JE

Jaderné elektrárny

Cíl

Seznámit studenty s hlavními prvky a principy výroby elektrické energie v jaderných elektrárnách. Seznámit studenty s typy průmyslově využívaných energetických reaktorů a vlivem jejich provozu na elektrizační soustavu. Seznámit studenty s elektrotechnickou částí primárního a sekundárního okruhu jaderného bloku, palivovými cykly a ekonomikou jaderných elektráren. Seznámit studenty s vybavením elektrické části jaderné elektrárny, vlastní spotřebou elektrické energie jaderné elektrárny. Seznámit studenty s jadernou bezpečností a legislativou, s vlivem jaderné energetiky na životní prostředí. Seznámit studenty s problematikou jaderného odpadu, jeho zpracováním a přepracováním. Seznámit studenty s problematikou jaderná fúze.

•

- Přednášky: Jana Jiřičková
 - Katedra elektroenergetiky a ekologie
 - E-mail:jjiricko@kee.zcu.cz
 - Místnost: EL 306 (Univerzitní 26, Plzeň)
 - Telefon:37763 **4018**

Přednášky externistů povinné

- účast kontrolovaná
 - zohledněno při hodnocení testu u zkoušky

- Externisté:
- 11.10.2012 Primární část Ing. Růžička ČEZ a.s
- 18.10.2012 Sekundární část Ing. Trubka ČEZ a.s.
- 25.10.2012 Elektro Ing. Trubka ČEZ a.s
- 1.11.2012 Provoz Ing. Růžička ČEZ a.s
- Atd.....

O přednáškách externistů budete informování hromadným emailem.

ı

- Zápočet:
 - Zápočtový test 10 otázek forma abc
 - Termín 13.12.
- Zkouška:
 - Písemná
 - Předtermín 20.12.

Informace a podklady

- Courseware
- Portal
- Hromadný email
- Konzultační hodiny
 - Jiřičková : úterý 11:00-12:00

literatura

- Doporučená: <u>Ibler, Zbyněk. Provoz jaderných</u> <u>elektráren. 1. vyd. Plzeň</u>
- Doležel J. a kol.: Jaderné a klasické elektrárny,
 Praha 2011, ISBN 978-80-01-04936-5
- A řada dalších zdrojů....
- www.iaea.org
- www.euronuclear.org

Historie

1896: objev radioaktivity (H.A.Becquerel)

1932: objeveny neutrony

• 1938: O. Hahn vysvětlil "uranovou anomálii", kdy při

ozařování n nevzniká jeden těžší isotop, ale hned

několik lehčích

• 2. 12. 1942: 1. jaderný reaktor – Chicago

• 16. 7. 1945: 1. využití štěpné reakce – bomba –

Trinity desert v Novém Mexiku

srpen 1945: uranová bomba – Hiroshima

plutoniová bomba - Nagasaki

1954: 1. jaderná elektrárna – Obninsk

26. 4. 1986: Černobyl (4. blok)

» dodnes už více než 6000 reaktoroků

E. Fermi uvedl první jaderný reaktor na světě do kritického stavu v r. 1942

Rok 1954 - první jaderná elektrárna na světě v OBNINSKU o výkonu 5 MW_e

Princip práce jaderné elektrárny

Jako příklad lze uvést jeden z častějších případů štěpení v reaktoru:

$$^{235}\text{U} + ^{1}\text{n} \rightarrow ^{94}\text{Sr} + ^{140}\text{Xe} + 2 ^{1}\text{n} + \text{asi } 200 \text{ MeV}$$

jednotky	(10 ⁻¹³ J)	(MeV)	(%)
kinetická energie odštěpků	265,0	165,4	83,4
energie volných neutronů	9,6	6,0	3,0
energie okamžitého záření gama	9,6	6,0	3,0
energie neutrin	17,8	11,1	5,6
energie záření gama při rozpadu	8,0	5,0	2,5
energie záření beta při rozpadu	8,0	5,0	2,5
celkem	318,0	198,0	100,0

- Za stejné období, při průměrné výrobě 1 kWh z 1 kg uhlí, by tepelná elektrárna o stejném výkonu spotřebovala 8,76 milionů tun uhlí, tedy přibližně 1,78 · 10⁶krát větší hmotnost paliva než jaderná. U elektráren s rychlými reaktory je vzhledem k vyššímu využití paliva tento poměr ještě výraznější.
- Spálením gramu uhlí se uvolní energie 20 kJ.
- Štěpením gramu uranu 235 se uvolní energie 88 GJ.
- Sloučením gramu vodíku na helium se uvolní energie 426 GJ.

BWR	Boiling water reactor	Varný lehkovodní reaktor	
FBR Fast Breeder Reactor		Rychlý množivý reaktor	
GCR Gas Cooled, Graphite Modera- ted Reactor		Plynem chlazený, grafitem mo- derovaný reaktor	
LWGR, RBMK	Light Water Cooled, Graphite Moderated Reactor - Reaktor bolšoj moščnosti kanalnyj	Vodou chlazený, grafitem mode- rovaný reaktor (kanálový)	
PHWR, CANDU	Pressurized Heavy Water Mo- derated and Cooled Reactor, Canada Deuterium Uranium	Tlakovou těžkou vodou chlazený a moderovaný reaktor	
PWR. Pressurized Water Reactor - Vodo-Vodjanoj Energetičeskij Reaktor		Tlakovou vodou chlazený a moderovaný reaktor	

Další speciální hlediska pro klasifikaci:

Energie neutronů	Moderátor	Chladivo	Označení
Voda (H ₂ O) Grafit Těžká vod (D ₂ O)	Voda	H₂O	Tlakovodní (PWR, VVER)
	(H ₂ O)		Varný (BWR)
		CO ₂	Plynem chlazený (GCR), zdokonalený (AGR)
	Grafit	He	Vysokoteplotní (HTGR)
		H ₂ O	Vodou chlazený (LWGR)
		D ₂ O	Těžkovodní (CANDU) (PHWR)
	Těžká voda (D₂O)	H ₂ O	Těžkovodní chlazený lehkou vodou (HWLWR)
	(-2-)	CO ₂	Těžkovodní chlazený plynem (HWGCR)
Rychlé	-	Na	Rychlý, množivý (FBR)

jaderne energeliky.

Jaderná elektrárna

- V zásadě každou jadernou elektrárnu lze prostorově rozdělit z hlediska technologií, provozního režimu a zabezpečení na část zajišťující provoz reaktoru, část strojní - zajišťující provoz turbín a výroby elektrické energie a část zajišťující technologicky provoz elektrárenského bloku.
- Reaktorová část se strojní zpravidla tvoří jeden společný stavební celek, tzv. hlavní výrobní blok, rozdělený vnitřními vestavbami na zařízení s aktivními provozy – reaktorovnu a část se strojním a k němu příslušejícím technologickým zařízením – strojovnu

Okruhy v jaderných elektrárnách

Štěpné jaderné reaktory můžeme třídit podle různých hledisek.

Mezi nejdůležitější hlediska patří:

- průměrná energie neutronů při štěpení,
- konzistence a koncentrace jaderného paliva,
- druh moderátoru,
- geometrické uspořádání paliva a moderátoru v aktivní zóně,
- druh chladiva v aktivní zóně.

ad 1) Podle průměrné energie neutronů při štěpení dělíme reaktory obvykle na tři typy:

- tepelné,
- střední,
- rychlé.

Tepelné (pomalé) reaktory pracují s neutrony zpomalenými na energii, která je srovnatelná s energií molekul prostředí, tj. E_n ~0,025 eV¹). V reaktorech se středními neutrony je štěpení vyvolávané z zejména neutrony s energií kolem 10^2 eV. V rychlých reaktorech dochází ke štěpení paliva neutrony s energií blízkou energii štěpení, tj. E_n > 10^5 eV. Často se setkáváme také s epitermálními reaktory. Jsou to reaktory, ve kterých je štěpení vyvolávané převážně neutrony s energií kolem 1 eV.

¹⁾ Podle měrových jednotek SI 1 eV = 0,160210 aJ (attojoule) = 0,16021.10⁻¹⁸ J. Pak E_n = 0,0253 eV = 0,00405 aJ

ad 2) Podle druhého hlediska dělíme reaktory na:

- reaktory s *tuhým palivem* (tyče, desky, trubky,.),
- reaktory s tekutým palivem (suspenze, roztok).

V reaktorech se používá nejčastěji přírodního nebo obohaceného uranu. Obohacení může být **nízké, asi do 5%** ²³⁵U, střední nebo **vysoké (nad 90%** ²³⁵U). Pokud jde o chemické složení paliva, používá se nejčastěji přírodního kovového uranu, kysličníku uranu U0₂, nebo karbidu uranu UC. V perspektivních transmutačních systémech (ADTT - Accelerator driven transmutation technology) se uvažuje použít palivo ve formě roztavených fluoridů.

ad 5) Podle použitého chladiva rozeznáváme reaktory chlazené:

- plynem (C0₂, helium, vodní pára, vzduch),
- kapalinou (H₂0, D₂0, organické látky),
- tekutými kovy (sodík, NaK), roztavenými (tekutými) solemi (UF₄).

Podle účelového hlediska (je univerzálnější)

můžeme reaktory rozdělit na čtyři skupiny:

- energetické pro výrobu tepelné nebo elektrické energie,
- experimentální pro ověření zvolené koncepce energetických jaderných zařízení,
- výzkumné pro experimentální práce v oblasti neutronové a reaktorové fyziky,
- speciální např. množivé, chemické, dvojúčelové, transmutační a pod.

Jaderné reaktory, které produkují nové palivo, tzv. množivé nebo plodivé reaktory, se obvykle dělí na:

- breedery,
- **konvertory** (vyrábí se palivo odlišné od paliva používaného pro provoz reaktoru: $^{238}U \rightarrow ^{239}Pu$, $^{232}Th \rightarrow ^{233}U$).

Další speciální hlediska pro klasifikaci:

Energie neutronů	Moderátor	Chladivo	Označení
Voda (H ₂ O) Grafit Těžká vod (D ₂ O)	Voda	H ₂ O	Tlakovodní (PWR, VVER)
	(H ₂ O)		Varný (BWR)
		CO ₂	Plynem chlazený (GCR), zdokonalený (AGR)
	Grafit	He	Vysokoteplotní (HTGR)
		H ₂ O	Vodou chlazený (LWGR)
		D ₂ O	Těžkovodní (CANDU) (PHWR)
	Těžká voda (D₂O)	H ₂ O	Těžkovodní chlazený lehkou vodou (HWLWR)
	(-2-)	CO ₂	Těžkovodní chlazený plynem (HWGCR)
Rychlé	-	Na	Rychlý, množivý (FBR)

jaderne energeliky.

1.2 Principiální schéma jaderného reaktoru

- 1. stínění
- 2. nádoba reaktoru
- 3. výstup chladiva
- 4. regulační tyč
- 5. palivový článek
- 6. výstup chladiva
- 7. moderátor

Principiální schéma jaderného reaktoru Reaktor JE Temelín

Poznámky ke chladivu

- většina reaktorů pracuje s takovým výkonem, že je nutno reaktor chladit
- požadavky na chladivo reaktoru
 - nesmí korodovat konstrukční materiál reaktoru
 - musí mít příslušné tepelné vlastnosti
 - musí být stabilní vůči ozařování
 - především však, aby chladivo mělo malý účinný průřez pro záchyt neutronů
- chladiva, která těmto účelům vyhovují
 - plyn (CO₂, He) účinný teprve při vyšším tlaku (větším než 1 MPa)
 - voda
 - těžká voda
 - tekuté kovy
 - tekuté kovy, např. Na, Pb, Bi a K používají se v energetických reaktorech, kde je požadována vysoká pracovní teplota

Základních části standardního reaktoru

palivo

dochází v něm ke štěpení a uvolňuje se energie

moderátor

pomocí srážek neutronů s jádry atomů snižuje kinetickou energii neutronů

chladivo

tekutina odvádějící vznikající tepelnou energii ven z reaktoru

stavební materiály

tvoří ochranný obal paliva a moderátoru a dále vnitřní vestavby reaktoru

reflektor

 část reaktoru přiléhající k aktivní zóně a sloužící k odrážení co největšího počtu unikajících neutronů zpět do aktivní zóny

• regulační a ovládací zařízení

absorpcí neutronů umožňují udržovat výkon reaktoru na žádané hodnotě

ochranný kryt

chrání obsluhu reaktoru před zářením vznikajícím v rektoru

Moderátor

- pro práci jaderných reaktorů s tepelnými n má velký význam moderátor
- rychlé n, vznikající při štěpení, se postupně zpomalují při srážkách s jádry moderátoru
- pro popis zpomalování n se zavádí průměrný pokles přirozeného logaritmu energie neutronu při jedné srážce, tzv. průměrný logaritmický dekrement energie na jednu srážku
 - je to (střední) hodnota veličiny $\xi = \ln(E/E')$
 - za velmi dobré přiblížení (s chybou do 5%) můžeme považovat vztah $\xi = \frac{2}{A+2/3}$
 - čím větší hodnota ξ , tím menší průměrný počet srážek na zpomalení
- moderátor by však neměl n zachycovat, musí být tedy zároveň velký $\Sigma_{\rm S}$ \Rightarrow zavádí se zpomalovací schopností $\xi\Sigma_{\rm S}$
- zpomalovací schopnost však nezahrnuje ještě jeden důležitý faktor a tím je, že látky mohou n také absorbovat - jakákoli látka, která silně absorbuje neutrony, nemá jako moderátor význam
- zavádí tzv. **koeficient zpomalení** (moderace) $(\xi \Sigma_s)/(\Sigma_a)$
 - tento koeficient je pak nejdůležitější veličinou, charakterizující vlastnosti moderátoru

Reflektor

Jaká látka by měla tvořit reflektor?

- jednou z vlastností reflektoru by měla být co největší schopnost odrážet neutrony zpět do rozmnožujícího prostředí - aby se neutron mohl vrátit zpět, musí se co nejdříve srazit s jádrem reflektoru.
- dále potřebujeme, aby v prostředí reflektoru nebyl neutron pohlcován, tedy aby se neutron mohl vrátit z co největší hloubky reflektoru
- ⇒je vidět, že látky, které jsou dobrými moderátory, budou i dobrými reflektory

Tepelný jaderný reaktor JE Temelín

- 1-pohon svazkové řídící tyče,
- 2-víko tlakové nádoby reaktoru,
- 3-vývody vnitroreaktorového měření,
- 4-ochranná trubka svazkové tyče,
- 5-palivové kazety,6-plášť aktivní zóny,
- 7-tlaková nádoba reaktoru

Co se děje v tepelném jaderném reaktoru?

Palivová kazeta reaktoru VVER-1000

Palivová tableta reaktoru VVER-1000

1.3 Obecné problémy fyzikální teorie jaderných reaktorů

1.3.1. Rozložení neutronů v jaderném reaktoru

Rozložení neutronů v jaderném reaktoru je funkcí prostorových souřadnic, energie neutronů, směru jejich pohybu a v obecném tvaru může být vyjádřeno integrodiferenciální Boltzmannovou rovnicí, sestavenou na základě rovnováhy mezi různými jadernými procesy.

Zpravidla se používají zjednodušující předpoklady a omezení, a Boltzmannova rovnice se upravuje na vhodnější tvar.

1.3.2.Úkoly fyzikálního výpočtu jaderného reaktoru

- Určení kritického parametru (určení optimální konfigurace reaktorové mříže, odpovídající minimální hodnotě štěpného materiálu.)
- Rozložení hustoty neutronů a energie štěpení (návrhu systému ochlazování reaktoru, stanovení průběhu vyhoření jaderného paliva a vzniku štěpných produktů, intenzity radioaktivního záření a hustoty toku neutronů na povrchu reaktoru i v jeho okolí)
- Účinnost regulačních orgánů (můžeme měnit hustotu rozložení neutronů podle potřeby – rozvinutí nebo zastavení štěpné reakce.)
- Stupeň stability (v reaktorech s vysokým stupněm stability malé odchylky od stacionárního stavu rychle zanikají a reaktor se vrací do původního stavu.)
- Vyhoření jaderného paliva a hromadění strusek
- Havarijní a speciální provozní režimy reaktoru

1.3.3. Výpočtové metody jaderného reaktoru

Vyjádření vztahu rovnováhy v reaktoru– Boltzmannova kritická rovnice.

Pro výpočty homogenních reaktorů se používá několik modelů:

- Model nekonečného prostředí zkoumání fyzikálních procesů uvnitř systému ve značné vzdálenosti od fyzikálních hranic
 - výpočet energetického spektra neutronů
- Jednorychlostní přiblížení předpokládá, že neutrony v reaktoru mají stejnou energii danou tvarem energetického spektra difúzní rovnice neutronů v násobícím prostření přechází Boltzmannova rovnice na Helmholtzovu rovnice, rozložení neutronů je závislé pouze na prostorových souřadnicích
- Fermiho teorie stárnutí rozložení neutronů je závislé na energii a poloze, Boltzmannova rovnice přechází na parciální diferenciální rovnici
 - zkoumání zpomalování v reaktorech s moderátorem tvořeným prvky s vysokým hmotnostním číslem

- Mnohogrupové metody studium mnohozónových systémů s ohledem na energetické spektrum neutronů, jsou založeny na modelu spojitého zpomalování.
 - dvougrupové přiblížení- výpočet reaktorů s velkým počtem zón, vhodný pro výpočty tepelných i rychlých reaktorů.

Heterogenní reaktory - aktivní zóna je tvořená mříží, která je složena z malých buněk, každá buňka obsahuje prostorově oddělené palivo a moderátor

- pro přesné výpočty je nutné detailní studium charakteristik jednotlivých buněk.

Jaderná elektrárna Temelín

Schéma jaderné elektrárny Temelín s tepelným jaderným reaktorem

Obr. 1.2

Schéma výrobní jednotky jaderné elektrárny

- 1. hlavní výrobní blok
- 2. chladící věž
- 3. kontejnment
- 4. sekundární okruh
- 5. transformátor
- 6. reaktor
- 7. parogenerátor
- 8. čerpadlo
- 9. turbína
- 10.generátor
- 11.kondenzátor
- 12.chlazení napájecí vody

Uranový palivový cyklus

Nuclear Electricity Generation in the World

Source: IAEA-PRIS, BP, MSC, 2012

Nuclear Power Reactor Grid Connections and Shutdowns, 1956-2012

Source: IAEA-PRIS, MSC, 2012