

YDLIDAR G4 开发手册

文档编码: 01.13.000008

目录

L	_1乍机制	2
	系统工作流程	2
乔	· 	3
	通信机制	3
	系统命令	3
	系统报文	4
数	7据协议	5
	扫描命令 [A5 60]	5
	停止命令 [A5 65]	6
	设备信息[A5 90]	7
	健康状态[A5 91]	7
	低功耗使能[A5 01]	8
	低功耗关闭[A5 02]	8
	低功耗查询[A5 05]	8
	扫描频率设置[A5 09/0A/0B/0C]	9
	扫描频率获取[A5 0D]	9
	恒频使能 [A5 0E]	9
	恒频关闭 [A5 0F]	10
	测距频率设置 [A5 D0]	10
	测距频率获取 [A5 D1]	11
	重启命令 [A5 40]	11
	待机控制	11
	速度控制	11
使	用注意	11
	· \	

工作机制

YDLIDAR G4(以下简称 G4)的系统设置了3中工作模式:空闲模式、扫描模式、停机模式;

- ▶ **空闲模式:** G4 上电时,默认为空闲模式,空闲模式时,G4 的测距单元不工作,激光器不亮。
- ▶ **扫描模式:** 当 G4 进入扫描模式时,测距单元点亮激光器,开始工作,不断对外部环境进行激光采样,并经过后台处理后实时输出。
- ▶ **停机模式:** 当 **G**4 运行有错时,如开启扫描时,激光器不亮,电机不转等状况,**G**4 会自 动关闭测距单元,并反馈错误代码。

系统工作流程

图 1 YDLIDAR G4 系统工作流程图

系统通信

通信机制

G4 是通过串口来和外部设备进行命令和数据的交互。当外部设备发送一个系统命令至 G4, G4 解析系统命令,会返回相应的应答报文,并根据命令内容,来切换相应的工作状态,外部系统根据报文内容,解析报文,便可获取应答数据。

图 2 YDLIDAR G4 系统通信机制

系统命令

外部系统通过发送相关的系统命令,便可设置 G4 相应的工作状态,获取相应的数据。G4 的系统命令统一为 2 个字节,其中起始字节统一为 0xA5,第二个字节为命令内容。G4 对外发布的系统命令如下:

系统命令		描述	模式切换	应答模式	
	0x60	开始扫描,输出点云数据	扫描模式	持续应答	
	0x65	停机,停止扫描	停机模式	无应答	
	0x90	获取设备信息(型号、固件、硬件版本)	不切换	单次应答	
	0x91	获取设备健康状态	不切换	单次应答	
	0x01	低功耗使能,开启后 G4 在空闲模式下电 机和测距单元不工作	不切换	单次应答	
	0x02	低功耗关闭,关闭后 G4 在空闲模式下电 机和测距单元仍然工作	不切换	单次应答	
0xA5	0x05	获取当前电机和模组状态	不切换	单次应答	
(起始)	0x09	增加 0.1Hz 当前设置的扫描频率	不切换	单次应答	
	0x0A	减小 0.1Hz 当前设置的扫描频率	不切换	单次应答	
	0x0B	增加 1Hz 当前设置的扫描频率	不切换	单次应答	
	0x0C	减小 1Hz 当前设置的扫描频率	不切换	单次应答	
	0x0D	获取当前设置的扫描频率	不切换	单次应答	
	0x0E	开启恒频功能,稳定转速(默认开启)	不切换	单次应答	
	0x0F	关闭恒频功能	不切换	单次应答	
	0xD0	测距频率设置	不切换	单次应答	

表 1 YDLIDAR G4 系统命令

0xD1	获取当前测距频率	不切换	单次应答
0x40	设备软重启	-	无应答

系统报文

系统报文时系统根据接收的系统命令反馈的应答报文,不同的系统命令,系统报文的应答模式和应答内容也不一样,其中应答模式有三种:无应答、单次应答、持续应答。

无应答表示系统不反馈任何报文;单次应答表示系统的报文长度是有限的,应答一次即结束; 持续应答表示系统的报文长度是无限长的,需要持续发送数据,如进入扫描模式时。

单次应答和持续应答的报文采用同一个数据协议,其协议内容为:起始标志、应答长度、应答模式、类型码和应答内容,通过串口16进制输出。

表 2 YDLIDAR G4 系统报文数据协议

起始标志	应答长度	应答模式	类型码	应答内容
16bits	30bits	2bits	8bits	-
字节偏移: 0	2 4	4 6	7	
LL HH	LL HH	LL HH LL	••	••
■ 起始标	示志 应答七	←度 ■ 应答模	式 类型码	■ 应答内容

图 3 YDLIDAR G4 系统报文数据协议示意图

- ▶ **起始标志: G**4 的报文标志统一为 0xA55A;
- ▶ 应答长度:应答长度表示的是应答内容的长度,但当应答模式为持续应答时,长度应为 无限大,因此该值失效;
- ▶ **应答模式:** 该位只有 2bits,表示本次报文是单次应答或持续应答,其取值和对应的模式 如下:

表 3 YDLIDAR G4 应答模式取值和对应应答模式

应答模式取值	0x0	0x1	0x2	0x3
应答模式	单次应答	持续	未定	三义

- ▶ 类型码: 不同的系统命令,对应不同的类型码;
- ▶ 应答内容:不同的系统命令,反馈不同的数据内容,其数据协议也不同。

注1: G4 的数据通信采用的是小端模式,低位在前。

注2: 应答报文中,第6个字节的低6位属于应答长度,高2位属于应答模式。

数据协议

不同的系统命令,有着不同报文的报文内容。而不同类型码的报文中,其应答内容的数据协 议也不尽相同。因此,用户需要根据相应的数据协议,来解析应答内容中的数据,如点云数 据、设备信息等。

扫描命令 [A5 60]

当外部设备向 G4 发送扫描命令时, G4 会进入扫描模式, 并反馈点云数据。其应答报文为:

图 4 YDLIDAR G4 扫描报文示意图

其中第6个字节高2为01,因此应答模式取值为0x1,为持续应答,忽略应答长度,类型码为0x81;

应答内容为系统扫描的点云数据,其按照以下数据结构,以16进制向串口发送至外部设备。

字节偏移:

图 5 扫描命令应答内容数据结构示意图

表 4 扫描命令应答内容数据结构描述

内容	名称	描述
PH(2B)	数据包头	长度为 2B, 固定为 0x55AA, 低位在前, 高位在后。
CT(1B)	包类型	表示当前数据包的类型; 0x00:点云数据包 0x01:零位数据包。
LSN(1B)	采样数量	表示当前数据包中包含的采样点数量;零位数据包中只有1个零位点的数据,该值为1。
FSA(2B)	起始角	采样数据中第一个采样点对应的角度数据
LSA(2B)	结束角	采样数据中最后一个采样点对应的角度数据
CS(2B)	校验码	当前数据包的校验码,采用双字节异或对当前数据包进行校验
Si(2B)	采样数据	系统测试的采样数据,为采样点的距离数据

▶ 零位解析:

零位数据处于零位数据包中,该数据包中 LSN = 1,即 Si 的数量为 1,S1 = 零位距离数据;FSA = LSA = 零位角度数据;其距离和角度的具体值解析参见距离和角度的解析。

▶ 角度解析:

角度数据保存在 FSA 和 LSA 中,每一个角度数据有如右的数据结构:

图 6 角度数据结构示意

起始角解算公式:
$$Angle_{FSA} = \frac{Rshiftbit(FSA,1)}{64}$$
 结束角解算公式: $Angle_{LSA} = \frac{Rshiftbit(LSA,1)}{64}$

中间角解算公式:
$$Angle_i = \frac{diff(Angle)}{LSN} * (i-1) + Angle_{FSA}$$

其中,C是校验位,其值固定为 1。Rshiftbit(data,1)表示将数据 data 右移一位。 diff(Angle)表示起始角到结束角的顺时针角度差,LSN表示本帧数据包采样数量。

设数据包中,第 4~8 字节为 28 E5 6F BD 79,所以 LSN = 0x28 = 40(dec),FSA = 0x6FE5,LSA = 0x79BD,带入角度解算公式,得 $Angle_1 = 223.78^\circ$, $Angle_{40} = 243.47^\circ$ 。

所以diff(Angle) = 19.69°,依此,可以求出本帧数据包中各采样点的角度数据。

▶ 距离解析:

距离解算公式: Distance(i) = $\frac{Si}{4}$

其中,Si 为采样数据。设采样数据为E5 6F,由于本系统是小端模式,所以本采样点S=0x6FE5,带入到距离解算公式,得Distance=7161.25mm。

> 校验码解析:

校验码采用双字节异或,对当前数据包进行校验,其本身不参与异或运算,且异或顺序不是严格按照字节顺序,其异或顺序如图所示,因此,校验码解算公式为:

$$CS = XOR_1^{end}(C_i)$$
 $i = 1, 2, ..., end$

 XOR_1^{end} 为异或公式,表示将元素中从下标 1 到 end 的数进行异或。但异或满足交换律,实际解算中可以无需按照本文异或顺序。

图 7 CS 异或顺序示意图

停止命令 [A5 65]

当系统处于扫描状态时,G4一直在对外发送点云数据,若此时需要关闭扫描,可以发送此命令,令系统停止扫描。发送停止命令后,系统会处于待机状态,此时,设备的测距单元处于低功耗模式,激光器不亮。

该命令是无响应的, 因此系统在接收到该命令后, 不会有任何报文应答。

设备信息[A5 90]

当外部设备向 G4 发送获取设备信息命令(A5 90)时, G4 会反馈设备的型号、固件版本和硬件版本,以及设备出厂序列号。其应答报文为:

图 8 YDLIDAR G4 设备信息报文示意图

按照协议解析:应答长度 = 0x00000014,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 20;本次应答为单次应答,类型码为 04,该类型应答内容满足一下数据结构:

图 9 YDLIDAR G4 设备信息应答内容数据结构示意图

- ▶ 型号: 1 个字节设备机型, 如 G4 的机型代号是 04;
- ▶ 固件版本: 2 个字节, 低字节为主版本号, 高字节为次版本号;
- **▶ 硬件版本:** 1 个字节,代表硬件版本:
- **▶ 序列号:** 16 个字节, 唯一的出厂序列号。

健康状态[A5 91]

当外部设备向 G4 发送获取设备健康状态命令(A5 91)时, G4 会反馈设备的状态码。其应答报文为:

图 10 YDLIDAR G4 设备健康状态报文示意图

按照协议解析:应答长度 = 0x00000003,应答模式 = 0x0,类型码 = 0x06。

即应答内容字节数为3;本次应答为单次应答,类型码为06,该类型应答内容满足一下数据结构:

图 11 YDLIDAR G4 设备健康状态应答内容数据结构示意图

- ▶ **状态码:** 1 个字节, 0x0 表示设备运行正常, 0x1 表示设备运行警告, 0x2 表示设备运行错误
- ▶ **错误代码:** 2个字节,当出现警告或者错误状态时,具体的错误代号会被记录在该字段当中 0x00 表示设备运行无报错。

低功耗使能[A5 01]

当外部设备向 G4 发送低功耗使能命令(A5 01)时,G4 会在空闲模式下自动进入低功耗状态 (待机时: 电机停转,测距单元掉电),降低待机功耗。其应答报文为:

图 12 YDLIDAR G4 低功耗使能报文示意图

按照协议解析:应答长度 = 0x00000001,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 1;本次应答为单次应答,类型码为 04。该命令应答内容固定为 0x01,表示使能系统的低功耗状态。G4 默认使能低功耗。

低功耗关闭[A5 02]

当外部设备向 G4 发送低功耗关闭命令(A5 02)时,G4 会在空闲模式下不会自动进入低功耗状态(待机时:电机运转,测距单元不掉电),其应答报文为:

图 13 YDLIDAR G4 低功耗关闭报文示意图

按照协议解析:应答长度 = 0x00000001,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 1;本次应答为单次应答,类型码为 04。该命令应答内容固定为 0x00,表示关闭系统的低功耗状态。

低功耗查询[A5 05]

当外部设备向 G4 发送低功耗查询命令(A5 05)时,系统会反馈系统当前待机的功耗状态,其应答报文为:

图 13 YDLIDAR G4 低功耗查询报文示意图

按照协议解析:应答长度 = 0x00000001,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 1;本次应答为单次应答,类型码为 04。该命令应答内容为 0x00 或 0x01。

0x00: 当前待机状态为非低功耗状态;

0x01: 当前待机状态为低功耗状态。

扫描频率设置[A5 09/0A/0B/0C]

G4提供了多个扫描频率设置的命令接口,用于增加或减少系统的扫描频率,具体如下:

系统命令描述0xA509增加 0.1Hz 当前设置的扫描频率0xA50A减小 0.1Hz 当前设置的扫描频率0xA50B增加 1Hz 当前设置的扫描频率0xA50C减小 1Hz 当前设置的扫描频率

表 4 扫描频率设置命令描述

上述命令是同一类型命令,有着相同的报文结构。扫描频率设置命令有如下报文结构:

图 14 YDLIDAR G4 扫描频率设置报文示意图

按照协议解析:应答长度 = 0x00000004,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 4;本次应答为单次应答,类型码为 04。其应答内容表示的是当前设置的扫描频率,其解算公式为:

$$F = \frac{AnswerData}{10}$$

其中,AnswerData为应答内容(小端模式)换算成十进制数据,单位为赫兹(Hz)。

扫描频率获取[A5 0D]

该命令用于获取设置的扫描频率(注意不是实时频率),其报文结构和应答内容和扫描频率设置命令一致,用户可参见扫描频率设置[A5 09/0A/0B/0C],本节不作阐述。

恒频使能 [A5 0E]

该命令用于使能系统恒频,使能后,雷达在扫描模式时,会进行自动调速,使扫描频率稳定 在当前设定的扫描频率上。G4 默认使能恒频。

该命令的报文如下:

图 15 YDLIDAR G4 恒频使能报文示意图

按照协议解析:应答长度 = 0x00000001,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 1;本次应答为单次应答,类型码为 04。该命令应答内容固定为 0x01,表示使能系统恒频。

恒频关闭 [A5 0F]

该命令用于关闭系统恒频,关闭后,雷达在扫描模式时,不会进行自动调速。该命令的报文如下:

图 16 YDLIDAR G4 恒频关闭报文示意图

按照协议解析:应答长度 = 0x00000001,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 1;本次应答为单次应答,类型码为 04。该命令应答内容固定为 0x00,表示关闭系统恒频。

测距频率设置 [A5 D0]

该命令用于设置系统的测距频率,使测距频率在 4KHz、8KHz 和 9KHz 间切换,默认为 9KHz。该命令的报文如下:

图 17 YDLIDAR G4 测距频率设置报文示意图

按照协议解析:应答长度 = 0x00000001,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为1;本次应答为单次应答,类型码为04。该命令应答内容对应系统测距频率,具体如下:

表 5 测距频率设置应答内容描述

应答内容 0x00 0x01 0x	.02
-------------------	-----

测距频率获取 [A5 D1]

该命令用于获取系统当前的测距频率,该命令的报文结构和应答内容和 测距频率设置一致,用户可参见测距频率设置章节,本节不作详细阐述。

重启命令 [A5 40]

当外部设备向 G4 发送获取设备设备命令(A5 40)时,G4 会进入软重启,系统重新启动。该命令无应答。

待机控制

G4将系统的功耗控制集成到系统的命令接口上,并不是硬件接口上。因此,用户只需发送相应的控制命令(A5 01/02),即可使能/关闭系统的低功耗状态。具体可参见低功耗使能章节,本节不作详细阐述。

速度控制

G4将系统的速度控制集成到系统的命令接口上,并不是硬件接口上。用户可通过调节扫描频率,来改变电机的转速。具体参见扫描频率设置章节,本节不作详细阐述。

使用注意

在和 G4 进行命令交互时,除了停止扫描命令(A5 65), 其他命令不能在扫描模式下进行交互, 这样容易导致报文解析错误。

修订

日期	版本	修订内容
2017-12-6	1.0	初撰
2017-12-26	1.1	优化排版,修订扫描命令内容细节
2017-12-29	1.2	数据协议中,距离解析和角度解析内容修订