..... Ngày làm đề:/...../......

KIỂM TRA CUỐI KÌ I ÔN TẬP KIỂM TRA CUỐI KÌ I - ĐỀ 1

Thời gian: 90 phút - Không kể thời gian phát đề

- $(\mathbf{A})\,u_{n+1}=u_n.$
- $\mathbf{B}) u_{n+1} \ge u_n.$
- **(c)** $u_{n+1} < u_n$.
- **(D)** $u_{n+1} > u_n$.

CÂU 2. Cho hai đường thẳng phân biệt a, b và mặt phẳng (α) . Giả sử $a \parallel (\alpha)$ và $b \parallel (\alpha)$. Mệnh đề nào sau đây đúng?

- $(\mathbf{A}) a$ và b không có điểm chung.
- $(\mathbf{B}) a$ và b hoặc song song hoặc chéo nhau.
- $(\mathbf{C})a$ và b chéo nhau.
- $(\mathbf{D})a$ và b hoặc song song hoặc chéo nhau hoặc cắt nhau.

CÂU 3. Cho tứ diện ABCD. Gọi I, J lần lượt là trọng tâm các tam giác ABC và ABD. Chọn khẳng định đúng trong các khẳng định sau.

- (**A**) IJ song song với CD.
- $(\mathbf{B})IJ$ song song với AB.

 $(\mathbf{C})IJ$ chéo CD.

 $(\mathbf{D})IJ$ cắt AB.

CÂU 4. Kết quả của giới hạn $\lim_{x\to 5} \frac{x-5}{x-2}$ là

- (\mathbf{A}) 0.

- $(\mathbf{D})2.$

CÂU 5. Tìm tập xác định \mathscr{D} của hàm số $y = \cot x$.

 $\mathbf{B} \mathscr{D} = \mathbb{R} \setminus \{0\}.$

 $(\mathbf{C}) \mathscr{D} = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$

CÂU 6. Cho tứ diện ABCD, gọi M và N lần lượt là trung điểm các cạnh AB và CD. Gọi G là trọng tâm tam giác BCD. Dường thẳng AG cắt đường thẳng nào trong các đường thẳng dưới đây?

- (A)MN.
- (\mathbf{B}) CM.
- $(\mathbf{C})DN.$
- $(\mathbf{D})CD.$

CÂU 7. Cho hai hàm số f(x), g(x) thỏa mãn $\lim_{x\to 2} f(x) = 5$ và $\lim_{x\to 2} g(x) = 1$. Giá trị của $\lim_{x \to 0} [f(x) \cdot g(x)]$ bằng

- (A) 5.
- **(B)** 6.
- $(\mathbf{C}) 1.$

CÂU 8. Hàm số nào sau đây liên tục trên \mathbb{R} ?

- **(A)** $y = x^3 3x + 1$. **(B)** $y = \sqrt{x 4}$.
- $(\mathbf{C})y = \tan x.$
- $(\mathbf{D})y = \sqrt{x}.$

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

•		•	•						•	•	•	•	•	•						•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

							•	•		•	•						•	•

CÂU 9. Hãy chọn câu đúng:

- (A) Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trên mặt phẳng này đều song song với mọi đường thẳng nằm trên mặt phẳng kia.
- (B) Nếu hai mặt phẳng (P) và (Q) lần lượt chứa hai đường thẳng song song thì chúng song song với nhau.
- (C) Hai mặt phẳng cùng song song với một đường thẳng thì song song với nhau.
- (D) Hai mặt phẳng phân biệt không song song thì cắt nhau.

CÂU 10. Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (AB'D') song song với mặt phẳng nào trong các mặt phẳng sau đây?

- $(\mathbf{A}) (BCA').$
- (B) (BC'D).
- $(\mathbf{C})(A'C'C).$
- $(\mathbf{D})(BDA').$

CÂU 11. Cho dãy số (u_n) , biết $u_n = \frac{2n+5}{5n-4}$. Số $\frac{7}{12}$ là số hạng thứ mấy của dãy số?

- (A) 6.

CÂU 12. Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

- (\mathbf{A}) $AM = (ACD) \cap (ABG)$.
- $(\mathbf{B}) A, J, M$ thẳng hàng.
- $(\mathbf{C})J$ là trung điểm của AM.
- $(\mathbf{D})DJ = (ACD) \cap (BDJ).$

CÂU 13. Công thức nghiệm của phương trình $\sin x = \sin \alpha$ là?

CÂU 14. Cho $\sin a = -\frac{4}{5}, 3\pi < a < \frac{7\pi}{2}$. Tính $\tan a$.

CÂU 15. Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một cửa hàng được ghi lai ở bảng sau (đơn vi: triệu đồng)

Doanh thu	[5;7)	[7;9)	[9;11)	[11; 13)	[13; 15)
Số ngày	2	7	7	3	1

Số trung bình của mẫu số liệu trên thuộc khoảng nào trong các khoảng dưới đây?

- (A)[7;9).
- **(B)** [9; 11).
- **(C)** [11; 13).
- **(D)** [13; 15).

 $\pmb{\mathsf{CAU}}$ 16. Cho hình chóp S.ABCD, đáy ABCDlà hình thang có 2 đáy là AD và BC. Gọi $M,\,N$ lần lượt là trung điểm của $SB,\,SC,\,O$ là giao điểm của AC và BD. Giao tuyến của hai mặt phẳng (AMN) và (SBD) là

- $(\mathbf{A})DN.$
- $(\mathbf{B})DM.$
- $(\mathbf{C})OM$.
- $(\mathbf{D})SO.$

CÂU 17.

Cho hình hộp ABCD.A'B'C'D'. Đường thẳng AB song song với đường thẳng nào?

- (A) C'D'.
- $(\mathbf{B})BD.$
- $(\mathbf{C})CC'.$
- $(\mathbf{D})D'A'.$

CÂU 18.

Cho hình chóp S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA, N là giao điểm của AB và CD, Q là giao điểm của MN và SB (xem hình vẽ). Giao tuyến của hai mặt phẳng (MCD) và (SBC) là

 \bigcirc CD.

 $(\mathbf{B})QC.$

 $(\mathbf{C})MQ$.

 $(\mathbf{D})SB.$

CÂU 19. Cho hai dãy (u_n) và (v_n) thỏa mãn $\lim u_n=2$ và $\lim v_n=3$. Giá trị của $\lim (u_n\cdot v_n)$ bằng

(A) 5.

B) 6.

 $(\mathbf{c}) - 1.$

 \bigcirc 1.

CÂU 20. Cho cấp số nhân (u_n) có các số hạng lần lượt là $3; 9; 27; 81; \ldots$ Tìm số hạng tổng quát u_n của cấp số nhân (u_n) .

 $\mathbf{\widehat{A}} u_n = 3^{n-1}.$

 $\stackrel{\frown}{\mathbf{B}} u_n = 3^n.$

 $\mathbf{C} u_n = 3^{n+1}.$

 $(\mathbf{D})u_n = 3 + 3^n.$

CÂU 21. Cho hình chóp tứ giác S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.

Mệnh đề nào sau đây đúng.

 \bigcirc MN // (SAB).

 $(\mathbf{B})MN // (SBC).$

 \bigcirc MN // (ABCD). \bigcirc MN // (SBD).

CÂU 22. $\lim \frac{1}{2n+5}$ bằng

(A) $\frac{1}{2}$.

B 0.

 \bigcirc $+\infty$

 $\bigcirc \frac{1}{5}$.

CÂU 23. Khảo sát chiều cao của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau

Khoảng chiều cao (cm)	[145; 150)	[150; 155)	[155; 160)	[160; 165)	[165; 170)
Số học sinh	7	14	10	10	9

Tính mốt của mẫu số liệu ghép nhóm này (làm tròn kết quả đến hàng phần trăm).

A 160.

(B) 152,25.

(c) 152,18.

 $(\mathbf{D})170.$

CÂU 24. Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = 3 - 4\cos\left(2x + \frac{\pi}{6}\right)$.

 \bigcirc -1 và 7.

(B) 3 và 7.

 $(\mathbf{C}) - 1 \text{ và } 1.$

(**D**) 1 và 7

CÂU 25. Giá trị của $A = \lim \frac{2n+1}{n-2}$ bằng

 \triangle $+\infty$

 $(\mathbf{B}) - \infty$

 (\mathbf{C}) 2.

 \bigcirc 1.

CÂU 26. Khảo sát khối lượng 30 củ khoai tây ngẫu nhiên thu hoạch được ở một nông trường

♥ VNPmath - 0962940819 ♥	
QUICK NOTE	
	Số củ khoai tây đạt chuẩn
	(A) 5.
	CÂU 27. Hàm số nào sau
	$ (A) y = \sin x. $
	CÂU 28. Tìm tổng S của \bigcirc 24850 .
	CÂU 29. Hàm số nào tron $x+2$
	CÂU 30. Tổng n số hạng n
	hạng tổng quát u_n cấp số
	$\mathbf{A} u_n = 2n + 3. \tag{I}$
•••••	CÂU 31. Cho hàm số $f($
	$\frac{x^2 - 5x + 6}{x - 2}$. Giá trị $f(1)$
	x-2 (I
	CÂU 32. Qua phép chiếu A Chéo nhau.
	Cho hình chán S APCD c
	Cho hình chóp $S.ABCD$ chành tâm O . Tìm giao t
	(SAB) và (SCD) .
	(A) Là đường thẳng đi q
	(B) Là đường thẳng đi q
	C Là đường thẳng đi q
	(D) Là đường thẳng đi q
	CÂU 34. Công thức nào s
	$ (a + b) = \sin a \sin a $
	$(\mathbf{C})\sin\left(a-b\right) = \sin a \cos a$
	CÂU 35.
	Cho hình chóp S.ABCD
	điểm của SC (như hình về
	phương AC lên mặt phẳng
	\bigcirc Trung điểm của SB .
	\bigcirc Điểm D .
	Phần II. Câu hỏi tự lu
	I .

Khối lượng (gam)	Số củ khoai tây
[70;80)	4
[80;90)	5
[90;100)	12
[100;110)	6
[110;120)	3
Cộng	30

n loại I (từ 90 gam đến dưới 100 gam) là

- **B**) 12.
- **(C)** 6.
- $(\mathbf{D})4.$

ı đây nghịch biến trên khoảng $(0;\pi)$?

- **B**) $y = \cos x$.
- $(\mathbf{C})y = \tan x.$
- \mathbf{D} $y = \cot x$.

100 số nguyên dương đầu tiên và đều chia 5 dư 1.

- **B**) 25100 .
- $(\mathbf{C})50200$.
- $(\mathbf{D})5001$.

ng các hàm số dưới đây liên tục tại x = 2?

$$\mathbf{B}) y = \sqrt{x - 5}.$$

©
$$y = x^5 - x^3 + 1$$
. **D** $y = \frac{1}{x^2 - 4}$.

đầu tiên của một cấp số cộng là $S_n = n^2 + 4n$ với $n \in \mathbb{N}^*$. Tìm số cộng đã cho.

$$\mathbf{B}) u_n = 3n + 2$$

$$\mathbf{C} u_n = 5 \cdot 3^{n-1}$$

B)
$$u_n = 3n + 2$$
. **C**) $u_n = 5 \cdot 3^{n-1}$. **D**) $u_n = 5 \cdot \left(\frac{8}{5}\right)^{n-1}$.

(x) xác định và liên tục trên \mathbb{R} . Biết khi $x \neq 1$ thì f(x) =là

- **B**) -1.
- (\mathbf{C}) 1.
- $(\mathbf{D})2.$

song song, tính chất nào không được bảo toàn?

- **B**) Đồng quy.
- (**c**) Song song.
- (**D**) Thẳng hàng.

có đáy ABCD là hình bình tuyến của hai mặt phẳng

- qua đỉnh S và tâm O đáy.
- qua đỉnh S và song song với đường thẳng AC.
- qua đỉnh S và song song với đường thẳng AD.
- qua đỉnh S và song song với đường thẳng AB.

sau đây đúng?

- $n b + \cos a \cos b.$
- $(\mathbf{B})\cos(a+b) = \sin a \sin b \cos a \cos b.$
- $\cos b + \cos a \sin b.$
- $(\mathbf{D})\sin(a+b) = \sin a \cos b + \cos a \sin b.$

có đáy là hình bình hành, gọi M là trung \tilde{r} e). Hình chiếu song song của điểm M theo ng (SAD) là điểm nào sau đây?

- (\mathbf{B}) Trung điểm của SD.
- (\mathbf{D}) Trung điểm của SA.

ıận.

CÂU 36. Giải phương trình $\sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}$.

CÂU 37. Tính giới hạn
$$\lim_{x\to 0} \frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}$$
.

CÂU 38.

Cho tam giác OMN vuông cân tại O, OM = ON = 2. Trong tam giác OMN, vẽ hình vuông $OA_1B_1C_1$ sao cho các đỉnh A_1 , B_1 , C_1 lần lượt nằm trên các cạnh OM, MN, ON (Hình bên). Trong tam giác A_1MB_1 , vẽ hình vuông $A_1A_2B_2C_2$ sao cho các đỉnh A_2 , B_2 , C_2 lần lượt nằm trên các cạnh A_1M , MB_1 , A_1B_1 . Tiếp tục quá trình đó, ta được một dãy các hình vuông. Tính tổng diện tích các hình vuông này.

CÂU 39. Cho hình chóp S.ABCD, đáy là hình bình hành tâm O. Gọi $M,\ N$ lần lượt là trung điểm của SA và CD.

- a. Chứng minh (OMN) / (SBC).
- b. Gọi I là trung điểm của SD, J là một điểm trên (ABCD) cách đều AB và CD. Chứng minh $IJ \not\parallel (SAB)$.
- c. Xác định giao tuyến của mặt phẳng (OMN) với các mặt của hình chóp.

							,	_				ļ	_		,	,		•	,	_	•										
		ļ					(•	2	ļ	Į	ĺ		1	ĺ	١	ļ	ľ	ļ			ļ	Ŀ					ļ	ļ		
	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	
		٠													•	•	•	•					•								
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	
		•						•	•						•		•	•			•	•	•					•	•	•	
																												•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			. •
		•						•	•						•		•	•			•	•	•					•	•	•	
			•	•																											
		•						•	•						•		•	•			•	•	•					•	•	•	
			•	•																											

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

Gọi tôi là: Ngày làm đề:/..../......

KIỂM TRA CUỐI KÌ I ÔN TẬP KIẾM TRA CUỐI KÌ I-ĐỀ 2

Thời gian: 90 phút - Không kể thời gian phát đề

CÂU 1. Cho đường thẳng $a \subset (\alpha)$ và đường thẳng $b \subset (\beta)$. Mệnh đề nào sau đây đúng?

 $(\mathbf{A})(\alpha) // (\beta) \Rightarrow a // b.$

(B) (α) // $(\beta) \Rightarrow a$ // (β) và b // (α) .

 $(\mathbf{C}) a /\!\!/ b \Rightarrow (\alpha) /\!\!/ (\beta).$

 $(\mathbf{D}) a$ và b chéo nhau.

CÂU 2. Trong các dãy số sau, dãy số nào là dãy số giảm?

- **(A)** $u_n = \frac{2}{n^2}$. **(B)** $u_n = \frac{2n-3}{n+1}$. **(C)** $u_n = \frac{n}{3}$.

CÂU 3. Cho $\lim_{x\to x_0}f(x)=L\ (L>0)$, $\lim_{x\to x_0}g(x)=0\ (g(x)<0,\,\forall x\neq x_0).$ Mệnh đề nào sau đây đúng?

 $(\mathbf{A}) \lim_{x \to x_0} \frac{f(x)}{g(x)} = +\infty.$

 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = -\infty.$

 $\bigcap_{x \to x_0} \lim_{a \to x_0} \frac{f(x)}{a(x)} = 0.$

 $\bigoplus_{x \to x_0} \lim_{q(x)} \frac{f(x)}{q(x)} = L.$

CÂU 4. Cho hàm số y = f(x) liên tục trên (a; b). Điều kiện cần và đủ để hàm số liên tục trên [a;b] là

CÂU 5. Mẫu số liệu sau cho biết cân nặng của học sinh lớp 12 trong một lớp

Cân nặng (kg)	Dưới 55	Từ 55 đến 65	Trên 65
Số học sinh	23	15	2

Số học sinh của lớp đó là bao nhiệu?

- **(A)** 40.
- **(B)** 35.
- $(\mathbf{C})23.$
- (D)38.

CÂU 6.

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O. Giao tuyến của hai mặt phẳng (SAC) và (SAD) là

- (\mathbf{A}) SO.
- $(\mathbf{B})SD.$
- $(\mathbf{D})SB.$

CÂU 7. Tập xác định của hàm số $y = \cot x$ là

 $(\mathbf{A}) D = \mathbb{R}.$

- $(\mathbf{B}) D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}.$
- $\mathbf{C} D = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}.$
- $(\mathbf{D})D = \mathbb{R} \setminus \{0\}.$

CÂU 8. Khẳng định nào sau đây sai?

- (A) Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó..
- (B) Phép chiếu song song luôn biến hai đường thẳng song song thành hai đường thẳng song song.
- (C) Hình biểu diễn của một hình tròn qua phép chiếu song song có thể là một hình elip.
- (**D**) Hình chiếu song song của một đường thẳng là một đường thẳng.

CÂU 9.

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào **không** song song với IJ?

 $\stackrel{\cdot}{\mathbf{A}} AD.$

 $(\mathbf{B}) AB.$

 $(\mathbf{C})EF.$

 $\bigcirc DDC.$

CÂU 10. Cho hai dãy (u_n) và (v_n) thỏa mãn $\lim u_n=2$ và $\lim v_n=3$. Giá trị của $\lim (u_n+v_n)$ bằng

(A) 5.

B) 6.

 $(\mathbf{C}) - 1.$

 \bigcirc 1

CÂU 11. Cho cấp số nhân (u_n) có công bội q. Mệnh đề nào sau đây đúng?

 $\mathbf{B}) u_n = u_1 \cdot q^{n+1} (n \ge 2).$

 $\mathbf{C})u_n = u_1 \cdot q^n (n \ge 2).$

 $\mathbf{D} u_n = q^n (n \ge 2).$

CÂU 12. Với x là góc bất kỳ và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?

 $(\mathbf{A})\sin 2x = 2\sin x \cos x.$

 $\mathbf{B})\sin 2x = \sin x \cos x.$

 $(\mathbf{c})\sin 2x = 2\cos x.$

 $(\mathbf{D})\sin 2x = 2\sin x.$

CÂU 13. Giá trị của $\lim \frac{2}{n^2+1}$ bằng

 \triangle

(B) 2.

 $(\mathbf{c})_{1.}$

 $(\mathbf{D}) + \infty$

CÂU 14. Cho ba mặt phẳng phân biệt (α) ; (β) ; (γ) có $(\alpha) \cap (\beta) = d_1$; $(\beta) \cap (\gamma) = d_2$; $(\alpha) \cap (\gamma) = d_3$. Khi đó ba đường thẳng d_1, d_2, d_3

(A) đôi một cắt nhau.

(B) đôi một song song hoặc đồng quy.

(c) đôi một song song.

(D) đồng quy.

CÂU 15. Phương trình $\sin x = \sin \alpha$ có các nghiệm là

 $(\mathbf{A}) x = \alpha + k2\pi, x = \pi - \alpha + k2\pi, k \in \mathbb{Z}.$

(B) $x = \alpha + k2\pi, x = -\alpha + k2\pi, k \in \mathbb{Z}.$

(c) $x = \alpha + k\pi, x = \pi - \alpha + k\pi, k \in \mathbb{Z}.$

 $(\mathbf{D}) x = \alpha + k\pi, x = -\alpha + k\pi, k \in \mathbb{Z}.$

CÂU 16. Cho cấp số cộng (u_n) biết $u_1 = 5$ và $u_5 = 13$. Tìm u_n .

(A) $u_n = 5n - 3$.

(B) $u_n = 3n + 2$.

 $\mathbf{C} u_n = 2n + 3.$

 $\bigcirc u - 5n$

CÂU 17. Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau

	Thời gian(giờ)	[0;4)	[4; 8)	[8;12)	[12; 16)	[16; 20)
ſ	Số học sinh	2	4	7	4	3

Mốt của mẫu số liệu ghép nhóm này là

(A) $M_o = 12$.

(B) $M_o = 11$.

 $(\mathbf{C}) M_o = 10.$

(D) $M_o = 9$.

CÂU 18. Cân nặng của 28 học sinh của một lớp 11 được cho như sau

55,4 62,6 54,2 56,8 58,8 59,4 60,7 58 59,5 63,6 61,8 52,3 63,4 57,9

 $49,7 \quad 45,1 \quad 56,2 \quad 63,2 \quad 46,1 \quad 49,6 \quad 59,1 \quad 55,3 \quad 55,8 \quad 45,5 \quad 46,8 \quad 54 \quad 49,2 \quad 52,6$

Số trung bình của mẫu số liệu ghép nhóm trên xấp xỉ bằng

(A) 55,6.

(B) 65,5.

(C) 48.8.

(**D**)57.7

CÂU 19. $A = \lim_{x \to 2} (x^3 - 18x^2 + 2)$ có giới hạn hữu hạn là

(A) - 62.

(B) -15

 $(\mathbf{c})62$

 \bigcirc 15

CÂU 20. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi $M,\,N,\,K$ lần lượt là trung điểm của $CD,\,CB,\,SA.$ Gọi H là giao điểm của AC và MN. Giao điểm của SO với (MNK) là điểm E. Khi đó

 $(\mathbf{A}) E$ là giao của MN với SO.

 (\mathbf{B}) E là giao của KN với SO.

 $(\mathbf{C})E$ là giao của KH với SO.

 $(\mathbf{D})E$ là giao của KM với SO.

CÂU 21. Một đồng hồ đánh giờ, khi kim giờ chỉ số n (từ 1 đến 12) thì đồng hồ đánh đúng n tiếng. Hỏi trong một ngày (24 giờ) đồng hồ đánh được bao nhiêu tiếng?

(A) 156.

(B) 152.

(C) 148.

(D) 160.

QUICK NOTE	CÂU 22. Phát biểu nà	o sau đây là đúng?		
QUICK NOIL		e nghịch biến trên $(\pi; 2\pi)$	π).	
		x đồng biến trên $(0; \pi)$.	,	
	$\mathbf{\hat{C}} \operatorname{Ham} \operatorname{s\acute{o}} y = \cot x$	c đồng biến trên $[0; \pi]$.		
	\bigcirc Hàm số $y = \tan x$	x đồng biến trên mỗi kh	noång $\left(0; \frac{\pi}{2}\right), \left(\frac{\pi}{2}; \pi\right)$.	
	•	о́р $S.ABCD$ có đáy là l		G. G. lần lượt là trong
		D. Khi đó, G_1G_2 song		
	$igathbox{(A)} AC.$	$\bigcirc B$ BC .	$\bigcirc SO.$	$\bigcirc BD.$
	CÂU 24. Cho hình chố	ốp $S.ABCD$ có đáy AB	CD là hình thang, đáy	y lớn AB . Gọi P, Q lần
	lượt là hai điểm nằm t	trên cạnh SA và SB sa	ao cho $\frac{SP}{SA} = \frac{SQ}{SB} = \frac{1}{S}$. Khẳng định nào sau
	đây là đúng?		_	,
).		1
	\bigcirc PQ // (ABCD).		$\bigcirc PQ$ và CD chéo n	
		g trụ $ABC.A'B'C'$. Gọ		_
	diểm nào?	song với đường thẳng .	A1 mạt phang chiều	(ABC) blen I thann
	$\mathbf{A} A'$.	$lackbox{\textbf{B}}B'.$	$\bigcirc C'$.	\bigcirc I' .
	CÂU 26. Tìm số hạng	đầu u_1 và công bội q củ	a cấp số nhân (u_n) biết	$u_2 = 2 \text{ và } u_5 = 16.$
	_	_	\mathbf{c} $u_1 = -2, q = -1.$	_
	CÂU 27. Hình chóp ng	gũ giác có bao nhiêu mà	ặt?_	_
	A 5.	B 4.	© 6.	D 1.
	CÂU 28. Cho dãy số ((u_n) , biết $u_n = 2^n + 1$.	Mệnh đề nào sau đây c	đúng?
	(A) $u_1 = 1$.	(B) $u_2 = 4$.	(c) $u_3 = 7$.	(D) $u_4 = 17$.
		$y = \sin x + \cos x$. Trong		
	$(\mathbf{A}) y(0) = 1.$	π \	(B) Tập xác định \mathscr{D} =	
	$\mathbf{C} y = \sqrt{2} \sin\left(x - \frac{2}{3}\right)$	$\left(\frac{\pi}{4}\right)$.	D Tập giá trị của hà	$\operatorname{am} \operatorname{so} \operatorname{la} [-2; 2].$
		óp $S.ABCD$ có đáy là		n AB . Gọi M là trung
	_	của mặt phẳng (MAD)	,	
	Ž ,	ao điểm của AB và CD	,	
		ao điểm của AD và BC o điểm của AB và $CD)$		
	<u> </u>	o điểm của AD và BC		
	<u> </u>	•	, -	
	CÂU 31. Giá trị của A	$A = \lim \frac{1}{n-2}$ băng		
	\bigcirc $+\infty$.	\bigcirc $-\infty$.	© 2.	D 1.
	CÂU 32.		2	
		CD.A'B'C'D'. Mặt mặt phẳng nào sau đây		D'
	$(AB \ D)$ solig solig vol (BAC') .	(B) (BDA') .	y: B'	C' //
	(C)(ACD').	(D)(C'BD).		
				D
				A
			B	C
	CÂU 33. Cho $\sin \alpha =$	$-\frac{3}{4}$; $\frac{3\pi}{2} < \alpha < 2\pi$, g	iá trị của biểu thức <i>P</i>	$P = 2\sin^2\frac{\alpha}{2} + 3\cos^2\frac{\alpha}{2}$
	bằng	4 2		2 2
		B $\frac{20-\sqrt{7}}{8}$.	\mathbf{c} $\frac{20 + \sqrt{7}}{}$	$\mathbf{D} = \frac{12 + \sqrt{7}}{2}$
	4	0	0	4
		ốp $S.ABCD$ có đáy AB BC . Gọi M là trung đi		
	định nào sau đây là đú		icin cua <i>5</i> 0 va <i>Divi</i> Ca	т (рур) rái д. Ruang
	$lack S, I, J ext{ th} \overset{\circ}{\text{ang hair}}$		$lackbox{\textbf{B}}\ DM \subset (SCI).$	

$$\bigcirc$$
 DM \subset (SAB).

$$\bigcirc$$
 $SJ = (SCD) \cap (SAB).$

CÂU 35. Tìm giá trị thực của tham số m để hàm số $f(x)=\begin{cases} \frac{x^3-x^2+2x-2}{x-1} & \text{khi } x\neq 1\\ 3x+m & \text{khi } x=1 \end{cases}$

liên tục tại
$$x = 1$$
.

$$\bigcirc m = 6.$$

C
$$m = 4$$
.

$$\bigcirc m = 2.$$

Phần II. Câu hỏi tự luận.

CÂU 36. Tìm tất cả các nghiệm của phương trình $\cos 3x = \cos \left(\frac{\pi}{3} - x\right)$.

CÂU 37. Tính giới hạn sau $A = \lim_{x \to 1} \frac{\sqrt{2x-1} - \sqrt[3]{3x-2}}{x-1}$.

CÂU 38.

Trong hình vẽ bên, cho đường tròn (C) tâm O, bán kính $r=20\,\mathrm{cm}$. Vẽ đường tròn (C_1) đi qua tâm O và tiếp xúc với (C). Dường tròn (C_1) có bán kính bằng một nửa bán kính của (C), tức là $r_1=\frac{r}{2}=10\,\mathrm{cm}$. Tiếp tục, vẽ đường tròn (C_2) đi qua tâm của (C_1) và tiếp xúc với (C_1) , với bán kính $r_2=\frac{r_1}{2}=\frac{10}{2}=5\,\mathrm{cm}$. Quá trình này tiếp tục đến vô hạn, với mỗi đường tròn mới có bán kính bằng một nửa bán kính của đường tròn trước đó. Tính diện tích phần tô màu (kết quả làm tròn đến hàng đơn vị).

CÂU 39. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi $M,\,N,\,K$ lần lượt là trung điểm của $AB,\,AD,\,SC.$

- a) Chứng minh SA song song với (KBD).
- b) Gọi G là trọng tâm của tam giác SBD. Mặt phẳng (MNG) cắt SC tại điểm H. Tính tỉ số $\frac{SH}{SC}.$

QUICK NOTE

	•	•	•	•	•	•	•	•	•	•			•					•	•										•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•					•	•	•	•				•	•	•		•		•	•	•	•		•	
	•	•	•	•	•	•	•	•	•	۰	۰	۰	۰	•	•	•	•	۰	۰	۰	•	•	•		•	•	•	•	•	۰	۰	•	
																	•																
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	
	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•		•	•	•	•	٠	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	
•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
•		•	•																														

ĐIỂN

"It's you it."

QUICK NOTE

...../...... Ngày làm đề:/....../

KIỂM TRA CUỐI KÌ I ÔN TẬP KIỂM TRA CUỐI KÌ I — ĐỀ 3

Thời gian: 90 phút - Không kể thời gian phát đề

IER_*			
CÂU 1. Cấp s (A) 6.	số cộng (u_n) có số hạng đầ (\mathbf{B}) 8.	tu tiên $u_1 = 2$ và công sa \mathbf{C} 10.	$d = 3$. Số hạng u_3 bằng \mathbf{D} 9.
 ,		10.	D 3.
$\widehat{\text{cime}}$ CÂU 2. $\lim \frac{1}{n}$	_		
(A) 0.	B) 2.	© 4.	D 5.
CAU 3. Cho hạng đầu của		$= 3$ và $u_5 = 12$. Giá trị 7	759 là tổng của bao nhiêu số
A 23.	B 25.	© 17.	D 27.
CÂU 4. Cho	hai đường thẳng phân biệ	t a và b trong không gia	n. Có bao nhiều vị trí tương
đối giữa a và	<i>b</i> ? (B) 2.	© 3.	(D) 1.
(A) 4.	<u> </u>	<u> </u>	<u> </u>
	$D=\mathbb{R}ackslash\left\{rac{k\pi}{2}igg k\in\mathbb{Z} ight\}$ là tậ		
	$x. \qquad \qquad \mathbf{B} y = \cot 2x.$	$\bigcirc y = \tan x.$	
CÂU 6. Giả s	$\operatorname{sử} \lim_{x \to x_0} f(x) = L, \lim_{x \to x_0} g(x)$	$f(x) = L(L, M \in \mathbb{R})$. Chọc	n đáp án sai .
$\lim_{x \to x_0} [f($	[(x) + g(x)] = L + M.	$lackbox{\bf B} \lim_{x \to x_0} [f(x) -$	g(x)] = L - M.
	$[x) \cdot g(x)] = L \cdot M.$	$\widehat{\mathbf{D}} \lim_{x \to x_0} \frac{f(x)}{f(x)} =$	$=\frac{L}{L}$.
		3()	M^{\cdot}
	g các công thức sau, công $= 2 \sin \alpha \cos \alpha$.	thức nào đúng?	n α
. $symp$	$= \sin \alpha + \cos \alpha.$	$\mathbf{\hat{D}}\sin 2\alpha = \cos$	
	1		
	$\sin \alpha = \frac{1}{3}$. Giá trị của cos		7
$\mathbf{A} = \frac{2\sqrt{2}}{3}$.	B $-\frac{2\sqrt{2}}{3}$.	$\bigcirc \frac{\ell}{9}$.	\bigcirc $-\frac{7}{9}$.
CÂU 9. Cho	hình hộp $ABCD.A'B'C'I$		
) // (ACD').		
) $//$ $(CB'D')$.	(D) (ABA') // (0	,
CAU 10. Cho định nào sau		fáy là hình thang ABC	$CD (AB \cap CD = O)$. Khẳng
	nóp $S.ABCD$ có 4 mặt bên	n.	
	yến của hai mặt phẳng (S	, , ,	4-2
(\mathbf{C}) Giao tu BC).	yên của hai mặt phẳng (,	SAD) và (SBC) là SI	(I là giao điểm của AD và
. _ ′	yến của hai mặt phẳng (S	(SAB) và (SAD) là đườn	ng trung bình của $ABCD$.
CÂU 11 Cha		, , ,	1; Tìm số hạng tổng quát
u_n của cấp số	nhân đã cho.		
\cdots $\mathbf{A} u_n = 3^n$			$\bigcirc u_n = 3 + 3^n.$
	ng các dãy số có số hạng là dãy số giảm?	tổng quát sau, dãy số	nào không là dãy số tăng,
	\mathbf{B} $v_n=2n.$	$\widehat{\mathbf{c}}_{x} - \frac{1}{2}$	$\bigcirc w = \frac{(-1)^n}{n}$
CÂU 13. Tro (A) 2; 4; 8; 1	ng các dãy số sau, dãy số	nào không phải là một (\mathbf{B}) 1; -1; 1; -1;	
1 (-) 2, 1 , 0, 1	,	<u> </u>	• • • •

 \bigcirc 1²; 2²; 3²; 4²;

 \mathbf{D} $a; a^3; a^5; a^7; \dots (a \neq 0).$

KIÉM TRA CUỐI KÌ I					♥ VNPmath - 0962940819 ♥
CÂU 14. Cho hình chóp SC , N là giao điểm của S thẳng					QUICK NOTE
A Cắt nhau. C Chéo nhau.		B Song song O Có hai điể			
CÂU 15. Hình lăng trụ lụ	nc giác có bao nhiêu r B) 6.	\circ	(D)	4	
CÂU 16. Cho hàm số $y =$	\smile	_	_		
trên $[a; b]$ là $ \bigoplus_{x \to a^+} f(x) = f(a) \text{ vi} $	$\lim_{x \to a} f(x) = f(b).$	$lackbox{\textbf{B}} \lim f(x)$	= f(a) và l	$\lim_{x \to a} f(x) = f(b).$	
$\bigodot_{x \to a^{+}}^{x \to a^{+}} f(x) = f(a) \text{ va}$	$\lim_{x \to b^{-}} f(x) = f(b).$	$ \bigoplus_{x \to a^{-}}^{x \to a^{-}} f(x) $	$= f(a) \text{ và} \prod_{x=1}^{x}$	$\lim_{b \to b^{+}} f(x) = f(b).$	
CÂU 17. Cho các đường t là đúng?	thẳng không song son	g với phương o	chiếu. Khẳng	định nào sau đây	
A Phép chiếu song son song.	ng biến hai đường th	ẳng song song	thành hai đ	ường thẳng song	
B Phép chiếu song son	ng có thể biến hai đườ	ong thẳng song	g song thành	hai đường thẳng	
cắt nhau. © Phép chiếu song son	ng có thể biến hai đườ	dng thẳng song	g song thành	hai đường thẳng	
chéo nhau. (D) Phép chiếu song son	ng biến hai đường th	ẳng song song	thành hai đ	ường thẳng song	
song hoặc trùng nha	au.				
CÂU 18. Tìm giới hạn lin	$n \frac{2^{n+2}+4^n}{3^n+4^{n+1}}.$				
2	\mathbf{B}) $\frac{1}{4}$.	© 0.	<u> </u>	$+\infty$.	
CÂU 19. Cho $\lim u_n = -6$.	3 , $\lim v_n = 2$. Khi đó \mathbf{B}) -1 .	$\lim_{n \to \infty} (u_n - v_n)$	bằng (D)	1.	
CÂU 20. Phương trình si			1 1 = 77)		
	=			$k2\pi k\in\mathbb{Z}\}.$	
CÂU 21. Người ta ghi lại quả như sau	tuổi thọ của một số c	con muỗi cái t	rong phòng tl	hí nghiệm cho kết	
Tuổi thọ (n	0 0 / 6 1) [40; 60) [6	0;80) [80;10	00)	
Số lượn Muỗi cói có tuổi the khoả		23 nhiều nhất?	31 29		
Muỗi cái có tuổi thọ khoả 80 ngày.	B) 66 ngày.	C 76 ngày.	D	96 ngày.	
CÂU 22. Khẳng định nào $\widehat{\mathbf{A}}$ Ta nói dãy số (u_n)	v C	a (hay u_n dầ	n tới a) khi	$n \to +\infty$, nếu	
$\lim_{x \to +\infty} (u_n + a) = 0.$,		
(B) Ta nói dãy số (u_n) c số dương tùy ý, kể t	có giới hạn là 0 khi n từ một số hạng nào đ		c, nếu $ u_n $ có	thể lớn hơn một	
$oldsymbol{C}$ Ta nói dãy số (u_n) c bất kì, kể từ một số		$\to +\infty$ nếu u_n	, có thể nhỏ h	nơn một số dương	
$lacktriangle$ Ta nói dãy số (u_n) co bất kì, kể từ một số	có giới hạn $+\infty$ khi n	$\rightarrow +\infty$ nếu u_r	$_{\imath}$ có thể lớn h	on một số dương	
CÂU 23. Thời gian đề họ		ột câu hỏi thi	được cho như	í sau:	
Thời gian (phút) [0	0,5; 10,5) [10,5; 20,5)	[20,5;30,5)	[30,5;40,5)	[40,5;50,5)	
Số học sinh Tìm mất của mẫu cấ liệu	2 10	6	4	3	
Tìm mốt của mẫu số liệu A 17,42.	gnep nnom nay. B) 14,56.	© 17,16.	D	12,67.	
CÂU 24. Cho hình lăng t Qua phép chiếu song song					
nào?	$\widehat{\mathbf{B}})B'.$	© C'.	(D).		
~	~	_	\sim		

QUICK NOTE	CÂU 25. Tìm m để hàm	$\text{s\'o } f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} \end{cases}$	khi $x \neq 1$ liên tục tại	điểm $x_0 = 1$.
	$\mathbf{\hat{A}} m = 3. $	(m+2)	$khi x = 1$ $(\mathbf{C}) m = 4.$	$(\mathbf{D}) m = 1.$
			\smile	m-1.
	CÂU 26. Cho bảng khảo	sat ve can nạng nọc	sinn trong lop.	
	Cân nặng		5) [55;60) [60;65) [6	35;70)
	Số học s	sinh 2 14	11 10	3
	Khoảng cân nặng mà số h	noc sinh chiếm nhiều	nhất là	
		B [55; 60).	© [50; 55).	\bigcirc [60; 65).
	CÂU 27. Tập giá trị của	$ham s \hat{\delta} y = \sin^2 x + 2$	$2\cos^2 x$ là	
	$\mathbf{A} T = [0; 3]. $	B) $T = [0; 2].$	\mathbf{C} $T = [1; 2].$	D $T = [1; 3].$
	CÂU 28. Cho dãy số (u_n)	$u_{m} = \frac{2n+5}{n}$	Số — là số hạng thứ n	nấy của dãy số?
	_	\sim	$\frac{12}{(\mathbf{C})}$ 9.	
	`	B) 6.		D 10.
	CÂU 29. Hàm số $y = \sin x$	x đồng biến trên kho	oảng nào dưới đây?	\bigcirc (π)
	$\mathbf{A}\left(-\pi;\frac{\pi}{2}\right). $	B) $\left(-\frac{1}{2};0\right)$.	(c) $(0;\pi)$.	$\bigcirc \left(\frac{\pi}{2};\pi\right).$
	CÂU 30. Cho hình chóp t	· .		
	song với nhau và M là m	nột điểm trên cạnh S	A. Tìm giao điểm của	đường thắng MC và
	mặt phẳng (SBD) . \bigcirc Điểm H , trong đó I	$T = AC \cap BD \ H = M$	$AA \cap SI$	
	\bigcirc Diểm F , trong đó I			
	\bigcirc Điểm K , trong đó I			
	$lue{\mathbf{D}}$ Điểm V , trong đó I	$=AC\cap BD,\ V=M$	$IB \cap SI$.	
	CÂU 31Cho tứ giác AE	SCD và một điểm S l	không thuộc mặt phẳng	g ($ABCD$). Trên đoạn
	SC lấy một điểm M khôn	ng trùng với S và C .	Gọi N là giao điểm của	à đường thẳng SD với
	mặt phẳng (ABM) . Khi c			
	$ (A) AN = (ABM) \cap (SA) $ $ (C) AN = (ABM) \cap (SA) $		$ (\textbf{B}) AN = (ABM) \cap (ABM) \cap$	
	_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	,	•	,
	CÂU 32. Cho hình chóp t SC . Đường thẳng MN so			rung diem cua SA va
	lack A Mặt phẳng (SCD) .	06	$lackbox{\bf B}$ Mặt phẳng (SAB)	
	\bigcirc Mặt phẳng (SBC) .		D Mặt phẳng (ABC)	D).
	CÂU 33. Cho hai mặt ph	dng (P) , (Q) cắt nh	au theo giao tuyến là ở	đường thẳng d . Đường
	thẳng a song song với cả l	~	· · ·	
	$(\mathbf{A}) a, d$ trùng nhau.		$\bigcirc a \text{ song song } d.$	$(\mathbf{D}) a, d \text{ cắt nhau.}$
	CÂU 34. Cho hình chóp			
	và C). Giả sử hai đường t (ABM) và (SCD) cắt đư			en cua nai mạt phang
	· ` `	$\widehat{\mathbf{B}}$ SA .	\bigcirc AD .	$(\mathbf{D})AC$.
	CÂU 35. Hai mặt phẳng	് được gọi là song song	r nếu	
	A Có một đường thẳng			ới mặt phẳng kia.
	B Chúng có duy nhất	một điểm chung.		
	Chúng có ít nhất ha	_		
	D Chúng không có điể	m chung.		
	Phần II. Câu hỏi tự lu	•	_	
	CÂU 36. Giải phương trìn		x = 0.	
	CÂU 37. Tính giới hạn $\lim_{x \to x} \frac{1}{x}$	$\max_{x \to 1} \frac{x^3 - \sqrt{3x - 2}}{x^2 - 1}$		
	CÂU 38. Tam giác mà ba là tam giác trung bình của	đỉnh của nó là ba trư	_	-

 $A_3B_3C_3,\ldots$ sao cho $A_1B_1C_1$ là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương $n\geq 2$, tam giác $A_nB_nC_n$ là tam giác trung bình của tam giác $A_{n-1}B_{n-1}C_{n-1}$. Với mỗi số

nguyên dương n, kí hiệu S_n tương ứng là diện tích hình tròn ngoại tiếp tam giác $A_nB_nC_n$. Tổng $S = S_1 + S_2 + \cdots + S_n + \cdots = a\pi$. Tìm a.

CÂU 39. Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD = 2BC và Olà giao điểm của hai đường chéo đáy. Gọi E, F lần lượt là trung điểm SA, SD và G là trọng tâm tam giác SCD.

- a) Mặt phẳng (P) đi qua E, F và song song với SB. Giả sử (P) cắt cạnh CD, ABlần lượt tại $P,\,Q.$ Chứng minh $EQ\,/\!\!/\,SB.$ Tứ giác EFPQ là hình gì? Chứng minh $BE \parallel (SCD)$ và $GO \parallel (SBC)$.
- b) Tìm giao điểm M của SB và (CDE). Chứng minh $\frac{S_{\triangle SME}}{S_{\triangle SMF}} = \frac{S_{\triangle SAB}}{S_{\triangle SBD}}$ và $SM \cdot BD = SB \cdot DO$ $SB \cdot DO$.

QUICK NOTE	
• • • • • • • • • • • • • • • • • • • •	=
	_
	-
	•
	•
	•
	•
	•
	•
	•
	_
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK	NOTE

Gọi tôi là: Ngày làm đề:/..../......

KIỂM TRA CUỐI KÌ I ÔN TẬP KIỂM TRA CUỐI KÌ I-ĐỀ 4

Thời gian: 90 phút - Không kể thời gian phát đề

CÂU 1.

Cho hình chóp S.ABCD. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AB và AD (tham khảo hình bên). Mặt phẳng (MNP) song song với mặt phẳng nào dưới đây?

(A)(SBD).

 $(\mathbf{B})(SCD).$

 $(\mathbf{C})(ABCD).$ $(\mathbf{D})(SBC).$

CÂU 2. Cho hình chóp tứ giác S.ABCD và M là một điểm thuộc cạnh SC (M khác S và C). Giả sử hai đường thẳng AB cà CD cắt nhau tại N. Giao tuyến của hai mặt phẳng (ABM) và (SCD) cắt đường thẳng nào trong các đường thẳng sau

 $(\mathbf{A}) SD.$

 $(\mathbf{B})SA.$

 $(\mathbf{C})AD.$

 $(\mathbf{D})AC$.

CÂU 3. $\lim_{x\to -2} \left(2x^2+1\right)$ bằng

CÂU 4. Cho cấp số nhân 2,4,8,... Số hạng tổng quát của cấp số nhân đã cho là

 $\mathbf{A} u_n = 2^{n+1}$.

(B) $u_n = 4^n$.

(**c**) $u_n = 2^n$.

 $(\mathbf{D})u_n = 2^{n-1}.$

CÂU 5. Hàm số nào sau đây liên tục trên \mathbb{R} ?

(A) $y = \sqrt{x^2 + 2023}$. **(B)** $y = \frac{1}{x + 2023}$.

 $(\mathbf{C})y = \tan x.$

(D) $y = \sqrt{x-1}$.

CÂU 6. Cau20Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

(**A**) 1.

(B) 2.

(C) 3.

(**D**)4.

CÂU 7. Cho 4 điểm A, B, C, D không cùng nằm trên mặt phẳng. Trên AB, AD lần lượt lấy 2 điểm M, N sao cho MN cắt BD tại I. Điểm I không thuộc mặt phẳng nào sau đây?

 $(\mathbf{A})(ABD).$

 $(\mathbf{B})(BCD).$

 $(\mathbf{C})(CMN).$

 $(\mathbf{D})(ACD).$

CÂU 8. Tập giá trị của hàm số $y = 5 \sin x - 12 \cos x$ là

(A) [-12; 5].

(B) [-13; 13].

 $(\mathbf{C})[-17;17].$

 $(\mathbf{D})(-13;13).$

CÂU 9.

Cho hàm số $y = 2 \sin x$ trên đoạn $[-\pi; \pi]$ có đồ thị như hình bên. Xét tính đúng sai của các khẳng định sau:

(A) Tập xác định của hàm số $y = 2 \sin x$ là

(B) Tập giá trị của hàm số là [-1;1].

(**c**) Hàm số đồng biến trên khoảng (-2; 2).

(**D**) Đồ thị hàm số trên đoạn $[-\pi;\pi]$ cắt đường thẳng y = -2 tại đúng 2 điểm phân biệt.

CÂU 10. Giới hạn $\lim \frac{3n-7}{2n^2+3n-1}$ bằng

 \bigcirc $\frac{3}{2}$.

 (\mathbf{C}) 0.

 $\bigcirc \frac{-3}{2}$

CÂU 11. Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một cửa hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

Doanh thu	[5;7)	[7;9)	[9; 11)	[11; 13)	[13; 15)
Số ngày	2	7	7	3	1

Tìm mốt của mẫu số liệu ghép nhóm trên.

- (A) $M_o = 10.6$.
- **(B)** $M_o = 11.6$.
- **(C)** $M_o = 9$.
- **(D)** $M_o = 10$.

CÂU 12. Tập xác định của hàm số $y = 2\cos x - 1$ là

- $\bigcirc \mathscr{D} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$
- $(\mathbf{D})\mathcal{D} = \mathbb{R} \setminus \{\pi + k\pi, k \in \mathbb{Z}\}.$

CÂU 13. Trong không gian, cho tứ diện ABCD, vị trí tương đối giữa 2 đường thẳng ACvà BD là

- (A) song song.
- (B) trùng nhau.
- (C) chéo nhau.
- (**D**) cắt nhau.

CÂU 14. Qua phép chiếu song song lên mặt phẳng (P), hai đường thẳng chéo nhau a và bcó hình chiếu là hai đường thẳng a' và b'. Mệnh đề nào sau đây đúng?

- $(\mathbf{A}) a'$ và b' luôn luôn cắt nhau.
- $(\mathbf{B}) a'$ và b' có thể trùng nhau.
- $(\mathbf{C}) a'$ và b' không thể song song.
- $(\mathbf{D}) a'$ và b'có thể cắt nhau hoặc song song với nhau.

CÂU 15. Cho hình lập phương ABCD.A'B'C'D'. Chọn khẳng định đúng.

- $(\mathbf{A}) (ABCD) \# (A'B'D').$
- **(B)** (A'D'C) // (ABCD).

 $(\mathbf{C})(D'C'A) // (ABCD).$

 $(\mathbf{D})(BCC'B') // (ABCD).$

CÂU 16. Cho dãy số (u_n) có số hạng tổng quát là $u_n = 2 \cdot 3^n$ với $n \in \mathbb{N}^*$. Công thức truy hồi của dãy số đó là

 $\int u_1 = 6$ $u_n = 6u_{n-1}, n > 1$

 $\begin{cases} u_1 = 3 \\ u_n = 3u_{n-1}, n > 1 \end{cases}$

(B) $\begin{cases} u_n = 3u_{n-1}, n > 1 \end{cases}$ (D) $\begin{cases} u_1 = 3 \\ u_n = 3u_{n-1}, n > 1 \end{cases}$

CÂU 17. Mênh đề nào dưới đây đúng với mọi a, b?

- $(\mathbf{A})\cos(a-b) = \sin a \sin b \cos a \cos b.$
- $(\mathbf{B})\cos(a-b) = \cos a \cos b + \sin a \sin b.$
- $(\mathbf{C})\cos(a-b) = \cos a \cos b \sin a \sin b.$
- $(\mathbf{D})\cos(a-b) = \cos a \sin b + \sin a \cos b.$

CÂU 18. Tuổi thọ (năm) của 50 bình ác quy ô tô được cho như sau

Tuổi thọ (năm)	[2;2,5)	[2,5;3)	[3; 3,5)	[3,5;4)	[4;4,5)	[4,5;5)
Tần số	4	9	14	11	7	5

Cỡ mẫu của mẫu số liệu ghép nhóm trên là

- $(A) \, 50.$
- **(B)** 48.
- **(C)** 14.
- $(\mathbf{D})6.$

CÂU 19. Phép chiếu song song biến ba đường thẳng song song thành

- (A) ba đường thẳng đôi một song song với nhau.
- (**B**) một đường thẳng.
- (C) thành hai đường thẳng song song.
- (**D**) cả ba trường hợp trên.

CÂU 20. Cho cấp số nhân (u_n) có công bội q. Chọn hệ thức đúng trong các hệ thức sau

 $(\mathbf{A}) u_k = \sqrt{u_{k+1} \cdot u_{k+2}}.$

 $\mathbf{B} u_k = \frac{u_{k+1} + u_{k+2}}{2}.$

 $\mathbf{C} u_k = u_1 \cdot q^{k-1}.$

 $(\mathbf{D})u_k = u_1 + (k-1)q.$

CÂU 21. Cho hai dãy (u_n) và (v_n) thỏa mãn $\lim u_n = 2$ và $\lim v_n = 3$. Giá trị của $\lim (u_n + v_n)$ bằng

- (**A**) 6.
- (**B**) 5.
- $(\mathbf{C}) 1.$
- $(\mathbf{D})1.$

CÂU 22. Mệnh đề nào sau đây đúng với mọi k là số nguyên

- $(\mathbf{A})\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi.$
- **(B)** $\cot x = \cot \alpha \Leftrightarrow x = \pm \alpha + k\pi$.
- (C) $\cot x = \cot \alpha \Leftrightarrow x = \pm \alpha + k2\pi$.
- (**D**) $\cot x = \cot \alpha \Leftrightarrow x = \pm \alpha + 2k$.

CÂU 23. Trong không gian, cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. Khẳng định nào sau đây là đúng?

 (\mathbf{A}) b và c chéo nhau.

- (**B**) b và c cắt nhau.
- $(\mathbf{C}) b$ và c chéo nhau hoặc cắt nhau.
- $(\mathbf{D})b$ và c song song với nhau.

QUICK NOTE	CÂU 24. Tìr
	$\mathbf{A} \frac{2}{3}$.
	CÂU 25. Ch
	song với nha
	khẳng định s
	A Giao tu B Giao tu
	C Giao ti
	(D) Giao tı
	CÂU 26.
	Đồ thị trong
	nào dưới đây
	$y = \cos y$
	CÂU 27. Kh
	mẫu số liệu g
	Hãy ước lượn
	A 53,41.
	CÂU 28. Ch
	của dãy số đ
	$(A) u_3 = -$
	CÂU 29. Ch
	$\lim_{x \to 2} [f(x) \cdot g]$
	A 5.
	CÂU 30. Ch
	$ \begin{array}{c c} \text{bằng 2576, từ} \\ \hline \mathbf{A} & n = 31. \end{array} $
	CÂU 31. Ch phương <i>l</i> của
	đây đúng?
	$\mathbf{A}(\alpha) /\!\!/ ($
	$\bigcirc l \# (\alpha)$
	CÂU 32. Ch
	m = 1 lele:
	x = 1 khi m
	(A) 13.

n giới hạn $\lim \frac{3n-1}{2n+1}$

 (\mathbf{C}) 0.

o hình chóp S.ABCD, đáy là tứ giác lồi ABCD có các cạnh đối không song 1. Gọi M là điểm trên cạnh SA, O là giao điểm của AC và BD. Trong các au, khẳng định nào đúng?

yến của (SAC) và (SBD) là SM.

yến của (SAB) và (SCD) là SF, với F là giao điểm của AB và CD.

yến của (SBC) và (SAD) là SM.

yến của (BCM) và (SCD) là đường thẳng song song với SD.

hình vẽ bên là đồ thị của hàm số

2x.

 $\mathbf{B} y = 2\cos x.$

2x.

 $(\mathbf{D})y = 2\sin x.$

ảo sát thời gian tập thể dục trong ngày của 1 số học sinh khối 11 thu được hép nhóm sau:

Thời gian (phút)	[0; 20)	[20;40)	[40;60)	[60; 80)	[80; 100)
Số học sinh	5	9	12	10	6

g thời gian tập thể dục trung bình của một học sinh trong một ngày.

(B) 51,43.

(C) 38,02.

o dãy số (u_n) có $u_1=-3$ và $u_{n+1}=u_n+n$ với $n\geq 1,\,n\in\mathbb{N}.$ Số hạng thứ 3

(B) $u_3 = 3$.

(c) $u_3 = -2$. **(D)** $u_3 = 0$.

o hai hàm số $f\left(x\right),g\left(x\right)$ thỏa mãn $\lim_{x\to 2}f\left(x\right)=5$ và $\lim_{x\to 2}g\left(x\right)=1$. Giá trị của [x)] bằng

 (\mathbf{C}) 1.

o cấp số cộng (u_n) xác định bởi $u_n = 5n - 2$. Biết tổng của n số hạng đầu tiên m n.

 $(\mathbf{C}) n = 33.$

o tam giác ABC ở trong mặt phẳng (α) và phương l. Biết hình chiếu theo tam giác ABC lên mặt phẳng (P) là một đoạn thẳng. Khẳng định nào sau

(B) $(\alpha) \equiv (P)$.

hoặc $l \subset (\alpha)$.

o hàm số $f(x)=\begin{cases} \frac{\sqrt{2x^2-3x+5}-2}{1-x} & \text{khi } x\neq 1\\ m+2\,\text{khi } x=1 \end{cases}$. Hàm số liên tục tại điểm $=-\frac{a}{b} \text{ với } \frac{a}{b} \text{ tối giản, } a,b\in\mathbb{N}. \text{ Khi đó, tổng } a+b \text{ bằng:}$

CÂU 33. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G_1,G_2 , lần lượt là trọng tâm các tam giác SAB, SCD. Xét các khẳng định sau:

(I) $G_1G_2 \# (SBC)$.

(II) $G_1G_2 \parallel (SAD)$.

(III) $G_1G_2 \parallel (SAC)$.

(IV) $G_1G_2 \parallel (ABD)$.

Các khẳng định đúng là

(**A**) (I), (II), (IV).

(B) (I), (II), (III).

(C) (I), (IV).

(D) (III), (IV).

CÂU 34. Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho $BP=2PD,\,E=CD\cap NP$. Khẳng định nào sau sai?

- (A) NM là giao tuyến của hai mặt phẳng (MNP), (ABC).
- $(\mathbf{B})DC$ là giao tuyến của hai mặt phẳng (BCD), (ADC).
- (**C**) Giao điểm của đường thẳng CD và mặt phẳng (MNP) là điểm E.
- $oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}$ AD với đường thẳng MP.

CÂU 35. Dãy số nào sau đây là dãy số tăng?

 (\mathbf{A}) -1, 1, 3, 5, 7.

(B) 1, 4, 16, 9, 25.

(C) 0, 3, 8, 24, 15.

(D) 0, 3, 12, 9, 6.

Phần II. Câu hỏi tư luân.

CÂU 36. Giải phương trình sau $\sin 2x - 5\cos x = 0$.

CÂU 37. Tính giới hạn $\lim_{x \to -\infty} \left(\sqrt{x^2 - 4x} - \sqrt{x^2 - x} \right)$

CÂU 38. Từ độ cao $55.8\,\mathrm{m}$ của tháp nghiêng Pisa, người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng $\frac{1}{10}$ độ cao trước đó. Tổng độ dài hành trình của quả bóng từ lúc thả đến khi nằm yên là bao nhiêu?

CÂU 39. Cho hình chóp S.ABCD có đáy là hình thang ABCD, $AB \parallel CD$, AB = 2CD, tam giác SAB đều cạnh 2a, M là điểm thuộc cạnh AD sao cho MD=2MA, (α) là mặt phẳng qua M song song với mặt phẳng (SAB) cắt các cạnh BC, SC, SD lần lượt tại N, P, Q. Tính diện tích tứ giác MNPQ.

QUICK NOTE
•••••
•••••
•••••

Đề 1: ÔN TẬP KIỂM TRA CUỐI KÌ I — PHedu	1
Đề 2: ÔN TẬP KIỂM TRA CUỐI KÌ I — PHedu	6
Đề 3: ÔN TẬP KIỂM TRA CUỐI KÌ I — PHedu	10
Đề 4: ÔN TẬP KIỂM TRA CUỐI KÌ I — PHedu	14

