Optische Transducer

Licht- und Bewegungssensoren

Grundlagen

- Messumformer sind Teile einer Messkette, die physikalische Größen in elektrische Signale umformen (physikalische Größe→ analoges Normsignal)
- die Umwandlung in analoge Normsignale sind wichtig für Verarbeitung bei Messgeräten
- galvanische Trennung zwischen Ein- und Ausgangssignal

Lichtsensoren Basics

- wandeln Licht in elektrische Signale um
- Licht bezieht sich auf:
 - sichtbares Licht
 - Infrarotlicht
 - Ultraviolettstrahlung

Lichtsensoren Anwendung

- Fotografie (signalerfassender Belichtungsmesser)
- Digitale Fotografie (Bildsensor misst lichtempfängliche Fläche (Pixel))

Der Photoelektrische Effekt

- Elektron wird durch Absorption von Photon aus einer Bindung gelöst
- äußere/innere photoelektrischer Effekt

Energie des elektr. Feldes: Wel = e * Ugeg

Energie eines Photons: $W_p = h * f$; $f = \frac{c}{\lambda}$

Energie des Elektrons: $W_{pe} = h * f - h * f_G$

Geschwindigkeit des

Elektrons: Wpe = Wkin

$$V = \sqrt{\frac{W_{pe} * 2}{m_e}}$$

Masse eines Photons:

$$m_p = \frac{h * f}{c^2}$$

Bewegungssensoren Basics

- Lageänderung wird in elektrische Größe umgesetzt
- → leitfähiger Körper kann elektrischen Impuls auslösen

Bewegungssensoren Anwendungen

- Bewegungsmelder (arbeitet bei Bewegung als elektrischer Schalter)
 - aktiv: durch elektromagnetische Wellen
 - passiv: Infrarotstrahlung
- Lichtschranke

Fotowiderstand _____

- Light Dependent Resistor (kurz LPD)
- lichtempfindliches elektr. Bauteil
- Materialschicht hat gleiche Farbempfindlichkeitskurve wie das menschliche Auge

Fotowiderstand

- innerer fotoelektrischer Effekt durch Schicht mit amorphem Halbleiter:
 - durch Licht werden Elektronen aus Kristallen gelöst
 - Elektronen stehen nun als freibewegliche Ladungsträger für Leistungsvorgänge zur Verfügung
 - LDR wird leitfähiger und der Widerstandswert sinkt (LDR = umgekehrt proportional)

Fotowiderstand

Fotowiderstand Anwendung

- Flammenwächter (bei Heizungssystemen)
- Dämmungsschalter (lichtabhängiges schalten)
- als Sensor in Lichtschranken

Fotowiderstand Kennwerte

- Dunkelwiderstand R₀ (bei Dunkelheit)
 - 1 MOhm bis 100 MOhm (erst nach ein paar Sekunden Dunkelheit erreichbar)
- Hellwiderstand R₁₀₀₀ (bei 1000lx)
 - 100 Ohm bis 2 kOhm.

Bemerkung

- hohe Trägheit bei Fotowiderständen (bis zu 5 sec)
- temperaturabhängig/temperaturempfindlich

 *
 ↑
 ↓

 Neu
 Öffnen
 Speichern

Arduino UNO ▼

Arduino UNO ▼

Arduino UNO ▼

Arduino UNO ▼

Board

Port

Serieller Monitor Hochladen