Homework 4

1. (Problem from the Reading Quiz)

Lagrange's Theorem. Let G be a finite group. If H is a subgroup of G, then |H| divides |G|.

The following example in the textbook is given to show the converse of Lagrange's Theorem is false.

■ **EXAMPLE 5** The Converse of Lagrange's Theorem Is False.[†] The group A_4 of order 12 has no subgroups of order 6. To verify this, recall that A_4 has eight elements of order 3 (α_5 through α_{12} , in the notation of Table 5.1) and suppose that H is a subgroup of order 6. Let a be any element of order 3 in A_4 . If a is not in H, then $A_4 = H \cup aH$. But then a^2 is in H or a^2 is in aH. If a^2 is in H then so is $(a^2)^2 = a^4 = a$, so this case is ruled out. If a^2 is in aH, then $a^2 = ah$ for some h in H, but this also implies that a is in H. This argument shows that any subgroup of A_4 of order 6 must contain all eight elements of A_4 of order 3, which is absurd.

The author left out a lot of the details in the example (as usual). Fill in the missing details to write a more complete explanation.

- (a) State the converse of Lagrange's Theorem.
- (b) A_4 has eight elements of order 3 (α_5 through α_{12} in the Table 5.1 in text). Explain why those elements and no others have order 3. (Do not compute the orders directly.)
- (c) Define the notation used.
 - i. Let H be ...
 - ii. Let a be ...
- (d) Suppose $a \notin H$. Then $A_4 = H \cup aH$. Why?
- (e) Then $a^2 \in H$ or $a^2 \in aH$. Why?
- (f) If $a^2 \in H$, then $a \in H$. Why? And why is "this case ruled out"?
- (g) If $a^2 \in aH$, then $a^2 = ah$ for some $h \in H$. So $a \in H$. Why?
- (h) So any subgroup of A_4 of order 6 size must contain all elements of A_4 of order 3. Why? And why is this "absurd"?
- (i) What initial assumption must be false given this contradiction?
- (j) How does this example show the converse of Lagrange's Theorem is false (refer to your answer in part (a))?
- 2. Let H be a subgroup of the D_n with odd order. Show that H must be cyclic. (Recall: D_n can be defined as $D_n = \langle r, f \rangle$ where |r| = n, |f| = 2, and $r^k f = f r^{-k}$.)
- 3. Let H be a subgroup of S_n . Use properties of cosets to prove that either every member of H is an even permutation or exactly half of the members is even.
- 4. Prove that an abelian group of order 15 is cyclic. Do not use Cauchy's Theorem for Abelian Groups.