Physics

СОДЕРЖАНИЕ

1.	Полупроводник. ВАХ. График	. 3
2.	Транзистор p-n-p	. 3
3.	Транзистор n-p-n	. 5
4.	Собственная проводимость. Примесь.	. 6
5.	Электронная и дырочная проводимость	. 7
6.	Дырка. Рекомбинация	. 7
7.	Донорная и ацепторная примеси	. 7
8.	р-п переход. Запирающий слой	. 8
9.	Прямое включение p-n перехода	. 8
10.	Обратное включение p-n перехода	. 8
11.	Выпрямительный диод. Стабилитрон	. 9
12.	Варикап. ВФХ.	10
13.	Фотодиод	10
14.	Последовательное соединение элементов электро цепи.	12

Rэ=	R1+R2	12
15.	Параллельное соединение	13
R ₉ =($(R_1+R_2) / (R_1*R_2)$	14
16.	Амперметр в эл.цепи	14
17.	Вольтметр в эл.цепи.	15
18.	Правило Буравчика. Правило Правой р	16
19.	Правило Левой руки для Ампера и Лоренца	17
20.	Электромагнитная индукция. Трансформатор	19
21.	Генератор переменного тока. Формулы	20
22.	Закон Кулона.	21
23.	Законы Ома	21
24.	Блок-схема радиоприемника	23
25.	Закон Ома для переменного тока	24
26.	Активное сопротивление в цепи переменного тока	25
27.	Реактивное емкостное сопротивление. Реактивное индуктивное сопротивление	25
28.	Колебательный контур	26
29.	Действующие значение переменного тока и напряжения	31
30.	Единицы измерения	32

1.Полупроводник. ВАХ. График

Полупроводник - это вещества, количество свободных зарядов которых зависит от внешних условий.

ВАХ- это зависимость силы тока, который протекает через p-n переход от величины и полярности, приложенного к переходу напряжения

2.Транзистор p-n-p.

Транзистор p-n-p - это транзистор, состоящий из двух полупроводниковых материалов P-типа, расположенных между полупроводниковым материалом N-типа.

Характеристика	p-n-p
1) Эмиттер	Является источником свободных дырок, изготавливается из проводника р-типа. Имеет высокую концентрацию ацепторной примеси.
2) База	Регулирует силу тока, изготавливается из проводника n-типа, небольшая концентрация донорной примеси, тонкий слой.

3) Коллектор	Перехватывает поток дырок от эмиттера через базу. Изготавливается из полупроводников р-типа. Имеет небольшую концентрацию ацепторной примеси.
4) Основные носители заряда	Дырки движутся от эмиттера к коллектору
5) Направление тока, движение + частиц	От эмиттера к коллектору

3. Транзистор n-p-n.

Транзистор n-p-n - это транзистор, состоящий из двух полупроводниковых материалов N-типа, расположенных между полупроводниковым материалом P-типа.

Характеристика	n-p-n
1) Эмиттер	Является источником свободных электронов, изготавливается из проводника n-типа. Имеет высокую концентрацию донорной примеси.
2) База	Регулирует силу тока, изготавливается из проводника р-типа, небольшая концентрация ацепторной примеси.
3) Коллектор	Перехватывает поток электронов от эмиттера через базу. Изготавливается из полупроводников _п -типа. Имеет небольшую концентрацию донорной примеси.
4) Основные носители заряда	Электроны движутся от эмиттера к коллектору
5) Направление тока, движение + частиц	От коллектора к эмиттеру

4. Собственная проводимость. Примесь.

Собственная проводимость - это проводимость чистых полупроводников без примесей. Она определяется свойствами самого полупроводника

5. Электронная и дырочная проводимость

Электронная - это перемещение свободных электронов, покинувших свой атом в результате нагревания

Дырочная - это перемещение электронов на вакантные места

6.Дырка. Рекомбинация

Дырка - вакантное место в атоме, образованное при уходе из него электрона. Обладает положительным зарядом

Рекомбинация - перескакивание электрона соседнего атома в дырку

7. Донорная и ацепторная примеси

Донорная	Электрон	_	n-тип	негатив
Ацепторная	Дырка	+	р-тип	позитив

8.p-n переход. Запирающий слой.

р-п переход - это контактный слой двух примесей полупроводников р и п типов.

Запирающий слой - это двойной слой разноименных электрических зарядов, который препятствует их свободному перемещению на границе p-n перехода.

9.Прямое включение р-п перехода

Если «+» приложить к p-области полупроводника, а «–» к n-области — это прямое включение p-n перехода

10. Обратное включение р-п перехода

Если «+» приложить к n-области полупроводника, а «–» к p-области — это прямое включение p-n перехода

11. Выпрямительный диод. Стабилитрон

1. Выпрямительный диод

2. Стабилитрон

Принцип действия выпрямительного диода основан на характерной особенности p-n перехода односторонней проводимости. Направление стрелки на обозначении выпрямительного диода указывает на направление прямого тока P —> N.

12. Варикап. ВФХ.

Варикап - это электрически управляемая емкость. Он способен изменять свою емкость при изменении внешнего напряжения.

Основной характеристикой варикапа является ВФХ.

ВФХ - это зависимость электроемкости варикапа от напряжения:

Чем БОЛЬШЕ обратное напряжение, тем МЕНЬШЕ емкость варикапа.

13. Фотодиод.

Принцип действия фотодиода основан на внутреннем фотоэффекте.

Фотоэффект - это освобождение электронов из твердых или жидких тел под действием света.

Фотогальванический режим - режим без внешнего источника. Фотодиод подключается последовательно с нагрузкой.

Фотопреобразовательный режим - фотодиод подключается последовательно на обратное напряжение.

14. Последовательное соединение элементов электро цепи.

Последовательное соединение - это соед. при котором конец предыдущего элемента соединен с началом последующего.

 $R_9=R_1+R_2$

15. Параллельное соединение.

Параллельное - соединение при котором все проводники подключены между одной парой точек узлами.

$$R_9 = (R_1 + R_2) / (R_1 * R_2)$$

16. Амперметр в эл.цепи.

Предел измерения измерительного прибора - это на наибольшее значение измеренной величины.

Амперметром можно измерить до ЗА, Вольтметром - до 6В.

17. Вольтметр в эл.цепи.

Цена деления прибора - это количество единиц между двумя соседними отметками.

18. Правило Буравчика. Правило Правой р

Правило буравчика

(Правило правого винт а) Если острие буравчика (сверла) направить по направлению тока, то направление вращения рукоятки укажет направление магнитных линий.

Правило буравчика

Правило правой руки

Большой палец правой руки мы должны направить по направлению тока в проводнике. Тогда, условно обхватывая остальными четырьмя пальцами данный проводник, направление обхвата укажет направление магнитных линий.

19. Правило Левой руки для Ампера и Лоренца.

Силой Лоренца — это сила, с которой магнитное поле, действует на движущуюся заряженную частицу.

Если четыре пальца левой руки (с указательного по мизинец) направлены вдоль вектора скорости, а силовые линии магнитного поля входят в ладонь, то большой палец, отведенный в плоскости ладони на 90° от остальных четырех пальцев, показывает направление силы Лоренца.

Правило <u>левой</u> руки (направление силы Ампера)

Если ладонь левой руки расположить так, чтобы в нее входили линии магнитной индукции, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы Ампера, действующей со стороны магнитного поля на проводник с током.

20. Электромагнитная индукция. Трансформатор.

ЭМИ - это возникновение тока в проводнике, если он находится в изменяющемся магнитном поле.

Трансформатор - это устройство, которое используется для повышения или понижения переменного напряжения.

21. Генератор переменного тока. Формулы.

ЭМИ используется в генераторе переменного тока, который превращает механическую энергию в электрическую.

В состав генератора переменного тока входит неподвижный постоянный магнит и катушка или рамка. Неподвижный магнит называется - статор.

22. Закон Кулона.

Сила, взаимодействующая между двумя неподвижными точечными зарядами прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними

$$F = k \frac{|q_1||q_2|}{r^2}$$

23. Законы Ома.

1. Для участка цепи.

Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

2. Для замкнутой цепи постоянного тока.

Сила тока прямо пропорциональна РДС и обратно пропорциональна полному сопротивлению.

$$I = \frac{\varepsilon}{R + r}$$

24. Блок-схема радиоприемника.

При радиоприеме в антенне и приемном контуре образуется электрические колебания. Это колебания высокой частоты

Антенна улавливает все сигналы работающих станций.

В приемном контуре находится конденсатор.

Изменяя емкость конденсатора, контур настраивают на нужную частоту. Колебания высокой частоты, модулированные частотой нужной радиостанции, поступают в детекторный блок. Выпрямительный диод выделяет из поступившего сигнала низкую частоту, затем сигнал улавливается в УНЧ и подается в наушники.

25. Закон Ома для переменного тока.

Сила тока переменного прямо пропорциональна напряжению и обратно пропорциональна полному сопротивлению.

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

26. Активное сопротивление в цепи переменного тока.

Активное сопротивление - это сопротивление такого элемента в котором электро энергия необратимо преобразуется во внутреннюю, т.е. в тепло.

$$R = \frac{Um}{Im} [Om]$$

27. Реактивное емкостное сопротивление. Реактивное индуктивное сопротивление.

Реактивное емкостное сопротивление конденсатора обратно пропорционально частоте переменного тока.

Для токов высокой частоты т.е. в цепи ~ тока емкостное сопротивление мало т.к. частота велика, поэтому ток через конденсатор не протекает.

$$X_{c} = \frac{1}{2 * \pi * f * c}$$

В цепи ~ тока катушка имеет реактивное индуктивное сопротивление катушки прямо пропорционально частоте ~ тока.

$$X_L=2\pi *f*L$$

28. Колебательный контур.

Колебательный контур - это цепь состоящая из последовательно или параллельно соединенных конденсатора и катушки индуктивности. (Может присутствовать резистор)

Принцип работы:

Зарядим конденсатор и замкнем его на катушку индуктивности. Конденсатор начнет разряжаться через катушку. Разряд конденсатора будет не мгновенным, а постепенным, т.к. катушка будет ему противодействовать.

Таким образом конденсатор будет терять свою энергию, а катушка увеличивать свою.

$$W_{3/\Pi}W => W_{M/\Pi}$$

Затем катушка отдает свою энергию и начинается перезарядка конденсатора.

$$W_{M/\Pi}W => W_{A/\Pi}$$

Если не учитывать потери, то энергия колебательного контура постоянна

$$W_{\text{K/K}}=W_{\text{9/\Pi}}+W_{\text{M/\Pi}}=const$$

Далее конденсатор начинает разряжатся и наступает следующий цикл. Период колебаний определяется по формуле.

T=21+C

Колебания будут затухать в связи с потерями на нагревание элементов.

Для того чтобы получить не затухающие эл.колебани нужно подключить колебательный контур в цепь ~ тока.

Условие резона

Onregenum	npu kakuse	yonobuen
cera mox	a B K/K	Syget max?
Tun		n - um - um
Z	B2+(w1-4c)	JRZ B
	(1) S X L3	pezononia
3 Manier	eamens Eygei	- Imin
WL-WC=	0=> w 4 = 1	80=> 000
2,4		1100
=> w 2. C = 1	=> w = 1.c=	=> w=Vic => wic
	J: 0: 0	garobite
		rezoniana

29. Действующие значение переменного тока и напряжения.

Амперметр измеряет действующее значение переменного тока по формуле:

Вольтметр измеряет действующее значение переменного напряжения по формуле:

30. Единицы измерения.

Физ. велечина	Обозначение	Ед.измерения
Сила тока	I	[А] Амперы
Напряжение	U	[В] Вольты
Сопротивление	R	[Ом] Омы
Электроемкость	С	[Ф] Фарады
Индуктивность	L	[Гн] Генри
Эл.заряд	q	[Кл] Кулоны
Электродвиж.сила	Е	[В] Вольты
Проводимость	g	[См] Сименсы
Реактивное емкостное сопротивление	X _C	[Ом] Омы
Реактивное индуктивное сопротивление	XL	[Ом] Омы