1 Ammissibilità del Flusso

$$T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 2 & 5 \\ 4 & 6 \\ 5 & 3 \end{pmatrix}$$

$$x_T = \begin{pmatrix} 5 & 8 & 5 & 4 & 0 \end{pmatrix}$$

$$x = \begin{pmatrix} 0 & 5 & 8 & 5 & 9 & 4 & 0 & 0 & 0 \end{pmatrix}$$

$$\pi_T = \begin{pmatrix} 0 & -4 & 7 & 4 & 3 & 7 \end{pmatrix}$$

$$C_L^{\pi} = \begin{pmatrix} 13 \\ 4 \\ 5 \end{pmatrix}$$

$$C_U^{\pi} = 15$$

 x_T ammissibile degenere FLUSSO NON OTTIMO

 π_T NON ammissibile NON degenere

2 Primo passo del Simplesso

L'arco entrante per U vincente è $(p,q)=\begin{pmatrix} 3\\2 \end{pmatrix}$ Verso ORARIO \curvearrowright $C^+=()$ $C^-=\begin{pmatrix} 5&2&3\\3&5&2 \end{pmatrix}$ $\theta^+=\infty$ $\theta^-=0$ $\theta=0$ L'arco uscente è $(r,s)=\begin{pmatrix} 5\\3 \end{pmatrix}$ La nuova tripartizione è: $T=\begin{pmatrix} 1&2&2&4&3\\3&4&5&6&2 \end{pmatrix}$ $L=\begin{pmatrix} 1&5&5&5\\2&4&6&3 \end{pmatrix}$ U=()

3 Cammini minimi:

4 Flusso Massimo con Ford-Falkerson

4.1

$$Q = 1 \quad p = \begin{pmatrix} 0 & -1 & -1 & -1 & -1 & -1 \end{pmatrix}$$

$$Q = \begin{pmatrix} 2 & 3 \end{pmatrix} \quad p = \begin{pmatrix} 0 & 1 & 1 & -1 & -1 & -1 \end{pmatrix}$$

$$Q = \begin{pmatrix} 3 & 4 & 5 \end{pmatrix} \quad p = \begin{pmatrix} 0 & 1 & 1 & 2 & 2 & -1 \end{pmatrix}$$

$$Q = \begin{pmatrix} 4 & 5 \end{pmatrix} \quad p = \begin{pmatrix} 0 & 1 & 1 & 2 & 2 & -1 \end{pmatrix}$$

Cammino aumentante = $\begin{pmatrix} 1 & 2 & 4 & 6 \end{pmatrix}$

A aumentanti =
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 4 & 6 \end{pmatrix}$$
 $Residui = \begin{pmatrix} 7 \\ 10 \\ 8 \end{pmatrix}$ $\delta = 7$ $v = 7$ $x = \begin{pmatrix} 7 & 0 & 7 & 0 & 0 & 7 & 0 & 0 & 0 \end{pmatrix}$

4.2

$$Q = 1 \quad p = \begin{pmatrix} 0 & -1 & -1 & -1 & -1 & -1 \end{pmatrix}$$

$$Q = 3 \quad p = \begin{pmatrix} 0 & -1 & 1 & -1 & -1 & -1 \end{pmatrix}$$

$$Q = 2 \quad p = \begin{pmatrix} 0 & 3 & 1 & -1 & -1 & -1 \end{pmatrix}$$

$$Q = \begin{pmatrix} 4 & 5 \end{pmatrix} \quad p = \begin{pmatrix} 0 & 3 & 1 & 2 & 2 & -1 \end{pmatrix}$$

Cammino aumentante = $\begin{pmatrix} 1 & 3 & 2 & 4 & 6 \end{pmatrix}$

A aumentanti =
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 3 & 2 \\ 4 & 6 \end{pmatrix}$$
 $Residui = \begin{pmatrix} 5 \\ 3 \\ 9 \\ 1 \end{pmatrix}$ $\delta = 1$ $v = 8$ $x = \begin{pmatrix} 7 & 1 & 8 & 0 & 1 & 8 & 0 & 0 & 0 \end{pmatrix}$

4.3

Cammino aumentante = $\begin{pmatrix} 1 & 3 & 2 & 5 & 6 \end{pmatrix}$

A aumentanti =
$$\begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 3 & 2 \\ 5 & 6 \end{pmatrix}$$
 $Residui = \begin{pmatrix} 4 \\ 10 \\ 8 \\ 7 \end{pmatrix}$ $\delta = 4$ $v = 12$ $x = \begin{pmatrix} 7 & 5 & 8 & 4 & 5 & 8 & 0 & 0 & 4 \end{pmatrix}$

4.4

$$Q = 1$$
 $p = (0 -1 -1 -1 -1 -1)$
 $Q = \emptyset$ $p = (0 -1 -1 -1 -1 -1)$
 $N_s = 1$ $N_t = (2 3 4 5 6)$