Quando representamos o dataset iris utilizando apenas 2 colunas, não estamos considerando todas as informações desse dataset

Quando representamos o dataset iris utilizando apenas 2 colunas, não estamos considerando todas as informações desse dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

Quando representamos o dataset iris utilizando apenas 2 colunas, não estamos considerando todas as informações desse dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

Quando representamos o dataset iris utilizando apenas 2 colunas, não estamos considerando todas as informações desse dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

E essas colunas?

O PCA vai fazer a redução linear da dimensionalidade dos dados, de forma a permitir sua visualização em 2D perdendo menos informações

Como vamos fazer o PCA?

O primeiro passo é tirar a média de X e Y

Como vamos fazer o PCA?

Em seguida, vamos deslocar todos os dados até o centro deles (a média em vermelho) chegar na origem (0,0) do gráfico

Como vamos fazer o PCA?

E vamos buscar a reta que passa pelo centro (0,0) e minimiza a distância dos pontos a sua projeção na reta

O que é uma projeção?

O que é uma projeção?

Teorema de Pitágoras

$$a^2 = b^2 + c^2$$
(para um triângulo retângulo)

Como vamos fazer o PCA?

E vamos buscar a reta que passa pelo centro (0,0) e minimiza a distância dos pontos a sua projeção na reta

Como vamos fazer o PCA?

E depois, vamos traçar uma nova reta perpendicular a essa que também minimiza a distância dos pontos a sua projeção

Como vamos fazer o PCA?

Considerando apenas as retas e as projeções, o primeiro componente deve estar em x e o segundo em y

Como vamos fazer o PCA?

Vamos usar os componentes gerados pelo próprio PCA para indicar como podemos fazer isso

Como vamos fazer o PCA?

Os pontos de dados serão traçados considerando as duas projeções

