Veri nedir?

- Veri nedir?
 - Geometrik bir bakış açısı
 - Benzerlik
 - Olasılıksal bir bakış açısı
 - Yoğunluk
- Veri kalitesi
- Veri önişleme
 - Birleştirme
 - Örneklem
 - Veri küçültme
 - Temel bileşen analizi (Principal Component Analysis)
 - Çok boyutlu ölçekleme (Multidimensional Scaling)

Veri Nedir?

Genel olarak veri n×d bir matris ile ifade edilir

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1 & x_{11} & x_{12} & \cdots & x_{1d} \\ \mathbf{x}_2 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

- *n* satır ve *d* sütun,
 - Satırlar örneklere

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \cdots, x_{id})$$

Sütunlar özelliklere (değişkenlere) işaret eder.

$$X_j = (x_{1j}, x_{2j}, \cdots, x_{nj})$$

Veri Nedir?

Örnek sayısı, n, verinin büyüklüğünü (size), öznitelik (özellik, değişken) sayısı, d, ise verinin boyutunu (boyutsallıkdimensionality)

```
d=1 -> Tek değişkenli analiz (univariate)
```

d=2 -> Çift değişkenli analiz (bivariate)

d>2 -> Çok değişkenli analiz (multivariate)

Iris veri seti

http://en.wikipedia.org/wiki/Iris_flower_data_set

	X_1	X_2	X_3	X_4	X_5
	sepal length	sepal width	petal length	petal width	${f class}$
\mathbf{x}_1	5.9	3.0	4.2	1.5	Iris-versicolor
\mathbf{x}_2	6.9	3.1	4.9	1.5	Iris-versicolor
\mathbf{x}_3	6.6	2.9	4.6	1.3	Iris-versicolor
\mathbf{x}_4	4.6	3.2	1.4	0.2	Iris-setosa
\mathbf{x}_5	6.0	2.2	4.0	1.0	Iris-versicolor
\mathbf{x}_6	4.7	3.2	1.3	0.2	Iris-setosa
\mathbf{x}_7	6.5	3.0	5.8	2.2	Iris-virginica
\mathbf{x}_8	5.8	2.7	5.1	1.9	Iris-virginica
:	:	:	:	:	÷:
\mathbf{x}_{149}	7.7	3.8	6.7	2.2	Iris-virginica
$\sqrt{\mathbf{x}_{150}}$	5.1	3.4	1.5	0.2	Iris-setosa /

Diğer tip veri setleri

- Her veri seti matris formatında olmayabilir
- Daha karmaşık veri setleri aşağıdaki öğeleri içerebilir
 - Kayıt tipi veri
 - İşlem/hareket (transaction)
 - Sıralı veri
 - DNA/Protein,
 - Metin,
 - Zaman serisi,
 - Resim,
 - Ses
 - Video, ve diğerleri...
 - Ağ (graph) tipi veri
 - World Wide Web
 - Molekül yapıları
- analiz için daha özelleşmiş teknikler gerektirir.

Öznitelik tipleri

- Alabileceği değer kümesine göre iki ana itpe ayrılır.
 - Kategorik öznitelikler
 - Nominal: Göz rengi, TC Kimlik No
 - Ordinal: Eğitim durumu, anket sorusu cevabı (kötü, orta, iyi)
 - Numerik öznitelikler
 - Aralık-ölçekli (Interval-scale): Sıcaklık
 - 10 ve 20 derece iki hava durumunu, dün bugünden iki kat soğuktu demeyiz.
 - Oran-ölçekli (Ratio-scaled): yaş
 - 20 yaşındaki bir insan 10 yaşındaki insandan iki kat daha yaşlıdır.

Farklı bir kategorizasyon Kesikli ve Sürekli Öznitelikler

Kesikli öznitelikler

- Değer kümesi sayılabilen (countable) özniteliklerdir.
- örnekler: posta kodu, paragrafta yer alan kelimeler, araba markaları
- Çoğunlukla tam sayılar ile ifade edilir

Sürekli öznitelikler

- Reel sayılar ile ifade edilir.
- örnekler: sıcaklık, ağırlık, uzunluk
- Ölçülebilen ve sonlu sayıda rakam ile ifade edilen özniteliklerdir.

Veri Analizine Yaklaşım

Geometrik bakış

d tane öznitelik içeren D veri matrisinde tüm öznitelikler nümerik ise her satır dboyutlu uzayda bir nokta olarak ifade edilebilir.

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \cdots, x_{id}) \in \mathbb{R}^d$$

Benzerlik – Farklılık (Similarity – Dissimilarity)

Benzerlik

- İki verinin ne kadar benzer olduğunun bir ölçütüdür.
- Veriler benzediğinde büyük değerler alır.
- Genellikle [0,1] aralığında ifade edilir.
- Farklılık.
 - İki verinin ne kadar farklı olduğunun bir ölçütüdür.
 - Veriler benzediğinde küçük değerler alır.
 - En düşük farklılık çoğunlukla sıfır ile ifade edilir.
 - Üst limit değişebilir.
- Benzerlik ya da farklılık kimi zaman Yakınlık (Proximity) olarak ifade edilir.

Basit öznitelikler için benzerlik/farklılık Öklit Uzaklık

□ Öklit uzaklık

$$dist = \sqrt{\sum_{k=1}^{t} (p_k - q_k)^2}$$

p ve q örneklerinin k öznitelik değerlerinin farklarının karesinin tüm öznitelikler (t tane) üzerinden toplanması ile bulunur.

Öznitelik ölçekleri farklı olduğu durumda, standardizasyon gereklidir.

Basit öznitelikler için benzerlik/farklılık Öklit Uzaklık

örnek	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Uzaklık Matrisi

(Distance Matrix)

Basit öznitelikler için benzerlik/farklılık Minkowski Uzaklık

Minkowski Uzaklık genelleştirilmiş bir uzaklık ölçüsüdür

$$dist = (\sum_{k=1}^{t} |p_k - q_k|^r)^{\frac{1}{r}}$$

r parametresinin değerlerine göre uzaklık tanımı değişir.

Basit öznitelikler için benzerlik/farklılık Minkowski Uzaklık

r = 1. Manhattan, L_1 norm

r = 2. Öklit, L₂ norm

- □ $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - Öznitelikler arası farkların maximumu

Basit öznitelikler için benzerlik/farklılık Minkowski Uzaklık

örnek	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Uzaklık matrisi

Veri Analizine Yaklaşım Olasılıksal bakış

- Her öznitelik rassal bir değişkendir.
 - Her deneyin sonucunda belli bir kurala değer atayan bir fonksiyon.

Iris verisetinde gövde uzunluğu, n=150

- Sürekli bir rassal değişken

5.9	6.9	6.6	4.6	6.0	4.7	6.5	5.8	6.7	6.7	5.1	5.1	5.7	6.1	4.9
5.0	5.0	5.7	5.0	7.2	5.9	6.5	5.7	5.5	4.9	5.0	5.5	4.6	7.2	6.8
5.4	5.0	5.7	5.8	5.1	5.6	5.8	5.1	6.3	6.3	5.6	6.1	6.8	7.3	5.6
4.8	7.1	5.7	5.3	5.7	5.7	5.6	4.4	6.3	5.4	6.3	6.9	7.7	6.1	5.6
6.1	6.4	5.0	5.1	5.6	5.4	5.8	4.9	4.6	5.2	7.9	7.7	6.1	5.5	4.6
4.7	4.4	6.2	4.8	6.0	6.2	5.0	6.4	6.3	6.7	5.0	5.9	6.7	5.4	6.3
4.8	4.4	6.4	6.2	6.0	7.4	4.9	7.0	5.5	6.3	6.8	6.1	6.5	6.7	6.7
4.8	4.9	6.9	4.5	4.3	5.2	5.0	6.4	5.2	5.8	5.5	7.6	6.3	6.4	6.3
5.8	5.0	6.7	6.0	5.1	4.8	5.7	5.1	6.6	6.4	5.2	6.4	7.7	5.8	4.9
5.4	5.1	6.0	6.5	5.5	7.2	6.9	6.2	6.5	6.0	5.4	5.5	6.7	7.7	5.1

Veri Analizine Yaklaşım

Olasılıksal bakış

- Her özniteliği tek değişkenli bir rassal sayı olarak tanımlamak yerine, veri setimizin çok değişkenli bir rassal sayıdan oluştuğunu düşünebiliriz.
 - Zar atma
 - P(1,1)=1/36
 - P(1,2)=1/36
 -
 - Örnek
 - İki değişkenli (bivariate)Normal dağılım
 - Gaus (Gaussian)
 dağılım olarak da
 tanımlanır (bir ya da birden
 çok değişkenli rassal sayılar
 için)
 - Gerçek hayat problemleri çoğunlukla çok değişkenlidir.

Normal (Gaus) dağılım

- En çok kullanılan dağılımdır, neden?
 - Merkezi limit teoremi
 - Aynı tipte dağılıma sahip birbirinden bağımsız rassal değişkenlerden elde edilen sayıların ortalaması yaklaşık olarak Normal dağılım gösterir

Olasılıksal bakış Öklit dağılım

□ Eğer dağılımı bilmiyorsak

 Uzayı eşit aralıklara bölü noktaları sayarak dağılımı ifade edebiliriz.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Kovaryans

- İki rassal değişkenin birlikte değişiminin ölüsüdür.
 - Örneğin 2 boyutlu Normal dağılım izleyen bir 50 örnekli bir veri setimiz olsun.

Kovaryans

□ İki boyut birlikte çizildiğinde

Problem, gürültü ya da aykırı davranış?

Ilişkilerin modellenmesi önemlidir.

Çok değişkenli Normal dağılım

- Tek değişkenli normal dağılımın parametreleri ortalama ve standart sapmadır.
- Çok değişkenli Normal dağılım ortalama vektörü ve kovaryans matrisi ile tanımlanır.

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

Olasılıksal bakış Çok değişkenli Normal dağılım

R örnekleri

Korelasyon

İki örnek arası lineer ilişkiyi modeller

$$\rho_{X,Y} = \text{corr}(X,Y) = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y},$$

$$r_{xy} = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n \sum x_i^2 - (\sum x_i)^2} \sqrt{n \sum y_i^2 - (\sum y_i)^2}}.$$

Görsel olarak korelasyon

İlişkinin değeri –1 ile 1 arası değişir.

Veri kalitesine etki eden faktörler

- Doğruluk
 - Veri girişinde yapılan hatalar
- Bütünlük
 - Kayıp veri
- Teklik (Uniqueness)
 - Aynı verinin birden fazla kaydı
- Güncellik (Timeliness)
 - Vakti geçmiş işe yaramayan veri
- Tutarlılık
 - Verinin kendisiyle çeliştiği durumlar

Veri analizindeki en önemli aşama önişleme aşamasıdır.

- Teknikler: Örnekleme, Boyut küçültme, Değişken seçimi.
- Zorlu bir aşamadır ama genelde en önemli aşamalardan biridir.

Veri kalitesi Kirli veri

- Kirli veri ne demek?
 - Eksik veri
 - kayıp (missing) değerler
 - Tutarsız veri
 - (farklı kodlama, _ imkansız değerler)
 - Gürültülü veri
 - (hatalı girilmiş değerler)

	Tid	Refund	Marital Status	Taxable Income	Cheat	
	1	Yes	Single	125K	No	
	2	No	Married	100K	No	
	3	No	Single	70K	No	
	4	Yes	Married	120K	No	
-	5	No	Divorced	10000K	Yes	
	6	No	NULL	60K	No	
×	7	Yes	Divorced	220K	NULL	
	8	No	Single	85K	Yes	
	9	No	Married	90K	No	
	9	No	Single	90K	No	

Veri kalitesi

Eksik veri

- Kayıp değerler
 - Bilginin toplanaması (yaşını ya da kilosunu söylemek istemeyen kişi)
 - Bazı bilgilerin olmaması (örneğin çocuklar yıllık geliri yoktur)
- Kayıp değerler ile çalışmak
 - Veriyi atmak
 - Kayıp değeri tahmin etmek
 - Analiz sırasında eksik veriyi gözardı etmek
 - Olası tüm değerleri kayıp veriyi doldurup, sonuçları karşılaştırmak

Veri kalitesi Gürültülü Veri

- Asıl değerlerin değişim göstermesine gürültü (noise) denir.
 - Örnek: Telefonda insanın sesi

Veri kalitesi

Aykırı veri

Aykırı veri diğer verilerden dağılım ya da uzaklık anlamında farklılık gösterir.

Veri önişleme

- Veri temizleme
 - Kayıp değerleri doldurma, gürültü azaltma, aykırı veriyi ayıklama
- Veri dönüştürme
 - Standardizasyon, normalizasyon
- Veri azaltma
 - Bilgi kaybını en aza indirecek şekilde veriyi azaltma

Birleştirme (Aggregation)

Birden çok özniteliği tek öznitelik olarak ya da birden çok örneği tek örnek olarak ifade etmek

Amaç

- Veri küçültmek
 - öznitelik ya da örnek sayısını azaltmak
- Ölçek değiştirme
 - Şehirleri bölgeler ya da ülkeler cinsinden ifade etmek
- Daha 'stabil' veri
 - Birleştirilen veri geellikle daha az varyansa sahiptir.

Örnekleme

- □ Veri seçimi için en çok kullanılan yöntemdir.
 - Çoğunlukla ön analiz için tercih edilir.
 - Bazı yöntemler farklı örneklemler üzerinde çalışıp, farklı modelleri birleştirir.

İstatistikçiler örneklem üzerinde çalışır çünkü tüm veriyi elde etmek masraflı olabilir. Ayrıca tüm veriyle çalışmak hesaplama zamanı açısından sorun yaratabilir.

Örneklem Büyüklüğü

Örneklem Büyüklüğü

10 grubun her birinden en az bir tane örnek alabilmek için ne kadar büyük bir örneklem gerekli?

