

: Self Supervised Learning을 이용한 음색 기반 노래 추천 시스템

이지평 장성현 김보현 김종윤 김정하

D&A Conference Session 2022, 11, 2

변원 소개

장성현

김보현

김종윤

김정하

- 주제 선정 배경
- Framework

- Self-supervised learning
- Self supervised Contrastive learning for singing voices
- MoCo
- NCE loss
- Experiment

- Time Jump Auto Encoder
- Dilated Causal Convolution
- Experiment

- 콘텐츠 기반 추천 시스템
- Improvement & Future work

주제 선정 배경

기존 추천시스템의 한계

Music

RecSys

음악 추천시스템에 대한 기존 연구들은 사용자의 인구통계학 정보, 개인취향 및 최근 관심 곡 등을 기반으로 **듣는 음악에 대한 추천이** 대부분

Point.1

듣는 노래가 아닌 부르는 노래를 추천할 수 없을까?

Point.2

음색을 기반으로 부르는 노래를 추천하면 어떨까?

Point.3

사용자의 목소리만으로 추천을 해주는 시스템을 만들자!

07

"듣는 음악 추천이 아닌 부르는 음악 추천 "

사용자의 목소리 하나만으로 어울리는 노래를 추천 해주는 **콘텐츠 기반의 추천시스템 모델**을 개발하고자 함

01 Framework

Self-supervised learning

Self-supervised learning의 기본 아이디어

"레이블 정보 없이 관측치 레벨에서 학습 및 공유하는 representation, semantic structure가 있을 것이다. "

- Supervised learning에서 semantic labeling이 아님에도 불구하고 확률값이 높은 클래스는 타겟 클래스와 시각적으로 유사
- 관측치 사이의 유사성을 기반으로, 관측치끼리 구분하도록 학습을 한다면 레이블 정보 없이도 좋은 representation을 얻을 수 있음

Self-supervised learning

Contrastive learning

Contrastive learning의 기본 Frameworks는 anchor라고 하는 데이터 샘플,

"positive" sample이라고 하는,

anchor와 동일한 분포에 속하는 데이터 포인트와

"negative" sample이라고 하는

다른 분포에 속하는 또 다른 데이터 포인트의 선택으로 구성 잠재 공간에서 anchor와 positive sample 간의 거리를 최소화하고 동시에 anchor와 negative sample 간의 거리를 최대화

Self-supervised learning

기존 Contrastive learning

다양한 방식으로 데이터를 Augmentation해서 positive pair를 만들어 냄

Color Jitter

Rotation

Flipping

Noising

Affine

Self-supervised learning

기존 Contrastive learning

Positive pair : Anchor의 augmentation한 결과

Negative pair : 다른 데이터 샘플

Self-supervised Contrastive Learning for Singing Voices

Singing Voices에서 **Vocal timbre, Singing expression**을 반영한 Feature representation

Self supervised Contrastive learning for singing voices

(b) Singing expression-oriented representations

한 Anchor에서 Augmentation한 결과를 얻고자 하는 representation에 따라 positive pair 혹은 negative pair로 설정

Vocal timbre를 반영한 Feature representation을 얻고자 할 때,
Pitch shift → Negative Pair

Singing expression을 반영한 Feature representation을 얻고자 할 때,
Time stretch → Negative Pair

MoCo

Momentum Encoder

$$\theta_k \leftarrow m\theta_k + (1 - m)\theta_q$$

Query encoder와 Key encoder가 별도로 정의

Query encoder θ_q , Key encoder θ_k 를 동일하게 설정하고 momentum update를 적용하여

Key encoder θ_k 를 천천히 업데이트

Key encoder는 query encoder에 대해 점진적으로 변하게 되어

최대한 일관된 representation을 dictionary Key에 담을 수 있게 하고

Queue를 사용하여 dictionary를 최대한 크게 구성해서 많고 다양한 negative sample을 볼 수 있도록 함

NCE(Noise Contrastive Estimation) loss

$$score(f(x), f(x^+)) >> score(f(x), f(x^-))$$

Positive samples

Negative samples

NCE(Noise Contrastive Estimation) loss

$$\frac{\text{score}(f(x), f(x^+))}{\text{Positive samples}} >> \frac{\text{score}(f(x), f(x^-))}{\text{Negative samples}}$$

InfoNCE Loss

초록색은 positive sample과의 관계, 빨간색은 negative sample과의 관계를 의미

InfoNCE Loss를 minimize하면 분자는 maximize되고, 분모는 minimize

score는 보통 cosine similarity 사용(InfoNCE Loss에서도 마찬가지)

augmentation을 한 같은 이미지 간은 Positive sample로 거리가 가깝고, 다른 이미지 간은 Negative sample로 거리가 먼 형태의 representation 형성

Experiment

Pitch Shift: neg

Time stretch: pos

→ Extract된 Feature representation이 해당 특징을 잘 반영하고 있음을 보여줌

TJAE(KYAE)

Time Jump Auto Encoder

TJAE

Contrastive learning을 통해 반영할 수 있는 Timbre, vocal style과 더불어, Vocal의 특징을 더욱 풍부하게 활용하고자 전체적인 vocal의 분위기를 반영할 수 있는 TJAE 구조 개발

Dilated Causal Convolution

Dilated Causal Convolution = Causal Convolution + Dilated Convolution

Causal Convolution:

시간 순서를 고려하여 Convolution Filer를 적용하는 변형 Convolution Layer Causal Convolution을 위로 쌓을수록 Input 데이터의 Receptive Field가 커짐 → 음성 데이터 모델링 가능

Dilated Convolution:

추출 간격(Dilation)을 조절하여 더 넓은 receptive field를 갖게 하는 Convolution Layer Receptive field를 넓히기 위해 많은 양의 Layer를 쌓아야 하는 causal convolution의 단점을 극복할 수 있음

→ 상대적으로 적은 양의 layer로 receptive field를 넓히는 효과

Time Jump Auto Encoder

TJAE

Autoencoder를 기반으로 Skip Architecture를 구축
Autoencoder의 각 층은 Dilated를 다르게 한 Convolution Layer로 구성
다른 시간 의존성을 가진 Feature map을 decoder의 층에 전달
Decoder가 층마다 다른 시간의 정보를 추가로 가짐으로써 Input을 재구축
이를 통해 생성된 Latent Space는 분위기의 정보를 가짐

Experiment

TJAE

Autoencoder를 기반으로 Skip Architecture를 구축
Autoencoder의 각 층은 Dilated를 다르게 한 Convolution Layer로 구성
다른 시간 의존성을 가진 Feature map을 decoder의 층에 전달
Decoder가 층마다 다른 시간의 정보를 추가로 가짐으로써 Input을 재구축
이를 통해 생성된 Latent Space는 분위기의 정보를 가짐

콘텐츠 기반 추천 시스템

- 앞서 생성한 여러 가지 Embedding

Embedding by Self Supervised Contrastive Learning

Pitch-shifted (neg) + Time-stretched (pos)

: Vocal Timbre에 집중해서 학습

Pitch-shifted (neg) + Time-stretched (neg)

: Vocal Timbre & Singing Expression 모두에 집중해서 학습

Embedding by TJAE (Time Jump Auto Encoder)

전체적인 **분위기, 느낌**에 집중해서 학습

(확실히 위에 두 개의 Embedding과는 다름)

RecSys

콘텐츠 기반 추천 시스템

SSCL Emb

Pitch Shift: Neg

Time Stretch: Pos

SSCL Emb

Pitch Shift: Neg

Time Stretch: Neg

SSCL Emb

Pitch Shift: Neg

Time Stretch: Pos

SSCL Emb

Pitch Shift: Neg

Time Stretch: Neg

TJAE Emb

5가지 Embedding 각각의 코사인 유사도를 가중합하여 최종 유사도 생성 가중치는 여러 실험 끝에 heuristic하게 정함

RecSys

콘텐츠 기반 추천 시스템

Recommendation

Improvement & Future work

- 1. 선행 연구 부족
- 2. 학습 데이터 셋 안정성 및 절대적 수량 부족
- 3. 일정 길이 이상의 Input 필요(120s)
- 4. Mac과 Window 호환성 이슈가 생각보다 쉽지 않음
- 5. 컴퓨팅 파워 부족
- 6. 수면 부족
- 7. 예산 부족

Future work

- 1. 학습 데이터 셋 안정성 확보 및 추가 데이터 수집
- 2. 단순 Embedding 유사도가 아닌 추천시스템 모델 활용
- 3. 성별 예측 단계 추가
- 4. 구체적 특징 추출가능한 서브 모델링 추가
- 5. 설문조사를 이용한 통계적 정량 지표 생성

Reference

Liu, Jinglin, et al. "Learning the Beauty in Songs: Neural Singing Voice Beautifier." arXiv preprint arXiv:2202.13277 (2022).

Yakura, Hiromu, Kento Watanabe, and Masataka Goto. "Self-Supervised Contrastive Learning for Singing Voices." IEEE/ACM Transactions on Audio, Speech, and Language Processing 30 (2022): 1614-1623.

Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).

D&A Conference Session 2022. 11. 2