Etude de la contribution marginale dans un essaim de robots

Projet réalisé par Kevin Jabbour, Emile Savalle et Clément Chrétien
___ Encadré par Mr Bredeche et Maudet

Parties

- 1ère partie : Expérience/article

- 2ème partie : Shapley

- 3ème partie : Approximation de Shapley, méthode de Stone

Le sujet

Projet de S2 encadré par des chercheurs

Estimation de la contribution marginale dans un essaim de robots

Autrement dit : comment affecter un score individuel et juste à chaque individu de l'essaim pour une tâche

L'article

Simulation de fourmis qui vont récupérer des feuilles d'un arbre.

But : Faire émerger par évolution des comportements coopératifs.

Ici représenté par un essaim de robots.

Le simulateur

1er objectif : Obtenir des comportements

• Type haut : Ramasse les objets en haut et les dépose le long de la pente

Type bas : Ramasse les objets en bas de la pente et les ramène au nid

• Type complet : Ramasse les objets en haut de la pente et les ramène au nid

Type random : Population de contrôle; agit aléatoirement

Algorithme génétique

Algorithme génétique

- sélection μ-λ
- fitness créée pour obtenir le type voulu
- mutation 50% (1 neurone)
- pas de croisement

réseau de neurone

- 23 entrées
- 14 neurones pour les senseurs
- 6 neurones pour les zones
- 1 neurone sur le port d'objet
- 1 neurone sur l'orientation actuelle
- 1 neurone de biais
- 3 sorties
- vitesse de translation, rotation et dépôt d'objet

Les résultats initiaux

Les résultats initiaux

Nous avons cherché à étudier l'évolution des coalitions en fonctions du nombre d'agents

Certaines s'améliorent lorsque leur taille augmente (~33% de chaque)

Certaines disparaissent (100% complet)

D'autres restent constantes (50/50 haut-bas)

Méthode de Peter Stone

Méthode simple inspirée de Shapley pour comparer deux agents:

Algorithme itéré :

Sélection d'une coalition aléatoire c

Ajout du score de la coalition c \cup {a1}

Ajout du score de la coalition c \cup {a2}

a_1	a_2	$r_1 - r_2$	$a_1 ? a_2$
R	B	-3276	$R \prec B$
B	C	-1448	$B \prec C$
B	H	-2	$B \sim H$
C	H	1207	$C \succ H$
R	H	-3413	$R \prec H$
R	C	-4549	$R \prec C$

La différence sur les scores totaux indique le meilleur agent

Recherche: valeur de Shapley

Étude pour chaque agent de son impact lors de son ajout dans une coalition

On obtient la **contribution marginale** de chaque agent

$$sh_i = \frac{1}{n!} \sum_{\sigma \in S(n)} \mu_i(c_i(\sigma))$$
$$\mu_i = v(C \cup \{i\}) - v(C)$$

Mention supplémentaire L'hypothèse forte du calcul de Shapley

Pour toute coalition c et tout agent a :

La coalition c U {a} doit avoir un score supérieur ou égal à la coalition c

$$v(c \cup \{a\}) \ge v(c)$$

Dans notre cas:

Des agents peuvent avoir une utilité négative baissant le score de la coalition où ils sont ajoutés

La simulation d'une coalition comporte de l'aléatoire pouvant empêcher la monotonie

Recherche: Approximation de Shapley

• Shapley exponentiel en la taille de l'entrée

 Solution : approximation de la valeur de Shapley en beaucoup moins de temps

Monte Carlo's Shapley Approximation

Pour réduire le temps de calcul :

Réduction du nombre de coalitions étudiées par sélection aléatoire de coalitions

Calcul de la valeur de Shapley sur ces coalitions, taux d'erreur corrélé au nombre de coalitions étudiées

Résultats

Conclusion

Shapley aurait été la meilleure méthode mais trop coûteux et un de ses axiomes de base n'est pas tout le temps respecté

Approximer Shapley par Monte-Carlo donne de bons résultats avec un nombre restreint de coalitions étudiées

Beaucoup de méthodes existantes ne sont pas applicables dans notre cas

Bibliographie

P. Stone, G. A. Kaminka, S. Kraus et J. S.
 Rosenschein, « Ad Hoc Autonomous Agent Teams :
 Collaboration without Pre-Coordination », juil. 2010.

 L. S. Shapley, « A Value for n-Person Games », in Contributions to the Theory of Games (AM-28), H. W. Kuhn et A. W. Tucker, 1953

 E. Ferrante, A. E. Turgut, E. Duéñez-Guzmán, M.
 Dorigo et T. Wenseleers, « Evolution of Self-Organized Task Specialization in Robot Swarms », août 2015 N. Bredèche, J. Montanier, B. Weel et E. Haasdijk,
 « Roborobo! a Fast Robot Simulator for Swarm and Collective Robotics », 2013

 T. Pawel Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran et N. R. Jennings, « Efficient Computation of the Shapley Value for Game-Theoretic Network Centrality », fév. 2014