For each instance of the typing relation, define a denotation morphism: $\llbracket \Phi \mid \Gamma \vdash v : A \rrbracket_M : \mathbb{C}(I)(\Gamma_I, A_I)$. Writing Γ_I and A_I for $\llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket_M$ and $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket_M$.

For each ground constant, \mathbb{C}^A , there exists $c: \mathbb{1} \to A_I$ in $\mathbb{C}(I)$.

$$\bullet \ (\mathrm{Unit}) \frac{\Phi \vdash \Gamma \mathbf{0} \mathbf{k}}{\llbracket \Phi \mid \Gamma \vdash \mathbf{()} : \mathbf{Unit} \rrbracket_{M} = \langle \rangle_{\Gamma} : \Gamma_{I} \to \mathbf{1}}$$

$$\bullet \ (\mathrm{Const})_{\frac{\Phi \vdash \Gamma \mathsf{Ok}}{\llbracket \Phi \mid \Gamma \vdash \mathsf{C}^A : A \rrbracket_M = \llbracket \mathsf{C}^A \rrbracket_M \circ \langle \rangle_\Gamma : \Gamma \to \llbracket A \rrbracket_M}}$$

$$\bullet \ (\text{True}) \frac{\Phi \vdash \Gamma 0 \mathbf{k}}{\llbracket \Phi \mid \Gamma \vdash \mathsf{true} : \mathsf{Bool} \rrbracket_M = \mathsf{inl} \circ \langle \rangle_{\Gamma} : \Gamma \to \llbracket \mathsf{Bool} \rrbracket_M = 1 + 1}$$

$$\bullet \ (\mathrm{False}) \frac{\Phi \vdash \Gamma \mathsf{0k}}{\llbracket \Phi \mid \Gamma \vdash \mathsf{false} : \mathsf{Bool} \rrbracket_M = \mathsf{inr} \circ \langle \rangle_\Gamma : \Gamma \to \llbracket \mathsf{Bool} \rrbracket_M = 1 + 1}$$

$$\bullet \ (\mathrm{Var})_{\frac{\Phi \vdash \Gamma \mathsf{0k}}{\llbracket \Phi \mid \Gamma, x : A \vdash x : A \rrbracket_M = \pi_2 : \Gamma \times A \to A}}$$

$$\bullet \ \ \text{(Weaken)} \\ \frac{f = \llbracket \Phi | \Gamma \vdash x : A \rrbracket_M : \Gamma \to A}{\llbracket \Phi | \Gamma, y : B \vdash x : A \rrbracket_M = f \circ \pi_1 : \Gamma \times B \to A}$$

$$\bullet \ \ \big(\mathsf{Lambda} \big) \frac{f = \llbracket \Phi | \Gamma, x : A \vdash v : B \rrbracket_M : \Gamma \times A \to B}{\llbracket \Phi | \Gamma \vdash \lambda x : A \cdot v : A \to B \rrbracket_M = \mathsf{cur}(f) : \Gamma \to (B)^A}$$

$$\bullet \ \ \big(\text{Subtype} \big) \frac{f = \llbracket \Phi | \Gamma \vdash v : A \rrbracket_M : \Gamma \to A \ g = \llbracket A \leq :_\Phi B \rrbracket_M}{\llbracket \Phi | \Gamma \vdash v : B \rrbracket_M = g \circ f : \Gamma \to B}$$

$$\bullet \ (\text{Return}) \frac{f = \llbracket \Phi | \Gamma \vdash v : A \rrbracket_M}{\llbracket \Phi | \Gamma \vdash \mathbf{return} v : \mathbf{M}_1 A \rrbracket_M = \eta_A \circ f}$$

$$\bullet \ (\mathrm{If}) \frac{f = \llbracket \Phi | \Gamma \vdash v \colon \mathsf{Bool} \rrbracket_M \colon \Gamma \to 1 + 1}{\llbracket \Phi | \Gamma \vdash \mathsf{if}_{\epsilon,A} \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 \colon \mathsf{M}_{\epsilon} A \rrbracket_M = \mathsf{app} \circ (([\mathsf{cur}(g \circ \pi_2), \mathsf{cur}(h \circ \pi_2)] \circ f) \times \mathsf{Id}_{\Gamma}) \circ \delta_{\Gamma} \colon \Gamma \to T_{\epsilon} A \cap \mathsf{M}_{\epsilon} A \cap \mathsf{$$

$$\bullet \ \ \big(\mathrm{Bind} \big) \frac{f = \llbracket \Phi | \Gamma \vdash v_1 : \mathtt{M}_{\epsilon_1} A : \Gamma \to T_{\epsilon_1} A \ \ g = \llbracket \Phi | \Gamma, x : A \vdash v_2 : \mathtt{M}_{\epsilon_2} B \rrbracket_M \rrbracket_M : \Gamma \times A \to T_{\epsilon_2} B}{\llbracket \Phi | \Gamma \vdash \mathsf{do} \ x \leftarrow v_1 \ \ \mathsf{in} \ \ v_2 : \mathtt{M}_{\epsilon_1 \cdot \epsilon_2} B \rrbracket_M = \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} g \circ \mathsf{tr}_{\Gamma, A, \epsilon_1} \circ \big\langle \mathsf{Id}_{\Gamma, f} \big\rangle : \Gamma \to T_{\epsilon_1 \cdot \epsilon_2} B}$$

$$\bullet \ \left(\mathrm{Apply} \right) \frac{f = \llbracket \Phi | \Gamma \vdash v_1 : A \to B \rrbracket_M : \Gamma \to (B)^A \ g = \llbracket \Phi | \Gamma \vdash v_2 : A \rrbracket_M : \Gamma \to A}{\llbracket \Phi | \Gamma \vdash v_1 \ v_2 : \beta \rrbracket_M = \mathsf{app} \circ \langle f, g \rangle : \Gamma \to B}$$

$$\bullet \ \ \big(\text{Effect-Lambda} \big) \frac{f = \llbracket \Phi, \alpha | \Gamma \vdash v : A \rrbracket_M : \mathbb{C}(I \times U, W)(\Gamma, A)}{\llbracket \Phi | \Gamma \vdash \Lambda \alpha. A : \forall \epsilon. A \rrbracket_M = \overline{f} : \mathbb{C}(I)(\Gamma, \forall_I(A))}$$

$$\bullet \ \left(\text{Effect-App}\right) \frac{g = \llbracket \Phi | \Gamma \vdash v : \forall \alpha. A \rrbracket_M : \mathbb{C}(I)(\Gamma, \forall_I(A)) \ h = \llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket_M : \mathbb{C}(I, U)}{\llbracket \Phi | \Gamma \vdash v \ \epsilon : A [\epsilon/\alpha] \rrbracket_M = \left\langle \texttt{Id}_I, h \right\rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A [\beta/\alpha]} : \texttt{Type} \rrbracket_M) \circ g : \mathbb{C}(I)(\Gamma, A [\epsilon/\alpha])}$$