Soit $M \in \mathcal{M}_3(\mathbb{R})$, définie par $M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$ 1. Montrer que $(M - Id_3)(M + 3 Id_3) = 0_3$. 2. Montrer que pour tout $n \in \mathbb{N}$ il existe des réels α_n et β_n tel que $M^n = \alpha_n M + \beta_n I_3$ 3. Détermine pour tout $n \in \mathbb{N}$ les réels α_n et β_n et en déduire l'expressionde M^n en

linéaire d'ordre 2 à coefficients constants)

fonction de n. (On pourra montrer que $(\alpha_n)_{n\in\mathbb{N}}$ vérifie une relation de récurrence