Tableau

1 Séance 19 oct 2020

Exercice. (TD2 Ex6.2) Donner un exemple de 10 entiers consécutifs non premiers.

Soient $n \in \mathbb{N}_{>0}$, N := n!. alors pour $2 \le k \le n$, on a $k \mid N+k$, donc N+k est non-premier. En utilisant ce résultat, on a n = 11, alors $11! + 2, \dots, 11! + 11$ sont non-premiers.

Exercice. (TD2 Ex7) Calculer pgcd(195, 143) et ppcm(195, 143). En utilisant l'algorithme d'Euclide.

Réponse.

$$195 = 1 \times 143 + 52$$

$$143 = 2 \times 52 + 39$$

$$52 = 1 \times 39 + 13$$

$$39 = 3 \times 13$$

Donc pgcd(195.143) = 13.

En effet, par l'Ex12 de TD2, on a $ppcm(195, 143) = 195 \times 143 / pgcd(195.143) = 195 \times 143 / 13$,

Maintenant, $195/13 = 15 \Longrightarrow 195 = 13 \times 15 = 3 \times 5 \times 13$. $143 = 13 \times 11$, alors on a $ppcm(195, 143) = 3 \times 5 \times 11 \times 13$ par la formule de ppcm.

Remarque 1. On peut utiliser l'algorithme d'Euclide pour faciliter la factorisation.

Remarque 2. En effet, l'algorithme d'Euclide ($\sim \log(\max{(m,n)})$) est beaucoup plus efficace que la factorisation ($\sim \sqrt{\max{(m,n)}}$) pour calculer ppgcd(m,n) quand $m,n \gg 0$ pour les ordinateurs.

Exercice. (TD2 Ex8) Trouver d = pgcd(36, 126) et une relation 36 a + 126 b = d en utilisant l'algorithme d'Euclide. Réponse.

$$126 = 3 \times 36 + 18 \tag{1}$$
$$36 = 2 \times 18$$

Donc d = 18. Par (1), on a $18 = 36 \times (-3) + 126 \times 1$, donc on peut prendre $a = -3 =: a_0$ et $b = 1 = b_0$.

Chercher tous les $(a,b) \in \mathbb{Z}^2$ t.q. $36 \, a + 126 \, b = d \Longleftrightarrow \frac{36}{d} \, a + \frac{126}{d} \, b = 1$ où $\operatorname{pgcd}(36/d, 126/d) = 1$ (en effet, 36/d = 2 et 126/d = 7).

Donc on a $\frac{36}{d}a + \frac{126}{d}b = 1 = \frac{36}{d}a_0 + \frac{126}{d}b_0 \Longrightarrow \frac{36}{d}(a - a_0) = \frac{126}{d}(b_0 - b) \Longrightarrow \frac{126}{d}|a - a_0$. On prend $t \in \mathbb{Z}$ t.q. $a - a_0 = \frac{126}{d}t$, on a $b - b_0 = -\frac{36}{d}t$

En résumé, $a=a_0+\frac{126}{d}\,t$ et $b=b_0-\frac{36}{d}\,t$.

Remarque 3. Pour résoudre une équation ax + by = c où $a, b, c, x, y \in \mathbb{Z}$

- 1. Calculer $d = \operatorname{pgcd}(a, b)$ (par l'algorithme d'Euclide)
- 2. Si $d \nmid c$, aucune solutions. Sinon, on a $a_0 x + b_0 y = c_0$, où $a_0 = a / d \in \mathbb{Z}, b_0 = b / d \in \mathbb{Z}, c_0 = c / d \in \mathbb{Z}$
- 3. Par l'algorithme d'Euclide, on a trouvé $(x_0, y_0) \in \mathbb{Z}$ t.q. $a_0x_0 + b_0y_0 = 1$, donc (c_0x_0, c_0y_0) est une solution de ax + by = c.
- 4. En général, les solutions sont $(x,y)=(x_0+b_0\,t\,,\,y_0-a_0\,t)$ où $t\in\mathbb{Z}.$

Exercice. (TD2 Ex9) Résoudre dans \mathbb{Z}^2 les équations suivantes: 4x+9y=1, 18x+7y=2, 5x-18y=4, 6x+15y=28, 56x+35y=14

Réponse. Tout d'abord, nous essayons de résoudre 6x + 15y = 28. $3 = pgcd(6, 15) \nmid 28$ donc aucune solution.

Pour 4x + 9y = 1, une solution particulière (x, y) = (-2, 1). Toutes les solutions: $(x, y) = (-2 + 9t, 1 - 4t), t \in \mathbb{Z}$.

2 Séance 21 oct 2020

Exercice. (TD2 Ex9) Résoudre dans \mathbb{Z}^2 les équations suivantes: 18x + 7y = 2, 5x - 18y = 4, 56x + 35y = 14

Réponse. Pour 56 x + 35 y = 14, on utilise l'algorithme d'Euclide

$$56 = 1 \times 35 + 21$$

 $35 = 1 \times 21 + 14$
 $21 = 1 \times 14 + 7$
 $14 = 2 \times 7$

Donc pgcd(56, 35) = 7.

$$8 = 1 \times 5 + 3 \tag{2}$$

$$5 = 1 \times 3 + 2 \tag{3}$$

$$3 = 1 \times 2 + 1 \tag{4}$$

Alors on a
$$1 = \underbrace{\overset{(4)}{=}} 3 - 1 \times 2 = \underbrace{\overset{(3)}{=}} 3 - 1 \times (5 - 1 \times 3) = (-1) \times 5 + 2 \times 3 = \underbrace{\overset{(2)}{=}} (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = (-1) \times (8 - 1 \times 5) =$$

Donc $56 \, x + 35 \, y = 14$ admet une solution $(x,y) = (2 \, 2, 2 \, (-3)) = (4,-6)$. La solution générale $(x,y) = (4+5 \, t, -6-8 \, t)$ où $t \in \mathbb{Z}$

 $lci a_0 = 8, b_0 = 5, c_0 = 14/7 = 2$

Pour 18 x + 7 y = 2,

$$18 = 2 \times 7 + 4$$
$$7 = 2 \times 4 - 1$$

Remarque 4. Pour a=b q+r, vous pouvez remplacer le reste $r \in [0,b[$ par $r \in [-E(b/2),E(-b/2)+b[$

Alors $1 = 2 \times 4 - 7 = 2 \times (18 - 2 \times 7) - 7 = 2 \times 18 - 5 \times 7$

On trouve une solution particulière (x, y) = (4, -10). La solution générale: (4 + 7t, -10 - 18t) pour $t \in \mathbb{Z}$.

Remarque 5. Si on remplace t par $c\,t+d$ où $c=\pm 1, d\in\mathbb{Z}$, $(4+5\,t, -6-8\,t)\leftarrow (4+5\,(c\,t+d), -6-8\,(c\,t+d))=(5\,c\,t+5\,d+4, -8\,c\,t-8\,d-6)$

Remarque 6.

$$r_{n-2} = r_{n-1} q_{n-1} + r_n$$

$$r_{n-3} = r_{n-2} q_{n-2} + r_{n-1}$$

$$r_{n-4} = r_{n-3} q_{n-3} + r_{n-2}$$

Alors $r_n = -q_{n-1} r_{n-1} + r_{n-2} = -q_{n-1} \left(r_{n-3} - q_{n-2} r_{n-2} \right) = q_{n-1} q_{n-2} r_{n-2} - q_{n-1} r_{n-3} = q_{n-1} q_{n-2} \left(r_{n-4} - q_{n-3} r_{n-3} \right) - q_{n-1} r_{n-3} = -q_{n-1} \left(1 + q_{n-2} q_{n-3} \right) r_{n-3} + q_{n-1} q_{n-2} r_{n-4} = \cdots$ (les formules pour la fraction continuée)

$$\begin{pmatrix} r_n \\ r_{n-1} \end{pmatrix} = A_{n-1} \begin{pmatrix} r_{n-1} \\ r_{n-2} \end{pmatrix}$$
$$= A_{n-1} A_{n-2} \begin{pmatrix} r_{n-2} \\ r_{n-3} \end{pmatrix}$$
$$= \cdots$$
$$= A_{n-1} A_{n-2} \cdots \begin{pmatrix} a \\ b \end{pmatrix}$$

où
$$A_n = \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix}$$

3 Séance 26 oct 2020

Exercice. (TD2 Ex10) Soient $a, b, x, y \in \mathbb{Z}$ $(a, b \neq 0)$. Montrer que si l'entier d = a x + b y > 0 divise a et b alors $d = \operatorname{pgcd}(a, b)$.

Réponse. Pour $(a, b) \in \mathbb{Z} \setminus \{0\}$, la définition de $\operatorname{pgcd}(a, b)$: un entier positif e > 0 t.q.

- 1. e | a, e | b;
- 2. Pour tout $f \in \mathbb{Z}$ t.q. $f \mid a$, $f \mid b$, alors on a $f \mid e$.

Il suffit de vérifier que d satisfait les énoncés pou e au-dessus.

Exercice. (TD2 Ex11) Soient $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Montrer que

- 1. $\operatorname{pgcd}(a, b) = d \Longrightarrow \operatorname{pgcd}(a c, b c) = d |c|$.
- 2. $(\operatorname{pgcd}(a, b) = 1 \text{ et } \operatorname{pgcd}(a, c) = 1) \Longrightarrow \operatorname{pgcd}(a, b c) = 1.$
- 3. $\operatorname{pgcd}(a, b) = 1 \Longrightarrow (\forall m, n \ge 2 : \operatorname{pgcd}(a^m, b^n) = 1).$
- 4. $\operatorname{pgcd}(a, b) = d \Longrightarrow (\forall m \ge 2 : \operatorname{pgcd}(a^m, b^m) = d^m).$

Réponse.

- 1. Il suffit de montrer que
 - a. d|c| divise ac et bc
 - b. si e divise a c et b c alors e divise d | c | (Bézout: d = a x + b y).
- 2. Il suffit de montrer que pour tout premier $p \mid a$, on a $p \nmid b c$. $pgcd(a, b) = 1 \Longrightarrow p \nmid b$. p ne divise pas c. Donc $p \nmid b c$. Alternativement, vous pouvez utiliser l'identité d'Euclide.
- 3. Méthode 1: par récurrence sur m et n. Méthode 2: Pour tout $p \mid a^m$, p divise a alors p ne divise pas b, donc p ne divise pas b^n .
- 4. $\operatorname{pgcd}(a/d, b/d) = 1 \Longrightarrow \operatorname{pgcd}((a/d)^m, (b/d)^m) = 1 \Longrightarrow \operatorname{pgcd}(a^m, b^m) = d^m$.

4 Séance 28 oct 2020

Question. (CC1) Soient n > 1 un entier et $p \neq q$ deux nombres premiers distincts. Montrer que la racine n-ième $\sqrt[n]{p \, q} \notin \mathbb{Q}$.

Réponse. Sinon, $r = (p q)^{1/n} \in \mathbb{Q}$, alors $r^n = p q \Longrightarrow n v_p(r) = v_p(p q) = v_p(p) + v_p(q) = 1 \Longrightarrow v_p(r) = 1/n \notin \mathbb{Z}$.

Question. (CC1) Soient $n \in \mathbb{N}_{>0}$ et $a, b \in \mathbb{Z} \setminus \{0\}$. Montrer que si $a^{n+1} \mid b^n$, alors on a $a \mid b$.

Réponse. $a^{n+1} \mid b^n$ implique que pour tout premier p, $(n+1) v_p(a) \le n v_p(b) \Longrightarrow v_p(a) \le n v_p(b) / (n+1) \le v_p(b)$, donc $a \mid b$.

Question. (CC2) Calculer $\operatorname{pgcd}(a,b), \operatorname{ppcm}(a,b)$ et résoudre l'équation $a\,x+b\,y=c$ pour $(x,y)\in\mathbb{Z}^2$ où a=68, b=42 et c=12 (Il n'est pas nécessaire d'évaluer $\operatorname{ppcm}(a,b)$ dont une factorisation suffit).

Réponse. Calculons pgcd(a, b) par l'algorithme d'Euclide,

$$68 = 1 \times 42 + 26$$

$$42 = 1 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2$$

Donc pgcd(a, b) = 2. ppcm(a, b) = $68 \times 42/2$

Pour résoudre l'équation a x + b y = c, tout d'abord, $pgcd(a, b) \mid c$.

$$2 = 1 \times 6 - 1 \times 4 \in 4 \mathbb{Z} + 6 \mathbb{Z}$$

$$= 1 \times 6 - 1 \times (10 - 1 \times 6)$$

$$= 2 \times 6 - 1 \times 10 \in 6 \mathbb{Z} + 10 \mathbb{Z}$$

$$= 2 \times (16 - 10) - 1 \times 10$$

$$= 2 \times 16 - 3 \times 10 \in 10 \mathbb{Z} + 16 \mathbb{Z}$$

$$= 2 \times 16 - 3 \times (26 - 16)$$

$$= -3 \times 26 + 5 \times 16 \in 16 \mathbb{Z} + 26 \mathbb{Z}$$

$$= -3 \times 26 + 5 \times (42 - 26)$$

$$= 5 \times 42 - 8 \times 26 \in 26 \mathbb{Z} + 42 \mathbb{Z}$$

$$= 5 \times 42 - 8 \times (68 - 42)$$

$$= -8 \times 68 + 13 \times 42 \in 42 \mathbb{Z} + 68 \mathbb{Z}$$

Donc en multipliant 6, on obtient une solutions particulière: (x,y) = (-48,78). La solution générale: (x,y) = (-48+21t,78-34t).

Question. (TD3 Ex4.bc) Résoudre dans Z:

- 1. $10 x \equiv 6 \pmod{14}$
- 2. $\begin{cases} 7x \equiv 5 \pmod{19} \\ 6x \equiv 3 \pmod{15} \end{cases}$

Réponse.

- 1. L'équation $a x \equiv c \pmod{b}$: a x b y = c. En général,
 - a. Calculer $d := \operatorname{pgcd}(a, b)$. Si $d \nmid c$, aucune solution.
 - b. Sinon, il suffit de résoudre l'équation $\frac{a}{d}x \equiv \frac{c}{d} \pmod{\frac{b}{d}}$. On utilise l'algorithme d'Euclide pour chercher un inverse de $\frac{a}{d} \pmod{\frac{b}{d}}$: posons $a_1 := a/d$, $b_1 := b/d$ et $c_1 := c/d$. si vous trouvez $u, v \in \mathbb{Z}$ t.q. $a_1 u + b_1 v = 1$, alors $a_1 u \equiv 1 \pmod{b_1}$, donc u est un inverse.
 - c. $a_1 x u \equiv c_1 u \pmod{b_1} \Longrightarrow x \equiv c_1 u \pmod{b_1}$.

En particulier,

- a. $14 = 1 \times 10 + 4$, $10 = 2 \times 4 + 2$, $4 = 2 \times 2$, donc pgcd(10, 14) = 2.
- b. $5 x \equiv 3 \pmod{7}$. $2 = 10 2 \times 4 = 10 2 \times (14 1 \times 10) = -2 \times 14 + 3 \times 10$. Donc $1 = -2 \times 7 + 3 \times 5$, alors $3 \times 5 \equiv 1 \pmod{7}$.
- c. $x \equiv 3 \times 3 \equiv 2 \pmod{7}$
- 2. En résolvant les équations, le système est équivalent à $\begin{cases} x \equiv -2 \pmod{19} \\ x \equiv -2 \pmod{5} \end{cases}$ donc $x \equiv -2 \pmod{95} = \operatorname{ppcm}(19, 5))$

Remarque 7. En général, pour résoudre un système d'équations $\begin{cases} x \equiv c_1 \pmod{a_1} \\ x \equiv c_2 \pmod{a_2} \end{cases}$, $x = a_1 y + c_1 = a_2 z + c_2$ où $y, z \in \mathbb{Z}$, il suffit de résoudre $a_1 y + c_1 = a_2 z + c_2 \Rightarrow a_1 y - a_2 z = c_2 - c_1$. En particulier, alors la solution générale s'écrit comme $x \equiv \pmod{pcm(a_1, a_2)}$.

Pour un système

$$\begin{cases} x \equiv c_1 \pmod{a_1} \\ x \equiv c_2 \pmod{a_2} \\ \dots \\ x \equiv c_n \pmod{a_n} \end{cases}$$

où $\operatorname{pgcd}(a_i,a_j)=1$ pour tout $i\neq j$ (il suffit de résoudre le système avec $(c_1,\ldots,c_n)=(0,\ldots,0,1,0,\ldots,0)$, par exemple, $c_1=1$ et $c_2=\cdots=c_n=0$, alors il est équivalent à $\left\{ egin{array}{ll} x\equiv 1\pmod{a_1} \\ x\equiv 0\pmod{a_2\cdots a_n} \end{array} \right.$ Pour les (c_1,\ldots,c_n) , il suffit de faire une combinaison linéaire des solutions pour $(c_1,\ldots,c_n)=(0,\ldots,0,1,0,\ldots,0)$.

Question. $\operatorname{pgcd}(a,b) = d \Longrightarrow (\forall m,n \geq 2 : \operatorname{pgcd}\left(\frac{a^m}{d^m},\frac{b^n}{d^n}\right) = 1\right).$

Réponse. $a = a_1 d, b = b_1 d$ alors $\operatorname{pgcd}(a_1, b_1) = 1$. Donc $\operatorname{pgcd}(a_1^m, b_1^n) = 1$.

Exercice. (TD2 Ex12) Soient $a, b \in \mathbb{Z}$. Montrer que $\operatorname{pgcd}(a, b) \operatorname{ppcm}(a, b) = |ab|$.

Réponse. Il suffit de vérifier que pour tout premier p, on a $v_p(\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b)) = v_p(|ab|) = v_p(ab)$. En effet, $v_p(\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b)) = v_p(\operatorname{pgcd}(a,b)) + v_p(\operatorname{ppcm}(a,b)) = \min(v_p(a),v_p(b)) + \max(v_p(a),v_p(b)) = v_p(a) + v_p(b) = v_p(ab)$.

Question. (TD3 Ex1) $a = \sum_{j=0}^{r} a_j \times 10^j$. Montrer que

1. 3 divise a ssi 3 divise $\sum_{j=0}^{r} a_j$

2. 9 divise a ssi 9 divise $\sum_{j=0}^{r} a_j$

3. 11 divise a ssi 11 divise $\sum_{j=0}^{r} (-1)^{j} a_{j}$

Réponse.

1. $a \equiv \sum_{j=0}^{r} a_j \pmod{3}$

2. Similaire

3.
$$10 \equiv -1 \pmod{11}$$
 donc $a \equiv \sum_{j=0}^{r} (-1)^j a_j$

5 Séance 2 nov 2020

Question. (TD3 Ex7) Trouver $100^{1000} \mod 13$ [Indication $x^{12} \equiv 1 \pmod{13}$ pour $x \not\equiv 0 \pmod{13}$].

Réponse. $1000/12 = 500/6 = 250/3 \in \mathbb{Z} + 1/3$ donc le reste est $1/3 \times 12 = 4$. Donc $100^{1000} \equiv 100^4 \pmod{13}$, ensuite $100/13 \in \mathbb{Z} + 9/13 = \mathbb{Z} - 4/13$ donc le reste est -4. Alors $100^{1000} \equiv 100^4 \equiv (-4)^4 \equiv 16^2 \equiv 3^2 \equiv -4 \pmod{13}$.

Question. (TD3 Ex8) Montrer que $13 \mid 2^{70} + 3^{70}$.

Réponse. Il suffit de calculer $2^{70} \mod 13$ et $3^{70} \mod 13$. $70/12 = 35/6 \in \mathbb{Z} - 1/6$ donc le reste est -2. Donc $2^{70} \equiv 2^{-2} \equiv 7^2 \equiv -3 \pmod{13}$ et $3^{70} \equiv 3^{-2} \equiv (-4)^2 \equiv 3 \pmod{13}$, donc $2^{70} + 3^{70} \equiv 0 \pmod{13}$.

6 Séance 4 nov 2020

Algorithme d'Euclide Pour $(a,b) \in \mathbb{Z}^2$ où $b \neq 0$, on a

```
\begin{array}{lll} a & = & b \, q_1 + r_1 \\ b & = & r_1 \, q_2 + r_2 \\ r_1 & = & r_2 \, q_3 + r_3 \\ r_2 & = & r_3 \, q_4 + r_4 \\ \vdots \\ r_{n-2} & = & r_{n-1} \, q_n + r_n \\ r_{n-1} & = & r_n \, q_{n+1} \end{array} \right| \begin{array}{lll} r_1 & = & a - b \, q_1 = a \, s_1 + b \, t_1 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_2 & = & b - r_1 \, q_2 = b - (a \, s_1 + b \, t_1) \, q_2 = a \, s_2 + b \, t_2 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_3 & = & r_1 - r_2 \, q_3 = (a \, s_1 + b \, t_1) - (a \, s_1 + b \, t_1) \, q_3 = a \, s_3 + b \, t_3 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_4 & = & r_2 - r_3 \, q_4 = (a \, s_2 + b \, t_2) - (a \, s_3 + b \, t_3) \, q_4 = a \, s_4 + b \, t_4 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_5 & = & r_{n-1} \, q_n + r_n \end{array}
```

Cela veut dire que nous écrivons $a, b, r_1, ..., r_n$ consécutivement comme des combinaisons linéaires de a, b. Alors $r_n = \operatorname{pgcd}(a, b)$, et que $r_n = a \, s_n + b \, t_n$, une relation de Bézout.

C'est « meilleur » que ce que je vous ai affiché avant à point de vue informatique: la complexité en espace est constante.

Question. (TD3 Ex2) Soient $x, y, z \in \mathbb{Z}$. Montrer que

- 1. $x^2 \equiv 0, 1 \pmod{3}$
- 2. Si $3 | (x^2 + y^2)$, alors 3 | x et 3 | y.
- 3. Si $x^2 + y^2 = 3z^2$, alors 3 | x, 3 | y et 3 | z.
- 4. Si $x^2 + y^2 = 3z^2$, alors x = y = z = 0.
- 5. Que se passe-t-il si l'on remplace 3 par 5 (resp. par 7)?

Réponse.

- 1. Soit $x \equiv 0, \pm 1 \pmod{3}$, $x^2 \equiv 0, 1 \pmod{3}$ (énumérer toutes les possibilités)
- 2. Énumérer $x^2 \equiv 0, 1$ ou $y^2 \equiv 0, 1$. D'autant que $x^2 + y^2 \equiv 0$, la seule possibilité: $x^2 \equiv 0$ et $y^2 \equiv 0$, donc $x \equiv y \equiv 0$.
- 3. $x^2 + y^2 = 3z^2$ alors $3 \mid (x^2 + y^2) \Longrightarrow 3 \mid x$ et $3 \mid y \Longrightarrow 9 \mid (x^2 + y^2) \Longrightarrow 9 \mid (3z^2) \Longrightarrow 3 \mid z^2 \xrightarrow{\text{(3 est premier)}} 3 \mid z$.
- 4. Il suffit de montrer que

Lemme 8. Pour tout $n \in \mathbb{N}$, on a $3^n \mid x, 3^n \mid y \mid et \mid 3^n \mid z$.

Tout d'abord, pourquoi c'est suffisant, c'est-à-dire, si pour tout $n \in \mathbb{N}$, on a $3^n \mid x$, alors x = 0.

On peut montre Lemme 8 par récurrence. Tout d'abord, quand n=0, c'est tautologie. Supposons que $3^m \mid x,y \text{ et } z$, alors on prend $x=3^m x_1, y=3^m y_1, z=3^m z_1$ ou $x_1,y_1,z_1 \in \mathbb{Z}$. Alors $x^2+y^2=3$ $z^2 \Longrightarrow x_1^2+y_1^2=3$ z_1^2 . Ensuite, par la question précédente, on a $3 \mid x_1,y_1 \text{ et } z_1$, donc $3^{m+1} \mid x,y \text{ et } z$.

5. Pour 5, c'est faux: $1^2 + 2^2 = 5 \times 1^2$. Pour 7, c'est vrai dont le raisonnement est similaire au cas de 3.

Question. En utilisant l'algorithme d'Euclide, résoudre dans \mathbb{Z} les systèmes d'équations

$$\begin{cases} x \equiv 1 \pmod{34} \\ x \equiv 0 \pmod{55} \end{cases}$$

et

$$\begin{cases} x \equiv 0 \pmod{34} \\ x \equiv 1 \pmod{55} \end{cases}$$

[Indication: on peut résoudre les deux systèmes d'équations en même temps.]

En déduire la solution de

$$\begin{cases} x \equiv \alpha \pmod{34} \\ x \equiv \beta \pmod{55} \end{cases}$$

pour tout $(\alpha, \beta) \in \mathbb{Z}^2$.

Remarque. $x \equiv 0 \pmod{55}$ c'est équivalent à, par exemple, $x = 55 \ y$ où $y \in \mathbb{Z}$, alors la première équation est essentiellement équivalente à $55 \ y \equiv 1 \pmod{34}$.

Réponse. Tout d'abord, on utilise l'algorithme d'Euclide:

Donc la relation de Bézout: $1=13\times 55-21\times 34$ et $\operatorname{pgcd}(34,55)=1$, donc les systèmes admettent une seule solution $(\operatorname{mod} 34\times 55)$, et $13\times 55\equiv 1\ (\operatorname{mod} 34)$ et $13\times 55\equiv 0\ (\operatorname{mod} 55)$ donc $x\equiv 13\times 55\ (\operatorname{mod} 34\times 55)$ est une solution du premier système (vous pouvez voir que les étapes ici sont parallèles à celles de $55\ y\equiv 1\ (\operatorname{mod} 34)$: 13 est l'inverse de $55\ \operatorname{mod} 34$). Parallèlement, $x\equiv -21\times 34\ (\operatorname{mod} 34\times 55)$ est une solution du second système.

Pour la troisième, $x \equiv 13 \times 55 \alpha - 21 \times 34 \beta \pmod{34 \times 55}$.

7 Séance 23 nov 2020

Exercice. (TD3 Ex4.a) Résoudre dans \mathbb{Z}

$$\begin{cases} x \equiv 3 \pmod{7} \\ x \equiv 1 \pmod{8} \\ x \equiv 4 \pmod{9} \end{cases}$$
 (5)

Solution. Tout d'abord, nous résolvons

$$\begin{cases} x \equiv 3 \pmod{7} \\ x \equiv 1 \pmod{8} \end{cases}$$

D'autant que 8-7=1, alors $8\equiv 1\ (\mathrm{mod}\ 7)$ et $8\equiv 0\ (\mathrm{mod}\ 8)$; $-7\equiv 0\ (\mathrm{mod}\ 7)$ et $-7\equiv 1\ (\mathrm{mod}\ 8)$. La solution est $x\equiv 8\times 3+(-7)\times 1\equiv 17\ (\mathrm{mod}\ 7\times 8)$.

Alors le système (5) est équivalent à

$$\begin{cases} x \equiv 17 \pmod{7 \times 8} \\ x \equiv 4 \pmod{9} \end{cases} \tag{6}$$

Il suffit d'applique l'algorithme d'Euclide au pair $(7 \times 8, 9)$.

Alternativement, on peut évaluer les inverses de 7,8 modulo $9:8^{-1} \equiv (-1)^{-1} \equiv -1 \pmod{9}$. Ensuite, on applique l'algorithme d'Euclide au pair (7,9):

$$9 = 1 \times 7 + 2$$
$$7 = 3 \times 2 + 1$$

Alors $2 = 9 - 1 \times 7$ et $1 = 7 - 3 \times 2 = 7 - 3$ $(9 - 1 \times 7) = 4 \times 7 - 3 \times 9$. Donc $4 \times 7 \equiv 1 \pmod{9}$, cela vaut dire, $7^{-1} \equiv 4 \pmod{9}$. Pour résoudre le système (6), on prend $x = 17 + 7 \times 8$ y, alors on a $17 + 7 \times 8$ $y \equiv 4 \pmod{9}$, cela vaut dire 7×8 $y \equiv 5 \pmod{9} \Longrightarrow y \equiv 5 \pmod{9} \equiv 5 \times 4 \times (-1) \equiv -2 \pmod{9}$. Donc $x = 17 + 7 \times 8 \times (9 \times 8 - 2) \equiv 17 - 2 \times 7 \times 8 \pmod{7 \times 8 \times 9}$.

Exercice. (TD3 Ex6) Enumérer les classes de congruence inversibles $a \pmod{12} \in (\mathbb{Z}/12\mathbb{Z})^{\times}$. Pour chaque élément de l'ensemble $(\mathbb{Z}/12\mathbb{Z})^{\times}$ determiner son inverse. Idem pour $(\mathbb{Z}/18\mathbb{Z})^{\times}$.

Solution. $a \pmod{12} \in (\mathbb{Z}/12\mathbb{Z})^{\times}$ ssi $\operatorname{pgcd}(a,12) = 1$ ($12 = 2^2 \times 3$ alors $\operatorname{pgcd}(a,12) = 1$ ssi $2 \nmid a$ et $3 \nmid a$), c'est-à-dire, $a \equiv \pm 1, \pm 5$. Dans ce cas, $\operatorname{ppcm}(\varphi(2^2), \varphi(3)) = \operatorname{ppcm}(2,2) = 2$, donc pour tout tel a, on a $a^2 \equiv 1 \pmod{12}$, donc $a^{-1} \equiv a \pmod{12}$.

Parallèllement, $a \pmod{18} \in (\mathbb{Z}/18\mathbb{Z})^{\times}$ ssi $\operatorname{pgcd}(a,18) = 1$ ($18 = 2 \times 3^2$ alors $\operatorname{pgcd}(a,18) = 1$ ssi $2 \nmid a$ et $3 \nmid a$), c'est-à-dire, $a \equiv \pm 1, \pm 5, \pm 7 \pmod{18}$. On peut évaluer un par un $a^{-1} \pmod{18}$. Il suffit de trouver les inverses de 1,5,7. On utilise l'algorithme d'Euclide pour évaluer 5^{-1} et 7^{-1} modulo 18.

Problème. Calculer la fonction d'Euler $\varphi(n)$ et le reste $a^m \mod n$.

Proposition. Si
$$n = \prod_{j=1}^{s} p_{j}^{r_{j}}$$
, alors $\varphi(n) = \prod_{j=1}^{s} (p_{j}-1) p_{j}^{r_{j}-1}$. Par exemple, $\varphi(9) = \varphi(3^{2}) = (3-1) \times 3^{2-1} = 6$

Exercice. (TD4 Ex4.1) Calculer $\varphi(64)$, $\varphi(125)$, $\varphi(100)$ et $\varphi(108)$.

Solution.
$$\varphi(64) = \varphi(2^6) = 2^5 = 32$$
, $\varphi(125) = \varphi(5^3) = 4 \times 5^2 = 100$, $\varphi(100) = 2 \times 4 \times 5 = 40$, $\varphi(108) = \varphi(2^2 \times 3^3) = 2 \times 2 \times 3^2 = 36$.

Cas particulier n = p. $a^m \mod p$ pour $m \ge 1$

- **1.** Si $p \mid a$, alors $p \mid a^m$, donc $a^m \equiv 0 \pmod{p}$.
- 2. Sinon, on a $a^{p-1} \equiv 1 \pmod{p}$. On calcule le reste $m \equiv m_0 \pmod{p-1}$. Alors $a^m \equiv a^{m_0} (a^{p-1})^{(m-m_0)/(p-1)} \equiv a^{m_0} \pmod{p}$.
- **3.** Évaluer $a^{m_0} \mod p$ (on peut remplacer a par le reste $a \mod p$).

Remarque. Si nous devons calculer $a^m \mod p$ pour tout $m \in \mathbb{N}$, il suffit de calculer $(a^m \mod p)_{m \in \mathbb{N}}$ un par un a^0 , a^1, a^2, \ldots en utilisant $a^m = a^{m-1} \times a$. En particulier, si $p \nmid a$ et m_1 est le premier $m \in \mathbb{N}_{>0}$ t.q. $a^m \equiv 1 \pmod p$, alors l'ordre de $a \pmod p$ est m_1 .

Exercice. (TD3 Ex9) Montrer que $a^{m+10n} \equiv a^m \pmod{11}$ pour tout $a \in \mathbb{Z}$ et $m, n \ge 1$. Déterminer $2019^{9102} \mod{11}$.

Solution. m+10 $n \equiv m \pmod{10} \Longrightarrow a^{m+10n} \equiv a^m \pmod{11}$. Alors $2019 \equiv 2 \times (-1)^3 + 1 \times (-1) + 9 \equiv 6 \equiv -5 \pmod{11}$, donc $2019^{9102} \equiv (-5)^2 \equiv 25 \equiv 3 \pmod{11}$

Exercice. (TD3 Ex14) Pour $n \in \mathbb{N}$, on note $a_n = 3^n$, $b_n = 4^n$ et $c_n = 1018 \times 2018^n + 1026 \times 2019^n$. Calculer $a_n \mod 13$, $b_n \mod 13$ et $c_n \mod 13$.

Solution. Tout d'abord, $13 \nmid 3$ et $13 \nmid 4$. $1001 = 7 \times 11 \times 13 \equiv 0 \pmod{13}$, donc $2018 \equiv 3 \pmod{13}$ et $2019 \equiv 4 \pmod{13}$. Alors $c_n \equiv 4 \times 3^n - 4^n \equiv 4 a_n - b_n \pmod{13}$. Pour tout $n \in \mathbb{N}$, on prend n_0 est le reste de $n \pmod{12}$. Alors $a_n \equiv 3^{n_0} \pmod{13}$ et $b_n \equiv 4^{n_0} \pmod{13}$.

n	0	1	2	3	4	5	6
$3^n \mod 13$	1	3	-4	1	3	-4	1
$4^n \mod 13$	1	4	3	-1	-4	-3	1
$c_n \bmod 13$	3	-5	-6	5	3	0	3
en utilisant							
$c_n \equiv 4 a_n - b_n (\bmod 13)$							

Donc les ordres de $3 \pmod{13}$ et $4 \pmod{13} \in (\mathbb{Z}/13\mathbb{Z})^{\times}$ sont respectivement 3 et 6. Les valeurs de a_n , b_n , c_n modulo 13 ne dépend que de $n \pmod{6}$.

Cas particulier $n = p^r$. $a^m \mod p^r$ pour $m \ge 1$

Cas $\operatorname{pgcd}(a,n) = 1$, c'est-à-dire, $p \nmid a$.

- $\textbf{1. On a } a^{\varphi(n)} \equiv 1 \pmod{n}. \text{ On calcule le reste } m \equiv m_0 \pmod{\varphi(n)}. \text{ Alors } a^m \equiv a^{m_0} (a^{\varphi(n)})^{(m-m_0)/\varphi(n)} \equiv a^{m_0} \pmod{n}.$
- **2.** Évaluer $a^{m_0} \mod n$ (on peut remplacer a par le reste $a \mod n$).

Cas $p \mid a$. On écrit $a = p^{v_p(a)} a_0$, alors $p^{mv_p(a)} \mid a^m$. Si $r \le m v_p(a)$, alors le reste est 0. Sinon, il suffit de déterminer $a_0^m \mod p^{r-mv_p(a)}$ où $p \nmid a_0$.

Exemple. Pour évaluer $12^{10} \mod 3^{100}$, on écrit $12 = 3^1 \times 4$, alors $12^{10} = 3^{10} \times 4^{10}$. Pour évaluer $3^{10} \times 4^{10} \mod 3^{100}$, il suffit d'évaluer $4^{10} \mod 3^{90}$ (parce que si $4^{10} \equiv b \pmod{3^{90}}$, alors $3^{10} \times 4^{10} \equiv 3^{10} b \pmod{3^{90}} \times 3^{10} = 3^{100}$)).

8 Séance 25 nov 2020

Exercice. (TD3 Ex5(2), pas bon) Déterminer $3^{15} \mod 5^3$.

Solution. $\varphi(5^3) = 100$. $15 = 1 + 2 + 2^2 + 2^3$ donc $3^{15} = 3^1 \cdot 3^2 \cdot 3^4 \cdot 3^8$, donc il suffit d'évaluer (on note que $3^{2^n} = (3^{2^{n-1}})^2$)

n	0	1	2	3
$3^{2^n} \bmod 5^3$	3	9	-44	$44^2 \bmod 5^3$

Cas particulier $n=2^r, r \geq 3$.

Cas $2 \nmid a$. On a $a^{\varphi(n)/2} \equiv 1 \pmod{2^r}$ où $\varphi(n)/2 = 2^{r-2}$. Donc évaluer $a^m \mod n$:

- 1. Évaluer $m \mod \varphi(n)/2 =: m_0$.
- **2.** Évaluer $a^{m_0} \mod n$, c'est le résultat de $a^m \mod n$.

Question. (TD3 Ex11.1) Montrer que $2 \nmid a \Longrightarrow a^2 \equiv 1 \pmod{8}$ (En effet, ici r = 3)

Question. (TD3 Ex5(1)) Déterminer $3^{15} \mod 2^3$. $3^{15} = (3^2)^7 3 \equiv 3 \pmod{8}$

Cas $2 \mid a$.

Cas général. 1 étape: factoriser $n = p_1^{r_1} \cdots p_s^{r_s}$.

Cas général. (Important)

- 1. Évaluer $a^m \mod p_j^{r_j} =: \alpha_j$ pour $j = 1, 2, \dots, s$ par les méthodes au-dessus.
- **2.** Résoudre le système d'équations $(x \equiv \alpha_j \pmod{p_i^{r_j}})_{j=1}^s$.

Cas $\operatorname{pgcd}(a,n)=1$. On peut utiliser l'amélioration de théorème d'Euler: $a^{\operatorname{ppcm}(\varphi(p_1^{r_1}),\ldots,\varphi(p_s^{r_s}))}\equiv 1\pmod n$ (si $p_j^{r_j}=2^{r_j}$, on peut remplacer $\varphi(p_j^{r_j})$ par $\varphi(p_j^{r_j})/2$). En effet, ce nombre est « optimal ». Alors on peut calculer $m \mod \operatorname{ppcm}(\varphi(p_1^{r_1}),\ldots,\varphi(p_s^{r_s}))=:m_0$, alors on calcule $a^{m_0} \mod n$.

Question. (TD3 Ex10) Déterminer $2019^{2018} \mod 91$.

Solution. $91 = 7 \times 13$. $2019 \equiv 17 \pmod{91}$ ($7 \times 13 \mid 1001 = 7 \times 11 \times 13$), donc $2019^{2018} \equiv 17^{2018} \pmod{91}$. pgcd(17, 91) = 1. On peut utiliser deux méthodes pour évaluer $17^{2018} \pmod{91}$:

- 1. On peut évaluer $\operatorname{ppcm}(\varphi(7), \varphi(13)) = \operatorname{ppcm}(6, 12) = 12$, donc $17^{12} \equiv 1 \pmod{91}$ par l'amélioration du théorème d'Euler. On éavlue $2018 \mod 12$. $2018/12 = 1009/6 \in \mathbb{Z} + 1/6 \Rightarrow 2018 \mod 12 = 2 \Rightarrow 17^{2018} \equiv 17^2 \equiv 289 91 \times 2 \equiv 16 \pmod{91}$.
- 2. Alternativement, on peut évaluer $17^{2018} \mod 7 = 2$ et $17^{2018} \mod 13 = 3$. Alors il suffit de résoudre le système $(x \equiv 2 \pmod{7}, x \equiv 3 \pmod{13}) \Rightarrow (x \equiv 16 \pmod{91})$

Exercice. (TD3 Ex16) Montrer que pour tout $n \in \mathbb{N}_{>0}$, on a $19 \mid 2^{2^{6n+2}} + 3$.

Solution. On commence par déterminer $2^{6n+2} \mod 18$. $18 = 2 \times 3^2$ et $\operatorname{pgcd}(2,18) = 2 \neq 1$. Pour cela, il faut déterminer $2^{6n+2} \mod 2$ et $2^{6n+2} \mod 3^2$. Tout d'abord, $2^{6n+2} \equiv 0 \pmod 2$. Ensuite, $\varphi(3^2) = 2 \times 3 = 6$, et $6n+2 \equiv 2 \pmod 3^2$, alors $2^{6n+2} \equiv 2^2 \pmod 3^2$. Il reste de résoudre le système $(x \equiv 0 \pmod 2), x \equiv 4 \pmod 9$). La solution est $x \equiv 4 \pmod 18$. Alors $2^{2^{6n+2}} \equiv 2^4 \equiv -3 \pmod 19 \implies 19 \mid 2^{2^{6n+2}} + 3$.

9 Séance 30 nov 2020

Exercice. (TD3 Ex11.2,3) Soit $a \in \mathbb{Z}$.

- 1. Montrer que $\operatorname{pgcd}(a,6) = 1 \Longrightarrow a^2 \equiv 1 \pmod{24}$.
- 2. Montrer que $a^{13} \equiv a \pmod{2730}$.

Solution.

- 1. $24 = 2^3 \times 3$. Alors il suffit ($\operatorname{pgcd}(2^3,3) = 1$) de montrer que $a^2 \equiv 1 \pmod{2^3}$ et $a^2 \equiv 1 \pmod{3}$. D'autant que $\operatorname{pgcd}(2,a) = 1$, on a $a^{2^{n-2}} \equiv 1 \pmod{2^n}$ pour $n \geq 3$ ($\varphi(2^n)/2 = 2^{n-2}$). En particulier, $a^2 \equiv 1 \pmod{2^3}$. D'autant que $3 \nmid a \Longrightarrow a^2 \equiv 1 \pmod{3}$.
- 2. $2730 = 2 \times 3 \times 5 \times 7 \times 13$, alors il suffit de montrer que $a^{13} \equiv a \pmod{2}, 3, 5, 7, 13$). Par exemple, pour le premier 7, on a $a^7 \equiv a \pmod{7}$, alors $a^{6k+1} \equiv a \pmod{7}$ où $k \in \mathbb{N}$ (soit par récurrence, soit la méthode suivante: quand $7 \nmid a$, alors par le petit théorème de Fermat, $a^6 \equiv 1$ alors $a^{6k+1} \equiv (a^6)^k a \equiv a \pmod{7}$; quand $7 \mid a$, alors $7 \mid a$ et $7 \mid a^{6k+1}$, donc $a \equiv 0 \equiv a^{6k+1} \pmod{7}$.

Exercice. (TD4 Ex3.3) Montrer que $n \equiv 1 \pmod{12} \Longrightarrow a^n \equiv a \pmod{91}$.

Problème. Énumerer toutes les valeurs possibles de $a^m \mod n$.

- 1. Factoriser $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$.
- 2. Énumerer toutes les valeurs possible de $a^m \mod p_i^{\alpha_i}$ (ici, on utilise l'améloration de théorème d'Euler pour simplifier le calcul).
- 3. Résoudre des systèmes d'équations $x \equiv \beta_i \pmod{p_i^{\alpha_i}}$.

Exercice. (TD4 Ex3.1, Ex3.2) Déterminer les valeurs possibles de $a^{12} \mod 7$, de $a^{12} \mod 13$ et de $a^{12} \mod 91$ pour $a \in \mathbb{Z}$. Idem pour a^6 au lieu de a^{12} .

Solution.

- 1. Déterminer toutes les valeurs possibles de $a^{12} \mod 91$:
 - a. $91 = 7 \times 13$
 - b. $a^{12} \mod 7$: si $7 \mid a$, alors $a^{12} \equiv 0 \pmod 7$). Sinon, par le théorème de Fermat, on a $a^6 \equiv 1 \pmod 7$, donc $a^{12} \equiv 1 \pmod 7$. En résumé, $a^{12} \equiv 0, 1 \pmod 7$. Parallèllement, $a^{12} \equiv 0, 1 \pmod 13$.
 - c. Pour déterminer toutes les valeurs possibles de $a^{12} \mod 7 \times 13$, il suffit de résoudre les systèmes

$$\begin{cases} x \equiv \alpha \pmod{7} \\ x \equiv \beta \pmod{13} \end{cases}$$

pour tout $\alpha \in \{0,1\}$ et $\beta \in \{0,1\}$. $2 \times 7 - 13 = 1$, on a $x \equiv -13 \ \alpha + 14 \ \beta \ (\text{mod} \ 7 \times 13)$, donc toutes les valeurs possibles de $a^{12} \ \text{mod} \ 7 \times 13$ sont 0,14,-13,1.

- 2. Déterminer toutes les valeurs possibles de $a^6 \mod 91$:
 - a. $91 = 7 \times 13$
 - b. Indication: pour déterminer toutes les valeurs possibles de $a^6 \mod 13$, il faut énumérer $a \equiv 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6$. $a^6 = (a^2)^3$

Quand $7 \mid a$, on a $a^6 \equiv 0 \pmod{7}$. Quand $7 \nmid a$, alors $a^6 \equiv 1 \pmod{7}$ par le théorème de Fermat. Donc $a^6 \equiv 0, 1 \pmod{7}$.

Pour $a^6 \mod 13$: $a^2 \equiv 0, 1, 4, -4, 3, -1, -3 \equiv 0, \pm 1, \pm 3, \pm 4 \pmod{13}$, donc $((-b)^3 = -b^3)$, donc $(\pm b)^3 = \pm b^3$) $a^6 = (a^2)^3 \equiv 0, \pm 1 \pmod{13}$. Donc il reste de résoudre

$$\begin{cases} x \equiv \alpha \pmod{7} \\ x \equiv \beta \pmod{13} \end{cases}$$

Exercice. (TD3 Ex12) Soit $x \in \mathbb{Z}$. Montrer que

- 1. si pgcd(x, 30) = 1, alors on a $x^4 \equiv 1 \pmod{240}$.
- 2. $x^4 \equiv 0$ ou $1 \pmod{q}$ où $q = 2^4, 3, 5$.
- 3. $x^4 \equiv x^8 \pmod{240}$
- 4. Pour tout $n \ge 0$, $x^{n+4} \equiv x^{n+8} \pmod{240}$
- 5. $x^4 \equiv 0, 16, 96, 160 \pmod{240}$ ou $x^4 \equiv 1, 81, 145, 225 \pmod{240}$.

Solution.

- 1. $240 = 2^4 \times 3 \times 5$. Alors par l'amélioration de théorème d'Euler, quand $pgcd(x, 30 = 2 \times 3 \times 5) = 1$, alors $x^4 \equiv x^{2^{4-2}} \equiv 1 \pmod{2^4}$, $x^2 \equiv 1 \pmod{3}$, $x^4 \equiv 1 \pmod{5}$. Donc $x^4 \equiv 1 \pmod{ppcm(2^4, 3, 5)} = 240$).
- 2. $q = 2^4$: si $2 \mid x$ alors $2^4 \mid x^4 \Rightarrow x^4 \equiv 0 \pmod{2^4}$. Si $2 \nmid x$, alors $x^4 \equiv 1 \pmod{2^4}$ (voir au-dessus). q = 3, 5: si $3 \mid x$, alors Si $3 \nmid x$, alors
- 3. D'autant que $0^2 = 0$ et $1^2 = 1$, alors $(x^4)^2 \equiv x^4 \pmod{q}$ où $q = 2^4, 3, 5$, alors $x^8 \equiv x^4 \pmod{ppcm(2^4, 3, 5)} = 240$).
- 4. $x^{n+4} \equiv x^n x^4 \equiv x^n x^8 \equiv x^{n+8} \pmod{240}$
- 5. Il reste de résoudre les systèmes

$$\begin{cases} x \equiv \alpha \pmod{2^4} \\ x \equiv \beta \pmod{3} \\ x \equiv \gamma \pmod{5} \end{cases}$$

pour $\alpha, \beta, \gamma \in \{0, 1\}$. Truc: $2^4 = 3 \times 5 + 1$. Donc cela va mieux de commencer par résoudre

$$\begin{cases} x \equiv \beta \pmod{3} \\ x \equiv \gamma \pmod{5} \end{cases}$$

D'autant que $2 \times 3 - 5 = 1$, alors la solution est $x \equiv -5 \ \beta + 6 \ \gamma \ (\text{mod} \ 15)$. Il reste de résoudre

$$\begin{cases} x \equiv \alpha \pmod{16} \\ x \equiv 6\beta - 5\gamma \pmod{15} \end{cases}$$

Solution: $x \equiv -15 \alpha + 16 (6 \beta - 5 \gamma) \pmod{15 \times 16}$. On prend $\alpha, \beta, \gamma \in \{0, 1\}$.

10 Séance 2 déc 2020

Définition. Soit $n \in \mathbb{N}_{>0}$. $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ (i.e. $\operatorname{pgcd}(a,n) = 1$) est un générateur si l'ordre de a est $\varphi(n)$ (Rappelons que $\operatorname{ord}(a) \mid \varphi(n)$).

Exercice. (TD4 Ex5) Soit $a \in \mathbb{Z}$.

- 1. Si $17 \nmid a$, alors $a \pmod{17}$ générateur ssi $a^8 \not\equiv 1 \pmod{17}$. Trouver un tel générateur.
- 2. Si $3 \nmid a$, alors $a \pmod{27}$ générateur ssi $a^6, a^9 \not\equiv 1 \pmod{27}$. Trouver un tel générateur.

Solution.

1. $\operatorname{ord}(a) \mid \varphi(17) = 16 = 2^4$, alors $\operatorname{ord}(a) = 16$ ssi $\operatorname{ord}(a) \nmid 8$ ssi $a^8 \not\equiv 1 \pmod{17}$ (en général, pour $a \in (\mathbb{Z}/n\mathbb{Z})^\times$, $a^m \equiv 1 \pmod{n}$ ssi $\operatorname{ord}(a) \mid m$).

Pour trouver un tel générateur, $a=1,2,\ldots$ Tout d'abord, 1 n'est pas un générateur. $2^8=(2^4)^2\equiv (-1)^2\equiv 1\pmod{17}$ donc 2 n'est pas un générateur (en effet, $\operatorname{ord}(2)=8$). On évalue $3^8 \operatorname{mod} 17$: $3^2\equiv -8\pmod{17}$, $3^4=(3^2)^2\equiv -4\pmod{17}$, $3^8\equiv -1\not\equiv 1\pmod{17}$, donc 3 est un générateur.

2. $\varphi(27) = 18$. Donc $\operatorname{ord}(a) \mid 18 = 2 \times 3^2$, $\operatorname{ord}(a) = 18 \operatorname{ssi} \operatorname{ord}(a) \nmid 6 \operatorname{et} \operatorname{ord}(a) \nmid 9 \operatorname{ssi} a^6 \not\equiv 1 \pmod{27}$ et $a^9 \not\equiv 1 \pmod{27}$. Donc on teste $a = 1, 2, \ldots 2^6 \equiv (2^3)^2 \equiv 8^2 \equiv 64 \not\equiv 1 \pmod{27}$ et $2^9 \equiv (2^3)^3 \equiv 8^3 \equiv (-1)^3 \equiv -1 \not\equiv 1 \pmod{9} \Rightarrow 2^9 \not\equiv 1 \pmod{27}$. Donc 2 est un générateur.

Remarque. En général, soit $m, n \in \mathbb{N}$, $m \mid n$. Alors m = n ssi n/m = 1 ssi pour tout premier $p \mid n$, on a $m \nmid (n/p)$.

Exercice. (TD4 Ex2) Soient $a, b \in \mathbb{Z}$. Montrer que

- 1. si $2 \nmid a$ et $5 \nmid a$, alors $a^{100} \equiv 1 \pmod{1000}$.
- 2. $b^{100} \equiv 0, 1, 376, 625 \pmod{1000}$.

Solution.

- 1. $1000 = 2^3 \times 5^3$, alors quand $2 \nmid a$ et $5 \nmid a$, on a $a^2 \equiv 1 \pmod{2^3}$ et $a^{100} \equiv a^{\varphi(5^3)} \equiv 1 \pmod{5^3}$. Donc $a^{100} \equiv 1 \pmod{1000} = \operatorname{ppcm}(2^3, 5^3)$.
- 2. Si $2 \mid b$ alors $2^3 \mid b^{100}$, sinon $b^{100} \equiv (b^2)^{50} \equiv 1 \pmod{2^3}$. Si $5 \mid b$, alors $5^3 \mid b^{100}$, sinon $b^{100} \equiv 1 \pmod{5^3}$ par thm d'Euler. Conclusion: $b^{100} \equiv 0, 1 \pmod{2^3}$ et $b^{100} \equiv 0, 1 \pmod{5^3}$. Il suffit de résoudre le système $x \equiv \alpha \pmod{2^3}$ et $x \equiv \beta \pmod{5^3}$. On a $125 = 15 \times 8 + 5$, $8 = 1 \times 5 + 3$, $5 = 1 \times 3 + 2$, $3 = 1 \times 2 + 1$. Alors $5 = 125 15 \times 8$, $3 = 8 1 \times 5 = 8 1 \times (125 15 \times 8) = 16 \times 8 125$, $2 = 5 1 \times 3 = (125 15 \times 8) (16 \times 8 125) = 2 \times 125 31 \times 8$, $1 = 3 1 \times 2 = (16 \times 8 125) 1 \times (2 \times 125 31 \times 8) = 47 \times 8 3 \times 125$. Alors $x \equiv -3 \times 125 \alpha + 47 \times 8 \beta \pmod{1000}$. On prend $\alpha \in \{0, 1\}$, $\beta \in \{0, 1\}$, on en déduit le résultat.

Problème. (Si le temps le permet) Résoudre une équation $f(x) \equiv 0 \pmod{n}$ où $f \in \mathbb{Z}[x]$ se factorise comme $a(x - r_1) \cdots (x - r_m)$ où $a, r_1, \ldots, r_m \in \mathbb{Z}$.

On explique par exemples:

Exercice. (TD4 Ex6) Étude de l'équation $x^2 \equiv 1 \pmod{n}$.

- 1. Montrer que si n = p (premier), alors les solutions sont $\pm 1 \pmod{n}$.
- 2. Montrer que si $n = p^r$ (p > 2 premier, $r \in \mathbb{N}_{>0}$), alors les solutions sont $\pm 1 \pmod{n}$.
- 3. Combien y a-t-il de solutions quand n = 91 ou n = 105?
- 4. Montrer que si $n = 2^r$ (r > 2), alors les solutions sont $\pm 1, \pm (1 + n/2) \pmod{n}$.

Solution.

1. $x^2 \equiv 1 \pmod{p}$ ssi $p \mid (x-1)(x+1)$ ssi (p est premier) $p \mid x-1 \text{ ou } p \mid x+1 \text{ ssi } x \equiv \pm 1 \pmod{p}$.

- 2. $x^2 \equiv 1 \pmod{p^r}$ ssi $p^r \mid (x-1)(x+1)$. En particulier, $p \mid x-1$ ou $p \mid x+1$. Si $p \mid x-1$, alors $x+1 \equiv 2 \not\equiv 0 \pmod{p} \Rightarrow p \nmid x+1 \Rightarrow \operatorname{pgcd}(p^r, x+1) = 1 \xrightarrow{p^r \mid (x-1)(x+1)} p^r \mid x-1$. Parallèllement, si $p \mid x+1$ alors on a $p^r \mid x+1$. Conclusions: si $p^r \mid (x-1)(x+1)$, alors $x \equiv \pm 1 \pmod{p^r}$. Vérifier que ce sont les solutions.
- 3. On factorise $91=7\times 13$ et $105=3\times 5\times 7$. Alors $x^2\equiv 1 \pmod{91}$ ssi $x^2\equiv 1 \pmod{7}$ et $x^2\equiv 1 \pmod{13}$ ssi $x\equiv \pm 1 \pmod{7}$ et $x\equiv \pm 1 \pmod{13}$. Par le thm de reste chinois, il y a $2\times 2=4$ solutions quand n=91. Parallèllement, pour $n=3\times 5\times 7$, il y a $2\times 2\times 2=8$ solutions.
- $\begin{array}{l} \text{4. } 2^{r} \big| \left(x-1 \right) \left(x+1 \right) \Rightarrow 2 \, | \, x-1. \; \text{Donc} \; 2^{r-2} \big| \frac{x+1}{2} \frac{x-1}{2} \Rightarrow 2 \, | \frac{x+1}{2} \; \text{ou} \; 2 \, | \frac{x-1}{2}. \; \text{Si} \; 2 \, | \frac{x-1}{2}, \; \text{alors} \; \frac{x+1}{2} = \frac{x-1}{2} + 1 \equiv 1 \pmod{2} \Rightarrow \\ & \operatorname{pgcd} \left(2^{r-2}, \frac{x+1}{2} \right) = 1 \xrightarrow{\frac{2^{r-2} \left| \frac{x+1}{2} \cdot \frac{x-1}{2} \right|} 2^{r-2} \, | \; \frac{x-1}{2} \Rightarrow 2^{r-1} \, | \; x-1. \; \text{Si} \; 2 \, | \; \frac{x+1}{2}, \; \text{parallèllement, on a} \; 2^{r-1} \, | \; x+1. \; \text{Conclusion:} \\ & x \equiv \pm 1 \; (\operatorname{mod} 2^{r-1} = n/2). \; \text{On peut v\'erfier que quand} \; x \equiv \pm 1 \; (\operatorname{mod} 2^{r-1}), \; \text{on a} \; x^2 \equiv 1 \; (\operatorname{mod} n). \end{array}$

Exercices non-traités

Exercice. (TD4 Ex7) Étude de l'équation $x^2 \equiv x \pmod{n}$.

- 1. Montrer que si $n = p^r$ (p premier), alors les solutions sont $x \equiv 0, 1 \pmod{n}$.
- 2. Combien y a-t-il de solutions quand n = 10, 100, 1000, 840?

Exercice. (TD3 Ex15, pas important) Soient $x, y, z \in \mathbb{Z}$. Montrer que

- 1. $x^2 \equiv 0, 1, 4 \pmod{8}$
- 2. Si $4 | (x^2 + y^2 + z^2)$, alors 2 | x et y et z.
- 3. Si $x^2 + y^2 + z^2 \equiv 3 \pmod{4}$, alors $2 \nmid x$ ou y ou z, et $x^2 + y^2 + z^2 \equiv 3 \pmod{8}$.
- 4. $x^2 + y^2 + z^2 \neq 4^k (8l + 7), k, l \in \mathbb{N}.$

11 Séance 7 déc 2020

Perdu. Voir l'ancien PDF.

12 Séance 9 déc 2020

Perdu. Voir l'ancien PDF.

13 Séance 14 déc 2020

Exercice. (CC6 Q1) Soit p un premier. Montrer que $(\mathbb{Z}[1/p] \setminus \{0\}, \cdot)$ n'est pas un groupe.

Solution. On note que $\mathbb{Z}[1/p] \setminus \{0\} \subseteq \mathbb{Q} \setminus \{0\}$ et $(\mathbb{Q} \setminus \{0\}, \cdot)$ est un groupe. Donc si $(\mathbb{Z}[1/p] \setminus \{0\}, \cdot)$ est un groupe, alors il est un sous-groupe de $(\mathbb{Q} \setminus \{0\}, \cdot)$. On va trouver un élément $x \in \mathbb{Z}[1/p] \setminus \{0\}$ t.q. $x^{-1} \notin \mathbb{Z}[1/p] \setminus \{0\}$.

(Il faut chercher soigneusement x. Par exemple, si x=p, alors $x^{-1}=p^{-1}\cdot 1\in \mathbb{Z}[1/p]\setminus\{0\}$. En général, si $x=p^n$ où $n\in\mathbb{N}_{>0}$, alors $x^{-1}=p^{-n}\cdot 1\in \mathbb{Z}[1/p]\setminus\{0\}$)

On prend un premier $q \neq p$. On va monter que $q^{-1} \notin \mathbb{Z}[1/p] \setminus \{0\}$. En effet, pour tout $p^{-m} n \in \mathbb{Z}[1/p]$, on a $v_q(p^{-m} n) = v_q(n) \geq 0$ mais $v_q(q^{-1}) = -1 < 0$. Donc $q^{-1} \in \mathbb{Z}[1/p] \setminus \{0\}$.

Problème. Étant donné un premier p concret, montrer que $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique et trouver un générateur.

Remarque. À ce stade, il faut toujours trouver un générateur (rappel: TD4 Ex5).

Exercice. (TD5 Ex7.5) $(\mathbb{Z}/4\mathbb{Z}, +) \cong ((\mathbb{Z}/5\mathbb{Z})^{\times}, \cdot)$.

Solution. Il faut trouver un générateur de $(\mathbb{Z}/5\,\mathbb{Z})^{\times}$. Il faut tester si $2\pmod{5}$ est un générateur. $\varphi(5)=4$ alors que $2^{4/2}\not\equiv 1\pmod{5}$, donc 2 est un génerateur (parce que $\operatorname{ord}_{(\mathbb{Z}/5\mathbb{Z})^{\times}}(2)\mid\varphi(5)$), donc $(\mathbb{Z}/5\,\mathbb{Z})^{\times}$ est un groupe cyclique et l'appli $\mathbb{Z}/4\,\mathbb{Z} \to (\mathbb{Z}/5\,\mathbb{Z})^{\times}$, $n\pmod{4}\mapsto 2^n$ est isomorphisme.

Exercice. (TD5 Ex4) Soit (G,*) un groupe. Décrire tous les morphismes de groupes $\mathbb{Z} \to (G,*)$.

Solution. En effet, on a une bijection d'ensembles $\{\text{morphismes de groupes } \mathbb{Z} \to (G,*)\} \xrightarrow{\sim} G$ donné par $f \mapsto f(1)$ dont l'inverse est donné par $G \to \{\text{morphismes de groupes } \mathbb{Z} \to (G,*)\}, g \mapsto (\mathbb{Z} \to (G,*), n \mapsto g^n).$

Remarque. On prend la valeur de f en 1, parce que 1 est un générateur de \mathbb{Z} (-1 aussi), $f(n) = f(1)^n$ pour tout $n \in \mathbb{Z}$.

Exercice. (TD5 Ex12) Soit $g \in G$ d'ordre fini et soit $f : G \to H$ un morph de groupes. Montrer que l'ordre de f(g) divise l'ordre de g. Si f est injectif, montrer que l'ordre de f(g) est égal à l'ordre de g.

Solution. $f(g)^{\operatorname{ord}_G(g)} = f(g^{\operatorname{ord}_G(g)}) = f(e_G) = e_H$, donc $\operatorname{ord}_H(f(g)) \mid \operatorname{ord}_G(g)$ (Rappelons que $g^n = e$ ssi $\operatorname{ord}(g) \mid n$).

En suite, si f est injectif, alors $\operatorname{Ker}(f) = \{e_G\}$. Alors pour tout $n \in \mathbb{Z}$, si $f(g)^n = e_H$, alors $f(g^n) = f(g)^n = e_H \Longrightarrow g^n = e_G \Longrightarrow \operatorname{ord}_G(g) \mid n$. En particulier, $\operatorname{ord}_G(g) \mid \operatorname{ord}_H(f(g))$. Alors $\operatorname{ord}_H(f(g)) = \operatorname{ord}_G(g)$.

Remarque. Soit $g \in G$ avec $\operatorname{ord}_G(g) < \infty$. Le morphisme $\mathbb{Z} \to G, n \mapsto g^n$ de groupes induit un morphe injectif $\mathbb{Z}/\operatorname{ord}_G(g) \hookrightarrow G$ de groupes. En particulier, $\operatorname{ord}_G(g^k) = \operatorname{ord}_G(g)/\operatorname{pgcd}(|k|, m)$. Ici, il s'agit de calculer $\operatorname{ord}_G(g^k)$ à partir de $\operatorname{ord}_G(g)$.

Exercice. (TD5 Ex5) Montrer: une app $f: \mathbb{Z} \to \mathbb{Z}$ est un morphisme de groupes ss'il existe $a \in \mathbb{Z}$ t.q. f(x) = a x pour tout $x \in \mathbb{Z}$. Déterminer le noyau et l'image de f. Quand est-ce que f est un isomorphisme de groupes?

Solution. Tout d'abord, si f(x) = a x pour tout $x \in \mathbb{Z}$, alors f est un morphisme de groupes. En revanche, si $f : \mathbb{Z} \to \mathbb{Z}$ est un morphisme de groupe, alors f(x) = x f(1). On prend a = f(1). Quand f(x) = a x, $\operatorname{Ker}(f) = \{x \in \mathbb{Z} \mid a x = 0\}$.

Cas a = 0. Ker $(f) = \mathbb{Z}$ et Im(f) = 0.

Cas $a \neq 0$. Ker(f) = 0 et Im $(f) = a \mathbb{Z}$.

f est un isomorphisme ssi $\operatorname{Ker}(f) = 0$ et $\operatorname{Im}(f) = \mathbb{Z}$, donc $a \neq 0$ et $a \mathbb{Z} = \mathbb{Z}$, donc $1 \in a \mathbb{Z} \Longrightarrow a \mid 1 \Longrightarrow a = \pm 1$. En revanche, si $a = \pm 1$, alors $a \mathbb{Z} = \mathbb{Z}$ et f est un isomorphisme.

Exercice. (TD5 Ex11) L'appli f est-elle un morphisme de groupes? Si c'est le cas, déterminer Ker(f) et Im(f).

- 1. $f: (\mathbb{C} \setminus \{0\}, \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot), z \mapsto |z|$.
- 2. $f: (\mathbb{Z}^2, +) \to (\mathbb{Z}, +), (a, b) \mapsto a b.$
- 3. $f: (\mathbb{Z}^2, +) \to (\mathbb{Z}/2\mathbb{Z}, +), (a, b) \mapsto a b \pmod{2}$.
- 4. $f_4: (\mathbb{Z}^2, +) \to (\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +), (a, b) \mapsto (a b, b \pmod{2}).$
- 5. $f: (\mathbb{Z}^3, +) \to (\mathbb{Q}_{>0}, \cdot), (a, b, c) \mapsto 2^a 3^b 5^c$.
- **6.** $f: (\mathbb{Z}^3, +) \to (\mathbb{Q}_{>0}, \cdot), (a, b, c) \mapsto 2^a 3^b 6^c.$

Solution.

- 1. Oui. $\operatorname{Ker}(f) = \{z \in \mathbb{C} \mid |z| = 1\}$. $\operatorname{Im}(f) = \mathbb{R}_{>0}$ parce que, tout d'abord, $\operatorname{Im}(f) = \{|z| \mid z \in \mathbb{C} \setminus \{0\}\} \subseteq \mathbb{R}_{>0}$. En revanche, pour tout $r \in \mathbb{R}_{>0}$, on a |r| = r où $r \in \mathbb{C} \setminus \{0\}$. Donc $\mathbb{R}_{>0} \subseteq \operatorname{Im}(f)$. En conclusion, $\operatorname{Im}(f) = \mathbb{R}_{>0}$.
- **5.** Oui. Tout d'abord, les deux sont des groupes. En suite, $f(a+a',b+b',c+c') = 2^{a+a'} 3^{b+b'} 5^{c+c'} = 2^a 2^{a'} 3^b 3^{b'} 5^c 5^{c'} = 2^a 3^b 5^c 2^{a'} 3^{b'} 5^{c'} = f(a,b,c) + f(a',b',c')$. Ensuite, $\operatorname{Ker}(f) = \{(a,b,c) \mid 2^a 3^b 5^c = 1\}$. Alors $v_2(2^a 3^b 5^c) = v_2(1) = 0 \Longrightarrow a = 0$. Parallèllement, on prend v_3 et v_5 , on a b = c = 0. Donc $\operatorname{Ker}(f) = \{(0,0,0)\}$ (f est injectif). $\operatorname{Im}(f) = \{2^{\mathbb{Z}} \times 3^{\mathbb{Z}} \times 5^{\mathbb{Z}}\}$.
- **6.** Oui. $\operatorname{Ker}(f) = \{(a,b,c) \mid 2^a \ 3^b \ 6^c = 1\}$. On prend v_2 et v_3 , a+c=b+c=0. Donc $\operatorname{Ker}(f) = \{(-c,-c,c) \mid c \in \mathbb{Z}\}$. $\operatorname{Im}(f) = \{2^{\mathbb{Z}} \times 3^{\mathbb{Z}}\}$ (f(a,b,c) = f(a+c,b+c,0)).

Exercice. (TD5 Ex15) Notons G le groupe $((\mathbb{Z}/16\mathbb{Z})^{\times}, \cdot)$ des éléments inversibles de $\mathbb{Z}/16\mathbb{Z}$.

- 1. Quel est l'ordre de G?
- 2. Énumérer les éléments de G et déterminer leurs ordres respectifs.
- 3. Le groupe G est-il cyclique?
- 4. Montrer que l'appli $f: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \to (\mathbb{Z}/16\mathbb{Z})^{\times}, (a \pmod{2}, b \pmod{4}) \mapsto (-1)^a 5^b \pmod{16}$ est bien définie. Que peut-on dire de f?

Solution.

- 1. $\#G = \varphi(16) = 8$.
- 2. $a \pmod{16} \in \mathbb{Z} / 16 \mathbb{Z}$ est inversible ssi $\operatorname{pgcd}(a, 16) = 1$ ssi $2 \nmid a$. Alors $(\mathbb{Z} / 16 \mathbb{Z})^{\times} = \{\pm 1, \pm 3, \pm 5, \pm 7 \pmod{16}\}$ (Rappelons que $\operatorname{ord}(q) \mid \varphi(16) = 8$, donc $\operatorname{ord}(q) = 2^k$). $\operatorname{ord}(1) = 1$

$g^{2^k} \pmod{16}$	g = -1	$g = \pm 3$	$g = \pm 5$	$g = \pm 7$
k = 0	-1	±3	±5	±7
k = 1	1	-7	-7	1
k=2		1	1	

Donc $\operatorname{ord}(-1) = \operatorname{ord}(\pm 7) = 2^1 = 2$ et $\operatorname{ord}(\pm 3) = \operatorname{ord}(\pm 5) = 2^2 = 4$.

- 3. #G = 8 mais pour tout $g \in (\mathbb{Z}/16\,\mathbb{Z})^{\times}$, $\operatorname{ord}(g) \leq 4$, donc
- 4. Pour montrer que l'appli en question est bien définie, il suffit de vérifier que $(-1)^a \, 5^b \equiv (-1)^{a'} \, 5^{b'} \pmod{16}$ quand $a \equiv a' \pmod{2}$ et $b \equiv b' \pmod{4}$. On note a a' = 2c et b b' = 4d alors $(-1)^{a-a'} \, 5^{b-b'} = (-1)^{2c} \, (5^4)^d \equiv 1 \pmod{16}$. On calcule $\operatorname{Ker}(f) \colon (a \pmod{2}, b \pmod{4}) \in \operatorname{Ker}(f)$ ssi $(-1)^a \, 5^b \equiv 1 \pmod{16}$. Alors $5^{2b} \equiv 1 \pmod{16} \Rightarrow 4 = \operatorname{ord}(5) \mid 2b \Rightarrow b$ est pair. Si b/2 est impair, alors $(-1)^a \, 5^b \equiv \pm 7 \not\equiv 1 \pmod{16}$. Donc b/2 est pair, c'est-à-dire, $4 \mid b$, alors $5^b \equiv 1 \pmod{16} \Rightarrow (-1)^a \equiv 1 \pmod{16}$ donc a est pair. En conclusion, on a $(-1)^a \, 5^b \equiv 1 \pmod{16}$ ssi $2 \mid a$ et $4 \mid b$. Donc $\operatorname{Ker}(f) = \{(0, 0)\}$ c'est-à-dire, f est injectif. D'autant que f est une application d'ensembles finis et $\#(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) = 8 = \#((\mathbb{Z}/16\mathbb{Z})^\times)$. Donc f est un isomorphisme.

14 Séance 16 déc 2020

Remarque. Pour un groupe fini G, on a $g^{\#G} = e \Longleftrightarrow \operatorname{ord}_G(g) \mid \#G$ (le théorème de Lagrange). Alors $\operatorname{ord}_G(g) = \#G$ ssi pour tout premier $p \mid \#G$, on a $g^{(\#G)/p} \neq e$. Peut-être vous n'avez pas encore vu le théorème de Lagrange, mais vous avez vu le cas particulier: $G = (\mathbb{Z}/n\mathbb{Z})^*$ (une autre notation: $(\mathbb{Z}/n\mathbb{Z})^\times$, c'est le théorème d'Euler, parce que $\#(\mathbb{Z}/n\mathbb{Z})^\times = \varphi(n)$). Voir TD4 Ex5 pour une exemple.

Exercice. (TD5 Ex13) Soit $n \in \mathbb{N}_{>0}$. Montrer que $\mu_n = (\{z \in \mathbb{C} \mid z^n = 1\}, \cdot)$ est un groupe cyclique d'ordre n. Définir un isomorphisme de groupes explicite $(\mathbb{Z}/n\mathbb{Z}, +) \xrightarrow{\sim} \mu_n$. Pour tout diviseur positif $d \mid n$, montrer que $\mu_d \subseteq \mu_n$ est un sousgroupe de μ_d (cyclique d'ordre d). Y a-t-il d'autres sous-groupes?

Solution. $\mu_n = \{ \mathrm{e}^{2\pi i k/n} \mid k = 0, \dots, n-1 \}$ et $\mathrm{ord}_{\mu_n}(\mathrm{e}^{2\pi i/n}) = n$ parce que pour tout $\ell = 1, \dots, k-1$, on a $(\mathrm{e}^{2\pi i/n})^\ell = \mathrm{e}^{2\pi i \ell/n} \neq 1$ (si vous avez vu le théorème de Lagrange, vous pouvez juste vérifier tous les diviseurs positifs $\ell \mid n$, mais ici, cela ne simplifie rien). Alors le groupe μ_n est cyclique. Explicitement, $\mathbb{Z}/n\,\mathbb{Z} \to \mu_n$ est donné par $k\,(\mathrm{mod}\,n) \mapsto (\mathrm{e}^{2\pi i/n})^k$. Alors pour tout $d \mid n$, on a μ_d est aussi un groupe cyclique, et $\mu_d \subseteq \mu_n$, donc μ_d est un sous-groupe de μ_n .

Lemme. Pour un groupe cyclique fini G, tous les sous-groupes $H \subseteq G$ sont cyclique.

Démonstration. $G = \{e, g, g^2, \dots, g^{\#G-1}\}$. Si $H = \{e\}$, alors H est cyclique. Sinon, il existe $m \in \{1, \dots, \#G-1\}$ t.q. $g^m \in H$. On prend le minimum $m_0 \in \{1, \dots, \#G-1\}$ t.q. $g^{m_0} = e$. Alors pour tout $g^k \in H$ pour $k \in \{0, \dots, \#G-1\}$, on prend la division d'Euclide $k = m_0 \ q + r$ où $q, r \in \mathbb{Z}, 0 \le r < m_0$. Alors $g^r = g^{k-m_0q} = (g^{m_0})^{-q} \ g^k = g^k \in H$. D'autant que m_0 est minime, on a r = 0, c'est-à-dire, $m_0 \mid k$. En résumé, on a $H \subseteq \langle g^{m_0} \rangle$. D'autant que $g^{m_0} \in H$, on a $\langle g^{m_0} \rangle \subseteq H$. Donc $H = \langle g^{m_0} \rangle$ est cyclique.

En particulier, il n'y a pas d'autres sous-groupes que μ_d .

Exercice. (TD5 Ex8) Soit G un groupe. Montrer que pour tout $g \in G$, l'app $f: G \to G$, $h \mapsto g h g^{-1}$ est un auto. Déterminer f^{-1} .

Solution. Tout d'abord, on vérifier que f est un morphisme de groupes. Pour tout $h,h'\in G$, on a f(h) $f(h')=g\,h\,g^{-1}\,g\,h'\,g^{-1}=g\,h\,(g^{-1}\,g)\,h'\,g^{-1}=g\,h\,h'\,g^{-1}=f(h\,h').$ Pour montrer que f est un automorphisme, il suffit montrer que $\operatorname{Ker}(f)=\{e\}$ et $\operatorname{Im}(f)=G$. Donc pour tout $h\in G$, si f(h)=e, alors $g\,h\,g^{-1}=e$. Donc $g\,h=(g\,h\,g^{-1})\,g=e\,g=g$ et $h=g^{-1}\,(g\,h)=g^{-1}\,g=e$. Donc $\operatorname{Ker}(f)=\{e\}$. Pour tout $h'\in G$, on a $f(g^{-1}\,h'\,g)=g\,(g^{-1}\,h'\,g)\,g^{-1}=(g\,g^{-1})\,h'(g\,g^{-1})=h'$, donc $\operatorname{Im}(f)=G$. En résumé, f est un isomorphisme. $f^{-1}\colon G\to G,h'\mapsto g^{-1}h'\,g$.

Exercice. (TD5 Ex6) Montrer: une appli $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ est un morphisme de groupes si existe $a, b, c, d \in \mathbb{Z}$ t.q. f(x, y) = (ax + by, cx + dy) pour tout $(x, y) \in \mathbb{Z}^2$.

Solution. Il s'agit de vérifier que $f: \mathbb{Z}^2 \to \mathbb{Z}^2$, $(x,y) \mapsto (ax+by,cx+dy)$ est un morphisme de groupes.

Exercices non-traités

Exercice. (TD5 Ex6') Montrer: une appli $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ est un morphisme de groupes, alors il existe $a, b, c, d \in \mathbb{Z}$ t.q. $f(x,y) = (a \, x + b \, y, c \, x + d \, y)$ pour tout $(x,y) \in \mathbb{Z}^2$. Déterminer $\operatorname{Ker}(f)$.

Exercice. (TD5 Ex4', le temps) Soit (G,*) un groupe. Décrire tous les morphismes de groupes $\mathbb{Z}^2 \to (G,*)$.

Exercice. (TD5 Ex9, le temps) Soit G un groupe t.q. $g^2 = e$ pour tout $g \in G$. Montrer que G est abélien.

Exercice. (TD5 Ex10, le temps) Soit G un groupe. Montrer que l'app $g \mapsto g^{-1}$ est un morph de groupes ssi G est abélien.

15 Séance 4 jan 2021

Rappel:

Exercice. (TD4 Ex5) Soit $a \in \mathbb{Z}$.

- 1. Si $17 \nmid a$, alors $a \pmod{17}$ générateur ssi $a^8 \not\equiv 1 \pmod{17}$. Trouver un tel générateur.
- 2. Si $3 \nmid a$, alors $a \pmod{27}$ générateur ssi $a^6, a^9 \not\equiv 1 \pmod{27}$. Trouver un tel générateur.

Solution.

1. $\operatorname{ord}(a) \mid \varphi(17) = 16 = 2^4$, alors $\operatorname{ord}(a) = 16$ ssi $\operatorname{ord}(a) \nmid 8$ ssi $a^8 \not\equiv 1 \pmod{17}$ (en général, pour $a \in (\mathbb{Z}/n\mathbb{Z})^\times$, $a^m \equiv 1 \pmod{n}$ ssi $\operatorname{ord}(a) \mid m$).

Pour trouver un tel générateur, $a=1,2,\ldots$ Tout d'abord, 1 n'est pas un générateur. $2^8=(2^4)^2\equiv (-1)^2\equiv 1\pmod{17}$ donc 2 n'est pas un générateur (en effet, $\operatorname{ord}(2)=8$). On évalue $3^8 \operatorname{mod} 17$: $3^2\equiv -8\pmod{17}$, $3^4=(3^2)^2\equiv -4\pmod{17}$, $3^8\equiv -1\not\equiv 1\pmod{17}$, donc 3 est un générateur.

 $2. \ \varphi(27) = 18. \ \mathsf{Donc} \ \mathrm{ord}(a) \ | \ 18 = 2 \times 3^2, \ \mathrm{ord}(a) = 18 \ \mathsf{ssi} \ \mathrm{ord}(a) \ | \ 6 \ \mathsf{et} \ \mathrm{ord}(a) \ | \ 9 \ \mathsf{ssi} \ a^6 \not\equiv 1 \pmod{27} \ \mathsf{et} \ a^9 \not\equiv 1 \pmod{27}. \ \mathsf{Donc}$ on teste $a = 1, 2, \ldots \ 2^6 \equiv (2^3)^2 \equiv 8^2 \equiv 64 \not\equiv 1 \pmod{27} \ \mathsf{et} \ 2^9 \equiv (2^3)^3 \equiv 8^3 \equiv (-1)^3 \equiv -1 \not\equiv 1 \pmod{9} \Rightarrow 2^9 \not\equiv 1 \pmod{27}.$ Donc $2 \ \mathsf{est} \ \mathsf{un} \ \mathsf{générateur}.$

Remarque. Un générateur dans la partie d'arithmétique pour $n \in \mathbb{N}_{>1} \Leftrightarrow$ un générateur de $(\mathbb{Z}/n\,\mathbb{Z})^*$. Et $\operatorname{ord}_n(a) = \operatorname{ord}_{(\mathbb{Z}/n\mathbb{Z})^*}(a\ (\operatorname{mod} n))$.

En général, pour $n \in \mathbb{N}_{>1}$, on doit tester $a = 2, 3, \ldots$ (il faut que $\operatorname{pgcd}(a, n) = 1$) pour trouver un générateur. Nous remarquons que $\operatorname{ord}_n(a) \mid \varphi(n)$, parce que $\operatorname{pgcd}(a, n) = 1$ et $a^{\varphi(n)} \equiv 1 \pmod n$. Donc a est un générateur ssi $\operatorname{ord}_n(a) = \varphi(n)$ ssi pour tout premier $p \mid \varphi(n)$, on a $a^{\varphi(n)/p} \not\equiv 1 \pmod n$. Donc il suffit de

- 1. Énumérer tous les diviseurs premiers p de $\varphi(n)$.
- 2. Évaluer $a^{\varphi(n)/p} \mod n$.
- 3. a est un générateur ssi $a^{\varphi(n)/p} \not\equiv 1 \pmod{n}$ pour tout p au-dessus.

pour déterminer si a est un générateur.

En effet, il y a un théorème:

Théorème. $(\mathbb{Z}/n\mathbb{Z})^*$ admet un générateur ssi n est de forme $1, 2, 4, p^r$ ou $2p^r$.

On a vu que pour évaluer une puissance $a^m \pmod{n}$, on peut utiliser le théorème d'Euler ou on factorise $n = p_1^{r_1} \times \cdots \times p_s^{r_s}$ et on utilise le théorème d'Euler pour tout $p_i^{r_i}$. Ici, si $n = 1, 2, 4, p^r, 2$ p^r , cela ne simplifie rien. C'est-à-dire, ici, il n'y a pas de truc pour simplifier l'évaluation de $a^{\varphi(n)/p} \pmod{n}$.

Définition. (Anneaux commutatifs, anneaux intègres $(m \neq 0, n \neq 0 \Longrightarrow m \ n \neq 0)$)

Exemple. (Basiques) Les anneaux suivants sont intègres

- 1. $k \subseteq \mathbb{C}$ est un sous-corps de \mathbb{C} , alors k est un anneau (commutatif). Par exemple, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sont des anneaux.
- 2. $\mathbb{Z} \subseteq \mathbb{C}$ est un anneau.
- 3. Anneaux des polynômes: $\mathbb{Z}[X_1,\ldots,X_n]$, $\mathbb{Q}[X_1,\ldots,X_n]$, $\mathbb{R}[X_1,\ldots,X_n]$, $\mathbb{C}[X_1,\ldots,X_n]$.
- 4. $\mathbb{Z}/p\mathbb{Z}$ où p est un premier

Anneaux non-intègres:

1. $\mathbb{Z}/pq\mathbb{Z}$ où p,q sont deux premiers (pas nécessairement distincts).

Exemple. (Plus compliquée)

- 1. On a vu dans le CC que $(\mathbb{Z}[1/p], +) \subseteq (\mathbb{Q}, +)$ est un sous-groupe. En effet, $\mathbb{Z}[1/p] = \{m/p^r \mid m \in \mathbb{Z}, r \in \mathbb{N}\} \subseteq \mathbb{Q}$ est un sous-anneau.
- 2. Plus généralement, $\mathbb{Z}[1/n] = \{m/n^r \mid m \in \mathbb{Z}, r \in \mathbb{N}\} \subseteq \mathbb{Q}$ est un sous-anneau pour tout $n \in \mathbb{N}_{>0}$.

Définition. (Morphismes d'anneaux)

Exemple.

- 1. Pour tout $(a_1,\ldots,a_n)\in\mathbb{Z}^n$, un morphisme $\mathbb{Z}[X_1,\ldots,X_n]\to\mathbb{Z}$ d'anneaux défini par $\mathbb{Z}[X_1,\ldots,X_n]\ni f\mapsto f(a_1,\ldots,a_n)\in\mathbb{Z}$. En particulier, $\mathbb{Z}[X_1,\ldots,X_n]\to\mathbb{Z}, \sum_{\alpha_1,\ldots,\alpha_n\in\mathbb{N}}c_{\alpha_1,\ldots,\alpha_n}X_1^{\alpha_1}\cdots X_n^{\alpha_n}=f\mapsto f(0,\ldots,0)=c_{0,\ldots,0}$ est un morphisme d'anneaux. Plus conrètement, quand n=1, on a $\mathbb{Z}[X]\to\mathbb{Z}, f=c_0+c_1X+\cdots+c_mX^m\mapsto c_0\in\mathbb{Z}$ est un morphisme d'anneaux.
- 2. On peut remplacer \mathbb{Z} par \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- 3. Pour tout $m, n \in \mathbb{N}_{>0}$, si $m \mid n$, alors il existe un morphisme canonique $\mathbb{Z}/n \mathbb{Z} \to \mathbb{Z}/m \mathbb{Z}$, $a \pmod n \mapsto a \pmod m$.
- 4. Pour tout $m, n \in \mathbb{N}_{>0}$, alors le morphisme $\mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ de groupes défini par $a \pmod{mn} \mapsto (a \pmod{m})$, $a \pmod{n}$ est effectivement un morphisme d'anneaux. Quand pgcd(m,n) = 1, alors c'est un isomorphisme par le théorème des restes chinois.

Exercice. (TD6 Ex3) Soit A un anneau. Décrire tous les morphismes d'anneaux $\mathbb{Z} \to A$.

Solution. Pour tout morphisme $f: \mathbb{Z} \to A$, on a $f(1) = 1_A$. Alors comme f est un morphisme de groupes, on a $f(n) = n \, 1_A$ pour tout $n \in \mathbb{Z}$. Donc il y a au plus un morphisme $\mathbb{Z} \to A$. En revanche, on peut vérifier que $\mathbb{Z} \to A$, $n \mapsto n \, 1_A$ est un morphisme d'anneaux: $f(m+n) = (m+n) \, 1_A = m \, 1_A + n \, 1_A = f(m) + f(n)$, $f(m \, n) = m \, n \, 1_A = m \, 1_A \, n \, 1_A = f(m) \, f(n)$, $f(1) = 1_A$.

Exercice. (TD6 Ex5) Soit A un anneau. Décrire tous les morphismes d'anneaux $\mathbb{Q} \to A$.

Solution. Pour tout morphisme $f: \mathbb{Q} \to A$, comme l'exercice précédent, on a $f(n) = n \, 1_A$ pour tout $n \in \mathbb{Z}$. Alors pour tout $m \in \mathbb{Z} \setminus \{0\}$, on a $f(m) \, f(1/m) = f(m \, 1/m) = f(1) = 1_A$, donc $m \, 1_A = f(m)$ est inversible pour tout $m \in \mathbb{Z} \setminus \{0\}$. Donc

- 1. Il existe un entier $m \in \mathbb{Z} \setminus \{0\}$ t.q. $m 1_A$ n'est pas inversible, alors il n'y a aucun morphisme $\mathbb{Q} \to A$ d'anneaux.
- 2. Sinon, pour tout $m \in \mathbb{Z} \setminus \{0\}$, on a m 1_A est inversible. Alors pour tout $r \in \mathbb{Q}$, on écrit r = m/n où $m \in \mathbb{Z}$ et $n \in \mathbb{N}_{>0}$, d'autant que f est un morphisme d'anneaux, f(n) f(r) = f(m) = m 1_A (je vous rappelle que m $1_A = 1_A + \dots + 1_A$ quand $m \ge 0$ et m $1_A = -1_A \dots 1_A$ quand m < 0) et f(n) = n $1_A \in A$ est inversible, alors f(m/n) = m 1_A (n $1_A)^{-1} = m$ (n $1_A)^{-1}$ (la raison: les applications $\mathbb{Z} \to A$ définies par $m \mapsto m$ (n $1_A)^{-1}$ et $m \mapsto m$ 1_A (n $1_A)^{-1}$ sont les morphismes de groupes et les valeurs sont égales quand m = 1). Donc il y a au plus un morphisme $\mathbb{Q} \to A$. Dans ce cas, on peut vérifier que l'application $f: \mathbb{Q} \to A$ définie par $m/n \mapsto m$ (n $1_A)^{-1}$ est bien définie (c'est-à-dire, si m/n = m'/n', alors m (n $1_A)^{-1} = m'$ (n $1_A)^{-1}$), et que f est un morphisme d'anneaux:

$$f\left(\frac{m_1}{n_1} + \frac{m_2}{n_2}\right) = f\left(\frac{m_1 n_2 + m_2 n_1}{n_1 n_2}\right)$$

$$= (m_1 n_2 + m_2 n_1) (n_1 n_2 1_A)^{-1}$$

$$f\left(\frac{m_1}{n_1}\right) + f\left(\frac{m_2}{n_2}\right) = m_1 (n_1 1_A)^{-1} + m_2 (n_2 1_A)^{-1}$$

```
= m_1 (n_2 1_A) (n_2 1_A)^{-1} (n_1 1_A)^{-1} + m_2 1_A (n_2 1_A)^{-1} (n_1 1_A)^{-1} (n_1 1_A)
= m_1 n_2 (n_1 n_2 1_A)^{-1} + m_2 (n_1 n_2 1_A)^{-1} (n_1 1_A)
= m_1 n_2 (n_1 n_2 1_A)^{-1} + n_1 m_2 (n_1 n_2 1_A)^{-1}
= (m_1 n_2 + n_1 m_2) (n_1 n_2 1_A)^{-1}
```

Donc $f(m_1/n_1+m_2/n_2)=f(m_1/n_1)+f(m_2/n_2)$. On peut aussi vérifier que $f(m_1/n_1m_2/n_2)=f(m_1/n_1)\,f(m_2/n_2)$.

16 Séance 6 jan 2021

Exercice. (TD6, Ex11.1&2) Montrer que $\mathbb{Q} + \mathbb{Q} \sqrt{6} \subseteq \mathbb{R}$ est un sous-anneau ($\mathbb{Q} + \mathbb{Q} \sqrt{6} = \{a + b\sqrt{6} \mid a, b \in \mathbb{Q}\}$), et un élément quelconque de A s'écrit d'une manière unique $a + b\sqrt{6}$ où $a, b \in \mathbb{Q}$.

Solution. $0, 1 \in \mathbb{Q} + \mathbb{Q}\sqrt{6}$. Pour tout $a, b, c, d \in \mathbb{Q}$, on a $(a+b\sqrt{6})+(c+d\sqrt{6})=(a+c)+(b+d)\sqrt{6} \in \mathbb{Q} + \mathbb{Q}\sqrt{6}$ et $(a+b\sqrt{6})(c+d\sqrt{6})=(ac+6bd)+(bc+ad)\sqrt{6} \in \mathbb{Q} + \mathbb{Q}\sqrt{6}$. Donc $\mathbb{Q} + \mathbb{Q}\sqrt{6}$ est un sous-anneau de \mathbb{R} .

Considérons l'application $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} + \mathbb{Q} \sqrt{6}$, $(a,b) \mapsto a+b\sqrt{6}$. C'est un morphisme de groupes. Pour montrer que f est injectif, il suffit montrer que $\mathrm{Ker}(f)=0$, c'est-à-dire, si $a+b\sqrt{6}=0$, alors a=b=0. Si $b\neq 0$, alors $\sqrt{6}=-a/b$, ce qui est impossible ($\sqrt{6} \notin \mathbb{Q}$ un exercice dans la partie d'arithmétique). Alors b=0 et donc a=0.

Exercice. (TD6, Ex1) Montrer que si $f: A \to B$ est un morphisme d'anneaux, alors on a $f(A^*) \subseteq B^*$ et $f(a^{-1}) = f(a)^{-1}$ pour tout $a \in A^*$.

Solution. Il faut montrer que, pour tout $a \in A^*$, alors on a $f(a)^{-1} = f(a^{-1})$, et par conséquent, $f(a) \in B^*$. Il faut vérifier que f(a) $f(a^{-1}) = f(a^{-1})$ $f(a) = 1_B$. Comme f est un morphisme d'anneaux, on a f(a) $f(a^{-1}) = f(a a^{-1}) = f(1_A) = 1_B$, $f(a^{-1})$ $f(a) = f(a^{-1}a) = f(1_A) = 1_B$. Donc $f(a^{-1})$ est l'inverse de f(a) dans g(a).

Exercice. (TD6, Ex7) Soit A un anneau. Décrire tous les morphismes d'anneaux $\mathbb{Z}[X] \to A$.

Solution. Pour tout morphisme $f: \mathbb{Z}[X] \to A$, on remarque que $X \in \mathbb{Z}[X]$, alors $f(X) \in A$. On prend y := f(X). Alors pour tout $\sum_{k=0}^n a_k X^k \in \mathbb{Z}[X]$, on a $f(\sum_{k=0}^n a_k X^k) = \sum_{k=0}^n a_k f(X)^k = \sum_{k=0}^n a_k y^k$.

Ensuite, pour tout $y \in A$, il existe un morphisme d'anneaux $f: \mathbb{Z}[X] \to A$ t.q. f(X) = y. En effet, on peut prendre $f(\sum_{k=0}^n a_k X^k) = \sum_{k=0}^n a_k y^k$. On peut vérifier que c'est bien définie, et que c'est un morphisme d'anneaux, c'est-à-dire, pour tout $P, Q \in \mathbb{Z}[X]$, on a f(P+Q) = f(P) + f(Q), f(PQ) = f(P) + f(Q), f(Q) = f(P) + f(Q), f(Q) = f(Q), f(Q)

En résumé, il y a deux applications $\varphi : \operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{Z}[X], A) := \{ \operatorname{morphismes} \ f : \mathbb{Z}[X] \to A \} \to A, \ f \mapsto f(X) \ \text{et} \ \psi : A \to \operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{Z}[X], A), \ y \mapsto (\sum_k a_k X^k \mapsto \sum_k a_k y^k), \ \text{et} \ \varphi \circ \psi = \operatorname{id}_A, \ \psi \circ \varphi = \operatorname{id}_{\operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{Z}[X], A)}, \ \text{donc} \ \varphi \ \text{est une bijection}.$

Remarque. Un morphisme de groupes $f:G\to H$ est une application f t.q. $f(a\,b)=f(a)\,f(b)$. Alors prenons $a=b=1_G$, on a $f(1_G)=f(1_G)\,f(1_G)$, donc $1_H=f(1_G)^{-1}\,f(1_G)=f(1_G)^{-1}\,f(1_G)\,f(1_G)=f(1_G)$. C'est-à-dire, pour tout morphisme de groupe $f:G\to H$, on a $f(1_G)=1_H$.

Alors pour tout morphisme d'anneaux $f:A \to B$, f est un morphisme de groupes $(A,+) \to (B,+)$, donc a fortiori f(0)=0.

Remarque. Si on remplace $\mathbb{Z}[X]$ par $\mathbb{Q}[X]$, s'il existe un entier $n \in \mathbb{N}_{>0}$ t.q. $n \, 1_A$ n'est pas inversible, alors $\operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{Q}[X], A) = \emptyset$, c'est-à-dire, il n'y aucun morphisme $\mathbb{Q}[X] \to A$ d'anneaux. En revanche, si pour tout $n \in \mathbb{N}_{>0}$, on a $n \, 1_A$ est inversible, alors il existe une bijection $\operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{Q}[X], A) \to A$, $f \mapsto f(X)$ dont l'inverse et donné par $A \to \operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{Q}[X], A)$, $y \mapsto \Big(\sum_{k=0}^n \frac{a_k}{b_k} X^k \mapsto (b_k \, 1_A)^{-1} \, a_k \, y^k\Big)$.

Exercice. (TD6, Ex6) $\operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{R},\mathbb{R}) = \{\operatorname{id}_{\mathbb{R}}\}.$

Solution. Tout d'abord, $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ est un morphisme d'anneaux. Pour tout morphisme d'anneaux $f : \mathbb{R} \to \mathbb{R}$, on note $E := \{x \in \mathbb{R} \mid f(x) = x\}.$

- 1. $0, 1 \in E$.
- 2. Si $x, y \in E$, alors $x + y \in E$ et $-x \in E$, c'est-à-dire, $E \subseteq \mathbb{R}$ est un sous-groupe. En effet, $E = \mathrm{Ker}(f \mathrm{id}_{\mathbb{R}})$ où $f \mathrm{id}_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) x$ est un morphisme de groupes.
- 3. Pour tout $n \in \mathbb{N}_{>0}$, on a f(1/n) = 1/f(n) = 1/n, donc $1/n \in E$.
- 4. $\mathbb{Q} \subset E$.
- 5. Pour tout $x \in \mathbb{R}_{\geq 0}$, on a $f(x) = f(\sqrt{x} \sqrt{x}) = f(\sqrt{x}) f(\sqrt{x}) = f(\sqrt{x})^2 \geq 0$ (ici, c'est une propriété pariculière de \mathbb{R}). Alors pour tout $x, y \in \mathbb{R}$, si $x \leq y$, alors $f(y) = f(x) + f(y x) \geq f(x) + 0 = f(x)$.
- 6. Pour tout $x \in \mathbb{R}$, on a $x \in E$: pour tout $(r, s) \in \mathbb{Q} \times \mathbb{Q}$ t.q. $r \le x \le s$, on a $r = f(r) \le f(x) \le s$. Donc f(x) = x ($\mathbb{Q} \subseteq \mathbb{R}$ est dense).

Corollaire. If y a une bijection $\operatorname{Hom}_{\operatorname{Anneau}}(\mathbb{R}[X],\mathbb{R}) \to \mathbb{R}, f \mapsto f(X)$ (parce que pour tout morphisme $f:\mathbb{R}[X] \to \mathbb{R}$ d'anneaux, on a $\mathbb{R} \to \mathbb{R}[X] \xrightarrow{f} \mathbb{R}$ est un morphisme d'anneaux, alors c'est $\operatorname{id}_{\mathbb{R}}$, alors $f(\sum_k a_k X^k) = \sum_k a_k f(X)^k$).

Définition. (Idéaux) A: anneau. $I \subseteq A$ sous-groupe t.g. pour tout $a \in A, x \in I$ on a $a \ x \in I$ et $x \ a \in I$.

Exemple. Idéaux de \mathbb{Z} . De la forme (n): Tout idéal de \mathbb{Z} est engendré par un élément

Exercice. (TD6, Ex9) Écrire les idéaux suivants de \mathbb{Z} sous la forme $(m) = m \mathbb{Z}$: (10, 12) = (10) + (12), $(10) \cap (12)$, $(10) \cdot (12)$.

Solution. En générale, pour tout $m, n \in \mathbb{Z}$, on a $(m, n) = (m) + (n) = (\operatorname{pgcd}(m, n))$: vous avez une rélation de Bézout $\operatorname{pgcd}(m, n) \in (m, n) = m \mathbb{Z} + n \mathbb{Z}$. En revanche, d'autant que $\operatorname{pgcd}(m, n) \mid m$, alors $m \in (\operatorname{pgcd}(m, n))$. Parallèlement $n \in (\operatorname{pgcd}(m, n))$, alors $(m, n) \subseteq (\operatorname{pgcd}(m, n))$.

En particulier, (10, 12) = (pgcd(10, 12)) = (2).

Pour tout $m, n \in \mathbb{Z}$, on a $(m) \cap (n) = (\operatorname{ppcm}(m, n))$: Quand m = 0 ou n = 0, c'est trivial. On suppose que $m \neq 0$ et $n \neq 0$. Tout d'abord, $\operatorname{ppcm}(m, n) \in (m)$ et $\operatorname{ppcm}(m, n) \in (n)$. Ensuite, si $x \in (m) \cap (n)$, alors il existe $y, z \in \mathbb{Z}$ t.q. my = nz = x. On prend $m_1 = m / \operatorname{pgcd}(m, n)$ et $n_1 = n / \operatorname{pgcd}(m, n)$. Alors $m_1 y = n_1 z$. Par le lemme d'Euclide, $n_1 \mid y$. Donc on peut écrire $y = n_1 y_1$ où $y_1 \in \mathbb{Z}$, alors $x = my = m n_1 y_1 = \operatorname{ppcm}(m, n) y_1 \in (\operatorname{ppcm}(m, n))$.

En particulier, $(10) \cap (12) = (ppcm(10, 12)) = (60)$.

Exercice. (TD6, Ex10) Décrire tous les idéaux d'un corps K.

Solution. Tout d'abord, (0) et K sont deux idéaux de K. Ensuite, si $I \subseteq K$ est un idéale qui contient un élément $x \in I$ t.q. $x \neq 0$, alors $x^{-1} \in K$, donc $1 = x^{-1} \in K$ donc $1 = x^{-1} \in K$ donc $1 = x^{-1} \in K$. En résumé, il n'y a que deux idéaux.

Exercice. (TD6, Ex8) Montrer que si $f: A \to B$ est un morphisme d'anneaux, où A est un corps et $B \neq \{0\}$, alors f est injectif.

Solution. $\operatorname{Ker}(f) \subseteq A$ est un idéale, A est un corps, alors $\operatorname{Ker}(f) = (0)$ ou A. Comme $B \neq \{0\}$, $f(1_A) = 1_B \neq 0$, alors $\operatorname{Ker}(f) \neq A$. Donc $\operatorname{Ker}(f) = (0)$, c'est-à-dire, f est injectif.

17 Séance 11 jan 2021

Proposition. (Important à mémoriser) Soit $n \in \mathbb{N}_{>0}$. $\mathbb{Z}/n\mathbb{Z}$ corps $\Leftrightarrow \mathbb{Z}/n\mathbb{Z}$ intègre $\Leftrightarrow n = p$ premier

Définition. (Caractéristiques) Soit A un anneau. Il existe un morphisme unique $f: \mathbb{Z} \to A$. $\operatorname{Ker}(f) = (n)$ où $n \in \mathbb{N}$. Alors $\operatorname{car}(A) := n$ est le caractéristique de A.

En particulier, si A est un corps, alors $\mathbb{Z}/\mathrm{Ker}(f) \hookrightarrow A$, donc $\mathbb{Z}/\mathrm{Ker}(f)$ est intègre, donc le caractéristique $\mathrm{car}(A)$ est premier.

Proposition. Soient k un corps et $f \in k[T] \setminus \{0\}$ un polynôme. k[T]/(f) corps $\Leftrightarrow k[T]/(f)$ intègre $\Leftrightarrow f$ non-constant, irréductible.

Théorème. (th des restes chinois) Soient k un corps et $f, g \in k[T]$ deux polynômes. Alors on a un morphisme $k[T]/(fg) \rightarrow k[T]/(f) \times k[T]/(g)$. Si $\operatorname{pgcd}(f,g) = 1$, alors c'est un isomorphisme.

Problème. (Important!) Soient k un corps et $f \in k[T] \setminus \{0\}$ un polynôme.

- 1. En utilisant le théorème des restes chionois, analyser l'anneau k[T]/(f).
- 2. En particulier, quand $\deg f \leq 3$, factoriser f.
- 3. Déterminer $\dim_k(k[T]/(f)) = \deg f$. Quand le cardinal $\#k < \infty$, déterminer $\#(k[T]/(f)) = (\#k)^{\dim_k(k[T]/(f))} = (\#k)^{\deg f}$.
- 4. Évaluer $T^m \pmod{f}$ dans k[T]/(f).
- 5. (Facultatif) Déterminer les ordres des élementas de k[T]/(f).

Solution.

1. Tout d'abord, on factorise $f = f_1^{r_1} \cdots f_s^{r_s}$ où f_1, \ldots, f_s sont des polynômes non-constants irréductibles. Alors par le th des restes chinois, l'anneau $k[T]/(f) \cong k[T]/(f_1^{r_1}) \times \cdots \times k[T]/(f_s^{r_s})$. On remarque que si $r_i = 1$, alors $k[T]/(f_i^{r_i})$ est un corps (\Leftrightarrow un anneau intègre).

En particulier, quand $r_1=r_2=\cdots=r_s=1$, si k est un sous-corps de $\mathbb C$, alors il existe un sous-corps $K_i\subseteq\mathbb C$ t.q. $k[T]/(f_i)\cong K_i$. En effet, il existe une racine $\xi_i\in\mathbb C$ t.q. $f_i(\xi_i)=0$, alors on prend $K_i=k[\xi_i]$, et l'isomorphisme $k[T]/(f_i)\cong K_i$ (Voir la preuve de TD7, Ex8. Il faut reproduire la preuve dans l'examen) est donné par $T(\bmod f_i)\mapsto \xi_i$, i.e., $g(\bmod f_i)\mapsto g(\xi_i)$ où $g\in k[T]$.

Les cas particuliers:

- a. Quand $\deg f_i = 1$, alors $\xi_i \in k$ (en effet, $f_i(T) = \alpha_i T + \beta_i$ où $\alpha_i, \beta_i \in k$ et $\alpha_i \neq 0$, alors $\xi_i = -\beta_i / \alpha_i \in k$). Donc $K_i = k$.
- b. Quand $\deg f_i = 2$, alors $K_i = k[\xi_i] := k + k \xi_i$.

En résumé, $k[T]/(f) \cong K_1 \times \cdots \times K_s$ (quand $r_1 = \cdots = r_s = 1$) et un isomorphisme explicite est donné par $g \pmod{f} \mapsto (g(\xi_1), g(\xi_2), \dots, g(\xi_s))$.

2. On remarque que pour tout non-constant $f \in k[T]$, $\deg f \leq 3$. Si f n'admet aucune racine dans k, alors f est irréductible. En effet, si $f = f_1 f_2$ où $\deg f_1, \deg f_2 \geq 1$, alors $\deg f = \deg f_1 + \deg f_2$, alors $\min \{\deg f_1, \deg f_2\} \leq 1$, alors f admet une racine dans k.

Remarque. Si l'on a trouvé une racine α de $f \in k[T]$, alors f se factorise comme $f = (T - \alpha) \ g$ où $g \in k[T]$. Il faut alors trouver $g \in k[T]$ par la division euclidienne. Dans ce cas, il s'agit de la division de f par $T - \alpha$. On peut former le tableau au-dessous. $f(x) = \sum_{k=0}^n a_k T^k$

$$\alpha \begin{bmatrix} a_n & a_{n-1} & a_{n-2} & \cdots & * & a_i & \cdots & a_1 \\ \alpha a_n & \alpha a_{n-1} + \alpha^2 a_n & \cdots & * & \alpha \beta_i & \cdots \\ a_n & a_{n-1} + \alpha a_n & a_{n-2} + \alpha a_{n-1} + \alpha^2 + a_n & \cdots & \beta_i & a_i + \alpha \beta_i & \cdots & \beta_0 & a_0 + \alpha a_1 + \alpha^2 a_2 + \cdots + \alpha^n a_n = f(\alpha)
\end{bmatrix}$$

$$f(T) = (T - \alpha) (a_n T^{n-1} + (a_{n-1} + \alpha a_n) T^{n-2} + \dots + \beta_0) + a_0 + \alpha a_1 + \alpha^2 a_2 + \dots + \alpha^n a_n$$

Exercice. (TD7 Ex12) Définir un isomorphisme d'anneaux $\mathbb{R}[X]/(X^4-1) \xrightarrow{\sim} \mathbb{R} \times \mathbb{R} \times \mathbb{C}$.

Solution. Tout d'abord, on factorise $X^4-1=(X-1)(X+1)(X^2+1)$. Alors $\mathbb{R}[X]/(X^4-1)\cong\mathbb{R}[X]/(X-1)\times\mathbb{R}[X]/(X-1)\times\mathbb{R}[X]/(X-1)\times\mathbb{R}[X]/(X-1)$ $\stackrel{\sim}{\longrightarrow}\mathbb{R},X(\operatorname{mod}(X-1))\mapsto 1$ et $\mathbb{R}[X]/(X+1)\stackrel{\sim}{\longrightarrow}\mathbb{R},X(\operatorname{mod}(X+1))\mapsto -1$, $\mathbb{R}[X]/(X^2+1)\stackrel{\sim}{\longrightarrow}\mathbb{R}[i]=\mathbb{R}+i\,\mathbb{R}=\mathbb{C}.$ Donc $\mathbb{R}[X]/(X^4-1)\cong\mathbb{R}\times\mathbb{R}\times\mathbb{C}$, et l'isomorphisme est donné par $\mathbb{R}[X]/(X^4-1)\to\mathbb{R}\times\mathbb{R}\times\mathbb{C},g\ (\operatorname{mod}(X^4-1))\mapsto (g(1),g(-1),g(i)).$

Exercice. (TD7 Ex14.1) Montrer que $\mathbb{F}_3[X]/(X^3-X+1)$ est un corps.

Solution. C'est un corps ssi X^3-X+1 est irréductible dans $\mathbb{F}_3[X]$, ss'il n'y aucune racine de X^3-X+1 dans \mathbb{F}_3 ($\deg(X^3-X+1)\leq 3$). C'est vrai: soit on essaie X=0,1,2, ou bien, $a^p-a\equiv 0 \pmod p$ (quand $p\nmid a$, par le th de Fermat. quand $p\mid a$, c'est direct).

Exercice. (TD7 Ex14.2) Soit $f = X^3 - X + 1 \in \mathbb{F}_3[X]$. On note $K = \mathbb{F}_3[X]/(f)$. Quels sont les ordres possibles des éléments de K^* ?

Solution. On a vu que K est un corps, et K^* est fini, donc K^* est cyclique. On détermine l'ordre de K^* . En effet, $\#K = (\#\mathbb{F}_3)^{\deg f} = 3^3 = 27$, donc $\#K^* = \#K - 1 = 26$. Alors K^* est isomorphe au groupe cyclique $\mathbb{Z}/26\,\mathbb{Z}$, donc tous les ordres possibles des éléments de K^* sont tous les diviseurs positifs de 26, c'est-à-dire, 1, 2, 13, 26.

Exercice. (TD7 Ex16) Analyser $\mathbb{F}_7[X]/(X^2-X+1)$.

Solution. $X^2 - X + 1$ admet une racine 3 dans \mathbb{F}_7 , alors $X^2 - X + 1 = (X - 3)(X + 2)$, donc $\mathbb{F}_7[X]/(X^2 - X + 1) \xrightarrow{\sim} \mathbb{F}_7 \times \mathbb{F}_7$ et l'isomorphisme est donné par $f(\text{mod}(X^2 - X + 1)) \mapsto (f(3), f(-2))$.

Remarque. Pour faire la division euclidienne $X^2 - X + 1$ par X - 3, le résultat est X + 2

18 Séance 13 jan 2021

Problème. (Important!) Soient k un corps et $f \in k[T] \setminus \{0\}$ un polynôme.

- 1. Évaluer $T^m \pmod{f}$ (ou plus généralement, $g(T) \pmod{f}$ où $g \in k[T]$) dans k[T]/(f) (On peut le simplifier seulement quand $m < \deg f$ (ou respectivement $\deg g < \deg f$))
- 2. **(Facultatif)** Déterminer les ordres des élements de k[T]/(f).

Solution. Pour évaluer T^m , il y a quelques trucs:

- a) Quand k est fini et f est irréductible (non-constant), K = k[T]/(f) est un corps et $T(\text{mod } f) \neq 0$, alors $T^{\#K^*} = 1$ où $\#K^* = (\#k)^{\deg f} 1$. Donc on peut tout d'abord remplacer m par $m \mod (\#K^*)$.
- b) En général, on suppose que f est unitaire, $f = T^n + \sum_{k=0}^{n-1} a_k T^k$. Pour évaluer $T^m \pmod{f}$, il suffit de faire la division euclidienne T^m par f (vous avez le reste) dans l'anneau k[T] de polynômes.

Alternativement, dans k[T]/(f), on a $T^n \equiv -\sum_{k=0}^{n-1} a_k T^k \pmod{f}$ (à gauche, T^n , à droite, $T^{\leq n-1}$). Donc $T^m = T^n T^{n-m} = (-\sum_{k=0}^{n-1} a_k T^k) T^{n-m}$ dans k[T]/(f). On continue. En général, cela va être compliqué.

Quand $f = T^n + a_0$, alors cela va être beaucoup simplifié: on écrit $m = n \ q + r$ où $q, r \in \mathbb{Z}, 0 \le r < n$, alors $T^m = (T^n)^q T^r \equiv (-a_0)^q T^r \pmod{f}$.

Exercice. (TD7 Ex8) Montrer que l'anneau $A = \mathbb{Q} + \mathbb{Q}\sqrt{6}$ est isomorphe à $\mathbb{Q}[X]/(X^2-6)$.

Solution. Tout d'abord, il existe un morphisme d'anneau $f: \mathbb{Q}[X] \to A, X \mapsto \sqrt{6}$ (morphisme d'évaluation). Par définition, f est surjectif, $X^2 - 6 \in \operatorname{Ker}(f)$, donc on a un morphisme (composé) d'anneau $g: \mathbb{Q}[X]/(X^2 - 6) \to \mathbb{Q}[X]/\operatorname{Ker}(f) \xrightarrow{\cong} A$. Il suffit de montrer que g est un isomorphisme.

Comme X^2-6 est irréductible dans $\mathbb{Q}[X]$ (parce que X^2-6 n'admet aucune racine dans \mathbb{Q}), $\mathbb{Q}[X]/(X^2-6)$ est un corps. Par TD6, Ex8, g est injectif. De l'autre côté, g est le morphisme composé $\mathbb{Q}[X]/(X^2-6) \to \mathbb{Q}[X]/\mathrm{Ker}(f) \xrightarrow{\simeq} A$, g est surjectif. En résumé, g est un isomorphisme.

Exercice. (TD7 Ex18.2) Montrer que $K = \mathbb{F}_7[X]/(X^3-2)$ est un corps. Quels sont les ordres possibles des éléments de K^* ? Quel est l'ordre de la classe $\alpha = X(\text{mod }X^3-2) \in K^*$ (c'est-à-dire, l'image de X par l'appli $\mathbb{F}_7[X] \to \mathbb{F}_7[X]/(X^3-2)$).

Solution. Pour montrer que K est un corps, il suffit de montrer que X^3-2 est irréductible dans $\mathbb{F}_7[X]$. Comme $\deg(X^3-2)=3\leq 3$, il suffit de vérifier que X^3-2 n'admet aucune racine dans \mathbb{F}_7 , ce qui peut être vérifié par évaluant β^3-2 pour $\beta=0,\pm 1,\pm 2,\pm 3$ (alternativement, s'il existe $\beta\in\mathbb{F}_7$ t.q. $\beta^3=2$, alors $\beta\neq 0$ et donc par le th d'Euler, $\beta^6=1$ mais $\beta^6=(\beta^3)^2=4\neq 1$ dans \mathbb{F}_7). $\dim_{\mathbb{F}_7}(K)=\deg(X^3-2)=3$, alors $\#K=7^3$ et $\#K^*=\#K-1=7^3-1=6$ $(7^2+7+1)=6\times 57=2\times 3^2\times 19$. Comme K^* est un groupe cyclique (fini), tous les ordres possibles sont les diviseurs de $\#K^*$: $2^u3^v19^w$ où u=0,1;v=0,1,2;w=0,1.

Pour déterminer $\operatorname{ord}_{K^*}(\alpha)$, tout d'abord, $\operatorname{ord}_{K^*}(\alpha) \mid \operatorname{ord}(K^*) = 2 \times 3^2 \times 19$. En suite, par définition, $\alpha^3 - 2 = X^3 - 2 \pmod{X^3 - 2} = 0$ dans K, donc $\alpha^3 = 2$. On écrit $\operatorname{ord}_{K^*}(\alpha) = 3$ q + r où $q, r \in \mathbb{Z}, 0 \le r < 3$, alors $1 = \alpha^{\operatorname{ord}_{K^*}(\alpha)} = \alpha^{3q+r} = (\alpha^3)^q \alpha^r = 2^q \alpha^r$. Comme r < 3, on a r = 0 (vous avez vu que $\dim_{\mathbb{F}_7}(K) = 3$ et $1, \alpha, \alpha^2$ constitue une base) et $1 = 2^q$ dans \mathbb{F}_7 , donc $\operatorname{ord}_{\mathbb{F}_7}(2) \mid q$. On peut voir que $\operatorname{ord}_{\mathbb{F}_7}(2) = 3$, donc $3 \mid q \Rightarrow 9 \mid \operatorname{ord}_{K^*}(\alpha)$.

En revanche, $\alpha^9 = (\alpha^3)^3 = 2^3 = 1$ dans K, donc $\operatorname{ord}_{K^*}(\alpha) \mid 9$. En résumé, $\operatorname{ord}_{K^*}(\alpha) = 9$.

Exercice. (TD7 Ex14.3) Soit $f = X^3 - X + 1 \in \mathbb{F}_3[X]$. On note $K = \mathbb{F}_3[X]/(f)$ et $\alpha = X \pmod{f} \in K$. Montrer que $\alpha^{13} = -1$. En déduire que α est un générateur de K^* . (On a déjà vu que K est un corps, donc $\alpha \in K^*$)

On note que $\#K^*=26$. Pour montrer que α est un générateur, il suffit de montrer que pour tout premier $p\mid 26$, on a $\alpha^{26/p}\neq 1$. $\alpha^{26/2}=\alpha^{13}=-1$ et $\alpha^{26/13}=\alpha^2$. Comme $1,\alpha,\alpha^2$ constitue une base de K comme un \mathbb{F}_3 -espace vectoriel, $\alpha^2\neq 1$. Donc α est un générateur.

Remarque. En général, c'est difficile pour trouver un générateur (on a déjà vu qu'il va être difficile en général même pour \mathbb{F}_p quand p est grand).

Exercice. (TD7 Ex15) Montrer que le polynôme $X^2-X-1\in\mathbb{F}_7[X]$ est irréducible dans $\mathbb{F}_7[X]$. En déduire que l'anneau $K=\mathbb{F}_7[X]/(X^2-X-1)$ est un corps. On note $\alpha\in K$ la classe de X. Montrer que $\alpha^{483}=2$ $\alpha+1$.

Solution. On vérifie que $\alpha^2 - \alpha - 1 = \alpha$ $(\alpha - 1) - 1 \neq 0$ quand $\alpha = 0, 1, 2, 3, 4, 5, 6 \in \mathbb{F}_7$. Donc il n'y aucune racine de $X^2 - X - 1$ dans \mathbb{F}_7 , donc K est un corps. En particulier, $\alpha \neq 0$ alors $\alpha \in K^*$, donc $\alpha^{\#K^*} = 1$ où $\#K^* = \#K - 1 = 7^2 - 1 = 6 \times 8 = 48$. Alors $483 = 48 \times 10 + 3$ et $\alpha^{483} = (\alpha^{48})^{10} \alpha^3 = \alpha^3 = \alpha$ $(\alpha + 1) = \alpha^2 + \alpha = \alpha + 1 + \alpha = 2$ $\alpha + 1$.

Exercice. (TD7 Ex18.1) Pour quelles valeurs de $a \in \mathbb{F}_7$, le polynôme $X^3 - a$ est-il irréductible dans $\mathbb{F}_7[X]$?

Solution. X^3-a est irréductible dans $\mathbb{F}_7[X]$ ssi X^3-a n'admet aucune racine dans \mathbb{F}_7 ssi $\alpha^3-a\neq 0$ pour $\alpha=0,\pm 1,\pm 2,\pm 3.$

$$\alpha = 0 \pm 1 \pm 2 \pm 3$$

 $\alpha^3 = 0 \pm 1 \pm 1 \pm 1$

Donc X^3-a admet une racine ssi $a=0,\pm 1$, c'est-à-dire, X^3-a n'admet aucune racine ssi $a=\pm 2,\pm 3$.

Exercice. (TD7 Ex2) Factoriser le polynôme X^4+1 dans $\mathbb{R}[X]$.

Solution. Il s'agit de la factorisation d'un polynôme de type $X^4 + a \, X^2 + 1$. On a $X^4 + 1 = (X^2 + 1)^2 - (\sqrt{2} \, X)^2 = (X^2 - \sqrt{2} \, X + 1) \, (X^2 + \sqrt{2} \, X + 1)$ dans $\mathbb{R}[X]$.

Exercice. (TD7 Ex6.1) Déterminer le nombre de polynômes unitaires de degré 2 dans $\mathbb{F}_p[X]$.

Exercice. (TD7 Ex17) Montrer que le polynôme $X^3 - X - 2 \in \mathbb{F}_5[X]$ est irréductible.

Exercice. (TD7 Ex13) Trouver tous les polynômes unitaires irréductibles $f_j \in \mathbb{F}_2[X]$ de degré $\deg(f_j) = 3$. Déterminer le cardinal de $\mathbb{F}_2[X]/(f_j)$.