

Nội dung môn học

Chương 1: Tổng quan về mạng máy tính

Chương 2: Mô hình truyền dữ liệu

Chương 3: Tầng Network Access

Chương 4: Tầng mạng – Internet Layer

Chương 5: Tầng vận chuyển

Chương 6: Tầng ứng dụng

Thực hành

Chương 4. Tầng mạng – Internet Layer

Chức năng của tầng mạng

 Chuyển gói tin từ máy tính gửi đến máy tính nhận.

Chức năng cơ bản:

- Lựa chọn tuyến đường: Tuyến đường gói tin đi từ nguồn đến đích. Thuật toán định tuyến.
- Chuyển mạch: Router chuyển gói tin từ một đầu vào này ra đầu ra thích hợp.
- Thiết lập tuyến đường: Một số kiến trúc mạng đòi hỏi tuyến đường gói tin đi qua phải được thiết lập trước.

Chương 4

TẦNG MẠNG

Nội dung

- Định tuyến
- Giao thức IP
- Giao thức ICMP

- Tổng quan
- Phân loại thuật toán định tuyến
- Các thuật toán định tuyến

1. Tổng quan – Định tuyến là gì?

- Là xác định tuyến đường "tốt" trên mạng từ nút gửi đến nút nhận.
- Để định tuyến được các router cần phải có:
 - Bảng định tuyến
 - Thông tin định tuyến
 - Giải thuật giao thức định tuyến.

Mạng được biểu diễn như một đồ thị

1. Tổng quan – Bảng định tuyến

- Chỉ ra danh sách các đường đi và được lưu trong bộ nhớ của router.
- Các thành phần chính của bảng định tuyến:
 - Địa chỉ đích
 - Router ké tiép

Network	Next hop
11.0.0.0/8	Α
11.1.0.0/16	В
11.1.2.0/24	С

2. Phân loại thuật toán định tuyến

Tập trung

- Trung tâm điều khiển mạng tính toán và cập nhật thông tin về đường đi cho router.
- Thuật toán "link state".

Phân tán

- Mỗi router phải tự tính toán tìm kiếm thông tin về các đường đi đến các điểm khác nhau trên mạng.
- Các router phải trao đổi thông tin qua lại với nhau.
- Thuật toán "distance vector".

Tĩnh (Static)

 Router không tự cập nhật thông tin.

Động (Dynamic)

- Router tự động cập nhật thông tin.
 - Cập nhật định kỳ.
 - Chạy lại thuật toán khi có 1 giá đường đi thay đổi.

Tổng quan

Phân loại thuật toán định tuyến

Các thuật toán định tuyến

Giới thiệu

Đồ thị để xây dựng thuật toán định tuyến:

- Đỉnh là các router
- Cạnh là các đường kết nối trực tiếp giữa hai router
- Giá của cạnh: Chiều dài đường đi giữa hai router.

Chiều dài đường đi từ nút A đến nút B là tổng tất cả các

giá trị của các cạnh nằm trên đường đi.

Nếu không có đường đi giữa hai router
 thì xem như giá là ∞.

Mục tiêu của giải thuật

- Xác định đường đi nhanh chóng, chính xác
- Khả năng thích nghi được với những thay đổi về hình trạng mạng.
- Khả năng thích nghi được với những thay đổi về tải đường truyền.
- Khả năng tránh được các nối kết bị tắc nghẽn tạm thời.
- Chi phí để tìm ra đường đi là thấp nhất.

3. Các thuật toán định tuyến – Link State

Thuật toán Dijkstra

- Mục tiêu
 - Tìm ra đường đi ngắn nhất từ một nút cho trước đến các nút còn lại trên mạng.
- Tính toán đường đi tốt nhất đến các nút khác.
 - Tạo ra Bảng định tuyến
- Sau k bước tính toán, xác định được đường ngắn nhất đến k.

Ký hiệu

- S: Là nút nguồn cho trước
- N: Tập hợp các đỉnh đã xác định được đường đi ngắn nhất từ S.
- D(i): Độ dài đường đi ngắn nhất từ nút nguồn S đến nút i
- c(i,j): Giá đường đi từ i đến j.
 sẽ là ∞ nếu i và j không có đường trực tiếp.
- p(j): Nút kề trước j trong tuyến đường đến j.

Thuật toán Dijsktra

- 1. Bước 1: Khởi tạo
 - \circ N = {S}; Ds = 0;
 - \circ Với $i \neq S$; $D_i = C_{ij}$; $P_j = S$;
- 2. Bước 2: Tìm nút gần nhất kế tiếp
 - Tìm nút i∉N thỏa mãn D_i = min(D_i) với j ∉ N.
 - Thêm nút i vào N.
 - Nếu N chứa tất cả các nút của đồ thị thì dừng. Ngược lại sang bước 3.
- 3. Bước 3: Tính lại giá đường đi nhỏ nhất
 - Với mỗi nút j \notin N: Tính lại $D_j = min\{D_j, D_i + C_{ij}\}; P_j = i.$
 - Trở lại Bước 2.

Ví dụ 1: về thuật toán Dijsktra

Cho mạng có hình trạng như đồ thị:

Hãy tìm đường đi ngắn nhất từ nút 1 đến các nút còn lại

Ví dụ 1: về thuật toán Dijsktra

Lần lặp	N	D 2	D 3	D 4	D 5	D 6	P 2	Р3	P 4	P 5	P 6
Khởi tạo	{1}	3	2	5	∞	∞	1	1	1	1	1
_ 1	{1, 3}	3		4	∞	3	1	1	3	1	3
2	{1, 3, 2}	P.		4	7	3	_ 1		3	2	3
3	{1, 3, 2, 6}			4	- 5	44			3	6	3
4	{1, 3, 2, 6, 4}				5				3	6	
5	{1, 3, 2, 6, 4, 5}								-	6	

Ví dụ 1: về thuật toán Dijsktra

Lần lặp	N	D 2	D 3	D 4	D 5	D 6	P 2	Р3	P 4	P 5	P 6
Khởi tạo	{1}	3	2	5	∞	∞	1	1	1	1	1
_ 1	{1, 3}	3		4	∞	3	1	1	3	1	3
2	{1, 3, 2}			4	7	3	1		3	2	3
3	{1, 3, 2, 6}			4	- 5	44			3	6	3
4	{1, 3, 2, 6, 4}				5				3	6	
5	{1, 3, 2, 6, 4, 5}				-15				-	6	

Ví dụ 2: về thuật toán Dijsktra

Bước	Tập N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
→0	A	2,A	5,A	1,A	vô cùng	vô cùng
→1	AD	2,4	4,D		2,D	vô cùng
→2	ADE	2,A	3,E			4,E
→3	ADEB		3,E			4,E
→4	ADEBC					4,E
5	ADEBCF					

3. Các thuật toán định tuyến – Link State

Thuật toán Ford Fullkerson

- Mục tiêu
 - Tìm ra đường đi ngắn nhất từ tất cả các nút đến một nút đích cho trước trên mạng.
- Sau k bước tính toán, xác định được đường ngắn nhất đến k.

Ký hiệu

- d: Là nút đích cho trước
- D(i): Độ dài đường đi ngắn nhất từ nút i đến nút d
- C(i): Nút con của nút i.

Thuật toán Ford - Fullkerson

- 1. Bước 1: Khởi tạo
 - \circ Gán $D_d = 0$;
 - Với \forall i \neq d gán $D_i = \infty$; $C_i = -1$;
- 2. Bước 2: Cập nhật giá đường đi ngắn nhất từ nút i đến nút d.
 - $D_i = min\{C_{ij} + D_j\}$ với $\forall i \neq j \Rightarrow C_i = j$.
 - Lặp lại cho đến khi không còn D_i nào bị thay đối giá trị.

Ví dụ 3: về thuật toán Ford Fullkerson

Cho đồ thị tìm đường đi ngắn nhất từ nút khác trên đồ thị đến nút 6.

Các bước thực hiện được mô tả như sau: (2

Lần lặp	D 1	D 2	D 3	D 4	D 5	C 1	C 2	С3	C 4	C 5
Khởi tạo	∞	∞	∞	∞	∞	-1	-1	-1	-1	-1
1	∞	~ ∞	1	8	2	-1	-1	6	-1	6
2	3	6	1	3	2	3	5	6	3	6
3	3	4	1	3	2	3	4	6	3	6

Ví dụ 3: Về thuật toán Ford Fullkerson

Lần lặp	D1	D 2	D 3	D 4	D 5	C 1	C 2	С3	C 4	C 5
Khởi tạo	8	∞	8	∞	∞.	-1	-1	-1	-1	-1
1	∞	∞	1	∞	2	-1	-1	6	-1	6
2	3	6	1	3	2	3	5	6	3	6
3	3	4	1	3	2	3	4	6	3	6

3. Các thuật toán định tuyến – Distance Vector

Phân tán

 Mỗi nút thực hiện tính toán và phân tán kết quả đến các nút hàng xóm.

Lặp

 Các nút liên tục trao đổi thông tin cho đến khi không còn thông tin trao đổi giữa các cặp hàng xóm.

Không đồng bộ

 Các nút gửi/nhận thông điệp với nhau một cách tùy ý.

Ý tưởng cơ bản:

- Mỗi nút thiết lập 1 mảng 1 chiều (vector) chứa khoảng cách từ nó đến tất cả các nút còn lại và sau đó phát vector này đến tất cả các nút bên cạnh.
 - DV: Vector khoảng cách, tạm coi là đường đi ngắn nhất từ 1 nút đến những nút khác.
- Mỗi nút gửi định kỳ DV của nó tới các nút bên cạnh
- Khi nút x nhận được 1 DV, nó sẽ cập nhật DV

3. Các thuật toán định tuyến – Distance Vector

Cấu trúc dữ liệu bảng Distance

- Bảng khoảng cách được đặt tại mỗi nút.
- Mỗi hàng ứng với một đích cụ thể.
- Mỗi cột ứng với nút hàng xóm có đường kết nối trực tiếp.

Chi phí đến các đích thông qua

Thuật toán định tuyến Distance Vector

Ví dụ: Từ nút X tới đích Y qua hàng xóm Z.

Khoảng cách từ X tới Y, qua Z là chặng tiếp

 $c(X,Z) + min_w\{D^Z(Y,w)\}$

Ví dụ: Bảng Distance

$$\begin{array}{l} E \\ D (C,D) = c(E,D) + \min_{\mathbf{W}} \{D^D(C,\mathbf{W})\} \\ = 2+2 = 4 \\ D (A,D) = c(E,D) + \min_{\mathbf{W}} \{D^D(A,\mathbf{W})\} \\ = 2+3 = 5 \underset{\mathbf{Lap}!}{\mathbf{Lap}!} \\ D (A,B) = c(E,B) + \min_{\mathbf{W}} \{D^B(A,\mathbf{W})\} \\ = 8+6 = 14 \underset{\mathbf{Lap}!}{\mathbf{Lap}!} \end{array}$$

Chi phí đến các đích thông qua

D	E()	A	В	D
	A	①	14	5
Dich	В	7	8	(5)
-	С	6	9	4
	D	4	11	2

Bảng Distance tạo ra bảng định tuyến

Bàng Distance — Bàng định tuyến

Chương 4

Täng mang – Internet Layer

Nội dung

- Dịnh tuyến
- Giao thức IP
- Giao thức ICMP

Internet Protocol

- Chức năng:
 - Chọn đường (Routing): Xác định đường đi của gói tin từ nguồn đến đích.
 - Chuyển tiếp (Forwarding): Chuyển dữ liệu từ đầu vào tới đầu ra của bộ định tuyến (router).
 - Thực hiện việc gán địa chỉ cho các thực thể tham gia vào mạng (địa chỉ IP).
 - Phân mảnh, hợp nhất gói tin

Phân mảnh và hợp nhất gói tin IP

- IP datagram "lớn" có thể bị chia nhỏ trong mạng (phân mảnh)
 - Một datagram bị chia thành nhiều datagram.
 - Hợp nhất được thực hiện tại đích.
 - Các bit trong trường tiêu đề của gói tin IP được sử dụng để xác định và sắp xếp đúng thứ tự các "mảnh".

Địa chỉ IP

- Địa chỉ IP: Là địa chỉ được gán cho mỗi 1 host.
- Địa chỉ IP gồm 32 bit nhị phân, chia làm 4 cụm 8 bit. Mỗi cụm được ngăn cách bởi dấu chấm.

Cấu trúc địa chỉ IP

- Địa chỉ IP có hai phần:
 - Phần Network ID: Định danh cho cả 1 mạng.
 - Phần Host ID: Định danh cho từng host cụ thể trong 1 mạng.

Cấu trúc địa chỉ IP

- Việc đặt địa chỉ IP phải tuân theo quy tắc:
 - Các bit phần mạng không được phép đồng thời bằng 0.
 - Các bit phần host đồng thời = 0, ta có địa chỉ phần mạng.
 - Các bit phần host đồng thời = 1, ta có địa chỉ quảng bá (broadcast).

Các dạng địa chỉ

- Địa chỉ host
 - Địa chỉ IP gán cho một host.
- Địa chỉ mạng
 - Địa chỉ IP gán cho một mạng.
 - Toàn bit 0 ứng với phần host.
- Địa chỉ Multicast
 - Địa chỉ dùng để gửi cho tất cả các host trong 1 nhóm.
- Địa chỉ quảng bá (broadcard)
 - Địa chỉ dùng để gửi cho tất cả các host trong mạng.
 - Toàn bit 1 ứng với phần host.

Phân lớp địa chỉ IP

			8b	its		8bits	8bits	8bits
Class A	0		•	7bit	t	Н	Н	Н
Class B	1	0		61	oit	N	Н	Н
Class C	1	1	0		5bit	N	Ν	Н
Class D	1	1	1	0		Multicast		
Class E	1	1	1	1	Res	serve fo	r future u	ıse

	# of network	# of hosts			
Class A	128	2^24			
Class B	16384	65536			
Class C	2^21	256			

Phân lớp địa chỉ IP- Lớp A

	_		8bi	ts		8bits	8bits	8bits
							,	•
Class A	0		7	bit/	<u> </u>	Н	Н	Н
Class B	1	0		61	oit	N	Н	Н
Class C	1	1	0		5bit	N	N	Н
Class D	1	1	1	0		Mu	lticast	
Class E	1	1	1	1	Res	serve fo	r future u	ıse

Phân lớp địa chỉ IP- Lớp A

Class A: (1 - 126)

Địa chỉ lớp A

- Địa chỉ lớp A sử dụng một octet đầu làm phần mạng, ba octet sau làm phần host.
- Bit đầu của một địa chỉ lớp A luôn được giữ là 0.
- Các địa chỉ mạng lớp A gồm: 1.0.0.0 -> 126.0.0.0.
- Mạng 127.0.0.0 được sử dụng làm mạng loopback.
- Phần host có 24 bit => mỗi mạng lớp A có (2²⁴ 2) host.

Phân lớp địa chỉ IP- Lớp B

Phân lớp địa chỉ IP- Lớp B

class b

Địa chỉ lớp B

- Địa chỉ lớp B sử dụng hai octet đầu làm phần mạng, hai octet sau làm phần host.
- Hai bit đầu của một địa chỉ lớp B luôn được giữ là 1 0.
- Các địa chỉ mạng lớp B gồm: 128.0.0.0 -> 191.255.0.0. Có tất cả 2¹⁴ mạng trong lớp B.
- Phần host dài 16 bit do đó một mạng lớp B có (2¹⁶ 2) host.

Phân lớp địa chỉ IP- Lớp C

Phân lớp địa chỉ IP- Lớp C

class c

- Địa chỉ lớp C sử dụng ba octet đầu làm phần mạng, một octet sau làm phần host.
- Ba bit đầu của một địa chỉ lớp C luôn được giữ là 1 1 0.
- Các địa chỉ mạng lớp C gồm: 192.0.0.0 -> 223.255.255.0. Có tất cả 2²¹ mạng trong lớp
 C.
- Phần host dài 8 bit do đó một mạng lớp C có (2⁸ 2) host.

Phân lớp địa chỉ IP- Lớp D

	_	8bits				8bits	8bits	8bits
						•		
Class A	0		7bit			Η	Н	Н
Class B	1	0	6bit		Ν	Н	Н	
Class C	1	1	0	0 5bit		N	N	Н
Class D	1	1	1	0	Multicast			
Class E	1	1	1	1	Reserve for future use			

Địa chỉ mạng

- \circ **224**.0.0.0 \rightarrow **239**.255.255.255
- Địa chỉ Multicast

Ví dụ:

- Địa chỉ nào là địa chỉ host, địa chỉ mạng, địa chỉ quảng bá broadcast, địa chỉ Multicast ?
 - 1. 150. 100. 255. 255 -> Đ/c broadcast lớp B
 - 2. 175. 100. 255. 18 -> Đ/c host lớp B
 - 3. 195. 234. 253. 0 -> Đ/c mạng lớp C
 - 4. 100. 0. 0. 23 -> Đ/c host lớp A
 - 5. 188. 258. 221. 176 -> Địa chỉ IP sai
 - 6. 125. 34. 25. 189 -> Đ/c host lớp A
 - 7. 224. 156. 217. 73 -> Đ/c Multicast
 - 8. 127.0.1.10 -> Đ/c loopback

Phân lớp địa chỉ IP

- Hạn chế:
 - Lãng phí không gian địa chỉ. Việc phân chia cứng thành các lớp (A, B, C, D, E) làm hạn chế việc sử dụng toàn bộ không gian địa chỉ.
- Cách giải quyết:
 - Subnetting: Chia mang con
 - Phần địa chỉ Network sẽ có độ dài bất kỳ
 - Khuôn dạng địa chỉ: a.b.c.d/x, trong đó x là số bit trong phần network của địa chỉ.

CHIA SUBNET

Subnet mask

- Là dải 32 bit đi kèm với địa chỉ IP, được các host sử dụng để xác định địa chỉ mạng.
- Host sẽ lấy địa chỉ IP thực hiện phép tính AND từng bit một với subnet mask. Kết quả thu được là địa chỉ mạng.
- Ví dụ: Xét địa chỉ 192.168.1.1, subnet mask tương ứng:
 255.255.255.0

	Dạng thập phân	Dạng nhị phân
Địa chỉ IP	192.168.1.1	11000000.10101000.00000001.00000001
Subnet mask	255.255.255.0	111111111111111111111111111000000000
Địa chỉ mạng	192.168.1.0	11000000.10101000.00000001.00000000

CHIA SUBNET

Subnet mask

- Quy tắc gợi nhớ subnet mask: Phần mạng chạy đến đâu, bit 1 của subnet mask chạy đến đó và ứng với các bit phần host, các bit của subnet mask được thiết lập giá trị 0.
- Một số Subnet mask chuẩn:
 - Lớp A: 255.0.0.0
 - Lớp B: 255.255.0.0
 - Lớp C: 255.255.255.0

CHIA SUBNET

Số Prefix

- Khi khai báo một địa chỉ IP ta luôn phải kèm theo 1 subnet mask. Tuy nhiên, subnet mask thường để dạng số thập phân, khá dài dòng. Để mô tả ngắn gọn hơn, dùng đại lượng được gọi là số prefix.
- Khuôn dạng địa chỉ IP: a.b.c.d/x
- x là số prefix. Là số bit mạng trong một địa chỉ IP, được viết ngay sau địa chỉ IP và được ngăn cách bởi dấu /.
- Ví dụ: 192.168.1.1_{/24}, 172.16.0.0_{/18}

CÁC DẠNG BÀI TẬP VỀ CHIA SUBNET

Variable Length Subnet Mask

Subnet VLSM là gì

- Là kỹ thuật chia nhỏ một mạng thành các mạng có độ dài khác nhau (sẽ có các subnet mask khác nhau).
- Xét ví dụ:

Dùng mạng $192.168.1.0_{/24}$ để đặt địa chỉ cho tất cả các mạng

trên

Cách thực hiện

- Sẽ xét các mạng theo thứ tự số host từ cao xuống thấp.
- Đầu tiên, xét mạng nhiều host nhất:100 host, ta phải xem mượn bao nhiêu bit thì đủ cho mạng này. Ta giải hệ:

$$2^{m} - 2 \ge 101$$

m + n = 8, n là số bit mượn, m là số bit còn lại của host

■ Ta được m = 7, n = 1.

Vậy ta mượn 1 bit và dành mạng 192.168.1.0 $_{/25}$ để gán cho mạng có 100 host.

Mỗi mạng /25 có 2⁷–2= 126 host => đáp ứng đủ cho mạng 100 host. Vậy dải địa chỉ 192.168.1.0_{/24} còn lại các địa chỉ từ 192.168.1.128 -> 192.168.1.255

Cách thực hiện

 Tiếp đến, ta xét đến mạng có 50 host, tương tự ta xem mượn bao nhiêu bit là phù hợp. Ta giải hệ:

$$2^m - 2 \ge 51$$

m + n = 8 (mượn bit ở octet thứ 4).

- Ta được m = 6 và n = 2 là tối ưu. Vậy ta mượn 2 bit, mạng $192.168.1.0_{/24}$ được chia thành 4 mạng $192.168.1.64_{/26}$, $192.168.1.128_{/26}$ và $192.168.1.192_{/26}$.
- Tuy nhiên hai dải địa chỉ của hai mạng 192.168.1.0_{/26} và 192.168.1.64_{/26} đã được giành cho mạng 100 host. Do đó ta chỉ có thể lấy từ mạng 192.168.1.128_{/26} để gán cho mạng 50 host. Ở đây ta lấy mạng 192.168.1.128_{/26} gán cho mạng 50 host.

Cách thực hiện

 Tiếp đến, ta xét đến mạng có 20 host, tương tự ta xem mượn bao nhiêu bit là phù hợp. Ta giải hệ:

$$2^{m} - 2 \ge 21$$

m + n = 8

■ Ta được m = 5 và n = 3 là tối ưu. Vậy ta mượn 3 bit, mạng $192.168.1.0_{/24}$ được chia thành 8 mạng $192.168.1.0_{/27}$, $192.168.1.32_{/27}$, $192.168.1.64_{/27}$ và $192.168.1.96_{/27}$, $192.168.1.160_{/27}$, $192.168.1.192_{/27}$, $192.168.1.224_{/27}$.

100 host

20 host

Tuy nhiên các dải địa chỉ của các mạng 192.168.1.0_{/27} ,..., 192.168.1.160_{/27} đã được dành cho mạng 100 và mạng 50 host. Do đó ta chỉ có thể lấy từ mạng 192.168.1.192_{/27} trở đi để gán cho mạng 20 host. Ở đây ta lấy mạng 192.168.1.192_{/27} gán cho mạng 20 host.

Cách thực hiện

- Tiếp đến, ta xét đến các mạng có 2 host là các liên kết điểm
 - điểm serial, ta xem mượn bao nhiêu bit là phù hợp.

$$2^m - 2 \ge 2$$

m + n = 8 (mượn bit ở octet thứ 4).

- Ta được m = 2 và n = 6 là tối ưu hơn cả, đảm bảo không bị dư địa chỉ. Vậy ta mượn 6 bit, mạng 192.168.1.0_{/24} được chia thành $2^6 = 64$ mạng 192.168.1.0_{/30}, 192.168.1.4_{/30}, 192.168.1.8_{/30},..., 192.168.1.248_{/30}, 192.168.1.252_{/30}.
- Tuy nhiên các dải địa chỉ của các mạng 192.168.1.0_{/30},...,192.168.1.222_{/27}đã được dành cho mạng 100 host, mạng 50 host và mạng 20 host. Do đó ta chỉ có thể lấy từ mạng 192.168.224.0_{/30} để gán cho các mạng 2 host. Ở đây ta lấy mạng 192.168.1.224_{/30} và 192.168.1.228_{/30} gán cho hai liên kết serial.

Kết quả sau khi chia VLSM

Bài tập:

Dùng mạng $200.198.1.0_{/24}$ để đặt địa chỉ cho tất cả các mạng trên

Bài tập:

Kết quả:

Chương 4 TÂNG MẠNG – Internet Layer

Nội dung

- Dịnh tuyến
- Giao thức IP
- Giao thức ICMP

III. Giao thức ICMP

ICMP – Internet Control Message Protocol

- IP là giao thức không tin cậy, không liên kết
 - Thiếu các cơ chế hỗ trợ và kiểm soát lỗi.
- ICMP được sử dụng ở tầng mạng để trao đổi thông tin
 - Báo lỗi: báo gói tin không đến được máy trạm, một mạng,
 một cổng, một giao thức.
 - Thông điệp phản hồi (Lệnh ping)
- Trong hệ thống "nằm trên" IP
 - Thông điệp ICMP được đặt trong gói tin IP
- Thông điệp ICMP: Kiểu (Type), Mã (code) cùng với 8 byte
 đầu tiên của IP datagram gây lỗi.

III. Giao thức ICMP

Chuyển tiếp dữ liệu: Các bước

- Nếu không có lỗi, tìm kiếm địa chỉ đích của gói tin trong bảng chuyển tiếp:
 - Nếu nút đích nằm trên mạng mà router có kết nối trực tiếp: công việc tiếp theo của Tầng liên kết dữ liệu.
 - Ngược lại:
 - Tìm kiếm: xác định router chặng kế tiếp và giao diện ra tương ứng.
 - Nếu cần thiết, phân mảnh gói tin.
 - Chuyển tiếp gói tin ra giao diện của cổng ra tương ứng (là router "hàng xóm")