Optimización en redes. Problema de árbol soporte de peso mínimo

Resumen.

En este live script se verán los procedimientos de Matlab que resuelven el problema de árbol soporte de peso mínimo para redes no dirigidas.

Problema de árbol soporte de peso mínimo.

Se parte del grafo (no dirigido) G=(V,E), siendo V el conjunto de vértices o nodos, se supone V= {1,2,..,n} y E el conjunto de aristas. Se lee dicho grafo a partir de la lista de aristas:

```
s1=[1;1;2;2;3;4];
t1=[2;3;3;4;5;5;5];
```

Una vez definida la estructura de grafo, se incorporan los pesos de las aristas:

```
peso1 = [ 15 ; 10 ; 5 ; 7 ; 8 ; 4 ; 5 ];
```

Y se define la estructura de la red no dirigida

```
% R1 = graph(s1,t1,peso1);
R1 = graph(s1,t1,peso1);
```

La representación gráfica de esta red se obtiene con la función plot con

los siguientes argumentos:

```
plot(R1, 'Edgelabel', R1.Edges.Weight);
```


Se utiliza la función minspantree, siendo T la estructura de la solución (el árbol soporte) y p el vector de predecesores (el valor 0 se reserva para la raíz propuesta):

```
[T,p]=minspantree(R1);
T
```

T = graph with properties:

Edges: [4×2 table]
Nodes: [5×0 table]

Para acceder a la información de las aristas del árbol soporte:

T.Edges

ans = 4×2 table

	EndNodes		Weight
1	1	3	10
2	2	3	5
3	3	5	4
4	4	5	5

T.Edges.Weight

ans = 4×1

10

5 4

5

T.Edges.EndNodes(1,1)

ans = 1

T.Edges.EndNodes(1,2)

ans = 3

Para acceder al vector de predecesores:

```
p
```

```
p = 1 \times 5
0 3 1 5 3
```

p(2)

ans = 3

Visualización de la solución del problema de árbol soporte mínimo

```
p1=plot(R1, 'Edgelabel',R1.Edges.Weight);
highlight(p1,T);
```

