

Smart Grid invoice privacy in the Cloud

P. Jäppinen

J. Laakkonen

J. Porras

Open your mind. LUT.

Lappeenranta University of Technology

Smart Grid

WIRELESS WORLD RESEARCH FORUM

- A "participant-aware" electricity network that consists of
 - Multiple different electricity network actors
 - Smart Meters at customer premises
 - Infrastructure for connecting the meters
- For the customers the Smart Grid offers:
 - Reduced bill through energy awareness
 - Services for monitoring own electricity consumption
 - Improved quality of the electricity network
 - Accurate invoices (real consumption, not an estimate)
 - For the companies:
 - Energy efficiency via better, real-time load balancing
 - Better and faster detection of disruptions in the electricity network

The consumption data

WIRELESS WORLD RESEARCH FORUM®

- Is measured with Smart Meters from customer's premises, contains:
 - Customer identification (customer id, meter id, location etc.)
 - Consumed electricity (e.g., in kWh)
 - Power signatures of used appliances (mainly in raw measurement data)
- Has lots of privacy related issues
 - Proof of data exploits and abuse for poorly protected data has been found
 - Presence and sleep cycles
 - Appliance usage, e.g. TV watching habits
 - In general the consumption data can be used to identify an individual
 - Legislation on private information (EU Data Protection Directive 2012) is being reassessed
 - · Affects managing the consumption data
 - Different storage times for the data in different countries (e.g. in Finland: 6 years)
 - Huge amounts of information is collected daily
 - Light Survival in Usual measurement interval is once per hour
 - In some cases even more often (every 15min)
 - Quantity exceeds petabytes → storage issues

Invoice calculation

- In general is a resource, time and money consuming operation
- Invoices consist of:
 - Consumption data from certain period
 - Electricity pricing data
- Invoices need to be calculated:
 - Monthly (for billing the customer)
 - On demand (by the customer)
- Cloud computing is seen as a viable option that can offer:
 - Increased computational resources for calculation
 - Flexibility
 - Scalability
 - Expandable storage resources
 - Common services for different actors of the Smart Grid

Invoices in the cloud

- Multiple ways to utilize cloud computing with Smart Grids have been researched, e.g.:
 - Fang et al. (2012) An information management approach for integrating Smart Grids and cloud computing
 - Rusitschka et al. (2010) Complete Smart Grid Data Cloud (SGDC) for all operations
 - Luo et al. (2012) Hybrid cloud approach (private cloud and community cloud)
- Cloud computing is seen as a way for:
 - Combining existing resources
 - Leveling the playground between new and old actors
- It has, however, lots of potential problems and challenges:
 - Legislation (Safe Harbour, local Smart Grid laws, EU DPD)
 - Who takes the responsibility in case of information breach?
 - Access restrictions (Who can access and how it can be monitored)
 - Data ownership (defined by the contracts between the actors)
 - Privacy (Seen as an issue in each of the aforementioned research)

Solutions for problems

WIRELESS WORLD RESEARCH FORUM®

- To quote Sir Isaac Newton: "To every action there is always an equal and opposite reaction"
- Proposed solutions for protecting Smart Grid consumption data
 - Anonymization: Cavoukian et al. (2010), Efthymiou and Kalogridis (2010)
 - Aggregation: Mármol et al. (2012), Lu et al. (2012)
 - Although aggregation is criticized for generating inaccuracies (Erkin et al. (2013))
 - Obscuring the load signatures: Kalogridis et al. (2010)
- A vision for securing cloud computing and preventing insider attacks (Chow et al. (2009))
 - Encrypted data with encrypted queries
 - Constant monitoring of data usage
 - Trusted Computing model

Analyzing different approaches

- There are multiple different approaches for utilizing cloud in Smart Grid operations
- Also different privacy issues of combining Smart Grid and cloud computing are analyzed
 - Simmhan et al. (2012), Mohsenian-Rad et al. (2010)
- The layout for databases in cloud computing needs to be assessed
 - Based on the "privacy by design" principle
 - We divide the required databases into five
 - Customer information DB (CIDB)
 - Measurement data DB (MDDB) and Processed measurement data DB (PMDDB)
 - Electricity market price DB (PDB)
 - Invoice DB (IDB)
 - We analyze and compare three different scenarios relating them to architecture that is used in Finland (Laakkonen et al. (2013))
 - Only invoices in the cloud (SaaS)
 - Hybrid cloud approach with private clouds and a community cloud
 - A complete cloud based solution for Smart Grids (SGDC)

1. Only invoices in the cloud

- The most basic approach (SaaS)
- Possibility of database duplicates
- Data sent to cloud can be strictly limited, both the amount and the storage/processing location
- Invoice calculation is problematic:
 - Information sent to cloud has to be accurate (accurate invoices)
 - But the resolution should be sufficiently low (to ensure privacy)
- Privacy depends on the security and the access restrictions of the cloud, in addition to what is defined in the contracts
- Changing of ER is fairly easy
- Some problems may occur with customer and VAS service implementations

2. Hybrid Cloud

- Consists of a community cloud and private clouds of different actors (DSOs)
 - Private cloud resources are shared
 - Community cloud contains the services and processing capabilities
 - The resources of multiple actors can be combined (shared expenses)

Data shared to community cloud can be limited

- Private cloud can be localized because of legislative requirements – can be problem with community cloud
- Privacy depends on the private cloud security
 - Virtualization offers a secure way to access the different resources
 - Only anonymized or processed information in the community cloud
- Common services for customers and other service providers
 - Common rules and ways for, e.g., changing ER
 - Clear way to access data and to grant access

3. SGDC

RELESS WORLD RESEARCH FORUM®

- A complete cloud based approach
 - Separate tenant spaces for actors
 - Common services and computational resources for all
- Good for preserving privacy of the customers
 - Common interfaces which results in less errors and less access violations
 - Enables the use of efficient access monitoring
- Problems with legislation has to be geographically limited (Safe Harbor)
- Each tenant can limit information sharing and protect sensitive info
- Best use of the cloud for customers' point of view (fast common services)
- Easy to change ER, service provider etc.
 - Common methods for changing access'
 - Common ways to access data and to grant access

Summary

WIRELESS WORLD RESEARCH FORUM

- Best approach from privacy perspective : 2. Hybrid cloud
 - Good flexibility and scalability
 - Best control of the data and access
 - Best tools for managing customer accounts and contract changes (among the 3. SGDC)
 - Best privacy without sacrificing:
 - Usability
 - Manageability
 - Accessibility
- The SGDC (3.) can provide the best flexibility, scalability and ease of use from all viewpoints
 - Good privacy protection (common interfaces for access and separate tenant spaces)
 - Potential issues with legislation
 - Access restriction issues
 - The simplest approach (1.) can offer full control of the data
 - Problems with information sharing
 - Expenses are much higher than with combined resources (2. and 3.)

Conclusion

WIRELESS WORLD RESEARCH FORUM®

- The cloud computing will play a major role in Smart Grids in the future
 - Currently most solutions are too expensive for individual companies
 - With approaches like hybrid cloud:
 - · The expenses can be shared
 - The entry barrier for smaller companies can be lowered
 - The quality of the service operation increases
 - The privacy of the customers depends on the cloud security
 - Can be enhanced by limiting the information in the cloud (data type, data resolution and amount)
- The privacy issues must be resolved before cloud computing can be fully utilized
 - Data privacy → protection methods, access control and limitation of availability and identifiability
 - Legislative issues must be assessed for offering global services (Safe Harbour, EU DPD)
 - A "privacy by design" layout for different actors and their resources in the cloud has to be devised, analyzed and accepted