Homework 3

Elliott Yoon

October 9, 2023

1 10/02

- 1. Show that if G is a group and $a \in G$ is an element satisfying $a^n = e$ for some integer $n \ge 1$, then the order of a divides n.
 - Let G be a group, $a \in G$ such that $a^n = e$ for some integer $n \ge 1$. Then $|a| < \infty$. Letting m = |a|, we have from the division algorithm that there exists unique $r, q \in \mathbb{Z}$ such that n = mq + r, $0 \le r < m$. Then

$$e = a^n = a^{mq+r} = a^{mq}a^r = (a^m)^q a^r = e \cdot a^r = a^r.$$

Since r < m and m is the smallest nonzero integer such that $a^m = e$, it must be the case that r = 0. Hence n = mq, so |a| = m divides n. \square

2. Draw the lattice of subgroups for the group $K = \mathbb{Z}/2 \times \mathbb{Z}/2$.

3. Draw the lattice of subgroupos for the group $\mathbb{Z}/12$.

- 4. Using Example 6.12, find a cycle decomposition for l(123).
 - Note that l(123) is the function that maps the cycle $x \mapsto (123) \circ x$. Using the labeling of elements of S_3 in Example 6.12, we have that l maps:

$$e \mapsto (123) \circ e = (123)$$
 $1 \to 5$
 $(12) \mapsto (123) \circ (12) = (13)$ $2 \to 3$
 $(13) \mapsto (123) \circ (13) = (23)$ $3 \to 4$
 $(23) \mapsto (123) \circ (23) = (12)$ $4 \to 2$
 $(123) \mapsto (123) \circ (123) = (132)$ $5 \to 6$
 $(132) \mapsto (123) \circ (132)$ $6 \to 1$

We can think of l(123) as being an element of S_6 defined by the column on the right, i.e.

$$l(123) = (156)(234).$$

2 10/04

- 1. Suppose G is a finite group of even order. Show there exists some $x \neq e$ in G with $x^2 = e$.
 - For each $g \in G$, we we can pair up g with its inverse $g^{-1} \in G$ if $g \neq g^{-1}$ (or equivalently $g^2 = e$). Notice that e is its own inverse and thus cannot be paired with another distinct element. With k pairs of elements and the identity e, we have seen 2k + 1 elements so far. Since |G| is even, there must exist another element $g' \in G$, $g' \neq e$ that is its own inverse such that $g^2 = e$. \square
- 2. Show every finite group G of order 4 is either isomorphic to $\mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$.
 - Let $G = \{e, a, b, c\}$ be a finite group of order 4. We can assume from (10/04.1) that without loss of generality, $c^2 = e$. Considering the case where $a^{-1} = b$, we can easily check from the Cayley table that we have a binary operation built into G. Moreover, this Cayley table is the same as $\mathbb{Z}/4$ so $G \cong \mathbb{Z}/4$. Now, consider the case where $a^{-1} \neq b$. Then $a^{-1} = a$ and $b^{-1} = b$. The Cayley tables for this group structure and $\mathbb{Z}/2 \times \mathbb{Z}/2$ are identical, and thus $G \cong \mathbb{Z}/2 \times \mathbb{Z}/2$. \square
- 3. Show a finite group of order 5 is isomorphic to $\mathbb{Z}/5$.
 - We've seen in class that if G is a group and S a subgroup of G, then |S| divides |G|. However, 5 is prime so the only subgroup of G is the trivial subgroup. Thus if $a \neq e \in G$, then $a \neq a^2 \neq a^3 \neq a^4 \neq a^5$ since any subgroup containing a must have order 5. So $G = \{a, a^2, a^3, a^4, a^5\}$ is cyclic. \square

3 10/06

- 1. Say that an action of a group G on a set X is trivial if $g \cdot x = x$ for all $g \in G$ and x on X. Suppose that p is a prime and that X is a set with fewer than p elements. Show that all actions of \mathbb{Z}/p on X are trivial.
 - Let k be an action of \mathbb{Z}/p on X, and $a \in \mathbb{Z}/p$. Since p is prime, the set $\{0, a, \dots, (p-1)a\}$ are all distinct. Furthermore, X has fewer than p elements, so the pigeonhole principle gives that there exists $0 \le j < k < p$ such that

$$ja(x) = ka(x)$$

for $x \in X$. Notice that

$$(k-j)a \cdot_k (ja \cdot_k x) = ja \cdot_k x,$$

and similarly,

$$i(k-j)a \cdot_k (ja \cdot_k x) = ja \cdot_k x,$$

for every *i*. Recall that $\{0, (k-j)a, 2(k-j)a, \dots, (p-1)(k-j)a\}$ are distinct. Now, for $x \in X$, by our previous observation, there exists $l, q \in \mathbb{N}$ distinct elements such that $la \cdot_k x = qa \cdot_k x$. Notice that $la \neq wqa$, thus $(la)^{-1}qa \neq 0$, so

$$\left((la)^{-1}qa \right) \cdot_k x = (la)^{-1} \cdot_k (qa \cdot_k x) = (la)^{-1} \cdot_k (la \cdot_k x) = \left((la)^{-1}la \right) x = x.$$

suffices to show every nonzero action is trivial. □

- 2. Compute the set $\text{Hom}(\mathbb{Z}/2, S_4)$ of group homomorphisms into S_4 . Use your computation to describe all group actions of $\mathbb{Z}/2$ on $\{1, 2, 3, 4\}$.
 - Note that $\mathbb{Z}/2\{0,1\}$. Recall that from Lemma 5.5, any group homomorphism from $\mathbb{Z}/2$ must map $0 \mapsto e$. Further, any group homomorphism f from $\mathbb{Z}/2$ has

$$f(0) = f(1+1) = f(1) \cdot f(1).$$

Thus f(1) must have order less than or equal to 2, i.e.

$$f(1) \mapsto g \in \{e, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23)\}.$$

Moreover, each group homomorphism $f_g: \mathbb{Z}/2 \to S_4$

$$f_g = \begin{cases} 0 \mapsto e \\ 1 \mapsto g \in \{e, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23) \} \end{cases}$$

uniquely defines a group action k_{f_g} associated to f_g . \square