

Projet programmation stochastique : Résolution du problème du voyageur de commerce déterministe/stochastique grâce au PHA/recuit simulé

Le problème du voyageur de commerce

$$\min_{x,y} \left\{ \sum_{i=1}^{n_1} \sum_{j=1}^{n_1} c_{ij} x_{ij} + \sum_{s=1}^{K} p_s \sum_{i=1}^{n_2} \sum_{j=1}^{n_2} \delta_{ij}^s y_{ij}^s \right\}$$

s.t.

$$\sum_{j=1}^{n_1} x_{ij} = 1, \quad i = 1, \dots, n,$$

$$\sum_{j=1}^{n_1} x_{ij} = 1, \quad j = 1, \dots, n,$$

$$x_{ij} \in \{0, 1\}, \quad 1 \le i, j \le n.$$

Le problème du voyageur de commerce

$$\sum_{j=1}^{n} y_{ij} = 1 - \sum_{j=1}^{n} x_{ij}, \quad i = 1, \dots, n_2,$$

$$\sum_{i=1}^{n_2} y_{ij} = 1 - \sum_{i=1}^{n_1} x_{ij}, \quad j = 1, \dots, n_2,$$

$$\sum_{i|v_i \in S_1} \sum_{j|v_j \in S_1} x_{ij} \le |S_1| - 1 \quad S_1 \subset \{v_1, \dots, v_{n_1}\} \text{ et } S_1 \neq \emptyset,$$

$$\sum_{i|v_i \in S_2} \sum_{j|v_j \in S_2} y_{ij} \le |S_2| - 1 - \sum_{i|v_i \in S_1} \sum_{j|v_j \in S_1} x_{ij} \quad S_2 \subset \{v_1, \dots, v_{n_2}\} \text{ et } S_2 \neq \emptyset,$$

$$i|v_i \in S_2, i|v_j \in S_2, i|v_j \in S_2, i|v_j \in S_2, i|v_j \in S_1, i|$$

Le recuit simulé

Solution initiale:

Ville1 -> Ville2 -> -> VilleN

Température calculée pour 80% d'acceptation initiale

Nombre de paliers et d'itérations par palier fini

=> Garantit la terminaison de l'algorithme

Le voisinage

2-opt : Destruction de 2 arêtes puis reconstruction du circuit

Stockage sous forme de la liste ordonnée des ville visitées

Le PHA

80% d'arêtes stochastiques, tirées au démarrage de l'algorithme.

Pénalité initiale
$$\rho_{i,j}^{s k=0} = c_{i,j}^{s} / 2$$

alpha = 1.2

Nombre de scénarios décidables par l'utilisateur

L'algorithme garantit la terminaison.

UML et modèle MVC

Utilisation d'un modèle M / VC

Indépendance des parties du software

Les parseurs

- parseur DOM

- parseur SAX

Le parseur DOM

- Charge le document en mémoire

- Créé une structure qui représente le document

- Assez lent

Le parseur SAX

- Fonctionnement différent

- Gestion d'évènenements

- Rapide

Interface graphique

Interface graphique

Résultats déterministes

- Des résultats aléatoires

- Un problème dans la résolution

Résultats stochastiques

- Le résultat est aléatoire

- Manque de temps pour afficher et tester

Problèmes d'optimisation

- Gestion lourdes des données
- Pas de multi-thread

- L'algorithme garantit leur terminaison
- Sortie anticipée des algorithmes si aucun changement:
 - Sur un palier de température pour un recuit
 - Sur l'ensemble du tour de référence entre deux itérations pour le PHA
- Estimation du temps restant sur un recuit

Problèmes avec les résultats

Jeu de données	Résultats obtenus	Optimal TSLIB
a280	7387	2579
<u>att</u> 48	5161	10628
att532	155652	27686
<u>br</u> 17	0	*
brazil58	8233	25395
fl1577	533873	22249
kroB100	16199	22141
kroB100	25529	22141
kroB150	25184	26130
kroB200	41780	29437
kroC100	20600	20749
kroD100	25713	21294
pr2392	5972504	378032
u1060	2350901	224094