Georgios Frangias

August 2023

Algorithm 1 On-policy SLATEQ for Live Experiments

1: Parameters:

- \bullet T: the number of iterations.
- \bullet M: the interval to update label network.
- γ : discount rate.
- $\theta_{\rm main}$: the parameter for the main neural network.
- \bar{Q}_{main} : that predicts items' long-term value.
- $heta_{
 m label}$: the parameter for the label neural network $ar{Q}_{
 m label}$.
- θ_{pctr} : the parameter for the neural network that predicts items' pCTR.

2: Input:

- \bullet s : current state features
- $A = (a_1, \dots, a_k)$: recommended slate of items in current state; a_i denotes item
- $C = (c_1, \ldots, c_k) : c_i$ denotes whether item a_i is clicked
- $L_{\text{myopic}} = \left(l_{\text{myopic}}^1, \dots, l_{\text{myopic}}^k\right)$: myopic (immediate) labels
- s': next state features
- $A'=\left(a'_1,\ldots,a'_k\right)$: recommended slate of items in next state. 3: **Output**: Trained Q-network \bar{Q}_{main} that predicts items' long-term value.
- 4: Initialization: $\theta_{label} = 0, \theta_{main}$ randomly, θ_{pctr} randomly
- 5: **for** i = 1 ... T **do**

```
if i \mod M = 0 then
6:
7:
                 \theta_{\text{label}} \leftarrow \theta_{\text{main}}
```

for each example $(s, A, C, L_{\text{myopic}}, s', A') \in D_{\text{training}}$ do 8: 9: for each item $a_i \in A$ do

update θ_{pctr} using click label c_i 10: 11:

if a_i is clicked then probability: $p \operatorname{CTR}\left(s', a_i', A'\right) \leftarrow p \operatorname{CTR}\left(s', a_i'\right) / \sum_{a_i' \in A} p \operatorname{CTR}\left(s', a_i'\right)$ 12:

LTV label: $l_{\text{ltv}}^{i} \leftarrow l_{\text{myopic}}^{i} + \sum_{a_{i}' \in A'} p \operatorname{CTR}\left(s', a_{i}', \overline{A'}\right) \bar{Q}_{\text{label}}\left(s', a_{i}'\right)$ 13:

update θ_{main} using LTV label l_{ltv}^{i}

Taken from arXiv:1905.12767