OBJECTIVES:

The student should be made to:

- Gain knowledge about graphics hardware devices and software used.
- Understand the two dimensional graphics and their transformations.
- Understand the three dimensional graphics and their transformations.
- · Appreciate illumination and color models.
- Be familiar with understand clipping techniques.

UNIT I INTRODUCTION

۵

Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input devices, Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.

UNIT II TWO DIMENSIONAL GRAPHICS

9

Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.

UNIT III THREE DIMENSIONAL GRAPHICS

10

Three dimensional concepts; Three dimensional object representations – Polygon surfaces- Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces. TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations – Translation, Rotation, Scaling, composite transformations; Three dimensional viewing – viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods.

UNIT IV ILLUMINATION AND COLOUR MODELS

7

Light sources - basic illumination models - halftone patterns and dithering techniques; Properties of light - Standard primaries and chromaticity diagram; Intuitive colour concepts - RGB colour model - YIQ colour model - CMY colour model - HSV colour model - HLS colour model; Colour selection.

UNIT V ANIMATIONS & REALISM

10

ANIMATION GRAPHICS: Design of Animation sequences – animation function – raster animation – key frame systems – motion specification –morphing – tweening. **COMPUTER GRAPHICS REALISM:** Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- · Design two dimensional graphics.
- Apply two dimensional transformations.
- · Design three dimensional graphics.
- Apply three dimensional transformations.
- · Apply Illumination and color models.
- Apply clipping techniques to graphics.
- · Design animation sequences.

TEXT BOOKS:

- John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley ,"Computer Graphics: Principles and Practice", , 3rd Edition, Addison-Wesley Professional,2013. (UNIT I, II, III, IV).
- Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007 (UNIT V).

REFERENCES:

- Donald Hearn and M. Pauline Baker, Warren Carithers, "Computer Graphics With Open GL", 4th Edition, Pearson Education, 2010.
- 2. Jeffrey McConnell, "Computer Graphics: Theory into Practice", Jones and Bartlett Publishers, 2006.
- 3. Hill F S Jr., "Computer Graphics", Maxwell Macmillan", 1990.
- 4. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.
- William M. Newman and Robert F.Sproull, "Principles of Interactive Computer Graphics", Mc Graw Hill 1978.
- 6. http://nptel.ac.in/