Class10 –Comparative structure analysis of Adenylate Kinase

Eric Garcia Ordunez (A16316409)

Comparative analysis of ADK

ADK (adenelate Kinase) is an important drug target and we would love to know how it works - i.e. molecular structure

There has been lots of work done on this protein due to its important including lots of crystals structures.

We will begin with getting an example ADK sequence

Q 10: Which of the packages above is found only on BioConductor and not CRAN?

msa

Q11: Which of the above packages is not found on BioConductor or CRAN?

bio3d-view

Q12: True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket?

True

```
library("bio3d")
aa <- get.seq("1ake_A")
Warning in get.seq("1ake_A"): Removing existing file: seqs.fasta
Fetching... Please wait. Done.</pre>
```

```
60
             MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
pdb|1AKE|A
                                                                             120
pdb|1AKE|A
             DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI
                                                                             120
            121
                                                                             180
pdb|1AKE|A
             VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
           121
                                                                             180
           181
                                                 214
             YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
pdb|1AKE|A
           181
                                                 214
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
     Q13. How many amino acids are in this sequence, i.e. how long is this sequence?
214
We can now run BLAST with this sequence
  #b <- blast.pdb(aa)</pre>
  #hits <- plot(b)</pre>
```

Let's see waht is in our hits object

```
#hits$pdb.id
  hits <- NULL
  hits$pdb.id <- c('1AKE_A','6S36_A','6RZE_A','3HPR_A','1E4V_A','5EJE_A','1E4Y_A','3X2S_A','
Now we can download all these PDB structure files:
  # Download related PDB files
  files <- get.pdb(hits$pdb.id, path="pdbs", split=TRUE, gzip=TRUE)
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1AKE.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6S36.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6RZE.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3HPR.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1E4V.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/5EJE.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1E4Y.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3X2S.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6HAP.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
```

pdbs/6HAM.pdb.gz exists. Skipping download

```
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/4K46.pdb.gz exists. Skipping download

Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3GMT.pdb.gz exists. Skipping download

Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/4PZL.pdb.gz exists. Skipping download
```

```
0%
                          8%
                          15%
                          23%
|=========
                          31%
|-----
                          38%
                          46%
                         | 54%
                         62%
                         | 69%
                         77%
                         85%
                          92%
|-----| 100%
```

Now I want to align and superpose these structures which are all over the place.

```
# Align related PDBs
  pdbs <- pdbaln(files, fit = TRUE, exefile="msa")</pre>
Reading PDB files:
pdbs/split_chain/1AKE_A.pdb
pdbs/split_chain/6S36_A.pdb
pdbs/split_chain/6RZE_A.pdb
pdbs/split_chain/3HPR_A.pdb
pdbs/split_chain/1E4V_A.pdb
pdbs/split_chain/5EJE_A.pdb
pdbs/split_chain/1E4Y_A.pdb
pdbs/split_chain/3X2S_A.pdb
pdbs/split_chain/6HAP_A.pdb
pdbs/split_chain/6HAM_A.pdb
pdbs/split_chain/4K46_A.pdb
pdbs/split_chain/3GMT_A.pdb
pdbs/split_chain/4PZL_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
     PDB has ALT records, taking A only, rm.alt=TRUE
       PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
Extracting sequences
             name: pdbs/split_chain/1AKE_A.pdb
pdb/seq: 1
   PDB has ALT records, taking A only, rm.alt=TRUE
```

pdb/seq: 2 name: pdbs/split_chain/6S36_A.pdb PDB has ALT records, taking A only, rm.alt=TRUE name: pdbs/split_chain/6RZE_A.pdb pdb/seq: 3 PDB has ALT records, taking A only, rm.alt=TRUE pdb/seq: 4 name: pdbs/split_chain/3HPR_A.pdb PDB has ALT records, taking A only, rm.alt=TRUE pdb/seq: 5 name: pdbs/split_chain/1E4V_A.pdb pdb/seq: 6 name: pdbs/split_chain/5EJE_A.pdb PDB has ALT records, taking A only, rm.alt=TRUE name: pdbs/split_chain/1E4Y_A.pdb pdb/seq: 7 pdb/seq: 8 name: pdbs/split_chain/3X2S_A.pdb pdb/seq: 9 name: pdbs/split_chain/6HAP_A.pdb

pdb/seq: 10 name: pdbs/split_chain/6HAM_A.pdb
 PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 11 name: pdbs/split_chain/4K46_A.pdb
 PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 12 name: pdbs/split_chain/3GMT_A.pdb
pdb/seq: 13 name: pdbs/split_chain/4PZL_A.pdb

let's have a look at our pbds object

pdbs

[Truncated_Name:1]1AKE_A.pdb
[Truncated_Name:2]6S36_A.pdb
[Truncated_Name:3]6RZE_A.pdb
[Truncated_Name:4]3HPR_A.pdb
[Truncated_Name:5]1E4V_A.pdb
[Truncated_Name:6]5EJE_A.pdb
[Truncated_Name:7]1E4Y_A.pdb
[Truncated_Name:8]3X2S_A.pdb
[Truncated_Name:9]6HAP_A.pdb
[Truncated_Name:10]6HAM_A.pdb
[Truncated_Name:11]4K46_A.pdb
[Truncated_Name:12]3GMT_A.pdb
[Truncated_Name:13]4PZL_A.pdb

1 40 ----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS ----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS -----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS -----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS ----MRIILLGAPVAGKGTQAQFIMEKYGIPQIS ----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS ----MRIILLGALVAGKGTQAQFIMEKYGIPQIS ----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS ----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS -----MRIILLGAPGAGKGTQAQFIMEKYGIPQIS ----MRIILLGAPGAGKGTQAQFIMAKFGIPQIS ----MRLILLGAPGAGKGTQANFIKEKFGIPQIS TENLYFQSNAMRIILLGAPGAGKGTQAKIIEQKYNIAHIS **^**** 1 40

[Truncated_Name:1]1AKE_A.pdb
[Truncated_Name:2]6S36_A.pdb
[Truncated_Name:3]6RZE_A.pdb
[Truncated_Name:4]3HPR_A.pdb
[Truncated_Name:5]1E4V_A.pdb
[Truncated_Name:6]5EJE_A.pdb
[Truncated_Name:7]1E4Y_A.pdb
[Truncated_Name:8]3X2S_A.pdb
[Truncated_Name:9]6HAP_A.pdb
[Truncated_Name:10]6HAM_A.pdb
[Truncated_Name:11]4K46_A.pdb
[Truncated_Name:12]3GMT_A.pdb
[Truncated_Name:13]4PZL_A.pdb

TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAIKSGSELGKQAKDIMDAGKLVTDEIIIALVKE
TGDMLRAAIKAGTELGKQAKSVIDAGQLVSDDIILGLVKE
TGDMLRAAVKAGTPLGVEAKTYMDEGKLVPDSLIIGLVKE
TGDMIRETIKSGSALGQELKKVLDAGELVSDEFIIKIVKD

	****	^* ^*	× *^	**	*	^*	** *	^^ ^*^	^
	41		•				•		80
	81								120
[Truncated_Name:1]1AKE_A.pdb		FDCRNO	FLLD	GFPR	TTP0	ΙΔΩΔΜΙ	KEAGINV		
[Truncated_Name:2]6S36_A.pdb							KEAGINV		
[Truncated_Name:3]6RZE_A.pdb							KEAGINV		
[Truncated_Name:4]3HPR_A.pdb	-						KEAGINV		
[Truncated_Name: 5] 1E4V_A.pdb	-						KEAGINV		
[Truncated_Name:6]5EJE_A.pdb							KEAGINV		
[Truncated_Name:7]1E4Y_A.pdb							KEAGINV		
[Truncated_Name:8]3X2S_A.pdb							KEAGINV		
[Truncated_Name:9]6HAP_A.pdb	-					-	KEAGINV		
[Truncated_Name:10]6HAM_A.pdb	-						KEAGINV		
[Truncated_Name:11]4K46_A.pdb							KEVGVVV		
[Truncated_Name:12]3GMT_A.pdb							KEAGVAI		
[Truncated_Name:13]4PZL_A.pdb							DKLGVNI		
[II uncated_Name: 15] 4FZL_A.pdb	*^			* **		-		.***	Ψ U
	* 81	1	• • •	ጥ ጥጥ	ጥጥ ጥ	• •	•		120
	01	•	•		•		•		120
	121								160
[Truncated_Name:1]1AKE_A.pdb		T.TVDR.I	· 「VGRR	VHAP	SGRV	YHVK	FNPPKVE		
[Truncated_Name:2]6S36_A.pdb							FNPPKVE		
[Truncated_Name:3]6RZE_A.pdb							FNPPKVE		
[Truncated_Name:4]3HPR_A.pdb							FNPPKVE		-
[Truncated_Name:5]1E4V_A.pdb							FNPPKVE		
[Truncated_Name:6]5EJE_A.pdb							FNPPKVE		
[Truncated_Name:7]1E4Y_A.pdb							FNPPKVE		-
[Truncated_Name:8]3X2S_A.pdb							FNPPKVE		
[Truncated_Name:9]6HAP_A.pdb							FNPPKVE		-
[Truncated_Name:10]6HAM_A.pdb							FNPPKVE		-
[Truncated_Name:11]4K46_A.pdb							YNPPKVE		-
[Truncated_Name:12]3GMT_A.pdb		. – . –					FNPPKVE		-
[Truncated_Name:13]4PZL_A.pdb							FNPPKV <i>A</i>		
[II uncated_Name: 15] 4FZL_A.pdb	*						^****		
	121		***	• •	***	ጥጥ	****		160
	121	•	•		•		•		100
	161								200
[Truncated_Name:1]1AKE_A.pdb	EELT	TRKDDO	(EETV	'RKRL	VEYH	[QMTA]	PLIGYYS	KEAEAG	N
[Truncated_Name:2]6S36_A.pdb			-				PLIGYYS		
[Truncated_Name:3]6RZE_A.pdb			-				PLIGYYS		
[Truncated_Name:4]3HPR_A.pdb							PLIGYYS		
[Truncated_Name:5]1E4V_A.pdb							PLIGYYS		

```
[Truncated_Name: 6] 5EJE_A.pdb
                                EELTTRKDDQEECVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:7]1E4Y_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:8]3X2S_A.pdb
                                EELTTRKDDQEETVRKRLCEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:9]6HAP_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated Name: 10] 6HAM A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated Name:11]4K46 A.pdb
                                EDLVIREDDKEETVLARLGVYHNQTAPLIAYYGKEAEAGN
[Truncated Name:12]3GMT A.pdb
                                EPLVQRDDDKEETVKKRLDVYEAQTKPLITYYGDWARRGA
[Truncated_Name:13]4PZL_A.pdb
                                EPLITRTDDNEDTVKQRLSVYHAQTAKLIDFYRNFSSTNT
                                     * ** *^ * **
                              161
                                                                        200
                              201
                                                           227
[Truncated_Name:1]1AKE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:2]6S36_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:3]6RZE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name: 4] 3HPR_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:5]1E4V_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name: 6] 5EJE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:7]1E4Y_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated Name:8]3X2S A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated Name:9]6HAP A.pdb
                                T--KYAKVDGTKPVCEVRADLEKILG-
[Truncated Name: 10] 6HAM A.pdb
                                T--KYAKVDGTKPVCEVRADLEKILG-
[Truncated_Name:11]4K46_A.pdb
                                T--QYLKFDGTKAVAEVSAELEKALA-
                                E----YRKISG-
[Truncated Name: 12] 3GMT A.pdb
[Truncated_Name:13]4PZL_A.pdb
                                KIPKYIKINGDQAVEKVSQDIFDQLNK
                              201
                                                           227
Call:
  pdbaln(files = files, fit = TRUE, exefile = "msa")
Class:
  pdbs, fasta
Alignment dimensions:
  13 sequence rows; 227 position columns (204 non-gap, 23 gap)
+ attr: xyz, resno, b, chain, id, ali, resid, sse, call
```

Now we have our aligned and superposed we can perform all sorts of analysis on them. Lets do PCA...

```
# Perform PCA
pc.xray <- pca(pdbs)
plot(pc.xray)</pre>
```


Results of PCA on Adenylate kinase X-ray structures. Each dot represents one PDB structure

We can cluster the structures by RMSD (or any other method).

```
# Calculate RMSD
rd <- rmsd(pdbs)</pre>
```

Warning in rmsd(pdbs): No indices provided, using the 204 non NA positions

```
# Structure-based clustering
hc.rd <- hclust(dist(rd))
grps.rd <- cutree(hc.rd, k=3)

plot(pc.xray, 1:2, col="grey50", bg=grps.rd, pch=21, cex=1)</pre>
```


This is going to take the PCA and make a movie- also called a trajectory of the major difference (i.e. structural displacements of ${\rm ADK}$)

```
# Visualize first principal component
pc1 <- mktrj(pc.xray, pc=1, file="pc_1.pdb")</pre>
```