Homework 4

Problem 1. Express the nth term of the sequences given by the following recurrence relations

- 1. $a_0 = 2, a_1 = 3, a_{n+2} = 3a_n 2a_{n+1}$ (n = 0, 1, 2, ...).
- 2. $a_0 = 1, a_{n+1} = 2a_n + 3 (n = 0, 1, 2, ...).$

Solution.

- (1) As we can get the characteristic equation $x^2+2x-3=0$, so $x_1=-3$ and $x_2=1$, we can assume $a_n=c_1(-3)^n+c_2$.
 - Then, we make n = 0 and n = 1, get $c_1 + c_2 = 2$; $-3c_1 + c_2 = 3$, so $c_1 = -\frac{1}{4}$, $c_2 = \frac{9}{4}$, it means $a_n = -\frac{1}{4}(-3)^n + \frac{9}{4}$.
- (2) For special solution, we assume its form follows $a'_n = c_1$, then we can get $c_1 = -3$. For homogeneous part, $a_n = c_2 2^n$, for $a_0 = 1$, we can get $c_2 = 1$. As is mentioned above, $a_n = -3 + 2^n$.

Problem 2. Solve the recurrence relation $a_{n+2} = \sqrt{a_{n+1}a_n}$ with initial conditions $a_0 = 2$, $a_1 = 8$ and find $\lim_{n\to\infty} a_n$.

Solution.

(1) We can use logarithm to simplise the equotion as $\log(a_{n+2}) = \frac{1}{2}\log(a_{n+1}) + \frac{1}{2}\log(a_n)$, we define $b_n = \log(a_n)$.

we can get the characteristic equotion as $2x^2 - x - 1 = 0 \Rightarrow x_1 = -\frac{1}{2}$, $x_2 = 1$, it means the solution have the form $b_n = c_1 + c_2(-\frac{1}{2})^n$, as $b_0 = \log(2)$, $b_1 = 3\log(2)$, we can get $b_n = \frac{7}{3}\log(2) - \frac{4}{3}\log(2)(-\frac{1}{2})^n$. Therefore, if we choose $e = 2.718281828 \cdots$ as logarithm base, $a_n = exp(\frac{7}{3}\ln(2) - \frac{4}{3}\ln(2)(-\frac{1}{2})^n)$.

(2) As $n \to \infty$, $a_n \to 2^{\frac{7}{3}}$.

Problem 3. Fill in the blanks with either true (\checkmark) or false (\times)

Problem 4. 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

1

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	×	✓	×
$50n + \log n$	$10n + \log \log n$	✓	✓	✓
$50n \log n$	$10n \log \log n$	×	✓	✓
$\log n$	$\log^2 n$	✓	×	×
n!	5 ⁿ	✓	×	×

2. Furthermore, we say a function $h : \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \implies h(x) \le h(y)$ '.

Find two monotonically increasing functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Solution.

(1) As we can define a pair of functions to satisfy this situation as follows:

$$f(x) = x, x \in N$$

$$g(x) = \begin{cases} x+1 & , x \in Even, \\ x-1 & , x \in Odd. \end{cases}$$

For this pair of function, we can find there not exists a specific relation between them, which can satisfy origin situation.

(2) We can give a pair of functions as follows:

$$f(x) = x, x \in N$$

$$g(x) = \begin{cases} x+1 & , x \in Even, \\ x-1 & , x \in Odd. \end{cases}$$

For f(x) and g(x), they are both monotonically increasing functions, but we can find:

- if $x \in Odd$, g(x) < f(x), therefore, $g(x) \neq O(f(x))$.
- if $x \in Even$, g(x) > f(x), therefore, $f(x) \neq O(g(x))$.

As is mentioned above, this pair of functions satisfy this situation.

Problem 5.

- a) Show that the product of all primes p with $m+1 is at most <math>\binom{2m}{m}$.
- b) Using a), prove the estimate $\pi(n) = O(\frac{n}{\ln n})$, where $\pi(n)$ denotes the number of primes not exceeding the number n.

Solution.

- (a) $C_{m+1}^{2m+1} = \binom{2m+1}{m+1} = \frac{(2m+1)!}{(m+1)!m!} = \frac{(2m+1)2m\cdots(m+2)}{m(m-1)\cdots 2\cdot 1}$. As we all know this number is an integer, and all the prime number between m+1 and 2m can't be divided by denominator m, (m-1), $\cdots 2$, 1, it means once C_{m+1}^{2m+1} be diveded by all the prime between m+1 and 2m, it still remains a positive integer (positive integer must be greater than 1). Therefore, the product of all primes between m+1 and 2m is at most C_{m+1}^{2m+1} .
- (b) According to a), we have $\Pi_{\frac{n}{2} \leq p \leq n, prime} < C_{\frac{n}{2}}^n < 4^n$. We can define t as a constant number which is smaller than $\frac{n}{2}$. So we have $t^{\pi(n)-\pi(\frac{n}{2})} < \Pi_{\frac{n}{2} \leq p \leq n, prime} < C_{\frac{n}{2}}^n < 4^n$. So we can get $\pi(n)-\pi(\frac{n}{2}) \leq \frac{n \ln(4)}{\ln(t)}$, with iteration, we can get $\pi(n) \leq \frac{n \ln(4)}{\ln(t)} \times (2-\frac{2}{n}) < \frac{2n \ln(4)}{\ln(t)}$. We let $n=\frac{1}{2}n$, it makes $\pi(n) \leq \frac{2n \ln(4)}{\ln(n)-\ln(2)} \leq \frac{4n \ln(4)}{\ln(n)}$, it means $\pi(n) = O(\frac{n}{\ln n})$.