SEPARATE HOLOMORPHIC EXTENSION ALONG LINES AND HOLOMORPHIC EXTENSION FROM THE SPHERE TO THE BALL

LUCA BARACCO

ABSTRACT. We give positive answer to a conjecture by Agranovsky. A continuous function on the sphere which has separate holomorphic extension along the complex lines which pass through three non aligned interior points, is the trace of a holomorphic function in the ball.

MSC: 32F10, 32F20, 32N15, 32T25

1. Introduction

The problem of describing families of discs which suffice for testing analytic extension of a function f from the sphere $\partial \mathbb{B}^2$ to the ball \mathbb{B}^2 has a long history. For f continuous on $\partial \mathbb{B}^2$, Agranovsky-Valski [4] use all the lines, Agranovki-Semenov [3] the lines through an open subset $D' \subset \mathbb{B}^2$, Rudin [10] the lines tangent to a concentric subsphere $B_{\frac{1}{2}}^2$, Baracco-Tumanov-Zampieri the lines tangent to any strictly convex subset $D' \subset\subset \mathbb{B}^2$. There are many other contributions such as [2],[11], [8] just to mention a few. It is a challenging attempt to reduce the number of parameters in the testing families. However, one encounters an immediate constraint: lines which meet a single point $z_o \in \mathbb{B}^2$ do not suffice. Instead, two interior points or a single boundary point suffice: Agranovsky [1] and Baracco [5]. However, in these last two results, the reduction of the testing families is compensated by an assumption of extra initial regularity: f is assumed to be real analytic. Globevnik [7] shows that, for two points, C^{∞} -regularity still suffices, but C^k does not. This suggests that holomorphic extension is a good balance between reduction of testing families and improvement of initial regularity. And in fact, it is showed here, that for $f \in C^0$ three not on the same line points suffice. Here is our result.

Theorem 1.1. Let f be a continuous function on the sphere $\partial \mathbb{B}^2$ which extends holomorphically along any complex line in \mathbb{B}^2 which encounters the set consisting of 3 points not on the same line. Then, f extends holomorphically to \mathbb{B}^2 .

The proof follows in Section 2 below. It shows that, the result should hold for a ball of general dimension \mathbb{B}^n . In this case, n+1 points in generic position should suffice. We first introduce some terminology. A straight disc A is the intersection of a straight complex line with \mathbb{B}^2 ; $\mathbb{P}T^*\mathbb{C}^2$ is the cotangent bundle with projectivized fibers, and π the projection on the base space; $\mathbb{P}T_{\partial\mathbb{B}^2}^*\mathbb{C}^2$ the projectivized conormal bundle to $\partial \mathbb{B}^2$ in \mathbb{C}^2 . It is readily seen that the straight discs A of the ball are the geodesics of the Kobayashi metric, or, equivalently, the so called "stationary discs" (cf. Lempert [9]). These are the discs endowed with a meromorphic lift $A^* \subset \mathbb{P}T^*\mathbb{C}^2$ with a simple pole attached to $T_{\partial\mathbb{B}^2}^*\mathbb{C}^2$, that is, satisfying $\partial A^* \subset \mathbb{P}T_{\partial\mathbb{B}^2}^*\mathbb{C}^2$. We fix three points P_j , j=1,2,3 in \mathbb{B}^2 and consider a set, indexed by j, of (2)-parameter families of straight discs A^{j} passing through P_{j} . We define M_{j} to be the union of the lifts of the family with index j. The set M_i is generically a CR manifold with CR dimension 1 except at the points that project over P_j ; we denote by M_j^{reg} the complement of this set. The boundary of M_j concides with $\mathbb{P}T_{\partial\mathbb{B}^2}^*\mathbb{C}^2$ which is maximal totally real in $\mathbb{P}T^*\mathbb{C}^2$. Here is the central point of our construction. Though the function f, in the beginning of the proof, is not extendible to \mathbb{B}^2 as a result of the separate extensions to the A's, nevertheless it is naturally lifted to a function F on M_i by gluying the bunch of separate holomorphic extensions to the lifts A^* 's. This is defined by

$$F(z, [\zeta]) = f_{A_{(z, [\zeta])}}(z),$$

where $A_{(z,[\zeta])}$ is the unique stationary disc whose lift $A_{(z,[\zeta])}^*$ passes through $(z,[\zeta])$. The crucial point here is that the A's may overlap on \mathbb{C}^2 but the A*'s do not in $\mathbb{P}T^*\mathbb{C}^2$. The function F is therefore well defined and CR on M_i^{reg} .

2. Proof of Theorem 1.1

The proof consists of several steps. We start by collecting some easy computations. We identify $\mathbb{P}T^*\mathbb{C}^2 \simeq \mathbb{C}^2 \times \mathbb{CP}_1 \simeq \mathbb{C}^3$ with coordinates $(z_1, z_2) \in \mathbb{C}^2$ and $z_3 = \frac{\zeta_2}{\zeta_1} \in \mathbb{CP}_1$. Let M_0 be the collection of the lifts of the discs through 0.

Lemma 2.1. Let A_0^* be the (unique) disc of M_0 which projects over the z_1 -axis. Then, A_0^* , identified to a disc of \mathbb{C}^3 , has two holomorphic lifts to $T^*\mathbb{C}^3$ attached to $T_{M_0}^*\mathbb{C}^3$. Their components are parametrized by $z_1 \mapsto (0, -\frac{1}{z_1}, 1)$ and $z_1 \mapsto (0, \frac{1}{iz_1}, \frac{1}{i})$ respectively.

Proof. First, we notice that for any $z=(z_1,z_2)\in \mathbb{B}^2$ the disc $\tau\mapsto \tau\frac{z}{\|z\|}$ is the only passing through z and 0. The lift attached to the

projectivized conormal bundle of this disc is the constant $[\bar{z}]$. We have

$$M_0 = \{(z; [\bar{z}]) \ z \in \mathbb{B}^2 \setminus 0\} \cup \{(0; [\zeta]) \ \forall [\zeta] \in \mathbb{CP}_1\}.$$

Clearly M_0 (or more precisely M_0^{reg}) has equation $r: z_3 - \frac{\bar{z}_2}{\bar{z}_1} = 0$. In particular the lift of A_0 to $\mathbb{P}T^*\mathbb{C}^2$ is $A_0^*(\tau) = ((\tau, 0); [1, 0])$ which in coordinates is expressed by $A_0^*(\tau) = (\tau, 0, 0)$. Since M_0 is Levi flat, the space of holomorphic lifts contained in T^*M_0 has dimension two. For instance a basis for the space of lifts is given by (2.1)

$$\omega_1(z_1, z_2) = \partial \operatorname{Re} r = \left(\frac{z_2}{z_1^2}, -\frac{1}{z_1}, 1\right) \text{ and } \omega_2(z_1, z_2) = \partial \operatorname{Im} r = \frac{1}{i} \left(-\frac{z_2}{z_1^2}, \frac{1}{z_1}, 1\right).$$

In particular, along A_0^* the conormal bundle to M_0 is generated by $\omega_1(z_1,0)=(0,\frac{-1}{z_1},1)$ and $\omega_2(z_1,0)=(0,\frac{1}{iz_1},\frac{1}{i})$. As one can readily note both sections are holomorphic along A_0^* and they are exactly the lifts of A_0^* to the conormal bundle of $T_{M_0}^*\mathbb{C}^3$.

Remark 2.2. Note that if in the lemma above we consider the union of the lifts of discs passing through the point $P_{\zeta_0} = (\zeta_0, 0)$ the manifold resulting M_{ζ_0} still contains A_0^* (i.e. the z_1 axis) and along the boundary of A_0^* we have $TM_0|_{\partial A_0^*} = TM_{\zeta_0}|_{\partial A_0^*}$ and thus also $T_{M_0}^*\mathbb{C}^3|_{\partial A_0^*} = T_{M_{\zeta_0}}^*\mathbb{C}^3|_{\partial A_0^*}$. From this equality we have that if $\tilde{\omega}_1$, $\tilde{\omega}_2$ is a basis of lifts of A_0^* to the conormal bundle to M_{ζ_0} , then this is related to the basis ω_1, ω_2 by

(2.2)
$$\operatorname{Span}\{\tilde{\omega}_1, \tilde{\omega}_2\}|_{\partial A_0^*} = \operatorname{Span}\{\omega_1, \omega_2\}|_{\partial A_0^*}$$

Combination of (2.2) with the fact that singularity of $\tilde{\omega_1}, \tilde{\omega_2}$ must now be located at ζ_0 yields a choice of holomorphic basis as $\tilde{\omega_1}(z_1) = \left(0, -\frac{1}{(z_1 - \zeta_0)}, \frac{1}{(1 - z_1 \tilde{\zeta_0})}\right)$ and $\tilde{\omega_2}(z_1) = \left(0, \frac{1}{i(z_1 - \zeta_0)}, \frac{1}{i(1 - z_1 \tilde{\zeta_0})}\right)$.

Before the proof of our main theorem we need a preliminary crucial result

Theorem 2.3. Let $P_1, P_2 \in \mathbb{B}^2$ be two distinct points inside the ball and let $f: \partial \mathbb{B}^2 \to \mathbb{C}$ be a continuous function such that f extends holomorphically along every complex straight line passing through either P_1 or P_2 . Then for any such disc A, except the one passing through both points, the lifted function F extends holomorphically to a neighborhood of $A^* \setminus \pi^{-1}(P_i)$ where j is 1 or 2 according to $P_1 \in A$ or $P_2 \in A$.

Proof. It is not restrictive to assume that the disc A is the z_1 axis, that $P_2 = (0, z_2)$ and that $P_1 = (\zeta_0, 0)$. We note that M_1 and M_2 intersect transversally along the boundary of A^* . Let $P = (\zeta, 0)$ be a point of

the boundary of A and $P^* = (\zeta, 0, 0)$ be the corresponding point on A^* . P^* lies in the common boundary of M_1 and M_2 . Let v_{ζ} be a tangent vector to $T_{P^*}M_2 \setminus T_{P^*}E$ which points inside M_2 . The equivalence class $[v_{\zeta}]$ in the vector spaces quotient $\frac{T_{P^*}\mathbb{C}^3}{T_{P^*}M_1}$ is called the pointing direction of M_2 with respect to M_1 . We say in this case that F extends at P^* in direction $[v_{\zeta}]$. Let $Q^* = (\zeta_Q, 0, 0)$ be a point of A^* ($\zeta_Q \neq \zeta_0$). Following [13] by effect of the extension of F at P^* in direction $[v_{\zeta}]$ we have extension at Q^* in direction $[w_{\zeta}] \in \frac{T_{Q^*}\mathbb{C}^3}{T_{Q^*}M_1}$. The relation of $[w_{\zeta}]$ with the initial $[v_{\zeta}]$ is expressed by means of contraction with the holomorphic basis of lifts $\tilde{\omega_1}, \tilde{\omega_2}$:

(2.3)

$$\operatorname{Re}\langle \tilde{\omega}_1(\zeta), v_{\zeta} \rangle = \operatorname{Re}\langle \tilde{\omega}_1(\zeta_Q), w_{\zeta} \rangle \text{ and } \operatorname{Re}\langle \tilde{\omega}_2(\zeta), v_{\zeta} \rangle = \operatorname{Re}\langle \tilde{\omega}_2(\zeta_Q), w_{\zeta} \rangle.$$

In other words the directions of CR extendibility, which are vectors in the normal bundle $\frac{T\mathbb{C}^3}{TM_1}$, are constant in the system dual to $\{\tilde{\omega}_1, \tilde{\omega}_2\}$.

We first compute the pointing direction of M_2 at the point P^* . To this end we first compute the disc passing through P_2 and P which is

$$A_{P_2P}(\tau) = (\frac{|z_2|^2 \zeta}{1 + |z_2|^2}, \frac{z_2}{1 + |z_2|^2}) + \frac{\tau}{1 + |z_2|^2}(\zeta, -z_2);$$

note that $A_{P_2P}(1) = P$. The lift component of A_{P_2P} is

$$A_{P_2P}^* = [|z_2|^2 \bar{\zeta} \tau + \bar{\zeta}, \bar{z}_2 \tau - \bar{z}_2],$$

and dividing the second component by the first we get that the $A_{PP_2}^*$'s coordinates in \mathbb{C}^3 are

$$\left(\left(\frac{|z_2|^2\zeta}{1+|z_2|^2}+\frac{\tau}{1+|z_2|^2}\zeta,\frac{z_2}{1+|z_2|^2}-\frac{\tau z_2}{1+|z_2|^2},\frac{\bar{z}_2(\tau-1)}{\bar{\zeta}(|z_2|^2\tau+1)}\right).$$

The pointing direction of M_2 at P is

$$v_{\zeta} = -\partial_{\tau} A_{P_2P}^*(1) = \frac{-1}{1 + |z_2|^2} (\zeta, -z_2, \frac{\bar{z}_2}{\bar{\zeta}}).$$

We have

(2.4)
$$\operatorname{Re}\langle \tilde{\omega}_1(\zeta), v_{\zeta} \rangle = \frac{-1}{1 + |z_2|^2} \operatorname{Re} \frac{z_2}{\zeta - \zeta_0}$$

and

(2.5)
$$\operatorname{Re}\langle \tilde{\omega}_2(\zeta), v_{\zeta} \rangle = \frac{-1}{1 + |z_2|^2} \operatorname{Im} \frac{z_2}{\zeta - \zeta_0}.$$

The first members of (2.4) and (2.5) express the components in the normal bundle to M_1 of w_{ζ} with respect to the dual basis of $\omega_1(\zeta_Q), \omega_2(\zeta_Q)$. By letting ζ vary in ∂A we see that $[w_{\zeta}]$ sweeps all the directions in

 $\frac{T\mathbb{C}^3}{TM_1}|_{Q^*}$. Therefore, by the edge of the wedge theorem, F extends holomorphically to a neighborhood of Q^* and, by propagation, to a neighborhood of any other point of A^* except from the point over P_1 where the CR singularity is located.

We are ready for the proof of Theorem 1.1

End of Proof of Theorem 1.1 Let A_0 be the disc passing through P_1 and P_3 . Then in particular $P_2 \notin A_0$. Applying the theorem above we get that F extends holomorphically to a neighborhood of $A_0^* \setminus \{P_1\}$. By repeating the same argument we see that F extends to a neighborhood of $A_0^* \setminus \{P_3\}$. Therefore F extends to a full neighborhood of A_0^* . For any other straight line A through P_1 we can say that F extends holomorphically to a neighborhood of $A^* \setminus P_1$. By applying the continuity principle to the family of discs formed by A_0^* and all the discs through P_1 , we get that F extends holomorphically to a set of the form $V \times \mathbb{CP}^1_{\mathbb{C}}$ where V is a neighborhood of P_1 . Therefore F does not depend on the second argument and it is therefore naturally defined on the projection of the collection of all the A^* 's, that is, on \mathbb{B}^2 .

References

- [1] **M. Agranovsky**—Holomorphic extension from the unit sphere in \mathbb{C}^n into complex lines passing through a finite set *math. arXiv* 0910.3592 (2009)
- [2] M. Agranovsky— Propagation of boundary CR foliations and Morera type theorems for manifolds with attached analytic discs. *Adv. Math.* **211** (2007), no. 1, 284–326.
- [3] M. Agranovsky and A.M. Semenov—Boundary analogues of the Hartogs' theorem, Siberian Math. J., 32 (1991) Trans. A.M.S., 280 (1983), 247–254
- [4] M. Agranovky and R.E Valski—Maximality of invariant algebras of functions. (Russian) Sibirsk. Mat. Z. 12 (1971) 3–12.
- [5] L. Baracco—Holomorphic extension from a convex hypersurface (2009)
- [6] L. Baracco, A. Tumanov, G. Zampieri—Extremal discs and holomorphic extension from convex hypersurfaces. *Ark. Mat.* **45** (2007) 1–13
- [7] **J. Globevnik**—Small families of complex lines for testing holomorphic extendibility *Arxiv*: :0911.5088v2 (2009)
- [8] J. Globevnik, E. L. Stout—Boundary Morera theorems for holomorphic functions of several complex variables. *Duke Math. J.* 64 (1991), no. 3, 571–615
- [9] L. Lempert—La metrique de Kobayashi et la representation des domaines sur la boule. Bull. Soc. Math. de France 109 (1981), 427–474
- [10] W. Rudin— Function theory in the unit ball of Cn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles ofMathematical Science], 241. Springer-Verlag, New York- Berlin, (1980)

- [11] **E. L. Stout** The boundary values of holomorphic functions of several complex variables. *Duke Math. J.* **44** (1977), no. 1, 105–108
- [12] **A. Tumanov** Connections and propagations of analyticity for CR functions. *Duke Math. J.* **73** (1994), 1–24
- [13] **A. Tumanov** Propagation of extendibility of CR functions on manifolds with edges. Contemp. Math. **205** (1997),259–269
- [14] A. Tumanov Testing analiticity on circles. Amer. J. Math. 129 (2007), no. 3, 785–790
- [15] **A. Tumanov**—A Morera type theorem in the strip, *Math. Res. Lett.*, **11** 1 (204), 23–29

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, VIA TRIESTE 63, 35121 PADOVA, ITALY

 $E ext{-}mail\ address: baracco@math.unipd.it}$