MATS132 Lineaariset Lien ryhmät demo 5 malliratkaisut

Olkoon g K-Lien algebra. Osoita, että

$$[\mathfrak{g},\mathfrak{g}] = \operatorname{span}_{\mathbb{K}} \{ [X,Y] : X,Y \in \mathfrak{g} \}$$

on Lien algebran \mathfrak{g} ideaali.

Ratkaisu. $\mathfrak{i} = [\mathfrak{g}, \mathfrak{g}]$ on suoraan määritelmänsä perusteella Lien algebran \mathfrak{g} vektorialiavaruus, joten riittää osoittaa kommutaattorirelaatio $[\mathfrak{g}, \mathfrak{i}] \subset \mathfrak{i}$. Jos $X \in \mathfrak{g}$ ja $Y \in \mathfrak{i}$, niin myös $Y \in \mathfrak{g}$, joten $[X, Y] \in [\mathfrak{g}, \mathfrak{g}]$.

2. Olkoon $\varphi : \mathfrak{g} \to \mathfrak{h}$ surjektiivinen Lien algebrojen morfismi, jolle lisäksi $[\mathfrak{g}, \mathfrak{g}] \subset \ker \varphi$. Osoita, että \mathfrak{h} on abelinen.

Ratkaisu. Olkoot $X, Y \in \mathfrak{h}$. Täytyy osoittaa, että [X, Y] = 0. Koska φ on surjektio, on olemassa $A, B \in \mathfrak{g}$ joille $\varphi(A) = X$ ja $\varphi(B) = Y$. Tällöin koska φ on Lien algebrojen morfismi ja $[A, B] \in [\mathfrak{g}, \mathfrak{g}]$,

$$[X,Y] = [\varphi(A),\varphi(B)] = \varphi([A,B]) = 0.$$

3. Olkoot $G, H < \operatorname{GL}(n, \mathbb{K})$ matriisiryhmiä ja $\mathfrak{g}, \mathfrak{h}$ niiden Lien algebrat. Osoita, että matriisiryhmän $G \cap H$ Lien algebra on $\mathfrak{g} \cap \mathfrak{h}$. (Voit käyttää faktaa: Jos N on matriisiryhmä ja \mathfrak{n} sen Lien algebra, niin $\exp(\mathfrak{n}) \subset N$.)

Ratkaisu. Olkoon $A \in T_I(G \cap H)$, jolloin on olemassa derivoituva käyrä $\alpha : (-\epsilon, \epsilon) \to G \cap H$ derivoituva käyrä, jolle $\alpha(0) = I$ ja $\alpha'(0) = A$. Toisaalta α on derivoituva käyrä myös G:ssä ja H:ssa, joten $A \in T_IG \cap T_IH = \mathfrak{g} \cap \mathfrak{h}$.

Jos taas $A \in \mathfrak{g} \cap \mathfrak{h}$ tarkastellaan käyrää $\alpha : \mathbb{R} \to GL(n, \mathbb{K}), \alpha(t) = \exp(tA)$. Koska $\mathfrak{g} \cap \mathfrak{h}$ on vektoriavaruus, $tA \in \mathfrak{g} \cap \mathfrak{h}$ kaikilla $t \in \mathbb{R}$. Koska $tA \in \mathfrak{g}, \alpha(tA) \in G$ ja vastaavasti koska $tA \in \mathfrak{h}, \alpha(tA) \in H$. Näin ollen α on derivoituva käyrä $G \cap H$:ssa, jolle $\alpha(0) = I$ ja $\alpha'(0) = A$, joten $A \in T_I(G \cap H)$.

4. Määritä matriisiryhmien SO(n) ja O(n) dimensiot.

Ratkaisu. Lauseen 5.17 mukaan ryhmien Lien algebrat ovat

$$\mathfrak{so}(n) = \mathfrak{o}(n) = \{ A \in \mathfrak{gl}(n, \mathbb{K}) : A^T + A = 0 \}.$$

Osoitetaan, että matriisit $\{E^{rs} - E^{sr}: 1 \le r < s \le n\}$ muodostavat tämän avaruuden kannan.

Näille matriiseille

$$(E^{rs} - E^{sr})^T + (E^{rs} - E^{sr}) = E^{sr} - E^{rs} + E^{rs} - E^{sr} = 0,$$

joten ne sisältyvät avaruuteen $\mathfrak{o}(n)$.

Toisaalta, jos $A \in \mathfrak{o}(n)$, antisymmetrisyys ehdosta $A^T + A = 0$ seuraa, että $A_{sr} = -A_{rs}$. Näin ollen

$$A = \sum_{r=1}^{n} \sum_{s=r+1}^{n} A_{rs} (E^{rs} - E^{sr}),$$

joten nämä matriisit $\{E^{rs} - E^{sr}: \ 1 \leq r < s \leq n\}$ muodostavat kannan. Näin ollen

$$\dim \mathfrak{o}(n) = \sum_{r=1}^{n} (n-r) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2} = \binom{n}{2}.$$

5. Määritä \mathbb{R} -vektoriavaruuksille $\mathfrak{u}(n)$ ja $\mathfrak{su}(n)$ kannat.

Ratkaisu. Osoitetaan, että $\mathfrak{u}(n)$:llä on kanta

$$\{iE^{kk}, k = 1, \dots, n\} \cup \{E^{rs} - E^{sr}, 1 \le r < s \le n\} \cup \{iE^{rs} + iE^{sr}, 1 \le r < s \le n\}.$$

Väitetyn kannan matriiseille

$$(iE^{kk}) + (iE^{kk})^* = iE^{kk} - iE^{kk} = 0,$$

$$(E^{rs} - E^{sr}) + (E^{rs} - E^{sr})^* = E^{rs} - E^{sr} + E^{sr} - E^{rs} = 0 \quad \text{ja}$$

$$(iE^{rs} + iE^{sr}) + (iE^{rs} + iE^{sr})^* = iE^{rs} + iE^{sr} - iE^{rs} - iE^{sr} = 0.$$

joten ainakin nämä kaikki sisältyvät avaruuteen $\mathfrak{u}(n)$. Nämä ovat selvästi \mathbb{R} -lineaarisesti riippumattomia.

Olkoon $A \in \mathfrak{u}(n)$. Kirjoitetaan A = B + Ci, missä $B, C \in \mathcal{M}_n(\mathbb{R})$ ovat reaalisia. Tällöin

$$A + A^* = (B + Ci) + (B + Ci)^* = (B + B^T) + (C - C^T)i.$$

Ehdosta $A+A^*=0$ seuraa siis, että $B+B^T=0$ ja $C-C^T=0$, eli että $B_{rs}=-B_{sr}$ ja $C_{rs}=C_{sr}$. Näin ollen

$$B = \sum_{r=1}^{n} \sum_{s=r+1}^{n} B_{rs}(E^{rs} - E^{sr}) \text{ ja}$$

$$C = \sum_{k=1}^{n} C_{kk}E^{kk} + \sum_{r=1}^{n} \sum_{s=r+1}^{n} C_{rs}(E^{rs} + E^{sr}),$$

mistä seuraa, että väitetyt matriisit muodostavat $\mathfrak{u}(n)$:lle kannan. Avaruuden $\mathfrak{u}(n)$ dimensio on siis

$$\dim \mathfrak{u}(n) = n + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = n + n^2 - n = n^2.$$

Vektoriavaruudelle $\mathfrak{su}(n)$, korvataan matriisit iE^{kk} matriiseilla $iE^{kk} - iE^{nn}$, $k = 1, \ldots, n-1$ ja osoitetaan että saadaan kanta. Nämä matriisit ovat edellisen nojalla $\mathfrak{u}(n)$:ssä, ja lisäksi

$$\operatorname{tr}(iE^{kk} - iE^{nn}) = i - i = 0,$$

 $r \neq s \implies \operatorname{tr}(E^{rs} - E^{sr}) + (E^{rs} - E^{sr})^* = 0$ ja
 $r \neq s \implies \operatorname{tr}(iE^{rs} + iE^{sr}) + (iE^{rs} + iE^{sr})^* = 0,$

joten ne sisältyvät avaruuteen $\mathfrak{su}(n)$ ja ovat \mathbb{R} -lineaarisesti riippumattomia. Jos $A \in \mathfrak{su}(n)$, niin myös $A \in \mathfrak{u}(n)$, jolloin asettamalla A = B + Ci saadaan

$$B = \sum_{r=1}^{n} \sum_{s=r+1}^{n} B_{rs}(E^{rs} - E^{sr}),$$

$$C = \sum_{k=1}^{n} C_{kk}E^{kk} + \sum_{r=1}^{n} \sum_{s=r+1}^{n} C_{rs}(E^{rs} + E^{sr}).$$

Mutta nyt

$$0 = \operatorname{tr} A = \sum_{k=1}^{n} A_k k = i \sum_{k=1}^{n} C_{kk} \implies \sum_{k=1}^{n} C_{kk} = 0.$$

Näin ollen

$$\sum_{k=1}^{n} C_{kk} E^{kk} = \sum_{k=1}^{n} C_{kk} (E^{kk} - E^{nn} + E^{nn})$$

$$= \sum_{k=1}^{n-1} C_{kk} (E^{kk} - E^{nn}) + \left(\sum_{k=1}^{n} C_{kk}\right) E^{nn}$$

$$= \sum_{k=1}^{n-1} C_{kk} (E^{kk} - E^{nn}),$$

mistä seuraa, että väitetyt matriisit muodostavat $\mathfrak{su}(n)$:n kannan. Avaruuden dimensio on tällöin

$$\dim \mathfrak{su}(n) = n - 1 + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = n^2 - 1.$$

6. Määritä affiinin ryhmän $Aff(n, \mathbb{K})$ Lien algebra ja dimensio. (Affiinin ryhmän määritelmä löytyy 3. demojen 1. tehtävästä.)

Ratkaisu. Olkoon $\gamma:(-\epsilon,\epsilon)\to Aff(n,\mathbb{K})$ derivoituva käyrä, jolle $\gamma(0)=I$. Kirjoitetaan

$$\gamma(t) = \begin{bmatrix} \alpha(t) & \beta(t) \\ 0 & 1 \end{bmatrix},$$

missä $\alpha: (-\epsilon, \epsilon) \to \operatorname{GL}(n, \mathbb{K})$ ja $\beta: (-\epsilon, \epsilon) \to \mathcal{M}_{n \times 1}(\mathbb{K})$ ovat α :n komponenttikäyrät. Koska derivoituvuus tarkoittaa komponenteittaista derivoituvuutta, α ja β ovat derivoituvia käyriä. Lisäksi ehdosta $\gamma(0) = I$ seuraa että $\alpha(0) = I$, $\beta(0) = 0$, jolloin $\alpha'(0) \in \operatorname{GL}(n, \mathbb{K})$ ja $\beta'(0) \in \mathbb{K}^n$.

Toisaalta, jos α ja β ovat mitkä tahansa tällaiset käyrät, niistä blokkeina muodostettu matriisi on derivoituva käyrä Aff (n, \mathbb{K}) :ssa, joten affiinin ryhmän Lien algebra on

$$\mathfrak{aff}(n,\mathbb{K}) = \left\{ \begin{bmatrix} A & b \\ 0 & 0 \end{bmatrix} : \ A \in \mathfrak{gl}(n,\mathbb{K}), b \in \mathbb{K}^n \right\}.$$

Affiinin ryhmän dimensio on siis

$$\dim \mathfrak{aff}(n,\mathbb{R}) = \dim \mathfrak{gl}(n,\mathbb{R}) + \dim \mathbb{R}^n = n^2 + n$$
 tai
 $\dim \mathfrak{aff}(n,\mathbb{C}) = \dim_{\mathbb{R}} \mathfrak{gl}(n,\mathbb{C}) + \dim_{\mathbb{R}} \mathbb{C}^n = 2n^2 + 2n$

7. Osoita, että ristitulo Lien algebra (\mathbb{R}^3, \times) ja Lien algebra $\mathfrak{so}(3)$ ovat isomorfiset.

Ratkaisu. Lien algebralla $\mathfrak{so}(3)$ on kanta joka koostuu matriiseista

$$U_1 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad U_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \quad U_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}.$$

Näille saadaan tulot

$$U_1U_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad U_2U_3 = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad U_3U_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}.$$

Koska $U_j^T = -U_j$, nämä tulot riittävät kommutaattorien laskemiseen, sillä

$$[U_j, U_k] = U_j U_k - U_k U_j = U_j U_k - U_k^T U_j^T = U_j U_k - (U_j U_k)^T.$$

Näin ollen saadaan relaatiot

$$[U_1, U_2] = U_1 U_2 - (U_1 U_2)^T = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = U_3,$$

$$[U_2, U_3] = U_2 U_3 - (U_2 U_3)^T = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = U_1$$

$$[U_3, U_1] = U_3 U_1 - (U_3 U_1)^T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = U_2.$$

Nämä ovat täsmälleen samat relaatiot kuin ristitulolla standardikannalle e_1, e_2, e_3 :

$$[e_1, e_2] = e_1 \times e_2 = e_3$$

 $[e_2, e_3] = e_2 \times e_3 = e_1$
 $[e_3, e_1] = e_3 \times e_1 = e_2$

joten kuvaus

$$\varphi: (\mathbb{R}^3, \times) \to \mathfrak{so}(3), \quad \varphi(x_1, x_2, x_3) = x_1 U_1 + x_2 U_2 + x_3 U_3$$

on Lien algebrojen isomorfismi.

8 (Bonus). Olkoon

$$Q = \operatorname{diag}(I_p, -I_q) = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & & \ddots & \\ & & & & -1 \end{bmatrix} \in \operatorname{GL}(p+q, \mathbb{R}).$$

Määritä yleistetyn ortogonaaliryhmän

$$O(p,q) = \{ A \in GL(p+q,\mathbb{R}) : A^T Q A = Q \}$$

Lien algebra ja dimensio.

Ratkaisu. Olkoon $\alpha: (-\epsilon, \epsilon) \to O(p, q)$ derivoituva käyrä jolle $\alpha(0) = I$. Tällöin

$$0 = \frac{d}{dt} \alpha(t)^T Q \alpha(t) \big|_{t=0} = \alpha'(0)^T Q + Q \alpha'(0).$$

Koska $Q = Q^T$, kaikille $A \in \mathfrak{gl}(n, \mathbb{R})$,

$$A^TQ + QA = (QA)^T + QA.$$

Näin ollen

$$A^TQ + QA = (QA)^T + QA = 0 \iff QA \in \mathfrak{o}(p+q),$$

mistä saadaan inkluusio

$$\mathfrak{o}(p,q) \subset \{A \in \mathfrak{gl}(n,\mathbb{R}) : QA \in \mathfrak{o}(p+q)\} = Q^{-1} \cdot \mathfrak{o}(p+q) = Q \cdot \mathfrak{o}(p+q).$$

Vastakkaisen inkluusion todistamiseksi asetetaan A=QB jollekin $B\in\mathfrak{o}(p+q)$. Käyttäen Lemmaa 4.9 ja relaatiota $Q=Q^{-1}$ saadaan

$$Q \exp(tA)Q^{-1} = \exp(QtAQ^{-1}) = \exp(QtQBQ^{-1}) = \exp(tBQ).$$

Näin ollen koska $B^T = -B$,

$$\exp(tA)^T Q \exp(tA) Q^{-1} = \exp(tB^T Q^T) \exp(tBQ) = \exp(-tBQ) \exp(tBQ) = I,$$

joten $\exp(tA)\in\mathcal{O}(p,q).$ Tästä seuraa, että

$$\mathfrak{o}(p,q) = Q \cdot \mathfrak{o}(p+q) \quad \text{ja}$$

$$\dim \mathfrak{o}(p,q) = \dim \mathfrak{o}(p+q) = \binom{p+q}{2}.$$