Further Mathematics

S.Olivia

March 2024

目录

1	多元	:函数的	极限与	与连续	卖																					5
	1.1	基本概	E念 .																							5
	1.2	二元函	数的	极限																						5
		1.2.1	重极	限与	累次	マ极 ト	限																			6
	1.3	二元函	数的	连续怕	性 .																					6
		1.3.1	复合	函数	的连	连续	生					•		•						 •	 •			•		6
2	多元	元函数微分学															7									
	2.1	可微性	i																							7
		2.1.1	偏导	数.												•										7
		2.1.2	全微	分 .												•										7
		2.1.3	曲面	的切	平面	可与注	去线																			8
	2.2	2.2 复合函数微分法												8												
		2.2.1	复合	函数	的偏	副导	数									•										8
		2.2.2	复合	函数	的全	主微:	分																			9
	2.3	方向导	数与	梯度																						9
		2.3.1	方向	导数																						9
		2.3.2	梯度																							9
	2.4	泰勒公	式与	极值																						10
		241	高阶	·偏导	粉																					10

4 目录

Chapter 1

多元函数的极限与连续

1.1 基本概念

平面: $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x, y) | x, y \in \mathbf{R}\}$

平面点集: $\{(x,y)|(x,y)$ 满足条件 $P\}$

邻域: $U(P_0, \delta) = \{P | |PP_0| < \delta\}$

内点: P_0 是集合D的内点,如果存在 $\delta > 0$,使得 $U(P_0, \delta) \subset D$

外点: P_0 是集合D的外点, 如果存在 $\delta > 0$, 使得 $U(P_0, \delta) \cap D = \emptyset$

(边) 界点: P_0 是集合D的边界点,如果对任意 $\delta > 0$, $U(P_0, \delta)$ 内既有D内的点,也有D外的点

聚点:对任意 $\delta > 0$, $U(P_0, \delta)$ 内有D内的点

开集:集合D中的每一点都是D的内点,如(a,b)

闭集:集合D中的每一个边界点都是D的点,如[a,b]

开域: 联通的开集

闭域: 联通的闭集

有界集:集合D内的点都在某一邻域内无界集:集合D内的点没有界限约束

联通集:集合D内的任意两点都可以用D内的折线连接

1.2 二元函数的极限

称f在D上当P → P₀时以A为极限,记

$$\lim_{P \to P_0} f(P) = A$$

当 P, P_0 分别用坐标 $(x, y), (x_0, y_0)$ 表示时,上式也常写作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$

多元函数的逼近可以沿着任何一条路径进行,但是极限只有一个,与逼近的路径无关。如果极限不相等,则称多元函数在该点无极限。

1.2.1 重极限与累次极限

在上面讨论的 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$ 中, 自变量 (x,y)是以任何方式趋于 (x_0,y_0) 的, 这种极限也称为重极限。

而x与y依一定的先后顺序, 相继趋于 x_0 与 y_0 时 f 的极限, 这种极限称为累次极限。若对每一个 $y \in Y(y,y_0)$,存在极限 $\lim_{x\to x_0} f(x,y)$,它一般与y有关,记作

$$\varphi(y) = \lim_{x \to x_0} f(x, y)$$

如果进一步还存在极限

$$L = \lim_{y \to y_0} \varphi(y)$$

则称此L为f(x,y)先对 $x(x \to x_0)$ 后对 $y(y \to y_0)$ 的累次极限,记作

$$L = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

定理 1.1 如果 f(x,y) 的重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ 与累次极限 $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ 都存在,则两者必定相等。

$\varepsilon - \delta$ 定义

对于任何正数 ε ,都能够找到一个正数 δ ,当x满足 $0<|x-a|<\delta$ 时,对于满足上式的x都有 $0<|f(x)-b|<\varepsilon$ 。

1.3 二元函数的连续性

和一元函数相似,二元函数的连续性也有以下三种定义:

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0)$$

- 1. 有定义
- 2. 有极限
- 3. 极限等于函数值

几何意义:不断开的曲面。

1.3.1 复合函数的连续性

设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,函数u = g(x,y)在点 (x_0,y_0) 的某邻域内有定义,且f(x,y)在点 (x_0,y_0) 连续,g(x,y)在点 (x_0,y_0) 连续,那么复合函数u = g(f(x,y))在点 (x_0,y_0) 连续。"连续函数的连续函数是连续函数"。

Chapter 2

多元函数微分学

2.1 可微性

2.1.1 偏导数

定义 2.1 设函数z=f(x,y)在点 (x_0,y_0) 的某邻域内有定义,当x在 x_0 处有增量 Δx ,y在 y_0 处有增量 Δy 时,相应的函数有增量 $\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$,如果极限

$$\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}$$

存在,则称此极限为函数z = f(x,y)在点 (x_0,y_0) 处对x的偏导数,记作

同理可得函数z = f(x,y)在点 (x_0,y_0) 处对y的偏导数。

怎么求:

- 对x的偏导数:将y看作常数,对x求导;
- 对y的偏导数: 将x看作常数, 对y求导。

关于连续性

- 1. 对于一元函数,可导必定连续
- 2. 对于多元函数,偏导数存在不一定连续

2.1.2 全微分

定义 2.2 设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,且在该点有偏导数,则称函数 z = f(x,y)在点 (x_0,y_0) 处可微分,如果存在常数A和B,使得全增量

$$\Delta z = A\Delta x + B\Delta y + o(\rho)$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,则称 $A\Delta x + B\Delta y$ 为函数z = f(x,y)在点 $P_0 = (x_0,y_0)$ 处的全微分,记作

$$dz|_{P_0} = df(x_0, y_0) = A\Delta x + B\Delta y$$

当 Δx 和 Δy 趋于零时,全微分dz可作为全增量 Δz 的近似值,于是有近似公式

$$f(x,y) \approx f(x_0, y_0) + A(x - x_0) + B(y - y_0)$$

可微性条件

定理 2.1 若二元函数 f 在其定义域内一点 (x_0, y_0) 处可微,则 f 在该点关于每个自变量的偏导数都存在。此时,全微分可写成

$$df(x,y) = f_x(x,y)dx + f_y(x,y)dy$$

定理 2.2 (可微的充分条件) 若函数 z = f(x,y) 在点 (x_0,y_0) 处的偏导数 $f_x(x_0,y_0)$ 和 $f_y(x_0,y_0)$ 存在且连续,则 f 在该点可微。

另外,连续是可微的一个必要条件。

2.1.3 曲面的切平面与法线

定义 2.3 设曲面 z=f(x,y) 在点 (x_0,y_0,z_0) 处可微,且 $f_x(x_0,y_0)\neq 0$,则曲面在该点的切平面方程为

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

同理,有曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处可微,则曲面在该店的切平面方程为

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

定义 2.4 设曲面 z = f(x,y) 在点 (x_0, y_0, z_0) 处可微,且 $f_x(x_0, y_0) \neq 0$,则曲面在该点的法线方程为

$$\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_y(x_0, y_0)} = \frac{z - z_0}{-1}$$

同理,有曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处可微,则曲面在该店的法线方程为

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

2.2 复合函数微分法

2.2.1 复合函数的偏导数

定理 2.3 设函数 z = f(u,v) 在点 (u,v) 处可微, 函数 u = u(x,y) 和 v = v(x,y) 分别在点 (x,y) 处可微, 则复合函数 z = f(u(x,y),v(x,y)) 在点 (x,y) 处可微, 且有

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}$$

2.3. 方向导数与梯度 9

特殊情况:有函数 z = f(u, x, y), u = u(x, y),则

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial y}$$

这里, 把 f 看作 u, x, y 三个变量的函数, z 看作 x, y 两个变量的函数。

2.2.2 复合函数的全微分

定理 2.4 设函数 z = f(u,v) 在点 (u,v) 处可微, 函数 u = u(x,y) 和 v = v(x,y) 分别在点 (x,y) 处可微, 则复合函数 z = f(u(x,y),v(x,y)) 在点 (x,y) 处可微, 且有

$$dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv$$

2.3 方向导数与梯度

2.3.1 方向导数

定义 2.5 设函数 z=f(x,y) 在点 (x_0,y_0) 的某邻域内有定义,点 $P_0(x_0,y_0)$ 处沿方向 $\boldsymbol{l}=(\cos\alpha,\cos\beta)$ 的方向导数为

$$\frac{\partial z}{\partial l} = \lim_{\rho \to 0} \frac{f(x_0 + \rho \cos \alpha, y_0 + \rho \cos \beta) - f(x_0, y_0)}{\rho}$$

其中 $\rho = \sqrt{(\cos \alpha)^2 + (\cos \beta)^2}$ 。

定理 2.5 函数 z=f(x,y) 在点 (x_0,y_0) 处可微,则函数在该点沿任一方向 $\boldsymbol{l}=(\cos\alpha,\cos\beta)$ 的方向导数存在,且有

$$\frac{\partial z}{\partial l} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta$$

2.3.2 梯度

定义 2.6 设函数 z = f(x,y) 在点 (x_0,y_0) 处可微, 定义函数 z = f(x,y) 在点 (x_0,y_0) 处的梯度为

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

定理 2.6 函数 z = f(x,y) 在点 (x_0,y_0) 处可微,则函数在该点的梯度 $\nabla f(x_0,y_0)$ 就是函数在该点沿各个方向的方向导数的最大值,且有

$$\frac{\partial z}{\partial l} = \nabla f(x_0, y_0) \cdot \boldsymbol{l}$$

2.4 泰勒公式与极值

2.4.1 高阶偏导数

二元函数的二阶偏导数有如下四种形式:

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

$$f_{yx} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

另外,称 $\frac{\partial^2 f}{\partial x \partial y}$ 和 $\frac{\partial^2 f}{\partial x \partial y}$ 这种既有关于 x, 又有关于 y 的高阶偏导数为混合偏导数。

定理 2.7 若函数 z = f(x,y) 在点 (x_0,y_0) 处的二阶偏导数 $f_{xx},f_{yy},f_{xy},f_{yx}$ 都存在且连续,则

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

复合函数的高阶偏导数

设

$$z = f(x, y), x = \varphi(s, t), y = \phi(s, t)$$

若函数 f, φ, ϕ 都具有连续的二阶偏导数,则复合函数 $z = f(\varphi(s,t), \phi(s,t))$ 对 s,t 同样存在二阶连续偏导数。

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \end{split}$$

显然 $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$ 仍然是 s,t 的复合函数,其中 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 是 x,y 的函数, $\frac{\partial x}{\partial s}$, $\frac{\partial x}{\partial t}$, $\frac{\partial y}{\partial t}$, $\frac{\partial y}{\partial t}$ 是 s,t 的函数。继续求… (求不出来了)