Разработка математических моделей теории нелокальной упругости и их численное исследование и анализ

Выполнил студент группы ФН2-42М Соколов А.А. Научный руководитель д.т.н., профессор, заведующий кафедрой ФН2 Кувыркин Г.Н.

МГТУ им. Н.Э. Баумана

23 июня 2021 г.

Введение

Рис. 1: Атомная решётка структурно-чувствительных материалов

Классические модели механики сплошной среды не применимы к материалам с микрои наноструктурой, так как они не учитывают масштабных эффектов. Для описания подобных эффектов существует множество моделей, однако, наибольший интерес представляют те, в которых основные соотношения имеют ту же формулировку, что и классические. Одной из таких моделей является нелокальной модель Эрингена.

Постановка задачи

Определяющие соотношения имеют вид

$$\nabla \cdot \widehat{\boldsymbol{\sigma}} + \boldsymbol{b} = \boldsymbol{0},\tag{1}$$

$$\widehat{\boldsymbol{\sigma}} = p_1 \widehat{\mathbf{C}} \cdot \cdot \widehat{\boldsymbol{\varepsilon}} + p_2 \iint_{S'(\boldsymbol{x}) \cap S} \varphi(\boldsymbol{x}, \boldsymbol{x}') \widehat{\mathbf{C}} \cdot \cdot \widehat{\boldsymbol{\varepsilon}} dS'(\boldsymbol{x}), \quad \boldsymbol{x}' \in S'(\boldsymbol{x}),$$
(2)

где $p_1+p_2=1$, причём $p_1>0$ и $p_2\geqslant 0;$ φ — некоторая нормированная положительная функция в области $S'({\boldsymbol x});$ $S'({\boldsymbol x})$ — область нелокального влияния.

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right), \quad i, j = \overline{1, 2};$$

$$C_{ijkl} = \frac{\nu E}{1 - \nu^2} \delta_{ij} \delta_{kl} + \frac{E}{2(1 + \nu)} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}), \quad i, j, k, l = \overline{1, 2}.$$

В расчётах будем использовать функцию нелокального влияния

$$\varphi(|\boldsymbol{x} - \boldsymbol{x}'|) = \begin{cases} \frac{1}{\pi r^2} \left(1 - \frac{|\boldsymbol{x} - \boldsymbol{x}'|^2}{r^2} \right), & |\boldsymbol{x} - \boldsymbol{x}'| \leq r, \\ 0, & |\boldsymbol{x} - \boldsymbol{x}'| > r, \end{cases}$$

где r — радиус нелокального влияния.

Численный алгоритм решения

Решение будем искать методом конечных элементов

$$p_{1} \iint_{S} N_{n,i}^{(e)} C_{ijkl} \varepsilon_{kl} dS + p_{2} \iint_{S} N_{n,i}^{(e)} \iint_{S'(\boldsymbol{x}) \cap S} \varphi(\boldsymbol{x}, \boldsymbol{x}') C_{ijkl} \varepsilon_{kl} dS'(\boldsymbol{x}) dS =$$

$$= \oint_{\Gamma_{2}} N_{n}^{(e)} p_{j} d\Gamma - \iint_{S} N_{n}^{(e)} b_{j} dS, \quad i, j, k, l = \overline{1, 2}, \ n \in I^{(e)}, \ (e) \in S_{h}.$$

Итоговое выражение, которое мы хотим получить, выглядит следующим образом

$$(p_1 \hat{\mathbf{K}}^{Loc} + p_2 \hat{\mathbf{K}}^{NonLoc}) \cdot \cdot \hat{\mathbf{U}} = \hat{\mathbf{P}} - \hat{\mathbf{B}}.$$

Матрицу жёсткости будем ассамблировать из блоков $\widehat{\mathbf{K}}_{nm}^{(e)(e')}$

$$K_{nmij}^{(e)(e')}(\boldsymbol{x},\boldsymbol{y}) = \delta_{np}\delta_{mq}C_{ikjl}N_{n,k}^{(e)}(\boldsymbol{x})N_{m,l}^{(e')}(\boldsymbol{y})\boldsymbol{e}_{i}\otimes\boldsymbol{e}_{j}\otimes\boldsymbol{E}_{p}\otimes\boldsymbol{E}_{q},$$
$$i,j,k,l = \overline{1,2}, \quad n,m,p,q = \overline{1,D}.$$

Аппроксимируем локальную матрицу жёсткости и векторы плотности поверхностных и объёмных сил

$$\widehat{\mathbf{K}}^{Loc} = \sum_{(e) \in S_h} \sum_{n \in I^{(e)}} \sum_{m \in I^{(e)}} \sum_{q \in Q^{(e)}} w_q \widehat{\mathbf{K}}_{nm}^{(e)(e)}(\mathbf{x}_q, \mathbf{x}_q) J_q^{(e)},$$
(3)

$$\widehat{\mathbf{P}} = \sum_{(be) \in \Gamma_h} \sum_{n \in I^{(be)}} \mathbf{E}_n \otimes \sum_{q \in Q^{(be)}} w_q N_n^{(be)}(\mathbf{x}_q) \mathbf{p}(\mathbf{x}_q) J_q^{(be)},$$

$$\widehat{\mathbf{B}} = \sum_{(e) \in S_h} \sum_{n \in I^{(e)}} \mathbf{E}_n \otimes \sum_{q \in Q^{(e)}} w_q N_n^{(e)}(\mathbf{x}_q) \mathbf{b}(\mathbf{x}_q) J_q^{(e)},$$

где $I^{(e)}$ — множество номеров узлов элементов (e); $Q^{(e)}$ — множество номеров квадратурных узлов на элементе (e); \boldsymbol{x}_q — коордианата квадратурного узла q; \boldsymbol{w}_q — квадратурный вес в квадратурном узле q; $J_q^{(e)} = \left|\det \widehat{\mathbf{J}}^{(e)}(\boldsymbol{x}_q)\right|$ — якобиан вычисленный в квадратурной точке \boldsymbol{x}_q ; \boldsymbol{E}_n — единичный вектор размерности D.

Аппроксимируем нелокальную матрицу жёсткости

$$\begin{split} \widehat{\mathbf{K}}^{NonLoc} &= \\ \sum_{(e) \in S_h} \sum_{n \in I(e)} \sum_{q \in Q(e)} w_q J_q^{(e)} \sum_{(e') \in S_h^q} \sum_{m' \in I(e')} \\ \sum_{q' \in Q(e')} w_{q'} \varphi(\mathbf{x}_q, \mathbf{x}_{q'}) \widehat{\mathbf{K}}_{nm'}^{(e)(e')}(\mathbf{x}_q, \mathbf{x}_{q'}) J_{q'}^{(e')}. \end{split}$$

Рис. 2: Квадратурная аппроксимация

$$\begin{split} \widehat{\mathbf{R}}^{NonLoc} &= \\ \sum \sum_{(e) \in S_h} \sum_{n \in I(e)} \sum_{q \in Q(e)} w_q J_q^{(e)} \sum_{(e') \in S_h^q} \sum_{m' \in I(e')} \\ \sum_{(e) \in S_h} \sum_{n \in I(e)} \sum_{(e') \in S_h^{(e)}} \sum_{m' \in I(e')} \sum_{q \in Q(e)} w_q J_q^{(e)} \times \\ \sum_{q' \in Q(e')} w_{q'} \varphi(\mathbf{x}_q, \mathbf{x}_{q'}) \widehat{\mathbf{K}}_{nm'}^{(e)(e')}(\mathbf{x}_q, \mathbf{x}_{q'}) J_{q'}^{(e')}. \\ \times \sum_{q' \in Q(e')} w_{q'} \varphi(\mathbf{x}_q, \mathbf{x}_{q'}) \widehat{\mathbf{K}}_{nm'}^{(e)(e')}(\mathbf{x}_q, \mathbf{x}_{q'}) J_{q'}^{(e')}. \end{split}$$

Рис. 3: Элементная аппроксимация

Формулы (3) и (4) не пригодны для параллельных и распределённых вычислений, поэтому поменяем порядок суммирования

$$\widehat{\mathbf{K}}^{Loc} = \sum_{n \in S_h} \sum_{(e) \in E^n} \sum_{m \in I^{(e)}} \sum_{q \in Q^{(e)}} w_q \widehat{\mathbf{K}}_{nm}^{(e)(e)}(\boldsymbol{x}_q, \boldsymbol{x}_q) J_q^{(e)}.$$

$$\begin{split} \widehat{\mathbf{K}}^{NonLoc} &= \sum_{n \in S_h} \sum_{(e) \in E^n} \sum_{(e') \in S_h^{(e)}} \sum_{m' \in I^{(e')}} \sum_{q \in Q^{(e)}} w_q J_q^{(e)} \times \\ & \times \sum_{q' \in Q^{(e')}} w_{q'} \varphi(\mathbf{x}_q, \mathbf{x}_{q'}) \widehat{\mathbf{K}}_{nm'}^{(e)(e')}(\mathbf{x}_q, \mathbf{x}_{q'}) J_{q'}^{(e')}. \end{split}$$

Результаты распараллеливания

Была проведена серия расчётов на гибридном вычислительном кластере K-10, где на каждом узле стоит по 128 Гб оперативной памяти и по два процессора Intel Xeon E5-2660. Расчёт проводился на области $S=[0,1]\times[0,1]$ с введённой на ней равномерной сеткой S_h , состоящей из квадратичных серендиповых элементов.

Рис. 4: Ускорение времени сборки матрицы жёсткости при использовании технологии OpenMP на 16 потоках в сравнении со временем счёта на 1 потоке

Для задачи на сетке состоящей из 40000 элементов с радиусом поиска $\tilde{r}=0.2$.

Балансировка объёмов	Распределение времени	Распределение памяти
вычислений	$t_{16}^1 = 72 \text{ s}$ $t_{16}^2 = 75 \text{ s}$ $t_{16}^4 = 87 \text{ s}$ $t_{16}^4 = 87 \text{ s}$	$V_2 = 8.7 \text{ Gb}$ $V_3 = 8.9 \text{ Gb}$ $V_4 = 20.6 \text{ Gb}$
данных	$t_{16}^{i} = 96 \text{ s}$ $t_{16}^{i} = 99 \text{ s}$ $t_{16}^{i} = 61 \text{ s}$	V ₁ = 11.6 Gb

Принцип Сен-Венана

Область $S=[0,10]\times[0,1]$ с введённой на ней равномерной сеткой S_h , состоящей из 64000 квадратичных серендиповых элементов. Граничные условия

$$\overline{\boldsymbol{\sigma}}\cdot\boldsymbol{n}|_{\overline{x}_1=0}=-f(\overline{x}_2),\quad \overline{\boldsymbol{\sigma}}\cdot\boldsymbol{n}|_{\overline{x}_1=10}=f(\overline{x}_2),$$

Дополнительные условия

$$\overline{u}_1|_{\overline{x}_1=5}=0, \quad \overline{u}_2|_{\overline{x}_2=0.5}=0.$$

Рис. 5: Прикладываемые нагружения к прямоугольной пластине

Рис. 6: Распределение напряжений $\overline{\sigma}_{11}$ в сечении (a) $\overline{x}_2=0.5$; (b) $\overline{x}_2=0$

Рис. 7: Распределение напряжения $\overline{\sigma}_{11}$ в сечении $\overline{x}_1 = 5$ при вариации (a) p_1 ; (b) r

Т-образная область

Область $S\subset [0,1]\times [0,1]$ — Т-образная область с введённой на ней равномерной сеткой $S_h,$ состоящей из 30000 квадратичных серендиповых элементов. Граничные условия

$$\overline{\boldsymbol{u}}|_{\overline{x}_2=1}=0, \quad \overline{\boldsymbol{\sigma}}\cdot\boldsymbol{n}|_{\overline{x}_2=0}=-1.$$

Рис. 8: Т-образная область с заданными граничными условиями

Рис. 9: Распределение деформации $\overline{\varepsilon}_{22}$ в Т-образной области при $p_1=1/2$ и (a) r=0; (b) r=0.05; (c) r=0.1; (d) r=0.15

Рис. 10: Сравнение распределения деформации в эксперименте (a) и численном расчёте (b) при $p_1=1/2$ и r=0.15

Рис. 11: Распределение напряжения $\overline{\sigma}_{22}$ в Т-образной области при $p_1=1/2$ и (a) r=0; (b) r=0.05; (c) r=0.1; (d) r=0.15

Задача Кирша

Рис. 12: Область с эллиптическим вырезом

Рис. 13: Распределение (a) деформации $\overline{\varepsilon}_{11}$ и (b) напряжения $\overline{\sigma}_{11}$ на дуге CD

Заключение

- Разработан параллельный и распределённый алгоритм сборки матрицы жёсткости для задач нелокальной упругости.
- Рассмотрена масштабируемость полученного алгоритма.
- Проведено исследование применимости принципа Сен-Венана на примере растяжения пластины.
- Исследованы решения в областях со ступенчатыми переходами и проведены сравнения с экспериментальными данными.
- Исследованы решения в областях с эллиптическими вырезами.

СПАСИБО ЗА ВНИМАНИЕ!