HW4

clarissa

July 31, 2014

Contents

1	HW	4: Computable Reductions	1
	1.1	Problem 1	1
	1.2	Problem 2	1
	1.3	Problem 3	1
	1.4	Problem 4	1

1 HW 4: Computable Reductions

1.1 Problem 1

Show that the language ALL_{TM} , defined as $\{M \mid \text{ where } M \text{ is a TM and } L(M) = \Sigma^*\}$, is undecidable.

1.2 Problem 2

A useless state in a Turing machine is defined as a state that is never entered by the machine on any input. Consider the problem of detecting if a Turing machine has a useless state. Formulate this problem as a language and show that the language is undecidable.

1.3 Problem 3

If $A \leq_m B$ and B is a regular language, is A necessarily a regular language? Justify your answer.

1.4 Problem 4

Let B be a decidable language with $B \neq \emptyset$ and $B \neq \Sigma^8$, then if A is decidable define a computational reduction $A \leq_m B$.