Fakultät für Elektro- und Informationstechnik, Professur für Grundlagen der Elektrotechnik und Elektronik

Flik Modul 2020

Neural Networks

Steffen Seitz, Marvin Arnold & Markus Fritzsche

Prof. Ronald Tetzlaff

Dresden, 19-23.10.

Neural Networks & Deep Learning

Machine Learning

Deep Learning

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Regression: Boston Housing Dataset

CRIM	Per capita crime rate by town			
ZN	Proportion of residential land zoned for lots over 25,000 ft ²			
INDUS	Proportion of nonretail business acres per town			
CHAS	Charles River dummy variable (= 1 if tract bounds river; = 0 otherwise)			
NOX	Nitric oxide concentration (parts per 10 million)			
RM	Average number of rooms per dwelling			
AGE	Proportion of owner-occupied units built prior to 1940			
DIS	Weighted distances to five Boston employment centers			
RAD	Index of accessibility to radial highways			
TAX	Full-value property-tax rate per \$10,000			
PTRATIO	Pupil/teacher ratio by town			
В	$1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town			
LSTAT	% Lower status of the population			
MEDV	Median value of owner-occupied homes in \$1000s			

Classification:

- Cat detection is a complex task!
- Neural Networks try to unfold the complexity

Decision Boundary

Network

Class decision

1.25

1.00

0.50

0.25

0.00

-0.25

-0.50 -0.75 Data

0.0

1.0

predictionground truth

Vektor/Matrix

0.0660451 , 0.4392075], 0.73663111, -0.39896339],

-1.05692838, 0.2424558],

-0.80216162, 0.20271838],

[-0.70641308, 0.77076218],

0.2053884 , 0.81875305],

1.37804958, -0.44658032],

Loss functions

A loss functions is a grade (**Metric**) how good we have been doing our task. Mathematically speaking, a metric is a **measure of "Distance".**

Loss functions

MSE (Naive approach)

Computes the mean square Error which can defined as the **distance** of **two points** in a vector space.

Crossentropy

The (mean) cross entropy is a measure of **difference** between **two discrete** probability **distributions**. (created by Claude Shannon)

$$C = -rac{1}{N} \sum_{i=1}^{N} [y_i \ln a + (1-y_i) \ln (1-a)]$$
Mean Ground Suggestion over all (possible) truth

The naive approach of applying **MSE** for regression is ok. But (later) we will discuss a reason why classification **crossentropy** is the way to go in **nearly every** Situation!

Backward Pass

Gradien Descent update

Update rule:

$$w_1(new) = w_1(old) - \alpha \cdot \frac{\partial J_{total}(output)}{\partial w_1}$$

Learning rate

Large learning rate: Overshooting

Small learning rate: Many iterations until convergence and trapping in local minima

By chain rule we know for the weights that:

$$\frac{\boxed{\partial input_{o_{1,1}}}}{\partial w_1} \cdot \frac{\boxed{\partial output}}{\partial input_{o_{1,1}}} \cdot \frac{\boxed{\partial J_{total}(output)}}{\partial output} = \frac{\partial J_{total}(output)}{\partial w_1}$$

$$J_{total}(output) = \frac{1}{2}(target - output)^2$$
 (MMSE Loss)
$$\boxed{output} = \frac{1}{1 + e^{-input_{o_{1,1}}}}$$
 (Sigmoid)
$$\boxed{input_{o_{1,1}} = w_1 \cdot output_{h1,1} + w_2 \cdot output_{h1,2} + \dots}$$

Initialisation matters!

"Glorot" init: "He" init (Relu):
$$\sigma(w) = 1/n \qquad \qquad \sigma(w) = 2/n \\ \mu(w) = 0 \qquad \qquad \mu(w) = 0$$

Bias is set to zero.

n ... Number of Neurons

Neuron Saturation

By chain rule we know our knowledge update is:

$$\frac{\partial input_{o_{1,1}}}{\partial w_1} \cdot \frac{\boxed{\partial output}}{\partial input_{o_{1,1}}} \cdot \frac{\partial J_{total}(output)}{\partial output} = \frac{\partial J_{total}(output)}{\partial w_1}$$

$$\underbrace{\textit{output}}_{1+e^{-input_{o_{1,1}}}} \qquad \qquad \text{(Sigmoid)}$$

So if the input of our neuron get's very large (Sigmoid & ReLU) or very low (Sigmoid) our **gradient will vanish**. This is sometimes refered as a **"dying neuron".**

Optimizer - The "learning" Backbone Update rules

$$w_1(new) = w_1(old) - \alpha \cdot \frac{\partial J_{total}(output)}{\partial w_1}$$

Optimizer - The "learning" Backbone Update rules

$$w_1(new) = w_1(old) - \alpha \cdot \frac{\partial J_{total}(output)}{\partial w_1}$$

An Epoch represents one iteration over the entire dataset.

We cannot pass the entire dataset into the neural network at once. So, we divide the dataset into number of batches.

If we have 10,000 images as data and a batch size of 200, then an epoch should contain 10,000/200 = 50 iterations.

Decision Layers

How to decide which output to print? There are two possible solutions here.

Argmax(X**)**

(Trained) Cross-	Corresbon		
entropie loss "x"	ding Class	Argmax(x)	
0.25	Cat	0	
10	Horse	10	
2	Car	0	
4.02	House	0	

Naive approach. Just take the maximum of the output vector. → Downside: **No interpretability**

Softmax(x)

(Trained) Log- Loss "x"	<u>Class</u>	Softmax(x)	<u>Argm</u>	ax(Softmax(x))
0.25	Cat	0.0105		
10	Horse	0.8		Horse!
2	Car	0.085		
4.02	House	0.1		

Better: Interpret output as "pseudo" probability first. The output sums up to 1 now. Then argmax! Typically used together with a Log-loss or Crossentropy

3. Exercise

Let's train our first classifier from scratch!

