BACALAUREAT 2010 SESIUNEA SPECIALĂ

Proba E c)

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Calculați produsul de numere complexe $i \cdot i^3 \cdot i^5 \cdot i^7 \cdot i^{11}$.
- **2.** Verificați dacă funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x + 1$ este injectivă.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{4^{2x}} = 8$.
- 4. Care este probabilitatea ca, alegând un număr din mulţimea numerelor naturale de trei cifre, produsul cifrelor sale să fie impar?
- **5.** Un paralelogram ABCD are AD=6, AB=4 şi $m(\triangleleft ADC)=120^{\circ}$. Calculați $|\overrightarrow{AD}+\overrightarrow{AB}|$.
- **6.** Calculați $\sin\left(\frac{1}{2}\arcsin\frac{\sqrt{3}}{3}\right)$.

SUBIECTUL II

- **1.** Fie matricele $A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$ și $B = \begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix}$.
 - a) Verificaţi dacă det(A) = det(B).
 - **b)** Demonstrați că pentru orice matrice $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$, are loc egalitatea $X^2 = (a+d)X (ad-bc)I_2$.
 - c) Demonstrați că $A^n B^n = (2^n 1)(A B)$, pentru orice $n \in \mathbb{N}$, $n \ge 2$.
- **2.** Fie polinomul $f = nX^n + (n-1)X^{n-1} + \ldots + 2X^2 + X$, unde $n \in \mathbb{N}$ şi $n \ge 2$.
 - a) Calculați suma coeficienților polinomului f.
 - b) Pentru n=4, determinați restul împărțirii polinomului f la polinomul $g=X^2-1$.
 - c) Demonstrați că dacă n este număr par, atunci restul împărțirii polinomului f la $g = X^2 1$ este egal cu $\frac{n^2}{4}X + \frac{n(n+2)}{4}.$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 1 \sqrt{x^2 + 2}$.
 - a) Arătați că funcția f este strict crescătoare pe \mathbb{R} .
 - b) Determinați ecuația asimptotei la graficul funcției f spre $-\infty$.
 - c) Arătați că funcția f este concavă pe \mathbb{R} .
- **2.** Fie şirul $(I_n)_{n\geq 1}$ definit prin $I_n=\int_1^e \ln^n x\ dx$, oricare ar fi $n\in\mathbb{N}^*$.
 - a) Calculați I_2 .
 - **b)** Arătați că șirul $(I_n)_{n>1}$ este mărginit.
 - c) Calculați $\lim_{n\to\infty} I_n$.

SESIUNEA IUNIE M1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Calculați $((1-i)(i-1))^4$.
- **2.** Arătați că funcția $f:(-3,3)\to\mathbb{R}, f(x)=\ln\frac{3-x}{3+x}$ este impară.
- 3. Determinați soluțiile întregi ale inecuației $x^2 + 2x 8 < 0$.
- 4. Câte elemente din mulțimea $A = \{1, 2, 3, \dots, 100\}$ sunt divizibile cu 4 sau cu 5?
- 5. În sistemul de coordonate xOy se consideră punctele M(1,-2), N(-3,-1) şi P(-1,2). Determinați coordonatele punctului Q astfel încât MNPQ să fie paralelogram.
- **6.** Triunghiul ABC are AB = 6, AC = 3 și BC = 5. Calculați lungimea înălțimii [AD].

SUBIECTUL II

- $\textbf{1.} \quad \text{Fie sistemul} \begin{cases} x-2y-8z=-65 \\ 3x+y-3z=22 \\ x+y+z=28 \end{cases}, \text{ unde } x,\,y,\,z \in \mathbb{R} \text{ și matricea asociată sistemului } A = \begin{pmatrix} 1 & -2 & -8 \\ 3 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}.$
 - a) Arătați că rangul matricei A este egal cu 2.
 - **b)** Rezolvaţi sistemul în $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$.
 - c) Determinați numărul soluțiilor sistemului din mulțimea $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$.
- **2.** Fie mulțimea de matrice $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_5 \right\}$.
 - a) Determinați numărul elementelor mulțimii A.
 - **b)** Arătați că există o matrice nenulă $M \in A$ astfel încât $\begin{pmatrix} \hat{3} & \hat{1} \\ -\hat{1} & \hat{3} \end{pmatrix} \cdot M = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}$.
 - c) Rezolvați în mulțimea A ecuația $X^2 = I_2$.

- 1. Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, \ f(x) = \operatorname{arctg} \frac{x}{x+1}$
 - a) Determinați ecuația asimptotei spre $+\infty$ la graficul funcției f.
 - **b)** Studiați monotonia funcției f.
 - c) Determinați punctele de inflexiune ale funcției f.
- **2.** Fie şirul $(I_n)_{n\geq 1}$ definit prin $I_n = \int_n^{n+1} \frac{2x-1}{x} dx$, oricare ar fi $n \in \mathbb{N}^*$.
 - a) Arătați că șirul $(I_n)_{n\geq 1}$ este strict crescător.
 - b) Arătați că șirul $(I_n)_{n>1}$ este mărginit.
 - c) Calculați $\lim_{n\to\infty} n(2-I_n)$.

Filiera teoretică, profilul real, specializarea stiințe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Calculați $\log_2 \frac{1}{8} + \sqrt[3]{27}$.
- 2. Determinați coordonatele vârfului parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 2x + 3$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $2-3^{x^2-1}=1$.
- 4. Determinați câte numere de trei cifre distincte se pot forma cu elementele mulțimii $\{1, 2, 3, 4\}$.
- **5.** Se consideră vectorii $\overrightarrow{v}_1 = 2\overrightarrow{i} \overrightarrow{j}$ și $\overrightarrow{v}_2 = \overrightarrow{i} + 3\overrightarrow{j}$. Determinați coordonatele vectorului $\overrightarrow{w} = 2\overrightarrow{v}_1 \overrightarrow{v}_2$.
- 6. Un triunghi dreptunghic are AB = 3, AC = 4. Calculați lungimea înălțimii duse din A.

SUBIECTUL II

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
 - a) Calculați $A^2 A$.
 - **b)** Determinați inversa matricei A.
 - c) Rezolvați ecuația $A \cdot X = \begin{pmatrix} 2010 & 2010 \\ 2009 & 2010 \end{pmatrix}, \ X \in \mathscr{M}(\mathbb{R}).$
- **2.** Se consideră polinoamele $f, g \in \mathbb{Z}_3[X], f = X^2 + X, g = X^2 + \hat{2}X + a$, cu $a \in \mathbb{Z}_3$.
 - a) Calculați $f(\hat{0}) + f(\hat{1})$.
 - **b)** Determinați rădăcinile polinomului f.
 - c) Demonstrați că $f(\hat{0}) + f(\hat{1}) + f(\hat{2}) = g(\hat{0}) + g(\hat{1}) + g(\hat{2})$, pentru oricare $a \in \mathbb{Z}_3$.

SUBIECTUL III

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \cdot e^x$.
 - a) Calculați f'(x).
 - b) Demonstrați că funcția f este descrescătoare pe intervalul [-2,0].
 - c) Demonstrați că $0 \le f(x) + f(x^2) \le \frac{e^2 + 1}{e}$, oricare ar fi $x \in [-1, 0]$.
- **2.** Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = x + \frac{1}{x}$
 - a) Calculați $\int_{1}^{3} \left(f(x) \frac{1}{x} \right) dx$.
 - b) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2]\to\mathbb{R},$ g(x)=f(x).

3

c) Calculați $\int_1^e f(x) \cdot \ln x \ dx$.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- 1. Calculați $\log_2 \sqrt{6} \log_2 \sqrt{3}$.
- **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 5. Calculați $f(1) \cdot f(2) \cdot f(3) \cdot \ldots \cdot f(10)$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $2^{2x+1} 2^{x+1} = 24$.
- **4.** Calculați numărul submulțimilor cu două elemente ale mulțimii $A = \{x \in \mathbb{N} \mid x \leq 8\}$.
- 5. În sistemul de coordonate xOy se consideră punctele A(3,4) şi B(2,m). Ştiind că B aparține dreptei de ecuație y = 3x + 20 determinați coordonatele mijlocului segmentului [AB].
- **6.** Calculați valoarea expresiei $E(x) = \cos x + \sin 2x$ pentru $x = 30^{\circ}$.

SUBIECTUL II

- 1. Pe mulțimea $M = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ se definește legea de compoziție $x \circ y = x + y + \sqrt{2}$.
 - a) Arătați că $x + y \in M$, oricare ar fi $x, y \in M$.
 - **b)** Arătați că $x \cdot y \in M$, oricare ar fi $x, y \in M$.
 - c) Determinați $x \in M$ cu proprietatea că $x(1+\sqrt{2})^2=1$.
 - d) Verificați dacă $\frac{1}{1+\sqrt{2}} \circ \frac{1}{3+2\sqrt{2}} \in M$.
 - e) Arătați că legea " \circ " este asociativă pe mulțimea M.
 - f) Arătați că legea " \circ " determină pe mulțimea M o structură de grup.

SUBIECTUL III

- **1.** Fie matricele $M = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ şi $A(a) = M + aI_2$, $a \in \mathbb{R}$.
 - a) Arătați că $M^2 = M$.
 - b) Determinați matricea A(2010).
 - c) Determinați $a \in \mathbb{R}$, pentru care det (A(a)) = 2.
 - $\mathbf{d)} \quad \text{Arătați că } A^{-1}(1) = \frac{1}{2} \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}.$
 - e) Arătați că pentru oricare $a \in \mathbb{Z}$ matricea $A(a) + (A(a))^t$ este inversabilă, unde $(A(a))^t$ este transpusa matricei A(a).

4

f) Rezolvați în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația matriceală $X \cdot A(1) = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$.

Subiect de rezervă M1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Arătați că numărul $i\sqrt{2}-1$ este soluție a ecuației $z^2+2z+3=0$.
- **2.** Fie funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + a și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 a$. Determinați $a \in \mathbb{R}$ pentru care $(f \circ g)(x) > 0$, oricare ar fi $x \in \mathbb{R}$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 2x + 1} = x + 1$.
- **4.** Determinați numărul elementelor mulțimii $A = \{1, 3^3, 3^6, 3^9, \dots, 3^{2010}\}$
- 5. În sistemul de coordonate xOy se consideră punctele A(3,5), B(-2,5) și C(6,-3). Scrieți ecuația medianei corespunzătoare laturii [BC], în triunghiul ABC
- 6. Calculați $\sin \frac{\pi}{12}$

SUBIECTUL II

- 1. Fie sistemul $\begin{cases} x+y+az=1\\ x+2ay+z=-1\\ 2ax+y+(a+1)z=0 \end{cases}$, unde $x,\,y,\,z\in\mathbb{R}$ şi a este parametru real.
 - a) Rezolvați sistemul pentru a = 0.
 - b) Verificați dacă pentru a = -1 sistemul este compatibil.
 - c) Determinați $a \in \mathbb{R}$ pentru care sistemul are soluție unică.
- 2. Fie $m, n \in \mathbb{R}$ și polinomul $f = X^3 3X^2 + mX n$ care are rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
 - a) Determinați valorile reale m și n pentru care $x_1 = 2 + i$.
 - b) Determinați valorile reale m și n pentru care restul împărțirii polinomului f la polinomul $(X-1)^2$ este egal cu 0.
 - c) Arătați că, dacă toate rădăcinile polinomului f sunt reale și m > 0, n > 0, atunci x_1, x_2, x_3 sunt strict pozitive.

- 1. Fie functia $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 3x + 2}$.
 - a) Arătați că dreapta de ecuație y=x este asimptotă oblică pentru graficul funcției f spre $+\infty$.
 - b) Studiați derivabilitatea funcției f în punctul x = -2.
 - c) Calculați $\lim_{x \to +\infty} \frac{\ln f(x)}{\ln x}$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{\cos x}{2 \cos^2 x}$
 - a) Calculați $\int_0^{\frac{\pi}{2}} f(x) dx$.
 - b) Arătați că orice primitivă a funcției f este strict crescătoare pe intervalul $\left[0; \frac{\pi}{2}\right]$.
 - c) Calculați $\int_0^{2\pi} x \cdot f(x) \ dx$.

Filiera teoretică, profilul real, specializarea stiințe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Se consideră o progresie aritmetică $(a_n)_{n\geq 1}$ în care $a_3=5$ și $a_5=11$. Calculați suma primilor șapte termeni ai progresiei.
- 2. Se consideră funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1, g(x) = x + 3. Determinați coordonatele punctului de intersecție a graficelor funcțiilor f și g.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{x^2-1}=2$.
- 4. Calculați $a \cdot b$ știind că a + b = 150 și numărul a reprezintă 25% din numărul b.
- **5.** Determinați $m \in \mathbb{R}$ pentru care punctele A(2,3), B(4,5) și $C(m+1,m^2)$ sunt coliniare.
- **6.** Calculați $\cos x$, știind că $\sin x = \frac{1}{3}$ și $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL II

1. Pentru $m \in \mathbb{R}$ se consideră matricea $A = \begin{pmatrix} m & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & m \end{pmatrix}$ și sistemul de ecuații $\begin{cases} mx + y = -1 \\ x + y + z = 3 \\ x + y + mz = 0 \end{cases}$, unde $x, y, z \in \mathbb{R}$.

6

- a) Calculați determinantul matricei A.
- **b)** Rezolvaţi sistemul pentru m = 0.
- c) Verificați dacă sistemul este incompatibil pentru m=1.
- 2. Pe mulțimea numerelor reale se consideră legea de compoziție $x \star y = (x-4)(y-4) + 4$.
 - a) Demonstrați că legea "*" este asociativă.
 - **b)** Demonstrați că $x \star y \in (4, +\infty)$, oricare ar fi $x, y \in (4, +\infty)$.
 - c) Calculați $1 \star 2 \star 3 \star \ldots \star 2010$.

- 1. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = x^2 + \frac{2}{x}$
 - a) Calculați f'(x).
 - b) Scrieți ecuația tangentei la graficul funcției f în punctul A(2,5).
 - c) Determinați ecuația asimptotei verticale la graficul funcției f.
- **2.** Se consideră funcțiile $f, g: (0, +\infty) \to \mathbb{R}, f(x) = \frac{\ln x}{\sqrt{x}}$ și $g(x) = 2\sqrt{x}(\ln x 2)$.
 - a) Demonstrați că funcția g este o primitivă a funcției f.
 - **b)** Calculați $\int_1^4 f(x) \ dx$.
 - c) Calculați $\int_1^{e^2} 2^{g(x)} \cdot f(x) \ dx$.

SESIUNEA AUGUST M1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Care dintre numerele $2\sqrt[3]{6}$ şi $3\sqrt[3]{3}$ este mai mare?
- **2.** Determinați mulțimea valorilor funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$.
- 3. Determinați $m \in \mathbb{R}$ pentru care ecuația $x^2 x + m^2 = 0$ are două soluții reale egale.
- 4. Determinați numărul termenilor raționali din dezvoltarea $(1+\sqrt[4]{2})^{41}$.
- 5. În sistemul de coordonate xOy se consideră punctele A(2,1), B(-2,3), C(1,-3) și D(4,a), unde $a \in \mathbb{R}$. Determinați $a \in \mathbb{R}$ astfel încât dreptele AB și CD să fie paralele.
- 6. Fie mulţimea $A = \left\{0; \frac{\pi}{6}; \frac{\pi}{2}; \pi; \frac{3\pi}{2}\right\}$. Care este probabilitatea ca, alegând un element din mulţimea A, acesta să fie soluţie a ecuaţiei $\sin^3 x + \cos^3 x = 1$?

SUBIECTUL II

- **1.** Fie matricea $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Pentru $n \in \mathbb{N}^*$, notăm $B_n = A^n + A^{n+1} + A^{n+2}$.
 - a) Arătati că $A^{2010} = a^{670} \cdot I_3$.
 - **b)** Determinați $a \in \mathbb{R}$ pentru care $\det(B_1) = 0$.
 - c) Determinați $a \in \mathbb{R}$ pentru care toate matricele $B_n, n \in \mathbb{N}^*$ sunt inversabile.
- **2.** Pe mulţimea \mathbb{R} se defineşte legea $x \star y = 2xy 3x 3y + m$, $m \in \mathbb{R}$. Fie mulţimea $M = \mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$.
 - a) Determinați $m \in \mathbb{R}$ astfel încât $x \star y \in M$, pentru orice $x, y \in M$.
 - **b)** Pentru m = 6, arătați că (M, \star) este grup.
 - c) Pentru m=6, demonstrați că funcția $f:M\to\mathbb{R}^*,\,fx=2x-3$ este un izomorfism între grupurile (M,\star) și (\mathbb{R}^*,\cdot) .

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt[3]{2x-1} \sqrt[3]{2x+1}$.
 - a) Scrieți ecuația tangentei la graficul funcției f în punctul de abscisă x=0, situat pe graficul funcției f.
 - b) Determinați ecuația asimptotei orizontale la graficul funcției f spre $+\infty$.
 - c) Calculați $\lim_{n\to\infty} \left(\frac{f(1)+f(2)+\ldots+f(n)}{-\sqrt[3]{2n+1}}\right)^{\sqrt[3]{2n}}$.
- **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n=\int_0^1\frac{x^n}{x^2+x+1}\ dx$.
 - a) Calculați $I_1 + I_2 + I_3$.
 - b) Arătați că șirul $(I_n)_{n>1}$ este descrescător.
 - c) Calculați $\lim_{n\to\infty} I_n$.

Filiera teoretică, profilul real, specializarea stiințe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Determinați $x \in \mathbb{Z}$ pentru care $-1 \le \frac{x+1}{3} \le 1$.
- 2. Determinați funcția de gradul al doilea al cărei grafic conține punctele A(0,0), B(2,2), C(-1,2).
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x+3) \log_2 x = 2$
- 4. Calculați probabilitatea ca alegând la întâmplare un element n din mulțimea $\{1, 2, 3, 4\}$ acesta să verifice inegalitatea $2^n \ge n^2$.
- 5. În sistemul de coordonate xOy se consideră punctele A(2,0), B(1,-1), O(0,0). Determinați coordonatele punctului C pentru care $\overrightarrow{OC} = 2\overrightarrow{OA} + \overrightarrow{OB}$.
- 6. Calculați lungimea razei cercului circumscris triunghiului ABC în care AB=6 și $m(\triangleleft ACB)=30^{\circ}$.

SUBIECTUL II

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.
 - a) Calculați determinantul matricei A.
 - **b)** Verificați dacă $A^{-1}=\begin{pmatrix}1&0&0\\0&1&0\\-1&0&1\end{pmatrix}$, unde A^{-1} este inversa matricei A.
 - c) Rezolvați ecuația $A\cdot X=\begin{pmatrix}1&1&1\\2&2&2\\3&3&3\end{pmatrix},\,X\in\mathscr{M}_3(\mathbb{R}).$
- $\textbf{2.} \quad \text{Fie polinomul } f \in \mathbb{Z}_3[X], \ f = X^3 + \hat{2}X^2 \ \text{și mulțimea} \ G = \{g = aX^3 + bX^2 + cX + d \ | \ a,b,c,d \in \mathbb{Z}_3\}.$
 - a) Calculați $f(\hat{1})$.
 - b) Determinați rădăcinile polinomului f.
 - c) Determinați numărul elementelor multimii G.

SUBIECTUL III

- 1. Se consideră funcția $f:[0,1]\to\mathbb{R}, f(x)=\frac{e^x}{1+x}$
 - a) Demonstrați că $\frac{f'(x)}{f(x)} = \frac{x}{x+1}$, oricare ar fi $x \in [0,1]$.
 - b) Demonstrați că funcția f este crescătoare pe [0,1].
 - c) Demonstrați că $\frac{2}{e} \le \frac{1}{f(x)} \le 1$, oricare ar fi $x \in [0, 1]$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \sqrt{x^2 + 3}, & \text{pentru } x \ge 1\\ 2x, & \text{pentru } x < 1 \end{cases}$
 - a) Demonstrați că funcția f admite primitive pe \mathbb{R} .
 - b) Calculați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}, g(x) = f(x)$.

8

c) Calculați $\int_1^{\sqrt{6}} x \cdot f(x) \ dx$.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- 1. Determinați numărul submulțimilor mulțimii $A = \{1, 3, 5, 7, 9\}$, care au două elemente.
- **2.** Determinați $m \in \mathbb{R} \setminus \left\{ \frac{1}{3} \right\}$ pentru care funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = (3m-1)x + 2 este crescătoare pe \mathbb{R} .
- 3. Arătați că $x_1x_2 5(x_1 + x_2) = -10$, unde x_1 , x_2 sunt soluțiile ecuației $ax^2 (2a + 1)x + 5 = 0$, $a \in \mathbb{R}^*$.
- 4. Rezolvați în mulțimea numerelor reale ecuația $\log_2 \frac{3x-2}{x+2} = 1$.
- 5. Determinați vectorul de poziție al centrului de greutate al triunghiului ABC știind că $\vec{r}_A=3\vec{i}-2\vec{j},\,\vec{r}_B=-5\vec{i}+4\vec{j},\,\vec{r}_C=8\vec{i}+7\vec{j}.$
- **6.** Scrieți ecuația dreptei care trece prin punctul A(4,3) și are panta $m = \tan 45^{\circ}$.

SUBIECTUL II

- 1. Pe mulțimea numerelor reale se definesc legile de compoziție $x \star y = x + y + 2$ și $x \circ y = xy 2x 2y + m$, unde $m \in \mathbb{R}$.
 - a) Aratați că legea "* este asociativă pe mulțimea numerelor reale.
 - **b)** Determinați $m \in \mathbb{R}$ pentru care $11 \circ 1 = 0$.
 - c) Rezolvați în mulțimea numerelor reale ecuația $(x-1) \circ 4 = (3 \star 3) + m$.
 - d) Determinați $m \in \mathbb{R}$ pentru care legea "o" admite elementul neutru e = 3.
 - e) Pentru m=6 determinați elementele $x\in\mathbb{R}$ ale căror simetrice, în raport cu legea "o", verifică relația $x'=\frac{3}{2}-x$.
 - f) Arătați că numerele reale $a = x \star x$, $b = a \star x$, $c = b \star x$ sunt termeni consecutivi ai unei progresii aritmetice pentru oricare $x \in \mathbb{R}$.

SUBIECTUL III

- **1.** Se consideră matricele: $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ și $C = I_3 + A$.
 - a) Calculați $\det(C) + \det(A)$.
 - **b)** Calculați C^{-1} , unde C^{-1} este inversa matricei C.
 - c) Calculați $M = C \cdot (C 2A + A^2) I_3$.
 - d) Arătați că $\det(I_3 + xA) = 1$, pentru orice $x \in \mathbb{R}$.
 - e) Arătați că matricea $C + C^t$ este inversabilă, unde C^t este transpusa matricei C.

9

f) Calculați A^{2010} .

Subiect de rezervă M2

Filiera teoretică, profilul real, specializarea stiinte ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Calculați $\log_2(3+\sqrt{5}) + \log_2(3-\sqrt{5})$.
- 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 + 2x 5$. Determinați $m \in \mathbb{R}$ pentru care abscisa vârfului parabolei asociate funcției f este egală cu 2.
- 3. Rezolvați în mulțimea numerelor reale ecuația $3^{1-x^2} = \frac{1}{27}$
- **4.** Calculați $C_6^2 A_4^2$.
- 5. În sistemul de coordonate xOy se consideră punctele O(0,0), A(2,-2) și B(6,8). Calculați distanța de la punctul O la mijlocul segmentului (AB).
- 6. Calculați $\cos 130^{\circ} + \cos 50^{\circ}$.

SUBIECTUL II

- 1. Pentru $m \in \mathbb{R}$ se consideră matricea $A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & -1 \\ m & 0 & 2 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x y z = -2 \\ x + 3y z = -2 \\ mx + 2z = 4 \end{cases}$, unde x, y, $z \in \mathbb{R}$.
 - a) Calculați determinantul matricei A.
 - **b)** Determinați $m \in \mathbb{R}$ pentru care matricea A este inversabilă.
 - c) Rezolvați sistemul pentru m = -1.
- 2. Pe multimea numerelor reale se definește legea de compoziție $x \circ y = 2xy 2x 2y + 3$.
 - a) Demonstrați că $x \circ y = 2(x-1)(y-1) + 1$, pentru oricare $x, y \in \mathbb{R}$.
 - b) Determinați elementul neutru al legii "o".
 - c) Dați exemplu de două numere $a, b \in \mathbb{Q} \mathbb{Z}$ pentru care $a \circ b \in \mathbb{Z}$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x^2 + 3}$.
 - a) Calculați f'(x).
 - b) Determinați ecuația tangentei la graficul funcției f în punctul A(1,2).
 - c) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **2.** Pentru $n \in \mathbb{N}^*$ se consideră funcțiile $f_n : (0, \infty) \to \mathbb{R}$, $f_n(x) = x^n \ln x$.
 - a) Calculați $\int_{e}^{e^2} \frac{\ln x}{f_1(x)} dx$.
 - **b)** Demonstrați că primitivele funcției f_1 sunt convexe pe intervalul $\left[\frac{1}{e}, \infty\right)$.
 - c) Calculați $\int_{1}^{e} \frac{f_{2009}(x)}{x^{2010}} dx$.