Векторные пространства (также называемые линейными пространствами) - математическая структура, состоящая из элементов называемых векторами и операций (линейных, отсюда и название - сложение и умножение на скаляр), определенных над этими векторами.

Система векторов - это просто их набор: $(\overline{v_1},\overline{v_2},\ldots,\overline{v_k})$

Линейная комбинация векторов - это любой вектор, построенный из данных с помощью операций *сложения* и *умножения на число* - двух линейных операций, откуда и приходит название.

$$\alpha_1 \cdot \overline{v_1} + \alpha_2 \cdot \overline{v_1} + \ldots + \alpha_k \cdot \overline{v_k}$$

Линейные комбинации делят на *тривиальные* и *нетривиальные*. Тут все тоже очевидно, ведь *тривиальная* комбинация это просто когда все коэффиценты α_i равны нулю (тогда сумма будет равна нулевому вектору). Соответственно, нетривиальные это все остальные.

Системы векторов делят по-другому: на линейно зависимые и линейно независимые.

Линейно зависимой системой называют такой, в которой хотя бы один вектор может быть выражен как линейная комбинация других векторов из этой системы. Например, $\overline{v_3} = \overline{v_1} + 3 \cdot \overline{v_2}$. В таком случае система будет линейно зависимой.

Есть другое, равносильное определение: система будет линейно зависимой, если существует нетривиальная линейная комбинация векторов что равна нулю (нулевому вектору). Для того же примера:

$$\overline{v_1} + 3 \cdot \overline{v_2} - \overline{v_3} = \overline{0}$$

Соответственно, линейно независимой системой называют все остальные системы - те, в которых ни один из векторов не может быть выражен как линейная комбинация других векторов из этой системы.

Другими словами, когда только тривиальная комбинация векторов дает ноль.

Интересное замечание, что один вектор тоже образует систему. При $\overline{v_1}=\overline{0}$ система считается линейно зависимой, а в других случаях - линейно независимой. Это замечание разумное, ведь для $\alpha\cdot\overline{v_1}=\overline{0}$ существует бесконечное количество решений для α , поэтому она линейно зависима.

Подсистемой называется любая часть системы векторов.

Линейная зависимость обозначает, что один из векторов можно выразить через комбинацию других, а линейная независимость обозначает, что такая возможность отсутствует и все вектора "уникальные".

Свойства систем векторов

- Если в систему векторов входит нулевой вектор, то она линейно зависима. Объяснение этого содержится в синей заметке чуть выше.
- Если в системе векторов имеется два равных вектора, то она линейно зависима. $\overline{a}=\overline{b}\Leftrightarrow \overline{a}-\overline{b}=\overline{0}$
- Если в системе векторов имеется два пропорциональных вектора ($\overline{a}=\lambda\overline{b}$), то она линейно зависима. $\overline{a}=\lambda\overline{b}\Leftrightarrow \overline{a}-\lambda\overline{b}=\overline{0}$
- Система из двух или более векторов линейно зависима тогда и только тогда (⇔), когда хотя бы один из векторов есть линейная комбинация остальных.
- Любые векторы, входящие в линейно независимую систему, образуют линейно независимую подсистему.
- Система векторов, содержащая линейно зависимую подсистему, линейно зависима.
- Если системе векторов $\overline{a_1}, \overline{a_2}, \dots, \overline{a_k}$ линейно независима, а после присоединения вектора $\overline{a_{k+1}}$ она становится линейно зависимой, то этот вектор можно разложить по векторам $\overline{a_1}, \overline{a_2}, \dots, \overline{a_k}$, причем единственным образом.

Логично, ведь раз система стала линейно зависимой, какой-то вектор теперь можно выразить через остальные. Получается, что именно добавленный вектор, ведь именно он нарушает независимость системы (до него ведь все было хорошо).

• Если определитель матрицы, составленной из векторов системы, равен нулю, то система векторов линейно зависимая.

$$egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \end{bmatrix} = 0$$

• Если векторов в системе больше, чем измерений в ней (количество координат в одном векторе), то такая система будет линейно зависимая. Например, система $\overline{a}(a_1;a_2), \overline{b}(b_1;b_2), \overline{c}(c_1;c_2)$ всегда будет линейно зависима.

Пример задачи

Условие: определите, является ли система из векторов $\overline{a}(5,3,4), \overline{b}(1,2,3), \overline{c}(-2,4,1)$ линейно зависимой.

Решение: для этого найдем определитель из этих векторов:

$$egin{array}{|c|c|c|c|c|} 5 & 3 & 4 \ 1 & 2 & 3 \ -2 & 4 & 1 \ \end{array} = 5(2-12) - 3(1+6) + 4(4+4) = -39$$

Определитель не равен нулю, значит система линейно независимая.

Условие: определите, является ли система из векторов $\overline{a}(2,4,-3),\overline{b}(5,1,2),\overline{c}(-4,-8,6)$ линейно зависимой. Решение: для этого найдем определитель из этих векторов:

$$egin{array}{|c|c|c|c|c|} 2 & 4 & -3 \ 5 & 1 & 2 \ -4 & -8 & 6 \ \end{array} = 2(6+16) - 4(30+8) - 3(-40+4) = 0$$

Определитель равен нулю, значит система линейно зависимая. Быть точнее, $\overline{c}=-2\overline{a}$.