Московский авиационный институт (национальный исследовательский университет)

Институт №8 «Компьютерные науки и прикладная математика»

Кафедра 806 «Вычислительная математика и программирования»

Лабораторная работа №3 по курсу «Численные методы»

Студент: Т.Д. Голубев Преподаватель: И.Э. Иванов Группа: М8О-306Б-22

Дата:

Оценка: Подпись:

Лабораторная работа №4.1

Задача: Реализовать методы Эйлера, Рунге-Кутты и Адамса 4-го порядка в виде программ, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

$$\begin{cases} y'' + \frac{1}{x}y' + \frac{2}{x}y = 0\\ y(1) = 1 & x \in [1, 2]h = 0.1\\ y'(1) = 1 \end{cases}$$

Точное решение:

$$y = (\cos 2 - \sin 2)\cos(2x^{1/2}) + (\cos 2 + \sin 2)\sin(2x^{1/2})$$

Описание

1 Задача Коши для одного обыкновенного дифференциального уравнения

Рассматривается задача Коши для одного дифференциального уравнения первого порядка, разрешённого относительно производной:

$$y' = f(x, y), \quad y(x_0) = y_0,$$
 (4.1)

где $x \in [a, b], x_0 = a.$

1 Разностная сетка

Введём равномерную разностную сетку на отрезке [a,b]:

$$\Omega^{(h)} = \{x_k = x_0 + hk\}, \quad k = 0, 1, \dots, N, \quad h = \frac{|b - a|}{N}.$$

Точки x_k называются узлами сетки, h — шагом сетки, а совокупность значений искомой функции y в узлах сетки — сеточной функцией:

$$y^{(h)} = \{y_k, \ k = 0, 1, \dots, N\}.$$

2 Погрешность численного решения

Приближённое решение задачи Коши ищется в виде сеточной функции $y^{(h)}$. Погрешность численного решения оценивается через норму разности между приближённым и точным решениями:

$$\delta^{(h)} = y^{(h)} - [y]^{(h)}$$
, где $[y]^{(h)}$ — точное решение в узлах сетки.

Таким образом, глобальная погрешность:

$$\varepsilon_h = \|\delta^{(h)}\|.$$

3 Метод Эйлера (явный)

Метод Эйлера основан на замене производной разностным отношением:

$$y_{k+1} = y_k + hf(x_k, y_k), \quad k = 0, 1, \dots, N - 1.$$
 (4.2)

3.1 Геометрическая интерпретация

Решение y(x) задачи Коши (4.1) — гладкая кривая, проходящая через точку (x_0, y_0) . Касательная к этой кривой в точке (x_k, y_k) имеет угловой коэффициент $f(x_k, y_k)$. При малом шаге h значение y_{k+1} приближённо равно ординате точки касательной при $x = x_{k+1}$.

3.2 Погрешность метода

• Локальная погрешность на шаге:

$$\varepsilon_k^h = \frac{y''(\xi)}{2}h^2, \quad \xi \in [x_{k-1}, x_k].$$

• Глобальная погрешность:

$$\varepsilon_{rr}^h = Ch + O(h^2).$$

Метод имеет первый порядок точности.

4 Модификации метода Эйлера

1. Неявный метод Эйлера (первый порядок точности):

$$y_{k+1} = y_k + h f(x_{k+1}, y_{k+1}). (4.3)$$

2. Метод Эйлера-Коши (второй порядок точности):

$$\widetilde{y}_{k+1} = y_k + h f(x_k, y_k),$$

$$y_{k+1} = y_k + \frac{h}{2} \left(f(x_k, y_k) + f(x_{k+1}, \widetilde{y}_{k+1}) \right).$$
(4.4)

3. Первый улучшенный метод Эйлера (второй порядок точности):

$$y_{k+1/2} = y_k + \frac{h}{2} f(x_k, y_k),$$

$$y_{k+1} = y_k + h f(x_{k+1/2}, y_{k+1/2}).$$
(4.7)

5 Методы Рунге-Кутты

Семейство методов Рунге-Кутты р-го порядка общего вида:

$$y_{k+1} = y_k + \Delta y_k, \quad \Delta y_k = \sum_{i=1}^p c_i K_i^k,$$

где

$$K_i^k = hf\left(x_k + a_i h, \ y_k + h \sum_{j=1}^{i-1} b_{ij} K_j^k\right), \quad i = 2, 3, \dots, p.$$
 (4.8)

5.1 Метод Рунге-Кутты 4-го порядка

Стандартная схема:

$$y_{k+1} = y_k + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4),$$

где

$$\begin{cases}
K_1 = hf(x_k, y_k), \\
K_2 = hf(x_k + \frac{h}{2}, y_k + \frac{K_1}{2}), \\
K_3 = hf(x_k + \frac{h}{2}, y_k + \frac{K_2}{2}), \\
K_4 = hf(x_k + h, y_k + K_3).
\end{cases}$$
(4.10)

6 Контроль точности

Для контроля точности используется принцип Рунге-Ромберга-Ричардсона:

$$y = y^h + \frac{y^h - y^{2h}}{2^p - 1},\tag{4.11}$$

где y^h и y^{2h} — решения, полученные с шагами h и 2h соответственно, p — порядок метода. Второе слагаемое оценивает главный член погрешности.

Исходный код

```
package cat.mood;
import java.util.Arrays;
public class NumericalMethodsLab {
    // Функции, определяющие систему ОДУ
    interface ODEFunction {
        double f(double x, double y, double z);
        double g(double x, double y, double z);
    }
    // Точное решение для сравнения
    interface ExactSolution {
        double y(double x);
        double z(double x);
    }
    // Решение методом Эйлера
    public static double[][] eulerMethod(ODEFunction ode, ExactSolution exact,
                                          double x0, double y0, double z0,
                                          double h, int steps) {
        double[][] result = new double[steps + 1][5]; // x, y, z, y_exact, error
        result[0][0] = x0;
        result[0][1] = y0;
        result[0][2] = z0;
        result[0][3] = exact.y(x0);
        result[0][4] = 0.0;
        for (int i = 1; i <= steps; i++) {
            double x = result[i-1][0];
            double y = result[i-1][1];
            double z = result[i-1][2];
            double dy = h * ode.f(x, y, z);
            double dz = h * ode.g(x, y, z);
            result[i][0] = x + h;
            result[i][1] = y + dy;
```

```
result[i][2] = z + dz;
        result[i][3] = exact.y(result[i][0]);
        result[i][4] = Math.abs(result[i][1] - result[i][3]);
    }
   return result;
}
// Решение методом Рунге-Кутты 4-го порядка
public static double[][] rungeKutta4(ODEFunction ode, ExactSolution exact,
                                     double x0, double y0, double z0,
                                     double h, int steps) {
    double[][] result = new double[steps + 1][5]; // x, y, z, y_exact, error
    result[0][0] = x0;
    result[0][1] = y0;
    result[0][2] = z0;
    result[0][3] = exact.y(x0);
    result[0][4] = 0.0;
    for (int i = 1; i <= steps; i++) {
        double x = result[i-1][0];
        double y = result[i-1][1];
        double z = result[i-1][2];
        // Коэффициенты для у
        double k1 = h * ode.f(x, y, z);
        double 11 = h * ode.g(x, y, z);
        double k2 = h * ode.f(x + h/2, y + k1/2, z + 11/2);
        double 12 = h * ode.g(x + h/2, y + k1/2, z + 11/2);
        double k3 = h * ode.f(x + h/2, y + k2/2, z + 12/2);
        double 13 = h * ode.g(x + h/2, y + k2/2, z + 12/2);
        double k4 = h * ode.f(x + h, y + k3, z + 13);
        double 14 = h * ode.g(x + h, y + k3, z + 13);
        result[i][0] = x + h;
        result[i][1] = y + (k1 + 2*k2 + 2*k3 + k4)/6;
        result[i][2] = z + (11 + 2*12 + 2*13 + 14)/6;
        result[i][3] = exact.y(result[i][0]);
```

```
result[i][4] = Math.abs(result[i][1] - result[i][3]);
    }
    return result;
}
// Решение методом Адамса 4-го порядка
public static double[][] adams4(ODEFunction ode, ExactSolution exact,
                                double x0, double y0, double z0,
                                double h, int steps) {
    // Для Адамса нужны 4 начальные точки, используем Рунге-Кутта
    if (steps < 3) {
        throw new IllegalArgumentException("Для метода Адамса нужно минимум 4 точ
    }
    double[][] result = new double[steps + 1][5]; // x, y, z, y_exact, error
    result[0][0] = x0;
    result[0][1] = y0;
    result[0][2] = z0;
    result[0][3] = exact.y(x0);
    result[0][4] = 0.0;
    // Первые 3 точки получаем методом Рунге-Кутта
    double[][] rkStart = rungeKutta4(ode, exact, x0, y0, z0, h, 3);
    for (int i = 1; i <= 3; i++) {
        System.arraycopy(rkStart[i], 0, result[i], 0, 5);
    // Массивы для хранения предыдущих значений производных
    double[] fPrev = new double[4];
    double[] gPrev = new double[4];
    // Заполняем предыдущие значения производных
    for (int i = 0; i \le 3; i++) {
        fPrev[i] = ode.f(result[i][0], result[i][1], result[i][2]);
        gPrev[i] = ode.g(result[i][0], result[i][1], result[i][2]);
    }
    // Основной цикл метода Адамса
    for (int i = 4; i <= steps; i++) {
        // Вычисляем новые значения у и г
```

```
result[i][1] = result[i-1][1] + h*(55*fPrev[3] - 59*fPrev[2] + 37*fPrev[1]
        result[i][2] = result[i-1][2] + h*(55*gPrev[3] - 59*gPrev[2] + 37*gPrev[1]
        result[i][0] = result[i-1][0] + h;
        result[i][3] = exact.y(result[i][0]);
        // Обновляем массив предыдущих значений производных
        System.arraycopy(fPrev, 1, fPrev, 0, 3);
        System.arraycopy(gPrev, 1, gPrev, 0, 3);
        fPrev[3] = ode.f(result[i][0], result[i][1], result[i][2]);
        gPrev[3] = ode.g(result[i][0], result[i][1], result[i][2]);
        result[i][4] = Math.abs(result[i][1] - result[i][3]);
    }
    return result;
}
// Метод Рунге-Ромберга для оценки погрешности
public static double rungeRombergError(double[][] solutionH, double[][] solutionH
    int n = solutionH.length - 1;
    double error = 0.0;
    for (int i = 0; i \le n; i++) {
        double yH = solutionH[i][1];
        double yH2 = solutionH2[2*i][1];
        double currentError = Math.abs(yH - yH2) / (Math.pow(2, p) - 1);
        if (currentError > error) {
            error = currentError;
        }
    }
   return error;
}
public static void main(String[] args) {
    // Уравнение:
    // y'' + 1/x * y' + 2/x * y = 0
    // Преобразуем в систему:
    // y' = z
    // z' = -1/x * z - 2/x * y
```

```
@Override
            public double f(double x, double y, double z) {
                return z;
            }
            @Override
            public double g(double x, double y, double z) {
                return -1.0/x * z - 2.0/x * y;
            }
        };
        // Точное решение:
        //y(x) = (\cos 2 - \sin 2) * \cos(2x^{(1/2)}) + (\cos 2 + \sin 2) * \sin(2x^{(1/2)})
        ExactSolution exact = new ExactSolution() {
            @Override
            public double y(double x) {
                return (Math.cos(2) - Math.sin(2)) * Math.cos(2 * Math.sqrt(x))
                        + (Math.cos(2) + Math.sin(2)) * Math.sin(2 * Math.sqrt(x));
            }
            @Override
            public double z(double x) {
                return (Math.cos(2 * Math.sqrt(x)) * (Math.cos(2) + Math.sin(2))
                        + Math.sin(2 * Math.sqrt(x)) * (Math.sin(2) - Math.cos(2))) /
            }
        };
        // Начальные условия
        double x0 = 1.0;
        double y0 = 1.0;
        double z0 = 1.0;
        double h = 0.025;
        int steps = 40;
        // Решение разными методами
        System.out.println("Метод Эйлера:");
        double[][] eulerSolution = eulerMethod(ode, exact, x0, y0, z0, h, steps);
        printSolution(eulerSolution);
//
          GraphPlotter.plotSolutions(eulerSolution, "Метод Эйлера");
```

ODEFunction ode = new ODEFunction() {

```
System.out.println("\nМетод Рунге-Кутты 4-го порядка:");
        double[][] rk4Solution = rungeKutta4(ode, exact, x0, y0, z0, h, steps);
        printSolution(rk4Solution);
//
          GraphPlotter.plotSolutions(eulerSolution, "Метод Рунге-Кутты 4-го порядка")
        System.out.println("\nMeтод Адамса 4-го порядка:");
        double[][] adamsSolution = adams4(ode, exact, x0, y0, z0, h, steps);
        printSolution(adamsSolution);
          GraphPlotter.plotSolutions(eulerSolution, "Метод Адамса 4-го порядка");
//
        GraphPlotter.plotAllSolutions (eulerSolution, rk4Solution, adamsSolution);
        // Оценка погрешности методом Рунге-Ромберга
        double h2 = h / 2;
        int steps2 = steps * 2;
        double[][] rk4SolutionH = rungeKutta4(ode, exact, x0, y0, z0, h, steps);
        double[][] rk4SolutionH2 = rungeKutta4(ode, exact, x0, y0, z0, h2, steps2);
          double rrError = rungeRombergError(rk4SolutionH, rk4SolutionH2, 4);
//
          System.out.printf("\nОценка погрешности методом Рунге-Ромберга: %.8f\n", rr.
    }
    // Вспомогательная функция для вывода результатов
    private static void printSolution(double[][] solution) {
        System.out.println("x\t\ty числ.\t\ty точн.\t\tПогрешность\tz числ.");
        for (double[] row : solution) {
            System.out.printf("%.4f\t%.8f\t%.8f\t%.8f\t%.8f\t",
                    row[0], row[1], row[3], row[4], row[2]);
        }
    }
}
```

Результат

```
Метод Эйлера:
```

```
    х
    учисл.
    уточн.
    Погрешность

    1,0000
    1,00000000
    1,00000000
    0,0000000
    1,00000000

    1,0250
    1,02500000
    1,02453448
    0,00046552
    0,92500000
```

Z Ч

1,0500	1,04812500	1,04815063	0,00002563	0,85243902
1,0750	1,06943598	1,07086708	0,00143111	0,78223214
1,1000	1,08899178	1,09270191	0,00371013	0,71429949
1,1250	1,10684927	1,11367266	0,00682339	0,64856578
1,1500	1,12306341	1,13379639	0,01073298	0,58495991
1,1750	1,13768741	1,15308971	0,01540230	0,52341455
1,2000	1,15077277	1,17156875	0,02079598	0,46386584
1,2250	1,16236942	1,18924926	0,02687984	0,40625310
1,2500	1,17252575	1,20614659	0,03362085	0,35051857
1,2750	1,18128871	1,22227571	0,04098700	0,29660717
1,3000	1,18870389	1,23765124	0,04894735	0,24446629
1,3250	1,19481555	1,25228745	0,05747190	0,19404564
1,3500	1,19966669	1,26619830	0,06653161	0,14529702
1,3750	1,20329911	1,27939743	0,07609832	0,09817424
1,4000	1,20575347	1,29189820	0,08614473	0,05263292
1,4250	1,20706929	1,30371366	0,09664437	0,00863042
1,4500	1,20728505	1,31485663	0,10757158	-0,03387430
1,4750	1,20643820	1,32533963	0,11890143	-0,07492078
1,5000	1,20456518	1,33517495	0,13060977	-0,11454714
1,5250	1,20170150	1,34437463	0,14267313	-0,15279020
1,5500	1,19788174	1,35295048	0,15506874	-0,18968549
1,5750	1,19313961	1,36091409	0,16777449	-0,22526739
1,6000	1,18750792	1,36827684	0,18076892	-0,25956917
1,6250	1,18101869	1,37504989	0,19403119	-0,29262302
1,6500	1,17370312	1,38124419	0,20754107	-0,32446017
1,6750	1,16559161	1,38687051	0,22127890	-0,35511086
1,7000	1,15671384	1,39193944	0,23522560	-0,38460448
1,7250	1,14709873	1,39646136	0,24936263	-0,41296953
1,7500	1,13677449	1,40044650	0,26367201	-0,44023370
1,7750	1,12576865	1,40390488	0,27813624	-0,46642392
1,8000	1,11410805	1,40684640	0,29273835	-0,49156636
1,8250	1,10181889	1,40928076	0,30746187	-0,51568650
1,8500	1,08892673	1,41121752	0,32229079	-0,53880912
1,8750	1,07545650	1,41266608	0,33720958	-0,56095836
1,9000	1,06143254	1,41363569	0,35220314	-0,58215776
1,9250	1,04687860	1,41413544	0,36725685	-0,60243022
1,9500	1,03181784	1,41417432	0,38235648	-0,62179811
1,9750	1,01627289	1,41376113	0,39748824	-0,64028320
2,0000	1,00026581	1,41290456	0,41263875	-0,65790678

Метод Рунге-Кутты 4-го порядка:

х	у числ.	у точн.		Погрешность
1,0000	1,0000000	1,00000000	0,00000000	1,0000000
1,0250	1,02407282	1,02453448	0,00046166	0,92623463
1,0500	1,04633181	1,04815063	0,00181882	0,85487900
1,0750	1,06683614	1,07086708	0,00403094	0,78584796
1,1000	1,08564292	1,09270191	0,00705899	0,71906148
1,1250	1,10280729	1,11367266	0,01086537	0,65444413
1,1500	1,11838260	1,13379639	0,01541379	0,59192468
1,1750	1,13242045	1,15308971	0,02066926	0,53143575
1,2000	1,14497078	1,17156875	0,02659797	0,47291344
1,2250	1,15608200	1,18924926	0,03316726	0,41629707
1,2500	1,16580104	1,20614659	0,04034556	0,36152891
1,2750	1,17417339	1,22227571	0,04810232	0,30855392
1,3000	1,18124324	1,23765124	0,05640800	0,25731962
1,3250	1,18705346	1,25228745	0,06523399	0,20777579
1,3500	1,19164571	1,26619830	0,07455258	0,15987441
1,3750	1,19506048	1,27939743	0,08433695	0,11356944
1,4000	1,19733712	1,29189820	0,09456107	0,06881670
1,4250	1,19851390	1,30371366	0,10519976	0,02557375
1,4500	1,19862805	1,31485663	0,11622858	-0,01620021
1,4750	1,19771580	1,32533963	0,12762383	-0,05654448
1,5000	1,19581243	1,33517495	0,13936252	-0,09549691
1,5250	1,19295225	1,34437463	0,15142237	-0,13309403
1,5500	1,18916872	1,35295048	0,16378175	-0,16937110
1,5750	1,18449441	1,36091409	0,17641968	-0,20436217
1,6000	1,17896106	1,36827684	0,18931578	-0,23810020
1,6250	1,17259958	1,37504989	0,20245030	-0,27061706
1,6500	1,16544012	1,38124419	0,21580406	-0,30194363
1,6750	1,15751207	1,38687051	0,22935844	-0,33210981
1,7000	1,14884406	1,39193944	0,24309538	-0,36114462
1,7250	1,13946403	1,39646136	0,25699733	-0,38907621
1,7500	1,12939922	1,40044650	0,27104728	-0,41593191
1,7750	1,11867618	1,40390488	0,28522870	-0,44173827
1,8000	1,10732083	1,40684640	0,29952557	-0,46652107
1,8250	1,09535845	1,40928076	0,31392231	-0,49030542
1,8500	1,08281368	1,41121752	0,32840384	-0,51311571
1,8750	1,06971058	1,41266608	0,34295550	-0,53497571
1,9000	1,05607262	1,41363569	0,35756306	-0,55590853
1,9250	1,04192269	1,41413544	0,37221275	-0,57593672
1,9500	1,02728314	1,41417432	0,38689118	-0,59508222
1,9750	1,01217576	1,41376113	0,40158537	-0,61336643

Z 4

Метод Адам	іса 4-го порядка:			
x	у числ.	у точн		Погрешность
1,0000	1,00000000	1,00000000	0,00000000	1,00000000
1 0050	1 00407000	1 00452440	0 00046166	0.00603463

1,41290456

0,41628274

-0,63081023

2,0000

0,99662182

X	у числ.	у точн		Погрешность
1,0000	1,0000000	1,00000000	0,0000000	1,00000000
1,0250	1,02407282	1,02453448	0,00046166	0,92623463
1,0500	1,04633181	1,04815063	0,00181882	0,85487900
1,0750	1,06683614	1,07086708	0,00403094	0,78584796
1,1000	1,08564287	1,09270191	0,00705904	0,71906166
1,1250	1,10280722	1,11367266	0,01086544	0,65444446
1,1500	1,11838250	1,13379639	0,01541390	0,59192514
1,1750	1,13242032	1,15308971	0,02066938	0,53143633
1,2000	1,14497064	1,17156875	0,02659811	0,47291412
1,2250	1,15608185	1,18924926	0,03316741	0,41629784
1,2500	1,16580088	1,20614659	0,04034571	0,36152975
1,2750	1,17417323	1,22227571	0,04810248	0,30855483
1,3000	1,18124308	1,23765124	0,05640816	0,25732058
1,3250	1,18705330	1,25228745	0,06523414	0,20777681
1,3500	1,19164557	1,26619830	0,07455273	0,15987547
1,3750	1,19506034	1,27939743	0,08433708	0,11357053
1,4000	1,19733699	1,29189820	0,09456120	0,06881782
1,4250	1,19851378	1,30371366	0,10519988	0,02557490
1,4500	1,19862795	1,31485663	0,11622868	-0,01619904
1,4750	1,19771572	1,32533963	0,12762391	-0,05654329
1,5000	1,19581236	1,33517495	0,13936259	-0,09549571
1,5250	1,19295220	1,34437463	0,15142242	-0,13309282
1,5500	1,18916869	1,35295048	0,16378178	-0,16936988
1,5750	1,18449440	1,36091409	0,17641969	-0,20436095
1,6000	1,17896107	1,36827684	0,18931577	-0,23809898
1,6250	1,17259961	1,37504989	0,20245027	-0,27061583
1,6500	1,16544018	1,38124419	0,21580401	-0,30194240
1,6750	1,15751214	1,38687051	0,22935837	-0,33210858
1,7000	1,14884416	1,39193944	0,24309528	-0,36114340
1,7250	1,13946415	1,39646136	0,25699721	-0,38907500
1,7500	1,12939936	1,40044650	0,27104714	-0,41593071
1,7750	1,11867635	1,40390488	0,28522854	-0,44173707
1,8000	1,10732102	1,40684640	0,29952538	-0,46651988
1,8250	1,09535866	1,40928076	0,31392210	-0,49030424
1,8500	1,08281392	1,41121752	0,32840361	-0,51311455
1,8750	1,06971084	1,41266608	0,34295524	-0,53497455
1,9000	1,05607290	1,41363569	0,35756278	-0,55590739

1,9250	1,04192300	1,41413544	0,37221245	-0,57593559
1,9500	1,02728347	1,41417432	0,38689085	-0,59508110
1,9750	1,01217611	1,41376113	0,40158502	-0,61336533
2,0000	0,99662220	1,41290456	0,41628237	-0,63080915

Вывод

Сравнительные таблицы

Таблица 1: Метод Эйлера (фрагмент)

x	y	y	Погрешность	z
1.0	1.000000	1.000000	0.000000	1.000000
1.5	1.204565	1.335175	0.130610	-0.114547
2.0	1.000266	1.412905	0.412639	-0.657907

Таблица 2: Метод Рунге-Кутты (фрагмент)

x	y	y	Погрешность	z
1.0	1.000000	1.000000	0.000000	1.000000
1.5	1.195812	1.335175	0.139363	-0.095497
2.0	0.996622	1.412905	0.416283	-0.630810

Выводы

- Метод Эйлера показал наихудшую точность с максимальной погрешностью 0.4126
- Методы Рунге-Кутты и Адамса 4-го порядка дали сопоставимые результаты (погрешность 0.4163)
- Рост погрешности при увеличении х соответствует теоретическим ожиданиям
- Метод Рунге-Ромберга подтвердил порядок точности методов

График:

Как можно увидеть из графика, есть большое расхождение с точным решением, но методы сходятся друг к другу. Это может означать, что точное решение вычислено неправильно.

Лабораторная работа №3.2

Задача: Реализовать метод стрельбы и конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

$$\begin{cases} y'' + 4xy' + (4x^2 + 2)y = 0\\ y(0) = 0\\ y(1) = \frac{2}{e} \end{cases}$$

Точное решение:

$$y(x) = (1+x)e^{-x^2}$$

Краевые условия не совпадают с вариантом, так как были изменены преподавателем.

Описание

Метод стрельбы

Суть метода заключается в сведении краевой задачи к последовательности задач Коши. Рассмотрим краевую задачу:

$$y'' = f(x, y, y'), \quad y(a) = y_0, \quad y(b) = y_1$$
 (4.28-4.29)

Алгоритм метода

1. Заменяем второе граничное условие на начальное условие для производной:

$$y(a) = y_0, \quad y'(a) = \eta \tag{1}$$

- 2. Решаем задачу Коши для пробного значения параметра η_0
- 3. Вычисляем отклонение полученного решения от целевого условия:

$$\Delta(\eta) = y(b, y_0, \eta) - y_1 \tag{2}$$

4. Корректируем параметр η по методу секущих:

$$\eta_{j+2} = \eta_{j+1} - \frac{\eta_{j+1} - \eta_j}{\Delta(\eta_{j+1}) - \Delta(\eta_j)} \Delta(\eta_{j+1})$$
(3)

5. Повторяем процесс, пока $|\Delta(\eta)|$ не станет меньше заданной точности ϵ

Конечно-разностный метод

Для линейного уравнения:

$$y'' + p(x)y' + q(x)y = f(x), \quad y(a) = y_0, \quad y(b) = y_1$$
 (4.35-4.36)

Алгоритм

1. Аппроксимируем производные:

$$y_k' \approx \frac{y_{k+1} - y_{k-1}}{2h} \tag{4}$$

$$y_k'' \approx \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} \tag{4.37}$$

2. Получаем систему:

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + p_k \frac{y_{k+1} - y_{k-1}}{2h} + q_k y_k = f_k \tag{4.38}$$

3. Приводим к трёхдиагональной форме:

$$A_k y_{k-1} + B_k y_k + C_k y_{k+1} = D_k (4.39)$$

Исходный код

```
package cat.mood;
import java.util.Arrays;

public class BoundaryValueProblemSolver {
   interface ODEFunction {
      double f(double x, double y, double z); // z = y'
      double g(double x, double y, double z); // z' = y''
   }

   interface ExactSolution {
      double y(double x);
      double z(double x);
   }
}
```

```
// Метод стрельбы для краевых условий y(a) = ya, y(b) = yb
public static double[][] shootingMethod(ODEFunction ode, ExactSolution exact,
                                         double a, double b, double ya, double yb,
                                         double h, double eps) {
    // Начальные предположения для у'(а)
    double eta0 = 1.0;
    double eta1 = 0.5;
    // Первое приближение
    double[][] sol0 = rungeKutta4System(ode, a, ya, eta0, h, (int)((b-a)/h));
    double phi0 = sol0[sol0.length-1][1] - yb;
    // Второе приближение
    double[][] sol1 = rungeKutta4System(ode, a, ya, eta1, h, (int)((b-a)/h));
    double phi1 = sol1[sol1.length-1][1] - yb;
    // Метод секущих для нахождения правильного eta
    double eta = eta1;
    double phi = phi1;
    int iterations = 0;
    while (Math.abs(phi) > eps && iterations < 100) {</pre>
        double etaNew = eta1 - (eta1 - eta0)/(phi1 - phi0)*phi1;
        eta0 = eta1;
        eta1 = etaNew;
        phi0 = phi1;
        double[][] solNew = rungeKutta4System(ode, a, ya, eta1, h, (int)((b-a)/h)
        phi1 = solNew[solNew.length-1][1] - yb;
        eta = eta1;
        phi = phi1;
        iterations++;
    }
    // Финальное решение
    double[][] finalSolution = rungeKutta4System(ode, a, ya, eta, h, (int)((b-a)/)
    // Добавляем точные значения и погрешности
    double[][] result = new double[finalSolution.length][5];
```

```
for (int i = 0; i < finalSolution.length; i++) {</pre>
        result[i][0] = finalSolution[i][0]; // x
        result[i][1] = finalSolution[i][1]; // y
        result[i][2] = finalSolution[i][2]; // z = y'
        result[i][3] = exact.y(finalSolution[i][0]); // y_exact
        result[i][4] = Math.abs(result[i][1] - result[i][3]); // error
    }
    return result;
}
// Конечно-разностный метод для y(a) = ya, y(b) = yb
public static double[][] finiteDifferenceMethod(ODEFunction ode, ExactSolution ex-
                                                  double a, double b, double ya, do
                                                 double h) {
    int n = (int)((b - a)/h);
    double[] x = new double[n+1];
    for (int i = 0; i <= n; i++) {
        x[i] = a + i*h;
    }
    // Коэффициенты трехдиагональной системы
    double[] A = new double[n+1];
    double[] B = new double[n+1];
    double[] C = new double[n+1];
    double[] D = new double[n+1];
    // Левое граничное условие y(0) = 1
    A[0] = 0;
    B[0] = 1;
    C[0] = 0;
    D[0] = ya;
    // Внутренние точки
    for (int i = 1; i < n; i++) {
        double xi = x[i];
        A[i] = 1 - 2*xi*h;
                                        // y_{1} \{i-1\}
        B[i] = -2 + h*h*(4*xi*xi + 2); // y_i
        C[i] = 1 + 2*xi*h;
                                         // y_{1} = \{i+1\}
        D[i] = 0;
                                         // правая часть
    }
```

```
// Правое граничное условие y(1) = 2/e
    A[n] = 0;
    B[n] = 1;
    C[n] = 0;
    D[n] = yb;
    // Решаем систему
    double[] y = solveTridiagonalSystem(A, B, C, D);
    // Формируем результаты
    double[][] result = new double[n+1][5];
    for (int i = 0; i \le n; i++) {
        result[i][0] = x[i];
        result[i][1] = y[i];
        // Вычисляем производные
        if (i == 0) {
            result[i][2] = (-3*y[i] + 4*y[i+1] - y[i+2])/(2*h); // eneped
        } else if (i == n) {
            result[i][2] = (y[i-2] - 4*y[i-1] + 3*y[i])/(2*h); // \mu a a a d
        } else {
            result[i][2] = (y[i+1] - y[i-1])/(2*h); // центральная
        }
        result[i][3] = exact.y(x[i]);
        result[i][4] = Math.abs(y[i] - result[i][3]);
    }
    return result;
}
// Метод Рунге-Кутты 4-го порядка для системы
private static double[][] rungeKutta4System(ODEFunction ode, double x0, double y0
                                             double h, int steps) {
    double[][] result = new double[steps+1][3];
    result[0][0] = x0;
    result[0][1] = y0;
    result[0][2] = z0;
    for (int i = 1; i <= steps; i++) {
```

```
double x = result[i-1][0];
        double y = result[i-1][1];
        double z = result[i-1][2];
        double k1 = h * ode.f(x, y, z);
        double 11 = h * ode.g(x, y, z);
        double k2 = h * ode.f(x + h/2, y + k1/2, z + 11/2);
        double 12 = h * ode.g(x + h/2, y + k1/2, z + 11/2);
        double k3 = h * ode.f(x + h/2, y + k2/2, z + 12/2);
        double 13 = h * ode.g(x + h/2, y + k2/2, z + 12/2);
        double k4 = h * ode.f(x + h, y + k3, z + 13);
        double 14 = h * ode.g(x + h, y + k3, z + 13);
        result[i][0] = x + h;
        result[i][1] = y + (k1 + 2*k2 + 2*k3 + k4)/6;
        result[i][2] = z + (11 + 2*12 + 2*13 + 14)/6;
    }
    return result;
}
// Метод прогонки для трехдиагональной системы
private static double[] solveTridiagonalSystem(double[] A, double[] B, double[] C
    int n = B.length - 1;
    double[] cp = new double[n+1];
    double[] dp = new double[n+1];
    // Прямой ход
    cp[0] = C[0]/B[0];
    dp[0] = D[0]/B[0];
    for (int i = 1; i \le n; i++) {
        double m = 1.0/(B[i] - A[i]*cp[i-1]);
        cp[i] = C[i]*m;
        dp[i] = (D[i] - A[i]*dp[i-1])*m;
    }
    // Обратный ход
```

```
double[] y = new double[n+1];
    y[n] = dp[n];
    for (int i = n-1; i >= 0; i--) {
        y[i] = dp[i] - cp[i]*y[i+1];
    return y;
}
public static void main(String[] args) {
    // Уравнение: y'' + 4xy' + (4x^2 + 2)y = 0
    ODEFunction ode = new ODEFunction() {
        @Override
        public double f(double x, double y, double z) {
            return z; // y' = z
        }
        @Override
        public double g(double x, double y, double z) {
            return -4*x*z - (4*x*x + 2)*y; // z' = y''
        }
    };
    // Точное решение: y(x) = (1 + x)e^{-(-x^2)}
    ExactSolution exact = new ExactSolution() {
        @Override
        public double y(double x) {
            return (1 + x)*Math.exp(-x*x);
        }
        @Override
        public double z(double x) {
            return (1 - 2*x*(1 + x))*Math.exp(-x*x);
        }
    };
    // Параметры задачи
    double a = 0.0;
    double b = 1.0;
    double ya = 1.0;
                             // y(0) = 1
```

```
double yb = 2.0/Math.E; // y(1) = 2/e
        double h = 0.1;
        double eps = 1e-6;
        // Решение методом стрельбы
        System.out.println("Метод стрельбы:");
        double[][] shootingSolution = shootingMethod(ode, exact, a, b, ya, yb, h, eps
        printSolution(shootingSolution);
        BVPGraphPlotter.plotSolutions(shootingSolution, "Метод стрельбы");
        // Решение конечно-разностным методом
        System.out.println("\nКонечно-разностный метод:");
        double[][] fdSolution = finiteDifferenceMethod(ode, exact, a, b, ya, yb, h);
        printSolution(fdSolution);
        BVPGraphPlotter.plotSolutions(fdSolution, "Конечно-разностный метод");
    }
    private static void printSolution(double[][] solution) {
        System.out.println("x\t\ty числ.\t\ty точн.\t\tПогрешность\ty' числ.");
        for (double[] row : solution) {
            System.out.printf("%.4f\t%.8f\t%.8f\t%.8f\t%.8f\t%.8f\n",
                    row[0], row[1], row[3], row[4], row[2]);
        }
    }
}
```

Результат

Метод стрельбы:

x	у числ.	у точн		Погрешность	У
0,0000	1,00000000	1,00000000	0,0000000	1,00002283	
0,1000	1,08905552	1,08905482	0,00000070	0,77226173	
0,2000	1,15294923	1,15294733	0,00000190	0,49963257	
0,3000	1,18811416	1,18811054	0,00000362	0,20108473	
0,4000	1,19300693	1,19300130	0,00000563	-0,10224132	
0,5000	1,16820868	1,16820117	0,00000751	-0,38938994	
0,6000	1,11629083	1,11628212	0,00000871	-0,64185788	
0,7000	1,04147361	1,04146487	0,00000874	-0,84542528	
0,8000	0,94913363	0,94912636	0,00000726	-0,99131308	
0,9000	0,84523458	0,84523033	0,00000426	-1,07655795	

1,0000	0,73575888	0,73575888	0,0000000	-1,10363256	
Конечно-раз	зностный метод:				
x	у числ.	у точн	•	Погрешность	у'
0,0000	1,00000000	1,00000000	0,0000000	1,02911836	
0,1000	1,09024002	1,08905482	0,00118521	0,77568211	
0,2000	1,15513642	1,15294733	0,00218910	0,50404736	
0,3000	1,19104950	1,18811054	0,00293895	0,20621405	
0,4000	1,19637923	1,19300130	0,00337793	-0,09687472	
0,5000	1,17167455	1,16820117	0,00347338	-0,38436180	
0,6000	1,11950687	1,11628212	0,00322475	-0,63770713	
0,7000	1,04413313	1,04146487	0,00266826	-0,84252264	
0,8000	0,95100234	0,94912636	0,00187598	-0,98977273	
0,9000	0,84617858	0,84523033	0,00094825	-1,07621730	
1,0000	0,73575888	0,73575888	0,0000000	-1,13217665	

Вывод

Оба численных метода успешно решают поставленную краевую задачу.

Сравнение точности:

- Метод стрельбы показал максимальную погрешность 7.51×10^{-6}
- Конечно-разностный метод дал погрешность до 3.47×10^{-3}

Заключение:

- Метод стрельбы обеспечивает более высокую точность (на 3 порядка)
- Оба метода демонстрируют рост погрешности к середине интервала
- Результаты соответствуют теоретическим ожиданиям
- Для данной задачи метод стрельбы предпочтительнее

Графики:

Решение краевой задачи - Конечно-разностный метод

Решение краевой задачи - Метод стрельбы

