Economic Dynamics Theory and Computation Excercises Chapter 3

Mitchell Valdés-Bobes

June 24, 2021

Problem 1. Let $\|\cdot\|$ on \mathbb{R}^k be a norm that generates a metric ρ on \mathbb{R}^k via $\rho(x,y) := \|x-y\|$. Show that ρ is indeed a metric, in the sense that it satisfies the three axioms in the definition.

Answer. Recall the definition of norm:

Definition. 1. A norm on \mathbb{R}^k is a mapping $\mathbb{R}^k \ni x \mapsto ||x|| \in \mathbb{R}$ such that, for any $x, y \in \mathbb{R}^k$ and any $\gamma \in \mathbb{R}$

- 1. ||x|| = 0 if and only if x = 0
- 2. $\|\gamma x\| = |\gamma| \|x\|$, and
- 3. $||x + y|| \le ||x|| + ||y||$.

and the definition of metric:

Definition. 2. A metric space is a nonempty set S and a metric or distance $\rho: S \times S \to \mathbb{R}$ such that, for any $x, y, v \in S$,

- 1. $\rho(x,y) = 0$ if and only if x = y,
- 2. $\rho(x,y) = \rho(y,x)$, and
- 3. $\rho(x,y) \le \rho(x,v) + \rho(v,y)$.

To show that the propoerties of metric hold for ρ consider:

- 1. $\rho(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y \text{ for any } x,y \in S.$
- 2. $\rho(x,y) = ||x-y|| = ||y-x|| = \rho(y,x)$ for any $x,y \in S$
- 3. $\rho(x,y) = ||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||y-z|| = \rho(x,z) + \rho(y,z)$ for any $x,y,z \in S$

Problem 2. Let $\|\cdot\|$ be a norm on \mathbb{R}^k . Show that for any $x, y \in \mathbb{R}^k$ we have $\|\|x\| - \|y\|\| \le \|x - y\|$.

Answer. Assume w.l.o.g. that $||x|| \ge ||y||$ then

$$|||x|| - ||y||| = ||x|| - ||y||$$

and

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y|| \implies ||x|| - ||y|| \le ||x - y||$$

Problem 3. Consider the family of norms $\|\cdot\|_p$ defined by

$$||x||_p := \left(\sum_{i=1}^k |x_i|^p\right)^{1/p} \quad (x \in \mathbb{R}^k)$$

where $p \ge 1$, and

$$||x||_{\infty} := \max_{1 \le i \le k} |x_i|$$

Prove that $\|\cdot\|_p$ is a norm on \mathbb{R}^k for p=1 and $p=\infty$.

Answer. Start with p = 1:

- 1. $||x||_1 = 0 \iff \sum_{i=1}^k |x_i| = 0 \iff |x_i| = 0 \,\forall i = 1, \dots, k \iff x = 0$
- 2. $\|\lambda x\|_1 = \sum_{i=1}^k |\lambda x_i| \sum_{i=1}^k |\lambda| |x_i| = |\lambda| \sum_{i=1}^k |x_i| = |\lambda| \|x\|_1$ for all $x \in \mathbb{R}^k$, $lambda \in \mathbb{R}$
- 3. $||x+y||_1 = \sum_{i=1}^k |x_i + y_i|$ since $|x_i + y_i| \le |x_i| + |y_i|$ for all i = 1, ..., k then $||x+y||_1 \le ||x||_1 + ||y||_1$ for all $x, y \in \mathbb{R}^k$

Then the proof is complete.

For the case when $p = \infty$:

- 1. $||x||_{\infty} = 0 \iff \max_{1 \le i \le k} |x_i| = 0 \iff 0 \le |x_i| \le \max_{1 \le i \le k} |x_i| = 0 \ \forall i = 1, \dots, k \iff x = 0$
- 2. $\|\lambda x\|_{\infty} = \max_{1 \le i \le k} |\lambda x_i| = \max_{1 \le i \le k} |\lambda| |x_i| = |\lambda| \max_{1 \le i \le k} |x_i| = |\lambda| \|x\|_{\infty}$ for all $x \in \mathbb{R}^k$, $lambda \in \mathbb{R}$
- 3. $||x+y||_{\infty} = \max_{1 \le i \le k} |x_i+y_i| = |x_j+y_j|$ for some $j \in 1, ..., k$; then $|x_j+y_j| \le |x_j| + |y_j| \le \max_{1 \le i \le k} |x_i| + \max_{1 \le i \le k} |y_i| = ||x||_{\infty} + ||y||_{\infty}$ for all $x, y \in \mathbb{R}^k$

Problem 4. Let (x_n) and (y_n) be sequences in S. Show that if $x_n \to x \in S$ and $\rho(x_n, y_n) \to 0$, then $y_n \to x$

Proof. Recall that:

$$x_n \to x \qquad \iff \qquad \forall \varepsilon_1 > 0 \ \exists N_1 \in \mathbb{N} \mid \rho(x_n, x) < \varepsilon_1$$

and

$$\rho(x_n, y_n) \to 0 \qquad \iff \qquad \forall \varepsilon_1 > 0 \ \exists N_2 \in \mathbb{N} \ | \ |\rho(x_n, y_n)| < \varepsilon_2$$

Then consider $\rho(y_n, x)$ and note that

$$\rho(y_n, x) < \rho(x_n, y_n) + \rho(x_n, x) \le \varepsilon = \varepsilon_1 + \varepsilon_2 \quad \forall n > \max\{N_1, N_2\}$$

Problem 5. Let $(x_n) \subset S$ and $x \in S$. Show that $x_n \to x$ if and only if for all $\varepsilon > 0$, the ball $B(\varepsilon; x)$ contains all but finitely many terms of (x_n) .

Answer. It follows from the definition of convergence that:

$$x_n \to x \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \rho(x_n, x) < \varepsilon \iff x_n \in B(\varepsilon; x) \forall n \geq N$$

This means that only the N first terms of the sequence are **not** in the ball $B(\varepsilon; x)$.

Problem 6. Show that every convergent sequence in S is also bounded.

Answer. Recall that a subset E of S is called bounded if $E \subset B(n;x)$ for some $x \in S$ and some (suitably large) $n \in \mathbb{N}$. A sequence (x_n) in S is called bounded if its range $\{x_n : n \in \mathbb{N}\}$ is a bounded set.

Assume that (x_n) is a convergent sequence then and select any $\varepsilon > 0$ we know that thre is N such that $x_n \in B(\varepsilon; x)$ for all n > N.

For all x_n with $n \leq N$ define $\delta_n = \rho(x_n, x) + 0.1$ then and $\bar{\varepsilon} = \max\{\delta_1, \dots, \delta_N, \varepsilon\}$. It is clear by construction that $\rho(x_n, x) \leq \bar{\varepsilon}$ thus $\{x_n\}_{n=1}^{\infty} \subset B(\varepsilon, \bar{x})$, therefore the sequence is bounded.

Problem 7. Show that for $(x_n) \subset S, x_n \to x$ for some $x \in S$ if and only if ever subsequence of (x_n) converges to x.

Proof. Sufficiency is trivial since the whole sequence is a subsequence of itself.

To show necessity consider $x_n \to x$ and a subsequence $\{x_{k_n}\} \subset \{x_n\}$ since subsequences are defined by increasing functions we know that if the term x_n is "behind" x_m in the original seuquces then and those terms are in a subsequence then the ordering is preserved. Then for any varepsilon > 0 we have that there is a term x_N such that for any term x_n with n > N $\rho(x_n, x_n) < \varepsilon$. Then let consider x_{k_N} the first term in the subsequence that corresponds to x_N in the original sequence this means that any terms that follow x_{k_N} is close enough to x so the definition of convergence holds.

Problem 8. Let $f(x,y) = x^2 + y^2$. Show that f is a continuous function from (\mathbb{R}^2, d_2) into $(\mathbb{R}, |\cdot|)$.

Answer.

$$\begin{array}{lll} (x_n,y_n) \to (x,y) & \iff & x_n \to x \quad \text{and} \quad y_n \to y \\ & \iff & x_n^2 \to x^2 \quad \text{and} \quad y_n^2 \to y^2 \\ & \iff & \forall \frac{\varepsilon}{2} \exists N \in \mathbb{N} \mid \forall n > N \quad |x_n^2 - x^2| < \frac{\varepsilon}{2} \quad \text{and} \quad |y_n^2 - y^2| < \frac{\varepsilon}{2} \\ & \iff & \forall \varepsilon > 0 \quad |(x_n^2 + y_n^2) - (x^2 + y^2)| \leq |x_n^2 - x^2| + |y_n^2 - y^2| < \varepsilon \\ & \iff & f(x_n,y_n) \to f(x,y) \end{array}$$

Problem 9. Let f and g be as above, and let S be a metric space. Show that if f and g are continuous, then so are f + g and fg.

Answer. \Box

Problem 10. A function $f: S \to \mathbb{R}$ is called upper-semicontinuous (usc) at $x \in S$ if, for every $x_n \to x$, we have $\limsup_n f(x_n) \le f(x)$; and lower-semicontinuous (lsc) if, for every $x_n \to x$, we have $\liminf_n f(x_n) \ge f(x)$. Show that f is use at x if and only if -f is $\lim_n f(x_n) \le f(x)$ is both use and $\lim_n f(x_n) \le f(x)$.

Answer. Recall that

$$\liminf a_n := \lim_{n \to \infty} \inf_{k \ge n} a_k$$
 and $\limsup a_n := \lim_{n \to \infty} \sup_{k \ge n} a_k$

Let f be an uper-semicontinuous function then:

$$x_n \to x \qquad \Longrightarrow \qquad \limsup_n f(x_n) \le f(x)$$

Note that

$$\forall n$$
 $\sup_{k \ge n} f(x_k) = -\inf_{k \ge n} -f(x_k)$

Therefore

$$\lim \sup_{n} f(x_{n}) \leq f(x) \qquad \Longrightarrow \qquad -\lim \sup_{n} f(x_{n}) = \lim \inf_{n} f(x_{n}) \geq -f(x)$$