تمارين محاولة : التمرين الأول :

نعتبر المتتالية (u_n) المعرفة بما يلي:

$$\begin{cases} u_{n+1} = 5u_n - n + \frac{1}{4}, n \in \mathbb{N} \\ u_n = 1 \end{cases}$$

- $u_{2} = u_{1} u_{2} = 1$
- 2. لتكن (٧, المتنالية المعرفة ب:

$$v_n = u_n - \frac{n}{4}, \forall n \in \mathbb{N}$$

بين أن المتتالية (٧,) متتالية هندسية q = 5 أساسها

- u_n من n و \mathbb{N} من n من n (u_n) أحسب نهاية المتنالية
 - 4. حدد بدلالة n المجموع التالي:

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

التمرين الثاني:

: نعتبر المتتالية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلى

$$\begin{cases} u_{n+1} = u_n^2 + \frac{1}{2}u_n, n \in \mathbb{N} \\ u_0 = \frac{1}{5} \end{cases}$$

- $0 < u_n < \frac{1}{4}$ لدينا $n \in \mathbb{N}$ لكل .1
 - 2. بين أن المتتالية (u_n) تناقصية.
- $u_n \le \frac{1}{5} \left(\frac{3}{4}\right)^n$ لدينا $n \in \mathbb{N}$ لكل 3.
 - $(u_n)_{n\in\mathbb{N}}$ أوجد نهاية المتتالية.

التمرين الثالث:

: نعتبر المتتالية $(u_n)_n$ المعرفة كما يلي

$$\begin{cases} u_n = \frac{6 + 4u_n}{3 + u_n}, n \in \mathbb{N} \\ u_0 = 1 \end{cases}$$

لتكن f الدالة العددية المعرفة على الجال $f(x) = \frac{6+3x}{3+x}$: كما يلي $I =]-1, +\infty$

$$3+x$$
 $f(I) \subset I$ يين أن $3+x$

- $.1 \le u_n < 3$ بين أن لكل n من \mathbb{N} لدينا 2.
 - 3. بین أن (u_n) تزایدیة و استنتج أنها متقاربة
 - (u_n) حدد نهاية المتنالية (u_n) .
- 5. لتكن المتتالية العددية (س) المعرفة كما یلی:

$$v_n = \frac{-3 + u_n}{2 + u_n}$$

- a. بين أن (v_n) متنالية هندسية محددا حدها الأول و أساسها.
- أكتب u_n بدلاله v_n أكتب أي .b التنالية (س).

التمرين الرابع:

نعتبر المتتالية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلى :

$$\begin{cases} u_n = \frac{1}{4}u_n + \frac{3}{2}, n \in \mathbb{N} \\ u_0 = \frac{5}{4} \end{cases}$$

- $n \in \mathbb{N}$ يبن أن $u_n < 2$ لكل 1.
- 2. أدرس رتابة المتتالية (u_n) و بين أنها متقاربة.
 - $n \in \mathbb{N}$ لکل $v_n = u_n 2$ نضع 3.
 - ين أن المتتالية $(v_n)_{n=1}$ متتالية .a هندسية.
- استنتج أن $u_n = 2 \frac{3}{4} \left(\frac{1}{4}\right)^n$ ديث .b

 (u_n) أم حدد نهاية المتنالية $n \in \mathbb{N}$

4. لكل "n ∈ N نضع:

بين أن
$$S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$$

$$S_n = 2n - 1 + \left(\frac{1}{4}\right)^n$$

التمرين الخامس:

نعتبر الدالة العددية أ المعرفة على

$$I = [0, 2]$$

$$f(x) = \sqrt[3]{-x^2 + 2x}$$

67

اً. أحسب f'(x) لكل x من f'(x) و ضع f

f تغيرات الدالة

- لدينا $x \in [0,2]$ لدينا $x \in [0,2]$ لدينا $0 \le f(x) \le 1$
- $0 < u_n < 1$ لدينا $n \in \mathbb{N}$ يين أن لكل 3.
- 4. أدرس رئابة المتتالية $(u_n)_{n\in\mathbb{N}}$ و استنتج أنها متقاربة.
 - أحسب النهاية u_n .

حلول التهارين

التمرين الأول:

 u_{2} u_{3} u_{4} u_{5} u_{7} u_{8}

$$\begin{cases} u_1 = 5u_0 - 0 + \frac{1}{4} = \frac{21}{4} \\ u_2 = 5u_1 - 1 + \frac{1}{4} = \frac{51}{2} \end{cases}$$

2. لنبين أن المتتالية هندسية \mathbb{N} من \mathbb{N}

$$v_{n+1} = u_{n+1} - \frac{n+1}{4} = 5u_n - n + \frac{1}{4} - \frac{n+1}{4}$$
$$= 5u_n - \frac{5n}{4} = 5\left(u_n - \frac{n}{4}\right) = 5v_n$$

ومنه فإن المتتالية هندسية أساسها 5 = q=5 وحدها الأول هو $v_0=u_0-\frac{0}{4}=1$ و

n عديد u_n بدلالة.

$$u_n = v_n + \frac{n}{4}$$
 لدينا $v_n = u_n - \frac{n}{4}$ لدينا

من جهة أخرى نعلم أن المتتالية (v_n)

هندسية و بالتالي حسب صيغة الحد العام لهذه المتتالية لدينا:

$$v_n = v_0 \times (5)^{n-0} = 5^n$$

 $= \frac{5(5^{n} - 1)}{4} + \frac{1}{4} \left(\frac{n(n+1)}{2} \right)$ $= \frac{1}{4} \left[5^{n+1} - 5 + \frac{n(n+1)}{2} \right], \forall n \in \mathbb{N}^{*}$

 $=\left(5^{1}+\frac{1}{4}\right)+\left(5^{2}+\frac{2}{4}\right)+\left(5^{3}+\frac{3}{4}\right)+\dots+\left(5^{n}+\frac{n}{4}\right)$

 $=(5^1+5^2+5^3+\ldots+5^n)+\frac{1}{4}(1+2+3+\ldots+n)$

 $S_n = u_1 + u_2 + u_3 + \dots$

 $=\frac{5(5^n-1)}{5}+\frac{1}{4}\left(\frac{n(n+1)}{2}\right)$

التمرين الثاني:

 $0 < u_n < \frac{1}{4}, \forall n \in \mathbb{N}$ لنبين أن .1

نستعمل البرهان بالترجع

 S_n حساب المجموع .4

$$0 < u_{\scriptscriptstyle 0} < \frac{1}{4}$$
 لدينا $u_{\scriptscriptstyle 0} = \frac{1}{5}$ لدينا

نفترض أن $u_n < \frac{1}{4}, \forall n \in \mathbb{N}$ و لنبين أن

$$0 < u_{n+1} < \frac{1}{4}, \forall n \in \mathbb{N}$$

 $0 < u_n < \frac{1}{4}, \forall n \in \mathbb{N}$: حسب الافتراض لدينا

$$0 < u_n < \frac{1}{4} \Rightarrow \begin{cases} 0 < u_n^2 < \frac{1}{16} \\ 0 < \frac{1}{2}u_n < \frac{1}{8} \end{cases}$$

$$\Rightarrow 0 < u_n^2 + \frac{1}{2}u_n < \frac{3}{16}$$

$$\Rightarrow 0 < u_n^2 + \frac{1}{2}u_n < \frac{1}{4}, (\frac{1}{16} < \frac{1}{4})$$

$$\Rightarrow 0 < u_{n+1} < \frac{1}{4}$$

$$0 < u_n < \frac{1}{4}, \forall n \in \mathbb{N}$$

$$0 < u_n < \frac{1}{4} \end{cases}$$

68

$$\begin{split} &\frac{1}{5} \left(\frac{3}{4}\right)^n \leq \frac{1}{4} \Leftrightarrow \frac{1}{5} \left(\frac{3}{4}\right)^n - \frac{1}{4} \leq 0 \\ &\Leftrightarrow \left(\frac{1}{5} \left(\frac{3}{4}\right)^n - \frac{1}{4} + \frac{3}{4}\right) \leq \frac{3}{4} \\ &\Leftrightarrow \frac{1}{5} \left(\frac{3}{4}\right)^n \left(\frac{1}{5} \left(\frac{3}{4}\right)^n + \frac{1}{2}\right) \leq \frac{1}{5} \left(\frac{3}{4}\right)^n \frac{3}{4} \\ &\Leftrightarrow \frac{1}{5} \left(\frac{3}{4}\right)^n \left(\frac{1}{5} \left(\frac{3}{4}\right)^n + \frac{1}{2}\right) \leq \frac{1}{5} \left(\frac{3}{4}\right)^{n+1} \\ &\Leftrightarrow u_{n+1} \leq \frac{1}{5} \left(\frac{3}{4}\right)^{n+1} \end{split}$$

حسب البرهان بالترجع لدينا:

$$u_n \le \frac{1}{5} \left(\frac{3}{4}\right)^n, n \in \mathbb{N}$$

 (u_n) نهاية المتتالية .4

$$\forall n \in \mathbb{N}, 0 < u_n \le \frac{1}{5} \left(\frac{3}{4}\right)^n$$
لدينا

و
$$\lim_{n\to\infty} \left(\frac{3}{4}\right)^n = 0$$
 فان $-1 < \frac{3}{4} < 1$ وفان و المعربة المعربة

$$\lim_{n\to\infty}u_n=0$$

التمرين الثالث:

$$f(I) \subset I$$
 لنبين أن .1

$$\forall x \in I. f'(x) = \frac{6}{(x+3)^2} > 0$$

و بالتالي الدالة f نزايدية قطعا على الجال

 $f(I) = \lim_{x \to -1^{-}} f(x), \lim_{x \to +\infty} f(x) =]1, 4[$ $|1, 4| \subset]-1, +\infty[$ $|2, 4| \subset]-1, +\infty[$

 $\forall n \in \mathbb{N}, 1 \leq u_n < 3$ لنبين أن 2.

نستعمل البرهان بالترجع

 $1 \le u_0 < 3$ لدينا $u_0 = 1$ إذن \leftarrow

 $1 \le u_n < 3, n \in \mathbb{N}$ نفترض أن \leftarrow

 $1 \le u_{n,1} < 3, \in \mathbb{N}$ نبين أن \leftarrow

نعلم أن f تزايدية قطعا على I و حسب $f(1) \le f(u_n) < f(3)$ إذن $1 \le u_n < 3$

2. لنبين أن المتتالية تناقصية $u_{n+1} - u_n = u_n^2 + \frac{1}{2}u_n - u_n = u_n \left(u_n - \frac{1}{2}\right)$ حسب ما سبق لدينا $\frac{1}{4}$ إذن إذن $u_{n+1}-u_n < 0$ و بالتالي $u_{n+1}-u_n - \frac{1}{2} < -\frac{1}{4}$ $u_n \leq \frac{1}{5} \left(\frac{3}{4}\right)^n, n \in \mathbb{N}$ if it is 3. نستعمل البرهان بالترجع $u_0 \le \frac{1}{5} \left(\frac{3}{4}\right)^0$ و بالنالي $u_0 = \frac{1}{5}$ لدينا \leftarrow $u_n \leq \frac{1}{5} \left(\frac{3}{4}\right)^n, n \in \mathbb{N}$ is identified the content of \bullet $u_{n+1} \leq \frac{1}{5} \left(\frac{3}{4}\right)^{n+1}, n \in \mathbb{N}$ ننبین أن \leftarrow حسب الافتراض $u_n \leq \frac{1}{5} \left(\frac{3}{4}\right)^n, n \in \mathbb{N}$ إذن $u_n\left(u_n+\frac{1}{2}\right) \leq \frac{1}{5}\left(\frac{3}{4}\right)^n\left(\frac{1}{5}\left(\frac{3}{4}\right)^n+\frac{1}{2}\right)$ $\Rightarrow u_n^2 + \frac{1}{2}u_n \le \frac{1}{5} \left(\frac{3}{4}\right)^n \left(\frac{1}{5} \left(\frac{3}{4}\right)^n + \frac{1}{2}\right)$ $\frac{1}{5} \left(\frac{3}{4}\right)^{n+1}$ و $\frac{1}{5} \left(\frac{3}{4}\right)^{n} \left(\frac{1}{5} \left(\frac{3}{4}\right)^{n} + \frac{1}{2}\right)$ لنقارن بين $\frac{1}{5} \left(\frac{3}{4}\right)^n \left(\frac{1}{5} \left(\frac{3}{4}\right)^n + \frac{1}{2}\right) - \frac{1}{5} \left(\frac{3}{4}\right)^{n+1}$ $=\frac{1}{5}\left(\frac{3}{4}\right)^n \left[\frac{1}{5}\left(\frac{3}{4}\right)^n + \frac{1}{2} - \frac{3}{4}\right]$

 $=\frac{1}{5}\left(\frac{3}{4}\right)^n \left|\frac{1}{5}\left(\frac{3}{4}\right)^n - \frac{1}{4}\right|$

 $\forall n \in \mathbb{N}, \left(\frac{3}{4}\right)^n \le 1, \frac{1}{5} < \frac{1}{4}$ فإن

Moutamadris.ma

9
$$f(1) = \frac{10}{4} \ge 1$$
 9 $f(3) = \frac{18}{6} = 3$ 9 $f(u_n) = u_{n+1}$

 $\forall n \in \mathbb{N}, 1 \leq u_{n+1} < 3$ ہالتالی

 $\forall n \in \mathbb{N}, 1 \leq u_n < 3$ إذن حسب البرهان بالترجع 3 البرهان المتتالية (u_n) تزايدية لنبين أن المتتالية (u_n) تزايدية يكفي أن نبين أن

 $u_{n+1} \ge u_n, \forall n \in \mathbb{N}$

نستعمل البرهان بالترجع

$$u_1 \ge u_0$$
 إذن $u_1 = \frac{5}{2}$ و $u_0 = 1$ لدينا

$$u_n \ge u_{n-1}, \forall n \in \mathbb{N}^*$$
 نفترض أن \leftarrow

$$u_{n+1} \ge u_n, \forall n \in \mathbb{N}$$
 لنبين أن \leftarrow

نعلم أن f تزايدية قطعا على I و حسب الافتراض

$$u_n \geq u_{n-1}, \forall n \in \mathbb{N}^*$$
 إذن $f(u_n) \geq f(u_{n-1})$ و هذا يعني $u_{n+1} \geq u_n, \forall n \in \mathbb{N}$ أن

ومنه فإن المتتالية (u_n) تزايدية.

المتتالية (u_n) تزايدية و مكبورة بالعدد 3 و بالتالي فإنها متقاربة.

 (u_n) قديد نهاية المتتالية (u_n) قديد نهاية المتتالية f و f و f و f ان f متصلة على g و g لكل g من g و g لكل g من g منقارية فإن g نهاية المتتالية g في خقق ما يلى : g

$$f(l) = l, l \in I$$

$$f(l) = l \Leftrightarrow \frac{6+4l}{3+l} = l \Leftrightarrow 6+4l = 3l+l^{2}$$

$$\Leftrightarrow l^{2} - l - 6 = 0$$

$$\Leftrightarrow l = 3, l = -2$$

$$\lim_{n \to \infty} u_{n} = 3 \text{ if}$$

$$v_{n} = \frac{-3+u_{n}}{2+u} \text{ .5}$$

$$\begin{split} v_{n+1} &= \frac{-3 + u_{n+1}}{2 + u_{n+1}} = \frac{-3 + \frac{6 + 4u_n}{3 + u_n}}{2 + \frac{6 + 4u_n}{3 + u_n}} \\ &= \frac{-9 - 3u_n + 6 + 4u_n}{6 + 2u_n + 6 + 4u_n} = \frac{-3 + u_n}{12 + 6u_n} \\ &= \frac{1}{6} \left(\frac{-3 + u_n}{2 + u_n} \right) = \frac{1}{6} v_n \end{split}$$

و بالتالي فإن المتتالية (v_n) متتالية هندسية أساسها $q=rac{1}{6}$ وحدها الأول

$$v_0 = \frac{-3 + u_0}{2 + u_0} = \frac{-2}{3}$$

n كتابة u_n بدلالة (b

حسب صيغة الحد العام لمتتالية هندسية نجد أن:

$$v_n = \frac{-2}{3} \left(\frac{1}{6}\right)^n, n \in \mathbb{N}$$

من جهة أخرى لدينا:

$$v_n = \frac{-3 + u_n}{2 + u_n} \Leftrightarrow 2v_n + v_n u_n = -3 + u_n$$
$$\Leftrightarrow u_n (1 - v_n) = 3 + 2v_n$$

$$\Leftrightarrow u_n = \frac{3 + 2v_n}{1 - v_n} = \frac{3 - \frac{4}{3} \left(\frac{1}{6}\right)^n}{1 + \frac{2}{3} \left(\frac{1}{6}\right)^n}, n \in \mathbb{N}$$

التمرين الرابع:

 $u_n < 0, n \in \mathbb{N}$ لنبين أن 1

$$u_0 < 2$$
 إذن $u_0 = \frac{5}{4}$ لدينا \leftarrow

$$u_n < 2, n \in \mathbb{N}$$
 نفترض أن \leftarrow

$$u_{n+1} < 2, n \in \mathbb{N}$$
 لنبين أن \leftarrow

$$u_n < 2 \Leftrightarrow \frac{1}{4}u_n + \frac{3}{2} < \frac{1}{4} \cdot 2 + \frac{3}{2}$$

$$\Leftrightarrow u_{n+1} < 2, n \in \mathbb{N}$$

المتتاليات العددية: الثانية باك

مرين احامس. 1. حساب الدالة المشتقة ووضع جدول

التغيرات

$$\forall x \in]0,2[,f'(x)] = \frac{-2x+2}{3\sqrt[3]{(-x^2+2x)^2}}$$

جدول تغيرات الدالة أ

x	0		1	+00
f'(x)		+	0	
f(x)	0_		7	0

 $0 \le f(x) \le 1, x \in [0,2]$ 1. گنبین أن

من خلا جدول التغيرات نستنتج أن

گن (1) گن $f(x) \in [0,2], 0 \le f(x) \le f(1)$

. $0 \le f(x) \le 1, x \in [0,2]$ قصوى للدالة أي أي أي أي

 $0 < u_n < 1, n \in \mathbb{N}$.3

نوظف البرهان بالترجع

 $.0 < u_0 < 1$ إذن $= \frac{1}{2}$ لدينا \leftarrow

 $0 < u_n < 1, n \in \mathbb{N}$ نفترض أن \leftarrow

 $0 < u_{n+1} < 1, n \in \mathbb{N}$ لنبين أن \leftarrow

و بالتالي حسب البرهان بالترجع لدينا $u_n < 2, n \in \mathbb{N}$

2. لنبين أن المتتالية تزايدية

$$u_{n+1} - u_n = \frac{1}{4}u_n + \frac{3}{2} - u_n = \frac{3}{2} - \frac{3}{4}u_n$$
$$= \frac{3}{4}(2 - u_n)$$

با أن $u_n < 2$ فإن $u_n < 2$ و بالتالي $u_{n+1} - u_n > 0$

إذن المتتالية (س) تزايدية.

المتنالية (u_n) تزايدية و مكبورة بالعدد 2 إذن فهى متقاربة.

 $v_n = u_n - 2, n \in \mathbb{N}$.3

a) لنبين أن المتتالية هندسية

$$v_{n+1} = u_{n+1} - 2 = \frac{1}{4}u_n + \frac{3}{2} - 2$$

$$= \frac{1}{4}u_n - \frac{1}{2} = \frac{1}{4}(u_n - 2) = \frac{1}{4}v_n$$

ون $q = \frac{1}{4}$ متتالیة هندسیة أساسها پا

$$v_0 = u_0 - 2 = \frac{-3}{4}$$
 حدها الأول

 (u_n) خديد نهاية المتتالية (b

حسب صيغة الحد العام لمتتالية هندسية لدينا:

$$v_n = -\frac{3}{4} \left(\frac{1}{4}\right)^n$$

 $v_n = u_n - 2 \Leftrightarrow u_n = v_n + 2 = 2 - \frac{3}{4} \left(\frac{1}{4}\right)^n$

$$\lim_{n\to\infty} \left(\frac{1}{4}\right)^n = 0$$
 فإن $-1 < \frac{1}{4} < 1$

 $\lim_{n\to+\infty}u_n=0$ بالتالي

4. حساب المجموع .4

نعلم أن f تزايدية قطعا على $\left[0,1\right]$ و حسب الافتراض

$$f\left(0
ight) < f\left(u_{n}
ight) < f\left(1
ight)$$
 إذن $0 < u_{n} < 1, n \in \mathbb{N}$

البرهان بالترجع لدينا $0 < u_{n+1} < 1$. $0 < u_n < 1, n \in \mathbb{N}$

$$(u_n)$$
 4. دراسة رتابة المتنالية $u_n - u_{n-1}$ لندرس إشارة $u_n - u_{n-1}$ الغرض نستعمل البرهان بالترجع.

- $u_1 u_0 > 0$ لدينا \leftarrow
- $\forall n \in \mathbb{N}^*, u_n u_{n-1} > 0$ نفترض أن \leftarrow
 - $\forall n \in \mathbb{N}, u_{n+1} > u_n$ لنبين أن \leftarrow

نعلم أن f نزايدية قطعا على $\left[0,1\right]$ وحسب الافتراض

 $u_n>u_{n-1}$ إذن $u_n>f(u_{n-1})>f(u_{n-1})$ يعني $u_n>u_{n-1}>u_n$ و منه فإن المتتالية $u_n>u_n$ تزايدية و مكبورة بالعدد 1 فإنها متقاربة.

 (u_n) نهاية المتتالية .5

جا أُن f دالة متصلة على الجال [0,1] و $n \in \mathbb{N}$ لكل $u_n \in [0,1]$ و $f([0,1]) \subset [0,1]$ و $u_{n+1} = f(u_n)$ متقاربة إذن l نهاية $l \in [0,1]$ و f(l) = l نهايى . $l \in [0,1]$ و f(l) = l

$$f(l) = l \Leftrightarrow \sqrt[3]{-l^2 + 2l} = l$$

$$\Leftrightarrow -l^2 + 2l = l^3$$

$$\Leftrightarrow l^3 + l^2 - 2l = 0$$

$$\Leftrightarrow l(l^2 + l - 2) = 0$$

$$\Leftrightarrow l(l - 1)(l + 2) = 0$$

$$\Leftrightarrow l = 0, l = 1, l = -2$$

$$\lim_{n\to+\infty}u_n=1$$

أسارين للإنجساز

التمرين الأول:

لتكن f الدالة العددية المعرفة على الجال

$$f(x) = \frac{5x+2}{x+3}$$
 : بما يلي $I = [2,3]$

- ر. ضع جدول تغيرات الدالة f ثم بين أن $f(I) \subset I$
- نعتبر المتتالية العددية (u_n) المعرفة بما يلى :

$$\begin{cases} u_{n+1} = \frac{5u_n + 2}{u_n + 3}, n \in \mathbb{N} \\ u_0 = 2 \end{cases}$$

- $.2 \le u_n \le 3, n \in \mathbb{N}$ بين أن (a
- بين أن (u_n) منتالية نزايدية.
- استنتج أن (u_n) متقاربة ثم حدد نهايتها.

التمرين الثاني:

نعتبر المتتالية (س) المعرفة ب:

$$\begin{cases} u_{n+1} = \frac{3u_n^2 + 2}{3u_n + 1}, n \in \mathbb{N} \\ u_n = 1 \end{cases}$$

1. بين أن

$$\forall n \in \mathbb{N}: 2-u_{n+1} = \frac{3u_n}{1+3u_n}(2-u_n)$$

- $0 < u_n < 2, n \in \mathbb{N}$ بين بالترجع أن .2
 - 3. بين أن المتتالية (u_n) تزايدية و استنتج أنها متفارية.
 - $\forall n \in \mathbb{N}, \frac{3u_n}{1+3u_n} < \frac{6}{7}$ بين أن .4
- $\forall n \in \mathbb{N}, 2-u_n < \left(\frac{6}{7}\right)^n$ استنتج أن .5
 - . $\lim_{n\to\infty}u_n$ أحسب. 6

التمرين الثالث:

لتكن f الدالة العددية المعرفة على الجال

$$f(x) = \frac{x}{1 + \sqrt[3]{x}}$$
: با يلي \mathbb{R}^+

- . $\forall x \in \mathbb{R}^+, f(x) \le x$ بين أن 1.
- f بالدالة I = [0,1] بالدالة .2
 - : لتكن المتنالية (u_n) المعرفة بما يلى 3

$$\begin{cases} u_{n+1} = f(u_n), n \in \mathbb{N} \\ u_0 = \frac{1}{2} \end{cases}$$

- $\forall n \in \mathbb{N}, 0 \le u_n \le 1$ ققق أن (a
- استنتج أن (u_n) متقاربة و أحسب (b . $\lim u_n$

التمرين الرابع:

نعتبر الدالة العددية f المعرفة ب:

$$f(x) = \sqrt{\frac{x+3}{2}}$$

بين أن الدالة f رتيبة . قطعًا على الجال $I=\left[\frac{1}{2};\frac{3}{2}\right]$ غم استنتج . f(I)

نعتبر المتتالية العددية

$$(u_n)$$
 المعرفة ب:

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{\frac{u_n + 3}{2}} \end{cases}$$

- $(\forall n \in IN) : \frac{1}{2} \le u_n \le \frac{3}{2} : بين أن (a)$
 - b بين أن المتتالية (u_n) تزايدية .
- بين أن المتتالية (u_n) متقاربة , ثم حدد (c $\lim_{n\to\infty} u_n$

www.bestcours.net