Types of Operating System

- Depending on type of targetted hardware OSs are classified as
 - 1. Desktop OS
 - 2. Server OS
 - 3. Handheld OS
 - 4. Embedded OS
 - 5. Real Time OS
 - 6. Distributed OS
 - 7. Mainframe OS

Types of Operating System

1> Resident Monitor 2) Bodch system 3> multiprogramming System
-multiple programs are
loaded into RAM Degree of Multiprogramming Lyno. of processes loaded into RAM CPU byrst/time Latime spent on CPU To burst/time Latime spent to perform Io CPV > ID - CPV boynd byrot > burst process IO > CPV - To bound byrst byrst process -misuture of CPV bound & To bound processes is waded into RAM

4) Time sharing System/ multitusking System - CPV time is shared in all the processes of RAM Response time < 1 see - there are two types of multitesking i) Process based Multitæsking ii) Thread based Multitæsking youtube.com IDE Browser Media Player - multitæsking within system - multitæsking which process - multiple terminals (Monitor + keyboard) are connected to single system 5> Mutiuser system - multiple resers can operate single system through these terminals commands: Whoami, who, w, tty

6) Muliprocessing system/Parallel System -multiple CPUs are fitted on single chip, such procesur chip is known as "multiprocessor"/ "multicore" -OS can schedule multiple processes cet a time for every one, in short multiple processes can be processed parallely There are two ypes of multiprocessing 1) Symmetric Multiprocessing 2) Asymmetric multiprocessing (C3 C4) - 89 - Windows Vistee & first time multiprocessing is - Linux 2.57 Supported.

OS's Data Structures

1. Job queue / Process list

—All processes of memory (RAM) are kept inthis
queue

2. Ready queue

-processes which are ready to execute on CPU

-cpu schedular elways select process from ready

queue

3. Waiting queues

- processes which are waiting for completion of

Torevert

- waiting queues are multiple (per device 1)

Process Life cycle

cpu access is given 2) Non Pre emptive CPV access is given to another process Munteerily

CPU Scheduling Criterias

1. CPU Utilization

Thousand consists budy lidle

Thousand consists budy lidle

Desktop OS - 70% Server OS - 90%

The must (Max)

2. Through put Max of work done in unit time - amount of work done in unit time - How many processes are completed in unit time

3. Waiting time (Min)

- total time spent by process into ready queue for worting to get CPV access

4. Response time (Min)
-time from arrival of process into ready quege upto
first time getting scheduled on CPV.

5. Turn Aroud Time(TAT) ((())

-total time spent by process into memory (RAM)

TAT = CPV + CPV + waiting + byest time + byest

Context Switching

- process of unloading one process from CPV & loading another process on CPV

82

- changing the process of CPV

BUS

Unit

- Execution Content - values of CPV register

FCFS (First Come First Serve) (1700 Preemptive)

	Process	Arrival	CPU Burst
	P1	0	24
	P2	0	3
\downarrow	P3	0	3

WT	RT	TAT
\bigcirc	0	24
24	24	27
27	27	30

Process	Arrival	CPU Burst
P3	0	3
P2	0	3
P1	0	24

WT	RT	TAT
	\bigcirc	3
3	3	6
0	6	30

Gantt's chart

Conny's effect:
due to arrival of longer process early, all
remaining processes has to wait for longer time

(Mon Preemptive)

SJF (Shortest Job First)
(Preemptive)
(Shortest Remaining Time First)

		1	1 . 1 -	0	T
Process	Arrival	CPU Burst	WT	K. /	\ F
P1	0	7	0	\bigcirc	7
P2	2	4	6	\leq	ľO
Р3	4	1	3	3	4
P4	5	4	7	Ť	
			,	1	

			Remoun	, 17	RT	TAT
Process	Arrival	CPU Burst	Remoun	W \		
P1	0	7	2		7	
P2	2	4	2	1	O	1
Р3	4	1		O	O	
P4	5	4		2	2	0
			A .		0.5	

Storvation:
due to longer CPU burst process doesn't get
scheduled for longer deration

Priority

(Non Preemptive)

Process	Arrival	CPU Burst	Priority	WT	RT	TAT
P1	0	10	3	6	6	16
P2	0	1	1 (4)	Ô	0	
P3	0	2	4 ([) (6	16	1,8
P4	0	5	2	1)	6

		Pre	em	Pti	ve)
--	--	-----	----	-----	-----

Process	Arrival	CPU Burst	Priority	WT	RT	TAT
P1	0	10	3	6	6	16
P2	1	1	1 (H)		\bigcirc	1
P3	3	2	4 (1)	13	13	15
P4	0	5	2	1	\bigcirc	6

	92	P4	PI	-	P3	
PP		6			6	8
P			P3 P4 P5	_	P2 P3 P5 P4 P1	

PY	P2 P4	PI		P3
P	P2 P3	6	[6	(8
P4	•			

Starvation: due to less priority process don't get enough time to execute

Aging: increase the priority of starred process gradually

Process	CPU Burst
P1	53
P2	17
P3	68
P4	24

Fair Share

- CPU time is divided into time slices (epoch)
- some share of each epoch is given to the processes which are in ready queue.
- share is given to the process on the basis of their priority
- priority of every process is decided by its nice value
- nice values range ---> -20 to +19 (40 values)
 - * -20 highest priority

* +19 - lowest priority

Process	Nice Value
P1	10
P2	10
P3	10
P4	10

Epoch - 100

Process	Nice Value
P1	5
P2	5
Р3	10
P4	10

Completely Fair Scheduler (CFS)

Multi Level Ready Queue

Highest prio rq2 VI Processes (RR) rq8 Background Processes (RR) 294 Other processes (FCS) Lowest prio

Multi Level Feedback Ready Queue

Redirection

sort numbers.txt | uniq

