Material de apoyo

Semillero de investigación: Inteligencia Artificial de las Cosas (AIoT)

Taller EDA

Fecha límite: —

Tecnología en Desarrollo de Software Ingeniería de Sistemas y
Telecomunicaciones
Departamento de Ciencias Básicas e
Ingeniería
28 de abril de 2025

Taller práctico

1. Introducción Teórica

1.1. ¿Qué es EDA?

El Análisis Exploratorio de Datos (EDA) es el proceso inicial de examinar los datos para descubrir patrones, anomalías, relaciones y probar hipótesis utilizando estadísticas y visualizaciones. Su objetivo es entender los datos antes de aplicar modelos predictivos.

1.2. Aplicaciones reales

- Comprensión de bases de datos en investigación científica.
- Preparación de datos en proyectos de Machine Learning.
- Análisis de métricas de negocio para estrategias de marketing.

1.3. Errores comunes

- No manejar valores nulos correctamente.
- Sacar conclusiones precipitadas sin análisis profundo.
- Ignorar la escala de los datos al comparar variables.

2. Herramientas de EDA en Python

- Pandas: manipulación de datos tabulares.
- Matplotlib y Seaborn: visualización de datos.
- Numpy: operaciones matemáticas eficientes.

3. Ejemplo práctico paso a paso

Supongamos que analizamos un conjunto de datos de "Ventas de productos".

```
# Paso 1: Importar librerías
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Paso 2: Cargar datos
df = pd.read_csv('ventas.csv')
# Paso 3: Exploración inicial
print(df.head())
print(df.info())
print(df.describe())
# Paso 4: Detección de valores nulos
print(df.isnull().sum())
# Paso 5: Estadísticas básicas
print(df['precio'].mean())
print(df['producto'].value_counts())
# Paso 6: Visualización
sns.histplot(df['precio'], kde=True)
plt.title('Distribución de Precios')
plt.show()
sns.boxplot(x='categoria', y='precio', data=df)
plt.title('Precio por Categoría')
plt.show()
```

4. Ejercicio Propuesto

Conjunto de datos sugerido: Iris dataset.

- 1. Cargar el dataset.
- 2. Realizar un análisis de valores faltantes.
- 3. Crear histogramas para las variables numéricas.
- 4. Crear un gráfico de correlación (heatmap).
- 5. Identificar patrones o anomalías.

5. Visual Sugerido

Se recomienda incluir:

- Gráfico de histogramas por variable.
- Mapa de calor (heatmap) de correlaciones.