(4 points)

- 1. Let $\{x^k\}$ be a sequence in \mathbb{R}^n that converges to x^* with Q-sublinear convergence rate, briefly argue that $\log(||x^k x^*||)$ always lies <u>above</u> any given line with negative slope, i.e., let y = -ax, a > 0, then for k > N where N is sufficiently large, we always have $\log(||x^k x^*||) > -ak$.
- 2. (Bonus) Briefly argue what happens the other way around? i.e, if $\log(||x^k x^*||)$ lies above any given line of negative slope for sufficiently large k, what can we say about the sequence $\{x^k\}$?

Proof:

Since $\{x^k\}$ is Q-sublinear,

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} = 1$$

$$\lim_{k \to \infty} \log \left(\frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \right) = \log 1 = 0$$

$$\lim_{k \to \infty} [\log(\|x^{k+1} - x^*\|) - \log(\|x^k - x^*\|)] = 0$$

 $\forall \varepsilon > 0, \exists N > 0, s.t. - \varepsilon < \log(\|x^{k+1} - x^*\|) - \log(\|x^k - x^*\|) < \varepsilon, \forall k > N$ Let $\varepsilon = a$, then

$$-a < \log(\|x^{k+1} - x^*\|) - \log(\|x^k - x^*\|)$$
$$-ak < a < \log(\|x^{k+1} - x^*\|) - \log(\|x^k - x^*\|) \text{ since } k > 0$$

Assume that there exists a > 0, such that for any N, $\log(\|x^k - x^*\|) \le -ak$ for some k > N for a contradiction. We have 2 cases:

a. Let N be arbitrary, and let k goes to infinity, which is larger than N, and satisfies $\log(\|x^k - x^*\|) > -ak$, where k + 1 satisfies $\log(\|x^{k+1} - x^*\|) \le -a(k+1)$, assuming there is such k. Then we have:

$$\lim_{k \to \infty} \log(\|x^k - x^*\|) \le \lim_{k \to \infty} -ak = \lim_{k \to \infty} \log e^{-ak}$$
$$\lim_{k \to \infty} \|x^k - x^*\| \le \lim_{k \to \infty} e^{-ak}$$

And

$$\lim_{k \to \infty} \log(\|x^{k+1} - x^*\|) > \lim_{k \to \infty} -a(k+1) = \lim_{k \to \infty} \log e^{-a(k+1)}$$
$$\lim_{k \to \infty} \|x^{k+1} - x^*\| > \lim_{k \to \infty} e^{-a(k+1)} = \lim_{k \to \infty} e^{-ak-a} = e^{-a} \lim_{k \to \infty} e^{-ak}$$

Thus,

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} = \frac{\lim_{k \to \infty} \|x^{k+1} - x^*\|}{\lim_{k \to \infty} \|x^k - x^*\|} = \frac{e^{-a} \lim_{k \to \infty} e^{-ak}}{\lim_{k \to \infty} e^{-ak}} = e^{-a} < 1, \text{ since } a > 0$$

However, since $\{x^k\}$ is Q-sublinear, $\lim_{k\to\infty}\frac{\|x^{k+1}-x^*\|}{\|x^k-x^*\|}=1$ when k goes to infinity, so here is a contradiction.

b. If there is no k > N, where k goes to infinity, such that $\log(\|x^k - x^*\|) \le -ak$ and $\log(\|x^{k+1} - x^*\|) > -a(k+1)$, for any N, which means that for any k that goes to infinity, $\log(\|x^k - x^*\|) \le -ak$ and $\log(\|x^{k+1} - x^*\|) \le -a(k+1) = -ak - a$. That said, let $y^k = \log\|x^k - x^*\| + ak$, $\lim_{k \to \infty} y^k \le a$

0.

$$y^{k+1} - y^k = \log(\|x^{k+1} - x^*\|) + ak + a - \log(\|x^k - x^*\|) - ak$$

$$= \log\left(\frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|}\right) + a$$

$$\lim_{k \to \infty} (y^{k+1} - y^k) = \lim_{k \to \infty} \left(\log \left(\frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \right) + a \right)$$

$$= \lim_{k \to \infty} \left(\log \left(\frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \right) \right) + a = \log \left(\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \right) + a$$

$$= \log 1 + a = a > 0$$

2. Then $\{x^k\}$ may be sublinear or divergent.

(4 points) Prove that the induced norm is also a norm, i.e, it satisfies the three properties.

Proof:

By definition, for any matrix $A \in \mathbb{R}^{n \times n}$, the induced norm has

$$||A|| = \max_{||x||=1} ||Ax|| \ge 0$$

That is because Ax is a vector, and the norms of vectors are always non-negative. Then, we have

$$||A|| = \max_{\|x\| \neq 0} \frac{||Ax||}{\|x\|} = 0$$

Iff

$$\forall y \in R^n \text{ such that } ||y|| \neq 0, \frac{||Ay||}{||y||} \leq 0$$

Iff

$$\forall y \in \mathbb{R}^n \text{ such that } ||y|| \neq 0, ||Ay|| \leq 0$$

Since Ay is a vector, and the norms of vectors are non-negative, $||Ay|| \ge 0$, so ||Ay|| = 0, if and only if Ay = 0 by the property of vector norms. That said, for any $y \in R^n$ such that $||y|| \ne 0$, Ay = 0. Also, it is trivial to show that Ay = 0 when y = 0, so $null(A) = R^n$, which means A = 0.

Thus, ||A|| = 0 if and only if A = 0.

Then, for any $c \in R$, we have

$$||cA|| = \max_{\|x\|=1} ||cAx|| = \max_{\|x\|=1} ||c(Ax)||$$

Since Ax is a vector, based on the property of vector norms and the fact that |c| > 0, we have

$$||cA|| = \max_{\|x\|=1} ||c(Ax)|| = \max_{\|x\|=1} |c|||Ax|| = |c|\max_{\|x\|=1} ||Ax|| = |c|||A||$$

Then, for any matrices $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$

$$||A + B|| = \max_{||x||=1} ||(A + B)x|| = \max_{||x||=1} ||(Ax) + (Bx)||$$

Let x, y be optimal solutions to $\max_{\|x\|=1} \|(Ax) + (Bx)\|$, we have

$$||A + B|| = ||(Ax) + (Bx)||$$

Since Ax and Bx are vectors, based on the property of vector norms, we have

$$||A + B|| = ||(Ax) + (Bx)|| \le ||Ax|| + ||Bx||$$

Thus,

$$||A + B|| \le ||Ax|| + ||Bx|| \le \max_{\|a\|=1} ||Aa\| + \max_{\|b\|=1} ||Bb\|| = ||A\| + ||B\||$$

Finally, we have proved for any matrix $A \in R^{n \times n}$, $||A|| \ge 0$, ||A|| = 0 if and only if A = 0; For any $c \in R$, $||cA|| = |c| \max_{||x|| = 1} ||Ax|| = |c| ||A||$; For any matrices $A \in$

 $R^{n\times n}$, $B \in R^{n\times n}$, $||A + B|| \le ||A|| + ||B||$. That said, the induced norm is also a norm.

(4 points) Let $A \in \mathbb{R}^{n \times n}$, prove

$$||A||_2^2 = ||AA^T||_2 = ||A^TA||_2.$$

Hint: use Proposition 2.5, 2.6 and Lemma 2.7.

Proof:

First, we prove $||A^TA||_2 \le ||A||_2^2$:

By the definition of induced norm,

$$||A^T A||_2 = \max_{||x||_2=1} ||A^T A x||_2 = \max_{||x||_2=1} ||A^T (A x)||_2$$

That said, let x be the optimal solution to $\max_{\|x\|_2=1} \|A^T(Ax)\|_2$, we have

$$||A^T A||_2 = ||A^T (Ax)||_2$$

By Lemma 2.7,

$$||A^T A||_2 = ||A^T (Ax)||_2 \le ||A^T ||_2 ||Ax||_2$$

Since $||Ax||_2 \le \max_{\|z\|_2=1} ||Az||_2 = ||A||_2$, we have

$$||A^T A||_2 \le ||A^T||_2 ||Ax||_2 \le ||A^T||_2 ||A||_2$$

By Proposition 2.6,

$$||A^T A||_2 \le ||A^T||_2 ||A||_2 = ||A||_2 ||A||_2 = ||A||_2^2$$

Then, we prove $||A^T A||_2 \ge ||A||_2^2$:

Let x be optimal to $\max_{\|x\|_2=1} \|Ax\|_2$, then by the definition of induced norm,

$$||A||_2^2 = ||Ax||_2^2 = |x^T A^T Ax|$$

Let y be optimal to $\max_{\|x\|_2 = \|y\|_2 = 1} |y^T A^T A x|$. From Proposition 2.5, we know the x that

is optimal to $\max_{\|x\|_2=1} \|Ax\|_2$ is exactly the x that is optimal to $\max_{\|x\|_2=\|y\|_2=1} |y^T A^T A x|$.

Therefore,

$$||A||_2^2 = |x^T A^T A x| \le |y^T A^T A x| = ||A^T A||_2$$

Since $||A^T A||_2 \le ||A||_2^2$ and $||A||_2^2 \le ||A^T A||_2$, we have $||A||_2^2 = ||A^T A||_2$.

Swap A^T and A, we can trivially get $||A^T||_2^2 = ||AA^T||_2$. By Proposition 2.6, we have $||A||_2^2 = ||A^T||_2^2 = ||AA^T||_2$. Finally, we have

$$||A||_2^2 = ||AA^T||_2 = ||A^TA||_2$$

(4 points) Let $A \in \mathbb{R}^{n \times n}$ be symmetric, prove $||A^k||_2 = ||A||_2^k, \forall k = 1, ..., n$.

Proof:

Let λ_{max} be the eigenvalue of A with the largest magnitude, and we know $||A||_2 = |\lambda_{max}|$ by Proposition 2.14 since A is symmetric. Hence,

$$||A||_2^k = |\lambda_{max}|^k = |\lambda_{max}^k|$$

Let m be the number of eigenvectors of A, then $\forall i$ that i = 1, ..., m, $|\lambda_i| < |\lambda_{max}|$, where λ_i are eigenvalues of A. Note that since any power functions with positive

powers are non-increasing, we know $\forall i$ that $i=1,...,m, |\lambda_i^k| = |\lambda_i|^k < |\lambda_{max}|^k =$

 $|\lambda_{max}^k|$, since $k \ge 1$.

Then, by Proposition 2.10, λ_i^k are all eigenvalues of A^K , $i=1,\ldots,m$. Since $\forall i$ that $i=1,\ldots,m, \ \left|\lambda_i^k\right|<\left|\lambda_{max}^k\right|, \ \lambda_{max}^k$ is the eigenvalue of A^k with the largest magnitude, namely $\left|\lambda_{max}^k\right|=\rho(A^k)$.

Then, since A is symmetric,

$$A = A^{T}$$

$$A^{k} = (A^{T})^{k} = (A^{k})^{T}$$

Therefore, A^k is also symmetric, so $||A^k||_2 = \rho(A^k) = |\lambda_{max}^k| = |\lambda_{max}|^k = ||A||_2^k$ by Proposition 2.14.

(4 points) Consider the quadratic inequality

$$x^T A x + b^T x + c < 0$$

Let A be a $n \times n$ symmetric matrix, and let C be the set of all $x \in \mathbb{R}^n$ which satisfies the above ineuality. Prove if A is positive semidefinite, then C is a convex set.

Proof:

Assuming A is positive semidefinite. Let $x_1, x_2 \in C$, and $y = \theta x_1 + (1 - \theta)x_2, \forall \theta \in [0, 1]$, then we have

By Proposition 2.20, $A = B^T B$ for some matrix $B \in$

 $R^{n \times r}$ of full column rank, where r = rank(A), since A is symmetric and positive semidefinite. Then, we rearrange the inequality:

$$x^{T}Ax + b^{T}x + c = x^{T}B^{T}Bx + b^{T}x + c = (Bx)^{T}(Bx) + b^{T}x + c$$
$$= ||Bx||_{2}^{2} + b^{T}x + c \le 0$$

Thus,

$$y^{T}Ay + b^{T}y + c = ||By||_{2}^{2} + b^{T}y + c$$

$$= ||B[\theta x_{1} + (1 - \theta)x_{2}]||_{2}^{2} + b^{T}[\theta x_{1} + (1 - \theta)x_{2}] + c$$

$$= ||\theta Bx_{1} + (1 - \theta)Bx_{2}||_{2}^{2} + b^{T}[\theta x_{1} + (1 - \theta)x_{2}] + c$$

By Pythagorean Theorem,

$$y^{T}Ay + b^{T}y + c = \|\theta Bx_{1} + (1 - \theta)Bx_{2}\|_{2}^{2} + b^{T}[\theta x_{1} + (1 - \theta)x_{2}] + c$$

$$= \|\theta Bx_{1}\|_{2}^{2} + \|(1 - \theta)Bx_{2}\|_{2}^{2} + b^{T}[\theta x_{1} + (1 - \theta)x_{2}] + c$$

$$= \theta^{2}\|Bx_{1}\|_{2}^{2} + (1 - \theta)^{2}\|Bx_{2}\|_{2}^{2} + \theta b^{T}x_{1} + (1 - \theta)b^{T}x_{2} + c$$

Since $x_1, x_2 \in C$, $||Bx_1||_2^2 + b^T x_1 + c \le 0$ and $||Bx_2||_2^2 + b^T x_2 + c \le 0$, we have $\theta^2 ||Bx_1||_2^2 \le -\theta^2 b^T x_1 - \theta^2 c$

And

$$(1-\theta)^2 \|Bx_2\|_2^2 \le -(1-\theta)^2 b^T x_2 - (1-\theta)^2 c$$

Therefore,

$$y^{T}Ay + b^{T}y + c = \theta^{2} ||Bx_{1}||_{2}^{2} + (1 - \theta)^{2} ||Bx_{2}||_{2}^{2} + \theta b^{T}x_{1} + (1 - \theta)b^{T}x_{2} + c$$

$$\leq -\theta^{2}b^{T}x_{1} - \theta^{2}c - (1 - \theta)^{2}b^{T}x_{2} - (1 - \theta)^{2}c + \theta b^{T}x_{1}$$

$$+ (1 - \theta)b^{T}x_{2} + c$$

$$= -\theta^{2}b^{T}x_{1} - \theta^{2}c - (1 - 2\theta + \theta^{2})b^{T}x_{2} - (1 - 2\theta + \theta^{2})c$$

$$+ \theta b^{T}x_{1} + (1 - \theta)b^{T}x_{2} + c$$

$$= -\theta^{2}b^{T}x_{1} - \theta^{2}c - b^{T}x_{2} + 2\theta b^{T}x_{2} - \theta^{2}b^{T}x_{2} - c + 2\theta c - \theta^{2}c$$

$$+ \theta b^{T}x_{1} + b^{T}x_{2} - \theta b^{T}x_{2} + c$$

$$= -\theta^{2}b^{T}x_{1} - \theta^{2}c + \theta b^{T}x_{2} - \theta^{2}b^{T}x_{2} + 2\theta c - \theta^{2}c + \theta b^{T}x_{1}$$

$$= b^{T}x_{1}(-\theta^{2} + \theta) + b^{T}x_{2}(-\theta^{2} + \theta) + c(-\theta^{2} + \theta) + c(-\theta^{2} + \theta)$$

$$= (-\theta^{2} + \theta)[(b^{T}x_{1} + c) + (b^{T}x_{2} + c)]$$

Note that since $0 \le \theta \le 1$, we have $\theta^2 = \theta \theta \le \theta$, which means $-\theta^2 + \theta \ge 0$. Then, since $x_1, x_2 \in C$, we have

$$x_1^T A x_1 + b^T x_1 + c \le 0$$

$$b^T x_1 + c \le -x_1^T A x_1$$

$$b^T x_1 + c \le -x_1^T A x_1 \le 0$$

Since A is positive semidefinite, $x_1^T A x_1 \ge 0$ by definition, we have $b^T x_1 + c \le -x_1^T A x_1 \le 0$ Similarly, we know $b^T x_2 + c \le -x_2^T A x_2 \le 0$. Thus,

$$(b^T x_1 + c) + (b^T x_2 + c) \le 0$$

 $(b^{T}x_{1}+c)+(b^{T}x_{2}+c) \leq 0$ $y^{T}Ay+b^{T}y+c=(-\theta^{2}+\theta)[(b^{T}x_{1}+c)+(b^{T}x_{2}+c)] \leq 0 \ since \ -\theta^{2}+\theta \geq 0$ Therefore, $y \in C$, so C is convex.