Lizzy González Alvarado - Ignacio Grané Rojas Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

September 17, 2024

TAREA #3 — Filtrado en el tiempo

1. Filtros Digitales

Este informe presenta el análisis de la respuesta en frecuencia de un filtro digital. Se incluyen gráficos de la magnitud y fase de la respuesta, así como un diagrama de polos y ceros.

1.1. Resultados Filtros paso bajos con frecuencia de corte 440 Hz.

Figura 1: Respuesta en Magnitud y Fase ellip_lowpass

Figura 2: Diagrama de Polos y Ceros ellip_lowpass

Figura 3: Respuesta en Magnitud y Fase butter_lowpass

Figura 4: Diagrama de Polos y Ceros butter_lowpass

Figura 5: Respuesta en Magnitud y Fase Cheby1_lowpass

Figura 6: Diagrama de Polos y Ceros Cheby1_lowpass

Figura 7: Respuesta en Magnitud y Fase cheby1_lowpass

Figura 8: Diagrama de Polos y Ceros cheby
2_lowpass

1.2. Resultados Filtros paso altos con frecuencia de corte 600 Hz.

Figura 9: Respuesta en Magnitud y Fase ellip_highpass

Figura 10: Diagrama de Polos y Ceros ellip_highpass

Figura 11: Respuesta en Magnitud y Fase butter_highpass

Figura 12: Diagrama de Polos y Ceros butter_highpass

Figura 13: Respuesta en Magnitud y cheby1_highpass

Figura 14: Diagrama de Polos y Ceros cheby1_highpass

Figura 15: Respuesta en Magnitud y Fase cheby2_highpass

Figura 16: Diagrama de Polos y Ceros cheby2_highpass

1.3. Filtros paso bandas con frecuencias de corte inferior y superior de 220 Hz y $1000~\mathrm{Hz}$.

Figura 17: Respuesta en Magnitud y Fase ellip_bandpass

Figura 18: Diagrama de Polos y Ceros ellip_bandpass

Figura 19: Respuesta en Magnitud y Fase butter_bandpass

Figura 20: Diagrama de Polos y Ceros butter_bandpass

Figura 21: Respuesta en Magnitud y cheby1_bandpass

Figura 22: Diagrama de Polos y Ceros cheby1_bandpass

Figura 23: Respuesta en Magnitud y Fase cheby2_bandpass

Figura 24: Diagrama de Polos y Ceros cheby2_bandpass

1.4. Filtros supresores de banda con frecuencias de corte inferior y superior de 220 Hz y 1000 Hz.

Figura 25: Respuesta en Magnitud y Fase ellip bandstop

Figura 26: Diagrama de Polos y Ceros ellip_bandstop

Figura 27: Respuesta en Magnitud y Fase butter_bandstop

Figura 28: Diagrama de Polos y Ceros butter_bandstop

Figura 29: Respuesta en Magnitud y cheby1_bandstop

Figura 30: Diagrama de Polos y Ceros cheby1_bandstop

Figura 31: Respuesta en Magnitud y Fase cheby2_bandstop

Figura 32: Diagrama de Polos y Ceros cheby2_bandstop

1.5. Optimización

En la Figura 33 se muestra la optimización alcanzada.

```
lizzy@lizzy-pc:~/Documents/TEC/DSP/tarea-3-li_t3/builddir$ ./benchmark_tarea3
2024-10-08T20:35:16-06:00
Running ./benchmark_tarea3
Run on (12 X 5000 MHz CPU s)
CPU Caches:
   L1 Data 48 KiB (x6)
    L1 Instruction 32 KiB (x6)
   L2 Unified 1280 KiB (x6)
   L3 Unified 12288 KiB (x1)
Load Average: 3.14, 3.09, 2.88
***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur
extra overhead.
                                                      Time
                                                                                    CPU Iterations UserCounters...
Benchmark
BM_Biquad_Process/256 7312 ns 7311 ns 94745 items_per_second=369.59/s
BM_Biquad_Process/512 13632 ns 13628 ns 51341 items_per_second=731.748/s
BM_Biquad_Process/1024 15819 ns 15817 ns 44264 items_per_second=1.46256k/s
BM_Biquad_Process/2048 19379 ns 19376 ns 35104 items_per_second=3.01096k/s
BM_Biquad_Process/4096 25852 ns 25831 ns 27598 items_per_second=5.74571k/s
BM_Biquad_Process/8192 38186 ns 38183 ns 18330 items_per_second=11.7047k/s
BM_Cascade_Process/256 8960 ns 8959 ns 77891 items_per_second=366.842/s
BM_Cascade_Process/512 16951 ns 16951 ns 37188 items_per_second=812.198/s
                                                                                                         32261 items_per_second=1.46184k/s
                                                                                                         22501 items_per_second=2.9259k/s
 BM_Cascade_Process/4096
BM_Cascade_Process/8192
                                                      460 ns
908 ns
                                                                                                         13935 items_per_second=5.82535k/s
                                                                                                           7299 items_per_second=12.4839k/s
```

Figura 33: Optimización

$ Este \ documento \ fue \ realizado \ utilizando \ software \ libre, como \ L^T\!E\!X, \ GNU/Octave, \ GNU/Plot, \ GNU/Make, \ GNU/Linux \ y \ Git. $
Submitted by Lizzy González Alvarado - Ignacio Grané Rojas on September 17, 2024.