DAA Homework - 1

Question 1

Consider the size of the matrices given in Table 1.

- i. Perform matrix chain multiplication for $A_1 \cdot A_2 \cdot A_3 \cdot A_4$ to minimize the number of scalar multiplication operations.
- ii. Explain the optimal parenthesis substructure of matrix chain.

Table 1

Matrix	No. of	No. of
	Rows	columns
A_1	5	4
A_2	4	6
A_3	6	2
A_4	2	7

Question 2

Consider the two strings "BDCB" and "BACDB".

- i. Determine the longest common subsequence (LCS).
- ii. Discuss the three optimal substructure cases of LCS using dynamic programming.

Question 3

Solve the following instance of the 0/1 Knapsack problem using branch and bound method.

Number of elements =
$$4$$
, Capacity = 15 , Weights = $\{2, 4, 6, 9\}$, Profit = $\{10,10,12,18\}$

Question 4

Explain the greedy algorithm to determine the optimal solution in a 0/1 Knapsack's problem with a suitable example

Question 5

Derive the time complexity of the quick sort algorithm.