Siamese Networks

Introduction

- Traditionally, neural network learns to predict multiple classes
 - Poses a problem when need to add/remove new classes to data
 - Have to update neural network and retrain it on whole dataset
 - Deep neural networks need a large volume of data to train on
- For certain problems like face recognition and signature verification, cannot always rely on getting more data
- Applications exist with not enough data for each class
 - Number of classes can also increase exponentially for use cases like employee attendance system
 - Cost of data collection and re-training high each time a new class is added or a new employee joins

Similarity Learning

- To solve such tasks use architecture called Siamese Networks
 - Uses only a few numbers of images (one-shot classification) to get better predictions
 - Uses similarity learning
- Similarity learning is a technique of supervised machine learning
 - Goal: make model learn a similarity function that measures how similar two objects are and returns a similarity value
 - A high score returned when objects are similar
 - A low score returned when images or objects are different

Siamese Neural Network

- Siamese Neural Network (SNN) class of neural network architectures that contain two or more identical subnetworks
 - Have same configuration with same parameters and weights
 - Parameter updating is mirrored across both sub-networks
 - Used to find similarity of inputs by comparing its feature vectors
 - Enables to classify new classes of data without retraining network
 - Require only one training example for each class thus the name One Shot

Architecture

- SNN contains two or more identical sub-networks
- Mostly, only train one of N (number of subnetworks chosen for solving problem) subnetworks
 - Use same configuration (parameters and weights) for other sub-networks
- SNN used to find similarity of inputs by comparing their feature vectors

Architecture

- Given two images want to compare and see if they are similar or dissimilar pairs
 - 1. First subnetwork takes an image (A) as input
 - Passes through convolutional layers and fully connected layers
 - Gets a vector representation of image
 - 2. Pass second image (B) through a network
 - Exactly the same with same weights and parameters
 - 3. Two encodings E(A) and E(B) from respective images
 - 4. Can compare these two to know how similar the two images are

Architecture

- If images are similar then encodings will also be quite similar
- Measure distance between these two vectors
 - If distance small \rightarrow vectors are **similar** or of same class
 - If distance large → vectors are **different** from one another

Learn parameters so that:

- If $x^{(i)}$, $x^{(j)}$ are same person, $||f(x^{(i)}) f(x^{(j)})||^2$ is small
- If $x^{(i)}$, $x^{(j)}$ are different persons, $||f(x^{(i)}) f(x^{(j)})||^2$ is large

Siamese network used in Signet

Pros and Cons

Pros

- More Robust to Class Imbalance Few images per class sufficient for SNN to recognize those images in future with aid of one-shot learning
- Learning from Semantic Similarity SNN focuses on learning embeddings that place same classes/concepts close together. Hence, can learn semantic similarity

• Cons

- Needs More Training Time Than Normal Networks Since SNNs involves learning from quadratic pairs they are slower than normal classification type of learning (pointwise learning)
- **Don't Output Probabilities** Since training involves pairwise learning, SNNs do not output probabilities of prediction, only distance from each class

Loss Functions

- Since training SNNs involve pairwise learning, cannot use cross entropy loss
- Two loss functions typically used to train Siamese networks
 - Triplet Loss
 - Contrastive Loss

- Triplet loss allows model to map two similar images close and far from dissimilar sample image pairs
- This approach done by using triplet constituting:
 - 1. Anchor Image: A sample image
 - 2. Positive Image: Another variation of anchor image
 - Helps SNN learn similarities between the two images
 - 3. Negative Image: Different image from above two similar image pairs
 - Helps model learn dissimilarities with anchor images

Anchor A

Positive P

Anchor A

Negative N

Anchor

• Distance from *anchor* to *positive* input is minimized, and distance from *anchor* to *negative* input is maximized

$$L(A, P, N) = \max(||f(A) - f(P)||^2 - ||f(A) - f(N)||^2 + \alpha, 0)$$

- α margin term used to stretch distance between similar and dissimilar pairs
- f(A), f(P), f(N) are feature embeddings for anchor, positive and negative images
- If $||f(A) f(P)||^2 > ||f(A) f(N)||^2 \to \text{not desired}$
 - $L(A, P, N) = ||f(A) f(P)||^2 ||f(A) f(N)||^2 + \alpha$
- If $||f(A) f(P)||^2 < ||f(A) f(N)||^2 \rightarrow \text{desired}$
 - L(A, P, N) = 0

- Similarity or dissimilarity measured by distance between two vectors using L2 distance and cosine distance
- During training process, feed an image triplet into model as a single sample
 - Distance between anchor and positive images should be smaller than that between anchor and negative images

- Based on definition of loss, three categories of triplets:
 - Easy triplets: triplets which have a loss of 0, because f(A, P) + margin < f(A, N)
 - Hard triplets: triplets where negative is closer to anchor than the positive, i.e. f(A, N) < f(A, P)
 - **Semi-hard triplets**: triplets where negative is not closer to anchor than the positive, but which still have positive loss: f(A, N) < f(A, P) + margin
- Each of these definitions depend on where the negative is, relatively to the anchor and positive
- Choosing what kind of triplets we want to train on will greatly impact metrics

Contrastive Loss

- Contrastive loss is a distance-based loss
- Loss is low if:
 - Positive samples are encoded to similar (closer) representations
 - Negative examples are encoded to different (farther) representations
- Accomplished by taking distances of vectors and treating resulting distances as prediction probabilities from a typical categorization network
 - Can treat distance of positive example and distances of negative examples as output probabilities and use cross entropy loss

Contrastive Loss

 Used to learn embeddings: two similar points have a low Euclidean distance and two dissimilar points have a large Euclidean distance

$$(1-Y)^{\frac{1}{2}}(D_w)^2 + (Y)^{\frac{1}{2}}\{\max(0, m-D_w)\}^2$$

• D_w is Euclidean distance between outputs of sister networks

$$D_w = \sqrt{\{G_w(X_1) - G_w(X_2)\}^2}$$

- G_w is output of network for one image
- Y is either 1 or 0: If first image and second image are from same class, then value of Y is 0, otherwise, Y is 1
- m is a margin value greater than 0 and is the lower bound distance between dissimilar samples
- Having a margin indicates that dissimilar pairs beyond this margin will not contribute to loss

Contrastive Loss

Loss =
$$(1 - Y)^{\frac{1}{2}}(D_w)^2 + (Y)^{\frac{1}{2}}\{\max(0, m - D_w)\}^2$$

- If images are from same class, Y = 0, Loss = $\frac{1}{2}(D_w)^2$
 - Minimize D_w
 - If D_w is large, loss will be more
 - If D_w is small, loss will be less
- If images are from different class, Y = 1, Loss = $\frac{1}{2} \{ \max(0, m D_w) \}^2$
 - Maximize D_w till some limit m
 - If $D_w < m$, loss will be $(m D_w)^2$
 - If $D_w > m$, loss will be 0

Triplet vs Contrastive Loss

• Input:

- Triplet loss requires three inputs (anchor, positive, and negative)
- Contrastive loss requires only two (positive and negative) inputs

Distance:

- Triplet loss minimize distance between anchor and positive example while raising the gap between anchor and negative example.
- Contrastive loss minimize distance between positive (similar) examples while increasing distance between negative (dissimilar) examples

Triplet vs Contrastive Loss

Use cases:

- Triplet loss used in problems that aim to acquire a representation space where similar cases are close together, and different examples are far apart such as facial recognition
- Contrastive loss commonly employed in applications such as picture categorization

Sensitivity:

- Margin parameter specifies minimum distance that has to be kept between anchor and positive example and maximum distance that has to be retained between both anchor and negative example - more dependent upon selection of triplet loss
- Margin parameter has less of an effect on contrastive loss

Employee Attendance System

• Example: build an attendance system for a small organization with only 20 employees, where system has to recognize face of employee

Employee Attendance System

- First problem will be train data images
 - Require a lot of different images of each of employees in the organization
- When a new employee joins or leaves organization need to collect data again and **re-train** entire model
 - Not efficient for a scalable system, especially for large organizations like MNCs
- For such a scenario where a scalable system is needed, SNN can be a great solution

Employee Attendance System

- Instead of classifying a test image to one of 20 people in organization:
 - Take a reference image of person as input
 - Generate a similarity score denoting probability that two input images are of same person
- Similarity score lies between 0 and 1 using a sigmoid function
 - Similarity score 0 denotes no similarity
 - Similarity score 1 denotes full similarity
 - Any number between 0 and 1 is interpreted accordingly

Example

Google CoLab