

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Aplicaciones Integral Definida. Cálculo II

OBJETIVOS:

- Reconocer propiedades de la integral definida.
- Calcular e interpretar área bajo una curva y entre curvas.
- 1. Mediante el uso de una integral definida, calcule el área de la región delimitada por la curva, el eje X y las líneas verticales dadas. En cada caso hacer un bosquejo de la región.

a)
$$y = 4x$$
, $x = 2$.

b)
$$y = 3x + 2$$
, $x = 1$, $x = 3$.

c)
$$y = x - 1$$
, $x = 1$, $x = -1$.

d)
$$y = 5x^2$$
, $x = 0$, $x = 2$.

e)
$$y = 9 - x^2$$
.

f)
$$y = 4 - x^2$$
, $x = -2$, $x = 3$.

$$y = -x^2 + 2x + 3$$

g)
$$y = -x^2 + 2x + 3$$
.
h) $y = 2x^2 + 3x - 1$, $x = 1$, $x = 4$.

i)
$$y = \frac{1}{x}$$
, $x = 1$, $x = e$.

$$j) y = \frac{1}{x^2}, x = 1, x = 2.$$

k)
$$y = \sqrt{x}, \ x = 2.$$

l)
$$y = \sqrt{x-2}, \ x = 5.$$

$$(x, y) = \sqrt{x+9}, x = 0.$$

$$n) y = e^x, x = 0, x = 2.$$

$$\tilde{n}$$
) $y = x^2 - x - 2$, $x = -2$, $x = 2$.

o)
$$y = x^2 - x - 2$$
, $x = -2$, $x = 4$.

2. En estadística una función de densidad (de probabilidad) f de una variable x, donde x toma todos los valores en el intervalo [a, b], satisface lo siguiente:

i)
$$f(x) \ge 0$$
.

$$ii) \int_{a}^{b} f(x) = 1.$$

iii) La probabilidad de que x tome un valor entre c y d donde $a \le c \le d \le b$ se calcula por

$$P(c \le x \le d) = \int_{c}^{d} f(x)dx,$$

y representa el área de la región delimitada por la gráfica de f, el eje X y las líneas verticales $x = c \vee x = d$.

Figura 1: Probabilidad como un área.

Verifique si cada una de las funciones es de densidad y calcule las probabilidades indicadas.

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

a)
$$f(x) = 6(x - x^2), 0 \le x \le 1$$
. Calcular: $P(0 \le x \le \frac{1}{4}); P(x \ge \frac{1}{2})$.

b)
$$f(x) = \frac{x}{8}, 0 \le x \le 4$$
. Calcular: $P(0 \le x \le 1); \ P(2 \le x \le 4); \ P(x \ge 3)$.

c)
$$f(x) = \frac{1}{x}, e \le x \le e^2$$
. Calcular: $P(3 \le x \le 5); P(x \le 4); P(x \ge 3)$.

d)
$$f(x) = 3(1-x)^2, 0 \le x \le 1$$
. Calcular: $P(\frac{1}{2} \le x \le 1); P(\frac{1}{3} \le x \le \frac{1}{2}); P(x \le \frac{1}{3}); P(x \ge \frac{1}{3})$.

3. Determine el área entre los siguientes pares de curvas y las líneas verticales dadas.

a)
$$y = x^2, y = 3x$$

b)
$$y = x^2, y = 2x - 1, x = 0, x = 2.$$

c)
$$y = \sqrt{x}, y = x^2, x = 0, x = 1.$$

d)
$$y = \sqrt{x}, y = 1 - x$$
.

e)
$$y = \sqrt{x}, y = 1 - x^2$$
.

$$f) y = x^2 + 2, y = 8.$$

g)
$$y = e^x, y = x^2, x = 0, x = 1.$$

h)
$$y = e^x, y = x + 1$$
.

i)
$$y = e^x, y = 1 - x^2$$
.

