```
In [10]:
         import pandas as pd
         import numpy as np
         from statsmodels.tsa.statespace.sarimax import SARIMAX
         import matplotlib.pyplot as plt
         # Загрузка данных
         url = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/airlin
         data = pd.read_csv(url, header=0, index_col=0, parse_dates=True).squeeze(
         # Преобразуем индекс, чтобы был в формате временного ряда с указанием час
         data.index = pd.date_range(start=data.index[0], periods=len(data), freq='
         # Преобразование данных в логарифмический масштаб
         data_log = np.log(data)
         # Определение параметров модели
         order = (1, 1, 1)
         seasonal_order = (1, 1, 1, 12) # где 12 — период сезонности (месяцы)
         # Создание и обучение модели SARIMAX
         try:
             model = SARIMAX(data_log,
                             order=order,
                              seasonal_order=seasonal_order,
                              enforce_stationarity=False,
                              enforce invertibility=False,
                              initialization='approximate_diffuse')
             results = model.fit(maxiter=200, method='powell', disp=True)
             if not results.mle_retvals['converged']:
                 print("Модель не сходится. Попробуйте изменить параметры или мето
             else:
                 print("Модель успешно обучена.")
                 print(results.summary())
                 # Прогнозирование будущих значений
                 forecast = results.get forecast(steps=24)
                 forecast_ci = forecast.conf_int()
                 forecast_values = np.exp(forecast.predicted_mean)
                 forecast_ci = np.exp(forecast_ci)
                 # Визуализация прогноза
                 plt.figure(figsize=(10, 5))
                 plt.plot(data.index, data, label='Original')
                 plt.plot(forecast_values.index, forecast_values, label='Forecast'
                 plt.fill_between(forecast_values.index, forecast_ci.iloc[:, 0], f
                 plt.title('Forecast vs Actuals')
                 plt.legend()
                 plt.show()
         except Exception as e:
             print("Произошла ошибка при подгонке модели:", e)
```

Optimization terminated successfully.

Current function value: -0.890834

Iterations: 7

Function evaluations: 528

Модель успешно обучена.

SARIMAX Results

========	=========	========	=======	========		====	
======================================			Passe	ngers No.	Observations:		
144			1 4330	inger 5 ivor	ODSCI VACIONS!		
Model:	SARII	MAX(1, 1, 1	1)x(1, 1, 1	, 12) Log	ikelihood		
128.280 Date:		Mon, 15 Apr 2024 AIC					
-246.560		11011, 13 Apr 2024 AIC					
Time:		14:04:03 BIC					
-231.711							
Sample: -240.526			01-01	-1949 HQIC			
-240.320			- 12-01	-1960			
Covariance Type:			opg				
	=========	=======	=======	========	:=======	=====	
====	coef	std err	Z	P> z	[0.025	0.	
975]				' '	•		
 ar.L1	0.1422	a 2ag	0 682	0.495	-0 267		
0.551	011422	01203	01002	01433	01207		
	-0.5352	0.184	-2.906	0.004	-0.896	_	
0.174	7 240 07	0.000	0.000	0.000	0.004		
ar.S.L12 0.001	-7.319e-07	0.000	-0.002	0.999	-0.001		
	-0.5573	0.109	-5.137	0.000	-0.770	_	
0.345							
sigma2	0.0014	0.000	8.498	0.000	0.001		
0.002 =======	=========	========	=======		:========	=====	
=======							
Ljung-Box (L1) (Q):			0.00	Jarque-Bera	a (JB):		
7.70 Prob(Q):			0.95	Prob(JB):			
0.02			0133	1100(30):			
Heteroskedasticity (H):			0.78	Skew:			
0.03			0.20				
Prob(H) (two-sided): 4.13			0.39	Kurtosis:			
	=========				-========	=====	
=======							

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In []: