

Datengenerator für Daten mit Bias als Grundlage für Data Science Projekte

Studienarbeit

für die Prüfung zum

Bachelor of Science

 ${\it des \ Studiengangs \ Informatik}$ an der Dualen Hochschule Baden-Württemberg Stuttgart

von

Simon Jess, Timo Zaoral

Juni 2022

Bearbeitungszeitraum Matrikelnummer, Kurs Betreuer 04.10.2021 - 10.06.2022 8268544, 6146532, INF19C Prof. Dr. Monika Kochanowski

Erklärung

Wir versicheren hiermit, dass wir die vorliegende Studienarbeit mit dem Thema: Datengenerator für Daten mit Bias als Grundlage für Data Science Projekte selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Stuttgart, Juni 2022	
Simon Jess	Timo Zaoral

Abstract Fasst die Aufgabenstellung und Ergebnisse kompakt und übersichtlich in wenigen Zeilen zusammen (4-7 Zeilen).

Inhaltsverzeichnis

	Abk	ürzungs	sverzeichnis	V
	Abb	oildungs	verzeichnis	VI
	Tab	ellenver	zeichnis	VII
1	Ein	leitung	g S	1
	1.1	Motiva	ation	2
	1.2	Zielset	tzung	2
	1.3	Aufba	u der Arbeit	3
2	Sta	nd der	Technik	4
	2.1	Daten		4
		2.1.1	Datenqualität	4
		2.1.2	Bias	4
	2.2	Künst	liche Intelligenz & Maschinelles Lernen	4
		2.2.1	Was ist Künstliche Intelligenz	4
		2.2.2	Teilgebiet Maschinelles Lernen	4
		2.2.3	Ethik in der Künstlichen Intelligenz	4
	2.3	Künst	liche Intelligenz verbunden mit Bias	4
		2.3.1	Diskriminierung durch verzerrte Daten	4
		2.3.2	Gegenmaßnahmen	4
3	Pra	ktische	er Teil	5
	3.1	Szenai	rien	5
		3.1.1	Szenario 1	5
		210	C	C

	3.2	Konzeption	7
		3.2.1 Grobkonzept	7
		3.2.2 Feinkonzept	8
	3.3	Umsetzung	11
	3.4	Datenauswertung	13
	3.5	Evaluation der Ergebnisse	13
4	Sch	$_{ m luss}$	14
	4.1	Zusammenfassung	14
	4.2	Diskussion	14
	4.3	Ausblick	14

Abkürzungsverzeichnis

 ${f KI}$ Künstliche Intelligenz

bzw. beziehungsweise

Abbildungsverzeichnis

3.1	Programmablaufplan der fünf Hauptschritte zur Generierung der Daten	7
3.2	Verbindungen zwischen den Attributen des zweiten Szenario	S
3.3	Erste Zelle Code des Szenario1	11

Tabellenverzeichnis

3.1	Tabelle für die Auswirkung der Attributen von Szenario 1	5
3.2	Tabelle der Attribute und Auswirkungen von Szenario 2	6

1 | Einleitung

Die fortschreitende Digitalisierung ist kaum noch aus unserem Alltag wegzudenken. Durch immer mehr Programme, die einem den Alltag erleichtern sollen, nutzen wir die Errungenschaften der Digitalisierung täglich. Häufig ist hier die Rede von künstlicher Intelligenz. Dabei ist uns meist nicht einmal Bewusst, dass im Hintergrund mit künstlicher Intelligenz gearbeitet wird. Egal ob als intelligenten Routenplaner oder Sprachsteuerung, hinter all diese Anwendung steckt heute nicht mehr nur ein Optimierungsalgorithmus sondern Künstliche Intelligenz (KI).

Mit der Digitalisierung hat man begonnen große Datenmengen zu sammeln. Durch den technischen Fortschritt im Bereich von Big Data, werden diese Datenmengen heutzutage unvorstellbar groß. Mit dem Erfassen und Speichern von Daten ist man in der Lage seine Produkte stetig zu verbessern und sogar neue Geschäftsmodelle zu schaffen. Zu diesen neuen Geschäftsmodellen gehört auch die nicht mehr aus unserem Alltag wegzudenkenden KI. Sie ermöglicht es uns Entscheidungen zu treffen, wie sie auch ein Mensch treffen könnte, aber auch Vorhersagen zu machen, was zwar für den Menschen möglich ist, aber mit viel Aufwand verbunden ist. Egal ob eine Entscheidung oder eine Vorhersage von einer KI getroffen werden, dahinter stehen Daten die bereits gesammelt wurden und die Entscheidungsgrundlage für die KI bilden. Aus diesem Grund werden Daten eine wertvolle Ressource, sobald man anfängt die Daten zu verarbeitet und aktiv zu nutzen.

Für KI werden die Daten zum Lernen benutzt. Entscheidend für die Qualität der KI ist daher in den meisten Fällen die Datengrundlage auf der die KI basiert. Lernen bedeutet, dass Zusammenhänge und die dadurch abgebildeten Verhaltensweisen von der KI erkannt und sich selbst angeeignet werden. Durch diese Art des Lernens, wie auch wir Menschen unser Wissen erlernen, ergeben sich nicht nur Potentiale sondern auch Gefahren! Abhängig von der Datenqualität und Richtigkeit beziehungsweise (bzw.) Zuverlässigkeit der Daten werden zukünftige Entscheidungen und Vorhersagen getroffen. Eine KI betrachtet dabei die Daten vollkommen neutral ohne Hintergrundwissen über Richtigkeit und Zuverlässigkeit. Deshalb können Verzerrungen in den Daten durch die KI nicht erkannt werden. Diese Verzerrung wird auch Bias genannt und befindet sich in den Trainingsdaten mit denen die KI lernt. Die Folge daraus ist, dass sich KIs benachteiligende und diskriminierende Verhaltensweisen aneignen und diese selbst in der Praxis ausüben. Insbesondere für durch Computer getroffene Entscheidungen und Vorhersagen spielt die Ethik daher eine große Rolle. Diese kann in der Regel nicht aus den Daten erlernt werden und hängt von uns Nutzern ab. So stellt sich die Frage wie sollen Menschen mit Entscheidungen durch KI umgehen und sich auf diese Verlassen. Diese fehlende Ethik sorgt für nicht zu Vernachlässigende Verzerrungen und bildet so einen Bestandteil der "Dark side of KI". beziehungsweise (bzw.)

1.1 Motivation

Eine KI und deren Entscheidungen basieren stets auf Daten aus der Vergangenheit, genauer den Trainingsdaten. Wenn diese Trainingsdaten aufgrund unterschiedlichste Ursachen ein unerwünschtes Verhaltensmuster beinhalten spricht man häufig von Bias. So können zum Beispiel Entscheidungen aufgrund eines unbekannten Faktors, häufig Diskriminierung, basieren. Die Problematik liegt darin, dass den Endnutzer in der Regel nicht bekannt ist, dass es einen Bias in den Daten geben kann und einer KI blind Vertrauen. In den meisten Fällen ist eine solche Verzerrung verborgen und wird erst im produktiven Betrieb der KI festgestellt.

Diese Verzerrungen führen dann häufig zu Skandalen in der Medienwelt. Es wurde bereits diverse Male in der Presse darüber berichtet, dass bspw. in Unternehmen Bewerbungen durch ein KI vorsortiert wurden und ein diskriminierendes Muster in den Trainingsdaten erkennbar war.

Diese Diskriminierungen sind jedoch nicht zu vergessen immer auf Daten zurückzuführen und somit auch auf die Ersteller der Daten, also die Menschen dahinter.

Die Motivation dieser Arbeit ergibt sich aus den zuvor beschriebenen Problemen. KI unterstützt uns in jeglichen Aufgaben in unserem Alltag.

- Anonymisierung/Pseudonymisierung bei besonders großen Datensätzen ist schwierig
- Nachvollziehbarkeit von Bias verzerrten Daten
- Veranschaulichung von Bias in Daten für die Allgemeinheit, um auf das Problem im Bereich ML aufmerksam zu machen

1.2 Zielsetzung

Um das Bewusstsein zu schaffen, dass beim Einsatz von KI die Ethik eine große Rolle spielt, sollen verzerrte Trainingsdaten erzeugt werden. Dafür soll im Rahmen der Lehre ein Datengenerator geschaffen werden, der es ermöglicht verzerrte Daten zu erzeugen. Mit Hilfe dieser Daten können dann anhand zufällig erzeugter Daten mit festgelegtem Bias veranschaulicht werden, welche Auswirkungen dieser auf die KI und deren Entscheidungen hat

Die Anforderungen, die sich daraus ergeben, sind:

- Die Konzeption für zwei Szenarien, die möglichst Realitätsnah sind und künstlich verzerrt werden können.
- Das Erstellen eines Datengenerator für Daten, die durch einen Bias verzerrt sind.
- Das Erstellen einer Auswertung für den erzeugten Datensatz, der den Bias für die Lehre veranschaulicht.

Gesamt Produkt zur Erstellung von Daten und derer Bias Visualisierung für die Lehre 1 Satz, was sollen wir machen -> Stichwortliste mit Anforderungen

1.3 Aufbau der Arbeit

Der erste Abschnitt ist in drei Passagen aufgeteilt. Zu Beginn wird das allgemeine Thema der Daten als Grundlage für Machine Learning (ML) betrachtet. Dabei wird insbesondere auf die Datenqualität eingegangen. Des weiteren wird das Thema Bias, also die Verzerrung in den Daten, auf Basis der Literatur veranschaulicht. In der folgenden Passage wird auf KI und Machine Learning (ML) eingegangen. Ebenso wird die Ethik in der KI betrachtet. Die letzte Passage setzt sich dann mit Bias in KI Trainingsdaten auseinander. Dabei liegt der Fokus auf der dadurch möglicherweise entstehenden Diskriminierung aber im Gegensatz dazu auch mit Ansätzen und Konzepten von Gegenmaßnahmen. Im nächsten großen Abschnitt wird die praktische Umsetzung des Datengenerators näher betrachtet. Dafür werden zu Beginn die zwei Szenarien ausgearbeitet und näher beschrieben. Als nächstes werden die daraus entstehenden Anforderungen in Form eines Konzepts aufgestellt. Dieses unterscheidet sich in Fein und Grobkonzept und beschreibt die logischen Funktionen. Abschließend wird noch die konkrete Implementierung beschrieben.

FEHLT HIER NICHT NOCH IWIE ERGEBNISSE

UND ES FEHLT TABLEAU

Abschließend werden alle Erkenntnisse gesammelt und zusammengefasst. Hier wird auch das Ergebnis der Arbeit kritisch Reflektiert und Evaluiert. Zum Schluss wird noch ein kurzer Ausblick darüber gegeben, welche Relevanz Bias in der KI zukünftig haben wird.

$\mathbf{2} \mid \mathbf{Stand} \ \mathbf{der} \ \mathbf{Technik}$

2.1 Daten

2.1.1 Datenqualität

2.1.2 Bias

- Begriffserklärung: Data Bias vs Bias Verzerrung (zu viel/zu wenig lernen im ml)
- Arten von Bias:
- Bias durch Abwesenheit Wenn eine Info fehlt, kann das zu Diskriminierung führen.
- Diskriminierung durch Menschen.

Arten von Bias: Cognitive, Social, Perceptual und Motivational Bias [1]

2.2 Künstliche Intelligenz & Maschinelles Lernen

2.2.1 Was ist Künstliche Intelligenz

2.2.2 Teilgebiet Maschinelles Lernen

- Superviced learning
- Unsuperviced learning

2.2.3 Ethik in der Künstlichen Intelligenz

2.3 Künstliche Intelligenz verbunden mit Bias

2.3.1 Diskriminierung durch verzerrte Daten

2.3.2 Gegenmaßnahmen

- Wenn der Parameter mit dem Bias entfernt wird, wird das Ergebnis erstmal schlechter.

3 | Praktischer Teil

In diesem Teil der Arbeit werden zuerst die beiden Szenarien erläutert und daraufhin die Konzeption und Umsetzung derer in Python beschrieben.

3.1 Szenarien

Für das generieren von Daten wurden zwei möglichst reale Szenarien ausgewählt. Zum einen das Szenario eines Bewährungsantrages, für welches 5 verschiedene Attribute und eine endgültige Bewertung mit stattgegeben oder nicht generiert werden. Zum anderen das zweite Szenario des social creditpoint system, für welches pro Person 7 Attribute zu generieren sind und eine numerische Bewertung zwischen 600 und 1400 creditpoints erstellt wird. Diese beiden Szenarien werden im folgenden genauer erläutert.

3.1.1 Szenario 1

In Szenario 1 soll ein Bewährungsantrag einer Person Bewertet werden. Ein Antrag besteht dabei aus dem Namen der Person, dessen Geschlecht, Hautfarbe und den entscheidenden Attributen der laufenden Strafe in Jahre und der Härte des Vergehens. Basierend auf diesen Attributen soll ein Bewerter beurteilen, ob der Antrag genehmigt oder abgelehnt wird. Das Geschlecht wird in "Männlich" und "Weiblich" angegeben. Die Hautfarbe der Person wird als "Schwarz" oder "Weiß" festgehalten. Die noch laufende Strafe des Gefangenen wird in Jahren von als Ganzzahlen von 1-5 angegeben. Da hier definiert wird ein Bewährungsantrag kann erst ab maximal 5 Jahren noch offene Strafe gestellt werden. Die Härte des Vergehens wird einfachheitshalber in den Gruppen "Leicht", "Mittel" oder "Hart" festgehalten.

Für die Beurteilung des Antrags von dem Bewerter werden folgende Regeln definiert:

Attribut	Positive Auswirkung	Negative Auswirkung
Laufende Strafe	1-3	4-5
Härte des Vergehens	Leicht, Mittel	Hart

Tabelle 3.1: Tabelle für die Auswirkung der Attributen von Szenario 1

Das Geschlecht und die Hautfarbe werden hierbei nicht direkt aufgelistet, da diese in der Regel keine Auswirkung auf die Bewertung haben sollten. Diese können jedoch durch einen konkreten Bias Aussagekraft bekommen. Damit soll in den generierten Daten die gewünschte Verzerrung auf einen gewissen Wert gelegt werden können. In diesem Szenario sind die möglichen Werte, welche durch eine Verzerrung und damit einem menschlichem Vorurteil eines Bewerters beeinflusst werden können, das Geschlecht und die Hautfarbe. Die anderen beiden Attribute, welche in der Tabelle 3.1 aufgeführt sind, wirken sich durch ihre Ausprägungen positiv oder negativ auf die Bewertung des Antrages aus. So wirkt z.B. eine Härte des Vergehens vom Niveau Leicht sich eher für eine positive Bewertung des Antrages aus, als eine mittlere Härte. Dasselbe gilt auch für die Laufende Strafe. So kann ein Bewerter dann anhand dieser beiden Werte eine Tendenz erhalten und dann über die Gestattung des Antrages entscheiden.

3.1.2 Szenario 2

Im zweiten Szenario wird das durch China populär gewordene sozial creditpoint System in einer lagenunabhängigen Version nachgebaut. Dafür werden Einträge zu Personen erstellt, nach welchen die Punktzahl der einzelnen Person zwischen 600 und 1400 Punkten bestimmt wird. Ein Eintrag zu einer Person beinhaltet die sieben in der folgenden Tabelle dargestellten Attribute mit den unterschiedlichen Ausprägungen. Die in Tabelle 3.2

Attribut	Ausprägungen
Name	Beliebig
Alter	20-79
Politische Orientierung	Links, Mitte, Rechts
Bildungsabschluss	Ausbildung, Fachschulabschluss,
Dildungsabscilluss	Bachelor, Master, Diplom, Promotion, ohne
Soziales	0-3
Wohnlage	Großstadt, Kleinstadt,
wommage	Vorort, Ländlich
CO2-Fußabdruck	4-12

Tabelle 3.2: Tabelle der Attribute und Auswirkungen von Szenario 2

aufgeführten Ausprägungen haben ähnlich wie zu Szenario 1 unterschiedlich starke Auswirkungen auf den am Ende bestimmten social Score. Einzig allein der Name und das Alter sollen keine direkte Auswirkung auf den social Score haben. Die anderen Attribute wirken sich je nach Auswirkung positiv durch eine Erhöhung des Scores oder negativ durch eine Verringerung des Scores aus. Insgesamt werden so in diesem Szenario viele Einträge von Personen erstellt, welche alle unterschiedlichste Verteilungen der Ausprägungen besitzen und dadurch in der Bewertung einen individuellen social Score erzielen. Um nun eine gewünschte Verzerrung in die Daten zu bekommen können alle Attribute bis

auf den Namen, welcher rein als Füllwert dient, durch eine Verzerrung beeinflusst werden. So können z.B. Personen zwischen 20-30 Jahre negativ verzerrt werden, da ein oder zwei Bewerter etwas gegen junge Leute haben und diesen aus ihrer Überzeugung einen schlechteren Score geben. In diesem Szenario ist somit eine hohe Variabilität geboten inwieweit eine Verzerrung in die Daten gebracht wird. Zudem kann auch eine Verzerrung über mehrere Attribute eingebracht werden, da ein Bewerter z.B. auch etwas gegen eine Rechte Politische Orientierung und ein schlechtes Soziales Engagement von 0 haben kann.

3.2 Konzeption

In diesem Kapitel wird die erarbeitete Konzeption für die Umsetzung der beiden im Kapitel 3.1 aufgeführten Szenarien erläutert. Dabei wird in ein Grobkonzept zur allgemeinen Generierung der Daten und darauf in ein Feinkonzept für jedes Szenario unterteilt.

3.2.1 Grobkonzept

Das Grobkonzept beinhaltet die Überlegungen, wie die Programme/Notebooks für die beiden Szenarien generell aufgebaut sein sollen. Der Ablauf der Programme von der Eingabe der Parameter bis hin zu den fertig generierten Daten wird in fünf Schritten durchgeführt. Der Ablauf der Schritte ist in folgendem Programmablaufplan dargestellt.

Abbildung 3.1: Programmablaufplan der fünf Hauptschritte zur Generierung der Daten

Die in der Abbildung 3.1 dargestellten Hauptschritte des Programmablaufs lauten: Parametereingabe, Generieren der Daten, Regeln aufstellen, Bewerten und Speichern der Daten. Im ersten Schritt der Parametereingabe, wird den Benutzenden die Möglichkeit gegeben die Parameter für die Generierung der Daten einzugeben, wie z.B. die Anzahl der Daten oder Bewertende welche generiert werden sollen. Im folge Schritt werden daraufhin die passende Anzahl an Daten für das jeweilige Szenario generiert. Dabei sollen die Daten möglichst an Verhältnissen aus der Realität angepasst und auf dieser Grundlage generiert werden. Es soll jedoch eine gewisse Zufälligkeit in der Generierung vorhanden sein, sodass bei mehrfach Generierung unterschiedliche Datensätze auf Basis der definierten Verteilungen entstehen. Nach Abschluss der Generierung wird der fertige Datensatz zwischengespeichert, um diesen später bewerten zu können. Für die Bewertung des Datensatzes muss im folgenden 3. Schritt die Regeln nach welchen bewertet wird aufgestellt werden. Dafür soll zuerst die in den Parametern gewünschte Anzahl an Bewertenden erstellt werden, da durch diese die Regeln erstellt werden. Unter den Erstellten Bewertenden müssen zudem noch die angegebene Anzahl an diskriminierenden Bewertenden in solche umgewandelt werden. Daraufhin können dann die Regeln für die Bewertenden erzeugt werden. Somit ist der 3. Schritt abgeschlossen und alle Vorbereitungen getroffen für die Bewertung. In der Bewertung bekommen die Bewertenden alle Anträge des Datensatzes vorgelegt, welche Sie basierend auf den Regeln bewerten. Die Bewertung des jeweiligen Antrages wird diesem in den Daten hinzugefügt. Damit kann zum letzten Prozess übergegangen werden. In diesem wird der Ursprungsdatensatz und der bewertete Datensatz abgespeichert und damit auch außerhalb von dem Programm zugänglich gemacht.

Somit ist das Grobkonzept der Szenarien abgeschlossen und ein Grundgerüst konnte entworfen werden. Im weiteren kann nun auf die detaillierte Feinkonzeption der einzelnen Szenarien eingegangen werden.

3.2.2 Feinkonzept

Die im Grobkonzept beschriebenen fünf Hauptschritte der Programme sind für beide Szenarien gleich. Jedoch unterscheiden sich die Schritte im Detail bei beiden Szenarien. Daher wird für jedes Szenario ein eigenes Feinkonzept zur Füllung des selben vorhanden Grundgerüst entwickelt.

Parametereingabe

Im ersten Schritt der Parametereingabe unterscheiden sich die Szenarien nicht, da beide einen Parameter für die gewünschte Diskriminierung, die Anzahl der Daten, die Anzahl der Bewertenden, die Anzahl der diskriminierenden Bewertenden und der stärke der Auswirkung von der Diskriminierung benötigen. Diese Parameter können von den Benutzenden

in beiden Fällen in einer finalen Zelle editiert werden.

Daten generieren

In diesem Prozess unterscheiden sich beide Szenarien stark, da zum einen für das erste Szenario nur fünf anstelle von sieben Attribute bei Szenario 2 generiert werden müssen und zum anderen existieren deutlich weniger Verbindungen zwischen den Attributen in Szenario 1. Bei dem ersten Szenario basiert nur die Härte der Strafe und die Hautfarbe auf dem Geschlecht, dies bedeutet die Wahrscheinlichkeiten für diese Attribute soll dem Geschlecht entsprechend angepasst werden. So haben zum Beispiel weibliche Personen eine eher seltener eine Harte Strafe als männliche Personen. Alle anderen Attribute in diesem Szenario haben eine feste Wahrscheinlichkeitsverteilung. Damit sind die Zusammenhänge in diesem Szenario sehr klein gehalten und überschaubar.

In Szenario 2 müssen sieben Attribute generiert werden und es sollen deutlich mehr Verbindungen zwischen diesen existieren. Um diese verständlich darzustellen wurde ein Diagramm für das Feinkonzept entworfen, welches nachfolgend dargestellt ist.

Abbildung 3.2: Verbindungen zwischen den Attributen des zweiten Szenario

In der Abbildung 3.2 sind alle Attribute, bis auf das Attribut Name, des zweiten Szenario als abgerundete Rechtecke und die Verbindungen zwischen diesen mit Pfeilen dargestellt. Insgesamt existieren wie zu sehen fünf Verbindungen zwischen den Attributen. Diese sollen so aufgebaut werden, um möglichst Realitätsnahe Daten generieren zu können. Die Verbindung zwischen dem Alter und dem Bildungsabschluss existiert, da zum Beispiel die Wahrscheinlichkeit, dass eine Person mit 20 schon eine Promotion besitzt nicht so hoch ist wie bei einer Person im Alter von 50. Zudem hat das Alter einen Einfluss auf die Politische Orientierung einer Person, da junge Leute sicherlich andere Orientierungen haben als Personen im Alter von 50 zum Beispiel, siehe Aktionen wie "FridaysforFuture". Durch die Politische Orientierung einer Person wird in diesem Fall auch mit einer Beeinflussung auf das soziale Verhalten gerechnet und es besteht daher hier auch eine Verbindung. Im Falle des CO2-Fußabdruck wird in dieser Arbeit mit einer Auswirkung der Wohnlage und einer Auswirkung des Sozialen gerechnet. Durch das Soziale und die Vorverbindung wird die Politische Orientierung und das Alter ebenfalls indirekt darauf mit ein Bezogen. Dies

ist hier der Fall, da die Berechnung CO2-Fußabdruck sich aus vielen Faktoren zusammensetzt und daher auch dieser in diesem Szenario durch viel beeinflusst werden soll. Durch diese Zusammenhänge sollen dann möglichst realitätsnahe Daten entstehen.

Insgesamt für beide Szenarien müssen dann später bei der Umsetzung die Wahrscheinlichkeiten der Ausprägungen der Attribute, wo es möglich ist, durch Statistiken bestimmt werden und die Verbindungen dadurch ebenfalls bestätigt werden. Dies wird im Kapitel 3.3 im Detail erläutert.

Regeln aufstellen

Im diesem Schritt werden zuerst bei beiden Szenarien die gewünschte Anzahl an Bewertenden erstellt, von welchen danach die Anzahl an diskriminierenden ausgewählt wird. In der folge können die Regeln für die zuvor als Objekte erstellte Bewertenden erstellt werden. Im Fall des ersten Szenarios werden zwei Listen mit Hilfe der unter Kapitel 3.1.1 gezeigten Tabelle erstellt. Eine Liste beinhaltet die in der Tabelle dargestellten Positiven Auswirkungen und die andere Liste beinhaltet die Negativen Auswirkungen. So haben die Objekte der Bewertenden ihre eigenen Listen an Regeln. Daher kann für die diskriminierenden Bewertenden in der Liste der Negativen Auswirkungen das zu diskriminierende Attribut hinzugefügt werden. So diskriminieren diese Bewertenden automatisch, da sie diese Regeln zur Überprüfung der Bewertung haben. Für das zweite Szenario sieht das Konzept hier etwas anders aus, da es hier nicht um eine Bewertung in genehmigt oder nicht geht, sondern um Punkte. Somit müssen die Regeln so erstellt werden, dass die Bewertenden eine Liste an allen Ausprägungen der Attributen haben und dazu eine passende Zuordnung mit wie vielen Punkten sich welche Ausprägung auf den Score auswirkt. Die Verzerrung wird in diesem Fall erst im nächsten Schritt der Bewertung betrachtet.

Bewertung

Folgend auf die erstellten Regeln können die Bewertenden nun die vorgelegten Einträge der Daten bewerten. Im ersten Szenario wird das ganze durch eine Wahrscheinlichkeitsverteilung durchgeführt. Zu Beginn jeder Bewertung steht es 50:50 für genehmigt oder nicht. Durch die erstellten Regel Listen können dann die Bewertenden die im Antrag aufgeführten Attribute abgleichen, ob diese sich positiv (also für eine Genehmigung) oder negativ auswirken. Nach dieser Bestimmung wird dann die Wahrscheinlichkeitsverteilung verschoben in positive oder negative Richtung. So kann am Ende wenn der Bewertende alle Attribute durch hat mit Hilfe der übrig gebliebenen Wahrscheinlichkeiten für positiv und negativ eine Entscheidung getroffen werden. Falls ein bewertendes Objekt diskriminieren sollte, hat dieses wie oben erläutert in seinen negativen Regeln die gewünschte Ausprägung enthalten, sodass diese sich dann auf die Entscheidung auswirkt. Für das zweite Szenario wird nicht mit einer Wahrscheinlichkeitsverteilung gearbeitet, sondern mit dem mittleren Wert des Scores als Startwert(1000). So können die Bewertenden von Attribut zu Attribut aus dem zu bewertenden Eintrag durchlaufen und entsprechend nach

der Ausprägung den in Ihren eigenen Regeln definierte Wert dem Startwert hinzu addieren. Damit entsteht dann letztendlich der finale Score für den Eintrag. Für die Verzerrung wird das Attribut und die Ausprägung dessen welche verzerrt werden soll in jedem Eintrag gesucht. Falls die gewünschte Ausprägung vorhanden ist wird der Score dieses Eintrages um die in den Parametern eingegebene negative Auswirkung für die Verzerrung addiert. Insgesamt werden bei beiden Szenarien die Einträge aus dem generierten Datensatz zufällig einem Bewertenden zur Bewertung zugeordnet. So ist eine zusätzliche Variabilität in der Verteilungen der Verzerrung gegeben.

Speichern der Daten

Zum Abschluss werden bei beiden Szenarien gleich die beiden Datensätze als CSV Datei gespeichert. Zum einen den ursprünglich generierten Datensatz und zum anderen auch der Datensatz mit der jeweiligen Bewertung enthalten. Durch eine CSV Datei können die Daten dann beliebig in anderen Programmen weiterverwendet werden.

Insgesamt ist damit die Konzeption abgeschlossen. Im Grobkonzept wurde ein Grundgerüst für die beiden Programme der Szenarien entworfen, welches auch für noch weitere Szenarien der Art verwendet werden kann. Im Feinkonzept wurde dann das Grundgerüst durch Inhalt der jeweiligen Szenarien gefüllt und das geplante im Detail beschrieben. So kann nun zur Umsetzung der beiden Programme als Notebooks übergegangen werden.

3.3 Umsetzung

Da die Programme als Notebooks in python umgesetzt sind, können die einzelnen, in der Konzeption dargestellten, Prozessschritte als Zellen verwirklicht werden. Nun wird die Umsetzung des ersten Szenarios beschrieben.

Im Programm für das erste Szenario, welches "Szenario1.ipynb" heißt, müssen zu aller erst in der ersten Zelle die benötigten Bibliotheken geladen werden.

```
import numpy as np
from faker import Faker
import pandas as pd
from datetime import datetime
import random

fake = Faker()

Python
```

Abbildung 3.3: Erste Zelle Code des Szenario1

In der Abbildung 3.3 ist die erste Zelle mit den Importen der Bibliotheken zu sehen. Die Bibliothek "numpy" wird für Zufallsauswahlen unter bestimmten Wahrscheinlichkeiten benötigt. "faker" ist eine Bibliothek für generierte Daten, so wird diese hier für das bestimmen zufälliger Namen verwendet. "pandas" bietet sogenannte Dataframes in welchen die Daten gespeichert werden und durch pandas auch in eine CSV Datei geschrieben werden können. Die letzte Bibliothek "random" ist ebenfalls wie "numpy" für das generieren von Zufallswerten zuständig. Zum Schluss wird in der Zelle noch eine Instanz der Faker Klasse erstellt, welches zur Verwendung der Bibliothek benötigt wird.

In der nächsten Zelle ist die Methode "create_fake_data" zur Generierung der Daten umgesetzt. Diese Methode bekommt die beiden Parameter num und seed übergeben. Der Parameter seed wird zu Beginn verwendet um den Startwert der Faker Instanz und von "numpy" zu setzen. Dadurch wird es ermöglicht, mit unterschiedlichen Startwerten, eine nahezu "echte"Zufallszahl zu generieren. Bei gleichbleibendem Startwert und gleicher Methode würde der Code immer die gleiche Zufallszahlen bestimmen. Zum Beispiel wenn drei Zahlen von 0-10 generiert werden sollen, werden bei gleichem Startwert immer die drei selben Zahlen generiert. Variiert der Startwert jedoch, werden jedes Mal unterschiedliche Zahlen generiert und eine ausreichende Variabilität erreicht. Als nächstes wird mit einer Schleife über die im Parameter num angegebene Zahl iteriert. In jedem Schleifendurchlauf wird ein Eintrag für den Datensatz generiert. Somit ist num die Größe des gewünschten Datensatzes.

- 3.4 Datenauswertung
- 3.5 Evaluation der Ergebnisse

4 | Schluss

4.1 Zusammenfassung

- Fazit ziehen!!!

4.2 Diskussion

Kritische Reflektieren der gesamten Arbeit.

4.3 Ausblick

Literaturverzeichnis

[1] P. A., A. Jawaid, S. Dev, and V. M.S., "The patterns that don't exist: Study on the effects of psychological human biases in data analysis and decision making," in 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), pp. 193–197, 2018.