

## SF Angewandte Mathematik

DGL & Iterationen gym4 / WaJ Mai 2021

Nachname: Vorname:

• Zugelassenes Hilfsmittel ist ein Taschenrechner (TI 82 o.ä.) und die gelbe Formelsammlung.

• Die Darstellung fliesst in die Bewertung ein. Blosse Resultate ergeben keine Punkte.

Aufgabe 1 18 Punkte

Sei

$$P \cdot \mathrm{d}x + Q \cdot \mathrm{d}y = 0$$
mit  $P = P(x, y) = \frac{x}{\left(\sqrt{x^2 + y^2}\right)^3}$ ,  $Q = Q(x, y) = \frac{y}{\left(\sqrt{x^2 + y^2}\right)^3}$  und  $y = y(x)$ .

- (a) Bestimme  $\frac{\partial P(x,y)}{\partial y}$ ; vereinfache.
- (b) Begründe mit (a), dass  $\frac{\partial Q(x,y)}{\partial x} = \frac{-3xy}{r^5}$  wobei  $r := \sqrt{x^2 + y^2}$ .
- (c) Zeige, dass  $H(x) = -\frac{1}{\sqrt{x^2 + y^2}}$  eine Stammfunktion von  $h(x) = \frac{x}{\left(\sqrt{x^2 + y^2}\right)^3}$  ist.
- (d) Bestimme nun  $\int P(x,y) dx$  und  $\int Q(x,y) dy$ .
- (e) Zeige, dass das Potenzial  $F(x,y) = -\frac{1}{r} =: F(r)$  ist.
- (f) Bestimme die Gleichung der Niveaulinien  $y_k(x)$  von F(x,y).
- (g) Berechne den Gradienten von  $F(x,y), \vec{S} := \vec{\nabla} F(x,y).$
- (h) Berechne die Divergenz von  $\vec{S}$ ,  $\vec{\nabla} \cdot \vec{S}$ .
- (i) Berechne die Rotation von  $\vec{S}$ ,  $\vec{\nabla} \times \vec{S}$ .

Aufgabe 2 (11 Punkte: 1,1,3,2,4)

Die logistische Funktion

$$f_r(x) = rx(1-x)$$

mit  $x \in [0,1]$  und  $r \in [0,4]$  wollen wir noch einmal Revue passieren lassen.

- (a) Berechne den Scheitelpunkt der Parabel  $f_r(x)$ .
- (b) Berechne die Ableitung  $f'_r(x)$ .
- (c) Berechne  $f_r^{(2)}(x)$  und notiere dann  $f_r^{(2)}(x) x$  sortiert nach Potenzen von x.
- (d) Multipliziere  $(-rx^2 + (r-1)x) \cdot (-r^3x^2 + (r^2 + r^3)x (r^2 + r))$  aus und sortiere nach Potenzen von x.
- (e) Bestimme alle Nullstellen des Polynoms aus (d). Vereinfache soweit wie möglich.



## SF Angewandte Mathematik

DGL & Iterationen gym4 / WaJ Mai 2021

Aufgabe 3 8 Punkte

Löse

$$\ddot{y}(t) + \omega^2 \cdot y(t) = 0$$

mit dem Ansatz  $y(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5$ .

Aufgabe 4 (8 Punkte)

Rechne die ersten vier Iterationen von  $z_{k+1}=z_k^2+c$  mit  $z_0=0$  für  $c=-1,-\frac{1}{2},i$  und -1+0.1i und "rate", wie der jeweilige Orbit für  $k\to\infty$  aussieht.