What is claimed is:

1	1.	A circuit comprising:
2		a first driver to receive a first signal from a first input port;
3		a second driver to receive a time-delayed version of the first signal from a second
4	input	port; and
5		a transformer coupled to the first driver and the second driver, the transformer to
5	provid	le an output signal to an output port.

- 1 2. The circuit of claim 1, further comprising a capacitive load coupled to the transformer.
- The circuit of claim 2, wherein the transformer has a leakage inductance and the capacitive load has a capacitance, and the time-delayed version of the first signal is time-delayed with respect to the first signal by a time about equal to a product of *pi* and a square-root of a product of the leakage inductance and the capacitance.
- 1 4. The circuit of claim 1, further comprising an inductor coupled to the transformer 2 and a transistor coupled to the inductor.
- 5. The circuit of claim 4, wherein the inductor has an inductance and the transistor has a capacitance and the time-delayed version of the first signal is time-delayed with respect to the first signal by a time about equal to a product of *pi* and a square-root of a product of the inductance and the capacitance.
- 1 6. The circuit of claim 1, further comprising a Schmitt trigger circuit to couple the output port to the second input port.

Intel Reference No.: P17327

1	7.	The circuit of claim 6, wherein the Schmitt trigger circuit includes a hysteresis		
2	value	value about equal to a supply potential.		
1	8.	The circuit of claim 7, further comprising a clamp circuit coupled to the output		
2	port,	the clamp circuit to hold the output port at the supply potential.		
1	9.	An apparatus comprising:		
2		a plurality of circuits, each of the plurality of circuits including a plurality of		
3	drive	drivers coupled to a first transformer circuit, wherein the first transformer circuit in each		
4	of the	of the plurality of circuits is coupled to a second transformer circuit including a center-tap		
5	and e	and each of the plurality of drivers in each of the plurality of driver circuits is coupled to		
6	a sep	a separate input port.		
1	10.	The apparatus of claim 9, wherein the first transformer circuit in at least one of		
2	the p	the plurality of driver circuits comprises a loosely coupled transformer.		
1	11.	The apparatus of claim 10, further comprising a capacitive load coupled to the		
2	cente	center- tap.		
1	12.	The apparatus of claim 11, wherein the capacitive load comprises a		
2	comp	complementary metal-oxide field-effect transistor.		
1	13.	The apparatus of claim 9, wherein the second transformer comprises an auto-		
2	trans	transformer.		
1	14.	An apparatus comprising:		
2		a communication circuit formed on a substrate; and		
3		a power supply circuit formed on the die to provide power to the communication		

circuit, the power supply circuit including:

a first driver coupled to an input port;

a delay circuit coupled to the input port;

4

5

6

7	a second driver coupled to the delay circuit; and		
8	an auto-transformer coupled to the first driver, to the second driver, and to		
9		an output port, the output port being coupled to a capacitive load and the	
10		capacitive load being coupled to the communication circuit to provide power to	
11		the communication circuit.	
1	15.	The apparatus of claim 14, wherein the communication circuit comprises a	
2	communication base station.		
1	16.	The apparatus of claim 15, wherein the transformer includes a leakage inductance,	
2	the capacitive load includes a capacitance, and the delay circuit includes a delay about		
3	equal to a product of pi and the square-root of a product of the leakage inductance and the		
4	capac	itance.	
1	17.	The apparatus of claim 16, wherein the processor comprises a reduced instruction	
2	set processor.		
1	18.	The apparatus of claim 14, further comprising a processor coupled to the	
2	communication circuit.		
1	19.	The apparatus of claim 18, wherein the processor comprises a very-long	
2	instru	ection word processor.	
1	20.	A method comprising:	
2		receiving a first input signal;	
3		receiving a second input signal, the second input signal being a time-delayed	
4	version of the first input signal; and		
5		processing the first input signal and the second input signal to generate a half-	
6	raised cosine signal.		

- 1 21. The method of claim 20, wherein receiving the first input signal comprises
- 2 receiving a digital signal.
- 1 22. The method of claim 21, wherein receiving the second input signal comprises
- 2 receiving a digital signal.
- 1 23. The method of claim 22, wherein processing the first input signal and the second
- 2 input signal comprises providing a signal path including a first driver, an inductor, and a
- 3 capacitive load for the first input signal and a signal path including a second driver, the
- 4 inductor, and the capacitive load for the second input signal.
- 1 24. The method of claim 20, wherein receiving the first input signal comprises
- 2 receiving a low-to-high transition signal.