时序分析(8) -- GARCH(p,q)模型

如无特殊说明,本系列文章中的数据将使用2012~2017年,分别代表国内股票、香港股票、国内债卷和国内货币 的四个指数数据。

上篇文章我们探讨了ARCH模型对时序数据的波动性进行建模和预测,本篇文章介绍GARCH模型。 首先我们介绍GARCH模型的基本概念:

Generalized Autoregressive Conditionally Heteroskedastic Models - GARCH(p,q)

简单来说,GARCH模型就是ARMA模型应用在时序的方差上,它包含一个自回归项和一个移动平均项。

如果时序数据 $\{y_t\}$ 可以表示为

$$y_t = \sigma_t w_t$$

其中 $\{w_t\}$ 是高斯白噪声,均值为0,方差为1,这里 σ_t 为

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i y_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

让我们先从简单做起,考虑GARCH(1,1)模型

$$y_t = \sigma_t w_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

注意: 这里 $\alpha_1 + \beta_1 < 1$, 否则时序将会不稳定。

In [1]:

import warnings
warnings.simplefilter('ignore')

1. 导入python包

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from fintechtools.backtest import *
from fintechtools.datasource import *
#from fintechtools. SimuMultiTest import *
#from lib.portfolio import DailySimulator
#from lib. experiment import Experiment
import statsmodels. formula. api as smf
import statsmodels.tsa.api as smt
import statsmodels.api as sm
import scipy. stats as scs
from arch import arch model
#sns. set context ("talk")
import matplotlib
import matplotlib as mpl
from matplotlib. ticker import FuncFormatter
mpl. style. use ('classic')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.serif'] = ['SimHei']
plt.rcParams['axes.unicode minus'] = False
import seaborn as sns
sns. set_style("whitegrid", {"font. sans-serif":['simhei', 'Arial']})
sns. set context ("talk")
#zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Users\ktwc37\Documents\ZNTG\notebooks\S\
%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

2. 读入数据

```
In [3]:
```

```
start = '2012-01-01'
end = '2017-02-05'
```

```
In [4]:
```

```
indexs = pd.read_excel('./data/华夏指数.xlsx')
indexs_pv = indexs.pivot_table(index='日期', columns='简称', values='收盘价(元)')
indexs_pv.index = pd.to_datetime(indexs_pv.index, unit='d')
```

In [5]:

```
indexs_pv.columns = ['国内债券', '国内股票', '香港股票', '国内货币']
indexs_pv = indexs_pv[['国内债券', '国内股票', '国内货币', '香港股票']]
indexs_pv.fillna(axis=0, method='bfill', inplace=True)
indexs_sub = indexs_pv.loc[start:end,]
```

国内债卷:中债综合财富(总值)指数

国内股票:中证全指 香港股票:恒生指数 国内货币:货币基金

In [6]:

indexs_sub. head()

Out[6]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-04	141.5160	2571.951	1166.7726	18727.31
2012-01-05	141.5501	2513.699	1166.9696	18813.41
2012-01-06	141.7277	2527.247	1167.1185	18593.06
2012-01-09	141.8669	2619.638	1167.5058	18865.72
2012-01-10	142.0118	2713.529	1167.6330	19004.28

In [7]:

```
indexs_logret = indexs_sub.apply(log_return).dropna()
```

In [8]:

indexs_logret.head()

Out[8]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-05	0.000241	-0.022909	0.000169	0.004587
2012-01-06	0.001254	0.005375	0.000128	-0.011782
2012-01-09	0.000982	0.035906	0.000332	0.014558
2012-01-10	0.001021	0.035214	0.000109	0.007318
2012-01-11	0.000188	-0.002115	0.000113	0.007740

```
In [9]:
```

```
def tsplot(y, lags=None, figsize=(16, 10), style='bmh'):
    if not isinstance(y, pd. Series):
        y = pd. Series(y)
    with plt.style.context(style):
        fig = plt.figure(figsize=figsize)
        #mpl. rcParams['font. family'] = 'Ubuntu Mono'
        1ayout = (3, 2)
        ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
        acf_ax = plt.subplot2grid(layout, (1, 0))
        pacf ax = plt. subplot2grid(layout, (1, 1))
        qq_ax = plt. subplot2grid(layout, (2, 0))
        pp_ax = plt. subplot2grid(layout, (2, 1))
        y. plot (ax=ts_ax)
        ts_ax.set_title('Time Series Analysis Plots')
        smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
        smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
        sm. qqplot(y, line='s', ax=qq_ax)
        qq_ax.set_title('QQ Plot')
        scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)
        plt. tight_layout()
    return
```

我们先模拟一个GARCH(1,1)时序

In [10]:

```
# Simulating a GARCH(1, 1) process

np.random.seed(2)

a0 = 0.2
a1 = 0.5
b1 = 0.3

n = 10000
w = np.random.normal(size=n)
y = np.zeros_like(w)
sigsq = np.zeros_like(w)

for i in range(1, n):
    sigsq[i] = a0 + a1*(y[i-1]**2) + b1*sigsq[i-1]
    y[i] = w[i] * np. sqrt(sigsq[i])

_ = tsplot(y, lags=30)
```


看上去很类似一个白噪声过程。

模拟时序的平方

In [11]:

tsplot(y*y, lags=30)

从ACF,PACF中显示出显著自相关性,我们需要AR项和MA项。

我们尝试是否可以通过模型拟合来得到模拟的参数。

In [12]:

Fit a GARCH(1, 1) model to our simulated EPS series
We use the arch_model function from the ARCH package

am = arch_model(y)
res = am.fit(update_freq=5)
print(res.summary())

 Iteration:
 5,
 Func. Count:
 38,
 Neg. LLF: 12311.793683614378

 Iteration:
 10,
 Func. Count:
 71,
 Neg. LLF: 12238.592659128462

Optimization terminated successfully. (Exit mode 0) Current function value: 12237.303267318555

Iterations: 13

Function evaluations: 89 Gradient evaluations: 13

Constant Mean - GARCH Model Results

Dep. Variable	y		y R-sc	uared:		-(0.000	
Mean Model:		Constant Mean		R-squared:		-0.000		
Vol Model:		GARG	_	Likelihood:		-12237. 3		
Distribution:		Norma	al AIC:			24482.6		
Method:	Max	imum Likeliho	od BIC:			24511.4		
				Observations	: 10000		10000	
Date:	Sa	at, Jul 14 20	18 Df F	Residuals:			9996	
Time:		20:46:4	41 Df M	Nodel:			4	
Mean Model								
=========							=====	
	coef	std err	t	P > t	95.0%	Conf.	Int.	
mu -6	. 7225e-03	6. 735e-03			[-1.992e-02	, 6. 478	e-03]	
Volatility Model								
	coef	std err	t	P> t	95.0% Conf.	Int.		
omega	0. 2021	1. 043e-02	19. 383	1.084e-83	[0.182, 0	. 223]		
alpha[1]	0.5162	2.016e-02	25.611	1.144e-144	_			
beta[1]	0. 2879	1.870e-02		1.781e-53				

Covariance estimator: robust

我们较好地恢复了参数。

模拟数据GARCH残差plot

In [13]:

= tsplot(res.resid, lags=30)

以GARCH建模国内股票收益率

步骤如下:

- 1. 以ARIMA模型迭代得到最佳参数。
- 2. 以ARIMA模型所得到地具备最低AIC的参数来选择GARCH模型。
- 3. 使GARCH模型适配时序数据。
- 4. 检查模型残差和残差平方的自相关性。

```
def _get_best_model(TS):
    best_aic = np.inf
    best order = None
    best mdl = None
    pq_rng = range(5) # [0, 1, 2, 3, 4]
    d_rng = range(2) # [0, 1]
    for i in pq_rng:
        for d in d_rng:
            for j in pq rng:
                try:
                    tmp \ mdl = smt. ARIMA(TS, order=(i, d, j)). fit(
                        method='mle', trend='nc'
                    )
                    tmp_aic = tmp_mdl.aic
                    if tmp_aic < best_aic:</pre>
                        best_aic = tmp_aic
                        best_order = (i, d, j)
                        best_md1 = tmp_md1
                except: continue
    print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
    return best_aic, best_order, best_mdl
# Notice I've selected a specific time period to run this analysis
TS = indexs logret['国内股票']
res_tup = _get_best_model(TS)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
aic: -6601.86081 | order: (3, 0, 2)
```

残差Plot

得到p,d,q = 3,0,2

In [15]:

= tsplot(res_tup[2].resid, lags=30)

残差并非正态分布。

残差平方

In [16]:

_ = tsplot(res_tup[2].resid**2, lags=30)

残差平方显示较强的自相关性

拟合GARCH模型

In [17]:

```
order = [3,0,2]
p_ = order[0]
o_ = order[1]
q_ = order[2]

# Using student T distribution usually provides better fit
am = arch_model(10*TS, p=p_, o=o_, q=q_, dist='StudentsT')
res = am.fit(update_freq=5, disp='off')
print(res.summary())
```

Constant Mean - GARCH Model Results Dep. Variable: 国内股票 R-squared: 0.001 Mean Model: Constant Mean Adj. R-squared: -0.001Vol Model: **GARCH** Log-Likelihood: 680.266 Standardized Student's t Distribution: AIC: -1344.53Method: Maximum Likelihood BIC: -1303.59No. Observations: 1234 Date: Sat, Jul 14 2018 Df Residuals: 1226 Df Model: Time: 20:49:12 8 Mean Model coef P> | t | 95.0% Conf. Int. std err 0.0114 3.373e-03 3. 388 7. 039e-04 [4. 816e-03, 1. 804e-02] mu Volatility Model std err P> | t | 95.0% Conf. Int. coef t omega 5. 2358e-04 2.969e-04 1. 764 7. 778e-02 [-5. 827e-05, 1. 105e-03] 0.0000 3.293e-02 alpha[1] 0.000 1.000 [-6.454e-02, 6.454e-02] alpha[2] 0.0484 2.246e-02 3. 116e-02 [4. 382e-03, 9. 243e-02] 2.155 alpha[3] 0.0834 4.490e-02 1.858 6.315e-02 [-4.573e-03, 0.171] beta[1] 0.0591 5.718e-02 1.034 0.301 [-5. 293e-02, 0. 171] beta[2] 0.7923 5.724e-02 13.843 1.402e-43 [0.680, 0.905] Distribution P>|t| 95.0% Conf. Int. std err coef 4.9493 0.666 7. 427 1. 114e-13 [3. 643, 6. 255] nu

Covariance estimator: robust

GARCH模型残差Plot

In [18]:

= tsplot(res.resid, lags=30)

残差平方自相关性依然显著, 说明模型拟合不是很成功。

香港股票收益率GARCH拟合

步骤同上

```
In [20]:
```

```
TS = indexs_logret['香港股票']
res_tup = _get_best_model(10*TS)
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

```
aic: -1958.01617 | order: (2, 0, 2)
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals "Check mle_retvals", ConvergenceWarning)

得到p,d,q=2,0,2

残差Plot

In [21]:

= tsplot(res_tup[2].resid, lags=30)

残差平方Plot

In [22]:

_ = tsplot(res_tup[2].resid**2, lags=30)

拟合GARCH模型

In [23]:

```
order = [2,0,2]
p_ = order[0]
o_ = order[1]
q_ = order[2]

# Using student T distribution usually provides better fit
am = arch_model(10*TS, p=p_, o=o_, q=q_, dist='StudentsT')
res = am.fit(update_freq=5, disp='off')
print(res.summary())
```

Constant Mean - GARCH Model Results

Dep. Varia 0.001	======= able:	=======	======= 香港別	======= 5 5 7 8 8 8 8 8 8	=========== uared:		
Mean Model: Vol Model: Distributi Method: Date:	:	Constant Mean GARCH Standardized Student's t Maximum Likelihood Sat, Jul 14 2018		Adj. R-squared: Log-Likelihood: AIC: BIC: No. Observations: Df Residuals:		-:	-0. 001 1062. 83 2111. 66 2075. 83 1234 1227
Time:		540, 5	20:55:56 Mean Model	Df Model:			7
========	coef	std err	t	P> t	95. 0% Co	onf. Int.	
mu	4. 8699e-03		1.864 Datility Mo		[-2. 520e-04, 9.	992e-03]	
	coef	std err	t	P> t	95. 0% Co	onf. Int.	
omega alpha[1] alpha[2] beta[1] beta[2]	3. 3282e-04 2. 7370e-10 0. 0689 0. 9077 3. 9186e-09		1.115 3.954e-09 0.961 1.864 7.883e-09	1.000	[-2. 524e-04, 9. [-0. 136, [-7. 157e-02, [-4. 687e-02, [-0. 974,	0. 136] 0. 209] 1. 862]	
	coef	std err	t	P> t	95.0% Conf.	Int.	
nu ======	4. 9739	0. 794	6. 262	3.809e-10	[3.417, 6.5	531] ====	

Covariance estimator: robust

GARCH残差Plot

In [24]:

= tsplot(res.resid, lags=30)

拟合效果优于国内股票

总结

本文展示了采用Python语言为指数时序数据进行GARCH建模,并介绍了GARCH模型的基本概念。