

## DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

última actualización: 1<sup>er</sup> Cuatrimestre de 2020



## Guía de Ejercicios Nº 2: Juntura PN

Datos generales:  $\varepsilon_0 = 8.85 \times 10^{-12} \,\text{F/m}, \ \varepsilon_r(Si) = 11.7, \ \varepsilon_r(SiO_2) = 3.9, \ n_i = 10^{10} \,\text{cm}^{-3}, \ \phi(n, p = n_i) = 0.$ 

- 1. Considere una juntura PN de silicio a 300K.
  - a) Para  $N_A=10^{18}\,\mathrm{cm^{-3}}$  y  $N_D=10^{15}\,\mathrm{cm^{-3}}$  calcule el potencial de juntura  $(\phi_B)$ .
  - b) Repita para  $N_A = 10^{16} \,\mathrm{cm}^{-3} \,\mathrm{y} \,N_D = 10^{15} \,\mathrm{cm}^{-3}.$
  - c) Entre los puntos a) y b) el valor de  $N_A$  se ha reducido en cien veces. ¿En qué porcentaje varió el potencial de juntura? ¿Qué conclusión puede obtener?
- 2. Considere una juntura PN de silicio a 300K con  $N_A=10^{16}\,\mathrm{cm^{-3}}$  y  $N_D=10^{15}\,\mathrm{cm^{-3}}$ . Calcule:
  - a) El ancho de la zona de carga espacial.
  - b) El valor del campo eléctrico máximo.
- 3. Considere una juntura PN en equilibrio térmico ( $T=300\mathrm{K}$ ) con las siguientes características:  $\phi_B=536,2\,\mathrm{mV};\ x_n=251\,\mathrm{nm};\ x_p=2,51\,\mu\mathrm{m}.$  ¿Cuál son los valores de las concentraciones de impurezas?
- 4. Considere la juntura PN de silicio a 300K del problema 2 con una polarización inversa de  $V_R=5\,\mathrm{V}.$  Calcule:
  - a) El ancho de la zona de carga espacial.
  - b) El valor del campo eléctrico máximo.
  - c) Repita los puntos anteriores considerando que ahora se encuentra polarizado en directa con una tensión  $V_D=0.5\,\mathrm{V}.$
  - d) Compare estos resultados con los del problema 2.
- 5. Considere una juntura PN de silicio a 300K con  $N_A = 10^{19} \, \mathrm{cm}^{-3}$  y  $N_D = 10^{17} \, \mathrm{cm}^{-3}$ .
  - a) Para la condición de equilibrio térmico  $(V_R = 0 \, \text{V})$ , y bajo la aproximación de vaciamiento, realice los diagramas de
    - I. concentración de dopantes  $N_A$  y  $N_D$ ,
    - II. concentración de portadores libres  $n_0$  y  $p_0$  (en escala lineal y semilogarítmica),
    - III. densidad de carga neta  $\rho$ ,
    - IV. campo eléctrico,
    - V. potencial electrostático.
  - b) Repita el punto anterior para  $V_R = 5$  y 10 V.
  - c) Si el campo eléctrico máximo admitido es  $|E_{MAX}|=5\times 10^5\,{\rm V/cm},$  ¿Cuál es el máximo valor de  $V_R$  admisible?
- 6. Considere una juntura PN de silicio a 300K con una concentración de  $N_A = 10^{18} \, \mathrm{cm}^{-3}$ .
  - a) Determine la concentración  $N_D$  tal que para  $V_R=25\,\mathrm{V}$  el campo eléctrico máximo sea  $|E_{MAX}|=3\times10^5\,\mathrm{V/cm}$ .
  - b) Si se desea que el campo eléctrico máximo no supere el valor  $|E_{MAX}| = 3 \times 10^5 \text{ V/cm}$ , conservando  $N_A = 10^{18} \text{ cm}^{-3}$ , el valor de  $N_D$  hallado en el punto a) ¿es una cota máxima o una cota mínima de concentración de dopantes donores?
- 7. Sea una juntura N<sup>+</sup>P en equilibrio termodinámico, donde se sabe que  $N_A = 10^{14} \, \mathrm{cm}^{-3} \, \mathrm{y} \, x_{d0} = 3 \, \mu \mathrm{m}$ , responda justificando e indicando todas las hipótesis que considere:
  - a) ¿Qué es la aproximación de vaciamiento? Aplicarla para realizar el diagrama de densidad de carga.
  - b) Explique cómo a partir de la Ley de Gauss y la definición de potencial eléctrico puede hallar los diagramas de campo eléctrico y potencial eléctrico.



## DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

A b

Última actualización:  $1^{\rm er}$  Cuatrimestre de 2020

- c) ¿Cuánto vale el campo eléctrico máximo  $(E_0)$ , el potencial de Built-in  $(\phi_B)$  y el dopaje de donores  $(N_D)$ ?
- 8. Para una juntura P<sup>+</sup>N en equilibrio termodinámico con concentración de donores  $N_D = 10^{15} \,\mathrm{cm}^{-3}$ , responda justificando e indicando las hipótesis que considere necesarias:
  - a) ¿Cómo es la relación entre la extensión de la SCR del lado N  $(x_n)$  y del lado P  $(x_p)$ ?
  - b) Sabiendo que la extensión de la SCR es  $x_{d0} = 1 \,\mu\text{m}$ , realice el diagramas de campo eléctrico, indicando cuánto vale el campo eléctrico máximo  $(E_0)$ .
  - c) Calcule el potencial de Built-in  $(\phi_B)$  y el dopaje de aceptores.
- 9. Se tiene una juntura P<sup>+</sup>N donde se sabe que sin potencial aplicado, el máximo valor que alcanza el campo eléctrico es  $|E_0|=10\,\mathrm{kV/cm}$  y que  $N_D=4.5\times10^{14}\,\mathrm{cm^{-3}}$   $(T=300\mathrm{K}).$ 
  - a) ¿Cuál es la concentración  $N_A$  de la juntura?
  - b) Sabiendo que el |E| de ruptura de silicio es 170 kV/cm, ¿cuál es el máximo valor de  $N_A$  que puede utilizarse en esta juntura?
  - c) Suponiendo ahora que  $N_D=10^{17}\,\mathrm{cm}^{-3}$ , ¿cuál es el máximo valor de  $N_A$  que puede utilizarse en esta nueva juntura? (Considerar juntura P<sup>+</sup>N)
  - d) Explique la siguiente afirmación: "Dado que el valor de  $\phi_B$  es siempre aproximadamente 1 V, mayores concentraciones de dopantes implicarán menores valores de  $x_p$  y  $x_n$  y en consiguiente obtener la misma diferencia de potencial en menor distancia implicará necesariamente un mayor valor de campo eléctrico en la juntura".