FAST-ATOM BOMBARDMENT OF HOLTEN BORON TRIOXIDE(U) MAYAL RESEARCH LAB MASHINGTON DC R J DOYLE JUL 87 TR-3 F/G 7/4 UNCLASSIFIED

1/1

MD-M183 681

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS 1963-A

AD-A183 681 REPORT DOCUMENTATION PAGE									
AD-A 103 00	REPORT DOCU	MENTATION	PAGE						
UNCLASSIFIED	16 RESTRICTIVE MARKINGS NONE								
28 SECURITY CLASSIFICATION AU	LECTE	3 DISTRIBUTION/AVAILABILITY OF REPORT							
26 DECLASSIFICATION / DOWNGRA SCA	1961 3 1987	UNLIMITED							
4 PERFORMING ORGANIZATION R	MBER(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)							
6a NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL	7a NAME OF MO	ONITORING ORGAN	IIZATIC	N				
Naval Research Laboratory	(If applicable)	Chemistry Division Office of the Chief of Naval Research							
6c. ADDRESS (City, State, and ZIP Code)		7b ADDRESS (City, State, and ZIP Code)							
Washington, DC 20375-5000	Arlington, VA 22217-5000								
8a NAME OF FUNDING SPONSORING	86 OFFICE SYMBOL	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER							
ORGANIZATION ONR	(If applicable)	1							
8c ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING NUMBERS				···			
to Abbress (erry, state, and an edde)		PROGRAM	PROJECT	TASK		WORK UNIT			
		ELEMENT NO 61153N	NO RR013-01-4C	NO		ACCESSION NO 61-2804-0-7			
11 TITLE (Include Security Classification)		L	<u> </u>	-					
Fast-Atom Bombardment of Mol	ten Boron Trioxide	9							
12 PERSONAL AUTHOR(S)									
Robert J. Doyle, Jr.									
13a TYPE OF REPORT 13b TIM FROM	14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT								
16 SUPPLEMENTARY NOTATION									
17 COSATI CODES	18 SUBJECT TERMS (Continue on revers	e if necessary and	identil	fy by block	number)			
FIELD GROUP SUB-GROUP					, -,				
19 ABSTRACY (Continue on reverse if necess Fast-atom bombardment sample temperatures below an	ary and identify by block in mass spectra of vitred d above the melting p	oumber) ous boron trioxi oint of B2O2 (4	ide (B_2O_3) has $ SO^2C $. The ex	been perin	obtained	at ized			
a new high-temperature samp									
were obtained over a sample t						le			
over this temperature range as		are and high vi	scosity assure a	ı long	g lived				
sample and a consistent surface	e geometry.								
This technique enabled t	he first observation of	high-molecula	r-weight, gas-	phase	boron o	xides			
(see figure). Collision-induce	(see figure). Collision-induced dissociation of the boron oxide ions revealed structures composed of								
branched chains of alternating						p			
observation is consistent with the structure of condensed-phase B ₂ O ₃ , which is composed of infinite									
chains of BO ₃ units linked by -B-O-B- bonds.									
20 DISTRIBUTION AVAILABILITY OF ABSTRA UNCLASSIFIED/UNLIMITED SAME A		21 ABSTRACT SEC UNCLASSIFI	CURITY CLASSIFICA ED	TION					
22a NAME OF RESPONSIBLE INDIVIDUAL	L	Include Area Code)	12.	ICE SY	MBOL				
J.R. McDonald	(202) 767-33		1.		~ -				

OFFICE OF NAVAL RESEARCH

PROGRAM ELEMENT 61153N TECHNICAL REPORT NO. 3

FAST-ATOM BOMBARDMENT OF MOLTEN BORON TRIOXIDE

BY

ROBERT J. DOYLE, JR.

Prepared for publication

in the

Proceedings of the 35th ASMS Conference on Mass Spectrometry and Allied Topics

CHEMISTRY DIVISION

NAVAL RESEARCH LABORATORY

WASHINGTON, DC 20375-5000

JULY 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

Accesi	on For				
DTIC	ounced				
By Distrib	ution /	,	-		
Availability Codes					
Dist	Avail and Specie		1		
A-1					

This document has been approved for public release and sale, its distribution is unlimited

Proceedings of the 35th ASMS Conference on Mass Spectrometry and Allied Topics May 24-29, 1987, Denver, CO

FAST-ATOM BOMBARDMENT OF MOLTEN BORON TRIOXIDE

Robert J. Doyle, Jr. Chemistry Division Naval Research Laboratory Washington, DC 20375-5000

The structure of vitreous boron trioxide $(\theta_2\theta_3)$ has been a topic of debate for several decades. The most recently proposed structure involves a random network of boroxol $(\theta_3\theta_3)$ rings linked together by random numbers of θ_0 triangles. The extremely low vapor pressure of $\theta_2\theta_3$ has, until recently, limited the utility of mass spectrometry as a structural probe. However, the advent of fast-atom bombardment-mass spectrometry (FAB-MS) now enables the desorption of potentially structurally characteristic ions from the surfaces of intractable materials.

Vitreous boron trioxide is a very hygroscopic glass that is not easily purged of water. It reacts readily with ambient water vapor to form a surface coating of boric acid $(B(OH)_3)$. Even at typical FAB operating pressures $(10^{-6}-10^{-5} \text{ Torr})$, the residual water vapor is sufficient to provide a continuously renewable source of $B(OH)_3$ to the surface of the glass sample. Elevated sample temperatures are therefore required to both purge the sample of water and to prevent the formation of $B(OH)_3$.

Fast-atom bombardment mass spectra of vitreous boron trioxide have been obtained at elevated temperatures using a ZAB-2F mass spectrometer. The experiments utilized a new high-temperature sample holder that has been described in detail elsewhere (1). Spectra were obtained over a sample temperature range of 150-700°C. Boron trioxide is thermally stable over this temperature range and its low vapor pressure and high viscosity assure a long lived sample and a consistent surface geometry.

process secretary reserved

Figure 1. Boron oxide ion distribution from the FAR-MS of boron trioxide.

This technique enabled the first observation of high-molecular-weight, qas-phase boron oxides (Figure 1). The FAB-MS of vitreous $B_2\Omega_3$ has yielded a complex distribution of boron oxide ions, most of which have been observed for the first time. Six groups of boron oxide ions have been identified and they may be described by six general formulae: $[B_{2n+1}\Omega_{3n}]^+$, $[B_{2n+2}\Omega_{3n+1}]^+$, $[B_{2n+2}\Omega_{3n+1}]^+$, $[B_{2n+2}\Omega_{3n+2}]^+$, and

Proceedings of the 35th ASMS Conference on Mass Spectrometry and Allied Topics
May 24-29, 1987, Deriver, CO

 $[8_{2n+2}0_{3n+3}]^{+}$, where n=0,1,2,3,.... The maximum values of n observed are 4,6,2,3,3, and 4 respectively. Local abundance maxima are observed for $[8_{2n+1}0_{3n+1}]^{+}$ ions which implies an enhanced stability for species such as $[8_{3}0_{4}]^{+}$, $[8_{5}0_{7}]^{+}$, $[8_{7}0_{10}]^{+}$, $[8_{9}0_{13}]^{+}$, etc.

The collision-induced dissociation (CID) mass spectra of mass-selected boron oxide ions show a remarkable similarity between the dissociation products of boron oxide ions within each group. For example, $\{8_{2n+1}0_{3n+1}\}^+$ ions, where n>0, all show the loss of 8_20_3 as the principal dissociation pathway (Figure 2 a-c). On the other hand, $[8_{2n+2}0_{3n+3}]^{++}$ ions, where n>0, all show the loss of 80_2 as the principal dissociation pathway. Common dissociation losses can be explained in terms of structural features that are common to each group.

Although the numerous structural isomers of boron oxide ions cannot be distinguished by CID methods, the general form of boron-oxygen bonding can be deduced. For example, boron is always found 2-or 3- coordinated with oxygen. Boron oxide ions are composed of integral BO_3 triangles and terminal -B=0 units. Figure 2d shows examples for the $\left[8_{2n+1}O_{3n+1}\right]^+$ series of ions.

Figure 2. $^{a-c}$ CID spectra of $[^{B}_{2n+1}^{0}_{3n+1}^{0}]^{+}$ ions. d Proposed structures for this series of boron oxide ions.

1. Doyle, R.J., Jr, Anal. Chem. 1987, 59, 537-539.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 1911	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1

#