This semester we have decided to standardize the I/O Pin assignment to make remote debugging a little bit easier for the TAs. The standardized Signal and Port assignments are listed below:

PORT	SIGNAL NAME	TM4C PORT ASSIGNMENT	NOTES
Port-A[2]	ST7735_SCK	SSI0_SCK	
Port-A[3]	ST7735_TFT_CS	SSI0_SS	
Port-A[4]	ST7735_MISO	SSI0_MISO	SSI interface to the ST7735
Port-A[5]	ST7735_MOSI	SSI0_MOSI	LCD
Port-A[6]	ST7735_DC	GPI0	
Port-A[7]	ST7735_RST	GPI0	

PORT	SIGNAL NAME	TM4C PORT ASSIGNMENT	NOTES
Port-B[0]	ST7735_CARD_CS	GPIO GPIO	ST7735 SDCARD Chip Select
Port-B[1]	PB1	GPIO GPIO	Used for simple speaker
Port-B[2]	PB2	GPIO/I2C0_SCK	Primarily GPIO, can be used
Port-B[3]	PB3	GPIO/I2C0_SDA	for I2C
Port-B[4]	TACH2	T1_CCP0	Tach Input for Lab-10
Port-B[5]	PB5	GPIO/AIN_11	GPIO or Analog input
Port-B[6]	PWM	MØ_PWMØ	PWM control for Lab-10
Port-B[7]	PB7	GPIO/PWM1	

PORT	SIGNAL NAME	TM4C PORT ASSIGNMENT	NOTES
Port-C[4]	UP	GPI0	
Port-C[5]	RIGHT	GPI0	Used for switches in Lab 3
Port-C[6]	LEFT	GPI0	
Port-C[7]	DOWN	GPIO	

PORT	SIGNAL NAME	TM4C PORT ASSIGNMENT	NOTES
Port-D[0]	SSI1_SCK	SSI1_SCK	SCK to TLV5616 DAC
Port-D[1]	SSI1_FS	SSI1_FS	SS/FS to TLV5616 DAC
Port-D[2]	PD2	AIN_5	Used to monitor DAC_OUT
Port-D[3]	SSI1_MOSI	SSI1_MOSI	MOSI to TLV5616 DAC
Port-D[6]	PD6	GPIO	Can be used as alternate UART
Port-D[7]	PD7	GPIO	Port

PORT	SIGNAL NAME	TM4C PORT ASSIGNMENT	NOTES
Port-E[0]	8266_GPIO_2	GPIO	Status signal 8266 WiFi
Port-E[1]	RSTB_8266	GPIO	Reset signal to 8266 WiFi
Port-E[2]	AIN_1	AIN1	Used for Audio Input Lab-9
Port-E[3]	GPI0	GPIO GPIO	
Port-E[4]	8266_TX	U5_RX	UART TXD/RXD to 8266 WiFi
Port-E[5]	8266_RX	U5_TX	- UAKT TAD/KAD LO 8200 WIFI

PORT	SIGNAL NAME	TM4C PORT ASSIGNMENT	NOTES
Port-F[0]	LAUNCHPAD_SW2		Mode Switch
Port-F[1]	RED_LED		Red LED on LaunchPad
Port-F[2]	BLUE_LED	RESERVED for Launchpad	Blue LED on LaunchPad
Port-F[3]	GREEN_LED		Green LED on LaunchPad
Port-F[4]	LAUNCHPAD_SW1		Mode Switch

The baseline schematic printout is shown on the next two pages. Use this as the starting point for Eagle Schematics

PORT Initialization

Do not use this code without confirming that it does what you need it to do.

```
// -----
//
// File name: Unified_Port_Init.c
//
// Author: Mark McDermott
// Orig gen date: July 12, 2020
// Last update: August 17, 2020
//
// Description: This is the unified Port initialization routine 445L Labs
//
// Usage: Call Lab_Brd_Port_Init () if you want to initialize all ports (preferred)
//
                Call the individual port inits as needed.
//
// -----
#include "inc/tm4c123gh6pm.h"
#include "inc/Lab_Brd_Port_Init.h"
// ------ Port Init ------
void Lab_Brd_Port_Init(void){
  Port_A_Init();
  Port_B_Init();
  Port_C_Init();
  Port_D_Init();
  Port_E_Init();
  Port_F_Init();
}
// ----- PORT A Initialization ------
//
// Port A drives the ST7735 LCD
//
// Backlight (pin 10) connected to +3.3 V
// MISO (pin 9) connected to PA4
// SCK (pin 8) connected to PA2 (SSI0Clk)
// MOSI (pin 7) connected to PA5 (SSI0Tx)
// TFT_CS (pin 6) connected to PA3 (SSI0Fss)
// CARD_CS (pin 5) connected to PB0 (GPIO)
                                                   Port A
                                                             J1-10 ST7735 RST
                                                    PA7
                                                            J1-9 ST7735 DC
                                                    PA6
                                                            J1-8 ST7735 MOSI
                                                    PA5
                                                            J2-13 ST7735 MISO
J2-12 ST7735 TFT CS
                                                    PA4
// Data/CMD (pin 4) connected to PA6 (GPIO)
                                                    PA3
// RESET (pin 3) connected to PA7 (GPIO)
// VCC (pin 2) connected to +3.3 V
// Gnd (pin 1) connected to ground
                                                             J2-11 ST7735 SCK
                                                      PA2
//
void Port_A_Init(void){
  SYSCTL_RCGCSSI_R
                    |= 0x01; // Activate SSI0
  // make PA3,6,7 out
// disable alt funct on PA3,6,7
  GPIO PORTA DIR R |= 0xC8;
  GPIO_PORTA_AFSEL_R &= ~0xC8;
```

}

```
|= 0xC8;
GPIO_PORTA_DEN_R
                                        // enable digital I/O on PA3,6,7
// configure PA3,6,7 as GPIO
                   = (GPIO_PORTA_PCTL R
GPIO_PORTA_PCTL_R
                     & 0x00FF0FFF)
                     + 0x00000000;
                  &= ~0xC8; // disable analog functionality on PA3,6,7
GPIO_PORTA_AMSEL_R
// initialize SSI0
GPIO PORTA AFSEL R |= 0x2C;
                                      // enable alt funct on PA2,3,5
                                      // enable digital I/O on PA2,3,5
GPIO PORTA DEN R
                   = 0x2C;
// configure PA2,3,5 as SSI
                    = (GPIO_PORTA_PCTL_R
GPIO_PORTA_PCTL_R
                     & 0xFF0F00FF)
                     + 0x00202200;
GPIO_PORTA_AMSEL_R &= ~0x2C;
                                       // disable analog functionality on PA2,3,5
SSIO_CR1_R
                    &= ~SSI_CR1_SSE; // disable SSI
SSI0 CR1 R
                    &= ~SSI_CR1_MS;
                                      // master mode
// configure for system clock/PLL baud clock source
                    = (SSI0_CC_R&~SSI_CC_CS_M)
SSI0_CC_R
                     + SSI_CC_CS_SYSPLL;
// clock divider for 8 MHz SSIClk (80 MHz PLL/24)
// SysClk/(CPSDVSR*(1+SCR))
// 80/(10*(1+0)) = 8 MHz (slower than 4 MHz)
SSI0_CPSR_R
                     = (SSI0_CPSR_R
                     &~SSI_CPSR_CPSDVSR_M)
                     + 10;
                                       // must be even number
// SCR = 0 (8 Mbps data rate)
// SPH = 0
// SPO = 0
                     &= ~(SSI_CR0_SCR_M
SSI0_CR0_R
                     | SSI CR0 SPH
                     | SSI_CR0_SPO);
// FRF = Freescale format
SSI0_CR0_R
                    = (SSI0 CR0 R
                     &~SSI CR0 FRF M)
                     + SSI_CR0_FRF_MOTO;
// DSS = 8-bit data
                    = (SSI0 CR0 R
SSI0_CR0_R
                    &~SSI_CR0_DSS_M)
                    + SSI CR0 DSS 8;
// enable SSI
SSI0 CR1 R
                    = SSI_CR1_SSE;
```

```
// ----- PORT B Initialization -----
// -----
//
// PB7 = GPIO/M0PWM1
                                                    Port B
// PB6 = PWM Output to Motor (M0PWM0)
                                                               J2-15
                                                                       PB7
                                                       PB7
// PB5 = GPIO/AIN11
                                                                       .PWM0
                                                       PB6
// PB4 = Timer Capture input (TACH)
                                                                       PB5
                                                               J1-2
// PB3 = GPIO/I2C SDA
                                                       PB5
                                                               J1-7
                                                                        TACH
// PB2 = GPIO/I2C0_SCL
                                                       PB4
                                                               J4-38
                                                                        I2CO SDA
// PB1 = GPIO
                                                       PB3
                                                               J2-19
                                                                        12C0 SCK
// PB0 = ST7735 Card CS
                                                       PB2
                                                              J1-4
                                                                        PB1
                                                       PB1
                                                              J1-3
                                                                        ST7735 CARD CS
                                                       PB0
void Port_B_Init(void){
 SYSCTL_RCGCPWM_R = 0x01; // activate PWM0
 SYSCTL RCGCGPIO R |= 0x02; // activate port B
 while((SYSCTL_PRGPIO_R & 0x02) == 0){}; // Wait
 // ----- Initialize PB7 as M0PWM1 -----
 // ----- Initialize PB6 as M0PWM0 -----
 GPIO_PORTB_AFSEL_R |= 0x40;  // enable alt funct on PB6
GPIO_PORTB_PCTL_R &= ~0x0F000000;  // configure PB6 as PWM0
GPIO_PORTB_PCTL_R |= 0x04000000;
GPIO_PORTB_AMSEL_R &= ~0x40;  // disable analog functionality on PB6
GPIO_PORTB_DEN_R |= 0x40;  // enable digital I/O on PB6
 // ----- Initialize PB5 as AIN11 -----
 // ----- Initialize PB4 as Timer Capture input (T1CCP0) -----
 // enable digital I/O on PB4
                                       // configure PB4 (T1CCP0)
 GPIO PORTB PCTL R = (GPIO PORTB PCTL R
                    & 0xFFF0FFFF)
                     + 0x00070000;
                                // disable analog functionality on PB4
 GPIO PORTB AMSEL R &= ~0x10;
 // ----- Initialize PB3-0 as GPIO ------
 GPIO_PORTB_PCTL_R &= ~0x000FFFF; // GPIO
GPIO_PORTB_DIR_R |= 0x0F; // make PB3-0 out
GPIO_PORTB_AFSEL_R &= ~0x0F; // regular port function
GPIO_PORTB_DEN_R |= 0x0F; // enable digital I/O on PB3-0
GPIO_PORTB_AMSEL_R &= ~0x0F; // disable analog functionality on PB3-0
 }
```

```
// ----- PORT C Initialization -----
// -----
//
// PC4 = UP switch
                              Port C
// PC5 = RIGHT switch
                                       J4-34
                                                DOWN
                                PC7
// PC6 = LEFT switch
                                       J4-35
// PC7 = DOWN switch
                                PC6
//
                                       J4-36
                                                RIGHT
                                 PC5
                                       J4-37
                                                UP
                                 PC4
void Port_C_Init(void){
 SYSCTL_RCGCGPIO_R
              |= 0x04; // Activate clock for Port C
 while((SYSCTL_PRGPIO_R & 0x04) != 0x04){}; // Allow time for clock to start
 GPIO PORTC PCTL R
             &= ~0xFFFF0000; // regular GPIO
 }
```

```
// ----- PORT D Initialization -----
//
// PD7 = GPIO/U2TX
// PD6 = GPIO/U2RX
                                                 Port D
// PD5 = Reserved for LaunchPad
                                                             J4-32
                                                                         PD7
                                                    PD7
// PD4 = Reserved for Launchpad
                                                             J4-33
                                                                          PD6
                                                    PD6
// PD3 = SSI1_MOSI (to TLV5616)
                                                             J3-26
                                                                          SSI1 MOSI
                                                    PD3
// PD2 = AIN5
                                                             J3-25
                                                                         PD2
// PD1 = SSI1_FS/CS (to TLV5616)
                                                    PD2
                                                             J3-24
                                                                          SSI1
                                                                               ES
// PD0 = SSI1 SCK (to TLV5616)
                                                    PD1
                                                                          SSI SCK
                                                             J3-23
                                                    PD0
void Port_D_Init(void){
 // ----- Initialize PB7 as U2TX, PB6 as U2RX -----
 GPIO_PORTD_LOCK_R = 0x4C4F434B; // unlock REQUIRED for PD7
GPIO_PORTD_CR_R |= 0xC0; // commit PD6, PD7
                                       // disable analog functionality on PD6, PD7
// enable alternate function on PD6, PD7
// enable digital on PD6, PD7 (PD6 is U2RX, PD7 is
  GPIO_PORTD_AMSEL_R &= ~0xC0;
  GPIO_PORTD_AFSEL_R |= 0xC0;
                      = 0xC0;
  GPIO_PORTD_DEN_R
U2TX)
  GPIO_PORTD_PCTL_R
                       =(GPIO_PORTD_PCTL_R
                         & 0x00FFFFFF)
                                          // configure PD6, PD7 as UART
                         0x11000000;
   // ----- Initialize PD2 as AIN5 -----
                                        // make PD2 input
// enable alternate function on PD2
// disable digital I/O on PD2
  GPIO PORTD DIR R
                      \&= \sim 0 \times 04;
  GPIO PORTD AFSEL R
                     = 0x04;
  GPIO PORTD DEN R
                       \&= \sim 0 \times 04;
                                          // enable analog functionality on PD2
  GPIO PORTD AMSEL R
                      |= 0x04;
  // ----- Initialize PD3,1,0 as SSI1 MOSI, FS & SCK ------
                                          // disable analog functionality on PD
  GPIO PORTD AMSEL R
                       \&= \sim 0 \times 0 B;
                        &= ~0x0B;  // disable analog functionality (
|= 0x0B;  // enable alt funct on PD3,1,0
|= 0x0B;  // enable digital I/O on PD3,1,0
                     = 0x0B;
  GPIO PORTD AFSEL R
  GPIO_PORTD_DEN_R
                       = (GPIO_PORTD_PCTL R
  GPIO_PORTD_PCTL_R
                        & 0xFFFF0F00)
                         + 0x00002022;
}
```

```
// ----- PORT E Initialization -----
//
// PE5 = 8266_RX (U5TX)
                                           Port E
// PE4 = 8266_TX (U5RX)
                                                    J1-6
                                                            8266 RX
                                             PE5
// PE3 = GPIO
                                                            8266 TX
                                             PE4
// PE2 = AIN_1 (Audio Input)
                                                    J3-29
                                                            PF3
// PE1 = 8266_8266
                                             PE3
                                                    J3-28
                                                            AIN 1
// PE0 = 8266_ GPIO_2
                                              PE2
                                                            RSTB 8266
                                              PE1
                                                    J2-18
                                                            8266 GPIO
                                              PE0
void Port_E_Init(void){
 SYSCTL_RCGCGPIO_R
                  |= 0x10; // activate port E
 while((SYSCTL_PRGPIO_R & 0x10)==0){};
 // ----- Initialize PE5 as U5TX, PE4 as U5RX -----
 GPIO PORTE AFSEL R = 0x30;
                                   // enable alt funct on PE5-4
 GPIO PORTE DEN R
                 |= 0x30;
                                    // enable digital I/O on PE5-4
                                    // configure PE5-4 as UART
 GPIO_PORTE_PCTL R
                   = (GPIO_PORTE_PCTL_R
                   & 0xFF00FFFF)
                    + 0x00110000;
 GPIO_PORTE_AMSEL_R &= ~0x30;
                              // disable analog functionality on PE
 // ------ Initialize PE3,1,0 as GPIO -------
                               // output digital I/O on PE3,1
// input digital I/O on PE0
// disable analog functionality on PE3,1,0
// disable alt funct on PE3,1,0
                  |= 0x0A;
 GPIO PORTE DIR R
 GPIO PORTE DIR R &= ~0x01;
 GPIO PORTE AMSEL R &= ~0x0B;
 GPIO PORTE AFSEL R &= ~0x0B;
                            // enable digital I/O on PE3,1,0
                  = 0x0B;
 GPIO PORTE DEN R
 GPIO_PORTE_PCTL_R
                   = (GPIO_PORTE_PCTL_R
                    & 0xFFFF0F00);
// ----- Initialize PE2 as AIN1 -----
 }
```

```
// ----- PORT F Initialization ------
//
// LaunchPad Pin Assignments
                                              Port F
// PF4 = SW1
                                                                        MODE
// PF3 = GREEN LED
                                                                        GRN LED
                                             PF3
PF3
PF3
PF3
PF3
PF3
// PF2 = BLUE_LED
                                                           J4-40
                                                                        BLUE LED
// PF1 = RED_LED
                                                           J3-30
                                                                        RED LED
// PF0 = SW2
                                                           J2-17
                                                                        LAUNCH PAD SW2
                                                  PF0
void Port_F_Init(void){
  GPIO_PORTF_AMSEL_R = 0x00;  // disable analog on PF
GPIO_PORTF_PCTL_R = 0x000000000;  // PCTL GPIO on PF4-0
GPIO_PORTF_DIR_R = 0x0E;  // PF4,PF0 in, PF3-1 out
GPIO_PORTF_AFSEL_R = 0x00;  // disable alt function on PF7-0
GPIO_PORTF_PUR_R = 0x11;  // enable pull-up on PF0 and PF4
GPIO_PORTF_DEN_R = 0x1F;  // enable digital I/O on PF4-0
}
```