COMP4418, 2017–Assignment 1

Yunhe Zhang Z5045582

1.

$(a) p \vee (q \wedge r) |= (p \vee q) \wedge (p \vee r)$

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	Т	T	T
F	T	F	F	F	Т	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

In all rows where $p \lor (q \land r)$ is true, $(p \lor q) \land (p \lor r)$ is also true.

Therefore, inference is valid

(b) $|= p \rightarrow (q \rightarrow p)$

p	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$
T	T	T	T
T	F	T	T
F	Т	F	T
F	F	T	T

In all rows $p \rightarrow (q \rightarrow p)$ is true.

Therefore, inference is valid

 $(c) p \rightarrow q \models \neg p \rightarrow \neg q$

р	q	¬р	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$
T	T	F	F	T	T
T	F	F	T	F	T
F	T	T	F	T	F
F	F	T	T	T	T

In 3^{rd} row, when the $p \rightarrow q$ is true, $\neg p \rightarrow \neg q$ is false.

Therefore, inference is not valid.

(d) $p \rightarrow q$, $\neg p \rightarrow \neg q \models \neg p \leftrightarrow \neg q$

		1 1				
p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$\neg p \leftrightarrow \neg q$
T	T	F	F	T	T	T
T	F	F	T	F	T	F
F	T	T	F	Т	F	F
F	F	T	T	T	T	T

In all rows, where both $p \rightarrow q$ and $\neg p \rightarrow \neg q$ are true, $\neg p \leftrightarrow \neg q$ is also true.

Therefore, inference is valid.

((e)	70	1>	¬n.	¬r.	\rightarrow \neg	a	 = 1	n –	→ r	
١		, 4	1	ν,		•	ч		ľ	· •	

q	p	r	$\neg q$	¬р	$\neg r$	$\neg q \rightarrow \neg p$	$\neg r \rightarrow \neg q$	$p \rightarrow r$
T	T	T	F	F	F	T	T	T
T	T	F	F	F	T	T	F	F
T	F	T	F	T	F	T	T	T
T	F	F	F	T	T	T	F	T
F	T	T	T	F	F	F	T	T
F	T	F	T	F	T	F	T	F
F	F	T	T	T	F	T	T	T
F	F	F	T	T	T	T	T	Т

In all rows, where both $\neg q \rightarrow \neg p$ and $\neg r \rightarrow \neg q$ are true, $p \rightarrow r$ is also true.

Therefore, inference is valid.

(f) $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$

Convert premises into CNF:

$$p \land (q \lor r)$$

Convert negated conclusion into CNF:

$$\neg ((p \land q) \lor (p \land r)) \equiv (\neg p \lor \neg q) \land (\neg p \lor \neg r)$$

Proof:

1.	p	[Prem	ises
_	\ /		

2.
$$q \lor r$$
 [Premises]

3.
$$\neg p \lor \neg q \qquad [\neg Conclusion]$$

4.
$$\neg p \lor \neg r$$
 [\neg Conclusion]

Therefore, inferences hold in propositional logic.

$(g) p \vdash p \rightarrow q$

Convert premises into CNF:

Convert negated conclusion into CNF:

$$\neg (p \rightarrow q) \equiv \neg (\neg p \lor q)$$
$$\equiv p \land \neg q$$

Proof:

Cannot obtain empty clause using resolution, therefore inferences not hold in propositional logic.

(h) $p \leftrightarrow q \vdash (q \leftrightarrow r) \rightarrow (p \leftrightarrow r)$

Convert premises into CNF:

$$p \leftrightarrow q \equiv (\neg p \lor q) \land (p \lor \neg q)$$

Convert negated conclusion into CNF:

$$\neg ((q \leftrightarrow r) \to (p \leftrightarrow r)) \equiv \neg (\neg (q \leftrightarrow r) \lor (p \leftrightarrow r))$$

$$\equiv (q \leftrightarrow r) \land \neg (p \leftrightarrow r)$$

$$\equiv ((\neg q \lor r) \land (q \lor \neg r)) \land \neg ((\neg p \lor r) \land (p \lor \neg r))$$

$$\equiv ((\neg q \lor r) \land (q \lor \neg r)) \land (((p \land \neg r) \lor \neg p) \land ((p \land \neg r) \lor r)))$$

$$\equiv ((\neg q \lor r) \land (q \lor \neg r)) \land (((p \lor \neg p) \land (\neg r \lor \neg p)) \land ((\neg r \lor r)))$$

$$\equiv ((\neg q \lor r) \land (q \lor \neg r)) \land (((\neg r \lor \neg p) \land (p \lor r))$$

$$\equiv ((\neg q \lor r) \land (q \lor \neg r)) \land ((\neg r \lor \neg p) \land (p \lor r))$$

$$\equiv (\neg q \lor r) \land (q \lor \neg r) \land (\neg r \lor \neg p) \land (p \lor r)$$

Proof:

1. $\neg p \lor q$ [Premises] 2. $p \vee \neg q$ [Premises] 3. $\neg q \lor r$ [¬ Conclusion] 4. $q \vee \neg r$ [¬ Conclusion] 5. $\neg r \lor \neg p$ [¬ Conclusion] 6. p∨r [¬ Conclusion] 7. $\neg p \lor r$ [1, 3. Resolution] 8. ¬p [5, 7. Resolution] 9. p∨¬r [2, 4. Resolution] 10. p [6, 9. Resolution] 11. [] [8, 10. Resolution]

Therefore, inferences hold in propositional logic.

(i) $\neg p \land \neg q \vdash p \leftrightarrow q$

Convert premises into CNF:

$$\neg p \land \neg q$$

Convert negated conclusion into CNF:

$$\neg(p \leftrightarrow q) \equiv \neg((\neg p \lor q) \land (p \lor \neg q))
\equiv ((p \land \neg q) \lor (\neg p \land q))
\equiv ((p \land \neg q) \lor \neg p) \land ((p \land \neg q) \lor q)
\equiv ((p \lor \neg p) \land (\neg q \lor \neg p)) \land ((p \lor q) \land (\neg q \lor q))
\equiv (\neg q \lor \neg p) \land (p \lor q)$$

Proof:

1.	$\neg p$	[Premises]
2.	$\neg q$	[Premises]

3.
$$\neg q \lor \neg p$$
[\neg Conclusion]4. $p \lor q$ [\neg Conclusion]5. q [1, 4. Resolution]6. [][2, 5. Resolution]

Therefore, inferences hold in propositional logic.

$(j)\, \neg q {\rightarrow} \neg p, \, \neg r {\rightarrow} \neg q {\vdash} p {\rightarrow} r$

Convert premises into CNF:

$$\neg q \rightarrow \neg p \equiv q \bigvee \neg p$$
$$\neg r \rightarrow \neg q \equiv r \bigvee \neg q$$

Convert negated conclusion into CNF:

$$\neg (p \rightarrow r) \equiv \neg (\neg p \lor r)$$
$$\equiv p \land \neg r$$

Proof:

1. q∨¬p	[Premises]
2. r∨¬q	[Premises]
3. p	[¬ Conclusion]
4. ¬r	[¬ Conclusion]
5. q	[1, 3. Resolution]
6. r	[2, 5. Resolution]
7. []	[4, 6. Resolution]

Therefore, inferences hold in propositional logic.

```
2.
(a)
1. \forall x [((age(x, age2) \land colour(x, green)) \rightarrow \exists y (age(y, age1) \land (y=huey) \land < (age1 age2))]
2. \forall x[age(x, 5) \rightarrow design(x, camel)]
3. \exists x[(x=dewey) \land colour(x, yellow)]
4. \exists x[(x=louie) \land design(x, giraffe)]
5. \forall x [design(x, panda) \rightarrow \neg colour(x, white)]
(b)
KB = \{ \forall x [((age(x, age2) \land colour(x, green)) \rightarrow \exists y (age(y, age1) \land (y=huey) \land (age1 < age2)) \}
         \forall x[age(x, 5) \rightarrow design(x, camel)]
         \exists x[(x=dewey) \land colour(x, yellow)]
         \exists x[(x=louie) \land design(x, giraffe)]
         \forall x [design(x, panda) \rightarrow \neg colour(x, white)]
         \exists x \exists y \exists z [age(x, 4) \land age(y, 5) \land age(z, 6)]
         \exists x \exists y \exists z [colour(x, green) \land colour(y, yellow) \land colour(z, white)]
         \exists x \exists y \exists z [design(x, panda) \land design(y, giraffe) \land design(z, camel)]
          }
1.Let I \models KB
2. Then I \models \forall x [((age(x, age2) \land colour(x, green)) \rightarrow \exists y (age(y, age1) \land (y=huey) \land (age1 < general form)) \rightarrow \exists y (age(y, age1) \land (y=huey) \land (age1 < general form))
age2)))
(From KB, Huey is younger than the boy in the green tee-shirt)
3.So I = \exists x[(x=huey) \land \neg colour(x, green)]
(Conclude Huey's T-shirt is not green)
4.Also I = \exists x [(x=dewey) \land colour(x, yellow)]
(From KB, Dewey's tee-shirt was yellow)
5.And I = \exists x \exists y \exists z [colour(x, green) \land colour(y, yellow) \land colour(z, white)]
(From KB, 3 boys wear T-shirt of different colour)
6.So I = \exists x [(x=huey) \land colour(x, white)], \exists x [(x=louie) \land colour(x, green)]
(3 boys wear T-shirt of different colour and Dewey's T-shirt is yellow. Also Huey's T-shirt is
not green, thus, his T-shirt can only be white, and the rest boy Louie wear green T-shirt.
Conclude Huey's T-shirt is white; Louie's T-shirt is green)
7.Also I \models \forall x [design(x, panda) \rightarrow \neg colour(x, white)]
(From KB, the panda design was not featured on the white tee-shirt)
```

8.And $I \models \exists x[(x=louie) \land design(x, giraffe)]$ (From KB, Louie's tee-shirt bore the giraffe design)

9.And $I \models \exists x \exists y \exists z [design(x, panda) \land design(y, giraffe) \land design(z, camel)]$ (From KB, 3 boys wear T-shirt with a different design)

10.So $I \models \exists x[(x=dewey) \land design(x, panda)], \exists x[(x=huey) \land design(x, camel)]$ (3 boys wear T-shirt of different colour, panda design is not in white colour, so it can only in green or yellow. Louie's T-shirt is green and with giraffe design and 3 boys wear T-shirt with a different design, thus, panda design is in yellow which is Dewey's T-shirt's colour, and the rest boy Huey, his T-shirt is camel design. Conclude Dewey's T-shirt is panda design; Huey's T-shirt is camel design.)

11.Also $I \models \forall x[age(x, 5) \rightarrow design(x, camel)]$ (From KB, the five-year-old wore the tee-shirt with the camel design)

12.And $I \models \exists x \exists y \exists z [age(x, 4) \land age(y, 5) \land age(z, 6)]$ (From KB, 3 boys aged 4, 5 and 6)

13.So $I \models \forall x [design(x, camel) \rightarrow age(x, 5)]$

(Since 3 boys aged 4, 5 and 6 and their T-shirts are with different design, from the KB 'five-year-old wore the tee-shirt with the camel design', we can conclude that the boy who wear the T-shirt with camel design is five-year-old)

14.So $I \models \exists x[(x=huey) \land age(x, 5)]$

(Since the boy who wear the T-shirt with camel design is five-year-old and Huey's T-shirt design is camel, thus Huey is five-year-old. Conclude Huey's age is 5)

15.So $I \models \exists x[(x=louie) \land age(x, age1) \land <(5, age1)]$

(Since Huey is younger than the boy in the green tee-shirt and Huey's age is 5 and Louie's T-shirt is green, Louie's age is greater than 5.

Conclude Louie's age is greater than 5)

16.So $I \models \exists x[(x=louie) \land age(x, 6)], \exists x[(x=dewey) \land age(x, 4)]$

(Since Louie's age is greater than 5 and 3 boys aged 4, 5 and 6, Louie can only be 6 years old, thus the rest boy Dewey is 4 years old.

Conclude Louie's age is 5; Dewey's age is 4)

Now we have a conclusion:

17. $I \models \exists x \exists y \exists z [(x=dewey) \land age(x, 4) \land colour(x, yellow) \land design(x, panda) \land (y=huey) \land age(y, 5) \land colour(y, white) \land design(y, camel) \land (z=louie) \land age(z, 6) \land colour(z, green) \land design(z, giraffe)]$

So, my answer is yes, it is possible to conclude the age of each boy together with the colour and design of the tee-shirt they're wearing, above is the proof and get conclusion that *Dewey* is 4 years old, his T-shirt is *yellow* and *panda* design; *Huey* is 5 years old, his T-shirt is *white* and *camel* design; *Louie* is 6 years old, his T-shirt is *green* and *giraffe* design.

(c)

My answer in (b) is yes