

Experiment 1.1

Student Name-Pushpraj Roy Branch- CSE Semester- 5th Subject Name-Machine Learning Lab UID- 20BCS9866 Section/Group- 617 A Subject Code- 20CSP-317

AIM:- Exploratory data analysis (EDA).

OBJECTIVE:—To Understand the data i.e., Data is clean, it doesn't have any null values, missing values, remove noise, identify variables in dataset and relationship between variables to conclude the values.

Steps Involved:-

- 1.Treatment of Missing Values and Outliers (Preparation of the dataset for analysis by the treatment of the irregularities.
- 2.Draw meaningful patterns and insights with the help of data visualization to summarize their main characteristics.

S/W Requirement:- VS Code or Jupyter Notebook

INPUT AND OUTPUT:-

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

df= pd.read_csv('housing.csv')

		df.head() 🖁														
		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV		
(0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0		
1	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6		
2	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7		
9	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4		
2	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN	36.2		

	df	f.tail()													
5]															
		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	NaN	22.4
	502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6
	503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9
	504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0
	505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90	7.88	11.9

Python											
PTRATI	TAX	RAD	DIS	AGE	RM	NOX	CHAS	INDUS	ZN	CRIM	
506.00000	506.000000	506.000000	506.000000	486.000000	506.000000	506.000000	486.000000	486.000000	486.000000	486.000000	count
18.45553	408.237154	9.549407	3.795043	68.518519	6.284634	0.554695	0.069959	11.083992	11.211934	3.611874	mean
2.16494	168.537116	8.707259	2,105710	27.999513	0.702617	0.115878	0.255340	6,835896	23.388876	8.720192	std
12.60000	187.000000	1.000000	1.129600	2.900000	3.561000	0.385000	0.000000	0.460000	0.000000	0.006320	min
17.40000	279.000000	4.000000	2.100175	45.175000	5.885500	0.449000	0.000000	5.190000	0.000000	0.081900	25%
19.05000	330.000000	5.000000	3.207450	76.800000	6.208500	0.538000	0.000000	9.690000	0.000000	0.253715	50%
20.20000	666.000000	24.000000	5.188425	93.975000	6,623500	0.624000	0,000000	18,100000	12.500000	3.560263	75%
22.00000	711.000000	24.000000	12.126500	100.000000	8.780000	0.871000	1.000000	27,740000	100.000000	88.976200	max

Getting its dimension df.shape


```
# Getting its dimension
df.shape

[8]

Python

(506, 14)
```

obtain the missing values present in the given raw Housing Data df.isnull().sum()

```
# obtain the missing values present in the given raw Housing Data
   df.isnull().sum()
CRTM
          20
ZN
          20
INDUS
          20
CHAS
          20
           0
NOX
RM
           0
AGE
          20
DTS
           0
RAD
           0
TAX
PTRATTO
           A
           0
LSTAT
          20
MEDV
           0
dtype: int64
```

getting the column names of the dataset df.columns

- # Importing the visualization package of Python
- # Detection of outliers among all variables

import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline


```
plt.subplots(figsize=(39,10))
df.boxplot(patch_artist=True, sym="k.")
plt.xticks(rotation=90)
```

```
# Importing the visualization package of Python
   # Detection of outliers among all variables
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
   plt.subplots(figsize=(39,10))
   df.boxplot(patch artist=True, sym="k.")
   plt.xticks(rotation=90)
(array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
[Text(1, 0, 'CRIM'),
 Text(2, 0, 'ZN'),
 Text(3, 0, 'INDUS'),
 Text(4, 0, 'CHAS'),
 Text(5, 0, 'NOX'),
 Text(6, 0, 'RM'),
 Text(7, 0, 'AGE'),
 Text(8, 0, 'DIS'),
 Text(9, 0, 'RAD'),
 Text(10, 0, 'TAX'),
 Text(11, 0, 'PTRATIO'),
 Text(12, 0, 'B'),
 Text(13, 0, 'LSTAT'),
  Text(14, 0, 'MEDV')])
```


#PHASE 1: TREATMENT OF MISSING VALUES

For first category: "cat_mv_out"

cat_mv = pd.concat([df["CHAS"]],axis=1) cat_mv

Replacing the missing values with mode(value 0) to this categorical variable

0.0

0

replace nan value to zero(mode = 0) cat_mv.replace(np.nan,
0, inplace=True)

After replacing with mode(Value = 0), now there is no missing values in this categorical variable cat_mv.isnull().sum()

```
# After replacing with mode(Value = 0), now there is no missing values in this categorical variable cat_mv.isnull().sum()

Python

CHAS 0
dtype: int64
```

dimension (506 Observations and 1 column) cat_mv.shape

```
# dimension (506 Observations and 1 column)
cat_mv.shape

[19] Python

... (506, 1)
```

For the second category: "num_mv_out" means Numerical variables containing missing values and outliers too

num_mv_out = pd.concat([df["CRIM"], df["ZN"], df["LSTAT"]],axis=1) num_mv_out.isnull().sum()

Describe the numerical data which as missing values and outliers. num_mv_out.describe()

Replacing the missing values with median of its variables ("num_mv_out")
num_mv_out = num_mv_out.fillna(num_mv_out.median())
Now, "num_mv_out" has no missing values num_mv_out.isnull().sum()

```
# Now, "num_mv_out" has no missing values
num_mv_out.isnull().sum()

Python

CRIM 0
ZN 0
LSTAT 0
dtype: int64
```

num_mv_out.shape

For the third category: "num_mv_noOut" means Numerical variables containing missing values but "no outliers"

 $num_mv_noOut = pd.concat([df["INDUS"], df["AGE"]], axis=1) \ num_mv_noOut$

	INDUS	AGE
0	2.31	65.2
1	7.07	78.9
2	7.07	61.1
3	2.18	45.8
4	2.18	54.2

501	11.93	69.1
502	11.93	76.7
503	11.93	91.0
504	11.93	89.3
505	11.93	NaN

#checking the variables ; is there any null value present or not num_mv_noOut.isnull().sum()

Replacing the missing values with mean of its variable ("num_mv_noOut") # this category doesn't have outliers but having missing values in the two variables num_mv_noOut = num_mv_noOut.fillna(num_mv_noOut.mean())

Now, this cateory ("num_mv_noOut") has no missing values num_mv_noOut.isnull().sum()

```
··· INDUS 0
AGE 0
dtype: int64
```

#PHASE 2: TREATMENT OF OUTLIERS

For assigning or concatenating all the variables including with six treated missing values variables into a dataset

df1 = pd.concat([cat_mv,num_mv_out, num_mv_noOut, df["RM"], df["DIS"], df["PTRATIO"],
df["B"], df["MEDV"], df["NOX"], df["RAD"], df["TAX"]],axis=1)

No missing values after merging all variables df1.isnull().sum()

 CHAS	0
CRIM	0
ZN	
LSTAT	9 9
INDUS	0
AGE	0
RM	
DIS	0
PTRATIO	0
В	0
MEDV	0
NOX	0
RAD	0
TAX	0
dtype: in	t64


```
# Boxplot for all variables
       plt.subplots(figsize=(37,10))
       df1.boxplot(patch_artist=True, sym="k.")
       plt.xticks(rotation=90)
[35]
                                                                                                                           Python
    (array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
     [Text(1, 0, 'CHAS'),
      Text(2, 0, 'CRIM'),
      Text(3, 0, 'ZN'),
      Text(4, 0, 'LSTAT'),
      Text(5, 0, 'INDUS'),
      Text(6, 0, 'AGE'),
      Text(7, 0, 'RM'),
      Text(8, 0, 'DIS'),
      Text(9, 0, 'PTRATIO'),
      Text(10, 0, 'B'),
      Text(11, 0, 'MEDV'),
      Text(12, 0, 'NOX'),
      Text(13, 0, 'RAD'),
      Text(14, 0, 'TAX')])
```

#Now, It's time for treatment of outliers

#1.num_out = Numerical variables containing outliers (Missing values will be treated with median)--# "CRIM", "ZN", "RM", "DIS", "PTRATIO", "B", "LSTAT", "MEDV"

 $num_out = pd.concat([df1["CRIM"], df1["ZN"], df1["RM"], df1["DIS"], df1["PTRATIO"], df1["B"], df1["LSTAT"], df1["MEDV"]], axis=1)$

Detecting outliers in "cat_out"

plt.subplots(figsize=(37,10)) num_out.boxplot(patch_artist=True, sym="k.") plt.xticks(rotation=90)

Detecting and Removing Outliers

88.976200 100.000000

0.000000

6.623500

8.780000

5.188425

2.808720

Inter Quartile Range (IQR) is the difference between the 3rd Quartile and the first Quartile # The data points which fall below Q1 - 1.5 IQR or above Q3 + 1.5 IQR are outliers.

20.200000 396.225000

12.126500 22.000000 396.900000 37.970000 50.000000

16.570000

25.000000

def detect_outlier(feature): Q1 = np.percentile(feature, 25) Q3 = np.percentile(feature, 75)

75%

max


```
IQR = Q3 - Q1 IQR
*= 1.5
         minimum = O1
- IQR
         maximum =
Q3 + IQR flag = False
if(minimum > np.min(feature)):
flag = True if(maximum <
np.max(feature)):
                        flag = True
  return flag
     #Using tukey method to remove outliers. Whiskers are set at 1.5 times Interquartile Range (IQR).
     # Any value beyond the acceptance range are considered as outliers.
     #Replacing the outliers with the median value of that feature
     #Why replacing with median value?
     #As the mean value is highly influenced by the outliers, it is advised to replace the outliers with the median value.
def remove_outlier(feature):
  Q1 = np.percentile(num_out[feature], 25)
  Q3 = np.percentile(num_out[feature], 75)
  IQR = Q3 - Q1
  IQR *= 1.5
  minimum = Q1 - IQR # the acceptable minimum value
maximum = Q3 + IQR # the acceptable maximum value
  median = num_out[feature].median()
  num_out.loc[num_out[feature] < minimum, feature] = median</pre>
num_out.loc[num_out[feature] > maximum, feature] = median
# taking all the column
num out = num out.iloc[:, : ] for i in
range(len(num out.columns)):
     remove_outlier(num_out.columns[i])
```


In "num_out" matrix, it contains all varibles num_out
= num_out.iloc[:, :]


```
num_out
[44]
                                                                                                                                  Python
             CRIM
                          RM
                                 DIS PTRATIO
                                                    B LSTAT
                                                              MEDV
                              4.0900
                                               396.90
        0 0.00632
                   0.0
                        6.575
                                          15.3
                                                         4.98
                                                                 24.0
        1 0.02731 0.0
                        6.421
                              4.9671
                                          17.8
                                               396.90
                                                         9.14
                                                                 21.6
           0.02729 0.0
                        7.185 4.9671
                                          17.8
                                               392.83
                                                         4.03
                                                                 34.7
        3 0.03237 0.0
                        6.998 6.0622
                                          18.7
                                               394.63
                                                         2.94
                                                                 33,4
        4 0.06905 0.0 7.147 6.0622
                                          18.7 396.90
                                                        11.43
                                                                 36.2
      501
           0.06263 0.0
                        6.593 2.4786
                                          21.0 391.99
                                                        11.43
                                                                 22.4
      502 0.04527 0.0
                       6.120 2.2875
                                          21.0 396.90
                                                         9.08
                                                                 20.6
      503 0.06076 0.0
                        6.976 2.1675
                                                                23.9
                                          21.0 396.90
                                                         5.64
      504 0.10959 0.0 6.794 2.3889
                                          21.0 393.45
                                                         6.48
                                                                22.0
      505 0.04741 0.0 6.030 2.5050
                                          21.0 396.90
                                                         7.88
                                                                 11.9
     506 rows × 8 columns
        # This shows that these are the variables from "num_out" which contain Outliers
        for i in range(len(num_out.columns)):
            if(detect_outlier(num_out[num_out.columns[i]])):
                print(num_out.columns[i], "Contains Outlier")
[45]
    CRIM Contains Outlier
    RM Contains Outlier
    B Contains Outlier
    LSTAT Contains Outlier
    MEDV Contains Outlier
         # Removing the outliers
         for i in range (3):
             for i in range(len(num_out.columns)):
                remove_outlier(num_out.columns[i])
 [46]
                                                                                                                                 Python
                                                                                                               血
         # After removing outliers, the following boxplots of each variable from "num_out" show, they have no more outliers
         plt.subplots(figsize=(37,10))
         num_out.boxplot(patch_artist=True, sym="k.")
         plt.xticks(rotation=90)
[47]
                                                                                                                                 Python
     (array([1, 2, 3, 4, 5, 6, 7, 8]),
      [Text(1, 0, 'CRIM'),
       Text(2, 0, 'ZN'),
       Text(3, 0, 'RM'),
       Text(4, 0, 'DIS'),
       Text(5, 0, 'PTRATIO'),
       Text(6, 0, 'B'),
       Text(7, 0, 'LSTAT'),
        Text(8, 0, 'MEDV')])
```


Finally, concatenating all variables after treatment of outliers with those varibales
that have no outliers into a dataset
final_df = pd.concat([num_out, df1["CHAS"], df1["INDUS"], df1["NOX"], df1["AGE"], df1["RAD"], df1["TAX"]],axis=1)

Python
Python

#After treatment of missing values as well as outliers #The dataset is now ready for further analysis

f	inal_df													
	CRIM	ZN	RM	DIS	PTRATIO	В	LSTAT	MEDV	CHAS	INDUS	NOX	AGE	RAD	TAX
0	0.00632	0.0	6.575	4.0900	15.3	396.90	4.98	24.0	0.0	2.31	0.538	65.200000	1	296
1	0.02731	0.0	6.421	4.9671	17.8	396.90	9.14	21.6	0.0	7.07	0.469	78.900000	2	242
2	0.02729	0.0	7.185	4.9671	17.8	392.83	4.03	21.2	0.0	7.07	0.469	61.100000	2	242
3	0.03237	0.0	6.998	6.0622	18.7	394.63	2.94	21.2	0.0	2.18	0.458	45.800000	3	222
4	0.06905	0.0	7.147	6.0622	18.7	396.90	11.43	21.2	0.0	2.18	0.458	54.200000	3	222
***		***			***				***			***		
501	0.06263	0.0	6.593	2.4786	21.0	391.99	11.43	22.4	0.0	11.93	0.573	69.100000	1	273
502	0.04527	0.0	6.120	2.2875	21.0	396.90	9.08	20.6	0.0	11.93	0.573	76.700000	1	273
503	0.06076	0.0	6.976	2.1675	21.0	396.90	5.64	23.9	0.0	11.93	0.573	91.000000	1	273
504	0.10959	0.0	6.794	2.3889	21.0	393.45	6.48	22.0	0.0	11.93	0.573	89.300000	1	273

21.0 396.90 7.88 11.9 0.0 11.93 0.573 68.518519

506 rows × 14 columns

505 0.04741 0.0 6.030 2.5050

Boxplot for the final dataset plt.subplots(figsize=(37,10)) final_df.boxplot(patch_artist=True, sym="k.") plt.xticks(rotation=90)

1 273

the heatmap also shows the same things and interpretations which earlier correlation matrix has been shown

fig, ax = plt.subplots(figsize=(37,13)) correlation_matrix = final_df.corr().round(2) # annot = True to print the values inside the square sns.heatmap(data=correlation_matrix, annot=True)

	<a< th=""><th>xesSubplot:</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></a<>	xesSubplot:	>													
(/>	CONN	x .		40.26	454	630.	611	9644	4.25	0.09	2000	- Kith	11.95	0.46	2000	
	n-															
	2 -	0.26		F)	0.21	6.15	-0.03	-0.40	6.39	:0	0.28	(421		6.07	6.33	
	8-	-0.54		101	1.				0.00		0.69				4.50	
	PERMITO	9.33		4.15	4.32	1	0.00		433			024		0.00	444	
		0.32		0.03		0.62	1.	10.02							6.09	
	19151	144		4 46			4107	1	0.8		- 494				**	
	NED/	0.33		6.38	0.30	0.33		0.6		6.07	9.43	0.43	9.47	0.4	6.40	
	949	0.00		140					6.07	i i	005				0.04	
	Suda	6.90		428				1156	-0.45	0.03	1	0.34	nea		0.72	
	XX.	9,000		0.24					0.49		0.74	1	0.71	0.01	GET	
	904	688		622					-0.47		041	0.71	1			
	MAD.	1999		9.07			-0.00		9.5		939.1	0.01	0.45		0.91	
	201	1946		613			0.09		-0.46		0.72	0.67		6.91	1	
		CHIM	ZN	PM	06	FIRETO	0	LSTAT	MEDV	CHAS	MOUS	MOK	AGE	RAD.	TAX	150

- # Here, Correlation matrix shows:
- # the relationship among explanatory variables as well as,
- # the relationship between the dependent varibale with each of the explanatory variables

sns.pairplot(final_df)

#scatter plot to see how these features RAD, RM ,DIS, LSTAT, NOX, AGE, TAX, INDUS vary with Target variable (MEDV) plt.figure(figsize=(37,15))

```
features = ['LSTAT','NOX','AGE','TAX','RM','DIS','INDUS'] target = final_df['MEDV']
```


sns.distplot(df['CRIM'])

Learning outcomes (What I have learnt) -

- 1. Identify the faulty points so that we can clean the data.
- 2. How to deal with missing values of variables (Columns) in dataset.
- **3.** To Deal with Outliers.
- 4. To find Relationship between different variables and map different type of Graphs.

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.			
2.			
3.			

