P2: K									
2020年2月28日	金曜日	午後0:33							

$$\bar{F} = -\int Gm' \; \bar{p} \left(p^2\right)^{-\frac{3}{2}} \upsilon \; d\tau \quad \text{for any body B}$$

Proving a body IS centrobaric means integrating to determine the form of the total gravity force

$$\overline{f}^{(2)} \propto R^{-2}$$
 $\overline{f}^{(3)} \propto R^{-3}$
 \vdots

$$\therefore \overline{f}^{(i)} = 0 \qquad i = 1, 2, 3, \dots, \infty$$

to make sum equal to zero, each f() must vanish separately.

One consequence of this fact is associated with $\overline{f}^{(2)}$ → To be centrobaric, ONE requirement: $\overline{f}^{(2)} = 0$

If $\overline{f}^{(2)} = 0$, all components must be zero

$$\hat{a}_{1} \bullet \overline{f}^{(2)} = 0 \qquad \text{component done the orbit radial direction}$$

$$\hat{a}_{1} \bullet \frac{1}{mR^{2}} \left\{ \frac{3}{2} \left[tr \left(\overline{\overline{I}} \right) - 5\hat{a}_{1} \bullet \overline{\overline{I}} \bullet \hat{a}_{1} \right] \hat{a}_{1} + 3\overline{\overline{I}} \bullet \hat{a}_{1} \right\} = 0$$

$$\frac{3}{2} \left[tr(\bar{1}) - 5\hat{a}_1 \cdot \bar{1} \cdot \hat{a}_1 \right] + 3\hat{a}_1 \cdot \bar{1} \cdot \hat{a}_1 = 0$$

$$\frac{3}{2} tr(\bar{1}) - \frac{9}{2} \hat{a}_1 \cdot \bar{1} \cdot \hat{a}_1 = 0$$

OR

$$\hat{\mathbf{a}}_{i} \cdot \hat{\mathbf{I}}_{i} \cdot \hat{\mathbf{a}}_{i} = \frac{1}{3} \operatorname{tr}(\hat{\mathbf{I}}_{i})$$

$$= \operatorname{const.}$$

> hecessary condition for body to be centrolaric

Trace is invariant (constant) $\hat{a}_1 \bullet \bar{I} \bullet \hat{a}_1$ must have the same value no matter how body is oriented $-\frac{1}{2} \cdot \hat{a}_1$ must have the same value no matter how body is oriented

Centrobaric body has the same moment of inertia about every line passing through the mass center

> Central inertial ellipsoid is a sphere definition of centrobanic

Central inertia ellipsoid is a sphere

So, all centrobaric bodies have a spherical inertia ellipsoid

BUT

All bodies with a spherical inertia ellipsoid are not centrobaric

$$\overline{f}^{(2)} = 0$$
 — necessary condition

sphere collection of spherical shells

all
$$\overline{f}^{(i)} = 0$$

all $\overline{f}^{(i)} = 0$ is centrobaric

density const.

— central inertial ellipsoid is
a sphere

Not all f(x) = 0

to meets one of the cond.

not centrobatic

	2	
Differential elements (rings) $d\tau_i = \left[r d(\phi - \theta) \right] \left[r \sin(\phi - \theta) d\psi \right]$		
$= \left[\frac{D_1 d\theta}{\cos \phi} \right] \left[D_1 \sin \theta d\psi \right]$		
$= \operatorname{Sec} \phi D_i^2 \sin \theta d\theta d\phi$		
$d\tau_{2} = \left[r d(\phi + \theta) \right] \left[r \sin(\phi + \theta) d\psi \right]$ $= \left[\frac{D_{2} d\theta}{\cos \phi} \right] \left[D_{2} \sin \theta d\psi \right]$		
$= Sec \phi D_{2}^{2} sin \Theta d\Theta d\Psi$		
$\hat{a}_{l} \cdot \vec{F} = -Gm' \int_{\psi=0}^{2\pi} \int_{\theta=0}^{\sin^{-1} r} \left[\frac{\sec \phi \circ D_{l}^{2} \sin \theta \cdot d\theta \cdot d\psi}{D_{l}^{2}} \right] +$		
$\frac{\operatorname{Sec}\phi \circ \mathcal{D}_{2}^{2} \sin \theta d\theta d\psi}{\mathcal{D}_{2}^{2}} \cos \theta$		
$\hat{a}_{1} \cdot \bar{F} = -4\pi \text{Gm'}_{e} \int_{A=0}^{\sin^{-1} \frac{r}{R}} \sec \phi \sin \theta \cos \theta d\theta$		
Change variable of integration to β $Rs_{\theta} = rs_{\phi}$		
$Rc_{\theta} d\theta = rc_{\phi} d\phi$		

