Lógica e Sistemas Digitais

Contadores

João Pedro Patriarca (jpatri@cc.isel.ipl.pt)

Contadores

- Circuito sequencial com comportamento determinístico
 - O contador pode ser crescente ou decrescente
 - Numa transição de clock, incrementa/decrementa o estado atual
 - O número de bits do contador determina o módulo máximo de contagem. Por exemplo, para o módulo de 16 (valores de 0 a 15) é necessário um contador de 4 bits. Num contador crescente, atingido o valor 15, na próxima transição de *clock* transita para o valor 0; num contador decrescente, atingido o valor 0, na próxima transição de *clock* transita para o valor 15
- Possíveis sinais de controlo do contador:
 - Reset/Clear: leva o estado do contador ao valor 0
 - Parallel load: leva o estado do contador ao valor colocado na entrada do contador
 - Count enable: entrada que habilita/desabilita a contagem
 - Count Up/Count down: controla se é contagem crescente ou contagem decrescente
 - Terminal count: ativado quando atinge o valor limite
 - Ripple clock: usado para concatenar contadores

Interface do contador 74191

• MR: asynchronous *Master Reset*

• CE: Count Enable

• DnU: Down / not Up

• PL: asynchronous Parallel Load CLK

• TC: Terminal Count

• RC: Ripple Clock

Síntese de um contador crescente módulo 8

• Baseado em registo e somador

Síntese de um contador com controlo de contagem

Com controlo no enable do registo

Com controlo à entrada do somador

Síntese de um contador crescente/decrescente

Contador decrescente

• Contador crescente/decrescente

Síntese de um contador com *Master reset* e carregamento paralelo síncrono

Terminal count e Ripple clock

Síntese alternativa de contadores

Os próximos slides apresentam a arquitetura interna de contadores baseada em flip-flops do tipo T (toggle). Esta abordagem não foi considerada no sem. I2122.

Flip-flop tipo T (toggle)

- Mantém o estado atual com a entrada T a 0
- Inverte o estado atual com a entrada T a 1

Contador assíncrono crescente

- Os flip-flops não transitam em simultâneo
- Período do clock dependente do tempo de propagação do bit de menor peso do contador até ao bit de maior peso (somatório do tempo de propagação dos flip-flops)
- Passagem temporária por outros estados. Ex:
 - Ao incrementar de 7 para 0, passa pelos valores 6 e 4, temporariamente

Contador síncrono crescente com controlo de contagem

- Os flip-flops transitam em simultâneo
- Modo série, modo paralelo versus frequência do *clock*

Modo série

Modo paralelo

Contador decrescente e crescente/decrescente

Contador decrescente

Contador crescente/decrescente

Master reset e Parallel load

• Versão assíncrona

Versão síncrona

Terminal count e Ripple clock

Exercício resolvido

Análise de circuito sequencial

• Desenhar o ASM-Chart correspondente ao circuito sequencial

Análise de circuito sequencial – solução (1 de 5)

- Estado presente: X1,X0=0,0
 - Seleciona entrada 0 do Mux \Rightarrow Y=1
 - $X1=0 \Rightarrow Z=1$
 - $X0=0 \Rightarrow PL=0$
 - Y=1 ⇒ CE=1
 - B=0 \Rightarrow ES=0,1
 - B=1 \Rightarrow ES=1,1

Análise de circuito sequencial – solução (2 de 5)

- Estado presente: X1,X0=0,1
 - Seleciona entrada 1 do Mux ⇒ Y=A
 - $X1=0 \Rightarrow Z=1$
 - $A=0 \Rightarrow PL=0$, CE=B
 - B=0 \Rightarrow ES=0,1
 - B=1 \Rightarrow ES=0,0
 - A=1 ⇒ PL=1
 - B=0 \Rightarrow ES=0,0
 - B=1 \Rightarrow ES=1,0

PL(sync)

 D_1 D_0

Análise de circuito sequencial – solução (3 de 5)

- Estado presente: X1,X0=1,0
 - Seleciona entrada 2 do Mux ⇒ Y=0, Z=1
 - $X0=0 \Rightarrow PL=0$
 - Y=0 ⇒ CE=B
 - B=0 \Rightarrow ES=1,0
 - B=1 \Rightarrow ES=0,1

Análise de circuito sequencial – solução (4 de 5)

- Estado presente: X1,X0=1,1
 - Seleciona entrada 3 do Mux ⇒ Y=C
 - C=0 \Rightarrow Y=0, Z=1, PL=0, CE=B
 - B=0 \Rightarrow ES=1,1
 - B=1 \Rightarrow ES=1,0
 - C=1 \Rightarrow Y=1, Z=0, PL=1
 - B=0 \Rightarrow ES=0,0
 - B=1 \Rightarrow ES=1,0

PL(sync)

 D_1 D_0

Análise de circuito sequencial – solução (5 de 5)

 Se a análise não passar por todos os estados possíveis, deve-se analisar os estados em falta (no caso deste exercício, tal não aconteceu)

Exercício

Análise de circuito sequencial

• Desenhar o ASM-Chart correspondente ao circuito sequencial

