Mathematics GU6308 Algebraic Topology Assignment # 5

Benjamin Church

May 5, 2020

1 The Gysin Sequence

For sphere bundles, there is a particularly nice exact sequence due to Gysin.

Theorem 1.0.1 (Gysin). Let $S^n \hookrightarrow E \xrightarrow{p} B$ be a sphere bundle which is homotopically simple. Then there is an exact sequence,

$$\cdots \xrightarrow{p_*} H_{i+1}(B) \xrightarrow{d} H_{i-n}(B) \xrightarrow{\ell} H_i(E) \xrightarrow{p_*} H_i(B) \xrightarrow{d} H_{i-n-1}(B) \xrightarrow{\cdots} \cdots$$

Furthermore, let $C \in H^{n+1}(B; \pi_n(S^n)) = H^{n+1}(B; \mathbb{Z})$ be the primary obstruction. Then $d(x) = x \frown C$ and ℓ is the map lifting a homology class of B to its preimage in E.

Proof. We consider the homological Serre spectral sequence,

$$E_{p,q}^2 = H_p(B, H_q(S^n)) \implies H_{p+q}(E)$$

Note that,

$$E_{p,q}^2 = H_p(B, H_q(S^n)) = \begin{cases} H_p(B; \mathbb{Z}) & q = 0, n \\ 0 & q \neq 0, n \end{cases}$$

To choose an isomorphism $\pi_n(S^n) \cong \mathbb{Z}$ we need an orientation of S^n . However, this is not an issue since we have assumed that the fibration is homotopically simple so there is no obstruction to choosing a consistent orientation.

Therefore, the second page of the Serre spectral sequence has two rows. The differential $d_{p,q}^r$ has bidegree (-r, r-1) so the only relevant differentials occur at page r=n+1 giving a differential,

$$d_{p,0}^{n+1}: E_{p,0}^{n+1} \to E_{p-n-1,n}^{n+1}$$

Therefore, we can explicitly describe the ∞ -page,

$$E_{p,q}^{\infty} = \begin{cases} H_p(B; \mathbb{Z}) & p < n+1, q = 0\\ \ker \left(d_{p,0}^{n+1} \right) & p \ge n+1, q = 0\\ \operatorname{coker} \left(d_{p+n+1,0}^{n+1} \right) & q = n \end{cases}$$

Since the spectral sequence converges,

$$E_{p,q}^2 \implies H_{p+q}(E)$$

there is a filtration $F_pH_n(E)$ such that,

$$E_{p,q}^{\infty} = F_p H_{p+q}(E) / F_{p-1} H_{p+q}(E)$$

Note that $E_{p,q}^{\infty} \neq 0$ only when q = 0, n so for fixed i = p + q we find,

$$F_i H_i(E) / F_{i-1} H_i(E) = E_{i,0}^{\infty} = \ker \left(d_{i,0}^{n+1} \right)$$

and

$$F_{i-n}H_i(E)/F_{i-n-1}H_i(E) = E_{i-n,n}^{\infty} = \operatorname{coker}\left(d_{i+1,0}^{n+1}\right)$$

and all other quotients are zero. Therefore, $F_iH_i(E) = H_i(E)$ and $F_{i-1}H_i(E) = \cdots = F_{i-n}H_i(E)$ and $F_{i-n-1}H_i(E) = 0$. This gives an exact sequence,

$$0 \longrightarrow E_{i-n,n}^{\infty} \longrightarrow H_i(E) \longrightarrow E_{i,0}^{\infty} \longrightarrow 0$$

and therefore,

$$0 \longrightarrow \operatorname{coker}\left(\operatorname{d}_{i+1,0}^{n+1}\right) \longrightarrow H_i(E) \longrightarrow \ker\left(\operatorname{d}_{i,0}^{n+1}\right) \longrightarrow 0$$

Now these are maps,

$$d_{i,0}^{n+1}: H_i(B; \mathbb{Z}) \to H_{i-n-1}(B; \mathbb{Z})$$

 $d_{i+1,0}^{n+1}: H_{i+1}(B; \mathbb{Z}) \to H_{i-n}(B; \mathbb{Z})$

Therefore, the following sequence is exact,

$$H_{i+1}(B; \mathbb{Z}) \xrightarrow{\mathrm{d}_{i+1,0}^{n+1}} H_{i-n}(B; \mathbb{Z}) \xrightarrow{\ell} H_{i}(E; \mathbb{Z}) \xrightarrow{p_*} H_{i}(B; \mathbb{Z}) \xrightarrow{\mathrm{d}_{i,0}^{n+1}} H_{i-n-1}(B; \mathbb{Z})$$

These five term sequences glue to form a long exact sequence as follows,

$$\cdots \xrightarrow{\ell} H_{i+1}(E; \mathbb{Z}) \xrightarrow{p_*} H_{i+1}(B; \mathbb{Z}) \xrightarrow{d_{i+1,0}^{n+1}} H_{i-n}(B; \mathbb{Z})$$

$$\parallel \qquad \qquad \parallel$$

$$H_{i+1}(B; \mathbb{Z}) \xrightarrow{d_{i+1,0}^{n+1}} H_{i-n}(B; \mathbb{Z}) \xrightarrow{\ell} H_{i}(E; \mathbb{Z}) \xrightarrow{p_*} \cdots$$

Now that we have demonstrated the existence of the Gysin sequence, we need to identify these maps. First, the morphism of fibrations,

$$E \xrightarrow{p} B$$

$$\downarrow^{p} \qquad \downarrow_{id}$$

$$B \xrightarrow{id} B$$

induces a morphism on spectral sequences which shows that the map

$$H_i(E; \mathbb{Z}) \to E_{p,0}^2 \subset E_{p,0}^2 = H_p(B; \mathbb{Z})$$

is induced by $p: E \to B$. Note that this is the map $H_i(E; \mathbb{Z}) \to \ker \left(\operatorname{d}_{i,0}^{n+1} \right) \to H_i(B; \mathbb{Z})$ which appear in our long exact sequence by the properties of a morphism of spectral sequences.

We need to investigate the map $d_{i,0}^{n+1}: H_i(B;\mathbb{Z}) \to H_{i-n-1}(B;\mathbb{Z})$. To do this, we use the cap product structure on the homological and cohomological spectral sequences $\frown: E_{p,q}^r \times E_r^{p',q'} \to E_{p-p',q-q'}^r$

which reduces to the usual cap product. Furthermore, the cap product structure is compatible with the differential. In particular, for the differential $d_{p,0}^{n+1}: E_{p,0}^{n+1} \to E_{p-n-1,n}^{n+1}$ this is a map $H_p(B;\mathbb{Z}) \to H_{p-n-1}(B;\mathbb{Z})$ which is cap product with some class $e \in H^{n+1}(B;\mathbb{Z})$ i.e. the map $e: H_p(B;\mathbb{Z}) \to H_{p-n-1}(B;\mathbb{Z})$. Recall the definition of the primary obstruction. There is no obstruction to finding a section $s: B^n \to E$ since $\pi_i(F) = 0$ for i < n. Then for each (n+1)-cell D^n with an attaching map $f: S^n \to B^n$ we have an inclusion $h: D^{n+1} \to B$, then pulling back the fibration gives $h^*E \to D^{n+1}$. We have a section $s: \partial D^{n+1} \to h^*E$ and since h^*E is locally trivial then a map $f: S^n \to F$. Adding these together gives a cohomology class $H^{n+1}(X; \pi_n(F)) = H^{n+1}(X; \mathbb{Z})$.

Notice that if the fibration $p: E \to B$ has a section $s: B \to E$ then by $p \circ s = \mathrm{id}_B$ we immediately see that $p_* \circ s_* = \mathrm{id}$ on homology so the map $p_*H_i(E) \to H_i(B)$ is surjective. Therefore, d = 0 and the Gysin sequence splits into short exact sequences,

$$0 \longrightarrow H_{i-n}(B) \longrightarrow H_i(E) \stackrel{p_*}{\longrightarrow} H_i(B) \longrightarrow 0$$

In particular, this shows that whenever $p: E \to B$ has a section, the class e = 0. Focus on degree i = n + 1 in which we have shown there is a sequence,

$$H_1(B) \longrightarrow H_{n+1}(E) \stackrel{p_*}{\longrightarrow} H_{n+1}(B) \stackrel{\frown e}{\longrightarrow} H_0(B)$$

Choose a section $s: B^n \to E$ on the *n*-skeleton of B. Then the map $\smile e$ takes an n+1-cell D^{n+1} to the degree of the map $\partial D^{n+1} \to F$ (as a map $S^n \to S^n$). Thus e is the primary obstruction. \square

2 Postnikov and Whitehead Towers

Definition 2.0.1. Let X be a path-connected space. Then a *Postnikov* tower \mathcal{X} is a diagram of spaces,

Such that,

- (a) $s_n: X \to X_n$ induces an isomorphism $(s_n)_*: \pi_i(X) \to \pi_i(X_n)$ for $i \leq n$
- (b) $\pi_i(X_n) = 0 \text{ for } i > n.$

A morphism of Postnikov towers is a morphism of diagrams.

Remark. Note that any morphism of Postnikov towers $f: \mathcal{X} \to \mathcal{X}'$ induces a weak homotopy equivalence $f_n: X_n \to X_n'$ because the diagram,

$$\pi_i(X_n) \xrightarrow{(f_n)_*} \pi_i(X'_n)$$

$$(s_n)_* \xrightarrow{(s'_n)_*} \pi_i(X)$$

commutes and either $\pi_i(X_n) = \pi_i(X_n') = 0$ for i > n or the upward maps are isomorphism for $i \le n$ so $(f_n)_* : \pi_i(X_n) \xrightarrow{\sim} \pi_n(X_n')$ is an isomorphism.

Proposition 2.0.2. Let X be a path-connected CW complex. Then X admits a Postnikov tower \mathcal{X} of CW complexes which is unique up to homotopy equivalence.

Proof. Starting with the constant map $q_0: X \to X_0 = *$ we construct a tower,

Given a map $s_n: X \to X_n$ such that $(s_n)_*: \pi_i(X) \to \pi_i(X_n)$ with $i \le n$ and $\pi_i(X_n) = 0$ for i > n. For each $S^{n+1} \to X$ generating $\pi_{n+1}(X)$ define X_{n+1} by attaching (n+2)-cells via the attaching maps $S^{n+1} \to X$ to kill $\pi_{n+1}(X)$ and for each $S^{n+i} \to X$ generating $\pi_{n+i}(X)$ attach an (n+i+1)-cell via the attaching maps $S^{n+i+1} \to X$ to kill $\pi_{n+i}(X)$. Then we have a map $s_{n+1}: X \hookrightarrow X_{n+1}$ satisfying the required properties. Furthermore, since $\pi_i(X_n) = 0$ for i > n, the map $X \to X_n$ lifts to $X \to X_{n+1} \to X_n$ using Lemma 4.7 in Hatcher and noting that $X_{n+1} \setminus X$ is built from cells of dimension at least n+2.

Now suppose that \mathcal{X} is a CW Postnikov tower for X and \mathcal{X}' be the tower constructed above via attaching cells to X. It suffices to show there is a morphism $\mathcal{X} \to \mathcal{X}'$ of Postnikov towers since such a morphism is a weak homotopy equivalence on X_n and are CW complexes so any weak homotopy equivalence is automatically a homotopy equivalence. Such a morphism is given by Hatcher Proposition 4.18.

Remark. For each $q_n: X_{n+1} \to X_n$ we can expand $X_n \hookrightarrow X'_n$ to give a fibration $q'_n: X'_{n+1} \to X'_n$ fitting into the diagram,

$$X_{n+1} \longleftrightarrow X'_{n+1}$$

$$\downarrow^{q_n} \qquad \qquad \downarrow^{q'_n}$$

$$X_n \longleftrightarrow X'_n$$

Therefore, we may assume that $q_n: X_{n+1} \to X_n$ is a fibration in the definition of a Postnikov tower. This allows us to investigate the fiber $F_{n+1} \hookrightarrow X_{n+1} \xrightarrow{q_n} X_n$ via the long exact sequence,

$$\pi_{i+1}(X_{n+1}) \xrightarrow{q_*} \pi_{i+1}(X_n) \longrightarrow \pi_i(F_{n+1}) \longrightarrow \pi_i(X_{n+1}) \xrightarrow{q_*} \pi_i(X_n)$$

For i > n-1 we have $\pi_{i+1}(X_n) = 0$ and for i > n+1 we have $\pi_i(X_{n+1}) = 0$. Therefore, for i > n+1 we have $\pi_i(F_{n+1}) = 0$. Furthermore, the diagram,

$$\pi_i(X_{n+1}) \xrightarrow{(q_{n+1})_*} \pi_i(X_n)$$

$$(s_{n+1})_* \qquad (s'_n)_*$$

$$\pi_i(X)$$

Therefore, for $i \leq n$ both upward maps are isomorphisms so $(q_{n+1})_*: \pi_i(X_{n+1}) \to \pi_i(X_n)$ is an isomorphism. Therefore, $\pi_i(F_{n+1}) = 0$ from the long exact sequence when i < n. Thus, we only need to consider the cases i = n, n + 1. For i = n we get,

$$0 \longrightarrow \pi_n(F_{n+1}) \longrightarrow \pi_n(X_{n+1}) \stackrel{\sim}{\longrightarrow} \pi_n(X_n)$$

and thus $\pi_n(F_{n+1}) = 0$. For i = n+1 we get,

$$0 \longrightarrow \pi_{n+1}(F_{n+1}) \longrightarrow \pi_{n+1}(X_{n+1}) \xrightarrow{q_*} 0$$

and thus $\pi_{n+1}(F_{n+1}) = \pi_{n+1}(X_{n+1}) = \pi_n(X)$. Thus, we find that $F_{n+1} = K(\pi_n(X), n)$.

Definition 2.0.3. Let X be a connected CW complex and \mathcal{X} its Postnikov tower. Then we define a completion,

$$\hat{X} = \varprojlim_n X_n$$

2.1 Whitehead Towers

Definition 2.1.1. Let X be a connected space. Then a Whitehead tower \mathcal{X} is a sequence of spaces,

where X^n is n-connected and the morphism $q^n: X^n \to X^{n-1}$ induces an isomorphism,

$$(q^n)_* : \pi_i(X^n) \xrightarrow{\sim} \pi_i(X^{n-1})$$

for all $i \geq n+1$. A morphism $f: \mathcal{X} \to \mathcal{X}'$ of Whitehead towers is a morphism $f^n: X^n \to X'^n$ of sequences such that $f^0: X^0 \to X^0$ is the identity.

Remark. Given any morphism $f: \mathcal{X} \to \mathcal{X}'$ of Whitehead towers, we have a commuting square,

$$\pi_i(X^{n+1}) \xrightarrow{q_*^{n+1}} \pi_i(X^n)$$

$$f_*^{n+1} \downarrow \qquad \qquad \downarrow f_*^n$$

$$\pi_i(X'^{n+1}) \xrightarrow{q_*'^{n+1}} \pi_i(X'^n)$$

For $i \geq n+2$ the maps q_*^{n+1} are isomorphism. For $i \leq n+1$ we have $\pi_i(X^{n+1}) = \pi_i(X'^{n+1}) = 0$ and thus if f_*^n is an isomorphism for all i then f_*^{n+1} is also an isomorphism for each i. Furthermore, since $f^0 = \operatorname{id}$, by induction we see that $f_*^n : \pi_i(X^n) \to \pi_i(X^n)$ is an isomorphism for each i. Thus any morphism $f: \mathcal{X} \to \mathcal{X}'$ on Whitehead towers gives a weak homotopy equivalence $f^n: X^n \to X'^n$ on each X^n .

Theorem 2.1.2. Let X be a connected CW complex. Then X admits a Whitehead tower which is unique up to homotopy equivalence.

Proof. We may take a Postnikov tower of fibrations for X,

Consider the map $s_n: X \to X_n$. Then we define the Whitehead tower X^n to be the homotopy fiber of $s_n: X \to X_n$. Therefore, we get a fibration $X^n \hookrightarrow N_{s_n} \to X_n$ where N_{s_n} is homotopy equivalent to X. Furthermore, $\pi_i(N_{s_n}) \xrightarrow{\sim} \pi_i(X_n)$ is an isomorphism for $i \leq n$ and $\pi_{n+1}(X_n) = 0$ so by the long exact sequence of a fibration, we find that $\pi_i(X^n) = 0$ for $i \leq n$. Furthermore, for i > n we know $\pi_i(X_n) = 0$ and thus $\pi_i(X^n) \to \pi_i(X)$ is an isomorphism for i > n. Using the functoriality of homotopy fibers, we get a diagram,

For i > n+1 the upper triangle are isomorphism proving that the spaces X^n form a Whitehead tower. Using a similar argument we see that Whitehead towers and Postnikov towers are dual and existence and uniqueness of Whitehead towers thus carries over from our discussion of Postnikov towers.