Диаметр плоской фигуры

Диаметр плоской геометрической фигуры — это длина наибольшей хорды этой фигуры, то есть наибольшее расстояние между двумя точками этой фигуры.

Двойной интеграл.

Рассмотрим функцию двух переменных z = f(x,y), заданную и непрерывную в замкнутой области $D \subseteq XOY$.

1. Разобьем область D на n малых элементарных частей произвольным образом. Обозначим через DS_i площадь i-ой части, а через di- диаметр i-части.

Число $\lambda=\max \left\{d_i\right\}$, где i=1,...,n, назовем **рангом дробления двумерной области D**.

Puc. 1

- 2. В каждой части разбиения выберем произвольную точку P_i (x_i, y_i) и вычислим значение функции z в ней: $f(^{x_i}, y_i) = f(P_i)$, i = 1, ..., n, ($Puc.\ 1$)
- 3. Составим сумму парных произведений значений функции $f(P_i)$ на площади DS_i соответствующих частей разбиения:

$$\sum_{i=1}^{n} f(x_i, y_i) \cdot \Delta S_i \tag{1}$$

эта сумма называется *двумерной интегральной суммой функции* f(x,y) в области D (двумерной суммой Римана).

4. Вычислим предел интегральной суммы (1) при условии, что ранг разбиения $\lambda \to 0$ Если этот предел существует и не зависит от способа разбиения области D на элементарные части и от выбора точек Pi в каждой части, то он называется **двойным** интегралом от функции f(x,y) по области D.

Обозначение и терминология:

$$\iint_{\Omega} f(x,y) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_{i}, y_{i}) \cdot \Delta S_{i}$$
(2)

D — область интегрирования;

f(x,y) — подынтегральная функция;

f(x,y)dS — подынтегральное выражение;

dS — бесконечно малый элемент области интегрирования (дифференциал площади плоской области).

Краткая формулировка определения двойного интеграла

Двойным интегралом от функции f(x,y) по области D называется конечный предел двумерной интегральной суммы, вычисленный при стремлении к нулю ранга разбиения, порождающего эту сумму.

Вычисление двойного интеграла:

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b dx \int\limits_{y_1(x)}^{y_2(x)} f(x,y)dy$$
 - повторный интеграл

При переходе к полярным координатам:

 $x = r \cos \varphi$, $y = r \sin \varphi$, $dxdy \sim rdrd\varphi$

Тройной интеграл

Пусть задана область V в XOYZ, ограниченная замкнутой поверхностью; в области V и на ее границе задана функция f(x,y,z).

Тройным интегралом от функции f(x, y, z) по области V называется конечный предел трехмерной интегральной суммы при стремлении к нулю ранга разбиения, порождающего эту сумму (если этот предел существует и не зависит ни от способа разбиения области V на элементарные части, ни от выбора точек на каждой из этих элементарных частей):

$$\iiint\limits_{V} f(x,y,z)dV = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_{i},y_{i},z_{i}) \Delta V_{i}$$

здесь n — это количество элементарных частей разбиения области V;

 $P_i(x_i, y_i, z_i)$ — произвольно выбранная точка на каждой элементарной части,

$$\lambda = \max_{i=1,...,n} \{d_i\}$$
 — ранг разбиения;

 d_i – диаметр i-ой элементарной части.

Вычисление тройного интеграла:

$$\iiint\limits_V f(x,y,z)dxdydz = \iint\limits_D dxdy \int\limits_a^b dx \int\limits_{z_1(x,y)}^{z_2(x,y)} f(x,y,z)dz$$

1) При переходе к цилиндрическим координатам:

 $x = r \cos \varphi$, $y = r \sin \varphi$, z = z, $dxdydz \sim rdrd\varphi dz$

2) При переходе к сферическим

 $x = r \sin \theta \cdot \cos \varphi$

 $y = r \sin \theta \cdot \sin \varphi$

 $z = z \cos \theta$

 $dxdydz \sim r^2 \sin\theta dr d\varphi d\theta$

Криволинейный интеграл 1 рода.

Пусть на плоскости ХОУ заданы

- 1. Некоторая кривая C с граничными точками A и B;
- 2. Функция двух переменных f(x, y), определенная, по крайней мере, на кривой C.

Проделаем следующую процедуру, которая является стандартной для построения определенного интеграла

1. Разобьем кривую C на кусочки точками $A_1, A_2, ..., A_{n-1}$ и точку A будем считать точкой A_0 , а точку B — точкой A_n .

Пусть $\triangle S_i$ есть длина дуги кривой C между точками A_i и A_{i+1} , $\lambda = \max_i \Delta S_i$.

2. На каждом отрезке кривой C между точками $\stackrel{A_i}{}$ и $\stackrel{A_{i+1}}{}$ выберем произвольным образом «среднюю точку» с координатами (ξ_i,η_i) и составим интегральную сумму

$$\sigma = \sum_{i=0}^{n-1} f(\xi_i, \eta_i) \Delta s_i$$

3. Сделаем предельный переход при $\lambda \to 0$. Если существует $\lambda \to 0$ и он не зависит от способа разбиения кривой C на кусочки и от способа выбора средней точки, то он называется криволинейным интегралом первого рода от функции f(x, y) по кривой C и обозначается символом

$$\int\limits_{(AB)}f(x,y)ds$$

Заметим, что

$$\int_{(AB)} f(x,y)ds = \int_{(BA)} f(x,y)ds$$

Вычисление криволинейного интеграла первого рода

Пусть кривая АВ задана параметрически в виде

$$x = x(t)$$
, $y = y(t)$, $t_0 \le t \le T$

Тогда формула для вычисления криволинейного интеграла первого рода имеет вид

$$\int\limits_{(AB)} f(x,y) ds = \int\limits_{t_0}^T f(x(t),y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

Если кривая задана явно в виде $y=y(x),\ a\leq x\leq b$, то

$$\int_{(AB)} f(x,y) ds = \int_{a}^{b} f(x,y(x)) \sqrt{1 + [y'(x)]^{2}} dx$$

Криволинейный интеграл второго рода

Пусть на плоскости xOy задана дуга M_0M , которая имеет длину, и на ней задана функция f(x, y)

Выполним операции:

1) разобьём произвольно дугу M_0M на n частей точками M_0 , M_1 , ... $M_n = M$;

5) найдем предел суммы этой при стремлении к нулю наибольшей из длин частных дуг (максимального диаметра разбиения $\lambda \to 0$). Этот предел (в случае непрерывной функции f(x,y)можно доказать, что существует) называется криволинейным интегралом от f(x,y) по переменному x вдоль кривой M_0M и обозначается через

$$\lim_{n \to \infty, \lambda \to 0} \sum_{k=1}^{n} f(x_k, y_k) \Delta x_k = \int_{M_0 M} f(x, y) dx$$

Аналогично определяется криволинейный интеграл от g(x,y) по переменному y:

$$\lim_{n \to \infty, \lambda \to 0} \sum_{k=1}^{n} g(x_k, y_k) \Delta y_k = \int_{M_0 M} g(x, y) dy$$

Если на кривой M_0M определены две непрерывные функции f(x,y) и g(x,y), то можно ввести составной криволинейный интеграл 2 рода

$$\int_{M_0M} f(x, y) dx + g(x, y) dy$$

Если кривая M_0M задана в пространстве XYZ и на кривой заданы непрерывные функции f(x, y, z), g(x, y, z) и h(x, y, z), то поступая подобно плоскому случаю, определяют криволинейные интегралы вдоль кривой M_0M :

$$\int_{M_0M} f(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz$$

При перемене направления дуги (пути интегрирования) криволинейный интеграл изменит только свой знак:

$$\int_{M_0M} f(x, y)dx = -\int_{MM_0} f(x, y)dx$$

Формула Грина.

Пусть C положительно ориентированная, кусочногладкая замкнутая кривая на плоскости, а D - область,ограниченная кривой C. Если функцииP = P(x,y), Q = Q(x,y) определены в области D и имеют непрерывные частные производные $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$, то

$$\oint_{C+} P(x, y)dx + Q(x, y)dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$$

Поверхностный интеграл 1 рода.

Пусть в пространстве переменных х,у, задана кусочно-гладкая поверхность $^{\circlearrowleft}$, на которой определена функция f(x,y,z) Разобьём поверхность $^{\circlearrowleft}$ на n частей $^{\circlearrowleft}_{i}$, $^{\circlearrowleft}_{i}$, $^{\circlearrowleft}_{i}$, $^{\circlearrowleft}_{i}$, на каждой из частей $^{\circlearrowleft}_{i}$ выберем произвольную точку $^{m}_{i}(x_{i},y_{i},z_{i})$, найдём $^{f}(M_{i})=f(x_{i},y_{i},z_{i})$ и площадь части $^{\circlearrowleft}_{i}$ (которую будем обозначать тем же символом $^{\circlearrowleft}_{i}$, и составим интегральную сумму $^{n}_{i}$, $^{n}_{i}$, $^{n}_{i}$, и существует предел последовательности интегральных сумм тах diam $^{\circlearrowleft}_{i}$, не зависящий ни от способа разбиения поверхности $^{\circlearrowleft}_{i}$ на части $^{\circlearrowleft}_{i}$, не зависящий ни от способа разбиения поверхности $^{\circlearrowleft}_{i}$ на части $^{\circlearrowleft}_{i}$, ни от выбора точек $^{m}_{i}$, то функция $^{n}_{i}$, называется интегрируемой по поверхности $^{\circlearrowleft}_{i}$, а значение этого предела называется поверхностным интегралом первого рода, или поверхностным интегралом по площади поверхности, и $^{\circlearrowleft}_{i}$, $^{\dagger}_{i}$, $^{\dagger}_{\dagger$

обозначается о

Вычисление

$$\iint_{\sigma} f(x, y, z) d\sigma = \iint_{D} f(x.y, z(x, y)) \frac{dxdy}{\cos \gamma} = \iint_{G} f(x.y(x, z), z) \frac{dxdz}{\cos \beta} = \iint_{R} f(x(y, z).y, z) \frac{dzdy}{\cos \alpha}$$

Где D,G,R- области на координатных плоскостях XOУ, XOZ, YOZ, являющиеся соответствующими проекциями поверхности $^{\circ}$ на эти плоскости., $\alpha.\beta.\gamma$ - углы, образованные внешней нормалью к поверхности и осями координат.

Поверхностный интеграл 2 рода.

Возьмём в пространстве двустороннюю поверхность σ , состоящую из конечного числа кусков, каждый из которых задан уравнением вида z = f(x,y) или является цилиндрической поверхностью с образующими, параллельными оси Oz.

Пусть R(x,y,z) - функция, опредёленная и непрерывная на поверхности σ . Сетью линий разбиваем σ произвольным образом на n "элементарных" участков $\Delta \sigma_1$, $\Delta \sigma_2$, ..., $\Delta \sigma_n$, не имеющих общих внутренних точек.

На каждом участке $\Delta \sigma_i$ произвольным образом выберем точку $M_i(x_i,y_i,z_i)$ (i=1,...,n). Пусть $(\Delta \sigma_i)xy$ - площадь проекции участка $\Delta \sigma_i$ на координатную плоскость Oxy, взятая со знаком "+", если нормаль к поверхности σ в точке $M_i(x_i,y_i,z_i)$ (i=1,...,n) образует с осью Oz острый угол, и со знаком "-", если этот угол тупой. Составим сумму

$$\sum_{i=1}^{n} R(M_i)(\Delta \sigma_i)_{xy} = \sum_{i=1}^{n} R(x_i, y_i, z_i)(\Delta \sigma_i)_{xy}$$

которую называют интегральной суммой для функции R(x,y,z) по поверхности σ по переменным x,y. Обозначим λ - наибольший из диаметров d_i (i=1,...,n). Если существует конечный предел

$$\lim_{\substack{\lambda \to 0 \\ \text{n > \infty}}} \sum_{i=1}^{n} R(x_i, y_{i,}, z_i) (\Delta \sigma_i)_{xy}$$

не зависящий от способа разбиения поверхности σ на "элементарные" участки $\Delta \sigma_i$ и от выбора точек $M_i \in \Delta \sigma_i$ (i = 1, ..., n), то он называется поверхностным интегралом по выбранной стороне поверхности σ от функции R(x,y,z) по координатам x,y (или поверхностным интегралом второго рода) и обозначается

$$\iint R(x,y,z)dxdy$$

Аналогично можно построить поверхностные интегралы по координатам x, z или y, z по соответствующей стороне поверхности, x.

$$\iint_{\sigma} Q(x, y, z) dx dz, \quad \iint_{\sigma} P(x, y, z) dy dz$$

Можно ввести "общий" интеграл по выбранной стороне поверхности от трёх непрерывных функций.:

$$\iint_{\mathcal{L}} R(x, y, z) dx dy + \iint_{\mathcal{L}} Q(x, y, z) dx dz + \iint_{\mathcal{L}} P(x, y, z) dy dz$$

Поверхностный интеграл второго рода обладает обычными свойствами интеграла. Заметим лишь, что любой поверхностный интеграл второго рода изменяет знак при

перемене стороны поверхности. Вычисление интеграла как правило, сводят к вычислению двойного интеграла.

Пусть σ - двусторонняя поверхность, заданная уравнением z=f(x,y), где f(x,y) непрерывна в области D(D) есть проекция поверхности σ на координатную плоскость Oxy), и R(x,y,z) - непрерывная функция на поверхности σ . Выберем "верхнюю" сторону поверхности σ , тогда знак проекции $(\Delta \sigma_i)_{xy}$ всегда "+", поэтому

$$\iint_{\sigma} R(x, y, z) dx dy = \iint_{D} R(x, y, f(x, y)) dx dy$$

Поле – часть пр-ва, в ∀ точке которой задано значение скалярной и векторной величины.

Градиент скалярного поля – направление наибольшего изменения поля, напрвлен по нормали к поверхности уровня

$$gradU = \nabla \cdot U = \frac{dU}{dx}\vec{i} + \frac{dU}{dy}\vec{j} + \frac{dU}{dz}\vec{k}$$

$$\frac{dU}{de} = gradU \cdot \vec{l}^{\,0}$$

Дивергенция

$$div\vec{a} = \nabla \cdot \vec{a} = \frac{da_x}{dx} + \frac{da_y}{dy} + \frac{da_z}{dz}$$

Ротор

 $rot\vec{a} = \nabla \times \vec{a}$ (векторное произведение)

Оператор Набла: $\bar{\nabla}$

$$\frac{d}{dx}\vec{i} + \frac{d}{dy}\vec{j} + \frac{d}{dz}\vec{k}$$

Оператор Лапласа : △

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Уравнение Лапласа: $\Delta U = 0$

Линейный интеграл:

$$\int_{AB} \vec{a} d\vec{r} = \int_{AB} a_x dx + a_y dy + a_z dz$$

Циркуляция векторного поля - это линейный интеграл, взятый по замкнутому контуру, помещённому в векторное поле.

Поток:

$$\prod_{\sigma}(\vec{a}) = \iint_{\sigma} (\vec{a} \cdot \vec{n}^0) d\sigma$$

Вычисления:
$$\prod_{\sigma}(a) = \iint_{D_{yy}} \frac{\vec{a} \cdot gradF}{F'_z} dxdy$$

$$F(x, y, z) = 0$$
 - уравнение σ

Ф-ла Остроградского-Гаусса:

$$\iiint\limits_{\sigma} (\vec{a} \cdot \vec{n}^0) d\sigma = \iiint\limits_{V} div\vec{a} dV$$

Ф-ла Стокса:

$$\iint_{\sigma} \vec{a} d\vec{r} = \iint_{\sigma} (rot \vec{a} \cdot \vec{n}^{0}) d\sigma$$

Потенциальное поле:

Поле \vec{a} потенциальное, если $\exists U : \vec{a} = gradU$;

Поле потенциальное $\Leftrightarrow rot\vec{a} \equiv 0$

Соленоидальное поле

Поле соленоидальное $\Leftrightarrow div\vec{a} = 0$,то есть, в поле нет ни источников, ни стоков, либо они компенсируют друг друга.

Гармоническое поле. Соленоидальное и потенциальное одновременно. Образовано гармонической функцией (удовлетворяющей уравнению Лапласа)