```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

from google.colab import drive
drive.mount("/content/drive")

df = pd.read_csv("/content/drive/MyDrive/MLLab/Heart.csv")

df.shape
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remoun (303, 15)

1 df.head()

	Unnamed:	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	0ld
0	1	63	1	typical	145	233	1	2	150	0	
1	2	67	1	asymptomatic	160	286	0	2	108	1	
2	3	67	1	asymptomatic	120	229	0	2	129	1	
3	4	37	1	nonanginal	130	250	0	0	187	0	
4											•

1 df.isnull().sum()

0 Unnamed: 0 Age 0 Sex 0 ChestPain 0 RestBP 0 Chol RestECG MaxHR 0 ExAng Oldpeak 0 0 Slope 0 Ca Thal 4 2 AHD 0 dtype: int64

1 df.count()

Unnamed: 0 303 Age 303 Sex 303 ChestPain 303 RestBP 303 Chol 303 Fbs RestECG MaxHR 303 303 303 ExAng 303 Oldpeak 303 Slope 303 Са 299 Thal 301 AHD 303 dtype: int64

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 15 columns):

Data	columns (to	tal 15 columns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	303 non-null	int64
1	Age	303 non-null	int64
2	Sex	303 non-null	int64
3	ChestPain	303 non-null	object
4	RestBP	303 non-null	int64
5	Chol	303 non-null	int64
6	Fbs	303 non-null	int64
7	RestECG	303 non-null	int64
8	MaxHR	303 non-null	int64
9	ExAna	303 non-null	int64

10	Oldpeak	303	non-null	float64			
11	Slope	303	non-null	int64			
12	Ca	299	non-null	float64			
13	Thal	301	non-null	object			
14	AHD	303	non-null	object			
dtyp	es: float64	(2),	int64(10),	object(3)			
memory usage: 35.6+ KB							

1 df.nunique()

303 41 2 Unnamed: 0 Age Sex ChestPain RestBP 4 50 Chol 152 2 Fbs RestECG 91 MaxHR ExAng Oldpeak 2 40 Slope 3 Ca Thal 4 3 AHD dtype: int64

1 df.describe()

	Unnamed: 0	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slor
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00000
mean	152.000000	54.438944	0.679868	131.689769	246.693069	0.148515	0.990099	149.607261	0.326733	1.039604	1.60066
std	87.612784	9.038662	0.467299	17.599748	51.776918	0.356198	0.994971	22.875003	0.469794	1.161075	0.61622
min	1.000000	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	1.00000
25%	76.500000	48.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.00000
50%	152.000000	56.000000	1.000000	130.000000	241.000000	0.000000	1.000000	153.000000	0.000000	0.800000	2.00000
75%	227.500000	61.000000	1.000000	140.000000	275.000000	0.000000	2.000000	166.000000	1.000000	1.600000	2.00000
max	303.000000	77.000000	1.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	3.00000

1 df.dtypes

Unnamed: 0 int64 Age Sex int64 int64 object int64 ChestPain RestBP Chol Fbs RestECG int64 int64 int64 MaxHR int64 ExAng Oldpeak int64 float64 Slope int64 Ca float64 Thal object object AHD dtype: object

1 (df==0).sum()

Unnamed: 0 Age 0 97 Sex ChestPain 0 RestBP 0 Chol 0 Fbs RestECG 258 151 MaxHR 0 ExAng Oldpeak Slope Ca 204 99 176 Thal 0 0 AHD dtype: int64

```
dtype='object')
1 np.mean(df['Age'])
   54.43894389438944
1 \; data = \; df[['Age', 'Sex', 'ChestPain', 'RestBP', 'Chol', 'Fbs', 'RestECG', 'MaxHR', 'ExAng']]
2 train , test = train_test_split(data , test_size=0.25, random_state=1)
4 train.shape
   (227, 9)
1 test.shape
   (76.9)
1 plt.plot(df.ChestPain)
```

[<matplotlib.lines.Line2D at 0x7d25e4c5e410>]


```
1 actual = np.concatenate((np.ones(45) , np.zeros(450) , np.ones(5)))
2 predicted = np.concatenate((np.ones(100) , np.zeros(400)))
4 print( actual , predicted)
                  0.0.
                                                 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
                                                                                                                                                                                                                                     0.0.0.
                                                                                                                                                                                                                                                                                            0.0.
                                                                                                                                                                                                                                                                               0.
                      0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. 
                      0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \,
                      0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0.
                      0. 0. 0. 0.
                      0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0.
                                                 0. 0. 0. 0. 0.
                                                                                                                      0. 0. 0. 0. 0. 0.
                                                                                                                                                                                                          0.0.
                                                                                                                                                                                                                                      1.
                                                                                                                                                                                                                                                                                             0.
                                                                                                                                                                                                                                                                  1.
                      1. 1. 1. 1. 1. 1. 1.
                                                                                                                      1. 1. 1.
                                                                                                                                                                1. 1.
                                                                                                                                                                                            1. 1. 1.
                                                                                                                                                                                                                                     1. 1.
                                                                                                                                                                                                                                                                  1. 1. 1.
                                                                                                                                                                                                                                                                                                           1.
                       0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \
```

```
0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0
   0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. 
   0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. 
   0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \  \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0. \ \, 0
```

1 type(predicted)

numpy.ndarray

- 1 from sklearn.metrics import ConfusionMatrixDisplay
 2 ConfusionMatrixDisplay.from_predictions(actual , predicted)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7d25e4cdb460>

- 1 from sklearn.metrics import classification_report
- 2 from sklearn.metrics import accuracy_score
- 4 print(classification_report(actual , predicted))

	precision	recall	f1-score	support
0.0 1.0	0.99 0.45	0.88 0.90	0.93 0.60	450 50
accuracy macro avg weighted avg	0.72 0.93	0.89 0.88	0.88 0.76 0.90	500 500 500

1 accuracy_score(actual , predicted)

0.88