Sprawozdanie - Laboratorium 01 PAMSI

Artur Gasiński — 21868529.02.2016

1 Zadanie

- 1. Stworzenie klasy pozwalajacej na przechowywanie dowolnej ilości elementów typu int w tablicy.
- $2.\$ Wykonanie pomiarów czasu zapisu do obiektu klasy z p
ktu 1. dla liczby elementów

$$n = 10, 10^3, 10^5, 10^6, 10^9 \tag{1}$$

2 Wykonanie

- 1. Implementacja powiekszania tablicy dynamicznej:
 - rozszerzanie o 1 nowy element,
 - podwajanie pojemności tablicy.
- 2. Pomiar czasów zapisu elementów z wykorzystaniem biblioteki ctime.

Uwaga. Z powodu wystepowania błedu "std::bad_alloc" testy zostały przeprowadzone dla 10^8 elementów, zamiast dla 10^9 .

3 Pomiary czasu zapisu

1. Dla algorytmu podwajania pojemności tablicy:

n	10	10^{3}	10^{5}	10^{6}	10^{8}
czas [s]	0.000016	0.000048	0.002958	0.01741	1.25156

2. Dla algorytmu powiekszania tablicy o 1 element:

n	10	10^{3}	10^{5}	10^{6}	10^{8}
czas [s]	0.000004	0.000231	1.39805	269.266	25824.6

4 Wnioski

Widać wiec, że metoda zwiekszania tablicy za każdym razem o jeden element jest generalnie nieefektywna, a dla dużych n zupełnie niewydajna. Z tego powodu podwajanie wielkości tablicy, gdy zajdzie potrzeba jej rozszerzenia, jest dużo lepszym sposobem.

Dla małych n (rzedu 10) metoda dodawania po jednym elemencie okazuje sie jednak być szybsza, wiec w pewnych sytuacjach pożadane może być zastosowawanie tego algorytmu.

5 Wykresy

