

Final 04/08/2021

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

${\rm \acute{I}ndice}$

1.	Fina	al $08/04/2021$	2
	1.1.	Ejercicio 1	2
		1.1.A. Pregunta i	2
		1.1.B. Pregunta ii	2
	1.2.	Ejercicio 2	3
	1.3.	Ejercicio 4	3

1. Final 08/04/2021

1.1. Ejercicio 1

Tengo $f: \mathbb{Z}^2 \to \mathbb{Z}$ y f(a, b) = 18a + 60b

1.1.A. Pregunta i

Me piden decidir si f es inyectiva, si no lo es describir $\{(a,b) \in \mathbb{Z}^2/f(a,b) = 0\}$

Por definición, una función h es inyectiva $\iff \forall (a,b) \in \mathbb{Z}^2 : h(a) = h(b) \implies a = b$

Pues las inyecctivas son aquellas funciones que asignan a lo sumo 1 elemento del codominio a cada una del dominio.

Luego debo ver si f(a,b) = 18a + 60b es inyectiva. Dados $\alpha, \beta, \sigma, \rho \in \mathbb{Z}$

$$f(\alpha, \beta) = 18\alpha + 60\beta$$
$$f(\sigma, \rho) = 18\sigma + 60\rho$$

Luego,

$$f(\alpha, \beta) = f(\sigma, \rho) \iff 18\alpha + 60\beta = 18\sigma + 60\rho$$
$$\iff 18\alpha - 18\sigma = 60\rho - 60\beta$$
$$\iff 18(\alpha - \sigma) = 60(\rho - \beta)$$
$$\iff 3(\alpha - \sigma) = 10(\rho - \beta)$$

Por lo tanto a ojo veo que valen todas las soluciones tales que $(\alpha - \sigma = 10) \wedge (\rho - \beta = 3)$

Contrejemplo: Sean $\alpha = 11 \land \sigma = 1 \land \rho = 4\beta = 1$

Luego,

$$f(\alpha, \beta) = 18\alpha + 60\beta = 18.11 + 60.1 = 258$$
$$f(\sigma, \rho) = 18\sigma + 60\rho = 18.1 + 60.4 = 258$$

Pero $(11,1) \neq (1,4)$

Por lo tanto f no es inyectiva.

Ahora busco $(a,b)/f(a,b) = 0 \iff 18a + 60b = 0$

Verifico que existe solución

Hay solución, pues $(18:60)|0 \iff (3^2.2:3.2^2.5) = 3.2 = 6|0$

Coprimizo la ecuación

 $18a + 60b = 0 \iff 3a + 10b = 0$

Armo conjunto solución

El conjunto de soluciones es $S_0 = (10k; -3k) \forall k \in \mathbb{Z}$

Verifico que son soluciones

$$a = 10k \land b = -3k \implies 18a + 60b = 18(10k) + 60(-3k) = 180k - 180k = 0$$

Por lo tanto $f(a,b) = 0 \iff (a,b) \in \{(x,y) \in \mathbb{Z}^2 / x = 10k \land y = -3k \land k \in \mathbb{Z}\}$

1.1.B. Pregunta ii

Por definición, f es sobreyectiva $\iff \forall x \in \mathbb{Z}, \exists (a,b) \in \mathbb{Z}^2 : f(a,b) = x$

Se que una ecuación diofántica ax + by = c tiene solución cuando (x : y)|c

Luego 18a + 60b = c no tiene solución cuando (18 : 60) $\not c$. Por ejemplo, 18a + 60b = 5 no tiene solución, pues 6 $\not 5$ Así, $\not \exists (a,b) \in \mathbb{Z}^2/f(a,b) = 5 \implies f$ no es sobreyectiva.

 $Y \text{ la } Im(f) = \{x \in \mathbb{Z} : x = 6k \land k \in \mathbb{Z}\}\$

1.2. Ejercicio 2

Se que $a \in \mathbb{Z} \land 96a \equiv 51(27)$

Defino $d = (4a^2 - a + 3: 16a^2 + 9)$

Reescribo la congruencia que me dieron

$$96a \equiv 51(27) \iff 15a \equiv 24(27)$$

$$\iff 5a \equiv 8(9)$$

$$\iff a \equiv 7(9)$$

Usando el algoritmo de Euclides, llego a que $d|9 \implies d \in \{1, 3, 9\}$

Caso d = 3

Se que $a \equiv 7(9) \implies a \equiv 1(3)$

$$3|4a^2 - a + 3 \iff 4a^2 - a + 3 \equiv 0(3)$$
$$\iff 1^2 - 1 + 0 \equiv 0(3)$$
$$\iff 0 \equiv 0(3)$$

Y,

$$3|16a^{2} + 9 \iff 16a^{2} + 9 \equiv 0(3)$$
$$\iff 1^{2} + 0 \equiv 0(3)$$
$$\iff 1 \equiv 0(3)$$

Luego $d \neq 3$ y por lo tanto, $d \neq 9$. Así,

Rta.: $(4a^2 - a + 3 : 16a^2 + 9) = 1$

1.3. Ejercicio 4

$$f_1 = x^2 - 6x + 9 \text{ y } f_2 = x^3 - 5x^2 + 3x + 9 \text{ y } f_{n+2} = (x^2 - 9)f_{n+1} \cdot f_n'' + f_{n+1}' \cdot f_n' + f_n^2(x - 2)^n$$

Por multiplicidad de raíces, se que $mult(3, f) = 2 \iff \begin{cases} f(3) = 0 \\ f'(3) = 0 \\ f''(3) \neq 0 \end{cases}$

Voy a hacer la prueba por inducción

Defino $p(n): mult(3, f_n) = 2; \forall n \in \mathbb{N}$

Casos base n = 1, n = 2

$$p(1): mult(3, f_1) = 2 \iff \begin{cases} f_1(3) = 0 \iff 9 - 18 + 9 = 0 \\ f'_1(3) = 0 \iff 6 - 6 = 0 \\ f''_1(3) \neq 0 \iff 2 \neq 0 \end{cases}$$

Luego p(1) es verdadero.

$$p(n): mult(3, f_n) = 2 \iff \begin{cases} f_2(3) = 0 \iff 27 - 45 + 9 + 9 = 0 \\ f'_2(3) = 0 \iff 27 - 30 + 3 = 0 \\ f''_2(3) \neq 0 \iff 18 - 10 \neq 0 \end{cases}$$

Luego p(2) es verdadero.

Paso inductivo

Dado $h \ge 1$ quiero probar que $p(h) \land p(h+1) \implies p(h+2)$

HI: $mult(3, f_h) = 2 \text{ y } mult(3, f_{h+1}) = 2$

Qpq: $mult(3, f_{h+2}) = 2$

Se que $mult(3, f) = x \implies mult(3, f') = x - 1$

Luego

- $f_h = (x-3)^2 \cdot k \text{ con } (x-3) / k$
- $f'_h = (x-3) \cdot q \text{ con } (x-3) / q$
- $f_h'' = r \cos(x-3) / r$
- $f_{h+1} = (x-3)^2 \cdot t \text{ con } (x-3) / t$
- $f'_{h+1} = (x-3) \cdot u \text{ con } (x-3) / u$
- $f_{h+1}'' = v \operatorname{con}(x-3) / v$

Reescribo f_{h+2} ,

$$f_{h+2} = (x+3)(x-3)(x-3)^2 tr + (x-3)q(x-3)u + (x-3)^4 k^2 (x-2)^n$$

= $(x-3)^2 \left[(x+3)(x-3)tr + qu + (x-3)^2 k^2 (x-2)^n \right]$

Luego se que $(x-3)^2|f_{h+2} \implies mult(3, f_{h+2}) \ge 2$

Falta ver que (x-3) / $[(x+3)(x-3)tr + qu + (x-3)^2k^2(x-2)^n]$

Pero
$$\begin{cases} (x-3)|(x+3)(x-3)tr\\ (x-3)|(x-3)^2k^2(x-2)^n & \text{Luego } mult(3,f_{h+2})=2 \text{ como se quería probar.}\\ (x-3)\not|qu \end{cases}$$