Replication of ToxB in Tan Spot of Wheat

Ryan Gourlie, PhD Candidate

Supervisors

Dr. Reem Aboukhaddour, Agriculture and Agri-food Canada, AB

Dr. Dmytro Yevtushenko, University of Lethbridge, AB

Committee

Dr. Megan McDonald, University of Birmingham, UK

Dr. Athansios Zovoilis, University of Lethbridge, AB

Tan spot of wheat

- Pyrenophora tritici-repentis (Ptr) is a fungal pathogen
- Foliar disease of wheat (sometimes other cereals)
- Worldwide occurrence: ~5 to 15% global losses¹
- Three primary effectors: ToxA, ToxB/toxb, ToxC
- Little work done on ToxB
- *ToxB* isolates primarily found in wheat center of origin²
- Homologs found in other species³

inactive

multi-copy

Why explore *ToxB* replication?

- Copy number variation is a driving force of evolution¹
 - *ToxB* copy number linked to increased symptoms^{2,3}

- A large portion of Canadian germplasm susceptible to ToxB (~30%)⁴
- Excess copies of *ToxB* may evolve into new effectors in the future
- Is *ToxB* mobile?
 - Is the mechanism associated with horizontal transfer? i.e. could *ToxB* be passed to other pathogens?

Workflow

Aligners

Databases

Common mechanisms of duplication

- → Unequal crossing over →
- Template-switching
- Break-induced replication (BIR)
- Breakage-fusion-bridge cycles
- Transposons
 - Retrotransposon
 - → DNA transposon →
 - Subclass I
 - Subclass II
 - Composite transposon

- -Many unique features
- -Several overlapping features

Recommended Reviews

Mechanisms of Gene Duplication and Amplification

Cold Spring Harb Perspect Biol 2015;7:a016592

Andrew B. Reams¹ and John R. Roth²

Mechanisms of change in gene copy number

P. J. Hastings [™], James R. Lupski, Susan M. Rosenberg & Grzegorz Ira

Nature Reviews Genetics 10, 551–564 (2009) Cite this article

Transposable elements a.k.a transposons

- Mobile genetic sequences
- Own evolutionary units
- Confer advantages, disease, or inviability
 - antibiotic resistance bacteria
 - porphyria humans
 - spore killer (*Spok*)- fungi

Barbara McClintock; Nobel Prize 1983

Recommended Reviews

A unified classification system for eukaryotic transposable elements

Thomas Wicker, François Sabot, Aurélie Hua-Van, Jeffrey L. Bennetzen, Pierre Capy, Boulos Chalhoub, Andrew Flavell, Philippe Leroy, Michele Morgante, Olivier Panaud, Etienne Paux, Phillip SanMiguel and Alan H. Schulman

Nature Reviews Genetics 8, 973–982 (2007)

Annual Review of Genetics

A Field Guide to Eukaryotic Transposable Elements

Jonathan N. Wells and Cédric Feschotte

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; email: jnw72@cornell.edu, cf458@cornell.edu

Annu. Rev. Genet. 2020. 54:539-61

Genomes MV

Red = active *ToxB*Blue = inactive *toxb*

7 multi-copy isolates

10 single copy

7 zero copy

Total 24 genomes

1					-		
	Isolate	ToxB	Assembler	Size	Contigs		N50
		copies		(Mb)	Total	>1Mb	(Kbp)
	Alg3-24	≥5	Hi-Canu	42.4	119	11	3,402
	AlgH1	5	Hi-Canu	42.5	103	12	3,698
	I-73-1	4	Flye+Pilon	39.9	39	11	3,647
_	T103-1	4	CANU	39.3	236	5	570
_	T128-1	4	CANU	39.8	553	11	3,243
	I-34-1	3	Hi-Canu	43.3	150	12	3,253
	92-171	2	Hi-Canu	44.7	36	14	2,880
	107224	1	Hi-Canu	37.5	35	18	2,075
	331-2	1	Hi-Canu	43.7	123	12	3,470
	90-2	1	CANU	36.2	310	12	2,960
	Alg4x-1	1	CANU	53.9	1,024	0	156
	D308	1	Flye+Pilon	39.6	70	11	3,667
	SC22-2	1	Hi-Canu	44.6	160	12	3,161
	SC29-1	1	CANU	41.5	490	6	468
	SC29-8	1	Hi-Canu	43.2	175	13	2,933
	SW21-5	1	Hi-Canu	42.1	96	13	2,768
\	Tptr3-1	1	Hi-Canu	42.8	126	13	3,604
	Den17	0	Hi-Canu	47.2	97	12	3,465
	G9-7	0	Hi-Canu	43.3	135	11	3,552
	I-33-16	0	Hi-Canu	41.3	75	13	2,705
	K11	0	Hi-Canu	41.2	150	12	3,271
	K6	0	Hi-Canu	40.0	135	11	3,071
	К9	0	Hi-Canu	40.5	130	12	2,812
	T126-1	0	Hi-Canu	42.5	175	12	3,241

Fertile Crescent

Japan

Red = active *ToxB*Blue = inactive *toxb*

Single vs Multi Tptr3-1

ToxB resides in an accessory chromosomal region

Multi vs Multi AlgH1

What are accessory regions?

Whole chromosomes or sections of chromosomes

(e.g. mini-chromosomes, plasmids, chromosome arms, etc.)

Not necessary to maintain base metabolism or reproduction

Often contain virulence factors and secondary metabolite synthesis

clusters

MPMI Vol. 31, No. 8, 2018, pp. 779-788. https://doi.org/10.1094/MPMI-06-17-0135-FI

CURRENT REVIEW

Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA Regions in Plant-Pathogenic Fungi

Stefania Bertazzoni,¹ Angela H. Williams,¹ Darcy A. Jones,¹ Robert A. Syme,¹ Kar-Chun Tan,¹ and James K. Hane¹.².†

Variability of chromosome structure in pathogenic fungi — of 'ends and odds'

Jonathan M Galazka and Michael Freitag

Current Opinion in Microbiology

Volume 20, August 2014, Pages 19-26

Recommended Reviews

Self-alignment of *ToxB* region

Single copy vs multi-copy

Anatomy of the *ToxB/toxb* replicative unit – single copies

Anatomy of the *ToxB/toxb* replicative unit – multi-copy

Potential replication model

Observed single copy genotype

Helitrons are capable of horizontal transfers

Fungi

Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in *Pleurotus ostreatus* and other fungi

Raúl Castanera, Gúmer Pérez, Leticia López, Rubén Sancho, Francisco Santoyo, Manuel Alfaro, Toni Gabaldón, Antonio G Pisabarro, José A Oguiza & Lucía Ramírez

BMC Genomics 15, Article number: 1071 (2014) Cite this article

Bacteria

> Mol Biol Evol. 2022 Jan 7;39(1):msab334. doi: 10.1093/molbev/msab334.

Pif1 Helicases and the Evidence for a Prokaryotic Origin of Helitrons

Pedro Heringer ¹, Gustavo C S Kuhn ¹

Animals

The limited distribution of *Helitrons* to vesper bats supports horizontal transfer

Volume 474, Issues 1–2, 15 March 2011, Pages 52-58

Insects

Horizontal transfer of a non-autonomous *Helitron* among insect and viral genomes

BMC Genomics 16, Article number: 137 (2015) Cite this article

Conclusions

· 24 fully annotated genomes for the pathology community

- Provide framework for understanding replication
 - insertion → Helitron → unequal crossing over

Disruption of ToxB ORF by multiple retrotransposons

• ToxB is potentially mobile and resides in a dynamic accessory region

Acknowledgements

Collaborators

Reem Aboukhaddour Megan McDonald Mohamed Hafez

Support

Aboukhaddour Lab
Biocluster HPC & Lethdome Team
Local IT and Bioinformatics Support Unit
British Society of Plant Pathology (Junior Fellowship)
Alberta Innovates, AGES, and UoL

Funders

