

FACULTY OF INFORMATION TECHNOLOGY

Fall,2019

MAT 207- LINEAR ALGEBRA

Lecture 3 – Matrix Algebra

Content

- 1 Matrix Algebra
- 2 The Inverse of Matrix

- Characterizations of Invertibles Matrices
- 4 Partitioned Matrices

3.1 Matrix Algebra

Matrix operations

- If A is an $m \times n$ matrix—that is, a matrix with m rows and n columns—then the scalar entry in the i-th row and j-th column of A is denoted by a_{ij} and is called the (i, j)-entry of A.
- Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m .

Matrix notation.

Matrix Operations

• The columns are denoted by $\mathbf{a}_1, \dots, \mathbf{a}_n$, and the matrix A is written as

$$A = [a_1 \ a_2 \ \dots \ a_n]$$

- The **diagonal entries** in an $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ matrix are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the **main diagonal** of A.
- A diagonal matrix is a square $n \times m$ matrix whose nondiagonal entries are zero.
- An example is the $n \times n$ identity matrix, I_n .
- An $m \times n$ matrix whose entries are all zero is a **zero matrix** and is written as 0.

SUMS AND SCALAR MULTIPLES

- If A and B are $m \times n$ matrices, then the sum A + B is the $m \times n$ matrix whose columns are the sums of the corresponding columns in A and B.
- The sum A + B is defined only when A and B are the same size.

• Example 1: Let
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

Find
$$A+B$$
 and $A+C$

SUMS AND SCALAR MULTIPLES

Solution:

•
$$A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$
 but $A + C$ is not defined because A and C have different sizes.

• If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

SUMS AND SCALAR MULTIPLES

• Theorem 1: Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A+B=B+A$$

b.
$$(A+B)+C=A+(B+C)$$

c.
$$A + 0 = A$$

d.
$$r(A+B) = rA + rB$$

e.
$$(r+s)A = rA + sA$$

f.
$$r(sA) = (rs)A$$

- When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into the vector $B\mathbf{x}$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B\mathbf{x})$. See the Fig. 2 below.

Multiplication by B and then A.

• Thus $A(B\mathbf{x})$ is produced from x by a *composition of mappings*—the linear transformations.

• If A is $m \times n$, B is $n \times p$, and **x** is in R^p , denote the columns of B by \mathbf{b}_1 , ..., \mathbf{b}_p and the entries in **x** by $\mathbf{x}_1, \ldots, \mathbf{x}_p$.

• Then
$$Bx = x_1b_1 + ... + x_pb_p$$

• By the linearity of multiplication by A,

$$A(Bx) = A(x_1b_1) + ... + A(x_pb_p)$$
$$= x_1Ab_1 + ... + x_pAb_p$$

• The vector $A(B\mathbf{x})$ is a linear combination of the vectors $A\mathbf{b}_1, ..., A\mathbf{b}_p$, using the entries in \mathbf{x} as weights.

• In matrix notation, this linear combination is written as

$$A(B\mathbf{x}) = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix} \mathbf{x}$$

Example: Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.

Solution: Write $B = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$ and compute

$$Ab_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} \qquad Ab_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} \qquad Ab_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$

$$AB = A[b_{1} \quad b_{2} \quad b_{3}] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

Matrix multiplication

Row—column rule for computing AB

• If a product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots a_{i1}b_{ij} + a_{in}b_{nj}$$

PROPERTIES OF MATRIX MULTIPLICATION

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
- a. A(BC) = (AB)C (associative law of multiplication)
- b. A(B+C) = AB + AC (left distributive law)
- c. (B+C)A = BA + CA (right distributive law)
- d. r(AB) = (rA)B = A(rB) for any scalar r
- e. $I_m A = A = AI_n$ (identity for matrix multiplication)

PROPERTIES OF MATRIX MULTIPLICATION

• If AB = BA, we say that A and B commute with one another.

Warnings:

- 1. In general, $AB \neq BA$.
- 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C.
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0

POWERS OF A MATRIX

• If A is an $n \times n$ matrix and if k is a positive integer, then A^k denotes the product of k copies of A: $A^k = A \cdots A$

k

- If A is nonzero and if \mathbf{x} is in \mathbb{R}^n , then $A^k \mathbf{x}$ is the result of left-multiplying \mathbf{x} by A repeatedly k times.
- If k = 0, then A^0 **x** should be **x** itself.
- Thus A^0 is interpreted as the identity matrix.

THE TRANSPOSE OF A MATRIX

• Given an $m \times n$ matrix A, the **transpose** of A is the $m \times n$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Theorem 3: Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^T)^T = A$$

b.
$$(A+B)^{T} = A^{T} + B^{T}$$

- c. For any scalar r, $(rA)^T = rA^T$
- d. $(AB)^T = B^T A^T$

3.2 The Inverse of Matrix

• An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C such that

$$CA = I$$
 and $AC = I$

- where $I = I_n$, the $n \times n$ identity matrix.
- In this case, C is an **inverse** of A.
- In fact, C is uniquely determined by A, because if B were another inverse of A, then

$$B = BI = B(AC) = (BA)C = IC = C$$

• This unique inverse is denoted by A^{-1} , so that

$$A^{-1}A = I \qquad \text{and} \qquad AA^{-1} = I$$

• Theorem 4: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible

and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0 then A is not invertible

• The quantity ad - bc is called the **determinant** of A, and we write

$$\det A = ad - bc$$

• Theorem 5:

- a. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is, $(AB)^{-1} = B^{-1}A^{-1}$
- c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

Theorem 6: An n x n matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

ALGORITHM FOR FINDING A-1

- Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$. If A is row equivalent to I, then is row equivalent to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$. Otherwise, A does not have an inverse.
- Example : Find the inverse of matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
, if it exists.

• Solution :

[A I] =
$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$$

ALGORITHM FOR FINDING A-1

$$\begin{bmatrix}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -4 & 0 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & -4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 3/2 & -2 & 1/2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & -9/2 & 7 & -3/2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3/2 & -2 & 1/2
\end{bmatrix}$$

ALGORITHM FOR FINDING A-1

• Theorem 6 shows, since $A \sim I$, that A is invertible, and

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

Now, check the final answer.

$$AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
 - a. A is an invertible matrix.
 - b. A is row equivalent to the $n \times n$ identity matrix.
 - c. A has n pivot positions.
 - d. The equation Ax = 0 has only the trivial solution.
 - e. The columns of A form a linearly independent set.

- f. The linear transformation $x \mapsto Ax$ is one-to-one.
- g. The equation Ax = b has at least one solution for each b in \mathbb{R}^n .
- h. The columns of *A* span \mathbb{R}^n .
- i. The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that.
- k. There is an $n \times n$ matrix D such that.
- 1. A^T is an invertible matrix.

• The proof will establish the "circle" of implications as shown in the following figure.

• If any one of these five statements is true, then so are the others.

• Example 1: Use the Invertible Matrix Theorem to decide if A is invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

• Solution :

$$A \Box \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1 \end{bmatrix} \Box \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

• So A has three pivot positions and hence is invertible, by the Invertible Matrix Theorem, statement (c).

• The Invertible Matrix Theorem applies only to square matrices

• For example, if the columns of a 4×3 matrix are linearly independent, we cannot use the Invertible Matrix Theorem to conclude anything about the existence or nonexistence of solutions of equation of the form Ax = b

INVERTIBLE LINEAR TRANSFORMATIONS

• When a matrix A is invertible, the equation $A^{-1}Ax = x$ can be viewed as a statement about linear transformations. See the following figure.

 A^{-1} transforms A**x** back to **x**.

INVERTIBLE LINEAR TRANSFORMATIONS

• A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n (1)

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n (2)

Theorem 9:

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equation (1) and (2).

INVERTIBLE LINEAR TRANSFORMATIONS

- **Proof:** Suppose that T is invertible.
- Then (2) shows that T is onto \mathbb{R}^n , for if \mathbf{b} is in \mathbb{R}^n and $\mathbf{x} = S(\mathbf{b})$, then $T(\mathbf{x}) = T(S(\mathbf{b})) = \mathbf{b}$, so each \mathbf{b} is in the range of T.
- Thus A is invertible, by the Invertible Matrix Theorem, statement (i).
- Conversely, suppose that A is invertible, and let $S(x) = A^{-1}x$ Then, S is a linear transformation, and S satisfies (1) and (2).
- For instance, $S(T(x)) = S(Ax) = A^{-1}(Ax) = x$.
- Thus, T is invertible.

2.4 PARTITIONED MATRICES

PARTITIONED MATRICES

• Example 1 : The matrix

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

• Can also be written as the 2×3 partitioned (or block) matrix

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$

Whose entries are the *blocks* (or *submatrices*)

$$A_{11} = \begin{bmatrix} 3 & 0 & -1 \\ -5 & 2 & 4 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 5 & 9 \\ 0 & -3 \end{bmatrix}, \quad A_{13} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$A_{21} = \begin{bmatrix} -8 & -6 & 3 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 1 & 7 \end{bmatrix}, \quad A_{23} = \begin{bmatrix} -4 \end{bmatrix}$$

ADDITION AND SCALAR MULTIPLICATION

- If matrices A and B are the same size and are partitioned in exactly the same way, then it is natural to make the same partition of the ordinary matrix sum A + B.
- In this case, each block of A + B is the (matrix) sum of the corresponding blocks of A and B.
- Multiplication of a partitioned matrix by a scalar is also computed block by block.

MULTIPLICATION OF PARTITIONED MATRICES

- Partitioned matrices can be multiplied by the usual row—column rule as if the block entries were scalars, provided that for a product AB, the column partition of A matches the row partition of B.
- Example: Let

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ \hline -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

• The 5 columns of A are partitioned into a set of 3 columns and then a set of 2 columns. The 5 rows of B are partitioned in the same way—into a set of 3 rows and then a set of 2 rows.

MULTIPLICATION OF PARTITIONED MATRICES

• . It can be shown that the ordinary product AB can be written as

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 2 \\ 2 & 1 \end{bmatrix}$$

• For instance

$$A_{11}B_{1} = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 5 & -2 \end{bmatrix} \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \end{bmatrix} = \begin{bmatrix} 15 & 12 \\ 2 & -5 \end{bmatrix}$$

$$A_{12}B_{2} = \begin{bmatrix} 0 & -4 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} -20 & -8 \\ -8 & 7 \end{bmatrix}$$

Hence

$$A_{11}B_1 + A_{12}B_2 = \begin{bmatrix} 15 & 12 \\ 2 & -5 \end{bmatrix} + \begin{bmatrix} -20 & -8 \\ -8 & 7 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 2 \end{bmatrix}$$

MULTIPLICATION OF PARTITIONED MATRICES

• **Theorem 10 :** Column—Row Expansion of *AB*

If
$$A$$
 is $m \times n$ and B is $n \times p$, then
$$AB = [\operatorname{col}_{1}(A) \quad \operatorname{col}_{2}(A) \quad \cdots \quad \operatorname{col}_{n}(A)] \begin{bmatrix} \operatorname{row}_{1}(B) \\ \operatorname{row}_{2}(B) \\ \vdots \\ \operatorname{row}_{n}(B) \end{bmatrix}$$

$$= \operatorname{col}_{1}(A) \operatorname{row}_{1}(B) + \cdots + \operatorname{col}_{n}(A) \operatorname{row}_{n}(B)$$

- The next example illustrates calculations involving inverses and partitioned matrices.
- Example 5 A matrix of the form $A = \begin{bmatrix} A11 & A12 \\ 0 & A22 \end{bmatrix}$

• Is said to be block upper triangular. Assume that A_{11} is $p \times p$, A_{22} is $q \times q$, and A is invertible. Find a formula for A^{-1} .

• Solution Denote A^{-1} by B and partition B so that

$$\begin{bmatrix} A11 & A12 \\ 0 & A22 \end{bmatrix} \begin{bmatrix} B11 & B12 \\ B21 & B22 \end{bmatrix} = \begin{bmatrix} Ip & 0 \\ 0 & Iq \end{bmatrix} \tag{2}$$

This set is

$$A11B11 + A12B21 = Ip$$
 (3)
 $A11B11 + A12B22 = 0$ (4)
 $A22B21 = 0$ (5)

$$A22B22 = Iq \qquad (6)$$

- By itself, equation (6) does not show that A_{22} is invertible. However, since A_{22} is square, the Invertible Matrix Theorem and (6) together show that A_{22} is invertible and $B22 = A_{22}^{-1}$.
- Next, left-multiply both sides of (5) by A_{22}^{-1} and obtain

$$B21 = A_{22}^{-1}0 = 0$$

- So that (3) simplifies to A11B11+0 = Ip
- Since A_{11} is square, this shows that A_{11} is invertible and $B22 = A_{22}^{-1}$. Finally, use these results with (4) to find that

$$A11B12 = -A12B22 = -A12A_{22}^{-1}$$
 and $B12 = A_{11}^{-1}A12A_{22}^{-1}$

• Thus

$$A - 1 = \begin{bmatrix} A11 & A12 \\ 0 & A22 \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} & A_{11}^{-1} A12 A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix}$$

A block diagonal matrix is a partitioned matrix with zero blocks off the main diagonal (of blocks). Such a matrix is invertible if and only if each block on the diagonal is invertible.

Thank you for listening