IN THE CLAIMS

The text of all claims under examination is submitted, and the status of each is identified. This listing of claims replaces all prior versions, and listings, of claims in the application.

1. (currently amended) A photoinitiator of formula I or II

wherein

R₁, R₂, R₃ and R₄ are each independently of the others C₁-C₈alkyl; C₁-C₄alkyl substituted by OH,

 C_1 - C_4 alkoxy, -CN, -COO(C_1 - C_8 alkyl), (C_1 - C_4 alkyl)-COO-, benzyl, phenyl or by -N(R_{13})(R_{14});

 C_3 - C_6 alkenyl, benzyl, - CH_2 - C_6H_4 -(C_1 - C_4 alkyl) or phenyl; or

 R_1 and R_2 together and / or R_3 and R_4 together are unbranched or branched C_2 - C_9 alkylene or C_3 - C_6 -oxa- or -aza-alkylene;

R₅ is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl;

A is Cl, Br, $-O-R_7$ $-NR_8R_9$ or $-S-R_{16}$;

A' is -O-, -NH- or -N \mathbf{R}_8 -;

X and Y are each independently of the other -O- R_{10} or -N(R_{11})(R_{12});

n is an integer from 1 to 10;

 R_6 is an n-valent radical of linear or branched C_2 - C_{20} alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(C_2H_5)(CH₂-CH₂-OH)-,

 $-C(CH_3)(CH_2-CH_2-OH)_-$, $-C(CH_2-CH_2-OH)_2$ -, $-N(CH_3)_-$, $-N(C_2H_5)_-$, $-N(CH_2-CH_2-OH)_-$,

-CO-O-, -O-CO-NH, NH-CO-O-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-,

-O-P(O-CH₂-CH₂-OH)-O-, -O-P(O)(O-CH₂-CH₂-OH)-O-,

-O-cyclohexanediyl-C(CH₃)₂-cyclohexanediyl-O-,

-O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-,

 $-Si(CH_3)_2$ -, $-O-Si(CH_3)_2$ -O-, $-O-Si(CH_3)(O-CH_3)$ -O-, $-Si(CH_3)(R_{17})$ -O- $Si(CH_3)(R_{18})$ -,

10/552,952 - 3 - II/2-22879/A/PCT

- 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl radical(s), or
- R₆ is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)_{n-1}- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl; , or
- R₆ is an n-valent radical of linear or branched –C₂-C₅₀alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R₇ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxy-propyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- when R_9 = H or methyl, R_8 is also C_2 - C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyl, norbornanediyl or phenylene, or
- R_8 and R_9 together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(\mathbf{R}_{15})-;
- R_{10} is hydrogen, -Si(C_1 - C_6 alkyl)₃, C_1 - C_8 alkyl, C_3 - C_6 alkenyl or benzyl,
- R₁₁ and R₁₂ are each independently of the other C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- R_{11} and R_{12} together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R₁₃ and R₁₄ are each independently of the other hydrogen, C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or

10/552,952 - 4 - II/2-22879/A/PCT

R₁₃ and R₁₄ together are unbranched or branched C₃-C₉alkylene which may be interrupted by -O- or by -N(R₁₅)-;

R₁₅ is hydrogen, C₁-C₄alkyl, allyl, benzyl, C₁-C₄hydroxyalkyl, -CH₂CH₂-COO(C₁-C₄alkyl) or -CH₂CH₂CN;

R₁₆ is C₁-C₁₈alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, C₁-C₁₂alkylphenyl, -CH₂-COO(C₁-C₁₈alkyl), -CH₂CH₂-COO(C₁-C₁₈alkyl) or -CH(CH₃)-COO(C₁-C₁₈alkyl);

R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,

-O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-,

 $-O-Si(CH_3)[-(CH_2)_p-OH]-$, $-O-Si(CH_3)(R_{19})-$, $-O-Si(CH_3)(R_{20})-$ and form chains;

R₁₉ and R₂₀ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,

-O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-,

-O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R_{19})-, -O-Si(CH₃)(R_{20})- and extend chains and, when R_{19} and R_{20} are linked into a ring, -(R_{19})-(R_{20})- is the bridge -O-;

R₂₁ is, independently of formula I, a radical of formula

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5

; and

p is an integer from 2 to 12, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.

2. (currently amended) A photoinitiator according to claim 1 of formula III or IV

wherein

10/552,952 - 5 - II/2-22879/A/PCT

- R₁, R₂, R₃ and R₄ are each independently of the others C₁-C₈alkyl, C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl, or
 - R₁ and R₂ together and / or R₃ and R₄ together are unbranched or branched C₂-C₃alkylene;
 - is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl; R_5
 - is an integer from 1 to 10; and n
 - R_6 is an n-valent radical of linear or branched C2-C20alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, $-C(CH_3)(CH_2-CH_2-OH)_{-}$, $-C(CH_2-CH_2-OH)_{2-}$, $-N(CH_3)_{-}$, $-N(C_2H_5)_{-}$, $-N(CH_2-CH_2-OH)_{-}$, -CO-O-, -O-CO-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-, -O-P(O-CH₂-CH₂-OH)-O-,
 - -O-P(O)(O-CH₂-CH₂-OH)-O-, -O-cyclohexanediyl-C(CH₃)₂-cyclohexanediyl-O-,
 - -O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-, -Si(CH₃)₂-,
 - $-O-Si(CH_3)_2-O-$, $-O-Si(CH_3)(O-CH_3)-O-$, $-Si(CH_3)(R_{17})-O-Si(CH_3)(R_{18})-$,
 - 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or
- R_6 is an n-valent radical of linear or branched -CO-NH-(C₂-C₉alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl or 3-(6-isocyanatohexyl)-biuret-1,5-diyl radical(s), or
- R_6 is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)₀₋₁- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl;
- is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, R_7 C_2 - C_{20} hydroxyalkyl, C_2 - C_{20} methoxyalkyl, 3- $(C_1$ - C_{18} alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxypropyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- is hydrogen, $-Si(C_1-C_6alkyl)(CH_3)_2$, C_1-C_8alkyl , $C_3-C_6alkenyl$ or benzyl;
- R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,
 - $-O-Si(CH_3)_2-O-Si(CH_3)_3$, $-O-Si(CH_3)[-(CH_2)_0-OH]-O-Si(CH_3)$ or a bivalent radical $-O-Si(CH_3)_2-$
 - $-O-Si(CH_3)[-(CH_2)_p-OH]-$, $-O-Si(CH_3)(R_{19})-$, $-O-Si(CH_3)(R_{20})-$ and form chains;
- R₁₉ and R₂₀ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,
 - $-O-Si(CH_3)_2-O-Si(CH_3)_3$, $-O-Si(CH_3)[-(CH_2)_0-OH]-O-Si(CH_3)$ or a bivalent radical $-O-Si(CH_3)_2-O-$

:bV

10/552,952 -6-II/2-22879/A/PCT -O-Si(CH₃)[-(CH₂)_p-OH]-,—O-Si(CH₃)(R_{10})-, O-Si(CH₃)(R_{20})- and extend chains and, when R_{19} and R_{20} are linked into a ring, -(R_{19})-(R_{20})- is the bridge -O-;

" day

 $\dots, \forall i$

1':

R₂₁ is, independently of formula III, a radical of the formula

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5

; and

- p is an integer from 2 to 12, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.
- 3. (original) A photoinitiator according to claim 1 of formula V

wherein

- R₇ is hydrogen, -Si(CH₃)₃, C₁-C₈alkyl, bis[4-(2-hydroxy-2-methyl-propionyl)-phenyl]-methyl, C₂-C₁₈acyl, -CO-NH-C₁-C₈alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl or C₂-C₂₀hydroxyalkyl the carbon chain of which is interrupted by from one to nine oxygen atoms.
- 4. (previously presented) A photoinitiator according to claim 1 of the formula B

5. (previously presented) A photoinitiator according to claim 1 of formula

10/552,952 - 7 - II/2-22879/A/PCT

6. (currently amended) A photoinitiator according to claim 1 of formula VI, VII or VIII

wherein

- n is an integer from 1 to 4, and
- R₆ is an n-valent radical of linear or branched C₂-C₁₆alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(CH₂-CH₂-OH)₂-, -C(CH₃)(CH₂-CH₂-OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -N(CH₃)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -Si(CH₃)₂-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and / or by from one to six oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl or
 - 3-(6-isocyanatohexyl)-biuret-1,5-diyl radical(s),
- R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,
 - -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-,
 - $-O-Si(CH_3)[-(CH_2)_0-OH]-$, $-O-Si(CH_3)(R_{19})-$, $-O-Si(CH_3)(R_{20})-$ and form chains,
- R₁₉ and R₂₀ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,
 - $-O-Si(CH_3)_2-O-Si(CH_3)_3, \quad -O-Si(CH_3)[-(CH_2)_p-OH]-O-Si(CH_3) \quad \text{or a bivalent radical } -O-Si(CH_3)_2-, \quad -O-Si$
 - -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R_{19})-, -O-Si(CH₃)(R_{20})- and extend chains and, when R_{19} and R_{20} are linked into a ring, -(R_{19})-(R_{20})- is the bridge -O-, and
 - p is an integer from 2 to 12, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.
 - 7. (previously presented) A photoinitiator according to claim 1 of formula IX

wherein

R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or

,;····,

10/552,952 - 9 - II/2-22879/A/PCT

when R_9 = H or methyl, R_8 is also C_2 - C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH or NH_2 , and is interrupted by one or more oxygen, - NH_2 , cyclohexanediyl, norbornanediyl or phenylene, or

 R_8 and R_9 together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-.

8. (previously presented) A photoinitiator according to claim 1 of formula X

$$R_8$$
 R_6
 R_6
 R_6
 R_6

wherein

n is an integer from 1 to 4, and

R₆ is an n-valent radical of linear or branched C₂-C₁₆alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(CH₂-CH₂-OH)₂-, -C(CH₃)(CH₂-CH₂-OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -N(CH₃)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -O-CO-NH, NH-CO-O-, -Si(CH₃)₂-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and / or by from one to six oxygen atoms, or

R₆ is an n-valent radical of linear or branched -C₂-C₅₀alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂; and
 R₈ is hydrogen, C₁-C₄alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl.

9. (currently amended) A process for the preparation of a compound of formula I or II, comprising the following steps:

10/552,952 - 10 - II/2-22879/A/PCT

a) reaction of diphenylmethane with an acid halide of formula R₁R₂CH-COHal and, optionally, further reaction with an acid halide of formula R₃R₄CH-COHal in the presence of a Friedel-Crafts catalyst, whereupon an isomeric mixture of formula A is obtained,

$$R_2$$
 R_3
 R_4

b) halogenation of the isomeric mixture of formula A, followed by bromination and hydrolysis, whereupon an isomeric mixture of formula B is obtained,

c) optionally, selective substitution of the benzylic hydroxy group in the resulting isomeric mixture of formula B by reaction

with an alcohol in the presence of an acid as catalyst for the preparation of an ether,

with a carboxylic acid for the preparation of an ester,

with an isocyanate for the preparation of a urethane,

with a diol, dicarboxylic acid or diisocyanate for the preparation of a bridged compound,

with a diisocyanate together with a diol or a diamine or

with a siloxane for the preparation of a silicone derivative,

- d) optionally, reaction of the alpha-hydroxy group in the resulting isomeric mixture of formula B and
- e) optionally, separation of the isomers,

where the compounds of formula I and II are

10/552,952 - 11 - II/2-22879/A/PCT

$$X$$
 R_1
 R_2
 R_3
 R_4

$$\begin{bmatrix} R_1 & O \\ X & \\ R_2 & \\ R_5 & A' \\ Y & \\ R_4 & \\ O & \\ \end{bmatrix}_n$$

wherein

 R_1 , R_2 , R_3 and R_4 are each independently of the others C_1 - C_8 alkyl; C_1 - C_4 alkyl substituted by OH, C_1 - C_4 alkoxy, -CN, -COO(C_1 - C_8 alkyl), (C_1 - C_4 alkyl)-COO-, benzyl, phenyl or by -N(R_{13})(R_{14}); C_3 - C_6 alkenyl, benzyl, -CH₂- C_6 H₄-(C_1 - C_4 alkyl) or phenyl; or

 R_1 and R_2 together and / or R_3 and R_4 together are unbranched or branched C_2 - C_9 alkylene or C_3 - C_6 -oxa- or -aza-alkylene;

 R_5 is hydrogen, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, benzyl, - CH_2 - C_6H_4 -(C_1 - C_4 alkyl) or phenyl;

A is CI, Br, -O-R₇, -NR₈R₉ or -S-R₁₆;

A' is -O-, -NH- or -N \mathbf{R}_8 -;

X and Y are each independently of the other -O- R_{10} or -N(R_{11})(R_{12});

n is an integer from 1 to 10;

 R_6 is an n-valent radical of linear or branched C_2 - C_{20} alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(C_2 H₅)(CH₂-CH₂-OH)-,

 $-C(CH_3)(CH_2-CH_2-OH)-$, $-C(CH_2-CH_2-OH)_2-$, $-N(CH_3)-$, $-N(C_2H_5)-$, $-N(CH_2-CH_2-OH)-$, $-N(CH_3-CH_2-OH)-$, $-N(CH_3-CH_3-OH)-$, $-N(CH_3-CH)-$

-CO-O-, -O-CO-, -O-CO-NH, NH-CO-O-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-,

-O-P(O-CH₂-CH₂-OH)-O-, -O-P(O)(O-CH₂-CH₂-OH)-O-,

-O-cyclohexanediyl-C(CH₃)₂-cyclohexanediyl-O-,

-O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-,

 $-Si(CH_3)_2$ -, $-O-Si(CH_3)_2$ -O-, $-O-Si(CH_3)(O-CH_3)$ -O-, $-Si(CH_3)(R_{17})$ -O- $Si(CH_3)(R_{18})$ -,

5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or

R₈ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-

10/552,952 - 12 - II/2-22879/A/PCT

- isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl radical(s), or
- R₆ is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)_{n-1}- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl; , or
- R₆ is an n-valent radical of linear or branched –C₂-C₅₀alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R₇ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxy-propyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- when R_9 = H or methyl, R_8 is also C_2 - C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyl, norbornanediyl or phenylene, or
- R_8 and R_9 together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R_{10} is hydrogen, $-Si(C_1-C_6alkyl)_3$, C_1-C_8alkyl , $C_3-C_6alkenyl$ or benzyl,
- R₁₁ and R₁₂ are each independently of the other C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- R_{11} and R_{12} together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R₁₃ and R₁₄ are each independently of the other hydrogen, C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- R_{13} and R_{14} together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R₁₅ is hydrogen, C₁-C₄alkyl, allyl, benzyl, C₁-C₄hydroxyalkyl, -CH₂CH₂-COO(C₁-C₄alkyl) or -CH₂CH₂CN;
- R₁₆ is C₁-C₁₈alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, C₁-C₁₂alkylphenyl, -CH₂-COO(C₁-C₁₈alkyl), -CH₂CH₂-COO(C₁-C₁₈alkyl) or -CH(CH₃)-COO(C₁-C₁₈alkyl);

10/552,952 - 13 - II/2-22879/A/PCT

R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,

-O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-,

-O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(\mathbf{R}_{19})-, -O-Si(CH₃)(\mathbf{R}_{20})- and form chains;

 R_{19} and R_{20} are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃,

- $-O-Si(CH_3)_2-O-Si(CH_3)_3$, $-O-Si(CH_3)[-(CH_2)_p-OH]-O-Si(CH_3)$ or a bivalent radical $-O-Si(CH_3)_2-O-$
- -O-Si(CH₃)[-(CH₂)_p-OH]-,—O-Si(CH₃)(R₁₉)-, -O-Si(CH₃)(R₂₀)- and extend chains and, when R₁₉ and R₂₀ are linked into a ring, -(R₁₉)-(R₂₀)- is the bridge -O-;
- R₂₁ is, independently of formula I, a radical of the formula

$$R_1$$
 R_2
 R_3
 R_4
 R_2

; and

- p is an integer from 2 to 12, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.
- **10.** (currently amended) A process for the preparation of compound I or II, comprising the following steps:
- a) reaction of diphenylmethane with an acid halide of formula R₁R₂CH-COHal and, optionally, further reaction with an acid halide of formula R₃R₄CH-COHal in the presence of a Friedel-Crafts catalyst, whereupon an isomeric mixture of formula A is obtained,

$$R_2$$
 R_3 R_3 R_4 R_5 R_5

 b) halogenation of the isomeric mixture of formula A, followed by bromination, aminolysis of the benzylic bromide, and hydrolysis of the tertiary halides, whereupon an isomeric mixture of formula C is obtained,

.

AND I

O C

10/552,952 - 14 - II/2-22879/A/PCT

c) optionally, when R₈ or R₉ in the isomeric mixture of formula C possess a primary hydroxy group, selective substitution of the primary hydroxy group by reaction with a carboxylic acid for the preparation of an ester, with an isocyanate for the preparation of a urethane, with a dicarboxylic acid or diisocyanate for the preparation of a bridged compound or with a siloxane for the preparation of a silicone derivative and d) optionally, separation of the isomers,

where the compounds of formula I and II are

$$R_1$$
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4

$$\begin{array}{c|c}
R_1 & O \\
X & R_2 \\
R_5 & A' \\
Y & R_6 \\
Y & R_4 & O
\end{array}$$

Sist.

J. 18

wherein

 R_1 , R_2 , R_3 and R_4 are each independently of the others C_1 - C_8 alkyl; C_1 - C_4 alkyl substituted by OH, C_1 - C_4 alkoxy, -CN, -COO(C_1 - C_8 alkyl), (C_1 - C_4 alkyl)-COO-, benzyl, phenyl or by -N(R_{13})(R_{14}); C_3 - C_6 alkenyl, benzyl, -CH₂- C_6 H₄-(C_1 - C_4 alkyl) or phenyl; or

 R_1 and R_2 together and / or R_3 and R_4 together are unbranched or branched C_2 - C_9 alkylene or C_3 - C_6 -oxa- or -aza-alkylene;

R₅ is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl;

A is CI, Br, $-O-R_{7}$, $-NR_{8}R_{9}$ or $-S-R_{16}$;

A' is -O-, -NH- or -N \mathbf{R}_8 -;

X and Y are each independently of the other -O- R_{10} or -N(R_{11})(R_{12});

n is an integer from 1 to 10;

R₆ is an n-valent radical of linear or branched C₂-C₂₀alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -C(CH₃)(CH₂-CH₂-OH)-, -C(CH₂-CH₂-OH)₂-, -N(CH₃)-, -N(C₂H₅)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-NH, NH-CO-O-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-,

10/552,952 - 15 - II/2-22879/A/PCT - 15 -

- -O-P(O-CH₂-CH₂-OH)-O-, -O-P(O)(O-CH₂-CH₂-OH)-O-,
- -O-cyclohexanediyl-C(CH₃)₂-cyclohexanediyl-O-,
- -O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-,
- $-Si(CH_3)_2-$, $-O-Si(CH_3)_2-O-$, $-O-Si(CH_3)(O-CH_3)-O-$, $-Si(CH_3)(R_{17})-O-Si(CH_3)(R_{18})-$,
- 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl radical(s), or
- R₆ is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)_{n-1}- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl; , or
- R₆ is an n-valent radical of linear or branched –C₂-C₅₀alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R₇ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxy-propyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- when R_9 = H or methyl, R_8 is also C_2 - C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyl, norbornanediyl or phenylene, or
- R_8 and R_9 together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R_{10} is hydrogen, -Si(C_1 - C_6 alkyl)₃, C_1 - C_8 alkyl, C_3 - C_6 alkenyl or benzyl,
- R₁₁ and R₁₂ are each independently of the other C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or

10/552,952 - 16 - II/2-22879/A/PCT

- R₁₁ and R₁₂ together are unbranched or branched C₃-C₉alkylene which may be interrupted by -O- or by -N(R₁₅)-;
 - R₁₃ and R₁₄ are each independently of the other hydrogen, C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
 - R_{13} and R_{14} together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
 - R₁₅ is hydrogen, C₁-C₄alkyl, allyl, benzyl, C₁-C₄hydroxyalkyl, -CH₂CH₂-COO(C₁-C₄alkyl) or -CH₂CH₂CN;
 - R₁₆ is C₁-C₁₈alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, C₁-C₁₂alkylphenyl, -CH₂-COO(C₁-C₁₈alkyl), -CH₂CH₂-COO(C₁-C₁₈alkyl) or -CH(CH₃)-COO(C₁-C₁₈alkyl);
 - R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)
 - $-O-Si(CH_3)[-(CH_2)_p-OH]-$, $-O-Si(CH_3)(R_{19})-$, $-O-Si(CH_3)(R_{20})-$ and form chains;
 - R_{19} and R_{20} are each independently of the other a monovalent radical methyl, -O-Si(CH $_3$) $_3$,
 - $-\text{O-Si}(\text{CH}_3)_2-\text{O-Si}(\text{CH}_3)_3, \quad -\text{O-Si}(\text{CH}_3)[-(\text{CH}_2)_p-\text{OH}]-\text{O-Si}(\text{CH}_3) \quad \text{or a bivalent radical } -\text{O-Si}(\text{CH}_3)_2-\text{Not}(\text{CH}_3)_2-\text{Not}(\text{CH}_3)_3 \\ +\text{O-Si}(\text{CH}_3)_2-\text{Not}(\text{CH}_3)_3 \\ +\text{O-Si}(\text{CH}_3)_3 \\ +\text{O-Si}(\text{CH}_3)$
 - -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R₁₀)-, -O-Si(CH₃)(R₂₀)- and extend chains and, when R₁₉ and R₂₀ are linked into a ring, -(R₁₉)-(R₂₀)- is the bridge -O-;

30 100

1. P. 1.

R₂₁ is, independently of formula I, a radical of the formula

: and

- p is an integer from 2 to 12, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.
- 11. (previously presented) A composition consisting of
- (A) at least one ethylenically unsaturated compound,
- (B) a photoinitiator of formula I or II according to claim 1,
- (C) optionally, further additives and
- (D) optionally, further photoinitiators and coinitiators.

10/552,952 - 17 - II/2-22879/A/PCT

- **12. (original)** A composition according to claim **11**, wherein the compound (A) is a resin containing free OH groups, free isocyanate groups or free carboxy groups and the photoinitiator (B) is bonded to the resin.
- 13. (previously presented) A process for the production of a scratch-resistant durable surface, wherein a composition according to claim 11 is applied to a support; and curing is carried out either solely by means of irradiation with electromagnetic radiation having a wavelength of from 200 nm into the IR range, or by irradiation with electromagnetic radiation and prior, simultaneous and/or subsequent application of heat.
- **14.** (previously presented) A composition according to claim **11** which is a pigmented or non-pigmented surface coating, overprint coating, powder coating, printing ink, inkjet ink, gel coat, composite material or a glass fibre coating.
- **15.** (previously presented) A composition according to claim **12** which is a surface coating for food packaging materials.

nin.