

planetmath.org

Math for the people, by the people.

equivalent defining conditions on a Noetherian ring

 ${\bf Canonical\ name} \quad {\bf Equivalent Defining Conditions On AN oether ian Ring}$

Date of creation 2013-03-22 18:04:27 Last modified on 2013-03-22 18:04:27

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Derivation Classification msc 16P40 Let R be a ring. Then the following are equivalent:

- 1. every left ideal of R is finitely generated,
- 2. the ascending chain condition on left ideals holds in R,
- 3. every non-empty family of left ideals has a maximal element.
- Proof. $(1 \Rightarrow 2)$. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of left ideals in R. Let I be the union of all I_j , $j = 1, 2, \ldots$ Then I is a left ideal, and hence finitely generated, by, say, $a_1, \cdots a_n$. Now each a_i belongs to some I_{α_i} . Take the largest of these, say I_{α_k} . Then $a_i \in I_{\alpha_k}$ for all $i = 1, \ldots, n$, and therefore $I \subseteq I_{\alpha_k}$. But $I_{\alpha_k} \subseteq I$ by the definition of I, the equality follows.
- $(2 \Rightarrow 3)$. Let \mathcal{S} be a non-empty family of left ideals in R. Since \mathcal{S} is non-empty, take any left ideal $I_1 \in \mathcal{S}$. If I_1 is maximal, then we are done. If not, $\mathcal{S} \{I_1\}$ must be non-empty, such that pick I_2 from this collection so that $I_1 \subseteq I_2$ (we can find such I_2 , for otherwise I_1 would be maximal). If I_2 is not maximal, pick I_3 from $\mathcal{S} \{I_1, I_2\}$ such that $I_1 \subseteq I_2 \subseteq I_3$, and so on. By assumption, this can not go on indefinitely. So for some positive integer n, we have $I_n = I_m$ for all $m \geq n$, and I_n is our desired maximal element.
- $(3 \Rightarrow 1)$. Let I be a left ideal in R. Let \mathcal{S} be the family of all finitely generated ideals of R contained in I. \mathcal{S} is non-empty since (0) is in it. By assumption \mathcal{S} has a maximal element J. If $J \neq I$, then take an element $a \in I J$. Then $\langle J, a \rangle$ is finitely generated and contained in I, so an element of \mathcal{S} , contradicting the maximality of J. Hence J = I, in other words, I is finitely generated.

A ring satisfying any, and hence all three, of the above conditions is defined to be a left Noetherian ring. A right Noetherian ring is similarly defined.