Solving Congruences

Theorem 1 (Modular Inverses). Let n be a positive integer, and a an integer. Then the congruence $ax \equiv 1 \mod n$ has a solution x if and only if gcd(a, n) = 1. In this case, the solution x is unique mod n.

Proof. First suppose $\gcd(a,n)=1$. By Bezout's Identity, we have au+nv=1 for some integers u and v. In particular, n|(au-1), so that $au\equiv 1 \mod n$ as needed. Conversely, suppose $ax\equiv 1 \mod n$ has a solution u. By definition we have that n divides au-1, so that 1=au+nv for some integer v. Now let $d=\gcd(a,n)$, with a=da' and n=dn'. Then 1=d(a'u+n'v), so that d=1 as claimed.

Finally, suppose we have two solutions of this equation, u_1 and u_2 . Note that $au_1 \equiv au_2 \mod n$, so that n divides $au_1 - au_2 = a(u_1 - u_2)$. Since $\gcd(a, n) = 1$ we have $n|(u_1 - u_2)$ by Euclid's Lemma, so that $u_1 \equiv u_2 \mod n$ as claimed. \square

Corollary 2. Let p > 1 be a prime. If $ab \equiv 0 \mod p$, then either $a \equiv 0 \mod p$ or $b \equiv 0 \mod p$.

Corollary 3. Let p be a prime. If $a \in [1, p)$, then there is a unique $b \in [1, p)$ such that $ab \equiv 1 \mod p$. Moreover, a and b are distinct unless a = 1 or a = p - 1.

Proof. The existence and uniqueness of b follows from the previous result. Now suppose a=b; that is, $a^2\equiv 1 \mod p$. Then $(a-1)(a+1)\equiv 0 \mod p$. Since p is prime, we must have either $a-1\equiv 0 \mod p$ or $a+1\equiv 0 \mod p$; in the first case, a=1, and in the second case, a=p-1.

Corollary 4 (Wilson's Theorem). Let n > 2 be an integer. Then n is prime if and only if $(n-1)! \equiv -1 \mod n$.

Proof. Suppose n = p is prime, and consider the residues

$$1, 2, 3, \ldots, p-2, p-1.$$

All such residues $except\ 1$ and p-1 come in inverse pairs. So after rearranging, we have

$$(p-1)! = 1 \cdot (p-1) \cdot (t_1 \cdot u_1) \cdot \cdots \cdot (t_k \cdot u_k),$$

where $t_i \cdot u_i \equiv 1 \mod p$. Thus $(p-1)! \equiv p-1 \equiv -1 \mod p$ as claimed.

Conversely, suppose n is not prime; then we have 1 < a < n and 1 < b < n such that n = ab. But now a and b both appear among the factors of (n-1)!, so that $(n-1)! \equiv 0 \mod n$.

Theorem 5 (Simultaneous Linear Congruences). Let a and b be relatively prime positive integers. Then for any integers u and v, the system of congruences

$$\begin{cases} x \equiv u \mod a \\ x \equiv v \mod b \end{cases}$$

has a unique solution mod n.

Proof. First we show existence. Since gcd(a,b) = 1, by Bezout's Identity there exist integers h and k such that 1 = ah + bk. Multiplying by v - u, we have

$$v - u = ah(v - u) + bk(v - u),$$

and rearranging, we let

$$t = u + ah(v - u) = v - bk(v - u).$$

Clearly $t \equiv u \mod a$ and $t \equiv v \mod b$.

Next we show uniqueness. To this end, suppose t and s are both solutions of this system. In particular, we have $t \equiv u \mod a$ and $t \equiv u \mod b$. Say $q_1a = u - t = q_2b$. Now a divides q_2b , and since a and b are relatively prime, by Euclid's Lemma we have $a|q_2$. Thus $u - t = q'_2ab$, so that $t \equiv u \mod ab$ as needed.