REALCE DE IMAGENS BASEADO EM HISTOGRAMAS

Processamento de histogramas

- □ O que é um histograma?
 - É uma das ferramentas mais simples e úteis para o PDI;
 - É uma função que mostra a frequência com que cada nível de cinza aparece na imagem
 - Cada bin representa o número de vezes que cada tom de cinza aparece na imagem

				V	1																												
ſ		16	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
\mathbf{H}	U	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	67	123	255	255	255	255	255
, [2	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	120	52	90	255	255	255	255	255
	3	255	255	255	255	255	255	255	94	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	58	71	83	255	255	255	255	255
	4	255	255	255	255	255	255	255	51	120	255	255	255	255	255	255	255	255	255	255	255	255	255	255	61	84	79	76	255	255	255	255	255
	5	255	255	255	255	255	255	255	55	57	161	255	255	255	255	255	255	255	255	255	255	255	98	60	87	98	80	71	255	255	255	255	255
	6	255	255	255	255	255	255	255	63	109	74	100	255	255	255	255	255	255	255	130	104	60	85	102	88	83	81	65	255	255	255	255	255
	7	255	255	255	255	255	255	255	88	139	141	137	96	73	133	255	255	177	114	79	88	110	100	79	73	87	80	67	255	255	255	255	255
	8	255	255	129	99	125	255	224	144	202	216	162	144	139	187	235	232	_	-	_	_	_	_	79	_		_	_		_	_	255	_
L	9	255		13	35	19	57													137	_			81			_					255	
L	-	134	_	_		117	47	_	_				_	_		_	255		_	127			_	82	_	_	_					255	
L	-	104				122	86	_									45															255	
	-	209	-		175		59	_	_	133			_	_		_				109	_				-	100						255	
ļ	13	255				_	49	_									137					_	84		_						_	255	
	14	255	_	26			31	_	_								101			80	_					_						255	
I	15		255		·	_	_	_	_	·	97		_	_			96		_	_					_						_	255	
ŀ	16		255	-	_	_				118				93		82				32		_									_	255	
ŀ	-			_		255		_	_	63			_	_		88	-	83	_	82	_		115				_					255	
ŀ	18					255																										255	
ŀ	19					255					_		61				65			_			_	94		_	_	_		_	_	255	_
ŀ	20			_		255		_	_				_	_		_	70		_	_			_		_	_	_	255		_	_		
ŀ	21				_	_		_	_		_									_	_							255			_		240
ŀ	22				_	_			_											_	_							255				_	98
	23	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	144	75	47

- □ Imagem com L níveis de cinza: [0, L 1]
- \Box h(r_k) = n_k
 - □ Onde r_k é o k-ésimo valor de nível de cinza e n_k é o número de piexels com o valor r_k .

Histograma com 256 bins

256 bins – quantidade de barras do histograma

Utilizando menos bins

Utilizando menos bins

Cálculo de intervalos para os valores

$$\frac{A(p-1.5)}{(n-1)} \leq x < \frac{A(p-0.5)}{(n-1)} < x < \frac{A(p-0.5)}{(n-1)}$$

Processamento de histogramas

 A exibição gráfica do histograma para todos os valores de níveis de cinza providencia uma descrição global de uma imagem

O histograma de uma imagem é um conjunto de números que indica a quantidade de pixels em cada um dos níveis de cinza da imagem.

$$h(r_k) = n_k$$
 quentidado

- Histograma Normalizado
 - Cada elemento do conjunto é calculado por

$$P_r(r_k) = \frac{n_k}{n} \quad \text{for a px de my}$$

onde

$$0 \le r_k \le 1$$

Histograma Normalizado

$$P_r(r_k) = \frac{n_k}{n}$$

- $\mathbf{r}_k = 0,1,....L-1,L$ é o número de níveis de cinza da imagem.
- n, número total de pixels na imagem
- $\square n_k$, número de pixels cujo nível de cinza corresponde a k.
- $\square P_r(r_k)$, probabilidade do k-ésimo nível de cinza.

Um histograma pode ser visto como uma função de distribuição de frequência ou como uma função de distribuição de probabilidade

$$P_r(r_k) = \frac{n_k}{n}$$

 De maneira geral dizemos que P_r(r_k) dá uma estimativa da probabilidade de ocorrência do nível de cinza r na imagem.

- Seja uma imagem de 128x128 pixels cujas quantidades de pixels em cada nível de cinza são dadas na tabela ao lado (8 níveis de cinza)
- n = 128x128 = 16.384 pixels
- $P_r(0) = 1120/16.384 = 0.068$
- $P_r(1/7) = 3214/16.384 = 0.196$

Nível de Cinza (k)	n _k	$P_r(r_k)=n_k/n$
0/7	1120	0,0686
1/7	3214	0,196
2/7	4850	0,296
3/7	3425	0,209
4/7	1995	0,122
5/7	784	0,048
6/7	541	0,033
7/71	455	0,028

- Características Importantes
 - Um histograma é uma função de distribuição de probabilidades
 - A soma das probabilidades é igual a 1

$$\sum P_r(r_k) = 1$$

Representação gráfica de um Histograma

- Características Importantes
 - As informações espaciais não são representadas;
 - Um histograma é único para uma determinada imagem, mas o inverso não é verdadeiro;
 - A movimentação de objetos em uma imagem não tem qualquer efeito sobre o seu histograma.

Exemplos de Histogramas

Exemplos de Histogramas

- Histograma Bimodal
 - Alto contraste
 - O histograma não traz informação da posição dos pixels na imagem

- □ Ou "transformações nos níveis de cinza"
 - $lue{}$ Seja r_k o nível de cinza dos pixels na imagem a ser processada e:

$$0 \le r_k \le 1 \qquad \begin{cases} 0 => \text{Preto} \\ 1 ==> \text{Branco} \end{cases}$$

□ Uma transformada de intensidade é a função do tipo:

$$g = T(f)$$

- □ Tal que:
 - Devem retornar um único valor para cada valor distinto de f e devem crescer monotonicamente no intervalo.

$$0 \le T(f) \le 1$$
 para $0 \le f \le 1$

- As transformações de intensidade podem ser:
 - □ Lineares: g = T(f) = c * f + b
 - onde
 - c (Contraste), b (Brilho), f (valor do pixel), L (níveis de cinza)
 - Exemplos: g = 2f + 32; g = L 1 f (imagem negativa)

Imagem negativa

- As Transformações de Intensidade podem ser:
 - Não-lineares:

$$g = c * log_2(f + 1)$$

- g = c * exp(f + 1)
- Normalização:

$$\blacksquare$$
 gn= g/Nmax \rightarrow gn= g/255

 \blacksquare Exemplo: $g = 31,875.\log_2(f + 1)$

□ Escala log: aumenta o contraste

□ Escala exp

- Alterações Globais no Brilho
 - Clarear ou escurecer uma Imagem
 - Somar ou subtrair uma constante em todos os pixels da imagem.
 - 0 **→** Preto
 - max → Branco

- Técnica onde se procura redistribuir os valores dos níveis de cinza em uma imagem, para se obter um histograma uniforme.
 - Visa aumentar o intervalo dinâmico de uma imagem melhorando o contraste de imagens adquiridas sob péssimas condições de iluminação

- \Box É uma transformação global: s = T(r)
 - É útil para comparar cenas que foram adquiridas com iluminação diferente (normaliza a imagem)
 - Redistribuição das intensidades de cinza na imagem
 - Muitas vezes melhora a qualidade visual da imagem.
 - Pré-processamento para outras técnicas.

- A função de transformação s =T(r) usada para equalizar um histograma deve satisfazer as seguinte condições
 - Ser estritamente monotonicamente crescente no intervalo 0 ≤ r ≤ L-1. Esta condição garante que a saída nunca será menor do que a entrada, o que evita artefatos na imagem processada.
 - O intervalo de saída de intensidades deve ser o mesmo do de entrada
- A transformada inversa também deve satisfazer essas condições
 - $r = T^{-1}(s)$

- Funções
 - monotonicamente crescente
 - □ estritamente monotonicamente crescente

- Utiliza uma função $T(r_k)$ auxiliar para redistribuir os valores dos níveis de cinza em uma imagem
 - Exemplo: Função de distribuição acumulada (cdf, Cumulative Distribution Function)

$$S_k = T(r_k) = \sum_{j=0}^k n_j = \sum_{j=0}^k P_r(r_j)$$

onde:

$$0 \le r_k \le 1$$
 ; $k = 0,1,...L-1$

- Função de distribuição acumulada
 - Cada bin representa a soma de todos os bins anteriores (ele incluso)

 Aumenta o contraste geral na imagem espalhando a distribuição de níveis de cinza

- Exemplo
 - Dada uma imagem de n x m pixels e "L" níveis de cinza.
 - Número ideal de pixels em cada nível

$$\blacksquare I = (n \times m) / L$$

 Considerando uma função de distribuição uniforme, a equalização pode ser obtida fazendo

$$s_k = T(r_k) = ARRED(L - 1\sum_{j=0}^{k} P_r(r_j))$$

onde:

$$0 \le r_k \le 1$$
 ; $k = 0,1,...L-1$

 A imagem processada é obtida percorrendo-se toda a imagem e, para cada pixel com intensidade r_k, substitui-lo por s_k

b) Histograma original

d) Histograma Equalizado

Input Image

- Considere uma imagem de:
 - □ 3 bits (L=8)
 - dimensão 64x64 (n = 4096)
 - distribuição de intensidade conforme tabela

r _k	n _k	$P_r(r_k)$
0	790	0.19
1	1023	0.25
2	850	0.21
3	656	0.16
4	329	0.08
5	245	0.06
6	122	0.03
7	81	0.02

- Calculando a
 - Função de distribuição acumulada (cdf)

r_k	n _k	$P_r(r_k)$	cdf
0	790	0.19	0.19
1	1023	0.25	0.44
2	850	0.21	0.65
3	656	0.16	0.81
4	329	0.08	0.89
5	245	0.06	0.95
6	122	0.03	0.98
7	81	0.02	1.00

- Calculando a
 - $T_r(r_k)$ para o intervalo [0,7]

r_k	n _k	$P_r(r_k)$	cdf	$T_r(r_k)$
0	790	0.19	0.19	7 * 0.19 = 1.33
1	1023	0.25	0.44	7 * 0.44 = 3.08
2	850	0.21	0.65	7 * 0.65 = 4.55
3	656	0.16	0.81	5.67
4	329	0.08	0.89	6.23
5	245	0.06	0.95	6.65
6	122	0.03	0.98	6.86
7	81	0.02	1.00	7.00

\square Calculando a $s_k \in P_s(s_k)$

r _k	n _k	$P_r(r_k)$	cdf	$T_r(r_k)$	s _k	$P_s(s_k)$
0	790	0.19	0.19	1.33	1	0.19
1	1023	0.25	0.44	3.08	3	0.25
2	850	0.21	0.65	4.55	5	0.21
3	656	0.16	0.81	5.67	6	
4	329	0.08	0.89	6.23	6	0.24
5	245	0.06	0.95	6.65	7	
6	122	0.03	0.98	6.86	7	
7	81	0.02	1.00	7.00	7	0.11

□ Histogramas acumulados (Exemplos 1-4)

Equalização de histograma em imagens coloridas

 Basicamente, o processo de equalização é aplicado a cada canal da imagem

Equalização de histograma em imagens coloridas

 No modelo RGB, equalizar o histograma dos diferentes canais pode produzir uma imagem com cores bastante diferentes.

Especificação de histogramas

Ideia

- Permitir especificar o formato do histograma que a imagem de processada deve ter;
- Dada a imagem de entrada e um histograma, o objetivo é transformar o histograma da imagem de entrada o mais próximo possível do histograma dado.

Especificação de histogramas

- Como fazer isso?
 - Temos que fazer o mapeamento do histograma equalizado da imagem com o do histograma desejado (também equalizado)
 - Notação
 - $P_r(r_k) \rightarrow$ histograma da imagem de entrada
 - $P_z(z_a) \rightarrow \text{histograma especificado}$
 - $\blacksquare H(r_k) \rightarrow$ histograma acumulado da imagem de entrada
 - $\blacksquare H(z_a) \rightarrow$ histograma especificado acumulado
 - $s_k = T(r_k) \rightarrow \text{função de equalização}$
 - $\mathbf{v}_t = G(z_q) \rightarrow \text{função de equalização}$

Especificação de histogramas

Exemplo

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's *Mars Global Surveyor.* (b) Histogram. (Original image courtesy of NASA.)

Exemplo: Equalização

a b

FIGURE 3.21

(a) Transformation function for histogram equalization.
(b) Histogram-equalized image (note the washedout appearance).
(c) Histogram of (b).

Exemplo: Especificação

FIGURE 3.22

(a) Specified histogram. (b) Curve (1) is from Eq. (3.3-14), using the histogram in (a); curve (2) was obtained using the iterative procedure in Eq. (3.3-17). (c) Enhanced image using mappings from curve (2). (d) Histogram of (c).

Imagem original

Equalização

Especificação

- Equalização e especificação de histogramas são métodos globais
 - Transformação é executada usando todos os pixels da imagem;
- Transformações globais não são apropriadas para realçar pequenos detalhes na imagem
 - O numero de pixels nestas áreas pode ser bem pequeno, contribuindo muito pouco para a execução da transformação.

- Ideia
 - Definir funções de transformação baseadas na distribuição de intensidade de uma vizinhança de pixels da imagem.
- Trata-se de um realce local

- □ É útil para realçar detalhes de áreas pequenas
 - É obtido aplicando a equalização/especificação de histograma para uma vizinhança de cada pixel da imagem (janela).
 - Somente o valor do pixel centrado na vizinhança é modificado.
 - O centro da janela é então movido para o pixel adjacente e o procedimento é repetido.
 - Alto custo computacional

Equalização local janela 3x3

- Seja r uma variável aleatória correspondendo uma intensidade luminosa no intervalo [0,L-1]
- □ Seja $p(r_i)$ a componente do histograma normalizado para r_i .

 \square O n^{th} momento de r é dado por

$$\mu_n(r) = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i),$$
 $m = \sum_{i=0}^{L-1} r_{i.} p(r_i),$

 \square Um momento importante é n=2 (variância)

$$\mu_{2}(r) = \sum_{i=0}^{L-1} (r_{i} - m)^{2} p(r_{i})$$

Exemplo

$$L = 4$$
, imagem $5x5$

$$p(r_0) = 6/25 = 0.24$$

$$p(r_1) = 7/25 = 0.28$$

$$p(r_2) = 7/25 = 0.28$$

$$p(r_3) = 5/25 = 0.20$$

$$m = \sum_{i=0}^{3} r_{i.} p(r_i)$$

$$m = (0)0.24 + (1)0.28 + (2)0.28 + (3)0.20 = 1.44$$

Sejam

- \blacksquare m_G , σ_G media e desvio padrão a imagem

$$g(x, y) = \begin{cases} E.f(x, y) \operatorname{se} m_{Sxy} \le k_o m_G \text{ AND } k_1 \sigma_G \le \sigma_{Sxy} \le k_2 \sigma_G \\ f(x, y) \end{cases}$$

□ Em que

- \mathbf{L} \mathbf{k}_0 : valor positivo, menor que 1
- k₁ e k₂: valores positivos maiores que 1 para melhorar áreas claras
- k₁ e k₂: valores positivos menores que 1 para melhorar áreas escuras

Imagem original

imagem equalizada

imagem processada estatisticamente (E=4; k_0 =0.4, k_1 = 0.02, k_2 =0.4 e uma vizinhança 3x3). – melhora áreas escuras.