密码学与网络安全实验:DES

第二次试验

 姓名:王跃辉
 学号:15336182
 专业:网络工程

 课程:密码学与网络安全
 指导老师:龙东阳
 完成时间:2017.11.24

实验准备:

实验题目	DES 加密算法的实现(及其五种模式)
实验内容	使用 DES 加密算法加密和解密字符串(包括中文)
实验环境	Linux , QT , C++编写代码 ; windows 下发布

实验结果:

本次实验实现了 DES 加密算法以及 ECB,CBC,CFB,OFB,CTR 五种模式; 五种模式均支持键盘上所有输入输出的加密解密; 支持初始置换和逆初始置换的随机生成; IV 的任意设置; 及时对 16 组子秘钥的查看。

Process 界面:

Configure 界面:

实验原理:

加密/解密模式	密码类型	分析介绍
ECB	分组密码	简介:最基础的分块加密,将明文分成相等长度的小段,逐段加密
		优点:操作简单,易于实现;分组独立,易于并行;误差不会被传送。
		缺点:掩盖不了明文结构信息,难以抵抗统计分析攻击。
СВС	分组密码	简介:先将明文切分成若干小段,然后每一小段与初始块或者上一段的密文段
		进行异或运算后,再与密钥进行加密。
		优点:能掩盖明文结构信息,保证相同密文可得不同明文。
		缺点:不利于并行计算;(2)传递误差——前一个出错则后续全错。
CFB	流密码	简介:密码算法的密码会反馈到密码算法的输入中, CFB 模式通过将明文分组
		和密码算法的密文进行 XOR 来产生密文分组。
		优点:隐藏了明文模式;结合了分组加密和流密码(分组密码转化为流模式);
		缺点:不利于并行计算;需要生成秘钥流
OFB	流密码	简介:密码算法的输出(指密码 key 而不是密文)会反馈到密码算法的输入中,
		OFB 模式并不是通过密码算法对明文直接加密, 而是通过将明文分组和密码算
		法的输出进行 XOR 来产生密文分组。
		优点:类似于 CFB
		缺点:类似于 CFB
CTR	流密码	简介:完全的流模式。将瞬时值与计数器连接起来,然后对此进行加密产生密
		钥流的一个密钥块,再进行 XOR 操作
		优点:不泄露明文;仅需实现加密函数;无需填充;可并行计算。

缺点:需要瞬时值 IV,难以保证 IV 的唯一性。

程序说明:

Process 界面:	说明
模式选择	五种模式的选择,任意选择一种时会清空所有文本框。
输入输出	Plain 为明文输入(支持中文), key 为秘钥, encode 为密文输出(01 比
支持键盘上所有输入输出,包括中	特流),decode 为解密输出。
文 , 英文 , 数字 , 符号等	
子秘钥查看	每行代表一组 48bit 的子秘钥。
Configure 界面:	
IV 设置	支持任意 46bit 的 IV 设置。
IP 及 RIP 随机生成	随机生成初始置换即对应的逆置换。

实验总结:

本次试验难度尚可,主要是基于 DES 的加密以及解密的算法实现,唯一的难点是考虑键盘上的任意输入输出。

Windows 系统下默认为 GBK 编码,而 Linux 下默认为 UTF-8,并且中文在程序设计语言(C++)中默认占两个字节而一个字符占一个字节,这样一来中文输入势必会乱码。幸好 C++中有 < bitset > 类,这个类就是专门用来处理 01 比特流的一个类,在各种类型转换的时候,用它本身的成员函数就不会产生乱码了。

除了这个问题以外,算法实现的问题基本与老师在课堂上讲解的没什么出入,按照 PPT 的思路做也可行,本次试验我们接触了真正运用在实际当中的加密解密算法,印象还是很深刻。希望下一次实验,我能做得更好。