

Deep Neural Networks

Getting your matrix dimensions right

Parameters and 1=5 W [17: (n [17]) [:] = [::]

Andrew Ng

Vectorized implementation

Andrew Ng

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Andrew Ng

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer l

Backward propagation for layer l

Summary

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer l

Andrew

Backward propagation for layer *l*

Summary

Deep Neural Networks

Parameters vs Hyperparameters

What are hyperparameters?

Parameters:

```
Hyperparameters: dearning rate of
                         # hilder layer L

# hilder layer L

the hilder with N [13] n [27]....

Choice of autivortion frontion
   doster: Monatur, minthoth vise, regularjohns...
```

Applied deep learning is a very empirical process

Deep Neural Networks

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$A^{[L]} \stackrel{:}{=} g^{[L]}(Z^{[L]}) = \mathring{Y}$$

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \quad \text{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$dZ^{[1]} = dW^{^{\dagger}L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \quad \text{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$

