CSci 2021, Spring 2015 Homework Assignment V: Solutions

Problem 0: (1 point) Should have been easy.

Problem 1:

$$f_1=$$
 (b ^ (a & c)) & (a | c)

a	b	c	a & c	b ^ (a&c)	a c	f_1
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	0	1	0
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	1	1	0	1	0

$$f_2=$$
 ((a & b) ^ c) & (b | (a ^ b))

a	b	С	a & b	(a&b) ^ c	a ^ b	b (a^b)	f_2
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	0	0	1	1	0
0	1	1	0	1	1	1	1
1	0	0	0	0	1	1	0
1	0	1	0	1	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	0	0	1	0

Problem 2:

x_1x_0	$y_1 y_0$	$z_3 z_2 z_1 z_0$
00 (0)	00 (0)	0000 (0)
00 (0)	01(1)	0000(0)
00 (0)	10 (-2)	0000(0)
00 (0)	11 (-1)	0000(0)
01(1)	00(0)	0000(0)
01 (1)	01(1)	0001(1)
01(1)	10 (-2)	1110 (-2)
01 (1)	11 (-1)	1111 (-1)
10 (-2)	00(0)	0000(0)
10 (-2)	01(1)	1110 (-2)
10 (-2)	10 (-2)	0100 (4)
10 (-2)	11 (-1)	0010(2)
11 (-1)	00(0)	0000(0)
11 (-1)	01(1)	1111 (-1)
11 (-1)	10 (-2)	0010(2)
11 (-1)	11 (-1)	0001 (1)

Problem 3:

Problem 4:

a. One way of writing the update function for the HSRLTD flip-flop is:

$$Q^{+} = !R\&((H\&Q)|S|(L\&(D^{T}))|(T\&!L\&!Q))$$

This is not an ideal place to use a Karnaugh map, because if you include the 5 control signals plus D and Q, there are 7 inputs. But you could make a 5-input map based on just the control signals, by putting D and Q expressions in the map:

This gives the following alternative formula:

$$Q^+ = (H\&Q)|S|(L\&(D^T))|(T\&!L\&!Q)$$

which shows that the R input is not actually needed.

b. The JK inputs 00, 01, 10, and 11 correspond to the HSRLTD signals H, R, S, and T respectively, so this a good job for a 2:4 decoder.

Problem 5:

Since every path leads to the main cycle, this design is self-starting.

Problem 6:

a.

b. State encoding and output:

State	Q_0	Q_1	Q_2	Н	С
W_0	0	0	0	0	0
W_1	0	0	1	0	0
W_2	0	1	0	0	0
W_3	0	1	1	0	0
C_0	1	0	0	0	1
C_1	1	0	1	0	1
H_0	1	1	0	1	0
H_1	1	1	1	1	0

State transition function. Note that rows with a don't-care X in one of the T columns abbreviate a sequence of rows with the same output that differ only in those positions.

Label	Q_0	Q_1	Q_2	T_g	T_h	T_b	Q'_0	Q_1'	Q_2'
$W_0 \rightarrow W_1$	0	0	0	X	X	X	0	0	1
$W_1 \rightarrow H_0$	0	0	1	0	0	X	1	1	0
$W_1 \rightarrow W_1$	0	0	1	0	1	0	0	0	1
$W_1 \to C_0$	0	0	1	0	1	1	1	0	0
$W_1 \rightarrow W_1$	0	0	1	1	X	X	0	0	1
$W_2 \rightarrow W_3$	0	1	0	X	X	X	0	1	1
$W_3 \rightarrow W_3$	0	1	1	0	0	0	0	1	1
$W_3 \rightarrow H_0$	0	1	1	0	0	1	1	1	0
$W_3 \to C_0$	0	1	1	0	1	X	1	0	0
$W_3 \rightarrow W_3$	0	1	1	1	X	X	0	1	1
$C_0 \to C_1$	1	0	0	X	X	X	1	0	1
$C_1 \to W_2$	1	0	1	0	0	0	0	1	0
$C_1 \to H_0$	1	0	1	0	0	1	1	1	0
$C_1 \to C_1$	1	0	1	0	1	X	1	0	1
$C_1 \to C_1$	1	0	1	1	X	X	1	0	1
$H_0 \rightarrow H_1$	1	1	0	X	X	X	1	1	1
$H_1 o H_1$	1	1	1	0	0	X	1	1	1
$H_1 \to W_0$	1	1	1	0	1	0	0	0	0
$H_1 \to C_0$	1	1	1	0	1	1	1	0	0
$H_1 \rightarrow H_1$	1	1	1	1	X	X	1	1	1