DAI SỐ BOOLE

Tạ Thị Nguyệt Nga

CHƯƠNG 7 ĐẠI SỐ BOOLE

- Dại số Boole
- Biểu đô Karnaugh
- >Mang logic

CÂU TRÚC ĐẠI SỐ

• Câu trúc

	Vật liệu	Kết nối
Nhà	Gạch, đá, gỗ	Xi măng,
Áo	Vải	Chỉ may
Món ăn	Nguyên liệu: rau thịt	Gia vi
R, Z	Các số	Phép toán +:
Programe	Dữ liệu	Câu lệnh

- Câu trúc đại số:
 - 1. Đối tượng đại số: số, tập hợp, mệnh đê, hàm, vật thể, ...
 - 2. Phép toán: ???

ĐỊNH NGHĨA

P(B)

Định nghĩa: Tập hợp B cùng với phép toán hai ngôi . và +, cùng với phép toán và hai phần tử (0,1). Sao cho mọi x, y, $z \in B$, các tiền đề sau được thoả mãn:

1.
$$x + y = y + x$$

$$x \cdot y = y \cdot x$$

(giao hoán)

2.
$$(x + y) + z = x + (y + z)$$
 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(kết hợp)

3.
$$z \cdot (x + y) = (z \cdot x) + (z \cdot y)$$
 $z + (x \cdot y) = (z + x) \cdot (z + y)$

$$z + (x \cdot y) = (z + x) \cdot (z + y)$$

(phân phôi)

4.
$$x + 0 = x$$

$$x.1 = x$$

(phần tử đơn vị)

5.
$$x + \bar{x} = 1$$

$$x \cdot \bar{x} = 0$$

(ph'an bù)

Thì (B,+,., ¬, 0, 1) gọi là một cấu trúc đại số Boole.

- ➤ George Boole (1815–1864), nhà toán học người Anh
- Là người đâu tiên đưa ra ý tưởng gọi True là 1 và False là 0

"That language is an instrument of human reason, and not merely a medium for thought, is a truth generally admitted"

> Boolean là giá trị chỉ đúng hoặc sai.

VÍ DŲ

➤ Ví dụ 1. $B = \{a, b, c\}$. Tập hợp các tập con của B cùng với phép giao, hội và phủ định lập nên đại số Boole. $(\mathcal{P}(B), \lor, \land, \neg, \varnothing, B)$

+

➤ Ví dụ 2. P là tâp các mệnh đê cùng phép giao, hội và phủ định lập nên đại số Boole.

 $(P, \lor, \land, \neg, 0, 1)$. Ở đây, 0 là hằng sai, 1 là hằng đúng

- ❖ Phép ∨ là phép or hay gọi là tổng Boole
- ◆ Phép ∧ là phép and hay gọi tích Boole
- ❖ Phép ¯ là phép not hay gọi phủ định Boole

х	y	$x \lor y$	$x \wedge y$	\bar{x}
0	0	0	0	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	0

VÍ DŲ

- ➤ Ví dụ 3. $B = \{0.1\}.$
 - ❖ Phép + là phép or hay gọi là tổng Boole
 - Phép . là phép and hay gọi tích Boole
 - ♣ Phép ¯ là phép not hay gọi phủ định Boole
- Tìm giá trị của $1.0 + \overline{0 + 1}$
- ➤ Xét biểu thức logic tương đương của

$$\bar{1}.1 + \bar{0} = 1$$

х	y	x + y	<i>x</i> . <i>y</i>	\bar{x}
0	0	0	0	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	0

HÀM BOOLE

Định nghĩa. Cho tập $B = \{0,1\}$. Hàm Boole là một ánh xạ $f: B^n \to B$. Biến Boole x, bậc hàm Boole là n

Ví dụ 1. n=1.

 $f: B \to B$, $f(x) = \bar{x}$. Đối trắng thay đen.

 $f: B \to B$, $f(x) = x \cdot \bar{x}$. Cho ra giá trị hằng 0

Ví dụ 2. n=2. Có bao nhiều hàm Boole $f:B^2\to B$

Có bao nhiều hàm Boole $f: B^n \to B$

Ví dụ 3. n=3. Hàm $f: B^3 \to B$, $f(x, y, z) = xyz + \overline{z}$ Hàm Boole ba biến.

Ví dụ 4. n=4 . Hàm Boole cho bằng công công thức: $f = \bar{z}t + x\bar{z} + \bar{x}yt + yz\bar{t}$ Hàm Boole cho bằng công công thức:

 $f^{-1}(1) = \{1100, 1101, 1110, 1111, 1000, 1001, 0111, 0011, 0001\}$

HÀM BOOLE

Ví dụ 5. Tìm giá trị của hàm Boole cho bởi $F(x, y, z) = xy + \overline{z}$.

x	у	z	хy	ī	$F(x, y, z) = xy + \bar{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

TÍNH CHẤT

• • • • • • • • • • • •

Identity		Tên	Name
$\bar{\bar{x}} = x$		Luật bù kép	Law of the double complement
x + x = x	$x \cdot x = x$	Luật luỹ đẳng	Idempotent laws
x + 0 = x.	$x \cdot 1 = x$	Luật đơn vị	Identity laws.
x + 1 = 1	$x \cdot 0 = 0$	Luật hấp thụ	Domination laws
x + y = y + x	xy = yx	Luật giao hoán	Commutative laws
x + (y + z) = (x + x) $x(yz) = (xy)z$	- y) + z	Luật kết hợp	Associative laws
x + yz = (x + y)(x + y) = xy + xz	x + z)	Luật phân phối	Distributive laws
$\frac{\overline{(xy)} = \overline{x} + \overline{y}}{\overline{(x+y)} = \overline{x}\overline{y}}$		Luật De Morgan	De Morgan's laws
x + xy = x $x(x+y) = x$		Luật hút	Absorption laws
$x + \bar{x} = 1$		Đơn vị phép cộng	Unit property
$x\bar{x} = 0$		Không của phép nhâ	n Zero property

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$$

- Tính giá trị hàm Boole $F(x, y, z) = \bar{y}(xz + \bar{x}\bar{z})$
- ➤ Chứng minh luật DeMorgan $\overline{(x+y)} = \overline{x}\overline{y}$

GIẢI BÀI 1

➤ Chứng minh luật DeMorgan $\overline{(x+y)} = \overline{x}\overline{y}$

X	y	x+y	$\overline{(x+y)}$	$\bar{x}\bar{y}$
1	1	1	0	0
1	O	1	0	0
0	1	1	0	0
0	0	0	1	1

CÔNG THỰC ĐA THỰC

- ightharpoonup Mỗi hàm Boole x hay \bar{x} được gọi là từ đón.
- > Đơn thức là tích khác không của một số hữu hạn từ đón. xyz, xy
- > Công thức đa thức là công thức biểu diễn hàm Boole thành tổng của các đơn thức.
- Từ tối tiểu là tích khác không của **đúng** n từ đơn. $xyz, \bar{x}y\bar{z}$ (n=3), không được lặp lại.
- ► Dạng nối rời chính tắc: là công thức biểu diễn hàm Boole thành tổng của các từ tối tiểu $f = xyz + \bar{x}y\bar{z} + x\bar{y}z$ (n=3)
- Từ tối đại là "đối ngẫu" của các từ tối tiểu. (tổng) Mỗi từ tối đại là tổng Boole của n từ đơn ().
- Dạng nối li nà chính tắc: công thức biểu diễn hàm Boole thành tích của các từ tối đại
- \rightarrow $(x + y + z) \cdot (\bar{x} + y + z) \cdot (\bar{x} + \bar{y} + z)$.

CHO $F \Rightarrow SOP$

- Là dạng toán tìm dạng nối rời chính tắc của hàm F.
- \blacktriangleright Ví dụ: Tìm dạng nối rời chính tắc của hàm Bool hai biến, $F=x+\bar{y}$
- ➤ Giải:
 - Thê $1 = x + \bar{x}$, $1 = y + \bar{y}$ $F = x + \bar{y} = x(y + \bar{y}) + \bar{y}(x + \bar{x})$
 - Suy ra $F = xy + x\bar{y} + x\bar{y} + \bar{x}\bar{y}$
 - Sử dụng luật luỹ đẳng ta có $x\bar{y} + x\bar{y} = x\bar{y}$
 - ➤ Vậy $F = xy + x\bar{y} + \bar{x}\bar{y}$

VÍ DŲ 2

- ➤ Tìm dạng nối rời chính tắc, tên tiếng anh có thể là sum of product form or Disjunctive normal form (DNF). Trong logic có tên gọi dạng chuẩn tắc tuyển.
- $F(x, y, z) = (x + y)\overline{z}$.

$$F(x, y, z) = (x + y)\overline{z}$$

$$= x\overline{z} + y\overline{z}$$
Distributive law
$$= x1\overline{z} + 1y\overline{z}$$
Identity law
$$= x(y + \overline{y})\overline{z} + (x + \overline{x})y\overline{z}$$
Unit property
$$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$
Distributive law
$$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$
Idempotent law

$$F(x, y, z) = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z}.$$

BÀI TẬP 1

- Tìm dạng nối rời chính tắc, có hai kĩ thuật rất hay dùng là:
 - \blacktriangleright Đơn vị của phép cộng: $x + \bar{x} = 1$.
 - Luật luỹ đẳng x + x = x. Khi thấy hai số hạng giống nhau bạn có thể rút về một số hạng
- Tìm dạng nối rời chính tắc của hàm Bool 3 biến

$$F = xy + \bar{z} \qquad xy(z+\bar{z}) + (x+\bar{x})(y+\bar{y})\bar{z} =$$

$$F = \bar{x} + \bar{y}z + xy\bar{z}$$

Tìm dạng nối rời chính tắc của hàm Bool 4 biến

$$F = xz + xy\overline{t} + \overline{x}\overline{y}\overline{t}$$

$$F = AC + ABD' + A'B'D'$$

(Đôi khi thay vì kí hiệu x,y,z,t người ta cũng có thể kí hiệu là A, B, C,D. Hoặc thay vì kí hiệu gạch ngang, có thể dùng ' như trên.)

GIÂI

$$F = xy + \bar{z}$$

1.
$$= xy(z + \bar{z}) + (x + \bar{x})(y + \bar{y})\bar{z}$$

$$2. = xyz + xy\bar{z} + (x + \bar{x})(y\bar{z} + \bar{y}\bar{z})$$

3.
$$= xyz + xy\bar{z} + xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

4.
$$= xyz + xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

CHO F ⇒ SOP: CÁCH THỬ 2

- Tìm dạng nối rời chính tắc (SOP, DNF) của $F(x, y, z) = xy + \bar{z}$
- ➤ Lập bảng chân trị

х	у	z	хy	z	$F(x, y, z) = xy + \bar{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

$$F = xy + \bar{z}$$

1.
$$= xy(z + \bar{z}) + (x + \bar{x})(y + \bar{y})\bar{z}$$

$$2. = xyz + xy\bar{z} + (x + \bar{x})(y\bar{z} + \bar{y}\bar{z})$$

3.
$$= xyz + xy\bar{z} + xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

4.
$$= xyz + xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

- Lây dòng gía trị là 1 (các tích làm cho F bằng 1)
- $F = xyz + xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$

CHO F \Rightarrow SOP: CÁCH THỬ 2

- Tìm dạng nối rời chính tắc (SOP, DNF) của $F(x, y, z) = xy + \bar{z}$
- ➤ Lập bảng chân trị

x	у	z	хy	ī	$F(x, y, z) = xy + \bar{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

$$F = xyz + xy\bar{z} + x\bar{y}\bar{z} + x\bar{y}z + \bar{x}\bar{y}\bar{z}$$

CÔNG LOGIC

(b) OR gate

(c) AND gate

N	ОТ	AND			OR				XOR			
x	F	×	y	F		x	Y	F		ж	y	F
0	1	0	0	0		0	0	0		0	0	0
1	0	0	1	0		0	1	1		0	1	1
_		1	0	0		1	0	1		1	0	1
-	\rightarrow	1	1	1		1	1	1		1	1	0
		\rightarrow)—	-	⇒ ∑		>	=	*))		>

CÔNG LOGIC

► Biểu diễn mạng logic của $xy + \bar{x}y$

FIGURE 3 Two ways to draw the same circuit.

VÍ DỤ 1

- $\rightarrow (x + y)\bar{x}$
- $\rightarrow \bar{x}(y+z)$

VÍ DŲ 2

$$(x + y + z)\bar{x}\bar{y}\bar{z}$$

 $(x + y + z)\bar{x}\bar{y}\bar{z}$

BIỂU ĐỒ KARNAUGH

1	1
1	0
0	1
0	0

Biểu đô Karnaugh

n=2, hai biến x,y

n=4, bôn biến x,y,z,t

BIỂU ĐỒ KARNAUGH HAI BIẾN

ÿ

$$ightharpoonup$$
 $F = \bar{x}\bar{y}$

$$ightharpoonup F = xy + \bar{x}\bar{y}$$

$$F = xy + xy$$

$$oldsymbol{x}$$
 $oldsymbol{ar{x}}$

BIỂU ĐÔ KARNAUGH BA BIẾN

$$\rightarrow F=?$$

$$ightharpoonup F = xy\bar{z} + \bar{x}yz + \bar{x}\bar{y}z$$

 $ightharpoonup F = xyz + xy\bar{z} + x\bar{y}z$

- > $F = xyz + xy\overline{z} + x\overline{y}z$ (dạng nối rời chính tắc)
- $F = x\bar{y}z + xy$
- F = xz + xy (Dạng tối tiểu)
- Thích dạng nào nhất?
- > Dạng nào đơn giản nhất?

$$F = xyz + xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

(SOP Dạng nối rời chính tắc)

$$F = xy + \bar{z}$$

Dạng tối tiểu

BIỂU ĐÔ KARNAUGH BA BIẾN

Bài tập

$$x\bar{z} + \bar{x}yz + \bar{y}\bar{z}$$

(a)
$$xy\bar{z} + x\bar{y}\bar{z} + \bar{x}yz + \bar{x}\bar{y}\bar{z}$$

(b)
$$x\bar{y}z + x\bar{y}\bar{z} + \bar{x}yz + \bar{x}\bar{y}z + \bar{x}\bar{y}\bar{z}$$

(c)
$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}z + x\overline{y}z + \overline{x}yz + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}z$$

(d)
$$xy\overline{z} + x\overline{y}\overline{z} + x\overline{y}z + x\overline{y}z + x\overline{y}z$$

$$\bar{y} + \bar{x}z$$

- ightharpoonup Tế bào là hình chữ nhật tạo thành bởi 2^n ô. Tính cả trường hợp cuốn karnaugh thành hình trụ theo chiều dọc hay chiều ngang
- ➤ Tê′bào 1 ô: 1 x 1

➤ Tê′bào 2 ô: 2 x 1

- ➤ Tê′bào 2 ô
- ➤ Hai ô hai góc cũng tạo thành một tế bào

- ➤ Tê′bào 2 ô
- ➤ Hai ô hai góc cũng tạo thành một tế bào

➤ Tê'bào 4 ô: 2 x 2, 4x1

➤ Tê' bào 4 ô: 2 x 2, 4x1

➤ Tê′bào 4 ô:

➤ Tê′bào 8ô:

KARNAUGH BÔN BIÊN

Tê bào lớn là gì? Là tế bào không nằm trong tế bào

a)
$$f(x, y, z, t) = y\bar{t} \lor xy\bar{z} \lor \bar{x}yz \lor x\bar{y}z\bar{t} \lor \bar{x}\bar{y}\bar{z}\bar{t}$$

b)
$$f(x, y, z, t) = xz\bar{t} \vee \bar{y}\bar{z}\bar{t} \vee xyt \vee \bar{x}yz \vee \bar{x}\bar{y}\bar{z}\bar{t} \vee \bar{x}y\bar{z}t$$

c)
$$f(x, y, z, t) = \bar{x}\bar{y}\bar{z}\bar{t} \vee yzt \vee x\bar{y}z \vee xy\bar{z}t \vee yz\bar{t} \vee \bar{x}\bar{y}t$$

d)
$$f(x, y, z, t) = \bar{x}yz \vee x\bar{y} \vee x\bar{z}\bar{t} \vee \bar{x}y\bar{t} \vee xyz\bar{t} \vee \bar{y}zt$$

e)
$$f(x, y, z, t) = x\bar{y}z\bar{t} \vee y\bar{z}t \vee \bar{x}\bar{y}z\bar{t} \vee y\bar{z}\bar{t} \vee \bar{x}yz \vee x\bar{y}\bar{z}\bar{t}$$

f)
$$f(x, y, z, t) = \bar{x}\bar{z}\bar{t} \lor xyzt \lor x\bar{y}\bar{z}\bar{t} \lor x\bar{y}t \lor \bar{x}z\bar{t} \lor \bar{x}y\bar{z}t$$

g)
$$f(x, y, z, t) = xyzt \lor \bar{x}\bar{y} \lor x\bar{z}t \lor y\bar{z}\bar{t}$$

h)
$$f(x, y, z, t) = \bar{z}\bar{t} \vee xy\bar{t} \vee \bar{x}y\bar{z} \vee \bar{x}\bar{y}z\bar{t} \vee x\bar{y}\bar{z}t \vee \bar{y}zt$$

KARNAUGH BÔN BIÊN

Tế bào lớn là gì? Là tế bào không nằm trong tế bào khác.

$$F = \bar{z}\bar{t} + \bar{x}\bar{t} + \bar{y}zt + xzt$$

F => ĐA THỰC TỐI TIỂU

- 1. Vẽ biểu đô karnaugh
- 2. Xác định tất cả các tế bào lớn của karnaugh và các công thức đón thức tương ứng với từng tế bào lớn.
- 3. Tìm trong karnaugh những ô chỉ nằm trong duy nhất một tế bào lớn và chọn tế bào này để phủ karnaugh.
- 4. Cứ tiếp tục quá trình trên đến khi nào karnaugh được phủ kín. Chọn phủ tối tiểu để phủ karnaugh.

>

KARNAUGH BÔN BIÊN

XZt

......

 $\bar{z}\bar{t}$

$$F = \bar{x}\bar{t} + \bar{z}\bar{t} + \bar{x}\bar{y}z + xzt.$$

TÔNG HỢP

BIÊU ĐÔ KARNAUGH

BIÊU ĐÔ KARNAUGH

BÀI TẬP

2
$$bi\hat{e}\hat{n}_1$$
. $xy + xy'$

2.
$$xy + x'y + x'y'$$

3. xy' + x'y'

5.
$$xyz' + xy'z + xy'z' + x'yz + x'yz' + x'y'z$$

6.
$$xyz + xyz' + x'yz + x'y'z$$

7.
$$xyz + xyz' + xy'z + xy'z' + x'y'z$$

4
$$bi\hat{e}n$$
8. xyzt + xyz't + xyzt' + x'yzt + x'y'zt + x'yzt'

9.
$$xyz't + xy'zt + xy'z't + x'yzt + x'yz't + x'yzt' + x'y'z't'$$

10.
$$xy'z't + xy'zt' + xy'z't' + x'y'zt + x'y'z't + x'y'zt' + x'y'z't'$$