Lecture 8: Conditional expectation

Conditional probability $P(B|A) = P(A \cap B)/P(A)$ for events A and B with P(A) > 0 $P(X \in B|Y \in A)$ $P(X \in B|Y = y)$?

Definition 1.6. Let X be an integrable random variable on (Ω, \mathcal{F}, P) .

- (i) Let \mathcal{A} be a sub- σ -field of \mathcal{F} . The *conditional expectation* of X given \mathcal{A} , denoted by $E(X|\mathcal{A})$, is the a.s.-unique random variable satisfying the following two conditions:
 - (a) $E(X|\mathcal{A})$ is measurable from (Ω, \mathcal{A}) to $(\mathcal{R}, \mathcal{B})$;
 - (b) $\int_A E(X|\mathcal{A})dP = \int_A XdP$ for any $A \in \mathcal{A}$.

(Note that the existence of $E(X|\mathcal{A})$ follows from Theorem 1.4.)

- (ii) Let $B \in \mathcal{F}$. The conditional probability of B given \mathcal{A} is defined to be $P(B|\mathcal{A}) = E(I_B|\mathcal{A})$.
- (iii) Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}) . The conditional expectation of X given Y is defined to be $E(X|Y) = E[X|\sigma(Y)]$.
- $\sigma(Y)$ contains "the information in Y"

E(X|Y) is the "expectation" of X given the information provided by Y

Lemma 1.2. Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . Then Z is measurable from $(\Omega, \sigma(Y))$ to $(\mathcal{R}^k, \mathcal{B}^k)$ if and only if there is a measurable function h from (Λ, \mathcal{G}) to $(\mathcal{R}^k, \mathcal{B}^k)$ such that $Z = h \circ Y$.

The function h in $E(X|Y) = h \circ Y$ is a Borel function on (Λ, \mathcal{G}) . Let $y \in \Lambda$. We define

$$E(X|Y=y) = h(y)$$

to be the conditional expectation of X given Y = y.

Note that h(y) is a function on Λ , whereas $h \circ Y = E(X|Y)$ is a function on Ω .

For a random vector X, $E(X|\mathcal{A})$ is defined as the vector of conditional expectations of components of X.

Example 1.21. Let X be an integrable random variable on (Ω, \mathcal{F}, P) , $A_1, A_2, ...$ be disjoint events on (Ω, \mathcal{F}, P) such that $\cup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let $a_1, a_2, ...$ be distinct real numbers. Define $Y = a_1I_{A_1} + a_2I_{A_2} + \cdots$. We now show that

$$E(X|Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} I_{A_i}.$$

We need to verify (a) and (b) in Definition 1.6 with $A = \sigma(Y)$.

Since $\sigma(Y) = \sigma(\{A_1, A_2, ...\})$, it is clear that the function on the right-hand side is measurable on $(\Omega, \sigma(Y))$.

For any $B \in \mathcal{B}$, $Y^{-1}(B) = \bigcup_{i:a_i \in B} A_i$. Using properties of integrals, we obtain that

$$\int_{Y^{-1}(B)} X dP = \sum_{i:a_i \in B} \int_{A_i} X dP$$

$$= \sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} P\left(A_i \cap Y^{-1}(B)\right)$$

$$= \int_{Y^{-1}(B)} \left[\sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} I_{A_i}\right] dP.$$

This verifies (b) and thus the result.

Let h be a Borel function on \mathcal{R} satisfying $h(a_i) = \int_{A_i} X dP/P(A_i)$. Then $E(X|Y) = h \circ Y$ and E(X|Y = y) = h(y).

Proposition 1.9. Let X be a random n-vector and Y a random m-vector. Suppose that (X,Y) has a joint p.d.f. f(x,y) w.r.t. $\nu \times \lambda$, where ν and λ are σ -finite measures on $(\mathcal{R}^n, \mathcal{B}^n)$ and $(\mathcal{R}^m, \mathcal{B}^m)$, respectively. Let g(x,y) be a Borel function on \mathcal{R}^{n+m} for which $E|g(X,Y)| < \infty$. Then

$$E[g(X,Y)|Y] = \frac{\int g(x,Y)f(x,Y)d\nu(x)}{\int f(x,Y)d\nu(x)} \quad \text{a.s.}$$

Proof. Denote the right-hand side by h(Y). By Fubini's theorem, h is Borel. Then, by Lemma 1.2, h(Y) is Borel on $(\Omega, \sigma(Y))$. Also, by Fubini's theorem, $f_Y(y) = \int f(x,y) d\nu(x)$ is the p.d.f. of Y w.r.t. λ . For $B \in \mathcal{B}^m$,

$$\int_{Y^{-1}(B)} h(Y)dP = \int_{B} h(y)dP_{Y}$$

$$= \int_{B} \frac{\int g(x,y)f(x,y)d\nu(x)}{\int f(x,y)d\nu(x)} f_{Y}(y)d\lambda(y)$$

$$= \int_{\mathcal{R}^{n}\times B} g(x,y)f(x,y)d\nu \times \lambda$$

$$= \int_{\mathcal{R}^{n}\times B} g(x,y)dP_{(X,Y)}$$

$$= \int_{Y^{-1}(B)} g(X,Y)dP,$$

where the first and the last equalities follow from Theorem 1.2, the second and the next to last equalities follow from the definition of h and p.d.f.'s, and the third equality follows from Theorem 1.3 (Fubini's theorem).

(X,Y): a random vector with a joint p.d.f. f(x,y) w.r.t. $\nu \times \lambda$ The conditional p.d.f. of X given Y=y: $f_{X|Y}(x|y)=f(x,y)/f_Y(y)$ $f_Y(y)=\int f(x,y)d\nu(x)$ is the marginal p.d.f. of Y w.r.t. λ . For each fixed y with $f_Y(y)>0$, $f_{X|Y}(x|y)$ is a p.d.f. w.r.t. ν . Then Proposition 1.9 states that

$$E[g(X,Y)|Y] = \int g(x,Y)f_{X|Y}(x|Y)d\nu(x)$$

i.e., the conditional expectation of g(X,Y) given Y is equal to the expectation of g(X,Y) w.r.t. the conditional p.d.f. of X given Y.

Properties

Proposition 1.10. Let $X, Y, X_1, X_2, ...$ be integrable random variables on (Ω, \mathcal{F}, P) and \mathcal{A} be a sub- σ -field of \mathcal{F} .

- (i) If X = c a.s., $c \in \mathcal{R}$, then $E(X|\mathcal{A}) = c$ a.s.
- (ii) If $X \leq Y$ a.s., then $E(X|\mathcal{A}) \leq E(Y|\mathcal{A})$ a.s.
- (iii) If $a \in \mathcal{R}$ and $b \in \mathcal{R}$, then $E(aX + bY | \mathcal{A}) = aE(X | \mathcal{A}) + bE(Y | \mathcal{A})$ a.s.
- (iv) $E[E(X|\mathcal{A})] = EX$.
- (v) $E[E(X|\mathcal{A})|\mathcal{A}_0] = E(X|\mathcal{A}_0) = E[E(X|\mathcal{A}_0)|\mathcal{A}]$ a.s., where \mathcal{A}_0 is a sub- σ -field of \mathcal{A} .
- (vi) If $\sigma(Y) \subset \mathcal{A}$ and $E|XY| < \infty$, then $E(XY|\mathcal{A}) = YE(X|\mathcal{A})$ a.s.
- (vii) If X and Y are independent and $E|g(X,Y)| < \infty$ for a Borel function g, then E[g(X,Y)|Y=y] = E[g(X,y)] a.s. P_Y .
- (viii) If $EX^2 < \infty$, then $[E(X|\mathcal{A})]^2 \le E(X^2|\mathcal{A})$ a.s.
- (ix) (Fatou's lemma). If $X_n \geq 0$ for any n, then $E(\liminf_n X_n | \mathcal{A}) \leq \liminf_n E(X_n | \mathcal{A})$ a.s.
- (x) (Dominated convergence theorem). Suppose that $|X_n| \leq Y$ for any n and $X_n \to_{a.s.} X$. Then $E(X_n|\mathcal{A}) \to_{a.s.} E(X|\mathcal{A})$.

Example 1.22. Let X be a random variable on (Ω, \mathcal{F}, P) with $EX^2 < \infty$ and let Y be a measurable function from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}) . One may wish to predict the value of X based on an observed value of Y. Let g(Y) be a predictor, i.e., $g \in \aleph = \{\text{all Borel functions } g \text{ with } E[g(Y)]^2 < \infty\}$. Each predictor is assessed by the "mean squared prediction error" $E[X - g(Y)]^2$. We now show that E(X|Y) is the best predictor of X in the sense that

$$E[X - E(X|Y)]^2 = \min_{g \in \mathbb{R}} E[X - g(Y)]^2.$$

First, Proposition 1.10(viii) implies $E(X|Y) \in \aleph$. Next, for any $g \in \aleph$,

$$E[X - g(Y)]^{2} = E[X - E(X|Y) + E(X|Y) - g(Y)]^{2}$$

$$= E[X - E(X|Y)]^{2} + E[E(X|Y) - g(Y)]^{2}$$

$$+ 2E\{[X - E(X|Y)][E(X|Y) - g(Y)]\}$$

$$= E[X - E(X|Y)]^{2} + E[E(X|Y) - g(Y)]^{2}$$

$$+ 2E\{E\{[X - E(X|Y)][E(X|Y) - g(Y)]|Y\}\}$$

$$= E[X - E(X|Y)]^{2} + E[E(X|Y) - g(Y)]^{2}$$

$$+ 2E\{[E(X|Y) - g(Y)]E[X - E(X|Y)|Y]\}$$

$$= E[X - E(X|Y)]^{2} + E[E(X|Y) - g(Y)]^{2}$$

$$\geq E[X - E(X|Y)]^{2},$$

where the third equality follows from Proposition 1.10(iv), the fourth equality follows from Proposition 1.10(vi), and the last equality follows from Proposition 1.10(i), (iii), and (vi).