Given

$$a_1 = a_2 = 0$$
 $u_j = w_j - \frac{1}{4} (j(l_j))$ Two cities: $l_1 + l_2 = 100$
 $w_i = 0$, $w_2 = 8$
 $v_j = 0$, $v_2 = 8$

Solve for Eq pop levels, l_1^* and l_2^*

The sectional set
$$U_1 = U_2 - \frac{1}{4}(8L_1^*)$$
 $U_1 = U_2$
 $U_2 - \frac{1}{4}(8L_1^*) = U_2 - \frac{1}{4}(8L_1^*)$
 $U_3 - 2L_1^* = 8 - 2L_2^*$
 $U_4 - 2L_1^* = -2L_2^*$
 $U_5 = U_7^* - 1$
 $U_7 = U_7^* - 1$
 $U_7 = U_7^* = 100$
 $U_7^* + U_7^* - 1 = 100$
 $U_7^* = 100$
 $U_7^* = 100$
 $U_7^* = 100$