

Inventors: Huse and Freedman
Serial No.: 09/839,469
Filed: April 20, 2001
Page 2

identify ligands having optimal binding activity. For example, if the collective receptor variant population of this example were screened in the melanophore system, ligand No. 3 would have generated the highest signal since it binds to all seven receptors in the receptor variant population. Ligand No. 7 would give a weaker signal since this ligand binds to three receptors in the receptor variant population. Ligand No. 1 would give a still weaker signal since this ligand binds to two receptors in the receptor variant population. Thus, screening with a collective receptor variant population provides more information about the binding characteristics of the ligand than screening with the parent receptor alone. In addition, ligands that bind weakly to the parent receptor may not have been detectable above background when screened against the parent alone but are detectable when more than one receptor in the receptor variant population binds to the ligand.

*B1
Confidential*

Inventors: Huse and Freedman
Serial No.: 09/839,469
Filed: April 20, 2001
Page 3

Please delete the table on page 53, lines 1-18, and
substitute therefor:

**Table I. Nucleotide and Amino Acid Sequences of Receptor
Variants of BR96 Antibody**

CDR L1

SEQ ID NO:	Amino Acid	26	27	28	29	30	31	32	33
1	Wild type	AGC	TCA	AGT	GTA	AGT	TTC	ATG	AAC
2		Ser	Ser	Ser	Val	Ser	Phe	Met	Asn
3	M131B3-5	AGC	TCA	AGT	GTA	AGG	TTC	ATG	AAC
4		Ser	Ser	Ser	Val	Arg	Phe	Met	Asn
5	M131B3-6	AGC	GAG	AGT	GTA	AAT	CTT	ATG	AAC
6		Ser	Glu	Ser	Val	Asn	Leu	Met	Asn
7	M131B3-7	AGC	TCA	AGT	GTT	AAT	TTC	ATG	AAC
8		Ser	Ser	Ser	Val	Asn	Phe	Met	Asn
9	M131B3-10	AGC	TCA	ACG	GTA	AGT	TTC	ATG	AAC
10		Ser	Ser	Thr	Val	Ser	Phe	Met	Asn
11	M131B3-11	AGC	TCA	AGT	GTA	GCG	TAT	ATG	AAC
12		Ser	Ser	Ser	Val	Ala	Tyr	Met	Asn
13	M131B3-12	AGC	CAG	AGT	GCT	AAG	CAT	ATG	AAC
14		Ser	Gln	Ser	Ala	Lys	His	Met	Asn

Inventors: Huse and Freedman
Serial No.: 09/839,469
Filed: April 20, 2001
Page 4

Please delete the table on page 54, lines 1-16, and
substitute therefor:

CDR L2

	Amino Acid	49	50	51	52	53	54	55	56
SEQ ID NO:									
15	Wild type	GCC	ACA	TCC	AAT	TTG	GCT	TCT	GGA
16		Ala	Thr	Ser	Asn	Leu	Ala	Ser	Gly
17	M131B3-5	GCC	ACA	GAG	AAG	TTG	GCT	TCT	GGA
18		Ala	Thr	Glu	Lys	Leu	Ala	Ser	Gly
19	M131B3-6	GCC	ACA	GTT	AAT	TTG	GCT	TCT	GGA
20		Ala	Thr	Val	Asn	Leu	Ala	Ser	Gly
21	M131B3-7	GCC	ACA	GTG	AAT	TTG	GCT	TCT	GGA
22		Ala	Thr	Val	Asn	Leu	Ala	Ser	Gly
23	M131B3-10	GCC	ACA	TCC	AGG	GCG	GCT	TCT	GGA
24		Ala	Thr	Ser	Arg	Ala	Ala	Ser	Gly
25	M131B3-11	GCC	ACA	CAG	AAT	TTG	GCT	TCT	GGA
26		Ala	Thr	Gln	Asn	Leu	Ala	Ser	Gly
27	M131B3-12	GCC	ACA	TCC	AAT	TTG	GCT	TCT	GGA
28		Ala	Thr	Ser	Asn	Leu	Ala	Ser	Gly