

Texturas

Módulo II: Aumento de realismo

Bibliografía

G₃D

- Alan Watt. 3D Computer Graphics. Addison-Wesley. Third Edition. 2000
- David S. Ebert y otros. Texturing & Modeling.
 A Procedural Approach. Morgan Kaufmann.
 Third Edition. 2003

• • •

Índice

G3D

- Introducción
- Clasificación
 - Según el número de dimensiones
 - Según el tipo de información que almacenan

- Mapeado
- Dificultades
- Texturas procedurales
- Compresión
- Efectos

Introducción

- Comúnmente, entendemos que una textura es un imagen 2D que representa una propiedad de un superficie (generalmente el color – color map)
 - "The term texture is a somewhat confusing term in computer graphics and generally does not mean controlling the small-scale geometry of the surface of a computer graphics object, which is the normal meaning of the word"
- Cuando se trabajar en tiempo real:
 - se usan en la etapa de rasterizado (principalmente)
 - y codifican información de un fragemento
- Mapa de texturas: colección o array n-dimensional de valores que se mapea sobre otra estructura, generalmente una superficie.

Introducción

G₃D

La utilización de texturas:

- Permiten definir propiedades de la malla. Aumenta el realismo de la imagen sin aumentar número de polígonos
 - Renderizado más eficiente
 - Modelado más eficiente
- Proporciona una clave para la percepción de la profundidad.
- Permite simular multitud de efectos: sombras, reflejos, entornos, ...

GPGPU

G3D

MESH WITH DISPLACEMENT

Apuntes históricos

G3D

- 1974. Ed Catmull utiliza mapas de texturas por primera vez.
- 1976. Blinn y Newell introducen los mapas de reflexión o de entorno.
- 1978. Blinn introduce los mapas de bollos
- 1984. Cook los extiende creando los mapas de desplazamiento

Apuntes históricos (2)

G₃D

- 1985. Peachey y Perlin describen las texturas sólidas como alternativa a las tradicionales texturas 2D.
- 1987. Reeves, Salesin y Cook: algoritmo para generación de sombras sin aliasing utilizando texturas.

•••

Pipeline Gráfico (III)

G3D

Pipeline Gráfico (IV)

G₃D

Cálculo de los atributos de un fragmento

- Las interpolaciones deben tener en cuenta la perspectiva. Incluso las coordenadas de textura)
- En una textura se podría almacenar información de estos atributos.
 - Ahorro de tiempo de cómputo de los atributos de un fragmento
 - Se necesitan generar menos vértices

Pipeline Gráfico (I)

G₃D

Cpu

 La aplicación genera una serie de primitas que definen la geometría del entorno virtual, las propiedades de dichas primitivas, el tipo de proyección, la iluminación ...

Etapa de vértices

- Se realizan operaciones de forma independiente sobre cada vértice:
 - Transformación de coordenadas de modelado a las coordenadas del mundo virtual (GL_MODELVIEW)
 - Transformación o generación de las coordenadas de textura (GL_TEXTURE)
 - Proyección (GL_PROJECTION)
 - Transformación de las normales, luces
 - Cada vértice tiene asociada mucha información: normal, color (ambiental, difuso, especular), coordenadas de textura
 - Al final de esta etapa todos los atributos de los vértices quedan determinados
 - Ejemplo modificación del color base con la iluminación
- Programable

Pipeline Gráfico (II)

- Reensamblado
 - Los vértices se vuelven a agrupar formado primitivas (puntos, líneas, polígonos)
- Recorte
 - Todas las primitivas que están fuera del volumen de vista se ignoran.
- Rasterizacion y operaciones con los fragmentos
 - Transformación de números en como flotante a números enteros
 - La unidad de operación es el fragmento (más que un píxel)
 - Pasos
 - El rasterizado genera los fragmentos
 - Texturizado: Se accede a la textura (distintos algoritmos).
 - Se procesa cada fragmento de forma individual
 - Posteriormente se opera con ellos.
 - Fragmento
 - Color
 - Normal
 - Transparencia
 - Profundidad
 - Coordenadas de textura
 - La mayoría de estos valores se obtiene a partir de los vértices que forman la primitiva.
 - Programable
- Operaciones sobre el framebuffer
 - Operaciones sobre los buffers generados en la etapa de rasterizado.
 - Ejemplo: Algún tipo de filtrado.

Clasificación (I)

- Según el número de dimensiones
 - Unidimensionales
 - Poco usadas
 - Bandas que varían en una sola dirección
 - Bidimensionales
 - Las más frecuentes
 - Suelen ser cuadradas y potencias de 2
 - No tienen porque ser estáticas
 - Vídeos
 - Funciones matemáticas
 - Texturas procedurales
 - Pueden generarse dinámicamente
 - Ejemplo

Clasificación (II)

- Según el número de dimensiones
 - Texturas cúbicas
 - Extensión de las texturas bidimensionales
 - Muy usadas en mapeos de entornos.
 - <u>Ejemplo</u>
 - Tridimensionales
 - Permiten mostrar datos volumétricos

Clasificación (III)

- Tipo de información que almacenan
 - Color
 - Iluminación
 - Transparencia
 - Normales
 - Geométrica
 - ...

Color: mapas difusos

- Definen cómo el objeto refleja la luz difusa.
- Son las más utilizadas.
- Contiene el color base del mismo.
- Albedo: porcentaje de intensidad de luz reflejado por una superficie. No debe contener ningún tipo de iluminación. No solo hace referencia al coeficiente de reflexión difuso

Color: mapas especulares university... ATCCCIA DEPARTMENT

- Definen propiedades del objeto sobre cómo refleja la luz especular.
- La reflexión de la luz no es igual en toda la superficie de un objeto: suciedad, humedad, huella dactilar,...

Color: mapas emisivos

G₃D

Simulan objetos que emiten luz.

Iluminación

- Lightmapping:
 - El nº de luces aumenta la complejidad del sombreado. Es de las etapas más costosas
 - Podemos utilizar técnicas básicas o métodos de iluminación global que nos permitan simular fenómenos más complejos como sombras

» Sun Shadow channel

Iluminación: mapas de luz y de sombras

G₃D

Sombras pre-calculadas (sombras suaves)

» Sun Shadow channel

Sombra en tiempo real

Ilumiación: mapas de luz

- Ventajas:
 - Ahorro en tiempo y cómputo.
 - Podemos utilizar técnicas globales.
- Limitaciones:
 - Fuentes de luz fijas.
 - Objetos estáticos.
- Las luces y los objeto dinámicos se pueden añadir después.

Ilumiación: mapas de luz

G3D

Ambient Occlusion:

Máster en Informática Gráfica, Juegos y Realidad Virtual

Transparencia: mapas alpha

- "Complementario": mapas de opacidad.
- α =1 objeto opaco; α =0 objeto transparente.
- La información de transparencia se almacena en escala de grises

Utiliza el mismo mapa como textura especular

G3D

- Modificación de normales para dar sensación de relieve.
 - Mapas de profundidad
 - Mapas de normales

- Ejemplo
- Ejemplo [sin/con/modelos]

Normales: Mapas de bollos le l'accida Department

- Mapas de profundidad
 - El mapa de bollos almacena la profundidad del fragmento.
 - Texturas en escala de grises.

Normales: Mapas de bollos la carlos University -- ATCCCIA DEPARTMENT

- Mapas de normales
 - Texturas RGB (R \rightarrow X, G \rightarrow Y, B \rightarrow Z)
 - Se almacenan los vectores perpendiculares a la superficie:
 - Vector perpendicular $(127,127,255) \rightarrow (0,0,1)$
 - Tonos azules: vectores normales.
 - Tonos rojos: variación horizontal.
 - Tonos verdes: variación vertical.
 - Los mapas de bollos pueden transformarse en mapas de normales

original mesh 4M triangles

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles

Normales: Parallax Mapping to the structure of the struct

- También offset mapping o virtual displacement mapping
- Mejora sobre los mapas de normales.
- Texturas con auto-oclusión en función del punto de vista del usuario.
- Las texturas tienen mayor sensación de profundidad y realismo.

Normales: parallax mapping Liversity - ATCCCIA DEPARTMENT

Geometría

- En la textura se almacena el desplazamiento de fragmentos o vértices.
- Las texturas pueden almacenar: valores no normalizados y en coma flotante
- Mapas de altura o de desplazamiento
 - Almacenan información de la altura.
 - Escalas de grises.
 - Permiten auto-oclusiones, auto-sombras y siluetas.

Geometría

G3D

Mapeado (I)

- Texture mapping: Se debe definir una correspondencia entre el modelo y la textura (fragmento o vértice y texels)
 - Mapeado automatico: Estas técnicas envuelven el objeto en algún tipo de figura o volumen contenedor (<u>map shape</u>)

Mapeado (II)

- Mapeado plano
 - Se proyecta la figura sobre un plano
 - Se debe definir la orientación del plano
 - Problemas en las zonas superiores
 - El más sencillo
 - Utilidad reducida
 - Ejemplos:
 - 1. Se ha anulado la coordenada z. El color no varía con dicha coordenada.
 - 2. En el resto de ejemplos se eliminan distintas coordenadas.

Mapeado (III)

- Mapeado Cilíndrico
 - El objeto se envuelve en un cilindro
 - Las coordenadas del objeto se transforman a coordenadas cilíndricas
 - (x,y,z)->(radio, ángulo, altura)
 - A la hora de proyectar la textura sólo se tiene en cuenta el ángulo y la altura.
 - Debe tenerse en cuenta la orientación del cilindro

Mapeado (IV)

- Mapeado esférico
 - El objeto se envuelve en una esfera
 - (x,y,z)->(r,alpha,theta)
 - Para el mapeo sólo se usa alpha y theta
 - Depende de la forma en la que la textura se envuelva alrededor de la esfera.

Mapeado (V)

- Comparación entre el mapeado esférico y el cilíndrico.
 - El mapeado cilíndrico tiene más resolución de la necesaria en los polos

- ¿Qué texel escoger?
- El mapeado cilíndrico está muy limitado a la hora de representar la parte superior de los objetos

Mapeado (VI)

- Mapeado cúbico
 - Se envuelve el objeto en un cubo
 - Similar al mapeado plano
 - Muy utilizado para simular entornos

Mapeado (VII)

- En las trasparencias anteriores sólo se tenía en cuenta la figura contenedora.
- A la ahora de proyectar o mapear la textura hay que establecer un método que nos permita extraer las coordenadas del objeto para luego proyectarlas sobre la figura contenedora (definir el <u>map entity</u>):
 - Posición respecto a la BB
 - Normal de la superficie
 - Centroide del objeto
 - Reflexión del punto de vista del observador sobre el objeto

Mapeado (VIII)

G₃D

 Dependiendo de la figura envolvente unos métodos funcionarán mejor que otros

Mapeado (IX)

- Mapeado u,v.
 - A cada vértice se le asigna una coordenada de textura
 - El mapeado se genera de forma explícita (más difícil de modelar)
 - Mucho más potente
 - Se suelen utilizar coordenadas normalizadas en texturas cuadradas.
 - En texturas no cuadradas se utiliza la posición del texel.
 - Mapeado no lineal
 - No requiere ni shape map, ni shape entity.

Mapeado (X)

- Proyectar la textura
 - Se proyecta la textura como si se tratase de un foco
 - Shadow mapping
 - Utilizado por Pixar (se utilizó en Toy Story)

Mapeado (XI)

- Mapeado en texturas 3D
 - No se necesita figura envolvente
 - La obtención del valor es directa
 - Elevado uso de memoria

G₃D

Aliasing

- Las fronteras de las primitivas aparecen escalonadas
- Repetir el rasterizado desplazando la rejilla (x2, x4...).
- Fusionar los distintos resultados

Frecuencia de Nyquist

Dificultades: aliasing

- Aliasing en texturas
 - Al proyectar una textura, ¿qué texel escoger?
 - Muestreo demasiado bajo
 - Puede que el texel no sea representativo
 - Fronteras escalonadas
 - Información incorrecta
 - Supersampling
 - Se toman las 4 esquinas del píxel y se proyectan.
 - Se ponderan los 4 valores obtenidos
 - Pre-filtering
 - Se trata el píxel como una región en la textura
 - Se pondera esa región
 - Costoso

Dificultades: aliasing

Dificultades: aliasing

- Aliasing en texturas
 - Texturas multimapa (mip-map)

- Ajusta la textura según la resolución
- Calculadas en preproceso (más rapidas)
- Para su generado automático tiene que ser potencia de 2
- Filtro paso bajo de un nivel a otro
- En la fase de mapeo de texturas se escoge el nivel de detalle que mejor ajuste la región
- Ejemplo

- Aliasing en texturas
 - Filtrados
 - Bilineal
 - Interpolación con 4 téxeles
 - Se combina con mid-maps
 - Problema en la transición de niveles
 - Blur
 - Trilineal
 - Interpolado del filtrado bilineal entre los niveles midmaps más cercanos
 - Blur

G₃D

Aliasing en texturas

- Filtrado anisotrópico (AF)
 - No utiliza mipmaps
 - Calcula la textura inline
 - Útil cuando se necesita más resolución en alguna dirección
 - A la hora de generar la textura tiene en cuenta la orientación de la primitiva
 - Costoso computacionalmente, requiere mucha memoria
 - No introduce emborronamiento, conserva el detalle
 - Sistema basado en máscaras elípticas

Dificultades

G3D

Sin filtrado

Filtrado bilineal

Filtrado bilineal Filtra

Filtrado anisotrópico

Figure 1. Comparison of isotropic and anisotropic texture filtering.

Bilineal

Trilinial

Anisotrópico

Limitaciones texturas tradicionales " REVIUN CARLOS UNIVERSITY — ATCICIA DEPARTMENTI

- Tienen una resolución limitada.
 - Cantidad de memoria que ocupan.
 - Mayor detalle significa más submuestreos y filtrados.
- La repetición de texturas (tilling)
 - Complica su dibujo si se quiere un diseño atractivo.

- Son algoritmos matemáticos (programas) a partir de los que se construye la imagen de la textura.
 - Se pueden programar en la GPU.
- Surgieron como forma sencilla de sintetizar texturas.

Procedurales: ejemplos " REY JUAN CARLOS UNIVERSITY -- ATCCCIA DEPARTMENT

- Densidad
 - Mapa de bits: discreto.
 - Textura procedural: para todo Rⁿ
- No tienen por qué ser repetitivas.
- No hay "tilling".
- Multirresolución
- Uso de memoria

Procedurales: desventajas university - ATCCCIA DEPARTMENT

- No se dibujan.
 - Las herramientas habituales no sirven.
- Pueden ser sorprendentes: a veces muy difícil de predecir el resultado.
- Computacionalmente voraces
 - Ejecución en GPU.
- ¿Geometrías complejas?

Efectos (I)

- Con las texturas podemos simular efectos complejos
 - exclusivos de los modelos de sombreado globales
 - simplificar otros efectos

Efectos (II)

G₃D

Multitexturing

- Se pueden aplicar varias texturas a un modelo
 - Una con información de color y otra con un texture bumping
 - Fusionar dos texturas con información de color...
 - Ejemplo
- Renderizar sobre una textura o varias
 - Es la base de multitud de técnicas
 - Environmental Mapping
 - Ejemplo

Efectos (III)

- Shadow mapping
 - Existen multitud de técnicas y variaciones que permiten calcular sombras en tiempo real
 - Proyectar una textura es una de las más sencillas
 - Crear una textura en la que se almacenará la profundidad de los objetos
 - Deshabilitar texturas, luces ...
 - Renderizar los objetos sombreadores desde el foco lumínico.
 - Activar luces, texturas...
 - Cuando se renderice se realizará el siguiente test:
 - Se proyectar los fragmentos utilizando la matriz de proyección de la fuente lumínica.
 - Se comprobará la profundidad del fragmento
 - Si es mayor que la almacenada en el Shadow Map, el fragmento se pinta de negro.

Efectos (IV)

G₃D

Reflejos

- Plano de simetría
 - Se renderiza la escena en la posición simétrica al observador
 - Se utiliza como plano de simetría el mismo que contiene al usuario
 - Se almacena el buffer de color en una textura
 - Se renderiza la escena utilizando la textura generada en el paso anterior en el espejo
 - Sólo es valido para objetos planos

Efectos (V)

G₃D

Reflejos

- Mapeo de entornos
 - Más flexible que la técnica anterior y más usada
 - Se utiliza la posición de la cámara y la normal del objeto para generar la coordenada de textura
 - Mapeado circular
 - 1 textura
 - Difícil general la textura en tiempo real
 - Textura preprocesada
 - Mapeado parabólico dual
 - Es el mismo principio que subyace en las lentes parabólicas
 - Función de mapeado
 - 2 parábolas, 2 imágenes
 - Las imágenes pueden generarse en tiempo real
 - Mapeado cúbico
 - 6 texturas
 - El más utilizado
 - Fácil generar la textura en tiempo real (ajustar frusturms)

$$f(x, y) = \frac{1}{2} - \frac{1}{2}(x^2 + y^2),$$
 $x^2 +$

Efectos (III)

- Reflejos
 - Mapeo de entornos
 - Ejemplos:
 - Comparación con Ray-Tracing
 - Ejemplo

Efectos (IV)

- Image Base Render
 - Utilizamos un conjunto de mapas de bits para representar un objeto
 - Dependiendo del punto de vista mostramos un bitmap u otro.

