

Molekule niso nikoli pri miru

 Termična energija poganja delce (molekule, atome, ione, ipd.), da se le-ti gibljejo po sistemu

 Interakcije med delci pospešujejo, zavirajo oz. uklanjajo delce (spreminjajo torej smer in velikost njihove hitrosti)

← začetne hitrosti 🔵 kationi

rezultante sil anioni

+-- pot delcev nepolarne molekule

Molekule niso nikoli pri miru

- Struktura vode se kar naprej spreminja
- Tudi kompleks sladkorja in proteina se giblje

Interakcije sistem prestrukturirajo

• Čas, v katerem se sistem bistveno spremeni, definira časovno skalo sistema in glavnih procesov, ki so odgovorni za to spremembo

 Tipični primeri prestrukturiranja na (supra)molekularnem nivoju vključujejo: fazno separacijo, kristalizacijo, agregiranje

Ravnovesno ali nespremenljivo stanje?

- V ravnovesju:
 - koncentracije se ne spreminjajo
 - ni tokov

- V nespremenljivem stanju:
 - koncentracije se ne spreminjajo
 - tokovi so konstantni

Časovne skale opišejo vzpostavitev ravnovesnega stanja, nespremenljivega stanja ali posameznih procesov znotraj slednjega (npr. črpanje, prevajanje kanalov, prepuščanje membrane)

Časovnice fiziološkega procesa

Zaznava slike, prenos signala in krčenje mišice

1 fs – absorpcija fotona svetlobe

10 ns – sprememba konformacije retinala

1 μs – sprememba konformacije opsina

10 μs – aktivacija encima, ki cepi cGMP

100 μ**s** – zapiranje Na- in K-kanalov

1 ms | – hiperpolarizacija membrane čepka

10 ms – prenos nevrotransmitorjev preko sinapse na bipolarno celico

10 ms – prenos signala od biopolarne celice, preko optičnega nevrona ter motoričnega nevrona do mišične celice

1 ms – krčenje mišične celice (aktivacija miozinaktinskih kompleksov, kontinuirano spreminjanje miozinskih konformacij)

