Global Sensitivity Analysis of Predictor Models in Software Engineering

Stefan Wagner
Software & Systems Engineering
Technische Universität München
Germany
wagnerst@in.tum.de

May 20, 2007

Introduction

Predictor Models in

Software

Engineering

Problem

Example:

Fischer-Wagner

Model

Questions About the

Model

Overview

Global Sensitivity

Analysis

Approach for SE

Summary

Introduction

Predictor Models in Software Engineering

Introduction
Predictor Models in
Software
Engineering

Problem Example: Fischer-Wagner

Model Questions About the Model

Overview

Global Sensitivity Analysis

Approach for SE

- Predictor models describe situations in software engineering
- Various types, aims, . . .
- Examples
 - ◆ COCOMO (costs)
 - Musa-Okumoto (reliability)
 - Fault-proneness

Problem

Introduction

Predictor Models in

Software

Engineering

Problem

Example:

Fischer-Wagner

Model

Questions About the

Model

Overview

Global Sensitivity

Analysis

Approach for SE

- The models themselves can be complex
- Their use needs a lot of effort
- How can I analyse those models themeselves?
- How can I simplify them?
- How do I improve their predictive power?

Example: Fischer-Wagner Model

Introduction

Predictor Models in

Software

Engineering

Problem

Example:

Fischer-Wagner

Model

Questions About the

Model

Overview

Global Sensitivity

Analysis

Approach for SE

Summary

- Reliability model used at Siemens COM
- Two parameters estimated by failure data
- Failure probability of a fault: $p_a = p_1 \cdot d^{(a-1)}$
- lacksquare Geometrical distribution : $F_a(t)=1-(1-p_a)^t$
- \blacksquare Cummulated failures up to t:

$$\mu(t) = \sum_{a=1}^{\infty} 1 - (1 - p_1 \cdot d^{(a-1)})$$

- Input parameters
 - \bullet p_1 : Highest failure probability of a fault
 - d: Complexity of the system]0;1[
 - ★ t: Execution time (incidents)
 - inf: approximation of ∞
- lacksquare Output: $\mu(t)$

More details: S. Wagner, H. Fischer. Ada-Europe, 2006

Questions About the Model

Introduction

Predictor Models in

Software

Engineering

Problem

Example:

Fischer-Wagner

Model

Questions About the Model

Overview

Global Sensitivity

Analysis

Approach for SE

- How do the input parameters influence the output?
- Which parameter(s) do I have to estimate best to get a good prediction?
- Are there insignificant parameters that I can remove?

Overview

Introduction

Predictor Models in

Software

Engineering

Problem

Example:

Fischer-Wagner

Model

Questions About the

Model

Overview

Global Sensitivity Analysis

Approach for SE

Summary

Introduction

Global Sensitivity Analysis

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based

Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Summary

Global Sensitivity Analysis

Definition

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects
Total Effect

Approach for SE

- Saltelli (2000): "Sensitivity analysis studies the relationships between information flowing in and out of the model."
- How do the input parameters influence the output?
- How can this influence by quantified?
- Global properties
 - Inclusion of influence of shape and scale
 - Multidimensional averaging

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Variance-based Methods

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

- Global analysis usually variance-based
- "model-free"
- Analysis on the basis of sensitivity indices
 - ◆ Main or first-order effect
 - ♦ Higher-order effects
 - ◆ Total effect
- Decomposition in *main effects* and *interactions*

$$y = f(x) = f_0 + \sum_{i=1}^k f_i(x_i) + \sum_i \sum_{j>i} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, x_2, \dots, x_k)$$

Variance-based Methods

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Summary

- Global analysis usually variance-based
- "model-free"
- Analysis on the basis of sensitivity indices
 - ♦ Main or first-order effect
 - ♦ Higher-order effects
 - ◆ Total effect
- Decomposition in *main effects* and *interactions*

For example k = 3:

$$f(x) = f_0 + f_1(x_1) + f_2(x_2) + f_3(x_3) + f_{12}(x_1, x_2)$$

$$+f_{13}(x_1,x_3)+f_{23}(x_2,x_3)+f_{123}(x_1,x_2,x_3)$$

Main Effect

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based Methods

Main Effect

Higher-Order Effects
Total Effect

Approach for SE

Summary

Decomposition of the variance V of f(x)

$$Var(y) = V = \sum_{i=1}^{k} V_i + \sum_{i} \sum_{j} V_{ij} \sum_{i} \sum_{j} \sum_{k} V_{ijk} + \ldots + V_{1,2,\ldots k}$$

First-order sensitivity coefficient

$$S_i = \frac{V_i}{V}$$

(Factors Priorisation)

Higher-Order Effects

Introduction

Global Sensitivity Analysis

Definition

Method

Variance-based

Methods

Main Effect

Higher-Order Effects

Total Effect

Approach for SE

Summary

Higher-order indices analog

$$S_{i_1...i_o} = V_{i_1...i_o}/V$$

With k = 4:

2. order: $S_{12}, S_{13}, S_{14}, S_{23}, S_{24}, S_{34}$

3. order: $S_{123}, S_{124}, S_{134}, S_{234}$

4. order: S_{1234}

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_1 + S_2 + S_3 + S_4 + S_{12} + S_{13} + S_{14} + S_{23} + S_{24} + S_{34} + S_{123} + S_{124} + S_{134} + S_{134} + S_{134} + S_{1234} = 1$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_1 + S_2 + S_3 + S_4 + S_{12} + S_{13} + S_{14} + S_{23} + S_{24} + S_{34} + S_{123} + S_{124} + S_{134} + S_{134} + S_{134} + S_{1234} = 1$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_1 + S_2 + S_3 + S_4 + S_{12} + S_{13} + S_{14} + S_{23} + S_{24} + S_{34} + S_{123} + S_{124} + S_{134} + S_{134} + S_{134} + S_{1234} = 1$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_1 + S_2 + S_3 + S_4 + S_{12} + S_{13} + S_{14} + S_{23} + S_{24} + S_{34} + S_{123} + S_{124} + S_{134} + S_{134} + S_{134} + S_{1234} = 1$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_{1} + S_{12} + S_{13} + S_{14} + S_{13} + S_{14} + S_{134} + S_{14} + S$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_{1} + S_{12} + S_{13} + S_{14} + S_{13} + S_{14} + S_{134} + S_{14} + S$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

Summary

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_{1} + S_{12} + S_{13} + S_{14} + S_{13} + S_{14} + S_{134} + S_{14} + S$$

$$S_{T1} = S_1 + S_{12} + S_{13} + S_{14} + S_{123} + S_{124} + S_{134} + S_{1234}$$

Introduction

Global Sensitivity Analysis

Definition

Method Variance-based Methods

Main Effect
Higher-Order Effects

Total Effect

Approach for SE

- \blacksquare Sum of the first- and higher-order effects of x_i
- Removal of the non-relevant parts

$$S_{1} + S_{12} + S_{13} + S_{14} + S_{13} + S_{14} + S_$$

$$S_{T1} = S_1 + S_{12} + S_{13} + S_{14} + S_{123} + S_{124} + S_{134} + S_{1234}$$

 $S_{T2} = S_2 + S_{12} + S_{23} + S_{24} + S_{123} + S_{124} + S_{234} + S_{1234}$
(Factors Fixing)

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining

Distributions

Example:

Distributions

Visualising Using

Scatterplots

 p_1 and μ

d and μ

t and μ

inf and $\boldsymbol{\mu}$

Applying Global SA

Indizes

Summary

Approach for SE

Overview of the Approach

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions Example:

Distributions

Visualising Using

Scatterplots

 p_1 and μ

 \emph{d} and μ

t and μ

inf and μ

Applying Global SA

Indizes

Summary

Determining distributions

Input distributions

Visualising using scatterplots

Scatterplots

Global sensitivity analyses

Sensitivity indices

Determining Distributions

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions

Example: Distributions

Visualising Using

Scatterplots

 p_1 and μ

 \emph{d} and μ

t and μ

inf and μ

Applying Global SA

Indizes

- Distribution of the values of the input parameteters
- Derived from
 - scientific literature
 - physical boundaries
 - expert opinion
 - surveys
 - experiments

Example: Distributions

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions

Example:

Distributions

Visualising Using Scatterplots

 p_1 and μ

d and μ

t and μ

inf and μ

Applying Global SA

Indizes

- Based on expert opinion
- General parameter
 - $lack p_1$ uniformly distributed between 0 and 1
 - ♦ d uniformly distributed between 0.9 and 1
- Dependent on application
 - inf e.g.. uniformly distributed between 50 and 500
 - For t e.g. $t \sim \mathcal{N}(1000, 200)$

Visualising Using Scatterplots

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions Example:

Distributions

Visualising Using Scatterplots

 p_1 and μ d and μ t and μ inf and μ Applying Global SA Indizes

- Sampling using the distributions
- Pairwise relationship between factors
- Detection of errors in the model
- Indications of influences

p_1 and μ

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions Example:

Distributions Visualising Using Scatterplots

p_1 and μ

d and μ t and μ inf and μ Applying Global SA Indizes

d and μ

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions

Example: Distributions

Visualising Using Scatterplots

 p_1 and μ

d and μ

t and μ inf and μ Applying Global SA Indizes

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions Example:

Distributions Visualising Using Scatterplots

 p_1 and μ d and μ

t and μ

 $\begin{array}{l} \inf \text{ and } \mu \\ \text{Applying Global SA} \\ \text{Indizes} \end{array}$

inf and μ

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions Example:

Distributions
Visualising Using

Scatterplots

 p_1 and μ d and μ

t and μ

$\it inf$ and μ

Applying Global SA Indizes

Applying Global SA

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining Distributions

Example:

Distributions
Visualising Using

Scatterplots

 p_1 and μ

 \emph{d} and μ

t and μ

inf and μ

Applying Global SA

Indizes

- Various methods for calculating indices
- FAST (Fourier Amplitude Sensitivity Test) gives quantitative results
- Uses sampled data
- Tool-support: Simlab

Indizes

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining

Distributions

Example:

Distributions

Visualising Using

Scatterplots

 p_1 and μ

d and μ

t and μ

inf and μ

Applying Global SA

Indizes

Summary

Main Effect

t	6.88e-5
p_1	0.0090
d	0.9026
inf	0.0158

Indizes

Introduction

Global Sensitivity Analysis

Approach for SE

Overview of the Approach

Determining

 ${\sf Distributions}$

Example:

Distributions

Visualising Using

Scatterplots

 p_1 and μ

d and μ

t and μ

inf and μ

A 1 . C . .

Applying Global SA

Indizes

Summary

Main Effect

 $egin{array}{c|c} t & 6.88 ext{e-5} \\ p_1 & 0.0090 \\ d & 0.9026 \\ \emph{inf} & 0.0158 \\ \end{array}$

Total Effect

 $egin{array}{cccc} t & 0.005788 \\ p_1 & 0.022365 \\ d & 0.975155 \\ \emph{inf} & 0.086735 \\ \end{array}$

Introduction

Global Sensitivity Analysis

Approach for SE

Summary

Conclusions

Conclusions

Introduction

Global Sensitivity Analysis

Approach for SE

Summary

Conclusions

- Sensitivity analysis useful tool for predictor models
- SA can help to
 - find errors in the models
 - simplify the models
 - identify interactions between input parameters
 - identify parameters that should be investigated more
 - get more robust predictions
- Experience with
 - reliability model
 - QA economics model
 - process model
 - expert system for IT tools
- Good tool-support available (Simlab: http://simlab.jrc.cec.eu.int/)