Made in "Bornian Puzzler" night club. Derigned and created by: "Ganga style bror"

1. Djelatna, jalova i prividna snaga - objasni

P-djelatna snaga koja se koristi za dobivanje mehaničkog rada, toplinske energije... Q-jalova snaga je potrebna za rad induktivnih tereta. njihov valni oblik struje je sinusni te je pomaknut u fazi u odnosu na napon. da bi se to kompenziralo troši se jalova snaga. najveći potrošači su asinkroni motori čija potrošnja jalove snage na nazivnom opterećenju iznosi 50%, a pri praznom hodu 30% ukupne prividne snage

S-prividna snaga koja ovisi o jalovoj i djelatnoj snazi. (trokut, str. 4 u pdf-u kompenzacija jalove snage, kuzle)

2. Djelatni gubici na vodu - izraz, objasni oznake u njemu

$$Q = Q_L - Q_C = 3I^2L\omega - U^2C\omega$$

U- linijski napon

I- linijska struja

L- induktivitet

ω- kružna frekvencija struje

3. Specifičnosti kondenzatorskih baterija ???

4. Objasni što je prirodna snaga voda

Prirodna snaga voda je snaga voda pri kojoj su potrošak i proizvodnja jalove energije u vodu izjednačeni $Q=Q_L-Q_C=0$

5. Ovisnost napona i jalove snage - graf i objašnjenje

Slika 1. Ovisnost napona o jalovoj snazi u nekom čvorištu

Iz slike se vidi da ako se napon poveća za deltaU, također se i jalova snaga poveća za deltaQ, a omjer deltaQ kroz deltaU je regulacijska energija voda (K).

6. Nabroji uređaje za kompenzaciju jalovine Sinkroni strojevi, kondenzatorske baterije, prigušnice i regulatori.

7. Samoregulacija turbine

Slika 2.6 Samoregulacija turbine

$$K = \frac{\Delta P}{\Delta f}$$

Na ovom grafu tri su radne točke: - točka 1, pri frekvenciji dvostruko većoj od nazivne, na kojoj na turbinu nije stavljen nikakav mehanički teret

- točka 2, na frekvenciji jednakoj nazivnoj, gdje je na turbini teret i ona daje nazivnu snagu
- točka 3, na frekvenciji nula, jer je turbina zakočena(unatoč 100% protoku)

Ako razmotrimo rad turbine u nominalnim uvjetima, te ako broj okretaja odstupa samo par postotaka od nazivnog, može se krivulje nadomjestiti pravcima(tangentama). Nagib tih pravaca predstavlja regulacijsku energiju turbine.

8. Nadomjesna (sumarna) karakteristika agregata

Ako su agregati jednaki(na nazivnoj frekvenciji i nazivnoj snazi), njihove snage se samo zbroje, a regulacijska energija se također zbroji.

9. Regulacijska energija potrošnje

Slika 2.12 Karakteristike potrošnje

Tangenta(iscrtkana linija) na karakteristiku 3 nam predstavlja aproksimaciju potrošačkih krivulja, te iz nje možemo odrediti regulacijsku energiju $K = \frac{\Delta P}{\Delta f}$

10. Neosjetljivost regulatora

Slika 2.5 Neosjetljivost regulatora

Ako se frekvencija promijeni za dovoljno malen iznos, regulator to neće registrirati i neće doći do promjene snage.

$$P = 3\nu K = 3\nu \frac{2P_n}{s_{\%}}$$

10.Zahtjev za konstantnom frekvencijom

Frekvenciju je nužno održavati konstantnom kod paralelnog rada više sustava, te zbog zahtjeva potrošača čiji motori često zahtijevaju precizno određenu frekvenciju u rasponu od +- 0,5Hz.

11. Karakteristika turbinskog regulatora

Slika 2.2 Karakteristika turbinskog regulatora u stacionarnom stanju

12. Kategoriziranje potrošača

Kućanstva, industrija, uslužne djelatnosti i ostalo...

Tarifni, povlašteni kupci

13. Izrazi za bp i Kg (staticnost i regulacijsku energiju proizvodnje)

$$b_p = \frac{\Delta f}{f_n}$$

$$K = \frac{\Delta P}{\Delta f}$$