复变函数与数理方程知识与方法

 $\mathbf{T}^{\mathbf{T}}\mathbf{T}$

2024年9月19日

	目录							*1.1.4 复变函数的多值性					
1	复变	函数					2	2	积分变换				7
	1.1	复数与	5复变函数				2						
		1.1.1	复数的定义	义与运算			2	3	数理方程				8
		1.1.2	复变函数	与解析函	数		3						
		1.1.3	复变函数的	的导数.			4	4	特殊函数				9

1 复变函数

1.1 复数与复变函数

1.1.1 复数的定义与运算

定义 1.1. 设 z=x+iy, 其中 x 和 y 是实数, i 是虚数单位, 满足 $i^2=-1$, 则称 z 为复数, x 为实部, y 为虚部, 记作 $z=\Re e\,z+i\Im m\,z$ 。

定义 1.2. 改用极坐标 ρ 和 φ 表示复数 z, 即可得到复数 z 的三角式 $z=\rho(\cos\varphi+i\sin\varphi)$ 或指数式 $z=\rho\mathrm{e}^{\mathrm{i}\varphi}$ 。其中 $\rho=|z|=\sqrt{x^2+y^2}$ 为复数 z 的模, $\varphi=\mathrm{Arg}\,z$ 为复数 z 的幅角。

约定:以 $\arg z$ 表示复数 z 的幅角中满足 $0 < \operatorname{Arg} z < 2\pi$ 的一个特定值, 称为 z 的幅角主值。

定义 1.3. 复数 $z = x + \mathrm{i}y = \rho(\cos\varphi + \mathrm{i}\sin\varphi) = \rho\mathrm{e}^{\mathrm{i}\varphi}$ 的共轭定义为 $z^* = x - \mathrm{i}y = \rho(\cos\varphi - \mathrm{i}\sin\varphi) = \rho\mathrm{e}^{-\mathrm{i}\varphi}$ 。

复数的运算规则与实数类似,即满足交换律、结合律、分配律等基本运算法则。乘、除、乘方、开方运算使用三角式或指数式更为方便:

重要定理 1.1.1. 复数三角式或指数式的乘、除、乘方、开方运算

设复数
$$z_1=\rho_1(\cos\varphi_1+\mathrm{i}\sin\varphi_1)=\rho_1\mathrm{e}^{\mathrm{i}\varphi_1}$$
 和 $z_2=\rho_2(\cos\varphi_2+\mathrm{i}\sin\varphi_2)=\rho_2\mathrm{e}^{\mathrm{i}\varphi_2}$,则有:
$$z_1z_2=\rho_1\rho_2\big(\cos(\varphi_1+\varphi_2)+\mathrm{i}\sin(\varphi_1+\varphi_2)\big)=\rho_1\rho_2\mathrm{e}^{\mathrm{i}(\varphi_1+\varphi_2)},$$

$$\frac{z_1}{z_2}=\frac{\rho_1}{\rho_2}\big(\cos(\varphi_1-\varphi_2)+\mathrm{i}\sin(\varphi_1-\varphi_2)\big)=\frac{\rho_1}{\rho_2}\mathrm{e}^{\mathrm{i}(\varphi_1-\varphi_2)},$$

$$z_1^n=\rho_1^n\big(\cos n\varphi_1+\mathrm{i}\sin n\varphi_1\big)=\rho_1^n\mathrm{e}^{\mathrm{i}n\varphi_1},$$

$$\sqrt[n]{z_1}=\sqrt[n]{\rho_1}\left(\cos\frac{\varphi_1+2k\pi}{n}+\mathrm{i}\sin\frac{\varphi_1+2k\pi}{n}\right)=\sqrt[n]{\rho_1}\mathrm{e}^{\mathrm{i}\frac{\varphi_1+2k\pi}{n}}, \quad k=0,1,2,\cdots,n-1$$

注 1.1. 幅角运算

- (1) 复数 z 的幅角 φ 不能唯一确定,其可以加减 $2k\pi$,即 $\varphi+2k\pi$ 也是复数 z 的幅角,其中 $k=0,\pm 1,\pm 2,\cdots$ 。因此,根式 $\sqrt[n]{z}$ 的幅角也就可以加减 $\frac{2\pi}{n}$ 的整数倍,从而 $\sqrt[n]{z}$ 有 n 个值。
- (2) 一般地, $\operatorname{Arg}(z_1z_2) = \operatorname{Arg} z_1 + \operatorname{Arg} z_2$, 但 $\operatorname{Arg} z^2 = \operatorname{Arg} z + \operatorname{Arg} z \neq 2 \operatorname{Arg} z$.

例题 1.1.2. 将实值坐标平面上的直线方程 ax + by + c = 0 表示为复数形式。

解. 令直线上
$$z=x+\mathrm{i}y$$
,则有 $x=\Re\mathfrak{e}\,z=\frac{z+z^*}{2},\;y=\Im\mathfrak{m}\,z=\frac{z-z^*}{2\mathrm{i}}$,因此有
$$a\frac{z+z^*}{2}+b\frac{z-z^*}{2\mathrm{i}}+c=0\quad\Rightarrow\quad (a-\mathrm{i}b)z+(a+\mathrm{i}b)z^*+2\mathrm{i}c=0$$

即

$$B^*z + Bz^* + C = 0$$

其中 $B \in \mathbb{C}, C \in \mathbb{R}$ 。

1.1.2 复变函数与解析函数

重要定义 1.4. 复变函数、解析函数

若函数的定义域 E 是一个区域:

- E 是全由内点组成的点集:
- E 具有達通性, 即对于任意两点 z_1 和 z_2 , 连接 z_1 和 z_2 的折线段也存在于 E 中;

并且在区域上每一点都解析(定义1.6),则称复变函数f为解析函数。

典型的复变函数有:

• **多项式**: $f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$;

• 有理分式: $f(z) = \frac{P(z)}{Q(z)}$, 其中 P(z) 和 Q(z) 为多项式函数;

• 根式: $f(z) = \sqrt[n]{z-a}$;

• 部分初等函数:

- 指数函数: $f(z) = e^z = e^{x+iy} = e^x(\cos y + i \sin y)$;

- 三角函数: $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$,

这里 $\sin^2 z + \cos^2 z = 1$ 仍成立,但 $|\sin z|^2 + |\cos z|^2 \ge 1$;

- 双曲函数: $\sinh z = \frac{e^z - e^{-z}}{2}$, $\cosh z = \frac{e^z + e^{-z}}{2}$;

- **对数函数**: $\ln z = \ln \left(|z| e^{i \operatorname{Arg} z} \right) = \ln |z| + i \operatorname{Arg} z$;

- **幂函数**: $z^{\alpha} = e^{\alpha \ln z}$.

例题 1.1.3. 在**反**演变换 $w = \frac{1}{z}$ $(z \neq 0)$ 中,z 平面上的下面曲线各映射为 w 平面上的什么曲线? (1)|z|=2; (2) **究**ez=1。

解. 设 z = x + iy, w = u + iv, 则

$$w = \frac{1}{z} = \frac{1}{x + \mathrm{i} y} = \frac{x - \mathrm{i} y}{x^2 + y^2} = \frac{x}{x^2 + y^2} - \mathrm{i} \frac{y}{x^2 + y^2} \quad \Rightarrow \quad u = \frac{x}{x^2 + y^2}, \ v = -\frac{y}{x^2 + y^2}$$

(1) $x^2+y^2=4$,则 $u=\frac{x}{4},\ v=-\frac{y}{4}$,即 $u^2+v^2=\frac{1}{16}$,为 w 平面上的圆心在原点、半径为 $\frac{1}{4}$ 的圆,复平面上的表示为 $|w|=\frac{1}{2}$ 。

(2) x=1, 则 $u=\frac{1}{1+y^2}$, $v=-\frac{y}{1+y^2}$, 即 $u^2+v^2=\frac{1+y^2}{(1+y^2)^2}=\frac{1}{1+y^2}=u$, 为 w 平面上的圆心在

$$\left(\frac{1}{2},\ 0\right)$$
、半径为 $\frac{1}{2}$ 的圆,复平面上的表示为 $\left|w-\frac{1}{2}\right|=\frac{1}{2}$ 。

1.1.3 复变函数的导数

重要定义 1.5. 复变函数的导数

设函数 w = f(z) 是在区域 B 上定义的单值函数, 若在 B 内对于任意一点 z, 存在极限

$$\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$
(1.1)

且其值与 $\Delta z \to 0$ 的方式无关,则称函数 w = f(z) 在 z 处可导,称该极限为函数 f(z) 在点 z 处的导数,记作 f'(z) 或 $\frac{\mathrm{d}w}{\mathrm{d}z}$ 。

形式上看,复变函数和实变函数导数的定义相同,因此在某些方面具有一致性。然而,**它们具有本质** 的区别,因为实变函数只需要沿实轴逼近极限,而复变函数则需要在全方向逼近极限。

下面给出函数可导的必要条件:

重要定理 1.1.4. Cauchy-Riemann 条件

记复变函数 w=f(z) 中, 究e w=u, $\mathfrak{Im}\,w=v$, 究e z=x, $\mathfrak{Im}\,z=y$, $|z|=\rho$, $\arg z=\varphi$, 则函数可导的必要条件是各偏导数存在且满足 Cauchy-Riemann 方程:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}, \end{cases} \stackrel{\overrightarrow{\text{PL}}}{\Rightarrow} \begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi}, \\ \frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho} \end{cases}$$
(1.2)

(S)

例题 1.1.5. 设有函数 $f(z) = \sqrt{|\Im m z^2|}$, 求其在复平面原点的可导性。

解. 设
$$z=x+\mathrm{i}y$$
,知 $u=\Re \mathfrak{e}\, f(z)=\sqrt{|2xy|},\ v=\Im \mathfrak{m}\, f(z)=0$ 。 则在 $(0,\ 0)$ 点有
$$\frac{\partial u}{\partial x}=\lim_{\Delta x\to 0}\frac{u(\Delta x,\ 0)-u(0,\ 0)}{\Delta x}=0=\frac{\partial v}{\partial y},$$

$$\frac{\partial u}{\partial y}=\lim_{\Delta y\to 0}\frac{u(0,\ \Delta y)-u(0,\ 0)}{\Delta y}=0=-\frac{\partial v}{\partial x}$$

因此满足 Cauchy-Riemann 方程。然而,从定义看,由于 $\frac{\Delta f(z)}{\Delta z} = \frac{f(\Delta z) - f(0)}{\Delta z} = \frac{\sqrt{|2\Delta x \Delta y|}}{\Delta x + \mathrm{i}\Delta y}$,因此

$$\lim_{\begin{subarray}{c} \Delta x \to 0^+ \\ \Delta x = \Delta y\end{subarray}} \frac{\Delta f(z)}{\Delta z} = \frac{\sqrt{2}}{1+\mathrm{i}}, \qquad \lim_{\begin{subarray}{c} \Delta x \to 0^+ \\ \Delta y = 0\end{subarray}} \frac{\Delta f(z)}{\Delta z} = 0$$

这说明函数在原点不可导。其原因是:函数 u(x, y) 在 (0, 0) 点不可微。

重要定理 1.1.6. 单值复变函数可导的充要条件

单值函数 $f(z)=u(x,\ y)+\mathrm{i} v(x,\ y)$ 可导,当且仅当 $u(x,\ y)$ 和 $v(x,\ y)$ 可微,并且各偏导数满足定理 1.1.4 的 Cauchy-Riemann 条件 。

重要定义 1.6. 解析

若函数 f(z) 在点 z_0 及其邻域上处处可导,则称 f(z) 在点 z_0 处解析。

若函数 f(z) 在区域 B 上的每一点都解析,则称 f(z) 在区域 B 上解析,此时称 f(z) 为解析函数。

注 1.2. 解析函数实部与虚部的关系

解析函数的实部和虚部不是独立的,知道了其中之一,例如实部 u,根据 Cauchy-Riemann 条件就可以唯一地(相差一个常数)确定虚部 v,这是因为

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$

从而有

$$v = \int dv = -\int \frac{\partial u}{\partial y} dx + \int \frac{\partial u}{\partial x} dy + C$$

定理 1.1.7. 若函数 f(z) = u(x, y) + iv(x, y) 在区域 B 上解析, 则

- (1) $u = \Re f(z)$, $v = \Im f(z)$ 均为 B 上的调和函数:
 - u, v 在区域 B 上均有二阶连续偏导数;
 - u, v 均满足拉普拉斯方程, 即 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0;$
- (2) $u(x, y) = C_1, v(x, y) = C_2$ (C_1, C_2 为任意实数)是 B上的两组正交曲线簇。

例题 1.1.8. 已知解析函数 f(z) = u(x, y) + iv(x, y) 的虚部 $v = \sqrt{-x + \sqrt{x^2 + y^2}}$, 求其实部 u 和函数

解. 改用极坐标 $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, 则有

$$v = \sqrt{-\rho\cos\varphi + \sqrt{\rho^2\cos^2\varphi + \rho^2\sin^2\varphi}} = \sqrt{-\rho\cos\varphi + \rho} = \sqrt{2\rho}\sin\frac{\varphi}{2}$$

则可求出 $\frac{\partial v}{\partial \rho} = \frac{1}{\sqrt{2\rho}}\sin\frac{\varphi}{2}, \ \frac{\partial v}{\partial \varphi} = \sqrt{\frac{\rho}{2}}\cos\frac{\varphi}{2}$ 。 因此有

$$\frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} = \frac{1}{\sqrt{2\rho}} \cos \frac{\varphi}{2}, \qquad \frac{\partial u}{\partial \varphi} = -\rho \frac{\partial v}{\partial \rho} = -\sqrt{\frac{\rho}{2}} \sin \frac{\varphi}{2}$$

得到

f .

$$du = \frac{\partial u}{\partial \rho} d\rho + \frac{\partial u}{\partial \varphi} d\varphi = \frac{1}{\sqrt{2\rho}} \cos \frac{\varphi}{2} d\rho - \sqrt{\frac{\rho}{2}} \sin \frac{\varphi}{2} d\varphi$$
$$= \cos \frac{\varphi}{2} d\sqrt{2\rho} - \sqrt{2\rho} d\cos \frac{\varphi}{2} = d\left(\sqrt{2\rho} \cos \frac{\varphi}{2}\right)$$

因此

$$u = \sqrt{2\rho}\cos\frac{\varphi}{2} + C = \sqrt{x + \sqrt{x^2 + y^2}} + C$$

从而得到函数 f 为

$$f(z) = \sqrt{x + \sqrt{x^2 + y^2}} + i\sqrt{2\rho}\sin\frac{\varphi}{2} = \sqrt{x + \sqrt{x^2 + y^2}} + i\sqrt{y + \sqrt{x^2 + y^2}}$$
 §

*1.1.4 复变函数的多值性

值分支。

重要定义 1.7. 多值函数

若函数 w=f(z) 的定义域 E 中,对于某些 z,存在多个值 w 与之对应,则称 w=f(z) 为多值函数。多值函数在每个宗量 z 处都有多个值,一般认为 f(z) 表示 z 处的全部值的集合。 若定义在上面点集 E 上的单值函数 $w_n=f_n(z)\in f(z)$ ($\forall z\in E$),则称 $f_n(z)$ 为 f(z) 的一个单

例题 1.1.9. 设有函数 $w = \sqrt{z}$, 其中 $|z| = \rho$, $\arg z = \varphi$.

由 $\sqrt{z} = \sqrt{\rho \mathrm{e}^{\mathrm{i}\operatorname{Arg}z}} = \sqrt{\rho} \mathrm{e}^{\mathrm{i}\operatorname{Arg}z/2} = \sqrt{\rho} \mathrm{e}^{\mathrm{i}(\varphi+2k\pi)/2} = \sqrt{\rho} \mathrm{e}^{\mathrm{i}(\varphi/2+k\pi)}$ ($k \in \mathbb{Z}$) ,知 \sqrt{z} 有两个值:

$$\begin{cases} k = 0: & w_1 = \sqrt{\rho} e^{i\varphi/2}, \\ k = 1: & w_2 = \sqrt{\rho} e^{i(\varphi/2 + \pi)} = -\sqrt{\rho} e^{i\varphi/2} \end{cases}$$

因此, $w = \sqrt{z}$ 有两个单值分支。

设 z 从某一点 z_0 出发(对应地 w 从分支 w_1 上的 $w_0=\sqrt{|z_0|}\mathrm{e}^{\mathrm{i}\arg z_0/2}$ 出发),沿着闭合曲线 C 回到 z_0 。

2 积分变换 7

2 积分变换

3 数理方程 8

3 数理方程

4 特殊函数 9

4 特殊函数

