DATA REPRESENTATION NUMBERING CONVERSION

Data Representation

Digital computers are electronic devices that contain a series of circuits and voltage levels that can store / represent data.

Binary numbers can represent those series of circuits with voltage levels. Those binary numbers (0's and 1's) are combined in a sequence to form a **byte**.

Bytes are used to represent **numbers** or **characters**.

It is the job of the computer program to understand if those bytes (series of o's and/or I's) represent numbers or characters (eg. in **C programming**, declaring a variable with a **data type**)

Understanding how the computer stores numbers and characters can be useful when **administrating computer systems** and **creating programs** to be run on computer systems.

DEC.		HEX.								
0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	1	
2	0	0	0	0	0	0	1	0	2	
3	0	0	0	0	0	0	1	1	3	
4	0	0	0	0	0	1	0	0	4	
5	0	0	0	0	0	1	0	1	5	
6	0	0	0	0	0	1	1	0	6	
7	0	0	0	0	0	1	1	1	7	
8	0	0	0	0	1	0	0	0	8	
9	0	0	0	0	1	0	0	1	9	
10	0	0	0	0	1	0	1	0	Α	
11	0	0	0	0	1	0	1	1	В	
12	0	0	0	0	1	1	0	0	С	
13	0	0	0	0	1	1	0	1	D	
14	0	0	0	0	1	1	1	0	E	
15	0	0	0	0	1	1	1	1	F	
16	0	0	0	1	0	0	0	0	10	
17	0	0	0	1	0	0	0	1	11	
253	1	1	1	1	1	1	0	1	FD	
254	1	1	1	1	1	1	1	0	FE	
255	1	1	1	1	1	1	1	1	FF	

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	,	р
1	SOH	DC1 XON	1	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	٧
7	BEL	ETB	1	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	X
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*	1	J	Z	j	Z
В	VT	ESC	+	- 1	K	[k	{
С	FF	FS	7	<	L	1	- 1	- 1
D	CR	GS	-	=	M]	m	}
Е	so	RS		>	N	Α	n	~
F	SI	US	1	?	0		0	del

Numbering Conversion:

Computers have evolved over time. During that time, humans have interfaced with the computer by *binary* numbers, or by using **short-cuts** such as **octal** or **hexadecimal** numbers.

Computer Networking / Support Specialists and Computer Programmers occasionally need to convert between numbering systems:

- Converting decimal numbers to binary number for URLs (subnetting)
- Converting decimal numbers to hexadecimal numbers to format webpages (with web-safe colours)
- Converting binary numbers to octal numbers for setting file permissions in Unix/Linux

Before performing numbering conversions, we need to better understand the **decimal**, **binary**, **octal** and **hexadecimal** numbering systems.

DEC.		HEX.							
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	2
3	0	0	0	0	0	0	1	1	3
4	0	0	0	0	0	1	0	0	4
5	0	0	0	0	0	1	0	1	5
6	0	0	0	0	0	1	1	0	6
7	0	0	0	0	0	1	1	1	7
8	0	0	0	0	1	0	0	0	8
9	0	0	0	0	1	0	0	1	9
10	0	0	0	0	1	0	1	0	Α
11	0	0	0	0	1	0	1	1	В
12	0	0	0	0	1	1	0	0	С
13	0	0	0	0	1	1	0	1	D
14	0	0	0	0	1	1	1	0	E
15	0	0	0	0	1	1	1	1	F
16	0	0	0	1	0	0	0	0	10
17	0	0	0	1	0	0	0	1	11

		1 -			1	1 -	1 -		
				••	•••				
				**	•••				
					•••		,		
253	1	1	1	1	1	1	0	1	FD
254	1	1	1	1	1	1	1	0	FE
255	1	1	1	1	1	1	1	1	FF

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	*	р
1	SOH	DC1 XON	1	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	٧	f	٧
7	BEL	ETB	1	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*	:	J	Ζ	j	Z
В	VT	ESC	+	i	K	[k	{
С	FF	FS	7	<	L	1	-1	
D	CR	GS	-	=	M]	m	}
Е	so	RS		>	N	Α	n	~
F	SI	US	1	?	0	_	0	del

Decimal Numbering System (Humans)

The numbering system used by humans.

The **decimal** numbering system consists of **digits** ranging from **0** to **9**.

The fact that **humans** started counting on their **fingers** and **thumbs** most likely lead to the development of this numbering system.

The decimal numbering system is based on sums of the power of 10 which provides a framework for mathematic calculations.

Binary Numbers (Computers)

Digital computers have **circuits** which representing data in terms of voltage levels. Multiple circuits are used to represent data (in the form of *binary* numbers).

The **binary** numbering system consists of digits ranging from **0** to **1**. The numbering system is based on sums of the power of **2**.

Referring to the diagram to the right, the value of each decimal digit consists of the value (placeholder) multiplied by the corresponding power of 2. For example, 2^0 , 2^1 , 2^2 , etc. which move in a **right-to-left** direction.

1048576 4096 16 ... 65536 256 1 FEDCBA9876543210

Octal / Hexadecimal Numbers (short-cuts)

The **octal** and **hexadecimal** numbering systems consist of digits ranging from **0 to 7** and ranging from **0 to F** respectively.

The **octal** and **hexadecimal** numbering system are based on sums of the power of 8 and 16 respectively. For *hexadecimal* numbers, values for 10 to 15 are represented by the characters A to F respectively.

These numbering systems are useful since they are **both multiples of 2** (binary) and can be used as **short-cuts** to represent a series of binary numbers:

I octal digit = 3 binary digits

I hexadecimal digit = 4 binary digits).

Performing Numbering Conversion

You will learn several numbering conversion methods in this course:

- I. Binary to Decimal
- 2. Decimal to Binary
- 3. Octal to Binary / Binary to Octal
- 4. Hexadecimal to Binary / Binary to Hexadecimal
- 5. Octal to Hexadecimal / Hexadecimal to Octal

Numbering Conversion Method I: Binary to Decimal

When converting **binary** numbers to **decimal** numbers, perform the following steps:

- I. Write down the binary number.
- 2. Starting from the **right-side**, draw **L'**s below the binary number moving to the left (refer to diagram on right).
- 3. Starting on the *rightmost* "L", multiply the value (placeholder) by 2 to the power of zero.
- 4. Continually repeat **step #3** moving leftwards, increasing the power of 2 by I (refer to diagram on right).
- 5. Add up the results to obtain the decimal value equivalent.

NOTE: To convert *octal* and *hexadecimal* numbers to **decimal**, replace the number **2** (in red in the diagram to the right) with **8** (for *octal*) or **16** (for *hexadecimal*).

Numbering Conversion Method 2: Decimal to Binary

When converting **decimal** numbers to **binary** numbers, perform the following steps:

- Write down the decimal number to be converted.
- 2. On the *right-side*, write the number I and moving **leftwards**, keep <u>doubling</u> the numbers until that number is **greater than** the decimal number to be converted (refer to the diagram on the right).
- 3. Starting on the left-side of those doubled numbers, compare that number with the decimal number. If that number if less than or equal to the decimal number, then write a 1 below and subtract that number from the decimal number to get a remainder. If the number is greater than decimal number (or remainder), then write a 0 below.
- 4. Repeat **step #3** (moving rightwards and comparing the number with the decimal's remainder)

NOTE: If you are converting to **8-bit**, **32-bit**, etc., add **leading zeros** if necessary.

Numbering Conversion Method 3: Octal to Binary / Binary to Octal

Binary to Octal

- I. One octal number represents 3 binary numbers, so starting from right-side, group binary digits into groups of 3 (add leading zeros if necessary).
- 2. Write (4)(2)(1) under each group of 3 binary numbers.
- 3. Multiply the value or "placeholder" (i.e. 0's and 1's) by the corresponding (4)(2)(1) for each group to obtain the octal number (refer to diagram of binary to octal conversion).

Octal to Binary

- 4. One octal number represents 3 binary numbers, so space-out the octal numbers to make space for a binary number.
- 5. Write (4)(2)(1) under each octal number.
- 6. Write 0's or 1's for each group of binary numbers to add up to the corresponding octal number (refer to diagram of octal to binary conversion).

```
101001110
\frac{1 \ 0 \ 1}{^{(4)} \ ^{(2)} \ ^{(1)}} \frac{0 \ 0 \ 1}{^{(4)} \ ^{(2)} \ ^{(1)}} \frac{1 \ 1 \ 0}{^{(4)} \ ^{(2)} \ ^{(1)}}
5 1 6
```

```
7 3 5
(4) (2) (1) (4) (2) (1) (4) (2) (1)
1 1 1 0 1 1 0 1
```

Numbering Conversion Method 4: Hexadecimal to Binary / Binary to Hexadecimal

Binary to Hexadecimal

- One hexadecimal number represents 4 binary numbers, so starting from right-side, group binary digits into groups of 4 (add leading zeros if necessary).
- Write (8)(4)(2)(1) under each group of 4 binary numbers.
- Multiply the placeholders (i.e. **0**'s and **1**'s) by the corresponding (8)(4)(2)(1) for each group to obtain the octal number.
- Convert values from I0 to I5 to A to F
 (refer to diagram of binary to hexadecimal conversion)

Hexadecimal to Binary

- One hexadecimal number represents 4 binary numbers,
 so space-out the hexadecimal numbers to make space for a binary number.
- Convert letters **A** to **F** to **I0** to **I5** (refer to diagram of binary to hexadecimal conversion)
- Write (8)(4)(2)(1) under <u>each</u> hexadecimal number.
- Write **0**'s or **1**'s for each group of binary numbers to add up to the corresponding hexadecimal number (refer to diagram of hexadecimal to binary conversion).

```
101111000101

A-10
B-11

1 0 1 1 1 1 0 0 0 1 0 1

(8) (4) (2) (1) (8) (4) (2) (1) (8) (4) (2) (1)

11 12 5
B C 5

101111000101 = BC5
```

```
D5F

D 5 F C-12

(8) (4) (2) (1) (8) (4) (2) (1) (8) (4) (2) (1) D-13
1 1 0 1 0 1 0 1 1 1 1 1 E-14
F-15
```

Numbering Conversion Method 5: Octal to Hexadecimal / Hexadecimal to Octal

To convert using the method, simply use binary as a "bridge".

Example:

Octal -> binary -> Hexadecimal
Hexadecimal -> binary -> Octal

- To convert octal to hexadecimal, convert octal to binary, then convert binary to hexadecimal.
- To convert hexadecimal to octal, convert hexadecimal to binary, then convert binary to octal.

REPRESENTING NEGATIVE NUMBERS

Two Methods: I. Sign Magnitude 2. Twos Complement

Example:

- convert -37 decimal to 8 bit signed magnitude
- 8 bits → bit values of s | 64 | 32 | 16 | 8 | 4 | 2 | 1
- I0100101
- convert 10010110 signed magnitude to decimal
- 8 bits → bit values of s | 64 | 32 | 16 | 8 | 4 | 2 | 1
- 10010110

- Signed Magnitude
- Maximum values: (non fractional)
- 4 bits (s||1|) = +-7
- 8 bits (s||| ||||) = +-127
- 16 bits (s||| |||| |||| || =
- +-32,767

TWOS COMPLEMENT

Twos Complement

Example:

- Find the two's complement of 17
- Step I: 1710 = 0001 00012
- Step 2:Take the complement: III0 III0
- Step 3:Add I: III0 III0 + I = III0 IIII.

Subtract Binary Using Two's Complement

8 Bit Twos Complement

Example: 23-17

- 23=0001 0111
- -17=0001 0001→complement→1110 1110→add 1→1110 1111
- Add both binary numbers
- 0001 0111
- <u>1110 1111</u>
- 1 000 0110 →6

List the number of digits for the following numbering systems: Decimal: 10 digits

(0-9)

Binary: 2 digits (0, 1) Octal: 8 digits (0-7)

Hexadecimal: 16 digits

(0-9, A-F)

Write a simple chart to show which values are represented for letter A - F for a hexadecimal number.

Hex	Decim	al
Α	10	
В	11	
С	12	
D	13	
E	14	
F	15	
	3.	How many binary digits does 1
		octal digit represent?

3 binary digits

How many **binary** digits does 1 hexadecimal digit represent?

4 binary digits

Use manual numbering conversion to complete the table displayed to the right.

Decimal	Binary	Octal	Hexadecimal
101	01100101	145	65
243	11110011	363	F3
56	00111000	56	38
172	10101100	254	AC

Complete the following (answers on the following page)

Solutions

Hexidecimal Addition and Subtraction

Complete the following (carry overs are shown as hints)

Extension:

Solutions

```
\begin{array}{cccc}
 & & & & 1 \\
 & 5 & A & & A \\
 & + B & F & & + 2 \\
 & \hline
 & 1 & 1 & 9 & & \underline{D}
\end{array}
```

```
1 1
6 6
A B C
x 2 9
6 0 9 C
1 5 7 8
1 B 8 1 C
```

8 Bit Negative Numbers

Convert the following numbers to binary using the sign magnitude method

```
-7 \rightarrow 10000111

-15 \rightarrow 10001111

-36 \rightarrow 10100100

-67 \rightarrow 11000011
```

Perform the following math using the Twos Complement method

```
6-5 00000110 + |||||||||||| = 00000001 \rightarrow |
18-6 00010010 + ||||||||||| = 00001100 \rightarrow |2
26-17 00011010 + ||||||||| = 00001001 \rightarrow 9
42-33 00101010 + |||011111 = 00001001 \rightarrow 9
```