2$$
; $f=1/T$; $q=T_1/T$

电路改进

占空比可调电路如图:

充电经过 R_2 , 放电经过 R_1 ,

$$T_1 = R_2C \ln \frac{V_{CC}-V_{T^-}}{V_{CC}-V_{T^+}}$$

$$T_2 = R_1 C \ln \frac{V_{T^+}}{V_{T^-}}$$

$$T=T_1+T_2$$

$$q = T_1/T$$

调节R1或R2,即可调节Q

555定时器应用举例:

下图是用555定时器接成的延时报警器。当开关S断开后,经过一定的延迟时间后扬声器开始发出声音。试求延迟的时间To和扬声器发出声音的频率f。

解:(1)片接成施密特触发器,(2)片接成多谐振荡器。

U₆=U₂= U_{C1} 的电压波形通过操纵开关S获得。

当Uoi=1时; (2) 片的 \overline{RD} =0, (2) 片不工作。

当Uo1=0时; (2) 片自激振荡, 喇叭出声。

工作波形:

To₂=0.7 (R₁+2R₂) C= 0.7 (5+2×5) $10^3 \times 0.01 \times 10^{-6} \approx 103.5 \mu S$ fo₂ $\approx 9.66 KHZ$

7.2.1 用门电路组成的施密特触发器

$$V_{
m OH} = V_{
m DD}$$
, $V_{
m OL} = 0$, $V_{
m TH} = rac{1}{2} V_{
m DD}$, $\pm R_1 < R_2$

$$v_{\rm o}$$
 当 $V_{\rm I}=0$ 时, $V_{\rm o}=0$ 。

当
$$V_{\rm I}$$
个,至 $V_{\rm I}'=V_{\rm TH}$ 时,

进入传输特性的放大区,

$$V_{\rm A} = V_{\rm TH} = \frac{R_2}{R_1 + R_2} V_{\rm I}$$

$$V_{\rm I} = V_{\rm T+} = (1 + \frac{R_1}{R_2})V_{\rm TH}$$

$$V_{\rm I} \uparrow \rightarrow V_{\rm O1} \downarrow \rightarrow V_{\rm O} \uparrow$$

使电路迅速跳变到 $V_{\rm o} = V_{\rm on}$

当电路状态发生转变时

$$V_{\rm A} = V_{\rm TH} \approx V_{\rm DD} - (V_{\rm DD} - V_{\rm T-}) \frac{R_2}{R_1 + R_2}$$

$$V_{\rm I} = V_{\rm T-} = (1 - \frac{R_1}{R_2})V_{\rm TH}$$

回差电压

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = 2 \frac{R_1}{R_2} V_{\rm TH}$$

当 $V_{\rm I}$ = 1时, $V_{\rm O}$ = 1。 当 $V_{\rm I}$ \downarrow , 至 $V_{\rm I}' = V_{\rm TH}$ 时, 进入传输特性的放大区,

$$V_{\mathbf{I}}^{'} \downarrow \to V_{\mathbf{0}\mathbf{1}} \uparrow \to V_{\mathbf{0}} \downarrow$$

使电路迅速跳变到 $V_0 = V_{OL}$

$$V_{\text{T-}}$$
 V_{TH}
 $V_{\text{T+}}$
 V_{DD}
 v_{I}

$$V_{T+} = (1 + \frac{R_1}{R_2})V_{TH}$$

$$\mathbf{V}_{\mathbf{T}-} = (1 - \frac{\mathbf{R}_1}{\mathbf{R}_2}) \mathbf{V}_{\mathbf{TH}}$$

$$v_{\scriptscriptstyle \rm I}$$
 $v_{\scriptscriptstyle
m O}$

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = 2 \frac{R_1}{R_2} V_{\rm TH}$$

7.3.1 用门电路组成的单稳态触发器

积分型

1、原理分析

 G_1 和 G_2 为TTL门

$$V_{\rm A} = V_{\rm OH}$$
;

* V_1 个后, $V_0 = 0$,进入暂稳态,

$$V_{01} = 0, C$$
开始放电;

*当放至 $V_{\Lambda} = V_{TH}$ 后, $V_{\Omega} = 1$,返回稳态; o

* V_{Γ} ↓ 后,C重新充电至 V_{OH} ,恢复初始态;

tw为输出脉宽

2. 性能参数计算

输出脉冲宽度($V_0 = 0$ 时间) 等于 V_A 从 V_{OH} 放电至 V_{TH} 的时间。

$$t_{\rm w} = RC \ln \frac{V_{(\infty)} - V_{(0)}}{V_{(\infty)} - V_{(\rm t)}} = RC \ln \frac{V_{\rm OH}}{V_{\rm TH}}$$

单稳态触发器的应用举例

1.脉冲定时

单稳态触发器做定时控制的应用

7.4 多谐振荡器(自激振荡,不需要外加触发信号)

7.4.1 对称式多谐振荡器

一、工作原理(TTL)

(1)静态(未振荡)时应是不稳定的

当 V_{T2} 充至 V_{TH} 时,再 ↑ 将起引起如下正反馈:

使 V_{o1} 迅速跳变为高,而 V_{o2} 迅速跳变为低。

电路进入第二个暂稳态 , C_2 开始充电, C_1 开始放电。

7.4.5 石英晶体多谐振荡器

 $R_{\rm F}$

 $R_{\rm F}$

巴黎广播电台首先用严济慈制作的石英 振荡片实现了无线电播音中的稳频,随后各 国相继采用, 使无线广播振荡电磁回路稳频 成为压电晶体的最重要应用之一。