Dicas gerais:

- Leia todas as questões antes de começar e pergunte em caso de dúvidas.
- Sempre justifique a sua resposta.
- Responda a cada questão, ainda que a resposta não esteja completa.

Questão 0.1 (Solução gráfica)

Considere a formulação matemática abaixo:

min
$$-x_1 - x_2$$

s.a $-1/2x_1 + x_2 \le 3/2$
 $-2x_1 - x_2 \ge -3$
 $x_1, x_2 > 0$

- (a) Apresente a solução gráfica do sistema, indicando claramente o espaço de soluções factíveis (considere o eixo x como x_1 e o eixo y como x_2)
- (b) Desenhe uma reta correspondente à função objetivo, indicando a direção de minimização
- (c) Liste todas as soluções básicas viáveis do sistema, indicando claramente o valor de $z,\ x_1$ e x_2 de cada uma.
- (d) Indique no gráfico as k soluções básicas visitadas através da resolução via método simplex, enumerandoas de s_1 a s_k , onde s_1 e s_k correspondem à solução básica inicial e a solução ótima, respectivamente. Apresente os dicionários correspontes às soluções visitadas.

O dicionário inicial é:

Com solução: $z=3/2, x_1=0, x_2=0.$

Com solução: z=3/2, $x_1=0$, $x_2=3/2$.

Questão 0.2 (Método simplex)

Considere a formulação abaixo:

max
$$x_1 - 2x_2$$

s.a $x_1 + x_2 \le 2$
 $-x_1 \le -1$
 $x_1, x_2 \ge 0$

- (a) Resolva o sistema usando o método simplex.
 - O dicionário inicial é:

A solução básica inicial não é viável, então usa-se o sistema de duas fases:

Com x_0 entrando na base e w_2 saindo da base, o próximo dicionário é:

O próximo dicionário é:

O dicionário da segunda fase é:

O dicionário final é:

- O dicionário é ótimo e portanto a solução final é Z=2 e $x_1=2$ e $x_2=0$.
- (b) Qual a solução ótima do sistema? Indique os valores de z, bem como o valor de todas as variáveis não básicas do sistema inicial. O sistema é inviável.
- (c) Se a restrição $-x_1 \le -1$ do sistema original fosse substituída por $-x_1 \le 1$, gerando um sistema S_2 , qual seria a solução ótima do sistema S_2 neste caso? Indique os valores de z, bem como o valor de todas as variáveis não básicas do sistema inicial.
 - O dicionário inicial neste caso é:

A solução básica inicial é viável. Com x_1 entrando na base e w_1 saindo da base, o próximo dicionário é

A solução ótima tem valor z=2, sendo que $x_1=2$ e $x_2=0$.

- (d) Se a restrição $x_1+x_2 \le -2$ do sistema S_2 (sistema do item anterior) fosse substituída por $-x_1+x_2 \le -2$, gerando um sistema S_3 , qual seria a solução ótima do sistema S_3 neste caso? Indique os valores de z, bem como o valor de todas as variáveis não básicas do sistema inicial.
 - O dicionário inicial neste caso é:

Observe que x_1 entra na base sem limitante no seu valor (indicado por não ter uma variável para sair da base). Neste caso o sistema é ilimitado, não há solução ótima.

Questão 0.3 (Sistemas degenerados)

(a) Apresente um dicionário inicial de um sistema degenerado, contendo pelo menos duas variáveis. Ainda, o sistema deve ter a característica que, dado o próximo dicionário gerado pelas regras normais do simplex, não é possível saber se o sistema cicla ou não.

- (b) Resolva o sistema via método simplex.
 - O próximo dicionário é:

O próximo dicionário é:

(c) Resolva o sistema usando a regra de Bland. Comente o resultado.

O próximo dicionário é:

Neste caso usando a regrad e Bland chegou-se à solução ótima com menos pivos. No entanto, em geral, usando-se a regra de Bland, tem-se mais pivos.

(d) Resolva o sistema com o método lexicográfico.

- (e) Todo sistema degenerado cicla?
- (f) Explique com detalhes um procedimento que garantidamente evitaria a ciclagem. OBS: não é necessário fazer um exemplo, apenas explicar.