Devoir à la maison n° 4

À rendre le 7 octobre

Pour $n \in \mathbb{N}$, on pose :

$$a_n = \frac{1}{n+1} \binom{2n}{n}$$
 ; $S_n = \sum_{k=0}^n a_k a_{n-k}$; $T_n = \sum_{k=0}^n k a_k a_{n-k}$

- 1) Calculer a_0 , a_1 , a_2 , a_3 , a_4 ainsi que S_0 , S_1 , S_2 , S_3 , S_4 . Que remarque-t-on?
- 2) a) Montrer que

$$T_n = \sum_{k=0}^n (n-k)a_{n-k}a_k$$

- b) En déduire que $2T_n = nS_n$.
- 3) Montrer que pour tout $n \in \mathbb{N}$,

$$(n+2)a_{n+1} = 2(2n+1)a_n$$

4) Déduire des questions précédentes que pour tout $n \in \mathbb{N}$,

$$T_{n+1} + S_{n+1} = a_{n+1} + 2(n+1)S_n$$

puis que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

- 5) En déduire par récurrence que pour tout $n \in \mathbb{N}$, $S_n = a_{n+1}$.
- **6)** Montrer que a_n est un entier naturel pour tout $n \in \mathbb{N}$.

— FIN —