Problem 1

Let V be a vector space, and let $\vec{u}, \vec{v}, \vec{w} \in V$. Prove that if $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$ then $\vec{u} = \vec{v}$.

Proof. Consider $\vec{v}, \vec{u}, \vec{w} \in V$, and assume $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$.

$$\begin{array}{ll} \vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w} & \text{Assertion} \\ (\vec{u} \oplus \vec{w}) \oplus -\vec{w} = (\vec{v} \oplus \vec{w}) \oplus -\vec{w} & \text{Axiom 5 states } -\vec{w} \in V \\ \vec{u} \oplus (\vec{w} \oplus -\vec{w}) = \vec{v} \oplus (\vec{w} \oplus -\vec{w}) & \text{Axiom 3} \\ \vec{u} \oplus \mathbf{id} = \vec{v} \oplus \mathbf{id} & \text{Def. of additive inverse} \\ \vec{u} = \vec{v} & \text{Def. of additive identity} \end{array}$$

 $\vec{u} \oplus \vec{u} = \vec{v} \oplus \vec{w}$ then $\vec{u} = \vec{v}$

Problem 2

Prove Theorem B.

Proof. Let $k \in \mathbb{R}$. Recall that Theorem A implies that $0 \odot \mathbf{id} = \mathbf{id}$:

$$k \odot \mathbf{id} = k \odot (0 \odot \mathbf{id})$$
 Thm A
 $= (k \cdot 0) \odot \mathbf{id}$ Axiom 9
 $= 0 \odot \mathbf{id}$
 $= \mathbf{id}$ Thm A

 $\therefore \forall k \in \mathbb{R}, k \odot \mathbf{id} = \mathbf{id}$

Problem 3

Prove Theorem D. If $k \odot \vec{u} = id$, then k = 0 or $\vec{u} = id$

Proof. Let $k \odot \vec{u} = \text{id}$ and $k \neq 0$. Since $\frac{1}{k} \neq \frac{1}{0}$, $\frac{1}{k}$ is well-defined.

$$k \odot \vec{u} = \mathbf{id}$$
 Assertion
$$\frac{1}{k} \odot (k \odot \vec{u}) = \frac{1}{k} \odot (\mathbf{id})$$

$$(\frac{1}{k} \cdot k) \odot \vec{u} = \frac{1}{k} \odot \mathbf{id}$$
 Axiom 9
$$1 \odot \vec{u} = \mathbf{id}$$
 Thm B
$$\vec{u} = \mathbf{id}$$
 Axiom 10

 \therefore if $k \odot \vec{u} = id$, then k = 0 or $\vec{u} = id$

Problem 4

Prove that there does not exist a real vector space of size 2. Show that there cannot be a vector space of size 2.

Proof. Let $V = \{\vec{u}, \vec{v}\}$ be a vector space where $\vec{u} \neq \vec{v}$. Axiom 4 states that **id** exists, and is unique. Therefore either $\vec{u} = \mathbf{id}$ or $\vec{v} = \mathbf{id}$.

Without the loss of generality, let $\vec{u} = \mathbf{id}$.

$$\vec{u} \oplus \vec{v} = \vec{v}$$
 Axiom 4 $\mathbf{id} \oplus \vec{v} = \vec{v}$

Now consider Axiom 5: $-\vec{v} \in V$. Note that $\vec{v} \oplus \vec{u} = V$, so we know $-\vec{v} \neq \vec{u}$, so therefore $\vec{v} = -\vec{v}$.

$$\vec{v} \oplus \vec{v} = \vec{u} = \mathbf{id}$$
 Def. of Additive Inverse
$$1 \odot \vec{v} \oplus 1 \odot \vec{v} = \vec{u}$$
 Axiom 10
$$(1+1) \odot \vec{v} = \vec{u}$$
 Axiom 8
$$2 \odot \vec{v} = \vec{u} = \mathbf{id}$$

By Theorem A, either 2=0 or $\vec{v}=\mathbf{id}$. We know that $2\neq 0$ and $\vec{v}\neq \mathbf{id}$ since $\vec{u}=\mathbf{id}$, a contradiction. \therefore A vectorspace of size 2 cannot exist.