Context

It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase.

Content

The datasets contains transactions made by credit cards in September 2013 by european cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.

It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, ... V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-senstive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise.

Acknowledgements

The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be (http://mlg.ulb.ac.be (http://mlg.ulb.ac.be/BruFence (http://mlg.ulb.ac.be/BruFence (http://mlg.ulb.ac.be/ARTML) (http://mlg.ulb.ac.be/ARTML)

Please cite: Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015

Importing required Libraries

```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.model selection import StratifiedKFold, train test split
        from sklearn.metrics import confusion matrix, cohen kappa score, classification re
        from sklearn.metrics import r2 score, roc auc score
        from sklearn.metrics import average precision score, auc, roc curve, precision rec
        all curve
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.neural network import MLPClassifier
        from xgboost import XGBClassifier
        from sklearn.preprocessing import StandardScaler
        import seaborn as sns
        from imblearn.over sampling import SMOTE
        import featuretools as ft
        import gc
        %matplotlib inline
        sns.set(style='whitegrid', palette='inferno', font_scale=1.5)
        import warnings
        warnings.filterwarnings(action="ignore")
```

Using TensorFlow backend.

```
In [2]: # Load the data
data = pd.read_csv("../input/creditcard.csv")
```

Exploratory Data Analysis

In [5]: # get attribute summaries
 print(data.describe())

	Time	V1		Amount	Class
count	284807.000000	2.848070e+05		284807.000000	284807.000000
mean	94813.859575	3.919560e-15	• • •	88.349619	0.001727
std	47488.145955	1.958696e+00		250.120109	0.041527
min	0.000000	-5.640751e+01	• • •	0.000000	0.000000
25%	54201.500000	-9.203734e-01	• • •	5.600000	0.000000
50%	84692.000000	1.810880e-02		22.000000	0.000000
75%	139320.500000	1.315642e+00	• • •	77.165000	0.000000
max	172792.000000	2.454930e+00		25691.160000	1.000000

[8 rows x 31 columns]

Normal transaction: 284315 Fraudulent transaction: 492

```
In [7]: sns.countplot(data['Class'])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f45cb151d30>


```
In [8]: # separate classes into different datasets
    normal_class = data.query('Class == 0')
    fraudulent_class = data.query('Class == 1')

# randomize the datasets
    normal_class = normal_class.sample(frac=1,random_state=1210)
    fraudulent_class = fraudulent_class.sample(frac=1,random_state=1210)
```

```
In [9]: f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(15,9))
f.suptitle('Time of transaction vs Amount by class')

ax1.scatter(fraudulent_class.Time, fraudulent_class.Amount)
ax1.set_title('Fraud')

ax2.scatter(normal_class.Time, normal_class.Amount)
ax2.set_title('Normal')

plt.xlabel('Time (in Seconds)')
plt.ylabel('Amount')
plt.show()
```

Time of transaction vs Amount by class

The above graph shows that Time is irrelevent for detecting fraudulent transactions

```
In [10]: f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(15,9))
    f.suptitle('Amount per transaction by class')

bins = 50

ax1.hist(fraudulent_class.Amount, bins = bins)
    ax1.set_title('Fraud')

ax2.hist(normal_class.Amount, bins = bins)
    ax2.set_title('Normal')

plt.xlabel('Amount ($)')
    plt.ylabel('Number of Transactions')
    plt.xlim((0, 20000))
    plt.yscale('log')
    plt.show();
```

Amount per transaction by class

The above graph shows that most of the fraudulent transactions are of very low amount

```
In [12]: # separate classes into different datasets
    normal_class = data.query('Class == 0')
    fraudulent_class = data.query('Class == 1')

# randomize the datasets
    normal_class = normal_class.sample(frac=1,random_state=1210)
    fraudulent_class = fraudulent_class.sample(frac=1,random_state=1210)
```

Oversampling to deal with class imbalance

The examples of the majority class, in this case the normal transactions, drastically outnumber the incidences of fraudulent transactions in our dataset. One of the strategies employed in the data science community is to generate synthetic data points for under-represented class to improve the learning function.

In [15]: X train.head()

Out[15]:

	V1	V2	V3	V4	V5	V6	V7	V8
173987	2.127226	-1.643078	-1.159414	-1.518021	-1.149425	-0.442776	-0.984404	-0.202669
77761	1.177903	-0.929866	0.319984	-0.498674	-1.066237	-0.232614	-0.642941	0.128873
91298	1.221186	-0.295558	0.410340	-0.284122	-0.590148	-0.096934	-0.554816	0.273252
221298	2.048182	0.638386	-2.351720	0.774162	0.583337	-1.801964	0.422012	-0.450297
24116	1.253101	-0.328803	0.724816	0.754850	-0.758306	0.096501	-0.513748	0.000848

In [16]: | gc.collect()

Out[16]: 8295

```
In [17]: def score(model, test = X_test, y_true = y_test):
             pred = model.predict(test)
             print('Average precision-recall score RF:\t', round(average precision score(y
         true, pred),4)*100)
             print()
             print("Cohen's Kappa Score:\t",round(cohen kappa score(y true,pred),4)*100)
             print()
             print("R-Squared Score:\t",round(r2_score(y_true,pred),4)*100)
             print()
             print("Area Under ROC Curve:\t",round(roc auc score(y true,pred),4)*100)
             print()
             print(classification report(y true,pred))
             precision, recall, = precision recall curve(y true, pred)
             plt.step(recall, precision, color='b', alpha=0.2, where='post')
             plt.fill_between(recall, precision, step='post', alpha=0.2, color='b')
             plt.xlabel('Recall')
             plt.ylabel('Precision')
             plt.ylim([0.0, 1.05])
             plt.xlim([0.0, 1.0])
             plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format(average_precisi
         on score(y true, pred)))
             fpr_rf, tpr_rf, _ = roc_curve(y_true, pred)
             roc_auc_rf = auc(fpr_rf, tpr_rf)
             plt.figure(figsize=(8,8))
             plt.xlim([-0.01, 1.00])
             plt.ylim([-0.01, 1.01])
             plt.step(fpr_rf, tpr_rf, lw=1, label='{} curve (AUC = {:0.2f})'.format('RF',ro
         c auc rf))
             #plt.fill_between(fpr_rf, tpr_rf, step='post', alpha=0.2, color='b')
             plt.xlabel('False Positive Rate', fontsize=16)
             plt.ylabel('True Positive Rate', fontsize=16)
             plt.title('ROC curve', fontsize=16)
             plt.legend(loc='lower right', fontsize=13)
             plt.plot([0, 1], [0, 1], color='navy', lw=1, linestyle='--')
             plt.axes().set_aspect('equal')
             plt.show()
```

```
In [18]: def plot_2d_space(X, y, label='Classes'):
    colors = ['#1F77B4', '#FF7F0E']
    markers = ['o', 's']
    plt.figure(figsize=(12, 9), dpi=80)
    for l, c, m in zip(np.unique(y), colors, markers):
        plt.scatter(X[y==1, 0], X[y==1, 1], c=c, label=1, marker=m)
    plt.title(label)
    plt.legend(loc='upper right')
    plt.show()
```

```
In [19]: #np.unique(y_train, return_counts= True)
sns.countplot(y_train)
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7f45c5b54710>

In [20]: plot_2d_space(np.array(X), np.array(y), 'Before SMOTE over-sampling')

In [21]: smote = SMOTE(ratio='minority', random_state=1210)
X_sm, y_sm = smote.fit_sample(X_train, y_train)
#np.unique(y_sm, return_counts= True)
sns.countplot(y_sm)

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x7f45bab55fd0>

Time to train and test the performance of various models

```
In [23]: # See category counts for test data
    category, records = np.unique(y_test, return_counts= True)
    cat_counts = dict(zip(category,records))

print(cat_counts)
    sns.countplot(y_test)
```

{0: 85319, 1: 124}

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7f45c5a24518>

Random Forest Classifier

```
In [24]:
         rf model = RandomForestClassifier(n estimators=500,verbose=1,n jobs=8)
In [25]: rf_model.fit(X_sm,y_sm)
         [Parallel(n jobs=8)]: Using backend ThreadingBackend with 8 concurrent workers.
         [Parallel(n_jobs=8)]: Done 34 tasks
                                                    | elapsed:
                                                                53.1s
         [Parallel(n jobs=8)]: Done 184 tasks
                                                     elapsed: 4.4min
         [Parallel(n_jobs=8)]: Done 434 tasks
                                                     elapsed: 10.3min
         [Parallel(n_jobs=8)]: Done 500 out of 500 | elapsed: 11.7min finished
Out[25]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, n estimators=500, n jobs=8,
                     oob_score=False, random_state=None, verbose=1,
                     warm_start=False)
```

In [26]: score(rf_model)

[Parallel(n jobs=8)]: Using backend ThreadingBackend with 8 concurrent workers.

[Parallel(n_jobs=8)]: Done 500 out of 500 | elapsed: 2.3s finished

Average precision-recall score RF: 70.95

Cohen's Kappa Score: 84.14

R-Squared Score: 69.31

Area Under ROC Curve: 90.72

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	85319
	1	0.87	0.81	0.84	124
micro	avg	1.00	1.00	1.00	85443
macro	avg	0.94	0.91	0.92	85443
weighted	avg	1.00	1.00	1.00	85443

XGBoost Classifier

```
In [27]: xgb_model = XGBClassifier(n_estimators=500, n_jobs=8)
xgb_model.fit(X_sm,y_sm)
```

In [28]: score(xgb_model, test= np.array(X_test))

Average precision-recall score RF: 35.44999999999999

Cohen's Kappa Score: 55.910000000000000

R-Squared Score: -33.26

Area Under ROC Curve: 92.25

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	85319
	1	0.42	0.85	0.56	124
micro	avg	1.00	1.00	1.00	85443
macro		0.71	0.92	0.78	85443
weighted		1.00	1.00	1.00	85443

Logistic Regression

```
In [29]: lr_model = LogisticRegression(max_iter=1000)
lr_model.fit(X_sm,y_sm)
```

In [30]: score(lr_model)

Average precision-recall score RF: 4.6

Cohen's Kappa Score: 9.59

R-Squared Score: -1513.63

Area Under ROC Curve: 92.7899999999999

		precision	recall	f1-score	support
	0	1.00	0.98	0.99	85319
	1	0.05	0.88	0.10	124
micro	avg	0.98	0.98	0.98	85443
macro		0.53	0.93	0.54	85443
weighted		1.00	0.98	0.99	85443

Light GBM

In [34]: score(lgbm)

Average precision-recall score RF: 18.27

Cohen's Kappa Score: 34.98

R-Squared Score: -201.24

Area Under ROC Curve: 90.52

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	85319
	1	0.22	0.81	0.35	124
micro	avg	1.00	1.00	1.00	85443
macro		0.61	0.91	0.67	85443
weighted		1.00	1.00	1.00	85443

We can see that SMOTE doesn't give us very good results no matter which algorithm we try. I believe this is because we don't have enough **actual** fraudulent samples and the patterns just get lost in between so many non-fraudulent transaction samples.

Time to try Random Under-Sampling

In [35]: normal_class.head(3)

Out[35]:

	V1	V2	V3	V4	V5	V6	V7	V8
50830	-2.451616	1.973770	0.902784	1.595978	-1.805211	0.841257	-1.597407	2.246228
179064	0.421688	0.945353	-1.211215	1.097346	0.487790	-0.288520	0.788650	-0.491782
10158	-0.611302	0.557936	2.105733	-0.156311	0.185058	1.391241	-0.391631	0.338555

In [36]:

fraudulent_class.head(3)

Out[36]:

	V1	V2	V3	V4	V5	V6	V7	V8
81186	-4.384221	3.264665	-3.077158	3.403594	-1.938075	-1.221081	-3.310317	-1.111975
226877	-6.423306	1.658515	-5.866440	2.052064	-0.615817	-3.372266	-5.036556	2.643106
42009	-2.740483	3.658095	-4.110636	5.340242	-2.666775	-0.092782	-4.388699	-0.280133

4

In [37]: resampled = normal_class.sample(n=int(len(fraudulent_class)*3), random_state=1210)

In [38]: len(resampled)

Out[38]: 1476

In [39]: data = pd.concat([fraudulent_class,resampled])

In [40]: X_tr, X_te, y_tr, y_te = train_test_split(data.drop('Class',axis=1), data['Class'
], test_size=0.2, random_state=1210)

In [41]: sns.countplot(data['Class'])

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x7f45b86e4da0>

In [42]: score(RandomForestClassifier(n_estimators=500,random_state=1210).fit(X_tr,y_tr),te
 st=X_te, y_true=y_te)

Average precision-recall score RF: 93.01

Cohen's Kappa Score: 93.31

R-Squared Score: 87.02

Area Under ROC Curve: 95.2400000000001

		precision	recall	f1-score	support
	0	0.97	1.00	0.98	289
	1	1.00	0.90	0.95	105
micro	avg	0.97	0.97	0.97	394
macro		0.98	0.95	0.97	394
weighted		0.98	0.97	0.97	394

In [43]: score(lightgbm.LGBMClassifier(n_estimators=5000, random_state=1210).fit(X_tr,y_tr
),test=X_te, y_true=y_te)

Average precision-recall score RF: 92.55

Cohen's Kappa Score: 93.39

R-Squared Score: 87.02

Area Under ROC Curve: 95.84

		precision	recall	f1-score	support
	0	0.97	0.99	0.98	289
	1	0.98	0.92	0.95	105
micro	avg	0.97	0.97	0.97	394
macro		0.98	0.96	0.97	394
weighted		0.97	0.97	0.97	394

Results

The best results are 92% Recall, 97% Precision with Area Under Precision-Recall Curve = 91.64%