Az \mathbb{R}^n tér, vektorműveletek azonosságai, (generált) altér (példák), (triviális) lineáris kombináció, alterek metszete, generátorrendszer, lineáris függetlenség (kétféle definíció). Lin.ftn rendszer hízlalása, generátor-rendszer ritkítása, kicserélési lemma, FG-egyenlőtlenség és következménye.

• Az \mathbb{R}^n tér

Def: $A \times B = \{(a,b) : a \in A, b \in B\}$ az A és B-beli elemekből álló rendezett párok halmaza. Hasonlóan $A_1 \times A_2 \times \cdots \times A_n = \{(a_1,a_2,\ldots,a_n) : a_i \in A_i \ \forall i\}$ a rendezett n-esek halmaza.

 $A^n := A \times A \times \cdots \times A$ az n-szeres Decartes-szorzat jelölése.

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságú vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektorként gondolunk rájuk.

Példa:

$$\begin{pmatrix} e \\ \pi \\ 42 \end{pmatrix} \in \mathbb{R}^3, \underline{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n, \text{ ill. } e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n, \text{ut\'obbi esetben az 1-es fel\"ulr\'ol az i-dik helyen \'all.}$$

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságú vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektroként gondolunk rájuk. **Def:** $\underline{0}$, $\underline{e_i}$

(2) Ha n világos a szövegkörnyezetből, akkor \mathbb{R}^n elemeti vektoroknak, \mathbb{R} elemeit pedig skalároknak fogjuk nevezni.

Konvenció: A jelölés során az oszlopvektorokat aláhúzással különöbztetjük meg a skalároktól.

Megj: A vektorok tehát itt és mont nem "irányított szakaszok", hanem ennél általánosabb fogalmat takarnak: az irányíott szakasok is tekinthetők vektoroknak, de egy vektor a mi tárgylásunkban nem feltétlenül irányított szakasz.

• Vektorműveletek azonosságai

Állítás: Az \mathbb{R}^n tér vektoraival történő számolásban néhány fontos szabály sokat segít. Tetszőleges $\underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$ vektorokra és $\lambda, \mu \in \mathbb{R}$ skalárokra az alábbiak teljesülnek.

- (1) u + v = v + u (összeadás kommutatív)
- (2) $(\underline{u} + \underline{v}) + \underline{w} = \underline{v} + (\underline{u} + \underline{w})$ (az összeadás asszociatív)
- (3) $\lambda(\underline{u} + \underline{v}) = \lambda \underline{u} + \lambda \underline{v}$ (egyik disztributivitás)
- (4) $(\lambda + \mu)\underline{u} = \lambda\underline{u} + \mu\underline{u}$ (másik disztributivitás)
- (5) $(\lambda \mu)\underline{u} = \lambda(\mu \underline{u})$ (skalárral szorzás asszociativitása)

Biz: Mivel mindkét művelet koordinátánként történik, elég az egyes azonosságokat koordinátánként ellenőrizni. Ezek viszont éppen a valós számokra (azaz a skalárokra) vonatkozó, jól ismert szabályok.

Konvenció:
$$v \in \mathbb{R}^n$$
 esetén $-v := (-1) \cdot v$.

Megj: Vektorok között nem csak az összeadás, hanem a kivonás is értelmezhető: $\underline{u} - \underline{v} := \underline{u} + (-1)\underline{v}$. Ezáltal a kivonás is egyfajta összeadás, tehát az összeadásra vonatkozó szabályok értelemszerű változatai a kivonásra is érvényesek.

A vektorokkal történő számoláskor érvényes szabályok nagyon hasonlók a valós számok esetén megszokott szabályokhoz.

• Generált altér (példák)

Def: $\emptyset \neq V \subseteq \mathbb{R}^n$ az \mathbb{R}^n tér altere (jel: $V \leq \mathbb{R}^n$), ha V zárt a műveletekre: $\underline{x} + \underline{y}, \lambda \underline{x} \in V$ teljesül $\forall \underline{x}, \underline{y} \in V$ és $\forall \lambda \in \mathbb{R}$ esetén.

Példa: \mathbb{R}^2 -ben tetszőleges origón áthaladó egyenes pontjaihoz tartozó vektorok alteret alkotnak. \mathbb{R}^3 -ban tetszőleges origón áthaladó sík vagy egyenes pontjainak megfelelő vektorok alteret alkotnak.

Kérdés: Mik az \mathbb{R}^n tér alterei, és hogyan lehet ezeket megkapni?

Megf: Ha
$$V \leq \mathbb{R}^n, \underline{x}_1, \underline{x}_2, \dots, \underline{x}_k \in V$$
 és $\lambda_1, \dots, \lambda_k \in \mathbb{R}$, akkor $\sum_{i=1}^k \lambda_i \underline{x}_i = \lambda_1 \cdot \underline{x}_1 + \dots + \lambda_k \cdot \underline{x}_k \in V$

Def: Az $\underline{x}_1, \dots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \dots, \underline{x}_k \rangle$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza.

Megf: (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \forall i \Rightarrow \cap_i V_i \leq \mathbb{R}^n$ (2) $\{\underline{0}\} \leq \mathbb{R}^n$. (3) $\mathbb{R}^n \leq \mathbb{R}^n$. Def: \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

• Triviális lineáris kombináció

Def: A $\sum_{i=1}^k \lambda_i \underline{x}_i$ kifejezés az $\underline{x}_i, \dots, \underline{x}_k$ lineáris kombinációja. Triviális lineáris kombináció: $0 \cdot \underline{x}_1 + \dots + 0 \cdot \underline{x}_k$. **Megf:** $(V \leq \mathbb{R}^n) \iff (V \text{ zárt a lineáris kombinációra})$

Biz: \Rightarrow : $\lambda_i \underline{x}_i \in V \forall i$ esetén, így a $\sum_{i=1}^k \lambda_i \underline{x}_i$ összegük is V-beli.

 \Leftarrow : Ha $\underline{x,y} \in V$ és $\lambda \in \mathbb{R}$, akkor $\underline{x} + \underline{y}$ ill. $\lambda \underline{x}$ lineáris kombinációk. Mivel V zárt a lineáris kombinációra, ezért $\underline{x} + y$, $\lambda \underline{x} \in V$. Ez tetszőleges x, y, λ esetén fennáll, tehát V zárt a műveletekre, vagyis altér.

• Alterek metszete

Def: Az $\underline{x}_1, \dots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \dots, \underline{x}_k \rangle$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza.

Megf: (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \forall i \Rightarrow \cap_i V_i \leq \mathbb{R}^n$ (2) $\{\underline{0}\} \leq \mathbb{R}^n$. (3) $\mathbb{R}^n \leq \mathbb{R}^n$. Def: \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

• Generátorrendszer

Def: Az $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ vektornak a $V \leq \mathbb{R}^n$ altér generátorrendszerét alkotják, ha $\langle \underline{x}_1, \dots, \underline{x}_k \rangle = V$.

Példa: e_1, e_2, \ldots, e_n az \mathbb{R}^n generátorrendszere, hisz minden \mathbb{R}^n -beli vektor előáll az egységvektrorok lineáris kombinációjaként, azaz $\langle e_1, \ldots, e_n \rangle = \mathbb{R}^n$.

Ha \mathbb{R}^2 -ben ha \underline{u} és \underline{v} nem párhuzamosak, akkor $\{\underline{u},\underline{v}\}$ generátorrendszer, hiszen bármely \underline{z} vektor előállítható \underline{u} és \underline{v} lineáris kombinációjaként. (Ehhez \underline{u} és \underline{v} egyenesére kell a "másik" vektorral párhuzamosan vetíteni az előállítandó \underline{z} .) Hasonlóan, ha \mathbb{R}^3 -ban három vektor nem esik egyanarra az origón átmenő síkra, akkor ez a három vektor generátorrendszert alkot.

• Lineáris függetlenség 1.

Def: Az $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ vektorok lineárisan függetlenek, ha a nullvektort csak a triviális lineáris kombinációjuk állítja elő: $\lambda_1\underline{x}_1 + \dots + \lambda_k\underline{x}_k = \underline{0} \Rightarrow \lambda_1 = \dots = \lambda_k = 0$

• Lineáris függetlenség 2.

Lemma: $\{\underline{x}_1, \dots, \underline{x}_k\}$ lineárisan független vektorrendszer \iff egyik \underline{x}_i sem áll elő a többi lineáris kombinációjaként.

Biz: A fenti állítások tagadásainak ekvivalenciáját igazoljuk.

- 1. Tfh $\{\underline{x}_1,\dots,\underline{x}_k\}$ **nem** lineárisan független, azaz $\lambda_1\underline{x}_1+\dots+\lambda_k\underline{x}_k=\underline{0}$ és $\lambda_i\neq 0$. Ekkor \underline{x}_i előállítható a többiből: $\underline{x}_i=\frac{-1}{\lambda_i}\cdot(\lambda_1\underline{x}_1+\dots+\lambda_{i-1}\underline{x}_{i-1}+\lambda_{i+1}\underline{x}_{i+1}+\dots\lambda_k\underline{x}_k)$.
- 1. Most tfh valamelyik \underline{x}_i előáll a többi lineáris kombinációjaként: $\underline{x}_i = \lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k$. Ekkor $\{\underline{x}_1, \ldots, \underline{x}_k\}$ nem lineárisan független, hiszen a nullvektor megkapható nemtriviális lineáris kombinációként: $\underline{0} = \lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + (-1) \cdot \underline{x}_i + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k$.