Satisfiability Problems

Patrick Moore

Australian Mathematics Trust

April 9, 2022

A refresher on boolean logic The Boolean Satisfiability Problem Solving SAT

3-SAT

Definition Inter-Reducibility of 3-SAT

2-SAT

Solving 2-SAT

XOR-SAT

Definition XOR-SAT Problems

Problems

O I

00

A refresher on boolean logic

- Literals
 - ▶ Symbols (e.g. x_1) which are either *true* or *false*
- Disjunction
 - ▶ Equivalent to the OR operator, denoted by the symbol ∨
- Conjunction
 - ▶ Equivalent to the AND operator, denoted by the symbol ∧
- Exclusive-Or
 - lacktriangleright Equivalent to the XOR operator, denoted by the symbol \oplus
- Negation
 - ► Equivalent to the NOT operator denoted by the symbol ¬
- Boolean Formula
 - A combination of literals, disjunction, conjunction and negation to create a formula which can evaluate to either *true* or *false* (e.g. $(x_1 \lor x_2) \land (x_3)$). $(x_1 \lor x_2) \land (x_3)$

00

Boolean Satisfiability Problem

Conjunctive Normal Form

A boolean formula is in Conjunctive Normal Form (CNF) if it is the conjunction (AND, \wedge) of a list of clauses, each of which is a

disjunction (OR,
$$\vee$$
) of literals (symbols, either *true* or *false*).
e.g. $(x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_3) \wedge (\neg x_2)$
 $(x_1 \text{ OR } x_2 \text{ OR } \neg x_3) \text{ AND } (\neg x_1 \text{ OR } x_3) \text{ AND } (\neg x_2)$

Boolean Satisfiability Problem

SAT

00

Definition

There are *N* literals, $x_1 \ldots x_N$.

We are given a boolean formula in $\overline{\text{CNF}}$, with the literals $x_1 \dots x_N$.

The formula is **satisfiable** if there is some assignment of $x_1 ext{...}$ x_N to *true* or *false* such that the boolean formula evaluates to *true*.

The problem is to decide whether or not such an assignment exists, and to output the assignment if it exists.

Boolean Satisfiability Problem

00

SAT Example

$$x_1 = TRVE$$
 $z_2 = FALSE - V$
 $z_3 = TRVE$

Boolean Satisfiability Problem

There is no known algorithm to solve SAT in polynomial time.

Solving SAT in polynomial time has been shown to be equivalent to to solving P = NP.

However, there are many heuristic algorithms to solve SAT fairly quickly and consistently with reasonable amounts of clauses and symbols. N31,009,000

We will be focussing on a couple variations and sub-problems of SAT

00

Solving SAT

Boolean Satisfiability Problem

SAT can be solved in $O(2^N \times M)$, where N is the number of literals and *M* is the length of the formula in CNF.

Randomised

Definition of the 3-SAT Problem

3-SAT

0000

- ▶ This is a slight variation on the general SAT problem.
 - Setup is the same, but the number of literals in each clause is at most 3.

Inter-Reducibility of 3-SAT

Reducing 3-SAT to SAT

3-SAT 0000

3-SAT (SAT

• Given *M* clauses with at most 3 literals per clause, give a single boolean formula in CNF that is equisatisfiable to the original clauses.

Inter-Reducibility of 3-SAT

Reducing 3-SAT to SAT

Reducing SAT to 3-SAT

Given a boolean formula in CNF, provide a set of clauses, each with at most 3 literals, that is equisatisfiable (not necessarily logically equivalent) to the original formula.

3-SAT

new variables

3-SAT ○ ○ ○

2-SAT 00 00000 XOR-SAT

Problem 0000

Inter-Reducibility of 3-SAT

Reducing SAT to 3-SAT

2-Satisfiability

▶ This is very similar to 3-SAT, but now each clause is limited to at most 2 literals (e.g. $(x_1 \lor x_2) \land (\neg x_2 \lor x_3)$).

2-SAT

Solving 2-SAT with Strongly Connected Components (SCC)

- Create the implication graph from the provided clauses.
- Create the SCCs of the implication graph.

The formula is satisfiable iff all x_i and $\neg x_i$ are in different SCCs.

Solving 2-SAT with Strongly Connected Components

$$(SCC) (x | Y \neg x_2) \wedge (\neg x | Y x_{2x}) \wedge (\neg x | Y \neg x_3) \wedge (\neg x$$

Generating an assignment

- Get a topological ordering of the nodes in the condensation graph (Use Kosarafa's or Tarjan's or Josh's)
- ► Traverse the SCC graph in reverse topological order
 - if any of the elements in the SCC are already set, set them to the same state.
 - otherwise, greedily set the SCC to true.

Generating an assignment

Variations on 2-SAT

- Exercises Create clauses that perform the following things

 - Force x_1 to be true $(x, \forall x_1)$ Force exactly one of x_1 or x_2 to be true $(x, \forall x_2) \land (x, \forall x_2)$ Force x_1 and x_2 to have the same value $(x, \forall x_2) \land (x, \forall x_2)$

Definition

XOR-SAT

In XOR-SAT, literals are combined with XORs instead of ORs. (e.g. $(x_1 \oplus x_2) \land (x_2 \oplus x_3) \land (\neg x_3 \oplus x_4)$). We will be focusing on XOR-2-SAT, where clauses have at most 2 literals.

XOR-2-SAT implication graphs

Since the state of one literal in XOR-2-SAT uniquely determines the state of the other, the implication graph of each clause in XOR-2-SAT is much stronger than in regular 2-SAT.

e.g.
$$x_1 \oplus x_2$$

$$\begin{array}{c} \chi_1 \longrightarrow \chi_2 \\ \chi_2 \longrightarrow \chi_2 \\ \chi_3 \longrightarrow \chi_4 \end{array}$$

XOR-SAT Problems

XOR-2-SAT: King Arthur II

The king is holding a gathering of N knights in two rooms. You are given a pairwise list of enemies between the knights. Determine if it is possible to allocate the knights to rooms so

that no two enemies are in the same room.

XOR-SAT Problems

XOR-2-SAT variations

- Exercises Create clauses/graphs that perform the following things
 - B Force two literals to be different
 - Force two literals to be the <u>same</u>
- ✓ Force a literal to be true/false

2-50+

Problems

XOR-SAT

→ King Arthur II (Easy)

Detective (Hard)

ICPC Brazil 2018 - Modifying SAT (OOS)

- ▶ 2-SAT
 - Black Mountain (Medium) Van IIa
 - ► Table Colouring (Hard)
- ► EO-3-SAT, R-SAT, XOR-3-SAT
 - If you run out of problems and want a very interesting variation of SAT

Gaussian Elim

Additional Space

$$\frac{EO-3-SAT, \supseteq Exactly One | Iteral}{is true \supseteq (T,F,F) V(F,T,F) V(F,F,T)}$$

Additional Space

$$x_i \in R$$

$$(x, \langle 10 \lor x_2 \rangle, 3) \land$$

$$(x_2 \leq 5 \ \forall \ x_1 > 11) \cdots$$

Solve hopping

Additional Space

$$(x, \oplus x_2 \oplus 7x_3)$$

Gaustan Elfm % 2 $(x, \oplus x_2)$

① ´

 $\chi_3 =$

) = 1