ESTUDO DAS CÔNICAS

Revisão do "Terceirão" - Professor Veloso.

A – Estudo da Elipse

1 – Definição

Dados dois pontos fixos F_1 e F_2 de um plano, tais que a distância entre estes pontos seja igual a 2c > 0, denomina-se **elipse**, à curva plana cuja soma das distâncias de cada um de seus pontos P até estes pontos fixos F_1 e F_2 é igual a um valor constante 2a, onde a > c. Ou seja, $PF_1 + PF_2 = 2a$.

Os pontos F_1 e F_2 são denominados **focos** e a distância F_1F_2 é conhecida como **distância focal** da elipse.

Elementos de uma Elipse:

- Focos: os pontos F_1 e F_2
- Centro: o ponto O, que é o ponto médio de $\overline{F_1F_2}$
- Vértices: os pontos A_1 , A_2 , B_1 e B_2
- **Eixo maior**: $\overline{A_1 A_2}$, cuja medida é **2a**
- **Eixo menor**: $\overline{B_1B_2}$, cuja medida é **2b**
- Distância focal: $F_1F_2 = 2c$

2 – Equação reduzida da elipse de eixo maior horizontal e centro na origem

2.1 – Relação métrica entre os elementos da elipse

Seja uma elipse de focos $F_1(-c, 0)$ e $F_2(c, 0)$, sendo **2a** a medida do eixo maior e **2b** a medida do eixo menor, como vimos anteriormente.

Consideremos um ponto P(x, y) da elipse:

- 1) Sabemos, por definição, que $PF_1 + PF_2 = 2a$
- 2) Em particular, $B_2F_1 + B_2F_2 = 2a$
- 3) Como $B_2F_1 = B_2F_2$, pois a reta $\overleftarrow{B_1B_2}$ é mediatriz do segmento $\overline{F_1F_2}$
- 4) Podemos escrever, por exemplo (substituindo 3 em 2), $B_2F_1 + B_2F_1 = 2a \Rightarrow 2B_2F_1 = 2a \Rightarrow$
- \Rightarrow B₂F₁ = a (Podemos escrever também que B₂F₂ = a)
- 5) Considerando que F_1OB_2 ou F_2OB_2 são triângulos retângulos, podemos escrever $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2$.

2.2 – Equação da elipse

1) Usando a fórmula da distância entre dois pontos, podemos escrever:

$$\mathbf{PF_1} + \mathbf{PF_2} = 2\mathbf{a} \implies \sqrt{(x-c)^2 + (y-0)^2} + \sqrt{(x+c)^2 + (y-0)^2} = 2a$$

Observe que x - (-c) = x + c.

2) Elevando ao quadrado ambos os membros da expressão, temos:

$$(x-c)^2 + y^2 + (x+c)^2 + y^2 + 2\sqrt{(x-c)^2 + y^2} \cdot \sqrt{(x+c)^2 + y^2} = 4a^2$$

3) Desenvolvendo a expressão acima, fazendo $\mathbf{a}^2 - \mathbf{c}^2 = \mathbf{b}^2$, e simplificando, chegaremos a

2

$$\mathbf{b}^2 \mathbf{x}^2 + \mathbf{a}^2 \mathbf{y}^2 = \mathbf{a}^2 \mathbf{b}^2$$

4) Dividindo ambos os membros por a^2b^2 teremos, finalmente:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Que é a **equação reduzida da elipse** de eixo maior horizontal e centro na origem (0,0).

Observação: Como a elipse tem o **eixo maior** contido em Ox, o denominador de x^2 é maior que o denominador de y^2 .

3 – Equação reduzida da elipse de eixo maior vertical e centro na origem

Nesse caso, os focos serão os pontos $F_1(0, -c)$ e $F_2(0, c)$.

Um ponto P(x, y) qualquer da elipse deve obedecer à condição: $PF_1 + PF_2 = 2a \Rightarrow$ (Procedimento análogo ao caso anterior) \Rightarrow

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$$

Observação: Como a elipse tem o *eixo maior* contido em **Oy**, o denominador de y^2 é maior que o denominador de x^2 .

4 – Excentricidade da Elipse

O quociente $\frac{c}{a}$ é conhecido como **excentricidade** da elipse, sendo indicado por **e**.

Como, por definição, a > c, podemos afirmar que a excentricidade e, de uma elipse, é um número positivo menor que 1. Ou seja, 0 < e < 1.

3

B – Estudo da Hipérbole

1 – Definição

Dados dois pontos fixos $\mathbf{F_1}$ e $\mathbf{F_2}$ de um plano $\boldsymbol{\alpha}$, tais que a distância entre eles seja igual a $\mathbf{F_1F_2} = 2\mathbf{c} > \mathbf{0}$, denomina-se **hipérbole** ao conjunto formado por todos os pontos \mathbf{P} do plano $\boldsymbol{\alpha}$ para os quais o módulo da diferença das distâncias de $\mathbf{F_1}$ e $\mathbf{F_2}$ é constante e menor que $\mathbf{F_1F_2}$. Ou seja, $|\mathbf{PF_1} - \mathbf{PF_2}| = 2\mathbf{a}$, onde \mathbf{a} é constante (a < c).

Assim, temos por definição $|PF_1 - PF_2| = 2a$

Elementos de uma Hipérbole:

- Os pontos F_1 e F_2 são denominados **focos** da Hipérbole
- A distância $F_1F_2 = 2c$ é conhecida como distância focal da Hipérbole
- O ponto médio \mathbf{O} , do segmento $\overline{F_1F_2}$, é o **centro** da Hipérbole
- Pelo ponto **O** traçamos a reta perpendicular a $\overrightarrow{F_1F_2}$ e assinalamos os pontos $\mathbf{B_1}$ e $\mathbf{B_2}$, tais que $OB_1 = OB_2$, sendo $B_1B_2 = 2b$
- O segmento $\overline{A_1A_2}$ é denominado **eixo real** (ou **transverso**) e sua medida é **2a**
- O segmento $\overline{B_1B_2}$ é denominado **eixo imaginário** (ou **conjugado**) e sua medida é ${\bf 2b}$

2 - Equação reduzida da hipérbole de eixo maior na horizontal e centro na origem

Seja P(x, y) um ponto qualquer de uma hipérbole e sejam $F_1(c,0)$ e $F_2(-c,0)$ os seus focos. Sendo 2a o valor constante com a < c, como vimos acima, podemos escrever:

$$|PF_1 - PF_2| = 2a$$

1) Usando a fórmula da distância entre dois pontos, podemos escrever:

$$\sqrt{(x-c)^2 + (y-0)^2} - \sqrt{(x+c)^2 + (y-0)^2} = \pm 2a$$

Observe que x - (-c) = x + c.

2) Elevando ao quadrado ambos os membros da expressão, temos:

$$(x-c)^2 + y^2 - (x+c)^2 - y^2 + 2\sqrt{(x-c)^2 + y^2} \cdot \sqrt{(x+c)^2 + y^2} = 4a^2$$

3) Desenvolvendo a expressão acima, fazendo $\mathbf{b}^2 = \mathbf{c}^2 - \mathbf{a}^2$, e simplificando, chegaremos a:

$$b^2x^2 - a^2v^2 = a^2b^2$$

4) Dividindo ambos os membros por a^2b^2 teremos, finalmente:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Observação: Como a hipérbole tem o **eixo maior** contido em **Ox**, o denominador de \mathbf{x}^2 é maior que o denominador de \mathbf{v}^2 .

3 – Equação reduzida da hipérbole de eixo maior na vertical e centro na origem

Se o eixo transverso ou eixo real (A_1A_2) da hipérbole estiver em Oy, a equação da hipérbole de centro na origem (0,0) passa a ser:

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Observação: Como a hipérbole tem o *eixo maior* contido em **Oy**, o denominador de y^2 é maior que o denominador de x^2 .

5

4 – Excentricidade da Hipérbole

O quociente $\frac{c}{a}$ é conhecido como **excentricidade** da hipérbole, sendo indicado por **e**.

Como, por definição, $\mathbf{a}<\mathbf{c}$, podemos afirmar que a excentricidade \mathbf{e} , de uma hipérbole, é um número maior que 1. Ou seja, $\mathbf{e}>\mathbf{1}$.

5 – Assíntotas da Hipérbole

Prova-se que as assíntotas, são as retas de equações:

$$\mathbf{r_1:} \ \mathbf{y} = \frac{\mathbf{b}}{\mathbf{a}} \mathbf{x}$$

$$\mathbf{r_2}: \ \mathbf{y} = -\frac{\mathbf{b}}{\mathbf{a}} \mathbf{x}$$

B – Estudo da Parábola

1 – Definição

Denomina-se Parábola o conjunto de todos os pontos de um plano que são equidistantes de uma reta dada e de um ponto fixo (não pertencente à reta) deste plano.

Considere no plano cartesiano xOy, uma reta d (diretriz) e um ponto fixo F pertencente ao eixo das abscissas, conforme figura abaixo:

Elementos de uma Parábola:

- O ponto **F** é denominado **foco** da parábola
- A reta d é denominada diretriz da parábola
- A distância do ponto **F** à reta **d** é denominada **parâmetro** da parábola, representado por **p**
- O ponto **V** da parábola, tal que $VF = \frac{p}{2}$, é denominado **vértice** da parábola
- A reta VF é denominada eixo de simetria da parábola

2 – Equação reduzida da parábola

2.1 – Equação reduzida da parábola de eixo de simetria horizontal e vértice na origem

1º Caso: Concavidade para a direita

1º Caso: Concavidade para a esquerda

Foco:
$$F(\frac{p}{2}, 0)$$
 Diretriz: $x + \frac{p}{2} = 0$

Equação da Parábola: $y^2 = 2px$

Foco:
$$F(-\frac{p}{2}, 0)$$
 Diretriz: $x - \frac{p}{2} = 0$

Equação da Parábola: $y^2 = -2px$

2.2 – Equação reduzida da parábola de eixo de simetria vertical e vértice na origem

1º Caso: Concavidade para cima

1º Caso: Concavidade para baixo

Foco: $F(0, \frac{p}{2})$ **Diretriz:** $y + \frac{p}{2} = 0$

Equação da Parábola: $x^2 = 2py$

Foco:
$$F(-\frac{p}{2}, 0)$$
 Diretriz: $x - \frac{p}{2} = 0$

Equação da Parábola: $x^2 = -2py$

EXERCÍCIOS – Resolver todos os exercícios da Lista nº 4.