# **Lexical Semantics**

Week 7

# A closer look at plural NPs

Entailment pattern (of predicates): distributivity

- "Bill and Mary work" ⊨ "Bill works"
  - $\circ$  work(b)  $\land$  work(m)  $\vdash$  work(b)
- "Bill and Mary work" ⊨ "Mary works"
  - $\circ$  work(b)  $\land$  work(m)  $\vdash$  work(m)
- "all students work", "John is a student" ⊨ "John works"
  - $\circ \forall x(student(x) \rightarrow work(x)), student(j) \models work(j)$

# Distributivity does not hold for all predicates

- "Bill and Mary met" ⊭ "Bill met"
- "the students met", "John is a student" ⊭ "John met"
- "the committee will dissolve", "John is member of the committee"

   ⊭ "John will dissolve"

"meet" and "dissolve" are collective predicates

#### Distributive vs. collective predicates

- Distributive:
  - Applicable to singular and plural NPs
  - Predication with a plural NP distributes over the individual objects covered by the NP
  - Examples: "work", "sleep", "eat", "tall", ...

- Collective:
  - Only applicable to plural or group NPs
  - Semantics cannot be reduced to atomic statements about single standard individuals
  - Examples: "meet", "gather", "unite", "disperse", "dissolve",

 Mixed predicates ("carry a piano", "solve the exercise"): predicates that are ambiguous between the distributive and collective reading

# Modeling plural terms: desiderata

- A representation of plural terms that is not (only) defined in terms of atomic entities (to account for collective predicates)
  - We extend the universe of our model structures with **sums** (or: "groups")
- A relation between atomic and plural entities (to account for the entailment pattern of distributive predicates)
  - We add a membership (or: "individual part") relation to the model structure
- Denotations of types of predicates are restricted to particular parts of universe

#### Structured universe: entities and sums of entities



Edges indicate the (individual) part-of relation

# Algebraic detour: partial orders

A partial order is an algebraic structure (A, ≤) where ≤ is a reflexive,
 transitive, and antisymmetric relation over A.

- The **join** (a  $\sqcup$  b) of a, b  $\subseteq$  A is the *lowest upper* bound for a and b
  - $a \sqcup b = x \text{ s.t. } a \leq x \text{ and } b \leq x \text{ and } \neg \exists y(y \neq x \land (a \leq y \leq x \lor b \leq y \leq x))$

- The meet (a □ b) of a, b ∈ A is the highest lower bound for a and b
  - $\circ$  a  $\sqcap$  b = x s.t. x  $\leq$  a and x  $\leq$  b and  $\neg \exists y(y \neq x \land (x \leq y \leq a \lor x \leq y \leq b))$

# Algebraic detour: lattices and semi-lattices

- A lattice is a partial order (A, ≤) that is closed under meet and join
  - i.e. for all a, b  $\subseteq$  A: (a  $\sqcup$  b)  $\subseteq$  A and (a  $\sqcap$  b)  $\subseteq$  A
  - Examples:
    - Boolean algebra
      - complemented distributive **bounded** lattice: (A, ≤, ⊥, ⊤, ¬)
    - Powerset Boolean algebra:  $(p(S), \subseteq, \emptyset, S, S (-))$
    - Integers, real numbers

A join semi-lattice is a partial order (A, ≤) that is closed under join

## Algebraic detour: bounded lattices

A bounded lattice has a maximal element (1) and a minimal element (0)

An element a ∈ A is an atom, if a ≠ 0 and there is no b ≠ 0 in A such that
 b < a</li>

A lattice is atomic, if for every b ≠ 0 there is an atom a such that a ≤ b

## Model structures for plural terms

- A model structure is a pair  $M = ((U, \leq), V)$ , where
  - (U, ≤) is an atomic join semi-lattice over the universe U, and ≤ is the individual part relation
  - V is an interpretation function

- In addition, we define:
  - $A \subseteq U$  is the set of atoms in  $(U, \leq)$
  - U A is the set of non-atomic elements, i.e. the set of proper sums (or "groups") in U

#### Domain restrictions: collective predicates

- Let *P*<sub>c</sub> be the set of collective predicates ("meet", "dissolve", etc.)
  - The domain of  $P_c$  is restricted to non-atomic elements: for all  $R \in P_c$ ,  $V_M(R) \subseteq U - A$





## Domain restrictions: distributive predicates

- Let P<sub>d</sub> be the set of distributive predicates ("work", "tall", "student", etc.)
  - The domain of  $P_d$  is the universe of M: for all  $R ∈ P_d$ ,  $V_M(R) ⊆ U_M$ , such that  $a ∈ V_M(R)$  and  $b ∈ V_M(R)$  iff  $a ⊔ b ∈ V_M(R)$





## Domain restrictions: mixed predicates

- Let P<sub>m</sub> be the set of mixed predicates ("carry a piano", "solve the exercise", etc.)
  - The domain of  $P_m$  is the universe of M: for all  $R \in P_m$ ,  $V_M(R) \subseteq U$





## Language for plural terms

 We extend our logical language with a summation operator ⊕, a one-place predicate At for "atom", and a two-place relation ¬ for "(proper) individual part"

```
 s ⊕ m "the sum consisting of Sally and Mary"
 s ⊲ s ⊕ m "Sally is member of the sum consisting of Sally and Mary"
 s ⊕ m ⊲ c "Sally and Mary are members of the committee"
```

- In addition, we introduce:
  - Variables ranging over proper sums: X,Y, Z, ...
  - Number-specific (predicate) constants: student<sub>SG</sub>, student<sub>PL</sub>

# Interpretation of plural terms

- $[[a \oplus b]]^M = [[a]]^M \sqcup [[b]]^M$
- $[[a \lor b]]^M$  = 1 iff  $[[a]]^M \le [[b]]^M$  and  $[[a]]^M \ne [[b]]^M$
- $[At(a)]^M$  = 1 iff  $[a]^M \in A$

- Individual constants denote either atoms  $(x \in A)$  or sums  $(x \in U A)$
- Predicate expressions satisfy specific constraints:
  - $\circ V_{M}(student_{SG}) \subseteq A$
  - $\circ V_{M}(student_{Pl}) \subseteq U A$

# Interpretation of distributive predicates

- Meaning postulate for plural model structure
  - If a distributive predicate P applies to a set X ⊆ A, then the full denotation of P is the join semi-lattice generated by X

- The denotation of distributive predicates P is uniquely determined by their atomic members:

# Mixed predicates: examples of ambiguous interpretation

- "every student summarized a paper"
- "John and Mary summarized a paper"
- "two students summarized a paper"
- "John summarized three papers"

#### Mass nouns

- Mass nouns ("water", "gold", "wood", "money", "soup", etc.) behave like plurals in different respects
- Closure under summation:
  - o water + water = water
  - students + students = students
- Combination with cardinalities:
  - "five liters of water"
  - "five bus-loads of students"
- (Some) shared grammatical patterns:
  - \*\*"a students are hard workers"
  - \*\*"a water is wet"

#### Mass nouns vs. plurals

- Unlike plurals, mass nouns are divisive:
  - An amount of water can always be subdivided into proper parts, which are water again

- The denotation of mass nouns cannot be reduced to model theoretic atomic individuals
  - When talking about water, we are not talking about a collection of individual entities

#### Model structure for mass nouns

• Lets add another sort of entities, the "portions of matter" M, to the model structure, and distinguish a part relation for individuals ( $\leq_i$ ) and a part relation for materials ( $\leq_m$ ):

- $\bullet \quad \mathsf{M} = ((U, \leq_i), (M, \leq_m), V)$ 
  - $\circ$   $U \cap M = \emptyset$
  - $(U, \leq_i)$  is an atomic join semi-lattice
  - $(M, \leq_m)$  is a non-atomic and **dense** join semi-lattice
  - V is an interpretation function

#### Materialization

 There is a close relation between the domain of material entities and the domain of (atomic and sum) individuals: each individual consists of a specific portion of matter

- Let  $M = ((U, \leq_i), (M, \leq_m), h, V)$  be a model structure in which h:  $(U, \leq_i) \rightarrow (M, \leq_m)$  is a "materialization" function:
  - h is a (join semi-)lattice homomorphism that maps (atomic and plural) individuals to the matter they consist of
    - $\bullet \quad a \leq_i b \to h(a) \leq_m h(b)$
    - $h(a \sqcup_i b) = h(a) \sqcup_m h(b)$

## Representation of mass nouns

- Additions to the logical representation language:
  - Variables referring to matter: x, y, z, ...
  - A material fusion operation ⊕<sub>m</sub> and a material part relation ⊲<sub>m</sub>
    (to be distinguished from ⊕<sub>i</sub> and ⊲<sub>i</sub>, respectively)

- A new logical operator m that expresses the materialization function:
  - $[[m(\alpha)]]^M = h([[\alpha]]^M)$ , where  $\alpha \in WE_e$  is a well-formed expression denoting an individual/group entity—i.e.  $[[\alpha]]^M \in U$

# Examples

• "the ring is made of gold"

```
\rightarrow \exists y(ring(y) \land gold(m(y)))
```

• "the ring contains gold"

```
\Rightarrow \exists x \exists y (ring(x) \land y \triangleleft_m m(x) \land gold(y))
```