Supervised Learning Methodology

Christoph Kern

Mannheim Machine Learning Modules c.kern@uni-mannheim.de

March 21 and 22, 2018

Outline

- Machine Learning basics
 - In-sample prediction error
 - Validation set, test set, CV
 - Grids and random search
 - Performance measures
- Software Resources
- References

Machine Learning basics

Unsupervised Learning

ullet Finding patterns in data using a set of input variables X

Supervised Learning

- ullet Predicting an output variable Y based on a set of input variables X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- Predict the output based on the prediction model (of step 1) for new test data (~only X available)
- continuous Y: regression, categorical Y: classification
- Focus on prediction (≠ causation)

Machine Learning basics

Unsupervised Learning

ullet Finding patterns in data using a set of input variables X

Supervised Learning

- ullet Predicting an output variable Y based on a set of input variables X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- ② Predict the output based on the prediction model (of step 1) for new test data (~only X available)
- continuous Y: regression, categorical Y: classification
- Focus on prediction (≠ causation)

Machine Learning basics

Unsupervised Learning

ullet Finding patterns in data using a set of input variables X

Supervised Learning

- ullet Predicting an output variable Y based on a set of input variables X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- \bigcirc Predict the output based on the prediction model (of step 1) for **new test** data (\sim only X available)
- continuous Y: regression, categorical Y: classification
- Focus on **prediction** (≠ causation)

Table: Estimating f(X)

Regression methods	(tree-based) ML methods	
parametric	non-parametric	
linearity, additivity	flexible functional form	
prior model specification	"built-in" feature selection	
theory-driven	data-driven	
ightarrow Inference	ightarrow Prediction	

Figure: Flexibility-Interpretability Trade-Off

In-sample prediction error

Estimating the test error with training data

ullet Setup: Add training optimism $\hat{\omega}$ to training error

$$\widehat{\mathsf{Err}}_{\mathit{in}} = \overline{\mathsf{err}} + \hat{\omega}$$

Corrected fit measure for OLS regression

$$C_p = \overline{\operatorname{err}} + 2\frac{d}{n}\hat{\sigma}_{\varepsilon}^2$$

Corrected fit measures for ML-based methods

$$AIC = -\frac{2}{n}LL + 2\frac{d}{n}$$

$$BIC = -2LL + \log(n)d$$

Validation set, test set, CV

Validation set approach

- Training set & validation set
 - Fit model using one part of training data
 - 2 Compute test error for the excluded section
- \rightarrow Model assessment
 - Training set, validation set & test set
 - Fit models using training part of training data
 - 2 Choose best model using validation set
 - Second Second
- → Model tuning & assessment

Cross-Validation

- LOOCV (Leave-One-Out Cross-Validation)
 - Fit model on training data while excluding one case
 - 2 Compute test error for the excluded case
 - Repeat step 1 & 2 n times
- k-Fold Cross-Validation
 - Fit model on training data while excluding one group
 - Compute test error for the excluded group
 - **③** Repeat step 1 & 2 k times (e.g. k = 5, k = 10)
- Outlook: nested CV, repeated CV, ...

$$CV(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

Standard Frrors for CV

$$\frac{1}{\sqrt{K}} sd\{CV_1(\hat{f}^{-(1)}), ..., CV_K(\hat{f}^{-(K)})\}$$

Model selection using k-Fold Cross-Validation

- Choose model with smallest cross-validated error
- Choose smallest model within one standard error of the smallest cross-validated error (1-SE Rule)

More on data splitting

- Simple random splits
 - General approach for "unstructured" data
 - Typically 75% or 80% go into training set
- Stratified splits
 - For classification problems with class imbalance
 - Sampling within each class of Y to preserve class distribution
- Splitting by groups
 - For (temporal) structured data
 - Use specific groups (temporal holdouts) for validation

Figure: 5-Fold Cross-Validation with training set and validation set (example)

James et al. (2013)

Grids and random search

Tuning many hyperparameters

- (Exhaustive) Grid search
 - Expands a grid over all combinations of considered try-out values
 - Can become inefficient with many tuning parameters
- Random search (Bergstra & Benglio 2012)
 - Considers only a random selection of tuning parameter combinations
 - Benefit depends on method and implementation
- Adaptive search (Kuhn 2014)
 - Guided search by considering performance within the search process
 - Adaptive removal of unpromising parameter settings

Figure: Grid and random search with two tuning parameters

Bergstra & Benglio (2012)

Performance measures for regression

 r^2 score:

$$r^2 = \operatorname{corr}(y_i, \hat{f}(x_i))^2$$

Mean of squared errors (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Root mean squared error (RMSE):

$$\sqrt{\frac{1}{n}\sum_{i=1}^n(y_i-\hat{f}(x_i))^2}$$

Mean of absolute errors (MAE):

$$\frac{1}{n}\sum_{i=1}^n|(y_i-\hat{f}(x_i))|$$

Median of absolute errors (MEDAE):

$$median(|y_1 - \hat{f}(x_1)|, ..., |y_n - \hat{f}(x_n)|)$$

Median of squared errors (MEDSE):

median
$$((y_1 - \hat{f}(x_1))^2, ..., (y_n - \hat{f}(x_n))^2)$$

Performance measures for classification

Probabilities, thresholds and prediction for classification

$$y_i = \begin{cases} 1 & \text{if} \quad p_i > c \\ 0 & \text{if} \quad p_i \le c \end{cases}$$

Table: Confusion matrix

		Prediction		
		0	1	
Reference	0	True	False	N'
		Negatives (TN)	Positives (FP)	/ V
	1	False	True	P'
	1	Negatives (FN)	Positives (TP)	Γ
		N	P	

Performance metrics for classification

- Global performance
 - Accuracy: $\frac{TP+TN}{TP+FP+TN+FN}$
 - Misclassification rate: $\frac{FP+FN}{TP+FP+TN+FN}$
 - No Information rate
- Row / column performance
 - Sensitivity (Recall): $\frac{TP}{TP+FN}$
 - Specificity: $\frac{TN}{TN+FP}$
 - Positive predictive value (Precision): TP TP+FP
 - Negative predictive value: $\frac{TN}{TN+FN}$
 - False positive rate: $\frac{FP}{FP+TN}$
 - False negative rate: $\frac{FN}{FN+TP}$

Combined measures

Balanced Accuracy

$$(Sensitivity + Specificity)/2$$

• F1

$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

- Cohen's κ
 - Compares observed (p_0) and random (p_e) accuracy

•
$$p_e = \frac{(N' \times N) + (P' \times P)}{(TP + FP + TN + FN)^2}$$

$$1-\frac{1-p_0}{1-p_0}$$

Figure: Varying the classification threshold I

(b) Precision and recall

Figure: Varying the classification threshold II

- → AUC-ROC: Area under the receiver operating characteristic curve
- → AUC-PR: Area under the precision–recall curve

Software Resources

Resources for R

- Classification and Regression Training: caret
 - https://topepo.github.io/caret/
- Machine Learning in R: mlr
 - https://mlr-org.github.io/mlr-tutorial/devel/html/
- Collection of performance metrics: MLmetrics, verification
- ROC and PR curves: e.g. PRROC

References

- Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. *Journal of Machine Learning Research*, 13, 281–305
- Ghani, R. and Schierholz, M. (2017). Machine Learning. In: Foster, I., Ghani, R., Jarmin, R. S., Kreuter, F., Lane, J. (Eds.). Big Data and Social Science: A Practical Guide to Methods and Tools. Boca Raton, FL: CRC Press Taylor & Francis Group.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. New York, NY: Springer.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning. New York, NY: Springer.
- Kuhn, M. (2014). Futility Analysis in the Cross-Validation of Machine Learning Models. https://arxiv.org/abs/1405.6974.
- Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. New York, NY: Springer.
- Varian, H. R. (2014). Big Data: New Tricks for Econometrics. *Journal of Economic Perspectives*, 28(2), 3–28.

