CSCI 4022 Fall 2021
Community Detection

Relevant Calculus: Compute
$$\frac{d}{dx}(\log[1-e^{-ax}])$$

$$= \frac{1}{1-e^{-ax}} \int_{-ax}^{ax} (1-e^{-ax}) \int_{-ax}$$

Mullen: Community Detection

CSCI 4022 Fall 2021 Community Detection

Relevant **Calculus**: Compute $\frac{d}{dx} (\log [1 - e^{-ax}])$

$$\frac{d}{dx} \left(\log \left[1 - e^{-ax} \right] \right) = \frac{1}{1 - e^{-ax}} \left(ae^{-ax} \right)$$

$$= a \frac{e^{-ax}}{1 - e^{-ax}}$$

$$= -a \left(\frac{1}{1 - e^{-ax}} - 1 \right)$$

$$= -a \left(\frac{1}{1 - e^{-ax}} - 1 \right)$$

Via 2-Chainz rule

Then optional to rewrite as:

BigClam: Model review

 $F_{u,A}$: the membership strength of node u in community a. Set $F_{u,a}=0$ if and only if u is absolutely **not** a member of A.

Each community creates an edge between two of its members via

$$P_A(u,v) = 1 - \exp(-F_{u,A} \times F_{v,A}).$$

Result: if members share multiple communities, we get

$$P(u,v) = 1 - \exp\left(\sum_{c} -F_{u,c} F_{v,c}\right) = /-e^{-F_{u,c} F_{v,c}}$$

BigCLAM Implementation

Since every edge between members is created independently, the *joint* probability of a given graph: the set of all the edges E and the non-edges, given F, is:

$$L(F) = \prod_{(u,v)\in E} P(u,v) \prod_{(u,v)\notin E} (1 - P(u,v))$$

This is a big product and numerically unstable, so we logarithm...

$$l(F) = \sum_{(u,v)\in E} \log\left(1 - \exp(-F_{\mathbf{u}} \cdot F_{\mathbf{v}})\right) - \sum_{(u,v)\notin E} F_{\mathbf{u}} \cdot F_{\mathbf{v}}$$

and differentiate. The multi-variate derivative or gradient tells us which direction to update our iterative guesses of F and bring them closer to the maximum.

Gradient Ascent/Descent

Gradient Ascent is an algorithm of the form:

$$\underbrace{F^{(k+1)}}_{\text{new guess}} = \underbrace{F^{(k)}}_{\text{old guess}} + \underbrace{\nu}_{\text{step size step direction}} \underbrace{F'(z^{(k)})}_{\text{step direction}}$$

In our case, we're going to update our estimates for F by taking small steps in the direction of the community affiliations for node u. In other words: A step is an update to u to be more closely affiliated with it's neighbors. Then repeat for every node u.

The *gradient* is the multivariate direction we're supposed to take steps in! We step "up" the slope or "down" the slope depending on whether we want a *max* or a *min*.

Gradient Ascent/Descent

In practice, we're differentiating

$$(1 - \exp(-F_u \cdot F_v)) - \sum_{i=1}^{n} I_i$$

$$l(F) = \sum_{\substack{(u,v) \in E \\ \text{Resis}}} \log \left(1 - \exp(-F_{\boldsymbol{u}} \cdot F_{\boldsymbol{v}})\right) - \sum_{\substack{(u,v) \notin E \\ \text{Resis}}} F_{\boldsymbol{u}} \cdot F_{\boldsymbol{v}}$$

but we'll go at it one specific node at a time, so we're looking at

$$l(F_u) = \sum_{v \in N(u)} \log (1 - \exp(-F_u \cdot F_v)) - \sum_{v \notin N(u)} F_u \cdot F_v$$

and differentiating with respect to row u

(In other words "how should we update our knowledge of person u").

Calculus friends:
$$\frac{d}{dx}\log(1-f(x)) =$$

$$\frac{d}{dx}e^{f(x)} =$$

Gradient Ascent/Descent

In practice, we're differentiating

$$l(F) = \sum_{(u,v) \in E} \log \left(1 - \exp(-F_{\boldsymbol{u}} \cdot F_{\boldsymbol{v}})\right) - \sum_{(u,v) \notin E} F_{\boldsymbol{u}} \cdot F_{\boldsymbol{v}}$$

but we'll go at it one specific node at a time, so we're looking at

$$l(F_u) = \sum_{v \in N(u)} \log \left(1 - \exp(-F_{\boldsymbol{u}} \cdot F_{\boldsymbol{v}})\right) - \sum_{v \notin N(u)} F_{\boldsymbol{u}} \cdot F_{\boldsymbol{v}}$$

and differentiating with respect to row u

(In other words "how should we update our knowledge of person u").

Calculus friends:
$$\frac{d}{dx}\log(1-f(x)) = \frac{f'(x)}{1-f(x)}$$
, $\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$

The BigCLAM gradient

The BigCLAM gradient
$$\nabla l(F_u) = \frac{d}{dF_u} \sum_{v \in N(u)} \log \left(1 - \exp(-F_u \cdot \langle F_v \rangle) - \sum_{v \notin N(u)} F_u \cdot F_v \cdot F_v$$

Each term in the first sum is a derivative of $\log (1 - \exp(-F_u \cdot F_v))$, which gives

$$F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)}$$
.

Each term in the second sum is a derivative of $F_u \cdot F_v$, so we are left with just F_v .

Result:

The BigCLAM gradient

The full update:

Or: for each community, the corresponding entry to the vector $\nabla l(F_u)$ is the one that pushes u closer to the communities in it's neighbor set N(u) and further from the communities not in its neighbor set.

The BigCLAM Iteration

The full update:

$$\nabla l(F_{u}) = \langle \sum_{v \in N(u)} F_{v,A} \frac{\exp(-F_{u} \cdot F_{v})}{1 - \exp(-F_{u} \cdot F_{v})} - \sum_{v \notin N(u)} F_{v,A}, \qquad \text{all note:}$$

$$\sum_{v \in N(u)} F_{v,B} \frac{\exp(-F_{u} \cdot F_{v})}{1 - \exp(-F_{u} \cdot F_{v})} - \sum_{v \notin N(u)} F_{v,B}, \dots, \rangle$$

Or **Iterate**:

- 1. Compute gradient of l(F) with respect to (vector) F v $\nabla l(F_u)$ (keeping others fixed)
- 2. Update the row F_u as: $F_u^{new} = F_u^{old} + \nu \cdot \nabla l(F_u)$. (ν is a step size (usually small))

Networks and Communities

3. If any component c of F_u is negative $(F_{u,c} < 0)$, reset $F_{u,c} = 0$. (*Reflect:* why might this happen?)

The BigCLAM Iteration

- 1. Compute gradient of l(F) with respect to (vector) Fu: $\nabla l(F_u)$ (keeping others fixed)
- 2. Update the row F_u as: $F_u^{new} = F_u^{old} + \nu \cdot \nabla l(F_u)$.
- 3. If any component c of F_u is negative $(F_{u,c} < 0)$, reset $F_{u,c} = 0$.

As written, this happens to be pretty slow! We can spruce it up a little, though! The steps in vector shorthand:

$$\nabla l(F_u) = \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} - \sum_{v \notin N(u)} F_v$$

Cleanup: F is sparse, since N(u) is usually much smaller than all nodes. This means most of the additions are in the $\sum_{v \notin N(u)}$ sum. But we could rewrite:

the additions are in the
$$\sum_{v \notin N(u)}$$
 sum. But we could rewrite:
$$\sum_{v \notin N(u)} F_v = \sum_{v \in N(u)} F_v - \sum_{v \in N(u)} F_v$$

$$\nabla l(F_{u}) = \sum_{v \in N(u)} F_{v} \frac{\exp(-F_{u} \cdot F_{v})}{1 - \exp(-F_{u} \cdot F_{v})} - \sum_{v \notin N(u)} F_{v}$$

$$= \sum_{v \in N(u)} F_{v} \frac{\exp(-F_{u} \cdot F_{v})}{1 - \exp(-F_{u} \cdot F_{v})} - \left(\sum_{v \in N(u)} F_{v}\right) - \sum_{v \in N(u)} F_{v}$$

$$\nabla l(F_u) = \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} - \sum_{v \notin N(u)} F_v$$

$$= \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} - \left(\sum_v F_v - F_u - \sum_{v \in N(u)} F_v\right)$$

$$= \sum_{v \in N(u)} F_v \left(\frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} + 1\right) + F_u - \sum_v F_v$$

$$\nabla l(F_u) = \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} - \sum_{v \notin N(u)} F_v$$

$$= \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} - \left(\sum_v F_v - F_u - \sum_{v \in N(u)} F_v\right)$$

$$= \sum_{v \in N(u)} F_v \left(\frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)}\right) + 1 + F_u - \sum_v F_v$$

$$= \sum_{v \in N(u)} F_v \left(\frac{1}{1 - \exp(-F_u \cdot F_v)}\right) + F_u - \sum_v F_v$$

$$\nabla l(F_u) = \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} \left(\sum_{v \notin N(u)} F_v \right)$$

$$= \sum_{v \in N(u)} F_v \frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} - \left(\sum_v F_v - F_u - \sum_{v \in N(u)} F_v \right)$$

$$\text{for each in the form } F_v \left(\frac{\exp(-F_u \cdot F_v)}{1 - \exp(-F_u \cdot F_v)} + 1 \right) + F_u - \sum_v F_v$$

$$\text{for each who of } F_v \left(\frac{1}{1 - \exp(-F_u \cdot F_v)} \right) + F_u - \sum_v F_v$$

What did we win?? Original RH sum: $v \notin N(u)$ was linear in total # of nodes. Now we have just |N(u)| size updates! We can also cache/re-use the sum-over-people community scores in $\sum_{u} F_{u}!$

BigCLAM Wrapup

We will implement BigCLAM in a course notebook. But there are a couple of major concerns with the algorithm

- 1. How do we initialize F for our gradient ascent?
- 2. How might we choose k?

When considering this algorithm, consider why a few things are important:

- 1. What happens if we have a large, sparse, graph and use a random initialization, e.g. where each node/community index get a NP.RANDOM.RAND()?
- 2. How would a background community with connection probability ε factor into the BigCLAM updates?

Graph Partitioning

BigCLAM and the AGM are models that allow for members to be in multiple communities at once, like a GMM-style soft clustering. There's a corresponding "hard clustering" approach to a graph that asks how we would break down a graph into **non-overlapping** subgraphs.

First question: What makes a "good" cluster in a graph G?

- Maximize the number of within-cluster connections?
- ▶ Minimize the number of between-cluster connections?

Definition: Given the undirected graph G(V, E), with node set V and edge set E, the bipartitioning task is to divide the vertex set V into 2 disjoint sets A and B, such that B = V - A

We need a measure for the "goodness" of a bipartition. **Definition**: The cut of a partitioning of undirected graph G(V,E) into A and A^C is the set of edges (or total edge weight of this set) with exactly one vertex in the set A and one in A^C .

$$cut(A) = \sum_{i \in A, j \notin A} w_{ij}$$

(where w_{ij} = weight of edge connecting nodes i and j; often 1 if the edge exists)

Example: On the G above with edge weights of 1, $cut(A) = \underline{\hspace{1cm}}$

We need a measure for the "goodness" of a bipartition. **Definition**: The cut of a partitioning of undirected graph G(V,E) into A and A^C is the set of edges (or total edge weight of this set) with exactly one vertex in the set A and one in A^C .

$$cut(A) = \sum_{i \in A, j \notin A} w_{ij}$$

(where $w_{ij} =$ weight of edge connecting nodes i and j; often 1 if the edge exists)

Example: On the G above with edge weights of 1, $cut(A) = \underline{\hspace{1cm} 2}$.

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

Preliminary Idea: Find the minimum-cut.

- 1. **Implementation?:** Cut in such a way as to minimize the weight of between-community edges
- 2. **Implementation?:** Choose communities A and B satisfying $\operatorname{argmin}_{A,B} \operatorname{cut}(A)$.

Concerns:

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

Preliminary Idea: Find the minimum-cut.

- 1. **Implementation?:** Cut in such a way as to minimize the weight of between-community edges
- 2. **Implementation?:** Choose communities A and B satisfying $\operatorname{argmin}_{A,B} \operatorname{cut}(A)$.

Concerns:

1. **Uniqueness:** If unweighted, where do we cut the above graph?

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

Preliminary Idea: Find the minimum-cut.

- 1. **Implementation?:** Cut in such a way as to minimize the weight of between-community edges
- 2. **Implementation?:** Choose communities A and B satisfying $\operatorname{argmin}_{A \ B} \operatorname{cut}(A)$.

Concerns:

1. Uniqueness: If unweighted, where do we cut the above graph?

Even worse:

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

To make sure the cuts split the graph roughly in half, we can use **normalized cuts**.

Definition: The *volume* of a vertex set S, denoted vol(S), is the

number of edges with at least one end in S.

Example: Find the volume of $A = \{1, 2, 3, 4\}$ on the graph at right.

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

To make sure the cuts split the graph *roughly* in half, we can use **normalized cuts**.

Definition: The *volume* of a vertex set S, denoted vol(S), is the

number of edges with at least one end in S.

Example: Find the volume of $A = \{1, 2, 3, 4\}$ on the graph at right.

Solution: The volume of A is 7: it counts all of the 8 edges in the original graph except the [5,6] edge.

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

To make sure the cuts split the graph *roughly* in half, we can use **normalized cuts**.

Definition: The *volume* of a vertex set S, denoted vol(S), is the

number of edges with at least one end in S.

Example: Find the volume of $A = \{1, 2, 3, 4\}$ on the graph at right.

Solution: The volume of A is 7: it counts all of the 8 edges in the original graph except the [5,6] edge.

Definition: The normalized cut value of a cut, denoted

 $n\underline{cut}(A,B)$ for a bipartition of node set V into disjoint sets A and B is given by:

$$\operatorname{AC}\operatorname{cut}(B) = \operatorname{ncut}(A) = \frac{\operatorname{cut}(A,B)}{\operatorname{vol}(A)} + \frac{\operatorname{cut}(A,B)}{\operatorname{vol}(B)}$$

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

To make sure the cuts split the graph roughly in half, we can use normalized cuts.

Definition: The *normalized cut value* of a cut, denoted ncut(A,B), for a bipartition of node set V into disjoint sets A and B is given by:

$$ncut(A) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

Idea: Try to weakly encourage $vol(A) \approx vol(B)$.

Example

Goal: Over all possible bipartitions on a graph, find the one with the best cut.

To make sure the cuts split the graph *roughly* in half, we can use **normalized cuts**.

Definition: The *normalized cut value* of a cut, denoted ncut(A,B), for a bipartition of node set V into disjoint sets A and B is given by:

$$ncut(A) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

Idea: Try to weakly encourage $vol(A) \approx vol(B)$.

Example Solution: the cut in the middle cuts 2 edges, but leaves vol(A) = 8, vol(B) = 9 for a $ncut = \frac{2}{9} + \frac{2}{8}$. The cut at the right cuts only one edge, but leaves lopsided volumes of vol(A) = 15, vol(B) = 1 for a total ncut of $\frac{16}{15}$... it's worse!

Definition: The *normalized cut value* of a cut, denoted ncut(A, B), for a bipartition of node set V into disjoint sets A and B is given by:

$$ncut(A) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

Goal: Find the optimal best cut for a given graph.

- Examine all possible partitionings' normalized cut scores.
- 2. Pick the partitioning that minimizes ncut.
- 3. Easy, right?!

Definition: The *normalized cut value* of a cut, denoted ncut(A, B), for a bipartition of node set V into disjoint sets A and B is given by:

$$ncut(A) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

Goal: Find the optimal best cut for a given graph.

- Examine all possible partitionings' normalized cut scores.
- 2. Pick the partitioning that minimizes ncut.
- 3. Easy, right?!
- 4. Wrong! NP-hard, actually

Definition: The *normalized cut value* of a cut, denoted ncut(A, B), for a bipartition of node set V into disjoint sets A and B is given by:

$$ncut(A) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

Goal: Approximate the optimal best cut for a given graph.

- 1. Examine all possible partitionings' normalized cut scores.
- 2. Pick the partitioning that minimizes ncut.
- 3. Easy, right?!
- 4. Wrong! **NP-hard**, actually

We can turn the "best normalized cut" problem into an eigenvalue problem for an approximate solution! But of what matrix, and why?

Definition:

The adjacency matrix of a graph G is given by:

$$A_{ij} = \begin{cases} 1 & \text{if nodes i and j share an edge} \\ 0 & \text{else.} \end{cases}$$

Consider: Suppose we have a vector x which has some value for each node. What does the

vector Ax represent?

G

We can turn the "best normalized cut" problem into an eigenvalue problem for an approximate solution! But of what matrix, and why?

Definition:

The adjacency matrix of a graph G is given by:

$$A_{ij} = \begin{cases} 1 & \text{if nodes i and j share an edge} \\ 0 & \text{else.} \end{cases}$$

Consider: Suppose we have a vector x which has some value for each node. What does the vector Ax represent? **Solution:**

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

We can turn the "best normalized cut" problem into an eigenvalue problem for an **approximate** solution! But of what matrix, and why?

Definition:

The adjacency matrix of a graph G is given by:

$$A_{ij} = \begin{cases} 1 & \text{if nodes i and j share an edge} \\ 0 & \text{else.} \end{cases}$$

Consider: Suppose we have a vector x which has some value for each node. What does the vector Ax represent? **Solution:**

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}. \text{ Then } \underline{y_i} = \sum_{i=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j. \text{ In other words: } y_i \text{ is } x_j = \sum_{i=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

the sum of the \bar{x} values of all nodes connected to node i.

Spectral Analysis

Definition: The spectrum of a matrix consists of its eigenvectors $\underline{x_i}$, ordered by the **magnitude** of their corresponding eigenvalues λ_i : $\underline{\Lambda} = \lambda_1, \lambda_2, \dots \overline{\lambda_n}$, (where

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
)

How do these help us? Spectral graph theory is using

the "spectrum" of the matrix representing our graph G, and seeing what it tells us about the system G models!

So let's talk eigenvalues/eigenvectors. Suppose G is a d-regular connected graph, that each node has degree d (to simplify things at first; we'll back this off in a minute).

Goal: Seeking λ and x such that $Ax = \lambda x$

Example: For x = [1, 1, ..., 1], what is Ax?

Spectral Analysis

Definition: The spectrum of a matrix consists of its eigenvectors x_i , ordered by the **magnitude** of their corresponding eigenvalues λ_i : $\Lambda = \lambda_1, \lambda_2, \dots \lambda_n$, (where

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
)

How do these help us? Spectral graph theory is using

the "spectrum" of the matrix representing our graph G, and seeing what it tells us about the system G models!

So let's talk eigenvalues/eigenvectors. Suppose G is a d-regular connected graph, that each node has degree d (to simplify things at first; we'll back this off in a minute).

Goal: Seeking λ and x such that $Ax = \lambda x$ **Example:** For $x = [1, 1, \dots, 1]$, what is Ax?

Solution: $Ax = [d, d, \dots, d] = dx$, or $\lambda = d$ is an eigenvalue associated with the 1's vector.

Nice!

Spectral Analysis

Definition: The spectrum of a matrix consists of its eigenvectors x_i , ordered by the **magnitude** of their corresponding eigenvalues λ_i : $\Lambda = \lambda_1, \lambda_2, \dots \lambda_n$, (where

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
)

How do these help us? Spectral graph theory is using

the "spectrum" of the matrix representing our graph G, and seeing what it tells us about the system G models!

So let's talk eigenvalues/eigenvectors. Suppose G is a d-regular connected graph, that each node has degree d (to simplify things at first; we'll back this off in a minute).

Goal: Seeking λ and x such that $Ax = \lambda x$ **Example:** For x = [1, 1, ..., 1], what is Ax?

Solution: $Ax = [d, d, \dots, d] = dx$, or $\lambda = d$ is an eigenvalue associated with the 1's vector.

Nice!

 $\ensuremath{\mathsf{NB}}\xspace$ We probably already knew this one, since this is the result of treating A like a stochastic

What if the graph G is **not-connected**? For example, consider the G below that consists of 2 components.

Goal: Seeking λ and x such that $Ax = \lambda x$

Examples: consider $x^A = 1$'s for components in subgraph A and 0's for components in subgraph B.

What if the graph G is **not-connected**? For example, consider the G below that consists of 2

components.

Goal: Seeking λ and x such that $Ax = \lambda x$

Examples: consider $x^A = 1$'s for components in subgraph A and 0's for components in subgraph B.

Solution: Then:

G

What if the graph G is **not-connected**? For example, consider the G below that consists of 2 components.

Goal: Seeking λ and x such that $Ax = \lambda x$

Examples: consider $x^A = 1$'s for components in subgraph A and 0's for components in subgraph B.

Result: x^A and x^B are **both** eigenvectors with associated eigenvalues of d=2. They're also linearly independent, since $x^A \cdot x^B = 0$.

How does this help us? One measure that cutting the edge from B to D was a "good" cut might be that the original graph has eigenvectors close to x^A and x^B .

Spectral Intuition If the graph G is **not-connected**:

1. If each component is degree d, we get eigenvalues of $\lambda_1 = \lambda_2 = d$ and eigenvectors of x^A and x^B , just bunches of 1s.

If the graph G is connected by only a few edges...

1. We should probably get eigenvalues that are similar $\lambda_1 \approx \lambda_2$ and eigenvectors that are similar to x^A and x^B .

If we can directly solve for the eigenstuff of our system, that's great and could answer this. But we usually cant for very large matrices! So we find a way to approximate or only find some eigenvalues. We can simply this problem by asking about only a single matrix that combines both degree d and adjacency A.

Definition: The *degree matrix* D of a graph with n nodes is the $n \times n$ diagonal matrix with $Da = d_i$, where d_i is the degree of node i.

Definition: The Laplacian matrix L of a graph is given by L = D - A

Example: what are D, L, and A for the graph given?

Definition: The degree matrix D of a graph with n nodes is the $n \times n$ diagonal matrix with $D_i i = d_i$, where d_i is the degree of node i.

Definition: The Laplacian matrix $\ L$ of a graph is given by L=D-A.

Example: what are D, L, and A for the graph given?

Definition: The *degree matrix* D of a graph with n

nodes is the $n \times n$ diagonal matrix with $D_i i = d_i$, where d_i is the degree of node i.

Definition: The Laplacian matrix $\ L$ of a graph is given by L=D-A.

Properties of L:

- 1. Row and column sums are all zero... so
- 2. There's a trivial eigenpair of $x = [1, 1, \dots 1]$ with $\lambda = 0$.
- 3. All eigenvalues are non-negative and real. (Symmetry helps here!)
- 4. All eigenvectors are real and orthogonal, with dot products of 0 against one another.

So what does L give us?

Theorem: For a symmetric matrix M, the second

smallest eigenvalue, with eigenvalue x, satisfies

...why do we care about the second-smallest eigenvalue?

So what does L give us?

Theorem: For a symmetric matrix M, the second

smallest eigenvalue, with eigenvalue \boldsymbol{x} , satisfies

$$\lambda_2 = \min_{\vec{x}} \frac{\vec{x}^T M \vec{x}}{\vec{x}^T \vec{x}}$$

...why do we care about the second-smallest eigenvalue?

- 1. The smallest was the trivial one with $\lambda_1 = 0$
- 2. So this is the first/smallest one with any "interesting" information.
- ...but what does $\vec{x}^T M \vec{x}$ represent, and why might it be interesting?

So what does L give us?

Theorem: For a symmetric matrix M, the second

smallest eigenvalue, with eigenvalue x, satisfies

$$\lambda_2 = \min_{\vec{x}} \frac{\vec{x}^T M \vec{x}}{\vec{x}^T \vec{x}}$$

...why do we care about the second-smallest eigenvalue?

 $\vec{x}^T M \vec{x}$ is called a *quadratic form* of M.

Example: compute

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

So what does L give us?

Theorem: For a symmetric matrix M, the second

smallest eigenvalue, with eigenvalue \boldsymbol{x} , satisfies

$$\lambda_2 = \min_{\vec{x}} \frac{\vec{x}^T M \vec{x}}{\vec{x}^T \vec{x}}$$

...why do we care about the second-smallest eigenvalue?

 $\vec{x}^T M \vec{x}$ is called a *quadratic form* of M.

Example: compute

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= Ax_1^2 + Dx_2^2 + (B+C)x_1x_2$$

Idea: Looks like FOILing!

Goal: Interpret $\vec{x}^T L \vec{x}$ for a graph G.

$$\vec{x}^T L \vec{x} = \underbrace{\sum_{i,j=1}^{n} L_{ij} x_i x_j}_{quad \ form} = \sum_{i,j=1}^{n} (D_{ij} - A_{i,j}) x_i x_j = \sum_{i,j=1}^{n} D_{ij} x_i x_j - 2 \sum_{i,j=1}^{n} A_{ij} x_i x_j$$

Goal: Interpret $\vec{x}^T L \vec{x}$ for a graph G.

$$\vec{x}^T L \vec{x} = \underbrace{\sum_{i,j=1}^n L_{ij} x_i x_j}_{quad form} = \sum_{i,j=1}^n (D_{ij} - A_{i,j}) x_i x_j = \sum_{i,j=1}^n D_{ij} x_i x_j - 2 \sum_{i,j=1}^n A_{ij} x_i x_j$$

$$= \sum_{i=1}^n D_{ii} x_i^2 - 2 \sum_{edges} x_i x_j = \sum_{edges} (x_i^2 + x_j^2 - 2x_i x_j)$$

Goal: Interpret $\vec{x}^T L \vec{x}$ for a graph G.

$$\vec{x}^T L \vec{x} = \underbrace{\sum_{i,j=1}^n L_{ij} x_i x_j}_{quad form} = \sum_{i,j=1}^n (D_{ij} - A_{i,j}) x_i x_j = \sum_{i,j=1}^n D_{ij} x_i x_j - 2 \sum_{i,j=1}^n A_{ij} x_i x_j$$

$$= \sum_{i=1}^n D_{ii} x_i^2 - 2 \sum_{edges} x_i x_j = \sum_{edges} (x_i^2 + x_j^2 - 2x_i x_j)$$

$$= \sum_{(i,j) \in E} (x_i - x_j)^2$$

Goal: Interpret $\vec{x}^T L \vec{x}$ for a graph G.

$$\vec{x}^T L \vec{x} = \underbrace{\sum_{i,j=1}^n L_{ij} x_i x_j}_{quad \ form} = \sum_{i,j=1}^n (D_{ij} - A_{i,j}) x_i x_j = \sum_{i,j=1}^n D_{ij} x_i x_j - 2 \sum_{i,j=1}^n A_{ij} x_i x_j$$

$$= \sum_{i=1}^n D_{ii} x_i^2 - 2 \sum_{edges} x_i x_j = \sum_{edges} (x_i^2 + x_j^2 - 2x_i x_j)$$

$$= \sum_{(i,j) \in E} (x_i - x_j)^2$$

Interpretation: For a vector x, $\vec{x}^T L \vec{x}$ measures the (squared) distance between the components of x, but only where G had edges.

So: $\vec{x}^T L \vec{x} = \sum_{(i,j) \in E} (x_i - x_j)^2$ helps us with our theorem:

$$\lambda_2 = \min_{\vec{x}} \frac{\vec{x}^T L \vec{x}}{\vec{x}^T \vec{x}}$$

Interpretation: $\vec{x}^T L \vec{x}$ measures the (squared) distance between the components of x where G had edges.

Further, if we're trying to find the eigenvector x, we can:

- 1. Define it as a unit vector, so $\sum_i x_i^2 = 1$
- 2. Note that it must be *orthogonal* to $x_1 = [1, 1, ..., 1]$, which means that $x_1 \cdot x_2 = 0$ or $\sum_i x_i = 0$

So
$$\lambda_2 = \min_{\vec{x}: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2$$
.

Balance and the Laplacian

$$\lambda_2 = \min_{\vec{x}: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2.$$

In other words, we're looking for an eigenpair that *balances* the node values x_i about 0. The values sum to 0 but are chosen to that x values on nodes that share an edge should be close together.

Balance and the Laplacian

$$\lambda_2 = \min_{\vec{x}: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2.$$

This vector that assigns similar x_i values to nodes that are connected by an edge inherently will assign similar x_i values to groups of nodes that are heavily connected. This naturally lends it to a partition if we draw a cutoff based on x_i values. And $x_i = 0$ is on average right in the middle in the vector, since it sums to 0!

We can create a hard cluster or a partition (A, B) by

creating the vector *y* such that:

$$y = \begin{cases} +1 & \text{if node i is in A} \\ -1 & \text{if node i is in B} \end{cases}$$

Balance and the Laplacian

The best partition vector y is the one that cuts the least number of edges while balancing +1's and -1's. Or we're solving

$$\vec{x} = \min_{\vec{y} \in [-1,1]^n} \sum_{(i,j) \in E} (y_i - y_j)^2$$

which is almost the same problem as our eigenvalue problem! So we create y from the eigenvector, and instead find

$$\vec{x} = \min_{\vec{y} \in \mathbb{R}^n} \sum_{(i,j) \in E} (y_i - y_j)^2$$

which is called the Fiedler vector, and is the optimal solution for the given minimization.

Spectral Graph Partitioning

Algorithm: 3 steps

- 1. Pre-processing construct the matrix representation of our graph (A, D and L)
- 2. Decomposition compute eigenvalues and eigenvectors of L
 - In other words, we're mapping each node to a lower-dimensional representation (one x_i value per node!), based on eigenvectors. We'll do more **dimension reduction** in coming weeks.
- 3. Grouping look at second eigenvalue and its eigenvector x_2 .
 - gives the "weights" / "values" / "labels" for each node
 - which are left of 0? Which are right?
- 4. Those grouping are the partition for the cut, so we're done... but try to plot/visualize the resulting graph.

Fiedler Vector in Action: Finding Communities

Fiedler Vector in Action: Finding More Communities

Three options to find multiple cuts:

- Find multiple places to cut the original x vector, not just zero. Idea: cut at places with large jumps in x-value.
- Cut at x = 0 for the second eigenvector, then also at x = 0 for the third eigenvector. Or better: cluster nodes based on their values from each eigenvector (or as many as you compute)
- 3. Cut at x=0 for the second eigenvector, then *recompute* the Fiedler vector for the new subgraphs from that bipartition. Repeat.

Finding More Communities

Using the zeros of k eigenvectors can result in up to 2^k partitions;

making a bipartition of the original bipartitions will result in up to 2^k partitions;

for a fixed k a single partition on x_2 is likely easiest.

Acknowledgments

Next time: On to recommendations!

Some material is adapted/adopted from Mining of Massive Data Sets, by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University) http://www.mmds.org

Special thanks to Tony Wong for sharing his original adaptation and adoption of slide material.