Espaces Vectoriels de Dimension finie Dépendance linéaire dans un espace vectoriel de dimension finie

MPSI 2

Propriété 0.0.1

Soit E un \mathbb{K}_{EV} .

Soit $(e_1, \ldots, e_n)_{i \in \llbracket 1, n \rrbracket}$ une base de E $\varphi \colon (\mathbb{K}^n, +, \cdot) \longrightarrow (E, +, \cdot)$

$$(x_1, \ldots, x_n) \longmapsto \sum_{i=1}^n x_i \cdot e_i$$

 φ est un isomorphisme de \mathbb{K}_{EV} , de \mathbb{K}^n dans E.

En particulier, K^n et E sont isomorphes.

Propriété 0.0.2

Soit $\{V_1, \ldots, V_p\}$ un système d'éléments de E.

- $\{V_1, \ldots, V_p\}$ est libre ssi $\{\varphi^{-1}(V_1), \ldots, \varphi^{-1}(V_p)\}$ est libre dans \mathbb{K}^n .
- $\{V_1, \ldots, V_p\}$ est générateur ssi $\{\varphi^{-1}(V_1), \ldots, \varphi^{-1}(V_p)\}$ est générateur de \mathbb{K}^n . (V_1, \ldots, V_p) est une base ssi $(\varphi^{-1}(V_1), \ldots, \varphi^{-1}(V_p))$ est une base de \mathbb{K}^n .

Corollaire 0.0.1

- $Si \{V_1, \ldots, V_n\}$ est libre, alors $p \leq n$.
- $Si \{V_1, ..., V_p\}$ est générateur, alors $p \ge n$.
- $Si(V_1, ..., V_p)$ est une base, alors p = n.