Лабораторная работа 6

Модель «хищник-жертва»

Мугари Абдеррахим

Содержание

1	Цель работы Задание Выполнение лабораторной работы		5
2			6
			7
	3.1	Реализация модели в xcos	7
	3.2	Реализация модели с помощью блока Modelica в xcos	13
	3.3	Упражнение: реализация модели в OpenModelica	17
4	Вы	воды	19
Cı	Список литературы		

Список иллюстраций

3.1	Установка переменных окружения в xcos	8
3.2	Схема модели "хищник-жертва" в хсоз	8
3.3	Установка начальных условий в блоках интегрирования	9
3.4	Настройка параметров симуляции	9
3.5	Настройка осей для временных графиков	10
3.6	Настройка осей для фазового портрета	11
3.7	График изменения численности жертв и хищников	12
3.8	Фазовая траектория модели Лотки-Вольтерры	12
3.9	Схема модели с блоком Modelica	13
3.10	Настройки блока Modelica (часть 1)	14
3.11	Настройки блока Modelica (часть 2)	15
3.12	Динамика численности с блоком Modelica	16
3.13	Фазовый портрет с блоком Modelica	16
3.14	Динамика изменения численности хищников и жертв модели	
	Лотки-Вольтерры при (a = 2, b = 1, c = 0.3, d = 1, $x(0) = 2$, $y(0) = 1$)	18
3.15	Фазовый портрет модели Лотки-Вольтерры при ($a = 2, b = 1, c =$	
	0.3, d = 1, x(0) = 2, y(0) = 1)	18

Список таблиц

1 Цель работы

Основной задачей данной лабораторной работы является освоение и практическое воплощение модели "хищник-жертва" (известной как модель Лотки-Вольтерры) с применением программных средств хсоз и OpenModelica.

2 Задание

- 1. Построить модель "хищник-жертва" в среде хсоз.
- 2. Создать модель "хищник-жертва" с использованием блока Modelica в xcos.
- 3. Выполнить моделирование системы "хищник-жертва" в OpenModelica.

3 Выполнение лабораторной работы

Модель "хищник-жертва", или модель Лотки-Вольтерры, описывает динамику взаимодействия двух видов — жертв и хищников. Она выражается системой дифференциальных уравнений:

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = cxy - dy \end{cases}$$

где: - (х) — численность популяции жертв; - (у) — численность популяции хищников; - (а) — показатель роста числа жертв; - (b) — коэффициент сокращения жертв из-за хищников; - (c) — коэффициент увеличения хищников благодаря жертвам; - (d) — показатель естественного уменьшения хищников.

3.1 Реализация модели в хсоя

Для моделирования приняты следующие параметры: (a = 2), (b = 1), (c = 0.3), (d = 1), а также начальные значения (x(0) = 2), (y(0) = 1).

В хсоз через меню *Моделирование* \rightarrow *Задать переменные окружения* определены значения коэффициентов (a), (b), (c), (d) (см. рис. 3.1).

Рис. 3.1: Установка переменных окружения в хсоѕ

Для создания модели применялись блоки: CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f, а также CSCOPXY для построения фазового портрета. Итоговая схема модели представлена на рис. 3.2.

Рис. 3.2: Схема модели "хищник-жертва" в хсоѕ

Начальные условия (x(0) = 2) и (y(0) = 1) установлены в блоках интегрирования (см. рис. 3.3, 3.4).

Рис. 3.3: Установка начальных условий в блоках интегрирования

Рис. 3.4: Настройка параметров симуляции

Через меню *Моделирование* → *Установка* задано время симуляции — 30

секунд.

Настройка осей графиков

Для наглядного отображения результатов симуляции настроены оси графиков в блоках CSCOPE (временные графики) и CSCOPXY (фазовый портрет):

• Временные графики (СЅСОРЕ):

 Ось Y (численность популяций) настроена в диапазоне от 0 до 10 для отображения колебаний (см. рис. 3.5).

Рис. 3.5: Настройка осей для временных графиков

• Фазовый портрет (CSCOPXY):

- Ось X (жертвы, (x)): диапазон от 0 до 10, исходя из пиковых значений численности жертв.
- Ось Y (хищники, (у)): диапазон от 0 до 10, исходя из пиковых значений численности хищников (см. рис. 3.6).

Рис. 3.6: Настройка осей для фазового портрета

Такая настройка позволила чётко визуализировать поведение системы.

Результаты симуляции представлены на рис. 3.7 (динамика численности: чёрная линия — (x(t)), зелёная — (y(t))) и рис. 3.8 (фазовый портрет).

Рис. 3.7: График изменения численности жертв и хищников

Рис. 3.8: Фазовая траектория модели Лотки-Вольтерры

3.2 Реализация модели с помощью блока Modelica в xcos

Альтернативная реализация выполнена с использованием блока MBLOCK (Modelica generic) и блоков: $CLOCK_c$, CSCOPE, CSCOPXY, $TEXT_f$, MUX, $CONST_m$. Коэффициенты (a), (b), (c), (d) остались прежними (см. рис. 3.1).

Схема модели с блоком Modelica показана на рис. 3.9. Параметры блока, включая входные («а», «b», «с», «d») и выходные («х», «у») переменные, обозначенные как внешние («Е»), представлены на рис. 3.10 и 3.11.

Рис. 3.9: Схема модели с блоком Modelica

Рис. 3.10: Настройки блока Modelica (часть 1)

Рис. 3.11: Настройки блока Modelica (часть 2)

Результаты симуляции (динамика на рис. 3.12 и фазовый портрет на рис. 3.13) совпадают с предыдущими, подтверждая корректность подхода.

Рис. 3.12: Динамика численности с блоком Modelica

Рис. 3.13: Фазовый портрет с блоком Modelica

3.3 Упражнение: реализация модели в

OpenModelica

Модель также реализована в OpenModelica. Код на языке Modelica:

```
model predatorvsprey
  parameter Real a = 2;
  parameter Real b = 1;
  parameter Real c = 0.3;
  parameter Real d = 1;

  Real x(start=2);
  Real y(start=1);
  equation
  der(x) = a * x - b * x * y;
  der(y) = c * x * y - d * y;
  end predatorvsprey;
```

имуляция выполнена с длительностью 30 секунд. Итоги представлены на рис.

3.14 (динамика численности) и рис. 3.15 (фазовый портрет).

Рис. 3.14: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при (a = 2, b = 1, c = 0.3, d = 1, x(0) = 2, y(0) = 1)

Рис. 3.15: Фазовый портрет модели Лотки-Вольтерры при (a = 2, b = 1, c = 0.3, d = 1, x(0) = 2, y(0) = 1)

4 Выводы

• В процессе выполнения лабораторной работы модель "хищник-жертва" была успешно смоделирована в хсоз (с использованием стандартных блоков и блока Modelica) и в OpenModelica. Построенные графики динамики популяций и фазовые портреты отражают поведение системы при заданных условиях.

Подробнее см. в [1–3].

Список литературы

- 1. Strogatz S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. 2-е изд. CRC Press, 2014. 532 с.
- 2. Hirsch M.W., Smale S., Devaney R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. 3-е изд. Academic Press, 2012. 432 с.
- 3. Fritzson P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach. 2-е изд. Wiley-IEEE Press, 2014. 940 с.