CS M146 - Week 2

Xinzhu Bei

xzbei@cs.ucla.edu

January 20, 2018

Overview

- Miscellaneous
 - Xinzhu Bei, xzbei@cs.ucla.edu
 - Discussion: Friday 2:00 3:50 pm, PUB AFF 1337
 - Office Hour: 12pm 2pm, Mon, Boelter 2432
- Overview
 - LATEXusage
 - matplotlib.pyplot
 - scikit-learn: installation, documentation
 - K Nearest Neighbors
 - Hint for HW1
 - Lagrangian Multiplier

How to use LATEX

- Online editors help latexing easier:
 - Overleaf: https://www.overleaf.com/
 - ShareLaTex: https://www.sharelatex.com/
- Latex Editor
 - Lyx: https://www.lyx.org/
 - Texmaker: http://www.xm1math.net/texmaker/
- Latex Symbols

Operators					
Symbol	Command	Symbol	Command	Symbol	Command
\pm	\pm	Ŧ	\mp	×	\times
÷	\div		\cdot	*	\ast
*	\star	†	\dagger	‡	\ddagger
П	\amalg	Π	\cap	U	\cup
₩	\uplus	П	\sqcap	П	\sqcup
V	\vee	Λ	\wedge	⊕	\oplus
\ominus	\ominus	8	\otimes	0	\circ
•	\bullet		\diamond	⊲	Vhd
⊳	\rhd	⊴	\unlhd	₽	\unrhd

• Practice : The probability density of the normal distribution:

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

←□ > ←□ > ←필 > ←필 > ←필 > → 및 → 의 ← 및 → 의

3 / 22

matplotlib.pyplot

```
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 5, 0.1)
y = np.sin(x)
z = np.cos(x)
plt.figure()
plt.plot(x,y,'bo',label='sin')
plt.plot(x,z,'r-', label='cos')
plt.xlabel('some x label')
plt.ylabel('some y label')
plt.legend (loc='upper left')
plt.xlim((0,5))
plt.ylim((-1,1))
plt.show()
```


Numpy, Scipy, scikit-learn

- **Numpy**. Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data.
- Scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

scikit-learn

- Installation
- Documentation:
 - Decision Tree Classifier:

http://scikit-learn.org/stable/modules/generated/sklearn.tree.

- K-Nearest Neighbor Classifier: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors. KNeighborsClassifier.html
- Cross-Validation: http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation. train_test_split.html
- Metrics:

 $http://scikit-learn.org/stable/modules/generated/sklearn.metrics. \\ accuracy_score.html$

Data and Classifiers

- Data
- Baseline Classifier Majority Vote Classifier

```
class MajorityVoteClassifier(Classifier) :
    def __init__(self) :
        self.prediction_ = None
    def fit(self, X, y) :
        majority_val = Counter(y).most_common(1)[0][0]
        self.prediction_ = majority_val
        return self
    def predict(self, X) :
        if self.prediction_ is None :
            raise Exception("Classifier not initialized. Perform a fit firs
        n,d = X.shape
        y = [self.prediction_] * n
        return v
```

Decision Tree Classifiers

- Selected Attributes:
 - criterion: The function to measure the quality of a split.
 - max_depth: The maximum depth of the tree.
- Seletced Methods:
 - fit(X, y[, sample_weight, check_input,])
 Build a decision tree classifier from the training set (X, y).
 - predict(X[, check_input])
 Predict class or regression value for X.
 - score(X, y[, sample_weight])
 Returns the mean accuracy on the given test data and labels.

```
clf = DecisionTreeClassifier (criterion = "entropy")
clf.fit (X,y)
y_pred = clf.predict(X)
train_error = 1 - clf.score(X, y)
```

Introduction to K Nearest Neighbors - How does it work?

Introduction to K Nearest Neighbors - How does it work?

How do we choose the factor K?

KNeighborsClassifier

Selected Attributes:

- n_neighbors: Number of neighbors to use by default for kneighbors queries.
- p: Power parameter for the Minkowski metric. When p=1, this is equivalent to using manhattan_distance (I1), and euclidean_distance (I2) for p=2. For arbitrary p, minkowski_distance (I_p) is used.

```
X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(X, y)
print(neigh.predict([[1.1]]))
print(neigh.predict_proba([[0.9]]))
```

train_test_split

Selected Attributes:

- test_size: If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split.
- random_state: If int, random_state is the seed used by the random number generator.

```
import numpy as np
from sklearn.cross_validation import train_test_split
X, y = np.arange(10).reshape((5, 2)), range(5)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=42)
```

cross_val_score

Selected Attributes:

- estimator : estimator object implementing fit
- cv : Determines the cross-validation splitting strategy. Integer inputs for cv is to specify the number of folds in a (Stratified)KFold.
- scoring: (see model evaluation documentation)

```
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=0)
iris = load_iris()
cross_val_score(clf, iris.data, iris.target, cv=10)
```

《ㅁ》《檀》《夏》 (夏》 (夏)

14 / 22

Xinzhu Bei (UCLA) SS W140 TA Session January 20, 2018

sklearn.metrics

The sklearn.metrics module includes score functions, performance metrics and pairwise metrics and distance computations. (See document)

Entropy, Conditional Entropy and Information Gain

• Entropy: If a random variable X has K different values, x_1, \dots, x_k , its entropy is given by

$$H[X] = -\sum_{i=1}^{k} P(X = x_i) \log P(X = x_i)$$

• Conditional Entropy: If H(Y|X=x) is the entropy of the discrete random variable Y conditioned on the discrete random variable X taking a certain value x, then H(Y|X) is the result of averaging H(Y|X=x) over all possible values x that X may take.

$$H(Y|X) \equiv \sum_{x \in \mathcal{X}} p(x) H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$
(1)

Entropy, Conditional Entropy and Information Gain

• The information gain of an attribute *a* is the expected reduction in entropy caused by partitioning on this attribute

$$Gain(S, A) = H[S] - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

 In general terms, the expected information gain is the change in information entropy H from a prior state to a state that some information as given:

$$Gain(S, A) = H[S] - H[S|a]$$

- In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints.
- Consider an optimization problem:

minimize
$$f(x_1, \dots, x_n)$$

subject to $g_k(x_1, \dots, x_n) = 0, \quad k = 1, \dots, M$ (2)

The Lagrangian takes the form

$$\mathcal{L}(x_1,\dots,x_n,\lambda_1,\dots,\lambda_M)=f(x_1,\dots,x_n)-\sum_{k=1}^M\lambda_kg_k(x_1,\dots,x_n)$$

18 / 22

Xinzhu Bei (UCLA) January 20, 2018

Methods of solving optimizaiton using Lagrangian multipliers:

• Step 1: Solve the following system of equations.

$$\frac{\partial L(x_1, \cdots, x_n, \lambda_1, \cdots, \lambda_M)}{\partial x_i} = 0 \text{ , where } i = 1 \cdots n$$

$$\frac{\partial L(x_1, \cdots, x_n, \lambda_1, \cdots, \lambda_M)}{\partial \lambda_k} = 0 \text{ , where } k = 1 \cdots M$$

$$(3)$$

$$g_k(x_1, \cdots, x_n) = 0$$
, where $k = 1 \cdots M$

• Step 2:Plug in all solutions x_1, \dots, x_n , from the first step into $f(x_1, \dots, x_n)$ and identify the minimum and maximum values, provided they exist.

Find the extrema of the function f(x, y) = 2y + x subject to the constraint $0 = g(x, y) = y^2 + xy - 1$. Solution: Set $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y)$, then

$$\frac{\partial L}{\partial x} = 1 + \lambda y$$

$$\frac{\partial L}{\partial y} = 2 + 2\lambda y + \lambda x$$

$$\frac{\partial L}{\partial \lambda} = y^2 + xy - 1$$
(4)

20 / 22

Setting these equal to zero, we see from the third equation that $y \neq 0$, and from the first equation that $\lambda = \frac{-1}{y}$, so that from the second equation $0 = \frac{-x}{y}$ implying that x = 0. From the third equation, we obtain $y = \pm 1$.

Xinzhu Bei (UCLA) CS MUSS TA Session January 20, 2018

^{**} Note that it doesn't matter if you are using $f(\cdot) \pm \lambda g(\cdot)$, since all that changes is the sign of λ^* , where (λ^*, x^*, \cdots) is the critical point.

The red line shows the constraint g(x,y) = c. The blue lines are contours of f(x,y). The point where the red line tangentially touches a blue contour is the maximum of f(x,y), since d1 > d2.

Xinzhu Bei (UCLA) SS MINO TA Session January 20, 2018 21 / 22

The End