Dynamic Reporting

An Interactive Workshop for Statistical Reproducible Research

Kirsten Bell Burdett, MB

Department of Preventive Medicine Feinberg School of Medicine Northwestern University

February 18, 2020

Intro

Required Materials

Materials for this presentation can be found on GitHub: https://github.com/kburdett5/Dynamic_Reporting_NUpres

- R
- RStudio: https://rstudio.com/products/rstudio/download/
- R version 3.5.2 or later
- R packages: knitr, survminer, kableExtra, tableone, plotly, broom, tidyverse, survival (install.packages("knitr"))
- LaTeX
 - https://www.latex-project.org/get/

What is R Markdown

Popular data science tool for efficient and dynamic reporting. It is used to record your reproducible research (save and execute code) in order to create beautiful and easily sharable reports.

- Flexible
 - Create dynamic output and inline code
- Reproducible Research
 - Code and report combined
- Fun endless possibilities!

No Copy-Paste Results

Imagine you finish a project and generate the results.

THEN... the data changes, or they want to use $\alpha = 0.1$ reaction if results were copy-pasted.

If using R Markdown, simply render the file and VOILA you have your beautiful report!

How it works

- Markdown is a formatting syntax
- Dynamic reporting allows you to export finished report in several formats (Word, html, PDF, LaTeX Beamer slides, and more).

When you run (render), feeds to knitr which executes code chunks. Then pandoc processes it and creates the finished format.

https://rmarkdown.rstudio.com/lesson-2.html

Getting Started

Getting Started

- R package "knitr" (install.packages("knitr"))
 - Rmd (R + Markdown)
 - .Rnw (R + LaTeX)
 - Allows use of various languages

We will be using R Markdown (.Rmd). If you are more comfortable with LaTeX, you may want to try using R Sweave (.Rnw).

R Markdown File (File -> New File -> R Markdown)

https://rmarkdown.rstudio.com

https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

Select Report Format

YAML Header

Basic Header:

title: "Untitled"

author: "Kirsten Burdett"

date: "1/27/2020" output: pdf_document

Complex Header:

```
title: "Example Report"
author: "Kirsten Burdett"
institute: "Northmesteren University: Feinberg School of Medicine"
dote: "r formact(Sys.Date(), "Md Nb NY")"
geometry: margin=2cm
output:
pdf_document:
toc: yes
toc.depth: 2
header-includes: \usepackage{float, graphicx, subfig, amsmath,
amssymb, booktabs, tikz, caption}
\usetikz[inbarry(shapes, arrows, positioning, backgrounds}
```

Applied to entire document

Output changes report format

For more details: R Markdown Cheatsheet

Embed Code

Syntax	Becomes	
Make a code chunk with three back ticks followed by an r in braces. End the chunk with three back ticks: ''`{r} paste("Hello", "World!")	Make a code chunk with three back ticks followed by an r in braces. End the chunk with three back ticks: paste("Hello", "Worldi") ## [1] "Bello Worldi"	
Place code inline with a single back ticks. The first back tick must be followed by an R, like this `r paste("Hello", "World!")`.	Place code inline with a single back ticks. The first back tick must be followed by an R, like this Hello World!.	
Add chunk options within braces. For example, 'echo=FALSE' will prevent source code from being displayed:	Add chunk options within braces. For example, echo=FALSE will prevent source code from being displayed:	
```{r eval=TRUE, echo=FALSE} paste("Hello", "World!")	## [1] "Hello World!"	

Learn more about chunk options at http://yihui.name/knitr/options

## Formatting

Some helpful Markdown syntax. You can also utilize LaTeX or HTML code.

- **BOLD** —> **BOLD** text
- *italics* —> italics text
- $\frac{\alpha}{5}$
- Graphics
  - ```{r, fig.width=5, fig.height=4}

For more details: R Markdown Cheatsheet

### Instructions Inside Chunks

- echo: Display code. echo = FALSE hides code and displays results
- include: include = FALSE Run code without displaying anything in document
- message: Display messages. message = FALSE suppresses messages from being displayed in document. Same idea for error = FALSE and warning = FALSE
- results: Set to 'asis' to let text output be written as is. Write raw Markdown text from R code. Ex: cat('**Markdown** is cool. \n')
- **tidy**: Tidy code for display

For more details: R Markdown Cheatsheet

https://bookdown.org/yihui/rmarkdown/r-code.html

## Loop through Slides

## Loop Slides

- Useful when repetition is needed
- Create Box Plots for continuous variables in iris data
  - results='asis': Write raw Markdown text from R code
  - Slide title: cat("##Box Plot for", i, "\n")
  - Text on slides: cat("Assess the distribution of", i, "\n")
  - Box Plots: boxplot(iris[,i], horizontal = TRUE, xlab = i)

```
```{r, results='asis', out.width= "70%"}
nameval <- names(iris)[!names(iris) == "Species"]
for(i in nameval){
    cat("\n")
    cat("#Box Plot for", i, "\n")
    cat("Assess the distribution of", i, "\n")
    boxplot(iris[,i], horizontal = TRUE, xlab = i)
    cat("\n")
}</pre>
```

Box Plot for Sepal.Length

Assess the distribution of Sepal.Length

Box Plot for Sepal.Width

Assess the distribution of Sepal.Width

Box Plot for Petal.Length

Assess the distribution of Petal.Length

Box Plot for Petal.Width

Assess the distribution of Petal.Width

Hands-on

Highlights

CONSORT:

CONSORT Flow Diagram

HTML Example: 3D Plots

"HTML\_example.html"

HTML Example: 3D Plots

Kirsten Bell Burdett February 18, 2020

Load Libraries

library(plotly) # for 3D plotts

3D Plot

plot\_ly(iris, x=-Petal.Width, y=-Sepal.Length, z=-Sepal.Width) %>%
 add markers()

Word Example: "Word\_example.docx"

Megan McCabe, MS

Department of Preventive Medicine Feinberg School of Medicine Northwestern University

Word Example

Megan McCabe

Linear Regression Model

```
fit <- lm(dist ~ speed, data = cars)
fit_res <- tidy(fit); fit res
## # A tibble: 2 x 5
    term
               estimate std.error statistic p.value
## (chr)
                  <dh1>
                           <dh1>
                                    <dbl> <dbl>
## 1 (Intercept) -17.6
                           6.76
                                    -2.60 1.23e- 2
                   3.93
## 2 speed
                           0.416
                                  9.46 1.49e-12
```

Easily pull our results with tidy[function. Then we can use inline code like format.pval(fit\_res\$p.value[fit\_res\$term == "speed"], digit = 4) to show the p-value 1.49e-12 corresponding to speed.

Baseline Patient Demographic and Clinical Characteristics

Demographics by Prior Therapy

	level	No	Yes
n		97	40
Cell Type (%)	squamous	21 (21.6)	14 (35.0)

PDF Example: Interactive

"PDF\_example.pdf"

Example Report

Kirsten Bell Burdett 14 Feb 2020

Contents Background

Objectives . CONSORT Flow Diagram .		
Baseline Patient Demographic and Clinical Characteristics		
Primary Objective Adverse Events Survival Outcomes		
Supplementary	t	
Data:		
readfile <- file.path(dir, "FakeExampleAEs.csv") fakeAEdat <- read_csv(readfile)		
/FakeExampleAEs.csv eb2247c25d3ed473e0e531a8i97a04a7		
Veteren Deter		

We will be using the veteran data from the survival package. The original data has 137 subjects, but we will be subsetting to only those subjects that have test treatment and cell type of squamous, smallcell, or adeno which will result in 56 subjects.

Exercises

- Make "statistical analysis plan (SAP)" bold on page 2
- Add section "Secondary Objective" before "Supplementary" section with description underneath similar to primary objective
- Add inline code to replace the hardcoded 56 at the end of page 1 ("will result in 56 subjects")
- Show the code that generates the Kaplan-Meier Plots
- CONSORT
 - Add bordered box underneath "Population of Interest" titled "Final Box"
 - Add an arrow from "Population of Interest" to the box you just created
 - Extra: Create "Arm A" and "Arm B" boxes below "Final Box" in yellow with arrows

Exercise 1

• Make "statistical analysis plan (SAP)" bold on page 2

Exercise 1: Answer

• Make "statistical analysis plan (SAP)" bold on page 2

\*\*statistical analysis plan (SAP)\*\*

Exercise 2

Add section "Secondary Objective" before "Supplementary" section with description underneath similar to primary objective

Exercise 2: Answer

Add section "Secondary Objective" before "Supplementary" section with description underneath similar to primary objective

```
#Secondary Objective
\underline{Secondary Objective:} Define HERE
```

Exercise 3

Add inline code to replace the hardcoded 56 at the end of page 1 ("will result in 56 subjects")

Exercise 3: Answer

Add inline code to replace the hardcoded 56 at the end of page 1 ("will result in 56 subjects")

will result in 'r nrow(analysisdat)' subjects

Exercise 4

Show the code that generates the Kaplan-Meier Plots

Exercise 4: Answer

Show the code that generates the Kaplan-Meier Plots

Remove echo=FALSE

Exercise 5

6 Edit CONSORT

- Add bordered box underneath "Population of Interest" titled "Final Box"
- Add an arrow from "Population of Interest" to the box you just created
- Extra: Create "Arm A" and "Arm B" boxes below "Final Box" in yellow with arrows

Exercise 5: Answer

 Add bordered box underneath "Population of Interest" titled "Final Box"

```
\node [block_full, below=of finalpop] (finalbox) {
  \textbf{Final Box}};
```

 Add an arrow from "Population of Interest" to the box you just created

```
\draw[->, line width=0.5pt] (finalpop) -- (finalbox);
```

Exercise 5: Extra Answer

- 6 Edit CONSORT
 - Extra: Create "Arm A" and "Arm B" boxes below "Final Box" in yellow with arrows

```
\tikzset{
    block_full/.style =(rectangle, draw-block, thick, fill=white,
        text width=20em_text centered, minimum height=4em, inner sep=6pt),
    block_noborder/.style =(rectangle, draw-none, thick, fill=none,
        text width=15em, text rogaged, minimum height=4em, inner sep=6pt),
    block_arm/.style =(rectangle, draw-block, thick, fill=yellow,
        text width=10em_text centered, minimum height=4em, inner sep=6pt),
    line/.style =(draw, very thin, -latex', shorten >=0pt)
}
```

```
mode [block_arm, below-of finalbox, xshift = -2.5cm] (arma) (Arm A);

node [block_arm, right-of arma] (armb) (Arm B);

% % Arrows % %

drom[->, line width-0.5pt] (start) -- (testpop);
drom[->, line width-0.5pt] (start) -- (finalbop);
drom[->, line width-0.5pt] (start) -- (lefttest);
drom[->, line width-0.5pt] (finalpop) -- (lefttest);
drom[->, line width-0.5pt] (finalpop) -- (finalbox);
(drom[->, line width-0.5pt] (finalbox) -- (orma);
)drom[->, line width-0.5pt] (finalbox) -- (ormb);

Nend(tikzpicture)
}
```

Thank You!

Thank You!