CSCI 335 Software Design and Analysis III

Graph Algorithms

(Topological Sorting, Shortest Paths, Dijkstra)

Graphs

- G=(V,E)
- Set V={v1,v2,...}: vertices
- Set E={(vi,vj) | vi, vj in V}: edges
- Weighted graph: weight on edge (E={(vi,vj,wij): vi, vj in V, wij is the weight})
- Directed vs. undirected graphs
- Path {v1,v2,...,vn}
- Length of a path
- Loop
- Simple path
- Cycle
- Directed Acyclic Graph (DAG)
- Strongly connected directed graph
- Weakly connected directed graph
- Complete graph
- Examples...

Graphs (example)

Graphs: representation

- Adjacency matrix A
 A[u][v] is True iff (u,v) is an edge
 of
 A[u][v] is the cost c of the edge (u,v) or ∞ if no-edge
- Space: $\Theta(|V|^2)$
 - OK for dense graphs
 - BAD for sparse graphs (e.g. $|E| = \Theta(|V|)$)

Graphs: representation

- Adjacency list:
 For each vertex -> list of adjacent vertices
- Space: $\Theta(|V|+|E|)$: linear
- GOOD for sparse graphs

Graphs: adjacency list

1	2, 4, 3
2	4, 5
3	6
4	6, 7, 3
5	4, 7
6	(empty)
7	6

Topological sort

Topological sort

- Defined for directed graphs
- Not unique
- Does not exist if graph has at least one cycle.

Topological sort

Topological sort (algorithm)

- Use the **indegree** of a vertex v (i.e. number of vertices pointing to it): the number of edges (u,v)
- Algorithm
 - Compute indegree of all vertices
 - Choose a vertex with indegree = o
 - 3. Remove vertex and edges pointing to it
 - 4. Update **indegree** of vertices
 - 5. Go to 2

Stop when all vertices are considered Throw exception if cycle (how is it detected?)

Topological sort algorithm

```
void Graph::TopologicalSort() {
    for (int counter = 0; counter < num_vertices_; ++counter) {
        Vertex v = FindNewVertexOfIndegreeZero();
        if (v == NOT_A_VERTEX)
            throw CycleFoundException();
        v.top_num_ = counter;
        for each Vertex w adjacent to v
            w.indegree_--;
    }
}</pre>
```

Topological sort (algorithm)

- Analysis:
 O(|V|²) <-findNewVertexOfDegreeZero() is O(|V|)
- Improvement?
 - Keep vertices of **indegree** zero in Queue
 - Dequeue vertex v
 - Update **indegree**s of vertices connected to v

```
void Graph::TopologicalSort() {
                                               Complexity?
     Queue<Vertex> q;
      int counter = 0;
     for each Vertex v
        if (v.indegree_ == 0) q.enqueue(v);
     while (!q.isEmpty()) {
           Vertex v = q.dequeue();
           v.top num = ++counter;
          for each Vertex w adjacent to v
              if (--w.indegree_ == 0) q.enqueue(w);
       }
       if (counter != num_vertices_)
         throw CycleFoundException()
```

```
void Graph::TopologicalSort() {
                                              Complexity?
     Queue<Vertex> q;
     int counter = 0;
     for each Vertex v
                                              O(|V| + |E|)
        if (v.indegree_ == 0) q.enqueue(v);
     while (!q.isEmpty()) {
          Vertex v = q.dequeue();
           v.top_num_ = ++counter;
          for each Vertex w adjacent to v
              if (--w.indegree_ == 0) q.enqueue(w);
       }
       if (counter != num_vertices_)
         throw CycleFoundException()
```


Dequeue

 v_1

Dequeue

 v_1

 v_2

 v_7 2 2 2 Enqueue v_1 v_2 v_5 Dequeue v_1 v_2 v_5

Indegree Before Dequeue #								
Vertex	1	2	3	4	5	6	7	
v_1	0	0*	0*	0*				
v_2	1	O	0*	0*				
ν_3	2	1	1	1				
ν_4	3	2	1 —	→ 0				
v_5	1	1	O	0 *				
v_6	3	3	3	3				
ν_7	2	2	2 —	→ 1				
Enqueue	v_1	v_2	v_5	v_4				
Dequeue	v_1	v_2	v_5	v_4				

Indegree Before Dequeue #								
Vertex	1	2	3	4	5	6	7	
$\overline{ u_1}$	0	0*	0*	0*	0 *			
v_2	1	O	0*	0 *	0 *			
v_3	2	1	1	1 -	→ 0			
ν_4	3	2	1	O	o *			
v_5	1	1	O	O *	0 *			
v_6	3	3	3	3 -	→ 2			
ν_7	2	2	2	1 –	→ 0			
Enqueue	v_1	v_2	v_5	v_4	v_3, v_7			
Dequeue	v_1	v_2	v_5	v_4	v_3			

Indegree Before Dequeue #								
Vertex	1	2	3	4	5	6	7	
v_1	0	0*	0*	0*	0 *	0*		
v_2	1	O	0*	0*	0 *	0*		
ν_3	2	1	1	1	O	0*		
ν_4	3	2	1	O	o *	0*		
v_5	1	1	O	O	0 *	0*		
v_6	3	3	3	3	$_{2} \rightarrow$	1		
ν_7	2	2	2	1	0	0		
Enqueue	v_1	v_2	v_5	ν_4	v_3, v_7			
Dequeue	v_1	v_2	v_5	v_4	v_3	v_7		

		In	degree	Before	e Dequeue	2 #		
Vertex	1	2	3	4	5	6	7	
$\overline{ u_1}$	0	0*	0*	0*	o *	0*	O *	
v_2	1	O	0*	O *	0 *	0*	0 *	
v_3	2	1	1	1	0	0*	0 *	
v_4	3	2	1	O	o *	0*	0 *	
v_5	1	1	O	O	0 *	0*	0 *	
v_6	3	3	3	3	2	1 -	→ 0	
v_7	2	2	2	1	0	O	0 *	
Enqueue	v_1	v_2	v_5	v_4	v_3, v_7		v_6	
Dequeue	v_1	v_2	v_5	v_4	v_3	v_7	v_6	

Indegree Before Dequeue #								
Vertex	1	2	3	4	5	6	7	
v_1	0	0*	0*	0*	o *	0*	0 *	
v_2	1	O	0*	0 *	0 *	0*	0 *	
v_3	2	1	1	1	0	0*	0 *	
v_4	3	2	1	O	o *	0*	0 *	
v_5	1	1	O	O	0 *	0*	0 *	
v_6	3	3	3	3	2	1	0 *	
v_7	2	2	2	1	0	O	0 *	
Enqueue	v_1	v_2	v_5	v_4	v_3, v_7		v_6	
Dequeue	v_1	v_2	v_5	v_4	v_3	v_7	v_6	

Shortest Path Algorithms

- Weighted (sum of edge weights) vs. unweighted (number of edges) path length.
- Single source shortest path:
 - Given a graph G and a vertex s, find the shortest path from s to any other vertex of G.

Shortest Path, positive weights

Negative weights?

BREADTH FIRST SEARCH

Implementation

ν	known	d_{v}	p_{ν}
v_1	F	∞	0
v_2	F	∞	0
v_3	F	0	0
v_4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

Initial configuration

```
void Graph::UnweightedShortestPath(Vertex s) {
                                                     Complexity?
    for each Vertex v {
           v.distance = kInfinity;
           v.known = false;
    s.distance = 0
    for (int curr distance = 0; curr distance < num vertices ;</pre>
         ++curr distance ) {
        for each Vertex v {
            if (!v.known && v.distance == curr distance) {
                v.known = true;
                for each Vertex w adjacent to v {
                    if (w.distance == kInfinity) {
                        w.distance_ = curr_distance + 1;
                        w.path = v;
                } // end for each Vertex w...
            } // end if (!v.known...
       } // end for each Vertex v
```

```
void Graph::UnweightedShortestPath(Vertex s) {
                                                     Complexity?
    for (each Vertex v) {
           v.distance_ = kInfinity;
           v.known = false;
    s.distance = 0
    for (int curr distance = 0; curr distance < num vertices ;</pre>
         ++curr distance ) {
        for (each Vertex v) {
            if (!v.known && v.distance == curr distance) {
                v.known = true;
                for (each Vertex w adjacent to v) {
                    if (w.distance == kInfinity) {
                        w.distance_ = curr_distance + 1;
                        w.path = v;
                } // end for each Vertex w...
            } // end if (!v.known...
       } // end for each Vertex v
```

BAD example


```
void Graph::UnweightedShortestPath(Vertex s) {
   Queue<Vertex> q;
   for each Vertex v {
       v.distance_ = kInfinity;
   s.distance_ = 0;
   q.enqueue(s);
                                               Complexity?
   while (!q.isEmpty()) {
       Vertex v = q.dequeue();
       for each Vertex w adjacent to v {
            if (w.distance_ == kInfinity) {
               w.distance_ = v.distance_ + 1;
               w.path = v;
               q.enqueue(w);
        } // end for
   } // end while
```

BREADTH FIRST SEARCH

```
void Graph::UnweightedShortestPath(Vertex s) {
   Queue<Vertex> q;
   for each Vertex v {
       v.distance_ = kInfinity;
   s.distance_ = 0;
   q.enqueue(s);
                                               Complexity?
   while (!q.isEmpty()) {
       Vertex v = q.dequeue();
       for each Vertex w adjacent to v {
            if (w.distance_ == kInfinity) {
               w.distance_ = v.distance_ + 1;
               w.path = v;
               q.enqueue(w);
        } // end for
   } // end while
```

BREADTH FIRST SEARCH

	Initia	al State	
ν	known	d_{v}	p_{ν}
v_1	F	∞	0
v_2	F	∞	0
v_3	F	> 0	0
v_4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0
Q:		v_3	

	Initi	al State		v_3 De	queue	d
ν	known	d_{ν}	p_{ν}	known	d_{v}	p_{ν} 1
v_1	F	∞	0	F	→ 1	v_3
v_2	F	∞	0	F	∞	0
v_3	F	0	0	• T	0	0
v_4	F	∞	0	F	∞	0
v_5	F	∞	0	F	∞	0
v_6	F	∞	0	F	→ 1	v_3
v_7	F	∞	0	F	∞	0
Q:		v_3		ν	$_{\rm l}, \nu_{\rm 6}$	

	Initi	al State		v_3 De	queue	d	v ₁ Dequeued			
ν	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	
v_1	F	∞	0	F	1	v_3	• T	1	v_3	
v_2	F	∞	0	F	∞	0	F	→ 2	v_1	
v_3	F	0	0	T	0	0	T	0	0	
v_4	F	∞	0	F	∞	0	F	→ 2	v_1	
v_5	F	∞	0	F	∞	0	F	∞	0	
v_6	F	∞	0	F	1	v_3	F	1	v_3	
v_7	F	∞	0	F	∞	0	F	∞	0	
Q:	v_3			ν	v_1, v_6			v_6, v_2, v_4		

	Initial State			v ₃ Dequeued			v_1 Dequeued			v ₆ Dequeued		
ν	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}
v_1	F	∞	0	F	1	v_3	T	1	v_3	T	1	v_3
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_3	F	0	0	T	0	0	T	0	0	T	0	0
v ₄	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
V ₅	F	∞	0	F	∞	0	F	∞	0	F	∞	0
v_6	F	∞	0	F	1	v_3	F	1	v_3	• T	1	v_3
v_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
Q:		v_3		ν	$_{1}, v_{6}$		v_6 ,	v_2, v_4		v_i	$_2, \nu_4$	

	Initia	al State		ν ₃ De	queue	d	v ₁ De	equeue	d	ν ₆ De	equeue	d
ν	known	d_{ν}	p_{ν}	known	d_{v}	p_{ν}	known	d_{ν}	p_{ν}	known	d_{v}	p_{ν}
v_1	F	∞	0	F	1	v_3	T	1	v_3	T	1	v_3
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_3	F	0	0	T	0	0	T	0	0	T	0	0
v_4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_5	F	∞	0	F	∞	0	F	∞	0	F	∞	0
v_6	F	∞	0	F	1	v_3	F	1	v_3	T	1	v_3
v_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
Q:				ν_1	v_6		v_6 ,	v_2, v_4		v_{i}	$_2$, v_4	
	v ₂ De	queue	d									
ν	known	d_{v}	p_{ν}									
v_1	T	1	v_3									
v_2	T	2	v_1									
v_3	T	0	0									
v_4	F	2	v_1									
v_5	F —	> 3	ν_2									
v_6	T	1	v_3									
ν_7	F	∞	0									
Q:	ν_{\angle}	$_{1}, \nu_{5}$										

	Initi	al State		v ₃ De	queue	d	v_1 De	equeue	d	v ₆ De	equeue	d
ν	known	d_{ν}	p_{ν}	known	d_{v}	p_{ν}	known	d_{ν}	p_{ν}	known	$d_{\rm v}$	p_{ν}
v_1	F	∞	0	F	1	v_3	T	1	v_3	T	1	v_3
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_3	F	0	0	T	0	0	T	0	0	T	0	0
v_4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_5	F	∞	0	F	∞	0	F	∞	0	F	∞	0
v_6	F	∞	0	F	1	v_3	F	1	v_3	T	1	v_3
ν_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
Q:	ν_3		ν_1	v_1, v_6		v_6 ,	v_2, v_4		v_{i}	$_2$, v_4		
	v ₂ Dequeued		v ₄ De	v ₄ Dequeued								
ν	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}						
v_1	T	1	v_3	T	1	v_3						
v_2	T	2	v_1	T	2	v_1						
v_3	T	0	0	T	0	0						
v_4	F	2	v_1	T	2	v_1						
v_5	F	3	v_2	F	3	v_2						
v_6	T	1	v_3	T	1	v_3						
ν_7	F	∞	0	F	→ 3	ν_4						
Q:	ν	$_{4}, \nu_{5}$		v_5	$_{5}$, ν_{7}							

	Initi	al State		v ₃ De	queue	d	v_1 De	equeue	d	v ₆ De	queue	d
ν	known	d_{ν}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}
v_1	F	∞	0	F	1	v_3	T	1	v_3	T	1	v_3
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_3	F	0	0	T	0	0	T	0	0	T	0	0
v_4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_5	F	∞	0	F	∞	0	F	∞	0	F	∞	0
v_6	F	∞	0	F	1	v_3	F	1	v_3	T	1	v_3
v_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
Q:		v_3		ν_1	$_{\rm l}, v_{\rm 6}$		v_6 ,	v_2, v_4		v_2	$_2$, v_4	
	v ₂ De	equeuec	i	v ₄ De	queue	d	ν ₅ De	equeue	d			
ν	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}			
v_1	T	1	v_3	T	1	v_3	T	1	v_3			
v_2	T	2	v_1	T	2	v_1	T	2	v_1			
v_3	T	0	0	T	0	0	T	0	0			
v_4	F	2	v_1	T	2	v_1	T	2	v_1			
v_5	F	3	v_2	F	3	v_2	\bullet T	3	v_2			
v_6	T	1	v_3	T	1	v_3	T	1	v_3			
ν_7	F	∞	0	F	3	v_4	F	3	ν_4			
Q:	ν	$_{4}, \nu_{5}$		v_5	$_{5}$, ν_{7}			ν_7				

	Initia	al State		v ₃ De	queue	d	v_1 De	equeue	d	v ₆ De	queue	d
ν	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}	known	d_{v}	p_{ν}
v_1	F	∞	0	F	1	v_3	T	1	v_3	T	1	v_3
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_3	F	0	0	T	0	0	T	0	0	T	0	0
v_4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_5	F	∞	0	F	∞	0	F	∞	0	F	∞	0
v_6	F	∞	0	F	1	v_3	F	1	v_3	T	1	v_3
ν_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
Q:		v_3		v_1	$_{\rm l}, \nu_{\rm 6}$		v_6 ,	v_2, v_4		v_2	ν_4	
	v ₂ De	equeue	d	v ₄ De	queue	d	v ₅ De	equeue	d	v ₇ De	queue	d
ν	known	d_{v}	p_{ν}	known	d_{v}	n	1	1		hannin	d_{ν}	n
		a_{v}	Pν	KILOWIL	αν	p_{ν}	known	d_{v}	p_{ν}	known	α _V	p_{ν}
v_1	Т	$\frac{a_{\nu}}{1}$	v_3	T	$\frac{a_{v}}{1}$	$\frac{Pv}{v_3}$	T	$\frac{a_{v}}{1}$	$\frac{P_{v}}{v_{3}}$	T	$\frac{a_{v}}{1}$	$\frac{Pv}{v_3}$
v_1 v_2											1	
	Т	1	ν_3	Т	1	ν_3	Т	1	v_3	Т	1	ν ₃
v_2	T T	1 2	v_3 v_1	T T	1 2	v_3 v_1	T T	1 2	ν ₃ ν ₁	T T	1 2	ν ₃ ν ₁
v_2 v_3	T T T	1 2 0	ν ₃ ν ₁ 0	T T T	1 2 0	ν ₃ ν ₁ 0	T T T	1 2 0	ν ₃ ν ₁ 0	T T T	1 2 0	v ₃ v ₁ 0
$ \begin{array}{c} \nu_2 \\ \nu_3 \\ \nu_4 \end{array} $	T T T F	1 2 0 2	v_3 v_1 0 v_1	T T T	1 2 0 2	ν ₃ ν ₁ 0 ν ₁	T T T	1 2 0 2	v_3 v_1 0 v_1	T T T	1 2 0 2	v ₃ v ₁ 0 v ₁
v_2 v_3 v_4 v_5	T T T F	1 2 0 2	v_{3} v_{1} 0 v_{1} v_{2}	T T T T F	1 2 0 2	v_3 v_1 0 v_1 v_2	T T T T	1 2 0 2	v_{3} v_{1} 0 v_{1} v_{2}	T T T T	1 2 0 2	v_3 v_1 0 v_1 v_2
ν ₂ ν ₃ ν ₄ ν ₅	T T F F T	1 2 0 2 3 1	$v_3 \\ v_1 \\ 0 \\ v_1 \\ v_2 \\ v_3$	T T T F T	1 2 0 2 3 1	v_{3} v_{1} 0 v_{1} v_{2} v_{3}	T T T T T	1 2 0 2 3 1	v_{3} v_{1} 0 v_{1} v_{2} v_{3}	T T T T T	1 2 0 2 3 1	v_{3} v_{1} 0 v_{1} v_{2} v_{3}

Weighted Shortest Path: Dijkstra

- GREEDY algorithm
 - GREEDY algorithms do not always work
 - Dijkstra's algorithm works fine

http://www.dgp.toronto.edu/~jstewart/270/9798s/Laffra/DijkstraApplet.html

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

Weighted Shortest Path: Dijkstra

- Greedy algorithm
 - Greedy algorithms are not always optimal
 - Dijkstra's algorithm is optimal
 - Work on next vertex with smallest distance to s
- Dynamic programming
 - Reuse solutions to smaller subproblems
 - Shortest path from s to v_n goes through the shortest path from s to v_{n-1} .

http://www.dgp.toronto.edu/~jstewart/270/9798s/Laffra/DijkstraApplet.html

Dijkstra

Can we use breadth first search as in unweighted graph?

Dijkstra

ν	known	d_{v}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
v_3	F	∞	0
v_4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

ν	known	d_{v}	p_{ν}	ν	known	d_{ν}	p_{ν}
$\overline{\nu_1}$	F	0	0	v_1	• T	0	0
v_2	F	∞	0	v_2	F —	→ 2	v_1
ν ₃	F	∞	0	v_3	F	∞	0
v_4	F	∞	0	ν_4	F —	→ 1	v_1
v_5	F	∞	0	v_5	F	∞	0
v_6	F	∞	0	v_6	F	∞	0
v_7	F	∞	0	ν_7	F	∞	0
v_7	Г	∞	U				V.

ν	known	d_{v}	p_{ν}
$\overline{\nu_1}$	• T	0	0
v_2	F	2	v_1
v_3	F	∞	0
v_4	F	1	v_1
v_5	F	∞	0
v_6	F	∞	0
ν_7	F	∞	0

ν	known	d_{v}	p_{ν}	ν	known	d_{v}	p_{ν}
v_1	Т	0	0	v_1	Т	0	0
v_2	F	2	v_1	v_2	F	2	v_1
v_3	F	∞	0	v_3	F -	→3	v_4
v_4	F	1	v_1	v_4	T	1	v_1
v_5	F	∞	0	v_5	F	→3	v_4
v_6	F	∞	0	v_6	F —	→9	v_4
v_7	F	∞	0	v_7	F —	→ 5	v_4

ν	known	d_{ν}	p_{ν}
$\overline{\nu_1}$	Т	0	0
v_2	F	2	v_1
v_3	F	3	v_4
v_4	T	1	v_1
ν ₅	F	3	v_4
v_6	F	9	v_4
v_7	F	5	v_4

ν	known	d_{v}	p_{ν} ν	known	d_{v}	p_{ν}
$\overline{\nu_1}$	Т	0	$\overline{}$ v_1	Т	0	0
v_2	F	2	v_1 v_2	• T	2	v_1
ν_3	F	3	v_4 v_3	F	3	v_4
v_4	T	1	v_1 v_4	T –	$\rightarrow 1$	v_1
v_5	F	3	v_4 v_5	F –	→3	v_4
v_6	F	9	v_4 v_6	F	9	v_4
v_7	F	5	v_4 v_7	F	5	v_4

v_2	T	2	v_1
v_3	F	3	v_4
v_4	T	1	v_1
v_5	F	3	v_4
v_6	F	9	v_4
ν_7	F	5	v_4
X 		AAAAAAAAAAAAAAAA	

ν	known	d_{v}	p_{ν}	ν	known	d_{v}	p_{ν}
$\overline{\nu_1}$	T	0	0	$\overline{\nu_1}$	T	0	0
v_2	T	2	v_1	v_2	T	2	v_1
v_3	F	3	v_4	v_3	F	3	v_4
v_4	T	1	v_1	ν_4	T	1	v_1
v_5	F	3	v_4	v_5	• F	3	v_4
v_6	F	9	v_4	v_6	F	9	v_4
ν_7	F	5	v_4	v_7	F —	→ 5	v_4

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
v_2	F	2	v_1
v_3	F	3	v_4
v_4	T	1	v_1
ν ₅	F	3	v_4
v_6	F	9	v_4
v_7	F	5	v_4

ν	known	d_{ν}	p_{ν}	ν	known	d_{ν}	p_{ν}
$\overline{\nu_1}$	T	0	0	v_1	T	0	0
v_2	F	2	v_1	v_2	T	2	v_1
v_3	F	3	v_4	v_3	T	3	v_4
v_4	T	1	v_1	v_4	T	1	v_1
ν ₅	F	3	v_4	v_5	T	3	v_4
v_6	F	9	v_4	v_6	F —	→ 8	v_3
v_7	F	5	v_4	v_7	F	5	v_4

ν	known	d_{ν}	p_{ν}
$\overline{\nu_1}$	Т	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
ν ₅	T	3	v_4
v_6	F	8	v_3
v_7	F	5	v_4

ν	known	d_{ν}	p_{ν}	ν	known	d_{ν}	pν
v_1	T	0	0	v_1	T	0	0
v_2	T	2	v_1	v_2	T	2	v_1
ν_3	T	3	v_4	v_3	T	3	v_4
v_4	T	1	v_1	v_4	T	1	v_1
v_5	T	3	v_4	v_5	T	3	v_4
v_6	F	8	v_3	v_6	F —	→ 6	v_7
v_7	F	5	v_4	v_7	T	5	v_4

ν	known	d_{ν}	p_{ν} v	known	d_{ν}	p_{ν} ν	known	d_{ν}	p_{ν}
v_1	T	0	$\overline{0}$ v_1	T	0	$0 v_1$	T	0	0
v_2	T	2	v_1 v_2	T	2	v_1 v_2	T	2	v_1
ν ₃	T	3	v_4 v_3	T	3	v_4 v_3	T	3	v_4
v_4	T	1	v_1 v_4	T	1	v_1 v_4	T	1	v_1
ν ₅	T	3	v_4 v_5	T	3	v_4 v_5	T	3	v_4
ν ₆	F	8	v_3 v_6	F	6	v_7 v_6	T	6	v_7
v_7	F	5	v_4 v_7	T	5	$v_4 \qquad v_7$	T	5	v_4

Implementation

```
/**
* PSEUDOCODE sketch of the Vertex structure.
* In real C++, path would be of type Vertex *,
 * and many of the code fragments that we describe
 * require either a dereference * or use the
 * -> operator instead of the . operator.
 * Needless to say, this obscure the basic algorithmic ideas
*/
struct Vertex {
    List<Vertex> adjacent_;  // Adjacency list
   bool
               known;
   DistType distance_; // DistType can be float, double, etc.
   Vertex previous_in_path_; // Other data and member
                                  // functions as needed
```

```
void Graph::DijkstraShortestPath(Vertex s) {
    for each Vertex v {
        v.distance = kInfinity;
        v.known_ = false;
    s.distance = 0;
    while (true) {
        Vertex v = smallest unknown distance vertex; // How?
        if (v == NOT A VERTEX) break;
        v.known_ = true;
        for each Vertex w adjacent to v {
            if (!w.known ) {
              const auto new_distance_through_v = v.distance_ + c(v,w);
              if (new distance through v < w.distance ) {</pre>
                w.distance = new distance through v; // Decrease w.distance
                w.previous in path = v;
        } // end of for each Vertex w...
    } // end of while (true)
```

Analysis

- Cost in loop: O(|V| * TimeToFindMinimum)
- +Cost to update distance_ at each vertex = O(|E|)
- Total:
- O(|V| * TimeToFindMinimum + |E|)
 Find v of min distance + update w.distance_ for each (u,w) in E
- Simple approach:
- TimeToFindMinimum=O(|V|)
- ⇒Total cost is $O(|V|^2+|E|)=O((|V|^2)$
- If graph is dense: $|E|=\Theta(|V|^2) => \text{Cost is optimal}$

Sparse graphs |E|=⊖(|V|)

• Can we improve cost of TimeToFindMinimum?

```
void Graph::dijkstra( Vertex s )
                                         Implementation w/ Priority Queue
   for each Vertex v
                                         --using decreaseKey
       v.dist = INFINITY:
       v.known = false;
   s.dist = 0;
   PriorityQueue P; P.Insert(s); // Key is s.dist
   for(;; ')
                                                        if ( P.IsEmpty()) break;
       Vertex v = smallest unknown distance vertex;
                                                        else
       if( v == NOT A VERTEX )
                                                        v = P.DeleteMin();
           break;
       v.known = true;
                                                        //UPDATE P.Q. P:
       for each Vertex w adjacent to v
           if(!w.known)
                                                       const auto new_dist = v.dist + cvw;
              if( v.dist + cvw < w.dist )
                                                       if (w.dist == \infty) {
                                                           w.dist = new_dist;
                  // Update w
                                                           P.Insert(w);
                  decrease( w.dist to v.dist + cvw );
                  w.path = v;
                                                        } else {
                                                            P.SetKey(find(w), new_dist );
                                                        w.path=v;
```

Sparse graphs |E|=⊖(|V|)

- Use priority queue
 - Select closest node among unknowns => v=deleteMin()
 - Update distances of nodes w adjacent to v: p=find(w) [w is the node, p is its position in P.Q.] setKey(p, new_smallest_distance)

```
O(|E|log|V|+|V|log|V|)=O(|E|log|V|)
```

```
Apply Find v via

DecreaseKey() DeleteMin()

for w's
```

Sparse graphs [another approach]

- Use priority queue
 - Put into queue a node w whenever its distance changes
 - P.Q. contains known/uknown nodes
 - If v=DeleteMin() is known ignore => apply deleteMin() again.
 - Else: Make v known, update dw of w for all (v,w) edges.
- Difference with previous method?
 - Easier to code (no need for find() within the P.Q.)
 - Size of P.Q. can be as large as |E| (nodes can be inserted multiple times...)

```
Implementation w/ Priority Queue
for each Vertex v
                                     --without decrease key
    v.dist = INFINITY;
    v.known = false:
s.dist = 0;
PriorityQueue P; P.Insert(s); // Key is s.dist,
for(;;)
                                                 bool success=false;
                                                 while (!P.isEmpty() && !success) {
    Vertex v = smallest unknown distance vertex:
    if( v == NOT A VERTEX )
                                                   v = P.deleteMin();
       break;
                                                   if (!v.known) success = true;
    v.known = true;
                                                 if (!success) break;
    for each Vertex w adjacent to v
       if(!w.known)
                                                    //UPDATE P.Q. P:
           if( v.dist + cvw < w.dist )
                                                    w.dist = v.dist + cvw;
               // Update w
               decrease( w.dist to v.dist + cvw );
                                                   P.Insert(w);
              w.path = v;
                                                    w.path = v
```

oid Graph::dijkstra(Vertex s)

Sparse graphs [another approach]

• O(|E| log|E| + |V| log|E|) = O(|E| log|E|)

```
Insert dw's Find v via for w's: (v,w) in E deleteMin()
```

• Since $|E| \le |V|^2 \Rightarrow \log |E| \iff 2\log |V| \Rightarrow Cost$ is still

 In practice we would expect it to be slower than previous method though...

Sparse graphs

Very typical

For instance internet connectivity

Degree of nodes ~ constant