Lecture 3 EE 421 / C\$ 425 Digital System Design

Fall 2024
Shahid Masud

Topics

Quine McCluskey method of Logic Minimization

Boolean Simplification using n-cube

WinLogiLab Software Demo

Examples using WinLogiLab Software Tool

Problem with Logic Minimization

Boolean Algebra and K-Maps can easily solve 4 variables. Beyond 5 or 6 input variables, we have to look for some other scalable techniques.

The techniques should be systematic and programmable

Quine McCluskey Method – Example 1

$$f(A, B, C, D) = \sum_{m} m(2, 4, 6, 8, 9, 10, 12, 13, 15)$$

- Make Table of Minterms
- Count No of 1s

Minterms	Binary	No of 1s
2	0010	1
4	0100	1
6	0110	2
8	1000	1
9	1001	2
10	1010	2
12	1100	2
13	1101	3
15	1111	4

$$f(A,B,C,D) = \sum_{1} m(2,4,6,8,10,12,13,15)$$

Table of Minterms

Group as per number of 1s

List 1

Minterms	Binary	No of 1s	
2	0010	1	
4	0100	1	
8	1000	1	Group of one 1s
6	0110	2	
9	1001	2	
10	1010	2	Group of two 1s
12	1100	2	
13	1101	3	Group of three 1s
15	1111	4	Group of four 1s
	ESCHOLE I		

$$f(A, B, C, D) =$$

$$\sum m(2, 4, 6, 8, 9, 10, 12, 13, 15)$$

- Check each entry with an entry in higher block.
- See if there is any entry with One bit change only. These entries can be combined.
- If any entry cannot be combined, it is a Prime Implicant.
- Mark a tick

 ✓ where combined.
- In Combined terms, put a '-' where both 1 and 0 exist in the two terms

List 1

Minterm	Binary	Combine or Pl
2	0010	✓
4	0100	✓
8	1000	✓
6	0110	✓
9	1001	✓
10	1010	✓
12	1100	✓
13	1101	✓
15	1111	✓

List 2

Minterm	Binary	Combined or PI
2, 6	0-10	
2, 10	-010	
4, 6	01-0	
4, 12	-100	
8, 9	100-	
8, 10	10-0	
8, 12	1-00	
9, 13	1-01	
12, 13	110-	
13, 15	11-1	

List 1 List 2 List 3

Minterm	Binary	Combine or Pl
2	0010	✓
4	0100	✓
8	1000	✓
6	0110	✓
9	1001	✓
10	1010	✓
12	1100	✓
13	1101	✓
15	1111	✓

Minterm	Binary	Combined or PI
2, 6	0-10	PI2
2, 10	-010	PI3
4, 6	01-0	PI4
4, 12	-100	PI5
8, 9	100-	✓
8, 10	10-0	PI6
8, 12	1-00	✓
9, 13	1-01	✓
12, 13	110-	✓
13, 15	11-1	PI7

Minterm	Binary	Combined or PI
(8, 9), (12, 13)	1-0-	PI1
(8, 12), (9, 13)	1-0-	Same PI1

List 1 List 2 List 3

Minterm	Binary	Combine or Pl
2	0010	1
4	0100	✓
8	1000	✓
6	0110	/
9	1001	
10	1010	✓
12	1100	✓
13	1101	\checkmark
15	1111	✓

Minterm	Binary	Combined or PI
2, 6	0-10	PI2
2, 10	-010	PI3
4, 6	01-0	PI4
4, 12	-100	PI5
8,9	100-	1 1 1
8, 10	10-0	PI6
8, 12	1-00/	1-11
9, 13	1-01	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
12, 13	110-	1
42.45		DIT
13, 15	11-1	PI7

Digital System Design Lecture 3 Fall 2024

Binary	Combined or PI
1-0-	PI1
1-0-	Same PI1
	1-0-

Quine McCluskey Method - contd

PI1=1-0-, PI2=0-10, PI3=-010 PI4=01-0, PI5=-100, PI6=10-0 PI7=11-1

To find minimum number of Prime Implicants, make a PI Chart. PI vs Minterms covered

		✓	✓	✓	✓	√	✓	✓	✓	✓
PI	Minterm	2	4	6	8	9	10	12	13	15
Needed	to cover									
✓	PI1				X	x → ③		X	X	
Eliminate	PI2	X		X						
✓	PI3	X					X			
✓	PI4		Х	Х						
Eliminate	PI5		X					Х		
Eliminate	PI6				X		X			
✓	PI7								X	$X \to X$
Th	is symbol 🛭	means th	is PI is the c	only cover fo	or this partic	cular Minte	rm			

Quine McCluskey Method - contd

PI1=1-0-, PI2=0-10, PI3=-010 PI4=01-0, PI5=-100, PI6=10-0 PI7=11-1

To find minimum number of Prime Implicants, make a PI Chart. PI vs Minterms covered

		✓	✓	✓	✓	✓	✓	✓	✓	✓
PI Needed	Minterm to cover	2	4	6	8	9	10	12	13	15
						w > 🐼				
√	PI1				X	$X \to X$		X	X	
Eliminate	PI2	X		X						
✓	PI3	Х					Х			
✓	PI4		Х	Х						
Eliminate	PI5		X					X		
Eliminate	PI6				X		X			
✓	PI7 √								X	$X \to \overline{X}$
This	symbol 🗓	means this	PI is the on	ly cover for	this particu	lar Minterm	1			

= 1-0- +-010 + 01-0 + 11-1

= AC' + B'CD' + A'BD' + ABD

Quine McCluskey Method - contd

$$f(A, B, C, D) = \sum m(2, 4, 6, 8, 9, 10, 12, 13, 15)$$

= PI1 + PI3 + PI4 + PI7

Minterm	Binary	Combine or Pl
2, 6	0-10	PI2
2, 10	-010	PI3
4, 6	01-0	PI4
4, 12	-100	PI5
8, 9	100-	✓
8, 10	10-0	PI6
8, 12	1-00	✓
9, 13	1-01	✓
12, 13	110-	✓
13, 15	11-1	PI7

Minterm	Binary	Combin eor Pl
(8, 9), (12, 13)	1-0-	PI1
(8, 12), (9, 13)	1-0-	Same PI1

$$f(A,B,C,D)$$

= $\sum m(2,4,6,8,10,12,13,15)$

Answer:

$$f(A,B,C,D) = PI1 + PI3 + PI4 + PI7$$

= 1-0- + -010 + 01-0 + 11-1
= $A\overline{C} + \overline{B}C\overline{D} + \overline{A}B\overline{D} + ABD$

QM with Don't Care and 5 Variables

List all Minterms, note number of 1's

$$f(A, B, C, D, E) = \sum m(2, 3, 7, 10, 12, 15, 27)$$

+ d (5, 18, 19, 21, 23) these are don't care terms

Include don't care terms in logic simplification

Don't Care Terms

Minterms	Binary	No of 1s
2	00010	1
3	00011	2
7	00111	3
10	01010	2
12	01100	2
15	01111	4
27	11011	5
5	00101	2
18	10010	2
19	10011	3
21	10101	3
23	10111	4

QM with Don't Care and 5 Variables - contd

Group minterms as per number of 1s

_	
f(A,B,C,D,E) =	$\sum m(2,3,7,10,12,15,27)$
1 (, - , - , - , -)	<u> </u>

+ d (5, 18, 19, 21, 23) these are don't care terms

Include don't care terms in logic simplification

Minterms	Binary	No of 1s
2	00010	1
3	00011	2
5	00101	2
10	01010	2
12	01100	2
18	10010	2
7	00111	3
19	10011	3
21	10101	3
15	01111	4
23	10111	4
27	11011	4

QM with Don't Care and 5 Variables - contd

 $f(A,B,C,D,E) = \sum m(2,3,7,10,12,15,27)$

+ d (5, 18, 19, 21, 23) these are don't care terms List 1 − Combine with next higher block

Minterms	Binary	Combine or Pl
2	00010	✓
3	00011	√
5	00101	✓
10	01010	√
12	01100	make PI
18	10010	√
7	00111	√
19	10011	√
21	10101	√
15	01111	√
23	10111	√
27	11011	√

List 2

	LISC Z	
Minterms	Binary	Combine or Pl
2, 3	0001-	
2, 10	0-010	
2, 18	-0010	
3, 7	00-11	
3, 19	-0011	
5, 7	001-1	
5, 21	-0101	
18, 19	1001-	
7, 15	0-111	
7, 23	-0111	
19, 23	10-11	
19, 27	1-011	
21, 23	101-1	

QM with Don't Care and 5 Variables - contd

List 1 – Combine with next higher block

Minterms	Binary	Combine or Pl
2	00010	✓
3	00011	✓
5	00101	✓
10	01010	✓
12	01100	Make PI7
18	10010	✓
7	00111	✓
19	10011	✓
21	10101	✓
15	01111	✓
23	10111	✓
27	11011	✓

List 2 – Combine next higher block

Minterms	Binary	Combine or Pl
2, 3	0001-	√
2, 10	0-010	Make PI4
2, 18	-0010	√
3, 7	00-11	√
3, 19	-0011	√
5, 7	001-1	√
5, 21	-0101	√
18, 19	1001-	√
7, 15	0-111	PI5
7, 23	-0111	√
19, 23	10-11	√
19, 27	1-011	PI6
21, 23	101-1	√

List 3

Minterms	Binary	Combine or PI
(2, 3) , (18, 19)	-001-	PI1
(3, 7), (19, 23)	-0-11	PI2
(5, 7), (21, 23)	-01-1	PI3

QM with 5 Variable, don't care - contd

To find minimum number of Prime Implicants, make a PI Chart. PI vs Minterms covered

		√	√	√	✓	√	√	✓
PI Needed	Minterm	2	3	7	10	12	15	27
✓	PI1	X	X					
Eliminate	PI2		X	X				
Eliminate	PI3			X				
✓	PI4	X			x → ③			
✓	PI5			X			x → ③	
✓	PI6							x → ③
√ Th:-	PI7		Distheren			x → ③		

PI1 = -001-

PI2 = -0-11

PI3 = -01-1

PI4 = 0-010

PI5 = 0-111

P16 = 1-011

PI7 = 01100

This **symbol** (X) means this PI is the only cover for this particular Minterm

QM with Don't Care and 5 Variables

$$f(A, B, C, D, E) = \sum m(2, 3, 7, 10, 12, 15, 27)$$

+ d (5, 18, 19, 21, 23) these are don't care terms

Answer f = PI1 + PI4 + PI5 + PI6 + PI7
=
$$-001$$
- + 0 - 010 + 0 - 111 + 1 - 011 + 01100
= \overline{BCD} + \overline{ACDE} + \overline{ACDE} + \overline{ACDE} + \overline{ACDE}

Boolean Expression on n-cube

Minimization using Boolean n-cube

- Repeatedly Combine Cubes that differ in only one literal
- Eliminate Redundant Implicants
- Grouping along multiple dimensions is possible

Example 1 using n-cube

F=abc + abc' = 111 + 110

Each Edge of Graph is a minterm Connection through Vertex Shows some Adjacent term can be eliminated

Answer: F = ab

F=abc + a'bc + abc' + a'b'c + ab'c' + a'b'c' = 111 + 011 + 110 + 001 + 100 + 000

F=abc + a'bc + abc' + a'b'c + ab'c' + a'b'c' = 111 + 011 + 110 + 001 + 100 + 000

Ignore Redundant Cover of ab and a'b'

Combine Adjacent Vertex into one implicant

Answer:

F= a'c + bc + b'c' + ac'

A Boolean n-Cube Graph for 4-variables

Add '0' at MSB of 3-Cube graph Extend all Edges of 3-Cube by adding '1' at MSB to make 4-cube graph

Ref:
Youtube channel
'Wrath of Math'

Intro to Hypercube Graphs (n-cube or k-cube graphs) | Graph Theory, Hyper...

Graphs for 1 to 4 variables

Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

1-cube 0 1 X

26

Example Graph for 4 variables

Karnaugh map: 4-variable example

• $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

14

Little bit about Espresso tool

Finds different groupings to determine local and global minima

Keeps trying for optimal solution until some defined time-limit is reached

PyEDA library has logic minimization and synthesis tools in Python https://pyeda.readthedocs.io/en/latest/2llm.html

Exact techniques vs Heuristics based

The before mentioned Karnaugh Map and Quine-McCluskey process are two techniques for Boolean minimisation. The Exact minimisation techniques require the generation of all possible solutions, from which the best solution is extracted. When the number of inputs to the Exact minimisation techniques become large, the number of possible solutions grows very quickly. The Exact techniques are therefore known to be extremely inefficient in logic minimisation.

Due to the inefficiencies of the Exact techniques, the computation of logic minimisation have concentrated on Heuristic solving techniques. The Heuristic techniques avoid computing all possible solutions, and successively modifies an initial solution, until a suitable stopping criterion is met. The minimisation is thus accomplished more efficiently and rapidly. However the technique is *not* guaranteed to find the best solution, but instead finds a near optimal solution (Ruddell, R., & Sangiovanni-Vincentelli, A., 1987; Theobald, M., & Norwick, S., 1998; Brayton, R., et al, 1990).

Reference: MS Thesis by Hacker, 2001

The Heuristic techniques operate by establishing decision cubes, based on the values in the input truth table. An initial partial solution is obtained, and then the nearest neighbours are examined to determine if they are also a solution. If further solutions are found, they are linked with the initial solution. The search then moves onto one of the neighbouring found solutions, and their neighbours are examined. In this way, the final solutions are obtained, by those solutions with the highest linking.

An Example of Heuristic solution

Reference: MS Thesis by Hacker, 2001

Espresso Heuristic Minimizer

- Start with an SOP solution.
 - Expand
 - Make each cube as large as possible without covering a point in the OFF-set.
 - Increases the number of literals (worse solution)
 - Irredundant
 - Throw out redundant cubes.
 - Remove smaller cubes whose points are covered by larger cubes.
 - Reduce
 - The cubes in the cover are reduced in size.
 - In general, the new cover will be different from the initial cover.
 - "expand" and "irredundant" steps can possibly find out a new way to cover the points in the ON-set.
 - Hopefully, the new cover will be smaller.

© Adam Teman, 2018

DVD - Lecture 4a: Logic Synthesis - Part 2

9

ESPRESSO(F) {

verify(F);

reduce(F);

expand(F);

irredundant(F);

} while (fewer terms in F);

do {

Pre-mapping Optimization Constraint Technology Mapping Post-mapping Optimization

Report and

Syntax Analysis

Library Definition Elaboration

Espresso Example

$f = \overline{A}\overline{C} + \overline{C}D + AC + C\overline{D}$ $f = \overline{A}\overline{C} + A\overline{C}D + AC + \overline{A}C\overline{D}$

Starting SOP Form:

Initial Set of Primes found by Steps1 and 2 of the Espresso Method

4 primes, irredundant cover, but not a minimal cover!

Reduce:

Result of REDUCE: Shrink primes while still covering the ON-set

Choice of order in which to perform shrink is important

ESPRESSO(F) {
 do {
 reduce(F);
 expand(F);
 irredundant(F);
 } while (F smaller);
 verify(F);
}

© Adam Teman, 2018

DVD - Lecture 4a: Logic Synthesis - Part 2

LUMS

Espresso Example

$f = \overline{A}\overline{C} + AD + AC + C\overline{D}$ $f = \overline{A}\overline{C} + AD + C\overline{D}$ Only literals! Irredundant:

Syntax Analysis Library Definition Elaboration and Binding Pre-mapping Optimization Constraint Definition Technology Mapping

Post-mapping Optimization

> Report and export

Expand:

Second EXPAND generates a different set of prime implicants

IRREDUNDANT COVER found by final step of espresso

Only three prime implicants!

© Adam Teman, 2018

DVD - Lecture 4a: Logic Synthesis - Part 2

33

Espresso Example

$f = \overline{A}\overline{C} + AD + AC + C\overline{D}$ $f = \overline{A}\overline{C} + AD + C\overline{D}$ literals! Irredundant:

Syntax Analysis Library Definition Elaboration and Binding Pre-mapping Optimization Constraint Definition Technology Mapping Post-mapping Optimization Report and export

Expand:

Second EXPAND generates a different set of prime implicants

IRREDUNDANT COVER found by final step of espresso

Only three prime implicants!

(a) (b) (a) (c) (d) (d) (d) (e)

© Adam Teman, 2018

DVD - Lecture 4a: Logic Synthesis - Part 2

Subscribe

...

Learn More on Espresso

- DVD Lecture 4a: Logic Synthesis Part 2 (youtube.com)
- https://www.youtube.com/watch?v=yJ5CaAk7Nq8&list=WL&index=1

- Lec 13: ESPRESSO-Heuristic Based Switching Function Minimization (youtube.com)
- https://www.youtube.com/watch?v=NRAoJ8eKIgM

