Particle spectrograph

Wave operator and propagator

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$									
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$		† ^{αβ}	$-\frac{3k^2r_3}{2}$	0	0		$\sigma_{2}^{\#1}\dagger^{lphaeta}$		-
j	$f_{2}^{#1}\dagger^{\alpha\beta}$		0	0	0		$\tau_{2}^{\#1} \dagger^{\alpha\beta}$		
ω	$\omega_2^{\#1}$ † $^{lphaeta\chi}$		0	0	0		$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$		
		•						'	
-#2	$t_1^{r-1}\alpha$	0	0	0	0	0	0	0	
#	t_{1}^{-}	0	0	0	0	0	0	0	
7#2	$\sigma_1^{}\alpha$	0	0	0	0	0	0	0	
#	$\sigma_{1}^{-}\alpha$	0	0	0	$-\frac{2}{3k^2r_3}$	0	0	0	
* #1	$^{\prime}1^{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0	
7#	$O_1^+ + \alpha \beta$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0	
*1	$^{+}\alpha\beta$	$\frac{6}{(^2)^2 t_2}$	$\frac{\sqrt{2}}{(^2)^2 t_2}$	$\frac{1}{2}\sqrt{2}k$	0	0	0	0	

 $\sigma_{1}^{\#_1} \dagger^\alpha$

 $\sigma_1^{\#^2} \uparrow^{\alpha}$

$\sigma_{2}^{\#1}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}_{\alpha\beta\chi}$	•	$\omega_{0^{+}}^{\#1}$	£#1	£#2	$\omega_0^{\sharp 1}$
$\frac{2}{3k^2r_3}$	0	0	$\omega_{0^{+}}^{#1}$ †	0	0+	0+	ω ₀ -
0	0	0	$f_{0}^{#1}$ †	0	0	0	0
0	0	0	$f_{0+}^{#2}$ †	0	0	0	0
			$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0+}^{#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\sigma_{0^{+}}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3				
$\sigma_1^{\#2\alpha} == 0$	3				
$\tau_{1^{+}}^{\#1\alpha\beta} + i k \sigma_{1^{+}}^{\#1\alpha\beta} == 0$	3				
$\sigma_{1+}^{\#1}{}^{\alpha\beta} = \sigma_{1+}^{\#2}{}^{\alpha\beta}$	3				
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5				
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5				
Total constraints:	28				

_	$\sigma_0^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive and massless spectra

(No massless particles)

Unitarity conditions