01204211 Discrete Mathematics Lecture 1b: Implications and equivalences

Jittat Fakcharoenphol

June 29, 2021

This lecture covers:

▶ More connectives: implications and equivalences

Review (1)

- ▶ A proposition is a statement which is either **true** or **false**.
- We can use variables to stand for propositions, e.g., P= "today is Tuesday".
- We can use connectives to combine variables to get propositional forms.
 - **Conjunction:** $P \wedge Q$ ("P and Q"),
 - **Disjunction:** $P \lor Q$ ("P or Q"), and
 - ▶ **Negation:** $\neg P$ ("not P")

Review (2)

To represents values of propositional forms, we usually use truth tables.

And,	/Or/	Not							
P	Q	$P \wedge Q$	$P \lor Q$	$\neg P$	7				
T	T	T	T	F	1				
$\mid T \mid$	$\mid F \mid$	F	T						
$\mid F \mid$	$\mid T \mid$	F	T	T					
$\mid F \mid$	$\mid F \mid$	F	F						

As we said before, the truth value of propositional forms may not depend on the values of its variables. As you can see in this exercise.

Use a truth table to find the values of (1) $P \land \neg P$ and (2) $P \lor \neg P$.

As we said before, the truth value of propositional forms may not depend on the values of its variables. As you can see in this exercise.

Use a truth table to find the values of (1) $P \land \neg P$ and (2) $P \lor \neg P$.

And_{j}	/Or/N	ot					
P	$\neg P$	$P \wedge \neg P$	$P \vee \neg P$	7			
T	F	F	T	1			
F	T	F	T				
1'	1	I'	1				

As we said before, the truth value of propositional forms may not depend on the values of its variables. As you can see in this exercise.

Use a truth table to find the values of (1) $P \land \neg P$ and (2) $P \lor \neg P$.

And,	/Or/N	ot		
P	$\neg P$	$P \wedge \neg P$	$P \vee \neg P$	
T	\overline{F}	F	T	
$\mid F \mid$	T	F	T	
		•		

Note that $P \land \neg P$ is always false and $P \lor \neg P$ is always true. A propositional form which is always true regardless of the truth values of its variables is called a *tautology*. On the other hand, a propositional form which is always false regardless of the truth values of its variables is called a *contradiction*.

Given P and Q, an implication

$$P \Rightarrow Q$$

stands for "if P, then Q". This is a very important propositional form.

Given P and Q, an implication

$$P \Rightarrow Q$$

stands for "if P, then Q". This is a very important propositional form.

$\begin{array}{c c c c} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & \end{array}$		

Given P and Q, an implication

$$P \Rightarrow Q$$

stands for "if P, then Q". This is a very important propositional form.

Implications	mĮ	lm	mplications
$\begin{array}{c c c c} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & \end{array}$	T	7	$\begin{array}{c cccc} T & T & T & T \\ T & F & F \end{array}$

Given P and Q, an implication

$$P \Rightarrow Q$$

stands for "if P, then Q". This is a very important propositional form.

Implications	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Given P and Q, an implication

$$P \Rightarrow Q$$

stands for "if P, then Q". This is a very important propositional form.

	• • •	tubi	·	
lm	pli	catio	ons	
	<u>'</u>	Q	$P \Rightarrow Q$	
I	7	T	T	
1	ן י	F	F	
F	,	T	T	
l I	-	F	T	

¹Materials in this lecture are mostly from Berkeley CS70's lecture notes.

What?

- ▶ Yes, when P is false, $P \Rightarrow Q$ is **always true** no matter what truth value of Q is.
- ▶ We say that in this case, the statement $P \Rightarrow Q$ is vacuously true.

What?

- ▶ Yes, when P is false, $P \Rightarrow Q$ is always true no matter what truth value of Q is.
- We say that in this case, the statement $P \Rightarrow Q$ is vacuously true.
- ▶ You might feel a bit uncomfortable about this, because in most natural languages, when we say that if P, then Q we sometimes mean something more than that in the logical expression " $P \Rightarrow Q$."

One explanation

But let's look closely at what it means when we say that:

if P is true, Q must be true.

▶ Note that this statement does not say anything about the case when *P* is false, i.e., it only considers the case when *P* is true.

One explanation

But let's look closely at what it means when we say that:

if P is true, Q must be true.

- Note that this statement does not say anything about the case when P is false, i.e., it only considers the case when P is true.
- ▶ Therefore, having that $P \Rightarrow Q$ is true is OK with the case that (1) Q is false when P is false, and (2) Q is true when P is false.

One explanation

But let's look closely at what it means when we say that:

if P is true, Q must be true.

- Note that this statement does not say anything about the case when *P* is false, i.e., it only considers the case when *P* is true.
- ▶ Therefore, having that $P \Rightarrow Q$ is true is OK with the case that (1) Q is false when P is false, and (2) Q is true when P is false.
- This is an example when mathematical language is "stricter" than natural language.

Noticing if-then

We can write "if P, then Q" for $P \Rightarrow Q$, but there are other ways to say this. E.g., we can write (1) Q if P, (2) P only if Q, or (3) when P, then Q.

Noticing if-then

We can write "if P, then Q" for $P \Rightarrow Q$, but there are other ways to say this. E.g., we can write (1) Q if P, (2) P only if Q, or (3) when P, then Q.

Quick check 2

For each of these statements, define propositional variables representing each proposition inside the statement and write the proposition form of the statement.

- If you do not have enough sleep, you will feel dizzy during class.
- ► If you eat a lot and you do not have enough exercise, you will get fat.
- You can get A from this course, only if you work fairly hard.

Only-if

Let P be "you get A from this course."

Let Q be "you work fairly hard."

Let R be "You can get A from this course, only if you work fairly hard."

Let's think about the truth values of R.

Only if you work fairly hard.

P	Q	R
T	T	
$\mid T \mid$	F	
$\mid F \mid$	$\mid T \mid$	
F	F	

Only-if

Let P be "you get A from this course."

Let Q be "you work fairly hard."

Let R be "You can get A from this course, only if you work fairly hard."

Let's think about the truth values of R.

Only if you work fairly hard.

P	Q	R
T	T	
T	F	
F	$\mid T \mid$	
F	F	

Thus, R should be logically equivalent to $P\Rightarrow Q$. (We write $R\equiv P\Rightarrow Q$ in this case.)

If and only if: (\Leftrightarrow)

Given P and Q, we denote by

$$P \Leftrightarrow Q$$

the statement "P if and only if Q."

If and only if: (\Leftrightarrow)

Given P and Q, we denote by

$$P \Leftrightarrow Q$$

the statement "P if and only if Q." It is logically equivalent to

$$(P \Leftarrow Q) \land (P \Rightarrow Q),$$

i.e.,
$$P \Leftrightarrow Q \equiv (P \Leftarrow Q) \land (P \Rightarrow Q)$$
.

Let's fill in its truth table.

P	Q	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
T	$\mid T \mid$			
$\mid T$	$\mid F \mid$			
$\mid F \mid$	$\mid T \mid$			
F	F			

An implication and its friends

When you have two propositions

- ightharpoonup P = "I own a cell phone", and
- ightharpoonup Q = "I bring a cell phone to class".

We have

- ▶ an implication $P \Rightarrow Q \equiv$ "If I own a cell phone, I'll bring it to class",
- ▶ its converse $Q \Rightarrow P \equiv$ "If I bring a cell phone to class, I own it", and
- its contrapositive $\neg Q \Rightarrow \neg P \equiv$ "If I do not bring a cell phone to class, I do not own one".

Let's consider the following truth table:

\overline{P}	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$\neg Q \Rightarrow \neg P$
T	T			
T	F			
F	T			
F	F			

Let's consider the following truth table:

$ P \mid Q \mid P \Rightarrow Q \mid Q \Rightarrow P \mid \neg Q \Rightarrow \neg P $
$\mid T \mid T \mid \mid$
$\mid F \mid T \mid \mid$

Do you notice any equivalence?

Let's consider the following truth table:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$\neg Q \Rightarrow \neg P$
T	T			
$\mid T$	$\mid F \mid$			
F	$\mid T \mid$			
F	F			

Do you notice any equivalence? Right, $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$.