Econ 101 Midterm Cheat Sheet

Present Value: $PV = \frac{FV}{(1+i)^n}$, Present Value of a Stream: $PV = \sum_{t=1}^n \frac{FV_t}{(1+i)^t}$, $PV_{firm} = \pi_0(\frac{1+i}{i-g})$ when FV grows at rate g

elasticity: $E_{G,S} = \frac{\%\Delta G}{\%\Delta S}$ e.g., own price elasticity of demand: $E_{Q_x,P_x} = \frac{\%\Delta Q_x^d}{\%\Delta P_x} = \frac{\delta Q_x^d}{\delta P_x} \frac{P_x}{Q_x} = \frac{\delta \ln Q_x^d}{\delta \ln P_x}$

 $lnQ_x^d=eta_0+eta_xlnP_x+eta_ylnP_y+eta_MlnM+eta_HlnH$ is log linear demand function, which has

own price elasticity: $E_{Q_x,P_x}=eta_x$ cross-price elasticity: $E_{Q_x,P_y}=eta_y$ and income elasticity: $E_{Q_x,M}=eta_M$

Budget set: $P_xX + P_yY \leq M$

Marginal product of labor: $MP_L=\frac{\Delta Q}{\Delta L}$ Marginal product of capital: $MP_K=\frac{\Delta Q}{\Delta K}$ Marginal rate of technical substitution: $MRTS_{KL}=\frac{MP_L}{MP_K}$ Cost-minimizing input rule: $\frac{MP_L}{MP_K}=\frac{w}{r}$

The multiproduct cost function: $C(Q_1,Q_2)=f+aQ_1Q_2+(Q_1)^2+(Q_2)^2$ has economies of scope exist when

 $C(Q_1,0)+C(0,Q_2)>C(Q_1,Q_2)$ and economies of scale when ATC is decreasing in Q_i .

$$C_4 = rac{S_1 + S_2 + S_3 + S_4}{S_T}$$

 $C_4=rac{S_1+S_2+S_3+S_4}{S_T}$, HHI: $HHI=10,000\sum w_i^2$, Rothschild index: $R=rac{E_T}{E_E}$, Lerner Index: $L=rac{P-MC}{P}$

Markup factor: $\frac{1}{1-L}$

Perfect Competition: many buyers and sellers; homogenous products; max profits when MC = MR = P

Short Run Decisions

Long Run Decisions

if Loss < FC, continue to operate

 $P = MC \text{ or } P = \min AC$

if P < AVC, shutdown

zero economic profits

if $P \geq min AVC$, continue to operate

Monopoly: single firm in the market; has price power; can be due to economies or scale or scope (maybe complementarity) or learning curve (natural) or government rules (unnatural); max profits when MR = MC where

 $MR = P \times (1+E)E$ or $TR = P \times Q$ for P = a + bQ. $TR = aQ + bQ^2MR = a + 2bQ$

Multi-plant monopoly: where $Q=Q_1+Q_2$

 $MR(Q_1+Q_2)=MC_1(Q_1)$

 $MR(Q_1+Q_2)=MC_2(Q_2)$

Monopolistic Competition: many buyers and sellers with differentiated products; free entry and exit; in LR, zero economic profit; max profits = MR = MC; in the LR, P > MC and P = ATC > min. average costs

Sweezy model: firm believes that rivals will match price reduction but not price increases; max profit MR=MC

Cournot Oligopoly: Formula for Marginal Revenue: If the (inverse) market demand in a Cournot duopoly is

 $P=a-b(Q_1+Q_2)$ where a and b are positive constants, and cost functions are $\ C_1(Q_1)=c_1Q_1$ and $\ C_2(Q_2)=c_2Q_2$, then reaction functions are $Q_1=r_1(Q_2)=rac{a-c_1}{2b}-rac{1}{2}Q_2$ and $Q_2=r_2(Q_1)=rac{a-c_2}{2b}-rac{1}{2}Q_1$

Stackelberg Oligopoly: firms set output sequentially; leader set output, leader chooses $Q_1=rac{a+c_2-2c_1}{2b}$ because followers will react as Cournot $Q_2 = r_2(Q_1)$

Bertrand model with homogenous goods: MC is constant; each firm sets price; in NE, $P_1 = P_2 = MC$ so economic profits are zero.

Bertrand model with differentiated goods: P > MC

Contestable markets: price is driven down to the second lowest AC, due to free entry.

Game Theory: 1. look for dominant strategies / 2. put yourself in your rival's shoes / 3. at the Nash equilibrium, every player is best responding to other players. The Nash equilibrium is a strategy profile in which no player can improve her payoff by unilaterally changing her own strategy, given the other player's strategies. Sustaining cooperative outcomes with trigger strategies: $\frac{\pi^{cheat} - \pi^{coop}}{\pi^{coop} - \pi^N} \leq \frac{1}{i}$.