

The orbove graph of triangles has k levels. For example, level 2 consists of the triangles labelled 2,3,4.

Let N_k = number of triangles in G_k .

Lemma For any $k \in \mathbb{N}$, $N_R = k^2$. Proof to be written.

Now, let A_k be the adjacency matrix of G_k Let B_k be the $K^2 \times (2k+1)$ metrix with entries

ollerwise

Finally, let C_k be the $(2k+1) \times (2k+1)$ metrix with entries $C_{i,i+1} = C_{i-1,i} = 1$ and O otherwise. Conjecture For any $k \in N$,

$$A_{k+1} = \begin{pmatrix} A_k & B_k \\ B_k & C_k \end{pmatrix}$$

Proof (?)