Package 'MTE'

April 11, 2023

Title Maximum Tangent Likelihood Estimation for Robust Linear

Regression and Variable Selection

Type Package

Date 2023-04-08
Maintainer Shaobo Li <shaobo .li@ku.edu=""></shaobo>
Description Several robust estimators for linear regression and variable selection are provided. Included are Maximum tangent likelihood estimator by Qin, et al., (2017) <arxiv:1708.05439>, least absolute deviance estimator and Huber regression. The penalized version of each of these estimator incorporates L1 penalty function, i.e., LASSO and Adaptive Lasso. They are able to produce consistent estimates for both fixed and high-dimensional settings.</arxiv:1708.05439>
<pre>URL GitHub: https://github.com/shaobo-li/MTE</pre>
Depends R (>= 3.1.0)
License GPL-3
RoxygenNote 7.1.1
Imports stats, quantreg, glmnet, rqPen
NeedsCompilation no
Author Shaobo Li [aut, cre], Yichen Qin [aut]
Repository CRAN
Date/Publication 2023-04-11 09:20:05 UTC
R topics documented:
huber.lasso 2 huber.reg 3 huberloss 4 LAD 4 LADlasso 5 MTE 6 MTElasso 7
Index 9

2 huber.lasso

huber.lasso

Huber-Lasso estimator

Description

This function is L1 penalized Huber estimator for linear regression under both fixed and highdimensional settings. Currently, the function does not support automatic selection of huber tuning parameter.

Usage

```
huber.lasso(
   X,
   y,
   beta.ini,
   lambda,
   alpha = 2,
   adaptive = TRUE,
   intercept = TRUE,
   penalty.factor = rep(1, ncol(X))
)
```

Arguments

Χ	design matrix, standardization is recommended.
У	response vector.
beta.ini	initial estimates of beta. If not specified, LADLasso estimates from $rq.lasso.fit()$ in $rqPen$ is used. Otherwise, robust estimators are strongly recommended.
lambda	regularization parameter of Lasso or adaptive Lasso (if adaptive=TRUE).
alpha	1/alpha is the huber tuning parameter. Larger alpha results in smaller portion of squared loss.
adaptive	logical input that indicates if adaptive Lasso is used. Default is TRUE.
intercept	logical input that indicates if intercept needs to be estimated. Default is FALSE.
penalty.factor	can be used to force nonzero coefficients. Default is $rep(1, ncol(X))$ as in glmnet.

Value

beta the regression coefficient estimates.

fitted predicted response.
iter.steps iteration steps.

huber.reg 3

Examples

```
set.seed(2017)
n=200; d=500
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, d-6))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
output.HuberLasso=huber.lasso(X,y)
beta.est=output.HuberLasso$beta
```

huber.reg

Huber estimation for linear regression

Description

This function produces Huber estimates for linear regression. Initial estimates is required. Currently, the function does not support automatic selection of huber tuning parameter.

Usage

```
huber.reg(y, X, beta.ini, alpha, intercept = FALSE)
```

Arguments

y the response vector X design matrix

beta.ini initial value of estimates, could be from OLS.

alpha 1/alpha is the huber tuning parameter delta. Larger alpha results in smaller por-

tion of squared loss.

intercept logical input that indicates if intercept needs to be estimated. Default is FALSE.

Value

beta the regression coefficient estimates

fitted.value predicted response iter.steps iteration steps.

Examples

```
set.seed(2017) \\ n=200; d=4 \\ X=matrix(rnorm(n*d), nrow=n, ncol=d) \\ beta=c(1, -1, 2, -2) \\ y=-2+X**beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100)) \\ beta0=beta.ls=lm(y^X)$coeff \\ beta.huber=huber.reg(y, X, beta0, 2, intercept=TRUE)$beta \\ cbind(c(-2,beta), beta.ls, beta.huber)
```

4 LAD

huberloss

Huber Loss

Description

Huber Loss

Usage

```
huberloss(r, alpha)
```

Arguments

r residual, y-Xbeta

alpha 1/alpha is the huber tuning parameter delta. Larger alpha results in smaller por-

tion of squared loss.

Value

it returns huber loss that will be called in Huber estimation.

LAD

Least Absolute Deviance Estimator for Linear Regression

Description

Least Absolute Deviance Estimator for Linear Regression

Usage

```
LAD(X, y, intercept = FALSE)
```

Arguments

X design matrix y reponse vector

intercept logical input that indicates if intercept needs to be estimated. Default is FALSE.

Value

coefficient estimates

LADlasso 5

Examples

```
set.seed(1989)
n=200; d=4
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(1, -1, 2, -2)
y=-2+X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
beta.ls=lm(y~X)$coeff
beta.LAD=LAD(X,y,intercept=TRUE)
cbind(c(-2,beta), beta.ls, beta.LAD)
```

LADlasso

LAD-Lasso for Linear Regression

Description

LAD-Lasso for Linear Regression

Usage

```
LADlasso(
   X,
   y,
   beta.ini,
   lambda = NULL,
   adaptive = TRUE,
   intercept = FALSE,
   penalty.factor = rep(1, ncol(X))
)
```

Arguments

X design matrix, standardization is recommended.

y reponse vector

beta. ini initial estimates of beta. Using unpenalized LAD is recommended under high-

dimensional setting.

lambda regularization parameter of Lasso or adaptive Lasso (if adaptive=TRUE).

adaptive logical input that indicates if adaptive Lasso is used. Default is TRUE.

 $intercept \qquad logical input that indicates if intercept needs to be estimated. \ Default is FALSE.$

penalty.factor can be used to force nonzero coefficients. Default is rep(1, ncol(X)) as in glmnet.

Value

beta the regression coefficient estimates.

fitted predicted response. iter.steps iteration steps.

6 MTE

Examples

```
set.seed(2017)
n=200; d=50
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, 44))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
output.LADLasso=LADlasso(X, y, beta.ini=LAD(X, y))
beta.est=output.LADLasso$beta
```

MTE

Maximum Tangent-likelihood Estimation

Description

It estimates linear regression coefficient using MTE. The function produces robust estimates of linear regression. Outliers and contamination would be downweighted. It is robust to Gaussian assumption of the error term. Initial estimates need to be provided.

Usage

```
MTE(y, X, beta.ini, t, p, intercept = FALSE)
```

Arguments

У	the response vector
Χ	design matrix
beta.ini	initial value of estimates, could be from OLS.
t	the tangent point. You may specify a sequence of values, so that the function automatically select the optimal one.
р	Taylor expansion order, up to 3.
intercept	logical input that indicates if intercept needs to be estimated. Default is FALSE.

Value

Returns estimates from MTE method.

beta the regression coefficient estimates

fitted.value predicted response

t the optimal tangent point through data-driven method

MTElasso 7

Examples

```
set.seed(2017) \\ n=200; d=4 \\ X=matrix(rnorm(n*d), nrow=n, ncol=d) \\ beta=c(1, -1, 2, -2) \\ y=-2+X%*beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100)) \\ beta0=beta.ls=lm(y~X)$coeff \\ beta.MTE=MTE(y,X,beta0,0.1,2, intercept=TRUE)$beta \\ cbind(c(-2,beta), beta.ls, beta.MTE)
```

MTElasso

MTE-Lasso estimator

Description

MTELasso is the penalized MTE for robust estimation and variable selection for linear regression. It can deal with both fixed and high-dimensional settings.

Usage

```
MTElasso(
   X,
   y,
   beta.ini,
   p = 2,
   lambda = NULL,
   adaptive = TRUE,
   t = 0.01,
   intercept = TRUE,
   penalty.factor = rep(1, ncol(X)),
   ...
)
```

Arguments

X	design matrix, standardization is recommended.
У	response vector.
beta.ini	initial estimates of beta. If not specified, LADLasso estimates from rq.lasso.fit() in rqPen is used. Otherwise, robust estimators are strongly recommended.
p	Taylor expansion order.
lambda	regularization parameter for LASSO, but not necessary if "adaptive=TRUE".
adaptive	logic argument to indicate if Adaptive-Lasso is used. Default is TRUE.
t	the tuning parameter that controls for the tradeoff between robustness and efficiency. Default is t=0.01.

8 MTElasso

intercept logical input that indicates if intercept needs to be estimated. Default is FALSE. penalty. factor can be used to force nonzero coefficients. Default is rep(1, ncol(X)) as in glmnet. other arguments that are used in glmnet.

Value

It returns a sparse vector of estimates of linear regression. It has two types of penalty, LASSO and AdaLasso. Coordinate descent algorithm is used for iteratively updating coefficients.

beta sparse regression coefficient

fitted predicted response

Examples

```
\label{eq:set_sed} set.seed(2017) \\ n=200; d=500 \\ X=matrix(rnorm(n*d), nrow=n, ncol=d) \\ beta=c(rep(2,6), rep(0, d-6)) \\ y=X%*\%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100)) \\ output.MTELasso=MTElasso(X, y, p=2, t=0.01) \\ beta.est=output.MTELasso$beta
```

Index

```
huber.lasso, 2
huber.reg, 3
huberloss, 4
LAD, 4
LADlasso, 5
MTE, 6
MTElasso, 7
```