

# SLT 儿童口语识别比赛系统介绍 王永庆 闫志勇 张俊博

### 参赛队员列表



## DATA AUGMENTATION FOR CHILDREN'S SPEECH RECOGNITION THE "ETHIOPIAN" SYSTEM FOR THE SLT 2021 CHILDREN SPEECH RECOGNITION CHALLENGE

Guoguo Chen\*1, Xingyu Na\*2, Yongqing Wang\*3, Zhiyong Yan\*3, Junbo Zhang\*3, Sifan Ma³, Yujun Wang³

<sup>1</sup>Seasalt AI LLC, USA <sup>2</sup>Xiaoice, Microsoft Corporation, China <sup>3</sup>Xiaomi Corporation, China

guoguo@seasalt.ai, asr.naxingyu@gmail.com
{wangyongqing3, yanzhiyong, zhangjunbol, masifan, wangyujun}@xiaomi.com

前五位(标星号)作者按姓氏字母排序,其中有三位是来自小米的工程师

## 数据集



#### • 训练集 (8月发布)

| 数据集代号           | 时长 (h) | 说话人个数                                                                                                                                          | 年龄      | 风格 |
|-----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|
| 034             | 342    | 1997                                                                                                                                           | 18 ~ 60 | 朗读 |
| 011             | 28     | 907                                                                                                                                            | 7 ~ 11  | 朗读 |
| 018             | 28     | 158                                                                                                                                            | 4 ~ 11  | 口语 |
| Opensrl(track2) | 1374   | SLR18-Thchs30、SLR33-Aishell、SLR38-Free-ST-Chinese-Mandarin-Corpus、SLR47-Primewords-Chinese-Corpus-Set-1、SLR62-Aidatatang_200zh、SLR68-Magicdata |         |    |

#### • 开发集

| 数据集代号   | 时长 (h) | 说话人个数 | 年龄     | 风格 |
|---------|--------|-------|--------|----|
| Dev-011 | -      | 20    | 7 ~ 11 | 朗读 |
| Dev-018 | -      | 5     | 4 ~ 11 | 口语 |

### • 测试集(9月底发布)

| 时长 (h) | 年龄     | 风格                        |
|--------|--------|---------------------------|
| 10     | 4 ~ 11 | 朗读口语各占一半<br>很可能和011、018同源 |

### 比赛策略



- 数据特点: 训练集以成人为主, 测试集全部是儿童
- 比赛的关键: 解决训练集同测试集声学特征不匹配的问题
- 思路
  - 重点对儿童数据做更多的data augmentation, 儿童数据可以超过成人数据

### 数据扩增



#### • 成人转儿童

• 调Pitch, 把成人数据改成听起来像儿童



#### • 语速 & 音量

- 使用Kaldi的工具
- 原语速的 85%、88%、90%、110%、112%、115%
- 音量扩增倍数从0.125至2之间

#### • 混响

- 用sox的reverb功能简单造了一些
- Spectral Augmentation
  - 19年google论文中的方法,Kaldi中有现成工具

| Data Augmentation                                       | Hours  |
|---------------------------------------------------------|--------|
| Set A *                                                 | 341.8  |
| Set C1, C2 *                                            | 55.1   |
| Set A, C1, C2 + rp + vp                                 | 396.9  |
| Set A, C1, C2 + pp + vp                                 | 396.9  |
| $Set A + sp@{0.9,1.1} + vp$                             | 690.6  |
| $Set A + tp@{0.9,1.1} + vp$                             | 690.6  |
| Set C1, C2 + sp@ $\{0.85,0.88,0.9,1.1,1.12,1.15\}$ + vp | 342.7  |
| Set C1, C2 + $tp@{0.85,0.88,0.9,1.1,1.12,1.15} + vp$    | 342.7  |
| Total                                                   | 3257.3 |

pp: Pitch perturbation

rp: Reverberation perturbation

sp: Speed perturbation, values inside the curly braces are different perturbation parameters

tp: Tempo perturbation, values inside the curly braces are different perturbation parameters

vp: Volume perturbation

\* Our number is a little bit less than the official number

### 数据扩增 —TTS + NLG



- TTS 可以看作一种数据增广形式
  - 模型从训练样本中, 学到如何增广(生成)数据
  - 相比于简单地改Pitch等方法,能生成更丰富的内容

- 用NLG尝试解决口语文本不够的问题
  - 训练集以书面文本为主,但测试集有大量的口语文本
  - 尝试使用了GPT-2来生成口语文本

我也会唱歌曲我是 哦 你的话呀 你的是什么时候的 好不是不知道 你就是什么歌 我妈都是我不是一个小的那种 你们班的 嗯好的是什么

## Kaldi框架



• kaldi工作细节



## 数据扩增测试结果



| Kaldi-Exp                                                                        | dev-011 | dev-018 | Average |
|----------------------------------------------------------------------------------|---------|---------|---------|
| Exp1: Baseline                                                                   | 10.2    | 22.36   | 16.28   |
| Exp2: Baseline + 80-dim FBANK                                                    | 10.22   | 21.95   | 16.09   |
| Exp3: Baseline + 80-dim FBANK + SpecAug + depth tdnnf:17                         | 9.95    | 21.66   | 15.81   |
| Exp4: Exp3 + backward rnnlm: ngram order 4                                       | 9.19    | 21.66   | 15.43   |
| Exp5: Exp3 + forward rnnlm: ngram order 4                                        | 9.12    | 20.98   | 15.05   |
| Exp6: Exp3 + forward rnnlm: ngram order 5                                        | 9.09    | 20.45   | 14.77   |
| Exp7: Exp3 + 3-dim pitch features                                                | 9.92    | 21.62   | 15.77   |
| Exp8: Exp3 + 3-dim pitch features + forward rnnlm: ngram order 5                 | 9.16    | 21.04   | 15.1    |
| Exp9: Exp6 + Set A, C1, C2:rp,{sp,tp}@ $\{0.85,0.9,1.1,1.15\}$                   | 8.47    | 19.78   | 14.13   |
| Exp10: Exp9 + remove clean + remove Set A: $\{ sp, tp \} @ \{ 0.85, 1.15 \}$     | 8.63    | 19.26   | 13.95   |
| Exp11: Exp10 + Set A, C1, C2:pp + Set C1, C2: $\{sp,tp\}$ @ $\{0.88,1.12\}$      | 9.14    | 18.69   | 13.92   |
| * Exp12: Exp9 + remove clean + Set A, C1, C2:pp + Set C1, C2:{sp,tp}@{0.88,1.12} | 8.52    | 18.70   | 13.61   |

<sup>\*</sup> Post-challenge experiment

### Espnet模型结构与调参



- 端到端识别架构,模型结构采用 Conformer
  - [2005.08100] Conformer: Convolution-augmented Transformer for Speech Recognition
  - [2010.13956] Recent Developments on ESPnet Toolkit Boosted by Conformer
- 语言模型Shadow Fusion
  - 开发集上, RNN和Transformer都不如 4-gram 的效果好, CER 相差 0.2 个点
- 训练中的一些策略
  - 对开发集loss进行一些排序,筛选一些效果比较好的迭代模型做平均
  - Retrain的时候学习率和warmup的一些调优



• espnet工作细节





Q & A