Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему «Изучение библиотек обработки данных»

Выполнил: Хотин П.Ю. ИУ5-24М

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
# to draw pictures in jupyter
notebook %matplotlib inline
import matplotlib.pyplot as
plt import seaborn as sns

data = pd.read_csv('sample_data/adult.data.csv')
data.head()
```

С→

					education-	marital-		relati
	age	workclass	fnlwgt	education	num	status	occupation	o o
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-
		Self-emp-				Married-	Exec-	
1	50	not-inc	83311	Bachelors	13	civ-spouse	managerial	Hu
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-
						Married-	Handlers-	
3	53	Private	234721	11th	7	civ-spouse	cleaners	Hu
4	28	Private	338409	Bachelors	13	Married-	Prof-specialty	
						civ-spouse		

```
ages1 = data.loc[data['salary'] == '>50K', 'age']
ages2 = data.loc[data['salary'] == '<=50K', 'age']</pre>
print("The average age of the rich: \{0\} +- \{1\} years, poor - \{2\} +- \{3\}
    years.".for round(ages1.mean()), round(ages1.std(), 1),
   round(ages2.mean()), round(ages2.std(), 1)))
 \Gamma The average age of the rich: 44 +- 10.5 years, poor - 37 +- 14.0 years.
data.loc[data['salary'] == '>50K', 'education'].unique() # No
    array(['HS-grad', 'Masters', 'Bachelors', 'Some-college', 'Assoc-voc',
            'Doctorate', 'Prof-school', 'Assoc-acdm', '7th-8th', '12th',
            '10th', '11th', '9th', '5th-6th', '1st-4th'], dtype=object)
for (race, sex), sub df in data.groupby(['race', 'sex']):
   print("Race: {0}, sex: {1}".format(race, sex))
   print(sub df['age'].describe())
С→
    Race: Amer-Indian-Eskimo, sex: Female
              119.000000
     count
               37.117647
     mean
               13.114991
     std
               17.000000
     min
              27.000000
     25%
               36.000000
     50%
               46.000000
     75%
               80.000000
     max
     Name: age, dtype:
     float64
    Race: Amer-Indian-Eskimo, sex: Male
             192.000000
     count
     mean
              37.208333
     std
              12.049563
     min
              17.000000
     25%
              28,000000
     50%
              35.000000
              45.000000
     75%
              82.000000
    Name: age, dtype: float64
    Race: Asian-Pac-Islander, sex: Female
     count
             346.000000
     mean
              35.089595
     std
              12.300845
     min
              17.000000
```

25% 25.000000 50% 33.000000

75% 43.750000

max 75.000000

Name: age, dtype: float64

Race: Asian-Pac-Islander, sex: Male

count 693.000000

mean 39.073593

std 12.883944

min 18.000000

25% 29.000000

50% 37.000000

75% 46.000000

max 90.000000

Name: age, dtype: float64 Race: Black, sex: Female

count 1555.000000

mean 37.854019

std 12.637197

min 17.000000

25% 28.000000

50% 37.000000

75% 46.000000

max 90.000000

Name: age, dtype: float64 Race: Black, sex: Male

count 1569.000000

mean 37.682600

std 12.882612

min 17.000000

25% 27.000000

50% 36.000000

75% 46.000000

max 90.000000

Name: age, dtype: float64 Race: Other, sex: Female

count	109.000000
mean	31.678899
std	11.631599
min	17.000000
25%	23.000000
50%	29.000000
75%	39.000000

max

Name: age, dtype: float64

74.000000

Race: Other, sex: Male

count 162.000000 34.654321 mean std 11.355531 17.000000 min 25% 26.000000 50% 32.000000 42.000000 75% 77.000000 max

Name: age, dtype: float64

Race: White, sex: Female

count 8642.000000 36.811618 mean std 14.329093 17.000000 min 25% 25.000000 50% 35.000000 75% 46.000000 90.000000 max

Name: age, dtype: float64

Race: White, sex: Male

count 19174.000000

mean 39.652498

std 13.436029

min 17.000000

25% 29.000000

50% 38.000000

75% 49.000000

max 90.000000

```
Name: age, dtype: float64
data.loc[(data['sex'] == 'Male') & (data['marital-
     status'].isin(['Never-married',
                                    'Separated',
                                    'Divorced',
                                    'Widowed'])), 'salary'].value_counts()
 r→ <=50K
             7552
               697
    >50K
    Name: salary, dtype: int64
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].str.startswith('Married')), 'salary'].value_counts()
 r→ <=50K
             7576
    >50K
              5965
    Name: salary, dtype: int64
data['marital-status'].value counts()
     Married-civ-spouse
                              14976
                              10683
     Never-married
     Divorced
                               4443
 \Box
     Separated
                               1025
                                993
     Widowed
                                418
     Married-spouse-absent
                                 23
     Married-AF-spouse
    Name: marital-status, dtype: int64
max load = data['hours-per-week'].max()
print("Max time - {0} hours./week.".format(max load))
num workaholics = data[data['hours-per-week'] == max load].shape[0]
print("Total number of such hard workers {0}".format(num_workaholics))
rich share = float(data['hours-per-week'] == max load)
                 & (data['salary'] == '>50K')].shape[0]) / num workaholics
print("Percentage of rich among them {0}%".format(int(100 * rich share)))
 Max time - 99 hours./week.
     Total number of such hard workers 85
    Percentage of rich among them 29%
pd.crosstab(data['native-country'], data['salary'],
           values=data['hours-per-week'], aggfunc=np.mean).T
 С→
                                                                           Dominican
      native-
                     ? Cambodia
                                    Canada
                                               China Columbia
                                                                    Cuba
      country
                                                                            Republic
```

```
<=50K 40.164760 41.416667 37.914634 37.381818 38.684211 37.985714 42.338235 >50K 45.547945 40.000000 45.641026 38.900000 50.000000 42.440000 47.000000
```

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb use_id platfor			
0	21.97	4.82	1557.33	22787	andro	
1	1710.08	136.88	7267.55	22788	andro	
2	1710.08	136.88	7267.55	22789	andro	
3	94.46	35.17	519.12	22790	andro	

!pip install -U pandasql

Collecting pandasql

Downloading https://files.pythonhosted.org/packages/6b/c4/ee4096ffa2eeeca0c7
Requirement already satisfied, skipping upgrade: numpy in /usr/local/lib/pytho Requirement already satisfied, skipping upgrade: pandas in /usr/local/lib/Requirement already satisfied, skipping upgrade: sqlalchemy in /usr/local/lib/Requirement already satisfied, skipping upgrade: python-dateutil>=2.6.1 in /us Requirement already satisfied, skipping upgrade: six>=1.5 in /usr/local/lib/py Building wheels for collected packages: pandasql

Building wheel for pandasql (setup.py) ... done

Created wheel for pandasql: filename=pandasql-0.7.3-cp36-none-any.whl size=2

Stored in directory: /root/.cache/pip/wheels/53/6c/18/b87a2e5fa8a82e9c026311
Successfully built pandasql
Installing collected packages: pandasql

```
import pandasql as ps
from pandasql import sqldf
from datetime import datetime
import time
```

Successfully installed pandasql-0.7.3

```
tic = time.perf_counter()
tutorial = pd.merge(user_usage,
                 user_device[['use_id', 'platform', 'device']],
                 on='use id')
toc = time.perf_counter()
print(f"Смержено за: {toc - tic:0.4f} seconds")
    Смержено за: 0.0096 seconds
pysqldf = lambda q: sqldf(q, globals())
q = """
SELECT * FROM user usage, user device WHERE user usage.use id =
user_device.use_id; """
tic = time.perf counter()
joined = pysqldf(q)
toc = time.perf_counter()
print(f"Смержено за: {toc - tic:0.4f} seconds")
Г→ Смержено за: 0.0326 seconds
joined.head()
```

₽	ms_per_mont h	mon	thly_mb	use_id	use_id	user_id platform	platform_version d
	4.82	1557.33	22787	22787	12921	android	4.3
	136.88	7267.55	22788	22788	28714	android	6.0
	136.88	7267.55	22789	22789	28714	android	6.0
	35.17	519.12	22790	22790	29592	android	5.1
	79.26	1557.33	22792	22792	28217	android	5.1

joined.describe(

ng_sm	ms_per_month monthly_mb	use_id	use_id	user_id	platform_v e
159.000000	159.000000	159.000000	159.000000	159.000000	159.0
87.978742	4180.378616	22922.327044	22922.327044	25960.918239	5.5
92.386434	5216.463795	76.511974	76.511974	6275.640431	0.8
0.250000	0.000000	22787.000000	22787.000000	2873.000000	4.1
22.855000	1557.330000	22861.500000	22861.500000	24683.500000	5.0
62.850000	2076.450000	22931.000000	22931.000000	29366.000000	6.0
119.675000	5191.120000	22986.500000	22986.500000	29673.000000	6.0

joined.groupby("platform_version")["outgoing_sms_per_month"].describe()

₽

	count	mean	std	min	25%	50%	75%
platform_versio n							
4.1	5.0	102.328000	51.393475	26.94	91.7600	91.760	150.5900
4.2	1.0	24.080000	NaN	24.08	24.0800	24.080	24.0800
4.3	3.0	66.366667	82.035137	4.82	19.8000	34.780	97.1400
4.4	17.0	108.699412	131.771975	7.67	7.6700	22.360	261.3300
5.0	17.0	99.321176	83.228036	5.83	60.8300	69.200	114.0600
5.1	23.0	63.606957	38.369532	4.64	41.2050	52.470	79.2600
6.0	88.0	86.057841	86.776242	0.25	22.2100	72.485	136.8800
7.0	2.0	39.035000	42.659752	8.87	23.9525	39.035	54.1175
7.1	1.0	15.380000	NaN	15.38	15.3800	15.380	15.3800
9.3	1.0	540.600000	NaN	540.60	540.6000	540.600	540.6000
10.1	1.0	47.350000	NaN	47.35	47.3500	47.350	47.3500