aula 06 Sucessões (Cont.)

DEFINIÇÃO 6.1 (PONTO DE ACUMULAÇÃO).— Dados um conjunto $A \subseteq \mathbb{R}$ e um número real x, dizemos que x é um ponto de acumulação de A se se tiver que para qualquer $\epsilon > 0$

DEFINIÇÃO 6.2 (FECHO DE UM CONJUNTO). — Se $X \subseteq \mathbb{R}$ o fecho de X que se denota por \overline{X} é a união $X \cup X'$, em que X' é o conjunto dos pontos de acumulação de X (que também se designa de conjunto derivado de X).

LEMA 6.1. — Se, a partir de certa ordem, uma sucessão (x_n) tem termos num conjunto $A \subseteq \mathbb{R}$ e se $(x_n) \to \alpha$ converge então $\alpha \in \overline{A}$.

DEM.- ■

LEMA 6.2. – Seja (x_n) uma sucessão tal que $x_n \neq 0$ para qualquer $n \in \mathbb{N}$. Temos que:

- 1. $se(x_n) \to \infty sse(1/x_n) \to 0$;
- 2. $se(x_n) \to \pm \infty sse(1/x_n) \to 0^{\pm}$;

Dем.− ■

TEOREMA 6.1. – Suponhamos que $(x_n) \to \alpha$ e $(y_n) \to \beta$, com $\alpha, \beta \in \mathbb{R}$. Tem-se que:

- 1. $(x_n + y_n) \rightarrow \alpha + \beta$;
- 2. $(x_n \cdot y_n) \rightarrow \alpha \cdot \beta$;
- 3. se $c \in \mathbb{R}$ então $(cx_n) \to c\alpha$;
- 4. se $\alpha \neq 0$ e se $x_n \neq 0$ para todo o $n \in \mathbb{N}$ então $(1/x_n) \rightarrow 1/\alpha$.

DEM. — (1) Se fixarmos $\varepsilon > 0$ existem ordens p_1 e p_2 tais que, para $n > p_1$ se tem $d(x_n, \alpha) < \varepsilon/2$ e para todo o $n > p_2$ se tem $d(y_n, \beta) < \varepsilon/2$. Se considerarmos agora $p = \max\{p_1, p_2\}$ resulta que para n > p se tem ao mesmo tempo que $d(x_n, \alpha) < \varepsilon/2$ e $d(y_n, \beta) < \varepsilon/2$. Daqui resulta ainda que, se n > p se tem que:

$$d(x_n+y_n,\alpha+\beta)=|x_n+y_n-(\alpha+\beta)|=|(x_n-\alpha)+(y_n-\beta)|\leq |x_n-\alpha|+|y_n-\beta|<\varepsilon.$$

Como ε é arbitrário, resulta daqui que $\langle x_n + y_n \rangle \to \alpha + \beta$.

(2) Obtém-se facilmente a seguinte majoração,

$$|x_n y_n - \alpha \beta| = |(x_n - \alpha) y_n + \alpha (y_n - \beta)| \le |x_n - \alpha| |y_n| + |\alpha| |y_n - \beta|$$

e, como o lado direito é um infinitésimo, o mesmo sucede com $\langle x_n y_n - \alpha \beta \rangle$, pelo que $\langle x_n y_n \rangle \rightarrow \alpha \beta$.

O teorema anterior pode generalizar-se, com algumas excepções, de modo a admitir $+\infty$ e $-\infty$ como possibilidades de limite. Para isso consideramos uma álgebra (formal) parcial em $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$. Assim, se $\alpha \in \mathbb{R}$ definimos $\alpha + \pm \infty := \pm \infty$. Se $\alpha \in \mathbb{R}^+$, definimos $\alpha \cdot (\pm \infty) := \pm \infty$ e, se $\alpha \in \mathbb{R}^-$ então definimos $\alpha \cdot (\pm \infty) := \pm \infty$. Os casos $(\pm \infty) + (\mp \infty)$ e o $\cdot (\pm \infty)$ correspondem ao que designamos de *indeterminações*, uma vez que não é possível antecipadamente prever o resultado. Por exemplo, se $\langle x_n \rangle = n^2$ e $y_n = -n$, então $x_n + y_n = n^2 - n = n(n-1)$ tem limite $+\infty$.

A operação de potenciação também é susceptível de introduzir indeterminações. A operação de potência de dois números reais é definida por aproximação racional. Ou seja, dados um número real $\alpha \geq 0$ e um racional m/n (onde podemos supor $m \in \mathbb{Z}$ e $n \in \mathbb{N}^+$) tem-se que a potência $\alpha^{m/n}$ representa o real $\sqrt[n]{\alpha^m}$. Dados agora um real $\alpha \geq 0$ e um outro real β arbitrário, como definir α^{β} ? Uma vez que os racionais são densos nos reais, existem sucessões de números racionais que convergem para β , ou seja, existem sucessões (x_n) tais que

- (1) $x_n \in \mathbb{Q}$, para todo o $n \in \mathbb{N}$ e,
- (2) $(x_n) \rightarrow \beta$.

Dada uma tal sucessão (x_n) podemos evidentemente formar uma outra cujo termo geral é $y_n = \alpha^{x_n}$. Ora, pode demonstrar-se que esta nova sucessão converge para um real, digamos γ . É assim tentador definir α^{β} como sendo este γ . Mas isto poderia não ser possível uma vez que, considerada uma outra sucesão de racionais, $(z_n) \to \beta$, poderia dar-se o caso de (α^{z_n}) convergir para um real diferente de γ . Felizmente pode demonstrar-se também que aquele γ é independente da sucessão de racionais que se considere a convergir para α pelo que esta é a forma correcta de generalizar a operação de potenciação a expoentes reais.

Os tipos de indeterminação que envolvem a exponenciação são os seguintes: 1^{∞} , ∞^{0} e 0^{0} . Para constatar este facto considere-se para o primeiro caso as sucessões $x_{n} := 1^{n}$ e para o segundo a sucessão $y_{n} := (1 + 1/n)^{n}$, ambas são do tipo 1^{∞} , mas no primeiro caso tem-se que $(1^{n}) = (1) \rightarrow 1$ enquanto que no segundo se tem $((1 + 1/n)^{n}) \rightarrow e$ (ver o lema seguinte).

LEMA 6.3. – Suponhamos que $(x_n) \to +\infty$. Nestas condições,

$$\lim \left(1 + \frac{c}{x_n}\right)^{x_n} = e^x.$$

Para justificar que ∞^0 corresponde a uma indeterminação podemos considerar as sucessões $x_n := n^0$ e $y_n := (n^n)^{1/n}$. No primeiro caso tem-se $(x_n) = (n^0) = (1) \to 1$, enquanto que no segundo se tem $(y_n) = ((n^n)^{1/n}) = (n) \to +\infty$. No que respeita ao último caso, considerando $x_n := (1/n)^{1/n}$ e $y_n := (n^{-n})^{1/n}$ tem-se que: $((1/n)^{1/n}) = (1/\sqrt[n]{n}) \to 1$ enquanto que $((n^{-n})^{1/n}) = (1/n) \to 0$.

LEMA 6.4. — Consideremos dois polinómios em n, digamos $a_0 n^k + a_1 n^{k-1} + \cdots + a_k$ e $b_0 n^l + b_1 n^{l-1} + \cdots + b_l$, com a_0 , $b_0 \neq 0$. Nestas condições,

$$\lim \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_l} = \lim \frac{a_k n^k}{b_l n^l} = \begin{cases} \frac{a^k}{b_l} & (se \ k = l) \\ +\infty & (se \ k > l) \\ 0 & (se \ k < l). \end{cases}$$

6.1.1 COMPLETUDE à CAUCHY*

Quando uma sucessão (x_n) converge para um número real α então, ao aproximarem-se indefinidamente de α , os termos de (x_n) aproximam-se necessariamente entre si. Diremos que os seus termos *estabilizam*. Caracterizamos esta noção de estabilidade através de:

$$(\forall \epsilon > 0)(\exists p \in \mathbb{N})(\forall n, m \ge p)d(x_n, x_m) < \epsilon. \tag{6.1}$$

Uma sucessão cujos termos satisfazem a condição (6.1) diz-se uma sucessão de Cauchy.

LEMA 6.5. – Se (x_n) é uma sucessão de Cauchy então (x_n) é convergente.

É natural supor que se (x_n) é uma sucessão de Cauchy então ela converge. Isso é verdade se nos fixarmos nos números reais.

Lema 6.6. – Se (x_n) é uma sucessão de Cauchy então existe $\alpha \in \mathbb{R}$ tal que $(x_n) \to \alpha$.

O lema anterior pode não ser verdadeiro se nos circunscrevermos a um sistema numérico diferente de \mathbb{R} . Antes de avançarmos para outras considerações importa dizer que a noção de convergência, ou mais geralmente a noção de limite, podem ser consideradas em contextos mais gerais que o contexto dos números reais. Essencialmente o que importa para estas questões é que se encontre disponível uma função distância ou, como também se diz, uma *métrica*.

Dado um conjunto não vazio X, uma métrica em X é simplesmente uma função D que associa cada par ordenado (x,y) de elementos de X um número real não negativo que se designa de *distância de x a y*. A função d deve satisfazer as seguintes condições:

- 1. $d(x, y) \ge 0$ e d(x, y) = 0 se e só se x = y;
- 2. d(x, y) = d(y, x);
- 3. $d(x, y) \le d(x, z) + d(z, y)$.

Um *espaço métrico* é um par (X, d) em que X é um conjunto não vazio e d é uma métrica sobre X. Generalizando o conceito de sucessão de números reais, diremos que (x_n) é uma sucessão com termos num espaço métrico (X, d) se é uma função $x : \mathbb{N} \to X$.

Uma vez que a noção de sucessão de Cauchy depende apenas da existência de uma métrica, faz todo o sentido falar de sucessões de Cauchy no caso de sucessões com termos num espaço métrico.

DEFINIÇÃO 6.3.- Um espaço métrico (X,d) diz-se Cauchy-completo se toda a sucessão de Cauchy em X converge para um elemento de X.

Como demonstrámos anteriormente, o espaço métrico constituído pelos reais com a métrica dada por d(x, y) = |x - y| é Cauchy-completo. A verificação desse facto depende do axioma do supremo. No caso dos números racionais (equipados com a mesma métrica) esse já não é o caso. De facto, tem-se o seguinte:

LEMA 6.7. — Existem sucessões de números racionais que são sucessões de Cauchy mas que não convergem para nenhum número racional. Deste modo, o espaço métrico (\mathbb{Q}, d) não é Cauchy-completo.

6.1.2 Teoremas de Cauchy e generalizações*

TEOREMA 6.2 (CAUCHY). – $Se(x_n) \rightarrow \alpha \in \overline{\mathbb{R}}$ então,

$$\lim \frac{x_0 + x_1 + \dots + x_n}{n+1} = \alpha.$$

O seguinte resultado é uma generalização do anterior.

TEOREMA 6.3.— Se $(x_n) \to \alpha \in \overline{\mathbb{R}}$ e se (β_n) é uma sucessão de termos positivos tal que a sucessão (s_n) definida por $s_n := \beta_1 + \beta_2 + \cdots + \beta_n$ é um infinitamente grande então,

$$\lim \frac{\beta_0 x_0 + \beta_1 x_1 + \dots + \beta_n x_n}{\beta_1 + \beta_2 + \dots + \beta_n} = \alpha.$$

Os dois resultados anteriores admitem uma outra generalização da autoria de A. Toeplitz.

TEOREMA 6.4. – Suponhamos que (x_n) é um infinitésimo e que os números $a_{i,j}$ da lista:

ou seja, da lista $\{a_{i,j} \mid i \in \mathbb{N}, o \leq j \leq i\}$, satisfazem:

- 1. Cada coluna corresponde a uma sucessão que é um infinitésimo. Ou seja, considerando a sucessão (x_n^j) cujo termo geral é definido por $x_n^j := a_{n+j,j}$ tem-se $(x_n^j) \to 0$.
- 2. Existe um número positivo K tal que a soma dos módulos dos elementos de cada linha não excede K, i.e., para cada $n \in \mathbb{N}$ tem-se que $\sum_{0 \le i \le n} |a_{n,j}| < K$.

Nestas condições, a sucessão (y_n) cujo termo geral é: $y_n := a_{n,0}x_0 + a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n$, é um infinitésimo.

6.1.3 LIMITE SUPERIOR E LIMITE INFERIOR*

Já observámos anteriormente que uma sucessão pode possuir vários sub-limites. Podemos ir um pouco mais longe na caracterização do conjunto dos sub-limites de uma sucessão. Nesta secção é conveniente considerar que trabalhamos em $\overline{\mathbb{R}}$. Deste ponto de vista diremos que $+\infty$ é ponto de acumulação de um conjunto de números reais se para qualquer K>0 existe α nesse conjunto tal que $\alpha>K$. De igual modo dizemos que $-\infty$ é ponto de acumulação de um conjunto de números reais se para qualquer L<0 existe α no conjunto tal que $\alpha< L$.

TEOREMA 6.5.— O conjunto dos sub-limites de uma sucessão é um conjunto fechado, i.e., inclui todos os seus pontos de acumulação.

Um facto interessante acerca dos conjuntos fechados em $\overline{\mathbb{R}}$ é que têm sempre máximo e mínimo.

LEMA 6.8. – Se $F \subseteq \overline{\mathbb{R}}$ é fechado então existem min F e max F.

Tendo em conta as considerações anteriores a definição que se segue faz sentido.

DEFINIÇÃO 6.4.— Sejam (x_n) uma sucessão e A o conjunto dos seus sub-limites. O mínimo de A designa-se de limite inferior de (x_n) e denota-se por $\liminf x_n$ ou $\limsup x_n$; já o máximo de A designa-se de limite superior de (x_n) e denota-se por $\limsup x_n$ ou $\limsup x_n$.

Como é evidente tem-se:

$$\lim\inf x_n\leq \lim\sup x_n.$$

Além disso, tem-se que uma sucessão x_n tem limite se e só se lim inf $x_n = \limsup x_n$ e, neste caso tem-se, $\lim x_n = \lim \inf x_n = \limsup x_n$.