EXAM 3 C	nemistry 102
----------	--------------

NAME: PRINT

KEY	

Sign_____

PART A (Titration) (10pts)

Draw a reasonable titration curve for the reaction of 200 ml 0.25M Pyruvic acid (p K_a = 2.39) with 0.10M Potassium hydroxide (assume totally soluble). Contrast this with the titration curve for a 0.25M Hydrochloric acid

Note the THREE(3) important pH's that help define the shape of this graph

GRAPH TO INCLUDE S shaped surve for weak acid with 3 key pH points at 0, 100 200mls of KOH

=0.5*(2.39-LOG(0.25)) 1.50

Pyruvic Acid=1.50 and need 500 ml for equivalence (250 for ½ equivalence)

HCl= pH=0.602

 $pH = pK_a - log([HA]/[A]) = pK_a$

2.39 (1/2 EQUIVALENCE)

 $pH(salt) = 7 + \frac{1}{2} (pKa + log[A-])$

=7+0.5*(2.39+LOG((0.05/0.7))) **7.62** (REMEMBER DILUTION for A)

PART B (Acid-Base Chemistry) (10x5=50 pts)

3) What is the pH of an aqueous solution of 0.747 M 2,3 dichloro-pyridine $(K_b=1.288 \times 10^{-7})$ (a weak base with the formula $C_5Cl_2H_5N$)

BASE: pOH= $\frac{1}{2}(K_b-log(0.747) = 0.5*(6.89-LOG(0.747))$ 3.508 **pH=10.49**

1) Using the fact that Acetic Acid $pK_a = 4.75$; show Three ways to construct a BUFFER solution at pH = 4.75 using the following: (Hint be careful all of the concentrations are not equal)

0.10M s	olution of	Sodium	Hydroxide	
0.20M s	olution of	Sodium	Acetate	
0.30M s	olution of	Sodium	Fluoride	
0.30M s	olution of	f Hydrocl	iloric Acid	
0.20M s	olution of	f Hydrofl	uoric Acid	
		f Sodium		
0.10M s	olution of	f Acetic A	cid	

2 volumes of 0.1 M HAE + I volume of 0.2 M No Ae + I volume of 0.3 Hel 3 volumes of 0.2 M No Ae + I volume of 0.3 Hel 2 volumes of DIAM HAE + I volume of Nadot

- 2) Which of the following acids, if in solutions of equal concentration, is the MOST acidic?
- a) 0.1M octanoic acid pKa=4.89
- b) 0.1M uric acid, pKa=3.89
- c) 0.1M propanoic acid pKa=4.86

d) 0.1M acetic acid pKa=4.75

e) All of these acids are equally acidic because they are all of equal concentration.

0.1M octanoic acid pKa=4.89 least 0.1M uric pKa=3.89 most

5) If the pH of a solution of NaF is adjusted with a strong acid or base. Using the fact that $pK_a(HF) = 3.17$; when is 40% of the total fluoride in the form of F?

pH = pKa - log(0.60/0.40) = 2.99

4) How many milligrams of Magnesium hydroxide(Molar Mass=58.305) would be need to be added to one liter of solution (assume STRONG and it all dissolves) to give an aqueous solution with a pH of 10.00

=HOd [OH] = 14-10.73

=10^-4

3.27 0.0001

but [Mg(OH)₂] = 0.5[OH]=

5.0E-05

2.915 mg 2.91E-3

7) What is the pH of a solution contains 0.402 M di-methylamine chloride and 0.389 M di-methylamine. $(pK_b(CH_3NH_2)=3.21)$

 $pOH = pKb - log([B]/[BH+]) = 3.21 - log(0.389/0.402) = 3.22 \Rightarrow pH = 10.78$ pH of BASE BUFFER:

8-9) A nitrous acid buffer is prepared by adding 150ml of 0.481 M nitrous acid (pKa = 3.35) to 100 ml of 0.314 M sodium nitrite. What is the pH of this buffer?

=3.35-LOG((0.15*0.481)/(0.1*0.314))=2.99

Now 100 ml of 0.2M sodium hydroxide is added, what is the final pH

=3.35-LOG((0.15*0.481-0.1*0.2)/(0.1*0.314+0.1*0.2))

3.343709

10) What volume of a 0.25 M Sulfuric acid solution is required to titrate to equivalence 36.0 mL of a 0.225 M ammonium hydroxide ($pK_b=4.75$) solution? And what is the resulting pH

MV=MV

(0.5)*x = 0.225*0.036

0.0162 L

16.2 ml

Strong Acid/WEAK base ==> No excess Acid/Base and BUT contains Salt of Weak Base (Acidic)

Molarity of NH_4^+ = moles of $NH_4/(Total\ Volume) = (0.036*0.225)/(0.0162+0.036) = 0.155\ M$ $pH = 7 - \frac{1}{2} * (4.75 + \log(0.155)) = 5.03$

6) Which of the following aqueous solutions are good buffer systems AND WHY!!?

0.45 M hydrocyanic acid + 0.22 M sodium hydroxide	YES(SB converts HCN=>CN-)
	NO(strong acid)

0.36 M potassium nitrate + 0.26 M barium sulfate	NO(both salts)
0.40 M sodium lactate + 0.47 M hydrofluoric acid	NO(needs conjugate pair)
0.31 M sulfuric acid + 1.24 M ammonia	YES(Half of the base will be converted to conjugate acid
0.61 M ammonia + 0.034 M amonium chloride	NO insufficient ammonium ion

DΩ	7 7	ZDDA		ONTC	TITRATION	(10 pts)
rv	113	(E EZ	O I	ONIC	TITICATION	(ro bea)

Draw a rough titration curve for 500ml of 0.1M Phosphoric Acid with 0.1M Sodium Hydroxide. Identify which forms of Phosphate are present at the each of the Equivalence points! pKa's = 2.15, 7.2, 12.35

SOLUBILITY (5 pts)

What is the solubility in grams per liter of Sodium Phosphate if its Ksp = 2.24?

Part C. Consider the following Titration Conditions (8x5=40pts)

:

0.25 M ACID	0.35 M BASE	Equation/work	pH
35 ml Formic Acid (pKa)=3.17	25 ml of NaOH	moles of acid = MaVa	
50 ml HCl	50 ml NH ₃ (pK _b = 4.75)	moles of acid = MaVa	
50 ml Chloroacetic Acid (pKa=2.85)	15 ml Ca(OH) ₂	moles of acid = MaVa	
120 ml Nitrous Acid (pK _a)=3.35	40 ml NaOH	moles of acid = MaVa	
35 ml of HCl	25 ml of Methylamine pK _b =3.34	moles of acid = MaVa	
No Acid	25 ml of Methylamine pK _b =3.34	moles of acid = MaVa	
20 ml of Cyanic Acid (HCNO) pKa = 3.46	No Base	moles of acid = MaVa	
70ml of Sulfuric Acid	40 ml of NaOH	moles of acid = MaVa	

Part C. Consider the following Titration Conditions (8x5=40pts)

0.20 M ACID	0.40 M BASE	Equation/work		
40 ml Formic Acid (pKa)=3.17	20 ml of NaOH	moles of acid = MaVa	done	
60 ml HCl	30 ml NH ₃ (p $K_b = 4.75$)	moles of acid = MaVa	done	
50 ml Chloroacetic Acid (pKa=2.85)	12.5 ml Ca(OH) ₂	moles of acid = MaVa	done	
120 ml Nitrous Acid (pK _a)=3.35	50 ml NaOH	moles of acid = MaVa	done	
20 ml of HCl	25 ml of Methylamine pK _b =3.34	moles of acid = MaVa	done	
No Acid	35 ml of Methylamine pK _b =3.34	moles of acid = MaVa	done	
30 ml of Cyanic Acid (HCNO) pKa = 3.46	No Base	moles of acid = MaVa	done	
70ml of Sulfuric Acid	40 ml of Ba(OH) ₂	moles of acid = MaVa moles of base = MbVb Total Volume= STRONG Acid Won D.014 0.032 0.110 LI STRONG Acid Won PH= 13.21	done	