SubconjuntoMex

Nombre del problema	SubconjuntoMex
Archivo de entrada	entrada estandar
Archivo de salida	salida estandar
Tiempo límite 1 segundo	
Memoria límite	256 megabytes

Un *multiset* es una colección de elementos similar a un conjunto, donde los elementos se pueden repetir múltiples veces. Por ejemplo, lo siguiente es un multiset:

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

Dado un multiset S que contiene solo enteros no negativos \mathbb{Z}_0^+ , y un valor objetivo entero no negativo n tal que $n \notin S$, tu meta es insertar n en S usando la siguiente operación de 3 pasos, repetidamente:

- 1. Elige un subconjunto T de S (posiblemente vacío). Aquí, T es un conjunto regular donde todos sus elementos aparecen en S.
- 2. Borra los elementos de *T* en *S*. (borra solo una copia de cada elemento).
- 3. Inserta mex(T) en S.

Donde mex(T) es el número entero no negativo más pequeño que no aparece en T. El nombre mex es por el valor "minimo excluido" (minimum excluded) . Tu meta es encontrar el mínimo número de operaciones para llevar a cabo que n se vuelva parte de S.

Dado que |S| puede ser grande, te lo daremos en forma de una lista $(f_0, ..., f_{n-1})$ de tamaño n, donde f_i representa el número de veces que el número i aparece en S. (Recuerde que n es el entero que estamos intentando meter en S.)

Entrada

La primera línea contiene un solo entero t (1 \leq t \leq 200) — el número de casos de prueba. Cada dos de las siguientes líneas describen un caso de prueba:

- La primera línea de cada caso de prueba contiene un solo entero n (1 $\leq n \leq$ 50), representando el entero que debe ser insertado en S.
- La segunda línea de cada caso de prueba contiene n enteros $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$), representando el conjunto S como se menciona arriba.

Salida

Para caso de prueba, imprime una sola línea que contiene el mínimo número de operaciones necesarias para satisfacer la condición.

Puntaje

Subtarea #1 (5 puntos): $n \le 2$

Subtarea #2 (17 puntos): $n \le 20$

Subtarea #3 (7 puntos): $f_i = 0$

Subtarea #4 (9 puntos): $f_i \le 1$

Subtarea #5 (20 puntos): $f_i \le 2000$

Subtarea #6 (9 puntos): $f_0 \le 10^{16} \, \mathrm{y} \, f_j = 0$ (para todo $j \ne 0$)

Subtarea #7 (10 puntos): $f_i \le 10^{16}$ para algún i y $f_j = 0$ (para los demás $j \ne i$)

Subtarea #8 (23 puntos): No tiene restricciones adicionales

Ejemplos

entrada estandar		salida estandar
2		4
4		10
0 3	0 3	
5		
4 1	0 2 0	

Nota

En el primer ejemplo, inicialmente, $S = \{1, 1, 1, 3, 3, 3\}$ y tu meta es tener 4 en S. Nosotros lo podemos hacer de la siguiente manera:

- 1. Elige $T = \{\}$ luego S se convierte en $\{0, 1, 1, 1, 3, 3, 3\}$, notar que mex(T) = 0
- 2. Elige $T = \{0, 1, 3\}$ luego S se convierte en $\{1, 1, 2, 3, 3\}$, notar que mex(T) = 2
- 3. Elige $T = \{1\}$ luego S se convierte en $\{0, 1, 2, 3, 3\}$, notar que mex(T) = 0
- 4. Elige $T = \{0, 1, 2, 3\}$ luego S se convierte en $\{3, 4\}$, notar que mex(T) = 4