2017

In [1]: import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid;
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("madrid_2017.csv")
 df

	<u> </u>														
Out[2]:		date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тс
	0	2017- 06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0	Na
	1	2017- 06-01 01:00:00	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0	1.
	2	2017- 06-01 01:00:00	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN	Na
	3	2017- 06-01 01:00:00	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN	Na
	4	2017- 06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0	Na
	210115	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN	Na
	210116	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0	Na
	210117	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN	Na
	210118	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN	Na
	210119	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN	Na

210120 rows × 16 columns

localhost:8888/notebooks/Downloads/Day 13 - 20115063 (2017-2018).ipynb

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210120 entries, 0 to 210119
Data columns (total 16 columns):
```

		\	, -
#	Column	Non-Null Count	Dtype
0	date	210120 non-null	object
1	BEN	50201 non-null	float64
2	CH4	6410 non-null	float64
3	CO	87001 non-null	float64
4	EBE	49973 non-null	float64
5	NMHC	25472 non-null	float64
6	NO	209065 non-null	float64
7	NO_2	209065 non-null	float64
8	NOx	52818 non-null	float64
9	0_3	121398 non-null	float64
10	PM10	104141 non-null	float64
11	PM25	52023 non-null	float64
12	S0_2	86803 non-null	float64
13	TCH	25472 non-null	float64
14	TOL	50117 non-null	float64
15	station	210120 non-null	int64
dtyp	es: float	54(14), int64(1),	object(1)
memo	ry usage:	25.6+ MB	

In [4]: df1=df.dropna()
df1

Out[4]:

_		date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн
	87457	2017- 10-01 01:00:00	0.6	1.22	0.3	0.4	0.09	4.0	54.0	60.0	43.0	12.0	9.0	13.0	1.31
	87462	2017- 10-01 01:00:00	0.2	1.18	0.2	0.1	0.09	1.0	26.0	28.0	42.0	14.0	6.0	3.0	1.27
	87481	2017- 10-01 02:00:00	0.4	1.22	0.2	0.2	0.06	2.0	32.0	36.0	53.0	14.0	10.0	13.0	1.28
	87486	2017- 10-01 02:00:00	0.2	1.19	0.2	0.1	0.07	1.0	15.0	17.0	51.0	18.0	8.0	3.0	1.26
	87505	2017- 10-01 03:00:00	0.3	1.23	0.2	0.2	0.06	2.0	27.0	29.0	57.0	15.0	10.0	13.0	1.29
	158238	2017- 12-31 22:00:00	0.3	1.11	0.2	0.1	0.03	1.0	8.0	9.0	73.0	3.0	1.0	3.0	1.14
	158257	2017- 12-31 23:00:00	0.6	1.38	0.3	0.1	0.03	6.0	42.0	51.0	47.0	7.0	4.0	3.0	1.41
	158262	2017- 12-31 23:00:00	0.3	1.11	0.2	0.1	0.03	1.0	6.0	8.0	72.0	6.0	3.0	3.0	1.14
	158281	2018- 01-01 00:00:00	0.5	1.38	0.2	0.1	0.02	2.0	20.0	23.0	69.0	4.0	2.0	3.0	1.39
	158286	2018- 01-01 00:00:00	0.3	1.11	0.2	0.1	0.03	1.0	1.0	3.0	83.0	8.0	5.0	3.0	1.14

4127 rows × 16 columns

4

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

```
Out[6]: <AxesSubplot:>
```



```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x25f5f6d7fd0>]


```
In [8]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
In [10]: prediction=li.predict(x_test)
         plt.scatter(y_test,prediction)
```

Out[10]: <matplotlib.collections.PathCollection at 0x25f5f7a3c70>

```
8
6
4
2
                                                              10
```

```
In [11]: lis=li.score(x_test,y_test)
```

```
In [12]: df1["TCH"].value_counts()
```

```
Out[12]: 1.24
                   124
          1.36
                   118
          1.26
                   112
          1.25
                   110
          1.41
                   107
          3.23
                     1
          2.47
                     1
          2.35
                     1
          2.61
                     1
          2.94
```

Name: TCH, Length: 164, dtype: int64

```
In [13]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
          df1.loc[df1["TCH"]>1.40,"TCH"]=2
          df1["TCH"].value_counts()
```

Out[13]: 1.0 2428 2.0 1699

Name: TCH, dtype: int64

Lasso

```
In [14]: la=Lasso(alpha=5)
         la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x25f5f80f820>


```
In [16]: las=la.score(x_test,y_test)
```

Ridge

```
In [17]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x25f5f64b2e0>


```
In [19]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [20]: en=ElasticNet()
         en.fit(x_train,y_train)
Out[20]: ElasticNet()
In [21]: prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[21]: <matplotlib.collections.PathCollection at 0x25f60140640>
          8
          6
          4
          2
In [22]: ens=en.score(x_test,y_test)
In [23]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.8446472469016151
```

Logistic

Out[23]: 0.8976558488919304

```
In [25]: x=df1.drop(["TCH"],axis=1)
y=df1["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [26]: lo=LogisticRegression()
lo.fit(x_train,y_train)
```

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
   plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x25f601ad700>


```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [29]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
```

```
In [30]: g1={"TCH":{"Low":1.0,"High":2.0}}
df1=df1.replace(g1)
```

```
In [31]: x=df1.drop(["TCH"],axis=1)
y=df1["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [32]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[32]: RandomForestClassifier()

```
In [37]: from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
 plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"]
```

```
Out[37]: [Text(1962.6206896551726, 2019.0857142857144, 'BEN <= 0.65\ngini = 0.477\nsam
         ples = 1820\nvalue = [1757, 1131]\nclass = Yes'),
          Text(837.000000000001, 1708.457142857143, 'NO 2 <= 24.5\ngini = 0.239\nsamp
         les = 940\nvalue = [1312, 211]\nclass = Yes'),
          Text(384.82758620689657, 1397.8285714285716, 'CH4 <= 1.315\ngini = 0.069\nsa
         mples = 362\nvalue = [567, 21]\nclass = Yes'),
          Text(230.89655172413796, 1087.2, 'CO <= 0.15\ngini = 0.004\nsamples = 342\nv
         alue = [555, 1]\nclass = Yes'),
          Text(153.93103448275863, 776.5714285714287, 'CH4 <= 1.215 \ngini = 0.021 \nsam
         ples = 60\nvalue = [93, 1]\nclass = Yes'),
          Text(76.96551724137932, 465.9428571428573, 'gini = 0.0\nsamples = 55\nvalue
         = [89, 0]\nclass = Yes'),
          Text(230.89655172413796, 465.9428571428573, 'gini = 0.32\nsamples = 5\nvalue
         = [4, 1] \setminus class = Yes'),
          Text(307.86206896551727, 776.5714285714287, 'gini = 0.0\nsamples = 282\nvalu
         e = [462, 0] \setminus class = Yes'),
          Text(538.7586206896552, 1087.2, 'NMHC <= 0.025\ngini = 0.469\nsamples = 20\n
         value = [12, 20]\nclass = No'),
          Text(461.79310344827593, 776.5714285714287, 'TOL <= 0.75\ngini = 0.245\nsamp
         les = 10\nvalue = [12, 2]\nclass = Yes'),
          Text(384.82758620689657, 465.9428571428573, 'gini = 0.0\nsamples = 5\nvalue
         = [7, 0] \setminus class = Yes'),
          Text(538.7586206896552, 465.9428571428573, 'gini = 0.408\nsamples = 5\nvalue
         = [5, 2]\nclass = Yes'),
          Text(615.7241379310345, 776.5714285714287, 'gini = 0.0\nsamples = 10\nvalue
         = [0, 18] \setminus nclass = No'),
          Text(1289.1724137931035, 1397.8285714285716, 'NO <= 2.5\ngini = 0.324\nsampl
         es = 578\nvalue = [745, 190]\nclass = Yes'),
          Text(846.6206896551724, 1087.2, 'NO 2 <= 25.5 \cdot mgini = 0.186 \cdot msamples = <math>139 \cdot m
         value = [199, 23]\nclass = Yes'),
          Text(769.6551724137931, 776.5714285714287, 'gini = 0.444\nsamples = 12\nvalu
         e = [18, 9] \setminus class = Yes'),
          Text(923.5862068965519, 776.5714285714287, 'station <= 28079016.0 \cdot 10^{-1}
         133\nsamples = 127\nvalue = [181, 14]\nclass = Yes'),
          Text(769.6551724137931, 465.9428571428573, 'PM10 <= 6.5\ngini = 0.339\nsampl
         es = 21\nvalue = [29, 8]\nclass = Yes'),
          Text(692.6896551724138, 155.3142857142857, 'gini = 0.198\nsamples = 9\nvalue
         = [16, 2]\nclass = Yes'),
          Text(846.6206896551724, 155.3142857142857, 'gini = 0.432\nsamples = 12\nvalu
         e = [13, 6] \setminus class = Yes'),
          Text(1077.5172413793105, 465.9428571428573, 'BEN <= 0.25\ngini = 0.073\nsamp
         les = 106\nvalue = [152, 6]\nclass = Yes'),
          Text(1000.5517241379312, 155.3142857142857, 'gini = 0.245\nsamples = 26\nval
         ue = [30, 5]\nclass = Yes'),
          Text(1154.4827586206898, 155.3142857142857, 'gini = 0.016\nsamples = 80\nval
         ue = [122, 1]\nclass = Yes'),
          Text(1731.7241379310346, 1087.2, 'CH4 <= 1.375\ngini = 0.359\nsamples = 439
         | value = [546, 167] \ = Yes'),
          Text(1539.3103448275863, 776.5714285714287, 'NOx <= 71.5\ngini = 0.137\nsamp
         les = 353\nvalue = [538, 43]\nclass = Yes'),
          Text(1385.3793103448277, 465.9428571428573, 'NO 2 <= 26.5\ngini = 0.08\nsamp
         les = 220\nvalue = [344, 15]\nclass = Yes'),
          Text(1308.4137931034484, 155.3142857142857, 'gini = 0.266\nsamples = 13\nval
         ue = [16, 3]\nclass = Yes'),
          Text(1462.344827586207, 155.3142857142857, 'gini = 0.068\nsamples = 207\nval
         ue = [328, 12]\nclass = Yes'),
          Text(1693.2413793103449, 465.9428571428573, '0 3 <= 8.5\ngini = 0.22\nsample
```

```
s = 133 \setminus value = [194, 28] \setminus class = Yes'),
   Text(1616.2758620689656, 155.3142857142857, 'gini = 0.081\nsamples = 42\nval
ue = [68, 3]\nclass = Yes'),
   Text(1770.2068965517242, 155.3142857142857, 'gini = 0.276\nsamples = 91\nval
ue = [126, 25]\nclass = Yes'),
  Text(1924.137931034483, 776.5714285714287, 'NMHC <= 0.015 \\ lngini = 0.114 \\ lnsam \\
ples = 86\nvalue = [8, 124]\nclass = No'),
   Text(1847.1724137931037, 465.9428571428573, 'gini = 0.408\nsamples = 5\nvalu
e = [5, 2]\nclass = Yes'),
  Text(2001.1034482758623, 465.9428571428573, '0_3 <= 44.5\ngini = 0.047\nsamp
les = 81\nvalue = [3, 122]\nclass = No'),
   Text(1924.137931034483, 155.3142857142857, 'gini = 0.0\nsamples = 68\nvalue
= [0, 104] \setminus nclass = No'),
   Text(2078.0689655172414, 155.3142857142857, 'gini = 0.245\nsamples = 13\nval
ue = [3, 18] \setminus nclass = No'),
   Text(3088.241379310345, 1708.457142857143, 'CH4 <= 1.295\ngini = 0.439\nsamp
les = 880\nvalue = [445, 920]\nclass = No'),
   Text(2539.8620689655177, 1397.8285714285716, 'CH4 <= 1.265\ngini = 0.134\nsa
mples = 282\nvalue = [400, 31]\nclass = Yes'),
   Text(2308.9655172413795, 1087.2, 'NOx <= 185.0\ngini = 0.017\nsamples = 230
\nvalue = [351, 3]\nclass = Yes'),
  Text(2232.0, 776.5714285714287, 'gini = 0.0\nsamples = 188\nvalue = [285, 0]
\nclass = Yes'),
  Text(2385.9310344827586, 776.5714285714287, '0_3 <= 3.5\ngini = 0.083\nsampl
es = 42\nvalue = [66, 3]\nclass = Yes'),
   Text(2308.9655172413795, 465.9428571428573, '0_3 <= 2.5\ngini = 0.305\nsampl
es = 11\nvalue = [13, 3]\nclass = Yes'),
   Text(2232.0, 155.3142857142857, 'gini = 0.375\nsamples = 5\nvalue = [6, 2]\n
class = Yes'),
   Text(2385.9310344827586, 155.3142857142857, 'gini = 0.219\nsamples = 6\nvalu
e = [7, 1]\nclass = Yes'),
  Text(2462.896551724138, 465.9428571428573, 'gini = 0.0\nsamples = 31\nvalue
= [53, 0]\nclass = Yes'),
  Text(2770.7586206896553, 1087.2, 'NMHC <= 0.125\ngini = 0.463\nsamples = 52

    | value = [49, 28] \rangle = Yes'),

  Text(2693.7931034482763, 776.5714285714287, 'NO <= 37.5\ngini = 0.039\nsampl
es = 34\nvalue = [49, 1]\nclass = Yes'),
   Text(2616.8275862068967, 465.9428571428573, 'gini = 0.0\nsamples = 23\nvalue
= [38, 0]\nclass = Yes'),
   Text(2770.7586206896553, 465.9428571428573, 'TOL <= 5.65\ngini = 0.153\nsamp
les = 11\nvalue = [11, 1]\nclass = Yes'),
  Text(2693.7931034482763, 155.3142857142857, 'gini = 0.32\nsamples = 5\nvalue
= [4, 1]\nclass = Yes'),
   Text(2847.724137931035, 155.3142857142857, 'gini = 0.0\nsamples = 6\nvalue =
[7, 0] \setminus class = Yes'),
  Text(2847.724137931035, 776.5714285714287, 'gini = 0.0\nsamples = 18\nvalue
= [0, 27]\nclass = No'),
   Text(3636.6206896551726, 1397.8285714285716, 'NOx <= 79.5 \neq 0.092 \Rightarrow 0.09
ples = 598\nvalue = [45, 889]\nclass = No'),
   Text(3309.5172413793107, 1087.2, 'PM25 <= 9.5\ngini = 0.396\nsamples = 58\nv
alue = [25, 67] \setminus class = No'),
  Text(3232.551724137931, 776.5714285714287, 'NMHC <= 0.065 \cdot 10^{-1} 0.416\nsam
ples = 49\nvalue = [23, 55]\nclass = No'),
   Text(3078.6206896551726, 465.9428571428573, 'NMHC <= 0.045\ngini = 0.187\nsa
mples = 30\nvalue = [5, 43]\nclass = No'),
  Text(3001.6551724137935, 155.3142857142857, 'gini = 0.375\nsamples = 13\nval
ue = [5, 15] \setminus class = No'),
```

Text(3155.586206896552, 155.3142857142857, 'gini = 0.0\nsamples = 17\nvalue = [0, 28]\nclass = No'), Text(3386.4827586206898, 465.9428571428573, 'EBE <= 0.45\ngini = 0.48\nsampl es = 19\nvalue = [18, 12]\nclass = Yes'), Text(3309.5172413793107, 155.3142857142857, 'gini = 0.397\nsamples = 13\nval ue = [16, 6]\nclass = Yes'), Text(3463.4482758620693, 155.3142857142857, 'gini = 0.375\nsamples = 6\nvalu $e = [2, 6] \setminus nclass = No'),$ Text(3386.4827586206898, 776.5714285714287, 'gini = 0.245\nsamples = 9\nvalu $e = [2, 12] \setminus nclass = No'),$ Text(3963.724137931035, 1087.2, 'NOx <= 97.5\ngini = 0.046\nsamples = 540\nv alue = [20, 822]\nclass = No'), Text(3771.3103448275865, 776.5714285714287, 'station <= 28079016.0\ngini = 0.211\nsamples = 66\nvalue = [12, 88]\nclass = No'), Text(3694.3448275862074, 465.9428571428573, 'NO <= 14.5\ngini = 0.123\nsampl es = 60\nvalue = [6, 85]\nclass = No'), Text(3617.379310344828, 155.3142857142857, 'gini = 0.298\nsamples = 15\nvalu $e = [4, 18] \setminus nclass = No'),$ Text(3771.3103448275865, 155.3142857142857, 'gini = 0.056\nsamples = 45\nval ue = $[2, 67] \setminus nclass = No'),$ Text(3848.275862068966, 465.9428571428573, 'gini = 0.444\nsamples = 6\nvalue = [6, 3]\nclass = Yes'), Text(4156.137931034483, 776.5714285714287, '0 3 <= 1.5\ngini = 0.021\nsample $s = 474 \setminus e = [8, 734] \setminus e = No'),$ Text(4002.2068965517246, 465.9428571428573, 'CH4 <= 1.41\ngini = 0.219\nsamp les = 10\nvalue = [2, 14]\nclass = No'), Text(3925.241379310345, 155.3142857142857, 'gini = 0.444\nsamples = 5\nvalue $= [2, 4] \setminus nclass = No'),$ Text(4079.1724137931037, 155.3142857142857, 'gini = 0.0\nsamples = 5\nvalue = [0, 10]\nclass = No'), Text(4310.068965517242, 465.9428571428573, 'PM25 <= 31.5\ngini = 0.016\nsamp les = 464\nvalue = [6, 720]\nclass = No'), Text(4233.103448275862, 155.3142857142857, 'gini = 0.009\nsamples = 424\nval ue = $[3, 656] \setminus nclass = No')$, Text(4387.034482758621, 155.3142857142857, 'gini = 0.086\nsamples = 40\nvalu e = [3, 64]\nclass = No')]


```
In [38]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.8441268043977549 Lasso: 0.6393010463991731 Ridge: 0.8446472469016151 ElasticNet: 0.7899757472729623 Logistic: 0.579499596448749

Random Forest: 0.9681440443213296

Best Model is Random Forest

2018

Out[39]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	T
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0	
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN	١
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN	١
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0	١
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN	١
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0	١
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN	١
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN	١
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN	١

69096 rows × 16 columns

localhost:8888/notebooks/Downloads/Day 13 - 20115063 (2017-2018).ipynb

```
In [40]: df2.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69096 entries, 0 to 69095
Data columns (total 16 columns):
     Column
              Non-Null Count Dtype
 0
     date
              69096 non-null object
     BEN
              16950 non-null float64
 1
 2
     CH4
                              float64
              8440 non-null
 3
     CO
              28598 non-null float64
 4
     EBE
              16949 non-null float64
 5
     NMHC
              8440 non-null
                              float64
              68826 non-null float64
 6
     NO
 7
     NO 2
              68826 non-null float64
 8
     NOx
              68826 non-null float64
 9
     0_3
              40049 non-null float64
 10
     PM10
              36911 non-null float64
    PM25
              18912 non-null float64
 11
     SO 2
 12
              28586 non-null float64
 13
    TCH
              8440 non-null
                              float64
 14
    TOL
              16950 non-null float64
 15
     station 69096 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 8.4+ MB
```

In [41]: df3=df2.dropna()
df3

Out[41]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TC
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.
6	2018- 03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0	1.
25	2018- 03-01 02:00:00	0.4	1.42	0.2	0.1	0.01	4.0	26.0	32.0	64.0	4.0	4.0	3.0	1.
30	2018- 03-01 02:00:00	0.3	1.10	0.2	0.1	0.05	1.0	12.0	13.0	69.0	5.0	4.0	4.0	1.
49	2018- 03-01 03:00:00	0.3	1.41	0.2	0.1	0.01	3.0	16.0	20.0	68.0	3.0	2.0	3.0	1.4
69030	2018- 01-31 22:00:00	1.8	1.21	0.7	1.7	0.19	151.0	129.0	361.0	1.0	45.0	26.0	11.0	1.₁
69049	2018- 01-31 23:00:00	3.1	1.87	1.2	2.0	0.35	296.0	162.0	615.0	3.0	39.0	23.0	8.0	2.:
69054	2018- 01-31 23:00:00	1.6	1.17	0.6	1.4	0.15	127.0	106.0	301.0	1.0	43.0	25.0	8.0	1.:
69073	2018- 02-01 00:00:00	3.2	1.53	1.0	2.1	0.19	125.0	117.0	309.0	3.0	37.0	24.0	6.0	1.
69078	2018- 02-01 00:00:00	1.3	1.14	0.4	0.8	0.10	54.0	73.0	155.0	1.0	27.0	16.0	5.0	1.:

4562 rows × 16 columns

In [42]: df3=df3.drop(["date"],axis=1)

```
In [43]: sns.heatmap(df3.corr())
```

Out[43]: <AxesSubplot:>


```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [45]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[45]: LinearRegression()

```
In [46]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[46]: <matplotlib.collections.PathCollection at 0x25f605d5070>


```
In [47]: lis=li.score(x_test,y_test)
In [48]: df3["TCH"].value_counts()
Out[48]: 1.15
                  246
         1.43
                  232
         1.44
                  223
          1.14
                  210
         1.13
                  201
         2.35
                    1
         2.58
                    1
         2.73
                    1
         2.12
                    1
         1.96
         Name: TCH, Length: 143, dtype: int64
In [49]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[49]: 2.0
                 2477
         1.0
                 2085
         Name: TCH, dtype: int64
 In [ ]:
```

Lasso

```
In [50]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[50]: Lasso(alpha=5)
```

```
In [51]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[51]: <matplotlib.collections.PathCollection at 0x25f60639190>


```
In [52]: las=la.score(x_test,y_test)
```

Ridge

```
In [53]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x25f6068d760>


```
In [55]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [56]: en=ElasticNet()
         en.fit(x_train,y_train)
Out[56]: ElasticNet()
In [57]: prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[57]: <matplotlib.collections.PathCollection at 0x25f606f32b0>
           4.0
           3.5
           3.0
           2.5
           2.0
           1.5
           1.0
           0.5
           0.0
               0.0
                    0.5
                         1.0
                              1.5
                                   2.0
                                        2.5
                                              3.0
                                                   3.5
                                                        4.0
In [58]: ens=en.score(x_test,y_test)
In [59]: print(rr.score(x_test,y_test))
          rr.score(x_train,y_train)
          0.9979283454674264
Out[59]: 0.998113461617783
          Logistic
In [60]: |g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
```

localhost:8888/notebooks/Downloads/Day 13 - 20115063 (2017-2018).ipynb

2477

2085 Name: TCH, dtype: int64

Out[60]: High

Low

```
In [61]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [62]: lo=LogisticRegression()
```

```
In [62]: lo=LogisticRegression()
lo.fit(x_train,y_train)
```

Out[62]: LogisticRegression()

```
In [63]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[63]: <matplotlib.collections.PathCollection at 0x25f6075c7f0>


```
In [64]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [65]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
```

```
In [66]: g1={"TCH":{"Low":1.0,"High":2.0}}
df3=df3.replace(g1)
```

```
In [67]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [68]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[68]: RandomForestClassifier()

```
In [73]: from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"]
```

```
Out[73]: [Text(1435.6875, 2019.0857142857144, 'NO <= 2.5\ngini = 0.497\nsamples = 2022
                           \nvalue = [1468, 1725]\nclass = No'),
                             Text(465.0, 1708.457142857143, 'CH4 <= 1.385\ngini = 0.186\nsamples = 603\nv
                           alue = [840, 97]\nclass = Yes'),
                              Text(279.0, 1397.8285714285716, 'station <= 28079016.0\ngini = 0.007\nsample
                           s = 539\nvalue = [838, 3]\nclass = Yes'),
                              Text(186.0, 1087.2, 'NO 2 <= 17.5\ngini = 0.204\nsamples = 17\nvalue = [23,
                           3]\nclass = Yes'),
                              Text(93.0, 776.5714285714287, 'gini = 0.0\nsamples = 11\nvalue = [17, 0]\ncl
                           ass = Yes'),
                              Text(279.0, 776.5714285714287, 'gini = 0.444\nsamples = 6\nvalue = [6, 3]\nc
                           lass = Yes'),
                              Text(372.0, 1087.2, 'gini = 0.0\nsamples = 522\nvalue = [815, 0]\nclass = Ye
                           s'),
                              Text(651.0, 1397.8285714285716, 'PM10 <= 4.5\ngini = 0.041\nsamples = 64\nva
                           lue = [2, 94] \setminus class = No'),
                             Text(558.0, 1087.2, 'gini = 0.0\nsamples = 35\nvalue = [0, 56]\nclass = N
                           o'),
                              Text(744.0, 1087.2, '0 3 <= 52.0 \cdot 10 = 0.095 \cdot 10 = 29 \cdot 10 = 2
                           8]\nclass = No'),
                              Text(651.0, 776.5714285714287, 'gini = 0.0\nsamples = 12\nvalue = [0, 19]\nc
                           lass = No'),
                              Text(837.0, 776.5714285714287, 'NOx <= 23.5 \neq 0.172 = 17 \neq 0.172 = 1
                           ue = [2, 19] \setminus class = No'),
                              Text(744.0, 465.9428571428573, 'gini = 0.298\nsamples = 10\nvalue = [2, 9]\n
                           class = No'),
                              Text(930.0, 465.9428571428573, 'gini = 0.0\nsamples = 7\nvalue = [0, 10]\ncl
                           ass = No'),
                              Text(2406.375, 1708.457142857143, 'NOx <= 31.5 \neq 0.402 = 0.402 = 1419
                           \nvalue = [628, 1628] \setminus class = No'),
                              Text(1581.0, 1397.8285714285716, 'NMHC <= 0.035\ngini = 0.409\nsamples = 94

    | value = [102, 41] \rangle = Yes'),

                              Text(1488.0, 1087.2, 'NOx <= 25.5\ngini = 0.497\nsamples = 58\nvalue = [48,
                           41]\nclass = Yes'),
                              Text(1209.0, 776.5714285714287, 'CH4 <= 1.375\ngini = 0.43\nsamples = 22\nva
                           lue = [10, 22]\nclass = No'),
                              Text(1116.0, 465.9428571428573, 'gini = 0.0\nsamples = 6\nvalue = [9, 0]\ncl
                           ass = Yes'),
                             Text(1302.0, 465.9428571428573, 'SO 2 <= 2.0\ngini = 0.083\nsamples = 16\nva
                           lue = [1, 22]\nclass = No'),
                              Text(1209.0, 155.3142857142857, 'gini = 0.18\nsamples = 8\nvalue = [1, 9]\nc
                           lass = No'),
                              Text(1395.0, 155.3142857142857, 'gini = 0.0\nsamples = 8\nvalue = [0, 13]\nc
                           lass = No'),
                              Text(1767.0, 776.5714285714287, 'CH4 <= 1.395\ngini = 0.444\nsamples = 36\nv
                           alue = [38, 19]\nclass = Yes'),
                              Text(1674.0, 465.9428571428573, 'NO_2 <= 23.5\ngini = 0.05\nsamples = 24\nva
                           lue = [38, 1]\nclass = Yes'),
                              Text(1581.0, 155.3142857142857, 'gini = 0.0\nsamples = 19\nvalue = [34, 0]\n
                           class = Yes'),
                              Text(1767.0, 155.3142857142857, 'gini = 0.32\nsamples = 5\nvalue = [4, 1]\nc
                           lass = Yes'),
                              Text(1860.0, 465.9428571428573, 'gini = 0.0\nsamples = 12\nvalue = [0, 18]\n
                           class = No'),
                              Text(1674.0, 1087.2, 'gini = 0.0\nsamples = 36\nvalue = [54, 0]\nclass = Ye
                           s'),
                              Text(3231.75, 1397.8285714285716, 'PM25 <= 10.5\ngini = 0.374\nsamples = 132
```

```
5\nvalue = [526, 1587]\nclass = No'),
 Text(2604.0, 1087.2, 'CO <= 0.25\ngini = 0.319\nsamples = 911\nvalue = [287,
1157]\nclass = No'),
 Text(2232.0, 776.5714285714287, 'PM25 <= 2.5\ngini = 0.426\nsamples = 87\nva
lue = [92, 41] \setminus class = Yes'),
 Text(2046.0, 465.9428571428573, 'CH4 <= 1.385\ngini = 0.5\nsamples = 32\nval
ue = [25, 25]\nclass = Yes'),
 Text(1953.0, 155.3142857142857, 'gini = 0.083\nsamples = 14\nvalue = [22, 1]
\nclass = Yes'),
 Text(2139.0, 155.3142857142857, 'gini = 0.198\nsamples = 18\nvalue = [3, 24]
\nclass = No'),
 Text(2418.0, 465.9428571428573, 'NMHC <= 0.045\ngini = 0.311\nsamples = 55\n
value = [67, 16]\nclass = Yes'),
 Text(2325.0, 155.3142857142857, 'gini = 0.435\nsamples = 36\nvalue = [34, 1]
6]\nclass = Yes'),
 Text(2511.0, 155.3142857142857, 'gini = 0.0 \times 10^{-1} = 0.0 \times 
class = Yes'),
 Text(2976.0, 776.5714285714287, 'station <= 28079016.0\ngini = 0.253\nsample
s = 824\nvalue = [195, 1116]\nclass = No'),
 Text(2790.0, 465.9428571428573, 'CO <= 0.35\ngini = 0.137\nsamples = 762\nva
lue = [89, 1114]\nclass = No'),
 Text(2697.0, 155.3142857142857, 'gini = 0.216\nsamples = 357\nvalue = [73, 5]
20 \mid \text{nclass} = \text{No'}
 Text(2883.0, 155.3142857142857, 'gini = 0.051\nsamples = 405\nvalue = [16, 5
94]\nclass = No'),
 Text(3162.0, 465.9428571428573, '0 3 <= 19.5\ngini = 0.036\nsamples = 62\nva
lue = [106, 2]\nclass = Yes'),
 Text(3069.0, 155.3142857142857, 'gini = 0.0\nsamples = 50\nvalue = [88, 0]\n
class = Yes'),
 Text(3255.0, 155.3142857142857, 'gini = 0.18\nsamples = 12\nvalue = [18, 2]
\nclass = Yes'),
 Text(3859.5, 1087.2, 'EBE <= 0.25\ngini = 0.459\nsamples = 414\nvalue = [23
9, 430\nclass = No'),
 Text(3627.0, 776.5714285714287, 'CH4 <= 1.395\ngini = 0.407\nsamples = 81\nv
alue = [98, 39]\nclass = Yes'),
 Text(3534.0, 465.9428571428573, 'CH4 <= 1.355\ngini = 0.14\nsamples = 61\nva
lue = [98, 8]\nclass = Yes'),
 Text(3441.0, 155.3142857142857, 'gini = 0.0\nsamples = 50\nvalue = [88, 0]\n
class = Yes'),
 Text(3627.0, 155.3142857142857, 'gini = 0.494\nsamples = 11\nvalue = [10, 8]
\nclass = Yes'),
 Text(3720.0, 465.9428571428573, 'gini = 0.0\nsamples = 20\nvalue = [0, 31]\n
class = No'),
 Text(4092.0, 776.5714285714287, 'NOx <= 91.0\ngini = 0.39\nsamples = 333\nva
lue = [141, 391]\nclass = No'),
 Text(3906.0, 465.9428571428573, 'station <= 28079016.0\ngini = 0.498\nsample
s = 56 \setminus value = [46, 40] \setminus class = Yes'),
 Text(3813.0, 155.3142857142857, 'gini = 0.229\nsamples = 24\nvalue = [5, 33]
\nclass = No'),
 Text(3999.0, 155.3142857142857, 'gini = 0.249\nsamples = 32\nvalue = [41, 7]
\nclass = Yes'),
 Text(4278.0, 465.9428571428573, '0 3 <= 1.5\ngini = 0.335\nsamples = 277\nva
lue = [95, 351]\nclass = No'),
 Text(4185.0, 155.3142857142857, 'gini = 0.357\nsamples = 52\nvalue = [66, 2]
0]\nclass = Yes'),
 Text(4371.0, 155.3142857142857, 'gini = 0.148\nsamples = 225\nvalue = [29, 3
31 \mid nclass = No')
```



```
In [74]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.9996222720077558 Lasso: 0.3728582371674869 Ridge: 0.9979283454674264 ElasticNet: 0.5889752318704515 Logistic: 0.5536888239590942 Random Forest: 0.9802696314989101

Best model is Linear Regression