<u>CLAIMS</u>

1	1.	A method of producing a gas discharge panel,
2	comprising:	
3		an envelope forming step for forming an envelope
4	by prov	viding over a first plate a second plate so that
5	the sec	cond plate faces a main surface of the first plate,
6	on which partition walls for partitioning light emitting	
, 7	cells h	nave been formed;
8		a sealing step for sealing the envelope with a
9	sealant	t along outer edges of the first and second plates;
10		an exhaust step for exhausting gas from the
11	envelope; and	
12		a filling step for filling the envelope with a
13	discharge gas, wherein	
14		the exhaust step includes:
15		a substep for evacuating the envelope;
±16		a substep for filling the envelope with a
17	cleani	ng gas that includes as a constituent a gas that
18	substantially causes no impurity in the discharge gas;	
19	and	
20		a substep for re-evacuating the envelope.
1	2.	A method of producing a gas discharge panel,
2	comprising:	
3		an envelope forming step for forming an envelope

by providing over a first plate a second plate so that 4 the second plate faces a main surface of the first plate, 5 on which partition walls for partitioning light emitting 6 cells have been formed; 7 a sealing step for sealing the envelope with a 8 sealant along outer edges of the first and second plates; 9 an exhaust step for exhausting gas from the 10 envelope; and 11 a filling step for filling the envelope with a 12 discharge gas, wherein 13 (1) (1) the exhaust step includes: 5 1 6 7 a substep for evacuating the envelope; and a substep for exhausting gas from the envelope while a cleaning gas is circulated through the envelope, 18 the cleaning gas including as a constituent a gas that substantially causes no impurity in the discharge gas. ^{[...} 1 The gas discharge panel producing method 3. according to Claim 1, wherein the sealant is disposed 2 between the first and second plates, the entire envelope 3 is heated at a temperature that is no lower than one of a 4

outside of the envelope, and the envelope is cooled at

softening point and a melting point of the sealant while

a pressure in the envelope is set lower than a pressure

the sealing step.

5

6

7

8

- 1 4. The gas discharge panel producing method
- 2 according to Claim 2, wherein the sealant is disposed
- 3 between the first and second plates, the entire envelope
- 4 is heated at a temperature that is no lower than one of a
- 5 softening point and a melting point of the sealant while
- a pressure in the envelope is set lower than a pressure
- 7 outside of the envelope, and the envelope is cooled at
- 8 the sealing step.
- 1 5. The gas discharge panel producing method
- 2 according to Claim 1, wherein a step for inserting a
- 3 getter into a container that is linked to an internal
- space of the envelope is included between the sealing
- 5 step and the exhaust step.
 - 1 6. The gas discharge panel producing method
- 2 according to Claim 2, wherein a step for inserting a
- 3 getter into a container that is linked to an internal
 - 4 space of the envelope is included between the sealing
 - 5 step and the exhaust step.
 - 1 7. The gas discharge panel producing method
 - 2 according to Claim 3, wherein a step for inserting a
 - 3 getter into a container that is linked to an internal
 - 4 space of the envelope is included between the sealing
 - 5 step and the exhaust step.

- The gas discharge panel producing method
- according to Claim 4, wherein a step for inserting a
- getter into a container that is linked to an internal 3
- space of the envelope is included between the sealing 4
- 5 step and the exhaust step.
- The gas discharge panel producing method 9. 1
- according to Claim 1, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of a 3
- that with the state of the stat softening point and a melting point of the sealant at the
 - 5 exhaust step.

8.

- The gas discharge panel producing method 10.
- 2 according to Claim 2, wherein the entire envelope is
 - heated at a temperature that is no higher than one of a
 - softening point and a melting point of the sealant at the
- į.i. exhaust step.

Burn Hall

- The gas discharge panel producing method 1
- according to Claim 3, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of the 3
- softening point and the melting point of the sealant at 4
- 5 the exhaust step.
- The gas discharge panel producing method 12. 1

- according to Claim 4, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of the 3
- softening point and the melting point of the sealant at 4
- the exhaust step. 5
- The gas discharge panel producing method 13. 1
- according to Claim 5, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of a 3
- softening point and a melting point of the sealant at the 4
- 5 exhaust step.
- 1 2 3 The gas discharge panel producing method 14.
 - according to Claim 6, wherein the entire envelope is
 - heated at a temperature that is no higher than one of a
 - softening point and a melting point of the sealant at the
- 4 5 5 exhaust step.

ļ.4,

- The gas discharge panel producing method 1 15.
- according to Claim 7, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of the 3
- softening point and the melting point of the sealant at 4
- the exhaust step. 5
- The gas discharge panel producing method 1 16.
- according to Claim 8, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of the 3

- 4 softening point and the melting point of the sealant at
- 5 the exhaust step.
- 1 17. The gas discharge panel producing method
- 2 according to Claim 3, wherein the entire envelope is
- 3 cooled to a temperature that is higher than room
- 4 temperature and no higher than one of the softening point
- 5 and the melting point of the sealant at the sealing step.
- 1 18. The gas discharge panel producing method
- 2 according to Claim 4, wherein the entire envelope is
- 3 cooled to a temperature that is higher than room
- 4 temperature and no higher than one of the softening point
- 5 and the melting point of the sealant at the sealing step.
- 1 19. The gas discharge panel producing method
- 2 according to Claim 11, wherein the entire envelope is
 - 3 cooled to a temperature that is higher than room
 - 4 temperature and no higher than one of the softening point
 - 5 and the melting point of the sealant at the sealing step.
 - 1 20. The gas discharge panel producing method
 - 2 according to Claim 12, wherein the entire envelope is
 - 3 cooled to a temperature that is higher than room
 - 4 temperature and no higher than one of the softening point
 - 5 and the melting point of the sealant at the sealing step.

The gas discharge panel producing method 21. 1 according to Claim 1, wherein the sealing step includes: 2 a substep for disposing the sealant between the 3 first and second plates, and heating the entire envelope 4 to a temperature that is no lower than one of a softening 5 point and a melting point of the sealant while a dry gas 6 is circulated through the envelope; and 7 a substep for heating the entire envelope at a 8, temperature that is no lower than one of the softening 9 point and the melting point of the sealant while a pressure in the envelope is set to be lower than a pressure outside of the envelope, and cooling the envelope. The gas discharge panel producing method 22. **儿** 2 according to Claim 2, wherein the sealing step includes: a substep for disposing the sealant between the 3 first and second plates, and heating the entire envelope 4 to a temperature that is no lower than one of a softening 5 point and a melting point of the sealant while a dry gas 6 is circulated through the envelope; and 7 a substep for heating the entire envelope at a 8 temperature that is no lower than one of the softening 9

point and the melting point of the sealant while a

pressure in the envelope is set to be lower than a

10

11

- pressure outside of the envelope, and cooling the 12
- envelope. 13

5

- The gas discharge panel producing method 1 23.
- according to Claim 21, wherein a step for inserting a 2
- getter into a container that is linked to an internal 3
- space of the envelope is included between the sealing 4
- 5 step and the exhaust step.
- The gas discharge panel producing method 24. 1
- (1) (1) 2 according to Claim 22, wherein a step for inserting a
- 3 getter into a container that is linked to an internal
 - space of the envelope is included between the sealing
 - step and the exhaust step.
- 1 The gas discharge panel producing method 25.
 - according to Claim 21, wherein the entire envelope is
- ^{₽4} 3 heated at a temperature that is no higher than one of the
 - softening point and the melting point of the sealant at 4
 - 5 the exhaust step.
 - The gas discharge panel producing method 1 26.
 - according to Claim 22, wherein the entire envelope is 2
 - heated at a temperature that is no higher than one of the 3
 - softening point and the melting point of the sealant at 4
 - 5 the exhaust step.

- 1 27. The gas discharge panel producing method
- 2 according to Claim 23, wherein the entire envelope is
- 3 heated at a temperature that is no higher than one of the
- 4 softening point and the melting point of the sealant at
- 5 the exhaust step.
- 1 28. The gas discharge panel producing method
- 2 according to Claim 24, wherein the entire envelope is
- 3 heated at a temperature that is no higher than one of the
- 4 softening point and the melting point of the sealant at
- 5 the exhaust step.
- 1 29. The gas discharge panel producing method
- according to Claim 21, wherein the entire envelope is
- 3 cooled to a temperature that is higher than a room
- 4 temperature and no higher than one of the softening point
- 5 and the melting point of the sealant at the sealing step.
- 1 30. The gas discharge panel producing method
- 2 according to Claim 22, wherein the entire envelope is
- 3 cooled to a temperature that is higher than a room
- 4 temperature and no higher than one of the softening point
- 5 and the melting point of the sealant at the sealing step.
- 1 31. The gas discharge panel producing method

- 2 according to Claim 25, wherein the entire envelope is
- 3 cooled to a temperature that is higher than a room
- 4 temperature and no higher than one of the softening point
- 5 and the melting point of the sealant at the sealing step.
- 1 32. The gas discharge panel producing method
- 2 according to Claim 26, wherein the entire envelope is
- 3 cooled to a temperature that is higher than a room
- 4 temperature and no higher than one of the softening point
- 5 and the melting point of the sealant at the sealing step.
- 1 33. The gas discharge panel producing method
- 2 according to Claim 1, wherein the sealant is disposed
 - between the first and second plates, sealed edges of the
- 4 first and second plates are heated at a temperature that
- 5 is no lower than one of a softening point and a melting
- point of the sealant while a pressure in the envelope is
- 7 set lower than a pressure outside of the envelope, and
- 8 the envelope is cooled at the sealing step.
- 1 34. The gas discharge panel producing method
- 2 according to Claim 2, wherein the sealant is disposed
- 3 between the first and second plates, sealed edges of the
- 4 first and second plates are heated at a temperature that
- 5 is no lower than one of a softening point and a melting
- 6 point of the sealant while a pressure in the envelope is

- set lower than a pressure outside of the envelope, and 7
- the envelope is cooled at the sealing step. 8
- The gas discharge panel producing method 35. 1
- according to Claim 33, wherein a step for inserting a 2
- getter into a container that is linked to an internal 3
- space of the envelope is included between the sealing 4
- step and the exhaust step. 5
- The gas discharge panel producing method 36. 1
- 2 3 4 5 according to Claim 34, wherein a step for inserting a
 - getter into a container that is linked to an internal
 - space of the envelope is included between the sealing
 - step and the exhaust step.
 - The gas discharge panel producing method 37.
- 1 according to Claim 33, wherein the entire envelope is
- ļ. heated at a temperature that is no higher than one of the 3
 - softening point and the melting point of the sealant at 4
 - 5 the exhaust step.
 - The gas discharge panel producing method 1 38.
 - according to Claim 34, wherein the entire envelope is 2
 - heated at a temperature that is no higher than one of the 3
 - softening point and the melting point of the sealant at
 - 5 the exhaust step.

- according to Claim 35, wherein the entire envelope is 2
- heated at a temperature that is no higher than one of the 3
- softening point and the melting point of the sealant at 4
- the exhaust step. 5
- The gas discharge panel producing method 40. 1
- according to Claim 36, wherein the entire envelope is .2
- heated at a temperature that is no higher than one of the 3
- 4 5 softening point and the melting point of the sealant at
 - the exhaust step.
 - The gas discharge panel producing method 41.
 - according to one of Claims 1 to 40, wherein the cleaning 2
 - gas is the discharge gas.
 - 1 The gas discharge panel producing method 42.
 - according to Claim 41, wherein the discharge gas is a 2
 - 3 noble gas.

1

3

Burn Budi ļ.4:

- 43. The gas discharge panel producing method 1
- according to Claim 42, wherein the noble gas includes at 2
- least one of helium, neon, argon, and xenon. 3
- The gas discharge panel producing method 44. 1

- according to ene of Claims 1 to 40, wherein the light

 mitting cells are formed by positioning a first group of

 parallel electrodes on the first plate orthogonally to a

 second group of parallel electrodes on the second plate

 with a distance between the first and second electrode

 groups.
- 1 45. The gas discharge panel producing method
 2 according to Claim 41, wherein the light emitting cells
 3 are formed by positioning a first group of parallel
 electrodes on the first plate orthogonally to a second
 group of parallel electrodes on the second plate with a
 distance between the first and second electrode groups.

. (1

L 2

5

6

7

Brief Brief

- 46. The gas discharge panel producing method according to Claim 42, wherein the light emitting cells are formed by intersecting a first group of electrodes that have been disposed on the first plate in parallel and a second group of electrodes that have been disposed on the second plate in parallel with a distance between the first and second groups.
- 1 47. The gas discharge panel producing method
 2 according to Claim 43, wherein the light emitting cells
 3 are formed by intersecting a first group of electrodes
 4 that have been disposed on the first plate in parallel

- 5 and a second group of electrodes that have been disposed
- on the second plate in parallel with a distance between
- 7 the first and second groups.

Odd A1