Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri și m>n muchii. Să se afișeze punctele critice în care sunt incidente muchii critice. Pentru fiecare astfel de punct se va afișa numărul de muchii critice care sunt incidente în el și numărul de componente biconexe care îl conțin, fără a memora componentele biconexe ale grafului și fără a memora muchiile critice.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

graf.in	lesire pe ecran (nu neaparat in aceasta ordine)
9 10	Puncte critice cerute:
12	1:
13	incidente 2 muchii critice
2 4	este in 2 componente biconexe
27	2:
47	incidente 1 muchii critice
45	este in 2 componente biconexe
4 6	7:
5 6	incidente 2 muchii critice
78	este in 3 componente biconexe
79	

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- pe următoarea linie (a (m+2)-a linie) din fișier este un număr natural k (0<k<n) reprezentând numărul de vârfuri sursă; vârfurile sursă din G vor fi 1, 2, ..., k
- pe ultima linie a fișierului sunt două vârfuri t₁ și t₂, reprezentând vârfurile destinație ale grafului.

Notăm cu $S = \{1,...,k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1,t_2\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din G acă există un drum de la G y. Presupunem că există cel puțin un vârf destinație care este accesibil dintr-un vârf sursă.

Să se determine distanța între cele două mulțimi:

$$d(S, T) = min \{d(x, y) | x \in S, y \in T\}$$

Să se determine în plus și o pereche de vârfuri (s,t) cu $s \in S$ și $t \in T$ cu

$$d(s,t) = d(S,T) = \min \{d(x, y) \mid x \in S, y \in T\}$$

și să se afișeze (pe ecran) un drum minim de la s la t. Complexitate O(mlog(n))

Exemplu

graf.in	Iesire pe ecran
6 8	distanta intre multimi = 2
1 2 3	s=2 t=3
1 6 10	drum minim 2 4 3
6 2 2	
2 4 1	
4 3 1	
5 3 4	
1 5 5	
3 2 7	
2	
3 6	

Explicații

$$k=2 \Rightarrow S = \{1, 2\}$$

 $T = \{3, 6\}$
 $d(1,3)=5, d(2,3)=2$
 $d(1,6)=10, d(2,6)=\infty$
Cea mai mică este $d(2,3)$
Un drum minim de la 2 la 3 este 2 4 3

Subjectul 3

Se dau n fabrici de monitoare numerotate 1...n și m depozite numerotate n+1,...,n+m. Pentru fiecare fabrica i se cunoaște c(i) = câte monitoare au fost produse la momentul curent, iar pentru fiecare depozit j se cunoaște c(j) = numărul de monitoare pe care le poate depozita la momentul curent. Fiecare fabrică are contracte cu anumite depozite. În contractul dintre fabrica i și depozitul j este trecută cantitatea maximă de monitoare care poate fi trimisă spre depozitare de la fabrica i la depozitul j, notată w(i,j). Datele se vor citi din fișierul fabrici.in cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe a doua linie este un șir de n numere naturale reprezentând cantitatea de monitoare existente în fiecare dintre cele n fabrici
- pe a treia linie este un șir de m numere naturale reprezentând numărul de monitoare pe care le poate depozita fiecare dintre cele m depozite
- pe a patra linie este un număr k reprezentând numărul de contracte dintre fabrici și depozite
- pe următoarele k linii sunt triplete de numere naturale i j w (separate prin spatiu) cu semnificația: de la fabrica i la depozitul j se pot trimite maxim w monitoare.

Să se determine, dacă există, o modalitate de a depozita toate monitoarele existente în fabrici la momentul curent în depozite respectând condițiile din contracte și capacitatea de depozitare a fiecărui depozit. Complexitate $O((n+m)k^2)$

Rezultatul se va afișa sub forma prezentată în exemplul de mai jos.

Observație: Putem modela problema cu un graf bipartit fabrici-depozite (cu vârfuri corespunzătoare fabricilor și depozitelor și muchii reprezentând existența unui contract între fabrică și depozit). Dacă c(i) = 1 pentru fiecare fabrică i, c(j)=1 pentru fiecare depozit și w(i, j)=1 pentru orice contract, atunci problema se reduce la a determina un cuplaj de cardinal maxim în graful bipartit fabrici-depozite și a verifica dacă orice vârf fabrică este saturat. Se acorda 1p daca se rezolva doar problema pentru c(i) = 1 pentru fiecare fabrică i, c(j)=1

pentru fiecare depozit și w(i, j)=1 pentru orice contract

fabrici.in	lesire pe ecran (solutia nu este unica)
3 3	143
654	153
754	2 4 2
7	252
147	261
155	3 4 2
2 4 3	362
252	
263	
3 4 5	
362	

