Ripple Carry test results:

First one is rpa, second is cla, so cla is faster delays:

4 Path 1	∞	10	9	23	SUB	OVF	14.320	4.588	9.732	00	input port clock
Դ Path 2	∞	10	9	23	SUB	C15	14.096	4.614	9.482	00	input port clock
¹→ Path 3	∞	10	9	23	SUB	C14	13.745	4.609	9.136	00	input port clock
Դ Path 4	00	9	8	23	SUB	C13	13.054	4.457	8.597	00	input port clock
4 Path 5	00	9	8	23	SUB	C12	12.969	4.463	8.507	00	input port clock
<mark>ጌ</mark> Path 6	∞	8	7	23	SUB	C10	12.147	4.351	7.796	00	input port clock
Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
4 Path 1	00	7	6	5	A0	C12	11.956	4.467	7.489	00	input port clock
4 Path 2	00	6	5	5	A0	C9	11.854	4.345	7.510	00	input port clock
4 Path 3	00	7	6	5	A0	OVF	11.740	4.240	7.500	00	input port clock
4 Path 4	00	7	6	5	A0	C13	11.736	4.233	7.503	00	input port clock
4 Path 5	00	7	6	5	A0	C14	11.546	4.261	7.284	00	input port clock
¹₄ Path 6	00	7	6	5	A0	C15	11.271	4.266	7.005	00	input port clock

rpa

Resource	Estimation	Available	Utilization %
LUT	23	63400	0.04
Ю	50	210	23.81

cla

Resource	Utilization	Available	Utilization %
LUT	33	63400	0.05
IO	50	210	23.81

so cla uses more area

Padi Guryy LAB 33 First case: 784+45 - we know 829 fits in 16 sit lyned y no overflow For Ripple conff odder : (c15,04, --- c1) = (0100 0011 0011 1101) = 829 ouf=0 So result is correct For CLA: 784441 [(151 -- -) (1) = (0000 0011 0011 0101) = B19 So report is conceet Seroid core: -4+-20 =-74 SUB=0 Ripple cong: A = 1111 1111 1111 11 00 B = 1111 1111 1011 1010 (Gr-Ci)=1111 1 111 1011 0110 = -74 OUFER so result is correct CLA: A - B some (cis-ci) = 1111 1111 1011 0110 = -74 so result is concer Third case: 32767+1 = 32768-s does not fit in large, should give overflow fipple: sun=0 A= 6111 (11) 1111 1111 s = 0000 0000 0000 0001 C= 1000 0000 0000 0000 (dives our flew OUFEL CLA: A= 0111 1111 1110 A= 1 (=0000 0000 0000 000) { test succeed 1900

tourth see -2 + -32707 = -37769 -> should be overflow, decrost fit ib Lipple Sub = 0 A = 1111 1111 1110 1110 1110 1110 1110 OVF = 1 CLA: C=0111 1111 1111 } gives out, 00F =1 Fifth coxes 784-45 = 739 (-) OUF =0 Ripple carff sold = 506=1 €=0000 00 10 1110 00 11=739 OVF=0 Then test succeed C=0000 0010 1110 0011 = +39 , OUF=0 (LK: Then text succeed 514th call: -4- -70 = 66 348 = 1 C = 0000 0000 0100 0010 =667 tot s-ceed LCA8 OUF = 0 C= 0000 0000 0100 0010=66 } test CLA 01600

Sad? GJUNES Lab 3: BZ 0.4 B BI hr SUB 40 DE 0) DI PZ Q۶ FA2 FAG FAZ FAT 102 6 103 CT 100 6 BIJ B14 plo 315 B12 Dr L A11 C14 N DIZ P14 216 Pil 040 Da FAID FAQ Cly CII CIZ CIT 010 63 FULL ADDER: So the critical both los through: 6 -> XOR- XOR2 - AND B DUF - or - cin as input (15 times, with PIS) -> XOR -> OVF CEA 1 AND A DR

espire : ma

F9>3

Sad: GULLET

27047 47

Then, we found that, delay is:

Je = 2 Troe + TAND + JOR + 15 (JAND + JOR) + THOR

= 3 Tron + 16 Trang + 16 Ton JAII 2 Sit inputs.

Area is gate number une use

For every bit of 6, we use xoe > 16 xoe

FA USES 280R, 2 AND, 10R > 32 80R, 32 AND, 160R

OUF > 1 80E

SUME: 49 DOR + 32 AND + 16 OR = 97 gotes ...

Jali Gracia Las 7: BIS BIY BIZ DIZ Jo; logest path is (critical path): By XOR -> YOR -> AND (454) -> OR (454) DAL CLAI (LHEU) TCLAIG = 2 Troet 4TAND WSiF + 4 Torus# + Troc CLAS, CLAZ, CLAI = 3 Troe + 4 Tang-unit + 4 Toe-yait Aleo: every CLA has: Go-Go > GAND Po-- P3 -> 4 7102 - A OR A AND CAPAY - 4 OR 10 AND 50M0, 1,213 9 480R There since All Binputs have Thee, and out was now -> Gate COUTY = 16 AND+ 16 MOR+ 40:0R + 80AND+ 16 MOR 410 XOR + 1 XOR = 195 gates

Sodi GULDES

- D we see that cipple carry adderly's wes

 97 gates and CLA was 185 gates.

 So, in terms of area, ripple carry is better
- 2) Te = 3 Troe + 10 TAND + 16 Top

 TCLA = 3 Troe + 4 TAND-451+ + Top-451+

 The con be seen

 Tola 4 Tre

 So, CLA is better in terms of time