MECH 467 - Tutorial 7 - Root Locus

Given the following open loop system:

- 1) Find the transfer function of the closed loop system.
- 2) Find the natural frequency (ω_n) of the closed loop system with respect to the gain K.
- 3) Find the damping ratio (ζ) of the closed loop system with respect to the gain K.
- 4) On the s-plane, find the poles of the closed loop system with respect to the natural frequency ω_n and damping ratio ζ .
- 5) Varying ω_n , sketch the root locus of the system on the s-plane assuming $\zeta = 0.7$.
- 6) Varying ζ , sketch the root locus of the system on the s-plane assuming $\omega_n = 300$.
- 7) Assuming the physical system is fixed and stable, is it possible to make the closed loop system unstable while varying K? Prove this with root locus, considering $J_e = 7 \times 10^{-4} \text{ kg.m}^2$ and $B_e = 0.006 \text{ Nms}$.