Wyznaczyć wszystkie niestałe, unormowane wielomiany P(x) i Q(x) spełniające warunek $P(Q^2(x)) = P(x) \cdot Q^2(x)$. Wyjaśnienie: wielomian unormowany przy najwyższej potędze x ma współczyn-Q(x) = x = + v (x) P(x) = x4 + R(x) $((x^{m}+v(x))^{2})^{m}+R((x^{m}+v(x))^{2})=(x^{m}+R(x))(x^{m}+v(x))^{2}$ deg P(Q2(x)) = 2. n. m deg P(x). Q2(x) = 2m+n $2 n \cdot m = 2m + n \iff (2m-1)(n-1) = 1$ $m(2n-2) = n \implies m = \frac{n}{2u-2} = \frac{n}{2(n-1)}$ NWD(n, n-1) =1 uniosel: m=1, n=2 $Q(x) = x + c = Q^2(x) = (x + c)^2$ P(x) = x2 + ax+6 $(x+c)^4 + a(x+c)^2 + b = (x^2 + ax + b)(x+c)^2$ 0+0+6=0 => 6=0 x := -c $=7 \quad t^4 + \alpha t^2 = t^2 \left(x^2 + \alpha x\right)$ t:= x+c +"+at" = +2 ((+-c)) + a (+-c)) $t' + at^7 = t' - 2ct^3 + c^2t^2 + at^3 - cat^2$ $t^{3}(2(-a)+t^{2}(a-c^{2}+ca)=0$ 2c-c2+c.2c=0 $2(+c^2=0)$ $\int c = 0 \quad \text{lab} \quad \int c = -2$ $\int \alpha = 0 \quad \int \alpha = -4$ Odp. P(x)=x1, Q(x)=x lub P(x)=x2-4x, Q(x)=x-2

	I ETAP		
	ZETEL	GEO	OMETRIA TRÓJKĄTA
1)	ZASANA	MAKS	SIMUM
21	2ASADA	DIPIC	CHLETA
ઝો	ZASADA	INDU	KCJI MAT.
41	METODA	NIEZA	MIENNIKÓW
5)	52(ZE GO		PRZYP ADEK
6)	Dowod	NIE	WPROST

Na szachownicy o wymiarach wymiarach 2022 × 2022 na każdym polu ustawiono kamień. Na kamieniach można wykonywać następujaca operacje: jeżeli na każdym z kolejnych trzech pól A, B, C znajduje się kamień, to można kamienie z pól A i C przenieść na pole B. 1) Czy jest możliwe przestawienie wszystkich kamieni z szachownicy na jedno pole? 2) Czy operacje z zadania można wykonywać niekończenie wiele razy? I II A(a, b) A(a, b) A (a,6) C(a-2, b) C(a, b-2)

U
B(a-1, 6)
B(a, 6-1) (c,d) f(A,C) - suma madraton exlegiore ext (0,0) $0A^2 + 0C^2 = (a-0)^2 + (b-0)^2 + (a-2-0)^2 + (b-0)^2 =$ $-2a^{2}+2b^{2}-4a+4$ $OB^{2}+OB^{2}=2((a-1)^{2}+b^{2})=2a^{2}+2b^{2}-4a+2$ \$(A,C)>0 (\$(A,C) ∈ Z Andogicuie jole I. ĪĪ

