Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° Semestre 2019

Ayudantía 26

13 de Junio

MAT1106 - Introducción al Cálculo

- 1) Sea A un conjunto. Demuestre que las siguientes definiciones de x como punto de acumulación son equivalentes:
 - Para cada intervalo abierto B que contenga a x, existen infinitos elementos en $(A \{x\}) \cap B$.
 - Para todo $\varepsilon > 0$, el conjunto $(x \varepsilon, x + \varepsilon) \cap (A \{x\})$ tiene infinitos elementos.
 - Existe una sucesión de elementos en $A \{x\}$ que converge a x.

Demostraci'on. Primero, veremos que la primera proposici\'on es equivalente a la segunda. Para esto, notar que la primera implica directamente a la segunda (el intervalo $(x-\varepsilon,x+\varepsilon)$ es abierto y contiene a x).

Para ver que la segunda proposición implica la primera, sea B un intervalo que contenga a x. Luego, se puede escribir el intervalo como $(x-\varepsilon_1,x+\varepsilon_2)$, con $\varepsilon_1,\varepsilon_2>0$. Tomando $\varepsilon=\min(\varepsilon_1,\varepsilon_2)$, tenemos (por la segunda proposición) que el intervalo $X=(x-\varepsilon,x+\varepsilon)\cap (A-\{x\})$ tiene infinitos elementos. Como $X\subset B$, tenemos lo pedido.

Ahora, tenemos que ver que la segunda proposición sea equivalente a la tercera. Primero, probaremos que la segunda implica la tercera. Para esto, sea x un punto de acumulación y $\varepsilon_n = \frac{1}{n}$. Luego, existen infinitos elementos en $(x - \varepsilon_n, x + \varepsilon_n) \cap (A - \{x\})$. Tomemos alguno y llamémoslo x_n .

Luego, por construcción tenemos que para todo $n \in \mathbb{N}$, se cumple

$$x - \frac{1}{n} < x_n < x + \frac{1}{n}$$

Por Sandwich, eso implica que hay una sucesión que converge a x. Ahora, para probar que la tercera proposición implica la segunda, tenemos

que existe una sucesión x_n que converge a x. Ahora, notemos que por definición, para todo $\varepsilon > 0$ existe un $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, se tiene que

$$|x_n - x| < \varepsilon$$

Esto implica que

$$x - \varepsilon < x_n < x + \varepsilon$$

desde n_0 en adelante. Como los naturales desde n_0 son infinitos, se tiene lo pedido.

Por lo tanto, las tres proposiciones son equivalentes.

2) Sea A un conjunto. Sea A' el conjunto de los puntos de acumulación de A. Definimos la clausura de A (denotada \bar{A}) como $A \cup A'$. Demuestre que \bar{A} es cerrado.

Demostración. Sea una sucesión de elementos $x_n \in \bar{A}$ que converja a x. Se define y_n de la siguiente manera:

- Si $x_n \in A, y_n = x_n$.
- Si $x_n \notin A$, entonces $x_n \in A'$. Luego, existe algún elemento a en el intervalo $(x_n 1/n, x_n + 1/n)$ tal que $a \in A$. Así, definimos $y_n = a$.

Por construcción, tenemos que para cada n, se cumple

$$x_n - \frac{1}{n} < y_n < x_n + \frac{1}{n}$$

Por teorema del Sandwich, esto implica que $y_n \to x$. Luego, $x \in A'$, y por consiguiente en \bar{A} .

Luego, A es cerrado, que es lo que se quería probar.

3) Sea A = (a, b). Demuestre que $\bar{A} = [a, b]$.

Demostración. Ntemos que $(a,b) \in \bar{A}$. Por otro lado, $a = \inf A$, y $b = \sup A$, por lo que a y b también están en \bar{A} . Ahora, notemos que para todo elemento $x \in A$, se tiene

En particular, para cualquier sucesión $x_n \in A$, tenemos

$$a < x_n < b$$

Si la sucesión convergiera a L, tenemos que

Así, tenemos que para cualquier elemento en $x \in \bar{A}$, se cumple

Por lo tanto, $\bar{A} = [a, b]$, cumpliendo lo pedido.

4) Demuestre que un conjunto X es cerrado si y solo si $\bar{X} = X$.

Demostración. La implicancia de derecha a izquierda se tiene por la pregunta 2.

Para probar de izquierda a derecha, notemos que por una de las equivalencias de la pregunta 1, tenemos que para cualquier punto de acumulación x, existe una sucesión en X que converge a x. Luego, como X es cerrado, $x \in X$. Esto implica que $X' \subset X$, y así $\bar{X} = X$, que es lo que queríamos probar.

Teniendo ambas implicancias, probamos lo pedido.