Matemáticas Discretas II

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- Alfabetos, palabras y lenguajes
- Operadores sobre palabras y lenguajes
- Lenguajes regulares
- Expresiones regulares

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	A →γ
3	* Regulares	Autómata finito	A → aB A → a

El alfabeto es el conjunto de símbolos que podrán aparecer en la entrada de la máquina

Alfabeto

· Un alfabeto es cualquier conjunto de símbolos no vacío

$$\Sigma$$
={0,1,2,3,4,5,6,7,8,9}

$$\Sigma$$
={a,b}

Alfabeto

· Un alfabeto es cualquier conjunto de símbolos no vacío

$$\Sigma$$
={0,1,2,3,4,5,6,7,8,9}
 Σ ={a,b}

Alfabeto latino:

$$\Sigma$$
={a,b,c,d,e,f,g,h,i,j,k,l,m,n,ñ,o,p,q,r,s,t,u,v,w,x,y,z}

Alfabeto griego:

$$\Sigma = \{\alpha, \beta, \gamma, \delta, \varepsilon, \ldots, \Psi, \Omega\}$$

Las palabras o cadenas son secuencias finitas de símbolos

· Dado el alfabeto usado en español:

```
\Sigma = \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,\tilde{n},o,p,q,r,s,t,u,v,w,x,y,z\}
```

se pueden crear palabras:

```
colina
```

puente

dardo

fdkfjk

(FLP

La noción de palabra no tiene asociada semántica

Cadena o palabra

- Una palabra es una secuencia finita de símbolos de un determinado alfabeto
 - Si Σ ={0,1,2,3,4,5,6,7,8,9}, entonces 431, 021(ϵ) son palabras de Σ
 - Si Σ ={a,b}, entonces ab, ba, aaab ϵ , son palabras de Σ

La cadena vacía ϵ representa una palabra que tiene 0 símbolos, esto es, una cinta vacía

Una máquina acepta un conjunto de palabras específico que se puede generar a partir de un alfabeto

Lenguaje

• Un lenguaje es un conjunto de palabras particular

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos

Egba, ana, abb, bbb, bba, bab, aab, baa}

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos
 - L2: conjunto de palabras que tienen al menos una a

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos
 - L2: conjunto de palabras que tienen al menos una a
 - L₃: conjunto de palabras que tienen un número par de símbolos

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos
 - L2: conjunto de palabras que tienen al menos una a
 - L₃: conjunto de palabras que tienen un número par de símbolos
 - L₄: conjunto de todas las posibles palabras

Lenguaje universal sobre Σ

- Se denota como Σ^* y se conoce también como cerradura
- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ

Lenguaje universal sobre Σ

- Se denota como Σ^* y se conoce también como cerradura
- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ
- Muestre el lenguaje universal Σ^* para los siguientes alfabetos:
 - $\Sigma = \{a,b,c\}$
 - $\Sigma = \{1\}$

Lenguaje universal sobre Σ

- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ
 - Para Σ ={a,b,c}, Σ *={ ε ,a,b,c,aa,ab,ac,ba,bb,bc,...}
 - Para Σ ={1}, Σ *={ ϵ , 1, 11, 111, 1111,...}

Lenguaje universal sobre Σ

- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ
- Para Σ ={a,b,c}, Σ *= ε a, b, c, aa, ab, ac, ba, bb, bc, ...}
- Para Σ ={1}, Σ *={ ϵ 1, 11, 111, 1111,...}
 - ϵ siempre está en Σ^* porque la cadena vacía se puede obtener de cualquier alfabeto

Para cualquier alfabeto Σ , se tiene que Σ^* es infinito ya que Σ no puede ser vacío

Lenguaje

• Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^* , es decir, $L\subseteq\Sigma^*$

Potencia de una cadena

Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

$$(\alpha m \circ r)^{\circ} = \in$$

$$(\alpha m \circ r)^{1} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{2} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

$$(\alpha m \circ r)^{3} = \alpha m \circ r \times (\alpha m \circ r)^{\circ}$$

Potencia de una cadena

• Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

· es el operador concatenación

Potencia de una cadena

• Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

• (aab)³

Potencia de una cadena

Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

- $(aab)^3 = aab \cdot (aab)^2$
 - =aab·aab· aab1
 - =aab·aab·aab·aab⁰
 - =aab·aab·aab·e=aabaabaab

Potencia de una cadena

• Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

Muestre

-
$$a^3 \cdot (aba)^2$$
 $a = a^3 \cdot (aba)^2 \cdot (ba)^3$ $a = a^3 \cdot (aba)^2 \cdot (ba)^3$ $a = a^3 \cdot (aba)^2 \cdot (aba)^3$

•
$$\Sigma = \{a\}$$
,
L= $\{a, aa, aaa, aaaa, ...\}$

• Σ ={a}, L={a, aa, aaa, aaaa,...}={aⁿ | n≥1}

• $\Sigma = \{a\}$,

L= $\{a, aa, aaa, aaaa,...\}$ = $\{a^n \mid n \ge 1\}$, cadenas de una ó más a's

```
    Σ={a},
    L={a, aa, aaa, aaaa,...}={a<sup>n</sup> | n≥1}, cadenas de una ó más a's
    Σ={a,b},
    L={ab, aabb, aaabbb,...}
```

```
    Σ={a},
    L={a, aa, aaa, aaaa,...}={a<sup>n</sup> | n≥1}, cadenas de una ó más a's
    Σ={a,b},
    L={ab, aabb, aaabbb,...}={a<sup>n</sup>b<sup>n</sup> | n≥1}
```

- Σ ={a}, L={a, aa, aaa, aaaa,...}={aⁿ | n≥1}, cadenas de una ó más a's
- $\Sigma = \{a,b\}$,

L={ab, aabb, aaabbb,...}={ $a^nb^n \mid n\geq 1$ }, cadenas con igual cantidad de a's que b's, donde las a's están a la izquierda de las b's

- Σ ={a}, L={a, aa, aaa, aaaa,...}={a^n | n>1}, cadenas de una ó más a's
- $\Sigma = \{a,b\}$,

L={ab, aabb, aaabbb,...}={ $a^nb^n \mid n\geq 1$ }, cadenas con igual cantidad de a's que b's, donde las a's están a la izquierda de las b's

• Σ ={a}, L={a, aa, aaa, aaaa,...}={a^n | n>1}, cadenas de una ó más a's

• $\Sigma = \{a,b\}$,

L={ab, aabb, aaabbb,...}={ $a^nb^n \mid n \ge 1$ }, cadenas con igual cantidad de a's que b's, donde las a's están a la izquierda de las b's

• $\Sigma = \{0,1\},$

L= $\{\epsilon$, 01, 10, 0011, 0101, 1100, 1001,... $\}$ = $\{w \in \{0,1\}^* \mid tienen \ la misma cantidad de 0's que 1's<math>\}$, cadenas con igual cantidad de 0's que 1's

Longitud de una cadena

• Sea x una cadena que pertenece a un lenguaje L, su longitud se denota por |x| y se define como:

$$|x| = \begin{cases} 0, & \text{si } x = \varepsilon \\ n, & \text{si } x = \alpha_1 \alpha_2 \dots \alpha_n \end{cases}$$

Longitud de una cadena

 Sea x una cadena que pertenece a un lenguaje L, su longitud se denota por |x| y se define como:

$$|x| = \begin{cases} 0, si x = \varepsilon \\ n, si x = a_1 a_2 ... a_n \end{cases}$$

- |E|=0
- |ababaa|=6

Concatenación entre lenguajes

• Sean A y B dos lenguajes definidos sobre Σ , la concatenación A·B se define como:

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

A. B. A.

- $A = \{a, ab, ac\}, B = \{b, b^2\}$
- A.B = {ab, 966, abbb, acb, acbbb

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- $A = \{a,ab,ac\}, B = \{b,b^2\}$
- A·B={ab,abb,acb,ab²,abb²,acb²}={ab,ab²,acb,ab²,ab³,acb²}

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- $A = \{a,ab,ac\}, B = \{b,b^2\}$
- $A \cdot B = \{ab,abb,acb,ab^2,abb^2,acb^2\} = \{ab,ab^2,acb,ab^2,acb^3,acb^2\}$ = $\{ab,ab^2,acb,ab^3,acb^2\}$

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- A={a,ab,ac}, B={b,b²}
- A·B={ab,abb,acb,ab²,abb²,acb²}={ab,ab²,acb,ab²,acb³,acb²}
- · B·A=? {69, 696, 69c, 669, 6696}

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- A={a,ab,ac}, B={b,b²}
- A·B={ab,abb,acb,ab²,abb²,acb²}={ab,ab²,acb,ab²,acb³,acb²}
- B·A={ba,bab,bac,b²a,b²ab,b²ac}

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n = 0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

$$A^{3} = A, A^{2}$$

$$A^{2} = \{21, 22, 13, 21, 22, 23, 31, 32, 33\}$$

$$A^{3} = \{211, 12, 113, 221, 222, 223, 231, 132, 133\}$$

$$A^{3} = \{211, 12, 123, 221, 222, 223, 231, 132, 233\}$$

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n=0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

Calcule A^3 para $A=\{ab,b\}$

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n=0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

Calcule A^3 para $A=\{ab,b\}$

 $A^3=A\cdot A\cdot A=\{ab,b\}\{ab,b\}\{ab,b\}$

 $={ab,b}{abab,bab,abb,bb}$

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n=0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

Cadenas formadas usando 3 concatenaciones sobre A

Calcule
$$A^3$$
 para $A=\{ab,b\}$

$$A^3=A\cdot A\cdot A=\{ab,b\}\{ab,b\}\{ab,b\}$$

$$={ab,b}{abab,bab,abb,bb}$$

```
Dado A=\{ab,ca,ad\}, \dot{c}abcaab \in A^3? \dot{c}abcaae A^2? \dot{c}abcaae A^2? \dot{c}abcaae A^3? \dot{c}abcaae A^3? \dot{c}adcaab \in A^3? \dot{c}adcaab \in A^3?
```

```
Dado A=\{ab, c, ac\}, cacab \in A^3?

cabacca \in A^3?

cabacca \in A^3?

cabacca \in A^3?

cabacca \in A^3?
```

Dado A={a,b,ab} calcule

• $A^0 \cup A^1 \cup A^2$

Dado A={a,b,ab} calcule

•
$$A^0 \cup A^1 \cup A^2$$

- $-A^0=\{\varepsilon\}$
- $A^{1}=A=\{a,b,ab\}$
- A^2 = $A \cdot A$ ={aa,ab,aab,ba,bab,aba,abb,abab}

Cerradura de Kleene

 La cerradura de Kleene de un lenguaje A es la unión de las potencias, se denota por A*

$$A^* = A^0 \cup A^1 \cup A^2 \cup \dots$$

Cerradura de Kleene

 La cerradura de Kleene de un lenguaje A es la unión de las potencias, se denota por A*

$$A^* = A^0 \cup A^1 \cup A^2 \cup \dots$$

- · También se conoce como cerradura estrella
- A* es el conjunto de posibles concatenaciones sobre A

Stephen Kleene

- Creador de las expresiones regulares
- Enunció la cerradura de Kleene, A*

(1909 - 1994)

Cerradura de Kleene

Calcule A* para A={a,ab}

$$A^{*} = \{ E, a_{10}b, a_{9}, a_{9}b, a_{6}, a_{6}a_{9}b_{9}b_{9}, \dots \}$$

Cerradura de Kleene

```
    A={a, ab}
    A<sup>0</sup>={ε}
    A<sup>1</sup>={a,ab}
    A<sup>2</sup>={aa,aab, aba,abab}
    ...
    A*={ε,a,aa,ab,aab,aba,abab,...}
```

Cerradura de Kleene

```
• A={a, ab}
       A^0=\{\varepsilon\}
       A^1=\{a,ab\}
       A^2=\{aa,aab,aba,abab\}
A^*=\{\varepsilon,a,aa,ab,aba,aba,abab,...\}
¿ababab∈A*?
¿abbbbb∈A*?
¿abaaaaaaa∈A*? ⇒
```

Cerradura de Kleene

• A={a, ab}

$$A^0=\{\epsilon\}$$

$$A^1=\{a,ab\}$$

$$A^2=\{aa,aab,aba,abab\}$$

$$A^*=\{\varepsilon,a,aa,ab,aba,aba,abab,...\}$$

$$\text{A}^{\text{x}} \subseteq \text{S}^{\text{x}}$$

Cerradura de Kleene

```
• A={a, ab}
         A^0=\{\varepsilon\}
         A^1=\{a,ab\}
         A^2=\{aa,aab,aba,abab\}
A^*=\{\varepsilon,a,aa,ab,aba,aba,abab,...\}
\Sigma*={\epsilon,a,b,aa,ab,ba,bb,aaa,aab,...}
```

Cerradura de Kleene A^* y Cerradura Σ^*

- Σ^* se define sobre el alfabeto y corresponde a todas las cadenas que se pueden crear sobre un alfabeto Σ
- A* se define sobre un lenguaje A y consiste en todas las concatenaciones posibles

Cerradura de Kleene A^* y Cerradura Σ^*

- Σ^* se define sobre el alfabeto y corresponde a todas las cadenas que se pueden crear sobre un alfabeto Σ
- A* se define sobre un lenguaje A y consiste en todas las concatenaciones posibles

```
A={a, ab} está definido sobre \Sigma={a,b}

A* = {\epsilon,a,ab,aa,aab,aba,abab,...}

\Sigma* = {\epsilon,a,b,aa,bb,ab,ba,aaa,aab,aba, ...}
```

• En general se cumple que $A^* \subseteq \Sigma^*$

Cerradura positiva de Kleene A⁺

• La cerradura positiva de Kleene de un lenguaje A es la unión de las potencias sin incluir $A^0=\{\epsilon\}$,

$$A^{+} = A^{1} \cup A^{2} \cup A^{3} \cup \dots$$

Cerradura positiva Σ^+

• Es el conjunto de palabras que se pueden formar sobre Σ sin incluir la cadena vacía

- Sea A={a,b,ab}, muestre A* y A+. Indique si abba∈A*, bbaa∈A*
- Sea A={a,aa,ac} y B={b,ba}, muestre A·B, B·A y B*

Sea A={a,b,ab}, muestre A* y A*

$$A^* = A^0 \cup A^1 \cup A^2 \cup ...$$

 $= \{\varepsilon\} \cup \{a,b,ab\} \cup \{aa,ab,aab,ba,bb,bab,aba,abb,abab,abab\} \cup ...$
 $= \{\varepsilon,a,b,ab,aa,aab,ba,bb,bab,aba,abb,abab,...\}$
 $A^+ = A^1 \cup A^2 \cup ...$
 $= \{a,b,ab,aa,aab,ba,bb,bab,aba,abb,abab,...\}$

Sea A={a,aa,ac} y B={b,ba}, muestre A·B, B·A y B*

$$A \cdot B = \{ab, aba, aaba, aaba, aaba, aaba\}$$

$$B^*=\{\varepsilon,b,ba,bba,bab,bbba,babb,...\}$$

• Muestre cadenas que pertenezcan a los siguientes lenguajes. Indique si la cadena vacía ϵ pertenece a los lenguajes y exprese de forma general (en palabras) el tipo de cadenas que pertenecen a cada uno.

-
$$L_1 = \{ w_1 c w_2 | |w_1| = |w_2| \text{ donde } w_1, w_2 \in \Sigma^* \text{ con } \Sigma = \{a,b\} \}$$
- $L_2 = \{ a^n b^m | n \neq m, n, m \geq 0 \}$
- $L_3 = \{ a^n b^{2n} c^n | n \geq 1 \}$

• $L_1=\{w_1cw_2||w_1|=|w_2|\ donde\ w_1,w_2\in\Sigma^*\ con\ \Sigma=\{a,b\}\}$ aca, acb,bca,abbbabcaaaaaa

En general, cadenas que tienen una c en el medio, tal que las subcadenas a sus lados tienen la misma longitud. $\varepsilon \notin L_1$

En general, cadenas que tienen distinta cantidad de a's que b's donde están a la izquierda las a's de las b's $\epsilon \notin L_2$

abbc, aabbbbcc, aaabbbbbbccc

En general, cadenas que tienen el doble de b's que a's y que c's donde aparecen de izquierda a derecha las a's, b's y luego c's. $\epsilon \in L_3$

- Exprese de manera formal los siguientes lenguajes:
 - L_1 es el conjunto de cadenas del lenguaje universal de Σ ={a,b,c} que empiezan por a y terminan en a $\{a,b,c\}$

• L_1 es el conjunto de cadenas del lenguaje universal de Σ ={a,b,c} que empiezan por a y terminan en a

$$L_1 = \{aw_1 a \mid w_1 \notin \Sigma^* \text{ con } \Sigma = \{a,b,c\}\}\}$$

$$Q \{a,b,c\} \times Q$$

• L_2 es el conjunto de cadenas que tienen longitud par definidas sobre el lenguaje universal de $\Sigma = \{a,b\}$

$$L_2=\{w_i | |w_i|=2k, \text{ donde existe } k\geq 1, w_i\in \Sigma^* \text{ con } \Sigma=\{a,b\}\}$$

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	A →γ
_ 3	Lenguajes Regulares	Autómata finito	A→aB A→a

Jerarquía de Chomsky

Noam Chomsky

- Definió las gramáticas independientes del contexto
- Creador de la jerarquía de Chomsky. 1956
- Definió la forma normal de Chomsky. 1979

(1928 -)

Lenguajes regulares

Dado un alfabeto Σ , los lenguajes regulares sobre tal alfabeto se definen recursivamente como:

- 🥌 {ε} es un lenguaje regular
 - Para todo símbolo $a \in \Sigma$, {a} es un lenguaje regular
 - Si A y B son lenguajes regulares, entonces $A \cup B$, $A \cdot B$ y A^* son lenguajes regulares A^+
 - Ningún otro lenguaje es regular

Dado Σ ={a,b}, las siguientes afirmaciones son correctas:

- \varnothing y $\{\epsilon\}$ son lenguajes regulares
- {a} y {b} son lenguajes regulares
- {a,b} es regular porque es la unión de {a} y {b}
- {ab} es regular porque es la concatenación de {a} y {b}
- {a,ab,b} es regular porque es la unión de dos lenguajes regulares
- $\{a^n | n \ge 0\}$ es regular
- $\{a^mb^n|m\geq 0 \land n\geq 0\}$ es regular
- $\{(ab)^n | n \ge 0\}$ es regular

Dado Σ ={a,b,c}, indique si los siguientes lenguajes son regulares:

•
$$\{a\}^* \cup \{b\}^* = 1$$

•
$$\{a^nb^n|n\geq 0\}$$

•
$$\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}$$

Dado Σ ={a,b,c}, indique si los siguientes lenguajes son regulares:

- {a}*
- {a}*∪{b}*
- {a}*·{b}*
- {a,bc}*
- {a}·{b,c,ab}
- $\{a^nb^n|n\geq 0\}$, no es regular
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}$
- {anb2n n≥0}, no es regular

Dado Σ ={a,b,c}, indique si los siguientes lenguajes son regulares:

- {a}*
- {a}*∪{b}*
- {a}*·{b}*
- {a,bc}*
- {a}·{b,c,ab}
- $\{a^nb^n|n\geq 0\}$, no es regular
- { $a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0$ }
- $\{a^nb^{2n}|n\geq 0\}$, no es regular

•
$$\{b^n | n \ge 0\} = \{\epsilon, b, bb, bb, \dots\}$$

 $aab \in \{\epsilon, a, aa, aaa, \dots\} \cdot \{\epsilon, b, bb, bb, \dots\}$
pero no cumple $a^n b^n$

$$Q^{\circ} \in R_{190} |_{or}$$

$$b^{\circ} \in R_{190} |_{or}$$

$$\xi_{99} : \xi_{69} \neq q^{\circ} b^{\circ}$$

Desarrolle el lenguaje L={abc,ab,a}+

Desarrolle el lenguaje L={abc,ab,a}+

L={abc,ab,a,abcabc,abcab,abca,...}

Desarrolle el lenguaje L={abc,ab,a}+

L={abc,ab,a,abcabc,abcab,abca,...}

$$\sum_{\epsilon \to eps, |on}$$

Compárelo con {abc,ab,a}*

Desarrolle el lenguaje L={abc,ab,a}*

```
L={abc,ab,a,abcabc,abcab,abca,...}
```

Compárelo con {abc,ab,a}*

```
{abc,ab,a}*={E,abc,ab,a,abcabc,abcab,abca,...}
{abc,ab,a}*={abc,ab,a,abcabc,abcab,abca,...}
```

Desarrolle el lenguaje L={abc,ab,a}*
 L={abc,ab,a,abcabc,abcab,abca,...}

Compárelo con {abc,ab,a}*

{abc,ab,a}*={\varepsilon,abc,abc,abcab,abca,...} {abc,ab,a}*={abc,ab,a,abcabc,abcab,abca,...} {abc,ab,a}*={abc,ab,a}*.{abc,ab,a} $A^{+} = A^{*}A$ $A^{+} = \left\{ E_{\omega} A^{2}_{\omega} A^{2}_{\omega} A^{2} A^{3} A^{3} A^{4} A^{3} A^{4} A^{3} A^{4} A^{3} A^{4} A^{3} A^{3} A^{4} A^{3} A^{4} A^{3} A^{4} A^{4$

• En general se cumple que $A^+=A^*\cdot A$

Indique si los siguientes lenguajes son regulares:

- $\{ab^na \mid n \ge 0\} \leftarrow SI$
- $\{a^nb^mc^{n+m}|n,m\geq 0\}$
- {wcw|w∈{a,b}*} ← SI
- $\{w \in \{a,b\}^* | |w| = 2k, para k \ge 0\} \leftarrow S_{-}$

Indique si los siguientes lenguajes son regulares:

- {abⁿa | n≥0} —
- $\{a^nb^mc^{n+m}|n,m\geq 0\}$
- {wcw | w∈{a,b}*}
- {w∈{a,b}*| |w|=2k, para k≥0}{aa, ab, ba, bb}*

Desarrolle cada uno de estos lenguajes regulares:

- {a}*
- {a}*∪{b}*
- {a}*·{b}*
- {a,bc}*
- {abc,ab,a}+
- {a}·{b,c,ab}
- $\{(ab)^i | i \geq 0\}$
- $\{a^nb^m | n \ge 0, m \ge 0\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}$

Desarrolle cada uno de estos lenguajes regulares:

• $\{a^nb^m|n\geq 0, m\geq 0\}$

• $\{a^{l}b^{m}c^{n}|l\geq 0, m\geq 0, n\geq 0\}$

Desarrolle cada uno de estos lenguajes regulares:

- {a}*={ε,a,aa,aaa,aaaa,...}
- $\{a\}^* \cup \{b\}^* = \{\epsilon, a, aa, aaa, ...\} \cup \{\epsilon, b, bb, bbb, ...\} = \{\epsilon, a, b, aa, bb, aaa, bbb, ...\}$
- $\{a\}^* \cdot \{b\}^* = \{\varepsilon, a, aa, aaa, \dots, ab, aab, aaab, \dots, b, b, bbb, \dots\}$
- {a,bc}*={ε,a,bc,aa,abc,bca,bcba,aaa,...}
- {abc,ab,a}+={abc,ab,a,abcabc,abcab,abca,...}
- {a}·{b,c,ab}={ab,ac,aab}
- $\{(ab)^i | i \ge 0\} = \{\epsilon, ab, abab, ababab, ...\}$
- $\{a^nb^m|n\geq 0, m\geq 0\}=\{\epsilon,a,b,ab,aab,abb,aaab,...\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}=\{\epsilon,a,b,c,ab,bc,abc,aa,aab,aac,...\}$

Desarrolle cada uno de estos lenguajes regulares:

- {a}*={ε,a,aa,aaa,aaaa,...}
- $\{a\}^* \cup \{b\}^* = \{\epsilon, a, aa, aaa, ...\} \cup \{\epsilon, b, bb, bbb, ...\} = \{\epsilon, a, b, aa, bb, aaa, bbb, ...\}$
- • $\{a\}^* \cdot \{b\}^* = \{\epsilon, a, aa, aaa, \dots, ab, aab, aaab, \dots, b, b, bbb, \dots\}$
- {a,bc}*={ε,a,bc,aa,abc,bca,bcba,aaa,...}
- {abc,ab,a}+={abc,ab,a,abcabc,abcab,abca,...}
- {a}·{b,c,ab}={ab,ac,aab}
- $\{(ab)^i | i \ge 0\} = \{\varepsilon, ab, abab, ababab, ...\}$
- $\{a^nb^m|n\geq 0, m\geq 0\}=\{\epsilon,a,b,ab,aab,abb,aaab,...\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}=\{\epsilon,a,b,c,ab,bc,abc,aa,aab,aac,...\}$

Note que el orden importa y que pueden haber cualquier cantidad de a's o de b's

Discuta la pertenencia de las siguientes cadenas dado

- · ¿bcabc EL? SI
- · caabcad∈L? No
- ¿adbc∈L? N○
- · ¿adad∈L? SI
- ¿adddd∈L? S1

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\}^* \cup \{b\}^*$$

Lenguajes regulares

$$\{e^{\frac{1}{5}} = \{E, 9, 99, 999, \dots \}$$

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\} * \cup \{b\} * = \{E, 9, 99, 999, \dots \}$$

Cadenas que tienen a's o b's. Estos símbolos no aparecen

mezclados

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\}^* \cdot \{b\}^*$$

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\}^* \cdot \{b\}^*$$

Cadenas que tienen cero o más a's seguidas de cero o más b's

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje A de todas las palabras que tienen exactamente una a

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje A de todas las palabras que tienen exactamente una a

$$A = \{b\}^* \cdot \{a\} \cdot \{b\}^*$$

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje A de todas las palabras que tienen exactamente una a

$$A = \{b\}^* \cdot \{a\} \cdot \{b\}^*$$

· Desarrolle el lenguaje

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje B de todas las palabras que comienzan con b

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje B de todas las palabras que comienzan con b

$$B = \{b\} \cdot \{\{a\} \cup \{b\}\}^*$$

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje C de todas las palabras que contienen la cadena ba

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje C de todas las palabras que contienen la cadena ba

$$C = \{\{a\} \cup \{b\}\} * \cdot \{\{a\} \cup \{b\}\} *$$

Expresión regular

Una expresión regular es una forma simplificada de representar un lenguaje regular

Lenguaje regular	Expresión regular
{ab}	ab
{a}*	a*
{a} ⁺	a⁺
{a} ∪ {b}	a∪b

Expresión regular

Algunas expresiones regulares:

- b*
- •(b(a∪b)*
- $(a \cup b)*ba(a \cup b)*$

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que comienzan con b y terminan con a

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que comienzan con b y terminan con a

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen exactamente dos a's

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen exactamente dos a's

b*ab*ab*

• Indique la **expresión regular** que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen un número par de a's

(b @ 6 x 0 6 x)

• Indique la **expresión regular** que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen un número par de a's

$$\frac{b^*(ab^*ab^*)^*}{(((^*\circ(^*\circ(^*)^*)^*)^*)}$$

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud par

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud par

(aa\ab\ba\bb)*

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud impar

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud impar a(aa \cup ab \cup ba \cup bb)* \cup b(aa \cup ab \cup ba \cup bb)*

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} que tienen al menos una b

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} que tienen al menos una b

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b,c} que no contienen la subcadena ac

(6 uc)*Q*

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b,c} que no contienen la subcadena ac \leftarrow

(buc)*(aubc*)*

-ababc

-ababc

-ababc

• Indique la **expresión regular** que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el penúltimo símbolo es una a

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el penúltimo símbolo es una a

$$(a \cup b)*a(a \cup b)$$

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el antepenúltimo símbolo es una a

oes una a $= \{a_{9}, a_{6}, b_{9}, b_{6}\}$

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el antepenúltimo símbolo es una a

$$(a \cup b)*a(a \cup b)(a \cup b)$$

Expresiones regulares equivalentes

4,
$$(r \cup s) \cup t = r \cup (s \cup t)$$

5.
$$r \cdot \varepsilon = \varepsilon \cdot r = r$$

$$7. (rs)t=r(st)$$

8.
$$r(s \cup t) = rs \cup rt$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

Expresiones regulares equivalentes

5.
$$r \cdot \varepsilon = \varepsilon \cdot r = r$$

$$7. (rs)t=r(st)$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

$$\{a\}\cup\{bc\}=\{bc\}\cup\{a\}=\{a,bc\}$$

Expresiones regulares equivalentes

4,
$$(r \cup s) \cup t = r \cup (s \cup t)$$

5.
$$r \cdot \varepsilon = \varepsilon \cdot r = r$$

$$7. (rs)t=r(st)$$

8.
$$r(s \cup t) = rs \cup rt$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$