Московский физико-технический институт

4.3.1 Изучение дифракции света.

Ивакин Кирилл Б01-907, ФРКТ

Цель работы: Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов. // Оборудование:

- оптическая скамья
- ртутная лампа
- монохроматор
- щели с регулируемой шириной
- рамка с вертикальной нитью
- двойная щель
- микроскоп на поперечных салазках с микрометрическим винтом
- зрительная труба

1 Дифракция Френеля на щели

1. Схема установки для наблюдения дифракции Френеля на щели представлена на рис. 1. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некую плоскость наблюдения Π .

Рис. 1: Схема лабораторной установки для наблюдения дифракции Френеля

2. Снимем зависимость координаты микроскопа от числа наблюдаемых полос, результаты занесём в таблицу 1.

Таблица 1: Количество минимумов в зависимости от расстояния до плоскости наблюдения

n тёмных полос	0	1	2	3	4	5
a, MM	68	66	63	60	55	48
$2z_m$, mm	0.192	0.268	0.321	0.362	0.387	0.396
$\sigma(a)$, mm	1	1	1	1	1	1
$\sigma(2z_m)$, MM	0.003	0.004	0.005	0.006	0.007	0.008

- $\sigma(a)$ погрешность прямого измерения линейкой, возьмем $\sigma(a)=2$ мм. $\sigma(2z_m)$ погрешность косвенного измерения. Формула (2) в справочном материале.
- 3. Сравним размер зон Френеля с измеренной шириной b=206 мкм щели S_2 . Для этого рассчитаем величину $2z_m=2\sqrt{am\lambda}(\lambda=546.1$ нм) и построим график зависимости $2x_n=f(n)$ (рис. 2)

Рис. 2: график зависимости $2x_n = f(n)$

2 Дифракция Фраунгофера на щели

На значительном удалении от щели, когда ширина щели становится значительно меньше ширины первой зоны Френеля, изображение щели размывается и возникает дифракционная картина, называемая дифракцией Фраунгофера.

1. Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке (поставив дополнительную линзу между щелью и плоскостью наблюдения). Дифракционная картина наблюдается в фокальной плоскости объектива O_2 (фокусное расстояние линзы $f_2 = 12.8$ см). Схема установки для наблюдения дифракции Фраунгофера на щели представлена на рис. 3.

Рис. 3: Схема лабораторной установки для наблюдения дифракции Фраунгофера на щели

2. Настроим установку, с помощью винта поперечного перемещения микроскопа измерим координаты X_m нескольких дифракционных минимумов от -m до m.

Таблица 2: Координаты минимумов дифракционной картины

m	-4	-3	-2	-1	1	2	3	4
x_m , MM	-0.83	-0.56	-0.35	-0.20	0.22	0.38	0.55	0.80
$\delta(x_m)$, MM	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

 $\delta(x_m)$ - погрешность прямых измерений. Цена «большого» деления в 1/10 единицы верхней шкалы - 0.1 мм. Возьмем $\delta(x_m)=0.01$ мм - цена деления.

Рис. 4: координаты дифракционных минимумов

3. По углу наклона прямой определим среднее расстояние между соседними минимумами. Для вычисления наклона прямой и погрешности коэффициента наклона, воспользуемся МНК(Справочный материал формулы (3) - (6)). $k=0.195\pm0.004$ мм. Далее рассчитаем ширину щели по формуле $b=\frac{\lambda f_2}{k}=349\pm 6$ мкм. Погрешность была рассчитана по формуле погрешности косвенных измерений. Значение ширины щели, измеренное по микрометрическому винту: $b_0=343$. С учётом погрешности значения совпадают.

3 Справочный материал

1. Погрешность косвенный измерений, общая формула. Пусть a = f(b, c, ...), тогда

$$\sigma_a^2 = \left(\frac{\partial f}{\partial b}\right)^2 \cdot \sigma_b^2 + \left(\frac{\partial f}{\partial c}\right)^2 \cdot \sigma_c^2 \dots \tag{1}$$

2. Погрешность косвенный измерений, частный случай.

Пусть $a = b^{\beta} \cdot c^{\gamma} \cdot \dots$, тогда

$$\frac{\sigma_a^2}{a}^2 = \beta^2 \cdot \frac{\sigma_b^2}{b}^2 + \gamma^2 \cdot \frac{\sigma_c^2}{c}^2 \dots$$
 (2)

3. МНК. Апроксимация для прямой y = kx + b.

$$k = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} \tag{3}$$

$$b = \langle y \rangle - k \cdot \langle x \rangle \tag{4}$$

$$\sigma_k = \sqrt{\frac{1}{n-2} \cdot \left(\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2\right)}$$
 (5)

$$\sigma_b = \sigma_k \cdot \sqrt{\langle x^2 \rangle} \tag{6}$$