TP-Biologie

- On a analysé les données collectées à l'aide de statistiques descriptives pour explorer les caractéristiques de la distribution.
- On a calculé les moyennes, médianes, écarts-types et variances pour chaque minute, ce qui permet une compréhension approfondie de la répartition des valeurs. Statistiques descriptives

Statistiques descriptives

	minute 1	minute 2	minute 3	minute 4	minute 5	minute 6	minute 7	minute 8	minute 9	minute 10
N	196	196	196	196	196	196	196	196	196	195
Moyenne	4.78	4.37	3.90	4.03	3.58	3.17	2.98	3.04	2.93	2.88
Médiane	4.00	3.00	2.00	2.00	1.00	0.00	0.00	0.00	0.00	0
Ecart-type	4.84	4.63	4.79	5.84	4.87	4.54	4.46	4.79	4.75	4.89
Variance	23.4	21.4	22.9	34.1	23.7	20.6	19.9	22.9	22.5	23.9

• On a utilisé des graphiques tels que la boîte à moustaches et le nuage de points pour offrir une visualisation claire de la distribution des données. La matrice de corrélation a mis en évidence les relations entre les différentes minutes.

Boite à moustaches

Exemple pour la minute 1

Nuage de points

Matrice de corrélation

		minute 1	minute 2	minute 3	minute 4	minute 5	minute 6	minute 7	minute 8	minute 9	minute 10
minute 1	r de Pearson	_									
	ddl	_									
	valeur p	_									
minute 2	r de Pearson	0.837	_								
	ddl	194	_								
	valeur p	< .001	_								
minute 3	r de Pearson	0.767	0.888	_							
	ddl	194	194	_							
	valeur p	< .001	< .001	_							
minute 4	r de Pearson	0.747	0.835	0.856	_						
	ddl	194	194	194	_						
	valeur p	< .001	< .001	< .001	_						
minute 5	r de Pearson	0.756	0.856	0.836	0.865	_					
	ddl	194	194	194	194	_					
	valeur p	< .001	< .001	< .001	< .001	_					
minute 6	r de Pearson	0.714	0.811	0.782	0.766	0.892	_				
	ddl	194	194	194	194	194	_				
	valeur p	< .001	< .001	< .001	< .001	< .001	_				
minute 7	r de Pearson	0.691	0.740	0.695	0.743	0.845	0.888	_			
	ddl	194	194	194	194	194	194	_			
	valeur p	< .001	< .001	< .001	< .001	< .001	< .001	_			
minute 8	r de Pearson	0.735	0.762	0.711	0.766	0.830	0.830	0.904	_		
	ddl	194	194	194	194	194	194	194	_		
	valeur p	< .001	< .001	< .001	< .001	< .001	< .001	< .001	_		
minute 9	r de Pearson	0.732	0.781	0.714	0.738	0.834	0.830	0.888	0.926	_	

	ddl	194	194	194	194	194	194	194	194	_	
	valeur p	< .001	< .001	< .001	< .001	< .001	< .001	< .001	< .001	_	
minute 10	r de Pearson	0.685	0.763	0.711	0.718	0.813	0.834	0.866	0.850	0.924	_
	ddl	193	193	193	193	193	193	193	193	193	_
	valeur p	< .001	< .001	< .001	< .001	< .001	< .001	< .001	< .001	< .001	_

- On a appliqué l'algorithme de K-means Clustering pour regrouper les observations similaires en clusters distincts.
- On a trouvé des valeurs moyennes pour chaque groupe pour voir ce qui les rend différents. n a appliqué l'algorithme de K-means Clustering pour regrouper les observations similaires en clusters distincts.

K-means Clustering

Plot of means across clusters

Clustering Dendrogram

- _____
- Différence de Stéréotypies entre T5s et T10min :
- Les statistiques descriptives révèlent des différences dans les comportements entre les périodes T5s et T10min, avec des moyennes, médianes et écarts-types distincts pour chaque groupe

Statistiques descriptives

Statistiques descriptives

	T5s T10m	bridge- like sec	waln ut sec	scre w like sec	c- sha pe sec	norm al sec	norm al nb	bridg e- like nb	waln ut nb	scre w like nb	c- sha pe nb
N	T10m	60	60	59	6 0	60	50	50	50	50	5 0
	T5s	118	11 8	1 1 8	11 7	11 7	10 6	106	1 0 6	106	10 6
Moyenne	T10m	2.07	10. 9	0.6 44	2.0 2	14. 3	0.66 0	0.08	0.40 0	0.04 00	0.2 20
	T5s	2.09	2.4 9	3. 59	2.8 7	19. 0	1.0 9	0.2 64	0.25 5	0.3 68	0.4 25
Médiane	T10m	0.00	0.0	0. 00	0.0	17. 0	1.0 0	0.00	0. 00	0. 00	0.0

	T5s	0.00	0.0	0. 00	0.0	23. 0	1.0 0	0.00	0. 00	0. 00	0.0
Ecarttype	T10m	6.52	13. 5	2. 23	5.1 6	14. 0	0.59 3	0.2 74	0.53 5	0.1 98	0.4 18
	T5s	5.58	5.7 9	7. 43	5.4 3	11. 3	0.76 3	0.6 06	0.47 9	0.5 74	0.6 47
Variance	T10m	42.6	18 3	4. 96	26. 6	19 5	0.35 1	0.07 51	0.28 6	0.03 92	0.1 75
	T5s	31.1	33. 5	55 .2	29. 5	12 8	0.58 1	0.3 68	0.23 0	0.3 30	0.4 18

Boite à moustaches

• Exemple :

- Différences entre les Comportements Normaux et les Stéréotypies :
 - Voir 1,2
 - Les tests t et les Matrices montrent les relations et les différences pour chaque catégorie de comportement
 - ANOVA

1) Nuage de points

2) Nuage de points

Test t pour un échantillon

Test t pour un échantillon en nb

		Statistique	ddl	р
normal nb	t de Student	16.14	155	< .001
bridge-like nb	t de Student	4.84	155	< .001
walnut nb	t de Student	7.52	155	< .001
screw like nb	t de Student	6.44	155	< .001
c-shape nb	t de Student	7.60	155	< .001

Note. $H_a \mu \neq 0$

Test t pour un échantillon en sec

	Statistique	ddl	р
t de Student	18.65	176	< .001
t de Student	4.72	177	< .001
t de Student	7.15	177	< .001
t de Student	5.47	176	< .001
t de Student	6.43	176	< .001
	t de Student t de Student t de Student	t de Student 18.65 t de Student 4.72 t de Student 7.15 t de Student 5.47	t de Student 18.65 176 t de Student 4.72 177 t de Student 7.15 177 t de Student 5.47 176

Note. $H_a \mu \neq 0$

Matrice de corrélation

Matrice de corrélation en sec

		normal sec	bridge-like sec	walnut sec	screw like sec	c-shape sec
normal sec	r de Pearson	_				
	ddl	_				
	valeur p	_				
bridge-like sec	r de Pearson	-0.371	_			
	ddl	175	_			
	valeur p	< .001	_			
walnut sec	r de Pearson	-0.592	-0.126	_		
	ddl	175	176	_		
	valeur p	< .001	0.094	_		
screw like sec	r de Pearson	-0.408	0.032	-0.175	_	
	ddl	174	175	175	_	
	valeur p	< .001	0.671	0.020	_	

c-shape sec	r de Pearson	-0.302	-0.034	-0.156	0.054	_
	ddl	174	175	175	174	_
	valeur p	< .001	0.657	0.039	0.480	_

Matrice de corrélation en nb

		normal sec	bridge-like sec	walnut sec	screw like sec	c-shape sec
normal sec	r de Pearson	_				
	ddl	_				
	valeur p	_				
bridge-like sec	r de Pearson	-0.371	_			
	ddl	175	_			
	valeur p	< .001	_			
walnut sec	r de Pearson	-0.592	-0.126	_		
	ddl	175	176	_		
	valeur p	< .001	0.094	_		
screw like sec	r de Pearson	-0.408	0.032	-0.175	_	
	ddl	174	175	175	_	
	valeur p	< .001	0.671	0.020	_	
c-shape sec	r de Pearson	-0.302	-0.034	-0.156	0.054	_
	ddl	174	175	175	174	_
	valeur p	< .001	0.657	0.039	0.480	_

ANOVA

ANOVA - normal sec

	Somme des carrés	ddl	Carrés moyens	F	р
Solution	5727	7	818	6.43	< .001
Résidus	21497	169	127		

K-means Clustering

• Le clustering révèle une segmentation des données en différents groupes basés sur les caractéristiques des stéréotypies.

Ex : Plot of means across clusters

