

# **MP600**

# **Datasheet**

Revision 0.8 2007/03/08





### **TABLE OF CONTENT**

| 1 G  | GENERAL DESCRIPTION3 |                                 |    |  |  |  |  |  |  |
|------|----------------------|---------------------------------|----|--|--|--|--|--|--|
| 2 F  | FEATURES4            |                                 |    |  |  |  |  |  |  |
| 3 B  | BLOC                 | K DIAGRAM                       | 7  |  |  |  |  |  |  |
| 4 F  | UNC                  | TIONAL DESCRIPTION              | 8  |  |  |  |  |  |  |
| 4.1  | IM                   | IAGE PROCESSING UNIT (IPU)      | 8  |  |  |  |  |  |  |
| 4.2  | IM                   | IAGE DISPLAY UNIT (IDU)         | 8  |  |  |  |  |  |  |
| 4.3  | JF                   | PEG CODEC                       | 9  |  |  |  |  |  |  |
| 4.4  | С                    | PU                              | 10 |  |  |  |  |  |  |
| 4.5  | M                    | EMORY MAPPING                   | 10 |  |  |  |  |  |  |
| 4.6  | D                    | MA Controller                   | 11 |  |  |  |  |  |  |
| 4.7  | М                    | EMORY CARD CONTROLLER           | 12 |  |  |  |  |  |  |
| 4.8  | U                    | SB Device Controller            | 12 |  |  |  |  |  |  |
| 4.9  | Αι                   | UDIO INTERFACE UNIT (AIU)       | 12 |  |  |  |  |  |  |
| 4.10 | 0 G                  | PIO                             | 14 |  |  |  |  |  |  |
| 5 C  | PER                  | ATION MODES                     | 16 |  |  |  |  |  |  |
| 6 P  | IN C                 | ONFIGURATION                    | 17 |  |  |  |  |  |  |
| 7 E  | LEC                  | TRICAL CHARACTERISTICS          | 30 |  |  |  |  |  |  |
| 7.1  | Aı                   | BSOLUTE MAXIMUM RATINGS         | 30 |  |  |  |  |  |  |
| 7.2  | R                    | ECOMMENDED OPERATING CONDITIONS | 30 |  |  |  |  |  |  |
| 7.3  | D                    | C Characteristics               | 30 |  |  |  |  |  |  |
| 7.4  | C                    | APACITANCE                      | 31 |  |  |  |  |  |  |
| 7.5  | A                    | C Characteristics               | 31 |  |  |  |  |  |  |
| 7    | 7.5.1                | Reset Timing                    | 31 |  |  |  |  |  |  |
| 7    | 7.5.2 Input Clock    |                                 | 31 |  |  |  |  |  |  |
| 7    | 7.5.3                | SDRAM Interface Timing          |    |  |  |  |  |  |  |
| 7    | 7.5.4                | Display Output                  |    |  |  |  |  |  |  |
| 7.6  | P                    | ACKAGE DIMENSIONS               |    |  |  |  |  |  |  |
| 8 R  | REVIS                | SION HISTORY                    | 41 |  |  |  |  |  |  |

### 1 General Description

The MP600 is a high integration SOC (System On Chip) for digital picture frame application. It implements all necessary peripherals in one chip, including a high performance JPEG Codec engine (Decoding Speed: 32MPixel/sec), Audio DAC with Speaker Amplifier and Headphone driver, USB 2.0 HS Device, USB 1.1 Host, Digital TCON for glue-less LCD interface and etc.

The central part of the chip is a high performance 32-bit RISC CPU which allows flexible system control. It contains 4KB of Instruction Cache, 2KB of Data Cache and 24-Kbyte scratch pad memory to save the memory fetch overhead and hence boost the software performance further.

High qualities Audio DAC & Power Amplifier are integrated to MP600. It can playback MP3, WMA as the background music when playing Slide-Show. It also supports Motion JPEG captured by digital camera up to VGA@30FPS.

The Image Display Unit (*IDU*) is implemented to provide digital TV signals up to 1920x1080i which allows HD-quality PHOTO to be displayed on LCD /Plasma TVs through external HDMI Tx chip. A scaling unit is included for scan conversion. It also supports On-Screen Display with high-resolution for friendly user interface.

MP600 provides a versatile hardwired interface to support most of popular memory card standards, including Compact Flash, SD/ mini SD/ Micro SD (It can support SD2.0 for SDHC specification), MMC/RS-MMC, xD and Memory Stick/Pro. It offers the maximum flexibility and reliability to the customers.

For data transfer to/from PC/Pict-Bridge enabled printer, it provides both USB and popular UART interfaces. It includes a USB 2.0 device controller that is compliant with the USB 2.0 standard. 4 endpoints have been implemented to achieve variety of requirements for image/audio data upload or download. It also includes an IR (Infra-Red) controller supporting NEC Button and Remote Point Mouse protocols.

For flexible peripheral control and user interface, it provides several GPIOs, including PWM output. The mass storage interface is designed to support most types of NAND Flash (Support SLC/MLC and multiple-die package NAND Flash).

With the abundant features and superior performance and quality, MP600 provides a best cost-effective solution for digital photo frame application.

#### 2 Features

#### Power

- Dual Power. 1.8V for core, and 3.3V/1.8V for I/O

#### Image Processing Unit

 Fine-step hardware scaling engine to scale up and down images for resolution conversion or image zooming.

#### JPEG Codec

- Support JPEG resolution up to 16MPixel
- High speed JPEG compression and decompression (32MPixel/sec)
- Support image sub-sampling after JPEG decompression
- Support image rotation (by S/W) / Zoom In / Panning.

#### Audio/Video decoding accelerator

- Full bit-rate support of MP3, WMA
- Hardware Motion-JPEG up to VGA@30fps

#### Memory Interface

- SDRAM support
- Support 4Mx16 SDRAM for Pure Digital Picture Frame application.
- Support 8Mx16 / 16Mx 16 DDR for TV Box application.
- Variety of NAND Flash memory support (for MP600B only), including SLC/MLC, multiple-die NAND Flash with multi-chip-select (e.g. 8Gb/16Gb/32Gb), Small block, Big block and etc. for maximum flexibility
- Support NOR-type Flash memory, up to 4MB with x8 or x16-bit data width for both BIOS access and data storage. MP600A can only support 8-bit data width of NOR Flash.
- Support program boot up from NAND flash memory

#### Memory Card and Hard drive Interface

- MP600A
  - Support MMC(Multi-Media Card), Security Disk (SD1.1 & SDHC with SD 2.0 ), Memory Stick / Pro.
- MP600B
  - Support Compact Flash, Multi-Media Card, Security Disk (SD1.1 & SDHC with SD 2.0), Memory Stick Pro, xD Picture Card
- Support multi-block DMA

#### Embedded Audio DAC & Power Amplifier

- Audio DAC
- High performance Audio DAC (16bit, 93dB)
- Stereo Headphone Driver
- Stereo Speaker Amplifier up to 1 Watt (0.5W +0.5W)

#### USB Interface

- MP600A embedded USB Host / MP600B embedded USB Device & Host
- High-speed USB 2.0 High-Speed device function with embedded USB PHY
- Embed USB1.1 Host Controller to connect to USB thumb-drive /Digital Camera
- Support Direct Print function (Pict-Bridge)
- Power saving control to comply with USB spec.
- Support uploading and downloading capability
- Support USB Mass Storage Class for both High Speed Device and Full Speed Host functions

#### Display Interface

- MP600A
  - · Digital CCIR 656
- MP600B
  - · Embedded Digital TCON for Digital Panel
  - Support digital YUV data output conforming to ITU-R BT.601/656/709 up to D3 resolution (1920x1080i)
  - Support digital RGB888/666/565 data output up to WXGA @50Hz (1366x768) / XGA @60Hz (1024x768).
  - Maximum Pixel Rate: 75MPixel/sec

#### Colorful Graphic OSD

- Support On-Screen-Display with high resolution for content-rich display user-interface
- 2<sup>nd</sup> OSD engine supports 2-, 4- or 8-bit palette-indexed Bit-mapped On Screen Display (OSD).

#### CPU & Misc.

- Embedded high performance 32-bit RISC processor with 4KB instruction cache and 2KB data cache, 24KB scratch-pad memory and 512MB memory addressing capability
- BIOS storage in Flash memory with in-system-programming (ISP) capability
- Embedded phase-locked loop(PLL) with independently programmable multiple clock outputs
- Support up to 120MHz system clock
- Flexible GPIO control for variety of peripheral control.
- Most pins can be re-configured as GPIO pins when their primary-defined functions are not in use

#### Package

- MP600A 128-pin QFP (14mm x 20mm x 2.75mm)
- MP600B 216-pin LQFP (24mm x 24mm x 1.4mm)
- System Development Kit & Software Support



- Support real time-OS
- u-iTron
- Schematics and application note
- UI (User Interface) Builder

# **Block diagram**



Figure 3-1 MP600 Block Diagram

### 4 Functional Description

The MP600 is a high-integration SOC (System On Chip) for DPF (Digital Picture Frame) application. It implements all necessary peripherals in one chip.

### 4.1 Image Processing Unit (IPU)

To be capable of full screen display and image zoom-in function for variable size of pictures, the MP600 embeds a flexible scaling engine. The core of image resizing is a bi-linear scaler and two image sub-sampling blocks. Image shrinking and enlargement are both supported. By applying multi-pass image scaling, the allowable processing resolution is virtually unlimited.

#### 4.2 Image Display Unit (IDU)

The Image Display Unit supports variety of digital LCD interface. Besides, it also supports digital video outputs as ITU. BT.601, BT.656, and BT.709 up to D4 resolution(1920x1080i). A programmable color space conversion unit is also implemented to support both RGB and YCbCr/YPbPr outputs.

MP600 provides great flexibility in display timing settings. Typical display output timing is illustrated in Fig. 4-2-1 and Fig. 4-2-2. All the parameters shown in the figures are programmable.



Fig. 4-2-1. Display output horizontal timing diagram



Fig. 4-2-2. Display output vertical timing diagram

A bitmap OSD is also included. 8 , 4 or 2 bits index per pixel can be chosen. With 8-bit index, 128 OSD colors and 8 programmable blending colors can be selected. Or with 2-bit index, only 3 programmable blending colors can be used. But the latter case will save the required memory size of the OSD bitmap. Through the Palette registers that specify the OSD color and blending ratio, it allows quite flexible and content-rich user interface.

A digital TCON is also included to support glue-less connection with variety of panels. With most parameters programmable, it can support variety of panels with maximum flexibility.

#### 4.3 JPEG CODEC

A standard JPEG Compression/Decompression engine is embedded. It is compliant to the Baseline JPEG Standard. It accepts image data in YCbCr 4:2:2 or 4:4:4 format. YCbCr 4:2:0 compression format is also supported, but the source image in DRAM buffer should be in 4:2:2 format still. CDU will perform the sub-sampling on Cb and Cr.



Table 4-3-1. MCU types supported by CDU

It is capable of processing image with resolution up to 4Kx4K. The image source and compressed stream are both acquired from and delivered to SDRAM through DMA. It needs no CPU intervention for data transfer. Single cycle throughput can be achieved to allow real-time capturing. It can always catch up and deliver high performance for continuous image or video capturing.

It supports two sets of Quantization and Huffman tables respectively. They are both programmable for better compression quality adjustment. The latter is usually fixed in factory, while the Quantization table can be adjusted with pre-determined values for image quality and compression ratio tradeoff controlled by the end users.

It also supports Restart Marker insertion and detection when enabled. Other markers or headers should be handled by the firmware instead.

The JPEG module consists of System Bus Interface, configuration registers, dedicated SRAM modules, system memory interface, Scaling Unit and Control Unit.

CPU can configure and start/stop encoding/decoding process via the 32-bit System Bus Interface. In encoding mode, it reads in images pixel data, from external system SDRAM and outputs the encoded stream data back to SDRAM.

While decoding, stream data is read from SDRAM, with header information (Huffman tables, quantization tables, etc.) already peeled by CPU. Pixel data is output MCU by MCU.

An interrupt is triggered when encoding/decoding process is finished.

#### **4.4 CPU**

The MP600 embeds a 32-bit RISC CPU, with a 32-bit MAC unit and instruction extension for audio performance enhancement. It also includes 4KB and 2KB of Instruction and Data Cache respectively, plus 24KB of Data memory to enhance the performance further. It offers good performance for audio processing and other application extensions that require intensive signal processing.

The operating frequency of CPU can be dynamically adjusted. Lower frequency setting can be used to save the power consumption. SLEEP instruction can also be used to put the CPU into sleep mode, which will reduce the power consumption of CPU to the minimum level. Any enabled interrupt can then be used to wake up the CPU to normal operation.

It supports complete tool chain, including firmware, driver and debug utilities to facilitate software development.

#### 4.5 Memory Mapping

The CPU supports 4GB of virtual addressing. It is divided into 4 segments as the following table. The 4GB of virtual address space are mapped to 512MB of physical space by ignoring the 3 MSBs.

| Virtual Address Space     | Description                                        | Mapped Physical Address   |
|---------------------------|----------------------------------------------------|---------------------------|
| 0xE000_0000 ~ 0xFFFF_FFF  | KSEG2.<br>1GB. Addressable in Kernel mode.         | 0x0000_0000 ~ 0x1FFF_FFF  |
| 0xC000_0000 ~ 0xDFFF_FFF  | Cached                                             | 0x0000_0000 ~ 0x1FFF_FFF  |
| 0xA000_0000 ~ 0xBFFF_FFFF | KSEG1. 512MB. Addressable in Kernel mode. Uncached | 0x0000_0000 ~ 0x1FFF_FFFF |
| 0x8000_0000 ~ 0x9FFF_FFF  | KSEG0. 512MB. Addressable in Kernel mode. Cached   | 0x0000_0000 ~ 0x1FFF_FFFF |
| 0x6000_0000 ~ 0x7FFF_FFF  |                                                    | 0x0000_0000 ~ 0x1FFF_FFF  |
| 0x4000_0000 ~ 0x5FFF_FFF  | 2GB. Addressable in Kernel or User                 | 0x0000_0000 ~ 0x1FFF_FFF  |
| 0x2000_0000 ~ 0x3FFF_FFF  |                                                    | 0x0000_0000 ~ 0x1FFF_FFF  |
| 0x0000_0000 ~ 0x1FFF_FFF  | Cached                                             | 0x0000_0000 ~ 0x1FFF_FFF  |

The 512MB of physical space is further mapped as follows:

| Physical Space            | Range       | Description             |
|---------------------------|-------------|-------------------------|
| 0x1C00_0000 ~ 0x1FFF_FFF  | 448 ~ 512MB | Code Flash/ROM          |
| 0x1800_6000 ~ 0x1BFF_FFFF | 408 ~ 448MB | Reserved                |
| 0x1800_0000 ~ 0x1800_5FFF | 384 ~ 408MB | Scratch Pad Data Memory |
| 0x1400_0000 ~ 0x17FF_FFFF | 320 ~ 384MB | Reserved                |
| 0x1000_0000 ~ 0x13FF_FFFF | 256 ~ 320MB | Peripheral              |
| 0x0800_0000 ~ 0x0FFF_FFF  | 128 ~ 256MB | Register File           |
| 0x0000_0000 ~ 0x07FF_FFF  | 0 ~ 128MB   | DRAM                    |

| The following    |            |              |              | C'1 '        |
|------------------|------------|--------------|--------------|--------------|
| I ha tallawina   | table alce | CHMMARIZAC   | the register | tila mannina |
|                  | Table also | SUHHIHALIZES | THE TECHNIE  | me madding   |
| 1110 10110111119 | table aloc |              | and regions. | me mapping.  |

| Physical Space            | Contents                            |
|---------------------------|-------------------------------------|
| 0x0FC0_8000 ~ 0x0FC0_83FF | Reserved                            |
| 0x0FC0_0000 ~ 0x0FC0_3FFF | Reserved                            |
| 0x0803_8000 ~ 0x0FBF_FFFF | Reserved                            |
| 0x0803_4000 ~ 0x0803_7FFF | Reserved                            |
| 0x0803_0000 ~ 0x0803_3FFF | Reserved                            |
| 0x0802_6000 ~ 0x0802_FFFF | Reserved                            |
| 0x0802_4000 ~ 0x0802_5FFF | Reserved                            |
| 0x0802_2000 ~ 0x0802_3FFF | CDU Registers                       |
| 0x0802_0000 ~ 0x0802_1FFF | Memory Card Control Registers       |
| 0x0801_E000 ~ 0x0801_FFFF | IDU/OSD Registers                   |
| 0x0801_C000 ~ 0x0801_DFFF | GPIO Registers                      |
| 0x0801_A000 ~ 0x0801_BFFF | RTC Registers                       |
| 0x0801_9000 ~ 0x0801_9FFF | USB 1.1 Host Registers              |
| 0x0801_8000 ~ 0x0801_8FFF | USB 2.0 Device Registers            |
| 0x0801_6000 ~ 0x0801_7FFF | Reserved                            |
| 0x0801_4000 ~ 0x0801_5FFF | AIU Registers                       |
| 0x0801_2000 ~ 0x0801_3FFF | UARTH Registers                     |
| 0x0801_0000 ~ 0x0801_1FFF | SIO Registers                       |
| 0x0800_E000 ~ 0x0800_FFFF | Timer Registers                     |
| 0x0800_C000 ~ 0x0800_DFFF | DMA Control Registers               |
| 0x0800_B000 ~ 0x0800_BFFF | Interrupt Handler Control Registers |
| 0x0800_A000 ~ 0x0800_AFFF | Clock Generator Registers           |
| 0x0800_8000 ~ 0x0800_9FFF | BIU/System Control Registers        |
| 0x0800_4000 ~ 0x0800_4FFF | IPU SRAM Registers                  |
| 0x0800_0000 ~ 0x0800_1FFF | IPU Registers                       |

#### 4.6 DMA Controller

The DMA Controller manages all the SDRAM access requests from internal module or external peripheral. It arbitrates among the requests with the pre-defined priority. Through each channel, data is transferred from DRAM to device, or vice versa. The DMA channels that require real-time and high data bandwidth are assigned with high priorities. Memory to memory DMA can also be supported in certain configuration. It can also be enabled to take advantage of the bank-interleave feature of SDRAM to increase the memory bandwidth. To save the SDRAM power consumption, several levels of power down mode can also be employed. A quite flexible addressing scheme is supported to maximize SDRAM space usage. It supports a wide range of SDRAM types, from 16Mb to 256Mb, x16-bit bus. It also supports DDR SDRAM, from 16Mb to 256Mb, x16-bit bus. It allows the customer to make the best choice for their application. The SDRAM timing is also programmable to be fit to variety of SDRAM performance.

Besides SDRAM, it also takes care of the ROM/Code Flash and external peripheral accesses. The DMA Controller arbitrates among the 3 types of requests automatically. A Memory Bus Interface Unit is included to handle the interfaces with these 3 kinds of devices. It supports multiple configurations and programmable timing for maximum compatibility. Up to 8MB of Code Flash/ROM can be supported. Not only for firmware code, the NOR Flash interface can also be used for image storage if desired.

#### 4.7 Memory Card Controller

The Memory Card Controller is responsible of controlling the data accesses with external image storage media. It supports Compact Flash, Smart Media, Secure Digital Memory Card (SD), Multi Media Card (MMC), xD, Memory Stick, Memory Stick Pro and Micro Drive. Coexist with the memory cards, on-board NAND Flash can also be supported.

For Compact Flash interface, only Memory mode can be supported. Hardware ECC and CRC are implemented for Smart Media and MMC/SD support respectively.

Data transfer with Compact Flash or Smart Media can be accomplished through DMA or CPU. For MMC or SD, however, it allows only through DMA. The bus interface timing is programmable for maximum compatibility.

#### 4.8 USB Device Controller

The built-in USB Device Controller support several endpoints for communication with USB Host.

- Control Read/Write transfer
- Interrupt Transfer
- Downstream Bulk Transfer from Host
- Upstream Bulk Transfer to Host
- Upstream Video Isochronous /Bulk Transfer to Host
- Upstream Audio Isochronous /Bulk Transfer to Host

The upstream bulk or isochronous transfer is accomplished with DMA operation.

#### 4.9 Digital Audio Interface Unit (AIU)

The Digital Audio Interface Unit (AIU) handles data communication between MP600 and internal/external audio CODEC. Both audio playback and recording are supported. It implements a quite flexible interface for standard AC97 or other I2S or generic audio codec. It supports both Master and Slave clocking. It also supports variety of audio data format, 8 or 16-bit, mono or stereo, and sampling rate for both recording and playback.

#### 4.10 Analog Audio Interface

MP522 supports 3 voice inputs and 3 audio outputs, including 1 differential input for microphone, 2 auxiliary sound inputs, stereo head phone output, speaker and auxiliary audio outputs.

#### 4.10.1 External Circuit for Speaker Amplifier

AEQ1, AEQ2 and AEQ3 can be used to fine-tune the speaker tone and gain. The reference circuit is shown as below.



Figure 4-1 RC filter circuit for Speaker Amplifier

C1, R1 and C2, R2 are used to set the low and high cut-off frequency of the Speaker Amplifier respectively.

Gain = 
$$\frac{R_2}{R_1}$$
  
 $f_1 = \frac{1}{2\pi \times R_1 \times C_1}$   
 $f_2 = \frac{1}{2\pi \times R_2 \times C_2}$ 



### 4.10.2 External Circuit for Headphone Amplifier

The reference circuit for Headphone is shown as below:



C<sub>D</sub>: capacitance of the DC blocking capacitor

R<sub>L</sub>: DC loading resistance of the Headset

Figure 4-2 Reference circuit for Headphone

C<sub>D</sub> and R<sub>L</sub> determines the cut-off frequency of the hi-pass filter as the following equation:

$$F_c = \frac{1}{2\pi \times C_D \times R_L}$$

e.g.

1. 
$$C_D = 10 \ \mu F \rightarrow F_c = 1/(2x3.14x10 \ \mu x \ 32ohm) = 497Hz$$

2. 
$$C_D = 22 \ \mu F \rightarrow F_c = 1/(2x3.14x22 \ \mu x \ 32ohm) = 226Hz$$

3. 
$$C_D = 47$$
  $\mu F \rightarrow F_c = 1/(2x3.14x47 \ \mu x 320hm) = 105Hz$ 

For MP3 application, it is suggested to use the 3<sup>rd</sup> value for better bass performance.



#### 4.11 **GPIO**

The MP600 provides 8 dedicated GPIO pins. There are also additional 68 pins can be configured as GPIO if the associated function is not used. Most of the pins can be programmed for alternative functions by setting corresponding configuration register. Those dedicated GPIO pins can be enabled to generate interrupt with level or edge trigger. The polarity of level or edge interrupt is programmable to fit variety of application requirement.



| The GPIO input pins with interrupt capability, when enabled, can also be used to wake up the chip from |  |
|--------------------------------------------------------------------------------------------------------|--|
| deep power down mode.                                                                                  |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |
|                                                                                                        |  |

# 5 Operation Modes

To fulfill the functions that a digital photo frame requires, the MP600 can be used in, but not limited to, the following operation modes:

#### Playback/OS command mode

- The stored images/audio files can be played back to LCD panel, and speaker output port in this mode
- Executable software can be run at this mode for any application
- Manage the available modules of DPF

#### USB upload mode

- The stored images/audio can be uploaded to PC for further application

#### USB download mode

- DPF firmware can be updated by downloading the new firmware code and activated automatically
- Executable codes for 32-bit RISC can be downloaded from PC and run at embedded OS environment
- Image or MP3 files can be playback by using the existing hardware inside the DPF

# 6 Pin Configuration

Pin Definition (Gray part is only available in MP600B; Pin Number demonstrates as MP600A/MP600B)

### 1. Memory Interface (39/45)

|           |           | Default   |                    |              |              |      |
|-----------|-----------|-----------|--------------------|--------------|--------------|------|
| Pin Name  | Function  | SDRAM     | PROM/<br>NOR Flash | Alt. Func. 1 | Alt. Func. 2 | Туре |
| MD[7:0]   | MD[7:0]   | MD[7:0]   | MD[7:0]            |              |              | Ю    |
| MD[11:8]  | MD[11:8]  | MD[11:8]  | MA[20:17]          |              |              | Ю    |
| MD[15:12] | MD[15:12] | MD[15:12] | MD[15:12]          |              |              | Ю    |
| MA[7:0]   | MA[7:0]   | MA[7:0]   | MA[7:0]            |              |              | 0    |
| MA[11:8]  | MA[11:8]  | MA[11:8]  | MA[11:8]           |              |              | 0    |
| MA[12]    | MA[12]    | MA[12]    | MA[21]             |              |              | 0    |
| MBA[0]    | BA[0]     | BA[0]     | MA[12]             |              |              | 0    |
| MBA[1]    | BA[1]     | BA[1]     | MA[13]             |              |              | 0    |
| MRASx     | RAS#      | RAS#      | MA[14]             |              |              | 0    |
| MCASx     | CAS#/MOE# | CAS#      | MOE#               |              |              | 0    |
| MWEx      | MWE#      | MWE#      | MWE#               |              |              | 0    |
| MDQM[0]   | DQM[0]    | DQM[0]    | MA[15]             |              |              | 0    |
| MDQM[1]   | DQM[1]    | DQM[1]    | MA[16]             |              |              | 0    |
| MSDCK     | SDCLK     | SDCLK     |                    |              |              | Ю    |
| MSDCKE    | SDCKE     | SDCKE     |                    |              |              | 0    |
| MSDCSx    | SDRAMCS#  | SDRAMCS#  |                    |              |              | 0    |
| MROMCSx   | MROMCS#   |           | MROMCS#            |              |              | 0    |
| MSDCKx    | SDCLKx    | SDCLKx    |                    |              |              | Ю    |
| MSDVREF   | MSDVREF   | MSDVREF   |                    |              |              | Α    |
| MSDLDQS   | LDQS      | LDQS      |                    |              |              | Ю    |
| MSDUDQS   | UDQS      | UDQS      |                    |              |              | Ю    |
| MROMDW    | MROMDW    |           | MROMDW             |              |              | 1    |

| Pin Name  |           | Pin Number                   | I/O | Definition                          |
|-----------|-----------|------------------------------|-----|-------------------------------------|
| MD[7:0]   | MD[7:0]   | 15, 14, 13, 12, 9, 8, 7, 6 / | I/O | DRAM Data Bus bit 7~0               |
|           |           | 19, 18, 17, 16, 11, 10, 9, 8 |     | PROM/NOR Flash Data bit 7~0         |
| MD[11:8]  | MD[11:8]  | 20, 19, 18, 17 / 25, 24, 23, | I/O | DRAM Data Bus bit 11~8              |
|           | MA[20:17] | 22                           | 0   | PROM/NOR Flash Address bit 20~17    |
| MD[15:12] | MD[15:12] | 26, 25, 24, 23 / 32, 31, 30, | I/O | DRAM Data Bus bit 15                |
|           |           | 29                           |     | PROM/NOR Flash Data bit 15~12       |
| MA[7:0]   | MA[7:0]   | 121, 120, 119, 118, 117,     | 0   | DRAM Address Bus bit 7~0            |
|           |           | 116, 115, 114 / 207, 206,    |     | PROM/NOR Flash Address Bus bit 7~0  |
|           |           | 205, 204, 202, 201, 200,     |     |                                     |
|           |           | 199                          |     |                                     |
| MA[11:8]  | MA[11:8]  | 125, 124, 123, 122 / 211,    | 0   | DRAM Address Bus bit 11~8           |
|           |           | 210, 209, 208                |     | PROM/NOR Flash Address Bus bit 11~8 |
| MA[12]    | MA[12]    | / 3                          | 0   | DRAM Address Bus bit 12             |
|           | MA[21]    |                              |     | PROM/NOR Flash Address Bus bit 21   |
| MBA[0]    | BA[0]     | 110 / 195                    | 0   | DRAM Bank Selection 0               |
|           | MA[12]    |                              |     | PROM/NOR Flash Address Bus bit 12   |
| MBA[1]    | BA[1]     | 111 / 196                    | 0   | DRAM Bank Selection 1               |
|           | MA[13]    |                              |     | PROM/NOR Flash Address Bus bit 13   |

|         | 1        | т.        |        |                                                       |
|---------|----------|-----------|--------|-------------------------------------------------------|
| MRASx   | RAS#     | 126 / 212 | 0      | DRAM Row Address Strobe (Active low)                  |
|         | MA[14]   |           |        | PROM/NOR Flash Address Bus bit 14                     |
| MCASx   | CAS#     | 128 / 214 | 0      | DRAM Column Address Strobe (Active low)               |
|         | MOE#     |           |        | PROM/NOR Flash Output Enable (Active low)             |
| MWEx    | MWE#     | 127 / 213 | 0      | DRAM Write Enable (Active low)                        |
|         |          |           |        | PROM/NOR Flash Write Enable (Active low)              |
| MDQM[0] | DQM[0]   | 5/7       | 0      | DRAM Data Input/Output Mask 0                         |
|         | MA[15]   |           |        | PROM/NOR Flash Address Bus bit 15                     |
| MDQM[1] | DQM[1]   | 16 / 21   | 0      | DRAM Data Input/Output Mask 1                         |
|         | MA[16]   |           |        | PROM/NOR Flash Address Bus bit 16                     |
| MSDCK   | SDCLK    | 3/4       | I/O    | (1) SDCLK: Output Clock to SDRAM                      |
| MSDCKx  | SDCLK#   | / 6       | I/O    | (2) SDCLK&SDCLK#: Output Clock to DDR                 |
|         |          |           |        | SDRAM                                                 |
|         |          |           |        | SDCLK and SDCLK# are differential clock               |
|         |          |           |        | Outputs.                                              |
| MSDCKE  | SDCKE    | 2/2       | 0      | Clock Enable Signal for DRAM Clock                    |
| MSDCSx  | SDRAMCS# | 1/1       | 0      | DRAM Chip Select                                      |
| MROMCSx | MROMCS#  | 107 / 190 | 0      | PROM/NOR Flash Chip Select                            |
| MSDVREF | MSDVREF  | / 20      | Analog | DRAM Reference Voltage                                |
| MSDLDQS | LDQS     | / 14      | I/O    | Data Strobe : Output with read data, input with write |
| MSDUDQS | UDQS     | / 27      | I/O    | data. Edge-aligned with read data, centered in write  |
|         |          |           |        | data. Used to capture write data.                     |
| MROMDW  | MROMDW   | / 12      | I      | Select 16-bit Data Bus Width for PROM/NOR Flash       |

### 2. Memory Card Interface (CF/SM/SD/MMC/MS Pro/xD) (14/33)

|           |              | Alt. Func. 1   |                       |          |                  |                  |                    |                    |         |                 |      |
|-----------|--------------|----------------|-----------------------|----------|------------------|------------------|--------------------|--------------------|---------|-----------------|------|
| Pin Name  | Default      | CF<br>(Memory) | SM<br>(NAND<br>Flash) | MMC/SD   | SDIO<br>(MP600A) | SDIO<br>(MP600B) | MS Pro<br>(MP600A) | MS Pro<br>(MP600B) | хD      | Alt.<br>Func. 2 | Туре |
| FD[3:0]   | FGPIO[3:0]   | FD[3:0]        | SD[3:0]               | DAT[3:0] |                  |                  | MSD[3:0]           |                    | XD[3:0] |                 | Ю    |
| FD[7:4]   | FGPIO[7:4]   | FD[7:4]        | SD[7:4]               | DAT[7:4] | DAT[3:0]         | DAT[3:0]         |                    |                    | XD[7:4] | ROMHD<br>[11:8] | Ю    |
| FCLE      | FGPIO[8]     | FA[0]          | SCLE                  | CMD      | CMD              |                  | BS                 | BS                 | XCLE    |                 | Ю    |
| FALE      | FGPIO[9]     | FA[1]          | ALE                   | CLK      | CLK              | CLK              | SCLK               | SCLK               | XALE    |                 | IO   |
| FCEx      | FGPIO[10]    |                | SCE1#                 |          |                  |                  |                    |                    | XCE#    |                 | 10   |
| FRB       | FGPI0[11]    | FRDY/<br>BUSY# | SRB                   |          |                  |                  |                    |                    | XRB     |                 | 10   |
| FOEx      | FGPI0[12]    | FOE#           | SRE#                  |          |                  |                  |                    |                    | XRE#    |                 | IO   |
| FWEx      | FGPIO[13]    | FEW#           | WE#                   |          |                  |                  |                    |                    | XWE#    |                 | 10   |
| FSCE0x    | FGPIO[14]    |                | SCE0#                 |          |                  |                  |                    |                    |         |                 | 10   |
| FWP       | FGPIO[15]    |                | WP#                   | WP#      |                  |                  |                    |                    | XWP#    |                 | Ю    |
| FPWREN    | FGPIO[16]    | FPWREN         | FPWREN                | FPWREN   | FPWREN           | FPWREN           | FPWREN             | FPWREN             | FPWREN  |                 | Ю    |
| FSMXDCDx  | FGPIO[17]    |                | CDx                   |          |                  |                  |                    |                    | XCDx    |                 | 10   |
| FSDCDx    | FGPIO[18]    |                |                       | CD#      |                  |                  |                    |                    |         |                 | 10   |
| FMSINS    | FGPIO[19]    |                |                       |          |                  |                  | MS_INS             | MS_INS             |         |                 | Ю    |
| FA2       | FGPIO[20]    | FA[2]          |                       |          |                  | CMD              |                    |                    |         |                 | Ю    |
| FA3       | FGPIO[21]    | FA[3]          |                       |          |                  |                  |                    |                    |         |                 | Ю    |
| FCE1x     | FGPIO[22]    | FCE1#          |                       |          |                  |                  |                    |                    |         |                 | 10   |
| FCE2x     | FGPIO[23]    | FCE2#          |                       |          |                  |                  |                    |                    |         |                 | Ю    |
| FCD1x     | FGPIO[24]    | FCD1#          |                       |          |                  |                  |                    |                    |         |                 | 10   |
| FCD2x     | FGPIO[25]    | FCD2#          |                       |          |                  |                  |                    |                    |         |                 | Ю    |
| FRESET    | FGPIO[26]    | FRESET         |                       |          |                  |                  |                    |                    |         |                 | 10   |
| FWAITx    | FGPIO[27]    | FWAIT#         |                       |          |                  |                  |                    |                    |         |                 | Ю    |
| FREGx     | FGPIO[28]    | FREG#          |                       |          |                  |                  |                    |                    |         |                 | 10   |
| FMSD[3:0] | FGPIO[32:29] |                |                       |          |                  |                  |                    | MSD[3:0]           |         |                 | 10   |

Note: FGPIO[15], FGPIO[19:17] has interrupt capability

| Pin Name |             | Pin Number       | I/O | Definition                                                    |
|----------|-------------|------------------|-----|---------------------------------------------------------------|
| FD[3:0]  | FD[3:0]     | 67, 66, 65, 64 / | I/O | (MP600B) COMPACT FLASH(MEMORY) Data Bus 3~0                   |
|          | SD[3:0]     | 117, 116, 115,   | I/O | (MP600B) SMART MEDIA(NAND FLASH) Data Bus 3~0                 |
|          | DAT[3:0]    | 114              | I/O | MMC/SD Data Bus 3~0                                           |
|          | MSD[3:0]    |                  | I/O | (MP600A) MEMORY STICK PRO Data Bus 3~0                        |
|          | XD[3:0]     |                  | I/O | (MP600B) xD Data Bus 3~0                                      |
|          | FGPIO[3:0]  |                  | I/O | General purpose I/O 3~0 shared with memory card               |
| FD[7:4]  | FD[7:4]     | 71, 70, 69, 68 / | I/O | (MP600B) COMPACT FLASH(MEMORY) Data Bus 7~4                   |
|          | SD[7:4]     | 121, 120, 119,   | I/O | (MP600B) SMART MEDIA(NAND FLASH) Data Bus 7~4                 |
|          | DAT[7:4]    | 118              | I/O | MMC/SD Data Bus 7~4                                           |
|          | DAT[3:0]    |                  | I/O | SDIO Data Bus 3~0                                             |
|          | XD[7:4]     |                  | I/O | (MP600B) xD Data bus 7~4                                      |
|          | FGPIO[7:4]  |                  | I/O | General purpose I/O 7~4 shared with memory card               |
|          | ROMHD[11:8] |                  | I/O | PROM/NOR Flash Data bit 11~8                                  |
| FCLE     | FA[0]       | 75 / 125         | 0   | (MP600B) COMPACT FLASH(MEMORY) Address 0                      |
|          |             |                  |     | FA[3:0] along with the FREG# signal are used to select the    |
|          |             |                  |     | following: The I/O port address registers within the          |
|          |             |                  |     | CompactFlash Storage Card or CF+ Card, the memory             |
|          |             |                  |     | mapped port address registers within the CompactFlash         |
|          |             |                  |     | Storage Card or CF+ Card, a byte in the card's information    |
|          |             |                  |     | structure and its configuration control and status registers. |
|          | SCLE        |                  | 0   | (MP600B) SMART MEDIA(NAND FLASH) Command Latch                |
|          |             |                  |     | Enable                                                        |
|          | CMD         |                  | I/O | MMC/SD Command                                                |
|          | CMD         |                  | I/O | (MP600A) SDIO Command                                         |
|          | BS          |                  | 0   | MEMORY STICK PRO Bus State                                    |
|          | XCLE        |                  | 0   | (MP600B) xD Clock Enable                                      |
|          | FGPIO[8]    |                  | I/O | General purpose I/O 8 shared with memory card                 |
| FALE     | FA[1]       | 76 / 126         | 0   | (MP600B) COMPACT FLASH(MEMORY) Address 1                      |
|          | ALE         |                  | 0   | (MP600B) SMART MEDIA(NAND FLASH) Address Latch                |
|          |             |                  |     | Enable                                                        |
|          | CLK         |                  | 0   | MMC/SD Clock                                                  |
|          | CLK         |                  | 0   | SDIO Clock                                                    |
|          | SCLK        |                  | 0   | MEMORY STICK PRO Clock                                        |
|          | XALE        |                  | 0   | (MP600B) xD Address Latch Enable                              |
|          | FGPIO[9]    |                  | I/O | General purpose I/O 9 shared with memory card                 |
| FCEx     | SCE1#       | / 127            | I/O | (MP600B) SMART MEDIA(NAND FLASH) Chip Enable                  |
|          |             |                  |     | Strobe (Active low)                                           |
|          | XCE#        |                  | I/O | (MP600B) xD Chip Enable Strobe (Active low)                   |
|          | FGPIO[10]   |                  | I/O | General purpose I/O 10 shared with memory card                |
| FRB      | FRDY/BUSY#  | / 128            | I/O | (MP600B) COMPACT FLASH(MEMORY) Ready & Busy                   |
|          | SRB         |                  | 1/0 | (MP600B) SMART MEDIA(NAND FLASH) Ready & Busy                 |



|          | VDE       |          |     | (4,5000), 5.5.                                           |
|----------|-----------|----------|-----|----------------------------------------------------------|
|          | XRB       | -        | 1/0 | (MP600B) xD Ready & Busy                                 |
|          | FGPIO[11] |          | I/O | General purpose I/O 11 shared with memory card           |
| FOEx     | FOE#      | / 129    | 1/0 | (MP600B) COMPACT FLASH(MEMORY) Output Enable             |
|          |           | -        |     | (Active low)                                             |
|          | SRE#      |          | 1/0 | (MP600B) SMART MEDIA(NAND FLASH) Read Enable             |
|          |           | _        |     | Strobe (Active Low)                                      |
|          | XRE#      | -        | I/O | (MP600B) xD Read Enable Strobe (Active low)              |
|          | FGPIO[12] |          | I/O | General purpose I/O 12 shared with memory card           |
| FWEx     | FWE#      | / 130    | I/O | (MP600B) COMPACT FLASH(MEMORY) Write Enable              |
|          |           | -        |     | Strobe (Active low)                                      |
|          | WE#       |          | I/O | (MP600B) SMART MEDIA(NAND FLASH) Write Enable            |
|          |           | _        |     | Strobe (Active low)                                      |
|          | XWE#      | 4        | I/O | (MP600B) xD write Enable Strobe (Active low)             |
|          | FGPIO[13] |          | I/O | General purpose I/O 13 shared with memory card           |
| FSCE0x   | SCE0#     | / 131    | I/O | (MP600B) SMART MEDIA(NAND FLASH) Chip Enable             |
|          |           | 4        |     | Strobe (Active Low)                                      |
|          | FGPIO[14] |          | I/O | General purpose I/O 14 shared with memory card           |
| FWP      | WP#       | 77 / 132 | I/O | (MP600B) SMART MEDIA(NAND FLASH) Write                   |
|          |           | _        |     | Protect(Active low)                                      |
|          | WP#       |          | I/O | MMC/SD Write Protect(Active low)                         |
|          | XWP#      |          | I/O | (MP600B) xD Write Protect (Active low)                   |
|          | FGPIO[15] |          | I/O | General purpose I/O 15 shared with memory card           |
| FPWREN   | FPWREN    | 78 / 133 | I/O | CF/SMART MEDIA(NAND FLASH)/MMC/SD/SDIO/                  |
|          |           |          |     | MEMORY STICK PRO/xD Power Enable                         |
|          | FGPIO[16] |          | I/O | General purpose I/O 16 shared with memory card           |
| FSMXDCDx | CDx       | 79 / 134 | I/O | (MP600B) SMART MEDIA(NAND FLASH) Card Detect             |
|          |           | _        |     | (Active low)                                             |
|          | XCDx      |          | I/O | (MP600B) xD Card Detect(Active low)                      |
|          | FGPIO[17] |          | I/O | General purpose I/O 17 shared with memory card           |
| FSDCDx   | CD#       | 80 / 135 | I/O | MMC/SD Card Detect(Active low)                           |
|          | FGPIO[18] |          | I/O | General purpose I/O 18 shared with memory card           |
| FMSINS   | MS_INS    | 81 / 136 | I/O | MEMORY STICK PRO Insert                                  |
|          | FGPIO[19] |          | I/O | General purpose I/O 19 shared with memory card           |
| FA2      | FA[2]     | / 137    | I/O | (MP600B) COMPACT FLASH(MEMORY) Address 2                 |
|          | CMD       |          | I/O | (MP600B) SDIO Command                                    |
|          | FGPIO[20] |          | I/O | General purpose I/O 20 shared with memory card           |
| FA3      | FA[3]     | / 138    | I/O | (MP600B) COMPACT FLASH(MEMORY) Address 3                 |
|          | FGPI0[21] |          | I/O | General purpose I/O 21 shared with memory card           |
| FCE1x    | FCE1#     | / 139    | I/O | (MP600B) COMPACT FLASH(MEMORY) Card Enable               |
|          |           |          |     | FCE1# accesses the even byte or the Odd byte of the word |
|          |           |          |     | depending on FA0 and FCE2#                               |
|          | FGPI0[22] |          | I/O | General purpose I/O 22 shared with memory card           |
| FCE2x    | FCE2#     | / 140    | I/O | (MP600B) COMPACT FLASH(MEMORY) Card Enable               |
|          |           |          |     | FCE2# always accesses the odd byte of the word.          |

|           | FGPIO[23]    |             | I/O | General purpose I/O 23 shared with memory card    |
|-----------|--------------|-------------|-----|---------------------------------------------------|
| FCD1x     | FCD1#        | / 184       | I/O | (MP600B) COMPACT FLASH(MEMORY) Card Detect 1      |
|           | FGPIO[24]    |             | I/O | General purpose I/O 24 shared with memory card    |
| FCD2x     | FCD2#        | / 185       | I/O | (MP600B) COMPACT FLASH(MEMORY) Card Detect 2      |
|           | FGPIO[25]    |             | I/O | General purpose I/O 25 shared with memory card    |
| FRESET    | FRESET       | / 141       | I/O | (MP600B) COMPACT FLASH(MEMORY) Reset              |
|           | FGPIO[26]    |             | I/O | General purpose I/O 26 shared with memory card    |
| FWAITx    | FWAIT#       | / 143       | I/O | (MP600B) COMPACT FLASH(MEMORY) Wait Enable        |
|           |              |             |     | (Active Low)                                      |
|           | FGPIO[27]    |             | I/O | General purpose I/O 27 shared with memory card    |
| FREGx     | FREG#        | / 146       | I/O | (MP600B) COMPACT FLASH(MEMORY) Register (Active   |
|           |              |             |     | low)                                              |
|           | FGPIO[28]    |             | I/O | General purpose I/O 28 shared with memory card    |
| FMSD[3:0] | MSD[3:0]     | / 150, 149, | I/O | (MP600B) MEMORY STICK PRO Data Bus 3~0            |
|           | FGPIO[32:29] | 148, 147    | I/O | General purpose I/O 32~29 shared with memory card |

### 3. UART Interface (2/2)

| Pin Name | Default  | Alt. Fnuc. 1 | Type |
|----------|----------|--------------|------|
| HURX     | UGPIO[0] | HURX         | Ю    |
| HUTX     | UGPIO[1] | HUTX         | Ю    |

| Pin Name |          | Pin Number | I/O | Definition                             |
|----------|----------|------------|-----|----------------------------------------|
| HURX     | HURX     | 93 / 159   | I/O | High-Speed UART Receive signal         |
|          | UGPIO[0] |            | I/O | General purpose I/O 0 shared with UART |
| HUTX     | HUTX     | 94 / 160   | I/O | High-Speed UART Transmit signal        |
|          | UGPIO[1] |            | I/O | General purpose I/O 1 shared with UART |

# 4. USB Interface (2/10)

| Pin Name | Default  | Туре   |    |       |
|----------|----------|--------|----|-------|
| USBFDM   | USBDM    | Analog | FS |       |
| USBFDP   | USBDP    | Analog | FS |       |
| USBHDM   | USBHDM   | Analog | HS |       |
| USBHDP   | USBHDP   | Analog | HS |       |
| UREFEXT  | UREFEXT  | Analog | HS |       |
| URDATAP  | URDATAP  | Analog | HS |       |
| URDATAN  | URDATAN  | Analog | HS |       |
| UHVBUS   | UHVBUS   | 1      | HS |       |
| UHSXTALI | UHSXTALI | 1      | HS |       |
| UHSXTALO | UHSXTALO | 0      | HS | 12MHZ |

| I        |          |            |        |                                 |
|----------|----------|------------|--------|---------------------------------|
| Pin Name |          | Pin Number | I/O    | Definition                      |
| USBFDM   | USBDM    | 102 / 181  | ANALOG | USB Host full speed D- signal   |
| USBFDP   | USBDP    | 103 / 182  | ANALOG | USB Host full speed D+ signal   |
| USBHDM   | USBHDM   | / 168      | ANALOG | USB Device full speed D- signal |
| USBHDP   | USBHDP   | / 167      | ANALOG | USB Device full speed D+ signal |
| UREFEXT  | UREFEXT  | / 170      | ANALOG |                                 |
| URDATAP  | URDATAP  | / 164      | ANALOG |                                 |
| URDATAN  | URDATAN  | / 165      | ANALOG |                                 |
| UHVBUS   | UHVBUS   | / 186      | 1      |                                 |
| UHSXTALI | UHSXTALI | / 179      | Ī      |                                 |
| UHSXTALO | UHSXTALO | / 178      | 0      |                                 |

### 5. Digital LCD Interface (12/28)

|          |           |                  | Alt. F     | unc. 1      | Alt. Func. 2 |                     |              |      |
|----------|-----------|------------------|------------|-------------|--------------|---------------------|--------------|------|
| Pin Name | Default   | CCIR-656         | CCIR-601   | YCbCr 24bit | RGB 24bit    | (TCON +<br>RGB-666) | Alt. Func. 3 | Type |
| VD0      | VGPIO[0]  | YC[0]            | YC[0]      | VY[0]       | VR0          | R0                  |              | 10   |
| VD1      | VGPIO[1]  | YC[1]            | YC[1]      | VY[1]       | VR1          | R1                  |              | 10   |
| VD2      | VGPIO[2]  | YC[2]            | YC[2]      | VY[2]       | VR2          | R2                  |              | 10   |
| VD3      | VGPIO[3]  | YC[3]            | YC[3]      | VY[3]       | VR3          | R3                  |              | 10   |
| VD4      | VGPIO[4]  | YC[4]            | YC[4]      | VY[4]       | VR4          | R4                  |              | 10   |
| VD5      | VGPIO[5]  | YC[5]            | YC[5]      | VY[5]       | VR5          | R5                  |              | 10   |
| VD6      | VGPIO[6]  | YC[6]            | YC[6]      | VY[6]       | VR6          | G0                  |              | 10   |
| VD7      | VGPIO[7]  | YC[7]            | YC[7]      | VY[7]       | VR7          | G1                  |              | 10   |
| VD8      | VGPIO[8]  |                  | VCCIR_C[0] | VCb[0]      | VG0          | G2                  |              | 10   |
| VD9      | VGPIO[9]  |                  | VCCIR_C[1] | VCb[1]      | VG1          | G3                  |              | 10   |
| VD10     | VGPIO[10] |                  | VCCIR_C[2] | VCb[2]      | VG2          | G4                  |              | 10   |
| VD11     | VGPIO[11] |                  | VCCIR_C[3] | VCb[3]      | VG3          | G5                  |              | 10   |
| VD12     | VGPIO[12] |                  | VCCIR C[4] | VCb[4]      | VG4          | B0                  |              | 10   |
| VD13     | VGPIO[13] |                  | VCCIR_C[5] | VCb[5]      | VG5          | B1                  |              | 10   |
| VD14     | VGPIO[14] |                  | VCCIR C[6] | VCb[6]      | VG6          | B2                  |              | 10   |
| VD15     | VGPIO[15] |                  | VCCIR C[7] | VCb[7]      | VG7          | B3                  |              | 10   |
| VD16     | VGPIO[16] |                  |            | VCr[0]      | VB0          | B4                  |              | 10   |
| VD17     | VGPIO[17] |                  |            | VCr[1]      | VB1          | B5                  |              | 10   |
| VD18     | VGPIO[18] |                  |            | VCr[2]      | VB2          | GPOL                |              | 10   |
| VDCK     | VGPIO[19] | VDCK<br>(27 MHz) | VDCK       | VDCK        | VPXCK        | SCKH                |              | Ю    |
| VHSYNC   | VGPIO[20] | VHSYNC           | VHSYNC     | VHSYNC      | DVHSYNC      | SSTH                |              | Ю    |
| VDVALID  | VGPIO[21] | VDVALID          | VDVALID    | VDVALID     | DVDVALID     | GSTV                |              | Ю    |
| VVSYNC   | VGPIO[22] | VVSYNC           | VVSYNC     | VVSYNC      | DVVSYNC      | GCKV                |              | Ю    |
| VSPOL    | VGPIO[23] |                  |            | VCr[3]      | VB3          | SPOL                |              | 10   |
| VSREV    | VGPIO[24] |                  |            | VCr[4]      | VB4          | SREV                |              | 10   |
| VSLD     | VGPIO[25] |                  |            | VCr[5]      | VB5          | SLD                 |              | 10   |
| VGOEV    | VGPIO[26] |                  |            | VCr[6]      | VB6          | GOEV                |              | 10   |
| VDRVPDN  | VGPIO[27] |                  |            | VCr[7]      | VB7          | PWRDN               |              | 10   |

| Pin Name |            | Pin Number                                     | I/O | Definition                                         |
|----------|------------|------------------------------------------------|-----|----------------------------------------------------|
| VD0      | YC[0]      | 30 / 52                                        | 0   | CCIR656/CCIR601 Data Bus Bit 0                     |
|          | VY[0]      |                                                | 0   | YCbCr Data Bus Y Bit 0                             |
|          | VR0        |                                                | 0   | RGB 24bit Data Bus Bit 0                           |
|          | R0         |                                                | 0   | TCON Data Bus R Bit 0                              |
|          | VGPIO[0]   |                                                | I/O | General purpose I/O 0 Shared with Video Output pin |
| VD1      | YC[1]      | 31 / 53                                        | 0   | CCIR656/CCIR601 Data Bus Bit 1                     |
|          | VY[1]      |                                                | 0   | YCbCr Data Bus Y Bit 1                             |
|          | VR1        |                                                | 0   | RGB 24bit Data Bus Bit 1                           |
|          | R1         |                                                | 0   | TCON Data Bus R Bit 1                              |
|          | VGPIO[1]   |                                                | I/O | General purpose I/O 1 Shared with Video Output pin |
| VD2      | YC[2]      | 32 / 54                                        | 0   | CCIR656/CCIR601 Data Bus Bit 2                     |
|          | VY[2]      |                                                | 0   | YCbCr Data Bus Y Bit 2                             |
|          | VR2        |                                                | 0   | RGB 24bit Data Bus Bit 2                           |
|          | R2         |                                                | 0   | TCON Data Bus R Bit 2                              |
|          | VGPIO[2]   |                                                | I/O | General purpose I/O 2 Shared with Video Output pin |
| VD3      | YC[3]      | 33 / 65                                        | 0   | CCIR656/CCIR601 Data Bus Bit 3                     |
|          | VY[3]      |                                                | 0   | YCbCr Data Bus Y Bit 3                             |
|          | VR3        |                                                | 0   | RGB 24bit Data Bus Bit 3                           |
|          | R3         |                                                | 0   | TCON Data Bus R Bit 3                              |
|          | VGPIO[3]   |                                                | I/O | General purpose I/O 3 Shared with Video Output pin |
| VD4      | YC[4]      | 34 / 66                                        | 0   | CCIR656/CCIR601 Data Bus Bit 4                     |
|          | VY[4]      |                                                | 0   | YCbCr Data Bus Y Bit 4                             |
|          | VR4        |                                                | 0   | RGB 24bit Data Bus Bit 4                           |
|          | R4         |                                                | 0   | TCON Data Bus R Bit 4                              |
|          | VGPIO[4]   |                                                | I/O | General purpose I/O 4 Shared with Video Output pin |
| VD5      | YC[5]      | 35 / 67                                        | 0   | CCIR656/CCIR601 Data Bus Bit 5                     |
|          | VY[5]      |                                                | 0   | YCbCr Data Bus Y Bit 5                             |
|          | VR5        |                                                | 0   | RGB 24bit Data Bus Bit 5                           |
|          | R5         |                                                | 0   | TCON Data Bus R Bit 5                              |
|          | VGPIO[5]   |                                                | I/O | General purpose I/O 5 Shared with Video Output pin |
| VD6      | YC[6]      | 36 / 68                                        | 0   | CCIR656/CCIR601 Data Bus Bit 6                     |
|          | VY[6]      |                                                | 0   | YCbCr Data Bus Y Bit 6                             |
|          | VR6        |                                                | 0   | RGB 24bit Data Bus R Bit 6                         |
|          | G0         |                                                | 0   | TCON Data Bus G Bit 0                              |
|          | VGPIO[6]   |                                                | I/O | General purpose I/O 6 Shared with Video Output pin |
| VD7      | YC[7]      | 39 / 71                                        | 0   | CCIR656/CCIR601 Data Bus Bit 7                     |
|          | VY[7]      |                                                | 0   | YCbCr Data Bus Y Bit 7                             |
|          | VR7        |                                                | 0   | RGB 24bit Data Bus R Bit 7                         |
|          | G1         |                                                | 0   | TCON Data Bus G Bit 1                              |
|          | VGPIO[7]   | <u>l                                      </u> | I/O | General purpose I/O 7 Shared with Video Output pin |
| VD8      | VCCIR_C[0] | / 33                                           | 0   | CCIR601 Data Bus Bit 8                             |
|          | VCb[0]     |                                                | 0   | YCbCr data bus Cb bit 0                            |
|          | VG0        |                                                | 0   | RGB 24bit data bus G bit 0                         |
|          | G2         |                                                | 0   | TCON Data Bus G Bit 2                              |

|      | VGPIO[8]   |      | I/O | General purpose I/O 8 Shared with Video Output pin  |
|------|------------|------|-----|-----------------------------------------------------|
| VD9  | VCCIR_C[1] | / 34 | 0   | CCIR601 Data Bus Bit 9                              |
|      | VCb[1]     | 1    | 0   | YCbCr data bus Cb bit 1                             |
|      | VG1        | 1    | 0   | RGB 24bit data bus G bit 1                          |
|      | G3         | 1    | 0   | TCON Data Bus G Bit 3                               |
|      | VGPIO[9]   | 1    | I/O | General purpose I/O 9 Shared with Video Output pin  |
| VD10 | VCCIR_C[2] | / 35 | 0   | CCIR601 Data Bus Bit 10                             |
|      | VCb[2]     |      | 0   | YCbCr data bus Cb bit 2                             |
|      | VG2        | 1    | 0   | RGB 24bit data bus G bit 2                          |
|      | G4         |      | 0   | TCON Data Bus G Bit 4                               |
|      | VGPIO[10]  |      | I/O | General purpose I/O 10 Shared with Video Output pin |
| VD11 | VCCIR_C[3] | / 36 | 0   | CCIR601 Data Bus Bit 11                             |
|      | VCb[3]     | 1    | 0   | YCbCr data bus Cb bit 3                             |
|      | VG3        | 1    | 0   | RGB 24bit data bus G bit 3                          |
|      | G5         | 1    | 0   | TCON Data Bus G Bit 5                               |
|      | VGPIO[11]  |      | I/O | General purpose I/O 11 Shared with Video Output pin |
| VD12 | VCCIR_C[4] | / 37 | 0   | CCIR601 Data Bus Bit 12                             |
|      | VCb[4]     | 1    | 0   | YCbCr data bus Cb bit 4                             |
|      | VG4        |      | 0   | RGB 24bit data bus G bit 4                          |
|      | В0         |      | 0   | TCON Data Bus B Bit 0                               |
|      | VGPIO[12]  |      | I/O | General purpose I/O 12 Shared with Video Output pin |
| VD13 | VCCIR_C[5] | / 38 | 0   | CCIR601 Data Bus Bit 13                             |
|      | VCb[5]     |      | 0   | YCbCr data bus Cb bit 5                             |
|      | VG5        |      | 0   | RGB 24bit data bus G bit 5                          |
|      | B1         |      | 0   | TCON Data Bus B Bit 1                               |
|      | VGPIO[13]  |      | I/O | General purpose I/O 13 Shared with Video Output pin |
| VD14 | VCCIR_C[6] | / 39 | 0   | CCIR601 Data Bus Bit 14                             |
|      | VCb[6]     |      | 0   | YCbCr data bus Cb bit 6                             |
|      | VG6        |      | 0   | RGB 24bit data bus G bit 6                          |
|      | B2         |      | 0   | TCON Data Bus B Bit 2                               |
|      | VGPIO[14]  |      | I/O | General purpose I/O 14 Shared with Video Output pin |
| VD15 | VCCIR_C[7] | / 40 | 0   | CCIR601 Data Bus Bit 15                             |
|      | VCb[7]     |      | 0   | YCbCr data bus Cb bit 7                             |
|      | VG7        |      | 0   | RGB 24bit data bus G bit 7                          |
|      | B3         |      | 0   | TCON Data Bus B Bit 3                               |
|      | VGPIO[15]  |      | I/O | General purpose I/O 15 Shared with Video Output pin |
| VD16 | VCr[0]     | / 41 | 0   | YCbCr data bus Cr bit 0                             |
|      | VB0        |      | 0   | RGB 24bit data bus B bit 0                          |
|      | B4         |      | 0   | TCON Data Bus B Bit 4                               |
|      | VGPIO[16]  |      | I/O | General purpose I/O 16 Shared with Video Output pin |
| VD17 | VCr[1]     | / 42 | 0   | YCbCr data bus Cr bit 1                             |
|      | VB1        |      | 0   | RGB 24bit data bus B bit 1                          |
|      | B5         |      | 0   | TCON Data Bus B Bit 5                               |
|      | VGPIO[17]  |      | I/O | General purpose I/O 17 Shared with Video Output pin |
| VD18 | VCr[2]     | / 43 | 0   | YCbCr data bus Cr bit 2                             |
|      | VB2        |      | 0   | RGB 24bit data bus B bit 2                          |



|         | GPOL      |         | 0   | TCON Gate Driver Polarity Select                    |
|---------|-----------|---------|-----|-----------------------------------------------------|
|         | VGPIO[18] |         | I/O | General purpose I/O 18 Shared with Video Output pin |
| VDCK    | VDCK      | 28 / 45 | 0   | CCIR656/CCIR601 CLOCK                               |
|         | VDCK      |         | 0   | YCbCr CLOCK                                         |
|         | VPXCK     |         | 0   | RGB 24bit CLOCK                                     |
|         | SCKH      |         | 0   | TCON CLOCK                                          |
|         | VGPIO[19] |         | I/O | General purpose I/O 19 Shared with Video Output pin |
| VHSYNC  | VHSYNC    | 40 / 72 | 0   | CCIR656/CCIR601 VHSYNC                              |
|         | VHSYNC    | 1       | 0   | YCbCr VHSYNC                                        |
|         | DVHSYNC   | 1       | 0   | RGB 24bit VHSYNC                                    |
|         | SSTH      |         | 0   | TCON CLOCK                                          |
|         | VGPIO[20] |         | I/O | General purpose I/O 20 Shared with Video Output pin |
| VDVALID | VDVALID   | 41 / 73 | 0   | CCIR656/CCIR601 VDVALID                             |
|         | VDVALID   |         | 0   | YCbCr VDVALID                                       |
|         | DVDVALID  |         | 0   | RGB 24bit VDVALID                                   |
|         | GSTV      |         | 0   | TCON Gate driver Start Pulse                        |
|         | VGPIO[21] | =       | I/O | General purpose I/O 21 Shared with Video Output pin |
| VVSYNC  | VVSYNC    | 42 / 74 | 0   | CCIR656/CCIR601 VVSYNC                              |
|         | VVSYNC    |         | 0   | YCbCr VVSYNC                                        |
|         | DVVSYNC   |         | 0   | RGB 24bit VVSYNC                                    |
|         | GCKV      |         | 0   | TCON Gate Driver Shift Clock                        |
|         | VGPIO[22] |         | I/O | General purpose I/O 22 Shared with Video Output pin |
| VSPOL   | VCr[3]    | / 47    | 0   | YCbCr data bus Cr bit 3                             |
|         | VB3       |         | 0   | RGB 24bit data bus B bit 3                          |
|         | SPOL      |         | 0   | TCON Source Driver Polarity Select                  |
|         | VGPIO[23] |         | I/O | General purpose I/O 23 Shared with Video Output pin |
| VSREV   | VCr[4]    | / 48    | 0   | YCbCr data bus Cr bit 4                             |
|         | VB4       |         | 0   | RGB 24bit data bus B bit 4                          |
|         | SREV      |         | 0   | TCON Source Driver Data Reverse Control             |
|         | VGPIO[24] |         | I/O | General purpose I/O 24 Shared with Video Output pin |
| VSLD    | VCr[5]    | / 49    | 0   | YCbCr data bus Cr bit 5                             |
|         | VB5       |         | 0   | RGB 24bit data bus B bit 5                          |
|         | SLD       |         | 0   | TCON Source Driver Latch Pulse and Output Enable    |
| _       | VGPIO[25] |         | I/O | General purpose I/O 25 Shared with Video Output pin |
| VGOEV   | VCr[6]    | / 50    | 0   | YCbCr data bus Cr bit 6                             |
|         | VB6       |         | 0   | RGB 24bit data bus B bit 6                          |
|         | GOEV      |         | 0   | TCON Gate Driver Output Disable                     |
|         | VGPIO[26] |         | I/O | General purpose I/O 26 Shared with Video Output pin |
| VDRVPDN | VCr[7]    | / 51    | 0   | YCbCr data bus Cr bit 7                             |
|         | VB7       |         | 0   | RGB 24bit data bus B bit 7                          |
|         | PWRDN     |         | 0   | TCON Power Down Timing                              |
|         | VGPIO[27] |         | I/O | General purpose I/O 27 Shared with Video Output pin |

#### 6. Audio Interface (0/5)

| Pin Name | Default  | Alt. Func. 1      | Type |
|----------|----------|-------------------|------|
| ACLK     | AGPIO[0] | ACLK              | Ю    |
| AMCLK    | AGPIO[1] | AMCLK/<br>ARSYNC  | O    |
| AFSYNC   | AGPIO[2] | AFSYNC/<br>ATSYNC | Ю    |
| ADIN     | AGPIO[3] | ADIN              | 10   |
| ADOUT    | AGPIO[4] | ADOUT             | 10   |

| Pin Name |         | Pin Number | I/O | Definition         |
|----------|---------|------------|-----|--------------------|
| ACLK     | ACLK    | / 109      | I/O | Acknowledge signal |
| AMCLK    | AMCLK/  | / 110      | I/O |                    |
| AMCLK    | ARSYNC  |            |     |                    |
| A FOVANO | AFSYNC/ | / 111      | I/O |                    |
| AFSYNC   | ATSYNC  |            |     |                    |
| ADIN     | ADIN    | / 112      | I/O |                    |
| ADOUT    | ADOUT   | / 113      | I/O |                    |

#### 7. Audio DAC Analog Interface (13/15)

| Pin Name | Default | Туре |
|----------|---------|------|
| ASPKLP   | ASPKLP  | Α    |
| ASPKLN   | ASPKLN  | Α    |
| ASPKRP   | ASPKRP  | Α    |
| ASPKRN   | ASPKRN  | Α    |
| ASPKEQ1  | ASPKEQ1 | А    |
| ASPKEQ2  | ASPKEQ2 | Α    |
| ASPKEQ3  | ASPKEQ3 | Α    |
| ASPKEQ4  | ASPKEQ4 | А    |
| ASPKEQ5  | ASPKEQ5 | Α    |
| ASPKEQ6  | ASPKEQ6 | Α    |
| AHPL     | AHPL    | Α    |
| AHPR     | AHPR    | Α    |
| ALOUTL   | ALOUTL  | А    |
| ALOUTR   | ALOUTR  | А    |
| AVCOM    | AVCOM   | Α    |

|   | Pin Name |          | Pin Number | I/O | Definition                                                |  |
|---|----------|----------|------------|-----|-----------------------------------------------------------|--|
|   |          | ASPKLP   | 61 / 95    | I/O | Non-inverting L speaker-driver output. The maximum signal |  |
|   | ASPKLP   |          |            |     | swing = 3.2 volt. peak-to-peak for 8 Ohm load between     |  |
|   |          |          |            |     | ASPKLP and ASPKLN.                                        |  |
|   | ASPKLN   | ASPKLN   | 60 / 00    | 1/0 | Inverting L speaker-driver output. The maximum signal     |  |
| Ľ | AOI KEN  | AOI ILIN | 62 / 96    | I/O | swing = 3.2 volt. peak-to-peak for 8 Ohm load between     |  |

# MP600 Datasheet

|              |           |         |     | ASPKLP and ASPKLN.                                                                                              |
|--------------|-----------|---------|-----|-----------------------------------------------------------------------------------------------------------------|
| ASPKRP       | ASPKRP    | 57 / 91 | 1/0 | Non-inverting R speaker-driver output. The maximum signal swing = 3.2 volt. peak-to-peak for 8 Ohm load between |
| 7.01 1.1.1   | 7.01 7.11 | 31 1 91 | 1/0 | ASPKRP and ASPKRN.                                                                                              |
|              |           |         |     | Inverting R speaker-driver output. The maximum signal                                                           |
| ASPKRN       | ASPKRN    | 58 / 92 | I/O | swing = 3.2 volt. peak-to-peak for 8 Ohm load between                                                           |
|              |           |         |     | ASPKRP and ASPKRN.                                                                                              |
| ASPKEQ1      | ASPKEQ1   | 53 / 87 | I/O | Equalizer pin 1.                                                                                                |
| ASPKEQ2      | ASPKEQ2   | 54 / 88 | I/O | Equalizer pin 2.                                                                                                |
| ASPKEQ3      | ASPKEQ3   | 55 / 89 | I/O | Equalizer pin 3.                                                                                                |
| ASPKEQ4      | ASPKEQ4   | 52 / 86 | I/O | Equalizer pin 4.                                                                                                |
| ASPKEQ5      | ASPKEQ5   | 51 / 85 | I/O | Equalizer pin 5.                                                                                                |
| ASPKEQ6      | ASPKEQ6   | 50 / 84 | I/O | Equalizer pin 6.                                                                                                |
| AHPL         | AHPL      | 48 / 80 | 1/0 | Headphone L channel output, the maximum signal swing is                                                         |
| 7411 2       | 7411 2    | 46 / 60 |     | 1.6 volt. peak-to-peak for 32 Ohm load.                                                                         |
| AHPR         | AHPR      | 47 / 79 | 1/0 | Headphone R channel output, the maximum signal swing is                                                         |
| 741111       | 741111    | 47 / 79 | 1/0 | 1.6 volt. peak-to-peak for 32 Ohm load.                                                                         |
| ALOUTL       | ALOUTL    | / 83    | I/O | Line Buffer L channel output.                                                                                   |
| ALOUTR       | ALOUTR    | / 82    | I/O | Line Buffer R channel output.                                                                                   |
| AVCOM        | AVCOM     | 45 / 77 | 1/0 | Analog reference voltage. The voltage is about half of the                                                      |
| , (V O O IVI | 7.00000   | 45/77   | "," | voltage of AVDD.                                                                                                |

#### 8. GPIO Interface (8/8)

| Pin Name | Default     | Alt. Func. 1 | Alt. Func. 2 | Alt.Func. 3 | Туре |                            |
|----------|-------------|--------------|--------------|-------------|------|----------------------------|
| GPIO0    | GPIO0       | SMCKO        |              |             |      | SMCKO and SMDQ are for     |
| GPIO1    | GPIO1       | SMDQ         |              |             |      | I2C master                 |
| GPIO2    | GPIO2/IRDIN |              |              |             |      | IRDIN is the IR data input |
| GPIO3    | GPIO3       | PWMQ3        |              |             |      |                            |
| GPIO4    | GPIO4       |              |              |             |      |                            |
| GPIO5    | GPIO5       |              |              |             |      |                            |
| GPIO6    | GPIO6/SSCKI |              |              |             |      | SSCKI and SSDQ are for     |
| GPIO7    | GPIO7       | SSDQ         |              |             |      | I2C slave                  |

| Pin Name | Default | Pin Number | I/O | Definition                            |
|----------|---------|------------|-----|---------------------------------------|
| GPIO0    | GPIO0   | 85 / 151   | I/O | Dedicated General purpose I/O 0       |
|          | SMCKO   |            | 0   | I2C interface clock pin (Master mode) |
| GPIO1    | GPIO1   | 86 / 152   | I/O | Dedicated General purpose I/O 1       |
|          | SMDQ    |            | 0   | I2C interface data pin (Master mode)  |
| GPIO2    | GPIO2   | 87 / 153   | I/O | Dedicated General purpose I/O 2       |
|          | IRDIN   |            | I   | Infra Red signal data input           |
| GPIO3    | GPIO3   | 88 / 154   | I/O | Dedicated General purpose I/O 3       |
|          | PWMQ3   |            | 0   | Pulse width Modulated Output 3        |
| GPIO4    | GPIO4   | 89 / 155   | I/O | Dedicated General purpose I/O 4       |
| GPIO5    | GPIO5   | 90 / 156   | I/O | Dedicated General purpose I/O 5       |
| GPIO6    | GPIO6   | 91 / 157   | I/O | Dedicated General purpose I/O 6       |
|          | SSCKI   |            | I/O | I2C interface clock pin (Slave mode)  |
| GPIO7    | GPIO7   | 92 / 158   | I/O | Dedicated General purpose I/O 7       |
|          | SSDQ    |            | I/O | I2C interface data pin (Slave mode)   |

# 9. RTC Interface (0/3)

| Pin Name | Default | Туре |
|----------|---------|------|
| RXIN     | RXIN    | 1    |
| RXOUT    | RXOUT   | 0    |
| RALARM   | RALARM  | 0    |

| Pin Name |        | Pin Number | I/O | Definition |
|----------|--------|------------|-----|------------|
| RXIN     | RXIN   | / 174      | 1   |            |
| RXOUT    | RXOUT  | / 175      | 0   |            |
| RALARM   | RALARM | / 176      | 0   |            |



### 10. Miscellaneous (4/5)

| Pin Name | Default | Туре |
|----------|---------|------|
| RESETx   | RESETx  | I    |
| CLKIN    | CLKIN   |      |
| CLKOUT   | CLKOUT  | 0    |
| NAFBOOT  | NAFBOOT | 1    |
| TESTMD   | TESTMD  | I    |

Boot up from NAND Flash

| Pin Name |         | Pin Number | I/O | Definition |
|----------|---------|------------|-----|------------|
| RESETx   | RESETx  | 95 / 161   | I   |            |
| CLKIN    | CLKIN   | 106 / 189  | I   |            |
| CLKOUT   | CLKOUT  | 105 / 188  | 0   |            |
| NAFBOOT  | NAFBOOT | / 187      | _   |            |
| TESTMD   | TESTMD  | 96 / 162   | I   |            |

# 7 Electrical Characteristics

# 7.1 Absolute Maximum Ratings

| Symbol | Parameter                                                         | Value       | Units |
|--------|-------------------------------------------------------------------|-------------|-------|
| VPP    | I/O supply Voltage (VPP1~4, VPPM1~3, UHVPP)                       | -1.0 to 4.6 | V     |
| VPPA   | Audio I/O supply Voltage (VPPA_A1, VPPA_HP, VPPA_SPKR, VPPA_SPKL) | -0.5 to 4.5 | V     |
| VDD    | Core supply Voltage (VDD1~6, VDDA_P12, VDDA_P3)                   | -1.0 to 4.6 | V     |
| Vin5   | DC Input Voltage for 5V-tolerant I/O <sup>2</sup>                 | -1.0 to 5.5 | V     |
| Vin    | DC Input Voltage for non-5V-tolerant I/O                          | -1.0 to 4.6 | V     |
| TSTG   | Storage Temperature                                               | -40 to 125  | °C    |
| ESD    | ESD Rating (Rzap = 1.5K Ω, Czap = 100pf)                          | TBD         | V     |

**Note**: 1. Permanent device damage may occurs if the specification for the Absolute Maximum Ratings are exceeded.

- 2. 5V tolerant I/O including HURX, HUTX, GPIO[7:0].
- 3. All voltages are defined with respect to ground.

# 7.2 Recommended Operating Conditions

| Symbol | Parameter                                                         | Min. | Тур. | Max. | Units |
|--------|-------------------------------------------------------------------|------|------|------|-------|
| VPP    | I/O supply Voltage (VPP1~4, VPPM1~3, UHVPP)                       | 3.1  | 3.3  | 3.6  | ٧     |
| VPPA   | Audio I/O supply Voltage (VPPA_A1, VPPA_HP, VPPA_SPKR, VPPA_SPKL) | 2.7  | 3.6  | 4.2  | V     |
| VDD    | Core supply Voltage (VDD1~6, VDDA_P12, VDDA_P3)                   | 1.68 | 1.8  | 1.98 | V     |
| TA     | Ambient Operating Temperature                                     | 0    | -    | 70   | °C    |

#### 7.3 DC Characteristics

| Symbol                            | Parameter                           | Condition         | Min     | Тур | Max | Units |
|-----------------------------------|-------------------------------------|-------------------|---------|-----|-----|-------|
| $V_{IL}$                          | Input Low Voltage                   | TTL               |         |     | 8.0 | V     |
| $V_{IH}$                          | Input High Voltage                  | TTL               | 2.2     |     |     | V     |
| V <sub>IL</sub> –SCH <sup>1</sup> | Schmitt-triggered Input Low Voltage | Schmitt Trig. TTL |         |     | 0.9 | V     |
|                                   | Schmitt trig. Input High Voltage    | Schmitt Trig. TTL | 1.9     |     |     | V     |
| $V_{OL}$                          | Output Low Voltage                  | 4mA load          |         |     | 0.4 | V     |
| $V_{OH}$                          | Output High Voltage                 | 4mA load          | 0.8*VPP |     |     | V     |

| F  | $R_{d}^{2}$ | Pull Down Resistance                | -               | 91 | 120  | 215 | ΚΩ |
|----|-------------|-------------------------------------|-----------------|----|------|-----|----|
| lį | i           | Input Leakage Current               | Vo = 3.3V or 0V | -  | 10nA | 1µA |    |
| lo | 0Z          | Tri-state Output<br>Leakage Current | Vo = 3.3V or 0V |    | 10nA | 1µA |    |

Note: 1. The I/O with Schmitt-trigger: TESTMD, RESETx and GP[1:0].

2. The I/O with pull-down: TESTMD.

# 7.4 Capacitance

| Symbol           | Parameter                                         | Min. | Тур. | Max. | Units |
|------------------|---------------------------------------------------|------|------|------|-------|
| $C_{XIN}$        | Clock Input, CLKIN, capacitance                   |      | 7    |      | pF    |
| C <sub>IN</sub>  | Input pin capacitance                             |      | 5    |      | pF    |
| Сві              | Bidirectional pin capacitance                     |      | 5    |      | pF    |
| C <sub>BI5</sub> | Bidirectional pin capacitance for 5V-tolerant I/O |      | 7    |      | pF    |
| C <sub>OUT</sub> | Output pin capacitance                            |      | 5    |      | pF    |

### 7.5 AC Characteristics

#### 7.5.1 Reset Timing



Fig. 7-1 Reset Timing

| Symbol            | Parameter         | Min. | Тур. | Max. | Unit |
|-------------------|-------------------|------|------|------|------|
| T <sub>RSTW</sub> | Reset Pulse Width | 1    |      |      | ms   |

# 7.5.2 Input Clock

Fig. 7-2 CLKIN AC Characteristic



| Symbol               | Parameter                           | Min. | Тур. | Max. | Unit |
|----------------------|-------------------------------------|------|------|------|------|
| F <sub>CLKIN</sub>   | CLKIN Master Clock Input Frequency  |      | 13.5 |      | MHZ  |
| T <sub>CLKIN P</sub> | CLKIN Master Clock Input Period     |      | 74   |      | ns   |
| T <sub>CLKIN</sub> L | CLKIN Master Clock Input Low Width  | 33.3 |      | 40.7 | ns   |
| T <sub>CLKIN H</sub> | CLKIN Master Clock Input High Width | 33.3 |      | 40.7 | ns   |
| DT <sub>CLKIN</sub>  | CLKIN Duty Cycle                    | 45   |      | 55   | %    |

# 7.5.3 SDRAM Interface Timing



Fig. 7-3 Basic SDRAM Interface Timing

| Symbol               | Parameter                           | Min. | Тур. | Max. | Unit |
|----------------------|-------------------------------------|------|------|------|------|
| T <sub>SDCK P</sub>  | SDRAM Clock Output Period           | 13.9 |      |      | ns   |
| T <sub>SDCK H</sub>  | SDRAM Clock Output High Pulse Width | 4.6  |      |      | ns   |
| T <sub>SDCK L</sub>  | SDRAM Clock Output Low Pulse Width  | 4.6  |      |      | ns   |
| T <sub>MDI SU</sub>  | SDRAM Data Input Setup Time         | TBD  |      |      | ns   |
| T <sub>MDI HLD</sub> | SDRAM Data Input Hold Time          | TBD  |      |      | ns   |
| T <sub>MA D</sub>    | SDRAM Address Valid Delay           |      |      | TBD  | ns   |
| T <sub>MDO D</sub>   | SDRAM Data Output Valid Delay       |      |      | TBD  | ns   |
| T <sub>SDCMD D</sub> | SDRAM Command Valid Delay           |      |      | TBD  | ns   |

#### 7.5.4 Display Output



Fig. 7-4 Display/CCIR-601 Output Horizontal Timing



Fig. 7-5 Progressive Display Output Vertical Timing



Fig. 7-6 Progressive Display Output Vertical Timing



Fig. 7-7 CCIR-656 Output Horizontal Timing





Fig. 7-8 Display Output Clock, and Data Sample Timing

| S                                   | ymbol                                        | ol Parameter                                                       |    | Тур. | Max. | Unit |
|-------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----|------|------|------|
|                                     | T <sub>hs</sub> Horizontal Sync. Pulse Width |                                                                    | 1  |      | 256  | VDCK |
|                                     | $T_{hbp}$                                    | Display Horizontal Back Porch Width                                | 1  |      | 256  | VDCK |
|                                     | T <sub>hdis</sub>                            | Horizontal Display Enable Width                                    |    |      | 2048 | VDCK |
|                                     | $T_{hfp}$                                    | Display Horizontal Front Porch Width                               | 1  |      | 256  | VDCK |
|                                     | T <sub>vs</sub>                              | Vertical Sync. Pulse Width                                         | 1  |      | 256  | line |
|                                     | $T_{vbp}$                                    | Display Vertical Back Porch Width                                  | 1  |      | 256  | line |
|                                     | T <sub>vdis</sub>                            | Vertical Display Enable Width                                      | 1  |      | 2048 | line |
|                                     | $T_{vfp}$                                    | Display Vertical Back Porch Width                                  | 1  |      | 256  | line |
| _                                   | VDCK                                         | VDCK Clock Cycle Time                                              | 65 |      |      | ns   |
| T <sub>C</sub>                      | VGCP                                         | VGCP (2x of VDCK) Clock Cycle Time                                 | 33 |      |      | ns   |
| _                                   | VDCK                                         | VDCK Clock High Pulse Width                                        | 20 |      |      | ns   |
| T <sub>H</sub>                      | VGCP                                         | VGCP (2x of VDCK) Clock High Pulse Width                           | 11 |      |      | ns   |
|                                     | VDCK                                         | VDCK Clock Low Pulse Width                                         | 20 |      |      | ns   |
| TL                                  | VGCP                                         | VGCP (2x of VDCK) Clock Low Pulse Width                            | 11 |      |      | ns   |
| _                                   |                                              | Display Data Output delay time relative to the rising edge of VDCK |    |      | TBD  | ns   |
| T <sub>OD</sub> VGCP Display Data ( |                                              | Display Data Output delay time relative to the rising edge of VGCP |    |      | TBD  | ns   |



# 7.6 Package Dimensions

MP600A Package Outline for QFP 128 Pin ( 14mm x 20mm x 2.75mm, Pin Pitch = 0.5mm)







DETAIL F



⚠ SECTION G-G

#### NOTES:

- 1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE. DIMENSIONS D1 AND E1 ARE MAXIMUN PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07mm FOR 0.4mm AND 0.5mm PITCH PACKAGES.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1mm AND 0.25mm FROM THE LEAD TIP.

| DIM | MIN   | NOM     | MAX  | DIM | MIN  | NOM     | MAX      |
|-----|-------|---------|------|-----|------|---------|----------|
| Α   |       |         | 3.4  | L1  |      | 1.6 REI | - 1      |
| A1  | 0.25  |         |      | R1  | 0.13 |         |          |
| A2  | 2.5   | 2.72    | 2.9  | R2  | 0.13 |         | 0.3      |
| ь   | 0.17  | 0.2     | 0.27 | S   | 0.2  |         | <u> </u> |
| b1  | 0.17  | 0.2     | 0.23 | Θ   | 0°   | 3.5°    | 7°       |
| С   | 0.11  | 0.15    | 0.23 | θ1  | 0.   |         |          |
| c1  | 0.09  |         | 0.16 | 62  |      | 15° REF | - 2      |
| D   | 2     | 3.2 BS  | С    | θ3  |      | 15° REI |          |
| D1  | 15.00 | 20 BSC  |      |     |      |         |          |
| е   | (     | 0.5 BS0 |      |     |      |         |          |
| Ε   | 1     | 7.2 BS  | С    |     |      |         |          |
| E1  | 8     | 14 BSC  | ;    |     |      |         |          |
| L   | 0.73  | 0.88    | 1.03 |     |      |         |          |

MP600B Package Outline for LQFP 216 Pin ( 24mm x 24mm x 1.4mm, Pin Pitch = 0.4mm)





DETAIL F



#### NOTES:

- 1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25MM PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.
- 2. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THEN 0.08MM. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES.

| DIM | MIN                   | NOM     | MAX  | DIM | MIN  | NOM   | MAX                    |
|-----|-----------------------|---------|------|-----|------|-------|------------------------|
| Α   | 9 <u>2 3875 65 85</u> |         | 1.6  | L1  |      | 1 REF | •.:                    |
| A1  | 0.05                  |         | 0.15 | R1  | 0.08 | 3     |                        |
| A2  | 1.35                  | 1.4     | 1.45 | R2  | 0.08 | 3     | 0.2                    |
| b   | 0.13                  | 0.18    | 0.23 | S   | 0.2  |       |                        |
| b1  | 0.13                  | 0.16    | 0.19 | θ   | 0.   | 3.5°  | 7°                     |
| С   | 0.09                  |         | 0.2  | θ1  | 0.   |       | 9 <del>-3-3-5-</del> - |
| c1  | 0.09                  |         | 0.16 | θ2  | 11°  | 12°   | 13°                    |
| D   |                       | 26 BSC  |      | θ3  | 11°  | 12°   | 13°                    |
| D1  |                       | 24 BSC  |      |     |      |       |                        |
| е   |                       | 0.4 BS0 |      |     |      |       |                        |
| Е   |                       | 26 BSC  |      |     |      |       |                        |
| E1  |                       | 24 BSC  |      |     |      | 19-91 |                        |
| L   | 0.45                  | 0.6     | 0.75 |     |      |       |                        |



# **8 Revision History**

| Date          | Revision | Description               |
|---------------|----------|---------------------------|
| Mar. 02. 2007 | 0.1      | Initial Version           |
| Mar. 05. 2007 | 0.2      | Spike Update              |
| Mar. 05. 2007 | 0.3      | First version for Release |
| Mar. 08. 2007 | 0.8      | Initial Release           |