Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Информационная безопасность

Лабораторная работа №3 Атака на алгоритм шифрования RSA методом бесключевого чтения

Вариант 14

Студент: Мокров Семён Андреевич

P34121

Преподаватель: Маркина Татьяна Анатольевна

Содержание

Цель работы	3
Задание	
Вариант задания	
Листинг разработанной программы	
Исходный код	
Результаты работы программы	
Скриншоты вывода программы	
Полученное сообщение	
Выводы	11

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Задание

- ознакомьтесь с теорией в [3], в подразделе («Бесключевое чтение»);
- получите вариант задания у преподавателя;
- по полученным данным определите значения r и s при условии, чтобы e1*r-e2*s=1. Для этого необходимо использовать расширенный алгоритм Евклида;
- используя полученные выше значения r и s, запишите исходный текст;
- результаты и промежуточные вычисления значений для любых трех блоков шифрованного текста оформите в виде отчета.

Вариант задания

14	573308195401	973169	550351	327707922480	484439401392
				455697659443	92203619034
				469317095774	199299165882
				41173012855	100840467257
				95114431187	42877265767
				183548202066	537319004931
				114278917224	212469277565
				111319924653	335238563578
				302320646938	215934710265
				497834611165	248375790884
				207393954597	8143413999
				469317095774	199299165882
				184588110993	484325656679

Листинг разработанной программы

from numpy.core.defchararray import isnumeric from termcolor import colored

N = 573308195401

e 1 = 973169

e 2 = 550351

C 1 = "

C_2 = "

```
199299165882
484325656679
print(colored("Стартовые данные:", "green"))
print("C1: " + C_1)
print("C2: " + C_2)
print("N: " + str(N))
print("e1: " + str(e 1))
print("e2: " + str(e 2))
def get int list(source list):
  result = []
  for curr str in source list.split():
     if isnumeric(curr str):
       result.append(int(curr str))
  return result
# Расширенный алгоритм Евклида
def extended gcd(a, b):
  if a == 0:
     return 0, 1
  else:
     x arg, y arg = extended gcd(b \% a, a)
  return y arg - (b // a) * x arg, x arg
C_1 = get_int_list(C_1)
C = get int list(C = 2)
result = ""
x, y = extended_gcd(e_1, e_2)
print(colored("Параметры, полученные расширенным алгоритмом
Евклида", "green"))
```

```
print("r = " + str(x))
print("s = " + str(y))

print(colored("\nХод вычислений: ", "green"))

for i in range(len(C_1)):
    C_1_x = pow(C_1[i], x, N)
    C_2_y = pow(C_2[i], y, N)
    m = (C_1_x * C_2_y) % N
    current_result_bytes = int.to_bytes(m, length=4, byteorder='big')
    current_part = current_result_bytes.decode('windows-1251')
    result += current_part

print("C1[", str(i), "]^r) mod N = ", str(C_1_x))
    print("C2[", str(i), "]^s) mod N = ", str(C_2_y))
    print("Полученная часть сообщения: ", str(current_part), "\n")

print(colored("RESULT = ", "green") + result)
```

Исходный код

Исходный код расположен в репозитории:

https://github.com/semwett0301/information-security

Результаты работы программы

Скриншоты вывода программы

```
C1:
                          = 152315
327707922480
                          = -269334
455697659443
469317095774
                                                             C1[ 9 ]^r) mod N = 550170293060
41173012855
                                                             C2[9]^s \mod N = 2208188518
                        C1[ 0 ]^r) mod N = 165024469333
95114431187
                        C2[0]^s) mod N = 423909999356
                                                             Полученная часть сообщения: ляет
                        Полученная часть сообщения: льки
183548202066
                                                             C1[ 10 ]^r) mod N = 96973721996
114278917224
                                                             C2[10]^s \mod N = 246877745429
                        C1[ 1 ]^r) mod N = 299944833361
111319924653
                                                             Полученная часть сообщения: ся п
                        C2[1]^s) mod N = 509228750708
302320646938
                        Полученная часть сообщения: ми п
                                                             C1[ 11 ]^r) mod N = 444024439693
497834611165
                                                             C2[11]^s) mod N = 295389020807
                        C1[ 2 ]^r) mod N = 444024439693
207393954597
                                                             Полученная часть сообщения: акет
                        C2[2]^s mod N = 295389020807
469317095774
                        Полученная часть сообщения: акет
                                                             C1[ 12 ]^r) mod N = 275388717443
184588110993
                                                             C2[12]^s) mod N = 174889350036
                        C1[ 3 ]^r) mod N = 168070732157
                                                             Полученная часть сообщения:
                        C2[3]^s) mod N = 206311219044
C2:
                        Полученная часть сообщения: ами.
484439401392
                        C1[ 4 ]^r) mod N = 277377816945
92203619034
                        C2[4]^s) mod N = 492544202182
199299165882
                        Полученная часть сообщения:
100840467257
                        C1[ 5 ]^r) mod N = 351512795454
42877265767
                        C2[ 5 ]^s) mod N = 357761672628
537319004931
                        Полученная часть сообщения: вым
212469277565
                        C1[ 6 ]^r) mod N = 551962777586
335238563578
                        C2[ 6 ]^s) mod N = 111237883233
215934710265
                        Полученная часть сообщения: сред
248375790884
                        C1[ 7 ]^r) mod N = 57399190242
8143413999
                        C2[ 7 ]^s) mod N = 151437442937
199299165882
                        Полученная часть сообщения: и ни
484325656679
                        C1[ 8 ]^r) mod N = 35384552387
                        C2[8]^s) mod N = 405541098220
N: 573308195401
                        Полученная часть сообщения: х яв
e1: 973169
```

RESULT = лькими пакетами. Первым среди них является пакет

e2: 550351

Полученное сообщение

лькими пакетами. Первым среди них является пакет

Выводы

В данной лабораторной работе я:

- Ознакомился с принципом взлома RSA при помощи метода бесключевого чтения
- Реализовал процесс взлома на Python