11

પ્રાણીઓ અને વનસ્પતિઓમાં વહન (Transportation in Animals and Plants)

તમે અગાઉ શીખ્યાં છો કે બધા સજીવોને પોતાનું અસ્તિત્વ ટકાવી રાખવા માટે ખોરાક, પાણી અને ઑક્સિજનની જરૂર હોય છે. સજીવોને આ બધું શરીરના એક ભાગથી બીજા ભાગમાં પહોંચાડવું જરૂરી છે. ઉપરાંત પ્રાણીઓને ઉત્સર્ગ પદાર્થો શરીરના જે ભાગમાંથી નિકાલ કરી શકાય ત્યાં પહોંચાડવા જ રહ્યાં. તમને આશ્ચર્ય નથી થતું કે આ બધું કેવી રીતે થાય છે ? આકૃતિ 11.1 જુઓ. શું તમે હૃદય અને રુધિરવાહિનીઓ જોઈ શકો છો ? તેઓ આ બધા જ પદાર્થોના વહનનું કાર્ય કરે છે અને સાથે મળીને પરિવહનતંત્ર રચે છે. આ પ્રકરણમાં તમે વનસ્પતિ અને પ્રાણીઓમાં વહનનો અભ્યાસ કરશો.

11.1 પરિવહનતંત્ર (CIRCULATORY SYSTEM)

રુધિર (Blood)

જયારે તમારા શરીર પર ઘા પડે છે ત્યારે શું થાય છે? રુધિર બહાર આવે છે. પરંતુ રુધિર શું છે? રુધિર એ પ્રવાહી છે, જે રુધિરવાહિનીઓમાં વહે છે. તે પાચિત ખોરાકના ઘટકોનું નાના આંતરડાથી શરીરના વિવિધ ભાગો તરફ વહન કરે છે. તે ફેફસામાંથી ઑક્સિજનને શરીરના કોષો સુધી લઈ જાય છે. તે શરીરના ઉત્સર્ગ દ્રવ્યોનો શરીરમાંથી નિકાલ પણ કરે છે.

રુધિર બધા પદાર્થોનું વહન કેવી રીતે કરે છે ? રુધિર તરલ પદાર્થો (fluids) નું બનેલું હોય છે, જેને રુધિરરસ (પ્લાઝમા) કહે છે. જેમાં વિવિધ પ્રકારના કોષો સમાવિષ્ટ છે.

રુધિરનો રંગ લાલ કેમ હોય છે ?

આકૃતિ 11.1 પરિવહનતંત્ર (ધમનીઓ લાલ રંગ અને શિરાઓ વાદળી રંગથી દર્શાવેલ છે)

રક્તકણ (RBC) એ એક પ્રકારના કોષો છે. જે લાલ રંજકકણ 'હિમોગ્લોબિન' ધરાવે છે. હિમોગ્લોબિન ઑક્સિજન સાથે જોડાય છે અને શરીરના બધા ભાગોને અને અંતે કોષો સુધી પહોંચાડે છે. હિમોગ્લોબિન વિના શરીરના બધા ભાગોને સક્ષમ રીતે ઑક્સિજન પહોંચાડવો એ ખૂબ જ અઘરું છે. હિમોગ્લોબિનની હાજરીને લીધે રુધિરનો રંગ લાલ હોય છે.

રુધિરમાં **શ્વેતકણો** (WBC) પણ આવેલ છે, જે શરીરમાં પ્રવેશતા જીવાશુઓ સામે લડે છે.

બૂઝો રમત રમતા નીચે પડી જાય છે અને ઘૂંટણમાં ઈજા પહોંચે છે. કપાયેલ ભાગમાંથી રુધિર બહાર આવે છે. થોડા સમય પછી તેણે જોયું કે રુધિર વહેતું અટકે છે અને ગંઠાઈ જાય છે. બૂઝોને આનાથી આશ્ચર્ય થાય છે.

રુધિર ગંઠાવાની પ્રક્રિયા એ રુધિરમાં રહેલા બીજા પ્રકારના કોષો દ્વારા થાય છે, જેને **ત્રાકકણો** (platelets) કહેવાય છે.

રુધિરવાહિનીઓ (Blood Vessels)

શરીરમાં જુદા જુદા પ્રકારની રુધિરવાહિનીઓ જોવા મળે છે. તમે જાણો છો કે શ્વાસ દરમિયાન શુદ્ધ ઑક્સિજનનો જથ્થો ફેફસાંમાં ભરાય છે. ઑક્સિજનનું વહન શરીરના બાકીના ભાગો સુધી થવું જરૂરી છે.

રુધિર કોષોમાંથી કાર્બન ડાયૉક્સાઇડ સહિતના ઉત્સર્ગ દ્રવ્યો એકત્રિત કરે છે. પ્રકરણ 10માં શીખ્યાં તે મુજબ રુધિરને હૃદય તરફ પરત વહેવું અનિવાર્ય છે, જેથી કરીને તેમાંથી કાર્બન ડાયૉક્સાઇડ ફેફસાંમાંથી દૂર કરી શકાય. તેથી બે પ્રકારની રુધિરવાહિનીઓ, ધમની અને શિરા શરીરમાં આવેલી હોય છે (આકૃતિ 11.1).

ધમની હૃદયમાંથી ઑક્સિજનયુક્ત રુધિર શરીરના વિવિધ ભાગો તરફ લઈ જાય છે. રુધિરનો પ્રવાહ ઝડપી અને વધુ દબાણે હોવાથી ધમનીની દીવાલ જાડી અને સ્થિતિસ્થાપક હોય છે.

ચાલો, આપણે ધમની દ્વારા રુધિરના પ્રવાહનો અભ્યાસ કરવા એક પ્રવૃત્તિ કરીએ.

પ્રવૃત્તિ 11.1

તમારા જમણા હાથની તર્જની અને મધ્યમા (પ્રથમ બે આંગળીઓ)ને ડાબા કાંડાની અંદરની બાજુએ મૂકો (આકૃતિ 11.2). શું તમને થડકારા જેવો હલનચલનનો અનુભવ થાય છે? આની પાછળનું કારણ શું હોઈ શકે? આવા હલનચલનને નાડી-ધબકાર (pulse) કહેવાય છે, જે ધમનીમાં રુધિર વહેવાના કારણે થાય છે. એક મિનિટમાં થતાં નાડી ધબકારની ગણતરી કરો.

તમે કેટલા નાડી ધબકાર ગણી શકો છો ? એક મિનિટમાં થતાં થડકારને 'નાડી દર' (pulse rate) કહેવાય છે. આરામદાયી સ્થિતિમાં મનુષ્યમાં નાડી દર આશરે 72થી 80 જેટલો હોય છે. તમારા શરીરના બીજા ભાગો એવા શોધો, જ્યાં તમે નાડી ધબકાર અનુભવી શકો.

તમારા પોતાના અને તમારા સહપાઠીઓના નાડી ધબકાર પ્રતિ મિનિટ નોંધો. તમે મેળવેલ અંકો કોષ્ટક 11.1માં નોંધો અને તેની તુલના કરો.

આકૃતિ 11.2 કાંડામાં નાડી-ધબકાર

કોષ્ટક 11.1 નાડી-ધબકાર

ક્રમાંક	નામ	ધબકારા પ્રતિ મિનિટ
1.		
2.		
3.		
4.		
5.		

શિરા એ એવી રુધિરવાહિનીઓ છે, જે કાર્બન ડાયૉક્સાઇડયુક્ત રુધિરને શરીરના જુદા ભાગોમાંથી હૃદય તરફ લઈ જાય છે. શિરાની દીવાલ પાતળી હોય છે, શિરામાં વાલ્વ આવેલા હોય છે, જે રુધિરને માત્ર હૃદય તરફની દિશામાં જ જવા દે છે.

આકૃતિ 11.3 પરિવહનતંત્રની યોજનાકીય રેખાકૃતિ

રક્તદાન

હજારો લોકો રુધિર ન મળવાને કારણે મૃત્યુ પામે છે. સ્વૈચ્છિક રક્તદાન નુકસાનરહિત અને પીડારહિત છે. તથા તે કિમતી જીવન બચાવી શકે છે. હૉસ્પિટલ અથવા સરકારમાન્ય અન્ય સ્થળોએ રક્તદાન કરી શકાય છે. દાન કરેલા રુધિરનો વિશિષ્ટ કાળજી સાથે બ્લડબેંકમાં સંગ્રહ કરવામાં આવે છે.

હું અસમંજસમાં છું ! મેં શીખ્યું છે કે ધમની હંમેશાં ઑક્સિજનયુક્ત રુધિરનું વહન કરે છે. પહેલી સમજાવે છે કે, ફુપ્ફુસીય ધમની રુધિરને હૃદયમાંથી લાવે છે, આથી તેને ધમની કહે છે શિરા નહીં. તે કાર્બન ડાયૉક્સાઇડયુક્ત રુધિરને ફેકસાં સુધી પહોંચાડે છે. ફુપ્ફુસીય શિરા ઑક્સિજનયુક્ત રુધિરને ફેકસાંમાંથી હૃદય સુધી પહોંચાડે છે.

આકૃતિ 11.3 જુઓ. શું તમે ધમનીઓને નાની નાની વાહિકાઓમાં વિભાજિત થયેલ જોઈ શકો છો ? તેઓ આગળ પેશીઓ પાસે જતાં વધુ પાતળી નળીમાં વિભાજિત થાય છે જેને **કેશિકાઓ** (capillaries) કહેવાય છે. આ કેશિકાઓ ફરીથી જોડાણ પામી શિરાઓ બનાવે છે, જે રૃધિરને હૃદયમાં ઠાલવે છે.

हृहय (Heart)

હૃદય એ સતત ધબકતું અને પંપ તરીકે કાર્ય કરતું અંગ છે કે, જે રુધિર અને તેમાં રહેલા દ્રવ્યોનું વહન કરે છે.

વિચારો! એક પંપ જે વર્ષો સુધી અટક્યા વિના કાર્ય કરે છે! તદન અશક્ય. છતાં પણ આપણું હૃદય અટક્યા વિના પંપ તરીકે કાર્ય કરે છે. ચાલો, હવે આપણે હૃદય વિશે અભ્યાસ કરીએ.

હૃદય એ ઉરસગુહામાં આવેલું, નીચેની બાજુએથી થોડું ડાબી બાજુએ નમેલું હોય છે (આકૃતિ 11.1). આંગળીઓ અંદરની તરફ વાળીને મુક્રી વાળો. તમારું હૃદય સામાન્યપણે હાથની મુક્રી જેટલું કદ ધરાવે છે.

જો ઑક્સિજનયુક્ત અને કાર્બન ડાયોક્સાઇડયુક્ત રુધિર ભેગું થાય તો શું થાય ? આવું થતું રોકવા માટે હૃદય ચાર ખંડ ધરાવે છે. ઉપરના બે ખંડ 'કર્ણકો' (એકવચન-કર્ણક) અને નીચેના બે ખંડ 'ક્ષેપકો' તરીકે

ઓળખાય છે (આકૃતિ 11.4). આ બંને વચ્ચે આવેલ પડદાને કારણે ઑક્સિજનયુક્ત અને કાર્બન ડાયૉક્સાઇડયુક્ત રુધિર ભેગું થતું નથી.

પરિવહનતંત્રના કાર્યને સમજવા માટે હૃદયની

આકૃતિ 11.4 મનુષ્ય હૃદયનો છેદ

જમણી બાજુએથી શરૂઆત કરો (આકૃતિ 11.3), અને આપેલ તીરની દિશાને અનુસરો. આ તીર હૃદયથી ફેફસાં તરફ અને હૃદયથી શરીરના તમામ ભાગો તરફ રુધિરનું વહન દર્શાવે છે.

हृहयना धृं धृं (Heart Beat)

હૃદયના ખંડોની દીવાલ સ્નાયુઓની બનેલી છે. આ સ્નાયુઓનું લય અનુસાર સંકોચન અને વિકોચન (શિથિલન) જોવા મળે છે. તાલબદ્ધનું સંકોચન તેના વિકોચનને અનુસરીને એક ધબકારો સૂચવે છે. યાદ રાખો, આપણાં જીવન દરમિયાન ધબકારા સતત ચાલુ રહે છે. જો તમે તમારો હાથ છાતી પર ડાબી બાજુએ રાખશો તો, તમને ધબકારાનો અનુભવ થશે. ડૉક્ટર 'સ્ટેથોસ્કોપ' નામના સાધનની મદદથી તમારા ધબકારા અનુભવે છે.

હૃદયના ધબકારાના અવાજને મોટો કરવા માટે ડૉક્ટર સાધન તરીકે સ્ટેથોસ્કોપનો ઉપયોગ કરે છે. જેમાં એક ચેસ્ટ પિસ (કંપનશીલ પડદો), બે ઇઅર પિસ (ear piece) અને એક નળી કે જે બંનેને જોડવાનું કાર્ય કરે છે. ડૉક્ટર સ્ટેથોસ્કોપ દ્વારા હૃદયના ધબકારા સાંભળી હૃદયની પરિસ્થિતિ વિશેનો તાગ મેળવે છે.

ચાલો, આપણી આસપાસ મળી આવે તેવા પદાર્થોથી આપણે સ્ટેથોસ્કોપનો એક નમૂનો બનાવીએ.

પ્રવૃત્તિ 11.2

6-7 સેમીનો વ્યાસ ધરાવતી એક ગળણી લો. તેની પર રબરની ટ્યુબ (50 સેમી લાંબી) યુસ્તપણે લગાવો. રબરને ખેંચીને ગળણીના મોં પર લાવો અને યુસ્તપણે રબરથી બાંધો. ટ્યૂબનો એક ખુલ્લો છેડો કાન આગળ રાખો.

આકૃતિ 11.5 હૃદયના ધબકારા સાંભળવા માટેનું યંત્ર

કોષ્ટક 11.2 હૃદયના ધબકારા અને નાડી દર

C	આરામદાયી સ્થિતિ		દોડચાં પછી (4-5 મિનિટ)		
વિદ્યાર્થીનું નામ	હૃદયના ધબકારા	નાડી દર	હૃદયના ધબકારા	નાડી દર	

ગળણીનો પહોળો ભાગ હૃદય નજીક છાતી પર રાખો. ધ્યાનથી સાંભળો. તમને નિયમિત થડકાર સંભળાય છે? આ અવાજ હૃદયના ધબકારાનો છે. એક મિનિટમાં તમારું હૃદય કેટલી વાર ધબકે છે? 4-5 મિનિટ દોડીને ફરીથી ધબકારા ગણો. તમારા અવલોકનની સરખામણી કરો.

તમારા પોતાનાં અને તમારા મિત્રના નાડી દર અને દૃદયના ધબકારા, આરામદાયી અને દોડ્યા પછીની સ્થિતિમાં કોષ્ટક 11.2માં નોંધો. તમને હૃદયના ધબકારા અને નાડી દરમાં કંઈ સંબંધ લાગે છે ? હૃદયનો દરેક ધબકાર એ ધમનીમાં થડકાર સર્જે છે અને એક મિનિટમાં થતાં થડકારા એ હૃદયના ધબકારાનો દર સૂચવે છે.

હૃદયના બધા ખંડોમાં તાલબદ્ધ ધબકારા એ રુધિરનું પરિવહન અને શરીરના જુદા જુદા ભાગોમાં દ્રવ્યોના વહનનું નિયમન દર્શાવે છે.

બૂઝો વિચારે છે કે, શું વાદળી અને જળવ્યાળ (હાઈડ્રા) પણ રુધિર ધરાવે છે ? વાદળી અને જળવ્યાળ જેવા પ્રાણીઓ પરિવહનતંત્ર ધરાવતા નથી. તેઓ જે પાણીમાં વસવાટ કરે છે, તે પાણી ખોરાક અને ઑક્સિજનનો શરીરમાં પ્રવેશ કરાવે છે. આ પાણી જ

એક અંગ્રેજ ચિકિત્સક, વિલિયમ હાર્વે એ (William Harvey) (ઈ. સ. 1578 – 1657), રુધિરનું પરિવહન શોધ્યું. તે સમય દરમિયાન એવું માનવામાં આવતું કે રુધિર રુધિરવાહિનીઓમાં તરંગરૂપે વહે છે. તેના મત માટે, હાર્વેનો ઉપહાસ કરવામાં આવ્યો અને 'પરિભ્રમણ કરનાર' (Circulator) કહેવામાં આવ્યો. તેણે પોતાના ઘણાં દર્દીઓને ગુમાવ્યાં. પરંતુ તેના મૃત્યુ પહેલા હાર્વેના પરિભ્રમણના વિચારને સામાન્યપણે જૈવિક સત્ય તરીકે સ્વીકારવામાં આવ્યો.

ઉત્સર્ગ દ્રવ્યો અને કાર્બન ડાયૉક્સાઇડને શરીરમાંથી બહાર લઈ જાય છે. આથી, આવા પ્રાણીઓને રુધિર જેવા પરિવહન પ્રવાહીની જરૂરિયાત નથી.

ચાલો, હવે આપણે કાર્બન ડાયૉક્સાઇડ સિવાયના ઉત્સર્ગ દ્રવ્યો કેવી રીતે ઉત્સર્જન પામે છે તે જોઈએ.

11.2 પ્રાણીઓમાં ઉત્સર્જન (EXCRETION IN ANIMALS)

યાદ કરો, ઉચ્છ્વાસ દરમિયાન ફેફસાં દ્વારા કેવી રીતે કાર્બન ડાયૉક્સાઇડ ઉત્સર્ગ દ્રવ્ય તરીકે નિકાલ પામે છે. એ પણ યાદ કરો કે, અપાચિત ખોરાક કેવી રીતે નિકાલ પામે છે. ચાલો, હવે આપણે બીજા ઉત્સર્ગ દ્રવ્યો શરીરમાંથી કેવી રીતે નિકાલ પામે છે તે જોઈએ. તમને આશ્ચર્ય થશે કે આ બિનજરૂરી દ્રવ્યો ક્યાંથી આવે છે!

જયારે આપણા કોષો કાર્ય કરે છે, ત્યારે કેટલાક નકામા પદાર્થો મુક્ત થાય છે. તે ઝેરી હોય છે અને તેથી તે શરીરમાંથી નિકાલ થવા ખૂબ જ જરૂરી છે. કોષો દ્વારા જે નકામા પદાર્થો ઉત્પન્ન થાય છે, તેનો શરીરમાંથી નિકાલ થવાની પ્રક્રિયાને ઉત્સર્જન (excretion) કહે છે. ઉત્સર્જન પ્રક્રિયા સાથે સંકળાયેલ વિવિધ ભાગો મળીને ઉત્સર્જનતંત્રની રચના કરે છે.

મનુષ્યમાં ઉત્સર્જન તંત્ર (Excretory system in Humans)

રુધિરમાં રહેલા નકામા પદાર્થોનો શરીરમાંથી નિકાલ થવો જોઈએ. એ કેવી રીતે શક્ય બને છે ? અહીં રુધિરના ગાળણની પ્રક્રિયા જરૂરી છે. મૂત્રપિંડની રુધિરકેશિકાઓ દ્વારા આ કાર્ય થાય છે. જયારે રુધિર બે મૂત્રપિંડ સુધી પહોંચે છે ત્યારે તેમાં ઉપયોગી અને નુકસાનકારક બંને પ્રકારના પદાર્થો જોવા મળે છે. ઉપયોગી પદાર્થોનું રુધિરમાં ફરીથી શોષણ થાય છે. પાણીમાં દ્રાવ્ય નકામો કચરો મૂત્ર સ્વરૂપે નિકાલ પામે છે. મૂત્રપિંડમાંથી મૂત્ર એ નળી જેવી મૂત્રવાહિનીઓ (ureters) દ્વારા

આકૃતિ 11.6 મનુષ્યમાં ઉત્સર્જનતંત્ર

મૂત્રાશય(bladder)માં જાય છે. તે મૂત્રાશયમાં સંગ્રહાય છે અને મૂત્રમાર્ગમાંથી **મૂત્રછિદ્ર** (urethra) દ્વારા બહાર નીકળે છે (આકૃતિ 11.6). મૂત્રપિંડ, મૂત્રવાહિની, મૂત્રાશય અને મૂત્રમાર્ગ ઉત્સર્જનતંત્રની રચના કરે છે.

એક પુખ્ત વ્યક્તિમાં આશરે 1 – 1.8 લિટર જેટલું મૂત્ર 24 કલાકમાં નીકળે છે. મૂત્રમાં 95 % પાણી, 2.5 % યુરિયા અને 2.5 % બીજાં નકામા દ્રવ્યો આવેલાં છે.

આપણે બધાંએ અનુભવ્યું છે કે, ઉનાળાના ગરમ દિવસોમાં આપણને પરસેવો થાય છે. પરસેવામાં પાણી અને ક્ષાર હોય છે. બૂઝોએ જોયું છે કે, ઉનાળામાં આપણા કપડાં પર સફેદ ધબ્બા જોવા મળે છે, મોટા ભાગે ધબ્બા બગલના ભાગમાં જોવા મળે છે. આ નિશાન એ પરસેવામાં રહેલ ક્ષારના છે.

શું પરસેવો બીજા કોઈ કારણોસર થાય છે ? આપણે જાણીએ છીએ કે, માટલામાં રહેલું પાણી ઠંડું હોય છે. માટલામાં રહેલ કાણાંમાંથી પાણીનું બાષ્પોત્સર્જન થવાના કારણે ઠંડક જોવા મળે છે.

પ્રાણીઓમાં નકામા રસાયણો શરીરમાંથી નીકળવાની પ્રક્રિયા પાણીની માત્રા પર અવલંબે છે. જળચર પ્રાણીઓ જેવા કે માછલીઓ, કોષોનો કચરો એમોનિયા સ્વરૂપે ઉત્સર્જે છે, જે સીધો જ પાણીમાં ઓગળી જાય છે. કેટલાક ભૂચર (જમીન નિવાસી) પ્રાણીઓ જેવા કે પક્ષીઓ, ગરોળી કે સાપ અર્ધઘન, સફેદ રંગનો પદાર્થ (યુરિક ઍસિડ) ઉત્સર્જે છે. મનુષ્યમાં મહદ્અંશે ઉત્સર્ગ દ્રવ્ય તરીકે યુરિયા જોવા મળે છે.

કેટલીકવાર મનુષ્યમાં મૂત્રપિંડ ચેપ કે ઈજાને કારણે કામ કરતાં બંધ થાય છે. મૂત્રપિંડની નિષ્ફળતાને કારણે રુધિરમાં નકામો કચરો ભેગો થાય છે. જયાં સુધી આવી વ્યક્તિમાં રુધિરને સમયાંતરે કૃત્રિમ મૂત્રપિંડ દ્વારા ગાળવામાં આવે ત્યાં સુધી જ જીવિત રહી શકે છે. આ પદ્ધતિને ડાયાલિસિસ (dialysis) કહે છે.

આવી જ રીતે, જ્યારે આપણને પરસેવો થાય છે ત્યારે તે આપણા શરીરને ઠંડું કરવામાં મદદરૂપ થાય છે.

11.3 વનસ્પતિમાં ઘટકોનું વહન

(TRANSPORT OF SUBSTANCES IN PLANTS) તમે પ્રકરણ 1માં શીખી ગયાં કે, વનસ્પતિ જમીનમાંથી પાણી અને પોષકતત્ત્વોનું શોષણ કરે છે અને પર્ણો સુધી પહોંચાડે છે. પ્રકાશસંશ્લેષણ દ્વારા પર્ણો કાર્બન ડાયૉક્સાઇડ અને પાણીનો ઉપયોગ કરી ખોરાક બનાવે છે. પ્રકરણ 10માં તમે શીખી ગયાં કે ખોરાક એ ઊર્જાનો સ્રોત છે અને દરેક કોષ ગ્લુકોઝના તૂટવાથી ઊર્જા પ્રાપ્ત કરે છે. કોષો આ ઊર્જાનો ઉપયોગ જૈવિક ક્રિયાઓ માટે કરે છે. આથી, સજીવના દરેક કોષ પાસે ખોરાકનો જથ્થો પ્રાપ્ય હોવો જોઈએ. તમે ક્યારેય એવું વિચાર્યું છે કે, પાણી અને પોષકતત્ત્વો જમીનમાંથી મૂળ દ્વારા શોષાઈ પર્ણો સુધી કેવી રીતે પહોંચે છે ? પર્ણો દ્વારા બનાવાયેલ ખોરાક એ

પાણી અને ખનીજતત્ત્વોનું વહન (Transport of water and minerals)

વનસ્પતિ મૂળ દ્વારા પાણી અને ખનીજક્ષારનું વહન કરે છે. મૂળ મૂળરોમ ધરાવે છે. મૂળરોમ એ પાણી અને

વનસ્પતિના જુદા જુદા ભાગો સુધી કેવી રીતે પહોંચે છે ?

આકૃતિ 11.7 પાણી અને ખનીજક્ષારોનું વહન (a) મૂળનો આડો છેદ (b) વૃક્ષ

પાણીમાં દ્રાવ્ય ખનીજક્ષારોના શોષણ માટે મૂળની સપાટીમાં વધારો કરે છે. જમીનમાં કણો વચ્ચે રહેલું પાણી એ મૂળરોમના સંપર્કમાં હોય છે [આકૃતિ 11.7 (a)]..

શું તમે અનુમાન બાંધી શકો છો કે, મૂળ દ્વારા પાણી પર્ણો સુધી કેવી રીતે પહોંચે છે ? વનસ્પતિમાં કેવા પ્રકારનું પરિવહનતંત્ર આવેલું છે ?

> બૂઝોને વિચાર આવે છે કે વનસ્પતિ પાસે પાઇપ(નળીઓ) હોવી જોઈએ, જેથી પાણી વનસ્પતિના તમામ ભાગોમાં પહોંચી શકે, જેમ કે, આપણા ઘરને પાણીનો પુરવઠો પહોંચે છે.

બૂઝો સાચો છે. વનસ્પતિ પાણી અને ખનીજક્ષારોના વહન માટે પાઇપ જેવી વાહિની ધરાવે છે. આ વાહિનીઓ ચોક્કસ પ્રકારના કોષોની બનેલી હોય છે જેને **વાહકપેશી** કહે છે. સજીવોમાં કોષોના સમૂહ ચોક્કસ પ્રકારના કાર્ય કરવા માટે એકઠા થાય છે જેને **પેશી** કહે છે. પાણી અને ખનીજક્ષારોના વહન માટેની વાહકપેશીને **જલવાહક** પેશી કહે છે [આકૃતિ 11.7 (a)].

જલવાહક પેશી સળંગ નળીઓનું જાળું (નેટવર્ક) બનાવે છે. જે મૂળથી પ્રકાંડ અને ડાળીઓને સાંકળે છે. આથી, પાણીનું વહન સમગ્ર વનસ્પતિના ભાગોમાં જોવા મળે છે [આકૃતિ 11.7 (b)].

પહેલી તેની માતાને થોડા ઘણાં સૂકા ભીંડાં અને બીજા શાકભાજીને પાણીમાં મૂકતાં જુએ છે. તેણીને જાણવું છે કે પાણી તેમાં કેવી રીતે પ્રવેશે છે ?

તમે જાશો છો કે પર્શ ખોરાક બનાવે છે. ખોરાકનું વહન વનસ્પતિના બધાં ભાગોમાં થવું જોઈએ. આ ક્રિયા વાહકપેશી-'અન્નવાહક પેશી' દ્વારા થાય છે. આમ, જલવાહક અને અન્નવાહક પેશી દ્વારા વનસ્પતિમાં ઘટકોનું વહન થાય છે.

प्रवृत्ति 11.3

આ પ્રવૃત્તિ માટે આપણને પ્યાલો/પાત્ર, પાણી, લાલ શાહી, કૂમળાં પ્રકાંડ સાથેનો એક છોડ (દા.ત., ગુલમહેદી/તનમનીયા)અને બ્લેડ જોઈશે.

પ્યાલો 1/3 (ત્રીજો ભાગ) ભરાય તેટલું પાણી રેડો. પાણીમાં લાલ શાહીના થોડાંક ટીપાં ઉમેરો. પ્રકાંડને આધાર પાસેથી બ્લેડ વડે કાપીને આકૃતિ 11.8 (a) માં દર્શાવ્યા મુજબ પ્યાલામાં મૂકો. બીજા દિવસે તેનું અવલોકન કરો.

(a) આકૃતિ 11.8(a) રંગીન પાણીમાં મૂકેલું પ્રકાંડ.

11.8 (b) પાણી પ્રકાંડમાં ઉપર ચડે છે. (c) પ્રકાંડના ખુલ્લા છેડાનું વિવર્ધિત ચિત્ર.

શું છોડનો કોઈ પણ ભાગ લાલ રંગનો દેખાય છે? જો હા, તો તમને શું લાગે છે કે, આ રંગ ત્યાં કઈ રીતે પહોંચ્યો હશે?

તમે પ્રકાંડને વચ્ચેથી કાપો અને પ્રકાંડની અંદર પણ લાલ રંગ જુઓ (આકૃતિ 11.8 (b) અને 11.8 (c)).

આ પ્રવૃત્તિ ઉપરથી આપણે જોયું કે, પ્રકાંડમાં પાણી ઉપર ચડે છે. બીજા શબ્દોમાં પ્રકાંડ પાણીનું વહન કરે છે. લાલ શાહીની જેમ જ પાણીમાં ઓગળેલાં ખનીજ તત્વો પણ પ્રકાંડમાં પાણીની સાથે ઉપર ચડે છે.

પ્રકાંડમાં રહેલી સાંકડી નલિકાઓ (જલવાહિનીઓ) દ્વારા પાણી અને ખનીજ તત્વો વનસ્પતિની શાખાઓ સાથે જોડાયેલા પર્શો અને અન્ય ભાગ તરફ જાય છે.

00

બૂઝોને વિચાર આવે છે કે શા માટે વનસ્પતિ પુષ્કળ માત્રામાં જમીનમાંથી પાણીનું શોષણ કરે છે, ત્યારબાદ બાષ્પોત્સર્જન દ્વારા ગુમાવી દે છે!

બાષ્પોત્સર્જન (Transpiration)

તમે ધોરણ VIમાં શીખ્યાં છો કે, વનસ્પતિ બાષ્પોત્સર્જનની ક્રિયા દ્વારા પુષ્કળ પ્રમાણમાં પાણી મુક્ત કરે છે.

વનસ્પતિ જમીનમાંથી પાણી અને ખનીજક્ષારોનું શોષણ કરે છે. શોષાયેલું બધું પાણી વનસ્પતિ દ્વારા વપરાતું નથી. બાષ્પોત્સર્જનની ક્રિયા દ્વારા પર્ણમાં આવેલ પર્શરંધ્ર દ્વારા પાણી બાષ્ય સ્વરૂપે બહાર નીકળે છે. પર્શ દ્વારા પાણીનું બાષ્પીભવન એ 'ઉત્સ્વેદન ખેંચાણ' (બકનળી - જેમ તમે સ્ટ્રૉ દ્વારા પાણી ચૂસો છો તે રીતે) રચે છે. જે પાણીને ખૂબ જ ઊંચાઈ સુધી ઊંચા વૃક્ષોમાં પહોંચાડે છે. બાષ્પોત્સર્જનથી વનસ્પતિ ઠંડક પણ પ્રાપ્ત કરે છે.

પારિભાષિક શબ્દો

એમોનિયા	Ammonia	ધબકારો	Heart beat	પેશી	Tissue
ધમની	Artery	મૂત્રપિંડ	Kidneys	યુરિયા	Urea
રુધિર	Blood	અન્નવાહક પેશી	Phloem	મૂત્રવાહિની	Ureter
રુધિરવાહિનીઓ	Blood vessels	રુધિરરસ	Plasma	મૂત્રછિદ્ર	Urethra
કેશિકા	Capillary	ત્રાકકણો	Platelets	યુરિક ઍસિડ	Uric acid
પરિવહનતંત્ર	Circulatory system	થડકાર	Pulse	મૂત્રાશય	Urinary bladder
ડાયાલિસીસ	Dialysis	રક્તક્શ	Red blood cell	શિરા	Vein
ઉત્સર્જન	Excretion	મૂળરોમ	Root hair	શ્વેતકણ	White blood cell
ઉત્સર્જનતંત્ર	Excretory system	સ્ટેથોસ્કોપ	Stethoscope	જલવાહક પેશી	Xylem
હિમોગ્લોબિન	Haemoglobin	પરસેવો	Sweat		

તમે શું શીખ્યાં ?

- મોટા ભાગના પ્રાણીઓમાં રુધિર વહે છે, જેના દ્વારા શરીરના વિવિધ ભાગોમાં ખોરાક અને ઑક્સિજન
 વિવિધ કોષો સુધી પહોંચે છે. ઉત્સર્જન માટે તે વિવિધ ભાગોમાંથી ઉત્સર્ગ દ્રવ્યો પણ લાવે છે.
- 🧧 રુધિરાભિસરણતંત્ર (પરિવહનતંત્ર) હૃદય અને રુધિરવાહિનીઓ ધરાવે છે.
- 📕 માણસમાં રુધિર ધમની અને શિરા દ્વારા વહન પામે છે અને હૃદય 'પંપ' તરીકે કાર્ય કરે છે.
- □ રુધિર રુધિરરસ, શ્વેતકણ, રક્તકણ અને ત્રાકકણિકાઓ ધરાવે છે. રુધિર તેમાં જોવા મળતા લાલ રંગના રંજકદ્રવ્ય હિમોગ્લોબિનના લીધે લાલ રંગનું જોવા મળે છે.
- 👅 એક પુખ્તવયની વ્યક્તિનું હૃદય 1 મિનિટમાં આશરે 72-80 વાર ધબકે છે. જેને ધબકારાનો દર કહે છે.
- 💶 ધમની હૃદયમાંથી રુધિર શરીરના વિવિધ ભાગો સુધી લઈ જાય છે.
- શિરા શરીરના વિવિધ ભાગોથી રુધિર હૃદય સુધી લઈ જાય છે.
- શરીરમાંથી નકામા કચરાનો બહાર નિકાલ કરવાની ક્રિયાને ઉત્સર્જન કહે છે.

- 🧧 માણસનું ઉત્સર્જનતંત્ર બે મૂત્રપિંડ, બે મૂત્રવાહિની, એક મૂત્રાશય અને એક મૂત્રમાર્ગ ધરાવે છે.
- 💶 પરસેવા તરીકે ક્ષાર અને યુરિયા પાણી સાથે નિકાલ પામે છે.
- 📕 માછલીઓ એમોનિયા જેવા ઉત્સર્ગ દ્રવ્યનો નિકાલ કરે છે, જે સીધો જ પાણીમાં દ્રાવ્ય છે.
- 💶 પક્ષીઓ, જીવજંતુ અને ગરોળી એ અર્ધઘન સ્વરૂપે યુરિક ઍસિડનો ત્યાગ કરે છે.
- 💶 પાણી અને ખનીજ તત્ત્વો જમીનમાંથી મૂળ દ્વારા શોષાય છે.
- 💶 વનસ્પતિના બધા ભાગોમાં જલવાહક પેશી દ્વારા પાણી સાથે પોષકતત્ત્વો વહન પામે છે.
- 💶 વનસ્પતિના બધા ભાગોમાં ખોરાકનું વહન કરતી પેશી એ અન્નવાહક પેશી છે.
- બાષ્પોત્સર્જનની પ્રક્રિયા દ્વારા પર્શરંધ્રમાંથી પુષ્કળ પ્રમાણમાં પાણીનો બાષ્ય સ્વરૂપે નિકાલ થાય છે.
- બાષ્પોત્સર્જન એ એક પ્રકારનું બળ રચે છે જે જમીનમાંથી મૂળ દ્વારા શોષાયેલ પાણીને ખેંચી લે છે
 અને પ્રકાંડ તથા પર્શ સુધી પહોંચાડે છે.

. કૉલમ	ı-I માં આપેલી વિગતોને કૉલમ-II સ	ાથે સરખાવીને જોડકાં જોડો :
કૉલમ	t-I	કૉલમ-II
(a) 1	પર્શરં ધ્ર	(i) પાણીનું શોષણ
(b) 9	૪લ વાહક પેશી	(ii) બાષ્પોત્સર્જન
(c) +	મૂળરોમ	(iii) ખોરાકનું વહન
(d) અન્નવાહક પેશી		(iv) પાણીનું વહન
		(v) કાર્બોદિતનું સંશ્લેષણ
. ખાલી	. જગ્યા પૂરો :	
(i)	હૃદયમાંથી રુધિર શરીરના બધા પામે છે.	ભાગો તરફ દ્વારા વહન
(ii)	હિમોગ્લોબિન એ	_ કોષોમાં હાજર હોય છે.
` '		ના જાળા સ્વરૂપે જોડાયેલ હોય છે.
		ચન એ કહેવાય છે.
	મનુષ્યમાં એ મ્	
	પરસેવો એ પાણી અને	
) મૂત્રપિંડ એ પ્રવાહી સ્વરૂપે શરીરના કહે છે.	
	33 3.	

- 3. સાચો વિકલ્પ પસંદ કરો :
 - (a) વનસ્પતિમાં પાણી _____ દ્વારા વહન પામે છે.
 - (i) જલવાહક પેશી
- (ii) અન્નવાહક પેશી

(iii) પર્ણરંધ્ર

- (iv) મૂળરોમ
- (b) વનસ્પતિને _____ રાખીને પાણીનું શોષણ વધારી શકાય છે.
 - (i) છાંયડામાં

(ii) આછા પ્રકાશમાં

(iii) પંખા નીચે

- (iv) પોલિથીન બેગથી ઢાંકીને
- 4. વનસ્પતિ અને પ્રાણીઓમાં ઘટકોનું વહન શા માટે જરૂરી છે ? સમજાવો.
- 5. જો રુધિરમાં રુધિરકશિકાઓ ન હોય તો શું થાય ?
- 6. પર્શરંધ્ર એટલે શું ? પર્શરંધ્રના બે કાર્યો આપો.
- 7. શું વનસ્પતિમાં બાખ્યોત્સર્જનનો કોઈ મહત્ત્વનો ફાળો છે ? સમજાવો.
- 8. રૂધિરના જુદા જુદા ઘટકોના નામ આપો.
- 9. શા માટે શરીરના બધાં જ ભાગોને રુધિરની જરૂરિયાત રહે છે ?
- 10. રૂધિરનો રંગ લાલ શેના કારણે હોય છે ?
- 11. હૃદયનાં કાર્યો લખો.
- 12. શા માટે ઉત્સર્ગ દ્રવ્યોનો નિકાલ થવો જરૂરી છે ?
- 13. મનુષ્યના ઉત્સર્જનતંત્રની નામનિર્દેશનવાળી આકૃતિ દોરો.

विस्तृत अभ्यास माटेनी प्रवृत्तिओ अने प्रॉकेंडट

- 1. રુધિરજૂથો અને તેના મહત્ત્વ વિશે માહિતી એકઠી કરો.
- 2. જ્યારે કોઈ માણસ છાતીના દુઃખાવાથી પીડાય છે. ત્યારે ડૉક્ટર ECG લે છે. ડૉક્ટરની મુલાકાત લો અને ECG વિશે માહિતી એકઠી કરો. તમે વિશ્વકોશ / જ્ઞાનકોશ અથવા ઇન્ટરનેટ પર જોઈ શકો છો.

શું તમે જાણો છો ?

રુધિરનું સ્થાન બીજું કોઈ દ્રવ્ય ન લઈ શકે. જો લોકો ઑપરેશન કે ઈજા દરમિયાન રુધિર ગુમાવે અથવા તેમનું શરીર પૂરતા પ્રમાણમાં રુધિર ઉત્પન્ન ન કરી શકે - ત્યારે તેને મેળવવાનો એક જ રસ્તો છે - રક્તદાન. જે સ્વયંસેવકો દ્વારા રુધિરનું દાન કરાય છે તે રુધિર સામાન્ય રીતે ઓછા જથ્થામાં હોય છે. રક્તદાન એ દાતાની શરીરના સામર્થ્યને અસર કરતું નથી.