GIF-2000

ÉLECTRONIQUE POUR INGÉNIEURS INFORMATICIENS

EXAMEN FINAL **SOLUTION**

Problème no. 1 (25 points)

a) **Déterminer** et **tracer** en fonction du temps la tension de sortie v_o(t). (12 points)

Le premier amplificateur est un suiveur. Le gain est égal à 1. La tension $v_a(t)$ est donc égale à la tension $v_s(t)$.

Le deuxième amplificateur est un montage sommateur. La tension de sortie v_o(t) est donnée par la relation suivante:

$$v_o(t) = -\left(\frac{10k\Omega}{10k\Omega} \times v_s(t) + \frac{10k\Omega}{20k\Omega} \times (-5V)\right) = -v_s(t) + 2.5V$$

b) <u>Déterminer</u> et tracer en fonction du temps la tension de sortie v_o(t). (13 points)

La tension de sortie $v_o(t)$ est égale à l'intégrale de la tension $v_s(t)$:

$$v_o(t) = \frac{-1}{R_1 C_1} \int_0^t v_s(t) dt + v_{C1}(0) = \frac{-1}{1.5 \times 10^{-3}} \int_0^t v_s(t) dt + 1.6 V$$

Pour 0 < t < 0.4ms, la tension $v_0(t)$ est égale à:

$$v_o(t) = \frac{-12}{1.5 \times 10^{-3}} \int_0^t dt + 1.6 = -8000t + 1.6$$

À t = 0.4 ms, la tension v_o est égale à $v_o(0.4$ ms) = -8000×0.4 ms + 1.6 = -1.6 V

Pour 0.4 ms < t < 1.0 ms, la tension $v_0(t)$ est égale à:

$$v_o(t) = \frac{8}{1.5 \times 10^{-3}} \int_{0.4 \text{ms}}^t dt + v_o(0.4 \text{ms}) = 5333.33(t - 0.4 \text{ms}) - 1.6$$

À t = 1.0 ms, la tension v_0 est égale à $v_0(1.0 \text{ms}) = 5333.33 \times 0.6 \text{ms} - 1.6 = 1.6 \text{ V}$

Problème no. 2 (25 points)

a)

$$\text{L'imp\'edance Z_1 est\'egale \'a:} \qquad Z_1 = \frac{R_1 \times \frac{1}{C_1 s}}{R_1 + \frac{1}{C_1 s}} = \frac{R_1}{R_1 C_1 s + 1} = \frac{27 k \Omega}{(27 k \Omega \times 0.1 \mu F) s + 1} = \frac{27 k \Omega}{(2.7 \times 10^{-3}) s + 1}$$

La fonction de transfert du filtre:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{R_2 + Z_1}{R_2} = \frac{1k\Omega + \frac{27k\Omega}{(2.7 \times 10^{-3})s + 1}}{1k\Omega} = 1 + \frac{27}{(2.7 \times 10^{-3})s + 1}$$

$$H(s) = \frac{(2.7 \times 10^{-3})s + 28}{(2.7 \times 10^{-3})s + 1} = 28 \times \frac{1 + (9.6429 \times 10^{-5})s}{1 + (2.7 \times 10^{-3})s} = 28 \times \frac{1 + \left(\frac{s}{10370}\right)}{1 + \left(\frac{s}{370.4}\right)}$$

On écrit H(s) sous la forme d'un produit de trois fonctions de transfert:

$$H(s) = 28 \times \frac{1}{1 + \left(\frac{s}{370.4}\right)} \times \left[1 + \left(\frac{s}{10370}\right)\right]$$

Le gain en DC est égal à 28 (ou 28.9 dB)

b) Les deux niveaux de comparaison du comparateur sont déterminés par le diviseur de tension composé des deux résistances R_1 et R_2 .

Lorsque
$$v_0$$
 = +10 V, le niveau de comparaison est $V_H = \frac{7.5 k\Omega}{7.5 k\Omega + 30 k\Omega} \times 10 V = 2 V$

Lorsque
$$v_o$$
 = -10 V, le niveau de comparaison est
$$V_L = \frac{7.5k\Omega}{7.5k\Omega + 30k\Omega} \times (-10V) = -2V$$

Le signal de sortie v_o(t) est montré dans la figure suivante.

Problème no. 3 (20 points)

a)

Déterminer la puissance dissipée dans le chip en régime statique (5 points)

La puissance dissipée (en régime dynamique) dans le chip pour une fréquence de fonctionnement de 100 MHz est égale à:

$$P_{dynamique(100MHz)} = P_{T(150MHz)} - P_{T(50MHz)} = 15W - 6.5W = 8.5W$$

La puissance dissipée en régime dynamique de 150 MHz est égale à:

$$P_{dynamique(150MHz)} \, = \, P_{dynamique(100MHz)} \times \frac{150}{100} \, = \, 8.5 \, \text{W} \times \frac{150}{100} \, = \, 12.75 \, \text{W} \, .$$

La puissance dissipée dans le chip en régime statique est égale à:

$$P_{statique} = P_{T(150MHz)} - P_{dynamique(150MHz)} = 15W - 12.75W = 2.25W$$

On suppose que 70% des portes logiques sont actifs. **Déterminer** la valeur moyenne des condensateurs de charge C_L dans ce chip (5 points)

Le nombre des portes logiques actifs est:

$$N_{portes} = 0.7 \times 10^6 = 700000$$

La puissance moyenne dissipée dans une porte en régime dynamique (150 MHz) est égale à:

$$P_{\rm I} = \frac{12.75 \, \text{W}}{700000} = 18.214 \, \mu \text{W} \, .$$

Cette puissance représente l'énergie d'une charge et d'une décharge du condensateur $C_{\rm L}$ durant une période de:

$$T = \frac{1}{150MHz} = 6.667ns$$

La puissance dissipée durant une charge du condensateur C_L est égale à:

$$P_{CL} = \frac{18.214 \mu W}{2} = 9.107 \mu W = \frac{1}{2} C_L V_{CC}^2 \times f$$

La valeur du condensateur C_L est égale à:

$$C_{L} = \frac{2 \times 9.107 \mu W}{V_{CC}^{2} \times f} = \frac{2 \times 9.107 \mu W}{(5V)^{2} \times (150 \times 10^{6})} = 4.857 \times 10^{-15} F = 4.857 fF$$

b) Identifier les circuits « Pull-Up » et « Pull-Down » du circuit logique. (4 points)

- Déterminer la fonction logique réalisée par le circuit « Pull-Up » (2 points)

La fonction logique réalisée par le circuit « Pull-Up » est: $Y = \overline{A} \cdot (\overline{B} + \overline{C} \cdot \overline{D})$

- Déterminer la fonction logique réalisée par le circuit « Pull-Down » (2 points)

La fonction logique réalisée par le circuit « Pull-Down » est: $\overline{Y} = A + (B \cdot (C + D))$

- Déterminer la fonction logique globale du circuit logique. (2 points)

La fonction logique globale réalisée par le circuit logique est: $Y = \overline{A + (B \cdot (C + D))}$

Problème no. 4 (30 points)

a)

- Tracer des formes d'onde pour expliquer le principe de la conversion analogique-numérique implantée dans ce montage.

(4 points)

- <u>Déterminer</u> le temps de conversion et la sortie numérique (binaire) pour une tension analogique V_a = 0.572 V. (4 points)

Le nombre de niveaux de ce convertisseur A/N est égal à:

$$N_{niv} = 2^8 = 256$$
.

La période d'horloge est égale à:

$$T_{CLK} = \frac{1}{f_{CLK}} = \frac{1}{100kHz} = 10\mu s$$

Le temps de conversion pour une tension analogique $V_a = 0.572 \text{ V}$ est égal à:

$$t_{conv} = \frac{V_a}{V_{ref}} \times N_{niv} \times t_{CLK} = \frac{0.572 \text{ V}}{1.000 \text{ V}} \times 256 \times 10 \,\mu\text{s} = 1464 \,\mu\text{s}$$

La sortie numérique (en décimale) pour une tension analogique $V_a = 0.572 \text{ V}$ est égale à:

$$V_{\text{num}} = \frac{V_{\text{a}}}{V_{\text{ref}}} \times N_{\text{niv}} = \frac{0.572 \text{ V}}{1.000 \text{ V}} \times 256 = 146$$

En hexadécimal, V_{num} est:

$$V_{hex} = (1 \times 128) + (1 \times 16) + (1 \times 2) = 92H$$

Donc en binaire, V_{num} est:

$$V_{bin} = 1001\ 0010$$

- **Déterminer** l'erreur de quantification du convertisseur. (2 points)

L'erreur de quantification est égale à: $\Delta V = \frac{V_{ref}}{N_{niv}} = \frac{1.000 V}{256} = 3.9 mV$

b)

- Calculer la valeur numérique des variables va, vb et vx. (4 points)

Les tensions analogiques V_a et V_b sont:

$$V_a = 0.72 \times 5V = 3.60V$$
 $V_b = 0.33 \times 5V = 1.65V$

Les valeurs numériques des nombres entiers va et vb sont:

$$va = \frac{3.6V}{5V} \times 1023 = 737$$
 $vb = \frac{1.65V}{5V} \times 1023 = 338$

La valeur numérique du nombre entier vx est:

$$vx = \frac{va - vb}{4} = \frac{737 - 338}{4} = 99$$

- Calculer le rapport cyclique du signal V₅. (4 points)

Le rapport cyclique du signal PWM V_5 est égal à: $d_{V_5} = \frac{vx}{255} = \frac{99}{255} = 0.3882$

$$d_{V5} = \frac{vx}{255} = \frac{99}{255} = 0.3882$$

- Tracer en fonction du temps la tension $V_{\underline{5}}$ et la tension $V_{\underline{5F}}$ (4 points)

La période du signal PWM V_5 est égale à:

$$T_s = \frac{1}{976.56} = 1.024 \,\text{ms}$$

La largeur du signal PWM V₅ est égale à:

$$t_{on} = d_{V5} \times T_s = 0.3882 \times 1.024 ms = 0.3975 ms$$

- Calculer la valeur moyenne et l'ondulation de la tensions V_{5F}. (4 points)

La valeur moyenne de la tension V_{5F} est égale à la valeur moyenne de la tension V₅:

$$V_5(moy) = d_{V5} \times 5V = 0.3882 \times 5V = 1.941V$$

Durant la montée, le condensateur est chargé avec un courant moyen égal à:

$$i_C = i_R = \frac{5V - V_5(moy)}{20k\Omega} = \frac{5V - 1.941V}{20k\Omega} = 0.153mA$$

Au bout de $t_{on} = 0.3975$ ms, la tension V_{5F} a augmenté d'une quantité égale à:

$$\Delta V_{5F} = \frac{1}{C} \times i_C \times t_{on} = \frac{1}{0.2 \mu F} \times 0.153 \text{mA} \times 0.3975 \text{ms} = 0.3041 \text{V}$$

L'ondulation de la tension V_{5F} est donc égale à 0.3041 V.

On remplace le filtre passe-bas à la sortie par deux LEDs comme montré à la figure suivante.

- Calculer le courant moyen dans chaque LED. (4 points)

Lorsque $V_5 = 5$ V, les deux LEDs sont bloquées.

 $Lorsque \ V_5 = 0 \ V, \ la \ LED2 \ (bleue) \ est \ bloquée \ et \ la \ LED1 \ (rouge) \ conduit \ un \ courant \ égal \ à \left(\frac{2.5V - 2.1V}{23.5\Omega}\right) \ = \ 17 \ mA \ .$

La valeur moyenne du courant I_{D1} est égale à: $I_{D1}(moy) = (1-0.3882) \times 17 \text{mA} = 6.6 \text{mA}$

La valeur moyenne du courant I_{D2} est égale à: $I_{D2}(moy) = 0$