Esercitazione 05 Novembre

Ripasso delle lezioni

Definizione. Sia f una funzione definita in (a,b) e sia $x \in (a,b)$ allora si dice che f è derivabile nel punto x se esiste finito il limite del rapporto incrementale:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

tale limite è la derivata di f in x

Inseriamo una tabella con le derivate principali:

f(x)	Df(x)	f(x)	Df(x)
x^{α}	$\alpha x^{\alpha-1}$	$\log_a(x)$	$\frac{1}{x \log(a)}$
$\sin(x)$	$\cos(x)$	$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos^2(x)}$	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$-\frac{1}{1-x^2}$
a^x	$a^x \log(a)$	$\arctan(x)$	$\frac{1}{1+x^2}$

Ricordiamo inoltre le principali regole di derivazione:

$$D(f+g)(x) = Df(x) + Dg(x)$$

$$D(f \cdot g)(x) = Df(x) \cdot g(x) + Dg(x) \cdot f(x)$$

$$D\frac{f}{g}(x) = \frac{Df(f) \cdot g(x) - Dg(x) \cdot f(x)}{(g(x))^2}$$

$$Df(g(x)) = f'(g(x))g'(x)$$

$$Df^{-1}(y) = \frac{1}{f'(f^{-1}(y))}$$

Dalla regola della composta e dalle regole di derivazione delle funzioni elementari si possono dedurre le seguenti regole generali di derivazione di funzioni composte.

f(x)	Df(x)	f(x)	Df(x)
$[g(x)^{\alpha}]$	$\alpha \left[g(x)\right]^{\alpha-1} Dg(x)$	$\sqrt{g(x)}$	$\frac{Dg(x)}{2\sqrt{g(x)}}$
$\left[\frac{1}{g(x)}\right]$	$-\frac{Dg(x)}{g^2(x)}$	$\log g(x)$	$\frac{Dg(x)}{g(x)}$
$e^{g(x)}$	$e^{g(x)}Dg(x)$	$\log_a g(x)$	$\frac{Dg(x)}{g(x)\log(a)}$
$a^{g(x)}$	$a^{g(x)}\log_a Dg(x)$	$\sin g(x)$	$\cos g(x)Dg(x)$
$\cos g(x)$	$-\sin g(x)Dg(x)$	$\tan g(x)$	$\frac{Dg(x)}{\cos^2 g(x)}$
$\cot g(x)$	$-\frac{Dg(x)}{\sin^2 g(x)}$	$\arcsin g(x)$	$\frac{Dg(x)}{\sqrt{1+g(x)^2}}$
arccos g(x)	$-\frac{Dg(x)}{\sqrt{1-g^2(x)}}$	$\arctan g(x)$	$\frac{Dg(x)}{1+g^2(x)}$

Esercizi

Esercizio: Calcolare, in base alla definizione, la derivata $D(\frac{1}{x})$.

Soluzione: Per definizione di derivata si ha:

$$D\left(\frac{1}{x}\right) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

Facendo l'mcm si ottiene la seguente scrittura:

$$\frac{\frac{x - (x+h)}{x(x+h)}}{h} = -\frac{\frac{h}{x(x+h)}}{h} = -\frac{h}{h \cdot x(x+h)} = -\frac{1}{x(x+h)}$$

Ora calcoliamo il limite per h tendente a 0:

$$\lim_{h \to 0} -\frac{1}{x(x+h)} = -\frac{1}{x^2}$$

Esercizio: Calcolare con la definizione la derivata di $D(\tan(x))$

Soluzione:

$$D(\tan(x)) = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h}$$

Utilizziamo la formula di somma per la tangente:

$$\tan(x+h) = \frac{\tan(x) + \tan(h)}{1 - \tan(x)\tan(h)}$$

Sostituendo nella derivata:

$$D(\tan(x)) = \lim_{h \to 0} \frac{\frac{\tan(x) + \tan(h)}{1 - \tan(x)\tan(h)} - \tan(x)}{h} = \lim_{h \to 0} \frac{\frac{\tan(x) + \tan(h) - \tan(x)(1 - \tan(x)\tan(h))}{1 - \tan(x)\tan(h)}}{h}$$

Semplificando:

$$= \lim_{h \to 0} \frac{\tan(h) + \tan^2(x)\tan(h)}{h(1 - \tan(x)\tan(h))} = \lim_{h \to 0} \frac{\tan(h)(1 + \tan^2(x))}{h(1 - \tan(x)\tan(h))}$$

Usiamo che $\lim_{h\to 0} \frac{\tan(h)}{h} = 1$ e $\lim_{h\to 0} \tan(h) = 0$:

$$D(\tan(x)) = 1 + \tan(x) = 1 + \frac{\sin^2(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}$$

Esercizio: Calcolare con la definizione la derivata di $D(x^n)$

Soluzione: Sviluppiamo il binomio $(x+h)^n$ utilizzando il teorema del binomio:

$$(x+h)^n = x^n + nx^{n-1}h + \frac{n(n-1)}{2}h^2 + \dots$$

Dove abbiamo indicato con ... termini di ordine superiore a h^2 . Sostituendo nella derivata:

$$D(x^n) = \lim_{h \to 0} \frac{x^{n} + nx^{n-1}h + \frac{n(n-1)}{2}h^2 + (\dots)h^2 - x^n}{h}$$

$$\lim_{h \to 0} \frac{nx^{n-1}h + \frac{n(n-1)}{2}h^2 + (\dots)h^2}{h} = \lim_{h \to 0} nx^{n-1} + \frac{n(n-1)}{2}h + (\dots)h$$

Quindi per h tendente a 0 si ha:

$$D(x^n) = nx^{n-1}.$$

Esercizio: Calcola le derivate delle seguenti funzioni:

$$\sqrt[4]{x} + x \quad 3x^2 + 5x + 4 \quad 2\cos^2(x) \quad \frac{x^2 - 1}{x^2 + 1} \quad x^2 2^x \quad \frac{1}{\log_2(x)}$$

Soluzione:

$$\frac{1}{4\sqrt[4]{x^3}} + 1, \quad 6x + 5 \quad -4\sin(x)\cos(x) \quad \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$$
$$2x2^x + x^22^x \ln(2) \quad \frac{1}{x\log(2)(\log_2(x))^2}$$

Esercizio: Calcola le derivate delle seguenti funzioni:

$$e^x \cos(x) - x \cos(x) \log(x) - x \arccos(x) + \sqrt{1-x^2} - \frac{1-\tan(x)}{1+\tan(x)} - \frac{\cos(x)}{e^x}$$

Soluzione:

$$e^{x}\cos(x) - e^{x}\sin(x)$$

$$\cos(x)\log(x) - x\sin(x)\log(x) + x\cos(x) \cdot \frac{1}{x} = \cos(x)\log(x) - x\sin(x)\log(x) + \cos(x)$$

$$\arccos(x) - \frac{x}{\sqrt{1 - x^{2}}} + \frac{-x}{\sqrt{1 - x^{2}}} = \arccos(x) - \frac{2x}{\sqrt{1 - x^{2}}}$$

$$\frac{-\frac{(1 + \tan(x))}{\cos^{2}(x)} - \frac{(1 - \tan(x))}{\cos^{2}(x)}}{(1 + \tan(x))^{2}} = \frac{-\frac{2}{\cos^{2}(x)}}{\left(\frac{\cos(x) + \sin(x)}{\cos(x)}\right)^{2}} = -\frac{2}{(\cos(x) + \sin(x))^{2}}$$

$$\frac{-\sin(x) \cdot e^{x} - \cos(x) \cdot e^{x}}{e^{2x}} = \frac{-\sin(x) - \cos(x)}{e^{x}}$$

Esercizio: Calcola le derivate delle seguenti funzioni:

$$3^{\sin(x)}$$
 $\sqrt{x^2 + x + 1}$ $5^{x^3 + x + 1}$ $\sin(\log(x))$ $\log\left(\frac{\sqrt{1 + x}}{1 - x}\right)$ $e^{\frac{1}{\log(x)}}$

Soluzione:

$$3^{\sin(x)} \ln(3) \cdot \frac{d}{dx} (\sin(x)) = 3^{\sin(x)} \ln(3) \cdot \cos(x)$$

$$\frac{1}{2\sqrt{x^2 + x + 1}} \cdot \frac{d}{dx} (x^2 + x + 1) = \frac{(2x + 1)}{2\sqrt{x^2 + x + 1}}$$

$$5^{x^3 + x + 1} \ln(5) \cdot \frac{d}{dx} (x^3 + x + 1) = 5^{x^3 + x + 1} \ln(5) \cdot (3x^2 + 1)$$

$$\cos(\log(x)) \cdot \frac{d}{dx} (\log(x)) = \cos(\log(x)) \cdot \frac{1}{x}$$

$$\frac{1}{\frac{\sqrt{1 + x}}{1 - x}} \cdot \frac{d}{dx} \left(\frac{\sqrt{1 + x}}{1 - x}\right) = \frac{1}{\frac{\sqrt{1 + x}}{1 - x}} \cdot \left[\frac{d}{dx} \left(\sqrt{1 + x}\right) \cdot \frac{1}{1 - x} - \frac{\sqrt{1 + x}}{(1 - x)^2}\right] =$$

$$= \frac{1}{\sqrt{1 + x}(1 - x)} \left[\frac{1}{2\sqrt{1 + x}} \cdot (1 - x) + \frac{\sqrt{1 + x}}{(1 - x)^2}\right]$$

$$e^{\frac{1}{\log(x)}} \cdot \frac{d}{dx} \left(\frac{1}{\log(x)}\right) = e^{\frac{1}{\log(x)}} \cdot \left(-\frac{1}{(\log(x))^2} \cdot \frac{1}{x}\right)$$

Esercizio: Siano f e g due funzioni derivabili nell'intervallo [a, b] e sia $f(x) > 0 \ \forall x \in [a, b]$. Calcola la derivata della funzione: $D\left[f(x)^{g(x)}\right]$

Soluzione:

Riscrivo la funzione passando all'esponenziale:

$$f(x)^{g(x)} = e^{\ln(f(x)^{g(x)})} = e^{g(x)\ln(f(x))}$$

Deriviamo rispetto a x applicando la regola della derivata della composta si ha:

$$D\left[e^{g(x)\ln(f(x))}\right] = e^{g(x)\ln(f(x))}D\left[g(x)\ln(f(x))\right] = e^{g(x)\ln(f(x))}\left[g'(x)\ln(f(x)) + g(x)\frac{f'(x)}{f(x)}\right]$$

Quindi, la derivata cercata è:

$$D[f(x)^{g(x)}] = f(x)^{g(x)} \left[g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right].$$

Esercizio: Sfruttando l'esercizio di prima, si trovino le derivate delle seguenti funzioni:

$$\cos(x)$$
) $\sin(x) \quad \sqrt{x}^{\sqrt{x}} \quad \cos(x)^{\frac{1}{x}}$

Soluzione:

$$\begin{split} &(\cos(x))^{\sin(x)} \left[\cos(x) \ln(\cos(x)) - \frac{\sin^2(x)}{\cos(x)} \right] \\ &x^{\sqrt{x}} \left[\frac{1}{2\sqrt{x}} \ln(\sqrt{x}) + \frac{\sqrt{x}}{2\sqrt{x}\sqrt{x}} \right] = x^{\sqrt{x}} \left[\frac{1}{4\sqrt{x}} \ln(x) + \frac{1}{2\sqrt{x}} \right] = x^{\sqrt{x}} \left[\frac{\ln(x) + 2}{4\sqrt{x}} \right] \\ &\cos(x)^{1/x} \left[-\frac{1}{x^2} \ln(\cos(x)) - \frac{\sin(x)}{x \cos(x)} \right] \end{split}$$

Esercizio: Discutere la continuità e la derivabilità in \mathbb{R}^+ della seguente funzione $f(x) = x^{\frac{2\alpha+1}{5}}$ al variare di $\alpha \in \mathbb{R}$.

Soluzione: Sia la continuità che la derivabilità si hanno per tutti gli $x \in \mathbb{R}^+$, l'unico punto che può dare problemi è lo zero. Basti pensare alla continuità. Infatti, qualora dovesse essere che la funzione ha esponente negativo il punto x=0 non apparterrebbe al dominio e quindi non ci potrebbe essere continuità. Perciò la prima condizione risulta essere:

$$\frac{2\alpha + 1}{5} \ge 0$$

Che ha come soluzione $\alpha > \frac{-1}{2}$. Se si considera invece la derivata prima si ha la seguente funzione:

$$f'(x) = \left(\frac{2\alpha + 1}{5}x^{\frac{2\alpha + 1}{5} - 1}\right)$$

per essere derivabile in zero allora anche la derivata deve essere continua e allora deve valere

$$\frac{2\alpha+1}{5}-1\geq 0$$

che porta alla soluzione $\alpha \geq 2$. Riassumendo:

$$\begin{cases} \alpha < -\frac{1}{2} & \text{no continua, no derivabile} \\ \frac{1}{2} \ge \alpha < 2 & \text{continua, no derivabile} \\ \alpha \ge 2 & \text{continua, derivabile} \end{cases}$$

Esercizio: Dire se la funzione f(x) = x |x - 2| è derivabile nel punto x = 2

Soluzione: La funzione f(x) è una composizione di funzioni continue. In particolare, x e |x-2| sono entrambe continue in \mathbb{R} , e la loro moltiplicazione preserva la continuità. Quindi, f(x) è continua in \mathbb{R} , incluso x=2. Ora per valutare la derivabilità calcoliamo i limiti della derivata da destra e da sinistra in x=2. Per x>2, la funzione f(x) diventa f(x)=x(x-2). La derivata di f(x) in questo intervallo è: f'(x)=2x-2. Mentre, per x<2, la funzione f(x) diventa f(x)=-x(x-2). La derivata di f(x) in questo intervallo è f'(x)=-2x+2 Pertanto calcolando i limiti:

$$\lim_{x \to 2^+} (2x - 2) = 2(2) - 2 = 2$$

$$\lim_{x \to 2^{-}} (-2x + 2) = -2(2) + 2 = -2$$

Poiché la derivata da destra $f'_{+}(2) = 2$ e la derivata da sinistra $f'_{-}(2) = -2$ non coincidono, la funzione non è derivabile in x = 2.

Esercizio: Determina per quali valori di $a, b \in c$ in \mathbb{R} la funzione

$$f(x) = \begin{cases} x^2 & \text{se } x \le c \\ ax + b & \text{se } x > c \end{cases}$$

è derivabile nel punto c

Soluzione: Affinché f(x) sia derivabile in x = c, deve essere continua in x = c. La funzione è continua in x = c se e solo se il limite destro e sinistro per x tendente a c sono uguali: Perciò, affinché la funzione sia continua in x = c, dobbiamo avere:

$$\lim_{x \to c^{-}} f(x) = c^{2} = ac + b = \lim_{x \to c^{+}} f(x).$$

Questa è la prima condizione che deve soddisfare $a, b \in c$. Affinché, poi, f(x) sia derivabile in x = c, le derivate da sinistra e da destra devono coincidere.

$$\lim_{x \to c^{-}} f'(x) = 2c = a = \lim_{x \to c^{+}} f'(x)$$

Questa è la seconda condizione che deve soddisfare a e c. Le due condizioni non sono sufficienti per individuare univocamente a, b e c. Ma se soddisfatte ci garantiscono la derivabilità.

Esercizio: Scivere la retta perpendicolare al grafico della funzione $y = \log(x)$ nel suo punto di ascissa 1.

Soluzione: La derivata di $y = \log(x)$ è $f(x)' = \frac{1}{x}$. In x = 1, f'(1) = 1, che è il coefficiente angolare della tangente). Allora, il coefficiente angolare della retta perpendicolare è $m = -\frac{1}{f'(1)} = -1$. Inoltre sappiamo che la retta perpendicolare passa per $(1, \log(1)) = (1, 0)$: Allora la retta tangente risulta essere:

$$y - 0 = -1(x - 1) \implies y = -x + 1.$$

Esercizio: Sfruttare la formula di derivazione della funzione inversa per individuare la derivata di $\arccos(x)$

Soluzione: Utilizziamo la formula della derivata della funzione inversa:

$$Df^{-1}(x) = \frac{1}{f'(f^{-1}(x))}.$$

Per $y = \arccos(x)$, la funzione f(x) è $\cos(x)$, quindi $f'(x) = -\sin(x)$. Di conseguenza:

$$D\arccos(x) = \frac{1}{-\sin(\arccos(x))}.$$

Per calcolare $\sin(\arccos(x))$, utilizziamo l'identità $\sin^2(y) + \cos^2(y) = 1$. Poiché $\cos(\arccos(x)) = x$, otteniamo:

$$\sin^2(\arccos(x)) = 1 - \cos^2(\arccos(x)) = 1 - x^2,$$

da cui $\sin(\arccos(x)) = \sqrt{1-x^2}$ (assumendo il ramo positivo per $\arccos(x)$). Infine, sostituendo nella formula della derivata:

$$D\arccos(x) = -\frac{1}{\sqrt{1-x^2}}.$$