Advanced Data Structures and Algorithm Analysis

丁尧相 浙江大学

Spring & Summer 2024 Lecture 4

Outline: Heaps (I)

- Review of Binary Heaps
- Leftist Heaps
- Skew Heaps
- Amortized analysis
- Take-home messages

Outline: Heaps (I)

- Review of Binary Heaps
- Leftest Heaps
- Skew Heaps
- Amortized analysis
- Take-home messages

Job Scheduling: UNIX process priorities

63 /usr/sbin/coreaudiod

```
14 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker
31 -bash
31 /Applications/iTunes.app/Contents/Resources/iTunesHelper.app/Contents/MacOS/iTunesHelper
31 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock
31 /System/Library/CoreServices/FileSyncAgent.app/Contents/MacOS/FileSyncAgent
31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/MacOS/AppleVNCServer
31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/RFBRegisterMDNS
31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/VNCPrivilegeProxy
31 /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
31 /System/Library/CoreServices/coreservicesd
31 /System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/Resources/usbmuxd
31 /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell
31 /sbin/launchd
31 /sbin/launchd
31 /usr/bin/ssh-agent
31 /usr/libexec/ApplicationFirewall/socketfilterfw
31 /usr/libexec/hidd
31 /usr/libexec/kextd
31 /usr/sbin/mDNSResponder
31 /usr/sbin/notifyd
                                                                  When scheduler asks "What should I
31 /usr/sbin/ntpd
31 /usr/sbin/pboard
                                                                  run next?" it could findmin(H).
31 /usr/sbin/racoon
31 /usr/sbin/securityd
31 /usr/sbin/syslogd
31 /usr/sbin/update
31 autofsd
31 login
31 ps
46 /Applications/Preview.app/Contents/MacOS/Preview
46 /Applications/iCal.app/Contents/MacOS/iCal
47 /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal
50 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Support/mds
50 /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Support/fseventsd
62 /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder
63 /Applications/Safari.app/Contents/MacOS/Safari
63 /Applications/iWork '08/Keynote.app/Contents/MacOS/Keynote
63 /System/Library/CoreServices/Dock.app/Contents/Resources/DashboardClient.app/Contents/MacOS/DashboardClient
63 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer
63 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow
63 /System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/WindowServer
63 /sbin/dynamic pager
63 /usr/sbin/UserEventAgent
```

Priority Queue ADT

- Efficiently support the following operations on a set of keys:
 - *findmin*: return the smallest key
 - deletemin: return the smallest key & delete it
 - insert: add a new key to the set
 - delete: delete an arbitrary key
- All the balanced-tree dictionary implementations we've seen support these in $O(\log n)$ time.
- Would like to be able to do *findmin* faster (say O(1)).

Heap-Ordered Trees

Along each path keys are monotonically non-decreasing

- The keys of the children of u are \geq the key(u), for all nodes u.
- (This "heap" has nothing to do with the "heap" part of computer memory.)
- [Symmetric max-ordered version where keys are monotonically nonincreasing]

Heap – Find min

Heap – Insert

- 1. Add node as a leaf (we'll see where later)
- 2. "sift up:" while current node is its parent, swap them.

Heap – Delete(*i*)

1. need a pointer to node containing key *i*

2. replace key to delete *i* with key *j* at a leaf node (we'll see how to find a leaf soon)

3. Delete leaf

4. If $i \neq j$ then sift up, moving j up the tree.

If *i* / *j* then "sift down": swap current node with **smallest of children** until its **bigger** than all of its children. **smaller**

Time Complexity

- findmin takes O(1) time
- *insert, delete* take time O(tree height) plus the time to find the leaves.
- *deletemin*: same as delete

- But how do we find leaves used in *insert* and *delete*?
 - *delete*: use the last inserted node.
 - insert: choose node so tree remains complete.

Store Heap in a Complete Tree

Store Heap in a Complete Tree

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise 0

right(i): (2i + 1) if 2i + 1 ≤ n otherwise 0

parent(i): $\lfloor i/2 \rfloor$ if $i \ge 2$ otherwise 0

Make Heap

- n inserts gives a $O(n \log n)$ time bound.
- Better:
 - put items into array arbitrarily.
 - **- for** i = n ... 1, siftdown(i).
- Each element trickles down to its correct place.

By the time you sift level i, all levels i + 1 and greater are already heap ordered.

Make Heap – Time Bound

Siftdown for all height *h* nodes is $O(h \cdot n/2^h)$ time

Total time

$$= O(\sum_{h} h \cdot n/2^{h})$$
 [sum of time for each height]

$$= O(n \sum_{h} (h / 2^{h}))$$
 [factor out the n]

$$= O(n)$$
 [sum bounded by const]

Heapsort – Another application of Heaps

Given unsorted array of integers

end

makeheap – O(n) Now first position has smallest item.

Delete last item from heap.

siftdown new root key down

d-Heaps

- What about complete non-binary trees (e.g. every node has d children)?
 - insert takes $O(\log_d n)$ [because height $O(\log_d n)$]
 - delete takes $O(d \log_d n)$ [why?]
- Can still store in an array.

- If you have few deletions, make *d* bigger so that tree is shorter.
- Can tune *d* to fit the relative proportions of inserts / deletes.

Outline: Heaps (I)

- Review of Binary Heaps
- Leftist Heaps
- Skew Heaps
- Amortized analysis
- Take-home messages

Leftist Heaps & Skew Heaps

Heap: Structure Property + Order Property

Heap: Structure Property + Order Property

Discussion 5: How fast can we merge two heaps if we simply use the original heap structure?

Heap: Structure Property + Order Property

 \P Have to copy one array into another $\longrightarrow \Theta(N)$

Heap: Structure Property + Order Property

 \P Have to copy one array into another $\longrightarrow \Theta(N)$

Use pointers

Heap: Structure Property + Order Property

- \P Have to copy one array into another $\longrightarrow \Theta(N)$
 - Use pointers Slow down all the operations

Heap: Structure Property + Order Property

- \P Have to copy one array into another $\longrightarrow \Theta(N)$
 - Use pointers Slow down all the operations

Leftist Heap:

Order Property – the same Structure Property – binary tree, but *unbalanced*

Leftist Heaps & Skew Heaps

Note:

Npl(X) = min { Npl(C) + 1 for all C as children of X }

```
Note:

Npl(X) = min { Npl(C) + 1 for all C as children of X }
```

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all C as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all C as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all C as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$$

Note:

$$Npl(X) = min \{ Npl(C) + 1 \text{ for all C as children of } X \}$$

Leftist Heaps & Skew Heaps

Proof: By induction on p. 162.

Proof: By induction on p. 162.

Discussion 6: How long is the right path of a leftist tree of N nodes? What does this conclusion mean to us?

Proof: By induction on p. 162.

Note: The leftist tree of N nodes has a right path containing at most $|\log(N+1)|$ nodes.

Proof: By induction on p. 162.

Note: The leftist tree of N nodes has a right path containing at most $|\log(N+1)|$ nodes.

We can perform all the work on the *right* path, which is guaranteed to be short.

Proof: By induction on p. 162.

Note: The leftist tree of N nodes has a right path containing at most $|\log(N+1)|$ nodes.

We can perform all the work on the *right* path, which is guaranteed to be short.

Trouble makers: Insert and Merge

Proof: By induction on p. 162.

Note: The leftist tree of N nodes has a right path containing at most $|\log(N+1)|$ nodes.

We can perform all the work on the *right* path, which is guaranteed to be short.

Trouble makers: Insert and Merge

Note: Insertion is merely a special case of merging.

Leftist trees have a short path

Thm. If rightmost path of leftist tree has r nodes, then whole tree has at least $2^r - 1$ nodes.

Proof.

Base Case: When r = 1, $2^1 - 1 = 1$ & tree has ≥ 1 node.

<u>Induction hypothesis:</u> Assume

$$N(i) \ge 2^i - 1$$
 for $i < r$.

Induction step: Left and right subtrees of the root have at least 2^{r-1} - 1, nodes.

Thus, at least $2(2^{r-1}-1) + 1 = 2^r - 1$ nodes in original tree. \Box

Therefore $n \ge 2^r - 1$, so r is $O(\log n)$

Leftist Heaps & Skew Heaps

Leftist Heaps & Skew Heaps

Declaration:


```
struct TreeNode
{
    ElementType     Element;
    PriorityQueue     Left;
    PriorityQueue     Right;
    int     Npl;
};
```

Step 1: Merge(H₁->Right, H₂)

Step 1: Merge(H₁->Right, H₂) 6 18 24 8 37 33 17 18

Leftist Heaps & Skew Heaps

```
PriorityQueue Merge ( PriorityQueue H1, PriorityQueue H2 )
{
   if ( H1 == NULL )        return H2;
   if ( H2 == NULL )        return H1;
   if ( H1->Element < H2->Element )       return Merge1( H1, H2 );
   else return Merge1( H2, H1 );
}
```

```
PriorityQueue Merge ( PriorityQueue H1, PriorityQueue H2 )
{
   if ( H1 == NULL )      return H2;
   if ( H2 == NULL )      return H1;
   if ( H1->Element < H2->Element )      return Merge1( H1, H2 );
   else return Merge1( H2, H1 );
}
```

```
static PriorityQueue
Merge1( PriorityQueue H1, PriorityQueue H2)
   if ( H1->Left == NULL ) /* single node */
         H1->Left = H2; /* H1->Right is already NULL
                              and H1->Npl is already 0 */
  else {
         H1->Right = Merge( H1->Right, H2 );
                                               /* Step 1 & 2 */
         if (H1->Left->Npl < H1->Right->Npl)
                  SwapChildren( H1 );
                                               /* Step 3 */
         H1->Npl = H1->Right->Npl + 1;
  } /* end else */
  return H1;
```

```
PriorityQueue Merge ( PriorityQueue H1, PriorityQueue H2 )
{
    if ( H1 == NULL )        return H2;
    if ( H2 == NULL )        return H1;
    if ( H1->Element < H2->Element )       return Merge1( H1, H2 );
    else return Merge1( H2, H1 );
}
```

```
static PriorityQueue
Merge1( PriorityQueue H1, PriorityQueue H2)
   if ( H1->Left == NULL ) /* single node */
         H1->Left = H2; /* H1->Right is already NULL
                              and H1->Npl is already 0 */
  else {
         H1->Right = Merge( H1->Right, H2 );
                                               /* Step 1 & 2 */
         if (H1->Left->Npl < H1->Right->Npl)
                  SwapChildren( H1 );
                                              /* Step 3 */
         H1->Npl = H1->Right->Npl + 1;
  } /* end else */
  return H1;
                                                  What if Npl is NOT
                                                        updated?
```

```
PriorityQueue Merge ( PriorityQueue H1, PriorityQueue H2 )
{
    if ( H1 == NULL )        return H2;
    if ( H2 == NULL )        return H1;
    if ( H1->Element < H2->Element )       return Merge1( H1, H2 );
    else return Merge1( H2, H1 );
}
```

```
static PriorityQueue
Merge1( PriorityQueue H1, PriorityQueue H2)
   if ( H1->Left == NULL ) /* single node */
         H1->Left = H2; /* H1->Right is already NULL
                              and H1->Npl is already 0 */
  else {
         H1->Right = Merge( H1->Right, H2 );
                                               /* Step 1 & 2 */
         if (H1->Left->Npl < H1->Right->Npl)
                  SwapChildren( H1 );
                                              /* Step 3 */
         H1->Npl = H1->Right->Npl + 1;
  } /* end else */
  return H1;
                                                  What if Npl is NOT
                                                        updated?
                   T_p = O(\log N)
```

Leftist Heaps & Skew Heaps

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

DeleteMin:

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

☞ DeleteMin:

Step 1: Delete the root

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

DeleteMin:

Step 1: Delete the root

Step 2: Merge the two subtrees

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

☞ DeleteMin:

Step 1: Delete the root

Step 2: Merge the two subtrees

$$T_p = O(\log N)$$

Outline: Heaps (I)

- Review of Binary Heaps
- Leftist Heaps
- Skew Heaps
- Amortized analysis
- Take-home messages

Leftist Heaps & Skew Heaps

Skew Heaps

Merge: Always swap the left and right children except that the largest of all the nodes on the right paths does not have its children swapped. No Npl.

Not really a special case, but a natural stop in the recursions.

Target: Any M consecutive operations take at most $O(M \log N)$ time.

Target: Any M consecutive operations take at most $O(M \log N)$ time.

Target: Any M consecutive operations take at most $O(M \log N)$ time.

Target: Any M consecutive operations take at most $O(M \log N)$ time.

Leftist Heaps & Skew Heaps

[Example] Insert 15

Merge (iterative version):

27

Note:

- Skew heaps have the advantage that no extra space is required to maintain path lengths and no tests are required to determine when to swap children.
- It is an open problem to determine precisely the expected right path length of both leftist and skew heaps.

Note:

- Skew heaps have the advantage that no extra space is required to maintain path lengths and no tests are required to determine when to swap children.
- It is an open problem to determine precisely the expected right path length of both leftist and skew heaps.

Target: Any M consecutive operations take at most $O(M \log N)$ time.

How to prove this?

Outline: Heaps (I)

- Review of Binary Heaps
- Leftist Heaps
- Skew Heaps
- Amortized analysis
- Take-home messages

Insert & Delete are just Merge

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

$$D_i = ?$$

$$\Phi(D_i) = ?$$

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

 D_i = the root of the resulting tree

$$\Phi(D_i) = ?$$

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

 D_i = the root of the resulting tree

 $\Phi(D_i) =$ number of right nodes?

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

 D_i = the root of the resulting tree

 $\Phi(D_i)$ = number of right nodes?

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

 D_i = the root of the resulting tree

 $\Phi(D_i) = \text{number of } heavy \text{ nodes}$

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

 D_i = the root of the resulting tree

 $\Phi(D_i) = \text{number of } heavy \text{ nodes}$

[Definition] A node *p* is *heavy* if the number of descendants of *p*'s right subtree is at least half of the number of descendants of *p*, and *light* otherwise. Note that the number of descendants of a node includes the node itself.

$$H_i: l_i + h_i \ (i = 1, 2)$$

status can change are nodes that are initially on the right path.

$$H_i: l_i + h_i$$
 ($i = 1, 2$)

Along the right path

$$H_i: l_i + h_i$$
 ($i = 1, 2$)

Along the right path

$$H_i: l_i + h_i$$
 ($i = 1, 2$)

Along the right path

Before merge: $\Phi_i = h_1 + h_2 + h$

After merge: $\Phi_{i+1} \leq ?$

$$H_i: l_i + h_i \quad (i = 1, 2)$$

Along the right path

Before merge: $\Phi_i = h_1 + h_2 + h$

After merge: $\Phi_{i+1} \leq l_1 + l_2 + h$

The only nodes whose heavy/light status can change are nodes that are initially on the right path.

$$H_i: l_i + h_i \ (i = 1, 2)$$

$$T_{worst} = l_1 + h_1 + l_2 + h_2$$

Along the right path

Before merge: $\Phi_i = h_1 + h_2 + h$

After merge:
$$\Phi_{i+1} \leq l_1 + l_2 + h$$

$$T_{amortized} = T_{worst} + \Phi_{i+1} - \Phi_{i}$$

$$\leq 2 (l_1 + l_2)$$

The only nodes whose heavy/light status can change are nodes that are initially on the right path.

$$H_i: l_i + h_i \ (i = 1, 2)$$

$$T_{worst} = l_1 + h_1 + l_2 + h_2$$

Along the right path

Before merge:
$$\Phi_i = h_1 + h_2 + h$$

$$T_{amortized} = T_{worst} + \Phi_{i+1} - \Phi_i$$

After merge:
$$\Phi_{i+1} \leq l_1 + l_2 + h$$

$$\leq 2\left(l_1+l_2\right)$$

$$l = O(\log N)$$

$$T_{amortized} = O(\log N)$$

Outline: Heaps (I)

- Review of Binary Heaps
- Leftist Heaps
- Skew Heaps
- Amortized analysis
- Take-home messages

Take-Home Messages

- Leftist heaps:
 - Reduce merge cost to O(log N) by building unbalanced heaps, and push the computation on the right (light) paths.
- Skew heaps:
 - Avoiding skewness checking by always flipping left and right.
 Guarantee amortized cost O(log N).
- Amortized analysis:
 - The potential function measures how mess the data structure is.

Thanks for your attention! Discussions?

Reference

Data Structure and Algorithm Analysis in C (2nd Edition): Chap. 6.5-6.7, 11.3.

https://web.stanford.edu/class/cs | 66/lectures/06/Slides06.pdf

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/heaps.pdf