Exam 2a **Chem 1142 Spring 2011**

MULTIPLE CHOICE. [2 pts ea.] Choose the best response on the scantron sheet. [36 pts total.]

Q1. For the reaction: A \longrightarrow 2B + C, the rate could be expressed as $-\Delta[A]/\Delta t$. An equivalent expression is:

a)
$$-\frac{1}{2}\frac{\Delta[B]^2}{\Delta t}$$
 b) $-\frac{1}{2}\frac{\Delta[B]}{\Delta t}$ c) $+\frac{1}{2}\frac{\Delta[B]}{\Delta t}$ d) $+\frac{\Delta[B]^2}{\Delta t}$ e) $+\frac{\Delta[B][C]}{\Delta t}$

b)
$$-\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

c)
$$+\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

d) +
$$\frac{\Delta[B]^2}{\Delta t}$$

e) +
$$\frac{\Delta[B][C]}{\Delta t}$$

Q2.A student analyzed a second-order reaction and obtained the graph at the right, but forgot to label the axes. What should the labels be for the X and the Y coordinates respectively?

- a) time, ln [A]
- b) time, [A]
- c) temperature, [A]
- d) temperature, ln [A]
- e) time, 1/[A]

- Q3. For the overall reaction: $2A \longrightarrow B$, the reaction order is:
 - a) zero order

b) first order

- c) second order
- d) impossible to predict without experimental rates at various concentrations of A
- e) impossible to predict without knowing the heat of reaction
- Q4. What are the units for k, the rate constant, in a first order reaction?
 - a) M·s⁻¹
- b) M
- c) s^{-1}
- d) M-1 ·s-1
- e) s-1 ·M

Q5. What is the rate law for the reaction: $A + B \longrightarrow 2C$, based on the following kinetic data?

Experiment #	Initial Conc of [A] / M	Initial Conc. of [B] / M	Initial rate of reaction / M/s
1	0.40	0.10	3.6×10^3
2	0.20	0.10	1.8×10^3
3	0.20	0.50	4.5 x 10 ⁴

a) rate =
$$k[A][B]^2$$

b) rate =
$$k[A]^{1/2}[B]^5$$

c) rate =
$$k[A]^2[B]$$

d) rate =
$$k[A][B]^{1/5}$$

e) rate =
$$k[A]^{1/2}[B]^2$$

- Q6. What is unique about the half-life of any first-order reaction at 25 °C?
 - a) The units are always s⁻¹

- b) The value only depends on the rate constant, k
- c) The value only depends on the initial concentration of reactant
- d) Δ [A]/ $\Delta t = 1$
- e) $\Delta [A]/\Delta t = \frac{1}{2}$

		RT, may be used to	calculate the acti	ivation energy from the slope of a line							
a) ln <i>k</i> vs. 1/Ter	mperature	b) ln <i>k</i> vs. 1/time) ln <i>k</i> vs. e ^{-T}	ne	c) 1/k vs. Temperature							
a) increases dueb) increases onlyc) increases dued) increases beca	tited with what parameters? a) $ln \ kvs. 1/Temperature$ b) $ln \ kvs. 1/time$ c) $1/k vs. Temperature$ d) $1/k vs. 1/time$ c) $ln \ kvs. e^{-T}$ c) In general, as the temperature increases, the rate of a chemical reaction a) increases due to an increased activation energy b) increases only for an endothermic reaction c) increases due to a greater number of effective collisions d) increases because bonds are weakened e) is not changed In basic solution, $(CH_3)_3CCI$ reacts according to the equation: $(CH_3)_3CCI + OH^- \longrightarrow (CH_3)_3COH + CI^-$ The accepted mechanism for this reaction is: $(CH_3)_3CCI \longrightarrow (CH_3)_3COH + CI^-$ $(CH_3)_3CCI \longrightarrow (CH_3)_3COH \qquad (FAST)$ What is the rate law expression for the reaction? a) rate = $k[(CH_3)_3C^+ ^2 OH^-]$ b) rate = $k[(CH_3)_3C^+ OH^- ^2$ c) rate = $k[(CH_3)_3C^- ^2 OH^-]$ d) rate = $k[(CH_3)_3CCI]$ e) rate = $k[(CH_3)_3CCI]$ O. What name would be used to describe an elementary reaction such as: a) $NO(aq) + 2CI^-(aq) \longrightarrow NOCl_2^{-2}(aq)$ a) bimolecular b) unimolecular c) termolecular d) dimolecular e) termolecular f) dimolecular e) termolecular c) termolecular c) $CaSO_3(s) \rightleftharpoons CaO(s) + SO_2(g)$ is: a) $\frac{[CaO][SO_2]}{[CaSO_3]}$ b) $[CaO][SO_2]$ c) $\frac{[CaSO_3]}{[CaO][SO_2]}$ c) $\frac{[CaSO_3]}{[CaO][SO_2]}$ 2. For which of the following values of the equilibrium constant does the reaction mixture consist main reactants at equilibrium; a) 10^5 b) 10^3 c) 10^0 d) 10^{-3} e) 10^{-5} 3. Which expression correctly describes the equilibrium constant for the following reaction? $4NH_3(g) + 5O_3(g) \rightleftharpoons 4NO(g) + 6H_3O(g)$										
Q9. In basic solution, (C	H ₃) ₃ CCl reacts a	ccording to the ed	quation:								
(CH ₃) ₃ CCl + OI	$H \longrightarrow (CH_3)_3C$	COH + Cl-									
(CH₃)₃CCl —	$(CH_3)C^+ + Cl^-$		` '								
d) 1/k vs. 1/time e) ln k vs. e ^{-T} 18. In general, as the temperature increases, the rate of a chemical reaction a) increases due to an increased activation energy b) increases only for an endothermic reaction c) increases due to a greater number of effective collisions d) increases because bonds are weakened e) is not changed 19. In basic solution, (CH ₃) ₃ CCl reacts according to the equation: (CH ₃) ₃ CCl + OH− → (CH ₃) ₅ COH + Cl− The accepted mechanism for this reaction is: (CH ₃) ₃ CCl → (CH ₃) ₅ C+ + Cl− (CH ₃) ₃ COH (FAST) What is the rate law expression for the reaction? a) rate = k[(CH ₃) ₃ C ⁺] ² [OH ⁻] b) rate = k[(CH ₃) ₃ C ⁺][OH ⁻] c) rate = k[(CH ₃) ₃ CCl] e) rate = k[(CH ₃) ₃ CCl][OH ⁻] 10. What name would be used to describe an elementary reaction such as: a) NO(aq) + 2Cl ⁻ (aq) → NOCl ₂ ² (aq) a) bimolecular b) unimolecular c) termolecular d) dimolecular c) termolecular e) the equilibrium constant, K _c for the reaction: CaSO ₃ (s) ⇒ CaO(s) + SO ₂ (g) is: a) [CaO][SO ₂] c) [CaSO ₃] d) [SO ₂] c) [CaSO ₃] c) [CaO][SO ₂] d) [CaO][SO ₂] d) [CaO] s) 10 ³ c) 10 ⁰ d) 10 ⁻³ c) 10 ⁻⁵ e) 10. Which expression correctly describes the equilibrium constant for the following reaction?											
a) rate = $k[(CH_3)$ d) rate = $k[(CH_3)$) ₃ C+] ² [OH-] ₃) ₃ CCl]	b) rate = $k[(CH)$ e) rate = $k[(CH)$	3)3C+][OH-] ² 3)3CCl][OH-]	c) rate = $k[Cl-]$							
			reaction such as	:							
a) bimolecular	b) unin	nolecular	c) termolecular								
CaSO ₃ (s											
] b) [Ca	$O[SO_2]$	c) $\left[\mathrm{SO}_{2} \right]$								
$\mathrm{d})\ \frac{1}{\left[\mathrm{SO}_{2}\right]}$	e)	$\frac{\text{CaSO}_3]}{\text{O}[\text{SO}_2]}$									
-	_	of the equilibrium	constant does th	e reaction mixture consist mainly of							
*		c) 10 ⁰	d) 10 ⁻³	e) 10 ⁻⁵							
$4NH_{3}(g) + 5O_{2}(g)$ $a) K_{c} = \frac{4[NH_{3}]}{6[H_{2}O]}$	$\begin{array}{l} \text{(g)} \iff 4\text{NO(g)} + \\ \boxed{] + 5[\text{O}_2]} \\ \boxed{ + 4[\text{NO}]} \end{array}$	b) $K_c = \frac{6[\text{H}_2\text{O}]}{4[\text{NH}]}$	0] + 4[NO] $_{3}] + 5[O_{2}]$								
c) $K_c = \frac{[H_2O]}{[NH_3]}$	$[O_2]$	d) $K_c = \frac{\begin{bmatrix} \mathbf{H}_2 \mathbf{O} \end{bmatrix}}{\begin{bmatrix} \mathbf{N} \mathbf{H}_3 \end{bmatrix}}$	$\frac{{}^{6}[NO]^{4}}{{}^{4}[O_{2}]^{5}}$	e) $K_c = \frac{[NH_3]^4 [O_2]^5}{[H_2O]^6 [NO]^4}$							

b) CO(g) + c) CO(g) + d) CO(g) +	the following equili $3H_2(g) \rightleftharpoons CH_4(g)$ $H_2O(g) \rightleftharpoons CO_2(g)$ $2H_2(g) \rightleftharpoons CH_3OH$ $1/2 O_2(g) \rightleftharpoons CO_2(g)$ $\rightleftharpoons N_2O_4(g)$	$+ H_2O(g)$ (x) + $H_2(g)$ H(g)		
	$I_2(g) + Cl_2(g)$; ΔH am constant of 6.2		ne following would be	e true if the temperature were
2. The cond	librium constant we centration of ICl(g) ial pressure of I ₂ we	would be increased	d.	
a) 1 only	b) 2 only	c) 3 only	d) 1 and 2 only	e) 1 and 3 only
		$3H_2(g) \rightleftharpoons 2NH_3(g)$ the yield of ammon		= -92 kJ/mol. In order to both
2. decrease3. increase	the temperature the temperature the pressure the pressure			
a) 1 only	b) 2 only	c) 1 and 3 only	d) 2 and 3 only	e) 1 and 4 only
Q17. Addition of a a large a) TRUE	catalyst to a reactio b) FALSE	on at equilibrium do	es not alter the value	e of the equilibrium constant.
is equal to 0.53, a) The reaction b) The reaction c) The reaction d) The reaction	then shifts to the right t is at equilibrium, a shifts to the left to shifts to the left an	brium constant of (o make more produ nd no shift will occ make more reactar nd causes a tempera und causes a tempera	ucts tur uts ture decrease	mperature. If the reaction quotient

Short Response. Show all work.

Q19. [7 pts.] The rate law for the reaction

$$NH_4^+(aq) + NO_2^-(aq) \longrightarrow N_2(g) + 2H_2O(l)$$

is given by rate= $k[NH_4^+][NO_2^-]$. At 25 °C, the rate constant is 3.0 x 10⁻⁴ M⁻¹ 's⁻¹. Calculate the rate of the reaction at this temperature if $[NH_4^+] = 0.26$ M, and $[NO_2^-] = 0.080$ M.

Q20. [15 pts.] The rate at which tree crickets chirp is 2.0 x 10² per minute at 27 °C, but only 39.6 per minute at 5 °C. From these data, calculate the "energy of activation" for the chirping process. (*Hint:* The ratio of rates is equal to the ratio of rate constants.)

C	21.	[5	ots.]	How	does	a cataly	vst incr	ease the	rate o	fа	reaction?
~		1	P 13.	110 W	aocs	a catar	y or mici	case the	rate o	ı u	icacuon.

Q22. [6 pts.] Write equilibrium constant expressions for K_c and K_p for the following reactions:

a)
$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

b)
$$2HgO(s) \rightleftharpoons 2Hg(l) + O_2(g)$$

Q23. [10 pts.] Write out electron configurations for the following ATOMS or IONS:

- a) Li
- b) Ca²⁺
- c) Cu
- d) Fe²⁺
- e) Br

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

is 4.2 at 1650 °C. Initially $0.80 \text{ mol } H_2$ and $0.80 \text{ mol } CO_2$ are injected into a 5.0-L flask. Calculate the concentration of each species at equilibrium.

Q25. [10 pts.] Write formulas for the following compounds:

- a) ammonium sulfate
- b) copper(I) acetate
- c) iron(III) nitride
- d) heptanitrogen disulfide
- e) nitric acid

BONUS QUESTIONS	
Predict the molecular geometry of XeF ₄ .	
Draw a diagram showing the formation of hydrogen bonds between molecules of CH ₃ OH. Clea of the hydrogen bonds in your diagram!	rly label the location

Seful Information

Periodic Table of the Flements

			Penc	Julio 1	able (טו נוופ		ients									
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA 18
1	T																2
Н																	He
1.01	2											13	14	15	16	17	4.00
3	4	ī										5	6	7	8	9	10
Li	Be											В	ů	Ń	ő	F	Ne
1												_	_	1	_	_	
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											ΑI	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
	-			-	-			-			-			-		-	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	Ī	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			1	1	1	I	l	I	1	1	,	1	I	1	l	1	

 $R = 8.314 \text{ J/mol \cdot K} = 0.08206 \text{ (L atm)/(mol \cdot K)}$

Рa

U

Np

Pu

Αm

90 Th

$$k = Ae^{-Ea/RT}$$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\ln k = (-E_a/R)(1/T) + \ln A$$

Cm

$$\underline{\bullet 1\text{-order}}: \ln[A]_t = -kt + \ln[A]_0 \qquad \ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

$$t_{1/2} = 0.693 / k$$

100

Fm

Cf

Es

Bk

102

No

[259]

Md

•2-order:
$$1/[A]_t = kt + 1/[A]_0$$
 $t_{1/2}$

$$t_{1/2} = 1 / ([A]_0 \cdot k)$$

$$K_{\rm p} = K_{\rm c}(RT)^{\rm ang}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$