_	Paul Downen (Lecture 1) [2018/07/03] (
	Today's Adgenda
•	1. Syntax & scape (Downen)
	2- Static & Dynamic Servantics (Hoffmann)
	of a programming language
	(Lunch)
	3. Type Salety
	3. Type Salety 4. 2-calculus
_	
	Example 1+1=2 symmartically equal, but not symmatically
	·
	Syntactically, LHS= / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Let's start by defining a language with
	Numbers n E Num := 0/1/2/000
	booleans b & Bool := True False
	variables Vos == x/y/z/
	on and expressions
	$e \in E \times p_{s} := \times \text{Num[n]} Bool[b] Plus(e,e_2)$ $ \text{Less}(e_1,e_2) \pm \text{Less}(e_1,x_2,e_3) \text{Let}(e_1,x_2,e_2)$
	(ess(e) +2(e,,e2,e3) (et(e,,x.e2)
	Notation Note:
	X. Rz means "bind free ocentrences of xinez"
	ie ez might have a free orrurence of x in it, but X.ez binds the x
	1 X. Ez biras The X

-

.


```
[Paul Downen] (Lecture 1) [2018/07/03]
     Substitution for Let
      EX: (Let x=1 in x)[5/x] = (et x=1 in x
Carac! Let (e, ; x.e2) [e/x] = Let (e, [e/x]; x.e2)

1 2 don't plug in here because x is bound.

plug in for any free x's in e1.
coex: let (e_1; y.e_2)[e/\chi] = \text{let } (e_1[e/\chi]; y.e_2[e/\chi])

\times \neq y & y \notin FV(e)
       But these don't coper all the cases (To be out)
       Bound and Free Variables
      BV(x) = Ø
      BV(Num[n]) = Ø
       BV (Bool[6]) = Ø
       Br (Plus (eijez)) = BV(e) U BV(ez)
       Similar For It and Cess
       BU( let (e, x.e2)) = BV(e,) UBV(e2) U{x}
       FV(x) = {x}
       FV ( Numsuz) = Ø = FV. (Boot[6])
       FU (Plus (e, jez) = FV(e) UFV(ez) = FU (less(e, jez))
        FV ( let (e; x.e2) = FV(e,) V (FV(e2) \ {x})
```

Pa	Ul Downen (Lect1) [2018/07/03] (4)
	d-equivalence syntactically, let $x=1$ in x is not equal to let $y=1$ in y But $x=1$ in $x=\alpha$ let $y=1$ in y
	Let $Y=e_1$ in $e_2 = \alpha$ let $y=e_1$ in $e_2[y/x]$ $(y \notin FV(e_2))$
	Properties of Substitution
	1. For all e and e' : f BV(e') () FV(e) = Ø then e'[e/x]' is defined.
	2. For all e, e', if x & FV(e'), then e'[e/x]=e'.
	Proposties of a-equivalence
	(so, with x-equivalence, substitution becomes a total for.)
	2. If $e = \alpha e'$, then $e[e''/x] = \alpha e'[e''/x]$.
	Homework
	1. All more operations to this longuage (e.g. minus, equals) 2. Prove some of the properties listed above
	2. Prove some of the properties listed above (by structural induction)

•