

- 1 实体模型的三类表示
 - 2 多边形表面模型
 - 3 扫描表示

◆边界表示(Boundary Representation, B-reps),即用一组曲面(含平面)来描述物体,这些曲面将物体分为内部和外部。边界表示具体又包括多边形表面模型和扫描表示两种。

多边形表面模型

扫描表示

◆构造实体几何表示(Constructive Solid Geometry, CSG),它将实体表示成立方体、长方体、圆柱体、圆锥体等基本体素的组合,可以采用并、交、差等运算构造新的形体。

◆空间分割表示(Space-Partitioning),用来描述物体的内部性质,将包含一物体的空间区域划分成一组小的、非重叠的、连续实体(通常是立方体)。

- ◆边界表示(Boundary Representation, B-reps),即用一组曲面(含平面)来描述物体,这些曲面将物体分为内部和外部。边界表示具体又包括多边形表面模型和扫描表示两种。
- ◆构造实体几何表示(Constructive Solid Geometry, CSG),它将实体表示成立 方体、长方体、圆柱体、圆锥体等基本体素的组合,可以采用并、交、差等运算构造 新的形体。
- ◆空间分割表示(Space-Partitioning),用来描述物体的内部性质,将包含一物体的空间区域划分成一组小的、非重叠的、连续实体(通常是立方体)。

◆边界表示(Boundary Representation, B-reps),即用一组曲面(含平面)来描述物体,这些曲面将物体分为内部和外部。边界表示具体又包括多边形表面模型和扫描表示两种。

多边形表面模型

扫描表示

边界表示(B-reps)的最普遍方式是**多边形表面模型**,它使用一组包围物体内部的平面多边形,也即平面多面体,来描述实体。

多边形表面模型 属性 信息 数据结构 非图形信息 几何信息 图形对象 图形信息 顶点 边 拓扑信息

数据结构: 几何信息

对于一个多边形平面,其几何信息用几何表来组织,它包括顶点坐标和标识多边形平面空间方向的参数。具体包括:顶点表、边表、多边形表。

顶点表	
Α	X_1, Y_1, Z_1
В	x_2, y_2, z_2
С	x ₃ ,y ₃ ,z ₃
D	x ₄ ,y ₄ ,z ₄

边表		
AB	A,B	
ВС	B,C	
CA	C,A	
AD	A,D	
ВС	B,C	
CD	C,D	

面表	
ABC	AB,BC,AC
ABD	AB,BD,AD
BCD	BC,CD,BD
ACD	AC,CD,AD

数据结构: 几何信息

任何多边形平面都有两个面,内侧面和外侧面。一般来说,法向量方向指向物体外部。当多边形顶点序列指定后,它满足右手定则。

2

多边形表面模型

数据结构: 拓扑信息

除了这三张表给出的几何信息外,还需要增加额外的信息来表示其拓扑信息。例如,将边表扩充成包括指向面表和顶点表的指针。

顶点表	
Α	X_1, Y_1, Z_1
В	X_2, Y_2, Z_2
C	X_3, Y_3, Z_3
D	X_4, Y_4, Z_4

	边表
AB	
	//
BC	7
CA	C,A
AD	A,D
ВС	B,C
CD	C,D

	面表
ABC	AB,BC,AC
ABD	AB,BD,AD
BCD	BC,CD,BD
ACD	AC,CD,AD

2

多边形表面模型

数据结构: 拓扑信息

由此可构造出翼边结构表示(Winged Edges Structure),它对于一个多面体的每一条边指出它的两个相邻面、两个端点,以及四条邻边。这四条邻边好象伸展的翅膀,所以叫翼边结构表示。

2 多

多边形表面模型

数据结构: 属性信息

在存储多边形的几何信息和拓扑信息后,还需要用属性表存储多边形面的属性,指明物体透明度、表面材质和纹理特征等。

多边形网格:

三维形体的曲面边界通常用多边形网格 (polygon mesh) 的拼接来模拟。

多边形网格:

三维形体的曲面边界通常用多边形网格 (polygon mesh)的拼接来模拟。

n行m列顶点,产生一个(n-1)×(m-1)个四边形网格

多边形网格:

三维形体的曲面边界通常用多边形网格 (polygon mesh) 的拼接来模拟。

多边形网格:

三维形体的曲面边界通常用多边形网格 (polygon mesh)的拼接来模拟。

多边形网格:

三维形体的曲面边界通常用多边形网格 (polygon mesh)的拼接来模拟。

Maya中的四边形网格

Maya中的三角形网格

扫描表示

定义:

将空间中的一个点、一条边或一个面沿某一路径扫描时,所形成的轨迹将定义一个一维的、二维的或三维的实体。

包含两个要素:

- > 一是作扫描运动的基本图形;
- > 二是扫描运动的方式。

扫描表示

扫描运动的方式有:

> 旋转扫描

扫描运动的方式有:

> 非圆形路径扫描

扫描运动的方式有:

▶广义扫描法

在建筑设计中的作用:

扫描表示得到的结果:

多边形 网格

