

Departamento de Engenharia de Computação e Automação Industrial

Otimização Evolutiva Multiobjetivo

Guilherme P. Coelho e Fernando J. Von Zuben

Tópico 10 – IA707 – Computação Evolutiva

Conteúdo

- Conceitos Básicos;
- Algoritmos Clássicos vs. Algoritmos Evolutivos;
- Casos de Estudo;
- ▶ Tendências e Aplicações;
- Referências.

Bi Consultation of the second of the second

Conteúdo

- Conceitos Básicos:
 - Definição;
 - Espaço de Variáveis e Espaço de Objetivos;
 - Conjunto e Fronteira de Pareto;
 - Dominância;
 - Abordagens para Resolução de Problemas MO;
- Algoritmos Clássicos vs. Algoritmos Evolutivos;
- Casos de Estudo;
- ▶ Tendências e Aplicações;
- Referências.

Problemas de Otimização Multiobjetivo (OMO)

- São problemas de otimização caracterizados pela existência de mais de um critério a ser otimizado;
- Estes critérios são, na maioria das vezes, conflitantes entre si.
- Formalmente (minimização):

Minimizar
$$F(x) = \{F_1(x), F_2(x), \dots, F_M(x)\}$$

Sujeito a: $g_j(x) \ge 0$ $j = 1, 2, \dots, J$
 $h_k(x) = 0$ $k = 1, 2, \dots, K$
 $x_i^L \le x_i \le x_i^U$ $i = 1, 2, \dots, n$
 $x_i \in \Re^n$

Exemplo – Objetivos Conflitantes

- Construção de um automóvel → determinar espessura e material das chapas metálicas para que se tenha:
 - Menor custo de produção;
 - Máxima resistência a colisões;
 - Economia de combustível (menor peso);

VS.

VS.

Otimização Mono-Objetivo

 Ótimo corresponde às soluções extremas (mínimas ou máximas) da função-objetivo do problema em questão;

Otimização Multiobjetivo

Impossível simplesmente adotar a solução extrema de um dos objetivos quando os demais critérios também são relevantes ao problema

Soluções em extremos de um único objetivo exigem um *compromisso* nos demais objetivos (cenários conflitantes)

Ótimo deste tipo de problema: conjunto de soluções que correspondem a compromissos (*trade-offs*) diferentes entre os objetivos

Espaço de Variáveis e Espaço de Objetivos

- Problemas de Otimização Multiobjetivo:
 - Exigem que se trabalhe com dois espaços simultaneamente;

Existe um mapeamento de todas as soluções (pontos) do espaço de variáveis para o espaço de objetivos do problema.

Espaço de Variáveis e Espaço de Objetivos

- Soluções de problemas de OMO:
 - Recebem nomes diferentes, quando representadas nos espaços de variáveis e de objetivos.

Conjunto e Fronteira de Pareto

Uma dada solução x* é dita pertencer ao conjunto (fronteira) de Pareto se não existir nenhuma outra solução x factível, capaz de melhorar um dos objetivos do problema (em relação a x*) sem simultaneamente piorar pelo menos um dos demais;

 Todas as soluções pertencentes ao conjunto (fronteira) de Pareto são ditas não-dominadas;

Dominância: critério que permite comparar a qualidade de duas soluções de problemas de OMO.

Dominância

- Uma dada solução **u** domina uma solução \mathbf{v} ($\mathbf{u} \leqslant \mathbf{v}$) se e somente se:
 - **u** é *melhor ou igual* a **v** em todos os objetivos do problema;
 - Existe pelo menos um objetivo em que **u** é <u>estritamente melhor</u> que **v**.

- Soluções não-dominadas
- Soluções dominadas

Fronteira de Pareto

Formalização do Conceito de "Ótimo"

Ótimo de um problema multiobjetivo no espaço de variáveis: conjunto ótimo de Pareto (P*):

$$P^* = \{ \mathbf{x} \in \Omega \mid \exists \mathbf{x}' \in \Omega : F(\mathbf{x}') \leq F(\mathbf{x}) \}$$

Mapeamento do conjunto ótimo de Pareto no espaço de objetivos: fronteira de Pareto (PF*):

$$PF^* = \{ \boldsymbol{u} = \boldsymbol{F}(\mathbf{x}) \mid \boldsymbol{x} \in P^* \}$$

Abordagens para Resolução de Problemas MO

- ▶ Quando os múltiplos objetivos são conflitantes → múltiplas soluções;
- Cada solução corresponde a um possível compromisso ótimo entre os objetivos;

Como obter a solução que melhor se ajusta ao seu problema?

Busca + Decisão

Abordagens para Resolução de Problemas MO

- Inserção de preferências a posteriori: busca-se encontrar o maior número de soluções possível, para só depois selecionar a mais adequada ao problema (busca -> decisão);
- Inserção de preferências a priori: já se tem de antemão alguma informação sobre o tipo de solução mais adequada ao problema, então a busca é direcionada para encontrar este tipo de soluções (decisão → busca);
- ► Inserção progressiva de preferências: é feito um direcionamento da busca, durante sua execução, para regiões que contenham soluções mais adequadas (decisão ← → busca).
- Coello Coello, C.A., Lamont, G. B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd. Ed., Springer, 2007.

Requisitos para um algoritmo de otimização MO

- Preservar as soluções não-dominadas encontradas ao longo da busca;
- Progredir continuamente em direção à Fronteira de Pareto;
- Manter a diversidade de soluções tanto no espaço de objetivos (fronteira de Pareto) quanto no espaço de variáveis;
- Retornar ao usuário uma quantidade suficiente (mas ao mesmo tempo limitada) de soluções.

Requisitos para um algoritmo de otimização MO

Modificam-se as soluções no espaço de variáveis para que elas se aproximem da fronteira de Pareto no espaço de objetivos.

Requisitos para um algoritmo de otimização MO

Aproximação e Cobertura da fronteira de Pareto.

Manutenção de diversidade em otimização MO

- Poucas ferramentas se preocupam com manutenção de diversidade no espaço de variáveis;
- Também é importante:

Melhor exploração do espaço de variáveis tende a levar a um tratamento mais eficiente de problemas multiobjetivo multimodais

Manutenção de diversidade no espaço de variáveis tende a levar à obtenção de um conjunto de Pareto mais completo

or of the state of

Conteúdo

- Conceitos Básicos;
- Algoritmos Clássicos vs. Algoritmos Evolutivos:
 - Algoritmos Clássicos;
 - Vantagens das Abordagens Evolutivas
 - NSGA-II;
 - SPEA2;
 - Outras Propostas;
- Casos de Estudo;
- Tendências e Aplicações;
- Referências.

Algoritmos Clássicos vs. Algoritmos Evolutivos

Algoritmos "Clássicos":

- Abordagens não-evolutivas (não são meta-heurísticas) geralmente aplicadas em pesquisa operacional;
- Geralmente modificam o problema de otimização multiobjetivo e aplicam ferramentas tradicionais de otimização;

Algoritmos Evolutivos:

- São mais flexíveis;
- Vêm sendo muito utilizados para tratar problemas de otimização multiobjetivo.

Soma Ponderada (Combinação Linear)

- Converte o problema <u>ponderando</u>
 <u>os objetivos</u>;
- A soma dos pesos deve ser I;
- É preciso escalonar todos os objetivos para a mesma faixa;

$$\begin{aligned} \textit{Minimizar} \quad & \textbf{\textit{F}}(\textbf{\textit{x}}) = \sum_{m=1}^{M} w_m \cdot F_m(\textbf{\textit{x}}) \\ \textit{Sujeito a:} \qquad & g_j(\textbf{\textit{x}}) \geq 0 \qquad \qquad j = 1, 2, \cdots, J \\ & h_k(\textbf{\textit{x}}) = 0 \qquad \qquad k = 1, 2, \cdots, K \\ & \textbf{\textit{x}}_i^L \leq \textbf{\textit{x}}_i \leq \textbf{\textit{x}}_i^U \qquad \qquad i = 1, 2, \cdots, n \end{aligned}$$

ε-Restrição

- Mantém apenas um dos objetivos originais como novo objetivo e converte os demais em restrições de desigualdade;
- Elimina o problema com espaços de objetivos não-convexos;
- Deve-se determinar & de forma a gerar um problema factível;

Minimizar

Minimizar
$$m{F}_{\mu}(m{x})$$

Sujeito a: $F_m(m{x}) \leq \varepsilon_m$ $m=1,2,\cdots,M\ e\ m \neq \mu$
 $g_j(m{x}) \geq 0$ $j=1,2,\cdots,J$
 $h_k(m{x})=0$ $k=1,2,\cdots,K$
 $m{x}_i^L \leq m{x}_i \leq m{x}_i^U$ $i=1,2,\cdots,n$

Outras Técnicas

- Inserção de preferências a posteriori:
 - Combinação Linear;
 - ε -restrição; ...
- Inserção de preferências a priori:
 - Método de Critério Global;
 - Goal Programming;
 - Lexicográfico; ...
- Inserção progressiva de preferências:
 - Sequential Multiobjective Problem Solving SEMOPS; ...
- Coello Coello, C. A., Lamont, G. B., Van Veldhuizen, D. A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd. Ed., Springer, 2007.

Principais Problemas

- Geralmente encontram uma única solução a cada execução: precisam ser executados N vezes, com conjuntos distintos de parâmetros, para obterem N soluções diferentes;
- Nem sempre conseguem uma cobertura uniforme da fronteira;
- Nem todas as possíveis soluções podem ser encontradas por alguns métodos (ex.: regiões não-convexas);
- Geralmente requerem algum conhecimento prévio sobre o problema (ex.: definir adequadamente os valores de ε para o método de ε -restrição).

Vantagens

- ► Algoritmos populacionais → trabalham simultaneamente com múltiplas soluções;
- ▶ Com múltiplas soluções → possibilidade de manutenção de múltiplos indivíduos diversos (soluções) na população;
- As múltiplas soluções podem ser obtidas em uma única execução;
- Tendem a ser menos susceptíveis à forma da Fronteira de Pareto e a eventuais descontinuidades.

Também apresentam desvantagens!

Modificações necessárias para OMO – Fitness

- Algoritmos Evolutivos Mono-Objetivo: <u>um valor de função-objetivo</u>;
- Algoritmos Evolutivos Multiobjetivo (MOEA): <u>vetor de funções-objetivo</u>;

É preciso algum processamento adicional para tratar os vetores de *fitness!*

- ► Fitness Assignment: <u>SPEA2</u> (Zitzler et al., 2001);
- Ordenação por critério de não-dominância: NSGA-II (Deb et al., 2000);

Modificações necessárias para OMO – Diversidade

- Em algoritmos evolutivos mono-objetivo:
 - Manutenção de diversidade no espaço de variáveis → multimodalidade;
- Em algoritmos evolutivos multiobjetivo (MOEAs):
 - Manutenção de diversidade no espaço de variáveis:
 - Multimodalidade;
 - Melhor cobertura do conjunto de Pareto;
 - Manutenção de diversidade no espaço de objetivos:
 - Melhor cobertura da fronteira de Pareto.

Nondominated Sorting Genetic Algorithm II: NSGA-II (Deb et al. 2000)

- Evolução do algoritmo NSGA, proposto por Srinivas & Deb em 1995;
 - Algoritmo Genético;
 - Elitista;
 - Utiliza ordenação dos indivíduos por critério de não-dominância;
 - Manutenção de diversidade: crowding distance (espaço de objetivos).

Deb K., Agrawal S., Pratab A., Meyariva, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In M. Schoenauer et al. (Eds): Proc. Parallel Problem Solving from Nature VI, pp 849-858, 2000.

NSGA-II: Ordenação por Não-Dominância

- \blacktriangleright É uma forma de atribuir uma nota a um indivíduo \rightarrow "fitness";
- Divide os indivíduos em classes, de acordo com a não-dominância:
 - Indivíduos não dominados → classe I:
 - Indivíduos dominados apenas pelos indivíduos da classe $I \rightarrow$ classe 2;
 - Indivíduos dominados apenas pelos indivíduos das classes $I \in 2 \rightarrow classe 3$;

NSGA-II: Diversidade por Crowding-Distance

- A medida de crowding distance busca estimar a vizinhança de cada indivíduo no espaço de objetivos do problema;
- Corresponde ao volume do hipercubo formado pelas soluções imediatamente anteriores e posteriores para cada objetivo.

Métrica Custosa: exige a ordenação dos indivíduos para cada objetivo.

Algoritmos Evolutivos – NSGA-II

NSGA-II: Tratamento de Restrições

Problemas com restrições são tratados com uma simples modificação na definição de dominância:

Dominância Restrita

- Dadas duas soluções **u** e **v**, diz-se que **u** domina **v** com restrições se:
 - **u** é factível e **v** não é factível;
 - Ambas as soluções são infactíveis, mas **u** viola menos as restrições que **v**;
 - Ambas as soluções são factíveis e u domina v.

Strength Pareto Evolutionary Algorithm II: SPEA2 (Zitzler et al. 2001)

- Evolução do algoritmo SPEA, proposto por Zitzler & Thiele em 1999;
 - Utiliza mecanismo de atribuição de fitness aos indivíduos;
 - Mantém duas populações → indivíduos na busca e arquivo de soluções
 não-dominadas, ambas de tamanho fixo;
 - Direciona a busca baseando-se na densidade de soluções na vizinhança de cada indivíduo.

Zitzler E., Laumanns M., Thiele L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In K. Giannakoglou et al. (Eds.): EUROGEN 2001.

Algoritmos Evolutivos – SPEA2

Algoritmos Evolutivos – SPEA2

SPEA2: Cálculo do Fitness

- Força S(i) do indivíduo i: número de indivíduos que i domina;
- Fitness Bruto R(i) do indivíduo i: soma das forças de todos os indivíduos que dominam i (quanto maior, pior o indivíduo);
- Densidade D(i) do indivíduo i: inverso da distância ao k-ésimo vizinho mais próximo (σ_i^k) no espaço de objetivos (leva à exploração de regiões pouco-povoadas):

$$D(i) = \frac{1}{\sigma_i^k + 1}$$

$$\mathbf{F}_{\mathsf{SPEA2}}(i) = \mathbf{R}(i) + \mathbf{D}(i)$$

SPEA2: Cálculo do Fitness

Trata as duas exigências em uma única métrica, que deve ser minimizada.

SPEA2: Atualização do Arquivo

- Deve manter o arquivo sempre com o mesmo número de soluções N_A , definido pelo usuário;
- Busca manter uma melhor cobertura da fronteira de Pareto, evitando a eliminação de soluções dos extremos da fronteira;
- É acionado na etapa de inserção das soluções não-dominadas da população no arquivo.

Se |arquivo| é inferior a N_A :

Completa o arquivo com os N_A - |arquivo| melhores indivíduos dominados (fitness);

Se |arquivo| é superior a N_A :

Elimina os indivíduos excedentes através de um processo iterativo, que exclui os indivíduos de menor distância aos seus k vizinhos mais próximos.

Comentários sobre NSGA-II e SPEA2

- São os dois algoritmos mais utilizados (benchmarks);
- Ainda são considerados estado-da-arte;
- São algoritmos custosos:
 - NSGA-II:
 - ► Ranking por não dominância;
 - Crowding Distance: ordenação de todos os indivíduos por cada objetivo;

> SPEA2:

- Para cada indivíduo, deve ser calculada a distância a todos os demais indivíduos;
- Tais vetores de distâncias devem ser ordenados para obtenção do k-ésimo vizinho mais próximo;

Outras Propostas: MOEA/D

- Multi-Objective Evolutionary Algorithm Based on Decomposition (Zhang & Li, 2007):
 - Decompõe o problema original em vários sub-problemas (permite usar qualquer técnica de decomposição);
 - Tende a ser menos custoso que NSGA-II e SPEA2;
 - Vem apresentando ótimos resultados na literatura;
 - Foi o vencedor da competição de otimização multiobjetivo para problemas sem restrições, no *IEEE Congress on Evolutionary Computation* 2009 (CEC'2009).

Outras Propostas: Omni-Optimizer (Deb & Tiwari, 2005)

- É uma extensão do NSGA-II para tratar tanto problemas de otimização multiobjetivo quanto mono-objetivo;
- Apresenta mecanismos que se adaptam automaticamente ao tipo de problema sendo tratado;
- Introduz operadores para manutenção de diversidade também no espaço de variáveis:
 - Para tratar a questão da multimodalidade;
 - Modificação no operador de crowding distance;

Deb K., Tiwari S.: Omni-optimizer: A Procedure for Single and Multi-objective Optimization. In: C. A. Coello Coello et al. (Eds): Proc of the 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO), 2005.

Outras Propostas: cob-aiNet[MO]

- cob-aiNet[MO] Concentration-based Artificial Immune Network for Multiobjective
 Optimization (Coelho & Von Zuben, 2011):
 - Proposto para tratar problemas que exigem não só a obtenção de uma boa aproximação da fronteira de Pareto, mas também do conjunto de Pareto;
 - Baseado no paradigma de Sistemas Imunológicos Artificiais:
 - Muitos algoritmos baseados neste paradigma possuem boa capacidade de manutenção de diversidade no espaço de variáveis;
 - Adota a técnica de atribuição de fitness do SPEA2:
 - Mecanismos imuno-inspirados voltados para manutenção de diversidade no espaço de variáveis;
- Coelho, G. P.; Von Zuben, F. J.: A Concentration-based Artificial Immune Network for Multi-objective Optimization. In: Proc. of the 6th International Conference on Evolutionary Multi-Criterion Optimization (EMO), 2011

ap Comatica e Company of the Company

Conteúdo

- Conceitos Básicos;
- Algoritmos Clássicos vs. Algoritmos Evolutivos:
- Casos de Estudo;
- ▶ Tendências e Aplicações;
- Referências.

Casos de Estudo

Problema Deb & Tiwari – Fronteiras de Pareto

- Problema com dois objetivos e cinco variáveis;
- Multimodal;
- Conjunto de Pareto distribuído em regiões separadas e bem definidas;

Deb K., Tiwari S.: Omni-optimizer: A Procedure for Single and Multi-objective Optimization. In: C. A. Coello Coello et al. (Eds): Proc of the 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO), 2005.

DE COMPLEA CAN DELLA CANDA D

Casos de Estudo

Casos de Estudo

Problema ZDT3 – Fronteiras de Pareto

- Problema com dois objetivos e trinta variáveis;
- Fronteira de Pareto descontínua.

Zitzler, E., Deb K., Thiele L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8, pp. 173-195, 2000.

Casos de Estudo

Problema DTLZ2 – Fronteiras de Pareto

- Pertence à classe de problemas DTLZ:
 - Escalabilidade do número de objetivos;
- Fronteira de Pareto não-convexa.

cob-aiNet[MO]

NSGA-II

Deb K., Thiele L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In Proc. Of the 2002 IEEE Congress on Evolutionary Computation (CEC), pp. 825-830, 2002.

Conteúdo

- Conceitos Básicos;
- Algoritmos Clássicos vs. Algoritmos Evolutivos:
- Casos de Estudo;
- Tendências e Aplicações;
- Referências.

Tendências

- Inserção de preferências a priori;
- Interatividade;
- MOEAs capazes de trabalhar com muitos objetivos;
- MOEAs para otimização robusta;
- MOEAs para problemas de otimização dinâmica;
- Innovization melhor compreensão do problema a partir de análise de soluções obtidas por MOEAs;
- ...

Clusterização Multi-Objetivo

HANDL J., KNOWLES J.: An Evolutionary Approach to Multiobjective Clustering. In IEEE Transactions on Evolutionary Computation, 11(1), 2007.

RIPON K. S. N., SIDDIQUE M. N. H.: Evolutionary Multi-Objective Clustering for Overlapping Clusters Detection. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), 2009.

WANG Y., DANG C., LI H., HAN L., WEI J.: A Clustering Multi-Objective Evolutionary Algorithm Based on Orthogonal and Uniform Design. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), 2009.

Geração e Distribuição de Energia

Distribuição de Energia:

- IPPOLITO M. G., SANSEVERINO E. R., VUINOVICH F.: Multiobjective Ant Colony Search Algorithm For Optimal Electrical Distribution System Strategical Planning. In 2004 IEEE Congress on Evolutionary Computation, 2004.
- ABIDO M. A.: Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem. In IEEE Transactions on Evolutionary Computation, 10(3), Jun. 2006.
- MENDOZA F., BERNAL-AGUSTÍN J. L., DOMÍNGUEZ-NAVARRO J. A.: NSGA and SPEA Applied to Multiobjective Design of Power Distribution Systems. In IEEE Transactions on Power Systems, 21(4), Nov. 2006.

Controle em Usinas

KIM D. H., JO J. H., LEE H.: Robust Power Plant Control Using Clonal Selection of Immune Algorithm Based Multiobjective. In Proceedings of the Fourth International Conference on Hybrid Intelligent Systems, 2004.

Telecomunicações

- TAGAWA K., KOJIMA N.: Multi-Objective Optimum Design of DMS Filters Using Robust Engineering and Genetic Algorithm. In 2006 IEEE Congress on Evolutionary Computation, 2006.
- LISBOA A. C., VIEIRA D. A. G., VASCONCELOS J. A. SALDANHA R. R., TAKAHASHI R. H. C.: Multiobjective Shape Optimization of Broad-Band Reflector Antennas Using the Cone of Efficient Directions Algorithm. In IEEE Transactions on Magnetics, 42(4), Apr. 2006.

Design de Sistemas Embarcados

- ASCIA G., CATANIA V., DI NUOVO A. G., PALESI M., PATTI D.: A Multiobjective Genetic Fuzzy Approach for Intelligent System-level Exploration in Parameterized VLIW Processor Design. In 2006 IEEE Congress on Evolutionary Computation, 2006.
- SILVA M. V. C., NEDJAH N., MOURELLE N. M.: Evolutionary IP Assignment for Efficient NoC-Based System Design Using Multi-Objective Optimization. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), 2009.

Posicionamento de Sensores de Sonar

NGATCHOU P. N., FOX W. L. J., EL-SHARKAWI M. A.: Multiobjective Multistatic Sonar Sensor Placement. In 2006 IEEE Congress on Evolutionary Computation, 2006.

Robótica

CAPI G.: A New Method for Simultaneous Evolution of Robot Behaviors based on Multiobjective Evolution. In Proceedings of the 2006 International Conference on Intelligent Robots and Systems, 2006.

MOSHAIOV A., WITTENBERG A. A.: Multi-Objective Evolution of Robot Neuro-Controllers. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), 2009

Job Shop Scheduling

CHIANG T.-C., FU L.-C.: Multiobjective Job Shop Scheduling using Genetic Algorithm with Cyclic Fitness Assignment. In 2006 IEEE Congress on Evolutionary Computation, 2006.

Design Industrial

- BENEDETTI A., FARINA M., GOBBI M.: Evolutionary Multiobjective Industrial Design: The Case of a Racing Car Tire-Suspension System. In IEEE Transactions on Evolutionary Computation, 10 (3), Jun. 2006.
- ZHANG Q., MAHFOUF M.: A Modified PSO with a Dynamically Varying Population and Its Application to the Multi-Objective Optimal Design of Alloy Steels. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), 2009
- SANTOS J. S. S., OLIVEIRA D. B., WANNER E. F., CARRANO E. G., TAKAHASHI R. H. C., SILVA E. J., NETO O. M.: Designing a Multilayer Microwave Heating Device Using a Multiobjective Genetic Algorithm. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), 2009

Conteúdo

- Conceitos Básicos;
- Algoritmos Clássicos vs. Algoritmos Evolutivos;
- Casos de Estudo;
- ▶ Tendências e Aplicações;
- Referências.

Outras Referências

COELLO, C. A., LAMONT, G. B., VAN VELDHUIZEN, D. A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd. Ed., Springer, 2007.

COELLO COELLO C. A.: Evolutionary Multi-Objective Optimization: A Historical View of the Field. In IEEE Computational Intelligence Magazine, Feb. 2006.

DEB K.: Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001.