Operace ALU

INP 2019 FIT VUT v Brně

Princip ALU (FX)

Poloviční sčítačka

Úplná sčítačka

Úplná sčítačka – úrovně popisu

1. Úroveň chování

S <= A xor B xor CI; COUT <= (A and B) or (A and CI) or (B and CI);

2. Úroveň hradel

3. Úroveň tranzistorů

4. Úroveň fyzická (layout)

Čím nižší úroveň popisu, tím přesnější znalost parametrů obvodu (plocha, zpoždění, příkon ...)

Cf Weste, Harris: CMOS VLSI Design, 4th ed, 2010

Sériová sčítačka

Jde o jednobitovou sčítačku použitou pro sériové sčítání dvou n-bitových čísel, připravených ve vstupních registrech. Na výstupu S_i se postupně objevují bity součtu počínaje nejnižším bitem 0, a výstup přenosu C_{i+1} se zachycuje na dobu jednoho taktu (T_c) v klopném obvodu D (Carry Save). (Předpokládáme, že jde o synchronní sčítačku s taktem T_c).

Paralelní sčítačka s postupným přenosem

- Objeví-li se u první sčítačky výstup přenosu za dobu 2Δ, kde Δ je přenosové zpoždění jednoho logického členu, na výstupu druhé sčítačky je to již 4 Δ, atd. Výstup přenosu se u poslední sčítačky objeví za dobu 2n Δ.
- Pro prakticky používané šířky sčítaček 32, 64 a 128 bitů je tato doba <u>nepřijatelně dlouhá</u>.
- Je proto snaha navrhovat sčítačky s rychlým přenosem.
- Hledáme kompromis mezi zpožděním a počtem hradel (plochou).

Rozšířená sčítačka

Ci	Ai	Bi	Si	Pi	Gi	Ci+1
0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	0	1	1	0	0
0	1	1	0	0	1	1
1	0	0	1	0	0	0
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	1	0	1	1

Zavedeme dva pomocné výstupy: P_i - propagate carry ("1", když přenos sčítačkou prochází, Ai≠Bi)

G_i - generate carry (vznik přenosu bez ohledu na hodnotu C_i)

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i} \text{ (zpoždění: } 2 \Delta)$$

$$P_{i} = A_{i} \oplus B_{i} \qquad (\Delta)$$

$$G_{i} = A_{i}.B_{i} \qquad (\Delta)$$

$$C_{i+1} = P_{i}.C_{i} + G_{i} \qquad (3\Delta)$$

Rozšířená sčítačka:

4b sčítačka s CLA – zpoždění 4∆

Logický obvod CLA

Určete obecný matematický výraz pro složitost (tedy pro "počet vstupů" u jednotlivých funkcí C_i) obvodu CLA.

n-bitová sčítačka s CLA – konst. zpoždění 4Δ

- Cesty pro šíření postupného přenosu jsou zrušeny a na vstupy přenosu všech sčítaček se přivádějí příslušné výstupy generátoru přenosu (obvodu CLA).
- Funkce Pi, Gi se tvoří se zpožděním Δ , v čase 3Δ jsou k dispozici všechny rychlé přenosy, a součet je tedy vytvořen v čase 4Δ .
- Popsané uspořádání n-bitové sčítačky je nejrychlejší možné řešení.
- Složitost (zejména počet vstupů u log. členů) dvoustupňového generátoru přenosu však roste pro rostoucí šířku sčítačky s druhou mocninou šířky. Pro šířky 32 a 64 bitů je toto řešení již technologicky nepřijatelné.
- Byla proto navržena řešení umožňující za cenu nárůstu zpoždění zmenšit potřebnou plochu na čipu:
 - stromový generátor přenosu s CLA např. pomocí několika 4b obvodů CLA uspořádaných do stromu
 - výběr přenosu viz příklad
 - přeskakování přenosu atd.

Sčítačka s výběrem přenosu

- 8-bitová sčítačka je rozdělena na dvě 4-bitové sčítačky.
- Horní sčítačka je zdvojená, přičemž jedna má vstup přenosu 0, a druhá 1.
- Obě připraví výsledek, a 4vstupový multiplexor pak vybere jednu z nich podle hodnoty přenosu C4.
- Obvodové řešení se tedy prodražilo o více než 50% vzhledem ke sčítačce s postupným přenosem.

16b varianta

Pro větší šířky sčítaček se postupuje obdobně; každý blok je zdvojen a je přidán výběrový multiplexor.

Hodnocení složitosti logických obvodů

- Jde o nalezení <u>kompromisního</u> řešení mezi cenou a výkonností.
 V poslední době se navíc hledá kompromis s příkonem.
- Cena popíše se např. součtem počtu vstupů všech použitých logických členů, součtem počtu logických členů, plochou na čipu apod.
- Výkonnost popíše se hodnotou nejdelšího přenosového zpoždění daného obvodu (které následně určuje f_{max}).

Operační rychlost a plocha různých typů sčítaček šířky *n*

Тур	doba výpočtu	plocha
Postupný přenos	O(<i>n</i>)	O(<i>n</i>)
2 – stupňový CLA	4	$O(n^2)$
Stromový CLA <i>k</i> -nární	$O(\log_k n)$	$O(n \log_k n)$
Přeskakování přenosu	O(√ <i>n</i>)	O(<i>n</i>)
Výběr přenosu	O(√n)	O(n)

kde *k* je počet dílčích přenosů, které se skládají v jednom uzlu stromu.

Další operace ALU – posuvy a rotace

- Blok posuvů a rotací je umístěn buď za výstupem ALU, nebo paralelně k bloku ALU.
- Řídicí vstupy: směr posuvu, jeho typ (logický nebo aritmetický), a počet bitů, o které se posouvá.
- U každého operačního bloku se musí pamatovat na operaci identity.
- Implementace: válcový posouvač (Barrel Shifter) – pomocí multiplexorů, ne posuvný registr!!

4b válcový posouvač pro rotace vpravo (4 x 4-vst. MUX, zpoždění 2Δ)

$$b_{3} b_{2} b_{1} b_{0}$$
 $\downarrow \quad \downarrow \quad \downarrow$
 $a_{3} a_{2} a_{1} a_{0} \quad _{0 \text{ bit}}$
 $a_{0} a_{3} a_{2} a_{1} \quad _{1 \text{ bit}}$
 $a_{1} a_{0} a_{3} a_{2} \quad _{2 \text{ bit}}$
 $a_{2} a_{1} a_{0} a_{3} \quad _{3 \text{ bit}}$

Možnosti realizace 8b válcového posouvače (rotace vlevo)

http://verilog-code.blogspot.com/2013/09/barrel-shifter-design-using-21-mux.html

- (8) 8 x 8-vstupový multiplexor: dražší řešení, zpoždění 2∆
- (2, 2, 2) 24 x 2-MUX, zpoždění 6∆, levnější řešení, viz obrázek

Př. 8b válcový posouvač (rotace vlevo)

http://verilog-code.blogspot.com/2013/09/barrel-shifter-design-using-21-mux.html

Př. Rotace o 6b vlevo $S_2S_1S_0 = 110$

Na výstupech Q_7 Q_6 Q_5 Q_4 Q_3 Q_2 Q_1 Q_0 budou vstupní bity: D_1 D_0 D_7 D_6 D_5 D_4 D_3 D_2

Poznámky

- Při optimalizaci vnitřní struktury válcového posouvače se kromě základních kritérií, což je cena (počet logických členů příp. počet vstupů logických členů) a přenosové zpoždění, používá pro každou technologii ještě povolené vstupní a výstupní větvení, příp. ještě další kritéria. Může se pak dospět ke struktuře, která používá v jednotlivých stupních multiplexory s rozdílným počtem vstupů.
- Je vhodné pak popisovat struktury symbolicky. Např. jednostupňové uspořádání 16 bit. posouvače s 16-vstupovými multiplexory se zapíše (16), čtyřstupňové uspořádání se 2-vstupovými multiplexory jako (2,2,2,2), se 4-vstupovými MUX (4,4), smíšená struktura např. (2,4,2) atd. Přenosové zpoždění válcového posouvače se strukturou (2,2,2,2) je 8 jednotkových zpoždění Δ.
- Poznámka: Logická struktura multiplexoru je dvoustupňová, s přenosovým zpožděním 2∆.