DAYSPRING INTERNATIONAL ACADEMY

Mathletics for Upper Secondary

Read the questions *carefully*. Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Stu	A.	nn	10	N	ำฑ	۸.
211	a	en	T'S	IN	am	e:

Instructor's Name: Nana Baah Akuffu

Time Allowed: 10 minutes

1. If $y = \sqrt{x^2 + 4}$, then write x in terms of y.

Solution:

$$y = \sqrt{x^2 + 4}$$

$$y^2 = x^2 + 4$$

$$y^2 - 4 = x^2$$

$$x = \sqrt{y^2 - 4}$$

Answer:
$$x = \sqrt{y^2 - 4}$$

2. The first term of a sequence is 2. If the common difference is -2, find the n^{th} term for the sequence.

Solution:

The first term a is 2, and common difference d is -2. The n^{th} , T_n , is given by

$$T_n = a + (n-1)d$$

= $2 + (n-1) \times (-2)$
= $2 - 2n + 2$
= $4 - 2n$

Answer: 4-2n

3. Simplify

$$\frac{(x-1)x}{x^2}$$

Solution:

We simply cancel out the like terms since they are dividing.

$$\frac{(x-1)x}{x^2} = \frac{(x-1) \times x}{x \times x},$$
$$= \frac{(x-1)}{x}$$
$$= 1 - \frac{1}{x}$$

Answer: $1 - \frac{1}{x}$ or $\frac{x-1}{x}$

4. Ashley has a box containing 5 pencils, 2 pens and 8 erasers. If x represents pencils, y pens and z erasers, write an expression for what is in the box.

Solution:

Answer: |5x + 2y + 8z|

5. Factorize the expression

$$3x^2 - 2x - 5$$
.

Solution:

$$3x^{2} - 2x - 5 = 3x^{2} - 5x + 3x - 5$$
$$= x(3x - 5) + 1(3x - 5)$$
$$= (x + 1)(3x - 5)$$

6. The longest side of a right-angled triangle is 5*cm*. If the other two sides are the same, find their lengths.

Solution:

The longest side is the hypotenuse. Let *x* represent the other sides, then by using the Pythagoras theorem.

$$5^{2} = x^{2} + x^{2}$$
$$25 = 2x^{2}$$
$$x = \sqrt{12.5}cm$$

7. Solve the equation

$$5x - 100 = 5$$
.

Leave your answer in a fraction in its lowest term.

Solution:

$$5x - 100 = 5$$
$$5x = 105$$
$$x = 21.$$

8. Simplify

$$\frac{x+2}{(x-2)(x+2)}.$$

Solution:

$$\frac{x+2}{(x-2)(x+2)} = \frac{1}{(x-2)}$$

9. Factorize $t^2 - 9$.

Solution:
$$t^2 - 9 = t^2 - 3^2 = (t - 3)(t + 3)$$

10. A rectangle has length x - 1 and width x + 2. Write an expression for the area of the rectangle.

Solution:

Let *l* and *b* be the length and breadth of the rectangle, then the area, *A*, will be

$$A = l \times b$$

= $(x-1)(x+2)$
= $x^2 - 2x - x - 2$
= $x^2 - 3x - 2$.

11. The value of

$$\frac{n(n+3)}{2} = \frac{3}{2}$$

when n = 0. True or False?

Solution:

When n = 0, $\frac{n(n+3)}{2} = \frac{0 \times (0+3)}{2} = \frac{0}{2} = 0$. So the answer is **False**.

12. If a and b are negative numbers, and a < b, then b - a is negative. True or False?

Solution:

Let b = -2 and therefore a can be -3 since a < b. So b - a = -2 - (-3) = -2 + 3 = 1 > 0. Hence b - a is positive not negative. So the answer is **False**.

13. Consider the fraction $\frac{p}{q}$. If p > q then the value of $\frac{p}{q} > 1$. True or False?

Solution:

Since p > q, the fraction $\frac{p}{q}$ has the numerator bigger than the denominator and so in any case $\frac{p}{q} > 1$. The answer is **True**.

14. Expand and simplify (x-1)(2-x).

Solution:

We start by opening the brackets and grouping like terms.

$$(x-1)(2-x) = x(2-x) - 1(2-x)$$
$$= 2x - x^2 - 2 + x$$
$$= 3x - x^2 - 2.$$

15. Solve the equation $x^2 - 2x - 6 = 2$.

Solution:

A quadratic equation is of the form $ax^2 + bx + c = 0$. The whole idea is make the equation equal to 0.

$$x^2-2x-6=2$$

$$x^2-2x-8=0, \quad \text{solving by factorization, we have,}$$

$$x^2+2x-4x-8=0$$

$$x(x+2)-4(x+2)=0$$

$$(x-4)(x+2)=0$$

At this either $x - 4 = 0 \Rightarrow x = 4$ or $x + 2 = 0 \Rightarrow x = -2$.

16. Solve

$$\frac{y-1}{2} + \frac{y+1}{2}$$

Solution:

Since the denominators are the same,

$$\frac{y-1}{2} + \frac{y+1}{2} = \frac{y-1+y+1}{2} = \frac{2y}{2} = y$$

17. Find the value of x, if

$$5^{2-x} = \frac{1}{125}$$

Solution:

By the laws of indices,

$$5^{2-x} = \frac{1}{125}$$
$$5^{2-x} = \frac{1}{5^3}$$
$$5^{2-x} = 5^{-3}$$

Since the bases are the same, $2 - x = -3 \Rightarrow x = 5$

18. In a certain taxi ride, the cost is calculated by multiplying \$6 by the distance traveled, in *km*, and then adding \$3. If Stephan paid \$15 for the entire ride, how far did he go?

Solution:

Stephan paid \$15 and so,

$$15 - 3 = 12$$
. $12 \div 6 = 2$.

So Stephan rode for 2km.

19. A certain printer prints dots. The dots are in the form n^2 where n is the n^{th} paper. How many dots will print on the 12^{th} paper?

Solution:

The pattern on the sheet is of the form n^2 and so the 12^{th} paper will have n = 12 and so $12^2 = 144$.

20. *Challenge Problem.* A two digit integer is divisible by 5 but not by 10. If the digits are reversed, the number is 18 more then the original one. What is the integer?

Solution:

Let x be the first digit and y the second digit. Using the place value form, the number can be represented algebraically as 10x + y. The number reversed is 10y + x. Now since the number is divisible only by 5 and not 10 then it means the last digit is 5. Hence,

$$y = 5$$
.

Mathematically the next statement of the question means;

$$10y + x = 10x + y + 18$$
,
 $9y - 9x = 18$ dividing through by 9 gives,
 $y - x = 2$.

Since y = 5, we have 5 - x = 2 and so x = 3. Hence the number 10x + y = 10(3) + 5 = 35. Indeed, 53 = 35 + 18.