

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C07C 281/02, 281/06, 281/20 C07C 337/06, 311/49 C07F 9/24, C07D 307/91		A1	(11) International Publication Number: WO 93/10083 (43) International Publication Date: 27 May 1993 (27.05.93)
(21) International Application Number: PCT/US92/09855 (22) International Filing Date: 17 November 1992 (17.11.92)		(74) Agents: THOMPSON, Raymond, D. et al.; Uniroyal Chemical Company, Inc., World Headquarters, Middlebury, CT 06749 (US).	
(30) Priority data: 796,506 22 November 1991 (22.11.91) US		(81) Designated States: AU, BG, BR, CA, CS, FI, HU, JP, KR, LK, NO, PL, RO, RU, SD, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).	
(71) Applicants: UNIROYAL CHEMICAL COMPANY, INC. [US/US]; World Headquarters, Middlebury, CT 06749 (US). UNIROYAL CHEMICAL LTD./UNIROYAL CHEMICAL LTee [CA/CA]; 25 Erb Street, Elmira, Ontario N3B 3A3 (CA).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors: DEKEYSER, Mark, A. ; 333 Boxbury Drive, Waterloo, Ontario N2K 1W3 (CA). MCDONALD, Paul, T. ; 43 Mirey Dam Road, Middlebury, CT 06762 (US).			

(54) Title: INSECTICIDAL PHENYLHYDRAZINE DERIVATIVES

(57) Abstract

Compounds having structural formulae (I) and (II) where X, Y, R and Z are defined in the specification are disclosed. The compounds of this invention are effective for controlling mites, nematodes, rice planthopper, tobacco budworm, and southern corn rootworm. Methods for making these compounds are also set forth.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

- 1 -

INSECTICIDAL PHENYLHYDRAZINE DERIVATIVES

CROSS REFERENCE TO RELATED APPLICATION

5 This is a continuation-in-part of application
Serial Number 07/796,506, filed November 22, 1991.

BACKGROUND OF THE INVENTION

1. Field of the Invention

10 This invention is directed to novel phenylhydrazine derivatives which exhibit activity as insecticides, acaricides and nematicides. This invention is also directed to insecticidal, acaricidal or nematicidal compositions comprising such compounds as well as to
15 methods of controlling insects, acarids and nematodes employing such compounds or compositions.

Destruction by insects, acarids and nematodes presents a serious problem to agriculture. A wide variety of field crops are in need of protection from
20 nematodes, acarids, and insects including such valuable crops as soybeans, corn, peanuts, cotton, alfalfa, rice and tobacco. In addition, vegetables, such as tomatoes, potatoes, sugarbeet, carrots, peas, and the like as well as fruits, nuts, ornamentals and seed bed crops such as
25 apples, peaches, almonds, citrus fruit and grapes may also require protection from the ravages of such pests.

Consequently, the development of new, more effective pesticides including insecticides, acaricides

-2-

and nematicides represents an ongoing scientific activity. More particularly, the development of pesticides which are effective as both ovicides and larvicides are of interest.

5 2. Description of Related Art

Chemical Abstracts 108(19):163280d refers to alkyl phenylhydrazinecarboxylates said to be useful as acaricides. United States Patent 4,725,302 refers to substituted phenylhydrazines and phenyloxadiazolinones 10 said to be useful as pesticides. European Patent 0 067 471 refers to 7-substituted 2,3-dihydrobenzofurans said to be useful as pesticides or chemical intermediates. DerWent abstract 88-312695/44 refers to 15 arylhydrazides of trifluoroacetic acid said to have fungicidal, bacteriocidal, acaricidal, and antiseptic activity. Chemical Abstracts 105(17):152686c refers to various phenylhydrazines said to have activity against insects and mites.

20 SUMMARY OF THE INVENTION

The instant invention relates to a compound having the structural formula (I) or (II):

wherein:

-3-

X is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C₁-C₄ alkoxy; halogen; lower alkyl; and lower alkylthio; or c) along with the phenyl to which it is attached, forms a multiple fused ring heterocycle such as dibenzofuranyl;

Y is H, C₁-C₄ alkanoyl, C₁-C₄ haloalkanoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C₁-C₄ alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S.

Further, when X includes a substituent having a phenyl ring (i.e., is phenyl, phenylalkoxy, phenoxy or benzyl), the phenyl ring is optionally substituted with one or more of halogen, nitro, lower alkyl, lower alkoxy, lower haloalkyl, or dialkylamino.

The instant invention further relates to pesticidal compositions comprising:

a) an effective amount of a compound having the structure of formula (I) or (II) above as an active ingredient; and (b) an agriculturally acceptable carrier.

The present invention is also directed to a method for controlling pests such as insects, acarids or nematodes which comprises applying an effective amount

-4-

of a compound of formula (I) or (II) or of a composition of the present invention to a locus to be protected or rid of pests.

DETAILED DESCRIPTION OF THE INVENTION

5

The compounds of the present invention have the structure (I) or (II) defined above. Preferred compounds are those in which Y is hydrogen or COCF₃.

The compounds having structure (I) may be prepared by reacting a substituted phenylhydrazine:

10

with an acylating agent:

15

wherein Z is halo or

20

25

and an equivalent of an HCl acceptor such as pyridine in a solvent such as toluene. The product of this reaction may be further acylated, or converted by oxidation with an oxidizing agent such as Pd/air to form compounds having structure (II).

-5-

The compositions of this invention comprise (a) a compound having a structure within that of formula (I) or (II) above, and (b) a suitable carrier. Such suitable carriers may be solid or liquid in nature.

Suitable liquid carriers may be comprised of water,
5 alcohols, ketones, phenols, toluene and xylenes. In such formulations, additives conventionally employed in the art may be utilized such as, for example, one or more surface active agents and/or inert diluents, to facilitate handling and application of the resulting
10 pesticide composition.

The pesticidal compositions may alternatively comprise solid carriers taking the form of dusts, granules, wettable powders, pastes, aerosols, emulsions, emulsifiable concentrates, and water-soluble solids.
15

For example, the pesticidal compounds of this invention may be applied as dusts when admixed with or absorbed onto powdered solid carriers, such as mineral silicates, e.g., mica, talc, pyrophyllite and clays, together with a surface-active dispersing agent so that
20 a wettable powder is obtained which then is applicable directly to the loci to be treated. Alternatively, the powdered solid carrier containing the compound admixed therewith may be dispersed in water to form a suspension for application in such form.
25

Granular formulations of the compounds, suitable for application by broadcasting, side dressing, soil incorporation or seed treatment, are suitably prepared

-6-

using a granular or pellitized form of carrier such as granular clays, vermiculite, charcoal or corn cobs.

Alternatively, the pesticidal compounds may be applied in liquids or sprays when utilized in a liquid carrier, such as in a solution comprising a compatible solvent such as acetone, benzene, toluene or kerosene, or as dispersed in a suitable non-solvent medium, for example, water.

Another method of application to loci to be treated is aerosol treatment, for which the compound may be dissolved in an aerosol carrier which is a liquid under pressure but which is a gas at ordinary temperature (e.g., 20°C) and atmospheric pressure. Aerosol formulations may also be prepared by first dissolving the compound in a less volatile solvent and then admixing the resulting solution with a highly volatile liquid aerosol carrier.

For pesticidal treatment of plants (such term including plant parts), the compounds of the invention preferably are applied in aqueous emulsions containing a surface-active dispersing agent which may be non-ionic, cationic or anionic. Suitable surface-active agents include those known in the art, such as those disclosed in U.S. Patent 2,547,724 (columns 3 and 4). The compounds of the invention may be mixed with such surface-active dispersing agents, with or without an organic solvent, as concentrates for the subsequent addition of water to yield aqueous suspensions of the

-7-

compounds at desired concentration levels.

In addition, the compounds may be employed with carriers which themselves are pesticidally active, such as insecticides, acaricides, fungicides or bactericides.

It will be understood that the amount of the
5 pesticidally active compound in a given formulation will depend upon the specific pest to be combatted, as well as upon the specific chemical composition and formulation of the compound being employed, the method of applying the compound/formulation and the locus of
10 treatment so that the pesticidally effective amount of the compound may vary widely. Generally, however, concentrations of the compound as the active ingredient in pesticidally effective formulations may range from about 0.1 to about 95 percent by weight. Spray
15 dilutions may be as low as a few parts per million, while at the opposite extreme, full strength concentrates of the compound may be usefully applied by ultra low volume techniques. Concentration per unit area, where plants constitute the loci of treatment, may
20 range between about 0.01 and about 50 pounds per acre, with concentrations of between about 0.1 and about 10 pounds per acre preferably being employed for crops such as corn, tobacco, rice and the like.

To combat pests, sprays of the compounds may be
25 applied to the pests directly and/or to plants upon which they feed or nest. The pesticidally active formulations may also be applied to the soil or other

-8-

medium in which the pests are present.

Harmful insects, nematodes and acarids attack a wide variety of plants, including both ornamental and agricultural plants and inflict damage by consuming roots and/or foliage, withdrawing vital juices from the 5 plants, secreting toxins and often by transmitting diseases. The compounds of the present invention may be advantageously utilized to minimize or prevent such damage. The specific methods of application, as well as the selection and concentration of these compounds will, 10 of course, vary depending upon such circumstances as geographic area, climate, topography, plant tolerance, etc. For specific circumstances, one skilled in the art may readily determine the proper compound, concentration and method of application by routine experimentation.

15 The compounds of the invention are particularly useful as insecticides, nematicides and acaricides, for foliar and/or soil application.

EXAMPLES

20 The following Examples are intended to further illustrate the invention, and are not intended to limit the scope of the invention in any manner whatsoever.

EXAMPLE 1

25 Preparation of (4-methoxy-[1;1'-biphenyl]-3-yl)hydrazine hydrochloride (chemical intermediate)

To 25 g of 5-phenyl-o-anisidine were added 250 ml of water and 450 ml of concentrated hydrochloric acid

-9-

and the stirred solution was cooled to 0°C. A solution of 8.6 g of sodium nitrite in 20 ml of water was then added dropwise, maintaining a temperature of 0°C. After this addition the mixture was stirred, at 0°C, for 1 hour. A solution of 113 g of stannous chloride in 200
5 ml of concentrated HCl, cooled to -20°C, was added to the reaction mixture and again the mixture was stirred for one hour. The mixture was then suction filtered and the resulting solid was allowed to dry overnight. The solid was dissolved in hot water, gravity filtered, and
10 the filtrate cooled on ice. The crystallized solid was then suction filtered and the product was allowed to dry overnight. The product obtained was 26 g of (4-methoxy-[1,1'-biphenyl]-3-yl)hydrazine hydrochloride.

15

EXAMPLE 2

Preparation of 2-(4-methoxy-[1,2'-biphenyl]-3-yl)-hydrazide of propanoic acid (Compound 18)

To 5 g of the product of Example 1 was added 100 ml of water and 40 ml of 10% sodium hydroxide solution and
20 the mixture was allowed to stir for 1 hour at room temperature. The mixture was then extracted with ether and the ether extract was dried over sodium sulfate for one half hour. The ether extract was then filtered and evaporated under reduced pressure to yield 4.6 g of the
25 intermediate, (4-methoxy-[1,1'-biphenyl]-3-yl)hydrazine.

To 4.6 g of the above intermediate, 150 ml of toluene and 1.58 g of pyridine were added and the solution was stirred and cooled to 0°C. Then, 1.84 g of

-10-

propionyl chloride was added dropwise. After addition of the propionyl chloride, the solution was stirred for 1 hour at 0°C. The solution was then washed twice, each time with 100 ml of water. The water fraction was saved and extracted with toluene. The toluene fractions from 5 the extraction were combined and evaporated under reduced pressure. The resulting solid was washed with hexane and filtered. The product obtained was 3.4 g of 2-(4-methoxy-[1,1'-biphenyl]-3-yl)hydrazide of propanoic acid.

10

EXAMPLE 3

Preparation of 2-(4-methoxy-[1,1'-biphenyl]-3-yl)-2-(trifluoroacetyl)hydrazide of propanoic acid (Compound 73)

To 2.25 g of the product of Example 2 was added 150 15 ml of methylene chloride. The solution was stirred and cooled to 0°C. Then 1.75 g of trifluoroacetic anhydride was added dropwise, the flask stoppered, and the reaction stirred overnight. The solvent was then evaporated under reduced pressure to yield a solid which 20 was washed with hexane and filtered. The final product obtained was 2.7 g of 2-(4-methoxy-[1,1'-biphenyl]-3-yl)-2-(trifluoroacetyl)-hydrazide of propanoic acid, with a melting point of 126°C.

25

-11-

EXAMPLE 4

Preparation of (4-bromo-[1,1'-biphenyl]-3-yl)hydrazine hydrochloride (chemical intermediate)

To 4 g of 4-bromo-[1,1'-biphenyl]-3-amine were added 25 ml of water and 50 ml of concentrated HCl with 5 stirring. The solution was cooled to 0°C. A solution of 1.1 g of sodium nitrite in 6 ml of water was then added dropwise while maintaining a temperature of 0°C. After this addition, the mixture was stirred at 0°C for one hour. A solution of 20 g of stannous chloride in 20 ml of concentrated HCl cooled to -20°C was added to the reaction mixture and again the mixture was stirred for 10 one hour.

The precipitate was then suction filtered and the resulting solid was allowed to dry overnight. The 15 product, (4-bromo-[1,1'-biphenyl]hydrazine hydrochloride, was used in subsequent reactions without further purification.

EXAMPLE 5

Preparation of isopropyl 2-(4-bromo-[1,1'-biphenyl]-3-yl) hydrazine carboxylate (Compound 139)

To the product of Example 4 was added 100 ml of a 20 10% aqueous sodium hydroxide solution and the mixture was stirred for 30 minutes at 10°C. The mixture was 25 then extracted with ether, dried over sodium sulfate for 2 hours, and evaporated, leaving 3 g of (4-bromo-[1,1'-biphenyl]-3-yl)hydrazine. To 3 g of the hydrazine were

-12-

added 100 ml of toluene and 1.5 g of pyridine and the resulting mixture was cooled an ice bath. Twelve ml of a 1M solution of isopropyl chloroformate in toluene were added dropwise. After the addition of isopropyl chloroformate, the solution was allowed to stir
5 overnight at room temperature. The solution was then washed twice, each time with 100 ml of water, dried over sodium sulfate for 2 hours, and evaporated under reduced pressure.

10 The resulting solid was washed with hexane and recrystallized from toluene. The product obtained was 3 g of isopropyl 2-(4-bromo-[1,1'-biphenyl]-3-yl) hydrazinecarboxylate with melting point 107-108°C.

EXAMPLE 6

15 Preparation of isopropyl (4-bromo-[1,1'-biphenyl]-3-yl)
diazene carboxylate (Compound 16)

To 1.7 g of the product of Example 4 was added 100 ml of toluene and 0.4 g of palladium on charcoal. The mixture was stirred overnight at room temperature, then
20 filtered out and the toluene evaporated under reduced pressure. The product obtained was 1.5 g of isopropyl (4-bromo-[1,1'-biphenyl]-3-yl)diazene carboxylate as a red oil.

-13-

EXAMPLE 7

Preparation of 2-methoxy-3-dibenzofuranyl hydrazine
(chemical intermediate)

To 10 g of 3-amino-2-methoxydibenzofuran were added 100 ml of water and 50 ml of concentrated HCl with stirring. The solution was cooled to 0°C. A solution of 3.5 g of sodium nitrite in 15 ml of water was then added dropwise, maintaining a temperature of 0°C. After this addition, the mixture was stirred at 0°C for one hour. A solution of 40 g of stannous chloride in 50 ml of concentrated HCl cooled to -20°C was added to the reaction mixture and the mixture was stirred for one hour.

The precipitate was then suction filtered and the resulting solid added to a solution of 70 g sodium hydroxide in 500 ml of water cooled in an ice bath. The mixture was then extracted with ether, dried over sodium sulfate for 2 hours, and evaporated to a solid. The solid was washed with hexane, leaving 7 g of 2-methoxy-3-dibenzofuranyl hydrazine of mp 113-115°C.

EXAMPLE 8

Preparation of isopropyl 2-(2-methoxy-3-dibenzofuranyl) hydrazinecarboxylate (Compound 141)

To 2.3 g of the product of Example 7 were added 100 ml of toluene and 1 g of pyridine and the resulting mixture was cooled in an ice bath. Ten ml of a 1M solution of isopropyl chloroformate in toluene was then

-14-

added dropwise. After this addition, the solution was allowed to stir overnight at room temperature.

The solution was then washed twice, each time with 100 ml of water, dried over sodium sulfate for two hours, and then evaporated under reduced pressure. The resulting solid was washed with hexane and recrystallized from toluene. The product obtained was 2 g of isopropyl 2-(2-methoxy-3-dibenzofuranyl) hydrazine carboxylate with mp of 178°C.

10

EXAMPLE 9

Preparation of isopropyl (2-methoxy-3-dibenzofuranyl) diazenecarboxylate (Compound 157)

To 1.4 g of the product of Example 7 were added 100 ml of toluene and 0.3 g of palladium on charcoal. The mixture was stirred overnight at room temperature, filtered, and the toluene evaporated under reduced pressure. The product obtained was 1.2 g of isopropyl (2-methoxy-3-dibenzofuranyl) diazenecarboxylate as a red oil.

20

The compounds summarized in Tables 1-4B and numbered from 1-161 were prepared using essentially the same processes as shown in the foregoing examples. Where starting compounds were not commercially available, they were synthesized by methods well known in the art. Each of the compounds so formed is characterized by their NMR characteristics.

-15-

TABLE 1

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>Z</u>	<u>NMR DATA FOR NOTES 1 (CDCl₃)</u>
1	2-C ₆ H ₅	CH ₃	0	s(3)1.9; m(10)6.8-7.5; bs(1)9.9
2	2-C ₆ H ₅	OCH ₃	0	s(3)3.6; s(1)6.5; m(9)6.8-7.5; bs(1)9.1
3	2-C ₆ H ₅	OCH ₂ CH ₃	0	t(3)1.2; q(2)4.0; s(1)6.5;
				m(9)6.7-7.5; bs(1)9.0
4	2-C ₆ H ₅	C(CH ₃) ₃	0	s(9)1.2; m(10)6.8-7.5; bs(1)9.7
5	2-C ₆ H ₅	C ₅ H ₉ -c	0	m(8)1.4-1.8; m(1)2.4-2.8; d(1)6.5;
				m(9)6.7-7.5; d(1)9.8
6	2-C ₆ H ₅	OCH ₂ C ₆ H ₅	0	s(2)5.1; s(1)6.5; m(14)6.8-7.5; s(1)9.8
7	2-C ₆ H ₅	OCH(CH ₃) ₂	0	d(6)1.2; m(1)4.9; bs(1)5.9; bs(1)6.3;
				m(9)6.8-7.5
8	3-C ₆ H ₅	CH ₃	0	s(3)2.0; m(9)6.8-7.5; bs(1)8.7; bs(1)9.7

-16-

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>Z</u>	<u>NMR DATA FOR TABLE 1 (CDCl₃)</u>
9	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C1-	0	s(3)3.8; s(2)3.9; m(9)6.9-7.6; bs(1)9.8
10	2-CH ₃ O, 5-C ₆ H ₅	OCH ₃	0	s(3)3.7; s(3)3.8; bs(1)6.2; m(9)6.7-7.5
11	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₃	0	t(3)1.2; s(3)3.8; q(2)4.2; bs(1)6.3; bs(1)6.4; m(8)6.7-7.5
12	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ CH ₂ CH ₃	0	t(3)0.9; m(2)1.5; t(2)2.2; s(3)3.8; m(9)6.8-7.5; d(1)9.8
13	2-CH ₃ O, 5-C ₆ H ₅	CH(CH ₃) ₂	0	d(6)0.9; m(1)2.9; s(3)3.8; m(9)6.8-7.5 bs(1)9.8
14	2-CH ₃ O, 5-C ₆ H ₅	C(CH ₃) ₃	0	s(9)1.1; s(3)3.8; m(9)6.8-7.5; bs(1)9.8
15	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ C ₆ H ₅	0	s(3)3.9; s(2)5.0; m(2)6.4; m(8)6.9-7.6
16	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ 0CH ₃	0	s(3)3.3; s(3)3.8; s(2)4.0; bs(1)6.5; m(8)6.7-7.5; bs(1)8.3
17	2-CH ₃ O, 5-C ₆ H ₅	C(CH ₃)=CH ₂	0	s(3)2.0; s(3)3.8; s(1)5.2; s(1)5.7; bs(1)6.5; m(8)6.7-7.5; bs(1)8.3
18	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ CH ₃	0	t(3)1.2; q(2)2.3; s(3)3.8; bs(1)6.5; m(8)6.8-7.5; bs(1)8.3

-17-

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	Z	<u>NMR DATA FOR TABLE 1 (CDCl₃)</u>
19	2-CH ₃ O, 5-C ₆ H ₅	O(CH ₂) ₃ CH ₃	0	t(3)0.9; m(4)1.5; s(3)3.8; t(2)4.1;
				bs(1)6.5; m(8)6.8-7.5
20	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₂ CH ₃	0	t(3)0.9; m(2)1.6; s(3)3.8; t(2)4.1;
				bs(1)6.3; bs(1)6.5; m(8)6.8-7.5
21	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH(CH ₃) ₂	0	d(6)0.9; m(1)1.9; s(3)3.8; d(2)3.9;
				bs(1)6.3; bs(1)6.6; m(8)6.8-7.5
22	2-CH ₃ O, 5-C ₆ H ₅	NHC ₃ H ₇	S	t(3)1.0; m(2)1.7; q(2)3.6; s(3)3.9;
				s(1)6.5; m(9)6.8-7.5; s(1)8.5
23	2-CH ₃ O, 5-C ₆ H ₅	CO ₂ CH ₂ CH ₃	0	t(3)1.2; s(3)3.8; q(2)4.2; m(8)6.8-7.5;
				bs(1)8.3; bs(1)9.8
24	2-CH ₃ O, 5-C ₆ H ₅	SCH ₂ CH ₃	0	t(3)1.2; q(2)2.7; s(3)3.8; m(9)6.8-7.5;
				bs(1)9.5
25	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH-CH ₂	0	s(3)3.8; d(2)4.6; m(3)5.1-6.0; bs(1)6.3;
				bs(1)6.5; m(8)6.8-7.5
26	2-CH ₃ O, 5-C ₆ H ₅	OCH(CH ₃) ₂	0	d(6)1.2; s(3)3.8; m(1)5.0; bs(1)6.3;
				bs(1)6.5; m(8)6.8-7.5

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>T</u>	<u>NMR DATA FOR TABLE 1 (CDCl₃)</u>
27	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C(CH ₃) ₃	0	s(9)1.0; s(2)2.1; s(3)3.8; bs(1)6.5;
				m(8)6.8-7.5
28	2-CH ₃ O, 5-C ₆ H ₅	CF ₂ CF ₃	0	s(3)3.8; m(8)6.8-7.5; bs(2)8.2
29	2-CH ₃ O, 5-C ₆ H ₅	CF ₂ C ₁	0	s(3)3.8; bs(1)6.0; m(8)6.8-7.5; bs(1)8.2
30	2-CH ₃ O, 5-C ₆ H ₅	2-C ₄ H ₃ S	0	s(3)3.8; m(13)6.7-7.9
31	2-C ₆ H ₅	H	0	m(10)6.7-7.5; bs(1)8.1; bs(1)9.9;
32	2-C ₆ H ₅	CF ₃	0	m(11)6.7-7.5
33	2-CH ₃ O, 5-C ₆ H ₅	H	0	s(3)3.9; m(9)6.9-7.7; bs(1)8.1; bs(1)9.8
34	2-CH ₃ O, 5-C ₆ H ₅	CH ₃	0	s(3)2.0; s(3)3.8; m(10)6.8-7.7
35	2-CH ₃ O, 5-C ₆ H ₅	CF ₃	0	s(3)3.8; m(10)6.8-7.7
36	2-CH ₃ O, 5-C ₆ H ₅	CHC ₁ CH ₃	0	d(3)1.5; s(3)3.9; q(1)
37	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C ₆ H ₅	0	s(2)3.5; s(3)3.9; m(15)5.8-7.4
38	2-CH ₃ O, 5-C ₆ H ₅	cyclohexyl	0	m(11)1.1-1.8; s(3)3.8;
				m(9)6.8-7.5; bs(1)9.8
39	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₂ OCH ₃	0	s(3)3.3; t(2)3.5; s(3)3.8; t(2)4.2;
				bs(1)6.3; m(9)6.8-7.5

-19-

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>Z</u>	<u>NMR DATA FOR TABLE 1 (CDCL₃)</u>
40	2-CH ₃ O, 5-C ₆ H ₅	OCHClCH ₃	0	d(3)1.8; s(3)3.8; m(1)6.5; m(10)6.8-7.6
41	2-CH ₃ O, 5-C ₆ H ₅	OC ₆ H ₅	0	s(3)3.8; m(15)6.5-7.8
42	2-C ₆ H ₇	OC ₃ H ₇	0	m(5)0.8-1.7; m(2)4.1; bs(1)5.9
				m(10)6.7-7.5
43	2-C ₆ H ₅	OCH ₄ H ₉	0	m(7)0.8-1.7; m(2)4.1; bs(1)5.9
				m(10)6.7-7.6
44	2-CH ₃ O, 5-C ₆ H ₅	OCH=CH ₂	0	s(3)3.8; m(2)4.5-5.0
				bs(1)6.2; m(10)6.7-7.6
45	2-CH ₃ O, 5-C ₆ H ₅	OC(CH ₃) ₂ CCl ₃	0	s(6)1.9; s(3)3.9; bs(1)6.2; m(9)6.8-7.6
46	2-CH ₃ O, 5-C ₆ H ₅	O-cyclohexyl-	0	m(8)1.0-2.2; s(3)3.9; m(10)6.5-7.5
		3-Cl		
47	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₂ Cl	0	m(2)3.6; s(3)3.8; m(2)4.3; bs(1)6.2
				m(9)6.7-7.6
48	2-CH ₃ O, 5-C ₆ H ₅	CCl ₃	0	s(3)3.9; m(10)6.8-7.8
49	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH-CH ₂	0	d(2)4.5; m(3)5.0-6.0; m(11)6.7-7.6

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>Z</u>	<u>NMR DATA FOR TABLE 1 (CDCl₃)</u>
50	3-C ₆ H ₅	OCH(CH ₃) ₂	0	d(6)1.2; m(1)4.9; bs(1)6.0; m(10)6.7-7.5
51	3-C ₆ H ₅	OC ₂ H ₅	0	t(3)1.2; q(2)4.1; bs(1)5.9; m(10)6.7-7.6
52	2-CH ₃ O, 5-C ₆ H ₅	OCH(CH ₃) ₂	0	m(9)1.2-1.6; m(2)4.0-4.3; m(1)4.8-5.2; bs(1)6.4; m(9)6.8-7.6
53	2-C ₆ H ₅	OC ₅ H ₁₁	0	m(9)0.8-1.7; m(2)3.9-4.2; bs(1)5.9 m(10)6.7-7.5
54	2-CH ₃ O, 5-C ₆ H ₅	OC ₅ H ₁₁	0	m(9)0.8-1.7; s(3)3.8; t(2)4.1; bs(1)6.3; m(9)6.7-7.5
55	2-CH ₃ O, 5-C ₆ H ₅	OC ₆ H ₁₃	0	m(11)0.8-1.7; s(3)3.9; t(2)4.1; bs(1)6.3; m(9)6.7-7.5
136	3-OCH ₂ C ₆ H ₅	C ₂ H ₅	0	t(3)1.2; q(2)4.1; s(2)5.0; bs(2)6.3; m(9)6.9-7.4
137	3-OCH ₂ C ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.3;m(1)5.0;s(2)5.1;bs(2)6.5; m(9)6.9-7.5
138	3-OC ₆ H ₅	CH(CH ₃) ₂	0	s(9)1.4;bs(2)6.5;m(9)6.9-7.5
139	2-Br, 5-C ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.3;m(1)5.0;bs(1)6.3;m(8)6.9-7.5

-21-

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>Z</u>	<u>NMR DATA FOR TABLE 1 (CDCl₃)</u>
140	3-OC ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.3;m(1)5.0;bs(2)6.6;m(9)6.9-7.5
143	3-OCH ₂ C ₆ H ₅	CH ₃	0	s(3)3.8;s(2)5.0;bs(2)6.5;m(9)7.0-7.5
144	3-OCH ₂ C ₆ H ₅	CH ₂ CH=CH ₂	0	d(2)4.5;m(3)5.1-6.0;bs(2)6.5;
				m(9)6.9-7.5
145	2-CH ₂ C ₆ H ₅	C ₃ H ₇	0	t(3)0.8;m(2)1.5;s(2)3.8;m(2)3.9;
				bs(2)6.4;m(9)6.9-7.3
146	2-CH ₂ C ₆ H ₅	CH ₂ CH=CH ₂	0	s(2)3.9;d(2)4.5;m(3)5.0-5.8;bs(2)6.6;
				m(9)6.8-7.3
147	3-OCH ₂ C ₆ H ₅	C(CH ₃) ₃	0	s(9)1.4;s(2)5.0;bs(2)6.5;m(9)6.9-7.4
148	2-CH ₂ C ₆ H ₅	C(CH ₃) ₃	0	s(9)1.4;s(2)3.9;bs(2)6.2;m(9)6.9-7.3
149	3-OC ₆ H ₅	CH(CH ₃)C ₂ H ₅	0	t(3)0.8;d(3)1.2;m(2)1.5;m(1)4.8;
				bs(2)6.5;m(9)6.9-7.4
150	2-SCH ₃ ,5-C ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.2;s(3)2.4;m(1)4.9;bs(2)6.6;
				m(8)7.0-7.5

-22-

TABLE 1 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>Z</u>	<u>NMR DATA FOR TABLE 1 (CDCl₃)</u>
154	2-CH ₃ , 5-C ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.2;s(3)2.2;m(1)4.9;bs(1)5.8; bs(1)6.6;m(8)7.0--7.6
155	2-OCH ₃ , 5-OC ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.3;s(3)3.8;m(1)4.9;m(10)6.5--7.4

NOTES FOR TABLES 1-4B

(1) S = Singlet, d = doublet, t = triplet q = quartet, m = multiplet bs - broad singlet

(2) the number in parenthesis represents the number of protons

(3) CD Cl₃ is deuterated chloroform

TABLE 2

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 2 (CDCl₃)</u>
56	2-C ₆ H ₅	H	bs(1) 5.8; m(9) 6.8-7.5; bs(1) 8.1
57	2-C ₆ H ₅	CH ₃	s(3) 2.5; bs(1) 6.0; m(9) 6.8-7.5
58	2-C ₆ H ₅	OCH ₃	s(3) 3.7; bs(1) 5.7; m(9) 7.3-7.6
59	2-C ₆ H ₅	OCH ₂ CH ₃	t(3) 1.2; q(2) 4.2; m(9) 7.3-7.7; bs(1) 9.7
60	2-C ₆ H ₅	C(CH ₃) ₃	s(9) 1.2; m(10) 6.8-7.6
61	2-C ₆ H ₅	C ₅ H ₉ -C	m(8) 1.7; m(10) 6.8-7.6
62	2-C ₆ H ₅	OCH ₂ O ₆ H ₅	s(2) 5.2; bs(1) 6.9; m(9) 7.3-7.6
63	3-C ₆ H ₅	CH ₃	s(3) 2.0; m(9) 7.3-7.9; bs(1) 8.5
64	2-CH ₃ O, 5-C ₆ H ₅	H	s(3) 3.9; b(1) 5.5; m(8) 7.0-7.7; bs(1) 8.3
65	2-CH ₃ O, 5-C ₆ H ₅	CH ₃	s(3) 2.0; s(3) 3.8; bs(1) 6.1; m(8) 6.9-7.7
66	2-CH ₃ O, 5-C ₆ H ₅	OCH ₃	s(3) 3.7; s(3) 3.9; bs(1) 4.2; m(8) 7.3-7.8
67	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₃	t(3) 1.1; s(3) 3.8; q(2) 4.1; m(9) 7.2-7.8

TABLE 2 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 2 (CDCl₃)</u>
68	2-CH ₃ O, 5-C ₆ H ₅	N(CH ₃) ₂	s(6)3.0; s(3)3.9; m(9)7.0-7.9
69	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ CH ₂ CH ₃	t(3)1.0; m(2)1.7; t(2)3.0; s(3)3.9;
			m(8)7.0-7.7; bs(1)8.2
70	2-CH ₃ O, 5-C ₆ H ₅	CH(CH ₃) ₂	d(6)1.0; m(1)2.5; s(3)3.9; bs(1)5.4;
			m(8)7.0-7.9
71	2-CH ₃ O, 5-C ₆ H ₅	C(CH ₃) ₃	s(9)1.2; s(3)3.9; m(8)7.0-7.9; bs(1)8.3
72	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ C ₆ H ₅	s(3)3.8; s(2)5.1; m(8)7.1-7.8; bs(1)9.5
73	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ CH ₃	t(3)1.1; q(2); s(3)3.8;
			m(8)7.0-7.8; bs(1)8.1
74	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₂ CH ₂ CH ₃	m(7)0.8-1.7; s(3)3.9; t(2)4.1;
			m(9)7.0-7.8
75	2-CH ₃ O, 5-C ₆ H ₅	C(CH ₃)=CH ₂	s(3)2.0; s(3)3.9; m(2)5.4-5.7;
			m(8)7.0-7.8; bs(1)8.3
76	2-CH ₃ O, 5-C ₆ H ₅	CF ₃	s(3)3.9; m(9)7.1-7.8
77	2-CH ₃ O, 5-C ₆ H ₅	N(CH ₂ CH ₃) ₂	t(6)1.2; m(4)3.3; s(3)3.8; m(9)7.0-8.0
79	2-CH ₃ O, 5-C ₆ H ₅	SCH ₂ CH ₃	t(3)1.2; q(2)2.8; s(3)3.9; m(9)7.2-7.8

-25-

TABLE 2 (Cont'd)

COMPOUND	X	R	NMR DATA FOR TABLE 2 (CDCL ₃)
78	2-CH ₃ O, 5-C ₆ H ₅	CO ₂ CH ₂ CH ₃	t(3)1.3; s(3)3.8; q(2)4.2; m(8)7.0-7.9;
			bs(1)9.5
80	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH=CH ₂	s(3)3.9; d(2)4.6; m(3)5.1-5.8;
			m(9)7.0-7.7
81	2-CH ₃ O, 5-C ₆ H ₅	OCH(CH ₃) ₂	d(6)1.2; s(3)3.8; m(1)4.9; m(9)7.0-7.7
82	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C(CH ₃) ₃	s(9)1.0; s(2)2.2; s(3)3.9; m(8)7.0-7.8;
			bs(1)8.6
83	2-CH ₃ O, 5-C ₆ H ₅	CF ₂ C1	s(3)3.9; m(9)7.0-8.0
84	2-CH ₃ O, 5-C ₆ H ₅	2-C ₄ H ₃ S	s(3)3.9; m(12)7.0-8.0
85	2-CH ₃ O, 5-C ₆ H ₅	2-C ₄ H ₃ O	s(3)3.9; bs(1)6.5; m(11)7.0-8.0
86	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₃	m(6)1.3; m(4)4.2; m(9)7.0-7.8
87	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C1	s(3)3.9; s(2)4.0; m(9) 6.9-7.7
88	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C ₆ H ₅	s(2)3.7; s(3)3.8; m(14) 6.8-7.9
89	2-CH ₃ O, 5-C ₆ H ₅	cyclohexyl	m(11)1.1-1.9; s(3)3.9; m(9) 6.8-7.9

-26-

TABLE 2 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 2 (CDCL₃)</u>
90	2-CH ₃ O, 5-C ₆ H ₅	OC ₃ H ₇	t(3)1.9; m(2)1.6; s(3)3.9; t(2)4.1; m(9)6.9-7.8
91	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ OCH ₃	s(3)3.4; s(3)3.9; s(2)4.0; m(9)6.9-7.9
92	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH(CH ₃) ₂	d(6)0.9; m(1)1.8; s(3)3.9; d(2)4.0; m(9)6.9-7.8
93	2-C ₆ H ₅	OCH ₂ CH(CH ₃) ₂	d(6)0.9; m(1)1.8; d(2)3.9; bs(1)6.1; m(9)7.2-7.7
94	2-CH ₃ O, 5-C ₆ H ₅	CH ₃	t(3)1.5; s(3)2.0; s(3)4.1; m(8)6.9-7.8; bs(1)8.3
95	2-CH ₃ O, 5-C ₆ H ₅	OCH(CH ₃) ₂	d(6)1.3; m(1)5.0; m(9)7.3-7.8; bs(1)10.7
96	2-CH ₃ O, 5-C ₆ H ₅	OCH ₂ CH ₂ Cl	t(2)3.7; s(3)3.9; t(2)4.3; m(9)6.9-7.8
97	2-CH ₃ O, 5-C ₆ H ₅	OC ₆ H ₅	s(3)3.9; m(14)6.8-7.9
98	2-CH ₃ O, 5-C ₆ H ₅	OC ₄ H ₉	m(7)0.8-1.7; m(2)4.1; bs(1)6.2 m(9)7.2-7.6
99	2-C ₆ H ₅	OC ₃ H ₇	m(5)0.8-1.6; m(2)4.0; bs(1)6.2; m(9)7.0-7.7

-27-

TABLE 2 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 2 (CDCl₃)</u>
100	2-CH ₃ O, 5-C ₆ H ₅	OCH-CH ₂	s(3)3.9; m(2)4.5-5.0; s(1)6.2;
			m(10)6.8-7.8
101	2-CH ₃ O, 5-C ₆ H ₅	OC ₅ H ₁₁	m(9)0.8-1.6; s(3)3.8; m(2)4.1-6.2;
			m(9)6.8-7.7
102	2-CH ₃ O, 5-C ₆ H ₅	OC ₆ H ₁₃	m(11)0.8-1.6; s(3)3.8; m(2)4.1; m(9)
			6.8-7.7

NOTES FOR TABLES 1-4B

- (1) S = Singlet, d = doublet, t = triplet, q = quartet, m = multiplet bs - broad singlet
- (2) the number in parenthesis represents the number of protons
- (3) CD CL₃ is deuterated chloroform

-28-

TABLE 3

COMPOUND	<u>X</u>	<u>R</u>	NMR DATA FOR TABLE 3 (CDCl ₃)
103	COCH ₃	CF ₃	s(3)2.0; s(3)3.9; m(9)7.2-7.8
104	COCH ₂ Cl	CH ₃	s(3)2.3; s(3)3.9; s(2)4.5; m(9)7.2-7.8
105	COCF ₂ CF ₃	CH ₃	s(3)2.5; s(3)3.9; m(9)7.0-7.6
106	COCF ₂ CF ₃	OCH ₃	s(3)3.4; s(3)3.9; s(2)4.0; m(8)7.0-8.0;
			bs(1)8.8
107	COCH ₂ CH ₃	CF ₃	t(3)1.0; m(2)2.2; s(3)3.9; m(8)7.0-7.9;
			bs(1)9.0
108	CO ₂ CH ₂ CH ₃	CF ₃	t(3)1.2; s(3)3.9; q(2)4.2; m(9)7.0-7.8
109	CONHCH ₃	OCH ₂ CH ₃	t(3)1.2; d(3)2.9; s(3)3.9; m(10)7.0-7.8
110	COCH ₃	CH ₃	s(3)2.0; s(3)3.4; s(3)3.9; m(8)6.9-7.7;
			bs(1)9.8
111	COCF ₂ Cl	CH ₃	s(3)2.0; s(3)3.9; m(9)6.7-7.8

-29-

TABLE 3 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 3 (CDCl₃)</u>
112	COCH ₃	CF ₂ CF ₃	s(3)2.0; s(3)3.9; m(8)6.9-7.8; bs(1)8.9
113	COCH ₃	CF ₂ C1	s(3)2.0; s(3)3.9; m(8)6.9-7.8; bs(1)8.7
114	COCF ₂ CF ₃	CF ₃	s(3)3.9; m(9)6.9-7.9
115	COCF ₂ C1	CF ₃	s(3)3.9; m(9)6.9-7.8
116	PO(OC ₂ H ₅) ₂	CF ₃	t(6)1.3; s(3)3.8; q(4)4.2; m(9)6.8-7.5
117	COCH ₂ C1	CF ₃	s(3)3.9; s(2)4.1; m(9)6.8-7.8
118	COCF ₂ CF ₃	OCH(CH ₃) ₂	d(6)1.2; s(3)3.9; m(1)4.9; m(9)6.9-7.8
119	COCF ₂ C1	OCH(CH ₃) ₂	d(6)1.2; s(3)3.8; m(1)4.9; m(9)6.9-7.8
120	CONHCH ₃	OCH(CH ₃) ₂	d(6)1.2; d(3)2.8; s(3)3.8; m(1)4.9;
			m(1)5.3; m(9)6.9-7.8
121	COCCl ₃	CF ₃	s(3)3.9; m(9)6.8-7.7
122	CON(CH ₃) ₂	OCH(CH ₃) ₂	d(6)1.4; s(6)2.7; s(3)3.9; m(1)5.0;
			m(9)6.8-7.8
123	COCF ₂ CF ₃	CF ₂ C1	d(3)3.8; m(8)6.8-7.8; bs(1)8.5
124	COCF ₂ CF ₃	CF ₃	d(3)3.8; m(8)6.8-7.7; bs(1)8.6
125	SO ₂ CF ₃	CF ₃	d(3)3.8; m(9)6.8-7.8

-30-

TABLE 3 (Cont'd)

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 3 (CDCl₃)</u>
126	CO ₂ CH ₃	CF ₃	s(3)3.8; s(3)3.9; m(9)6.8-7.8
127	COCF ₂ CF ₃	OCH ₂ C ₆ H ₅	s(3)3.8; s(2)5.0; m(14)6.8-7.8
128	CONHCH ₃	CF ₃	bs(3)2.7; s(3)3.8; bs(1)5.5; m(8)6.8-7.8; s(1)9.2
129	COCH ₃	OCH ₃	s(3)3.7; s(3)3.8; m(9)6.8-7.8
130	CONHC ₂ H ₅	CF ₃	t(3)1.1; m(2)3.1; s(3)3.8; bs(1)5.8; m(9)6.8-7.8
131	CONHC ₂ H ₅	OCH(CH ₃) ₂	m(9)1.2; m(2)3.2; s(3)3.8; m(1)4.9; m(9)6.8-7.8
132	COCH ₃	OCH=CH ₂	s(3)2.0; s(3)3.8; m(2)4.4-4.9; m(1)6.5; m(9)6.8-7.8
133	PO(OCH ₂ H ₅) ₂	OCH(CH ₃) ₂	m(12)1.3; s(3)3.9; m(4)4.1; m(1)5.0; m(9)6.8-7.8
134	PO(OCH ₂ H ₅) ₂	OCH ₂ CH ₃	m(9)1.2; s(3)3.8; q(6)4.1; m(9)6.8-7.7

NOTES FOR TABLES 1-4B

(1) S = Singlet, d = doublet, t = triplet q = quartet, m = multiplet bs - broad singlet
 (2) the number in parenthesis represents the number of protons
 (3) CDCl₃ is deuterated chloroform

-31-

TABLE 4

<u>COMPOUND</u>	<u>X</u>	<u>R</u>	<u>NMR DATA FOR TABLE 4 (CDCl₃)</u>
135	2-CH ₃ O, 5-C ₆ H ₅	OCH(CH ₃) ₂	d(6)1.5; s(3)4.0; m(1)5.2; m(8)7.0-7.9
156	3-OC ₆ H ₅	OC(CH ₃) ₃	s(9)1.6;m(9)7.0-7.5
158	3-OCH ₂ C ₆ H ₅	OC ₂ H ₅	t(3)1.4;q(2)4.4;s(2)5.0;m(9)7.1-7.5
159	2-CH ₃ , 5-C ₆ H ₅	OCH(CH ₃) ₂	d(6)1.5;s(3)2.7;m(1)5.2;m(8)7.2-7.8
160	2-OCH ₃ , 5-OC ₆ H ₅	OCH(CH ₃) ₂	d(6)1.4;s(3)4.0;m(1)5.2;m(8)6.9-7.4
161	2-Br, 5-C ₆ H ₅	OCH(CH ₃) ₂	d(6)1.5;m(1)5.3;m(8)7.0-7.7

-32-

TABLE 4A

NMR DATA FOR TABLE 4A (CDCl₃)

<u>COMPOUND</u>	<u>R</u>
141	CH(CH ₃) ₂
142	C(CH ₃) ₃
151	CH ₂ CH=CH ₂
152	CH ₃
153	C ₃ H ₇

d(6)1.2;s(3)3.9;m(1)5.0;bs(2)6.5;m(6)7.0-7.6
 s(9)1.5;s(3)4.0;bs(2)6.5;m(6)7.1-7.6
 s(3)4.0;d(2)4.7;m(3)5.1-5.8;bs(2)6.5;m(6)7.1-7.6
 s(3)3.8;s(3)4.0;bs(2)6.5;m(6)7.0-7.6
 t(3)1.0;m(2)1.6;s(3)4.0;m(2)4.2;bs(2)6.6;m(6)7.1-7.6

TABLE 4B

NMR DATA FOR TABLE 4B (CDCl₃)

<u>COMPOUND</u>	<u>R</u>
157	CH(CH ₃) ₂

d(6)1.4;s(3)4.1;m(6)7.1-7.7

-33-

EXAMPLE 10

Preparation of Formulations

The remaining examples relate to the pesticidal use of the compounds of this invention. In all these examples a stock solution for the compounds were 5 prepared at 3000 ppm by dissolving 0.3 gram of the compound to be tested in 10 ml of acetone and adding 90 ml of distilled water plus four drops of ethoxylated sorbitan monolaurate, or a similar suitable wetting agent. For each example that follows, this stock 10 solution was used and the specified dilutions made. All the tests discussed below, which involved treatment with compounds of this invention, were always repeated with controls, in which the active compound was not provided, to permit a comparison upon which the percent 15 control was calculated.

EXAMPLE 11

Mite Adulicide and Mite Ovicide/Larvicide Tests

One day before treatment, a "Figure 8" configura- 20 tion of tree tanglefoot was applied to each of two cowpea primary leaves, one from each of two plants in a pot. In each figure, the circle nearer the stem was designated for the mite ovicide/larvicide test and the circle further from the stem was designated for the mite 25 adulicide test.

Groups of adult mites (Tetranychus urticae Koch) were transferred into ovicide circles one day before

-34-

treatment and the females were allowed to deposit eggs until one hour before treatment when they were removed. Plants were sprayed to run off with a 1000 ppm solution diluted from the 3000 ppm stock solution.

One day following treatment, groups of approx-
5 imately 25 adult mites were transferred into the adulticide rings. Five days later these rings were examined for live mites remaining on the leaves. The percent control was estimated based on the number of mites surviving on the check plants.

10 Nine days following treatment the ovicide/larvicide rings were examined for hatched eggs and living immature mites. The percent control was estimated based on the number of eggs hatching and immature mites surviving on the check plants. When the treatment effect was to
15 eggs, control was designated as ovicidal (O); when the treatment effect was to immatures, control was designated as larvicultural (L).

Results of the mite adulticide (MI) and ovicide/larvicide (MIOLV) tests are presented in Table 5.
20

-35-

TABLE 5

COMPOUND			
	<u>NO.</u>	<u>MI</u>	<u>MIOVL</u>
5	1	50	80(L)
	2	100	100
	3	100	100(L)
	4	100	100(L)
10	5	30	80(L)
	6	100	100(L)
	7	100	100(O)
	8	70	0
15	9	70	0
	10	100	100(O/L)
	11	100	100(O/L)
	12	95	90(L)
20	13	70	70(L)
	14	100	100(L)
	15	100	100(L)
	16	100	100(L)
25	17	70	0
	18	98	100(L)
	19	100	100(O)
	20	100	100(O)
	21	100	100(O)
	22	100	20(L)

-36-

TABLE 5 (Cont'd)

	<u>COMPOUND</u>	<u>MI</u>	<u>MIOVL</u>
	<u>NO.</u>		
5	23	70	0
	24	100	70(L)
	25	100	100(O)
	26	100	100(O)
	27	99	50(L)
10	28	100	100(L)
	29	80	80(L)
	30	50	50(L)
	39	100	100(L)
	40	50	0
15	41	80	50(L)
	42	100	100(O)
	43	100	100(O)
	44	50	30(L)
	45	70	50(L)
20	46	100	30(L)
	47	100	100(L)
	49	100	100(O)
	50	100	100(O)
	51	100	100(O)
25	52	100	100(O)
	53	100	100(L)
	54	100	100(O)
	55	100	100(O)

-37-

TABLE 5 (Cont'd)

COMPOUND

	<u>NO.</u>	<u>MI</u>	<u>MIOVL</u>
5	56	70	0
	57	90	95(L)
	58	100	30
	59	100	0
	60	100	100(L)
	62	98	50(L)
10	63	100	70(L)
	64	100	100(L)
	65	100	100(L)
	66	70	50(L)
	67	90	95(L)
	68	100	100(L)
15	69	100	100(L)
	70	100	100(L)
	72	0	50(L)
	73	100	100(L)
	74	99	30(L)
	75	100	100(L)
20	76	100	100(L)
	77	100	100(L)
	78	100	100(L)
	79	70	70(L)
	80	100	70(L)
	81	99	90(L)

-38-

TABLE 5 (Cont'd)

COMPOUND			
	<u>NO.</u>	<u>MI</u>	<u>MIOVL</u>
5	82	95	30(L)
	83	100	100(L)
	84	100	100(L)
	85	100	100(L)
	86	100	100(L)
	93	100	80(l)
10	94	100	100(L)
	95	100	100(L)
	96	100	100(L)
	97	70	30(L)
	98	100	100(L)
	99	100	100(L)
15	101	70	80(L)
	102	70	0
	105	95	0
	107	100	50(L)
	108	100	100(O)
	109	100	100(O)
20	112	60	0
	114	100	100(O)
	115	100	100(L)
	116	100	100(L)
	117	100	100(L)
	118	100	100(L)

-39-

TABLE 5 (Cont'd)

	<u>COMPOUND</u>	<u>MI</u>	<u>MIOVL</u>
	<u>NO.</u>		
5	119	100	100(L)
	120	100	100(L)
	121	100	100(L)
	122	100	100(O)
	124	100	100(L)
10	125	80	30(L)
	126	100	100(L)
	128	100	100(L)
	130	100	50(L)
	131	100	100(L)
15	133	100	100(O)
	135	100	100(O)
	136	98	100(L)
	137	100	100(L)
	138	100	98(L)
20	139	100	100(L)
	140	100	100(L)
	141	70	100(L)
	142	50	80(L)
	143	70	30(O)
25	144	30	0
	145	100	90(L)
	146	70	50(L)
	147	100	100(L)
	148	70	30(L)
	149	30	0

-40-

TABLE 5 (Cont'd)

COMPOUND			
	<u>NO.</u>	<u>MI</u>	<u>MIOVL</u>
5	150	80	0
	151	0	0
	152	0	0
	153	100	90(L)
	154	100	100(L)
	155	0	0
10	156	98	0
	157	30	80(L)
	158	100	98(O)
	159	100	100(O)
	160	100	20(O)
	161	100	100(O)
15			

NOTES: MI = MITE ADULTICIDE

MIOVL = MITE OVICIDE/LARVICIDE

EXAMPLE 12

20 European Red Mite Test

Orchard apple trees with infestations of European red mite (Panonychus ulmi) were sprayed with aqueous solutions of emulsifiable concentrates of individual compounds. Greater than 75 percent control with an application rate of 150 ppm ai was achieved by compound numbers 103, 10, 11, 19, 20, 25, 26, and 82.

25

-41-

EXAMPLE 13

Nematode Test

The stock solution of 3000 ppm was diluted to 1000 ppm. For each compound, 25 ml was drenched onto 500 grams of soil infested with root knot nematode
5 (Meloidogyne incognita) eggs in a pot, for a soil concentration of 50 ppm sc.

One day after treatment, two tomato seedlings were planted in each pot. Nineteen days after planting, the roots were evaluated for the presence of knots or galls,
10 and the percent control was estimated based on the infestation levels in check plants.

The results of the testing of nematodes (NE) are given in Table 6.

15

EXAMPLE 14

Rice Planthopper Foliar Test

The stock solution of 3000 ppm was diluted to 1000 ppm. One pot containing approximately 20 Mars variety rice seedlings was treated with each formulation by
20 spraying with a spray atomizer. One day after treatment plants were covered with a tubular cage and twenty adult rice delphacids, Sogatodes oryzicola, were transferred into each cage. Five days after transferring, counts
25 were made of the surviving planthoppers in each pot and percent control was estimated.

The results of the testing of rice planthoppers (RPH) are given in Table 6.

-42-

EXAMPLE 15

Tobacco Budworm Test

The stock solution of 3000 ppm was used for this test. For each compound, 0.2 ml was pipetted onto the surface of each of 5 diet cells, allowed to spread over the surfaces and air dried for two hours. Then a second 5 instar Heliothis virescens larva was introduced into each cell. After 14 days, the number of living larvae was determined for each treatment and percent control, corrected by Abbott's formula, was calculated.

10 The results of the testing of tobacco budworms (TB) are given in Table 6.

EXAMPLE 16

Southern Corn Rootworm Test

15 The stock solution of 3000 ppm was diluted to 100 ppm. For each compound, 2.5 ml was pipetted onto a filter paper (Whatman #3) at the bottom of a 100 mm petri dish. Two corn seedlings were soaked in the 100 ppm solution for 1 hour and transferred to the petri 20 dish. After 24 hours, each dish was loaded with 5 second instar larvae of Diabrotica undecimpunctata. After five days, the number of live larvae were noted and the percent control, corrected by Abbott's formula 25 (see J. Economic Entomology, 18, 265-267 (1925)) was calculated.

The results appear in Table 6.

-43-

TABLE 6

COMPOUND	PERCENT CONTROL				
	<u>NO.</u>	<u>NE</u>	<u>RPH</u>	<u>TB</u>	<u>SCR</u>
5	1	0	30	100	0
	2	30	100	79	75
	3	0	100	58	50
	4	70	100	100	100
	5	0	0	100	0
	6	0	100	100	0
10	7	0	100	100	100
	8	50	PT	0	0
	9	85	0	0	0
	10	0	50	20	0
	11	0	10	100	0
	12	50	0	20	0
15	13	0	5	100	0
	14	70	0	0	0
	17	70	0	0	0
	18	0	0	80	0
	19	70	60	0	14
	20	0	0	80	0
20	23	95	0	75	0
	24	0	80	0	0
	25	30	0	56	0
	26	20	0	100	0
	27	0	0	56	0
	28	70	0	40	6

-44-

TABLE 6 (Cont'd)

	<u>COMPOUND</u>	<u>PERCENT CONTROL</u>		
		<u>NE</u>	<u>RPH</u>	<u>TB</u>
5	31	50	55	100
	33	0	20	100
	34	50	15	0
	35	100	20	0
	36	50	0	0
	37	PT	25	80
10	38	0	0	80
	42	0	100	100
	43	0	100	100
	45	0	0	100
	47	80	50	0
	48	50	25	0
15	49	0	80	0
	50	30	100	0
	51	30	100	100
	53	0	100	100
	54	0	95	80
	55	0	70	40
20	57	0	35	100
	58	0	25	100
	59	50	20	100
	60	0	40	60
	62	0	0	100
	64	70	25	0
25				21

-45-

TABLE 6 (Cont'd)

	<u>COMPOUND</u>	<u>PERCENT CONTROL</u>		
		<u>NE</u>	<u>RPH</u>	<u>TB</u>
5	65	60	0	0
	67	0	10	100
	74	0	0	80
	78	95	0	0
	80	0	0	78
	81	0	50	78
10	83	30	50	73
	84	0	50	20
	87	50	0	0
	88	50	0	100
	89	0	0	60
	90	0	0	100
15	91	0	70	80
	92	0	0	75
	95	0	25	100
	96	30	0	50
	99	0	80	0
	100	70	60	0
20	102	70	0	0
	103	0	0	100
	103	0	0	100
	105	0	0	100
	106	30	55	0
	108	70	0	0
25	110	0	30	100
				0

-46-

TABLE 6 (Cont'd)

	<u>COMPOUND</u>	<u>PERCENT CONTROL</u>		
		<u>NE</u>	<u>RPH</u>	<u>TB</u>
5	111	0	0	100
	112	50	0	0
	113	0	0	100
	115	70	50	16
	116	60	0	0
	117	50	0	55
10	119	0	40	78
	121	50	40	0
	125	98	25	0
	127	50	50	0
	128	70	30	0
	129	50	25	0
15	130	70	15	0
	131	70	25	0
	132	70	50	0
	133	0	55	60
	134	70	60	0
	135	---	55	---
20	136	100	30	20
	137	100	25	0
	138	0	90	0
	139	0	98	0
	140	0	0	0
	141	100	0	60
25	142	0	0	60

-47-

TABLE 6 (Cont'd)

		COMPOUND	PERCENT CONTROL		
		<u>NO.</u>	<u>NE</u>	<u>RPH</u>	<u>TB</u>
5	143		PT	0	20
	144		0	0	0
	145		0	0	80
	146		0	PT	0
	147		0	0	100
10	148		0	0	100
	149	50	0	0	60
	150	0	0	36	0
	151	0	0	60	20
	152	0	0	60	0
15	153	50	0	37	0
	154	0	80	58	0
	155	---	0	75	0
	156	0	0	0	0
	157	100	0	40	0
20	158	---	---	---	---
	159	0	100	58	0
	160	---	0	0	0
	161	---	100	100	60

NOTES:**NE = NEMATODE**

25

RPH = RICE PLANT HOPPER**TB = TOBACCO BUDWORM****SCR = SOUTHERN CORN ROOTWORM****PT = PHYTOTOXIC--PLANT DIED, NO SCORE APPLICABLE**

What is claimed is:

1. A compound having the structural formula:

5

(I)

wherein

X is a) phenyl; lower phenylalkoxy; phenoxy; or
benzyl; the phenyl ring of each substituent being
optionally substituted with one or more of halogen,
nitro, lower alkyl, lower alkoxy, lower haloalkyl or
dialkylamino; or b) one substituent from group a) and
one or more substituents selected from C₁-C₄ alkoxy;
halogen; lower alkyl; and lower alkylthio;

10 Y is H, C₁-C₄ alkanoyl, C₁-C₄ haloalkanoyl,
dialkoxyphosphoryl, alkylaminocarbonyl,
haloalkylsulfonyl, or C₁-C₄ alkoxy carbonyl; and

15 R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆
cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy,
20 alkenyl, alkylthio, alkoxycarbonyl, alkylamino,
heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆
cycloalkyl; and

Z is O or S;
with the proviso that when X is phenyl, then R is not
25 alkylamino or alkoxycarbonyl.

2. A compound in accordance with claim 1 wherein

X is phenyl or phenyl and C₁-C₄ alkoxy;

Y is H or COCF₃;

-49-

R is CF_3 , $\text{C}_1\text{-C}_4$ alkyl, $\text{C}_1\text{-C}_4$ alkoxy, or $\text{C}_3\text{-C}_6$ cycloalkyl; and

Z is O.

3. A compound having the structural formula:

5

(II)

wherein

X is a) phenyl; lower phenylalkoxy; phenoxy; or
10 benzyl; the phenyl ring of each substituent being
optionally substituted with one or more of halogen,
nitro, lower alkyl, lower alkoxy, lower haloalkyl or
dialkylamino; or b) one substituent from group a) and
one or more substituents selected from $\text{C}_1\text{-C}_4$ alkoxy;
15 halogen; lower alkyl; and lower alkylthio;

R is H, $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, $\text{C}_1\text{-C}_4$ haloalkyl, or $\text{C}_3\text{-C}_6$ cycloalkyl; and

Z is O.

4. A compound in accordance with claim 3 wherein
20 X is phenyl or alkoxy; and

R is CF_3 , $\text{C}_1\text{-C}_4$ alkyl; $\text{C}_1\text{-C}_4$ alkoxy, or $\text{C}_3\text{-C}_6$ cycloalkyl.

5. A compound having the structural formula

25

wherein

-50-

X is hydrogen or lower alkoxy;

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

5 Z is O or S.

6. A compound having the structural formula

10

wherein

X is hydrogen or lower alkoxy;

15

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S.

20

7. A process for controlling undesirable pests which comprises applying to a locus to be protected a pesticidally effective amount of a compound having the structural formula:

25

(I)

wherein

-51-

X is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C₁-C₄ alkoxy; halogen; lower alkyl; and lower alkylthio;

Y is H, C₁-C₄ alkanoyl, C₁-C₄ haloalkanoyl, 5 dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C₁-C₄ alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxy carbonyl, alkylamino, 10 heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S.

8. A process for controlling undesirable pests which comprises applying to a locus to be protected a 15 pesticidally effective amount of a compound in accordance with claim 3.

9. A pesticidal composition comprising

A) a pesticidally effective amount of a compound having the structural formula: 20

(I)

wherein

25 X is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C₁-C₄ alkoxy; halogen; lower alkyl; and lower alkylthio;

-52-

Y is H, C₁-C₄ alkanoyl, C₁-C₄ haloalkanoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C₁-C₄ alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S; and

B) an acceptable carrier.

10 10. A pesticidal composition comprising

A) a pesticidally effective amount of a compound in accordance with claim 3; and

B) an acceptable carrier.

15 11. A process for controlling undesirable pests which comprises applying to a locus to be protected a pesticidally effective amount of a compound in accordance with claim 5.

20 12. A process for controlling undesirable pests which comprises applying to a locus to be protected a pesticidally effective amount of a compound in accordance with claim 6.

25 13. A pesticidal composition comprising
A) a pesticidally effective amount of a compound in accordance with claim 5; and
B) an acceptable carrier.

14. A pesticidal composition comprising

A) a pesticidally effective amount of a compound

-53-

in accordance with claim 6; and

B) an acceptable carrier.

5

10

15

20

25

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 92/09855

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. 5 C07C281/02;	C07C281/06;	C07C281/20;	C07C337/06
C07C311/49;	C07F9/24;	C07D307/91	

II. FIELDS SEARCHED

Minimum Documentation Searched⁷

Classification System	Classification Symbols		
Int.Cl. 5	C07C ;	C07F ;	C07D

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched⁸III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	EP,A,0 388 165 (GLAXO) 19 September 1990 see page 34, paragraph 2; claims 25-27 ----	1
X	FR,A,2 155 631 (MINNESOTA MINING AND MANUFACTURING CO.) 18 May 1973 see claims 1-3 ----	3,4 -/-

⁶ Special categories of cited documents:¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

04 MARCH 1993

Date of Mailing of this International Search Report

15.03.93

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

HELPS I.M.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		Relevant to Claim No.
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	
X	CHEMICAL ABSTRACTS, vol. 102, no. 23, 10 June 1985, Columbus, Ohio, US; abstract no. 203922z, K NAGARAJAN ET. AL. 'Antiimplantation agents: Part 1. 1-Arylthiosemicarbazides.' page 595 ;column 2 ; see abstract & INDIAN J.CHEM, SECT B, vol. 23B, no. 12, pages 1243 - 57 & 11TH COLLECTIVE INDEX see page 32946CS, column 2, line 36 - line 40 ---	1,2
X	CHEMICAL ABSTRACTS, vol. 51, no. 2, 25 January 1957, Columbus, Ohio, US; abstract no. 1883d, V. HAHN ET. AL. 'Syntheses in the diphenyl series. IV. The phenoxyphenylhyrazines.' see abstract & CROAT. CHEM. ACTA., vol. 28, 1956, pages 57 - 65 ---	1-2
A	EP,A,0 457 140 (BAYER) 21 November 1991 see claims; examples ---	1-14
A	LU,A,51 918 (SCHERING) 9 November 1966 see claims; examples ---	1-14
A	US,A,4 514 419 (CRUIKSHANK ET. AL.) 30 April 1985 see whole document ---	1-14
A	FR,A,2 440 943 (MITSUI TOATSU CHEMICALS INC.) 6 June 1980 see claims ---	1-4
A	EP,A,0 183 650 (CIBA-GEIGY) 4 June 1986 cited in the application see claims; examples ---	1-14
A	EP,A,0 067 471 (SHELL) 22 December 1982 cited in the application see whole document ---	1-14
		-/-

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
Category	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	<p>CHEMICAL ABSTRACTS, vol. 108, no. 19, 9 May 1988, Columbus, Ohio, US; abstract no. 163280d, K. SATO ET AL. 'Preparation and acaricidal activity of alkyl phenylhydrazinecarboxylates.' page 249 ;column 2 ; cited in the application see abstract & JP,A,62 238 258 (MITSUBISHI CHEMICAL INDUSTRIES CO.)</p> <p>-----</p>	1-14

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

US 9209855
SA 67279

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 04/03/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0388165	19-09-90	AU-A-	5136990	20-09-90
		CA-A-	2012004	15-09-90
		JP-A-	2289555	29-11-90
		US-A-	5023255	11-06-91
FR-A-2155631	18-05-73	GB-A-	1411373	22-10-75
		BE-A-	789780	01-02-73
		CA-A-	980341	23-12-75
		CH-A-	601195	30-06-78
		DE-A-	2248958	12-04-73
		JP-C-	1048294	28-05-81
		JP-A-	49006919	22-01-74
		JP-B-	55039823	14-10-80
		US-A-	3900321	19-08-75
EP-A-0457140	21-11-91	DE-A-	4015834	21-11-91
		AU-A-	7709991	21-11-91
		CA-A-	2042571	18-11-91
		JP-A-	4226955	17-08-92
LU-A-51918	09-11-66	BE-A-	685849	23-02-67
		DE-A,B,C	1567157	09-10-69
		FR-A-	1492641	
		GB-A-	1085697	
		NL-A-	6612874	15-03-67
US-A-4514419	30-04-85	None		
FR-A-2440943	06-06-80	AU-B-	525427	04-11-82
		AU-A-	5259279	15-05-80
		CA-A-	1137097	07-12-82
		DE-A,C	2944783	22-05-80
		GB-A,B	2038319	23-07-80
		SU-A-	1131458	23-12-84
		SU-A-	1338783	15-09-87
		SU-A-	1105115	23-07-84
		SU-A-	1271371	15-11-86
		US-A-	4515628	07-05-85
		US-A-	4566897	28-01-86
		US-A-	4619689	28-10-86

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

US 9209855
SA 67279

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04/03/93

Page 2

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0183650	04-06-86	AU-B-	590232	02-11-89
		AU-A-	5035885	05-06-86
		CA-A-	1258076	01-08-89
		DE-A-	3562235	26-05-88
		US-A-	4725302	16-02-88
		JP-A-	61143352	01-07-86
<hr/>				
EP-A-0067471	22-12-82	CA-A-	1177833	13-11-84
		JP-C-	1660796	21-04-92
		JP-B-	3028430	19-04-91
		JP-A-	58013577	26-01-83
		US-A-	4406910	27-09-83
		US-A-	4467104	21-08-84
<hr/>				