Homework 6

ALECK ZHAO

March 28, 2017

1. (a) Let $F \to \overline{F}$ be an algebraic closure of F and let $F \to E$ be a finite field extension. Show that there exists an F-embedding of E into \overline{F} .

Proof. Since E and \overline{F} are fields, any homomorphism from E to \overline{F} is injective, so E embeds into \overline{F} , as desired.

(this was too easy, I think I did something wrong)

- (b) It can be shown that (a) continues to hold when E is only assumed to be algebraic over F. Assuming this fact, show that any two algebraic closures of F are isomorphic as F-algebras.
- 2. Let F be a field and let $F \to \overline{F}$ an algebraic closure. As a continuation of 6.3 Ex. 21, show that a finite field extension $F \to E$ is normal \iff all F-embeddings of E into \overline{F} have the same image.

Section 6.2: Algebraic Extensions

- 7. Find the minimal polynomial of $u = \sqrt{3} i$
 - (a) over \mathbb{R} .

Solution. We have $\overline{u} = \sqrt{3} + i$, where

$$u + \overline{u} = 2\sqrt{3}$$
$$u\overline{u} = 4$$

so the minimal polynomial over \mathbb{R} is given by

$$m = x^2 - 2\sqrt{3}x + 4$$

(b) over \mathbb{Q} .

Solution. We have

$$u^{2} = (\sqrt{3} - i)^{2} = 2 - 2\sqrt{3}i$$

$$\implies u^{2} - 2 = -2\sqrt{3}i$$

$$\implies (u^{2} - 2)^{2} = -12$$

$$\implies u^{4} - 4u^{2} + 16 = 0$$

which is irreducible over $\mathbb Q$ by the Rational Root Theorem, so the minimal polynomial over $\mathbb Q$ is given by

$$m = x^4 - 4x^2 + 16$$

19. Let $\mathbb{C} \supseteq E \supseteq \mathbb{Q}$, where E is a field, and assume that $[E : \mathbb{Q}] = 2$. Show that $E = \mathbb{Q}(\sqrt{m})$, where m is a square-free integer.

Proof. Consider an element $u \in E \setminus \mathbb{Q}$. Since $[E : \mathbb{Q}] = 2$, a polynomial $f \in \mathbb{Q}[x]$ exists of degree 1 or 2 such that f(u) = 0. If deg f = 1, then f = x - u, but $u \notin \mathbb{Q}$, so f would not be in $\mathbb{Q}[x]$, so f must have degree 2.

Suppose $f = ax^2 + bx + c$ for $a, b, c \in \mathbb{Q}$. Then u is algebraic over \mathbb{Q} with degree 2, so $[\mathbb{Q}(u) : \mathbb{Q}] = 2$, and since $\mathbb{Q} \subseteq E$ and $u \in E$, it follows that $\mathbb{Q}(u) \subseteq E$, and since $[\mathbb{Q}(u) : \mathbb{Q}] = [E : \mathbb{Q}] = 2$, we must have $\mathbb{Q}(u) = E$. Now, solving for u, we have

$$u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

SO

$$\mathbb{Q}(u) = \mathbb{Q}\left(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$
$$= \mathbb{Q}(\sqrt{b^2 - 4ac})$$

if $b^2 - 4ac$ is not square-free, then suppose $b^2 - 4ac = n^2m$ where n is as large as possible and m is square-free. Then

$$\mathbb{Q}(\sqrt{b^2 - 4ac}) = \mathbb{Q}(\sqrt{n^2 m}) = \mathbb{Q}(n\sqrt{m}) = \mathbb{Q}(\sqrt{m})$$

as desired. \Box

21. Let $E \supset F$ be fields, and let $u, v \in E$ be algebraic over F of degrees m, n.

(a) Show that $[F(u, v) : F] \leq mn$.

Proof. We have

$$[F(u,v):F] = [F(u,v):F(v)][F(v):F]$$

Since [F(u):F]=m, that means the minimal polynomial $f \in F[x]$ of u has degree m. Then consider the minimal polynomial of u in F(v)[x]. Obviously since this field contains F[x], the minimal polynomial must have degree at most m, so $[F(u,v):F(v)] \leq m$. Thus,

$$[F(u,v):F] = [F(u,v):F(v)][F(v):F] \le mn$$

as desired. \Box

(b) If m and n are relatively prime, show that [F(u,v):F]=mn.

Proof. Since

$$[F(u,v):F] = [F(u,v):F(v)][F(v):F] = n \cdot [F(u,v):F(v)]$$
$$[F(u,v):F] = [F(u,v):F(u)][F(u):F] = m \cdot [F(u,v):F(u)]$$

it follows that m and n both divide [F(u,v):F], and since they are relatively prime, we must have $[F(u,v):F] \geq mn$. This and the result of part (a) show that [F(u,v):F] = mn, as desired. \square

(c) Is the converse to (b) true?

Solution. No. Let $E = \mathbb{C}$, $F = \mathbb{Q}$, $u = \sqrt{2}$, $v = \sqrt{3}$. Then m = n = 2 are not relatively prime, but $[\mathbb{Q}(\sqrt{2}, \sqrt{3} : \mathbb{Q})] = 4 = 2 \cdot 2$ but 2 is not relatively prime with 2.

- 32. Let p and q in \mathbb{Q} satisfy $\sqrt{p} \notin \mathbb{Q}$ and $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$.
 - (a) Show that $\mathbb{Q}(\sqrt{p}, \sqrt{q}) = \mathbb{Q}(\sqrt{p} + \sqrt{q})$.

Proof. Let $u = \sqrt{p} + \sqrt{q}$. Then

$$u^3 = (p+3q)\sqrt{p} + (q+3p)\sqrt{q} \in \mathbb{Q}(u) \subseteq \mathbb{Q}(\sqrt{p}, \sqrt{q})$$

Now, we have

$$u^{-1} = \frac{1}{\sqrt{p} + \sqrt{q}} = \frac{\sqrt{p} - \sqrt{q}}{p - q}$$

$$\implies (p - q)u^{-1} = \sqrt{p} - \sqrt{q}$$

so

$$u + (p - q)u^{-1} = 2\sqrt{p} \implies \sqrt{p} \in \mathbb{Q}(u)$$

 $u - (p - q)u^{-1} = 2\sqrt{q} \implies \sqrt{q} \in \mathbb{Q}(u)$

Thus, $\mathbb{Q}(\sqrt{p}, \sqrt{q}) \subseteq \mathbb{Q}(u)$, so in fact

$$\mathbb{Q}(u) = \mathbb{Q}(\sqrt{p} + \sqrt{q}) = \mathbb{Q}(\sqrt{p}, \sqrt{q})$$

as desired. \Box

(b) Use Theorem 5 to find a basis of $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ over \mathbb{Q}

Solution. Let $K=\mathbb{Q}(\sqrt{p})$ and $L=\mathbb{Q}(\sqrt{p},\sqrt{q})=K(\sqrt{q})$. Since $\sqrt{p}\notin\mathbb{Q}$, the minimal polynomial of \sqrt{p} in \mathbb{Q} has degree 2, and is x^2-p , so a \mathbb{Q} -basis for K is $\left\{1,\sqrt{p}\right\}$.

Now, we claim that x^2-q is the minimal polynomial of \sqrt{q} over K. Clearly \sqrt{q} is a root of this polynomial. If \sqrt{q} was the root of the degree 1 polynomial $x-\sqrt{q}$, then we must have $\sqrt{q} \in K = \mathbb{Q}(\sqrt{p})$, but this is a contradiction since we know $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$. Thus, $\{1, \sqrt{q}\}$ is a K-basis for L.

Thus by Theorem 5,

$$[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = [K(\sqrt{q}) : K][K : \mathbb{Q}] = 4$$

and a \mathbb{Q} basis for $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is $\{1, \sqrt{p}, \sqrt{q}, \sqrt{pq}\}$.

(c) Deduce that $x^4 - 2(p+q)x^2 + (p-q)^2$ is the minimal polynomial of $\sqrt{p} + \sqrt{q}$ over \mathbb{Q} .

Solution. Since $[\mathbb{Q}(\sqrt{p} + \sqrt{q}) : \mathbb{Q}] = 4$, the minimal polynomial has degree 4. It remains to verify that $\sqrt{p} + \sqrt{q}$ is actually a root. We have

$$(\sqrt{p} + \sqrt{q})^4 = p^2 + 4p\sqrt{pq} + 6pq + 4q\sqrt{pq} + q^2$$
$$-2(p+q)(\sqrt{p} + \sqrt{q})^2 = -2p^2 - 2q^2 - 4pq - 4(p+q)\sqrt{pq}$$
$$(p-q)^2 = p^2 - 2pq + q^2$$

and summing these equations yields 0 on the RHS, as desired.

Section 6.3: Splitting Fields

3. If $2 \neq 0$ in the field F, show that the splitting field E of $x^4 + 1$ over F is a simple extension of F and factors $x^4 + 1$ completely in E[x]. What happens if 2 = 0 in F?

Proof. If E is a splitting field of $x^4 + 1$, then

$$x^4 + 1 = (x - u_1)(x - u_2)(x - u_3)(x - u_4)$$

for $u_1, u_2, u_3, u_4 \in E$. Expanding the RHS, the coefficient of x^3 is $-(u_1 + u_2 + u_3 + u_4)$ which must be 0 by comparing coefficients.

If
$$2 = 0$$
 in F, then $x^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x + 1 = (x+1)^4$ splits entirely in F.

- 21. Show that the following conditions are equivalent for fields $E \supseteq F$:
 - 1. E is the splitting field of a polynomial in F[x].
 - 2. [E:F] is finite and every irreducible polynomial in F[x] with a root in E splits completely in E[x].

Proof. $1 \implies 2$: Suppose E is the splitting field of $f \in F[x]$ where $\deg f = n$. Then f factors into n linear factors:

$$f = a(x - u_1) \cdots (x - u_n)$$

where $u_i \in E$ and since $E = F(u_1, \dots, u_n)$, this is a finite extension so [E : F] is finite. If $p \in F[x]$ is irreducible over F with a root $u \in E$, and let v be a root of p in a field $K \supseteq E$. Then since p is the minimal polynomial of both u and v so $F(u) \cong F(v)$. Let $\sigma : F(u) \to F(v)$ be an isomorphism. Since E is the splitting field of f over F(u) and E(v) is the splitting field of f over F(v), it follows from Theorem 3 that $E \cong E(v)$ by extending σ . Thus

$$\begin{split} [E:F(u)] &= [E(v):F(v)] \\ \Longrightarrow [E:F] &= [E:F(u)][F(u):F] \\ &= [E(v):F(v)][F(v):F] \\ &= [E(v):F] \end{split}$$

so since E is a vector space over F contained in E(v), we must have E = E(v), so $v \in E$. Thus, p splits completely in E[x], as desired.

 $2 \implies 1$: Since [E:F] is finite, E is a finite extension of F, so by Theorem 6, we have $E = F(u_1, \dots, u_n)$ for $u_i \in E$ algebraic over F. Let f_1, \dots, f_n be the minimal polynomials of u_1, \dots, u_n , respectively, in F[x]. Since each of the f_i has a root in E, it splits entirely in E[x], so does the product $f = f_1 \dots f_n$, and E is the splitting field of $f \in F[x]$.