• Εισαγωγή

Χρονική αποτίμηση αλγορίθμων εύρεσης προσεγγιστικά πλησιέστερου γείτονα και αλγορίθμων ομαδοποίησης δεδομένων, με τη χρήση κωδικοποιημένων χρονοσειρών

• Χρήση μετρικών για τη σύγκριση αποτελεσμάτων

Για τη σύγκριση των αποτελεσμάτων πριν και μετά τη κωδικοποίηση των χρονοσειρών χρησιμοποιήθηκαν οι μετρικές :

- 1. Approximate Average
- 2. Approximate True
- 3. Maximum Approximation Factor
- 4. Clustering Time
- 5. Δέλτα
- 6. Δέλτα %

όπου **Δέλτα** ορίζεται ως η διαφορά μεταξύ δύο μετρικών και **Δέλτα %** ως η κανονικοποιημένη, ποσοστιαία διαφορά μεταξύ δύο μετρικών, πριν και μετά τη κωδικοποίηση των χρονοσειρών

• Ακρωνύμια

Appr. Avg. = Approximate Average Appr. True = Approximate True M.A.F. = Maximum Approximation Factor

• Αποτελέσματα αλγορίθμων εύρεσης προσεγγιστικά πλησιέστερου γείτονα

Χαρακτηριστικά $1^{\eta\varsigma}$ μεθόδου :

- 1. Αλγόριθμος αναζήτησης = \mathbf{LSH}
- 2. Αναπαράσταση χρονοσειράς $T_i = (Y_1, Y_2, ..., Y_m)$
- 3. Μετρική απόστασης = Ευκλείδεια (L2)
- 4. Dataset = **350 χρονοσειρές**
- 5. Queryset = 9 χρονοσειρές

Παράμετροι		
L	5	
K	4	
W	6	
Threshold	117	

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Appr. Avg.	13.41 ms	3.42 ms	9.99 ms	74.49
Appr. True	110.44 ms	33.51 ms	76.93 ms	69.65
M.A.F.	2.31	2.45	-0.14	-6.06

Χαρακτηριστικά $2^{\eta\varsigma}\,\mu\epsilon\theta \acute{o}\delta o\upsilon$:

- 1. Αλγόριθμος αναζήτησης = **Hypercube**
- 2. Αναπαράσταση χρονοσειράς $T_i = (Y_1, Y_2, ..., Y_m)$
- 3. Μετρική απόστασης = Ευκλείδεια (L2)
- 4. Dataset = **350 χρονοσειρές**
- 5. Queryset = 9 χρονοσειρές

Παράμετροι			
K 14			
M	10		
Probes	2		
W	6		

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Appr. Avg.	2.78 ms	1.05 ms	1.73 ms	62.23
Appr. True	109.79 ms	33.53 ms	76.26 ms	62.45
M.A.F.	5.41	3.90	1.51	27.91

Χαρακτηριστικά $3^{\eta\varsigma}$ μεθόδου:

- 1. Αλγόριθμος αναζήτησης = **LSH**
- 2. Αναπαράσταση χρονοσειράς $T_i = ((X_1, Y_1), (X_2, Y_2), ..., (X_m, Y_m))$
- 3. Μετρική απόστασης = Discrete Fréchet
- 4. Dataset = **10 χρονοσειρές** (αναφορά)
- 5. Queryset = 9 χρονοσειρές

Παράμετροι	Αρχικές	Κωδικοποιημένες
L	5	5
K	4	4
W	6	6
Delta	0.29	0.08
Threshold	4	4

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Appr. Avg.	16494.96 ms	2531.43 ms	13963.53 ms	84.65
Appr. True	70083.87 ms	8648.41 ms	61435.46 ms	87.65
M.A.F.	1.23	1.36	-0.13	-10.56

Χαρακτηριστικά 4ης μεθόδου:

- 1. Αλγόριθμος αναζήτησης = **LSH**
- 2. Αναπαράσταση χρονοσειράς $T_i = ((X_1, Y_1), (X_2, Y_2), ..., (X_m, Y_m))$
- 3. Μετρική απόστασης = Continuous Fréchet
- 4. Dataset = 10 χρονοσειρές (αναφορά)
- 5. Queryset = 9 χρονοσειρές

Παράμετροι	Αρχικές	Κωδικοποιημένες
L	1	1
K	4	4
W	6	6
Delta	0.14	0.04
Threshold	4	4
Epsilon	1.00	1.00

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Appr. Avg.	496875.01 ms	45554.62 ms	451320.39 ms	90.83
Appr. True	1146955.51 ms	115447.53 ms	1031507.98 ms	89.93
M.A.F.	2.22	1.81	0.41	18.46

Σχολιασμός αποτελεσμάτων:

Παρατηρούμε ότι για μία κωδικοποίηση στα δεδομένα της τάξης ~3.3, επιτυγχάνεται όμοια χρονική επιτάχυνση όταν οι μέθοδοι LSH και Hypercube χρησιμοποιούν την Ευκλείδεια μετρική απόστασης, ενώ 3 φορές μεγαλύτερη επιτάχυνση όταν χρησιμοποιείται η μετρική Discrete ή Continuous Fréchet.

• Αποτελέσματα αλγορίθμων ομαδοποίησης δεδομένων

Χαρακτηριστικά 1ης μεθόδου :

- 1. Αλγόριθμος ομαδοποίησης = **Lloyd's**
- 2. Αναπαράσταση χρονοσειράς $T_i = (Y_1, Y_2, ..., Y_m)$
- 3. Μετρική απόστασης = Ευκλείδεια (L²)
- 4. Dataset = **350** χρονοσειρές
- 5. Queryset = **NaN**

Παράμετροι		
Clusters	10	

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Clustering Time	6.50 s	1.93 s	4.57 s	70.30

Χαρακτηριστικά $2^{\eta\varsigma}$ μεθόδου :

- 1. Αλγόριθμος ομαδοποίησης = LSH Range Search
- 2. Αναπαράσταση χρονοσειράς $T_i = (Y_1, Y_2, ..., Y_m)$
- 3. Μετρική απόστασης = Ευκλείδεια (L²)
- 4. Dataset = **350 χρονοσειρές**
- 5. Queryset = NaN

Παράμετροι				
Clusters 10				
k	4			
L	3			

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Clustering Time	1.25 s	0.38 s	0.87 s	69.60

Χαρακτηριστικά $3^{\eta\varsigma}$ μεθόδου :

- 1. Αλγόριθμος ομαδοποίησης = Hypercube Range Search
- 2. Αναπαράσταση χρονοσειράς $T_i = (Y_1, Y_2, ..., Y_m)$
- 3. Μετρική απόστασης = Ευκλείδεια (L²)
- 4. Dataset = **350 χρονοσειρές**
- 5. Queryset = NaN

Παράμετροι		
Clusters	10	
k	14	
M	10	
Probes	2	

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Clustering Time	1.28 s	0.40 s	0.88 s	68.75

Χαρακτηριστικά $4^{\eta\varsigma}$ μεθόδου :

- 1. Αλγόριθμος ομαδοποίησης = **Lloyd's**
- 2. Αναπαράσταση χρονοσειράς $T_i = ((X_1, Y_1), (X_2, Y_2), ..., (X_m, Y_m))$
- 3. Μετρική απόστασης = **Discrete Fréchet**
- 4. Dataset = **10** (αναφορά)
- 5. Queryset = NaN

Παράμετροι			
Clusters	10		

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Clustering Time	7057.39 s	794.63 s	6262.76 s	88.74

Χαρακτηριστικά 5ης μεθόδου:

- 1. Αλγόριθμος ομαδοποίησης: LSH Range Search
- 2. Αναπαράσταση χρονοσειράς $T_i = ((X_1, Y_1), (X_2, Y_2), ..., (X_m, Y_m))$
- 3. Μετρική απόστασης = Discrete Fréchet
- 4. Dataset = **10** (αναφορά)
- 5. Queryset = NaN

Παράμετροι		
Clusters	10	

	Αρχικές	Κωδικοποιημένες	Δέλτα	Δέλτα %
Clustering Time	2215.52 s	290.52 s	1925 s	86.93

Σχολιασμός αποτελεσμάτων:

Ομοίως κι εδώ, βλέπουμε ότι για μία κωδικοποίηση στα δεδομένα της τάξης ~3.3, επιτυγχάνεται παρόμοια χρονική επιτάχυνση όταν οι μέθοδοι Lloyd's, LSH Range Search και Hypercube Range Search χρησιμοποιούν την Ευκλείδεια μετρική απόστασης, ενώ περίπου 3 φορές υψηλότερη επιτάχυνση στη μετρική απόστασης Discrete Fréchet.

• Σύγκριση καμπυλών πριν και μετά τη κωδικοποίηση:

• Αναφορές

1: https://eclass.uoa.gr/modules/forum/viewtopic.php?course=DI352&topic=33210&forum=54779