

Introduction to Digital Design

Week 2: Number System

Yao Zheng Assistant Professor University of Hawai'i at Mānoa Department of Electrical Engineering

Overview

- Common number systems
 - Common number systems include: Decimal, Binary, Octal, Hexadecimal.
- · Base conversion
 - For convenience, people use other bases (like decimal, hexadecimal) and we need to know how to convert from one to another.
- Arithmetic
 - How to add, subtract, multiply, etc.
- · Negative numbers
 - There are more than one way to express a number in binary. So 1010 could be -2, -5 or -6 and need to know which one.

2

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa-	16	0, 1, 9,	No	No
decimal		A, B, F		

3

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

4

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Oct Example: Linux Permissions

- · Linux default permissions
 - File (7), directory (6).
 - Each bit in the octal umasks "takes away" a permission.
- · Octal umask values
 - 0 : read, write and execute
 - 1: read and write
 - 2 : read and execute
 - 3 : read only
 - 4 : write and execute
 - 5: write only
 - 6 : execute only
 - 7 : no permissions

Octal	Perms
0	rwx
1	rw-
2	r-x
3	r
4	-wx
5	-W-
6	x
7	

Binary to Decimal

- Technique
 - Multiply each bit by 2^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

15

Technique Explained

- Just add weights
- 1₂ is just 1*2⁰, or 1₁₀.
- 110_2 is $1*2^2 + 1*2^1 + 0*2^0$, or 6_{10} . We might think of this using base ten weights: 1*4 + 1*2 + 0*1, or 6.
- -10000_2 is 1*16 + 0*8 + 0*4 + 0*2 + 0*1, or 16₁₀.
- -10000111_2 is 1*128 + 1*4 + 1*2 + 1*1 = 135 $_{10}.$ Notice this time that we didn't bother to write the weights having a 0 bit.

Useful to know powers of 2: 512 256 128 64 32 16 8 4 2 1

Practice counting up by powers of 2:

512 256 128 64 32 16 8 4 2 1

16

Example 101011₂ => 1 x 2⁰ = 1 1 x 2¹ = 2 0 x 2² = 0 1 x 2³ = 8 0 x 2⁴ = 0 1 x 2⁵ = 32 43₁₀

Octal to Decimal

- Technique
 - Multiply each bit by 8^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Example

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$

20

Hexadecimal to Decimal

Decimal

Octal

Hexadecimal

Hexadecimal to Decimal

Technique

21

- Multiply each bit by 16^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

22

Example $C \times 16^{0} = 12 \times 1 = 12$ $B \times 16^{1} = 11 \times 16 = 176$ $A \times 16^{2} = 10 \times 256 = 2560$ 2748_{10}

Using Long Division

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

31

Example $705_8 = ?_2$ $7 \quad 0 \quad 5$ $\downarrow \quad \downarrow \quad \downarrow$ $111 \quad 000 \quad 101$ $705_8 = 111000101_2$

Decimal Octal

Binary Hexadecimal

Hexadecimal to Binary

• Technique

- Convert each hexadecimal digit to a 4-bit equivalent binary representation

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

Decimal to Hexadecimal

Decimal Octal

Binary Hexadecimal

Decimal to Hexadecimal

• Technique

- Divide by 16

- Keep track of the remainder

Decimal to Hexadecimal

• Easy method: convert to binary first, then binary to hex

Convert 99 base 10 to hex

First convert to binary:

Then binary to hex: $\frac{0.1 \cdot 1}{128 \cdot 64 \cdot 32 \cdot 16 \cdot 8} \cdot \frac{0.0 \cdot 1}{4 \cdot 2 \cdot 1}$ (Quick check: 6*16 + 3*1 = 96+3 = 99)

Binary to Octal Technique Group bits in threes, starting on right Convert to octal digits

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

 $1010111011_{2} = ?_{16}$ 10 1011 1011 2 B B $1010111011_{2} = 2BB_{16}$

Example

Hexadecimal to Octal • Technique – Use binary as an intermediary

Converting To/From Binary by Hand: Summary

55

Example Video: Convert from Hex to Binary

Video link.

56

Divide-By-2 Method Common in Automatic Conversion

 Repeatedly divide decimal number by 2, place remainder in current binary digit (starting from 1s column)

Example Video: Convert from Decimal to Binary

• Video link.

58

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Common Powers (1 of 2)

• Base 10

_			
Power	Preface	Symbol	Value
10 ⁻¹²	pico	p	.000000000001
10-9	nano	n	.000000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10 ³	kilo	k	1000
10 ⁶	mega	M	1000000
109	giga	G	1000000000
1012	tera	T	10000000000000

61

Common Powers (2 of 2)

• Base 2

Power	Preface	Symbol	Value	
210	kilo	k	1024	
220	mega	M	1048576	
2 ³⁰	Giga	G	1073741824	

- What is the value of "k", "M", and "G"?
- In computing, particularly w.r.t. <u>memory</u>, the base-2 interpretation generally applies

,

Review - multiplying powers

• For common bases, add powers

$$a^b \times a^c = a^{b+c}$$

$$2^6 \times 2^{10} = 2^{16} = 65,536$$

 $2^6 \times 2^{10} = 64 \times 2^{10} = 64k$

63

Binary Addition (2 of 2)

- Two n-bit values
 - Add individual bits
 - Propagate carries
 - E.g.,

65

Multiplication (1 of 3)

· Decimal (just for fun)

$$\begin{array}{r}
35 \\
\times 105 \\
\hline
175 \\
000 \\
\hline
35 \\
\hline
3675
\end{array}$$

Multiplication (2 of 3)

· Binary, two 1-bit values

A	В	$\mathbf{A} \times \mathbf{B}$
0	0	0
0	1	0
1	0	0
1	1	1

67

Multiplication (3 of 3)

- Binary, two n-bit values
- As with decimal values
- E.g.,

68

Fractions

· Decimal to decimal (just for fun)

69

Fractions

· Binary to decimal

10.1011 => 1 x
$$2^{-4} = 0.0625$$

1 x $2^{-3} = 0.125$
0 x $2^{-2} = 0.0$
1 x $2^{-1} = 0.5$
0 x $2^{0} = 0.0$
1 x $2^{1} = 2.0$
2.6875

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

73

Negative Numbers

- How do we write negative binary numbers?
- · Historically: 3 approaches
 - Sign-and-magnitude
 - Ones-complement
 - Twos-complement
- For all 3, the most-significant bit (MSB) is the sign digit
 - 0 \equiv positive
 - 1 ≡ negative
- · twos-complement is the important one
 - Simplifies arithmetic
 - Used almost universally

74

Sign-and-magnitude

- The most-significant bit (MSB) is the sign digit
 - 0 ≡ positive
 - 1 ≡ negative
- · The remaining bits are the number's magnitude
- Problem 1: Two representations for zero
 - 0 = 0000 and also -0 = 1000

	Add		Subtract		Co	mpare and	subtract
4	0100	4	0100	0100	- 4	1100	1100
+ 3	+ 0011	- 3	+ 1011	- 0011	+ 3	+ 0011	- 0011
= 7	= 0111	= 1	≠ 1111	= 0001	- 1	≠ 1111	= 1001

75

Ones-complement

- Negative number: Bitwise complement positive number
 - 0011 ≡ 3₁₀
 - $-1100 \equiv -3_{10}$
- Solves the arithmetic problem Add Invert, add, add carry

Invert and add

4	0100	4	0100	- 4	1011
+ 3	+ 0011	- 3	+ 1100	+ 3	+ 0011
= 7	= 0111	= 1	1 0000	- 1	1110
		add carry:	+1		
			= 0001	1	

- · Remaining problem: Two representations for zero
 - 0 = 0000 and also -0 = 1111

Twos-complement

- Negative number: Bitwise complement plus one
 - 0011 ≡ 3₁₀
 - 1101 ≡ -3₁₀
- Number wheel_
- Only one zero!
- ◆ MSB is the sign digit
- 0 = positive ■ 1 = negative

Twos-complement (con't)

- Complementing a complement \rightarrow the original number
- · Arithmetic is easy

Add

- Subtraction = negation and addition
 - · Easy to implement in hardware

Invert and add

78

Invert and add

Miscellaneous

- · Twos-complement of non-integers
 - 1.6875₁₀ = 01.1011₂
 - -1.6875₁₀ = 10.0101₂
- Sign extension
 - Write +6 and -6 as twos complement
 - 0110 and 1010
 - Sign extend to 8-bit bytes
 - 00000110 and 11111010
- · Can't infer a representation from a number
 - 11001 is 25 (unsigned)
 - 11001 is -9 (sign magnitude)
 - 11001 is -6 (ones complement)
 - 11001 is -7 (twos complement)

79

Twos-complement overflow

- · Summing two positive numbers gives a negative result
- Summing two negative numbers gives a positive result

Make sure to have enough bits to handle overflow

Gray and BCD codes

Decimal	Gray
Symbols	Code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
۵ ا	1101

Decimal	BCD
Symbols	Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

81

Summary

- · Common number systems
 - Common number systems include: Decimal, Binary, Octal, Hexadecimal
- Base conversion
 - For convenience, people use other bases (like decimal, hexdecimal) and we need to know how to convert from one to another.
- Arithmatics
 - How to add, subtract, multiply, etc.
- Negative numbers
 - There are more than one way to express a number in binary. So 1010 could be -2, -5 or -6 and need to know which one.