we get

$$\mu = (\mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} \mathbf{1})^{-1} \mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} y, \quad \alpha = (XX^{\top} + KI_m)^{-1} (y - \mu \mathbf{1}).$$

Note that the matrix $B^{\top}AB$ is the scalar $\mathbf{1}^{\top}(XX^{\top}+KI_m)^{-1}\mathbf{1}$, which is the negative of the Schur complement of $XX^{\top}+KI_m$.

Interestingly $b = \mu$, which is not obvious a priori.

Proposition 55.2. We have $b = \mu$.

Proof. To prove this result we need to express α differently. Since μ is a scalar, $\mu \mathbf{1} = \mathbf{1}\mu$, so

$$\mu \mathbf{1} = \mathbf{1}\mu = (\mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} \mathbf{1})^{-1} \mathbf{1} \mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} y,$$

and we obtain

$$\alpha = (XX^{\top} + KI_m)^{-1}(I_m - (\mathbf{1}^{\top}(XX^{\top} + KI_m)^{-1}\mathbf{1})^{-1}\mathbf{1}\mathbf{1}^{\top}(XX^{\top} + KI_m)^{-1})y. \tag{*}_{\alpha_3}$$

Since $w = X^{\top} \alpha$, we have

$$w = X^{\top} (XX^{\top} + KI_m)^{-1} (I_m - (\mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} \mathbf{1})^{-1} \mathbf{1} \mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1}) y. \quad (*_{w_3})$$

From $\xi = K\alpha$, we deduce that b is given by the equation

$$b\mathbf{1} = y - Xw - K\alpha.$$

Since $w = X^{\top} \alpha$, using $(*_{\alpha_3})$ we obtain

$$b\mathbf{1} = y - Xw - K\alpha$$

$$= y - (XX^{\top} + KI_m)\alpha$$

$$= y - (I_m - (\mathbf{1}^{\top}(XX^{\top} + KI_m)^{-1}\mathbf{1})^{-1}\mathbf{1}\mathbf{1}^{\top}(XX^{\top} + KI_m)^{-1})y$$

$$= (\mathbf{1}^{\top}(XX^{\top} + KI_m)^{-1}\mathbf{1})^{-1}\mathbf{1}\mathbf{1}^{\top}(XX^{\top} + KI_m)^{-1})y$$

$$= \mu\mathbf{1},$$

and thus

$$b = \mu = (\mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} \mathbf{1})^{-1} \mathbf{1}^{\top} (XX^{\top} + KI_m)^{-1} y, \tag{*_{b_3}}$$

as claimed. \Box

In summary the KKT-equations determine both α and μ , and so $w = X^{\top} \alpha$ and b as well. There is also a useful expression of b as an average.

Since $\mathbf{1}^{\mathsf{T}}\mathbf{1} = m$ and $\mathbf{1}^{\mathsf{T}}\alpha = 0$, we get

$$b = \frac{1}{m} \mathbf{1}^{\mathsf{T}} y - \frac{1}{m} \mathbf{1}^{\mathsf{T}} X w - \frac{1}{m} K \mathbf{1}^{\mathsf{T}} \alpha = \overline{y} - \sum_{j=1}^{n} \overline{X^{j}} w_{j},$$