TIINCO 1st Hand in Assignment

Table of Contents

1.3	1
1.6	_
1.8	
Appendix	

A description of the functions used can be found in the Appendix

1.3

Calculate the source entropy, the transinformation I(X, Y) and the capacity of the BSC defined in Figure P.1.1.

Figure P.1.1 A binary symmetric channel

Average mutual information (transinformation) I(X,Y)

Channel capacity C

$$C = 1 - omega(p)$$
 $C = 0.1887$

1.6

What is the capacity of the cascade of BSCs as given in Figure P.1.2?

Figure P.1.2 A cascade of BSCs

1.8

Find the conditional probabilities P(xi/yj) of the BEC with an erasure probability of 0.469, when the source probabilities are 0.25 and 0.75. Hence find the equivocation, transinformation and capacity of the channel.

```
p = 0.469;
alpha = 0.25;
P_X0 = 0.25;
P_X1 = 0.75;
Output probabilities
P_Y0 = P_X0 * (1 - p);
P_Yerror = p;
P_Y1 = P_X1 * (1 - p);
Conditional probabilities (backward) P(xi/yj)
P_X0Y0 = ((1 - p) * P_X0)/P_Y0
P_X0Yerror = (p * P_X0)/P_Yerror
P_X1Yerror = (p * P_X1)/P_Yerror
P_X1Y1 = ((1 - p) * P_X1)/P_Y1
        P_XOYO =
              1
        P_X0Yerror =
             0.2500
        P_X1Yerror =
             0.7500
        P X1Y1 =
              1
Transinformation
I_XY = (1-p) * omega(alpha)
```

 $I_XY =$

0.4308

Equivocation H(X/Y)

Appendix

function o = omega(x)

$$o = x * log2(1/x) + (1-x) * log2(1/(1-x));$$

0.5310

Published with MATLAB® R2013b