Angewandte Mathematik

Vorlesung Nr. 8 – 24.10.2023

Dozent: Holger Gerhards

Kurs: TINF22IT1

Zeit: Oktober – Dezember 2023

Termine Angewandte Mathematik

```
04.10.23
                09:00-12:00
• Mi
     05.10.23
                13:00-16:00
• Di
     10.10.23 09:00-11:00
     11.10.23
                09:00-11:45
• Mi
     17.10.23
• Di
                09:00-11:00
     18.10.23
• Mi
                09:00-12:00
     19.10.23
                13:00-16:00
D0
• Di
     24.10.23
                09:00-11:00
     25.10.23
                09:00-12:00
• Mi
• Do
     26.10.23
                13:00-16:00
                09:00-11:00 (Wiederholung, Übungsaufgaben)
     31.10.23
• Di
     07.11.23
                09:00-11:00
• Di
     08.11.23
• Mi
                zwischen 09:00-12:00 (Klausur)
```

Überblick über Inhalte der Vorlesung

- Funktionen
 - Synthetisierung
 - Implizite Funktionen
- Operator (grobe Begriffseinführung)
- Ableitungen
 - Partielles Ableiten
 - Implizites Ableiten
- Differentialgleichungen
 - Kategorisierung
 - Lösung durch Trennung der Variablen
 - Lösung durch Variation der Konstanten
- Vektoranalysis:
 - Kurven im IRⁿ
 - Skalarfeld, Vektorfeld
- Differentialoperatoren
 - Gradient
 - Divergenz, Rotation, Laplace-Operator
- Polynome
 - Horner-Schema
 - Taylor-Entwicklung

- Extremwerte eines Skalarfeldes
 - Hesse-Matrix
- Gaußsche-Fehlerfortpflanzung
- Integration
 - Mehrfachintegrale
 - Pfadintegrale
- Exkurs Numerik
 - Polar-, Zylinder-, Kugelkoordinaten
- Spezielle Koordinatensysteme
 - Numerische Integration, Newton-Verfahren
- Fourier-Analysis
 - Fourier-Zerlegung, Diskrete und Kontinuierliche Fourier-Transformation
- Optimierungsproblem
 - Summe der quadratischen Abweichungen
 - Gradienten-Verfahren

Erinnerungen

- Welche Ansätze zur numerischen Integration kennen Sie?
- Welche Ideen stecken hinter der numerischen Integration?

 Wie ließe ich ein Skalarprodukt auf einem Funktionenraum definieren?

Themenübersicht

- Hilbertraum und Co.
- Beispiel für Orthogonalsystem auf einem Funktionenraum Legende-Polynome
- Fourier-Analysis
 - Motivation
 - Synthese von Signalen
 - Fourier-Zerlegung
 - Diskrete Fourier-Transformation
 - Kontinuierliche Fourier-Transformation

Vektorraum

Definition eines Vektorraumes (ganz grob)

- Vektorraum entspricht einer Menge von Elementen, bei denen folgendes möglich ist:
- Vektoraddition
 - (wenn $a \in V$ und $b \in V$, dann ist auch $a + b = c \in V$)
 - Es gilt das Assoziativgesetz, das Kommutativgesetz.
 - Es existiert ein neurales und ein inverses Element.
- Skalarmultiplikation
 - (wenn $\alpha \in \mathbb{R}$ und $b \in V$, dann ist auch $\alpha b = c \in V$)
 - Es gilt das Distributivgesetz.
 - Es gilt die Neutralität der 1.
 - **...**

Banachraum

Definition eines Banachraums:

Ein Banachraum ist ein Vektorraum, der vollständig und normiert ist.

Vollständigkeit meint,

dass jede Folge auch in dem Banachraum konvergiert.

Normierung meint,

dass jedem Element einer Norm zugeordnet werden kann.

Hinweise:

- Die Norm kann zum Beispiel den Abstand zum Koordinatenursprung sein.
- Die Norm kann zur Vergleichbarkeit von Elementen herangezogen werden.
- Die Norm eines Elementes x wird |x| geschrieben.

Hilbertraum

Definition:

Ein Hilbertraum ist ein Banachraum, dessen Norm durch ein Skalarprodukt induziert wird.

Skalarprodukt (allgemein):

- ▶ mit $x \in V$ und $y \in V$
- dann wird das Skalarprodukt wie folgt geschrieben

$$\langle x \mid y \rangle \in \mathbb{R}$$

und die Norm ist dann

$$|x| = \sqrt{\langle x \, | \, x \rangle}$$

▶ Beispiel \mathbb{R}^n : $\vec{a} \cdot \vec{b} = \langle \vec{a} | \vec{b} \rangle = \sum_{i=1}^n a_i b_i$

Hilbertraum und Orthonormalbasis

- Jeder Hilbertraum besitzt eine Orthonormalbasis.
- ▶ Es gibt eine Menge von Basisvektoren $e_1, e_2, e_3, ...$ mit

$$|e_i|^2 = \langle e_i | e_i \rangle = 1$$

und $\langle e_i | e_j \rangle = 0$ für $i \neq j$
bzw. $\langle e_i | e_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{für } i = j \\ 0 & \text{für } i \neq j \end{cases}$

(δ_{ij} wird *Kronecker-Delta* genannt.)

Jedes Element a aus dem Hilbertraum V ist darstellbar als eine Linearkombination aus den Basisvektoren:

$$a \in V \implies a = \sum_{i} \alpha_{i} e_{i} \text{ mit } \alpha_{i} \in \mathbb{R} \quad \forall i = 1, 2, \dots$$

Hilbertraum und Orthonormalbasis

Beispiel (abstrakt):

- Angenommen, es gäbe eine Orthonormalbasis mit den Basisvektoren e_1, e_2, e_3, \dots
- Ein bestimmter Vektor v im Hilbertraum sei gegeben:

$$v = 2e_1 + 3e_2 - e_3$$

Berechnen Sie:

(a)
$$\langle v | e_1 \rangle = 2$$

(b)
$$\langle v | e_3 \rangle = -1$$

(c)
$$v - \langle v | e_2 \rangle e_2 = 2 e_1 - e_3$$

Themenübersicht

- Hilbertraum und Co.
- Beispiel für Orthogonalsystem auf einem Funktionenraum Legende-Polynome
- Fourier-Analysis
 - Motivation
 - Synthese von Signalen
 - Fourier-Zerlegung
 - Diskrete Fourier-Transformation
 - Kontinuierliche Fourier-Transformation

Legende Polynome

- Vorgehensweise
 - Definition des Funktionenraums
 - Einführung eines Skalarproduktes
 - Konstruktion der Legende-Polynome
 - Allgemeine Darstellung einer Funktion als Summe von Legende-Polynomen
 - Beispiel für eine konkrete Funktion

Themenübersicht

- Hilbertraum und Co.
- Beispiel für Orthogonalsystem auf einem Funktionenraum Legende-Polynome
- Fourier-Analysis
 - Motivation
 - Synthese von Signalen
 - Fourier-Zerlegung
 - Diskrete Fourier-Transformation
 - Kontinuierliche Fourier-Transformation

Fourier-Transformation - Allgemein

- Anwendungsbereiche
 - Signalanalyse
 - Signalübertragung
 - ► Bild- und Tonbearbeitung (z.B. mp3-Format)
- Grundverständnis: Tonsignalen sind zusammengesetzt
 - verschiedene Frequenzen / Signalen unterschiedlicher Tonhöhe
 - unterschiedlicher Amplitude / Lautstärke
- Physikalische Realität
 - Übertragung eines Zeit Amplitude Signals
- Grundidee
 - Zeit Amplitude Signals ist eine Mischung aus Signalen unterschiedlicher Frequenz und Amplitude
 - Ziel: Rückgängigmachung dieser Mischung

Fourier-Transformation - Allgemein

- Grundidee: Zusammensetzung eines Signals aus Teilsignalen unterschiedlicher Frequenzen mit jeweils unterschiedlichen Amplituden (Intensitäten)
- Konkrete Anwendungsmöglichkeiten
 - Filterung von Signalen
 - Tiefpass-, Hochpassfilter, Bandpassfilter
 - Detektion von periodischen Signalen
 - Synthetisierung von Signalen
 - Verschiebung von akustischen Signalen (z.B. Voice Changer)
 - **.**..

Themenübersicht

- Hilbertraum und Co.
- Beispiel für Orthogonalsystem auf einem Funktionenraum Legende-Polynome
- Fourier-Analysis
 - Motivation
 - Synthese von Signalen
 - Fourier-Zerlegung
 - Diskrete Fourier-Transformation
 - Kontinuierliche Fourier-Transformation

Synthese von Signalen – Teil 1

• Idee:

- Baue aus Sinus-Funktionen unterschiedlicher Frequenzen (im Intervall [0,T]) ein neue Funktion zusammen
- Ansatz:

$$s(t) = \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$

$$2\pi f = 2\pi/T = \omega$$

Synthese von Signalen – Teil 2

- Ergebnis:
 - Zielloses Vorgehen nicht sinnstiftend

- Überlegung:
 - VIIt. solange "herumspielen" bis man ein bestimmtes Signal synthetisieren kann

Synthetisierung eines Rechtecksignals über eine Summe von Sinus-Funktionen

Synthese von Signalen

Fazit:

- Bei Kenntnis der richtigen Koeffizienten lassen sich theoretisch unterschiedliche Signale erzeugen
- Aber aktuell nur punktsymmetrische Funktionen zur Intervallmitte synthetisierbar

Synthese von Signalen

Fazit:

- Bei Kenntnis der richtigen Koeffizienten lassen sich theoretisch unterschiedliche Signale erzeugen
- Aber aktuell nur punktsymmetrische Funktionen zur Intervallmitte synthetisierbar

• Lösung:

 Jede Funktion ist durch eine gerade und eine ungerade Funktion darstellbar. → Ergo: Es braucht noch einen geraden Anteil.

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$

Alternativer Ansatz

Grundidee:

- Jede (stetige) und beschränkte Funktion im Intervall [0,T] lässt sich als eine Summe von Elementarschwingungen unterschiedlicher Frequenz und unterschiedlicher Phase darstellen.
- Frequenz → entspricht Anzahl der Schwingen je Zeiteinheit
- Phase → meint die Verschiebung entlang der Zeit-Achse

Themenübersicht

- Hilbertraum und Co.
- Beispiel für Orthogonalsystem auf einem Funktionenraum Legende-Polynome
- Fourier-Analysis
 - Motivation
 - Synthese von Signalen
 - Fourier-Zerlegung
 - Diskrete Fourier-Transformation
 - Kontinuierliche Fourier-Transformation

- Grundidee: Zusammensetzung eines Signals aus Teilsignalen unterschiedlicher Frequenzen mit jeweils unterschiedlichen Amplituden (Intensitäten)
- Einzelschwingung:

$$s(t) = A\cos(2\pi f t + \varphi)$$

mit f = 1/T für die Frequenz des Signals und T für die Periodendauer des Signals, sowie t für die Zeit und φ für die Phasenverschiebung

• Substitution $2\pi f = 2\pi/T = \omega$

$$\implies$$
 $s_1(t) = A_1 \cos(\omega_1 t + \varphi_1)$

 Umsetzung des Grundgedankens - Zusammensetzung aus Einzelschwingungen

$$s(t) = s_1(t) + s_2(t) + \dots = A_1 \cos(\omega_1 t + \varphi_1) + A_2 \cos(\omega_2 t + \varphi_2) + \dots$$
$$= \sum_k s_k(t) = \sum_k A_k \cos(\omega_k t + \varphi_k)$$

▶ Abwandlung - anstatt irgendwelcher Schwingungen Vielfache einer Grundschwingung $f_k = kf_1 = kf$ bzw. $\omega_k = k\omega_1 = k\omega$

$$s(t) = \sum_{k=1}^{\infty} A_k \cos(k\omega t + \varphi_k)$$

Anwendung des Additionstheorems

$$\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)$$

Einsetzen ...

$$s(t) = \sum_{k} A_k \cos(k\omega t + \varphi_k)$$

 $= \sum_{k=1} A_k \Big(\cos(k\omega t) \cos(\varphi_k) - \sin(k\omega t) \sin(\varphi_k) \Big)$
 $= \sum_{k=1} a_k \cos(k\omega t) + \sum_{k=1} b_k \sin(k\omega t)$

Berücksichtigung eines konstanten Offsets

$$s(t) = \frac{a_0}{2} + \sum_{k=1} a_k \cos(k\omega t) + \sum_{k=1} b_k \sin(k\omega t)$$

Komplexe Zahlen - Auffrischung

<u>Interludium</u>

- ▶ Imaginäre Einheit $i = \sqrt{-1}$
- Darstellung einer komplexen Zahl z als

$$z = a + bi$$

 $z = r e^{i\varphi}$

- Spezielle Schreibweisen
 - ▶ Realteil von z: $\Re ez = a$
 - ▶ Imaginärteil von z: $\Im mz = b$
 - ▶ Betrag von *z*: $|z| = r = \sqrt{a^2 + b^2}$
- Eulersche Formel

$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$$

Komplexe Zahlen - Auffrischung

<u>Interludium</u>

- Wichtige Formel: $e^{2\pi i} = 1$
- Beispielhafte Anwendung für Additionstheoreme:

$$\cos(a+b) = ???$$

$$\cos(a+b) = \Re e \Big(\cos(a+b) + i \sin(a+b) \Big)$$

$$= \Re e \Big(e^{i(a+b)} \Big) = \Re e \Big(e^{ia} e^{ib} \Big)$$

$$= \Re e \Big((\cos(a) + i \sin(a)) (\cos(b) + i \sin(b)) \Big)$$

$$= \Re e \Big(\cos(a) \cos(b) + \cos(a) i \sin(b) + i \sin(a) \cos(b) \Big)$$

$$= \Re e \Big(\cos(a) \cos(b) - \sin(a) \sin(b) + i \cos(a) \sin(b) \Big)$$

$$= \Re e \Big(\cos(a) \cos(b) - \sin(a) \sin(b) + i \cos(a) \cos(a) \cos(b) \Big)$$

$$\cos(a+b) = \cos(a) \cos(b) - \sin(a) \sin(b)$$

- Idee: Die Menge aller beschränkten Funktionen auf dem Interval I ∈ [0, T) ist ein Funktionenraum F mit Hilbertraumeigenschaften.
- Definition folgende Basisvektoren auf dem Funktionenraum

$$e_0=1$$
 $e_{1k}=\cos(k\omega t)$ $e_{2k}=\sin(k\omega t)$ mit $k=1,2,3,\ldots$ und $\omega=2\pi/T$

Definition des Skalarproduktes auf dem Funktionenraum

$$\langle f(t) | g(t) \rangle = \frac{2}{T} \int_0^T f(t) g(t) dt$$
 mit $f(t), g(t) \in F$

 Bei der Basis handelt es sich um eine orthogonale Basis (siehe Übungsaufgabe)

$$\langle e_0 \mid e_0 \rangle = 2$$
 $\langle e_0 \mid e_{1k} \rangle = 0$
 $\langle e_0 \mid e_{2k} \rangle = 0$
 $\langle e_{1k} \mid e_{2l} \rangle = 0$
 $\langle e_{1k} \mid e_{2l} \rangle = \delta_{kl}$
 $\langle e_{2k} \mid e_{2l} \rangle = \delta_{kl}$

▶ Eine Funktion $f(t) \in F$ läßt sich darstellen als

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$

mit
$$\omega = 2\pi/T$$

▶ Behauptung - Darstellung einer beliebigen Funktion (beschränkt und stetig) auf dem Interval $I \in [0, T)$

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$

- Frage: Wie lassen sich die Koeffizienten a_k und b_k bestimmen?
- Ansatz: Ausnutzung des Skalarprodukts und der Orthogonalität der Basisfunktionen

$$\langle e_0 | f(t) \rangle = \langle 1 | f(t) \rangle = a_0$$

 $\langle e_{1k} | f(t) \rangle = \langle \cos(k\omega t) | f(t) \rangle = a_k$
 $\langle e_{2k} | f(t) \rangle = \langle \sin(k\omega t) | f(t) \rangle = b_k$

Begründung für die Berechnung der Koeffizienten

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$
$$= \frac{a_0}{2} e_0 + \sum_{k=1}^{\infty} a_k e_{1k} + \sum_{k=1}^{\infty} b_k e_{2k}$$

Ausnutzung der Orthogonalitätsrelation

$$\langle e_{1j} \mid f(t) \rangle = \langle e_{1j} \mid \frac{a_0}{2} e_0 + \sum_{k=1}^{\infty} a_k e_{1k} + \sum_{k=1}^{\infty} b_k e_{2k} \rangle$$

$$= \langle e_{1j} \mid \frac{a_0}{2} e_0 \rangle + \sum_{k=1}^{\infty} \langle e_{1j} \mid a_k e_{1k} \rangle + \sum_{k=1}^{\infty} \langle e_{1j} \mid b_k e_{2k} \rangle$$

$$= \frac{a_0}{2} \underbrace{\langle e_{1j} \mid e_0 \rangle}_{=0} + \sum_{k=1}^{\infty} a_k \underbrace{\langle e_{1j} \mid e_{1k} \rangle}_{=\delta_{jk}} + \sum_{k=1}^{\infty} b_k \underbrace{\langle e_{1j} \mid e_{2k} \rangle}_{=0}$$

$$\langle e_{1j} \mid f(t) \rangle = \sum_{k=1}^{\infty} a_k \delta_{jk} = a_j$$

Fourier-Zerlegung – grafische Zerlegung

Test durch Integration: $\langle \sin(wt)|\sin(wt) \rangle = 1$

Test durch Integration: $\langle \sin(wt)|\sin(2wt) \rangle = 0$

Test durch Integration: $\langle \sin(wt)|\sin(3wt) \rangle = 0$

Test durch Integration: $\langle \cos(wt)|\sin(wt) \rangle = 0$

Test durch Integration: $\langle \cos(wt)|\sin(2wt) \rangle = 0$

