

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

CONFIGURACIÓN ELECTRÓNICA Semana 6

www.aduni.edu.pe

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- **1. Aprender** los principios teóricos que rigen la distribución electrónica en los subniveles y orbitales de un átomo.
- 2. Aprender las diferentes formas de distribución electrónica del átomo de un elemento.
- 3. Aprender a desarrollar la distribución electrónica de cationes y aniones.

II. INTRODUCCIÓN

Para poder explicar las propiedades de los elementos químicos es necesario conocer la configuración electrónica de sus átomos.

Oxidación de metales

Atracción de metales por un imán

III. CONFIGURACIÓN ELECTRÓNICA

Consiste en el ordenamiento sistemático de los electrones en los diferentes estados energéticos de la zona extranuclear (niveles, subniveles y orbitales) con base en principios establecidos.

Un átomo de zinc, (Zn):

- Niveles de energía
- Subniveles de energía
- Orbitales

La forma como se distribuyen los electrones en la zona extranuclear se fundamenta mediante principios de la configuración electrónica.

PRINCIPIO DE AUFBAU

- Permite la distribución electrónica en subniveles de energía.
- principio de construcción progresiva, ella precisa que los electrones se **distribuyen en subniveles** de modo creciente a su energía relativa (E_R) .

SUBNIVELES	1 s	2 s	3 s	2p	3р	4s
ER ACADEMIA	1	2	3	3	4	4
Distribución de electrones	1s ² -	•2s²	2p ⁶ -	•3s²-	-3p ⁶ -	•4s²

OBSERVACIÓN

Aunque los subniveles 3s y 2p tienen la misma energía relativa, primero se debe llenar el subnivel 2p, luego el subnivel 3p, este último tiene mayor energía absoluta por encontrarse en un mayor nivel de energía.

REGLA DE MOLLIER

Es una forma práctica de realizar la distribución electrónica en subniveles tomando en cuenta el principio de Aufbau.

NIVELES	1	2	3	4	5	6	7
.0	s 2_	→ S ²	ړ <mark>ې</mark> 2	_σ S ²	S ²	∫S ²	S ²
SUBNIVELES		p 6	p ⁶ /	p ⁶	p ⁶ /	p ⁶ /	p ⁶
VEL			d ¹⁰	d^{10}	d^{10}	d^{10}	
·KS				f14	f ¹⁴	*	
#e-reales	2	8	18	32	32	18	8
#e-teóricos: 2n ²	2	8	18	32	50	72	98

ANUAL SAN MARCOS 2021

EJEMPLO

Realizar la distribución electrónica del átomo de cloro (Z=17).

RESOLUCIÓN:

$$_{17}Cl \Rightarrow \#p^{+} = \#e^{-} = Z = 17$$

- Mayor nivel de energía (nivel de valencia):
- #e- en el mayor nivel:
- # de subniveles de energía:
- # de subniveles de energía llenos:
- Configuración electrónica lineal:

$$_{17}Cl:1s^22s^22p^63s^23p^5$$

EJEMPLO

Realizar la distribución electrónica del átomo de magnesio (Z=12).

RESOLUCIÓN:

$$_{12}Mg \Rightarrow \#p^+ = \#e^- = Z = 12$$

Niveles: 1 2 3 $\mathbf{s^2}$ $\mathbf{p^6}$

- Mayor nivel de energía (nivel de valencia): 3
- #e- en el mayor nivel:
- # de subniveles de energía:
- Configuración electrónica lineal:

$$_{17}Cl:1s^22s^22p^63s^23p^5$$

CONFIGURACIÓN ELECTRÓNICA KERNEL O SIMPLIFICADA

mayor energía

Configuración electrónica Kernel

$$_{15}P$$
: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^3$

$$_{17}Cl: 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$$

$$_{30}Zn:1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}$$

$$_{26}Fe:1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^6$$

también:

$$_{26}Fe: [_{18}Ar]4s^23d^6$$

$$_{38}Sr: 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10} \ 4p^6 \ 5s^2$$

también:

$$_{38}Sr: [_{36}Kr]5s^2$$

ANUAL SAN MARCOS 2021

Si el átomo de un elemento posee 16 electrones en subniveles difusos, indique su número atómico.

RESOLUCIÓN

Nos piden determinar el número atómico (Z). Nos indican que se distribuyen 16 electrones en subniveles difusos.

$$_{Z}E.\,1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{6}5s^{2}4d^{6}$$

$$\therefore Z = 44$$

EJEMPLO

Determine el número atómico máximo de un átomo si posee dos subniveles principales llenos .

RESOLUCIÓN

Nos piden determinar el número atómico (Z_{max}) El ejemplo hace referencia a dos subniveles principales que deben estar llenos.

$$Z_{\text{max}}E:1s^22s^22p^63s^23p^64s^23d^{10}4p^5$$

OBSERVACIÓN:

El átomo tiene dos subniveles principales llenos y el último subnivel principal está a punto de llenarse para que el número atómico sea máximo.

$$\therefore Z_{\text{max}} = 35$$

IV. CONFIGURACIÓN ELECTRÓNICA DE IONES:

Aniones (A^{n-})

• Se determina la cantidad de electrones del anión y se realiza su configuración electrónica.

Ejemplo:
$$_{17}Cl^{1-} \implies #e^- = 17 - (-1) = 18$$

$$_{17}Cl^{1-}:1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6 <> [_{18}Ar]$$

Cationes (C^{m+})

- Se realiza la configuración electrónica del átomo neutro.
- Primero se retiran los electrones del mayor nivel de energía, luego del penúltimo nivel de energía y así sucesivamente.
- En un mismo nivel de energía primero salen los electrones del subnivel más energético.

Ejemplo:
$$_{31}Ga^{3+}$$

$$-1e^{-}$$

$$_{31}Ga \rightarrow \begin{bmatrix} _{18}Ar \end{bmatrix} 4s^2 \ 3d^{10} \ 4p^1 \quad \text{Luego} \quad _{31}Ga^{3+} \rightarrow \begin{bmatrix} _{18}Ar \end{bmatrix} 4s^2 \ 3d^{10} 4p^1 \quad \text{Entonces} \quad _{31}Ga^{3+} : \begin{bmatrix} _{18}Ar \end{bmatrix} 3d^{10}$$

V. PRINCIPIO DE MÁXIMA MULTIPLICIDAD

(regla de Hund)

- Permite la distribución de electrones en orbitales de un mismo subnivel de energía.
- Distribuir los electrones en los orbitales de un mismo subnivel, dejando primero a todos a medio llenar para luego empezar el llenado.

EJEMPLOS

Considerando las siguientes distribuciones electrónicas en orbitales, indique si son correctas o incorrectas:

$$3p^4 \Rightarrow \frac{\uparrow\downarrow}{} \frac{\uparrow}{} Correcto$$

$$3p^4 \Rightarrow \frac{\downarrow\uparrow}{} \frac{\downarrow}{}$$
 Correcto

$$3p^4 \Rightarrow \frac{\downarrow\uparrow}{} \frac{\downarrow}{}$$
 Incorrecto

$$3d^8 \Rightarrow \stackrel{\uparrow\downarrow}{\longrightarrow} \stackrel{\uparrow\downarrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow} Correcto$$

$$3d^8 \Rightarrow \frac{\uparrow}{} \stackrel{\uparrow\downarrow}{} \stackrel{\uparrow\downarrow}{} \stackrel{\uparrow\downarrow}{} \stackrel{\uparrow\downarrow}{} Correcto$$

$$3d^8 \Rightarrow \frac{\downarrow\uparrow}{\downarrow} \frac{\downarrow\uparrow}{\downarrow} \frac{\downarrow}{\downarrow}$$
 Correcto

$$3d^8 \Rightarrow \frac{\downarrow\uparrow}{\downarrow} \frac{\downarrow\uparrow}{\downarrow} \frac{\downarrow}{\downarrow} \frac{\uparrow}{\downarrow}$$
 Incorrecto

ADUNI

VI. PRINCIPIO DE EXCLUSION DE PAULI

Establece que dos electrones en un átomo basal no pueden tener los mismos cuatro números cuánticos (n, ℓ, m_ℓ, m_s) , al menos deben presentar diferente m_s .

Wolfgang Ernst Pauli físico teórico austríaco

Todo orbital contendrá máximo dos electrones con espines opuestos.

VII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI. Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005

www.aduni.edu.pe

