

Ministry of Science and Higher Education of the Russian Federation

National Research University Higher School of Economics

Faculty of Computer Science

School of Data Analysis and Artificial Intelligence

HOMEWORK REPORT

Subject: Basic Methods of Data Analysis

Student M.D. Kirdin

Student V.M. Pendishchuk

Professor B.G. Mirkin

ANNOTATION

Расчетно-пояснительная записка 58 с., 14 рис., 1 таблица, 22 источника. ФУНКЦИЯ ЛЯПУНОВА; ИНВАРИАНТНЫЕ КОМПАКТЫ; ЗЛОКА-ЧЕСТВЕННЫЕ ГЛИОМЫ; АТТРАКТОР.

Данная работа описывает динамику развития злокачественных глиом с учетом их взаимодействия с иммунной системой при помощи системы обыкновенных дифференциальных уравнений. Используемая математическая модель описывает взаимодействие клеток глиомы, макрофагов, активированных цитотоксичных T-лимфоцитов(T-киллеров), иммуноподавляющего фактора TGF- β и иммуностимулирующего фактора IFN- γ . Динамика данной модели была исследована аналитически на предмет устойчивости с помощью методов локализации инвариантных компактов. Найдены граничные положения равновесия, соответствующие отсутствию глиомы и доказано существование компактного множества, содержащего аттрактор системы. При помощи численных методов найдено и исследовано на предмет устойчивости и внутреннее положение равновесия при определенных значениях параметров.

CONTENTS

ANNO	TΑ	TION	2
INTRODUCTION			4
1 ЛС)KA	ЛИЗАЦИЯ ИНВАРИАНТНЫХ КОМПАКТОВ	7
1	1	Постановка задачи	7
1	2	Основные определения и теоремы	8
1	3	Положительная инвариантность множества D	6
1	.4	Инвариантные множества внутри множества D	17
2 ИС	СЛ	ЕДОВАНИЕ ПОЛОЖЕНИЙ РАВНОВЕСИЯ	24
2	2.1	Метод выбора кандидата-функции Ляпунова для систем с	
		дробно-рациональными правыми частями	24
2	2.2	Положения равновесия на границе множества D	26
2	2.3	Положения равновесия внутри области D	30
2	2.4	Численное моделирование	32
RESULTS		39	
REFERENCES		40	
ПРИЛОЖЕНИЕ А		43	
ПРИЛОЖЕНИЕ В			44

INTRODUCTION

Глиомы — тип опухолей головного или спинного мозга, развивающихся из глиальных клеток. Глиомы делятся на доброкачественные и злокачественные по степени агрессивности. Доброкачественные опухоли растут медленно и не распространяются на другие органы, но они могут вызывать давление на мозг и нарушать его функции. Злокачественные глиомы быстро растут и могут распространяться на другие части мозга. В зависимости от структуры и мутаций, глиомы разделяются на астроцитомы, олигодендроглиомы и глиобластомы [1].

Лечение глиом зависит от множества факторов, включая тип, размер и расположение опухоли, а также от общего состояния здоровья пациента. Стандартные методы лечения включают хирургическое вмешательство, радиотерапию и химиотерапию. От 30% до 40% от всех мозговых опухолей [2] являются глиомами, поэтому последние годы значительные усилия были направлены на разработку иммунотерапии или оптимизации уже существующих методов, чтобы улучшить результаты лечения и качество жизни пациентов. Для этого необходимо исследование механизмов, лежащих в основе роста и распространения раковых клеток. Данная задача может быть решена путем составления и исследования математических моделей, описывающих динамику взаимодействия раковых и иммунных клеток в различных ситуациях.

Системы дифференциальных уравнений позволяют дать количественное представление биологическим процессам, протекающим во время заболевания [3], например, взаимодействию патогена и иммунной системы с учетом воздействия терапевтических белков [4], реакции системы рак-иммунитет на химиотерапию [5–8] или взаимодействию клеток иммунитета и раковых клеток с условием поражения ВИЧ т-хелперов [9]. В частности может быть предсказана динамика развития глиом в различных сценариях [10].

Многие виды рака, включая опухоли головного и спинного мозга, подвергались системной иммунотерапии путем экзогенного введения иммунных клеток или иммунорегулирующих факторов с ограниченным успехом. Chakrabarty и Hanson сформулировали задачу оптимального управления доставкой лекарств к опухоли мозга с целью минимизации плотности опухолевых клеток и снижения побочного действия лекарств с помощью метода конечных

элементов Галеркина [11]. Bandara и др. предложили математическую модель для рациональной разработки таргетных стратегий (in-silico) для эффективной транспортировки Паклитаксела, антимитотического препарата, через гематоэнцефалический барьер [12]. Kirkby и др. сформулировали модель глиобластомы, которая предсказывает эффекты эскалации дозы радиотерапии и воспроизводит чрезвычайно точные клинические данные [13]. Schmitz и др. с помощью модели клеточного автомата опухоли мозга изучали гетерогенные опухоли, содержащие как чувствительные к лечению, так и резистентные к нему клетки. Авторы исследовали моноклональные опухоли, двухпоточные с резистентной субпопуляцией и многопоточные опухоли с индуцированной мутацией и смогли представить данные о времени выживания по каждому из этих примеров [14]. Walker, Cook [15] на макроскопической модели разработали систему доставки лекарств к опухолям мозга, где авторы предположили, что лекарство доставляется как в нормальную, так и в опухолевую ткань через сосудистую систему. Посредством диффузии и конвекции препараты проникают в ткани мозга через сосудистую сеть, переносятся через гематоэнцефалический барьер и интерстициальное пространство. Оценив влияние изменения параметров на доставку лекарств, они нашли оптимальный способ конвективной доставки лекарств в центр опухоли. Kronik и др. [16] рассмотрели интерактивную динамику цитотоксических Т-лимфоцитов, клеток опухоли мозга, основного комплекса гистосовместимости (МНС) класса-І и MHC класса-II, а также цитокинов TGF- β и IFN- γ , где они использовали компьютерное моделирование для проверки модели и поиска предполагаемых сценариев лечения. Полученные ими результаты свидетельствуют о том, что глиобластома может быть уничтожена с помощью новых стратегий с интенсивной дозировкой или путем значительного стимулирования эндогенного иммунного ответа или инфузии Т-клеток, как показано в их математической модели.

В данной работе была поставлена цель провести исследование модели, представленной в [17] при помощи методов локализации инвариантных компактов [18, 19], исследование устойчивости положений равновесия системы при помощи построения функций Ляпунова.

Нахождение инвариантных компактов позволит говорить об асимптотическом поведении траекторий системы, что на практике дает возможность

судить о дальнейшем ходе заболевания по количествам клеток глиом, макрофагов, т-киллеров, белков TGF- β , и гамма интерферонов.

1 ЛОКАЛИЗАЦИЯ ИНВАРИАНТНЫХ КОМПАКТОВ

1.1 Постановка задачи

Рассмотрим следующую пятимерную систему с неотрицательными переменными $x = (x_1, x_2, x_3, x_4, x_5)$ и положительными параметрами:

$$\begin{cases} \dot{x}_{1} = r_{1}x_{1} \left(1 - \frac{x_{1}}{c_{1}}\right) - \frac{1}{x_{4} + e_{1}} (\alpha_{1}x_{2} + \alpha_{2}x_{3}) \frac{x_{1}}{x_{1} + k_{1}}, \\ \dot{x}_{2} = r_{2}x_{2} \left(1 - \frac{x_{2}}{c_{2}}\right) + \frac{x_{5}}{k_{4} + x_{5}} a_{1} \frac{1}{x_{4} + e_{2}} - \alpha_{3} \frac{x_{1}}{x_{1} + k_{2}} x_{2}, \\ \dot{x}_{3} = a_{2} \frac{x_{1}}{k_{5} + x_{4}} - \mu_{1}x_{3} - \alpha_{4} \frac{x_{1}}{x_{1} + k_{3}} x_{3}, \\ \dot{x}_{4} = s_{1} + b_{1}x_{1} - \mu_{2}x_{4}, \\ \dot{x}_{5} = b_{2}x_{3} - \mu_{3}x_{5}, \end{cases}$$

$$(1)$$

где $t \geqslant 0$ — время;

 x_1 — количество клеток глиомы;

 x_2 — количество макрофагов;

 x_3 — количество т-киллеров;

 x_4 — количество белков TGF- β ;

 x_5 — количество γ -интерферонов.

Также из биологических соображений будем полагать, что начальные условия имеют следующий вид:

$$x_1(0) \ge 0, \ x_2(0) \ge 0, \ x_3(0) \ge 0, \ x_4(0) \ge 0, \ x_5(0) \ge 0.$$
 (2)

Введем следующие обозначения:

$$\mathbb{R}^n_{+,0} = \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : x_i \geqslant 0, i = \overline{1,n} \}, \, \mathbb{R}_{+,0} = \{ x \in \mathbb{R} : x \geqslant 0 \}.$$

Для системы (1) покажем, что множество $D = \mathbb{R}^5_{+,0} = \{x \geqslant 0\}$ положительно инвариантно, проведем исследование инвариантности пересечений множества D с координатными плоскостями, а также систем, являющихся ограничениями (1) на инвариантные координатные плоскости. Кроме того, найдем компактное множество, содержащее аттрактор системы.

1.2 Основные определения и теоремы

Definition 1. Точка p называется ω -npeдельной mочкой траектории x = x(t) в случае, если существует такая последовательность $\{t_n\}$, где $t_n \to +\infty$ при $n \to +\infty$, что $x(t_n) \to p$ при $n \to +\infty$. Множество всех предельных точек траектории x = x(t) называется ω -npeдельным множесством.

Definition 2. Множество M называется uнварианmным для непрерывной динамической системы $\dot{x} = F(x), x \in D \subset \mathbb{R}^n$, если

$$\forall x_0 \in M \quad x(0) = x_0 \implies x(t) \in M, \ \forall t \in \mathbb{R}.$$

т.е. для любой точки $x_0 \in M$ решение системы x(t) с начальным условием $x(0) = x_0$ не выходит за пределы M для любого $t \in \mathbb{R}$.

Definition 3. Множество M называется положительно инвариантным для непрерывной динамической системы $\dot{x} = F(x), x \in \mathbb{R}^n$, если

$$\forall x_0 \in M \quad x(0) = x_0 \implies x(t) \in M, \ t > 0.$$

т.е. для любой точки $x_0 \in M$ решение системы x(t) с начальным условием $x(0) = x_0$ не выходит за пределы M при t > 0.

Theorem 1. [19] Все инвариантные множества динамической системы $\dot{x} = F(x), x \in D \subset \mathbb{R}^n, F \in C^1$, содержащиеся в множестве $Q \subset D$, содержатся в локализирующем множестве

$$\Omega(\varphi, Q) = \{x \in Q : \varphi_{inf}(Q) \leqslant \varphi(x) \leqslant \varphi_{sup}(Q)\},$$

где $\varphi(x)$ — гладкая на множестве D функция, называемая локализирующей функцией, $\dot{\varphi}(x)$ — производная $\varphi(x)$ в силу системы $\dot{x}=F(x)$,

$$\varphi_{inf}(Q) = \inf_{S(\varphi) \cap Q} \varphi(x), \ \varphi_{sup}(Q) = \sup_{S(\varphi) \cap Q} \varphi(x),$$

а $S(\varphi)=\{x\in\mathbb{R}^n:\,\dot{\varphi}(x)=0\}$ — универсальное сечение функции $\varphi(x).$

Theorem 2. [20] Траектория динамической системы $\dot{x} = F(x)$ с начальным значением из любого компакта фазового пространства продолжается

вперед(назад) либо неограниченно, либо до границы этого компакта.

Theorem 3. [21] Если траектория x = x(t) непрерывной динамической системы $\dot{x} = F(x), x \in D \subset \mathbb{R}^n$ ограничена и принадлежит D при $t \geqslant 0$, то ее ω -предельное множество — непустой инвариантный компакт и x(t) стремится к ω -предельному множеству при $t \to +\infty$.

1.3 Положительная инвариантность множества D

Theorem 4. (Коши) Пусть функция F(x,t) кусочно непрерывна по t и удовлетворяет неравенству

$$||F(x,t) - F(y,t)|| \le L||x - y||,$$

где L — постоянная, при любых x,y из ε -окрестности $O_{\varepsilon}=\{x:\|x-x_0\|<\varepsilon\}$ точки x_0 и любого $t\in[t_0,t_1]$. Тогда существует $\delta>0$ для которого решение задачи Коши вида

$$\dot{x} = F(x, t), \ x(t_0) = x_0 \in G, \ t \geqslant t_0,$$

где G — область определения системы, существует и единственно при $t \in [t_0, t_0 + \delta).$

Affirmation 1. Система (1) с начальными условиями (2) имеет, причем единственное, решение на области D.

Theorem 5. Множество $D = \mathbb{R}^5_{+,0}$ является положительно инвариантным для системы (1).

◀ Заметим, что граница множества D — множество точек с хотя бы одной нулевой координатой. Таким образом, достаточно показать, для любой траектории системы, начинающейся на границе D, существует такое $\varepsilon > 0$, что $x_i(t) \geqslant 0, i = \overline{1,5}$, при $t \in [0,\varepsilon), \varepsilon > 0$.

Рассмотрим следующий набор начальных условий:

$$x_1(0) = 0, x_2(0) \ge 0, x_3(0) \ge 0, x_4(0) \ge 0, x_5(0) \ge 0.$$
 (3)

Для каждого такого условия существует $\varepsilon_1 > 0$ такое, что существует, причем единственное, решение задачи Коши:

$$x_1 = x_1(t), x_2 = x_2(t), x_3 = x_3(t), x_4 = x_4(t), x_5 = x_5(t),$$

где $t \in [0, \varepsilon_1)$, обращающее систему (1) в тождество. Решение $x_1(t) \equiv 0$ удовлетворяет начальному условию $x_1(0) = 0$. При подстановке $x_1(t) \equiv 0$ в (1) первое уравнение становится тождеством, а сама система преобразуется к следующему виду:

$$\begin{cases} \dot{x}_2(t) = r_2 x_2(t) \left(1 - \frac{x_2(t)}{c_2} \right) + \frac{x_5(t)}{k_4 + x_5(t)} a_1 \frac{1}{x_4(t) + e_2}, \\ \dot{x}_3(t) = -\mu_1 x_3(t), \\ \dot{x}_4(t) = s_1 - \mu_2 x_4(t), \\ \dot{x}_5(t) = b_2 x_3(t) - \mu_3 x_5(t). \end{cases}$$

Определив $x_2(t), \ldots, x_5(t)$ как решения этой системы с пониженным порядком с начальными условиями (3), из единственности решения задачи Коши имеем, что

$$x_1 \equiv 0, x_2 = x_2(t), x_3 = x_3(t), x_4 = x_4(t), x_5 = x_5(t), t \in [0, \varepsilon_1),$$

является решением исходной системы с начальными условиями (3), лежащим на плоскости $x_1 = 0$ и не покидающим области D через границу $\{x_1 = 0\}$.

Для каждого из начальных условий вида

$$x_1(0) \ge 0, \ x_2(0) \ge 0, \ x_3(0) \ge 0, \ x_4(0) = 0, \ x_5(0) \ge 0,$$

имеется $\varepsilon_2 > 0$ такое, что существует единственное решение задачи Коши на полуинтервале $t \in [0, \varepsilon_2)$, обращающее систему (1) в тождество. В этом случае

$$\dot{x}_4(0) = s_1 + b_1 x_1(0) > 0$$

поэтому

$$x_4(t) > 0, t \in (0, \varepsilon_2),$$

т.е. траектории не выходят из D через плоскость $x_4 = 0$.

Рассмотрим случай, когда

$$x_1(0) \ge 0, \ x_2(0) \ge 0, \ x_3(0) = 0, \ x_4(0) \ge 0, \ x_5(0) \ge 0.$$
 (4)

Для каждого такого начального условия имеется $\varepsilon_3 > 0$ такое, что существует единственное решение задачи Коши на $[0, \varepsilon_3)$ обращающее систему (1) в тождество. Рассмотрим исходную систему при t = 0:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1}\right) - \frac{\alpha_1 x_2(0)}{x_4(0) + e_1} \frac{x_1(0)}{x_1(0) + k_1}, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2}\right) + \frac{x_5(0)}{k_4 + x_5(0)} \frac{a_1}{x_4(0) + e_2} - \alpha_3 \frac{x_1(0)}{x_1(0) + k_2} x_2(0), \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)}, \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = -\mu_3 x_5(0). \end{cases}$$

Если $x_1(0) > 0$, то и $\dot{x}_3(0) > 0$, из чего $x_1(t) > 0$, $t \in (0, \tilde{\varepsilon}_3)$, $\tilde{\varepsilon}_3 \leqslant \varepsilon_3$ и траектория не выходит из D через плоскость $x_3 = 0$. Если же $x_1(0) = 0$, то при t = 0 система примет вид:

$$\begin{cases} \dot{x}_1(0) = 0, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2} \right) + \frac{x_5(0)}{k_4 + x_5(0)} a_1 \frac{1}{x_4(0) + e_2}, \\ \dot{x}_3(0) = 0, \\ \dot{x}_4(0) = s_1 - \mu_2 x_4(0), \\ \dot{x}_5(0) = -\mu_3 x_5(0). \end{cases}$$

Тогда, аналогично случаю с границей $x_1 = 0$, рассмотрим $x_1(t) \equiv 0$. При этом функция $x_3(t) \equiv 0$ удовлетворяет начальному условию $x_3(0) = 0$ и третьему уравнению системы (1). Подставив $x_3(t) \equiv 0$ совместно с $x_1(t) \equiv 0$ в исходную

систему получим следующий результат:

$$\begin{cases} \dot{x}_2(t) = r_2 x_2(t) \left(1 - \frac{x_2(t)}{c_2} \right) + \frac{x_5(t)}{k_4 + x_5(t)} a_1 \frac{1}{x_4(t) + e_2}, \\ \dot{x}_4(t) = s_1 - \mu_2 x_4(t), \\ \dot{x}_5(t) = -\mu_3 x_5(t). \end{cases}$$

Если определить x_2 , x_4 , x_5 как решения этой системы с пониженным порядком на плоскости $x_1 = x_3 = 0$ с начальными условиями (4), то из единственности решения следует, что

$$x_1 \equiv 0, x_2 = x_2(t), x_3 \equiv 0, x_4 = x_4(t), x_5 = x_5(t), t \in [0, \varepsilon_3),$$

является решением исходной системы для которого выполняются (4) при $x_1(0)=0$, лежащим на плоскости $x_1=x_3=0$ и не покидающим области D через границу $x_3=0$.

Рассмотрим случай

$$x_1(0) \ge 0, \ x_2(0) \ge 0, \ x_3(0) \ge 0, \ x_4(0) \ge 0, \ x_5(0) = 0.$$
 (5)

Для каждого такого начального условия существует $\varepsilon_4 > 0$ такое, что существует единственное решение задачи Коши при $t \in [0, \varepsilon_4)$ обращающее систему (1) в тождество. При t = 0 исходная система примет вид:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1}\right) - \frac{1}{x_4(0) + e_1} (\alpha_1 x_2(0) + \alpha_2 x_3(0)) \frac{x_1(0)}{x_1(0) + k_1}, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2}\right) - \alpha_3 \frac{x_1(0)}{x_1(0) + k_2} x_2(0), \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)} - \mu_1 x_3(0) - \alpha_4 \frac{x_1(0)}{x_1(0) + k_3} x_3(0), \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = b_2 x_3(0). \end{cases}$$

В случае если $x_3(0) > 0$ получим, что $\dot{x}_5(0) > 0$, из чего

$$x_5(t) > 0, t \in (0, \tilde{\varepsilon}_4), \tilde{\varepsilon}_4 \leqslant \varepsilon_4$$

и траектория не выходит из D через плоскость $x_5 = 0$. При $x_3(0) = 0$, в свою очередь, система в начальный момент преобразуется к следующему виду:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1}\right) - \frac{\alpha_1 x_2(0)}{x_4(0) + e_1} \frac{x_1(0)}{x_1(0) + k_1}, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2}\right) - \alpha_3 \frac{x_1(0)}{x_1(0) + k_2} x_2(0), \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)}, \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = 0. \end{cases}$$

Здесь при $x_1(0) > 0$ имеем, что $\dot{x}_3(0) > 0$, то есть

$$\ddot{x}_5(0) = b_2 \dot{x}_3(0) - \mu_3 \dot{x}_5(0) = b_2 \dot{x}_3(0) > 0.$$

Из этого следует, что $x_5(t) > 0$, $t \in (0, \tilde{\varepsilon}_4')$, $\tilde{\varepsilon}_4' \leqslant \varepsilon_4$ и траектория не выходит из D через плоскость $x_5 = 0$. При $x_1(0) = 0$ система в начальный момент примет следующий вид:

$$\begin{cases} \dot{x}_1(0) = 0, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2} \right), \\ \dot{x}_3(0) = 0, \\ \dot{x}_4(0) = s_1 - \mu_2 x_4(0), \\ \dot{x}_5(0) = 0. \end{cases}$$

Тогда функции $x_1(t) \equiv 0, x_3(t) \equiv 0, x_5(t) \equiv 0$ удовлетворяет начальным условиям (5) и первому, третьему и пятому уравнению системы (1). При их подстановке в исходную систему получим систему:

$$\begin{cases} \dot{x}_2(t) = r_2 x_2(t) \left(1 - \frac{x_2(t)}{c_2} \right), \\ \dot{x}_4(t) = s_1 - \mu_2 x_4(t). \end{cases}$$

Если определить x_2 и x_4 как решения этой системы с пониженным порядком на плоскости $x_1 = x_3 = x_5 = 0$ с начальными условиями (5), то из единствен-

ности решения следует, что

$$x_1 \equiv 0, x_2 = x_2(t), x_3 \equiv 0, x_4 = x_4(t), x_5 \equiv 0, t \in [0, \varepsilon_4),$$

является решением исходной системы с начальными условиями (5), где

$$x_1(0) = 0, x_3(0) = 0, x_5(0) = 0,$$

которое лежит на плоскости $x_1=x_3=x_5=0$ и не покидает область D через границу $x_5=0$.

Рассмотрим случай, когда

$$x_1(0) \ge 0, \ x_2(0) = 0, \ x_3(0) \ge 0, \ x_4(0) \ge 0, \ x_5(0) \ge 0.$$
 (6)

Для каждого такого начального условия также существует $\varepsilon_5 > 0$ такое, что существует единственное решение задачи Коши на полуинтервале $t \in [0, \varepsilon_5)$ обращающее систему исходную систему в тождество. В начальный момент времени (1) принимает вид:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1}\right) - \frac{\alpha_2 x_3(0)}{x_4(0) + e_1} \frac{x_1(0)}{x_1(0) + k_1}, \\ \dot{x}_2(0) = \frac{x_5(0)}{k_4 + x_5(0)} a_1 \frac{1}{x_4(0) + e_2}, \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)} - \mu_1 x_3(0) - \alpha_4 \frac{x_1(0)}{x_1(0) + k_3} x_3(0), \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = b_2 x_3(0) - \mu_3 x_5(0). \end{cases}$$

В случае, если $x_5(0) > 0$ получим, что $\dot{x}_2(0) > 0$, из чего

$$x_2(t) > 0, t \in (0, \tilde{\varepsilon}_5), \tilde{\varepsilon}_5 \leqslant \varepsilon_5$$

и траектория не выходит из D через плоскость $x_2 = 0$. При $x_5(0) = 0$, в свою

очередь, система при t=0 преобразуется к следующему виду:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1}\right) - \frac{\alpha_2 x_3(0)}{x_4(0) + e_1} \frac{x_1(0)}{x_1(0) + k_1}, \\ \dot{x}_2(0) = 0, \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)} - \mu_1 x_3(0) - \alpha_4 \frac{x_1(0)}{x_1(0) + k_3} x_3(0), \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = b_2 x_3(0). \end{cases}$$

В случае, если $x_3(0) > 0$ получим, что $\dot{x}_5(0) > 0$, из чего

$$\ddot{x}_2(0) = a_1 \frac{\dot{x}_5(0)}{k_4(x_4(0) + e_2)} > 0.$$

Тогда $x_2(t) > 0$, $t \in (0, \tilde{\varepsilon}_5')$, $\tilde{\varepsilon}_5' \leqslant \varepsilon_5$ и траектория не выходит из D через плоскость $x_2 = 0$. Заметим, что если $x_3(0) = 0$, то $\ddot{x}_2(0) = 0$ и система в начальный момент примет следующий вид:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1} \right), \\ \dot{x}_2(0) = 0, \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)}, \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = 0. \end{cases}$$

Здесь при $x_1(0)>0$ имеем, что $\dot{x}_3(0)>0,\,\ddot{x}_5(0)>0.$ Из этого следует, что

$$\ddot{x}_2(0) = a_1 \frac{\ddot{x}_5(0)}{k_4(x_4(0) + e_2)} > 0,$$

 $x_2(t)>0,\,t\in(0,\, ilde{arepsilon}_5''),\, ilde{arepsilon}_5''\leqslantarepsilon_5$ и траектория не выходит из D через плоскость

 $x_2 = 0$. При $x_1(0) = 0$ система в начальный момент примет следующий вид:

$$\begin{cases} \dot{x}_1(0) = 0, \\ \dot{x}_2(0) = 0, \\ \dot{x}_3(0) = 0, \\ \dot{x}_4(0) = s_1 - \mu_2 x_4(0), \\ \dot{x}_5(0) = 0. \end{cases}$$

Тогда функции $x_1(t) \equiv 0$, $x_2(t) \equiv 0$, $x_3(t) \equiv 0$, $x_5(t) \equiv 0$ удовлетворяет начальным условиям (6) и первому, второму, третьему и пятому уравнениями системы (1). При их подстановке в исходную систему получим уравнение:

$$\left\{ \dot{x}_4(t) = s_1 - \mu_2 x_4(t). \right.$$

Тогда если определить x_4 как решение этого уравнения с начальными условиями (6), то из единственности решения следует, что

$$x_1 \equiv 0, x_2 \equiv 0, x_3 \equiv 0, x_4 = x_4(t), x_5 \equiv 0, t \in [0, \varepsilon_5),$$

является решением исходной системы с начальными условиями (6), где

$$x_1(0) = 0, x_2(0) = 0, x_3(0) = 0, x_5(0) = 0,$$

которое лежит на прямой $x_1=x_2=x_3=x_5=0$ и не покидает область D через границу $x_2=0$. Таким образом. траектории системы не пересекают ни одну из границ $x_i=0,\ i\in\overline{1,5}$.

Заметим, что из доказательства данной теоремы следует, что некоторые координатные плоскости положительно инвариантны относительно системы (1). Для координатных плоскостей $x_i=0$ условие инвариантности – выполнение равенств $\dot{x}_i=0$ для траекторий, начинающихся в них. Таким образом, плоскости

$$x_1 = 0;$$

 $x_1 = 0, x_3 = 0;$
 $x_1 = 0, x_3 = 0, x_5 = 0,$

а также прямая $x_1=0, x_2=0, x_3=0, x_5=0$ являются инвариантными относительно исходной системы.

1.4 Инвариантные множества внутри множества D

Theorem 6. Все компактные инвариантные множества системы (1) содержатся в положительно инвариантных множествах

$$K_{1} = \{0 \leqslant x_{1} \leqslant \overline{x}_{1} = c_{1}\} \cap D,$$

$$K_{2} = \left\{\frac{s_{1}}{\mu_{2}} = \underline{x}_{4} \leqslant x_{4} \leqslant \overline{x}_{4} = \frac{s_{1}}{\mu_{2}} + \frac{b_{1}c_{1}}{\mu_{2}}\right\} \cap K_{1},$$

$$K_{3} = \left\{0 \leqslant x_{3} \leqslant \overline{x}_{3} = \frac{a_{2}\overline{x}_{1}}{k_{5} + \underline{x}_{4}} \cdot \frac{\overline{x}_{1} + k_{2}}{\mu_{1}k_{2}}\right\} \cap K_{2},$$

$$K_{4} = \left\{0 \leqslant x_{5} \leqslant \overline{x}_{5} = \frac{b_{2}\overline{x}_{3}}{\mu_{3}}\right\} \cap K_{3},$$

$$K_{5} = \left\{0 \leqslant x_{2} \leqslant \overline{x}_{2} = \frac{c_{2}}{2} + \sqrt{\frac{c_{2}^{2}}{4} + \frac{c_{2}a_{1}\overline{x}_{5}}{r_{2}(\overline{\xi}_{5} + k_{4})(\underline{x}_{4} + e_{2})}}\right\} \cap K_{4}.$$

◄ Пусть $\varphi_1(x) = x_1$. Тогда на области D:

$$\dot{\varphi}_1(x) = r_1 x_1 \left(1 - \frac{x_1}{c_1} \right) - \frac{1}{x_4 + e_1} (\alpha_1 x_2 + \alpha_2 x_3) \frac{x_1}{x_1 + k_1}.$$

Универсальное сечение на D можно задать следующим образом:

$$S(\varphi_1, D) = \left\{ r_1 x_1 \left(1 - \frac{x_1}{c_1} \right) - \frac{1}{x_4 + e_1} (\alpha_1 x_2 + \alpha_2 x_3) \frac{x_1}{x_1 + k_1} = 0 \right\} \cap D.$$

Преобразуем равенство, задающее это множество:

$$S(\varphi_1, D) = \left\{ x_1 \left(r_1 \left(1 - \frac{x_1}{c_1} \right) - \frac{\alpha_1 x_2 + \alpha_2 x_3}{(x_1 + k_1)(x_4 + e_1)} \right) = 0 \right\} \cap D.$$

Тогда $x_1 = 0$ или $x_1 = c_1 \left(1 - \frac{\alpha_1 x_2 + \alpha_2 x_3}{r_1 (x_1 + k_1) (x_4 + e_1)} \right)$. Таким образом, экстремальные значения $\varphi_1(x)$ на множестве $S(\varphi_1, D)$:

$$\inf_{x \in S(\varphi_1, D)} \varphi_1 = 0, \sup_{x \in S(\varphi_1, D)} \varphi_1 = c_1,$$

из чего локализирующее множество $\Omega(\varphi_1,\,D)$ задается следующим образом:

$$\Omega(\varphi_1, D) = \{0 \leqslant x_1 \leqslant c_1 = \overline{x}_1\} \cap D = K_1.$$

Далее возьмем $\varphi_2(x)=x_4$. В таком случае универсальное сечение имеет вид:

$$S(\varphi_2, K_1) = \{s_1 + b_1 x_1 - \mu_2 x_4 = 0\} \cap K_1.$$

Hа множестве $S(\varphi_2, K_1)$

$$\inf_{x \in S(\varphi_2, K_1)} \varphi_2 = \frac{s_1}{\mu_2} = \underline{x}_4, \quad \sup_{x \in S(\varphi_2, K_1)} \varphi_2 = \frac{s_1}{\mu_2} + \frac{b_1 c_1}{\mu_2} = \overline{x}_4.$$

Следовательно, локализирующее множество можно задать как

$$\Omega(\varphi_2, K_1) = \{\underline{x}_4 \leqslant x_4 \leqslant \overline{x}_4\} \cap K_1 = K_2.$$

Пусть $\varphi_3(x) = x_3$. Универсальное сечение для данной функции:

$$S(\varphi_3, K_2) = \left\{ a_2 \frac{x_1}{k_5 + x_4} - \mu_1 x_3 - \alpha_4 \frac{x_1}{x_1 + k_3} x_3 = 0 \right\} \cap K_2.$$

Преобразовав выражение, задающее $S(\varphi_3, K_2)$, получим

$$x_3 = \frac{a_2 x_1}{k_5 + x_4} \cdot \frac{x_1 + k_3}{\mu_1 x_1 + \mu_1 k_3 + \alpha_4 x_1}.$$

Тогда на множестве $S(\varphi_3, K_2)$

$$\inf_{x \in S(\varphi_3, K_2)} \varphi_3 = 0, \sup_{x \in S(\varphi_3, K_2)} \varphi_3 \leqslant \frac{a_2 \overline{x}_1}{k_5 + \underline{x}_4} \cdot \frac{\overline{x}_1 + k_3}{\mu_1 k_3} = \overline{x}_3.$$

Таким образом, локализирующее множество:

$$\Omega(\varphi_3, K_2) = \left(\left\{ 0 \leqslant x_3 \leqslant \sup_{x \in S(\varphi_3, K_2)} x_3 \right\} \cap K_2 \right) \subset \left(\left\{ 0 \leqslant x_3 \leqslant \overline{x}_3 \right\} \cap K_2 \right) = K_3.$$

Возьмем $\varphi_4(x) = x_5$. В таком случае универсальное сечение:

$$S(\varphi_4, K_3) = \{b_2x_3 - \mu_3x_5 = 0\} \cap K_3.$$

Hа множестве $S(\varphi_4, K_3)$

$$\inf_{x \in S(\varphi_4, K_3)} \varphi_4 = 0, \sup_{x \in S(\varphi_4, K_3)} \varphi_4 = \frac{b_2 \overline{x}_3}{\mu_3} = \overline{x}_5,$$

поэтому

$$\Omega(\varphi_4, K_3) = \{0 \leqslant x_5 \leqslant \overline{x}_5\} \cap K_3 = K_4.$$

Далее, пусть $\varphi_5(x) = x_2$. Тогда

$$S(\varphi_5, K_4) = \left\{ r_2 x_2 \left(1 - \frac{x_2}{c_2} \right) + \frac{x_5}{k_4 + x_5} a_1 \frac{1}{x_4 + e_2} - \alpha_3 \frac{x_1}{x_1 + k_2} x_2 = 0 \right\} \cap K_4.$$

Рассмотрим равенство, задающее универсальное сечение S_{φ_5} . Заметим, что на множестве $S(\varphi_5, K_4)$:

$$r_{2}x_{2}\left(1-\frac{x_{2}}{c_{2}}\right)+\frac{x_{5}}{k_{4}+x_{5}}a_{1}\frac{1}{x_{4}+e_{2}}-\alpha_{3}\frac{x_{1}x_{2}}{x_{1}+k_{2}}\leqslant \\ \leqslant r_{2}x_{2}\left(1-\frac{x_{2}}{c_{2}}\right)+\frac{a_{1}\overline{x}_{5}}{(\overline{x}_{5}+k_{4})(\underline{x}_{4}+e_{2})}.$$

T.e.

$$x_2^2 - c_2 x_2 - \frac{c_2 a_1 \overline{x}_5}{r_2(\overline{x}_5 + k_4)(\underline{x}_4 + e_2)} \le 0.$$

Таким образом,

$$0 \leqslant x_2 \leqslant \frac{c_2}{2} + \sqrt{\frac{c_2^2}{4} + \frac{c_2 a_1 \overline{x}_5}{r_2(\overline{x}_5 + k_4)(\underline{x}_4 + e_2)}} = \overline{x}_2.$$

Итого, локализирующее множество имеет следующий вид:

$$\Omega(\varphi_5, K_4) = \{0 \leqslant x_2 \leqslant \overline{x}_2\} \cap K_4 = K_5. \quad \blacktriangleright$$

Theorem 7. Множество K_5 является компактным и содержит аттрактор системы (1).

◄ Рассмотрим множество

$$K_1(\tau_1) = \{0 \leqslant x_1 \leqslant c_1 + \tau_1\} \cap D, \ \tau_1 \geqslant 0.$$

Заметим, что на множестве $D \setminus K_1(\tau_1) = \{x_1 > c_1 + \tau_1\}$ производная локализирующей функции φ_1 в силу системы $\dot{\varphi}_1 < 0$. Действительно, на этом множестве

 $\dot{\varphi}_1 \leqslant r_1 x_1 \left(1 - \frac{x_1}{c_1} \right) < -r_1 (c_1 + \tau_1) \frac{\tau_1}{c_1} \leqslant 0.$

Таким образом множества $K_1(\tau_1)$ положительно инвариантны. Далее будем говорить, что $c_1 + \tau_1 = \overline{\xi}_1(\tau_1)$.

Рассмотрим множество

$$K_2(\tau_1, \, \tau_2, \, \tilde{\tau}_2) = \left\{ \frac{s_1}{\mu_2} - \tilde{\tau}_2 \leqslant x_4 \leqslant \frac{s_1}{\mu_2} + \frac{b_1 \overline{\xi}_1(\tau_1)}{\mu_2} + \tau_2 \right\} \cap K_1(\tau_1), \, \tau_1, \, \tau_2, \, \tilde{\tau}_2 \geqslant 0.$$

На множестве
$$\left\{ x_4 > \frac{s_1}{\mu_2} + \frac{b_1 \overline{\xi}_1(\tau_1)}{\mu_2} + \tau_2 \right\} \cap K_1(\tau_1)$$

$$\dot{\varphi}_2 = s_1 + b_1 x_1 - \mu_2 x_4 < -\mu_2 \tau_2 \leqslant 0.$$

На множестве
$$\left\{x_4 < \frac{s_1}{\mu_2} - \tilde{\tau}_2\right\} \cap K_1(\tau_1)$$

$$\dot{\varphi}_2 = s_1 + b_1 x_1 - \mu_2 x_4 > \mu_2 \tilde{\tau}_2 \geqslant 0.$$

Таким образом, множества $K_2(\tau_1, \tau_2, \tilde{\tau}_2)$ положительно инвариантны. Обозначим

$$\overline{\xi}_4(\tau_1, \, \tau_2) = \frac{s_1}{\mu_2} + \frac{b_1 \overline{\xi}_1(\tau_1)}{\mu_2} + \tau_2,$$

$$\underline{\xi}_4(\tilde{\tau}_2) = \frac{s_1}{\mu_2} - \tilde{\tau}_2.$$

Пусть

$$K_3(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3) = \left\{ 0 \leqslant x_3 \leqslant \frac{a_2 \overline{\xi}_1(\tau_1)}{\mu_1(k_5 + \underline{\xi}_4(\tilde{\tau}_2))} + \tau_3 \right\} \cap K_2(\tau_1, \, \tau_2, \, \tilde{\tau}_2),$$

где $\tau_1, \ \tau_2, \ \tilde{\tau}_2, \ \tau_3 \geqslant 0$. Тогда на множестве

$$K_{2}(\tau_{1}, \,\tilde{\tau}_{2}, \,\tau_{2}) \setminus K_{3}(\tau_{1}, \,\tau_{2}, \,\tilde{\tau}_{2}, \,\tau_{3}) =$$

$$= \left\{ x_{3} > \frac{a_{2}\overline{\xi}_{1}(\tau_{1})}{k_{5} + \underline{\xi}_{4}(\tilde{\tau}_{2})} \cdot \frac{\overline{\xi}_{1}(\tau_{1}) + k_{2}}{\mu_{1}k_{2}} + \tau_{3} \right\} \cap K_{2}(\tau_{1}, \,\tau_{2}, \,\tilde{\tau}_{2})$$

справедливо, что

$$\dot{\varphi}_3 = a_2 \frac{x_1}{k_5 + x_4} - \mu_1 x_3 - \alpha_4 \frac{x_1}{x_1 + k_3} x_3 < a_2 \frac{\overline{\xi}_1(\tau_1)}{k_5 + \underline{\xi}_4(\tilde{\tau}_2)} - \mu_1 x_3 \leqslant -\mu_1 \tau_3 \leqslant 0$$

Таким образом, множества $K_3(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3)$ положительно инвариантны. Далее будем считать, что

$$\overline{\xi}_3(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3) = \frac{a_2 \overline{\xi}_1(\tau_1)}{k_5 + \underline{\xi}_4(\tilde{\tau}_2)} \cdot \frac{\overline{\xi}_1(\tau_1) + k_2}{\mu_1 k_2} + \tau_3.$$

Положим, что

$$K_4(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3, \, \tau_4) = \left\{ 0 \leqslant x_5 \leqslant \frac{b_2 \overline{\xi}_3(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3)}{\mu_3} + \tau_4 \right\} \cap K_3(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3),$$

где $\tau_1, \ \tau_2, \ \tilde{\tau}_2, \ \tau_3, \ \tau_4 \geqslant 0$. На множестве

$$K_{3}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}) \setminus K_{4}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) =$$

$$= \left\{ x_{5} > \frac{b_{2}\overline{\xi}_{3}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3})}{\mu_{3}} + \tau_{4} \right\} \cap K_{3}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3})$$

справедливо, что

$$\dot{\varphi}_4 = b_2 x_3 - \mu_3 x_5 < -\mu_3 \tau_4 \leqslant 0,$$

из чего множества $K_4(\tau_1,\,\tau_2,\,\tilde{ au}_2,\, au_3,\, au_4)$ за положительно инвариантны. Обозначим

$$\overline{\xi}_5(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3, \, \tau_4) = \frac{b_2 \overline{\xi}_3(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3)}{\mu_3} + \tau_4.$$

Рассмотрим множество

$$K_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}, \tau_{5}) = K_{4}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) \cap \left\{ 0 \leqslant x_{2} \leqslant \frac{c_{2}}{2} + \sqrt{\frac{c_{2}^{2}}{4} + \frac{c_{2}a_{1}\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4})}{r_{2}(\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) + k_{4})(\underline{\xi}_{4}(\tilde{\tau}_{2}) + e_{2})} + \tau_{5} \right\},$$

где $\tau_1, \ \tau_2, \ \tilde{\tau}_2, \ \tau_3, \ \tau_4, \ \tau_5 \geqslant 0$. Можно провести следующую оценку $\dot{\varphi}_2$:

$$\dot{\varphi}_2 \leqslant r_2 x_2 \left(1 - \frac{x_2}{c_2} \right) + \frac{c_2 a_1 \overline{\xi}_5(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3, \tau_4)}{r_2(\overline{\xi}_5(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3, \tau_4) + k_4)(\xi_4(\tilde{\tau}_2) + e_2)}.$$

Пусть

$$\overline{\xi}_{2}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) = \frac{c_{2}}{2} + \sqrt{\frac{c_{2}^{2}}{4} + \frac{c_{2}a_{1}\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4})}{r_{2}(\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) + k_{4})(\underline{\xi}_{4}(\tilde{\tau}_{2}) + e_{2})}},$$

$$\underline{\xi}_{2}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) = \frac{c_{2}}{2} - \sqrt{\frac{c_{2}^{2}}{4} + \frac{c_{2}a_{1}\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4})}{r_{2}(\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) + k_{4})(\underline{\xi}_{4}(\tilde{\tau}_{2}) + e_{2})}}.$$

В таком случае, на множестве

$$K_4(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3, \, \tau_4) \setminus K_5(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3, \, \tau_4, \, \tau_5) =$$

$$= \left\{ x_2 > \overline{\xi}_2(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3, \, \tau_4) + \tau_5 \right\} \cap K_4(\tau_1, \, \tau_2, \, \tilde{\tau}_2, \, \tau_3, \, \tau_4)$$

имеет место оценка

$$\dot{\varphi}_{2} \leqslant -(x_{2} - \overline{\xi}_{2}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}))(x_{2} - \underline{\xi}_{2}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4})) <
< -2\tau_{5} \cdot \sqrt{\frac{c_{2}^{2}}{4} + \frac{c_{2}a_{1}\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4})}{r_{2}(\overline{\xi}_{5}(\tau_{1}, \tau_{2}, \tilde{\tau}_{2}, \tau_{3}, \tau_{4}) + k_{4})(\underline{\xi}_{4}(\tilde{\tau}_{2}) + e_{2})} \leqslant 0.$$

Следовательно, множества $K_5(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3, \tau_4, \tau_5)$ положительно инвариантны. Также можно заметить, что множества $K_5(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3, \tau_4, \tau_5)$ компактны при

$$\tau_1, \ \tau_2, \ \tilde{\tau}_2, \ \tau_3, \ \tau_4, \ \tau_5 \geqslant 0.$$

Покажем, что множество K_5 содержит аттрактор системы. Согласно теореме 2, решение автономной системы вида $\dot{x}=F(x)$, где F(x) — гладкое

векторное поле, с начальным значением из любого компакта продолжается вперед неограниченно, либо до границы этого компакта. Для любой траектории системы (1) существует такой набор $\tau_i = \hat{\tau}_i$, что ее начальная точка будет содержаться в множестве

$$\hat{K}_5 = K_5(\hat{\tau}_1, \, \hat{\tau}_2, \, \hat{\tau}_2, \, \hat{\tau}_3, \, \hat{\tau}_4, \, \hat{\tau}_5).$$

Т.к. компакт \hat{K}_5 положительно инвариантен и $\dot{\varphi}_i(x) < 0$ на границе \hat{K}_5 , то решения, начинающиеся в $\hat{K}_5 \setminus K_5$, не будут достигать границы \hat{K}_5 и могут быть неограниченно продолжены. Тогда траектории, начинающиеся в \hat{K}_5 ограничены и принадлежат этому компакту при $t \geqslant 0$. Из теоремы 3 следует, что предельные множества траекторий из \hat{K}_5 — непустые инвариантные компакты. Согласно теореме 6, K_5 содержит все инвариантные компакты системы, т.е. K_5 также содержит предельные множества траекторий из \hat{K}_5 . Т.к. для любой точки из D можно подобрать τ_i такие, что соответствующий компакт $K_5(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3, \tau_4, \tau_5)$ ее содержит, можно сделать вывод о том, что K_5 содержит предельные множества всех траекторий, начинающихся в D. Таким образом, K_5 — положительно инвариантный компакт, содержащий аттрактор системы.

2 ИССЛЕДОВАНИЕ ПОЛОЖЕНИЙ РАВНОВЕСИЯ

2.1 Метод выбора кандидата-функции Ляпунова для систем с дробно-рациональными правыми частями

Рассмотрим следующий класс динамических систем:

$$\dot{x}_i = F_i(x), \ x = (x_1, \dots, x_n) \in D, \ i = \overline{1, n},$$

где $D=\mathbb{R}^n_{+,0}$, правые части $F_i(x)$ — дробно-рациональные функции (далее ДРФ) n переменных $x=(x_1,\ldots,x_n)$ вида

$$F_i(x) = \frac{P_i(x)}{Q_i(x)},$$

где $P_i(x)$ и $Q_i(x)$ — многочлены, степень $P_i(x)$ равна m_i и $Q_i(x)$ не имеет корней в D. В случае если функция $F_i(x)$ кратна x_i , она имеет следующий вид:

$$F_i(x) = x_i \tilde{F}(x) = x_i \frac{\tilde{P}_i(x)}{Q_i(x)},$$

где $\tilde{F}_i(x)$ — ДРФ n переменных $x=(x_1,\ldots,x_n),\ \tilde{P}_i(x)$ — многочлен порядка $m_i-1,\ \mathrm{a}\ Q_i(x)$ — многочлен конечного порядка, не имеющий корней в D.

Для динамических систем данного вида в качестве кандидата на функцию Ляпунова для внутреннего положения равновесия $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n) \in D$ можно принять следующее выражение:

$$V(x) = 2\sum_{i \in \sigma_1} \tilde{k}_i \left(x_i - \hat{x}_i - \hat{x}_i \ln \frac{x_i}{\hat{x}_i} \right) + \frac{1}{2} \sum_{j \in \sigma_2} \tilde{k}_j (x_j - \hat{x}_j)^2,$$

где σ_1 — множество номеров функций $F_i(x)$ кратных x_i ;

 σ_2 — множество всех остальных номеров функций $F_i(x)$;

 $ilde{k}_i$ — положительные параметры.

Производная такой функции в силу системы представима в виде квадратичной формы:

$$\dot{V}(x) = (x - \hat{x})^T H(x)(x - \hat{x}),$$

где H(x) — симметричная функциональная матрица размера $n \times n$ с дробно-

рациональными координатными функциями.

На области D для V(x) выполняются следующие условия:

$$V(x) > 0, V(\hat{x}) = 0, \hat{x} \in D, x \in D \setminus {\{\hat{x}\}}.$$

Действительно, квадратичные слагаемые неотрицательно определены на области D, а слагаемые вида

$$x_i - \hat{x}_i - \hat{x}_i \ln \frac{x_i}{\hat{x}_i}$$

также неотрицательны в D. Производная V(x) в силу системы имеет вид:

$$\dot{V}(x) = \sum_{i \in \sigma_1} \tilde{k}_i \left(1 - \frac{\hat{x}_i}{x_i} \right) x_i \tilde{F}_i(x) + \sum_{j \in \sigma_2} \tilde{k}_j (x_j - \hat{x}_j) F_j(x) =$$

$$= \sum_{i \in \sigma_1} \tilde{k}_i (x_i - \hat{x}_i) \tilde{F}_i(x) + \sum_{j \in \sigma_2} \tilde{k}_j (x_j - \tilde{x}_j) F_j(x),$$

Разложим функции $P_i(x)$ по формуле Тейлора в точке $x=\hat{x}$ до порядка m_i+1 . Поскольку $P_i(x)$ — многочлен порядка m_i , остаточный член в данном разложении будет равен нулю. Заметим, что \hat{x} — положение равновесия, и поэтому $P_i(\hat{x})=0$, а

$$P_i(x) = \sum_{i=0}^{m_i} \frac{1}{i!} \left(\frac{\partial}{\partial x_1} \Delta_1 + \ldots + \frac{\partial}{\partial x_n} \Delta_n \right)^i P_i(\hat{x}), \tag{7}$$

где $\Delta_i = x_i - \hat{x}_i, i = \overline{1,n}$. Тогда разделив (7) на соответствующий многочлен $Q_i(x)$ получим, что функция $F_i(x)$ может быть представлена как

$$F_i(x) = \sum_{q \in \tilde{\sigma}_i} (x_p - \hat{x}_p) h_p(x),$$

где $h_p(x)$ — ДРФ, $\tilde{\sigma}_i$ — множество всех номеров $x_p, p \in \{1, \dots, n\}$, входящих в $F_i(x)$. Из аналогичных соображений можно получить, что

$$\tilde{F}_i(x) = \sum_{p \in \tilde{\sigma}_i'} (x_p - \hat{x}_p) \tilde{h}_p(x),$$

где $\tilde{h}_p(x)$ — ДРФ, а $\tilde{\sigma}'_i$ — множество всех номеров $x_p, p \in \{1, \dots, n\}$, входящих в $\tilde{F}_i(x)$.

Тогда производная V(x) в силу системы примет вид:

$$\dot{V}(x) = \sum_{i \in \sigma_1} \tilde{k}_i (x_i - \hat{x}_i) \sum_{p \in \tilde{\sigma}'_i} (x_p - \hat{x}_p) \tilde{h}_p(x) + \sum_{j \in \sigma_2} \tilde{k}_j (x_j - \hat{x}_j) \sum_{q \in \tilde{\sigma}_j} (x_q - \hat{x}_q) h_q(x).$$

Сложив все слагаемые с повторяющимися множителями $(x_i - \hat{x}_i)(x_j - \hat{x}_i)$ и положив равными нулю коэффициенты при множителях отсутствующих в сумме, получим квадратичную форму с симметричной функциональной матрицей H(x):

$$\dot{V}(x) = (x - \hat{x})^T H(x)(x - \hat{x}).$$

В случае если H(x) отрицательно определена, можно сделать вывод о том, что внутреннее положение равновесия \hat{x} асимптотически устойчиво.

2.2 Положения равновесия на границе множества D

Тheorem 8. (Ляпунова об устойчивости по первому приближению) Пусть правая часть автономной системы $\dot{x} = F(x), \quad x \in \mathbb{R}^n$, непрерывно дифференцируема в некоторой окрестности нулевого положения равновесия и $A = \frac{\partial F(x)}{\partial x} \Big|_{x=0}$. Тогда нулевое положение равновесия асимптотически устойчиво, если все корни характеристического уравнения матрицы A имеют отрицательные действительные части, и неустойчиво, если у матрицы A есть корень характеристического уравнения с положительной действительной частью.

Definition 4. Положение равновесия называется некритическим, если собственные значения матрицы его линейного приближения имеют ненулевые действительные части. Иначе положение равновесия называется критическим.

Theorem 9. Система (1) на границе области D при положительных значениях параметров имеет положения равновесия $P_1\left(0,0,0,\frac{s_1}{\mu_2},0\right)$ и $P_2\left(0,c_2,0,\frac{s_1}{\mu_2},0\right)$.

◀ Координаты положений равновесия являются решениями системы уравне-

ний вида:

$$\begin{cases}
0 = r_1 x_1 \left(1 - \frac{x_1}{c_1} \right) - \frac{1}{x_4 + e_1} (\alpha_1 x_2 + \alpha_2 x_3) \frac{x_1}{x_1 + k_1}, \\
0 = r_2 x_2 \left(1 - \frac{x_2}{c_2} \right) + \frac{x_5}{k_4 + x_5} a_1 \frac{1}{x_4 + e_2} - \alpha_3 \frac{x_1}{x_1 + k_2} x_2, \\
0 = a_2 \frac{x_1}{k_5 + x_4} - \mu_1 x_3 - \alpha_4 \frac{x_1}{x_1 + k_3} x_3, \\
0 = s_1 + b_1 x_1 - \mu_2 x_4, \\
0 = b_2 x_3 - \mu_3 x_5.
\end{cases} \tag{8}$$

Разрешив последние три уравнения этой системы относительно x_3, x_4, x_5 получим, что координаты положений равновесия являются решениями следующей системы:

истемы:
$$\begin{cases}
0 = r_1 x_1 \left(1 - \frac{x_1}{c_1}\right) - \frac{1}{x_4 + e_1} (\alpha_1 x_2 + \alpha_2 x_3) \frac{x_1}{x_1 + k_1}, \\
0 = r_2 x_2 \left(1 - \frac{x_2}{c_2}\right) + \frac{x_5}{k_4 + x_5} a_1 \frac{1}{x_4 + e_2} - \alpha_3 \frac{x_1}{x_1 + k_2} x_2, \\
x_3 = a_2 \frac{x_1}{k_5 + x_4} \frac{x_1 + k_3}{\alpha_4 x_1 + \mu_1 (x_1 + k_3)}, \\
x_4 = \frac{1}{\mu_2} (b_1 x_1 + s_1), \\
x_5 = \frac{b_2}{\mu_3} x_3.
\end{cases} \tag{9}$$

Из третьего и пятого уравнений (9) можно получить, что переменные x_1, x_3 и x_5 обращаются в нуль одновременно, а координаты x_2 и x_4 являются решениями системы уравнений:

$$\begin{cases} 0 = r_2 x_2 \left(1 - \frac{x_2}{c_2} \right), \\ x_4 = \frac{s_1}{\mu_2}. \end{cases}$$

Решив её получим, что положениями равновесия системы (1) на границе области D будут точки $P_1 = \left(0,0,0,\frac{s_1}{\mu_2},0\right)^T$ и $P_2 = \left(0,c_2,0,\frac{s_1}{\mu_2},0\right)^T$.

Theorem 10. Положение равновесия $P_1\left(0,0,0,\frac{s_1}{\mu_2},0\right)$ является неустойчи-

вым, а положение равновесия $P_2\left(0,c_2,0,\frac{s_1}{\mu_2},0\right)$ является асимптотически устойчивым при условии $k_1r_1s_1+e_1k_1\mu_2r_1<\alpha_1c_2\mu_2$ и неустойчивым при условии $k_1r_1s_1+e_1k_1\mu_2r_1>\alpha_1c_2\mu_2$. При $k_1r_1s_1+e_1k_1\mu_2r_1=\alpha_1c_2\mu_2$ необходимо дополнительное исследование.

 \blacktriangleleft Заметим, что в некритических положениях равновесия, в отличие от критических, характеры устойчивости автономной системы и ее первого приближения в совпадают. Матрица Якоби исходной системы в точке P_1 :

$$\begin{pmatrix} r_1 & 0 & 0 & 0 & 0 \\ 0 & r_2 & 0 & 0 & \frac{a_1}{k_4 \left(e_2 + \frac{s_1}{\mu_2}\right)} \\ \frac{a_2}{k_5 + \frac{s_1}{\mu_2}} & 0 & -\mu_1 & 0 & 0 \\ b_1 & 0 & 0 & -\mu_2 & 0 \\ 0 & 0 & b_2 & 0 & -\mu_3 \end{pmatrix}.$$

Набор ее собственных значений имеет вид

$$\lambda_1 = r_1, \quad \lambda_2 = r_2, \quad \lambda_3 = -\mu_1, \quad \lambda_4 = -\mu_2, \quad \lambda_5 = -\mu_3.$$

Т.к. все параметры системы положительны, можно сделать вывод о том, что согласно теореме Ляпунова об устойчивости по первому приближению система (1) неустойчива в $\Pi P P_1$.

В точке P_2 матрица Якоби имеет вид:

$$\begin{pmatrix} r_1 - \frac{\alpha_1 c_2}{k_1 \left(e_1 + \frac{s_1}{\mu_2}\right)} & 0 & 0 & 0 & 0\\ -\frac{\alpha_3 c_2}{k_2} & -r_2 & 0 & 0 & \frac{a_1}{k_4 \left(e_2 + \frac{s_1}{\mu_2}\right)} \\ \frac{a_2}{k_5 + \frac{s_1}{\mu_2}} & 0 & -\mu_1 & 0 & 0\\ b_1 & 0 & 0 & -\mu_2 & 0\\ 0 & 0 & b_2 & 0 & -\mu_3 \end{pmatrix}.$$

Ее набор собственных значений:

$$\lambda_1 = \frac{k_1 r_1 s_1 - \alpha_1 c_2 \mu_2 + e_1 k_1 \mu_2 r_1}{k_1 s_1 + e_1 k_1 \mu_2}, \quad \lambda_2 = -\mu_1,$$

$$\lambda_3 = -\mu_2, \quad \lambda_4 = -\mu_3, \quad \lambda_5 = -r_2.$$

Аналогично предыдущему случаю, из условия строгой положительности параметров системы следует, что в ПР P_2 система асимптотически устойчива при условии $k_1r_1s_1+e_1k_1\mu_2r_1<\alpha_1c_2\mu_2$ и неустойчива при условии $k_1r_1s_1+e_1k_1\mu_2r_1>\alpha_1c_2\mu_2$. Однако в случае когда $k_1r_1s_1+e_1k_1\mu_2r_1=\alpha_1c_2\mu_2$ точка покоя P_2 является критической, т.е. теорема Ляпунова об устойчивости по первому приближению в этом случае не применима и необходимо дополнительное исследование.

Theorem 11. Положение равновесия $P_2\left(0,\,c_2,\,0,\,\frac{s_1}{\mu_2},\,0\right)$ асимптотически устойчиво на инвариантной плоскости $G=\{x_1=x_3=x_5=0\}\cap D.$

 \blacktriangleleft На плоскости G исходная система принимает следующий вид:

$$\begin{cases} \dot{x}_2 = r_2 x_2 \left(1 - \frac{x_2}{c_2} \right), \\ \dot{x}_4 = s_1 - \mu_2 x_4. \end{cases}$$
 (10)

Положение равновесия P_2 также является положением равновесия для системы пониженного порядка (10) и соответствует точке $\tilde{P}_2\left(c_2,\frac{c_1}{\mu_2}\right)$ на плоскости G. Тогда рассмотрим следующую функцию Ляпунова:

$$V(x_2, x_4) = 2\tilde{k}_1 \left(x_2 - c_2 - c_2 \ln \frac{x_2}{c_2} \right) + \frac{1}{2} \tilde{k}_2 \left(x_4 - \frac{s_1}{\mu_2} \right)^2,$$

где \tilde{k}_1, \tilde{k}_2 — положительные числовые коэффициенты. Производную функции Ляпунова в силу системы запишем следующим образом:

$$\dot{V}(x_2, x_4) = -(x_2 - c_2)\tilde{k}_1 \frac{r_2}{c_2}(x_2 - c_2) - \left(x_4 - \frac{s_1}{\mu_2}\right)\mu_2\tilde{k}_2\left(x_4 - \frac{s_1}{\mu_2}\right).$$

Ее можно представить как квадратичную форму следующего вида:

$$\dot{V}(x_2, x_4) = \begin{pmatrix} x_2 - c_2 & x_4 - \frac{s_1}{\mu_2} \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2} a_{12} \\ \frac{1}{2} a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_2 - c_2 \\ x_4 - \frac{s_1}{\mu_2} \end{pmatrix},$$

где
$$a_{11}=-rac{r_2 ilde{k}_1}{c_2},\,a_{12}=a_{21}=0,\,a_{22}=-\mu_2 ilde{k}_2.$$
 Пусть

$$A = \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} \\ \frac{1}{2}a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} -\frac{r_2\tilde{k}_1}{c_2} & 0 \\ 0 & -\mu_2\tilde{k}_2 \end{pmatrix}.$$

Согласно критерию Сильвестра, если

$$a_{11} < 0$$
, $\det A > 0$,

то квадратичная форма, соответствующая $\dot{V}(x_2,\,x_4)$, отрицательно определена. Легко заметить, что

$$a_{11} = -\frac{r_2 \tilde{k}_1}{c_2} < 0,$$

$$\det A = a_{11} a_{22} - \frac{1}{4} a_{12}^2 = \frac{r_2 \mu_2 \tilde{k}_1 \tilde{k}_2}{c_2} > 0$$

при положительных значениях параметров. Таким образом,

$$V(x) > 0, \dot{V}(x) < 0, x \in G \setminus \left\{ \tilde{P}_2 \right\},$$

из чего следует, что \tilde{P}_2 асимптотически устойчиво на G.

2.3 Положения равновесия внутри области D

Theorem 12. Если система (1) при положительных значениях параметров имеет положения равновесия внутри области D, то их координаты являются нулями функции

$$f(x_1) = r_2 x_2 \left(1 - \frac{x_2}{c_2} \right) + \frac{x_5}{k_4 + x_5} a_1 \frac{1}{x_4 + e_2} - \alpha_3 \frac{x_1}{x_1 + k_2} x_2,$$

где x_2, \dots, x_5 — функции от x_1 .

■ В общем случае координаты внутренних положений равновесия удовлетворяют системе уравнений (8). Разрешив последние два уравнения системы (8)

относительно x_4 и x_5 , можно получить выражения для переменных x_2 и x_4 :

$$x_3 = \frac{b_2}{\mu_3} x_5, \ x_4 = \frac{b_1 x_1 + s_1}{\mu_2}.$$

Разрешив третье уравнение системы (8) относительно x_3 получим следующее выражение:

$$x_3 = a_2 \frac{x_1}{k_5 + x_4} \cdot \frac{x_1 + k_3}{\alpha_4 x_1 + \mu_1 (x_1 + k_3)}.$$

Первое уравнение системы (8) разрешимо относительно x_2 , т.к. координаты внутренних положений равновесия строго положительны. Тогда

$$x_2 = \frac{1}{\alpha_1} \left(r_1 \left(1 - \frac{x_1}{c_1} \right) (x_4 + e_1)(x_1 + k_1) - \alpha_2 x_3 \right).$$

Таким образом, координаты внутренних положений равновесия системы (1) задаются следующей системой соотношений:

$$\begin{cases}
0 = r_2 x_2 \left(1 - \frac{x_2}{c_2}\right) + \frac{x_5}{k_4 + x_5} a_1 \frac{1}{x_4 + e_2} - \alpha_3 \frac{x_1}{x_1 + k_2} x_2, \\
x_2 = \frac{1}{\alpha_1} \left(r_1 \left(1 - \frac{x_1}{c_1}\right) (x_4 + e_1)(x_1 + k_1) - \alpha_2 x_3\right), \\
x_3 = a_2 \frac{x_1}{k_5 + x_4} \cdot \frac{x_1 + k_3}{\alpha_4 x_1 + \mu_1 (x_1 + k_3)}, \\
x_4 = \frac{b_1 x_1 + s_1}{\mu_2}, \\
x_5 = \frac{b_2}{\mu_3} x_3.
\end{cases}$$
(11)

Заметим, что подстановкой уравнений системы (11) друг в друга можно получить явные выражения координат x_2, \ldots, x_5 через x_1 . Т.к. внутреннее положение равновесия лежит внутри области D, из второго уравнения системы (11) следует, что на координату x_1 точек покоя накладывается условие $0 < x_1 < c_1$. Тогда задача поиска внутреннего положения равновесия сводится к поиску нулей функции в правой части первого уравнения системы (11)

$$f(x_1) = r_2 x_2 \left(1 - \frac{x_2}{c_2} \right) + \frac{x_5}{k_4 + x_5} a_1 \frac{1}{x_4 + e_2} - \alpha_3 \frac{x_1}{x_1 + k_2} x_2,$$

где x_2, \ldots, x_5 — функции от x_1 на интервале $x \in (0, c_1)$.

2.4 Численное моделирование

Example 1. Рассмотрим систему (1) при значениях параметров, данных в [22]. Вследствие того, что в источнике указан только диапазон значений параметра a_2 , положим, что $a_2 = 0.25$ (полный набор параметров указан в Приложении A).

Согласно теореме 9, система имеет граничные положения равновесия

$$P_1(0, 0, 0, 9134.92, 0), P_2(0, 1000000, 0, 9134.92, 0).$$

Согласно теореме 10, положения равновесия P_1 и P_2 неустойчивы в D, однако стоит отметить, что, согласно теореме 11, положение равновесия P_2 является асимптотически устойчивым на плоскости $x_1 = x_3 = x_5 = 0$.

В результате численного поиска нулей $f(x_1)$ было получено, что система имеет единственное внутреннее положение равновесия:

$$P_3$$
 (875419, 943092, 151.6804, 9135.65, 0.15168).

Проведем численное исследование устойчивости внутреннего положения равновесия и динамики траекторий. Матрица Якоби системы с заданными параметрами в точке P_3 :

$$\begin{pmatrix} -0.009635 & -0.000071 & -0.000014 & 0.003766 & 0 \\ -0.003638 & -0.309228 & 0 & 0. & 0 \\ 0.000014 & 0 & -0.129571 & -0.001766 & 0 \\ 0 & 0 & 0 & -6.933988 & 0 \\ 0 & 0 & 0.000102 & 0 & -0.102000 \end{pmatrix}.$$

Спектр данной матрицы имеет следующий вид:

$$\lambda_1=-6.93399,\ \lambda_2=-0.309229,$$

$$\lambda_3=-0.129571,\ \lambda_4=-0.102,\ \lambda_5=-0.009634.$$

Все собственные значения являются отрицательными действительными числами, т.е. положение равновесия P_3 асимптотически устойчиво.

Рис. 1. Переходные процессы системы для каждой координаты

Естественный интерес представит динамика траектории системы, начинающейся в точке (1,0,0,0,0), представляющей собой начало процесса развития глиомы у человека при условии отсутствия иммунотерапии. На fig. 1 дано графическое представление динамики развития болезни в течение первых 3000 дней. Можно заметить, что популяция раковых клеток при t=1500 дням испытывает резкий скачок после чего останавливается на численности, соответствующей положению равновесия. Популяции макрофагов и клеток т-киллеров также испытывают скачки роста, после чего останавливаются на значениях, соответствующих внутреннему положению равновесия. Стоит заметить, что при t=150 дням популяция макрофагов стремится к максимально возможному значению. Иммуноподавляющий фактор $TGF-\beta$ достигает значений, близких внутреннему положению равновесия при t=160 дн, тем самым затрудняя рост популяций клеток иммунитета.

На fig. 2 показаны переходные процессы в различных тройках координат для начальных точек, соответствующих случаям, когда в исходном состоянии $x_1 = 1$, $x_1 = 10$, $x_1 = 100$, $x_1 = 1000$, $x_1 = 10000$ и $x_1 = 100000$. Из рисунка видно, что траектории изначально стремятся к положению равновесия P_2 , соответствующему здоровому состоянию у пациента, после чего

Рис. 2. Трехмерные проекции переходных процессов системы на различные тройки координат для шести вариантов значения x_1

Рис. 3. Переходные процессы системы для различных начальных значений x_1

стремится к $\Pi P P_3$. Также на fig. 3 отдельно приведены переходные процессы для координаты x_1 с аналогичными начальными точками.

Проведем аналогичное моделирование траекторий на плоскости $x_1=x_3=x_5=0$. Из fig. 4 можно делать вывод о том, что траектория приходит к положению равновесия P_2 за t=35 дней. Заметим, что в данном случае количество иммуноподавляющего фактора $TGF-\beta$ испытывает резкий скачок в результате которого достигает значений близких положению равновесия при t=1 дн.

Рис. 4. Переходные процессы системы при выборе начальной точки на плоскости $x_1 = 0, x_3 = 0, x_5 = 0$

Рис. 5. Трехмерные проекции фазовых траекторий системы на координаты x_1, x_3, x_5

На fig. 5 было проведено моделирование траекторий системы внутри множества K_5 . Это показывает типичный ход траекторий системы внутри локализирующего множества. Видно, что траектории, начинающиеся в инвариантной плоскости $x_1 = 0$, остаются на ней. При этом траектории, начинающиеся вне нее стремятся к внутреннему положению равновесия.

Example 2. В примере 1 был рассмотрен набор параметров при котором положение равновесия P_2 является неустойчивым в D. Рассмотрим обратный

случай: выберем набор параметров при которых P_2 асимптотически устойчиво в D. Согласно теореме $10,\ P_2$ асимптотически устойчиво в D в случае если

$$k_1 r_1 s_1 + e_1 k_1 \mu_2 r_1 < \alpha_1 c_2 \mu_2.$$

Таким образом, если выбрать

$$r_1 < \frac{\alpha_1 c_2 \mu_2}{k_1 s_1 + e_1 k_1 \mu_2}.$$

Сохранив значения всех параметров из примера 1 кроме r_1 , получим, что $r_1 < 0.002903$. Поэтому положим, что $r_1 = 0.002$.

Из соображений, аналогичных изложенным в примере 1, можно получить, что при таком наборе параметров система имеет два граничных положения равновесия P_1 (0, 0, 0, 9134.92, 0) и P_2 (0, 1000000, 0, 9134.92, 0). Заметим, что в то время как P_1 остается неустойчивым, P_2 , в силу выбора параметра r_1 , является асимптотически устойчивым в D.

Система также имеет два внутренних положения равновесия P_3 и P_4 . Положение равновесия P_3 имеет координаты

$$P_3$$
 (845242.62, 943152.48, 147.819, 9135.62, 0.147819).

Матрица Якоби системы в точке P_3 :

$$\begin{pmatrix} -0.00162 & -0.000071 & -0.000014 & 0.003752 & 0 \\ 0 & -0.309228 & 0 & 0 & 0 \\ 0.000007 & 0 & -0.12837 & -0.001702 & 0 \\ 0 & 0 & 0 & -6.933988 & 0 \\ 0 & 0 & 0.000102 & 0 & -0.102 \end{pmatrix}.$$

Спектр данной матрицы имеет следующий вид:

$$\lambda_1=-6.93399,\ \lambda_2=-0.309228,$$

$$\lambda_3=-0.12837,\ \lambda_4=-0.102,\ \lambda_5=-0.00162.$$

Все собственные значения является отрицательными действительными числами, следовательно, положение равновесия P_3 является асимптотически устойчивым.

Положение равновесия P_4 имеет следующие координаты:

$$P_4$$
 (882650, 0.000001, 152.606, 9135.65, 0.152606).

Матрица Якоби системы в точке P_4 :

$$\begin{pmatrix} -0.00196 & -0.000076 & -0.000006 & 0 & 0 \\ 0 & 0.311876 & 0 & 0 & 0 \\ 0.000014 & 0 & -0.129852 & -0.00178 & 0 \\ 0 & 0 & 0 & -6.933988 & 0 \\ 0 & 0 & 0.000102 & 0 & -0.102 \end{pmatrix}.$$

Спектр данной матрицы имеет следующий вид:

$$\lambda_1 = -6.93399, \ \lambda_2 = -0.129852,$$

$$\lambda_3 = -0.102, \ \lambda_4 = -0.00196, \ \lambda_5 = 0.311876.$$

Собственное значение λ_5 является положительным действительным числом, следовательно, положение равновесия P_4 является неустойчивым.

Рис. 6. Трехмерные проекции фазовых траекторий системы на координаты $x_1, \, x_3, \, x_5$ при $x_1 < 9273.02$

Рассмотрим поведение траекторий в данном случае. В результате чис-

ленного моделирования решений системы с начальными условиями вида

$$x_1(0) = x_{1,0}, x_2(0) = 0, x_3(0) = 0, x_4(0) = 0, x_5(0) = 0, x_{1,0} \in \mathbb{R}_+,$$

было выяснено, что траектории стремятся к положению равновесия P_2 при $x_1 < 9273.02$ (см. fig. 6), в противном случае — к положению равновесия P_3 (см. fig. 7).

Рис. 7. Трехмерные проекции фазовых траекторий системы на координаты x_1, x_2, x_3 при $x_1 > 9273.02$

RESULTS

Математическое моделирование в онкологии играет важную роль, поскольку общие знания о причинах возникновения, механизме роста, методах устранения и лечения различных типов опухолей до сих пор остаются загадкой. Оно помогает ученым и врачам понять сложные процессы, происходящие в организме при развитии раковых заболеваний. Модель, рассмотренная в данной работе, позволяет оценить динамику взаимодействия между глиомой и иммунной системой.

Было показано, что траектории системы начинающиеся в D остаются в этом множестве. Это исключает нефизиологичные сценарии, при которых популяции клеток становятся отрицательными. Также было найдено компактное множество, содержащее аттрактор, что позволяет судить о ходе заболевания в долгосрочной перспективе.

Было найдено два положения равновесия на границе множества. Они соответствуют сценариям, когда раковые клетки в начале отсутствуют и не появляются новые, что может быть интерпретировано как здоровое состояние организма. Зная значения параметров системы возможно судить о наличии и устойчивости или неустойчивости внутреннего положения равновесия. При значениях параметров данных в [22] внутренняя точка покоя существует и является асимптотически устойчивой. Это говорит о том, что иммунотерапия в данном случае не дает возможности полностью излечить заболевание.

Данные результаты могут быть использованы для оценки эффективности методов иммунотерапии, разработки новых, более эффективных терапий, а также для создания более точных математических моделей, которые учитывают больше переменных и могут предоставить еще более глубокое понимание взаимодействия между опухолью и иммунной системой. Такие модели могут включать различные типы иммунных клеток, учитывать пространственное распределение клеток опухоли и включать эффекты насыщения, которые могут влиять на реакцию иммунной системы.

REFERENCES

- 1. Byun YH, Park CK. Classification and Diagnosis of Adult Glioma: A Scoping Review // Brain Neurorehabil. 2022 Nov; vol. 15(3):e23. https://doi.org/10.12786/bn.2022.15.e23
- 2. Zeng T, Cui D, Gao L. Glioma: an overview of current classifications, characteristics, molecular biology and target therapies // Front Biosci (Landmark Ed). 2015 Jun 1; vol. 20(7): pp. 1104-15. doi: 10.2741/4362. PMID: 25961548.
- 3. Bunimovich-Mendrazitsky, Svetlana et al. A mathematical model of combined bacillus Calmette-Guerin (BCG) and interleukin (IL)-2 immunotherapy of superficial bladder cancer // Journal of theoretical biology vol. 277,1 (2011): pp. 27-40. doi:10.1016/j.jtbi.2011.02.008
- 4. Kasbawati, Yuliana Jao, Nur Erawaty. Dynamic study of the pathogenimmune system interaction with natural delaying effects and protein therapy // AIMS Mathematics, 2022, vol. 7(5): pp. 7471-7488. doi: 10.3934/math.2022419
- 5. W. L. Duan, H. Fang, C. Zeng, The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises // Chaos, Soliton. Fract., vol. 127 (2019), pp. 96–102. https://doi.org/10.1016/j.chaos.2019.06.030. doi: 10.1016/j.chaos.2019.06.030
- 6. Xiangdong Liu, Qingze Li, Jianxin Pan, A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy // Physica A: Statistical Mechanics and its Applications, Volume 500, 2018, pp. 162-176, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2018.02.118.
- 7. L.G. de Pillis, W. Gu, K.R. Fister, T. Head, K. Maples, A. Murugan, T. Neal, K. Yoshida, Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls // Mathematical Biosciences, Volume 209, Issue 1, 2007, pp. 292-315, ISSN 0025-5564, https://doi.org/10.1016/j.mbs.2006.05.003.
- 8. dePillis, L.G., Eladdadi, A. & Radunskaya, A.E. Modeling cancerimmune responses to therapy // J Pharmacokinet Pharmacodyn vol. 41, pp. 461–478 (2014). https://doi.org/10.1007/s10928-014-9386-9

- 9. F. A. Rihan, D. H. A. Rahman, Delay differential model for tumour-immune dynamics with HIV infection of CD4+ T-cells // Int. J. Comput. Math., vol. 90 (2013), pp. 594–614, http://dx.doi.org/10.1080/00207160.2012.726354. doi: 10.1080/00207160.2012.726354
- 10. Swanson, Kristin R et al. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion // Journal of the neurological sciences vol. 216,1 (2003): pp. 1-10. doi:10.1016/j.jns.2003.06.001
- 11. Chakrabarty SP, Hanson FB. Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method // Math Biosci. 2009; vol. 219(2): pp. 129–141. pmid:19345698
- 12. Bandara S, Diehl M, Fricker G. A mathematical model for the transport of paclitaxel (Taxol) across the blood-brain barrier // Chem Eng Res Des. 2007; vol. 85: pp. 1065–1071.
- 13. Kirkby NF, Jefferies SJ, Jena R, Burnet NG. A mathematical model of the treatment and survival of patients with high-grade brain tumours // J Theor Biol. 2007; vol. 245: pp. 112–124. pmid:17084863
- 14. Schmitz JE, Kansal AR, Torquato S. A cellular automaton model of brain tumor treatment and resistance // J Theor Med. 2002; vol. 4(4): pp. 223–239.
- 15. Walker WL, Cook J. Drug delivery to brain tumors // Bull Math Biol. 1996; vol. 58(6): pp. 1047–1074. pmid:8953256
- 16. Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics // Cancer Immunol Immunother. 2008; vol. 57: pp. 425–439. pmid:17823798
- 17. Banerjee, Sandip et al. A mathematical model to elucidate brain tumor abrogation by immunotherapy with T11 target structure // PloS one vol. 10,5 e0123611. 8 May. 2015, doi:10.1371/journal.pone.0123611
- 18. *Крищенко А.П.* Локализация инвариантных компактов динамических систем //Дифференциальные уравнения, 2005, Т.41, N12, С. 1597–1604.

- 19. Канатников А.Н., Крищенко А.П. Инвариантные компакты динамических систем. М.: Изд-во МГТУ им. Н.Э. Баумана, 2011, 231 С.
- $20.\ Aрнольд\ B.\ И.\ Обыкновенные дифференциальные уравнения: учеб.$ пособие для вузов. 3-е изд., перераб. и доп., М., Наука, 1984, 271 с.
- 21. H. K. Khalil *Nonlinear Systems*, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 1996.
- 22. Khajanchi, S., Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction // Biophysical Reviews and Letters, vol. 12, no. 4, pp. 187–208, 2017. doi:10.1142/S1793048017500114.

приложение а

Таблица А.1 Значения параметров системы

Параметр	Значение
α_1	1.5
$lpha_2$	0.12
α_3	0.194
$lpha_4$	0.1694
μ_1	0.007
μ_2	6.93
μ_3	0.102
a_1	0.1163
a_2	0.25
b_1	5.75×10^{-6}
b_2	1.02×10^{-4}
c_1	8.8265×10^5
c_2	10^{6}
e_1	10^{4}
k_1	2.7×10^{4}
k_2	2.7×10^{4}
k_3	3.3445×10^{5}
k_4	1.05×10^{4}
k_5	2×10^3
r_1	0.01
r_2	0.3307
s_1	6.3305×10^4

ПРИЛОЖЕНИЕ В

Листинг В.1 Файл run.py, используется для запуска программы и задания коэффициентов.

```
from model import *;
from numpy import set printoptions;
from argparse import ArgumentParser,
  ArgumentDefaultsHelpFormatter;
from math utils import *;
import random;
import numpy as np;
set printoptions (suppress=True, precision=6);
parser = ArgumentParser(formatter class=
  ArgumentDefaultsHelpFormatter);
parser.add argument("-d", "--dev", action='store true',
  help="Enables development mode. Calculations are done on
   a less dense net.");
args = vars(parser.parse_args());
model params = \{ 'r 1' : .01, 'c 1' : 8.8265 e + 5, \}
'e_1': 1e+4, 'alpha_1': 1.5, 'alpha 2': .12,
'k_1': 2.7e+4, 'r_2': .3307, 'c 2': 1e+6,
'a 1': .1163, 'k 4': 1.05e+4, 'e 2': 1e+4,
'alpha 3': .0194, 'k 2': 2.7e+4, 'a 2': .25,
'k 5': 2e+3, 'mu 1': .007, 'alpha 4': .1694,
'k 3': 3.3445e+5, 's 1': 6.3305e+4, 'b 1':
5.75e-6, 'mu 2': 6.93, 'b 2': 1.02e-4,
'mu 3': .102};
model = eq model(params=model params, dev=args['dev']);
r_1 = model.alpha_1*model.c_2*model.mu 2/(model.k 1*model.
  s 1+model.e 1*model.k 1*model.mu 2);
print (f 'Условие усточивости \Pi P P 2: r 1 < {r 1}');
```

```
model.find eqpoints();
random.seed();
randpoint = np.array([random.random()*model.Ox1, random.
  random()*model.Ox2, random.random()*model.Ox3, model.Ux4
   + random.random()*(model.Ox4-model.Ux4), random.random
  ()*model.Ox5]);
model.plot transitions(randpoint);
model.integrate at point(randpoint);
points = np. array ([[x1, 0.0, 0.0, 0.0, 0.0]] for x1 in np.
  linspace (1.0, 100000.0, num = 5)])
model.plot x1transitions(points, T=3000.0, legend=True)
point = np.array([0.0, model.c 2, 1, model.s 1/model.mu 2
  +1, 0.0]);
model.plot_transitions(points[0,:], plot_inv=True);
model.integrate_at_point(point);
model.integrate at points(points);
set printoptions (suppress=True, precision=6);
for i in range (model.eqpoints.shape [0]):
model.eqpoint_condtitions(model.eqpoints[i]);
print(f'Loss: {model.dxdt(model.eqpoints[i])}.');
print (f'Jacobian matrix at ({model.eqpoints[i]}):\n{model.
  jacobian (model.eqpoints[i])}');
print(f'Eigenvalues of J({model.eqpoints[i]}) are:\n{model
  . eigs (model.eqpoints[i]) \n');
bounds = np.array([[1000.0, 10000.0], [0.0, model.Ox2],
  [0.0, model.Ox3], [model.Ux4, model.Ox4], [0.0, model.Ox4]
  Ox5]]);
model.integrate on set(bounds);
plt.show();
```

Листинг В.2 Файл model.py, используется для построения графиков и численного поиска положений равновесия.

```
import numpy as np;
import numpy. linalg as LA;
import matplotlib as mpl;
import matplotlib.pyplot as plt;
import scipy.integrate as scip;
import random;
from utils import *;
from math_utils import *;
mpl.rc('text', usetex=True);
mpl.rc('text.latex', preamble=r'\usepackage[utf8]{inputenc
  }');
mpl.rc('text.latex', preamble=r'\usepackage[russian]{babel
  }');
mpl.rcParams.update({ 'font.size ': 14});
class eq model:
def init (self, params=None, dev=None):
self.__params_set = False;
if dev:
self.dev = True;
else:
self.dev = False:
if params and isinstance (params, dict):
self. set parameters(params);
def set parameters (self, params=None):
if params and isinstance (params, dict):
print('Setting parameters...');
for param in [*params.items()]:
self. setattr (param [0], param [1]);
```

```
self. set variables at eqpoints();
self.__set_dequations();
self. set jacobian();
self.__set_attr_bounds();
self. params set = True;
print('Parameters set!');
else:
raise ValueError ('System parameters should be a non-empty
  dict');
def set variables_at_eqpoints(self):
self.\_\_setattr\_\_(\ `x\_4\ '\ ,\ lambda\ x\_1\colon\ (\ self.b\_1*x\_1\ +
self.s 1)/self.mu 2);
self.\__setattr\__(`x_3', lambda x_1: self.a_2*x_1*(x_1 + x_1))
self.k 3)/((self.k 5+self.x 4(x 1))*(self.alpha 4*x 1 +
self.mu 1*(x 1+self.k 3)));
self.\_\_setattr\_\_(\ 'x\_5\ ',\ lambda\ x\_1\colon\ self.b\_2*self.x\_3(x\_1)
/self.mu 3);
self.\_\_setattr\_\_(\ `x\_2\ ',\ lambda\ x\_1\colon\ (\ self.r\_1*(1.0-x\_1/2))
self.c 1)*(self.x 4(x 1)+self.e 1)*(x 1+self.k 1) -
self.alpha 2*self.x 3(x 1))/self.alpha 1);
def target function (self, x 1):
return self.r 2* self.x 2(x 1)*(self.c 2-self.x <math>2(x 1))*
(x + self.k + 1)*(self.k + 4+self.x + 5(x + 1))*(self.x + 4(x + 1) + 1)
self.e 2)+self.a 1*self.c 2*(x 1+self.k 1)-self.alpha 3 *
self.c_2*x_1*self.x_2(x_1)*(self.k_4+self.x_5(x_1))*
(self.x 4(x 1)+self.e 2);
def __set_dequations(self):
def dxdt(X):
try:
if X. shape [0] != 5:
raise ValueError('Incorrect argument dimensions.');
```

```
except:
if isinstance (X, list) and isinstance (X[0], np. array):
if X[0]. shape != 5:
raise ValueError('Incorrect argument dimensions.');
else:
raise TypeError ('Input is neither list of np. array nor an
  np.array.');
return np. array (
[self.r 1*X[0]*(1.0-X[0]/self.c 1)-(self.alpha 1*X[1] +
self.alpha 2*X[2])*X[0]/(X[3]+self.e 1)/(X[0]+self.k 1),
self.r \ 2*X[1]*(1-X[1]/self.c \ 2)+self.a \ 1*X[4]/((self.k \ 4 +
X[4]) *(self.e 2+X[3])) - self.alpha 3*X[0]*X[1]/(X[0] +
self.k.2), self.a.2*X[0]/(X[3]+self.k.5)-self.mu.1*X[2]-
self.alpha \ 4*X[0]*X[2]/(X[0]+self.k \ 3), \ self.s \ 1+self.b \ 1
X[0] - self.mu 2*X[3], self.b 2*X[2] - self.mu 3*X[4],
dtype='float64');
self.__setattr__('dxdt', dxdt);
def \_\_set\_jacobian(self):
self. setattr ('jacobian', lambda X: np.transpose(np.
  array ([partial(self.dxdt, X, n arg=j) for j in range
  (1,6), dtype='float64'));
def set attr bounds(self):
self. setattr ('Ox1', self.c 1);
self.__setattr__('Ox4', self.s_1/self.mu_2 + self.b_1*self
  . Ox1):
self.__setattr__('Ux4', self.s_1/self.mu_2);
self.\_\_setattr\_\_(\ 'Ox3'\ ,\ self.a\_2*self.Ox1*(self.Ox1+self
  .k 2)/(self.k 5+self.Ux4)/self.mu 1/self.k 2);
self.__setattr__('Ox5', self.b_2*self.Ox3/self.mu_3);
```

```
self. setattr ('Ox2', self.c 2*.5 + np.sqrt(self.c 2*
  self.c_2*.5 + self.a_1*self.Ox5/self.k_4/(self.Ux4+self.
  e 2)));
print (f'\nAttractor-containing set boundaries (Oxi --
  upper bound, Uxi -- lower bound): \n = \{ self.Ox1 \}');
print(f'Ox2 = {self.Ox2}');
print(f'Ox3 = {self.Ox3}');
print(f'Ux4 = \{self.Ux4\}');
print(f'Ox4 = \{self.Ox4\}');
print (f'Ox5 = \{ self.Ox5 \} \setminus n' \};
def eigs (self, point):
return np.sort (LA. eigvals (self.jacobian (point)));
def find eqpoints (self):
self.eqpoints = np.vstack((np.array([0.0,0.0,0.0,self.s-1/
  self.mu_2,0.0]), np.array([0.0, self.c_2,0.0, self.s_1/
  self.mu 2,0.0]));
print(f'Searching for zeros...');
zeros = [];
if self.dev == True:
interval = (self.c 1-100000, self.c 1);
else:
interval = (1e-6, self.c 1);
start = time.time();
zeros, zero_times = zero_localizer(self.__target_function,
   interval, d=1e-1);
end = time.time();
for x 1 in zeros:
self.eqpoints = np.vstack((self.eqpoints, np.array([x 1,
```

```
self.x_2(x_1), self.x_3(x_1), self.x_4(x_1), self.x_5(
  x 1) |));
print(f'Total time elapsed: {round(end-start, 6)}s');
print(f'Time elapsed while find zero: {[f"{round(time,6)}}s
  " for time in zero times]}');
if len(zeros) == 1:
print (f'One zero found. x = \{zeros[0]\}');
elif len(zeros) > 0:
print(f'{len(zeros)} zeros found.');
[print(f'X = {zero}') for zero in zeros];
else:
print ('No zeros found on a given interval.');
print('\nEquilibrium points:\n');
for i in range(self.eqpoints.shape[0]):
print(f'P = {self.eqpoints[i,:]}');
print('\n');
return None;
def eqpoint condtitions (self, point):
cond 1 = self.r 1*(self.c 1-point[0])*(point[3]+self.e 1)
  *(point[0]+self.k \ 1) - self.alpha_2*self.c_1*point[2] >
  0:
cond 2 = (0 < point[0]) and (point[0] < self.c 1);
if cond 1 and cond 2:
print(f'Point X = \{point\}  satisfies conditions for a
  equilibrium point.');
else:
print(f'Point X = {point} does not satisfy conditions for
   a equilibrium point.');
return cond_1 and cond_2;
```

```
def cond roots (self):
d = np.array([-self.c_1, (self.s_1+self.mu_2*self.e_1)/
  self.b 1, self.k 1, (self.s 1+self.mu 2*self.k 5)/self.
  b 1, self.mu 1*self.k 3/(self.alpha 4+self.mu 1));
f = self.alpha 2*self.c 1*self.a 2*self.mu 2*self.mu 2/
  self.r 1/self.b 1/self.b 1/(self.alpha 4+self.mu 1);
P = 1:
for i in range(5):
P = np.polymul(P,(1, d[i]));
P = np.polyadd(P, [f, f*self.k 3, 0]);
croots = np.roots(P);
print (f 'Коэффициенты многочлена из (4): {P}');
print(f'{np.polyval(P, np.roots(P))}');
for j in range (croots.shape [0]):
point = [croots[j], self.x_2(croots[j]), self.x_3(croots[j])
  ]), self.x_4(croots[j]), self.x_5(croots[j])];
val = self.r 1*(self.c 1-point[0])*(point[3]+self.e 1)*(
  point[0] + self.k 1) - self.alpha 2*self.c 1*point[2];
print(f'(4)-2 в точке x_1 = \{croots[j]\}: \{val\}');
return croots;
def integrate_at_point(self, point, T = 3000.0,
  disable plot=False, plot eqpoints = True):
sol = scip.solve ivp(lambda t, X: self.dxdt(X), [0.0,T],
  point, rtol=1e-7, atol=1e-6);
X = sol.y;
if not disable plot:
ax = [plt.figure().add subplot(projection='3d') for i in
  range(3)];
for i in range (len (ax)):
ax[i].plot(X[(i+2*(i//5))\%5,:], X[(i+1)\%5,:], X[(i+2-2*(i/5))\%5,:]]
  i/(5)) %5,:], color='black');
ax[i].scatter(point[(i + 2*(i//5))%5], point[(i+1)%5],
```

```
point [(i+2-2*(i/5))\%5], color='black');
if plot eqpoints:
ax[i].scatter(self.eqpoints[1:,(i + 2*(i//5))%5], self.
  eqpoints [1:, (i+1)\%5], self.eqpoints [1:, (i+2-2*(i/5))
  %5], color='r');
ax[i].text(self.eqpoints[1,(i + 2*(i//5))%5], self.
  eqpoints [1, (i+1)\%5], self. eqpoints [1, (i+2-2*(i/5))\%5],
  '$P 2$');
ax[i].text(self.eqpoints[2,(i + 2*(i//5))%5], self.
  eqpoints [2, (i+1)\%5], self. eqpoints [2, (i+2-2*(i/5))\%5],
  '$P 3$');
ax[i].text(self.eqpoints[3,(i + 2*(i//5))%5], self.
  eqpoints [3, (i+1)\%5], self.eqpoints [3, (i+2-2*(i//5))\%5],
  '$P_4$');
ax[i].set\_xlabel(f'$x_{(i+2*(i/5))\%5+1}$');
ax[i].set ylabel(f'$x {(i+1)\%5+1}$');
ax[i].set zlabel(f'$x {(i+2-2*(i/5))\%5+1}$');
return X[:,-1];
def integrate at points (self, points, T = 2000.0):
ax = [plt.figure().add_subplot(projection='3d') for i in
  range (3);
colors = plt.get_cmap("viridis", points.shape[0]);
for j in range (points.shape [0]):
sol = scip.solve ivp(lambda t, X: self.dxdt(X), [0.0,T],
  points[j,:], rtol=1e-7, atol=1e-6);
X = sol.y;
for i in range (len(ax)):
ax[i].plot(X[(i+2*(i//5))\%5,:], X[(i+1)\%5,:], X[(i+2-2*(i/5))\%5,:]]
  i//5))\%5,:], color=colors(j));
ax[i]. scatter(points[j,(i + 2*(i//5))\%5], points[j,(i+1)
  \%5], points [j, (i+2-2*(i//5))%5], color=colors(j));
if j = 0:
ax[i]. scatter(self.eqpoints[1:,(i + 2*(i//5))%5], self.
```

```
eqpoints [1:, (i+1)\%5], self.eqpoints [1:, (i+2-2*(i/5))
  %5], color='r');
ax[i].text(self.eqpoints[1,(i + 2*(i//5))%5], self.
  eqpoints [1, (i+1)\%5], self. eqpoints [1, (i+2-2*(i//5))\%5],
  '$P 2$');
ax[i].text(self.eqpoints[2,(i + 2*(i//5))%5], self.
  eqpoints [2,(i+1)\%5], self.eqpoints [2,(i+2-2*(i//5))\%5],
  '$P 3$');
ax[i].text(self.eqpoints[3,(i + 2*(i//5))%5], self.
  eqpoints [3, (i+1)\%5], self. eqpoints [3, (i+2-2*(i//5))\%5],
  '$P 4$');
ax[i].set xlabel(f'x {(i + 2*(i/5))\%5+1};
ax[i].set ylabel(f'$x {(i+1)\%5+1}$');
ax[i].set_zlabel(f'$x_{(i+2-2*(i/5))\%5+1}$');
return None;
def integrate on set(self, bounds, intTime = 3000.0,
  plotAxes=None, N = np.array([5,5,5]):
if bounds. shape !=(5,2):
raise ValueError('Incorrect bounds!');
x1 = np. linspace (bounds [0,0], bounds [0,1], num = N[0]);
x2 = np.linspace(bounds[1,0], bounds[1,1], num = N[1]);
x3 = np. linspace (bounds [2,0], bounds [2,1], num = N[2]);
points = np.array([np.array([x1[i], 0.0, x2[j], self.s_1/
  self.mu 2, x3[k]) for i in range(len(x1)) for j in
  range (len (x3)) for k in range (len (x3));
self.integrate at points (points, T=intTime, axes=plotAxes)
return None;
def plot transitions (self, point, plot inv = True, T =
  3000.0):
ax1 = [plt.figure().add subplot() for i in range(5)];
sol = scip.solve ivp(lambda t, X: self.dxdt(X), [0.0,T],
```

```
point, rtol=1e-7, atol=1e-6);
for i in range (len(ax1)):
ax1[i].grid();
if i = 3:
ax1[i].plot(sol.t[:500], sol.y[1,:500]);
else:
ax1[i].plot(sol.t, sol.y[i,:]);
ax1[i].set xlabel('t, дней');
ax1[i].set ylabel(f'$x {i+1}$');
if plot inv:
ax2 = [plt.figure().add subplot() for i in range(2)];
random.seed();
init point = np.array([0.0, random.random()*self.Ox2, 0.0,
   random.random()*self.Ox4, 0.0]);
sol = scip.solve\_ivp(lambda t, X: self.dxdt(X), [0.0,T],
  init point, rtol=1e-7, atol=1e-6);
for i in range (len(ax2)):
ax2[i].grid();
ax2[i].set_xlabel('t, дней');
ax2[i].set_ylabel(f'$x_{(i+1)*2}$');
ax2[0].plot(sol.t[:100], sol.y[1,:100]);
ax2[1].plot(sol.t[:30], sol.y[3,:30]);
return None;
def plot x1transitions (self, points, T = 3000.0):
ax = plt.figure().add subplot();
colors = plt.get cmap("viridis", points.shape[0]);
for i in range (points.shape [0]):
sol = scip.solve ivp(lambda t, X: self.dxdt(X), [0.0,T],
  points[i,:], rtol=1e-7, atol=1e-6);
ax.plot(sol.t, sol.y[0,:], color=colors(i), label=f'$x_
  \{1\}(0) = \{points[i,0]\} $');
ax.grid();
ax.legend();
```

```
ax.set_xlabel('t, дней');
ax.set_ylabel(f'$x_{1}$');
return None;
def quiver (self, plot area, N = np.array([5,5,5,5,5])):
ax = plt.figure().add subplot(projection='3d');
x1, x2, x3, x4, x5 = np.meshgrid(np.linspace(plot_area))
   [0,0],
plot_area[0,1], num = N[0]), np.linspace(plot_area[1,0],
plot area [1,1], num = N[1]), np.linspace (plot area [2,0],
\operatorname{plot}_{\operatorname{area}}[2,1], \operatorname{num} = \operatorname{N}[2]), \operatorname{np.linspace}(\operatorname{plot}_{\operatorname{area}}[3,0]),
\operatorname{plot}_{\operatorname{area}}[3,1], \operatorname{num} = \operatorname{N}[3]), \operatorname{np.linspace}(\operatorname{plot}_{\operatorname{area}}[4,0]),
\operatorname{plot} \operatorname{area} [4,1], \operatorname{num} = N[4]);
u1, u2, u3, u4, u5 = self.dxdt(np.array([x1, x2, x3, x4,
   x5]));
ax.quiver(x1, x2, x3, u1, u2, u3, length = 1);
ax.scatter(self.eqpoints[2,0], self.eqpoints[2,1], self.
   eqpoints [2,2], color='r');
return None;
```

Листинг В.3 Файл math_utils.py, содержащий методы поиска нулей функций.

```
import numpy as np;
import time;
from utils import progress bar;
def der1(func, point, h=1e-9):
return (func(point+h*0.5) - func(point - h*0.5))/h;
def partial (func, point, n arg=1, h=1e-9):
step = np. zeros (point.shape [0]);
step[n arg-1] = h;
return (func(point+step*0.5)-func(point-step*0.5))/h;
def der2 (func, point, h=1e-9):
return (func(point+h) - 2.0*func(h) + func(point-h))/(h
  **2);
\operatorname{def} find \operatorname{zero}(\operatorname{func}, \operatorname{interval}, \operatorname{method}=\operatorname{'linear'}, j=0,
  time this=False):
if time this:
start = time.time();
match method.lower():
case 'linear':
zero = interval[0] - (interval[1] - interval[0])*loss/(
  loss next-loss);
case 'halley':
zero = (interval[1] + interval[0])*0.5;
i = j;
while True:
i += 1;
zero prev = zero;
```

```
zero = zero - func(zero)/(der1(func, zero) - 0.5*func(zero
  )*der2(func, zero)/der1(func, zero));
if np.abs(func(zero)) < 1e-6 or i > 1e+5:
break;
case 'golden section':
a = interval[0];
b = interval[1];
eps = 1e - 7;
t = (1 + np.sqrt(5))*0.5;
x1 = a + (1 - 1/t) * (b - a);
x2 = a + 1/t * (b - a);
l = b - a;
f1 = f(x1);
f2 = f(x2);
while (l > eps):
if (f1 > f2):
a = x1;
x1 = x2;
f1 = f2;
x2 = b - (b - a)/(t+1);
f2 = f(x2);
else:
b = x2;
x2 = x1;
f2 = f1;
x2 = a + (b - a)/(t+1);
f1 = f(x1);
l = b - a;
x = (a + b)*0.5;
return x;
if time this:
end = time.time();
return (zero, end-start);
return (zero, None);
```

```
def zero localizer (func, interval, d=1e-1, k=0):
11 11 11
Oparam func (callable): Function for which zeros are
  localized.
@param interval (ArrayLike): Interval in which zeros are
  localized.
@param d (float): Diameter of interval division.
@param k (int): number of recursive function calls.
This function finds zeros by continuously searching for
  sign changes on nodes of a division of interval and then
   subdivide it until a zero is found.
11 11 11
zeros = [];
zero times = [];
points = np.arange(interval[0], interval[1], d);
target = func(points);
for i in range (len (points)-1):
if k == 0 and i\%1e+5==0:
progress bar(i, len(points)-2);
if (target[i]*target[i+1] < 0) and (np.abs(d) > 1e-6):
zeros, zero times = zero localizer (func, points [i:i+2], d=
  d*1e-1, k=k+1);
elif (target[i]*target[i+1] < 0) and (np.abs(d) \le 1e-6):
zero, zero time = find zero(func, points[i:i+2], method='
  halley', time this=True);
zeros += [zero];
zero times += [zero time];
if k = 0:
progress_bar(i, len(points)-2);
return (zeros, zero_times);
```